# 随机变量及其分布

## Didnelpsun

## 目录

| 1        | 一维     | 随机变      | 量       |     |    |   |   |  |  |  |   |  |   |  |   |   |   |  |  | 1 |
|----------|--------|----------|---------|-----|----|---|---|--|--|--|---|--|---|--|---|---|---|--|--|---|
|          | 1.1    | 一维随机变量分布 |         |     |    |   |   |  |  |  |   |  |   |  | 1 |   |   |  |  |   |
|          |        | 1.1.1    | 二项分布    | ·   |    |   | • |  |  |  |   |  |   |  |   |   |   |  |  | 1 |
|          |        | 1.1.2    | 泊松分布    | ·   |    |   |   |  |  |  |   |  |   |  |   |   |   |  |  | 1 |
|          |        | 1.1.3    | 几何分布    | ·   |    |   |   |  |  |  | • |  |   |  |   |   |   |  |  | 1 |
|          |        | 1.1.4    | 均匀分布    | ·   |    |   |   |  |  |  |   |  |   |  |   |   |   |  |  | 2 |
|          |        | 1.1.5    | 指数分布    | ·   |    |   |   |  |  |  |   |  |   |  |   |   |   |  |  | 3 |
|          |        | 1.1.6    | 正态分布    |     |    |   |   |  |  |  |   |  |   |  |   |   |   |  |  | 4 |
|          | 1.2    | 一维随      | 机变量函    | 数分布 |    |   | • |  |  |  | • |  | • |  |   | • | • |  |  | 4 |
| <b>2</b> | 二维随机变量 |          |         |     |    |   |   |  |  |  |   |  |   |  | 4 |   |   |  |  |   |
|          | 2.1    | 二维随机变量分布 |         |     |    |   |   |  |  |  |   |  |   |  | 5 |   |   |  |  |   |
|          |        | 2.1.1    | 二维正态    | 分布. |    |   |   |  |  |  | • |  |   |  |   |   |   |  |  | 5 |
|          |        |          | 2.1.1.1 | 正态分 | 布性 | 质 |   |  |  |  | • |  |   |  |   |   |   |  |  | 5 |
|          |        |          | 2.1.1.2 | 标准正 | 态化 |   |   |  |  |  |   |  |   |  |   |   |   |  |  | 5 |
|          | 2.2    | 二维随      | 机变量函    | 数分布 |    |   |   |  |  |  |   |  |   |  |   |   |   |  |  | 5 |
|          |        | 2.2.1    | 和的分布    |     |    |   |   |  |  |  |   |  |   |  |   |   |   |  |  | 5 |
|          |        | 2.2.2    | 差的分布    |     |    |   |   |  |  |  |   |  |   |  |   |   |   |  |  | 6 |
|          |        | 2.2.3    | 混合型.    |     |    |   |   |  |  |  |   |  |   |  |   |   |   |  |  | 6 |

分布函数变量区域左闭右开, 概率密度则不要求。

### 1 一维随机变量

#### 1.1 一维随机变量分布

#### 1.1.1 二项分布

$$P\{X=k\} = C_n^k p^k (1-p)^{n-k} \ (k=0,1,\cdots,n,\ 0 例题:已知随机变量  $X$  的概率密度为  $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, 其他 \end{cases}$ ,  $Y$  表示对  $X$  进行  $3$  次独立重复试验中出现事件  $\Big\{X \leqslant \frac{1}{2}\Big\}$ ,求  $P\{Y=2\}$ 。$$

解:已知对 X 进行独立重复试验,表示这个进行的是伯努利试验,从而  $Y \sim B(n,p)$ 。又是 3 次,所以  $Y \sim B(3,p)$ 。

只用求出这个 
$$p$$
 即  $\left\{X \leqslant \frac{1}{2}\right\}$  的概率就可以了。又已知  $f(x)$ 。  

$$\therefore p = \left\{X \leqslant \frac{1}{2}\right\} = \int_0^{\frac{1}{2}} 2x \, \mathrm{d}x = \frac{1}{4} \cdot \therefore P\{Y = 2\} = B\left(3, \frac{1}{4}\right) = \frac{9}{64} \cdot$$

