PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2004-304038

(43)Date of publication of application: 28.10.2004

(51)Int.CI.

H01F 41/02

(21)Application number: 2003-096866

(71)Applicant: JAPAN SCIENCE & TECHNOLOGY

AGENCY

NEOMAX CO LTD MACHIDA KENICHI

(22)Date of filing:

31.03.2003

(72)Inventor:

SUZUKI TOSHIHARU MACHIDA KENICHI

SAKAGUCHI EIJI

ISHIGAKI NAOYUKI

(54) MICRO HIGH-PERFORMANCE RARE-EARTH MAGNET FOR MICRO PRODUCT AND ITS MANUFACTURING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a highperformance rare-earth magnet and a means available especially for manufacturing a small-volume rare-earth magnet and a micro motor using the same.

SOLUTION: The micro high-performance rare-earth magnet for a micro product is made by mechanically working a magnet block material. Its ratio of the surface area to a volume is 2 mm-1 or more, and its volume is 100 mm3 or less. A rare-earth metal is dispersed and penetrated from the surface of the magnet to the inside thereof by a depth or equivalent to or deeper than a radius of a crystal particle exposed over the outermost surface of the magnet, so that a changed and damaged part due to the working is reformed to obtain a magnetic characteristic of 280 kJ/m3 in (BH)max, An R metal or an alloy containing the R metal that is changed into vapor or particulate in an evacuation tank by a physical method is flied on the surface of the magnet in a three-dimensional manner so as to form a film. At the same

time, the R metal is dispersed and penetrated from the surface of the magnet to the inside thereof by a depth equivalent to or deeper than a radius of crystal particulate exposed over the outermost surface of the magnet.

LEGAL STATUS

[Date of request for examination]

04.04.2003

[Date of sending the examiner's decision of

20.09,2005

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or

(19) 日本国特許庁(JP)

(12)公 開 特 許 公 報(A)

(11)特許出顧公開番号

特酮2004-304038 (P2004-304038A)

(43) 公開日 平成16年10月28日 (2004.10.28)

(51) Int.C1.7 HO1F 41/02

FΙ

HO1F 41/02

G

テーマコード(参考) 5E062

.:

審査請求 有 請求項の数 8 〇L (全 13 頁)

(21) 出願番号 (22) 出願日

特願2003-96866 (P2003-96866)

平成15年3月31日 (2003.3.31)

(71) 出願人 503360115

独立行政法人 科学技術摄興機構

埼玉県川口市本町4丁目1番8号

(71) 出願人 000183417

株式会社NEOMAX

大阪府大阪市中央区北浜4丁目7番19号

(71) 出願人 300011416 .

町田 憲一

大阪府箕面市菜生間谷西1丁目4番地 グ

リーンヒル東箕面5棟401号室

(74) 上配2名の代理人 100108671

弁理士 西 義之 鈴木 俊治

(72) 発明者

静岡県磐田郡福田町一色94番地

最終頁に続く

(54) 【発明の名称】超小型製品用の微小、高性能希土類磁石とその製造方法

(57)【要約】

【課題】高性能な希土類磁石を得ることを目的とし、特 に、小体積の希土類磁石、及びそれを用いた超小型モー タの製作に有効な手段を提供すること。

【構成】磁石プロック素材の機械加工により形成された 希土類磁石であって、該磁石は、表面積/体積の比が2 mm⁻¹ 以上で、かつ体積が100mm³ 以下であり、 該磁石の最表面に露出している結晶粒子の半径に相当する る深さ以上に該磁石内部に希土類金属を、磁石表面から 拡散浸透させることによって前配加工による変質損傷部 を改質して (BH) maxが280k J/m³ の以上の 磁気特性を有する超小型製品用の微小、高性能希土類磁 石。該減圧槽内で物理的手法によって蒸気又は微粒子化 したR金属又はR金属を含む合金を、該磁石の表面に3 次元的に飛来させて成膜し、かつ該磁石の最表面に露出 している結晶粒子の半径に相当する深さ以上に該磁石内 部にR金属を磁石表面から拡散浸透させる。

【選択図】 図1

【特許請求の範囲】

【請求項1】

磁石ブロック素材の切断、穴あけ、及び表面研削、研磨等の機械加工により形成された穴 のあいた内表面を有する円筒形状又は円盤形状、穴のない円柱又は角柱形状の希土類磁石 であって、該磁石は、表面積/体積の比が2mm~」以上で、かつ体積が100mm。以 下であり、該磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に該磁石内 部にR金属(但し、Rは、Y及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素 の1種又は2種以上)を、磁石表面から拡散浸透させることによって前記加工による変質 損傷部を改質して (BH) maxが280kJ/m³の以上の磁気特性を有することを特 徴とする超小型製品用の微小、高性能希土類磁石。

