II2302 project:

Ice detection sensor

Morgan Adamsson Robin Carlet Samuel Svensson Skander Ben Messaoud

Sensor

What should the sensor detect?

- Ice
- Water on the surface
- Dry surface

Applications of the sensor:

- Bicycle accessory
- Ice detection on roads
- Vibrating handles and flashing lights for warning

Implementation

 Measurement of backscattered power of IR reflections

- Three wavelengths are used
 - o 1300 nm
 - o 1450 nm
 - o 1550 nm

 InGaAs (Indium gallium arsenide) photodiode for detecting reflections

https://opg.optica.org/view_article.cfm

Emitting circuit

 Mosfet transistor sinking current from IR LED

Turns on by voltage from MCU

Stable and precise current

Sensing circuit

 Transconductance amplifier to sense the photodiode

Non-Inverting amplifier to increase gain.

DC-offset is a problem.

Software

```
else
    led_turned_off_state(GPIO_nm1440_GPIO_Port, GPIO_nm1440_Pin, &led_2_on);
if(test > LED_1300_START_OFFSET && test < LED_1300_STOP_OFFSET){</pre>
    led_turned_on_state(GPIO_nm1300_GPIO_Port, GPIO_nm1300_Pin, &led_3_on);
else
    led_turned_off_state(GPIO_nm1300_GPIO_Port, GPIO_nm1300_Pin, &led_3_on);
test++:
if(test >= LED FULL PERIOD){
    test = 0:
   HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
   HAL TIM PWM Stop(&htim9, TIM CHANNEL 1);
   HAL_TIM_PWM_Stop_IT(&htim9, TIM_CHANNEL_1);
    HAL_GPIO_WritePin(LD1_GPIO_Port, LD1_Pin, GPIO_PIN_SET);
    send_buffer(dc_data, dc_data_size, 0);
    send buffer(led 1 data, led 1 data size, 1);
    send_buffer(led_2_data, led_2_data_size, 2);
    send buffer(led 3 data, led 3 data size, 3);
    buffer sent = 1;
    HAL_GPIO_WritePin(LD1_GPIO_Port, LD1_Pin, GPIO_PIN_RESET);
    dc data size = 0;
    led 1 data size = 0:
    led_2_data_size = 0;
    led 3 data size = 0;
```

Pulse LEDs sequentially

 Measure reflections with 12-bit ADC

Store results in array

 Send array to computer at the end of sampling

Design process

 Constructed circuit on breadboards

 LEDs and photodiode on separate boards

 Testing of received signal strength on oscilloscope

PCB

• Six LEDs (only three soldered)

Two cascaded opamps are unused.

LEDs surround photodiode

Connectors to MCU board

Experiment setup

Repeatable experiment setup

• Stabilization is important

Serial connection to computer

Three 3D-printed test surfaces

Data

Data

Data

Areas of improvement

More power and spread of power could improve performance

 Get sensing cascade to work (eliminate DC-offset)

improvement of test environment

 we can still see differences between ice and the rest within each measurement

Thanks for listening