邏輯設計 Hw#5 Answer

1. Design a combinational circuit that forms the 2-bit binary sum S_1S_0 of two 2-bit number A_1A_0 and B_1B_0 and has both a carry input C_0 and carry output C_2 . Design the entire circuit implementing each of the three outputs with a two-level circuit plus inverters for the input variables. Begin the design with the following equations for each of the two bits of the adder:

$$S_{i} = A_{i}'B_{i}'C_{i} + A_{i}'B_{i}C_{i}' + A_{i}B_{i}'C_{i}' + A_{i}B_{i}C_{i}$$

 $C_{i+1} = A_{i}B_{i} + A_{i}C_{i} + B_{i}C_{i}$

<Ans>

就是把要求的outputs, S_1 , S_0 , C_2 down 到用inputs A_1 , A_0 , B_1 , B_0 , C_0 表示 $C_1 = A_0B_0 + A_0C_0 + B_0C_0$

$$\begin{split} S_0 &= A_0'B_0'C_0 + A_0'B_0C_0' + A_0B_0'C_0' + A_0B_0C_0 \\ S_1 &= A_1'B_1'C_1 + A_1'B_1C_1' + A_1B_1'C_1' + A_1B_1C_1 \\ &= A_1'B_1'(A_0B_0 + A_0C_0 + B_0C_0) + A_1'B_1(A_0B_0 + A_0C_0 + B_0C_0)' + A_1B_1'(A_0B_0 + A_0C_0 + B_0C_0)' + A_1B_1(A_0B_0 + A_0C_0 + B_0C_0) \\ &= A_1'B_1'A_0B_0 + A_1'B_1'A_0C_0 + A_1'B_1'B_0C_0 + A_1'B_1A_0'B_0' + A_1'B_1A_0'C_0' + A_1B_1'B_0'C_0' + A_1B_1'A_0'B_0' + A_1B_1'A_0'C_0' + A_1B_1'B_0'C_0' + A_1B_1A_0B_0 + A_1B_1A_0C_0 + A_1B_1B_0C_0 \\ C_2 &= A_1B_1 + A_1C_1 + B_1C_1 \\ &= A_1B_1 + A_1(A_0B_0 + A_0C_0 + B_0C_0) + B_1(A_0B_0 + A_0C_0 + B_0C_0) \\ &= A_1B_1 + A_1A_0B_0 + A_1A_0C_0 + A_1B_0C_0 + B_1A_0B_0 + B_1A_0C_0 + B_1B_0C_0 \end{split}$$

- 2. The following binary numbers have a sign in the leftmost position and, if negative, are in 2's complement form. Perform the indicated arithmetic operations and verify the answers.
 - (a) 100111 + 111001

(b) 110001 – 010010

Indicate if overflow occurs for each computation.

<Ans>

(a)
$$\begin{array}{c}
1111111 \\
100111 \\
+111001 \\
\hline
1100000 \\
=> 100000 \\
\end{array}$$
(-25)
$$\begin{array}{c}
+(-7) \\
(-32) \\
-32)
\end{array}$$
verified

- ∴ MSB 約 carry in = carry out
- ∴無overflow

- ∴ MSB 約 carry in ≠ carry out
- ... overflow發生,所以兩個 負數相加竟得到正數

3. Use contraction beginning with an 8-bit adder-subtractor without carry out to design an 8-bit circuit without carry out that increments its input by 00000010 for input S = 0 and decrements its input by 00000010 for input S = 1. Perform the design by designing the distinct 1-bit cells needed and indicating the type of cell use in each of the eight bit positions.

<Ans>

當S = 0,就是m00000010;當S = 1,是減00000010,也就是m111111110 把 00000010、111111110當作 $B_7 \sim B_0$ 。

$$B_{0} = 0 \cdot C_{0} = 0 = S_{0} = A_{0} \oplus 0 \oplus 0 = A_{0}$$

$$=> C_{1} = A_{0}B_{0} + A_{0}C_{0} + B_{0}C_{0} = 0$$

$$B_{1} = 1 \cdot C_{1} = 0 => S_{1} = A_{1} \oplus 1 \oplus 0 = A_{1}'$$

$$=> C_{2} = A_{1}B_{1} + A_{1}C_{1} + B_{1}C_{1} = A_{1}$$

(接下來就沒法化簡了,因為 $B_2 \sim B_7$ 可能是0也可能是1) S_0 直接拉線, S_1 接個inverter, $S_{2\sim 6}$ 是用Full Adders產生,而最左邊的bit免算 C_{out} 所以用3-input XOR得到 S_7 。

4. Design a combinational circuit that compares two 4-bit unsigned numbers A and B to see whether B is greater than A. The circuit has one output X, so that X = 1 if A < B and X = 0 if $A \ge B$.

<Ans>

A < B,發生在某一位 $A_i = 0$, $B_i = 1$,而更高位都相等($A_j = B_j$, for all j > i) $\therefore X = A_3'B_3 + (A_3B_3 + A_3'B_3')A_2'B_2 + (A_3B_3 + A_3'B_3')(A_2B_2 + A_2'B_2')A_1'B_1 + (A_3B_3 + A_3'B_3')(A_2B_2 + A_2'B_2')(A_1B_1 + A_1'B_1')A_0'B_0$ 不經簡化的電路圖如下(不畫沒關係):

5. Design a binary multiplier that multiplies two 3-bit unsigned numbers. Use AND gates and binary adders.

6. Design a circuit that multiplies a 4-bit multiplicand (被乘數) by the constant 1010 by applying contraction to the solution to Problem 5.

$$a_{3}a_{2}a_{1}a_{0} \times 1010 = P_{7}P_{6}P_{5}P_{4}P_{3}P_{2}P_{1}P_{0}$$

$$P_{0} = 0$$

$$P_{1} = a_{0}$$

$$P_{2} = a_{1}$$

$$P_{3} = S(a_{2} + a_{0})$$

$$P_{4} = S(C(P_{3}) + a_{3} + a_{1})$$

$$P_{5} = S(C(P_{4}) + a_{2})$$

$$P_{6} = S(C(P_{5}) + a_{3})$$

$$P_{7} = C(P_{6})$$