該磁石が N d - F e - B 系 又 は P r - F e - B 系 で あ り 、 R 金 属 が D y 又 は T b で あ る こ とを特徴とする請求項1型載の微小、高性能希土類磁石。

磁石プロックの切断、穴あけ、及び表面研削、研磨等の機械加工により形成された、変質 損傷した表面を有する穴のあいた内表面を有する円筒形状又は円盤形状、穴のない円柱又 は角柱形状の希土類磁石を、減圧槽内に支持し、該減圧槽内で物理的手法によって蒸気又 は微粒子化したR金属又はR金属を含む合金(但し、Rは、Y及びNd、Dy、Pr、H o、 T b から選ばれる希土類元素の 1 種又は 2 種以上) を、 該磁石の表面の全部又は一部 に3次元的に飛来させて成膜し、かつ該磁石の最表面に露出している結晶粒子の半径に相 20 当する深さ以上に該磁石内部にR金属を磁石表面から拡散浸透させることによって前記加 工による変質損傷部を改質することを特徴とする請求項1又は2に記載の微小、高性能希 土類磁石の製造方法。

【請求項4】

上記拡散浸透は成膜しながら行うことを特徴とする請求項3記載の微小、高性能希土類磁 石の製造方法。

【請求項5】

物理的手法が、該希土類磁石周辺に配置したR金属又はR金属を含む合金から成る複数の ターゲットを、イオン衝撃によって微粒子化させて該希土類磁石表面に膜を形成するスパ ッタリング法、又はR金属又はR金属を含む合金を溶融蒸発させて発生した粒子をイオン 30 化させて該希土類磁石表面に膜を形成するイオンプレーティング法であることを特徴とす る請求項3又は4記載の微小、高性能希土類磁石の製造方法。

【請求項6】

所定距離だけ離して対向配置したターゲットの中間のプラズマ空間に該希土類磁石を回転 又は転動自在に保持してスパッタリングすることにより該磁石の外表面に均一に成膜する ようにしたことを特徴とする請求項5記載の微小、高性能希土類磁石の製造方法。

【請求項7】

対向配置したターゲットの中間のプラズマ空間まで延びる電極線を配置し、穴のあいた内 表面を有する円筒形状又は円盤形状希土類磁石の穴に該電極線を挿入して保持し、該電極 線を回転軸として該磁石を回転させながら微粒子化したR金属又はR金属を含む合金を飛 来させて、眩磁石の外表面に均一に成膜するようにしたことを特徴とする請求項6記載の 微小、髙性能希土類磁石の製造方法。

【請求項8】

対向配置したターゲットは該円筒形状又は円盤形状磁石の中心軸方向と同心状に配置した 輪状ターグットであることを特徴とする請求項7記載の微小、高性能希土類磁石の製造方

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、Nd-Fe-B系又はPr-Fe-B系などの希土類磁石、特に、超小型モー 50

30

タなどの超小型製品用の微小、高性能希土類磁石とその製造方法に関する。

[0002]

【従来の技術】

N d ー F e ー B 系の希土類焼結磁石は、永久磁石の中でも最も高性能磁石として知られており、ハードデスクドライブのボイスコイルモータ(V C M) や磁気断層撮影装置(M R I)用の磁気回路などに幅広く使用されている。また、この磁石は内部組織が N d 。 F e , B 主相の周りを薄い N d リッチ副相が取り囲んだミクロ組織を持つことによって保磁力を発生させ、高い磁気エネルギー積を示すことが知られている。

[0 0 0 3]

一方、焼結磁石を実際のモータ等に使用する場合には、研削加工によって最終的な寸法と 同心度などを得ることが実際行われているが、この際に微小な研削クラックや酸化などに よって磁石表面層のNdリッチ相が損傷を受け、その結果として磁石表面部分の磁気特性 が磁石内部の数分の1にまで低下してしまう。

[0004]

この現象は、特に、体積に対する表面積比率が大きな微小磁石において著しく、例えば、 (BH) maxが 360 k J/m 。である一辺が 10 mmの角プロック磁石を $1\times1\times2$ mmに切断・研削した場合、 (BH) maxは 240 k J/m 。程度に低下し、Nd-F e -B 系希土類磁石本来の特性が得られない。

[0005]

N d - F e - B 系 焼 結 磁 石 の こ の よ う な 欠 点 を 改 善 す る た め 、 機 械 加 工 に よ っ て 生 じ た 変 2 質 層 を 、 機 械 的 研 磨 や 化 学 的 研 磨 で 除 去 す る 方 法 が 提 案 さ れ て い る (例 え ば 、 特 許 文 献 1) 。 ま た 、 研 削 加 工 し た 磁 石 表 面 に 希 土 類 金 属 を 被 着 し て 拡 散 熱 処 理 を す る 方 法 が 提 案 さ れ て い る (例 え ば 、 特 許 文 献 2) 。 ま た 、 N d - F e - B 系 磁 石 表 面 に S m C o 膜 を 形 成 す る 方 法 が 見 ら れ る (例 え ば 、 特 許 文 献 3) 。

[00.06]

【特許文献1】

特開平9-270310号公報

【特許文献2】

特 開 昭 6 2 一 7 4 0 4 8 号 (特 公 平 6 一 6 3 0 8 6 号) 公 報

【特許文献3】

特 開 2 0 0 1 - 9 3 7 1 5 号 公 報

[0007]

【発明が解決しようとする課題】

上記の特許文献 1 記載の方法は、変質層はおよそ 1 0 μm以上と推定されるため研磨に時間がかかること、高速研磨をすると変質層を新たに生じてしまうこと、さらに、化学研磨では酸液が焼結磁石の空孔に残存して腐食痕を発生しやすいこと、等の問題があった。

[0008]

特許文献-2 には、焼結磁石体の被研削加工面の加工変質層に希土類金属薄膜層を形成し、 拡散反応により改質層を形成することが開示されているが、具体的には長さ 2 0 m m × 幅 5 m m × 厚み 0 . 1 5 m m の薄い試験片にスパッタ膜を形成した実験結果が記載されてい 40 るだけで、得られる(BH) m a x は高々 2 0 0 k J / m³ である。

[0009]

さらに、特許文献3記載の方法は、単に成膜したままではNd2Fe1.B相やNdリッチ相への金属的な反応がないために磁気特性の回復は困難であり、また、熱処理によってSmが磁石内部に拡散するとNd2Fe1.B相の結晶磁気異方性を低下させるために特性回復は難しい。さらに、成膜時は試料を裏返して2回スパッタする方法がとられているため、成膜の生産性と膜厚の均一性などに難点がある。

100101

近年、例えば、携帯電話用振動モータには外径約2mmのNd-Fe-B系円筒状焼結磁石が多く使用されているが、その磁気特性を実測すると230kJ/m³前後であるため 50

、振動強度を低下させずさらに小型化することが困難である。さらに、今後マイクロロボ ットや体内診断用マイクロモータに要求される高出力・超小型アクチュエータへの適用は 一層難しい状況にある。

本発明では、上記のような従来技術の問題を解決し、高性能な希土類磁石を得ることを目 的とし、特に、小体積の希土類磁石、及びそれを用いた超小型モータの製作に有効な手段 を提供することを目的とする。

[0011]

【課題を解決するための手段】

本発明者らは、焼結磁石プロックを切断、穴あけ、研削、研磨等により機械加工した微小 磁石を製造する際の加工損傷による磁気特性の劣化について鋭意調査と対策実験を重ねた 結果、希土類磁石本来の磁気特性を回復させた超小型製品用の微小、高性能希土類磁石の 開発に成功した。

[0012]

すなわち、本発明は、(1)磁石プロック素材の切断、穴あけ、及び表面研削、研磨等の 機械加工により形成された穴のあいた内表面を有する円筒形状又は円盤形状、穴のない円 柱又は角柱形状の希土類磁石であって、該磁石は、表面積/体積の比が2mm リ上で 、かつ体積が100mm。以下であり、該磁石の最表面に露出している結晶粒子の半径に 相当する深さ以上に該磁石内部にR金属(但し、Rは、Y及びNd、Dy、Pr、Ho、 Tbから選ばれる希土類元素の1種又は2種以上)を、磁石表面から拡散浸透させること によって前記加工による変質損傷部を改質して(BH)maxが280kJ/m゚の以上 20 の磁気特性を有することを特徴とする超小型製品用の微小、高性能希土類磁石、である。 また、本発明は、(2) 該磁石がNd-Fe-B系又はPr-Fe-B系であり、R金属 が D y 又は T b であることを特徴とする上記 (1) の微小、高性能希土類磁石、である。

[0013]

また、本発明は、 (3) 磁石プロックの切断、穴あけ、及び表面研削、研磨等の機械加工 により形成された、変質損傷した表面を有する穴のあいた内表面を有する円筒形状又は円 盤形状、穴のない円柱又は角柱形状の希土類磁石を、減圧槽内に支持し、該減圧槽内で物 理的手法によって蒸気又は微粒子化したR金属又はR金属を含む合金(但し、Rは、Y及 びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上)を、該磁 石の表面の全部又は一部に3次元的に飛来させて成膜し、かつ該磁石の最表面に露出して いる結晶粒子の半径に相当する深さ以上に該磁石内部にR金属を磁石表面から拡散浸透さ せることによって前記加工による変質損傷部を改質することを特徴とする上記(1)又は (2) 2の微小、高性能希土類磁石の製造方法、である。

