(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-152603 (P2003-152603A)

(43)公開日 平成15年5月23日(2003.5.23)

(51) Int.Cl. ⁷		識別記号	FΙ		デ	-マコート ゙(参考)
H 0 4 B	3/06		H 0 4 B	3/06	\mathbf{E}	5 K O 1 4
	7/005			7/005		5 K O 2 2
H 0 4 J	13/00		H 0 4 L	1/00	В	5 K O 4 6
H 0 4 L	1/00		H 0 4 J	13/00	Z	

(21)出願番号	特願2002-10839(P2002-10839)	(71)出願人
(22)出顧日	平成14年1月18日(2002.1.18)	
		(72)発明者
(31)優先権主張番号	特願2001-43213 (P2001-43213)	
(32)優先日	平成13年 2 月20日 (2001. 2. 20)	
(33)優先権主張国	日本(JP)	(72)発明者
(31)優先権主張番号	特願2001-111095(P2001-111095)	
(32)優先日	平成13年4月10日(2001, 4, 10)	
(33)優先権主張国	日本 (JP)	(74)代理人
(31)優先権主張番号	特願2001-258161 (P2001-258161)	
(32)優先日	平成13年8月28日(2001, 8, 28)	
(33)優先権主張国	日本 (JP)	

(71)出願人 392026693

審査請求有

株式会社エヌ・ティ・ティ・ドコモ 東京都千代田区永田町二丁目11番1号

(72)発明者 藤井 啓正

東京都千代田区永田町二丁目11番1号 株

請求項の数35 OL (全 45 頁)

式会社エヌ・ティ・ティ・ドコモ内

(72)発明者 阿部 哲士

東京都千代田区永田町二丁目11番1号 株

式会社エヌ・ティ・ティ・ドコモ内

(74)代理人 100066153

弁理士 草野 卓 (外1名)

最終頁に続く

(54) 【発明の名称】 ターボ受信方法及びその受信機

(57)【要約】

【課題】 多入力多出力(複数ユーザ)の受信を可能とする。

【解決手段】 M個の受信信号 r_m (m=1, …, M)と、既知信号により、各伝送路インパルス応答h n_m (q)を推定し(ユーザ数N, n=1, …, N)、h n_m (q)を要素とする $M \times N$ 行列 H (q)、その H (q)を要素とする $Q \times Q$ 行列 H を求め(Qは各送信波のマルチパスの数、q=0, …, Q-1)、復号入q=00。 q=00。 q=00

【特許請求の範囲】

【請求項1】 2以上の整数N個の送信機からの信号を 受信するターボ受信方法であって、

1以上の整数M個の受信信号 r_m と、既知信号とから、チャネル値 h_{nn} (q) 及びチャネル行列 FI を計算し、ここで、m=1, …, M、n=1, …, N、q=0, …, Q-1、Qは各送信電波のマルチパスの数 N個の事前情報 λ_2 [b_n (k)] から軟判定送信シンボル b'_n (k) を求め、ここで k は離散的時刻、チャネル値 h_{nn} (q) と軟判定送信シンボル b'_n (k) を用いて、n 番目の送信機の送信信号に対する 干渉成分 FI · FI (k) を計算し、ここで

【数1】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(\mathbf{q}) = \begin{bmatrix} h_{11}(\mathbf{q}) & \cdots & h_{1N}(\mathbf{q}) \\ \vdots & \ddots & \vdots \\ h_{M1}(\mathbf{q}) & \cdots & h_{MN}(\mathbf{q}) \end{bmatrix}$$

 $\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{\mathsf{T}}(\mathbf{k}+\mathbf{Q}-1)\cdots\mathbf{b}'^{\mathsf{T}}(\mathbf{k})\cdots\mathbf{b}'^{\mathsf{T}}(\mathbf{k}-\mathbf{Q}+1)]^{\mathsf{T}}$

ここで、

 $(\mathbf{k} - \mathbf{Q} + 1)$]^T \mathbf{w}_{n} $(\mathbf{k}) = (\mathbf{H} \mathbf{G} (\mathbf{k}) \mathbf{H}^{H} + \mathbf{U})^{-1} \mathbf{h}$

【数2】

$$\boldsymbol{h} = \begin{bmatrix} \boldsymbol{H}_{1,\{Q-1\}\cdot N+n} \\ \boldsymbol{H}_{2,\{Q-1\}\cdot N+n} \\ \vdots \\ \boldsymbol{H}_{M,\{Q-1\}\cdot N+n} \end{bmatrix}$$

 $\mathbf{H}_{1,(Q-1)+N+n}$ は上記行列 \mathbf{H} の1行(Q-1) \mathbf{N} + \mathbf{n} 列成分により算出することを特徴とする請求項1記載のターボ受信方法。

【請求項3】 2以上の整数N個の送信機からの信号を 受信するターボ受信方法であって、

1以上の整数M個の受信信号 r_m と、既知信号とから、チャネル値 h_{mn} (q)及びチャネル行列 FHを計算し、ここで $m=1,\cdots,M$ 、 $n=1,\cdots,N$ 、 $q=0,\cdots,Q-1$ 、Qは各送信電波のマルチパスの数

b ´ (k) の要素のゼロはn番目であり、[] 『は 転置行列であり、

この干渉成分 \mathbf{H} · \mathbf{B} ′ (\mathbf{k}) を受信ベクトル \mathbf{y} ′ (\mathbf{k}) を求め、ここで \mathbf{y} ′ (\mathbf{k}) を求め、ここで \mathbf{y} ′ (\mathbf{k}) = [\mathbf{r}^{T} (\mathbf{k} + Q - 2) · · · \mathbf{r}^{T} (\mathbf{k})] T

 \mathbf{r} $(\mathbf{k}) = [\mathbf{r}_1 \ (\mathbf{k}) \mathbf{r}_2 \ (\mathbf{k}) \cdots \mathbf{r}_M \ (\mathbf{k})]^T$ チャネル行列 \mathbf{H} 又は参照信号を用いて、差分ベクトル \mathbf{y} \mathbf{r} (\mathbf{k}) 内の残余干渉成分を除去する、 \mathbf{n} 番目の送信機よりの送信信号の受信信号に対する適応フィルタ係 数 \mathbf{w}_n \mathbf{r} \mathbf{k} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}

差分ベクトル 5 (k) を上記適応フィルタ係数 w n (k) によりフィルタ処理して、n 番目の送信機よりの送信信号に対する干渉除去された受信信号として対数 尤度比を得ることを特徴とするターボ受信方法。

N個の事前情報 λ_2 [b_n (k)] から軟判定送信シンボル b_n (k) を求め、ここでk は離散的時刻、チャネル値 h_{nn} (q) と軟判定送信シンボル b_n (k) を用いて、n番目の送信機の送信信号に対する干渉成分 \mathbf{H} + \mathbf{H} \mathbf{H} (k) を計算し、

ここで 【数3】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{M1}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$

B' $(k) = [b']^T (k+Q-1) \cdots b'$ $^T (k) \cdots b']^T (k-Q+1)]^T$ b' $(k+q) = [b']_1 (k+q) b']_2 (k+q) \cdots b']_N (k+q)]^T$ $q=Q-1 \cdots Q+1 q \neq 0 \circ b' (k) = [b']_1 (k) \cdots f (b']_n (k) \cdots b']_N (k)]^T$ $q=0 \circ b$

b ´ (k) の要素のf (b ´ $_n$ (k))はn番目であり、f ()はf (0) = 0、かつd $\{f$ (b ´ $_n$ (k) $\}$ \neq d $\{b$ ´ $_n$ (k) $\}$ \geq 0 を満たすb ´ $_n$ (k) を変数とする関数、[] 『は転置行列であり、

この干渉成分 **H** · **B** ′ (k) を受信ベクトル **y** (k) から差し引き差分ベクトル **y** ′ (k) を求め、

ここで、

 $\mathcal{Z} \mathcal{T} \mathcal{S} (\mathbf{k}) = [\mathbf{r}^{\mathsf{T}} (\mathbf{k} + \mathbf{Q} - 1) \mathbf{r}^{\mathsf{T}} (\mathbf{k} + \mathbf{Q} - 2) \cdots \mathbf{r}^{\mathsf{T}} (\mathbf{k})]^{\mathsf{T}}$

 \mathbf{r} (k) = $[\mathbf{r}_1$ (k) \mathbf{r}_2 (k) \cdots \mathbf{r}_M (k) $]^T$ チャネル行列 \mathbf{H} 又は参照信号を用いて、差分ベクトル \mathbf{y} (k) 内の残余干渉成分を除去する、 \mathbf{n} 番目の送信機よりの送信信号の受信信号に対する適応フィルタ係数 $\mathbf{v}\mathbf{v}_n$ (k) を求め、

差分ベクトル シ ´ (k)を上記適応フィルタ係数 w n (k)によりフィルタ処理して、n番目の送信機よりの送信信号に対する干渉除去された受信信号として対数 尤度比を得ることを特徴とするターボ受信方法。

【請求項4】 上記受信ベクトル \mathcal{S} (\mathbf{k}) 中の雑音成分の共分散行列をUとして、軟判定送信シンボル \mathbf{b}^{\prime} \mathbf{n} (\mathbf{k})、上記チャネル行列 \mathbf{H} を用いて、上記適応フィルタ \mathbf{w} \mathbf{v} (\mathbf{k}) を

$$\mathbf{w}_{n}$$
 (k) = (H G (k) H^H +U)⁻¹ h

E[]は平均を表わす。

【数4】

$$h = \begin{bmatrix} H_{1,(Q-1)\cdot N+n} \\ H_{2,(Q-1)\cdot N+n} \\ \vdots \\ H_{M,(Q-1)\cdot N+n} \end{bmatrix}$$

 $\mathbf{H}_{1,(Q-1)+N+n}$ は上記行列 \mathbf{H} の1行(Q-1)N+n 列成分により算出することを特徴とする請求項3記載のターボ受信方法。

【請求項5】 上記適応フィルタwx (k)の計算における逆行列演算を逆行列の補助定理を用いて行うことを特徴とする請求項2又は4に記載のターボ受信方法。

【請求項7】 上記受信ベクトル シ (k)内の雑音成分の共分散行列Uを、上記受信ベクトル シ (k)、上記推定チャネル行列 **→** 、を用い、

$$\begin{split} \mathbf{U} & = \sum_{k=0}^{T_{\mathrm{T}}} (\mathbf{y} (\mathbf{k}) - \mathbf{H} \cdot \mathbf{B} (\mathbf{k})) \\ & \cdot (\mathbf{y} (\mathbf{k}) - \mathbf{H} \cdot \mathbf{B} (\mathbf{k}))^{\mathrm{H}} \\ & \mathbf{B} (\mathbf{k}) = [\mathbf{b}^{\mathrm{T}} (\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}^{\mathrm{T}} (\mathbf{k}) \cdots \\ & \mathbf{b}^{\mathrm{T}} (\mathbf{k} - \mathbf{Q} + 1)]^{\mathrm{T}} \end{split}$$

 $\mathbf{b}_{\mathbf{I}} (\mathbf{k} + \mathbf{q}) = [\mathbf{b}_{\mathbf{I}} (\mathbf{k} + \mathbf{q}) \cdots \mathbf{b}_{\mathbf{N}} (\mathbf{k} + \mathbf{q})]$

 $(q = -Q + 1 \cdots Q - 1)$

Trは参照信号の長さとすることを特徴とする請求項1 乃至5の何れかに記載のターボ受信方法。

【請求項8】 上記D (k+q) を 0 と近似し、上記D (k) を d i a g [0, ..., 1, ..., 0] で近似することを特徴とする請求項 2 乃至 7 の何れかに記載のターボ 受信方法。

【請求項9】 2以上の整数N個の送信機からの信号を 受信するターボ受信方法であって、

ここで

【数5】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{M1}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$

 $\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{\mathsf{T}}(\mathbf{k}+\mathbf{Q}-1)\cdots\mathbf{b}'^{\mathsf{T}}(\mathbf{k})\cdots\mathbf{b}'^{\mathsf{T}}(\mathbf{k}-\mathbf{Q}+1)]^{\mathsf{T}}$

 \mathbf{b} ' $(\mathbf{k}+\mathbf{q}) = [\mathbf{b}'_{1} \ (\mathbf{k}+\mathbf{q}) \ \mathbf{b}'_{2} \ (\mathbf{k}+\mathbf{q}) \cdots \mathbf{b}'_{N} \ (\mathbf{k}+\mathbf{q})]^{T}$

 $q = Q - 1 \cdot \cdot \cdot \cdot - Q + 1$ $q \neq 0$ \mathcal{T}

 $\mathbf{b} \,\, \dot{} \,\, (\mathbf{k}) = [\, \mathbf{b} \,\dot{}_{1} \,\, (\mathbf{k}) \, \cdots \, \mathbf{0} \, \cdots \, \mathbf{b} \,\dot{}_{N} \,\, (\mathbf{k}) \,\,]^{\,\mathtt{T}}$ $\mathbf{q} = \mathbf{0} \,\, \dot{} \,\, \dot{} \,\,$

b ´ (k) の要素のゼロは n番目であり、[] ^Tは 転置行列であり、

この干渉成分 $\mathbf{H} \cdot \mathbf{B} \cdot (\mathbf{k})$ を受信ベクトル \mathbf{S}' (\mathbf{k}) から差し引き差分ベクトル $\mathbf{S}' \cdot (\mathbf{k})$ を求め、ここで $\mathbf{S}' \cdot (\mathbf{k}) = [\mathbf{r}^{\mathsf{T}} \cdot (\mathbf{k} + \mathsf{Q} - 1) \mathbf{r}^{\mathsf{T}} \cdot (\mathbf{k} + \mathsf{Q} - 2) \cdots \mathbf{r}^{\mathsf{T}} \cdot (\mathbf{k})]^{\mathsf{T}}$

 \mathbf{r} (\mathbf{k}) = [\mathbf{r}_1 (\mathbf{k}) \mathbf{r}_2 (\mathbf{k}) … $\mathbf{r}_{\mathbb{N}}$ (\mathbf{k})] $^{\mathbb{T}}$ 受信ベクトル $\mathbf{S}^{\mathbf{r}}$ (\mathbf{k}) 内の雑音成分の共分散行列を、ガウス分布の分散 σ^2 と単位行列 \mathbf{I} から求まる σ^2 \mathbf{I} として、

【数6】

$$h = \begin{bmatrix} H_{1, (Q-1) \cdot N+n} \\ H_{2, (Q-1) \cdot N+n} \\ \vdots \\ H_{M \cdot Q, (Q-1) \cdot N+n} \end{bmatrix}$$

により決定した適応フィルタ係数 wv 。により差分ベクトル y ′ (k)をフィルタ処理して、 n番目の送信機よりの送信信号に対する干渉が除去された受信信号として対数尤度比を得ることを特徴とするターボ受信方法。

【請求項10】 2以上の整数N個の送信機からの信号 を受信するターボ受信方法であって、

1以上の整数M個の受信信号 r_n と、既知信号とから、チャネル値 h_{nn} (q)及びチャネル行列 \mathbf{H} を計算し、ここで $m=1,\cdots,M$ 、 $n=1,\cdots,N$ 、 $q=0,\cdots,Q-1$ 、Qは各送信電波のマルチパスの数

N個の事前情報 λ_2 [b_n (k)] から軟判定送信シンボル b_n (k)を求め、ここでkは離散的時刻、チャネル値 h_{nn} (q)と軟判定送信シンボルb

 $_{\rm n}$ ($_{\rm k}$)を用いて、 $_{\rm n}$ 番目の送信機の送信信号に対する 干渉成分 $_{\rm H}$ ・ $_{\rm B}$ $_{\rm r}$ ($_{\rm k}$)を計算し、 ここで

【数7】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{M1}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$

 $\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{\mathsf{T}}(\mathbf{k} + \mathbf{Q} - \mathbf{1}) \cdots \mathbf{b}'$ $^{\mathsf{T}}(\mathbf{k}) \cdots \mathbf{b}'^{\mathsf{T}}(\mathbf{k} - \mathbf{Q} + \mathbf{1})]^{\mathsf{T}}$

 $\mathbf{b} ' (\mathbf{k} + \mathbf{q}) = [\mathbf{b}'_{1} (\mathbf{k} + \mathbf{q}) \mathbf{b}'_{2} (\mathbf{k} + \mathbf{q}) \cdots \mathbf{b}'_{N} (\mathbf{k} + \mathbf{q})]^{T}$

 $q = Q - 1 \cdot \cdot \cdot \cdot - Q + 1$ $q \neq 0$ \circlearrowleft

 \mathbf{b} ' $(\mathbf{k}) = [\mathbf{b}'_{1} (\mathbf{k}) \cdots \mathbf{f} (\mathbf{b}'_{n} (\mathbf{k})) \cdots \mathbf{b}'_{N} (\mathbf{k})]^{T}$

q = 0 で

b ´ (k) の要素のf (b´ $_n$ (k) は $_n$ 番目であり、f () はf (0) = 0、かつd {f (b´ $_n$ (k)} $_n$ (k) $_n$ (k) $_n$ (k) $_n$ を変数とする関数、[] 『は転置行列であり

この干渉成分 $\mathbf{H} \cdot \mathbf{B}$ ′ (k) を受信ベクトル \mathbf{y} ′ (k) を求め、 ここで \mathbf{y} ′ (k) \mathbf{e} \mathbf{x} \mathbf{y} ′ (k) \mathbf{e} \mathbf{x} \mathbf{y} ′ (k) \mathbf{e} \mathbf{x} \mathbf{y} ′ (k) \mathbf{e} \mathbf{y} \mathbf{y} ′ (k) \mathbf{e} \mathbf{y} \mathbf{y} ′ (k) \mathbf{e} \mathbf{y} $\mathbf{y$

 \mathbf{r} $(\mathbf{k}) = [\mathbf{r}_1 \ (\mathbf{k}) \mathbf{r}_2 \ (\mathbf{k}) \cdots \mathbf{r}_M \ (\mathbf{k})]^{\mathsf{T}}$ 受信ベクトル \mathbf{r} (\mathbf{k}) 内の雑音成分の共分散行列を、ガウス分布の分散 σ^2 と単位行列 \mathbf{I} から求まる σ^2 \mathbf{I} として、

【数8】

$$h = \begin{bmatrix} H_{1,\;(Q-1)\;\cdot\,N+n} \\ H_{2,\;(Q-1)\;\cdot\,N+n} \\ \vdots \\ H_{M\cdot Q\;,\;(Q-1)\;\cdot\,N+n} \end{bmatrix}$$

により決定した適応フィルタ係数 w n により差分ベクトル w '(k)をフィルタ処理して、n番目の送信機よりの送信信号に対する干渉が除去された受信信号として対数尤度比を得ることを特徴とするターボ受信方法。

【請求項11】 2以上の整数N個の送信機からの送信信号を受信するターボ受信方法であって、

1以上の整数M個の受信信号と既知信号とから受信信号

の伝送特性であるチャネル値を求め、

N個の事前情報から軟判定送信シンボルをそれぞれ推定し、

N個の送信信号をそれぞれ1乃至複数個の送信信号よりなるL個(L \leq N)の送信信号群に分割し、その各送信信号群について、軟判定送信シンボル及びチャネル値よりなるチャネル行列を用いて、他の送信信号群からの干渉をそれぞれ除去したL個の等化信号と、その等化信号の伝送特性とそれぞれ対応する等化後のチャネル情報を求め、

これらし組の等化信号とそのチャネル情報の各組について、その等化信号群を受信信号とし、チャネル情報をチャネル値とし、その構成送信信号が複数個の場合は、その構成送信信号を更に1乃至複数個の送信信号よりなる複数の送信信号群に分割して軟判定送信シンボルを用いて、その送信信号群について、他の送信信号群からの干渉をそれぞれ除去した等化信号と等化後のチャネル情報を求め、構成送信信号が1個の場合はその等化信号とチャネル情報と軟判定送信シンボルを用いて、その送信信号自体のマルチパスによる干渉を除去し、

全ての等化信号の構成送信信号が1個になるまで上記分割、干渉除去及び等化後のチャネル情報の生成を繰り返し、最終的に各送信信号についてそれ自体のマルチパスによる干渉を除去した等化信号を求め、又は上記等化信号及びそのチャネル情報の組についてその等化信号の構成送信信号ごとにその送信信号相互間干渉及び自身の符号間干渉を除去した等化信号を求めることを特徴とするターボ受信方法。

【請求項12】 上記各送信信号群について、軟判定送信シンボル及びチャネルを用いて、他の送信信号群からの干渉レプリカをそれぞれ生成し、受信信号から干渉レプリカをそれぞれ差引いてそれぞれ差分信号を求め、上記チャネル値と軟判定送信シンボルから干渉剰余成分除去用フィルタ特性及び上記等化後のチャネル情報を、各差分信号ごとに求め、その干渉剰余成分除去用フィルタ特性により対応する差分信号をフィルタ処理して、上記等化信号を得ることを特徴とする請求項11記載のターボ受信方法。

【請求項13】 上記受信信号 r_1 (k), …, r_M (k)から受信ベクトル

 \mathbf{y} (k) = [\mathbf{r}^{T} (k+Q-1) \mathbf{r}^{T} (k+Q-2) \cdots \mathbf{r}^{T} (k)]

 \mathbf{r} (k) = [\mathbf{r}_1 (k) \mathbf{r}_2 (k) $\cdots \mathbf{r}_N$ (k)] ^I [] ^I は転置行列を表わすを求め、

上記伝送特性をチャネル行列 I-I として

【数9】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

 $\mathbf{H} \ (\mathtt{q}) = [\ \mathbf{h}_1 \ (\mathtt{q}) \cdots \mathbf{h}_N \ (\mathtt{q})\]$

 \mathbf{h}_{n} (q) = [\mathbf{h}_{1n} (q) $\cdots \mathbf{h}_{Mn}$ (q)]

m=1, …, M, n=1, …, N, マルチパスの数を Q とし、q=0, …, Q-1 であり、 h_{nn} (q) は受信信 号 r_{nn} に含まれる第n 送信機からのパスqのチャネル値 であり、を求め、

上記軟判定送信シンボルを b^n (k) とし、上記1つ の送信信号群についてその構成を第1乃至第U送信信号、ここでUkN>U \geq 1なる整数であり、上記他の送信信号群よりの干渉レプリカをkH - kH - kH

ここで \mathbf{B} ′(\mathbf{k}) = [\mathbf{b} ′ $^{\mathsf{T}}$ (\mathbf{k} +Q-1)…

 \mathbf{b} ' $^{\text{I}}$ (\mathbf{k}) \cdots \mathbf{b} ' $^{\text{I}}$ (\mathbf{k} - \mathbf{Q} + $\mathbf{1}$)] $^{\text{I}}$

b ' $(k+q) = [b']_1 (k+q) b']_2 (k+q) \cdots b']_n (k+q) \cdots b']_N (k+q)]^T : q = Q-1, \cdots 1$

 $\mathbf{b}^{'}$ (k+q)中の0の要素の数はU個であり、

この干渉レプリカ $\mathbf H + \mathbf B$ ′($\mathbf k$)を上記受信ベクトル $\mathbf y$ ′ $(\mathbf k$)から引算して上記差分ベクトル $\mathbf y$ ′

 $_{\rm g}$ (${
m k}$) を求めることを特徴とする請求項1 2記載のターボ受信方法。

【請求項14】 上記等化信号とそのチャネル情報に対し、更に干渉除去を行う際に、その等化信号が先に受けた干渉除去処理の際のマルチパスの数を小とすることを特徴とする請求項11又は12記載のターボ受信方法。

【請求項15】 上記受信信号 r_1 (k), …, r_m (k)から受信ベクトル

 \mathbf{y} (k) = [\mathbf{r}^{T} (k+Q-1) \mathbf{r}^{T} (k+Q-2) \cdots \mathbf{r}^{T} (k)]

 \mathbf{r} (k) = $[\mathbf{r}_1$ (k) \mathbf{r}_2 (k) $\cdots \mathbf{r}_M$ (k) $]^{\mathrm{T}}$ [$]^{\mathrm{T}}$ は転置行列を表わすを求め、

上記伝送特性をチャネル行列 HI として

【数10】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots & \\ 0 & & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

 \mathbf{H} (q) = [\mathbf{h}_1 (q) $\cdots \mathbf{h}_N$ (q)]

 $\mathbf{h}_{n} (q) = [h_{1n} (q) \cdots h_{Mn} (q)]^{T}$

m=1, …, M, n=1, …, N, マルチパスの数を Q とし、q=0, …, Q-1であり、 h_{mn} (q) は受信信 号 r_m に含まれる第 n 送信機からのパス qのチャネル値であり、を求め、

上記軟判定送信シンボルを \mathbf{b}_n (\mathbf{k}) とし、上記 $\mathbf{1}$ の送信信号群についてその構成を第 $\mathbf{1}$ 乃至第 \mathbf{U} 送信信号とし、ここで \mathbf{U} は $\mathbf{N} > \mathbf{U} \ge \mathbf{1}$ なる整数であり、この送信信号群に対し干渉除去処理された等化信号に対する干渉除去処理におけるマルチパスの数を \mathbf{Q}_n < \mathbf{Q} とし、上記

他の送信信号群よりの干渉レプリカを **H** · **B** ′ (k) により計算し、

ここで

 $\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{\mathsf{T}}(\mathbf{k}+\mathbf{Q}-1)\cdots\mathbf{b}'^{\mathsf{T}}(\mathbf{k})\cdots\mathbf{b}'^{\mathsf{T}}(\mathbf{k}-\mathbf{Q}+1)]^{\mathsf{T}}$

 \mathbf{b} ' $(\mathbf{k}+\mathbf{q}) = [\mathbf{b}'_{1} \ (\mathbf{k}+\mathbf{q}) \ \mathbf{b}'_{2} \ (\mathbf{k}+\mathbf{q}) \cdots \mathbf{b}'_{n} \ (\mathbf{k}+\mathbf{q}) \cdots \mathbf{b}'_{N} \ (\mathbf{k}+\mathbf{q})]^{T} : \mathbf{q} = \mathbf{Q}-1, \cdots 1$?

b ' $(k+q) = [0 \cdots 0 \ b'_{u+1} (k+q) \cdots b'_{N} (k+q)]^{T} : q=0, \cdots, -Q'+1$

b ′ (k+q)中の0の要素数はU個であり、

 \mathbf{b} ' $(\mathbf{k}+\mathbf{q}) = [\mathbf{b}'_1 \ (\mathbf{k}+\mathbf{q}) \cdots \mathbf{b}'_n \ (\mathbf{k}+\mathbf{q}) \cdots \mathbf{b}'_N \ (\mathbf{k}+\mathbf{q})]^{\mathrm{T}} : \mathbf{q} = \mathbf{Q}', \cdots, -\mathbf{Q}+1$ この干渉レプリカ $\mathbf{H} \cdot \mathbf{B}' \ (\mathbf{k})$ を上記受信ベクトル $\mathbf{y}' \ (\mathbf{k})$ から引算して差分ベクトル $\mathbf{y}' \ (\mathbf{k})$ を求ることを特徴とする請求項14記載のターボ受信方法。

【請求項16】 ターボ受信処理の2回目以後の繰り返し処理において、既知信号と前回の処理で得られた送信符号化シンボル硬判定出力とを参照信号とし、この参照信号と受信信号とを用いて、上記チャネル行列を計算することを特徴とする請求項1乃至15の何れかに記載のターボ受信方法。

【請求項17】 前回の処理で得られた送信符号化シンボル硬判定出力中の確からしさが所定値以上のものを参照信号として上記チャネル行列の計算に用いることを特徴とする請求項16記載のターボ受信方法。

【請求項18】 上記N個の事前情報 λ_2 [b

n (k)]は上記N個の送信機と対応したN個の復号器より得たものであり、上記 n番目の送信信号に対する干渉除去された受信信号としての対数尤度比を対応する復号器へ供給することを特徴とする請求項1乃至17の何れかに記載のターボ受信方法。

【請求項19】 上記N個の送信信号は、1つの情報系列をN個の並列の系列としてN個の送信機によりそれぞれ送信した信号であり、上記N個の事前情報入2 [bn(k)]は1個の復号器よりの事前情報入2 [b

(j)]を直列ー並列変換したものであり、上記N個の送信信号に対する干渉除去された受信信号としてのN個の対数尤度比を並列ー直列変換して上記復号器へ供給することを特徴とする請求項1乃至17の何れかに記載のターボ受信方法。

【請求項20】 2以上の整数N個の送信機からの信号を受信するターボ受信機であって、

1以上の整数M個の受信信号 r_{n} を得る受信信号生成部と、ここでm=1, …, M

各受信信号 r_n と既知信号の参照信号とが入力され、チャネル値 h_{nn} (q)及びチャネル行列 $I\!-\!I$ を計算するチャネル推定器と、

ここで

【数11】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(\mathbf{q}) = \begin{bmatrix} \mathbf{h}_{11}(\mathbf{q}) & \cdots & \mathbf{h}_{1N}(\mathbf{q}) \\ \vdots & \ddots & \vdots \\ \mathbf{h}_{M1}(\mathbf{q}) & \cdots & \mathbf{h}_{MN}(\mathbf{q}) \end{bmatrix}$$

n = 1, ..., N

各受信信号 $\mathbf{r}_{\mathfrak{m}}$ が入力されて受信ベクトル \mathbf{y} (\mathbf{k})= [\mathbf{r}^{T} (\mathbf{k} +Q-1) \mathbf{r}^{T} (\mathbf{k} +Q-2)… \mathbf{r}^{T} (\mathbf{k})] $^{\mathsf{T}}$

 \mathbf{r} $(\mathbf{k}) = [\mathbf{r}_1 \ (\mathbf{k}) \ \mathbf{r}_2 \ (\mathbf{k}) \cdots \mathbf{r}_M \ (\mathbf{k})]$

ここでk は離散的時刻、Q は各送信電波のマルチパスの数、q=0, …, Q-1、 $[\quad]$ 『 は転置行列を表わす、を生成する受信ベクトル生成部と、

N個の事前情報が入力され、軟判定送信シンボルb´n(k)を生成する軟判定シンボル生成部と、

各軟判定送信シンボル \mathbf{b}_1 (\mathbf{k}) \sim \mathbf{b}_N (\mathbf{k}) が入力され、 \mathbf{n} 番目の送信信号に対する干渉レプリカベクトル

 $\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{\mathsf{T}}(\mathbf{k}+\mathbf{Q}-1)\cdots\mathbf{b}'^{\mathsf{T}}(\mathbf{k})\cdots\mathbf{b}'^{\mathsf{T}}(\mathbf{k}-\mathbf{Q}+1)]^{\mathsf{T}}$

b ' $(k+q) = [b']_1 (k+q) b']_2 (k+q) \cdots b']_N (k+q)]^T$

q = Q - 1, ..., -Q + 1 , $q \neq 0$?

 $\mathbf{b} \ ' \ (\mathbf{k}) = [\mathbf{b}'_{1} \ (\mathbf{k}) \cdots 0 \cdots \mathbf{b}'_{N} \ (\mathbf{k})]^{T}$ $\mathbf{q} = 0 \ \mathcal{T}$

b ′ (k)の要素のゼロはn番目、

を生成するレプリカベクトル生成部と、

チャネル行列 $\mathbf H$ と干渉レプリカベクトル $\mathbf B$ $^{\prime}$ ($\mathbf k$) が入力され、 $\mathbf n$ 番目の送信信号の受信信号に対する干渉 成分 $\mathbf H$ $^{\prime}$ $\mathbf B$ $^{\prime}$ ($\mathbf k$) を計算して出力するフィルタ 処理部と、

干渉成分 $\mathbf H$ - $\mathbf B$ $^{\prime}$ $(\mathbf k)$ と受信ベクトル $\mathbf y$

(k) が入力され、差分ベクトル シ ′ (k) = シ

(k) - IH - IB ' (k) を出力する差演算部と、チャネル行列 IH 又は参照信号が入力され、差分ベクトル \mathbf{y}' (k) 内の残余干渉成分を除去する \mathbf{n} 番目の送信機よりの送信信号の受信信号に対する適応フィルタ係数 $\mathbf{w}_{\mathbf{n}}$ (k) を求めるフィルタ係数推定部と、

差分ベクトル シ ´ (k)と上記適応フィルタ係数 w n(k)が入力され、シ ´ (k)に対しフィルタ処理して、n番目の送信機よりの送信信号に対する干渉除去された受信信号として対数尤度比を得てn番目の復号器へ供給する適応フィルタ部と、を具備することを特徴とするターボ受信機。

【請求項21】 2以上の整数N個の送信機からの信号を受信するターボ受信機であって、

1以上の整数M個の受信信号 r_a を得る受信信号生成部 と、ここでm=1 , \cdots , M

N個の復号器と、

各受信信号 r_n と、既知信号の参照信号とが入力され、 チャネル値 h_{nn} (q)及びチャネル行列 I-Iを計算する チャネル推定器と、

ここで

【数12】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{M1}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$

n=1 , \cdots , N

各受信信号 r。 が入力されて受信ベクトル

$$\mathbf{y}$$
 (k) = [\mathbf{r}^{T} (k+Q-1) \mathbf{r}^{T} (k+Q-2) \cdots \mathbf{r}^{T} (k)]

$$\mathbf{r}$$
 $(\mathbf{k}) = [\mathbf{r}_1 \ (\mathbf{k}) \ \mathbf{r}_2 \ (\mathbf{k}) \cdots \mathbf{r}_M \ (\mathbf{k})]$

ここで k は離散的時刻、Q は各送信電波のマルチパスの数、q=0, …, Q-1、[] 『は転置行列を表わす、を生成する受信ベクトル生成部と、

N個の事前情報が入力され、軟判定送信シンボルb $^{\prime}$ $_{\rm n}$ ($_{\rm k}$) ($_{\rm n=1}$, $_{\rm m}$, $_{\rm N}$) を生成する軟判定シンボル生成部と、

各軟判定送信シンボル \mathbf{b}_1 (\mathbf{k}) \sim \mathbf{b}_N (\mathbf{k}) が入力され、 \mathbf{n} 番目の送信機よりの送信信号に対する干渉レプリカベクトル

 $\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{\mathsf{T}}(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}']$

 $[(k) \cdots b] [(k-Q+1)]$

b ' $(k+q) = [b']_1 (k+q) b']_2 (k+q) \cdots b']_N (k+q)]^T$

q=Q-1, ..., -Q+1, $q\neq 0$?

 $\mathbf{b}'(\mathbf{k}) = [\mathbf{b}'_{1}(\mathbf{k}) \cdots \mathbf{f}(\mathbf{b}'_{n}(\mathbf{k})) \cdots \mathbf{b}'_{N}(\mathbf{k})]^{T}$

q = 0 T

b ´ (k) の要素のf (b´_n (k)) はn番目、f () はf (0) = 0、かつd {f (b´_n (k))} / d {b´_n (k)} ≥ 0を満すb´_n (k) を変数とする関数であり、を生成するレプリカベクトル生成部と、

チャネル行列 \mathbf{H} と干渉レプリカベクトル \mathbf{B} $\hat{}$ (\mathbf{k}) が入力され、 \mathbf{n} 番目の送信機よりの送信信号の受信信号 に対する干渉成分 \mathbf{H} - \mathbf{B} $\hat{}$ (\mathbf{k}) を計算して出力

するフィルタ処理部と、

干渉成分 **I-I** - **B** ´ (k) と受信ベクトル **シ** (k) が入力され、差分ベクトル **シ** ´ (k) = **シ** (k) - **I-I** - **B** ´ (k) を出力する差演算部と、チャネル行列 **I-I** 又は参照信号が入力され、差分ベクトル **シ** ´ (k) 内の残余干渉成分を除去する n 番目の送信機よりの送信信号の受信信号に対する適応フィルタ係数**シ** (k) を求めるフィルタ係数推定部と、

差分ベクトル シ ´ (k)と上記適応フィルタ係数 w n(k)が入力され、シ ´ (k)に対しフィルタ処理して、n番目の送信機よりの送信信号に対する干渉除去された受信信号として対数尤度比を得てn番目の復号器へ供給する適応フィルタ部と、を具備することを特徴とするターボ受信機。

【請求項22】 2以上の整数N個の送信機から送信信号を受信するターボ受信機であって、

1以上の整数M個の受信信号を生成する受信信号生成部と.

上記M個の受信信号と既知信号の参照信号が入力され、 その伝送特性であるチャネル値を推定するチャネル推定 器と

上記M個の受信信号と、上記チャネル値N個の事前情報とが入力され、1乃至複数の上記送信機の送信信号ごとに、他の送信機の送信信号による干渉成分を除去した等化信号と、その等化信号と対応する等化後のチャネル情報との複数組を出力する前段等化器と、

上記前段等化器より上記等化信号とそのチャネル情報の 組と、その等化信号の構成送信信号と対応する事前情報 とがそれぞれ入力され、その等化信号から、構成送信信 号のそれぞれについてそのマルチパスによる符号間干渉 又はこれとその構成信号中の他の送信信号との相互干渉 とを除去して対数尤度比を出力する複数の後段等化器 と、を具備するターボ受信機。

【請求項23】 2以上の整数N個の送信機から送信信号を受信するターボ受信機であって、

1以上の整数M個の受信信号を生成する受信信号生成部と.

上記M個の受信信号と既知信号の参照信号が入力され、 その伝送特性であるチャネル値を推定するチャネル推定 器と、

上記M個の受信信号と、上記チャネル値とN個の事前情報とが入力され、1 乃至複数の上記送信機の送信信号ごとに、他の送信機の送信信号による干渉成分を除去した等化信号と、その等化信号と対応する等化後のチャネル情報との複数組を出力する前段等化器と、

上記前段等化器より上記等化信号とそのチャネル情報の 組とその等化信号を構成する複数の送信信号と対応する 事前情報とが入力され、その等化信号の複数の構成送信 信号中の1乃至複数の送信信号ごとに、その構成送信信 号中の他の他送信信号による干渉成分を除去した等化信 号と、その等化信号と対応する等化後のチャネル情報と の複数組を出力する複数の後段等化器を具備するターボ 受信機。

【請求項24】 復号器よりの硬判定送信シンボルが、これにより更新記憶される前回シンボル記憶部と、ターボ受信処理の2回目以後の繰り返し処理において、前回シンボル記憶部から硬判定送信シンボルを読み出し、参照信号としてチャネル推定器へ供給する手段とを備えることを特徴とする請求項20乃至23の何れかに記載のターボ受信機。

【請求項25】 軟判定送信シンボルが入力され、しきい値と比較する比較部と、その比較部の出力により制御され、硬判定送信シンボル中のその軟判定送信シンボルがしきい値以上のものを前回シンボル記憶部へ格納する選択部とを備える請求項24記載のターボ受信機。

【請求項26】 上記出力されたN個の対数尤度比がそれぞれ供給されるN個の復号器を備え、上記N個の復号器の出力から上記N個の事前情報が得られることを特徴とする請求項20乃至25の何れかに記載のターボ受信機。

【請求項27】 上記N個の送信信号は1つの情報系列をN個の並列の系列としてN個の送信機よりそれぞれ送信された信号であり、上記出力されるN個の対数尤度比を直列系列に変換する並列一直列変換部と、上記直列系列の対数尤度比が入力される復号器と、上記復号器よりの事前情報をN個の並列系列に変換して上記N個の事前情報を得る直列一並列変換部とを備えることを特徴とする請求項20万至25の何れかに記載のターボ受信機。

【請求項28】 受信信号の伝送路特性としてのチャネル値を、受信信号と参照信号としての既知信号とから推定し、その推定したチャネル値を用いて受信信号を処理し、その処理した信号に対し復号処理を行い、同一受信信号に対し上記推定したチャネル値を利用した処理と復号処理とを繰り返し行う受信方法において、

復号された硬判定情報シンボルの確からしさを、その軟 判定情報シンボルの値から決定し、確からしさが所定値 以上の硬判定情報シンボルをも次回のチャネル推定の参 照信号に用いることを特徴とするターボ受信方法。

【請求項29】 受信ベクトル \sqrt{s} (k)内の雑音成分の共分散行列として、上記繰り返し毎に、 σ^2 **I** (σ^2 はガウス分布の分散値、 **I** は単位行列)を計算する過程を含むことを特徴とする請求項28記載のターボ受信方法。

 $\begin{array}{l} \mathbf{U} = \sum_{k=0}^{T_{\mathbf{F}}} (\mathbf{y}(k) - \mathbf{H} \cdot \mathbf{B}(k)) \\ \cdot (\mathbf{y}(k) - \mathbf{H} \cdot \mathbf{B}(k))^{\mathsf{H}} \end{array}$

 $\mathbf{B}(\mathbf{k}) = [\mathbf{b}^{\mathsf{T}}(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}^{\mathsf{T}}(\mathbf{k}) \cdots]$

 \mathbf{b}^{T} $(\mathbf{k} - \mathsf{Q} + 1) \mathsf{T}$

b $(k+q) = [b_1 (k+q) \cdots b_N (k+q)]$ ^T $(q=-Q+1 \cdots Q-1)$

 b_1 (k+q) から b_N (k+q) は、上記既知信号及び上記確からしさが所定値以上の硬判定情報シンボルよりなる参照信号、Tr はその参照信号長であり、を計算する過程を含むことを特徴とする請求項28記載のターボ受信方法。

【請求項31】 上記推定したチャネル値を利用した処理と復号処理との繰り返しは、上記推定したチャネル値により線形等化フィルタを決定し、その線形等化フィルタにより受信信号を処理し、その処理した信号を復号することの繰り返しであることを特徴とする請求項28~30の何れかに記載のターボ受信方法。

【請求項32】 上記推定したチャネル値を利用した処理と復号処理との繰り返しは、上記推定したチャネル値により、レーク合成処理部内で、各シンボルが伝送路で受けた位相回転を補償するレーク合成処理を行い、そのレーク合成処理された信号をターボデコーダにより復号することの繰り返しである、ことを特徴とする請求項28~30の何れかに記載のターボ受信方法。

【請求項33】 上記推定したチャネル値を利用した処理と復号処理との繰り返しは、アダプティブアレーアンテナ受信部に対し、上記推定したチャネル値によりアンテナ指向特性を決定する重みを設定し、アダプティブアレーアンテナ受信部の出力をターボデコーダにより復号することの繰り返しであることを特徴とする請求項28~30の何れかに記載のターボ受信方法。

【請求項34】 上記アダプティブアレーアンテナ受信 部の出力をレーク合成処理部内で、各シンボルが伝送路 で受けた位相回転を上記推定したチャネル値により補償 するレーク合成処理を行い、そのレーク合成処理された 信号を上記ターボデコーダへ供給することを特徴とする 請求項33記載のターボ受信方法。

【請求項35】 受信信号の伝送路特性であるチャネル値を、受信信号と参照信号としての既知信号とから推定し、その推定したチャネル値を用いて受信信号を処理し、その処理した信号に対し復号処理を行い、同一受信信号に対し上記推定したチャネル値を利用した処理と復号処理とを繰り返し行う受信機において、

復号された硬判定情報シンボルの確からしさが所定値以上か否かを、その軟判定情報シンボルの値がしきい値以上か否かにより決定する手段と、

その確からしいと決定された硬判定情報シンボルにより 記憶内容が更新記憶される前回シンボル記憶部を備え、 次回のチャネル推定の参照信号として前回シンボル記憶 部の記憶内容が用いられることを特徴とするターボ受信 機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、例えば移動通信 に適用され、干渉にもとづく波形歪を、ターボ符号技術 を応用した繰り返し等化を行うターボ受信方法、及びそ の受信機に関する。

[0002]

【従来の技術】移動体通信事業の課題は限られた周波数 上でいかに高品質で多数のユーザを所有できるシステム を構築するかということにある。このような課題を解決 する手段として多入力多出力 (Multi-Input Multi-Outp ut: MIMO)システムがある。このシステム構成は図 30Aに示されているように複数の送信機S1~SNか ら同時刻、同周波数上でシンボル $c_1(i) \sim c_N(i)$ をそれぞれ送信し、これらの送信信号を、複数のアンテ ナ#1~#Mを備えるMIMO受信機で受信し、MIM ○受信機は受信信号を処理し、各送信機S1~SNの送 信シンボル c_1 (i)~ c_N (i)を推定して c_1 ²

(i) ~ c_N [^] (i) として出力端子Out1~Out Nに別々に出力する。

【0003】現在までのところMIMOシステムにおけ るMIMO受信機の具体的な構成法に関する検討は十分 に行われていない。MIMOシステムにおけるMIMO 受信機の構成をMLSE (最尤推定)規範に基づいて行 う場合は、送信機の数をN、各送信機の送信電波がMI MO受信機に到達するマルチパスの数をQとすれば、M I M O 受信機の計算量は2(Q-1)N の桁になってしま い、送信機数N、マルチパス数Qの増加に伴いその計算

$$r_{m}(k) = \sum_{q=0}^{q-1} q^{-1} h_{m}(q) \cdot b (k-q) + v_{m}(k)$$

と表すことができる。mはアンテナインデックス、hは チャネル値(伝送路インパルス応答:伝送路特性)、b (k-q+1)はユーザ(送信機1)の送信シンボル、v

量は莫大なものとなる。またシングルユーザの情報を複 数の並列信号として送信されたものを受信する場合に、 各並列信号を分離するにはマルチパス数の増加に伴い多 くの計算量を必要とする。そこでこの発明は計算効率の よい複数系列信号のターボ受信方法を提案するものであ るが、まずこの発明の元となる既存のシングルユーザ (送信機1台)、つまり1系列送信信号に対するターボ 受信機について説明する。

【0004】シングルユーザ用ターボ受信機

この場合の送信機、受信機の構成例を図31に示す。送 信機10では情報系列c(i)の符号化が符号化器11 で行われ、その符号化出力がインタリーバ12でインタ リーブ(並べ替え)された後、変調器13で搬送波信号 を変調し、その変調出力が送信される。この送信信号は 伝送路(マルチパスの各チャネル)を通じて受信機20 に受信される。受信機20では軟入力軟出力(SIS O:Single-Input-Single-Outpu t)等化器21により遅延波の等化が行われる。この等 化器21の入力は一般に受信信号がベースバンドに変換 され、そのベースバンドの受信信号が、送信信号の情報 系列のシンボル信号の周波数の1倍以上の周波数でサン プリングされてディジタル信号に変換され、ディジタル 信号の受信信号として等化器21へ入力される。

【0005】シングルユーザの場合図30AでN=1に あたり、各受信アンテナ#m ($m=1, 2, \dots, M$) に おける受信出力は、

$$\cdot b (k-q) + v_m (k)$$
 (1)

。(k)は受信機20の内部の熱雑音である。そして全 てのアンテナ#1~#Mからの出力を式(2)のベクト ルとして表わし、式(3)

$$\mathbf{r} (k) = [r_1 (k) r_2 (k) \cdots r_M (k)]^T$$

$$= \sum_{q=0}^{q-1} \mathbf{H} (q) \cdot \mathbf{b} (k-q+1) + \mathbf{v} (k) (3)$$

を定義する。ここで、

$$\mathbf{v}(\mathbf{k}) = [\mathbf{v}_1 \ (\mathbf{k}) \ \mathbf{v}_2 \ (\mathbf{k}) \cdots \mathbf{v}_{\mathbb{M}} \ (\mathbf{k})]^{\mathsf{T}} \tag{4}$$

$$\mathbf{H}(\mathbf{q}) = [\mathbf{h}_1 \ (\mathbf{q}) \cdots \mathbf{h}_{M} \ (\mathbf{q})]^{\mathsf{T}} \tag{5}$$

