

VE370 RC (Final Part 2)

Li Shi 2020.12.4

Concept 1: Motivation of using cache Principle of locality (temporal & spatial)

Temporal Locality:

If a location is reference it is likely to be reference again in the near future

Spatial Locality:

If a location is referenced it is likely that locations near it will be referenced in the near future

Concept 2: Key characteristics of cache

• **Block placement**: Where can a block be placed in the cache?

• Block identification: How a block is found if it is in the cache?

• Block replacement: Which block should be replaced on a miss?

• Write strategy: What happens on a write?

Concept 2: Key characteristics of cache Block placement

Set Number

Cache

Fully Associative

(2-way) Set Associative

Direct Mapped

Concept 2: Key characteristics of cache Block identification

- Example: directed map, 8-word block, 4-line cache
- Simple exercise 1
 - Where does the data byte with address 01011011010 in memory locate in this example cache?

Concept 2: Key characteristics of cache Block identification

- Example: 2-way associative, 8-word block, 4-line cache
- Simple exercise 2
 - Where does the data byte with address 01011011010 in memory locate in this example cache?

Concept 2: Key characteristics of cache Block replacement (for associative cache)

- Replacement policy
 - Random
 - Least-recently used (LRU)
 - First in, first out (FIFO) aka Round-Robin
- Which one is the best?
 - It depends
 - LRU works well for 2-way/4-way
 - But random works as good as LRU for higher associativity

Concept 2: Key characteristics of cache Write strategy

Cache Hit

- Write Through write both cache and memory, generally higher traffic but simpler to design
- Write Back write cache only, memory is written when evicted, dirty bit per block avoids unnecessary write backs, more complicated

Cache Miss

- No Write Allocate only write to main memory
- Write Allocate fetch block into cache, then write only to cache
- Common combinations
 - Write Through & No Write Allocate
 - Write Back & Write Allocate

Concept 3: Cache performance

- Total CPI = base CPI + Miss (stall) cycles per instruction
- Average memory access time (AMAT)
 - AMAT = Hit Time + (Miss Rate * Miss Penalty)
- How about 2-level cache?
 - CPI = base CPI + L1 miss L2 hit t(L2)+ L1 miss L2 miss (t(L2)+ t(Mem))
 = base CPI + L1 miss (t(L2) + L2 miss t(Mem))

Concept 4: VM & Page Table Address translation

Concept 5: TLB How to use TLB? (T14 – Page 24)

Concept 5: TLB TLB hit & miss

TLB Hit

- Provide physical address
- Reference bit $0/1 \rightarrow 1$
- If write:
 - dirty bit $0/1 \rightarrow 1$
- Go to next instruction

TLB Miss

- Page table hit:
 - Load page table entry to TLB
- Page table miss:
 - Page fault exception
 - OS loads the page from disk
 - Update page table & TLB
- Restart current instruction

Concept 5: TLB TLB hit & miss

Concept 6: 3C Model Sources of misses

- Compulsory misses (aka cold start misses)
 - First access to a block
- Capacity misses
 - Due to finite cache size
 - A replaced block is later accessed again
- Conflict misses (aka collision misses)
 - In a non-fully associative cache
 - Due to competition for blocks in a set
 - Would not occur in a fully associative cache of the same total size

Homework review 1: 7.3 (1) & (2)

Given the following byte addresses for memory access:

- 3, 180, 43, 3, 191, 89, 190, 14, 181, 44, 186, 252
- (1) Show the final cache contents for a 3-way set associative cache with two-word blocks and a total size of 24 words. Use LRU replacement. For each reference identify the index bits, the tag bits, the offset bits, and if it is a hit or a miss. (20 points)
- (2) Show the final cache contents for a fully associative cache with one-word blocks and a total size of 8 words. Use LRU replacement. For each reference identify the index bits, the tag bits, and if it is a hit or a miss. (20 points)

Index	Valid	Tag	Word0	Word1
00				
01				
10				
11				

Index	Valid	Tag	Word0
_			

- 4 KB pages / 4-entry fully associative TLB / LRU replacement.
- If pages must be brought in from disk, increment to the next largest page number.
- Access to the memory by the following virtual address (decimal): 12948, 49419, 46814, 13975, 40004, 12707, 52236
- Convert to hexadecimal
- 0x3294, 0xC10B, 0xB6DE, 0x3697,
- 0x9C44, 0x31A3, 0xCC0C

