З<u>АДАЧ</u>И по общей физике

учебное пособие для вузов

9-Е ИЗДАНИЕ (ЭЛЕКТРОННОЕ)

Рекомендовано учебно-методическим объединением в области «Ядерные физика и технологии» в качестве учебного пособия для студентов физических специальностей высших учебных заведений

Москва БИНОМ. Лаборатория знаний 2 0 1 2 УДК 535.12(075) ББК 22.343я7 И83

Электронный аналог печатного издания: Задачи по общей физике: учебное пособие для вузов / И. Е. Иродов. — 9-е изд. — М.: БИНОМ. Лаборатория знаний, 2012. — 431 с.: ил.

Иродов И. Е.

И83 Задачи по общей физике [Электронный ресурс]: учебное пособие для вузов / И. Е. Иродов. — 9-е изд. (эл.). — М.: БИНОМ. Лаборатория знаний, 2012. — 431 с.: ил.

ISBN 978-5-9963-1016-6

Сборник содержит свыше 2000 задач по всем разделам курса общей физики. Каждой теме предшествуют краткие теоретические сведения, в конце сборника приведены справочные таблицы. Материал сборника скомпонован в соответствии с современной концепцией изучения курса: механика, электромагнетизм, колебания и волны, оптика, квантовая физика и физика макросистем.

Для студентов физических и инженерно-технических специальностей вузов. Может быть использован во втузах с обычной программой по физике.

УДК 535.12(075) ББК 22.343я7

По вопросам приобретения обращаться: «БИНОМ. Лаборатория знаний» Телефон: (499) 157-5272 e-mail: binom@Lbz.ru, http://www.Lbz.ru

Предисловие		5
Несколько советов по решению задач		6
Часть 1. Физические основы механики		7
1.1. Кинематика		
1.2. Основное уравнение динамики		.6
1.3. Законы сохранения импульса, энергии и момента		
импульса		
1.4. Всемирное тяготение		
1.5. Динамика твердого тела		
1.7. Механика несжимаемой жидкости		
1.8. Релятивистская механика		
Часть 2. Электромагнетизм		
2.1. Постоянное электрическое поле в вакууме		
2.2. Проводники и диэлектрики в электрическом пол		
2.3. Электроемкость. Энергия электрического поля		
2.4. Электрический ток		
2.5. Постоянное магнитное поле. Магнетики	11	.6
2.6. Электромагнитная индукция. Уравнения	1.0	
Максвелла	13	ίL
2.7. Движение заряженных частиц в электрическом и магнитном полях	1.4	15
Часть 3. Колебания и волны		
3.1. Механические колебания		
3.3. Упругие волны. Акустика		
3.4. Электромагнитные волны. Излучение		
Часть 4. Оптика		
4.1. Фотометрия и геометрическая оптика		
4.2. Интерференция света		
4.3. Дифракция света		
4.4. Поляризация света	22	29
4.5. Дисперсия и поглощение света	23	19
Часть 5. Квантовая физика	24	3
5.1. Корпускулярные свойства электромагнитного		
излучения		
5.2. Рассеяние частиц. Атом Резерфорда—Бора		
5.3. Волновые свойства частиц		
5.4. Атомы и молекулы		
5.5. Ядро атома. Радиоактивность		
5.6. Ядерные реакции		
5.7. Элементарные частицы	40	o

Часть 6. Физика макросистем	. 287
6.1. Уравнение состояния газа. Процессы	. 287
6.2. Первое начало термодинамики. Теплоемкость	
6.3. Молекулярно-кинетическая теория.	
Распределения Максвелла и Больцмана	. 296
6.4. Второе начало термодинамики. Энтропия	. 305
6.5. Явления переноса	
6.6. Тепловое излучение	
6.7. Твердое тело	
6.8. Жидкости. Капиллярные явления	
6.9. Фазовые превращения	
Ответы и решения	
Приложения	
1. Некоторые формулы алгебры и тригонометрии	
2. Таблица производных и интегралов	. 411
3. Некоторые постоянные числа и приближенные	440
формулы	
4. Некоторые сведения о векторах	
5. Греческий алфавит	
6. Таблица тригонометрических функций	
7. Таблица показательных функций	
8. Астрономические величины	
9. Плотности веществ	
10. Упругие постоянные. Предел прочности	
11. Диэлектрические проницаемости	. 416
12. Удельные сопротивления проводников и изоляторов	. 416
13. Магнитные восприимчивости пара- и диамагнетиков .	. 417
14. Показатели преломления $n \dots \dots \dots \dots \dots$. 417
15. Вращение плоскости поляризации	. 418
16. Работа выхода электрона из металлов	. 418
17. Край K -полосы поглощения	. 418
18. Массовые коэффициенты ослабления	
19. Константы двухатомных молекул	. 419
20. Периоды полураспада радионуклидов	. 419
21. Массы легких нуклидов	
22. Постоянные газов	
23. Тепловые постоянные твердых тел	. 421
24. Некоторые постоянные жидкостей	
25. Давление насыщенных паров воды	
26. Основные величины и единицы СИ	
27. Единицы физических величин	
28. Некоторые внесистемные единицы	
29. Основные формулы электродинамики в СИ	
и гауссовой системе	. 426
30. Формулы некоторых атомных величин	
в гауссовой системе и СИ	. 429
31. Фундаментальные физические константы	

Предлагаемый сборник содержит свыше 2000 задач с указаниями для решения наиболее сложных из них. Достаточно широкий выбор задач как по тематике, так и по степени трудности дает возможность использовать этот задачник как для физических, так и для инженерно-технических специальностей вузов.

Для удобства и экономии времени учащихся в начале каждого раздела дается сводка основных формул на соответствующий материал. Формулы приведены, как правило, без подробных пояснений: предполагается, что смысл входящих в них величин уже известен студенту, приступающему к решению задач. Пояснения даны лишь в тех случаях, когда по тем или иным причинам могут возникнуть недоразумения.

Все формулы в основном тексте и ответах приведены в СИ, за исключением части 5 (Квантовая физика), где использована и гауссова система (СГС). Исходные данные и числовые ответы даны с учетом точности значений соответствующих величин и правил действий над приближенными числами.

В конце сборника дана сводка основных физических констант и справочные таблицы.

В этом издании компоновка материала осталась прежней: механика, электромагнетизм, колебания и волны, оптика, квантовая физика и физика макросистем. Именно такое расположение — логически последовательное и самосогласованное — отвечает современной концепции изучения курса общей физики как фундаментальной дисциплины и соответствует новой программе по физике Министерства образования и науки РФ.

Заменены две задачи (3.201 и 6.41), несколько изменены задачи 3.225, 3.226 и 3.231, исправлены замеченные ошибки и опечатки. Периодическая система элементов и Таблица элементарных частиц расположены на форзацах.

Автор весьма признателен всем читателям, которые сообщили свои замечания и тем самым способствовали улучшению сборника.

Несколько советов по решению задач

- 1. Прежде всего ознакомьтесь с таблицами приложения, так как решение многих задач без них невозможно. Кроме того, содержащийся в этих таблицах справочный материал значительно облегчит вашу работу и сэкономит время.
- 2. Приступая к решению задачи, хорошо вникните в ее смысл и постановку вопросов. Установите, все ли данные, необходимые для решения задачи, приведены. Недостающие данные можно найти в таблицах приложения. Если позволяет характер задачи, обязательно сделайте схематический рисунок, поясняющий ее сущность, это во многих случаях резко облегчает как поиск решения, так и само решение.
- 3. Каждую задачу решайте, как правило, в общем виде (т. е. в буквенных обозначениях), чтобы искомая величина была выражена через заданные величины. Решение в общем виде придает окончательному результату особую ценность, ибо позволяет установить определенную закономерность, показывающую, как зависит искомая величина от заданных величин. Кроме того, ответ, полученный в общем виде, позволяет судить в значительной степени о правильности самого решения (см. следующий пункт).
- 4. Получив решение в общем виде, проверьте, правильную ли оно имеет размерность. Неверная размерность есть явный признак ошибочности решения. Если возможно, исследуйте поведение решения в предельных частных случаях. Например, какой бы вид ни имело выражение для силы гравитационного взаимодействия между двумя протяженными телами, с увеличением расстояния между телами оно должно непременно переходить в известный закон взаимодействия точечных масс. В противном случае можно сразу утверждать: решение неверно.
- 5. Приступая к вычислениям, помните, что числовые значения физических величин являются приближенными. Поэтому при расчетах руководствуйтесь правилами действий с приближенными числами. В частности, в полученном значении вычисленной величины нужно сохранить последним тот знак, единица которого еще превышает погрешность вычислений этой величины. Все следующие цифры надо отбросить.
- 6. Получив числовой ответ, оцените его правдоподобность. Такая оценка может в ряде случаев обнаружить ошибочность полученного результата. Так, например, дальность полета брошенного человеком камня не может быть порядка 1 км, скорость тела не может оказаться больше скорости света в вакууме и т. п.

Физические основы механики

1.1. Кинематика

- Векторы обозначены жирным шрифтом (\mathbf{r} , \mathbf{v} , \mathbf{a}), а их модули светлым курсивным шрифтом (r, v, a).
 - Средние векторы скорости и ускорения точки:

$$\langle \mathbf{v} \rangle = \Delta \mathbf{r} / \Delta t, \qquad \langle \mathbf{a} \rangle = \Delta \mathbf{v} / \Delta t, \qquad (1.1a)$$

где $\Delta \mathbf{r}$ — перемещение (приращение радиуса-вектора).

• Скорость и ускорение точки:

$$\mathbf{v} = \mathbf{dr}/\mathbf{d}t, \quad \mathbf{a} = \mathbf{dv}/\mathbf{d}t.$$
 (1.16)

• Ускорение точки в проекциях на касательную и нормаль к траектории:

$$a_{\tau} = \mathrm{d}v_{\tau}/\mathrm{d}t, \qquad a_{n} = v^{2}/R, \tag{1.1B}$$

где R — радиус кривизны траектории в данной точке.

• Путь, пройденный точкой:

$$s = \int v \, \mathrm{d}t, \tag{1.1r}$$

где $v - mo\partial y n b$ скорости точки.

• Угловые скорость и ускорение твердого тела:

$$\omega = d\varphi/dt, \qquad \beta = d\omega/dt.$$
 (1.1 π)

• Связь между линейными и угловыми величинами:

$$\mathbf{v} = [\boldsymbol{\omega}\mathbf{r}], \quad a_n = \omega^2 R, \quad a_{\tau} = \beta_z R,$$
 (1.1e)

где ${f r}$ — радиус-вектор рассматриваемой точки относительно произвольной точки оси вращения, R — расстояние точки от оси вращения.

- 1.1. Катер, двигаясь вниз по реке, обогнал плот в пункте A. Через $\tau = 60$ мин после этого он повернул обратно и затем встретил плот на расстоянии l = 6,0 км ниже пункта A. Найти скорость течения, если при движении в обоих направлениях мотор катера работал в одном режиме.
- 1.2. Все звезды, в частности и некоторая звезда N, удаляются от Солнца со скоростями, пропорциональными их расстоянию до него. Как будет выглядеть эта картина с «точки зрения» звезды N?

- 1.3. Точка прошла половину пути со скоростью v_0 . На оставшейся части пути она половину времени двигалась со скоростью v_1 , а последний участок прошла со скоростью v_2 . Найти среднюю за все время движения скорость точки.
- **1.4.** Точка движется по прямой в одну сторону. На рис. 1.1 показан график пройденного ею пути s в зависимости от времени t. Найти с помощью этого графика:

Рис. 1.1

- а) среднюю скорость точки за время движения;
 - б) максимальную скорость;
- в) момент времени t_0 , в который мгновенная скорость равна средней скорости за первые t_0 секунд.
- 1.5. Две частицы, 1 и 2, движутся с постоянными скоростями \mathbf{v}_1 и \mathbf{v}_2 . Их радиусы-векторы в начальный момент равны \mathbf{r}_1 и \mathbf{r}_2 . При каком соотношении между этими четырьмя векторами час-

тицы испытают столкновение друг с другом?

- 1.6. Корабль движется по экватору на восток со скоростью $v_0 = 30$ км/ч. С юго-востока под углом $\phi = 60^\circ$ к экватору дует ветер со скоростью v = 15 км/ч. Найти скорость v' ветра относительно корабля и угол ϕ' между экватором и направлением ветра в системе отсчета, связанной с кораблем.
- 1.7. Два пловца должны попасть из точки A на одном берегу реки в прямо противоположную точку B на другом берегу. Для этого один из них решил переплыть реку по прямой AB, другой же все время держать курс перпендикулярно к течению, а расстояние, на которое его снесет, пройти пешком по берегу со скоростью u. При каком значении u оба пловца достигнут точки B за одинаковое время, если скорость течения $v_0 = 2,0$ км/ч и скорость каждого пловца относительно воды v' = 2,5 км/ч?
- 1.8. От бакена, который находится на середине широкой реки, отошли две лодки, A и B. Обе лодки стали двигаться по взаимно перпендикулярным прямым: лодка A вдоль реки, а лодка B поперек. Удалившись на одинаковое расстояние от бакена, лодки вернулись затем обратно. Найти отношение вре-

1.1. Кинематика 9

мен движения лодок τ_A/τ_B , если скорость каждой лодки относительно воды в $\eta=1,2$ раза больше скорости течения.

- 1.9. Лодка движется относительно воды со скоростью, в n=2,0 раза меньшей скорости течения реки. Под каким углом к направлению течения лодка должна держать курс, чтобы ее снесло течением как можно меньше?
- 1.10. Два тела бросили одновременно из одной точки: одно вертикально вверх, другое под углом $\vartheta=60^\circ$ к горизонту. Начальная скорость каждого тела $v_0=25$ м/с. Найти расстояние между телами через t=1,70 с.
- **1.11.** Два шарика бросили одновременно из одной точки в горизонтальном направлении в противоположные стороны со скоростями $v_1=3.0\,\,\mathrm{m/c}$ и $v_2=4.0\,\,\mathrm{m/c}$. Найти расстояние между шариками в момент, когда их скорости окажутся взаимно перпендикулярными.
- 1.12. Три точки находятся в вершинах равностороннего треугольника со стороной a. Они начинают одновременно двигаться с постоянной по модулю скоростью v, причем первая точка все время держит курс на вторую, вторая на третью, третья на первую. Через сколько времени точки встретятся?
- **1.13.** Точка A движется равномерно со скоростью v так, что вектор \mathbf{v} все время «нацелен» на точку B, которая движется прямолинейно и равномерно со скоростью u < v. В начальный момент $\mathbf{v} \perp \mathbf{u}$ и расстояние между точками равно l. Через сколько времени точки встретятся?
- 1.14. Поезд длины l=350 м начинает двигаться по прямому пути с ускорением a=3,0 см/с². Через t=30 с после начала движения включили прожектор локомотива (событие 1), а через $\tau=60$ с после этого сигнальную лампу в хвосте поезда (событие 2). Найти расстояние между точками, в которых произошли эти события, относительно полотна дороги. Как и с какой скоростью должна перемещаться некоторая K-система отсчета, чтобы оба события произошли в ней в одной точке?
- 1.15. Кабина лифта, у которой расстояние от пола до потолка 2,7 м, начала подниматься с ускорением 1,2 м/с 2 . Через 2,0 с после начала подъема с потолка кабины стал падать болт. Найти:
 - а) время свободного падения болта;
- б) перемещение и путь болта за время свободного падения в системе отсчета, связанной с шахтой лифта.

- **1.16.** Две частицы движутся с постоянными скоростями v_1 и v_2 по двум взаимно перпендикулярным прямым к точке их пересечения O. В момент t=0 частицы находились на расстояниях l_1 и l_2 от точки O. Через сколько времени после этого расстояние между частицами станет наименьшим? Чему оно равно?
- 1.17. Из пункта A, находящегося на шоссе (рис. 1.2), необходимо за кратчайшее время попасть на машине в пункт B, расположенный в поле на расстоянии l от шоссе. На каком расстоянии от точки D следует свернуть с шоссе, если скорость машины по полю в η раз меньше ее скорости по шоссе?

Рис. 1.2

Рис. 1.3

- 1.18. Точка движется вдоль оси X со скоростью, проекция которой v_x как функция времени описывается графиком на рис. 1.3. В момент t=0 координата точки x=0. Изобразить примерные графики зависимостей ускорения a_x , координаты x и пройденного пути s от времени.
- **1.19.** За время $\tau = 10,0$ с точка прошла половину окружности радиуса R = 160 см. Найти за это время:
 - а) среднее значение модуля скорости;
 - б) модуль среднего вектора скорости;
- в) модуль среднего вектора полного ускорения, если тангенциальное ускорение постоянно.
- **1.20.** Радиус-вектор частицы меняется со временем t по закону $\mathbf{r} = \mathbf{b}t$ $(1 \alpha t)$, где \mathbf{b} постоянный вектор, α положительная постоянная. Найти:
 - а) скорость и ускорение частицы как функции t;
- б) время, через которое частица вернется в исходную точку, и пройденный при этом путь.
- 1.21. В момент t=0 частица вышла из начала координат в положительном направлении оси X. Ее скорость меняется со временем t как $\mathbf{v}=\mathbf{v}_0$ (1 t/τ), где \mathbf{v}_0 начальная скорость, ее модуль $v_0=10,0\,$ см/с, $\tau=5,0\,$ с. Найти:
 - а) координату x частицы, когда t = 6.0, 10 и 20 с;

1.1. Кинематика 11

б) моменты времени, когда частица будет находиться на расстоянии 10,0 см от начала координат.

- 1.22. Частица движется в положительном направлении оси X так, что ее скорость меняется по закону $v=\alpha\sqrt{x}$, где α положительная постоянная. В момент t=0 частица находилась в точке x=0. Найти:
 - а) ее скорость и ускорение как функции времени;
- б) среднюю скорость за время, в течение которого она пройдет первые s метров пути.
- 1.23. Точка движется, замедляясь, по прямой с ускорением, модуль которого зависит от ее скорости v как $a=\alpha\sqrt{v}$, где α постоянная. В начальный момент скорость точки равна v_0 . Какой путь она пройдет до остановки и за какое время?
- **1.24.** Точка движется в плоскости xy по закону $x = \alpha t$, $y = \beta t^2$, где α и β положительные постоянные. Найти:
 - а) уравнение траектории точки y(x) и ее график;
 - б) модули скорости и ускорения точки как функции t;
 - в) угол ϕ между векторами a и v как функцию t.
- 1.25. Точка движется в плоскости xy по закону $x = A \sin \omega t$, $y = A(1 \cos \omega t)$, где A и ω положительные постоянные. Найти:
 - а) путь s, проходимый точкой за время t;
 - б) угол между скоростью и ускорением точки.
- 1.26. Частица движется в плоскости xy с постоянным ускорением a, противоположным положительному направлению оси Y. Уравнение траектории частицы имеет вид $y=\alpha x-\beta x^2$, где α и β положительные постоянные. Найти скорость v_0 частицы в начале координат.
- **1.27.** Небольшое тело бросили под углом к горизонту с начальной скоростью \mathbf{v}_0 . Найти:
 - а) перемещение тела как функцию времени, ${\bf r}(t)$;
- б) средний вектор скорости за первые t секунд и за все время движения.
- 1.28. Тело бросили с поверхности земли под углом α к горизонту с начальной скоростью v_0 . Найти:
 - а) время движения;
- б) максимальную высоту подъема и горизонтальную дальность полета; при каком α они равны друг другу;
- в) уравнение траектории y(x), где y и x перемещения тела по вертикали и горизонтали соответственно.

- 1.29. Под каким углом к горизонту надо бросить шарик, чтобы:
- а) радиус кривизны начала его траектории был в $\eta = 8,0$ раз больше, чем в вершине;
- б) центр кривизны вершины траектории находился на земной поверхности?
- **1.30.** Шарик падает с нулевой начальной скоростью на гладкую наклонную плоскость, составляющую угол α с горизонтом. Пролетев расстояние h, он упруго отразился от плоскости. На каком расстоянии от места падения шарик отразится второй раз?
- **1.31.** Пушка и цель находятся на одном уровне на расстоянии **5,1** км друг от друга. Через сколько времени снаряд с начальной скоростью **240** м/с достигнет цели?
- 1.32. Из пушки выпустили последовательно два снаряда со скоростью $v_0=250$ м/с: первый под углом $\vartheta_1=60^\circ$ к горизонту, второй под углом $\vartheta_2=45^\circ$ (азимут один и тот же). Найти интервал времени между выстрелами, при котором снаряды столкнутся друг с другом.
- 1.33. Воздушный шар начинает подниматься с поверхности земли. Скорость его подъема постоянна и равна v_0 . Благодаря ветру шар приобретает горизонтальную компоненту скорости $v_x = \alpha y$, где α постоянная, y высота подъема. Найти зависимости от высоты подъема:
 - а) сноса шара x(y);
 - б) полного, тангенциального и нормального ускорений шара.
- **1.34.** Частица движется в плоскости xy со скоростью $\mathbf{v} = \alpha \mathbf{i} + \beta x \mathbf{j}$, где \mathbf{i} и \mathbf{j} орты осей X и Y, α и β положительные постоянные. В начальный момент частица находилась в начале координат. Найти:
 - а) уравнение траектории частицы y(x);
 - б) радиус кривизны траектории как функцию x.

1.35. Частица A движется в одну сторону по траектории (рис. 1.4) с тангенциальным ускорением $a_{\tau} = \alpha \tau$, где α — постоянный вектор, совпадающий по направлению с осью X, а τ — орт, свя-

занный с частицей A и направленный по касательной к траектории в сторону возрастания дуговой координаты. Найти скорость частицы как функцию x, если в точке x=0 ее скорость равна нулю.

1.1. Кинематика 13

1.36. Точка движется по окружности со скоростью $v = \alpha t$, где $\alpha = 0.50$ м/с². Найти ее полное ускорение в момент, когда она пройдет n = 0.10 длины окружности после начала движения.

- 1.37. Точка движется, замедляясь, по окружности радиуса R так, что в каждый момент ее тангенциальное и нормальное ускорения одинаковы по модулю. В момент t=0 скорость точки равна v_0 . Найти зависимость:
 - а) скорости точки от времени и пройденного пути s;
 - б) полного ускорения точки от v и s.
- 1.38. Точка движется по дуге окружности радиуса R. Ее скорость $v \propto \sqrt{s}$, где s пройденный путь. Найти угол между векторами скорости и полного ускорения как функцию s.
- 1.39. Частица движется по дуге окружности радиуса R по закону $l=A\sin\omega t$, где l смещение из начального положения, отсчитываемое вдоль дуги, A и ω постоянные. Найти полное ускорение частицы в точках l=0 и $l=\pm A$, если R=100 см, A=80 см и $\omega=2.00$ с $^{-1}$.
- 1.40. Частица движется по окружности радиуса R. В момент t=0 она находилась в точке O, и далее скорость ее меняется со временем как $v_{\tau}=\alpha t-\beta t^2$, где α и β положительные постоянные. Найти модуль полного ускорения частицы в момент, когда она снова окажется в точке O.
- 1.41. Точка движется по плоскости так, что ее тангенциальное ускорение $a_{\tau}=\alpha$, а нормальное ускорение $a_n=\beta t^4$, где α и β положительные постоянные. В момент t=0 точка покоилась. Найти радиус кривизны R траектории точки и ее полное ускорение как функции пройденного пути s.
- **1.42.** Частица движется равномерно со скоростью v по плоской траектории y(x). Найти ускорение частицы в точке x=0 и радиус кривизны траектории в этой точке, если траектория:
- а) парабола $y = \alpha x^2$; б) эллипс $(x/\alpha)^2 + (y/\beta)^2 = 1$, где α и β постоянные.
- 1.43. Частица A движется по окружности радиуса R=50 см так, что ее радиус-вектор ${\bf r}$ относительно точки O (рис. 1.5) поворачивается с постоянной угловой скоростью $\omega=0,40$ рад/с. Найти модуль скорости частицы, а также модуль и направление ее полного ускорения.
- **1.44.** Колесо вращается вокруг неподвижной оси так, что угол ϕ его поворота зависит от

Рис. 1.5

- времени как $\varphi = \beta t^2$, где $\beta = 0.20$ рад/с². Найти полное ускорение a точки A на ободе колеса в момент t = 2.5 с, если скорость точки A в этот момент v = 0.65 м/с.
- **1.45.** Снаряд вылетел со скоростью v = 320 м/с, сделав внутри ствола n = 2,0 оборота. Длина ствола l = 2,0 м. Считая движение снаряда в стволе равноускоренным, найти его угловую скорость вращения вокруг оси в момент вылета.
- **1.46.** Магнитная лента с катушки протягивается через звукосниматель с постоянной скоростью v. Толщина ленты равна h. Найти угловую скорость катушки как функцию времени t, если в момент t=0 радиус внешнего слоя магнитной ленты равен R.
- **1.47.** Твердое тело вращается вокруг неподвижной оси по закону $\varphi = at bt^3$, где a = 6.0 рад/с, b = 2.0 рад/с³. Найти средние значения угловой скорости и углового ускорения за промежуток времени от t = 0 до остановки.
- 1.48. Твердое тело начинает вращаться вокруг неподвижной оси с угловым ускорением $\beta=\alpha t$, где $\alpha=2,0\cdot 10^{-2}$ рад/с³. Через сколько времени после начала вращения вектор полного ускорения произвольной точки тела будет составлять угол $\phi=60^\circ$ с ее вектором скорости?
- 1.49. Твердое тело вращается, замедляясь, вокруг неподвижной оси с угловым ускорением $\beta \sim \sqrt{\omega}$, где ω его угловая скорость. Найти среднюю угловую скорость тела за время, в течение которого оно будет вращаться, если в начальный момент его угловая скорость была равна ω_0 .
- **1.50.** Твердое тело вращается вокруг неподвижной оси так, что его угловая скорость зависит от угла поворота ϕ по закону $\omega = \omega_0 a \phi$, где ω_0 и a положительные постоянные. В момент t=0 угол $\phi=0$. Найти зависимости от времени:
 - а) угла поворота;
 - б) угловой скорости.
- 1.51. Твердое тело начинает вращаться вокруг неподвижной оси с угловым ускорением $\boldsymbol{\beta} = \boldsymbol{\beta}_0 \cos \phi$, где $\boldsymbol{\beta}_0$ постоянный вектор, ϕ угол поворота из начального положения. Найти угловую скорость тела в зависимости от угла ϕ . Изобразить график этой зависимости.
- 1.52. Точка A находится на ободе колеса радиуса R=0.50 м, которое катится без скольжения по горизонтальной поверхности со скоростью v=1.00 м/с. Найти:
 - а) модуль и направление ускорения точки A;

1.1. Кинематика 15

б) полный путь s, проходимый точкой A между двумя последовательными моментами ее касания поверхности.

- **1.53.** Шар радиуса R = 10,0 см катится без скольжения по горизонтальной плоскости так, что его центр движется с постоянным ускорением a = 2,50 см/с². Через t = 2,00 с после начала движения его положение соответствует рис. 1.6. Найти:
 - а) скорости точек A и B;
 - б) ускорения точек A и O.
- 1.54. Цилиндр катится без скольжения по горизонтальной плоскости. Радиус цилиндра равен r. Найти радиусы кривизны траекторий точек A и B (рис. 1.6).
- 1.55. Два твердых тела вращаются вокруг взаимно перпендикулярных пересекающихся осей с постоянными угловыми скоростями $\omega_1=3.0$ рад/с и $\omega_2=4.0$ рад/с. Найти угловую скорость и угловое ускорение одного тела относительно другого.

Рис. 1.6

- **1.56.** Твердое тело вращается с угловой скоростью $\mathbf{\omega} = at\mathbf{i} + bt^2\mathbf{j}$, где a = 5.0 рад/с², \mathbf{i} и \mathbf{j} орты осей X и Y. Найти угол α между векторами углового ускорения $\boldsymbol{\beta}$ и $\boldsymbol{\omega}$ в момент, когда $\beta = 10.0$ рад/с².
- 1.57. Круглый конус с углом полураствора $\alpha = 30^{\circ}$ и радиусом основания R = 5,0 см катится равномерно без скольжения по горизонтальной плоскости, как показано на рис. 1.7. Вершина конуса закреплена шарнирно в точке O, которая находится на одном уровне с точкой C центром основания конуса. Скорость точки C равна v = 10,0 см/с. Найти модули:

Рис. 1.7

- а) угловой скорости конуса; б) углового ускорения конуса.
- 1.58. Твердое тело вращается с постоянной угловой скоростью $\omega_0=0.50$ рад/с вокруг горизонтальной оси AB. В момент t=0 ось AB начали поворачивать вокруг вертикали с постоянным угловым ускорением $\beta_0=0.10$ рад/с². Найти модули угловой скорости и углового ускорения тела через t=3.5 с.

1.2. Основное уравнение динамики

• Основное уравнение динамики (второй закон Ньютона):

$$m \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{F}. \tag{1.2a}$$

• Это же уравнение в проекциях на касательную и нормаль к траектории точки:

$$m \frac{\mathrm{d}v_{\tau}}{\mathrm{d}t} = F_{\tau}, \quad m \frac{v^2}{R} = F_n. \tag{1.26}$$

• Уравнение динамики точки в неинерциальной K '-системе отсчета, которая вращается с постоянной угловой скоростью ω вокруг неподвижной оси:

$$m\mathbf{a}' = \mathbf{F} + m\omega^2 \mathbf{R} + 2m[\mathbf{v}'\boldsymbol{\omega}],$$

где ${\bf R}$ — радиус-вектор точки относительно оси вращения K'-системы.

- 1.59. Частица движется вдоль оси X по закону $x = \alpha t^2 \beta t^3$, где α и β положительные постоянные. В момент t=0 сила, действующая на частицу, равна F_0 . Найти значения F_x силы в точках поворота и в момент, когда частица опять окажется в точке x=0.
- **1.60.** Найти модуль и направление силы, действующей на частицу массы m при ее движении в плоскости xy по закону $x = A \sin \omega t$, $y = B \cos \omega t$.
- **1.61.** На гладкой горизонтальной поверхности находятся два бруска масс m_1 и m_2 , которые соединены нитью. К брускам в момент t=0 приложили силы, противоположно направленные и зависящие от времени как $F_1=\alpha_1 t$ и $F_2=\alpha_2 t$. Найти, через сколько времени нить порвется, если сила натяжения на разрыв равна F_{nn} .
- **1.62.** Аэростат массы m = 250 кг начал опускаться с ускорением a = 0.20 м/с². Определить массу балласта, который следует сбросить за борт, чтобы аэростат получил такое же ускорение, но направленное вверх.

Рис. 1.8

1.63. В установке (рис. 1.8) массы тел равны m_0 , m_1 и m_2 , массы блока и нитей пренебрежимо малы и трения в блоке нет. Найти ускорение \mathbf{a} , с которым опускается тело m_0 , и силу натяжения нити, связывающей тела m_1 и m_2 , если коэффициент трения равен k.

1.64. На наклонную плоскость, составляющую угол α с горизонтом, поместили два бруска 1 и 2 (рис. 1.9). Массы брусков m_1 и m_2 , коэффициенты трения между плоскостью и этими брусками k_1 и k_2 , причем $k_1 > k_2$. Найти:

Рис. 1.9

- а) силу взаимодействия между брусками при движении;
 - б) угол α, при котором скольжения не будет.
- **1.65.** Небольшое тело пустили вверх по наклонной плоскости, составляющей угол $\alpha=15^\circ$ с горизонтом. Найти коэффициент трения, если время подъема тела оказалось в $\eta=2,0$ раза меньше времени спуска.
- 1.66. Шайбу поместили на наклонную плоскость, составляющую угол $\alpha = 10^{\circ}$ с горизонтом. Если шайбе сообщить некоторую начальную скорость вверх по плоскости, то она до остановки проходит путь s_1 ; если же сообщить ту же начальную скорость вниз, то путь до остановки равен s_2 . Найти коэффициент трения, зная,

 s_2 . Найти коэффициент трения, зная, что $s_2/s_1=\eta=4,0.$

1.67. В установке (рис. 1.10) известны угол α и коэффициент трения k между телом m_1 и наклонной плоскостью. Массы блока и нити пренебрежимо малы, трения в блоке нет. Вначале оба тела неподвижны. Найти отношение масс m_2/m_1 при котором тело m_2

Рис. 1.10

начнет:

- а) опускаться; б) подниматься.
- 1.68. Наклонная плоскость (см. рис. 1.10) составляет угол $\alpha=30^\circ$ с горизонтом. Отношение масс тел $m_2/m_1=\eta=2/3$. Коэффициент трения между телом m_1 и плоскостью k=0,10. Массы блока и нити пренебрежимо малы. Найти модуль и направление ускорения тела m_2 , если система пришла в движение из состояния покоя.
- **1.69.** На гладкой горизонтальной плоскости лежит доска массы m_1 и на ней брусок массы m_2 . К бруску приложили горизонтальную силу, увеличивающуюся со временем t по закону $F=\alpha t$, где α постоянная. Найти зависимости от t ускорений доски a_1 и бруска a_2 , если коэффициент трения между доской и бруском равен k. Изобразить примерные графики этих зависимостей.

- 1.70. На горизонтальной плоскости находятся два тела: брусок и электромотор с батарейкой на подставке. На ось электромотора намотана нить, свободный конец которой соединен с бруском. Расстояние между обоими телами равно l, коэффициент трения между телами и плоскостью k. После включения мотора брусок, масса которого вдвое больше массы другого тела, начал двигаться с постоянным ускорением a. Через сколько времени оба тела столкнутся?
 - **1.71.** Небольшое тело m начинает скользить по наклонной

Рис. 1.11

плоскости из точки, расположенной над вертикальным упором A (рис. 1.11). Коэффициент трения между телом и наклонной плоскостью k = 0,140. При каком значении угла α время соскальзывания будет наименьшим?

1.72. Шайбу положили на наклонную плоскость и сообщили направленную вверх начальную скорость v_0 . Коэффициент трения между шайбой и плоскостью

равен k. При каком значении угла наклона α шайба пройдет вверх по плоскости наименьшее расстояние? Чему оно равно?

1.73. Брусок массы m тянут за нить так, что он движется с

Рис. 1.12

постоянной скоростью по горизонтальной плоскости с коэффициентом трения k (рис. 1.12). Найти угол α , при котором натяжение нити минимально. Чему оно равно?

1.74. Нить перекинута через легкий вращающийся без трения блок. На одном конце нити прикреплен груз массы M, а по другой свисающей части нити сколь-

зит муфточка массы m с постоянным ускорением a' относительно нити. Найти силу трения, с которой нить действует на муфточку.

- 1.75. Через блок, прикрепленный к потолку кабины лифта, перекинута нить, к концам которой привязаны грузы масс m_1 и m_2 . Кабина начинает подниматься с ускорением \mathbf{a}_0 . Пренебрегая массой блока, найти:
 - а) ускорение груза m_1 относительно кабины;
 - б) силу, с которой блок действует на потолок кабины.

- 1.76. В системе, показанной на рис. 1.13, массы тел равны m_0 , m_1 , m_2 , трения нет, массы блоков пренебрежимо малы. Найти ускорение тела m_1 .
- 1.77. С каким минимальным ускорением следует перемещать в горизонтальном направлении брусок A (рис. 1.14), чтобы тела 1 и 2 не двигались относительно него? Массы тел одинаковы, коэффициент трения между бруском и обоими телами равен k. Массы блока и нити пренебрежимо малы, трения в блоке нет.
- 1.78. Призме 1, на которой находится брусок 2 массы m, сообщили влево горизонтальное ускорение a (рис. 1.15). При каком максимальном значении этого ускорения брусок будет оставаться еще неподвижным относительно призмы, если коэффициент трения между ними $k < \text{ctg}\alpha$?
- 1.79. На горизонтальной поверхности находится призма 1 массы m_1 с углом α (см. рис. 1.15) и на ней брусок 2 массы m_2 . Пренебрегая трением, найти ускорение призмы.

Рис. 1.13

Рис. 1.14

Рис. 1.15

- 1.80. На тело массы m, лежащее на гладкой горизонтальной плоскости, в момент t=0 начала действовать сила, зависящая от времени как F=kt, где k постоянная. Направление этой силы все время составляет угол α с горизонтом (см. рис. 1.12). Найти:
 - а) скорость тела в момент отрыва от плоскости;
 - б) путь, пройденный телом к этому моменту.
- 1.81. К бруску массы m, лежащему на гладкой горизонтальной плоскости, приложили постоянную по модулю силу F = mg/3. В процессе его прямолинейного движения угол α между направлением этой силы и горизонтом меняют по закону $\alpha = ks$, где k постоянная, s пройденный бруском путь (из начального положения). Найти скорость бруска как функцию угла α .

- 1.82. Небольшой шарик подвешен к нити, верхний конец которой в момент t=0 начали перемещать. В процессе движения нить поворачивается с постоянной угловой скоростью $\omega=0.85$ рад/с, а шарик движется по горизонтальной прямой. Найти скорость шарика в момент, когда угол между нитью и вертикалью $\vartheta=45^\circ$.
- **1.83.** Тело массы m бросили под углом к горизонту с начальной скоростью \mathbf{v}_0 . Найти приращение импульса $\Delta \mathbf{p}$ тела за первые t секунд движения и модуль приращения импульса тела за все время движения.
- **1.84.** На покоящуюся частицу массы m в момент t=0 начала действовать сила, зависящая от времени t по закону $\mathbf{F} = \mathbf{b}t(\tau t)$, где \mathbf{b} постоянный вектор, τ время, в течение которого действует данная сила. Найти:
 - а) импульс частицы после окончания действия силы;
 - б) путь, пройденный частицей за время действия силы.
- 1.85. Частица массы m в момент t=0 начинает двигаться под действием силы $\mathbf{F}=\mathbf{F}_0\sin\omega t$, где \mathbf{F}_0 и ω постоянные. Найти путь, пройденный частицей, в зависимости от t. Изобразить примерный график этой зависимости.
- 1.86. В момент t=0 частица массы m начинает двигаться под действием силы $\mathbf{F}=\mathbf{F}_0\cos\omega t$, где \mathbf{F}_0 и ω постоянные. Сколько времени частица будет двигаться до первой остановки? Какой путь она пройдет за это время? Какова максимальная скорость частицы на этом пути?
- **1.87.** В момент t=0 частице сообщили начальную скорость \mathbf{v}_0 , и она начала двигаться под действием силы сопротивления среды, пропорциональной ее скорости как $\mathbf{F}=-r\mathbf{v}$. Найти:
 - а) время движения частицы под действием этой силы;
- б) скорость частицы в зависимости от пройденного ею пути, а также полный путь до остановки.
- **1.88.** Пуля, пробив доску толщины h, изменила свою скорость от v_0 до v. Найти время движения пули в доске, считая силу сопротивления пропорциональной квадрату скорости.
- 1.89. Небольшой брусок начинает скользить по наклонной плоскости, составляющей угол α с горизонтом. Коэффициент трения зависит от пройденного пути x по закону $k = \gamma x$, γ постоянная. Найти путь, пройденный бруском до остановки, и его максимальную скорость.

- 1.90. На горизонтальной поверхности с коэффициентом трения k лежит тело массы m. В момент t=0 к нему приложили горизонтальную силу, зависящую от времени как $\mathbf{F}=\mathbf{b}t$, где \mathbf{b} постоянный вектор. Найти путь, пройденный телом за первые t секунд действия этой силы.
- 1.91. Самолет делает «мертвую петлю» радиуса R=500 м с постоянной скоростью v=360 км/ч. Найти вес летчика массы m=70 кг в нижней, верхней и средней точках петли.
- **1.92.** Небольшой шарик массы m, подвешенный на нити, отвели в сторону так, что нить образовала прямой угол с вертикалью, и затем отпустили. Найти:
- а) модуль полного ускорения шарика и силу натяжения нити как функцию угла ее отклонения от вертикали;
- б) силу натяжения нити в момент, когда вертикальная составляющая скорости шарика максимальна;
- в) угол отклонения нити в момент, когда полное ускорение шарика горизонтально.
- 1.93. Шарик, подвешенный на нити, качается в вертикальной плоскости так, что его ускорения в крайнем и нижнем положениях равны по модулю друг другу. Найти угол отклонения нити в крайнем положении.
- **1.94.** Подвешенный на нити шарик качается в вертикальной плоскости так, что его ускорение в нижнем положении $a=4.0~\rm m/c^2$. Найти модуль ускорения шарика в крайнем положении.
- 1.95. Небольшое тело A начинает скользить с вершины гладкой сферы радиуса R. Найти угол между вертикалью и радиусом-вектором, характеризующим положение тела A относительно центра сферы в момент отрыва от нее, а также скорость тела в этот момент.
- 1.96. Прибор (рис. 1.16, вид сверху) состоит из гладкого Γ -образного стержня, расположенного в горизонтальной плоскости, и муфточки A массы m, соединенной пружинкой с точкой B. Жесткость пружинки равна α . Вся система вращается с постоянной угловой скоростью α вокруг вертикальной оси, проходящей через точку O. Найти относительное удли-

Рис. 1.16

нение пружинки. Как зависит результат от направления врашения?

- 1.97. Велосипедист едет по круглой горизонтальной площадке радиуса R. Коэффициент трения зависит только от расстояния r до центра O площадки как $k=k_0(1-r/R)$, где k_0 — постоянная. Найти радиус окружности с центром в точке O, по которой велосипедист может ехать с максимальной скоростью. Какова эта скорость?
- 1.98. Автомашина движется с постоянным тангенциальным ускорением $a_{\tau} = 0.62 \text{ m/c}^2$ по горизонтальной поверхности, описывая дугу радиуса R=40 м. Коэффициент трения между колесами машины и поверхностью k = 0,20. Какой путь пройдет машина без скольжения, если в начальный момент ее скорость равна нулю?
- 1.99. Автомашина движется равномерно по горизонтальному пути, имеющему форму синусоиды $y = b \sin(x/\alpha)$, где b и α некоторые постоянные. Коэффициент трения между колесами и дорогой равен к. При какой скорости движение автомашины будет происходить без скольжения?
- **1.100.** Цепочка массы m, образующая окружность радиуса R, надета на гладкий круговой конус с углом полураствора 9. Найти силу натяжения цепочки, если она вращается с постоянной угловой скоростью ω вокруг вертикальной оси, совпадающей с осью симметрии конуса.

Рис. 1.17

- **1.101.** Небольшое тело A скользит по гладкой горизонтальной поверхности вдоль вертикальной стенки, имеющей вид, как на рис. 1.17 (вид сверху). Закругленная часть траектории тела представляет собой дугу с углом $\alpha = 60^{\circ}$. Найти скорость тела в точке 2, если в точке 1 $v_0 = 6,5 \; {
 m M/c}$ и коэффициент трения между телом и вертикальной стенкой k=0.25.
- 1.102. Через закрепленный блок перекинута нить, к концам которой прикреплены грузы массами m_1 и m_2 . Между нитью и блоком имеется трение такое, что нить начинает скользить по блоку, когда $m_2/m_1 = \eta_0$. Найти:
 - а) коэффициент трения;
 - б) ускорение грузов, если $m_2/m_1 = \eta > \eta_0$.

- 1.103. Частица массы m движется по внутренней гладкой поверхности вертикального цилиндра радиуса R. Найти силу давления частицы на стенку цилиндра, если в начальный момент ее скорость равна v_0 и составляет угол α с горизонтом.
- **1.104.** Частица массы m движется в плоскости P под действием постоянной по модулю силы F, которая поворачивается в этой плоскости с постоянной угловой скоростью ф. В момент t=0 частица покоилась. Найти:
 - а) модуль ее скорости в зависимости от времени;
- б) путь, проходимый частицей между двумя последовательными остановками, и среднюю скорость на этом пути.
- **1.105.** Небольшую шайбу A положили на наклонную плоскость, составляющую угол а с горизонтом (рис. 1.18), и сообщили ей начальную скорость v_0 . Найти зависимость скорости шайбы от угла ф, если коэффициент трения $k = \operatorname{tg} \alpha$ и в начальный момент $\phi_0 = \pi/2$.

Рис. 1.18

- **1.106.** Цепочку длины l поместили на гладкую сферическую поверхность радиуса R так, что один ее конец закреплен на вершине сферы. С каким ускорением а начнет двигаться каждый элемент цепочки, если ее верхний конец освободить? Длина цепочки $l < \pi R/2$.
- 1.107. Небольшое тело поместили на вершину гладкого шара радиуса R. Затем шару сообщили в горизонтальном направлении постоянное ускорение a_0 , и тело начало скользить вниз. Найти скорость тела относительно шара в момент отрыва. Сравнить с решением задачи 1.95.
- **1.108.** Муфточка A может свободно скользить вдоль гладкого стержня, изогнутого в форме полукольца радиуса R (рис. 1.19). Систему привели во вращение с постоянной угловой скоростью ω вокруг вертикальной оси ОО'. Найти угол 9, соответствующий устойчивому положению муфточки.
- 1.109. Винтовку навели на вертикальную черту мишени, находящейся точно в северном направлении, и выстрелили. Пренебрегая сопротивлением воздуха, найти, на сколько сантиметров и в какую сторону пуля, попав в мишень, откло-

Рис. 1.19

нится от черты. Выстрел произведен в горизонтальном направлении на широте $\phi = 60^{\circ}$, скорость пули v = 900 м/с, расстояние до мишени s = 1,0 км.

- 1.110. Человек массы m=60 кг идет равномерно по периферии горизонтальной круглой платформы радиуса R=3,0 м, которую вращают с угловой скоростью $\omega=1,00$ рад/с вокруг вертикальной оси, проходящей через ее центр. Найти горизонтальную составляющую силы, действующей на человека со стороны платформы, если результирующая сил инерции, приложенных к нему в системе отсчета «платформа», равна нулю.
- **1.111.** Поезд массы m=2000 т движется на северной широте $\phi=60^{\circ}$. Определить:
- а) модуль и направление силы бокового давления поезда на рельсы, если он движется вдоль меридиана со скоростью $v=54~{\rm km/y}$;
- б) в каком направлении и с какой скоростью должен был бы двигаться поезд, чтобы результирующая сил инерции, действующих на поезд в системе отсчета «Земля», была равна нулю.
- 1.112. Гладкий горизонтальный диск вращают с угловой скоростью $\omega=5,0$ рад/с вокруг вертикальной оси, проходящей через его центр. В центре диска поместили небольшую шайбу массой m=60 г и сообщили ей толчком горизонтальную скорость $v_0=2,6$ м/с. Найти модуль силы Кориолиса, действующей на шайбу в системе отсчета «диск» через t=0,50 с после начала ее движения.
- 1.113. Горизонтальный диск вращают с угловой скоростью $\omega=6,0$ рад/с вокруг вертикальной оси, проходящей через его центр. По одному из диаметров диска движется небольшое тело массы m=0,50 кг с постоянной относительно диска скоростью v'=50 см/с. Найти силу, с которой диск действует на это тело в момент, когда оно находится на расстоянии r=30 см от оси вращения.
- 1.114. Горизонтально расположенный гладкий стержень AB вращают с угловой скоростью $\omega=2,00$ рад/с вокруг вертикальной оси, проходящей через его конец A. По стержню свободно скользит муфточка массы m=0,50 кг, движущаяся из точки A с начальной скоростью $v_0=1,00$ м/с. Найти действующую на муфточку силу Кориолиса (в системе отсчета, связанной со стержнем) в момент, когда муфточка оказалась на r=50 см от оси вращения.

- 1.115. Горизонтальный диск радиуса R вращают с угловой скоростью ω вокруг неподвижной вертикальной оси, проходящей через его край. По периферии диска равномерно относительно него движется частица массы m. В момент, когда она оказывается на максимальном расстоянии от оси вращения, результирующая сил инерции $F_{\rm ин}$, действующих на частицу в системе отсчета «диск», обращается в нуль. Найти:
 - а) ускорение a' частицы относительно диска;
 - б) зависимость $F_{\scriptscriptstyle \mathrm{HH}}$ от расстояния до оси вращения.
- **1.116.** На экваторе с высоты h = 500 м на поверхность Земли падает тело (без начальной скорости относительно Земли). На какое расстояние и в какую сторону отклонится от вертикали тело при падении?

1.3. Законы сохранения импульса, энергии и момента импульса

• Уравнение движения центра масс системы:

$$m \frac{\mathrm{d}\mathbf{v}_{C}}{\mathrm{d}t} = \mathbf{F}_{\mathrm{BHeIII}}, \qquad (1.3a)$$

где $\mathbf{F}_{\mathtt{внеш}}$ — результирующая всех внешних сил.

• Приращение импульса системы:

$$\mathbf{p}_1 - \mathbf{p}_2 = \int_{1}^{2} \mathbf{F}_{\text{BHeIII}} dt. \tag{1.36}$$

• Уравнение динамики тела переменной массы:

$$m \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{F} + \frac{\mathrm{d}m}{\mathrm{d}t} \mathbf{u}, \qquad (1.3B)$$

где ${\bf u}$ — скорость отделяемого (присоединяемого) вещества относительно рассматриваемого тела.

• Работа и мощность силы:

$$A = \int \mathbf{F} d\mathbf{r} = \int F_s ds, \qquad P = \mathbf{F} \mathbf{v},$$
 (1.3r)

где $d\mathbf{r}$ — элементарное перемещение точки приложения силы \mathbf{F} .

• Приращение кинетической энергии частицы:

$$K_2 - K_1 = A,$$
 (1.3д)

где A — работа всеx сил, действующих на частицу.

• Убыль потенциальной энергии частицы в поле:

$$U_1 - U_2 = A_{\rm cm},$$
 (1.3e)

где $A_{\rm cu}$ — работа cuлы noля (cп).

• Связь между силой и потенциальной энергией частицы в поле:

$$F_l = -\partial U/\partial l, \qquad \mathbf{F} = -\nabla U.$$
 (1.3x)

• Приращение полной механической энергии частицы в поле:

$$E_2 - E_1 = A_{\text{crop}}$$
, (1.33)

где $A_{\rm crop}$ — работа результирующей всех $cmoponhux\ cun$, т. е. сил, не принадлежащих к силам данного поля.

• Приращение собственной механической энергии системы:

$$E_{\text{co62}} - E_{\text{co61}} = A_{\text{внеш}} + A_{\text{внутр}}^{\text{дис}},$$
 (1.3и)

где $E_{\rm co6}=K+U_{\rm co6},~U_{\rm co6}$ — собственная потенциальная энергия системы; $A_{\rm внеш}$ — работа всех внешних сил; $A_{\rm внутр}^{\rm дис}$ — работа всех внутренних диссипативных сил (сил трения и сопротивления).

• Приращение полной механической энергии системы в поле:

$$E_2 - E_1 = A_{\text{BHeIII}}^{\text{crop}} + A_{\text{BHYTP}}^{\text{duc}}, \qquad (1.3\kappa)$$

где $E=E_{\rm co6}+U_{\rm внеш}$, $U_{\rm внеш}$ — потенциальная энергия системы во внешнем поле; $A_{\rm внеш}^{\rm crop}$ — работа внешних cmoponhux сил, т. е. сил, не принадлежащих к силам данного поля.

• Кинетическая энергия системы:

$$K = \tilde{K} + mv_C^2/2 , \qquad (1.3\pi)$$

где $ilde{K}$ — ее кинетическая энергия в системе центра масс.

• Приращение момента импульса системы:

$$\mathbf{M}_2 - \mathbf{M}_1 = \int_1^2 \mathbf{N}_{\text{внеш}} dt. \tag{1.3M}$$

• Момент импульса системы:

$$\mathbf{M} = \widetilde{\mathbf{M}} + [\mathbf{r}_C \mathbf{p}], \qquad (1.3H)$$

где $\tilde{\mathbf{M}}$ — ее момент импульса в системе центра масс (собственный момент импульса), \mathbf{r}_C — радиус-вектор центра масс, \mathbf{p} — импульс системы.

1.117. Через блок, укрепленный на потолке комнаты, перекинута нить, на концах которой подвешены тела масс m_1 и $m_2.$ Массы блока и нити пренебрежимо малы, трения нет. Найти

ускорение центра масс этой системы.

1.118. Замкнутая цепочка A массы m=0,36 кг соединена нитью с концом вертикальной оси центробежной машины (рис. 1.20) и вращается с угловой скоростью $\omega=35$ рад/с. При этом нить составляет угол $\vartheta=45^\circ$ с вертикалью. Найти рассто-

Рис. 1.20

яние от центра масс цепочки до оси вращения, а также силу натяжения нити.

1.119. Круглый конус A массы m=3,2 кг и с углом полураствора $\alpha = 10^\circ$ катится равномерно без скольжения по круглой конической поверхности B так, что его вершина O остается неподвижной (рис. 1.21). Центр масс конуса A находится на одном уровне с точкой O и отстоит от нее на $l=17\,{\rm cm}$. Ось конуса движется с угловой скоростью $\omega = 1,0$ рад/с.

Рис. 1.21

Найти силу трения покоя, действующую на конус A.

- 1.120. Мотоциклист едет по вертикальной цилиндрической стенке радиуса R = 5.0 м. Центр масс человека с мотоциклом расположен на l = 0.8 м от стенки. Коэффициент трения между колесами и стенкой k = 0.34. С какой минимальной скоростью может ехать мотоциклист по горизонтальной окружности?
- **1.121.** Система состоит из двух шариков масс m_1 и m_2 , которые соединены между собой пружинкой. В момент t=0 шарикам сообщили скорости \mathbf{v}_1 и \mathbf{v}_2 , после чего система начала двигаться в однородном поле тяжести Земли. Найти зависимости от времени импульса этой системы в процессе движения и радиуса-вектора ее центра масс относительно его начального положения.
- **1.122.** Две небольшие шайбы масс m_1 и m_2 связаны нитью длины l и движутся по гладкой плоскости. В некоторый момент скорость одной шайбы равна нулю, а другой v, причем ее направление перпендикулярно нити. Найти силу натяжения нити в этот момент.
- **1.123.** Плот массы M с человеком массы m покоится на поверхности пруда. Относительно плота человек совершает перемещение \mathbf{l}' со скоростью $\mathbf{v}'(t)$ и останавливается. Пренебрегая сопротивлением воды, найти:
 - а) перемещение 1 плота относительно берега;
- б) горизонтальную составляющую силы, с которой человек действовал на плот в процессе движения.
- 1.124. Через блок перекинута веревка, на одном конце которой висит лестница с человеком, а на другом — уравновешивающий груз массы M. Человек массы m совершил перемещение l' относительно лестницы вверх и остановился. Пренебрегая массами блока и веревки, а также трением в оси блока, найти перемещение 1 центра масс этой системы.

- 1.125. Частица 1 столкнулась с частицей 2, в результате чего возникла составная частица. Найти ее скорость ${\bf v}$ и модуль ${\bf v}$, если масса частицы 2 в $\eta=2$,0 раза больше, чем частицы 1, а их скорости перед столкновением ${\bf v}_1=2{\bf i}+3{\bf j}$ и ${\bf v}_2=4{\bf i}-5{\bf j}$, где компоненты скорости в СИ.
- **1.126.** Ствол пушки направлен под углом $\vartheta=45^\circ$ к горизонту. Когда колеса пушки закреплены, скорость снаряда, масса которого в $\eta=50$ раз меньше массы пушки, $v_0=180$ м/с. Найти скорость пушки сразу после выстрела, если колеса ее освободить.
- 1.127. Пушка массы M начинает свободно скользить вниз по гладкой плоскости, составляющей угол α с горизонтом. Когда пушка прошла путь l, произвели выстрел, в результате которого снаряд вылетел с импульсом \mathbf{p} в горизонтальном направлении, а пушка остановилась. Пренебрегая массой снаряда, найти продолжительность выстрела.
- **1.128.** Две небольшие муфточки масс $m_1=0.10$ кг и $m_2=0.20$ кг движутся навстречу друг другу по гладкому горизонтальному проводу, изогнутому в виде окружности, с постоянными нормальными ускорениями $a_1=3.0~{\rm m/c^2}$ и $a_2=9.0~{\rm m/c^2}$. Найти нормальное ускорение составной муфты, образовавшейся после столкновения.
- 1.129. В момент, когда скорость падающего тела составила $v_0 = 4.0$ м/с, оно разорвалось на три одинаковых осколка. Два осколка разлетелись в горизонтальной плоскости под прямым углом друг к другу со скоростью v = 5.0 м/с каждый. Найти скорость третьего осколка сразу после разрыва.
- 1.130. Снаряд, выпущенный со скоростью $v_0=100\,$ м/с под углом $\alpha=45^\circ$ к горизонту, разорвался в верхней точке O траектории на два одинаковых осколка. Один осколок упал на землю под точкой O со скоростью $v_1=97\,$ м/с. С какой скоростью упал на землю второй осколок?
- 1.131. Шайба 1, скользившая по шероховатой горизонтальной поверхности, испытала соударение с покоившейся шайбой 2. После столкновения шайба 1 отскочила под прямым углом к направлению своего первоначального движения и прошла до остановки путь $s_1=1,5$ м, а шайба 2 путь $s_2=4,0$ м. Найти скорость шайбы 1 перед столкновением, если ее масса в $\eta=1,5$ раза меньше массы шайбы 2 и коэффициент трения k=0,17.

- **1.132.** Цепочка массы m = 1,00 кг и длины l = 1,40 м висит на нити, касаясь поверхности стола своим нижним концом. После пережигания нити цепочка упала на стол. Найти полный импульс, который она передала столу.
- 1.133. Две одинаковые тележки 1 и 2, на каждой из которых находится по одному человеку, движутся без трения по инерции навстречу друг другу по параллельным рельсам. Когда тележки поравнялись, с каждой из них на другую перепрыгнул человек перпендикулярно движению тележек. В результате тележка 1 остановилась, а скорость тележки 2 стала \mathbf{v} . Найти первоначальные скорости тележек \mathbf{v}_1 и \mathbf{v}_2 , если масса каждой тележки (без человека) M, а масса каждого человека m.
- 1.134. Две одинаковые тележки движутся друг за другом по инерции (без трения) с одной и той же скоростью \mathbf{v}_0 . На задней тележке находится человек массы m. В некоторый момент человек прыгнул в переднюю тележку со скоростью \mathbf{u} относительно своей тележки. Имея в виду, что масса каждой тележки равна M, найти скорости, с которыми будут двигаться обе тележки после этого.
- **1.135.** На краю покоящейся тележки массы M стоят два человека, масса каждого из которых равна m. Пренебрегая трением, найти скорость тележки после того, как оба человека спрыгнут с одной и той же горизонтальной скоростью \mathbf{u} относительно тележки:
 - а) одновременно; б) друг за другом.
 - В каком случае скорость тележки будет больше?
- 1.136. Ракета выпускает непрерывную струю газа, имеющую скорость **u** относительно ракеты. Расход газа равен μ кг/с. Показать, что уравнение движения ракеты имеет вид $m\mathbf{a} = \mathbf{F} \mu \mathbf{u}$, где m масса ракеты в данный момент, \mathbf{a} ее ускорение, \mathbf{F} внешняя сила.
- 1.137. Ракета движется в отсутствие внешних сил, выпуская непрерывную струю газа со скоростью ${\bf u}$, постоянной относительно ракеты. Найти скорость ракеты ${\bf v}$ в момент, когда ее масса равна m, если в начальный момент она имела массу m_0 и ее скорость была равна нулю.
- 1.138. Найти закон изменения массы ракеты со временем, если она движется в отсутствие внешних сил с постоянным ускорением a, скорость истечения газа относительно ракеты постоянна и равна u, а ее масса в начальный момент равна m_0 .

- 1.139. Ракета начала подниматься вертикально вверх в однородном поле сил тяжести. Начальная масса ракеты (с топливом) равна m_0 . Скорость газовой струи относительно ракеты равна u. Найти скорость ракеты в зависимости от ее массы m и времени подъема t.
- **1.140.** Ракета поддерживается в воздухе на постоянной высоте, выбрасывая вертикально вниз струю газа со скоростью u = 900 м/с. Найти:
- а) время, которое ракета может оставаться в состоянии покоя, если начальная масса топлива составляет $\eta=25\%$ ее массы (без топлива);
- б) массу газов $\mu(t)$, которую должна ежесекундно выбрасывать ракета, чтобы оставаться на постоянной высоте, если начальная масса ракеты (с топливом) равна m_0 .
- **1.141.** Космический корабль массы m_0 движется в отсутствие внешних сил со скоростью \mathbf{v}_0 . Для изменения направления движения включили реактивный двигатель, который стал выбрасывать струю газа с постоянной относительно корабля скоростью u, все время перпендикулярной направлению движения корабля. В конце работы двигателя масса корабля стала равной m. На какой угол α изменилось направление движения корабля за время работы двигателя?
- 1.142. Тележка с песком движется по горизонтальной плоскости под действием постоянной силы \mathbf{F} , сонаправленной с ее скоростью. При этом песок высыпается через отверстие в дне с постоянной скоростью μ кг/с. Найти ускорение и скорость тележки в момент t, если в момент t=0 тележка с песком имела массу m_0 и ее скорость была равна нулю.

Рис. 1.22

1.143. Платформа массы m_0 начинает двигаться вправо под действием постоянной силы F (рис. 1.22). Из неподвижного бункера на нее высыпается песок. Скорость погрузки постоянна и равна μ кг/с. Найти зависимости от времени скорости и ускорения платформы при погрузке.

1.144. Цепочка AB длины l находится в гладкой горизонтальной трубке так, что часть ее длины h свободно свешивается,

касаясь своим концом B поверхности стола (рис. 1.23). В некоторый момент конец A цепочки отпустили. С какой скоростью он выскочит из трубки?

- 1.145. Однородный цилиндр находится на двух горизонтальных рельсах (рис. 1.24). На него намотана нить, к концу которой приложили постоянную силу \mathbf{F} . Найти работу силы \mathbf{F} за время, в течение которого ось цилиндра переместилась без скольжения на расстояние l, если сила:
 - а) горизонтальна (случай a);
 - б) вертикальна (случай б).
- **1.146.** Частица совершила перемещение по некоторой траектории в плоскости xy из точки 1 с радиусом-вектором $\mathbf{r}_1 = \mathbf{i} + 2\mathbf{j}$ в точку 2 с радиусом-вектором $\mathbf{r}_2 = 2\mathbf{i} 3\mathbf{j}$.

Рис. 1.23

Рис. 1.24

При этом на нее действовали некоторые силы, одна из которых ${f F}=3{f i}+4{f j}.$ Найти работу, которую совершила сила ${f F}.$ Здесь r_1 , r_2 и F — в СИ.

1.147. Небольшая муфточка массы m=0,15 кг движется по гладкому проводу, изогнутому в горизонтальной плоскости в виде дуги окружности радиуса R=50 см (рис. 1.25, вид сверху). В точке 1, где скорость муфточки $v_0=7,5$ м/с, на нее начала действовать постоянная горизонтальная сила F. Найти скорость муфточки в точке 2, если F=30 H.

Рис. 1.25

- 1.148. Локомотив массы m начинает двигаться со станции так, что его скорость меняется по закону $v = \alpha \sqrt{s}$, где α постоянная, s пройденный путь. Найти суммарную работу всех сил, действующих на локомотив, за первые t секунд после начала движения.
- 1.149. Кинетическая энергия частицы, движущейся по окружности радиуса R, зависит от пройденного пути s по закону $K = \alpha s$, где α постоянная. Найти модуль силы, действующей на частицу, в зависимости от s.

1.150. Частицы массы m попадают в область, где на них действует встречная тормозящая сила. Глубина x проникновения частиц в эту область зависит от импульса p частиц как $x = \alpha p$, где α — заданная постоянная. Найти зависимость модуля тормозящей силы от x.

- 1.151. Небольшое тело массы m медленно втащили на горку, действуя силой \mathbf{F} , которая h в каждой точке направлена по касательной к траектории (рис. 1.26). Найти работу этой силы, если высота горки h, длина ее основания l и коэффициент трения k.
- 1.152. Брусок массы m=2,0 кг медленно подняли по шероховатой наклонной плоскости на высоту h=51 см при помощи нити, параллельной этой плоскости. При этом совершили работу A=16,0 Дж. На высоте h нить отпустили. Найти скорость бруска, достигшего первоначального положения.
- 1.153. Шайба массы m=50 г соскальзывает без начальной скорости по наклонной плоскости, составляющей угол $\alpha=30^\circ$ с горизонтом, и, пройдя по горизонтальной плоскости расстояние l=50 см, останавливается. Найти работу сил трения на всем пути, считая всюду коэффициент трения k=0,15.
- **1.154.** К небольшому бруску массы m=50 г, лежащему на горизонтальной плоскости, приложили постоянную горизонтальную силу F=0,10 Н. Найти работу сил трения за время движения бруска, если коэффициент трения зависит от пройденного пути x как $k=\gamma x$, где γ постоянная.
- **1.155.** Два бруска масс m_1 и m_2 , соединенные недеформированной пружинкой, лежат на горизонтальной плоскости. Коэффициент трения между брусками и плоскостью равен k. Какую минимальную постоянную силу нужно приложить в горизонтальном направлении к бруску массы m_1 , чтобы другой брусок сдвинулся с места?
- 1.156. Прямая цепочка массы m=50 г и длины l=52 см лежит на гладкой горизонтальной полуплоскости у ее границы с другой горизонтальной полуплоскостью, где коэффициент трения k=0,22. Цепочка расположена перпендикулярно границе раздела полуплоскостей. Какую работу необходимо совершить, чтобы, действуя горизонтальной силой на конец цепочки, находящийся у границы раздела, медленно перетащить всю цепочку через эту границу?

- 1.157. Цепочка массы m = 0.80 кг и длины l = 1.5 м лежит на шероховатом столе так, что один ее конец свешивается у его края. Цепочка начинает сама соскальзывать, когда ее свешивающаяся часть составляет $\eta = 1/3$ длины цепочки. Какую работу совершат силы трения, действующие на цепочку, при ее полном соскальзывании со стола?
- 1.158. Тело массы m бросили под углом α к горизонту с начальной скоростью v_0 . Найти среднюю мощность, развиваемую силой тяжести за все время движения тела, и мгновенную мощность этой силы как функцию времени.
- **1.159.** Частица массы m движется по окружности радиуса R с нормальным ускорением, которое меняется со временем по закону $a_n = \alpha t^2$, где α постоянная. Найти зависимость от времени мощности всех сил, действующих на частицу, а также среднее значение этой мощности за первые t секунд после начала движения.
- 1.160. Брусок массы m=1,00 кг находится на горизонтальной плоскости с коэффициентом трения k=0,27. В некоторый момент ему сообщили начальную скорость $v_0=1,50$ м/с. Найти среднюю мощность силы трения за все время движения бруска.
- **1.161.** Небольшому телу массы m, находящемуся на горизонтальной плоскости, сообщили скорость v_0 . Коэффициент трения зависит от пройденного пути s по закону $k=\alpha s$, где α постоянная. Найти максимальную мгновенную мощность силы трения.
- 1.162. Какую мощность развивают двигатели ракеты массы M, которая неподвижно висит над поверхностью Земли, если скорость истечения газов равна u?
- 1.163. В системе отсчета, вращающейся вокруг неподвижной оси с $\omega=5.0$ рад/с, движется небольшое тело массы m=100 г. Какую работу совершила центробежная сила инерции при перемещении этого тела по произвольному пути из точки 1 в точку 2, которые расположены на расстояниях $r_1=30$ см, и $r_2=50$ см от оси вращения?
- 1.164. Горизонтально расположенный диск вращается с $\omega=5,0$ рад/с вокруг своей оси. Из центра диска с начальной скоростью $v_0=2,00\,$ м/с движется небольшая шайба массы $m=160\,$ г. На расстоянии $r=50\,$ см от оси ее скорость оказалась равной $v=3,00\,$ м/с относительно диска. Найти работу, которую

совершила при этом сила трения, действующая на шайбу, в системе отсчета «диск».

- **1.165.** Система состоит из двух последовательно соединенных пружинок с жесткостями \varkappa_1 и \varkappa_2 . Найти работу, которую необходимо совершить, чтобы растянуть эту систему на Δl .
- **1.166.** Тело массы m начинают поднимать с поверхности земли, приложив к нему силу \mathbf{F} , которую изменяют с высотой подъема y по закону $\mathbf{F} = 2(ay-1)m\mathbf{g}$, где a положительная постоянная. Найти работу этой силы и приращение потенциальной энергии тела в поле тяжести Земли на первой половине пути подъема.
- **1.167.** Частица движется вдоль оси X под действием силы поля $F_x = \alpha x \beta x^2$, где $\alpha = 8.0$ H/м, $\beta = 6.0$ H/м². Найти координату x_0 точки, в которой потенциальная энергия частицы такая же, как в точке x = 0.
- 1.168. Тонкая цепочка массы m=25 г и длины l=100 см лежит на столе в виде небольшой кучки. К одному из концов цепочки приложили направленную вертикально вверх силу $F=\alpha y$, где $\alpha=0.47$ Н/м, y высота подъема от поверхности стола. Найти скорость цепочки в момент отрыва ее нижнего конца от стола.
- **1.169.** Потенциальная энергия частицы в некотором поле имеет вид $U = a/r^2 b/r$, где a и b положительные постоянные, r расстояние от центра поля. Найти:
- а) значение r_0 , соответствующее равновесному положению частицы; выяснить, устойчиво ли это положение;
- б) максимальное значение силы притяжения; изобразить примерные графики зависимостей U(r) и $F_r(r)$.
- 1.170. Частица массы m=4,0 г движется в двумерном поле, где ее потенциальная энергия $U=\alpha xy$ и $\alpha=0,19$ мДж/м². В точке 1 {3,0 м, 4,0 м} частица имела скорость $v_1=3,0$ м/с, а в точке 2 {5,0 м, -6,0 м} скорость $v_2=4,0$ м/с. Найти работу сторонних сил на пути из точки 1 в точку 2.
- 1.171. Частица массы m=5,0 мг движется по окружности радиуса $r_0=5,5$ см в центральном поле, где ее потенциальная энергия зависит от расстояния до центра поля как $U=\varkappa r^3$, где $\varkappa>0$. Найти значение \varkappa , если период обращения частицы по окружности составляет $\tau=10$ мс.
- **1.172.** Частица находится в двумерном силовом поле, где ее потенциальная энергия $U=-\alpha xy$, $\alpha=6,0$ Дж/м². Найти модуль

Рис. 1.27

силы, действующей на частицу в точке, где $U=-0.24~\mathrm{Дж}$ и вектор силы составляет угол $9=15^\circ$ с ортом оси Y.

- 1.173. Небольшая шайба A соскальзывает без начальной скорости с вершины гладкой горки высотой H, имеющей горизонтальный трамплин (рис. 1.27). При какой высоте h трамплина шайба пролетит наибольшее расстояние s? Чему оно равно?
- **1.174.** Небольшое тело A начинает скользить с высоты h по наклонному желобу, переходящему в полуокружность радиуса h/2 (рис. 1.28). Пренебрегая трением, найти скорость тела в наивысшей точке его траектории (после отрыва от желоба).

- **1.176.** На нити длины l подвешен шарик массы m. С какой наименьшей скоростью надо перемещать точку подвеса в горизонтальном направлении, чтобы шарик стал двигаться по окружности вокруг этой точки? Какова при этом сила натяжения нити в момент, когда она будет проходить горизонтальное положение?
- 1.177. Небольшой шарик массы m=50 г прикреплен к концу упругой нити, жесткость которой $\varkappa=63$ Н/м. Нить с шариком отвели в горизонтальное положение, не деформируя нити, и осторожно отпустили. Когда нить проходила вертикальное положение, ее длина оказалась l=1,5 м и скорость шарика v=3,0 м/с. Найти силу натяжения нити в этом положении.
- 1.178. Гладкий легкий горизонтальный стержень AB может вращаться без трения вокруг вертикальной оси, проходящей через его конец A. На стержне находится небольшая муфточка массы m, соединенная пружинкой длины l_0 с концом A. Жесткость пружинки равна \varkappa . Какую работу надо совершить, чтобы эту систему медленно раскрутить до угловой скорости ω ?
- 1.179. На пружинке жесткости и висит вертикальный стержень, состоящий из двух неравных частей. Нижняя часть мас-

сы m оторвалась. На какую высоту поднимется оставшаяся часть стержня?

- 1.180. Гладкая упругая нить длины l и жесткости и подвешена одним концом к точке O. На нижнем конце имеется невесомый упор. Из точки O начала падать небольшая муфта массы m. Найти:
 - а) максимальное растяжение нити;
- б) убыль механической энергии системы к моменту установления равновесия (из-за сопротивления воздуха).
- 1.181. На подставке лежит гиря массы m=1,00 кг, подвешенная на недеформированной пружине жесткости $\kappa=80$ H/м. Подставку начали опускать с ускорением a=5,0 м/с². Пренебрегая массой пружины, найти максимальное растяжение пружины в этом процессе.
- **1.182.** Небольшая шайба массы m=5,0 г начинает скользить, если ее положить на шероховатую поверхность полусферы на высоте $h_1=60$ см от горизонтального основания полусферы. Продолжая скользить, шайба отрывается от полусферы на высоте $h_2=25$ см. Найти работу сил трения, действующих на шайбу при ее соскальзывании.

1.183. В системе (рис. 1.29) масса каждого бруска m = 0,50 кг, жесткость пружины $\varkappa = 40$ Н/м, коэффициент трения между бруском и плоскостью k = 0,20. Массы блока и пружины пренебрежимо малы. Система пришла в движение с нулевой начальной скоро-

стью при недеформированной пружине. Найти максимальную скорость брусков.

1.184. На столе лежит брусок массы m, соединенный с неподвижной точкой O (рис. 1.30) недеформированной упругой нитью длины l_0 . Коэффициент трения между бруском и столом k. Стол медленно переместили по полу до положения, при котором брусок начал скользить. Это произошло в момент, когда нить отклонилась от вертикали на угол ϑ . Найти работу, которую совершила к этому моменту сила трения покоя,

действующая на брусок, в системе отсчета, связанной с полом.

- 1.185. Частица массы m движется со скоростью v_1 под углом α_1 к нормали плоскости, разделяющей области, в которых потенциальная энергия частицы равна U_1 и U_2 . Под каким углом α_2 к нормали она будет двигаться после пересечения этой плоскости? При каком условии частица не проникнет во вторую область?
- 1.186. Нить переброшена через гладкие горизонтальные стержни 1 и 2, на ее концах и в середине подвешены одинаковой массы грузы A, B, C (рис. 1.31). Расстояние между стержнями равно l. В некоторый момент груз C осторожно отпустили, и система пришла в движение. Найти скорость груза C в момент, когда кинетическая энергия системы максимальна, а также максимальное перемещение груза C при движении вниз.

Рис. 1.31

- **1.187.** В K-системе отсчета вдоль оси X движутся две частицы: одна массы m_1 со скоростью v_1 , другая массы m_2 со скоростью v_2 . Найти:
- а) скорость K'-системы отсчета, в которой суммарная кинетическая энергия этих частиц минимальна;
- б) суммарную кинетическую энергию этих частиц в K'-системе.
 - **1.188.** Получить формулу (1.3л).
- 1.189. На гладкой горизонтальной поверхности находятся две небольшие шайбы масс m_1 и m_2 , соединенные между собой пружинкой. Шайбам сообщили начальные скорости v_1 и v_2 , направления которых взаимно перпендикулярны и лежат в горизонтальной плоскости. Найти механическую энергию этой системы в системе ее центра масс.
- 1.190. Система состоит из двух шариков масс m_1 и m_2 , соединенных между собой недеформированной пружинкой и расположенных на одном уровне. В некоторый момент шарикам сообщили скорости \mathbf{v}_1 и \mathbf{v}_2 (рис. 1.32). Найти:

Рис. 1.32

- а) максимальное приращение потенциальной энергии системы в поле тяжести Земли;
- б) собственную механическую энергию системы $E_{\rm cof}$, когда ее центр масс поднимется на максимальную высоту.

1.191. На гладкой горизонтальной плоскости находятся два бруска масс m_1 и m_2 , соединенные пружинкой жесткости и

Рис. 1.33

(рис. 1.33). Брусок 2 переместили влево на небольшое расстояние x и отпустили. Найти скорость центра масс системы после отрыва бруска 1 от стенки.

1.192. На гладкой горизонтальной плоскости лежат два одинаковых бруска, соединенные недеформированной пружинкой жесткости и и длины l_0 . На один из брусков

Рис. 1.34

начали действовать постоянной горизонтальной силой F (рис. 1.34). Найти максимальное и минимальное расстояние между брусками в процессе их движения.

- 1.193. Система состоит из двух одинаковых цилиндриков, каждый массы m, между которыми находится сжатая пружина (рис. 1.35). Цилиндрики связаны нитью, которую в некоторый момент пережигают. При каких значениях Δl — начальном сжатии пружинки — нижний цилиндрик подскочит после пережигания нити?
- **1.194.** Летевшая горизонтально пуля массы m попала в тело массы M, которое подвешено на двух одинаковых нитях длины l (рис. 1.36), и застряла в нем. В результате нити отклонились на угол ϑ . Считая $m \ll M$, найти:
 - а) скорость пули перед попаданием в тело;
- б) относительную долю первоначальной кинетической энергии пули, которая перешла во внутреннюю энергию.
- 1.195. На гладкой горизонтальной плоскости находится тело массы M (рис. 1.37) и на нем небольшая шайба массы m. Шайбе сообщили в горизонтальном направлении скорость v. На какую высоту (по сравнению с первоначальным уровнем) она поднимется после отрыва от тела М? Трения нет.
- **1.196.** Небольшая шайба массы m без начальной скорости соскальзывает с гладкой горки высоты h и попадает на доску

массы M, лежащую у основания горки на гладкой горизонтальной плоскости (рис. 1.38). Вследствие трения между шайбой и доской шайба тормозится и, начиная с некоторого момента, движется вместе с доской как единое целое. Найти суммарную работу сил трения в этом процессе.

Рис. 1.38

- 1.197. На гладкой горизонтальной плоскости лежит доска AB длины l=100 см, на конце A которой находится небольшая шайба. Масса доски в $\eta = 10$ раз больше массы шайбы, коэффициент трения между ними k = 0.15. Какую начальную скорость надо сообщить шайбе в направлении от A к B, чтобы она смогла соскользнуть с доски?
- 1.198. Найти приращение кинетической энергии системы из двух шариков масс m_1 и m_2 при их абсолютно неупругом соударении. До соударения скорости шариков были \mathbf{v}_1 и \mathbf{v}_2 .
- **1.199.** Частица A массы m, пролетев вблизи другой покоившейся частицы B, отклонилась на угол α . Импульс частицы Aдо взаимодействия был равен p_0 , после взаимодействия стал p. Найти массу частицы B, если система замкнутая.
- 1.200. В некоторый момент две одинаковые частицы, образующие замкнутую систему, находятся на расстоянии l_0 друг от друга и имеют скорости v, направление которых составляет угол α с прямой, их соединяющей (рис. 1.39). Масса каждой частицы m, сила взаимного отталки-

Рис. 1.39

вания зависит от расстояния r между частицами как a/r^2 , где а — известная постоянная. Найти наименьшее расстояние, на которое сблизятся частицы.

- 1.201. Замкнутая система состоит из двух одинаковых взаимодействующих частиц. В некоторый момент t_0 скорость одной частицы равна нулю, а другой v. Когда расстояние между частицами оказалось опять таким же, как и в момент t_0 , скорость одной из частиц стала равной v_1 . Чему равны в этот момент скорость другой частицы и угол между направлениями их движения?
- 1.202. Замкнутая система состоит из двух одинаковых частиц, которые движутся со скоростями v_1 и v_2 так, что угол между направлениями их движения равен θ . После упругого

столкновения скорости частиц оказались равными v_1' и v_2' . Найти угол θ' между направлениями их разлета.

- **1.203.** Частица массы m_1 испытала упругое столкновение с покоившейся частицей массы m_2 . Какую относительную часть кинетической энергии потеряла налетающая частица, если:
- а) она отскочила под прямым углом к своему первоначальному направлению движения;
 - б) столкновение лобовое?
- 1.204. В результате лобового столкновения частицы 1 массы m_1 с покоившейся частицей 2 обе частицы разлетелись в противоположных направлениях с одинаковыми скоростями. Найти массу частицы 2.
- 1.205. После упругого столкновения частицы 1 с покоившейся частицей 2 обе частицы разлетелись симметрично относительно первоначального направления движения частицы 1, и угол между их направлениями разлета $\theta = 60^{\circ}$. Найти отношение масс этих частиц.
- **1.206.** Какой минимальной скоростью должен обладать нейтрон, чтобы при столкновении с покоившимся ядром массы M увеличить его внутреннюю энергию на ΔE ?
- 1.207. Шар, двигавшийся поступательно, испытал упругое соударение с другим, покоившимся шаром той же массы. При соударении угол между прямой, проходящей через центры шаров, и направлением первоначального движения налетающего шара оказался равным $\alpha=45^{\circ}$. Считая шары гладкими, найти долю η кинетической энергии налетающего шара, которая перешла в потенциальную энергию в момент наибольшей деформации.
- **1.208.** Снаряд, летящий со скоростью v = 500 м/с, разрывается на три одинаковых осколка так, что кинетическая энергия системы увеличивается в $\eta = 1,5$ раза. Какую максимальную скорость может иметь один из осколков?
- 1.209. Частица 1, имевшая скорость v=10 м/с, испытала лобовое столкновение с покоившейся частицей 2 той же массы. В результате столкновения кинетическая энергия системы уменьшилась на $\eta=1.0\%$. Найти модуль и направление скорости частицы 1 после столкновения.
- **1.210.** Частица массы m испытала столкновение с покоившейся частицей массы M, в результате которого частица m от-

клонилась на угол $\pi/2$, а частица M отскочила под углом $\theta = 30^{\circ}$ к первоначальному направлению движения частицы m. На сколько процентов и как изменилась кинетическая энергия этой системы после столкновения, если M/m = 5,0?

- **1.211.** Замкнутая система состоит из двух частиц с массами m_1 и m_2 , движущихся под прямым углом друг к другу со скоростями v_1 и v_2 . Найти в системе их центра масс:
 - а) импульс каждой частицы;
 - б) суммарную кинетическую энергию обеих частиц.
- **1.212.** Частица массы m_1 испытала упругое соударение с покоившейся частицей массы m_2 , причем $m_1 > m_2$. Найти максимальный угол, на который может отклониться налетающая частица в результате соударения.
- 1.213. На гладкой горизонтальной плоскости лежат три одинаковые шайбы A, B и C (рис. 1.40). Шайбе A сообщили ско-

Рис. 1.40

рость \mathbf{v} , после чего она испытала упругое соударение одновременно с шайбами B и C. Расстояние между центрами последних до соударения было в η раз больше диаметра каждой шайбы. Найти скорость шайбы A после соударения. При каком значении η шайба A после соударения отскочит назад; остановится; будет двигаться вперед?

- **1.214.** Молекула испытала столкновение с другой, покоившейся молекулой той же массы. Показать, что угол между направлениями разлета молекул:
 - а) равен 90°, если соударение упругое;
 - б) отличен от 90°, если соударение неупругое.
- **1.215.** К точке, радиус-вектор которой относительно начала координат O равен $\mathbf{r} = a\mathbf{i} + b\mathbf{j}$, приложена сила $\mathbf{F} = A\mathbf{i} + B\mathbf{j}$, где a, b, A, B постоянные, \mathbf{i} и \mathbf{j} орты осей X и Y. Найти момент \mathbf{N} и плечо l силы \mathbf{F} относительно точки O.
- **1.216.** Момент импульса частицы относительно точки O меняется со временем по закону $\mathbf{M} = \mathbf{a} + \mathbf{b}t^2$, где \mathbf{a} и \mathbf{b} постоянные векторы, причем $\mathbf{a} \perp \mathbf{b}$. Найти относительно точки O момент \mathbf{N} силы, действующей на частицу, когда угол между векторами \mathbf{N} и \mathbf{M} окажется равным $\mathbf{45}^\circ$.
- 1.217. Шарик массы m бросили под углом α к горизонту с начальной скоростью v_0 . Найти модуль момента импульса ша-

рика относительно точки бросания в зависимости от времени движения. Вычислить M в вершине траектории, если m=130 г, $\alpha=45^\circ$ и $v_0=25$ м/с. Сопротивлением воздуха пренебречь.

1.218. Небольшая шайба массы m=50 г начинает скользить

Рис. 1.41

с вершины гладкой наклонной плоскости, высота которой h=100 см и угол наклона к горизонту $\alpha=15^{\circ}$ (рис. 1.41). Найти модуль момента импульса шайбы относительно оси O, перпендикулярной плоскости рисунка, через t=1,3 с после начала движения.

1.219. Шайба A массы m, скользя по гладкой горизонтальной поверхности со скоростью v, испытала в точке O (рис. 1.42,

вид сверху) упругое столкновение с гладкой неподвижной стенкой. Угол между направлением движения шайбы и нормалью к стенке равен α . Найти:

- а) точки, относительно которых момент импульса \mathbf{M} шайбы остается постоянным в этом процессе;
- б) модуль приращения момента импульса шайбы относительно точки O', которая находится в плоскости движения шайбы на расстоянии l от точки O.
- 1.220. Вертикальный цилиндр укреплен на гладкой горизонтальной поверхности. На цилиндр плотно намотана нить, свободный конец которой соединен с небольшой шайбой A массы

Рис. 1.43

m=50 г (рис. 1.43, вид сверху). Шайбе сообщили горизонтальную скорость, равную v=5,0 м/с, как показано на рисунке. Имея в виду, что сила натяжения нити, при которой наступает ее разрыв, $F_m=26$ H, найти момент импульса шайбы относительно вертикальной оси C после разрыва нити.

1.221. Небольшой шарик массы m, привязанный на нити длины l к потолку в точке O, движется по горизонтальной окружности так, что нить вращается вокруг вертикальной оси с постоянной угловой скоростью ω . Относительно каких точек момент импульса \mathbf{M} шарика остается постоянным? Найти модуль приращения момента импульса шарика относительно точки O за половину оборота.

- 1.222. Шарик массы m падает без начальной скорости с высоты h над поверхностью земли. Найти модуль приращения момента импульса шарика за время падения относительно точки O системы отсчета, движущейся поступательно со скоростью V в горизонтальном направлении. В момент начала падения точка O совпадала с шариком.
- 1.223. Горизонтальный гладкий диск вращают с постоянной угловой скоростью ω вокруг неподвижной вертикальной оси, проходящей через его центр точку O. Из этой точки в момент t=0 пустили шайбу массы m со скоростью v_0 . Найти момент импульса шайбы M(t) относительно точки O в системе отсчета, связанной с диском. Убедиться, что этот момент импульса обусловлен действием силы Кориолиса.
- 1.224. Частица движется по замкнутой траектории в центральном силовом поле, где ее потенциальная энергия $U=kr^2$, k положительная постоянная, r расстояние частицы до центра поля O. Найти массу частицы, если наименьшее расстояние ее до точки O равно r_1 , а скорость на наибольшем расстоянии от этой точки v_2 .
- 1.225. Небольшое тело движется по замкнутой траектории в центральном силовом поле, где его потенциальная энергия пропорциональна квадрату расстояния до центра поля. Наименьшее расстояние тела до центра поля равно r_0 , а наибольшее в η раз больше. Найти радиус кривизны траектории тела в точке, соответствующей r_0 .
- 1.226. Небольшой шарик подвесили к точке *O* на легкой нити длины *l*. Затем шарик отвели в сторону так, что нить отклонилась на угол ϑ от вертикали, и сообщили ему скорость в горизонтальном направлении перпендикулярно вертикальной плоскости, в которой расположена нить. Какую начальную скорость надо сообщить шарику, чтобы в процессе движения максимальный угол отклонения нити от вер-

тикали оказался равным $\pi/2$?

1.227. Небольшую шайбу поместили на внутреннюю гладкую поверхность неподвижного круглого конуса (рис. 1.44) на высоте h_1 от его вершины и сообщили ей в горизонтальном направлении по касательной к поверхности конуса скорость v_1 . На какую высоту h_2 (от вершины конуса) поднимется шайба?

 v_1 h_1

Рис. 1.44

1.228. На гладкой горизонтальной плоскости движется небо-

Рис. 1.45

льшое тело массы m, привязанное к нити, другой конец которой втягивают в отверстие O (рис. 1.45) с постоянной скоростью. Найти силу натяжения нити в зависимости от расстояния r тела до отверстия, если при $r=r_0$ угловая скорость нити была равна ω_0 .

1.229. На массивный неподвижный блок радиуса R намотана нить, к свободному концу которой подвешено небольшое тело массы m. В момент t=0 систему предоставили самой себе, и она пришла в движение. Найти ее момент импульса относительно оси блока в зависимости от t.

Рис. 1.46

1.230. Система (рис. 1.46) состоит из однородного массивного блока радиуса $R=150\,$ мм, на который намотана нить с грузом на конце. Нить перекинута через гладкий горизонтальный стержень C, укрепленный в стене. В момент t=0 груз отпустили, и система пришла в движение. Найти момент импульса системы относительно оси O блока через t=4,0 с после начала движения, если в процессе движения нить давит на стержень C с постоянной силой $F=50\,$ H. Угол $\vartheta=60^\circ$.

1.231. Однородный шар массы m и радиуса R начинает скатываться без скольжения по наклонной плоскости, составляющей угол α с горизонтом. Найти зависимость от времени момента импульса шара относительно точки касания в начальный момент. Как изменится результат в случае абсолютно гладкой наклонной плоскости?

- 1.232. Система частиц имеет суммарный импульс \mathbf{p} и момент импульса \mathbf{M} относительно точки O. Найти ее момент импульса \mathbf{M}' относительно точки O', положение которой по отношению к точке O определяется радиусом-вектором \mathbf{r}_0 . В каком случае момент импульса системы частиц не будет зависеть от выбора точки O?
 - **1.233.** Получить формулу (1.3н).
- **1.234.** Система состоит из двух частиц масс m_1 и m_2 . В некоторый момент их радиусы-векторы \mathbf{r}_1 и \mathbf{r}_2 , а скорости соот-

ветственно \mathbf{v}_1 и \mathbf{v}_2 . Найти собственный момент импульса системы в данный момент.

1.235. Шарик массы m, двигавшийся со скоростью v_0 , испытал упругое лобовое соударение с одним из шариков покоившейся жесткой гантели, как показано на рис. 1.47. Масса каждого шарика гантели равна m/2, расстояние между ними l. Пренебрегая размерами шариков, найти собственный момент импульса $ilde{M}$ гантели после соударения, т. е. момент импульса в поступательно движущейся системе отсчета, связанной с центром масс гантели.

Рис. 1.47

1.236. На гладкой горизонтальной плоскости лежат две небольшие одинаковые шайбы, каждая массы т. Шайбы соединены легкой недеформированной пружинкой, длина которой l_0 и жесткость и. В некоторый момент одной из шайб сообщили скорость v_0 в горизонтальном направлении перпендикулярно пружинке. Найти максимальное относительное удлинение пружинки в процессе движения, если известно, что оно значительно меньше единицы.

1.4. Всемирное тяготение

• Закон всемирного тяготения:

$$F = \gamma \frac{m_1 m_2}{r^2}. \tag{1.4a}$$

• Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит (Кеплер):

$$T^2 \propto a^3. \tag{1.46}$$

• Потенциал гравитационного поля точечной массы:

$$\varphi = -\gamma \frac{m}{r} . \tag{1.4b}$$

• Первая и вторая космические скорости:

$$v_1 = \sqrt{gR}, \qquad v_2 = v_1 \sqrt{2}.$$
 (1.4r)

1.237. Некоторая планета движется по окружности вокруг Солнца со скоростью $v=34.9~{\rm кm/c}$ (относительно гелиоцентрической системы отсчета). Найти период обращения этой планеты вокруг Солнца.

- **1.238.** Период обращения Юпитера вокруг Солнца в 12 раз больше соответствующего периода для Земли. Считая орбиты планет круговыми, найти:
- а) во сколько раз расстояние от Юпитера до Солнца превышает расстояние от Земли до Солнца;
- б) скорость и ускорение Юпитера в гелиоцентрической системе отсчета.
- 1.239. Некоторая планета движется вокруг Солнца по эллипсу так, что минимальное расстояние между ней и Солнцем равно r_1 , а максимальное r_2 . Найти с помощью (1.4б) период обращения ее вокруг Солнца.
- 1.240. Два спутника движутся вокруг Земли по касающимся траекториям. Один спутник движется по окружности радиуса r, другой по эллипсу с периодом обращения, в η раз большим, чем у первого спутника. Найти с помощью (1.46) максимальное расстояние между вторым спутником и центром Земли.
- **1.241.** Небольшое тело начинает падать на Солнце с расстояния, равного радиусу земной орбиты. Найти с помощью (1.46) продолжительность падения.
- **1.242.** Спутник Луны, двигавшийся по круговой орбите радиуса r, после кратковременного торможения стал двигаться по эллиптической орбите, касающейся поверхности Луны. Найти с помощью (1.46) время падения спутника на Луну.
- 1.243. Представим себе, что мы создали модель Солнечной системы, в η раз меньшую натуральной величины, но из материалов той же самой средней плотности, что у Солнца и планет. Как изменятся при этом периоды обращения моделей планет по своим орбитам?
- ${f 1.244.}$ Двойная звезда это система из двух звезд, движущихся вокруг ее центра масс. Известны расстояние l между компонентами двойной звезды и период T ее вращения. Считая, что l не меняется, найти массу системы.
- **1.245.** Планета массы m движется по эллипсу вокруг Солнца так, что наименьшее и наибольшее расстояния ее от Солнца равны соответственно r_1 и r_2 . Найти момент импульса M этой планеты относительно центра Солнца.
- 1.246. Доказать с помощью законов сохранения, что полная механическая энергия E планеты массы m, движущейся во-

круг Солнца по эллипсу, зависит только от его большой полуоси a. Найти зависимость E(a).

- 1.247. Планета A движется по эллиптической орбите вокруг Солнца. В момент, когда она находилась на расстоянии r_0 от Солнца, ее скорость равнялась v_0 и угол между радиусом-вектором \mathbf{r}_0 и вектором скорости \mathbf{v}_0 составлял α . Найти наибольшее и наименьшее расстояния, на которые удаляется от Солнца эта планета при своем движении.
- 1.248. Космическое тело A движется к Солнцу C, имея вдали от него скорость v_0 и прицельный параметр l плечо вектора \mathbf{v}_0 относительно центра Солнца (рис. 1.48). Найти наименьшее расстояние, на которое это тело приблизится к Солнцу.
- рое это тело приблизится к Солнцу. 1.249. Частица массы m находится вне однородного шара массы M на расстоянии r от его центра. Найти:

Рис. 1.48

- а) потенциальную энергию гравитационного взаимодействия частицы и шара;
 - б) силу, с которой шар действует на частицу.
- 1.250. Доказать, что сила тяготения, действующая на частицу A внутри однородного сферического слоя вещества, равна нулю.
- 1.251. Имеется однородный шар массы M и радиуса R. Найти напряженность G и потенциал ϕ гравитационного поля этого шара как функции расстояния r от его центра (при r < R и r > R). Изобразить примерные графики зависимостей G(r) и $\phi(r)$.
- 1.252. Внутри однородного шара плотности ρ имеется сферическая полость, центр которой находится на расстоянии 1 от центра шара. Найти напряженность G поля тяготения внутри полости.
- **1.253.** Однородный шар имеет массу M и радиус R. Найти давление p внутри шара, обусловленное гравитационным сжатием, как функцию расстояния r от его центра. Оценить p в центре Земли, считая, что Земля является однородным шаром.
- **1.254.** Найти собственную потенциальную энергию гравитационного взаимодействия вещества, образующего:
 - а) тонкий однородный сферический слой массы m и радиуса R;

- б) однородный шар массы m и радиуса R (воспользоваться ответом к задаче 1.251).
- **1.255.** Вычислить отношение следующих ускорений: ускорения a_1 , вызываемого силой тяготения на поверхности Земли; ускорения a_2 , обусловленного центробежной силой инерции на экваторе Земли; ускорения a_3 , сообщаемого телам на Земле Солнцем.
- **1.256.** На какой высоте над полюсом Земли ускорение свободного падения убывает на $\eta = 1,0\%$? в n = 2,0 раза?
- **1.257.** Телу сообщили на полюсе Земли скорость v_0 , направленную вертикально вверх. Зная радиус Земли и ускорение свободного падения на ее поверхности, найти высоту, на которую поднимается тело.
- **1.258.** Найти период обращения спутника, движущегося вокруг некоторой планеты вблизи ее поверхности, если средняя плотность планеты $\rho = 3.3 \text{ г/см}^3$.
- **1.259.** Спутник вывели на круговую орбиту со скоростью v над полюсом Земли. Найти расстояние от спутника до поверхности Земли.
- 1.260. Спутник Земли массы m движется по круговой орбите, радиус которой вдвое больше радиуса Земли. Какой дополнительный импульс и в каком направлении следует кратковременно сообщить спутнику, чтобы плоскость его орбиты повернулась на угол α без изменения радиуса орбиты?
- 1.261. Вычислить радиус круговой орбиты стационарного спутника Земли, который остается неподвижным относительно ее поверхности. Какова его скорость в инерциальной системе отсчета, связанной в данный момент с центром Земли?
- 1.262. Система, которая состоит из двух одинаковых спутников, соединенных тонким тросом длины l=150 м, движется по круговой орбите вокруг Земли. Масса каждого спутника m=1000 кг, масса троса пренебрежимо мала, расстояние от центра Земли до этой системы составляет $\eta=1,2$ радиуса Земли. Найти силу натяжения троса в момент, когда трос направлен по радиусу Земли.
- 1.263. Найти массу Земли, если спутник, движущийся в ее экваториальной плоскости с запада на восток по круговой орбите радиуса $R=2,00\cdot10^4$ км, появляется над некоторым пунктом на экваторе через каждые $\tau=11,6$ ч.

- **1.264.** Спутник движется в экваториальной плоскости Земли с востока на запад по круговой орбите радиуса $R=1,00\cdot 10^4$ км. Найти относительно поверхности Земли:
 - а) скорость спутника; б) его ускорение.
- 1.265. Какую скорость необходимо сообщить телу в горизонтальном направлении вблизи поверхности Земли у ее полюса, чтобы вывести его на эллиптическую орбиту с большой полуосью a?
- 1.266. Искусственный спутник Луны движется по круговой орбите, радиус которой в η раз больше радиуса Луны. Считая, что небольшая сила сопротивления, испытываемая спутником со стороны космической пыли, зависит от его скорости как $F = \alpha v^2$, где α постоянная, найти время движения спутника до падения на поверхность Луны.
- **1.267.** Вычислить первую и вторую космические скорости для запусков с Луны. Сравнить с соответствующими скоростями для Земли.
- 1.268. Космический корабль подлетает к Луне по параболической траектории, почти касающейся ее поверхности. В момент максимального сближения с Луной на короткое время был включен тормозной двигатель, и корабль перешел на круговую орбиту. Найти приращение модуля скорости корабля при торможении.
- 1.269. Космический корабль вывели на круговую орбиту вблизи поверхности Земли. Какую дополнительную скорость в направлении его движения необходимо кратковременно сообщить кораблю, чтобы он смог преодолеть земное тяготение?
- 1.270. Космический корабль движется вокруг Земли по круговой орбите, радиус которой в $\eta=2,5$ раза больше радиуса Земли. Какую дополнительную скорость надо кратковременно сообщить кораблю в направлении от центра Земли по ее радиусу, чтобы он смог покинуть поле тяготения Земли?
- 1.271. Найти приближенно третью космическую скорость v_3 наименьшую скорость, которую необходимо сообщить телу относительно поверхности Земли, чтобы оно могло покинуть Солнечную систему. Вращением Земли вокруг ее оси пренебречь.

1.5. Динамика твердого тела

• Уравнение динамики твердого тела, вращающегося вокруг неподвижной оси Z:

$$I\beta_z = N_z, (1.5a)$$

где N_z — алгебраическая сумма моментов внешних сил относительно оси Z.

• Теорема Штейнера:

$$I = I_C + ma^2. {(1.56)}$$

• Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси:

$$K = I\omega^2/2. ag{1.5b}$$

• Работа внешних сил при повороте твердого тела вокруг неподвижной оси:

$$A = \int N_z \, \mathrm{d}\varphi. \tag{1.5r}$$

• Кинетическая энергия твердого тела при плоском движении:

$$K = I_C \omega^2 / 2 + m v_C^2 / 2.$$
 (1.5g)

1.272. Тонкий однородный стержень AB массы m=1,0 кг движется поступательно с ускорением a=2,0 м/с² под действием сил \mathbf{F}_1 и \mathbf{F}_2 (рис. 1.49). Расстояние b=20 см, сила

1.273. Однородный шар массы m = 4,0 кг движется поступательно по поверхности стола под действием постоянной силы \mathbf{F} , как показано на рис. 1.50. Угол $\alpha = 45^{\circ}$, коэффициент

трения k = 0,20. Найти F и ускорение шара.

ullet Связь между угловой скоростью $oldsymbol{\omega}'$ прецессии гироскопа, его моментом импульса $oldsymbol{M}$, равным $Ioldsymbol{\omega}$, и моментом $oldsymbol{N}$ внешних сил:

 $F_2 = 5.0$ Н. Найти длину стержня.

$$[\omega'\mathbf{M}] = \mathbf{N}.\tag{1.5e}$$

Рис. 1.49

1.274. К точке с радиусом-вектором $\mathbf{r}_1 = a\mathbf{i}$ приложена сила $\mathbf{F}_1 = A\mathbf{j}$, а к точке с $\mathbf{r}_2 = b\mathbf{j}$ — сила $\mathbf{F}_2 = B\mathbf{i}$. Здесь \mathbf{i} и \mathbf{j} — орты осей X и Y, A и B — постоянные. Найти плечо равнодействующей силы относительно начала координат.

Рис. 1.50

1.275. Однородный кубик массы m=2,5 кг, длина ребра которого l=100 мм, перемещают вправо, действуя силой F=11 H (рис. 1.51). Коэффициент трения k=0,15. Найти:

- а) плечо b равнодействующей сил нормального давления относительно центра кубика;
- Рис. 1.51
- б) при каком значении F кубик будет скользить не опрокидываясь.
- 1.276. В начальном положении середина горизонтального однородного стержня массы m и длины l находится над упором

А (рис. 1.52). Левый конец стержня начали медленно тянуть за нить. Какую работу надо совершить, чтобы стержень выскочил из-под упора В, если расстояние между

Рис. 1.52

упорами A и B равно a и коэффициент трения между стержнем и упорами k?

- 1.277. Имеется тонкий однородный стержень массы m и длины l. Найти его момент инерции относительно оси, проходящей через:
 - а) его конец и перпендикулярной самому стержню;
 - б) его центр и составляющей угол α со стержнем.
- 1.278. Найти момент инерции тонкой однородной прямоугольной пластинки относительно оси, проходящей через одну из вершин пластинки перпендикулярно ее плоскости, если стороны пластинки равны a и b, а ее масса m.
- 1.279. Тонкая однородная пластинка массы m=0,60 кг имеет форму равнобедренного прямоугольного треугольника. Найти ее момент инерции относительно оси, совпадающей с одним из катетов, длина которого a=200 мм.
 - 1.280. Вычислить момент инерции:
- а) медного однородного диска относительно его оси, если толщина диска $b=2,0\,$ мм и радиус $R=100\,$ мм;
- б) однородного сплошного конуса относительно его оси, если масса конуса m и радиус основания R.
- **1.281.** Найти момент инерции тонкого проволочного кольца радиуса a и массы m относительно оси, совпадающей с его диаметром.

1.282. Показать, что для тонкой пластинки произвольной формы имеется следующая связь между моментами инерции: $I_1 + I_2 = I_3$, где 1, 2, 3 — три взаимно перпендикулярные оси, проходящие через одну точку, причем оси 1 и 2 лежат в плоскости пластинки.

Используя эту связь, найти момент инерции тонкого круглого однородного диска радиуса R и массы m относительно оси, совпадающей с одним из его диаметров.

1.283. Момент инерции тела относительно взаимно параллельных осей 1 и 2 равен $I_1 = 1{,}00$ г·м² и $I_2 = 3{,}0$ г·м². Оси 1 и 2 расположены на расстояниях $x_1 = 100$ мм и $x_2 = 300$ мм от центра масс C тела. Найти момент инерции этого тела относительно оси, проходящей через точку C и параллельной осям 1 и 2.

Рис. 1.53

- **1.284.** Однородный диск радиуса R имеет круглый вырез (рис. 1.53). Масса оставшейся (заштрихованной) части диска равна m. Найти момент инерции такого диска относительно оси, перпендикулярной плоскости диска и проходящей:
 - а) через точку O;
 - б) через его центр масс.
 - 1.285. Исходя из формулы для момента инерции однородного шара найти момент инерции тонкого сферического слоя массы m и радиуса Rотносительно оси, проходящей через его центр.

Рис. 1.54

ния. Трения нет. Найти угловое ускорение блока.

1.287. На однородный сплошной цилиндр массы M и радиуса R плотно намотана легкая нить, κ концу которой прикреплен груз массы m (рис. 1.55). В момент t = 0 система пришла в движение. Прененайти брегая трением оси цилиндра, зависимость от времени:

- а) модуля угловой скорости цилиндра;
- б) кинетической энергии всей системы.

Рис. 1.55

- 1.288. Концы тонких нитей, плотно намотанных на ось радиуса r диска Максвелла, прикреплены к горизонтальной штанге. Когда диск раскручивается, штангу поднимают так, что диск остается неизменно на одной и той же высоте. Масса диска с осью m, их момент инерции относительно оси симметрии I. Найти ускорение штанги.
- 1.289. Горизонтальный тонкий однородный стержень AB массы m и длины l может свободно вращаться вокруг вертикальной оси, проходящей через его конец A. В некоторый момент на конец B начала действовать постоянная сила F, которая все время перпендикулярна первоначальному положению покоившегося стержня и направлена в горизонтальной плоскости. Найти угловую скорость стержня как функцию его угла поворота ϕ из начального положения.
- **1.290.** Горизонтально расположенный тонкий однородный стержень массы m подвешен за концы на двух вертикальных нитях. Найти силу натяжения одной из нитей сразу после пережигания другой нити.
- 1.291. Тонкий однородный стержень массы m=0,50 кг и длины l=100 см может вращаться в вертикальной плоскости вокругоси, проходящей через сам стержень. Момент инерции стержня относительно оси вращения I=0,115 кг·м². Стержень установили в горизонтальном положении и отпустили. После этого он пришел в движение и остановился в вертикальном положении. Найти модуль тормозящего момента сил в оси, считая его постоянным.
- 1.292. В установке (рис. 1.56) известны масса m однородного сплошного цилиндра, его радиус R и массы тел m_1 и m_2 . Скольжения нити и трения в оси цилиндра нет. Найти угловое ускорение цилиндра и отношение сил натяжения F_1/F_2 вертикальных участков нити в процессе движения. Убедиться, что $F_1 = F_2$ при $m \to 0$.
- 1.293. В установке (рис. 1.57) известны массы тел m_1 и m_2 , коэффициент трения k между телом m_1 и горизонтальной поверхностью, а также масса блока m, который можно считать однородным диском. Скольжения нити по блоку нет. В момент t=0 тело m_2 начинает опускаться. Пренебрегая трением в оси блока, найти:

Рис. 1.56

Рис. 1.57

- а) ускорение тела m_2 ;
- б) работу силы трения, действующей на тело m_1 , за первые t секунд после начала движения.
- 1.294. Однородный стержень массы m падает с пренебрежимо малой начальной скоростью из вертикального положения, поворачиваясь вокруг неподвижной оси O, проходящей через его нижний конец. Найти горизонтальную и вертикальную составляющие силы, с которой ось O действует на стержень в го-

ризонтальном положении. Трения нет.

Рис. 1.58

1.295. Однородный сплошной цилиндр радиуса R раскрутили вокруг его оси до угловой скорости ω_0 и затем поместили в угол (рис. 1.58). Коэффициент трения между цилиндром и стенками равен k. Сколько времени цилиндр будет вращаться в этом положении?

Рис. 1.59

1.296. В системе (рис. 1.59) однородному диску сообщили угловую скорость вокруг горизонтальной оси O, а затем осторожно опустили на него конец A стержня AB так, что он образовал угол $\vartheta=45^\circ$ с вертикалью. Трение имеется только между диском и стержнем, коэффициент трения k=0,13. Пусть n_1 и n_2 — числа оборотов диска до остановки при его вращении по часовой стрелке и против при одинаковой начальной скорости. Найти отношение n_2/n_1 .

1.297. Однородный диск радиуса R раскрутили до угловой скорости ω и осторожно положили на горизонтальную поверхность. Сколько времени диск будет вращаться на поверхности, если коэффициент трения равен k?

- 1.298. Тонкий стержень AB массы m=50 г лежит на горизонтальной плоскости с коэффициентом трения k=0,12. Стержень может вращаться вокруг гладкой вертикальной оси, проходящей через его конец A. По концу B произвели кратковременный удар в горизонтальном направлении перпендикулярно стержню. Импульс силы удара J=0,50 H·c. Сколько времени стержень будет вращаться?
- 1.299. Маховик с начальной угловой скоростью ω_0 начинает тормозиться силами, момент которых относительно его оси пропорционален квадратному корню из его угловой скорости. Найти среднюю угловую скорость маховика за все время торможения.

1.300. Однородный сплошной цилиндр радиуса R и массы M может свободно вращаться вокруг неподвижной горизонтальной оси O (рис. 1.60). На цилиндр в один ряд намотан тонкий шнур длины l и массы m. Найти угловое ускорение цилиндра в зависимости от длины х свешивающейся части шнура. Считать, что центр масс намотанной части шнура находится на оси цилиндра.

Рис. 1.60

1.301. Однородный стержень длины l может вращаться вокруг горизонтальной оси, перпендикулярной стержню и проходящей через один из его концов (рис. 1.61). Систему равномерно вращают с угловой скоростью ω вокруг вертикальной оси. Найти угол 9.

Рис. 1.61

При каком значении угловой скорости стержня горизонтальная составляющая силы, действующей на нижний конец оси ОО', будет равна нулю? Какова при этом горизонтальная составляющая силы, действующей на верхний конец оси?

- 1.303. Середина однородного стержня массы m и длины l жестко соединена с вертикальной осью так, что угол между стержнем и осью ОО' равен 9 (рис. 1.62). Концы оси ОО' укреплены в подшипниках. Система вращается без трения с угловой скоростью ω. Найти:
- а) модуль момента импульса стержня относительно точки C и момент импульса относительно оси вращения;
- б) модуль момента внешних сил, действующих на ось ОО' при вращении.

Рис. 1.62

1.304. Гладкий однородный стержень AB массы M и длины lсвободно вращается с угловой скоростью ω₀ в горизонтальной плоскости вокруг неподвижной вертикальной оси, проходящей через его конец A. Из точки A начинает скользить по стержню

небольшая муфта массы m. Найти скорость v' муфты относительно стержня в тот момент, когда она достигнет его конца B.

- 1.305. Однородная тонкая квадратная пластинка со стороной l и массы M может свободно вращаться вокруг неподвижной вертикальной оси, совпадающей с одной из ее сторон. В центр пластинки по нормали к ней упруго ударяется шарик массы m со скоростью \mathbf{v} . Найти:
 - а) скорость шарика v' сразу после удара;
- б) горизонтальную составляющую результирующей силы, с которой ось действует на пластинку после удара.
- **1.306.** Вертикально расположенный однородный стержень массы M и длины l может вращаться вокруг своего верхнего конца. В нижний конец стержня попала, застряв, горизонтально летевшая пуля массы m, в результате чего стержень отклонился на угол α . Считая $m \ll M$, найти:
 - а) скорость летевшей пули;
- б) приращение импульса системы «пуля-стержень» за время удара; какова причина изменения этого импульса;
- в) на какое расстояние x от верхнего конца стержня должна попасть пуля, чтобы импульс системы не изменился в процессе удара.
- 1.307. Горизонтально расположенный однородный диск массы M и радиуса R свободно вращается вокруг вертикальной оси, проходящей через его центр. Диск имеет радиальную направляющую, вдоль которой может скользить без трения небольшое тело массы m. К телу привязана нить, пропущенная через полую ось диска вниз. Первоначально тело находилось на краю диска и вся система вращалась с угловой скоростью ω_0 . Затем к нижнему концу нити приложили силу F, с помощью которой тело медленно подтянули к оси вращения. Найти:
 - а) угловую скорость системы в конечном состоянии;
 - б) работу, которую совершила сила F.
- 1.308. Человек массы m_1 стоит на краю горизонтального однородного диска массы m_2 и радиуса R, который может свободно вращаться вокруг неподвижной вертикальной оси, проходящей через его центр. В некоторый момент человек начал двигаться по краю диска, совершил перемещение на угол ϕ' относительно диска и остановился. Пренебрегая размерами человека, найти угол, на который повернулся диск к моменту остановки человека.

- **1.309.** Два горизонтальных диска свободно вращаются вокруг вертикальной оси, проходящей через их центры. Моменты инерции дисков относительно этой оси I_1 и I_2 , угловые скорости ω_1 и ω_2 . После падения верхнего диска на нижний оба диска из-за трения между ними начали через некоторое время вращаться как единое целое. Найти:
 - а) установившуюся угловую скорость вращения дисков;
 - б) работу, которую совершили при этом силы трения.
- 1.310. Двум одинакового радиуса дискам сообщили одну и ту же угловую скорость ω_0 (рис. 1.63), а затем их привели в соприкосновение, и система через некоторое время пришла в новое установившееся состояние движения. Оси дисков неподвижны, трения в осях нет. Моменты

Рис. 1.63

инерции дисков относительно их осей вращения равны I_1 и I_2 . Найти:

- а) приращение момента импульса системы;
- б) убыль ее механической энергии.
- 1.311. Диск радиуса a может свободно вращаться вокруг своей оси, относительно которой его момент инерции равен I_0 . В момент t=0 диск начали облучать по нормали к его поверхности равномерным потоком частиц N частиц в единицу времени. Каждая частица имеет массу m и собственный момент импульса $\tilde{\mathbf{M}}$, направление которого совпадает с направлением движения частиц. Считая, что все частицы застревают в диске, найти его угловую скорость как функцию времени $\omega(t)$, если $\omega(0)=0$. Изобразить примерный график зависимости $\omega(t)$.
- **1.312.** Однородный диск радиуса R и массы m лежит на гладкой горизонтальной поверхности. На боковую поверхность диска плотно намотана нить, к свободному концу K которой приложили постоянную горизонтальную силу F. После начала движения диска точка K переместилась на расстояние l. Найти угловую скорость диска к этому моменту.
- 1.313. Двухступенчатый блок радиусов R_1 и R_2 положили на гладкую горизонтальную поверхность. На ступени блока плотно намотаны нити, к концам которых приложили постоянные, взаимно перпендикулярные силы \mathbf{F}_1 и \mathbf{F}_2 (рис. 1.64, вид сверху). Сколько оборотов совершит блок за время, в течение

Рис. 1.64

которого его ось C переместится на расстояние l? Масса данного блока m, его момент инерции относительно оси C равен I.

1.314. Однородный диск радиуса R = 5.0 см, вращающийся вокруг своей оси с угловой скоростью $\omega = 60$ рад/с, падает в вертикальном положении на горизонтальную шероховатую поверхность и отскакивает под углом $\vartheta = 30^\circ$ к вертикали, уже не вращаясь. Найти скорость диска сразу после отскакивания.

- 1.315. Однородный шар скатывается без скольжения по наклонной плоскости, составляющей угол α с горизонтом. Найти ускорение центра шара и значение коэффициента трения, при котором скольжения не будет.
- **1.316.** Однородный шар массы m = 5.0 кг скатывается без скольжения по наклонной плоскости, составляющей угол $\alpha = 30^{\circ}$ с горизонтом. Найти кинетическую энергию шара через t=1,6 с после начала движения.
- **1.317.** Однородный стержень длины l=110 см расположен под углом $\alpha = 60^{\circ}$ к гладкой горизонтальной поверхности, на которую он опирается своим нижним концом. Стержень без толчка отпустили. Найти скорость верхнего конца стержня непосредственно перед падением его на поверхность.
- 1.318. Катушка, момент инерции которой относительно ее оси равен I, скатывается без скольжения по наклонной плоскости. Пройдя от начала движения путь s, она приобрела угловую скорость ω. Найти силу трения покоя, считая ее одинаковой на всем пути.

радиуса R = 1,3 см (рис. 1.66) в момент t = 0 начинает опускаться под действием силы тяжести. Найти:

а) угловое ускорение цилиндра;

Рис. 1.66

- б) зависимость от времени мгновенной мощности, которую развивает сила тяжести.
- **1.321.** Нити намотаны на концах однородного сплошного цилиндра массы m. Свободные концы нитей прикреплены к потолку кабины лифта. Кабина начала подниматься с ускорением \mathbf{a}_0 . Найти ускорение \mathbf{a}' цилиндра относи-

тельно кабины и силу **F**, с которой цилиндр действует (через нити) на потолок.

1.322. На гладкой наклонной плоскости, составляющей угол $\alpha = 30^{\circ}$ с горизонтом, находится катушка с ниткой, свободный конец которой укреплен (рис. 1.67). Масса данной катушки m = 200 г, ее момент инерции относительно собственной оси I = 0.45 г·м², радиус намотанного слоя ниток r = 3.0 см. Найти ускорение оси катушки.

Рис. 1.67

- **1.323.** Однородный сплошной цилиндр массы *т* лежит на двух горизонтальных брусьях. На цилиндр намотана нить, за свешивающийся конец которой тянут с постоянной, вертикаль-
- но направленной силой F (рис. 1.68). Найти значения силы F, при которых цилиндр будет катиться без скольжения, если коэффициент трения равен k.
- 1.324. На горизонтальной шероховатой плоскости лежит катушка ниток массы m. Ее момент инерции относительно собственной оси $I = \gamma m R^2$, где γ числовой коэффициент, R внешний радиус катушки. Радиус намотанного слоя ниток равен r. Катушку без скольжения начали тянуть за нить с постоянной силой \mathbf{F} , направленной под углом α к горизонту (рис. 1.69). Найти:
 - а) проекцию на ось X ускорения оси катушки;
 - б) работу силы ${f F}$ за первые t секунд движения.
- 1.325. Система (рис. 1.70) состоит из двух одинаковых однородных цилиндров, на которые симметрично намотаны две лег-

Рис. 1.68

Рис. 1.69

Рис. 1.70

Рис. 1.71

кие нити. Найти ускорение оси нижнего цилиндра в процессе движения.

1.326. В системе (рис. 1.71) известны масса m груза A, масса M ступенчатого блока B, момент инерции I последнего относительно его оси и радиусы ступеней блока R и 2R. Найти ускорение груза A.

1.327. Сплошной однородный цилиндр A массы m_1 может свободно вращаться вокруг горизонталь-

Рис. 1.72

ной оси, которая укреплена на подставке B массы m_2 (рис. 1.72). На цилиндр плотно намотана нить, к концу K которой приложили постоянную горизонтальную силу F. Трения между подставкой и плоскостью нет. Найти:

- а) ускорение точки K;
- б) кинетическую энергию этой системы через t секунд после начала движения.

1.328. На гладкой горизонтальной плоскости лежит доска массы m_1 и на ней однородный шар массы m_2 . К доске приложили постоянную горизонтальную силу F. С какими ускорени-

ями будут двигаться доска и центр шара в отсутствие скольже-

ния между ними?

1.329. Сплошному однородному цилиндру массы m и радиуса R сообщили вращение вокруг его оси с угловой скоростью ω_0 , затем его положили боковой поверхностью на горизонтальную плоскость и предоставили самому себе. Коэффициент трения равен k. Найти:

- а) время, в течение которого движение цилиндра будет происходить со скольжением;
 - б) полную работу силы трения скольжения.
- 1.330. Однородный шар радиуса r скатывается без скольжения с вершины сферы радиуса R. Найти угловую скорость шара после отрыва от сферы. Начальная скорость шара пренебрежимо мала.
- 1.331. Сплошной однородный цилиндр радиуса R катится по горизонтальной плоскости, которая переходит в наклонную плоскость, составляющую угол α с горизонтом (под уклон). Найти максимальное значение скорости v_0 цилиндра, при котором он перейдет на наклонную плоскость еще без скачка. Скольжения нет.

1.332. Однородный шар массы m=5.0 кг и радиуса R=5.0 см катится без скольжения по горизонтальной поверхности. Вследствие деформации в месте соприкосновения шара и плоскости на шар при движении вправо действует равнодействующая F сил реакции (рис. 1.73). Найти модуль момента силы F относительно центра O шара, если

Рис. 1.73

шар, имевший в некоторый момент скорость $v=1,00\,\mathrm{m/c}$, прошел после этого до остановки путь $s=2,5\,\mathrm{m}$. Момент силы \mathbf{F} считать постоянным.

- 1.333. На гладкой горизонтальной поверхности лежит однородный стержень массы m=5,0 кг и длины l=90 см. По одному из концов стержня в горизонтальном направлении перпендикулярно стержню произвели удар, импульс силы которого J=3,0 H·c. Найти силу, с которой одна половина стержня будет действовать на другую в процессе движения.
 - 1.334. Используя условие предыдущей задачи, найти:
- а) на какое расстояние переместится центр стержня за время его полного оборота;
 - б) кинетическую энергию стержня после удара.
- 1.335. На гладкой горизонтальной поверхности лежит однородный стержень массы m и длины l. На один из его концов начали действовать постоянной, направленной все время вертикально вверх силой F=mg. Найти угловую скорость стержня в зависимости от угла ϕ его поворота.
- 1.336. Однородный стержень AB длины 2l установили вертикально в углу, образованном гладкими плоскостями. В некоторый момент стержню сообщили пренебрежимо малую угловую скорость, и он начал падать, скользя по плоскостям, как показано на рис. 1.74. Найти:

- Рис. 1.74
- а) угловую скорость ω и угловое ускорение β стержня как функции угла α до момента отрыва точки A от плоскости;
- б) при каком значении угла α стержень оторвется от вертикальной стенки.
- 1.337. Однородный стержень длины l, укрепленный одним концом в шарнире, отвели на угол ϑ от вертикали и сообщили

его нижнему концу скорость v_0 перпендикулярно вертикальной плоскости, проходящей через стержень. При каком минимальном значении v_0 стержень при дальнейшем движении пройдет через горизонтальное положение?

- 1.338. На гладкой плоскости лежат небольшая шайба и тонкий однородный стержень длины l, масса которого в η раз больше массы шайбы. Шайбе сообщили скорость \mathbf{v} в горизонтальном направлении перпендикулярно стержню, после чего она испытала упругое соударение с концом стрежня. Найти скорость v_C центра стержня после столкновения. При каком значении η скорость шайбы после столкновения будет равна нулю? изменит направление на противоположное?
- **1.339.** Однородный стержень, падавший в горизонтальном положении с высоты h, упруго ударился одним концом о край массивной плиты. Найти скорость центра стержня сразу после удара.
- 1.340. Волчок массы m=0,50 кг, ось которого наклонена под углом $9=30^\circ$ к вертикали, прецессирует под действием силы тяжести. Момент инерции волчка относительно его оси симметрии I=2,0 г·м², угловая скорость вращения вокруг этой оси $\omega=350$ рад/с, расстояние от точки опоры до центра масс волчка l=10 см. Найти:
 - а) угловую скорость прецессии волчка;
- б) модуль и направление горизонтальной составляющей силы реакции, действующей на волчок в точке опоры.
 - 1.341. На полу кабины лифта, которая начинает поднимать-

ся с постоянным ускорением a=2,0 м/с², установлен гироскоп — однородный диск радиуса R=5,0 см на конце стержня длины l=10 см (рис. 1.75). Другой конец стержня укреплен в шарнире O. Гироскоп прецессирует с частотой n=0,5 об/с. Пренебрегая трением и массой

стержня, найти собственную угловую скорость диска.

1.342. Волчок, масса которого m=1,0 кг и момент инерции относительно собственной оси I=4,0 г \cdot м², вращается с $\omega=320$ рад/с. Его точка опоры находится на подставке, которую перемещают в горизонтальном направлении с ускорением a=3,0 м/с². Расстояние между точкой опоры и центром масс волчка l=10 см. Найти модуль и направление вектора ω' — угловой скорости прецессии волчка.

- 1.343. Однородный шар массы m=5,0 кг и радиуса R=6,0 см вращается с $\omega=1250$ рад/с вокруг горизонтальной оси, проходящей через его центр и укрепленной в подшипниках подставки. Расстояние между подшипниками l=15 см. Подставку поворачивают вокруг вертикальной оси с $\omega'=5,0$ рад/с. Найти модуль и направление гироскопических сил.
- 1.344. Диск массы m=5,0 кг и радиуса R=5,0 см вращается с $\omega=330$ рад/с. Расстояние между подшипниками, в которых укреплена ось диска, l=15 см. Ось вынуждают совершать гармонические колебания вокруг горизонтальной оси, проходящей через центр диска и перпендикулярной его оси, с периодом T=1,0 с и амплитудой $\phi_m=20^\circ$. Найти максимальное значение гироскопических сил, действующих на подшипники со стороны оси диска.
- **1.345.** Корабль движется со скоростью v = 36 км/ч по дуге окружности радиуса R = 200 м. Найти момент гироскопических сил, действующих на подшипники со стороны вала с маховиком, которые имеют момент инерции относительно оси вращения $I = 3.8 \cdot 10^3$ кг·м² и делают n = 300 об/мин. Ось вращения расположена вдоль корабля.
- 1.346. Локомотив приводится в движение турбиной, ось которой параллельна осям колес. Направление вращения турбины совпадает с направлением вращения колес. Момент инерции ротора турбины относительно собственной оси $I=240~{\rm kr\cdot m^2}$. Найти добавочную силу давления на рельсы, обусловленную гироскопическими силами, когда локомотив идет по закруглению радиуса $R=250~{\rm m}$ со скоростью $v=50~{\rm km/v}$. Расстояние между рельсами $l=1,5~{\rm m}$. Турбина делает $n=1500~{\rm of/muh}$.

1.6. Упругие деформации твердого тела

• Закон Гука:

$$\varepsilon = \sigma/E, \tag{1.6a}$$

где ϵ — относительное удлинение, σ — напряжение, E — модуль Юнга.

• Связь между относительным поперечным сжатием (растяжением) ϵ' и относительным продольным растяжением (сжатием) ϵ :

$$\varepsilon' = -\mu \varepsilon,$$
 (1.66)

ullet Связь между относительным сдвигом γ и тангенциальным напряжением τ :

$$\gamma = \tau/G, \tag{1.6b}$$

где G — модуль сдвига.

• Коэффициент сжимаемости (модуль всестороннего сжатия):

$$\beta = -\frac{1}{V} \frac{\partial V}{\partial p}.$$
 (1.6r)

• Объемная плотность энергии упругой деформации:

$$u = E\varepsilon^2/2, \qquad u = G\gamma^2/2. \tag{1.6a}$$

- 1.347. Какое давление необходимо приложить к торцам стального цилиндра, чтобы длина его не изменилась при повышении температуры на 100 °C?
- **1.348.** Какое давление изнутри (при отсутствии наружного давления) могут выдержать:
- а) стеклянная трубка; б) стеклянная сферическая колба, у которых радиус r=25 мм и толщина стенок $\Delta r=1,0$ мм?
- **1.349.** Горизонтально расположенный медный стержень длины l=1,0 м вращают вокруг вертикальной оси, проходящей через его середину. При какой частоте вращения он может разорваться?
- 1.350. Кольцо радиуса r=25 см, сделанное из свинцовой проволоки, вращают вокруг неподвижной вертикальной оси, проходящей через его центр и перпендикулярной плоскости кольца. При какой частоте оборотов n данное кольцо может разорваться?
- 1.351. Стальная проволока диаметра d=1,0 мм натянута в горизонтальном положении между двумя зажимами, находящимися на расстоянии l=2,0 м друг от друга. К середине проволоки точке O подвесили груз массы m=0,25 кг. На сколько сантиметров опустится точка O?
- 1.352. Однородный упругий брусок движется по гладкой горизонтальной плоскости под действием постоянной силы F_0 , равномерно распределенной по торцу. Площадь торца S, модуль Юнга материала E. Найти относительное сжатие бруска в направлении действия данной силы.
- 1.353. Тонкий однородный медный стержень длины l и массы m равномерно вращается с угловой скоростью ω в горизонтальной плоскости вокруг вертикальной оси, проходящей через

один из его концов. Найти силу натяжения в стержне в зависимости от расстояния r до оси вращения, а также удлинение стержня.

- 1.354. Сплошной медный цилиндр длины l=65 см поставили на горизонтальную поверхность и сверху приложили вертикальную сжимающую силу F=1000 H, которая равномерно распределена по его торцу. На сколько кубических миллиметров изменился объем цилиндра?
- **1.355.** Медный стержень длины l подвесили за один конец к потолку. Найти:
 - а) удлинение стержня под действием собственного веса;
 - б) относительное приращение его объема $\Delta V/V$.
- **1.356.** Брусок из материала с модулем Юнга E и коэффициентом Пуассона μ подвергли всестороннему сжатию давлением p. Найти:
 - а) относительное уменьшение его объема;
- б) связь между коэффициентом сжимаемости β и упругими постоянными E и μ .

Показать, что коэффициент Пуассона μ не может превышать 1/2.

- **1.357.** Установить связь между крутящим моментом N и углом закручивания ϕ для:
- а) трубы, у которой толщина стенок Δr значительно меньше радиуса трубы;
 - б) сплошного стержня круглого сечения.

Их длина l, радиус r и модуль сдвига G известны.

- **1.358.** Вычислить момент сил N, которые вызывают закручивание стальной трубы длины l=3,0 м на угол $\phi=2,0^{\circ}$ вокруг ее оси, если внутренний и внешний диаметры трубы равны $d_1=30$ мм и $d_2=50$ мм.
- 1.359. Найти наибольшую мощность, которую можно передать с помощью стального вала, вращающегося вокруг своей оси с угловой скоростью $\omega=120$ рад/с, если его длина l=200 см, радиус r=1,50 см и допустимый угол закручивания $\phi=2,5^{\circ}$.
- 1.360. Однородное кольцо массы m, имеющее внешний радиус r_2 , плотно насажено на вал радиуса r_1 . Вал вращают с постоянным угловым ускорением β вокруг его оси. Найти момент упругих сил деформации сдвига в кольце в зависимости от расстояния r до оси вращения.

- **1.361.** Найти энергию упругой деформации стального стержня массы m = 3,1 кг, который растянут так, что его относительное удлинение $\varepsilon = 1,0 \cdot 10^{-3}$.
- **1.362.** Стальной цилиндрический стержень длины l и радиуса r подвесили одним концом к потолку.
 - а) Найти энергию U упругой деформации стержня.
 - б) Выразить U через относительное удлинение стержня $\Delta l/l$.
- 1.363. Какую работу необходимо совершить, чтобы стальную полосу длины $l=2,0\,$ м, ширины $h=6,0\,$ см и толщины $\delta=2,0\,$ мм согнуть в круглый обруч? Процесс происходит в пределах упругой деформации.
- **1.364.** Найти энергию упругой деформации стального стержня, у которого один конец закреплен, а другой закручен на угол $\varphi = 6.0^{\circ}$. Длина стержня l = 1.0 м, его радиус r = 10 мм.
- **1.365.** Найти распределение плотности энергии упругой деформации в стальном стержне в зависимости от расстояния r до его оси. Длина стержня l, угол закручивания φ .
- **1.366.** Определить плотность энергии упругой деформации в пресной воде на глубине h=1000 м.

1.7. Механика несжимаемой жидкости

• Основное уравнение динамики идеальной жидкости (уравнение Эйлера):

$$\rho \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{f} - \nabla p, \tag{1.7a}$$

где ρ — плотность жидкости, \mathbf{f} — объемная плотность массовых сил (в случае силы тяжести $\mathbf{f} = \rho \mathbf{g}$), ∇p — градиент давления.

• Уравнение Бернулли. В стационарном потоке идеальной жидкости вдоль любой линии тока

$$\rho v^2/2 + \rho g h + p = \text{const.} \tag{1.76}$$

• Сила трения между двумя слоями жидкости:

$$F_{\rm TP} = \eta \left| \mathrm{d}v/\mathrm{d}z \right| S, \tag{1.7b}$$

где η — вязкость жидкости.

ullet Формула Пуазейля. Поток жидкости через поперечное сечение трубы (в единицах ${
m m}^3/{
m c}$)

$$Q = \frac{\pi R^4}{8 \, \eta} \frac{p_1 - p_2}{l}, \tag{1.7r}$$

где R и l — радиус и длина трубы, p_1 — p_2 — разность давлений на ее концах.

• Число Рейнольдса, определяющее характер течения вязкой жидкости:

$$Re = ρυl/η, (1.7π)$$

где l — некоторый характерный размер.

ullet Формула Стокса. Сила сопротивления движению шарика радиусом r в вязкой жидкости:

$$F = 6\pi \eta r v. \tag{1.7e}$$

1.367. Идеальная жидкость течет по плоской трубе одинакового сечения, расположенной в горизонтальной плоскости и изогнутой, как показано на рис. 1.76 (вид сверху). Поток стационарный. Одинаковы ли давления и скорости жидкости в точках 1 и 2? Какой вид имеют линии тока?

Рис. 1.76

1.368. Две манометрические трубки установлены на горизонтальной трубе переменного сечения в местах, где сечения трубы равны S_1 и S_2 (рис. 1.77). По трубе течет вода. Найти объем воды, протекающий в единицу времени через сечение трубы, если разность уровней воды в манометрических трубках равна Δh .

Рис. 1.77

1.369. Трубка Пито (рис. 1.78) установлена по оси газопровода, площадь внутреннего сечения которого равна S. Пренебрегая

вязкостью, найти объем газа, проходящего через сечение трубы в единицу времени, если разность уровней в жидкостном манометре равна Δh , а плотность жидкости и газа — соответственно ρ_0 и ρ .

Рис. 1.78

1.370. Вертикальная струя идеальной жидкости вытекает из горизонтального отверстия радиуса r_0 со скоростью v_0 . Найти радиус струи на расстоянии h ниже отверстия.

1.371. Идеальная жидкость течет стационарным потоком по наклонной плоскости. Глубина потока уменьшается в $\eta = 2,0$ раза на расстоянии l. На каком расстоянии l' глубина потока уменьшится в $\eta' = 4,0$ раза?

1.372. На столе стоит широкий цилиндрический сосуд высоты h=50 см. Сосуд наполнен водой. Пренебрегая вязкостью, найти, на какой высоте от дна сосуда следует сделать неболь-

шое отверстие, чтобы струя из него била в поверхность стола на максимальное расстояние $l_{\rm makc}$ от сосуда. Чему равно $l_{\rm makc}$?

1.373. Какую работу необходимо совершить, чтобы, дейст-

Рис. 1.79

вуя постоянной силой на поршень (рис. 1.79), выдавить из горизонтально расположенного цилиндра всю воду за время t? Объем воды в цилиндре равен V, площадь сечения отверстия s, причем s значительно меньше площади

поршня. Трение и вязкость пренебрежимо малы.

