

CS3232 Fundamental of Deep learning

Parts of the contents are from deeplearning.ai, TensorFlow, jalFaizy and other resources on the Internet

Generative Adversarial Network RINIVERSITY

- Generative Adversarial Networks (GANs) are a class of generative models introduced by Ian Goodfellow and his colleagues in 2014.
- GANs consist of two neural network models, the generator and the discriminator, that are trained together through adversarial processes.
- The goal of GANs is to generate new data samples that are indistinguishable from real data samples.
 - Given a training set, a GAN learns to generate new data with the same statistics as the training set.
 - GANs depend much on the training loss of the model, the model tries to minimise loss to generate as real images as possible.

GENERATOR

"The Artist"
A neural network trying to create pictures of cats that look real.

GENERATOR

Thousands of real-world images labeled "CAT"

DISCRIMINATOR

"The Art Critic"
A neural network examining cat pictures to determine if they're real or fake.

DISCRIMINATOR

Many attempts later

Even more attempts later

GAN

- GAN is a generative model which achieves a high level of realism by pairing a generator with a discriminator.
- The generator learns to produce the target output, while the discriminator learns to distinguish true data from the output of the generator.
 - The generator tries to fool the discriminator, and the discriminator tries to keep from being fooled.

•

Generative Models vs. Discriminative Models

Generative models

Generative Models vs. Discriminative Models

DMs and GMs mirror each other RY UNIVERSITY

Generative Models vs. Discriminative Models

Discriminative models

Features

$$X \to Y$$

Generative models

Noise Class **Features** P(X|Y)

Many types of generative models RV UNIVERSITY

Generative Models

Generative Adversarial Networks

Many types of generative models RV UNIVERSITY

Generative Models

GANs

- Generative models learn to produce realistic examples
- Discriminative models distinguish between classes
- They both compete in GANs
 - Applications

GANs Over Time

Creator of GANs

4.5 years of GAN progress on face generation.

arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434 arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196 arxiv.org/abs/1812.04948

the world

GANs Over Time

Face Generation StyleGAN2

These people do not exist!

Karras, Tero, et al. "Analyzing and improving the image quality of stylegan." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

GANs Over Time

Can blur images and have text on them too

StyleGAN2

Mimics the distribution of the training data

Karras, Tero, et al. "Analyzing and improving the image quality of stylegan." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

GANs for Image Translation

From one domain to another

CycleGAN

Park, Taesung, et al. "Semantic image synthesis with spatially-adaptive normalization." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

GANs for Image Translation

GauGAN

Doodles | | | | Pictures

Park, Taesung, et al. "Semantic image synthesis with spatially-adaptive normalization." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2019.

GANs are Magic!

Can animate real life photos

Zakharov, Egor, et al. "Few-shot adversarial learning of realistic neural talking head models." Proceedings of the IEEE International Conference on Computer Vision. 2019.

GANs for 3D Objects

Wu, Jiajun, et al. "Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling." Advances in neural information processing systems. 2016.

Companies Using GANs

Next-gen Photoshop

Text Generation

Data Augmentation

Image Filters

Super-resolution

Intuition behind GANs

- The generator's goal is to fool the discriminator
- The discriminator's goal is to distinguish between real and fake
- They learn from the competition with each other
- At the end, fakes look real

Discriminator's goal

Turtle

Fish

Classifiers

Distinguish between different classes

IT can classify text also

Discriminator

Classifiers (training)

Model probability of each class

Classifiers

Turtle

Bird

P(Cat

Dog

Fish

Classifiers

Classify real vs fake (rather than cat, dog of by

Discriminator

Discriminator

$$P(Fake \mid X)$$
Class Features

Discriminator

$$P(\text{Fake} \mid \text{Fake}) = 0.85$$
 Fake

Summary

- The discriminator is a classifier
- It learns the probability of class Y (real or fake) given features X
- The probabilities are the feedback for the generator

Generator

Turtle Generates examples of the class

Fish

Generate different examples at different my

Neural Networks

Generator: Learning

Generator

Turtle

Bird

Cat

Dog

Fish

Generator

When only one class, no Y

Generator

More common types are more likely to be generally

Summary

- The generator produces fake data
- It learns the probability of features X
- The generator takes as input noise (random features)

Binary cross entropy function

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}; \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

When is this term relevant?
What happens when the prediction is close?
When the prediction is very bad?

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

How about this term?

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log (1 - h(x^{(i)}, \theta))$$

$$y^{(i)} h(x^{(i)}, \theta) | (1 - y^{(i)}) \log (1 - h(x^{(i)}, \theta))$$

$$1 \quad \text{any} \quad 0$$

$$0 \quad 0.01 \quad \sim 0$$

$$0 \quad -1 \quad \text{inf}$$
 Relevant when the label is 0

Ensures that the cost is always greater or equal to 0

- In summary, the BCE cost function has two main terms that are relevant for each of the classes
 - When the prediction and the label are similar, the BCE loss is close to 0
 - When they are very different, BCE loss approaches infinity
- The BCE loss is performed across a mini-batch of several examples, say n examples
 - It takes the average of all the examples
 - Each of those examples can be different. One of them can be 1, the other four could be 0, for their different classes.

Putting all together

GANs Model

Training GANs: Discriminator

The two models are trained alternatively.

Keep both models at the same leve

EUNIVERSITY

Go. change the world

- GANs train in alternating fashion
- The two models should always be at a similar "skill" level
 - If one model significantly better than the other, it doesn't help the other learn because the feedback is not useful.
 - Imagine if you were a beginning artist, and you showed your work to an art
 expert, asking whether your painting looked like a famous piece and all they said
 was 'no'. Because they have a very discerning eye, they know your image is not
 right, but won't be able to tell you how close you are.

Handson Session-1

GAN