

ASM3074C Data Sheet

USB 3.2 Gen2x2 HUB Controller

Copyright Notice:

Copyright © 2021, ASMedia TECHNOLOGY INC. All Rights Reserved.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH PRODUCTS OF ASMEDIA TECHNOLOGY INC. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN ASMEDIA'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, ASMEDIA ASSUMES NO LIABILITY WHATSOEVER, AND ASMEDIA DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF ASMEDIA PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Products of ASMEDIA TECHNOLOGY INC. are not intended for use in medical, lifesaving, life sustaining, critical control or safety systems, or in nuclear facility applications.

ASMedia may make changes to specifications and product descriptions at any time, without notice.

ASMedia TECHNOLOGY INC. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Contact your local ASMedia sales office or your agent to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other ASMedia literature may be obtained by calling +886-2-22196088 or by visiting ASMedia's website at www.asmedia.com.tw.

ASMedia and ASMedia logo are trademarks or registered trademarks of ASMedia TECHNOLOGY INC. in Taiwan and other countries © 2021 祥碩科技股份有限公司,著作權所有,並保留一切權利

本文資料為與祥碩科技股份有限公司之產品相關。本文並未明示或默示授權任何智慧財產權予第三人。除在祥碩科技股份有限公司對該產品提供的買賣條款及條件以外,祥碩科技股份有限公司免於擔負任何責任,且不對產品的買賣及使用做任何明示或默示的保證,包含產品適於特殊使用目的、以及產品不侵害任何專利權、著作權或其他智慧財產權。祥碩科技股份有限公司之產品不用於醫療的、救助生命的、生命維持的、安全控管系統或核子設施等用途之上。

祥碩科技股份有限公司可隨時不經通知,逕行增訂或修改產品規格及描述。

本文之相關專利權、申請中之專利權、商標權、著作權及其餘智慧財產權均屬祥碩科技股份有限公司所有。本文及其他資訊並未明示或默示的提供任何專利、商標、著作權及其餘智慧財產權之授權。

請於下產品訂單前先聯絡當地的祥碩科技銷售處或代理商以取得最新的產品規格書。

本文提及之有訂單號碼之文件或其他詳細資料可參閱祥碩科技網站 www.asmedia.com.tw.或撥打+886-2-22196088

ASMEDIA 和 ASMEDIA 商標均為祥碩科技股份有限公司在台灣和其他國家的註冊商標或商標。

Office:

ASMedia Technology, Inc. 6F, No.115, Minquan Rd., Xindian Dist., New Taipei City 231, Taiwan, R.O.C.

http://www.asmedia.com.tw Tel: +886-2-2219-6088 Fax: +886-2-2219-6080

Environmentally hazardous materials are not used in this product.

Revision History

Rev.	Date	Description
0.1	Jan 06, 2023	Initial Release
0.2	Apr 12,2023	Top Marking Update. Power On Sequence Update

Table of Contents

Revision History	iii
Table of Contents	iv
List of Figures	
1. General Description	7
2. Features	7
Package Type	7
3. Functional Block Diagram	8
4. Pin Diagram	9
5. Pin Descriptions	10
USB 3.2 Interface	10
USB 2.0 Interface	10
MISC Interface	11
Power and Ground Signals	11
Strapping Table	11
6 Electrical Characteristics	12
6.1 Absolute Maximum Ratings	12
6.2 Recommended Operating Conditions	12
6.2.1 Chip Temperature (T _J , T _C) Calculation	12
6.3 AC/DC Characteristics	12
6.3.1 USB 3.2 Electrical Specification	12
6.3.2 USB 2.0 Electrical Specification	13
6.3.3 DC Electrical Characteristics for digital pins	13
6.3.4 DC Electrical Characteristics for POR_N pin	13
6.3.5 External Crystal Electrical Specification	13
6.3.6 Differential Clock Oscillator Electrical Specification	
6.3.7 Internal Linear Regulator Electrical Specification	14
Total Power Consumption	14
7. Timing Diagram	15
8. Package Information	16
TBD	義書籤。
9. Top Marking Information	
TBD	

List of Figures

Figure 1:	ASM3074C/3074 Functional Block Diagram	8
-	ASM3074C Pinout	
_	Differential Crystal Design	
-	Power on Sequence for crystal mode	

This page is intentionally left blank.

