## БІЛЕТ № 8

- 1. Незалежні події A і B такі, що P(A) = 0.45,  $P(A \cap B) = 0.18$ . Знайти ймовірності P(B),  $P(A \cup B)$ ,  $P(\overline{A} \cup \overline{B})$ .
- 2. Випадкова величина ξ має рівномірний розподіл на відрізку [0,4]. Знайти математичне сподівання та дисперсію для  $\eta=3$   $\xi+9$ . Чому дорівнює коваріація та коефіцієнт кореляції між ξ та η?

л  $f(x;\alpha) = \begin{cases} 0, & \text{якщо} \quad x < 0, \\ \frac{1}{\alpha} \exp\{-\frac{1}{\alpha}\pi\} \iota \mu_0 & x \end{cases} \ge 0.$  $\xi_1, \xi_2, ..., \xi_n$ 3. Нехай Знайти кількість інформації за Фішером для вибірки. Розглядається оцінка  $\hat{\alpha} = \overline{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_i$  параметра  $\alpha$ . Перевірити, чи досягається для даної оцінки рівність у

нерівності Крамера-Рао.

максимальног вгрогтдностт.

5. Нехай  $\xi_1, \xi_2, \dots, \xi_n$  — вибірка із розподілу з щільністю  $f(x;\alpha) = \begin{cases} 0, & \text{якщо } x < 0, \\ \frac{1}{n} \exp\{-\frac{1}{n}x\}, & \geq 0. \end{cases}$ 

Знайти кількість інформації за Фішером для вибірки.

5) 
$$\xi_{n}, \xi_{2}, \dots, \xi_{n}$$
 - budjica  $z_{n} \log n$ .  $z_{n}^{2}$  upiconicino

$$f(x, \lambda) = \begin{cases} 0, & x < 0 \\ \frac{1}{2} \cdot e^{\frac{x}{2}}, & x \geq 0 \end{cases}$$

$$L(x, \lambda) = \prod_{k=1}^{n} f(\xi_{k}, \lambda) = \prod_{k=1}^{n} \frac{1}{2} \cdot e^{\frac{x}{2}} = \frac{1}{2} \ln(\frac{1}{2} \cdot e^{\frac{x}{2}} \lambda) = \frac{1}{2} \ln(\frac{1}{2} \cdot e^{$$

## БІЛЕТ № 12

- 1. Нехай X і Y відповідно сума і різниця очок, що з'явилися при підкиданні двох гральних кубиків. Знати сумісний розподіл та довести, що дані величини залежні, але некорельовані.
- 2. Випадкова величина  $\xi$  має розподіл Коші:  $f(x) = 1/(\pi(1+x^2))$ . Знайти а)  $P\{|\xi| > 1\}$ , б)  $M(|\xi|/(1+\xi^2))$ .
- 3. Нехай  $\xi_1, \xi_2, ..., \xi_n$  вибірка із розподілу Релея, тобто із щільністю  $f(x;\theta) = \begin{cases} \frac{x}{\theta} \exp\{-\frac{x^2}{2\theta}\}, & \text{якщо} \quad x > 0, \\ 0, & \text{якщо} \quad x \le 0. \end{cases}$

Знайти кількість інформації за Фішером для вибірки. Для оцінки  $\hat{\theta} = \frac{1}{2n} \sum_{i=1}^{n} \xi_i^2$  перевірити, чи досягається рівність в нерівності Крамера-Рао.

що максимальний з цих збитків буде більше 3. 3. Випадкова величина  $\xi$  має розподіл Коші:  $f(x) = 1/(\pi(1+x^2))$ . 3найти а)  $P^{\{\xi\}>1\}}$ , б)  $M^{\{\xi\}/(1+\xi^2)}$ .

| энаити ај | 3. $\int f(x) = \frac{f}{\pi(f_2 x^2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | P &   \   > 1 \ - ? , M   \   - ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | $a F(x) = \int \frac{dt}{\pi(t+k^2)} = \frac{arctgt}{n} \Big _{-\infty}^{\times} = \frac{arctg \times + \frac{1}{2}}{n} = P \xi \xi \leq x \xi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | P {   {   >   5 0 P { { } >   5 + P { { } { } < -   3 = } } dx + \int \frac{dx}{11(1+x^2)} = \int \frac{dx}{11(1+x^2)} = \frac{1}{11(1+x^2)}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | 2 archyx   a archyx   = 1 (114xt) on 11(14xt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | 17 / 17 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | - 1/- 1/4 - 1/4 - 1/4 2/4 = - 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | 2 4 1 2 4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | MIEI A THE TOTAL OF THE PARTY O |
|           | 8) MISI 1+ 82 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           | $MI\xi I = \int x \cdot f_{g1}(x) dx \odot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | $f_{1(1)}(x) dx = (\frac{2}{\pi} \cdot arctgx)' = \frac{2}{\pi} \cdot \frac{1}{1+x^2} = \frac{2}{\pi(1+x^2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25        | $ \bigcirc \int_{-\infty}^{\infty} x \cdot \frac{2}{\pi (1+x^2)} dx = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{x}{1+x^2} dx = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | $= \begin{vmatrix} 1+x^{2} = t \\ 2xdx - dt \end{vmatrix} = \frac{2}{t} \int \frac{dt}{2t} = \frac{1}{t^{2}} \int \frac{dt}{t} = \frac{1}{t^{2}} \left( \ln  t + x^{2}  \right) \Big _{\infty}^{\infty}$ $= \frac{1+x^{2}}{2} + \frac{1}{t^{2}} \int \frac{dt}{t} = \frac{1}{t^{2}} \left( \ln  t + x^{2}  \right) \Big _{\infty}^{\infty}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | $xdx = \frac{dt}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | = f (lim ln 1+x21 - lim ln 1+x21) = x = -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | = 1 lim (len 11+x21- lin 11+x21) = 1 .0 = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