また、本発明は(4)上記拡散浸透は成膜しながら行うことを特徴とする上記(3) 3.記 載の微小、高性能希土類磁石の製造方法、である。

[0014]

また、本発明は(5)物理的手法が、該希土類磁石周辺に配置したR金属又はR金属を含 む合金から成る複数のターゲットを、イオン衝撃によって微粒子化させて該希土類磁石表 面に膜を形成するスパッタリング法、又はR金属又はR金属を含む合金を溶融蒸発させて 発生した粒子をイオン化させて該希土類磁石表面に膜を形成するイオンプレーティング法 40 であることを特徴とする上記(3) 又は(4) の微小、高性能希土類磁石の製造方法、 ある。

また、本発明は(6)所定距離だけ離して対向配置したターゲットの中間のプラズマ空間 に該希土類磁石を回転又は転動自在に保持してスパッタリングすることにより該磁石の外 表面に均一に成膜するようにしたことを特徴とする上記(5)の微小、高性能希土類磁石 の製造方法、である。

また、本発明は(7)対向配置したターゲットの中間のプラズマ空間まで延びる電極線を 配置し、穴のあいた内表面を有する円筒形状又は円盤形状希土類磁石の穴に該電極線を挿 入して保持し、該電極線を回転軸として該磁石を回転させながら微粒子化したR金属又は R金属を含む合金を飛来させて、該磁石の外表面に均一に成膜するようにしたことを特徴

とする上記(6)の微小、高性能希土類磁石の製造方法、である。

また、本発明は(8)対向配置したターゲットは該円筒形状又は円盤形状磁石の中心軸方 向と同心状に配置した輪状ターゲットであることを特徴とする上記 (7) の微小、高性能 希土類磁石の製造方法、である。

[0015]

【作用】

磁石ブロックを切断、穴あけ、研削、研磨等により機械加工すると、磁石表面部は変質損 傷し、磁気特性が低下する。この変質損傷した表面を有する磁石表面にY及びNdを始め としてTDy、Pr、Ho、Tbから選ばれる希土類金属の一種以上の単独又は各金属を相 当量含有する合金を成膜して磁石内部に拡散させると、例えば、Nd-Fe-B系希土類 磁石に いてみると、これらの希土類金属はNd₂Fei4B主相及びNdリッチ粒界相 のNdと同種の希土類金属であるためにNdと親和性が良く、Ndリッチ相と主に反応し て機械加工によって変質損傷した部分を容易に修復し磁気特性を回復する機能を果たす。

[0016]

また、これらの希土類金属の一部が拡散によってNd₂Fe╷ 4 B主相に入り込んでNd 元素と置換した場合には、いずれの希土類金属も主相の結晶磁気異方性を増加させ、保磁 力が増加して磁気特性を回復させる働きを有している。特に、Tbが主相のNd元素を全 て置換したTb₂ Fe、4 Bの室温における結晶磁気異方性は、Nd₂ Fe、4 Bの約3 倍であるために大きな保磁力が得られ易い。Pr-Fe-B系磁石についても同様な回復 機能が得られる。

[0017]

希土類金属が拡散処理によって浸透する深さは、籔磁石の最表面に露出している結晶粒子 の半径に相当する深さ以上とする。例えば、Nd-Fe-B系焼結磁石の結晶粒径はおよ そ6~10μmであるので、磁石最表面に露出している結晶粒子の半径に相当する3μm 以上が最低限必要である。これ未満では結晶粒子を包むNdリッチ相との反応が不充分と なり、磁気特性の回復がわずかなものとなる。3μm以上深くなると保磁力が緩やかに増 加し、Nd2Fe、、B主相のNdと置換して保磁力をさらに高める効果があるが、過度 に深く拡散すると残留磁化を下げる場合があるため、拡散処理条件を調整して所望の磁気 特性とする深さが望ましい。

[001.8]

本発明において、表面改質による磁気特性の回復は希土類磁石の大きさにとらわれないが 、体積が小さい磁石ほど、また、体積に対する表面積比の大きい磁石ほど顕著な効果を示 す。本発明者らのNd-Fe-B系焼結磁石のサイズと磁気特性についてのこれまでの研 究によれば、磁石サイズがおよそ2mm角ブロック以下になると、減磁曲線の角型性が悪 くなって保磁力の低下を生じることが明らかになっている。