である。また[] 『は転置行列を表わす。次にマルチ パス(チャネル)の数Qを考慮して以下のベクトル及び 行列を定義する。

$$\mathbf{y}$$
 (k) $\equiv [\mathbf{r}^{\mathsf{T}} (\mathbf{k} + \mathbf{Q} - 1) \mathbf{r}^{\mathsf{T}} (\mathbf{k} + \mathbf{Q} - 2) \cdots \mathbf{r}^{\mathsf{T}} (\mathbf{k})]^{\mathsf{T}}$
(6)

$$\equiv \mathbf{H} \cdot \mathbf{b} \ (\mathbf{k}) + \mathbf{n} \ (\mathbf{k}) \tag{7}$$

ここで、

【0008】ただし、

[0007] 【数13】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & & H(0) & \cdots & H(Q-1) \end{bmatrix}$$
(8)

b
$$(k-q) = [b (k+Q-1) b (k+Q-2) \cdots b (k-Q+1)]^T$$
(9)

$$\mathbf{n}$$
 (k) = $\begin{bmatrix} \mathbf{v}^{\mathsf{T}} & (\mathbf{k} + \mathbf{Q} - \mathbf{1}) & \mathbf{v}^{\mathsf{T}} & (\mathbf{k} + \mathbf{Q} - \mathbf{2}) & \cdots & \mathbf{v}^{\mathsf{T}} & (\mathbf{k}) \end{bmatrix}^{\mathsf{T}}$

(10)

である。上で定義した \mathbf{r} (\mathbf{k}) が等化器 21 に入力され、この \mathbf{S} I \mathbf{S} O等化器 21 は線形等化器であって、その等化出力として各符号化ビット { \mathbf{b} (\mathbf{i})} が +1 である確率と-1 である確率の対数尤度比 \mathbf{A}_1 (\mathbf{L} L \mathbf{R} : \mathbf{L} Log-LikelihoodRatio) が導出される。

【0009】 【数14】

$$\Lambda_{1}[b(k)] = \log \frac{\Pr[b(k) = +1 | y(k)]}{\Pr[b(k) = -1 | y(k)]}$$
(11)

 $\equiv \lambda_1[b(k)] + \lambda_2^p[b(k)] \tag{12}$

【0010】である。ここで λ_1 [b(k)]は後続の復号器24に送られる外部情報、 λ_2 P [b(k)]は等化器21に与えられる事前情報である。対数尤度比 Λ_1 [b(k)] は事前情報 λ_2 [b(k)]が減算器22で減算され、更にデインタリーバ23を介してSIS0チャネル復号器24へ供給される。この復号器24は対数尤度比 Λ_2 、

【0011】 【数15】

$$\Lambda_{2}[b(i)] = \log \frac{\Pr[b(i) = +1 \mid \lambda_{1}[b(i)], i = 0, \dots, B-1]}{\Pr[b(i) = -1 \mid \lambda_{1}[b(i)], i = 0, \dots, B-1]}$$
(13)

B:フレーム長

$$= \lambda_2[b(i)] + \lambda_1^p[b(i)] \tag{14}$$

【0012】を算出する。ここで λ_2 [b(i)] は繰り返しの際に等化器21に λ_2 p [b(k)] として与えられる外部情報であり、 λ_1 [b(k)] が復号器24に事前情報 λ_1 p [b(i)] として与えられる。 Λ_2 [b(i)] は減算器25で λ_1 [b(i)] が減算され、インタリーバ26を介して等化器21及び減算器

$$b'(k) = tan h [\lambda_2] [b(k)] / 2]$$
 (15)

を算出する。そして、この推定値とチャネル行列 HI を 用いて干渉成分、つまり干渉成分のレプリカ HI・ **b** ′ (k) を再生し、受信信号から引き算する。つまり

成分の残りを消す線形フィルタ係数 ww (k)を以下の

MMSE (最小平均2乗誤差)規範で求める。

22へ供給される。このようにして繰り返し等化、復号

が行われて誤り率の向上が達成される。次に前段の等化

器21の詳細として受信ベクトル y (k) に施す線形

フィルタ特性の算定について述べる。等化器21の事前

情報A2P [b(k)]を用いて軟判定シンボル推定値

$$\mathbf{y}'(\mathbf{k}) \equiv \mathbf{y}(\mathbf{k}) - \mathbf{H} \cdot \mathbf{b}'(\mathbf{k})$$
(16)
$$= \mathbf{H} \cdot (\mathbf{b}(\mathbf{k}) - \mathbf{b}'(\mathbf{k})) + \mathbf{n}(\mathbf{k})$$
(17)

ここで、

b
$$'(k) = [b'(k+Q-1)\cdots 0\cdots b'(k-Q+1)]^{T}$$
 (18)

を計算する。干渉成分のレプリカ H ・ 15 ~ (k) は 正確なレプリカに必ずしもなっていないから、式 (1 6) により干渉成分を完全に除去できない。そこで干渉

$$\mathbf{w}(k) = \arg \min \| \mathbf{w}^{H}(k) \cdot \mathbf{y}'(k) - \mathbf{b}(k) \|^{2}$$
 (19)

[0013]

【0014】等化器21において等化処理を行うには、 式(1)中のチャネル値(伝送路インパルス応答)hを

器24へ供給され、復号演算が行われる。

推定する必要がある。このチャネル値の推定を以下では チャネル推定と記す。チャネル推定は、1フレーム内の 先頭部に送られて来るユニークワードなどの既知のトレーニング系列の受信信号と、記憶してあるトレーニング 系列とを用いて行われている。チャネル推定の精度が悪いと、等化器21での等化処理が正しく行われない。チャネル推定の精度を高くするには1フレーム内のトレーニング系列の占める割合を大きくすればよいが、そのようにすると本来のデータに対する伝送効率が低下する。 従って、1フレーム内のトレーニング系列の占める割合を小さくし、かつチャネル推定精度を向上させることが 望まれる。

【0015】このことはMIMOを含む多系列送信信号に対する受信機に限らず、レーク(RAKE)受信機や

アダプティブアレーアンテナを用いた受信機においても 繰り返し復号処理により復号結果の確からしさを向上さ せる受信機では、そのチャネル推定においては同様な問 題がある。

[0016]

【発明が解決しようとする課題】上記のターボ受信機は 以下の課題を持っている。

- ・シングルユーザ(一台の送信機)、つまり1系列の送信信号のみの対応である。
- ・干渉成分を再生する際にチャネル値(行列H)が必要であり、実装の際にはこれを推定する必要がある。 その推定誤差が繰り返し等化の効果を劣化させてしまう。

【0017】この発明の目的はこの2点を補うべく以下にこの受信用をマルチユーザ、やシングルユーザ並列送信などの複数の送信系列信号に対する受信機に拡張したターボ受信方法及びその受信機を提供することにある。またこの発明の他の目的は、受信信号のチャネル値を、受信信号と参照信号としての既知信号とから推定し、その推定したチャネル値を用いて受信信号を処理し、その処理した信号に対し、復号処理を行い、同一受信信号に対し、上記推定したチャネル値を利用した処理と復号処理とを繰り返し行う受信方法において、比較的短かい既知信号によりチャネル推定を精度よく行うことができるターボ受信方法及びその受信機を提供することにある。

[0018]

【課題を解決するための手段】この第1発明はN系列(Nは2以上の整数)の送信信号を受信するターボ受信方法であって、M個の受信信号 r_m ($m=1,\cdots,M$)と、N系列の既知信号とから、チャネル値 h_{nn} (q)($n=1,\cdots,N$)を計算し、復号により得られたN系列の事前情報 λ_2 [b_n (k)]に基づき軟判定送信シンボル b'_n (k)を求め、チャネル値 h_{nn} (q)と軟判定送信シンボル b'_n (k)を用いて、n系列目の送信信号自身が作る符号間干渉とn系列目の送信信号以外の送信信号によって作られる干渉成分 \mathbf{H} \mathbf{H}

(k)を計算し、ここで

[0019]

【数16】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{M1}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$

[0020] B'(k) = [b'](k+Q-1) \cdots b'](k) \cdots b'](k-Q+1)] **b** $'(k+q) = [b'_1(k+q)b'_2(k+q)...b'_N(k+q)]^T$

 $q = Q - 1 \cdot \dots - Q + 1$ $q \neq 0$ \mathcal{C}

 $\mathbf{b} ' (\mathbf{k}) = [\mathbf{b}'_{1} (\mathbf{k}) \cdots 0 \cdots \mathbf{b}'_{N} (\mathbf{k})]^{T}$ $\mathbf{q} = \mathbf{0} \mathcal{T}$

(**b** $^{\prime}$ (k)の要素のゼロは $^{\prime}$ n番目)、Qは各送信信 号電波のマルチパスの数、 $^{\prime}$ q = 0, …, Q - 1、[] ^{†} は転置行列を表わす。

【0021】この符号間干渉 **H** · **B** ′ (k)を受信 ベクトル **S** ′ (k)から差し引き差分ベクトル **S** ′ (k)を求める。

 \mathbf{r} $(\mathbf{k}) = [\mathbf{r}_1 \ (\mathbf{k}) \ \mathbf{r}_2 \ (\mathbf{k}) \cdots \ \mathbf{r}_M \ (\mathbf{k})]$

チャネル行列 $\mathbf{F}\mathbf{I}$ 又は参照信号を用いて差分ベクトル \mathbf{y} \mathbf{i} \mathbf{k} \mathbf{i}) 内の残余干渉成分を除去するための、 \mathbf{i} \mathbf{i}

【0022】第2発明によれば、第1発明において、q=0の場合に、

 $\mathbf{b}'(\mathbf{k}) = [\mathbf{b'}_1(\mathbf{k}) \cdots \mathbf{f}(\mathbf{b'}_n(\mathbf{k})) \cdots \mathbf{b'}_N(\mathbf{k})]^T$

b ´ (k)の要素のf(b´_n(k)はn番目であり、f()はf(0)=0、かつd(f(b´_n(k)) \leq 0を満たすb´

n (k)を変数とする関数とすることを特徴とする。第 3発明によれば、等化処理を複数段階に分けて行い、後 段程、等化出力の系列の数を少なくする。

【0023】この第4発明によれば受信信号のチャネル値を、受信信号と参照信号としての既知信号とから推定し、その推定したチャネル値を用いて受信信号を処理し、その処理した信号に対し復号処理を行い、同一受信信号に対し、上記推定したチャネル値を利用した処理と復号処理とを繰り返し行うターボ受信方法において、復号された硬判定情報シンボルの確からしさを、その軟判定情報シンボルの値から決定し、その確からしさが所定値以上の硬判定情報シンボルをも次回のチャネル推定の参照信号に用いる。

[0024]

【発明の実施の形態】第1発明(1)

 調器 13-1, …, 13-N に変調信号として供給さ れ、これら変調信号により搬送波信号が変調されて信号 b₁ (k), …, b_N (k)として送信される。つまり 送信機S1, …, SNからの送信信号b1 (k), …, b_N (k)がN系列の送信信号の場合である。

【0025】伝送路(チャネル)を通じて多出力受信機 に受信された受信信号 r (k)は多出力等化器31に 入力され、受信機に受信された信号はベースバンド信号 に変換され、そのベースバンド信号は例えばそのシンボ ル周期の1/2の周期でサンプリングされてディジタル 信号に変換されそのディジタル信号として等化器31に 入力される。またこのディジタル信号は1以上の整数M 個とされる。例えばM個のアンテナよりの受信信号がM 個のディジタル信号の受信信号とされる。等化器31か らN個の対数尤度比 Λ_1 [b₁ (k)], …, Λ_1 [b $_{\rm N}$ (k)]が出力される。 $\Lambda_{\rm 1}$ [b $_{\rm 1}$ (k)], ..., Λ $_1$ [b_N (k)]はそれぞれ事前情報 λ_1 [b $(k)], \dots, \lambda_1 [b_N(k)]が減算器22-$

$$r_{m}(k) = \sum_{q=0}^{q-1} \sum_{n=1}^{N} h_{mn}(q) \cdot b_{n}(k-q) + v_{m}(k-q)$$

と複数ユーザ分足し合わせたものとなる。q=0,…, Q-1,Qは各送信電波のマルチパスの数、そしてシン

 $1, \dots, 22-N$ でそれぞれ減算され、デインタリーバ 23-1, …, 23-Nを通じて軟入力軟出力(SIS) ○)復号器 (チャネル復号器) 24-1, …, 24-N にそれぞれ入力されて復号され、復号器24-1,…, 24-Nから復号情報系列 c´」(i), …, c´

N (i)が出力されると共に対数尤度比A。[b

[1] (i)], …, Λ_2 [b_N (i)]がそれぞれ出力さ れる。 Λ_2 [b_1 (i)], ..., Λ_2 [b_N (i)]は 減算器 25-1, …, 25-Nにより λ_1 [b

 $_1$ (i)], …, λ_1 [b $_N$ (i)]がそれぞれ減算さ れ、更に、インタリーバ26-1, …, 26-Nをそれ ぞれ通じて λ_2 [b₁ (k)], ..., λ_2 [b

N (k)]として多出力等化器31及び減算器22- $1, \dots, 22-N$ にそれぞれ供給される。

【0026】マルチユーザ(複数送信機)からの受信信 号r_m (k) (m=1, …, M)は、等化器31の入力 として、

$$\Pi_{nn}(q) \cdot B_n (K-q) + V_n (K-q)$$

$$(20)$$

グルユーザの場合と同じ手順でベクトル sv (k)を定 義すると、

$$\mathbf{y} (\mathbf{k}) \equiv [\mathbf{r}^{\mathsf{T}} (\mathbf{k} + \mathbf{Q} - 1) \mathbf{r}^{\mathsf{T}} (\mathbf{k} + \mathbf{Q} - 2) \cdots \mathbf{r}^{\mathsf{T}} (\mathbf{k})]$$

$$= \mathbf{H} \cdot \mathbf{B} (\mathbf{k}) + \mathbf{n} (\mathbf{k})$$
(21)

 $\mathbb{Z} \mathbb{Z} \mathcal{T}$, \mathbf{r} $(\mathbf{k}) = [\mathbf{r}_1 (\mathbf{k}) \cdots \mathbf{r}_M (\mathbf{k})]^T$

[0027]

【数17】 $[H(0) \dots H(Q-1)]$ H <u>--</u> | (23)H(0)... H(Q−1) 0

[0028] 【数18】

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{MI}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$
(24)

ただし、 【0029】

$$\mathbf{B} (k) = [\mathbf{b}^{T} (k+Q-1) \cdots \mathbf{b}^{T} (k) \cdots \mathbf{b}^{T} (k-Q+1)]^{T}$$

$$(25)$$

$$\mathbf{b} (k+q) = [b_{1} (k+q) b_{2} (k+q) \cdots b_{N} (k+q)]^{T}$$

$$q = Q-1, Q-2, \cdots, -Q+1$$

$$(26)$$

となる。次に干渉除去ステップにおいて、今第n番目の ユーザ (送信機) からの信号が所望であると仮定する。 この例では全ユーザ(送信機)よりの信号の軟判定シン ボル推定値とチャネル行列(伝送路インパルス応答値行 列) I-I を用いて、第n番目以外のユーザの信号による

干渉と第n番目のユーザの信号自身が作る干渉との合成 したもの、つまり干渉レプリカ HI · B ′ (k)を再 生して以下のように、 y (k) からこの干渉レプリカ を引算して差分ベクトル シ ′ (k)を生成する。

[0030]

$$\mathbf{y}'(\mathbf{k}) \equiv \mathbf{y}(\mathbf{k}) - \mathbf{H} \cdot \mathbf{B}'(\mathbf{k})$$
 (27)

$$= \mathbf{H} \cdot (\mathbf{B}(\mathbf{k}) - \mathbf{B}'(\mathbf{k})) + \mathbf{n}(\mathbf{k}) \tag{28}$$

$$\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{\mathsf{T}}(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}'^{\mathsf{T}}(\mathbf{k}) \cdots \mathbf{b}'^{\mathsf{T}}(\mathbf{k} - \mathbf{Q} + 1)]^{\mathsf{T}}$$
 (29) そして、

$$\mathbf{b} \ ' \ (k+q) = [\ b' \ _1 \ (k+q) \ b' \ _2 \ (k+q) \cdots b' \ _N \ (k+q)] \ ^{\intercal} : q = Q-1, \ \cdots, \ -Q+1, \ q \neq 0 \ \ (30)$$

 $\mathbf{b}'(\mathbf{k}) = [\mathbf{b'}_1(\mathbf{k}) \cdots 0 \cdots \mathbf{b'}_N(\mathbf{k})]^T : \mathbf{q} = 0 \quad (31)$

 \mathbf{b} \mathbf{b}

【0031】次に干渉成分の残り、つまり干渉成分レプ

 \mathbf{W}_{n} (k) = arg min $\| \mathbf{W}_{n} \|$ (k) · \mathbf{y}

以下の操作はシングルユーザの場合と同一である。つまり求めた \mathbf{w}_n (k)を用いて \mathbf{w}_n (k)を計算し、その計算結果をデインタリーバ23-nを介して λ_1 [b_n (i)]として、復号器24-n に入力して復号演算が行われる。

【0032】ユーザ1からNまで以上の方法で受信信号 r_aに対しフィルタ(線形等化)処理を求めていく。そ の結果等化器31の出力数はNとなり、これら出力は各 々の復号器24-1,…,24-Nにより復号される。 以上がシングルユーザ用ターボ受信機のマルチユーザ (MIMO) 用への拡張である。以上の説明から、多出 力等化器31の機能構成例は図2に示すようになる。M 個の受信信号r。(k)は受信ベクトル生成部311に より受信ベクトル 5v (k)が生成され、各ユーザごと の等化部312-1~313-Nへ供給される。またチ ャネル推定器28において計算されたチャネル行列 1-1 も等化部312-1~312-Nへ供給される。各チャ ネル復号器 24-n からの事前情報 λ_2 [b_n(k)] が軟判定シンボル推定部313に入力され、それぞれ軟 判定送信シンボル推定値 $b_n(k) = tanh[\lambda_2]$ [b゜(k)]/2]が計算される。等化部312-1 ~312-N内の機能構成と処理は同一であり、等化部 312-1で代表して説明する。

【0033】さらに軟判定送信シンボルの推定値 b^*_1 (k)~ b^*_N (k)が、干渉レプリカベクトル生成部 314-1に供給され、式(29)~(31)により干渉レプリカベクトル \mathbf{B}^*_1 (k)が生成され、このベクトル \mathbf{B}^*_1 (k)はフィルタ処理部 315-1でチャネル行列 \mathbf{H} によりフィルタ処理され、その結果の干渉レプリカ成分 \mathbf{H}^* \mathbf{B}^*_1 (k)が、差演算部 316-1で受信ベクトル \mathbf{y}^*_1 (k)から差し引かれ、差分ベクトル \mathbf{y}^*_1 (k)が生成される。

【0034】フィルタ係数推定部317-1に少くともチャネル行列 \mathbf{H} 、又は後述するように参照信号が入力され、前記干渉成分の残りを除去するためのフィルタ係数 \mathbf{w}_1 (\mathbf{k})が求められる。この例ではチャネル推定器28よりのチャネル行列 \mathbf{H} と雑音成分の共分散 σ^2 と、軟判定シンボル生成部313-1からの軟判定送信シンボルb $_1$ (\mathbf{k}) \sim b $_N$ (\mathbf{k})がフィルタ係数推定部317-1に入力され、式(32)を最小とするフィルタ係数 \mathbf{w}_1 (\mathbf{k})が最小平均2乗誤差規範で求めら

リカ $\mathbf{H} \cdot \mathbf{B}$ ' (\mathbf{k}) の不完全性に基づく干渉剰余と、第 \mathbf{n} 番目自身の信号が作る干渉成分とを消すための第 \mathbf{n} 番目のユーザ用のフィルタ係数 $\mathbf{w}_{\mathbf{n}}$ (\mathbf{k}) を以下の式 $(\mathbf{32})$ を最小とする $\mathbf{w}_{\mathbf{n}}$ (\mathbf{k}) をMMSE (\mathbf{k}) 小平均 $(\mathbf{32})$ 規範で求める。

 $(k) \cdot y'(k) - b_n(k) \parallel^2$ (32)

れる。このフィルタ係数 \mathbf{vv}_1 (\mathbf{k})を求める具体的処理は後で述べる。適応フィルタ処理部 $\mathbf{3}$ $\mathbf{1}$ $\mathbf{8}$ $\mathbf{-1}$ で差分ベクトル \mathbf{v} \mathbf{v} $\mathbf{1}$ (\mathbf{k}) がフィルタ係数 \mathbf{vv}_1 (\mathbf{k}) により処理され、ユーザ $\mathbf{1}$ からの送信信号に対する受信信号の等化出力として \mathbf{N}_1 [\mathbf{b}_1 (\mathbf{k})] が出力される。【 $\mathbf{0}$ $\mathbf{0}$ $\mathbf{3}$ $\mathbf{5}$ 】 また前述したこの発明の実施例の多入力多出力ターボ受信方法の処理手順を図 $\mathbf{3}$ \mathbf{k} $\mathbf{0}$ $\mathbf{0}$ $\mathbf{3}$ $\mathbf{5}$ $\mathbf{1}$ で受信信号 \mathbf{r} (\mathbf{k}) と各トレーニング信号 \mathbf{b} \mathbf{n} (\mathbf{k}) からチャネル値 \mathbf{n} \mathbf{n} (\mathbf{q}) 及び雑音成分の共分散 \mathbf{n} $\mathbf{0}$ $\mathbf{0}$

定を行う方法を説明する。

情報 λ_2 [b_n (k)] を求めてステップS3に戻る。ステップS11で復号が所定回数の場合はステップS13でその時の復号結果を出力する。

$$r_{m}(k) = \sum_{q=0}^{q-1} \sum_{n=1}^{q-1} h_{mn}(q) \cdot b_{n}(k-q) + v_{m}(k)$$
(33)

チャネル推定部28は式(33)中のチャネル値(伝送 路インパルス応答)のhan(q)の値とノイズv 。(k)の平均電力(≡σ²)を求める。通常送信側は 図4 Aに示すように受信機で既知のユニークワード(ト レーニング信号)を各送信フレームの始めに挿入し、受 信機はそのユニークワード(既知信号)をトレーニング 系列としてRLS (再帰的最小2乗法) などを用いてチ ャネル値hmn(q)を推定していく。各チャネル復号器 24-1, …, 24-Nから、その対数尤度比A。[b] $_1$ (i)] ,…, Λ_2 [b_N (i)] のそれぞれについ て、正であれば+1を負であれば-1をそれぞれ復号符 号信号(送信符号化シンボル硬判定値) b₁ ^(i), …, b_N $^{(i)}$ として出力し、これら b_1 $^{(i)}$, ..., b_N ^(i) はインタリーバ27-1, ..., 27-Nを通じて繰り返しチャネル推定器28に入力される。 チャネル推定器 2 8 には受信信号 1 (k) が入力され ると共にユニークワード記憶部29からユニークワード が参照信号として入力される。 チャネル推定器 28はこ れら入力された信号に基づき、式(33)の各h $_{mn}$ (q)と σ^2 の各値を最小2乗法により推定する。こ の推定は伝送路のインパルス応答を推定して受信信号を 適応フィルタにより適応的に等化する場合のインパルス

【0039】このようにトレーニング系列を用いるのは 通常用いられる手法であるが、正味の伝送速度を上げる には1フレーム内のユニークワードの占める割合を小さ くする必要があり、そうすればチャネル推定の誤差は増 大する。そしてその誤差が上記の繰り返し等化の特性を 劣化させてしまう。そこでチャネル値の繰り返し推定を 次のようにするとよい。その概念を図4 Bに示す。これ は同一受信信号の繰り返し等化処理、つまりターボ受信 処理の繰り返し処理の各段階でチャネル値も繰り返し推 定していこうというものである。 つまり 1 回目において はユニークワードの後の情報シンボル系列に対しては、 ユニークワードのみを参照信号として用いてチャネル値 を推定し、その推定したチャネル値を用いて受信信号を 等化し送信シンボルを推定するが、2回目以降の等化処 理の前に、そのユニークワードを参照信号として用いて チャネル推定を行い、かつ前回の復号処理で得られたシ ンボル推定値(硬判定値)も参照信号として用いてフレ 一ム内全体でチャネル推定を行う。この場合、全ての硬 判定値を用いるのではなく、確からしいと判断された硬 判定値のみを参照信号として用いるとよい。硬判定は復 号器24-nからの対数尤度比 Λ_2 [b_n (i)]を用 いてこれが正なら+1、負なら-1とすることによって

