Algebra and Number Theory

Question 1. Let G be a finite group.

- (1) Let K be a field. Show that G has a finite-dimensional faithful K-linear representation.
- (2) Show that G has a faithful one-dimensional complex representation if and only if G is cyclic.
- (3) Assume moreover that G is commutative. Let $n \ge 1$ be an integer. Show that G has a faithful n-dimensional complex representation if and only if G can be generated by n elements.
- (4) Classify all finite groups having a faithful 2-dimensional real representation.

Question 2. Let $n \geq 1$ be an integer. Let A be a discrete valuation ring with K its field of fractions and $\pi \in A$ a uniformizer. For $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$ write

$$D_{\lambda} = \operatorname{diag}(\pi^{\lambda_1}, \dots, \pi^{\lambda_n}) = \begin{pmatrix} \pi^{\lambda_1} & 0 & \dots & 0 \\ 0 & \pi^{\lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \pi^{\lambda_n} \end{pmatrix} \in \mathbf{GL}_n(K).$$

Show that, for $\lambda, \mu \in \mathbb{Z}^n$, the following intersection inside $\mathbf{GL}_n(K)$

$$\mathbf{GL}_n(A) \cdot D_{\mu} \cdot \mathbf{GL}_n(A) \bigcap \mathbf{U}(K) \cdot D_{\lambda}$$

is non-empty if and only if $\lambda_{\text{dom}} \leq \mu_{\text{dom}}$. Here

- $\mathbf{GL}_n(K)$ (resp. $\mathbf{GL}_n(A)$) is the group of invertible $n \times n$ square matrices with coefficients in K (resp. in A), and $\mathbf{U}(K) \subset \mathbf{GL}_n(K)$ is the standard unipotent subgroup, that is, the subgroup of upper triangular matrices with coefficients 1 on the diagonal.
- for $\alpha = (a_1, \ldots, a_n)$ and $\beta = (b_1, \ldots, b_n)$ two elements in \mathbb{Z}^n , we write $\alpha \leq \beta$ if

$$\sum_{i=1}^{k} a_i \le \sum_{i=1}^{k} b_i, \quad \text{for any } 1 \le k \le n,$$

and if $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$. Write also $\alpha_{dom} := (a'_1, \dots, a'_n)$ with $a'_1, \dots a'_n$ an arrangement of a_1, \dots, a_n such that

$$a_1' \geq a_2' \geq \ldots \geq a_n'$$
.

Question 3. Let k be an imperfect field of characteristic p > 0. Let $a \in k \setminus k^p$.

- (1) Show that the polynomial $X^p a \in k[X]$ is irreducible.
- (2) Let $A = k[X]/(X^{p^2} aX^p)$. Compute A_{red} , the quotient of A by its nilpotent radical.

Question 4. Let k be a field of character p > 0 and consider $k(t) \subset k((t))$.

(1) Show that the field extension k((t))/k(t) is transcendental, i.e., k((t)) contains at least one transcendental element over k(t). (Hint: don't spend too much time on this question.)

- (2) Let $\alpha \in k[[t]]$ which is transcendental over k(t), and write $\beta = \alpha^p \in k[[t]]$. Let $K = k(t, \beta)$ and $L = k(t, \alpha)$: both are subfields of k((t)). Let $A = k[[t]] \cap k(t, \beta)$. Determine the integral closure B of A in L, and show that A and B are two discrete valuation rings.
- (3) Is B finitely generated over A as a module? Justify your assertion.

Question 5. Let p be a prime number. Consider \mathbb{Z}_p (resp. \mathbb{Q}_p) the ring of p-adic integers (resp. field of p-adic numbers). Clearly $\mathbb{Z} \subset \mathbb{Z}_p$.

- (1) Show that the set \mathbb{Z} is dense in \mathbb{Z}_p , and deduce that a map $f: \mathbb{Z} \to \mathbb{Q}_p$ can be extended to a continuous function on \mathbb{Z}_p if and only if f is uniformly continuous, i.e., for any $\epsilon > 0$, there exists some integer N > 0 so that $|f(n) f(m)| < \epsilon$ for any integers $n, m \in \mathbb{Z}$ with $m \equiv n \pmod{p^N}$.
- (2) Let $a \in \mathbb{Q}_p \setminus \{0\}$. Under what condition on a, the map

$$f: \mathbb{Z} \longrightarrow \mathbb{Q}_p, \quad n \mapsto a^n$$

can be extended to a continuous function over \mathbb{Z}_p ? Justify your assertion.

(3) Assume that the condition in (2) is fulfilled. Can we even extend the function f in (2) to a continuous map

$$a^x: \mathbb{Q}_p \longrightarrow \mathbb{Q}_p,$$

so that $a^{x+y} = a^x a^y$ for any $x, y \in \mathbb{Q}_p$? Justify your assertion.

Question 6. Let $n \geq 1$ be an integer and write $\Phi_n(X)$ the n-th cyclotomic polynomial, that is, the minimal polynomial of a primitive n-th root of unity in \mathbb{C} over \mathbb{Q} . Write also $\varphi(n) = \deg(\Phi_n(X))$.

- (1) Let q be a power of a prime number such that (q, n) = 1. Show that Φ_n , viewed as an element in $\mathbb{F}_q[X]$, can be decomposed as a product of $\varphi(n)/d$ irreducible polynomials of degree d, with d the order of q in the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
- (2) From now on, assume $n = 2^{r+1}$ for some integer $r \ge 1$. Let $\zeta = \zeta_n$ be a primitive n-th root of unity and $K = \mathbb{Q}[\zeta]$. Let p be a prime with $p \equiv -3 \pmod{8}$.
 - (a) For $x, y \in K = \mathbb{Q}[\zeta]$, define

$$(x,y) := \sum_{\tau} \tau(x) \cdot \overline{\tau(y)}$$

where τ runs through all the embeddings $K \hookrightarrow \mathbb{C}$ of K into the field \mathbb{C} of complex numbers. Write $K_{\mathbb{R}} = K \otimes_{\mathbb{Q}} \mathbb{R}$, and we use the same notation to denote the (à priori \mathbb{C} -valued) bilinear form on $K_{\mathbb{R}}$ obtained by extension of scalars. Show that (\cdot, \cdot) gives an inner product on $K_{\mathbb{R}}$ and for $0 \le i, j < 2^r$,

$$(\zeta^i, \zeta^j) = \begin{cases} 2^r, & \text{if } i = j; \\ 0, & \text{otherwise.} \end{cases}$$

In particular, we obtain an Euclidean space $K_{\mathbb{R}}$ and $(\zeta^i/\sqrt{2^r})_{0 \leq i < 2^r}$ is an orthonormal basis.

- (b) Decompose $p\mathcal{O}_K$ into a product of prime ideals.
- (c) Let $\mathfrak{p} \subset \mathcal{O}_K$ be a prime ideal of \mathcal{O}_K containing p. Show that for every $\alpha \in \mathfrak{p}$, $|\alpha|^2 \in 2^r p\mathbb{Z}$, and compute the length of the shortest non-zero vector in the prime ideal $\mathfrak{p} \subset K_{\mathbb{R}}$.