- 1.374. Из отверстия в дне высокого цилиндрического сосуда вытекает вода. Площадь сечения сосуда в $\eta=100$ раз больше сечения отверстия. Найти ускорение, с которым перемещается уровень воды в сосуде.
- 1.375. Цилиндрический сосуд высоты h с площадью основания S наполнен водой. В дне сосуда открыли отверстие площадью $s \ll S$. Пренебрегая вязкостью воды, определить, через сколько времени вся вода вытечет из сосуда.
- 1.376. Тонкостенный цилиндрический сосуд погрузили в идеальную жидкость до верхнего (открытого) основания. В нижнем, закрытом торце, имеется малое отверстие. Известны высота сосуда h, а также отношение η площади сечения отверстия к площади сечения сосуда, причем $\eta \ll 1$. Найти время, за которое наполнится сосуд.
- 1.377. Горизонтально расположенная трубка AB длины l вращается с постоянной угловой скоростью ω вокруг неподвижной вертикальной оси OO, проходящей через конец A

Рис. 1.80

(рис. 1.80). В трубке находится идеальная жидкость. Конец A трубки открыт, а в закрытом конце B имеется очень малое отверстие. Найти, с какой скоростью относительно трубки будет вытекать

жидкость в зависимости от «высоты» ее столба h.

- **1.378.** Показать, что в случае стационарного потока идеальной жидкости уравнение (1.7a) приводит к уравнению Бернулли.
- 1.379. С противоположных сторон широкого вертикального сосуда, наполненного водой, открыли два одинаковых отвер-

стия, каждое площадью $S=0,50~{\rm cm}^2.$ Расстояние между ними по высоте $\Delta h=51~{\rm cm}.$ Найти результирующую силу реакции вытекающей воды.

- 1.380. В боковой стенке широкого цилиндрического вертикального сосуда высоты h=75 см сделана узкая вертикальная щель, нижний конец которой упирается в дно сосуда. Длина щели l=50 см, ширина b=1,0 мм. Закрыв щель, сосуд наполнили водой. Найти результирующую силу реакции вытекающей воды непосредственно после того, как щель открыли.
- **1.381**. Вода течет со скоростью v по U-образной трубке, лежащей в горизонтальной плоскости. Площадь сечения трубки S, радиус закругления R. Найти:
 - а) суммарный импульс воды в закругленной части трубки;
- б) модуль силы, действующей со стороны текущей воды на стенки изогнутой части трубки.
- 1.382. Вода вытекает из большого бака по изогнутой под прямым углом трубке, внутренний радиус которой r=0,50 см (рис. 1.81). Длина горизонтальной части трубки l=22 см. Расход воды Q=0,50 л/с. Найти момент сил реакции воды на стенки этой трубки относительно точки O, обусловленный течением воды.

Рис. 1.81

1.383. Сечение ствола гидромонитора (рис. 1.82) меняется от $S_1 = 50 \text{ см}^2$ до $S_2 = 5.0 \text{ см}^2$. Найти модуль и направление горизонтальной силы, возникающей в креплении ствола (сечение 1), если скорость струи на выходе $v_0 = 25 \text{ м/c}$. Вязкостью пренебречь.

Рис. 1.82

- 1.384. Цилиндрический сосуд с водой вращают вокруг его вертикальной оси с угловой скоростью ω. Найти:
 - а) форму свободной поверхности воды;
- б) распределение давления воды на дне сосуда вдоль его радиуса, если давление в центре дна равно p_0 .
- 1.385. Тонкий горизонтальный диск радиуса R=10 см расположен в цилиндрической полости с маслом, вязкость которого $\eta=8$ мПа·с (рис. 1.83). Зазоры между диском и горизонтальными тор-

Рис. 1.83

цами полости одинаковы и равны h=1,0 мм. Найти мощность, которую развивают силы вязкости, действующие на диск при вращении его с $\omega=60$ рад/с. Краевыми эффектами пренебречь.

- **1.386.** Длинный цилиндр радиуса R_1 перемещают вдоль его оси с постоянной скоростью v_0 внутри коаксиального с ним неподвижного цилиндра радиуса R_2 . Пространство между цилиндрами заполнено вязкой жидкостью. Найти скорость жидкости как функцию расстояния r от оси цилиндров. Течение ламинарное.
- 1.387. Жидкость с вязкостью η находится между двумя длинными коаксиальными цилиндрами с радиусами R_1 и R_2 , причем $R_1 < R_2$. Внутренний цилиндр неподвижен, а внешний вращают с угловой скоростью ω_2 . Движение жидкости ламинарное. Имея в виду, что сила трения, действующая на единицу площади цилиндрической поверхности радиуса r, равна $\sigma = \eta r \ (\partial \omega / \partial r)$, найти:
- а) угловую скорость вращающейся жидкости как функцию радиуса r;
- б) момент сил трения, действующих на единицу длины внешнего цилиндра.
- **1.388.** По трубе радиуса R течет стационарный поток вязкой жидкости. На оси трубы ее скорость равна v_0 . Найти скорость жидкости как функцию расстояния r от оси трубы.
- 1.389. По трубе длины l и радиуса R течет стационарный поток жидкости, плотность которого ρ и вязкость η . Скорость течения жидкости зависит от расстояния r до оси трубы как $v=v_0(1-r^2/R^2)$. Найти:
- а) объем жидкости, протекающий через сечение трубы ежесекундно;
 - б) кинетическую энергию жидкости в объеме трубы;
 - в) разность давлений на концах трубы.
- 1.390. Жидкость, плотность которой ρ и вязкость η , течет плоским стационарным потоком по наклонной плоскости, составляющей угол α с горизонтом. Толщина потока равна h. Найти объем жидкости, протекающий за единицу времени через поперечное сечение потока в расчете на единицу его ширины.

1.391. В системе (рис. 1.84) из широкого сосуда A по трубке вытекает вязкая жидкость, плотность которой $\rho=1,0$ г/см 3 . Найти скорость вытекающей жидкости, если $h_1=10$ см, $h_2=20$ см и $h_3=35$ см. Расстояния l одинаковы.

Рис. 1.84

1.392. Радиус сечения трубопровода монотонно умень-

шается по закону $r = r_0 e^{-\alpha x}$, где $\alpha = 0,50$ м⁻¹, x — расстояние от начала трубопровода. Найти отношение чисел Рейнольдса в сечениях, отстоящих друг от друга на $\Delta x = 3,2$ м.

- 1.393. При движении шарика радиуса $r_1 = 1,2$ мм в глицерине ламинарное обтекание наблюдается при скорости шарика, не превышающей $v_1 = 23$ см/с. При какой минимальной скорости v_2 шара радиуса $r_2 = 5,5$ см в воде обтекание станет турбулентным? Вязкости глицерина и воды равны соответственно $\eta_1 = 1,39$ Па·с и $\eta_2 = 1,1$ мПа·с.
- 1.394. Свинцовый шарик равномерно опускается в глицерине, вязкость которого $\eta=1,39~\Pi a\cdot c$. При каком наибольшем диаметре шарика его обтекание еще ламинарное? Переход к турбулентному обтеканию соответствует числу $\mathbf{Re}=0,5$ (это значение \mathbf{Re} , при котором за характерный размер взят диаметр шарика).
- **1.395.** Стальной шарик диаметра d=3,0 мм опускается с нулевой начальной скоростью в прованском масле, вязкость которого $\eta=90$ мПа·с. Через сколько времени после начала движения скорость шарика будет отличаться от установившегося значения на n=1,0%?

1.8. Релятивистская механика

• Лоренцево сокращение длины и замедление хода движущихся часов:

$$l = l_0 \sqrt{1 - (v/c)^2}, \qquad \Delta t = \frac{\Delta t_0}{\sqrt{1 - (v/c)^2}},$$
 (1.8a)

где l_0 — собственная длина, Δt_0 — собственное время движущихся часов.

• Преобразования Лоренца:

$$x' = \frac{x - Vt}{\sqrt{1 - (V/c)^2}}, \qquad y' = y, \qquad t' = \frac{t - xV/c^2}{\sqrt{1 - (V/c)^2}}.$$
 (1.86)

• Интервал s_{12} — инвариантная величина:

$$s_{12}^2 = c^2 t_{12}^2 - l_{12}^2 = \text{inv},$$
 (1.8b)

где t_{12} — промежуток времени между событиями 1 и 2, l_{12} — расстояние между точками, где произошли эти события.

• Преобразование скорости:

$$v'_{x} = \frac{v_{x} - V}{1 - v_{x}V/c^{2}}, \qquad v'_{y} = \frac{v_{y}\sqrt{1 - (V/c)^{2}}}{1 - v_{x}V/c^{2}}.$$
 (1.8r)

• Релятивистский импульс:

$$\mathbf{p} = m_r \mathbf{v} = \frac{m \mathbf{v}}{\sqrt{1 - (v/c)^2}},\tag{1.8д}$$

где $m_r = \frac{m}{\sqrt{1 - (v/c)^2}}$ — релятивистская масса, m — масса (покоя).

• Релятивистское уравнение динамики частицы:

$$d\mathbf{p}/dt = \mathbf{F},\tag{1.8e}$$

где р — релятивистский импульс частицы.

• Полная и кинетическая энергии релятивистской частицы:

$$E = m_r c^2 = mc^2 + K, \qquad K = (m_r - m)c^2.$$
 (1.8x)

Связь между энергией и импульсом релятивистской частицы:

$$E^2 - p^2 c^2 = m^2 c^4, \qquad p^2 c^2 = K (K + 2mc^2).$$
 (1.83)

• При рассмотрении столкновения частиц полезно использовать инвариантную величину:

$$E^2 - p^2 c^2 = m^2 c^4, (1.8u)$$

где E и p — полная энергия и импульс системы до столкновения, m — масса образовавшейся частицы (или системы).

- 1.396. Стержень движется в продольном направлении с постоянной скоростью v относительно инерциальной K-системы отсчета. При каком значении v длина стержня в этой системе отсчета будет на $\eta = 0.50\%$ меньше его собственной длины?
- 1.397. Имеется прямоугольный треугольник, у которого катет $a=5{,}00$ м и угол между этим катетом и гипотенузой

- $\alpha = 30^{\circ}$. Найти в системе отсчета K', движущейся относительно этого треугольника со скоростью v = 0.866c вдоль катета a:
 - а) соответствующее значение угла α' ;
 - б) длину l' гипотенузы и ее отношение к собственной длине.
- 1.398. Найти собственную длину стержня, если в K-системе отсчета его скорость v=c/2, длина l=1,00 м и угол между ним и направлением движения $\vartheta=45^\circ$.
- 1.399. Стержень движется равномерно в продольном направлении мимо двух меток A и B, расположенных на расстоянии Δx друг от друга. Сначала в момент t_1 напротив метки A оказался передний конец стержня. Затем напротив метки B в моменты t_2 и t_3 оказались соответственно передний и задний концы стержня. Найти его собственную длину.
- **1.400.** С какой скоростью двигались в K-системе отсчета часы, если за время t=5,0 с (в K-системе) они отстали от часов этой системы на $\Delta t=0,10$ с?
- 1.401. Стержень пролетает с постоянной скоростью мимо метки, неподвижной в K-системе отсчета. Время пролета $\Delta t=20$ нс в K-системе. В системе же отсчета, связанной со стержнем, метка движется вдоль него в течение $\Delta t'=25$ нс. Найти собственную длину стержня.
- 1.402. Собственное время жизни некоторой нестабильной частицы $\Delta t_0=10$ нс. Какой путь пролетит эта частица до распада в лабораторной системе отсчета, где ее время жизни $\Delta t=20$ нс?
- **1.403.** В K-системе отсчета мюон, движущийся со скоростью v=0,990c, пролетел от места своего рождения до точки распада расстояние $l=3,0\,$ км. Определить:
 - а) собственное время жизни этого мюона;
- б) расстояние, которое пролетел мюон в K-системе отсчета с «его точки зрения».
- 1.404. Две частицы, двигавшиеся в лабораторной системе отсчета по одной прямой с одинаковой скоростью v=3c/4, попали в неподвижную мишень с промежутком времени $\Delta t=50$ нс. Найти собственное расстояние между частицами до попадания в мишень.
- 1.405. Стержень движется вдоль линейки с некоторой постоянной скоростью. Если зафиксировать положение обоих концов данного стержня одновременно в системе отсчета, связанной с линейкой, то разность отсчетов по линейке $\Delta x_1 = 4.0$ м. Если же положение обоих концов зафиксировать одновременно

в системе отсчета, связанной со стержнем, то разность отсчетов по этой же линейке $\Delta x_2 = 9.0$ м. Найти собственную длину стержня и его скорость относительно линейки.

- 1.406. Два стержня одинаковой собственной длины l_0 движутся навстречу друг другу параллельно общей горизонтальной оси. В системе отсчета, связанной с одним из стержней, промежуток времени между моментами совпадения левых и правых концов стержней оказался равным Δt . Какова скорость одного стержня относительно другого?
- 1.407. Две нестабильные частицы движутся в K-системе отсчета по некоторой прямой в одном направлении со скоростью v=0,990c. Расстояние между ними в этой системе отсчета l=120 м. В некоторый момент обе частицы распались одновременно в системе отсчета, связанной с ними. Какой промежуток времени между моментами распада обеих частиц наблюдали в K-системе? Какая частица распалась позже в K-системе?
- **1.408.** Стержень AB, ориентированный вдоль оси X K-системы отсчета, движется с постоянной скоростью v в положительном направлении оси X. Передним концом стержня является точка A, задним точка B. Найти:
- а) собственную длину стержня, если в момент t_A координата точки A равна x_A , а в момент t_B координата точки B равна x_B ;
- б) через какой промежуток времени надо зафиксировать координаты начала и конца стержня в K-системе, чтобы разность координат оказалась равной собственной длине стержня.
 - **1.409.** Стержень A'B' движется с постоянной скоростью v от-

Рис. 1.85

носительно стержня AB (рис. 1.85). Оба стержня имеют одинаковую собственную длину l_0 и на концах каждого из них установлены синхронизированные между собой часы: A с B и A' с B'. Пусть момент, когда часы B' поравнялись с часами A, взят за на-

чало отсчета времени в системах отсчета, связанных с каждым из стержней. Определить:

- а) показания часов B и B' в момент, когда они окажутся напротив друг друга;
 - б) то же для часов A и A'.
- **1.410.** Имеются две группы синхронизированных часов K и K', движущихся одна относительно другой со скоростью v, как

показано на рис. 1.86. Возьмем за начало отсчета времени момент, когда часы A' окажутся напротив часов A. Изобразить примерное расположение стрелок всех часов в этот момент с «точки зрения» K-часов; K'-часов.

Рис. 1.86

- 1.411. K'-система отсчета движется в положительном направлении оси X K-системы со скоростью V относительно последней. Пусть в момент совпадения начал координат O и O' показания часов обеих систем в этих точках равны нулю. Найти в K-системе скорость \dot{x} перемещения точки, в которой показания часов обеих систем отсчета будут все время одинаковы. Убедиться, что $\dot{x} < V$.
- **1.412.** В двух точках K-системы произошли события, разделенные промежутком времени Δt . Показать, что если эти события причинно связаны в K-системе (например, выстрел и попадание в мишень), то они причинно связаны и в любой другой инерциальной K'-системе отсчета.
- 1.413. На диаграмме пространство время (рис. 1.87) показаны три события A, B и C, которые произошли на оси X некоторой инерциальной системы отсчета. Найти:
- а) промежуток времени между событиями A и B в той системе отсчета, где оба события произошли в одной точке;

Рис. 1.87

- б) расстояние между точками, где произошли события A и C, в той системе отсчета, где они одновременны.
- **1.414.** В плоскости xy K-системы отсчета движется частица, проекции скорости которой равны v_x и v_y . Найти скорость v' этой частицы в K'-системе, которая перемещается со скоростью V относительно K-системы в положительном направлении ее оси X.
- **1.415.** Две частицы движутся навстречу друг другу со скоростями $v_1=0.50c$ и $v_2=0.75c$ по отношению к лабораторной системе отсчета. Найти:

- а) скорость, с которой уменьшается расстояние между частицами в лабораторной системе отсчета;
 - б) относительную скорость частиц.
- **1.416.** Два стержня одинаковой собственной длины l_0 движутся в продольном направлении навстречу друг другу параллельно общей оси с одной и той же скоростью v относительно лабораторной системы отсчета. Чему равна длина каждого стержня в системе отсчета, связанной с другим стержнем?
- **1.417.** Две релятивистские частицы движутся под прямым углом друг к другу в лабораторной системе отсчета, причем одна со скоростью v_1 , а другая со скоростью v_2 . Найти их относительную скорость.
- 1.418. Некоторая нестабильная частица движется со скоростью v' в K'-системе отсчета вдоль ее оси Y'. K'-система в свою очередь перемещается относительно K-системы со скоростью V в положительном направлении ее оси X. Оси X' и X обеих систем отсчета совпадают, оси Y' и Y параллельны друг другу. Найти путь, который частица пролетит в K-системе, если ее собственное время жизни равно Δt_0 .
- **1.419.** Частица движется в K-системе со скоростью v под углом ϑ к оси X. Найти соответствующий угол в K'-системе, перемещающейся со скоростью V относительно K-системы в положительном направлении ее оси X, если оси X и X' обеих систем совпадают.

- 1.420. Стержень AB ориентирован параллельно оси X' K'-системы отсчета и движется в этой системе со скоростью v' вдоль ее оси Y'. K'-система в свою очередь движется со скоростью V относительно K-системы, как показано на рис. 1.88. Найти угол ϑ между стержнем и осью X в K-системе.
- **1.421.** K'-система перемещается с постоянной скоростью V относительно K-системы. Найти ускорение a' частицы в K'-системе, если в K-системе она движется со скоростью v и ускорением a по прямой:
 - а) в направлении вектора V;
 - б) перпендикулярно вектору V.

- **1.422.** Стартовавшая с Земли воображаемая космическая ракета движется с ускорением a'=10g, одинаковым в каждой инерциальной системе, мгновенно сопутствующей ракете. Разгон продолжался по земному времени $\tau=1,0$ год. Найти, на сколько процентов отличается скорость ракеты от скорости света в конце разгона. Каков путь, пройденный ракетой к этому моменту?
- 1.423. Используя данные предыдущей задачи, определить время разгона ракеты τ_0 в системе отсчета, связанной с самой ракетой. Иметь в виду, что $\tau_0 = \int\limits_0^\tau \sqrt{1-(v/c)^2}\,\mathrm{d}t$, где τ время разгона в системе Земли.
- **1.424.** Во сколько раз релятивистская масса частицы, скорость которой отличается от скорости света на $\eta=0.010\%$, превышает ее массу покоя?
- 1.425. Плотность покоящегося тела равна ρ_0 . Найти скорость системы отсчета относительно данного тела, в которой его плотность будет на $\eta=25\%$ больше ρ_0 .
- **1.426.** Протон движется с импульсом p = 10,0 ГэВ/c, где c скорость света. На сколько процентов отличается скорость этого протона от скорости света?
- **1.427.** Найти скорость, при которой релятивистский импульс частицы в $\eta = 1,4$ раза превышает ее ньютоновский импульс.
- **1.428.** Какую работу надо совершить, чтобы увеличить скорость частицы с массой m от 0,60c до 0,80c? Сравнить полученный результат со значением, вычисленным по нерелятивистской формуле.
- **1.429.** При какой скорости кинетическая энергия частицы равна ее энергии покоя?
- 1.430. При каких значениях отношения кинетической энергии частицы к ее энергии покоя относительная погрешность при расчете ее скорости по нерелятивистской формуле не превышает $\eta=0.010$?
- 1.431. Найти зависимость импульса частицы с массой m от ее кинетической энергии. Вычислить импульс протона с кинетической энергией $500~\mathrm{MpB}$.
- **1.432.** Найти скорость частицы, кинетическая энергия которой $K=500~\mathrm{MpB}$ и импульс $p=865~\mathrm{MpB}/c$, где c скорость света.

- 1.433. Пучок релятивистских частиц с кинетической энергией K падает на поглощающую мишень. Сила тока в пучке равна I, заряд и масса каждой частицы равны e и m. Найти силу давления пучка на мишень и выделяющуюся в ней мощность.
- **1.434.** Сколько энергии (в расчете на единицу массы) необходимо затратить, чтобы сообщить первоначально покоившемуся космическому кораблю скорость v = 0.980c?
- **1.435.** Частица массы m в момент t=0 начинает двигаться под действием постоянной силы ${\bf F}$. Найти скорость частицы и пройденный ею путь в зависимости от времени t.
- **1.436.** Частица массы m движется вдоль оси X K-системы отсчета по закону $x = \sqrt{d^2 + c^2 t^2}$, где d некоторая постоянная, c скорость света, t время. Найти силу, действующую на частицу в этой системе отсчета.
 - 1.437. Исходя из уравнения (1.8е), найти:
- а) в каких случаях ускорение частицы совпадает по направлению с действующей на нее силой **F**;
- б) коэффициенты пропорциональности между силой ${\bf F}$ и ускорением ${\bf a}$, когда ${\bf F} \perp {\bf v}$ и ${\bf F} \parallel {\bf v}$, где ${\bf v}$ скорость частицы.
- 1.438. Релятивистская частица с импульсом p и полной энергией E движется вдоль оси X K-системы отсчета. Показать, что в K'-системе, движущейся с постоянной скоростью V относительно K-системы в положительном направлении ее оси X, импульс и полная энергия данной частицы определяются формулами ($\beta = V/c$)

$$p'_{x} = \frac{p_{x} - EV/c^{2}}{\sqrt{1-\beta^{2}}}, \qquad E' = \frac{E - p_{x}V}{\sqrt{1-\beta^{2}}}.$$

- 1.439. Энергия фотона в K-системе отсчета равна ε . Воспользовавшись формулами преобразования, приведенными в предыдущей задаче, найти энергию ε' этого фотона в K'-системе, перемещающейся со скоростью V относительно K-системы в направлении движения фотона. При каком значении V энергия $\varepsilon' = \varepsilon/2$?
- **1.440.** Показать, что величина $E^2 p^2c^2$ есть инвариант, т. е. имеет одно и то же значение во всех инерциальных системах отсчета. Каково значение этого инварианта?

- **1.441.** Две частицы, каждая массы m, летят навстречу друг другу с одинаковой скоростью v. Найти v, если масса образовавшейся при столкновении частицы равна M.
- **1.442.** Нейтрон с кинетической энергией $K = 2mc^2$, где m его масса, налетает на другой, покоящийся нейтрон. Найти в системе их центра масс:
 - а) суммарную кинетическую энергию $ilde{K}$ нейтронов;
 - б) импульс \tilde{p} каждого нейтрона.
- 1.443. Релятивистская частица массы m с кинетической энергией K налетает на покоящуюся частицу той же массы. Найти массу и скорость составной частицы, образовавшейся в результате соударения.
- 1.444. Какова должна быть кинетическая энергия протона, налетающего на другой, покоящийся протон, чтобы их суммарная кинетическая энергия в системе центра масс была такая же, как у двух протонов, движущихся навстречу друг другу с кинетическими энергиями K=25,0 ГэВ?
- **1.445.** Неподвижная частица массы m распадается на три частицы масс m_1, m_2, m_3 . Найти наибольшую полную энергию, которую может иметь, например, частица m_1 .
- **1.446.** Релятивистская ракета выбрасывает струю газа с нерелятивистской скоростью \mathbf{u} , постоянной относительно ракеты. Найти зависимость скорости v ракеты от ее массы m, если в начальный момент масса ракеты равна m_0 .

Электромагнетизм

2.1. Постоянное электрическое поле в вакууме

• Напряженность и потенциал поля точечного заряда q:

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^3} \mathbf{r}, \qquad \varphi = \frac{1}{4\pi\epsilon_0} \frac{q}{r}. \qquad (2.1a)$$

• Связь между напряженностью поля и потенциалом:

$$E_l = -\partial \varphi / \partial l$$
, $\mathbf{E} = -\nabla \varphi$. (2.16)

• Теорема Гаусса и циркуляция вектора Е:

$$\oint \mathbf{E} \ d\mathbf{S} = q / \varepsilon_0, \qquad \qquad \oint \mathbf{E} \ d\mathbf{r} = \mathbf{0}. \tag{2.1b}$$

• Потенциал и напряженность поля точечного диполя с электрическим моментом p:

$$\phi = \frac{1}{4\pi\epsilon_0} \frac{p\mathbf{r}}{r^3}, \qquad E = \frac{1}{4\pi\epsilon_0} \frac{p}{r^3} \sqrt{1 + 3\cos^2\theta}, \qquad (2.1r)$$

где ϑ — угол между векторами \mathbf{r} и \mathbf{p} .

ullet Энергия W диполя ${f p}$ во внешнем электрическом поле и момент сил ${f N}$, действующих на диполь:

$$W = -\mathbf{pE}, \qquad \mathbf{N} = [\mathbf{pE}].$$
 (2.1 π)

ullet Сила ${\bf F}$, действующая на диполь, и ее проекция F_x :

$$\mathbf{F} = p \frac{\partial \mathbf{E}}{\partial l}, \qquad F_x = \mathbf{p} \cdot \nabla E_x , \qquad (2.1e)$$

где $\partial \mathbf{E}/\partial l$ — производная вектора \mathbf{E} по направлению диполя.

- **2.1.** Найти отношение электрической и гравитационной сил взаимодействия между двумя электронами; двумя протонами. При каком значении удельного заряда q/m частицы эти силы будут равными?
- **2.2.** Два одинаковых небольших металлических шарика с зарядами q_1 и q_2 , находясь на расстоянии l=200 мм друг от друга, притягиваются с силой $F_0=36$ мН. После того, как шарики привели в соприкосновение и опять развели на то же рассстояние l, они стали отталкиваться с силой F=64 мН. Найти q_1 и q_2 .
- **2.3.** Два положительных заряда q_1 и q_2 находятся в точках с радиусами-векторами \mathbf{r}_1 и \mathbf{r}_2 . Найти отрицательный заряд q_3 и

радиус-вектор ${\bf r}_3$ точки, в которую его надо поместить, чтобы сила, действующая на каждый из этих трех зарядов, была равна нулю.

- **2.4.** Три небольших одинаково заряженных шарика массы m=9,0 г подвешены к одной точке на шелковых нитях длины l=250 мм. Найти заряд каждого шарика, если углы между разошедшимися нитями равны $2\alpha=60^{\circ}$.
- **2.5.** Два небольших одинаково заряженных шарика массы m=5,0 г подвешены к одной точке на шелковых нитях, образующих между собой малый угол ϑ , и находятся на одном уровне. Найти скорость утечки заряда $\mathrm{d}q/\mathrm{d}t$ с каждого шарика в момент, когда $\vartheta=5,0^\circ$, если скорость сближения шариков постоянна и равна v=0,55 мм/с.
- **2.6.** Три небольших шарика, каждый массы m=6.0 г и с зарядом q=1.0 мкКл, соединены шелковыми нитями, образуя равносторонний треугольник со стороной l=200 мм. Одну нить пережгли. Найти ускорение среднего шарика сразу после этого. Сил тяжести нет.
- **2.7.** Тонкое проволочное кольцо радиуса R=100 мм имеет электрический заряд q=50 мкКл. Каково будет приращение силы, растягивающей проволоку, если в центре кольца поместить точечный заряд $q_0=7,0$ мкКл?
- **2.8.** Положительный точечный заряд 50 мкКл находится на плоскости xy в точке с радиусом-вектором $\mathbf{r}_0 = 2\mathbf{i} + 3\mathbf{j}$, где \mathbf{i} и \mathbf{j} орты осей X и Y. Найти напряженность электрического поля и ее модуль в точке с радиусом-вектором $\mathbf{r} = 8\mathbf{i} 5\mathbf{j}$. Здесь r_0 и r даны в метрах.
- **2.9.** В вершинах квадрата с диагональю 2l = 100 мм находятся одинаковые по модулю (q = 2,5 мкКл) точечные заряды, знаки которых при обходе квадрата расположены в порядке +, +, -, -. Найти напряженность E электрического поля в точке, отстоящей на расстояние x = 50 мм от центра квадрата и расположенной симметрично относительно его вершин.
- **2.10.** Тонкий стержень AB длины l=100 см имеет заряд q=37 нКл, распределенный так, что его линейная плотность пропорциональна квадрату расстояния от конца A. Найти напряженность электрического поля в точке A.
- **2.11.** Тонкое полукольцо радиуса R=20 см заряжено равномерно зарядом $q=0,70\,$ нКл. Найти модуль напряженности электрического поля в центре кривизны этого полукольца.

- **2.12.** Кольцо радиуса R из тонкой проволоки имеет заряд q. Найти модуль напряженности электрического поля на оси кольца как функцию расстояния l до его центра. Исследовать E(l) при $l \gg R$. Определить максимальное значение напряженности и соответствующее расстояние l. Изобразить примерный график функции E(l).
- **2.13.** Полубесконечный круглый цилиндр радиуса R заряжен равномерно по поверхности так, что на единицу его длины приходится заряд λ . Найти напряженность электрического поля в центре основания цилиндра.
- **2.14.** Найти напряженность электрического поля в центре основания полусферы, заряженной равномерно с поверхностной плотностью $\sigma = 60~{\rm nK}\pi/{\rm m}^2$.
- **2.15.** Плоскость с круглым отверстием радиуса R равномерно заряжена с поверхностной плотностью σ . Найти напряженность E электрического поля на оси отверстия как функцию расстояния l до его центра.
- **2.16.** Система состоит из тонкого заряженного проволочного кольца радиуса R и очень длинной равномерно заряженной нити, расположенной по оси кольца так, что один из ее концов совпадает с центром кольца. Последнее имеет заряд q. На единицу длины нити приходится заряд λ . Найти силу взаимодействия кольца и нити.
- **2.17.** Тонкое непроводящее кольцо радиуса R заряжено с линейной плотностью $\lambda = \lambda_0 \cos \varphi$, где λ_0 постоянная, φ азимутальный угол. Найти модуль напряженности электрического поля:
 - а) в центре кольца;
- б) на оси кольца в зависимости от расстояния x до его центра. Исследовать полученное выражение при $x\gg R$.
- 2.18. Находящийся в вакууме тонкий прямой стержень длины 2a заряжен равномерно зарядом q. Найти модуль напряженности электрического поля как функцию расстояния r от центра стержня до точки прямой,
 - а) перпендикулярной стержню и проходящей через его центр;
 - б) совпадающей с осью стержня, если r > a.
 - Исследовать полученные выражения при $r\gg a$.
- **2.19.** Длинная прямая равномерно заряженная нить имеет заряд λ на единицу длины. Найти модуль и направление электрического поля в точке, которая отстоит от нити на расстояние

у и находится на перпендикуляре к нити, проходящем через один из ее концов.

2.20. Равномерно заряженная нить, на единицу длины которой приходится заряд λ, имеет конфигурации, показанные на рис. 2.1. Радиус закругления R значительно меньше длины нити. Воспользовавшись резульпредыдущей решения найти модуль напряженности электрического поля в точке O для конфигураций а и б.

- Рис. 2.1
- **2.21.** Сфера радиуса r заряжена с поверхностной плотностью $\sigma = ar$, где a — постоянный вектор, r — радиус-вектор точки сферы относительно ее центра. Найти напряженность электрического поля в центре сферы.
- 2.22. Поверхностная плотность заряда на сфере радиуса Rзависит от полярного угла θ как $\sigma = \sigma_0 \cos \theta$, где σ_0 — положительная постоянная. Показать, что такое распределение заряда можно представить как результат малого сдвига относительно друг друга двух равномерно заряженных шаров радиуса R, заряды которых одинаковы по модулю и противоположны по знаку. Воспользовавшись этим представлением, найти напряженность электрического поля внутри данной сферы.
- 2.23. Найти напряженность электрического поля в центре шара радиуса R, объемная плотность заряда которого $\rho = ar$, где a — постоянный вектор, r — радиус-вектор относительно центра шара.
- 2.24. Пространство между двумя плоскостями, отстоящими друг от друга на расстояние 2a, заполнено зарядом, объемная плотность которого зависит только от координаты x оси, перпендикулярной этим плоскостям, как $\rho = \alpha x$, где α — постоянная. Начало координат (x = 0) находится посередине между этими плоскостями. Найти зависимость от х напряженности электрического поля, точнее $E_r(x)$ и E(x). Изобразить их примерные графики.
- 2.25. Две длинные параллельные нити равномерно заряжены, каждая с линейной плотностью $\lambda = 0.50$ мкКл/м. Расстояние между нитями $l=45~{\rm cm}$. Найти максимальное значение напряженности электрического поля в плоскости симметрии этой системы.

- **2.26.** Две скрещивающиеся взаимно перпендикулярные нити бесконечной длины заряжены равномерно с линейной плотностью λ . Найти силу их взаимодействия.
- **2.27.** Бесконечно длинная цилиндрическая поверхность круглого сечения заряжена равномерно по длине с поверхностной плотностью $\sigma = \sigma_0 \cos \phi$, где ϕ полярный угол цилиндрической системы координат, ось Z которой совпадает с осью данной поверхности. Найти модуль и направление напряженности электрического поля на оси Z.
- **2.28.** Грани полого куба заряжены равномерно с поверхностной плотностью σ . Найти силу, которая действует на каждую грань со стороны:
 - а) точечного заряда q, если его поместить в центр куба;
 - б) остальных граней, если ребро куба равно l.
- **2.29.** Имеется аксиально-симметричное электрическое поле, напряженность которого зависит от расстояния r до его оси как $\mathbf{E} = a\mathbf{r}/r^2$, где a постоянная. Найти заряд внутри сферы радиуса R с центром на оси этого поля.
- **2.30.** Напряженность электрического поля $\mathbf{E} = ar\mathbf{r}$, где a постоянная, r расстояние от центра поля. Найти плотность зарядов $\rho(r)$, создающих это поле.
- **2.31.** Шар радиуса R имеет положительный заряд, объемная плотность которого зависит только от расстояния r до его центра как $\rho = \rho_0(1-r/R)$, где ρ_0 постоянная. Пренебрегая влиянием вещества шара, найти:
- а) модуль напряженности электрического поля внутри и вне шара как функцию r;
- б) максимальное значение модуля напряженности $E_{\rm makc}$ и соответствующее ему значение r_m .
- **2.32.** Система состоит из шара радиуса R, заряженого сферически-симметрично, и окружающей среды, заполненной зарядом с объемной плотностью $\rho = \alpha/r$, где α постоянная, r расстояние от центра шара. Пренебрегая влиянием вещества, найти заряд шара, при котором модуль напряженности электрического поля вне шара не зависит от r. Чему равна эта напряженность?
- 2.33. Внутри шара, заряженного равномерно с объемной плотностью ρ , имеется сферическая полость. Центр полости смещен относительно центра шара на расстояние a. Пренебрегая влиянием вещества шара, найти напряженность E поля внутри полости.

2.34. Найти напряженность E электрического поля в области пересечения двух шаров, равномерно заполненных разноименными по знаку зарядами с объемной плотностью ρ и $-\rho$, если расстояние между центрами шаров равно **a** (рис. 2.2).

Рис. 2.2

- 2.35. Три одинаковых шарика, расположенные в вершинах равностороннего треугольника со стороной a, соединены друг с другом нитями. Заряд и масса каждого шарика равны q и m. Одну из нитей пережгли. Найти максимальную скорость среднего шарика. Сил тяжести нет.
- **2.36.** Имеются два тонких проволочных кольца радиуса R каждое, оси которых совпадают. Заряды колец равны q и -q. Найти разность потенциалов между центрами колец, отстоящими друг от друга на расстояние l, если R=30 см, l=52 см и q=0,40 мкКл.
- **2.37.** Бесконечно длинная прямая нить заряжена равномерно с линейной плотностью $\lambda = 0.40$ мкКл/м. Вычислить разность потенциалов точек 1 и 2, если точка 2 находится дальше от нити, чем точка 1, в $\eta = 2.0$ раза.
- **2.38.** Тонкое кольцо радиуса R=25 см имеет заряд q=5,0 мкКл, неравномерно распределенный по кольцу. Найти работу электрических сил при перемещении точечного заряда q'=1,0 мкКл из центра кольца по произвольному пути в точку, находящуюся на оси кольца на расстоянии l=50 см от его центра.
- **2.39.** Круглая тонкая пластинка радиуса R равномерно заряжена с поверхностной плотностью σ . Найти потенциал и модуль напряженности электрического поля на оси пластинки как функцию расстояния l от ее центра. Рассмотреть также случаи $l \to 0$ и $l \gg R$.
- 2.40. Коническая поверхность с основанием радиуса R равномерно заряжена с поверхностной плотностью σ . Найти потенциал в вершине конуса.
- **2.41.** Найти потенциал на краю тонкого диска радиуса R=20 см, по которому равномерно распределен заряд с поверхностной плотностью $\sigma=0.25$ мк $\mathrm{K}\pi/\mathrm{M}^2$.
- **2.42.** Заряд q распределен равномерно по объему шара радиуса R. Пренебрегая влиянием вещества шара, найти потенциал:
 - а) в центре шара;
 - б) внутри шара как функцию расстояния r от его центра.

- 2.43. Найти напряженность электрического поля, потенциал которого имеет вид $\phi = ar$, где a — постоянный вектор, r — радиус-вектор точки поля.
- 2.44. Определить напряженность электрического поля, потенциал которого зависит от координат x, y по закону:
- a) $\varphi = a(x^2 y^2)$; 6) $\varphi = axy$, где a — постоянная. Изобразить примерный вид этих полей с помощью линий вектора E (в плоскости xy).
- электрического Потенциал поля имеет $\phi = \alpha (xy - z^2)$, где α — постоянная. Найти проекцию напряженности электрического поля в точке M $\{2, 1, -3\}$ на направление вектора $\mathbf{a} = \mathbf{i} + 3\mathbf{k}$.

Рис. 2.3

2.46. Показать, что потенциал поля диполя с электрическим моментом р (рис. 2.3) может быть представлен как $\varphi = \mathbf{pr}/4\pi\epsilon_0 r^3$, где \mathbf{r} — радиус-вектор. Найти с помощью этого выражения модуль напряженности электрического поля диполя как функцию r и 9.

2.47. Точечный электрический диполь с моментом р находится во внешнем однородном электрическом поле, напряженность которого равна E_0 , причем $p \uparrow \uparrow E_0$. В этом случае одна из эквипотенциальных поверхностей, охватывающих диполь, является сферой. Найти ее радиус.

2.48. Две параллельные тонкие нити равномерно заряжены с линейной плотностью λ и $-\lambda$. Расстояние между нитями l. Найти потенциал и модуль напряженности электрического поля на расстоянии $r \gg l$ под углом ϑ к вектору l (рис. 2.4).

- Рис. 2.4 2.49. Найти электрический момент р тонкого стержня длины l, линейная плотность заряда которого зависит от расстояния x до одного из его концов как $\lambda = a(2x - l)$, где a — положительная постоянная.
- **2.50.** Система состоит из заряда q>0, равномерно распределенного по полуокружности радиуса a, в центре которой находится точечный заряд -q (рис. 2.5). Найти:

Рис. 2.5

- а) электрический дипольный момент этой системы:
- б) модуль напряженности электрического поля на оси X системы на расстоянии $r \gg a$ от нее.

- **2.51.** Два коаксиальных кольца радиуса R из тонкой проволоки находятся на малом расстоянии l друг от друга ($l \ll R$) и имеют заряды q и -q. Найти потенциал и напряженность электрического поля на оси системы как функции координаты x (рис. 2.6). Изобразить примерные графики этих зависимостей. Исследовать эти функции при $|x| \gg R$.
- **2.52.** Какую работу против сил электрического поля надо совершить, чтобы перенести диполь с электрическим моментом p из положения 1, где напряженность поля равна E_1 , в положение 2 с напряженностью E_2 (рис. 2.7)?

- **2.53.** Диполь с электрическим моментом **р** находится на расстоянии r от длинной прямой нити, заряженной равномерно с линейной плотностью λ . Найти силу **F**, действующую на ди
 - а) вдоль нити;
 - б) по радиусу-вектору г;

поль, если вектор р ориентирован:

- в) перпендикулярно нити и радиусу-вектору г.
- **2.54.** Найти силу взаимодействия двух молекул воды, отстоящих друг от друга на l=10 нм, если их электрические моменты расположены вдоль одной и той же прямой. Момент каждой молекулы $p=0.62\cdot 10^{-29}~{\rm Kn\cdot m}$.
 - 2.55. Найти потенциал следующих электрических полей:
 - a) $\mathbf{E} = a(y\mathbf{i} + x\mathbf{j});$
 - б) $E = 2axyi + a(x^2 y^2)j;$
 - $\mathbf{B}) \mathbf{E} = ay\mathbf{i} + (ax + bz)\mathbf{j} + by\mathbf{k}.$
 - Здесь a и b постоянные, i, j, k орты осей X, Y, Z.
- **2.56.** Потенциал поля в некоторой области пространства зависит только от координаты x как $\varphi = -ax^3 + b$, где a и b некоторые постоянные. Найти распределение объемного заряда $\rho(x)$.
- **2.57.** Между двумя большими параллельными пластинами, отстоящими друг от друга на расстояние d, находится равномерно распределенный объемный заряд. Разность потенциалов пластин равна $\Delta \varphi$. При каком значении объемной плотности φ заряда напряженность поля вблизи одной из пластин будет равна нулю? Какова будет при этом напряженность поля у другой пластины?

2.58. Потенциал поля внутри заряженного шара зависит только от расстояния до его центра как $\varphi = ar^2 + b$, где a и b — постоянные. Найти распределение объемного заряда $\rho(r)$ внутри шара.

2.2. Проводники и диэлектрики в электрическом поле

• Напряженность электрического поля у поверхности проводника в вакууме:

$$E_n = \sigma/\varepsilon_0. \tag{2.2a}$$

• Поток поляризованности Р через замкнутую поверхность:

$$\oint \mathbf{P} \ d\mathbf{S} = -q', \tag{2.26}$$

где q' — алгебраическая сумма связанных зарядов внутри этой поверхности.

• Вектор D (электрическое смещение) и теорема Гаусса для него:

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}, \qquad \oint \mathbf{D} \, d\mathbf{S} = q, \qquad (2.2B)$$

где q — алгебраическая сумма сторонних зарядов внутри замкнутой поверхности.

• Условия на границе раздела двух диэлектриков:

$$P_{2n} - P_{1n} = -\sigma', \qquad D_{2n} - D_{1n} = \sigma, \qquad E_{2\tau} = E_{1\tau},$$
 (2.2r)

где σ' и σ — поверхностные плотности связанных и сторонних зарядов, а орт нормали \mathbf{n} направлен из среды 1 в среду 2.

• Для изотропных диэлектриков:

$$P = u ε₀ $E,$
 $D = εε0 $$
 $E,$
 $ε = 1 + \varkappa.$
(2.2 $π$)$$$

• В случае изотропного однородного диэлектрика, заполняющего все пространство между эквипотенциальными поверхностями:

$$\mathbf{E} = \mathbf{E}_0/\epsilon. \tag{2.2e}$$

- **2.59.** Небольшой шарик висит над горизонтальной проводящей плоскостью на изолирующей упругой нити жесткости и. После того, как шарик зарядили, он опустился на x см, и его расстояние от проводящей плоскости стало равным l. Найти заряд шарика.
- 2.60. Электрон вылетел по нормали с плоской поверхности проводника в вакуум, где создано однородное ускоряющее электрическое поле с напряженностью $E=100~\mathrm{B/m}$. Имея в виду силы электрического изображения, найти, на каком рас-

стоянии l от поверхности проводника скорость электрона минимальна.

- **2.61.** Точечный заряд q = 100 мкКл находится на расстоянии l = 1,5 см от проводящей плоскости. Какую работу надо совершить против электрических сил, чтобы медленно удалить этот заряд на очень большое расстояние от плоскости?
- **2.62.** Два точечных заряда, q и -q, расположены на расстоянии l друг от друга и на одинаковом расстоянии l/2 от проводящей плоскости с одной стороны от нее. Найти модуль электрической силы, действующей на каждый заряд.
- **2.63.** Три разноименных точечных заряда расположены в вершинах квадрата с диагональю l=50 см, как показано на рис. 2.8, где точка O центр квадрата, AOB прямой угол, образованный двумя проводящими полуплоскостями. Найти силу, действующую на заряд -q, если q=11 мкКл.

Рис. 2.8

- **2.64.** Точечный заряд q=2,00 мкКл находится между двумя проводящими взаимно перпендикулярными полуплоскостями. Расстояние от заряда до каждой полуплоскости l=5,0 см. Найти модуль силы, действующей на заряд.
- **2.65.** Точечный диполь с электрическим моментом \mathbf{p} находится на расстоянии l от проводящей плоскости. Найти силу, действующую на диполь, если вектор \mathbf{p} перпендикулярен плоскости.
- 2.66. Точечный заяряд q находится на расстоянии l от проводящей плоскости. Определить поверхностную плотность зарядов, индуцированных на плоскости, как функцию расстояния r от основания перпендикуляра, опущенного из заряда на плоскость.
- **2.67.** Прямая бесконечно длинная нить имеет заряд λ на единицу длины и расположена параллельно проводящей плоскости на расстоянии l от нее. Найти:
 - а) модуль силы, действующей на единицу длины нити;
- б) распределение поверхностной плотности заряда $\sigma(x)$ на плоскости (здесь x расстояние от прямой на плоскости, где σ максимально).
- **2.68.** Очень длинная нить расположена перпендикулярно проводящей плоскости и не доходит до нее на расстояние l. Нить заряжена равномерно с линейной плотностью λ . Пусть

точка O — след нити на плоскости. Найти поверхностную плотность заряда на плоскости:

- а) в точке O;
- б) в зависимости от расстояния r до точки O.
- **2.69.** Тонкое проволочное кольцо радиуса R=7,5 см имеет заряд q=5,2 мкКл. Кольцо расположено параллельно проводящей плоскости на расстоянии l=6,0 см от нее. Найти поверхностную плотность заряда в точке плоскости, расположенной симметрично относительно кольца.
- **2.70.** Найти потенциал незаряженной проводящей сферы, вне которой на расстоянии l=30 см от ее центра находится точечный заряд q=0.50 мкКл.
- **2.71.** Заряд q=2,5 нКл распределен неравномерно по тонкому кольцу радиуса R=7,5 см. На расстоянии l=100 мм от центра кольца на его оси расположен центр проводящей незаряженной сферы. Найти ее потенциал.
- **2.72.** Точечный заряд q=3,4 нКл находится на расстоянии r=2,5 см от центра O незаряженного сферического слоя проводника, радиусы которого $R_1=5,0$ см и $R_2=8,0$ см. Найти потенциал в точке O.
- **2.73.** Система состоит из двух концентрических проводящих сфер. На внутренней сфере радиуса a находится положительный заряд q_1 . Какой заряд q_2 следует поместить на внешнюю сферу радиуса b, чтобы потенциал внутренней сферы стал $\phi = 0$? Как будет зависеть при этом ϕ от расстояния r до центра системы? Изобразить примерный график $\phi(r)$.
 - 2.74. Четыре большие металлические пластины расположе-

Рис. 2.9

ны на малом расстоянии d друг от друга (рис. 2.9). Внешние пластины соединены проводником, а на внутренние пластины подана разность потенциалов $\Delta \varphi$. Найти:

а) напряженность электрического поля

между пластинами;

- б) суммарный заряд на единицу площади каждой пластины.
- 2.75. Между пластинами накоротко замкнутого плоского конденсатора находится металлическая пластина с зарядом q (рис. 2.10). Пластину переместили на расстояние l. Какой заряд Δq прошел при этом по закорачивающему проводнику?

Расстояние между пластинами конденсатора d.

- **2.76.** Две проводящие плоскости 1 и 2 расположены на расстоянии l друг от друга. Между ними на расстоянии x от плоскости 1 находится точечный заряд q. Найти заряды, наведенные на каждой из плоскостей.
- **2.77.** Найти электрическую силу, которую испытывает заряд, приходящийся на единицу поверхности произвольного проводника, в точке, где $\sigma = 46~\rm mkKn/m^2$.
- 2.78. Металлический шарик радиуса R=1,5 см имеет заряд q=10 мкКл. Найти модуль результирующей силы, которая действует на заряд, расположенный на одной половине шарика.
- **2.79.** Незаряженный проводящий шар радиуса R поместили во внешнее однородное электрическое поле, в результате чего на поверхности шара появился индуцированный заряд с поверхностной плотностью $\sigma = \sigma_0 \cos \vartheta$, где σ_0 постоянная, ϑ полярный угол. Найти модуль результирующей электрической силы, которая действует на весь индуцированный заряд одного знака.
- **2.80.** Найти энергию упругого диполя с поляризованностью β ($\mathbf{p} = \beta \epsilon_0 \mathbf{E}$) во внешнем электрическом поле с напряженностью E.
- **2.81.** Неполярная молекула с поляризуемостью β находится на большом расстоянии l от полярной молекулы с электрическим моментом \mathbf{p} . Найти модуль силы взаимодействия этих молекул, если вектор \mathbf{p} ориентирован вдоль прямой, проходящей через обе молекулы.
- **2.82.** На оси тонкого равномерно заряженного кольца радиуса R находится неполярная молекула. На каком расстоянии x от центра кольца модуль силы \mathbf{F} , действующей на данную молекулу:
 - а) равен нулю; б) имет максимальное значение? Изобразить примерный график зависимости $F_{x}(x)$.
- **2.83.** Точечный сторонний заряд q находится в центре шара из однородного диэлектрика с проницаемостью ϵ . Найти поляризованность \mathbf{P} как функцию радиуса-вектора \mathbf{r} относительно центра шара, а также связанный заряд q' внутри сферы, радиус которой меньше радиуса шара.
- **2.84.** Точечный сторонний заряд q находится в центре диэлектрического шара радиуса a с проницаемостью ε_1 . Шар окружен безграничным диэлектриком с проницаемостью ε_2 . Найти поверхностную плотность связанных зарядов на границе раздела этих диэлектриков.

- **2.85.** Показать, что на границе однородного диэлектрика с проводником поверхностная плотность связанных зарядов $\sigma' = -\sigma(\epsilon 1)/\epsilon$, где ϵ диэлектрическая проницаемость, σ поверхностная плотность зарядов на проводнике.
- **2.86.** Проводник произвольной формы, имеющий заряд q=2,5 мкКл, окружен слоем однородного диэлектрика с проницаемостью $\varepsilon=5,0$. Найти суммарные поверхностные связанные заряды на внутренней и наружной поверхностях диэлектрика.
- **2.87.** В некоторой точке A внутри однородного диэлектрика с диэлектрической проницемостью $\epsilon=2,5$ плотность стороннего заряда $\rho=50$ мКл/м 3 . Найти в этой точке плотность связанных зарядов.
- **2.88.** Однородный диэлектрик имеет вид сферического слоя радиусов a и b, причем a < b. Изобразить примерные графики модуля напряженности электрического поля E и потенциала ϕ как функций расстояния r от центра системы, если диэлектрик имеет положительный сторонний заряд, распределенный равномерно:
 - а) по внутренней поверхности слоя; б) по объему слоя.

Рис. 2.11

- 2.89. Вблизи точки A (рис. 2.11) границы раздела стекло вакуум напряженность электрического поля в вакууме $E_0 = 10,0$ В/м, причем угол между вектором E_0 и нормалью \mathbf{n} к границе раздела $\alpha_0 = 30^\circ$. Найти напряженность E поля в стекле вблизи точки A, угол α между векторами \mathbf{E} и \mathbf{n} , а также поверхностную плотность связанных зарядов в точке A.
- **2.90.** Диэлектрик с проницаемостью є граничит с вакуумом. На его поверхности имеются сторонние заряды с плотностью σ . У поверхности диэлектрика в вакууме напряженность электрического поля равна E, причем вектор \mathbf{E} составляет такой угол ϑ с нормалью к поверхности раздела, что линии вектора \mathbf{E} не терпят излома при переходе границы раздела. Найти угол ϑ . Каков должен быть знак σ ?
- **2.91.** У плоской поверхности однородного диэлектрика с проницаемостью ε напряженность электрического поля в вакууме равна E_0 , причем вектор \mathbf{E}_0 составляет угол ϑ с нормалью к

поверхности диэлектрика (рис. 2.12). Считая поле внутри и вне диэлектрика однородным, найти:

- а) поток вектора E через сферу радиуса R с центром на поверхности дизлектрика;
- б) циркуляцию вектора ${\bf D}$ по контуру ${\bf \Gamma}$ длины l (см. рис. 2.12), плоскость которого перпендикулярна поверхности диэлектрика и параллельна вектору ${\bf E}_0$.

Рис. 2.12

- **2.92.** Бесконечно большая пластина из однородного диэлектрика с проницаемостью ε заряжена равномерно сторонним зарядом с объемной плотностью ρ . Толщина пластины 2d. Найти:
- а) модуль напряженности электрического поля и потенциал как функции расстояния l от середины пластины (потенциал в середине пластины $\phi = 0$); взяв ось X перпендикулярно пластине, изобразить примерные графики зависимостей проекции $E_r(x)$ и потенциала $\phi(x)$;
 - б) поверхностную и объемную плотности связанного заряда.
- **2.93.** Сторонние заряды равномерно распределены с объемной плотностью $\rho > 0$ по шару радиуса R из однородного изотропного диэлектрика с проницаемостью ϵ . Найти:
- а) модуль напряженности электрического поля как функцию расстояния r от центра шара; изобразить примерные графики зависимостей E(r) и $\varphi(r)$;
 - б) объемную и поверхностную плотности связанных зарядов.
- **2.94.** Круглый диэлектрический диск радиуса R и толщины d поляризован cmamuчecku так, что поляризованность, равная P, всюду одинакова и вектор P лежит в плоскости диска. Найти напряженность E электрического поля в центре диска, если $d \ll R$.
- **2.95.** При некоторых условиях поляризованность безграничной незаряженной пластины из диэлектрика имеет вид $\mathbf{P} = \mathbf{P}_0(1-x^2/d^2)$, где \mathbf{P}_0 вектор, перпендикулярный пластине, x расстояние от середины пластины, d ее полутолщина. Найти напряженность электрического поля внутри пластины и разность потенциалов между ее поверхностями.
- **2.96.** Первоначально пространство между обкладками плоского конденсатора заполнено воздухом и напряженность электрического поля в зазоре равна E_0 . Затем половину зазора, как показано на рис. 2.13, заполнили однородным диэлектриком с

проницаемостью ε . Найти модули векторов **E** и **D** в обеих частях зазора (1 и 2), если при введении диэлектрика:

- а) напряжение между обкладками не менялось;
- б) заряды на обкладках оставались неизменными.
- **2.97.** Решить предыдущую задачу с тем отличием, что диэлектриком заполнили половину зазора, как показано на рис. 2.14.
- 2.98. Половина пространства между обкладками сферического конденсатора заполнена (рис. 2.15) однородным диэлектриком с проницаемостью ε . Заряд конденсатора q. Найти модуль напряженности электрического поля между обкладками как функцию расстояния r от центра конденсатора.
- **2.99.** Внутри шара из однородного диэлектрика с проницаемостью $\varepsilon = 5,00$ создано однородное электрическое поле напряженности E = 100 В/м. Радиус шара R = 3,0 см. Найти максимальную поверхностную плотность связанных зарядов и полный связанный заряд одного знака.
- **2.100.** Точечный заряд q находится в вакууме на расстоянии l от плоской поверхности однородного диэлектрика, заполняющего все полупространство. Проницаемость диэлектрика ϵ . Найти:
- а) поверхностную плотность связанных зарядов как функцию расстояния r от точечного заряда q;
 - б) суммарный заряд на поверхности диэлектрика.
- 2.101. Воспользовавшись условием и решением предыдущей задачи, найти модуль силы, действующей на заряд q со стороны связанных зарядов на поверхности диэлектрика.
- **2.102.** Точечный заряд q находится на плоскости, отделяющей вакуум от безграничного однородного изотропного диэлектрика с проницаемостью ε . Найти модули векторов **D** и **E** и потенциал ϕ как функции расстояния r от заряда q.
- **2.103.** Небольшой проводящий шарик, имеющий заряд q, находится в однородном изотропном диэлектрике с проницаемостью ε на расстоянии l от безграничной плоскости, отделяю-

щей диэлектрик от вакуума. Найти поверхностную плотность связанных зарядов на границе диэлектрик — вакуум как функцию расстояния r от шарика. Исследовать полученный результат при $l \to 0$.

- 2.104. Полупространство, заполненное однородным изотропным диэлектриком с проницаемостью є, ограничено проводящей плоскостью. На расстоянии l от этой плоскости в диэлектрике находится небольшой металлический шарик, имеющий заряд q. Найти поверхностную плотность связанных зарядов на границе с проводящей плоскостью как функцию расстояния rот шарика.
- **2.105.** Пластинка толщины h из однородного cmamuчeckuполяризованного диэлектрика находится внутри плоского конденсатора, обкладки которого соеди-

нены между собой проводником. Поляризованность диэлектрика равна Р (рис. 2.16). Расстояние между обкладками конденсатора d. Найти векторы Е и D внутри и вне пластины.

- Рис. 2.16
- 2.106. Длинный диэлектрический цилиндр круглого сечения поляризован так, что вектор $P = \alpha r$, где α — положительная постоянная, г — расстояние от оси. Найти объемную плотность ρ' связанных зарядов как функцию расстояния r от оси.
- 2.107. Диэлектрический шар поляризован однородно и статически. Его поляризованность равна Р. Имея в виду, что так поляризованный шар можно представить как результат малого сдвига всех положительных зарядов диэлектрика относительно всех отрицательных зарядов:
 - а) найти напряженность Е поля внутри шара;
- б) показать, что поле вне шара является полем диполя и потенциал поля $\varphi = \mathbf{p_0 r}/4\pi\varepsilon_0 r^3$, где $\mathbf{p_0}$ — электрический момент шара, r — расстояние от его центра.
- **2.108.** В однородное электрическое поле ${\bf E}_0$ поместили однородный диэлектрический шар. При этих условиях диэлектрик поляризуется однородно. Найти напряженность Е поля внутри шара и поляризованность Р диэлектрика, проницаемость которого є. Воспользоваться результатом предыдущей задачи.
- 2.109. Два одинаковых небольших одноименно заряженных шарика подвешены на изолирующих нитях равной длины к одной точке. При заполнении окружающей среды керосином угол

расхождения нитей не изменился. Найти плотность материала шариков.

2.110. На расстоянии r от точечного заряда q расположен тонкий диск из диэлектрика с проницаемостью ε . Объем диска V, его ось проходит через заряд q. Считая, что радиус диска значительно меньше r, оценить силу, действующую на диск.

2.3. Электроемкость. Энергия электрического поля

• Емкость плоского конденсатора:

$$C = \varepsilon \varepsilon_0 S/d. \tag{2.3a}$$

• Энергия взаимодействия системы точечных зарядов:

$$W = \frac{1}{2} \sum q_i \, \varphi_i \,. \tag{2.36}$$

• Полная электрическая энергия системы с непрерывным распределением заряда:

$$W = \frac{1}{2} \int \varphi \rho \, dV. \qquad (2.3B)$$

• Полная электрическая энергия двух заряженных тел:

$$W = W_1 + W_2 + W_{12}, (2.3r)$$

где W_1 и W_2 — собственные энергии тел, W_{12} — энергия взаимодействия.

• Энергия заряженного конденсатора:

$$W = \frac{qU}{2} = \frac{q^2}{2C} = \frac{CU^2}{2}.$$
 (2.3д)

• Плотность энергии электрического поля:

$$w = \frac{ED}{2} = \frac{\varepsilon \varepsilon_0 E^2}{2}.$$
 (2.3e)

- **2.111.** Найти емкость шарового проводника радиуса $R_1 = 100$ мм, окруженного прилегающим к нему концентрическим слоем диэлектрика проницаемости $\varepsilon = 6,0$ и наружного радиуса $R_2 = 200$ мм.
- **2.112.** К напряжению U = 100 В подключили последовательно два одинаковых конденсатора, каждый емкости C = 40 пФ. Затем один из них заполнили диэлектриком проницаемости $\varepsilon = 3,0$. Во сколько раз уменьшилась напряженность электрического поля в этом конденсаторе? Какой заряд пройдет в цепи?

- **2.113.** Пространство между обкладками плоского конденсатора заполнено последовательно двумя диэлектрическими слоями 1 и 2 толщины d_1 и d_2 и проницаемости ε_1 и ε_2 . Площадь каждой обкладки равна S. Найти:
 - а) емкость конденсатора;
- б) плотность σ' связанных зарядов на границе раздела слоев, если напряжение на конденсаторе равно U и электрическое поле направлено от слоя 1 к слою 2.
- **2.114.** Зазор между обкладками плоского конденсатора заполнен диэлектриком, проницаемость которого меняется в перпендикулярном обкладкам направлении растет линейно от ε_1 до ε_2 . Площадь каждой обкладки S, расстояние между ними l. Найти:
 - а) емкость конденсатора;
- б) объемную плотность связанных зарядов как функцию ϵ , если заряд конденсатора q и поле ${\bf E}$ в нем направлено в сторону возрастания ϵ .
- **2.115.** Найти емкость сферического конденсатора, радиусы обкладок которого a и b, причем a < b, если пространство между обкладками заполнено диэлектриком:
 - а) проницаемости є;
- б) проницаемость которого зависит от расстояния r до центра конденсатора как $\varepsilon = \alpha/r$, где α постоянная.
- **2.116.** То же, что и в предыдущей задаче, но конденсатор цилиндрический длины l и в пункте б) r расстояние до оси системы. Краевыми эффектами пренебречь.
- **2.117.** Найти емкость сферического конденсатора, радиусы внутренней и внешней обкладок которого равны a и b, если пространство между обкладками заполнено наполовину (см. рис. 2.15) однородным диэлектриком проницаемости ε .
- **2.118.** Два длинных прямых провода одинакового радиуса сечения a расположены в воздухе параллельно друг другу. Расстояние между их осями равно b. Найти взаимную емкость проводов C_1 на единицу их длины при условии $a \ll b$. Вычислить C_1 , если a=1,00 мм и b=50 мм.
- **2.119.** Длинный прямой провод расположен паралелльно проводящей плоскости. Радиус сечения провода a, расстояние между осью провода и проводящей плоскостью b. Найти взаимную емкость этой системы на единицу длины провода при условии $a \ll b$.

- **2.120.** Найти взаимную емкость системы из двух одинаковых металлических шариков радиуса a, растояние между центрами которых b, причем $a \ll b$. Система находится в однородном диэлектрике проницаемости ε .
- **2.121.** Определить взаимную емкость системы, которая состоит из металлического шарика радиуса a и проводящей плоскости, отстоящей от центра шарика на расстояние l, при условии $a \ll l$.
- 2.122. Найти емкость системы одинаковых конденсаторов между точками A и B, которая показана:
 - а) на рис. 2.17;
 - б) на рис. 2.18.

Рис. 2.17

Рис. 2.18

2.123. Четыре одинаковые металлические пластины расположены в воздухе на расстоянии d=1,00 мм друг от друга. Площадь каждой пластины S=220 см². Найти емкость системы между точками A и B, если пластины соединены так, как показано:

- а) на рис. 2.19; б) на рис. 2.20.
- **2.124.** Конденсатор емкости $C_1=1,0$ мкФ выдерживает напряжение не более $U_1=6,0$ кВ, а конденсатор емкости $C_2=2,0$ мкФ не более $U_2=4,0$ кВ. Какое напряжение может выдержать система из этих двух конденсаторов при последова-

тельном соединении?

2.125. В схеме (рис. 2.21) найти разность потенциалов между точками A и B, если ЭДС $\mathscr{E}=110$ В и отношение емкостей $C_2/C_1=\eta=2.0$.

Рис. 2.21

2.126. Найти емкость бескончной цепи, которая образована повторением одного и того же звена из двух одинаковых конденсаторов, каждый емкости C (рис. 2.22).

2.127. В некоторой цепи имеется участок AB (рис. 2.23). ЭДС $\mathscr{E} = 10$ В, $C_1 = 1,0$ мк Φ , $C_2 = 2,0$ мк Φ и разность потенциалов $\phi_A - \phi_B =$ 5,0 В. Найти напряжение на каждом конденсаторе.

Рис. 2.23

- 2.128. В схеме (рис. 2.24) найти направление электрического поля в конденсаторах и напряжения на них, если $\mathscr{E}_1=10~\mathrm{B},\,\mathscr{E}_2=15~\mathrm{B},\,C_1=4,0$ мк Φ и $C_2=6,0$ мк Φ .
- **2.129.** Найти разность потенциалов $\phi_A \phi_B$ между точками Aи B системы, показанной:
 - а) на рис. 2.25; б) на рис. 2.26.

- **2.130.** Конденсатор емкости $C_1 = 1,0$ мк Φ , заряженный до напряжения U = 110 B, подключили параллельно к концам системы из двух последовательно соединенных конденсаторов, емкости которых $C_2=2.0\,$ мк Φ и $C_3=3.0\,$ мк Φ . Какой заряд протечет при этом по соединительным проводам?
- 2.131. Какие заряды протекут после замыкания ключа K в схеме (рис. 2.27) через сечения 1 и 2 в направлениях, указанных стрелками?
- **2.132.** В схеме (рис. 2.28) $\mathscr{E} = 60$ В, $C_1 = 2,0$ мкФ и $C_2 = 3,0$ мкФ. Найти заряды, которые протекут после замыкания ключа K через сечения 1 и 2 в направлениях, указанных стрелками.

Рис. 2.27

- 2.133. Найти емкость схемы, показанной на рис. 2.29, между точками A и B.
- 2.134. Три электрона, находившихся на расстоянии a=10,0 мм друг от друга, начали симметрично разлетаться под действием взаимного отталкивания. Найти их максимальные скорости.

- $q \leftarrow --- \leftarrow q$ марную энергию взаимодействия точечных зарядов, расположенных в вершинах квадрата со стороной a в системах, которые показаны на рис. 2.30.
- 2.136. Тонкий стержень длины l расположен по оси тонкого кольца радиуса R так, что один его конец совпадает с центром O кольца. Кольцо и стержень имеют заряды q_0 и q, причем линейная плотность заряда на стержне изменяется вдоль него линейно, начиная с нуля в точке O. Найти электрическую энергию взаимодействия кольца со стержнем.
- ${f 2.137.}$ Точечный заряд q находится на расстоянии l от проводящей плоскости. Найти:
- а) энергию взаимодействия этого заряда с зарядами, индуцированными на плоскости;
 - б) собственную энергию зарядов на плоскости.
- **2.138.** Плоский конденсатор, площадь каждой пластины которого $S=200~{\rm cm}^2$ и расстояние между ними $d=5,0~{\rm mm}$, поместили во внешнее однородное электрическое поле с $E=1,30~{\rm kB/cm}$, перпендикулярное пластинам. Затем пластины замкнули проводником, после чего проводник убрали и конденсатор перевернули на 180° вокруг оси, перпендикулярной направлению поля. Найти совершенную при этом работу против электрических сил.

2.139. Конденсатор емкости $C_1=1,0\,$ мкФ, заряженный до напряжения $U=300\,$ В, подключили параллельно к незаряженному конденсатору емкости $C_2=2,0\,$ мкФ. Найти приращение

электрической энергии системы к моменту установления равновесия. Объяснить полученный результат.

- **2.140.** Сколько теплоты выделится при переключении ключа K из положения 1 в положение 2 в цепи, показанной:
 - а) на рис. 2.31; б) на рис. 2.32.
- **2.141.** Система состоит из двух концентрических тонких металлических оболочек с радиусами R_1 и R_2 и соответствующими зарядами q_1 и q_2 . Найти собственную энергию W_1 и W_2 каждой оболочки, энергию взаимодействия W_{12} оболочек и полную электрическую энергию W системы.
- **2.142.** Заряд q распределен равномерно по объему шара радиуса R. Считая проницаемость $\varepsilon = 1$, найти:

Рис. 2.31

Рис. 2.32

- а) собственную электрическую энергию шара;
- б) отношение энергии W_1 внутри шара к энергии W_2 в окружающем пространстве.
- **2.143.** Точечный заряд q=3,0 мкКл находится в центре шарового слоя из однородного диэлектрика проницаемости $\varepsilon=3,0$. Внутренний радиус слоя a=250 мм, внешний b=500 мм. Найти электрическую энергию в данном слое.
- 2.144. Найти энергию электрического поля точечного заряда q в пустом полупространстве, которое ограничено плоскостью, отстоящей на расстояние a от заряда.
- **2.145.** Сферическую оболочку радиуса R_1 , равномерно заряженную зарядом q, расширили до радиуса R_2 . Найти работу, совершенную при этом электрическими силами.
- **2.146.** В центре сферической оболочки, равномерно заряженной зарядом q=5,0 мкКл, расположен точечный заряд $q_0=1,50$ мкКл. Найти работу электрических сил при расширении оболочки увеличении ее радиуса от $R_1=50$ мм до $R_2=100$ мм.
- **2.147.** Сферическая оболочка заряжена равномерно с поверхностной плостностью о. Воспользовавшись законом сохране-

ния энергии, найти модуль электрической силы на единицу поверхности оболочки.

- **2.148.** Точечный заряд q находится в центре O сферического незаряженного проводящего слоя с малым отверстием вдоль радиуса. Внутренний и внешний радиусы слоя равны соответственно a и b. Какую работу надо совершить против электрических сил, чтобы медленно перенести заряд q из точки O на бесконечность?
- **2.149.** Имеется плоский воздушный конденсатор, площадь каждой обкладки которого равна S. Какую работу против электрических сил надо совершить, чтобы увеличить расстояние между обкладками от x_1 до x_2 , если при этом поддерживать неизменным:
 - а) заряд конденсатора q;
 - б) напряжение на конденсаторе U?
- **2.150.** Внутри плоского конденсатора находится параллельная обкладкам пластина, толщина которой составляет $\eta = 0,60$ расстояния между обкладками. Емкость конденсатора в отсутствие пластины C = 20 нФ. Конденсатор сначала подключили к источнику постоянного напряжения U = 200 В, затем отключили и после этого медленно извлекли пластину из зазора. Найти работу, совершенную против электрических сил при извлечении пластины, если она:
 - а) металлическая; б) стеклянная.
- **2.151.** Плоский конденсатор, расстояние между пластинами которого d=1,0 мм, опустили в горизонтальном положении в воду, которая целиком заполнила его. Затем конденсатор подключили к постоянному напряжению $U=500~\mathrm{B}$. Найти приращение давления воды в конденсаторе.
- **2.152.** Плоский конденсатор расположен горизонтально так, что одна его пластина находится над поверхностью жидкости, другая под ее поверхностью. Диэлектрическая проницаемость жидкости ε , ее плотность ρ . На какую высоту поднимется уровень жидкости в конденсаторе после сообщения его пластинам заряда с поверхностной плотностью σ ?
- **2.153.** В цилиндрический конденсатор вводят длинный цилиндрический слой диэлектрика проницаемости ε , заполняющий практически весь зазор между обкладками. Средний радиус обкладок R, зазор между ними d, причем $d \ll R$. Обкладки конденсатора подключены к источнику постоянного напряже-

ния U. Найти модуль электрической силы, втягивающей диэлектрик в конденсатор.

2.154. Конденсатор состоит из двух неподвижных пластин, имеющих форму полукруга радиуса R, и расположенной между

ними подвижной пластины из диэлектрика проницаемости ε , которая может свободно поворачиваться вокруг оси O (рис. 2.33). Толщина подвижной пластины d, что практически равно расстоянию между неподвижными пластинами. Конденсатор поддерживают при постоянном напряжении U. Найти модуль момента сил относительно оси O, действующих на подвижную пластину в положении, показанном на рисунке.

Рис. 2.33

2.4. Электрический ток

• Закон Ома для неоднородного участка цепи:

$$I = U_{12}/R = (\varphi_1 - \varphi_2 + \mathcal{E}_{12})/R,$$
 (2.4a)

где U_{12} — падение напряжения на данном участке.

• Закон Ома в дифференциальной форме:

$$\mathbf{j} = \sigma(\mathbf{E} + \mathbf{E}^*), \tag{2.46}$$

где E^* — напряженность поля сторонних сил.

• Правила Кирхгофа:

$$\sum I_k = 0,$$
 $\sum I_k R_k = \sum \mathscr{E}_k.$ (2.4b)

• Мощность тока P и тепловая мощность Q:

$$P = UI = (\varphi_1 - \varphi_2 + \mathscr{E}_{12})I, \qquad Q = RI^2.$$
 (2.4r)

ullet Удельная мощность тока $P_{
m yd}$ и удельная тепловая мощность тока $Q_{
m yd}$:

$$P_{y\pi} = \mathbf{j}(\mathbf{E} + \mathbf{E}^*), \qquad Q_{y\pi} = \rho j^2.$$
 (2.4 π)

• Плотность тока в металле:

$$\mathbf{j} = e n \mathbf{u}, \tag{2.4e}$$

где **u** — средняя скорость носителей.

• Число ионов, рекомбинирующих за единицу времени в единице объема газа:

$$\dot{n}_r = rn^2, \qquad (2.4\pi)$$

- **2.155.** Длинный равномерно заряженный по поверхности цилиндр радиуса a=1,0 см движется со скоростью v=10 м/с вдоль своей оси. Напряженность электрического поля непосредственно у поверхности цилиндра E=0,9 кВ/см. Найти ток, обусловленный механическим переносом заряда.
- **2.156.** Воздушный цилиндрический конденсатор, подключенный к источнику напряжения U = 200 В, погружают в вертикальном положении в сосуд с дистилированной водой со скоростью v = 5.0 мм/с. Зазор между обкладками конденсатора d = 2.0 мм, средний радиус обкладок r = 50 мм. Имея в виду, что $d \ll r$, найти ток, текущий по проводящим проводам.
- **2.157.** Найти сопротивление проволочного каркаса, имеющего форму куба (рис. 2.34), при включении его в цепь между точками:
 - a) 1-7; 6) 1-2; B) 1-3.

Сопротивление каждого ребра каркаса равно R.

2.158. При каком сопротивлении R_x в цепочке (рис. 2.35) сопротивление между точками A и B не зависит от числа ячеек?

- **2.159.** На рис. **2.36** показана бесконечная цепь, образованная повторением одного и того же звена сопротивлений $R_1=4,0~{\rm Om}$ и $R_2=3,0~{\rm Om}$. Найти сопротивление между точками A и B.
- **2.160.** Имеется безграничная проволочная сетка с квадратными ячейками (рис. 2.37). Сопротивление каждого проводника между соседними узлами равно R_0 . Найти сопротивление R этой сетки между точками A и B. Указание: Воспользоваться принципами симметрии и суперпозиции.

Рис. 2.36

Рис. 2.37

- **2.161.** Однородная слабо проводящая среда с удельным сопротивлением ρ заполняет пространство между двумя коаксиальными идеально проводящими тонкими цилиндрами. Радиусы цилиндров a и b, причем a < b, длина каждого цилиндра l. Пренебрегая краевыми эффектами, найти сопротивление среды между цилиндрами.
- **2.162.** Металлический шар радиуса a окружен концентрической тонкой металлической оболочкой радиуса b. Пространство между этими электродами заполнено однородной слабо проводящей средой с удельным сопротивлением ρ . Найти сопротивление межэлектродного промежутка. Рассмотреть также случай $b \to \infty$.
- **2.163.** Пространство между двумя проводящими концентрическими сферами, радиусы которых a и b (a < b), заполнено однородной слабо проводящей средой. Емкость такой системы равна C. Найти удельное сопротивление среды, если разность потенциалов между сферами, отключенными от внешнего напряжения, уменьшается в η раз за время Δt .
- **2.164.** Два металлических шарика одинакового радиуса a находятся в однородной слабо проводящей среде с удельным сопротивлением ρ . Найти сопротивление среды между шариками при условии, что расстояние между ними значительно больше a.
- **2.165.** Металлический шарик радиуса a находится на расстояниии l от безграничной идеально проводящей плоскости. Пространство вокруг шарика заполнено однородной слабо проводящей средой с удельным сопротивлением ρ . Найти для случая $a \ll l$:
- а) плотность тока у проводящей плоскости как функцию расстояния r от шарика, если разность потенциалов между шариком и плоскостью равна U;
 - б) сопротивление среды между шариком и плоскостью.
- **2.166.** Два длинных параллельных провода находятся в слабо проводящей среде с удельным сопротивлением ρ . Расстояние между осями проводов l, радиус сечения каждого провода a. Найти для случая $a \ll l$:
- а) плотность тока в точке, равноудаленной от осей проводов на расстояние r, если разность потенциалов между проводами равна U;
 - б) сопротивление среды на единицу длины проводов.
- **2.167.** Зазор между обкладками плоского конденсатора заполнен стеклом с удельным сопротивлением $\rho = 100 \, \Gamma \text{Om} \cdot \text{m}$. Ем-

кость конденсатора C=4,0 нФ. Найти ток утечки через конденсатор при подаче на него напряжения U=2,0 кВ.

- **2.168.** Два проводника произвольной формы находятся в безграничной однородной слабо проводящей среде с удельным сопротивлением ρ и диэлектрической проницаемостью ε . Найти значение произведения RC для данной системы, где R сопротивление среды между проводниками, C взаимная емкость проводников при наличии среды.
- **2.169.** Проводник с удельным сопротивлением ρ граничит с диэлектриком проницаемости ϵ . В точке A у поверхности проводника электрическая индукция равна D, причем вектор \mathbf{D} направлен от проводника и составляет угол α с нормалью к поверхности. Найти поверхностную плотность зарядов на проводнике вблизи точки A и плотность тока в проводнике вблизи этой точки.
- **2.170.** Зазор между пластинами плоского конденсатора заполнен неоднородной слабо проводящей средой, удельная проводимость которой изменяется в направлении, перпендикулярном пластинам, по линейному закону от $\sigma_1 = 1.0$ пСм/м до $\sigma_2 = 2.0$ пСм/м. Площадь каждой пластины S = 230 см², ширина зазора d = 2.0 мм. Найти ток через конденсатор при напряжении на нем U = 300 В.
- **2.171.** Показать, что закон преломления линий постоянного тока на границе раздела двух проводящих сред имеет вид $tg\alpha_2/tg\alpha_1=\sigma_2/\sigma_1$, где σ_1 и σ_2 проводимости сред, α_1 и α_2 углы между линиями тока и нормалью к поверхности раздела данных сред.
- **2.172.** Два цилиндрических проводника одинакового сечения, но с удельными сопротивлениями $\rho_1=84$ нОм·м и $\rho_2=50$ нОм·м прижаты торцами друг к другу. Найти заряд на границе раздела данных проводников, если в направлении от проводника I к проводнику I течет ток I=50 A.
- **2.173.** Удельная проводимость среды изменяется только вдоль оси X по закону $\sigma = \sigma_0/(1+\alpha x)$, где $\sigma_0 = 22$ нСм/м, $\alpha = 5,0\cdot 10^{-4}$ м⁻¹. Найти плотность избыточного заряда среды при протекании тока плотностью j=1,00 А/м² в положительном направлении оси X.
- **2.174.** Зазор между обкладками плоского конденсатора заполнен последовательно двумя диэлектрическими слоями 1 и 2 толщиной d_1 и d_2 с проницаемостями ε_1 и ε_2 и удельными сопротивлениями ρ_1 и ρ_2 . Конденсатор находится под постоян-

ным напряжением U, причем электрическое поле направлено от слоя 1 к слою 2. Найти σ — поверхностную плотность сторонних зарядов на границе раздела диэлектрических слоев и условие, при котором $\sigma = 0$.

- **2.175.** Между пластинами 1 и 2 плоского конденсатора находится неоднородная слабо проводящая среда. Ее диэлектрическая проницаемость и удельное сопротивление изменяются от значений ε_1 , ρ_1 у пластины 1 до значений ε_2 , ρ_2 у пластины 2. Конденсатор подключен к постоянному напряжению, и через него течет установившийся ток I от пластины 1 к пластине 2. Найти суммарный сторонний заряд в данной среде.
- **2.176.** Длинный проводник круглого сечения радиуса a сделан из материала, удельное сопротивление которого зависит только от расстояния r до оси проводника по закону $\rho = \alpha/r^2$, где α постоянная. Найти:
 - а) сопротивление единицы длины такого проводника;
- б) напряженность электрического поля в проводнике, при которой по нему будет протекать ток I.
- **2.177.** Конденсатор емкости C=400 пФ подключили через сопротивление R=650 Ом к источнику постоянного напряжения U_0 . Через сколько времени напряжение на конденсаторе станет $U=0.90U_0$?
- **2.178.** Конденсатор, заполненный диэлектриком с проницаемостью $\varepsilon = 2,1$, теряет за время $\tau = 3,0$ мин половину сообщенного ему заряда. Считая, что утечка заряда происходит только через диэлектрическую прокладку, найти ее удельное сопротивление.
- **2.179.** Цепь состоит из источника постоянной ЭДС \mathscr{E} и последовательно подключенных к нему сопротивления R и конденсатора емкости C. Внутреннее сопротивление источника пренебрежимо мало. В момент t=0 емкость конденсатора быстро (скачком) уменьшили в η раз. Найти ток в цепи как функцию времени t.
- **2.180.** Амперметр и вольтметр подключили последовательно к батарее с ЭДС $\mathscr{E} = 6.0$ В. Если параллельно вольтметру подключить некоторое сопротивление, то показание вольтметра уменьшается в $\eta = 2.0$ раза, а показание амперметра во столько же раз увеличивается. Найти показание вольтметра после подключения сопротивления.

Рис. 2.38

2.181. Найти разность потенциалов $\phi_1 - \phi_2$ между точками 1 и 2 схемы (рис. 2.38), если $R_1 = 10$ Ом, $R_2 = 20$ Ом, $\mathscr{E}_1 = 5 \; \mathrm{B} \; \mathrm{u} \; \mathscr{E}_2 = 2,0 \; \mathrm{B}.$ Внутренние сопротивления источников тока пренебрежимо малы.

2.182. Два последовательно соединенных одинаковых источника ЭДС имеют

различные внутренние сопротивления R_1 и R_2 , причем $R_2 > R_1$. Найти внешнее сопротивление R, при котором разность потенциалов на клеммах одного из источников (какого именно?) равна нулю.

Рис. 2.39

- 2.183. В цепи (рис. 2.39) ЭДС источников пропорциональны их внутренним сопротивлениям: $\mathscr{E}=\alpha R$, α — постоянная. Сопротивление проводов пренебрежимо мало. Найти:
 - а) ток в цепи;
- б) разность потенциалов между точкой A и точкой B.
- **2.184.** Резистор с сопротивлением R и нелинейное сопротивление, вольт-амперная характеристика которого $U=a\sqrt{I}$, где a — постоянная, соединены последовательно и подключены к напряжению U_0 . Найти ток в цепи.
 - 2.185. На рис. 2.40 показана вольт-амперная характеристи-

Рис. 2.40

ка разрядного промежутка дугового разряда. Найти максимальное сопротивление резистора, соединенного последовательно с дугой, при котором дуга еще будет гореть, если эту систему подключить к напряжению $U_0 = 85$ В.

2.186. В схеме (рис. 2.41) $\mathcal{E}_1 = 1,0$ В, $\mathscr{E}_2 = 2,5 \; \mathrm{B}, \; R_1 = 10 \; \mathrm{Om}, \; R_2 = 20 \; \mathrm{Om}. \; \mathrm{Внут}$ ренние сопротивления источников пренебрежимо малы. Найти разность потенциалов $\phi_A - \phi_B$ между обкладками конденсатора C.

2.187. В схеме (рис. 2.42) $\mathscr{E} = 5.0$ В, $R_1 = 4.0$ Ом, $R_2 = 6.0$ Ом. Внутреннее сопротивление источника R = 0.10 Ом. Найти токи, текущие через сопротивления R_1 и R_2 .

- **2.188.** С помощью потенциометра (рис. 2.43) можно менять напряжение U, подаваемое на некоторый прибор с сопротивлением R. Потенциометр имеет длину l, сопротивление R_0 и находится под напряжением U_0 . Найти зависимость U(x). Исследовать отдельно случай $R \gg R_0$.
- **2.189.** Найти ЭДС и внутреннее сопротивление источника, эквивалентного двум параллельно соединенным элементам с ЭДС \mathscr{E}_1 и \mathscr{E}_2 и внутренними сопротивлениями R_1 и R_2 .
- **2.190.** Найти значение и направление тока через резистор с сопротивлением R в схеме (рис. 2.44), если $\mathscr{E}_1=1,5$ В, $\mathscr{E}_2=3,7$ В, $R_1=10$ Ом, $R_2=20$ Ом, R=5,0 Ом. Внутренние сопротивления источников пренебрежимо малы.
- **2.191.** В схеме (рис. 2.45) $\mathscr{E}_1=1,5$ В, $\mathscr{E}_2=2,0$ В, $\mathscr{E}_3=2,5$ В, $R_1=10$ Ом, $R_2=20$ Ом, $R_3=30$ Ом. Внутренние сопротивления источников пренебрежимо малы. Найти:
 - а) ток через резистор с сопротивлением R_1 ;
 - б) разность потенциалов $\phi_A \phi_B$ между точками A и B.

2.192. Найти ток через резистор с сопротивлением R в схеме (рис. 2.46). Внутренние сопротивления источников пренебрежимо малы.

Рис. 2.46

Рис. 2.47

- **2.193.** Найти разность потенциалов $\varphi_A \varphi_B$ между обкладками конденсатора C схемы (рис. 2.47). Внутренние сопротивления источников пренебрежимо малы.
- **2.194.** Найти ток через резистор R_1 участка цепи (рис. 2.48), если $R_1 = 10$ Ом, $R_2 = 20$ Ом, $R_3 = 30$ Ом и потенциалы точек 1, 2, 3 равны $\varphi_1 = 10$ В, $\varphi_2 = 6$ В, $\varphi_3 = 5$ В.
- **2.195.** Между точками A и B цепи (рис. 2.49) поддерживают напряжение U=20 В. Найти ток и его направление в участке 1-2, если $R_1=5$,0 Ом и $R_2=10$ Ом.

Рис. 2.48

- Рис. 2.49
- **2.196.** В схеме (рис. 2.50) найти сопротивление между точками A и B, если $R_1 = 100$ Ом и $R_2 = 50$ Ом.
- **2.197.** Найти зависимость от времени напряжения на конденсаторе C (рис. 2.51) после замыкания в момент t=0 ключа K.
- **2.198.** Сколько теплоты выделилось в спирали с сопротивлением R=75 Ом при прохождении через нее количества электричества q=100 Кл, если ток в спирали:
 - а) линейно убывал до нуля в течение $\Delta t = 50$ с;
- б) монотонно убывал до нуля так, что через каждые $\Delta t = 2.0$ с он уменьшался вдвое?
- **2.199.** К источнику постоянного напряжения с внутренним сопротивлением R_0 подключили три одинаковых резистора,

каждый сопротивлением R, соединенных между собой, как показано на рис. 2.52. При каком значении R тепловая мощность, выделяемая на этом участке, максимальна?

2.200. Убедиться, что распределение

тока в параллельно соединенных резисторах с сопротивлениями R_1 и R_2 соответствует минимуму выделяемой на этом участке тепловой мощности.

2.201. Аккумулятор с ЭДС $\mathscr{E} = 2.6$ В, замкнутый на внешнее сопротивление, дает ток I = 1.0 А. При этом разность потенциалов между его полюсами U = 2.0 В. Найти тепловую мощность, выделяемую в аккумуляторе, и мощность, которую развивают в нем электрические силы.

2.202. Электромотор постоянного тока подключили к напряжению U. Сопротивление обмотки якоря равно R. При каком токе через обмотку полезная мощность мотора будет максимальной? Чему она равна? Каков при этом КПД мотора?

2.203. Лампочку, параллельно соединенную с резистором, сопротивление которого R=2,0 Ом, подключили к источнику с ЭДС $\mathscr{E}=15$ В и внутренним сопротивлением $R_i=3,0$ Ом. Найти мощность, выделяемую на лампочке, если зависимость тока от напряжения на ней имеет вид, показанный на рис. 2.53.

2.204. В схеме (рис. 2.54) $R_1=20$ Ом и $R_2=30$ Ом. При каком сопротивлении R_x выделяемая на нем тепловая мощность практически не будет зависеть от малых изменений этого сопротивления? Напряжение между точками A и B постоянное.

- **2.205.** В схеме (рис. 2.55) известны R_1 , R_2 , \mathscr{E}_1 и \mathscr{E}_2 . Внутренние сопротивления источников пренебрежимо малы. При каком сопротивлении R выделяемая на нем тепловая мощность максимальна? Чему она равна?
- **2.206.** Конденсатор емкости C = 5,00 мкФ подключили к источнику постоянной ЭДС $\mathcal{E} = 200$ В (рис. 2.56). Затем переключатель K перевели с контакта I на контакт 2. Найти количество теплоты, выделившееся на резисторе с сопротивлением $R_1 = 500$ Ом, если $R_2 = 330$ Ом.
- **2.207.** Между обкладками плоского конденсатора помещена параллельно им металлическая пластинка, толщина которой составляет $\eta = 0,60$ зазора между обкладками. Емкость конденсатора в отсутствие пластинки C = 20 нФ. Конденсатор подключили к источнику постоянного напряжения U = 100 В и пластинку извлекли из конденсатора. Найти:
 - а) приращение энергии конденсатора;
- б) механическую работу, совершенную против электрических сил при извлечении пластинки.
- **2.208.** Стеклянная пластинка целиком заполняет зазор между обкладками плоского конденсатора, емкость которого в отсутствие пластинки C=20 нФ. Конденсатор подключили к источнику постоянного напряжения U=100 В и пластинку изв-

Рис. 2.57

h

лекли из зазора. Найти приращение энергии конденсатора и механическую работу, совершенную против электрических сил при извлечении пластинки.

2.209. Цилиндрический конденсатор, подключенный к источнику постоянного напряжения U, касается своим торцом поверхности воды (рис. 2.57). Расстояние d между обкладками

конденсатора значительно меньше их среднего радиуса. Найти высоту h, на которой установится уровень воды между обкладками конденсатора. Капиллярными явлениями пренебречь.

- **2.210.** Радиусы обкладок сферического конденсатора равны a и b, причем a < b. Пространство между обкладками заполнено однородным веществом диэлектрической проницаемости ε с удельным сопротивлением ρ . Первоначально конденсатор не заряжен. В момент t=0 внутренней обкладке сообщили заряд q_0 . Найти:
- а) закон изменения во времени заряда на внутренней обкладке;
- б) количество теплоты, выделившейся при растекании заряда.
- **2.211.** Обкладкам конденсатора емкости C=2,00 мкФ сообщили разноименные заряды $q_0=1,00$ мКл. Затем обкладки замкнули через сопротивление R=5,0 МОм. Найти:
 - а) заряд, прошедший через это сопротивление за $\tau = 2,00$ с;
- б) количество теплоты, выделившейся в сопротивлении за то же время. R
- **2.212.** В схеме, показанной на рис. 2.58, один конденсатор зарядили до напряжения U_0 и в момент t=0 замкнули ключ K. Найти:
 - а) ток в цепи как функцию времени I(t);
- б) количество выделившейся теплоты, зная I(t).

Рис. 2.58

- **2.213.** Катушка радиуса r=25 см, содержащая l=500 м тонкого медного провода, вращается с угловой скоростью $\omega=300$ рад/с вокруг своей оси. Через скользящие контакты катушка подключена к баллистическому гальванометру. Общее сопротивление всей цепи R=21 Ом. Найти удельный заряд носителей тока в меди, если при резком затормаживании катушки через гальванометр проходил заряд q=10 нКл.
- **2.214.** Найти суммарный импульс электронов в прямом проводе длины $l=1000\,\mathrm{m}$ с током $I=70\,\mathrm{A}$.
- **2.215.** По прямому медному проводу длины l=1000 м и сечения S=1,0 мм² течет постоянный ток I=4,5 А. Считая, что на каждый атом меди приходится один свободный электрон, найти:
- а) время, за которое электрон переместился от одного конца провода до другого;

- б) сумму электрических сил, действующих на все свободные электроны в данном проводе.
- **2.216.** Однородный пучок протонов, ускоренный разностью потенциалов $U=600\,$ кВ, имеет круглое сечение радиуса $r=5,0\,$ мм. Найти напряженность электрического поля на поверхности пучка и разность потенциалов между поверхностью и осью пучка при токе $I=50\,$ мА.
- **2.217.** Две большие параллельные пластины находятся в вакууме. Одна из пластин служит катодом источником электронов, начальная скорость которых пренебрежимо мала. Электронный поток, направленный к противоположной пластине, создает в пространстве объемный заряд, вследствие чего потенциал в зазоре между пластинами меняется по закону $\varphi = ax^{4/3}$, где a положительная постоянная, x расстояние от катода. Найти:
 - а) плотность пространственного заряда $\rho(x)$;
 - б) плотность тока.
- **2.218.** Воздух между двумя параллельный пластинами, отстоящими друг от друга на расстояние d=20 мм, ионизируют рентгеновским излучением. Площадь каждой пластины $S=500~{\rm cm}^2$. Найти концентрацию положительных ионов, если при напряжении $U=100~{\rm B}$ между пластинами идет ток $I=3,0~{\rm mkA}$, значительно меньший тока насыщения. Подвижность ионов воздуха $u_0^+=1,37~{\rm cm}^2/\left({\rm B\cdot c}\right)$ и $u_0^-=1,91~{\rm cm}^2/\left({\rm B\cdot c}\right)$.
 - 2.219. Газ ионизируют непосредственно у поверхности плос-

Рис. 2.59

кого электрода 1 (рис. 2.59), отстоящего от электрода 2 на расстояние *l*. Между электродами приложили переменное напряжение, изменяющееся со временем t по закону $U = U_0 \sin \omega t$. Уменьшая частоту ω , обнаружили, что гальванометр G показывает ток только при $\omega < \omega_0$, где ω_0 — некотограничная частота. Найти подвижность рая ионов, достигающих при условиях этих электрода 2.

- **2.220.** Воздух между двумя близко расположенными пластинами равномерно ионизируют ультрафиолетовым излучением. Объем воздуха между пластинами $V=500~{\rm cm}^3$, наблюдаемый ток насыщения $I_{\rm hac}=0.48~{\rm mkA}.$ Найти:
- а) число пар ионов, создаваемых ионизатором за единицу времени в единице объема;

- б) равновесную концентрацию пар ионов, если коэффициент рекомбинации ионов воздуха $r=1.67\cdot 10^{-6}~{
 m cm}^3/{
 m c}.$
- **2.221.** Длительно действовавший ионизатор, создававший за единицу времени в единице объема воздуха число пар ионов $\dot{n}_i = 3.5 \cdot 10^9 \,\, \mathrm{cm}^{-3} \cdot \mathrm{c}^{-1}$, был выключен. Считая, что единственным процессом потери ионов в воздухе является рекомбинация с коэффициентом $r = 1.67 \cdot 10^{-6} \,\, \mathrm{cm}^3/\mathrm{c}$, найти, через какое время после выключения ионизатора концентрация ионов уменьшится в $\eta = 2.0$ раза.
- **2.222.** Плоский воздушный конденсатор, расстояние между пластинами которого d=5,0 мм, зарядили до U=90 В и отключили от источника напряжения. Найти время, за которое напряжение на конденсаторе уменьшится на $\eta=1,0\%$, имея в виду, что в воздухе при обычных условиях в среднем образуется за единицу времени в единице объема число пар ионов $\dot{n}_i=5,0$ см $^{-3}$ ·с $^{-1}$ и что данное напряжение соответствует току насыщения.
- **2.223.** Между двумя плоскими пластинами конденсатора, отстоящими друг от друга на расстояние d, находится газ. Одна из пластин эмиттирует ежесекундно ν_0 электронов, которые, двигаясь в электрическом поле, ионизируют молекулы газа так, что каждый электрон создает на единице длины пути α новых электронов (и ионов). Найти электронный ток у противоположной пластины, пренебрегая ионизацией молекул газа ионами.
- **2.224.** Газ между пластинами конденсатора, отстоящими друг от друга на расстояние d, равномерно ионизируют ультрафиолетовым излучением так, что ежесекундно в единице объема создается \dot{n}_i электронов. Последние, двигаясь в электрическом поле конденсатора, ионизируют молекулы газа, причем каждый электрон создает на единице длины своего пути α новых электронов (и ионов). Пренебрегая ионизацией ионами, найти плотность электронного тока у пластины с большим потенциалом.

2.5. Постоянное магнитное поле. Магнетики

• Магнитное поле точечного зяряда q, движущегося с нерелятивистской скоростью ${\bf v}$:

$$\mathbf{B} = \frac{\mu_0}{4\pi} \frac{q \, [\mathbf{vr}]}{r^3} \,. \tag{2.5a}$$

• Закон Био-Савара:

$$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{[\mathbf{jr}]}{r^3} dV, \qquad d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I[\mathbf{dl}, \mathbf{r}]}{r^3}. \qquad (2.56)$$

• Циркуляция вектора В (в вакууме) и теорема Гаусса:

$$\oint \mathbf{B} \ d\mathbf{r} = \mu_0 I, \qquad \oint \mathbf{B} \ d\mathbf{S} = 0.$$
(2.5a)

• Сила Лоренца:

$$\mathbf{F} = q\mathbf{E} + q[\mathbf{v}\mathbf{B}] . \tag{2.5r}$$

• Сила Ампера:

$$d\mathbf{F} = [\mathbf{j}\mathbf{B}]dV, \qquad d\mathbf{F} = I[d\mathbf{l}, \mathbf{B}]. \qquad (2.5\pi)$$

ullet Сила и момент сил, действующие на магнитный диполь ${f p}_{
m m} = IS{f n}$:

$$\mathbf{F} = p_{\rm m} \frac{\partial \mathbf{B}}{\partial n}, \qquad \mathbf{N} = [\mathbf{p}_{\rm m} \mathbf{B}],$$
 (2.5e)

где $\partial \mathbf{B}/\partial n$ — производная вектора \mathbf{B} по направлению диполя.

• Элементарная работа амперовых сил при перемещении контура с током:

$$\delta A = I \, \mathrm{d}\mathbf{\Phi}. \tag{2.5}$$

• Циркуляция намагниченности Ј:

$$\oint \mathbf{J} \ \mathbf{dr} = I', \tag{2.53}$$

где I' — ток намагничения (молекулярный ток).

• Вектор Н и его циркуляция:

$$\mathbf{H} = \mathbf{B}/\mu_0 - \mathbf{J}, \qquad \oint \mathbf{H} d\mathbf{r} = I, \tag{2.5u}$$

где I — алгебраическая сумма макроскопических токов.

• Условия на границе раздела двух магнетиков:

$$B_{1n} = B_{2n}, H_{1\tau} = H_{2\tau}.$$
 (2.5x)

• Для магнетиков, у которых $J = \gamma H$:

$$B = \mu \mu_0 H, \quad \mu = 1 + \gamma.$$
 (2.5 π)

2.225. Точечный заряд движется со скоростью $v=900\,$ м/с. В некоторый момент в точке P напряженность поля этого заряда $E=600\,$ В/м, а между векторами E и v угол $\alpha=30^\circ$. Найти индукцию B магнитного поля данного заряда в точке P в этот момент.

- **2.226.** По круговому витку радиуса R=100 мм из тонкого провода циркулирует ток I=1,00 А. Найти магнитную индукцию:
 - а) в центре витка;
 - б) на оси витка на расстоянии x = 100 мм от его центра.
- **2.227.** Кольцо радиуса R = 50 мм из тонкого провода согнули по диаметру под прямым углом. Найти магнитную индукцию в центре кривизны полуколец при токе I = 2,25 A.
- **2.228.** Ток I течет по плоскому контуру, показанному на рис. **2.60**, где $r = r_0(1 + \varphi)$. Найти магнитную индукцию B в точке O.
- **2.229.** Ток I течет по тонкому проводнику, который имеет вид правильного n-угольника, вписанного в окружность радиуса R. Найти магнитную индукцию в центре данного контура. Исследовать случай $n \to \infty$.

Рис. 2.60

- **2.230.** Найти магнитную индукцию в центре контура, имеющего вид прямоугольника, если его диагональ d=16 см, угол между диагоналями $\phi=30^{\circ}$ и ток I=5,0 A.
- **2.231.** Ток I=5,0 А течет по тонкому замкнутому проводнику (рис. 2.61). Радиус изогнутой части R=120 мм, угол $2\phi=90^\circ$. Найти магнитную индукцию в точке O.

Рис. 2.61

- 2.232. Найти индукцию магнитного поля в точке O контура с током I, который показан:
- а) на рис. 2.62; радиусы a и b, а также угол ϕ известны;
 - б) на рис. 2.63; радиус a и сторона b известны.
- **2.233.** Ток I течет вдоль длинной тонкостенной трубы радиуса R, имеющей по всей длине продольную прорезь ширины h. Найти индукцию магнитного поля внутри трубы, если $h \ll R$.

Рис. 2.62

Рис. 2.63

Рис. 2.64

2.234. Ток I = 11.0 А течет по длинному прямому проводнику, сечение которого имеет форму тонкого полукольца радиуса R = 5.0 см (рис. 2.64). Найти магнитную индукцию на оси О.

2.235. Определить магнитную индукцию в точке O, если проводник с током I имеет вид, показанный: а) на рис. 2.65; б) на рис. 2.66; в) на рис. 2.67.

Радиус изогнутой части проводника равен R, прямолинейные участки проводника очень длинные.

Рис. 2.68

- 2.236. Длинный проводник с током I изогнут, как показано на рис. 2.68. Расстояние а известно. Найти магнитную индукцию:
 - а) в точке 1; б) в точке 2.
- **2.237.** Длинный проводник с током I=5,0 А изогнут под прямым углом. Найти магнитную индукцию в точке, которая отстоит от плоскости проводника на $l=35\,$ см и находится на перпендикуляре, проходящем через точку изгиба.

2.238. Длинный провод с током I изогнут под прямым уг-

Рис. 2.69

- лом. Найти магнитную индукцию в точках 1 и 2, находящихся на биссектрисе этого угла на расстоянии l от точки изгиба (рис. 2.69).
- 2.239. Найти магнитную индукцию в точке O, если проводник с током I=8,0 A имеет вид, показанный:
 - а) на рис. 2.70; б) на рис. 2.71.

Радиус изогнутой части проводника R = 100 мм, прямолинейные участки проводника очень длинные.

2.240. Ток I течет по длинным прямым проводникам, которые подключены к двум точкам однородного проводника, имеющего вид окружности радиуса R (рис. 2.72). Найти магнитную индукцию в центре кольца.

- **2.241.** Определить индукцию магнитного поля тока, равномерно распределенного:
 - а) по плоскости с линейной плотностью і;
- б) по двум параллельным плоскостям с линейными плотностями i и -i.
- 2.242. Однородный ток плотности j течет внутри неограниченной пластины толщины 2d параллельно ее поверхности. Пренебрегая влиянием вещества пластины, найти индукцию магнитного поля этого тока как функцию расстояния x от средней плоскости пластины.
- 2.243. Постоянный ток I течет по длинному проводу и далее растекается радиально-симметрично по проводящей плоскости, перпендикулярной проводу. Найти индукцию магнитного поля во всех точках пространства.
- **2.244.** Ток I течет по длинному проводу и затем растекается равномерно по всем направлениям в однородной проводящей среде (рис. 2.73). Пренебрегая влиянием вещества среды, найти индукцию магнитного поля в точке A, отстоящей от точки O на расстояние r под углом ϑ .
- **2.245.** Имеется круговой виток с током I. Найти интеграл $\int B_x \mathrm{d}x$ вдоль оси витка в пределах от $-\infty$ до $+\infty$.

- 2.246. По прямому проводу, радиус сечения которого R, течет постоянный ток плотности \mathbf{j} . Пренебрегая влиянием вещества провода, найти индукцию магнитного поля этого тока в точке, положение которой относительно оси провода определяется радиусом-вектором \mathbf{r} .
- 2.247. Внутри длинного прямого провода круглого сечения имеется длинная круглая цилиндрическая полость, ось кото-

рой параллельна оси провода и смещена относительно последней на расстояние **l**. По проводу течет постоянный ток плотности **j**. Пренебрегая влиянием вещества провода, найти индукцию магнитного поля внутри полости.

- **2.248.** Найти плотность тока как функцию расстояния r от оси аксиально-симметричного параллельного потока электронов, если индукция магнитного поля внутри потока $B = br^{\alpha}$, где b и α положительные постоянные.
- 2.249. Однослойный соленоид имеет длину l, радиус сечения R и число витков на единицу длины n. Найти индукцию магнитного поля в центре соленоида, если ток в обмотке равен I.
- **2.250.** Длинный соленоид имеет радиус сечения R и n витков на единицу длины. По нему течет постоянный ток I. Найти индукцию магнитного поля на оси как функцию координаты x, отсчитываемой вдоль оси соленоида от его торца. Изобразить примерный график зависимости индукции B от отношения x/R.
- 2.251. Обмоткой длинного соленоида с радиусом сечения R=2.5 см служит тонкая лента-проводник ширины h=5.0 см, намотанная в один слой практически вплотную. По ленте течет ток I=5.0 А. Найти индукцию магнитного поля внутри и вне соленоида как функцию расстояния r от его оси.
- **2.252.** На деревянный тороид малого поперечного сечения намотано равномерно $N=2,5\cdot 10^3$ витков провода, по которому течет ток I. Найти отношение η магнитной индукции внутри тороида к индукции в его центре.
- **2.253.** Ток I = 10 А течет по длинному прямому проводнику круглого сечения. Пренебрегая влиянием вещества проводника, найти магнитный поток через одну из половин осевого сечения проводника в расчете на единицу его длины.
- **2.254.** Имеется длинный соленоид с током I. Площадь его поперечного сечения S, число витков на единицу длины n. Найти магнитный поток через торец соленоида.
 - 2.255. На рис. 2.74 показан кольцевой соленоид прямоуголь-

ного сечения. Найти магнитный поток через это сечение, если ток в обмотке I=1,7 A, полное число витков N=1000, отношение внешнего диаметра к внутреннему $\eta=1,6$ и толщина h=5,0 см.

Рис. 2.74

- **2.256.** Найти магнитный момент тонкого кругового витка с током, если радиус витка R=100 мм и индукция магнитного поля в его центре B=6.0 мкТл.
- 2.257. Вычислить магнитный момент тонкого проводника с током I=0,8 А, плотно навитого на половину тора (рис. 2.75). Диаметр сечения тора d=5,0 см, число витков N=500.

Рис. 2.75

2.258. Тонкий провод (с изоляцией) образует плоскую спираль из N=100 плотно расположенных витков, по которым течет ток I=8 мА. Радиусы внутреннего и внешнего витков (рис. 2.76) равны a=50 мм, b=100 мм. Найти:

- а) индукцию B магнитного поля в центре спирали;
- б) магнитный момент спирали при данном Рис. 2.76 токе.
- **2.259.** Равномерно заряженное зарядом q тонкое непроводящее кольцо массы m вращается с большой угловой скоростью вокруг своей оси во внешнем однородном магнитном поле с индукцией B. Найти угловую скорость прецессии ω' , если ось кольца составляет некоторый угол с вектором B.
- **2.260.** Непроводящий тонкий диск радиуса R, равномерно заряженный с одной стороны с поверхностной плотностью σ , вращается вокруг своей оси с угловой скоростью ω . Найти:
 - а) индукцию магнитного поля в центре диска;
 - б) магнитный момент диска.
- **2.261.** Непроводящая сфера радиуса R=50 мм, заряженная равномерно с поверхностной плотностью $\sigma=10,0$ мкКл/м², вращается с угловой скоростью $\omega=70$ рад/с вокруг оси, проходящей через ее центр. Найти магнитную индукцию в центре сферы.
- **2.262.** Заряд q равномерно распределен по объему однородного шара массы m и радиуса R, который вращается вокругоси, проходящей через его центр, с угловой скоростю ω . Найти соответствующий магнитный момент и его отношение к механическому моменту.
- **2.263.** Длинный диэлектрический цилиндр радиуса R статически поляризован так, что во всех его точках поляризованность $\mathbf{P} \propto \mathbf{r}$, где \mathbf{r} расстояние от оси. Цилиндр привели во

вращение вокруг его оси с угловой скоростью ω . Найти индукцию магнитного поля на оси цилиндра.

2.264. Два протона движутся параллельно друг другу с одинаковой скоростью $v=300~{\rm кm/c}$. Найти отношение сил магнитного и электрического взаимодействия данных протонов.

Рис. 2.77

Рис. 2.78

- **2.265.** Найти модуль и направление силы, действующей на единицу длины тонкого проводника с током I=8,0 A в точке O, если проводник изогнут, как показано:
- а) на рис. 2.77, и радиус закругления $R = 10 \, \text{cm};$
- б) на рис. 2.78, и расстояние между длинными параллельными друг другу участками проводника $l=20\,$ см.
- 2.266. Два длинных прямых взаимно перпендикулярных провода отстоят друг от друга на расстояние a. В каждом проводе течет ток I. Найти максимальное значение силы

Ампера на единицу длины провода в этой системе.

- **2.267.** Катушку с током I=10 мА поместили в однородное магнитное поле так, что ее ось совпала с направлением поля. Обмотка катушки однослойная из медного провода диаметром d=0,10 мм, радиус витков R=30 мм. При каком значении индукции внешнего поля обмотка катушки может быть разорвана?
- **2.268.** Соленоид с током I и числом витков n на единицу длины находится в аксиально-симметричном магнитном поле, ось симметрии которого совпадает с осью соленоида. Найти модуль силы, действующей на соленоид, если магнитные потоки, входящий и выходящий через торцы соленоида, равны Φ_1 и Φ_2 .
- **2.269.** Имеется длинный соленоид, у которого радиус R=30 мм и число витков на единицу длины n=20 см⁻¹. С какой магнитной силой одна половина этого соленоида действует на другую половину, если ток в соленоиде I=1,3 A?
- **2.270.** Медный провод сечением S=2,5 мм², согнутый в виде трех сторон квадрата, может поворачиваться вокруг горизонтальной оси OO' (рис. 2.79). Провод находится в однородном вертикально направленном магнитном поле. Найти индукцию поля, если при пропускании по данному проводу тока I=16 А угол отклонения $\vartheta=20^\circ$.

- 2.271. Замкнутый контур с током I находится в поле длинного прямого проводника с током I_0 . Плоскость контура перпендикулярна прямому проводнику. Найти момент сил Ампера, действующих на замкнутый контур, если он имеет вид:
- а) как на рис. 2.80; б) как на рис. 2.81. Необходимые размеры системы указаны на рисунке.
- **2.272.** Укрепленную на конце коромысла весов небольшую катушку K с числом витков N=200 поместили в зазор между полюсами магнита (рис. 2.82). Площадь сечения катушки $S=1,0\,\,\mathrm{cm}^2$, длина плеча OA коромысла $l=30\,\,\mathrm{cm}$. В отсутствие тока через катушку весы уравновешены.

После того как через катушку пустили ток I=22 мA, для восстановления равновесия пришлось изменить груз на

чаше весов на $\Delta m = 60$ мг. Найти индукцию магнитного поля в месте нахождения катушки.

Рис. 2.82

- **2.273.** Квадратная рамка с током I=0,90 А расположена в одной плоскости с длинным прямым проводником, по которому течет ток $I_0=5,0$ А. Сторона рамки a=8,0 см. Проходящая через середины противоположных сторон ось рамки параллельна проводу и отстоит от него на расстояние, которое в $\eta=1,5$ раза больше стороны рамки. Найти:
 - а) амперову силу, действующую на рамку;
- б) механическую работу, которую нужно совершить при медленном повороте рамки вокруг ее оси на 180° .
- **2.274.** Два параллельных длинных провода с током I = 6,0 А в каждом (токи направлены в одну сторону) удалили друг от друга так, что расстояние между ними стало в $\eta = 2,0$ раза

больше первоначального. Какую работу на единицу длины проводов совершили при этом силы Ампера?

- **2.275.** Два длинных параллельных провода с пренебрежимо малым сопротивлением с одного конца замкнуты на сопротивление R, а с другого конца подключены к источнику постоянного напряжения. Расстояние между осями проводов в $\eta=20$ раз больше радиуса сечения каждого провода. При каком R сила взаимодействия между проводами обратится в нуль?
- **2.276.** Постоянный ток I=14 А течет по длинному прямому проводнику, сечение которого имеет форму тонкого полукольца радиуса R=5,0 см. Такой же ток течет в противоположном направлении по тонкому проводнику, расположенному на «оси» первого проводника (точка O на рис. 2.64). Найти силу магнитного взаимодействия данных проводников на единицу их длины.
- 2.277. Внутри длинного цилиндрического сосуда радиуса a параллельно его оси расположен проводящий стержень радиуса b с тонкой изоляцией. Расстояние между осями стержня и сосуда равно l. Сосуд заполнили электролитом и пустили вдоль оси ток I, возвращающийся обратно по стержню. Найти модуль и направление магнитной силы, действующей на единицу длины стержня.

Рис. 2.83

- 2.278. По двум длинным тонким параллельным проводникам, вид которых показан на рис. 2.83, текут постоянные токи I_1 и I_2 . Расстояние между проводниками a, ширина правого проводника b. Имея в виду, что оба проводника лежат в одной плоскости, найти силу магнитного взаимодействия между ними в расчете на единицу их длины.
- **2.279.** Система состоит из двух параллельных друг другу плоскостей с токами, которые создают между плоскостями однородное магнитное поле с индукцией *B*. Вне этой области магнитное поле отсутствует. Найти магнитную силу, действующую на единицу поверхности каждой плоскости.
- 2.280. Проводящую плоскость с током поместили во внешнее однородное магнитное поле. В результате индукция магнитного поля с одной стороны плоскости оказалась B_1 , а с другой стороны B_2 . Найти магнитную силу, действующую на единицу поверхности плоскости в случаях, показанных на

рис. 2.84. Выяснить, куда направлен ток в плоскости в каждом случае.

2.281. В электромагнитном насосе для перекачки расплав-

ленного металла участок трубы с металлом находится в однородном магнитном поле с индукцией B (рис. 2.85). Через этот участок трубы в перпендикулярном вектору \mathbf{B} и оси трубы направлении пропускают равномерно распределенный ток I. Найти избыточное давление, создаваемое насосом при B=0.10 Тл, I=100 А и a=2.0 см.

Рис. 2.85

- **2.282.** Вдоль длинного тонкостенного круглого цилиндра радиуса R = 5.0 см течет ток I = 50 А. Какое давление испытывают стенки цилиндра?
- **2.283.** Какое давление испытывает боковая поверхность длинного прямого соленоида, содержащего n=20 витков/см, когда по нему течет ток I=20 A?
- **2.284.** Ток I течет по длинному однослойному соленоиду, радиус сечения которого R=5,5 см. Число витков на единицу длины соленоида n=15 см $^{-1}$. Найти предельную силу тока, при которой может наступить разрыв обмотки, если предельная нагрузка на разрыв проволоки обмотки $F_{\text{пр}}=100\,$ H.
- **2.285.** Плоский конденсатор, площадь каждой пластины которого S и расстояние между ними d, поместили в поток проводящей жидкости с удельным сопротивлением ρ . Жидкость движется со скоростью v параллельно пластинам. Система находится в однородном магнитном поле с индукцией B, причем вектор B параллелен пластинам и перпендикулярен направлению потока. Пластины конденсатора замкнули на внешнее сопротивление R. Какая мощность P выделяется на этом сопро-

тивлении? При каком R мощность P максимальна? Чему равна $P_{\text{\tiny MAKC}}$?

- **2.286.** Вдоль медного прямого проводника радиуса R=5.0 мм течет ток I=50 А. Найти разность потенциалов между осью проводника и его поверхностью. Концентрация электронов проводимости у меди $n=0.9\cdot10^{23}$ см⁻³.
- **2.287.** При измерении эффекта Холла в натриевом проводнике напряженность поперечного поля оказалась $E=5,0\,\,\mathrm{mkB/cm}$ при плотности тока $j=200\,\,\mathrm{A/cm^2}$ и индукции магнитного поля $B=1,00\,\,\mathrm{Tr}$. Найти концентрацию электронов проводимости и ее отношение к концентрации атомов в данном проводнике.
- **2.288.** Найти подвижность электронов проводимости в медном проводнике, если при измерении эффекта Холла в магнитном поле с индукцией B=100 мТл напряженность поперечного электрического поля у данного проводника оказалась в $\eta=3,1\cdot10^3$ раз меньше напряженности продольного электрического поля.
- **2.289.** Небольшой виток с током находится на расстоянии r от длинного прямого проводника с током I. Магнитный момент витка равен \mathbf{p}_{m} . Найти модуль и направление силы, действующей на виток, если вектор \mathbf{p}_{m} :
 - а) параллелен прямому проводнику;
 - б) направлен по радиусу-вектору г;
- в) совпадает по направлению с магнитным полем тока I в месте расположения витка.
- **2.290.** Небольшая катушка с током, имеющая магнитный момент \mathbf{p}_{m} , находится на оси кругового витка радиуса R, по которому течет ток I. Найти модуль силы, действующей на катушку, если ее расстояние от центра витка равно x, а вектор \mathbf{p}_{m} совпадает по направлению с осью витка.
- **2.291.** Найти силу взаимодействия двух катушек с магнитными моментами $p_{1\mathrm{m}}=4.0~\mathrm{mA\cdot m^2}$ и $p_{2\mathrm{m}}=6.0~\mathrm{mA\cdot m^2}$, если их оси лежат на одной прямой и расстояние между катушками $l=20~\mathrm{cm}$ значительно превышает их линейные размеры.
- **2.292.** Постоянный магнит имеет форму достаточно тонкого диска, намагниченного вдоль его оси. Радиус диска R=1,0 см. Оценить значение молекулярного тока I', текущего по ободу диска, если индукция магнитного поля на оси диска в точке, отстоящей на x=10 см от центра, составляет B=30 мкТл.

- **2.293.** Индукция магнитного поля в вакууме вблизи плоской поверхности однородного изотропного магнетика равна B, причем вектор B составляет угол α с нормалью к поверхности. Магнитная проницаемость магнетика μ . Найти индукцию B' магнитного поля в магнетике вблизи поверхности.
- 2.294. Индукция магнитного поля в вакууме вблизи плоской поверхности магнетика равна B, и вектор B составляет угол ϑ с нормалью n к поверхности (рис. 2.86). Магнитная проницаемость магнетика μ . Найти:
- а) поток вектора ${\bf H}$ через поверхность сферы S радиуса R, центр которой лежит на поверхности магнетика;

Рис. 2.86

- б) циркуляцию вектора ${\bf B}$ по квадратному контуру Γ со стороной l, расположенному, как показано на рисунке.
- **2.295.** Постоянный ток I течет вдоль длинного цилиндрического провода круглого сечения. Провод сделан из парамагнетика с восприимчивостью χ . Найти:
 - а) поверхностный молекулярный ток $I_{\text{пов}}'$;
 - б) объемный молекулярный ток $I_{\text{of}}^{\,\prime}$.

Как эти токи направлены друг относительно друга?

- **2.296.** Длинный соленоид заполнен неоднородным парамагнетиком, восприимчивость которого зависит только от расстояния r до оси соленоида как $\chi = ar^2$, где a постоянная. На оси соленоида индукция магнитного поля равна B_0 . Найти зависимость от r:
 - а) намагниченности магнетика J(r);
 - б) плотности молекулярного тока j'(r) в магнетике.
- 2.297. Длинный соленоид с током наполовину заполнен парамагнетиком (рис. 2.87). Изобразить примерные графики индукции B, напряженности H и намагниченности J на оси соленоида в зависимости от x.

Рис. 2.8

2.298. Прямой бесконечно длинный проводник с током I лежит в плоскости раздела двух непроводящих сред с магнитными проницаемостями μ_1 и μ_2 . Найти индукцию B магнитного

поля во всем пространстве в зависимости от расстояния r до провода. Известно, что линии ${\bf B}$ являются окружностями с центром на оси проводника.

- **2.299.** Круговой контур с током лежит на плоской поверхности магнетика с проницаемостью μ . Найти индукцию **B** магнитного поля в некоторой точке на оси контура, если в отсутствие магнетика индукция в этой точке равна \mathbf{B}_0 . Обобщить полученный результат на все поле.
- **2.300.** Известно, что внутри шара, намагниченного однородно и статически, напряженность магнитного поля $\mathbf{H}' = -\mathbf{J}/3$, где \mathbf{J} намагниченность. Имея в виду это соотношение, найти индукцию магнитного поля в шаре из однородного магнетика с проницаемостью μ , помещенного во внешнее однородное магнитное поле с индукцией \mathbf{B}_0 (при этом шар намагнитится однородно).
- **2.301.** Имеется бесконечная пластина из однородного ферромагнетика с намагниченностью J. Найти векторы B и H внутри и вне пластины, если вектор J направлен относительно поверхности пластины:
 - а) перпендикулярно; б) параллельно.
- **2.302.** На постоянный магнит, имеющий форму тонкого цилиндра длины l=15 см, намотали равномерно N=300 витков провода. При пропускании по нему тока I=3,0 А поле вне магнита исчезло. Найти коэрцитивную силу H_0 материала магнита.
- **2.303.** Постоянный магнит имеет вид кольца с узким зазором между полюсами. Средний диаметр кольца d=20 см. Ширина зазора b=2,0 мм, индукция магнитного поля в зазоре B=40 мТл. Пренебрегая рассеянием магнитного поля на краях зазора, найти модуль напряженности магнитного поля внутри магнита.

Рис. 2.88

2.304. Постоянный магнит имеет вид кольца с узким поперечным зазором ширины b=2,5 мм. Средний радиус кольца a=5,0 см. Остаточная намагниченность материала магнита $J_r=1000$ кА/м, его коэрцитивная сила $H_c=25$ кА/м. Считая, что зависимость J(H) на участке от H_c до нуля (рис. 2.88) является линейной и рассеяния магнитного поля на краях зазора нет, найти индукцию магнитного поля в зазоре.

2.305. На железном сердечнике в виде тора со средним радиусом R=250 мм имеется обмотка с числом витков N=1000. В сердечнике сделана поперечная прорезь ширины b=1,00 мм. При токе I=0,85 А через обмотку индукция магнитного поля в зазоре B=0,75 Тл. Пренебрегая рассеянием магнитного поля на краях зазора, найти магнитную проницаемость железа в этих условиях.

2.306. На рис 2.89 показана основная кривая намагничивания технически чистого железа. Построить с помощью этого графика кривую зависимости магнитной проницаемости μ от напряженности H магнитного поля. При каком значении H μ максимально? Чему равно $\mu_{\text{макс}}$?

2.307. Тонкое железное кольцо со средним диаметром d=50 см несет на себе обмотку из N=800 витков с током I=3,0 А. В кольце имеется поперечная прорезь ширины b=2,0 мм. Пренебрегая рассеянием магнитного поля на краях зазора, найти с помощью рис. 2.89 магнитную проницаемость железа в этих условиях.

2.308. Длинный тонкий стержень из парамагнетика с восприимчивостью χ и площадью поперечного сечения S расположен вдоль оси катушки с током. Один конец стержня находится в центре катушки, где индукция магнитного поля равна B, а другой конец — в области, где магнитное поле практически отсутствует. С какой силой катушка действует на стержень?

Рис. 2.90

- **2.309.** В установке (рис. 2.90) измеряют с помощью весов силу, с которой парамагнитный шарик объема $V=41\,$ мм 3 притягивается к полюсу электромагнита M. Индукция магнитного поля на оси полюсного наконечника зависит от высоты x как $B=B_0\exp(-ax^2)$, где $B_0=1,50\,$ Тл, $a=100\,$ м $^{-2}$. Найти:
- а) на какой высоте x_m надо поместить шарик, чтобы сила притяжения была максимальной;
- б) магнитную восприимчивость парамагнетика, если максимальная сила притяжения $F_{\rm make}=160$ мкH.
- **2.310.** Небольшой шарик объема V из парамагнетика с магнитной восприимчивостью χ медленно переместили вдоль оси катушки с током из точки, где индукция магнитного поля равна B, в область, где магнитное поле практически отсутствует. Какую при этом совершили работу против магнитных сил?
 - 2.311. Длинный прямой соленоид, содержащий n витков на

Рис. 2.91

единицу длины, погрузили наполовину в парамагнитную жидкость (рис. 2.91). Найти магнитную силу, действующую на единицу поверхности жидкости, если ее магнитная восприимчивость равна х и через соленоид течет ток *I*. Куда эта сила направлена?

- ${f 2.312.}$ Круговой виток радиуса a с током I расположен параллельно плоской поверхности сверхпроводника на расстоянии l от него. Найти с помощью метода зеркальных изображений магнитную индукцию в центре витка.
- **2.313.** Тонкий прямой провод с током I расположен над плоской поверхностью сверхпроводника на расстоянии h от последнего. Найти с помощью метода зеркальных изображений:
- а) линейную плотность тока на поверхности сверхпроводника как функцию расстояния r от провода;
- б) магнитную силу, действующую на единицу длины провода.

2.6. Электромагнитная индукция. Уравнения Максвелла

• Закон электромагнитной индукции Фарадея:

$$\mathscr{E}_i = -\mathrm{d}\Phi/\mathrm{d}t. \tag{2.6a}$$

• В случае соленоида и тороида:

$$\Phi = N\Phi_1, \tag{2.66}$$

где N — число витков, Φ_1 — магнитный поток через каждый виток.

• Индуктивность соленоида:

$$L = \mu \mu_0 n^2 V. \tag{2.6b}$$

• Собственная энергия тока и взаимная энергия двух токов:

$$W = LI^2/2, W_{12} = L_{12}I_1I_2.$$
 (2.6r)

• Объемная плотность энергии магнитного поля:

$$w = B^2 / 2\mu\mu_0 = \mathbf{BH}/2. \tag{2.6д}$$

• Плотность тока смещения:

$$\mathbf{j}_{\rm cm} = \partial \mathbf{D}/\partial t. \tag{2.6e}$$

• Уравнения Максвелла в дифференциальной форме

$$\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t, \qquad \nabla \cdot \mathbf{B} = \mathbf{0},$$

$$\nabla \times \mathbf{H} = \mathbf{i} + \partial \mathbf{D}/\partial t, \qquad \nabla \cdot \mathbf{D} = \rho, \qquad (2.6 \text{ m})$$

где $\nabla \times \equiv \mathbf{rot}$ (ротор) и $\nabla \cdot \equiv \mathbf{div}$ (дивергенция).

• Плотность потока электромагнитной энергии (вектор Пойнтинга) и объемная плотность энергии электромагнитного поля:

$$\Pi = [EH], \qquad w = ED/2 + BH/2.$$
 (2.63)

ullet Формулы преобразования полей при переходе от K-системы отсчета к движущейся по отношению к ней со скоростью ${\bf v}_0$ K'-системе.

При $v_0 \ll c$

$$E' = E + [v_0 B], B' = B - [v_0 E]/c^2.$$
 (2.6µ)

В общем случае

$$\mathbf{E}'_{||} = \mathbf{E}_{||}, \qquad \mathbf{B}'_{||} = \mathbf{B}_{||},$$

$$\mathbf{E}'_{\perp} = \frac{\mathbf{E}_{\perp} + [\mathbf{v}_{0}\mathbf{B}]}{\sqrt{1 - (v_{0}/c)^{2}}}, \qquad \mathbf{B}'_{\perp} = \frac{\mathbf{B}_{\perp} - [\mathbf{v}_{0}\mathbf{E}]/c^{2}}{\sqrt{1 - (v_{0}/c)^{2}}}, \qquad (2.6\kappa)$$

где символами $\|$ и \bot отмечены составляющие полей, параллельные и перпендикулярные вектору \mathbf{v}_0 .

• Инварианты электромагнитного поля:

EB = inv,
$$E^2 - c^2 B^2 = \text{inv.}$$
 (2.6 π)

- 2.314. Контур находится в однородном магнитном поле с индукцией B (рис. 2.92). Верхнюю часть контура — провод в виде полуокружности радиуса а — вращают с постоянной угловой скоростью ω вокруг оси OO'. В момент t=0 магнитный поток через контур максимальный. Найти ЭДС индукции в контуре как функцию времени t.
- **2.315.** Провод, имеющий форму параболы $y = kx^2$, находится в однородном магнитном поле с индукцией B (рис. 2.93). Из вершины параболы в момент t=0 начали перемещать перемычку 12. Найти ЭДС индукции в образовавшемся контуре как функцию у, если перемычку перемещают:
 - а) с постоянной скоростью v;
- б) с постоянным ускорением a, причем в момент t=0 скорость перемычки была равна нулю.

- 2.316. Металлический диск радиуса a=25 см вращают с постоянной угловой скоростью $\omega = 130$ рад/с вокруг его оси. Найти разность потенциалов между центром и ободом диска, если:
 - а) внешнего магнитного поля нет;
- б) имеется перпендикулярное диску внешнее однородное магнитное поле с индукцией B = 5.0 мТл.
- 2.317. Длинный прямой проводник с током I и Π -образный проводник с подвижной перемычкой расположены в одной плоскости (рис. 2.94). Перемычку, длина которой l, перемещают вправо с постоянной скоростью v. Найти ЭДС индукции в контуре как функцию расстояния r.
- 2.318. Квадратная рамка со стороной a и длинный прямой провод с током I находятся в одной плоскости (рис. 2.95). Рамку поступательно перемещают вправо с постоянной скоростью v. Найти ЭДС индукции в рамке как функцию расстояния x.

2.319. По двум гладким вертикальным проводам, отстоящим друг от друга на расстояние l, скользит под действием силы тяжести проводник-перемычка массы m. Вверху провода замкнуты на сопротивление R (рис. 2.96). Система находится в однородном магнитном поле с индукцией B, перпендикулярном плоскости, в которой перемещается перемычка. Пренебрегая сопротивлением проводов, перемычки и

Рис. 2.96

скользящих контактов, а также магнитным полем индукционного тока, найти установившуюся скорость перемычки.

- 2.320. Система отличается от рассмотренной в предыдущей задаче (см. рис. 2.96) лишь тем, что вместо сопротивления R к концам вертикальных проводов подключен конденсатор емкости C. Найти ускорение перемычки.
- **2.321.** В системе, рассмотренной в задаче 2.314 (см. рис. 2.92), сопротивление контура равно R. Пренебрегая магнитным полем индукционного тока, найти среднюю за период вращения тепловую мощность в контуре.
- **2.322.** Круговой контур, имеющий площадь S и сопротивление R, вращают с постоянной угловой скоростью ω вокруг его диаметра, который перпендикулярен однородному магнитному полю с индукцией B. Пренебрегая магнитным полем индукционного тока, найти, каким моментом силы N(t) надо действовать на контур в этих условиях. В момент t=0 плоскость контура перпендикулярна направлению магнитного поля.
- **2.323.** Между полюсами электромагнита находится небольшая катушка, ось которой совпадает с направлением магнитного поля. Площадь поперечного сечения катушки $S=3,0\,\,\mathrm{mm}^2$, число витков N=60. При повороте катушки на 180° вокруг ее диаметра через подключенный к ней баллистический гальванометр протекает заряд $q=4,5\,\,\mathrm{mkKn}$. Найти индукцию магнитного поля между полюсами, если сопротивление электрической цепи $R=40\,\,\mathrm{Om}$.
- 2.324. Квадратная проволочная рамка со стороной a и прямой проводник с постоянным током I лежат в одной плоскости (рис. 2.97). Сопротивление рамки R. Ее повернули на 180° вокруг оси OO', отстоя-

Рис. 2.97

щей от проводника с током на расстояние b. Найти количество электричества, протекшее в рамке.

Рис. 2.98

2.325. На расстояниях a и b от длинного прямого проводника с постоянным током I_0 расположены два параллельных ему провода, замкнутых на одном конце сопротивлением R (рис. 2.98). По проводам без трения перемещают с постоянной скоростью v стержень-перемычку. Пренебрегая сопротивлением

проводов и стержня, а также магнитным полем индукционного тока, найти:

- а) индукционный ток в стержне;
- б) силу, нужную для поддержания постоянства скорости.
- **2.326.** Стержень 12 массы m скользит без трения по двум длинным рельсам, расположенным на расстоянии l друг от дру-

Рис. 2.99

га (рис. 2.99). На левом конце рельсы замкнуты сопротивлением R. Система находится в вертикальном однородном магнитном поле с индукцией B. В момент t=0 стержню сообщили вправо начальную скорость v_0 . Пренебрегая сопротивлением рельсов и стержня, а также магнитным полем индукционного тока, найти:

- а) расстояние, пройденное стержнем до остановки;
- б) количество теплоты, выделенной при этом на сопротивлении.
- **2.327.** По П-образному проводнику, расположенному в горизонтальной плоскости, может скользить без трения перемычка

Рис. 2.100

12 (рис. 2.100). Она имеет длину l, массу m и сопротивление R. Вся система находится в вертикальном однородном магнитном поле с индукцией B. В момент t=0 на перемычку стали действовать постоянной горизонтальной силой F, и перемычка начала перемещаться вправо. Найти скорость перемычки как функцию времени. Магнитное поле индукционного тока и сопротивление Π -образного

проводника пренебрежимо малы.

2.328. Плоский контур (рис. 2.101), имеющий вид двух квадратов со сторонами $a=20~{\rm cm}$ и $b=10~{\rm cm}$, находится в однородном магнитном поле, перпендикулярном его плоскости. Индукцию поля меняют по закону $B=B_0{\rm sin}\omega t$, где $B_0=10~{\rm mTn}$ и $\omega=100~{\rm c}^{-1}$. Найти амплитуду индукционного тока в контуре,

Рис. 2.101

если сопротивление единицы длины его $\rho = 50$ мОм/м. Магнитным полем этого тока пренебречь.

- **2.329.** Плоская спираль с большим числом витков N, плотно прилегающих друг к другу, находится в однородном магнитном поле, перпендикулярном плоскости спирали. Наружный радиус витков спирали равен a. Индукция поля изменяется во времени по закону $B=B_0\sin\omega t$, где B_0 и ω постояные. Найти амплитудное значение ЭДС индукции в спирали.
- **2.330.** П-образный проводник находится в однородном магнитном поле, перпендикулярном плоскости проводника и изменяющемся со скоростью $\dot{B}=0,10$ Тл/с. Вдоль параллельных сторон этого проводника перемещают покоившийся проводник-перемычку с ускорением a=10 см/с². Длина перемычки l=20 см. Найти ЭДС индукции в контуре через t=2,0 с после начала перемещения, если в момент t=0 площадь контура и индукция магнитного поля равны нулю.
- **2.331.** Внутри длинного соленоида находится катушка из N витков с площадью поперечного сечения S. Катушку поворачивают с постоянной угловой скоростью ω вокруг оси, совпадающей с ее диаметром и перпендикулярной оси соленоида. Найти ЭДС индукции в катушке, если индукция магнитного поля в соленоиде меняется со временем как $B = B_0 \sin \omega t$ и в момент t=0 ось катушки совпадала с осью соленоида.
- **2.332.** В длинном соленоиде с радиусом сечения a и числом витков n на единицу длины изменяют ток с постоянной скоростью \dot{I} A/c. Найти напряженность вихревого электрического поля как функцию расстояния r от оси соленоида. Изобразить примерный график этой зависимости.
- **2.333.** На длинный соленоид, имеющий диаметр сечения d=5 см и содержащий n=20 витков на 1 см длины, плотно надет круговой виток из медного провода сечением $S=1,0\,\,\mathrm{mm}^2$. Найти ток в витке, если ток в обмотке соленоида увеличивают

с постоянной скоростью \dot{I} A/c. Магнитным полем индукционного тока пренебречь.

