Complex Numbers and Polar Form

Find the absolute value.

1)
$$4 + 3i$$

2)
$$-\sqrt{15} + i\sqrt{15}$$

3)
$$3\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$$

4)
$$\sqrt{21} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$$

Plot each point in the complex plane. Use rectangular coordinates when the number is given in rectangular form and polar coordinates when polar form is used.

5)
$$1 + 3i$$

6)
$$3\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$$

Convert numbers in rectangular form to polar form and polar form to rectangular form.

7)
$$-2\sqrt{3} - 2i$$

8)
$$\sqrt{21} + i\sqrt{7}$$

9)
$$-\frac{5\sqrt{2}}{2} - \frac{5\sqrt{2}}{2}i$$

11)
$$\sqrt{6} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$$

$$12) \ 2\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$$

13)
$$\sqrt{3}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

 $14) \ \sqrt{30} (\cos \pi + i \sin \pi)$

Simplify. Write your answer in rectangular form when rectangular form is given and in polar form when polar form is given.

15)
$$(4+4i)(5-3i)$$

16)
$$4\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right) \cdot 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

$$17) \ \frac{6-2i}{2+4i}$$

18)
$$\frac{2\sqrt{6}\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)}{6\left(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\right)}$$

19)
$$(-1 - 6i)^3$$

$$20) \left(2\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)\right)^3$$

Find all nth roots. Write your answers in rectangular form when rectangular form is given and in polar form when polar form is given.

-2-

21)
$$2i$$
, $n = 3$

22)
$$6\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right), \ n = 4$$

Critical thinking questions:

23) Show that
$$-i\sqrt[23]{n}$$
 is a 23rd root of ni .

24) Solve for x : (2 + i)x = 1 + 2iHint: x is a complex number.

Complex Numbers and Polar Form

Find the absolute value.

1)
$$4 + 3i$$

5

$$3) \ 3\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$$

3

2)
$$-\sqrt{15} + i\sqrt{15}$$

 $\sqrt{30}$

4)
$$\sqrt{21} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$$

$$\sqrt{21}$$

Plot each point in the complex plane. Use rectangular coordinates when the number is given in rectangular form and polar coordinates when polar form is used.

5)
$$1 + 3i$$

6)
$$3\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$$

Convert numbers in rectangular form to polar form and polar form to rectangular form.

7)
$$-2\sqrt{3} - 2i$$

$$4\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$$

8)
$$\sqrt{21} + i\sqrt{7}$$

$$2\sqrt{7}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

9)
$$-\frac{5\sqrt{2}}{2} - \frac{5\sqrt{2}}{2}i$$

$$5\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)$$

$$2\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

11)
$$\sqrt{6} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$$

$$i\sqrt{6}$$

$$12) \ 2\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$$

$$-1-i\sqrt{3}$$

13)
$$\sqrt{3} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$$

$$\frac{3}{2} + \frac{\sqrt{3}}{2}i$$

14)
$$\sqrt{30}(\cos \pi + i\sin \pi)$$
$$-\sqrt{30}$$

Simplify. Write your answer in rectangular form when rectangular form is given and in polar form when polar form is given.

15)
$$(4+4i)(5-3i)$$

 $32+8i$

16)
$$4\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right) \cdot 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$
$$8\sqrt{2}\left(\cos\frac{23\pi}{12} + i\sin\frac{23\pi}{12}\right)$$

17)
$$\frac{6-2i}{2+4i}$$

$$\frac{1}{5} - \frac{7}{5}i$$

18)
$$\frac{2\sqrt{6}\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)}{6\left(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\right)}$$
$$\frac{\sqrt{6}\left(\cos-\frac{2\pi}{3} + i\sin-\frac{2\pi}{3}\right)}{3}$$

$$19) \ \left(-1 - 6i\right)^3$$
$$107 + 198i$$

$$20) \left(2 \left(\cos \frac{7\pi}{6} + i \sin \frac{7\pi}{6} \right) \right)^3$$

$$8 \left(\cos \frac{7\pi}{2} + i \sin \frac{7\pi}{2} \right)$$

Find all nth roots. Write your answers in rectangular form when rectangular form is given and in polar form when polar form is given.

21)
$$2i$$
, $n = 3$
 $1.09 + 0.63i$
 $-1.09 + 0.63i$
 $-1.26i$

22)
$$6\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$
, $n = 4$ $\sqrt[4]{6}\left(\cos\frac{3\pi}{16} + i\sin\frac{3\pi}{16}\right)$ $\sqrt[4]{6}\left(\cos\frac{11\pi}{16} + i\sin\frac{11\pi}{16}\right)$ $\sqrt[4]{6}\left(\cos\frac{19\pi}{16} + i\sin\frac{19\pi}{16}\right)$ $\sqrt[4]{6}\left(\cos\frac{27\pi}{16} + i\sin\frac{27\pi}{16}\right)$

Critical thinking questions:

23) Show that
$$-i\sqrt[23]{n}$$
 is a 23rd root of ni .
 $(-i\sqrt[23]{n})^{23} = (-i)^{23} \cdot (\sqrt[23]{n})^{23} = in$

24) Solve for
$$x: (2+i)x = 1+2i$$
 $\frac{4}{5} + \frac{3}{5}i$
Hint: x is a complex number.

Create your own worksheets like this one with Infinite Precalculus. Free trial available at KutaSoftware.com