6.002 CIRCUITS AND ELECTRONICS

Incremental Analysis

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 7

Nonlinear Analysis

- Analytical method
- Graphical method

Today

► Incremental analysis

Reading: Section 4.5

Method 3: Incremental Analysis

Motivation: music over a light beam

Can we pull this off?

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 7

Problem: The LED is nonlinear → distortion

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000

Lecture 7

Insight:

Trick:

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 7

Result

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 7

Result

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 7

The incremental method: (or small signal method)

- 1. Operate at some DC offset or bias point (V_D, I_D)
- 2. Superimpose small signal v_d (music) on top of V_D .
- 3. Response (i_d) to small signal (v_d) is approximately linear.

Notation:

What does this mean mathematically?

Or, why is the small signal response linear?

$$i_D = f(v_D)$$

We replaced

 $v_D = V_D + \Delta v_D$ increment

about V_D

using Taylor's Expansion to expand $f(v_D)$ near $v_D = V_D$:

$$i_{D} = f(V_{D}) + \frac{df(v_{D})}{dv_{D}} \Big|_{v_{D} = V_{D}} \cdot \Delta v_{D}$$

$$+ \frac{1}{2!} \frac{d^{2} f(v_{D})}{dv_{D}} \Big|_{v_{D} = V_{D}} \cdot \Delta v_{D}^{2} + \cdots$$

neglect higher order terms because Δv_D is small

We can write

$$X: I_D + \Delta i_D \approx f(V_D) + \left| \frac{df(v_D)}{dv_D} \right|_{v_D = V_D} \cdot \Delta v_D$$

equating DC and time-varying parts,

$$I_D = f\left(V_D\right)$$
 — operating point
$$\Delta i_D = \frac{df\left(v_D\right)}{dv_D}\bigg|_{v_D = V_D} \cdot \Delta v_D$$
 constant w.r.t. Δv_D

So,
$$\Delta i_D \propto \Delta v_D$$
 By notation, $\Delta i_D = i_d$ $\Delta v_D = v_d$

In our example,

$$i_D = a e^{bv_D}$$

From
$$\bigotimes$$
: $I_D + i_d \approx a e^{bV_D} + a e^{bV_D} \cdot b \cdot v_d$

Equate DC and incremental terms,

$$I_D = a \ e^{bV_D} \longrightarrow \text{operating point}$$
 (aka bias pt. aka DC offset)

$$i_d = \underbrace{(a e^{bV_D})} b \cdot v_d$$
 $i_d = \underbrace{I_D \cdot b \cdot v_d} \longrightarrow \text{small signal behavior constant} \longrightarrow \text{linear!}$

Graphical interpretation

$$I_D = a e^{bV_D}$$
 \longrightarrow operating point

$$i_d = I_D \cdot b \cdot v_d$$

we are approximating (A) with (B)

We saw the small signal \leftarrow mathematically

graphically mathematically now, circuit

Large signal circuit:

Small signal reponse: $i_d = I_D b v_d$

behaves like:

$$\begin{array}{ccc}
+ v_d & - \\
\hline
 & W & - \\
\hline
 & I_a & R = \frac{1}{I_b b}
\end{array}$$

small signal circuit:

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 7