Roll Number											
-------------	--	--	--	--	--	--	--	--	--	--	--

Narula Institute of Technology An Autonomous Institute under MAKAUT 2023

END SEMESTER EXAMINATION - ODD 2023 IT303 - ANALOG AND DIGITAL ELECTRONICS

TIME ALLOTTED: 3Hours FULL MARKS: 70

Instructions to the candidate:

Figures to the right indicate full marks.

Draw neat sketches and diagram wherever is necessary.

Candidates are required to give their answers in their own words as far as practicable

Group A (Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: 10×1=10 1. Which of the following flip-flops is free from race around problem? (1) CO1 BL2

- a) T flip-flop
- b) SR flip-flop
- c) Master-Slave Flip-flop
- d) None of the Mentioned
- 2. Which of the following expressions is in the sum-of-products form? (1) CO2 BL1
- a) (A + B)(C + D)
- b) (AB)(CD)
- c) AB(CD)
- d) AB + CD
- 3. If both inputs of an S-R flip-flop are low, what will happen when the (1) CO3 BL2 clock goes HIGH?
- a) An invalid state will exist
- b) No change will occur in the output
- c) The output will toggle.
- d) The output will reset.
- 4. The maximum efficiency of a Class A amplifier is around (1) CO4 BL3
- a) 75%
- b) 50%
- c) 25 %
- d) 90%
- 5. 12. In an 8 -bit Johnson counter sequence, how many states orbit (1) CO1 BL5 patterns are possible?
- a) 240
- b) 228

c) 232 d) 220			
6. 5. Which of these sets of logic gates are known as universal gates?a) XOR, NAND, ORb) OR, NOT, XORc) NOR, NAND, XNORd) NOR, NAND	(1)	CO4	BL3
7. 3. Which of the following statement about a common base transistor is true?	(1)	CO3	BL2
a) Very low input impedanceb) Very low output Impedancec) Current gain is greater than unity			
d) Voltage gain is very low			
8. 4. The following hexadecimal number (1E.43)16 is equivalent to a) $(36.506)_8$ b) $(36.206)_8$ c) $(35.506)_8$ d) $(35.206)_8$	(1)	CO3	BL3
9. 8.Which logic unit is the fastest of all the logic families?a) DTLb) TTLc) ECLd) CMOS	(1)	CO3	BL3
10. The race around condition does not occur in flip- flopa) Master Slave J-Kb) Tc) Dd) S-R	(1)	CO2	BL2
11. In a binary ladder (R-2R), D/A converter, the input resistance for each input isa) Rb) 2Rc) 3Rd) 0	(1)	CO2	BL2
12. Determine the values of A, B, C, and D that make the sum term A'+B+C'+D equal to zero. a) A = 1, B = 0, C = 0, D = 0 b) A = 1, B = 0, C = 1, D = 0 c) A = 0, B = 1, C = 0, D = 0 d) A = 1, B = 0, C = 1, D = 1	(1)	CO2	BL2

BL3

(5)

CO₂

Group B (Short Answer Type Questions) (Answer any three of the following) 3x5=15 13. Explain Universal Gate with example? Implement a XOR gate BL3 (5) CO2 using any Universal Gate. Write down the difference between Combinational Circuit and Sequential Circuit. 14. Answer the following (5)a) Write the Boolean expression for the output of the system shown in (2) CO₃ BL4 figure. b) Implement the following Boolean function with NAND – NAND logic BL₅ (3) CO3 $F = \sum (0,1,3,5)$ 15. Answer the following (5)a) Discuss the behavior of a diode when it is in reverse bias. explain (2)CO₃ BL3 breakdown. b) Explain the role of the depletion region, the flow of minority carriers, CO₂ BL3 (3) and the resulting current-voltage characteristics. 16. Answer the following (5)a) What is the difference between latch and flip flop? BL4 (2) CO2 b) Defrentiate Synchronous and Asynchronous counters. draw 3-bit (3) CO₃ BL3 ripple counter. 17. What is the difference between Half Subtractor and Full BL3 (5) CO₂ subtractor? Design a Full subtractor circuit using 2 half-subtractor circuit. **Group C** (Long Answer Type Questions) (Answer any three of the following) 3x15=45 18. Answer all the Questions (15)a) Convert decimal to octal- (18.01)10 = (?)8 BL₂ (5) CO2 Convert binary to decimal – (1001.001) 2=(?)10 b) Explain De-Morgan's laws for simplification of Boolean expression. (5) CO₂ BL₂ If $A\overline{B}+\overline{A}B=C$, show that $A\overline{C}+\overline{A}C=B$

c) Simplify the following expression using K Map for the 4 variables A,

Y=m1+m3+m5+m7+m8+m9+m12+m13

B, C, and D.

19. Answer all the Questions	(15)	(15)			
a) Design a Full Adder circuit using a 3 to 8 Decoder	(5)	CO2	BL4		
b) Why Multiplexer is also known as Data Selector? Design a 16 X 1 Multiplexer using five 4 X 1 Multiplexer.	(5)	CO2	BL4		
c) Implement the following Boolean function F(A,B,C,D)= m(0,1,3,4,8,9,15) using a 8 : 1 Multiplexer	(5)	CO2	BL4		
20. Answer all the Questions	(15)				
a) Draw the internal diagram of a 555-timer circuit.	(5)	CO4	BL4		
b) Design an monostable multivibrator using the 555 timer circuit	(5)	CO4	BL4		
c) What do mean by amplifier. Explain the operation of class A amplifier with proper diagram.	(5)	CO3	BL4		
21. Answer all the Questions	(15)				
 a) Briefly explain the fundamental purpose of a Digital-to-Analog Converter (DAC) in electronic systems. Compare and contrast the working principles of weighted resistor DAC and R-2R ladder DAC architectures. 	(7)	CO4	BL6		
b) Discuss the key advantages of CMOS logic, including low power consumption and high noise immunity. Provide examples of real- world applications where CMOS technology is commonly used. compared with respect to ECL family.	(8)	CO3	BL5		
22. Write short notes on any three of the following	(15)				
a) Successive approximation ADC	(5)	CO4	BL4		
b) Comparator circuit	(5)	CO3	BL4		
c) Excitation table for S-R flip flop	(5)	CO3	BL4		
d) Operation Master Slave flip flop	(5)	CO4	BL4		
e) Barkhausen criterion for oscillation	(5)	CO2	BL2		

12/15/2023 9:14:52 AM