[0019]

このサイズにおいては、磁石体積が8mm。で表面積/体積比が3mm~りであることが 簡単に計算される。また、円筒形状磁石の場合には、表面積/体積比がさらに増加するこ とになり角型性や保磁力の低下が著しくなる。例として、市販の携帯電話用振動モータに 搭載されている磁石の外径、内径、長さはそれぞれ2.5mm、1mm、4mm程度であ 40 り、その体積は約16.5 m m ³ に相当する。

[0020]

したがって、表面積/体積比が2mm-1以上で、より好ましくは3mm-1以上で、か つ体積がおよそ100mm。以下、さらには20mm。以下の小型磁石においては、特に 表面改質による効果が著しく、市販の振動モータに搭載されているNd-Fe-B系磁石 の (BH) maxがおよそ240kJ/m³ に対して、本発明においては、280kJ以 上、例えば300~360kJ/m³の高特性が得られる。

本発明の方法によれば、機械加工によって変質損傷した磁石表面に希土類金属を成膜して 拡散することにより、変質損傷した磁石表面層のNd等の希土類金属リッチ相を修復し、

磁気特性を十分に回復させることができる。また、その結果として、微小で、高性能磁石 を用いた超小型・高出力モータの実現が可能になる。

[0022]

【発明の実施の形態】

以下、本発明の微小、高性能希土類磁石の製造方法を製作工程にしたがって更に詳しく説 明する。

本発明の方法で対象とする希土類磁石ブロック素材は、原料粉末の焼結法や原料粉末をホ ットプレスした後に熱間塑性加工法によって製作されたものである。これらの希土類磁石 ブロック素材を切断、穴あけ、研削、研磨等により機械加工して穴のあいた内表面を有す る円筒形状又は円盤形状、穴のない円柱や角柱形状の微小磁石を製作する。これにより、 表面積/体積の比が2mm-1以上で、かつ体積が100mm3以下の微小磁石を製作す る。微小磁石として好適な合金系としては、Nd-Fe-B系やPr-Fe-B系などが 代表的なものとして例示される。なかでも、Nd-Fe-B系焼結磁石は最も磁気特性が 高いにもかかわらず機械加工による特性低下が大きいものである。

[0023]

変質損傷した表面を有する磁石表面に成膜する金属は、磁石を構成するNd等の希土類金 属リッチ相の修復強化を目的とするために、Y及びNdを始めとしてDy、Pr、Ho、 Tbから選ばれる希土類金属の一種以上の単独又はY、Nd、Dy、Pr、Ho、Tbな どの希土類金属を相当量含有する合金、例えば、Nd-Fe合金やDy-Co合金等を用 いる。

[0024]

磁石表面への成膜法については特に限定されるものではなく、蒸着、スパッタリング、イ オンプレーティング、レーザーデポジション等の物理的成膜法や、CVDやMO-CVD 等の化学的気相蒸着法、及びメッキ法などの適用が可能である。但し、成膜ならびに加熱 拡散の各処理においては、10-1 Torr以下ならびに酸素、水蒸気等の大気由来ガ スが数十ppm以下の清浄雰囲気内で行うことが望ましい。

[0025]

R金属を加熱により磁石表面から拡散浸透させる際の雰囲気が、通常入手される高純度ア ルゴンガス程度の純度の場合は、アルゴンガス内に含まれる大気由来ガス、すなわち、酸 秦、水蒸気、二酸化炭素、窒素等により、該磁石加熱時に表面に被着させたR金属が、酸 30 化物、炭化物、窒化物となり、効率よく内部組織相まで拡散到達しないことがある。従っ て、R金属の加熱拡散時の雰囲気に含まれる大気由来不純物ガス濃度を50ppm程度以 下、望ましくは10ppm程度以下とするのが望ましい。

[0026]

円筒や円盤などの形状をした微小磁石の表面の全部又は一部に極力均一な膜を形成するに は、複数のターゲットから磁石表面に3次元的に金属成分を成膜させるスパッタリング法 、又は金属成分をイオン化させて、静電気的な吸引強被着特性を利用して成膜させるイオ ンプレーティング法が特に有効である。 THE HIGHWAY TO

[0027]

また、スパッタリング作業における希土類磁石のプラズマ空間内の保持については、一個 40 あるいは複数個の磁石を線材や板材で回転自在に保持する方法や、複数個の磁石を金網製 の籠に装填して転動自在に保持する方法を採用することができる。このような保持方法に より三次元的に微小磁石の表面全体に均一な膜を形成することができる。

[0028]