応答の推定と同様の手法で行うことができる。

【0038】次にチャネル推定部28について述べる。 各受信信号 r_{m} (k)は次式で表わせる。

行われる。その際その対数尤度比 Λ_2 $[b_n$ (i)] の 絶対値が大きいほどその硬判定値は確からしいと言える。例えば、対数尤度 0. 3 を 1 と判定した時の 1 よりも、対数尤度 5 を 1 と判定したときの 1 の方が確からしい。そこで以下にしきい値を用いて確からしい硬判定値 b_n (i) を選定し、それを用いて繰り返しチャネル推

【0040】まず復号器24-nよりの対数尤度比 Λ_2 [b_n (i)]を用いて、シンボルの軟判定値b' n (i)を、

 b'_n (i) = tan h [Λ_2 [b_n (i)]/2] として求める。この操作は対数尤度値を1に規格化し絶 対値が1を超えることはないようにするためである。次 に予めしきい値(0と1の間)を用意しておき、その軟 判定値b´。(i)の絶対値がそのしきい値よりも大き いものに対してその硬判定値b~n(i)を保存してお き、これを繰り返しチャネル推定に用いる。例えばしき い値をO. 9に設定すると軟判定値 b_n (i)のうち 絶対値が0.9以上の硬判定値b ^ (i)のみが選別 される。しきい値が0.9と高いため選別された硬判定 値b~。(i)の確からしさは高いと考えられるから、 これらを利用して行う繰り返しチャネル推定の精度は上 がると考えられるが、その分、選別されるシンボル数が 減少するため繰り返しチャネル推定精度は下がるとも考 えられる。つまり最適なしきい値を0と1の間で選定す る必要がある。補足として仮にしきい値を1と設定した 場合、選別される硬判定値b~n (i)はないため繰り 返しチャネル推定は行われないということになる。そこ で後で述べるが、しきい値は0.2~0.8程度に設定 して行う。

mn (q) とσ² を用いて、受信信号 1 (k) に対する

等化、復号(送信シンボル推定)を行う。この際にその 推定した送信シンボル中のしきい値により確からしいと 判定されたシンボル値で前回シンボル記憶部32の記憶 内容を更新しておく。以下同様にして、等化、復号の繰 り返しの際におけるチャネル推定はユニークワードを用 いる推定と、前回の推定送信シンボル中の確からしいと 判定されたものを用いる推定とによりフレーム内全体で チャネル推定を行う。その推定チャネルを用いて等化、 復号(送信シンボル推定)を行い、また前回シンボル記 憶部32の更新を行う。なおこの前回シンボル記憶部3 2には復号器からの送信シンボル硬判定値b

ı (i), …, b ~ (i) 中のしきい値により確から しいと判定されたシンボル値を前回シンボル記憶部32 に直接格納更新し、この前回シンボル記憶部32の記憶 シンボル値を利用する場合にインタリーバ27-1, …, 27-Nを通してチャネル推定器28へ入力するよ うにしてもよい。

【0042】このようにすることによって繰り返しによ り、チャネル推定の誤差が減少し、シンボル推定の精度 が向上し、ターボ等化におけるチャネル推定誤差による 特性劣化の問題を改善することができる。このように確 からしいシンボル硬判定値を用いて情報シンボル系列に おいてチャネル推定を行う場合には、各復号器24-n に図5に示す機能構成が付加される。対数尤度比A 2 [b (i)]が軟判定値推定部241に入力され、 $b'_n(i) = tanh(\Lambda_2[b_n(i)])$ が計算 され、送信シンボル軟判定値b´n (i)が推定され、 この値 b ′ 。 (i) が比較部 2 4 2 でしきい値設定部 2 43からのしきい値Thと比較され、b´。(i)がT h以上で1、Thより小で0が出力される。一方対数尤 度比 Λ_2 [b_n(i)]が硬判定部244に入力され、 Λ_2 [b_n(i)]が正なら+1、負なら-1とされた シンボル硬判定値 b ~ 。(i)が出力され、このシンボ ル硬判定値b~。(i)は、対応するシンボル軟判定値 がしきい値以上であればゲート245が開とされて出力 され、図1中のインタリーバ27-nを通じて前回シン ボル記憶部32に供給され、記憶中の前記シンボルが更 新される。

【0043】また確からしいシンボル硬判定値をも利用

$$\mathbf{w}_{n}$$
 (k) = (H G (k) H^H + σ^{2} I)⁻¹ · h (34)

Ι は単位行列、σ² は受信機の内部雑音電力(雑音成 分の共分散)であり、σ² Ι は雑音成分の共分散行

列、G(k)はチャネル推定2乗誤差に対応する。 [0046]

G(k)
$$\equiv E[(B(k) - B'(k)) \cdot (B(k) - B'(k))^{\#}]$$

=diag[D(k+Q-1), ..., D(k), ..., D(k-Q+1)]
(35)

E「] は平均を、diagは対角行列(対角線の要素以外の

$$\mathbf{p}$$
 は対角行列(対角線の要素以外の 要素はゼロ)を表わす。また \mathbf{D} ($\mathbf{k}+\mathbf{q}$)= \mathbf{diag} [$\mathbf{1}-\mathbf{b}^{'2}_1$ ($\mathbf{k}+\mathbf{q}$),…, $\mathbf{1}-\mathbf{b}^{'2}_n$ ($\mathbf{k}+\mathbf{b}$),…, $\mathbf{1}-\mathbf{b}^{'2}_n$ ($\mathbf{k}+\mathbf{q}$)] (36)

q = Q - 1, Q - 2, ..., -Q + 1, $q \neq 0$ q = 0 の時 は

D $(k) = diag [1-b'^{2}_{1}(k), ..., 1, ..., 1-b'^{2}_{N}(k)]$

したチャネル推定の手順は図6に示すようになる。まず ステップS1で受信信号r(k)とユニークワードとに よるチャネル推定を行い、ステップS2で復号処理が1 回目か否かを調べ、1回目であれば、ステップS3でそ の推定したチャネル値hmn(q)を用いて等化、復号処 理、つまり図3中のステップS3~S10の処理を行 う。ステップS4で対数尤度比Λ。[b_n(i)]に対 し、送信シンボル硬判定処理を行い、硬判定値b^{*} n(i)を求め、ステップS5で対数尤度比 $\Lambda_2[b_n]$ (i)]に対し、 b'_n (i) = $tanh(\Lambda_2 [b_n$ (i)]/2)を計算して送信シンボル軟判定値b′ n

(i)を推定する。ステップS6でシンボル軟判定値 b′。(i)がしきい値Th以上か否かにより、対応シ ンボル硬判定値b^゜(і)の確からしいものを決定 し、ステップS7でその確からしいシンボル硬判定値に より、前回シンボル記憶部32内の記憶内容を更新す る。次にステップS8で復号回数が所定値であるかを調 べ、所定値になっていなければ、ステップS1へ戻る。 正確には図3中のステップS12を経て図3中のステッ プS1に戻る。

【0044】ステップS2で復号処理が1回でないと判 定されると、ステップS9で前回シンボル記憶部32か ら前回の記憶シンボル、つまり確からしい硬判定シンボ ルを読み出し、これと受信信号r(k)の情報シンボル 系列とを用いてチャネル推定を行ってステップS3に移 る。以上においては、2回目以後の処理においても、ユ ニークワードも参照信号として初期状態からチャネル推 定をしたが、2回目以後は参照信号として確らしい硬判 定シンボルのみを用いてもよい。この場合は図6中に破 線で示すように、ステップS1′で1回目の処理かを調 べ、1回目の処理であれば、ステップS2′でユニーク ワードを参照信号としてこれと、受信信号とによりチャ ネル値の推定を行い、ステップS3′でその推定チャネ ル値と、その推定に用いた各パラメータの値を記憶部に 記憶した後、ステップS3の等化、復号処理へ移る。

【0045】ステップS1′で1回目でなければ、チャ ネル推定処理に先立ち、ステップS4′で先に記憶した チャネル推定値と各種処理パラメータを設定してステッ プS9へ移る。所で式(32)の解は次式となる。

ベクトル D (k)中の1はn番目の要素(n番目のユーザの送信信号を所望の信号としている)である。

[0047]

【数19】

$$h = \begin{bmatrix} H_{1,(Q-1)\cdot N+n} \\ H_{2,(Q-1)\cdot N+n} \\ \vdots \\ H_{M\cdot Q\cdot (Q-1)\cdot N+n} \end{bmatrix}$$
(38)

【0048】つまり **h** は式 (23) の **H** の (Q-1) · N+n列目の全要素からなる。 図2に示したよう

$$D (k+q) = d i a g [0, \dots, 0] = 0 (q \neq 0)$$
 (39)

$$D(k) = diag[0, ..., 1, ..., 0]$$
 (40)

つまり、 \mathbf{D} (k)の要素中のn行n列の要素のみが1 で、他の全ての要素は0となる。これら式(39),

$$\mathbf{w}_{n}$$
 (k) = ($\mathbf{h} \cdot \mathbf{h}^{H} + \sigma^{2} \cdot \mathbf{I}$) ⁻¹ · \mathbf{h}

となる。 1 は式 (38) で定義されたもの。

【0049】この近似により、wv』(k)はkに依存しないため、離散的時刻k毎の逆行列計算が不要となり、計算量が削減される。この式(41)に対し、逆行

$$A^{-1} = B - BC (D + C^{H} BBC)^{-1}C^{H} B$$

で与えられる。式(41)中の逆行列演算の部分にこの定理を適用すると、

h (k) · **h** (k) $^{\text{H}}$ + σ^2 **I** = B^{-1} + $CD^{-1}C$

h (k) · **h** (k) $^{\text{H}}$ = CD⁻¹C $^{\text{H}}$, σ^2 I = B $^{-1}$, **h** (k) = C

$$\mathbf{w}_{n}$$
 (k) = 1/(σ^{2} + \mathbf{h}^{H} · \mathbf{h}) \mathbf{h}

となる。この式の右辺の1/()はスカラー、即ち一定数となるため1としてもよい。よって \mathbf{vv}_n (\mathbf{k}) = \mathbf{h} と置けるから、 \mathbf{h} のみで \mathbf{vv} (\mathbf{k}) が決定される。図2中のフィルタ係数推定部317-1には、破線で示すように、チャネル推定器28からチャネル行列 \mathbf{H} 中の式(38) で示される \mathbf{h} のみを入力すればよい。

【0051】なお、式(39)、式(40)による近似は逆行列の補助定理を用いる場合に限らず、この近似により式(34)の計算量を少くすることができる。特にこの近似を行い、かつ逆行列の補助定理を用いれば更に演算量を減少でき、またその際に雑音成分の共分散行列

b
$$'(k) = [b'_1(k) b'_2(k) \cdots]$$

$$b'_{N}(k)$$
 (43)

ただし、f (b $^{\prime}$ $_{n}$ (k)) d b $^{\prime}$ $_{n}$ (k) を入力とする任意の関数このようにすることにより、検出する信号 b $_{n}$ (k) に関しても誤り訂正復号結果を反映させることが可能となる。つまり b $^{\prime}$ $_{n}$ (k) = 0 とすることなく(b $^{\prime}$ $_{n}$ (k) に応じた適当な値を加算することによ

(37)

に多出力等化器31のフィルタ係数推定部317-1では、チャネル推定器28で推定されたチャネル行列 \mathbf{H} 及び雑音電力 σ^2 と、軟判定シンボル生成部313-1よりの軟判定送信シンボルb´ı (k)~b´、(k) とが入力されて、残余干渉除去フィルタ係数 \mathbf{W} (s) が式(34)~(38)により演算される。式(34)は逆行列演算を行うことになるが、この演算は逆行列の補助定理 (Matrix Inversion Lemma)を用いることにより演算量を削減することができる。つまり式(36)及び(37)の各b´² の部分を全て1に近似すると、

…, 0 」 (40) (40)で決まる式(35)の誤差行列 C→ (k)を式

列の補助定理を適用する。この逆行列の補助定理はA, Bを (M, M) の正方行列、Cを (M, N) 行列、Dを (N, N) の正方行列とし、 $A=B^{-1}+CD^{-1}C^{H}$ で表される場合、Aの逆行列は

1
 C^H B (42)

 $I = D^{-1}$, $h (k)^H = C^H$

となり、これを用いて式(42)を計算すれば式(41)中の逆行列演算が求まる。なお式(42)中にも逆行列演算($D+C^H$ BBC) $^{-1}$ が含まれるが、この逆行列はスカラとなるから簡単に計算することができる。 【0050】つまりこの場合は、

$$\mathbf{h} \cdot \mathbf{h} \cdot \mathbf{h} \qquad (41-1)$$

 $\epsilon \sigma^2$ I とすると、式(41-1)に示すように \mathbf{w} \mathbf{k})= \mathbf{h} で近似でき、共分散行列に無関係となり、更に計算が簡略化される。

第2発明(誤り訂正反映)

式(27)に示した受信ベクトル \mathcal{S} (\mathbf{k})から \mathbf{H} ・ \mathbf{B} (\mathbf{k})を減算する等化処理では、検出する信号 \mathbf{b} 。 (\mathbf{k}) 以外の信号の送信シンボル軟判定値は誤り訂正 復号結果が反映されているが、検出する信号 \mathbf{b} 。(\mathbf{k}) に関する誤り訂正復号結果が反映されていない。そこで、以下のように処理をすることが好ましい。

【0052】式(29)中のb′(k)、つまり式(31)を次式に変更する。

$$b'_{2}(k)\cdots = f(b'_{n}(k)) b'_{n+1}(k)\cdots$$

り、例えば、雑音や干渉信号に埋ずもれた検出する信号を強調することになって、 \mathbf{b}_n (\mathbf{k}) を正しく検出することができる。

【0053】 $f(b'_n(k))$ については、 $b'_n(k)$ の符号は $b'_n(k)$ に対応するシンボルの硬

も大きな値となる。即ち

の場合はこの関数fの値もOである。即ち

判定結果に関係し、またb´ ゜(k)の絶対値が大きい ほどb′。(k)に対応する硬判定シンボルの信頼性が 大きいという性質から以下の条件を満たす必要がある。

$$f(0) = 0$$

である。またb′ 。(k)の値が大きければ関数fの値

$$d \{ f (b'_n (k)) \} / d \{ b'_n (k) \} \ge 0$$
 (45)

である。このような $f(b_n(k))$ の例としては、

$$f(b'_{n}(k)) = \alpha \times b'_{n}(k)$$
 (46)
 $f(b'_{n}(k)) = \alpha \times b'_{n}(k)^{2}$ (47)

が挙げられる。例えば式(46)を用いてαを定数とす れば式(43)を簡単に実現できる。ここで α は $0<\alpha$ <0.6である。 α を0.6より大きくすると逆にBE R (誤り率) 特性が劣化してしまい、正しい復号結果が 得られなくなる。また、αを復号結果の信頼度に応じて 可変することも考えられる。例えば復号処理の繰り返し 毎にαを設定する。この場合、通常は復号処理の繰り返 し回数が多くなるほど復号結果の信頼度が上がるため、 復号処理の繰り返し回数に応じてαの値を大きくすれば 良い。あるいは、復号処理の繰り返しごとに復号された

フレーム全体の信頼度を判定し、その判定に基づいて α

の値を決定すればよい。復号されたフレームの信頼度を 判定する方法として、例えば復号結果を1回前の繰り返 し復号時の復号結果と比較し、前回の復号時から変化し た硬判定シンボル数をカウントする方法が考えられる。 すなわち、変化した硬判定シンボル数が多い場合には信 頼度は低いと判定し、変化した硬判定シンボル数が少な い場合には信頼度が高いと判定すればよい。

 $b'_n(k) = 0$ 、つまり硬判定シンボルの信頼性が0

(44)

【0054】また、このようなb´n(k)の変更に伴 い、MMSE(最小平均2乗誤差)フィルタの係数ww n(k)を求める際に用いる式(35)を以下のように 変更することが望ましい。

$$G(k) = E[(B(k) - B'(k)) \cdot (B(k) - B'(k))]$$

$$= d i a g [D (k+Q-1), \dots, D (k), \dots, D (k-1)]$$

Q+1)

ここで式(29)、式(31)より [0055]

【数20】

$$\beta'(k) = \begin{bmatrix} b'(k+Q-1) \\ b'(k+Q-2) \\ \vdots \\ b'(k) \\ \vdots \\ b'(k-Q+1) \end{bmatrix} \qquad b'(k) = \begin{bmatrix} b'_1(k) \\ b'_2(k) \\ \vdots \\ -f(b'_n(k)) \\ \vdots \\ b'_N(k) \end{bmatrix}$$

$$b'(k) = \begin{bmatrix} b'_{1}(k) \\ b'_{2}(k) \\ \vdots \\ -f(b'_{n}(k)) \\ \vdots \\ b'_{N}(k) \end{bmatrix}$$

【0056】とする。 **□** (k)のn行n列の要素は $E[(b_n(k)+f(b_n(k)))\cdot(b_n(k))]$ $_{n}$ (k) + f (b′ $_{n}$ (k)))]*

[]* は複素共役を表わす。この式はBPSK変調の 場合は次式となる。

$$E [b_n (k)^2 + 2b_n (k) f (b'_n (k)) +$$

 $f(b'_n(k))^2 = E[b_n^2(k)] + 2E$ $[b_n (k) f (b'_n (k)] + E [f (b')]$ $_{n}(k)^{2}$

この第1項の平均値は1となる。またb。(k)をb′ (k)で近似すると式(37)は以下のようになる。

$$E[b_n(k)^2 + 2b_n(k) f(b'_n(k)) + [0057]$$

$$D(k) = diag[1-b'^{2}_{1}(k) 1-b'^{2}_{2}(k) \cdots \\ 1-b'^{2}_{n-1}(k) 1+2E[f(b'_{n}(k)b'_{n}(k)] + E[f(b'_{n}(k)^{2}] 1-b'^{2}_{n+1}(k) \cdots 1-b'^{2}_{1}(k)]$$

$$(48)$$

例えば、f(b), (k))を式(46)とした場合に は、D(k)は下記のようになる。

$$D(k) = d i a g [1-b'^{2}_{1}(k) 1-b'^{2}_{2}(k) \cdots$$

$$1 - b^{'2}_{n-1} (k) \quad 1 + (2\alpha + \alpha^{2}) b^{'2}_{n} (k) \quad 1 - b^{'2}_{n+1} (k) \cdots 1 - b^{'2}_{1} (k)$$
(49)

このように検出する信号に誤り訂正復号結果を反映させ る場合に適応フィルタ係数 🕶 。 (k) を推定する機能

構成例を、検出する信号として第1番目の送信機からの 送信信号b゛(k)とした場合を図7Aに示す。軟判定 送信シンボルb $^{\prime}_{1}$ (k)が関数演算部331-1に入 力され、関数演算 f (b $^{\prime}$ $_{1}$ (k)) が演算される。ま たN個の復号器からの軟判定送信シンボルb´ı(k) ~b´_N(k)とf(b´₁(k))が誤差行列生成部 332-1に入力され、式(35)、式(36)及び式 (48)により誤差行列 G(k)が演算生成される。 この誤差行列 CF(k)と、推定チャネル行列 IH 及び 雑音電力σ² とがフィルタ係数生成部333-1に入力 され、ここで式(34)が計算され、適応フィルタ係数 ww。(k)が推定される。この場合は干渉レプリカベ クトル生成部314-1にも $f(b'_n(k))$ が入力 され、式(30)と式(43)から式(29)の干渉レ プリカベクトル B ′ (k) が生成される。フィルタ係 数 wv n (k) により差分ベクトル yv ′ (k) が適応 フィルタ部318-1でフィルタ処理されて対数尤度比 Λ_1 [b_1 (k)]が得られる。なお図2中のフィルタ 係数推定部317-1の場合は図7A中の関数演算部3 31-1が省略され、軟判定送信シンボルb′₁ (k) ~b´_N (k)のみが誤差行列生成部332-1に入力 され、式(34)が演算されることになる。

【0058】図3中において、ステップS4で干渉レプリカベクトル \mathbf{B} (k)を生成し、更にステップS5~S7を処理し、ステップS8におけるフィルタ係数 \mathbf{W}_n (k)を求めるが、このステップS8の処理において式(34)を演算する場合は、図7Bに示すように、ステップS8-2で軟判定送信シンボルb \mathbf{E}_1 (k)~b \mathbf{E}_N (k)を用いて、式(35)~(37)を演算して誤差行列 \mathbf{E}_1 (k)を生成し、ステップS8-3で誤差行列 \mathbf{E}_1 (k)と推定チャネル行列 \mathbf{E}_1 及び雑音電力 \mathbf{E}_1 を用いて式(34)の演算により適応

フィルタ係数、、、(k)を求める。 【0059】前述のように検出した信号に誤り訂正復号 結果を反映させたい場合は、図7Bにおいて、ステップ S4の前にステップS8-1で検出したい信号の軟判定 送信シンボルb′ n (k)を関数演算し、これを用い て、ステップS4では式(31)の代りに式(43)を 用い、つまり式(29)、式(30)、式(43)によ り干渉レプリカベクトル B ′ (k)を生成し、ステッ プS8-2で式(37)の代りに式(48)を用いれば よい。前述したようにf(b)_n(k)を α b′ $_{\rm n}$ (${\bf k}$) 又は ${f \alpha}$ ${\bf b}$ ${}^{\prime}$ $_{\bf n}$ (${\bf k}$) $^{\it 2}$ とする場合で、 ${f \alpha}$ を変化 させる場合はステップS8-1-1で処理回数あるいは 復号されたフレーム全体の信頼度によりαを決定し、ス テップS8-1-2で1+(2 α + α ²) b′_n (k) 2 を演算して $f(b)_n(k)$ として用いればよい。 【0060】この検出する信号に誤り訂正結果を反映さ せる手法は従来技術の項で説明したシングルユーザター ボ受信機にも適用することができる。また、この検出す

る信号に誤り訂正結果を反映させる手法において、式 (39)及び(40)に示した近似を適用することがで き、この場合は、図7A中に破線で示すようにフィルタ 係数生成部333-1に、チャネル推定器28から式 (38) に示す行列 1つのみを入力すればよい。上述で は適応フィルタ係数 vv。(k)を式(34)により求 めた、つまりチャネル行列 I-I を用いて求めたが、チャ ネル行列 I-I を用いなくてもよい。即ち復号処理(ター ボ受信処理)の1回目では、式(34)中の誤差ベクト ル CF は単位行列となる。従って、差分ベクトル シグ (k)と、トレーニング信号又はこれと硬判定送信シン ボルb゜。(k)、好ましくは前述したように信頼度が 高いb ^。(k)とをフィルタ係数生成部333-1に 入力して、RLS (再帰的最小2乗法) などを適用して 逐次的に適応フィルタ係数wvn (k)を算出してもよ い。誤差ベクトル CF は離散的時刻 k に依存するため、 復号の繰り返し処理の2回目以降は、適応フィルタ係数 ▼ (k)をシンボル毎に更新する必要があり、先に 述べたようにチャネル行列 I-I を用いて適応フィルタ係 数 ⋅ ⋅ ⋅ 。 (k)を決定することが好ましい。

【0061】第4発明(チャネル推定)