1. General Description

The ASM3074C is a USB 3.2 compliant hub with ASMedia's legacy, innovative, and self-designed PHY technology perfectly integrated into it. The ASM3074C DSPs supports one USB 3.2 Gen2x2 port and two USB3.2 Gen2x1 ports , and offers a low-power and cost-effective solution for a variety of USB applications. The ASM3074C is fully compliant with USB 3.2 Specification Revision 1.0 and USB Battery Charging Specification Revision 1.2.

2. Features

USB 3.2 HUB Features

- Compliant with USB 3.2 Specification Rev. 1.0
- Upstream Port supports USB 3.2 Gen2x2 (20Gbps), High-Speed and Full-Speed Connections
- Each of the four Downstream Ports supports USB 3.2 Gen2, High-Speed, Full-Speed and Low-Speed Connections ASM3074C supports one USB 3.2 Gen2x2 port , two USB3.2 Gen2x1 ports and one USB2.0 port
- Implements USB 3.0 power management function
 - SuperSpeed Link Power Management support
 - USB 2.0 Link Power Management support
- Compliant with USB Attached SCSI Protocol (UASP) Rev. 1.0
- Multiple Transaction Translator support
- Supports external Port Power Switching and Over-Current Protection per port control
- Individual and Gang mode selectable via strapping
- Marked as removable or permanently attached

Battery Charging Features

- Supports portable devices such as iPad and cellphones
- Dedicated Charge Port (DCP) support
- Battery Charge Rev. 1.2 specification Compliance
- Supports automatic Battery Charger Detection
- Charging Downstream Ports support USB-C 5V/3A with an external CC logic chip
- Supports charging while the system enters the active or suspended state

General Feature

- Integrated 8-bit microprocessor
- SPI flash support for customized firmware
- I2C EEPROM support for customized configuration
- Uploadable Firmware & configuration via upstream port
- Integrated 5V to 3.3V LDO
- Supports self-powered and bus-powered modes
- Automatic power type detection and dynamic power type switch
- Supports 25 MHz X'tal as clock source
- Multiple GPIOs for LED applications
- Two Power Supply domains
 - IO power supply with 3.3V+/-0.3V and 2.5V +/-0.2V
 - Core power supply 1.05V+/-0.05V
- Green Package with RoHs compliance

Package Type

♦ OFN 88L (10x10 mm²)

3. Functional Block Diagram

Figure 1: ASM3074C Functional Block Diagram

4. Pin Diagram

Figure 2: ASM3074C Pinout

5. Pin Descriptions

The following table lists the descriptions of each type of signal.

I/O Type	Definition
I	Input pin
0	Output pin
В	Bi-directional pin
Di	Differential pin
Р	Power pin
G	Ground pin
OD	Open Drain