#### 1.1.2 泊松分布

$$P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda} \ (k = 0, 1, \dots, n, \ \lambda > 0), \ X \sim P(\lambda).$$

**例题**:设一本书的各页印刷错误的个数 X 服从泊松分布。已知只有一个和只有两个印刷错误的页数相同,则随机抽查的 4 页中无印刷错误的概率 p 为?

解: 
$$: P\{X=1\} = P\{X=2\}, :: \frac{\lambda^1}{1!}e^{-\lambda} = \frac{\lambda^2}{2!}e^{-\lambda}, \lambda = 2.$$

由于随机抽四页类似于伯努利试验是相互独立的,所以随机抽 4 页都无错误的概率为  $[P\{X=0\}]^4=e^{-8}$ 。

#### 1.1.3 几何分布

$$P\{X = k\} = (1-p)^{k-1}p \ (k = 0, 1, \dots, n, \ 0$$

**例题**: 袋中有 8 个球,其中 3 个白球 5 个黑球,现在任意从中取出 4 个球,若四个球中有 2 个黑球和 2 个白球则试验停止,否则将其放回袋中重新抽取直到满足条件,用 X 表示试验次数,则求  $P\{X=k\}$ 。

解:由题目的停止,则说明这个题目的概率是服从几何分布的,最重要的就是求出单次满足事件概率 p。

根据组合和乘法原理,
$$p = \frac{C_3^2 C_5^2}{C_8^4} = \frac{3}{7}$$
。  
则  $P\{X = k\} = \left(\frac{4}{7}\right)^{k-1} \cdot \frac{3}{7}$ 。

**例题**: 已知随机变量 X 的概率密度为  $f(x) = \begin{cases} 2^{-x} \ln 2, & x > 0 \\ 0, 其他 \end{cases}$ ,对 X 进行独立重复观测,直到第 2 个大于 3 的观测值出现时停止,记 Y 为观测次数,求 Y 的概率分布。

解:由题目直到就停止,知道  $Y \sim G(p)$ 。

$$\mathbb{X} \ p = P\{X \ge 3\} = \int_3^{+\infty} 2^{-x} \ln 2 \, \mathrm{d}x = \frac{1}{8}$$

这是对几何分布的变形,首先进行 k 次试验,第 k 次成功,所以要乘 p,而因为是第 2 个成功,所以前面的 k-1 次中有 k-2 次失败和一次成功,所以一共  $p^2(1-k)^{k-2}$ 。因为前面的成功的一次在 k-1 中任意一个地方就可以了,所以一共有 k-1 中可能性,要考虑到排列,所以还要乘 (k-1)。

以一共有 
$$k-1$$
 中可能性,要考虑到排列,所以还要乘  $(k-1)$ 。  
∴  $P\{Y=k\}=(k-1)\left(\frac{1}{8}\right)^2\cdot\left(\frac{7}{8}\right)^{k-2}$ 。

#### 1.1.4 均匀分布

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \not\exists \text{th} \end{cases}, F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \leqslant x < b \end{cases}, X \sim U(a,b).$$

**例题:** 已知随机变量  $X \sim U(a,b)$  (a>0) 且  $P\{0 < X < 3\} = \frac{1}{4}$ , $P\{X > 4\} = \frac{1}{2}$ ,求 X 的概率密度以及  $P\{1 < X < 5\}$ 。

解: 
$$: P\{X > 4\} = \frac{1}{2}$$
, 4 在其区间中点上, $\frac{a+b}{2} = 4$ 。
$$: P\{0 < X < 3\} = \frac{1}{4}$$
, 3 若在  $a$  左边则概率为  $0$ ,所以必然在右边。
$$: P\{a < X < 3\} = \frac{1}{4}$$
,  $P\{< 3X < 4\} = 1 - \frac{1}{4} - \frac{1}{2} = \frac{1}{4}$ ,  $\frac{4-3}{b-a} = \frac{1}{4}$ 。
解得  $a = 2$ ,  $b = 6$ ,  $X \sim U(2,6) = f(x) = \begin{cases} \frac{1}{4}, & 2 < x < 6 \\ 0, & \text{其他} \end{cases}$ 

$$P\{1 < X < 5\} = \frac{5-2}{6-2} = \frac{3}{4}$$
。

**例题**: 已知随机变量 X 在区间 [0,1] 上服从均匀分布,在 X = x (0 < x < 1) 的条件下随机变量 Y 在区间 [0,x] 上服从均匀分布。

(1)(X,Y) 的概率密度。

解: 
$$X$$
 在区间  $[0,1]$  上服从均匀分布,则  $X \sim f_X(x) = \begin{cases} 1, & 0 \leq x \leq 1 \\ 0, & 其他 \end{cases}$ 。

$$Y$$
 在  $X = x$  下均匀分布,则  $f_{Y|X}(y|x) = \begin{cases} \frac{1}{x}, & 0 < y < x < 1 \\ 0, & 其他 \end{cases}$  。

(X,Y) 联合概率 = 条件概率 × 边缘概率。

即 
$$f(x,y) = f_{Y|X}(y|x)f_X(x) = \begin{cases} \frac{1}{x}, & 0 < y < x < 1 \\ 0, & 其他 \end{cases}$$
 。

#### (2)Y 的概率密度。

解: 首先求 Y 的边缘概率密度,就需要积 X。然后求 y 的区间,XY 的联合区间是横坐标 [0,1] 到纵坐标 [0,1] 的下三角形,则  $y \in [0,1]$ 。

然后求 Y 就在联合概率密度所规定的区间中画一条  $y=y_0$  的线,从左先交到的是 y=x,所以下限就是 y,后交的是 x=1,所以上限为 1。最后将 y 的联合分布函数放在中间,得到  $f_Y(y)=\begin{cases} \int_y^1 \frac{1}{x} \mathrm{d}x = -\ln y, & 0 < y < x < 1 \\ 0, & \text{其他} \end{cases}$ 

#### (3) 概率 $P\{X + Y > 1\}$

解: 求  $P\{X+Y>1\}$  就是求一个区间的概率值,即  $P\{(X,Y)\in G\}=\iint_G f(x,y)\,\mathrm{d}x\mathrm{d}y$ 。



所以 
$$P\{X + Y > 1\} = \iint_D \frac{1}{x} d\sigma$$
,  $D = x + y > 1 \cap 0 < y < x < 1$ . 
$$\iint_D \frac{1}{x} d\sigma = \int_{\frac{1}{2}}^1 dx \int_{1-x}^x \frac{1}{x} dy = 1 - \ln 2$$
.

#### 1.1.5 指数分布

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \text{ 其他 } \end{cases}, \quad F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \geqslant 0 \\ 0, & x < 0 \end{cases}, \quad X \sim E(\lambda).$$

例题: 已知随机变量  $X \sim E(1)$ , a 为常数且大于 0, 求  $P\{X \leqslant a+1|X>a\}$ 。

解: 
$$P\{X \le a+1|X>a\} = \frac{P\{a < X \le a+1\}}{P\{X>a\}} = \frac{\int_a^{a+1} e^{-x} dx}{\int_a^{+\infty} e^{-x} dx} = 1 - \frac{1}{e}$$
。  
也可以根据指数分布的无记忆性:  $P\{X \le a+1|X>a\} = 1 - P\{X>a\}$ 

也可以根据指数分布的无记忆性:  $P\{X \leqslant a+1|X>a\}=1-P\{X>a+1|X>a\}=1-P\{X>1\}=P\{X\leqslant 1\}=F(1)=1-\frac{1}{e}$ 。

