

Report on the Radio Testing

For

Accesso Technology Group PLC

on

BLE Base Station

Report no. TRA-033907-09-45-00A

5th April 2017

Report Number: TRA-033907-09-45-00A

Issue: A

REPORT ON THE RADIO TESTING OF A
Accesso Technology Group PLC
BLE Base Station
WITH RESPECT TO SPECIFICATION
FCC 47CFR 15.247

TEST DATE: 04th - 05th April 2017

A Tosif

Written by: A Tosif Radio Test Engineer

J Charters

Approved by: Department Manager- Radio

Date: 5th April 2017

Disclaimers:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

ilac MRA

1 Revision Record

Issue Number	Issue Date	Revision History
Α	5th April 2017	Original

RF915 4.0 Page 3 of 45

2 Summary

TESTED BY:

TEST REPORT NUMBER: TRA-033907-09-45-00A WORKS ORDER NUMBER: TRA-033907-09 PURPOSE OF TEST: Certification TEST SPECIFICATION(S): 47CFR15.247 **EQUIPMENT UNDER TEST (EUT): BLE Base Station** FCC IDENTIFIER: 2AKCM-P2400-485 **EUT SERIAL NUMBER:** not applicable MANUFACTURER/AGENT: Accesso Technology Group PLC ADDRESS: Unit 2 The Pavilions Ruscombe Park Twyford Berkshire RG10 9NN United Kingdom **CLIENT CONTACT:** Tony Underwood TPS01189 347446 \bowtie tony.underwood@accesso.com ORDER NUMBER: 1465 TEST DATE: 04th - 05th April 2017

RF915 4.0 Page 4 of 45

A Wong / A Tosif

Element

2.1 Test Summary

Test Method and Description		Requirement Clause	Applicable	
		47CFR15	to this equipment	Result / Note
Radiated spurious emissions (restricted bands of operation and cabinet radiation)		15.205	\boxtimes	Pass
AC power line conducted emissions		15.207	\boxtimes	Pass
Occupied bandwidth		15.247(a)(2)		Pass
Conducted corrier newer	Peak	45.047(1)(0)		Door
Conducted carrier power	Max.	15.247(b)(3)		Pass
Conducted / radiated RF power out-of-band		15.247(d)		Pass
Power spectral density, conducted		15.247(e)	\boxtimes	Pass

Notes:

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

RF915 4.0 Page 5 of 45

3 Contents

1			Record	
2	Sı			
	2.1	Test	Summary	. 5
3				
4	In	troduction	on	. 8
5	Τe	est Spec	cifications	. 9
	5.1	Norn	native References	. 9
	5.2	Devi	ations from Test Standards	.9
6	Gl	lossary	of Terms	10
7	Ed	quipmer	it under Test	11
	7.1	EUT	Identification	11
	7.2		em Equipment	
	7.3		Mode of Operation	
	7.4		Radio Parameters	
	7.		General	
	7.		Antennas	
	7.5		Description	
8	M		ons	
9			Setup	
-	9.1		k Diagram	
	9.2		eral Set-up Photograph	
10			Il Technical Parameters	
11			ed emissions	
	11.1		nitions	
	11.2	-	Parameters	
	11.3		Limit	
	11.4		Method	
	11.5		Set-up Photograph	
	11.6		Equipment	
	11.7		Results	
12		1 C 5 L	ver-line conducted emissions	26
	12.1		nition	
	12.1		Parameters	
	12.2		Limit 2	
	12.3		Method	
	12.5		Set-up Photograph	
	12.6		Equipment	
			Dlk-	
	12.8		Results	
13			ed Bandwidth	
	13.1		nition	
	13.2		Parameters	
	13.3		Limit	
	13.4		Method	
	13.5		Equipment	
	13.6		Results	
14			um peak conducted output power	
	14.1		nition	
	14.2		Parameters	
	14.3		Limit	
	14.4		Method	
	14.5		Equipment	
	14.6		Results	
15			band and conducted spurious emissions	
	15.1		nition	
	15.2		Parameters	
	15.3		Limit	
	15.4		Method	
	15.5		Equipment	
	15.6		Results	
16			spectral density4	
	16.1		nition4	
	16.2	Test	Parameters	40

16.3	Test Limit	40
	Test Method	
	Test Equipment	
	Test Results	
	Measurement Uncertainty	
	General SAR test reduction and exclusion guidance & MPE Calculation	44

RF915 4.0 Page 7 of 45

4 Introduction

This report TRA-033907-09-45-00A presents the results of the Radio testing on a Accesso Technology Group PLC, BLE Base Station to specification 47CFR15 Radio Frequency Devices and RSS-247 Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment.

The testing was carried out for Accesso Technology Group PLC by Element, at the address(es) detailed below.

 \boxtimes Element Hull \Box Element Skelmersdale Unit 1 Unit E South Orbital Trading Park Pendle Place **Hedon Road** Skemersdale Hull West Lancashire HU9 1NJ WN8 9PN UK UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

Element is accredited for the above sites under the US-EU MRA, Designation number UK0009.

IC Registration Number(s):

Element Hull 3483A Element North West 3930B

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF915 4.0 Page 8 of 45

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- Industry Canada RSS-247, Issue 1, May 2015 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
- Industry Canada RSS-Gen, Issue 4, November 2014 General Requirements for Compliance of Radio Apparatus

5.2 Deviations from Test Standards

There were no deviations from the test standard.

RF915 4.0 Page 9 of 45

6 Glossary of Terms

§ denotes a section reference from the standard, not this document

AC Alternating Current

ANSI American National Standards Institute

BW bandwidth C Celsius

CFR Code of Federal Regulations

CW Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt

DC Direct Current

DSSS Direct Sequence Spread Spectrum
Equivalent Isotropically Radiated Power

ERP Effective Radiated Power EUT Equipment Under Test

FCC Federal Communications Commission FHSS Frequency Hopping Spread Spectrum

Hz hertz

IC Industry Canada

ITU International Telecommunication Union

LBT Listen Before Talk

m metre max maximum

MIMO Multiple Input and Multiple Output

min minimum

MRA Mutual Recognition Agreement

N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format

Pt-mptPoint-to-multipointPt-ptPoint-to-pointRFRadio FrequencyRHRelative HumidityRMSRoot Mean Square

Rx receiver s second

SVSWR Site Voltage Standing Wave Ratio

Tx transmitter

UKAS United Kingdom Accreditation Service

 $\begin{array}{ll} \textbf{V} & \text{volt} \\ \textbf{W} & \text{watt} \\ \textbf{\Omega} & \text{ohm} \end{array}$

RF915 4.0 Page 10 of 45

7 Equipment under Test

7.1 EUT Identification

Name: BLE Base Station
Serial Number: not applicable
Model Number: P2400-485-ACC
Software Revision: V1.00-test

Build Level / Revision Number: Not Applicable

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Laptop Feeder unit

7.3 EUT Mode of Operation

EUT was transmitting permanent modulated carrier on channels 2402 MHz, 2426 MHz and 2480 MHz.

RF915 4.0 Page 11 of 45

7.4 EUT Radio Parameters

7.4.1 General

Frequency of operation:	2402 – 2480 MHz
Modulation type(s):	GFSK
Occupied channel bandwidth(s):	2 MHz
Channel spacing:	2 MHz
Declared output power(s):	+4 dBm
Nominal Supply Voltage:	24 Vdc

7.4.2 Antennas

Туре:	TL-ANT2409A Directional Antenna
Frequency range:	2402 – 2480 MHz
Impedance:	50 Ω
SWR:	1.92:1 Max
Gain:	9 dBi
Polarisation:	Linear, Vertical
Beam width:	Horizontal 60°. Vertical 76°.
Connector type:	RP-SMA Male
Length:	100 cm
Weight:	500 g
Environmental limits:	Operating temperature: -10 °C ~ 60 °C; Operating Humidity; 10 % ~ 90 % non-condensing
Mounting:	Pole mount or wall mount

7.5 EUT Description

The EUT is a radio base station unit comprising of three Bluetooth Low Energy modules and a GPS receiver. The unit is powered by 24 V dc from a pre-approved switch mode power supply. This report only covers the intentional operation of BLE Radio.

RF915 4.0 Page 12 of 45

8 Modifications

No modifications were performed during this assessment.

RF915 4.0 Page 13 of 45

9 EUT Test Setup

9.1 Block Diagram

The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

RF915 4.0 Page 14 of 45

9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:

RF915 4.0 Page 15 of 45

10 General Technical Parameters

The EUT was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was approx. 24 V dc.

RF915 4.0 Page 16 of 45

11 Radiated emissions

11.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location: Element Hull

Test Chamber: Wireless Laboratory 2 (Lab16)

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6

EUT Frequencies Measured: 2402 / 2426 / 2480 MHz

EUT Channel Bandwidths: 2 MHz

Deviations From Standard: None

Measurement BW: 30 MHz to 1 GHz: 120 kHz

Above 1 GHz: 1 MHz

Measurement Detector: Up to 1 GHz: quasi-peak

Above 1 GHz: RMS average and Peak

Environmental Conditions (Normal Environment)

Temperature: 20 °C +15 °C to +35 °C (as declared)

Humidity: 32 % RH 20 % RH to 75 % RH (as declared)

Supply: 24 V dc As declared

11.3 Test Limit

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength (μV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

RF915 4.0 Page 17 of 45

11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in dBµV/m at the regulatory distance, using:

Where.

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

CL is the cable loss in dB;

AF is the test antenna factor in dB/m;

PA is the pre-amplifier gain in dB (where used);

DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental):

CF is the distance factor in dB (where measurement distance different to limit distance);

This field strength value is then compared with the regulatory limit.

Figure i Test Setup

RF915 4.0 Page 18 of 45

11.5 Test Set-up Photograph

RF915 4.0 Page 19 of 45

11.6 Test Equipment

Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Biconical Antenna	EMCO	3109	RFG095	17/05/2019
Log Periodic Antenna	EMCO	3146	RFG191	17/05/2019
Horn Antenna	EMCO	3115	RFG129	09/02/2018
18-26.5 GHz	Q-par	Horn Antenna	RFG630	24/11/2017
Spectrum Analyser	R&S	FSU46	REF910	05/07/2017
N-Type RF coaxial cable	Unknown	Cable	REF884	04/12/2017
Pre-Amp (9kHz – 1GHz)	Sonoma	310	REF927	30/06/2018
Short SMA RF Cable	AtlanTec	Cable	REF2165	09/12/2017
Cable	Teledyne	5m 2.92mm	REF919	05/10/2017
Pre-Amp (1 – 26.5GHz)	Agilent	8449B	REF913	02/02/2018

RF915 4.0 Page 20 of 45

Report Number: TRA-033907-09-45-00A

11.7 Test Results

		Channel Frequency: 2402 MHz		
Detector Frequency (MHz) Field Strength (dBμV/m) Field Strength (μV/m) Limit (μV/m)				Limit (μV/m)
No emissions were detected within 20 dB of the limit				

Channel Frequency: 2426 MHz				
Detector Frequency (MHz) Field Strength (dBμV/m) Field Strength (μV/m) Limit (μV/m)				Limit (μV/m)
No emissions were detected within 20 dB of the limit				

Channel Frequency: 2480 MHz					
Detector	Detector Frequency (MHz) Field Strength (dBμV/m) Field Strength (μV/m) Limit (μV/m)				
	No emissions were detected within 20 dB of the limit				

Emissions unrelated to the channel frequency					
Detector	Frequency (MHz)	Field Strength (dBμV/m)	Field Strength (μV/m)	Limit (μV/m)	
Quasi Peak	30.641	30.0	31.6	100	
Quasi Peak	32.139	33.6	40.5	100	
Quasi Peak	36.158	30.2	32.4	100	
Quasi Peak	42.939	31.4	37.2	100	
Quasi Peak	48.002	26.9	22.1	100	
Quasi Peak	51.084	31.7	38.5	100	
Quasi Peak	56.789	30.1	32.0	100	
Quasi Peak	60.190	34.1	50.7	100	
Quasi Peak	60.240	31.8	38.9	100	
Quasi Peak	78.090	31.6	38.0	100	
Quasi Peak	78.122	31.4	37.2	100	
Quasi Peak	81.327	31.9	39.4	100	
Quasi Peak	95.990	35.2	57.5	150	
Quasi Peak	96.958	30.0	31.6	150	
Quasi Peak	98.385	27.4	23.4	150	
Quasi Peak	98.965	30.4	33.1	150	
Quasi Peak	125.012	26.9	22.1	150	
Quasi Peak	139.186	24.1	16.0	200	
Quasi Peak	316.782	25.1	18.0	200	
Quasi Peak	483.082	16.8	6.9	200	

RF915 4.0 Page 21 of 45

Bluetooth LE Channel Frequency 2402 MHz

Date: 3.APR.2017 17:03:53

1 – 4 GHz with 2.4 GHz Band-stop Filter

Date: 3.APR.2017 13:47:4

8 – 13 GHz with 2.4 GHz Band-stop Filter

Date: 3.APR.2017 13:08:39

Date: 3.APR.2017 13:44:56

Date: 3.APR.2017 13:10:08

Date: 3.APR.2017 15:41:02

RF915 4.0 Page 22 of 45

Bluetooth LE Channel Frequency 2462 MHz

Date: 3.APR.2017 16:55:18

1 – 4 GHz with 2.4 GHz Band-stop Filter

Date: 3.APR.2017 13:30:12

8 – 13 GHz with 2.4 GHz Band-stop Filter

Date: 3.APR.2017 13:21:13

Date: 3.APR.2017 13:25:30

Date: 3.APR.2017 13:19:44

Date: 3.APR.2017 15:37:23

RF915 4.0 Page 23 of 45

Bluetooth LE Channel Frequency 2480 MHz

Date: 3.APR.2017 16:42:07

1 – 4 GHz with 2.4 GHz Band-stop Filter

Date: 3.APR.2017 13:54:

8 – 13 GHz with 2.4 GHz Band-stop Filter

Date: 3.APR.2017 13:15:23

Date: 3.APR.2017 13:56:18

Date: 3.APR.2017 13:16:38

Date: 3.APR.2017 15:43:22

RF915 4.0 Page 24 of 45

Date: 3.APR.2017 12:18:40

Upper Band Edge Plot *RBW 1 MHz Marker 1 [T1] 58.91 dBµV/m 2.483500000 GHz VBW 10 MHz Ref 110 $dB\mu V/m$ * Att 10 dB *SWT 10 s dBuV/n 33.02 .483500000 GHz 1 PK MAXH 2 AV MAXH -20 10 Center 2.4835 GHz Span 10 MHz 1 MHz/

Date: 3.APR.2017 10:38:15

RF915 4.0 Page 25 of 45

12 AC power-line conducted emissions

12.1 Definition

Line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network.

12.2 Test Parameters

Test Location: Element Hull
Test Chamber: Screen Room 1

Test Standard and Clause: ANSI C63.10-2013, Clause 6.2

EUT Channels / Frequencies Measured: 2402 / 2426 / 2480 MHz

EUT Channel Bandwidths: 2 MHz
EUT Modulation: GFSK
Deviations From Standard: None

Measurement Detectors: Quasi-Peak and Average, RMS

Environmental Conditions (Normal Environment)

Temperature: 21 °C +15 °C to +35 °C (as declared)

Humidity: 37 % RH 20 % RH to 75 % RH (as declared)

Supply: 110 V ac 110 V ac ±10 % (as declared)

12.3 Test Limit

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in Table 3.

Table 3 - AC Power Line Conducted Emission Limits

Frequency (MHz)	Conducted limit (dВµV)		
(IMITIZ)	Quasi-Peak	Average**	
0.15 to 0.5	66 to 56 [*]	56 to 46 [*]	
0.5 to 5	56	46	
5 to 30	60	50	

^{*}The level decreases linearly with the logarithm of the frequency.

RF915 4.0 Page 26 of 45

^{**}A linear average detector is required.

12.4 Test Method

With the EUT setup in a screened room, as per section 9 of this report and connected as per Figure ii, the power line emissions were measured on a spectrum analyzer / EMI receiver.

AC power line conducted emissions from the EUT are checked first by preview scans with peak and average detectors covering both live and neutral lines. A spectrum analyzer is used to determine if any periodic emissions are present.

Formal measurements using the correct detector(s) and bandwidth are made on frequencies identified from the preview scans. Final measurements were performed with EUT set at its maximum duty in transmit and receive modes.

Figure ii Test Setup

12.5 Test Set-up Photograph

RF915 4.0 Page 27 of 45

12.6 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
ESH3-Z2	R&S	Pulse Limiter	RFG680	14/06/17
ESH3-Z5	R&S	LISN	RFG189	02/08/17
ESCI7	R&S	Measuring Receiver	RFG715	06/10/17

12.7

12.8 Test Results

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.166000	40.0	15000.0	9.000	N	0.2	25.2	65.2
0.365750	37.6	15000.0	9.000	N	0.2	21.0	58.6
0.815950	32.3	15000.0	9.000	N	0.4	23.7	56.0
1.877975	28.9	15000.0	9.000	L1	0.4	27.1	56.0
3.067950	25.4	15000.0	9.000	N	0.4	30.6	56.0
23.129000	35.2	15000.0	9.000	L1	1.5	24.8	60.0

Frequency (MHz)	Average (dΒμV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.166000	24.4	15000.0	9.000	Ν	0.2	30.8	55.2
0.365750	36.3	15000.0	9.000	Ν	0.2	12.3	48.6
0.815950	28.8	15000.0	9.000	Ν	0.4	17.2	46.0
1.877975	23.3	15000.0	9.000	L1	0.4	22.7	46.0
3.067950	17.2	15000.0	9.000	Ν	0.4	28.8	46.0
23.129000	33.1	15000.0	9.000	L1	1.5	16.9	50.0

RF915 4.0 Page 28 of 45

13 Occupied Bandwidth

13.1 Definition

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

13.2 Test Parameters

Test Location: Element Hull
Test Chamber: Wireless Lab 1

Test Standard and Clause:

IC: ANSI C63.10-2013, Clause 6.9
FCC: ANSI C63.10-2013, Clause 11.8
EUT Channels / Frequencies Measured:

2402 MHz / 2426 MHz / 2480 MHz

EUT Channel Bandwidths:

EUT Test Modulations:

GFSK

Deviations From Standard:

Measurement BW:

Spectrum Analyzer Video BW:

Measurement Span:

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

Temperature: 21 °C +15 °C to +35 °C (as declared)

Humidity: 36 % RH 20 % RH to 75 % RH (as declared)

Supply: 24 V dc As declared

13.3 Test Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

RF915 4.0 Page 29 of 45

13.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iii, the bandwidth of the EUT was measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure iii Test Setup

13.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
FSU46	R&S	Spectrum Analyser	REF910	05/07/17

RF915 4.0 Page 30 of 45

13.6 Test Results

Channel Frequency (MHz)	F _L (MHz)	F _H (MHz)	6dB Bandwidth (kHz)	Result
2402	2401.634615	2402.346154	711.539	PASS
2426	2425.620192	2426.336538	716.346	PASS
2480	2479.629808	2480.346154	716.346	PASS

Date: 4.APR.2017 09:01:00

RF915 4.0 Page 31 of 45

14 Maximum peak conducted output power

14.1 Definition

The maximum peak conducted output power is defined as the maximum power level measured with a peak detector using a filter with width and shape of which is sufficient to accept the signal bandwidth.

The maximum conducted output power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level.

14.2 Test Parameters

Test Location: Element Hull
Test Chamber: Wireless Lab 1

Test Standard and Clause: ANSI C63.10-2013, Clause 11.9.1 EUT Channels / Frequencies Measured: 2402 MHz / 2426 MHz / 2480 MHz

EUT Channel Bandwidths: 2 MHz

Deviations From Standard: None

Measurement BW: 3 MHz

Spectrum Analyzer Video BW: 10 MHz

Measurement Detector: Peak

Voltage Extreme Environment Test Range: Mains Power = 85 % and 115 % of Nominal (FCC only

requirement);

Battery Power = new battery.

Environmental Conditions (Normal Environment)

Temperature: 21 °C +15 °C to +35 °C (as declared)

Humidity: 36 % RH 20 % RH to 75 % RH (as declared)

Supply: 24 V dc As declared

14.3 Test Limit

For systems employing digital modulation techniques operating in the bands 902 to 928 MHz, 2400 to 2483.5 MHz and 5725 to 5850 MHz, the maximum peak conducted output power shall not exceed 1 W.

RF915 4.0 Page 32 of 45

14.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iv, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure iv Test Setup

14.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
FSU46	R&S	Spectrum Analyser	REF910	05/07/17

RF915 4.0 Page 33 of 45

14.6 Test Results

Channel Frequency (MHz)	Maximum peak conducted output power (dBm)	Maximum peak conducted output power (W)	Antenna gain (dBi)	E.I.R.P. (W)	Result
2402	-6.13	0.00024	9.00	0.00194	PASS
2426	-6.03	0.00025	9.00	0.00198	PASS
2480	-6.34	0.00023	9.00	0.00185	PASS

Date: 4.APR.2017 08:59:24

RF915 4.0 Page 34 of 45

15 Out-of-band and conducted spurious emissions

15.1 Definition

Out-of-band emission.

Emission on a frequency or frequencies immediately outside the necessary bandwidth that results from the modulation process but excluding spurious emissions.

Spurious emission.

Emission on a frequency or frequencies that are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products, and frequency conversion products, but exclude out-of-band emissions.

15.2 Test Parameters

Test Location: Element Hull
Test Chamber: Wireless Lab 1

Test Standard and Clause: ANSI C63.10-2013, Clause 11.11 EUT Channels / Frequencies Measured: 2402 MHz / 2426 MHz / 2480 MHz

EUT Channel Bandwidths: 2 MHz

Deviations From Standard: None

Measurement BW: 100 kHz

Spectrum Analyzer Video BW: 300 kHz

Measurement Detector: Peak

Measurement Range: 30 MHz to 25 GHz

Environmental Conditions (Normal Environment)

Temperature: 21 °C +15 °C to +35 °C (as declared)

Humidity: 36 % RH 20 % RH to 75 % RH (as declared)

Supply: 24 V dc As declared

15.3 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in FCC 47CFR15.209(a) / RSS-Gen is not required.

RF915 4.0 Page 35 of 45

15.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure v, the emissions from the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure v Test Setup

15.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
FSU46	R&S	Spectrum Analyser	REF910	05/07/17

RF915 4.0 Page 36 of 45

15.6 Test Results

Channel Frequency (MHz)	Emission Frequency (MHz)	Analyzer Level (dBm)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
2402	No	emissions were	e detected within	n 10 dB of the I	imit	PASS

RF915 4.0 Page 37 of 45

Channel Frequency (MHz)	Emission Frequency (MHz)	Analyzer Level (dBm)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
2426	No	emissions wer	e detected within	n 10 dB of the I	imit	PASS

RF915 4.0 Page 38 of 45

Channel Frequency (MHz)	Emission Frequency (MHz)	Analyzer Level (dBm)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
2480	No	emissions were	e detected withir	n 10 dB of the I	imit	PASS

RF915 4.0 Page 39 of 45

16 Power spectral density

16.1 Definition

The power per unit bandwidth.

16.2 Test Parameters

Test Location: Element Hull
Test Chamber: Wireless Lab 1

Test Standard and Clause: ANSI C63.10-2013, Clause 11.10 EUT Channels / Frequencies Measured: 2402 MHz / 2426 MHz / 2480 MHz

EUT Channel Bandwidths: 2 MHz

Deviations From Standard: None

Measurement BW: 100 kHz

Spectrum Analyzer Video BW: 300 kHz

Measurement Span: 1 MHz

Measurement Detector: Peak

Environmental Conditions (Normal Environment)

Temperature: 21 °C +15 °C to +35 °C (as declared)

Humidity: 36 % RH 20 % RH to 75 % RH (as declared)

Supply: 24 V dc As declared

16.3 Test Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RF915 4.0 Page 40 of 45

16.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vi, the peak emission of the EUT was measured on a spectrum analyser, with path losses taken into account.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure vi Test Setup

16.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
FSU46	R&S	Spectrum Analyser	REF910	05/07/17

RF915 4.0 Page 41 of 45

16.6 Test Results

Channel Frequency (MHz)	Power Spectral Density (dBm)	Result
2402	-6.34	PASS
2426	-6.14	PASS
2480	-6.48	PASS

Date: 4.APR.2017 09:02:03

RF915 4.0 Page 42 of 45

17 Measurement Uncertainty

Calculated Measurement Uncertainties

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence:

[1] Radiated spurious emissions

Uncertainty in test result (30 MHz to 1 GHz) = **4.6 dB** Uncertainty in test result (1 GHz to 18 GHz) = **4.7 dB**

[2] AC power line conducted emissions

Uncertainty in test result = 3.4 dB

[3] Occupied bandwidth

Uncertainty in test result = 15.5 %

[4] Conducted carrier power

Uncertainty in test result (Power Meter) = 1.08 dB

[5] Conducted / radiated RF power out-of-band

Uncertainty in test result – up to 8.1 GHz = 3.31 dBUncertainty in test result – 8.1 GHz to 15.3 GHz = 4.43 dBUncertainty in test result (30 MHz to 1 GHz) = 4.6 dBUncertainty in test result (1 GHz to 18 GHz) = 4.7 dB

[6] Power spectral density

Uncertainty in test result (Spectrum Analyser) = 2.48 dB

RF915 4.0 Page 43 of 45

18 General SAR test reduction and exclusion guidance & MPE Calculation

KDB 447498

Section 4.3 General SAR test reduction and exclusion guidance

For Standalone SAR exclusion consideration, when SAR Exclusion Threshold requirement in KDB 447498 is satisfied, standalone SAR evaluation for general population exposure conditions by measurement or numerical simulation is not required.

The SAR Test Exclusion Threshold for operation in the 2400 - 2483.5 MHz band will be determined as follows

SAR Exclusion Threshold (SARET)
SAR Exclusion Threshold =

Step 1 + Step 2

Step 1

 $NT = [(MP/TSD^{A}) * \sqrt{f_{GHz}}]$

NT = Numeric Threshold (3.0 for 1-g SAR and 7.5 for 10-g SAR)

MP = Max Power of channel (mW) (inc tune up)

TSD^A = Min Test separation Distance or 50mm (whichever is lower) = 5mm

(in this case)

We can transpose this formula to allow us to find the maximum power of a channel allowed and compare this to the measured maximum power.

=
$$[(NT \times TSD^A) / \sqrt{f_{GHz}}]$$

For Distances Greater than 50 mm Step 2 applies

Step 2

$$(TSD^{B} - 50mm) * 10$$

Where:

 TSD^B = Min Test separation Distance (mm) = 50

Note: Step 2 is not required here as the TSD^A is 5mm.

Operating Frequency 2.402 GHz

SARET = $[(3.0 \times 5) / \sqrt{2.402}]$

SARET = 9.68mW

Operating Frequency 2.426 GHz

SARET = $[(3.0 \times 5) / \sqrt{2.426}]$

SARET = 9.63mW

Operating Frequency 2.480 GHz

SARET = $[(3.0 \times 5) / \sqrt{2.480}]$

SARET = 9.53mW

RF915 4.0 Page 44 of 45

Channel Frequency (MHz)	EIRP (mW)	SAR Exclusion Threshold (mW)	SAR Evaluation
2402	1.94	9.68	Not Required
2426	1.98	9.63	Not Required
2480	1.85	9.53	Not Required

MPE Calculation

Prediction of MPE limit at a given distance

For purposes of these requirements mobile devices are defined by the FCC as transmitters designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between radiating structures and the body of the user or nearby persons. These devices are normally evaluated for exposure potential with relation to the MPE limits. As the 20cm separation specified under FCC rules may not be achievable under normal operation of the EUT, an RF exposure calculation is needed to show the minimum distance required to be less than the power density limit, as required under FCC rules.

Equation from IEEE C95.1

$$S = \frac{EIRP}{4 \pi R^2}$$
 re - arranged $R = \sqrt{\frac{EIRP}{S 4 \pi}}$

Where:

S = power density

R = distance to the centre of radiation of the antenna

EIRP = EUT Maximum power

Result

Prediction	Maximum EIRP	Power density limit	Distance (R) cm required to be less than the power density limit
Frequency (MHz)	(mW)	(S) (mW/cm²)	
2426	1.98	1.00	0.40

RF915 4.0 Page 45 of 45