Daily urban mobility using agent-based modeling

Bernadette, Christoph, Claire, Florent, Nicolas, Juste

CSSS2013 Group Project

Context and problem

- General framework : problem of daily travels of individuals inside a city.
- Already a lot of literature (MIRO 2012, Mobisim 2013, ...), complicated models in huge projects.
- Problematic: to obtain a simple model [F(S,S,C)] to express multimodal transport shares and local flows functions over a standard day.

Context and problem

- General framework : problem of daily travels of individuals inside a city.
- Already a lot of literature (MIRO 2012, Mobisim 2013, ...), complicated models in huge projects.
- Problematic: to obtain a simple model [F(S,S,C)] to express multimodal transport shares and local flows functions over a standard day.

Context and problem

- General framework : problem of daily travels of individuals inside a city.
- Already a lot of literature (MIRO 2012, Mobisim 2013, ...), complicated models in huge projects.
- Problematic: to obtain a simple model [F(S,S,C)] to express multimodal transport shares and local flows functions over a standard day.

Objectives

- Simple but rigourous model.
- Integration of real data (GIS work)
- Apply the model on a test case (e. g. optimal implantation of a new transportation infrastructure)

Objectives

- Simple but rigourous model.
- Integration of real data (GIS work)
- Apply the model on a test case (e. g. optimal implantation of a new transportation infrastructure)

Objectives

- Simple but rigourous model.
- Integration of real data (GIS work)
- Apply the model on a test case (e. g. optimal implantation of a new transportation infrastructure)

Methodology

METHODOLOGIE		
1	Import Data	roads
		transports
		IRIS
2	Create agents	attributes : age, employment, incomes, nb of children
		timeschedules
3	Make agents evolve on the network	acording to their schedule
4	Add subway effect according to their timeschedule	existing lines
5	Applications of the model	Creation of a new subway line
		Change on the existing line
		Introduce new trafic constraints (one way, speed limit)

Figure: Model conception methodology

Theoretical issues

- Urban social systems are highly heterogeneous.
- Human decisions modeling.
- Scaling.

Theoretical issues

- Urban social systems are highly heterogeneous.
- Human decisions modeling.
- Scaling.

Theoretical issues

- Urban social systems are highly heterogeneous.
- Human decisions modeling.
- Scaling.

Practical issues

- Group organisation: multi-disciplinary work
- Time
- Data collection and treatment.

Practical issues

- Group organisation: multi-disciplinary work
- Time
- Data collection and treatment.

Practical issues

- Group organisation: multi-disciplinary work
- Time
- Data collection and treatment

Achieved work

- Reframed the problem.
- Collected the data.
- Drafted a workplan

Achieved work

- Reframed the problem.
- Collected the data.
- Drafted a workplan

Achieved work

- Reframed the problem.
- Collected the data.
- Drafted a workplan

- Import data in NetLogo
- Create agents
- Make them interact between each other and with networks
- Explore the model

- Import data in NetLogo
- Create agents
- Make them interact between each other and with networks
- Explore the model

- Import data in NetLogo
- Create agents
- Make them interact between each other and with networks
- Explore the model

- Import data in NetLogo
- Create agents
- Make them interact between each other and with networks
- Explore the model

Questions