- **2.334.** Непроводящее тонкое кольцо массы m, имеющее заряд q, может свободно вращаться вокруг своей оси. В момент t=0 включили однородное магнитное поле, перпендикулярное плоскости кольца. Индукция поля начала нарастать по некоторому закону $\mathbf{B}(t)$. Найти угловую скорость ω кольца как функцию \mathbf{B} .
- **2.335.** Магнитный поток через неподвижный контур с сопротивлением R изменяется в течение времени τ по закону $\Phi = at(\tau t)$. Найти количество теплоты, выделенной в контуре за это время. Магнитным полем индукционного тока пренебречь.
- **2.336.** В середине длинного соленоида находится коаксиальное кольцо прямоугольного сечения из проводящего материала с удельным сопротивлением ρ . Толщина кольца h, его внутренний и внешний радиусы a и b. Индукцию магнитного поля соленоида изменяют со временем по закону $B = \beta t$, где β постоянная. Найти индукционный ток в кольце, пренебрегая его магнитным полем.
- **2.337.** Сколько метров тонкого провода надо взять для изготовления соленоида длины $l_0=100\,$ см с индуктивностью $L=1,0\,$ м Γ н, если диаметр сечения соленоида значительно меньше его длины?
- 2.338. Найти индуктивность соленоида длины l, обмоткой которого является медная проволока массы m. Сопротивление обмотки R. Диаметр соленоида значительно меньше его длины.
- **2.339.** Катушку индуктивности L=300 мГн с сопротивлением R=140 мОм подключили к постоянному напряжению. Через сколько времени ток через катушку достигнет $\eta=50\%$ установившегося значения?
- **2.340.** Вычислить постоянную времени τ соленоида длины l=100 см, имеющего однослойную обмотку из медного провода массы m=1,0 кг. Предполагается, что диаметр сечения соленоида значительно меньше его длины.

Примечание. Постоянная времени $\tau = L/R$, где L — индуктивность, R — активное сопротивление.

2.341. Найти индуктивность единицы длины кабеля, представляющего собой два тонкостенных коаксиальных металлических цилиндра, если радиус внешнего цилиндра в $\eta = 3.6$

раза больше внутреннего. Магнитную проницаемость среды между цилиндрами считать равной единице.

- 2.342. Определить индуктивность тороидального соленоида из N витков, внутренний радиус которого равен b, а поперечное сечение имеет форму квадрата со стороной a. Пространство внутри соленоида заполнено парамагнетиком с магнитной проницаемостью μ .
- **2.343.** Вычислить индуктивность единицы длины двухпроводной ленточной линии (рис. 2.102), если расстояние между лентами h значительно меньше их ширины b, а именно b/h = 50.
- **2.344.** Найти индуктивность единицы длины двухпроводной линии, если радиус каждого провода в η раз меньше рас-

Рис. 2.102

- стояния между их осями. Полем внутри проводов пренебречь, магнитную проницаемость всюду считать равной единице и $\eta \ll 1.$
- **2.345.** Кольцо радиуса a=50 мм из тонкой проволоки индуктивности L=0.26 мк Γ н поместили в однородное магнитное поле с индукцией B=0.50 м Γ л так, что его плоскость стала перпендикулярной направлению поля. Затем кольцо охладили до сверхпроводящего состояния и выключили магнитное поле. Найти ток в кольце.
- **2.346.** Сверхпроводящее круглое кольцо радиуса a, имеющее индуктивность L, находится в однородном магнитном поле с индукцией B. Плоскость кольца параллельна вектору B, и ток в кольце равен нулю. Затем плоскость кольца повернули на 90° в положение, перпендикулярное полю. Найти:
 - а) ток в кольце после поворота;
 - б) работу, совершенную при этом.
- **2.347.** Ток $I_0=1,9$ А течет по длинному замкнутому сверхпроводящему соленоиду. Найти ток в соленоиде после того, как его растянули, увеличив длину на $\eta=5\%$.
- **2.348.** Замкнутая цепь состоит из последовательно включенного источника постоянной ЭДС $\mathscr E$ и дросселя индуктивности L. Активное сопротивление всей цепи равно R. В момент t=0 индуктивность дросселя скачком уменьшили в η раз. Найти ток в цепи как функцию времени t.

Указание: При скачкообразном изменении индуктивности полный магнитный поток (потокосцепление) остается неизменным.

Рис. 2.103

Рис. 2.104

- **2.349.** Найти закон изменения во времени тока, текущего через индуктивность L в схеме (рис. 2.103) после замыкания ключа K в момент t=0.
- **2.350.** В схеме (рис. 2.104) известны ЭДС $\mathscr E$ источника, сопротивление R и индуктивности катушек L_1 и L_2 . Внутреннее сопротивление источника и сопротивления катушек пренебрежимо малы. Найти установившиеся токи в катушках после замыкания ключа K.
- 2.351. Два длинных коаксиальных соленоида содержат n_1 и n_2 витков на единицу длины. Внутренний соленоид, имеющий площадь поперечного сечения S, заполнен магнетиком проницаемости μ . Найти взаимную индуктивность соленоидов в расчете на единицу их длины.
- 2.352. Вычислить взаимную индуктивность длинного прямого провода и прямоугольной рамки со сторонами a и b. Рамка и прямой провод лежат в одной плоскости, причем ближайшая к проводу сторона рамки длины b параллельна проводу и отстоит от него на расстояние l.
- 2.353. Определить взаимную индуктивность тороидальной катушки и проходящего по ее оси бесконечного прямого провода. Катушка имеет прямоугольное сечение, ее внутренний радиус a, внешний b. Длина стороны поперечного сечения тора, параллельной проводу, равна h. Число витков катушки N. Система находится в однородном магнетике проницаемости μ .

2.354. На поверхность тора квадратного сечения равномерно навито N_1 витков тонкой проволоки. На эту обмотку в свою очередь навито N_2 витков, как показано на рис. 2.105. Внутренний и внешний радиусы тора равны a и b. Найти взаимную индуктивность обеих обмоток.

- **2.355.** Два концентрических тонких проводника в форме окружностей с радиусами a и b лежат в одной плоскости. Имея в виду, что $a \ll b$, найти:
 - а) их взаимную индуктивность;
- б) магнитный поток через поверхность, натянутую на внешний проводник, если по внутреннему проводнику течет ток I.
- **2.356.** Два одинаковых контура в виде равносторонних треугольников (из тонких проводов с изоляцией) одной стороной совмещены, а расстояние между противоположными вершинами равно стороне треугольников. Индуктивность каждого контура L. Найти их взаимную индуктивность.
- 2.357. Ток I течет по рамке в виде квадратного контура со стороной a. Найти магнитный поток через полуплоскость P (рис. 2.106), граница которой OO' отстоит от ближайшей стороны рамки на расстояние b. Полуплоскость P и рамка лежат в одной плоскости.

Указание: Воспользоваться теоремой взаимности: $L_{12} = L_{21}$.

Рис. 2.106

- **2.358.** Имеется тонкое кольцо радиуса a с током I. Найти индукцию магнитного поля в плоскости кольца в точке, находящейся на расстоянии r от его центра, если $r \gg a$.
- 2.359. Небольшой цилиндрический магнит M (рис. 2.107) находится в центре тонкой катушки радиуса a, состоящей из N витков. Катушка подключена к баллистическому гальванометру G. Сопротивление всей цепи равно R. Най-

Рис. 2.107

ти магнитный момент магнита, если при его удалении из катушки через гальванометр прошло количество электричества q.

- **2.360.** Найти приближенную формулу для взаимной индуктивности двух тонких витков одинакового радиуса a, если оси витков совпадают, а их центры находятся друг от друга на расстоянии l, причем $l \gg a$.
- **2.361.** Имеются два неподвижных контура с взаимной индуктивностью L_{12} . В одном из контуров начали изменять ток по закону $I_1=\alpha t$, где α постоянная, t время. Найти закон изменения тока $I_2(t)$ в другом контуре, индуктивность которого L_2 и сопротивление R.

Рис. 2.108

- 2.362. Катушка индуктивности L=2,0 мкГн и сопротивления R=1,0 Ом подключена к источнику постоянной ЭДС $\mathscr{E}=3,0$ В (рис. 2.108). Параллельно катушке включено сопротивление $R_0=2,0$ Ом. Найти количество теплоты, которая выделится в катушке после размыкания ключа K. Внутреннее сопротивление источника пренебрежимо мало.
- 2.363. Ток I течет по длинному прямому проводнику круглого сечения с магнитной проницаемостью μ . Найти энергию магнитного поля внутри провода в расчете на единицу его длины.
- **2.364.** На тор из неферромагнетика намотано N=500 витков провода. Найти энергию магнитного поля, если при токе I=2,0 А магнитный поток через поперечное сечение тора $\Phi=1,0$ мВб.
- **2.365.** Железный сердечник, имеющий форму тора с круглым сечением радиуса a=3.0 см, несет на себе обмотку из N=1000 витков, по которой течет ток I=1,0 А. Средний радиус тора b=32 см. Оценить с помощью рис. 2.89 магнитную энергию в сердечнике.
- **2.366.** Тонкое кольцо из магнетика с площадью поперечного сечения S=5,0 см² имеет средний диаметр d=30 см и несет на себе обмотку из N=800 витков. В кольце сделана поперечная прорезь ширины b=2,0 мм. При некотором токе в обмотке магнитная проницаемость магнетика $\mu=1400$. Пренебрегая рассеянием поля на краях зазора, найти:
 - а) отношение магнитной энергии в зазоре и магнетике;
 - б) индуктивность системы.
- 2.367. Коаксиальный кабель состоит из внутреннего сплошного проводника радиуса a и наружной проводящей тонкостенной трубки радиуса b. Найти индуктивность единицы длины кабеля для токов достаточно малой частоты, при которой распределение тока по сечению внутреннего проводника практически равномерно. Материал кабеля немагнитный.
- **2.368.** Длиный цилиндр радиуса a из немагнитного материала, заряженный равномерно по поверхности, вращается вокруг своей оси с угловой скоростью ω . Найти энергию магнитного поля на единицу длины цилиндра, если линейная плотность заряда цилиндра равна λ .

- **2.369.** При какой напряженности электрического поля в вакууме плотность энергии этого поля будет такой же, как у магнитного поля с индукцией B=1,0 Тл?
- 2.370. Тонкое равномерно заряженное кольцо радиуса a=10 см вращается вокруг своей оси с угловой скоростью $\omega=100$ рад/с. Найти отношение плотностей энергии магнитного и электрического полей на оси кольца в точке, отстоящей от его центра на расстояние l=a.
- **2.371.** Исходя из выражения для плотности магнитной энергии, показать, что работа, затрачиваемая на намагничивание единицы объема пара- или диамагнетика, $A = -\mathbf{J}\mathbf{B}/2$.
- **2.372.** Две одинаковые катушки, каждая индуктивности L, соединяют а) последовательно, б) параллельно. Считая взаимную индуктивность катушек пренебрежимо малой, найти индуктивность системы в обоих случаях.
- 2.373. Две одинаковые катушки, каждая индуктивности L, соединены последовательно и расположены так близко друг к другу, что магнитный поток одной катушки полностью пронизывает другую, усиливая ее поток. Найти индуктивность системы из этих двух катушек.
- 2.374. Два соленоида одинаковой длины и почти одинакового сечения вставлены один в другой. Найти их взаимную индуктивность, если их индуктивности равны L_1 и L_2 .
- 2.375. Два одинаковых коаксиальных круговых витка из сверхпроводника, каждый индуктивности L, расположены на большом расстоянии друг от друга. В каждом витке в одном и том же направлении течет ток I. Витки затем совместили. Найти:
 - а) результирующий ток I' в каждом витке;
 - б) приращение магнитной энергии системы.
- **2.376.** Показать, что магнитная энергия взаимодействия двух контуров с токами в вакууме может быть представлена как $W_{\rm B3} = \frac{1}{\mu_0} \int \mathbf{B_1} \mathbf{B_2} \, \mathrm{d}V$, где $\mathbf{B_1}$ и $\mathbf{B_2}$ индукции магнитного поля в элементе объема $\mathrm{d}V$, создаваемые отдельно токами одного и другого контуров.
- **2.377.** В двух круглых контурах с радиусами a и b текут токи I_1 и I_2 . Центры контуров совпадают, а угол между их осями равен ϑ . Найти энергию взаимодействия контуров, если $a \ll b$.

- **2.378.** Пространство между двумя концентрическими металлическими сферами заполнено слабо проводящей средой с удельным сопротивлением ρ и диэлектрической проницаемостью ϵ . В некоторый момент заряд на внутренней сфере равен q. Найти:
- а) связь между векторами плотностей токов смещения и проводимости в каждой точке среды;
- б) ток смещения в данный момент через произвольную поверхность в среде, охватывающую внутреннюю сферу.
- 2.379. Плоский конденсатор образован двумя дисками, между которыми находится однородная слабо проводящая среда. Конденсатор зарядили и отключили от источника напряжения. Пренебрегая краевыми эффектами, показать, что магнитное поле внутри конденсатора отсутствует.
- **2.380.** Плоский воздушный конденсатор, площадь каждой пластины которого $S=100~{\rm cm}^2$, включен последовательно в цепь переменного тока. Найти амплитуду напряженности электрического поля в конденсаторе, если амплитуда синусоидального тока в проводящих проводах $I_m=1.0~{\rm mA}$ и частота тока $\omega=1.6\cdot10^7~{\rm c}^{-1}$.
- **2.381.** Пространство между обкладками плоского конденсатора, имеющими форму круглых дисков, заполнено однородной слабо проводящей средой с удельной проводимостью σ и диэлектрической проницаемостью ε . Расстояние между обкладками d. Пренебрегая краевыми эффектами, найти напряженность магнитного поля между обкладками на расстоянии r от их оси, если на конденсатор подано переменное напряжение $U = U_m \cos \omega t$.
- **2.382.** Длинный прямой соленоид имеет n витков на единицу длины. По нему течет переменный ток $I = I_m \sin \omega t$. Найти плотность тока смещения как функцию расстояния r от оси соленоида. Радиус сечения соленоида R.
- **2.383.** Точечный заряд q движется с нерелятивистской скоростью $\mathbf{v} = \mathrm{const.}$ Найти плотность тока смещения \mathbf{j}_{cm} в точке, находящейся на расстоянии r от заряда на прямой:
 - а) совпадающей с траекторией заряда;
 - б) перпендикулярной траектории и проходящей через заряд.
- **2.384.** Две частицы, масса каждой из которой равна m, а заряды q и -q, движутся под действием электрического притяжения по окружности так, что соединяющая их прямая вращает-

ся с угловой скоростью ω . Найти плотность тока смещения в центре этой системы.

- **2.385.** Точечный заряд q движется с нерелятивистской скоростью $\mathbf{v} = \mathrm{const.}$ Взяв циркуляцию вектора \mathbf{H} по окружности (рис. 2.109), найти \mathbf{H} в точке A как функцию радиуса-вектора \mathbf{r} и скорости \mathbf{v} заряда.
- - Рис. 2.109
- **2.386.** Доказать с помощью уравнений Максвелла, что:
- а) переменное во времени магнитное поле не может существовать без электрического поля;
- б) однородное электрическое поле не может существовать при наличии переменного во времени магнитного поля.
- **2.387.** Показать, что из уравнений Максвелла следует закон сохранения электрического заряда: $\nabla \cdot \mathbf{j} = -\partial \rho/\partial t$.
- **2.388.** Показать, что уравнения Максвелла $\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t$ и $\nabla \cdot \mathbf{B} = \mathbf{0}$ являются совместимыми, т. е. первое из них не противоречит второму.
- **2.389.** В некоторой области инерциальной системы отсчета имеется вращающееся с угловой скоростью ω магнитное поле, индукция которого равна **B**. Найти $\nabla \times \mathbf{E}$ в этой области как функцию векторов ω и **B**.
- **2.390.** В инерциальной K-системе отсчета имеется однородное чисто магнитное поле с индукцией \mathbf{B} . Найти напряженность электрического поля в K'-системе, которая движется с нерелятивистской скоростью \mathbf{v} относительно K-системы, причем $\mathbf{v} \perp \mathbf{B}$. Для решения этого вопроса рассмотреть силы, действующие на воображаемый заряд в обеих системах отсчета в момент, когда скорость заряда в K'-системе равна нулю.
- 2.391. Большая пластина из неферромагнитного металла движется со скоростью $v=90~{\rm cm/c}$ в однородном магнитном поле с индукцией $B=50~{\rm mTn}$, как показано на рис. 2.110. Найти поверхностную плотность электрических зарядов, возникающих на пластине вследствие ее движения.

Рис. 2.110

2.392. Большая пластина из однородного диэлектрика проницаемости є движется с постоянной нерелятивистской скоростью **v** в однородном магнитном поле с индукцией **B**, как пока-

зано на рис. 2.110. Найти поляризованность **Р** диэлектрика и поверхностную плотность об связанных зарядов.

- **2.393.** Длинный сплошной алюминиевый цилиндр радиуса a=5,0 см вращают вокруг его оси в однородном магнитном поле с индукцией B=10 мТл. Угловая скорость вращения $\omega=45$ рад/с, причем $\omega\uparrow\uparrow \mathbf{B}$. Пренебрегая магнитным полем возникающих зарядов, найти их объемную и поверхностную плотности.
- **2.394.** Длинный цилиндр радиуса a из диэлектрика проницаемости ϵ вращается с постоянной угловой скоростью ω вокруг своей оси во внешнем однородном магнитном поле с индукцией **B**, причем $\omega^{\uparrow\uparrow}$ **B**. Найти:
- а) поляризованность диэлектрика как функцию расстояния от оси цилиндра, P(r);
- б) поверхностный связанный заряд λ' на единицу длины цилиндра.
- **2.395.** Нерелятивистский точечный заряд q движется с постоянной скоростью \mathbf{v} . Найти с помощью формул преобразования полей индукцию \mathbf{B} магнитного поля этого заряда в точке, положение которой относительно заряда определяется радиусом-вектором \mathbf{r} .
- **2.396.** Показать с помощью формул (2.6и): если в инерциальной K-системе отсчета имеется только электрическое или только магнитное поле, то в любой другой инерциальной K'-системе будут существовать как электрическое, так и магнитное поле одновременно, причем $\mathbf{E}' \bot \mathbf{B}'$.
- 2.397. Имеется длинный прямой проводник с током I=1,0 А. Найти заряд λ' на единицу длины проводника и соответствующе число электронов, обеспечивающих этот заряд, в системе отсчета, движущейся со скоростью $v_0=1,0$ м/с вдоль проводника в направлении тока I.
- **2.398.** В инерциальной K-системе имется только электрическое поле с напряженностью $\mathbf{E} = a(x\mathbf{i} + y\mathbf{j})/(x^2 + y^2)$, где a постоянная, \mathbf{i} и \mathbf{j} орты осей X и Y. Найти индукцию \mathbf{B}' магнитного поля в K'-системе, которая движется относительно K-системы с нерелятивистской постоянной скоростью $\mathbf{v} = v\mathbf{k}$, \mathbf{k} ортоси Z. Считать, что ось Z' совпадает с осью Z. Какой вид имеет поле \mathbf{B}' ?
- **2.399.** Убедиться, что формулы преобразования (2.6и) следуют из формул (2.6к) при $v_0 \ll c$.

- **2.400.** В инерциальной K-системе имеется только однородное электрическое поле с напряженностью $E=8~{\rm kB/m}$. Найти модуль и направление:
- а) вектора ${\bf E}'$; б) вектора ${\bf B}'$ в K'-системе, движущейся по отношению к K-системе с постоянной скоростью ${\bf v}$ под углом $\alpha=45^\circ$ к вектору ${\bf E}$. Скорость K'-системы $\beta=0,60$ скорости света.
- 2.401. Решить задачу, отличающуюся от предыдущей лишь тем, что в K-системе имеется не электрическое, а магнитное поле с индукцией B=0.8 Тл.
- 2.402. Убедиться с помощью формул преобразования (2.6к) в инвариантности следующих величин:
 - a) EB; 6) $E^2 c^2 B^2$.
- **2.403.** В инерциальной K-системе отсчета имеются два однородных взаимно перпендикулярных поля: электрическое напряженности $E=40~\mathrm{kB/m}$ и магнитное с индукцией $B=0.20~\mathrm{mTr}$. Найти напряженность E' (или индукцию B') поля в той K'-системе отсчета, где наблюдается только одно поле (электрическое или магнитное).

Указание. Воспользоваться инвариантами поля.

2.404. Точечный заряд q движется равномерно и прямолинейно с релятивистской скоростью, составляющей β -часть скорости света ($\beta = v/c$). Найти напряженность **E** электрического поля этого заряда в точке, радиус-вектор которой относительно заряда равен **r** и составляет угол ϑ с вектором его скорости.

2.7. Движение заряженных частиц в электрическом и магнитном полях

• Сила Лоренца:

$$\mathbf{F} = q\mathbf{E} + q [\mathbf{vB}]. \tag{2.7a}$$

• Уравнение движения релятивистской частицы:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{m\mathbf{v}}{\sqrt{1 - (v/c)^2}} = \mathbf{F}.$$
(2.76)

• Период обращения заряженной частицы в однородном магнитном поле:

$$T = 2\pi m_r/qB, (2.7B)$$

где m_r — релятивистская масса частицы, $m_r = m / \sqrt{1 - (v/c)^2}$.

• Бетатронное условие — условие движения электрона по круговой орбите в бетатроне:

$$B_0 = \frac{1}{2} \langle B \rangle, \tag{2.7r}$$

где B_0 — индукция магнитного поля на орбите, $\langle B \rangle$ — среднее значение индукции внутри орбиты.

- **2.405.** В момент t=0 из одной пластины плоского конденсатора вылетел электрон с пренебрежимо малой скоростью. Между пластинами приложено ускоряющее напряжение $U=\varepsilon t$, где $\varepsilon=100$ B/c. Расстояние между пластинами l=5,0 см. С какой скоростью электрон подлетит к противоположной пластине?
- **2.406.** Протон, ускоренный разностью потенциалов U, попадает в момент t=0 в однородное электрическое поле плоского конденсатора, длина пластин которого в направлении движения равна l. Напряженность поля меняется во времени как $E=\varepsilon t$, где ε постоянная. Считая протон нерелятивистским, найти угол между направлениями его движения до и после пролета конденсатора. Краевыми эффектами пренебречь.
- **2.407.** Частица с удельным зарядом q/m движется прямолинейно под действием электрического поля $E=E_0-\varepsilon x$, где ε положительная постоянная, x расстояние от точки, в которой частица первоначально покоилась. Найти расстояние, пройденное частицей до остановки.
- **2.408.** Электрон начинает двигаться в однородном электрическом поле напряженности $E=10~\mathrm{kB/cm}$. Через сколько времени после начала движения кинетическая энергия электрона станет равной его энергии покоя?
- **2.409.** Релятивистский протон в момент t=0 влетел со скоростью \mathbf{v}_0 в область, где имеется поперечное однородное электрическое поле напряженности \mathbf{E} , причем $\mathbf{v}_0 \perp \mathbf{E}$. Найти зависимость от времени угла ϑ между скоростью \mathbf{v} протона и первоначальным направлением его движения.

Рис. 2.111

2.410. Протон, ускоренный разностью потенциалов U = 500 кВ, пролетает поперечное однородное магнитное поле с индукцией B = 0.51 Тл. Толщина области с полем d = 10 см (рис. 2.111). Найти угол с отклонения протона от первоначального направления движения.

Рис. 2.113

- **2.418.** Из начала координат O области, где созданы однородные параллельные оси Y электрическое и магнитное поля с напряженностью E и индукцией B (рис. 2.113), вылетает в направлении оси X нерелятивистская частица с удельным зарядом q/m и начальной скоростью v_0 . Найти:
- а) координату y_n частицы в момент, когда она n-й раз пересечет ось Y;
- б) угол α между скоростью частицы и осью Y в этот момент.
- **2.419.** Узкий пучок одинаковых ионов с удельным зарядом q/m, имеющих различные скорости, входит в точке O (см. рис. 2.113) в область, где созданы однородные паралелльные электрическое и магнитное поля с напряженностью E и индукцией B. Направление пучка в точке O совпадает с осью X. На расстоянии l от точки O находится плоский экран, ориентированный перпендикулярно оси X. Найти уравнение следа ионов на экране. Показать, что при $z \ll l$ это уравнение параболы.
- **2.420.** Пучок нерелятивистских протонов проходит, не отклоняясь, через область, в которой созданы однородные поперечные взаимно перпендикулярные электрическое и магнитное поля с $E=120~\mathrm{kB/m}$ и $B=50~\mathrm{mTn}$. Затем пучок попадает на заземленную мишень. Найти силу, с которой пучок действует на мишень, если ток в пучке $I=0.80~\mathrm{mA}$.
- **2.421.** Нерелятивистские протоны движутся прямолинейно в области, где созданы однородные взаимно перпендикулярные электрическое и магнитное поля с E=4,0 кВ/м и B=50 мТл. Траектория протонов лежит в плоскости xz (рис. 2.114) и составляет угол $\phi=30^\circ$ с осью X. Найти шаг винтовой линии, по которой будут двигаться протоны после выключения электрического поля.

Рис. 2.114

Рис. 2.115

- **2.422.** Пучок нерелятивистских заряженных частиц проходит, не отклоняясь, через область A (рис. 2.115), в которой созданы поперечные взаимно перпендикулярные электрическое и магнитное поля с напряженностью E и индукцией B. Если магнитное поле выключить, след пучка на экране ∂ смещается на Δx . Зная расстояния a и b, найти удельный заряд q/m частиц.
- **2.423.** Частица с удельным зарядом q/m движется в области, где созданы однородные взаимно перпендикулярные электрическое и магнитное поля с напряженностью \mathbf{E} и индукцией \mathbf{B} (рис. 2.116). В момент t=0 частица находилась в точке O и имела нулевую скорость. Найти для нерелятивистского случая:

а) закон движения частицы x(t) и y(t); какой вид имеет траектория;

Рис. 2.116

- б) длину участка траектории между двумя ближайшими точками, в которых скорость частицы обращается в нуль;
- в) среднее значение проекции скорости частицы на ось X (дрейфовую скорость).
- **2.424.** Система состоит из длинного цилиндрического анода радиуса a и коаксиального с ним цилиндрического катода радиуса b (b < a). На оси системы имеется нить с током накала I, создающим в окружающем пространстве магнитное поле. Найти наименьшую разность потенциалов между катодом и анодом, при которой термоэлектроны, покидающие катод без начальной скорости, начнут достигать анода.
- 2.425. Магнетрон это прибор, состоящий из нити накала радиуса a и коаксиального цилиндрического анода радиуса b, которые находятся в однородном магнитном поле, параллельном нити. Между нитью и анодом приложена ускоряющая разность потенциалов U. Найти значение индукции магнитного поля, при котором электроны, вылетающие с нулевой начальной скоростью из нити, будут достигать анода.
- **2.426.** Заряженная частица с удельным зарядом q/m начинает двигаться в области, где созданы однородные взаимно перпендикулярные электрическое и магнитное поля. Магнитное поле постоянно и имеет индуцию B, электрическое же меняется во времени как $E = E_m \cos \omega t$, где $\omega = qB/m$. Найти для нерелятивистского случая закон движения частицы x(t) и y(t), если

в момент t=0 она находилась в точке O (см. рис. 2.116). Какой примерно вид имеет траектория частицы?

- **2.427.** Частота генератора циклотрона v = 10 МГц. Найти эффективное ускоряющее напряжение на его дуантах, при котором расстояние между соседними траекториями протонов радиуса r = 0.5 м не меньше, чем $\Delta r = 1.0$ см.
- **2.428.** Протоны ускоряются в циклотроне. Максимальный радиус кривизны их траектории r = 50 см. Найти:
- а) кинетическую энергию протонов в конце ускорения, если индукция магнитного поля в циклотроне B=1,0 Тл;
- б) минимальную частоту генератора циклотрона, при которой в конце ускорения протоны будут иметь кинетическую энергию $K=20~\mathrm{MpB}$.
- **2.429.** Однократно ионизированные ионы $\mathrm{He^+}$ ускоряют в циклотроне так, что максимальный радиус орбиты r=60 см. Частота генератора циклотрона $\nu=10,0$ МГц, эффективное ускоряющее напряжение между дуантами U=50 кВ. Пренебрегая зазором между дуантами, найти:
 - а) полное время процесса ускорения иона;
- б) приближенное значение пути, пройденного ионом за весь цикл ускорения.
- 2.430. Так как период обращения электронов в однородном магнитном поле с ростом энергии быстро увеличивается, цик-

Рис. 2.117

лотрон оказывается непригодным для их ускорения. Этот недостаток устраняется в микротроне (рис. 2.117), где изменение периода обращения электрона ΔT делают кратным периоду ускоряющего поля T_0 . Сколько раз электрону необходимо пройти через ускоряющий промежуток микротрона, чтобы приобрести энергию $W=4,6~{\rm MpB}$, если

 $\Delta T = T_0$, индукция магнитного поля B = 107 мТл и частота ускоряющего поля $\nu = 3000$ МГц?

2.431. Чтобы в циклотроне не возникала расстройка, связанная с изменением периода обращения частицы при возрастании ее энергии, медленно изменяют (модулируют) частоту ускоряющего поля. По какому закону надо изменять эту частоту $\omega(t)$, если индукция магнитного поля равна B и частица приобретает за один оборот энергию ΔW ? Заряд частицы q, масса m.

- 2.432. Частица с удельным зарядом q/m находится внутри соленоида круглого сечения на расстоянии r от его оси. В обмотке включили ток, и индукция магнитного поля стала равной B. Найти скорость частицы и радиус кривизны ее траектории, если за время нарастания тока в соленоиде ее смещение пренебрежимо мало.
- **2.433.** В бетатроне магнитный поток внутри равновесной орбиты радиуса r=25 см возрастает за время ускорения практически с постоянной скоростью $\dot{\Phi}=5,0$ Вб/с. При этом электроны приобретают энергию W=25 МэВ. Найти число оборотов, совершенных электроном за время ускорения, и соответствующее значение пройденного им пути.
- 2.434. Показать, что электроны в бетатроне будут двигаться по круговой орбите постоянного радиуса при условии, что индукция магнитного поля на орбите равна половине среднего значения индукции поля внутри орбиты (бетатронное условие).
- **2.435.** Найти с помощью бетатронного условия радиус круговой орбиты электрона, зная зависимость индукции магнитного поля от расстояния r до оси поля. Рассмотреть этот вопрос на примере поля $B=B_0-ar^2$, где B_0 и a положительные постоянные.
- **2.436.** Показать с помощью бетатронного условия, что напряженность вихревого электрического поля в бетатроне имеет экстремум на равновесной орбите.
- **2.437.** В бетатроне индукция магнитного поля на равновесной орбите радиуса r=20 см изменяется за время $\Delta t=1,0$ мс практически с постоянной скоростью от нуля до B=0,40 Тл. Найти энергию, приобретаемую электроном за каждый оборот.
- 2.438. Индукция магнитного поля в бетатроне на равновесной орбите радиуса r изменяется за время ускорения от нуля до B практически с постоянной скоростью. Считая начальную скорость электрона равной нулю, найти:
 - а) энергию, приобретенную электроном за это время;
- б) соответствующее значение пройденного электроном пути, если время ускорения равно Δt .

Колебания и волны

3.1. Механические колебания

• Уравнение гармонических колебаний и его решение:

$$\ddot{x} + \omega_0^2 x = 0, \qquad x = a \cos(\omega_0 t + \alpha),$$
 (3.1a)

где ω_0 — собственная частота колебаний.

• Уравнение затухающих колебаний и его решение:

$$\ddot{x} + 2\beta\dot{x} + \omega_0^2 x = 0,$$
 $x = a_0 e^{-\beta t} \cos(\omega t + \alpha),$ (3.16)

где β — коэффициент затухания, ω — частота затухающих колебаний:

$$\omega = \sqrt{\omega_0^2 - \beta^2}.$$
 (3.1a)

• Логарифмический декремент затухания λ и добротность Q:

$$\lambda = \beta T$$
, $Q = \pi/\lambda$, (3.1r)

где $T = 2\pi/\omega$ — период затухающих колебаний.

• Уравнение вынужденных колебаний и его установившееся решение:

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f_0 \cos \omega t, \qquad x = a \cos(\omega t - \varphi), \qquad (3.1\pi)$$

где

$$a = \frac{f_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}}, \qquad \text{tg}\phi = \frac{2\beta\omega}{\omega_0^2 - \omega^2}.$$
 (3.1e)

• Максимум амплитуды смещения достигается при

$$\omega_{\rm pes} = \sqrt{\omega_0^2 - 2 \, \beta^2} \,.$$
 (3.1ж)

- **3.1.** Точка совершает колебания вдоль оси X по закону $x = A \cos(\omega t \pi/4)$. Построить примерные графики:
- а) смещения x, проекции скорости v_x и проекции ускорения a_x как функций времени t;
 - б) проекций скорости $v_{x}(x)$ и ускорения $a_{x}(x)$.
- 3.2. Некоторая точка движется вдоль оси X по закону $x = A \sin^2 (\omega t \pi/4)$. Найти:
 - а) амплитуду и период колебаний; изобразить график x(t);

- б) проекцию скорости v_x как функцию координаты x; изобразить график $v_x(x)$.
- 3.3. Точка совершает гармонические колебания по закону $x = A\cos\omega t + B\sin\omega t$, где A, B и ω постоянные. Найти амплитуду a этих колебаний.
- 3.4. Частица совершает гармонические колебания вдоль оси X около положения равновесия x=0 с частотой $\omega=4$,00 с $^{-1}$. В некоторый момент координата частицы $x_0=25$,0 см и ее скорость $v_{x0}=100$ см/с. Найти координату x и скорость v_x частицы через t=2,40 с после этого момента.
- **3.5.** Найти круговую частоту и амплитуду гармонических колебаний частицы, если на расстояниях x_1 и x_2 от положения равновесия ее скорость равна v_1 и v_2 .
- 3.6. Точка совершает гармонические колебания вдоль некоторой прямой с периодом T=0,60 с и амплитудой a=10,0 см. Найти среднюю скорость точки за время, в течение которого она проходит путь a/2:
 - а) из крайнего положения;
 - б) из положения равновесия.
- 3.7. Найти графически амплитуду A колебаний, которые возникают при сложении следующих колебаний:
 - a) $x_1 = 3\cos(\omega t + \pi/3)$, $x_2 = 8\sin(\omega t + \pi/6)$;
 - 6) $x_1 = 3\cos\omega t$, $x_2 = 5\cos(\omega t + \pi/4)$, $x_3 = 6\sin\omega t$.
- 3.8. Точка участвует одновременно в двух колебаниях одного направления: $x_1 = a\cos\omega t$ и $x_2 = a\cos2\omega t$. Найти максимальную скорость точки.
- 3.9. При сложении двух гармонических колебаний одного направления результирующее колебание точки имеет вид $x = a\cos(2,1t)\cdot\cos(50,0t)$, где t в секундах. Найти круговые частоты складываемых колебаний и период биений.
- **3.10.** «Зайчик» колеблется гармонически с некоторой неизменной частотой относительно шкалы, которая в свою очередь совершает гармонические колебания по отношению к стенке. Оба колебания происходят вдоль одного и того же направления. При частотах колебаний шкалы $\nu_1 = 20$ Гц и $\nu_2 = 22$ Гц частота биений зайчика относительно стенки оказывается одинаковой. При какой частоте ν' колебаний шкалы частота биений зайчика станет вдвое больше?
- 3.11. Точка движется в плоскости xy по закону $x = A \sin \omega t$, $y = B \cos \omega t$, где A, B, ω постоянные. Найти:

- а) уравнение траектории точки y(x) и направление ее движения по этой траектории;
- б) ускорение ${\bf a}$ точки в зависимости от ее радиуса-вектора ${\bf r}$ относительно начала координат.
- **3.12.** Найти уравнение траектории y(x) точки, если она движется по закону:
 - a) $x = a \sin \omega t$, $y = a \sin 2\omega t$;
 - 6) $x = a \sin \omega t$, $y = a \cos 2\omega t$.

Изобразить примерные графики этих траекторий.

- 3.13. Частица массы m находится в одномерном силовом поле, где ее потенциальная энергия зависит от координаты x как $U(x) = U_0 (1 \cos ax)$, U_0 и a постоянные. Найти период малых колебаний частицы около положения равновесия.
- **3.14.** Тот же вопрос, что и в предыдущей задаче, но потенциальная энергия имеет вид $U(x) = a/x^2 b/x$, где a и b положительные постоянные.
- **3.15.** Найти период малых поперечных колебаний шарика массы m=40 г, укрепленного на середине натянутой струны длины l=1,0 м. Силу натяжения струны считать постоянной и равной F=10 Н. Массой струны и силами тяжести пренебречь.
- **3.16.** Определить период малых колебаний шарика, подвешенного на нерастяжимой нити длины l=20 см, если он находится в идеальной жидкости, плотность которой в $\eta=3,0$ раза $\eta = 1,0$ меньше плотности шарика.

Рис. 3.1

Рис. 3.2

- 3.17. Два математических маятника, каждый длины l=50 см и массы m=45 г, соединены пружинкой жесткостью $\varkappa=0,66$ Н/м (рис. 3.1). При равновесии маятники занимают вертикальное положение. Найти период малых колебаний этих маятников, если их колебания происходят в вертикальной плоскости в противоположные стороны (в противофазе).
- 3.18. Шарик подвесили на нити длины l к точке O стенки, составляющей небольшой угол α с вертикалью (рис. 3.2). Затем нить с шариком отклонили на небольшой угол $\beta > \alpha$ и отпустили. Считая удар шарика о стенку упругим, найти период колебаний такого маятника.

- **3.19.** Неподвижное тело, подвешенное на пружинке, увеличивает ее длину на $\Delta l = 40\,$ мм. Найти период малых вертикальных колебаний тела.
- **3.20.** Идеальная жидкость объема V=16 см³ налита в изогнутую трубку (рис. 3.3) с площадью сечения канала S=0,50 см². Найти период малых колебаний жидкости.
- **3.21.** То же, что и в предыдущей задаче, но одно колено трубки (см. рис. 3.3) составляет угол $\vartheta = 30^{\circ}$ с вертикалью.
- 3.22. Вычислить период малых колебаний ареометра (рис. 3.4), которому сообщили небольшой толчок в вертикальном направлении. Масса ареометра m=50 г, радиус его трубки r=3,2 мм, плотность жидкости $\rho=1,00$ г/см³. Сопротивление жидкости пренебрежимо мало.
- 3.23. Как и во сколько раз изменится частота вертикальных колебаний шарика, висящего на двух одинаковых пружинках, если их последовательное соединение заменить параллельным?
- Рис. 3.3

Рис. 3.4

- 3.24. Концы недеформированной пружины жесткости $\varkappa=13~\mathrm{H/m}$ закреплены. В точке, отстоящей от одного из концов пружины на $\eta=1/3$ ее длины, укрепили небольшое тело массы $m=25~\mathrm{r}$. Найти период малых продольных колебаний данного тела. Силы тяжести нет.
- 3.25. Определить период малых продольных колебаний тела массы m в системе (рис. 3.5), если жесткости пружинок равны \varkappa_1 и \varkappa_2 , а трение пренебрежимо мало. В положении равновесия можно считать, что пружинки не деформированы.

Рис. 3.5

- 3.26. Найти период малых вертикальных колебаний тела массы m в системе, показанной на рис. 3.6. Жесткости пружинок \varkappa_1 и \varkappa_2 .
- 3.27. Однородный стержень положили на два быстро вращающихся блока, как показано на рис. 3.7. Расстояние между осями блоков l=20 см, коэффициент трения между стержнем и блоками k=0,18. По-

Рис. 3.6

Рис. 3.7

казать, что стержень будет совершать гармонические колебания. Найти их период.

3.28. Имеется поток частиц массы *m*, которые движутся с одинаковой

скоростью v и параллельно некоторой оси OO'. За плоскостью P, перпендикулярной оси OO', частицы попадают в область, где на них действует сила, направленная к оси OO' и пропорциональная расстоянию до этой оси: $F_r = -\nu r$, где \varkappa — известная постоянная. Найти наименьшее расстояние l от плоскости P до точки на оси OO', которую будут пересекать все частицы.

- 3.29. Небольшой брусок начинает скользить по наклонной плоскости, составляющей угол α с горизонтом. Коэффициент трения зависит от пройденного пути s по закону k=as, где a постоянная. Найти время движения бруска.
- **3.30.** Идеальная жидкость, заполняющая вертикальный участок длины l тонкой L-образной трубки, в момент t=0 начинает перетекать в длинный горизонтальный участок. Найти зависимость от времени t высоты h уровня жидкости и время t_0 , за которое она вытечет из вертикального участка.
- **3.31.** Представим себе шахту, пронизывающую Землю по ее оси вращения. Считая Землю за однородный шар и пренебрегая сопротивлением воздуха, найти:
 - а) уравнение движения тела, упавшего в шахту;
- б) время, которое понадобится этому телу, чтобы достичь противоположного конца шахты;
 - в) скорость тела в центре Земли.
- 3.32. Найти период малых колебаний математического маятника длины l, если его точка подвеса движется относительно поверхности Земли с постоянным ускорением a так, что угол между векторами a и g равен β .
- 3.33. На гладкий горизонтальный стержень AB надета небольшая муфточка массы m=50 г, которая соединена с концом A стержня пружинкой жесткости $\varkappa=50$ H/m. Стержень вращают с постоянной угловой скоростью $\omega=10,0$ рад/с вокруг вертикальной оси, проходящей через его конец A. Найти период T малых колебаний муфточки.
- 3.34. В установке (на рис. 3.8) муфта M массы m=0,20 кг закреплена между двумя одинаковыми пружинками, суммарная жесткость которых $\varkappa=20$ H/м. Муфта без трения может

скользить по горизонтальному стержню AB. Установка вращается с постоянной угловой скоростью $\omega = 4,4$ рад/с вокруг вертикальной оси, проходящей через середину стержня. Найти период малых колебаний муфты. При каком значении ω колебаний муфты не будет?

- 3.35. Доска с лежащим на ней бруском совершает горизонтальные гармонические колебания с амплитудой a=10 см. Найти коэффициент трения между доской и бруском, если последний начинает скользить по доске, когда ее период колебания меньше T=1.0 с.
- **3.36.** Найти зависимость от времени угла отклонения математического маятника длины 80 см, если в начальный момент маятник:
 - а) отклонили на угол 3.0° и без толчка отпустили;
- б) находился в состоянии равновесия и его нижнему концу сообщили горизонтальную скорость 0.22 м/c;
- в) отклонили на 3.0° и его нижнему концу сообщили скорость 0.22 м/с, направленную к положению равновесия.
- 3.37. Тело A массы $m_1 = 1,00$ кг и тело B массы $m_2 = 4,10$ кг соединены между собой пружиной (рис. 3.9). Тело A совершает свободные вертикальные гармонические колебания с амплитудой a = 1,6 см и частотой $\omega = 25$ с⁻¹. Найти наибольшее и наименьшее значения силы давления этой системы на опорную плоскость.

Рис. 3.9

- 3.38. Доска, на которой лежит тело массы m, начинает в момент t=0 двигаться вертикально вверх по закону $y=a(1-\cos\omega t)$, где y смещение из начального положения, $\omega=11$ с⁻¹. Найти:
- а) минимальную амплитуду колебания доски, при которой тело начнет отставать от нее;
- б) амплитуду колебания доски, при которой тело подскочит на высоту h=50 см относительно начального положения (в момент t=0).
- **3.39.** К нерастянутой пружине, верхний конец которой закреплен, подвесили и в момент t=0 отпустили тело массы m. Жесткость пружины \varkappa . Найти:

- а) закон движения тела y(t), где y его смещение из начального положения;
 - б) максимальное и минимальное натяжения пружины.
- **3.40.** Брусок массы m, находящийся на гладкой горизонтальной поверхности, соединен со стенкой горизонтальной пружиной жесткости и находится в покое. Начиная с некоторого момента на брусок начали действовать вдоль пружины постоянной силой F. Найти пройденный путь и время движения бруска до первой остановки.
- **3.41.** Частица массы m движется под действием силы $\mathbf{F} = -\alpha m \mathbf{r}$, где α положительная постоянная, \mathbf{r} радиус-вектор частицы относительно начала координат. Найти траекторию ее движения, если в начальный момент $\mathbf{r} = r_0 \mathbf{i}$ и скорость $\mathbf{v} = v_0 \mathbf{j}$, где \mathbf{i} и \mathbf{j} орты осей X и Y.
- **3.42.** Брусок массы m находится на гладкой горизонтальной поверхности. К нему прикреплена легкая пружина жесткости κ . Свободный конец пружины начали перемещать в горизонтальном направлении вдоль пружины с некоторой постоянной скоростью. Через сколько времени надо остановить этот конец пружины, чтобы после остановки брусок не колебался?
- 3.43. Тело массы m висит на пружине, прикрепленной к потолку кабины лифта. Жесткость пружины и. В момент t=0 кабина начала подниматься с ускорением a. Найти закон движения груза y(t) относительно кабины лифта, если y(0)=0 и $\dot{y}(0)=0$. Рассмотреть два случая:
 - a) a = const;
 - б) $a = \alpha t$, где α постоянная.
- 3.44. Тело массы m = 0.50 кг висит на резиновом шнуре с коэффициентом упругости $\kappa = 50$ H/м. Найти максимальное расстояние, на которое можно оттянуть вниз тело, чтобы его колебания еще были бы гармоническими. Какова при этом энергия колебаний тела?

- 3.45. Тело массы m упало с высоты h на чашку пружинных весов (рис. 3.10). Массы чашки и пружины пренебрежимо малы, жесткость последней κ . Прилипнув к чашке, тело начинает совершать гармонические колебания в вертикальном направлении. Найти амплитуду колебаний и их энергию.
- **3.46.** В условиях предыдущей задачи масса чашки **Рис. 3.10** равна *M*. Найти амплитуду колебаний в этом случае.

- 3.47. На нити висят два одинаковых шарика (один под другим), соединенные между собой пружиной. Масса каждого шарика m, растяжение пружинки равно ее длине l в недеформированном состоянии. Нить пережгли. Найти скорость центра масс этой системы в момент, когда длина пружинки первый раз станет равной l.
- 3.48. Частица массы m движется в плоскости xy под действием силы, зависящей от скорости по закону $\mathbf{F} = a(\dot{y}\mathbf{i} \dot{x}\mathbf{j})$, где a положительная постоянная, \mathbf{i} и \mathbf{j} орты осей X и Y. В начальный момент t=0 частица находилась в точке x=y=0 и имела скорость \mathbf{v}_0 в направлении орта \mathbf{j} . Найти закон движения частицы x(t), y(t), а также уравнение ее траектории.
- 3.49. Однородный стержень длины l совершает малые колебания вокруг горизонтальной оси, перпендикулярной стержню и проходящей через его верхний конец. Найти период колебаний. Трения нет.
- **3.50.** Математический маятник длины $l_0 = 40$ см и тонкий однородный стержень длины l = 60 см совершают синхронно малые колебания вокруг горизонтальной оси. Найти

расстояние от центра стержня до этой оси.

3.51. Найти круговую частоту малых колебаний тонкого однородного стержня массы m и длины l вокруг горизонтальной оси, проходящей через точку O (рис. 3.11). Жесткость пружины \varkappa . В положении равновесия стержень вертикален.

3.52. Однородный стержень массы m совершает малые колебания вокруг горизонтальной оси, проходящей через точку O (рис. 3.12). Правый конец стержня подвешен на пружине жесткости κ . Найти период колебаний стержня, если в положении равновесия он горизонтален.

3.53. Однородный стержень массы m=1,5 кг, висящий на двух одинаковых ни- тях длины l=90 см (рис. 3.13), повернули на малый угол вокруг вертикальной оси, проходящей через его середину C. При этом l нити отклонились на угол $\alpha=5,0^\circ$. Затем стержень отпустили. Найти:

- а) период колебаний;
- б) энергию колебаний стержня.

Рис. 3.11

Рис. 3.13

3.54. Горизонтальный однородный диск массы m и радиуса R укреплен на конце тонкого стержня AO (рис. 3.14). При повороте диска на угол ϕ вокруг оси AO на него действует момент упругих сил $N_z = -k\phi$, где k — постоянная. Найти амплитуду малых крутильных колебаний и их энергию, если в начальный момент диск отклонили на угол ϕ_0 и сообщили ему угловую скорость $\dot{\phi}_0$.

3.55. Однородный стержень массы m и длины l совершает малые колебания вокруг горизонтальной оси, проходящей через его верхний конец. Найти среднюю за период колебания кинетическую энергию стержня, если в начальный момент его отклонили от вертикали на угол θ_0 и сообщили ему угловую скорость $\dot{\theta}_0$.

- 3.56. Физический маятник установили так, что его центр тяжести оказался над точкой подвеса. Из этого положения маятник начал двигаться к положению устойчивого равновесия, которое он прошел с угловой скоростью ω. Найти период малых колебаний этого маятника.
- 3.57. Физический маятник совершает малые колебания вокруг горизонтальной оси O с частотой $\omega_1 = 15,0$ с⁻¹. Если в положении равновесия к нему прикрепить под осью O на расстоянии l = 20 см от нее небольшое тело массы m = 50 г, то частота колебаний становится $\omega_2 = 10,0$ с⁻¹. Найти момент инерции первоначального маятника относительно оси O.
- 3.58. Два физических маятника совершают малые колебания вокруг одной горизонтальной оси с частотами ω_1 и ω_2 . Их моменты инерции относительно данной оси равны соответственно I_1 и I_2 . Маятники привели в состояние устойчивого равновесия и скрепили друг с другом. Какова будет частота малых колебаний составного маятника?
- **3.59.** Однородный стержень длины l совершает малые колебаний вокруг горизонтальной оси OO', перпендикулярной стержню и проходящей через одну из его точек. Найти расстояние между центром стержня и осью OO', при котором период колебаний будет наименьшим.
- 3.60. Физический маятник совершает малые колебания вокруг горизонтальной оси 1. Затем его перевернули и нашли та-

кую ось 2, малые колебания вокруг которой происходят с той же частотой, что и в первом случае. Показать, что расстояние l между осями 1 и 2 равно приведенной длине маятника.

- **3.61.** Показать, что при переносе точки подвеса O физического маятника в центр качаний O' точка O становится центром качаний, т. е. период малых колебаний маят- O' ника не изменится.
- **3.62.** Тонкое кольцо радиуса R совершает малые колебания около точки O (рис. 3.15). Найти их период, если колебания происходят:
 - а) в плоскости рисунка;
- б) в направлении, перпендикулярном плоскости рисунка.
- 3.63. Тонкая однородная пластинка в форме равностороннего треугольника с высотой h совершает малые колебания вокруг горизонтальной оси, совпадающей с одной из его сторон. Найти приведенную длину и период колебаний данного маятника.
- 3.64. Легкий тонкостенный сферический сосуд радиуса R целиком заполнен водой. Сосуд укреплен на легком жестком стержне (рис. 3.16). Расстояние между точкой подвеса O и центром сосуда равно l. Во сколько раз изменится период малых колебаний такого маятника после того, как вода замерзнет? Вязкостью воды пренебречь.
- 3.65. Гладкий горизонтальный диск вращают вокруг вертикальной оси O (рис. 3.17) с постоянной угловой скоростью ω . На нем находится тонкий однородный стержень AB длины l, который совершает малые колебания вокруг вертикальной оси A, укрепленной на диске на расстоянии a от оси O. Найти частоту ω_0 этих колебаний.
- 3.66. Найти частоту малых колебаний системы, показанной на рис. 3.18. Известны радиус блока R, его момент инерции I относительно оси вращения,

Рис. 3.15

Рис. 3.16

Рис. 3.17

Рис. 3.18

масса тела m и жесткость пружины α . Массы нити и пружины пренебрежимо малы, нить по блоку не скользит, трения в оси блока нет.

- 3.67. Однородный цилиндрический блок массы M и радиуса R может свободно поворачиваться вокруг горизонтальной оси O (рис. 3.19). На блок плотно намотана нить, к свешивающемуся концу которой прикреплен груз A. Этот груз уравновешивает точечное тело массы m, укрепленное на ободе блока, при определенном значении угла α . Найти частоту малых колебаний системы.
- **3.68.** Сплошной однородный цилиндр радиуса r катается без скольжения по внутренней стороне цилиндрической поверхности радиуса R, совершая малые колебания. Найти их период.
- **3.69.** Сплошной однородный цилиндр массы m совершает малые колебания под действием двух пружин, суммарная жесткость которых равна \varkappa (рис. 3.20). Найти период этих колебаний в отсутствие скольжения.
- 3.70. В системе (на рис. 3.21) N нить, к нижнему концу которой подвешен шарик A, к которому в свою очередь подвешен на нити длины l шарик B. Верхний конец нити N совершает малые гармонические колебания так, что нить N остается все время вертикальной. Найти частоту ω этих колебаний, если массы шариков A и B равны соответственно M и m.
- 3.71. Два кубика, массы которых равны m_1 и m_2 , соединили невесомой пружинкой жесткости и и положили на гладкую горизонтальную плоскость. Затем кубики немного сблизили и одновременно отпустили. Найти собственную частоту колебаний системы.

3.72. Два шара с массами $m_1 = 1,0$ кг и $m_2 = 2,0$ кг насажены на гладкий горизонтальный стержень (рис. 3.22). Шары соединены между собой пружинкой с жесткостью $\kappa = 24$ H/м. Левому шару сообщили начальную скорость $v_1 = 12$ см/с. Найти:

Рис. 3.22

- а) частоту колебаний системы в процессе колебаний;
- б) энергию и амплитуду колебаний.
- 3.73. Найти период малых крутильных колебаний системы, состоящей из двух дисков, насаженных на тонкий стержень с коэффициентом кручения k. Моменты инерции дисков относительно оси стержня равны I_1 и I_2 .
- 3.74. Модель молекулы CO_2 три шарика, соединенные одинаковыми легкими пружинками и расположенные в положении равновесия вдоль одной прямой. Такая система может совершать продольные колебания двух типов, как показано стрелками на рис. 3.23. Зная массы атомов, найти отношение частот этих колебаний.

Рис. 3.23

- 3.75. На горизонтальной плоскости с коэффициентом трения k=0,10 лежит брусок массы m=0,50 кг, соединенный горизонтальной недеформированной пружинкой со стенкой. Жесткость пружинки $\varkappa=2,45$ H/cm, а ее масса пренебрежимо мала. Брусок сместили так, что пружинка растянулась на $x_0=3,0$ см, и затем отпустили. Найти:
 - а) период колебаний бруска;
 - б) число колебаний, которое совершит брусок до остановки.
- **3.76.** Затухающие колебания точки происходят по закону $x = a_0 \, \mathrm{e}^{-\beta t} \sin \omega t$. Найти:
 - а) амплитуду смещения и скорость точки в момент t = 0;
 - б) моменты, когда точка достигает крайних положений.
- 3.77. Тело совершает крутильные колебания по закону $\phi = \phi_0 e^{-\beta t} \cos \omega t$. Найти:
- а) угловую скорость $\dot{\phi}$ и угловое ускорение $\ddot{\phi}$ тела в момент t=0;
 - б) моменты, когда угловая скорость максимальна.

- 3.78. Точка совершает колебания с частотой ω и коэффициентом затухания β по закону (3.16). Найти начальную амплитуду a_0 и начальную фазу α , если в момент t=0 смещение точки и проекция ее скорости равны:
 - a) $x_0 = 0$, $\dot{x}_0 > 0$; 6) $x_0 > 0$, $\dot{x}_0 > 0$.
- 3.79. Осциллятор со временем релаксации $\tau=20$ с в момент t=0 имеет начальное смещение $x_0=10$ см. При каком значении начальной скорости \dot{x}_0 это смещение окажется равным своей амплитуде?
- 3.80. Точка совершает колебания с частотой $\omega = 25$ с⁻¹. Найти коэффициент затухания β , если в начальный момент скорость точки равна нулю, а ее смещение из положения равновесия в $\eta = 1,020$ раза меньше амплитуды.
- **3.81.** Точка совершает колебания с частотой ω и коэффициентом затухания β . Найти амплитуду скорости точки как функцию времени, если в момент t=0:
 - а) амплитуда ее смещения равна a_0 ;
 - б) смещение x(0) = 0 и проекция скорости $v_x(0) = \dot{x}_0$.
- 3.82. Математический маятник совершает колебания в среде, для которой логарифмический декремент затухания $\lambda_0 = 1,50$. Каким будет значение λ , если сопротивление среды увеличить в n = 2,00 раза? Во сколько раз следует увеличить сопротивление среды, чтобы колебания стали невозможны?
- **3.83.** К пружине подвесили грузик, и она растянулась на $\Delta x = 9.8$ см. С каким периодом будет колебаться грузик в вертикальном направлении? Логарифмический декремент затухания $\lambda = 3.1$.
 - 3.84. Найти добротность осциллятора, у которого:
- а) амплитуда смещения уменьшается в $\eta=2.0$ раза через каждые n=110 периодов колебаний;
- б) собственная частота $\omega_0 = 100 \; {\rm c}^{-1}$ и время релаксации $\tau = 60 \; {\rm c}$.
- 3.85. Частицу сместили из положения равновесия на расстояние l=1,0 см и предоставили самой себе. Какой путь пройдет, колеблясь, эта частица до полной остановки, если логарифмический декремент затухания $\lambda=0,020$?

- **3.86.** Найти добротность математического маятника длины l=50 см, если за $\Delta t=5.2$ мин его полная механическая энергия уменьшилась в $\eta=4.0\cdot10^4$ раз.
- 3.87. Однородный диск радиуса R=13 см может вращаться вокруг горизонтальной оси, перпендикулярной к его плоскости и проходящей через край диска. Найти период малых колебаний этого диска, если логарифмический декремент затухания $\lambda=1,00$.
- 3.88. Тонкий однородный диск массы m и радиуса R, подвешенный в горизонтальном положении к упругой нити, совершает крутильные колебания в жидкости. Момент упругих сил со стороны нити $N=\alpha \phi$, где α постоянная, ϕ угол поворота из положения равновесия. Сила сопротивления, действующая на единицу поверхности диска, $F_1=\eta v$, где η постоянная, v скорость данного элемента диска относительно жидкости. Найти частоту малых колебаний.
- 3.89. Диск A радиуса R, подвешенный на упругой нити между двумя неподвижными плоскостями (рис. 3.24), совершает крутильные колебания вокруг своей оси OO'. Момент инерции диска относительно этой оси I, зазор между диском и каждой из плоскостей h, причем $h \ll R$. Найти вязкость газа, окружающего диск A, если период колебаний диска T и логарифмический декремент затухания λ .

Рис. 3.24

- 3.90. Шарик массы m может совер-шать незатухающие гармонические колебания около точки x=0 с собственной частотой ω_0 . В момент t=0, когда шарик находился в состоянии равновесия, к нему приложили вынуждающую силу $F_x=F_0\cos\omega t$, совпадающую по направлению с осью X. Найти закон вынужденных колебаний шарика x(t).
- **3.91.** Установить в условиях предыдущей задачи закон движения шарика x(t), если частота вынуждающей силы равна собственной частоте ω_0 колебаний шарика.
- **3.92.** Частица массы m может совершать незатухающие гармонические колебания под действием упругой силы с коэффициентом κ . Когда частица находилась в состоянии равновесия,

к ней приложили постоянную силу F, которая действовала в течение τ секунд. Найти амплитуду колебаний частицы после окончания действия этой силы. Изобразить примерный график колебаний x(t). Исследовать возможные случаи.

- 3.93. На осциллятор массы m без затухания с собственной частотой ω_0 действует вынуждающая сила по закону $F_0 \cos \omega t$. При каких начальных условиях $(x_0$ и $\dot{x}_0)$ с самого начала будут происходить только вынужденные колебания? Найти закон x(t) в этом случае.
- 3.94. Оценить, через сколько времени установятся колебания в системе с добротностью $Q=1,0\cdot 10^6$ и собственной частотой $\omega_0=5000~{\rm c}^{-1}$ при резонансном воздействии на эту систему вынуждающей гармонической силы.
- **3.95.** Найти добротность осциллятора, у которого отношение резонансной частоты $\omega_{\text{peз}}$ к частоте затухающих колебаний ω равно $\eta=0.97.$
- 3.96. Найти разность фаз ϕ между смещением и вынуждающей силой при резонансе смещения, если собственная частота $\omega_0=50~{\rm c}^{-1}$ и коэффициент затухания $\beta=5,2~{\rm c}^{-1}$.
- 3.97. Шарик массы m, подвешенный к пружинке, удлиняет ее на Δl . Под действием внешней вертикальной силы, меняющейся по гармоническому закону с амплитудой F_0 , шарик совершает вынужденные колебания. Логарифмический декремент затухания λ . Пренебрегая массой пружинки, найти частоту ω вынуждающей силы, при которой амплитуда a смещения шарика максимальна. Каково значение этой амплитуды?
- 3.98. Найти выражение для вынуждающей силы, под действием которой осциллятор массы m с коэффициентом затухания β испытывает колебания по закону $x = a \sin(\omega_0 t \phi)$, где ω_0 собственная частота осциллятора.
- 3.99. Осциллятор массы m движется по закону $x=a\sin\omega t$ под действием вынуждающей силы $F_x=F_0\cos\omega t$. Найти коэффициент затухания β осциллятора.
- 3.100. Найти максимальное значение амплитуды смещения осциллятора, совершающего установившиеся колебания под действием вынуждающей гармонической силы с амплитудой $F_0 = 2,50$ H, если частота затухающих колебаний данного осциллятора $\omega = 100$ с⁻¹ и коэффициент сопротивления (коэффициент пропорциональности между силой сопротивления и скоростью) r = 0,50 кг/с.

- **3.101.** Амплитуды смещений вынужденных гармонических колебаний при частотах $\omega_1=400~{\rm c}^{-1}$ и $\omega_2=600~{\rm c}^{-1}$ равны между собой. Найти частоту ω , при которой амплитуда смещения максимальна.
- **3.102.** При частотах вынуждающей гармонической силы ω_1 и ω_2 амплитуда скорости частицы равна половине максимального значения. Найти:
 - а) частоту, соответствующую резонансу амплитуды скорости;
- б) коэффициент затухания β и частоту ω затухающих колебаний.
- **3.103.** Некоторая резонансная кривая соответствует осциллятору с логарифмическим декрементом затухания $\lambda=1,60$. Найти для этой кривой отношение максимальной амплитуды смещения к амплитуде смещения при очень малой частоте.
- **3.104.** Тело массы m, подвешенное на пружинке, совершает вынужденные колебания с амплитудой a и частотой ω . Собственная частота равна ω_0 . Найти среднюю за период механическую энергию колебаний данного осциллятора.
- **3.105.** Найти среднюю мощность вынуждающей гармонической силы, если коэффициент затухания осциллятора равен β , а полная энергия его установившихся колебаний не зависит от времени (когда это возможно?) и равна E.
- **3.106.** Под действием вынуждающей вертикальной силы $F_x = F_0 \cos \omega t$ тело, подвещенное на пружинке, совершает установившиеся вынужденные колебания по закону $x = a \cos(\omega t \varphi)$. Найти работу силы F за период колебания.
- 3.107. Под действием момента сил $N_z = N_m \cos \omega t$ тело совершает вынужденные крутильные колебания по закону $\phi = \phi_m \cos(\omega t \alpha)$. Найти работу сил трения, действующих на тело, за период колебания.
- **3.108.** Шарик массы m=50 г подвешен на пружинке жесткости $\varkappa=20,0$ Н/м. Под действием вынуждающей вертикальной гармонической силы с частотой $\omega=25,0$ с⁻¹ шарик совершает установившиеся колебания. При этом смещение шарика отстает по фазе от вынуждающей силы на $\phi=3\pi/4$. Найти добротность осциллятора.
- 3.109. Шарик массы m, подвешенный на невесомой пружинке, может совершать вертикальные колебания с коэффициен-

том затухания β . Собственная частота колебаний ω_0 . Под действием внешней вертикальной силы, меняющейся по закону $F_x = F_0 \cos \omega t$, шарик совершает установившиеся гармонические колебания. Найти:

- а) среднюю за период колебания мощность $\langle P \rangle$ силы F;
- б) частоту ω вынуждающей силы, при которой $\langle P \rangle$ максимальна; чему равна $\langle P \rangle_{\text{макс}}$?
- 3.110. Средняя мощность $\langle P \rangle$ вынуждающей силы в случае установившихся колебаний зависит от их частоты ω , как показано на рис. 3.25. Здесь предполагается, что амплитуда вынуждающей силы постоянна, не зависит от частоты ω . Найти собственную частоту ω_0 осциллятора, его коэффициент затухания β и добротность Q.

Рис. 3.25

3.2. Электрические колебания

• Затухающие колебания контура:

$$q = q_m e^{-\beta t} \cos(\omega t + \alpha), \qquad (3.2a)$$

где

$$\omega = \sqrt{\omega_0^2 - \beta^2}$$
, $\omega_0 = 1/\sqrt{LC}$, $\beta = R/2L$.

• Логарифмический декремент затухания λ и добротность Q контура определяются формулами (3.1г). При слабом затухании:

$$\lambda = \pi R \sqrt{C/L}, \qquad Q = (1/R)\sqrt{L/C}. \tag{3.26}$$

• Установившиеся вынужденные колебания при последовательном включении в контур напряжения $U=U_m\cos\omega t$:

$$I = I_m \cos(\omega t - \varphi), \tag{3.2B}$$

где

$$I_{m} = \frac{U_{m}}{\sqrt{R^{2} + \left(\omega L - 1/\omega C\right)^{2}}}, \quad \text{tg}\varphi = \frac{\omega L - 1/\omega C}{R}.$$
 (3.2r)

Соответствующая векторная диаграмма напряжений показана на рис. 3.26.

• Полное сопротивление (импеданс):

$$Z = \sqrt{R^2 + X^2},$$
 (3.2 π)

где $X = X_L - X_C$ — реактивное сопротивление.

• Мощность, выделяемая в цепи переменного тока:

$$P = UI \cos \varphi$$
, (3.2e)

где U и I — действующие (эффективные) значения напряжения и тока:

$$U = U_m / \sqrt{2}$$
, $I = I_m \sqrt{2}$.

Рис. 3.26

(3.2ж)

- 3.111. Небольшой шарик массы m=21 г, подвешенный на нерастяжимой изолирующей нити на высоте h=12 см от горизонтальной проводящей плоскости, совершает малые колебания. После того как ему сообщили заряд q, период колебаний изменился в $\eta=2,0$ раза. Найти q.
- **3.112.** Небольшая магнитная стрелка совершает малые колебания вокруг оси, перпендикулярной направлению внешнего магнитного поля. При изменении индукции этого поля период колебаний стрелки уменьшился в $\eta = 5.0$ раз. Во сколько раз и как изменилась индукция поля? Затухание колебаний пренебрежимо мало.
- 3.113. Контур (рис. 3.27) образован двумя параллельными проводниками, замыкающим их соленоидом с индуктивностью L и проводящим стержнем массы m, который может без трения скользить по проводникам. Проводники расположены в горизонтальной плоскости в однородном вертикаль-

Рис. 3.27

ном магнитном поле с индукцией B. Расстояние между проводниками l. В момент t=0 стержню сообщили начальную скорость v_0 . Найти закон его движения x(t). Сопротивление контура пренебрежимо мало.

3.114. Катушка индуктивности L соединяет верхние концы двух вертикальных медных шин, отстоящих друг от друга на расстояние l. Вдоль шин падает без начальной скорости горизонтальный проводник-перемычка массы m (без нарушения контакта с шинами). Вся система находится в однородном магнитном поле с индукцией B, перпендикулярном плоскости

шин. Найти закон движения проводника x(t). Сопротивление всех проводников пренебрежимо мало.

- 3.115. Ток в колебательном контуре зависит от времени как $I=I_m \sin \omega_0 t$, где $I_m=9.0$ мА, $\omega_0=4.5\cdot 10^4\,\mathrm{c}^{-1}$. Емкость конденсатора C=0.50 мкФ. Найти индуктивность контура и напряжение на конденсаторе в момент t=0.
- **3.116.** В контуре, состоящем из конденсатора емкости C и катушки индуктивности L, совершаются свободные незатухающие колебания, при которых амплитуда напряжения на конденсаторе равна U_m . Найти связь между током I в контуре и напряжением U на конденсаторе.
- **3.117.** Колебательный контур состоит из конденсатора емкости C, катушки индуктивности L с пренебрежимо малым сопротивлением и ключа. При разомкнутом ключе конденсатор зарядили до напряжения U_m и затем в момент t=0 замкнули ключ. Найти:
 - а) ток в контуре как функцию времени;
- б) ЭДС самоиндукции в катушке в моменты, когда электрическая энергия конденсатора равна энергии тока в катушке.

Рис. 3.28

- 3.118. Найти максимальный ток в цепи (рис. 3.28) и максимальное напряжение на конденсаторе после замыкания ключа K. Активное сопротивление цепи пренебрежимо мало.
- **3.119.** В контуре, состоящем из плоского конденсатора и катушки индуктивности с пренебрежимо малым активным сопротив-

лением, происходят колебания с энергией W. Пластины конденсатора $me\partial_n enho$ раздвинули так, что частота колебаний увеличилась в η раз. Какую работу совершили при этом против электрических сил?

Рис. 3.29

- 3.120. Найти собственную частоту ω_0 резонатора (рис. 3.29), считая, что его плоская часть является конденсатором, а цилиндрическая индуктивностью. Необходимые размеры указаны на рисунке.
- **3.121.** На рис. **3.30** показано сечение тороидального резонатора, используемого во многих микроволновых генераторах. Счи-

тая, что центральная часть резонатора является плоским конденсатором, а тороидальная полость — индуктивностью, оценить собственную частоту резонатора. Необходимые размеры даны на рисунке.

Рис. 3.30

Рис. 3.31

- а) период собственных колебаний;
- б) амплитудное значение тока через катушку.
- 3.123. Электрическая цепь (рис. 3.32) имеет пренебрежимо малое активное сопротивление. Левый конденсатор зарядили до напряжения U_0 и затем в момент t=0 замкнули ключ K. Найти зависимость от времени t напряжений на обоих конденсаторах.

3.124. Контур состоит из катушки индук-

Рис. 3.32

- тивности L и конденсатора емкости C. Сопротивление катушки и проводов пренебрежимо мало. Катушка находится в постоянном магнитном поле, так что суммарный поток, пронизывающий все витки катушки, равен Φ . В момент t=0 магнитное поле выключили. Считая время выключения очень малым по сравнению с периодом собственных колебаний контура, найти ток в контуре как функцию времени t.
- **3.125.** В контуре совершаются свободные затухающие колебания, при которых напряжение на конденсаторе меняется во времени по закону $U = U_m e^{-\beta t} \cos \omega t$. Найти моменты времени, когда модуль напряжения на конденсаторе достигает:
 - а) амплитудных значений;
 - б) максимальных (экстремальных) значений.
- **3.126.** Контур содержит конденсатор емкости C, катушку с индуктивностью L и активным сопротивлением R, а также ключ. При разомкнутом ключе конденсатор зарядили, после чего ключ замкнули, и начались колебания. Найти отношение напряжения на конденсаторе к его амплитудному значению в момент непосредственно после замыкания ключа.

- **3.127.** В колебательном контуре с индуктивностью L происходят свободные затухающие колебания, при которых ток меняется во времени по закону $I=I_m \mathrm{e}^{-\beta t} \sin \omega t$. Найти напряжение на конденсаторе в зависимости от времени и в момент t=0.
- **3.128.** Контур состоит из конденсатора емкости $C = 4.0 \, \text{мк} \Phi$ и катушки с индуктивностью L=2,0 м Γ н и активным сопротивлением $R=10\,\,{
 m Om}.$ Найти отношение энергии магнитного поля катушки к энергии электрического поля конденсатора в момент максимума тока.
- 3.129. Контур содержит две последовательно соединенные катушки с активными сопротивлениями R_1 и R_2 и индуктивностями L_1 и L_2 , причем взаимная индуктивность их пренебрежимо мала. Эти катушки надо заменить одной так, чтобы частота и добротность контура не изменились. Найти индуктивность и активное сопротивление такой катушки.
- 3.130. Найти время, за которое амплитуда колебаний тока в контуре с добротностью Q = 5000 уменьшится в $\eta = 2.0$ раза, если частота колебаний $\nu = 2,2$ МГц.
- **3.131.** Колебательный контур имеет емкость C = 10 мк Φ , индуктивность $L=25\,\mathrm{mT}$ н и активное сопротивление $R=1.0\,\mathrm{Om}$. Через сколько колебаний амплитуда тока в этом контуре уменьшится в е раз?
- 3.132. На сколько процентов отличается частота ω свободных колебаний контура с добротностью Q = 5.0 от собственной частоты ω колебаний этого контура?

Рис. 3.33

- 3.133. Проводник в форме квадратной рамки со стороной a, подвешенный на упругой нити, находится в однородном горизонтальном магнитном поле с индукцией В. В положении равновесия плоскость рамки параллельна вектору В (рис. 3.33). Будучи выведена из положения равновесия, рамка совершает малые колебания вокруг вертикальной оси, проходящей через ее центр. Момент инерции рамки относительно этой оси I, ее электрическое сопротивление R. Пренебрегая индуктивностью рамки, найти
- время, через которое амплитуда ее углового поворота уменьшится в е раз.
- **3.134.** В схеме (рис. 3.34) ЭДС элемента $\mathscr{E} = 2,0$ В, его внутреннее сопротивление r=9.0 Ом, емкость конденсатора C=10 мк Φ , индуктивность катушки L=100 м Γ н и активное

сопротивление R = 1,0 Ом. В некоторый момент ключ K разомкнули. Найти энергию колебаний в контуре:

- а) непосредственно после размыкания ключа;
- б) через $t=0.30\ {
 m c}$ после размыкания ключа.

Рис. 3.34

- **3.135.** В контуре, добротность которого Q = 50 и собственная частота колебаний $v_0 = 5.5$ к Γ ц, возбуждаются затухающие колебания. Через сколько времени энергия, запасенная в контуре, уменьшится в $\eta = 2.0$ раза?
- 3.136. Колебательный контур содержит конденсатор с утечкой. Емкость конденсатора C, его активное сопротивление R. Индуктивность катушки L. Сопротивление катушки и проводов пренебрежимо мало. Найти:
 - а) частоту затухающих колебаний такого контура;
 - б) его добротность.
- 3.137. Найти добротность контура с емкостью $C=2,0\,$ мк Φ и индуктивностью $L=5,0\,$ м Γ н, если на поддержание в нем незатухающих колебаний с амплитудой напряжения на конденсаторе $U_m=10~{\rm B}$ необходимо подводить мощность $\langle P\rangle=0,10\,$ мВт. Затухание колебаний в контуре достаточно мало.
- 3.138. Какую среднюю мощность должен потреблять колебательный контур с активным сопротивлением $R=0.45~\mathrm{Om},$ чтобы в нем поддерживались незатухающие гармонические колебания с амплитудой тока $I_m=30~\mathrm{mA}?$
- 3.139. Колебательный контур с малым затуханием содержит конденсатор емкостью C и катушку с индуктивностью L и активным сопротивлением R. Какую среднюю мощность нужно подводить к контуру, чтобы поддерживать в нем незатухающие гармонические колебания с амплитудой напряжения на конденсаторе U_m ?
- 3.140. Найти частоту затухающих колебаний контура, показанного на рис. 3.35. Емкость C, индуктивность L и активное сопротивление R предполагаются известными.

Рис. 3.35

3.141. Имеются два колебательных контура (рис. **3.36**) с конденсаторами одинаковой емкости. При каком соотношении между индуктивностями и активными сопротивлениями кату-

шек частоты и затухания свободных колебаний в обоих контурах будут одинаковыми? Взаимная индуктивность катушек левого контура пренебрежимо мала.

- **3.142.** Контур состоит из последовательно включенных конденсатора емкости C, катушки индуктивности L, ключа и сопротивления, равного критическому для данного контура. При разомкнутом ключе конденсатор зарядили до напряжения U_0 и в момент t=0 ключ замкнули. Найти ток I в контуре как функцию времени t. Чему равен $I_{\rm make}$?
- **3.143.** Катушку с активным сопротивлением R и индуктивностью L подключили в момент t=0 к источнику напряжения $U=U_m\cos\omega t$. Найти ток в катушке I(t).
- 3.144. Цепь, состоящую из последовательно соединенных конденсатора емкости C и сопротивления R, подключили к переменному напряжению $U=U_m\cos\omega t$ в момент t=0. Найти ток в цепи как функцию времени t.
- **3.145.** Длинный однослойный соленоид из проволоки с удельным сопротивлением ρ имеет на единицу длины n плотно расположенных витков. Толщина изоляции провода пренебрежимо мала. Радиус сечения соленоида равен a. Найти разность фаз между током и переменным напряжением частоты ν , которое подключено к концам соленоида.
- 3.146. Концы цепи, состоящей из последовательно включенных конденсатора и активного сопротивления $R=110~{
 m Om},$ подсоединили к переменному напряжению с амплитудой $U_m=110~{
 m B}.$ При этом амплитуда установившегося тока в цепи

 $I_m = 0.50$ А. Найти разность фаз между током и подаваемым напряжением.

- ${f 3.147}.$ На рис. ${f 3.37}$ показана простейшая схема сглаживающего фильтра. На вход подают напряжение $U=U_0(1+\cos\omega t).$ Найти:
 - а) выходное напряжение U'(t);

Рис. 3.37

- б) значение RC, при котором амплитуда переменной составляющей напряжения на выходе будет в $\eta=7.0$ раз меньше постоянной составляющей, если $\omega=314~{\rm c}^{-1}$.
- **3.148.** Колебательный контур с индуктивностью L подключен последовательно к внешнему синусоидальному напряжению с амплитудой U_m . Контур настроен в резонанс, при котором амплитуда установившегося тока равна I_m . Найти промежуток времени τ , за который амплитуда тока уменьшится в е раз, если процесс будет происходить в режиме свободных затухающих колебаний.
- 3.149. Изобразить примерные векторные диаграммы напряжений в электрических цепях, показанных на рис. 3.38, a, δ . Внешнее напряжение U предполагается гармоническим с частотой ω .
- 3.150. Цепь из последовательно соединенных конденсатора емкости C=22 мкФ и катушки с активным сопротивлением R=20 Ом и индуктивностью L=0,35 Гн подключена к сети переменного напряжения с амплитудой $U_m=180$ В и частотой $\omega=314$ с $^{-1}$. Найти:
- a) амплитуду тока в цепи;
- б) разность фаз между током и внешним напряжением;
- в) амплитуды напряжения на конденсаторе и катушке.

Рис. 3.38

- 3.151. Цепь из последовательно соединенных конденсатора емкости C, катушки индуктивности L (без активного сопротивления) и резистора с сопротивлением R подключили к источнику гармонического напряжения, частоту ω которого можно менять, не изменяя его амплитуды. Найти частоту ω , при которой становится максимальным напряжение:
 - а) на конденсаторе;
 - б) на катушке.

Убедиться, что эти частоты связаны соотношениями:

$$\omega_{C \, \mathrm{pes}} \, < \omega_{L \, \mathrm{pes}} \,$$
 и $\omega_{C \, \mathrm{pes}} \cdot \omega_{L \, \mathrm{pes}} \, = \omega_0^2$.

 ${f 3.152.}$ Переменное напряжение с частотой $\omega=314~{
m c}^{-1}$ и амплитудой $U_m=180~{
m B}$ подключено к концам цепи, состоящей из последовательно соединенных конденсатора и катушки с актив-

- ным сопротивлением R=40 Ом и индуктивностью L=0.36 Гн. При каком значении емкости конденсатора амплитуда напряжения на катушке будет максимальной? Чему равна эта амплитуда и соответствующая амплитуда напряжения на конденсаторе?
- **3.153.** Конденсатор емкости C, пространство между обкладками которого заполнено слабо проводящей средой с активным сопротивлением R, подключили к источнику переменного напряжения $U = U_m \cos \omega t$. Найти установившийся ток в подводящих проводах в зависимости от времени. Сопротивление проводов пренебрежимо мало.
- 3.154. Колебательный контур содержит конденсатор емкости C и соленоид с индуктивностью L_1 . Соленоид индуктивно связан с короткозамкнутой катушкой, имеющей индуктивность L_2 и пренебрежимо малое активное сопротивление. Их взаимная индуктивность L_{12} . Найти собственную частоту данного колебательного контура.
- **3.155.** Найти добротность колебательного контура, в который последовательно включен источник переменной ЭДС, если при резонансе тока напряжение на конденсаторе в n раз превышает напряжение на источнике.
- **3.156.** Цепь переменного тока, состоящая из последовательно соединенных катушки и конденсатора, подключена к источнику переменной ЭДС, причем индуктивность катушки подобрана так, что ток в цепи максимален. Найти добротность системы, если известно, что при увеличении индуктивности в n раз ток в цепи уменьшается в η раз.
- **3.157.** Последовательно соединенные конденсатор емкости C=45 мкФ и катушка с активным сопротивлением подключены к источнику гармонического напряжения, частоту которого можно менять, не изменяя его амплитуды. При частотах $\nu_1=1,50$ к Γ ц и $\nu_2=2,50$ к Γ ц амплитуда тока оказалась одинаковой. Найти индуктивность катушки.
- 3.158. Показать, что при малом затухании добротность контура, в котором совершаются вынужденные колебания, $Q \approx \omega_0/\Delta\omega$, где ω_0 собственная частота колебаний, $\Delta\omega$ ширина резонансной кривой $I(\omega)$ на высоте, в $\sqrt{2}$ раз меньшей амплитуды тока при резонансе.
- 3.159. К концам цепи, состоящей из последовательно соединенных конденсатора и катушки, подают поочередно два переменных напряжения одинаковой амплитуды, но разной часто-

- ты. Частота одного напряжения равна собственной частоте ω_0 , другого в η раз больше. Найти отношение амплитуд токов I_0/I , возбуждаемых обоими напряжениями, если добротность системы равна Q. Вычислить это отношение для Q=10 и 100, если $\eta=1,10$.
- **3.160.** Для зарядки аккумулятора постоянным током I_0 требуется t_0 часов. Сколько времени понадобится для зарядки такого аккумулятора от сети через однополупериодный выпрямитель, если действующее значение тока тоже равно I_0 .
- **3.161.** Найти действующее значение тока, если среднее значение его равно I_0 , а сам ток зависит от времени по закону:
 - а) показанному на рис. 3.39;
 - б) $I \, \infty \, | \, \mathrm{sin}\omega t \, |$.

Рис. 3.39

- **3.162.** Соленоид с индуктивностью L=7 мГн и активным сопротивлением R=44 Ом подключили сначала к источнику постоянного напряжения U_0 , а затем к генератору синусоидального напряжения с действующим значением $U=U_0$. При какой частоте генератора мощность, потребляемая соленоидом, будет в $\eta=5.0$ раз меньше, чем в первом случае?
- **3.163.** К сети с действующим напряжением $U=100~\mathrm{B}$ подключили катушку, индуктивное сопротивление которой $X_L=30~\mathrm{Om}$ и импеданс $Z=50~\mathrm{Om}$. Найти разность фаз между током и напряжением, а также тепловую мощность, выделяемую в катушке.
- **3.164.** Катушка с индуктивностью L=0.70 Гн и активным сопротивлением r=20 Ом соединена последовательно с безындукционным сопротивлением R, и между концами этой цепи приложено переменное напряжение с действующим значением U=220 В и частотой $\omega=314$ с⁻¹. При каком значении сопротивления R в цепи будет выделяться максимальная тепловая мощность? Чему она равна?
- **3.165.** Цепь, состоящая из последовательно соединенных конденсатора и катушки, подключена к сети. Изменив емкость конденсатора, добились увеличения выделяемой тепловой мощности в катушке в n=1,7 раза. На сколько процентов изменилось при этом значение $\cos \varphi$?

- **3.166.** В колебательный контур с добротностью Q=100 включен последовательно источник синусоидальной ЭДС с постоянной амплитудой напряжения. При некоторой частоте внешнего напряжения тепловая мощность, выделяемая в контуре, оказывается максимальной. На сколько процентов следует изменить эту частоту, чтобы выделяемая мощность уменьшилась в n=2,0 раза?
- 3.167. Цепь, состоящую из последовательно соединенных безындукционного сопротивления R=0,16 кОм и катушки с активным сопротивлением, подключили к сети с действующим напряжением U=220 В. Найти тепловую мощность, выделяемую на катушке, если действующие напряжения на сопротивлении R и катушке равны соответственно $U_1=80$ В и $U_2=180$ В.
- **3.168.** Катушка и безындукционное сопротивление $R=25~{\rm Om}$ подключены параллельно к сети переменного напряжения. Найти тепловую мощность, выделяемую в катушке, если из сети потребляется ток $I=0,90~{\rm A},~{\rm a}$ через катушку и сопротивление R текут токи соответственно $I_1=0,50~{\rm A}$ и $I_2=0,60~{\rm A}.$
- 3.169. Найти полное сопротивление участка цепи, состоящего из параллельно включенных конденсатора емкости $C=73~{\rm Mk\Phi}$ и активного сопротивления $R=100~{\rm Om}$, для переменного тока частоты $\omega=314~{\rm c}^{-1}$.
- 3.170. Изобразить примерные векторные диаграммы токов в электрических контурах, показанных на рис. 3.40. Предполагается, что подаваемое между точками A и B напряжение синусоидальное и параметры каждого контура подобраны так, что суммарный ток I_0 через контур отстает по фазе от внешнего напряжения на угол ϕ .

Рис. 3.40

3.171. Конденсатор емкости C=1,0 мк Φ и катушку, имеющую активное сопротивление R=0,10 Ом и индуктивность L=1,0 м Γ н подключили параллельно к источнику синусоида-

льного напряжения с действующим значением $U=31~{
m B.}$ Най-

- а) частоту ω, при которой наступает резонанс;
- б) действующее значение подводимого тока при резонансе и соответствующие токи через катушку и конденсатор.
- 3.172. К источнику синусоидального напряжения с частотой ω подключили параллельно конденсатор емкости C и катушку с активным сопротивлением R и индуктивностью L. Найти разность фаз между подводимым к контуру током и напряжением на источнике.
- 3.173. Участок цепи состоит из параллельно включенных конденсатора емкости C и катушки с активным сопротивлением R и индуктивностью L. Найти полное сопротивление этого участка для переменного напряжения с частотой ω.
- 3.174. Кольцо из тонкого провода с активным сопротивлением R и индуктивностью L вращают с постоянной угловой скоростью ω во внешнем однородном магнитном поле, перпендикулярном к оси вращения. При этом поток магнитной индукции внешнего поля через кольцо изменяется во времени по закону $\Phi = \Phi_0 \cos \omega t$. Показать, что индукционный ток в кольце зависит времени как $I=I_m\sin(\omega t-\varphi)$, где $I_m=\omega\Phi_0/\sqrt{R^2+\omega^2L^2}$, причем $\mathbf{tg} \varphi = \omega L/R$.
- 3.175. Найти среднюю механическую мощность, развиваемую внешними силами для поддержания вращения кольца из предыдущей задачи с постоянной угловой скоростью.
- 3.176. На деревянный сердечник (рис. 3.41) надеты две катушки: катушка 1 с индуктивностью L_1 и замкнутая накоротко катушка 2 с активным сопротивлением R и индуктивностью L_2 . Взаимная индуктивность катушек зависит от расстояния x между ними по закону $L_{12}(x)$. Найти среднее значение силы взаимодействия между катушками, когда по катушке I течет ток $I_1 = I_0 \cos \omega t$.

Рис. 3.41

3.3. Упругие волны. Акустика

• Уравнения плоской и сферической гармонических волн:

$$\xi = a \cos(\omega t - kx), \quad \xi = (a_0/r) \cos(\omega t - kr). \tag{3.3a}$$

Для однородной поглощающей среды в эти формулы входят множители $e^{-\gamma x}$ и $e^{-\gamma r}$ соответственно, где γ — коэффициент затухания волны.

• Одномерные волновые уравнения:

$$\frac{\partial \xi}{\partial x} = \mp \frac{1}{v} \frac{\partial \xi}{\partial t}, \qquad \frac{\partial^2 \xi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2}, \qquad (3.36)$$

где знаки - и + соответственно для волн, распространяющихся в положительном или отрицательном направлениях оси X.

• Фазовые скорости продольных волн в стержне ($v_{||}$) и поперечных волн в струне ($v_{||}$):

$$v_{\parallel} = \sqrt{E/\rho}, \qquad v_{\perp} = \sqrt{F/\rho_1}, \qquad (3.3B)$$

где E — модуль Юнга, ρ — плотность стержня, F — сила натяжения струны, ρ_1 — ее линейная плотность.

• Объемная плотность энергии упругой волны:

$$w = \rho \dot{\xi}^2. \tag{3.3r}$$

• Плотность потока энергии (вектор Умова) для бегущей волны:

$$\mathbf{j} = w\mathbf{v}. \tag{3.3}\mathbf{\pi}$$

В общем случае для продольных волн в стержне:

$$\mathbf{j} = -\sigma \mathbf{u} \,, \tag{3.3e}$$

где напряжение $\sigma = E\varepsilon$ (закон Гука), ε — относительная деформация $(\partial \xi/\partial x)$, \mathbf{u} — скорость частиц среды $(u_x = \partial \xi/\partial t)$.

• Уравнение стоячей гармонической волны:

$$\xi = a \cos kx \cdot \cos \omega t. \tag{3.3}$$

• Акустический эффект Доплера:

$$v' = v \frac{v - u_x'}{v - u_x},\tag{3.33}$$

где u_x и u_x' — проекции скоростей источника S и приемника P на ось X, положительное направление которой совпадает с направлением распространения звука, то есть от S к P.

• Уровень интенсивности звука (в децибелах):

$$L = 10 \lg \frac{I}{I_0}, \tag{3.3u}$$

где $I_0 = 10^{-12} \text{ Br/m}^2$.

Показанные на рис. 3.42 кривые — это уровни громкости Γ в фонах.

Рис. 3.42

• Связь между интенсивностью I звуковой волны и амплитудой колебания давления $(\Delta p)_m$:

$$I = (\Delta p)_m^2 / 2\rho v. \tag{3.3k}$$

- 3.177. За сколько времени звуковые колебания пройдут расстояние l между точками 1 и 2, если температура воздуха между ними меняется линейно от T_1 до T_2 ? Скорость звука в воздухе $v=\alpha\sqrt{T}$, где α постоянная.
- **3.178.** Неподвижный источник испускает через каждые 6 мс короткие звуковые импульсы вида f(t-3x), где t в секундах, x в километрах. Найти расстояние между соседними импульсами.
- 3.179. Бегущая волна имеет вид $\xi = a\cos(1560t 5.2x)$, где t в секундах, x в метрах. Вычислить частоту ν колебаний, скорость v их распространения и длину волны λ .
- 3.180. Уравнение плоской звуковой волны имеет вид $\xi = 60\cos(1800t 5.3x)$, где ξ в микрометрах, t в секундах, x в метрах. Найти:
- а) отношение амплитуды смещения частиц среды к длине волны;
- б) амплитуду колебаний скорости частиц среды и ее отношение к скорости распространения волны.
- **3.181.** Плоская гармоническая волна с частотой ω распространяется со скоростью v в направлении, составляющем углы

- α , β , γ с осями X, Y, Z. Найти разность фаз колебаний точек среды с координатами x_1 , y_1 , z_1 и x_2 , y_2 , z_2 .
- **3.182.** Найти волновой вектор **k** и скорость v волны, имеющей вид $\xi = a\cos(\omega t \alpha x \beta y \gamma z)$.
- 3.183. Плоская волна с частотой ω распространяется так, что некоторая фаза колебаний перемещается вдоль осей X, Y, Z со скоростями v_1, v_2, v_3 . Найти волновой вектор \mathbf{k} , если орты осей координат \mathbf{e}_x , \mathbf{e}_y , \mathbf{e}_z .
- **3.184.** В среде K распространяется плоская упругая волна $\xi = a\cos(\omega t kx)$. Найти уравнение этой волны в системе отсчета, движущейся в положительном направлении оси X со скоростью V по отношению к среде K.
- **3.185.** Показать, что любая дифференцируемая функция вида $f(t + \alpha x)$, где α постоянная, является решением волнового уравнения. Каков физический смысл α ?
- **3.186.** В однородной упругой среде распространяется плоская волна $\xi = a \cos(\omega t kx)$. Изобразить для t = 0:
 - а) графики зависимостей от x величин ξ , $\partial \xi/\partial x$ и $\partial \xi/\partial t$;
- б) направление скорости частиц среды в точках, где $\xi = 0$, если волна продольная, поперечная;
- в) примерный график распределения плотности среды $\rho(x)$ для продольной волны.
- **3.187.** Вдоль оси X распространяется бегущая упругая волна $\xi = A \exp[-(at-bx)^2]$, где A, a, b постоянные. Изобразить примерный вид зависимостей $\xi(x)$, $\partial \xi/\partial x(x)$ и $\partial \xi/\partial x(t)$ в момент t=0. Найти также расстояние Δx между точками волны, в которых относительная деформация и скорости частиц среды максимальны.
- **3.188.** С какой скоростью распространяется упругая волна, если в некоторой точке в один и тот же момент относительная деформация $\varepsilon = 1,5 \cdot 10^{-2}$ и скорость частиц среды u = 30 м/с?
- **3.189.** Плоская продольная упругая волна распространяется в положительном направлении оси X в стержне с плотностью $\rho = 4.0$ г/см³ и модулем Юнга E = 100 ГПа. Найти проекцию скорости u_x частиц стержня в точках, где относительная деформация $\varepsilon = 0.010$.
- **3.190.** В однородной среде распространяется плоская упругая волна вида $\xi = a e^{-\gamma x} \cos(\omega t kx)$, где a, γ , ω и k постоянные. Найти разность фаз колебаний в точках, где амплитуды

смещения частиц среды отличаются друг от друга на $\eta = 1.0\%$, если $\gamma = 0.42$ м $^{-1}$ и длина волны $\lambda = 50$ см.

- **3.191.** Найти радиус-вектор, характеризующий положение точечного источника сферических волн, если известно, что он находится на прямой между точками с радиусами-векторами \mathbf{r}_1 и \mathbf{r}_2 , в которых амплитуды колебаний частиц среды равны a_1 и a_2 . Среда однородная, затухания волн нет.
- 3.192. Точечный изотропный источник испускает звуковые волны с частотой $\nu=1,45$ кГц. На расстоянии $r_0=5,0$ м от него амплитуда смещения частиц среды $a_0=50$ мкм, а в точке P на расстоянии r=10,0 м от источника амплитуда смещения в $\eta=3,0$ раза меньше a_0 . Найти:
 - а) коэффициент затухания волны ү;
 - б) амплитуду скорости частиц среды в точке P.
- **3.193.** В упругой однородной среде распространяются две плоские волны, одна вдоль оси X, другая вдоль оси Y: $\xi_1 = a \cos(\omega t kx)$, $\xi_2 = a \cos(\omega t ky)$. Найти характер движения частиц среды в плоскости xy, если обе волны:
 - а) поперечные и направление колебаний одинаково;
 - б) продольные.
- **3.194.** В точке O однородной среды находится точечный изотропный источник звука мощностью P=1,7 Вт. Найти среднюю (по времени) энергию упругих волн в области, ограниченной сферой радиуса R=5,0 м с центром в точке O, если скорость волн v=340 м/с и их затухание пренебрежимо мало.
- **3.195.** Точечный изотропный источник звука находится на перпендикуляре к плоскости кольца, проходящем через его центр O. Расстояние между точкой O и источником l=100 см, радиус кольца R=50 см. Найти средний поток энергии сквозь кольцо, если в точке O интенсивность звука $I_0=30$ мкВт/м². Затухания волн нет.
- **3.196.** Изотропный точечный источник, звуковая мощность которого P=0.10 Вт, находится в центре круглого полого цилиндра радиуса R=1.0 м и высоты h=2.0 м. Полагая, что стенки цилиндра полностью поглощают звук, найти средний поток энергии, падающий на боковую поверхность цилиндра. Затухания волн нет.
- **3.197.** Найти звуковую мощность точечного изотропного источника, если на расстоянии r=7,5 м от него среднее значение

плотности потока энергии $\langle j \rangle = 6,3$ мВт/м² и коэффициент затухания волны $\gamma = 0,10$ м⁻¹.

- **3.198.** На расстоянии r=10 м от точечного изотропного источника звука среднее значение плотности потока энергии $\langle j \rangle = 5,0$ мВт/м². Коэффициент затухания волны $\gamma = 0,015$ м⁻¹. Какая энергия поглощается за t=5,0 с в области, ограниченной сферой радиуса r, в центре которой находится источник?
- **3.199.** Два точечных синфазных источника звука A и B имеют одинаковую мощность и находятся на расстоянии 2l друг от друга. Нас интересует средняя (по времени) объемная плотность $\langle w \rangle$ звуковой энергии в плоскости, перпендикулярной отрезку AB и проходящей через его середину O. На каком расстоянии от точки O величина $\langle w \rangle$ максимальна? Поглощение пренебрежимо мало.
- **3.200.** Воспользовавшись выражением (3.3e) для вектора Умова, найти среднее по времени значение проекции этого вектора на ось X для следующих продольных волн в стержне с плотностью ρ :
 - a) $\xi = a \cos(\omega t kx)$;

 - B) $\xi = a \cos(\omega t kx) + b \cos(\omega t + kx)$;
 - Γ) $\xi = a \cos(\omega t kx) + b \cos kx \cos \omega t$.
- 3.201. В упругой однородной среде с плотностью ρ распространяются две плоские продольные волны: одна вдоль оси X, $\xi_1 = a\cos(\omega t kx)$, другая вдоль оси Y, $\xi_2 = a\cos(\omega t ky)$. Найти среднее значение модуля вектора Умова в точках плоскости y = x.
- **3.202.** В однородной упругой среде установилась плоская стоячая волна $\xi = a \cos kx \cos \omega t$. Изобразить:
- а) графики зависимостей от x величин ξ и $\partial \xi / \partial x$ в моменты t=0 и t=T/2, где T период колебаний;
- б) графики распределений плотности среды $\rho(x)$ для продольных колебаний в моменты t=0 и t=T/2;
- в) график распределения скоростей частиц среды в момент t=T/4; указать направления скоростей в этот момент в пучностях для продольных и поперечных волн.
- **3.203.** В однородном стержне с плотностью ρ установилась продольная стоячая волна $\xi = a \cos kx \cos \omega t$. Найти выражения для объемной плотности:

- а) потенциальной энергии $w_p(x,t)$;
- б) кинетической энергии $w_k(x,t)$.

Изобразить графики распределения объемной плотности полной энергии w между двумя соседними узлами смещения в моменты t=0 и t=T/4, где T — период колебаний.

- 3.204. Стальная струна длины l=110 см и диаметра d=1,0 мм натянута между полюсами электромагнита. При пропускании по струне переменного тока частоты $\nu=50$ Γ ц на ней установилось $\eta=5$ полуволн. Найти силу натяжения струны.
- 3.205. Стальная струна длины l=100 см и диаметра d=0,50 мм дает основной тон частоты $\nu=256$ Гц. Найти силу ее натяжения.
- **3.206.** На струне длины 120 см образовалась стоячая волна, причем все точки струны с амплитудой смещения 3,5 мм отстоят друг от друга на 15,0 см. Найти максимальную амплитуду смещения. Какому обертону соответствуют эти колебания?
- **3.207.** Найти отношение частот основного тона двух одинаковых струн после того, как одну из них упруго растянули на $\eta_1=2.0\%$, а другую на $\eta=4.0\%$.
- 3.208. Как и во сколько раз изменится частота основного тона натянутой струны, если ее длину уменьшить на 35%, а силу натяжения F увеличить на 70%?
- 3.209. Для определения скорости звука в воздухе использовали трубу с поршнем и звуковой мембраной, закрывающей один из ее торцов. Найти скорость звука, если расстояние между соседними положениями поршня, при которых наблюдался резонанс на частоте $\nu=2,00~\mathrm{k\Gamma}$ ц, равна $l=8,5~\mathrm{cm}$.
- 3.210. Найти число возможных собственных колебаний столба воздуха в трубе, частоты которых меньше $\nu_0=1250~\Gamma$ ц, если труба открыта: а) с одного торца; б) с обоих торцов.

Длина трубы $l=85~{\rm cm}.$ Скорость звука $v=340~{\rm m/c}.$ Считать, что открытые концы трубы являются пучностями смещения.

- **3.211.** Медный стержень длины l=55,0 см закреплен в середине. Найти число продольных собственных колебаний его в диапазоне частот от 20 до 50 к Γ ц. Каковы их частоты?
- ${f 3.212.}$ Струна массы m закреплена с обоих концов. В ней возбудили колебания основного тона с круговой частотой ω и максимальной амплитудой смещения $a_{
 m makc}$. Найти:
 - а) максимальную кинетическую энергию струны;
 - б) среднюю за период кинетическую энергию струны.

- **3.213.** В однородном стержне, площадь сечения которого S и плотность ρ , установилась продольная волна $\xi = a \sin kx \cos \omega t$. Найти полную механическую энергию, заключенную между сечениями, которые проходят через соседние узлы смещения.
- **3.214.** Локомотив, движущийся со скоростью u = 120 км/ч, дает гудок длительностью $\tau_0 = 5.0$ с. Найти длительность гудка для неподвижного наблюдателя, если локомотив: а) приближается; б) удаляется. Скорость звука в воздухе v = 340 м/с.
- 3.215. Над шоссе висит источник звуковых сигналов с частотой $v_0=2,3$ кГц. От него со скоростью v=54 км/ч удаляется мотоциклист. В ту же сторону дует ветер со скоростью u=5,0 м/с. Считая скорость звука в воздухе $v_0=340$ м/с, найти частоту сигнала, воспринимаемую мотоциклистом.
- **3.216.** Звуковая волна распространяется со скоростью v в положительном направлении оси X. В ту же сторону движутся наблюдатели 1 и 2 со скоростями v_1 и v_2 . Найти отношение частот, которые зафиксируют наблюдатели.
- 3.217. Источник звука частоты $\nu_0=1000$ Гц движется по нормали к стенке со скоростью u=17 см/с. На этой же нормали расположены два неподвижных приемника P_1 и P_2 , причем последовательность расположения этих приемников и источника S такая: P_1-S-P_2 стенка. Какой приемник регистрирует биения и какова их частота? Скорость звука v=340 м/с.
- 3.218. Неподвижный наблюдатель воспринимает звуковые колебания от двух камертонов, один из которых приближается, а другой с той же скоростью удаляется. При этом наблюдатель слышит биения с частотой v=2,0 Гц. Найти скорость каждого камертона, если их частота колебаний $v_0=680$ Гц и скорость звука $v=340\,$ м/с.
- 3.219. На оси X находятся приемник и источник звука частоты $\nu_0=2000$ Гц. Источник совершает гармонические колебания вдоль этой оси с круговой частотой ω и амплитудой a=50 см. При каком значении ω ширина частотного интервала, воспринимаемого неподвижным приемником, $\Delta \nu = 200$ Гц? Скорость звука $\nu=340\,$ м/с.
- **3.220.** Источник звука частоты $\nu_0 = 1700$ Гц и приемник находятся в одной точке. В некоторый момент источник начинает удаляться от приемника с ускорением $a = 10.0 \text{ м/c}^2$. Найти частоту колебаний, воспринимаемых неподвижным приемником через t = 10.0 c после начала движения источника. Скорость звука v = 340 m/c.

- **3.221.** Источник звука, собственная частота которого $\nu_0 = 1.8 \ \mathrm{k}\Gamma$ ц, движется равномерно по прямой, отстоящей от неподвижного наблюдателя на $l = 250 \ \mathrm{m}$. Скорость источника составляет $\eta = 0.80$ скорости звука. Найти:
- а) частоту звука, воспринимаемую наблюдателем в момент, когда источник окажется напротив него;
- б) расстояние между источником и наблюдателем в момент, когда воспринимаемая наблюдателем частота $\nu = \nu_0$.
- 3.222. Неподвижный источник испускает монохроматический звук, к нему приближается стенка со скоростью $u=33~{\rm cm/c}$. Скорость распространения звука в среде $v=330~{\rm m/c}$. Как и на сколько процентов изменяется длина волны звука при отражении от стенки?
- 3.223. На одной и той же нормали к стенке находятся источник звуковых колебаний частоты $v_0 = 1700$ Гц и приемник. Источник и приемник неподвижны, а стенка удаляется от источника со скоростью u = 6,0 см/с. Найти частоту биений, которую будет регистрировать приемник. Скорость звука v = 340 м/с.
- 3.224. Найти коэффициент затухания γ звуковой волны, если на расстояниях $r_1=10$ м и $r_2=20$ м от точечного изотропного источника звука значения интенсивности звуковой волны отличаются друг от друга в $\eta=4,5$ раза.
- 3.225. Плоская звуковая волна частоты 2,0 к Γ ц распространяется вдоль оси X. Коэффициент затухания волны $\gamma=0.0230~{\rm M}^{-1}$. В точке x=0 ее интенсивность $L=60~{\rm дБ}$. Найти с помощью рис. 3.42:
 - а) громкость Γ в точке с координатой x = 50 м;
 - б) координату x точки, в которой звук уже не слышен.
- **3.226.** На расстоянии $r_0=20,0$ м от точечного изотропного источника звука частоты 50 Γ ц интенсивность звука $L_0=64$ дБ. Пренебрегая затуханием волны, найти с помощью рис. 3.42:
 - а) громкость Γ звука на r=10,0 м от источника;
 - б) расстояние от источника, на котором звук не слышен.
- 3.227. Наблюдатель 1, находящийся на $r_1=5,0$ м от звучащего камертона, отметил исчезновение звука на $\tau=19$ с позже, чем наблюдатель 2, находящийся на $r_2=50$ м от камертона. Считая затухание звуковых волн в воздухе пренебрежимо малым и скорость звука v=340 м/с, найти коэффициент затухания β камертона.

- **3.228.** В среде с плотностью ρ распространяется плоская продольная гармоническая волна. Скорость волны равна v. Считая изменение плотности среды при прохождении волны $\Delta \rho \ll \rho$, показать, что:
- а) приращение давления в среде $\Delta p = -\rho v^2 (\partial \xi / \partial x)$, где $(\partial \xi / \partial x)$ относительная деформация;
 - б) интенсивность волны определяется формулой (3.3к).
- 3.229. На пути плоской звуковой волны в воздухе находится шар радиуса R=50 см. Длина волны $\lambda=5,0$ см, частота $\nu=6,8$ к Γ ц, амплитуда колебаний давления в воздухе $(\Delta p)_m=3,5$ Па. Найти средний за период колебаний поток энергии, падающей на поверхность шара.
- **3.230.** Точка A находится на r=1,5 м от точечного изотропного источника звука частоты v=600 Гц. Звуковая мощность источника P=0,80 Вт. Пренебрегая затуханием волн и считая скорость звука v=340 м/с, найти для точки A:
- а) амплитуду колебаний давления $(\Delta p)_m$ и ее отношение к давлению воздуха;
- б) амплитуду колебаний частиц среды; сравнить ее с длиной волны звука.
- 3.231. На расстоянии r=100 м от точечного изотропного источника звука частоты 200 Гц его интенсивность L=70 дБ. Интенсивность этого звука на пороге слышимости, т. е. I_0 и L_0 , считать известными (см. рис. 3.42). Коэффициент затухания волны $\gamma=5,0\cdot 10^{-3}$ м $^{-1}$. Найти звуковую мощность источника.

3.4. Электромагнитные волны. Излучение

• Фазовая скорость электромагнитной волны:

$$v = c / \sqrt{\epsilon \mu}$$
, где $c = 1 / \sqrt{\epsilon_0 \mu_0}$. (3.4a)

• В бегущей электромагнитной волне:

$$E\sqrt{\varepsilon\varepsilon_0} = H\sqrt{\mu\mu_0}. \tag{3.46}$$

ullet Для плоской электромагнитной волны, распространяющейся в вакууме вдоль оси X:

$$-\partial B_z / \partial t = \partial E_y / \partial x, \qquad -\partial E_y / \partial t = -c^2 \partial B_z / \partial x.$$
 (3.4B)

• Объемная плотность энергии электромагнитного поля:

$$w = \frac{ED}{2} + \frac{BH}{2}. (3.4r)$$

• Плотность потока электромагнитной энергии — вектор Пойнтинга:

$$\Pi = [EH]. \tag{3.4}$$

• Основные уравнения двухпроводной линии:

$$\frac{\partial I}{\partial x} = -C_1 \frac{\partial U}{\partial t}, \qquad \frac{\partial U}{\partial x} = -L_1 \frac{\partial I}{\partial t}, \qquad (3.4e)$$

где C_1 и L_1 — емкость и индуктивность единицы длины линии. Ее волновое сопротивление $\rho = \sqrt{L_1 \ / \ C_1}$.

• Амплитуда электромагнитной волны, излучаемой диполем, в волновой зоне:

$$E_m \sim (1/r) \sin \vartheta,$$
 (3.4x)

где r — расстояние от диполя, ϑ — угол между радиусом-вектором \mathbf{r} и осью диполя.

• Мощности излучения диполя с электрическим моментом $\mathbf{p}(t)$ и заряда q, движущегося с ускорением \mathbf{a} :

$$P = \frac{\mu_0}{4\pi c} \ddot{\mathbf{p}}^2, \qquad P = \frac{\mu_0}{4\pi c} q^2 \mathbf{a}^2.$$
 (3.43)

• Эффект Доплера при $v \ll c$:

$$\frac{\Delta \nu}{\nu} = \frac{\nu}{c} \cos \vartheta, \tag{3.4u}$$

где v — скорость источника, ϑ — угол между направлением скорости \mathbf{v} источника и направлением на наблюдателя.

• Эффект Доплера в общем случае:

$$\nu = \nu_0 \frac{\sqrt{1-\beta^2}}{1-\beta\cos\vartheta}$$
, где $\beta = v/c$. (3.4к)

При $\theta = 0$ эффект Доплера называют продольным, а при $\theta = \pi/2$ — поперечным.

- **3.232.** Электромагнитная волна частоты $\nu = 3.0$ МГц переходит из вакуума в диэлектрик проницаемости $\varepsilon = 4.0$. Найти приращение ее длины волны.
- 3.233. Плоская электромагнитная волна падает нормально на поверхность плоскопараллельного слоя толщины l из диэлектрика, проницаемость которого уменьшается экспоненциально от ϵ_1 на передней поверхности до ϵ_2 на задней. Найти время распространения заданной фазы волны через этот слой.
- **3.234.** Электромагнитная волна распространяется в вакууме вдоль оси X. В точке A в некоторый момент модуль плотности тока смещения $j_{\rm cm}=160~{\rm mkA/m^2}.$ Найти в точке A в тот же момент модуль производной $|\partial E/\partial x|.$

- 3.235. Плоская электромагнитная волна частоты $\nu=10~\text{M}\Gamma$ ц распространяется в слабо проводящей среде с удельной проводимостью $\sigma=10~\text{mCm/m}$ и диэлектрической проницаемостью $\epsilon=9$. Найти отношение амплитуд плотностей токов проводимости и смещения.
- **3.236.** Плоская электромагнитная волна $\mathbf{E} = \mathbf{E}_m \cos(\omega t \mathbf{kr})$ распространяется в вакууме. Считая векторы \mathbf{E}_m и \mathbf{k} известными, найти вектор \mathbf{H} как функцию времени t в точке с радиусом-вектором $\mathbf{r} = \mathbf{0}$.
- 3.237. В вакууме распространяется плоская электромагнитная волна $\mathbf{E} = \mathbf{e}_y E_m \cos(\omega t kx)$, где \mathbf{e}_y орт оси Y, $E_m = 160$ В/м, k = 0.51 м⁻¹. Найти вектор **H** в точке с координатой x = 7.7 м в момент:
 - a) t = 0; 6) t = 33 Hc.
- 3.238. Тонкая катушка, имеющая вид кольца радиуса R=35 см, состоит из n=10 витков провода. Катушка находится в поле электромагнитной волны частоты $\nu=5,0\,$ МГц, направление распространения которой и ее электрический вектор перпендикулярны оси катушки. Амплитудное значение модуля электрического вектора волны $E_m=0,50\,$ мВ/м. Найти амплитудное значение ЭДС индукции в катушке.
- **3.239.** Исходя из уравнений Максвелла, показать, что для плоской электромагнитной волны, распространяющейся в вакууме в направлении оси X, справедливы соотношения (3.4в).
- 3.240. Найти средний вектор Пойнтинга плоской электромагнитной волны, электрическая составляющая которой $\mathbf{E} = \mathbf{E}_m \cos(\omega t \mathbf{kr})$, если волна распространяется в вакууме.
- **3.241.** В вакууме распространяется плоская электромагнитная волна, частота которой $\nu=100~\mathrm{MT}$ ц и амплитуда электрической составляющей $E_m=50~\mathrm{mB/m}$. Найти средние за период колебания значения:
 - а) модуля плотности тока смещения;
 - б) плотности потока энергии.
- **3.242.** В вакууме распространяется плоская электромагнитная волна частоты ω , для которой среднее значение плотности потока энергии равно $\langle \Pi \rangle$. Найти амплитудное значение плотности тока смещения в этой волне.
- **3.243.** В вакууме вдоль оси X распространяются две плоские одинаково поляризованные волны, электрические составляющие которых изменяются по закону $\mathbf{E}_1 = \mathbf{E}_0 \cos(\omega t kx)$ и

- ${\bf E}_2 = {\bf E}_0 \cos(\omega t kx + \varphi)$. Найти среднее значение плотности потока энергии.
- 3.244. В вакууме распространяются две плоские электромагнитные волны, одна вдоль оси X, другая вдоль оси Y: $\mathbf{E}_1 = \mathbf{E}_0 \cos(\omega t kx)$, $\mathbf{E}_2 = \mathbf{E}_0 \cos(\omega t ky)$, где вектор \mathbf{E}_0 параллелен оси Z. Найти среднее значение плотности потока энергии в точках плоскости y = x.
- 3.245. Шар радиуса R=50 см находится в немагнитной среде проницаемости $\varepsilon=4,0$. В среде распространяется плоская электромагнитная волна, длина которой $\lambda\ll R$ и амплитуда электрической составляющей $E_m=200$ В/м. Какая энергия падает на шар за время t=60 с?
- 3.246. В вакууме в направлении оси X установилась стоячая электромагнитная волна с электрической составляющей $\mathbf{E} = \mathbf{E}_m \cos kx \cos \omega t$. Найти магнитную составляющую волны $\mathbf{B}(x,t)$. Изобразить примерную картину распределения электрической и магнитной составляющих волны в моменты t=0 и t=T/4, где T период колебаний.
- **3.247.** В вакууме вдоль оси X установилась стоячая электромагнитная волна, электрическая составляющая которой равна $\mathbf{E} = \mathbf{E}_m \cos kx \cos \omega t$. Найти x-проекцию вектора Пойнтинга $\Pi_x(x,t)$ и ее среднее за период колебаний значение.
- 3.248. Плоский воздушный конденсатор, обкладки которого имеют форму дисков радиуса R=6.0 см, подключен к синусоидальному напряжению частоты $\omega=1000$ с $^{-1}$. Найти отношение амплитудных значений магнитной и электрической энергий внутри конденсатора.
- 3.249. Синусоидальный ток частоты $\omega = 1000 \text{ c}^{-1}$ течет по обмотке соленоида, радиус сечения которого R = 6,0 см. Найти отношение амплитудных значений электрической и магнитной энергий внутри соленоида.
- 3.250. Плоский конденсатор с круглыми параллельными пластинами медленно заряжают. Показать, что поток вектора Пойнтинга через боковую поверхность конденсатора равен приращению энергии конденсатора за единицу времени. Рассеянием поля на краях при расчете пренебречь.
- **3.251.** По прямому проводнику круглого сечения течет постоянный ток I. Найти поток вектора Пойнтинга через боковую поверхность участка данного проводника, имеющего сопротивление R.

- 3.252. Нерелятивистские протоны, ускоренные разностью потенциалов U, образуют пучок круглого сечения с током I. Найти модуль и направление вектора Пойнтинга вне пучка на расстоянии r от его оси.
- 3.253. Ток, протекающий по обмотке длинного прямого соленоида, достаточно медленно увеличивают. Показать, что скорость возрастания энергии магнитного поля в соленоиде равна потоку вектора Пойнтинга через его боковую поверхность.

- 3.254. На рис. 3.43 показан участок двух- $\frac{I}{I}$ ϕ_1 проводной линии передачи постоянного тока, ϕ_2 направление которого отмечено стрелками. Имея в виду, что потенциал $\phi_2 > \phi_1$, установить с помощью вектора Пойнтинга, где находится генератор тока (слева, справа?).
- **3.255.** Энергия от источника постоянного напряжения U передается к потребителю по длинному прямому коаксиальному кабелю с пренебрежимо малым активным сопротивлением. Потребляемый ток равен I. Найти поток энергии через поперечное сечение кабеля. Внешняя проводящая оболочка кабеля предполагается тонкостенной.
- **3.256.** Генератор переменного напряжения $U = U_0 \cos \omega t$ передает энергию потребителю по длинному прямому коаксиальному кабелю с пренебрежимо малым активным сопротивлением. Ток в цепи меняется по закону $I=I_0\cos(\omega t-\phi)$. Найти средний по времени поток энергии через поперечное сечение кабеля. Внешняя оболочка кабеля тонкостенная.
- 3.257. Показать, что на границе раздела двух сред нормальные составляющие вектора Пойнтинга не терпят разрыва, т. е. $S_{1n} = S_{2n}$.
- 3.258. Исходя из основных уравнений двухпроводной линии (3.4е), показать, что:
- а) напряжение и ток распространяются вдоль линии в виде волны со скоростью $v=1/\sqrt{L_1C_1}$;
 - б) волновое сопротивление линии $ho = \sqrt{L_1/C_1}$.
- 3.259. Волновое сопротивление коаксиального кабеля (без потерь) $\rho = 60$ Ом, пространство между внешним и внутренним проводниками заполнено диэлектриком проницаемости $\varepsilon = 4,0$. Найти индуктивность и емкость единицы длины кабеля.
 - 3.260. Определить волновое сопротивление р:
- а) двухпроводной линии без потерь, провода которой имеют радиус a и расстояние между осями b, если $b \gg a$;

- б) коаксиального кабеля без потерь, радиус внутреннего провода которого a и внутренний радиус внешнего цилиндрического проводника b, считая $\varepsilon = 1$.
- **3.261.** Найти с помощью уравнений (3.4e) распределение тока I(x,t) в двухпроводной линии, вдоль которой установилось распределение напряжений по закону $U = U_m \cos kx \cos \omega t$, если волновое сопротивление линии равно ρ .
- **3.262.** Найти с помощью уравнений (3.4e) закон распределения амплитуд напряжений $U_m(x)$ и токов $I_m(x)$ при наличии собственных колебаний в двухпроводной линии длины l, у которой:
 - а) концы с обеих сторон разомкнуты;
 - б) концы с обеих сторон замкнуты;
 - в) левые концы линии замкнуты, правые разомкнуты.
- **3.263.** Найти длину L воздушной двухпроводной линии, концы которой замкнуты с обеих сторон, если резонанс в линии наступает при двух последовательных частотах $\nu_1=3.0$ МГц и $\nu_2=4.5$ МГц.
- **3.264.** Доказать, что у замкнутой системы заряженных нерелятивистских частиц с одинаковым удельным зарядом дипольное излучение отсутствует.
- 3.265. Найти среднюю мощность излучения $\langle P \rangle$ электрона, совершающего гармонические колебания с амплитудой a=0,10 нм и частотой $\omega=6,5\cdot 10^{14}~{\rm c}^{-1}$.
- **3.266.** Найти мощность излучения нерелятивистской частицы с зарядом e и массой m, движущейся по круговой орбите радиуса R в поле неподвижного точечного заряда q.
- **3.267.** Нерелятивистский протон влетел по нормали в полупространство с поперечным однородным магнитным полем, индукция которого B=1,0 Тл. Найти отношение энергии, потерянной протоном на излучение за время движения в поле, к его первоначальной кинетической энергии.
- 3.268. Нерелятивистская заряженная частица движется в поперечном однородном магнитном поле с индукцией B. Найти закон убывания (за счет излучения) кинетической энергии частицы во времени. Через сколько времени ее кинетическая энергия уменьшается в е раз? Вычислить это время для электрона и протона, если B=1,0 Тл.
- **3.269.** Заряженная частица движется вдоль оси Y по закону $y = a \cos \omega t$, а точка наблюдения P находится на оси X на расстоянии l от частицы ($l \gg a$). Найти отношение плотностей по-

тока электромагнитного излучения Π_1/Π_2 в точке P в моменты, когда координата частицы $y_1=0$ и $y_2=a$. Вычислить это отношение, если $\omega=2,01\cdot 10^8$ с⁻¹ и l=50,0 м. Запаздывание пренебрежимо мало.

- **3.270.** В направлении максимального излучения на расстоянии $r_0=10$ м от элементарного диполя (волновая зона) амплитуда напряженности электрического поля $E_m=6$ В/м. Найти среднее значение плотности потока энергии на расстоянии r=20 м от диполя в направлении, составляющем угол $\theta=30^\circ$ с его осью.
- 3.271. Электромагнитная волна, излучаемая диполем, распространяется в вакууме так, что в волновой зоне на луче, перпендикулярном оси диполя, на расстоянии r от него среднее значение плотности потока энергии равно Π_0 . Найти среднюю мощность излучения диполя.
- ${f 3.272.}$ Средняя мощность, излучаемая диполем, равна $P_0.$ Найти среднюю плотность энергии электромагнитного поля в вакууме в волновой зоне на луче, перпендикулярном оси диполя, на расстоянии r от него.
- **3.273.** Постоянный по модулю электрический диполь с моментом p вращают с угловой скоростью ω вокруг оси, перпендикулярной оси диполя и проходящей через его середину. Найти мощность излучения диполя.
- **3.274.** Считая, что частица имеет форму шарика и поглощает весь падающий на нее свет, найти радиус частицы, при котором гравитационное притяжение ее к Солнцу будет компенсироваться силой светового давления. Мощность светового излучения Солнца равна $P = 4 \cdot 10^{26} \, \mathrm{Br}$, а плотность частицы $\rho = 1.0 \, \mathrm{r/cm^3}$.
- 3.275. В опыте Физо по определению скорости света расстояние между зубчатым колесом и зеркалом l=7,0 км, число зубцов z=720. Два последовательных исчезновения света наблюдали при таких частотах вращения колеса: $n_1=283$ об/с и $n_2=313$ об/с. Найти скорость света.
- **3.276.** Источник света движется со скоростью v относительно приемника. Показать, что при $v \ll c$ относительное изменение частоты света определяется формулой (3.4и).
- 3.277. Одна из спектральных линий, испускаемых возбужденными ионами ${\rm He}^+$, имеет длину волны $\lambda = 410$ нм. Найти до-

плеровское смещение $\Delta\lambda$ этой линии, если ее наблюдать под углом $\vartheta = 30^\circ$ к пучку ионов, движущихся с кинетической энергией K = 10 МэВ.

- 3.278. При наблюдении спектральной линии $\lambda = 0.59$ мкм в направлениях на противоположные края солнечного диска на его экваторе обнаружили различие в длинах волн на $\delta\lambda = 8.0$ пм. Найти период вращения Солнца вокруг собственной оси.
- 3.279. Эффект Доплера позволил открыть двойные звезды столь удаленные, что разрешение их с помощью телескопа оказалось невозможным. Спектральные линии таких звезд периодически становятся двойными, из чего можно заключить, что источником являются две звезды, обращающиеся вокруг их центра масс. Считая массы обеих звезд одинаковыми, найти расстояние между ними и их массы, если максимальное расщепление спектральных линий $(\Delta \lambda/\lambda)_m = 1, 2 \cdot 10^{-4}$, причем оно возникает через каждые $\tau = 30$ сут.
- 3.280. Плоская электромагнитная волна частоты ω_0 падает нормально на поверхность зеркала, движущегося навстречу с релятивистской скоростью v. Найти с помощью формулы Доплера частоту отраженной волны. Рассмотреть также случай $v\ll c$.
- 3.281. Радиолокатор работает на длине волны $\lambda = 50,0$ см. Найти скорость приближающегося самолета, если частота биений между сигналами передатчика и отраженными от самолета в месте расположения локатора $\Delta \nu = 1,00$ к Γ ц.
- 3.282. Имея в виду, что фаза электромагнитной волны $\omega t kx$ есть инвариант, т. е. не меняется при переходе от одной инерциальной системы отсчета к другой, определить, как преобразуются частота ω и волновое число k.
- 3.283. С какой скоростью удаляется от нас некоторая туманность, если линия водорода $\lambda_0 = 434$ нм (для неподвижного источника) в ее спектре смещена в длинноволновую сторону на 130 нм?
- **3.284.** С какой скоростью должна была бы двигаться автомашина, чтобы красный свет светофора ($\lambda \approx 0.70$ мкм) превратился в зеленый ($\lambda \approx 0.55$ мкм)?
- **3.285.** По некоторой прямой движутся в одном направлении наблюдатель со скоростью $v_1 = 0.50c$ и впереди него источник

света со скоростью $v_2 = 0.75c$. Собственная частота света равна ω_0 . Найти частоту света, которую зафиксирует наблюдатель.

- 3.286. Одна из спектральных линий атомарного водорода имеет длину волны $\lambda = 656,3$ нм. Найти доплеровское смещение $\Delta\lambda$ этой линии, если ее наблюдать под прямым углом к пучку атомов водорода с кинетической энергией K=1,0 МэВ (поперечный доплер-эффект).
 - 3.287. Источник, испускающий электромагнитные сигналы

с собственной частотой $v_0=3.0$ ГГц, движется со скоростью v=0.80c по прямой, отстоящей от неподвижного наблюдателя P на некотором расстоянии (рис. 3.44). Найти частоту сигналов, принимаемых наблюдателем в момент:

Рис. 3.44

- а) когда источник окажется в точке O;
- б) когда наблюдатель увидит его в точке O.
- 3.288. Узкий пучок электронов проходит над поверхностью металлического зеркала, на котором нанесена система штри-

Рис. 3.45

хов с шагом d=2,0 мкм. Электроны движутся с релятивистской скоростью v перпендикулярно штрихам. При этом наблюдается видимое излучение: траектория электронов имеет вид полоски, окраска которой меняется в зависимости от угла наблюдения ϑ (рис. 3.45). Объяснить это явление. Найти длину

волны наблюдаемого излучения при $\theta = 45^{\circ}$.

- 3.289. Из-за движения Земли направление на звезду в плоскости эклиптики в течение года периодически меняется, и звезда совершает кажущиеся колебания в пределах угла $\alpha=41$ ". Найти скорость Земли на орбите.
- **3.290.** Найти угол полураствора конуса, в котором будут видны звезды, расположенные в полусфере для земного наблюдателя, если двигаться относительно Земли со скоростью, отличающейся от скорости света на $\eta = 1.0\%$.

Оптика

4.1. Фотометрия и геометрическая оптика

• Световой поток с длиной волны λ:

$$\Phi [\pi_M] = K_m V(\lambda) \Phi_9 [B_T], \quad K_m = 683 \ \pi_M / B_T.$$
 (4.1)

• Относительная спектральная чувствительность глаза $V(\lambda)$ — на рис. 4.1.

Рис. 4.1

 \bullet Сила света I и освещенность E:

$$I = d\Phi/d\Omega, \qquad E = d\Phi_{\text{man}}/dS.$$
 (4.1a)

• Освещенность, создаваемая точечным изотропным источником:

$$E = (I/r^2)\cos\alpha, \tag{4.16}$$

где а — угол между нормалью к поверхности и направлением на источник.

ullet Светимость M и яркость L:

$$M = \frac{\mathrm{d}\Phi_{\scriptscriptstyle \mathrm{UCH}}}{\mathrm{d}S}, \qquad L = \frac{\mathrm{d}\Phi_{\scriptscriptstyle \mathrm{UCH}}}{\mathrm{d}\Omega\Delta S\,\cos\,\vartheta}.$$
 (4.1b)

• Светимость для ламбертовского источника:

$$M = \pi L. \tag{4.1r}$$

ullet Связь между преломляющим углом heta призмы и углом lpha наименьшего отклонения:

$$\sin[(\alpha + \theta)/2] = n \sin(\theta/2), \tag{4.1a}$$

где n — показатель преломления вещества призмы.

• Формула сферического зеркала:

$$1/s'+1/s = 2/R,$$
 (4.1e)

где R — радиус кривизны зеркала.

• Формулы центрированной оптической системы (рис. 4.2):

$$n'/s'-n/s=\Phi$$
, $f'/s'+f/s=1$, $xx'=ff'$. (4.1x)

Рис. 4.2

• Соотношения между фокусными расстояниями и оптической силой:

$$f' = n'/\Phi, \quad f = -n/\Phi, \quad f'/f = -n'/n.$$
 (4.13)

• Оптическая сила сферической преломляющей поверхности:

$$\Phi = (n' - n) / R. \tag{4.1u}$$

• Оптическая сила тонкой линзы:

$$\Phi = (n - n_0)(1/R_1 - 1/R_2), \tag{4.1k}$$

где n и n_0 — показатели преломления вещества линзы и среды.

• Оптическая сила толстой линзы толщины d:

$$\Phi = \Phi_1 + \Phi_2 - (d/n)\Phi_1\Phi_2. \tag{4.1\pi}$$

Эта формула справедлива и для системы из двух тонких линз, между которыми находится среда с показателем преломления n.

• Главные плоскости H и H' отстоят от вершин O и O' поверхностей толстой линзы (рис. 4.3) на расстояниях:

$$X = \frac{d}{n} \frac{\Phi_2}{\Phi}, \qquad X' = -\frac{d}{n} \frac{\Phi_1}{\Phi}. \tag{4.1m}$$

• Увеличение оптического прибора:

$$\Gamma = tg\psi'/tg\psi,$$
 (4.1H)

где ψ' и ψ — угловые размеры предмета при наблюдении через прибор и без него (в случае лупы и микроскопа угол ψ соответствует наблюдению на расстоянии наилучшего зрения $l_0=25\,$ см).

- **4.1.** Найти с помощью кривой относительной спектральной чувствительности глаза (см. рис. 4.1):
- а) поток энергии, соответствующий световому потоку 1,0 лм и длиной волны 0,51 и 0,63 мкм;
- б) световой поток, приходящийся на интервал длин волн от 0,58 до 0,63 мкм, если соответствующий поток энергии $\Phi_9 = 4,5$ мВт, причем последний распределен равномерно по всем длинам волн этого интервала. Считать, что в данном спектральном интервале функция $V(\lambda)$ линейная.
- **4.2.** Точечный изотропный источник испускает световой поток $\Phi = 10$ лм с длиной волны $\lambda = 0,60$ мкм. Найти амплитудные значения напряженностей электрического и магнитного полей этого светового потока на расстоянии r = 1,0 м от источника. Воспользоваться рис. **4.1**.
- 4.3. Найти световую энергию, которая падает на планету за период ее обращения вокруг Солнца (по вытянутому эллипсу), если световая мощность Солнца P, площадь сечения планеты S и в момент, когда планета находится на минимальном расстоянии r_0 от Солнца, ее скорость равна v_0 .
- 4.4. Определить среднюю освещенность облучаемой части непрозрачной сферы, если на нее падает:
- а) параллельный световой поток, создающий в точке нормального падения освещенность E_0 ;
- б) свет от точечного изотропного источника, находящегося на расстоянии $l=100\,\,\mathrm{cm}\,\,$ от центра сферы; радиус сферы $R=60\,\,\mathrm{cm}\,\,$ и сила света $I=36\,\,\mathrm{кд}.$
- 4.5. Найти светимость поверхности, яркость которой зависит от направления как $L=L_0\cos\vartheta$, где ϑ угол между направлением излучения и нормалью к поверхности.
- **4.6.** Некоторая светящаяся поверхность подчиняется закону Ламберта. Ее яркость равна L. Найти:
- а) световой поток, излучаемый элементом ΔS этой поверхности внутрь конуса, ось которого нормальна к данному элементу, если угол полураствора конуса равен ϑ ;
 - б) светимость такого источника.
- 4.7. Над центром круглого стола радиуса R=1.0 м подвешен небольшой светильник в виде плоского горизонтального диска площади $S=100~{\rm cm}^2$. Яркость светильника не зависит от направления и равна $L=1.6\cdot 10^4~{\rm kg/m}^2$. На какой высоте от поверхности стола надо поместить светильник, чтобы освещен-

ность периферийных точек стола была максимальной? Какова будет эта освещенность?

- 4.8. На высоте h=1,0 м над центром круглого стола радиуса R=1,0 м подвешен точечный источник, сила света которого I так зависит от направления, что освещенность всех точек стола оказывается равномерной. Найти вид функции $I(\vartheta)$, где ϑ угол между направлением излучения и вертикалью, а также световой поток, падающий на стол, если $I(0) = I_0 = 100$ кд.
- **4.9.** Вертикальный луч проектора освещает центр потолка круглой комнаты радиуса R=2.0 м. При этом на потолке образуется небольшой зайчик площадью S=100 см². Освещенность зайчика равна E=1000 лк. Коэффициент отражения потолка $\rho=0.80$. Найти наибольшую освещенность стены, создаваемую светом, отраженным от потолка. Считать, что отражение происходит по закону Ламберта.
- **4.10.** Равномерно светящийся купол, имеющий вид полусферы, опирается на горизонтальную поверхность. Определить освещенность в центре этой поверхности, если яркость купола равна L и не зависит от направления.
- 4.11. Ламбертовский источник имеет вид бесконечной плоскости. Его яркость равна L. Найти освещенность площадки, расположенной параллельно данному источнику.
- 4.12. Над столом находится светильник плоский горизонтальный диск радиуса R=25 см. Расстояние от него до поверхности стола h=75 см. Освещенность стола под центром светильника $E_0=70$ лк. Найти светимость этого источника, считая его ламбертовским.
- **4.13.** Небольшой светильник, имеющий вид равномерно светящейся сферы радиуса R=6.0 см, находится на расстоянии h=3.0 м от пола. Яркость светильника $L=2.0\cdot 10^4$ кд/м 2 и не зависит от направления. Найти освещенность пола непосредственно под светильником.
- **4.14.** Записать в векторном виде закон отражения светового луча от зеркала через направляющие орты е и е' падающего и отраженного лучей и орт **n** внешней нормали к поверхности зеркала.
- **4.15.** Показать, что луч света, последовательно отразившийся от трех взаимно перпендикулярных плоских зеркал, изменит свое направление на прямо противоположное.

