## Singularity Analysis for the Perspective-Five-Line Problem

### **International Journal of Computer Vision**

Jorge García Fontán, Abhilash Nayak, Sébastien Briot, Mohab Safey El Din

**Jorge García Fontán**: Sorbonne Université, Laboratoire d'Informatique de Paris 6, LIP6, Equipe PolSvs, Paris, France

**Abhilash Nayak**: Centre national de la Recherche Scientifique, Laboratoire des Sciences du Numérique de Nantes (LS2N), UMR CNRS 6004, Nantes, France

**Sébastien Briot**: Centre national de la Recherche Scientifique, Laboratoire des Sciences du Numérique de Nantes (LS2N), UMR CNRS 6004, Nantes, France

**Mohab Safey El Din**: Sorbonne Université, CNRS, INRIA, Laboratoire d'Informatique de Paris 6, LIP6, Equipe PolSys, Paris, France

Corresponding author: Jorge García Fontán, email: Jorge.Garcia-Fontan@lip6.fr

# 1. Defining the lines, finding the interaction matrix and calssifying its minors into ideals G, H and K

```
> restart;
Calling the required libraries
> with(LinearAlgebra): with(plots): with(plottools):
 Defining the 5 lines (direction vector and a point on the line) and the position of the
camera in the object frame
> OC:=Vector([X,Y,Z]):
> OP1:=Vector([0,0,0]): CP1:=OP1-OC: u1:=Vector([1,0,0]): OP2:=Vector([0,0,d1]): CP2:=OP2-OC: u2:=Vector([s1,s2,0]): OP3:=Vector([d2,d3,0]): CP3:=OP3-OC: u3:=Vector([d2,s3,s4]):
   OP4:=Vector([0,d4,d5]): CP4:=OP4-OC: u4:=Vector([s5,d4,s6]): OP5:=Vector([d6,0,d7]): CP5:=OP5-OC: u5:=Vector([s7,s8,d7]):
 Plotting the observed lines for arbitrary parameters
\rightarrow val:={d1=2,d2=3,d3=5,d4=1,d5=7,d6=-4,d7=11, s1=4,s2=-5,s3=7,s4=
   3,s5=-2,s6=13,s7=-11,s8=6:
> n:=1:
   t1:=spacecurve(eval(OP1,val)+lambda*eval(u1,val),lambda=-20..20,
   color=red,thickness=5,transparency=0):
   t2:=spacecurve(eval(OP2,val)+lambda*eval(u2,val),lambda=-n..n,
   color=green,thickness=5,transparency=0):
   t3:=spacecurve(eval(OP3,val)+lambda*eval(u3,val),lambda=-n..n,
   color=blue,thickness=5,transparency=0):
   t4:=spacecurve(eval(OP4,val)+lambda*eval(u4,val),lambda=-n..n,
   color=black,thickness=5,transparency=0):
   t5:=spacecurve(eval(OP5,val)+lambda*eval(u5,val),lambda=-n..n,
   color=cyan,thickness=5,transparency=0):
> display(t1,t2,t3,t4,t5,labels=[X,Y,Z],axes=normal);
```



