Strom und Magnetismus

Übungsaufgaben

Andreas Waeber

25.02.2009

1 Elektrischer Strom

- 1. Strahlungsheizer: Ein Strahlungsheizer nimmt bei einer Potenzialdifferenz von 115V eine elektrische Leistung von 1250W auf.
 - a) Wie groß ist der Strom durch das Heizelement?
 - b) Wie groß ist der Widerstand des Heizelements?
 - c) Wie viel Wärme erzeugt das Gerät in einer Stunde?
- 2. Ohmsche Widerstände I: Zwei gleich lange Drähte bestehen aus demselben Material. Draht A ist ein massiver, zylindrischer Draht mit dem Durchmesser 1,0mm. Draht B ist ein Hohlzylinder mit einem Außendurchmesser von 2,0mm und einem Innendurchmesser von 1,0mm. Bestimmen Sie das Verhältnis $\frac{R_A}{R_B}$ der jeweils zwischen den Enden der Drähte gemessenen Widerstände.
- 3. Ohmsche Widerstände II: Ein 1m langer Eisendraht hat auf der einen Seite einen Durchmesser $d_1 = 1mm$ und verjüngt sich gleichmässig auf einen Durchmesser $d_2 = 0,25mm$ am anderen Ende. Berechnen Sie
 - a) den Gesamtwiderstand des Drahtes $\varrho_{Eisen} = 8,71 \cdot 10^{-8} \Omega m$
 - b) die pro Längeneinheit abfallende Leistung für den Fall, dass an den Draht eine Spannungsquelle mit U=1V angeschlossen wird.
- 4. Entladung eines Kondensators: Ein Kondensator wird über einen Widerstand $R = 50k\Omega$ entladen. Zur Zeit $t_0 = 0$ liegt an ihm die Spannung $U_0 = 200V$. Nach 10 s ist die Spannung auf U = 180V gesunken. Berechnen Sie Kapazität, Zeitkonstante und die zur Zeit t_0 auf einer Platte befindliche Ladung Q_0 .

5. Widerstandsnetzwerk I: Betrachten Sie das unten skizzierte Widerstandsnetzwerk aus sechs identischen Widerständen R. Wie groß ist der elektrische Gesamtwiderstand zwischen dem Mittelpunkt M und dem Punkt A?

6. Widerstandsnetzwerk II: Bestimmen Sie für den Stromkreis (unten) den Strom durch jeden der beiden Widerstände sowie die Potenzialdifferenz zwischen den Punkten a und b. Die Batteriespannungen und Widerstandswerte seien gegeben zu $U_1=6,0V,U_2=5,0V,U_3=4,0V,R_1=100\Omega,R_2=50\Omega$

7. Widerstandsnetzwerk III: Im Stromkreis (unten) sei $U_1=3,0V,U_2=1,0V,R_1=5,0\Omega,R_2=2,0\Omega,R_3=4,0\Omega$

- a) Mit welcher Rate wird Energie in den Widerständen R_i in Wärme umgewandelt?
- b) Welche Leistungen geben die beiden Batterien ab?

2 Statische Magnetfelder

8. Hohlzylinder: Ein unendlich langer Hohlzylinder mit dem Innenradius a und dem Außenradius b führe einen Gleichstrom I. Berechnen sie die magnetische Feldstärke \vec{B} im gesamten Raum, das heißt für alle Radien r, mit dem Ampereschen Gesetz.

9. Gebogener Leiter: Gegeben sei ein in der x-y-Ebene liegender dünner Leiter mit einer halbkreisförmigen Ausbuchtung mit Radius R, durch den ein Strom I fließt. Berechnen Sie die magnetische Feldstärke im Koordinatenursprung mit dem Biot-Savart-Gesetz

10.Kraft auf Li-Ionen: Eine Ionenquelle erzeugt ⁶Li-Ionen (Masse 6u, Ladung +e). Die Ionen werden durch eine Potenzialdifferenz von 10kV beschleunigt und bewegen sich dann horizontal in einen Raumbereich, in dem ein homogenes, vertikal gerichtetes Magnetfeld vom Betrag B=1,2T besteht. Wie stark muss ein dem Magnetfeld in demselben Raumbereich überlagertes elektrisches Feld sein, damit die Ionen die Feldkonfiguration ohne Ablenkung passieren?

- 11. Kraft auf Leiter: Ein von einem Strom I=4 A durchflossener Leiter der Länge L= 5 cm erfährt in einem homogenen Magnetfeld der Feldstärke B= 0,3 T die Kraft F= 0,04 N. Welchen Winkel bildet der Leiter mit den magnetischen Feldlinien?
- 12. Parallele Drähte: Zwei lange gerade Drähte sind im Abstand 2cm parallel zueinander wie in der Skizze abgebildet in z-Richtung gespannt und werden jeweils in die gleiche Richtung vom Strom I=10A durchflossen. Wie groß ist die Kraft pro Längeneinheit, die die Drähte aufeinander ausüben?

- 13. Dipolmoment: In einer kreisförmigen Drahtschleife mit dem Radius 8cm fließe ein Strom von 0,2A. Ein Einheitsvektor parallel zum magnetischen Dipolmoment \vec{p}_m der Schleife sei gegeben durch $0,6\hat{e}_x-0,8\hat{e}_y$. Die Schleife befinde sich in einem homogenen Magnetfeld $\vec{B}=0,25\hat{e}_x+0,3\hat{e}_z$. Bestimmen Sie
 - a) das auf die Schleife wirkende Drehmoment (in der Schreibweise mit Einheitsvektoren)
 - b) die potenzielle Energie der Schleife.
- 14. Hall-Effekt: Ein 20 mm breiter und 1,0 mm dicker Metallstreifen (Ladungsträger sind Elektronen) werde von einem Strom der Stärke 20 A durchflossen und befinde sich in einem homogenen Magnetfeld von 2,0 T (siehe Skizze). Die gemessene Hall-Spannung betrage 4,27 μV . Berechnen Sie die Driftgeschwindigkeit v_D und die Ladungsträgerdichte n.

