2 条件概率与独立性 27

定义2.6. 若事件 A 在一次试验中发生的概率非常小, 但经过多次独立地重复试验, 事件 A 的发生是必然的. 称之为 **小概率原理**.

小概率原理可根据严格的数学推理得到: 若事件 $A_1, A_2, \cdots, A_n, \cdots$ 独立且每事件发生的概率 $P(A_i) = p > 0$ 非常小,则有

$$P(A_1 A_2 \cdots A_n) = 1 - P(\bar{A}_1 \bar{A}_2 \cdots \bar{A}_n) = 1 - (1 - p)^n \to 1 \quad \stackrel{\text{def}}{=} \quad n \to \infty,$$

即独立重复多次的小概率事件亦可成立必然事件.

若独立事件 A_1, A_2, \dots, A_n 发生的概率 $P(A_i) = p$ $(i \in [n])$, 则 n 个事件中恰有 k 个事件发生的概率为 $\binom{n}{k} p^k (1-p)^{n-k}$.

例2.14. 冷战时期美国的导弹精度 99%, 苏联的导弹精度 60%, 但苏联的导弹数量特别多, 导弹的数量能否弥补精度的不足?

解. 假设每次独立发射 n 枚导弹, 用事件 A_i 表示第 i 枚导弹命中目标, 则 n 枚导弹击中目标的概率为

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = 1 - (1 - 0.6)^n \ge 0.99 \implies n \ge 5,$$

因此每次独立发射 5 枚导弹, 击中目标的概率高于 99%.

在上例中, 若美国的导弹精度为 90%, 苏联的导弹精度为 70%, 则苏联每次只需独立发射两枚导弹即可达到 91%.

例2.15. 一串电路图: A, B, C, D, E, F, G 是电路元件, 电路元件各自下方的数字表示正常工作的概率. 若各电路元件之间相互独立. 求电路正常工作的概率.

解. 用事件 W 表示电路正常工作,则有 $W = A \cap B \cap (C \cup D \cup E) \cap (F \cup G) \cap H$. 根据独立性假设有

$$P(W) = P(A)P(B)P(C \cup D \cup E)P(F \cup G)P(H).$$

根据 $P(C \cup D \cup E) = 1 - P(\bar{C})P(\bar{D})P(\bar{E}) = 1 - (2/3)^3 = 19/27$ 和 $P(F \cup G) = 1 - P(\bar{E})P(\bar{G}) = 7/16$, 可得 P(W) = 133/1800.

2.3 案例分析

2.3.1 利用独立性验证大矩阵乘法是否相等

本节研究的问题: 给定矩阵 $A,B,C \in \{0,1\}^{n\times n}$ (n 非常大,如 $n \geq 10000000)$,验证 AB = C 是否成立? 若直接执行矩阵乘法运算、并验证等式是否成立,计算复杂度为 $O(n^3)$;若采用分治法,计算复杂度为 $O(n^{\log_2^7})$,目前最好的计算复杂度为 $O(n^{2.37})$.为进一步降低计算复杂度,可利用独立性验证 AB = C 是否成立?

独立随机产生一个向量 $r \in \{0,1\}^n$, 判断

$$A(Br) = Cr$$
?

2 条件概率与独立性 28

计算 A(Br) 和 Cr 的复杂度均为 $O(n^2)$. 若 $A(Br) \neq Cr$ 则直接可得 $AB \neq C$; 若 A(Br) = Cr 并不能得出 AB = C. 将上述过程独立进行 K 次,可以以证明以较大的概率有 AB = C 成立,该过程被称为 Freivalds 算法.

Freivalds 算法

Input: A, B, COutput: Yes/No

For i = 1: K

Select a random vector $r = (r_1, r_2, \dots, r_n)$ with $P(r_i = 0) = P(r_i = 1) = 1/2$ $(j \in [n])$

Compute $p = A \times (Br) - Cr$

If $p \neq 0$ then

Return 'No'.

EndIf

EndFor

Return 'Yes'.

首先发现该算法的计算复杂度为 $O(Kn^2)$, 若 K 比较小则显著降低了计算复杂度. 进一步研究算法的有效性, 若返回 'No', 则必然有 $AB \neq C$; 若返回 'Yes', 然而并不一定有 AB = C 成立, 下面研究当算法返回 'Yes' 时 AB = C 成立的概率.

设 $D = AB - C \neq 0$, 则 D 中必存在一些元素不为 0, 不妨令 $d_{11} \neq 0$. 对任意一轮循环, 不妨设随 机向量 $r = \{r_1, r_2, \dots, r_n\}$, 根据返回 'Yes' 可知 Dr = 0, 进一步可得向量 Dr 的第一个元素等于 0, 即

$$\sum_{j=1}^{n} d_{1j} r_j = 0 \implies r_1 = -\frac{1}{d_{11}} \sum_{j=2}^{n} d_{1j} r_j$$

无论 r_2, \ldots, r_n 取何值, 等式 $\sum_{j=1}^n d_{1j} r_j = 0$ 是否成立由 r_1 的值决定. 根据 $P(r_1 = 0) = P(r_1 = 1) = 1/2$ 可知 $\sum_{j=1}^n d_{1j} r_j = 0$ 成立的概率不超过 1/2. 因此在 K 轮独立的循环中, 等式 $\sum_{j=1}^n d_{1j} r_j = 0$ 成立的概率不超过 $1/2^K$.