### The rows of the interaction matrix consisting of an affine line and an ideal line for each observed line

```
> for i from 1 to 5 do
  f||i||1:=CrossProduct(u||i,CP||i):
  m||i||1:=CrossProduct(OP||i,f||i||1):
  f||i||2:=ZeroVector(3):
  m||i||2:=CrossProduct(u||i,f||i||1):
  zf||i:=Vector([Transpose(f||i||1),Transpose(m||i||1)]):
  zm||i:=Vector([Transpose(f||i||2),Transpose(m||i||2)]):
> zeta:=Transpose(Matrix([zf1,zf2,zf3,zf4,zf5,zm1,zm2,zm3,zm4,zm5])
\zeta := [ [0, Z, -Y, 0, 0, 0],
                                                                           (1.1)
   [s2(d1-Z), -s1(d1-Z), Xs2-Ys1, d1s1(d1-Z), d1s2(d1-Z), 0],
   [-s3Z-s4(d3-Y), d2Z+s4(d2-X), d2(d3-Y)-s3(d2-X), d3(d2(d3-Y)-s3(d2-X))]
    (-Y) - s3(d2 - X), -d2(d2(d3 - Y) - s3(d2 - X)), d2(d2Z + s4(d2 - X))
   -d3 (-s3Z-s4 (d3-Y))],
   [d4 (d5-Z) - s6 (d4-Y), -s5 (d5-Z) - s6X, s5 (d4-Y) + d4X, d4 (s5 (d4-Y))]
   +d4X) -d5 (-s5 (d5 - Z) -s6X), d5 (d4 (d5 - Z) -s6 (d4 - Y)), -d4 (d4 (d5
   -Z) -s6(d4-Y))],
   [s8(d7-Z)+d7Y, -s7(d7-Z)+d7(d6-X), -s7Y-s8(d6-X), -d7(-s7(d7-X))]
   (-Z) + d7 (d6 - X), -d6 (-s7 Y - s8 (d6 - X)) + d7 (s8 (d7 - Z) + d7 Y), d6 (
   -s7(d7-Z)+d7(d6-X)],
   [0, 0, 0, 0, Y, Z],
   [0, 0, 0, s2(Xs2 - Ys1), -s1(Xs2 - Ys1), -s1^2(d1 - Z) - s2^2(d1 - Z)],
```

```
[0, 0, 0, s3 (d2 (d3 - Y) - s3 (d2 - X)) - s4 (d2 Z + s4 (d2 - X)), -d2 (d2 (d3 - X))]
       -Y) -s3(d2-X)) +s4(-s3Z-s4(d3-Y)), d2(d2Z+s4(d2-X))-s3(-s3Z
        -s4(d3-Y))],
      [0, 0, 0, d4 (s5 (d4 - Y) + d4 X) - s6 (-s5 (d5 - Z) - s6 X), -s5 (s5 (d4 - Y))
       +d4X) + s6(d4(d5-Z)-s6(d4-Y)), s5(-s5(d5-Z)-s6X)-d4(d4(d5-Z)-s6X)
       -Z) -s6(d4-Y))],
      [0, 0, 0, s8(-s7Y - s8(d6 - X)) - d7(-s7(d7 - Z) + d7(d6 - X)), -s7(-s7Y)
       -s8(d6-X) + d7(s8(d7-Z) + d7Y), s7(-s7(d7-Z) + d7(d6-X))
        -s8 (s8 (d7 - Z) + d7 Y)
210 minors of the interaction matrix
> ch:=combinat[choose](10,4): nops(ch);
                                                                         210
                                                                                                                                                           (1.2)
> for i from 1 to nops(ch) do
    zt||i:=DeleteRow(zeta,ch[i]):
    D||i:=factor(Determinant(DeleteRow(zeta,ch[i]))):
    od:
> I210:=[seq(D||i,i=1..210)]: nops(%);
                                                                                                                                                           (1.3)
Determining the ideals G, H and K
> zf:=Transpose(Matrix([zf1,zf2,zf3,zf4,zf5])):
    zm:=Transpose(Matrix([zm1,zm2,zm3,zm4,zm5])):
> c52:=combinat[choose](5,2); nc:=nops(c52):
            c52 := [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 4], [3, 5], [4, 5]]
                                                                                                                                                           (1.4)
> k:=1: #splitting some minors into ideals G and H.
    for i from 1 to nc do
    for i from 1 to nc do
    zs:=Matrix([[DeleteRow(zf,c52[i])],[DeleteRow(zm,c52[j])]]):
    Ds||k:=factor(Determinant(zs)):
     Gs||k:=factor(Determinant(DeleteRow(zf[1..5,1..3],c52[i]))):
    Hs[[k:=factor(Determinant(DeleteRow(zm[1..5,4..6],c52[i]))):
    k := k + 1:
    od:
    od:
    116:=[seq(Ds||i,i=1..k-1)]:
    G16t:=[seq(Gs||i,i=1..k-1)]: ListTools[MakeUnique](G16t): G:=[seq
    (%[i],i=1..nops(%))]: nops(%);
    H16t:=[seq(Hs||i,i=1..k-1)]: ListTools[MakeUnique](H16t): H:=[seq[H16t]: H:=[seq[H16t]]: H:=[seq[H16t]: H:=[seq[H16t]]: H:=[seq[H16t]: H:=[seq[H16t]]: H:=[seq[H16t]: H:=
    (%[i],i=1..nops(%))]: nops(%);
                                                                           10
                                                                           10
