CS21 Decidability and Tractability

Lecture 20 February 24, 2014

February 24, 2014

CS21 Lecture 20

Outline

- · the class NP
 - 3-SAT is NP-complete (finishing up)
 - NP-complete problems: independent set, vertex cover, clique
 - NP-complete problems: Hamilton path and cycle, Traveling Salesperson Problem

February 24, 2014

CS21 Lecture 20

CIRCUIT-SAT is NP-complete

Theorem: CIRCUIT-SAT is NP-complete

CIRCUIT-SAT = {C : C is a Boolean circuit for which there exists a satisfying truth assignment}

Proof:

- Part 1: need to show CIRCUIT-SAT \in NP.
 - · can express CIRCUIT-SAT as:

CIRCUIT-SAT = $\{C : C \text{ is a Boolean circuit for } which \exists x \text{ such that } (C, x) \in R\}$

 $R = \{(C, x) : C \text{ is a Boolean circuit and } C(x) = 1\}$

February 24, 2014

CS21 Lecture 20

3SAT is NP-complete

Theorem: 3SAT is NP-complete

3SAT = {φ : φ is a 3-CNF formula for which there exists a satisfying truth assignment}

Proof:

- Part 1: need to show 3-SAT ∈ NP
 - already done
- Part 2: need to show 3-SAT is NP-hard
 - we will give a poly-time reduction from CIRCUIT-SAT to 3-SAT

February 24, 2014

CS21 Lecture 20

3SAT is NP-complete

- given a circuit C
 - variables x₁, x₂, ..., x_n
 - AND (△), OR (▽), NOT (¬) gates g₁, g₂, …, g_m
- reduction f(C) produces these clauses for ϕ on variables $x_1,\,x_2,\,...,\,x_n,\,g_1,\,g_2,\,...,\,g_m;$

February 24, 2014

CS21 Lecture 20

3SAT is NP-complete

- given a circuit C
 - variables x₁, x₂, ..., x_n
 - AND (△), OR (∨), NOT (¬) gates g₁, g₂, ..., g_m
- reduction f(C) produces these clauses for ϕ on variables $x_1,\,x_2,\,...,\,x_n,\,g_1,\,g_2,\,...,\,g_m$:

February 24, 2014 CS21 Lecture 20

3SAT is NP-complete

- given a circuit C
 - variables x₁, x₂, ..., x_n
 - AND (\land), OR (\lor), NOT (\neg) gates $g_1, g_2, ..., g_m$
- reduction f(C) produces these clauses for ϕ on variables $x_1,\,x_2,\,...,\,x_n,\,g_1,\,g_2,\,...,\,g_m$:

3SAT is NP-complete

- finally, reduction f(C) produces single clause
 (g_m) where g_m is the output gate.
- f(C) computable in poly-time?
 - · yes, simple transformation
- YES maps to YES?
 - if C(x) = 1, then assigning x-values to x-variables of φ and gate values of C when evaluating x to the g-variables of φ gives satsifying assignment.

February 24, 2014 CS21 Lecture 20

3SAT is NP-complete

- NO maps to NO?
 - show that φ satisfiable implies C satisfiable
 - satisfying assignment to φ assigns values to x-variables and g-variables
 - output gate g_m must be assigned 1
 - every other gate must be assigned value it would take given values of its inputs.
 - the assignment to the x-variables must be a satisfying assignment for C.

February 24, 2014 CS21 Lecture 20 9

Search vs. Decision

- Definition: given a graph G = (V, E), an independent set in G is a subset V'⊆ V such that for all u,w ∈ V' (u,w) ∉ E
- A problem: given G, find the largest independent set
- This is called a search problem
 - searching for optimal object of some type
 - comes up frequently

February 24, 2014 CS21 Lecture 20 10

Search vs. Decision

- We want to talk about languages (or decision problems)
- Most search problems have a natural, related decision problem by adding a bound "k"; for example:
 - search problem: given G, find the largest independent set
 - decision problem: given (G, k), is there an independent set of size at least k

February 24, 2014 CS21 Lecture 20 11

Ind. Set is NP-complete

<u>Theorem</u>: the following language is NP-complete:

 $IS = \{(G, k) : G \text{ has an } IS \text{ of size } \geq k\}.$

- Proof:
 - Part 1: IS ∈ NP. Proof?
 - Part 2: IS is NP-hard.
 - · reduce from 3-SAT

February 24, 2014 CS21 Lecture 20

2

12

Ind. Set is NP-complete

· We are reducing from the language:

3SAT = { ϕ : ϕ is a 3-CNF formula that has a satisfying assignment }

to the language:

 $IS = \{(G, k) : G \text{ has an } IS \text{ of size } \geq k\}.$

February 24, 2014

CS21 Lecture 20

Ind. Set is NP-complete

The reduction f: given

$$\phi = (x \vee y \vee \neg z) \wedge (\neg x \vee w \vee z) \wedge ... \wedge (...)$$
 we produce graph G_{ϖ} :

...

- · one triangle for each of m clauses
- · edge between every pair of contradictory literals
- set k = m

February 24, 2014

CS21 Lecture 20

14

Ind. Set is NP-complete

 $\phi = (x \vee y \vee \neg z) \wedge (\neg x \vee w \vee z) \wedge \dots \wedge (\dots)$

 $f(\phi) =$ (G, # clauses)

15

- Is f poly-time computable?
- YES maps to YES?
 - 1 true literal per clause in satisfying assign. A
 - choose corresponding vertices (1 per triangle)
 - IS, since no contradictory literals in A

February 24, 2014 CS21 Lecture 20

Ind. Set is NP-complete

 $\phi = (x \vee y \vee \neg z) \wedge (\neg x \vee w \vee z) \wedge \ldots \wedge (\ldots)$

 $f(\phi) =$ (G, # clauses)

- · NO maps to NO?
 - IS can have at most 1 vertex per triangle
 - IS of size ≥ # clauses must have exactly 1 per
 - since IS, no contradictory vertices
 - can produce satisfying assignment by setting these literals to true

February 24, 2014 CS21 Lecture 20

Vertex cover

- Definition: given a graph G = (V, E), a vertex cover in G is a subset V'⊆ V such that for all (u,w) ∈ E, u ∈ V' or w ∈ V'
- · A search problem:

given G, find the smallest vertex cover

• corresponding language (decision problem):

 $VC = \{(G, k) : G \text{ has a } VC \text{ of size } \leq k\}.$

February 24, 2014 CS21 Lecture 20 1:

Vertex Cover is NP-complete

<u>Theorem</u>: the following language is NP-complete:

 $VC = \{(G, k) : G \text{ has a } VC \text{ of size } \leq k\}.$

- Proof:
 - Part 1: VC ∈ NP. Proof?
 - Part 2: VC is NP-hard.
 - · reduce from?

February 24, 2014

CS21 Lecture 20

Vertex Cover is NP-complete

· We are reducing from the language:

 $IS = \{(G, k) : G \text{ has an } IS \text{ of size } \geq k\}$

to the language:

 $VC = \{(G, k) : G \text{ has a } VC \text{ of size } \leq k\}.$

February 24, 2014

CS21 Lecture 20

Vertex Cover is NP-complete

- · How are IS, VC related?
- Given a graph G = (V, E) with n nodes
 - if $V' \subseteq V$ is an independent set of size k
 - then V-V' is a vertex cover of size n-k
- Proof:
 - suppose not. Then there is some edge with neither endpoint in V-V'. But then both endpoints are in V'. contradiction.

February 24, 2014

19

CS21 Lecture 20

20

Vertex Cover is NP-complete

- · How are IS, VC related?
- Given a graph G = (V, E) with n nodes
 - if $V' \subset V$ is a vertex cover of size k
 - then V-V' is an independent set of size n-k
- Proof:
 - suppose not. Then there is some edge with both endpoints in V-V'. But then neither endpoint is in V'. contradiction.

February 24, 2014

CS21 Lecture 20

21

Vertex Cover is NP-complete

The reduction:

- given an instance of IS: (G, k) f produces the pair (G, n-k)
- · f poly-time computable?
- YES maps to YES?
 - IS of size \ge k in G \Rightarrow VC of size \le n-k in G
- NO maps to NO?
 - VC of size ≤ n-k in G \Rightarrow IS of size \ge k in G

February 24, 2014

CS21 Lecture 20

22

Clique

- Definition: given a graph G = (V, E), a
 clique in G is a subset V'⊆ V such that for
 all u,v ∈ V', (u, v) ∈ E
- · A search problem:

given G, find the largest clique

corresponding language (decision problem):
 CLIQUE = {(G, k) : G has a clique of size ≥ k}.

February 24, 2014

CS21 Lecture 20

23

Clique is NP-complete

<u>Theorem</u>: the following language is NP-complete:

CLIQUE = $\{(G, k) : G \text{ has a clique of size } \ge k\}$

- Proof:
 - Part 1: CLIQUE ∈ NP. Proof?
 - Part 2: CLIQUE is NP-hard.
 - reduce from?

February 24, 2014

CS21 Lecture 20

/

Clique is NP-complete

· We are reducing from the language:

 $IS = \{(G, k) : G \text{ has an } IS \text{ of size } \geq k\}$

to the language:

CLIQUE = $\{(G, k) : G \text{ has a CLIQUE of size } \ge k\}$.

February 24, 2014

CS21 Lecture 20

Clique is NP-complete

- · How are IS, CLIQUE related?
- Given a graph G = (V, E), define its complement G' = (V, E' = {(u,v) : (u,v) ∉ E})
 - if $V' \subset V$ is an independent set in G of size k
 - then V' is a clique in G' of size k
- · Proof:
 - Every pair of vertices u,v ∈ V' has no edge between them in G. Therefore they have an edge between them in G'.

February 24, 2014

CS21 Lecture 20

26

Clique is NP-complete

- · How are IS, CLIQUE related?
- Given a graph G = (V, E), define its complement G' = (V, E' = {(u,v) : (u,v) ∉ E})
 - if $V' \subseteq V$ is a clique in G' of size k
 - then V' is an independent set in G of size k
- Proof:
 - Every pair of vertices $u,v\in V'$ has an edge between them in G'. Therefore they have no edge between them in G.

February 24, 2014

CS21 Lecture 20

20 27

Clique is NP-complete

The reduction:

- given an instance of IS: (G, k) f produces the pair (G', k)
- · f poly-time computable?
- YES maps to YES?
 - IS of size \ge k in G \Rightarrow CLIQUE of size \ge k in G'
- · NO maps to NO?
 - CLIQUE of size \geq k in G' \Rightarrow IS of size \geq k in G

February 24, 2014

CS21 Lecture 20

Hamilton Path

- Definition: given a directed graph G = (V, E), a Hamilton path in G is a directed path that touches every node exactly once.
- A language (decision problem):

 $\begin{aligned} \text{HAMPATH} &= \{(G,\,s,\,t): G \text{ has a Hamilton path} \\ &\quad \text{from s to } t\} \end{aligned}$

February 24, 2014

CS21 Lecture 20

HAMPATH is NP-complete

<u>Theorem</u>: the following language is NP-complete:

HAMPATH = {(G, s, t) : G has a Hamilton path from s to t}

- Proof:
 - Part 1: HAMPATH ∈ NP. Proof?
 - Part 2: HAMPATH is NP-hard.
 - · reduce from?

February 24, 2014

CS21 Lecture 20

HAMPATH is NP-complete

• We are reducing from the language:

 $3SAT = \{ \ \phi : \phi \ is \ a \ 3\text{-CNF formula that has a} \\ satisfying \ assignment \ \}$

to the language:

HAMPATH = {(G, s, t) : G has a Hamilton path from s to t}

February 24, 2014

CS21 Lecture 20

e 20 31

HAMPATH is NP-complete

- We want to construct a graph from φ with the following properties:
 - a satisfying assignment to φ translates into a Hamilton Path from s to t
 - a Hamilton Path from s to t can be translated into a satisfying assignment for φ
- We will build the graph up from pieces called gadgets that "simulate" the clauses and variables of φ.

February 24, 2014

CS21 Lecture 20

32

HAMPATH is NP-complete • The variable gadget (one for each x_i): x_i true: x_i true: CS21 Lecture 20 33

