	II. Lichamentheorie
HE	priemlichamen, charact, linalgebra in lichamen toegepast
	f ry K lichaam. K'⊂K heet een deellichaam ab geldt (a) 1 € K'
	(c) $a,b\in K'$, $b\neq 0 \Rightarrow ab-1\in K'$
Vgl	met deelring $R' \in R$: (D1) $1 \in R'$ (D2) (R',t) is ong van (R,t) (D3) $a,b \in R' \implies ab \in R$
	we tien dat deellichamen deel ringen zijn: (a) \Leftrightarrow (D1), (a),(b) \Rightarrow (D2) want $c = 1 - 1 \in K'$ en $a - b \in K'$ en $(a),(c) \Rightarrow$ as $a,b \in K'$ dan $a,1b^{-1} \in K'$ dus $K' \ni a(b^{-1})^{-1} = ab \Rightarrow (D3)$
U	de omkering is echter niet waar als een dedring geen lihaam is byroorbeeld, roots 7.[i] c C, dan kan het ook geen decilichaam zijn, want
Sit/ Prop	W'ck dulichaam is met this en 0,1 wit K (die ook in K' higgen) relf een hinaam.
<u>Bew</u>	we welen at dat een derlying $R' \subset R$ voor witchwingering $R' \subset R$ voor witchwingeringering $R' \subset R$ voor witchwingeringering $R' \subset R$ voor witchwingeringeringeringeringeringeringeringer
	(R6): in feite vijn (R1) Hm (R5) te bewijten wit (D1) Hm (D3) en het feit dat K comm. ring is. nu pas gebruiten we (c): als a,b \in K' dan ab' \in K. Dat levert namelijk op. 1,b \in K' voor b \in K', dan 1b' \in K'
	en wel dereffde als in K. Dus is K' delingering, comm. der bihaam.

	Doorsneden van deetlichamen zijn relf weer Lichamen.	
	(Priemlihaam) zy C de collectie van alle deellichamen van K. Dan is het priemlihaam van K, Ko, gedefinieerd als	
	$K^{\circ} = \bigcup_{K, \epsilon \in C} K,$	
	Dit is het "kleinste" deellichaam van K mbt- inclusie-ordening op C. Immers als K'EC dan Ke CK'. We vien ook dat vanwege (a) en (b) wolgt o, 1 EK', YK'EC dus 0,1 EKo	
St. 8.2	Zij K lichaam. Dan is Ko ofwel isomorf met a cfuel met en Fp voor een reter puingetol p.	0
Bew	Definier $K: \mathbb{Z} \to K$ door $K(n) = 1+1+\cdots+1 = n1 \in K_0$ $K(-n) = -(1+1+\cdots+1) = -(n1) \in K_0$ $K(0) = 0 \in K_0$ Von $n \in \mathbb{Z}_{\geq 0}$, dit dekt alle genauer. Merk op dat wegens $0.1 \in K_0$ en $(a)_{+}(b)_{+}(c)$ die van toepassing zijn op K_0 , geidt $1+1+\cdots+1 \in K_0$ en ook $-(1+\cdots+1) \in K_0$ en $0 \in K_0$	
	Hundred is $K(\overline{7}_1) \subset K_0$. Boundien voigt $K(n+m) = (n+m)1 = n1+m1$ en $K(1) = (1)1 = 1$ en $K(nm) = (nm)1 = (n1)(m1) = K(n) + K(m)$ $= K(n)K(m)$	
-	dus K is een ring shomomorpisme K: T. → Ko Nu hangt de rest of van wat Ker(K) wordt. Maar leest: het besid van een ringhomomorpisme	
	een lihaam is heeft het gen mideles (enheden zijn geen mideles en a ook niet) en 1,0 E Ko en 1 \neq 0 in K dus 1\neq 0 in Ko. Bovendien 1,0 E K (Z). Dus K (Z)	
	is een domein en omdat $\mathbb{Z}/\text{Ker}(\mathbb{R}) \cong \mathbb{K}(\mathbb{Z})$ volgt wegens st. 5.5 dat $\text{Ker}(\mathbb{R})$ een priemideaal in \mathbb{Z} is, dus $\text{Ker}(\mathbb{R}) = 503$ of (p) met p priemigalal.	
	(me wordt duidelijke waar we naartee gaan!)	