                                                                                                                                                           (1.5)
The remaining 6 minors that cannot be factorized: Ideal K55
> k:=1:
    for i from 1 to 210 do
    if nops(1210[i])=2 or nops(1210[i])=3 then
    pluch:
    else
    Kv[k]:=1210[i]:
     k := k + 1 :
```

```
fi:
> K55:=[seq(Kv[i],i=1..k)]: nops(%);
                                                                                             (1.6)
Substituting parameters as given in Appendix A.
> Gv:=eval(G,val);
Gv := [7167 X^2 + 3796 XY + 4339 XZ - 3630 Y^2 - 516 YZ + 604 Z^2 - 9459 X - 678 Y]
                                                                                            (1.7)
    -3250 Z + 1074, -3950 X^{2} - 6185 XY - 2242 XZ - 2420 Y^{2} - 1356 YZ - 206 Z^{2}
    +9384 X + 6632 Y + 2910 Z - 4996, -2405 X^2 - 1924 XY + 733 XZ + 2278 YZ
    +846Z^{2}+10559X+5064Y+1554Z-6492, -1765X^{2}-587XY-878XZ+660Y^{2}
    +232 YZ - 122 Z^{2} + 2606 X + 216 Y + 598 Z - 708, -924 XY + 102 XZ - 847 Y^{2}
    -341 YZ + 36 Z^{2} + 1386 Y + 12 Z, -363 XY + 552 XZ - 132 Y^{2} + 347 YZ + 204 Z^{2}
    + 1749 Y - 36 Z, -177 XY - 27 XZ + 75 Y^2 + 17 YZ - 8 Z^2 + 156 Y + 6 Z, -110 XY
    -270 XZ - 88 Y^2 - 337 YZ - 120 Z^2 + 242 Y + 240 Z, -130 XY + 40 XZ - 104 Y^2
    -62 YZ + 10 Z^{2} + 188 Y - 20 Z, -30 XY + 145 XZ - 24 Y^{2} + 11 YZ + 30 Z^{2} + 210 Y
    -60 Z
> Hv:=eval(H,val);
Hv := [162602 X^3 + 46906 X^2 Y + 1612778 X^2 Z - 790636 X Y^2 + 1768668 X Y Z + 71038 X Z^2]
    +390258 Y^{3} - 794372 Y^{2} Z - 1067620 Y Z^{2} + 80122 Z^{3} - 6124500 X^{2} - 10320180 X Y
    +3756084 XZ + 1357554 Y^{2} + 3276582 YZ + 1308192 Z^{2} + 33121210 X + 23013522 Y
    -6710602 Z - 34432464, -366610 X^3 + 303947 X^2 Y - 67779 X^2 Z + 256468 X Y^2
    +813154 XYZ - 428220 XZ^{2} - 177056 Y^{3} + 73270 Y^{2}Z - 660367 YZ^{2} - 5863 Z^{3}
    +2425148 X^{2} - 3315971 XY + 8642341 XZ - 2963608 Y^{2} + 5422957 YZ + 1597073 Z^{2}
    -15148022 X - 7865422 Y - 13002740 Z + 19664092, -217295 X^3 + 53924 X^2 Y
    +35625 X^{2} Z + 224118 X Y^{2} + 53960 X Y Z + 239951 X Z^{2} + 33528 Y^{3} - 417430 Y^{2} Z
    +80572 YZ^{2} + 128535 Z^{3} + 2141480 X^{2} + 324074 XY + 445690 XZ - 235692 Y^{2}
    -1754620 YZ - 907002 Z^2 - 9471279 X - 2909124 Y - 2279067 Z + 7157862
    -73960 X^{3} - 46428 X^{2} Y + 320426 X^{2} Z + 88867 X Y^{2} + 163934 X Y Z + 184389 X Z^{2}
    +62940 Y^3 - 356381 Y^2 Z - 32282 YZ^2 + 27183 Z^3 + 210018 X^2 - 721747 XY
    -416981 XZ - 146898 Y^2 - 118097 YZ - 116973 Z^2 + 111106 X + 377082 Y
    + 153504 Z - 56580, - 16488 X^2 Y + 10906 X^2 Z + 10653 X Y^2 - 11926 X Y Z - 7705 X Z^2
    -726 Y^3 - 10775 Y^2 Z - 17392 YZ^2 - 143 Z^3 + 211842 XY + 170436 XZ - 1971 Y^2
    + 139512 YZ + 38667 Z^{2} - 213246 Y - 239806 Z, - 8431 X^{2} Y + 7125 X^{2} Z + 2478 X Y^{2}
    +11210 XYZ + 1416 XZ^{2} - 2772 Y^{3} - 2280 Y^{2}Z + 6847 YZ^{2} + 3135 Z^{3} + 107494 XY
    +42342 XZ - 7182 Y^2 - 48208 YZ - 15852 Z^2 - 178563 Y - 87291 Z, -3038 X^2 Y
    +3686 X^{2} Z - 2288 X Y^{2} + 16544 X Y Z + 3344 X Z^{2} - 315 Y^{3} - 4111 Y^{2} Z - 157 Y Z^{2}
    +663 Z^{3} + 27166 XY - 4168 XZ + 2769 Y^{2} - 13942 YZ - 1527 Z^{2} - 25806 Y + 690 Z
```

```
-3025 X^2 Y - 1490 X^2 Z - 770 X Y^2 + 6050 X Y Z - 4070 X Z^2 + 1320 Y^3 + 3350 Y^2 Z
     + 1705 YZ^{2} + 18201 XY + 38810 XZ + 19448 Y^{2} - 7697 YZ + 57646 Y, -650 X^{2} Y
     -3350 X^2 Z - 195 X Y^2 + 8450 X Y Z - 845 X Z^2 + 260 Y^3 + 3410 Y^2 Z + 390 Y Z^2
     -13390 XY + 1630 XZ + 276 Y^2 - 8372 YZ + 15088 Y, 225 X^2 Y - 1685 X^2 Z
     +705 XY^{2} + 450 XYZ - 345 XZ^{2} + 420 Y^{3} - 1325 Y^{2}Z - 645 YZ^{2} - 8056 XY
     +705 XZ - 918 Y^2 - 1527 YZ + 5658 Y
> K55v:=eval(K55,val):
```