USB 3.2 Interface

Pin No.	Name	Type	Description
25	RXP_3	DiI	USB 3.2 Downstream Port 3 Differential Receive Data +
26	RXN_3	DiI	USB 3.2 Downstream Port 3 Differential Receive Data -
28	TXP_3	DiO	USB 3.2 Downstream Port 3 Differential Transmit Data +
29	TXN_3	DiO	USB 3.2 Downstream Port 3 Differential Transmit Data -
31	TXN_4	DiO	USB 3.2 Downstream Port 4 Differential Transmit Data -
32	TXP_4	DiO	USB 3.2 Downstream Port 4 Differential Transmit Data +
34	RXN_4	DiI	USB 3.2 Downstream Port 4 Differential Receive Data -
35	RXP_4	DiI	USB 3.2 Downstream Port 4 Differential Receive Data +
37	TXP_2	DiO	USB 3.2 Downstream Port 2 Differential Transmit Data +
38	TXN_2	DiO	USB 3.2 Downstream Port 2 Differential Transmit Data -
40	RXP_2	DiI	USB 3.2 Downstream Port 2 Differential Receive Data +
41	RXN_2	DiI	USB 3.2 Downstream Port 2 Differential Receive Data -
48	TXP_1	DiO	USB 3.2 Downstream Port 1 Differential Transmit Data +
49	TXN_1	DiO	USB 3.2 Downstream Port 1Differential Transmit Data -
51	RXP_1	DiI	USB 3.2 Downstream Port 1 Differential Receive Data +
52	RXN_1	DiI	USB 3.2 Downstream Port 1 Differential Receive Data -
54	RXP1_U	DiI	USB 3.2 Upstream Port Side 1 Differential Receive Data +
55	RXN1_U	DiI	USB 3.2 Upstream Port Side 1Differential Receive Data -
57	TXP1_U	DiO	USB 3.2 Upstream Port Side1 Differential Transmit Data +
58	TXN1_U	DiO	USB 3.2 Upstream Port Side 1 Differential Transmit Data -
60	TXN2_U	DiO	USB 3.2 Upstream Port Side 2 Differential Transmit Data -
61	TXP2_U	DiO	USB 3.2 Upstream Port Side 2 Differential Transmit Data +
63	RXN2_U	DiI	USB 3.2 Upstream Port Side 2 Differential Receive Data -
64	RXP2_U	DiI	USB 3.2 Upstream Port Side 2 Differential Receive Data +
6	USP_CC1	IO	Upstream Port Configuration Channel for Side1
7	USP_CC2	IO	Upstream Port Configurartion Channel for Side2

USB 2.0 Interface

Pin No.	Name	Туре	Description
9	DP_D	DiB	USB 2.0 Downstream Port 4 Bus Data +
10	DM_D	DiB	USB 2.0 Downstream Port 4 Bus Data -
11	DP_C	DiB	USB 2.0 Downstream Port 3 Bus Data +
12	DM_C	DiB	USB 2.0 Downstream Port 3 Bus Data -
14	DP_B	DiB	USB 2.0 Downstream Port 2 Bus Data +
15	DM_B	DiB	USB 2.0 Downstream Port 2 Bus Data -
16	DP_A	DiB	USB 2.0 Downstream Port 1 Bus Data +
17	DM_A	DiB	USB 2.0 Downstream Port 1 Bus Data -
20	DP_U	DiB	USB 2.0 Upstream Port Bus Data +
21	DM_U	DiB	USB 2.0 Upstream Port Bus Data -

MISC Interface

Pin No.	Name	Туре	Description	
1	TECT EN	I	Test Enable Pin.	
1	TEST_EN	1	0: Normal mode, 1:ATE Test mode	
88	VBUS_DET	I	VBUS Detection	
76	PRON1	0	Port 1 Power Switch Enable,	
70	PRONT	U	Internal ~40Kohm resistance Pull Down during chip reset	
77	PRON2	0	Port 2 Power Switch Enable,	
//	TRONZ		Internal ~40Kohm resistance Pull Down during chip reset	
78	PRON3	0	Port 3 Power Switch Enable,	
70	110113	U	Internal ~40Kohm resistance Pull Down during chip reset	
79	PRON4	0	Port 4 Power Switch Enable	
			Internal ~40Kohm resistance Pull Down during chip reset	
71	OC_N1	I	Port 1 Over Current Indicator	
72	OC_N2	I	Port 2 Over Current Indicator	
73	OC_N3	I	Port 3 Over Current Indicator	
74	OC_N4	I	Port 4 Over Current Indicator	
2	POR_N	I	Power On Reset	
46	REXT	I	External Reference Resistor 12.1Kohm +/-0.1%	
	EX_PWRDE T	_	External Power Detect	
87		I	1: Self-powered mode	
	·	_	0: Bus-powered mode	
44	XI	I	Crystal Input or Clock input	
43	XO	0	Crystal Output	
81	SPI_DIO	IO	SPI Data IO	
82	SPI_CLK	0	SPI Clock Bus Output	
83	SPI_CS	0	SPI Chip Select for External SPI Flash, internal pull high	
84	UART_TX	0	UART DATA Transmit	
			Internal ~40Kohm resistance Pull Down during chip reset	
85	UART_RX	I	UART DATA Receive	
3	I2C_INT2	IO	I2C_INT2 or GPIO	
4	I2C_INT1	IO	I2C_INT1 / CC_IND	
67	GRN_LED1	IO	I2C_CLK1 / STATUS_IND1	
68	GRN_LED2	IO	I2C_DAT1/ STATUS_IND2	
69	GRN_LED3	IO	I2C_CLK2	
70	GRN_LED4	IO	I2C_DAT2	

