Unit 6.3 Dynamic Programming III

Algorithms

FE3980

May 19, 2020

Unit 6.3 Dynamic Programming III

String Editing Problem

- Given two strings $X = "x_1 x_2 \cdots x_n"$ and $Y = "y_1 y_2 \cdots y_m"$, where x_i , $1 \le i \le n$, and y_i , $1 \le j \le m$, are members of a finite set of symbols known as the alphabet.
- The string editing problem is to transform X into Y using the following editing operations with corresponding cost and to find the sequence of operations that minimizes the total cost.
 - Delete the symbol x_i from X with cost $D(x_i)$,
 - Insert the symbol y_i to Y with cost $I(y_i)$,
 - Change the symbol x_i of X into y_i with cost $C(x_i, y_i)$.
 - Note that keep x_i to become y_i has no cost.
- Example, X = "elate" and Y = "later". Total cost to transform X into Y is D(e) + I(r).

Step	X	Y	Cost
1 /	elate	Dunne	D(e)
2	elate	l	0
3	elate	la	0
4	elate	lat	0
5	$elat {\color{red} e}$	late	0
6	elate	later	I(r)
			D(e) + I(r)

String Editing — Algorithm

Algorithm 6.3.1. Wagner Fischer Algorithm

```
// Transform X into Y with minimum cost using matrix M.
   // Input: int n, m, strings X, Y, cost D, I, C
   // Output: min cost matrix M.
 1 Algorithm WagnerFischer (n, m, X, Y, D, I, C, M)
 2 {
 3
        M[0,0] := 0;
        for i := 1 to n do M[i, 0] := M[i - 1, 0] + D(X[i]);
 4
        for j := 1 to m do M[0, j] := M[0, j - 1] + I(Y[j]);
 5
        for i := 1 to n do {
 6
             for j := 1 to m do {
 7
                 if (X[i] = Y[j]) then m_1 := M[i-1, j-1];
 8
                 else m_1 := M[i-1, j-1] + C(X[i], Y[j]);
 9
                 m_2 := M[i-1,j] + D(X[i]);
10
                 m_3 := M[i, j-1] + I(Y[j]);
11
                 M[i,j] := \min(m_1, m_2, m_3);
12
13
        \} // When done, M[n, m] contains the minimum cost of the transformation
14
15 }
```

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

May 19, 2020

3/22

String Editing — Example

• Example. Given X="elate", Y="later" and the cost functions D(x)=1, I(y)=1, C(x,y)=2, $x,y\in\{A,\cdots,Z,a,\cdots,z\}$, $x\neq y$.

		l	a	t	e	r
	0	1	2	3	4	5
e	1	2	3	4	3	4
l	2	1	2	3	4	5
a	3	2	1	2	3	4
t	4	3	2	1	2	3
e	5	1 2 1 2 3 4	3	2	1	2

Matrix M of

WagnerFischer algorithm.

Thus the transformation sequence is

Step	operation	Y	
1	Delete	e	
2	Keep	l	l
2222 3	Keep	a	la
34	Keep	t	lat
25	Keep	e	late
6	Insert	r	later

• And the total cost is D(e) + I(r) = 2.

- After WagnerFischer algorithm, the following algorithm traces the M matrix to generate the transformation sequence.
 - ullet Note that array T has the transformation sequence but is in reverse order.

String Editing — Transformation Trace

Algorithm 6.3.2. Trace

```
// Trace the matrix M[n][m] to find the transformation operations.
   // Input: int n, m, cost D[], I[], C[] and M[n][m]
   // Output: T[] transformation.
 1 Algorithm Trace(n, m, M, D, I, C, T)
          i := n; j := m; k := 0;
 3
 4
          while (i > 0 \text{ and } j > 0) do {
                else if (i > 0 \text{ and } j > 0 \text{ and } (M[i, j] = M[i - 1, j - 1] + C(X[i], Y[j])) then {
 5
                      T[k] := 'C'; i := i - 1; j := j - 1; k := k + 1; // Change X[i] to Y[j].
 6
                else if (j = 0 \text{ or } (M[i, j] = M[i, j - 1] + I(Y[j]))) \{ // \text{ Add } Y[j].
 8
                      T[k] := T'; j := j - 1; k := k + 1;
 9
10
                else if (i = 0 \text{ or } (M[i, j] = M[i - 1, j] + D(X[i]))) then \{// \text{ Delete } X[i].
11
12
                       T[k] := 'D'; i := i - 1; k := k + 1;
13
14
                else { // No changes.
                       T[k] := ' - '; i := i - 1; j := j - 1; k := k + 1;
15
16
          \} // Array T has the transformation sequence but is in reverse order.
17
18 }
```

- In this algorithm, it is assumed that C > I > D.
 - If the assumption is not correct then modifications are necessary to ensure correct results.