### 2. Analysis of the variety V(G) intersection V(K)

```
Groebner basis of G
> indets(G);
                                                                               (2.1)
              {X, Y, Z, d1, d2, d3, d4, d5, d6, d7, s1, s2, s3, s4, s5, s6, s7, s8}
> GbG:=Groebner[Basis](G,plex(d1, d2, d3, d4, d5, d6, d7, s1, s2,
  s3, s4, s5, s6, s7, s8, X, Y, Z)): nops(%);
                                                                               (2.2)
The normal form of elements of K w.r.t the Groebner basis.
\rightarrow Groebner[NormalForm](K55[55],GbG,plex(d1, d2, d3, d4, d5, d6, d7,
  s1, s2, s3, s4, s5, s6, s7, s8, X, Y, Z)); # It can be proved for the rest of the elements of K55 but we know that Thus V(G)
  intersection V(K) = V(G)
                                                                               (2.3)
Groebner basis of G after substituting the parameters d_i and s_i
> GbGv:=Groebner[Basis](Gv,plex(X,Y,Z)); # No solution for generic
  five lines
                                 GbGv := [1]
                                                                               (2.4)
Finding five lines such that GbGv is not <1> leading to a singularity
> for i from 1 to 5 do
  I||i:=CrossProduct(u||i,OP||i):
  le||i:=Vector([Transpose(u||i),Transpose(I||i)]):
  od:
> L5:=Transpose(Matrix([le1,le2,le3,le4,le5]));
                                                           0
                                                    d2 d3 - d2 s3
                                                                               (2.5)
                                                        s5 d4
```

