Pendelsimulation

Jürgen Womser-Schütz, https://github.com/JW-Schuetz

Mathematisches Pendel

Abbildung 1: Mathematisches Pendel der Länge L und der Masse m

Auf das Pendel der Länge L und mit der Masse m (siehe Abbildung 1) wirkt zunächst mit der Erdbeschleunigung g die Gewichtskraft $F_G = mg$. Man kann sie in einen radialen Anteil F_R und einen tangentialen Anteil F_T zerlegen. Für die Dynamik des Pendels ist nur die tangentiale Komponente relevant. Es gilt für sie

$$F_T = F_G \sin \phi.$$

Mit den Newtonschen Gesetzen muss weiterhin gelten

$$F_T = -mL \frac{d^2\phi}{d^2t}.$$

Damit folgt für den Auslenkungswinkel $\phi\left(t\right)$ als Funktion der Zeit t die Differentialgleichung

$$\frac{d^2\phi(t)}{dt^2} + \omega^2 \sin\phi(t) = 0 \tag{1}$$

mit

$$\omega = \sqrt{\frac{g}{L}}. (2)$$

Beschreibung als dynamisches System

Definition

In Anlehnung an [1] wird ein dynamisches System (Fluss) auf X durch

- ullet einen metrischen Raum X mit der Metrik d
- eine additive Halbgruppe I über den reellen Zahlen, d.h. es gilt $0 \in I$ und für $r, s, t \in I$ besitzt die Addition $+:I\times I\to I$ die beiden Eigenschaften

Kommutativgesetz:
$$r + s = s + r$$

Assoziativgesetz:
$$(r+s) + t = r + (s+t)$$

 \bullet und eine stetige Abbildung $\pi:X\times I\to X$ mit den für alle $x\in X$ geltenden Eigenschaften

Identitätseigenschaft:
$$\pi(x,0) = x$$

Halbgruppeneigenschaft:
$$\pi (\pi (x, t), s) = \pi (x, t + s)$$

definiert.

Motivation

Sei $X = \mathbb{R}$ und $I = \mathbb{R}$. Das Anfangswertproblem

$$\frac{d}{dt}x(t) = x(t)$$

$$x(0) = x_0$$
(3)

besitzt die eindeutige Lösung

$$x(t) = x_0 \exp(t)$$
.

Beschreibung dieser Lösung durch die Abbildung π liefert

$$\pi(x_0, t) = x_0 \exp(t). \tag{4}$$

Behauptung Halbgruppeneigenschaft

Es gilt die Halbgruppeneigenschaft

$$\pi \left(\pi \left(x,t\right) ,s\right) =\pi \left(x,t+s\right) .$$

Beweis Halbgruppeneigenschaft

Wegen (4) gilt für x_0 und t

$$\pi(x_0, t) = x_0 \exp(t). \tag{5}$$

Dann gilt für $x_0 \to \pi\left(x_0, t\right)$ und $t \to s$

$$\pi(x_0, t) = \pi(x_0, t) \exp(s)$$

und somit durch Einsetzen von (5)

$$\pi(x_0, t) = x_0 \exp(t) \exp(s)$$
$$= x_0 \exp(t + s) \blacksquare$$

$$= x_0 \exp(t+s) \blacksquare$$

Literatur