- **4.16.** При каком значении угла падения θ_1 луч, отраженный от поверхности воды, будет перпендикулярен преломленному лучу?
- **4.17.** Имеются две оптические среды с плоской границей раздела. Пусть $\vartheta_{1 \text{пр}}$ предельный угол падения луча, а ϑ_{1} угол падения, при котором преломленный луч перпендикулярен отраженному (луч идет из оптически более плотной среды). Найти относительный показатель преломления этих сред, если $\sin \vartheta_{1 \text{пр}} / \sin \vartheta_{1} = \eta = 1,28$.
- **4.18.** Луч света падает на плоскопараллельную стеклянную пластину толщины d=6,0 см. Угол падения $\theta=60^\circ$. Найти смещение луча, прошедшего через эту пластину.
- **4.19.** На краю бассейна стоит человек и наблюдает камень, лежащий на дне. Глубина бассейна *h*. На каком расстоянии от поверхности воды видно изображение камня, если луч зрения составляет с нормалью к поверхности воды угол 9?
- **4.20.** Показать, что в призме с малым преломляющим углом θ луч отклоняется на угол $\alpha \approx (n-1)\theta$ независимо от угла падения, если последний также мал.
- **4.21.** Луч света проходит через призму с преломляющим углом θ и показателем преломления n. Пусть α угол отклонения луча. Показать, что при симметричном ходе луча через призму:
 - а) угол α минимален;
 - б) связь между углами α и θ определяется формулой (4.1д).
- **4.22.** Для некоторой стеклянной призмы угол наименьшего отклонения луча равен преломляющему углу призмы. Найти последний.
- **4.23.** Найти пределы, в которых может меняться угол отклонения луча при прохождении стеклянной призмы с преломляющим углом $\theta = 60^{\circ}$.
- **4.24.** Трехгранная призма с преломляющим углом 60° дает угол наименьшего отклонения в воздухе 37° . Какой угол наименьшего отклонения даст эта призма в воде?
- **4.25.** Луч света, содержащий две монохроматические составляющие, проходит через трехгранную призму с преломляющим углом $\theta = 60^{\circ}$. Определить угол $\Delta\alpha$ между обеими составляющими луча после призмы, если показатели преломления для них равны 1,515 и 1,520 и призма ориентирована на угол наименьшего отклонения.

- **4.26.** Вывести с помощью принципа Ферма законы отражения и преломления света на плоской границе раздела.
- 4.27. Открытый сверху сосуд, на дне которого находится точечный монохроматический источник света, заполняют снизу водой так, что ее уровень поднимается со скоростью v = 9.0 мм/с. Найти относительный сдвиг частоты $\Delta \omega/\omega$ света, который наблюдают над поверхностью воды вдоль вертикали, проходящей через источник. Наблюдатель предполагается неподвижным.
- **4.28.** Найти построением ход луча после отражения в вогнутом и выпуклом сферических зеркалах (рис. 4.4 и рис. 4.5, где F фокус, OO' оптическая ось).

4.29. Найти построением положение зеркала и его фокуса для случаев, показанных на рис. 4.6 и 4.7, где P и P' — сопряженные точки.

- **4.30.** Определить фокусное расстояние вогнутого зеркала, если:
- а) при расстоянии между предметом и изображением l=15 см поперечное увеличение $\beta=-2,0;$
- б) при одном положении предмета поперечное увеличение $\beta_1 = -0.50$, а при другом положении, смещенном относительно первого на расстояние l = 5.0 см, поперечное увеличение $\beta_2 = -0.25$.
- **4.31.** Точечный источник, сила света которого $I_0 = 100$ кд, помещен на расстоянии s = 20,0 см от вершины вогнутого зер-

кала с фокусным расстоянием f=25,0 см. Определить силу света в отраженном пучке, если коэффициент отражения зеркала $\rho=0.80$.

- **4.32.** Вывести с помощью принципа Ферма формулу преломления параксиальных лучей на сферической поверхности радиуса R, разделяющей среды с показателями преломления n и n'.
- 4.33. Параллельный пучок света падает из вакуума на поверхность, которая ограничивает область с показателем преломления n (рис. 4.8). Найти форму этой поверхности уравнение x(r), при которой пучок будет сфокусирован в точке F на расстоянии f от вершины O. Пучок какого максимального радиуса сечения может быть сфокусирован?

Рис. 4.8

Рис. 4.9

- линзы. Толщина линзы 5,0 см, радиус кривизны поверхностей 5,0 см. На каком расстоянии от задней поверхности линзы образуется изображение источника?
- **4.36.** Перед выпуклой поверхностью стеклянной выпукло-плоской линзы толщины d=9,0 см находится предмет. Его изображение образуется на плоской поверхности линзы, которая служит экраном. Определить:
- а) поперечное увеличение, если радиус кривизны выпуклой поверхности линзы $R=2.5\,\mathrm{cm};$
- б) освещенность изображения, если яркость предмета $L = 7700 \text{ кд/м}^2$ и диаметр входного отверстия данной линзы D = 5.0 мм; потерями света пренебречь.
- **4.37.** Определить оптическую силу и фокусные расстояния тонкой стеклянной линзы в жидкости с показателем преломления $n_0 = 1, 7$, если ее оптическая сила в воздухе $\Phi_0 = -5, 0$ дптр.
- 4.38. Вычислить оптическую силу и фокусные расстояния тонкой симметричной двояковыпуклой стеклянной линзы, с

одной стороны которой находится воздух, а с другой — вода, если оптическая сила этой линзы в воздухе $\Phi_0 = +10$ дптр.

4.39. Найти построением ход луча за собирающей и рассеивающей тонкими линзами (рис. 4.10 и 4.11, где OO' — оптическая ось, F и F' — передний и задний фокусы).

- **4.40.** Определить построением положение тонкой линзы и ее фокусов, если известно положение оптической оси OO' и положение пары сопряженных точек P и P' (см. рис. 4.6 и 4.7). Среды по обе стороны линз одинаковы.
- **4.41.** Найти построением ход луча 2 за собирающей и рассеивающей тонкими линзами (рис. 4.12 и 4.13), если известны положение линзы, ее оптической оси OO' и ход луча 1. Среды по обе стороны линзы одинаковы.

- **4.42.** Тонкая собирающая линза с фокусным расстоянием f=25 см проецирует изображение предмета на экран, отстоящий от линзы на l=5,0 м. Экран придвинули к линзе на $\Delta l=75$ см. На сколько сантиметров следует переместить предмет, чтобы опять получить четкое изображение его на экране?
- **4.43.** Источник света находится на $l=90\,\mathrm{cm}$ от экрана. Тонкая собирающая линза, помещенная между источником света и экраном, дает четкое изображение источника при двух ее положениях. Найти фокусное расстояние линзы, если:
 - а) расстояние между обоими положениями $\Delta l=30$ см;

- б) поперечные размеры изображения при одном положении линзы в $\eta = 4,0$ раза больше, чем при другом.
- **4.44.** Между предметом и экраном поместили тонкую собирающую линзу. Перемещением линзы нашли два положения, при которых на экране образуется четкое изображение предмета. Найти поперечный размер предмета, если при одном положении линзы размер изображения $h'=2,0\,$ мм, а при другом $h''=4,5\,$ мм.
- **4.45.** Тонкая собирающая линза, у которой отношение ее диаметра к фокусному расстоянию D:f=1:3,5, дает изображение удаленного предмета на фотопленке. Яркость предмета $L=260~{\rm кg/m^2}$, потери света в линзе $\alpha=0,10$. Найти освещенность изображения.
- **4.46.** Как зависит от диаметра D тонкой собирающей линзы яркость действительного изображения, если его рассматривать:
 - а) непосредственно;
 - б) на белом экране, рассеивающем по закону Ламберта?
- **4.47.** Имеются две тонкие симметричные линзы: одна собирающая с показателем преломления $n_1 = 1,70$, другая рассеивающая с $n_2 = 1,51$. Обе линзы имеют одинаковый радиус кривизны поверхностей R = 10 см. Линзы сложили вплотную и погрузили в воду. Каково фокусное расстояние этой системы в воде?
- 4.48. Найти фокусное расстояние зеркала, представляющего собой тонкую симметричную двояковыпуклую стеклянную линзу с посеребренной одной поверхностью. Радиус кривизны поверхностей линзы $R=40\,$ см.
- 4.49. Система, состоящая из трех тонких линз (рис. 4.14), находится в воздухе. Оптическая сила каждой линзы 10,0 дптр. Определить:
- а) положение точки схождения параллельного пучка, падающего слева, после прохождения через систему;

- б) расстояние от первой линзы до точки на оси слева от системы, при котором эта точка и ее изображение будут расположены симметрично относительно системы.
- **4.50.** Галилеева труба 10-кратного увеличения при установке на бесконечность имеет длину 45 см. Найти:
 - а) фокусные расстояния объектива и окуляра трубы;

206

- б) на какое расстояние надо передвинуть окуляр трубы, чтобы ясно видеть предметы на расстоянии 50 м.
- **4.51.** Найти увеличение зрительной трубы кеплеровского типа, установленной на бесконечность, если D диаметр оправы ее объектива, а d диаметр изображения этой оправы, образуемого окуляром трубы.
- **4.52.** При прохождении светового потока через зрительную трубу его интенсивность увеличивается в $\eta = 4.0 \cdot 10^4$ раз. Найти угловой размер удаленного предмета, если при наблюдении в эту трубу угловой размер его изображения $\psi' = 2.0^\circ$.
- **4.53.** Зрительную трубу кеплеровского типа с увеличением $\Gamma = 15$ погрузили в воду, которая заполнила и ее внутреннюю часть. Чтобы система при тех же размерах стала опять телескопической, объектив заменили другим. Каково стало после этого увеличение трубы в воде? Показатель преломления стекла окуляра n=1,50.
- **4.54.** При каком увеличении Γ зрительной трубы с диаметром объектива D=6,0 см освещенность изображения объекта на сетчатке глаза будет не меньше, чем в отсутствие трубы? Диаметр зрачка глаза считать равным $d_0=3,0$ мм. Потерями света в трубе пренебречь.
- **4.55.** Оптические силы объектива и окуляра микроскопа равны 100 и 20 дптр. Увеличение микроскопа равно 50. Каково будет увеличение этого микроскопа, если расстояние между объективом и окуляром увеличить на 2,0 см?
- **4.56.** Микроскоп имеет числовую апертуру $\sin\alpha=0.12$, где α угол полураствора конуса лучей, падающих на оправу объектива. Полагая диаметр зрачка глаза $d_0=4.0$ мм, определить увеличение микроскопа, при котором диаметр светового пучка, выходящего из микроскопа, равен диаметру зрачка глаза.
- 4.57. Исходя из условий предыдущей задачи, определить, при каком увеличении микроскопа освещенность изображения на сетчатке глаза не будет зависеть от увеличения. Считать, что световой пучок, проходящий через систему «микроскоп глаз», ограничен оправой объектива.
- **4.58.** Найти положение главных плоскостей, фокусов и узловых точек двояковыпуклой тонкой симметричной стеклянной линзы с радиусом кривизны поверхностей R=7,50 см, если с одной стороны ее находится воздух, а с другой вода.

4.59. Найти с помощью построения положение фокусов и главных плоскостей центрированных оптических систем, показанных на рис. 4.15:

Рис. 4.15

- а) телеобъектив система из собирающей и рассеивающей тонких линз ($f_1=1,5d$, $f_2=-1,5d$);
- б) система из двух собирающих тонких линз $(f_1 = 1,5d, f_2 = 0,5d);$
- в) толстая выпукло-вогнутая линза (d=4 см, n=1,5, $\Phi_1=+50$ дптр, $\Phi_2=-50$ дптр).
- **4.60.** Оптическая система находится в воздухе. Пусть OO' ее оптическая ось, F и F' передний и задний фокусы, H и H' передняя и задняя главные плоскости, P и P' сопряженные точки. Найти построением:
 - а) положение F' и H' (рис. 4.16, a);
 - б) положение точки S', сопряженной с точкой S (рис. 4.16, σ);
- в) положение F, F' и H' (рис. 4.16, e, где показан ход луча до и после прохождения системы).

Рис. 4.16

- **4.61.** Пусть F, F' передний и задний фокусы оптической системы, H и H' ее передняя и задняя главные точки. Найти построением положение изображения S' точки S для следующих относительных расположений точек S, F, F', H, H':
 - a) FSHH'F'; б) HSF'FH'; в) H'SF'FH; г) F'H'SHF.

- **4.62.** Телеобъектив состоит из двух тонких линз передней собирающей и задней рассеивающей с оптическими силами $\Phi_1 = +10$ дптр и $\Phi_2 = -10$ дптр. Найти:
- а) фокусное расстояние и положение главных плоскостей этой системы, если расстояние между линзами d=4.0 см;
- б) расстояние d между линзами, при котором отношение фокусного расстояния f системы к расстоянию l между собирающей линзой и задним главным фокусом будет максимальным. Чему равно это отношение?
- **4.63.** Рассчитать положение главных плоскостей и фокусов толстой выпукло-вогнутой стеклянной линзы, если радиус кривизны выпуклой поверхности $R_1=10,0\,$ см, вогнутой $R_2=5,0\,$ см и толщина линзы $d=3,0\,$ см.
- **4.64.** Центрированная оптическая система состоит из двух тонких линз с фокусными расстояниями f_1 и f_2 , причем расстояние между линзами равно d. Данную систему требуется заменить одной тонкой линзой, которая при любом положении объекта давала бы такое же поперечное увеличение, как и предыдущая система. Каким должно быть фокусное расстояние этой линзы и ее положение относительно системы из двух линз?
- 4.65. Система состоит из собирающей тонкой симметричной стеклянной линзы с радиусом кривизны поверхностей R=38 см и плоского зеркала, расположенного перпендикулярно оптической оси линзы. Расстояние между линзой и зеркалом l=12 см. Какова будет оптическая сила этой системы, если пространство между линзой и зеркалом заполнить водой?
- **4.66.** При какой толщине выпукло-вогнутая толстая стеклянная линза в воздухе будет:
- а) телескопической, если радиус кривизны ее выпуклой поверхности больше, чем радиус кривизны вогнутой поверхности, на $\Delta R = 1.5$ см;
- б) иметь оптическую силу, равную -1,0 дптр, если радиусы кривизны ее выпуклой и вогнутой поверхностей равны соответственно 10,0 и 7,5 см?
- **4.67.** Найти положение главных плоскостей, фокусное расстояние и знак оптической силы выпукло-вогнутой толстой стеклянной линзы, у которой:
- а) толщина равна d, а радиусы кривизны поверхностей одинаковы и равны R;

- б) преломляющие поверхности концентрические с радиусами кривизны R_1 и R_2 ($R_2 > R_1$).
- **4.68.** Телескопическая система образована из двух стеклянных шаров, радиусы которых $R_1=5.0~{\rm cm}$ и $R_2=1.0~{\rm cm}$. Каковы расстояние между центрами этих шаров и увеличение системы, если объективом является больший шар?
- **4.69.** При распространении света в изотропной среде с медленно изменяющимся от точки к точке показателем преломления n радиус кривизны R луча определяется формулой $1/R = \partial (\ln n)/\partial N$, где производная берется по направлению главной нормали к лучу. Получить эту формулу, имея в виду, что в такой среде справедлив закон преломления $n \sin \theta = \mathrm{const}$, где θ угол между лучом и направлением grad θ в данной точке.
- **4.70.** Найти радиус кривизны светового луча, распространяющегося вдоль поверхности Земли, где градиент показателя преломления воздуха $\partial n/\partial N \approx 3\cdot 10^{-8}~\text{m}^{-1}$ (см. предыдущую задачу). При каком значении этого градиента луч света распространялся бы по окружности вокруг Земли?

4.2. Интерференция света

• Ширина интерференционной полосы:

$$\Delta x = \lambda / \varphi, \tag{4.2a}$$

где ф — угловое расстояние между источниками.

• Длина и радиус (ширина) когерентности:

$$l_{\text{KOT}} \approx \lambda^2 / \Delta \lambda, \quad \rho_{\text{KOT}} \approx \lambda / \psi,$$
 (4.26)

где у — угловой размер источника.

- При отражении света от оптически более плотной среды световой вектор ${\bf E}$ испытывает скачок фазы на $\pi.$
- ullet Условие максимумов при интерференции света, отраженного от тонкой пластинки толщины b:

$$2 b \sqrt{n^2 - \sin^2 \vartheta} - \lambda/2 = k\lambda, \qquad (4.2B)$$

где ϑ — угол падения, k — целое число.

• Кольца Ньютона при отражении света от поверхностей воздушной прослойки, образованной между стеклянной пластинкой и соприкасающейся с ней выпуклой поверхностью линзы с радиусом кривизны R. Радиусы колец:

$$r = \sqrt{k\lambda R/2}, \qquad (4.2r)$$

причем кольца светлые, если k=1,3,5,..., и темные, если k=2,4,6,...

• Эффект Вавилова-Черенкова:

$$\cos \vartheta = c / nv, \qquad (4.2\pi)$$

где ϑ — угол между направлением распространения излучения и скоростью ${\bf v}$ частицы.

- **4.71.** Показать, что при сложении двух гармонических колебаний средняя по времени энергия результирующего колебания равна сумме энергий каждого из них, если оба колебания:
- а) имеют одинаковое направление и некогерентны, причем все значения их разности фаз равновероятны;
- б) взаимно перпендикулярны, имеют одну и ту же частоту и произвольную разность фаз.
- **4.72.** Найти графически амплитуду колебания, которое возникает в результате сложения следующих трех колебаний одного направления: $\xi_1 = a \cos \omega t$, $\xi_2 = 2a \sin \omega t$, $\xi_3 = 1.5 a \cos(\omega t + \pi/3)$.
- 4.73. Некоторое колебание возникает в результате сложения N когерентных колебаний одного направления, имеющих следующий вид: $\xi_k = a \cos[\omega t + (k-1)\alpha]$, где k номер колебания (k=1,2,...,N), α разность фаз между k-м и (k-1)-м колебаниями. Найти амплитуду результирующего колебания.

Рис. 4.17

- 4.74. Система (рис. 4.17) состоит из двух точечных когерентных излучателей 1 и 2, которые расположены в некоторой плоскости так, что их дипольные моменты перпендикулярны этой плоскости. Расстояние между излучателями d, длина волны излучения λ , причем $\lambda \ll d$. Имея в виду, что колебания излучателя 2 отстают по фазе на α ($\alpha < \pi$) от колебаний излучателя 1, найти:
- а) углы 9, в которых интенсивность излучения максимальна;
- б) условия, при которых в направлении $\vartheta = \pi$ интенсивность излучения будет максимальна, а в противоположном направлении минимальна.
- **4.75.** Найти примерный вид полярной диаграммы направленности излучения в экваториальной плоскости системы, состоящей из двух одинаковых излучателей 1 и 2, дипольные моменты которых расположены параллельно друг другу на расстоянии $d=\lambda/2$ и
 - а) совпадают по фазе;
 - б) противоположны по фазе.

- **4.76.** То же, что в предыдущей задаче, но излучатели 1 и 2 находятся на расстоянии λ друг от друга.
- **4.77.** То же, что в задаче **4.75**, но излучатели 1 и 2 отстоят друг от друга на расстояние $d=\lambda/4$ и колеблются со сдвигом фаз $\pi/2$.
- 4.78. Неподвижная излучающая система состоит из линейной цепочки параллельных вибраторов, отстоящих друг от друга на расстояние d, причем фаза колебаний вибраторов линейно меняется вдоль цепочки. Найти зависимость от времени разности фаз $\Delta \alpha$ между соседними вибраторами, при которой главный максимум излучения системы будет совершать круговой «обзор» местности с постоянной угловой скоростью ω .
- 4.79. В опыте Ллойда (рис. 4.18) световая волна, исходящая непосредственно из источника S (узкой щели), интерферирует с волной, отраженной от зеркала 3. В результате на экране ϑ образуется система

Рис. 4.18

- интерференционных полос. Расстояние от источника до экрана $l=100\,$ см. При некотором положении источника ширина интерференционной полосы на экране $\Delta x=0.25\,$ мм, а после того, как источник отодвинули от плоскости зеркала на $\Delta h=0.60\,$ мм, ширина полос уменьшилась в $\eta=1.5\,$ раза. Найти длину волны света.
- **4.80.** Две когерентные плоские световые волны, угол между направлениями распространения которых $\phi \ll 1$, падают почти нормально на экран. Амплитуды волн одинаковы. Показать, что расстояние между соседними максимумами на экране $\Delta x = \lambda/\phi$, где λ длина волны.
- 4.81. На рис. 4.19 показана интерференционная схема с бизеркалами Френеля. Угол между зеркалами $\alpha=1$, расстояния от линии пересечения зеркал до узкой щели S и экрана ∂ равны соответственно r=10,0 см и b=130 см. Длина волны света $\lambda=0,55$ мкм. Определить:

Рис. 4.19

- а) ширину интерференционной полосы на экране и число возможных максимумов;
- б) сдвиг картины на экране при смещении щели на $\delta l = 1,0$ мм по дуге радиуса r с центром в точке O;
- в) при какой ширине щели $h_{\rm make}$ интерференционные полосы на экране будут наблюдаться еще достаточно отчетливо.
- **4.82.** Плоская световая волна падает на бизеркала Френеля, угол между которыми $\alpha = 2,0'$. Определить длину волны света, если ширина интерференционной полосы на экране $\Delta x = 0,55$ мм.
- **4.83.** Линзу диаметром 5,0 см и с фокусным расстоянием f=25,0 см разрезали по диаметру на две одинаковые половины, причем удаленным оказался слой толщины a=1,00 мм. После этого обе половины сдвинули до соприкосновения и в фокальной плоскости полученной таким образом билинзы поместили узкую щель, испускающую монохроматический свет с $\lambda=0,64$ мкм. За билинзой расположили экран на расстоянии b=50 см от нее. Определить:
- а) ширину интерференционной полосы на экране и число N возможных максимумов;
- б) ширину щели $h_{\rm makc}$, при которой полосы на экране будут наблюдаться еще достаточно отчетливо.
- **4.84.** Расстояния от бипризмы Френеля до узкой щели и экрана равны соответственно a=25 см и b=100 см. Бипризма стеклянная с преломляющим углом $\theta=20'$. Найти длину волны света, если ширина интерференционной полосы на экране $\Delta x=0.55$ мм.
 - **4.85.** Плоская световая волна с $\lambda = 0.70$ мкм падает нормаль-

Рис. 4.20

но на основание бипризмы, сделанной из стекла (n=1,520) с преломляющим углом $\theta=5,0^{\circ}$. За бипризмой (рис. 4.20) находится плоскопараллельная стеклянная пластинка, и пространство между ними заполнено бензолом (n'=1,500). Найти ширину интерференционной полосы на экране θ , расположенном за этой системой.

4.86. Плоская монохроматическая световая волна падает нормально на диафрагму с двумя узкими щелями, отстоящими друг от друга на d=2,5 мм. На экране, расположенном за диа-

фрагмой на l = 100 см, образуется система интерференционных полос. На какое расстояние и в какую сторону сместятся эти полосы, если одну из щелей перекрыть стеклянной пластинкой толщины h = 10 мкм?

4.87. На рис. 4.21 показана схема интерферометра для измерения показателей преломления прозрачных веществ. Здесь S — узкая щель, освещаемая $\lambda = 589$ нм, 1 и 2 — две одинаковые трубки с воздухом, длина каждой из которых l = 10,0 см, Д — диафрагма с двумя щелями. Когда воздух в трубке 1 заменили аммиаком, то интерференционная картина на экране Э сместилась вверх на N = 17 полос.

монохроматическим

Рис. 4.21

Показатель преломления воздуха n = 1,000277. Определить показатель преломления аммиака.

- 4.88. На поверхности стекла находится пленка воды. На нее падает свет с $\lambda = 0.68$ мкм под углом $\theta = 30^\circ$ к нормали. Найти скорость, с которой уменьшается толщина пленки (из-за испарения), если интенсивность отраженного света меняется так, что промежуток времени между последовательными максимумами отражения $\Delta t = 15$ мин.
- **4.89.** На тонкую пленку (n=1,33) падает параллельный пучок белого света. Угол падения $\theta_1 = 52^\circ$. При какой толщине пленки зеркально отраженный свет будет наиболее сильно окрашен в желтый цвет ($\lambda = 0.60$ мкм)?
- 4.90. Найти минимальную толщину пленки с показателем преломления n = 1,33, при которой свет с длиной волны 0,64 мкм испытывает максимальное отражение, а свет с длиной волны 0,40 мкм не отражается совсем. Угол падения света $\theta = 30^{\circ}$.
- 4.91. Для уменьшения потерь света из-за отражения от поверхности стекла последнее покрывают тонким слоем вещества с показателем преломления $n' = \sqrt{n}$, где n — показатель преломления стекла. В этом случае амплитуды световых колебаний, отраженных от обеих поверхностей такого слоя, будут одинаковыми. При какой толщине этого слоя отражательная способность стекла в направлении нормали будет равна нулю для света с длиной волны λ ?

- **4.92.** Рассеянный монохроматический свет с $\lambda = 0.60$ мкм падает на тонкую пленку вещества с показателем преломления n = 1.5. Определить толщину пленки, если угловое расстояние между соседними максимумами, наблюдаемыми в отраженном свете под углами с нормалью, близкими к $\theta = 45^{\circ}$, равно $\delta \theta = 3.0^{\circ}$.
 - 4.93. Монохроматический свет проходит через отверстие в

Рис. 4.22

экране θ (рис. 4.22) и, отразившись от тонкой плоскопараллельной стеклянной пластинки Π , образует на экране систему интерференционных полос равного наклона. пластинки b, расстояние между ней и экраном l, радиусы i-го и k-го темных колец r_i и r_k . Учитывая, что $r_{ik} \ll l$, найти длину волны света.

- 4.94. Плоская монохроматическая световая волна длины λ падает на поверхность стеклянного клина, угол между гранями которого α « 1. Плоскость падения перпендикулярна ребру клина, угол падения θ_1 . Найти расстояние между соседними максимумами интерференционных полос на экране, расположенном перпендикулярно отраженному свету.
- **4.95.** Свет с $\lambda = 0.55$ мкм от удаленного точечного источника падает нормально на поверхность стеклянного клина. В отраженном свете наблюдают систему интерференционных полос, расстояние между соседними максимумами которых на поверхности клина $\Delta x = 0,21$ мм. Найти:
 - а) угол между гранями клина;
- б) степень монохроматичности света ($\Delta\lambda/\lambda$), если исчезновение интерференционных полос наблюдается на расстоянии $l \approx 1.5$ см от вершины клина.
- 4.96. Плоско-выпуклая стеклянная линза выпуклой поверхностью соприкасается со стеклянной пластинкой. Радиус кривизны выпуклой поверхности линзы R, длина волны света λ . Найти ширину Δr кольца Ньютона в зависимости от его радиуса r в области, где $\Delta r \ll r$.
- 4.97. Плоско-выпуклая стеклянная линза с радиусом кривизны R=40 см соприкасается выпуклой поверхностью со стеклянной пластинкой. При этом в отраженном свете радиус некоторого кольца r=2.5 мм. Наблюдая за данным кольцом,

линзу осторожно отодвинули от пластинки на h=5,0 мкм. Каким стал радиус этого кольца?

- 4.98. На вершине сферической поверхности плоско-выпуклой стеклянной линзы имеется сошлифованный плоский участок радиуса $r_0=3.0\,$ мм, которым она соприкасается со стеклянной пластинкой. Радиус кривизны выпуклой поверхности линзы $R=150\,$ см. Найти радиус шестого светлого кольца в отраженном свете с $\lambda=655\,$ нм.
- 4.99. Плоско-выпуклая стеклянная линза с радиусом кривизны сферической поверхности R=12,5 см лежит на стеклянной пластинке, причем из-за попадания пылинки между выпуклой поверхностью линзы и пластинкой нет контакта. Диаметры десятого и пятнадцатого темных колец Ньютона в отраженном свете равны $d_1=1,00\,$ мм и $d_2=1,50\,$ мм. Найти длину волны света.
- **4.100.** Две плоско-выпуклые тонкие стеклянные линзы соприкасаются своими сферическими поверхностями. Найти оптическую силу системы, если в отраженном свете с $\lambda = 0.60$ мкм диаметр пятого светлого кольца d = 1.50 мм.
- **4.101.** Две соприкасающиеся тонкие симметричные стеклянные линзы двояковыпуклая и двояковогнутая образуют систему с оптической силой $\Phi=0.50$ дптр. В свете с $\lambda=0.61$ мкм, отраженном от этой системы, наблюдают кольца Ньютона. Определить:
 - а) радиус десятого темного кольца;
- б) как изменится радиус этого кольца, если пространство между линзами заполнить водой.
- **4.102.** Сферическая поверхность плоско-выпуклой линзы соприкасается со стеклянной пластинкой. Пространство между линзой и пластинкой заполнено сероуглеродом. Показатели преломления линзы, сероуглерода и пластинки равны соответственно $n_1=1,50,\ n_2=1,63$ и $n_3=1,70$. Радиус кривизны сферической поверхности линзы R=100 см. Определить радиус пятого темного кольца Ньютона в отраженном свете с $\lambda=0,61$ мкм.
- **4.103.** В двухлучевом интерферометре используется оранжевая линия ртути, состоящая из двух компонент с $\lambda_1 = 576,97$ нм и $\lambda_2 = 579,03$ нм. При каком наименьшем порядке интерференции четкость интерференционной картины будет наихудшей?

- **4.104.** В интерферометре Майкельсона использовалась желтая линия натрия, состоящая из двух компонент с $\lambda_1=589,0$ нм и $\lambda_2=589,6$ нм. При перемещении одного из зеркал интерференционная картина периодически исчезала (почему?). Найти перемещение зеркала между двумя последовательными появлениями наиболее четкой картины.
- **4.105**. При освещении интерферометра Фабри-Перо расходящимся монохроматическим светом с длиной волны λ в фокальной плоскости линзы возникает интерференционная картина система концентрических колец (рис. 4.23). Толщина эталона равна d. Определить, как зависит от порядка интерференции:
 - а) расположение колец;
 - б) угловая ширина полос интерференции.
 - **4.106.** Найти для интерферометра Фабри-Перо, толщина которого d=2.5 см:

Рис. 4.23

- а) максимальный порядок интерференции света с длиной волны $\lambda = 0.50$ мкм;
- б) дисперсионную область $\Delta\lambda$, т. е. спектральный интервал длин волн, для которого еще нет перекрытия с другими порядками интерференции, если наблюдение ведется вблизи $\lambda=0.50$ мкм.
- **4.107.** Найти условия, при которых заряженная частица, движущаяся равномерно в среде с показателем преломления n, будет излучать свет (эффект Вавилова-Черенкова). Найти также направление этого излучения.

Указание. Рассмотреть интерференцию колебаний, возбуждаемых частицей в разные моменты времени.

- **4.108.** Найти наименьшие значения кинетической энергии электрона и протона, при которых возникает черенковское излучение в среде с показателем преломления n=1,60. Для каких частиц наименьшее значение кинетической энергии $K_{\text{мин}}=29,6$ МэВ?
- **4.109.** Определить кинетическую энергию электронов, которые в среде с показателем преломления n=1,50 излучают свет под углом $\vartheta=30^\circ$ к направлению своего движения.

4.3. Дифракция света

• Радиус внешней границы к-й зоны Френеля:

$$r_k = \sqrt{k\lambda ab/(a+b)}, \quad k = 1, 2, 3, \dots$$
 (4.3a)

 \bullet Спираль Корню (рис. 4.24). Числа на этой спирали — значения параметра v.

• Дифракция Фраунгофера от щели, свет падает нормально. Условие минимумов интенсивности:

$$b \sin \vartheta = \pm k\lambda, \quad k = 1, 2, 3, \ldots, \tag{4.36}$$

где b — ширина щели, ϑ — угол дифракции.

• Дифракционная решетка, свет падает нормально. Условие главных фраунгоферовых максимумов:

$$d \sin \vartheta = \pm k\lambda, \quad k = 0, 1, 2, \dots, \tag{4.3B}$$

условие добавочных минимумов:

$$d \sin \vartheta = \pm k' \lambda / N, \qquad (4.3r)$$

где $k'=1, 2, \ldots$, кроме $0, N, 2N, \ldots$

• Угловая дисперсия дифракционной решетки:

$$D = d\theta / d\lambda = k / d \cos \theta. \tag{4.3a}$$

• Разрешающая способность дифракционной решетки:

$$R = \lambda / \delta \lambda = kN, \qquad (4.3e)$$

где N — число штрихов решетки.

• Разрешающая сила объектива:

$$R = 1/\delta \psi = D/1,22 \lambda,$$
 (4.3x)

где $\delta \psi$ — наименьшее угловое расстояние, разрешаемое объективом, D — его диаметр.

• Формула Брэгга-Вульфа. Условие дифракционных максимумов:

$$2 d \sin \alpha = \pm k\lambda, \qquad (4.33)$$

где d — межплоскостное расстояние, α — угол скольжения, k=1,2,3,...

- **4.110.** Плоская световая волна падает нормально на диафрагму с круглым отверстием, которое открывает первые N зон Френеля для точки P на экране, отстоящем от диафрагмы на расстояние b. Длина волны света равна λ . Найти интенсивность света I_0 перед диафрагмой, если известно распределение интенсивности света на экране I(r), где r расстояние до точки P.
- **4.111.** Точечный источник света с длиной волны, равной $\lambda = 0.50$ мкм, расположен на расстоянии a = 100 см перед диафрагмой с круглым отверстием радиуса r = 1.0 мм. Найти расстояние b от диафрагмы до точки наблюдения, для которой число зон Френеля в отверстии составляет k = 3.
- **4.112.** Между точечным источником света и экраном поместили диафрагму с круглым отверстием, радиус которого r можно менять. Расстояния от диафрагмы до источника и экрана равны a=100 см и b=125 см. Определить длину волны света, если максимум освещенности в центре дифракционной картины на экране наблюдается при $r_1=1,00$ мм и следующий максимум при $r_2=1,29$ мм.
- **4.113.** Плоская световая волна $\lambda=640$ нм с интенсивностью I_0 падает нормально на круглое отверстие радиуса R=1,20 мм. Найти интенсивность в центре дифракционной картины на экране, отстоящем на b=1,50 м от отверстия.
- **4.114.** Плоская монохроматическая световая волна с интенсивностью I_0 падает нормально на непрозрачный экран с круглым отверстием. Какова интенсивность света I за экраном в точке, для которой отверстие:

- а) равно первой зоне Френеля; внутренней половине первой зоны:
- б) сделали равным первой зоне Френеля и затем закрыли его половину (по диаметру)?
- 4.115. Монохроматическая плоская световая волна с интенсивностью I_0 падает нормально на непрозрачный диск, закрывающий для точки наблюдения P первую зону Френеля. Какова стала интенсивность света I в точке P после того, как у диска удалили (по диаметру):
 - а) половину;
 - б) половину внешней половины первой зоны?
- 4.116. Плоская монохроматическая световая волна с интенсивностью I_0 падает нормально на поверхности непрозрачных экранов, показанных на рис. 4.25. Найти зависимость от угла ϕ интенсивности I света в точке P:
- расположенной за вершиной угла экрана (рис. 4.25, a);
- б) для которой закругленный край экрана (рис. 4.25, б) совпадает с границей первой зоны Френеля.
- **4.117.** Плоская световая волна с $\lambda = 0.60$ мкм падает нормально на достаточно большую стеклянную пластинку, на противоположной стороне которой сделана выемка (рис. 4.26). Для точки наблюдения Р она представляет собой первые полторы зоны Френеля. Найти глубину *h* выемки, при которой интенсивность света в точке P будет:
 - а) максимальной;
 - б) минимальной;
 - в) равной интенсивности падающего света.
- **4.118.** Плоская световая волна длины λ и интенсивности I_0 падает нормально на большую стеклянную пластинку, противоположная сторона которой представляет собой непрозрачный экран с круглым отверстием, равным первой зоне Френеля для точки наблюдения Р. В середине отверстия сделана круглая выемка, равная половине зоны Френеля. При какой глубине hэтой выемки интенсивность света в точке P будет максимальной? Чему она равна?

Рис. 4.25

Рис. 4.26

- **4.119.** Свет с $\lambda = 0.60$ мкм падает нормально на поверхность стеклянного диска, который перекрывает полторы зоны Френеля для точки наблюдения P. При какой толщине этого диска интенсивность света в точке P будет максимальной?
- **4.120.** На пути плоской световой волны с $\lambda = 0,54$ мкм поставили тонкую собирающую линзу с фокусным расстоянием f = 50 см, непосредственно за ней диафрагму с круглым отверстием и на расстоянии b = 75 см от диафрагмы экран. При каких радиусах отверстия центр дифракционной картины на экране имеет максимальную освещенность?
- **4.121.** Плоская монохроматическая световая волна падает нормально на круглое отверстие. На расстоянии b=9,0 м от него находится экран, где наблюдают некоторую дифракционную картину. Диаметр отверстия уменьшили в $\eta=3,0$ раза. Найти новое расстояние b', на котором надо поместить экран, чтобы получить на нем дифракционную картину, подобную той, что в предыдущем случае, но уменьшенную в η раз.
- 4.122. Между источником света с $\lambda=0.55$ мкм и фотопластинкой поместили непрозрачный шарик диаметра D=40 мм. Расстояние между источником и шариком a=12 м, а между шариком и фотопластинкой b=18 м. Найти:
- а) размер изображения y' на пластинке, если поперечный размер источника y = 6.0 мм;
- б) минимальную высоту неровностей, хаотически покрывающих поверхность шарика, при которой последний уже будет загораживать свет (это происходит тогда, когда высота неровностей сравнима с шириной зоны Френеля, по которой проходит край непрозрачного экрана).
- **4.123.** Точечный источник монохроматического света расположен перед зонной пластинкой на расстоянии a=1,5 м от нее. Изображение источника образуется на расстоянии b=1,0 м от пластинки. Найти фокусное расстояние зонной пластинки.

4.124. Плоская световая волна с $\lambda=0,60$ мкм и интенсивностью I_0 падает нормально на большую стеклянную пластинку, профиль которой показан на рис. 4.27. При какой высоте h уступа интенсивность света в точках, расположенных под ним, будет:

а) минимальна;

- б) вдвое меньше I_0 (потерями на отражения пренебречь)?
- 4.125. Плоская монохроматическая световая волна падает непрозрачную полуплоскость. На расстоянии нормально на $b = 100 \; {
 m cm}$ за ней находится экран. Найти с помощью спирали Корню (см. рис. 4.24):
- а) отношение интенсивностей первого максимума и соседнего с ним минимума;
- б) длину волны света, если расстояние между двумя первыми максимумами $\Delta x = 0.63$ мм.
- 4.126. Плоская световая волна длины 0,60 мкм падает нормально на непрозрачную длинную полоску ширины 0,70 мм. За ней на расстоянии 100 см находится экран. Найти с помощью рис. 4.24 отношение интенсивностей света в середине дифракционной картины и на краях геометрической тени.
- 4.127. Плоская монохроматическая световая волна падает на длинную щель, за которой на расстоянии b = 60 см находится экран. Сначала ширину щели установили такой, что в середине дифракционной картины на экране наблюдался наиболее глубокий минимум. Раздвинув после этого щель на $\Delta h = 0.70$ мм, получили в центре картины следующий минимум. Найти длину волны света.
- **4.128.** Плоская световая волна с $\lambda = 0.65$ мкм падает нормально на большую стеклянную пластинку, на противоположной стороне которой сделана длинная прямоугольная выемка ширины 0,60 мм. Найти с помощью рис. 4.24 глубину выемки h, при которой в середине дифракционной картины на экране, отстоящем на 77 см от пластинки, будет максимум освещенности.
- **4.129.** Плоская световая волна с $\lambda = 0.65$ мкм падает нормально на большую стеклянную пластинку, на противоположной стороне которой имеется непрозрачная полоска ширины (рис. 4.28). a = 0.30 $\mathbf{M}\mathbf{M}$ На расстоянии b = 110 см от пластинки находится экран. Высота уступа h подобрана такой, что в точке 2 на экране интенсивность света оказывается максимально возможной. Найти с помощью рис. 4.24 отношение интенсивностей в точках 1 и 2.

Рис. 4.28

4.130. Световая волна с $\lambda = 0.60$ мкм падает нормально на прямоугольную щель. За ней на расстоянии b = 163 см находится экран. Обозначим одну из границ геометрической тени на экране буквой P. Найти ширину x щели, если разность фаз колебаний, приходящих в точку P от противоположных краев щели, равна $\pi/2$.

4.131. Плоская монохроматическая световая волна, интенсивность которой I_0 и $\lambda = 0.60$ мкм, падает нормально на преграду с двумя щелями (рис. 4.29). Известно, что $s_1 = 0.51$ мм, $s_2 = 1.19$ мм. Найти освещенность Е в середине дифракционной картины на экране, отстоящем от пре-

грады со щелями на расстояние b = 60 см.

4.132. Световая волна $\lambda = 0.60$ мкм падает нормально на

Рис. 4.30

стеклянную пластинку, на противоположной непрозрачной стороне которой имеется прозрачный участок (щель), профиль которого показан на рис. 4.30. При какой минимальной глубине h выемок освещенность в центре дифракционной картины на экране, отстоящем на расстоянии

187 см от этой структуры, будет максимальной? Известно, что $s_1 = 0.90 \text{ MM } \text{ M } s_2 = 2.25 \text{ MM}.$

- 4.133. Свет с длиной волны λ падает нормально на длинную прямоугольную щель ширины b. Найти угловое распределение интенсивности света при фраунгоферовой дифракции, а также угловое положение минимумов.
- 4.134. Монохроматический свет падает нормально на щель ширины b = 11 мкм. За щелью находится тонкая линза с фокусным расстоянием f = 150 мм, в фокальной плоскости которой расположен экран. Найти длину волны света, если расстояние между симметрично расположенными минимумами третьего порядка (на экране) равно x = 50 мм.
- **4.135.** Свет с длиной волны $\lambda = 0,50$ мкм падает на щель ширины b=10 мкм под углом $\theta_0=30^\circ$ к ее нормали. Найти угловое положение первых минимумов, расположенных по обе стороны центрального фраунгоферова максимума.
- **4.136.** Плоская световая волна с $\lambda = 0.60$ мкм падает нормально на грань стеклянного клина с преломляющим углом

- $\theta = 15^{\circ}$. На противоположной, непрозрачной, грани имеется щель ширины b = 10 мкм, параллельная ребру клина. Найти:
- а) угол $\Delta \vartheta$ между направлением на фраунгоферов максимум нулевого порядка и направлением падающего света;
 - б) угловую ширину максимума нулевого порядка.
- **4.137.** Монохроматический свет падает на отражательную дифракционную решетку с периодом d=1,0 мм под углом скольжения $\alpha_0=1,0^\circ$. Под углом скольжения $\alpha=3,0^\circ$ образуется фраунгоферов максимум второго порядка. Найти длину волны света.
- **4.138.** Изобразить примерную дифракционную картину, возникающую при дифракции Фраунгофера от решетки из трех одинаковых щелей, если отношение периода решетки к ширине щели равно:
 - а) двум; б) трем.
- **4.139.** При нормальном падении света на дифракционную решетку угол дифракции для линии $\lambda_1=0.65$ мкм во втором порядке равен 45° . Найти угол дифракции для линии $\lambda_2=0.50$ мкм в третьем порядке.
- **4.140.** Свет с длиной волны 535 нм падает нормально на дифракционную решетку. Найти ее период, если одному из фраунгоферовых максимумов соответствует угол дифракции 35° и наибольший порядок спектра равен пяти.
- **4.141.** Определить длину волны света, падающего нормально на дифракционную решетку с периодом d=2,2 мкм, если угол между направлениями на фраунгоферовы максимумы первого и второго порядков $\Delta \vartheta = 15^{\circ}$.
- **4.142.** Свет с длиной волны 530 нм падает на прозрачную дифракционную решетку, период которой равен 1,50 мкм. Найти угол с нормалью к решетке, под которым образуется фраунгоферов максимум наибольшего порядка, если свет падает на решетку:
 - а) нормально; б) под углом 60° к нормали.
- 4.143. Свет с $\lambda = 0,60$ мкм падает нормально на дифракционную решетку, которая нанесена на плоской поверхности плоско-выпуклой цилиндрической стеклянной линзы с радиусом кривизны R=20 см. Период решетки d=6,0 мкм. Найти расстояние между симметрично расположенными главными максимумами первого порядка в фокальной плоскости этой линзы.

4.144. Плоская световая волна с $\lambda = 0.50$ мкм падает нормально на грань стеклянного клина с углом $\theta = 30^{\circ}$. На противопо-

ложной грани клина нанесена прозрачная дифракционная решетка с периодом d = 2,00 мкм, штрихи которой параллельны ребру клина. Найти углы между направлением падающего света и направлениями на главные фраунгоферовы макси-

мумы нулевого и первого порядков. Каков максимальный порядок спектра? Под каким углом к направлению падающего света он будет наблюдаться?

4.145. Плоская световая волна длины λ падает нормально на фазовую дифракционную решетку, профиль которой показан на рис. 4.31. Решетка нанесена на стеклянной пластинке с показателем преломления n. Найти глубину h штрихов, при которой интенсивность центрального фраунгоферова максимума равна нулю. Каков при этом угол дифракции, соответствуюший первому максимуму?

Рис. 4.32

4.146. На рис. 4.32 показана схема установки для наблюдения дифракции света на ультразвуке. Плоская световая волна длиной $\lambda = 0.55$ мкм проходит через кювету K с водой, в которой возбуждена стоячая ультразвуковая волна с частотой $\nu = 4,7$ МГц. В результате дифракции света на оптически неоднородной периодической структуре в фокальной плоскости объ-

ектива O с фокусным расстоянием f = 35 см возникает дифракционная картина. Расстояние между соседними максимумами $\Delta x = 0.60$ мм. Найти скорость распространения ультразвуковых колебаний в воде.

4.147. Щель ширины b, освещаемая светом с $\lambda = 0.60$ мкм, находится в фокальной плоскости объектива с фокусным расстоянием f = 1.5 м. За объективом расположен экран с двумя узкими щелями, отстоящими друг от друга на расстояние d = 1,0 мм. Оценить ширину b, при которой будет наблюдаться интерференция от двух щелей.

- 4.148. Для измерения методом Майкельсона углового расстояния ψ между компонентами двойной звезды перед объективом телескопа поместили диафрагму с двумя узкими параллельными щелями, расстояние d между которыми можно менять. Уменьшая d, обнаружили первое ухудшение видимости дифракционной картины в фокальной плоскости объектива при d=95 см. Найти ψ , считая длину волны света $\lambda=0.55$ мкм.
- **4.149.** Прозрачная дифракционная решетка имеет период d=1,50 мкм. Найти угловую дисперсию D (в угл. мин/нм), соответствующую максимуму наибольшего порядка спектральной линии с $\lambda=530$ нм, если свет падает на решетку:
 - а) нормально; б) под углом $\theta_0 = 45^\circ$ к нормали.
- **4.150.** Свет с $\lambda = 550$ нм падает нормально на дифракционную решетку. Найти ее угловую дисперсию под углом дифракции $\theta = 60^{\circ}$.
- **4.151.** Свет с $\lambda = 589,0$ нм падает нормально на дифракционную решетку с периодом d = 2,5 мкм, содержащую N = 10000 штрихов. Найти угловую ширину фраунгоферова максимума второго порядка (в угл. сек).
- **4.152.** Показать, что при нормальном падении света на дифракционную решетку максимальная величина ее разрешающей способности не может превышать значения l/λ , где l ширина решетки, λ длина волны света.
- **4.153.** Показать на примере дифракционной решетки, что разность частот двух максимумов, разрешаемых по критерию Рэлея, равна обратной величине разности времен прохождения самых крайних интерферирующих колебаний, т. е. $\delta \nu = 1/\delta t$.
- 4.154. Свет, содержащий две спектральные линии с длинами волн 600,000 и 600,050 нм, падает нормально на дифракционную решетку ширины 10,0 мм. Под некоторым углом дифракции 9 эти линии оказались на пределе разрешения (по критерию Рэлея). Найти 9.
- **4.155.** Свет падает нормально на дифракционную решетку ширины l=6,5 см, имеющую 200 штрихов на миллиметр. Исследуемый спектр содержит спектральную линию длиной $\lambda=670,8$ нм, которая состоит из двух компонент, отличающихся на $\delta\lambda=0,015$ нм. Найти:
 - а) в каком порядке эти компоненты будут разрешены;
- б) наименьшую разность длин волн, которую может разрешить эта решетка в области $\lambda \approx 670$ нм.

- **4.156.** При нормальном падении света на дифракционную решетку ширины 10 мм обнаружено, что компоненты желтой линии натрия (589,0 и 589,6 нм) оказываются разрешенными, начиная с пятого порядка спектра. Оценить:
 - а) период этой решетки;
- б) при какой ширине решетки с таким периодом можно разрешить в третьем порядке дублет спектральной линии с $\lambda = 460$ нм, компоненты которого различаются на 0,13 нм.
- 4.157. Дифракционная решетка кварцевого спектрографа имеет ширину 25 мм и содержит 250 штрихов на миллиметр. Фокусное расстояние объектива, в фокальной плоскости которого находится фотопластинка, равно 80 см. Свет падает на решетку нормально. Исследуемый спектр содержит спектральную линию, компоненты дублета которой имеют длины волн 310,154 и 310,184 нм. Определить:
- а) расстояния на фотопластинке между компонентами этого дублета в спектрах первого и второго порядков;
 - б) будут ли они разрешены в этих порядках спектра.
- **4.158.** Освещаемая щель находится в фокальной плоскости объектива с фокусным расстоянием f=25 см. За объективом расположена дифракционная решетка с периодом d=5,0 мкм и числом штрихов N=1000. При какой ширине b щели будет полностью использована разрешающая способность решетки вблизи $\lambda=600$ нм?
- **4.159.** Голограмму точки A получают в результате интерференции плоской опорной волны и предметной, дифрагированной на точке A. Расстояние от этой точки до фотопластинки l=50 см, длина волны $\lambda=620$ нм. Фотопластинка ориентирована перпендикулярно направлению распространения опорной волны. Найти:
- а) радиус k-го кольца голограммы, соответствующего максимуму освещенности; вычислить этот радиус для k=10;
- б) зависимость расстояния Δr между соседними максимумами от радиуса r соответствующего кольца для $r \ll l$.
- **4.160.** На фотопластинке, отстоящей на l=40 см от небольшого предмета, хотят получить его голограмму, где были бы записаны детали предмета размером d=10 мкм. Длина волны света $\lambda=0,60$ мкм. Каким должен быть размер фотопластинки?
- **4.161.** Для трехгранной призмы спектрографа предельная разрешающая способность $\lambda/\delta\lambda$ обусловлена дифракцией света

от краев призмы (как от щели). При установке призмы на угол наименьшего отклонения в соответствии с критерием Рэлея $\lambda/\delta\lambda =$ = $b |dn/d\lambda|$, где b — ширина основания призмы (рис. 4.33), $dn/d\lambda$ — писперсия ее вешества. Вывести эт

Рис. 4.33

- дисперсия ее вещества. Вывести эту формулу.
- **4.162.** Трехгранная призма спектрографа изготовлена из стекла, показатель преломления которого зависит от длины волны света как $n=A+B/\lambda^2$, где A и B постоянные, причем $B=0{,}010$ мкм², λ в мкм. Воспользовавшись формулой из предыдущей задачи, найти:
- а) зависимость разрешающей способности призмы от λ ; вычислить $\lambda/\delta\lambda$ вблизи $\lambda_1=434$ нм и $\lambda_2=656$ нм, если ширина основания призмы b=5,0 см;
- б) ширину основания призмы, способной разрешить желтый дублет натрия (589,0 и 589,6 нм).
- **4.163.** Какой должна быть ширина основания трехгранной призмы с дисперсией $|\mathrm{d}n/\mathrm{d}\lambda|=0.10~\mathrm{mkm^{-1}}$, чтобы она имела такую же разрешающую способность, как и дифракционная решетка из 10000 штрихов во втором порядке спектра?
- **4.164.** Имеется зрительная труба с диаметром объектива D=5,0 см. Определить разрешающую способность объектива трубы и минимальное расстояние между двумя точками, находящимися на расстоянии l=3,0 км от трубы, которое она может разрешить. Считать $\lambda=0,55$ мкм.
- **4.165.** Вычислить наименьшее расстояние между двумя точками на Луне, которое можно разрешить рефлектором с диаметром зеркала 5,0 м. Считать, что $\lambda = 0.55$ мкм.
- **4.166.** В фокальной плоскости объектива образуется дифракционное изображение удаленного точечного источника. Оценить, как изменится освещенность в центре этого изображения, если объектив заменить другим, с тем же фокусным расстоянием, но с диаметром, вдвое большим.
- **4.167.** Плоская световая волна с $\lambda=0,6$ мкм падает нормально на идеальный объектив с фокусным расстоянием f=45 см. Диаметр отверстия объектива d=5 см. Пренебрегая потерями света на отражения, оценить отношение интенсивности I световой волны в фокусе объектива к интенсивности I_0 волны, падающей на объектив.

- **4.168.** Определить минимальное увеличение зрительной трубы с диаметром объектива D=5.0 см, при котором разрешающая способность ее объектива будет полностью использована, если диаметр зрачка глаза $d_0=4.0$ мм.
- **4.169.** Имеется микроскоп с числовой апертурой объектива $\sin \alpha = 0.24$, где α угол полураствора конуса лучей, падающих на оправу объектива. Найти минимальное разрешаемое расстояние для этого микроскопа при оптимальном освещении объекта светом с длиной волны $\lambda = 0.55$ мкм.
- **4.170.** Найти минимальное увеличение микроскопа с числовой апертурой объектива $\sin \alpha = 0.24$, при котором разрешающая способность его объектива будет полностью использована, если диаметр зрачка глаза $d_0 = 4.0$ мм.
- **4.171.** Пучок рентгеновских лучей с длиной волны λ падает под углом скольжения $60,0^{\circ}$ на линейную цепочку из рассеивающих центров с периодом a. Найти углы скольжения, соответствующие всем дифракционным максимумам, если $\lambda = (2/5)a$.
- **4.172.** Пучок рентгеновских лучей с длиной волны $\lambda = 40$ пм падает нормально на плоскую прямоугольную решетку из рассеи-

вающих центров и дает на плоском экране, расположенном на расстоянии l=10 см от решетки, систему дифракционных максимумов (рис. 4.34). Найти периоды решетки a и b соответственно вдоль осей X и Y, если расстояния между симметрично расположенными максимумами второго порядка равны $\Delta x = 60$ мм (по оси X) и $\Delta y = 40$ мм (по оси Y).

- **4.173.** Пучок рентгеновских лучей падает на трехмерную прямоугольную решетку, периоды которой a, b и c. Направление падающего пучка совпадает с направлением, вдоль которого период решетки равен a. Найти направления на дифракционные максимумы и длины волн, при которых эти максимумы будут наблюдаться.
- **4.174.** Узкий пучок рентгеновских лучей падает под углом скольжения $\alpha=60,0^\circ$ на естественную грань монокристалла NaCl, плотность которого $\rho=2,16$ г/см 3 . При зеркальном отражении от этой грани образуется максимум второго порядка. Определить длину волны излучения.

4.175. Пучок рентгеновских лучей с $\lambda = 174$ пм падает на поверхность монокристалла, поворачивающегося вокруг оси, которая параллельна его поверхности и перпендикулярна направлению падающего пучка. При этом направления на максимумы второго и третьего порядков от системы плоскостей, параллельных поверхности монокристалла, образуют между собой угол $\alpha = 60^{\circ}$. Найти соответствующее межплоскостное расстояние.

4.176. При прохождении пучка рентгеновских лучей с $\lambda=17.8$ пм через поликристаллический образец на экране, расположенном на расстоянии l=15 см от образца, образуется система дифракционных колец. Определить радиус светлого кольца, соответствующего второму порядку отражения от системы плоскостей с межплоскостным расстоянием d=155 пм.

4.4. Поляризация света

- \bullet Плоскость поляризации плоскость, в которой колеблется световой вектор (E).
- Плоскость пропускания поляризатора плоскость, в которой колебания светового вектора проходят свободно.
 - Закон Малюса:

$$I = I_0 \cos^2 \varphi. \tag{4.4a}$$

• Степень поляризации света:

$$P = \frac{I_{\text{MAKC}} - I_{\text{MUH}}}{I_{\text{MAKC}} + I_{\text{MUH}}} = \frac{I_{\text{пол}}}{I_{\text{полн}}}.$$
 (4.46)

• Закон Брюстера:

$$tg\vartheta_{B} = n_{2}/n_{1}. \tag{4.4b}$$

• Формулы Френеля для интенсивности света, отраженного от границы раздела двух диэлектриков:

$$I'_{\perp} = I_{\perp} \frac{\sin^2(\vartheta_1 - \vartheta_2)}{\sin^2(\vartheta_1 + \vartheta_2)}, \qquad I'_{||} = I_{||} \frac{\operatorname{tg}^2(\vartheta_1 - \vartheta_2)}{\operatorname{tg}^2(\vartheta_1 + \vartheta_2)},$$
 (4.4r)

где I_{\perp} и $I_{||}$ — интенсивности падающего света, у которого колебания светового вектора соответственно перпендикулярны и параллельны плоскости падения.

• Кристаллическая пластинка между двумя поляризаторами P и P'. Если угол между плоскостью пропускания поляризатора P и оптической осью OO' пластинки равен 45° , то интенсивность I' света, прошедшего через поляризатор P', оказывается максимальной или минимальной при следующих условиях:

Поляризаторы P и P^{\prime}	$\delta = 2 \pi k$	$\delta = (2k + 1)\pi$
параллельны	$I'_{ } = \text{makc}$	$I_{ }'$ = мин
скрещены	$I_{\perp}' = \mathtt{M}\mathtt{M}\mathtt{H}$	I_{\perp}' = make

Здесь $\delta = 2\pi (n_o - n_e)d/\lambda$ — разность фаз между обыкновенным и необыкновенным лучами, $k=0,\ 1,\ 2...$

• Естественное и магнитное вращения плоскости поляризации:

$$\varphi_{\text{ect}} = \alpha l, \quad \varphi_{\text{MAFH}} = VlH;$$
(4.4 π)

здесь α — постоянная вращения (для растворов $\alpha = [\alpha]c$, где $[\alpha]$ — удельная постоянная вращения, c — концентрация активного вещества), V — постоянная Верде.

- $4.177.\ \Pi$ лоская монохроматическая волна естественного света с интенсивностью I_0 падает нормально на систему из двух соприкасающихся поляроидных полуплоскостей. Плоскости пропускания поляроидов взаимно перпендикулярны. Изобразить примерный вид дифракционной картины на экране за этой системой. Какова интенсивность света в середине дифракционной картины?
- **4.178.** Плоская монохроматическая волна естественного света с интенсивностью I_0 падает нормально на круглое отверстие, которое представляет собой первую зону Френеля для точки наблюдения P. Найти интенсивность света в точке P, если отверстие перекрыть двумя одинаковыми поляризаторами, плоскости пропускания которых взаимно перпендикулярны, а граница их раздела проходит:
 - а) по диаметру отверстия;
- б) по окружности, ограничивающей первую половину зоны Френеля.
- **4.179.** Линейно поляризованный световой пучок падает на поляризатор, вращающийся вокруг оси пучка с угловой скоростью $\omega=21$ рад/с. Найти световую энергию, проходящую через поляризатор за один оборот, если поток энергии в падающем пучке $\Phi_0=4$,0 мВт.
- **4.180.** При падении естественного света на некоторый поляризатор проходит $\eta_1=30\%$ светового потока, а через два таких поляризатора $\eta_2=13,5\%$. Найти угол ϕ между плоскостями пропускания этих поляризаторов.

- **4.181.** Пучок естественного света падает на систему из N=6 поляризаторов, плоскость пропускания каждого из которых повернута на угол $\phi=30^\circ$ относительно плоскости пропускания предыдущего поляризатора. Какая часть светового потока проходит через эту систему?
- **4.182.** Естественный свет падает на систему из трех последовательно расположенных одинаковых поляроидов, причем плоскость пропускания среднего поляроида составляет угол $\phi = 60^{\circ}$ с плоскостями пропускания двух других поляроидов. Каждый поляроид обладает поглощением таким, что при падении на него линейно поляризованного света максимальный коэффициент пропускания составляет $\tau = 0.81$. Во сколько раз уменьшится интенсивность света после прохождения этой системы?
- 4.183. Степень поляризации частично поляризованного света P=0,25. Найти отношение интенсивности поляризованной составляющей этого света к интенсивности естественной составляющей.
- **4.184.** Узкий пучок естественного света проходит через газ из оптически изотропных молекул. Найти степень поляризации света, рассеянного под углом 9 к пучку.
- **4.185.** На пути частично поляризованного света поместили поляризатор. При повороте поляризатора на угол $\phi = 60^\circ$ из положения, соответствующего максимуму пропускания, интенсивность прошедшего света уменьшилась в $\eta = 3,0$ раза. Найти степень поляризации падающего света.
- **4.186.** На пути естественного пучка света поместили два несовершенных поляризатора. Оказалось, что при параллельных плоскостях пропускания поляризаторов эта система пропускает в $\eta=10,0$ раз больше света, чем при скрещенных плоскостях. Найти степень поляризации света, которую создает:
 - а) каждый поляризатор в отдельности;
- б) вся система при параллельных плоскостях пропускания поляризаторов.
- 4.187. Показать с помощью формул (4.4г), что отраженный от поверхности диэлектрика свет будет полностью поляризован, если угол падения θ_1 удовлетворяет условию $tg\theta_1=n$, где n показатель преломления диэлектрика. Каков при этом угол между отраженным и преломленным лучами?
- **4.188.** Частично поляризованный свет падает под углом Брюстера на поверхность изотропного диэлектрика. Найти его

степень поляризации, если р-часть света отражается, а преломленный свет оказывается естественным.

- **4.189.** Естественный свет падает под некоторым углом на поверхность изотропного диэлектрика. При этом ρ -часть светового потока отражается, имея степень поляризации P. Найти степень поляризации P' преломленного света.
- **4.190.** Естественный свет падает под углом Брюстера на поверхность стекла. Найти с помощью формул (4.4r):
 - а) коэффициент отражения;
 - б) степень поляризации преломленного света.
- **4.191.** Плоский пучок естественного света с интенсивностью I_0 падает под углом Брюстера на поверхность воды. При этом $\rho = 0.039$ светового потока отражается. Найти интенсивность преломленного пучка.
- **4.192.** На поверхность воды под углом Брюстера падает пучок плоскополяризованного света. Его плоскость поляризации составляет угол $\phi=45^\circ\,$ с плоскостью падения. Найти коэффициент отражения.

Рис. 4.35

4.193. Узкий пучок естественного света падает под углом Брюстера на поверхность толстой плоскопараллельной прозрачной пластины. При этом от верхней поверхности отражается $\rho = 0.080$ светового потока. Найти степень поляризации пучков 1-4 (рис. 4.35).

4.194. Узкий пучок плоскополяризованного света интенсивности I_0 падает под уг-

лом Брюстера на плоскопараллельную стеклянную пластину (см. рис. 4.35) так, что его плоскость поляризации перпендикулярна плоскости падения. Найти с помощью формул (4.4r) интенсивность прошедшего пучка I_4 .

- 4.195. Узкий пучок естественного света падает под углом Брюстера на плоскопараллельную стеклянную пластину (см. рис. 4.35). Определить с помощью формул (4.4г) степень поляризации прошедшего через пластину светового пучка 4.
- **4.196.** Узкий пучок естественного света падает под углом Брюстера на стопу Столетова, состоящую из N толстых стеклянных пластин. Найти:
 - а) степень поляризации P прошедшего пучка;
 - б) чему равно P при $N=1,\ 2,\ 5$ и 10.

- **4.197.** Определить с помощью формул (4.4г) коэффициент отражения естественного света при нормальном падении на поверхность воды.
- **4.198.** Найти относительную потерю светового потока за счет отражений при прохождении параксиального пучка через центрированную систему из N=5 стеклянных линз, если коэффициент отражения каждой поверхности $\rho=4,0\%$. Вторичными отражениями пренебречь.
- **4.199.** Свет интенсивности I_0 падает нормально на идеально прозрачную пластинку. Считая, что коэффициент отражения каждой поверхности ее $\rho = 5.0\%$, найти с учетом многократных отражений интенсивность I прошедшего через пластинку света. Чему равна относительная погрешность I, найденная без учета вторичных отражений?
- **4.200.** Световая волна падает нормально на поверхность стекла, покрытого тонким слоем прозрачного вещества. Пренебрегая вторичными отражениями, показать, что амплитуды световых волн, отраженных от обеих поверхностей такого слоя, будут одинаковы при условии $n' = \sqrt{n}$, где n' и n показатели преломления слоя и стекла.
- **4.201.** На поверхность стекла падает пучок естественного света. Угол падения равен 45° . Найти с помощью формул (4.4г) степень поляризации:
 - а) отраженного света; б) преломленного света.
- **4.202.** Построить по Гюйгенсу волновые фронты и направления распространения обыкновенного и необыкновенного лучей в положительном одноосном кристалле, оптическая ось которого:
- а) перпендикулярна плоскости падения и параллельна поверхности кристалла;
- б) лежит в плоскости падения и параллельна поверхности кристалла;
- в) лежит в плоскости падения под углом 45° к поверхности кристалла, и свет падает перпендикулярно оптической оси.
- 4.203. Узкий пучок естественного света с длиной волны $\lambda = 589$ нм падает нормально на поверхность призмы Волластона, сделанной из исландского шпата, как показано на рис. 4.36. Оптические оси обеих

Рис. 4.36

Часть 4. Оптика

частей призмы взаимно перпендикулярны. Найти угол α между направлениями пучков за призмой, если угол $\theta = 30^{\circ}$.

- **4.204.** Какой характер поляризации имеет плоская электромагнитная волна, проекции вектора \mathbf{E} которой на оси X и Y, перпендикулярные направлению ее распространения, определяются следующими уравнениями:
 - a) $E_x = E \cos(\omega t kz)$, $E_y = E \sin(\omega t kz)$;
 - 6) $E_x = E \cos(\omega t kz), E_y = E \cos(\omega t kz + \pi/4);$
 - B) $E_x = E \cos(\omega t kz)$, $E_y = E \cos(\omega t kz + \pi)$?
- **4.205.** На пути частично поляризованного света поместили поляризатор. При повороте поляризатора обнаружили, что наименьшая интенсивность света равна I_0 . Если же перед поляризатором поместить пластинку в четверть волны, оптическая ось которой ориентирована под углом 45° к плоскости пропускания поляризатора, то интенсивность света за поляризатором становится равной ηI_0 , где $\eta=2,0$. Найти степень поляризации падающего света.
- **4.206.** Требуется изготовить параллельную оптической оси кварцевую пластинку, толщина которой не превышала бы 0,50 мм. Найти максимальную толщину этой пластинки, при которой линейно поляризованный свет с $\lambda = 589$ нм после прохождения ее:
 - а) испытывает лишь поворот плоскости поляризации;
 - б) станет поляризованным по кругу.
- 4.207. Кварцевую пластинку, вырезанную параллельно оптической оси, поместили между двумя скрещенными поляризаторами. Угол между плоскостями пропускания поляризаторов и оптической осью пластинки равен 45° . Толщина пластинки равна d=0,50 мм. При каких длинах волн в интервале $0,50\div0,60$ мкм интенсивность света, прошедшего через эту систему, не будет зависеть от поворота заднего поляризатора? Разность показателей преломления необыкновенного и обыкновенного лучей в этом интервале длин волн считать равной $\Delta n=0,0090$.
- 4.208. Белый естественный свет падает на систему из двух скрещенных поляризаторов, между которыми находится кварцевая пластинка толщины 1,50 мм, вырезанная параллельно оптической оси. Ось пластинки составляет угол 45° с плоскостями пропускания поляризаторов. Прошедший через эту систему свет разложили в спектр. Сколько темных полос будет на-

блюдаться в интервале длин волн $0.55 \div 0.66$ мкм? Считать, что в этом интервале длин волн $n_e - n_o = 0.0090$.

- **4.209.** Кристаллическая пластинка, вырезанная параллельно оптической оси, имеет толщину 0,25 мм и служит пластинкой в четверть волны для $\lambda=0,53$ мкм. Для каких еще длин волн в области видимого спектра она будет также пластинкой в четверть волны? Считать, что для всех длин волн видимого спектра $n_e-n_o=0,0090$.
- **4.210.** Кварцевая пластинка, вырезанная параллельно оптической оси, помещена между двумя скрещенными поляризаторами. Ее оптическая ось составляет угол 45° с их плоскостями пропускания. При какой минимальной толщине пластинки свет с $\lambda_1=643$ нм будет проходить через эту систему с максимальной интенсивностью, а с $\lambda_2=564$ нм сильно ослаблен, если $n_e-n_o=0.0090$?
- **4.211.** Между двумя скрещенными поляризаторами поместили кварцевый клин с преломляющим углом $9=3,5^{\circ}$. Оптическая ось клина параллельна его ребру и составляет угол 45° с плоскостями пропускания поляризаторов. При прохождении через систему света с $\lambda=550$ нм наблюдают интерференционные полосы. Ширина каждой полосы $\Delta x=1,0$ мм. Найти разность $n_{e}-n_{o}$ кварца для указанной длины волны.
- 4.212. Монохроматический свет интенсивности I, поляризованный в плоскости P, падает нормально на кристаллическую пластинку, вырезанную параллельно оптической оси. Угол между P и этой осью равен 45° . За пластинкой расположен поляризатор, плоскость пропускания которого P'. Найти интенсивность света за поляризатором, если пластинка вносит разность фаз δ между обыкновенным и необыкновенным лучами. Рассмотреть случаи:
 - a) $P' \parallel P$; 6) $P' \perp P$.
- **4.213.** Монохроматический поляризованный по кругу свет падает нормально на кристаллическую пластинку, вырезанную параллельно оптической оси. За пластинкой находится поляризатор, плоскость пропускания которого составляет угол φ с оптической осью пластинки. Показать, что интенсивность света, прошедшего эту систему, $I \sim (1 + \sin 2\varphi \sin \delta)$, δ разность фазмежду обыкновенным и необыкновенным лучами, вносимая пластинкой.

- **4.214.** Как с помощью поляриода и пластинки в четверть волны, изготовленной из положительного одноосного кристалла $(n_e > n_o)$, отличить:
 - а) свет лево- от правополяризованного по кругу;
- б) естественный свет от поляризованного по кругу и от смеси естественного света с поляризованным по кругу?
- **4.215.** Свет с длиной волны λ падает на систему из скрещенных поляризатора Π и анализатора A, между которыми нахо-

Рис. 4.37

дится компенсатор Бабине K (рис. 4.37). Он состоит из двух кварцевых клиньев, оптическая ось одного из которых параллельна ребру клина, другого — перпендикулярна ему. Плоскости пропускания поляризатора и анализатора составляют угол 45° с оптическими осями компенсатора. Известны также преломляющий угол θ клиньев ($\theta \ll 1$) и

разность показателей преломления кварца $n_e - n_o$. При введении исследуемого двупреломляющего образца O (его оптическая ось ориентирована так, как показано на рисунке) наблюдаемые интерференционные полосы сдвинулись вверх на δx мм. Найти:

- а) ширину интерференционной полосы Δx ;
- б) величину и знак оптической разности хода обыкновенного и необыкновенного лучей в образце O.
- **4.216.** Плоская монохроматическая световая волна интенсивности I_0 падает нормально на прозрачный диск из оптически активного вещества, который перекрывает полторы зоны Френеля для точки наблюдения P и поворачивает плоскость поляризации на 90° . Пренебрегая отражениями и поглощением, найти интенсивность света в точке P.

Рис. 4.38

4.217. Вычислить с помощью таблиц приложения разность показателей преломления кварца для право- и левополяризованного по кругу света с $\lambda = 590$ нм.

4.218. Плоскополяризованный свет с $\lambda = 0.59$ мкм падает на кварцевую призму Π (рис. 4.38) с преломляющим углом $\theta = 30^{\circ}$. В призме свет распространяется вдоль оп-

тической оси, направление которой показано штриховкой. За поляризатором P наблюдают систему светлых и темных полос, ширина которых $\Delta x = 14.2$ мм. Найти постоянную вращения кварца, а также характер распределения интенсивности света за поляризатором.

- 4.219. Естественный свет с длиной волны 656 нм падает на систему из двух скрещенных поляризаторов, между которыми находится кварцевая пластинка, вырезанная перпендикулярно оптической оси. При какой минимальной толщине пластинки система будет пропускать $\eta=0.30$ светового потока?
- **4.220.** Свет проходит через систему из двух скрещенных поляризаторов, между которыми расположена кварцевая пластинка, вырезанная перпендикулярно оптической оси. При какой минимальной толщине пластинки свет с $\lambda_1=436$ нм будет полностью задерживаться системой, а с $\lambda_2=497$ нм пропускаться наполовину?
- **4.221.** Плоскополяризованный свет с $\lambda = 589$ нм проходит вдоль оси цилиндрического стеклянного сосуда, заполненного слегка замутненным раствором сахара с концентрацией 500 г/л. При наблюдении сбоку видна система винтообразных полос, причем расстояние между соседними темными полосами вдоль оси равно 50 см. Объяснить возникновение полос и определить удельную постоянную вращения раствора.
- **4.222.** Ячейку Керра поместили между двумя скрещенными поляризаторами так, что направление электрического поля **E** в конденсаторе образует угол 45° с плоскостями пропускания поляризаторов. Конденсатор имеет длину l=100 мм и заполнен нитробензолом. Через систему проходит свет с $\lambda=0,50$ мкм. Имея в виду, что в данном случае постоянная Керра $B=2,2\cdot 10^{-10}\,\mathrm{cm/B^2}$, определить:
- а) минимальную напряженность электрического поля E в конденсаторе, при которой интенсивность света, прошедшего через эту систему, не будет зависеть от поворота заднего поляризатора;
- б) число прерываний света в 1 с, если на конденсатор подать синусоидальное напряжение с частотой $\nu=10$ МГц и амплитудным значением напряженности $E_m=50$ кВ/см.

Примечание. Постоянной Керра называют коэффициент B в формуле n_e – n_o = $B\lambda E^2$.

Часть 4. Оптика

- 4.223. Монохроматический плоскополяризованный свет с круговой частотой ω проходит через вещество вдоль однородного магнитного поля с напряженностью H. Найти разность показателей преломления для право- и левополяризованных по кругу компонент светового пучка, если постоянная Верде равна V.
- **4.224.** Некоторое вещество поместили в продольное магнитное поле соленоида, расположенного между двумя поляризаторами. Длина трубки с веществом l=30 см. Найти постоянную Верде, если при напряженности поля H=56,5 кA/м угол поворота плоскости поляризации $\phi_1=+5^\circ10'$ для одного направления поля и $\phi_2=-3^\circ20'$ для противоположного направления.

4.225. Узкий пучок плоскополяризованного света проходит через правовращающее положительное вещество, находящееся в продольном магнитном поле, как показано на рис. 4.39. Найти угол, на который

повернется плоскость поляризации вышедшего пучка, если длина трубки с веществом равна l, его постоянная вращения α , постоянная Верде V и напряженность магнитного поля H.

- **4.226.** Трубка с бензолом длины l=26 см находится в продольном магнитном поле соленоида, расположенного между двумя поляризаторами. Угол между плоскостями пропускания поляризаторов равен 45° . Найти минимальную напряженность магнитного поля, при которой свет с длиной волны 589 нм будет проходить через эту систему только в одном направлении (оптический вентиль). Как будет вести себя этот оптический вентиль, если изменить направление данного магнитного поля на противоположное?
- 4.227. Опыт показывает, что телу, облучаемому поляризованным по кругу светом, сообщается вращательный момент (эффект Садовского). Это связано с тем, что данный свет обладает моментом импульса, плотность потока которого в вакууме $M = I/\omega$, где I интенсивность света, ω его круговая частота колебаний. Пусть поляризованный по кругу свет с длиной волны $\lambda = 0.70$ мкм падает нормально на однородный черный диск массы m = 10 мг, который может свободно вращаться вокруг своей оси. Через сколько времени его угловая скорость станет $\omega_0 = 1.0$ рад/с, если I = 10 Вт/см²?

4.5. Дисперсия и поглощение света

• Согласно элементарной теории дисперсии диэлектрическая проницаемость вещества:

$$\varepsilon = 1 + \frac{ne^2/m\varepsilon_0}{\omega_0^2 - \omega^2}, \tag{4.5a}$$

где n — концентрация электронов с собственной частотой ω_0 .

• Связь между показателем преломления и диэлектрической проницаемостью вещества:

$$n = \sqrt{\varepsilon} . {(4.56)}$$

• Фазовая v и групповая u скорости:

$$v = \omega / k$$
, $u = d\omega / dk$. (4.5B)

Формула Рэлея (\(\lambda - длина волны света в среде):

$$u = v - \lambda \frac{\mathrm{d}v}{\mathrm{d}\lambda}.\tag{4.5r}$$

• Закон ослабления узкого пучка электромагнитного излучения:

$$I = I_0 e^{-\mu d},$$
 (4.5 π)

где $\mu = \varkappa + \varkappa'$; μ , \varkappa , \varkappa' — линейные показатели ослабления, поглощения и рассеяния.

- **4.228.** Электромагнитная волна с частотой ω распространяется в разреженной плазме. Концентрация свободных электронов в плазме равна n_0 . Пренебрегая взаимодействием волны с ионами плазмы, найти зависимость:
 - а) диэлектрической проницаемости плазмы от частоты;
 - б) фазовой скорости от длины волны λ в плазме.
- **4.229.** Найти концентрацию свободных электронов ионосферы, если для радиоволн с частотой $\nu=100$ МГц ее показатель преломления n=0.90.
- **4.230.** Имея в виду, что для достаточно жестких рентгеновских лучей электроны вещества можно считать свободными, определить, на сколько отличается от единицы показатель преломления графита для рентгеновских лучей с длиной волны в вакууме $\lambda = 50\,$ пм.
- **4.231.** Электрон, на который действует квазиупругая сила kx и «сила трения» $\gamma\dot{x}$, находится в поле электромагнитного излучения. Электрическая составляющая поля меняется во времени по закону $E=E_0\cos\omega t$. Пренебрегая действием магнитной составляющей поля, найти:

- а) уравнение движения электрона;
- б) среднюю мощность, поглощаемую электроном; частоту, при которой она будет максимальна; выражение для максимальной средней мощности.
- **4.232.** В ряде случаев диэлектрическая проницаемость вещества оказывается величиной комплексной или отрицательной и показатель преломления соответственно комплексным ($n' = n + i\varkappa$). Написать для этих случаев уравнение плоской волны и выяснить физический смысл таких показателей преломления.
- 4.233. При зондировании разреженной плазмы радиоволнами различных частот обнаружено, что радиоволны с частотами $\nu < \nu_0 = 400~\mathrm{MT}$ ц не проходят через плазму. Найти концентрацию свободных электронов в этой плазме.

- 4.234. Исходя из определения групповой скорости $u = d\omega/dk$, получить формулу Рэлея (4.5г). Показать также, что значение u вблизи $\lambda = \lambda'$ равно отрезку v', отсекаемому касательной к кривой $v(\lambda)$ в точке λ' (рис. 4.40).
- **4.235.** Найти зависимость между групповой u и фазовой v скоростями для следующих законов дисперсии:
- а) $v \propto 1/\sqrt{\lambda}$; б) $v \propto k$; в) $v \propto 1/v^2$, где λ , k и v длина волны, волновое число и частота.
- **4.236.** В некоторой среде связь между групповой и фазовой скоростями электромагнитной волны имеет вид $uv = c^2$, где c скорость света в вакууме. Найти зависимость диэлектрической проницаемости этой среды от частоты волны $\varepsilon(\omega)$.
- **4.237.** Показатель преломления сероуглерода для света с длинами волн 509, 534 и 589 нм равен соответственно 1,647, 1,640 и 1,630. Вычислить фазовую и групповую скорости света вблизи $\lambda = 534$ нм.
- **4.238.** Плоский световой импульс распространяется в среде, где фазовая скорость линейно зависит от длины волны как $v=a+b\lambda$, a и b некоторые положительные постоянные. Показать, что в такой среде форма произвольного светового импульса будет восстанавливаться через промежуток времени $\tau=1/b$.

- **4.239.** Пучок естественного света интенсивности I_0 падает на систему из двух скрещенных поляризаторов, между которыми находится трубка с оптически неактивным раствором в продольном магнитном поле напряженности H. Длина трубки l, линейный показатель поглощения раствора \varkappa и постоянная Верде V. Пренебрегая отражениями, найти интенсивность света, прошедшего через эту систему.
- **4.240.** Плоская монохроматическая световая волна интенсивности I_0 падает нормально на пластинку толщины d с линейным показателем поглощения κ . Коэффициент отражения каждой поверхности пластинки равен ρ . Найти интенсивность прошедшего света:
 - а) пренебрегая вторичными отражениями;
 - б) учитывая многократные отражения.
- **4.241.** Из некоторого вещества изготовили две пластинки: одну толщины $d_1=3,8$ мм, другую толщины $d_2=9,0$ мм. Введя поочередно эти пластинки в пучок монохроматического света, обнаружили, что первая пластинка пропускает $\tau_1=0,84$ светового потока, а вторая $\tau_2=0,70$. Найти линейный показатель поглощения этого вещества. Свет падает нормально. Вторичными отражениями пренебречь.
- **4.242.** Световой пучок проходит через стопу из N=5 одинаковых пластинок, каждая толщины l=5,0 мм. Коэффициент отражения каждой поверхности $\rho=0,050$. Отношение интенсивности света, прошедшего через эту систему, к интенсивности падающего света $\tau=0,55$. Пренебрегая вторичными отражениями, определить линейный показатель поглощения данного стекла.
- **4.243.** Свет падает нормально на поверхность пластины толщины l. Показатель поглощения вещества пластины линейно изменяется вдоль нормали к ее поверхности от \varkappa_1 до \varkappa_2 . Коэффициент отражения каждой поверхности пластины ρ . Пренебрегая вторичными отражениями, найти коэффициент пропускания пластины.
- **4.244.** Пучок света интенсивности I_0 падает нормально на прозрачную пластинку толщины l. Пучок содержит все длины волн в диапазоне от λ_1 до λ_2 одинаковой спектральной интенсивности. Найти интенсивность прошедшего через пластинку пучка, если в этом диапазоне длин волн показатель поглощения линейно зависит от λ в пределах от \varkappa_1 до \varkappa_2 и коэффициент

242

отражения каждой поверхности равен р. Вторичными отражениями пренебречь.

- **4.245.** Светофильтром является пластинка толщины d с линейным показателем поглощения, зависящим от длины волны λ как $\varkappa = \alpha(1-\lambda/\lambda_0)^2$, где α и λ_0 постоянные. Найти ширину полосы пропускания $\Delta\lambda$ этого светофильтра, при которой ослабления света на краях полосы в η раз больше, чем при λ_0 . Коэффициент отражения поверхностей считать одинаковым для всех длин волн. Вторичными отражениями пренебречь.
- **4.246.** Точечный изотропный источник, испускающий световой поток Φ , находится в центре сферического слоя вещества, внутренний радиус которого a, наружный b. Линейный показатель поглощения вещества κ , коэффициент отражения поверхностей ρ . Пренебрегая вторичными отражениями, найти интенсивность света на выходе из этого слоя.
- **4.247.** Во сколько раз уменьшится интенсивность узкого пучка рентгеновского излучения с длиной волны 20 пм при прохождении свинцовой пластинки толщины d=1,0 мм, если массовый показатель ослабления для данной длины волны $\mu/\rho=3,6$ см $^2/\Gamma$?
- **4.248.** Узкий пучок рентгеновского излучения с длиной волны 62 пм проходит через алюминиевый экран толщины 2,6 см. Какой толщины свинцовый экран будет ослаблять данный пучок в такой же степени? Массовые показатели ослабления алюминия и свинца для этого излучения равны соответственно 3,48 и 72,0 см²/г.
- **4.249.** Найти для алюминия толщину слоя половинного ослабления узкого пучка монохроматического рентгеновского излучения, если массовый показатель ослабления $\mu/\rho = 0.32~{\rm cm^2/r}$.
- **4.250.** Сколько слоев половинного ослабления в пластинке, которая уменьшает интенсивность узкого пучка рентгеновского излучения в $\eta = 50$ раз?

Квантовая физика

5.1. Корпускулярные свойства электромагнитного излучения

• Энергия и импульс фотона:

$$\varepsilon = \hbar\omega, \quad p = \hbar\omega/c.$$
 (5.1a)

• Формула Эйнштейна для фотоэффекта:

$$\hbar\omega = A + K_{\text{Marc}}.$$
 (5.16)

• Комптоновское смещение длины волны:

$$\Delta \lambda = \lambda_{\rm C} (1 - \cos \theta), \tag{5.1B}$$

где $\lambda_{\mathrm{C}} = 2\,\pi\hbar/mc$ — комптоновская длина волны частицы.

- **5.1.** Точечный изотропный источник испускает свет с $\lambda = 589$ нм. Его световая мощность P = 10 Вт. Найти:
- а) среднюю плотность потока фотонов на расстоянии r=2,0 м от источника;
- б) расстояние от источника до точки, где средняя концентрация фотонов $n=100~{\rm cm}^{-3}$.
- 5.2. Вычислить импульсы (в единицах $\partial B/c$, c скорость света) фотонов с длинами волн 0,50 мкм, 0,25 нм и 4,0 пм.
- **5.3.** При какой длине волны фотона его импульс равен импульсу электрона с кинетической энергией $K=0.30~\mathrm{MpB}$?
- **5.4.** Найти скорость электрона, при которой его импульс равен импульсу фотона с $\lambda = 5.0$ пм.
- **5.5.** Показать с помощью корпускулярных представлений, что импульс, переносимый в единицу времени плоским световым потоком, не зависит от его спектрального состава, а определяется только потоком энергии Φ_9 .
- 5.6. Лазер излучил в импульсе длительности $\tau = 0,13$ мс пучок света с энергией E = 10 Дж. Найти среднее давление такого светового импульса, если его сфокусировать в пятнышко диаметра d = 10 мкм на поверхность с коэффициентом отражения $\rho = 0,50$.

- 5.7. Короткий импульс света с энергией E=7,5 Дж в виде узкого почти параллельного пучка падает на зеркальную пластинку с коэффициентом отражения $\rho=0,60$. Угол падения $\theta=30^{\circ}$. Определить импульс, переданный пластинке.
- **5.8.** Плоская световая волна интенсивности $I = 0.20 \; \mathrm{Bt/cm^2}$ падает на плоскую зеркальную поверхность с коэффициентом отражения $\rho = 0.8$. Угол падения $\theta = 45^\circ$. Определить с помощью корпускулярных представлений значение нормального давления, которое оказывает свет на эту поверхность.
- 5.9. Плоская световая волна интенсивности $I = 0.70 \, \mathrm{Br/cm^2}$ освещает шар с абсолютно зеркальной поверхностью. Радиус шара $R = 5.0 \, \mathrm{cm}$. Найти с помощью корпускулярных представлений силу светового давления, испытываемую шаром.
- **5.10.** На оси круглой абсолютной зеркальной пластинки находится точечный изотропный источник, световая мощность которого *P*. Расстояние между источником и пластинкой в праз больше ее радиуса. Найти с помощью корпускулярных представлений силу светового давления, испытываемую пластинкой.
- **5.11.** В K-системе отсчета фотон с частотой ω падает нормально на зеркало, которое движется ему навстречу с релятивистской скоростью V. Найти импульс, переданный зеркалу при отражении фотона:
 - а) в системе отсчета, связанной с зеркалом;
 - б) в K-системе.
- 5.12. Небольшое идеально отражающее зеркальце массы m=10 мг подвешено на невесомой нити длины l=10 см. Найти угол, на который отклонится нить, если по нормали к зеркальцу в горизонтальном направлении произвести «выстрел» коротким импульсом лазерного излучения с энергией E=13 Дж.
- **5.13.** Фотон с частотой ω_0 испущен с поверхности звезды, масса которой M и радиус R. Найти гравитационное смещение частоты фотона $\Delta \omega/\omega_0$ вдали от звезды.
- **5.14.** При увеличении напряжения на рентгеновской трубке в $\eta=1,5$ раза длина волны коротковолновой границы сплошного рентгеновского спектра изменилась на $\Delta\lambda=26$ пм. Найти первоначальное напряжение на трубке.
- **5.15.** Узкий пучок рентгеновских лучей падает на монокристалл NaCl. Наименьший угол скольжения, при котором еще наблюдается зеркальное отражение от системы кристаллических

245

плоскостей с межплоскостным расстоянием d = 0.28 нм, равен $\alpha = 4.1^{\circ}$. Каково напряжение на рентгеновской трубке?

- **5.16.** Найти длину волны коротковолновой границы сплошного рентгеновского спектра, если скорость электронов, подлетающих к антикатоду трубки, v=0.85c.
- **5.17.** Считая, что распределение энергии в спектре тормозного рентгеновского излучения $I_{\lambda} \sim (\lambda/\lambda_{\rm K}-1)\lambda^3$, где $\lambda_{\rm K}$ коротковолновая граница спектра, найти напряжение на рентгеновской трубке. если максимум функции I_{λ} соответствует длине волны $\lambda_m=53$ пм.
- **5.18.** Определить красную границу фотоэффекта для цинка и максимальную скорость фотоэлектронов, вырываемых с его поверхности электромагнитным излучением с длиной волны 250 нм.
- **5.19.** При поочередном освещении поверхности некоторого металла светом с $\lambda_1=0.35$ мкм и $\lambda_2=0.54$ мкм обнаружили, что соответствующие максимальные скорости фотоэлектронов отличаются друг от друга в $\eta=2.0$ раза. Найти работу выхода с поверхности этого металла.
- **5.20.** До какого максимального потенциала зарядится удаленный от других тел медный шарик при облучении его электромагнитным излучением с $\lambda = 140$ нм?
- **5.21.** Найти максимальную кинетическую энергию фотоэлектронов, вырываемых с поверхности лития электромагнитным излучением, напряженность электрической составляющей которого меняется со временем по закону $E = a(1 + \cos \omega t) \cos \omega_0 t$, где a некоторая постоянная, $\omega = 6.0 \cdot 10^{14} \, \mathrm{c}^{-1}$ и $\omega_0 = 3.60 \cdot 10^{15} \, \mathrm{c}^{-1}$.
- **5.22.** Электромагнитное излучение с $\lambda = 0,30$ мкм падает на фотоэлемент, находящийся в режиме насыщения. Соответствующая спектральная чувствительность данного фотоэлемента J = 4,8 мA/Bт. Найти выход фотоэлектронов, т. е. число фотоэлектронов на каждый падающий фотон.
- 5.23. Имеется вакуумный фотоэлемент, один из электродов которого цезиевый, другой медный. Определить максимальную скорость фотоэлектронов, подлетающих к медному электроду, при освещении цезиевого электрода электромагнитным излучением с длиной волны 0,22 мкм, если электроды замкнуть снаружи накоротко.

- **5.24.** Фототок, возникающий в цепи вакуумного фотоэлемента при освещении цинкового электрода электромагнитным излучением с длиной волны 262 нм, прекращается, если подключить внешнее задерживающее напряжение 1,5 В. Найти величину и полярность внешней контактной разности потенциалов фотоэлемента.
- **5.25.** Составить выражение для величины, имеющей размерность длины, используя скорость света c, массу частицы m и постоянную Планка \hbar . Что это за величина?
- **5.26.** Показать с помощью законов сохранения, что свободный электрон не может полностью поглотить фотон.
- **5.27.** Объяснить следующие особенности комптоновского рассеяния света веществом:
 - а) независимость смещения $\Delta\lambda$ от природы вещества;
- б) увеличение интенсивности смещенной компоненты рассеянного света с уменьшением атомного номера вещества, а также с ростом угла рассеяния;
 - в) наличие несмещенной компоненты.
- **5.28.** Узкий пучок монохроматического рентгеновского излучения падает на рассеивающее вещество. При этом длины волн смещенных составляющих излучения, рассеянного под углами $\theta_1 = 60^\circ$ и $\theta_2 = 120^\circ$, отличаются друг от друга в $\eta = 2.0$ раза. Найти длину волны падающего излучения.
- 5.29. Фотон с энергией $\hbar\omega=1,00$ МэВ рассеялся на покоившемся свободном электроне. Найти кинетическую энергию электрона отдачи, если в результате рассеяния длина волны фотона изменилась на $\eta=25\%$.
- **5.30.** Фотон с длиной волны $\lambda = 6.0$ пм рассеялся под прямым углом на покоившемся свободном электроне. Найти:
 - а) частоту рассеянного фотона;
 - б) кинетическую энергию электрона отдачи.
- 5.31. Фотон с энергией $\hbar\omega=250$ кэВ рассеялся под углом $\vartheta=120^\circ$ на первоначально покоившемся свободном электроне. Определить энергию рассеянного фотона.
- **5.32.** Фотон с импульсом p=1,02 МэВ/c, где c скорость света, рассеялся на покоившемся свободном электроне, в результате чего импульс фотона стал p'=0,255 МэВ/c. Под каким углом рассеялся фотон?
- 5.33. Фотон рассеялся под углом $\vartheta = 120^\circ$ на покоившемся свободном электроне, в результате чего электрон получил кине-

тическую энергию $K=0,45\,$ МэВ. Найти энергию фотона до рассеяния.

- **5.34.** Найти длину волны рентгеновского излучения, если максимальная кинетическая энергия комптоновских электронов $K_{\rm make} = 0.19~{
 m M}{
 m s}{
 m B}.$
- **5.35.** Фотон с энергией $\hbar\omega = 0.15$ МэВ рассеялся на покоившемся свободном электроне, в результате чего его длина волны изменилась на $\Delta\lambda = 3.0$ пм. Найти угол, под которым вылетел комптоновский электрон.
- **5.36.** Фотон с энергией, в $\eta = 2.0$ раза превышающей энергию покоя электрона, испытал лобовое столкновение с покоившимся свободным электроном. Найти радиус кривизны траектории электрона отдачи в магнитном поле B = 0.12 Тл. Предполагается, что электрон отдачи движется перпендикулярно направлению поля.
- **5.37.** Фотон, испытав столкновение с релятивистским электроном, рассеялся под углом ϑ , а электрон остановился. Найти комптоновское смещение длины волны рассеянного фотона.

5.2. Рассеяние частиц. Атом Резерфорда—Бора

• Значение коэффициента k в нижеследующих формулах:

$$k = \frac{1}{4\pi\epsilon_0}$$
 (CH), $k = 1$ (CFC).

• Угол 9, на который рассеивается заряженная частица кулоновским полем неподвижного ядра, определяется формулой:

$$tg \frac{9}{2} = k \frac{q_1 q_2}{2bK}, \tag{5.1a}$$

где q_1 и q_2 — заряды частицы и ядра, b — прицельный параметр, K — кинетическая энергия налетающей частицы.

• Формула Резерфорда. Относительное число частиц, рассеянных в элементарном телесном угле $d\Omega$ под углом ϑ к первоначальному направлению их движения:

$$\frac{dN}{N} = n \left(k \, \frac{q_1 q_2}{4 \, K} \right)^2 \, \frac{d\Omega}{\sin^4(\vartheta/2)} \, , \qquad (5.16)$$

где n — число ядер фольги на единицу ее поверхности, $d\Omega = \sin \vartheta \ d\vartheta \ d\varphi$.

Рис. 5.1

• Обобщенная формула Бальмера:

$$\omega = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right), \qquad R = k^2 \frac{me^4}{2\hbar^3},$$
 (5.1b)

где ω , ${\rm c}^{-1}$ — частота перехода между энергетическими уровнями с квантовыми числами n_1 и n_2 ; R, ${\rm c}^{-1}$ — постоянная Ридберга; Z — порядковый номер водородоподобного иона. Рис. 5.1 — схема соответствующих переходов.

- **5.38.** Вычислить согласно модели Томсона радиус атома водорода и длину волны испускаемого им света, если известно, что энергия ионизации атома E=13,6 эВ.
- **5.39.** Альфа-частица с кинетической энергией 0,27 МэВ рассеялась золотой фольгой на угол 60° . Найти соответствующее значение прицельного параметра.
- **5.40.** На какое минимальное расстояние приблизится α -частица с кинетической энергией K=0,40 МэВ (при лобовом соударении):
 - а) к покоящемуся тяжелому ядру атома свинца;
- б) к первоначально покоившемуся легкому свободному ядру 7 Li?
- **5.41.** Альфа-частица с кинетической энергией K=0,50 МэВ рассеялась под углом $\theta=90^\circ$ на кулоновском поле неподвижного ядра атома ртути. Найти:
 - а) наименьший радиус кривизны ее траектории;
- б) минимальное расстояние, на которое она сблизилась с ядром.
- 5.42. Протон с кинетической энергией K и прицельным параметром b рассеялся на кулоновском поле неподвижного ядра атома золота. Найти импульс, переданный данному ядру.
- **5.43.** Частица с кинетической энергией K рассеивается на сферической потенциальной яме радиуса R и глубины U_0 , т. е. полем, в котором потенциальная энергия частицы имеет вид U (r < R) = $-U_0$ и U (r > R) = 0, где r расстояние от центра ямы. Найти связь между прицельным параметром частицы b и углом ϑ , на который она отклонится от первоначального направления движения.
- 5.44. Неподвижный шар радиуса R облучают параллельным потоком частиц, радиус которых r. Считая столкновение частицы с шаром упругим, найти:
- а) угол θ отклонения частицы в зависимости от ее прицельного параметра b;

- б) относительную долю частиц, которые рассеялись в интервале углов от ϑ до $\vartheta + d\vartheta$;
- в) вероятность того, что частица, столкнувшись с шаром, рассеется в переднюю полусферу ($9 < \pi/2$).
- 5.45. Узкий пучок α -частиц с кинетической энергией 1,0 МэВ падает нормально на платиновую фольгу толщины 1,0 мкм. Наблюдение рассеянных частиц ведется под углом 60° к направлению падающего пучка при помощи счетчика с круглым входным отверстием площади 1,0 см², которое расположено на расстоянии 10 см от рассеивающего участка фольги. Какая доля рассеянных α -частиц падает на отверстие счетчика?
- **5.46.** Узкий пучок α -частиц с кинетической энергией K=0,50 МэВ и интенсивностью $I=5,0\cdot 10^5$ част./с падает нормально на золотую фольгу. Найти ее толщину, если на расстоянии r=15 см от рассеивающего участка под углом $\theta=60^\circ$ к направлению падающего пучка плотность потока рассеянных частиц J=40 част./(см 2 ·с).
- 5.47. Узкий пучок α -частиц с кинетической энергией K=0,50 МэВ падает нормально на золотую фольгу массовой толщины $\rho d=1,5$ мг/см². Поток частиц в пучке составляет $I_0=5,0\cdot 10^5\,\mathrm{c}^{-1}$. Найти число α -частиц, рассеянных фольгой за $\tau=30$ мин в интервале углов:
 - а) $59-61^{\circ}$; б) свыше $\theta_0 = 60^{\circ}$.
- **5.48.** Узкий параллельный пучок протонов, имеющих скорость $v = 6 \cdot 10^6$ м/с, падает нормально на серебряную фольгу толщины d = 1,0 мкм. Найти вероятность рассеяния протонов под углами $9 > 90^\circ$.
- 5.49. Узкий пучок α -частиц с кинетической энергией K=600 кэВ падает нормально на золотую фольгу, содержащую $n=1,1\cdot 10^{19}$ ядер/см². Найти относительное число α -частиц, рассеянных под углами $\vartheta < \vartheta_0 = 20^\circ$.
- **5.50.** Узкий пучок протонов с кинетической энергией K=1,4 МэВ падает нормально на латунную фольгу, массовая толщина которой $\rho d=1,5$ мг/см². Отношение масс меди и цинка в фольге 7:3. Найти относительное число протонов, рассеивающихся на углы свыше $\theta_0=30^\circ$.

- **5.51.** Найти эффективное сечение ядра атома урана, соответствующее рассеянию α -частиц с кинетической энергией K=1,5 МэВ в интервале углов свыше $\theta_0=60^\circ$.
- **5.52.** Эффективное сечение ядра атома золота, отвечающее рассеянию моноэнергетических α -частиц в интервале углов от 90 до 180°, равно $\Delta \sigma = 0.50$ кб. Определить:
 - а) кинетическую энергию α-частиц;
- б) дифференциальное сечение рассеяния $d\sigma/d\Omega$ (кб/ср), соответствующее углу $\theta_0=60^\circ$.
- **5.53.** Согласно классической электродинамике электрон, движущийся с ускорением **a**, теряет энергию на излучение по закону $\mathrm{d}E/\mathrm{d}t = -k(2e^2/3c^3)\,\mathbf{a}^2$, где e заряд электрона, c скорость света, $k=1/4\pi\varepsilon_0$ (СИ) или k=1 (СГС). Оценить время, за которое энергия электрона, совершающего колебания, близкие к гармоническим с частотой $\omega=5\cdot 10^{15}\,\mathrm{c}^{-1}$, уменьшится в $\eta=10\,\mathrm{pas}$.
- **5.54.** Воспользовавшись формулой из задачи 5.53, оценить время, в течение которого электрон, движущийся в атоме водорода по круговой орбите радиуса r=50 пм, упал бы на ядро. Считать, что в любой момент падения электрон движется равномерно по окружности соответствующего радиуса.
- 5.55. В спектре атомарного водорода известны длины волн трех линий, принадлежащих одной и той же серии: 97,26, 102,58 и 121,57 нм. Найти длины волн других линий в данном спектре, которые можно предсказать с помощью этих трех линий.
- **5.56.** Показать, что частота ω фотона, возникающего при переходе электрона между соседними уровнями водородоподобного иона, удовлетворяет неравенству $\omega_n > \omega > \omega_{n+1}$, где ω_n и ω_{n+1} частоты обращения электрона вокруг ядра на этих уровнях. Убедиться, что при $n \to \infty$ частота фотона $\omega \to \omega_n$.
- **5.57.** Частица массы m движется по круговой орбите в центрально-симметричном поле, где ее потенциальная энергия зависит от расстояния r до центра поля как $U = \varkappa r^2/2$, \varkappa постоянная. Найти с помощью боровского условия квантования возможные радиусы орбит и значения полной энергии частицы в данном поле.
- 5.58. Найти для водородоподобного иона радиус n-й боровской орбиты и скорость электрона на ней. Вычислить эти величины для первой боровской орбиты атома водорода и иона He^+ .

- **5.59.** Определить круговую частоту обращения электрона на n-й круговой боровской орбите водородоподобного иона. Вычислить эту величину для иона He^+ при n=2.
- **5.60.** Определить для атома водорода и иона He⁺: энергию связи электрона в основном состоянии, потенциал ионизации, первый потенциал возбуждения и длину волны головной линии серии Лаймана.
- **5.61.** У некоторого водородоподобного иона первый потенциал возбуждения $\phi_1 = 40.8$ В. Найти энергию фотона (в эВ), соответствующего головной линии серии Бальмера этих ионов.
- **5.62.** Насколько необходимо увеличить внутреннюю энергию иона He⁺, находящегося в основном состоянии, чтобы он смог испустить фотон, соответствующий головной линии серии Бальмера?
- 5.63. Определить длину волны λ спектральной линии атомарного водорода, частота которой равна разности частот следующих двух линий серии Бальмера: $\lambda_1 = 486,1$ нм и $\lambda_2 = 410,2$ нм. Какой серии принадлежит эта линия?
 - 5.64. Вычислить для атомарного водорода:
 - а) длины волн первых трех линий серии Бальмера;
- б) минимальную разрешающую способность $\lambda/\delta\lambda$ спектрального прибора, при которой возможно разрешить первые N=20 линий серии Бальмера.
- **5.65.** Излучение атомарного водорода падает нормально на дифракционную решетку ширины l=7,4 мм. В наблюдаемом спектре под некоторым углом дифракции ϑ оказалась на пределе разрешения (по критерию Рэлея) 50-я линия серии Бальмера. Найти этот угол.
- **5.66.** Какому элементу принадлежит водородоподобный спектр, длины волн линий которого в четыре раза короче, чем у атомарного водорода?
- **5.67.** Сколько спектральных линий будет испускать атомарный водород, который возбуждают на n-й энергетический уровень?
- **5.68.** Какие линии содержит спектр поглощения атомарного водорода в диапазоне длин волн от 95,5 до 130,0 нм?
- **5.69.** Найти квантовое число n, соответствующее возбужденному состоянию иона He^+ , если при переходе в основное состояние этот ион испустил последовательно два фотона с длинами волн $\lambda_1=121,4$ нм и $\lambda_2=30,35$ нм.

- **5.70.** Вычислить постоянную Ридберга R, если известно, что для ионов $\mathrm{He^+}$ разность длин волн между головными линиями серий Бальмера и Лаймана $\Delta\lambda = 133,7$ нм.
- **5.71.** У какого водородоподобного иона разность длин волн между головными линиями серий Бальмера и Лаймана $\Delta\lambda = 59.3$ нм?
- 5.72. Найти длину волны головной линии той спектральной серии ионов He^+ , у которой интервал частот между крайними линиями $\Delta\omega = 5.18 \cdot 10^{15} \, \mathrm{c}^{-1}$.
- **5.73.** Найти энергию связи электрона в основном состоянии водородоподобных ионов, в спектре которых длина волны третьей линии серии Бальмера равна 108,5 нм.
- **5.74.** Энергия связи электрона в основном состоянии атома Не равна $E_0 = 24,6$ эВ. Найти энергию, необходимую для последовательного удаления обоих электронов из этого атома.
- **5.75.** Найти скорость фотоэлектронов, вырываемых электромагнитным излучением с длиной волны $\lambda = 18,0$ нм из ионов He^+ , которые находятся в основном состоянии и покоятся.
- **5.76.** С какой минимальной кинетической энергией должен двигаться атом водорода, чтобы при неупругом лобовом соударении с другим, покоящимся атомом водорода один из них оказался способным испустить фотон? До соударения оба атома находятся в основном состоянии.
- **5.77.** Покоящийся атом водорода испустил фотон, соответствующий головной линии серии Лаймана. Какую скорость приобрел атом?
- **5.78.** В условиях предыдущей задачи найти, на сколько процентов энергия испущенного фотона отличается от энергии соответствующего перехода в атоме водорода.
- **5.79.** Покоящийся ион He⁺ испустил фотон, соответствующий головной линии серии Лаймана. Этот фотон вырвал фотоэлектрон из покоящегося атома водорода, который находился в основном состоянии. Найти скорость фотоэлектрона.
- **5.80.** Найти скорость возбужденных атомов водорода, если при наблюдении под углом $\vartheta = 45^\circ$ к направлению движения атомов длина волны головной линии серии Лаймана оказалась смещенной на $\Delta\lambda = 0.20$ нм.

- **5.81.** Согласно постулату Бора—Зоммерфельда при периодическом движении частицы в потенциальном поле должно выполняться следующее правило квантования: $\oint p dq = 2\pi \hbar n$, где q и p обобщенные координата и импульс, n целые числа. Воспользовавшись этим правилом, найти разрешенные значения энергии частицы массы m, которая движется:
- а) в одномерной прямоугольной потенциальной яме ширины l с бесконечно высокими стенками;
 - б) по окружности радиуса r;
- в) в одномерном потенциальном поле $U = \alpha x^2/2$, где α положительная постоянная;
- г) по круговой орбите в поле, где потенциальная энергия частицы $U = -\alpha/r$ и α положительная постоянная.
- 5.82. Найти с учетом движения ядра атома водорода выражения для энергии связи электрона в основном состоянии и для постоянной Ридберга. На сколько процентов отличаются энергия и постоянная Ридберга, полученные без учета движения ядра, от соответствующих уточненных значений этих величин?
- **5.83.** Найти для атомов легкого и тяжелого водорода (H и D) разность:
 - а) энергий связи их электронов в основном состоянии;
 - б) длин волн головных линий серии Бальмера.
- **5.84.** Определить для мезоатома водорода (в котором вместо электрона движется мезон, имеющий тот же заряд, но массу в 207 раз большую):
- а) расстояние между мезоном и ядром (протоном) в основном состоянии;
 - б) энергию связи в основном состоянии;
 - в) длину волны головной линии серии Бальмера.
- **5.85.** Вычислить для позитрония (системы из электрона и позитрона, движущихся вокруг общего центра масс):
 - а) расстояние между частицами в основном состоянии;
 - б) энергию связи в основном состоянии;
 - в) длину волны головной линии серии Бальмера.

5.3. Волновые свойства частиц

• Дебройлевская длина волны частицы с импульсом р:

$$\lambda = 2\pi\hbar/p. \tag{5.3a}$$

• Соотношение неопределенностей:

$$\Delta x \cdot \Delta p_x \geqslant \hbar.$$
 (5.36)

• Временное и стационарное уравнения Шрёдингера:

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + U\Psi, \qquad \nabla^2 \psi + \frac{2m}{\hbar^2} (E - U) \psi = 0,$$
 (5.3B)

где Ψ — полная волновая функция, ψ — ее координатная часть, ∇^2 — оператор Лапласа, E и U — полная и потенциальная энергии частицы. В сферических координатах

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2 \sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial}{\partial \vartheta} \right) + \frac{1}{r^2 \sin^2 \vartheta} \frac{\partial^2}{\partial \varphi^2}.$$
 (5.3r)

ullet Среднее значение величины q, зависящей от координат:

$$\langle q \rangle = \int q |\psi|^2 dV,$$
 (5.3д)

где ψ — нормированная волновая функция, $\mathrm{d}V$ — элемент объема.

• Коэффициент прозрачности потенциального барьера U(x):

$$D \approx \exp\left(-\frac{2}{\hbar} \int_{x_1}^{x_2} \sqrt{2m(U-E)} dx\right), \qquad (5.3e)$$

где x_1 и x_2 — координаты точек, между которыми U > E.

5.86. Вычислить дебройлевские длины волн электрона, протона и атома урана с кинетической энергией 100 эВ.

5.87. Частица движется слева в одномерном потенциальном поле, показанном на рис. 5.2. Левее барьера, высота которого U = 15 эВ, кинетическая энергия частицы K = 20 эВ. Как и во сколько раз изменится дебройлевская длина волны частицы при

переходе через барьер?

- 5.88. Найти дебройлевскую длину волны протонов, если при попадании в поперечное магнитное поле с индукцией $B=1,00~\mathrm{k\Gamma c}$ радиус кривизны их траектории $\rho=23~\mathrm{mm}$.
- **5.89.** Какую энергию необходимо дополнительно сообщить электрону, чтобы его дебройлевская длина волны уменьшилась от $\lambda_1=100\,$ пм до $\lambda_2=50\,$ пм?

- **5.90.** Какую работу необходимо совершить, чтобы дебройлевская длина волны электрона, имевшего импульс p=20 кэB/c (c скорость света), стала равной $\lambda=100$ пм?
- **5.91.** Нейтрон с кинетической энергией K=25 эВ налетает на покоящийся дейтрон (ядро тяжелого водорода). Найти дебройлевские длины волн обеих частиц в системе их центра масс.
- **5.92.** Две одинаковые нерелятивистские частицы движутся перпендикулярно друг другу с дебройлевскими длинами волн λ_1 и λ_2 . Найти дебройлевскую длину волны каждой частицы в системе их центра масс.
- **5.93.** Получить выражение для дебройлевской длины волны λ релятивистской частицы массы m с кинетической энергией K. При каких значениях K погрешность в определении λ по нерелятивистской формуле не превышает 1% для электрона, протона?
- **5.94.** При каком значении кинетической энергии дебройлевская длина волны электрона равна его комптоновской длине волны $\lambda_{\rm C}$?
- **5.95.** Найти дебройлевскую длину волны релятивистских электронов, подлетающих к антикатоду рентгеновской трубки, если длина волны коротковолновой границы сплошного рентгеновского спектра $\lambda_{\kappa}=10,0\,$ пм.
- **5.96.** Параллельный поток моноэнергетических электронов падает нормально на диафрагму с узкой прямоугольной щелью ширины b=1,0 мкм. Определить скорость этих электронов, если на экране, отстоящем от щели на расстояние l=50 см, ширина центрального дифракционного максимума $\Delta x=0,36$ мм.
- 5.97. Параллельный поток электронов, ускоренных разностью потенциалов U=25 В, падает нормально на диафрагму с двумя узкими щелями, расстояние между которыми равно d=50 мкм. Определить расстояние между соседними максимумами дифракционной картины на экране, расположенном на расстоянии l=100 см от щелей.
- 5.98. Узкий пучок моноэнергетических электронов падает под углом скольжения $\theta=30^\circ$ на грань монокристалла алюминия. Расстояние между соседними кристаллическими плоскостями, параллельными этой грани монокристалла, d=0,20 нм. При ускоряющем напряжении U_0 наблюдали максимум зерка-

льного отражения. Найти U_0 , если следующий максимум зеркального отражения возникал при увеличении ускоряющего напряжения в $\eta=2,25$ раза.

- **5.99.** Узкий пучок моноэнергетических электронов падает нормально на поверхность монокристалла никеля. В направлении, составляющем угол $9 = 55^{\circ}$ с нормалью к поверхности, наблюдается максимум отражения четвертого порядка при энергии электронов K = 180 эВ. Вычислить соответствующее межплоскостное расстояние.
- 5.100. Узкий пучок электронов с кинетической энергией K=10 кэВ проходит через поликристаллическую алюминиевую фольгу, образуя на экране систему дифракционных колец. Вычислить межплоскостное расстояние, соответствующее отражению третьего порядка от некоторой системы кристаллических плоскостей, если ему отвечает дифракционное кольцо диаметра D=3,20 см. Расстояние между экраном и фольгой l=10,0 см.
- **5.101.** Пучок электронов, ускоренных разностью потенциалов U, падает на поверхность металла, внутренний потенциал которого $U_i = 15$ В. Найти:
- а) показатель преломления металла для электронов, ускоренных разностью потенциалов $U=150~\mathrm{B};$
- б) отношение U/U_i , при котором показатель преломления отличается от единицы не более чем на $\eta = 1,0\%$.
- 5.102. Частица массы m находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Ширина ямы l. Найти возможные значения энергии частицы, имея в виду, что реализуются лишь такие состояния ее движения, для которых в пределах данной ямы укладывается целое число дебройлевских полуволн.
- **5.103.** Интерпретировать квантовые условия Бора на основе волновых представлений: показать, что электрон в атоме водорода может двигаться только по тем круговым орбитам, на которых укладывается целое число дебройлевских волн.
- **5.104.** Оценить наименьшие ошибки, с которыми можно определить скорость электрона, протона и шарика массы 1 мг, если координаты частиц и центра шарика установлены с неопределенностью 1 мкм.
- 5.105. Оценить с помощью соотношения неопределенностей неопределенность скорости электрона в атоме водорода, пола-

гая размер атома l=0,10 нм. Сравнить полученную величину со скоростью электрона на первой боровской орбите данного атома.

- **5.106.** Показать, что для частицы, неопределенность местоположения которой $\Delta x = \lambda/2\pi$, где λ ее дебройлевская длина волны, неопределенность скорости равна по порядку величины самой скорости частицы.
- **5.107.** Свободный электрон в момент t = 0 локализован в области $\Delta x_0 = 0.10$ нм (порядок размера атома). Оценить ширину области локализации этого электрона спустя t = 1 с.
- **5.108.** Оценить с помощью соотношения неопределенностей минимальную кинетическую энергию электрона, локализованного в области размером $l=0.20\,$ нм.
- **5.109.** Электрон с кинетической энергией $K \approx 4$ эВ локализован в области размером $l \approx 1$ мкм. Оценить с помощью соотношения неопределенностей относительную неопределенность его скорости.
- 5.110. Электрон находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Ширина ямы l. Оценить с помощью соотношения неопределенностей силу давления электрона на стенки этой ямы при минимально возможной его энергии.
- **5.111.** След пучка электронов на экране электронно-лучевой трубки имеет диаметр $d \approx 0.5$ мм. Расстояние от электронной пушки до экрана $l \approx 20$ см, ускоряющее напряжение U = 10 кВ. Оценить с помощью соотношения (5.3б) неопределенность координаты электрона на экране.
- **5.112.** Частица массы m движется в одномерном потенциальном поле $U = \varkappa x^2/2$ (гармонический осциллятор). Оценить с помощью соотношения неопределенностей минимально возможную энергию частицы в таком поле.
- **5.113.** Оценить с помощью соотношения неопределенностей минимально возможную энергию электрона в атоме водорода и соответствующее эффективное расстояние его от ядра.
- **5.114.** Параллельный пучок атомов водорода со скоростью v = 600 м/с падает нормально на узкую щель, за которой на расстоянии l = 1,0 м расположен экран. Оценить с помощью соотношения неопределенностей ширину b щели, при которой ширина изображения ее на экране будет минимальной.

- **5.115.** Функция распределения вероятностей значений некоторой величины x имеет вид f = Ax при $0 \le x \le a$. Вне этого интервала f = 0. Здесь A и a постоянные. Считая, что a задано, найти:
 - а) значение функции f при x = a;
 - б) средние значения x и x^2 в интервале (0, a).
- **5.116.** Распределение вероятностей некоторой величины x описывается функцией $f(x) \propto \sqrt{x}$ в интервале (0, a). Вне этого интервала f = 0. Найти:
 - а) наиболее вероятное и среднее значения x в интервале (0, a);
 - б) вероятность нахождения x в интервале (0, a/2).
- **5.117.** Распределение вероятностей значений некоторой величины x описывается функцией f = Ax (a x) при 0 < x < a. Вне этого интервала f = 0. Здесь A и a постоянные. Считая, что a задано, найти:
- а) наиболее вероятное значение x и соответствующее ему значение функции f;
 - б) средние значения x и x^2 в интервале (0, a).
- **5.118.** Плотность вероятности распределения частиц по плоскости зависит от расстояния r до точки O как f(r) = A(1-r/a) м $^{-2}$, если $r \leq a$, и f(r) = 0, если r > a. Здесь a задано, A некоторая неизвестная постоянная. Найти:
 - а) наиболее вероятное расстояние $r_{\text{вер}}$ частиц от точки O;
 - б) постоянную A;
 - в) среднее значение расстояния частиц от точки O.
- **5.119.** То же условие, что и в предыдущей задаче, но $f(r) = A(1-r^2/a^2)$.
- **5.120.** Частица движется вдоль оси X по закону $x = a \cos \omega t$. Считая вероятность нахождения частицы в интервале (-a, a) равной единице, найти зависимость от x плотности вероятности $\mathrm{d}P/\mathrm{d}x$, где $\mathrm{d}P$ вероятность нахождения частицы в интервале $(x, x + \mathrm{d}x)$.

Рис. 5.3

5.121. Поток электронов падает на экран с двумя щелями 1 и 2 (рис. 5.3). В точке P расположено входное отверстие счетчика, пусть ψ_1 — амплитуда волны, прошедшей через щель 1 и достигшей точки P, а ψ_2 — то же, но в случае открытой щели 2. Отношение $\psi_2/\psi_1 = \eta = 3,0$. Если открыта только щель 1, то счетчик регист-

рирует $N_1 = 100$ электронов в секунду. Сколько электронов ежесекундно будет регистрировать счетчик, если:

- а) открыта только щель 2;
- б) открыты обе щели и в точке P наблюдается интерференционный максимум;
 - в) то же, но в точке P минимум?
- **5.122.** В момент t=0 волновая функция некоторой частицы имеет вид $\psi = A \exp(-x^2/4\sigma^2 + \mathrm{i}kx)$. Изобразить примерный вид зависимостей:
 - а) действительной части ψ от x; б) $|\psi|^2$ от x.
- **5.123.** Найти частное решение временно́го уравнения Шрёдингера для свободно движущейся частицы массы m.
- **5.124.** Электрон находится в одномерной прямоугольной потенциальной яме с абсолютно непроницаемыми стенками. Найти ширину ямы, если разность энергии между уровнями с $n_1 = 2$ и $n_2 = 3$ составляет $\Delta E = 0.30$ эВ.
- **5.125.** Частица находится в основном состоянии в одномерной прямоугольной потенциальной яме ширины l с абсолютно непроницаемыми стенками (0 < x < l). Найти вероятность пребывания частицы в области l/3 < x < 2l/3.
- 5.126. Частица массы m находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Плотность вероятности местонахождения частицы $P \sim (1 \cos \alpha x)$, где α заданная постоянная, x расстояние от одного края ямы. Найти энергию частицы в этом стационарном состоянии.
- ${f 5.127.}$ Частица массы m находится в основном состоянии в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. При этом максимальное значение плотности вероятности местонахождения частицы в яме равно P_m . Найти ширину l ямы и энергию E частицы в данном состоянии.
- **5.128.** Частица массы m находится в основном состоянии в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. При этом пространственная производная волновой функции у края ямы $|\partial \psi/\partial x| = a$. Найти энергию E частицы в данном состоянии.
- **5.129.** Частица находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Ширина

- ямы l. Найти нормированные волновые функции стационарных состояний частицы, взяв начало отсчета координаты x в середине ямы.
- **5.130.** Электрон находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Ширина ямы такова, что энергетические уровни расположены весьма плотно. Найти плотность уровней dN/dE, т. е. их число на единичный интервал энергии, в зависимости от E. Вычислить dN/dE для E=1,0 эВ, если l=1,0 см.
- 5.131. Частица массы m находится в двумерной прямоугольной потенциальной яме с абсолютно непроницаемыми стенками. Найти:
- а) возможные значения энергии частицы, если стороны ямы равны l_1 и l_2 ;
- б) значения энергии частицы на первых четырех уровнях, если яма квадратная со стороной l.
- **5.132.** Частица находится в двумерной прямоугольной потенциальной яме с абсолютно непроницаемыми стенками (0 < x < a, 0 < y < b). Определить вероятность нахождения частицы с наименьшей энергией в области 0 < x < a/3.
- 5.133. Частица массы m находится в трехмерной кубической потенциальной яме с абсолютно непроницаемыми стенками. Ребро куба равно a. Найти:
 - а) собственные значения энергии частицы;
 - б) разность энергий 3-го и 4-го уровней;
- в) энергию 6-го уровня и соответствующее ему число состояний (кратность вырождения).
- **5.134.** Показать с помощью уравнения Шрёдингера, что в точке, где потенциальная энергия частицы U(x) имеет конечный разрыв, волновая функция остается гладкой, т. е. ее первая производная по координате непрерывна.
- 5.135. Частица массы m находится в одномерном потенциальном поле U(x), вид которого показан на рис. 5.4, где $U \otimes U(0) = \infty$. Найти:
 - а) уравнение, определяющее возможные значения энергии частицы в области $E < U_0$; привести это уравнение к виду

 $\sin k l = \pm k l \sqrt{\hbar^2/2m l^2 U_0}$, где $k = \sqrt{2mE}/\hbar$.

Показать с помощью графического решения данного уравнения, что возможные значения энергии частицы образуют дискретный спектр;

- б) минимальное значение величины l^2U_0 , при котором появляется первый энергетический уровень в области $E < U_0$. При каком минимальном значении l^2U_0 появляется n-й уровень?
- **5.136.** Воспользовавшись решением предыдущей задачи, определить вероятность нахождения частицы с энергией $E=U_0/2$ в области x>l, если $l^2U_0=(3\pi/4)^2\hbar^2/m$.
- **5.137.** Частица массы m находится в одномерной потенциальной яме (рис. 5.5) в основном состоянии. Найти энергию основного состояния, если на краях ямы ψ -функция вдвое меньше, чем в середине ямы.
- 5.138. Найти возможные значения энергии частицы массы m, находящейся в сферически-симметричной потенциальной яме U(r)=0 при $r < r_0$ и $U(r_0)=\infty$, для случая,

Рис. 5.5

когда движение частицы описывается волновой функцией $\psi(r)$, зависящей только от радиуса r.

Указание. При решении уравнения Шрёдингера воспользоваться подстановкой $\psi(r) = \chi(r)/r$.

- 5.139. Имея в виду условия предыдущей задачи, найти:
- а) нормированные собственные функции частицы в состояниях, где $\psi(r)$ зависит только от r;
- б) для основного состояния частицы наиболее вероятное значение $r_{\rm sep}$, а также вероятность нахождения частицы в области $r < r_{\rm sep}$.
- **5.140.** Частица массы m находится в сферически-симметричной потенциальной яме U(r)=0 при $r < r_0$ и $U(r)=U_0$ при $r > r_0$.
- а) Найти с помощью подстановки $\psi(r)=\chi(r)/r$ уравнение, определяющее собственные значения энергии E частицы при $E< U_0$, когда движение описывается волновой функцией $\psi(r)$, зависящей только от r. Привести это уравнение к виду $\sin kr_0 = \pm kr_0 \sqrt{\hbar^2/2mr_0^2U_0}$, где $k=\sqrt{2mE}/\hbar$.
- б) Определить значение величины $r_0^2 U_0$, при котором появляется первый уровень.

- **5.141.** Волновая функция частицы массы m для основного состояния в одномерном потенциальном поле $U(x) = kx^2/2$ имеет вид $\psi(x) = A \exp(-\alpha x^2)$, где A и α некоторые постоянные. Найти с помощью уравнения Шрёдингера постоянную α и энергию E частицы в этом состоянии.
- **5.142.** Частица массы m находится в одномерном потенциальном поле U(x) в стационарном состоянии $\psi(x) = A \exp(-\alpha x^2)$, где A и α постоянные ($\alpha > 0$). Найти энергию E частицы и вид U(x), если U(0) = 0.
- **5.143.** Электрон атома водорода находится в состоянии, описываемом волновой функцией $\psi(r) = A \exp(-r/r_1)$, где A и r_1 некоторые постоянные. Найти значения:
 - а) нормировочного коэффициента A;
- б) энергии E электрона и r_1 (с помощью уравнения Шрёдингера).
- **5.144.** Определить энергию электрона атома водорода в состоянии, для которого ψ -функция имеет вид $\psi(r) = A(1+ar)\,\mathrm{e}^{-\alpha r}$, где $A,\ a$ и α некоторые постоянные.
- **5.145.** В основном состоянии атома водорода волновая функция электрона $\psi(r) = A \exp(-r/r_1)$, где A постоянная, r_1 первый боровский радиус. Найти:
- а) наиболее вероятное расстояние $r_{\text{вер}}$ между электроном и ядром;
 - б) вероятность нахождения электрона в области $r < r_{\text{вер}}$.
- **5.146.** Найти для электрона атома водорода в основном состоянии $\psi(r) = A \exp(-r/r_1)$ отношение среднего расстояния от ядра $\langle r \rangle$ к наиболее вероятному $r_{\rm Bep}$.
- **5.147.** Электрон в атоме водорода находится в основном состоянии $\psi(r) = A \mathrm{e}^{-\alpha r}$, где A и α постоянные. Определить вероятность нахождения этого электрона вне классических границ поля.
- **5.148.** Состояние 1*s*-электрона атома водорода описывается волновой функцией $\psi(r) = A \exp(-r/r_1)$, где A нормировочный коэффициент, r_1 первый боровский радиус. Найти для этого состояния средние значения:
 - а) модуля кулоновской силы, действующей на электрон;
- б) потенциальной энергии взаимодействия электрона с ядром.

- **5.149.** Электрон атома водорода в 2p-состоянии описывается волновой функцией, радиальная часть которой $R(r) \sim r \exp(-r/2r_1)$, где r_1 первый боровский радиус. Найти в этом состоянии:
 - а) наиболее вероятное расстояние $r_{\text{вер}}$ электрона от ядра;
 - б) среднее расстояние $\langle r \rangle$ между электроном и ядром.
- **5.150.** Частица находится в сферически-симметричном потенциальном поле в стационарном состоянии, для которого $\psi(r) = (2\pi a)^{-1/2} r^{-1} \mathrm{e}^{-r/a}$, где a постоянная, r расстояние от центра поля. Найти среднее значение $\langle r \rangle$.
- **5.151.** Частица массы m находится в одномерном потенциальном поле $U(x) = \varkappa x^2$, где \varkappa положительная постоянная. Найти среднее значение $\langle U \rangle$ частицы в состоянии $\psi = A \exp(-\alpha x^2)$, где A и α неизвестные постоянные.
- **5.152.** Частица в момент t=0 находится в состоянии $\psi = A \exp(-x^2/\alpha^2 + \mathrm{i} kx)$, где A и α постоянные. Найти:
 - а) $\langle x \rangle$; б) $\langle p_x \rangle$ среднее значение проекции импульса.
- **5.153.** Найти средний электростатический потенциал, создаваемый электроном в центре атома водорода, если электрон находится в основном состоянии $\psi(r) = A \exp(-r/r_1)$, где A постоянная, r_1 первый боровский радиус.
- **5.154.** Частицы с массой m и энергией E движутся слева на потенциальный барьер (рис. 5.6). Найти:
- а) коэффициент отражения R этого барьера при $E \,>\, U_0$;
- б) эффективную глубину проникновения частиц в область x>0 при $E< U_0$, т. е. расстояние от границы барьера до точки, где плотность вероятности нахождения частицы уменьшается в е раз.
- **5.155**. Воспользовавшись формулой (5.3e), найти для электрона с энергией E вероятность D прохождения сквозь потенциальный барьер, ширина которого l и высота U_0 (рис. 5.7).
- **5.156.** То же, что и в предыдущей задаче, но барьер имеет вид, показанный на рис. 5.8.

Рис. 5.6

Рис. 5.7

5.157. Найти с помощью формулы (5.3e) вероятность прохождения частицы с массой m и энергией E сквозь потенциальный барьер (рис. 5.9), где $U(x) = U_0(1 - x^2/l^2)$.

5.4. Атомы и молекулы

• Спектральные обозначения термов $^{\kappa}(L)_J$, где мультиплетность $\kappa=2S+1$; L,~S,~J — квантовые числа,

• Термы атомов щелочных металлов:

$$T = \frac{R}{(n + \alpha)^2}, \tag{5.4a}$$

где R — постоянная Ридберга, n — главное квантовое число, α — ридберговская поправка.

На рис. 5.10 показана схема термов атома лития.

• Механические моменты атома:

$$M_L = \hbar \sqrt{L(L+1)}$$
, аналогично M_S и M_J . (5.46)

- Правила Хунда:
- 1) наименьшая энергия у терма с максимальным значением S при данной электронной конфигурации и максимально возможным при этом $S_{\rm makc}$ значении квантового числа L;
- 2) для основного (нормального) терма J = |L S|, если подоболочка заполнена менее чем наполовину, и J = L + S в остальных случаях.
 - Схема возникновения рентгеновских спектров (рис. 5.11).
 - Закон Мозли для K_{α} -линий:

$$\omega_{K_{\alpha}} = \frac{3}{4} R(Z - \sigma)^2, \qquad (5.4B)$$

где о — поправка, равная для легких элементов единице.

• Магнитный момент атома и фактор (множитель) Ланде:

$$\mu = g\sqrt{J(J+1)}\,\mu_{\rm B}, \qquad g = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}, \tag{5.4r}$$

где магнетон Бора $\mu_{\rm B}=e\hbar/2mc$ (СГС) или $\mu_{\rm B}=e\hbar/2m$ (СИ).

• Зеемановское расщепление спектральных линий в слабом магнитном поле:

$$\Delta \omega = (m_1 g_1 - m_2 g_2) \mu_B B / \hbar.$$
 (5.4A)

- При излучении вдоль магнитного поля зеемановские компоненты, обусловленные переходами $m_1 = m_2$, отсутствуют.
 - Вращательная энергия двухатомной молекулы:

$$E_r = \hbar B r (r+1), \qquad B = \hbar / 2I,$$
 (5.4e)

где B — вращательная постоянная (c^{-1}), I — момент инерции.

• Колебательная энергия двухатомной молекулы:

$$E_v = \hbar\omega(v + 1/2), \qquad (5.4\pi)$$

где ω — собственная частота колебаний молекулы.

5.158. Энергия связи валентного электрона атома лития в состояниях 2S и 2P равна 5,39 и 3,54 эВ. Вычислить ридберговские поправки для S- и P-термов этого атома.

- **5.159.** Найти ридберговскую поправку для 3P-терма атома натрия, первый потенциал возбуждения которого 2,10 B, а энергия связи валентного электрона в основном состоянии 3S равна 5,14 эВ.
- **5.160.** Найти энергию связи валентного электрона в основном состоянии атома лития, если известно, что длина волны головной линии резкой серии $\lambda_1=813$ нм и длина волны коротковолновой границы этой серии $\lambda_2=350$ нм.
- **5.161.** Определить длины волн спектральных линий, возникающих при переходе возбужденных атомов лития из состояния 3S в основное состояние 2S. Ридберговские поправки для S- и P-термов равны -0.41 и -0.04.
- **5.162.** Длины волн компонент желтого дублета резонансной линии натрия, обусловленной переходом $3P \rightarrow 3S$, равны 589,00 и 589,56 нм. Найти величину расщепления 3P-терма в 3B.
- **5.163.** Головная линия резкой серии атомарного цезия представляет собой дублет с длинами волн 1358,8 и 1469,5 нм. Найти интервалы в частотах (ω , с⁻¹) между компонентами других линий этой серии.
- **5.164.** Выписать спектральные обозначения термов атома водорода, электрон которого находится в состоянии с главным квантовым числом n=3.
- **5.165.** Сколько и какие значения квантового числа J может иметь атом в состоянии с квантовыми числами S и L, равными соответственно:
 - а) 2 и 3; б) 3 и 3; в) 5/2 и 2?
- **5.166.** Найти возможные значения полных механических моментов атомов, находящихся в состояниях 4P и 5D .
- **5.167.** Найти максимально возможный полный механический момент и соответствующее спектральное обозначение терма атома:
- а) натрия, валентный электрон которого имеет главное квантовое число n=4;
 - б) с электронной конфигурацией $1s^22p3d$.
- 5.168. Известно, что в F- и D-состояниях число возможных значений квантового числа J одинаково и равно пяти. Найти спиновый механический момент в этих состояниях.
- **5.169.** Атом находится в состоянии, мультиплетность которого равна трем, а полный механический момент $\hbar\sqrt{20}$. Каким может быть соответствующее квантовое число L?