$$L5 := \begin{bmatrix} d2 & s3 & s4 & -s4 & d3 & s4 & d2 & d2 & d3 - d2 & s3 \\ s5 & d4 & s6 & d4 & d5 - d4 & s6 & -s5 & d5 & s5 & d4 \\ s7 & s8 & d7 & s8 & d7 & d6 & d7 - d7 & s7 & -s8 & d6 \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{Eqs} := [\mathbf{op(convert(L5[2..5,1..6].Vector([0,k1,k2,k3,k4,1]),list)),} \end{bmatrix}$$

k1\*k4+k21;  $Eqs := [d1 \ k3 \ s2 - d1 \ k4 \ s1 + k1 \ s2, \ d2 \ k4 \ s4 - d3 \ k3 \ s4 + d2 \ d3 - d2 \ s3 + k1 \ s3 + k2 \ s4, \ d4 \ k1]$  (2.6) + s6 k2 + (d4 d5 - d4 s6) k3 - s5 d5 k4 + s5 d4, s8 k1 + d7 k2 + s8 d7 k3 + (d6 d7)-d7 s7) k4 - s8 d6, k1 k4 + k2]

```
|> El:=eliminate(Eqs,{k1,k2,k3,k4}):
> h:=op(EI[2]): # If this polynomial is zero, we have a singularity
Example
> v2:={d1=2,d2=3,d3=5,d4=1,d5=7,d6=-4, s1=4,s2=-5,s3=7,s4=3,s5=-2,
  s6=13,s7=-11,s8=6}:
> sd7:=[solve(eval(h,v2))];
sd7 := \left[ \frac{128893236}{7630285} + \frac{24}{7630285} \sqrt{8508173023861}, \frac{128893236}{7630285} \right]
                                                                               (2.7)
      \frac{24}{7630285}\sqrt{8508173023861}
> Gv2:=map(numer,eval(G,{op(v2),d7=sd7[1]})):
> L:=Groebner[Basis](Gv2,plex(X,Y,Z)); # V(L) is the line that
   intersects the five observed lines if they are chosen according
   to the parameters v2. Alternatively, if we make sure that the
   five lines do not satsify h=0, they belong to a regular linear
   line complex and we do not have one dimensional singularities.
L := [2166 \ Y + (-\sqrt{448189} + 583) \ Z, 2166 \sqrt{448189} - 2822298 + 3822990 \ X]
                                                                               (2.8)
    +(329\sqrt{448189}+587953)Z
```

### 3. Analsysis of the variety V(H) intersection V(K)

```
Groebner basis of H after substituting the parameters d i and s i
> GbHv:=Groebner[Basis](Hv,plex(X, Y, Z)): nops(%);
                                                                         (3.1)
The normal form of elements of K w.r.t the Groebner basis.
> Groebner[NormalForm](K55v[1],GbHv,plex(X, Y, Z)): nops(%); # Non-
  zero for all 55 elements of K55.
                                   10
                                                                         (3.2)
V(H) intersection V(K)
> HKv:=[op(Hv),op(K55v)]: indets(%);
                                \{X, Y, Z\}
                                                                         (3.3)
> Groebner[Basis](HKv,plex(X,Y,Z)); # No solutions for 5 generic
  lines
                                  [1]
                                                                         (3.4)
```

Results: There are no singularities in P5P when the 5 observed lines are chosen generically. Some conditions on the relative configurations of the lines must be satisfied to have a one-dimensional singularity, a transversal that intersects the five lines. Finding those conditions for the existence of isolated singularities is an open problem.

