

CURSO: SUPERIOR DE TECNOLOGIA EM SISTEMAS PARA INTERNET

INSTITUTO FEDERAL DISCIPLINA: Estrutura de Dados

3º Período - Noturno

DOCENTE: Profo Jonathas Medina

Elaborar uma página web contendo um relatório de comparação de dez Algoritmos de Ordenação, gerada a partir da descrição abaixo.

Faça uma aplicação em Java que compare dez Algoritmos de Ordenação da seguinte forma:

- Elabore o menu com as seguintes opções:
 - a. Ordenar utilizando BubbleSort (melhorado);
 - b. Ordenar utilizando SelectionSort;
 - c. Ordenar utilizando InsertionSort;
 - d. Ordenar utilizando MergeSort;
 - e. Ordenar utilizando QuickSort;
 - f. Ordenar utilizando ;
 - g. Ordenar utilizando _____;
 - h. Ordenar utilizando ;
 - Ordenar utilizando ;
 - j. Ordenar utilizando _____;
- 2. Os Algoritmos de Ordenação a serem utilizados nas opções f-j acima são de livre escolha.
- **3.** Cada opção do menu deve ordenar (de forma crescente) três coleções de números inteiros (ArrayList ou vetor) da seguinte forma:
 - a. Ordenar uma coleção de números já ordenados em ordem crescente (melhor caso);
 - b. Ordenar uma coleção de números aleatórios (caso médio);
 - c. Ordenar uma coleção de números ordenados em ordem decrescente (pior caso);
- **4.** Cada algoritmo deve ainda ser executado para coleções de tamanhos diferentes, respectivamente: 1.000, 10.000, 500.000, 1.000.000 posições, para cada um dos casos acima mencionados;

5. Para cada execução (cada algoritmo para cada coleção de dados), medir o tempo necessário e registrar o valor (em segundos), de forma similar à tabela abaixo:

	BubbleSort					SelectionSort			
	1.000	10.000	500.000	1.000.000		1.000	10.000	500.000	1.000.000
Melhor Caso	x segundos	y segundos	z segundos	w segundos	Melhor Caso	x segundos	y segundos	z segundos	w segundos
Caso Médio	a segundos	b segundos	c segundos		Caso Médio	a segundos	b segundos	c segundos	
Pior Caso					Pior Caso				
	outros algoritmos					outros algoritmos			
	1.000	10.000	500.000	1.000.000					
Melhor Caso	x segundos	y segundos	z segundos	w segundos					
Caso Médio	a segundos	b segundos	c segundos						
Pior Caso									

- **6.** Ao final da tabulação de todos os resultados, **elaborar uma página web** (preferencialmente hospedada) contendo o relatório final das comparações. Esta página web deve apresentar seções para cada algoritmo, contendo:
 - a. Título do Algoritmo, breve resumo, complexidade do algoritmo em cada caso,
 e código utilizado na linguagem Java;
 - b. Tempo necessário (em segundos) para as execuções de diferentes tamanhos em cada caso. Apresentar também, na página, a partir dos dados gerados:
 - i. tabelas com os tempos das execuções;
 - ii. gráficos com os tempos das execuções, sendo:
 - um gráfico para cada algoritmo (tempo de execução por quantidade de números ordenados), apresentando três curvas (uma para cada caso (melhor caso, caso médio e pior caso));
 - a. Exemplos:

 três gráficos unificando todos os algoritmos, sendo um para cada caso (melhor caso, caso médio e pior caso);

c. A forma de apresentação das informações na página web é de livre escolha, podendo cada algoritmo ser apresentado em uma página diferente, um modal, ou até mesmo na mesma página.

<u>Instruções de Envio:</u>

Submeter, até o dia **06/12**, via moodle:

- tabelas com valores;
- códigos Java gerados;
- códigos web gerados (html, css, js e outros se houver);
- URL para acesso, caso hospedado;

Critérios para avaliação: 1,0 ponto por algoritmo + 1,0 extra para páginas hospedadas;

Alguns códigos p/ auxílio:

- sortear número (ex: entre 0 e 9):

```
01. Random gerador = new Random();
02. int numero = gerador.nextInt(10);
```

- medir o tempo de uma determinada operação:

```
01.
      long t;
02.
      t = System.nanoTime();
03.
         //operação 1
04. //operação 1
05.
      //operação 1
t = System.nanoTime() - t;
06.
07.
      System.out.println("Tempo op1: " + t);
08.
09.
      t = System.nanoTime();
10.
     //operação 2
         //operação 2
11.
      //operação 2
12.
13. t = System.nanoTime() - t;
14. System.out.println("Tempo op2: " + t);
```

- conversão de nano segundos para segundos;

```
System.out.println("Tempo: " + t*Math.pow(10, -9) + " segundos.");
```