Análise Multivariada Visualização de Dados

Professor: George von Borries

Departamento de Estatística Universidade de Brasília

2023

Exemplo 1: Suponha que possuímos medidas (em polegadas) do peito, cintura e quadril de 20 indivíduos. Registramos também o sexo do indivíduo. Ver programa medidas.R no site do curso.

Obs	Peito	Cintura	Quadril	Sexo
1	34	30	32	masculino
2	37	32	37	masculino
3	38	30	36	masculino
:	:	1: ()	:
18	36	26	37	feminino
19	38	28	40	feminino
20	35	23	35	feminino
4				

⁽Nota: Exemplo retirado de Everitt, 2011.)

Apresentamos a seguir alguns exemplos de representações gráficas dos dados.

Representações gráficas univariadas: box-plot, gráfico de pontos, Ramo e folhas, Histograma.

Representações gráficas multivariadas:

Chernoff Faces veja Chernoff (1973).

Pacote TeachingDemos do R - gráficos das medidas (peito, cintura e quadril) de 20 pacientes. Comandos face e face2.

Os parâmetros implementados nos comandos face são:

- 1. altura da face, 2. largura da face, 3. formato da face, 4. altura da boca, 5. largura da boca,
- 6. curvatura do sorriso, 7. altura dos olhos, 8. largura dos olhos, ...(cabelo, nariz e orelha).

Exemplo 2: Iris Data contém dados de um género de plantas (IRIS) com flor, muito apreciado por suas diversas espécies, que apresentam flores de cores muito vivas. O nome popular é lírio.

O problema é classificar as flores nos três tipos denominados setosa, versicolor e virginica. As características disponíveis são: largura e comprimento da sépala (parte da flor que dá sustentação a pétala) e pétala (p=4).

Três tipos de flores Iris: (a) setosa, (b) versicolor, (c) virginica.

Fonte: Murphy, K.P. *Machine Learning*, 2012.

Andrews Plot: gráfico que permite descobrir a existência de grupos. O gráfico de Andrews (David F. Andrews, 1972) permite as dimensões através de séries de Fourier Finitas $(-\pi < t < \pi)$,

$$f(t) = \frac{x_1}{\sqrt{2}} + x_2 \times sen(t) + x_3 \times cos(t) + x_4 \times sen(2t) + x_5 \times cos(2t) + \dots,$$

O R produz este gráfico através da função Andrews do pacote Andrews.

Funções disponíveis:

$$1: f(t) = \frac{x_1}{\sqrt{2}} + x_2 \times sen(t) + x_3 \times cos(t) + x_4 \times sen(2t) + x_5 \times cos(2t) + \dots$$

$$2: f(t) = x_1 \times sen(t) + x_2 \times cos(t) + x_3 \times sen(2t) + x_4 \times cos(2t) + \dots$$

$$3: f(t) = x_1 \times cos(t) + x_2 \times cos((2t)^{0.5}) + x_3 \times cos(3t^{0.5}) + \dots$$

$$4: f(t) = \frac{x_1}{2^{0.5}} + x_2 \times (sen(t) + cos(t)) + x_3 \times (sen(t) - cos(t)) + x_4 \times (sin(2t) + cos(2t)) + \dots$$

Andrews Plot (data Iris)

Matriz de Dispersão

O R produz gráficos de correlação bem interessantes.

 \forall

Ver https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html

Prof. George von Borries

Visualização de Dados (8/13)

Gráfico de Perfis ou Parallel Plot

Gráfico de Perfis ou Parallel Plot

Gráfico de Calor ou Heatmap

Fonte: https://warwick.ac.uk/fac/sci/moac/people/students/peter_cock/r/heatmap

Gráfico de Calor ou Heatmap

Imagem de Scintigrafia do Estomoago.

Podemos ver uma foto como um Gráfico de Calor?