(i) as $Ker(K) = \{0\}$, dan is K injectief. Du goan we een nieuwe functie definières € Ko wegens (c) $K_1: \Omega \to K_0$ door $K_1(\frac{\alpha}{b}) = K(\alpha) K(b)^{-1}$ due ab $a = a^{ab} = b^{a}a$ is don most is dit welgedefinieerd? voigen 70(a) 70(b) = 70(a) 70(b)-1 neem dus b ≠ 0 ≠ b? a'b = b'a in Z. Dan want $\mathcal{H}(\alpha)\mathcal{H}(b) = \mathcal{H}(\alpha b) = \mathcal{H}(\alpha'b) = \mathcal{H}(\alpha')\mathcal{H}(b)$ $\kappa(a)\kappa(b') = \kappa(a')\kappa(b)$ en dus reminu. reminu 水(a) 水(b) 水(b)) か(b) = 水(a) 水(b) 水(b)) で(b) en air gegt $\kappa(a) \kappa(b)^{-1} = \kappa(a) \kappa(b')^{-1} \Rightarrow \kappa_1(\frac{a}{b}) = \kappa_1(\frac{a'}{b'})$ welgedefiniend bovendin voca n e 72 geldt in Q n= n dun $K_{+}(n) = K_{+}(\frac{n}{1}) = K_{-}(n) \times (1)^{-1} = K(n)$, dus $K_{+} = K_{-}(n)$ Het is dus een welgedefinieure voortretting van te op a. Boverdien is het een homom, want $K_1\left(\frac{\partial}{\partial a}\right) = K(ac) K(bd)^{-1} = K(a) K(c) T(b)^{-1} K(d)^{-1}$ *(a) *(b) -1 * (c) *(d) -1 = *, (2) *, (5) $K_1\left(\frac{a}{b}+\frac{a}{d}\right) = K_1\left(\frac{ad+bc}{bd}\right) = K(ad+bc)K(bd)^{-1}$ = $(\kappa(a)\kappa(d) + \kappa(b)\kappa(c))\kappa(b)\kappa(d)$ $= \kappa(a) \kappa(b)^{-1} + \kappa(c) \kappa(a)^{-1} = \kappa_{+}(\frac{a}{b}) + \kappa_{+}(\frac{c}{a})$ - en K, (1) = K(1) = 1 Dus is Ky: Q - Ko een lihaanshomomoefisme waarvan we weten (H2) dat het dus injectief is, en dus bovendien is $K_{i}(\Omega) \cong \Omega$ Maar dan is $K_{i}(\Omega)$ lithours dat en dellicheam is van K, dun Ko C K, (Q). omdat het beeld K, (Q) CKo, volgt Q = Ko. (ii) Stel Ker $(\kappa) = (p)$. Don is $\kappa(\mathbb{Z}) \cong \mathbb{Z}/(p)$ en T(p) =: Fp is een hihaam, dus K(T) is deellisheam van Kovan Maay Ko is het televiste deellihaam van K dus $K_0 \subset \mathcal{R}(\mathbb{Z})$, $\mathcal{R}(\mathbb{Z}) \subset K_0 \Rightarrow K_0 = \mathcal{R}(\mathbb{Z}) \cong \mathbb{F}_{\mathbb{R}}$

