ЗАДАЧА РОЗДІЛУ СУМІШІ.

АЛГОРИТМ EXPECTATION-**MAXIMIZATION (EM)**

Постановка задачі розділу суміші

У випадках коли форму класу не вдається описати одним розподілом, намагаються описати її сумішшю розподілів.

<u>"Вибрати об'єкт x із суміші p(x)"</u> означає спочатку вибрати j-ту компоненту суміші з дискретного розподілу $\{p(j) \mid j=1,...,k\}$, а потім вибрати об'єкт x відповідно до щільності $p(x \mid j) = p_j(x)$.

Щільність розподілу на множині X як суміш k розподілів:

$$p(x) = \sum_{j=1}^{k} p(j)p(x \mid j) = \sum_{j=1}^{k} w_j p_j(x) \qquad \sum_{j=1}^{k} w_j = 1 \qquad w_j \ge 0$$

 $p(j) = w_j$ - апріорна імовірність j—ї компоненти суміші, ваговий коефіцієнт в сумі,

 $p_{j}(x)\,$ - щільність розподілу або функція правдоподібності j–ї компоненти суміші.

Нехай функції щільності відрізняються лише значеннями параметрів:

$$p_j(x) = \varphi(x; \theta_j)$$

Базовий алгоритм Expectation-Maximization (EM)

Дано: вибірка X з m випадкових і незалежних спостережень x із суміші p(x), відоме число k. Відома функція φ .

Необхідно: оцінити вектор параметрів $\Theta = (w_1, ..., w_k, \theta_1, ..., \theta_k)$.

Загальна ідея алгоритму ЕМ:

- 1) Обчислити початкове наближення вектору параметрів Θ
- 2) повторювати

$$Q := EStep(\Theta)$$

$$\Theta := MStep(\Theta, Q)$$

3) поки Q і/або Θ не стабілізуються

Е-крок базового алгоритму ЕМ

Е-крок: розраховується очікуване значення вектору скритих змінних Q на основі поточного наближення вектора параметрів Θ

Нехай $p(x;\theta_j)$ - щільність імовірності того, що об'єкт x отримано з j–ї компоненти суміші:

$$p(x;\theta_j) = p(x)p(\theta_j \mid x) = w_j p_j(x)$$

Позначимо $q_{ij} = p(\theta_j \mid x_i)$ - невідома апостеріорна імовірність того, що об'єкт x_i отримано з j—ї компоненти суміші.

Візьмемо q_{ij} в якості **скритих змінних**.

$$\sum_{j=1}^{k} q_{ij} = 1 \qquad \forall i = 1, ..., m \qquad q_{ij} = \frac{w_j p_j(x_i)}{\sum_{s=1}^{k} w_s p_s(x_i)} \qquad \forall i, j$$

М-крок базового алгоритму ЕМ

М-крок: розв'язується задача максимізації правдоподібності і знаходиться наступне наближення вектору Θ на основі поточних значень векторів Q і Θ :

$$R(\Theta) = \ln \prod_{i=1}^{m} p(x_i) = \sum_{i=1}^{m} \ln \sum_{j=1}^{k} w_j p_j(x_i) \rightarrow \max_{\Theta}$$

при обмеженні $\sum_{j=1}^k w_j = 1$

Розв'язок цієї задачі оптимізації: $w_j = \frac{1}{m} \sum_{i=1}^m q_{ij}$ j = 1,...,k

$$\theta_j = \arg\max_{\theta} \sum_{i=1}^m q_{ij} \ln \varphi(x_i, \theta)$$

Отримано k незалежних оптимізаційних задач.

Розділ змінних має місце внаслідок вдалого вибору скритих змінних.

