Topic IV

2/8:

Hard-Soft Acid-Base and Donor-Acceptor Concepts of Transition Metals

IV.1 Module 24: Acid-Base Chemistry

- Brønsted-Lowry Acid-Base Theory of Acids and Bases (1923).
 - Acid: Any chemical species (molecule or ion) that is able to lose, or "donate," a hydrogen ion (proton).
 - Base: Any chemical species that is able to gain, or "accept", a proton.
 - A base must have a pair of electrons available to share with the proton; this is usually present as an unshared pair, but sometimes is in a π orbital.
 - Acid-base reactions: The transfer of a proton from an acid to a base.

$$A-H + :BH \Longrightarrow A: +BH_2$$

- Protons do not exist free in solution but must be attached to an electron pair.
- Water is amphoteric.
- In the Brønsted-Lowry paradigm, we cannot separate the acids/bases from the solvent (no protons; only solvated protons). In a non-aqueous medium such as DMSO, however, we have much broader scope of acids and bases.
- Carbon acid: Any molecule containing a C-H bond can lose a proton forming the carbanion.
- Carborane (H(CHB₁₁Cl₁₁)) is a superacid one million times stronger than sulfuric acid since it's conjugate basis is incredibly stable (super easy to delocalize the charge).
- The base dissociation constant or K_b is a measure of basicity. pK_b is the negative log of K_b and related to the pK_a by the simple relationship $pK_a + pK_b = 14$. The larger the pK_b , the more basic the compound.
- Superacid: An acid with acidity greater than that of 100% pure sulfuric acid.
 - In water, the strongest acid you can have is H_3O^+ .
 - The strongest superacids are prepared by the combination of two components, a strong Lewis acid and a strong Brønsted-Lowry acid.
 - Fluoroantimonic acid HF–SbF₅ is 2×10^{19} stronger than 100% sulfuric acid.

- Olah's magic acid (FSO₃H-SbF₅) can dissolve paraffin (candle wax; extremely inert), converting methane into the t-butyl carbocation.
- ullet Hammett acidity function: Can replace the pH in concentrated solutions. Also known as H_0 .

$$H_0 = pK_{BH^+} + \log \frac{[B]}{[BH^+]}$$

- Let BH⁺ be the conjugate acid of a very weak base B, with a very negative pK_{BH^+} . In this way, it is rather as if the pH scale has been extended to very negative values.
- Hammett originally used a series of anilines with EWGs for the bases.
- Superbase: A compound that has a high affinity for protons.
 - Again, these do not exist in water.
 - Often destroyed by water, CO_2 , and O_2 .
 - A superbase has been defined as an organic compound whose basicity is greater than that of proton sponge, which has conjugate pK_a of 12.1.
 - These are valuable in organic chemistry, which abounds in very weak acids.
 - A common superbase is lithium diisopropylamide.