1/	1 4 4 4 6	
M	araketistiek	

	Marakeths welk	\cup
Def	voor K lishaam met priemlishaam Ko	
	definieren we het karakteristiek van K, char (K),	
	ab volgt: char(K)=0 ab Ko= Q	
	$char(K) = p ab Ko \stackrel{\sim}{=} \mathbb{F}_p . \Pi$	U
<u>Cpm</u>	We vien dus dat (char(k)) = Ker(n)	U
Opm 2		<u> </u>
	willekeurige ringen op dere mænier met $K: \mathbb{Z} \to \mathbb{R}$.	
	Als einter R geen domain is, kan het voor komen	U
	char (R) niet o of priem hoeft to typ.	
	Anders is $N(Z)$ well een domein, $zodat$ wit $/ker(K) \stackrel{\sim}{=} N(Z)$	
	volgt det Ker(K) wel don o of p wordt voortgebrouht.	U
	K is tevens voor R een commutatieve ring het unieke	-0-
	homomorfisne Z - R. Inners volgt met derelfde stoppen	
	uit het burg dat K een homomorpine is, en uniciteit	
	volgt omdat, als $\phi: \mathbb{Z} \to \mathbb{R}$ homomorphisme is, dan voor $n \in \mathbb{Z}_{>0}$ volgt $n = 1 + 1 + \cdots + 1 \in \mathbb{Z}$, dus $\phi(n) =$	
	$\phi(1+1++1) = \phi(1) + + \phi(1)$ " terner en dit is (daar $\phi(1)=1$),	-
	1+1++1 ER Hetrefde volgt von -n E Z-go en O	
	dws \$ = k volgt.	
Approximation	(Gerolg) R domein met char(R) = p priem >0 (priem is nogal wiedes want I/pZ = x(Z) CR, sen domein)	
	dan geldt von alle ap EK dat	
	$(a+b)^p = a^p + b^p$ en gevolg hieran is dat	
	F: R -> R don X H XP een endomogisme (homom R -> R)	<u> </u>
	en als R een lichaam is, is F injectief)

Beings gebuik het binomium van newton voor commutatieve ringen: $(a+b)^n = \sum_{k=0}^{\infty} (kb^n-k)^n = \sum_{k=0}^$ voor p gelat: $\binom{p}{k} = p(p-1) \cdot (p-k+1)$ at k > 0, dan noemer - de heeft alleen factoren kleiner dan p en de teller heeft een factor p. Omdat p priem is, bean er geen Jackor p in de normer ritten want dan rouden klevrere factoren samen p hurren vormen den is p niet irred. contraditie, of bythoan is er dan geen uniete priemonto van de noemer omdat dere rowel in factoren zonder als met p outs kan worden. Dat blopt ook niet, Z is PIO. dus omdat er toch ein geheil getal nitkomt, volgt n-1 dan () door p derlboar is = (a+b) = aP+bP+ Z () a b m- b = aP+bP+PC = aP+bP. omdat R commutating is, voigt F(xy) = (xy)P = xPyP = F(x)F(y) en F(1) = 1P = 1 en F(x+y) = (x+y)P = xP+yP = F(x)+F(y) dun F: R -> R is indeedoad homom. Als R een lihoam is most ker(F) = {0} ryn (2.10) dur in F injectief we normen een lichoam perfect ab F:K >K ook surjectief is; dan bestaat den voor p = char(K)priem 70 de vrieke marktswortel van $x \in K$ voor
alle $x \in K$. (\mathcal{V}_X) ook whamen Kniet char(K) = 0 heten perfect Dej F heet ook wel het Frobenius homomospine - vectorrainten en lineaire algebra: een K-vertoisminte voor een likaam K is een abelse (additief geschieven) groep (V, +, 0) die behalve aan G1 H/m G4

ook voldoet aan: et is een (V1) $\lambda(v+w) = (\lambda v) + (\lambda w)$ HIEK YWEV $(\lambda + \mu) V = (\lambda V) + (\mu V)$ WYMEK WEV $\lambda(\mu\nu) = (\lambda\mu)\nu$ HAMEK VEN (V3) (V4) als KCL (ichaamsuitbreiding is (we regger dat L K uitbreidt previes als K een deellishaam van Lis) dan is Lihb-een K-vr als we as beweiking : KXV guvoon vermenigvuldiging in L nemen beperkt tot KXL: wegens de twee distributière wetten vogen (V1) & (V2), wegens 1 E K & the L de identiteet volgt (V4) en wegen associativiteet van volgt (V3). Def De graad van de uitbreiding is dan gedefinieeed als dim (L) = B wall Been K-basis voor BCV rodat von elke vEV er een uniek eindig cantal v,, - vn EV (nEN,) ign en evenvel), ... In EK met $w = \lambda_1 V_1 + \lambda_2 V_2 + \cdots + \lambda_n V_n$ (dit kan een ka din aliteitsgetal righ, vook reggen wig dan simpelweg "din (L) = ") nouvoaldeles want V is abels en we hebben dan quotientgrop V/W = {v+W: v ∈ V3 welke weer een wester winte han worden door (2, v+W) +> (2v)+W offend (X,V) D XV als scalar verm. to kieren