

FERIENKURS EXPERIMENTALPHYSIK 2

Musterlösung 5

Elektrodynamik

Andreas Brenneis, Marcus Jung, Ann-Kathrin Straub

17.09.2010

- 1. Das B-Feld, das durch die Spule A erzeugt wird, zeigt von rechts nach links (Der Strom im linken Kreis fließt im Uhrzeigersinn).
 - a) Beim Öffnen des Schalters bricht das B-Feld zusammen. Die Spule B versucht aber das Magnetfeld aufrecht zu erhalten, dazu muss ein Strom im Uhrzeigersinn fließen.
 - b) Wird der Widerstand erniedrigt, dann erhöht sich der Strom und damit auch das B-Feld. Wieder will die Spule B das B-Feld aufrecht erhalten und der Änderung wirkt ein Strom entgegen, der gegen den Uhrzeigersinn fließen muss.
 - c) Wenn die Spule A nach links weggezogen wird, verringert sich das Magnetfeld wie im Fall (a). Es fließt also ein Strom in Uhrzeigersinn.
- 2. a) Der Stab wird nach links beschleunigt. In diese Richtung wählen wir unser Koordinatensystem.
 - b) Die Beschleunigung auf einen stromdurchflossenen Stab der Länge d lautet:

$$a = F/m = I \cdot B \cdot d/m \tag{1}$$

Damit ist $v(t) = I \cdot B \cdot d \cdot t/m + v_0$.

c) Die induzierte Spannung U_d ist nach Faraday:

$$-U_d = \dot{\phi}_m = B \cdot \dot{A} = B \cdot d \cdot v \tag{2}$$

d) Nun ist die Spannung, die am Stab anliegt, um U_d reduziert.

$$a(t) = \dot{v}(t) = I \cdot B \cdot d = \frac{U_e + U_d}{R} \cdot B \cdot d = \frac{U_e - B \cdot d \cdot v(t)}{R} \cdot B \cdot d \tag{3}$$

Als Lösung für den homogenen Teil der obigen DGL erhält man mit dem Ansatz

$$v(t) = v_0 e^{-t/\tau} \tag{4}$$

für die Abklingzeit au den Wert:

$$\tau = \frac{m \cdot R}{(B \cdot L)^2} \tag{5}$$

Eine spezielle Lösung der inhomogenen Gleichung ist $v=U_e/(B\cdot d)$ Die allgemeine Lösung lautet also:

$$v(t) = v_0 e^{-t/\tau} + \frac{U_e}{B \cdot d} \tag{6}$$

e) Die Endgeschwindigkeit entspricht der inhomogenen Lösung: $v_e = \frac{U_e}{B \cdot d}$. Setzen wir diesen Wert ein, um die induzierte Spannung zu berechnen, dann erhalten wir:

$$U_d = -B \cdot d \cdot v_e = -B \cdot d \cdot \frac{U_e}{B \cdot d} = -U_e \tag{7}$$

Die induzierte und die anliegende Spannung komspensieren sich also gerade. Damit kann kein Strom fließen.

3. a) Die DGL lautet:

$$U_e = Q/C + IR \tag{8}$$

Dies müssen wir einmal ableiten:

$$-U_0 \cdot \omega \sin \omega t = I/C + \dot{I}R \tag{9}$$

und erhalten damit die zu lösende DGL.

Wir setzen den Ansatz $I = I_0 \sin(\omega t + \varphi)$ ein und erhalten:

$$\frac{I_0}{C}\sin(\omega t + \varphi) + R\omega I_0\cos(\omega t + \varphi) = -U_0\omega\sin\omega t \tag{10}$$

Nun nutzen wir das Additonstheorem und vergleichen die Koeffizienten vor den Thermen $\sin \omega t$ bzw. $\cos \omega t$, die verschwinden müssen. Für $\sin \omega t$ finden wir:

$$\frac{I_0}{C}\cos\varphi - R\dot{\omega}I_0\sin\varphi + U_0\omega = 0 \tag{11}$$

Das Ergebnis für den cos Term ist hilfreicher:

$$\frac{I_0}{C}\sin\varphi + R\cdot\omega\cdot I_0\cos\varphi = 0 \tag{12}$$

Damit haben wir den Tangens des Phasenwinkels gefunden:

$$\tan \varphi = -R \cdot \omega \cdot C \tag{13}$$

b) Im Komplexen können wir schreiben:

$$I = U/Z = \frac{U_0 \cdot e^{i \cdot \omega t}}{R - \frac{i}{\omega \cdot C}} = \frac{U_0}{R^2 + \frac{1}{(\omega \cdot C)^2}} e^{i \cdot \omega t} \cdot \left(R + \frac{i}{\omega \cdot C}\right)$$
(14)

Betrachten wir nur den Realteil von diesem Ausdruck dann erhalten wir:

$$I = I_0 \left(\frac{1}{I_0} \frac{U_0}{R^2 + \frac{1}{(\omega \cdot C)^2}} \left(R \cos \omega t - \frac{1}{\omega \cdot C} \sin \omega t \right) \right)$$
 (15)

Setzen wir den gesamten Ausdruck in der ersten Klammer gleich $\sin(\omega t + \varphi)$, dann finden wir das φ mit der ersten Teilaufgabe übereinstimmt.

c)

$$\frac{|U_a|}{|U_e|} = \frac{|U_a|}{|U_0|} = I \cdot R = \frac{1}{R^2 + \frac{1}{(\omega \cdot C)^2}} \sqrt{R^2 + \frac{1}{(\omega \cdot C)^2}} \cdot R = \frac{\omega \cdot C}{\sqrt{R^2 \omega^2 C^2 + 1}}$$
(16)

Wir sehen also, dass für niedrige Frequenzen die abgegriffene Spannung U_a verschwindet, da U_e komplett an der Kapazität abfällt. Für hohe Frequenzen wird die Kapazität transparent und die komplett Spannung fällt am Widerstand ab.

Elektromagnetische Schwingungen und Wellen

4. Die dafür benötigte Zeit ist $t=\frac{T}{4}$, wobei T die Periodendauer ist, die durch $T=\frac{2\pi}{\omega}=2\pi\sqrt{LC}$ gegeben ist. Also gilt:

$$t = \frac{T}{4} = \frac{\pi}{2}\sqrt{LC} = 0,7ms$$

5. Für ω gilt:

$$\omega = \sqrt{\frac{1}{LC} - \alpha^2} \text{ mit } \alpha = \frac{R}{2L} \to \omega = 2\pi * 8 * 10^5 s^{-1} = 5 * 10^6 s^{-1}$$

$$U = U_0 e^{-\alpha t} \to \alpha = \frac{1}{t} ln \frac{U_0}{U}$$

Schwingungsdauer:

$$T = \frac{2\pi}{\omega} = 1,25 * 10^{-6} s^{-1}$$

Nach
$$t = 30T$$
 ist $\frac{U}{U} = \frac{1}{2} \rightarrow \alpha = \frac{10^6}{20 \cdot 1.25} ln = 1.8 * 10^4 s^{-1}$

Termingular states:
$$T = \frac{2\pi}{\omega} = 1,25*10^{-6}s^{-1}$$
 Nach $t = 30T$ ist $\frac{U}{U_0} = \frac{1}{2} \rightarrow \alpha = \frac{10^6}{30*1,25}ln2 = 1,8*10^4s^{-1}$
$$L = \frac{1}{C(\omega^2 + \alpha^2)} = \frac{10^9}{25*10^{12} + 3,4*10^8}H = 4*10^{-5}H$$

$$\rightarrow R = 2\alpha L = 2*1,8*10^4*4*10^{-5} = 1,44\Omega$$

6. Die Intensität der Welle ist gleich der Energieflussdichte im Abstand r=1m: $I=|{\bf S}|=\frac{P_{em}}{4\pi r^2}=\frac{10^4W}{4\pi 1m^2}=8*10^2\frac{W}{m^2}$ Die elektrische Feldstärke ist gegeben durch:

$$I = |\mathbf{S}| = \frac{P_{em}}{4\pi r^2} = \frac{10^4 W}{4\pi 1 m^2} = 8 * 10^2 \frac{W}{m^2}$$

$$E = \sqrt{\frac{S}{\epsilon_0 c}} = 5,5 * 10^2 \frac{V}{m}$$

Die magnetische Feldstärke ist:

$$B = \frac{1}{c}E = 1,83 * 10^{-6} \frac{Vs}{m^2} = 1,83 \mu T$$

7. Die Solarkonstante gibt die Energiestromdichte am oberen Rande der Erdatmosphäre an: $S = \epsilon_0 c E^2$

Damit erhält man:
$$E = \sqrt{\frac{S}{\epsilon_0 c}} = \sqrt{\frac{1,4*10^3}{8,85*10^{-12}*3*10^8}} \frac{V}{m} = 7,26*10^2 \frac{V}{m}$$

$$\rightarrow B = \frac{1}{c}E = \frac{7,26*10^2}{3*10^8} \frac{Vs}{m^2} = 2,4*10^{-6}T$$

Entfernung Erde-Sonne: $r=1,5*10^{11}m$. Die gesamte von der Sonne abgestrahlte Leistung ist dann:

$$P_{ges} = 4\pi r^2 S = 1, 4*10^3*4\pi*1, 5^2*10^{22} W = 4*10^{26} W$$

Die Energiestromdichte an der Sonnenoberfläche ist:

$$S_s = \frac{P_{em}}{4\pi R_s^2} = \frac{4*10^{26}}{4\pi 6.96^2 * 10^{16}} = 6,57 * 10^7 \frac{W}{m^2}$$

 $\to E = \sqrt{\frac{S}{\epsilon_0 c}} = 1,57 * 10^5 \frac{V}{m}$

8. Wie in der vorherigen Aufgabe gilt: $S=rac{P_{em}}{4\pi r^2}$ und $E=\sqrt{rac{S}{\epsilon_0 c}}$

Mit r = 1m $P_{em} = 70W$ folgt $E = 45\frac{V}{m}$.

Um die gleiche Feldstärke E wie die Sonnenstrahlung auf der Erde zu erreichen, müsste die Energiestromdichte um den Faktor $a=(rac{726}{45})^2=260$ -mal größer sein, also auch die Leistung 260-mal größer sein, also 26kW betragen.

9. Durch die Augenpupille fällt die maximale Strahlungsleistung:

$$\frac{dW}{dt} = (800 \frac{W}{L}) \pi r^2 = 800 \pi 10^{-6} W = 2,5 mW$$

 $\frac{dW}{dt} = (800\frac{W}{m^2})\pi r^2 = 800\pi 10^{-6}W = 2,5mW$ Die Intensität auf der Netzhaut ist dann allerdings bereits: $I = \frac{A_{Pup}}{A_{Netzhaut}}I_0 = 400I_0 = 320\frac{kW}{m^2}$

$$I = \frac{A_{Pup}}{A_{Notzhaut}} I_0 = 400 I_0 = 320 \frac{kW}{m^2}$$

10. Der mittlere Energiefluss pro Fläche, also die Intensität, steht mit der Amplitude E der elektrischen Feldstärke in Verbindung über:

$$I = \frac{\mu_0 c}{2} E^2 \to E = \sqrt{2\mu_0 cI} = 87m\frac{V}{m}$$

Die Amplitude des magnetischen Feldes erhält man über:

$$B = \frac{E}{c} = 2,9 * 10^{-10}T$$

Im Abstand r des Senders ist die Intensität $I=rac{P}{4\pi r^2}$, wobei P die Gesamtleistung des Senders ist. Also erhält man:

$$P = 4\pi r^2 I = 1, 3 * 10^4 W$$

11. Aus $c=\lambda f$ folgt:

$$f = \frac{c}{\lambda} = 10^8 Hz$$

Die Amplitude des magnetischen Feldes ist:

$$B = \frac{E}{c} = 10^{-6}T$$

und muss in positive z-Richtung zeigen, damit die gegebene Richtung des E-Feldes $m{E} imes m{B}$ in x-Richtung zeigt.

4

Es gilt:

$$k = \frac{2\pi}{\lambda} = 2, 1 \frac{rad}{m} \ \omega = 2\pi f = 6, 3 * 10^8 \frac{rad}{s}$$

Die Intensität ist gegeben durch $I = \frac{E^2}{2\mu_0 c} = 119 \frac{W}{m^2}$