前述したように繰り返しチャネル推定にユニークワードのような既知情報のみならず、情報シンボルの硬判定値、特にその確からしいものも参照信号として用いることは、前記多入力多出力ターボ受信方法に利用する場合に限らず、一般的に、受信信号のチャネル(伝送路)を、受信信号と既知信号とから推定し、その推定したチャネル値を用いて受信信号を処理して復号を行い、その復号信号を利用して、同一受信信号を繰り返し、推定したチャネル値による処理と復号処理とを行うターボ受信方法に適用できる。

【0062】図8に、この情報シンボルの硬判定値もチ ャネル推定、ターボイコライザ41に適用した例を示 す。ターボイコライザ41は推定チャネル値により線形 等化フィルタ係数を決定し、その線形等化フィルタによ り受信信号を処理し、その処理した信号を復号し、その 復号信号を利用して、同一受信信号を繰り返し処理す る。受信信号r(k)はターボイコライザ41へ入力さ れると共に、チャネル推定器42へ供給され、チャネル 推定器42では受信信号r(k)と記憶部29からのユ ニークワードとによりチャネル値(伝送路特性)が推定 され、その推定されたチャネル値によりターボイコライ ザ41内で受信信号r(k)が等化処理され、その後、 復号処理され、復号データc´(i)が出力されると共 に、軟判定値b′(i)が出力される。軟判定値b′ (i) はシンボル選定器43に入力されその軟判定値 b′(i)の絶対値がしきい値Th以上であれば、その 硬判定値b ^ (i)が、確からしい(信頼性が高い)も のとして前回シンボル記憶部32に更新格納され、以後 における同一受信信号r(k)を繰り返し受信処理(イ

コライズ処理)する際のチャネル推定部42におけるチャネル推定処理においては、ユニークワードのみならず、前回シンボル記憶部32に記憶されている情報シンボルの硬判定値 b (i) も用いる。

【0063】ターボイコライザ41は例えば図1に示し

$$\mathbf{w}(\mathbf{k}) = \mathbf{E}[\mathbf{y}'(\mathbf{k})\mathbf{y}'^{\mathsf{H}}]$$

 $= [\mathbf{H} \wedge (\mathbf{k}) \mathbf{H} + \sigma^2]$

ここで 14 は式(8)で定義されたものであり、

 $\mathbf{h} \equiv [\mathbf{H} (Q-1), \dots, \mathbf{H} (0)]^{\mathsf{T}}$

 \mathbf{H} ()は式(5)で定義されたもの、 $\sigma^2 = \mathbf{E}$ [$\|\mathbf{v}\|^2$] (雑音の分散)

 $A(k) = diag[1-b'^{2}(k+Q-1), \dots, 1, \dots, 1-b'^{2}(k-Q+1)]$

このように図29中の受信機においても、チャネル F-T ()を推定し、このチャネル F-T ()を用いて等化フィルタ係数 VV (k) 求め、受信信号をフィルタ係数 VV (k)でフィルタ処理し、その処理した出力に対し復号処理を行う。従ってこの繰り返し受信処理において、前記信頼性のある硬判定情報シンボルもチャネル推定に用いることにより、より正しいチャネル推定を得ることができる。

【0064】図9はレーク(RAKE)合成処理を行う 繰り返し受信に前記繰り返しチャネル推定方法を適用し たターボ受信機の例を示す。受信信号r(k)はRAK E合成処理部45とチャネル推定器42に供給される。 1回目はチャネル推定器42で受信信号r(k)とユニ ークワードとによりチャネル値が推定され、RAKE合 成処理部45内において、各シンボルが伝送路で受けた 位相回転に対する補償とRAKE合成処理が、推定され たチャネル値により行われ、つまり時間ダイバーシチ処 理が行われてターボデコーダ46へ出力される。ターボ デコーダ46より復号データc′(i)と、軟判定値 \mathbf{b} ' $(\mathbf{i}$)が出力される。軟判定値 \mathbf{b} ' $(\mathbf{i}$)はシンボ ル選定器43に入力され、前記例と同様に、その確らし いものの情報シンボルの硬判定値b~(i)が前回シン ボル記憶部32に更新格納される。2回目以後のRAK E受信-ターボデコーディングの繰り返し受信処理にお いては、チャネル推定器42でユニークワードのみなら ず、前回の情報シンボルの硬判定値もチャネル推定に利 用される。これにより、チャネルの推定がより正確に行 えるため、品質の向上が図れる。

【0065】図10はアダプティブ(適応)アレーアンテナを用いた繰り返し受信に、前記繰り返しチャネル推定方法を適用したターボ受信機の例を示す。受信信号に(k)はアダプティブアレーアンテナ受信部47に受信され、その受信信号はチャネル推定器42に分岐入力され、これとユニークワードとによりチャネル推定が行われ、その推定したチャネル値を用いて、アダプティブアレーアンテナ受信部47のアンテナ指向特性の主ビーム

た受信機中の繰り返しチャネル推定器28、ユニークワード記憶部29、前回シンボル記憶部32を除いた部分である。図29中の受信機であってもよい。つまり、この場合も式(19)の解は、ウイーナー解により下記となる。

(k)] · E [b (k) · y ′ (k)

$\mathbf{I} \] \cdot \mathbf{h} \tag{50}$

が目的波の到来方向に向き、ヌルが干渉波の到来方向に向くように、アレー重み決定部48で各アンテナ素子、又は対応する受信経路に対する重みが決定され、その重みが該当箇所に設定される。アダプティブアレーアンテナ受信部47の受信出力はターボデコーダ46へ供給されて復号され、その復号データc´(i)と軟判定値 b´(i)が出力され、軟判定値b´(i)はシンボル選定器43に入力され、確からしい硬判定値が前回シンボル記憶部32に更新記憶される。2回目以後のアダプティブアレーアンテナ受信部47-ターボデコーダ46の繰り返し受信処理においてはチャネル推定器42でユニークワードのみならず、前回の情報シンボルの硬判定値もチャネル推定に利用される。これによりチャネル推定がより正しく行われ、その結果、アンテナ指向特性の制御がより正確に行われ、品質の向上が図れる。

【0066】なお図8におけるターボイコライザ41は簡略に示すと、図11Aに示すように軟入力軟出力(SISO)イコライザ(等化器)41aとSISOデコーダ(復号器)41bの直列接続の形式であり、これら等化器41aと復号器41b間で繰り返し動作が行われる。図9及び図10中のターボデコーダ46は簡略に示すと、図11Bに示すように、SISOデコーダ46aとSISOデコーダ46bの直列接続の形式であり、デコーダ46aと46b間で繰り返し復号が行われる。図9及び図10中のターボデコーダ46は、SISOデコーダーつでもよい。

【0067】以上の図8乃至図10に示した例をまとめて図12に示す。つまり受信信号を繰り返し受信機(ターボ受信機)49でまず、チャネル推定器42で推定したチャネル値により処理し、その処理した信号を復号処理し、その復号処理結果として復号データ(シンボル)で´(i)とその軟判定値b´(i)を出力し、その軟判定値b´(i)をシンボル選定器43において、しきい値と比較して、対応復号データで´(i)(シンボル硬判定値)が確からしいか否かを判定し、確からしいと判定されたものはその硬判定値を前回シンボル記憶部32に更新格納して、2回目以後の推定チャネル値を用いた処理ー復号処理の繰り返しにおけるチャネル推定器42におけるチャネル推定に、ユニークワードのような既知情報の他に前回のシンボル硬判定値をも用いて、チャネル推定をより正確に行うようにするものである。

【0068】図13に、このシンボル硬判定値をも用い

る繰り返し受信信号方法の処理手順の例を示す。ステッ プS1で受信信号と既知信号とによりチャネル値を推定 し、ステップS2で繰り返し処理の1回目か否かを調 べ、1回目であればステップS3でステップS1で推定 したチャネル値により受信信号を処理し、その後、復号 処理を行ってシンボル硬判定値と軟判定値を求める。ス テップS4でそのシンボル軟判定値から対応シンボル硬 判定値の確からしいものを取出し、ステップS5でその 取出したシンボル硬判定値に記憶部32に記憶してある 前回のシンボル硬判定を更新する。ステップS6で復号 処理が所定回数かを調べ、所定回数になっていなければ ステップS1に戻る。ステップS2で繰り返し処理の1 回目でなければ、ステップS7で記憶部32から前回の シンボル硬判定値を読み出し、これと、受信信号の情報 シンボルとによりチャネル推定を行ってステップS3に

【0069】この場合も、図6を参照してステップS $1^{\prime} \sim S4^{\prime}$ により説明したように、2回目以後の処理 は既知信号を用いなくてもよい。図10に示した例にお いてアダプティブアレーアンテナ受信部47とターボデ コーダ46との間に破線で示すようにRAKE合成処理 部45を挿入してもよい。この場合、RAKE合成処理 部45における各シンボル位相回転補正、RAKE合成 のためのチャネル推定は、チャネル推定器42で兼用し てもよく、個別に設けてもよい。

【0070】白色性ガウス雑音以外の雑音

前述したターボ受信方法(第1発明)の実施例や誤り訂 正を考慮した第2発明の実施例、またチャネル推定方法 に特徴を有するターボ受信方法(第4発明)の実施例で は雑音が白色性ガウス雑音であると仮定して処理した。 即ち各アンテナの受信信号 r_m (k)を示す式(20) の右辺中の v_{α} (k) を白色性ガウス雑音であると仮定 をしている。ここで白色性ガウス雑音とは、ガウス分布 に従い、

 $E \left[v_{\alpha} \left(k \right) \cdot v_{\alpha} \left(k - q \right) \right] = \sigma^{2} : q = 0$ の場 合, 0:q≠0の場合

Ε[]は期待値、σ²は分散値である。なる統計的性質 を有する信号である。白色性ガウス雑音はアンテナ素子 内で発生する熱雑音などが例に挙げられる。この白色性 ガウス雑音の仮定が反映されるのは、フィルタ係数 www n (k)を求める式(34)又はフィルタ係数 ww (k)を求める式(50)中のσ² I の部分である。 例えば式(34)の \mathbf{vv}_n (k)は、

$$\mathbf{w}_{n}$$
 (k) = (H G (k) H^H +E [\mathbf{n} (k) · \mathbf{n} ^H (k)])

= $(\mathbf{H} \mathbf{G}_{1}(\mathbf{k}) \mathbf{H}^{H} + \sigma^{2} \mathbf{I})^{-1} \mathbf{h}$

の過程を経て算出される。ここで、 v_m (k)が分散 σ ² を有する白色性ガウス雑音という仮定により、E $[\mathbf{n}(\mathbf{k}) \cdot \mathbf{n}^{\mathrm{H}}(\mathbf{k})] = \sigma^{2}$ I と計算され る。繰り返しチャネル推定器28(図1)又は42(図 12) により推定される、チャネル行列 \mathbf{H} と、 σ ² と、事前対数尤度値から計算される誤差行列 CF (k)とを、式(34)に代入してフィルタ係数 \mathbf{w}_n

(k)が算出される。

【0071】所で、雑音 v。(k)が白色性ガウス雑音 でない場合を考える。この場合は、E [n (k)・

 $\mathbf{n}^{\mathrm{H}}(\mathbf{k})] = \sigma^{2} \mathbf{I}$ とすることができないため、 フィルタ係数 🕶 。(k)を算出するために、雑音成分 の期待値(共分散)行列E「 n (k)・ n B (k)]を別の方法で推定する必要がある。以下にこ の方法を説明する。ここで雑音成分の共分散行列をU≡ E [n (k) · n ^H (k)] と略記する。式(2) $2) \mathcal{O}_{\mathbf{y}}(\mathbf{k}) = \mathbf{H} \cdot \mathbf{B}(\mathbf{k}) + \mathbf{n}(\mathbf{k}) \mathcal{E}$ $\mathbf{n}(\mathbf{k}) = \mathbf{y}(\mathbf{k}) - \mathbf{H} \cdot \mathbf{B}(\mathbf{k})$ と変形し て、共分散行列Uに代入すると次式となる。 [0072]

$$U=E [\mathbf{n} (k) \cdot \mathbf{n}^{H} (k)]$$

$$=E [(\mathbf{y} (k) - \mathbf{H} \cdot \mathbf{B} (k)) \cdot (\mathbf{y} (k) - \mathbf{H} \cdot \mathbf{B} (k))]$$

$$[\mathbf{k})]$$

今、受信信号によりベクトル y (k)、チャネル推定 値によりチャネル行列 HI の推定値 HI 、参照信号に

H . B (k)) H

と推定することができる。ここで、Trは参照信号シン ボル数である。

【0073】繰り返しチャネル推定器28又は42にお ける繰り返しチャネル推定中にチャネル行列 HI ととも に、式(51)を利用して共分散行列U^{*}を推定する。 その手順を図14に示す。図14Aに受信信号中の1フ レームにおけるユニークワードと情報シンボル系列とを

より B (k) が利用可能であれば、行列 U は時間平均 法により、

$$\mathbf{U}^{\hat{}} = \sum_{\mathbf{k}=0}^{\mathrm{Tr}} (\mathbf{y}(\mathbf{k}) - \mathbf{H}^{\hat{}} \cdot \mathbf{B}(\mathbf{k})) \cdot (\mathbf{y}(\mathbf{k}) - \hat{\mathbf{y}}(\mathbf{k}))$$

$$(51)$$

示し、図14Bに1回目以後の処理を示す。1回目の処 理はユニークワードのみを参照信号とし、まずチャネル 行列 I-I を推定する。次にユニークワードと、そのチャ ネル行列推定値 I-I ~ を用いて式(51)により、Uを 推定する。これら推定値Uと I-I ^ を用いてフィルタ係 数w_n(k)

 \mathbf{W}_{n} (k) = (H $\hat{\mathbf{G}}$ (k) H $\hat{\mathbf{H}}$ +U $\hat{\mathbf{U}}$) -1 h (52)

を算出し、このフィルタ係数 ww 。(k)を用いて受信信号に対する1回目の等化を行い送信情報シンボルを推定する。

【0074】2回目の処理はユニークワードと、1回目の等化で推定された情報シンボルのうちしきい値によって確からしいと判定されたもの*との両方を参照信号として、1回目と同じ手順で I-I を再推定した後、Uを再推定する。この操作を繰り返すことによって、繰り返し毎に、チャネル行列推定値 I-I がより正確になり、またUの推定値がより正確になり、フィルタ係数 vv n (k)の精度が上がり、等化器の特性が向上する。以上の処理により白色性ガウス雑音でない雑音が受信信号に含まれる場合のターボ受信を行うことができる。

【0075】前述した受信信号中のその雑音の共分散行列Uを推定して線形等化処理を行う場合の機能構成を、図2中に示した多出力等化器31の第1番目の送信機からの送信信号の受信信号の等化出力として対数尤度比A」 [b1 (k)]を求める場合に適用した例を図15に示す。図15中の図2と対応する部分には同一参照番号を付けてある。ユニークワード記憶部29からのユニークワード又は前回シンボル記憶部32から確からしい前回のシンボル硬判定が参照ベクトル生成部319に入力され、ここで式(25)及び式(26)により参照ベクトルB(k)が生成される。この参照ベクトルB(k)と、チャネル推定器28からの推定チャネル行列Hでと、受信ベクトル生成部311からの受信ベクトルシ(k)が共分散行列推定部321に供給され、ここで式(51)が計算されて共分散行列Uの推定行列Uで消られる。

【 0076】また軟判定シンボル生成部 313-1 からの軟判定送信シンボル軟判定 $\mathbf{b}_{1}(\mathbf{k}) \sim \mathbf{b}_{1}$

 $_{\rm n}$ (k) が誤差ベクトル生成部322-1に入力され、ここで式(35)、式(36)及び式(37)によりチャネル推定2乗誤差と対応する誤差行列 $G_{\rm l}$ (k) が生成される。この誤差行列 $G_{\rm l}$ (k) と、推定共分散行列 $_{\rm l}$ (k) と、推定共分散行列 $_{\rm l}$ (k) と、推定共分散行列 $_{\rm l}$ と、推定チャネル行列 $_{\rm l}$ とがフィルタ推定部323-1へ供給され、ここで式(52)が計算されてフィルタ係数 $_{\rm l}$ (k) が推定される。このフィルタ係数 $_{\rm l}$ (k) と差演算部316-1からの差分ベクトル $_{\rm l}$ (k) が適応フィルタ318-1へ供給されて、 $_{\rm l}$ (k) が適応フィルタ処理 $_{\rm l}$ (k) に対するフィルタ処理 $_{\rm l}$ (k) に対するフィルタ処理 $_{\rm l}$ (k) 「 (k) がなされ、その結果が対数尤度比 $_{\rm l}$ [$_{\rm l}$ (k)] として出力される。

【0077】検出する信号についても誤り訂正復号結果を反映させる場合は、図15中に破線で示すように、図7Aに示した関数演算部331-1を設けてf(b)n(k))を演算し、干渉レプリカベクトル生成部314-1では式(31)の代りに式(43)を用い、誤差ベクトル生成部322-1では式(37)の代りに式(48)を用いればよい。図14Bに示した手法を図16に

流れ図として示す。つまりステップS1で受信信号r (k)と既知信号(例えばユニークワード)を用いてチャネル行列 \mathbf{H} を推定し、次はステップS2でこの処理が繰り返し処理における1回目であるか否かを調べ、1回目であれば、ステップS3で既知信号と推定チャネル行列 \mathbf{H} \mathbf{L} と、受信信号 \mathbf{r} (\mathbf{k})とを用いて式(51)を演算して推定共分散行列 \mathbf{U} を求める。

【0078】ステップS4で推定チャネル行列 \mathbf{H} と、推定共分散行列U $\hat{}$ と、シンボル軟判定値によりなる誤差行列 \mathbf{G} \mathbf{K})とを用いて式(52)を計算してフィルタ係数 \mathbf{W}_n \mathbf{K})を推定する。ステップS5で推定チャネル行列 \mathbf{H} $\hat{}$ とフィルタ係数 \mathbf{W}_n \mathbf{K})を 用いて受信信号を等化処理し、つまり式(27)を計算し、 \mathbf{W}_n \mathbf{K} \mathbf{K}

【0079】ステップS6はしきい値以上のシンボル軟判定値より対応する確からしい(信頼性の高い)シンボル硬判定値を求める。このシンボル硬判定値により、前回シンボル記憶部32に格納されているシンボル硬判定値を更新する。その後、ステップS8で復号処理回数が所定値になったかを調べ、なっていなければステップS1に戻り、所定値になっていれば、その受信フレームに対する処理を終了する。ステップS2で繰り返し処理における処理が1回目でなければ、つまり2回目以後であれば、ステップS9で前回シンボル記憶部32からシンボル硬判定値を読み出し、これと、受信信号中の情報シンボルとによりチャネル行列IHを推定してステップS3に移る。

【0080】この場合も、図6中で破線で示したステップS1~~S4~と同様の処理にステップS1とS2を変更することにより、2回目以後は、既知信号を用いないようにすることもできる。また検出する信号も誤り訂正復号結果を反映させたい場合は図16中に破線で示すようにステップS10で関数演算f(b´n(k))を行い、この結果を用いて誤差行列 CF(k)を求めればよい。更に何れの場合においても共分散行列 U~の推定に硬判定送信シンボルを用いなくてもよい。この白色性ガウス雑音でない雑音が含まれた受信信号中のその雑音の共分散行列Uを推定できることは以下に述べるように各種有益な応用に適用することができる。

【0081】(1)受信機が未知の干渉信号が含まれる 多系列送信信号に対する受信法が挙げられる。図28に 示すように、ターボ受信機が受信しようとするN人のユ ーザの送信機からの信号のように、N個の系列の送信信 号に加え、破線で示すようにターボ受信機で未知の干渉 信号i(k)(例えば移動通信で他のセルやゾーンから の信号)が受信されるとする。このとき式(20)は、

となる。 \mathbf{v}'_n (\mathbf{k})は白色性ガウス雑音でない雑音信号として、先に述べたように \mathbf{H} の推定、更に \mathbf{U} の推定を行い、 $\mathbf{v}\mathbf{v}_n$ (\mathbf{k})を推定し、受信信号の等化処理、送信シンボル推定を繰り返すことによりターボ受信を行うことができる。

【0082】(2)送受信分離フィルタを用いた通信システムにおいて、受信信号に対し、シンボル周期の2分の1よりも高速でオーバーサンプリングを行う際には、各時間でサンプルされた受信信号に含まれる雑音成分間に相関が出て、受信信号中の雑音を白色性ガウス雑音とみなすことができない。つまり、式(20)において、 $E[v_{\mathfrak{m}}(k)\cdot v_{\mathfrak{m}}(k-q)]=\sigma^2:q=0$ の場合、 $0:q\neq0$ の場合とはならない。よって

 $E [\mathbf{n} (k) \cdot \mathbf{n}^{H} (k)] = \sigma^{2} \mathbf{I}$

なる仮定ができない。そこで送受信分離フィルタにより 分離された受信信号に対する処理を式(51)を利用し て共分散行列Uを求めて行うことにより、受信信号を正 しく処理することができる。

【0083】(3)前述したターボ受信方法では、各送信機(ユーザ)からのQパスのマルチパス成分をすべて合成するしくみになっている。しかし、チャネルに長遅延波が存在する場合(例:パスが1シンボル遅延、2シンボル遅延、3シンボル遅延、とんで、30シンボル遅延が存在する場合の30シンボル遅延のパス成分)は、長遅延波を合成せず、それを未知干渉として扱い、適応フィルタで除去する方針をとることが可能である。つまりこの長遅延波成分を前記(1)の例における干渉信号i(k)として扱うことで長遅延波を除去することができる。

【0084】上述した白色性ガウス雑音でない雑音が含まれた受信信号に対する処理において、共分散行列 Uの推定は式(50)における σ^2 I の代りに推定して、シングルユーザターボ受信方法にも適用でき、同様にシングルユーザ、マルチユーザに拘らず、図9に示したRAKE合成処理受信や図10に示したアダプティブアレーアンテナ受信を用いるターボ受信、更に一般に図12に示した繰り返し復号におけるチャネル推定器42でのチャネル推定と共分散行列 Uとの推定に適用できる。なおRAKE受信の場合はチャネル推定のみを利用してもよい。

【0085】第3発明(多段等化)

上述では受信信号 r_1 , …, r_M を多出力等化器 3 1 で 等化して対数尤度比 Λ_1 [b (k)], …, Λ_N [b (k)] を求めたが、第 1 発明の変形例(2) では複数

の等化段を縦続的に設け、後段の等化器程、出力数を少なくする構成としてもよい。例えばこれを図17に示すように二つに分け前段等化器(マルチユーザ等化器)71で、後段のシングルユーザ等化器21′の等化範囲外の干渉成分をキャンセルし、そのため例えばソフト干渉キャンセルとMMSE(最小平均2乗誤差)規範線形フィルタリングの前処理を行い、その後、後段等化器21′により、先に示したパス数がQのシングルユーザの等化処理を行う。

【0086】このように縦続的に等化処理し、前段の処 理に線形フィルタを用いることによっても計算量が莫大 なものにならないようにすることができる。このターボ 受信法の第1発明(2)の基本的概念をもとにした実施 例の多出力ターボ受信機の構成及びこの発明が適用され るMIMOシステムの構成例を図18に示し、図1と対 応する部分に同一参照番号を付けて重複説明を省略する (以下の説明も同様)。伝送路 (チャネル)を通じてタ ーボ受信機30に、各送信機よりの送信信号が受信され る。この受信信号 1~ (k) はマルチユーザ等化器71 に入力され、この等化器71から、N個の各送信機より の信号が、それぞれ他の送信機からの信号による干渉が 除去された信号 u_1 (k), …, u_N (k) と各チャネ ル値 α_1 (k), …, α_N (k)が出力されてそれ ぞれシングルユーザ等化器21-1, …, 21-Nに入 力され、これらSISO等化器 $21-1, \dots, 21-N$ からそれぞれ対数尤度比 Λ_1 [b_1 (k)], ..., Λ_1 [b_N(k)]が出力される。これより以後の処理は図 1の場合と同様であるが、シングルユーザ等化器21-1, ..., 21-Nで用いられるチャネル値 $oldsymbol{lpha}$