- 5.170. Определить максимально возможный орбитальный механический момент атома в состоянии, мультиплетность которого равна пяти и кратность вырождения по J семи. Написать спектральное обозначение такого терма.
 - 5.171. Найти возможные мультиплетности и термов типа:
 - a) ${}^{\varkappa}D_{2}$; б) ${}^{\varkappa}P_{3/2}$; в) ${}^{\varkappa}F_{1}$.
- **5.172.** Некоторый атом, кроме заполненных оболочек, имеет три электрона (*s*, *p* и *d*) и находится в состоянии с максимально возможным для этой конфигурации полным механическим моментом. Найти в соответствующей векторной модели атома угол между спиновым и полным механическими моментами данного атома.
- 5.173. Выписать спектральные символы термов двухэлектронной системы, состоящей из одного p-электрона и одного d-электрона.
- **5.174.** Система состоит из d-электрона и атома в состоянии ${}^2P_{3/2}$. Найти возможные спектральные термы этой системы.
- **5.175.** Какие переходы запрещены правилами отбора: ${}^2D_{3/2} o {}^2P_{1/2}, {}^3P_1 o {}^2S_{1/2}, {}^3F_3 o {}^3P_2, {}^4F_{7/2} o {}^4D_{5/2}?$
- 5.176. Определить суммарную кратность вырождения 3D-состояния атома лития. Каков физический смысл этой величины?
- **5.177.** Найти кратность вырождения состояний 2P , 3D и 4F с максимально возможными полными механическими моментами.
- **5.178.** Написать спектральное обозначение терма, кратность вырождения которого равна семи, а квантовые числа L и S связаны соотношением L=3S.
- **5.179.** У атома какого элемента заполнены K-, L- и M-оболочки, 4s-подоболочка и наполовину 4p-подоболочка?
- **5.180**. Используя правила Хунда, найти основной терм атома, незаполненная подоболочка которого содержит:
 - а) три *p*-электрона; б) четыре *p*-электрона.
- **5.181**. Найти с помощью правил Хунда полный механический момент атома в основном состоянии, если его незаполненная подоболочка содержит:
 - а) три d-электрона; б) семь d-электронов.

- **5.182.** Воспользовавшись правилами Хунда, найти число электронов в единственной незаполненной подоболочке атома, основной терм которого:
 - a) 3F_2 ; 6) ${}^2P_{3/2}$; B) ${}^6S_{5/2}$.
- **5.183.** Написать с помощью правил Хунда спектральный символ основного терма атома, единственная незаполненная подоболочка которого заполнена:
 - а) на 1/3 и S=1; б) на 70% и S=3/2.
- 5.184. Единственная незаполненная подоболочка некоторого атома содержит три электрона, причем основной терм атома имеет L=3. Найти с помощью правил Хунда спектральный символ основного состояния данного атома.
- **5.185.** Вычислить среднее время жизни возбужденных атомов, если известно, что интенсивность спектральной линии, обусловленной переходом в основное состояние, убывает в $\eta=25$ раз на расстоянии l=2,5 мм вдоль пучка атомов, скорость которых $\upsilon=600$ м/с.
- **5.186.** Разреженные пары ртути, атомы которой практически все находятся в основном состоянии, осветили резонансной линией ртутной лампы с длиной волны $\lambda = 253,65$ нм. При этом мощность испускания данной линии парами ртути оказалась P = 35 мВт. Найти число атомов в состоянии резонансного возбуждения, среднее время жизни которого $\tau = 0,15$ мкс.
- **5.187.** Найти длину волны K_{α} -линии меди (Z=29), если известно, что длина волны K_{α} -линии железа (Z=26) равна 193 пм.
 - 5.188. Вычислить с помощью закона Мозли:
 - а) длину волны K_{α} -линии алюминия и кобальта;
 - б) разность энергий связи K- и L-электронов ванадия.
- 5.189. Сколько элементов содержится в ряду между теми, у которых длины волн K_{α} -линий равны 250 и 179 пм?
- **5.190.** Найти напряжение на рентгеновской трубке с никелевым антикатодом, если разность длин волн K_{α} -линии и коротковолновой границы сплошного рентгеновского спектра равна 84 пм.
- 5.191. При некотором напряжении на рентгеновской трубке с алюминиевым антикатодом длина волны коротковолновой границы сплошного рентгеновского спектра равна 0.50 нм. Будет ли наблюдаться при этом K-серия характеристического спектра, потенциал возбуждения которой равен 1.56 кВ?

- **5.192.** При увеличении напряжения на рентгеновской трубке от $U_1 = 10~\mathrm{kB}$ до $U_2 = 20~\mathrm{kB}$ интервал длин волн между K_{α} -линией и коротковолновой границей сплошного рентгеновского спектра увеличился в n=3,0 раза. Определить порядковый номер элемента антикатода этой трубки, имея в виду, что данный элемент является легким.
- **5.193.** У какого легкого элемента в спектре поглощения разность частот K- и L-краев поглощения рентгеновских лучей составляет $\Delta \omega = 6.85 \cdot 10^{18} \, \mathrm{c}^{-1}$?
- **5.194.** Вычислить энергию связи K-электрона ванадия, для которого длина волны L-края поглощения $\lambda_L=2,4\,$ нм.
- **5.195.** Найти энергию связи L-электрона титана, если разность длин волн головной линии K-серии и ее коротковолновой границы $\Delta \lambda = 26\,$ пм.
- **5.196.** У некоторого легкого атома длины волн K_{α} и K_{β} -линий равны 275 и 251 пм. Что это за атом? Какова длина волны головной линии его L-серии?
- **5.197.** Найти кинетическую энергию и скорость фотоэлектронов, вырываемых K_{α} -излучением цинка с K-оболочки атомов железа.
 - 5.198. Вычислить фактор Ланде для атомов:
 - а) в S-состояниях; б) в синглетных состояниях.
 - 5.199. Вычислить фактор Ланде для следующих термов:
 - а) ${}^6F_{1/2}$; б) ${}^4D_{1/2}$; в) 5F_2 ; г) 5P_1 ; д) 3P_0 .
 - 5.200. Вычислить магнитный момент атома:
 - а) в ${}^{1}F$ -состоянии;
 - б) в состоянии ${}^{2}D_{3/2}$;
 - в) в состоянии с S = 1, L = 2 и фактором Ланде g = 4/3.
- ${f 5.201.}$ Определить спиновый механический момент атома в состоянии D_2 , если максимальное значение проекции магнитного момента в этом состоянии равно четырем магнетонам Бора.
- **5.202.** Найти с помощью правил Хунда магнитный момент основного состояния атома, незамкнутая подоболочка которого заполнена ровно наполовину пятью электронами.
- 5.203. Валентный электрон атома натрия находится в состоянии с главным квантовым числом n=3, имея при этом максимально возможный полный механический момент. Каков его магнитный момент в этом состоянии?

- 5.204. Возбужденный атом имеет электронную конфигурацию $1s^22s^22p3d$ и находится при этом в состоянии с максимально возможным полным механическим моментом. Найти магнитный момент атома в этом состоянии.
- **5.205.** Найти полный механический момент атома в состоянии с S=3/2 и L=2, если известно, что магнитный момент его равен нулю.
- **5.206.** Некоторый атом находится в состоянии, для которого S=2, полный механический момент $M=\hbar\sqrt{2}$, а магнитный момент равен нулю. Написать спектральный символ соответствующего терма.
- **5.207.** Атом в состоянии ${}^2P_{3/2}$ находится в слабом магнитном поле с индукцией B=1,0 к Γ с. Найти с точки зрения векторной модели угловую скорость прецессии полного механического момента этого атома.
- **5.208.** Атом в состоянии ${}^2P_{1/2}$ находится на оси витка радиуса r=5,0 см с током I=10 А. Расстояние между атомом и центром витка равно радиусу последнего. Найти силу, действующую на атом.
- **5.209.** Атом водорода в нормальном состоянии находится на расстоянии r=2,5 см от длинного прямого проводника с током I=10 А. Найти силу, действующую на атом.
- **5.210.** Узкий пучок атомов ванадия в основном состоянии ${}^4F_{3/2}$ пропускают по методу Штерна и Герлаха через поперечное резко неоднородное магнитное поле, протяженность которого $l_1 = 5,0$ см. Расщепление пучка наблюдают на экране, отстоящем от магнита на расстояние $l_2 = 15$ см. Кинетическая энергия атомов K = 22 мэВ. При каком значении градиента индукции B магнитного поля расстояние между крайними компонентами расщепленного пучка на экране будет составлять x = 2,0 мм?
- **5.211.** На сколько подуровней расщепится в слабом магнитном поле терм:
 - a) 3P_0 ; 6) ${}^2F_{5/2}$; B) ${}^4D_{1/2}$?
- **5.212.** Атом находится в слабом магнитном поле с индукцией B=2,50 кГс. Найти полную величину расщепления в электронвольтах следующих термов:
 - a) ${}^{1}D$; 6) ${}^{3}F_{4}$.

- **5.213.** Какой эффект Зеемана (простой, сложный) обнаруживают в слабом магнитном поле спектральные линии, обусловленные следующими переходами:
 - a) ${}^1P \to {}^1S;$ 6) ${}^2D_{5/2} \to {}^2P_{3/2};$ B) ${}^3D_1 \to {}^3P_0;$ Γ) ${}^5I_5 \to {}^5H_4?$
- **5.214.** Определить спектральный символ синглетного терма атома, если полная ширина расщепления этого терма в слабом магнитном поле, индукция которого $B=3.0~\mathrm{k\Gamma c}$, составляет $\Delta E=104~\mathrm{mk}$ в В.
- **5.215.** Известно, что спектральная линия $\lambda = 612$ нм обусловлена переходом между синглетными термами атома. Вычислить интервал $\Delta\lambda$ между крайними компонентами этой линии в магнитном поле с индукцией B=10,0 кГс.
- **5.216.** Найти минимальное значение индукции B магнитного поля, при котором спектральным прибором с разрешающей способностью $\lambda/\delta\lambda=1,0\cdot10^5$ можно разрешить компоненты спектральной линии $\lambda=536$ нм, обусловленной переходом между синглетными термами. Наблюдение ведут перпендикулярно магнитному полю.
- **5.217.** Спектральная линия, которая обусловлена переходом $^3D_1 \to {}^3P_0$, испытывает расщепление в слабом магнитном поле. При наблюдении перпендикулярно направлению магнитного поля интервал между соседними компонентами зеемановской структуры линии составляет $\Delta\omega = 1.32 \cdot 10^{10} \, \mathrm{c}^{-1}$. Найти индукцию B магнитного поля в месте нахождения источника.
- **5.218.** При наблюдении некоторой спектральной линии в слабом магнитном поле с индукцией B=1,90 кГс обнаружили, что она представляет собой триплет, интервал между крайними компонентами которого $\Delta\omega=5,0\cdot10^{10}\,\mathrm{c}^{-1}$. Одно из состояний, между которыми происходит переход, соответствующий данной линии, есть D_2 . Найти его мультиплетность.
- **5.219.** Некоторая спектральная линия, которая обусловлена переходом в $^2S_{1/2}$ -состояние, расщепилась в слабом магнитном поле на шесть компонент. Написать спектральный символ исходного терма.
- **5.220.** Длины волн дублета желтой линии натрия ($^2P \rightarrow ^2S$) равны 589,59 и 589,00 нм. Найти:
- а) отношение интервалов между соседними подуровнями зеемановского расщепления термов $^2P_{3/2}$ и $^2P_{1/2}$ в слабом магнитном поле;

- б) индукцию B магнитного поля, при которой интервал между соседними подуровнями зеемановского расщепления терма $^2P_{3/2}$ будет в $\eta=50$ раз меньше естественного расщепления терма 2P .
- **5.221.** Изобразить схему возможных переходов в слабом магнитном поле между термами $^2P_{3/2}$ и $^2S_{1/2}$. Вычислить для магнитного поля B=4,5 к Γ с смещения ($\Delta \omega$, c^{-1}) зеемановских компонент этой линии.

Рис. 5.12

- 5.222. Одну и ту же спектральную линию, испытывающую сложный эффект Зеемана, наблюдают в направлении 1, а также в направлении 2 после отражения от зеркала 3 (рис. 5.12). Сколько компонент будет наблюдаться в обоих направлениях, если спектральная линия обусловлена переходом:
 - a) ${}^2P_{3/2} o {}^2S_{1/2};$ 6) ${}^3P_2 o {}^3S_1?$
- **5.223.** Вычислить полное расщепление $\Delta \omega$ спектральной линии $^3D_3 \to {}^3P_2$ в слабом магнитном поле, индукция которого B=3,4 к Γ с.
- **5.224.** Определить угловую скорость вращения молекулы \mathbf{S}_2 на первом возбужденном вращательном уровне.
- **5.225.** Найти для молекулы HCl вращательные квантовые числа двух соседних уровней, разность энергий которых равна **7.86** мэВ.
- **5.226.** Найти механический момент молекулы кислорода, вращательная энергия которой $E=2,16\,$ мэВ.
- **5.227.** Для двухатомной молекулы известны интервалы между тремя последовательными вращательными уровнями $\Delta E_1 = 0.20$ мэВ и $\Delta E_2 = 0.30$ мэВ. Найти вращательное квантовое число среднего уровня и соответствующий момент инерции молекулы.
- **5.228.** Двухатомная молекула с моментом инерции, равным $I = 1.16 \cdot 10^{-39}$ г·см², находится в состоянии с вращательной энергией E = 1.8 мэВ. Найти частоту ω фотона (принадлежащего чисто вращательному спектру), который может испустить данная молекула при переходе из этого состояния.
- **5.229.** Показать, что интервалы частот между соседними спектральными линиями чисто вращательного спектра двухатомной молекулы имеют одинаковую величину. Найти мо-

мент инерции и расстояние между ядрами молекулы СН, если интервалы между соседними линиями чисто вращательного спектра этих молекул $\Delta\omega = 5,47\cdot 10^{\,12}\,\mathrm{c}^{\,-1}$.

- **5.230.** Найти для молекулы HF число вращательных уровней, расположенных между нулевым и первым возбужденным колебательными уровнями, считая вращательные состояния не зависящими от колебательных.
- **5.231.** Оценить, сколько линий содержит чисто вращательный спектр молекул СО, момент инерции которых равен $I = 1,44 \cdot 10^{-39}$ г·см².
- **5.232.** Найти для двухатомной молекулы число чисто вращательных уровней на единичный интервал энергии $\mathrm{d}N/\mathrm{d}E$ в зависимости от вращательного квантового числа r и вращательной энергии E. Вычислить эту величину для молекулы йода при r=10.
- **5.233.** Найти отношение энергий, которые необходимо затратить для возбуждения двухатомной молекулы на первый колебательный и первый вращательный уровни. Вычислить это отношение для следующих молекул:
 - a) H_2 ; б) HI; в) I_2 .
- **5.234.** В середине колебательно-вращательной полосы спектра испускания молекул HCl, где отсутствует «нулевая» линия, запрещенная правилом отбора, интервал между соседними линиями $\Delta\omega = 0.79 \cdot 10^{13} \, \mathrm{c}^{-1}$. Вычислить расстояние между ядрами молекулы HCl.
- **5.235.** Вычислить длины волн красного и фиолетового спутников, ближайших к несмещенной линии, в колебательном спектре комбинационного рассеяния молекул F_2 , если длина волны падающего света $\lambda_0=404,7$ нм.
- 5.236. Найти собственную частоту колебаний и коэффициент квазиупругой силы молекулы S_2 , если в колебательном спектре комбинационного рассеяния света длины волн красного и фиолетового спутников, ближайших к несмещенной линии, равны 346,6 и 330,0 нм.

5.5. Ядро атома. Радиоактивность

- Нуклид атом с определенным ядром (например, нуклиды 14 C и 23 Mg). Нуклиды с одинаковым порядковым номером Z и разными массовыми числами A называют изотопами (например, 58 Co и 59 Co).
 - Радиус ядра с массовым числом А:

$$R = 1, 3\sqrt[3]{A}, \, \phi_{\rm M}.$$
 (5.5a)

• Энергия связи ядра:

$$E_{\rm CB} = Zm_{\rm H} + (A - Z)m_n - M,$$
 (5.56)

где $m_{\rm H}$, m_n и M — массы нуклида водорода $^1{\rm H}$, нейтрона и нуклида, соответствующего данному ядру.

Для расчетов удобнее пользоваться формулой

$$E_{\rm CB} = Z\Delta_{\rm H} + (A - Z)\Delta_n - \Delta, \tag{5.5b}$$

где $\Delta_{\rm H}$, Δ_n и Δ — избытки массы соответствующего нуклида ($\Delta=M-A$, где M — масса нуклида в а.е.м.).

• Основной закон радиоактивного распада:

$$N = N_0 e^{-\lambda t}. ag{5.5r}$$

• Связь между постоянной распада λ , средним временем жизни τ и периодом полураспада T:

$$\lambda = 1/\tau$$
, $\tau = T/\ln 2$. (5.5μ)

• Активность:

$$A = | dN / dt | = \lambda N.$$
 (5.5e)

- Удельная активность это активность единицы массы вещества.
- **5.237.** Оценить с помощью формулы (5.5a) плотность ядра, а также число нуклонов в единице объема ядра.
- **5.238.** Найти энергию связи ядра, которое имеет одинаковое число протонов и нейтронов, а радиус, в полтора раза меньший радиуса ядра 27 Al.
- **5.239.** Найти с помощью табличных значений масс нуклидов:
 - а) среднюю энергию связи на один нуклон в ядре ¹⁶O;
 - б) энергию связи нейтрона и α -частицы в ядре 11 В;
- в) энергию, необходимую для разделения ядра 16 О на четыре одинаковые частицы.
- **5.240.** Определить разность энергий связи нейтрона и протона в ядре 11 В. Объяснить причину их различия.

- **5.241.** Вычислить энергию, необходимую для разделения ядра 20 Ne на две α -частицы и ядро 12 C, если энергии связи на один нуклон в ядрах 20 Ne, 4 He и 12 C равны 8,03, 7,07 и 7,68 МэВ.
 - 5.242. Вычислить массу в а.е.м.:
 - а) нуклида ⁸Li, энергия связи ядра которого 41,3 МэВ;
 - б) ядра ¹¹С с энергией связи на один нуклон 6,04 МэВ.
 - 5.243. Зная постоянную распада λ ядра, определить:
 - а) вероятность, что оно распадается за время от 0 до t;
 - б) его среднее время жизни т.
- **5.244.** Какая доля радиоактивных ядер кобальта, период полураспада которых 71,3 сут, распадется за месяц?
- **5.245.** Сколько β -частиц испускает за один час 1,0 мкг 24 Na, период полураспада которого 15 ч?
- 5.246. При изучении β -распада $^{23}{
 m Mg}$ в момент t=0 был включен счетчик. К моменту $t_1=2,0$ с он зарегистрировал N_1 β -частиц, а к моменту $t_2=3t_1$ в 2,66 раза больше. Найти среднее время жизни данных ядер.
- **5.247.** Активность некоторого радиоизотопа уменьшается в 2,5 раза за 7,0 сут. Найти его период полураспада.
- **5.248.** В начальный момент активность некоторого радиоизотопа составляла $1,20\cdot10^6$ Бк. Какова будет его активность по истечении половины периода полураспада?
- **5.249.** Найти постоянную распада и среднее время жизни радиоактивного 55 Со, если его активность уменьшается на 4.0% за 60 мин.
- **5.250.** Препарат 238 U массы 1,0 г излучает 1,24· 10^4 альфа-частиц в секунду. Найти его период полураспада.
- **5.251.** Определить возраст древних деревянных предметов, если удельная активность изотопа 14 С у них составляет $\eta=0,60$ удельной активности этого же изотопа в только что срубленных деревьях. Период полураспада 14 С равен 5570 лет.
- **5.252.** В урановой руде отношение числа ядер 238 U к числу ядер 206 Pb составляет $\eta=2,8$. Оценить возраст руды, считая, что весь свинец 206 Pb является конечным продуктом распада уранового ряда. Период полураспада 238 U равен $4,5\cdot10^9$ лет.
- **5.253.** Вычислить удельные активности 24 Na и 235 U, периоды полураспада которых равны 15 ч и $7,1\cdot10^8$ лет.

- **5.254.** В кровь человека ввели небольшое количество раствора, содержащего 24 Na с активностью $A=2,0\cdot 10^3$ Бк. Активность 1 см 3 крови через t=5,0 ч оказалась A'=0,267 Бк/см 3 . Период полураспада данного радиоизотопа T=15 ч. Найти объем крови человека.
- **5.255.** Удельная активность препарата, состоящего из активного кобальта 58 Со и неактивного 59 Со, составляет $2,2\cdot10^{12}$ Бк/г. Период полураспада 58 Со равен 71,3 сут. Найти отношение массы активного кобальта в этом препарате к массе препарата.
- **5.256.** Радиоизотоп 32 Р, период полураспада которого T=14,3 сут, образуется в ядерном реакторе со скоростью $q=2,7\cdot 10^9$ ядер/с. Через сколько времени после начала образования этого радиоизотопа его активность станет $A=1,0\cdot 10^9$ Бк?
- **5.257.** Ядра A_1 с постоянной распада λ_1 превращаются в ядра A_2 с постоянной распада λ_2 . Считая, что в момент t=0 препарат содержал только ядра A_1 в количестве N_{10} , найти:
 - а) закон накопления ядер A_2 со временем;
- б) момент t_m , в который количество ядер A_2 достигнет максимума.
 - **5.258.** Решить предыдущую задачу, если $\lambda_1 = \lambda_2 = \lambda$.
- **5.259.** а) Какие ядра образуются из α -активного 226 Rа в результате пяти α -распадов и четырех β^- -распадов?
- б) Сколько α и β^- -распадов испытывает 238 U, превращаясь в конечном счете в стабильный 206 Pb?
- 5.260. Покоившееся ядро 200 Ро испустило α -частицу с кинетической энергией $K_{\alpha}=5,77$ МэВ. Найти скорость отдачи дочернего ядра. Какую долю полной энергии, освобождаемой в этом процессе, составляет энергия отдачи дочернего ядра?
- **5.261.** Определить количество тепла, которое выделяет 1,00 мг препарата ²¹⁰Ро за период, равный среднему времени жизни этих ядер, если испускаемые α-частицы имеют кинетическую энергию 5,3 МэВ и почти все дочерние ядра образуются непосредственно в основном состоянии.
- 5.262. Альфа-распад ядер 210 Ро (из основного состояния) сопровождается испусканием двух групп α -частиц с кинетическими энергиями 5,30 и 4,50 МэВ. В результате дочерние ядра оказываются соответственно в основном и возбужденном состояниях. Найти энергию γ -квантов, испускаемых возбужденными ядрами.

- 5.263. Средний пробег α -частицы в воздухе при нормальных условиях определяется формулой $R = 0.98 \cdot 10^{-27} \, v_0^3$ см, где v_0 (см/с) начальная скорость α -частицы. Вычислить для α -частицы с начальной кинетической энергией 7,0 МэВ:
 - а) ее средний пробег;
- б) среднее число пар ионов, которые образует данная α -частица на всем пути R, а также на первой половине его, считая, что энергия образования одной пары ионов равна 34 эВ.
- **5.264.** Найти энергию Q, выделяющуюся при β^- и β^+ -распадах и при K-захвате, если известны массы материнского атома $M_{\scriptscriptstyle M}$, дочернего атома $M_{\scriptscriptstyle \Pi}$ и электрона m.
- 5.265. Найти с помощью табличных значений масс нуклидов максимальную кинетическую энергию β -частиц, испускаемых ядрами 10 Ве, и соответствующую кинетическую энергию дочерних ядер, образующихся непосредственно в основном состоянии.
- 5.266. Оценить количество тепла, выделенного за сутки в калориметре β^- -активным препаратом ²⁴Na массы m=1,0 мг. Считать, что все β -частицы в среднем имеют кинетическую энергию, равную 1/3 максимально возможной при данном распаде. Период полураспада ²⁴Na равен T=15 ч.
- **5.267.** Вычислить с помощью табличных значений масс нуклидов кинетические энергии позитрона и нейтрино, испускаемых ядром ¹¹С в случае, когда дочернее ядро не испытывает отдачи.
- 5.268. Найти кинетическую энергию ядра отдачи при позитронном распаде ядра 13 N, если энергия позитрона максимальна.
- **5.269.** Определить с помощью табличных значений масс нуклидов скорость ядра, возникающего в результате K-захвата в нуклиде 7 Ве, если дочернее ядро оказывается непосредственно в основном состоянии.
- **5.270.** Возбужденные ядра 109 Ag, переходя в основное состояние, испускают или γ -кванты с энергией 87 кэB, или конверсионные K-электроны (их энергия связи 26 кэB). Определить скорость этих электронов.
- **5.271.** Свободное покоившееся ядро 191 Ir с энергией возбуждения E=129 кэВ перешло в основное состояние, испустив γ -квант. Вычислить относительное изменение энергии γ -кванта, возникающее в результате отдачи ядра.

- **5.272.** С какой скоростью должны сближаться источник и поглотитель, состоящие из свободных ядер 191 Ir, чтобы наблюдалось максимальное поглощение γ -квантов с энергией, равной $\epsilon = 129 \,$ кэВ?
- 5.273. Источник γ -квантов расположен на h=20 м выше поглотителя. С какой скоростью необходимо перемещать вверх источник, чтобы в месте расположения поглотителя скомпенсировать гравитационное изменение энергии γ -квантов, обусловленное полем тяготения Земли?
- 5.274. На какую минимальную высоту необходимо поднять источник γ -квантов, содержащий возбужденные ядра 67 Zn, чтобы при регистрации на поверхности Земли гравитационное смещение линии Мёссбауэра превзошло ширину этой линии? Известно, что регистрируемые γ -кванты имеют энергию $\epsilon = 93$ кэВ и возникают при переходе ядер 67 Zn в основное состояние, а среднее время жизни возбужденного состояния $\tau = 14$ мкс.

5.6. Ядерные реакции

• Энергетическая схема ядерной реакции

$$m + M \rightarrow M^* \rightarrow m' + M' + Q$$
 (5.6a)

Рис. 5.13

показана на рис. 5.13, где m+M и m'+M'- суммы масс покоя частиц до и после реакции, \tilde{K} и $\tilde{K}'-$ суммарные кинетические энергии частиц до и после реакции (в системе центра масс), E^*- энергия возбуждения промежуточного ядра, Q- энергия реакции, E и E'- энергии связи частиц m и m' в промежуточном ядре, 1, 2, 3- уровни энергии промежуточного ядра.

• Пороговая (минимальная) кинетическая энергия налетающей частицы, при которой становится возможной эндоэнергетическая ядерная реакция,

$$K_{\text{nop}} = \frac{m + M}{M} | Q |, \qquad (5.66)$$

где т и M — массы налетающей частицы и ядра мишени.

• Выход ядерной реакции — относительная доля частиц, испытавших ядерное взаимодействие.

- **5.275.** Альфа-частица с кинетической энергией $K_{\alpha} = 7,0\,$ МэВ упруго рассеялась на первоначально покоившемся ядре ⁶Li. Определить кинетическую энергию ядра отдачи, если угол между направлениями разлета обеих частиц $\theta = 60^{\circ}$.
- 5.276. Нейтрон испытал упругое соударение с первоначально покоившимся дейтроном. Найти относительную долю кинетической энергии, теряемую нейтроном:
 - а) при лобовом соударении;
 - б) при рассеянии под прямым углом.
- 5.277. Определить максимально возможный угол, на который может рассеяться дейтрон при упругом соударении с первоначально покоившимся протоном.
 - **5.278.** Написать недостающие обозначения (x) в реакциях:
 - a) 10 B (x, α) 8 Be; B) 23 Na (p, x) 20 Ne; 6) 17 O (d, n) x; Γ) x (p, n) 37 Ar.
- **5.279.** Известны энергии связи E_1 , E_2 , E_3 и E_4 ядер в реакции $A_1 + A_2 \to A_3 + A_4$. Найти энергию реакции.
- **5.280.** Считая, что в одном акте деления ядра 235 U освобождается энергия 200 МэВ, определить:
- а) энергию, выделяющуюся при сгорании 1 кг ²³⁵U, и массу каменного угля с теплотворной способностью 30 кДж/г, эквивалентную в тепловом отношении 1 кг ²³⁵U;
- б) массу изотопа ²³⁵U, подвергшегося делению при взрыве атомной бомбы с тротиловым эквивалентом 30 килотонн, если тепловой эквивалент тротила равен 4,1 кДж/г.
- **5.281.** Сколько тепла выделяется при образовании $1 \, {}^{\rm f}$ ⁴He из дейтерия ²H? Какая масса каменного угля с теплотворной способностью 30 кДж/г эквивалентна этому теплу?
- 5.282. Вычислить с помощью табличных значений масс нуклидов энергию на один нуклон, которая выделяется при протекании реакции $^6\text{Li} + ^2\text{H} \rightarrow 2$ ^4He . Сравнить полученную величину с энергией на один нуклон, освобождающейся при делении ядра ²³⁵U.
- **5.283.** Определить энергию реакции ${}^{7}{
 m Li}$ + $p
 ightarrow 2 {}^{4}{
 m He}$, если энергии связи на один нуклон в ядрах ⁷Li и ⁴He равны 5,60 и 7,06 MaB.
- **5.284.** Найти энергию реакции 14 N (α , p) 17 O, если кинетическая энергия налетающей α -частицы $K_{\alpha} = 4.0$ МэВ и протон, вылетевший под углом $\theta = 60^\circ$ к направлению движения α -частицы, имеет энергию $K_p = 2,09$ МэВ.

- **5.285.** Определить с помощью табличных значений масс нуклидов энергию следующих реакций:
 - a) ${}^{7}\text{Li }(p, n) {}^{7}\text{Be};$ B) ${}^{7}\text{Li }(\alpha, n) {}^{10}\text{B};$
 - б) 9 Ве (n, γ) 10 Ве; г) 16 О (d, α) 14 N.
- **5.286.** Найти с помощью табличных значений масс нуклидов скорости продуктов реакции 10 B (n,α) 7 Li, протекающей в результате взаимодействия очень медленных нейтронов с покоящимися ядрами бора.
- **5.287.** Протоны, налетающие на неподвижную литиевую мишень, возбуждают реакцию 7 Li (p, n) 7 Be. При какой кинетической энергии протона возникший нейтрон может оказаться покоящимся?
- **5.288.** Альфа-частица с кинетической энергией K=5,3 МэВ возбуждает реакцию ⁹Ве (α, n) ¹²С, энергия которой Q=+5,7 МэВ. Найти кинетическую энергию нейтрона, вылетевшего под прямым углом к направлению движения α -частицы.
- **5.289.** Протоны с кинетической энергией K=1,0 МэВ бомбардируют литиевую мишень, возбуждая реакцию $p+{}^7{\rm Li} \to 2~{}^4{\rm He}$. Найти кинетическую энергию каждой α -частицы и угол между направлениями их разлета, если разлет произошел симметрично по отношению к направлению налетающих протонов.
- **5.290.** Частица массы m налетает на покоящееся ядро массы M, возбуждая эндоэнергетическую реакцию. Показать, что пороговая (минимальная) кинетическая энергия, при которой эта реакция становится возможной, определяется формулой (5.66).
- **5.291.** Какую кинетическую энергию необходимо сообщить протону, чтобы он смог расщепить покоящееся ядро 2 H, энергия связи которого $E_{\rm cr}=2.2$ МэВ?
- **5.292.** При облучении моноэнергетическим пучком протонов мишеней из лития и бериллия было обнаружено, что реакция 7 Li (p, n) 7 Be 1,65 MэB идет, а 9 Be (p, n) 9 Be 1,85 МэВ не идет. Найти возможные значения кинетической энергии протонов.
- 5.293. Для возбуждения реакции (n, α) на покоящихся ядрах 11 В пороговая кинетическая энергия нейтронов $K_{\text{пор}} = 4,0$ МэВ. Найти энергию этой реакции.
- **5.294.** Вычислить пороговые кинетические энергии протонов для реакций (p,n) и (p,d) на ядрах $^7 \, {
 m Li}$.

- **5.295.** Найти с помощью табличных значений масс нуклидов пороговую кинетическую энергию α -частицы для возбуждения реакции 7 Li (α, n) 10 B. Какова при этом скорость ядра 10 B?
- **5.296.** Нейтроны с кинетической энергией K=10 МэВ возбуждают реакцию 12 С (n,α) 9 Ве, порог которой $K_{\rm nop}=6,17$ МэВ. Найти кинетическую энергию α -частиц, вылетающих под прямым углом к направлению падающих нейтронов.
- **5.297.** На сколько процентов пороговая энергия γ -кванта в реакции $\gamma + {}^2{\rm H} \rightarrow n + p$ превосходит энергию связи ядра ${}^2{\rm H}$, равную $E_{\rm cr} = 2,2$ МэВ?
- **5.298.** Протон с кинетической энергией K=1,5 МэВ захватывается покоившимся ядром 2 Н. Найти энергию возбуждения образовавшегося ядра.
- **5.299.** Выход реакции 13 С (d, n) 14 N имеет максимумы при следующих значениях кинетической энергии K_i налетающих дейтронов: 0,60, 0,90, 1,55 и 1,80 МэВ. Найти с помощью табличных значений масс нуклидов соответствующие энергетические уровни промежуточного ядра, через которые идет эта реакция.
- 5.300. Узкий пучок тепловых нейтронов ослабляется в $\eta=360$ раз при прохождении кадмиевой пластинки, толщина которой d=0,50 мм. Определить сечение взаимодействия этих нейтронов с ядрами кадмия.
- **5.301.** Во сколько раз уменьшится интенсивность узкого пучка тепловых нейтронов после прохождения слоя тяжелой воды толщиной d=5,0 см? Сечения взаимодействия ядер дейтерия и кислорода для тепловых нейтронов равны соответственно $\sigma_1=7,0$ б и $\sigma_2=4,2$ б.
- **5.302.** Узкий пучок тепловых нейтронов проходит через пластинку из железа, для которого сечения поглощения и рассеяния равны $\sigma_a = 2.5$ б и $\sigma_s = 11$ б. Определить относительную долю нейтронов, выбывших из пучка в результате рассеяния, если толщина пластинки d = 0.50 см.
- 5.303. Выход ядерной реакции с образованием радиоизотопа можно характеризовать двояко: либо величиной w отношением числа ядерных реакций к числу бомбардирующих частиц, либо величиной k отношением активности возникшего радиоизотопа к числу бомбардировавших частиц. Найти:

- а) период полураспада радиоизотопа, зная w и k;
- б) выход w реакции ⁷Li (p, n) ⁷Be, если после облучения литиевой мишени пучком протонов (в течение t = 2,0 ч при токе в пучке I = 10 мкA) активность ⁷Be оказалась $A = 1,35 \cdot 10^8$ Бк, а его период полураспада T = 53 сут.
- 5.304. Тонкую золотую фольгу из стабильного 197 Au облучают по нормали к поверхности тепловыми нейтронами, плотность потока которых $J = 1,0 \cdot 10^{10} \, \mathrm{c^{-1} cm^{-2}}$. Масса фольги $m = 10 \, \mathrm{Mr}$. В результате захвата нейтронов возникает β -активный 198 Au, сечение образования которого $\sigma = 98 \, \mathrm{fm}$ и период полураспада $T = 2,7 \, \mathrm{cyt}$. Найти:
- а) время облучения, за которое число ядер 197 Au уменьшится на $\eta = 1.0\%$;
- б) максимальное число ядер ¹⁹⁸Au, которое может образоваться в процессе длительного облучения.
- **5.305.** Тонкую фольгу из некоторого стабильного изотопа облучают тепловыми нейтронами, падающими по нормали к ее поверхности. В результате захвата нейтронов возникает радиоизотоп с постоянной распада λ . Найти закон накопления этого радиоизотопа N(t) в расчете на единицу поверхности фольги. Плотность потока нейтронов равна J, число ядер на единицу поверхности фольги n и сечение образования активных ядер σ .
- **5.306.** Золотую фольгу массы m=0,20 г облучали в течение t=6,0 ч потоком тепловых нейтронов, падающим по нормали к ее поверхности. Через $\tau=12$ ч после окончания облучения активность фольги оказалась $A=1,9\cdot 10^7\,\mathrm{ K}$. Найти плотность потока нейтронов, если сечение образования ядра радиоизотопа $\sigma=96$ б, а его период полураспада T=2,7 сут.
- **5.307.** Сколько нейтронов будет в 100-м поколении, если процесс деления начинается с $N_0=1000$ нейтронов и происходит в среде с коэффициентом размножения k=1,05?
- **5.308.** Найти число нейтронов, возникающих в единицу времени в урановом реакторе с тепловой мощностью P=100 МВт, если среднее число нейтронов на каждый акт деления $\nu=2,5$. Считать, что при каждом делении освобождается энергия E=200 МэВ.
- **5.309.** В ядерном реакторе на тепловых нейтронах среднее время жизни одного поколения нейтронов $\tau = 0,10$ с. Считая коэффициент размножения k = 1,010, найти:

- а) во сколько раз увеличится число нейтронов в реакторе, а следовательно, и его мощность за время t=1,0 мин;
- б) период реактора T время, за которое его мощность увеличится в е раз.

5.7. Элементарные частицы

• Пороговая (минимальная) кинетическая энергия частицы m, налетающей на покоящуюся частицу M, для возбуждения эндоэнергетической реакции $m+M \to m_1 + m_2 + \ldots$:

$$K_{\text{nop}} = \frac{(m_1 + m_2 + \dots)^2 - (m + M)^2}{2M} c^2,$$
 (5.7a)

где m, M, m_1 , m_2 , ... — массы покоя соответствующих частиц.

• Квантовые числа, приписываемые элементарным частицам:

Q — электрический заряд,

L — лептонный заряд,

B — барионный заряд,

T — изотопический спин, T_z — его проекция,

S — странность, $S = 2\langle Q \rangle - B$,

Y — гиперзаряд, Y = B + S.

• Связь между квантовыми числами сильно взаимодействующих частиц:

$$Q = T_z + \frac{Y}{2} = T_z + \frac{B+S}{2}.$$
 (5.76)

- При взаимодействии частиц выполняются законы сохранения Q, L и B зарядов. В сильных взаимодействиях выполняются также законы сохранения S (или Y), T и его проекции T_z .
 - Квантовые числа кварков:

Кварк	Q	В	T	T_z	S
u	2/3	1/3	1/2	1/2	0
d	-1/3	1/3	1/2	-1/2	0
s	-1/3	1/3	0	0	-1

Спин каждого кварка равен 1/2. Соответствующие антикварки имеют противоположные по знаку значения Q, B, T_z и S.

- **5.310.** Вычислить кинетические энергии протонов, импульсы которых равны 0,10, 1,0 и 10 ГэВ/c, где c скорость света.
- **5.311.** Найти средний путь, проходимый π -мезонами с кинетической энергией, которая в $\eta = 1,2$ раза превышает их энер-

гию покоя. Среднее время жизни очень медленных π -мезонов $\tau_0=25.5$ нс.

- 5.312. Отрицательные π -мезоны с кинетической энергией $K=100~{
 m M}{
 m 9B}$ пролетают от места рождения до распада в среднем расстояние $l=11~{
 m m}$. Найти собственное время жизни этих мезонов.
- 5.313. Имеется узкий пучок π^- -мезонов с кинетической энергией K, равной энергии покоя данных частиц. Найти отношение потоков частиц в сечениях пучка, отстоящих друг от друга на $l=20\,$ м. Собственное среднее время жизни этих мезонов $\tau_0=25,5\,$ нс.
- **5.314.** Остановившийся π^+ -мезон распался на мюон и нейтрино. Найти кинетическую энергию мюона и энергию нейтрино.
- **5.315.** Найти кинетическую энергию нейтрона, возникшего при распаде остановившегося Σ^- -гиперона ($\Sigma^- \to n + \pi^-$).
- **5.316.** Остановившийся положительный мюон распался на позитрон и два нейтрино. Найти максимально возможную кинетическую энергию позитрона.
- **5.317.** Покоившаяся нейтральная частица распалась на протон с кинетической энергией K=5,3 МэВ и π^- -мезон. Найти массу этой частицы. Как она называется?
- **5.318.** Найти в лабораторной системе отсчета среднее время жизни мюонов, образующихся при распаде остановившихся каонов по схеме $K^+ \to \mu^+ + \nu$.
- **5.319.** Отрицательный π -мезон с энергией K=50 МэВ распался на лету на мюон и нейтрино. Найти энергию нейтрино, вылетевшего под прямым углом к направлению движения π -мезона.
- 5.320. Релятивистский Σ^+ -гиперон с кинетической энергией K_Σ распался на лету на нейтральную частицу и π^+ -мезон, который вылетел с энергией K_π под прямым углом к направлению движения гиперона. Найти энергию покоя нейтральной частицы.
- 5.321. Нейтральный π -мезон распался на лету на два γ -кванта с одинаковой энергией. Угол между направлениями разлета γ -квантов $\theta=60^\circ$. Найти кинетическую энергию π -мезона и энергию каждого γ -кванта.
- **5.322.** Релятивистская частица с массой m в результате столкновения с покоившейся частицей массы M возбуждает реакцию рождения новых частиц: $m+M \to m_1+m_2+...$, где спра-

ва записаны массы возникших частиц. Воспользовавшись инвариантностью величины $E^2 - p^2c^2$, показать, что пороговая кинетическая энергия частицы m для этой реакции определяется формулой (5.7a).

- **5.323.** Позитрон с кинетической энергией K = 750 кэВ налетает на покоящийся свободный электрон. В результате аннигиляции возникают два γ -кванта с одинаковыми энергиями. Определить угол между направлениями их разлета.
- **5.324.** Найти пороговую энергию γ -кванта, необходимую для образования:
 - а) пары электрон-позитрон в поле покоящегося протона;
 - б) пары мезонов $\pi^- \pi^+$ в поле покоящегося протона.
- **5.325.** Найти пороговую энергию антинейтрино в реакции $\tilde{\mathbf{v}} + p \to n + e^+$.
- **5.326.** Протоны с кинетической энергией K налетают на неподвижную водородную мишень. Найти пороговые значения K для следующих реакций:
 - a) $p + p \rightarrow p + p + p + \tilde{p}$; 6) $p + p \rightarrow p + p + \pi^0$.
- **5.327.** Водородную мишень облучают π -мезонами. Вычислить пороговые значения кинетической энергии этих мезонов, при которых становятся возможными реакции:
 - a) $\pi^- + p \to K^+ + \Sigma^-$; 6) $\pi^0 + p \to K^+ + \Lambda^0$.
- **5.328.** Вычислить пороговую энергию для рождения антипротона в следующих реакциях (налетающей частицей является первая):
 - a) $e^{-} + e^{-} \rightarrow e^{-} + e^{-} + p + \tilde{p}$;
 - 6) $\gamma + e^- \rightarrow \gamma + e^- + p + \tilde{p}$.
- **5.329.** Протоны с кинетической энергией K=4,0 ГэВ возбуждают реакцию $p+p \to p+p+N\pi$. Считая мишень неподвижной, найти какое наибольшее число N π -мезонов может возникнуть в результате реакции.
- **5.330.** Найти странность S и гиперзаряд Y нейтральной элементарной частицы, у которой проекция изотопического спина $T_z = +\ 1/2$ и барионный заряд B = +1. Что это за частица?
- **5.331.** Какие из нижеследующих процессов запрещены законом сохранения лептонного заряда:

- 1) $n \to p + e^- + \nu$; 4) $p + e^- \to n + \nu$; 2) $\pi^+ \to \mu^+ + e^- + e^+$; 5) $\mu^+ \to e^+ + \nu + \tilde{\nu}$;
- 3) $\pi^- \rightarrow \mu^- + \nu$;
- 6) $K^- \rightarrow \mu^- + \tilde{\nu}$?

5.332. Какие из нижеследующих процессов запрещены законом сохранения странности:

- 1) $\pi^- + p \to \Sigma^- + K^+$;
- 4) $n+p \rightarrow \Lambda^0 + \Sigma^+$;

- 2) $\pi^{-} + p \rightarrow \Sigma^{+} + K^{-};$ 3) $\pi^{-} + p \rightarrow K^{+} + K^{-} + n;$ 5) $\pi^{-} + n \rightarrow \Xi^{-} + K^{+} + K^{-};$ 6) $K^{-} + p \rightarrow \Omega^{-} + K^{+} + K^{0};$

5.333. Указать причины, запрещающие нижеследующие процессы:

1) $\Sigma^- \rightarrow \Lambda^0 + \pi^-$;

- 4) $n+p \rightarrow \Sigma^+ + \Lambda^0$;
- 2) $\pi^- + p \rightarrow K^+ + K^-$; 5) $\pi^- \rightarrow \mu^- + e^+ + e^-$;
- 3) $K^- + n \to \Omega^- + K^+ + K^0$; 6) $\mu^- \to e^- + \nu_e + \tilde{\nu}_{\mu}$.

5.334. Сконструировать из трех кварков протон, нейтрон и Σ^- -гиперон.

5.335. Построить из кварка и антикварка следующие мезоны: π^+ , K^- и K^0 .

5.336. Установить кварковый состав K^+ -мезона, а также гиперонов Λ и Ω^- .

Физика макросистем

6.1. Уравнение состояния газа. Процессы

• Уравнение состояния идеального газа:

$$pV = \nu RT, (6.1a)$$

где v = m/M, M — молярная масса.

• Барометрическая формула:

$$p = p_0 e^{-Mgh/RT},$$
 (6.16)

где p_0 — давление на высоте h=0.

• Уравнение состояния ван-дер-ваальсовского газа (для моля):

$$\left(p + \frac{a}{V_M^2}\right)(V_M - b) = RT, \qquad (6.1B)$$

где V_{M} — молярный объем, занимаемый при данных p и T.

- **6.1.** В сосуде объемом V=30 л содержится идеальный газ при температуре 0 °С. После того как часть газа была выпущена наружу, давление в сосуде понизилось на $\Delta p=0.78$ атм (без изменения температуры). Найти массу выпущенного газа. Плотность данного газа при нормальных условиях $\rho=1.3$ г/л.
- **6.2.** Два одинаковых баллона соединены трубкой с клапаном, пропускающим газ из одного баллона в другой при разности давлений $\Delta p \geqslant 1,10$ атм. Сначала в одном баллоне был вакуум, а в другом идеальный газ при температуре $t_1=27~^{\circ}\mathrm{C}$ и давлении $p_1=1,00~$ атм. Затем оба баллона нагрели до температуры $t_2=107~^{\circ}\mathrm{C}$. Найти давление газа в баллоне, где был вакуум.
- **6.3.** Газ с молярной массой M находится под давлением p между двумя одинаковыми горизонтальными пластинами. Температура газа растет линейно от T_1 у нижней пластины до T_2 у верхней. Объем газа между пластинами равен V. Найти его массу.
- **6.4.** Сосуд объемом V = 20 л содержит смесь водорода и гелия при температуре t = 20 °C и давлении p = 2,0 атм. Масса смеси m = 5,0 г. Найти отношение массы водорода к массе гелия в данной смеси.

- **6.5.** В сосуде находится смесь $m_1 = 7.0$ г азота и $m_2 = 11$ г углекислого газа при температуре T = 290 К и давлении $p_0 = 1.0$ атм. Найти плотность этой смеси, считая газы идеальными.
- **6.6.** В баллоне объемом V=7,5 л при T=300 К находится смесь идеальных газов: $\nu_1=0,10$ моль кислорода, $\nu_2=0,20$ моль азота и $\nu_3=0,30$ моль углекислого газа. Считая газы идеальными, найти:
 - а) давление смеси;
- б) среднюю молярную массу M данной смеси, которая входит в уравнение ее состояния pV=(m/M)RT, где m масса смеси.
- **6.7.** В вертикальном закрытом с обоих торцов цилиндре находится массивный поршень, по обе стороны которого по одному молю воздуха. При $T=300~{\rm K}$ отношение верхнего объема к нижнему $\eta=4,0$. При какой температуре это отношение станет $\eta'=3,0$? Трение не учитывать.
- **6.8.** Поршневым воздушным насосом откачивают сосуд объемом V. За один цикл (ход поршня) насос захватывает объем ΔV . Через сколько циклов давление в сосуде уменьшится в η раз? Процесс считать изотермическим, газ идеальным.
- **6.9.** Найти давление воздуха в откачиваемом сосуде как функцию времени откачки t. Объем сосуда V, первоначальное давление p_0 . Процесс считать изотермическим и скорость откачки не зависящей от давления и равной C.

Примечание. Скоростью откачки называют объем газа, откачиваемый за единицу времени, причем этот объем измеряется при давлении газа в данный момент.

6.10. Камеру объемом V = 87 л откачивают насосом, скорость откачки которого (см. примечание к предыдущей задаче)

6.11. В гладкой открытой с обоих концов вертикальной трубе, имеющей два разных сечения (рис. 6.1), находятся два поршня, соединенные нерастяжимой нитью, а между поршнями — один моль идеального газа. Площадь сечения верхнего поршня на $\Delta S = 10$ см² больше, чем нижнего. Общая масса поршней m = 5,0 кг. Давление наружного воздуха $p_0 = 1,0$ атм. На

Рис. 6.1

сколько кельвин надо нагреть газ между поршнями, чтобы они переместились на $l=5.0\,\mathrm{cm}$?

- 6.12. Найти максимально возможную температуру идеального газа в каждом из нижеследующих процессов:
- а) $p=p_0-\alpha V^2$; б) $p=p_0{\rm e}^{-\beta V}$, где p_0 , α и β положительные постоянные, V объем моля газа.
- 6.13. Определить наименьшее возможное давление идеального газа в процессе, происходящем по закону $T=T_0+\alpha V^2$, где T_0 и α положительные постоянные, V объем моля газа. Изобразить примерный график этого процесса в параметрах p, V.
- **6.14.** Высокий цилиндрический сосуд с азотом находится в однородном поле тяжести, ускорение свободного падения в котором равно g. Температура T азота меняется по высоте h так, что его плотность всюду одинакова. Найти $\mathrm{d}T/\mathrm{d}h$.
- **6.15.** Допустим, давление p и плотность ρ воздуха связаны соотношением $p/\rho^n = \mathrm{const}$ независимо от высоты (здесь n постоянная). Найти соответствующий градиент температуры.
- **6.16.** Пусть на поверхности Земли воздух находится при нормальных условиях. Считая, что температура и молярная масса воздуха не зависят от высоты, найти его давление на высоте 5,0 км над поверхностью Земли и в шахте на глубине 5,0 км.
- **6.17.** Считая, что температура и молярная масса воздуха, а также ускорение свободного падения не зависят от высоты, найти разность высот, на которых плотности воздуха при температуре $0\,^{\circ}$ С отличаются:
 - а) в е раз; б) на $\eta = 1.0\%$.
- **6.18.** Идеальный газ с молярной массой M находится в высоком вертикальном цилиндрическом сосуде, площадь основания которого S и высота h. Температура газа T, его давление на нижнее основание p_0 . Считая, что температура и ускорение свободного падения g не зависят от высоты, найти массу газа в сосуде.
- 6.19. Идеальный газ с молярной массой M находится в очень высоком вертикальном цилиндрическом сосуде в однородном поле тяжести, для которого ускорение свободного падения равно g. Считая температуру газа всюду одинаковой и равной T, найти высоту, на которой находится центр тяжести газа.

- **6.20.** Идеальный газ с молярной массой M находится в однородном поле тяжести, ускорение свободного падения в котором равно g. Найти давление газа как функцию высоты h, если при h=0 давление $p=p_0$, а температура изменяется с высотой как
 - а) $T = T_0 (1 ah);$ б) $T = T_0 (1 + ah),$ где a > 0.
- **6.21.** Горизонтальный цилиндр, закрытый с одного конца, вращают с постоянной угловой скоростью ω вокруг вертикальной оси, проходящей через открытый конец цилиндра. Давление воздуха снаружи p_0 , температура T, молярная масса воздуха M. Найти давление воздуха как функцию расстояния r от оси вращения. Молярную массу считать не зависящей от расстояния r.
- **6.22.** Какому давлению необходимо подвергнуть углекислый газ при $T=300~\mathrm{K}$, чтобы его плотность оказалась равной $\rho=500~\mathrm{r/n?}$ Расчет провести как для идеального газа, так и для ван-дер-ваальсовского.
 - **6.23.** Один моль азота находится в объеме V = 1,00 л. Найти:
- а) температуру азота, при которой погрешность в давлении, определяемом уравнением состояния идеального газа, составляет $\eta=10\%$ (по сравнению с давлением ван-дер-ваальсовского газа);
 - б) давление газа при этой температуре.
- **6.24.** Один моль некоторого газа находится в сосуде объемом $V=0,250\,$ л. При $T_1=300\,$ K давление газа $p_1=90\,$ атм, а при $T_2=350\,$ K давление $p_2=110\,$ атм. Найти постоянные Ван-дер-Ваальса для этого газа.

6.2. Первое начало термодинамики. Теплоемкость

• Первое начало термодинамики:

$$Q = \Delta U + A, \tag{6.2a}$$

где ΔU — приращение внутренней энергии системы.

• Работа, совершаемая газом:

$$A = \int p \, \mathrm{d}V. \tag{6.26}$$

• Внутренняя энергия идеального газа:

$$U = \frac{m}{M} C_V T = \frac{m}{M} \frac{RT}{\gamma - 1} = \frac{pV}{\gamma - 1}. \tag{6.2b}$$

ullet Молярная теплоемкость газа при политропическом процессе ($pV^n = {
m const}$):

$$C = \frac{R}{\gamma - 1} - \frac{R}{n - 1} = \frac{(n - \gamma)R}{(n - 1)(\gamma - 1)}.$$
 (6.2r)

• Внутренняя энергия моля ван-дер-ваальсовского газа:

$$U = C_V T - \frac{a}{V_M}.$$
 (6.2д)

- **6.25.** Показать, что внутренняя энергия U воздуха в комнате не зависит от температуры, если наружное давление p постоянно. Вычислить U, если p равно нормальному атмосферному давлению и объем комнаты $V=40~{\rm m}^3$.
- **6.26.** Два теплоизолированных баллона 1 и 2 наполнены воздухом и соединены короткой трубкой с вентилем. Известны объемы баллонов, а также давление и температура воздуха в них $(V_1, p_1, T_1 \text{ и } V_2, p_2, T_2)$. Найти температуру и давление воздуха, которые установятся после открытия вентиля.
- **6.27.** Газообразный водород, находившийся при нормальных условиях в закрытом сосуде объемом V=5,0 л, охладили на $\Delta T=55$ K. Найти приращение внутренней энергии газа и количество отданного им тепла.
- **6.28.** Какое количество тепла надо сообщить азоту при изобарическом нагревании, чтобы газ совершил работу A = 2,0 Дж?
- **6.29.** Найти молярную массу газа, если при изобарическом нагревании m=0,50 кг этого газа на $\Delta T=10$ K требуется на $\Delta Q=1,48$ кДж больше, чем при изохорическом нагревании.
- **6.30.** Один моль некоторого идеального газа изобарически нагрели на $\Delta T=72$ K, сообщив ему количество тепла Q=1,60 кДж. Найти приращение его внутренней энергии и величину $\gamma=C_p/C_V$.
- **6.31.** Два моля идеального газа при температуре $T_0 = 300 \ \mathrm{K}$ охладили изохорически, вследствие чего его давление уменьшилось в n = 2,0 раза. Затем газ изобарически расширили так, что в конечном состоянии его температура стала равной первоначальной. Найти количество тепла, поглощенного газом в данном процессе.
- **6.32.** Вычислить γ для газовой смеси, состоящей из $\nu_1=2,0$ моль кислорода и $\nu_1=3,0$ моль углекислого газа. Газы считать идеальными.
- **6.33.** Вычислить удельные теплоемкости c_V и c_p для газовой смеси, состоящей из 7,0 г азота и 20 г аргона. Газы идеальные.
- **6.34.** В вертикальном цилиндре под невесомым поршнем находится один моль некоторого идеального газа при температуре T. Пространство над поршнем сообщается с атмосферой. Какую

работу необходимо совершить, чтобы, медленно поднимая поршень, изотермически увеличить объем газа под ним в n раз? Трения нет.

- **6.35.** Внутри закрытого с обоих концов горизонтального цилиндра находится легкоподвижный поршень. Первоначально поршень делит цилиндр на две равные части, каждая объемом V_0 , в которых находится идеальный газ одинаковой температуры и под одним и тем же давлением p_0 . Какую работу необходимо совершить, чтобы, медленно двигая поршень, изотермически увеличить объем одной части газа в η раз по сравнению с объемом другой части?
- 6.36. Три моля идеального газа, находившегося при температуре $T_0 = 273$ K, изотермически расширили в n = 5.0 раз и затем изохорически нагрели так, что его давление стало равным первоначальному. За весь процесс газу сообщили количество тепла Q = 80 кДж. Найти γ для этого газа.
- **6.37.** Один моль кислорода, находившегося при температуре $T_0 = 290$ K, адиабатически сжали так, что его давление возросло в $\eta = 10,0$ раз. Найти:
 - а) температуру газа после сжатия;
 - б) работу, которая была совершена над газом.
- **6.38.** Некоторую массу азота сжали в $\eta = 5.0$ раз (по объему) один раз адиабатически, другой раз изотермически. Начальное состояние газа в обоих случаях одинаково. Найти отношение соответствующих работ, затраченных на сжатие.
- 6.39. Внутри закрытого теплоизолированного цилиндра с идеальным газом находится легкоподвижный теплопроводящий поршень. При равновесии поршень делит цилиндр на две равные части и температура газа равна T_0 . Поршень начали медленно перемещать. Найти температуру газа как функцию отношения η объема большей части к объему меньшей части. Показатель адиабаты газа γ .
- **6.40.** В закрытом с обоих торцов горизонтальном цилиндре, заполненном идеальным газом с показателем адиабаты γ , находится поршень массы m с площадью сечения S. В положении равновесия давление газа равно p_0 и поршень делит цилиндр на две одинаковые части, каждая объемом V_0 . Найти частоту малых колебаний поршня около положения равновесия, считая процесс в газе адиабатическим и трение ничтожно малым.

6.41. Идеальный газ находится в закрытом вертикальном полуцилиндре, разделенном пополам перегородкой P (рис. 6.1'). Перегородка — ее высота h и масса m — совершает малые колебания с частотой ω_0 вокруг оси OO. В положении равновесия давление газа p_0 . Считая процесс адиабатическим, найти постоянную адиабаты γ .

Рис. 6.1'

- **6.42.** Объем моля идеального газа с показателем адиабаты γ изменяют по закону V=a/T, где a постоянная. Найти количество тепла, полученное газом в этом процессе, если его температура испытала приращение ΔT .
- **6.43.** Показать, что процесс, при котором работа идеального газа пропорциональна соответствующему приращению его внутренней энергии, описывается уравнением $pV^n = \text{const}$, где n постоянная.
- **6.44.** Найти молярную теплоемкость идеального газа при политропическом процессе $pV^n = \text{const}$, если показатель адиабаты газа равен γ . При каких значениях показателя политропы n теплоемкость газа будет отрицательной?
- **6.45.** При некотором политропическом процессе объем аргона был увеличен в $\alpha = 4,0$ раза. Давление при этом уменьшилось в $\beta = 8,0$ раз. Найти молярную теплоемкость аргона в этом процессе, считая газ идеальным.
- **6.46.** Один моль аргона расширили по политропе с показателем n=1,50. При этом температура газа испытала приращение $\Delta T=-26\,$ K. Найти:
 - а) количество полученного газом тепла;
 - б) работу, совершенную газом.
- 6.47. Идеальный газ с показателем адиабаты γ расширили по закону $p = \alpha V$, где α постоянная. Первоначальный объем газа V_0 . В результате расширения объем увеличился в η раз. Найти:
 - а) приращение внутренней энергии газа;
 - б) работу, совершенную газом;
 - в) молярную теплоемкость газа в этом процессе.

- **6.48.** Идеальный газ, показатель адиабаты которого γ , расширяют так, что сообщаемое газу тепло равно убыли его внутренней энергии. Найти:
 - а) молярную теплоемкость газа в этом процессе;
 - б) уравнение процесса в параметрах T, V.
- **6.49.** Один моль идеального газа с показателем адиабаты γ совершает процесс, при котором его давление $p \sim T^{\alpha}$, где α постоянная. Найти:
- а) работу, которую произведет газ, если его температура испытает приращение ΔT ;
- б) молярную теплоемкость газа в этом процессе; при каком значении α теплоемкость будет отрицательной?
- **6.50.** Идеальный газ с показателем адиабаты γ совершает процесс, при котором его внутренняя энергия $U \infty V^{\alpha}$, где α постоянная. Найти:
- а) работу, которую произведет газ, чтобы внутренняя энергия испытала приращение ΔU ;
 - б) молярную теплоемкость газа в этом процессе.
- **6.51.** Один моль идеального газа с известным значением C_V находится в левой половине цилиндра (рис. 6.2). Справа от поршня вакуум. В отсутствие газа поршень находится вплотную

Рис. 6.2

к левому торцу цилиндра, и пружина в этом положении не деформирована. Боковые стенки цилиндра и поршень адиабатные. Трения нет. Газ нагревают через левый торец цилиндра. Найти теплоемкость газа в этих условиях.

- **6.52.** Имеется идеальный газ, молярная теплоемкость C_V которого известна. Найти молярную теплоемкость этого газа как функцию его объема V, если газ совершает процесс по закону:
 - а) $T = T_0 e^{\alpha V}$; б) $p = p_0 e^{\alpha V}$, где T_0 , p_0 и α постоянные.
- **6.53.** Один моль идеального газа, теплоемкость которого при постоянном давлении C_p , совершает процесс по закону $p=p_0+\alpha/V$, где p_0 и α постоянные. Найти:
 - а) теплоемкость газа как функцию его объема V;
 - б) сообщенное газу тепло при его расширении от ${\cal V}_1$ до ${\cal V}_2$.
- **6.54.** То же, что в предыдущей задаче, но газ совершает процесс по закону $T = T_0 + \alpha V$.

- **6.55.** Найти уравнение процесса (в переменных T, V), при котором молярная теплоемкость идеального газа изменяется по закону:
- а) $C = C_V + \alpha T$; б) $C = C_V + \beta V$; в) $C = C_V + ap$. Здесь α , β и a постоянные.
- **6.56.** Имеется идеальный газ с показателем адиабаты γ . Его молярная теплоемкость при некотором процессе изменяется по закону $C = \alpha/T$, где α постоянная. Найти:
- а) работу, совершенную одним молем газа при его нагревании от T_0 до температуры в η раз большей;
 - б) уравнение процесса в параметрах p, V.
- **6.57.** Найти работу, совершаемую одним молем ван-дер-ваальсовского газа при изотермическом расширении его от объема V_1 до V_2 при температуре T.
- **6.58.** Один моль кислорода расширили от объема $V_1 = 1,00$ л до $V_2 = 5,0$ л при постоянной температуре T = 280 K. Вычислить количество поглощенного газом тепла. Газ считать ван-дер-ваальсовским.
- **6.59.** Найти для моля ван-дер-ваальсовского газа уравнение адиабаты в переменных T, V, если его теплоемкость при постоянном объеме равна C_V .
- 6.60. Определить для ван-дер-ваальсовского газа разность молярных теплоемкостей $C_{\scriptscriptstyle D}$ $C_{\scriptscriptstyle V}$.
- **6.61.** Два теплоизолированных баллона соединены между собой трубкой с вентилем. В одном баллоне объемом $V_1=10$ л находится v=2,5 моль углекислого газа. Второй баллон объемом $V_2=100$ л откачан до высокого вакуума. Вентиль открыли, и газ расширился. Считая газ ван-дер-ваальсовским, найти приращение его температуры.
- **6.62.** Какое количество тепла надо сообщить $\nu=3,0$ моль углекислого газа, чтобы при расширении в вакуум от объема $V_1=5,0$ л до $V_2=10$ л температура его не изменилась? Газ считать ван-дер-ваальсовским.
- 6.63. Прохождение газа через пористую перегородку в теплоизолированной трубе сопровождается расширением и изменением температуры газа (эффект Джоуля—Томсона). Если до расширения газ считать ван-дер-ваальсовским, а после расширения идеальным, то соответствующее приращение температуры газа

$$T_2 - T_1 = \frac{1}{C_n} \left(\frac{RT_1b}{V_1 - b} - \frac{2a}{V_1} \right).$$

Получить эту формулу, применив первое начало термодинамики к молю газа, проходящему через перегородку. Процесс считать адиабатическим.

- **6.64.** Воспользовавшись формулой из предыдущей задачи, найти значения T_1 водорода с начальным молярным объемом $V_1 = 0,160$ л/моль, при которых эффект Джоуля-Томсона будет положительным (т. е. $T_2 < T_1$).
- 6.65. Найти с помощью формулы из задачи 6.63 приращение ΔT температуры газа, если в начальном состоянии при $T_1=300~{\rm K}$ его молярный объем $V_1=0,100~{\rm n/моль},$ а затем в процессе Джоуля-Томсона газ сильно расширили. Расчет провести:
 - а) для водорода; б) для азота.

6.3. Молекулярно-кинетическая теория. Распределения Максвелла и Больцмана

• Число ударов молекул газа о единицу поверхности стенки за единицу времени:

$$v = \frac{1}{4} n \langle v \rangle, \tag{6.3a}$$

где n — концентрация молекул, $\langle v \rangle$ — их средняя скорость.

• Уравнение состояния идеального газа:

$$p = nkT. (6.36)$$

• Средняя энергия молекул:

$$\langle \varepsilon \rangle = \frac{i}{2} kT, \qquad (6.3B)$$

где $i = n_{\text{пост}} + n_{\text{вр}} + 2n_{\text{кол}}$.

• Функции распределения Максвелла:

$$\varphi(v_x) = (m/2\pi kT)^{1/2} \exp(-mv_x^2/2kT), \qquad (6.3r)$$

$$f(v) = (m/2\pi kT)^{3/2} \exp(-mv^2/2kT),$$
 (6.3g)

$$F(v) = 4\pi (m/2\pi kT)^{3/2} v^2 \exp(-mv^2/2kT).$$
 (6.3e)

• Наиболее вероятная, средняя и средняя квадратичная скорости молекул:

$$v_{\text{Bep}} = \sqrt{2 \frac{kT}{m}}, \quad \langle v \rangle = \sqrt{\frac{8}{\pi} \frac{kT}{m}}, \quad v_{\text{KB}} = \sqrt{3 \frac{kT}{m}}.$$
 (6.3ж)

• Распределение Больцмана:

$$n = n_0 e^{-U/kT}, (6.33)$$

где U — потенциальная энергия молекулы во внешнем поле (относительно уровня, где $n=n_0$).

• Распределение Больцмана в случае дискретных уровней:

$$\frac{N_2}{N_1} = \frac{g_2}{g_1} \exp\left(-\frac{E_2 - E_1}{kT}\right),$$
 (6.3и)

где g_1 и g_2 — кратности вырождения соответствующих уровней.

• Средняя энергия квантового гармонического осциллятора:

$$\langle E \rangle = \frac{\hbar \omega}{2} + \frac{\hbar \omega}{e^{\hbar \omega / kT} - 1}. \tag{6.3k}$$

- **6.66.** Современные вакуумные насосы позволяют получать давления до $p = 4 \cdot 10^{-10}$ Па (при комнатной температуре). Найти число молекул газа в 1 см³ и среднее расстояние между ними при этом давлении.
- **6.67.** В сосуде объемом V=5,0 л находится азот массы m=1,40 г при T=1800 К. Найти давление газа, если при этой температуре $\eta=30\%$ молекул диссоциировано на атомы.
- **6.68.** Плотность смеси гелия и азота при нормальных условиях $\rho = 0.60$ г/л. Найти концентрацию атомов гелия.
- **6.69.** Найти число степеней свободы молекулы газа, если при нормальных условиях плотность газа $\rho = 1,3$ мг/см³ и скорость распространения звука в нем v = 330 м/с.
- **6.70.** Определить отношение скорости звука в газе к средней квадратичной скорости молекул газа, если молекулы:
 - а) одноатомные; б) жесткие двухатомные.
- 6.71. Найти приращение внутренней энергии 16 г водорода при увеличении его температуры от 70 до 300 К. Иметь в виду, что при этом происходит «размораживание» вращательных степеней свободы.
- 6.72. Пусть идеальный газ нагрет до температуры, при которой у молекул возбуждены все степени свободы (поступательные, вращательные и колебательные). Найти молярную теплоемкость такого газа при изохорическом процессе, а также показатель адиабаты γ , если газ состоит из N-атомных молекул:
 - а) линейных; б) нелинейных.
- 6.73. Идеальный газ из N-атомных молекул расширяют изобарически. Считая, что у молекул возбуждены все степени сво-

боды (поступательные, вращательные и колебательные), найти какая доля теплоты, сообщаемая газу в этом процессе, расходуется на работу расширения.

- **6.74.** Найти число атомов в молекуле газа, у которого при «замораживании» колебательных степеней свободы постоянная γ увеличивается в $\eta=1,20$ раза.
- 6.75. Найти молярную массу и число степеней свободы молекул идеального газа, если известны его удельные теплоемкости: $c_V = 0.65~\mathrm{Дж/(r\cdot K)}$ и $c_p = 0.91~\mathrm{Дж/(r\cdot K)}$.
- 6.76. Найти число степеней свободы молекул идеального газа, молярная теплоемкость которого
 - а) при постоянном давлении $C_p = 29 \, \, \text{Дж/(моль·К)};$
 - б) в процессе $pT = \mathrm{const}$ равна C = 29 Дж/(моль:К).
- **6.77.** Вычислить показатель адиабаты γ для смеси, состоящей из ν_1 молей одноатомного газа и ν_2 молей двухатомного газа из жестких молекул.
- **6.78.** Молекулы идеального газа, у которого $\gamma = 1,40$ и давление p = 100 кПа, имеют среднюю энергию $\langle \epsilon \rangle = 2,5 \cdot 10^{-20}$ Дж. Найти число молекул в единице объема.
- 6.79. Сосуд с газом из жестких двухатомных молекул движется со скоростью $v=20\,$ м/с. Молярная масса газа $M=32\,$ г/моль. Найти приращение температуры газа после внезапной остановки сосуда.
 - **6.80.** Вычислить при температуре t = 17 °C:
- а) среднюю квадратичную скорость и среднюю кинетическую энергию поступательного движения молекулы O_2 ;
- б) среднюю квадратичную скорость капельки воды диаметра $d=0.10\,$ мкм, взвешенной в воздухе.
- **6.81.** Во сколько раз надо расширить адиабатически газ, состоящий из жестких двухатомных молекул, чтобы их средняя квадратичная скорость уменьшилась в $\eta = 1,50$ раза?
- **6.82.** Азот массы m=15 г находится в закрытом сосуде при T=300 К. Какое количество теплоты необходимо сообщить азоту, чтобы средняя квадратичная скорость его молекул возросла в $\eta=2,0$ раза?
- **6.83.** Газ, состоящий из жестких двухатомных молекул, находится при $T=300~\rm K$. Вычислить среднюю квадратичную угловую скорость вращения молекулы, если ее момент инерции $I=2.1\cdot 10^{-39}~\rm r\cdot cm^2$.

- **6.84.** Газ из жестких двухатомных молекул, находившийся при нормальных условиях, адиабатически сжали в $\eta=5,0$ раз по объему. Найти среднюю кинетическую энергию вращательного движения молекулы в конечном состоянии.
- **6.85.** Во сколько раз изменится число ударов жестких двухатомных молекул газа о поверхность стенки в единицу времени, если газ адиабатически расширить в η раз?
- **6.86.** Объем газа, состоящего из жестких двухатомных молекул, увеличили в $\eta = 2.0$ раза по политропе с молярной теплоемкостью C = R. Во сколько раз изменилась при этом частота ударов молекул о стенку сосуда?
- **6.87.** Газ из жестких двухатомных молекул расширили политропически так, что частота ударов молекул о стенку сосуда не изменилась. Найти молярную теплоемкость газа в этом процессе.
- **6.88.** Найти для газообразного азота при $T=300~{\rm K}$ отношение числа молекул с компонентами скорости вдоль оси X в интервале $300\pm0,31~{\rm m/c}$ к числу молекул с компонентами скорости вдоль той же оси в интервале $500\pm0,51~{\rm m/c}$.
- **6.89.** Найти вероятность того, что при T=300 К молекулы азота имеют компоненты скорости вдоль осей X, Y, Z соответственно в интервале $300\pm0,30$, $400\pm0,40$ и $500\pm0,50$ м/с.
- **6.90.** Определить относительное число молекул, компоненты скорости которых вдоль оси X находятся в интервале $(v_x, v_x + \delta v_x)$, а модули перпендикулярной составляющей скорости в интервале $(v_\perp, v_\perp + \delta v_\perp)$. Масса каждой молекулы m, температура газа T.
- **6.91.** Газ, состоящий из молекул массы m, находится при температуре T. Найти относительное число молекул, у которых модули составляющих скорости, перпендикулярных некоторому направлению, лежат в интервале $(v_{\perp}, v_{\perp} + \delta v_{\perp})$.
- **6.92.** Получить с помощью (6.3e) функцию распределения Максвелла в «приведенном» виде F(u), где $u=v/v_{\rm Bep}$, $v_{\rm Bep}$ наиболее вероятная скорость.
- **6.93.** Вычислить наиболее вероятную, среднюю и среднюю квадратичную скорости молекул газа, у которого при нормальном атмосферном давлении плотность $\rho = 1,00$ г/л.
- **6.94.** Найти относительное число молекул газа, скорости которых отличаются не более чем на $\delta \eta = 1,00\%$ от:
 - а) наиболее вероятной скорости;

- б) средней квадратичной скорости.
- 6.95. Определить температуру газа, для которой:
- а) средняя квадратичная скорость молекул водорода больше их наиболее вероятной скорости на $\Delta v = 400$ м/с;
- б) функция распределения молекул кислорода по скоростям F(v) будет иметь максимум при скорости v=420 м/с.
- **6.96.** Найти температуру газообразного азота, при которой скоростям молекул $v_1 = 300$ м/с и $v_2 = 600$ м/с соответствуют одинаковые значения функции распределения F(v).
- **6.97.** При изменении температуры идеального газа максимум функции распределения F(v) уменьшился в η раз. Как и во сколько раз изменилась температура T газа?
- **6.98.** Определить скорость v молекул азота, при которой значение функции F(v) для температуры T_0 будет таким же, как и для температуры, в η раз большей.
- **6.99.** При какой температуре газа, состоящего из смеси азота и кислорода, наиболее вероятные скорости молекул азота и кислорода будут отличаться друг от друга на $\Delta v = 30$ м/с?
- **6.100.** Смесь водорода и гелия находится при $T=300~{\rm K.}$ При какой скорости v молекул значения функции F(v) будут одинаковыми для обоих газов?
- **6.101.** Идеальный газ состоит из молекул, масса каждой из которых равна m. При какой температуре этого газа число молекул со скоростями в заданном малом интервале $(v, v + \delta v)$ будет максимально? Найти наиболее вероятную скорость молекул, соответствующую такой температуре.
- **6.102.** Найти среднюю проекцию скорости $\langle v_x \rangle$ и $\langle |v_x| \rangle$, если масса каждой молекулы m и температура газа T.
- **6.103.** Определить $\langle v_x^2 \rangle$ среднее значение квадрата проекции v_x скорости молекул газа при температуре T. Масса каждой молекулы равна m.
- **6.104.** Вычислить с помощью функции $\varphi(v_x)$ число ν молекул газа, падающих в единицу времени на единичную площадку, если концентрация молекул n, температура газа T и масса каждой молекулы m.
- **6.105.** Определить с помощью функции $\varphi(v_x)$ давление газа на стенку, если температура газа T и концентрация молекул n.
- **6.106.** Найти $\langle 1/v \rangle$ среднее значение обратной скорости молекул идеального газа при температуре T, если масса каж-

дой молекулы равна m. Сравнить полученную величину с обратной величиной средней скорости.

- **6.107.** Идеальный газ, состоящий из молекул массы m с концентрацией n, имеет температуру T. Найти с помощью распределения Максвелла число молекул, падающих ежесекундно на единицу поверхности стенки под углами (9, 9 + d9) к ее нормали.
- **6.108.** Исходя из условий предыдущей задачи, найти число молекул, падающих ежесекундно на единицу поверхности стенки со скоростями в интервале (v, v + dv).
- **6.109.** Газ состоит из молекул массы m и находится при температуре T. Найти с помощью функции F(v):
- а) функцию распределения молекул по кинетическим энергиям f(K); изобразить примерный график f(K);
- б) наиболее вероятную кинетическую энергию $K_{\rm вер}$; соответствует ли $K_{\rm вер}$ наиболее вероятной скорости?
- **6.110.** Какая часть одноатомных молекул газа, находящегося в термодинамическом равновесии, имеет кинетическую энергию, отличающуюся от ее среднего значения не более чем на $\delta \eta = 1.0\%$?
- **6.111.** Распределение молекул по скоростям в пучке, выходящем из небольшого отверстия в сосуде, описывается функцией $\mathcal{F}(v) = Av^3 \exp(-mv^2/2kT)$, где T температура газа внутри сосуда. Найти наиболее вероятные значения:
- а) скорости молекул в пучке; сравнить полученную величину с наиболее вероятной скоростью молекул в сосуде;
 - б) кинетической энергии молекул в пучке.
- **6.112.** Газ из молекул водорода находится при температуре T. Найти:
- а) функцию распределения молекул по дебройлевским длинам волн; изобразить примерный график этой функции;
- б) наиболее вероятную дебройлевскую длину волны при $T=300~{
 m K.}$
- **6.113.** Газ состоит из атомов массы m, находящихся в термодинамическом равновесии при температуре T. Пусть ν_0 собственная частота излучаемого атомами света.
- а) Показать, что спектральное распределение излучаемого света определяется формулой $I_{\nu}=I_0 \exp[-a(1-\nu/\nu_0)^2]$, где I_0 спектральная интенсивность, соответствующая частоте ν_0 , $a=mc^2/2kT$.

- б) Найти относительную ширину $\Delta \nu / \nu_0$ данной спектральной линии, т. е. ширину линии на половине ее «высоты».
- **6.114.** Длина волны резонансной линии ртути $\lambda = 253,65$ нм. Среднее время жизни атомов ртути в состоянии резонансного возбуждения $\tau = 0,15$ мкс. Оценить отношение доплеровского уширения этой линии к ее естественной ширине при T = 300 K.
- **6.115.** Найти силу, действующую на частицу со стороны однородного поля, если концентрации этих частиц на двух уровнях, отстоящих друг от друга на $\Delta h = 30$ мм (вдоль поля), различаются в $\eta = 2.0$ раза. Температура системы T = 280 K.
- **6.116.** При наблюдении в микроскоп взвешенных частиц гуммигута обнаружено, что среднее число их в тонких слоях, расстояние между которыми h=42 мкм, отличается друг от друга в $\eta=2.0$ раза. Температура среды T=290 К. Диаметр частиц d=0.40 мкм, и их плотность на $\Delta \rho=0.20$ г/см³ больше плотности окружающей жидкости. Найти по этим данным постоянную Больцмана.
- **6.117.** Пусть η_0 отношение концентрации молекул водорода к концентрации молекул азота вблизи поверхности Земли, а η то же отношение на высоте h=3000 м. Найти отношение η/η_0 при T=280 K, полагая, что температура и ускорение свободного падения не зависят от высоты.
- **6.118.** В длинном вертикальном сосуде находится газ, состоящий из двух сортов молекул с массами m_1 и m_2 , причем $m_2 > m_1$. Концентрации этих молекул у дна сосуда равны соответственно n_1 и n_2 , причем $n_2 > n_1$. Считая, что по всей высоте поддерживается одна и та же температура T и ускорение свободного падения равно g, найти высоту h, на которой концентрации этих сортов молекул одинаковы.
- **6.119.** В очень высоком вертикальном цилиндрическом сосуде находится углекислый газ при некоторой температуре T. Считая поле тяжести однородным, найти, как изменится давление газа на дно сосуда, если температуру газа увеличить в η раз.
- **6.120.** Азот находится в очень высоком сосуде в однородном поле тяжести при температуре T. Температуру увеличили в η раз. На какой высоте h концентрация молекул осталась прежней?
- 6.121. Газ находится в очень высоком цилиндрическом сосуде при температуре T. Считая поле тяжести однородным, найти среднее значение потенциальной энергии молекул газа. Как за-

висит эта величина от того, состоит ли газ из одного сорта молекул или из нескольких сортов?

- **6.122.** Закрытую с торцов горизонтальную трубку длины l=100 см перемещают с ускорением a, направленным вдоль ее оси. Внутри трубки находится аргон при T=330 К. При каком значении a концентрации аргона вблизи торцов трубки будут отличаться друг от друга на $\eta=1,0\%$?
- **6.123.** Найти массу моля коллоидных частиц, если при вращении центрифуги с угловой скоростью ω вокруг вертикальной оси концентрация этих частиц на расстоянии r_2 от оси вращения в η раз больше, чем на расстоянии r_1 (в одной горизонтальной плоскости). Плотности частиц и растворителя равны соответственно ρ и ρ_0 .
- **6.124.** Горизонтально расположенную трубку с закрытыми торцами вращают с угловой скоростью ω вокруг вертикальной оси, проходящей через один из ее торцов. В трубке находится углекислый газ при T=300 К. Длина трубки l=100 см. Найти ω , при котором отношение концентраций молекул у противоположных торцов трубки $\eta=2,0$.
- **6.125**. Потенциальная энергия молекул газа зависит от расстояния r до центра поля как $U(r) = ar^2$, где a положительная постоянная. Температура газа T, концентрация молекул в центре поля n_0 . Найти:
 - а) число молекул в слое (r, r + dr);
 - б) наиболее вероятное расстояние молекул $r_{\rm вер}$;
 - в) относительное число всех молекул в слое (r, r + dr);
- г) во сколько раз изменится концентрация молекул в центре поля при уменьшении температуры в η раз.
 - 6.126. Исходя из условий предыдущей задачи, найти:
 - а) число молекул с потенциальной энергией $(U,\ U+\mathrm{d} U);$
 - б) наиболее вероятное значение потенциальной энергии.
- 6.127. Идеальный газ из молекул массы m находится в центральном поле, где потенциальная энергия молекул равна U(r), r расстояние от центра поля. Температура газа T, концентрация молекул в центре поля n_0 . Найти число молекул в сферическом слое $(r, r + \delta r)$ со скоростями, отличающимися от наиболее вероятной не более чем на $\delta \eta$ -часть ($\delta \eta \ll 1$).
- **6.128.** Какая относительная часть атомов водорода находится в состоянии с главным квантовым числом n=2 при T=3000 K?

- **6.129.** Определить отношение числа атомов газообразного натрия в состоянии 3P к числу атомов в основном состоянии 3S при T=2400 K. Переходу 3P-3S соответствует спектральная линия с $\lambda=589$ нм.
- **6.130.** Система состоит из N частиц, которые могут находиться только в двух состояниях 1 и 2 с энергиями E_1 и E_2 , причем $E_2 > E_1$. Найти зависимость от температуры T системы числа частиц в состоянии 2 и средней энергии частиц. Изобразить примерный вид графиков этих зависимостей.
- 6.131. Система состоит из N атомов, которые могут находиться в двух невырожденных состояниях с разностью энергий ΔE . Найти вклад этих состояний в теплоемкость данной системы как функцию температуры: $C_V(T)$. Упростить полученное выражение для случаев $kT \ll \Delta E$ и $kT \gg \Delta E$.
- **6.132.** Атомарный литий с концентрацией $n=3,6\cdot 10^{16}$ см⁻³ находится при T=1500 К. При этом мощность излучения резонансной линии $\lambda=671$ нм (2P-2S) в расчете на единицу объема газа P=0,30 Вт/см³. Найти среднее время жизни атомов лития в состоянии резонансного возбуждения.
- **6.133.** Найти отношение числа молекул водорода на первых возбужденных колебательном и вращательном уровнях при $T=880~\mathrm{K}$. Иметь в виду, что кратность вырождения вращательных уровней равна 2J+1.
- 6.134. Имея в виду, что кратность вырождения вращательных уровней g=2J+1, найти вращательное квантовое число J_m наиболее заселенного вращательного уровня молекулы O_2 при T=300 К. Изобразить примерный график зависимости заселенности вращательных уровней N_J/N_0 от J при этой температуре.
- **6.135.** Вывести формулу (6.3к), используя распределение Больцмана. Получить с помощью нее выражение для молярной колебательной теплоемкости $C_{V_{\rm KOЛ}}$ двухатомного газа. Вычислить $C_{V_{\rm KOЛ}}$ для газа, состоящего из молекул ${\rm Cl_2}$, при температуре 300 K.
- **6.136.** Найти отношение интенсивностей фиолетового и красного спутников, ближайших к несмещенной линии в колебательном спектре комбинационного рассеяния света на молекулах Cl_2 при температуре 300 K. Во сколько раз изменится это отношение при увеличении температуры вдвое?

6.4. Второе начало термодинамики. Энтропия

• КПД тепловой машины:

$$\eta = A / Q_1 = 1 - Q_2' / Q_1, \qquad (6.4a)$$

где Q_1 — тепло, получаемое рабочим телом, Q_2' — отдаваемое тепло.

• КПД цикла Карно:

$$\eta = \frac{T_1 - T_2}{T_1} \,, \tag{6.46}$$

где T_1 и T_2 — температуры нагревателя и холодильника.

• Неравенство Клаузиуса:

$$\oint \delta Q/T \leqslant 0, \tag{6.4b}$$

где δQ — элементарное тепло, полученное системой.

• Приращение энтропии системы:

$$\Delta S \geqslant \int \delta Q / T$$
 . (6.4r)

• Основное уравнение термодинамики для обратимых процессов:

$$TdS = dU + pdV. (6.4\pi)$$

• Свободная энергия:

$$F = U - TS, \quad A_T = -\Delta F. \tag{6.4e}$$

• Связь между энтропией и статистическим весом Ω :

$$S = k \ln \Omega. \tag{6.4}$$

- **6.137.** У тепловой машины, работающей по циклу Карно, температура T нагревателя в n=1,60 раза больше температуры холодильника. За один цикл машина производит работу A=12,0 кДж. Какая работа за цикл затрачивается на изотермическое сжатие рабочего вещества, которым является идеальный газ?
- 6.138. Моль идеального газа из жестких двухатомных молекул совершает цикл Карно. Температура нагревателя $T_1 = 400$ К. Найти КПД цикла, если при адиабатическом сжатии газа затрачивается работа A' = 2.0 кДж.
- **6.139.** В каком случае КПД цикла Карно повысится больше: при увеличении температуры нагревателя на ΔT или при уменьшении температуры холодильника на такую же величину?
- 6.140. Водород совершает цикл Карно. Найти КПД цикла, если при адиабатическом расширении:
 - а) объем газа увеличивается в n=2,0 раза;

- б) давление уменьшается в n = 2,0 раза.
- **6.141.** Холодильная машина, работающая по обратному циклу Карно, должна поддерживать в своей камере температуру -10 °C при температуре окружающей среды 20 °C. Какую работу надо совершить над рабочим веществом машины, чтобы отвести от ее камеры $Q_2 = 140$ кДж теплоты?
- **6.142.** Тепловую машину, работавшую по циклу Карно с КПД $\eta=10\%$, используют при тех же тепловых резервуарах как холодильную машину. Найти ее холодильный коэффициент ϵ , т. е. отношение Q_2/A' .

Рис. 6.3

- 6.143. Идеальный газ совершает цикл, состоящий из чередующихся изотерм и адибат (рис. 6.3). Температуры, при которых происходят изотермические процессы, равны T_1 , T_2 и T_3 . Найти КПД такого цикла, если при каждом изотермическом расширении объем газа увеличивается в одно и то же число раз.
- **6.144.** Найти КПД цикла, состоящего из двух изохор и двух адиабат, если в пределах

цикла объем идеального газа изменяется в n=10 раз. Рабочим веществом является азот.

- **6.145.** Найти КПД цикла, состоящего из двух изобар и двух адиабат, если в пределах цикла давление изменяется в n раз. Рабочее вещество идеальный газ с показателем адиабаты γ .
- **6.146.** Идеальный газ с показателем адиабаты γ совершает цикл, состоящий из двух изохор и двух изобар. Найти КПД такого цикла, если температура T газа возрастает в n раз как при изохорическом нагреве, так и при изобарическом расширении.
 - 6.147. Идеальный газ совершает цикл, состоящий из:
 - а) изохоры, адиабаты и изотермы;
- б) изобары, адиабаты и изотермы, причем изотермический процесс происходит при минимальной температуре цикла. Найти КПД каждого цикла, если температура T в его пределах изменяется в n раз.
- **6.148.** То же, что в предыдущей задаче, только изотермический процесс происходит при *максимальной* температуре цикла.
- **6.149.** Идеальный газ совершает цикл, состоящий из изотермы, политропы и адиабаты, причем изотермический процесс происходит при *максимальной* температуре цикла. Найти КПД такого цикла, если температура T в его пределах изменяется в n раз.

- 6.150. Идеальный газ с показателем адиабаты у совершает прямой цикл, состоящий из адиабаты, изобары и изохоры. Найти КПД цикла, если при адиабатическом процессе объем идеального газа:
 - а) увеличивается в n раз; б) уменьшается в n раз.
- **6.151.** Воспользовавшись неравенством Клаузиуса, показать, что КПД всех циклов, у которых одинаковы максимальная температура $T_{\rm makc}$ и минимальная $T_{\rm muh}$, меньше, чем у цикла Карно при $T_{\rm makc}$ и $T_{\rm muh}$.
- **6.152.** Какую максимальную работу может произвести тепловая машина, если в качестве нагревателя используется кусок железа массы m=100 кг с начальной температурой $T_{10}=1500$ K, а в качестве холодильника вода океана с температурой $T_2=285$ K?
- **6.153.** Найти (в расчете на моль) приращение энтропии углекислого газа при увеличении его температуры T в n=2,0 раза, если процесс нагревания:
- а) изохорический; б) изобарический. Газ считать идеальным.
- **6.154.** Во сколько раз следует увеличить изотермически объем идеального газа в количестве $\nu=4,0$ моль, чтобы его энтропия испытала приращение $\Delta S=23~\mathrm{Дж/K?}$
- **6.155.** Два моля идеального газа сначала изохорически охладили, а затем изобарически расширили так, что температура газа стала равной первоначальной. Найти приращение энтропии газа, если его давление в данном процессе изменилось в n=3,3 раза.
- **6.156.** Гелий массы m=1,7 г адиабатически расширили в n=3,0 раза и затем изобарически сжали до первоначального объема. Найти приращение энтропии газа.
- **6.157.** Найти приращение энтропии двух молей идеального газа с показателем адиабаты $\gamma = 1,30$, если в результате некоторого процесса объем газа увеличился в $\alpha = 2,0$ раза, а давление уменьшилось в $\beta = 3,0$ раза.
- **6.158.** В сосудах 1 и 2 находится по $\nu=1,2$ моль газообразного гелия. Отношение объемов сосудов $V_2/V_1=\alpha=2,0$, а отношение температур гелия в них $T_1/T_2=\beta=1,5$. Считая газ идеальным, найти разность энтропий гелия в этих сосудах (S_2-S_1) .
- 6.159. Один моль идеального газа с показателем адиабаты ү совершает политропический процесс, в результате которого

температура T газа увеличивается в τ раз. Показатель политропы n. Найти приращение энтропии газа в данном процессе.

- **6.160.** Процесс расширения двух молей аргона происходит так, что давление газа увеличивается прямо пропорционально его объему. Найти приращение энтропии газа при увеличении его объема в $\alpha = 2.0$ раза.
- **6.161.** В результате политропического процесса сжатия идеального газа его объем уменьшился в ν раз, а работа, совершенная над газом, $A'=2\Delta U$, где ΔU приращение его внутренней энергии. Найти приращение энтропии газа в этом процессе.
- **6.162.** Идеальный газ с показателем адиабаты γ совершает процесс по закону $p = p_0 \alpha V$, где p_0 и α положительные постоянные, V объем. При каком значении объема энтропия газа окажется максимальной?
- **6.163.** Один моль идеального газа совершает процесс, при котором энтропия газа изменяется с температурой T по закону $S = aT + C_V \ln T$, где a положительная постоянная, C_V молярная теплоемкость данного газа при постоянном объеме. Найти, как зависит температура газа от его объема в этом процессе, если $T = T_0$ при $V = V_0$.
- **6.164.** Найти приращение энтропии одного моля ван-дер-ваальсовского газа при изотермическом изменении его объема от V_1 до V_2 .
- **6.165.** Один моль ван-дер-ваальсовского газа, имевший объем V_1 и температуру T_1 , переведен в состояние с объемом V_2 и температурой T_2 . Найти приращение энтропии газа, считая его молярную теплоемкость C_V известной.
- **6.166.** Один моль ван-дер-ваальсовского газа совершает политропический процесс $T(V-b)=\mathrm{const},$ где b постоянная Ван-дер-Ваальса. Считая теплоемкость C_V известной и не зависящей от температуры, найти:
 - а) теплоемкость газа в этом процессе;
- б) приращение энтропии газа, если его температура изменилась от T_1 до T_2 .
- **6.167.** При очень низких температурах теплоемкость кристаллов $C = aT^3$, где a постоянная. Найти энтропию кристалла как функцию температуры в этой области.
- **6.168.** Найти приращение энтропии алюминиевого бруска с массой m=3,0 кг при нагревании его от $T_1=300~{\rm K}$ до

- $T_2 = 600 \text{ K}$, если в этом интервале температур теплоемкость алюминия C = a + bT, где a = 0.77 Дж/(г·K), $b = 0.46 \text{ мДж/(г·K^2)}$.
- **6.169.** В некотором процессе температура вещества зависит от его энтропии S по закону $T \infty S^n$, где n постоянная. Найти теплоемкость C вещества как функцию S.
- **6.170.** Найти температуру T как функцию энтропии S вещества для политропического процесса, при котором теплоемкость вещества равна C. Известно, что при температуре T_0 энтропия равна S_0 .
- **6.171.** Один моль идеального газа с известным значением теплоемкости C_V совершает процесс, при котором его энтропия S зависит от температуры T как $S=\alpha/T$, где α постоянная. Температура газа изменилась от T_1 до T_2 . Найти:
 - а) молярную теплоемкость газа как функцию T;
 - б) количество теплоты, сообщенной газу;
 - в) работу, которую совершил газ.
- **6.172.** Рабочее вещество совершает цикл, в пределах которого температура T изменяется в nраз, а сам цикл имеет вид, показанный:
- а) на рис. 6.4, a; б) на рис. 6.4, δ , где S энтропия.

Найти КПД циклов.

6.173. Идеальный газ в коли- рис. 6.4 честве $\nu=2,2$ моль находится в одном из двух теплоизолированных сосудов, соединенных между собой трубкой с вентилем. В другом сосуде — вакуум. Вентиль открыли, и газ заполнил оба сосуда, увеличив свой объем в n=3,0 раза. Найти приращение энтропии газа.

6.174. Теплоизолированный цилиндр разделен невесомым поршнем на две одинаковые части. По одну сторону поршня находится один моль идеального газа с показателем адиабаты γ , а по другую сторону — вакуум. Начальная температура газа T_0 . Поршень отпустили, и газ заполнил весь цилиндр. Затем поршень медленно переместили в начальное положение. Найти приращение внутренней энергии и энтропии газа в результате обоих процессов.

- **6.175.** Идеальный газ, находившийся в некотором состоянии, адиабатически расширили до объема V. Одинаково ли будет установившееся давление газа в конечном состоянии, если процесс:
 - а) обратимый; б) необратимый?
- **6.176.** Теплоизолированный сосуд разделен перегородкой на две части так, что объем одной из них в n=2,0 раза больше объема другой. В меньшей части находится $\nu_1=0,30$ моль азота, а в большей части $\nu_2=0,70$ моль кислорода. Температура газов одинакова. В перегородке открыли отверстие, и газы перемешались. Найти приращение энтропии системы, считая газы идеальными.
- **6.177.** Кусок меди массы $m_1 = 300$ г при $t_1 = 97$ °C поместили в калориметр, где находится вода массы $m_2 = 100$ г при $t_2 = 7$ °C. Найти приращение энтропии системы к моменту выравнивания температур. Теплоемкость калориметра пренебрежимо мала.
- **6.178.** Два одинаковых теплоизолированных сосуда, соединенные трубкой с вентилем, содержат по одному молю одного и того же идеального газа. Температура газа в одном сосуде T_1 , в другом T_2 . Молярная теплоемкость газа C_V известна. После открывания вентиля газ пришел в новое состояние равновесия. Найти ΔS приращение энтропии газа. Показать, что $\Delta S > 0$.
- **6.179.** Один моль ван-дер-ваальсовского газа расширили изотермически при температуре T от объема V_1 до V_2 . Найти приращение свободной энергии газа.
- **6.180.** Найти энтропию одного моля азота при температуре $T=300~\mathrm{K}$, если при обратимом адиабатическом сжатии его в $\eta=5.0$ раз приращение свободной энергии $\Delta F=-48.5~\mathrm{кДж}$. Газ считать идеальным.
- **6.181.** Зная зависимость свободной энергии от температуры и объема F(T, V), показать, что давление $p = -(\partial F/\partial V)_T$ и энтропия $S = -(\partial F/\partial T)_V$.
- **6.182.** Идеальный газ находится при нормальных условиях. Найти его объем V, в котором средняя квадратичная флуктуация числа молекул составляет $\eta = 1,0\cdot 10^{-8}$ среднего числа молекул в этом объеме.
- **6.183.** N атомов гелия находятся при комнатной температуре в кубическом сосуде объемом 1,0 см³. Найти:

- а) вероятность того, что все атомы соберутся в одной половине сосуда;
- б) примерное числовое значение N, при котором это событие можно ожидать на протяжении $t \approx 10^{10}$ лет (возраст Вселенной).
- **6.184.** Найти статистический вес наиболее вероятного распределения N=10 одинаковых молекул по двум одинаковым половинам сосуда. Определить вероятность такого распределения.
- **6.185.** N молекул идеального газа находятся в некотором сосуде. Разделим мысленно сосуд на две одинаковые половины A и B. Найти вероятность того, что в половине A сосуда окажется n молекул. Рассмотреть случаи, когда N=5 и n=0,1,2,3,4,5.
- **6.186.** В сосуде объемом V_0 находятся N молекул идеального газа. Найти вероятность того, что в некоторой выделенной части этого сосуда, имеющей объем V, окажется n молекул. Рассмотреть, в частности, случай $V = V_0/2$.
- **6.187.** Идеальный газ находится при нормальных условиях. Найти диаметр сферы, в объеме которой относительная флуктуация числа молекул $\eta = 1,0\cdot 10^{-3}$. Каково среднее число молекул внутри такой сферы?
- 6.188. Макросистема, энтропия которой равна 10 Дж/К, состоит из трех частей. Энтропия одной из них 6 Дж/К. Найти статистический вес Ω каждой из двух оставшихся, если их макросостояния одинаковы.
- **6.189.** Какое количество тепла необходимо сообщить макроскопической системе, чтобы изотермически при $T=350~\mathrm{K}$ увеличить ее статистический вес в $\eta=1,0\cdot10^9$ раз?
- **6.190.** Один моль идеального газа, состоящего из одноатомных молекул, находится в сосуде при $T_0 = 300~\mathrm{K}$. Как и во сколько раз изменится статистический вес этой системы (газа), если ее нагреть изохорически на $\Delta T = 1,0~\mathrm{K}$?

6.5. Явления переноса

ullet Относительное число молекул газа, пролетающих путь s без столкновений:

$$N/N_0 = e^{-s/\lambda}, ag{6.5a}$$

• Средняя длина свободного пробега молекулы газа:

$$\lambda = \frac{1}{\sqrt{2}\pi d^2 n},\tag{6.56}$$

где d — эффективный диаметр молекулы, n — концентрация молекул.

ullet Коэффициент диффузии D, вязкость η и теплопроводность \varkappa газов:

$$D = \frac{1}{3} \lambda \langle v \rangle, \qquad \eta = \frac{1}{3} \lambda \langle v \rangle \rho, \qquad \varkappa = \frac{1}{3} \lambda \langle v \rangle \rho c_V, \qquad (6.5b)$$

где ρ — плотность газа, c_V — его удельная теплоемкость при постоянном объеме.

• Сила трения, действующая на единицу поверхности пластин при их движении параллельно друг другу в ультраразреженном газе:

$$F = \frac{1}{6} \langle v \rangle \rho | u_1 - u_2 |, \tag{6.5r}$$

где u_1 и u_2 — скорости пластин.

• Плотность потока тепла, переносимого ультраразреженным газом между двумя стенками:

$$q = \frac{1}{6} \langle v \rangle \rho c_V | T_1 - T_2 |, \tag{6.5} \pi$$

где T_1 и T_2 — температуры стенок.

- 6.191. Вычислить, какая часть молекул газа:
- а) пролетает без столкновений расстояния, превышающие среднюю длину свободного пробега λ ;
 - б) имеет длины свободного пробега в интервале от λ до 2λ .
- **6.192.** Узкий пучок молекул входит в сосуд с газом, давление которого достаточно низкое. Найти среднюю длину свободного пробега молекул пучка, если поток молекул в пучке убывает в η раз на расстоянии Δl вдоль пучка.
- **6.193.** Пусть αdt вероятность того, что молекула газа испытает столкновение в течение времени dt, α постоянная. Найти:
- а) вероятность того, что молекула не испытает столкновения в течение времени t;
 - б) среднее время между столкновениями.
- **6.194.** Найти среднюю длину свободного пробега и среднее время между столкновениями молекул азота:
 - а) при нормальных условиях;
- б) при t=0 °C и давлении p=1,0 нПа (такое давление позволяют получать современные вакуумные насосы).

- **6.195.** Во сколько раз средняя длина свободного пробега молекул азота, находящегося при нормальных условиях, больше среднего расстояния между его молекулами?
- **6.196.** Найти при нормальных условиях среднюю длину свободного пробега молекулы газа, для которого постоянная Ван-дер-Ваальса $b=40~{\rm cm}^3/{\rm mon}$ ь.
- **6.197.** Азот находится при нормальных условиях. При какой частоте колебаний длина звуковой волны в нем будет равна средней длине свободного пробега молекул данного газа?
- **6.198.** Кислород находится при 0 °C в сосуде с характерным размером l=10 мм (это линейный размер, определяющий характер интересующего нас процесса). Найти:
- а) давление газа, ниже которого средняя длина свободного пробега молекул $\lambda > l;$
- б) соответствующую концентрацию молекул и среднее расстояние между ними.
 - 6.199. Азот находится при нормальных условиях. Найти:
- а) число столкновений, испытываемых в среднем каждой молекулой за одну секунду;
- б) число всех столкновений между молекулами в $1~{\rm cm}^3$ азота ежесекундно.
- **6.200.** Как зависят средняя длина свободного пробега и число столкновений каждой молекулы в единицу времени от температуры T идеального газа в следующих процессах:
 - а) изохорическом; б) изобарическом?
- **6.201.** Идеальный газ совершил процесс, в результате которого его давление возросло в n раз. Как и во сколько раз изменились средняя длина свободного пробега и число столкновений каждой молекулы в единицу времени, если процесс:
 - а) изохорический; б) изотермический?
- **6.202.** Идеальный газ, состоящий из жестких двухатомных молекул, совершает адиабатический процесс. Как зависят средняя длина свободного пробега и число столкновений каждой молекулы ежесекундно в этом процессе от:
 - а) объема V; б) давления p; в) температуры T?
- **6.203.** Идеальный газ совершает политропический процесс с показателем политропы n. Найти среднюю длину свободного пробега и число столкновений каждой молекулы ежесекундно как функцию:
 - а) объема V; б) давления p; в) температуры T.

- **6.204.** Определить молярную теплоемкость идеального газа из жестких двухатомных молекул, совершающего политропический процесс, при котором число столкновений между молекулами в единицу времени остается неизменным:
 - а) в единице объема; б) во всем объеме газа.
- **6.205.** Идеальный газ с молярной массой M находится в тонкостенном сосуде объемом V, стенки которого поддерживаются при постоянной температуре T. В момент t=0 в стенке сосуда открыли малое отверстие площадью S, и газ начал вытекать в вакуум. Найти концентрацию n газа как функцию времени t, если в начальный момент $n(0) = n_0$.
- 6.206. Сосуд с газом разделен на две одинаковые половины 1 и 2 тонкой теплоизолирующей перегородкой с двумя отверстиями. Диаметр одного из них мал, а другого очень велик (оба по сравнению со средней длиной свободного пробега молекул). В половине 2 газ поддерживается при температуре в η раз большей, чем в половине 1. Как и во сколько раз изменится концентрация молекул в половине 2, если закрыть только большое отверстие?
- **6.207.** В результате некоторого процесса вязкость идеального газа увеличилась в $\alpha = 2.0$ раза, а коэффициент диффузии в $\beta = 4.0$ раза. Как и во сколько раз изменилось давление газа?
- **6.208.** Как изменятся коэффициент диффузии D и вязкость η идеального газа, если его объем увеличить в n раз:
 - а) изотермически; б) изобарически?
- **6.209.** Идеальный газ состоит из жестких двухатомных молекул. Как и во сколько раз изменятся коэффициент диффузии D и вязкость η , если объем газа адиабатически уменьшить в n=10 раз?
- **6.210.** Найти показатель политропы n процесса, совершаемого идеальным газом, при котором неизменны:
 - а) коэффициент диффузии; б) вязкость; в) теплопроводность.
- 6.211. Зная вязкость гелия при нормальных условиях, вычислить эффективный диаметр его атома.
- **6.212.** Теплопроводность гелия в 8,7 раза больше, чем у аргона (при нормальных условиях). Найти отношение эффективных диаметров атомов аргона и гелия.
- **6.213.** Гелий при нормальных условиях заполняет пространство между двумя длинными коаксиальными цилиндрами. Средний радиус цилиндров R, зазор между ними ΔR , причем

- $\Delta R \ll R$. Внутренний цилиндр неподвижен, а внешний вращают с небольшой угловой скоростью ω . Найти момент сил трения, действующих на единицу длины внутреннего цилиндра. До какого значения надо уменьшить давление гелия (не меняя температуры), чтобы искомый момент уменьшился в n=10 раз, если $\Delta R=6$ мм?
- **6.214.** Газ заполняет пространство между двумя длинными коаксиальными цилиндрами, радиусы которых равны R_1 и R_2 , причем $R_1 < R_2$. Внутренний цилиндр неподвижен, а внешний вращают с малой угловой скоростью ω . Момент сил трения, действующих на единицу длины внутреннего цилиндра, равен N_1 . Найти вязкость газа, имея в виду, что сила трения, действующая на единицу площади цилиндрической поверхности радиуса r, определяется формулой $\sigma = \eta r (\partial \omega / \partial r)$.
- **6.215.** Два одинаковых параллельных диска, оси которых совпадают, расположены на расстоянии h друг от друга. Радиус каждого диска равен a, причем $a \gg h$. Один диск вращают с небольшой угловой скоростью ω , другой диск неподвижен. Найти момент сил трения, действующий на неподвижный диск, если вязкость газа между дисками равна η .
- **6.216.** Решить предыдущую задачу, считая, что между дисками находится ультраразреженный газ с молярной массой M, температурой T и под давлением p.
- **6.217.** Воспользовавшись формулой Пуазейля (1.7г), определить массу μ газа, протекающего в единицу времени через поперечное сечение трубы длиной l и радиусом a, на концах которой поддерживаются постоянные давления p_1 и p_2 . Вязкость газа равна η .
- **6.218.** Один конец стержня, заключенного в теплоизолирующую оболочку, поддерживается при температуре T_1 , а другой конец при температуре T_2 . Сам стержень состоит из двух частей, длины которых l_1 и l_2 и теплопроводности \varkappa_1 и \varkappa_2 . Найти температуру поверхности сопрокосновения этих частей стержня.
- **6.219.** Сложены торцами два стержня, длины которых l_1 и l_2 и теплопроводности \varkappa_1 и \varkappa_2 . Найти теплопроводность однородного стержня длины l_1+l_2 , проводящего теплоту так же, как и система из этих двух стержней. Боковые поверхности стержней теплоизолированы.

- **6.220.** Стержень длины l с теплоизолированной боковой поверхностью состоит из материала, теплопроводность которого изменяется с температурой по закону $\varkappa=\alpha/T$, где α постоянная. Торцы стержня поддерживают при температурах T_1 и T_2 . Найти зависимость T(x), где x расстояние от торца с температурой T_1 , а также плотность потока тепла.
- **6.221.** Два куска металла, теплоемкости которых C_1 и C_2 , соединены между собой стержнем длины l с площадью поперечного сечения S и достаточно малой теплопроводностью κ . Вся система теплоизолирована от окружающего пространства. В момент t=0 разность температур между двумя кусками металла равна $(\Delta T)_0$. Пренебрегая теплоемкостью стержня, найти разность температур между кусками металла как функцию времени.
- **6.222.** Пространство между двумя большими горизонтальными пластинами заполнено гелием. Расстояние между пластинами l=50 мм. Нижняя пластина поддерживается при температуре $T_1=290$ K, верхняя при $T_2=330$ K. Давление газа близко к нормальному. Найти плотность потока тепла.
- **6.223.** Гелий под давлением p=1,0 Па находится между двумя большими параллельными пластинами, отстоящими друг от друга на l=5,0 мм. Одна пластина поддерживается при $t_1=17$ °C, другая при $t_2=37$ °C. Найти среднюю длину свободного пробега атомов гелия и плотность потока тепла.
- **6.224.** Найти распределение температуры в пространстве между двумя коаксиальными цилиндрами с радиусами R_1 и R_2 , заполненном однородным теплопроводящим веществом, если температуры цилиндров равны T_1 и T_2 .
- **6.225.** Тот же вопрос, что и в предыдущей задаче, но для двух концентрических сфер с радиусами R_1 и R_2 и температурами T_1 и T_2 .
- **6.226.** Постоянный электрический ток течет по проводу, радиус сечения которого R и теплопроводность κ . В единице объема провода выделяется тепловая мощность w. Найти распределение температуры в проводе, если установившаяся температура на его поверхности равна T_0 .
- **6.227.** В однородном шаре, радиус которого R и теплопроводность κ , выделяется равномерно по объему тепловая мощность с объемной плотностью w. Найти распределение температуры в шаре, если установившаяся температура на его поверхности равна T_0 .

6.6. Тепловое излучение

• Энергетическая светимость:

$$M_{\vartheta} = cu/4, \tag{6.6a}$$

где и — объемная плотность энергии теплового излучения.

• Формула Вина и закон смещения Вина:

$$u_{\omega} = \omega^3 F(\omega/T), \qquad T\lambda_m = b,$$
 (6.66)

где λ_m — длина волны, соответствующая максимуму функции u_λ .

• Закон Стефана-Больцмана:

$$M_{\mathfrak{g}} = \sigma T^4, \tag{6.6b}$$

где о — постоянная Стефана-Больцмана.

• Формула Планка:

$$u_{\omega} = \frac{\hbar \omega^3}{\pi^2 c^3} \frac{1}{e^{\hbar \omega / kT} - 1}.$$
 (6.6r)

• Вероятности перехода атома в единицу времени между уровнем 1 и более высоким уровнем 2 для спонтанного и индуцированного излучения и поглощения:

$$P_{21}^{\,\mathrm{cn}} = A_{21}, \qquad P_{21}^{\,\mathrm{инд}} = B_{21}u_{\,\omega}, \qquad P_{12}^{\,\mathrm{norn}} = B_{12}u_{\,\omega}, \qquad (6.6\pi)$$

где A и B — коэффициенты Эйнштейна, u_{ω} — спектральная плотность излучения, отвечающая частоте ω перехода между данными уровнями.

• Связь между коэффициентами Эйнштейна:

$$g_1 B_{12} = g_2 B_{21}, \quad B_{21} = (\pi^2 c^3 / \hbar \omega^3) A_{21}.$$
 (6.6e)

- 6.228. Показать с помощью формулы Вина, что:
- а) наиболее вероятная частота излучения $\omega_{\text{вер}} \sim T$;
- б) максимальная спектральная плотность теплового излучения $(u_{\omega})_{\text{макс}} \sim T^3$;
 - в) энергетическая светимость $M_{_9} \propto T^4$.
- **6.229.** Имеются три параллельные друг другу абсолютно черные плоскости. Найти установившуюся температуру T_r :
- а) внешних плоскостей, если внутреннюю плоскость поддерживают при температуре T;
- б) внутренней плоскости, если внешние плоскости поддерживают при температурах T и 2T.
- 6.230. Имеются два абсолютно черных источника теплового излучения. Температура одного из них $T_1=2500~\mathrm{K}$. Найти температуру другого источника, если длина волны, отвечающая

максимуму его испускательной способности, на $\Delta\lambda=0.50$ мкм больше длины волны, соответствующей максимуму испускательной способности первого источника.

- **6.231.** Энергетическая светимость абсолютно черного тела $M_{_{9}}=3.0~{\rm Br/cm^2}.$ Определить длину волны, отвечающую максимуму испускательной способности этого тела.
- **6.232.** Излучение Солнца по своему спектральному составу близко к излучению абсолютно черного тела, для которого максимум испускательной способности приходится на длину волны 0.48 мкм. Найти массу, теряемую Солнцем ежесекундно за счет этого излучения. Оценить время, за которое масса Солнца уменьшится на 1%.
- **6.233.** Найти температуру полностью ионизированной водородной плазмы плотностью $\rho = 0.10 \text{ г/см}^3$, при которой давление теплового излучения равно газокинетическому давлению частиц плазмы. Иметь в виду, что давление теплового излучения p = u/3, где u объемная плотность энергии излучения, и что при высоких температурах вещества подчиняются уравнению состояния идеальных газов.
- **6.234.** Медный шарик диаметра d=1,2 см поместили в откачанный сосуд, температура стенок которого поддерживается близкой к абсолютному нулю. Начальная температура шарика $T_0=300\,$ K. Считая поверхность шарика абсолютно черной, найти, через сколько времени его температура уменьшится в $\eta=2,0\,$ раза.
- **6.235.** Температура поверхности Солнца $T_0 = 5500$ К. Считая, что поглощательная способность Солнца и Земли равна единице и что Земля находится в состоянии теплового равновесия, оценить ее температуру.

6.236. Имеются две полости (рис. 6.5) с малыми отверстиями одинаковых диаметров d=1,0 см и абсолютно отражающими наружными поверхностями. Расстояние между отверстиями l=10 см. В полости 1 поддержи-

вается постоянная температура $T_1 = 1700 \; \mathrm{K.}$ Вычислить установившуюся температуру в полости 2.

Указание. Иметь в виду, что абсолютно черное тело является косинусным излучателем.

- **6.237.** Полость объемом V=1,0 л заполнена тепловым излучением при температуре T=1000 К. Найти:
 - а) теплоемкость C_V ; б) энтропию S этого излучения.
- **6.238.** Найти уравнение адиабатического процесса (в переменных V, T), проводимого с тепловым излучением, имея в виду, что между давлением и плотностью энергии теплового излучения существует связь p = u/3.
- **6.239.** Считая, что спектральное распределение энергии теплового излучения подчиняется формуле Вина $u(\omega, T) = A\omega^3 e^{-a\omega/T}$, где a=7,64 пс·K, найти для температуры T=2000 K наиболее вероятную:
 - а) частоту излучения; б) длину волны излучения.
- **6.240.** Получить с помощью формулы Планка приближенные выражения для объемной спектральной плотности излучения u_{∞} в области, где:
 - а) $\hbar\omega \ll kT$ (формула Рэлея-Джинса);
 - б) $\hbar\omega \gg kT$ (формула Вина).
- **6.241.** Преобразовать формулу Планка (6.6г) от переменной ω к переменным ν (линейная частота) и λ (длина волны).
- **6.242.** Найти с помощью формулы Планка мощность излучения единицы поверхности абсолютно черного тела, приходящегося на узкий интервал длин волн $\Delta\lambda=1,0$ нм вблизи максимума спектральной плотности излучения, при температуре тела $T=3000~\mathrm{K}$.
- **6.243.** Система квантовых осцилляторов с частотой ω находится при температуре T. С какой вероятностью можно обнаружить в этой системе осциллятор с энергией $\varepsilon_n = (n + 1/2) \hbar \omega$?
- **6.244.** Найти с помощью формулы Планка выражения, определяющие число фотонов в 1 см³ полости при температуре T в спектральных интервалах (ω , ω + d ω) и (λ , λ + d λ).
- 6.245. Атомарный водород находится в термодинамическом равновесии со своим излучением. Найти:
- а) отношение вероятностей индуцированного и спонтанного излучений атомов с уровня 2P при T=3000 K;
 - б) температуру, при которой эти вероятности одинаковы.
- **6.246.** Через газ с температурой T проходит пучок света с частотой ω , равной резонансной частоте перехода атомов газа, причем $\hbar\omega\gg kT$. Показать, учитывая индуцированное излучение, что коэффициент поглощения газа $\varkappa=\varkappa_0(1-\mathrm{e}^{-\hbar\omega/kT})$, где \varkappa_0 коэффициент поглощения при $T\to 0$.

6.7. Твердое тело

• Межплоскостное расстояние для простой кубической решетки:

$$d = a / \sqrt{h^2 + k^2 + l^2}, (6.7a)$$

где a — период решетки, h, k, l — индексы Миллера.

• Число нормальных колебаний одной поляризации в расчете на единицу объема кристалла:

$$dN_{\omega} = \frac{\omega^2 d\omega}{2\pi^2 v^3}.$$
 (6.76)

• Формула Дебая. Молярная колебательная энергия кристалла:

$$U = 9R\Theta \left[\frac{1}{8} + \left(\frac{T}{\Theta} \right)^4 \int_0^{\Theta/T} \frac{x^3 dx}{e^x - 1} \right], \qquad (6.7B)$$

где Θ — дебаевская температура, $\Theta = \hbar \omega_{\text{макс}}/k$.

• Молярная колебательная теплоемкость кристалла при $T \ll \Theta$:

$$C = \frac{12}{5} \pi^4 R \left(\frac{T}{\Theta}\right)^3. \tag{6.7r}$$

• Распределение свободных электронов в металле при T o 0:

$$dn = (\sqrt{2} m^{3/2} / \pi^2 \hbar^3) \sqrt{E} dE,$$
 (6.7*g*)

где dn — концентрация электронов с энергиями в интервале (E, E + dE). Энергия E отсчитывается от дна зоны проводимости.

• Уровень Ферми при $T \to 0$:

$$E_F = \frac{\hbar^2}{2 m} (3 \pi^2 n)^{2/3},$$
 (6.7e)

где n — концентрация свободных электронов в металле.

• Формула Ричардсона—Дэшмана. Ток насыщения:

$$j_{\text{Hac}} = AT^2 e^{-e\phi/kT},$$
 (6.7x)

где $e\phi$ — работа выхода.

• Собственная электропроводимость полупроводников:

$$\sigma = \sigma_0 e^{-\Delta E / 2kT}, \qquad (6.73)$$

где ΔE — ширина запрещенной зоны.

- 6.247. Найти постоянную a пространственно-центрированной кубической решетки молибдена, зная его плотность.
- 6.248. Зная плотность меди, вычислить постоянную a ее гранецентрированной кубической решетки.

- **6.249.** Определить плотность кристалла NaCl, постоянная кристаллической решетки которого a=0,563 нм.
- **6.250.** Зная постоянную a, определить межплоскостные расстояния d_{100} , d_{110} и d_{111} для кубической решетки:
- а) простой; б) объемноцентрированной; в) гранецентрированной.
- **6.251.** Показать, что межплоскостное расстояние d для системы плоскостей (hkl) в простой кубической решетке с постоянной a определяется как $d=a/\sqrt{h^2+k^2+l^2}$.
- **6.252.** Постоянная кубической гранецентрированной решетки меди равна 0,361 нм. Написать миллеровские индексы системы плоскостей, плотность расположения атомов в которых максимальна. Вычислить эту плотность (атом/см²).
- **6.253.** Вычислить для кубической решетки углы между прямой [123] и осями [100], [010] и [001].
- **6.254.** Определить число собственных поперечных колебаний струны длины l в интервале частот (ω , ω + d ω), если скорость распространения колебаний равна v. Считать, что колебания происходят в одной плоскости.
- **6.255.** Имеется прямоугольная мембрана площадью S. Найти число собственных колебаний, перпендикулярных ее плоскости, в интервале частот (ω , ω + d ω), если скорость распространения колебаний равна v.
- **6.256.** Найти число собственных поперечных колебаний прямоугольного параллелепипеда объемом V в интервале частот $(\omega, \omega + \mathrm{d}\omega)$, если скорость распространения колебаний равна v.
- **6.257.** Считая, что скорости распространения продольных и поперечных колебаний одинаковы и равны v, определить дебаевскую температуру:
- а) для одномерного кристалла цепочки из одинаковых атомов, содержащей n_0 атомов на единицу длины;
- б) для двумерного кристалла плоской квадратной решетки из одинаковых атомов, содержащей n_0 атомов на единицу площади;
- в) для простой кубической решетки из одинаковых атомов, содержащей n_0 атомов на единицу объема.
- **6.258.** Вычислить дебаевскую температуру для железа, у которого скорости распространения продольных и поперечных колебаний равны соответственно 5,85 и 3,23 км/с.

- **6.259.** Оценить скорость распространения акустических колебаний в алюминии, дебаевская температура которого $\Theta = 396~\mathrm{K}$.
- **6.260.** Получить выражение, определяющее зависимость молярной теплоемкости одномерного кристалла цепочки одинаковых атомов от температуры T, если дебаевская температура цепочки равна Θ . Упростить полученное выражение для случая $T \gg \Theta$.
- 6.261. Для цепочки одинаковых атомов частота колебаний ω зависит от волнового числа k как $\omega = \omega_{\text{макс}} \sin(ka/2)$, где $\omega_{\text{макс}}$ максимальная частота колебаний, $k = 2\pi/\lambda$ волновое число, соответствующее частоте ω , a расстояние между соседними атомами. Воспользовавшись этим дисперсионным соотношением, найти зависимость от ω числа продольных колебаний, приходящихся на единичный интервал частот, т. е. $\mathrm{d}N/\mathrm{d}\omega$, если длина цепочки равна l. Зная $\mathrm{d}N/\mathrm{d}\omega$, найти полное число N возможных продольных колебаний цепочки.
- **6.262.** Вычислить энергию нулевых колебаний, приходящуюся на один грамм меди с дебаевской температурой $\Theta = 330 \text{ K}$.
- 6.263. На рис. 6.6 показан график зависимости теплоемкости кристалла от температуры (по Дебаю). Здесь $C_{\kappa_{\rm J}}$ класси-

Рис. 6.6

ческая теплоемкость, Θ — дебаевская температура. Найти с помощью этого графика:

- а) дебаевскую температуру для серебра, если при $T=65~{
 m K}$ его молярная теплоемкость равна $15~{
 m Дж/(моль \cdot K)};$
- б) молярную теплоемкость алюминия при $T=80~\mathrm{K}$, если при $T=250~\mathrm{K}$ она равна $22.4~\mathrm{Дж/(моль·K)};$
- в) максимальную частоту колебаний для меди, у которой при $T=125~{
 m K}$ теплоемкость отличается от классического значения на 25% .
- **6.264.** Показать, что молярная теплоемкость кристалла при температуре $T \ll \Theta$, где Θ дебаевская температура, определяется формулой (6.7r).
- **6.265.** Найти максимальную частоту $\omega_{\text{макс}}$ собственных колебаний в кристалле железа, если при температуре T=20~K его удельная теплоемкость c=2,7~мДж/(г·K).
- **6.266.** Можно ли считать температуры 20 и 30 K низкими для кристалла, теплоемкость которого при этих температурах равна 0.266 и 0.760 Дж/(моль·K)?
- 6.267. При нагревании кристалла меди массы m=25 г от $T_1=10$ K до $T_2=20$ K ему было сообщено количество теплоты Q=0.80 Дж. Найти дебаевскую температуру Θ для меди, если $\Theta\gg T_1$ и T_2 .
- **6.268.** Вычислить среднее значение энергии нулевых колебаний, приходящейся на один осциллятор кристалла в модели Дебая, если дебаевская температура кристалла равна Θ .
- **6.269.** Оценить энергию нулевых колебаний моля алюминия, если межатомное расстояние $a \approx 0.3$ нм и скорость распространения акустических колебаний $v \approx 4$ км/с.
- 6.270. Изобразить спектр распределения энергии колебаний кристалла по частотам (без учета нулевых колебаний).

Рассмотреть два случая: $T = \Theta/2$ и $T = \Theta/4$, где Θ — дебаевская температура.

- **6.271.** Оценить максимальные значения энергии и импульса фонона (звукового кванта) в меди, дебаевская температура которой равна 330 К.
- **6.272.** Кристалл состоит из N одинаковых атомов. Его дебаевская температура равна Θ . Найти число фононов в интервале частот (ω , ω + d ω) при температуре T.
- **6.273.** Оценить фононное давление в меди при температуре T, равной ее дебаевской температуре $\Theta = 330$ K.

- **6.274.** Найти с помощью формулы (6.7д) при $T \to 0$:
- а) максимальную кинетическую энергию свободных электронов в металле, если их концентрация равна n;
- б) среднюю кинетическую энергию свободных электронов, если их максимальная кинетическая энергия равна $K_{\mathrm{макс}}$.
- **6.275.** Найти относительное число свободных электронов в металле, энергия которых отличается от энергии Ферми не более чем на $\eta = 1.0\%$, если температура T = 0.
- 6.276. Сколько процентов свободных электронов в металле при T=0 имеют кинетическую энергию, превышающую половину максимальной?
- **6.277.** Найти число свободных электронов, приходящихся на один атом натрия при температуре T=0, если уровень Ферми $E_F=3.07$ эВ. Плотность натрия считать известной.
- 6.278. До какой температуры надо было бы нагреть классический электронный газ, чтобы средняя энергия его электронов оказалась равной средней энергии свободных электронов в меди при T=0? Считать, что на каждый атом меди приходится один свободный электрон.
- **6.279.** Вычислить интервал (в электронвольтах) между соседними уровнями свободных электронов в металле при T=0 вблизи уровня Ферми, если концентрация свободных электронов $n=2,0\cdot10^{22}~{\rm cm}^{-3}$ и объем металла $V=1,0~{\rm cm}^{3}$.
 - **6.280.** Воспользовавшись (6.7д), найти при T=0:
 - а) распределение свободных электронов по скоростям;
- б) отношение средней скорости свободных электронов к их максимальной скорости.
- **6.281.** Оценить минимальную дебройлевскую длину волны свободных электронов в металле при T=0, полагая, что металл содержит по одному свободному электрону на атом, а его решетка является простой кубической с периодом a.
- 6.282. Квантовые свойства свободных электронов в металле становятся существенными, когда их дебройлевская длина волны оказывается сравнимой с постоянной решетки. Оценить из этих соображений температуру вырождения T электронного газа в меди.
- **6.283.** Исходя из формулы (6.7д), найти функцию распределения свободных электронов в металле при T=0 по дебройлевским длинам волн.

- **6.284.** Вычислить давление электронного газа в металлическом натрии при T=0, если концентрация свободных электронов в нем $n=2,5\cdot10^{22}~{\rm cm}^{-3}$. Воспользоваться уравнением для давления идеального газа.
- 6.285. Имея в виду, что средняя энергия свободного электрона в металле при температуре T определяется как

$$\langle E \rangle = (3/5)E_F[1 + (5\pi^2/12)(kT/E_F)^2],$$

найти для серебра, дебаевская температура которого 210 K и энергия Ферми $E_F = 5.5$ эВ, отношение теплоемкости электронного газа к теплоемкости решетки при T = 300 K.

- **6.286.** Повышение температуры катода в электронной лампе от значения $T=2000~{\rm K}$ на $\Delta T=1,0~{\rm K}$ увеличивает ток насыщения на $\eta=1,4\%$. Найти работу выхода электрона.
- **6.287.** Найти коэффициент преломления металлического натрия для электронов с кинетической энергией K=135 эВ. Считать, что на каждый атом натрия приходится один свободный электрон.
- **6.288.** Найти минимальную энергию образования пары электрон дырка в беспримесном полупроводнике, проводимость которого возрастает в $\eta = 5.0$ раз при увеличении температуры от $T_1 = 300$ K до $T_2 = 400$ K.
- **6.289.** При очень низких температурах красная граница фотопроводимости чистого беспримесного германия $\lambda_{\kappa}=1,7$ мкм. Найти температурный коэффициент сопротивления данного германия при комнатной температуре.
- **6.290.** На рис. **6.7** показан график зависимости логарифма проводимости от обратной температуры (T, K) для некоторого полупроводника n-типа. Найти с помощью этого графика ширину запрещенной зоны полупроводника и энергию активации донорных уровней.
- **6.291.** Удельное сопротивление некоторого чистого беспримесного полупроводника при комнатной температуре $\rho = 50$ Ом·см. После

Рис. 6.7

включения источника света оно стало $\rho_1 = 40$ Ом·см, а через t = 8 мс после выключения источника света удельное сопро-

тивление оказалось $\rho_2 = 45 \text{ Om} \cdot \text{cm}$. Найти среднее время жизни электронов проводимости и дырок.

- **6.292.** При измерении эффекта Холла пластинку из полупроводника p-типа ширины h=10 мм и длины l=50 мм поместили в магнитное поле с индукцией B=5,0 кГс. К концам пластинки приложили разность потенциалов U=10 В. При этом холловская разность потенциалов $U_H=50$ мВ и удельное сопротивление $\rho=2,5$ Ом·см. Найти концентрацию дырок и их подвижность.
- **6.293.** При измерении эффекта Холла в магнитном поле с индукцией B=5,0 кГс поперечная напряженность электрического поля в чистом беспримесном германии оказалась в $\eta=10$ раз меньше продольной напряженности электрического поля. Найти разность подвижностей электронов проводимости и дырок в данном полупроводнике.
- **6.294.** В некотором полупроводнике, у которого подвижность электронов проводимости в $\eta=2,0$ раза больше подвижности дырок, эффект Холла не наблюдался. Найти отношение концентраций дырок и электронов проводимости в этом полупроводнике.

6.8. Жидкости. Капиллярные явления

• Добавочное (капиллярное) давление в жидкости под искривленной поверхностью (формула Лапласа):

$$\Delta p = \alpha \left(\frac{1}{R_1} + \frac{1}{R_2} \right), \tag{6.8a}$$

где а — поверхностное натяжение жидкости.

• Приращение свободной энергии поверхностного слоя жидкости:

$$dF = \alpha dS, \qquad (6.86)$$

где dS — приращение площади поверхностного слоя.

• Тепло, необходимое для образования единицы площади поверхностного слоя жидкости при изотермическом увеличении ее поверхности:

$$q = -T \frac{\mathrm{d}\alpha}{\mathrm{d}T}.\tag{6.8b}$$

6.295. Найти капиллярное давление:

- а) в капельках ртути диаметра d = 1,5 мкм;
- б) внутри мыльного пузырька диаметра d=3.0 мм, если поверхностное натяжение мыльной воды $\alpha=45$ мH/м.

- **6.296.** В дне сосуда со ртутью имеется круглое отверстие диаметра d=70 мкм. При какой максимальной толщине слоя ртути она еще не будет вытекать через это отверстие?
- **6.297.** В сосуде с воздухом при давлении p_0 находится мыльный пузырек диаметра d. Давление воздуха изотермически уменьшили в n раз, в результате чего диаметр пузырька увеличился в η раз. Найти поверхностное натяжение мыльной воды.
- 6.298. На плоский каркас натянута мыльная пленка. На ней находится петля из нити. После того, как пленку прокололи внутри петли, последняя приняла форму окружности радиуса $R=7.5\,$ мм. Найти силу натяжения нити, если поверхностное натяжение мыльной воды $\alpha=40\,$ мH/м.
- **6.299.** Два мыльных пузыря с радиусами R_1 и R_2 , слившись, образовали пузырь радиуса R. Атмосферное давление равно p. Считая процесс изотермическим, найти поверхностное натяжение α мыльной воды.
- **6.300.** На мыльном пузыре радиуса a «сидит» пузырь радиуса b. Имея в виду, что b < a, найти радиус кривизны пленки, их разделяющей. Каковы углы между пленками в местах их сопрокосновения?
- **6.301.** Определить давление в пузырьке воздуха диаметра d=4,0 мкм, который находится в воде на глубине h=5,0 м. Атмосферное давление p_0 нормальное.
- **6.302.** На дне пруда выделился пузырек газа диаметра d=4,0 мкм. При подъеме этого пузырька к поверхности воды его диаметр увеличился в n=1,1 раза. Найти глубину пруда в данном месте. Атмосферное давление нормальное, процесс расширения газа считать изотермическим.
- **6.303.** Найти разность уровней ртути в двух сообщающихся вертикальных капиллярах, диаметры которых $d_1=0.50$ мм и $d_2=1.00$ мм, если краевой угол $\vartheta=138^\circ.$
- **6.304.** Вертикальный капилляр с внутренним диаметром 0,50 мм погрузили в воду так, что длина выступающей над поверхностью воды части капилляра h=25 мм. Найти радиус кривизны мениска.
- **6.305.** Стеклянный капилляр длины l=110 мм с диаметром внутреннего канала d=20 мкм опустили в вертикальном положении в воду. Верхний конец капилляра запаян. Наружное давление воздуха нормальное. Какая длина x капилляра дол-

жна быть погружена в воду, чтобы уровень воды в капилляре совпадал с поверхностью воды вне его?

- **6.306.** Вертикальный капилляр длины l с запаянным верхним концом привели в соприкосновение с поверхностью жидкости, после чего она поднялась в нем на высоту h. Плотность жидкости ρ , диаметр внутреннего канала капилляра d, краевой угол ϑ , атмосферное давление p_0 . Найти поверхностное натяжение жидкости.
- 6.307. Стеклянный стержень диаметром $d_1=1,5\,$ мм вставили симметрично в стеклянный капилляр с диаметром внутреннего канала $d_2=2,0\,$ мм. Затем всю систему установили вертикально и привели в соприкосновение с поверхностью воды. На какую высоту поднимется вода в таком капилляре?
- **6.308.** Две вертикальные пластинки, погруженные частично в смачивающую жидкость, образуют клин с очень малым углом $\delta \varphi$. Ребро клина вертикально. Плотность жидкости φ , ее поверхностное натяжение α , краевой угол ϑ . Найти высоту h поднятия жидкости как функцию расстояния x от ребра клина.
- **6.309.** Из круглого отверстия вытекает вертикальная струя воды так, что в одном из горизонтальных сечений ее диаметр $d=2,0\,$ мм, а в другом сечении, расположенном ниже на $l=20\,$ мм, диаметр струи в $n=1,5\,$ раза меньше. Найти объем воды, вытекающий из отверстия за одну секунду.
- **6.310.** Капля массы m находится на поверхности стола. Высота капли h, плотность жидкости ρ , поверхностное натяжение σ , радиус границы соприкосновения капли с поверхностью стола равен a. Считая, что имеется полное несмачивание, найти радиус кривизны поверхности капли в верхней точке.
- **6.311.** Капля воды равномерно падает в воздухе. Найти разность между радиусом кривизны поверхности капли в ее верхней точке и радиусом кривизны в нижней точке, расстояние между которыми $h=2.3\,$ мм.
 - 6.312. Алюминиевый диск радиуса R=5.6 мм и толщиной

Рис. 6.8

h=1,5 мм смазан парафином и плавает в воде так, что его верхняя сторона находится на уровне поверхности воды (рис. 6.8). Считая смачивание полным, найти поверхностное натяжение воды.