4. Singularities in P5L when the lines are subjected to

#### orthogonality and parallelism constraints

#### **Parametrization**

```
> OP1:=Vector([0,0,0]): CP1:=OP1-OC: u1:=Vector([1,0,0]):
  OP2:=Vector([0,0,d1]): CP2:=OP2-OC: u2:=Vector([0,1,0]):
  OP3:=Vector([d2,d3,0]): CP3:=OP3-OC: u3:=Vector([0,0,1]):
  OP4:=Vector([0,d4,d5]): CP4:=OP4-OC: u4:=Vector([1,0,0]):
  OP5:=Vector([d6,0,d7]): CP5:=OP5-OC: u5:=Vector([0,1,0]):
> t1:=spacecurve(eval(OP1,val)+lambda*eval(u1,val),lambda=-20..20,
  color=red,thickness=5,transparency=0):
  t2:=spacecurve(eval(OP2,val)+lambda*eval(u2,val),lambda=-20..20,
  color=green,thickness=5,transparency=0):
  t3:=spacecurve(eval(OP3,val)+lambda*eval(u3,val),lambda=-20..20,
  color=blue,thickness=5,transparency=0):
  t4:=spacecurve(eval(OP4,val)+lambda*eval(u4,val),lambda=-20..20,
  color=black,thickness=5,transparency=0):
  t5:=spacecurve(eval(OP5,val)+lambda*eval(u5,val),lambda=-20..20,
  color=magenta,thickness=5,transparency=0):
> display(t1,t2,t3,t4,t5,labels=[X,Y,Z],axes=normal);
```