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

May 19, 2020

5/2

String Editing — Complexities

- Algorithm WagnerFischer
 - for loop, lines 6–13, executes $n \times m$ times
 - ullet for loops, lines 6,7, execute n and m times, separately
 - Overall time complexity $\mathcal{O}(mn)$
- Algorithm Trace while loop, lines 4-21, executes at most (m+n) times
 - Time complexity $\mathcal{O}(m+n)$
- The longest common substring problem
 - ullet Given two strings, X and Y, find a common substring Z such that Z has the most number of characters.
 - Example, X= "elate" and Y= "later" the longest common substring is Z= "late". Z has 4 characters.
 - The WagnerFischer algorithm can be used to find the longest common substring.
 - The Trace algorithm needs to be modified to find and print out the common substring.

0/1 Knapsack Problem

- The 0/1 knapsack problem is a variation of the knapsack problem.
 - Given n objects, each with profit p_i and weight w_i , $1 \le i \le n$, to be placed into a sack that can hold maximum of m weight. However, there is an additional constraint that each object must be placed as a whole into the sack, or not at all. That is, find x_i , $1 \le i \le n$, such that

maximize
$$\sum_{i=1}^n p_i x_i,$$
 subject to $\sum_{i=1}^n w_i x_i \leq m,$ and $x_i = 0$ or $1, \qquad 1 \leq i \leq n.$

- Let $f_n(m)$ be the optimal solution to n-object 0/1 knapsack problem.
- For the n'th object it can either be placed into the sack or not, thus

$$f_n(m) = \max \left(f_{n-1}(m), f_{n-1}(m-w_n) + p_n \right). \tag{6.3.2}$$

- $f_n(m)$ must be the larger of the following two cases
- n-th object is not placed into the sack, $x_n = 0$,
 - In this case, $f_n(m) = f_{n-1}(m)$.
- n-th object is placed into the sack, $x_n = 1$,
 - In this case, $f_n(m) = f_{n-1}(m w_n) + p_n$.

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

May 19, 2020

7/22

0/1 Knapsack — Recursive Algorithm

• Using Eq. (6.3.2) a recursive version of the 0/1 knapsack algorithm can be formulated.

Algorithm 6.3.3. Recursive DKP

```
// Find the solution array x for the 0/1 knapsack problem.
   // Input: int n, profit p, weight w, m
   // Output: Solution x.
 1 Algorithm DKPr(n, p, w, m, x)
 2 {
 3
          if (n=1) then {
                if (m \geq w[1]) then {
 4
                      x[1] := 1; return p[1];
 7
                else {
                      x[1] := 0; return 0;
8
9
10
          f_1 := \mathtt{DKPr}(n-1, p, w, m, x); // \mathsf{object} \ n \mathsf{not} \mathsf{placed}
11
          if (m \ge w[n]) then // placing n'th object
12
13
                f_2 := DKPr(n-1, p, w, m-w[n], x) + p[n];
          else f_2 := 0; // no room for additional objects
14
          if (f_1 > f_2) then {
15
16
                x[n] := 0; return f_1;
17
          else {
18
19
                x[n] := 1; return f_2;
20
21 }
```

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

May 19, 2020

0/1 Knapsack — Example

• Given 3 objects, $(p_1,p_2,p_3)=(1,2,5)$, $(w_1,w_2,w_3)=(2,3,4)$, and m=6. Find the optimal 0/1 knapsack solution, (x_1,x_2,x_3) , $x_i=0$ or $x_i=1$, $1 \le i \le 3$, that maximizes the profit,

$$P = \sum_{i=1}^{3} p_i x_i.$$

- The function DKPr is invoked by calling P = DKPr(3, p, w, 6, x)
 - And the calling sequence of the function is

```
// DKPr calling sequence  \begin{array}{l} \text{DKPr}(3,p,w,6,x) \\ \text{DKPr}(2,p,w,6,x) \ // \ \text{object 3 not placed} \\ \text{DKPr}(1,p,w,6,x) \ // \ \text{object 2 not placed} \\ P:=1 \ ; \ x:=(1,0,0) \ ; \\ \text{DKPr}(1,p,w,3,x) \ // \ \text{object 2 placed} \\ P:=3 \ ; \ x:=(1,1,0) \ ; \\ \text{DKPr}(2,p,w,2,x) \ // \ \text{object 3 placed} \\ \text{DKPr}(1,p,w,2,x) \ // \ \text{object 2 not placed} \\ P:=6 \ ; \ x:=(1,0,1) \ ; \\ \text{DKPr}(1,p,w,-1,x) \ // \ \text{object 2 placed} \\ P:=-\infty \ ; \ x:=(0,1,1) \ ; \\ \text{Maximum profit } P:=6,\ x:=(1,0,1). \end{array}
```

Algorithms (EE3980)

Unit 6.3 Dynamic Programming II

May 19, 2020

9/2

0/1 Knapsack — Complexity

- Note that function DKPr is invoked 7 times
 - All possible combinations of $x_i = 0$ and $x_i = 1$, $1 \le i \le n$ are tested for the maximum profit.
- The time complexity of DKPr algorithm is $\mathcal{O}(2^n)$.
- Line 11 of DKPr algorithm can eliminate unnecessary function calls
 - ullet If there is no room for object n then it is not necessary to call <code>DKPr</code> further.
- The worst-case complexity of DKPr remains as $\mathcal{O}(2^n)$.

0/1 Knapsack — Dynamic Programming Approach

Algorithm 6.3.4. 0/1 Knapsack

```
// Find the solution array x for the 0/1 knapsack problem.
    // Input: int n, profit p, weight w, m
    // Output: Solution x.
 1 Algorithm DKP(n, p, w, m, x)
 2 {
         S_0^1 := \{(0,0)\};
 3
         for i := 1 to n-1 do {
               S_1^i := \{(p+p_i, w+w_i) | (p, w) \in S_0^i \text{ and } w+w_i \leq m\};
 5
               S_0^{i+1} := \texttt{MergePurge}(S_0^i, S_1^i);
 7
         (px, wx) := last pair in S_0^n;
 8
         (py, wy) := (p' + p_n, w' + w_n) where w' is the largest w' for any pairs
 9
               (p', w') \in S_0^n such that w' + w_n \leq m;
10
         if (px > py) then x_n := 0;
11
12
         else x_n := 1;
         TraceBack x_{n-1}, \cdots, x_1;
13
14 }
```

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

May 19, 2020

11 / 2

0/1 Knapsack — Example Revisited

• Given 3 objects, $(p_1,p_2,p_3)=(1,2,5)$, $(w_1,w_2,w_3)=(2,3,4)$, and m=6. Find the optimal 0/1 knapsack solution, (x_1,x_2,x_3) , $x_i=0$ or $x_i=1$, $1\leq i\leq 3$, that maximizes the profit, $P=\sum_{i=1}^3 p_i x_i$.

The sets of feasible solutions are derived as the following.

$$S_0^1 = \{(0,0)\}$$

$$S_1^1 = \{(1,2)\}$$

$$S_0^2 = \{(0,0), (1,2)\}$$

$$S_1^2 = \{(2,3), (3,5)\}$$

$$S_0^3 = \{(0,0), (1,2), (2,3), (3,5)\}$$

- The last pair in S^2 is $(p_x, p_y) = (3, 5)$, and $(p_y, w_y) = (6, 6)$.
- Thus the optimal solution $\sum p_i x_i = 6$ and $\sum w_i x_i = 6$.
 - Since $p_x \not> p_y$, $x_3 = 1$.
 - Note that $(p_y, w_y) (5, 4) = (1, 2) \notin S_1^1$, thus $x_2 = 0$.
 - Trace back again, $(1,2) \in S_1^0$, therefore $x_1 = 1$.
 - Finally we have $(x_1, x_2, x_3) = (1, 0, 1)$ and $\sum p_i x_i = 6$, $\sum w_i x_i = 6$.

0/1 Knapsack — Properties

- Note that lines 9, 10 of Algorithm (6.3.4) actually requires to evaluate S_1^n .
- For the last example, we have

$$S_1^3 = \{(5,4), (6,6)\}.$$

since (7,7) and (8,9) both have $w+w_n \nleq m$.

ullet And the optimal solution can be found when S_0^3 and S_1^3 are merged together which is

$$S_0^4 = \{(0,0)(1,2)(2,3), (3,5), (5,4), (6,6)\}.$$

- Note that comparing (3,5) and (5,4), the former has smaller profit, 3<5, but larger weight, 5>4, thus it is not a likely solution.
- The former, (3,5), is dominated by the latter, (5,4).
- When merging two feasible sets, the dominated solutions should be purged.
- ullet Of course, by definition, the solutions with weight larger than m are also purged.