 $_1$ (k), …, α_N (k) はマルチユーザ等化後のチャネル値であり、チャネル行列 \blacksquare とは異なる。よってこの α_1 (k), …, α_N (k) を等化後のチャネル情報と記す。

【0087】以下、各部の動作を説明する。マルチパス(チャネル)の数Qを考慮して図1の説明と同様に式(23)~(26)を定義する。図18中の後段の等化器21-1, …, 21-Nは各ユーザの自身の信号シンボル $[b_n(k), b_n(k-1), …, b_n(K-Q+1)]$ (n=1, …, N)による符号間干渉チャネルを等化するものである。そのため前段の等化器71では $\mathbf{y}(k)$ 内の上記 $[b_n(k), b_n(k-1), …, b_n(K-Q+1)]$ (n=1, …, N)以外の干渉を除去する処理を行う。以下にその定量的な説明を行う。

【0088】まず、復号器24-1, …, 24-Nから

フィードバックされる等化器71の事前情報入2 『 [b n(k)] $(n=1, \dots, N)$ を用いて軟判定送信シン ボル推定b′(k)を式(15)により求める。次にこ

れら軟判定送信シンボルb´。(k)とチャネル行列 - H を用いて干渉信号のレプリカ H ・ B ′ (k)を 作成し、受信ベクトル 👽 (k)から引算する。

$$\mathbf{y}'_{n}(\mathbf{k}) \equiv \mathbf{y}(\mathbf{k}) - \mathbf{H} \cdot \mathbf{B}'(\mathbf{k})$$
 (27) '
$$= \mathbf{H} \cdot (\mathbf{B}(\mathbf{k}) - \mathbf{B}'(\mathbf{k})) + \mathbf{n}(\mathbf{k})(28)$$
'

ここで、

$$\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{\mathsf{T}}(\mathbf{k} + \mathbf{Q} - 1) \cdots \mathbf{b}'^{\mathsf{T}}(\mathbf{k}) \cdots \mathbf{b}'^{\mathsf{T}}(\mathbf{k} - \mathbf{Q} + 1)]^{\mathsf{T}}$$
(29)

そして、

$$\mathbf{b} ' (\mathbf{k} + \mathbf{q}) = [\mathbf{b}'_{1} (\mathbf{k} + \mathbf{q}) \mathbf{b}'_{2} (\mathbf{k} + \mathbf{q}) \cdots \mathbf{b}'_{n} (\mathbf{k} + \mathbf{q}) \cdots \mathbf{b}'_{N} (\mathbf{k} + \mathbf{q})]^{T} : \mathbf{q} = \mathbf{Q} - 1, \cdots, 1$$

$$\mathbf{b} ' (\mathbf{k} + \mathbf{q}) = [\mathbf{b}'_{1} (\mathbf{k} + \mathbf{q}) \mathbf{b}'_{2} (\mathbf{k} + \mathbf{q}) \cdots \mathbf{0} \cdots \mathbf{b}'_{N} (\mathbf{k} + \mathbf{q})]^{T} : \mathbf{q} = 0, \cdots, -\mathbf{Q} + 1$$

$$(54)$$

(b ′ (k+q)の要素中のゼロはn番目)

以下この干渉を引算する操作をソフト干渉キャンセルと 呼ぶことにする。理想的に干渉信号のレプリカが作られ ているとすると、引算後得られる シ ′ n (k) は第 n 番目のユーザのシンボルb_n(k)と、式(54)によ $9q=1, \dots, -Q+1$ で **b** $^{\prime}$ (k+q) のn番目の 要素をOとしたことに基ずくその第n番目のユーザ自身 のシンボル [b_n (k-1), …, b_n (k-Q+1)] による符号間干渉成分としか持ち得ないことが分 かる。

【0089】実際受信ベクトル 1 (k)内の第n番目 ユーザ(送信機)の信号からの寄与成分はシンボル [b $_{n}$ (k), b_{n} (k-1), ..., b_{n} (k-Q+1)] によるもののみだが、式(21)の受信ベクトル シ (k)の定義から理解されるように、マルチパス分合成 して作られる受信ベクルト 👽 (k) 内の第 n 番目ユー ザ(送信機)の信号からの寄与成分にはk番目のシンボ ルb。(k)を基準にすればこれに対して未来のシンボ

$$\mathbf{W}_{n}^{H}(\mathbf{k}) \cdot \mathbf{y}_{n}^{\prime}(\mathbf{k}) = \sum_{\mathbf{q}=0}^{Q-1} \alpha_{\mathbf{q}}(\mathbf{k}) \cdot \mathbf{b}_{n}(\mathbf{k}-\mathbf{q}) = \alpha_{n}^{H}(\mathbf{k}) \cdot \mathbf{b}_{n}(\mathbf{k})$$
 (55)

従ってこのフィルタ特性vv。(k)及び等化後のチャ ネル値(チャネル情報) α _。 (k)を求めて式(5 5)を演算すればよい。以下に \mathbf{w}_{n} (k), α n (k)の算出方法を示す。なおフィルタ特性ww n (k)は式(32)、式(34)で与えられるフィル

$$(\mathbf{w}_{n}(\mathbf{k}), \boldsymbol{\alpha}_{n}(\mathbf{k})) = \arg \min \|\mathbf{w}_{n}\| (\mathbf{k}) \cdot \mathbf{y}_{n}(\mathbf{k}) - \boldsymbol{\alpha}_{n}\| (\mathbf{k}) \cdot \mathbf{b}_{n}(\mathbf{k}) \|^{2}$$
 (56)

 $\alpha_{1n}(\mathbf{k}) = 1$ を条件とする。つまり式(56)の右辺 が最小となる \mathbf{w}_n (k)と $\boldsymbol{\alpha}_n$ (k)を求める。付 加された拘束条件 $\alpha_{1n}(\mathbf{k}) = 1$ は、 $\alpha_{n}(\mathbf{k}) =$ 0, \mathbf{w}_n (\mathbf{k}) = 0なる解を避ける為である。これ は、 $\|\alpha_n(\mathbf{k})\|^2 = 1$ なる拘束条件で解く事も可

 \mathbf{m}_{n} (k) =arg min $\|\mathbf{m}_{n}\|$ (k) $\cdot \mathbf{z}_{n}$ (k) $\|\mathbf{z}\|$

 $\mathbf{m}_{\mathtt{n}}$ H (k)・ $\mathbf{e}_{\mathtt{MQ+1}}$ =-1を条件とする。($\alpha_{\mathtt{1n}}$ (k) = 1 と等価)

[0092] (57) ここで、

n(k)と定義する。

$$\mathbf{m}_{n} (k) \equiv [\mathbf{w}_{n}^{\mathsf{T}} (k), -\boldsymbol{\alpha}_{n} (k)^{\mathsf{T}}]^{\mathsf{T}}$$
 (58)

$$\mathbf{z}_{n}$$
 $(\mathbf{k}) \equiv [\mathbf{y}_{n}^{\mathsf{T}} (\mathbf{k}), \mathbf{b} (\mathbf{k})_{n}^{\mathsf{T}}]^{\mathsf{T}}$ (59)

 \mathcal{W} [b_n (k+Q-1), b_n (k+Q-2), ..., b n(k+1)]による符号間干渉成分も含んでしまう。 つまり上記干渉レプリカはその未来からの干渉成分も含 めている。このように式(27)′の差分ベクトル と異なっている。

【0090】そこで等化器71における前段処理の次の ステップはソフト干渉キャンセル後の干渉余剰成分、つ まり前記干渉レプリカ $\mathbf{H} \cdot \mathbf{B} \cdot (\mathbf{k})$ の不完全合成 に基づく残余干渉成分と前記未来符号間干渉成分とを シ′ "(k)からMMSE(最小平均2乗誤差)規範 の線形フィルタにより除去する。つまり、フィルタ特性 \mathbf{w}_n により \mathbf{y}_n' (\mathbf{k}) を、式 (55) に示すよう にフィルタ処理した結果が、受信信号中の第n番目ユー ザの信号中のシンボル [b_n (k), b_n (k-1), \cdots , b_n (K-Q+1)] にチャネル値 α_{1n} , α_{2n} , …, αω,をそれぞれ乗算した和と等しくなるようにす

$$q=0$$
 $q=1$ α_q $(k) \cdot b_n$ $(k-q) = (55)$

夕係数**▽**、(k)とは異なっているが便宜上同一記号 を用いる。

【0091】上記の解は以下の最適問題の解として定義 される。

能であるが以下では、 α_{1n} (k)= 1 の場合の解を示

す。簡単の為、以下のように問題を置き換える。つまり

式 (56) の右辺を \mathbf{w} , $\boldsymbol{\alpha}$ について最小とする \mathbf{m}

$$\mathbf{e}_{\mathrm{MO}+1} = [0 \cdots 1 \cdots 0]^{\mathrm{T}}$$

€ MQ+1-[0...I...0].

(← MQ+1中の1の要素はMQ+1番目)である。文献 [2] S. Haykin, Adaptive Filter Theory, Prentice Hal

1 P.220~P227に示されているラグランジェ未定係数法

$$\mathbf{m}_{n} (\mathbf{k}) = -\mathbf{R}_{ZZ}^{-1} \cdot \mathbf{e}_{MQ+1} / (\mathbf{e}_{MQ+1}^{H} \cdot \mathbf{R}_{ZZ}^{-1} \cdot \mathbf{e}_{MQ+1})$$
(61)

$$\mathbf{R}_{\text{ZZ}} = \mathbf{E} \left[\mathbf{z}_{n} (\mathbf{k}) \cdot \mathbf{z}_{n}^{\text{H}} (\mathbf{k}) \right]$$
 (62)

E [A]はAの期待値(平均値)を表わす。

【0095】

[0094]

【数21】

$$= E \begin{bmatrix} \mathbf{H} \cdot \mathbf{\Lambda}_{n}(\mathbf{k}) \cdot \mathbf{H}^{H} + \sigma^{2} \mathbf{I} & \mathbf{H}_{n}^{H} \\ \mathbf{H}_{n} & \mathbf{I} \end{bmatrix}$$
 (63)

$$\Lambda_n$$
 (k) =diag [\mathbf{D}_n (k+Q-1), ..., \mathbf{D}_n (k), ..., \mathbf{D}_n (64)

I は単位行列 σ² は雑音電力(白色性ガウス雑音の 分散値)

【0097】

[0096]

【数22】

$$H_{n} = \begin{bmatrix} h_{n}(Q-1) & 0 & 0 & 0 \\ h_{n}(Q-2) & h_{n}(Q-1) & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ h_{n}(0) & h_{n}(1) & \cdots & h_{n}(Q-1) \end{bmatrix}$$
(65)

$$D_{n} (k+q) = diag [1-b'_{1}^{2} (k+q), ..., 1-b'_{n}^{2} (k+q), ..., 1-b'_{n}^{2} (k+q), ..., 1-b'_{n}^{2} (k+q)] : q = Q+1, ..., 1$$

$$D_{n} (k+q) = diag [1-b'_{1}^{2} (k+q), ..., 1, ..., 1-b'_{n}^{2} (k+q)] : q = 0, ..., -Q+1$$
(67)

diagは対角行列(行列の対角線の要素以外の要素はゼロ)を表わす。つまりチャネル行列 \mathbf{H} 、 σ^2 が既知であれば、 \mathbf{m}_n (k)は式(61)で求めることができる。よって式(58)に従い \mathbf{w}_n (k), $\boldsymbol{\alpha}$

$$\mathbf{u}_{n} \quad (\mathbf{k}) = \mathbf{w}_{n} \quad (\mathbf{k}) \cdot \mathbf{y} \quad _{n} \quad (\mathbf{k})$$

『は共役転置行列を表わす。このフィルタ処理された n 個の処理結果が後続の対応する等化器 21-n に送られる。 このようにして第 n 番目のユーザよりの式(1)の左辺と対応する受信信号 u_n (k)が得られ、また式(1)の右辺のチャネル値 h_{mn} (q)と対応する式(55)が求まる。よって α_n (k)も等化器パラメータ(チャネル値)として後続の等化器 21-n に付与される。以上が等化器 71 による前段処理である。

【 0 0 9 9 】次に後続の等化器 2 1 - n 以降の処理について述べる。前述したように式(55)は式(1)と対

n (k)も求められる。

【0098】この算出されたフィルタ特性 \mathbf{w}_n (\mathbf{k})により、 \mathbf{y}_n (\mathbf{k})を次式によりフィルタ処理する。

$$\mathcal{Y}'_{n}$$
 (k) (68)

応しているから、ユーザ毎の等化器 21-n内での動作は図31中の等化器 21の動作と同様に行えばよく上記でも述べた通り、文献 [1]に示されているため詳細は省略する。各等化器 21-nは上で定義したu

 $_{\rm n}$ (k) , $_{\rm color}$ $_{\rm n}$ (k) 及び復号器 $_{\rm 24-n}$ からの事前情報 $_{\rm 42}$ [$_{\rm b_n}$ (k)] を入力し、出力として各符号化ビットが $_{\rm 1}$ である確率と $_{\rm 1}$ である確率の対数尤度比 $_{\rm 1}$ (LLR: Log-Likelihood Ratio) を次式により算出する。

[0100]

【数23】

$$\Lambda_{i}[b(k)] = \log \frac{\Pr[b_{n}(k) = +1 | u_{n}(k), k = 0, \dots, B]}{\Pr[b_{n}(k) = -1 | u_{n}(k), k = 0, \dots, B]}$$
(69)

$$\equiv \lambda_1[b_n(k)] + \lambda_2^p[b_n(k)] \tag{70}$$

【0101】ここで λ_1 [b_n (k)] は後続の復号器 24-nに送られる外部情報、 λ_2 ^P [b_n (k)] は 等化器 31 に与えられる事前情報である。復号器 24-

nは対数尤度比A₂ を次式により算出する。 【0102】 【数24】

$$\Lambda_{2}[b_{n}(i)] = \log \frac{\Pr[b_{n}(i) = +1 \mid \lambda_{1}[b_{n}(i)], i = 0, \dots, B]}{\Pr[b_{n}(i) = -1 \mid \lambda_{1}[b_{n}(i)], i = 0, \dots, B]}$$
(71)

$$\equiv \lambda_2[b_n(i)] + \lambda_1^p[b_n(i)]$$

(72)

【0103】ここで λ_2 [b_n (i)] は繰り返しの際に等化器71と等化器21に与えられる外部情報、 λ_1 p [b_n (k)] は復号器24-nに与えられた事前情報である。この図18に示した構成により繰り返し等化、復号を行い誤り率の向上が達成される。前述したマルチユーザ等化器71の機能構成を図19を参照して簡単に説明する。各アンテナよりの受信信号は受信部70でベクトル 1r (k) = [r_1 (k) … r_n (k)]として処理され、このベクトル 1r (k) を用いて受信ベクトル生成部311において各マルチパス(チャネル)を考慮した式(21)の受信ベクトル 1r (1r) が生成される。

【0104】一方、受信部70よりの受信信号 🗠 (k)と、ユニークワード記憶部29からの各送信機と 対応した、チャネル推定用のユニークワード系列などの 既知系列信号とがチャネル推定器28に入力されてチャ ネル行列 I-I が推定される。また各復号器24-1, \cdots , 24-Nの出力対数尤度比 Λ_2 [b_1 (i)], \cdots , Λ_2 [b_N (i)]からそれぞれ事前情報 λ 1 P [b₁ (i)], ···, λ₁ P [b_N (i)]が差し 引かれた外部情報 λ_2 [b_1 (k)], …, λ_2 [b_N (k)]が軟判定シンボル推定部313-1, …, 31 3-Nに入力され、それぞれ式(15)により軟判定送 信シンボルb´₁ (k), …, b´_N (k)が計算さ れ、これらが干渉ベクトル生成部72に入力され、干渉 ベクトル生成部72では各nごとに他の送信機からの干 渉信号となり得るシンボル推定値のベクトル B ′ (k)が式(29)′、(53)及び(54)により生 成される。これらN個のベクトル B′(k)とチャネ ル行列 I-I との積が他干渉信号推定部73-1, …, 7

【0105】これらN個の干渉成分レプリカ **H** · **B** (k)が受信ベクトル **y** (k)から引算部74−1, ..., 74−Nでそれぞれ引算されて、差分ベクトル

3-Nでそれぞれ演算されて干渉成分のレプリカ HI・

B(k)が求められる。

シ´₁(k), …, シ´_N(k)が求められる。軟 判定送信シンボル \mathbf{b}_{1} (k), …, \mathbf{b}_{N} (k)が誤 差行列生成部75に入力されて、式(64)、(6 6)、(67)により誤差行列A₁(k), …, A _N(k)が生成され、これらとチャネル行列 **I-I** 及び雑 音電力σ² がフィルタ特性推定部76に入力され、フィ ルタ特性推定部76では式(58)、(60)、(6 1)、(63)及び(65)により、フィルタ特性wv $_{\rm n}$ と等化後のチャネル情報 $\alpha_{\rm n}$ とが推定される。これ らフィルタ特性 vv 」, …, vv N と差分ベクトル \mathbf{y} $^{\prime}$ $_{1}$ (\mathbf{k}) , …, \mathbf{y} $^{\prime}$ $_{\mathbb{N}}$ (\mathbf{k}) とがフィルタ処理 部77-1, …, 77-Nでそれぞれ乗算され、つまり フィルタ処理されて、各ユーザごとの各パスからのシン ボル $[b_n(k), b_n(k-1), \dots, b_n(K-Q)]$ +1)]の受信信号から他ユーザ信号よりの干渉が除去 された成分である u_1 (k), …, u_N (k)がそれぞ れ得られ、これらとフィルタ特性推定部76で求められ た等化後のチャネル情報 α_1 (k), …, α _N (k)がそれぞれ図18中のシングルユーザ等化器2 1-1, …, 21-Nへ供給される。

【0106】このターボ受信法の第1発明(2)の処理 手順を図20に示す。図20において、図3に示した処理手順と対応するステップには同一ステップ記号を付けた。ただし、ステップS4における干渉レプリカベクトル \mathbf{B} $^{\prime}$ $^{\prime}$

 $_{\rm n}$ ($_{\rm k}$) に対し、シングルユーザ等化処理を行って対数 尤度比 $_{\rm n}$ [$_{\rm b_n}$ ($_{\rm k}$)] をそれぞれ求め、これらをステップS10で復号処理する。その他は図3に示した処理と同様である。

【0107】上述では後段等化器21-nにおける等化 範囲は、シンボル $[b_N(k), b_n(k-1), \cdots,$ b_n (K-Q+1)] (n=1, ···, N) による符号間 干渉区間としているが、この等化範囲は調節可能であ る。例えば、Qが非常に大きな値の場合は、後段の等化 器21-nの計算負荷が大きくなる。このような場合、 後段等化器21-nでの等化範囲をQ′<Qとし、前段 の等化器71で、 $[b_n(k), b_n(k-1), \cdots,$ $b_n (K-Q'+1)$] (Q' <Q, n=1, ..., N) 区間以外の同一ユーザの信号の符号間干渉を除去するよ うに変更すればよい。この変更については後で説明す る。この前段等化と後段等化に分けて信う場合も、図1 9中に破線で示すようにチャネル推定器28において前 回シンボル記憶部32を設けて硬判定送信シンボルb n (k)をも用いてチャネル値の推定を行うようにし て、その推定精度を向上させることができる。

【0108】図17に示した例では前段の多出力等化器 71ではN系列の送信信号に対し、これらを他系列より の干渉を等化分離した、N系列の信号unと、等化後の チャネル情報 α n を出力し、その後、各N系列の信号 u。を後段のシングルユーザ等化器22-nにより同一 送信信号の符号間干渉を除去した。つまり、2段の縦続 等化構成とした。3段以上の縦続多段構成としてもよ い。例えば図21に示すように、第1段目の等化器81 において、N系列の送信信号に対するM系列の受信信号 r。を入力して第1~第U番送信系列の第U+1番送信 系列による干渉を除去した等化信号系列 e r 1 (k) 及 びその等化後のチャネル情報 e α (k)と、第U+1~第N番送信系列の第1~第U番送信系列による干渉を 除去した等化信号系列 e r2 (k)及びその等化後のチ 2-1及び82-2中の82-1では、入力されたer 1 (k)及びe co 1 (k)を等化処理して、第1~第 U番送信系列中の第1~第U、番送信系列の第U、+1 〜第U番送信系列による干渉を除去した等化信号系列 e r₃ (k)及びその等化後のチャネル情報 e *α* 3 (k)と、第1~第U番送信系列中の第U1 +1~第 U2 番送信系列の第1~第U1番送信系列及び第U2 ~ 第U番送信系列による干渉を除去した等化信号系列er $_4$ ($_{
m k}$)及びその等化後のチャネル情報 $_{
m 4}$ ($_{
m k}$) と、第1~第U送信系列中の第U2 +1~第U送信系列 の第1~第U2 送信系列による干渉を除去した等化信号 系列e r_5 (k)及びその等化後のチャネル情報e α ₅ (k)をそれぞれ出力する。

【0109】同様に第2段目の等化器82-2では等化 信号系列er。(k)とチャネル情報 $e\alpha$ 。(k)が 入力されて、等化信号系列 e r₆ (k)及び等化後のチ ャネル情報 e $\alpha_{\rm g}$ (k) と等化信号系列 e $r_{\rm g}$ (k) 及び等化後のチャネル情報 α_{γ} (k)を出力する。 N=5の場合は第3段目の等化器83-1~83-5は 図18中のシングルユーザ等化器となる。あるいは、等 化器83-3の入力等化信号は2つの送信信号により構 成され、等化器83-3によりその2つの送信信号間の 相互干渉を除去して2組の等化信号とその等化後のチャ ネル情報とを次のシングルユーザ等化器84-1,84 - 2でそれぞれ等化してもよい。更に、例えば等化器8 3-4では等化信号e r₆ (k)とチャネル情報 e α 6 (k)を入力して、その構成送信信号の全て、例えば 3つの送信信号のそれぞれについて他の2つの送信信号 との相互干渉と、それ自身のマルチパスによる符号間干 渉を除去してもよい。第2段目の等化器82-1,82 - 2の1つ乃至複数で、複数の送信信号に対する各等化 信号を一挙に得るように構成してもよい。

【0110】以上のように一般には第1段目の等化器から複数の等化信号系列と等化後チャネル情報の組を出力し、各等化信号系列及びその等化後のチャネル情報の組について、1乃至複数の等化器を1乃至複数段縦続させて、最終的には第1~第N番目の送信系列のそれぞれの等化出力、つまりこの例では対数尤度比 Λ_1 [b]

』(k)]を出力させることもできる。このように多段 縦続等化処理を行う場合は、前述したように後段程、干 渉除去するパス数Qの値を小として、演算処理量を少な くすることが好ましい。この場合は、前述したように、 後段において減少したパスによる干渉成分を、その直前 の等化段で除去するようにする。

【0111】以下において、図21中の第1段目の等化器21で、N個の送信系列、各送信系列のマルチパスの数がQの受信信号からU個の送信系列の群の等化信号系列e r_1 (k)及び等化後のチャネル情報e α

 $_1$ (k)を得、その後段の等化器 82-1での等化処理では各送信列系のマルチパスの数を Q^2 とする場合の等化処理を説明する。図 18 及び図 19 に示した実施例とほぼ同様に干渉ベクトル生成部 72 で干渉ベクトル

B ′ (k)を生成するが、この構成式(53)、式 (54)が式(53)、式(54)′及び式(73)に 変更する。

[0112]

$$\mathbf{b}$$
 ' $(k+q) = [b'_1 (k+q) b'_2 (k+q) \cdots b'_n (k+q) \cdots b'_N (k+q)]^T : q=Q', \dots, -Q+1$ (73)

式(54) な第1~第U送信系列自体のシンボルと、 Q′のマルチパスに基づくこれら各系列の自身及び相互 の符号間干渉成分を除いて等化するためのものであり、 式(73)は後段の等化でマルチパスの数をQ′に減少 するため、Q'+1番目乃至Q番目のパスに基づく、第 1~第U送信系列の自身及び相互の符号間干渉を除去す