незсунутою, конзистентною оцінкою для о:

5. Нехай 
$$\xi_1, \xi_2, \dots, \xi_n$$
 – вибірка із розподілу Релея, тобто із щільністю 
$$f(x;\theta) = \begin{cases} \frac{x}{\theta} \exp\{-\frac{x^2}{2\theta}\}, & \text{якщо} \quad x > 0, \\ 0, & \text{якщо} \quad x \le 0. \end{cases}$$

Знайти оцінку для  $\,\theta\,$  методом максимальної вірогідності.



- 1. Нехай X максимальне значення, що з'явилося при підкиданні двох гральних кубиків. Знайти для нього розподіл, математичне сподівання та дисперсію.
- 2. Нехай  $\xi_1$ ,  $\xi_2$ ,... $\xi_n$  вибірка з рівномірним на [a,b] розподілом. Знайти оцінки параметрів а і b методом моментів.
- 3. Нехай  $\xi_1, \xi_2, ..., \xi_n$  вибірка із логарифмічно нормального розподілу із шільністю

$$f(x;\mu) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma_0^2}x} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma_0^2}\right\}, & \text{якщо} \quad x > 0, \\ 0, & \text{якщо} \quad x \leq 0, \end{cases}$$
 
$$\sigma_0 > 0 \qquad \qquad \theta = \frac{1}{n} \sum_{i=1}^n \ln \xi_i$$
 ефективною оцінкою параметра ? Дослідити

дану оцінку на незміщеність.

4. Нехай  $\xi_1$ ,  $\xi_2,...\xi_n$  — вибірка з рівномірним на [a,b] розподілом. Знайти оцінки параметрів а і b методом моментів.

4.  $\frac{2}{5}$ ,  $\frac{2}{5}$ ,  $\frac{2}{5}$  =  $\frac{6.63}{2}$  pageogram  $M_1 = \frac{a \cdot b}{2}$ ,  $M_2 = \Re(\frac{1}{5})^2 + M(\frac{2}{5})^2 = \frac{(a - b)^2}{12}$   $\int \frac{a \cdot 6}{2} = M_1$   $\int \frac{a \cdot 6}{2} = M_2$   $\int \frac{a \cdot 6}{12} = \frac{M_2}{12} = \frac{M_2}{2\sqrt{3}} = \frac{2}{5} = \frac{2}$ 

5. Нехай  $\xi_1, \xi_2, \dots, \xi_n$ — вибірка із логарифмічно нормального розподілу із щільністю  $f(x;\mu) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma_0^2}x} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma_0^2}\right\}, & \text{якщо} \quad x > 0, \\ 0, & \text{якщо} \quad x \leq 0, \end{cases}$ 

 $\sigma_0 > 0$   $\theta = \frac{1}{n} \sum_{i=1}^n \ln \xi_i$  ефективною та незсунутою оцінкою параметра ?



БІЛЕТ № 22

1. У результаті перевірки 500 контейнерів зі скляними виробами було добуто такі дані про кількість пошкоджених виробів:

| I | $n_i$ | I      | $n_i$ |
|---|-------|--------|-------|
| 0 | 199   | 5      | 3     |
| 1 | 169   | 6      | 1     |
| 2 | 87    | 7      | 1     |
| 3 | 31    | 8 i    | 0     |
| 4 | 9     | більше |       |
|   |       | Разом  | 500   |

(i — число пошкоджених виробів, n— к-ть контейнерів з i пошкодженими виробами). Чи можна вважати, що к-ть пошкоджених виробів, яка припадає на контейнер, підпорядковується закону Пуассона з довірчою йм. 0,95.

2. Нехай  $\xi$  та  $\eta$  — незалежні випадкові величини рівномірно розподілені на [0,2]. Знайти функцію розподілу та щільність для  $\eta+\xi$ .

3. Нехай  $\xi_1, \xi_2, ... \xi_n$  – вибірка з щільністю  $f(x, \theta) = \frac{1}{\theta} \exp\{-\frac{x}{\theta}\}$ , якщо

х>0. Чи буде  $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \xi_{i}$  ефективною, незсунутою і конзистентною оцінкою параметра  $\theta$ ?

2. Нехай  $\xi$  та  $\eta$  — незалежні випадкові величини рівномірно розподілені на [0,2]. Знайти функцію розподілу для величин а) тах  $\{\eta, \xi\}$ ; б) математичне сподівання для неї.