#### Interaction matrix and deriving ideals G, H and K55

```
> for i from 1 to 5 do
  f||i||1:=CrossProduct(u||i,CP||i):
  m||i||1:=CrossProduct(OP||i,f||i||1):
  f||i||2:=ZeroVector(3):
  m||i||2:=CrossProduct(u||i,f||i||1):
  zf||i:=Vector([Transpose(f||i||1),Transpose(m||i||1)]):
  zm||i:=Vector([Transpose(f||i||2),Transpose(m||i||2)]):
> zeta:=Transpose(Matrix([zf1,zf2,zf3,zf4,zf5,zm1,zm2,zm3,zm4,zm5])
  );
\zeta := [ [0, Z, -Y, 0, 0, 0],
                                                                          (4.1)
   [d1-Z, 0, X, 0, d1 (d1-Z), 0],
   [-d3 + Y, d2 - X, 0, 0, 0, d2 (d2 - X) - d3 (-d3 + Y)],
   [0, -d5 + Z, d4 - Y, d4 (d4 - Y) - d5 (-d5 + Z), 0, 0],
   [d7-Z, 0, -d6+X, 0, -d6(-d6+X)+d7(d7-Z), 0],
   [0, 0, 0, 0, Y, Z],
```

```
[0, 0, 0, X, 0, -d1 + Z],
    [0, 0, 0, -d2 + X, -d3 + Y, 0],
   [0, 0, 0, 0, -d4 + Y, -d5 + Z],
   [0, 0, 0, -d6 + X, 0, -d7 + Z]
> zf:=Transpose(Matrix([zf1,zf2,zf3,zf4,zf5])):
  zm:=Transpose(Matrix([zm1,zm2,zm3,zm4,zm5])):
> c52:=combinat[choose](5,2); nc:=nops(c52):
      c52 := [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 4], [3, 5], [4, 5]]
                                                                         (4.2)
> k:=1: #splitting some minors into two ideals G and H.
  for i from 1 to nc do
  for j from 1 to nc do
  zs:=Matrix([[DeleteRow(zf,c52[i])],[DeleteRow(zm,c52[j])]]):
  Ds||k:=factor(Determinant(zs)):
  Gs||k:=factor(Determinant(DeleteRow(zf[1..5,1..3],c52[i]))):
  Hs[[k:=factor(Determinant(DeleteRow(zm[1..5,4..6],c52[i]))):
  k := k+1:
  od:
  od:
  116:=[seq(Ds||i,i=1..k-1)]:
  G16t:=[seq(Gs||i,i=1..k-1)]: ListTools[MakeUnique](G16t): G:=[seq
  (%[i],i=1..nops(%))]: nops(%);
  H16t:=[seq(Hs||i,i=1..k-1)]: ListTools[MakeUnique](H16t): H:=[seq]
  (%[i],i=1..nops(%))]: nops(%);
                                   10
                                                                         (4.3)
> ch:=combinat[choose](10,4): nops(ch):
> for i from 1 to nops(ch) do
  zt||i:=DeleteRow(zeta,ch[i]):
  D||i:=factor(Determinant(DeleteRow(zeta,ch[i]))):
\(\Gamma \text{K55}:=[seq(D||i,i=1..210)]:\)
Analysis of the variety V(G)
> Groebner[Basis](G,tdeg(X,Y,Z)); # No singularities in the generic
  case
                                  [1]
                                                                         (4.4)
Conditions such that V(G) is not null
> for i from 1 to 5 do
  Illi:=CrossProduct(u||i,OP||i):
  le||i:=Vector([Transpose(u||i),Transpose(I||i)]):
> L5:=Transpose(Matrix([le1,le2,le3,le4,le5]));
                                                                         (4.5)
```

```
1 0 0
                                                   0
                                                   0
                                                   0
                                                                                 (4.5)
                                                  d4
> flf:=1:
  for i from 1 to 5 do
  unassign('k1,k2,k3,k4,k5'):
  k||i:=1:
  Eqs:=[op(convert(L5[2..5,1..6].Vector([0,k1,k2,k3,k4,k5]),list)),
  k1*k4+k2*k5];
  El:=eliminate(Eqs,\{k1,k2,k3,k4,k5\} minus \{k||i\}):
  fl||i:=op(map(factor,El[2]));
  flf:=|cm(flf,fl||i):
  od:
> h:=flf:
                                                                                 (4.6)
             h := (d1 - d7) d5 (d1 d2 d4 - d1 d4 d6 - d2 d4 d7 + d3 d5 d6)
> Ga:=Groebner[Basis]([eval(op(G),d5=0)],plex(X,Y,Z)); nops(%); #
  If d5=0, the transversal is as follows.
                               Ga := [Z, -d2 + X]
                                                                                 (4.7)
> Gb:=Groebner[Basis]([eval(op(G),d7=d1)],plex(X,Y,Z)); nops(%); #
  If d1-d7=0, the transversal is as follows.
                            Gb := [-d1 + Z, -d3 + Y]
                                                                                 (4.8)
> Gct:=map(factor,Groebner[Basis]([op(G),d1*d2*d4-d1*d4*d6-d2*d4*
  d7+d3*d5*d6], plex(X,Y,Z,d1,d2,d3,d4,d5,d6,d7)));
Gct := [d1 \ d2 \ d4 - d1 \ d4 \ d6 - d2 \ d4 \ d7 + d3 \ d5 \ d6, d6 \ d7 \ (Y \ d5 - Z \ d4), d5 \ d6 \ (Y \ d5 - Z \ d4)]