るためのものである。

【0113】このようにして得られた干渉ベクトル $\mathbf{B}^{(1)}$ (\mathbf{k})を用いて干渉信号レプリカ $\mathbf{H}^{(1)}$ ・ $\mathbf{B}^{(2)}$

(k)を作り、これを受信ベクトル √ (k)から引算 し、つまり次式を計算する。

$$\mathbf{y}'_{g}(\mathbf{k}) \equiv \mathbf{y}(\mathbf{k}) - \mathbf{H} \cdot \mathbf{B}'(\mathbf{k})$$
 (27)"
= $\mathbf{H} \cdot (\mathbf{B}(\mathbf{k}) - \mathbf{B}'(\mathbf{k})) + \mathbf{n}(\mathbf{k})$ (28)"
する操作をソフト干渉キャンセルと が分かる。

以下この干渉を引算する操作をソフト干渉キャンセルと 呼ぶことにする。 理想的に干渉信号のレプリカ **H** · B´(k)が作られているとすると、引算後得られる √ ′ 。(k)は第1~第U送信系列のシンボル、[b] $_{\mathrm{n}}$ (k), $_{\mathrm{b}}$ (k-1), ..., $_{\mathrm{b}}$ (k-Q'+ 1)], $(n=1\sim U)$ の信号成分しか持ち得ないこと

【0114】次にソフト干渉キャンセル後の干渉余剰成 分を前述と同様にMMSE規範の線形フィルタで除去す る。この場合の式(55)と対応した式は次式(5 5) ′となる。

$$\mathbf{w}_{g}^{H}(\mathbf{k}) \cdot \mathbf{y}'_{g}(\mathbf{k}) = \sum_{n=1}^{g} \mathbf{v} \sum_{q=0}^{Q'-1} \alpha_{nq}(\mathbf{k}) \cdot \mathbf{b}_{n}$$

$$(\mathbf{k} - \mathbf{q}) = \boldsymbol{\alpha}_{g}^{H}(\mathbf{k}) \cdot \mathbf{b}_{g}(\mathbf{k})$$
(55)'

ここで、

これら \mathbf{w}_{g} (k), $\boldsymbol{\alpha}_{\mathrm{g}}$ (k)を求めることも前述 と同様に式(56)を次式として右辺が最小となる 🕶

_g (k),
$$\alpha$$
_g (k)を求める。
【0115】

$$(\mathbf{w}_{g}(\mathbf{k}), \boldsymbol{\alpha}_{g}(\mathbf{k})) = \operatorname{arg\ min} \| \mathbf{w}_{g}^{H}(\mathbf{k}) \cdot \boldsymbol{y}'_{g}(\mathbf{k}) - \boldsymbol{\alpha}_{g}^{H}(\mathbf{k}) \cdot \mathbf{b}_{g}(\mathbf{k}) \|^{2}$$
 (56)

 $\alpha_{1,0}$ (k) = 1 を条件とする。付加された拘束条件 は、 $\alpha_g(\mathbf{k}) = 0$, $\mathbf{w}_g(\mathbf{k}) = 0$ なる解を避け 以下のように問題を置き換える。 る為であり、 $\|\alpha_{g}(\mathbf{k})\|^{2}=1$ なる拘束条件で解

- く事も可能であるが以下では、 $lpha_{1,\,0}$ (k)=1 の場合

$$\mathbf{m}_{g}$$
 (k) =arg min $\|\mathbf{m}_{g}\|$ (k) \cdot \mathbf{z}_{g} (k) $\|^{2}$ (57) \cdot $\mathbf{m}_{g}\|$ (k) \cdot $\mathbf{e}_{\mathbb{M}^{3}+1}$ = -1 を条件とする。 ここで、 \mathbf{m}_{g} (k) $\equiv [\mathbf{w}_{g}]^{T}$ (k) $, -\boldsymbol{\alpha}_{g}]^{T}$ (k) $]^{T}$ (58) \cdot

$$\mathbf{m}_{g} (\mathbf{k}) \equiv [\mathbf{w}_{g}^{T} (\mathbf{k}), -\boldsymbol{\alpha}_{g}^{T} (\mathbf{k})]^{T} (58)^{T}$$

$$\mathbf{z}_{g} (\mathbf{k}) \equiv [\mathbf{y}_{g}^{T} (\mathbf{k}), \mathbf{b} (\mathbf{k})_{g}^{T}]^{T} (59)^{T}$$

$$\mathbf{e}_{M0^{T}+1} = [0 \cdots 1 \cdots 0]^{T} (60)^{T}$$

(← MQ'+1 中の1の要素はMQ'+1番目)

よりこの最適化問題の解は以下で与えられる。

前記文献[2]に示されているラグランジェ未定係数法

$$\mathbf{m}_{g}$$
 (k) = $-\mathbf{R}_{zz}^{-1} \cdot \mathbf{e}_{MQ'+1} / (\mathbf{e}_{MQ'+1}^{H} \cdot \mathbf{R}_{zz}^{-1} \cdot \mathbf{e}_{MQ}^{H})$ (61)

ここで、

[0118]

[0117]

【数25】

$$R_{zz} = E[Z_g(k) \cdot Z_g^H(k)]$$
 (62)

$$= \mathsf{E} \begin{bmatrix} \mathsf{H} \cdot \Lambda(\mathsf{k}) \cdot \mathsf{H}^{\mathsf{H}} + \sigma^2 \mathbf{I} & \mathsf{H}_{\mathsf{g}}^{\mathsf{H}} \\ \mathsf{H}_{\mathsf{g}} & \mathbf{I} \end{bmatrix}$$
 (63)

$$\Lambda_n$$
 (k) =diag [\mathbf{D}_n (k+Q-1), ..., \mathbf{D}_n (k), ..., \mathbf{D}_n (k-Q+1)]

$$H_{g} = \begin{bmatrix} h_{1}(Q-1) & 0 & 0 & \cdots & h_{U}(Q-1) & 0 & 0 \\ h_{1}(Q-2) & \ddots & 0 & \cdots & h_{U}(Q-2) & \ddots & 0 \\ h_{1}(Q-3) & \vdots & h_{1}(Q-1) & \cdots & h_{U}(Q-3) & \vdots & h_{U}(Q-1) \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ h_{1}(0) & \cdots & h_{1}(Q'-1) & \cdots & h_{U}(0) & \cdots & h_{U}(Q'-1) \end{bmatrix}$$
(65)'

[0120]

$$\begin{array}{c} \mathbf{D}_{n} \ (\mathbf{k}+\mathbf{q}) = & \text{diag} \left[\ 1-b^{\prime}_{-1} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ \right] \ : \mathbf{q} = \mathbf{Q}+1, \ \cdots, \ 1 \ (66) \\ \mathbf{D}_{n} \ (\mathbf{k}+\mathbf{q}) = & \text{diag} \left[\ 1, \ \cdots, \ 1, \ 1-b^{\prime}_{-1} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ ^{2} \ (\mathbf{k}+\mathbf{q}) \ , \ \cdots, \ 1-b^{\prime}_{-n} \ , \ \cdots, \ 1-b^{\prime}_$$

つまりチャネルパラメータが既知であれば、 \mathbf{m}_{g} (k)は式(61) で求めることができる。更に式(58) に従い \mathbf{w}_{g} (k), $\boldsymbol{\alpha}_{g}$ (k)(=e $\boldsymbol{\alpha}_{1}$ (k))も求められる。このような計算を例えば図19中のフィルタ特性推定部76で行い、フィルタ処理部77-1で次式を計算してフィルタ処理する。

[0121]

 er_1 (k) = \mathbf{W}_g ^H (k) · \mathbf{Y} ^Y ^g (k) この等化出力 er_1 (k) と等化後チャネル情報 e α ₁ (k) = α _g (k) が後段の等化器 82-1 に送られる。以上のようにして例えば 5 の送信系列(ユーザ)時に 3 送信系列(ユーザ)グループと 2 送信系列(ユーザ)グループとに分ける場合は、0 0 以 0 以 0 之 0 大 0 之 0 大 0 之 0 大 0 大 0 之 0 大 0

【0122】また前述した検出する信号の誤り訂正復号結果を軟判定送信シンボルに反映させることは、図8に示したシングルユーザターボイコライザ受信機、図9に示したRAKE合成処理ターボ受信機、図10に示したアダプティブアレーアンテナ受信部を備えるターボ受信機、更に一般に図12に示したチャネル推定器42を備えるターボ受信機にも適用できる。更に図13、図14及び図15ではチャネル行列 FIと共分散行列U^{*}の、2回目以後の推定に確からしいと判断されたシンボル硬判定値も参照信号として利用したが、2回目以後もユニークワードのみを参照信号として式(51)を利用して共分散行列U^{*}の推定を行い、シンボル硬判定値を用いるチャネル推定及び共分散行列U^{*}の推定は省略してもよい。

第1発明(2)(並列送信)

次に1人の利用者による情報系列 c (i)を複数の並列系列として送信することにより周波数利用効率よく高速伝送を行うことが提案されている。このような送信信号

に対し、この発明を適用したターボ受信機の実施例を説明する。

【0123】図22に図1と対応する部分に同一参照符号を付けて示すよう送信側において、変調器13よりの変調出力信号b(j)は直列一並列変換器14によりN個の系列に各シンボルb(j)が順次分配され、2以上の整数N個の系列信号 b_1 (k)、…, b_N (k)とされ、図に示していないが、これらは無線周波数の信号に変換された後、N個のアンテナから送信される。これらN個の系列信号はチャネル(伝送路)を通じて、この発明のターボ受信機に受信される。この受信機の受信アンテナは1個以上であり、この受信信号は1以上の整数M 個のベースバンドデジタル受信信号 r_a (k)(m=1,2,…,M)として多出力等化器31に入力される。受信信号 r_a (k)は例えば図28に示したように生成される。

【0124】多出力等化器31は図2に示した構成と同様であり、図3に示した処理手順と同様な処理を行う。その際に、図22中に示した復号器24よりの対数尤度比 Λ_2 [b(i)]から外部情報 λ_1 [bi]が減算器25で減算され、その減算出力がインタリーバ26によりインタリーブされて事前情報 λ_2 [b(j)]とされ、その事前情報 λ_2 [b(j)]が直列一並列変換器15でN系列の事前情報 λ_2 [b₁(k)],…, λ_2 [b_N(k)]に変換されて多出力等化器31へ入力される。

【0125】よって多出力等化器31ではそのM系列の受信信号が、先に述べたと同様に線形等化処理されて、N個の対数尤度比系列 Λ_1 [b_1 (k)],…, Λ_1 [b_N (k)]が出力される。このN個系列の対数尤度比系列は並列-直列変換器16により1系列の対数尤度比系列 Λ_1 [b (j)]に変換されて、減算器22へ供給される。この構成によれば多出力等化器31の入力信号形式が、図1 乃至図3 で説明したものと同様になり、従って図1 乃至図3 を参照して行った等化処理により、N系列の対数尤度比 Λ_1 [b_1 (k)],…, Λ_1

[b_N(k)]を得ることができ、直列一並列変換器15と並列直列変換器16とを用いることによって繰り返し復号処理を行うことができることは容易に理解されよう。図1乃至図3においてn番目の送信機の送信信号と対応してこの場合はN個の並列送信信号中のn番目(n列目)の送信信号が等化されることになる。またこのN系列信号の並列送信に対する受信について、図4乃至図7を参照した実施例を適用できることも容易に理解できよう。また図18乃至図21に示した複数の等化段による縦続的処理により、図1乃至図31に示した単一の等化段による処理に比べ受信特性は向上する。

【0126】この発明のターボ受信方法、受信機は畳み込み符号/ターボ符号+インタリーバ+多値変調(QPSK,8PSK,16QAM,64QAMなど)、TCM(Trellis Coded Modulation)/ターボTCMなどに対する受信にも適用できる。

M個の受信信号の生成

上述ではM個の受信信号 r_1 (k)、…, r_N (k)を、M個のアンテナ#1,…,#Mから求めたが、1個のアンテナから求めてもよく、あるいは、2以上の整数し個のアンテナの受信信号からしより多いM個の受信信号を求めてもよい。図1において特に示さなかったが各アンテナ#1,…,#Mからの受信信号はベースバンド変換部によりベースバンドの受信信号 r_1 ,…, r_n とされ、サンプリングされて離散時刻kのディジタル信号 r_1 (k)、…, r_N (k)とされている。

ユーザ (送信機) 数N 2 名ユーザのマルチパス数Q 5 受信アンテナ数 2本 1フレーム内の情報シンボル数 450ビッ 1フレーム内のユニークワード数 25ビットチャネル推定法 RLS(忘: 誤り訂正符号 レート1/ドップラ周波数 1000H アップラ周波数 BPSK 公送速度 20Mbp MaxーL 繰り返し数 4回

フレーム内でフェージングなし

なおフィルタ係数 vvv の計算には前記逆行列の補助定理 による近似は用いなかった。

【0129】図23は、チャネル推定が完全に行われた(推定誤差はなし)、つまりチャネルは既知であると仮定した時の誤り率特性であり、ユーザ(送信機)数N=2、受信アンテナ数M=2、Rayleghパス数Q=5の場合である。繰り返し1回目は繰り返ししていない状態であり、繰り返し2回目で1回繰り返しを行った結果である。繰り返しにより誤り率特性が大幅に改善されていることが分かる。これによりこの発明のMIMO用ターボ受信方法は適切に動作することが分かる。

【0127】例えば図30Bに示すようにL=2個のア ンテナ#1,#2で受信された受信信号はそれぞれべー スバンド変換部61-1, 61-2でそれぞれベースバ ンド信号に変換され、ベースバンド変換部

61-1と

6 1-2の各出力はサンプリング信号発生器62からのサ ンプリング信号と、このサンプリング信号を移相器63 でその周期TのT/2だけ位相をずらしたサンプリング 信号とにより、それぞれA/D変換器64-1,64-2と64-3,64-4でサンプリングされてディジタ ル信号 r_1 (k), r_2 (k)と r_3 (k), r_3 4 (k)に変換され、図1又は図18あるいは図22に 示したターボ受信機30に入力され、N個の復号出力を 得るようにしてもよい。なおターボ受信機30に入力さ れる受信信号 r_1 (k), …, r_4 (k)の各サンプリ ング周期は、1個のアンテナごとに1個の受信信号r。 (k)を受信する場合のサンプリング周期と一致するよ うにサンプリング信号発生器62よりのサンプリング信 号の周波数が選定される。

[0128]

【発明の効果】以上述べたようにこの第1発明(1)によれば、多出力(MIMO)受信方法を実現できる。定量的な効果として誤り率特性を図23、図24に示す。各図において横軸の E_b / N_o はビットエネルギ対ノイズ比である。シュミレーション条件として以下を想定した。

2 5 2本 450ビット 25ビット 25ビット RLS (忘却係数0.99) レート1/2, 拘束長3畳み込み符号 1000Hz (レイリーフェージング) BPSK 20Mbps Max-Log-Mapデコーダ 4回

【0130】図24は繰り返しチャネル推定(第4発明)の効果を示す。横軸はしきい値Thである。 E_b / N_o = 4 d Bに固定し(E_b は1 ユーザ分である)、T h = 1 . 0 は1 つもシンボル硬判定値が選ばれない、つまりシンボル硬判定値を用いるチャネル推定が行われない従来法と考えられる。この場合は図から明らかなようにチャネル推定が不正確なためBER特性の繰り返し効果は少ない。しきい値Th = 0 は、硬判定値をそのまま全部用いる場合であり、このように情報シンボルの硬判定値も利用すると図から明らかなように平均ビット誤り率が改善され、それだけチャネル推定が正確に行うこと

ができることが理解される。更にしきい値Th=0.2~0.6程度ではTh=0の場合より平均ビット誤り率 が小となっており、つまり確からしい硬判定値のみを利 用した方が良いことがわかる。特にTh=0.25付近 が最も好ましいことも理解される。

【0131】図25に、しきい値により確からしい送信 シンボル硬判定値をチャネル推定に用いる、つまり繰り 返しチャネル推定を用いたMIMO受信方法の誤り率特 性を曲線66として示す、この場合のしきい値は0.2 5に設定し、結果は繰り返し4回後の特性であり、N= 2, M = 2, Q = 5 Ray 1 egh, $f_d T_s = 1/2$ 0000,900シンボル/フレームである。比較のた めチャネル推定が完全な場合の誤り率特性を曲線67 に、従来の情報シンボルの硬判定値はチャネル推定に利 用しない、つまり繰り返しなしのチャネル推定(チャネ ル推定は1回だけ)を用いたときの誤り率特性を曲線6 8に示す。このグラフよりチャネルの繰り返し推定を用 いた場合、誤り率特性はチャネル推定完全の場合のそれ に近づいていることが分かる。

【0132】また上述したチャネル推定方法によれば、 復号された軟判定値から、その硬判定値の確からしいか 否かを判定し、確からしい硬判定値のシンボル情報を も、次回の繰り返し受信処理の際のチャネル推定に利用 することにより、チャネル推定をより正しく行うことが でき、復号品質を向上することができる。次に共分散行 列U^{(ガウス性雑音以外の雑音)を推定するようにし} た実施例の効果を確認するため以下の条件でシミュレー ションを行った。

全ユーザ(送信機)数N

3(うち1ユーザを未知干渉:i(k)とする)

各ユーザのマルチパス数Q

受信アンテナ数

1フレーム内の情報シンボル数

誤り訂正符号

ドップラー周波数

変調方式

伝送速度

復号器24

繰り返し数

3ユーザ(送信機)は等電力とした。図26は図14、 図15、図16に示したH、U^{*}を推定するターボ受信 機のBER(ビット誤り率)特性のシミュレーション結 果、図27は図1に示したターボ受信機(図13の方法 を用いる受信機)をそのまま用いたBER特性を示す。 図26では、雑音は白色性ガウス雑音のみとしており、 チャネル推定、復号処理を2回以上繰り返してもその効 果がほとんど得られていないが、図27では繰り返し数

全ユーザ(送信機)数N

各ユーザのマルチパス数Q

受信アンテナ数M

1フレーム内の情報シンボル数

誤り訂正符号

変調方式 復号器

誤り符号化率

繰り返し数

 $\mathtt{stf}(b'_n(k)) = \alpha \times b'_n(k)$

5 3本

450ビット

レート1/2, 拘束長3畳み込み符号

1000Hz

BPSK

 $20 \,\mathrm{Mbps}$

Log-MAPはデコーダ

を多くすることによりBER特性の向上が達成され、し かも、同一Eb/Noに対し、BERが図26に示すも のよりも可成り小さい値を示すことが理解される。

【0133】次に目的とするユーザ(送信機)よりの受 信信号のシンボル軟判定値b′。(k)に対し誤り訂正 復号結果を反映させた実施例 (第2発明) の効果を確認 するために以下の条件でシミュレーションを行った。

4

5

2

900

畳み込み符号(符号化率:1/2、拘束長3)

BPSK

Log-Mapデコーダ

1/2

5

とした。

きのEb/Noに対するBER特性のシミュレーション 結果、 $図26BはEb/No=6dBとしたときの\alpha$ に 対するBER特性のシミュレーション結果をそれぞれ示 す。ここで $\alpha = 0$ の場合は $b'_n(k) = 0$ とした場合 に等しい。この図28Aより、b´n (k) に誤り訂正 復号結果を反映させた多入力多出力受信機では、図1に 示した多入力多出力ターボ受信機に比べ、繰り返し回数 が3回目以降の場合において1回前の繰り返し復号時の

【0134】図28は、図1に示した多出力ターボ受信 機と、b′ 。(k)に誤り訂正復号結果を反映させた多 入力多出力ターボ受信機のBER特性を前者はプロット 点を黒で、後者は白でそれぞれ示す。丸は繰り返し1回 目、下向き三角は繰り返し2回目、菱形は繰り返し3回 目、左向き三角は繰り返し4回目、右向き三角は繰り返 し5回目を表わす。図28Aは α =0.2に固定したと

BERに対して改善効果が大きく、繰り返し回数が3回 目以降ではBER>10-4の範囲において各BERを達 成する所要E_b/N_oで比較した場合、b´_b(k)に 誤り訂正復号結果を反映させた多入力多出力ターボ受信 機は図1に示した多入力多出力ターボ受信機に比べ約 5dB以上の利得が得られている。また、Eb/N o=6dBの繰り返し5回目において、BER=10⁻⁵ BERを達成しており、図1に示したものに比べBER を1/10以下に低減できていることが分かる。この図 28Bより、 α の値としては $0<\alpha<0$. 6の範囲で改 善が得られており、αを0.6より大きくすると逆にB ER特性が劣化してしまい、正しい復号結果が得られな くなる。この結果より、この場合のαの最適値は0.2 であることが分かる。しかしながら、αの値は前記最適 値に限るものではなく、特に受信するユーザの数、干渉 を含む伝搬環境、受信するアンテナの数などによって、

ユーザー数N 各ユーザのマルチパス数Q 受信アンテナ数M 1フレーム内の情報シンボル数 誤り訂正符号 ドップラー周波数 変調方式 伝送速度 復号器 繰り返し数 チャネル推定は理想

図29にこのBER (ビット誤り率) 特性のシミュレー ション結果を示す。横軸は平均日。(ビットエネルギ ー)/N。(雑音電力)であり、faはドップラー周波 数、T。は送信シンボル周期である。このグラフに示さ れているMRCはオーダ10(2アンテナ×5パス)ダ イバーシチチャネルにおける最大比合成 (Maximal Rati o Conbining : MRC) 後の信号をビタビ復号した際に 得られるBER特性であり、等化器が完全に干渉をキャ ンセルした際のBER特性に対応する。つまり繰り返し 後のBERがMRCカーブにどれだけ近いかで受信器の 品質を評価することができる。図27により、この第2 発明のターボ受信方法によればEb/N。が高くなる程 BERが減少し、かつ繰り返し回数を多くすればBER 特性はMRCのBER特性に近づき、特に繰り返し回数 6ではMRCに非常に近づくことが分かる。つまり、こ の第3 発明のターボ受信方法による多出力ターボ受信機 は4ユーザ、各5パス、2受信アンテナという厳しい条 件でも適切に動作することが確認された。

【図面の簡単な説明】

【図1】この第1発明のターボ受信機の実施例を含むシ ステムの機能構成を示す図。

【図2】図1中の多出力等化器31の具体的機能構成例 を示す図。

改善効果を有するαの適正範囲が変更されてもよく、ま た最適値αの値も他の値を取っても良い。

【0135】ユーザ(送信機)の数をN、各送信機のマ ルチパスの数をQ、受信機のアンテナの数をMとし、B PSK変調の場合は、従来のシングルユーザのターボ受 信機をそのまま多出力 (MIMO) に拡張した場合の等 化器における計算量は先に述べたように 2^{N(Q-1)}のオー ダであるが、第3発明のターボ受信方法によればN(M Q)³ のオーダで済む。例えばN=8、Q=20、M= 8とすると $2^{N(Q-1)} = 5 \times 10^{45}$ であるがN (MQ) ³ =37・107となり、この第2発明のターボ受信方法 によれば計算量を著しく低減することができる。

【0136】この第3発明のターボ受信方法によれば良 好なビット誤り率特性が得られることを以下の条件でシ ミュレーションを行って確認した。チャネル行列 I-I は 既知とした。

4 5

2本

900ビット

レート1/2、拘束長3畳み込み符号

1000Hz(レイリーフェージング)