- **6.313.** Между двумя горизонтальными стеклянными пластинками находится капля ртути в форме лепешки радиуса R и толщины h. Считая, что $h \ll R$, найти массу m груза, который надо положить на верхнюю пластинку, чтобы расстояние между пластинками уменьшилось в n раз. Краевой углол ϑ . Вычислить m, если R=2.0 см, h=0.38 мм, n=2.0 и $\vartheta=135^\circ$.
- **6.314.** Найти силу притяжения двух параллельных стеклянных пластинок, отстоящих друг от друга на расстояние h=0,10 мм, после того как между ними ввели каплю воды массы m=70 мг. Смачивание считать полным.
- **6.315.** Два стеклянных диска радиуса R = 5.0 см смочили водой и сложили вместе так, что толщина слоя воды между дисками h = 1.9 мкм. Считая смачивание полным, найти силу, которую нужно приложить перпендикулярно плоскости дисков, чтобы оторвать их друг от друга.
- **6.316.** Две вертикальные параллельные друг другу стеклянные пластины частично погружены в воду. Расстояние между пластинами d = 0,10 мм, их ширина l = 12 см. Считая, что вода между пластинами не доходит до их верхних краев и что смачивание полное, найти силу, с которой они притягиваются друг к другу.
- **6.317.** Найти высоту h поднятия жидкости у вертикальной плоской стенки. Жидкость смачиваемая, краевой угол ϑ , поверхностное натяжение α , плотность ρ . Иметь в виду, что кривизна поверхности $1/R = \mathrm{d}\phi/\mathrm{d}s$ (по определению).
- **6.318.** Найти толщину h несмачивающей жидкости, образующей лужицу на горизонтальной поверхности. Известны поверхностное натяжение жидкости α , ее плотность ρ и краевой угол θ . Диаметр лужицы значительно больше ее толщины.
- **6.319.** Найти время исчезновения мыльного пузыря радиуса R, соединенного с атмосферой капилляром, который имеет длину l и радиус канала r. Поверхностное натяжение α , вязкость газа η .
- **6.320.** Вертикальный капилляр привели в соприкосновение с поверхностью воды. Какое количество тепла выделится при поднятии воды по капилляру? Смачивание считать полным, поверхностное натяжение равно α .
 - 6.321. Найти свободную энергию поверхностного слоя:
 - а) капли ртути диаметра d=1,4 мм;
- б) мыльного пузыря диаметра d=6.0 мм, если поверхностное натяжение мыльной воды $\alpha=45$ мH/м.

- 6.322. Зная поверхностное натяжение α, найти:
- а) приращение свободной энергии поверхностного слоя при изотермическом слиянии двух одинаковых капель ртути, каждая диаметром $d=1.5\,$ мм;
- б) работу, которую нужно совершить, чтобы изотермически выдуть мыльный пузырь радиуса R при давлении окружающего воздуха p_0 .
- **6.323.** Внутри мыльного пузыря радиуса r находится идеальный газ. Наружное давление p_0 , поверхностное натяжение мыльной воды α . Найти разность между молярной теплоемкостью газа при нагреве его внутри пузыря и молярной теплоемкостью этого газа при постоянном давлении.
- **6.324.** Рассмотрев цикл Карно для пленки жидкости, показать, что при изотермическом процессе теплота, необходимая для образования единицы площади поверхностного слоя, $q = -T d\alpha/dT$, где $d\alpha/dT$ производная поверхностного натяжения по температуре.
- **6.325.** Площадь мыльной пленки изотермически увеличили на $\Delta \sigma$ при температуре T. Зная поверхностное натяжение мыльной воды α и температурный коэффициент $\mathrm{d}\alpha/\mathrm{d}T$, найти приращение:
 - а) энтропии поверхностного слоя пленки;
 - б) внутренней энергии поверхностного слоя.

6.9. Фазовые превращения

• Соотношения между постоянными Ван-дер-Ваальса и параметрами критического состояния вещества:

$$V_{M_{\rm KP}} = 3 \ b, \quad p_{\rm KP} = \frac{a}{27 \ b^2}, \quad T_{\rm KP} = \frac{8 \ a}{27 \ Rb} \ .$$
 (6.9a)

• Связь между критическими параметрами моля вещества:

$$p_{\rm kp}V_{M{\rm kp}} = \frac{3}{8}RT_{\rm kp}.$$
 (6.96)

• Уравнение Клапейрона-Клаузиуса:

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{q_{12}}{T(V_{2}' - V_{1}')},\tag{6.9b}$$

где q_{12} — удельная теплота, поглощаемая при переходе $1\!-\!2,\,{V_1}'$ и ${V_2}'$ — удельные объемы фазы 1 и фазы 2.

- **6.326.** Насыщенный водяной пар находится при температуре t=100 °C в цилиндрическом сосуде под невесомым поршнем. При медленном вдвигании поршня небольшая часть пара массы $\Delta m=0.70$ г сконденсировалась. Какая работа была совершена над газом? Пар считать идеальным газом, объемом жидкости пренебречь.
- **6.327.** Вода со своим насыщенным паром находится в сосуде объемом V=6.0 л при температуре 250 °C и давлении 40 атм. Удельный объем пара при этих условиях $V_{\rm n}'=50$ л/кг. Масса системы (воды с паром) m=5.0 кг. Найти массу и объем пара.
- **6.328.** Пространство в цилиндре под поршнем, имеющее объем $V_0 = 5,0$ л, занимает один насыщенный водяной пар, температура которого t = 100 °C. Найти массу жидкой фазы, образовавшейся в результате изотермического уменьшения объема под поршнем до V = 1,6 л. Насыщенный пар считать идеальным газом.
- **6.329.** Некоторую массу вещества, взятого в состоянии насыщенного пара, изотермически сжали в n раз по объему. Найти, какую часть η конечного объема занимает жидкая фаза, если удельные объемы насыщенного пара и жидкой фазы отличаются друг от друга в N раз (N>n).

Тот же вопрос, но при условии, что конечный объем вещества соответствует середине горизонтального участка изотермы на диаграмме $p,\,V.$

- **6.330.** Вода массы m = 1,00 кг, кипящая при нормальном атмосферном давлении, целиком превратилась в насыщенный пар. Найти приращение энтропии и внутренней энергии этой системы, считая насыщенный пар идеальным газом.
- **6.331.** Вода массы m=20 г находится при температуре 0 °C в теплоизолированном цилиндре под невесомым поршнем, площадь которого S=440 см². Внешнее давление равно нормальному атмосферному. На какую высоту поднимется поршень, если воде сообщить количество теплоты Q=20,0 кДж?
- **6.332.** В теплоизолированном цилиндре под невесомым поршнем находится один грамм насыщенного водяного пара. Наружное давление нормальное. В цилиндр ввели m=1,0 г воды при $t_0=22$ °C. Пренебрегая теплоемкостью цилиндра и трением, найти работу, которую произвела сила атмосферного давления при опускании поршня.
- **6.333.** В тепловой машине, работающей по циклу Карно, рабочим веществом является вода массы m=1,00 кг, которая ис-

Рис. 6.9

пытывает фазовые превращения в пар и обратно. Цикл показан на рис. 6.9, где штриховой кривой ограничена область двухфазных состояний. Изотермическое расширение 1-2 происходит при $T_1=484$ K, изотермическое сжатие — при $T_2=373$ K. Найти работу, совершаемую рабочим веществом за один цикл.

6.334. Если дополнительное давление Δp насыщенных паров над выпуклой сферической поверхностью жидко-

сти значительно меньше давления пара у плоской поверхности, то $\Delta p = (\rho_{\rm n}/\rho_{\rm m})2\alpha/r$, где $\rho_{\rm n}$ и $\rho_{\rm m}$ — плотности пара и жидкости, α — поверхностное натяжение, r — радиус кривизны поверхности. Найти с помощью этой формулы диаметр капелек воды, при котором давление насыщенных паров на $\eta = 1.0\%$ превышает давление паров над плоской поверхностью при t = 27 °C. Пар считать идеальным газом.

- **6.335.** Найти массу всех молекул, вылетающих за одну секунду с одного квадратного сантиметра поверхности воды в находящийся над ней насыщенный водяной пар при t=100 °C. Считать, что $\eta=3.6\%$ всех молекул водяного пара, падающих на поверхность воды, ею задерживаются.
- **6.336.** Найти давление насыщенного пара вольфрама при T=2000 K, если при этой температуре вольфрамовая нить, испаряясь в высоком вакууме, теряет в единицу времени с единицы поверхности массу $\mu=1,2\cdot10^{-13}$ г/(с·см²).
- **6.337.** На какую величину возросло бы давление воды на стенки сосуда, если бы исчезли силы притяжения между ее молекулами?
- **6.338.** Найти «внутреннее давление» p_i в жидкости, если известны ее плотность ρ и удельная теплота парообразования q. Считать, что теплота q равна работе против сил внутреннего давления и жидкость подчиняется уравнению Ван-дер-Ваальса. Вычислить p_i у воды.
- **6.339.** Показать, что для вещества, подчиняющегося уравнению Ван-дер-Ваальса, в критическом состоянии справедливы соотношения (6.9a) и (6.9б).

Указание. Использовать то, что критическому состоянию соответствует точка перегиба на изотерме p(V).

- 6.340. Вычислить постоянные Ван-дер-Ваальса для углекислого газа, если его критическая температура $T_{\rm KD} = 304~{
 m K}$ и критическое давление $p_{\rm kp}=73\,$ атм.
- **6.341.** Найти удельный объем бензола (C_6H_6) в критическом состоянии, если его критическая температура $T_{\rm vp} = 562~{
 m K}$ и критическое давление $p_{\rm kp} = 47$ атм.
- 6.342. Записать уравнение Ван-дер-Ваальса в приведенных параметрах π , ν и τ , приняв за единицы давления, объема и температуры соответствующие критические величины. Используя полученное уравнение, найти, во сколько раз температура газа больше его критической температуры, если давление газа в 12 раз больше критического, а объем газа вдвое меньше критического.
 - 6.343. Зная постоянные Ван-дер-Ваальса, найти:
- а) наибольший объем, который может занимать вода массы m = 1,00 кг в жидком состоянии;
 - б) наибольшее давление насыщенных паров воды.
- 6.344. Вычислить температуру и плотность углекислого газа в критическом состоянии, считая газ ван-дер-ваальсовским.
- 6.345. Какую часть объема сосуда должен занимать жидкий эфир при комнатной температуре, чтобы при критической температуре он оказался в критическом состоянии? Для эфира $T_{_{
 m KD}}=467\,$ K, $p_{_{
 m KD}}=35,5\,$ атм, $M=74\,$ г/моль.
- **6.346.** Показать, что положение прямой 1-3-5, соответствующей изотермически-изобарическому фазовому переходу, таково, что площади I и II, ограниченные этой прямой и изотермой Ван-дер-Ваальса, равны друг другу (рис. 6.10).
- 6.347. Какая часть воды, переохлажденной при нормальном давлении до t = -20 °C, превратится в лед при переходе системы в равновесное состояние? При какой температуре переохлажденной воды она целиком превратится в лел?

Рис. 6.10

6.348. Найти приращение температуры плавления вблизи 0 °C при повышении давления на $\Delta p = 1,00$ атм, если удельный объем льда на $\Delta V' = 0.091~{
m cm}^3/{
m r}$ больше удельного объема воды.

- **6.349.** Найти удельный объем насыщенного водяного пара при нормальном давлении, если известно, что уменьшение давления на $\Delta p = 3.2$ кПа приводит к уменьшению температуры кипения воды на $\Delta T = 0.9$ К.
- **6.350.** Определить давление насыщенного водяного пара при температуре 101,1 °C, считая его идеальным газом.
- **6.351.** В закрытом сосуде находится небольшое количество воды и ее насыщенный пар при $t=100\,^{\circ}$ С. На сколько процентов увеличится масса насыщенного пара при повышении температуры системы на $\Delta T=1.5\,$ K? Пар считать идеальным газом, а удельный объем воды пренебрежимо малым по сравнению с удельным объемом пара.
- **6.352.** Давление p насыщенного пара ртути зависит от температуры T по закону $\ln p = -a/T b \ln T + c$, где a, b, c постоянные. Найти молярную теплоту испарения ртути как функцию температуры q(T).
- **6.353.** Найти давление насыщенного пара как функцию температуры, если при температуре T_0 его давление p_0 . Считать, что удельная теплота парообразования q не зависит от T, удельный объем жидкости пренебрежимо мал по сравнению с удельным объемом пара, насыщенный пар подчиняется уравнению состояния идеального газа. При каких условиях эти упрощения допустимы?
- **6.354.** Лед, находившийся при нормальных условиях, подвергли сжатию до давления p=640 атм. Считая, что понижение температуры плавления льда в данных условиях линейно зависит от давления, найти, какая часть льда растаяла. Удельный объем воды на $\Delta V' = 0.09~{\rm cm}^3/{\rm r}$ меньше удельного объема льда.
- **6.355.** Вблизи тройной точки давление p насыщенного пара двуокиси углерода зависит от температуры T как $\lg p = a b/T$, где a и b постоянные. Если p в атмосферах, то для процесса сублимации a = 9,05 и b = 1800 K, а для процесса испарения a = 6,78 и b = 1310 K. Найти:
 - а) температуру и давление в тройной точке;
- б) значения удельных теплот сублимации, испарения и плавления вблизи тройной точки.
- **6.356.** Воду массы $m=1{,}00$ кг нагрели от температуры $t_1=10~^{\circ}\mathrm{C}$ до $t_2=100~^{\circ}\mathrm{C}$, при которой она вся превратилась в пар. Найти приращение энтропии системы.

- **6.357.** Лед с начальной температурой $t_1=0\,^{\circ}\mathrm{C}$, нагревая, превратили сначала в воду, а затем в пар при $t_2=100\,^{\circ}\mathrm{C}$. Найти приращение удельной энтропии системы.
- **6.358.** Кусок меди массы m=90 г при $t_1=90$ °C положили в калориметр, в котором находился лед массы 50 г при температуре -3 °C. Найти приращение энтропии куска меди к моменту установления теплового равновесия.
- **6.359.** Кусок льда массы $m_1 = 100$ г при $t_1 = 0$ °C поместили в калориметр, в котором находилась вода массы $m_2 = 100$ г при температуре t_2 . Пренебрегая теплоемкостью калориметра, найти приращение энтропии системы к моменту установления теплового равновесия. Рассмотреть два случая:
 - a) $t_2 = 60 \, ^{\circ}\text{C}$; 6) $t_2 = 94 \, ^{\circ}\text{C}$.
- **6.360.** В калориметр, наполненный большим количеством льда при температуре $t_1 = 0$ °C, вылили m = 5,0 г расплавленного свинца, который находился при температуре плавления $t_2 = 327$ °C. Найти приращение энтропии системы свинец—лед к моменту установления теплового равновесия. Удельная теплота плавления свинца q = 22,5 Дж/г, его удельная теплоемкость c = 0,125 Дж/(г·К).
- **6.361.** Водяной пар, заполняющий пространство под поршнем в цилиндре, сжимают (или расширяют) так, что он все время остается насыщенным, находясь на грани конденсации. Полагая, что удельная теплота парообразования равна q и не зависит от температуры, найти молярную теплоемкость C пара в данном процессе как функцию температуры T. Пар считать идеальным газом, удельным объемом жидкости по сравнению с удельным объемом пара пренебречь. Вычислить C при $100\ ^{\circ}$ C.
- **6.362.** Один моль воды, находившийся в равновесии с пренебрежимо малым количеством своего насыщенного пара при температуре T_1 , перевели целиком в насыщенный пар при температуре T_2 . Полагая, что удельная теплота парообразования практически не зависит от T и равна q, найти приращение энтропии системы. Пар считать идеальным газом, удельным объемом жидкости пренебречь по сравнению с удельным объемом пара.

```
1.1. v = l/2\tau = 3.0 км/ч.
```

1.2. Аналогично.

1.3.
$$\langle v \rangle = 2v_0(v_1 + v_2)/(2v_0 + v_1 + v_2)$$
.

1.4. a) 10 cm/c; б) 25 cm/c; в)
$$t_0 = 16$$
 с.

1.5.
$$(\mathbf{r}_1 - \mathbf{r}_2)/|\mathbf{r}_1 - \mathbf{r}_2| = (\mathbf{v}_2 - \mathbf{v}_1)/|\mathbf{v}_2 - \mathbf{v}_1|$$
.

1.6.
$$v' = (v_0^2 + v^2 + 2v_0v \cos \varphi)^{1/2} \approx 40 \text{ km/y}, \varphi' = 19^\circ.$$

1.7.
$$u = \frac{v_0}{1/\sqrt{1-(v_0/v')^2}-1} = 3.0 \text{ km/y.}$$

1.8.
$$\tau_A / \tau_B = \eta / \sqrt{\eta^2 - 1} = 1.8.$$

1.9.
$$\vartheta = \arcsin(1/n) + \pi/2 = 120^{\circ}$$
.

1.10.
$$l = v_0 t \sqrt{2(1 - \sin \vartheta)} = 22 \text{ m.}$$

1.11.
$$l = (v_1 + v_2)\sqrt{v_1v_2} / g = 2.5 \text{ m.}$$

1.12.
$$t = 2a/3v$$
.

1.13. Из рис. 1 видно, что скорость сближения точек A и B равна $v-u\cos\alpha$, где угол α зависит от времени. Для встречи точек необходимо, чтобы были выполнены два условия:

$$\int_{0}^{\tau} (v - u \cos \alpha) dt = l, \qquad \int_{0}^{\tau} v \cos \alpha dt = u\tau,$$

где т — искомое время. Из этих двух выражений следует, что $\tau = v l \ / (v^2 - u^2)$.

1.14. $x_1 - x_2 = l - a\tau(t + \tau/2) = 0,24$ км. Навстречу поезду со скоростью V = 4,0 м/с.

1.15. а) 0,7 с; б) соответственно 0,7 и 1,3 м.

1.16.
$$t_m = (v_1 l_1 + v_2 l_2)/(v_1^2 + v_2^2), l_{\text{MMH}} = |l_1 v_2 - l_2 v_1|/\sqrt{v_1^2 + v_2^2}.$$

1.17.
$$CD = l / \sqrt{\eta^2 - 1}$$
.

1.18. См. рис. 2.

1.19. a) $\langle v \rangle = \pi R/\tau = 50$ cm/c; 6) $|\langle \mathbf{v} \rangle| = 2R/\tau = 32$ cm/c; B) $|\langle \mathbf{a} \rangle| = 2\pi R/\tau^2 = 10$ cm/c².

1.20. a)
$$\mathbf{v} = \mathbf{b} (1 - 2\alpha t)$$
, $\mathbf{a} = -2\alpha \mathbf{b} = \text{const}$; 6) $\Delta t = 1/\alpha$, $s = b/2\alpha$.

1.21. a)
$$x = v_0 t(1 - t/2\tau)$$
; 0,24, 0 и -2,0 м; б) 1,1, 9 и 11 с.

1.22. a)
$$v = \alpha^2 t/2$$
, $a = \alpha^2/2$; b) $\langle v \rangle = (\alpha/2)\sqrt{s}$.

1.23.
$$s = (2/3\alpha)v_0^{3/2}, t = (2/\alpha)\sqrt{v_0}$$
.

1.24. a)
$$y = (\beta/\alpha^2)x^2$$
; 6) $v = \sqrt{\alpha^2 + 4\beta^2t^2}$, $a = 2\beta$; B) $tg\phi = \alpha/2\beta t$.

1.25. a)
$$s = A\omega \tau$$
; б) $\pi/2$.

1.26.
$$v_0 = \sqrt{(1 + \alpha^2)} a/2\beta$$
.

1.27. a)
$$\mathbf{r} = \mathbf{v}_0 t + g t^2 / 2$$
; 6) $\langle \mathbf{v} \rangle = \mathbf{v}_0 + g t / 2$, $\langle \mathbf{v} \rangle = \mathbf{v}_0 - g (\mathbf{v}_0 \mathbf{g}) / g^2$.

1.28. a)
$$\tau = 2(v_0/g)\sin\alpha$$
; 6) $h = (v_0^2/2g)\sin^2\alpha$, $l = (v_0^2/g)\sin2\alpha$, $\alpha = 76^\circ$;

B)
$$y = x \operatorname{tg} \alpha - (g / 2v_0^2 \cos^2 \alpha) x^2$$
.

- **1.29.** a) $\cos \alpha = 1/\eta^{1/3}$, $\alpha = 60^{\circ}$; 6) $tg\alpha = \sqrt{2}$, $\alpha = 54,7^{\circ}$.
- **1.30.** $l = 8 h \sin \alpha$.
- **1.31.** Hepes 0.41 или 0.71 мин в зависимости от начального угла.

Рис. 1

Рис. 2

1.32.
$$\Delta t = \frac{2v_0 \sin(\theta_1 - \theta_2)}{g(\cos \theta_1 + \cos \theta_2)} = 11 \text{ c.}$$

1.33. a)
$$x = (\alpha/2v_0)y^2$$
; b) $a_{\tau} = \alpha^2 y / \sqrt{1 + (\alpha y / v_0)^2}$, $a_n = \alpha v_0 / \sqrt{1 + (\alpha y / v_0)^2}$.

1.34. a)
$$y = (\beta/2\alpha)x^2$$
; 6) $R = v^2/a_n = v^2/\sqrt{a^2-a_\tau^2} = (\alpha/\beta)[1+(x\beta/\alpha)^2]^{3/2}$.

1.35.
$$v = \sqrt{2 \alpha x}$$
.

1.36.
$$a = \alpha \sqrt{1 + (4 \pi n)^2} = 0.8 \text{ m} / \text{c}^2$$
.

1.37. a)
$$v = v_0 / (1 + v_0 t / R) = v_0 e^{-s/R}$$
; 6) $a = \sqrt{2} v_0^2 / (Re^{2s/R}) = \sqrt{2} v^2 / R$.

1.38.
$$tg\phi = 2s/R$$
.

1.39.
$$a(0) = A^2 \omega^2 / R = 2.6 \text{ m/c}^2$$
, $a(A) = A \omega^2 = 3.2 \text{ m/c}^2$.
1.40. $a = \sqrt{4 \alpha^2 + (9 \alpha^4 / 16 \beta^2 R)^2}$.

1.40.
$$a = \sqrt{4\alpha^2 + (9\alpha^4/16\beta^2R)^2}$$
.

1.41.
$$R = \alpha^3/2\beta s$$
, $a = \alpha \sqrt{1 + (4\beta s^2/\alpha^3)^2}$.

1.42. a)
$$a = 2\alpha v^2$$
, $R = 1/2\alpha$; 6) $a = \beta v^2/\alpha^2$, $R = \alpha^2/\beta$.

1.43.
$$v = 2R\omega = 0.40 \text{ m/c}, \ a = 4R\omega^2 = 0.32 \text{ m/c}^2.$$

1.44.
$$a = (v/t)\sqrt{1 + 4\beta^2 t^4} = 0.7 \text{ m/c.}$$

1.45.
$$\omega = 2 \pi n v / l = 2.0 \cdot 10^3 \text{ pag } / \text{ c.}$$

1.46.
$$\omega = v / \sqrt{R^2 - vth / \pi}$$
.

1.47.
$$\langle \omega \rangle = 2a/3 = 4 \text{ pag/c}, \langle \beta \rangle = \sqrt{3 ab} = 6 \text{ pag/c}^2$$
.

1.48.
$$t = \sqrt[3]{(4/\alpha) tg\phi} = 7 c$$
.

1.49.
$$\langle \omega \rangle = \omega_0/3$$
.

1.50. a)
$$\varphi = (1 - e^{-at})\omega_0 / a$$
; б) $\omega = \omega_0 e^{-at}$.

1.51.
$$\omega_z = \pm \sqrt{2\beta_0 \sin \varphi}$$
, cm. puc. 3.

1.52. а) $a_A = v^2 / R = 2.0$ м/с², вектор a_A направлен все время к центру колеса; б) s = 8R = 4.0 м.

1.53. a)
$$v_A = 2 a t = 10 \text{ cm} / \text{c}, \quad v_B = \sqrt{2} a t = 7 \text{ cm} / \text{c};$$

6)
$$a_A = 2 a \sqrt{1 + (at^2/2R)^2} = 5.6 \text{ cm/c}^2$$
, $a_O = a^2 t^2/R = 2.5 \text{ cm/c}^2$.

1.54.
$$R_A = 4r$$
, $R_B = r\sqrt{8}$.

1.55.
$$\omega = \sqrt{\omega_1^2 + \omega_2^2} = 5 \text{ pag/c}, \quad \beta = \omega_1 \omega_2 = 12 \text{ pag/c}^2.$$

1.56.
$$\cos \alpha = \frac{a^2 + \beta^2}{\beta \sqrt{3 a^2 + \beta^2}}$$
, отсюда $\alpha = 19^\circ$.

1.57. a)
$$\omega = v / R \cos \alpha = 2,3 \text{ pag } / c;$$
 б) $\beta = (v / R)^2 \operatorname{tg}\alpha = 2,3 \text{ pag } / c^2$.

1.58.
$$\omega = \omega_0 \sqrt{1 + (\beta_0 t / \omega_0)^2} = 0.6 \text{ pag/c}, \ \beta = \beta_0 \sqrt{1 + \omega_0^2 t^2} = 0.2 \text{ pag/c}.$$

1.59. Соответственно $-F_0$ и $-2F_0$.

Рис. 3

Рис. 4

- **1.60.** $\mathbf{F} = -m\omega^2 \mathbf{r}$, где \mathbf{r} радиус-вектор частицы относительно начала координат; $F = m\omega^2 \sqrt{x^2 + y^2}$.
 - **1.61.** $t = F_{\pi\pi}(m_1 + m_2)/(m_1\alpha_2 + m_2\alpha_1)$.
 - 1.62. $\Delta m = 2ma/(g + a) = 10$ Kr.
 - 1.63. $\mathbf{a} = \frac{m_0 k(m_1 + m_2)}{m_0 + m_1 + m_2} \mathbf{g}, F = \frac{(1+k)m_0}{m_0 + m_1 + m_2} m_2 \mathbf{g}.$
 - **1.64.** a) $F = \frac{(k_1 k_2)m_1m_2g\cos\alpha}{m_1 + m_2}$; 6) $tg\alpha < \frac{k_1m_1 + k_2m_2}{m_1 + m_2}$.
 - **1.65.** $k = [(\eta^2 1)/(\eta^2 + 1)] tg\alpha = 0.16$.
 - **1.66.** $k = [(\eta + 1)/(\eta 1)] tg\alpha = 0,3.$
 - 1.67. a) $m_2/m_1 > \sin \alpha + k \cos \alpha$; 6) $m_2/m_1 < \sin \alpha k \cos \alpha$.
 - **1.68.** $\mathbf{a}_2 = \mathbf{g}(\eta \sin \alpha k \cos \alpha)/(\eta + 1) = 0.05 \ \mathbf{g}.$
- **1.69.** При $t \le t_0$ ускорения $a_1 = a_2 = \alpha t / (m_1 + m_2)$; при $t \ge t_0$ ускорения $a_1 = kgm_2/m_1$, $a_2 = (\alpha t km_2 g)/m_2$. Здесь $t_0 = kgm_2(m_1 + m_2)/\alpha m_1$.
 - 1.70. $\tau = \sqrt{2l/(3a + kg)}$.
 - **1.71.** $tg2\alpha = -1/k$, $\alpha = 49^{\circ}$.
 - 1.72. При $tg\alpha = 1/k$ имеем $l_{\text{мин}} = v_0^2/2g\sqrt{1+k^2}$.
 - 1.73. $tg\alpha = k$, $F_{MHH} = kmg / \sqrt{1 + k^2}$.
 - **1.74.** $F_{\text{TD}} = (2g a')mM / (m + M).$
 - **1.75.** a) $\mathbf{a}_{1}' = \frac{m_{1} m_{2}}{m_{1} + m_{2}} (\mathbf{g} \mathbf{a}_{0}); 6) \mathbf{F} = \frac{4m_{1}m_{2}}{m_{1} + m_{2}} (\mathbf{g} \mathbf{a}_{0}).$
 - 1.76. $\mathbf{a}_1 = \frac{4m_1m_2 + m_0(m_1 m_2)}{4m_1m_2 + m_0(m_1 + m_2)} \mathbf{g}.$
 - 1.77. $a_{\text{MMH}} = g(1-k)/(1+k)$.
 - 1.78. $a_{\text{MARC}} = g(1 + k \operatorname{ctg}\alpha)/(\operatorname{ctg}\alpha k)$.
 - 1.79. $a = g \sin \alpha \cos \alpha / (\sin^2 \alpha + m_1 / m_2)$.

- **1.80.** a) $v = mg^2 \cos \alpha/(2k \sin^2 \alpha)$; 6) $s = m^2 g^3 \cos \alpha/(6k^2 \sin^3 \alpha)$.
- **1.81.** $v = \sqrt{(2g/3k) \sin \alpha}$.
- **1.82.** $v = -(g/\omega) \ln \cos \vartheta = 4.0 \text{ m/c.}$
- **1.83.** $\Delta \mathbf{p} = mgt, |\Delta \mathbf{p}| = -2m(\mathbf{v}_0 \mathbf{g})/g.$
- **1.84.** a) $\mathbf{p} = \mathbf{b}\tau^3/6$; б) $s = b\tau^4/12m$.
- **1.85.** $s = (\omega t \sin \omega t) F_0 / m \omega^2$, cm. puc. 4.
- **1.86.** $t = \pi/\omega$, $s = 2F_0/m\omega^2$, $v_{\text{MARC}} = F_0/m\omega$.
- **1.87.** a) $v = v_0 \exp(-tr/m)$, $t \to \infty$; 6) $v = v_0 sr/m$, $s_{\text{полн}} = mv_0/r$.
- **1.88.** $t = h(v_0 v)/v_0 v \ln(v_0/v)$.
- 1.89. $s = (2/\gamma) \text{tg}\alpha$, $v_{\text{макс}} = \sqrt{(g/\gamma) \sin \alpha \text{ tg}\alpha}$. Чтобы привести уравнение движения к виду, удобному для интегрирования, надо представить ускорение как $\mathrm{d}v/\mathrm{d}t$ и затем произвести замену переменных по формуле $\mathrm{d}t = \mathrm{d}x/v$.
- **1.90.** $s=b\left(t-t_{0}\right)^{3}/6m$, где $t_{0}=kmg/b$ момент времени, с которого начнется движение. При $t\leqslant t_{0}$ путь s=0.
 - 1.91. 2,1, 0,7 и 1,5 кН.
- **1.92.** a) $a = g\sqrt{1 + 3\cos^2 \vartheta}$, $F = 3mg\cos \vartheta$; б) $F = \sqrt{3}mg$; в) $\cos \vartheta = 1/\sqrt{3}$, $\vartheta = 54.7$ °.
 - **1.93.** tg(9/2) = 1/2, $9 \approx 53^{\circ}$.
 - **1.94.** $a' = \sqrt{a(g a/4)} = 5.9 \text{ m/c}^2$.
 - **1.95.** $\theta = \arccos(2/3) \approx 48^{\circ}, \quad v = \sqrt{2gR/3}.$
 - **1.96.** $\varepsilon = 1/(\varkappa/m\omega^2 1)$. От направления вращения не зависит.
 - **1.97.** r = R/2, $v_{\text{MAKC}} = \sqrt{k_0 gR}/2$.
 - 1.98. $s = (R/2)\sqrt{(kg/a_{\tau})^2 1} = 60 \text{ m.}$
 - **1.99.** $v \le \alpha \sqrt{kg/b}$.
 - 1.100. $F = (\operatorname{ctg} \theta + \omega^2 R / g) mg / 2\pi$.
 - **1.101.** $v = v_0 \exp(-k\alpha) = 5.0$ m/c.
- **1.102.** а) Рассмотрим малый элемент нити на блоке (рис. 5). Вследствие его невесомости $dT = dF_{\rm Tp} = k \ dF_n$ и $dF_n = T \ d\alpha$. Отсюда $dT/T = k \ d\alpha$. Проинтегрировав это уравнение, получим $k = (\ln \eta_0)/\pi$; б) $a = g(\eta \eta_0)/(\eta + \eta_0)$.
 - 1.103. $F = (mv_0^2/R) \cos^2 \alpha$.
 - **1.104.** a) $v = (2F/m\omega) |\sin(\omega t/2)|$;

- **1.106.** $a = [1 \cos(l/R)]Rg/l$.
- 1.107. $v = \sqrt{2gR/3}$.
- 1.108. Если $\omega^2 R > g$, то имеются два положения равновесия: $\theta_1 = 0$ и $\theta_2 = \arccos(g/\omega^2 R)$. Если $\omega^2 R < g$, то положение равновесия только $\theta_1 = 0$. Пока существует одно нижнее положение равновесия, оно устойчиво. При появлении же второго положения равновесия (оно всегда устойчиво) нижнее положение становится неустойчивым.
 - 1.109. $h \approx (\omega s^2/v) \sin \varphi = 7$ см, где ω угловая скорость вращения Земли.

Рис. 5

1.110.
$$F = m\omega^2 R / 4 = 45 \text{ H}.$$

1.111. а) $F = 2mv\omega \sin \varphi = 3.8$ кH, на правый (по ходу поезда) рельс; б) по параллели с востока на запад со скоростью $v = (\omega R/2)\cos\phi \approx 420$ км/ч. Здесь ω угловая скорость вращения Земли, R — ее радиус.

1.112.
$$F_{\text{KOD}} = 2 m \omega v_0 \sqrt{1 + \omega^2 t^2} = 4.2 \text{ H.}$$

1.113.
$$F = m \sqrt{g^2 + \omega^4 r^2 + (2v'\omega)^2} = 8 \text{ H.}$$

1.114.
$$F_{\text{KOD}} = 2m\omega^2 r \sqrt{1 + (v_0 / \omega r)^2} = 2.8 \text{ H.}$$

1.115. a)
$$a' = \omega^2 R$$
; б) $F_{\text{MH}} = m\omega^2 r \sqrt{(2R/r)^2 - 1}$.

1.116. Отклонится на восток на $x \approx (2/3)\omega h \sqrt{2h/g} = 24$ см, где ω — угловая скорость вращения Земли.

1.117.
$$\mathbf{a}_C = \mathbf{g}(m_1 - m_2)^2/(m_1 + m_2)^2$$
.

1.118.
$$r = (g/\omega^2) \text{tg} \vartheta = 0.8 \text{ cm}, F = mg/\cos\vartheta = 5 \text{ H}.$$

1.119.
$$F_{TD} = mg[\sin\alpha + (\omega^2 l/g)\cos\alpha] = 6 \text{ H.}$$

1.120.
$$v_{\text{MUH}} = \sqrt{(R-l)g/k} = 11 \text{ m/c.}$$

1.121. Импульс $\mathbf{p} = \mathbf{p}_0 + mgt$, где $\mathbf{p}_0 = m_1\mathbf{v}_1 + m_2\mathbf{v}_2$, $m = m_1 + m_2$; $\mathbf{r}_C = \mathbf{v}_0t + m_2\mathbf{v}_0$ $+gt^2/2$, где $\mathbf{v}_0 = (m_1\mathbf{v}_1 + m_2\mathbf{v}_2)/(m_1 + m_2)$.

1.122.
$$F = \mu v^2/l$$
, где $\mu = m_1 m_2/(m_1 + m_2)$.

1.123. a)
$$l = -l'm/(M+m)$$
; 6) $F = -\lceil mM/(M+m)\rceil dv'/dt$.

1.124.
$$l = l'm/2M$$
.

1.125.
$$\mathbf{v} = (\mathbf{v}_1 + \eta \mathbf{v}_2)/(1 + \eta), \ v = 4 \text{ M/c.}$$

1.126.
$$u = v_0 \cos \theta / (1 + \eta) = 25 \text{ m/c}.$$

1.127.
$$\tau = (p \cos \alpha - M \sqrt{2gl \sin \alpha})/Mg \sin \alpha$$
.

1.128.
$$a_n = (m_1 \sqrt{a_1} - m_2 \sqrt{a_2})^2 / (m_1 + m_2)^2 = 2.0 \text{ M/c}^2.$$

1.129.
$$v' = \sqrt{9v_0^2 + 2v^2} = 14$$
 m/c.

1.130.
$$v_2 = \sqrt{v_1^2 + 4v_0^2 \cos^2 \alpha} = 0.17 \text{ km/c.}$$

1.131.
$$v_1 = \sqrt{2 kg(\eta^2 s_2 - s_1)} = 5 \text{ m/c.}$$

1.132.
$$p = (2m/3)\sqrt{2gl} = 3.5 \text{ Kg} \cdot \text{M/c}$$
.

1.133.
$$\mathbf{v}_1 = -m\mathbf{v}/(M-m)$$
, $\mathbf{v}_2 = M\mathbf{v}/(M-m)$.

1.134.
$$\mathbf{v}_{38\pi H} = \mathbf{v}_0 - \mathbf{u} m / (M + m), \quad \mathbf{v}_{men} = \mathbf{v}_0 + \mathbf{u} m M / (M + m)^2.$$

1.134.
$$\mathbf{v}_{\text{задн}} = \mathbf{v}_0 - \mathbf{u} m / (M + m), \quad \mathbf{v}_{\text{пер}} = \mathbf{v}_0 + \mathbf{u} m M / (M + m)^2.$$
1.135. a) $\mathbf{v}_1 = -\frac{2m}{M + 2m} \mathbf{u}$; б) $\mathbf{v}_2 = -\frac{m (2M + 3m)}{(M + m)(M + 2m)} \mathbf{u}$. Отношение ско-

ростей $v_2/v_1 = 1 + m/2(M + m) > 1$.

1.136. Пусть в некоторый момент t ракета имела массу m и скорость v (относительно интересующей нас системы отсчета). Рассмотрим инерциальную систему отсчета, имеющую ту же скорость, что и ракета в $\partial annый$ момент. В этой системе отсчета приращение импульса системы «ракета – выброшенная порция газа» за время dt есть $d\mathbf{p} = m d\mathbf{v} + \mu dt \cdot \mathbf{u} = \mathbf{F} dt$. Дальнейшее очевидно.

1.137.
$$\mathbf{v} = -\mathbf{u} \ln(m_0/m)$$
.

1.138.
$$m = m_0 \exp(-at/u)$$
.

1.139.
$$v = u \ln(m_0/m) - gt$$
.

1.140. a)
$$t = (u/g)\ln(1 + \eta) = 20$$
 c; 6) $\mu = (g/u)m_0\exp(-gt/u)$.

- 1.141. $\alpha = (u/v_0)\ln(m_0/m)$.
- **1.142.** $\mathbf{a} = \mathbf{F} / (m_0 \mu t), \ \mathbf{v} = (\mathbf{F} / \mu) \ln[m_0 / (m_0 \mu t)].$
- **1.143.** $\mathbf{v} = \mathbf{F}t / (m_0 + \mu t), \ \mathbf{a} = \mathbf{F}m_0 / (m_0 + \mu t)^2.$
- **1.144.** $v = \sqrt{2gh \ln(l/h)}$.
- **1.145.** a) A = 2Fl; 6) A = Fl.
- 1.146. $A = \mathbf{F}(\mathbf{r}_2 \mathbf{r}_1) = -17$ Дж.
- 1.147. $v = \sqrt{v_0^2 + 2FR/m} = 16 \text{ m/c}.$
- **1.148.** $A = m\alpha^4 t^2/8$.
- **1.149.** $F = \alpha \sqrt{1 + (2s/R)^2}$.
- 1.150. $F = x/m\alpha^2$.
- 1.151. A = mg(h + kl).
- 1.152. $v = \sqrt{2(2gh A/m)} = 2.0 \text{ m/c}.$
- 1.153. $A = \frac{kmgl}{(1 k \operatorname{ctg}\alpha)} = -0.05 \text{ Дж.}$
- 1.154. $A_{\text{TD}} = -2F^2/\gamma mg = -0.12$ Дж.
- 1.155. $F_{\text{MWH}} = (m_1 + m_2/2)kg$.
- 1.156. A = kmgl/2 = 28 мДж.
- 1.157. $A = -(1 \eta)\eta mgl/2 = -1,3$ Дж.
- 1.158. $\langle P \rangle = 0$, $P = mg(gt v_0 \sin \alpha)$.
- **1.159.** $P = mR\alpha t$, $\langle P \rangle = mR\alpha t/2$.
- **1.160.** $\langle P \rangle = -kmgv_0/2 = -2.0 \text{ Bt.}$
- 1.161. $|P|_{\text{Make}} = (mv_0^2/2)\sqrt{\alpha g}$.
- 1.162. P = Mgu/2.
- 1.163. $A = m\omega^2(r_2^2 r_1^2)/2 = 0.20$ Дж.
- 1.164. $A_{\text{TD}} = m(v^2 v_0^2 \omega^2 r^2)/2 = -0.10$ Дж.
- **1.165.** $A_{\text{мин}} = \varkappa(\Delta l)^2/2$, где $\varkappa = \varkappa_1 \varkappa_2/(\varkappa_1 + \varkappa_2)$.
- 1.166. A = 3mg/4a, $\Delta U = mg/2a$.
- 1.167. $x_0 = 3\alpha/2\beta = 2.0$ m.
- 1.168. $v = \sqrt{l (\alpha l / m g)} = 3.0 \text{ m/c}.$
- 1.169. а) $r_0=2a/b$, устойчиво; б) $F_{\rm make}=b^3/27a^2$. См. рис. 6.
- 1.170. $A_{\text{crop}} = m(v_2^2 v_1^2)/2 + \alpha(x_2y_2 x_1y_1) = 6 \text{ мДж.}$
- 1.171. $\varkappa = 4\pi^2 m/3r_0 \tau^2 = 12$ Дж/м³.
- **1.172.** $F = \sqrt{-2 \alpha U} / \sin 2 \vartheta = 2,4 \text{ H.}$
- 1.173. h = H/2, $s_{\text{make}} = H$.
- 1.174. $v = \sqrt{(4/27)gh}$.
- 1.175. $m = \Delta F/6g = 40$ r.
- **1.176.** $v_{\text{MMH}} = \sqrt{5 gl}$, F = 3mg.
- 1.177. $F = \sqrt{\varkappa m (2gl v^2)} = 8 \text{ H.}$
- **1.178.** $A = \varkappa l_0^2 \eta (1 + \eta) / 2(1 \eta)^2$, где $\eta = m\omega^2/\varkappa$.
- 1.179. $h = 2mg/\varkappa$.
- **1.180.** a) $\Delta l = (1 + \sqrt{1 + 2 \varkappa l / mg}) mg / \varkappa$; 6) $E_1 E_2 = mgl(1 + mg/2\varkappa l)$.
- 1.181. $x_{\text{Make}} = \left(g + \sqrt{2ga a^2}\right)m / \varkappa = 23 \text{ cm.}$
- 1.182. $A_{\text{тр}} = mg(3h_2/2 h_1) = -11$ мДж.

Рис. 6

1.183.
$$v_{\text{Makc}} = g(1 - k)\sqrt{m/2\pi} = 0.62 \text{ M/c.}$$

1.184.
$$A_{\text{TP}} = \frac{kmgl_0}{2} \frac{1 - \cos \vartheta}{\cos \vartheta(\sin \vartheta + k \cos \vartheta)}$$
.

1.185.
$$tg\alpha_2 = v_1 \sin\alpha_1/\sqrt{v_1^2 \cos^2\alpha_1 - 2(U_2 - U_1)/m}$$
. При $(mv_1^2/2)\cos\alpha_1 < (U_2 - U_1)$.

1.186.
$$v_{\text{MAKC}} = \sqrt{2gl(2-\sqrt{3})/3}$$
, $\Delta h_{\text{MAKC}} = 2l/3$.

1.187. a)
$$\mathbf{V}=(m_1\mathbf{v}_1+m_2\mathbf{v}_2)/(m_1+m_2);$$
 б) $K=\mu(\mathbf{v}_1-\mathbf{v}_2)^2/2,$ где $\mu=m_1m_2/(m_1+m_2).$

1.189.
$$\tilde{E} = \mu(v_1^2 + v_2^2)/2$$
, где $\mu = m_1 m_2/(m_1 + m_2)$.

1.190. a)
$$\Delta U_{\text{внеш}} = m_1^2 v_1^2 / 2(m_1 + m_2)$$
; б) $E_{\text{coo}} = m_1 v_1^2 / 2 + m_2 v_2^2 / 2 - m_1^2 v_1^2 / 2(m_1 + m_2)$.

1.191.
$$v_C = x\sqrt{\varkappa m_2} / (m_1 + m_2).$$

1.192.
$$l_{\text{MAKC}} = l_0 + F/\varkappa$$
, $l_{\text{MUH}} = l_0$.

1.193.
$$\Delta l > 3mg/\varkappa$$
.

1.194. a)
$$v = (2M/m)\sqrt{gl} \sin(9/2)$$
; 6) $\eta \approx 1 - m/M$.

1.195.
$$h = Mv^2/2g(M+m)$$
.

1.196.
$$A = - \mu g h$$
, где $\mu = m M/(m+M)$.

1.197.
$$v_0 > \sqrt{2 \, kgl(1 + \eta)} = 1.8 \, \text{m/c}.$$

1.198.
$$\Delta K = -\mu (\mathbf{v}_1 - \mathbf{v}_2)^2 / 2$$
, где $\mu = m_1 m_2 / (m_1 + m_2)$.

1.199.
$$M = m (p_0^2 + p^2 - 2p_0 p \cos \alpha) / (p_0^2 - p^2).$$

1.200.
$$l_{\text{MMH}} = a l_0 / (a + l_0 m v^2 \cos^2 \alpha)$$
.

1.201.
$$v_2 = \sqrt{v^2 - v_1^2}$$
, 90°.

1.202.
$$\cos \theta' = (v_1 v_2 / v_1' v_2') \cos \theta$$
.

1.203. a)
$$\eta = 2m_1/(m_1 + m_2)$$
; б) $\eta = 4m_1m_2/(m_1 + m_2)^2$.

1.204.
$$m_2 = 3m_1$$
.

1.205.
$$m_1/m_2 = 1 + 2\cos\theta = 2.0$$
.

1.206.
$$v_{\text{мин}} = \sqrt{2\Delta E / \mu}$$
, где $\mu = mM/(m+M)$, m — масса нейтрона.

1.207.
$$\eta = (1/2)\cos^2\alpha = 0.25$$
.

1.208.
$$v_{\text{Makc}} = v \left(1 + \sqrt{2(\eta - 1)}\right) = 1.0 \text{ km/c.}$$

1.209. Частица 1 будет двигаться в ту же сторону, но со скоростью $v' = (1 - \sqrt{1-2\eta}) v/2$. При $\eta \ll 1$ скорость $v' \approx \eta v/2 = 5$ см/с.

1.210.
$$\Delta K/K = (1 + m/M) tg^2 \vartheta + m/M - 1 = -40\%$$
.

1.211. а)
$$\tilde{p} = \mu \sqrt{v_1^2 + v_2^2}$$
; б) $\tilde{K} = \mu (v_1^2 + v_2^2)/2$. Здесь $\mu = m_1 m_2/(m_1 + m_2)$.

1.212.
$$\sin \theta_{\text{make}} = m_2/m_1$$
.

1.213.
$$\mathbf{v}' = -\mathbf{v}(2 - \eta^2)/(6 - \eta^2)$$
. При $\eta \le \sqrt{2}$.

1.215. N =
$$(aB - bA)$$
k, где **k** — орт оси Z ; $l = |aB - bA| / \sqrt{A^2 + B^2}$.

1.216. N =
$$2 b \sqrt{a/b}$$
.

1.217.
$$M = (1/2)mgv_0t^2\cos\alpha$$
, $M = (mv_0^3/2g)\sin^2\alpha\cos\alpha = 37 \text{ kg·m}^2/\text{c.}$

1.218.
$$M = (1/2)mght \sin 2\alpha = 1.6 \cdot 10^{-2} \text{ kg/m}^2/\text{c.}$$

1.219. а) Относительно всех точек прямой, перпендикулярной стенке и проходящей через точку O; б) $|\Delta \mathbf{M}| = 2mvl\cos\alpha$.

- **1.220.** $M = m^2 v^3 / F_m = 1, 2.10^{-2} \text{ kg·m}^2 / \text{c.}$
- **1.221.** Относительно центра окружности. $|\Delta {\bf M}| = 2\sqrt{1-(g/\omega^2 l)^2} \ mgl/\omega$.
- $1.222. |\Delta \mathbf{M}| = hmV.$
- **1.223.** $M = m\omega v_0^2 t^2$.
- 1.224. $m = 2 k r_1^2 / v_2^2$.
- 1.225. $R = \eta^2 r_0$.
- **1.226.** $v_0 = \sqrt{2gl/\cos \vartheta}$.
- **1.227.** $h_2 = \left(1 + \sqrt{1 + 8gh_1/v_1^2}\right)v_1^2/4g$.
- **1.228.** $F = m\omega_0^2 r_0^4 / r^3$.
- 1.229. $M_z = Rmgt$.
- **1.230.** $M = FRt/2\sin(\theta/2) = 30 \text{ kg/m}^2/c.$
- 1.231. $M = Rmgt \sin\alpha$. Не изменится.
- **1.232.** $M' = M [r_0 p]$. Если p = 0, т. е. в системе центра масс.
- 1.234. $\tilde{\mathbf{M}} = [(\mathbf{r}_2 \mathbf{r}_1), \mu(\mathbf{v}_2 \mathbf{v}_1)],$ где $\mu = m_1 m_2 / (m_1 + m_2).$
- 1.235. $\tilde{M} = lmv_0/3$.
- **1.236.** $\varepsilon_{\text{Makc}} \approx m v_0^2 / \varkappa l_0^2$.
- **1.237.** $T = 2\pi \gamma M/v^3 = 225$ суток, где M масса Солнца.
- **1.238.** a) B 5,2 pasa; б) 13 км/c, $2,2\cdot10^{-4} \text{ м/c}^2$.
- **1.239.** $T = \pi \sqrt{(r_1 + r_2)^3/2\gamma M}$, где M масса Солнца. Достаточно рассмотреть движение по окружности, радиус которой равен большой полуоси данного эллипса, т. е. $(r_1 + r_2)/2$; по Кеплеру период обращения будет тем же.
 - 1.240. $r_{\text{Makc}} = r(2\eta^{2/3} 1)$.
- 1.241. Падение тела на Солнце можно рассматривать как движение по очень вытянутому (в пределе вырожденному) эллипсу, большая ось которого равна радиусу R земной орбиты. Тогда по Кеплеру $(2\tau/T)^2 = (R/2)^3/R^3$, где τ время падения (время половины оборота по вытянутому эллипсу), T период обращения Земли вокруг Солнца. Отсюда $\tau = T/\sqrt{32} = 64$ суток.
 - **1.242.** $t = (\pi/\sqrt{\gamma M})[(r+R)/2]^{3/2}$, где M и R масса и радиус Луны.
 - **1.243.** Не изменятся.
 - 1.244. $m = 4\pi^2 l^3/\gamma T^2$.
 - 1.245. $M = m \sqrt{2 \gamma m_C r_1 r_2 / (r_1 + r_2)}$, где m_C масса Солнца.
 - **1.246.** $E = K + U = -\gamma m m_C/2a$, где m_C масса Солнца.
 - 1.247. $r_m = \left(1 \pm \sqrt{1 (2 \eta)\eta \sin^2 \alpha}\right) r_0 / (2 \eta)$, где $\eta = r_0 v_0^2 / \gamma m_C$.
 - 1.248. $r_{\text{MMH}} = \left(\sqrt{1 + (lv_0^2 / \gamma m_C)^2} 1\right) \gamma m_C / v_0^2$.
- 1.249. а) Рассмотрим сначала тонкий сферический слой радиуса ρ и массы δM . Энергия взаимодействия частицы с элементарным пояском δS этого слоя (рис. 7) есть $\mathrm{d} U = -\gamma (m\delta M/2l) \sin\vartheta \mathrm{d}\vartheta$. Для треугольника OAP по теореме косинусов $l^2 = \rho^2 + r^2 2\rho r \cos\vartheta$. Найдя дифференциал этого выражения, преобразуем формулу для $\mathrm{d} U$ к виду, удобному для интегрирования. После интегрирования

Рис. 7

Рис. 8

по всему слою найдем $\delta U = -\gamma m \delta M/r$. И наконец, интегрируя по всем слоям шара, получим $U = -\gamma m M/r$.

б)
$$F_r = -\partial U/\partial r = -\gamma m M/r^2$$
.

1.250. Рассмотрим тонкий сферический слой вещества (рис. 8). Построим конус с малым углом раствора и вершиной в точке A. Площади участков, вырезанных этим конусом в слое, относятся как $\,\mathrm{d}S_1\colon\mathrm{d}S_2=r_1^{\,2}\colon r_2^{\,2}$. Массы вырезанных участков пропорциональны их площадям. Поэтому силы притяжения к ним частицы A равны по модулю и противоположны по направлению. Дальнейшее очевидно.

1.251.
$$G(r \leq R) = -(\gamma M/R^3)\mathbf{r}$$
,

$$G(r \geqslant R) = -(\gamma M/r^3)\mathbf{r};$$

$$\varphi(r \leqslant R) = -3(1 - r^2/3R^2)\gamma M/2R,$$

$$φ(r \geqslant R) = -γM/r$$
. См. рис. 9.

1.252. $G = -(4/3)\pi\gamma\rho l$. Поле внутри полости однородное.

$${f 1.253.}$$
 $p=3(1-r^2/R^2)\gamma M^2/8\pi R^4.$ Около ${f 1,7\cdot 10}^6$ атм.

1.254. а) Разобьем сферический слой на малые элементы, каждый массы δm . Тогда энергия взаимодей-

ствия каждого элемента со всеми остальными равна $\delta U = -\gamma m \delta m/R$. Суммируя по всем элементам и учитывая, что каждая пара взаимодействующих элементов войдет при этом дважды, получим $U = -\gamma \, m^2/\, 2R$;

$$6) U = -3\gamma m^2/5R.$$

1.255.
$$a_1:a_2:a_3=1:0,0034:0,0006.$$

1.256.
$$h \approx \eta R / 2 = 32$$
 км; $h = R (\sqrt{2} - 1) \approx 2640$ км, где R — радиус Земли.

1.257.
$$h = R/(2gR/v_0^2-1)$$
.

1.258.
$$T = \sqrt{3\pi/\gamma\rho} = 1.8$$
 ч.

1.259.
$$h = R(gR/v^2 - 1)$$
.

1.260.
$$|\Delta \mathbf{p}| = m \sqrt{2 gR} \sin(\alpha/2)$$
.

1.261. $r = \sqrt[3]{\gamma M \left(T/2\pi\right)^2} = 4.2 \cdot 10^4$ км, где M и T — масса Земли и период ее вращения вокруг оси; 3,1 км/с.

1.262.
$$T \approx 3mgl/2\eta^3 R = 0.20$$
 H, где R — радиус Земли.

- **1.263.** $M=4\pi^2R^3(1+T/\tau)^2/\gamma T^2=6\cdot 10^{24}$ кг, где T период вращения Земли вокруг оси.
- 1.264. а) $v' = 2\pi R / T + \sqrt{\gamma M / R} = 7,0$ км/с; б) $a' = (1 + (2\pi R / T)\sqrt{R / \gamma M})^2 \gamma M / R^2 = 4,9$ м/с². Здесь M масса Земли, T период ее вращения вокруг оси.
 - **1.265.** $v_0 = \sqrt{2 g R (1 R / 2 a)}$, где R радиус Земли.
- **1.266.** Убыль полной энергии спутника за время $\mathrm{d}t$ есть $-\mathrm{d}E = Fv\mathrm{d}t$. Представив E и v как функции расстояния r между спутником и центром Луны, преобразуем это уравнение к виду, удобному для интегрирования. В результате: $\tau \approx (\sqrt{\eta} 1) \, m \, / \, \alpha \sqrt{gR}$.
 - **1.267.** $v_1 = 1,67$ km/c, $v_2 = 2,37$ km/c.
- **1.268.** $\Delta v = \sqrt{\gamma M \ / R} \ (1 \sqrt{2} \) = -0.70 \$ км/с, где M и R масса и радиус Луны.
 - 1.269. $\Delta v = (\sqrt{2} 1)\sqrt{gR} = 3.27$ км/с, где R радиус Земли.
 - **1.270.** $v_r = \sqrt{gR/\eta} = 5.0$ км/с, где R радиус Земли.
- 1.271. Воспользуемся законом сохранения энергии в поступательно движущейся системе отсчета, связанной с центром Земли: $mv_3^2/2 = \gamma mM/R + mv^2/2$, где m масса тела, v его скорость вдали от Земли, масса которой M и радиус R. И второе условие: $v + V_1 = \sqrt{2} \ V_1$, где V_1 скорость Земли на орбите, $\sqrt{2} \ V_1$ скорость, необходимая для того, чтобы тело смогло покинуть Солнечную систему. Исключив из этих двух уравнений v, получим в результате $v_3 \approx \sqrt{2v_1^2 + (\sqrt{2}-1)^2 V_1^2} \approx 17 \ \text{км/c}$. Здесь $v_1^2 = \gamma M/R$, $V_1^2 = \gamma M_C/r$, M_C масса Солнца.
 - 1.272. $l = 2bF_2/ma = 1.0$ M.
 - 1.273. $F = \frac{kmg}{(1+k)\sin\alpha} = 13 \text{ H}, \quad a = \frac{kg}{1+k}(\cot\alpha 1) = 1,2 \text{ M/c}^2.$
 - **1.274.** $l = |aA bB|/\sqrt{A^2 + B^2}$.
 - **1.275.** a) b = (k + F/mg)l/2 = 30 mm; 6) kmg < F < (1 k)mg.
 - 1.276. A = (l/2a 1)kmgl/2.
 - **1.277.** a) $I = ml^2/3$; 6) $I = (ml^2/12) \sin^2 \alpha$.
 - **1.278.** $I = m(a^2 + b^2)/3$.
 - **1.279.** $I = ma^2/6 = 4,0 \text{ r} \cdot \text{m}^2$.
 - **1.280.** a) $I = \pi \rho b R^4 / 2 = 2$,8 r·m²; 6) $I = 3mR^2 / 10$.
 - 1.281. $I = ma^2/2$.
 - 1.282. $I = mR^2/4$.
 - **1.283.** $I_C = (I_1 x_2^2 I_2 x_1^2) / (x_2^2 x_1^2) = 0.75 \text{ r} \cdot \text{m}^2$.
 - **1.284.** a) $I_O = 13 \ mR^2 / 24$; б) $I_C = 37 \ mR^2 / 72$.
 - 1.285. $I = 2mR^2/3$.
- **1.286.** $\beta_z = (mgR_2 FR_1)/(I + mR_2^2)$, где ось Z направлена за плоскость рис. 1.54.
 - **1.287.** a) $\omega = gt / R (1 + M / 2m)$; 6) $K = mg^2 t^2 / 2 (1 + M / 2m)$.
 - 1.288. $a = gmr^2/I$.

1.289.
$$\omega = \sqrt{6 F \sin \varphi / m l}$$
.

1.290.
$$F = mg/4$$
.

1.291.
$$N = (2/\pi) mgl \sqrt{I/ml^2 - 1/12} = 1,2 \text{ H} \cdot \text{M}.$$

1.292.
$$\beta = \frac{|m_2 - m_1|g}{(m_1 + m_2 + m/2)R}; \quad \frac{F_1}{F_2} = \frac{m_1(m + 4m_2)}{m_2(m + 4m_1)}.$$

1.293. a)
$$\mathbf{a} = \mathbf{g} \frac{m_2 - km_1}{m_1 + m_2 + m/2}$$
; 6) $A = -km_1 gat^2/2$.

1.294.
$$F_{\text{rop}} = 3 mg / 2$$
; $F_{\text{Bept}} = mg / 4$.

1.295.
$$t = \omega_0 R (1 + k^2) / 2k (1 + k)g$$
.

1.296.
$$n_2/n_1 = (tg\vartheta + k)/(tg\vartheta - k) = 1,3.$$

1.297.
$$t = 3 \omega R / 4 kg$$
.

1.298.
$$t = 2J / kmg = 17$$
 c.

1.299.
$$\langle \omega \rangle = \omega_0/3$$
.

1.300.
$$\beta = 2mgx / Rl(M + 2m)$$
.

1.301.
$$\cos \vartheta = 3g/2\omega^2 l$$
; если правая часть не менее 1, то $\vartheta = 0$.

1.302.
$$\omega = \sqrt{2g/l} = 6.0$$
 pag/c; $F = mgl_0/l = 25$ H.

1.303. a)
$$M = (1/12)m\omega l^2 \sin \vartheta$$
, $M_z = M \sin \vartheta$; 6) $N = (1/24)m\omega^2 l^2 \sin 2\vartheta$.

1.304.
$$v' = \omega_0 l / \sqrt{1 + 3m/M}$$
.

1.305. a)
$$\mathbf{v}' = \frac{3m - 4M}{3m + 4M} \mathbf{v};$$
 6) $F = \frac{8Mv^2}{l(1 + 4M/3m)^2}.$

1.306. a)
$$v = (M/m)\sqrt{2gl/3} \sin(\alpha/2)$$
; b) $\Delta p = M\sqrt{gl/6} \sin(\alpha/2)$; b) $x \approx 2l/3$.

1.307. a)
$$\omega = (1 + 2m / M)\omega_0$$
; 6) $A = (1/2)m\omega_0^2 R^2 (1 + 2m / M)$.

1.308.
$$\varphi = -2m_1\varphi'/(2m_1 + m_2)$$
.

1.309. a)
$$\omega = \frac{I_1 \omega_1 + I_2 \omega_2}{I_1 + I_2}$$
; 6) $A = -\frac{I_1 I_2}{2(I_1 + I_2)} (\omega_1 - \omega_2)^2$.

1.310. a)
$$\mathbf{M}_2 - \mathbf{M}_1 = -\frac{4I_1I_2\boldsymbol{\omega}_0}{I_1 + I_2}$$
; 6) $E_1 - E_2 = \frac{2I_1I_2\omega_0^2}{I_1 + I_2}$.

1.311.
$$\omega = \tilde{M}Nt/(I_0 + mNa^2t/2)$$
. См. рис. 10, где $\omega_{\rm np} = 2\,\tilde{M}/ma^2$.

1.312.
$$\omega = 2\sqrt{2Fl/3mR^2}$$
.

1.313.
$$n = (ml/2\pi I) |R_2F_2 - R_1F_1| / \sqrt{F_1^2 + F_2^2}$$
.

1.314.
$$v = \omega R / 2 \sin \theta = 3.0 \text{ m/c}.$$

1.315.
$$a = (5/7)g \sin \alpha, k > (2/7) tg\alpha.$$

1.316.
$$K = (5/14) mg^2 t^2 \sin^2 \alpha = 0,11$$
 кДж.

1.317.
$$v = \sqrt{3 g l \sin \alpha} = 5.3 \text{ m/c.}$$

1.318.
$$F_{\rm rp} = I\omega^2/2s$$
.

1.319.
$$v = \sqrt{(10H + 4h)g/7} = 2.8 \text{ M/c}.$$

1.320. a)
$$\beta = 2g/3R = 5 \cdot 10^2$$
 pag/c²; 6) $P = 2mg^2t/3$.

1.321.
$$a' = 2(g - a_0)/3$$
, $F = m(g - a_0)/3$.

1.322.
$$a = g \sin \alpha / (1 + I/mr^2) = 1.6 \text{ m/c}^2$$
.

1.323. F < 3 kmg/(2 - 3k).

1.324. a)
$$a_x = \frac{F(\cos \alpha - r/R)}{m(1+\gamma)}$$
; 6) $A = \frac{F^2 t^2 (\cos \alpha - r/R)^2}{2m(1+\gamma)}$.

1.325. a = 4g/5.

1.326.
$$\mathbf{a} = \mathbf{g}(m - M)/(M + m + I/R^2)$$
.

1.327. a)
$$a = \frac{F(3m_1 + 2m_2)}{m_1(m_1 + m_2)};$$
 6) $K = \frac{F^2t^2(3m_1 + 2m_2)}{2m_1(m_1 + m_2)}.$

1.328.
$$a_1 = F/(m_1 + 2m_2/7), \quad a_2 = 2a_1/7.$$

1.329. a)
$$t = \omega_0 R / 3 kg$$
; 6) $A = -m\omega_0^2 R^2 / 6$.

1.330.
$$\omega = \sqrt{10 g (R + r)/17 r^2}$$
.

1.331.
$$v_0 = \sqrt{gR(7 \cos \alpha - 4)/3}$$
.

1.332.
$$N = Rmv^2/5s = 20$$
 mH·m.

1.333.
$$F = 9J^2/2ml = 9$$
 H.

1.334. a)
$$s = \pi l / 3$$
; 6) $K = 2J^2/m$.

1.335.
$$\omega = 2\sqrt{g} \sin \varphi / l (\cos^2 \varphi + 1/3)$$
.

1.336. a)
$$\omega = \sqrt{(3g/2l)(1-\sin\alpha)}$$
, $\beta = (3g/4l)\cos\alpha$; 6) $\sin\alpha = 2/3$, $\alpha \approx 42^{\circ}$.

1.337.
$$v_{0.0\mu H} = \sqrt{3 gl / \cos \vartheta}$$
.

1.338.
$$v_C = 2v/(4 + \eta)$$
. При $\eta = 4$ и $\eta > 4$.

1.339.
$$v = \sqrt{gh/2}$$
.

1.340. а) $\omega' = mgl / I\omega = 0,7\,$ рад/с; б) $F = m{\omega'}^2 l \sin \vartheta = 10\,$ мН. Эта сила направлена в сторону, противоположную наклону волчка.

1.341.
$$\omega = (g + a)l / \pi nR^2 = 3 \cdot 10^2$$
 pag/c.

1.342. $\omega' = ml \sqrt{g^2 + a^2} / I\omega = 0,8$ рад/с. Вектор ω' составляет с вертикалью угол $\vartheta = \arctan(a/g) = 17^\circ$.

1.343. $F' = 2mR^2 \omega \omega' / 5 l = 0,30 \text{ kH.}$

1.344.
$$F_{\text{Makc}} = \pi m R \phi_m \omega / lT = 30 \text{ H.}$$

1.345.
$$N = 2 \pi n I v / R = 6 \text{ kH-m.}$$

1.346. $F_{\text{доб}} = 2 \pi n I v / R l = 1,4$ кН. На такую величину сила давления на наружный рельс возрастет, а на внутренний уменьшится.

1.347. $p = \alpha E \Delta T = 0.22$ ГПа = $2.2 \cdot 10^3$ атм, где α — коэффициент линейного расширения стали.

1.348. а) $p \approx \sigma_m \Delta r/r = 2$,0 МПа = 20 атм; б) $p \approx 2\,\sigma_m \Delta r/r = 4$,0 МПа = 40 атм. Здесь σ_m — предел прочности стекла.

1.349. $n=\sqrt{2\,\sigma_m\,/\rho}\,/\,\pi l\,=0\,,8\,\cdot 10^{\,2}\,$ об/с, где σ_m — предел прочности, ρ — плотность меди.

1.350. $n = \sqrt{\sigma_m/\rho}/2\pi R = 23$ об/с, где σ_m — предел прочности, ρ — плотность свинца.

1.351.
$$x \approx \sqrt[3]{mg/2\pi d^2 E} = 2.5$$
 cm.

1.352.
$$\varepsilon = F_0 / 2ES$$
.

1.353.
$$F = (1 - r^2/l^2) m\omega^2 l/2$$
, $\Delta l = \rho\omega^2 l^3/3E$, где ρ — плотность меди.

- **1.354.** $\Delta V = (1-2\mu)Fl/E = 1,6\,$ мм³, где μ коэффициент Пуассона.
- **1.355.** а) $\Delta l = \rho g l^2 / 2 E$; б) $\Delta V / V = (1 2\mu) \Delta l / l$. Здесь ρ плотность, μ коэффициент Пуассона.
 - **1.356.** a) $\Delta V / V = -3 (1 2\mu) p / E$; 6) $\beta = 3 (1 2\mu) / E$.
 - **1.357.** a) $\varphi = lN / 2\pi r^3 \Delta rG$; б) $\varphi = 2lN / \pi r^4 G$.
 - **1.358.** $N = \pi \left(d_2^4 d_1^4 \right) G \phi / 32 l = 0.5 \text{ kH·m.}$
 - 1.359. $P_{\text{Marc}} = (\pi/2)r^4 G\phi\omega = 17 \text{ kBt.}$
 - **1.360.** $N = \beta m (r_2^4 r_1^4)/2 (r_2^2 r_1^2)$.
 - **1.361.** $U = mE \varepsilon^2/2\rho = 40$ Дж, где ρ плотность стали.
- **1.362.** a) $U=(\pi/6)r^2l^3\rho^2g^2/E$; б) $U=(2\pi/3)r^2lE(\Delta l/l)^2$, $\rho-$ плотность стали.
 - 1.363. $A \approx \pi^2 h \delta^3 E / 6l = 80$ Дж.
 - 1.364. $U = \pi r^4 G \varphi^2 / 4l = 7$ Дж.
 - **1.365.** $u = G\varphi^2 r^2 / 2l^2$.
 - **1.366.** $u = \beta \rho^2 g^2 h^2 / 2 = 23.5 \text{ кДж/м}^3$, где β сжимаемость.
- **1.367.** $p_1 > p_2$, $v_1 < v_2$. Плотность линий тока растет при переходе от точки 1 к точке 2.
 - **1.368.** $Q = S_1 S_2 \sqrt{2 g \Delta h / (S_2^2 S_1^2)}$.
 - **1.369.** $Q = S \sqrt{2 g \Delta h \rho_0 / \rho}$.
 - **1.370.** $r = r_0 / \sqrt[4]{1 + 2gh/v_0^2}$.
 - 1.371. $l' = l(\eta'^2 1) / (\eta^2 1) = 5 l$.
 - **1.372.** $h = h_0 / 2 = 25$ cm, $l_{\text{Marc}} = h_0$.
 - **1.373.** $A = \rho V^3 / 2 s^2 t^2$, где ρ плотность воды.
 - 1.374. $a = -g/(n^2 1)$, $a = 10^{-4} g$.
 - **1.375.** $\tau \approx (S/s)\sqrt{2h/g}$.
 - 1.376. $t = (h/3\eta)\sqrt{2h/g}$.
 - 1.377. $v = \omega h \sqrt{2l/h-1}$.
 - 1.379. $F = 2 \rho g S \Delta h = 0.50 \text{ H}.$
 - **1.380.** $F = \rho gbl(2h l) = 5 \text{ H.}$
 - **1.381.** a) $p = 2\rho SRv$; b) $F = 2\rho Sv^2$.
 - **1.382.** $N = \rho lQ^2 / \pi r^2 = 0.7 \text{ H} \cdot \text{M}.$
 - **1.383.** Сила направлена вправо, $F = \rho v_2^2 (S_1 S_2)^2 / 2S_1 = 1,3$ кН.
- 1.384. а) Параболоид вращения: $z = (\omega^2/2g)r^2$, где z высота от поверхности жидкости на оси сосуда, r расстояние от оси; б) $p = p_0 + \rho \omega^2 r^2/2$.
 - 1.385. $P = \pi \eta \omega^2 R^4 / h = 9$ Bt.
 - **1.386.** $v = v_0 \ln(r/R_2) / \ln(R_1/R_2)$.

1.387. a)
$$\omega = \frac{\omega_2 R_1^2 R_2^2}{R_2^2 - R_1^2} \left(\frac{1}{R_1^2} - \frac{1}{r^2} \right);$$
 6) $N = 4 \pi \eta \omega_2 \frac{R_1^2 R_2^2}{R_2^2 - R_1^2}.$

1.388.
$$v = v_0 (1 - r^2 / R^2)$$
.

1.389. a)
$$Q = \pi v_0 R^2 / 2$$
; б) $K = \pi l R^2 \rho v_0^2 / 6$; в) $F_{\text{Tp}} = 4 \pi \eta l v_0$; г) $\Delta p = 4 \eta l v_0 / R^2$.

1.390.
$$Q_1 = (h^3/3\eta) \rho g \sin \alpha$$
.

1.391. В левом конце трубки дополнительный напор $\Delta h=5$ см сообщает кинетическую энергию жидкости, втекающей в трубку. Из условия $\rho v^2/2=\rho g\Delta h$ получим $v=\sqrt{2\,g\Delta h}=1,0\,$ м $/{\rm c}$.

1.392. Искомое отношение равно $\exp(\alpha \Delta x) = 5$.

1.393.
$$v_2 = v_1 r_1 \rho_1 \eta_2 / r_2 \rho_2 \eta_1 = 5 \text{ MKM/c.}$$

1.394. $d=\sqrt[3]{18\,\mathrm{Re}\,\eta^2/(\rho-\rho_0)\rho_0 g}=5\,$ мм, где ρ_0 и ρ — плотности глицерина и свинца.

1.395.
$$t = -(\rho d^2/18 \eta) \ln n = 0,20 \text{ c.}$$

1.396.
$$v = c\sqrt{\eta(2-\eta)} = 0$$
,10 c , где c — скорость света.

1.397. a)
$$\lg \alpha' = \lg \alpha / \sqrt{1-\beta^2}$$
, где $\beta = v/c$; $\alpha' \approx 49^\circ$; б) $l' = a\sqrt{1-\beta^2 + \lg^2 \alpha} = 3.8$ м, $l'/l_0 = 0.66$.

1.398.
$$l_0 = l\sqrt{(1-\beta^2\sin^2\theta)/(1-\beta^2)} = 1,08$$
 м, где $\beta = v/c$.

1.399.
$$l_0 = \Delta x (t_3 - t_2) / \sqrt{(t_2 - t_1)^2 - (\Delta x / c)^2}$$
.

1.400.
$$v = c\sqrt{(2 - \Delta t/t)\Delta t/t} = 0.6 \cdot 10^8 \text{ m/c.}$$

1.401.
$$l_0 = c\Delta t' \sqrt{1 - (\Delta t/\Delta t')^2} = 4.5 \text{ m}.$$

1.402.
$$s = c\Delta t \sqrt{1 - (\Delta t_0 / \Delta t)^2} = 5 \text{ m}.$$

1.403. a)
$$\Delta t_0 = (l/v)\sqrt{1-(v/c)^2} = 1,4$$
 MKC; 6) $l' = l\sqrt{1-(v/c)^2} = 0,42$ KM.

1.404.
$$l_0 = v\Delta t / \sqrt{1 - (v/c)^2} = 17 \text{ M}.$$

1.405.
$$l_0 = \sqrt{\Delta x_1 \Delta x_2} = 6.0 \text{ m. } v = c\sqrt{1 - \Delta x_1 / \Delta x_2} = 2.2 \cdot 10^8 \text{ m/c.}$$

1.406.
$$v = (2l_0 / \Delta t) / [1 + (l_0 / c\Delta t)^2].$$

1.407. Частица, двигавшаяся впереди, распалась позже на время $\Delta t = l\beta/c$ $(1-\beta^2) = 20$ мкс, где $\beta = v/c$.

1.408. a)
$$l_0 = [x_A - x_B - v(t_A - t_B)]/\sqrt{1 - (v/c)^2}$$
;

б)
$$t_A - t_B = \left(1 - \sqrt{1 - (v/c)^2}\right) l_0 / v$$
 или $t_B - t_A = \left(1 + \sqrt{1 - (v/c)^2}\right) l_0 / v$.

1.409. a)
$$t(B) = l_0/v$$
, $t(B') = (l_0/v)\sqrt{1 - (v/c)^2}$; 6) $t(A) = (l_0/v)\sqrt{1 - (v/c)^2}$, $t(A') = l_0/v$.

1.410. С «точки зрения» K-часов (рис. 11).

1.411.
$$\dot{x} = (1 - \sqrt{1 - \beta^2})c/\beta$$
, где $\beta = V/c$.

1.412. Для этого необходимо убедиться, что при $t_2 > t_1$ и $t_2' > t_1'$.

1.413. а) 13 нс; б) 4,0 м.

Рис. 11

1.414.
$$v' = \sqrt{(v_x - V)^2 + v_y^2 (1 - V^2/c^2)} / (1 - v_x V/c^2)$$
.

1.415. a)
$$ds/dt = v_1 + v_2 = 1,25c$$
; 6) $v = (v_1 + v_2)/(1 + v_1v_2/c^2) = 0,91c$.

1.416.
$$l = l_0(1 - \beta^2)/(1 + \beta^2)$$
, где $\beta = v/c$.

1.417.
$$v = \sqrt{v_1^2 + v_2^2 - (v_1 v_2 / c)^2}$$
.

1.418.
$$s = \Delta t_0 \sqrt{\frac{V^2 + (1 - \beta^2) v'^2}{(1 - \beta^2)(1 - v'^2/c^2)}}$$
, где $\beta = V/c$.

1.419.
$$tg\vartheta' = \left(\sqrt{1-\beta^2} \sin \vartheta\right) / (\cos \vartheta - V/v)$$
, где $\beta = V/c$.

1.420.
$$tg\vartheta = v'V/c^2\sqrt{1-(V/c)^2}$$
.

1.421. a)
$$a' = a(1 - \beta^2)^{3/2} / (1 - \beta v / c)^3$$
; б) $a' = a(1 - \beta^2)$. Здесь $\beta = V/c$.

1.422. Воспользуемся связью между ускорением a' и ускорением a в системе отсчета, связанной с Землей: $a' = (1-v^2/c^2)^{-3/2}\,\mathrm{d}v/\mathrm{d}t$. Эта формула приведена в решении предыдущей задачи (пункт a), где следует положить V=v. Проинтегрировав данное уравнение (при $a'=\mathrm{const}$), получим $v=a't/\sqrt{1+\left(a't/c\right)^2}$. Искомый путь $l=\left(\sqrt{1+\left(a't/c\right)^2}-1\right)c^2/a'=0.91$ светового года; $(c-v)/c=\left(c/a't\right)^2/2=0.47\%$.

1.423. Имея в виду, что $v = a't/\sqrt{1 + (a't/c)^2}$, получим

$$\tau_0 = \int_0^{\tau} \frac{\mathrm{d}t}{\sqrt{1 + (a't/c)^2}} = \frac{c}{a'} \ln \left[\frac{a'\tau}{c} + \sqrt{1 + \left(\frac{a'\tau}{c} \right)^2} \right] = 3.5 \text{ Mec.}$$

1.424.
$$m_r/m = 1/\sqrt{2\eta} \approx 70$$
.

1.425.
$$v = c \sqrt{\eta(2 + \eta)}/(1 + \eta) = 0.6c$$
.

1.426.
$$(c - v) / c = 1 - 1 / \sqrt{1 + (mc/p)^2} = 0.44\%$$
.

1.427.
$$v = (c/\eta)\sqrt{\eta^2 - 1} = 0.70 c$$
.

1.428.
$$A = 0.42mc^2$$
 вместо $0.14mc^2$.

1.429.
$$v = c\sqrt{3/4} = 2.6 \cdot 10^8 \text{ m/c.}$$

1.430. При
$$\eta \ll 1$$
 отношение $K/mc^2 < 4\eta/3 = 0.013$.

1.431.
$$p = \sqrt{K(K + 2mc^2)}/c = 1{,}09 \text{ ГэВ}/c$$
, где c — скорость света.

1.432.
$$v = 2pK/(p^2 + K^2/c^2) = 0.87c$$
.

1.433.
$$F = (I/ec)\sqrt{K(K + 2mc^2)}, P = KI/e.$$

1.434.
$$\Delta E / m = \left(1/\sqrt{1-(v/c)^2} - 1\right)c^2 = 3.6 \cdot 10^{17}$$
 Дж/кг.

1.435.
$$v = c / \sqrt{1 + (mc / Ft)^2}, \ s = \left(\sqrt{1 + (Ft / mc)^2} - 1\right) mc^2 / F.$$

1.436.
$$F = mc^2/\alpha$$
.

1.437. а) В двух случаях, когда $\mathbf{F} \mid \mathbf{v}$ и $\mathbf{F} \perp \mathbf{v}$; б) $\mathbf{F}_{\perp} = m\mathbf{a}/\sqrt{1-\beta^2}$, $\mathbf{F}_{||} = m\mathbf{a}/(1-\beta^2)^{3/2}$, где $\beta = v/c$.

1.439.
$$\epsilon' = \epsilon \sqrt{(1-\beta)/(1+\beta)}$$
, где $\beta = V/c$, $V = 3c/5$.

1.441.
$$v = c\sqrt{1 - (2m/M)^2}$$
.

1.442. a)
$$\tilde{K} = 2 mc^2 \left(\sqrt{1 + K / 2mc^2} - 1 \right) = 777 \text{ M} \cdot \text{B}; 6) \ \tilde{p} = \sqrt{mK/2} = 940 \text{ M} \cdot \text{B} \cdot / c$$
,

где c — скорость света.

1.443.
$$M = \sqrt{2m(K + 2mc^2)}/c$$
, $V = c\sqrt{K/(K + 2mc^2)}$.

1.444.
$$K' = 2K(K + 2mc^2)/mc^2 = 1.43 \cdot 10^3$$
 FaB.

1.445. $E_{1\,\,\mathrm{макc}} = [m_{\,\,0}^{\,\,2} + m_{\,\,1}^{\,\,2} - (m_{\,\,2} + m_{\,\,3})^2]\,c^{\,\,2}\,/2m_{\,\,0}$. Частица m_{1} будет иметь наибольшую энергию в том случае, когда энергия системы двух других частиц $(m_{1}\,\,$ и $m_{3})$ будет наименьшей, т. е. когда они движутся как единое целое.

1.446. $v/c = [1-(m/m_0)^{2u/c}]/[1+(m/m_0)^{2u/c}]$. Воспользоваться законом сохранения импульса (подобно решению задачи 1.136) и релятивистской формулой преобразования скорости.

2.1. Отношение $F_{\rm эл}/F_{\rm гp}$ равно соответственно $4\cdot 10^{42}$ и $1\cdot 10^{36}$; $q/m=0.86\times \times 10^{-10}$ Кл/кг.

2.2. $q_{1,2} = l\sqrt{4\pi\epsilon_0 F}(1\pm\sqrt{1+F_0/F}) = +1,20$ и -0,133 мкКл или те же значения, но с противоположными знаками.

2.3.
$$q_3 = -q_1 q_2 / (\sqrt{q_1} + \sqrt{q_2})^2$$
, $\mathbf{r}_3 = (\mathbf{r}_1 \sqrt{q_2} + \mathbf{r}_2 \sqrt{q_1}) / (\sqrt{q_1} + \sqrt{q_2})$.

2.4.
$$q = l\sqrt{32\pi\epsilon_0 mg \sin^3 \alpha} / \sqrt[4]{9 - 12\sin^2 \alpha} = 0.50 \text{ MKKJ.}$$

2.5.
$$dq / dt = 1.5v \sqrt{2\pi\epsilon_0 mg\theta} = 0.40 \text{ HK}_{\pi}/c.$$

2.6.
$$a = \sqrt{3} q^2 / 20 \pi \epsilon_0 m l^2 = 13 \text{ m/c}^2$$
.

2.7.
$$\Delta F = qq_0 / 8\pi^2 \epsilon_0 R^2 = 50 \text{ H.}$$

2.8.
$$E = 2.7i - 3.6j$$
, $E = 4.5 \text{ kB/m}$.

2.9.
$$E = ql / \sqrt{2} \pi \epsilon_0 (l^2 + x^2)^{3/2} = 9 \text{ kB/m}.$$

2.10.
$$E = 3 q / 4 \pi \epsilon_0 l^2 = 1.0 \text{ kB/m}.$$

2.11.
$$E = q/2\pi^2 \epsilon_0 R^2 = 0.10 \text{ kB/m}.$$

2.12. $E=ql/4\pi\epsilon_0(R^2+l^2)^{3/2}$. При $l\gg R$ $E\approx q/4\pi\epsilon_0l^2$, как для точечного заряда. $E_{\rm make}=q/6\sqrt{3}\pi\epsilon_0R^2$ при $l=R/\sqrt{2}$.

2.13.
$$E = \lambda/4\pi\epsilon_0 R$$
.

2.14.
$$E = \sigma/4 \epsilon_0 = 1.7 \text{ kB/m}.$$

2.15.
$$E = \sigma l / 2 \varepsilon_0 \sqrt{R^2 + l^2}$$
.

2.16.
$$E = q\lambda/4\pi\epsilon_0 R$$
.

2.17. a)
$$E = \lambda_0 / 4 \, \epsilon_0 R$$
; б) $E = \lambda_0 R^2 / 4 \, \epsilon_0 (x^2 + R^2)^{3/2}$, при $x \gg R$ $E \approx p / 4 \, \pi \epsilon_0 x^3$, где $p = \pi R^2 \lambda_0$.

2.18. а) $E = q/4\pi\epsilon_0 r \sqrt{r^2 + a^2}$; б) $E = q/4\pi\epsilon_0 (r^2 - a^2)$. В обоих случаях при $r \gg a$ напряженность $E \approx q/4\pi\epsilon_0 r^2$.

2.19. $E = \lambda \sqrt{2} / 4 \pi \epsilon_0 y$. Вектор **E** направлен под углом 45° к нити.

2.20. a)
$$E = \lambda \sqrt{2} / 4 \pi \epsilon_0 R$$
; 6) $E = 0$.

2.21.
$$E = -ar/3\epsilon_0$$
.

2.22. ${\bf E} = -{\bf k}\sigma_0/3\epsilon_0$, где ${\bf k}$ — орт оси ${\bf Z}$, от которой отсчитывается угол ${\bf \vartheta}$. Как видно, поле внутри данной сферы однородно.

2.23.
$$\mathbf{E} = -\mathbf{a}R^2/6\varepsilon_0$$
.

2.24.
$$E_x = \alpha(x^2 - a^2)/2\varepsilon_0$$
, $E = |E_x|$.

2.25.
$$E_{\text{make}} = \lambda/\pi\epsilon_0 l = 40 \text{ kB/m.}$$

2.26.
$$F = \lambda^2/2\epsilon_0$$
.

2.27.
$$E = \sigma_0/2\varepsilon_0$$
, направление вектора **E** соответствует углу $\varphi = \pi$.

2.28. a)
$$F = \sigma q/6\epsilon_0$$
; b) $F \approx \sigma^2 l^2/2\epsilon_0$.

2.29.
$$q = 4\pi\varepsilon_0 aR$$
.

2.31. a)
$$E(r\leqslant R)=
ho_0\,r\,(1-3\,r/4R)/3\epsilon_0,\;\; E(r\geqslant R)=
ho_0R^3/12\,\epsilon_0\,r^2;\;\;$$
 б) $E_{\mathrm{make}}=
ho_0R/9\,\epsilon_0$ при $r_m=2R/3$.

2.32.
$$q = 2\pi R^2 \alpha$$
, $E = \alpha/2\epsilon_0$.

2.33.
$$\mathbf{E} = \mathbf{a} \rho / 3 \epsilon_0$$
.

2.34.
$$\mathbf{E} = \mathbf{a} \rho / 3 \epsilon_0$$
.

2.35.
$$v_{\text{Makc}} = q / \sqrt{6 \pi \epsilon_0 ma}$$
.

2.36.
$$\Delta \varphi = \left(1 - 1/\sqrt{1 + (l/R)^2}\right) q / 2\pi \epsilon_0 R = 12 \text{ kB.}$$

2.37.
$$\varphi_1 - \varphi_2 = (\lambda/2\pi\epsilon_0) \ln \eta = 5 \text{ kB}.$$

2.37.
$$\phi_1 - \phi_2 = (\lambda/2\pi\epsilon_0)\ln\eta = 5$$
 кВ. 2.38. $A = \left(1 - 1/\sqrt{1 + (l/R)^2}\right) q'q/4\pi\epsilon_0 R = 0,10$ Дж.

2.39.
$$\phi = \left(\sqrt{1 + \left(\left.R \mid l \mid \right)^2} - 1\right) \sigma l / 2 \, \epsilon_0$$
, $E = \left(1 - 1 / \sqrt{1 + \left(\left.R \mid l \mid \right)^2}\right) \sigma / 2 \, \epsilon_0$. При $l \to 0$

потенциал $\varphi = \sigma R / 2 \, \epsilon_0$ и $E = \sigma / 2 \, \epsilon_0$; при $l \gg R$ потенциал $\varphi \approx q / 4 \, \pi \epsilon_0 l$, $E \approx q/4\pi\epsilon_0 l^2$, где $q = \sigma\pi R^2$.

2.40.
$$\varphi = \sigma R/2\varepsilon_0$$
.

2.41.
$$\varphi = \sigma R/\pi \varepsilon_0$$
.

2.42. a)
$$\varphi_0 = 3q/8\pi\epsilon_0 R$$
; b) $\varphi = \varphi_0 (1 - r^2/3R^2)$, $r \le R$.

2.43.
$$E = -a$$
, т. е. поле однородное.

2.44. а) E = -2a(xi - yj); б) E = -a(yi + xj). Здесь і и j – орты осей X и Y. См. рис. 12, соответствующий случаю a > 0.

2.45.
$$E_a = -\alpha (y - 6z) / \sqrt{10} = -6.0 \alpha.$$

2.46. $E=\sqrt{E_{\,r}^{\,2}+E_{\,9}^{\,2}}=(p/4\,\pi\varepsilon_{0}r^{\,3})\sqrt{1+3\,\cos^{\,2}\,9}$, где $E_{r}-$ радиальная, а $E_{\,9}$ перпендикулярная к ней составляющие вектора Е.

2.47.
$$R = \sqrt[3]{p/4 \pi \epsilon_0 E_0}$$
.

2.48.
$$\varphi \approx (\lambda l / 2\pi\epsilon_0 r) \cos \vartheta$$
, $E \approx \lambda l / 2\pi\epsilon_0 r^2$.

2.49.
$$p = al^3/6$$
.

2.50. a)
$$p = 2qa/\pi$$
; 6) $E = qa/\pi^2 \epsilon_0 r^3$.

2.51.
$$\varphi = \frac{ql}{4\pi\varepsilon_0} \frac{x}{(R^2 + x^2)^{3/2}}$$
, $E_x = \frac{ql}{4\pi\varepsilon_0} \frac{R^2 - 2x^2}{(R^2 + x^2)^{5/2}}$, где E_x – проек-

ция вектора E на ось X. Графики этих зависимостей показаны на рис. 13. При $|x| \gg R$ потенциал $\varphi \approx ql/4\pi\epsilon_0 x^2$ и $E_x \approx ql/2\pi\epsilon_0 x^3$.

2.52.
$$A = pE_1$$
, от E_2 не зависит.

Рис. 12

Рис. 13

2.53. а) Сила
$$\mathbf{F} = \mathbf{0}$$
; б) $\mathbf{F} = -\lambda \mathbf{p}/2\pi\epsilon_0 r^2$; в) $\mathbf{F} = \lambda \mathbf{p}/2\pi\epsilon_0 r^2$.

2.54.
$$F = 3p^2/2\pi\varepsilon_0 l^4 = 2,1\cdot10^{-16} \text{ H.}$$

2.55. a)
$$\varphi = -axy + \text{const}$$
; $\varphi = ay(y^2/3 - x^2) + \text{const}$; $\varphi = -y(ax + bz) + \text{const}$.

$$2.56. \rho = 6\varepsilon_0 ax.$$

2.57.
$$\rho = 2\epsilon_0 \Delta \varphi/d^2$$
, $E = \rho d/\epsilon_0$.

2.59.
$$q = 4l\sqrt{\pi\epsilon_0 \varkappa x}$$
.

2.60.
$$l = \sqrt{e/16\pi\epsilon_0 E} = 6.0$$
 MKM.

2.61.
$$A = q^2/16\pi\epsilon_0\lambda = 0.15$$
 Дж.

2.62.
$$F = (2\sqrt{2} - 1) q^2 / 8 \pi \epsilon_0 l^2$$
.

2.63.
$$F = (2\sqrt{2} - 1) q^2 / 4 \pi \epsilon_0 l^2 = 8 \text{ H.}$$

2.64.
$$F = (2\sqrt{2} - 1) q^2 / 32 \pi \epsilon_0 l^2 = 3,3 \text{ H.}$$

2.65.
$$F = 3p^2 / 32\pi\epsilon_0 l^4$$
.

2.66.
$$\sigma = -ql/2\pi(l^2 + r^2)^{3/2}$$
.

2.67. a)
$$F_{\text{ед}} = \lambda^2/4\pi\epsilon_0 l$$
; б) $\sigma = \lambda l/\pi (l^2 + x^2)$.
2.68. a) $\sigma = \lambda/2\pi l$; б) $\sigma(r) = \lambda/2\pi\sqrt{l^2 + r^2}$.

2.68. a)
$$\sigma = \lambda/2\pi l$$
; 6) $\sigma(r) = \lambda/2\pi\sqrt{l^2 + r^2}$.

2.69.
$$\sigma = ql/2\pi(l^2 + R^2)^{3/2} = 70 \text{ hK}\pi/\text{m}^2$$
.

2.70.
$$\varphi = q/4\pi\epsilon_0 l = 15 \text{ kB}.$$

2.71.
$$\varphi = q / 4 \pi \epsilon_0 \sqrt{R^2 + l^2} = 0.18 \text{ kB.}$$

2.72.
$$\varphi = (1/r - 1/R_1 + 1/R_2)q/4\pi\epsilon_0 = 1,0$$
 kB.

2.73.
$$q_2 = -q_1 b/a$$
; $\varphi = \frac{q_1}{4\pi\epsilon_0} \times \begin{cases} (1/r - 1/a) & \text{При } a \leqslant r \leqslant b, \\ (1 - b/a)/r & \text{При } r \geqslant b. \end{cases}$

2.74. a)
$$E_{23} = \Delta \varphi/d$$
, $E_{12} = E_{34} = E_{23}/2$; б) $|\sigma_1| = \sigma_4 = \varepsilon_0 \Delta \varphi/2d$, $\sigma_2 = |\sigma_3| = 3\varepsilon_0 \Delta \varphi/2d$.

$$2.75. \Delta q = ql/d.$$

2.76. $q_1 = -q(l-x)/l$, $q_2 = -qx/l$. У казание. Если заряд q мысленно «размазать» по плоскости, проходящей через этот заряд и параллельной проводящим плоскостям, то заряды q_1 и q_2 не изменятся. Изменится только их распределение, и электрическое поле станет простым для расчета.

2.77.
$$dF/dS = \sigma^2/2\varepsilon_0 = 0.12 \text{ kH/m}^2$$
.

2.78.
$$F = q^2/32\pi\varepsilon_0 R^2 = 0.5 \text{ kH.}$$

Рис. 14

2.80.
$$W = \beta \epsilon_0 E^2 / 2 = pE / 2$$
.

2.81. $F = 3\beta p^2/4\pi^2 \epsilon_0 l^7$.

2.82. а) $x_0 = R / \sqrt{2}$; б) $x_1 = 0.29R$ (отталкивание), $x_2 = 1.1R$ (притяжение). См. рис. 14.

0

 \boldsymbol{a}

2.83.
$$\mathbf{P} = q(\varepsilon - 1)\mathbf{r}/4\pi\varepsilon r^3$$
, $q' = -q(\varepsilon - 1)/\varepsilon$.

2.84.
$$\sigma' = q(\varepsilon_1 - \varepsilon_2)/4\pi\varepsilon_1\varepsilon_2a^2$$
.

2.86. Заряд
$$q'_{\text{внутр}} = -q(\epsilon - 1)/\epsilon = -2,0$$
 мкКл; $q'_{\text{наруж}} = q(\epsilon - 1)/\epsilon = 2,0$ мкКл.

2.87. Величина
$$\rho' = -\rho(\epsilon - 1)/\epsilon = -30 \text{ мкКл/м}^3$$
.

2.89.
$$E = (E_0/\epsilon)\sqrt{\cos^2\alpha_0 + \epsilon^2\sin^2\alpha_0} = 5,2$$
 В/м; $tg\alpha = \epsilon tg\alpha_0$, отсюда $\alpha = 74^\circ$; $\sigma' = \epsilon_0 (1 - 1/\epsilon) E_0 \cos\alpha_0 = 64$ пКл/м 2 .

2.90.
$$\cos \theta = \sigma/\epsilon_0(1 - \epsilon)E$$
, $\sigma < 0$.

2.91. a)
$$\oint \mathbf{E} \ d\mathbf{S} = \frac{\varepsilon - 1}{\varepsilon} \pi R^2 E_0 \cos \vartheta$$
; 6) $\oint \mathbf{D} \ d\mathbf{r} = -\varepsilon_0 (\varepsilon - 1) l E_0 \sin \vartheta$.

2.92. a)
$$E(l < d) = \rho l/\epsilon \epsilon_0$$
, $E(l > d) = \rho d/\epsilon_0$; $\varphi(l \le d) = -\rho l^2/2\epsilon \epsilon_0$, $\varphi(l \ge d) = -(d/2\epsilon + l - d) \rho d/\epsilon_0$. Cm. puc. 17, rge $\rho > 0$. 6) $\sigma' = \rho d(\epsilon - 1)/\epsilon$, $\rho' = -\rho(\epsilon - 1)/\epsilon$.

2.93. a) Модуль
$$E(r < R) = \rho r/3 \varepsilon_0 \varepsilon$$
,

$$E(r > R) = \rho R^3/3\varepsilon_0 r^2;$$

б)
$$\rho' = -\rho(\epsilon - 1)/\epsilon$$
, $\sigma' = \rho R(\epsilon - 1)/3\epsilon$. См. рис. 18.

2.94. E =
$$-Pd/4\epsilon_0 R$$
.

2.95.
$$\mathbf{E} = -\mathbf{P}_0(1 - x^2/d^2)/\epsilon_0$$
, $U = 4P_0d/3\epsilon_0$.

b

Рис. 15

2.96. a)
$$E_1 = 2\varepsilon E_0/(\varepsilon + 1)$$
, $E_2 = 2E_0/(\varepsilon + 1)$, $D_1 = D_2 = 2\varepsilon E_0 E_0/(\varepsilon + 1)$; 6) $E_1 = E_0$,

$$E_2 = E_0/\epsilon$$
, $D_1 = D_2 = \epsilon_0 E_0$.

Рис. 17

Рис. 18

- **2.97.** a) $E_1=E_2=E_0$, $D_1=\varepsilon_0E_0$, $D_2=\varepsilon D_1$; 6) $E_1=E_2=2E_0/(\varepsilon+1)$, $D_1=2\varepsilon_0E_0/(\varepsilon+1)$, $D_2=\varepsilon D_1$.
 - **2.98.** $E = q/2\pi\epsilon_0(\epsilon + 1)r^2$
 - 2.99. $\sigma'_{\text{Marc}} = (\epsilon 1)\epsilon_0 E = 3.5 \text{ HK}\pi/\text{m}^2$, $q' = \pi R^2 (\epsilon 1)\epsilon_0 E = 10 \text{ mK}\pi$.
 - **2.100.** a) $\sigma' = -ql(\varepsilon 1)/2\pi r^3(\varepsilon + 1)$; 6) $q' = -q(\varepsilon 1)/(\varepsilon + 1)$.
 - **2.101.** $F = q^2(\varepsilon 1)/16\pi\varepsilon_0 l^2(\varepsilon + 1)$.
- **2.102.** $D = q/2\pi(1+\varepsilon)r^2$ в вакууме, $D = \varepsilon q/2\pi(1+\varepsilon)r^2$ в диэлектрике; всюду $E = q/2\pi\varepsilon_0(1+\varepsilon)r^2$, $\varphi = q/2\pi\varepsilon_0(1+\varepsilon)r$.
 - **2.103.** $\sigma' = ql(\epsilon 1)/2\pi r^3 \epsilon(\epsilon + 1); \quad \sigma' \to 0$ при $l \to 0$.
 - **2.104.** $\sigma' = ql(\varepsilon 1)/2\pi r^3 \varepsilon$.
 - **2.105.** $E_1 = Ph/\epsilon_0 d$ (B 3a3ope), $E_2 = -(1 h/d)P/\epsilon_0$, $D_1 = D_2 = Ph/d$.
 - **2.106.** $\rho' = -2\alpha$, **T.** e. of *r* he зависит.
 - **2.107.** a) $E = -P/3\epsilon_0$.
 - **2.108.** E = $3E_0/(\epsilon + 2)$, P = $3\epsilon_0E_0(\epsilon 1)/(\epsilon + 2)$.
- **2.109.** $\rho = \rho_0 \epsilon/(\epsilon 1) = 1,6$ г/см³, где ϵ и ρ_0 диэлектрическая проницаемость и плотность керосина.
 - **2.110.** $F = q^2 V(\varepsilon 1)/8\pi^2 \varepsilon \varepsilon_0 r^5$.
 - **2.111.** $C = 4\pi \epsilon_0 \epsilon R_1/(1 + (\epsilon 1)R_1/R_2) = 1.9 \text{ m}\Phi.$
 - **2.112.** Уменьшилась в $(\varepsilon + 1)/2 = 2,0$ раза; $q = CU(\varepsilon 1)/2(\varepsilon + 1) = 1,0$ нКл.
 - **2.113.** a) $C = \varepsilon_0 S/(d_1/\varepsilon_1 + d_2/\varepsilon_2)$; b) $\sigma' = \varepsilon_0 U(\varepsilon_1 \varepsilon_2)/(\varepsilon_1 d_2 + \varepsilon_2 d_1)$.
 - **2.114.** a) $C = \varepsilon_0(\varepsilon_2 \varepsilon_1)S/d \ln(\varepsilon_2/\varepsilon_1)$; b) $\rho' = -q(\varepsilon_2 \varepsilon_1)/dS\varepsilon^2$.
 - **2.115.** a) $C = 4\pi\epsilon_0 \epsilon ab/(b-a)$; 6) $C = 4\pi\epsilon_0 \alpha/\ln(b/a)$.
 - **2.116.** a) $C = 2\pi \epsilon_0 \epsilon l / \ln(b/a)$; б) $C = 2\pi \epsilon_0 l \alpha / (b-a)$, α постоянная.
 - **2.117.** $C = 2\pi\varepsilon_0(1 + \varepsilon)ab/(b a)$.
 - **2.118.** $C_{\text{em}} \approx \pi \epsilon_0 / \ln(b/a) = 7.1 \text{ } \pi \Phi/\text{M}.$
 - **2.119.** $C \approx 2\pi\varepsilon_0/\ln(2b/a)$.
- **2.120.** $C \approx 2\pi \epsilon_0 \epsilon a$. Указание. При $b \gg a$ можно считать, что заряды распределены по поверхности шариков практически равномерно.
 - **2.121.** $C \approx 4\pi\varepsilon_0 a$.
 - **2.122.** a) $C_{\text{ofm}} = C_1 + C_2 + C_3$; 6) $C_{\text{ofm}} = C$.
 - **2.123.** a) $C = 2\varepsilon_0 S/3d = 0.13$ нФ; б) $C = 3\varepsilon_0 S/2d = 0.29$ нФ.
 - **2.124.** $U \leq U_1(1 + C_1 / C_2) = 9 \text{ kB.}$
 - **2.125.** $U = \mathcal{E}/(1 + 3\eta + \eta^2) = 10$ B.
- **2.126.** $C_x = C(\sqrt{5} 1)/2$. Так как цепь бесконечна, все звенья, начиная со второго, можно заменить емкостью C_x , равной искомой.
- **2.127.** $U_1=q/C_1=10$ B, $U_2=q/C_2=5$ B, где заряд $q=(\varphi_A-\varphi_B+\mathscr{E})C_1C_2/(C_1+C_2)$.
- **2.128.** Направление **E** в конденсаторах совпадает с направлением обхода контура по часовой стрелке. $U_1=(\mathscr{E}_2-\mathscr{E}_1)/(1+C_1/C_2)=3,0$ В, $U_2=(\mathscr{E}_2-\mathscr{E}_1)/(1+C_2/C_1)=2,0$ В.
- **2.129.** a) $\varphi_A \varphi_B = \mathscr{E}(C_2C_3 C_1C_4)/(C_1 + C_2)(C_3 + C_4)$; 6) $\varphi_A \varphi_B = (\mathscr{E}_2C_2 \mathscr{E}_1C_1)/(C_1 + C_2 + C_3)$.
 - **2.130.** $q = U/(1/C_1 + 1/C_2 + 1/C_3) = 0,06$ мКл.
 - **2.131.** $q_1 = \mathscr{E}C_2$, $q_2 = -\mathscr{E}C_1C_2/(C_1 + C_2)$.

2.132.
$$q_1 = \mathscr{E}C_1(C_1 - C_2)/(C_1 + C_2) = -24$$
 мкКл, $q_2 = \mathscr{E}(C_2 - C_1) = +60$ мкКл.

2.133.
$$C_{\text{ofm}} = 2C_1C_2 + C_3(C_1 + C_2)/(C_1 + C_2 + 2C_3)$$
.

2.134.
$$v_{\text{MAKC}} = e / \sqrt{2 \pi \epsilon_0 ma} = 2,25 \cdot 10^2 \text{ m/c.}$$

2.135.
$$W_a = (\sqrt{2} + 4) q^2 / 4 \pi \epsilon_0 a$$
, $W_\delta = (\sqrt{2} - 4) q^2 / 4 \pi \epsilon_0 a$, $W_e = -\sqrt{2} q^2 / 4 \pi \epsilon_0 a$.

2.136.
$$W = \left(\sqrt{1 + (l/R)^2} - 1\right) q_0 qR / 2\pi\epsilon_0 l^2$$
.

2.137. a)
$$W_{\text{B3}} = -q^2/8\pi\epsilon_0 l$$
; 6) $W_{\text{cof}} = q^2/16\pi\epsilon_0 l$.

2.138.
$$A = 2\varepsilon_0 E^2 S d = 30$$
 мкДж.

2.139.
$$\Delta W = -U^2 C_1 C_2 / 2(C_1 + C_2) = -0.03$$
 мДж.

2.141.
$$W = W_1 + W_2 + W_{12} = (q_1^2/2R_1 + q_2^2/2R_2 + q_1q_2/R_2)/4\pi\epsilon_0$$
.

2.142. a)
$$W = 3q^2/20\pi\epsilon_0 R$$
; 6) $W_1/W_2 = 1/5$.

2.143.
$$W = (1/a - 1/b)q^2/8\pi\epsilon_0\epsilon = 27$$
 мДж.

2.144.
$$W = q^2/32\pi\epsilon_0 a$$
.

2.145.
$$A = (1/R_1 - 1/R_2)q^2/8\pi\epsilon_0$$
.

2.146.
$$A = q(q_0 + q/2)(1/R_1 - 1/R_2)/4\pi\epsilon_0 = 1,8$$
 Дж.

2.147.
$$F_{e\pi} = \sigma^2/2\varepsilon_0$$
.

2.148.
$$A = (1/a - 1/b)q^2/8\pi\epsilon_0$$
.

$$2.150.$$
 а) $A=CU^2\eta/2(1-\eta)^2=1,5\,$ мДж; б) $A=CU^2\eta\varepsilon(\varepsilon-1)/2[\varepsilon-\eta(\varepsilon-1)]^2=0,8\,$ мДж.

2.151.
$$\Delta p = \varepsilon_0 \varepsilon (\varepsilon - 1) U^2 / 2 d^2 = 7 \text{ kHa} = 0.07 \text{ atm.}$$

2.152.
$$h = (\varepsilon - 1)\sigma^2/2\varepsilon_0\varepsilon\rho g$$
.

2.153.
$$F = \pi R \varepsilon_0 (\varepsilon - 1) U^2 / d$$
.

2.154.
$$N = \varepsilon_0(\varepsilon - 1)R^2U^2/4d$$
, от угла α не зависит.

2.155.
$$I = 2\pi \epsilon_0 a E v = 0.5$$
 MKA.

2.156.
$$I \approx 2\pi ε_0(ε - 1)rvU/d = 0,11$$
 MKA.

2.157. a)
$$5R/6$$
; 6) $7R/12$; B) $3R/4$.

2.158.
$$R_x = R(\sqrt{3} - 1)$$
.

2.159.
$$R = (1 + \sqrt{1 + 4\,R_{\,2}\,/\,R_{\,1}})R_{\,1}\,/\,2 = 6\,$$
 Ом. Указание. Поскольку цепь бесконечна, все звенья, начиная со второго, могут быть заменены сопротивлением, равным искомому сопротивлению R .

2.160. Подключим мысленно к точкам A и B напряжение U. Тогда $U = IR = I_0R_0$, где I — ток в подводящих проводах, I_0 — ток в проводнике AB. Ток I_0 можно представить как сумму двух токов. Если бы ток I «втекал» в точку A и растекался по сетке на бесконечность, то по проводнику AB — из симметрии — шел ток I/4. Аналогично, если бы ток I поступал в сетку из бесконечности и «вытекал» из точки B, то по проводнику AB шел тоже ток I/4. Сумма этих токов $I_0 = I/2$. Поэтому $R = R_0/2$.

2.161.
$$R = (\rho/2\pi l) \ln(b/a)$$
.

2.162.
$$R = \rho(b - a)/4\pi ab$$
. При $b \to \infty$ $R = \rho/4\pi a$.

2.163.
$$\rho = 4\pi \Delta t ab/(b - a)C \ln \eta.$$

2.164.
$$R = \rho/2\pi a$$
.

2.165. a)
$$j = 2alU/\rho r^3$$
; 6) $R \approx \rho/4\pi a$.

- **2.166.** a) $j = lU/2\rho r^2 \ln(l/a)$; 6) $R_1 = (\rho/\pi) \ln(l/a)$.
- 2.167. $I = UC/ρεε_0 = 1,5$ mkA.
- 2.168. $RC = \rho \epsilon \epsilon_0$.
- **2.169.** $\sigma = D_n = D \cos \alpha$, $j = (D/\rho \epsilon \epsilon_0) \sin \alpha$.
- **2.170.** $I = US(\sigma_2 \sigma_1)/d \ln(\sigma_2/\sigma_1) = 5$ HA.
- **2.172.** $q = \varepsilon_0(\rho_2 \rho_1)I = -15 \text{ aKm.}$
- **2.173.** $\rho = \epsilon_0 j \alpha / \sigma_0 = 2.0 \text{ MK} \pi / \text{M}^3$.
- **2.174.** $\sigma = \varepsilon_0 U(\varepsilon_2 \rho_2 \varepsilon_1 \rho_1)/(\rho_1 d_1 + \rho_2 d_2);$ $\sigma = 0$ πρи $\varepsilon_1 \rho_1 = \varepsilon_2 \rho_2$.
- **2.175.** $q = \varepsilon_0 I(\varepsilon_2 \rho_2 \varepsilon_1 \rho_1)$.
- **2.176.** a) $R_1 = 2\alpha/\pi a^4$; 6) $E = 2\alpha I/\pi a^4$.
- 2.177. $t = -RC\ln(1 U/U_0) = 0.6$ mkc.
- **2.178.** $\rho = \tau/\epsilon_0 \epsilon \ln 2 = 1.4 \cdot 10^{13} \text{ Om·m.}$
- **2.179.** $I = (\mathcal{E}/R)(\eta 1)e^{-\eta t/RC}$.
- **2.180.** $U = \mathcal{E}/(\eta + 1) = 2.0$ B.
- **2.181.** $\varphi_1 \varphi_2 = (\mathscr{E}_1 \mathscr{E}_2)R_1/(R_1 + R_2) \mathscr{E}_1 = -4 \text{ B.}$
- **2.182.** $R = R_2 R_1$, $\Delta \varphi = 0$ у источника тока с сопротивлением R_2 .
- **2.183.** a) $I = \alpha$; 6) $\varphi_A \varphi_B = 0$.
- **2.184.** $I = (a/2R)^2 \left(\sqrt{1 + 4RU_0/a^2} 1\right)^2$.
- **2.185.** R = 5 Ом. Дуга еще будет гореть, когда прямая $U = U_0 RI$ станет касательной к кривой графика на рис. 2.40.
 - **2.186.** $\varphi_A \varphi_B = (\mathscr{E}_1 \mathscr{E}_2)R_1/(R_1 + R_2) = -0.5$ B.
 - **2.187.** $I_1 = \mathcal{E}R_2/(RR_1 + R_1R_2 + R_2R) = 1.2 \text{ A}, \quad I_2 = I_1R_1/R_2 = 0.8 \text{ A}.$
 - **2.188.** $U = U_0 Rx/(Rl + R_0(l x)x/l), \ U(R \gg R_0) \approx U_0 x/l.$
 - **2.189.** $\mathscr{E} = (\mathscr{E}_1 R_2 \mathscr{E}_2 R_1)/(R_1 + R_2), \ R_i = R_1 R_2/(R_1 + R_2).$
- **2.190.** $I = (R_1 \mathcal{E}_2 R_2 \mathcal{E}_1)/(RR_1 + R_1 R_2 + R_2 R) = 0.02$ А; направление тока —
- слева направо (см. рис. 2.44). $\mathbf{2.191.} \ \ \mathbf{a}) \ \, I_1 = \frac{R_3(\mathscr{E}_1 \mathscr{E}_2) + R_2(\mathscr{E}_1 + \mathscr{E}_3)}{R_1R_2 + R_2R_3 + R_3R_1} = \mathbf{0.06} \ \, A; \ \, \mathbf{6}) \ \, \phi_A \phi_B = \mathscr{E}_1 I_1R_1 = \mathbf{0.9} \, \mathbf{B.}$
 - **2.192.** $I = \frac{\mathscr{E}(R_2 + R_3) + \mathscr{E}_0 R_3}{R(R_2 + R_3) + R_2 R_3}$. От R_1 не зависит.
 - **2.193.** $\varphi_A \varphi_B = \frac{\mathscr{E}_2 R_3 (R_1 + R_2) \mathscr{E}_1 R_1 (R_2 + R_3)}{R_1 R_2 + R_2 R_3 + R_3 R_1}.$
 - **2.194.** $I_1 = \frac{R_3(\varphi_1 \varphi_2) + R_2(\varphi_1 \varphi_3)}{R_1R_2 + R_2R_3 + R_3R_1} = 0,2$ A.
 - **2.195.** $I = U(R_2 R_1)/2R_1R_2 = 1,0$ A. Tok teyet of 1 k 2.
 - **2.196.** $R_{AB} = R_2(R_2 + 3R_1)/(R_1 + 3R_2) = 70 \text{ Om.}$
 - **2.197.** $U = (1 e^{-2t/RC}) \mathscr{E}/2.$
 - **2.198.** a) $Q = 4q^2R/3\Delta t = 20 \text{ кДж}$; б) $Q = \ln 2 \cdot q^2R/2\Delta t = 0.13 \text{ МДж}$.
 - **2.199.** $R = 3R_0$.
 - **2.201.** $Q = I(\mathscr{E} U) = 0.6$ Bt, P = -UI = -2.0 Bt.
 - **2.202.** I = U/2R, $P_{\text{Make}} = U^2/4R$, $\eta = 1/2$.
- **2.203.** $P = UI \approx 5$ Вт, где I и U значения тока и напряжения в точке пересечения прямой $I=\mathscr{E}/R_i-U(R+R_i)/RR_i$ с кривой графика (см. рис. 2.53).

2.204.
$$R_r = R_1 R_2 / (R_1 + R_2) = 12$$
 Om.

2.205.
$$R = R_1 R_2 / (R_1 + R_2), \ Q_{\text{Makc}} = (\mathscr{E}_1 R_2 + \mathscr{E}_2 R_1)^2 / 4R_1 R_2 (R_1 + R_2).$$

2.206.
$$Q = C \mathcal{E}^2 R_1 / 2(R_1 + R_2) = 60$$
 мДж.

2.207. a)
$$\Delta W = -CU^2 \eta/2(1-\eta) = -0.15$$
 мДж; б) $A = CU^2 \eta/2(1-\eta) = 0.15$ мДж.

2.208.
$$\Delta W = -(\epsilon - 1)CU^2/2 = -0.5$$
 мДж, $A = (\epsilon - 1)CU^2/2 = 0.5$ мДж.

2.209.
$$h \approx \varepsilon_0(\varepsilon - 1)U^2/2\rho g d^2$$
, где ρ — плотность воды.

2.210. a)
$$q = q_0 \exp(-t/\epsilon_0 \epsilon \rho)$$
; 6) $Q = (1/a - 1/b)q_0^2/8\pi\epsilon_0 \epsilon$.

2.211. a)
$$q = q_0 (1 - e^{-\tau/RC}) = 0.18$$
 мКл; б) $Q = (1 - e^{-2\tau/RC}) q_0^2/2C = 82$ мДж.

2.212. a)
$$I = (U_0/R)e^{-2t/RC}$$
; 6) $Q = CU_0^2/4$.

2.213.
$$e/m = l\omega r/qR = 1.8 \cdot 10^{11} \text{ Km/kg}.$$

2.214.
$$p = Ilm/e = 0.40 \text{ MkH} \cdot \text{c.}$$

2.215. a) t = enlS/I = 3 Mc ≈ 35 сут; б) $F = enl\rho I = 1,0$ MH, где ρ — удельное сопротивление.

2.216.
$$E = (I/2\pi\epsilon_0 r)\sqrt{m/2eU} = 0.32 \text{ kB/m}, \ \Delta \phi = rE/2 = 0.80 \text{ B}.$$

2.217. a)
$$\rho(x) = -(4/9)\varepsilon_0 a x^{-2/3}$$
; 6) $j = (4/9)\varepsilon_0 a^{3/2} \sqrt{2e/m}$.

2.218.
$$n = Id / e(u_0^+ + u_0^-) US = 2.3 \cdot 10^8 \text{ cm}^{-3}$$
.

2.219.
$$u_0 = \omega_0 l^2 / 2U_0$$
.

2.220. a)
$$\dot{n}_i = I_{\text{Hac}}/eV = 6 \cdot 10^9 \text{ cm}^{-3} \cdot \text{c}^{-1};$$
 f) $n = \sqrt{\dot{n}_i/r} = 6 \cdot 10^7 \text{ cm}^{-3}.$

2.221.
$$t = (\eta - 1) / \sqrt{r \dot{n}_i} = 13 \text{ Mg.}$$

2.222.
$$t = \varepsilon_0 \eta U / e \dot{n}_i d^2 = 4.6 \text{ cyt.}$$

2.223.
$$I = e \nu_0 e^{\alpha d}$$
.

2.224.
$$j = (e^{\alpha d} - 1) e \dot{n}_i / \alpha$$
.

2.225.
$$B = \varepsilon_0 \mu_0 v E \sin \alpha = 3,0 \text{ mTm.}$$

2.226. a)
$$B = \mu_0 I/2R = 6.3$$
 MKT π ; 6) $B = \mu_0 R^2 I/2(R^2 + x^2)^{3/2} = 2.3$ MKT π .

2.227.
$$B = \sqrt{2} \mu_0 I / 4R = 20 \text{ MKTJ}.$$

2.228.
$$B = (\mu_0 I/4\pi r_0) \ln(1+2\pi)$$
.

2.229.
$$B = n\mu_0 I tg(\pi/n)/2\pi R$$
. При $n \to \infty$ $B = \mu_0 I/2R$.

2.230.
$$B = 4\mu_0 I/\pi d \sin \varphi = 0.10 \text{ MT}\pi;$$

2.231.
$$B = (\pi - \phi + tg\phi)\mu_0 I/2\pi R = 28 \text{ MKTm.}$$

2.232. a)
$$B = \frac{\mu_0 I}{4\pi} \left(\frac{2\pi - \varphi}{a} + \frac{\varphi}{b} \right);$$
 6) $B = \frac{\mu_0 I}{4\pi} \left(\frac{3\pi}{2a} + \frac{\sqrt{2}}{b} \right).$

2.233.
$$B \approx \mu_0 h I / 4\pi^2 R r$$
, где r — расстояние от прорези.

2.234.
$$B = \mu_0 I / \pi^2 R = 28$$
 мкТл.

2.235. a)
$$B = \mu_0 \pi I / 4\pi R$$
; б) $B = (1 + 3\pi/2)\mu_0 I / 4\pi R$; в) $B = (2 + \pi)\mu_0 I / 4\pi R$.

2.236. a)
$$B = (\mu_0/4\pi)2I/a$$
; 6) $B = (\mu_0/4\pi)4I/a$.

2.237.
$$B = \sqrt{2} \mu_0 I / 4\pi l = 2,0 \text{ MKT}\pi.$$

2.238.
$$B_1 = (1 + \sqrt{2}) \mu_0 I / 2l$$
; $B_2 = (1 - \sqrt{2}) \mu_0 I / 2l$.

2.239. a)
$$B = \sqrt{4 + \pi^2} \, \mu_0 I / 4\pi R = 30 \, \text{MKT} \pi$$
; б) $B = \sqrt{2 + 2 \, \pi + \pi^2} \, \mu_0 I / 4\pi R = 34 \, \text{MKT} \pi$.

2.240.
$$B = (\mu_0/4\pi)I/R$$
. Вклад от токов в кольце равен нулю.

2.241. а)
$$B = \mu_0 i/2$$
; б) $B = \mu_0 i$ между плоскостями и $B = 0$ вне.

- **2.242.** $B(x \le d) = \mu_0 jx$, $B(x \ge d) = \mu_0 jd$.
- **2.243.** В полупространстве, где находится прямой провод, $B = \mu_0 I/2\pi r$, r расстояние от провода. В другом B = 0.
 - **2.244.** $B = (\mu_0 I/2\pi r) \operatorname{tg}(9/2)$.
 - **2.245.** Этот интеграл равен $\mu_0 I$.
 - **2.246.** $\mathbf{B}(r \leq R) = \mu_0[\mathbf{jr}]/2$, $\mathbf{B}(r \geq R) = \mu_0[\mathbf{jr}]R^2/2r^2$.
 - **2.247. B** = $\mu_0[\mathbf{jl}]/2$, т. е. поле в полости однородное.
 - **2.248.** $j(r) = (b/\mu_0)(1 + a)r^{\alpha-1}$.
 - **2.249.** $B = \mu_0 nI / \sqrt{1 + (2R/l)^2}$.
 - ${f 2.250.}~B=\mu_0 nI\left(1-x/\sqrt{x^2+R^2}
 ight)\!/2$, где x>0 вне соленоида и x<0 внут-

ри соленоида; см. рис. 19.

2.251.
$$B(r < R) = \sqrt{1 - (h/2\pi R)^2} \mu_0 I/h = 0.12 \text{ MTz},$$

- $B(r > R) = \mu_0 I / 2\pi r.$
 - **2.252.** $\eta \approx N/\pi = 0.8 \cdot 10^3$.
 - 2.253. $\Phi_{\rm ex} = \mu_0 I/4\pi = 1.0 \text{ MkB6/m}.$
- **2.254.** $\Phi = \Phi_0/2 = \mu_0 nIS/2$, где Φ_0 поток вектора **B** сквозь поперечное сечение соленоида вдали от его торцов.

- **2.256.** $p_{\rm m} = 2\pi R^3 B/\mu_0 = 30 \text{ mA·m}^2$.
- **2.257.** $p_{\rm m} = NId^2/2 = 0.5 \text{ A} \cdot \text{m}^2$.
- **2.258.** a) $B = \mu_0 I N \ln(b/a)/2(b-a) = 7$ мкТл; б) $p_{\rm m} = \pi I N(a^2 + ab + b^2)/3 = 15$ мА·м².
 - **2.259.** $\omega' = qB/2m$.
 - **2.260.** a) $B = \mu_0 \sigma \omega R/2$; b) $p_{\rm m} = \pi \sigma \omega R^4/4$.
 - **2.261.** $B = 2\mu_0 \sigma \omega R/3 = 29 \text{ nTm}.$
 - **2.262.** $p_{\rm m} = q \omega R^2 / 5$, $p_{\rm m} / M = q / 2m$.
 - **2.263.** B = 0.
 - **2.264.** $F_{\rm M}/F_{\rm a} = \mu_0 \varepsilon_0 v^2 = (v/c)^2 = 1,00.10^{-6}$.
 - **2.265.** a) $F_{\text{eg}} = \mu_0 I^2 / 4R = 0.20 \text{ MH/M};$ 6) $F_{\text{eg}} = \mu_0 I^2 / \pi l = 0.13 \text{ MH/M}.$
 - **2.266.** $(F_{ed})_{\text{Makg}} = \mu_0 I^2 / 4\pi a$.
 - **2.267.** $B = \pi d^2 \sigma_m / 4RI = 8$ кТл, где σ_m предел прочности меди.
 - **2.268.** $F = nI|\Phi_2 \Phi_1|$.
 - **2.269.** $F = \pi \mu_0 n^2 I^2 R^2 / 2 = 12 \text{ MH.}$
 - **2.270.** $B = (2\rho gS/I) tg\vartheta = 10$ мТл, где ρ плотность меди.
 - **2.271.** a) $N = (\mu_0/\pi)II_0(b-a)$; 6) $N = (\mu_0/\pi)II_0(b-a)\sin\varphi$.
 - 2.272. $B = \Delta mgl/NIS = 0.4 \text{ Tm}.$
- 2.273. а) $F=2\mu_0II_0/\pi(4\eta^2-1)=0$,40 мкH; б) $A=(\mu_0aII_0/\pi)\ln[(2\eta+1)/(2\eta-1)]=0$,10 мкДж.
 - 2.274. $A_{\rm eg} = -(\mu_0/2\pi)I^2 \ln \eta = -5.0 \text{ MK} \text{Дж/M}.$
 - **2.275.** $R \approx \sqrt{\mu_0 / \epsilon_0} \ln \eta / \pi = 0,36 \text{ kOm.}$
 - **2.276.** $F_{e\pi} = \mu_0 I^2 / \pi^2 R = 0.5 \text{ MH/M}.$
 - **2.277.** $F_{\text{ед}} = \mu_0 I^2 l / 2\pi (a^2 b^2).$
 - **2.278.** $F_{e\pi} = (\mu_0 I_1 I_2 / 2\pi b) \ln(1 + b/a)$.

Рис. 19

2.279.
$$F_{e\pi} = B^2/2\mu_0$$
.

2.280. Во всех трех случаях
$$F_{\rm eg} = (B_1^2 - B_2^2)/2\mu_0$$
. Сила действует вправо.

Ток в листе (проводящей плоскости) направлен за чертеж.

2.281.
$$\Delta p = IB/a = 0,5$$
 кПа.

2.282.
$$p = \mu_0 I^2 / 8\pi^2 R^2 = 16 \text{ m}\Pi a.$$

2.283.
$$p = \mu_0 n^2 I^2 / 2 = 1,0 \text{ kHa.}$$

2.284.
$$I_{\text{IID}} = \sqrt{2 F_{\text{IID}} / \mu_0 nR} = 1,4 \text{ KA}.$$

2.285. $P=v^2B^2d^2R/(R+\rho d/S)^2$; при $R=\rho d/S$ мощность $P=P_{\text{макс}}=v^2B^2dS/4\rho$.

2.286.
$$U = \mu_0 I^2 / 4\pi^2 R^2 ne = 2 \text{ mB.}$$

2.287.
$$n = jB/eE = 2.5 \cdot 10^{28} \text{ м}^{-3}$$
, почти 1:1.

2.288.
$$u_0 = 1/\eta B = 3.2 \cdot 10^{-3} \text{ m}^2/(\text{B} \cdot \text{c}).$$

2.289. a)
$$F = 0$$
; 6) $F = \mu_0 I p_m / 2\pi R^2$, $\mathbf{F} \downarrow \uparrow \mathbf{B}$; B) $F = \mu_0 I p_m / 2\pi r^2$, $\mathbf{F} \downarrow \uparrow \mathbf{r}$.

2.290.
$$F = 3\mu_0 R^2 I p_m x / 2(R^2 + x^2)^{5/2}$$
.

2.291.
$$F = 3\mu_0 p_{1m} p_{2m} / 2\pi l^4 = 9$$
 HH.

2.292.
$$I' \approx 2Bx^3 / \mu_0 R^2 = 0.5 \text{ KA.}$$

2.293.
$$B' = B\sqrt{\cos^2 \alpha + \mu^2 \sin^2 \alpha}$$
.

2.294. a)
$$\oint \mathbf{H} \ d\mathbf{S} = \frac{\mu - 1}{\mu \mu_0} \pi R^2 B \cos \vartheta$$
; 6) $\oint \mathbf{B} \ d\mathbf{r} = (1 - \mu) B l \sin \vartheta$.

Рис. 20

2.295. а) $I'_{\text{пов}} = \chi I$; б) $I'_{\text{об}} = \chi I$; в противоположные стороны.

2.296. a)
$$J = (aB_0/\mu_0)r^2$$
; b) $j' = (2aB_0/\mu_0)r$.

2.298.
$$B = \mu_0 \mu_1 \mu_2 I / (\mu_1 + \mu_2) \pi r$$
.

2.299.
$$\mathbf{B} = 2\mathbf{B}_0\mu/(1 + \mu)$$
.

2.300. B =
$$3B_0\mu/(2 + \mu)$$
.

2.301. а) ${\bf B}=0$ всюду, вне пластины ${\bf H}={\bf 0}$, внут-

ри H = -J; б) B = 0 вне пластины, внутри H = 0, $B = \mu_0 J$.

2.302.
$$H_c = NI/l = 6 \text{ KA/m}.$$

2.303.
$$H \approx bB/\mu_0\pi d = 0.10 \text{ kA/m}.$$

2.304.
$$B \approx \mu_0 J_r/(1 + bJ_r/2\pi aH_c) = 1.0 \text{ Tm.}$$

2.305. При
$$b \ll R$$
 $\mu \approx 2\pi RB/(\mu_0 NI - bB) = 3.7 \cdot 10^3$.

2.306.
$$H = 0.06 \text{ KA/M}, \ \mu_{\text{Make}} = 1.0 \cdot 10^4.$$

2.307. Из теоремы о циркуляции вектора Н получим:

$$B \approx \mu_0 NI/b - (\mu_0 \pi d/b)H = 1.51 - 0.986H (\kappa A/m).$$

Кроме того, между B и H имеется зависимость, график которой см. на рис. 2.89. Искомые значения H и B должны удовлетворять одновременно обоим уравнениям. Решив эту систему уравнений графически, получим:

$$H \approx 0.26 \text{ кA/м}, B \approx 1.25 \text{ Тл и } \mu = B/\mu_0 H = 4.10^3.$$

2.308.
$$F \approx \chi SB^2/2\mu_0$$
.

2.309. a)
$$x_m = 1/\sqrt{4a}$$
; 6) $\chi = \mu_0 F_{\text{Make}} \sqrt{e/a}/VB_0^2 = 3.6 \cdot 10^{-4}$.

2.310.
$$A \approx \chi V B^2 / 2\mu_0$$
.

2.311.
$$F_{\rm eg} = \mu_0 \chi n^2 I^2 / 2$$
, эта сила направлена вверх.

2.312.
$$B = (\mu_0 I/2a)[1 - (1 + 4l^2/a^2)^{-3/2}].$$

```
2.313. a) i = hI/\pi r^2; 6) F_{e\pi} = \mu_0 I^2/\pi h.
```

2.314.
$$\mathscr{E}_i = (\pi/2)a^2B\omega \sin\omega t$$
.

2.315. a)
$$\mathscr{E}_i = 2 Bv \sqrt{y/k}$$
; 6) $\mathscr{E}_i = By \sqrt{8 a/k}$.

2.316. а) $\Delta \phi = \omega^2 a^2 m/2e = 3,0$ нВ; б) $\Delta \phi \approx \omega B a^2/2 = 20$ мВ. Здесь m и e — масса и заряд электрона.

2.317.
$$\mathscr{E}_i = \mu_0 l v I / 2 \pi r$$
.

2.318.
$$\mathscr{E}_i = \mu_0 I a^2 v / 2\pi x (x + a)$$
.

2.319.
$$v = mgR/B^2l^2$$
.

2.320.
$$a = g/(1 + l^2B^2C/m)$$
.

2.321.
$$\langle P \rangle = (\pi \omega a^2 B)^2 / 8R$$
.

2.322.
$$N(t) = (\omega S^2 B^2 / R) \sin^2 \omega t$$
.

2.323.
$$B = qR/2NS = 0.5$$
 Tm.

2.324.
$$q = (\mu_0 a I / 2\pi R) \ln[(b+a)/(b-a)]$$
, T. e. of L He зависит.

2.325. a)
$$I = (\mu_0 I_0 v / 2\pi R) \ln(b/a)$$
; 6) $F = (\mu_0 I_0 / 2\pi)^2 \ln^2(b/a) \cdot v / R$.

2.326. a)
$$s = v_0 mR/l^2 B^2$$
; 6) $Q = mv_0^2/2$.

2.327.
$$v = (1 - e^{-\alpha t/m})F/\alpha$$
, rge $\alpha = l^2B^2/R$.

2.328.
$$I_m = \omega B_0(a - b)/4\rho = 0.5$$
 A.

2.329.
$$\mathscr{E}_{im} = \pi a^2 N \omega B_0 / 3.$$

2.330.
$$\mathscr{E}_i = 3 a l \dot{B} t^2 / 2 = 12 \text{ MB.}$$

2.331.
$$\mathscr{E} = B_0 N S \omega \cos 2\omega t$$
.

2.332.
$$E(r < a) = \mu_0 n \dot{I} r / 2$$
, $E(r > a) = \mu_0 n \dot{I} a^2 / 2r$.

2.333.
$$I = \mu_0 nSd\dot{I}/4\rho = 0.2$$
 A, где ρ — удельное сопротивление меди.

2.334.
$$\omega = -(q/2m)\mathbf{B}(t)$$
.

2.335.
$$Q = a^2 \tau^3 / 3R$$
.

2.336.
$$I = (b^2 - a^2)\beta h/4\rho$$
.

2.337.
$$l = \sqrt{4\pi l_0 L/\mu_0} \approx 100 \text{ M}.$$

2.338. $L=(\mu_0/4\pi)mR/l\rho\rho_0$, где ρ и ρ_0 — удельное сопротивление и плотность меди.

2.339.
$$t = -(L/R)\ln(1 - \eta) = 1.5$$
 c.

2.340. $\tau = (\mu_0/4\pi)m/l\rho\rho_0 = 0.7$ мс, где ρ — удельное сопротивление, ρ_0 — плотность меди.

2.341.
$$L_{\text{e}\pi} = (\mu \mu_0/2\pi) \ln \eta = 0.26 \text{ MK} \Gamma \text{H/M}.$$

2.342.
$$L = (\mu_0/2\pi)\mu N^2 a \ln(1 + a/b)$$
.

2.343.
$$L_{\rm ex} = \mu_0 h/b = 25 \ {\rm H}\Gamma {\rm H}/{\rm M}$$
.

2.344.
$$L_{\rm e \pi} \approx (\mu_0/\pi) {\rm ln} \eta$$
. Точное значение $L_{\rm e \pi} = (\mu_0/4\pi) (1 + 4 {\rm ln} \eta)$.

2.345.
$$I = \pi a^2 B/L = 15 \text{ A.}$$

2.347.
$$I = (1 + \eta)I_0 = 2$$
 A.