Power and Ground Signals

Pin No.	Name	Туре	Description
89	GND	G	Common Ground
23	VCC5IN	Р	VCC 3.3V regulator 5V input
22	VCCO	Р	LDO Reulator 3.3V Output
8, 66, 80	VCCH	P	High voltage VCC 3.3V IO Power
13, 19, 27, 33, 39, 45, 50, 56, 62	VCCL	Р	Low voltage VCC 2.5V IO Power
5, 18, 24, 30, 36, 42, 47, 53, 59, 65, 75, 86	VDD	Р	1.05V Core Power

Strapping Table

Pin	Function	Description
I2C_INT2	Individual/Gang mode selection	0: Individual mode (Default) 1: Gang mode
I2C_INT1	CC_IND	0: CC1 1: CC2

6 Electrical Characteristics

6.1 Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the recommended operating conditions is not implied. It is recommended to use a clamp circuit to protect the device against abnormal voltage spikes when the power is switched on or off.

Parameter	Range	Unit
Power Supply	-0.5 ~ VCC+0.5	V
DC Input Voltage	-0.5 ~ VCC+0.5	V
Output Voltage	-0.5 ~ VCC+0.5	V
Storage Temperature	JEDEC J-STD-033B MSL 3	

6.2 Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit	Remark
V_{CCH}	High voltage VCC power supply	3.0	3.3	3.6	V	
V_{CCHO}	High voltage VCC power supply	3.0	3.3	3.6	V	
V_{CCL}	Low voltage VCC power supply	2.3	2.5	2.7	V	
V _{CCLU}	Low voltage VCC power supply for USB	2.3	2.5	2.7	V	
V_{DD}	Core power supply	1.00	1.05	1.1	V	
T _C	Operating Case Temperature	0		85	٥C	
Tյ	Silicon Junction Temperature	0	25	120	°C	
HBM	Human Body mode		TBD		KV	
MM	Machine mode		TBD		V	

6.2.1 Chip Temperature (T_J, T_C) Calculation

Symbol	Parameter	How to get?		
T _A	Ambient temperature	Measure temperature around chip		
T _J	Operating junction temperature	$T_J = \Theta_{JA} * Power + T_A$		
T _C	Operating case temperature	$T_C = T_J - \Psi_{JT} * Power$		
RJA	Junction-to-ambient thermal resistance	TBD (data from package vender)		
RJC	Junction-to-case thermal resistance	TBD (data from package vender)		
Ψ στι Ψ	Junction-to-top thermal characterization	TBD (data from package vender)		
Power	Chip power consumption	Measure chip power consumption		

- For thermal test board standards, please refer to JEDEC JESD51-5.
- For thermal test method environmental conditions, please refer to JESD51-2.
- Example: TBD

6.3 AC/DC Characteristics

6.3.1 USB 3.2 Electrical Specification

(Refer to Universal Serial Bus 3.2 Specification Rev. 1.0)