上記の成膜用希土類金属は、磁石表面に単に被覆されているだけでは磁気特性の回復が認 められないため、成膜した希土類金属成分の少なくとも一部が磁石内部に拡散してNdな どの希土類金属リッチ相と反応していることが必須である。

このため、通常は成膜した後に500~1000℃において短時間の熱処理を行って成膜 金属を拡散させる。スパッタリングの場合には、スパッタリング時のRF及びDC出力を 上げて成膜することにより成膜中の磁石を上記温度範囲、例えば800℃位にまで上昇さ 50

せることができるため、実質的に成膜させながら同時に拡散を行うこともできる。

[0029]

図1に、本発明の製造方法を実施するのに好適な3次元スパッタ装置の概念を示す。図1 において、輪状をした成膜金属からなるターゲット1およびターゲット2を対向させて配 置し、その間に水冷式の銅製高周波コイル3を配置する。円筒形状磁石4の筒内部には、 電極線5が挿入されており、該電極線5はモータ6の回転軸に固定されて円筒形状磁石4 を回転できるように保持している。穴のない円柱や角柱形状磁石の場合は、複数個の磁石 製品を金網製の籠に装填して転動自在に保持する方法を採用できる。

[0 0 3 0]

ここで、円筒形状磁石4の筒内部と電極線5との回転時の滑り防止のために、電極線5は 微細な波形にねじられて筒内部に接触している。微小磁石の重さは数十mg程度なので電 極線5と円筒形状磁石4との回転時の滑りはほとんど起きない。

[0031]

さらに、陰極切り替えスイッチ(A)により円筒形状磁石4の逆スパッタが実施可能な機 構を有している。逆スパッタ時は電極線5を通じて磁石4を負電位にして、磁石4の表面 のエッチングをする。通常スパッタ作業時はスイッチ(B)に切り替えて行う。通常スパ ッタ時は電極線 5 に電位を与えずにスパッタ成膜をするのが一般的であるが、成膜する金 属の種類や膜質制御のため、場合によっては電極線 5 を通じて磁石 4 に正のバイアス電位 を与えてスパッタ成膜をすることもある。通常スパッタ中は、Aェイオンとターゲット1 . 2から発生する金属粒子、及び金属イオンが混在したプラズマ空間7を形成して、円筒 20 形状磁石4の表面の上下左右前後から3次元的に金属粒子が飛来して成膜される。

[0032]

このような方法で成膜した磁石は、成膜しながら拡散させていない場合は、スパッタ装置 内を大気圧に戻した後にスパッタ装置に連結したグローブボックスに大気に触れずに移送 して、同じく該グローブボックス内に設置した小型電気炉に装填して膜を磁石内部に拡散 させるために熱処理を行う。

[0 0 3 3]

なお、一般に希土類金属は酸化され易いため、成膜後の磁石表面にNiやA1などの耐食 性金属や撥水性のシラン系被膜を形成して実用に供することが望ましい。また、改質表面 金属がDyやTbの場合にはNdと比較して空気中での酸化進行が著しく遅いため、磁石 の用途によっては耐食性被膜を設けることを省略することも可能である。

[0034]

【実施例】

以下、本発明を実施例にしたがって詳細に説明する。

(実施例1)

Ndı2.sFe,a.sCo,B。組成の合金インゴットからストリップキャスト法に よって厚さ0.2~0.3mmの合金薄片を製作した。次に、この薄片を容器内に充填し 、 500k Paの水素ガスを室温で吸蔵させた後に放出させるごをにより、大きさ約0. 15~0.2mmの不定形粉末を得て、引き続きジェットミル粉砕をして約3μmの微粉 末を製作した。

40

[0035]

この微粉末にステアリン酸カルシウムを0.05wt%添加混合した後に磁界中プレス成 形をし、真空炉に装填して1080℃で1時間焼結をして、18mm角の立方体磁石ブロ ック素材を得た。

[0036]

次いで、この立方体磁石プロック素材に砥石切断と外径研削、及び超音波穴あけ加工をし て外径1mm、内径0.3mm、長さ3mmの円筒形状磁石を製作した。この状態のまま のものを比較例試料 (1) とした。 体積 2 . 1 4 m m ³ 、表面積 1 3 . 6 7 m² 、表 面積/体積の比は 6. 4 m m ^{- 1} である。

[0037]

次に、図1に示す3次元スパッタ装置を用い、この円筒形状磁石表面へ金属膜を成膜した。ターゲットとして、ディスプロシウム(Dy)金属を用いた。円筒形状磁石の筒内部には、電極線として直径0.2mmのタングステン線を挿入させた。用いた輪状ターゲットの大きさは、外径80mm、内径30mm、厚さ20mmとした。