V	Tag	PPN	
1	11	12	
1	7	4	
1	3	6	
0	4	9	

#	V	PPN
0	1	5
1	0	Disk
2	0	Disk
3	1	6
4	1	9
5	1	1
6	0	Disk
7	1	4
8	0	Disk
9	0	Disk
10	1	3
11	1	12
Dogo Toblo		

LB Page Table

- 4 KB pages / 4-entry fully associative TLB / LRU replacement.
- 0x3294, 0xC10B, 0xB6DE, 0x3697, 0x9C44, 0x31A3, 0xCC0C

• Physical address: 0x6294

TLB Hit

V	Tag	PPN
1	11	12
1	7	4
1	3	6
0	4	9

#	V	PPN
0	1	5
1	0	Disk
2	0	Disk
3	1	6
4	1	9
5	1	1
6	0	Disk
7	1	4
8	0	Disk
9	0	Disk
10	1	3
11	1	12
D	2010	Tabla

TLB

Page Table

- 4 KB pages / 4-entry fully associative TLB / LRU replacement.
- 0x3294, 0xC10B, 0xB6DE, 0x3697, 0x9C44, 0x31A3, 0xCC0C

Physical address: 0xD10B

Page Fault

V	Tag	PPN
1	11	12
1	7	4
1	3	6
1	12	13

LB Page Table

#	V	PPN
0	1	5
1	0	Disk
2	0	Disk
3	1	6
4	1	9
5	1	1
6	0	Disk
7	1	4
8	0	Disk
9	0	Disk
10	1	3
11	1	12
12	1	13
		

- 4 KB pages / 4-entry fully associative TLB / LRU replacement.
- 0x3294, 0xC10B, 0xB6DE, 0x3697, 0x9C44, 0x31A3, 0xCC0C

• Physical address: 0xC6DE

TLB Hit

V	Tag	PPN
1	11	12
1	7	4
1	3	6
1	12	13

#	V	PPN	
0	1	5	
1	0	Disk	
2	0	Disk	
3	1	6	
4	1	9	
5	1	1	
6	0	Disk	
7	1	4	
8	0	Disk	
9	0	Disk	
10	1	3	
11	1	12	
12	1	13	
Pá	Page Table		

LB Pag

- 4 KB pages / 4-entry fully associative TLB / LRU replacement.
- 0x3294, 0xC10B, 0xB6DE, 0x3697, 0x9C44, 0x31A3, 0xCC0C

• Physical address: 0x6697

TLB Hit

V	Tag	PPN
1	11	12
1	7	4
1	3	6
1	12	13

#	V	PPN
0	1	5
1	0	Disk
2	0	Disk
3	1	6
4	1	9
5	1	1
6	0	Disk
7	1	4
8	0	Disk
9	0	Disk
10	1	3
11	1	12
12	1	13
Dago Tablo		

LB Page Table

- 4 KB pages / 4-entry fully associative TLB / LRU replacement.
- 0x3294, 0xC10B, 0xB6DE, 0x3697, 0x9C44, 0x31A3, 0xCC0C

• Physical address: 0xEC44

Page Fault

V	Tag	PPN
1	11	12
1	9	14
1	3	6
1	12	13

TLB

#	V	PPN		
0	1	5		
1	0	Disk		
2	0	Disk		
3	1	6		
4	1	9		
5	1	1		
6	0	Disk		
7	1	4		
8	0	Disk		
9	1	14		
10	1	3		
11	1	12		
12	1	13		
Dogo Toblo				

Page Table

- 4 KB pages / 4-entry 2-way associative TLB / LRU replacement.
- If pages must be brought in from disk, increment to the next largest page number.
- Access to the memory by the following virtual address (decimal): 12948, 49419, 46814, 13975, 40004, 12707, 52236
- Convert to hexadecimal
- 0x3294, 0xC10B, 0xB6DE, 0x3697,
- 0x9C44, 0x31A3, 0xCC0C

	V	Tag	PPN
0			
1			

#	V	PPN
0	1	5
1	0	Disk
2	0	Disk
3	1	6
4	1	9
5	1	1
6	0	Disk
7	1	4
8	0	Disk
9	0	Disk
10	1	3
11	1	12

LB Page T