2.348.
$$I = [1 + (\eta - 1)e^{-t\eta R/L}]\mathscr{E}/R$$
.

2.349.
$$I = (1 - e^{-tR/2L}) \mathcal{E}/R$$
.

2.350.
$$I_1 = \mathcal{E}L_2/R(L_1 + L_2)$$
, $I_2 = \mathcal{E}L_1/R(L_1 + L_2)$.

2.351.
$$L_{12 \text{ eg}} = \mu_0 \mu n_1 n_2 S$$
.

2.352.
$$L_{12} = (\mu_0 b/2\pi) \ln(1 + a/l)$$
.

2.353.
$$L_{12} = (\mu_0 \mu h N / 2\pi) \ln(b/a)$$
.

2.354.
$$L_{12} = (\mu_0/2\pi)N_1N_2(b - a)\ln(b/a)$$
.

```
2.355. a) L_{12} \approx \mu_0 \pi a^2 / 2b; 6) \Phi_{21} = \mu_0 \pi a^2 I / 2b.
```

2.356.
$$L_{12} = L/3$$
.

2.357.
$$\Phi = (\mu_0/2\pi)aI\ln(1 + a/b)$$
.

2.358.
$$B = \mu_0 a^2 I/4r^3$$
. Воспользоваться тем, что $L_{12} = L_{21}$.

2.359.
$$p_{\rm m} = 2aRq/\mu_0 N$$
.

2.360.
$$L_{12} \approx \mu_0 \pi a^4 / 2l^3$$
.

2.361.
$$I_2 = -[1 - \exp(-tR/L_2)]\alpha L_{12}/R$$
.

2.362.
$$Q = L\mathscr{E}^2/2R^2(1 + R_0/R) = 3$$
 мкДж.

2.363.
$$W_{\rm eg} = \mu \mu_0 I^2 / 16\pi$$
.

$$2.364. W = N\Phi I/2 = 0.5$$
 Дж.

2.365.
$$W \approx BH\pi^2a^2b = 2.0$$
 Дж, где $H = NI/2\pi b$.

2.366. a)
$$W_3/W_M \approx \mu b/\pi d = 3.0$$
; 6) $L \approx \mu_0 SN^2/(b + \pi d/\mu) = 0.15$ FH.

2.367. $L_{\rm eg} = [1/4 + \ln(b/a)]\mu_0/2\pi$. Здесь необходимо воспользоваться определением L через энергию магнитного поля.

2.368.
$$W_{\rm en} = \mu_0 \lambda^2 \omega^2 a^2 / 8\pi$$
.

2.369.
$$E = B/\sqrt{\epsilon_0 \mu_0} = 3.10^8 \text{ B/m}.$$

2.370.
$$w_{\rm M}/w_{\rm a} = \varepsilon_0 \mu_0 \omega^2 a^4/l^2 = 1.1 \cdot 10^{-15}$$
.

2.372. a)
$$L_{\text{обш}} = 2L$$
; б) $L_{\text{обш}} = L/2$.

2.373.
$$L_{\text{обш}} = 4L$$
.

2.374.
$$L_{12} = \sqrt{L_1 L_2}$$
.

2.375. a)
$$I' = I/2$$
; 6) $\Delta W = -LI^2/2$.

2.377.
$$W_{12} = (\mu_0 \pi a^2 / 2b) I_1 I_2 \cos \vartheta$$
.

2.379. Кроме тока проводимости, следует учесть ток смещения.

2.380.
$$E_m = I_m/\epsilon_0 \omega S = 7 \text{ B/cm.}$$

2.381. $H=H_m\cos(\omega t+\alpha)$, где $H_m=\sqrt{\sigma^2+(\epsilon_0\,\epsilon\omega)^2}\,rU_m/2\,d$, а α определяется формулой $tg\alpha=\epsilon_0\epsilon\omega/\sigma$.

2.382.
$$j_{\text{см}}(r < R) = \varepsilon_0 \ddot{B}r/2$$
, $j_{\text{см}}(r > R) = \varepsilon_0 \ddot{B}R^2/2r/3$ десь $\ddot{B} = \mu_0 n I_m \omega^2 \sin \omega t$.

2.383. a)
$$\mathbf{j}_{cm} = 2q\mathbf{v}/4\pi r^3$$
; 6) $\mathbf{j}_{cm} = -q\mathbf{v}/4\pi r^3$.

2.384. $\mathbf{j}_{\rm cm} = \varepsilon_0 [\omega \mathbf{E}]$, где \mathbf{E} — напряженность электрического поля в центре системы; $\mathbf{j}_{\rm cm} = \sqrt[3]{32\,\varepsilon_0^2 m^{\ 2}\,\omega^{\ 7}/\pi q}$.

2.385.
$$\mathbf{H} = q \ [\mathbf{vr}]/4\pi r^3$$
.

2.386. а) Если $\mathbf{B}(t)$, то $\nabla \times \mathbf{E} = -\partial \mathbf{B} / \partial t \neq \mathbf{0}$, т. е. не равны нулю пространственные производные Е-поля, что возможно только при наличии электрического поля.

б) Если ${\bf B}(t)$, то $\nabla \times {\bf E} = -\partial {\bf B} / \partial t \neq {\bf 0}$. В однородном же поле $\nabla \times {\bf E} = {\bf 0}$.

2.387. Возьмем дивергенцию от обеих частей уравнения $\nabla \times \mathbf{H} = \mathbf{j} + \partial \mathbf{D} / \partial t$. Имея в виду, что дивергенция ротора всегда равна нулю, получим $\mathbf{0} = \nabla \cdot \mathbf{j} + \partial (\nabla \cdot \mathbf{D}) / \partial t$. Остается учесть, что $\nabla \cdot \mathbf{D} = \rho$.

2.388. Возьмем дивергенцию от обеих частей первого уравнения. Так как дивергенция ротора равна нулю, то $\nabla \cdot (\partial \mathbf{B} / \partial t) = 0$, или $\partial (\nabla \cdot \mathbf{B}) / \partial t = 0$. Отсюда $\nabla \cdot \mathbf{B} = \text{const}$, что действительно не противоречит второму уравнению.

2.389.
$$\nabla \times \mathbf{E} = -[\boldsymbol{\omega}\mathbf{B}]$$
.

2.390. E ' = [**vB**]. Заметим, что условие $\mathbf{v} \perp \mathbf{B}$ не обязательно.

2.391.
$$\sigma = \varepsilon_0 vB = 0.40 \text{ nK} \text{n/m}^2$$
.

2.392. P =
$$\varepsilon_0(1 - 1/\epsilon)[vB]$$
, $\sigma' = \varepsilon_0(1 - 1/\epsilon)vB$.

2.393.
$$ρ = -2ε_0ωB = -0.08 \text{ HK}π/m^3, σ = ε_0αωB = 2 πKπ/m^2.$$

2.394. a)
$$P = \varepsilon_0 (1 - 1/\epsilon) B \omega r$$
; 6) $\lambda' = 2 \pi \varepsilon_0 (1 - 1/\epsilon) B \omega a^2$.

2.395.
$$\mathbf{B} = \mu_0 q[\mathbf{vr}]/4\pi r^3$$
.

2.397.
$$\lambda' = v_0 I / c^2 = 11 \text{ aK}_{\pi/M}, N_1 = \lambda' / e = 70 \text{ m}^{-1}.$$

2.398.
$$\mathbf{B}' = a [\mathbf{r}\mathbf{v}] / c^2 r^2$$
, где r — расстояние от оси.

2.400. a)
$$E' = E\sqrt{(1-\beta^2\cos^2\alpha)/(1-\beta^2)} = 9 \text{ kB/m}, \ \text{tg}\alpha' = \text{tg}\alpha/\sqrt{1-\beta^2}, \ \alpha' \approx 51^\circ;$$

б)
$$B' = \beta E \sin \alpha / c \sqrt{1 - \beta^2} = 14$$
 мкТл.

2.401. a)
$$E' = \beta B \sin \alpha / c \sqrt{1 - \beta^2} = 1,4 \text{ HB/M};$$

6)
$$B' = B\sqrt{(1-\beta^2 \cos^2 \alpha)/(1-\beta^2)} = 0.9 \text{ Tm}, \ \alpha' \approx 51^\circ.$$

2.403.
$$B' = B\sqrt{1 - (E/cB)^2} \approx 0.15 \text{ MTm.}$$

2.404. Пусть заряд q движется в положительном направлении оси X K-системы отсчета. Перейдем в K '-систему, в начале координат которой этот заряд покоится (оси X и X обеих систем совпадают, оси Y и Y параллельны). В K '-системе поле заряда имеет вид:

$$\mathbf{E}' = \frac{q}{4\pi\epsilon_0} \frac{\mathbf{r}'}{r'^3}, \qquad E_x' = \frac{q}{4\pi\epsilon_0} \frac{x'}{r'^3}, \qquad E_y' = \frac{q}{4\pi\epsilon_0} \frac{y'}{r'^3}.$$

Теперь совершим обратный переход в K-систему. В момент, когда заряд q проходит через начало координат K-системы, проекции x, y вектора \mathbf{r} связаны с проекциями x', y' вектора \mathbf{r}' соотношениями $x = r \cos \vartheta = x' \sqrt{1 - (v/c)^2}$ и $y = r \sin \vartheta = y'$. Кроме того, согласно преобразованиям, обратным (2.6к), $E_x = E_x'$, $E_y = E_y' / \sqrt{1 - (v/c)^2}$. Решив совместно все эти уравнения, получим

$$\mathbf{E} = E_x \mathbf{i} + E_y \mathbf{j} = \frac{q\mathbf{r}}{4\pi\epsilon_0 r^3} \frac{1 - \beta^2}{(1 - \beta^2 \sin^2 \theta)^{3/2}}.$$

Существенно, что при $\mathbf{v} = \mathrm{const}$ вектор \mathbf{E} коллинеарен вектору \mathbf{r} .

2.405.
$$v = \sqrt[3]{9 \, \epsilon le / 2m} = 16 \, \text{km/c.}$$

2.406.
$$tg\alpha = \varepsilon l^2 \sqrt{m/32 eU^3}$$
.

2.407.
$$x = 2E_0/\epsilon$$
.

2.408.
$$t = \sqrt{K(K + 2mc^2)} / ceE = 3.0 \text{ HC.}$$

2.409.
$$tg\theta = \sqrt{1 - (v_0/c)^2} \ eEt/mv_0$$
, где e и m — заряд и масса протона.

2.410.
$$\alpha = \arcsin(dB\sqrt{q/2mU}) = 30^{\circ}$$
.

2.411. a)
$$v = reB/m = 100$$
 km/c, $T = 2\pi m/eB = 6.5$ mkc;

6)
$$v = c / \sqrt{1 + (mc / reB)^2} = 0.51c$$
, $T = 2\pi m / eB\sqrt{1 - (v / c)^2} = 4.1$ HC.

2.412.
$$K = \eta mc^2$$
. Соответственно 5 кэВ и 9 МэВ.

2.413.
$$\Delta l = 2\pi\sqrt{2mU/eB^2} \cos \alpha = 2.0 \text{ cm}.$$

2.414.
$$q/m = 8\pi^2 U/l^2 (B_2 - B_1)^2$$
.

2.415.
$$r = 2\rho \left| \sin(\varphi/2) \right|$$
, где $\rho = (mv/eB)\sin\alpha$, $\varphi = leB/mv\cos\alpha$.

2.416.
$$r_{\text{MAKC}} = a \exp(v_0/b)$$
, где $b = \mu_0 eI/2\pi m$.

2.417.
$$v = U/rB\ln(b/a)$$
, $q/m = U/r^2B^2\ln(b/a)$.

2.418. a)
$$y_n = 2\pi^2 m E n^2 / q B^2$$
; 6) $tg\alpha = v_0 B / 2\pi E n$.

2.419.
$$z = l \operatorname{tg} \sqrt{(qB^2/2mE)y}$$
; при $z \ll l$ уравнение упрощается: $y = (2mE/ql^2B^2)z^2$.

2.420.
$$F = mEI/qB = 20$$
 mkH.

2.421.
$$\Delta l = (2\pi mE/eB^2) \text{tg} \phi = 6 \text{ cm}.$$

2.422.
$$q/m = 2E\Delta x/a(a + 2b)B^2$$
.

Рис. 21

2.423. а) $x = a(\omega t - \sin \omega t)$, $y = a(1 - \cos \omega t)$, где $a = mE/qB^2$, $\omega = qB/m$. Траекторией является циклоида (рис. 21). Движение частицы представляет собой движение точки на ободе круга радиуса a, катящегося без скольжения вдоль оси X так, что его центр перемещается со скоростью v = E/B.

6)
$$s = 8mE/qB^2$$
; B) $\langle v_r \rangle = E/B$.

2.424.
$$U = 2(e/m)(\mu_0 I/4\pi)^2 \ln(a/b)$$
.

2.425.
$$B \leq \sqrt{8mU/e^2}b/(b^2-a^2)$$
.

 $2.426.\ y=(a/2\omega)t\sin\omega t,\ x=(a/2\omega^2)(\sin\omega t-\omega t\cos\omega t),\ где\ a=qE_m/m.$ Траектория имеет вид раскручивающейся спирали.

2.427.
$$U \ge 2\pi^2 v^2 m r \Delta r / e = 0.10$$
 MB.

2.428. a)
$$K = (erB)^2/2m = 12$$
 M₃B; 6) $v_{\text{MUH}} = \sqrt{K/2m} / \pi r = 20$ M Γ u.

2.429. а) $t = \pi^2 v m r^2 / e U = 17$ мкс; б) $s \approx 4\pi^3 v^2 m r^3 / 3e U = 0,74$ км. У к а з а н и е . Здесь $s \propto \sum v_n \propto \sum \sqrt{n}$, где v_n — скорость частицы после n-го прохождения ускоряющего промежутка (n меняется от 1 до N). Так как N велико, то $\sum \sqrt{n} \approx \int \sqrt{n} \; \mathrm{d} n$.

2.430.
$$n = 2\pi \nu W/eBc^2 = 9$$
.

2.431.
$$\omega = \omega_0 / \sqrt{1 + at}$$
, где $\omega_0 = qB/m$, $a = qB\Delta W/\pi m^2 c^2$.

2.432.
$$v = rqB/2m$$
, $\rho = r/2$.

2.433.
$$N = W/e\Phi = 5.10^6$$
 оборотов, $s = 2\pi rN = 8.10^3$ км.

2.434. Производная по времени от импульса электрона $\mathrm{d} p/\mathrm{d} t = eE = (e/2\pi r)\mathrm{d} \Phi/\mathrm{d} t$, где r — радиус орбиты, Φ — магнитный поток внутри нее: $\Phi = \pi r^2 \langle B \rangle$. С другой стороны, $\mathrm{d} p/\mathrm{d} t$ можно найти, продифференцировав соотношение p = erB при $r = \mathrm{const.}$ Из сравнения полученных выражений следует, что $\mathrm{d} B_0/\mathrm{d} t = (1/2) \; \mathrm{d} \langle B \rangle/\mathrm{d} t$. В частности, это условие будет выполнено, если $B_0 = \langle B \rangle/2$.

2.435.
$$r_0 = \sqrt{2B_0/3a}$$
.

2.436. Действительно,
$$dE/dr=rac{d}{dt}ig(B(r_0)-\langle B \rangle/2ig)=0.$$

2.437.
$$\Delta W = 2\pi r^2 eB/\Delta t = 0,10$$
 кэВ.

2.438. a)
$$W = \left(\sqrt{1 + (reB/mc)^2} - 1\right) mc^2$$
; 6) $s = W\Delta t/reB$.

3.1. a) Cm. puc. 22; 6)
$$(v_x/A\omega)^2 + (x/A)^2 = 1$$
, $a_x = -\omega^2 x$.

3.2. а) Амплитуда равна A/2, период $T = \pi/\omega$; см. рис. 23;

б)
$$v_x^2 = 4\omega^2 x (A - x)$$
, см. рис. 24.

Рис. 22

Рис. 23

Рис. 24

3.3.
$$a = \sqrt{A^2 + B^2}$$
.

3.4.
$$x = \sqrt{x_0^2 + (v_{x0}/\omega)^2} \cos(\omega t - \pi/4) = -29 \text{ cm}, \quad v_x = -81 \text{ cm/c}.$$

3.5.
$$\omega = \sqrt{(v_1^2 - v_2^2)/(x_2^2 - x_1^2)}, \ a = \sqrt{(v_1^2 x_2^2 - v_2^2 x_1^2)/(v_1^2 - v_2^2)}.$$

3.6. a)
$$\langle v \rangle = 3a/T = 0.50 \text{ m/c};$$
 6) $\langle v \rangle = 6a/T = 1.0 \text{ m/c}.$

3.7. В обоих случаях
$$A = 7$$
.

3.8.
$$v_{\text{Make}} = 2,73 a\omega$$
.

$$3.9. 47,9$$
 и $52,1$ с⁻¹, $1,5$ с.

3.10.
$$v_1' = (3v_1 - v_2)/2 = 19 \Gamma_{\text{II}}, \ v_2' = (3v_2 - v_1)/2 = 23 \Gamma_{\text{II}}$$

3.10.
$$\nu_1'=(3\nu_1-\nu_2)/2=19$$
 Гц, $\nu_2'=(3\nu_2-\nu_1)/2=23$ Гц. 3.11. а) $x^2/A^2+y^2/B^2=1$, по часовой стрелке; б) $\mathbf{a}=-\omega^2\mathbf{r}$.

3.12. a)
$$y^2 = 4x^2(1 - x^2/a^2)$$
, cm. puc. 25; б) $y = a(1 - 2x^2/a^2)$, cm. puc. 26.

3.13.
$$T = 2 \pi \sqrt{m / a^2 U_0}$$
.

3.14.
$$T = 4 \pi a \sqrt{2m \ a} / b^2$$
.

3.15.
$$T = \pi \sqrt{m l / F} = 0.2 c.$$

3.16.
$$T = 2\pi\sqrt{\eta l / g(\eta - 1)} = 1.1 \text{ c.}$$

3.17.
$$T = 2\pi/\sqrt{g/l + 2\varkappa/m} = 0.9$$
 c.

3.18.
$$T = 2\sqrt{l/g} [\pi/2 + \arcsin(\alpha/\beta)].$$

3.19.
$$T = 2\pi\sqrt{\Delta l / g} = 0.52 \text{ c.}$$

3.20.
$$T = \pi \sqrt{2V/Sg} = 0.8 \text{ c.}$$

3.21.
$$T = 2\pi\sqrt{V/gS(1 + \cos \theta)} = 0.83 \text{ c.}$$

3.22.
$$T = \sqrt{4 \pi m / \rho g r^2} = 2.5 \text{ c.}$$

3.23. При параллельном увеличится в два раза.

3.24.
$$T = 2 \pi \sqrt{\eta (1 - \eta) m / \varkappa} = 0.13 \text{ c.}$$

3.25.
$$T = 2 \pi \sqrt{m/(\varkappa_1 + \varkappa_2)}$$
.

3.26.
$$T = 2 \pi \sqrt{m/\varkappa}$$
, где $\varkappa = \varkappa_1 \varkappa_2 / (\varkappa_1 + \varkappa_2)$.

3.27.
$$T = \pi \sqrt{2l/kg} = 1.5 \text{ c.}$$

3.28.
$$l = (\pi/2)v\sqrt{m/\kappa}$$
.

$$3.29. t = \pi/\sqrt{ag \cos \alpha}.$$

3.30.
$$h = l\cos\omega t$$
, где $\omega = \sqrt{g/l}$; $t_0 = (\pi/2)\sqrt{l/g}$.

Рис. 25

Рис. 26

3.31. а) $\ddot{x} + (g/R)x = 0$, где x — смещение тела относительно центра Земли, R — ее радиус, g = 9.807 м/с²; б) $\tau = \pi \sqrt{R/g} = 42$ мин; в) $v = \sqrt{gR} = 7.9$ км/с.

3.32.
$$T = 2\pi\sqrt{l/|\mathbf{g}-\mathbf{a}|}$$
, где $|\mathbf{g}-\mathbf{a}| = \sqrt{g^2 + a^2 - 2ga \cos \beta}$.

3.33.
$$T = 2\pi / \sqrt{\kappa/m - \omega^2} = 0.21 \text{ c.}$$

3.34.
$$T = 2\pi/\sqrt{\kappa/m - \omega^2} = 0.7$$
 c, $\omega \ge \sqrt{\kappa/m} = 10$ pag/c.

3.35.
$$k = 4\pi^2 a/gT^2 = 0.4$$
.

3.36. а) $\vartheta=3.0^\circ\cos 3.5t;$ б) $\vartheta=4.5^\circ\sin 3.5t;$ в) $\vartheta=5.4^\circ\cos (3.5t+1.0).$ Здесь t — в секундах.

3.37.
$$F = (m_1 + m_2)g \pm m_1 a\omega^2 = 60$$
 и 40 H.

3.38. a)
$$a_{\text{MH}} = g/\omega^2 = 8 \text{ cm};$$
 6) $a = (\omega\sqrt{2h/g} - 1)g/\omega^2 = 20 \text{ cm}.$

3.39. a)
$$y = (1 - \cos \omega t) m g/\varkappa$$
, где $\omega = \sqrt{\varkappa/m}$; б) $T_{\text{макс}} = 2 m g$, $T_{\text{мин}} = 0$.

3.40.
$$s = 2F/\varkappa$$
, $t = \pi \sqrt{m / \varkappa}$.

3.41.
$$(x/r_0)^2 + \alpha (y/v_0)^2 = 1$$
.

3.42.
$$t = \pi n \sqrt{m} / \varkappa$$
, где $n = 1, 3, 5, ...$

3.43. a)
$$y = (1 - \cos\omega t)a/\omega^2$$
; б) $y = (\omega t - \sin\omega t)\alpha/\omega^3$. Здесь $\omega = \sqrt{\kappa/m}$.

3.44.
$$\Delta h_{\text{макс}} = mg/\varkappa = 10$$
 см, $E = m^2g^2/2\varkappa = 0.24$ Дж.

3.45.
$$a = (mg/\varkappa)\sqrt{1 + 2h\varkappa/mg}$$
, $E = mgh + m^2g^2/2\varkappa$.

3.46.
$$a = \frac{mg}{\varkappa} \sqrt{\left(\frac{m+M}{m}\right)^2 + \frac{2\varkappa h}{(m+M)g}}$$
.

3.47.
$$v_C = \pi \sqrt{gl/8}$$
.

3.48. Запишем уравнение движения в проекциях на оси X и Y: $\ddot{x} = \omega \dot{y}$, $\ddot{y} = -\omega \dot{x}$, где $\omega = a/m$. Их интегрирование (с учетом начальных условий) дает: $x = (v_0/\omega)(1-\cos\omega t), \ y = (v_0/\omega)\sin\omega t$. Отсюда $(x-v_0/\omega)^2 + y^2 = (v_0/\omega)^2$. Это уравнение окружности радиуса v_0/ω с центром в точке $x_0 = v_0/\omega$, $y_0 = 0$.

3.49.
$$T = 2\pi\sqrt{2l/3g}$$
.

3.50.
$$x = \left(1 \mp \sqrt{1 - l^2 / 3 l_0^2}\right) l_0 / 2 = 10$$
 и 30 см.

3.51.
$$\omega = \sqrt{3g/2l + 3\varkappa/m}$$
.

3.52.
$$T = 2 \pi \sqrt{m/3 \varkappa}$$
.

3.53. a)
$$T = 2\pi\sqrt{l/3g} = 1,1$$
 c; б) $E = mgl\alpha^2/2 = 0.05$ Дж.

3.54.
$$\varphi_m = \varphi_0 \sqrt{1 + mR^2 \dot{\varphi}_0^2 / 2 k \varphi_0^2}, E = k \varphi_m^2 / 2.$$

3.55.
$$\langle K \rangle = mgl\vartheta_0^2/8 + ml^2\dot{\vartheta}_0^2/12$$
.

3.56.
$$T = 4\pi/\omega$$
.

3.57.
$$I = ml^{\frac{1}{2}}(\omega_2^2 - g/l)/(\omega_1^2 - \omega_2^2) = 0.8 \text{ r} \cdot \text{m}^2$$
.

3.58.
$$\omega = \sqrt{(I_1 \omega_1^2 + I_2 \omega_2^2) / (I_1 + I_2)}$$
.

3.59.
$$x = l / \sqrt{12}$$
.

3.62. a)
$$T = 2\pi\sqrt{2R/g}$$
; 6) $T = 2\pi\sqrt{3R/2g}$.

3.63.
$$l_{\rm np} = h/2$$
, $T = \pi \sqrt{2 h/g}$.

3.64. Увеличится в $\sqrt{1+2(R/l)^2/5}$ раз. Здесь учтено, что вода до замерзания движется поступательно, и система ведет себя как математический маятник.

3.65.
$$\omega_0 = \sqrt{3 a \omega^2 / 2 l}$$
.

3.66.
$$\omega_0 = \sqrt{\kappa/(m + I/R^2)}$$
.

3.67.
$$\omega_0 = \sqrt{2mg \cos \alpha / [MR + 2mR(1 + \sin \alpha)]}$$
.

3.68.
$$T = 2\pi\sqrt{3(R-r)/2g}$$
.

3.69.
$$T = \pi \sqrt{3m/2\varkappa}$$
.

3.70.
$$\omega = \sqrt{(1 + m / M)g/l}$$
.

3.71.
$$\omega_0 = \sqrt{\kappa/m}$$
, где $\mu = m_1 m_2/(m_1 + m_2)$.

3.72. а)
$$\omega=\sqrt{\varkappa/m}=6$$
 с $^{-1}$; б) $E=\mu v_1^2/2=5$ мДж, $a=v_1/\omega=2$ см. Здесь $\mu=m_1m_2/(m_1+m_2)$.

3.73.
$$T = 2\pi\sqrt{I'/k}$$
, где $I' = I_1I_2/(I_1 + I_2)$.

3.74. ω_2 / $\omega_1=\sqrt{1+2\,m_{\rm \,O}\,/m_{\rm \,C}}\approx$ 1,9, где $m_{\rm O}$ и $m_{\rm C}$ — массы атомов кислорода и углерода.

3.75. а)
$$T=2\pi\sqrt{m/\varkappa}=0$$
, 28 с; б) $n=(x_0-\Delta)/4\Delta=3$,5 колебания, где $\Delta=kmg/\varkappa$.

3.76. a)
$$a_0$$
 и $a_0\omega$; б) $t_n = [\arctan(\omega/\beta) + n\pi]/\omega$, где $n = 0, 1, ...$

3.77. a)
$$\dot{\phi}(0) = -\beta \phi_0$$
, $\ddot{\phi}(0) = (\beta^2 - \omega^2)\phi_0$;

б)
$$t_n = \frac{1}{\omega} \left(\arctan \frac{\omega^2 - \beta^2}{2\beta\omega} + n\pi \right)$$
, где $n = 0, 1, 2, ...$

3.78. a)
$$a_0 = \dot{x}_0 / \omega$$
, $\alpha = -\pi/2$; 6) $a_0 = x_0 \sqrt{1 + (\beta/\omega)^2}$, $\tan \alpha = -\beta/\omega$.

3.79.
$$\dot{x}_0 = -x_0 / \tau = -0.5 \text{ cm/c.}$$

3.80.
$$\beta = \omega \sqrt{\eta^2 - 1} = 5 c^{-1}$$
.

3.82.
$$\lambda = n\lambda_0 / \sqrt{1 + (1 - n^2)\lambda_0^2 / 4\pi^2} = 3,3, \ n' = \sqrt{1 + (2\pi/\lambda_0)^2} = 4,3$$
 pasa.

3.83.
$$T = \sqrt{(4\pi^2 + \lambda^2)} \Delta x / g = 0.70 \text{ c.}$$

3.84. a)
$$Q = \pi n / \ln \eta = 5.10^2$$
; 6) $Q = \sqrt{\omega_0^2 \tau^2 - 1} / 2 = 3.0.10^3$.

3.85.
$$s \approx l(1 + e^{-\lambda/2}) / (1 - e^{-\lambda/2}) = 2.0$$
 M.

3.86.
$$Q \approx \Delta t \sqrt{g/l} / \ln \eta = 1, 3 \cdot 10^{2}$$
.

3.87.
$$T = \sqrt{3(4\pi^2 + \lambda^2)R/2g} = 0.9 \text{ c.}$$

3.88.
$$\omega = \sqrt{2 \alpha / mR^2 - (\pi \eta R^2 / m)^2}$$
.

3.89.
$$\eta = 2\lambda hI/\pi R^4T$$
.

3.90.
$$x = (F_0/m)(\cos \omega_0 t - \cos \omega t)/(\omega^2 - \omega_0^2)$$
.

3.91.
$$x = (F_0 t / 2m\omega_0) \sin \omega_0 t$$
.

3.92. Уравнения движения и их решения:

$$t \leqslant \tau$$
, $\ddot{x} + \omega_0^2 x = F/m$, $x = (1 - \cos \omega_0 t) F/x$;

$$t \ge \tau$$
, $\ddot{x} + \omega_0^2 x = 0$, $x = a \cos [\omega_0 (t - \tau) + \alpha]$,

где $\omega_0^2 = \kappa/m$, а и α — произвольные постоянные. Из условия непрерывности x и \dot{x} в момент $t=\tau$ находим: $a=(2F/\kappa)|\sin(\omega_0 t/2)|$.

3.93.
$$x_0 = \frac{F_0/m}{\omega_0^2 - \omega^2}$$
, $\dot{x}_0 = 0$. Тогда $x = \frac{F_0/m}{\omega_0^2 - \omega^2} \cos \omega t$.

3.94.
$$\tau \approx 2Q/\omega_0 = 4 \cdot 10^2$$
 c.

3.95.
$$Q = 1/2\sqrt{1-\eta^2} = 2$$
.

3.96.
$$tg\phi = \sqrt{(\omega_0/\beta)^2 - 2}$$
, $\phi = 84^\circ$.

3.97.
$$\omega_{\text{pes}} = \sqrt{\frac{1 - (\lambda/2\pi)^2}{1 + (\lambda/2\pi)^2}} \frac{g}{\Delta l}$$
, $a_{\text{pes}} = \frac{\lambda F_0 \Delta l}{4\pi mg} \left(1 + \frac{4\pi^2}{\lambda^2}\right)$.

3.98.
$$F(t) = 2\beta ma\omega_0\cos(\omega_0 t - \varphi).$$

3.99.
$$\beta = F_0/2ma\omega$$
.

3.100.
$$a_{\text{make}} = F_0/r\omega = 5.0$$
 cm.

3.101.
$$\omega_{\text{pe3}} = \sqrt{(\omega_1^2 + \omega_2^2)/2} = 5.1 \cdot 10^2 \text{ c}^{-1}$$
.

3.102. a)
$$\omega_0 = \sqrt{\omega_1 \omega_2}$$
; 6) $\beta = |\omega_2 - \omega_1|/2\sqrt{3}$, $\omega = \sqrt{\omega_1 \omega_2 - (\omega_2 - \omega_1)^2/12}$.

3.103.
$$\eta = (1 + \lambda^2/4\pi^2)\pi/\lambda = 2,1.$$

3.104.
$$\langle E \rangle = ma^2(\omega^2 + \omega_0^2)/4$$
.

3.105.
$$\langle P_F \rangle = 2\beta E$$
; это справедливо, если частота вынуждающей силы $\omega = \omega_0$.

3.106.
$$A = \pi a F_0 \sin \varphi$$
.

3.107.
$$A_{\text{TD}} = -\pi \phi_m N_m \sin \alpha$$
.

3.108.
$$Q = \sqrt{\omega^2 \omega_0^2 / (\omega^2 - \omega_0^2)^2 t g^2 \varphi - 1/4} = 2,2$$
, где $\omega_0^2 = \varkappa / m$.

3.109. a)
$$\langle P \rangle = \frac{F_0^2 \beta \omega^2 / m}{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2};$$
 6) $\omega = \omega_0$, $P_{\text{Make}} = \frac{F_0}{4\beta m}.$

3.110. $\omega_0 \approx 250 \text{ c}^{-1}$, $\beta \approx \Delta \omega/2 = 25 \text{ c}^{-1}$, где $\Delta \omega$ — ширина контура на половине высоты, $Q \approx \omega_0/\Delta \omega = 5$.

3.111.
$$q = 4 h \sqrt{\pi \epsilon_0 mg(\eta^2 - 1)} = 2.0 \text{ MKK}\pi$$
.

3.112. Индукция поля увеличилась в
$$\eta^2 = 25$$
 раз.

3.113.
$$x = (v_0/\omega) \sin \omega t$$
, где $\omega = lB/\sqrt{mL}$.

3.114.
$$x = (1 - \cos\omega t)g/\omega^2$$
, где $\omega = lB/\sqrt{mL}$.

3.115.
$$L = 1/\omega_0^2 C = 1.0$$
 m/h, $U(0) = U_m = I_m/\omega_0 C = 0.40$ B.

3.116.
$$U^2 + I^2 L / C = U_m^2$$
.

3.117. a)
$$I=I_m\mathrm{sin}\omega_0 t$$
, где $I_m=U_m\sqrt{C/L}$, $\omega_0=1/\sqrt{LC}$; 6) $\mathscr{E}_s=U_m/\sqrt{2}$.

3.118.
$$I_m = \mathscr{E}\sqrt{C/L}$$
, $U_{C_{\text{MAKC}}} = 2\mathscr{E}$.

3.119. Исходим из того, что dW равно работе dA против электрических сил. За малый промежуток времени δt $dA = \langle F \rangle dh = \langle qE \rangle dh$, где $\langle F \rangle$ — средняя за δt сила взаимодействия пластин. Преобразуем dA к виду $dA = \langle q^2/2 \rangle d(1/C)$. За время δt ($T \ll \delta t \ll t$) колебания можно считать гармоническими и $\langle q^2 \rangle = q_m^2/2 = -WC$. Тогла dA = WC d(1/C). Из условия dA = dW получим

$$=WC$$
. Тогда $\mathrm{d}A=WC~\mathrm{d}(1/C)$. Из условия $\mathrm{d}A=\mathrm{d}W$ получим

 $\mathrm{d}W/W = -\;\mathrm{d}C/2C$. Отсюда $\ln(W\,\sqrt{C}\,) = \mathrm{const.}\;$ А так как $w\, \propto 1/\sqrt{C}$, то

$$W/\omega = \text{const.}$$

Искомая работа $A = W' - W = W(\omega'/\omega - 1) = W(\eta - 1)$.

3.120.
$$\omega_0 = \sqrt{d / \pi \varepsilon_0 \mu_0 ar^2}$$
.

3.121.
$$\omega_0 \approx \sqrt{2d/\epsilon_0 \mu_0 a^2} h \ln(b/a)$$
.

3.122. a)
$$T = 2\pi\sqrt{L(C_1 + C_2)} = 0.7$$
 Mc; 6) $I_m = U\sqrt{(C_1 + C_2)/L} = 8$ A.

3.123. $U=(1\pm\cos\omega t)U_0/2$, где знак плюс — для левого конденсатора, знак минус — для правого; $\omega=\sqrt{2\ /\ LC}$.

3.124.
$$I = (\Phi/L) \cos(t/\sqrt{LC})$$
.

3.125. a)
$$t_n = \pi n/\omega$$
; б) $t_n = [\arctan(-\beta/\omega) + \pi n]/\omega$. Здесь $n = 0, 1, 2, ...$

3.126.
$$U_0/U_m = \sqrt{1-R^2C/4L}$$
.

3.127. $U_C = I_m L \sqrt{\omega^2 + \beta^2} e^{-\beta t} \sin(\omega t - \alpha)$, где α определяется формулой $tg\alpha = -\omega/\beta$; $U_C(0) = \omega L I_m$.

3.128.
$$W_L/W_C = L/CR^2 = 5$$
.

3.129.
$$L = L_1 + L_2$$
, $R = R_1 + R_2$.

3.130.
$$t = (Q/\pi\nu) \ln \eta = 0.5$$
 Mc.

3.131.
$$n = \sqrt{4L/CR^2 - 1}/2\pi = 16$$
.

3.132.
$$(\omega_0 - \omega)/\omega_0 = 1 - 1/\sqrt{1 + 1/4Q^2} \approx 1/8Q^2 = 0.5\%$$
.

3.133.
$$\tau = 2RI/a^4B^2$$
.

$$3.134.$$
 а) $W_0=\mathscr{E}^2(L+CR^2)/2(r+R)^2=2$,0 мДж; б) $W=W_0\mathrm{e}^{-tR/L}=0$,10 мДж.

3.135.
$$t \approx (Q/2\pi\nu_0)\ln\eta = 1.0$$
 Mc.

3.136. а) $\omega = \sqrt{1/LC - 1/4R^2C^2}$; б) $Q = \sqrt{4R^2C/L - 1}/2$. При решении следует учесть, что $\mathrm{d}q/\mathrm{d}t = I - I'$, где q — заряд конденсатора, I — ток через катушку, I' — ток утечки (I' = U/R).

3.137.
$$Q = U_m \sqrt{C/L}/2\langle P \rangle = 1.0 \cdot 10^4$$
.

3.138.
$$\langle P \rangle = R \langle I^2 \rangle = R I_m^2 / 2 = 20 \text{ MBt.}$$

3.139.
$$\langle P \rangle = RCU_{m}^{2} / 2L$$
.

3.140.
$$\omega = \sqrt{1/LC - 1/4R^2C^2}$$
.

3.141.
$$1/L_1 + 1/L_2 = 1/L$$
, $1/R_1 + 1/R_2 = 1/R$.

3.142.
$$I = (U_0/L)t \exp(-t/\sqrt{LC}), I = I_{\text{Makc}} = (U_0/e)\sqrt{C/L}$$
 be moment $t_m = \sqrt{LC}$.

3.143.
$$I = \left(U_m / \sqrt{R^2 + \omega^2 L^2}\right) [\cos(\omega t - \varphi) - e^{-tR/L} \cos \varphi], \ \text{tg}\varphi = \omega L/R.$$

3.144.
$$I = \left(U_m / \sqrt{R^2 + 1/\omega^2 C^2}\right) [\cos(\omega t - \varphi) - e^{-t/RC} \cos \varphi], \ tg\varphi = -1/\omega RC.$$

3.145. Ток отстает по фазе от напряжения на угол φ , определяемый уравнением $\mathbf{t} \mathbf{g} \varphi = \mu_0 \pi^2 v a/4 n \rho$.

3.146. Ток опережает по фазе напряжение на угол $\phi = 60^\circ$, определяемый уравнением $tg\phi = -\sqrt{\left(U_m/RI_m\right)^2-1}$.

3.147. а)
$$U'=U_0+U_m\cos(\omega t-\alpha)$$
, где $U_m=U_0/\sqrt{1+(\omega RC)^2}$, $\alpha=\arctan(\omega RC)$;

6)
$$RC = \sqrt{\eta^2 - 1 / \omega} = 22 \text{ Mc.}$$

3.148.
$$\tau = 2LI_m/U_m$$
.

3.149. См. рис. 27.

3.150. a)
$$I_m = U_m / \sqrt{R^2 + (\omega L - 1/\omega C)^2} = 4.5 \text{ A};$$

б) ${\rm tg} \phi = (\omega L - 1/\omega C)/R, \ \phi = -60^{\circ}$ (ток опережает напряжение);

в)
$$U_C = I_m/\omega C = 0.65$$
 кВ, $U_L = I_m \sqrt{R^2 + \omega^2 L^2} = 0.50$ кВ.

3.151. a)
$$\omega_{C\,\mathrm{pe}_3}=\sqrt{\omega_0^2-2\beta^2}$$
; б) $\omega_{L\,\mathrm{pe}_3}=$ $=\omega_0^2/\sqrt{\omega_0^2-2\beta^2}$. Здесь $\omega_0^2=1/\mathit{LC}$, $\beta=\mathit{R}/2\mathit{L}$.

Рис. 27

3.152. При значении $C=1/\omega^2 L=28$ мкФ; $U_L=U_m\sqrt{1+(\omega L/R)^2}=0.54$ кВ, $U_C=U_m\omega L/R=0.51$ кВ.

3.153.
$$I = I_m \cos(\omega t + \phi)$$
, где $I_m = \sqrt{1 + (\omega RC)^2} U_m / R$ и $\phi = \arctan(\omega RC)$.

3.154.
$$\omega_0 = \sqrt{L_2/(L_1L_2-L_{12}^2)C}$$
.

3.155.
$$Q = \sqrt{n^2 - 1/4}$$
.

3.156.
$$Q = \sqrt{(\eta^2 - 1)/(n - 1)^2 - 1/4}$$
.

3.157.
$$L = 1/4\pi^2 \nu_1 \nu_2 C = 0.15 \text{ M}\Gamma\text{H}.$$

3.159.
$$I_0/I = \sqrt{1 + (Q^2 + 1/4)(\eta^2 - 1)^2/\eta^2}$$
; соответственно 2,2 и 19.

3.160.
$$t = \pi t_0/2$$
.

3.161. a)
$$I = 2I_0 / \sqrt{3} \approx 1{,}15 I_0$$
; 6) $I = \pi I_0 / \sqrt{8} \approx 1{,}11 I_0$.

3.162.
$$\nu = \sqrt{\eta - 1} R / 2\pi L = 2 \text{ kGH}$$
.

3.163. Ток отстает по фазе от приложенного напряжения на угол $\phi = \arccos \sqrt{1-\left(X_L/Z\right)^2} \approx 37\,^\circ, \ P = \left(U/Z\right)^2 \sqrt{Z^2-X_L^2} = 0,16 \ \text{кВт.}$

3.164. При
$$R = \omega L - r = 0.20$$
 кОм; $P_{\text{Make}} = U^2/2\omega L = 0.11$ кВт.

3.165. Увеличилось на $\sqrt{n} - 1 \approx 30\%$.

3.166. При
$$Q\gg 1$$
 отношение $\Delta\omega/\omega_0 \approx \sqrt{n-1}/2\,Q=0.5\%$.

3.167.
$$P_2 = (U^2 - U_1^2 - U_2^2)/2R = 30 \text{ Bt.}$$

3.168.
$$P_1 = (I^2 - I_1^2 - I_2^2)R/2 = 2.5 \text{ Bt.}$$

3.169.
$$Z = R / \sqrt{1 + (\omega RC)^2} = 40 \text{ Om}.$$

3.170. См. рис. 28.

X

 $\frac{\partial \xi}{\partial x}$

3.171. a)
$$\omega_{\text{pes}} = \sqrt{1/LC - R^2/L^2} = 3 \cdot 10^4 \text{ c}^{-1};$$
 6) $I = URC/L = 3 \text{ mA}$, $I_C = U\sqrt{C/L - (RC/L)^2} = 1.0 \text{ A}$, $I_L = U\sqrt{C/L} = 1.0 \text{ A}$.

3.172.
$$tg\phi = [\omega C(R^2 + \omega^2 L^2) - \omega L]/R$$

3.172.
$$\operatorname{tg}\varphi = [\omega C(R^2 + \omega^2 L^2) - \omega L]/R.$$

3.173. $Z = \sqrt{(R^2 + \omega^2 L^2)/[(\omega RC)^2 + (1 - \omega^2 LC)^2]}.$

3.175.
$$\langle P \rangle = \omega^2 \Phi_0^2 R / 2(R^2 + \omega^2 L^2)$$
.

3.176.
$$\langle F_x \rangle = \left[\omega^2 L_2 L_{12} I_0^2 / 2(R^2 + \omega^2 L_2^2)\right] \partial L_{12} / \partial x$$
.

3.177.
$$t = 2l / \alpha (\sqrt{T_1} + \sqrt{T_2})$$
.

3.180. a)
$$a/\lambda = 5.1 \cdot 10^{-5}$$
; b) $v_m = 11 \text{ cm/c}$, $3.2 \cdot 10^{-4}$.

3.181.
$$\Delta \varphi = \mathbf{k}(\mathbf{r}_1 - \mathbf{r}_2) = (\omega/v)|(x_1 - x_2)\cos\alpha + (y_1 - y_2)\cos\beta + (z_1 - z_2)\cos\gamma|$$
.

3.182. $\mathbf{k} = \alpha \mathbf{e}_x + \beta \mathbf{e}_y + \gamma \mathbf{e}_z$, $v = \omega / \sqrt{\alpha^2 + \beta^2 + \gamma^2}$, где \mathbf{e}_x , \mathbf{e}_y , \mathbf{e}_z — орты осей координат.

3.183.
$$\mathbf{k} = \omega(\mathbf{e}_x/v_1 + \mathbf{e}_y/v_2 + \mathbf{e}_z/v_3)$$
.

3.184.
$$\xi = a \cos[(1 - V/v)\omega t - kx]$$
, где $v = \omega/k$.

3.185.
$$\alpha$$
 — фазовая скорость волны.

б) $v_m = 2\pi v a_0/\eta = 15 \text{ cm/c.}$

3.187. Cm. puc. 30;
$$\Delta x = \sqrt{2} / b$$
.

3.188.
$$v = u/\epsilon = 2.0 \text{ km/c}$$
.

3.189.
$$u_r = -\epsilon \sqrt{E/\rho} = -50 \text{ m/c}.$$

3.190. При
$$\eta \ll 1 \Delta \phi \approx 2\pi \eta / \gamma \lambda = 0,3$$
 рад.

3.191.
$$\mathbf{r} = (a_1\mathbf{r}_1 + a_2\mathbf{r}_2)/(a_1 + a_2)$$
.

3.192. a)
$$\gamma = \ln(\eta r_0/r)/(r - r_0) = 0.08 \text{ m}^{-1}$$
;

 $\partial \xi / \partial t$

б) См. рис. 32. Частицы среды в точках на прямых $y = x \pm n\lambda, \ y = x \pm (n \pm 1/2)\lambda$ и $y=x\pm(n\pm1/4)\lambda$ колеблются соответственно вдоль этих прямых, перпендикулярно им и движутся по окружностям (здесь n = 0, 1, 2, ...). В остальных точках — по эллипсам.

$$3.194. \ W = PR/v = 25 \ {
m MДж}.$$

Рис. 31

Рис. 32

Рис. 33

Рис. 34

Рис. 35

3.195.
$$\langle \Phi \rangle = 2 \pi l^2 I_0 \left(1 - 1 / \sqrt{1 + R^2 / l^2} \right) = 20$$
 мкВт.

3.196.
$$\langle \Phi \rangle = P/\sqrt{1 + (2R/h)^2} = 0.07 \text{ Bt.}$$

3.197.
$$P = 4\pi r^2 \langle j \rangle e^{2\gamma r} = 20$$
 Bt.

3.198.
$$W = 4\pi r^2 j(e^{2\gamma r} - 1)t = 11$$
 Дж.

3.199.
$$x_m = l$$
.

3.200. a)
$$\langle j_x \rangle = \rho a^2 \omega^3 / 2k$$
; б) $\langle j_x \rangle = 0$; в) $\langle j_x \rangle = \rho (a^2 - b^2) \omega^3 / 2k$;

$$\Gamma) \langle j_x \rangle = \rho a (a + b) \omega^3 / 2k.$$

3.201.
$$\langle j \rangle = \sqrt{2} \rho a^2 \omega^3 / k$$
.

3.203. a) $w_p = (\rho a^2 \omega^2/2) \sin^2\!kx \cos^2\!\omega t$; б) $w_k = (\rho a^2 \omega^2/2) \cos^2\!kx \sin^2\!\omega t$. См. рис. 35, где λ — длина волны, определяемая как $\lambda = 2\pi/k$.

3.204.
$$F = \pi d^2 \rho v^2 l^2 / \eta^2 = 3$$
 H.

3.205.
$$F = \pi d^2 \rho v^2 l^2 = 0,40 \text{ kH}.$$

3.206.
$$a_{\text{макс}} = 5$$
 мм; третьему обертону.

3.207.
$$\nu_2 / \nu_1 = \sqrt{\eta_2(1 + \eta_1) / \eta_1(1 + \eta_2)} = 1.4.$$

3.208. Частота увеличится в
$$\eta = \sqrt{1 + \Delta F / F} / (1 - \Delta l / l) = 2$$
 раза.

3.209.
$$v = 2lv \approx 340 \text{ m/c.}$$

3.210. a)
$$n = [2lv_0/v + 1/2] = 6$$
; 6) $n = [2lv_0/v] = 6$.

3.211. $\nu_n = \sqrt{E/\rho}(n+1/2)/l = 6,95(n+1/2)$ кГц; четыре с частотами 24,3, 31,3, 38,2 и 45,2 кГц.

3.212. a)
$$K_{\text{Makc}} = m\omega^2 a_{\text{Makc}}^2 / 4$$
; 6) $\langle K \rangle = m\omega^2 a_{\text{Makc}}^2 / 8$.

3.213.
$$W = \pi S \rho a^2 \omega^2 / 4k$$
.

3.214.
$$\tau = (1 \mp u / v) \tau_0 = \begin{cases} 4.5 \text{ c, если приближается,} \\ 5.5 \text{ c, если удаляется.} \end{cases}$$

3.215.
$$v = v_0(v_0 - v + u)/(v_0 + u) = 2,2 \text{ кГц.}$$

3.216.
$$\omega_2/\omega_1 = (v - v_2)/(v - v_1)$$
.

3.217.
$$v_1 = \frac{1}{2}v_0vu/(v^2 - u^2) \approx \frac{1}{2}v_0u/v = 1,0$$
 Гц.

3.218.
$$u = \left(\sqrt{1 + (\nu/\nu_0)^2} - 1\right) v \nu_0 / \nu \approx v \nu / 2\nu_0 = 0.5 \text{ m/c.}$$

3.219.
$$\omega = \left(\sqrt{1 + (\Delta \nu / \nu_0)^2} - 1\right) v \nu_0 / a \Delta \nu = 34 \text{ c}^{-1}.$$

3.220.
$$v = v_0 / \sqrt{1 + 2 at / v} = 1,35 \text{ kGg}$$
.

3.221. a)
$$\nu = \nu_0 / (1 - \eta^2) = 5$$
 Гц; б) $r = l \sqrt{1 + \eta^2} = 0,32$ км.

3.222. Уменьшается на
$$2u/(v + u) = 0.20\%$$
.

3.223.
$$v = 2v_0u/(v + u) = 0.60$$
 Гц.

3.224.
$$\gamma = \ln(\eta r_1^2/r_2^2)/2(r_2-r_1) = 6 \cdot 10^{-3} \text{ m}^{-1}$$
.

3.225. a)
$$L' = L - 20 \gamma x$$
 lg e = 50 дБ и $\Gamma = 50$ фон; б) $x = 0.30$ км.

3.226. a)
$$L=L_0+20~\lg(r_0/r)=70$$
 дБ и $\Gamma=50$ фон; б) $r>0.32$ км.

3.227.
$$\beta = \ln(r_2/r_1)/[\tau + (r_2 - r_1)/v] = 0.12 \text{ c}^{-1}$$
.

3.228. а) Рассмотрим движение плоского элемента среды толщиной $\mathrm{d}x$ с единичной площадью поперечного сечения. Согласно второму закону Ньютона $\mathrm{pd}x\cdot\ddot{\xi}=-\mathrm{d}p$, где $\mathrm{d}p$ — приращение давления на длине $\mathrm{d}x$. Учитывая, что $\ddot{\xi}=v^2\xi_x''$ — волновое уравнение, перепишем предыдущее равенство в виде $\mathrm{p}v^2\xi_x''\mathrm{d}x=-\mathrm{d}p$. Проинтегрировав это уравнение, получим $\Delta p=-\mathrm{p}v^2\xi_x'$ + const. В отсутствие волны избыточное давление $\Delta p=0$. Значит, const = 0.

3.229.
$$\langle \Phi \rangle = \pi R^2 (\Delta p)_m^2 / 2 \rho \nu \lambda = 11 \text{ MBτ.}$$

3.230. a)
$$(\Delta p)_m = \sqrt{\rho v P/2 \pi r^2} = 5 \text{ Ha}, (\Delta p)_m/p = 5 \cdot 10^{-5}; \text{ 6) } a = (\Delta p)_m/2 \pi \nu \rho v = 3 \text{ MKM}, } a/\lambda = 5 \cdot 10^{-6}.$$

3.231.
$$P = 4\pi r^2 e^{2\gamma r} I_0 \cdot 10^{L-L_0} = 3.4$$
 Вт. где L — в белах.

3.232.
$$\Delta \lambda = (1/\sqrt{\epsilon} - 1) c / \nu = -50 \text{ m}.$$

3.233.
$$t = 2(\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}) l / c \ln(\varepsilon_1 / \varepsilon_2)$$
.

3.234.
$$\left| \partial E / \partial x \right| = \sqrt{\mu_0 / \epsilon_0} j_{cm} = 60 \text{ mB/m}^2$$
.

3.235.
$$j/j_{cM} = σ/2πνεε_0 = 2$$
.

3.236. H =
$$(\varepsilon_0 c/k)$$
[**kE**] $\cos(ckt)$, где c — скорость света.

3.237. а) $\mathbf{H} = \mathbf{e}_z \varepsilon_0 c E_m \cos k x = -0.30 \ \mathbf{e}_z;$ б) $\mathbf{H} = \mathbf{e}_z \varepsilon_0 c \mathbf{E}_m \cos k (ct - x) = 0.18 \ \mathbf{e}_z.$ Здесь \mathbf{e}_z — орт оси Z, H в A/M.

3.238. Для данного случая (
$$R \ll \lambda$$
) $\mathscr{E}_m = 2\pi^2 n R^2 v E_m/c = 0,20$ мВ.

3.240.
$$\langle \Pi \rangle = k \epsilon_0 c^2 E_m^2 / 2 \omega$$
.

3.241. a)
$$\langle j_{\text{cm}} \rangle = 4\epsilon_0 \nu E_m = 0.18 \text{ mA/m}^2; \quad \text{f)} \langle \Pi \rangle = \epsilon_0 c E_m^2 / 2 = 3.3 \text{ mkBt/m}^2.$$

3.242.
$$j_{\text{cm Makc}} = \omega \sqrt{2 \langle S \rangle \epsilon_0 / c}$$
.

3.243.
$$\langle \Pi \rangle = \varepsilon_0 c E_0^2 (1 + \cos \varphi)$$
.

3.244.
$$\langle \Pi \rangle = \sqrt{2} \varepsilon_0 c E_0^2$$
.

3.245. Здесь $t\gg T$, где T — период колебаний; поэтому искомая энергия $W=\sqrt{\epsilon\epsilon_0/\mu_0}\,E_m^{\ 2}\pi R^{\ 2}t/2=5\,$ кДж.

3.246. В =
$$\mathbf{B}_m \sin(kx) \sin(\omega t)$$
, где $\mathbf{B}_m \perp \mathbf{E}_m$, причем $B_m = E_m/c$.

3.247.
$$\Pi_r = (\varepsilon_0 c E_m^2 / 4) \sin(2kx) \sin(2\omega t); \langle \Pi_r \rangle = 0.$$

3.248.
$$W_{\rm M}/W_{\rm a} = \varepsilon_0 \mu_0 \omega^2 R^2/8 = 5.0 \cdot 10^{-15}$$
.

3.249.
$$W_9/W_M = \varepsilon_0 \mu_0 \omega^2 R^2/8 = 5, 0.10^{-15}.$$

3.251.
$$\Phi_{II} = I^2 R$$
.

3.252.
$$\ddot{I} = \sqrt{m/2e} I^2/4\pi^2\epsilon_0 r^2$$
.

3.254. Слева.

3.255.
$$\Phi = UI$$
.

3.256.
$$\langle \Phi \rangle = (U_0 I_0 / 2) \cos \varphi$$
.

3.258. а) Продифференцировав одно уравнение по x, другое по t, обнаружим, что комбинация полученных выражений содержит волновое уравнение (как для U, так и для I). Дальнейшее очевидно.

б) Решения волновых уравнений запишем в виде

$$U = U_m \cos(\omega t - kx), \quad I = I_m \cos(\omega t - kx + \alpha).$$

Подстановка этих выражений, например, в первое из уравнений (3.4e) показывает, что $\alpha=0$ и $kI_m=C_1\omega U_m$. Отсюда $\rho=U_m/I_m=1/vC_1=\sqrt{L_1/C_1}$.

3.259.
$$L_1 = \rho \sqrt{\varepsilon}/c = 0.40 \text{ MK}\Gamma\text{H/M}, C_1 = \sqrt{\varepsilon}/c\rho = 0.12 \text{ H}\Phi/\text{M}.$$

3.261.
$$I = I_m \sin(kx) \sin(\omega t)$$
, где $I_m = U_m/\rho$.

3.262. a)
$$U_m = U_0 \cos(n\pi x/l)$$
, $I_m = I_0 \sin(n\pi x/l)$, $n = 1, 2, 3, ...$;

6)
$$U_m = U_0 \sin(n\pi x/l)$$
, $I_m = I_0 \cos(n\pi x/l)$, $n = 1, 2, 3, ...$;

B)
$$U_m = U_0 \sin(n'\pi x/l)$$
, $I_m = I_0 \cos(n'\pi x/l)$, $n' = 1, 2, 3, ...$

3.263.
$$l = c/2(\nu_2 - \nu_1) = 0.10$$
 км.

3.264. Электрический момент системы $\mathbf{p} = \sum e\mathbf{r}_i = (e/m)M\mathbf{r}_C$, где M — масса системы, \mathbf{r}_C — радиус-вектор ее центра масс. Мощность излучения $P \propto \ddot{\mathbf{p}}^2 \propto \ddot{\mathbf{r}}_C^2$. Поскольку $\ddot{\mathbf{r}}_C = \mathbf{0}$, то $P = \mathbf{0}$.

3.265.
$$\langle P \rangle = e^2 a^2 \omega^4 / 12 \pi \epsilon_0 c^3 = 5 \cdot 10^{-15} \text{ Bt.}$$

3.266.
$$P = (2/3c^3)(qe^2/mR^2)^2/(4\pi\epsilon_0)^3$$
.

3.267.
$$\Delta W/K = e^3 B/3 \epsilon_0 c^3 m^2 = 2.10^{-18}$$
.

3.268. $K=K_0\mathrm{e}^{-\alpha t}$, где $\alpha=e^4B^2/3\pi\epsilon_0c^3m^3$. Через $t_0=1/\alpha=2,6$ с для электрона и $1,6\cdot 10^{10}$ с $=0,5\cdot 10^3$ лет для протона.

3.269.
$$\Pi_1/\Pi_2 = \operatorname{tg}^2(\omega l/c) \approx 3.$$

3.270.
$$\langle II \rangle = (1/2) \sqrt{\epsilon_0 / \mu_0} (r_0 / r)^2 E_m^2 \sin^2 \vartheta = 3 \text{ MBT/M}^2$$
.

3.271.
$$\langle P \rangle = 8\pi r^2 \Pi_0/3$$
.

3.272.
$$\langle w \rangle = 3P_0/8\pi r^2 c$$
.

3.273.
$$P = p^2 \omega^4 / 6\pi \epsilon_0 c^3$$
.

3.274.
$$R = 3P/16\pi c \gamma \rho M_C \approx 0.6$$
 мкм, где M_C — масса Солнца.

3.275.
$$c = 2lz(n_2 - n_1) = 3.0 \cdot 10^8 \text{ m/c}.$$

3.276. При $v \ll c$ время течет практически одинаково в системах отсчета, связанных и с источником, и с приемником. Пусть источник испускает короткие импульсы с интервалом T_0 . Тогда в системе отсчета, связанной с приемником, расстояние между двумя последовательными импульсами вдоль линии наблюдения $\lambda = cT_0 - v_rT_0$, где $v_r = v\cos\vartheta$. Частота принимаемых импульсов $v = c/\lambda = v_0/(1-v_r/c)$, где $v_0 = 1/T_0$. Отсюда $(v-v_0)/v_0 = (v/c)\cos\vartheta$.

3.277.
$$\Delta \lambda = -\lambda \sqrt{2 K / mc^2 \cos \vartheta} = -26 \text{ HM}.$$

3.278.
$$T = 4\pi R \lambda/c \delta \lambda = 25$$
 сут, где R — радиус Солнца.

3.279.
$$d = (\Delta \lambda/\lambda)_m c \tau/\pi = 3 \cdot 10^7$$
 км, $m = (\Delta \lambda/\lambda)_m^3 c^3 \tau/2 \pi \gamma = 2.9 \cdot 10^{29}$ кг, где γ — гравитационная постоянная.

3.280.
$$\omega = \omega_0(1 + \beta)/(1 - \beta)$$
, где $\beta = V/c$, $\omega \approx \omega_0(1 + 2V/c)$.

- 3.281. $v = \lambda \Delta v/2 = 900$ км/ч.
- **3.282.** После подстановки в равенство $\omega t kx = \omega' t' k' x'$ величин t' и x' (из преобразований Лоренца) получим:

$$\omega' = \omega \sqrt{(1-\beta)/(1+\beta)}, \quad k' = k \sqrt{(1-\beta)/(1+\beta)},$$

где $\beta = v/c$, а v — скорость K'-системы отсчета относительно K-системы. Здесь учтено, что $\omega = ck$.

- **3.283.** Из формулы $v' = v\sqrt{(1-\beta)/(1+\beta)}$ имеем $\beta = v/c = 0.256$.
- **3.284.** $v = c (\eta^2 1)/(\eta^2 + 1) = 7.10^4$ км/с, где $\eta = \lambda/\lambda'$.
- **3.285.** $\omega = \omega_0 \sqrt{3/7}$.
- 3.286. $\Delta\lambda = \lambda K/mc^2 = 0.70$ нм, где m масса атома. 3.287. a) $\nu = \nu_0 / \sqrt{1 (\upsilon/c)^2} = 5.0$ ГГц; б) $\nu = \nu_0 \sqrt{1 (\upsilon/c)^2} = 1.8$ ГГц.
- 3.288. Заряд электрона вместе с положительным индуцированным в металле зарядом образует диполь. В системе отсчета, связанной с электроном, электрический момент диполя меняется с периодом T'=d'/v , где $d'=d\sqrt{1-(v/c)^2}$. Соответствующая «собственная» частота $v'=v \ / \ d'$. Вследствие эффекта Доплера наблюдаемая частота равна

$$v = v' \frac{\sqrt{1 - (v/c)^2}}{1 - (v/c)\cos \theta} = \frac{v/d}{1 - (v/c)\cos \theta}.$$

Ей отвечает длина волны $\lambda = c/v = d(c/v - \cos \theta)$. При $\theta = 45^\circ$ и $v \approx c$ длина волны $λ \approx 0.6$ мкм.

- 3.289. $v = c\alpha/2 = 30 \text{ km/c}$.
- **3.290.** $\sin \theta = \sqrt{\eta(2 \eta)}$, отсюда $\theta = 8^{\circ}$.
- **4.1.** а) 3 и 6 мВт; б) $\Phi = K_m \Phi_3 (V_1 + V_2)/2 = 1,7$ лм, где V_1 и V_2 значения функции V_{λ} для данных длин волн, $K_m=683$ лм/Вт.
 - **4.2.** $E_m^2 = \sqrt{\mu_0/\epsilon_0} \Phi/2\pi r^2 K_m V_{\lambda}$, отсюда $E_m = 1,2$ В/м, $H_m = 3,2$ мА/м.

 - 4.3. $W = PS/2r_0v_0$. 4.4. a) $\langle E \rangle = E_0/2$; б) $\langle E \rangle = \left(1 \sqrt{1 (R/l)^2}\right)I/R^2(1 R/l) = 50$ лк.
 - **4.5.** $M = 2\pi L_0/3$.
 - **4.6.** a) $\Phi = \pi L \Delta S \sin^2 \theta$; 6) $M = \pi L$.
 - **4.7.** $h \approx R$, $E = LS/4R^2 = 40$ лк.
 - **4.8.** $I = I_0/\cos^3 \theta$, $\Phi = \pi I_0 R^2/h^2 = 3.10^2$ лм.
 - **4.9.** $E'_{\text{Make}} = 9\rho ES/16\pi R^2\sqrt{3} = 0.21 \text{ JK}.$
 - **4.10.** $E = \pi L$.
 - **4.11.** $E = \pi L$.
 - **4.12.** $M = E_0(1 + h^2/R^2) = 7 \cdot 10^2 \text{ } \text{лм/м}^2.$
 - **4.13.** $E_0 = \pi L R^2/h^2 = 25$ лк.
 - 4.14. e' = e 2 (en)n.
- **4.15.** Пусть \mathbf{n}_1 , \mathbf{n}_2 , \mathbf{n}_3 орты нормалей к плоскостям данных зеркал, а \mathbf{e}_0 , ${\bf e}_1, {\bf e}_2, {\bf e}_3$ — орты первичного луча и лучей, отраженных от первого, второго и третьего зеркал. Тогда (см. ответ предыдущей задачи):
- $\mathbf{e}_2 = \mathbf{e}_1 2(\mathbf{e}_1\mathbf{n}_2)\mathbf{n}_2,$ $\mathbf{e}_1 = \mathbf{e}_0 - 2(\mathbf{e}_0\mathbf{n}_1)\mathbf{n}_1,$ $e_3 = e_2 - 2(e_2n_3)n_3.$ Сложив почленно левые и правые части этих выражений, нетрудно показать, что $e_3 = -e_0$.
 - **4.16.** $\theta_1 = \arctan = 53^{\circ}$.

4.17.
$$n_1/n_2 = 1/\sqrt{\eta^2 - 1} = 1,25$$
.

4.18.
$$x = \left(1 - \cos \theta / \sqrt{n^2 - \sin^2 \theta}\right) d \sin \theta = 3.1 \text{ cm}.$$

4.19.
$$h' = hn \cos^3 \theta / (n^2 - \sin^2 \theta)^{3/2}$$
.

4.22.
$$\theta = 83^{\circ}$$
.

4.24.
$$\alpha = 8.7^{\circ}$$
.

4.25.
$$\Delta \alpha = 2 \sin(\theta/2) \Delta n / \sqrt{1 - n^2 \sin^2(\theta/2)} = 0.44^{\circ}.$$

4.27.
$$\Delta\omega/\omega = (n-1)v/c = 1,0\cdot 10^{-11}$$
.

4.30. a)
$$f = l\beta/(1 - \beta^2) = 10$$
 cm; 6) $f = l\beta_1\beta_2/(\beta_2 - \beta_1) = 2.5$ cm.

4.31.
$$I' = \rho I_0 f^2 / (f - s)^2 = 2,0 \cdot 10^3$$
 кд.

Рис. 36

4.32. Пусть S — точечный источник света и S' — его изображение (рис. 36). По принципу Ферма оптические длины всех лучей, вышедших из S и собравшихся в S', одинаковы. Проведем окружности из центров S и S' радиусами SO и S'M. Тогда оптические пути DM и OB должны быть равны:

$$n \cdot DM = n' \cdot OB. \tag{*}$$

Но для параксиальных лучей $DM \approx AO + OC$, где $AO \approx h^2/(-2s)$ и $OC \approx h'^2/2\,R$. Кроме того, $OB = OC - BC \approx h'^2/2\,R - h'^2/2\,s'$. Подставив эти выражения в (*) и имея в виду, что $h' \approx h$, получим n'/s' - n/s = (n'-n)/R.

4.33.
$$x = \frac{nf}{n+1} \left(1 - \sqrt{1 - \frac{(n+1)r^2}{(n-1)f^2}} \right), \quad r_{\text{MAKC}} = f\sqrt{\frac{n-1}{n+1}}.$$

4.35. 6,3 см.

4.36. a)
$$\beta = 1 - d(n-1)/nR = -0.20;$$
 6) $E = \pi n^2 D^2 L/4d^2 = 42$ Jet.

4.37. $\Phi = \Phi_0(n-n_0)/(n-1) = 2,0$ дптр, $f' = -f = n_0 / \Phi = 85$ см. Здесь n и n_0 — показатели преломления стекла и воды.

4.38. $\Phi=\Phi_0(2n-n_0-1)/2(n-1)=6,7$ дитр, $f=1/\Phi\approx 15$ см, $f'=n_0$ / $\Phi=20$ см. Здесь n и n_0 — показатели преломления стекла и воды.

4.42.
$$\Delta x = \frac{f^2 \Delta l}{(l-f)(l-f+\Delta l)} = 2,5$$
 cm.

4.43. a)
$$f = (l^2 - (\Delta l)^2)/4l = 20$$
 cm; 6) $f = l\sqrt{\eta}/(1 + \sqrt{\eta})^2 = 20$ cm.

4.44.
$$h = \sqrt{h h''} = 3,0 \text{ mm.}$$

4.45.
$$E = (1 - \alpha)\pi LD^2/4f^2 = 15$$
 лк.

4.46. а) Не зависит от D; б) пропорциональна D^2 .

4.47. $f = n_0 R/2(n_1-n_2) = 35$ см, где n_0 — показатель преломления воды.

- 4.48. f = R/2(2n 1) = 10 cm.
- **4.49.** а) Справа от последней линзы на 3,3 см от нее; б) l=17 см.
- **4.50.** a) 50 и 5 см; б) отодвинуть на 0,5 см.
- **4.51.** $\Gamma = D/d$.
- **4.52.** $\psi = \psi' / \sqrt{\eta} = 0,6$ угл. мин.
- **4.53.** $\Gamma' = (\Gamma + 1)(n n_0)/n_0(n 1) 1 = 3,1$, где n_0 показатель преломления воды.
 - **4.54.** $\Gamma \leq D/d_0 = 20$.
 - **4.55.** $\Gamma = 60$.
 - **4.56.** $\Gamma = 2\alpha l_0/d_0 = 15$, где l_0 расстояние наилучшего видения (25 см).
 - **4.57.** $\Gamma \leq 2\alpha l_0/d_0$, где l_0 расстояние наилучшего видения (25 см).
- 4.58. Главные плоскости совпадают с центром линзы. Фокусные расстояния в воздухе и воде: $f=-1/\Phi=-11$ см, $f'=n_0/\Phi=+15$ см. Здесь $\Phi=(2n-n_0-1)/R$, где n и n_0 показатели преломления стекла и воды. Узловые точки совпадают и расположены в воде на расстоянии x=f'+f=3,7 см от линзы.

Рис. 37

- 4.59. См. рис. 37.
- 4.62. а) Оптическая сила системы $\Phi = \Phi_1 + \Phi_2 d\Phi_1\Phi_2 = +4$ дптр, фокусное расстояние равно 25 см. Обе главные плоскости расположены перед собирающей линзой: передняя на расстоянии 10 см от собирающей линзы, задняя на расстоянии 10 см от рассеивающей линзы ($x = d\Phi_2/\Phi$ и $x' = -d\Phi_1/\Phi$); 6) d = 5 см; около 4/3.
- **4.63.** Оптическая сила данной линзы $\Phi = \Phi_1 + \Phi_2 (d/n)\Phi_1\Phi_2$, $x = d\Phi_2/n\Phi = 5.0$ см, $x' = -d\Phi_1/n\Phi = 2.5$ см, т. е. обе главные плоскости расположены вне линзы со стороны ее выпуклой поверхности.
- **4.64.** $f = f_1 f_2/(f_1 + f_2 d)$. Линзу надо поместить в передней главной плоскости системы, т. е. на расстоянии $x = f_1 d/(f_1 + f_2 d)$ от первой линзы.
- **4.65.** $\Phi = 2\Phi' 2\Phi'^2 l / n_0 = 3,0$ дптр, где $\Phi' = (2n n_0 1) / R$, n и n_0 показатели преломления стекла и воды.
 - **4.66.** a) $d = n\Delta R/(n-1) = 4.5$ cm; 6) d = 3.0 cm.
- **4.67.** а) $\Phi = d(n-1)^2/nR^2 > 0$; главные плоскости лежат со стороны выпуклой поверхности на расстоянии d друг от друга, причем передняя главная плоскость удалена от выпуклой поверхности линзы на расстояние R/(n-1);
- б) $\Phi = (1/R_2 1/R_1)(n-1)/n < 0$, обе главные плоскости проходят через общий центр кривизны поверхностей линзы.
 - **4.68.** $d = n(R_1 + R_2)/2(n 1) = 9.0$ cm, $\Gamma = R_1/R_2 = 5.0$.
 - **4.70.** $R = n/(\partial n/\partial N) = 3 \cdot 10^{7} \text{ m}; \ \partial n/\partial N = 1,6 \cdot 10^{-7} \text{ m}^{-1}.$
 - 4.72. 1,9a.

Рис. 38

4.73. Сопоставим каждому колебанию вектор, модуль которого равен a. Угол между векторами, характеризующими k-е и (k+1)-е колебания, по условию равен α . Изобразим из этих N векторов цепочку (рис. 38) и обозначим результирующий вектор как A. Мысленно проведем описанную окружность радиуса R с центром в точке O. Тогда, как видно из рисунка, $A = 2R\sin(\alpha N/2)$, $a = 2R\sin(\alpha/2)$. Исключив R из этих двух уравнений, получим $A = a\sin(N\alpha/2)/\sin(\alpha/2)$.

4.74. a)
$$\cos \theta = (k - \alpha/2\pi)\lambda/d$$
, где $k = 0, \pm 1, \pm 2, ...;$

б)
$$\alpha = \pi/2$$
, $d/\lambda = k + 1/4$, где $k = 0$, 1, 2, ...

4.75. a) Cm. puc. 39, a; 6) cm. puc. 39, δ .

4.76. а) См. рис. 40, a; б) см. рис. 40, δ .

Рис. 39

Рис. 40

4.77. $I \propto \cos^2[(\pi/2)\sin^2(\phi/2)]$; см. рис. 41, где запаздывает по фазе на $\pi/2$ излучатель 2.

4.78.
$$\Delta \alpha = 2\pi [k - (d/\lambda) \sin \omega t]$$
, rge $k = 0, \pm 1, \pm 2, ...$

4.79.
$$\lambda = 2\Delta x \Delta h/l(\eta - 1) = 0.6$$
 mkm.

Рис. 41

4.81. a)
$$\Delta x = \lambda(b + r)/2\alpha r = 1,1$$
 mm, $N = [2\alpha b/\Delta x + 1] = 9$;

б) сдвиг картины на $\delta x=(b/r)\delta l=13$ мм; в) картина будет еще достаточно отчетлива, если $\delta x \leqslant \Delta x/2$, отсюда $h_{\rm macc}=(1+r/b)\lambda/4\alpha=43$ мкм.

4.82.
$$\lambda = 2\alpha\Delta x = 0.64$$
 MKM.

4.83. a) $\Delta x = \lambda f/a = 0.16$ mm, 13 максимумов;

б) полосы будут еще достаточно отчетливы, если сдвиг интерференционных картин от крайних элементов щели $\delta x \leqslant \Delta x/2$. Отсюда $h_{\text{make}} = \lambda f^2/2ab = 40$ мкм.

4.84.
$$\lambda = 2a\theta(n-1)\Delta x/(a+b) = 0.6$$
 MKM.

4.85.
$$\Delta x \approx \lambda/2 \theta(n - n') = 0,20 \text{ MM}.$$

4.86. Полосы сместятся в сторону перекрытой щели на расстояние $\Delta x = hl(n-1)/d = 2,0$ мм.

4.87.
$$n' = n + N\lambda/l = 1,000377$$
.

4.88.
$$v = \lambda/2\Delta t \sqrt{n^2 - \sin^2 \theta} = 1.1 \text{ MKM/Y}.$$

4.89.
$$b = \lambda(1+2k)/4\sqrt{n^2-\sin^2\theta_1} = 0.14(1+2k)$$
 мкм, где $k=0,1,2,...$

4.90.
$$b_{\text{MWH}} = 2\lambda/\sqrt{n^2 - \sin^2 \theta} = 0.65 \text{ MKM}$$
, rge $\lambda = 0.40 \text{ MKM}$.

4.91.
$$b = \lambda(1+2k)/4\sqrt{n}$$
, где $k = 0, 1, 2, ...$

4.92.
$$b = \lambda \sqrt{n^2 - \sin^2 \theta} / (\sin 2\theta \cdot \delta\theta) = 15 \text{ MKM}.$$

4.93.
$$\lambda \approx b(r_i^2 - r_k^2)/4nl^2(i - k)$$
.

4.94.
$$\Delta x = \lambda \cos \theta_1 / 2 \alpha \sqrt{n^2 - \sin^2 \theta_1}$$
.

4.95. а)
$$\theta = \lambda/2n\Delta x = 3$$
 угл. мин; б) $\Delta \lambda/\lambda \approx \Delta x/l = 0.014$.

4.96.
$$\Delta r \approx \lambda R/4r$$
.

4.97.
$$r' = \sqrt{r^2 - 2Rh} = 1.5 \text{ mm}.$$

4.98.
$$r = \sqrt{r_0^2 + (k-1/2)}\lambda R = 3.8$$
 мм, где $k = 6$.

4.99. $\lambda = (\ d_{\ 2}^{\ 2} \ - \ d_{\ 1}^{\ 2})/4R$ ($N_{\ 2} \ - \ N_{\ 1}$) $= 0,50\,$ мкм, где $N_{\ 1}$ и $N_{\ 2}$ — номера темных колен.

4.100.
$$\Phi = 2(n-1)(2k-1)\lambda/d^2 = 2,4$$
 дптр, где k — номер светлого кольца.

4.101. a)
$$r = \sqrt{2 k \lambda (n-1)/\Phi} = 3,5$$
 мм, где $k = 10$;

б)
$$r' = r / \sqrt{n_0} = 3,0$$
 мм, где n_0 — показатель преломления воды.

4.102.
$$r = \sqrt{(k-1/2)\lambda R/n_2} = 1,3$$
 мм, где $k = 5$.

4.103.
$$k_{\text{MWH}} = \lambda_1/2(\lambda_2 - \lambda_1) = 140.$$

4.104. Условие перехода от одной четкой картины к следующей: $(k+1)\lambda_1 = k\lambda_2$, где k — некоторое целое число. Соответствующее перемещение Δh зеркала определяется уравнением $2\Delta h = k\lambda_2$. Из этих двух уравнений получим: $\Delta h = \lambda_1\lambda_2/2(\lambda_2-\lambda_1) \approx \lambda^2/2\Delta\lambda = 0$,3 мм.

4.105. а) Условие максимумов: $2d\cos\theta = k\lambda$; отсюда следует, что с ростом угла θ , т. е. радиуса колец (см. рис. 4.23), порядок интерференции k убывает. б) Взяв дифференциал от обеих частей предыдущего уравнения и имея в виду, что при переходе от одного максимума к следующему k изменяется на единицу, получим $\delta\theta = \lambda/2d\sin\theta$; отсюда видно, что угловая ширина полос уменьшается с ростом угла θ , т. е. с уменьшением порядка интерференции.

4.106. a)
$$k_{\text{Make}} = 2d/\lambda = 1.0 \cdot 10^5$$
; 6) $\Delta \lambda = \lambda/k = \lambda^2/2d = 5$ mm.

 ${f 4.107.}$ Движущаяся со скоростью V заряженная частица своим полем возбуждает атомы среды, и они становятся источниками световых волн. Световые

волны, испускаемые из произвольных точек A и B при прохождении через них частицы, достигнут точки P (рис. 42) за одинаковое время и усилят друг друга, если время распространения световой волны из точки A в точку C будет равно времени пролета частицей пути AB. Отсюда $\cos\vartheta=v/V$, где v=c/n — фазовая скорость света. Излучение возможно лишь при V>v.

4.108.
$$K_{\text{мин}} = \left(n / \sqrt{n^2 - 1} - 1\right) mc^2$$
; соответственно 0,14 МэВ и 0,26 ГэВ.

Для мюонов.

4.109.
$$K = \left(n \cos \vartheta / \sqrt{n^2 \cos^2 \vartheta - 1} - 1\right) mc^2 = 0,23 \text{ M} \vartheta B.$$

4.110.
$$I_0 = (2/bN\lambda) \int I(r)r dr$$
, где интегрирование от 0 до ∞ .

4.111.
$$b = ar^2/(k\lambda a - r^2) = 2.0$$
 m.

4.112.
$$\lambda = (r_2^2 - r_1^2)(a + b)/2ab = 0.60$$
 mkm.

4.113.
$$I \approx 2 I_0 [1 - \cos(\pi R^2 / \lambda b)] = 2 I_0$$
.

4.114. a)
$$I \approx 4I_0$$
, $I \approx 2I_0$; 6) $I \approx I_0$.

4.115. a) $I \approx 0$; 6) $I \approx I_0/2$.

4.116. a)
$$I \approx (1 - \varphi/2\pi)^2 I_0$$
; 6) $I = (1 + \varphi/2\pi)^2 I_0$.

4.117. a) $h = \lambda(k+3/8)/(n-1) = 1,2(k+3/8)$ мкм; б) h = 1,2(k+7/8) мкм; в) h = 1,2k или 1,2(k+3/4) мкм. Здесь k = 0, 1, 2, ...

4.118.
$$h = \lambda(k + 3/4)/(n - 1)$$
, где $k = 0, 1, 2, ..., I_{\text{макс}} \approx 8I_0$.

4.119.
$$h = \lambda(k + 5/8)/(n - 1) = 1,2(k + 5/8)$$
 мкм, где $k = 0, 1, 2, ...$

4.120.
$$r = \sqrt{k\lambda fb/(b-f)} = 0.9\sqrt{k}$$
 мм, где $k = 1, 3, 5, ...$

4.121. $b' = b / \eta^2 = 1.0 \text{ M}.$

4.122. a)
$$y' = yb/a = 9$$
 mm; 6) $h_{\text{MMH}} \approx ab\lambda/D(a + b) = 0.10$ mm.

4.123. f = ab/(a + b) = 0.6 м. Это значение соответствует главному фокусу, помимо которого существуют и другие.

4.124. a)
$$h = 0.60(2k+1)$$
 мкм; б) $h = 0.30(2k+1)$ мкм. Здесь $k = 0, 1, 2, ...$

4.125. а) $I_{\text{макс}}/I_{\text{мин}}\approx 1,7;$ б) $\lambda=2(\Delta x)^2/b(v_2-v_1)^2=0,7$ мкм, где v_1 и v_2 — соответствующие значения параметра на спирали Корню.

4.126. $I_{\text{cep}}/I_{\text{kp}} \approx 2.6$.

4.127. $\lambda = (\Delta h)^2/2b(v_2 - v_1)^2 = 0,55$ мкм, где v_1 и v_2 — соответствующие значения параметра на спирали Корню.

4.128.
$$h \approx \lambda(k + 3/4)/(n - 1)$$
, где $k = 0, 1, 2, ...$

4.129. $I_2/I_1 \approx 1.9.$

4.130.
$$x = v \sqrt{\lambda b/2} = 0.7$$
 мм, где $v = 1.0$.

4.131. $E \approx 0.7 I_0$.

4.132. $h \approx \lambda/4(n-1) = 0.30$ MKM.

4.133. Мысленно разобьем щель на множество одинаковых полосок и изобразим, имея в виду рис. 43, a, цепочку соответствующих элементарных векторов — для определенного угла дифракции ϕ . Если угол ϕ достаточно мал, цепочка образует дугу радиуса R (рис. 43, δ). Пусть длина цепочки A_0 и результирующий вектор \mathbf{A} . Тогда, как видно из рис. 43, δ , $A_0 = R\delta$, $A = 2R\sin(\delta/2)$, где δ — разность фаз между крайними векторами цепочки. Исключив R из этих равенств, получим $A = A_0 \sin(\delta/2)/(\delta/2)$. Отсюда интенсивность $(I \otimes A^2)$ $I_{\phi} = I_0 \sin^2(\delta/2)/(\delta/2)^2$, где I_0 — интенсивность в центре дифракционной картины $(\phi = 0)$, $\delta = 2\pi b \sin \phi$. С ростом угла ϕ увеличивается δ , и цепочка будет закручиваться. Когда $\delta = 2\pi$, 4π , ..., $2\pi k$, цепочка замыкается один, два, ..., k раз, и мы приходим к условию $b \sin \phi = k\lambda$, k = 1, 2, ...

Рис. 43

4.134. $\lambda = b / k \sqrt{1 + 4 (f/x)^2} = 0.6$ мкм, где k — порядок минимума.

4.135. $b(\sin \vartheta - \sin \vartheta_0) = k\lambda$; для k = +1 и k = -1 углы ϑ равны соостветственно 33 и 27°.

4.136. a) $\Delta \theta = \arcsin(n\sin\theta) - \theta = 7,9^{\circ};$ б) из условия $b(\sin\theta_1 - n\sin\theta) = \pm \lambda$ получим $\Delta \theta = \theta_{+1} - \theta_{-1} = 7,3^{\circ}.$

4.137. $\lambda \approx (\alpha^2 - \alpha_0^2)d/2k = 0.6$ MKM.

4.139. 55°.

4.140. d = 2.8 мкм.

4.141. $\lambda = d \sin \Delta \theta / \sqrt{5 - 4 \cos \Delta \theta} = 0.54 \text{ mkm}.$

4.142. a) 45° ; б) -64° .

4.143. $x = 2R/(n-1)\sqrt{(d/\lambda)^2-1} = 8$ cm.

4.144. Из условия d [$n\sin\theta - \sin(\theta + \theta_k)$] = $k\lambda$ получим $\theta_0 = -18,5^\circ$, $\theta_{+1} = 0^\circ$; $k_{\text{Marc}} = +6$, $\theta_{+6} = +78,5^\circ$. См. рис. 44.

4.145. $h_k = \lambda(k - 1/2)/(n - 1)$, где k = 1, 2, ...; $a\sin\theta_1 = \lambda/2$.

4.146. $v = \lambda v f / \Delta x = 1.5$ km/c.

4.147. $b < \lambda f/d \approx 1$ мм. Интерференция будет наблюдаться, если радиус когерентности $\rho_{\text{ког}} > d$.

4.148. Каждая звезда дает в фокальной плоскости объектива свою дифракционную картину, причем их нулевые максимумы отстоят друг от друга на угол ψ (рис. 45). При уменьшении расстояния d угол ϑ между соседними максимумами в каждой дифракционной картине будет увеличиваться, и когда ϑ станет равным 2ψ , наступит первое ухудшение видимости: максимумы одной системы полос совпадут с минимумами другой. Таким образом, из условия $\vartheta = 2\psi$ и формулы $\sin\vartheta = \lambda/d$ получим $\psi \approx \lambda/2d = 0.06$ угл. сек.

4.149. a)
$$D = k / d\sqrt{1 - (k\lambda/d)^2} = 6.5$$
 угл. мин/нм, где $k = 2$;

б) $D = k / d\sqrt{1 - (k\lambda/d - \sin \theta_0)^2} = 13$ угл. мин/нм, где k = 4.

4.150. $d\vartheta/d\lambda = tg\vartheta/\lambda = 11$ угл. мин/нм.

4.151. $\Delta \theta = 2 \lambda / N d \sqrt{1 - (k \lambda / d)^2} = 11$ угл. сек.

4.154. $\vartheta = 46^{\circ}$.

4.155. a) B четвертом; б) $\delta \lambda_{\text{мин}} = \lambda^2 / l = 7$ пм.

4.156. a) d = 0.05 mm; b) l = 6 cm.

4.157. a) 6 и 12 мкм; б) в первом порядке нет, во втором да.

- **4.158.** $b \ll \lambda f/Nd = 30$ mkm.
- **4.159.** a) $r_m \approx \sqrt{2 k \lambda l} = 2.5$ MM; 6) $\Delta r \approx \lambda l / r$.
- **4.160.** $D > \lambda l/d = 2,4$ cm.
- **4.161.** Согласно критерию Рэлея максимум линии с длиной волны λ должен совпадать с первым минимумом линии $\lambda + \delta \lambda$. Запишем оба условия для угла наименьшего отклонения через оптические разности хода крайних лучей (см. рис. 4.33):

$$\delta n - (DC + CE) = 0,$$
 $b(n + \delta n) - (DC + CE) = \lambda + \delta \lambda.$

Отсюда $b\delta n \approx \lambda$. Дальнейшее очевидно.

- **4.162.** a) $\lambda/\delta\lambda = 2bB/\lambda^3$; соответственно $1,2\cdot10^4$ и $0,35\cdot10^4$; б) 1,0 см.
- 4.163. Около 20 см.
- **4.164.** $R = D/1,22\lambda = 7.10^4$, $\Delta y_{\text{MUH}} = l/R = 4$ cm.
- 4.165. Около 50 м.
- 4.166. Увеличится приблизительно в 16 раз.
- **4.167.** $I/I_0 \approx (d^2/2f\lambda)^2 \approx 2.10^7$.
- **4.168.** Пусть $\delta \psi$ и $\delta \psi'$ минимальные угловые расстояния, разрешаемые объективом трубы и глазом ($\delta \psi = 1,22\lambda/D, \ \delta \psi' = 1,22\lambda/d_0$). Тогда искомое увеличение трубы $\Gamma_{\text{мин}} = \delta \psi' / \delta \psi = D / d_0 = 13$.
 - **4.169.** $d_{\text{MUH}} = 0.61 \lambda / \sin \alpha = 1.4 \text{ MKM}.$
- **4.170.** Пусть $d_{\text{мин}}$ наименьшее разрешаемое расстояние для объектива микроскопа, $\delta \psi$ — угол, под которым виден объект с расстояния наилучшего видения l_0 (25 см), и $\delta \psi'$ — минимальное угловое расстояние, разрешаемое глазом ($\delta \psi' = 1,22 \, \lambda / \, d_0$). Тогда искомое увеличение микроскопа $\Gamma_{\text{мин}} = \delta \psi' / \, \delta \psi = 1,000 \, \text{M}$ $= 2 (l_0 / d_0) \sin \alpha = 30.$
 - **4.171.** 26, 60, 84, 107 и 135°.
 - **4.172.** a = 0.28 HM, b = 0.41 HM.
- **4.173.** Пусть α , β и γ углы между направлением на дифракционный максимум и направлениями решетки вдоль периодов a, b и c. Тогда значения этих углов определятся из условий:

$$a(1 - \cos \alpha) = k_1 \lambda, \qquad b \cos \beta = k_2 \lambda, \qquad c \cos \gamma = k_3 \lambda.$$

 $a(1-\cos\alpha)=k_1\lambda, \qquad b\cos\beta=k_2\lambda, \qquad c\cos\beta$ Имея в виду, что $\cos^2\alpha+\cos^2\beta+\cos^2\gamma=1$, получим

$$\lambda = 2k_1/a[(k_1/a)^2 + (k_2/b)^2 + (k_3/c)^2].$$

- **4.174.** $\lambda = (2/k)\sqrt[3]{m/2\rho} \sin \alpha = 244$ пм, где k = 2, m масса молекулы NaCl.
- **4.175.** $d=\lambda\sqrt{k_1^2+k_2^2-2k_1k_2\cos(\alpha/2)}/2\sin(\alpha/2)=0$,28 нм, где k_1 и k_2 порядки отражения.
- **4.176.** $r=l ext{tg} 2 lpha=3,5$ см, где lpha угол скольжения, определяемый условием $2d\sin\alpha = k\lambda$.

Рис. 46

- **4.177.** Cm. puc. 46; $I_0/4$.
- **4.178.** a) I_0 ; 6) $2I_0$.
- **4.179.** $E = \pi \Phi_0/\omega = 0.6$ мДж.
- **4.180.** $\varphi = \arccos(\sqrt{\eta_2} / \eta_1 \sqrt{2}) = 30^{\circ}$.
- **4.181.** $\eta = (1/2)(\cos \varphi)^{2(N-1)} = 0.12$.
- **4.182.** $I_0 / I = 2 / \tau^3 \cos^4 \varphi \approx 60$.
- **4.183.** $I_{\text{пол}}/I_{\text{ест}} = P/(1 P) = 0,3.$ **4.184.** $P = \sin^2 \theta/(1 + \cos^2 \theta).$

4.185.
$$P = (\eta - 1)/(1 - \eta \cos 2\varphi) = 0.8$$
.

4.186. а) Представим естественный свет в виде двух взаимно перпендикулярных составляющих с интенсивностями I_0 . Пусть каждый поляризатор пропускает в своей плоскости долю α_1 света с плоскостью колебаний, параллельной плоскости пропускания поляризатора, и долю а, в перпендикулярной плоскости. Тогда при параллельных и перпендикулярных плоскостях пропускания поляризаторов интенсивность прошедшего света

$$I_{||} = \alpha_1^2 I_0 + \alpha_2^2 I_0$$
, $I_{\perp} = \alpha_1 \alpha_2 I_0 + \alpha_2 \alpha_1 I_0$,

причем по условию $I_{||} / I_{\perp} = \eta$. С другой стороны, степень поляризации, создаваемая каждым поляризатором в отдельности,

$$P_0 = (\alpha_1 - \alpha_2)/(\alpha_1 + \alpha_2).$$

 $P_0=(lpha_1-lpha_2)/(lpha_1+lpha_2).$ Исключив $lpha_1$ и $lpha_2$ из этих формул, получим $P_0=\sqrt{(\eta-1)/(\eta+1)}=0,905$.

6)
$$P = \sqrt{1 - 1/\eta^2} = 0.995$$
.

4.187. 90°.

4.188. P = 0.

4.189. $P' = P\rho/(1-\rho)$.

4.190. a) $\rho = (n^2 - 1)^2/2(n^2 + 1) = 0.074$; 6) $P = \rho/(1 - \rho) = [(1 + n^2)^2 - 4n^2]/[(1 + n^2)^2 - 4n^2]$ $(n^2)^2 + 4n^2$] = 0,080. Здесь n — показатель преломления стекла.

4.191. $I = I_0(1-\rho)/n = 0.72 I_0$, n — показатель преломления воды.

4.192.
$$\rho = [(n^2 - 1)/(n^2 + 1)]\sin^2 \varphi = 0.038.$$

4.193.
$$P_1 = P_3 = 1$$
, $P_2 = \frac{\rho}{1 - \rho} = 0.087$, $P_4 = \frac{2\rho(1 - \rho)}{1 - 2\rho(1 - \rho)} = 0.17$.

4.194. Здесь коэффициент отражения от каждой поверхности пластинки ρ = $=(n^2-1)^2/(n^2+1)^2$, поэтому $I_4=I_0(1-\rho)^2=16I_0n^4/(1+n^2)^2=0.725I_0$.

4.195.
$$P = \frac{1-(1-\rho')^2}{1+(1-\rho')^2} = \frac{(1+n^2)^4-16n^4}{(1+n^2)^4+16n^4} \approx 0,16$$
, где ρ' — коэффициент

отражения той составляющей света, световой вектор которой колеблется перпендикулярно плоскости падения.

4.196. a) $P = (1 - \alpha^{4N})/(1 + \alpha^{4N})$, где $\alpha = 2n/(1 + n^2)$, n — показатель преломления стекла; б) соответственно 0,16, 0,31, 0,67 и 0.92.

4.197.
$$\rho = (n-1)^2/(n+1)^2 = 0.020.$$

4.198.
$$\Delta\Phi/\Phi = 1 - (1 - \rho)^{2N} = 0.34$$
.

4.198. $\Delta \Phi / \Phi = 1 - (1 - \rho)^{2N} = 0,34.$ **4.199.** $I = I_0 (1 - \rho)^2 (1 + \rho^2 + \rho^4 + ...) = I_0 (1 - \rho) / (1 + \rho) = 0,90 I_0;$ меньше на $\Delta I/I = \rho^2 = 0.25\%$.

4.201. a) 0,83; б) 0,044.

4.202. См. рис. 47.

4.203. $\alpha \approx 11^{\circ}$.

Рис. 47

- 4.204. Для правой системы координат:
- а) круговая поляризация, против часовой стрелки, если смотреть навстречу волне;
- б) эллиптическая, по часовой стрелке, если смотреть навстречу волне; большая ось эллипса совпадает с прямой y = x;
 - в) плоская поляризация, вдоль прямой y = -x.
 - **4.205.** $P = (\eta 1)/\eta = 0.5$.
 - **4.206.** a) 0,490 мм; б) 0,475 мм (при соответствующем угле в 45°).
 - **4.207.** $\lambda = 4d\Delta n/(2k+1)$; 0,58, 0,5 и 0,51 мкм при k=15, 16 и 17.
 - 4.208. Четыре.
 - 4.209. 0,69, 0,60, 0,47 и 0,43 мкм.
 - **4.210.** $d=(k-1/2)\lambda_1/\Delta n=0.25$ мм, где k=4.
 - **4.211.** $\Delta n = \lambda/\theta \Delta x = 0.009$.
- **4.212.** а) $I'_{||} = I \cos^2(\delta/2);$ б) $I'_{\perp} = I \sin^2(\delta/2)$. В случае $P' \perp P$ к разности фаз δ следует добавить π , поскольку проекции векторов \mathbf{E}_o и \mathbf{E}_e на направление P' противоположны по знакам.
- **4.214.** а) Если свет правополяризованный по кругу (для наблюдателя), то за пластинкой в четверть волны он становится линейно поляризованным, его плоскость поляризации составляет угол $\phi = +45^{\circ}$ с осью OO' кристалла (рис. 48). Для левополяризованного света $\phi = -45^{\circ}$.
- б) Если при вращении поляроида (расположенного за пластинкой) при любом положении пластинки интенсивность прошедшего света не меняется, то свет естественный; если меняется и падает до нуля, то свет поляризован по кругу; если меняется, но не падает до нуля, то свет смесь естественного и поляризованного по кругу.

Рис. 48

- **4.215.** a) $\Delta x = \lambda/2(n_e n_o)$; 6) $d(n'_o n'_e) = -2(n_e n_o)\theta \delta x < 0$.
- **4.216.** $I = 3I_0$.
- **4.217.** $\Delta n = \alpha \lambda / \pi = 0.71 \cdot 10^{-4}$, где α постоянная вращения.
- 4.218. $\alpha = \pi/\Delta x \, \mathrm{tg}\theta = 22$ угл. град/мм, $I(x) \sim \cos^2(\pi x/\Delta x)$, где x расстояние от максимума.
 - **4.219.** $d_{\text{мин}} = (1/\alpha) \arcsin \sqrt{2\eta} = 2.9$ мм, α постоянная вращения.
 - 4.220. 8,7 mm.
 - 4.221. [α] = 72 угл. град/(дм·г/см³).
 - **4.222.** а) $E_{\text{мин}} = 1/\sqrt{4\,Bl} = 10,6\,$ кВ/см; б) $2,2\cdot10^8$ прерываний в секунду.
 - 4.223. $\Delta n = 2cHV/\omega$, где c скорость света в вакууме.
 - **4.224.** $V = (\varphi_1 \varphi_2)/2lH = 0,015$ угл. мин/A.
- **4.225.** Если смотреть навстречу вышедшему лучу и положительное направление отсчитывать по часовой стрелке, то $\varphi = (\alpha VNH)l$, где N число прохождений луча через вещество (пять на рис. 4.39).
- **4.226.** $H_{\text{мин}} = \pi/4Vl = 4,0$ кА/м, V постоянная Верде. Направление, в котором проходит свет, изменится на противоположное.
- 4.227. $t=mc\omega_0/\lambda I=12$ ч. Несмотря на чрезвычайную малость этого эффекта, его наблюдали как для видимого света, так и для сантиметровых волн.
 - **4.228.** a) $\varepsilon = 1 n_0 e^2 / \varepsilon_0 m \omega^2$; 6) $v = c \sqrt{1 + (n_0 e^2 / 4\pi^2 \varepsilon_0 m c^2)} \lambda^2$.
 - **4.229.** $n_0 = (4\pi^2 v^2 m \epsilon_0 / e^2)(1 n^2) = 2.4 \cdot 10^7 \text{ cm}^{-3}$.

4.230. $n-1=-n_0e^2\lambda^2/8\pi^2\epsilon_0mc^2=-5.4\cdot10^{-7}$, где n_0 — концентрация электронов в углероде.

4.231. а)
$$x = a\cos(\omega t - \phi)$$
, где a и ϕ определяются формулами

$$a = (eE_0/m)/\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}, \text{ tg} \varphi = 2\beta\omega/(\omega_0^2 - \omega^2).$$

Здесь
$$\beta = \gamma/2m$$
, $\omega_0^2 = k/m$, m — масса электрона;
б) $\langle P \rangle = \beta e^2 E_0^2 \omega^2/m \left[(\omega_0^2 - \omega^2) + 4 \beta^2 \omega^2 \right]$, $\langle P \rangle_{\text{Marc}} = e^2 E_0^2/4\beta m \ npu \ \omega = \omega_0$.

4.232. Запишем уравнение волны в форме $A=A_0 \, {\rm e}^{\, {\rm i} \, (\omega t - k x)}$, где $k=2\pi/\lambda$.

Если $n' = n + i \varkappa$, то $k = k_0 n'$, k_0 — в вакууме, и

$$A = A_0 e^{k_0 xx} \exp[i(\omega t - k'x)], \quad k' = k_0 n,$$

или в вещественной форме: $A = A_0 e^{k_0 xx} \cos(\omega t - k'x)$, т. е. свет распространяется в виде плоской волны, амплитуда которой зависит от x. При $\varkappa < 0$ амплитуубывает (затухание волны за счет поглощения). Если $n'=i\varkappa$, $A = A_0 e^{h_0 \pi x} \cos \omega t$. Это стоячая волна с экспоненциально убывающей (при $\varkappa < 0$) амплитудой — свет испытывает полное внутреннее отражение в среде (без поглощения).

4.233.
$$n_0 = 4 \pi^2 \varepsilon_0 v_0^2 m / e = 2.0 \cdot 10^9 \text{ cm}^{-3}$$
.

4.235. a)
$$u = 3v/2$$
; 6) $u = 2v$; B) $u = v/3$.

4.236.
$$\varepsilon = 1 - A/\omega^2$$
, где A — положительная постоянная.

4.237.
$$v = c/n = 0.61c$$
, $u = [1 + (\Delta n/\Delta \lambda)\lambda/n]c/n = 0.65c$.

4.238. Достаточно провести рассуждение для трех гармонических составляющих волнового импульса. Обобщение на большее число составляющих очевидно.

4.239.
$$I = (I_0/2) \exp(-\varkappa l) \sin^2 \varphi$$
, где $\varphi = VlH$.

4.240. a)
$$I = I_0(1-\rho)^2 \exp(-\varkappa d)$$
; б) $I = I_0(1-\rho)^2 \sigma(1+\sigma^2\rho^2+\sigma^4\rho^4+\ldots) = I_0\sigma(1-\rho^2)/(1-\sigma^2\rho^2)$, где $\sigma = \exp(-\varkappa d)$.

4.241.
$$\kappa = \ln(\tau_1/\tau_2)/(d_2 - d_1) = 0.35 \text{ cm}^{-1}$$
.

4.242.
$$\kappa = (1/lN) \ln[(1 - \rho^{2N})/\tau] = 0.034 \text{ cm}^{-1}.$$

4.243.
$$\tau = (1 - \rho)^2 \exp[-(\varkappa_1 + \varkappa_2)l/2].$$

4.244.
$$I = I_0(1 - \rho)^2 [\exp(-\kappa_1 l) - \exp(-\kappa_2 l)]/(\kappa_2 - \kappa_1) l.$$

4.245.
$$\Delta \lambda = 2 \lambda_0 \sqrt{\ln \eta / \alpha d}$$
.

4.246.
$$I = (\Phi/4\pi b^2)(1 - \rho)^2 \exp[-\varkappa(b - a)].$$

4.247. Уменьшится в
$$\exp(\mu d) = 0.6 \cdot 10^2$$
 раз.

4.248.
$$d = 0.3$$
 mm.

4.249.
$$d = \ln 2/\mu = 8$$
 mm.

4.250.
$$N = \ln \eta / \ln 2 = 5,6$$
.

5.1. a)
$$\langle j \rangle = P \lambda / 8 \pi^2 c \hbar r^2 = 6 \cdot 10^{13} \text{ cm}^{-2} \cdot \text{c}^{-1}; \text{ 6) } r = \sqrt{P \lambda / 2 \hbar n} / 2 \pi c = 9 \text{ m}.$$

5.2. 2,5
$$\partial B/c$$
, 5,0 $\partial B/c$ и 0,31 $\partial B/c$.

5.3.
$$\lambda = 2 \pi c \hbar / \sqrt{K(K + 2mc^2)} = 2.0 \text{ mm}.$$

5.4.
$$v = c / \sqrt{1 + (mc\lambda/2\pi\hbar)^2} = 1,3 \cdot 10^8 \text{ m/c.}$$

$$\mathbf{5.5.} \, \mathrm{d}p/\mathrm{d}t = \Phi_{\mathfrak{d}}/c.$$

5.6.
$$\langle p \rangle = 4(1 + \rho)E/\pi d^2c\tau = 5,0$$
 MIIa (50 atm).

5.7.
$$p = (E/c)\sqrt{1 + \rho^2 + 2\rho\cos 2\theta} = 35 \text{ HH} \cdot \text{c.}$$

5.8.
$$p = (I/c)(1 + \rho)\cos^2\theta = 0.6 \text{ HH/cm}^2$$
.

5.9.
$$F = \pi R^2 I/c = 0.18$$
 MKH.

5.10.
$$F = P/2c(1 + \eta^2)$$
.

5.11. а) $\Delta p = 2 \hbar \omega \sqrt{1 - \beta^2} / c(1 - \beta)$; б) $\Delta p = 2 \hbar \omega / c(1 - \beta)$. Здесь $\beta = V/c$. Видно, что в системе отсчета, связанной с зеркалом, последнему передается меньший импульс.

5.12.
$$\sin(\vartheta/2) \approx E/mc\sqrt{gl}$$
, отсюда $\vartheta = 0.5^{\circ}$.

5.13.
$$\Delta\omega/\omega_0 = -[1 - \exp(-\gamma M/Rc^2)] < 0$$
, T. e. $\omega < \omega_0$.

5.14.
$$U = 2 \pi \hbar c (1 - 1 / \eta) / e \Delta \lambda = 16 \text{ kB.}$$

5.15.
$$U = \pi \hbar c / ed \sin \alpha = 31 \text{ kB.}$$

5.16.
$$\lambda_{\text{мин}} = 2\pi\hbar/mc(\gamma - 1) = 2,8$$
 пм, где $\gamma = 1/\sqrt{1 - (v/c)^2}$.

5.17.
$$U = 3\pi c\hbar / e\lambda_m = 35 \text{ kB.}$$

5.18. 332 HM,
$$6.6 \cdot 10^5$$
 M/c.

5.19.
$$A = 2\pi c\hbar(\eta^2 - \lambda_2/\lambda_1)/\lambda_2(\eta^2 - 1) = 1.9 \text{ aB.}$$

5.20.
$$\phi_{\text{Makc}} = 4,4$$
 B.

5.21.
$$K_{\text{Marc}} = \hbar (\omega_0 + \omega) - A_{\text{BMX}} = 0.38 \text{ pB}.$$

5.22.
$$w = 2 \pi c \hbar J / e \lambda = 0.020$$
.

5.23.
$$v_{\text{make}} = 6.4 \cdot 10^5 \text{ m/c.}$$

5.24. 0,5 В; противоположна полярности внешнего напряжения.

5.25.
$$\hbar/mc$$
 — комптоновская длина волны данной частицы (λ_c) .

5.26. Запишем в системе отсчета, связанной с покоящимся электроном, законы сохранения энергии и импульса:

$$\hbar\omega + mc^2 = m_r c^2$$
, $\hbar\omega/c = m_r v$, где $m_r = m/\sqrt{1-(v/c)^2}$.

Отсюда следует, что v = 0 или c. Оба результата физического смысла не имеют.

5.27. а) Рассеяние — на свободных электронах; б) увеличивается число электронов, становящихся свободными (их энергия связи значительно меньше энергии, передаваемой им фотонами); в) из-за рассеяния на сильно связанных электронах.

5.28.
$$\lambda = 2\lambda_C [\sin^2(\vartheta_2/2) - \eta \sin^2(\vartheta_1/2)]/(\eta - 1) = 1,2 \text{ mm}.$$

5.29.
$$K = \hbar \omega \eta / (1 + \eta) = 0.20 \text{ M} \circ B.$$

5.30. a)
$$\omega' = 2\pi c/(\lambda + 2\pi\hbar/mc) = 2,2 \cdot 10^{20} \text{ c}^{-1};$$

б)
$$K = 2 \pi c \hbar / \lambda (1 + \lambda m c / 2 \pi \hbar) = 60$$
 кэВ.

5.31.
$$\hbar\omega' = \hbar\omega/[1 + 2(\hbar\omega/mc^2)\sin(\vartheta/2)] = 144$$
 κθB.

5.32.
$$\sin(9/2) = \sqrt{mc(p-p')/2pp'}$$
, отсюда $9 = 120^{\circ}$.

5.33.
$$\hbar\omega = \left[1 + \sqrt{1 + 2mc^2/K \sin^2(\vartheta/2)}\right]K/2 = 0.68 \text{ M}_{2}B.$$

5.34.
$$\lambda = 4 \pi c \hbar / K_m \left(1 + \sqrt{1 + 2mc^2 / K_m} \right) = 3.7 \text{ mm}.$$

5.35.
$$tg\phi = \sqrt{4\pi\hbar/mc\Delta\lambda - 1}/(1 + \hbar\omega/mc^2)$$
, отсюда $\phi = 31^\circ$.

5.36.
$$\rho = 2\eta(1 + \eta)mc/eB(1 + 2\eta) = 3.4$$
 cm.

5.37.
$$\lambda' - \lambda = -\lambda_C (1 - \cos \vartheta)$$
.

5.38.
$$r = 3 ke^2 / 2E = 0.16$$
 HM, $\lambda = (2 \pi c / e) \sqrt{mr^3 / k} = 0.24$ MKM*.

^{*} Здесь $k = 1/4\pi\epsilon_0$ (СИ), k = 1 (СГС).

- 5.39. b = 0.73 nm.
- **5.40.** a) $r_{\text{MUH}} = 0.59 \text{ mM}$; 6) $r_{\text{MUH}} = (2Zke^2/K)(1 + m_{\alpha}/m_{\text{Li}}) = 0.034 \text{ mM}^*$.
- **5.41.** a) $\rho_{\text{MUH}} = (Zke^2/K)\text{ctg}^2(9/2) = 0.23 \text{ mM};$ 6) $r_{\text{MUH}} = [1 + \csc(9/2)]Zke^2/K = 0.56 \text{ mM}^*.$
 - **5.42.** $p \approx \sqrt{8mK/[1+(2bK/Zke^2)^2]}$, cm. chocky.
 - 5.43. $b = Rn \sin(9/2)/\sqrt{1 + n^2 2n \cos(9/2)}$, где $n = \sqrt{1 + U_0/K}$.
 - **5.44.** a) $\cos(9/2) = b/(R + r)$; 6) $dP = (1/2)\sin 9d9$; B) P = 1/2.
 - 5.45. $3.3 \cdot 10^{-5}$.
 - **5.46.** $d = 4Jr^2K^2\sin^4(9/2)/nIZ^2k^2e^4 = 1,5$ мкм, где n концентрация ядер*.
- 5.47. а) 1,6 · 10 6 ; б) $\Delta N = I_0 \tau \pi n d (Zke^2/K^2) {\rm ctg}^2 (\vartheta_0/2) = 2,0 \cdot 10^7$, где n кон- центрация ядер * .
 - **5.48.** $P = \pi n d (Zke^2/mv^2)^2 = 0{,}006$, где n концентрация ядер*.
 - **5.49.** $\Delta N/N = 1 \pi n Z^2 k^2 e^4 / K^2 \operatorname{tg}^2(9/2) = 0.6$, cm. chocky.
- 5.50. $\Delta N/N = (\pi k^2 e^4/4K^2)(0,7Z_1^2/M_1 + 0,3Z_2^2/M_2)\rho dN_A {\rm ctg}^2(\vartheta_0/2) = 1,4 \cdot 10^{-3}$, где Z_1 и Z_2 порядковые номера меди и цинка, M_1 и M_2 их молярные массы, N_A постоянная Авогадро * .
 - **5.51.** $\Delta \sigma = \pi (Zke^2/K)^2 \text{ctg}^2(\vartheta_0/2) = 0.73 \text{ κδ}^*.$
 - **5.52.** a) 0,9 M₂B; 6) $d\sigma/d\Omega = \Delta\sigma/4\pi \sin^4(9/2) = 0.64 \text{ kG/cp.}$
 - 5.53. $t = 3mc^3 \ln \eta / 2ke^2 \omega^2 = 15 \text{ Hc}^*$.
 - **5.54.** $t \approx m^2 c^3 r^3 / 4k^2 e^4 = 13 \text{ mc}^*$.
 - **5.55**. 1,88, 0,657 и 0,486 мкм.
 - 5.57. $r_n = \sqrt{n\hbar/m\omega}$, $E_n = n\hbar\omega$, где $n = 1, 2, ..., \omega = \sqrt{\varkappa/m}$.
 - 5.58. $r_n = n^2 \hbar^2 / mZke^2$; 52,9 mm (H), 26,5 mm (He⁺); $v_n = ke^2 Z / n\hbar$; 2,18 · 10 ⁶ m/c (H), 4,36 · 10 ⁶ m/c (He+). Cm. chocky.
 - **5.59.** $\omega = mk^2 e^4 Z^2 / h^3 n^3 = 2,07 \cdot 10^{16} \text{ c}^{-1}$. Cm. chocky.
 - **5.60.** $E_{CB} = \hbar RZ^2$, $\varphi_i = E_{CB} / e$, $\varphi_1 = 3 \hbar RZ^2 / 4 e$, $\lambda = 8 \pi c / 3 RZ^2$.

	$E_{ m cB}$, эВ	φ_i , B	φ1, Β	λ, нм
Н	13,6	13,6	10,2	121,5
$\mathrm{He}^{^+}$	54,5	54,5	40,8	30,4

- **5.61.** $\hbar\omega_1 = 5 e \phi_1 / 27 = 7,6 \text{ B}.$
- **5.62.** $E_{\text{MMH}} = 8 \hbar RZ^2 / 9 = 48,5 \text{ pB}.$
- **5.63.** $\lambda = \lambda_1 \lambda_2/(\lambda_1 \lambda_2) = 2$,63 мкм. Серии Брэкета, ибо при соответствующем переходе квантовое число нижнего уровня $n = 2/\sqrt{1-8\pi c/R\lambda_1} = 4$.
 - **5.64.** a) 657, 487 и 434 нм; б) $\lambda/\delta\lambda \approx (N+3)^3/8 = 1.5 \cdot 10^3$.
 - 5.65. $\sin \theta = \pi c(N + 2)^3/lR = 0.865$, отсюда $\theta = 60^\circ$.
 - **5.66**. He⁺.
 - 5.67. N = n(n 1)/2.
 - 5.68. 97,3, 102,6 и 121,6 нм.
 - **5.69.** $n = 1/\sqrt{1 \pi c(\lambda_1 + \lambda_2)/2\lambda_1\lambda_2 R} = 4$.
 - **5.70.** $R = 176 \pi c / 15 Z^2 \Delta \lambda = 2.07 \cdot 10^{16} \text{ c}^{-1}$.

^{*} Здесь $k = 1/4\pi\epsilon_0$ (СИ), k = 1 (СГС).

5.71.
$$Z = \sqrt{176 \pi c / 15 R \Delta \lambda} = 3$$
; Li⁺⁺.

5.72.
$$\lambda = 2\pi c \left(Z\sqrt{R/\Delta\omega} - 1\right)/\Delta\omega \left(2Z\sqrt{R/\Delta\omega} - 1\right) = 0,47$$
 mkm.

5.73.
$$E_{cB} = (200/21)\pi c\hbar/\lambda = 54,4$$
 $\sigma B (He^+)$.

5.74.
$$E = E_0 + 4 \hbar R = 79 \text{ B}$$
.

5.75.
$$v = \sqrt{2(\hbar\omega - 4\hbar R)/m} = 2,26 \cdot 10^6$$
 м/с, где $\omega = 2\pi c/\lambda$.

5.76.
$$K_{\text{MUH}} = 3 \, \hbar R / 2 = 20,5 \, \text{ ∂B.}$$

5.77.
$$v = 3 hR / 4mc = 3,27 \text{ м/c}$$
, где m — масса атома.

5.78. (
$$\varepsilon - \varepsilon'$$
) / $\varepsilon = 3 hR / 8mc^2 = 0.55 \cdot 10^{-6} \%$, где m — масса атома.

5.79.
$$v = 2\sqrt{\hbar R/m} = 3.1 \cdot 10^6$$
 м/с, где m — масса электрона.

5.80.
$$v = 3R\Delta\lambda/8\pi\cos\vartheta = 0.7 \cdot 10^6 \text{ m/c.}$$

5.81. a)
$$E_n = n^2 \pi^2 \hbar^2 / 2m l^2$$
; б) $E_n = n^2 \hbar^2 / 2m r^2$; в) $E_n = n\hbar \sqrt{\alpha/m}$; г) $E_n = -m\alpha^2 / 2\hbar^2 n^2$.

5.82. $E_{\rm cB}=\mu k^2 e^4/2 \, \hbar^2$, $R=\mu k^2 e^4/2 \, \hbar^3$, где μ — приведенная масса системы. Без учета движения ядра эти величины для атома водорода больше на $m/M\approx 0.0055\%$, где m и M — массы электрона и протона. Здесь $k=1/4\pi\epsilon_0$ (СИ) или 1 (СГС).

5.83. a)
$$E_{\rm D} - E_{\rm H} = 3.7$$
 мэВ; б) $\lambda_{\rm H} - \lambda_{\rm D} = 33$ пм.

5.87. Увеличится в
$$\sqrt{K/(K-U)} = 2,0$$
 раза.

5.88.
$$\lambda = 2\pi\hbar/\kappa_* \rho e B = 1.8$$
 пм, где $\kappa_* = 1$ (СИ) или $1/c$ (СГС).

5.89.
$$\Delta E = (2\pi^2\hbar^2/m)(1/\lambda_2^2 - 1/\lambda_1^2) = 0.45$$
 k9B.

5.90.
$$A = 2\pi^2 \hbar^2 / m \lambda^2 - p^2 / 2m = -0,24$$
 кэВ.

5.91. Для обеих частиц
$$\lambda = 2 \pi \hbar (1 + m_n/m_d) / \sqrt{2 m_n K} = 8,6 \; \text{пм}$$
.

5.92.
$$\tilde{\lambda} = 2 \lambda_1 \lambda_2 / \sqrt{\lambda_1^2 + \lambda_2^2}$$
.

5.93.
$$\lambda = 2\pi\hbar/\sqrt{2mK(1+K/2mc^2)};~K \leqslant 4mc^2\Delta\lambda/\lambda = 20,4$$
 кэВ для электрона и 37,5 МэВ для протона.

5.94.
$$K = (\sqrt{2} - 1)mc^2 = 0.21 \text{ M} \cdot \text{B}.$$

5.95.
$$\lambda = \lambda_{\nu} / \sqrt{1 + mc\lambda_{\nu} / \pi\hbar} = 3,3 \text{ mm}.$$

5.96.
$$v = 4 \pi \hbar l / mb \Delta x = 2,0 \cdot 10^6 \text{ m/c}.$$

5.97.
$$\Delta x = 2 \pi \hbar l / d \sqrt{2 meU} = 4.9 \text{ MKM}.$$

5.98.
$$U_0 = \pi^2 \hbar^2 / 2me(\sqrt{\eta} - 1)^2 d^2 \sin^2 \theta = 0.15 \text{ kgB}.$$

5.99.
$$d = \pi \hbar k / \sqrt{2mK} \cos(\vartheta/2) = 0.21 \text{ нм}$$
, где $k = 4$.

 ${f 5.100.}\;d=\pi\hbar k\,/\sqrt{2mK}\;\sin\,\vartheta=0$, ${f 23}\;$ нм, где $k=3\;$ и угол ϑ определяется формулой ${f tg}{f 2}\vartheta=D/2l$.

5.101. a)
$$n = \sqrt{1 + U_i/U} = 1.05$$
; 6) $U/U_i \le 1/(2 + \eta)\eta = 50$.

5.102.
$$E_n = n^2 \pi^2 \hbar^2 / 2m l^2$$
, где $n = 1, 2, ...$

5.104.
$$1 \cdot 10^4$$
, $1 \cdot 10$ и $1 \cdot 10^{-20}$ см/с.

5.105.
$$\Delta v \approx \hbar/ml = 1 \cdot 10^6 \text{ m/c}, v_1 = 2,2 \cdot 10^6 \text{ m/c}.$$

- **5.107.** $\Delta x \approx (\hbar/m\Delta x_0)t = 10^3 \text{ km}.$
- **5.108.** $K_{\text{мин}} \approx \hbar^2 / 2ml^2 = 1$ эВ. Здесь взято $p = \Delta \pi$ и $\Delta x = l$.
- **5.109.** $\Delta v/v \approx \hbar/l\sqrt{2mK} = 1 \cdot 10^{-4}$.
- **5.110.** $F \approx \hbar^2 / m l^3$.
- **5.111.** $\Delta x \approx \hbar l / d \sqrt{2meU} \sim 10^{-6} \text{ cm}.$
- **5.112.** Имея в виду, что $p \sim \Delta p \sim \hbar/\Delta x \sim \hbar/x$, получим $E = K + U \approx \hbar^2/2mx^2 + \mu x^2/2$. Из условия dE/dx = 0 находим x_0 и затем $E_{\text{мин}} \approx \hbar \sqrt{\kappa/m} = \hbar \omega$, где ω круговая частота осциллятора. Точный расчет дает $\hbar \omega/2$.
- 5.113. Имея в виду, что при $E_{\rm мин}$ $p\sim \Delta p\sim \hbar/\Delta r$ и $\Delta r\sim r$, получим $E=p^2/2m-ke^2/r\approx \hbar^2/2mr^2-ke^2/r$, где $k=1/4\pi\epsilon_0$ (СИ) или 1 (СГС). Из условия ${\rm d}E/{\rm d}r=0$ находим

$$r_{
m add} pprox {\hbar^2/mke}^2 = 53 \; {
m mm}, \; \; \; E_{
m mun} = -mk^2 e^4/2 \, {\hbar^2} = -13,6 \; {
m sB}.$$

- **5.114.** Ширина изображения $h \approx b + h' \approx b + \hbar l / pb$, где h' дополнительное уширение, связанное с неопределенностью импульса Δp_y (при прохождении через щель), p импульс падающих атомов водорода. Функция h(b) имеет минимум при $b \approx \sqrt{\hbar l / mv} = 0.01$ мм.
 - **5.115.** a) $A = 2/a^2$, f(a) = 2/a; 6) $\langle x \rangle = 2a/3$, $\langle x^2 \rangle = a^2/2$.
 - **5.116.** a) $x_{\text{Bep}} = a$, $\langle x \rangle = 3a/5$; 6) $P = 1/\sqrt{8} = 0,353$.
 - **5.117.** a) $x_{\text{Bep}} = a/2$, $A = 6/a^3$, $f(x_{\text{Bep}}) = 3/2a$;
- 6) $\langle x \rangle = a/2$, $\langle x^2 \rangle = 3a^2/10$.
 - **5.118.** a) $r_{\text{Bep}} = a/2$; 6) $A = 3/\pi a^2$; B) $\langle r \rangle = a/2$.
 - **5.119.** a) $r_{\text{Bep}} = a / \sqrt{3}$; 6) $A = 2/\pi a^2$; B) $\langle r \rangle = 8a/15$.
 - **5.120.** $dP/dx = 1/\pi\sqrt{a^2-x^2}$.
 - **5.121.** a) $N_2 = \eta^2 N_1 = 900$; 6) $N = (1 + \eta)^2 N_1 = 1600$;
- B) $N = (1 \eta)^2 \bar{N}_1 = 400$.
 - 5.122. См. рис. 49.
- **5.123.** Решение уравнения Шрёдингера ищем в виде $\Psi = \psi(x)f(t)$. Подстановка этой функции в исходное уравнение и разделение переменных x и t приводит к двум уравнениям. Их решения: $\psi(x) \propto e^{ikx}$, где $k = \sqrt{2mE} / \hbar$, E энергия чачстицы, и $f(t) \propto e^{-i\omega t}$, где $\omega = E / \hbar$. В результате $\Psi = ae^{i(kx \omega t)}$, где a некоторая постоянная.

 $Re(\psi)$

Рис. 49

5.124.
$$l = \pi \hbar \sqrt{(n_2^2 - n_1^2)/2m\Delta E} = 2.5$$
 HM.

- **5.125.** $P = 1/3 + \sqrt{3}/2\pi = 0,61.$
- **5.126.** $E = \alpha^2 \hbar^2 / 8m$.
- **5.127.** $l = 2/P_m$, $E = (\pi \hbar P_m)^2/8m$.
- **5.128.** $E = (\hbar^2/2m)(\pi a^2/2)^{2/3}$.
- 5.129. $\psi = \begin{cases} A \cos{(\pi nx/l)}, & \text{если } n = 1, 3, 5..., \\ A \sin{(\pi nx/l)}, & \text{если } n = 2, 4, 6... \end{cases}$ Здесь $A = \sqrt{2/l}$.

5.130. $\mathrm{d}N/\mathrm{d}E = (l/\pi\hbar)\sqrt{m/2E}$; при E=1 эВ $\mathrm{d}N/\mathrm{d}E = 0.8\cdot 10^{-7}$ уровней на 1 эВ.

5.131. а) В этом случае уравнение Шрёдингера имеет вид:

$$\partial^2 \psi / \partial x^2 + \partial^2 \psi / \partial y^2 + k^2 \psi = 0, \quad k^2 = 2mE / \hbar^2.$$

Возьмем начало отсчета координат в одном из углов ямы. На сторонах ямы функция $\psi(x,y)$ должна обращаться в нуль (по условию), поэтому внутри ямы ее удобно искать сразу в виде $\psi(x,y)=a\sin k_1x\sin k_2y$, так как на двух сторонах $(x=0\ u\ y=0)$ автоматически $\psi=0$. Возможные значения $k_1\ u\ k_2$ найдем из условия обращения ψ в нуль на противоположных сторонах ямы:

$$\psi(l_1, y) = 0, \quad k_1 = \pm (\pi/l_1)n_1, \quad n_1 = 1, 2, 3, \ldots, \\
\psi(x, l_2) = 0, \quad k_2 = \pm (\pi/l_2)n_2, \quad n_2 = 1, 2, 3, \ldots.$$

Подстановка волновой функции в уравнение Шрёдингера приводит к соотношению $k_1^2 + k_2^2 = k^2$, откуда $E_{n_1 n_2} = (n_1^2/l_1^2 + n_2^2/l_2^2)\pi^2\hbar^2/2m$.

б) 9,87, 24,7, 39,5 и 49,4 единиц \hbar^2/ml^2 .

5.132.
$$P = 1/3 - \sqrt{3}/4\pi = 19.5\%$$
.

5.133. а) $E=(n_1^2+n_2^2+n_3^2)\pi^2\hbar^2/2ma^2$, где n_1, n_2, n_3 — целые числа, не равные нулю; б) $\Delta E=\pi^2\hbar^2/ma^2$; в) для шестого уровня $n_1^2+n_2^2+n_3^2=14$ и $E=7\pi^2\hbar^2/ma^2$; число состояний равно шести (это число перестановок чисел 1, 2 и 3).

5.134. Проинтегрируем уравнение Шрёдингера по малому интервалу координаты x, внутри которого имеется скачок U(x), например в точке x=0:

$$\frac{\partial \Psi}{\partial x}(+\delta) - \frac{\partial \Psi}{\partial x}(-\delta) = -\int_{-\delta}^{+\delta} \frac{2m}{\hbar^2} (E - U) \Psi dx.$$

Ввиду конечности скачка U интеграл при $\delta \to 0$ тоже стремится к нулю. Дальнейшее очевидно.

5.135. а) Запишем уравнение Шрёдингера для двух областей:

$$0 < x < l,$$
 $\psi_1'' + k^2 \psi_1 = 0,$ $k^2 = 2mE/\hbar^2,$ $x > l,$ $\psi_2'' + \kappa^2 \psi_2 = 0,$ $\kappa^2 = 2m(U_0 - E)/\hbar^2,$

Их общие решения, $\psi_1(x)=a\sin(kx+\alpha)$, $\psi_2(x)=b\exp(-\kappa x)+c\exp(\kappa x)$, должны удовлетворять стандартным условиям. Из условия $\psi_1(0)=0$ и требования конечности волновой функции следует, что $\alpha=0$ и c=0. И наконец, из непрерывности $\psi(x)$ и ее производной в точке x=l получим $tgkl=-k/\kappa$, откуда $\sin kl=\pm kl\sqrt{\hbar^2/2ml^2U_0}$.

Изобразив графически левую и правую части последнего уравнения (рис. 50), найдем точки пересечения прямой с синусоидой. При этом корни данного уравнения, отвечающие собственным значениям энергии E, будут соот-

Рис. 50

ветствовать тем точкам пересечения $(kl)_i$, для которых $\operatorname{tg}(kl)_i < 0$, т. е. корни этого уравнения будут находиться в четных четвертях окружности (эти участки оси абсцисс выделены на рисунке жирными отрезками). Из графика видно, что корни уравнения, т. е. связанные состояния частицы, существуют не всегда. Штриховой линией показано предельное положение прямой.

6)
$$(l^2U_0)_{1 \text{ MUH}} = \pi^2\hbar^2/8m$$
, $(l^2U_0)_{n \text{ MUH}} = (2n-1)\pi^2\hbar^2/8m$.

5.136. Пусть P_a и P_i — вероятности нахождения частицы вне и внутри ямы. Тогда

$$\frac{P_a}{P_i} = \int_{l}^{\infty} b^2 e^{-2kx} dx / \int_{0}^{l} a^2 \sin^2 kx dx = \frac{2}{2+3\pi},$$

где отношение b/a можно определить из условия $\psi_1(l)=\psi_2(l)$. Остается учесть, что $P_a+P_i=1$, тогда $P_a=2/(4+3\pi)=14.9\%$.

5.137.
$$E_1 = \pi^2 \hbar^2 / 18 ma^2$$
.

5.138. В результате указанной в условии подстановки получим $\chi'' + k^2 \chi = 0$, где $k^2 = 2mE/\hbar^2$. Решение этого уравнения ищем в виде $\chi = a\sin(kr + \alpha)$. Из требования конечности волновой функции ψ в точке r = 0 следует, что $\alpha = 0$. Таким образом, $\psi = (a/r)\sin kr$. Из условия непрерывности $\psi(r_0) = 0$ получим $kr_0 = n\pi$, где n = 1, 2, ... Отсюда $E_n = n^2 \pi^2 \hbar^2 / 2mr_0^2$.

5.139. a)
$$\psi(r) = (2\pi r_0)^{-1/2} \sin(n\pi r/r_0)/r$$
, $n = 1, 2, ...;$ 6) $r_{\text{Bep}} = r_0/2$; 50%.

5.140. а) Решения уравнения Шрёдингера для функции $\chi(r)$:

$$r< r_0, \qquad \chi_1=A\,\sin(kr+lpha),$$
 где $k=\sqrt{2mE}\,/\,\hbar,$ $r> r_0, \qquad \chi_2=B\,\exp(lpha r)+C\,\exp(-lpha r),$ где $lpha=\sqrt{2m\,(U_0-E)}\,/\,\hbar.$

Из требования ограниченности функции $\psi(r)$ во всем пространстве следует, что $\alpha=0$ и B=0. Таким образом, $\psi_1=(A/r){\rm sin}kr$, $\psi_2=(C/r){\rm exp}(-kr)$. Из условия непрерывности ψ и ее производной в точке $r=r_0$ получим ${\rm tg}kr_0=-k/\varkappa$, или ${\rm sin}\ kr_0=\pm\sqrt{\hbar^2/2mr_0^2U_0}\,kr_0$. Это уравнение, как показано в решении задачи 5.135, определяет дискретный спектр собственных значений энергии.

б)
$$r_0^2 U_0 = \pi^2 \hbar^2 / 8m$$
.

5.141.
$$\alpha = m\omega/2\hbar$$
, $E = \hbar\omega/2$, rge $\omega = \sqrt{k/m}$.

5.142.
$$E = \alpha \hbar^2 / m$$
, $U(x) = (2 \alpha^2 \hbar^2 / m) x^2$.

$${f 5.143.}$$
 а) $A=1/\sqrt{\pi r_1^{~3}}$; б) $r_1=\hbar^2/kme^{~2}$, $E=-\hbar^2/2mr^{~2}=-kme^{~4}/2\,\hbar^2$, где $k=1$ (СГС) или $1/4\pi\epsilon_0$ (СИ).

5.144. $E=-k^2me^4/8\hbar^2$, т. е. уровень с главным квантовым числом n=2. Здесь k=1 (СГС) или $1/4\pi\epsilon_0$ (СИ).

5.145. a)
$$r_{\text{Bep}} = r_1$$
; 6) $P = 1 - 5/e^2 = 0.323$.

5.146.
$$\langle r \rangle / r_{\text{Bep}} = 3/2$$
.

5.147.
$$P = 13/e^4 = 0,238.$$

5.148. а)
$$\langle F \rangle = 2ke^2/r_1$$
; б) $\langle U \rangle = -ke^2/r_1$. Здесь $k=1$ (СГС) или $1/4\pi\epsilon_0$ (СИ).

5.149. a)
$$r_{\text{Bep}} = 4r_1$$
; б) $\langle r \rangle = 5r_1$.

5.150.
$$\langle r \rangle = a/2$$
.

5.151.
$$\langle U \rangle = \hbar \sqrt{\kappa/8m}$$
.

5.152. а) $\langle x \rangle = 0$; б) $\langle p_x \rangle = \hbar k$. При расчете следует учесть, что интеграл, у которого подынтегральная функция нечетная, равен нулю.

5.153. $\varphi_0 = \int k (\rho/r) 4 \pi r^2 dr = -ke/r_1$, где $\rho = -e \psi^2$ — объемная плотность заряда, ψ — нормированная волновая функция, k = 1 (СГС) или $1/4\pi\epsilon_0$ (СИ).

5.154. а) Запишем решения уравнения Шрёдингера слева и справа от границы барьера в следующем виде:

$$x<0$$
, $\psi_1(x)=a_1 \exp(\mathrm{i} k_1 x)+b_1 \exp(-\mathrm{i} k_1 x)$, где $k_1=\sqrt{2\,mE}\,/\,\hbar$, $x>0$, $\psi_2(x)=a_2 \exp(\mathrm{i} k_2 x)+b_2 \exp(-\mathrm{i} k_2 x)$, где $k_2=\sqrt{2\,m\,(E-U_0)}\,/\,\hbar$.

Будем считать, что падающая волна характеризуется амплитудой a_1 , а отраженная — амплитудой b_1 . Так как в области x>0 имеется только проходящая волна, то $b_2=0$. Коэффициент отражения R представляет собой отношение отраженного потока к падающему потоку, или, другими словами, отношение квадратов амплитуд соответствующих волн. Из условия непрерывности ψ и ее производной в точке x=0 имеем $a_1+b_1=a_2$ и $a_1-b_1=(k_2/k_1)a_2$, откуда

$$R = (b_1/a_1)^2 = (k_1 - k_2)^2/(k_1 + k_2)^2.$$

б) В случае $E < U_0$ решение уравнения Шрёдингера справа от барьера: $\psi_2(x) = a_2 \exp(\varkappa x) + b_2 \exp(-\varkappa x)$, где $\varkappa = \sqrt{2\,m\,(U_0-E)}\,/\,\hbar$. Из конечности $\psi(x)$ следует, что $a_2=0$. Плотность вероятности нахождения частицы под данным барьером $P_2(x)=\psi_2^2(x) \, \propto \exp(-\varkappa x)$. Отсюда $x_{\rm add}=1/2\varkappa$.