Обгрунтування М-кроку, виведення формул

Розв'язання задачі методом множників Лагранжа

$$L(\Theta, X) = \sum_{i=1}^{m} \ln \sum_{j=1}^{k} w_{j} p_{j}(x_{i}) - \lambda (\sum_{j=1}^{k} w_{j} - 1)$$

$$\frac{\partial L}{\partial w_{j}} = \sum_{i=1}^{m} \frac{p_{j}(x_{i})}{\sum_{s=1}^{k} w_{s} p_{s}(x_{i})} - \lambda = 0 \qquad j = 1, ..., k$$

$$(*)$$

суму всіх k рівностей :

Помножимо ліву і праву частини (*) на
$$w_j$$
, візьмемо суму всіх k рівностей :
$$\sum_{s=1}^{m} \sum_{j=1}^{k} \frac{w_j p_j(x_i)}{\sum_{s=1}^{k} w_s p_s(x_i)} = \lambda \sum_{j=1}^{k} w_j \implies \lambda = m$$

Помножимо ліву і праву частини (*) на w_i , підставимо $\lambda = m$:

$$w_{j} = \frac{1}{m} \sum_{i=1}^{m} \frac{w_{j} p_{j}(x_{i})}{\sum_{s=1}^{k} w_{s} p_{s}(x_{i})} = \frac{1}{m} \sum_{i=1}^{m} q_{ij}$$

Обгрунтування М-кроку, виведення формул

Розв'язання задачі методом множників Лагранжа

$$L(\Theta, X) = \sum_{i=1}^{m} \ln \sum_{j=1}^{k} w_{j} p_{j}(x_{i}) - \lambda \left(\sum_{j=1}^{k} w_{j} - 1\right)$$

$$\frac{\partial L}{\partial \theta_{j}} = \sum_{i=1}^{m} \frac{w_{j}}{\sum_{s=1}^{k} w_{s} p_{s}(x_{i})} \frac{\partial}{\partial \theta_{j}} p_{j}(x_{i}) = \sum_{i=1}^{m} \frac{w_{j} p_{j}(x_{i})}{\sum_{s=1}^{k} w_{s} p_{s}(x_{i})} \frac{\partial}{\partial \theta_{j}} \ln p_{j}(x_{i})$$

$$= \sum_{i=1}^{m} q_{ij} \frac{\partial}{\partial \theta_{j}} \ln p_{j}(x_{i}) = \frac{\partial}{\partial \theta_{j}} \sum_{i=1}^{m} q_{ij} \ln p_{j}(x_{i}) = 0 \qquad p_{j}(x) = \varphi(x; \theta_{j})$$

Отримана умова співпадає з необхідною умовою максимуму в задачі максимізації зваженої правдоподібності:

$$\theta_j = \arg\max_{\theta} \sum_{i=1}^m q_{ij} \ln \varphi(x_i, \theta)$$
 $j = 1, ..., k$

Алгоритм ЕМ з фіксованою кількістю компонент

Дано:

вибірка даних
$$X = (x_1, ..., x_m)$$

k – число компонентів суміші

$$\Theta = ((w_j, \theta_j) \mid j = 1, ..., k)$$
 — початкове наближення параметрів суміші

 δ – параметр критерію зупинки алгоритму

Знайти:

$$\Theta = ((w_j, \theta_j) \mid j = 1, ..., k)$$
 — оптимізований вектор параметрів суміші

Алгоритм ЕМ з фіксованою кількістю компонент

Повторювати

Е-крок:

для всіх
$$i=1,...,m$$
 $q_{ij}^0 \coloneqq q_{ij}$ $q_{ij}^0 \coloneqq \frac{w_j \varphi(x_i,\theta_j)}{\sum\limits_{s=1}^k w_s \varphi(x_i,\theta_s)}$ М-крок:

для всіх j = 1,...,k

$$w_j = \frac{1}{m} \sum_{i=1}^m q_{ij} \qquad \theta_j = \arg\max_{\theta} \sum_{i=1}^m q_{ij} \ln \varphi(x_i, \theta)$$

Поки $\max_{i,j} |q_{ij}^0 - q_{ij}| > \delta$

Сума береться за всіма елементами навчальної вибірки з ваговими коефіцієнтами q_{ij} .

