MCROPROCESSOR APPLICATIONS Delay Subroutine Using Register Pair

32.2		
ROGRAM Mnemonics	Operands	Comments
Label LXI	D, FFFF	Get FFFF in register pair D-E.
	D	Decrement count.
LOOP DCX	A, D	Move content of register D to accumulator.
ORA	. e gray. E	Check if D and E are zero.
JNZ	LOOP	If D-E is not zero, jump to LOOP.
RET		Return to main program.

States required for each instruction of the above program are:

Instruction		States
LXI	D	10
DCX	D	6
MOV	A, D	4
ORA	E	4
JNZ		7/10
RET		10

If the count in register pair D-E is N the total number of states are:

States =
$$10 + N(6 + 4 + 4) + (N-1) \times 10 + 1 \times 7 + 10$$

= $24 N + 17$

Delay = $(24 \text{ N} + 17) \times \text{ time for one state.}$

Maximum delay will occur when count N = FFF hex

= 65,535 decimal.

Maximum delay =
$$(24 \times 65,535 + 17) \times 320 \times 10^{-9}$$
 second

= 20.97664 milliseconds.

This delay subroutine is given in the monitor program of 8085 microprocessor-kits. The count in register pair D-E is to be stored by the programmer. From DCX D to RET of the programmer being 03BC to the program are stored in the monitor program, the memory location being 03BC to One can call the delay subroutine as shown below:

Get count = 5000H LXI D, 5000H Call DELAY

5000H is a typical count value desired by the programmer. One can take any count CALL between 0000-FFFF as required. If the required delay is of a few milliseconds to delay subbedelay subroutine given in monitor's program may be called. For greater delay one write his write his own delay subroutine as discussed in subsequent subsections. 153 -

states for the execution of each instruction of the program are as follows:

The states for the end	How many times the instruction is executed	States
MVI B, 10 H LOOP I MVI C, 78H LOOP II DCR C JNZ LOOP II	120×16	7×1 7×16 $4 \times 120 \times 16$ $10 \times (120 - 1) \times 16 + 7 \times 16$
DCR B JNZ LOOP I	16 16 1	4×16 $10 \times (16 - 1) + 7 \times 1$ 1×10
+ 7	$1 + 7 \times 16 + 4 \times 120 \times 16 + 10 \times (120 - 1)$ $1 \times 16 + 4 \times 16 + 10 \times (16 - 1) + 7 \times 1 + 1$ $1 \times 12 + 7680 + 19040 + 112 + 64 + 150 + 1$	10 / 1

Total states =
$$7 \times 1 + 7 \times 16 + 4 \times 120 \times 16 + 10 \times (120 - 1) \times 16 + 7 \times 16 + 4 \times 16 + 10 \times (16 - 1) + 7 \times 1 + 10 \times 1$$

= $7 + 112 + 7680 + 19040 + 112 + 64 + 150 + 7 + 10$
= 27182 sates

Delay time = $27182 \times 320 \times 10^{-9}$ second = 8.6912 milliseconds.

Toget maximum delay using two registers both registers B and C are loaded by FF. Total number of states for the maximum delay is

$$7 \times 1 + 7 \times 255 + 4 \times 255 \times 255 + 10 \times (255 - 1) \times 255 + 7 \times 255$$

$$+ 4 \times 255 + 10 \times (255 - 1) + 7 \times 1 + 10 \times 1$$

$$= 7 + 1785 + 260100 + 647700 + 1785 + 1020 + 2540 + 7 + 10$$

$$= 914954 \text{ states}.$$

Delay time = $914954 \times 320 \times 10^{-9}$ second

= 0.29278528 second.

= 0.293 second (approximately).

The approximate delay time is calculated as follows:

States for incl. 1 :- the program are: