

Elucidating Circadian and Sleep Phenotypes and Relation to Cognitive Impairment in Alzheimer's Dementia

Catherine M. Heinzinger¹, Lu Wang², James Bena², Lynn M. Bekris³, Nancy Foldvary-Schaefer¹, Jagan A. Pillai⁴, Sujata Rao², Stephen M. Rao⁴, James B. Leverenz⁴, Reena Mehra¹

¹Sleep Disorders Center, Neurological Institute, ²Lerner Research Institute, ³Genomic Medicine Institute, ⁴Lou Ruvo Center for Brain Health, Neurological Institute

Introduction

Although sleep disruption in Alzheimer's disease (AD) pathogenesis has been described, the role of circadian rhythm dysfunction (CRD) is less understood.

Objective

We hypothesize greater CRD and sleep disruption with poorer cognitive function in AD compared to normal cognition.

Methods

Table 1. Subject Groups								
MCI-AD	HR (High Risk)	CL (Control)						
Mild cognitive impairment (MCI), APOES4 carriers	Cognitively normal APOES4 carriers	Cognitively normal APOEE4 non-carriers						
N=18	N=19	N=16						

 Predictors were evaluated across groups in association with cognition (Mini-Mental State Exam (MMSE)).

Table 2. Predictors								
Actigra	DCC							
Sleep	Circadian	PSG						
Sleep fragmentation index (SFI)	Sleep regulatory index (SRI)	Apnea hypopnea index (AHI)*						
Sleep efficiency (SE)	Mesor	Recording time						
Total sleep time (TST)	Amplitude	with SaO2 < 90%						
Wake episodes (WE)	Robustness							
	Intra-daily stability							

 ANOVA or Kruskal-Wallis with Bonferroni adjustment assessed cross-group comparisons. ANCOVA assessed cross-group association of MMSE & sleep/circadian indices.

Table 3. Subject Characteristics									
	MCI-AD		HR		CL		n-value		
Factor	N	Statistics	N	Statistics	N	Statistics	p-value		
Age	18	68.4 ± 6.2	19	71.2 ± 3.7	16	73.7 ± 3.7	0.008		
Sex, male	18	10 (56%)	19	11 (58%)	16	6 (38%)	0.43		
Race	18		19		16		0.065		
White		18 (100%)		17 (90%)		12 (75%)			
Black		0 (0%)		2 (10%)		4 (25%)			
Education, yr	18	15.3 ± 2.6	19	17.2 ± 2.6	15	17.3 ± 2.7	0.051		
BMI	18	27.5 ± 4.2	15	27.6 ± 3.6	15	27.0 ± 2.1	0.85		

- Age differed across groups (p=0.008, Table 3)
- Associations in MCI-AD (Figure 1):
 - 1 unit increase in SFI assoc. with 0.36 pt. lower MMSE
 - 5% increase in SE assoc. with 0.49 pt. higher MMSE
 - 1 hour increase in TST assoc. with 0.81 pt. higher MMSE
- MCI-AD had more WE than HR and CL (Figure 2)
- MMSE scores differed across groups (p=<0.001, Figure 3)

Conclusion

- Less total sleep time and more fragmented sleep are associated with poorer MMSE scores in *APOE*84 carriers with MCI (MCI-AD).
- Cognitively normal participants at risk of AD (HR group) do not show CRD that is seen in MCI-AD and are more consistent with controls (CL).

Acknowledgements

This study was supported by the Cleveland Clinic Catalyst Award, the Alzheimer's Association (2014-NIRG-305310), IMMUNE-AD (R01AG022304), Cleveland Alzheimer's Disease Research Center (P30 AG062428), and the Jane and Lee Seidman Fund.