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

May 19, 2020

13 / 2

0/1 Knapsack — Dynamic Algorithm

Algorithm 6.3.5. 0/1 Knapsack

```
1 struct PW {
 2
          double p, w; // for profit and weight of each object
 4 Algorithm DKnap(n, p, w, x, m)
 \mathbf{5} // p and w are arrays of n profits and weight; m capacity, x solution.
          b[0] := 0; pair[1].p := 0; pair[1].w := 0; //S_0^1
 7
          t := 1 \; ; \; h := 1 \; ; \; // \; start and end of S_0^1
 8
          b[1] := next := 2; // next free spot in pair array
 9
          for i:=1 to n do \{\ //\ {
m generate}\ S^{i+1}_0
10
                 k := t;
11
                 u := \texttt{Largest}(pair, t, h, w[i], m); // \text{ largest } u, pair[u].w + w[i] \leq m.
12
                 for j:=t to u do \{\ //\ {\sf generate}\ S^i_1\ {\sf and}\ {\sf merge}
13
                       pp := pair[j].p + p[i]; ww := pair[j].w + w[i];
14
                       while ((k \le h) \text{ and } (pair[k].w \le ww)) do {
15
16
                              pair[next].p := pair[k].p; pair[next].w := pair[k].w;
                              next := next + 1; k := k + 1;
17
18
                       if ((k \le h) \text{ and } (pair[k].w = ww)) then {
19
                              if (pp < pair[k].p) then pp := pair[k].p; // new entry dominated
20
21
                              k := k + 1;
22
                       if (pp > pair[next - 1].p) then \{ // \text{ new entry is dominating } \}
23
24
                              pair[next].p := pp; pair[next].w := ww;
25
                              next := next + 1;
26
```

Algorithms (EE3980) Unit 6.3 Dynamic Programming III

0/1 Knapsack — Dynamic Algorithm, II

```
while ((k \le h) \text{ and } (pair[k].p \le pair[next-1].p)) \text{ do } k := k+1;
27
28
                 while (k \leq h) do \{\ //\ {\sf merge\ remaining\ terms\ from\ } S^i_1
29
30
                       pair[next].p := pair[k].p; pair[next].w := pair[k].w;
31
                       next := next + 1; k := k + 1;
32
                 t := h + 1; h := next - 1; b[i + 1] := next; // initialize for S_0^{i+1}
33
34
          TraceBack(n, p, w, m, pair, x); // find solution x
35
36 }
```

- In the above algorithm
 - pair is an array to store all feasible solutions, $S_0^i, 0 \le i \le n$.
 - b is an array to store the indices of S_0^i in pair array
 - Function Largest (pair, t, h, w[i], m) finds the largest u satisfying

$$pair[u].w + w[i] \le m, \qquad t \le u \le h$$

- The for loop of lines 10–34 generates S_0^i , $1 \le i \le n$.
- First S_0^{i-1} is copied into S_0^i Then S_1^{i-1} is generated and merged into S_0^i
- Lines 19-26 remove dominated entries

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

0/1 Knapsack — Example

• Given 3 objects, $(p_1, p_2, p_3) = (1, 2, 5)$, $(w_1, w_2, w_3) = (2, 3, 4)$, and m = 6. Find the optimal 0/1 knapsack solution, (x_1, x_2, x_3) , $x_i = 0$ or $x_i = 1$,

$$1 \leq i \leq 3$$
, that maximizes the profit, $P = \sum_{i=1}^{3} p_i x_i$.

• After executing the algorithm DKnap, we have

	1	2	3	94	5	6	7	8	> 9	10	11	12
pair[].p	0	0	131	0	11/55	2	3	0	1	2	5	6
pair[].w	0	07	2	0	2	3	5	Poz	2	3	4	6
	b[0]	b[1]		b[2]	\\\\	N	1	b[3]				

- Note that $(p, w) = (3, 5) \in S_0^3$ but not S_0^4 since it is dominated by (5, 4).
- The last entry, (pp, ww) = (6, 6), is the optimal solution.

