# Building Efficient, Accurate Character Skins from Examples

Alex Mohr Michael Gleicher University of Wisconsin, Madison

Karen Lin

#### Motivation

- Interactive animation tools using SSD
  - + fast computation and small memory size
  - + widely used in industry
  - difficult for animator to manipulate
  - artifacts (candy-wrapper collapse effect)
- Goal
  - easy authoring
  - new poses through examples without artifacts
- Approach
  - Use example data set
  - Add extra joints

#### SSD Review

Weighted sum of key shapes

$$S = \sum_{k} w_{k} S_{k}$$

$$0 0$$

$$-$$

$$+$$

$$0 0$$

$$-$$

$$-$$

#### SSD Review

Weighted sum of key shapes

$$S = \sum_{k} w_{k} S_{k}$$

$$\bar{\mathbf{v}}_e = \sum_{i=1}^n w_i M_{i,e} M_{i,d}^{-1} \mathbf{v}_d$$

# Linear Blend Skinning Artifacts

 A rotational deformation that nears 180° will result in a "candy wrapper" artifact.



# **Linear Blend Skinning Artifacts**

 Add one new joint to same position in space with a halfway spherical linear interpolation



# Linear Blend Skinning Artifacts • Add one new joint to same position in space with a halfway spherical linear interpolation











# Fitting the Skinning Model

- Solve for parameters of Extended SSD Model
  - Don't need to save example data
  - Runtime memory won't scale by # of inputs/examples
- Heuristic influence set creation
  - Speed up authoring
  - Increase performance

### **Examples**

 A sampling of IK skeleton (joint transformations) paired with sampling of mesh surface (vertices)



#### Influence Set

- Joints, transformation matrix to local coordinate system of a joint (M<sub>i,e</sub>)
- Weights (w<sub>i</sub>)
- dress pose vertex position (v<sub>d</sub>)

$$\bar{\mathbf{v}}_e = \sum_{i=1}^n w_i M_{i,e} M_{i,d}^{-1} \mathbf{v}_d$$

#### Influence Set

- Joints, transformation matrix to local coordinate system of a joint (M<sub>i.e</sub>)
- Weights (w<sub>i</sub>)
- dress pose vertex position (v<sub>d</sub>)

$$\bar{\mathbf{v}}_e = \sum_{i=1}^n w_i M_{i,e} M_{i,d}^{-1} \mathbf{v}_d$$

# Compactness of Local Coordinate Point Clouds Upper Arm Lower Arm

# Finding Influence Set

- Rigidity score computation
  - Smallest rigidity score joints are added to the set
  - Found 3 to 8 joints per vertex works well
  - M<sub>i e</sub> -1 **v**<sub>e</sub> gives vertex in local coordinates

# Finding Influence Set

- Joints, transformation matrix to local coordinate system of a joint (M<sub>i.e</sub>)
- Weights (w<sub>i</sub>)
- dress pose vertex position (v<sub>d</sub>)

$$\bar{\mathbf{v}}_e = \sum_{i=1}^n w_i M_{i,e} M_{i,d}^{-1} \mathbf{v}_d$$

# Solving Bilinear Problem

- Use alternation technique (weights and vertices)
- Ensure resulting weights are affine  $w_1 = 1 \sum_{i=2}^{n} w_i$
- Reformulate as matrix to solve for w

$$\begin{bmatrix} (T_{2,e_1} - T_{1,e_1})\mathbf{v}_d & \cdots & (T_{n,e_1} - T_{1,e_1})\mathbf{v}_d \\ \vdots & \ddots & \vdots \\ (T_{2,e_k} - T_{1,e_k})\mathbf{v}_d & \cdots & (T_{n,e_k} - T_{1,e_k})\mathbf{v}_d \end{bmatrix} \begin{bmatrix} w_2 \\ w_3 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{e_1} - T_{1,e_1}\mathbf{v}_d \\ \vdots \\ \mathbf{v}_{e_k} - T_{1,e_k}\mathbf{v}_d \end{bmatrix}$$

# Finding Influence Set

- Joints, transformation matrix to local coordinate system of a joint (M<sub>i.e</sub>)
- Weights (w<sub>i</sub>)
- dress pose vertex position (v<sub>d</sub>)

$$\bar{\mathbf{v}}_e = \sum_{i=1}^n w_i M_{i,e} M_{i,d}^{-1} \mathbf{v}_d$$

# Finding Influence Set

- Use singular value decomposition
  - Compensates for possible rank deficient matrix

$$\begin{bmatrix} \sum_{i=1}^{n} w_i T_{i,e_1} \\ \vdots \\ \sum_{i=1}^{n} w_i T_{i,e_k} \end{bmatrix} \begin{bmatrix} \mathbf{v}_d \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{e_1} \\ \vdots \\ \mathbf{v}_{e_k} \end{bmatrix}$$

#### Results

- Video Demo
- Applications
  - Video games
  - Skin retargeting
  - Real-time high-end animation tool

#### Gains and Limitations

- + Doesn't grow in size of example input
- + Compatible with current graphics hardware accelerators and existing game engines
- Poses restricted if example set too small
- Adds new joints to every part of skeleton, sometimes unnecessary

# Conclusion

- Better approximation of natural body deformations
- Quick authoring with preprocessed influence sets
- Real-time animation tool

| Discussion |  |
|------------|--|
|            |  |
|            |  |
|            |  |
|            |  |