MATH3075/3975 Financial Derivatives

School of Mathematics and Statistics University of Sydney

Semester 2, 2020

Tutorial sheet 10

Background: Section 4.4 – American Options in the CRR Model.

Exercise 1 Assume the CRR model $\mathcal{M} = (B, S)$ with T = 3, the stock price $S_0 = 100$, $S_1^u = 120$, $S_1^d = 90$, and the risk-free interest rate r = 0.1. Consider the American put option on the stock S with the maturity date T=3 and the constant strike price K=121.

(a) Find the arbitrage price Project Exam Help (b) Find the rational exercise times τ_t^* , t=0,1,2,3 for the holder of the

- American put option.
- (c) Show that the Sexist Down Go Goffing of the issuer if the option is not rationally exercised by its holder.

Exercise 2 Assume the CRR model $\mathcal{M} = (B, S)$ with T = 3, the stock price $S_0 = 100$ G 100 10Consider the American call option with the expiration date T=3 and the running payoff $g(S_t, t) = (S_t - K_t)^+$, where the variable strike price equals $K_0 = K_1 = 100, K_2 = 105 \text{ and } K_3 = 110.$

- (a) Find the arbitrage price X_t^a of the American call option for t=0,1,2,3and show that it is a strict supermartingale under \mathbb{P} .
- (b) Find the holder's rational exercise times τ_0^* for the American call option.
- (c) Find the issuer's replicating strategy for the American call option up to the rational exercise time τ_0^*

Exercise 3 (MATH3975) Consider the CRR binomial model $\mathcal{M} = (B, S)$ with the initial stock price $S_0 = 9$, the interest rate r = 0.01 and the volatility equals $\sigma = 0.1$ per annum. Use the CRR parametrization for u and d, that is,

$$u = e^{\sigma\sqrt{\Delta t}}, \quad d = \frac{1}{u},$$

with the time increment $\Delta t = 1$.

We consider call and put options with the expiration date T=5 years and strike K = 10.

- (a) Compute the price process C_t , $t = 0, 1, \ldots, 5$ of the European call option using the binomial lattice method.
- (b) Compute the price process P_t , $t = 0, 1, \dots, 5$ for the European put option.
- (c) Does the put-call parity relationship hold for t=0?
- (d) Compute the price process P_t^a , $t=0,1,\ldots,5$ for the American put option. Will the American put option be exercised before the expiration date T = 5 by its rational holder?

Exercise 4 (MATH3975) Consider the game option (See Section 4.5) with the expiration date T = 12 and the payoff functions $h(S_t)$ and $\ell(S_t)$ where

Assignment Project Exam Help

and

https://powcoder.com

where $\alpha = 0.02$ and K = 27. Assume the CRR model with d = 0.9, u =

1.1, r = 0.05 and $S_0 = 25$ WeChat powcoder

(a) Compute the arbitrage price process $(X_t^g)_{t=0}^T$ for the game option using the recursive formula, for t = 0, 1, ..., T - 1,

$$X_t^g = \min \left\{ h(S_t), \max \left[\ell(S_t), (1+r)^{-1} \left(\widetilde{p} X_{t+1}^{gu} + (1-\widetilde{p}) X_{t+1}^{gd} \right) \right] \right\}$$

with $\pi_T(X^g) = \ell(S_T)$.

(b) Find the optimal exercise times τ_0^* and σ_0^* for the holder and the issuer of the game option. Recall that

$$\tau_0^* = \inf \{ t \in \{0, 1, \dots, T\} \mid X_t^g = \ell(S_t) \}$$

and

$$\sigma_0^* = \inf \{ t \in \{0, 1, \dots, T\} \mid X_t^g = h(S_t) \}.$$