**例题**: 随机变量 X 服从参数为 1 的指数分布, 求  $P\{3 > X > 2 | X > 1\}$ 。

已知  $F(X < x) = 1 - e^{-\lambda x}$ ,则  $F(X > x) = e^{-\lambda x}$ 。且  $2 < X < 3 \cap 1 < X = 2 < X < 3$ 。

#### 1.1.6 正态分布

$$\begin{split} f(x) &= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \; (-\infty < x < +\infty, \; -\infty < \mu < +\infty, \; \sigma > 0), \\ X &\sim N(\mu, \sigma^2)_{\circ} \end{split}$$

例题: 已知随机变量  $X \sim N(0,1)$ ,对给定的  $\alpha$   $(0 < \alpha > 1)$ ,数  $\mu_{\alpha}$  满足  $P\{X > \mu_{\alpha}\} = \alpha$ ,若  $P\{|X| < x\} = \alpha$ ,求 x。

解:  $P\{X > \mu_{\alpha}\} = \alpha$  即表示  $\mu_{\alpha}$  为标准正态分布的上  $\alpha$  分位点。

又  $P\{|X|< x\}=\alpha$ ,即 -x< X< x 的面积为  $\alpha$ ,所以两边的面积各为  $\frac{1-\alpha}{2}$ ,  $P\{X< x\}=P\{X> x\}=\frac{1-\alpha}{2}$ 。

 $\therefore$  面积为  $\alpha$  的下标为  $\alpha$ ,  $\therefore$  面积为  $\frac{1-\alpha}{2}$  的下标为  $\frac{1-\alpha}{2}$ ,  $x=\mu_{\frac{1-\alpha}{2}}$ .

#### 1.2 一维随机变量函数分布

**例题:**随机变量 X 服从 U(0,2),求随机变量  $Y=X^2$  在 (0,4) 内的概率分布密度  $f_Y(y)$ 。

解: 求概率分布密度函数,可以求出其积分概率分布函数, $F_Y(y)=P\{Y\leqslant y\}=P\{X^2\leqslant y\}=P\{-\sqrt{y}\leqslant X\leqslant \sqrt{y}\}$ ,又  $X\sim U(0,2)$ ,所以  $f(x)=\frac{1}{2}$ 。

则概率分布函数就是概率密度的积分,此时已经将 Y 变为了关于 X 的积分,  $=\int_{-\sqrt{y}}^{\sqrt{y}}f(x)\,\mathrm{d}x=2\int_{0}^{\sqrt{y}}\frac{1}{2}\,\mathrm{d}x=\frac{\sqrt{y}}{2}$ 。即  $F_{Y}(y)=\frac{\sqrt{y}}{2}$ 。 则  $f_{Y}(y)=F'_{Y}(y)=\frac{1}{4\sqrt{y}}$ 。

## 2 二维随机变量

使用定义法则直接用二重积分的分布函数来求,使用卷积公式则使用概率密度。

#### 2.1 二维随机变量分布

#### 2.1.1 二维正态分布

概率密度为:

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left(\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right)\left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right)\right)$$

$$\not \perp + \mu_1, \mu_2 \in R, \quad \sigma_1, \sigma_2 > 0, \quad -1 < \rho < 1.$$

#### 2.1.1.1 正态分布性质

例题:  $(X,Y) \sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;0)$ ,分布函数为 F(x,y),已知  $F(\mu_1,y) = \frac{1}{4}$ ,求 y。

解: 当 
$$\rho = 0$$
 时, $F(X,Y) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2}\left(\left(\frac{x-\mu_1}{\sigma_1}\right)^2 + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right)\right)$   
=  $F_X(x)F_Y(y)$ ,即  $XY$  相互独立。

$$X \sim N(\mu_1, \sigma_1)$$
,  $Y \sim N(\mu_2, \sigma_2)$ ,  $F_X(\mu_1) = P\{X \leqslant \mu_1\} = \frac{1}{2}$ 。  
 $F(\mu_1, y) = F_X(\mu_1) F_Y(y) = \frac{1}{2} F_Y(y) = \frac{1}{4}$ , 则  $F_Y(y) = \frac{1}{2}$ , 即根据性质  $y = \mu_2$ 。

