CHAPTER ONE

L'Hopital's Rule

Sometimes, there are limits that we cannot evaluate by simply manipulation. For example, how are we suppose to evaluate

$$\lim_{x\to 0}\frac{3^x-1}{x}$$

The only way we can do this, is by using something called L'Hopital's Rule.

Definition 1.1 (L'Hopital's Rule). Suppose we have two arbitrary functions f(x) and g(x). Then, as $x \to 0$ or $x \to \infty$, if both f(x) = 0 and g(x) = 0 or $f(x) = \infty$ and $g(x) = \infty$, then

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)}$$

Or

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)}$$

In other words, you differentiate the numerator and denominator.

Example 1.2. Evaluate $\lim_{x\to 0} \frac{3^x-1}{x}$. Differentiating the numerator and denominator

$$\lim_{x \to 0} \frac{3^x - 1}{x} = \lim_{x \to 0} \frac{3^x \ln 3}{1}$$
$$= \ln 3 \frac{1}{1}$$
$$= \ln 3$$

1.0.1 Challenge Problems

- 1. Prove that $\lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^b x = e^{ab}$.
- 2. Evaluate $\lim_{x \to \infty} \left(\frac{2x-1}{2x+1} \right)^x$.

1.0.2 Solutions

1.

2. We plug in $x=\infty$ we get $(\frac{\infty}{\infty})^{\infty}$, which doesn't work. Instead, we will first separate the fraction

$$\lim_{x \to \infty} \left(\frac{2x - 1}{2x + 1} \right)^x = \lim_{x \to \infty} \left(\frac{2x + 1 - 2}{2x + 1} \right)^x$$
$$= \lim_{x \to \infty} \left(1 - \frac{2}{2x + 1} \right)^x$$

Then we make the substitution u=2x+1, $x=\frac{u-1}{2}$, and limits change from $\lim_{x\to\infty}\to\lim_{u\to\infty}$

$$\lim_{x \to \infty} \left(1 - \frac{2}{2x+1} \right)^x = \lim_{u \to \infty} \left(1 - \frac{2}{u} \right)^{\frac{u-1}{2}}$$
$$= \lim_{u \to \infty} \left[\frac{\left(1 - \frac{2}{u} \right)^u}{\left(1 - \frac{2}{u} \right)} \right]^{\frac{1}{2}}$$

Then, the denominator evaluates to $\lim_{u\to\infty} \left(1-\frac{2}{u}\right)=0$

$$\lim_{u \to \infty} \left[\frac{\left(1 - \frac{2}{u}\right)^u}{\left(1 - \frac{2}{u}\right)} \right]^{\frac{1}{2}} = \lim_{u \to \infty} \left[\left(1 - \frac{2}{u}\right)^u \right]^{\frac{1}{2}}$$

And from the result obtained in the first challenge problem, we know that $\lim_{u\to\infty}\left(1-\frac{2}{u}\right)^u=\lim_{u\to\infty}\left(1+\frac{-2}{u}\right)^u=e^{-2}$

$$\lim_{u \to \infty} \left[\left(1 - \frac{2}{u} \right) \right]^{\frac{1}{2}} = \left[e^{-2} \right]^{\frac{1}{2}}$$
$$= \frac{1}{e}$$