Introduction to Cryptography: Homework 3

September 29, 2021

Requirements about the delivery of this assignment:

- Submit a pdf-document via Brightspace;
- Any additional files (e.g., Python scripts) can be added as well;
- Make sure that you write both name and student number on all documents (not only in the file name).

Deadline: Monday, October 11, 17:00 sharp!

Grading: You can score a total of 100 points for the hand-in assignments. To get full points, please **explain** all answers clearly.

Exercises:

1. Feistel structure inverse. Consider the following two-round Feistel structure:

Figure 1: Two round Feistel structure.

Let $F: \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ be an arbitrary function. In the lecture, it was explained that the inverse of a Feistel structure is just the same structure, but with the round keys in the reversed order. We will verify that this is indeed the case.

- (a) One can express C_L as $C_L = P_L \oplus F(K_1, P_R)$. Express C_R in terms of P_L, P_R, F, K_1 and K_2 in a similar fashion.
- (b) Assume we evaluate the function on $C_R \| C_L$ with keys K_1, K_2 swapped. Write the output as $Q_L \| Q_R$. Express Q_L and Q_R in terms of C_L, C_R, F, K_1 and K_2 .
- (c) Show that $Q_L = P_R$.
- (d) Show that $Q_R = P_L$.
- 2. **Insecurity of Feistel structure.** Consider a two-round Feistel structure as in Figure 2.

Let $F_{K_1}: \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ and $F_{K_2}: \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ be functions that are infeasible to distinguish from a random function. Assume we have access to a device that allows us to encrypt messages. The goal of this exercise is to recover the plaintext for a given ciphertext $C_L \| C_R$.

- (a) Recall the formulas for C_L and C_R in terms of F, K_1, K_2, P_L and P_R . [Note that they are those of Exercise 1a.]
- (b) We encrypt $0^{\ell} \| 0^{\ell}$ on the device and obtain $a \| b$. Express a and b using the formulas from part (a).

Figure 2: Two-round Feistel structure.

- (c) We encrypt $(C_L \oplus \mathcal{F}_{K_1}(0^{\ell}))\|0^{\ell}$ on the device and obtain $c\|d$. Explain why we can compute $C_L \oplus \mathcal{F}_{K_1}(0^{\ell})$.
- (d) Express c and d using the formulas from (a).
- (e) Using the result from (d), show how to obtain P_R .
- (f) Find a final encryption to make, so that you can obtain P_L . [Hint: You can now use P_R .]
- 3. **PRP-security of 2-round Feistel structure.** In this exercise, we consider a two-round Feistel structure, like in Figure 2 again.

Let the keys K_1, K_2 be 32 bits long, and let for both keys K_1, K_2 , the map $F_{K_i}: \{0, 1\}^{32} \to \{0, 1\}^{32}$ be infeasible to distinguish from a random function.

- (a) Based only on exhaustive key search, what is an upper bound on the security strength of this cipher?
- (b) Give a distinguisher \mathcal{D} that distinguishes the two-round Feistel structure from a random permutation. [You do not have to compute the advantage yet.]
- (c) Give the probability that you guess that you are talking to a 2-round Feistel structure when you are actually talking to a random permutation.
- (d) Compute the advantage of your distinguisher \mathcal{D} .
- (e) Given your attack to show the 2-round Feistel structure is not PRP-secure, what is the new upper bound on the security strength?

Hand in assignments:

1. (80 points) SPRP-security of the Feistel structure. In this exercise, we are going to show that a Feistel structure with up to 3 rounds is not SPRP secure.

Figure 3: Three-round Feistel structure.

Assume that the functions $F_{K_i}: \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ are infeasible to distinguish from a random function for $i \in \{1,2,3\}$.

We try to distinguish between this three-round Feistel structure (see Figure 3) and a random permutation \mathcal{RP} .

To do this, we perform the following steps:

- i. Decrypt $0^{\ell} || 0^{\ell}$ and call the result a || b;
- ii. Encrypt $0^{\ell} || b$ and call the result c || d;
- iii. Decrypt $(a \oplus c) \| d$ and call the result $e \| f$.

We say that we are interacting with the Feistel structure if $f = b \oplus d$, and we are interacting with the random permutation if this is not the case.

For (a)–(f), we assume that we interact with the Feistel structure.

- (a) Give formulas for C_L and C_R in terms of F_{K_i} , P_L and P_R like in Exercise 1(a) when encrypting with 10 pt this three-round Feistel structure.
- (b) Give formulas for P_L and P_R in terms of \mathcal{F}_{K_i}, C_L and C_R when decrypting with this 3-round Feistel 10 pt structure.
- (c) Give formulas for a and b.
- (d) Give formulas for c and d.
- (e) Give formulas for e and f.
- (f) Show that indeed $f = b \oplus d$. [Hint: What is $a \oplus c$?]
- (g) The probability that $f = b \oplus d$ when we are interacting with the random permutation is $\frac{2^{\ell}-2}{2^{2\ell}-2}, \frac{2^{\ell}-1}{2^{2\ell}-2}$ 5 pt or $\frac{2^{\ell}}{2^{2\ell}-2}$, depending on a case distinction. (You do not need to show/prove this!) For large enough ℓ , this can be approximated by $\frac{1}{2^{\ell}}$. Compute the advantage of this distinguisher, using this approximation.

	(h) Compute the security strength of the three-round Feistel structure.	5 pt
2.	(20 points) PRP-security of 1-round Feistel structure. In this exercise, we consider a one-round Feistel structure. Let again $F_{K_1}: \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ be infeasible to distinguish from a random function. You will show that the one-round Feistel structure is not PRP-secure.	
	(a) What is the ideal version of the Feistel structure that your distinguisher will compare it with?	2 pt
	(b) Give your distinguisher \mathcal{D} . [Give the queries your distinguisher makes and what conclusion it takes. Furthermore, explain why this will work.]	5 pt
	(c) Give the probability that your distinguisher is actually talking to the ideal version, but the distinguisher decides that it is talking to the 1-round Feistel structure.	4 pt
	(d) What is the advantage of your distinguisher?	$4 \mathrm{pt}$
	(e) Give an upper bound for the security strength of a 1-round Feistel structure.	$3 \mathrm{pt}$
	(f) Is the Feistel structure SPRP-secure?	2 pt