#### 2.1.1.2 标准正态化

$$F(x) = P\{X \leqslant x\} = P\left\{\frac{X - \mu}{\sigma} \leqslant \frac{x - \mu}{\sigma}\right\} = \Phi\left(\frac{x - \mu}{\sigma}\right).$$
 即将 XY 的相关系数消去。

**例题:** 设随机变量 (X,Y) 的分布函数为  $\Phi(2x+1)\cdot\Phi(2y-1)$ ,其中  $\Phi(x)$  为标准正态分布函数,求 (X,Y) 的分布函数。

解:由分布函数为  $\Phi(2x+1)\Phi(2y-1)$  是 X 的分布函数和 Y 的分布函数的 乘积,所以可知 XY 相互独立。

所以根据标准化公式: 
$$\Phi(2x+1) \cdot \Phi(2y-1) = \Phi\left(\frac{x+\frac{1}{2}}{\frac{1}{2}}\right) \Phi\left(\frac{y-\frac{1}{2}}{\frac{1}{2}}\right)$$
。  
 $\therefore (X,Y) \sim N\left(-\frac{1}{2},\frac{1}{2};\frac{1}{4},\frac{1}{4};0\right)$ 。

### 2.2 二维随机变量函数分布

#### 2.2.1 和的分布

**例题:** 随机变量 (X,Y) 的概率密度函数  $f(x,y)=\left\{ egin{array}{ll} e^{-y}, & 0 < x < y \\ 0, 其他 \end{array} 
ight.$  求  $P\{X+Y\leqslant 1\}$ 。

解:根据 $X+Y \leq 1$ 和0 < x < y划分区域:



其中积分区域 D 如图所示,所以  $P\{X+Y\leqslant 1\}=\int\limits_{D}e^{-y}\,\mathrm{d}x\mathrm{d}y=\int_{0}^{\frac{1}{2}}\mathrm{d}x\int_{x}^{1-x}e^{-y}\,\mathrm{d}y=\int_{0}^{\frac{1}{2}}(e^{-x}-e^{x-1})\mathrm{d}x=1+e^{-1}-2e^{-\frac{1}{2}}.$ 

#### 2.2.2 差的分布

例题:设  $X \sim N(\mu, \sigma_1^2)$ ,  $Y \sim N(2\mu, \sigma_2^2)$ , XY 相互独立,已知  $P\{X - Y \geqslant 1\} = \frac{1}{2}$ , 求  $\mu$ 。

 $\widehat{\mathbf{R}}$ : 若  $X \sim N(\mu, \sigma_1^2)$ ,  $Y \sim N(2\mu, \sigma_2^2)$ , 则  $X - Y \sim (-\mu, \sigma_1^2 - \sigma_2^2)$ 。则 X - Y 的均值为  $-\mu$ ,即其图像的对称轴为  $-\mu$ 。

又  $P\{X-Y \ge 1\} = \frac{1}{2}$ , 则 X-Y 在 1 这里均分,则对称轴为 1,即  $\mu = -1$ 。

#### 2.2.3 混合型

**例题:** 设随机变量  $X_1$  和  $X_2$  相互独立,已知  $X_1 \sim B\left(1, \frac{3}{4}\right)$ , $X_2$  的分布函数为 F(x),求  $Y = X_1 + X_2$  的分布函数  $F_Y(y)$ 。

解: 已知  $X_1 \sim B\left(1, \frac{3}{4}\right)$ ,  $X_2$  的分布函数为 F(x), 则 Y 为混合型。

$$\mathbb{M} P\{X_1=0\} = C_1^0 \frac{3}{4}^0 \frac{1}{4}^1 = \frac{1}{4}, P\{X_1=1\} = C_1^1 \frac{3}{4}^1 \frac{1}{4}^0 = \frac{3}{4}.$$

根据分布函数定义,则  $F_Y(y) = \frac{1}{4} \cdot F(y) + \frac{3}{4} \cdot F(y-1)$ 。