取 $K = \log_2 n$, 则算法 Freivalds 计算复杂度为 $O(n^2 \log n)$, 若算法返回 'No', 则 $AB \neq C$; 若返回 'Yes', 则有

$$P(AB = C) > 1 - 1/n,$$

即至少以 1-1/n 的概率有 AB=C 成立.

3 离散型随机变量 29

3 离散型随机变量

有些随机试验的结果本身就是数值,例如,抛一枚骰子的点数分别为 $1,2,\dots,6$; 国家一年出生的婴儿数分别为 $1,2,\dots,n,\dots$ 有些试验结果可能与数值无关,但结果可以用数值进行表示,例如,抛一枚硬币,正面朝上用 0 表示,正面朝下用 1 表示;流星坠落地球的落脚点用坐标纬度表示.当试验结果用数值表示时,可以引入一个变量来表示随机事件,由此产生随机变量的概念.

将样本空间 Ω 中每个样本点 ω 与一个实数 $X(\omega)$ 相对应, $X(\omega)$ 是 ω 的实值函数, 称实值函数 $X(\omega):\Omega\to\mathbb{R}$ 为随机变量 (random variable), 简写为 r.v., 一般用大写字母 X,Y,Z 表示. $X(\omega)$ 随样本点 ω 的不同而取不同的值, 例如:

- 抛一枚骰子, 用随机变量 X 表示出现的点数, 则随机变量 $X \in [6]$. 出现的点数不超过 4 的事件可表示为 $\{X \le 4\}$; 出现偶数点的事件可表示为 $\{X \to 4\}$.
- 用随机变量 X 表示一盏电灯的寿命, 其取值为 $[0, +\infty)$, 电灯寿命不超过 500 的事件可表示为 $\{X \le 500\}$.

通过随机变量可形式化描述随机现象或随机事件, 从而利用数学工具来研究概率, 例如 $\{X \le -\infty\}$ 表示不可能事件, 以及 $\{X \le +\infty\}$ 表示必然事件.

根据随机变量的取值,可分为离散型随机变量和连续型随机变量. 若随机变量 X 的取值是有限的、或无限可列的,则称 X 为 **离散型随机变量**;若随机变量 X 的取值是无限不可列的,则称 X 为 **非离散型随机变量**. 本章主要研究离散型随机变量.

3.1 离散型随机变量及分布列

离散型随机变量 X 的取值是有限或无限可列的, 不妨假设其取值为 $x_1, x_2, \cdots, x_n, \cdots$, 事件 $\{X = x_k\}$ 的概率记为

$$p_k = P(X = x_k), \quad k = 1, 2, \cdots,$$

称之为随机变量 X 的 **分布列**. 分布列包含了随机变量的取值和概率, 从而完全刻画了离散随机变量的概率属性. 分布列也可以用表格表示

X	x_1	x_2	 x_n	
P	p_1	p_2	 p_n	

根据概率的非负性和完备性有

性质3.1. 设随机变量 X 的分布列 $p_k = P(X = x_k)$ $(k \ge 1)$, 有 $p_k \ge 0$ 和 $\sum_k p_k = 1$.

下面来看看一些离散随机变量的例子:

例3.1. 设随机变量 X 的分布列 $P(X=k) = c/4^k (k=0,1,2,\cdots)$, 求概率 P(X=1).

3 离散型随机变量 30

解. 根据概率的完备性有

$$1 = \sum_{k=0}^{\infty} P(X = k) = \sum_{k=0}^{\infty} \frac{c}{4^k} = \frac{4}{3}c,$$

求解得到 c = 3/4, 进一步有 P(X = 1) = 3/16.

例3.2. 给定常数 $\lambda > 0$, 随机变量 X 的分布列 $p_i = c\lambda^i/i! \ (i \ge 0)$, 求 P(X > 2).

解. 根据概率的完备性有

$$1 = \sum_{i=0}^{\infty} p_i = c \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = c \cdot e^{\lambda}$$

从而得到 $c = e^{-\lambda}$, 进一步得到

$$P(X > 2) = 1 - P(X \le 2) = 1 - p_0 - p_1 - p_2 = 1 - e^{-\lambda}(1 + \lambda + \lambda^2/2).$$

例3.3. 从 $\{1,2,\ldots,10\}$ 中不放回随机任意取 5 个数,令随机变量 X 表示所取 5 个数中的最大值,求 X 的分布列.

解. 由题意可知 X 的取值为 5,6,7,8,9,10, 且

$$P(X = k) = {\binom{k-1}{4}} / {\binom{10}{5}} \quad (k = 5, 6, \dots, 10).$$

由此可得 X 的分布列表格为

X	5	6	7	8	9	10
\overline{P}	1/252	5/252	15/252	35/252	70/252	126/252

3.2 离散型随机变量的期望和方差

随机变量的取值具有一定的随机性,我们希望研究随机变量的一些不变量,用以刻画随机变量的特征,最常见的特征是期望与方差.

3.2.1 期望

定义3.1. 设离散型随机变量 X 的分布列为 $P(X=x_k)=p_k$ $(k=1,2,\cdots)$,若级数 $\sum_{k=1}^{\infty}p_kx_k$ 绝对收敛,称级数和为随机变量 X 的期望 (expectation),记为 E(X),即

$$E(X) = \sum_{k=1}^{\infty} p_k x_k,$$

又被称为均值 (mean) 或加权平均 (weighted average).