0/1 Knapsack — Example

- To find if each object is placed into the sack or not, $x[i], 1 \le i \le n$.
- One starts from i = n and trace back to 1.
 - The optimal solution is (pp, ww),
 - If $(pp, ww) \in S_0^n$ then x[n] = 0
 - $(pp_{n-1}, ww_{n-1}) = (pp, ww).$
 - Otherwise x[n] = 1,
 - $(pp_{n-1}, ww_{n-1}) = (pp p[n], ww w[n]).$
- Repeat checking for S_0^{n-i} and update (pp_{n-i}, ww_{n-i}) , one finds the solution $x[i], 1 \leq i \leq n$.
- For the last example,
 - $(6,6) \notin S^2$, thus x[3] = 1,
 - $(1,2) \in S^1$, and x[2] = 0,
 - $(1,2) \notin S^0$, thus x[1] = 1.
 - Optimal solution x = (1, 0, 1), (p, w) = (6, 6).

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

May 19, 2020

17/2

0/1 Knapsack — Complexity

ullet Let the space needed to store S_0^i in pair be $|S_0^i|$, then

$$|S_0^i| \le 2^{i-1}$$

And the total space needed for pair is

$$\sum_{i=1}^{n} |S_0^i| \le \sum_{i=1}^{n} 2^{i-1} = 2^n - 1$$

- Thus the space complexity is $\mathcal{O}(2^n)$
- The time needed to generate S_0^i is $\Theta(S_0^{i-1})$, therefore the total time to generate all pairs is

$$\sum_{i=1}^{n} |S_0^{i-1}| \le \sum_{i=1}^{n-1} 2^{i-1} = 2^{n-1} - 1$$

and the time complexity is $\mathcal{O}(2^n)$.

- The time complexity of the Traceback function is $\mathcal{O}(n^2)$ since it involves n searches in the range b[i] and b[i+1].
 - Each search can take $\log(|S_0^i|) = \log(2^{i-1}) = (i-1)\log 2$.
 - Total time is $\sum_{i=1}^{n} (i-1) \log 2 = \mathcal{O}(n^2)$.

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

System Reliability

- ullet Suppose a system is composed of n stages of devices connected in series.
 - Let r_i be the reliability of device D_i the probability that device D_i function normally.
 - Then the reliability of the system is $\prod_{i=1}^n r_i = r_1 r_2 \cdots r_n$.

- ullet To improve the reliability of the system, one can replace stage i by multiple, m_i , devices connected in parallel.
 - Then the reliability of stage i becomes $\phi_i(m_i) = 1 (1 r_i)^{m_i}$.
 - The system reliability becomes $\prod_{i=1}^n \phi_i(m_i)$.

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

May 19, 2020

19 / 22

Reliability Design Problem

• Assuming device D_i costs c_i each piece, and the total cost of the entire system is c, the reliability design problem is to find the multiplicity of each device, m_i for each D_i such that

maximize
$$\prod_{i=1}^n \phi_i(m_i)$$
 subject to $\sum_{i=1}^n c_i m_i \leq c$ (6.3.3) and $m_i \in N$ and $m_i \geq 1, \quad 1 \leq i \leq n.$

• Since $m_i \geq 1$ and $\sum c_i = c$, we can define

$$u_i = \lfloor (c + c_i - \sum_{j=1}^n c_j)/c_i \rfloor$$
 (6.3.4)

And the reliability design problem can be reformulated as

maximize
$$\prod_{i=1}^n \phi_i(m_i)$$
 subject to $\sum_{i=1}^n c_i m_i \leq c$ and $1 \leq m_i \leq u_i$. (6.3.5)

Reliability Design Problem, II

• Given the n stages and the total cost of the optimal solution is $f_n(c)$, then the multiplicity, m_n , for stage n should be determined by

$$f_n(c) = \max_{m_n=1}^{u_n} \left(\phi_n(m_n) \cdot f_{n-1}(c - c_n m_n) \right)$$
 (6.3.6)

It is also assumed that $f_0(c) = 1$ for any c.

- Then this problem is similar to the 0/1 knapsack problem and the dynamic approach can be used to find the solution of the problem.
- Example, 3 devices, D_1 , D_2 and D_3 , with $r_1=0.9$, $r_2=0.8$ $r_3=0.5$, $c_1=30$, $c_2=15$, $c_3=20$, and the total cost $c\leq 105$. (It can derived that $u_1=2$, $u_2=3$ and $u_3=3$).

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

May 19, 2020

21 / 22

Summary

- String editing problem
 - $\mathcal{O}(mn)$
- ullet 0/1 knapsack problem
 - \circ $\mathcal{O}(2^n)$
- System reliability design
 - Large time complexity

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

May 19, 2020