                                                                                 (4.9)
    -Zd4), (d1-d7)(Yd5-Zd4), (-d7+Z)(Yd5-Zd4), Z(Yd1d2-Yd1d6)
    -Yd2d7 + Zd3d6), (-d3 + Y)(Yd5 - Zd4), d6(Xd3d5 - Xd4d7 - Yd2d5)
    + Y d5 d6 + d2 d4 d7 - d3 d5 d6), d5 (X d1 - X d7 + Z d6 - d1 d6), X d1 d4 - X d4 d7
    + Y d5 d6 - d1 d4 d6, (-d7 + Z) (X d3 d5 - X d4 d7 - Z d2 d4 + Z d4 d6 + d2 d4 d7
    -d3 d5 d6), Z(Xd1 - Xd7 + Zd6 - d1 d6), XYd7 - XZd3 + YZd2 - YZd6
    -Yd2d7 + Zd3d6, XYd5 - XZd4 - Xd3d5 + Xd4d7 - Yd5d6 + Zd2d4
    -d2 d4 d7 + d3 d5 d6, XYd1 - XZd3 + YZd2 - Yd1 d2, (-d2 + X) (Xd1 - Xd7)
    + Z d6 - d1 d6)
  map(factor,eval(Gct,{Y=Z*d4/d5}));
 d1 d2 d4 - d1 d4 d6 - d2 d4 d7 + d3 d5 d6, 0, 0, 0, 0, 0
                                                                                (4.10)
    \frac{Z^{2} (d1 d2 d4 - d1 d4 d6 - d2 d4 d7 + d3 d5 d6)}{d5}, 0, d6 (X d3 d5 - X d4 d7 - Z d2 d4 d5)
    + Z d4 d6 + d2 d4 d7 - d3 d5 d6), d5 (X d1 - X d7 + Z d6 - d1 d6), d4 (X d1 - X d7)
    + Z d6 - d1 d6), (-d7 + Z) (X d3 d5 - X d4 d7 - Z d2 d4 + Z d4 d6 + d2 d4 d7)
```

```
-d3 d5 d6), Z(Xd1 - Xd7 + Zd6 - d1 d6),
            Z(Xd3d5 - Xd4d7 - Zd2d4 + Zd4d6 + d2d4d7 - d3d5d6), -Xd3d5 + Xd4d7
                                                                                d5
          + Z d2 d4 - Z d4 d6 - d2 d4 d7 + d3 d5 d6
          \frac{Z(Xd1\ d4 - Xd3\ d5 + Zd2\ d4 - d1\ d2\ d4)}{d5}, (-d2 + X)(Xd1 - Xd7 + Zd6 - d1\ d6)
> Gc:=[Y*d5-Z*d4, X*d1-X*d7+Z*d6-d1*d6]; # If the third factor of h
      vanishes, the transversal is as follows.
                                                 Gc := [Yd5 - Zd4, Xd1 - Xd7 + Zd6 - d1d6]
                                                                                                                                                                                                       (4.11)
 Analysis of the variety V(H) intersection V(K)
> Groebner[Basis]([op(H),op(K)],plex(X,Y,Z)); # No singularities in
      the generic case
                                                                                                                                                                                                       (4.12)
                                                                                               [1]
 Conditions such that V(H) intersection V(K) is not null
> GbH:=Groebner[Basis](H,plex(X,Y,Z)); nops(%);
 GbH := [2\ Z\ d4\ d6 + d1\ d2\ d4 - d1\ d4\ d6 - d2\ d4\ d7 - d3\ d5\ d6, 2\ Y\ d5\ d6 + d1\ d2\ d4
          -d1 d4 d6 - d2 d4 d7 - d3 d5 d6, X(2 d1 d4 - 2 d4 d7) - d1 d2 d4 - d1 d4 d6
          + d2 d4 d7 + d3 d5 d6
                                                                                                                                                                                                       (4.13)
> Cs:=solve(GbH,{X,Y,Z}); # A point. It should belong to V(K) to
      have V(H) intersection V(K) = V(K) which is not null.
Cs := \left\{ X = \frac{1}{2} \right. \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}, Y = \frac{1}{2} \frac{d1 \, d2 \, d4 + d1 \, d4 \, d6 - d2 \, d4 \, d7 - d3 \, d5 \, d6}{(d1 - d7) \, d4}
                                                                                                                                                                                                       (4.14)
          -\frac{1}{2} \frac{d1 d2 d4 - d1 d4 d6 - d2 d4 d7 - d3 d5 d6}{d4 d6}
> f:=map(factor,remove(has,map(numer,eval(K55,Cs)),0)): nops(%);
      indets(%%); # There are 36 elements which should vanish
      simultaneously for an isolated singularity to exist.
                                                                       {d1, d2, d3, d4, d5, d6, d7}
                                                                                                                                                                                                       (4.15)
```

Results: For the special case of P5L with orthogonality and parallelism constraints, generically, there are no singularities. The singularities appear as a line and/or as a point for some special relative configurations of the five lines.