5.155.
$$D = \exp[-(2l/\hbar)\sqrt{2m(U_0 - E)}].$$

5.156.
$$D = \exp[-(4l\sqrt{2m}/3\hbar U_0)(U_0 - E)^{3/2}].$$

5.157.
$$D = \exp[-(\pi l / \hbar) \sqrt{2m / U_0} (U_0 - E)].$$

5.158.
$$\alpha = \sqrt{\hbar R / E_{cr}} - n = -0.41$$
 и -0.04 соответственно.

5.159.
$$\alpha = \sqrt{\hbar R / (E_0 - e \varphi_1)} - 3 = -0.88$$
.

5.160.
$$E_{CB} = \hbar R / (\sqrt{R \lambda_1 \lambda_2 / 2 \pi c \Delta \lambda} - 1)^2 = 5.3 \text{ sB.}$$

5.161. 0,82 мкм (
$$3S \rightarrow 2P$$
) и 0,67 мкм ($2P \rightarrow 2S$).

5.162.
$$\Delta E = 2 \pi \hbar c \Delta \lambda / \lambda^2 = 2.0 \text{ m} B.$$

5.163.
$$\Delta \omega = 1,044 \cdot 10^{14} \text{ c}^{-1}$$
.

5.164.
$$3S_{1/2}$$
, $3P_{1/2}$, $3P_{3/2}$, $3D_{3/2}$, $3D_{5/2}$.

5.165. a)
$$1, 2, 3, 4, 5; 6$$
) $0, 1, 2, 3, 4, 5, 6;$ B) $1/2, 3/2, 5/2, 7/2, 9/2.$

5.166. Для состояния 4P : $\hbar\sqrt{3/4}$, $\hbar\sqrt{15/4}$ и $\hbar\sqrt{35/4}$; для состояния 5D : 0, $\hbar\sqrt{2}$, $\hbar\sqrt{6}$, $\hbar\sqrt{12}$, $\hbar\sqrt{20}$.

5.167. a)
$${}^2F_{7/2}$$
, $M_{\text{Make}} = \hbar \sqrt{63/4}$; 6) 3F_4 , $M_{\text{Make}} = 2 \hbar / \sqrt{5}$.

5.168. В *F*-состоянии $M_s=\hbar\sqrt{6}$; для *D*-состояния можно лишь установить, что $M_s\geqslant\hbar\sqrt{6}$.

5.170.
$$M_L = \hbar \sqrt{30}$$
, 5H_3 .

5.172. 31,1°.

5.173.
$${}^{1}P_{1}$$
, ${}^{1}D_{2}$, ${}^{1}F_{3}$, ${}^{3}P_{0,1,2}$, ${}^{3}D_{1,2,3}$, ${}^{3}F_{2,3,4}$.

5.175. Второй и третий.

5.176.
$$g = 4 + 6 = 10$$
.

5.178.
$${}^{3}F_{3}$$
.

5.179. As
$$(Z = 33)$$
.

```
5.180. a) {}^4S_{3/2}; 6) {}^3P_2.
```

5.181. a)
$${}^4F_{3/2}$$
, $\hbar\sqrt{15/4}$; 6) ${}^4F_{9/2}$, $\hbar3\sqrt{11/4}$.

5.182. а) Два d-электрона; б) пять p-электронов; в) пять d-электронов.

5.183. a)
$${}^{3}P_{0}$$
; 6) ${}^{4}F_{9/2}$.

5.184.
$${}^{4}F_{3/2}$$
.

5.185.
$$\tau = l/v \ln \eta = 1,3$$
 MKC.

5.186.
$$N = \lambda \tau P / 2 \pi c \hbar = 7 \cdot 10^9$$
.

5.188. а) 843 пм для Al, 180 пм для Co; б)
$$\Delta E \approx 5$$
 кэВ.

5.192.
$$Z = 1 + 2\sqrt{(n-1)} eU_1/3\hbar R(n-U_1/U_2) = 29$$
.

5.193.
$$Z = 1 + 2\sqrt{\Delta\omega/3R} = 22$$
, титан.

5.194.
$$E_{CR} = (3/4)\hbar R(Z-1)^2 + 2\pi c\hbar/\lambda_L = 5.5$$
 кэВ.

5.195.
$$E_L = \hbar\omega/(2\pi c/\omega\Delta\lambda - 1) \approx 0.5$$
 кэВ, где $\omega = (3/4)R(Z-1)^2$.

5.196.
$$Z=1+\sqrt{8\pi c/3R\lambda_{\alpha}}=22$$
 (Ti), $\lambda=\lambda_{\alpha}\lambda_{\beta}/(\lambda_{\alpha}-\lambda_{\beta})=0.29$ hm.

5.197.
$$K = (3/4)\hbar R(Z-1)^2 - 2\pi c\hbar/\lambda_K = 1,47 \text{ kpB}, \quad v \approx 2,3 \cdot 10^7 \text{ m/c}.$$

5.198. а)
$$g = 2$$
, за исключением синглетного состояния; б) $g = 1$.

5.199. a)
$$-2/3$$
; б) 0; в) 1; г) $5/2$; д) $0/0$.

5.200. a)
$$\sqrt{12} \ \mu_{\rm B}$$
; 6) $\sqrt{12/5} \ \mu_{\rm B}$; B) $\sqrt{64/3} \ \mu_{\rm B}$.

5.201.
$$M_s = \hbar \sqrt{12}$$
.

5.202.
$$\mu = \sqrt{35} \ \mu_{\rm B} \ (^6S_{5/2}).$$

5.203.
$$\mu = \sqrt{63/5} \ \mu_B$$
.

5.204.
$$\mu = 5\sqrt{5/4} \ \mu_B$$
.

5.205.
$$M = \hbar \sqrt{3/4}$$
.

5.206.
$${}^{5}F_{1}$$
.

5.207.
$$\omega = \mu \cdot gB / \hbar = 1,2 \cdot 10^{10}$$
 рад /с, где g — фактор Ланде.

5.208.
$$F_{\text{макс}} = p_{\text{m}} \left| \partial B / \partial z \right| = \kappa \, g J \mu_{\text{B}} (3\pi/\sqrt{8}) I / r^2 = 4.1 \cdot 10^{-27} \, \text{H}, где } \kappa = 1/c \text{ (СГС)}$$

или $\mu_0/4\pi$ (СИ).

5.209.
$$F = \kappa \, \mu_{\rm B} 2I/r^2 = 3 \cdot 10^{-26} \, {\rm H}$$
, где $\kappa = 1/c$ (СГС) или $\mu_{\rm 0}/4\pi$ (СИ).

5.210.
$$\partial B / \partial z = 2 Kx / gJ \mu_B l_1 (l_1 + 2 l_2) = 15 \text{ κΓc/cm} = 0.15 \text{ κΤπ/m}.$$

5.211. а) Не расщепится; б) на шесть; в) не расщепится
$$(g = 0)$$
.

5.212.
$$\Delta E = 2gJ\mu_{\rm B}B$$
; a) 5,8 · 10⁻⁵ •B; 6) 1,45 · 10⁻⁴ •B.

5.213. а) Простой; б) сложный; в) простой; г) простой (здесь для обоих термов факторы Ланде одинаковы).

5.214.
$$L = \Delta E/2\mu_{\rm E}B = 3;$$
 ${}^{1}F_{3}.$

5.215.
$$\Delta \lambda = \lambda^2 \mu_B B / \pi c \hbar = 35 \text{ mm}.$$

5.216.
$$B_{\text{MMH}} = 4.0 \text{ кΓc} = 0.40 \text{ Tπ.}$$

5.217.
$$B = \hbar \Delta \omega / g \mu_B = 3.0$$
 κΓc = 0.30 Tπ.

5.218. Фактор Ланде
$$g = \hbar \Delta \omega / 2\mu \cdot B \approx 3/2$$
, $S = 2$ и $\kappa = 2S + 1 = 5$.

5.219.
$${}^{2}P_{3/2}$$
.

5.220. а) 2:1 (отношение соответствующих факторов Ланде); б) $B = 2 \pi c \hbar \Delta \lambda / g \mu_B \eta \lambda^2 = 5.5 \text{ кГс} = 0.55 \text{ Тл.}$

5.221. $\Delta \omega = (\pm 1, 3, \pm 4, 0, \pm 6, 6) \cdot 10^{10} \text{ c}^{-1}$, шесть компонент.

5.222. a) Шесть (1) и четыре (2); б) девять (1) и шесть (2).

5.223. $\Delta \omega = 2(m_1 g_1 - m_2 g_2)_{\text{Make}} \mu_B B / \hbar = 1,0 \cdot 10^{11} \text{ c}^{-1}$.

5.224. $\omega = 4\sqrt{2} \ \hbar/md^2 = 1,57 \cdot 10^{11} \ \text{рад/c}$, где m — масса молекулы.

5.225. 2 и 3.

5.226. $M = \sqrt{md^2 E/2} \approx 3.5 \ \hbar$, где m — масса молекулы.

5.227. $r = \Delta E_1/(\Delta E_2 - \Delta E_1) = 2$, $I = \hbar^2/(\Delta E_2 - \Delta E_1) = 0$, $7 \cdot 10^{-38}$ r·cm².

5.228. $\omega = \left(\sqrt{1 + 8EI/\hbar^2} - 1\right)\hbar/2I = 1.8 \cdot 10^{12} \text{ c}^{-1}.$

5.229. $I = \hbar / \Delta \omega = 1.93 \cdot 10^{-40} \text{ r} \cdot \text{cm}^2$, d = 112 mm.

5.230. 13 уровней.

5.231. $N \approx \sqrt{2 I \omega / \hbar} = 33$, ω — собственная частота колебаний.

5.232. $dN/dE = \alpha/2(r+1) = \alpha/(1+\sqrt{1+4\alpha E})$, где $\alpha = 2I/\hbar^2$, I — момент инерции молекулы. При r=10 для иода dN/dE=1, 0.10^4 уровней/эВ.

5.233. $E_{\text{кол}} / E_{\text{вр}} = \omega \mu d^2 / \hbar$, где μ — приведенная масса молекулы; а) 36;

б) $1,7 \cdot 10^2$; в) $2,9 \cdot 10^3$.

5.234. $d = \sqrt{2 \hbar / \mu \Delta \omega} = 0,13$ нм, где μ — приведенная масса молекулы.

5.235. $\lambda = \lambda_0 / (1 \mp \omega \lambda_0 / 2 \pi c) = 423$ и 387 нм.

5.236. $\omega = \pi c (\lambda_{\kappa} - \lambda_{\phi}) / \lambda_{\kappa} \lambda_{\phi} = 1,37 \cdot 10^{14} \text{ c}^{-1}, \ \varkappa = 4,97 \text{ H/cm.}$

5.237. $2 \cdot 10^{11}$ кг/см³, $1 \cdot 10^{38}$ нуклон/см³.

5.238. 8 Be, $E_{cr} = 56.5$ MaB.

5.239. a) 8,0 МэВ; б) 11,5 и 8,7 МэВ; в) 14,5 МэВ.

5.240. $E_n - E_p = 0.22$ M₂B.

5.241. $E=20\epsilon_{\rm Ne}-2\cdot 4\epsilon_{\alpha}-12\epsilon_{\rm C}=11,9~$ МэВ, где ϵ — энергия связи на один нуклон в соответствующем ядре.

5.242. a) 8,0225 a.e.m.; б) 10,0135 a.e.m.

5.243. a) $P = 1 - \exp(-\lambda t)$; 6) $\tau = 1/\lambda$.

5.244. Около 1/4.

5.245. $1,2 \cdot 10^{15}$.

5.246. $\tau \approx 16$ c.

5.247. T = 5.3 cyr.

5.248. 0,85 · 10 ⁶ Бк.

5.249. $\lambda = -(1/t) \ln(1 - \eta) \approx \eta/t = 1,1 \cdot 10^{-5} \text{ c}^{-1}, \ \tau = 1/\lambda = 1,0 \text{ cyt.}$

5.250. $T = 4.5 \cdot 10^9$ лет.

5.251. $t = T \ln \eta / \ln 2 = 4.1 \cdot 10^3$ лет.

5.252. $t = T \ln(1 + 1/\eta) / \ln 2 = 2.0 \cdot 10^9$ лет.

5.253. Соответственно $3.2 \cdot 10^{17}$ и $0.8 \cdot 10^{5}$ Бк/г.

5.254. $V = (A/A') \exp[-(t/T) \ln 2] = 6 \pi$.

5.255. 0,19%.

```
5.256. t = -(T/\ln 2)\ln(1 - A/q) = 9.5 cyt.
```

5.257. a)
$$N_2(t) = N_{10}[\exp(-\lambda_1 t) - \exp(-\lambda_2 t)]\lambda_1/(\lambda_2 - \lambda_1)$$
; б) $t_m = \ln(\lambda_1/\lambda_2)/(\lambda_1 - \lambda_2)$.

5.258. a)
$$N_2(t) = \lambda N_{10} t e^{-\lambda t}$$
; 6) $t_m = 1/\lambda$.

5.259. а) $^{20\bar{6}}$ Pb; б) восемь α -распадов и шесть β -распадов.

5.260.
$$v = \sqrt{2m_{\alpha}K_{\alpha}}/m = 3.4 \cdot 10^5$$
 м/с, m — масса дочернего ядра; 0,020.

5.263. a) 6,1 см; б) соответственно 2,1 \cdot 10 5 и 0,77 \cdot 10 5 .

5.264.
$$Q = \begin{cases} (M_{\text{M}} - M_{\text{Д}}) c^2 & \text{при } \beta^-\text{-распаде} & \text{и } K\text{-захвате,} \\ (M_{\text{M}} - M_{\text{Д}} - 2m) c^2 & \text{при } \beta^+\text{-распаде.} \end{cases}$$

5.267. 0,32 и 0,65 МэВ.

5.268. $K \approx Q(Q+2mc^2)/2M_{\rm N}c^2=0,11$ кэВ, где $Q=(M_{\rm N}-M_{\rm C}-2m)c^2,~m$ — масса электрона.

5.269.
$$v = c (m_{\text{Be}} - m_{\text{Li}})/m_{\text{Li}} = 40 \text{ km/c.}$$

5.270.
$$0,45c$$
, где c — скорость света.

5.271.
$$\Delta \epsilon / \epsilon = E/2mc^2 = 3.6 \cdot 10^{-7}$$
, где m — масса ядра.

5.272.
$$v \approx \varepsilon/mc = 0.22$$
 км/с, где m — масса ядра.

5.273.
$$v = gh/c = 6.5 \text{ MKM/c}$$
.

5.274.
$$h_{\text{MUH}} = \hbar c^2 / g \epsilon \tau = 4,6 \text{ M}.$$

5.275. $K=K_{\alpha}$ / $[1+(M-m)^2/4mM\cos^2\theta]=6,0$ МэВ, где m и M — мас-сы α -частицы и ядра лития.

5.276. а) $\eta = 4mM/(m+M)^2 = 0.89;$ б) $\eta = 2m/(m+M) = 2/3.$ Здесь m и M — массы нейтрона и дейтрона.

5.277.
$$\theta_{\text{Make}} = \arcsin(m_1/m_2) = 30^{\circ}$$
.

5.278. a)
$$d$$
; б) 17 F; в) α ; г) 37 Cl.

5.279.
$$Q = (E_3 + E_4) - (E_1 + E_2)$$
.

5.280. a)
$$8.2 \cdot 10^{10}$$
 кДж, $2.7 \cdot 10^6$ кг; б) 1.5 кг.

5.281.
$$5.74 \cdot 10^7$$
 кДж; $2 \cdot 10^4$ кг.

5.283.
$$Q = 8\varepsilon_{\alpha} - 7\varepsilon_{Li} = 17.3 \text{ M} \ni B.$$

5.284.
$$Q = (1 + \eta_p) K_p - (1 - \eta_\alpha) K_\alpha - 2 \sqrt{\eta_p \eta_\alpha K_p K_\alpha} \cos \vartheta = -1,2 \text{ МэВ, где } \eta_p =$$

$=m_p/m_O$, $\eta_\alpha=m_\alpha/m_O$.

5.286.
$$v_{\alpha} = 0.92 \cdot 10^{7} \text{ m/c}, \quad v_{\text{Li}} = 0.53 \cdot 10^{7} \text{ m/c}.$$

5.288.
$$K_n = [Q + (1 - m_\alpha/m_C)K]/(1 + m_n/m_C) = 8.5 \text{ M} \circ B.$$

5.291.
$$K \ge E_{CB}(m_p + m_d)/m_d = 3,3 \text{ M} \ni B.$$

5.293.
$$Q = -(11/12)K_{\text{non}} = -3.7 \text{ M} \cdot \text{B}.$$

5.294. Соответственно 1,88 и 5,75 МэВ.

5.295. 4,4 M₂B, $5, 3 \cdot 10^6$ M/c.

5.296.
$$K_{\alpha} = \frac{1}{m_3 + m_4} \left[(m_4 - m_1) K - \frac{m_2 m_4}{m_1 + m_2} K_{\text{пор}} \right] = 2,2 \text{ MэВ, где } m_1,$$

 m_2 , m_3 , m_4 — массы нейтрона, ядра ¹²С, α -частицы и ядра ⁹Ве.

5.297. На $E_{\rm cB}/2mc^2=0.06\%$, где m — масса дейтрона.

5.298. E = Q + 2K/3 = 6.5 MaB.

5.299. $E=E_{\rm cB}+K_im_{\rm C}/(m_d+m_{\rm C})=16,7,\ 16,9,\ 17,5$ и 17,7 МэВ, где $E_{\rm cB}$ — энергия связи дейтрона в промежуточном ядре.

5.300. $\sigma = (M/N_A \rho d) \ln \eta = 2.5$ кб, где M — молярная масса кадмия, N_A — постоянная Авогадро, ρ — плотность кадмия.

5.301. $I_0/I=\exp[(2\,\sigma_1\,+\,\sigma_2\,)nd]=20$, где n — концентрация молекул тяжелой воды.

5.302. $w = \{1 - \exp[-(\sigma_s + \sigma_a)nd]\}\sigma_s/(\sigma_s + \sigma_a) = 0,35$, где n — концентрация ядер железа.

5.303. a) $T = (w/k) \ln 2$; 6) $w = ATe/It \ln 2 = 2 \cdot 10^{-3}$.

5.304. а) $t=\eta/\sigma J=3\cdot 10^6\,$ лет; б) $N_{\rm Makc}=J\sigma N_0T/{\rm ln}2=1,0\cdot 10^{13}$, где N_0 — число ядер $^{197}{\rm Au}\,$ в фольге.

5.305. $N = (1 - e^{-\lambda t})Jn\sigma/\lambda$.

5.306. $J = A e^{\lambda \tau} / \sigma N_0 (1 - e^{-\lambda t}) = 6 \cdot 10^9$ см $^{-2} \cdot c^{-1}$, где λ — постоянная распада, N_0 — число ядер Au в фольге.

5.307. $N = N_0 k^{i-1} = 1, 3 \cdot 10^5$, где i — число поколений.

5.308. $N = \nu P/E = 0.8 \cdot 10^{19} \text{ c}^{-1}$.

5.309. a) $N/N_0 = 4 \cdot 10^2$; 6) $T = \tau/(k-1) = 10$ c.

5.310. $K = mc^2 \left(\sqrt{1 + (p/mc^2)} - 1 \right) = 5,3$ МэВ, 0,43 и 9,1 ГэВ.

5.311. $\langle l \rangle = c \tau_0 \sqrt{\eta(\eta + 2)} = 15 \text{ M}.$

5.312. $\tau_0 = lmc / \sqrt{K(K + 2mc^2)} = 26$ нс, где m — масса мезона.

5.313. $J/J_0 = \exp\left[-lmc/\tau_0\sqrt{K(K+2mc^2)}\right] = 0$,22, где m — масса π -мезона.

5.314. $K_{\mu} = (m_{\pi} - m_{\mu})c^2/2m_{\pi} = 4.1 \text{ M} \circ \text{B}, E_{\nu} = 29.8 \text{ M} \circ \text{B}.$

5.315. $K = [(m_{\Sigma} - m_n)^2 - m_{\pi}^2]c^2/2m_{\Sigma} = 19,5 \text{ M} \ni B.$

5.316. $K_{\text{Makc}} = (m_{\text{u}} - m_{e})^{2} c^{2} / 2m_{\text{u}} = 52.5 \text{ M} \cdot \text{B}.$

5.317. $mc^2 = m_p c^2 + K + \sqrt{m_\pi^2 c^4 + K(K + 2m_p c^2)} = 1115$ МэВ; Λ -частица.

5.318. $\tau = \tau_0 [1 + (m_\mu / m_K)^2] m_K / 2 m_\mu = 5.4$ мкс, где τ_0 — среднее время жизни покоящихся мюонов.

5.319. $E_{\nu} = (m_{\pi}^2 - m_{\mu}^2) c^4 / 2(m_{\pi}c^2 + K) = 22 \text{ M} \ni B.$

5.320. $mc^2 = \sqrt{(m_{\Sigma}^2 + m_{\pi}^2)c^4 - 2(m_{\Sigma}c^2 + K_{\Sigma})(m_{\pi}c^2 + K_{\pi})}$.

5.321. $K_{\pi}=m_{\pi}c^2\left[\csc(\theta/2)-1\right]$, $E_{\gamma}=m_{\pi}c^2/2\sin(\theta/2)$. При $\theta=60^\circ$ $K_{\pi}=E_{\gamma}=m_{\pi}c^2$.

5.323.
$$\cos(\theta/2) = 1/\sqrt{1 + 2mc^2/K}$$
, отсюда $\theta = 99^\circ$.

5.324. a)
$$\varepsilon_{\text{nop}} = 4 m_e c^2 = 2.04 \text{ M} \cdot \text{B}$$
; 6) $\varepsilon_{\text{nop}} = 2 m_\pi c^2 (1 + m_\pi/m_p) = 320 \text{ M} \cdot \text{B}$.

5.325. 1,8 M₃B.

5.326. a)
$$K_{\text{nop}} = 6 \, m_p \, c^2 = 5$$
, 6 $\Gamma \ni B$; 6) $K_{\text{nop}} = m_\pi c^2 (4 \, m_p + m_\pi) / 2 m_p = 0$, 28 $\Gamma \ni B$.

5.327. a) 0,90 ГэВ; б) 0,77 ГэВ.

5.328. a)
$$K_e = 2m_p c^2 (2 + m_p / m_e) = 3449 \text{ FaB}; 6)$$

5.328. а)
$$K_e = 2m_p c^2 (2 + m_p / m_e) = 3449 \, \Gamma \text{рB};$$
 б) $\hbar \omega = 2m_p c^2 (1 + m_p / m_e) = 3447 \, \Gamma \text{рB}.$ 5.329. $N_{\text{макс}} = \left[2 \left(\sqrt{1 + K / 2 \, m_p c^2} - 1 \right) m_p / m_\pi \right] = 10$, где прямые скобки

означают: «целое число от».

5.330.
$$S = -2$$
, $Y = -1$, Ξ^0 -частица.

5.331. Запрещены 1, 2 и 3.

5.332. Запрещены 2, 4 и 5.

5.333. Энергетически (1); в остальных процессах не сохраняются: барионный заряд (2), электрический заряд (3), странность (4), лептонный заряд (5), электронный и мюонный заряды (6).

5.334. p(uud), n(udd), $\Sigma^{-}(dds)$.

5.335.
$$\pi^+(u\tilde{d})$$
, $K^-(\tilde{u}s)$, $K^0(\tilde{d}s)$.

5.336.
$$K^+(u\tilde{s})$$
, $\Lambda(uds)$, $\Omega^-(sss)$.

6.1.
$$m = \rho V \Delta p / p_0 = 30$$
 г, p_0 — нормальное атмосферное давление.

6.2.
$$p = (p_1 T_2 / T_1 - \Delta p)/2 = 10$$
 кПа (0,10 атм).

6.3.
$$m = pMV \ln(T_2/T_1)/R(T_2-T_1)$$
.

6.4.
$$m_1/m_2 = (1 - a/M_2)/(a/M_1 - 1) = 0,50$$
, где $a = mRT/pV$.

6.5.
$$\rho = p_0(m_1 + m_2)/RT(m_1/M_1 + m_2/M_2) = 1.5 \text{ г/л.}$$

6.6. a)
$$p = (\nu_1 + \nu_2 + \nu_3)RT/V = 0.20 \text{ M}\Pi \text{a (2.0 atm)};$$

б)
$$M = (\nu_1 M_1 + \nu_2 M_2 + \nu_3 M_3)/(\nu_1 + \nu_2 + \nu_3) = 36,7$$
 г/моль.

6.7.
$$T' = T(\eta - 1/\eta)/(\eta' - 1/\eta') = 420 \text{ K}$$
.

6.8.
$$n = \ln \eta / \ln(1 + \Delta V/V)$$
.

6.9.
$$p = p_0 \exp(-Ct/V)$$
.

6.10.
$$t = (V/C) \ln \eta = 1,0$$
 мин.

6.11.
$$\Delta T = (mg + p_0 \Delta S) l / R = 0.9 \text{ K}.$$

6.12. a)
$$T_{\text{Marc}} = (2p_0/3R)\sqrt{p_0/3\alpha}$$
; 6) $T_{\text{Marc}} = p_0/6R$.

6.13.
$$p_{\text{MMH}} = 2R\sqrt{\alpha T_0}$$
.

6.14.
$$dT / dh = -Mg / R = -33 \text{ mK} / \text{m}$$
.

6.15.
$$dT / dh = -Mg(n-1)/nR$$
.

6.16. 0,54 и 1,9 атм.

6.17. a)
$$h = RT / Mg = 8.0$$
 km; б) $h \approx \eta RT / Mg = 0.08$ km.

6.18.
$$m = (1 - e^{-Mgh/RT})p_0 S/g$$
.

6.19.
$$h_C = \int_0^\infty h \rho \, dh / \int_0^\infty \rho \, dh = RT / Mg$$
.

6.20. a)
$$p = p_0 (1 - ah)^n$$
, $h < 1/a$; б) $p = p_0/(1 + ah)^n$. Здесь $n = Mg/aRT_0$.

6.21.
$$p = p_0 \exp(M\omega^2 r^2/2RT)$$
.

6.22.
$$p_{\pi_R} = pRT/M = 280$$
 атм, $p = pRT/M(M - pb) - ap^2/M^2 = 80$ атм. 6.23. а) $T = a(V - b)(1 + \eta)/RV(\eta V + b) = 133$ K; 6) $p = RT/(V - b) - aV^2 = 9$, 9 атм. 6.24. $a = V^2(T_1p_2 - T_2p_1)/(T_2 - T_1) = 0$,19 Па 6 /моль 2 ; $b = V - R(T_2 - T_1)/(p_2 - p_1) = 0$,042 л/моль. 6.25. $U = pV/(\gamma - 1) = 10$ МДж. 6.26. $T = \frac{T_1T_2(p_1V_1 + p_2V_2)}{p_1V_1T_2 + p_2V_2T_1}$, $p = \frac{p_1V_1 + p_2V_2}{V_1 + V_2}$. 6.27. $\Delta U = p_0V\Delta T/T_0(\eta - 1) = -0.25$ кДж, $Q' = -\Delta U$. 6.28. $Q = A\gamma/(\gamma - 1) = T$ Дж. 6.29. $M = mR\Delta T/\Delta Q = 28$ г/моль. 6.30. $\Delta U = Q - R\Delta T = 1.00$ кДж, $\gamma = Q/(Q - R\Delta T) = 1.6$. 6.31. $Q = vRT_0(1 - 1/n) = 2.5$ кДж. 6.32. $\gamma = \frac{v_1\gamma_1(\gamma_2 - 1) + v_2\gamma_2(\gamma_1 - 1)}{v_1(\gamma_2 - 1) + v_2\gamma_2(\gamma_1 - 1)} = 1$, 33. 6.33. $c_V = 0$,42 Дж/(г·К), $c_p = 0$,65 Дж/(г·К). 6.34. $A' = RT(n - 1)/(Q/vRT_0 - 1n n) = 1$,4. 6.37. a) $T = T_0\eta^{1-1/\gamma} \approx 560$ K; 6) $A' = RT_0(\eta^{1-1/\gamma} - 1)/(\gamma - 1) = 5$,6 кДж. 6.38. При адиабатическом сжатии работа больше в $n = (\eta^{\gamma-1} - 1)/(\gamma - 1)$ In $\eta = 1$,4 pasa. 6.39. $T = T_0[(\eta + 1)^2/4\eta]^{(\gamma-1)/2}$. 6.40. $\omega = S\sqrt{2\gamma p_0/mV_0}$. 6.41. $\gamma = \pi mo_0^2/6p_0h$. 6.42. $Q = R\Delta T(2 - \gamma)/(\gamma - 1)$. 6.43. $C = R(n - \gamma)/(n - 1)(\gamma - 1)$, $C < 0$ при $1 < n < \gamma$. 6.44. $C = C_V(n - \gamma)/(n - 1)(\gamma - 1)$, $C < 0$ при $1 < n < \gamma$. 6.44. $C = C_V(n - \gamma)/(n - 1)(\gamma - 1)$, $C < 0$ при $1 < n < \gamma$. 6.44. $C = C_V(n - \gamma)/(n - 1)(\gamma - 1)$, $C < 0$ при $1 < n < \gamma$. 6.48. a) $C = R/(\gamma - 1)$; 6) $T = 1$ 0. $T = 1$ 1. $T = 1$ 2. 6.49. A $T = 1$ 3. $T = 1$ 4. 6.40. $T = 1$ 4. 6.40. $T = 1$ 5. $T =$

6.59. $T(V-b)^{\alpha} = \text{const}$, где $\alpha = R/C_V$.

6.60.
$$C_n - C_V = R/(1-2a(V-b)^2/RTV^3)$$
.

6.61.
$$\Delta T = -\nu a V_2(\gamma - 1) / R V_1(V_1 + V_2) = -3.0 \text{ K}.$$

6.62.
$$Q = v^2 a (V_2 - V_1) / V_1 V_2 = 0,33$$
 кДж.

6.64.
$$T_1 < 2a(1 - b/V_1)bR = 180 \text{ K}$$
.

6.65.
$$\Delta T = \frac{\gamma - 1}{\gamma} \left(\frac{T_1}{V_1 / b - 1} - \frac{2a}{RV_1} \right);$$
 a) 15 K; 6) -39 K.

6.66.
$$n = p/kT = 1.10^{5} \text{ cm}^{-3}$$
; $\langle l \rangle = 0.2 \text{ mm}$.

6.67.
$$p = (1 + \eta)mRT/MV = 1.9$$
 атм, M — масса моля азота N_2 .

6.68.
$$n = (p/kT - \rho/m_2)/(1 - m_1/m_2) = 1,6 \cdot 10^{19}$$
 см⁻³, где m_1 и m_2 — массы молекул гелия и азота.

6.69.
$$i = 2/(\rho v^2/p - 1) = 5$$
.

6.70.
$$v/v_{KR} = \sqrt{(i+2)/3i}$$
; a) 0,75; 6) 0,68.

6.71.
$$\Delta U = (i_2 T_2 - i_1 T_1) mR / 2M = 43 кДж.$$

6.72. a)
$$C_V = (3N - 5/2)R$$
, $\gamma = (6N - 3)/(6N - 5)$;

6)
$$C_V = (3N-1)R$$
, $\gamma = (N-2/3)/(N-1)$.

6.73. A/Q = 1/(3N-2) для нелинейных молекул и 1/(3N-3/2) для линейных.

6.74.
$$N = 2(2 - \eta)/(4 - 3\eta) = 4$$
, молекулы нелинейные.

6.75.
$$M = R/(c_p - c_V) = 32$$
 г/моль; $i = 2/(c_p/c_V - 1) = 5$.
6.76. a) $i = 2(C_p/R - 1) = 5$; б) $i = 2(C/R - 2) = 3$.

6.76. a)
$$i = 2(C_n/R - 1) = 5$$
; b) $i = 2(C/R - 2) = 3$

6.77.
$$\gamma = (5\nu_1 + 7\nu_2)/(3\nu_1 + 5\nu_2)$$
.

6.78.
$$n = p/(\gamma - 1)\langle \varepsilon \rangle = 1,0 \cdot 10^{25} \text{ m}^{-3}$$
.

6.79.
$$\Delta T = Mv^2/iR = 0.31 \text{ K}$$
, где $i = 5$.

6.80. a)
$$v_{\text{KB}} = \sqrt{3RT/M} = 0.47 \text{ km/c}; \quad \langle K \rangle = 3kT/2 = 6.0 \cdot 10^{-21} \text{ Дж};$$

6)
$$v_{\text{KB}} = 3\sqrt{2kT/\pi\rho d^3} = 0.15 \text{ m/c.}$$

6.81. Надо расширить в
$$\eta^{i} = 7.6$$
 раза, где $i = 5$.

6.82.
$$Q = (\eta^2 - 1)imRT/2M = 10$$
 кДж.

6.83.
$$\omega_{\text{кв}} = \sqrt{2 \, kT \, / I} = 6,3 \cdot 10^{12} \, \text{рад /c.}$$

6.84.
$$\langle K \rangle_{\rm Bp} = kT_0 \eta^{2/i} = 0.7 \cdot 10^{-20}$$
 Дж.

6.85. Уменьшится в
$$\eta^{1+1/i}$$
 раз, где $i=5$.

6.86. Уменьшилась в
$$\eta^{(i-1)/(i-2)} = 2,5$$
 раза.

6.87.
$$C = R(i + 1)/2 = 3R$$
.

6.88.
$$\delta N_1/\delta N_2 = \exp[m(v_{2x}^2 - v_{1x}^2)/2kT]\delta v_{1x}/\delta v_{2x} = 1.5.$$

6.89.
$$\delta P = (m/2\pi kT)^{3/2} \exp(-mv^2/2kT) \delta v_x \delta v_y \delta v_z = 0.7 \cdot 10^{-10}$$
.

6.90.
$$\delta N/N = (m/2\pi kT)^{3/2} \exp(-mv^2/2kT) 2\pi v_{\perp} \delta v_{\perp} \delta v_{\perp}$$

6.91.
$$\delta N/N = (m/kT) \exp(-mv_{\perp}^2/2kT)v_{\perp}\delta v_{\perp}$$
.

6.92.
$$\mathscr{F}(u) = (4/\sqrt{\pi}) u^2 \exp(-u^2)$$
.

6.93.
$$v_{\text{Bep}} = \sqrt{2p/\rho} = 0.45 \text{ km/c}, \quad \langle v \rangle = 0.51 \text{ km/c}, \quad v_{\text{KB}} = 0.55 \text{ km/c}.$$

6.94.
$$\delta N/N = 8 \, \delta \eta / \, e \, \sqrt{\pi} = 1,66\%$$
; 6) $\delta N/N = 12 \, \sqrt{3/2 \, \pi e^3} \, \delta \eta = 1,85\%$.

6.95. a)
$$T = m(\Delta v)^2 / k(\sqrt{3} - \sqrt{2})^2 = 380 \text{ K}$$
; 6) $T = mv^2 / 2k = 340 \text{ K}$.

6.96.
$$T = m(v_2^2 - v_1^2)/4k \ln(v_2/v_1) = 330 \text{ K}.$$

6.97. Увеличилась в η^2 раз.

6.98.
$$v = \sqrt{(3kT_0/m)\eta \ln \eta/(\eta-1)}$$
.

6.99.
$$T = m_N (\Delta v)^2 / 2k (1 - \sqrt{m_N / m_O})^2 \approx 370 \text{ K}.$$

6.100.
$$v = \sqrt{3kT \ln(m_2/m_1)/(m_2-m_1)} = 1,61 \text{ km/c.}$$

6.101.
$$T = mv^2/3k$$
, $v_{\text{Rep}} = v\sqrt{2/3}$.

6.102.
$$\langle v_r \rangle = 0$$
, $\langle |v_r| \rangle = \sqrt{2 kT / \pi m}$.

6.103.
$$\langle v_r^2 \rangle = kT/m$$
.

6.104. $v = \int v_x dn(v_x) = n \langle v \rangle /4$, где $dn(v_x) = n \phi(v_x) dv_x$, интегрирование проводится по v_x от 0 до ∞ .

6.105. $p=2\int mv_x\cdot v_x\mathrm{d}n(v_x)=nkT$, где $\mathrm{d}n(v_x)=n\phi(v_x)\,\mathrm{d}v_x$, интегрирование проводится по v_x от 0 до ∞ .

6.106.
$$\langle 1/v \rangle = \sqrt{2m / \pi kT} = 4 / \pi \langle v \rangle$$
.

6.107. $dv = \int dn (d\Omega/4\pi) v \cos \vartheta = n \sqrt{2 kT/\pi m} \sin \vartheta \cos \vartheta d\vartheta$, где интегрирование проводится по v от 0 до ∞ .

6.108.
$$\mathrm{d} v = \int \mathrm{d} n \left(\, \mathrm{d} \Omega / \, 4 \, \pi \right) v \, \cos \, \vartheta = n \pi \left(\frac{m}{2 \, \pi k T} \right)^{3 \, / \, 2} \exp \left(- m v^{\, 2} \, / \, 2 \, k T \, \right) v^{\, 3} \, \mathrm{d} v$$
, где

интегрирование проводится по ϑ от 0 до $\pi/2$.

6.109. a)
$$f(K) = 2\pi (\pi kT)^{-3/2} e^{-K/kT} \sqrt{K}$$
; 6) $K_{\text{Rep}} = kT/2$, $K_{\text{Rep}} \neq K(v_{\text{Rep}})$.

6.110.
$$\delta N/N = 3\sqrt{6/\pi e^3} \delta \eta = 0.9\%$$
.

6.111. a)
$$v_{\text{Bep}} = \sqrt{3 kT/m}$$
; 6) $K_{\text{Bep}} = kT$.

6.112. a)
$$\varphi$$
 (λ) = $C\lambda^{-4}$ exp($-a/\lambda^2$), где $C=4\pi(2\pi\hbar^2/mkT)^{3/2}$, $a=2\pi^2\hbar^2/mkT$; б) $\lambda_{\rm Bep}=\pi\hbar\sqrt{mkT}=0$,90 нм.

6.113. а) Пусть v_x — проекция вектора скорости излучающего атома на направление линии наблюдения. Число атомов с проекциями $(v_x, v_x + \mathrm{d}v_x)$, т. е. $n(v_x)\,\mathrm{d}v_x \propto \exp(-mv_x^2/2\,kT)\,\mathrm{d}v_x$. Частота света, излучаемого атомами, скорость которых v_x , есть $v = v_0(1 + v_x/c)$. С помощью этого выражения найдем распределение атомов по частотам: $n(v)\,\mathrm{d}v = n(v_x)\,\mathrm{d}v_x$. И наконец, надо учесть, что спектральная интенсивность излучения $I_v \propto n(v)$;

6)
$$\Delta v / v_0 \sqrt{8 kT \ln 2 / mc^2}$$
.

6.114.
$$\Delta\lambda_{\rm доп}/\Delta\lambda_{\rm ecr} \approx 4~\pi \tau v_{\rm вер}/\lambda \approx 10^{-3}$$
 , где $v_{\rm вер} = \sqrt{2~RT/M}$, M — молярная масса.

6.115.
$$F = (kT/\Delta h) \ln \eta = 0.9 \cdot 10^{-19} \text{ H.}$$

6.116.
$$k = \pi d^3 g h \Delta \rho / 6T \ln \eta = 1,4 \cdot 10^{-23}$$
 Дж/К.

6.117.
$$\eta/\eta_0 = \exp[(M_2 - M_1)gh/RT] = 1,39$$
.

6.118.
$$h = kT \ln(n_2/n_1)/(m_2-m_1)g$$
.

6.119. Не изменится.

6.120.
$$h = (RT/Mg) \eta \ln \eta / (\eta - 1)$$
.

6.121.
$$\langle U \rangle = kT$$
. He зависит.

6.122.
$$a \approx \eta RT/Ml \approx 70 g$$
.

6.123.
$$M = 2RT\rho \ln \eta/(\rho - \rho_0)(r_2^2 - r_1^2)\omega^2$$
.

6.124.
$$\omega = \sqrt{(2RT/Ml^2) \ln \eta} = 280 \text{ pag/c.}$$

$$= (a/\pi kT)^{3/2} \exp(-ar^2/kT) 4\pi r^2 dr;$$
 г) увеличится в $\eta^{3/2}$ раза.

6.126. a)
$$dN = 2 \pi n_0 a^{-3/2} e^{-U/kT} \sqrt{U} dU$$
; 6) $U_{\text{Bep}} = kT/2$.

6.127.
$$\delta N = 32\sqrt{\pi} \; n_0 \, \mathrm{e}^{-E/kT} r^2 \, \delta r \delta \eta$$
, где $E = U(r) + kT$.

6.128. $\eta = n^2 \exp(-\hbar\omega / kT) \approx 3 \cdot 10^{-10}$, где $\omega = R(1-1/n^2)$, R — постоянная Ридберга.

6.129. $N/N_0=(g/g_0)\exp(-\hbar\omega/kT)=1,13\cdot 10^{-4}$, где g и g_0 — кратности вырождения уровней 3P и 3S соответственно ($g=6,\ g_0$

6.130.
$$N_2 = \frac{N}{1 + \exp(\Delta E / kT)}, \quad \langle E \rangle = \frac{E_1 + E_2 \exp(-\Delta E / kT)}{1 + \exp(-\Delta E / kT)},$$

где $\Delta E = E_2 - E_1$. См. рис. 51

$$\Delta E = E_2 - E_1$$
. CM. puc. 51.
6.131. $C_V = \frac{N(\Delta E)^2 e^{\Delta E/kT}}{kT^2 (1 + e^{\Delta E/kT})^2}$, $C_V = \frac{N(\Delta E)^2}{kT^2} e^{-\Delta E/kT}$, $C_V = \frac{N(\Delta E)^2}{4kT^2}$.

6.132. $au=n\hbar\omega g\ /\ g_0\ P\ \exp(\ \hbar\omega\ /\ kT\)=65\ \mathrm{hc}$, где g и g_0 — кратности вырождения резонансного и основного уровней.

6.133. $N_{_{\mathrm{KO}\Pi}}/N_{_{\mathrm{BP}}}=$ (1/3) $\exp[-\hbar(\omega-2\,B)/kT]=3$,1 \cdot 10 $^{-4}$, где $B=\hbar/2\,I$, I — момент инерции молекулы.

6.134. $r_m = (d/\hbar)\sqrt{kT\mu} - 1/2 = 8$, где μ — приведенная масса молекулы O_2 , d — расстояние между ее ядрами. График зависимости N_r/N_0 от r см. на рис. 52. N_r/N_0

Рис. 52

6.135.
$$\langle E \rangle = \frac{\sum E_v \exp(-E_v/kT)}{\sum \exp(-E_v/kT)} = \frac{\sum E_v \exp(-\alpha E_v)}{\sum \exp(-\alpha E_v)}$$
, где $E_v =$

 $\hbar\omega(v+1/2),~\alpha=1/kT.$ Здесь суммирование проводится по v от 0 до ∞ , и делается это следующим образом:

$$\langle E \rangle = -\frac{\partial}{\partial \alpha} \ln \sum \exp(-\alpha E_v) = -\frac{\partial}{\partial \alpha} \ln \frac{\exp(-\alpha \hbar \omega/2)}{1 - \exp(-\alpha \hbar \omega)} = \frac{\hbar \omega}{2} + \frac{\hbar \omega}{\exp(\hbar \omega/kT) - 1},$$

$$C_{V_{ ext{KOЛ}}} = N \; rac{\partial \langle E
angle}{\partial T} = rac{R \left(\; \hbar \omega \, / \; kT \;
ight)^2 \; \exp \left(\; \hbar \omega \, / \; kT \;
ight)}{\left[\exp \left(\; \hbar \omega \, / \; kT \;
ight) - 1
ight]^2} = 0,56 \, R$$
 , где R — универсальная га-

зовая постоянная.

```
6.136. I_{\text{th}}/I_{\text{K}} = \exp(-\hbar\omega/kT) = 0,067. Увеличится в 3,9 раза.
```

6.137.
$$A' = A/(n-1) = 20$$
 кДж.

6.138.
$$\eta = 2A'/iRT = 0.24$$
, где $i = 5$.

6.139. Во втором случае.

6.140. a)
$$\eta = 1 - n^{1-\gamma} = 0.25$$
; 6) $\eta = 1 - n^{1/\gamma - 1} = 0.18$.

6.141.
$$A' = Q_2(T_1/T_2 - 1) = 16$$
 кДж.

6.142.
$$\varepsilon = (1 - \eta) / \eta = 9$$
.

6.143.
$$\eta = 1 - 2T_3/(T_1 + T_2)$$
.

6.144.
$$\eta = 1 - n^{1-\gamma} = 60\%$$
.

6.145.
$$\eta = 1 - n^{-(\gamma - 1)/\gamma}$$
.

6.146.
$$\eta = 1 - (n + \gamma)/(1 + \gamma n)$$
.

6.147. В обоих случаях
$$\eta = 1 - \ln n / (n - 1)$$
.

6.148. В обоих случаях
$$\eta = 1 - (n-1)/n \ln n$$
.

6.149.
$$\eta = 1 - (n - 1)/n \ln n$$
.

6.151. Неравенство $\int \delta \,Q_1\,/\,T_1\,-\int \delta \,Q_2'\,/\,T_2 \leqslant 0$ усилится, если заменить T_1 на $T_{\rm make}$ и T_2 на $T_{\rm muh}$. Тогда $Q_1\,/\,T_{\rm make}\,-\,Q_2'\,/\,T_{\rm muh} < 0$. Отсюда $Q_2'\,/\,Q_1>T_{\rm muh}/\,T_{\rm make}$, или $\eta < \eta_{\rm Kadho}$.

6.152. $A_{\text{макс}} = mc[T_{10} - T_2 - T_2 \ln(T_{10}/T_2)] = 34\,$ МДж, где c — удельная теплоемкость железа.

6.153. а) $\Delta S = R \ln n / (\gamma - 1) = 19 \ \text{Дж} / (\mathbf{K} \cdot \text{моль});$ б) $\Delta S = \gamma R \ln n / (\gamma - 1) = 25 \ \text{Дж} / (\mathbf{K} \cdot \text{моль}).$

6.154.
$$n = e^{\Delta S / vR} = 2,0.$$

6.155.
$$\Delta S = \nu R \ln n = 20$$
 Дж/К.

6.156.
$$\Delta S = -m\gamma R \ln n / M (\gamma - 1) = -10$$
 Дж/К.

6.157.
$$\Delta S = \nu R (\gamma \ln \alpha - \ln \beta)/(\gamma - 1) = -11 \text{ Дж/K}.$$

6.158.
$$S_2 - S_1 = \nu R [\ln \alpha - \ln \beta / (\gamma - 1)] = 1,0$$
 Дж/К.

6.159.
$$\Delta S = R(n - \gamma) \ln \tau/(n - 1)(\gamma - 1)$$
.

6.160.
$$\Delta S = \nu R (\gamma + 1) \ln \alpha / (\gamma - 1) = 46 \text{ Дж/K}.$$

6.161.
$$\Delta S = -(R/2) \ln \nu$$
.

6.162.
$$V_m = \gamma p_0 / \alpha (1 + \gamma)$$
.

6.163.
$$T = T_0 + (R/a) \ln(V/V_0)$$
.

6.164.
$$\Delta S = R \ln[(V_2 - b)/(V_1 - b)].$$

6.165.
$$\Delta S = C_V \ln(T_2/T_1) + R \ln[(V_2 - b)/(V_1 - b)].$$

6.167.
$$S = aT^3/3$$
.

6.168.
$$\Delta S = m[a \ln(T_2/T_1) + b(T_2 - T_1)] = 2,0$$
 кДж/К.

6.169.
$$C = S/n$$
.

6.170.
$$T = T_0 \exp[(S - S_0)/C]$$
.

6.171. a)
$$C = -\alpha/T$$
; b) $Q = \alpha \ln(T_1/T_2)$; b) $A = \alpha \ln(T_1/T_2) + C_V(T_1-T_2)$.

6.173.
$$\Delta S = \nu R \ln n = 20$$
 Дж/К.

6.174.
$$\Delta U = (2^{\gamma-1} - 1)RT_0/(\gamma - 1), \quad \Delta S = R \ln 2.$$

6.175. После необратимого расширения давление будет больше.

6.176.
$$\Delta S = \nu_1 R \ln(1+n) + \nu_2 R \ln(1+1/n) = 5,1 Дж/К.$$

6.177. $\Delta S=m_1\,c_1\,\ln(T/T_1\,)+m_2\,c_2\,\ln(T/T_2\,)=4$,4 Дж/К, где $T=(m_1\,c_1T_1\,+m_2\,c_2T_2\,)/(m_1\,c_1\,+m_2\,c_2\,)$, c_1 и c_2 — удельные теплоемкости меди и воды.

6.178.
$$\Delta S = C_V \ln[(T_1 + T_2)^2/4T_1T_2] > 0.$$

6.179.
$$\Delta F = RT \ln[(V_1 - b)/(V_2 - b)] + a/V_1 - a/V_2$$
.

6.180.
$$\Delta S = \nu R / (\gamma - 1) - \Delta F / T (\eta^{\gamma - 1} - 1) = 0.20 \text{ кДж/K}.$$

6.182.
$$V = kT/p\eta^2 = 0.37 \text{ mm}^3$$
.

6.183. а) $P = 1/2^N$; б) $N = \lg(t/\tau)/\ln 2 \approx 80$, где $\tau \sim 10$ мкс — среднее время пролета атомом гелия расстояния порядка размера сосуда.

6.184.
$$\Omega_{\text{Bep}} = N ! / [(N/2) !]^2 = 252, \quad P_{N/2} = \Omega_{\text{Bep}} / 2^N = 24,6\%.$$

6.185.
$$P_n = \frac{N!}{n!(N-n)! \, 2^N}; \, \frac{1}{32}, \, \frac{5}{32}, \, \frac{10}{32}, \, \frac{5}{32}, \, \frac{1}{32}$$
 соответственно.

6.186.
$$P_n = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}$$
, где $p = V/V_0$.

6.187.
$$d=\sqrt[3]{6/\pi n_0\eta^2}=0$$
,4 мкм, где n_0 — число молекул в единице объема; $\langle n \rangle=1/\eta^2=1$,0 \cdot 10 6 .

6.188.
$$\Omega = 10^{6.3 \cdot 10^{22}}$$

6.189.
$$Q = kT \ln \eta = 1,0 \cdot 10^{-19}$$
 Дж.

6.190. Увеличится в
$$\Omega/\Omega_0=\left(1+\Delta T/T_0\right)^{iN_A/2}=10^{1,31\cdot 10^{21}}$$
 раз.

6.191. a)
$$\eta \approx 0.37$$
; б) $\eta \approx 0.23$.

6.192.
$$\lambda = \Delta l / \ln \eta$$
.

6.193. a)
$$P = \exp(-\alpha t)$$
; 6) $\langle t \rangle = 1/\alpha$.

6.194. a)
$$\lambda = 0.06$$
 mkm, $\tau = 0.13$ Hc; 6) $\lambda = 6 \cdot 10^6$ m, $\tau = 3.8$ ч.

6.196.
$$\lambda = (2\pi N_A/3\ b)^{2/3} kT_0/\sqrt{2}\pi p_0 = 84\ \text{HM}.$$

6.197.
$$v = \pi d^2 p_0 N_A \sqrt{2\gamma/MRT_0} = 5.5 \Gamma \Gamma \mu$$
.

6.198. a)
$$0.7~\Pi a;$$
 6) $2 \cdot 10^{14} \text{ cm}^{-3}$, $0.2~\text{mkm}$.

6.199. a)
$$v = \sqrt{2}\pi d^2 n \langle v \rangle = 0.74 \cdot 10^{10} \text{ c}^{-1}$$
;

б)
$$v = \pi d^2 n^2 \langle v \rangle / \sqrt{2} = 1,0 \cdot 10^{20} \text{ c}^{-1} \cdot \text{ см}^{-3}$$
, где $n = p_0/kT_0$, $\langle v \rangle = \sqrt{8RT/\pi M}$.

6.200. a)
$$\lambda = \text{const}, \ \nu \propto \sqrt{T};$$
 b) $\lambda \propto T, \ \nu \propto 1/\sqrt{T}$.

6.201. а) $\lambda = \mathrm{const}, \ \nu$ увеличится в \sqrt{n} раз; б) λ уменьшится в n раз, ν увеличится в n раз.

6.202. a)
$$\lambda \propto V$$
, $\nu \propto V^{-6/5}$; b) $\lambda \propto p^{-5/7}$, $\nu \propto p^{6/7}$; b) $\lambda \propto T^{-5/2}$, $\nu \propto T^3$.

6.203. a) $\lambda \propto V$, $\nu \propto V^{-(n+1)/2}$; b) $\lambda \propto p^{-1/n}$, $\nu \propto p^{(n+1)/2n}$; b) $\lambda \propto T^{1/(1-n)}$, $\nu \propto T^{(n+1)/2(n-1)}$.

6.204. a)
$$C = R(1 + 2i)/4 = 23 \ \text{Дж/(К · моль)};$$

б)
$$C = R(i + 2)/2 = 29 \text{ Дж/(K · моль)}.$$

```
6.205. n = n_0 \exp(-t/\tau), где \tau = 4V/S\langle v \rangle, \langle v \rangle = \sqrt{8RT/\pi M}.
```

6.206. Увеличится в
$$(1 + \eta)/(1 + \sqrt{\eta})$$
 раз.

6.207. Увеличилось в
$$\alpha^3/\beta = 2,0$$
 раза.

6.208. а) D увеличится в n раз, $\eta = \text{const}$, б) D увеличится в $n^{3/2}$ раз, η — в \sqrt{n} pas.

6.209. *D* уменьшится в
$$n^{4/5} \approx 6,3$$
 раза, η увеличится в $n^{1/5} \approx 1,6$ раза.

6.210. a)
$$n = 3$$
; b) $n = 1$; b) $n = 1$.

6.212.
$$d_{Ar}/d_{He} = 1,7$$
.

6.213.
$$N_1 \approx 2 \pi \eta \omega R^3 / \Delta R$$
; $p = \sqrt{2} kT / \pi d^2 n \Delta R = 0.7$ Ha.

6.214.
$$\eta = (1/R_1^2 - 1/R_2^2)N_1/4\pi\omega$$
.

6.215.
$$N = \pi \eta \omega a^4 / 2h$$
.

6.216.
$$N = \sqrt{\pi M / 2RT} \omega a^4 p / 3$$
.

6.217.
$$\mu = (\pi a^4 M / 16 \eta RT) |p_2^2 - p_1^2| / l$$
.

6.218.
$$T = (\kappa_1 T_1/l_1 + \kappa_2 T_2/l_2)/(\kappa_1/l_1 + \kappa_2/l_2)$$
.

6.219.
$$\kappa = (l_1 + l_2)/(l_1/\kappa_1 + l_2/\kappa_2)$$
.

6.220.
$$T(x) = T_1(T_2/T_1)^{x/l}, \quad q = (\alpha/l) \ln(T_2/T_1).$$

6.221.
$$\Delta T = (\Delta T)_0 \exp(-\alpha t)$$
, где $\alpha = (1/C_1 + 1/C_2)S \varkappa/l$.

$$6.222.~q=2iR^{3/2}(T_2^{3/2}-T_1^{3/2})/9\pi^{3/2}ld^2N_A\sqrt{M}=40~{
m Br/m}^2$$
, где $i=3$,

d — эффективный диаметр атома гелия.

6.223.
$$\lambda = 23 \text{ мм} > l$$
, следовательно, газ ультраразреженный;

$$q = p\langle v \rangle (t_2 - t_1)/6T (\gamma - 1) = 22 \; \mathrm{Br/m}^2, \; \mathrm{rge} \; \langle v \rangle = \sqrt{8 \, RT \, / \, \pi M} \; , \; T = (T_1 + T_2)/2.$$

6.224.
$$T = T_1 + (T_2 - T_1) \ln(r/R_1) / \ln(R_2/R_1)$$
.

6.225.
$$T = T_1 + (T_2 - T_1)(1/R_1 - 1/r)/(1/R_1 - 1/R_2)$$
.
6.226. $T = T_0 + (R^2 - r^2)w/4\varkappa$.

6.226.
$$T = T_0 + (R^2 - r^2)w/4\varkappa$$

6.227.
$$T = T_0 + (R^2 - r^2)w/6\varkappa$$
.

6.229. a)
$$T_x = T / \sqrt[4]{2}$$
; 6) $T_x = T \sqrt[4]{17/2}$.

6.230.
$$T_2 = bT_1 / (b + N_1 \Delta \lambda) \approx 1750 \text{ K}.$$

6.231.
$$\lambda_m = 3.4 \text{ MKM}$$
.

6.232.
$$5 \cdot 10^9$$
 кг/с, около 10^{11} лет.

6.233.
$$T = \sqrt[3]{3\,cR\rho\,/\,\sigma M} = 2\cdot 10^{\,7}\,\,\mathrm{K}$$
, где R — универсальная газовая постоянная, M — молярная масса водорода ($\mathrm{H_2}$).

6.234. $t = (\eta^3 - 1)c\rho d/18 \sigma T_0^3 = 3$ ч, где c — удельная теплоемкость меди, р — ее плотность.

6.235. $T \approx T_0 \sqrt{R/2l} = 266 \text{ K}$, где R — радиус Солнца, l — расстояние между Солнцем и Землей.

6.236.
$$T_2 = T_1 \sqrt{d/2l} \approx 400 \text{ K}.$$

6.237. а)
$$C_V = (\partial U / \partial T)_V = 16 \, \text{σ} T^3 V / c = 3 \, \text{нДж/K}$$
, где $U = 4 \, \text{σ} T^4 V / c$;

б)
$$S = 16 \, \text{oT}^{\,3} V / 3 \, c = 1,0 \, \text{нДж/K}$$
.

6.238.
$$VT^3 = \text{const.}$$

6.239. a)
$$\omega_{\text{Bep}} = 2T / a = 5,24 \cdot 10^{14} \text{ c}^{-1};$$
 6) $\lambda_{\text{Bep}} = 2\pi ca / 5T = 1,44 \text{ MKM}.$

6.240. a)
$$u_{\omega} = (kT/\pi^2c^3)\omega^2$$
; 6) $u_{\omega} = (\hbar/\pi^2c^3)\omega^3 \exp(-\hbar\omega/kT)$.

6.241.
$$u_{\nu} = \frac{16\pi^2\hbar}{c^3} \frac{\nu^3}{\exp(2\pi\hbar\nu/kT) - 1}, \quad u_{\lambda} = \frac{16\pi^2c\hbar\lambda^{-5}}{\exp(2\pi\hbar c/kT\lambda) - 1}.$$

6.242. $\Delta P = 4 \pi^2 c^2 \hbar T^5 \Delta \lambda / b^5 [\exp(2 \pi \hbar c / kb) - 1] = 0,31 \; \mathrm{Br/cm}^2$, где b — постоянная в законе смещения Вина.

6.243.
$$P_n = [1 - \exp(-x)] \exp(-nx)$$
, где $x = \hbar\omega/kT$.

6.244.
$$n_{\omega} d\omega = \frac{1}{\pi^2 c^3} \frac{\omega^2 d\omega}{\exp(\hbar \omega / kT) - 1}, \quad n_{\lambda} d\lambda = \frac{8 \pi \lambda^{-4} d\lambda}{\exp(2 \pi \hbar c / kT\lambda) - 1}.$$

6.245. $P_{\text{инд}}$ / $P_{\text{сп}}=1/[\exp(-\hbar\omega/kT)-1]=7\cdot 10^{-18}$, где $\omega=3R/4$, R — постоянная Ридберга; б) $T=1,7\cdot 10^{5}$ К.

6.246. Пусть I — интенсивность проходящего света. Убыль этой величины при прохождении слоя вещества толщины $\mathrm{d}x$ определяется как $-\mathrm{d}I=\varkappa I\mathrm{d}x==(N_1B_{12}-N_2B_{21})(I/c)\mathrm{d}x$, где N_1 и N_2 — концентрации атомов на нижнем и верхнем уровнях, B_{12} и B_{21} — коэффициенты Эйнштейна. Отсюда $\varkappa==(\hbar\omega/c)N_1B_{12}(1-g_1N_2/g_2N_1)$. Далее следует учесть распределение Больцмана и тот факт, что $\hbar\omega\gg kT$ (при этом $N_1\approx N_0$ — полной концентрации атомов).

6.247.
$$a = \sqrt[3]{2M/N_A \rho} = 0,31$$
 нм, где M — молярная масса.

6.248.
$$a = \sqrt[3]{4M/N_A\rho} = 0.36 \text{ HM}.$$

6.249.
$$\rho = 4 (M_{Na} + M_{Cl}) / N_A a^3 = 2.18 \text{ r/cm}^3$$
.

6.250. a)
$$a$$
, $a/\sqrt{2}$, $a/\sqrt{3}$; 6) $a/2$, $a/\sqrt{3}$, $a/\sqrt{12}$; B) $a/2$, $a/\sqrt{8}$, $a/\sqrt{3}$.

6.251. Плоскость (hkl), ближайшая к началу координат O, взятому в одном из узлов решетки, отсекает на осях координат отрезки a/h, a/k и a/l. Расстояние от точки O до данной плоскости равно d. Пусть углы между нормалью к плоскости и осями координат X, Y, Z равны α , β , γ . Тогда $\cos\alpha = hd/a$, $\cos\beta = kd/a$, $\cos\gamma = ld/a$. Остается использовать тот факт, что сумма квадратов этих косинусов равна единице.

6.252. (111),
$$1,77 \cdot 10^{16}$$
 atom / cm².

6.253. cos $\alpha=h/\sqrt{h^2+k^2+l^2}$, отсюда $\alpha=74^\circ30'$. Аналогично $\beta=57^\circ40'$ и $\gamma=36^\circ40'$.

6.254.
$$dN_{\omega} = (l / \pi v) d\omega$$
.

6.255. Исходим из волнового уравнения $\xi_x'' + \xi_y'' = (1/v^2)\ddot{\xi}$. Его решение ищем в виде $\xi = X(x)Y(y)\sin \omega t$. После подстановки в волновое уравнение получим $X_x''/X + Y_y''/Y = (\omega/v)^2$. Левая часть этого уравнения содержит функции, зависящие только от x и y. Эти переменные независимые, поэтому левая часть последнего уравнения должна быть суммой постоянных. Обозначим их k_1^2 и k_2^2 ; тогда

$$X_{x}^{"} + k_{1}^{2}X = 0$$
, $Y_{y}^{"} + k_{2}^{2}Y = 0$,

причем $k_1^2 + k_2^2 = (\omega/v)^2$. Решения этих уравнений с учетом граничных условий X(0) = 0 и Y(0) = 0 запишем сразу в виде $X = \sin k_1 x$, $Y = \sin k_2 y$ (амплитуды можно опустить, ибо для решения нашей задачи они не существенны). Постоянные k_1 и k_2 находим из граничных условий X(a) = 0 и Y(b) = 0, где a и b — длины сторон мембраны.

Рис. ээ

 $=\pi^2/S$, ибо $\delta n_1 \delta n_2 = 1$.

Итак, $\xi = \sin(k_1 x)\sin(k_2 y)\sin\omega t$, где $k_1 = n_1 \pi/a$, $k_2 = n_2 \pi/b$, n_1 и n_2 — целые положительные числа (отрицательные не дают новых линейно-независимых решений).

Изобразим определенное собственное колебание точкой на плоскости с осями k_1 и k_2 . Тогда $k_1^2 + k_2^2 = (\omega/v)^2$ есть уравнение окружности радиуса $k = \omega/v$. Число собственных колебаний с частотой, меньшей ω , равно числу точек (рис. 53) внутри круга радиуса $k = \omega/v$ в его первой четверти (так как все $n_i > 0$). Площадь ячейки, содержащей одну точку, равна $\delta k_1 \delta k_2 = (\pi^2/ab) \delta n_1 \delta n_2 =$

Поделив площадь четверти круга радиуса $k=\omega/v$, на площадь одной ячей-ки, найдем $N_{\,\omega}=k^{\,2}S\,/4\,\pi=\omega^{\,2}S\,/4\,\pi v^{\,2}$. Отсюда $\mathrm{d}N_{\,\omega}=(\,S^{\,2}/2\,\pi v^{\,2}\,)\omega\mathrm{d}\omega$.

6.256. Решение аналогично приведенному в предыдущей задаче. Но в данном случае вместо 1/4 площади круга следует взять 1/8 объема шара и, кроме того, полученное выражение надо еще умножить на 2, поскольку каждой частоте соответствуют две стоячие волны со взаимно перпендикулярными плоскостями поляризации. В результате получим $\mathrm{d}N_{\omega} = (V/2\,\pi^2v^3)\omega^2\,\mathrm{d}\omega$.

6.257. a)
$$\Theta = (\hbar/k)\pi v n_0$$
; 6) $\Theta = (\hbar/k)v\sqrt{4\pi n_0}$; B) $\Theta = (\hbar/k)v\sqrt[3]{6\pi^2 n_0}$.

6.258. $\Theta = (\hbar/k)\sqrt[3]{18\pi^2n_0/(v_{||}^{-3}+2v_{\perp}^{-3})} = 470$ K, где n_0 — концентрация атомов.

6.258. $v \approx k\Theta/\hbar\sqrt[3]{6\pi^2n_0} = 3,4$ км/с, где n_0 — концентрация атомов. Табличные значения: $v_{||} = 6,3$ км/с, $v_{\perp} = 3,1$ км/с.

6.260. Колебательная энергия и теплоемкость моля «кристалла»:

$$U = R\Theta\left(\frac{1}{4} + \frac{T^2}{\Theta^2} \int_0^{\Theta/T} \frac{x dx}{e^x - 1}\right), \quad C = R\left(\frac{2T}{\Theta} \int_0^{\Theta/T} \frac{x dx}{e^x - 1} - \frac{\Theta/T}{e^{\Theta/T} - 1}\right),$$

где $x = \hbar\omega/kT$. При $T \gg \Theta$ теплоемкость $C \approx R$.

6.261.
$$dN/d\omega = 2l/\pi a \sqrt{\omega_{\text{макс}}^2 - \omega^2}$$
; $N = l/a$, т. е. равно числу атомов в цепочке.

6.262. $U_0 = 9R\Theta/8M = 48,6$ Дж/г, где M — молярная масса меди.

6.263. а)
$$\Theta \approx 220 \; \mathrm{K}$$
; б) $C \approx 10 \; \mathrm{Дж/(K \cdot моль)}$; в) $\omega_{\mathrm{makc}} \approx 4.1 \cdot 10^{13} \; \mathrm{c}^{-1}$.

Рис. 54

6.265. $\omega_{\text{макс}} = (kT/\hbar) \sqrt[3]{12 \, \pi^4 R/5 \, Mc} = 6 \cdot 10^{13} \, \text{c}^{-1}$, где M — молярная масса.

6.266. Да, так как при этих температурах тепло-емкость ∞ T^3 .

6.267.
$$\Theta = \sqrt[3]{(3\pi^4 mR/5MQ)(T_2^4 - T_1^4)} = 330 \text{ K},$$

где M — молярная масса.

6.268.
$$\langle E \rangle = 3k\Theta/8$$
.

6.269. $U_0 \approx 9 \pi \hbar N_A v / 8 a = 3 кДж/моль.$

6.270. См. рис. 54.

6.271.
$$\hbar\omega_{\text{Make}} = 28 \text{ M} \cdot 3\text{B}, \qquad \hbar k_{\text{Make}} \sim 10^{-19} \text{ r} \cdot \text{cm} / \text{c}.$$

6.272.
$$dN = \frac{9N(\hbar/k\Theta)^3 \omega^2 d\omega}{\exp(\hbar\omega/kT) - 1}$$
.

6.273.
$$p \approx \frac{3kT^4n}{\Theta} \int_0^{\Theta/T} \frac{xdx}{e^x - 1} = 260 \text{ M}\Pi \text{a } (2,6.10^3 \text{ atm}),$$

где n — концентрация атомов. Здесь использована молекулярно-кинетическая модель фононного газа.

6.274. a)
$$K_{\text{Make}} = (3\pi^2 n)^{2/3} h^2 / 2m$$
; b) $\langle K \rangle = (3/5) K_{\text{Make}}$.

6.275.
$$\Delta N / N = 3 \eta / 2 = 1.5\%$$
.

6.276.
$$\eta = 1 - 2^{-3/2} \approx 65\%$$
.

6.278. Приблизительно до $3 \cdot 10^4$ K.

6.279.
$$\Delta E = 2\pi^2 h^2 / mV (3\pi^2 n)^{1/3} = 2 \cdot 10^{-22} \text{ sB.}$$

6.280. a)
$$dn_v = (m^3/\pi^2\hbar^3)v^2dv$$
; 6) $\langle v \rangle/v_{\text{Make}} = 3/4$.

6.281.
$$\lambda_{\text{MUH}} \approx 2 a$$
.

6.282.
$$T \approx 2 \pi^2 \hbar^2 n^{2/3} / km = 3,3 \cdot 10^5 \text{ K}$$
, где n — концентрация атомов,

т — масса электрона.

6.283.
$$dn_{\lambda} = 8 \pi \lambda^{-4} d\lambda$$
.

6.284.
$$p=(2/3)n\langle K\rangle=\sqrt[3]{9}\,\pi^{4/3}n^{5/3}\hbar^2/5m=5\cdot 10^6$$
 кПа (5 · 10 4 атм), где $\langle K\rangle$ — средняя кинетическая энергия свободных электронов.

6.285.
$$C_{\text{par}}/C_{\text{pem}} = \pi^2 kT/6E_F = 7.7 \cdot 10^{-3}$$
.

6.286.
$$A = kT(\eta T / \Delta T - 2) = 4.5 \text{ aB.}$$

6.287.
$$n=\sqrt{1+U_0/K}=1,02$$
, здесь $U_0=K_{\rm MAKC}+A$, A — работа выхода, $K_{\rm MAKC}=(\,3\,\pi^2\,n^{\,2}\,)^{\,2/\,3}\,\hbar^2/2m$.

6.288.
$$E_{\text{MMH}} = 2kT_1T_2 \ln \eta/(T_2 - T_1) = 0.33 \text{ sB.}$$

6.289.
$$\alpha=(1/\rho)\partial\rho/\partial T=-\pi c\hbar/kT^2\lambda_{\kappa}=-0.05~{\rm K}^{-1}$$
, где $\rho \propto \exp(\Delta E_0/2kT)$,

 ΔE_0 — ширина запрещенной зоны.

6.290.
$$\Delta E = -2 k \Delta (\ln \sigma) / \Delta (1/T) = 1,2$$
 и 0,06 эВ.

6.291.
$$\tau = t / \ln[(\rho - \rho_1)\rho_2/(\rho - \rho_2)\rho_1] = 0.01 \text{ c.}$$

6.292.
$$n = hBU / el\rho U_H = 5 \cdot 10^{15} \text{ cm}^{-3}, \quad u_0 = lU_H / hBU = 0.05 \text{ m}^2 / (\text{B} \cdot \text{c}).$$

6.293.
$$|u_0^- - u_0^+| = 1/\eta B = 0.20 \text{ m}^2/(\text{B} \cdot \text{c}).$$

6.294.
$$n^+/n^- = \eta^2 = 4.0.$$

6.295. a)
$$\Delta p = 4 \alpha / d = 13 \text{ atm}$$
; 6) $\Delta p = 8 \alpha / d = 1,2 \cdot 10^{-3} \text{ atm}$.

6.296.
$$h = 4 \alpha / \rho g d = 20 \text{ cm}$$
.

6.297.
$$\alpha = p_0 d(1 - \eta^3 / n) / 8(\eta^2 - 1).$$

6.298.
$$F = 2 \alpha R = 0,60 \text{ MH}.$$

6.299.
$$\alpha = p(R^3 - R_1^3 - R_2^3)/4(R_1^2 + R_2^2 - R_2^2).$$

6.300.
$$R = ab/(a - b); \quad \theta = 120^{\circ}.$$

6.301.
$$p = p_0 + \rho g h + 4\alpha/d = 2,2$$
 atm.

6.302.
$$h = [p_0(n^3 - 1) + 4\alpha(n^2 - 1)/d]/\rho g = 5 \text{ m}.$$

```
6.303. \Delta h = 4 \alpha |\cos \theta| (d_2 - d_1) / d_1 d_2 \rho g = 10,5 \text{ mm}.
```

6.304.
$$R = 2\alpha/\rho gh = 0.6$$
 mm.

6.305.
$$x = l/(1 + p_0 d/4\alpha) = 1.4$$
 cm.

6.306.
$$\alpha = [\rho g h + p_0 l / (l - h)] d / 4 \cos \vartheta$$
.

6.307.
$$h = 4\alpha/\rho g(d_2 - d_1) = 6$$
 cm.

6.308.
$$h = 2 \alpha \cos \theta / \rho gx \delta \phi$$
.

6.309.
$$V_1 = \pi d^2 \sqrt{2gl - 4\alpha(n-1)/\rho d}/4\sqrt{n^4-1} = 0.9$$
 cm³.

6.310.
$$R = 2\alpha/(mg/\pi a^2 - \rho gh)$$
.

6.311.
$$R_2 - R_1 \approx \rho g h^3 / 8\alpha = 0.20 \text{ mm}.$$

6.312. $\alpha = hR$ ($\rho - \rho_0$)g/2 = 0.07 H/м, где ρ и ρ_0 — плотность алюминия и воды.

6.313.
$$m \approx 2\pi R^2 \alpha |\cos \theta| (n^2 - 1)/gh = 0.7 \text{ Kg.}$$

6.314.
$$F \approx 2 \alpha m / \rho h^2 = 1.0 \text{ H.}$$

6.315.
$$F = 2\pi R^2 \alpha / h = 0.6 \text{ kH.}$$

6.316.
$$F = 2\alpha^2 l / \rho g d^2 = 13 \text{ H.}$$

6.317.
$$h = 2\alpha(1 - \sin \theta)/\rho d$$
.

6.318.
$$h = \sqrt{\alpha/\rho g} \sin(9/2)$$
.

6.319.
$$t = 2 \ln R^4 / \alpha r^4$$
.

6.320.
$$Q = 2 \pi \alpha^2 / \rho g$$
.

6.321. a)
$$F = \pi \alpha d^2 = 3$$
 MK Π ж; б) $F = 2 \pi \alpha d^2 = 10$ MK Π ж.

6.322. a)
$$\Delta F = 2 \pi \alpha d^2 (2^{-1/3} - 1) = -1.5$$
 мкДж; б) $A' = 4 \pi R^2 (2 \alpha + Rp_0/3)$.

6.323.
$$C - C_p = R/2(1 + 3p_0r/8\alpha)$$
.

6.325. a)
$$\Delta S = -2(\frac{d\alpha}{dT})\Delta \sigma$$
; 6) $\Delta U = 2(\alpha - T \cdot d\alpha/dT)\Delta \sigma$.

6.326.
$$A = \Delta mRT / M = 1,2$$
 Дж.

6.327. $m_{\pi} = (V - mV_{\#}') / (V_{\pi}' - V_{\#}') = 20$ г, $V_{\pi} = 1,0$ л. Здесь $V_{\#}'$ — удельный объем воды.

6.328. $m_{\,_{36}} \approx M p_{\,0} (\,V_{\,0}\,-V\,)\,/\,RT\,=2$,0 г, где $p_{\,0}$ — нормальное давление.

6.329.
$$\eta = (n-1)/(N-1)$$
; $\eta = 1/(N+1)$.

6.330. $\Delta S=mq/T=6$,0 кДж/К, $\Delta U\approx m$ (q-RT/M) = 2,1 МДж, здесь T=373 К.

6.331. $h \approx (Q - mc\Delta T)RT/qpSM = 20$ см, где c — удельная теплоемкость воды, $\Delta T = 100$ K, q — удельная теплота парообразования воды, T — ее температура кипения.

6.332. $A = mc(T - T_0)RT/qM = 25$ Дж, где c — удельная теплоемкость воды, T — начальная температура пара, равная температуре кипения воды (это видно из условия), q — удельная теплота конденсации пара.

6.333.
$$A = mq(T_1/T_2 - 1) = 0.67$$
 МДж, где $q = 2.25$ кДж/г.

6.334.
$$d \approx 4 \, \alpha M \, / \, \eta \rho RT = 0,24 \,$$
 мкм, где $\rho \,$ — плотность воды.

6.335.
$$\mu = \eta p_0 \sqrt{M/2 \pi RT} = 0,35 \text{ г/(c · cm}^2)$$
, где p_0 — нормальное давление.

6.336.
$$p = \mu \sqrt{2 \pi RT / M} = 0.9 \text{ H}\Pi a.$$

6.337.
$$\Delta p = a / V_M^2 = 1.7 \cdot 10^4$$
 atm.

```
6.338. p_i \approx \rho q, приблизительно 2.10^4 атм.
```

6.340.
$$a = 27R^2T_{\rm kp}^2/64p_{\rm kp} = 3,6$$
 атм · г 2 /моль 2 , $b = RT_{\rm kp}/8p_{\rm kp} = 0,043$ г/моль.

6.341.
$$V'_{\rm Kp} = 3RT_{\rm Kp}/8Mp_{\rm Kp} = 4.7$$
 cm $^3/\Gamma$.

6.342.
$$(\pi + 3/\nu^2)(3\nu - 1) = 8\tau$$
, $\tau = 1.5$.

6.343. a)
$$V_{\mathrm{makc}} = 3 \; bm \; / M = 5.0 \; \pi;$$
 6) $p_{\mathrm{makc}} = a \; / \; 27 \; b^{\; 2} = 230 \; \mathrm{arm}$.

6.344.
$$T_{\text{kp}} = 8 \, a \, / \, 27 \, bR \approx 300 \, \, \text{K}, \quad \rho_{\text{kp}} = V \, / \, 3 \, b = 0,34 \, \, \text{r/cm}^{\, 3}$$
.

6.345. $\eta = 8\,Mp_{\rm kp}\,/\,3\rho RT_{\rm kp}\,=0$,25, где ρ — плотность эфира при комнатной температуре.

6.346. Применим уравнение (6.4д) к обратимому изотермическому процессу 1-2-3-4-5-3-1: $T \oint dS = \oint dU + \oint p dV$. Так как первые два интеграла равны нулю, то и $\oint p dV = 0$. Последнее может быть только при равенстве площадей I и II. Заметим, что эти рассуждения неприменимы, например, к циклу 1-2-3-1. Он необратим, ибо включает совершаемый в точке 3 необратимый переход из однофазного состояния в двухфазное.

6.347. $\eta = c |t| / q = 0.25$, где q — удельная теплота плавления льда. При t = -80 °C.

6.348. $\Delta T = -(T\Delta V \ '/\ q\,)\Delta p = -7.5\,$ мК , где q — удельная теплота плавления льда.

6.349. $V'_{\rm HII} \approx q \Delta T \ / T \Delta p = 1,7 \,$ м $^3 \ /$ кг, где q — удельная теплота парообразования, T=373 K.

6.350. $p_{\rm HII} \approx p \, (1 + q M \Delta T / R T^2) = 1,04$ атм, где q — удельная теплота парообразования, p_0 — нормальное давление, $\Delta T = 1,1$ К.

6.351. $\Delta m / m = (qM / RT - 1) = 5\%$.

6.352. q = R (a - bT).

6.353. $p = p_0 \exp[(qM/R)(1/T_0 - 1/T)]$. Эти упрощения допустимы для не слишком широкого интервала температур, значительно меньших критической.

6.354. $\eta = cpT\Delta V'/q^2 = 0.03$, где c — удельная теплоемкость льда, T = 273 K, q — удельная теплота плавления.

6.355. а) 216 К, 5,1 атм; б) соответственно 0,78, 0,57 и 0,21 кДж/г.

6.356. $\Delta S \approx m \left[c \ln(T_2/T_1) + q/T_2 \right] = 7.2 \text{ кДж/K}.$

6.357. $\Delta S_{\text{VII}} \approx q_{\text{III}} / T_1 + c \ln(T_2 / T_1) + q_{\text{IIII}} / T_2 = 8.6 \, \text{Дж/(r·K)}.$

6.358. $\Delta S \approx mc \ln(T/T_1) = -10 \ \text{Дж/K}$, где c — удельная теплоемкость меди,

 $T = 273 \; {\rm K}$ (при данных условиях лед растает частично).

6.359. а) При $m_2\,c_2\,t_2 < m_1\,q$ лед растает не весь и $\Delta S = m_2\,c_2[T_2\,/T_1\,-1\,-\ln(T_2\,/T_1\,)] = 9,2\,$ Дж/К;

б) при $m_{\ 2} c_{\ 2} t_{\ 2} > m_{\ 1} q$ лед растает весь и

$$\Delta S = m_1 q / T_1 + c_2 [m_1 \ln(T / T_1) - m_2 \ln(T_2 / T)] = 18 \text{ Дж/K},$$

где $T = (m_1 T_1 + m_2 T_2 - m_1 q / c_2) / (m_1 + m_2).$

6.360. $\Delta S = mq(1/T_1 - 1/T_2) + mc[T_2/T_1 - 1 - \ln(T_2/T_1)] = 0,48$ Дж/К.

6.361. $C = C_p - qM/T = -74$ Дж/(К·моль), где $C_p = R\gamma/(\gamma - 1)$.

6.362. $\Delta S = qM / T_2 + C_p \ln(T_2 / T_1)$, где $C_p = R\gamma / (\gamma - 1)$.

1. Некоторые формулы алгебры и тригонометрии

Корни квадратного уравнения $ax^2 + bx + c = 0$:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\sin^{2} \alpha + \cos^{2} \alpha = 1$$

$$\sec^{2} \alpha - tg^{2} \alpha = 1$$

$$\csc^{2} \alpha - ctg^{2} \alpha = 1$$

$$\sin \alpha \csc \alpha = 1$$

$$\cos \alpha \sec \alpha = 1$$

$$tg\alpha ctg\alpha = 1$$

$$\begin{aligned} \sin(\alpha \pm \beta) &= \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\ \cos(\alpha \pm \beta) &= \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\ tg(\alpha \pm \beta) &= \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha tg\beta} \\ ctg(\alpha \pm \beta) &= \frac{ctg\alpha ctg\beta \mp 1}{ctg\alpha \pm ctg\beta} \end{aligned}$$

$$\sin \alpha = 1/\sqrt{1 + \operatorname{ctg}^{2} \alpha}$$

$$\cos \alpha = 1/\sqrt{1 + \operatorname{tg}^{2} \alpha}$$

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^{2} \alpha - \sin^{2} \alpha$$

$$\operatorname{tg} 2\alpha = \frac{2 \operatorname{tg} \alpha}{1 - \operatorname{tg}^{2} \alpha}$$

$$\operatorname{ctg} 2\alpha = \frac{\operatorname{ctg}^{2} \alpha - 1}{2 \operatorname{ctg} \alpha}$$

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}$$
$$\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$$

$$2 \sin \alpha \sin \beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

$$2 \cos \alpha \cos \beta = \cos(\alpha - \beta) + \cos(\alpha + \beta)$$

$$2 \sin \alpha \cos \beta = \sin(\alpha - \beta) + \sin(\alpha + \beta)$$

$$sh\alpha = (e^{\alpha} - e^{-\alpha})/2$$

 $ch\alpha = (e^{\alpha} + e^{-\alpha})/2$

th
$$\alpha = (e^{\alpha} - e^{-\alpha})/(e^{\alpha} + e^{-\alpha})$$

cth $\alpha = (e^{\alpha} + e^{-\alpha})/(e^{\alpha} - e^{-\alpha})$

2. Таблица производных и интегралов

Функция	Производная	Функция	Производная
1/x	$-1/x^2$	$\sin x$	$\cos x$
\sqrt{x}	$1/(2\sqrt{x})$	$\cos x$	$-\sin x$
x^{n}	nx^{n-1}	tgx	$1/\cos^2 x$
e **x	ne^{nx}	$\mathrm{ctg} x$	$-1/\sin^2 x$
a^{x}	$a^x \ln a$	arcsin x	$1/\sqrt{1- x ^2}$
$\ln x$	1/x	arccos x	$-1/\sqrt{1- x ^2}$
u(x)	$\underline{vu'-v'u}$	arctgx	$1/(1+x^2)$
v(x)	v^2	arcctg <i>x</i>	$-1/(1+x^2)$

$$\int x^{n} dx = \frac{x^{n+1}}{n+1}, n \neq 1$$

$$\int \frac{dx}{\cos^{2}x} = tgx$$

$$\int \frac{dx}{\sin^{2}x} = -ctgx$$

$$\int \sin x dx = -\cos x$$

$$\int \cos x dx = \sin x$$

$$\int tgx dx = -\ln \cos x$$

$$\int \frac{dx}{1+x^{2}} = \arctan x$$

$$\int \frac{dx}{1+x^{2}} = \arctan x$$

$$\int \frac{dx}{\sqrt{1-x^{2}}} = \arcsin x$$

$$\int \frac{dx}{\sqrt{1-x^{2}}} = \arcsin x$$

$$\int_{0}^{\infty} x^{n} e^{-x} dx = \begin{cases} 1, & n = 0 \\ \sqrt{\pi}/2, & n = 1/2 \\ 1, & n = 1 \\ 2, & n = 2 \end{cases} \qquad \int_{0}^{\infty} x^{n} \exp(-x^{2}) dx = \begin{cases} \sqrt{\pi}/2, & n = 0 \\ 1/2, & n = 1 \\ \sqrt{\pi}/4, & n = 2 \\ 1/2, & n = 3 \end{cases}$$

$$\int_{0}^{\infty} \frac{x^{n} dx}{e^{x} - 1} = \begin{cases} 2,31, & n = 1/2 \\ \pi^{2}/6, & n = 1 \\ 2,405, & n = 2 \\ \pi^{4}/15, & n = 3 \\ 24,9, & n = 4 \end{cases} \qquad \int_{0}^{\infty} \frac{x^{3} dx}{e^{x} - 1} = \begin{cases} 0,225, & \alpha = 1 \\ 1,18, & \alpha = 2 \\ 2,56, & \alpha = 3 \\ 4,91, & \alpha = 5 \\ 6,43, & \alpha = 10 \end{cases}$$

3. Некоторые постоянные числа и приближенные формулы

Постоянные числа	Приближенные формулы (при $lpha \leqslant 1$)
$\pi = 3,14159$	$(1 \pm \alpha)^n \approx 1 \pm n\alpha$
$\pi^2 = 9,8696$	$e^{\alpha} \approx 1 + \alpha$
$\sqrt{\pi}=\!1,\!7725$	$ln(1 + \alpha) \approx \alpha$
e = 2,7183	$\sin \alpha \approx \alpha$
$\lg e = 0,4343$	$\cos \alpha \approx 1 - \alpha^2/2$
$\ln 10 = 2,3026$	$tg\alpha \approx \alpha$

4. Некоторые сведения о векторах

$$|\mathbf{a}\mathbf{b}| = a_x b_x + a_y b_y + a_z b_z$$

$$|\mathbf{a}\mathbf{b}| = a_x b_x + a_y b_y + a_z b_z$$

$$|\mathbf{a}\mathbf{b}| = a_x b_x + a_y b_y + a_z b_z$$

$$|\mathbf{a}\mathbf{b}| = a_x b_x + a_y b_y + a_z b_z$$

$$|\mathbf{a}\mathbf{b}| = a_x b_x - a_x b_z \mathbf{j} + (a_x b_y - a_y b_x) \mathbf{k}$$

$$|\mathbf{a}\mathbf{b}| = \mathbf{b}\mathbf{c}\mathbf{a}\mathbf{j} = \mathbf{c}\mathbf{a}\mathbf{b}\mathbf{j}$$

$$|\mathbf{a}\mathbf{b}\mathbf{c}| = \mathbf{a}\mathbf{b}\mathbf{c}\mathbf{j} = \mathbf{c}\mathbf{a}\mathbf{b}\mathbf{j}$$

$$|\mathbf{a}\mathbf{b}\mathbf{c}| = \mathbf{a}\mathbf{b}\mathbf{c}\mathbf{j} = \mathbf{c}\mathbf{a}\mathbf{b}\mathbf{j}$$

$$|\mathbf{a}\mathbf{b}\mathbf{c}| = \mathbf{a}\mathbf{b}\mathbf{c}\mathbf{j} = \mathbf{a}\mathbf{b}\mathbf{c}\mathbf{j}$$

$$|\mathbf{a}\mathbf{b}\mathbf{c}| = \mathbf{a}\mathbf{b}\mathbf{c}\mathbf{j}$$

5. Греческий алфавит

А, α — альфа	I, і — йота	P, ρ — po
В, β — бета	К, и — каппа	Σ, σ — сигма
Г, у — гамма	Λ, λ — ламбда	Τ, τ — тау
Δ, δ — дельта	М, μ — мю	Υ, υ— ипсилон
Е, є — эпсилон	Ν, ν — ню	Ф, ф — фи
Ζ, ζ — дзета	Ξ, ξ — кси	Х, χ — хи
Н, η — эта	О, о — омикрон	Ψ, ψ — пси
Θ, θ, θ — тета	П, π — пи	Ω, ω — омега

6. Таблица тригонометрических функций

Угол	sin	tg	ctg	cos	
0° 1 2 3 4	0,0000 0,0175 0,0349 0,0523 0,0698	0,0000 0,0175 0,0349 0,0524 0,0699	$57,290 \\ 28,636 \\ 19,081 \\ 14,301$	1,0000 0,9998 0,9994 0,9986 0,9976	90 89 88 87 86
5	0,0872	0,0875	11,430	0,9962	85
6	0,1045	0,1051	9,514	0,9945	84
7	0,1219	0,1228	8,144	0,9925	83
8	0,1392	0,1405	7,115	0,9903	82
9	0,1564	0,1584	6,314	0,9877	81
10	$0,1736 \\ 0,1908 \\ 0,2079 \\ 0,2250 \\ 0,2419$	0,1763	5,671	0,9848	80
11		0,1944	5,145	0,9816	79
12		0,2126	4,705	0,9781	78
13		0,2309	4,331	0,9744	77
14		0,2493	4,011	0,9703	76
15	0,2588	0,2679	3,732	0,9659	75
16	0,2756	0,2867	3,487	0,9613	74
17	0,2924	0,3057	3,271	0,9563	73
18	0,3090	0,3249	3,078	0,9511	72
19	0,3256	0,3443	2,904	0,9455	71
20	0,3420	0,3640	2,747	0,9397	70
21	0,3584	0,3839	2,605	0,9336	69
22	0,3746	0,4040	2,475	0,9272	68
23	0,3907	0,4245	2,356	0,9205	67
24	0,4067	0,4452	2,246	0,9135	66
25	$0,4226 \\ 0,4384 \\ 0,4540 \\ 0,4695 \\ 0,4848$	0,4663	2,145	0,9063	65
26		0,4877	2,050	0,8988	64
27		0,5095	1,963	0,8910	63
28		0,5317	1,881	0,8829	62
29		0,5543	1,804	0,8746	61
30	$0,5000 \ 0,5150 \ 0,5299 \ 0,5446 \ 0,5592$	0,5774	1,732	0,8660	60
31		0,6009	1,664	0,8572	59
32		0,6249	1,600	0,8480	58
33		0,6494	1,540	0,8387	57
34		0,6745	1,483	0,8290	56
35	0,5736	0,7002	1,428	0,8192	55
36	0,5878	0,7265	1,376	0,8090	54
37	0,6018	0,7536	1,327	0,7986	53
38	0,6157	0,7813	1,280	0,7880	52
39	0,6293	0,8098	1,235	0,7771	51
$egin{array}{c} 40 \ 41 \ 42 \ 43 \ 44 \end{array}$	$0,6428 \\ 0,6561 \\ 0,6691 \\ 0,6820 \\ 0,6947$	0,8391 0,8693 0,9004 0,9325 0,9657	1,192 1,150 1,111 1,072 1,036	$0,7660 \\ 0,7547 \\ 0,7431 \\ 0,7314 \\ 0,7193$	50 49 48 47 46
45	0,7071	1,0000	1,000	0,7071 sin	45° Угол
	cos	ctg	tg	SIII	A LOM

7. Таблица показательных функций

x	e ^x	e^{-x}	x	e^x	e^{-x}
0,00	1,0000	1,0000	4,00	54,598	0,01832
0,00	1,1052	0,9048	4,00 $4,10$	60,340	0,01657
0,10	1,2214	0,8187	4,20	66,686	0,01500
0,30	1,3499	0,7408	4,20 $4,30$	73,700	0,01357
0,30	1,4918	0,6703	4,30 $4,40$	81,451	0,01337
0,40	1,4910	0,0703	4,40	01,451	0,01226
0,50	1,6487	0,6065	4,50	90,017	0,01111
0,60	1,8221	0,5488	4,60	99,484	0,01005
0,70	2,0138	0,4966	4,70	109,95	0,00910
0,80	2,2255	0,4493	4,80	121,51	0,00823
0,90	2,4596	0,4066	4,90	134,29	0,00745
1,00	2,7183	0,3679	5,00	148,41	0,00674
1,10	3,0042	0,3329	5,10	164,02	0,00610
1,20	3,3201	0,3012	5,20	181,27	0,00552
1,30	3,6693	0,2725	5,30	200,34	0,00499
1,40	4,0552	0,2466	5,40	221,41	0,00452
1,50	4,4817	0,2231	5,50	244,69	0,00409
1,60	4,9530	0,2019	5,60	270,43	0,00370
1,70	5,4739	0,1827	5,70	298,87	0,00335
1,80	6,0496	0,1653	5,80	330,30	0,00303
1,90	6,6859	0,1496	5,90	365,04	0,00274
2,00	7,3891	0,1353	6,00	403,43	0,00248
2,10	8,1662	0,1225	6,20	492,75	0,00248
2,10	9,0250	0,1108	$\begin{array}{c} 6,20 \\ 6,40 \end{array}$	601,85	0,00266
2,30	9,9742	0,1003	6,60	735,10	0,001360
2,40	11,023	0,09072	6,80	897,85	0,001114
				,	·
2,50	12,182	0,08208	7,00	1096,6	0,000912
2,60	13,464	0,07427	7,20	1339,4	0,000747
2,70	14,880	0,06721	7,40	1636,0	0,000611
2,80	16,445	0,06081	7,60	1998,2	0,000500
2,90	18,174	0,05502	7,80	2440,6	0,000410
3,00	20,086	0,04979	8,00	2981,0	0,000335
3,10	22,198	0,04505	8,20	3641,0	0,000275
3,20	24,533	0,04076	8,40	4447,1	0,000225
3,30	27,113	0,03688	8,60	5431,7	0,000184
3,40	29,964	0,03337	8,80	6634,2	0,000151
3,50	33,115	0,03020	9,00	8103,1	0,000123
3,60	36,598	0,02732	9,20	9897,1	0,000101
3,70	40,447	0,02472	9,40	12088	0,000083
3,80	44,701	0,02237	9,60	14765	0,000068
3,90	49,402	0,02024	9,80	18034	0,000055
			ĺ		0,000045
			10,00	22026	0,000040

8. Астрономические величины

Космическое тело	Средний радиус, м	Масса, кг	Средняя плотность, г/см ³	Период враще- ния вокруг оси, сутки
Солнце	$6,95{\cdot}10^8$	$1,99 \cdot 10^{30}$	1,41	25,4
Земля	$6,37{\cdot}10^6$	$5,98 \cdot 10^{24}$	5,52	1,00
Луна	$\boldsymbol{1,74.10}^6$	$7,35\cdot 10^{22}$	3,30	27,3

Планета Солнеч- ной системы	Среднее расстоя- ние от Солнца, 10^6 км	Период обраще- ния вокруг Солнца, в годах	Масса в едини- цах массы Земли
Меркурий	57,87	0,241	0,056
Венера	108,14	0,615	0,817
Земля	149,50	1,000	1,000
Mapc	227,79	1,881	0,108
Юпитер	777,8	11,862	318,35
Сатурн	1426,1	29,458	95,22
Уран	2867,7	84,013	14,58
Нептун	4494	164,79	17,26

9. Плотности веществ

Твердое вещество	ρ , r/cm^3	Жидкость	ρ, r/cm ³
Алмаз	3,5	Бензол	0,88
Алюминий	2,7	Вода	1,00
Вольфрам	19,1	Глицерин	1,26
Графит	1,6	Касторовое масло	0,90
Железо (сталь)	7,8	Керосин	0,80
Золото	19,3	Ртуть	13,6
Кадмий	8,65	Спирт	0,79
Кобальт	8,9	Тяжелая вода	1,1
Лед	0,916	Эфир	0,72
Медь	8,9		
Молибден	10,2		
Натрий	0,97	Газ (при нормаль-	ρ, κr/m ³
Никель	8,9	ных условиях)	
Олово	7,4	Азот	1,25
Платина	21,5	Аммиак	0,77
Пробка	0,20	Водород	0,09
Свинец	11,3	Воздух	1,293
Серебро	10,5	Кислород	1,43
Титан	4,5	Метан	0,72
Уран	19,0	Углекислый газ	1,98
Фарфор	2,3	Хлор	3,21
Цинк	7,0		3,21

10. Упругие постоянные. Предел прочности

Материал	Модуль Юнга <i>E</i> , ГПа	Модуль сдвига <i>G</i> , ГПа	Коэффи- циент Пуассона µ	Предел прочности на разрыв σ_m , ГПа	Сжимае- мость β, ГПа ⁻¹
Алюминий	70	26	0,34	0,10	0,014
Медь	130	40	0,34	0,30	0,007
Свинец	16	5,6	0,44	0,015	0,022
Сталь (железо)	200	81	0,29	0,60	0,006
Стекло	60	30	0,25	0,05	0,025
Вода	_	_	_	-	0,49

11. Диэлектрические проницаемости

Диэлектрик	3	Диэлектрик	ε
Вода	81	Полиэтилен	2,3
Воздух	1,00058	Слюда	7,5
Воск	7,8	Спирт	26
Керосин	2,0	Стекло	6,0
Парафин	2,0	Фарфор	6,0
Плексиглас	3,5	Эбонит	2,7

12. Удельные сопротивления проводников и изоляторов

Проводник	Удельное сопротивление (при 20°C) ρ, нОм·м	Температур- ный коэффи- циент $_{ m c}$ $_{ m K}{ m K}^{-1}$	Изолятор	Удельное сопротивле- ние ρ, Ом∙м
Алюминий	25	4,5	Бумага	10 ¹⁰
Вольфрам	50	4,8	Парафин	10 ¹⁵
Железо	90	6,5	Слюда	10 ¹³
Золото	20	4,0	Фарфор	10 ¹³
Медь	16	4,3	Шеллак	10 ¹⁴
Свинец	190	4,2	Эбонит	10 ¹⁴
Серебро	15	4,1	Янтарь	10 ¹⁷

13. Магнитные восприимчивости пара- и диамагнетиков

Парамагнетик	$\mu - 1$, 10^{-6}	Диамагнетик	$\mu - 1, 10^{-6}$
Азот	0,013	Водород	-0,063
Воздух	0,38	Бензол	-7,5
Кислород	1,9	Вода	-9,0
Эбонит	14	Медь	-10,3
Алюминий	23	Стекло	-12,6
Вольфрам	176	Каменная соль	-12,6
Платина	360	Кварц	-15,1
Жидкий кислород	3400	Висмут	-176

14. Показатели преломления п

Газ	n	Жидкость	n	Твердое тело	n
Азот Воздух Кислород	1,00030 1,00029 1,00027	Бензол Вода Глицерин Сероуглерод	1,50 1,33 1,47 1,63	Алмаз Кварц плавленный Стекло (обычное)	2,42 1,46 1,50

Примечание. Показатели преломления зависят и от длины волны света, поэтому приведенные здесь значения n следует рассматривать как условные.

Для кристаллов с двойным лучепреломлением

Длина волны λ,	Цвет	Исландский шпат		Кварц	
нм	цвет	n_e	n_o	n_e	n_o
687	красный	1,484	1,653	1,550	1,541
656	оранжевый	1,485	1,655	1,551	1,542
589	желтый	1,486	1,658	1,553	1,544
527	зеленый	1,489	1,664	1,556	1,547
486	голубой	1,491	1,668	1,559	1,550
431	сине-фиолетовый	1,495	1,676	1,564	1,554
400	фиолетовый	1,498	1,683	1,568	1,558

15. Вращение плоскости поляризации

Естественное вращение в кварце

Магнитное вращение ($\lambda = 589$ нм)

Длина вол- ны λ, нм	Постоянная вращения α, град/мм
275	120,0
344	70,6
373	58,8
405	48,9
436	41,5
497	31,1
590	21,8
656	17,4
670	16,6

Жидкость	Постоянная Верде V , угл. мин/ A
Бензол	2,59
Вода	0,016
Сероуглерод	0,053
Спирт этиловый	1,072

Примечание. Приведенные значения постоянной Верде соответствуют комнатной температуре

16. Работа выхода электрона из металлов

Металл	А, эВ	Металл	А, эВ	Металл	А, эВ
Алюминий	3,74	Калий	2,15	Никель	4,84
Барий	2,29	Кобальт	4,25	Платина	5,29
Висмут	4,62	Литий	2,39	Серебро	4,28
Вольфрам	4,50	Медь	4,47	Титан	3,92
Железо	4,36	Молибден	4,27	Цезий	1,89
Золото	4,58	Натрий	2,27	Цинк	3,74

17. Край К-полосы поглощения

Z	Элемент	λ_K , пм	Z	Элемент	λ_K , пм
23	Ванадий	226,8	47	Серебро	48,60
26	Железо	174,1	50	Олово	42,39
27	Кобальт	160,4	74	Вольфрам	17,85
28	Никель	148,6	78	Платина	15,85
29	Медь	138,0	79	Золото	15,35
30	Цинк	128,4	82	Свинец	14,05
42	Молибден	61,9	92	Уран	10,75

18. Массовые коэффициенты ослабления

(рентгеновское излучение, узкий пучок)

3	Массовый коэффициент ослабления $\mu/ ho,~{ m cm}^2/\Gamma$						
λ, пм	Воздух	Вода	Алюминий	Медь	Свинец		
10		0,16	0,16	0,36	3,8		
20		0,18	0,28	1,5	4,9		
30		0,29	0,47	4,3	14		
40		0,44	1,1	9,8	31		
50	0,48	0,66	2,0	19	54		
60	0,75	1,0	3,4	32	90		
70	1,3	1,5	5,1	48	139		
80	1,6	2,1	7,4	70			
90	2,1	2,8	11	98			
100	2,6	3,8	15	131			
150	8,7	12	46	49			
200	21	28	102	108			
250	39	51	194	198			

19. Константы двухатомных молекул

Молекула	Межъядер- ное рассто- яние d , 10^{-8} см	Частота колебаний ω, 10 ¹⁴ c ⁻¹	Молекула	Межъядер- ное рассто- яние d , 10^{-8} см	Частота колебаний ω, 10 ¹⁴ с ⁻¹
$egin{array}{c} \mathbf{H_2} \\ \mathbf{N_2} \\ \mathbf{O_2} \\ \mathbf{F_2} \\ \mathbf{S_2} \\ \mathbf{Cl_2} \end{array}$	0,741 1,094 1,207 1,282 1,889 1,988	8,279 4,445 2,997 2,147 1,367 1,064	HF HCl HBr HI CO NO	0,917 1,275 1,413 1,604 1,128 1,150	7,796 5,632 4,991 4,350 4,088 3,590
$egin{array}{c} \operatorname{Br}_2 \ \operatorname{I}_2 \end{array}$	2,283 2,666	0,609 0,404	ОН	0,971	7,035

20. Периоды полураспада радионуклидов

21. Массы легких нуклидов

Z	Нуклид	Избыток массы нуклида M - A , а.е.м.	Z	Нуклид	Избыток мас- сы нуклида <i>M-A</i> , а.е.м.
0 1	n 1 H	0,00867 0,00783	6	¹¹ C ¹² C	0,01143 0
	² H ³ H	0,01410 0,01605	7	¹³ C ¹³ N	0,00335 0,00574
2	$^3{ m He}$ $^4{ m He}$	0,01603 0,00260		¹⁴ N ¹⁵ N	0,00307 0,00011
3	$^6\mathrm{Li}$	0,01513	8	150 160	0,00307
4	⁷ Li ⁷ Be	$0,01601 \\ 0,01693$		¹⁷ O	-0,00509 $-0,00087$
	⁸ Be ⁹ Be	$0,00531 \\ 0,01219$	9 10	¹⁹ F ²⁰ Ne	$ \begin{array}{r} -0,00160 \\ -0,00756 \end{array} $
5	$^{10}\mathrm{Be}$	$0,01354 \\ 0,01294$	11	²³ Na ²⁴ Na	-0,01023 $-0,00903$
	11B	0,00930	12	²⁴ Mg	-0,01496

Примечание. Здесь M — масса нуклида в а.е.м., A — массовое число.

22. Постоянные газов

Газ (относи-	$\gamma = \frac{C_p}{}$	Тепло-	сть п,	тр улы	Постоянн Ван-дер-І	
молекулярная масса)	$\gamma - \overline{C_{v}}$	провод- ность и, <u>мВт</u> м ·К	Вязкость мкПа · с	Диаметр молекулы d , нм	a , $\frac{\Pi a \cdot m^2}{\text{моль}^2}$	b , $10^{-6} \frac{{}^{\mathrm{M}}{}^{3}}{{}^{\mathrm{MOJL}}}$
He (4)	1,67	141,5	18,9	0,20	_	_
Ar (40)	1,67	16,2	22,1	0,35	0,132	32
H_2 (2)	1,41	168,4	8,4	0,27	0,024	27
$N_{2}(28)$	1,40	24,3	16,7	0,37	0,137	39
O_{2}^{-} (32)	1,40	24,4	19,2	0,35	0,137	32
CO_{2} (44)	1,30	23,2	14,0	0,40	0,367	43
H_2O (18)	1,32	15,8	9,0	0,30	0,554	30
Воздух (29)	1,40	24,1	17,2	0,55	_	_

Примечание. Значения γ , \varkappa и η — при нормальных условиях.

	23 .	Тепловые	постоянные	твердых	тел
--	-------------	----------	------------	---------	-----

Вещество	Удельная теплоемкость c , Дж/ $(r \cdot K)$	Дебаевская температура Θ, К	Температура плавления, С	Удельная теплота плавления q , Дж/г
Алюминий	0,90	374	660	321
Железо	0,46	467	1535	270
Лед	2,09	_	0	333
Медь	0,39	329	1083	175
Свинец	0,13	89	328	25
Серебро	0,23	210	960	88

Примечание. Значения удельных теплоемкостей соответствуют нормальным условиям.

24. Некоторые постоянные жидкостей

Жидкость	Вязкость <i>ћ</i> , мПа·с	Поверхностное натяжение α, мН/м	Удельная теплоемкость c , Дж/($r \cdot K$)	Удельная теплота парообразования <i>q</i> , Дж/(г·К)
Вода	10	73	4,18	2250
Глицерин	1500	66	2,42	-
Ртуть	16	470	0,14	284
Спирт	12	24	2,42	853

Примечание. Приведенные значения величин соответствуют:

25. Давление насыщенных паров воды

C	Давление, кПа	C	Давление, кПа	C	Давление, кПа
0 5 10 15	0,61 0,87 1,22 1,70	25 30 35 40	3,15 4,23 5,60 7,35	60 70 80 90	19,9 31,0 47,3 70,0
20	2,33	50	12,3	100	101,3

 $[\]eta$ и α — комнатной температуре (20 C),

c — нормальным условиям,

q — нормальному атмосферному давлению.

26. Основные величины и единицы СИ

Время t — величина, характеризующая последовательную смену явлений и состояний материи, характеризующая длительность их бытия; единица — секунда (c).

Ceкундa равна 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Длина l — величина, характеризующая протяженность, удаленность и перемещение тел или их частей вдоль заданной линии; единица — метр (м).

Memp есть длина пути, проходимого светом в вакууме за интервал времени $1/299~792~458~\mathrm{c}.$

Масса m — величина, определяющая инертные и гравитационные свойства материальных объектов; единица — килограмм (кг).

Kилограмм равен массе платино-иридиевого эталона, хранящегося в Международном бюро мер и весов (в Севре, близ Парижа). Масса эталона близка к массе 1 дм³ чистой воды при 4 °C.

Сила электрического тока I — скалярная величина, численно равная электрическому заряду, переносимому сквозь рассматриваемую поверхность за единицу времени; единица — ампер (A).

Ампер равен силе постоянного тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную $2 \cdot 10^{-7}$ H.

Термодинамическая температура T — температура, отсчитываемая по термодинамической шкале температур от абсолютного нуля; единица — кельвин (К).

Kельвин равен 1/273,16 части термодинамической температуры тройной точки воды.

Примечания:

- 1. Кроме температуры Кельвина (обозначение T) допускается применять также температуру Цельсия (обозначение t), определяемую как $t=T-T_0$, где $T_0=273,15$ по определению. Температура Кельвина выражается в кельвинах, температура Цельсия в градусах Цельсия (обозначение °C). По размеру градус Цельсия равен кельвину (1 °C = 1 K).
- 2. Интервал или разность температур Кельвина выражается в кельвинах. Интервал или разность температур Цельсия допускается выражать как в кельвинах, так и в градусах Цельсия.

Количество вещества n — величина, равная числу структурных элементов, содержащихся в теле (системе тел); единица — моль.

Moль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой $0.012~\rm kr$. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц.

Сила света I — величина, равная отношению светового потока, распространяющегося от источника излучения в рассматриваемом направлении внутри малого телесного угла к этому телесному углу; единица — кандела (кд).

Kandena равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 $T\Gamma$ ц, сила излучения которого в этом направлении составляет 1/638 BT/cp.

27. Единицы физических величин

Обозначения и названия некоторых величин

А — ампер	Гц — герц	Мкс — максвелл
Å — ангстрем	дин — дина	Н — ньютон
а.е.м. — атомная единица	Дж — джоуль	П — пуаз
массы	дптр — диоптрия	Па — паскаль
Б — бел	К — кельвин	рад — радиан
б — барн	кал — калория	с — секунда
Бк — беккерель	кд — кандела	См — сименс
В — вольт	Кл — кулон	ср — стерадиан
Вб — вебер	л — литр	Тл — тесла
Вт — ватт	лк — люкс	Ф — фарад
Гн — генри	лм — люмен	ч — час
г — грамм	м — метр	Э — эрстед
Гс — гаусс	мин — минута	эВ — электронвольт

Десятичные приставки к названиям единиц

$eta = 3$ — экса, 10^{18} П — пета, 10^{15}	к — кило, 10^3 г — гекто, 10^2	мк — микро, 10^{-6} н — нано, 10^{-9}
T — тера, 10 ¹²	$_{ m J}$ — деци, 10^{-1}	π — пико, 10^{-12}
Γ — гига, 10^9 М — мега, 10^6	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{lll} egin{array}{lll} egin{array} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{l$

Единицы в СИ и СГС

Величина	Единица величины		Отношение ед. СИ	
Bossi iniu	СИ	СГС	ед. СГС	
Длина	M	СМ	10^2	
Время	c	c	1	
Скорость	м/с	см/с	10^2	
Ускорение	$\mathrm{m/c}^2$	$\mathrm{cm/c}^2$	10^2	
Частота колебаний	Гц	Гц	1	
Круговая частота	${f c}^{-1}$	\mathbf{c}^{-1}	1	
Угловая скорость	рад/с	рад/с	1	
Угловое ускорение	$ m pag/c^2$	$ m pag/c^2$	1	
Macca	кг	Г	10^3	
Плотность	$\kappa \Gamma/\mathrm{m}^3$	г/см ³	10^{-3}	
Сила	Н	дин	${\bf 10^5}$	
Давление, напряжение	Па	дин $/\mathrm{cm}^2$	10	
Импульс	кг·м/с	г.см/с	10^5	

продолжение табл. 27

Величина		Единица величины	
	СИ	СГС	$\frac{\text{ед. CИ}}{\text{ед. CГC}}$
Момент силы	Н∙м	дин∙см	10 ⁷
Энергия, работа	Дж	эрг	10^7
Мощность	Вт	эрг/с	10^7
Плотность потока энергии	B_T/M^2	эрг/ $(c \cdot cm^2)$	10^3
Момент импульса	$\kappa \mathbf{r} \cdot \mathbf{m}^2/\mathbf{c}$	$\mathbf{r} \cdot \mathbf{cm}^2 / \mathbf{c}$	10^{7}
Момент инерции	$\kappa_{\Gamma} \cdot M^2$	$\mathbf{r \cdot cm}^2$	10^{7}
Вязкость	Па · с	П	10
Температура	к	к	1
Теплоемкость, энтропия	Дж/К	эрг/К	10^{7}
Количество электричества	Кл	СГСЭ-ед.	3.10^{9}
Потенциал	В	СГСЭ-ед.	1/300
Напряженность электрического поля	В/м	СГСЭ-ед.	$1/(3\cdot10^4)$
Электрическое смещение	K л $/$ м 2	СГСЭ-ед.	$\boldsymbol{12\pi {\cdot} 10}^{5}$
Электрический момент диполя	Кл · м	СГСЭ-ед.	$3 \cdot 10^{11}$
Поляризованность	$K_{\rm Л}/{ m m}^2$	СГСЭ-ед.	$3{\cdot}10^{5}$
Емкость	Ф	см	$9 \cdot 10^{11}$
Сила тока	A	СГСЭ-ед.	3.10^{9}
Плотность тока	A/m^2	СГСЭ-ед.	$3{\cdot}10^5$
Сопротивление	Ом	СГСЭ-ед.	$1/(9\cdot10^{11})$
Удельное сопротивление	Ом · м	СГСЭ-ед.	$1/(9\cdot10^9)$
Проводимость	См	СГСЭ-ед.	$9 \cdot 10^{11}$
Удельная проводимость	См/м	СГСЭ-ед.	$9 \cdot 10^{9}$
Магнитная индукция	Тл	Γc	$\mathbf{10^4}$
Магнитный поток	Вб	Мкс	10^8
Напряженность магнитного поля	А/м	Э	$4\pi/10^3$
Магнитный момент	$\mathbf{A} \cdot \mathbf{m}^2$	СГСМ-ед.	10^3
Намагниченность	А/м	СГСМ-ед.	${\bf 10}^{-3}$
Индуктивность	Гн	СМ	10^9
Сила света	кд	кд	1
Световой поток	лм	лм	1
Освещенность	лк	фот	$\mathbf{10^{-4}}$
Светимость	${ m лm/m}^2$		
Яркость	κ д $/$ м 2		

в гауссовой системе.

28. Некоторые внесистемные единицы

```
1 \text{ сут (сутки)} = 86 400 \text{ с}
                               1 г (год) = 3.1557 \cdot 10^7 с
                               1 \text{ Å (ahrcrpem)} = 10^{-10} \text{ m}
                               1 а. е. (астрономическая единица) \approx 1,456 \cdot 10^{11} м
                               1 дюйм = 2,54 см (точно)
                               1 кабельтов = 185,2 м
                               1 миля морская = 1852 м
                               1 миля сухопутная = 1609.3 м
                               1 пк (парсек) \approx 3.1 \cdot 10^{16} м
                               1 св. год (световой год) \approx 0.95 \cdot 10^{16} м
                               1 ферми = 10^{-15} м = 1 фм
                               1 \text{ dvт} = 30.48 \text{ см (точно)}
                               1 ярд = 91,44 см (точно)
                               1 \text{ f (faph)} = 10^{-28} \text{ m}^2 = 10^{-24} \text{ cm}^2
                               1 \text{ ra (rektap)} = 10^4 \text{ m}^2
                               1 баррель нефтяной (США) = 159 л
Объем . . . . . .
                               1 галлон для жидкости (США) = 3,8 л
                               1 пинта для жидкости (США) = 0.47 л
                               1 унция (США) = 30 \text{ cm}^3
                               1 уз (узел) = 0.514 м/с = 1.852 км/ч
Скорость . . . . . . .
                               1 \, \Gammaал (гал) = 1 \, \text{cm/c}^2
Ускорение . . . . . .
                               1 а.е.м. (атомная единица массы) = 1.66 \cdot 10^{-27} кг
Macca . . . . . . . . . . . . . .
                               1 кар (карат) = 0.2 г (точно)
                               1 т (тонна) = 10^3 кг
                               1 фунт (русский) = 0.41 кг
                               1 фунт (США) = 0.4536 кг
                               1 \text{ кгс (килограмм-сила)} = 9.81 \text{ H}
Сила . . . . . .
                               1 атм = 101,3 к\Piа = 760 мм рт. ст.
Давление . . . . . . .
                               1 \, \, {\rm fap} \, = \, 10^5 \, \, {\rm \Pi a} \, \, ({
m точно})
                               1 \text{ кгс/см}^2 = 98,07 \text{ кПа}
                               1 мм рт. ст. (Topp) = 133,3 Па
                               1 пз (пьеза) = 1 кПа
                               1 Topp = 133,3 \Pi a
                               1 Вт·ч (ватт-час) = 3.6 \cdot 10^3 Дж
Энергия . . . . . . . .
                               1 кал (калория) = 4,187 Дж
                               1 \text{ л} \cdot \text{атм} = 101,3 \text{ Дж}
                               1 эВ (электроновольт) = 1.60 \cdot 10^{-19} Дж
                               1 л. с. (лошадиная сила) = 736 Вт
Мошность . . . . . .
Вязкость
                               1 \Pi (\pi ya3) = 0,1 \Pi a \cdot c
  динамическая . . . .
                               1 CT (CTOKC) = 10^{-4} \text{ m}^2/\text{c}
  кинематическая . . .
                               1 нт (нит) = 1 кд/м<sup>2</sup>
Яркость
                               1 Лб (ламберт) = 3.18 \cdot 10^3 кд/м<sup>2</sup>
                               1 рад = 0.01 Гр (грей)
Поглощенная доза . . .
                               1 \, \text{бэр} = 0.01 \, \text{Дж/кг}
Эквивалентная доза . .
                               1 Ки (кюри) = 3.7 \cdot 10^{-10} Бк (беккерель) (точно)
Активность . . . . . .
Экспозиционная доза
рентгеновского
и у-излучений \cdot \cdot \cdot \cdot \cdot \cdot \cdot 1 Р (рентген) = 2.58 \cdot 10^{-4} Кл/кг (точно)
```

29. Основные формулы электродинамики в СИ и гауссовой системе

Наименование	СИ	Гауссова система
Напряженность поля точечного заряда	$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$	$E = \frac{q}{r^2}$
Напряженность поля плоского конденсатора	$E = \frac{\sigma}{\varepsilon_0 \varepsilon}$	$E = \frac{4 \pi \sigma}{\varepsilon}$
Потенциал поля точечного заряда	$\varphi = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$	$\varphi = \frac{q}{r}$
Связь между Е и ф	$\mathbf{E}=-\mathbf{ abla}\phi,$	$\varphi_1 - \varphi_2 = \int_1^2 \mathbf{E} d\mathbf{r}$
Электрический диполь р в поле E	$\mathbf{N} = [\mathbf{pE}],$	$W=-\mathbf{p}\mathbf{E}$
Связь между Р и Е	$\mathbf{P} = \varkappa \epsilon_0 \mathbf{E}$	$\mathbf{P} = \mathbf{\varkappa} \mathbf{E}$
Связь между б', Р и Е	$\sigma' = P_n = \kappa \varepsilon_0 E_n$	$\sigma' = P_n = \varkappa E_n$
Определение вектора D	$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$	$\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P}$
Связь между є и и	$\varepsilon = 1 + \varkappa$	$\epsilon = 1 + 4\pi x$
Связь между D и E	$\mathbf{D} = \mathbf{\epsilon} \mathbf{\epsilon}_0 \mathbf{E}$	$\mathbf{D} = \varepsilon \mathbf{E}$
Теорема Гаусса для вектора D	$\oint \mathbf{D} \ \mathrm{d}\mathbf{S} = q$	$\oint \mathbf{D} \ d\mathbf{S} = 4 \pi q$
Емкость конденсатора	C =	= q/U
Емкость плоского конденсатора	$C = \frac{\varepsilon_0 \varepsilon S}{d}$	$C = rac{arepsilon S}{4 \pi d}$
Энергия системы зарядов	$W = \frac{1}{2} \sum q_i \varphi_i$	
Энергия конденсатора	$W=CU^2/2$	
Плотность энергии электрического поля	w = ED/2	$w = ED/8\pi$
Закон Ома	$\mathbf{j} = \sigma \mathbf{E}$	
Закон Джоуля-Ленца	$w = \sigma \mathbf{E}^2$	

продолжение табл. 29

Наименование	СИ	Гауссова система	
Магнитный момент контура с током	$p_m = IS$	$p_m = IS/c$	
Магнитный диполь \mathbf{p}_m в поле \mathbf{B}	$\mathbf{N} = [\mathbf{p}_m \mathbf{B}],$	$W = -\mathbf{p}_m \mathbf{B}$	
Закон Био-Савара	$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I [d\mathbf{l}, \mathbf{r}]}{r^3}$	$d\mathbf{B} = \frac{1}{c} \frac{I[d\mathbf{l}, \mathbf{r}]}{r^3}$	
Индукция поля:			
а) прямого тока	$B=(\mu_0/4\pi)2I/r$	B = (1/c)2I/r	
б) в центре витка	$B=(\mu_0/4\pi)2\pi I/r$	$B=(1/c)2\pi I/r$	
в) в соленоиде	$B = \mu_0 nI$	$B=(4\pi/c)nI$	
Определение вектора Н	$\mathbf{H} = \mathbf{B}/\mu_0 - \mathbf{J}$	$\mathbf{H} = \mathbf{B} - 4\pi \mathbf{J}$	
Циркуляция вектора Н в постоянном поле	$\oint \mathbf{H} \ \mathbf{dr} = I$	$\oint \mathbf{H} \ \mathbf{dr} = \frac{4\pi}{c} I$	
Связь между Ј и Н	$J = \chi H$		
Связь между μ и χ	$\mu = 1 + \chi$	$\mu=1+4\pi\chi$	
Связь между В и Н	$\mathbf{B} = \mu \mu_0 \mathbf{H}$	$\mathbf{B} = \mu \mathbf{H}$	
Сила Лоренца	$\mathbf{F} = q [\mathbf{v} \mathbf{B}]$	$\mathbf{F} = (q/c)[\mathbf{vB}]$	
Закон Ампера	$d\mathbf{F} = I[\mathbf{dl}, \mathbf{B}]$	$d\mathbf{F} = (I/c)[d\mathbf{l}, \mathbf{B}]$	
Сила взаимодействия параллельных токов	$F = \frac{\mu_0}{4\pi} \frac{2I_1I_2}{d}$	$F = \frac{1}{c^2} \frac{2I_1I_2}{d}$	
Э. д. с. индукции	$\mathscr{E}_i = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$	${\mathscr E}_i = -rac{1}{c} rac{{ m d}\Phi}{{ m d}t}$	
Индуктивность	$L = \Phi/I$	$L = c\Phi/I$	
Индуктивность соленоида	$L = \mu_0 \mu n^2 V$	$L=4\pi\mu n^2 V$	
Энергия магнитного поля тока	$W=LI^2/2$	$W=LI^2/2c^2$	
Плотность энергии магнитного поля	w = BH/2	$w = BH/8\pi$	

продолжение табл. 29

Наименование	СИ	Гауссова система
Плотность тока смещения	$\mathbf{j} = \frac{\partial \mathbf{D}}{\partial t}$	$\mathbf{j} = \frac{1}{4\pi} \frac{\partial \mathbf{D}}{\partial t}$
Уравнения Максвелла в дифференциальной форме	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t}$ $\nabla \cdot \mathbf{D} = \mathbf{p}$	$\mathbf{ abla} imes \mathbf{E} = -rac{1}{c} rac{\partial \mathbf{B}}{\partial t}$ $\mathbf{ abla} imes \mathbf{B} = 0$ $\mathbf{ abla} imes \mathbf{H} = rac{4\pi}{c} igg(\mathbf{j} + rac{\partial \mathbf{D}}{\partial t} igg)$ $\mathbf{ abla} imes \mathbf{D} = 4\pi ho$
Уравнения Максвелла в интегральной форме	$ \oint \mathbf{E} d\mathbf{r} = -\int \frac{\partial \mathbf{B}}{\partial t} d\mathbf{S} $ $ \oint \mathbf{B} d\mathbf{S} = 0 $ $ \oint \mathbf{H} d\mathbf{r} = $ $ = \int \left(\mathbf{j} + \frac{\partial \mathbf{D}}{\partial t} \right) d\mathbf{S} $ $ \oint \mathbf{D} d\mathbf{S} = \int \rho dV $	$ \oint \mathbf{E} d\mathbf{r} = -\frac{1}{c} \int \frac{\partial \mathbf{B}}{\partial t} d\mathbf{S} $ $ \oint \mathbf{B} d\mathbf{S} = 0 $ $ \oint \mathbf{H} d\mathbf{r} = $ $ = \frac{4\pi}{c} \int \left(\mathbf{j} + \frac{1}{4\pi} \frac{\partial \mathbf{D}}{\partial t} \right) d\mathbf{S} $ $ \oint \mathbf{D} d\mathbf{S} = 4\pi \int \rho dV $
Формулы преобразования ${f E}$ и ${f B}$ при $v_0\ll c$	$\mathbf{E}' = \mathbf{E} + [\mathbf{v}_0 \mathbf{B}]$ $\mathbf{B}' = \mathbf{B} - [\mathbf{v}_0 \mathbf{E}] / c^2$	$\mathbf{E}' = \mathbf{E} + [\mathbf{v}_0 \mathbf{B}] / c$ $\mathbf{B}' = \mathbf{B} - [\mathbf{v}_0 \mathbf{E}] / c$
Скорость электромагнитной волны в среде	$v = \frac{1}{\sqrt{\epsilon_0 \mu_0 \epsilon \mu}}$	$v = \frac{c}{\sqrt{\varepsilon \mu}}$
Связь между <i>E</i> и <i>H</i> в электромагнитной волне	$E\sqrt{\varepsilon_0 \varepsilon} = H\sqrt{\mu_0 \mu}$	$E\sqrt{arepsilon}=H\sqrt{\mu}$
Плотность энергии электромагнитного поля	$w = \frac{\mathbf{ED}}{2} + \frac{\mathbf{BH}}{2}$	$w = \frac{\mathbf{ED}}{8\pi} + \frac{\mathbf{BH}}{8\pi}$
Вектор Пойнтинга	Π = [EH]	$\Pi = \frac{c}{4\pi} [EH]$
Мощность излучения диполя	$P = \frac{\mu_0}{6\pi c^3} \ddot{\mathbf{p}}^2$	$P = \frac{2}{3c^3} \ddot{\mathbf{p}}^2$

30. Формулы некоторых атомных величин в гауссовой системе и СИ

Величина	Гауссова система	СИ
Комптоновская длина волны λ_{C}	$\frac{2\pi\hbar}{mc}$	$\frac{2 \pi \hbar}{mc}$
Постоянная Ридберга $R,\ \mathrm{c}^{-1}$	$rac{me^{4}}{2\hbar^3}$	$\left(rac{1}{4\pi arepsilon_0} ight)^2 rac{me^4}{2\hbar^3}$
$R'=R/2\pi c$, $ extbf{m}^{-1}$	$rac{me^{4}}{4\pi c\hbar^{3}}$	$\left(rac{1}{4\piarepsilon_0} ight)^2rac{me^4}{4\pi c\hbar^3}$
Первый боровский радиус r_1	$\frac{\hbar^2}{me^2}$	$4\pi\varepsilon_0^{}\frac{\hbar^2^{}}{me^{^2}}$
Энергия связи электрона в атоме водорода $E_{ m cs}$	$rac{me^{4}}{2\hbar^{2}}$	$\left(rac{1}{4\pi\epsilon_0} ight)^2rac{me^4}{2\hbar^2}$
Классический радиус электрона r_e	$\frac{e^{2}}{mc^{2}}$	$\frac{1}{4\pi\varepsilon_0}\frac{e^2}{mc^2}$
Томсоновское сечение рассеяния σ_e	$rac{8\pi}{3}r_e^{2}$	$\frac{8\pi}{3}r_e^{2}$
Постоянная тонкой структуры α	$\frac{e^2}{\hbar c}$	$\frac{1}{4\pi\varepsilon_0}\frac{e^2}{\hbar c}$
Магнетон Бора µ _Б	$\frac{e\hbar}{2m_{e}c}$	$\frac{e\hbar}{2m_e}$
Ядерный магнетон μ_N	$\frac{e\hbar}{2m_{p}c}$	$\frac{e\hbar}{2m_p}$
Гидромагнитное отношение <i>g</i>	$\frac{e}{2mc}$	$\frac{e}{2m}$
Постоянная Холла R_H	$\frac{1}{cen}$	$\frac{1}{en}$
Квант магнитного потока Φ_0	$\frac{\pi c \hbar}{e}$	$rac{\pi\hbar}{e}$
Джозефсона отношение	$rac{e}{\pi c \hbar}$	$rac{e}{\pi\hbar}$
$egin{aligned} extbf{Уровень} & \Phi ext{ерми в металле } E_F \ & ext{при } T = 0 \ ext{K} \end{aligned}$	$\frac{\hbar^2}{2m} \left(3 \pi^2 n\right)^{2/3}$	$\frac{\hbar^2}{2m} \Big(3\pi^2 n\Big)^{2/3}$

31. Фундаментальные физические константы

Гравитационная постоянная

Стандартное ускорение свободного падения

Постоянная Авогадро

Стандартный объем моля газа

Молярная газовая постоянная

Постоянная Больцмана

Постоянная Фарадея

Элементарный заряд

Масса электрона

Удельный заряд электрона

Масса протона

Удельный заряд протона

Постоянная Планка

Постоянная Стефана-Больцмана

Постоянная закона смещения Вина

Постоянная Ридберга

$$c = 2,99 792 458 \cdot 10^8 \text{ м/c (точно)}$$

$$\gamma = 6.67 \cdot 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{c}^2)$$

$$g = 9.807 \text{ m/c}^2$$

$$N_A = 6,022 \cdot 10^{23} \text{ моль}^{-1}$$

$$V_0 = 22,41$$
 л/моль

$$R = 8,314$$
 Дж/(К·моль)

$$k = 1,3807 \cdot 10^{-23}$$
 Дж/К

$$F = 0.965 \cdot 10^5 \text{ Кл/моль}$$

$$e = \begin{cases} 1,602 \cdot 10^{-19} \text{ Km} \\ 4,803 \cdot 10^{-10} \text{ CCCO} \end{cases}$$

$$m_e = \begin{cases} 0.911 \cdot 10^{-30} & \text{KF} \\ 0.511 & \text{M} \ni \text{B} \end{cases}$$

$$\frac{e}{m_e} = \begin{cases} 1.76 \cdot 10^{11} \text{ Kp} / \text{kg} \\ 5.27 \cdot 10^{17} \text{ CCO} / \text{g} \end{cases}$$

$$m_p = \begin{cases} 1,672 \cdot 10^{-27} & \text{KP} \\ 938,26 & \text{M} \ni \text{B} \end{cases}$$

$$\frac{e}{m_p} = \begin{cases} 0.959 \cdot 10^8 \text{ Kp} / \text{kg} \\ 2.87 \cdot 10^{14} \text{ CFC} / \text{g} \end{cases}$$

$$h = 6,626 \cdot 10^{-34} \text{ Дж·c}$$

$$h = \frac{h}{2\pi} = \begin{cases} 1,0546 \cdot 10^{-34} \text{ Дж·c} \\ 0,659 \cdot 10^{-15} \text{ эВ·c} \end{cases}$$

$$\sigma = 5.67 \cdot 10^{-8} \text{ Br/(m}^2 \cdot \text{K}^4)$$

$$b = 0.29 \text{ cm} \cdot \text{K}$$

$$R = 2.07 \cdot 10^{16} \text{ c}^{-1}$$

 $R' = R / 2\pi c = 1.097 \cdot 10^{5} \text{ cm}^{-1}$

продолжение табл. 31

Первый боровский радиус

Энергия связи электрона в атоме водорода

Комптоновская длина волны электрона

Классический радиус электрона

Магнетон Бора

Ядерный мегнетон

Магнитный момент протона

" нейтрона

Атомная единица массы

Электрическая постоянная

Магнитная постоянная

$$r_1 = 0.529 \cdot 10^{-10} \text{ M}$$

$$E = 13,56 \text{ } 9B$$

$$\lambda_C = 2,426 \cdot 10^{-12} \text{ m}$$
 $\lambda_C = \lambda_C / 2\pi = 3,86 \cdot 10^{-13} \text{ m}$

$$r_{e} = 2.82 \cdot 10^{-15} \text{ M}$$

$$\mu_{\,\mathrm{B}} \, = \! \begin{cases} \! 0.9274 \cdot \! 10^{-23} \; \, \text{Дж/Tm} \\ \! 0.9274 \cdot \! 10^{-20} \; \, \text{эрг/\Gammac} \end{cases} \label{eq:mu_B}$$

$$\mu_{N} = \begin{cases}
5,051 \cdot 10^{-27} & \text{Дж/Тл} \\
5,051 \cdot 10^{-24} & \text{эрг/Гс}
\end{cases}$$

$$\mu_p = 2,7928 \ \mu_N$$

$$\mu_n = -1,913 \ \mu_N$$

1 а. е. м. =
$$\begin{cases} 1,660 \cdot 10^{-27} \text{ кг} \\ 931,4 \text{ M} \ni B \end{cases}$$

$$\begin{array}{l} \epsilon_0 = 0.885 {\cdot} 10^{-11} \ \Phi/\text{m} \\ 1/4\pi\epsilon_0 = 9 {\cdot} 10^9 \ \text{m}/\Phi \end{array}$$

$$\begin{array}{l} \mu_0 \, = \, 1,257{\cdot}10^{-6} \ \Gamma_{H}/\text{m} \\ \mu_0/4\pi \, = \, 10^{-7} \ \Gamma_{H}/\text{m} \end{array}$$

Учебное электронное издание

Иродов Игорь Евгеньевич **ЗАДАЧИ ПО ОБЩЕЙ ФИЗИКЕ**

Учебное пособие для вузов

Издательство «БИНОМ. Лаборатория знаний» 125167, Москва, проезд Аэропорта, д. 3 Телефон: (499) 157-5272 e-mail: binom@Lbz.ru, http://www.Lbz.ru

Системные требования: процессор Intel с тактовой частотой от 1,3 ГГц и выше; операционная система Microsoft Windows XP, Vista или Windows 7; от 256 Мб оперативной памяти; от 260 Мб свободного пространства на жестком диске; разрешение экрана не ниже 1024×768 ; программа Adobe Reader не ниже X.