[0038]

実際の成膜作業は以下の手順で行った。上記円筒形状磁石の筒内部にタングステン線を挿入してセットし、スパッタ装置内を 5 × 1 0 ° Paまで真空排気した後、高純度 A r ガスを導入して装置内を 3 Paに維持した。次に、陰極切り替えスイッチを (A) 側にして、R F 出力 2 0 W と D C 出力 2 W を加えて 1 0 分間の逆スパッタを行って磁石表面の酸化膜を除去した。続いて、切り替えスイッチを (B) 側にして、R F 出力 8 0 W と D C 出力 1 2 0 W を加えて 6 分間の通常スパッタを行った。

[0039]

得られた成膜磁石は、装置内を大気圧に戻した後にスパッタ装置に連結したグローブボックスに大気に触れずに移送して、同じく該グローブボックス内に設置した小型電気炉に装填して初段を700~850℃で10分間、2段目を600℃で30分間の熱処理を行った。これらを本発明試料(1)~(4)とした。なお、熱処理における磁石の酸化を防止するため、グローブボックス内は精製Arガスを循環させ、酸素濃度を2ppm以下に、 露点を-75℃以下に維持した。

[0040]

各試料の磁気特性は、4.8 M A / m のパルス着磁を印加した後に振動試料型磁力計を用いて測定した。表1に、各試料の磁気特性値を、図2に、比較例試料(1)及び本発明試料(1)と(3)の減磁曲線を抜粋して示す。

[0041]

表1から明らかなように、Dy金属成膜とその後の熱処理によって本発明試料はいずれも比較例試料より高いエネルギー積BH。...を示し、特に、試料(3)においては比較例試料(1)と比較して38%の回復が認められた。この理由は、機械加工によって損傷を受けたNdリッチ層が修復強化されたことによると推察され、その結果として、図2の減磁曲線の形状から明らかなように、未処理の比較例試料と比較して表面改質された本発明試料の角型性(Hk/Hcj)が著しく改善されている。ここで、Hkは、減磁曲線上において磁化の値が残留磁化の90%に相当するときの磁界を意味する。

[0042]

【 表 1 】

	初段温度	(BH)max	Br	Hej	Hk/Hcj
試料名	(°C)	(kJ/m³)	(T)	(MA/m)	(%)
比較例試料(1)		247	1.31	1.07	2 3
本発明試料 (1)	700	283	1.33	1. 2.7	5.4
本発明試料 (2)	750	304	1.34	1. 31	68
本発明試料 (3)	800	341	1.35	1.34	7 6
本発明試料 (4)	850	337	1. 33	1.38	7 7

40

100431

上記測定後の試料について D y 膜の観察を行った。まず、本発明試料 (1) について、樹脂に埋め込み研磨した後に硝酸アルコールで軽くエッチングをし、 5 0 0 倍の光学顕微鏡で観察した。その結果、約 2 μ m の皮膜が試料の外周全面に均一に形成されていることがわかった。

[0044]

また、本発明試料 (2) については、分析型走査型電子顕微鏡を用いて磁石の内部構造を 観察した。その結果、図3 (a) の反射電子像に示すように、試料表面部はDy成膜とそ 50

の後の熱処理によって内部と異なった構造を呈していた。また、図 3 (b) の D y 元素像 によれば、表面層に高濃度のDyが存在すると同時に、試料内部にもDy元案が拡散浸透 していることがわかり、拡散深さはおよそ10μmであることがわかった。なお、像中央 部に見られるDy高濃度箇所は研磨時に剝がれた表層が一部転写したためと推測される。

. [0045]

(実施例2)

実施例1において製作した外径1mm、内径0.3mm、長さ3mmの円筒形状磁石に、 Nd、Dy、Pr、Tb、及びAlの各金属をそれぞれ成膜した。ここでNdとAlのタ ーグット寸法は、実施例1のDyと同じく外径80mm、内径30mm、厚さ20mmと し、ParとTbターゲットは、上記Alターゲットの試料に対向する面にのみ厚さ2mm の各金属を貼付固定して製作した。

[0046]

これらの各金属ターゲットを3次元スパッタ装置に取り付けた後、円筒形状磁石をタング ステン電極線に2個セットし、順次ターゲット交換をして各金属をそれぞれ成膜した。成 膜作業は、装置内にArガスを導入して装置内圧力を3Paに維持し、RF出力20Wと DC出力 2 Wを加えて 1 0 分間の逆スパッタを行い、続いてRF出力 1 0 0 WとDC出力 200Wを加えて5分間スパッタを行った。

[0047]

各金属皮膜の厚さは、磁石2個の内1個を樹脂に埋め込んで顕微鏡観察した結果、Alが 3.5 μm、希土類金属は 2.5~3 μmの範囲であった。一方、他の磁石はグローブボ ックス内の小型電気炉に装填し、800℃で10分間と600℃で30分間の拡散熱処理 を行って本発明試料(5)から(8)、及び比較例試料(2)とした。

なお、比較例試料 (1) は表 1 より再掲載し、比較例試料 (3) は N d を成膜したまま熱 処理を施さない試料である。得られた磁石試料の磁気特性を表2に示す。表2から明らか なように、成膜金属がAIの場合には金属膜のない比較例試料 (1)とほぼ同等の特性で あり、表面改質の効果が見られない。また、比較例試料 (3) は拡散熱処理を実施しない ために拡散層が形成されず、磁気特性の特性の回復はみられない。一方、本発明試料はい ずれも保磁力Hcjとエネルギー積BH。。。が大幅に回復した。

[0049]

【 表 2 】

30

試料名	成膜金属	(BH)max	Br	Hcj	Hk/Hcj
		(kJ/m³)	(T)	(MA/m)	(%)
比較例試料(1)	-	247	1. 31	1.07	2 3
比較例試料(2)	Al	2 4 3	1.30	1.05	3 1
比較例試料(3)	Νd	249	1. 29	1.09	2.5
本発明試料(5)	Nd	352	1.35	1. 25	7.4
本発明試料(6)	Dу	358	1.33	1.43	77.
本発明試料(7)	Рr	355	1.36	1.34	7 2 '
本発明試料(8)	Ть	366	1.34	1. 58	81

40

[0050]

(実施例3)

N d ı a D y a . s F e ı a . s C o ı B s 組成の焼結磁石プロックを、切断、研削、及 び穴あけをして、外径10mm、内径3mm、長さ1. 4mmの円盤形状磁石を製作した 。体積100mm³、表面積200m²、表面積/体積の比は2.0mm²¹である。 その表裏面にTb膜を形成した。スパッタリング条件は、RF出力40WとDC出力2W 50

[0056]

次に、この試料をグローブボックス内の小型電気炉に装填して、初段目を850℃で10分間、2段目を550℃で60分間の拡散熱処理を行って、試料厚さ0.1 mmの本発明試料(14)から厚さ1.8 mmの本発明試料(19)とした。なお、研削加工後の磁石を厚さ順に比較例試料(7)~(12)とした。

[0057]

図4に、これら試料の厚さ寸法、表面積/体積、体積をパラメータにしたときの磁気特性(BH)maxの結果を示す。図4より、Dy金属を成膜して拡散熱処理をした本発明試料(14)~(19)は、未処理の比較例試料(7)~(12)に対していずれの寸法においても(BH)maxの回復が見られた。特に、磁石試料の体積が20mm³より小さく、かつ表面積に対する体積比が3mm² より大きい場合、さらには体積が10mm³より小さく、かつ表面積に対する体積比が5mm² より大きい場合において、表面改質による磁気特性の回復効果が著しいことが判った。

[0058]

【発明の効果】

本発明によれば、希土類金属を機械加工によって変質損傷した磁石表面に成膜拡散することにより、切断、穴あけ、研削、研磨等の機械加工によって変質損傷した磁石表面層を修復し、磁気特性を大幅に回復させることができる。また、その結果として、微小で、高性能磁石を用いた超小型・高出力モータなどの実現に貢献するものである。

【図面の簡単な説明】

【図1】本発明の方法に好適に使用できる3次元スパッタ装置のターゲット周辺の模式図である。

【図 2 】本発明試料 (1)と (3)、及び比較例試料 (1)の減磁曲線を示すグラフである。

【図3】 D y 成膜後に熱処理した本発明試料 (2) の S E M 像 (a:反射電子像、b; D y 元素像)を示す図面代用写真である。

【図4】本発明及び比較例試料の、磁石試料寸法と(BH)maxの関係図である。

【符号の説明】

1、2:金属ターゲット

3 : 水冷式高周波コイル

4 : 円筒形状磁石

5 :電極線

6 : モータ

7 : プラズマ空間

20

[図1]

【図2】

[図3]

[図4]

フロントページの続き

(72)発明者 町田 嶽一

大阪府箕面市粟生間谷西1丁目4番地 グリーンヒル東箕面5棟401号

_(72)発明者 坂口 英二

京都府亀岡市余部町前川原37番地の11

(72)発明者 石垣 尚幸

滋賀県大津市稲津3丁目10番9号

Fターム(参考) 5E062 CC02: CC03 CD04 CG01 CG07 :