Вивести вектор $\Theta = ((w_j, \theta_j) \mid j = 1,...,k)$

Недоліки базового алгоритму ЕМ

- \square алгоритм нестійкий до вибору початкового значення вектора параметрів, оскільки він знаходить локальний максимум, бо оптимізаційна функція $R(\Theta)$ невипукла;
- швидкість збіжності може бути повільною;
- lacktriangledown необхідно знати k кількість компонентів суміші
 - візуально оцінити, спроектувавши вибірку на площину,
 - залучити експертів,
 - розв'язувати задачу декілька разів при різних значеннях k, побудувати графік залежності $R(\Theta)$ від k, вибрати найменше k, при якому має місце різкий скачок $R(\Theta)$ (критерій "крутого схилу").

Узагальнений алгоритм ЕМ

Розв'язуючи задачу оптимізації

$$\theta_j = \arg\max_{\theta} \sum_{i=1}^m q_{ij} \ln \varphi(x_i, \theta)$$
,

достатньо зробити одну або декілька ітерацій в напрямку знаходження максимуму і перейти на Е-крок.

Цей алгоритм також має непогану збіжність.

Стохастичний алгоритм ЕМ

- Результати стохастичного алгоритму практично не залежать від початкового наближення вектора параметрів.
- ☐ Стохастичний алгоритм знаходить екстремум, близький до глобального.

Ідея: випадковим чином, але ціленаправлено, "встряхувати" навчальну вибірку на кожній ітерації.

Це "вибиває" оптимізаційний процес з локальних максимумів.

Стохастичний алгоритм ЕМ

Нехай навчальна вибірка X розбита на компоненти суміші K_j , кожний об'єкт x_i відноситься до єдиної K_j , j=1,...,k .

Ітераційно повторюються три кроки:

- 1) S-крок: стохастичне моделювання
- 2) Е-крок: без змін
- 3) М-крок: розв'язується задача максимізації *незваженої* правдоподібності, і знаходиться наступне наближення вектору Θ на основі поточних значень векторів Q і Θ .

Стохастичний алгоритм ЕМ

\$-крок: стохастичне моделювання

orall i=1,...,m генерується вектор $y_i=(y_{i1},y_{i2},...,y_{ik})$, який має поліноміальний розподіл з параметрами 1 і $q_{ij}:\ p(y_{ij}=1)=q_{ij}$.

За векторами y_i визначається розбиття вибірки X на K_j , а також кількість елементів у кожному K_j : $v_1, v_2, ..., v_k$.

М-крок:
$$w_j = \frac{v_j}{m}$$
 $j = 1,...,k$

Розв'язується задача максимізації *незваженої* правдоподібності

$$\theta_j = \arg\max_{\theta} \sum_{x_i \in K_j} \ln \varphi(x_i, \theta)$$
 $j = 1, ..., k$

Алгоритм EM з послідовним додаванням компонент (розв'язання задачі кластеризації)

Дано:

вибірка даних $X = (x_1, ..., x_m)$

R — максимально допустимий розкид правдоподібності об'єктів, m_{θ} — мінімальна довжина вибірки, за якою можна відновити щільність,

 δ – параметр критерію зупинки.

Знайти:

k – число компонентів суміші,

$$\Theta = ((w_j, \theta_j) \mid j = 1, ..., k)$$
 – вектор параметрів суміші.

Цей алгоритм дозволяє розв'язати як проблему вибору кількості компонент, так і проблему вибору початкового наближення.

Алгоритм EM з послідовним додаванням компонент (розв'язання задачі кластеризації)

1) початкове наближення – одна компонента

$$\theta_1 := \arg\max_{\theta} \sum_{i=1}^m \ln \varphi(x_i, \theta)$$
 $w_1 := 1$ $k := 1$

- 2) для всіх k = 2,3,...
 - знайти об'єкти з низьким значенням правдоподібності:

$$U := \{x_i \in X : p(x_i) < \max_i p(x_j) / R\}$$

- якщо $\mid U \mid < m_0$, то вихід з циклу по k
- початкове наближення для k-ої компоненти:

$$\theta_k := \arg\max_{\theta} \sum_{x_i \in U} \ln \varphi(x_i, \theta)$$
 $w_k := |U|/m$

$$w_j := w_j (1 - w_k)$$
 $j = 1,...,k-1$

- виконати базовий алгоритм EM(X, k, Θ , δ)