BPSK

 $20 \,\mathrm{Mbps}$

Log-MAPデコーダ

6回

【図3】この第1発明のターボ受信方法の実施例を示す

【図4】Aはフレーム構成例を示す図、Bは第4発明に おける繰り返しチャネル推定法を説明するための、各繰 り返しにおける処理を示す図である。

【図5】確からしい硬判定シンボルを取り出すための機 能構成例を示す図。

【図6】この発明における繰り返しチャネル推定の処理 手順の例を示す流れ図。

【図7】Aは検出する信号の誤り訂正復号結果を反映さ せる第2発明における等化器31の一部の機能構成例を 示す図、Bはその処理手順の例を示す図である。

【図8】ターボイコライザを繰り返し行う受信機の例を 示す図。

【図9】RAKE受信-ターボ復号の繰り返しを行う受 信機の例を示す図。

【図10】アダプティブアレーアンテナ受信-ターボ後 の繰り返しを行う受信機の例を示す図。

【図11】ターボイコライザ及びターボデコーダの概略 を示す図。

【図12】受信信号に対し、推定チャネルを用いる処理 と、その処理された信号の復号処理とを繰り返す受信機 の概略を示す図。

【図13】受信信号に対し、推定チャネルを用いる処理 とその処理された信号の復号処理とを繰返す受信方法の 概略の処理手順の例を示す流れ図。

【図14】Aはフレーム構成例を示す図、Bは受信信号に白色性ガウス雑音以外の雑音を含む場合の、チャネル H1と雑音共分散行列Uの推定の繰り返し処理を示す図である。

【図15】雑音共分散行列Uの推定を用いる等化器の一部の機能構成例を示す図。

【図16】雑音共分散行列Uの推定を用いるチャネル値推定と、復号処理を繰り返す処理手順の例を示す流れ図。

【図17】この第3発明によるターボ受信機の原理を示す図。

【図18】この第3発明によるターボ受信機の機能構成例を示す図。

【図19】図18中のマルチユーザ (前段)等化器71の機能構成の具体例を示す図。

【図20】この第3発明によるターボ受信方法の処理手順の例を示す流れ図。

【図21】第3発明における多段等化部分の他の機能構成例を示す図。

【図22】第1発明(2)の実施例が適用されたシステム構成例を示す図。

【図23】第1発明(1)を適用したターボ受信機の誤り率特性図(チャネルは完全に推定されたと仮定し、E $_{\rm b}$ (ビットエネルギー): 2ユーザ分 $_{\rm b}$ のは雑音エネルギー)。

【図24】しきい値(Th)を変化させて繰り返しチャネル推定を行った場合の誤り率特性を示す図。

【図25】第4発明において、特に繰り返しチャネル推定を用いたターボ受信機の誤り率特性図。

【図26】雑音共分散行列Uの推定を用いるターボ受信機の誤り率特性を示す図。

【図27】図1に示したターボ受信機の誤り率特性を示す図。

【図28】検出する信号の誤り訂正復号結果を反映させた第2発明の実施例の誤り率特性を示す図。

【図29】この第3発明のターボ受信機の誤り率特性のシミュレーション結果を示す図。

【図30】MIMOシステムの概念を示す図。

【図31】従来のシングルユーザ用ターボ送受信機の機能構成を示す図。

【図1】

【図2】

【図15】

【図17】

【図14】

【図16】

【図18】

【図26】

【図19】

チャネル既知

Th

0.6

0.4

10⁻⁴ L

0.2

図24

8.0

【図30】

【図31】

【手続補正書】

【提出日】平成14年3月18日(2002.3.1 8)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項2

【補正方法】変更

【補正内容】

【請求項2】 受信ベクトル $\sqrt{(\mathbf{k})}$ 中の雑音成分の 共分散行列をUとして、軟判定送信シンボル \mathbf{b}^{\prime} $\mathbf{n}^{\prime}(\mathbf{k})$ 、上記チャネル行列 \mathbf{H}^{\prime} と、を用いて、上記適応フィルタ $\mathbf{w}_{\mathbf{n}}^{\prime}(\mathbf{k})$ を

$$\begin{split} \mathbf{W}_{n} & \text{ } (k) = (\mathbf{H} \mathbf{G} (k) \mathbf{H}^{\text{H}} + \text{U})^{-1} \mathbf{h} \\ \text{ZCT}, \\ \mathbf{G} & \text{ } (k) = \text{diag} \left[\mathbf{D} (k+Q-1) \cdots \mathbf{D} (k) \cdots \mathbf{D} (k-Q+1) \right] \\ \mathbf{D} & \text{ } (k+q) = \text{diag} \left[1-b^{'2}_{1} (k+q), \cdots, 1-b^{'2}_{n} (k+q) \right] \\ , \cdots, 1-b^{'2}_{N} (k+q) \right] & \text{ } q=Q-1 \cdots -Q+1, \ q\neq 0 \text{ } \text{ } \\ & = \text{diag} \left[1-b^{'2}_{1} (k+q), \cdots, 1, \cdots, 1-b^{'}_{N} \right]^{2} \\ & \text{ } k+q) \right] & \text{ } q=0 \text{ } \text{ } \text{ } \end{split}$$

【数2】

$$h = \begin{bmatrix} H_{1,\{Q-1\} \cdot N+n} \\ H_{2,\{Q-1\} \cdot N+n} \\ \vdots \\ H_{M,\{Q-1\} \cdot N+n} \end{bmatrix}$$

 $\mathbf{H}_{1,(Q-1)+N+n}$ は上記行列 \mathbf{H} の1行(Q-1)N+n列成分により算出することを特徴とする請求項1記載のターボ受信方法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】請求項3

【補正方法】変更

【補正内容】

【請求項3】 2以上の整数N個の送信機からの信号を 受信するターボ受信方法であって、

1以上の整数M個の受信信号 r_n と、既知信号とから、チャネル値 h_{nn} (q)及びチャネル行列 \mathbf{H} を計算し、ここで $m=1,\cdots,M$ 、 $n=1,\cdots,N$ 、 $q=0,\cdots,Q-1$ 、Qは各送信電波のマルチパスの数

N個の事前情報 λ_2 [b_n (k)] から軟判定送信シンボル b_n (k)を求め、ここでkは離散的時刻、チャネル値 h_{nn} (q)と軟判定送信シンボルb

n (k) を用いて、n番目の送信機の送信信号に対する 干渉成分 **H** · **B** ′ (k) を計算し、

ここで

【数3】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(\mathbf{q}) = \begin{bmatrix} \mathbf{h}_{11}(\mathbf{q}) & \cdots & \mathbf{h}_{1N}(\mathbf{q}) \\ \vdots & \ddots & \vdots \\ \mathbf{h}_{M1}(\mathbf{q}) & \cdots & \mathbf{h}_{MN}(\mathbf{q}) \end{bmatrix}$$

B´(k) = [b´¹ (k+Q-1) … b´¹ (k) … b´¹ (k-Q+1)]¹ b´(k+q) = [b´₁ (k+q) b´₂ (k+q) … b´₀ (k+q)]¹ q=Q-1 … — Q+1 q≠0で b´(k) = [b´₁ (k) … — f (b´ո (k)) … b´₀ (k)]¹ q=Oで b´(k) の要素のf (b´n (k)) はn番目であり、f() はf(0) = 0、かつd {f(b´n (k)} / d {b´n (k)} ≥ 0を満たすb´n (k) を変数とする関数、[] ¹は転置行列であり、この干渉成分 $\mathbf{H} \cdot \mathbf{B} \cdot (k)$ を受信ベクトルン (k) から差し引き差分ベクトルン ´(k) を求め、ここでシ (k) = [$\mathbf{r} \cdot \mathbf{r} \cdot (k+Q-1) \cdot \mathbf{r} \cdot \mathbf{r} \cdot (k+Q-1) \cdot \mathbf{r} \cdot \mathbf{r} \cdot (k+Q-1)$

 $+Q-2)\cdots r^{T} (k)]^{T}$ $r(k) = [r_{1} (k) r_{2} (k)\cdots r_{M} (k)]^{T}$

チャネル行列 \mathbf{H} 又は参照信号を用いて、差分ベクトル シ $\hat{\mathbf{y}}$ (\mathbf{k}) 内の残余干渉成分を除去する、 \mathbf{n} 番目の送信機よりの送信信号の受信信号に対する適応フィルタ係 数 \mathbf{w}_n (\mathbf{k}) を求め、

差分ベクトル 3 × ′ (k) を上記適応フィルタ係数 w n (k) によりフィルタ処理して、n 番目の送信機よりの送信信号に対する干渉除去された受信信号として対数 尤度比を得ることを特徴とするターボ受信方法。

【手続補正3】

【補正対象書類名】明細書

ルタママ (k)を

【補正対象項目名】請求項4

【補正方法】変更

【補正内容】

【請求項4】 上記受信ベクトル ン (k)中の雑音成

$$\mathbf{w}_n$$
 (k) = (H G (k) H $^{\text{H}}$ +U) $^{\text{-1}}$ h

$$\begin{array}{lll} \mathbf{G}_{-}(\mathbf{k}) = & \operatorname{diag}\left[\right. \mathbf{D}_{-}(\mathbf{k} + \mathbf{Q} - \mathbf{1}_{-}) \cdots \mathbf{D}_{-}(\mathbf{k}_{-}) \cdots \mathbf{D}_{-}(\mathbf{k} - \mathbf{Q} + \mathbf{1}_{-})\right] \\ \mathbf{D}_{-}(\mathbf{k} + \mathbf{q}_{-}) = & \operatorname{diag}\left[\left.\mathbf{1} - \mathbf{b}_{-}^{'}\right|^{2}_{1}(\mathbf{k} + \mathbf{q}_{-}), \cdots, \ \mathbf{1} - \mathbf{b}_{-}^{'}\right|^{2}_{n}(\mathbf{k} + \mathbf{q}_{-}), \\ \mathbf{Q} = & \operatorname{Q}_{-}\mathbf{1} \cdots - \mathbf{Q} + \mathbf{1}_{-}, \ \mathbf{q} \neq \mathbf{0}_{-}^{\infty}, \\ = & \operatorname{diag}\left[\left.\mathbf{1} - \mathbf{b}_{-}^{'}\right|^{2}_{1}(\mathbf{k} + \mathbf{q}_{-}), \cdots, \ \mathbf{1} - \mathbf{b}_{-}^{'}\right|^{2}_{n-1}(\mathbf{k}_{-}), \\ + & \operatorname{2E}\left[\left.\mathbf{f}_{-}(\mathbf{b}_{-}^{'})\right|^{2}_{n}(\mathbf{k} + \mathbf{q}_{-})\right] \\ + & \operatorname{2E}\left[\left.\mathbf{f}_{-}(\mathbf{b}_{-}^{'})\right|^{2}_{n}(\mathbf{k} + \mathbf{q}_{-})\right] \\ = & \operatorname{2E}\left[\left.\mathbf{f}_{-}(\mathbf{b}_{-}^{'})\right|^{2}_{n}(\mathbf{k} + \mathbf{q}_{-})\right] \\ + & \operatorname{2E}\left[\left.\mathbf{f}_{-}(\mathbf{b}_{-}^{'})\right|^{2}_{n}(\mathbf{k} + \mathbf{q}_{-})\right] \\ = & \operatorname{2E}\left[\left.\mathbf{f}_{-}(\mathbf{b}_{-}^{'})\right|^{2}_{n}(\mathbf{k} + \mathbf{q}_{-})\right] \\ + & \operatorname{2E}\left[\left.\mathbf{f}_{-}(\mathbf{b}_{-}^{'})\right|^{2}_{n}(\mathbf$$

E[]は平均を表わす。

【数4】

$$\boldsymbol{h} \!=\! \begin{bmatrix} \boldsymbol{H}_{I,(Q-1)\cdot N+n} \\ \boldsymbol{H}_{2,(Q-1)\cdot N+n} \\ \vdots \\ \boldsymbol{H}_{M,(Q-1)\cdot N+n} \end{bmatrix}$$

 $\mathbf{H}_{1,(Q-1)+N+n}$ は上記行列 \mathbf{H} の1行(Q-1)N+n列成分により算出することを特徴とする請求項3記載のターボ受信方法。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】請求項10

【補正方法】変更

【補正内容】

【請求項10】 2以上の整数N個の送信機からの信号 を受信するターボ受信方法であって、

1以上の整数M個の受信信号 r_a と、既知信号とから、チャネル値 h_{an} (q)及びチャネル行列 \mathbf{H} を計算し、ここで $m=1,\cdots,M$ 、 $n=1,\cdots,N$ 、 $q=0,\cdots,Q-1$ 、Qは各送信電波のマルチパスの数

N個の事前情報 λ_2 $\begin{bmatrix} b_n & (k) \end{bmatrix}$ から軟判定送信シンボル $b_n & (k)$ を求め、ここでkは離散的時刻、

チャネル値 h_{nn} (q) と軟判定送信シンボル b^{γ} n (k) を用いて、n 番目の送信機の送信信号に対する 干渉成分 \mathbf{H} · \mathbf{B} γ (k) を計算し、

ここで

【数7】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

分の共分散行列をUとして、軟判定送信シンボルb′。

(k)、上記チャネル行列 I-I を用いて、上記適応フィ

$$H(q) = \begin{bmatrix} h_{11}(q) & \cdots & h_{1N}(q) \\ \vdots & \ddots & \vdots \\ h_{M1}(q) & \cdots & h_{MN}(q) \end{bmatrix}$$

 $\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{\mathsf{T}}(\mathbf{k}+\mathbf{Q}-1)\cdots\mathbf{b}']^{\mathsf{T}}$

 \mathbf{b} ' $(\mathbf{k}+\mathbf{q}) = [\mathbf{b}$ ' $(\mathbf{k}+\mathbf{q}) \mathbf{b}$ ' $(\mathbf{k}+\mathbf{q})$ "b" $(\mathbf{k}+\mathbf{q})$ "b" $(\mathbf{k}+\mathbf{q})$] $^{\mathsf{T}}$

 $q = Q - 1 \cdot \cdot \cdot \cdot - Q + 1$ $q \neq 0$ %

 $\mathbf{b}^{\prime}(\mathbf{k}) = [\mathbf{b}^{\prime}_{1}(\mathbf{k}) \cdots \underline{-}\mathbf{f}(\mathbf{b}^{\prime}_{n}(\mathbf{k}))$ $\cdots \mathbf{b}^{\prime}_{N}(\mathbf{k})]^{T} \mathbf{q} = 0 \mathcal{T}$

b ´ (k) の要素のf (b´ n (k) はn番目であり、f () はf (0) = 0、かつd { f (b´ n (k) } / d { b´ n (k) } \ge 0を満たすb´ n (k) を変数とする関数、[] 『は転置行列であ

り、この干渉成分 **H** · **B** ′ (k) を受信ベクトル **ジ** ′ (k) から差し引き差分ベクトル **ジ** ′ (k) を求め、

 $\begin{array}{l} \text{ $\mathcal{Z}_{\infty}(k) = [\mathbf{r}^T \ (k+Q-1) \ \mathbf{r}^T \ (k+Q-1)$ } \\ +Q-2) \cdots \mathbf{r}^T \ (k)]^T \end{array}$

 \mathbf{r} $(\mathbf{k}) = [\mathbf{r}_1 \ (\mathbf{k}) \mathbf{r}_2 \ (\mathbf{k}) \cdots \mathbf{r}_M \ (\mathbf{k})]^{\mathsf{T}}$ 受信ベクトル \mathbf{r} (\mathbf{k}) 内の雑音成分の共分散行列を、ガウス分布の分散 σ^2 と単位行列 \mathbf{I} から求まる σ^2 \mathbf{I} として、

【数8】

$$h = \begin{bmatrix} H_{1, (Q-1) \cdot N+n} \\ H_{2, (Q-1) \cdot N+n} \\ \vdots \\ H_{M \cdot Q, (Q-1) \cdot N+n} \end{bmatrix}$$

により決定した適応フィルタ係数 ww。により差分ベクトル w ′ (k)をフィルタ処理して、n番目の送信機よりの送信信号に対する干渉が除去された受信信号として対数尤度比を得ることを特徴とするターボ受信方法。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】請求項21

【補正方法】変更

【補正内容】

【請求項21】 2以上の整数N個の送信機からの信号 を受信するターボ受信機であって、

1以上の整数M個の受信信号 r_a を得る受信信号生成部と、ここでm=1, …, MN個の復号器と、

各受信信号 r_n と、既知信号の参照信号とが入力され、 チャネル値 h_{nn} (q)及びチャネル行列 I-Iを計算する チャネル推定器と、ここで

【数12】

$$H = \begin{bmatrix} H(0) & \cdots & H(Q-1) & 0 \\ & \ddots & & \ddots \\ 0 & & H(0) & \cdots & H(Q-1) \end{bmatrix}$$

$$H(\mathbf{q}) = \begin{bmatrix} \mathbf{h}_{11}(\mathbf{q}) & \cdots & \mathbf{h}_{1N}(\mathbf{q}) \\ \vdots & \ddots & \vdots \\ \mathbf{h}_{M1}(\mathbf{q}) & \cdots & \mathbf{h}_{MN}(\mathbf{q}) \end{bmatrix}$$

n = 1, ..., N

各受信信号 r。 が入力されて受信ベクトル

$$\mathbf{y}$$
 (k) = [\mathbf{r}^{T} (k+Q-1) \mathbf{r}^{T} (k+Q-2) \cdots \mathbf{r}^{T} (k)]

$$\mathbf{r}$$
 $(\mathbf{k}) = [\mathbf{r}_1 \ (\mathbf{k}) \ \mathbf{r}_2 \ (\mathbf{k}) \cdots \mathbf{r}_M \ (\mathbf{k})]$

ここで k は離散的時刻、Q は各送信電波のマルチパスの数、q=0, …, Q-1、 [] 『 は転置行列を表わす、

を生成する受信ベクトル生成部と、

N個の事前情報が入力され、軟判定送信シンボルb´n (k) (n=1, …, N)を生成する軟判定シンボル生成部と、

各軟判定送信シンボル \mathbf{b}_{1} (\mathbf{k}) \sim \mathbf{b}_{N} (\mathbf{k}) が入力され、 \mathbf{n} 番目の送信機よりの送信信号に対する干渉レ

プリカベクトル

 $\mathbf{B}'(\mathbf{k}) = [\mathbf{b}'^{\mathsf{T}}(\mathbf{k}+\mathbf{Q}-\mathbf{1})\cdots\mathbf{b}'^{\mathsf{T}}(\mathbf{k})\cdots\mathbf{b}'^{\mathsf{T}}(\mathbf{k}-\mathbf{Q}+\mathbf{1})]^{\mathsf{T}}$

b ' $(k+q) = [b']_1 (k+q) b']_2 (k+q) \cdots b']_N (k+q)]^T$

q = Q - 1, ..., -Q + 1, $q \neq 0$?

 $\mathbf{b}'(\mathbf{k}) = [\mathbf{b}'_{1}(\mathbf{k}) \cdots \underline{-}\mathbf{f}(\mathbf{b}'_{n}(\mathbf{k}))$ $\cdots \mathbf{b}'_{N}(\mathbf{k})]^{T} \mathbf{q} = 0 \mathcal{T}$

lo ' (k) o 要素のf $(b'_n(k))$ はn 番目、f () はf (0) = 0、p つ d $\{f$ $(b'_n(k))\}$ \not d $\{b'_n(k)\} \ge 0$ を満す $b'_n(k)$ を変数とする関数であり、を生成するレプリカベクトル生成部と、

チャネル行列 $\mathbf H$ と干渉レプリカベクトル $\mathbf B$ $^{\prime}$ ($\mathbf k$) が入力され、 $\mathbf n$ 番目の送信機よりの送信信号の受信信号 に対する干渉成分 $\mathbf H$ $^{\prime}$ ($\mathbf k$) を計算して出力するフィルタ処理部と、

干渉成分 H - B ′ (k) と受信ベクトル 🔊

(k) が入力され、差分ベクトル $\mathbf{y}^{\prime}(k) = \mathbf{y}$

差分ベクトル シ ´ (k)と上記適応フィルタ係数 w n(k)が入力され、シ ´ (k)に対しフィルタ処理して、n番目の送信機よりの送信信号に対する干渉除去された受信信号として対数尤度比を得てn番目の復号器へ供給する適応フィルタ部と、

を具備することを特徴とするターボ受信機。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0022

【補正方法】変更

【補正内容】

【0022】第2発明によれば、第1発明において、q=0の場合に、

 $\mathbf{b}'(\mathbf{k}) = [\mathbf{b}'_{1}(\mathbf{k}) \cdots \underline{-}\mathbf{f}(\mathbf{b}'_{n}(\mathbf{k}))$ $\cdots \mathbf{b}'_{N}(\mathbf{k})]^{T}$

 \mathbf{b} ' (\mathbf{k}) の要素の \mathbf{f} $(\mathbf{b}'_n$ (\mathbf{k}) は \mathbf{n} 番目であり、 \mathbf{f} () は \mathbf{f} ($\mathbf{0}$) = $\mathbf{0}$ 、かつ \mathbf{d} $\{\mathbf{f}$ (\mathbf{b}'

n(k) $/ d \{b'_n(k)\} \ge 0$ を満たす $b'_n(k)$ を変数とする関数とすることを特徴とする。第3 発明によれば、等化処理を複数段階に分けて行い、後

。 (ペアセダ数とする) 内数とすることで付成とする。 第 3 発明によれば、等化処理を複数段階に分けて行い、後 段程、等化出力の系列の数を少なくする。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】0052

【補正方法】変更

【補正内容】

【0052】式(29)中のb′(k)、つまり式(3 1)を次式に変更する。

$$\mathbf{b}'(\mathbf{k}) = [\mathbf{b'}_{1}(\mathbf{k}) \ \mathbf{b'}_{2}(\mathbf{k}) \cdots \\ \mathbf{b'}_{n-1}(\mathbf{k}) \ \underline{-}\mathbf{f}(\mathbf{b'}_{n}(\mathbf{k})) \ \mathbf{b'}_{n+1}(\mathbf{k}) \\ \cdots \mathbf{b'}_{N}(\mathbf{k})] \ (43)$$

ただし、f (b $^{\prime}$ $_{n}$ (k))はb $^{\prime}$ $_{n}$ (k)を入力とする任意の関数

このようにすることにより、検出する信号 b_n (k)に 関しても誤り訂正復号結果を反映させることが可能となる。つまり b_n (k) = 0 とすることなく(b

 $_{\rm n}$ ($_{\rm k}$) に応じた適当な値を加算することにより、例えば、雑音や干渉信号に埋ずもれた検出する信号を強調することになって、 $_{\rm b_n}$ ($_{\rm k}$) を正しく検出することができる。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0055

【補正方法】変更

【補正内容】

[0055] **B** ' (k) = [**b** ' $(k+Q-1) \cdots$

b ' (k) ··· **b** ' (k-Q+1)] ^T

b ' $(k+q) = [b'_1 (k+q) b'_2 (k+q)]$

 $\underline{q}) \cdots \underline{b'}_{\mathbb{N}} (\underline{k} + \underline{q})]^{\mathsf{T}} \underline{q} = \underline{Q} - \underline{1}, \cdots, -\underline{q}$

Q+1 , $q \neq 0$ \mathcal{C}

b ' $(k) = [b'_1 (k) \cdots - f(b'_n (k))$

 $\underline{\cdots b'}_{\mathbb{N}}$ (k)]^T

 $\underline{q} = 0$ で、 $-f(b'_n(k))$ は**b** $\underline{'(k)}$ のn番

目の要素

【手続補正9】

【補正対象書類名】図面

【補正対象項目名】図9

【補正方法】変更

【補正内容】

【図9】

【手続補正10】

【補正対象書類名】図面

【補正対象項目名】図19

【補正方法】変更

【補正内容】

【図19】

フロントページの続き

(72)発明者 冨里 繁

東京都千代田区永田町二丁目11番1号 株式会社エヌ・ティ・ティ・ドコモ内

(72)発明者 松本 正

東京都千代田区永田町二丁目11番1号 株式会社エヌ・ティ・ティ・ドコモ内

(45))03-152603(P2003-D#撮娃

F ターム(参考) 5K014 AA01 BA10 EA01 FA16 HA10 5K022 EE01 EE14 EE31 5K046 AA05 EE06 EE19 EE47 EF13