6.3.2 USB 2.0 Electrical Specification

(Refer to Universal Serial Bus Specification Rev. 2.0)

6.3.3 DC Electrical Characteristics for digital pins

(Including VBUS, PERST, I2C, UART, HDDPC and GPIOs)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{IH}	High-Level Input Voltage	2.0			V
V_{IL}	Low-Level Input Voltage			0.8	V
V_{HYS}	Input Hysteresis	0.32	0.37	0.4	mV
$V_{TH\text{-L2H}}$	Threshold of Schmitt Trigger low to high	1.4	1.6	1.8	V
$V_{TH ext{-}H2L}$	Threshold of Schmitt Trigger high to low	1	1.23	1.4	V
V _{OH}	High-Level Output Voltage	2.4			V
V_{OL}	Low-Level Output Voltage			0.4	V
${ m I}_{\sf OH}$	Output Driving Current while V _{OH}	12			mA
I_{OL}	Output Driving Current while VoL	12			mA
D	Internal Pull-up resistance while Vin=0V	65	96	140	ΚΩ
R _{UP}	Internal Pull-up resistance while Vin=VCC/2 V	38	56	81	ΚΩ
D	Internal Pull-down resistance while Vin=VCC	59	96	142	ΚΩ
R _{DN}	Internal Pull-down resistance while Vin=VCC/2 V	35	55	79	ΚΩ
T	Input pull-up leakage current after Vin is read, Rup is off & Iil < 1uA when VIN=0	21	34.4	56	uA
${ m I}_{ ext{IL-UP}}$	Input pull-up leakage current after Vin is read, Rup is off & Iil < 1uA when VIN=VCC/2	18	29.4	47	uA
I_{IL-DN}	Input pull-down leakage current after Vin is read, Rdn is off & Iil < 1uA when VIN=VCC	21	34.5	60	uA
	Input pull-down leakage current after Vin is read, Rdn is off & Iil < 1uA when VIN=VCC/2	18	30	50	uA

6.3.4 DC Electrical Characteristics for POR_N pin

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{IH}	High-Level Input Voltage	2.6			V
V_{IL}	Low-Level Input Voltage			1.4	V
V _{HYS}	Input Hysteresis	0.21	0.23	0.25	mV
V _{TH-L2H}	Threshold of Schmitt Trigger low to high	1.9	2.2	2.55	V
V _{TH-H2L}	Threshold of Schmitt Trigger high to low	1.65	1.97	2.35	V
Input	Input leakage current while Vin=0V			1	uA

6.3.5 External Crystal Electrical Specification

Symbol	Parameter	Min.	Тур.	Max.	Unit
fxtal	Frequency		25		MHz
$\triangle f$ XTAL	Long Term Stability (at 25 °C)	-30		30	ppm
t c	Temperature Stability	-30		30	ppm
Fa	Aging	-5		5	ppm
CL	Load Capacitance (Single-end mode)		16		pF
Co	Shunt Capacitance	1	3	7	pF

Figure 3: Differential Crystal Design

6.3.6 Differential Clock Oscillator Electrical Specification

Note: The table describes the specification of clock with external 25MHz crystal.

Symbol	Parameter		Typ.	Max.	Unit
fxtal	Frequency		25		MHz
△fxtal	Long Term Stability (at 25 °C)	-150		150	ppm
Сх	External Load Capacitance (Differential mode)		10		pF
Статац	Total external equivalent Capacitance from XI pin to XO pin (Differential mode)	9	11	15	pF
RTOTAL	Total external equivalent Series Resistance from XI pin to XO pin (Differential mode)			60	Ω

6.3.7 Internal Linear Regulator Electrical Specification

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{IN}	Input Voltage Range	4.0	5.0	5.5	V
V _{OUT}	Output Voltage Range	3.0	3.3	3.6	V
I_{MAX}	Maximum capacity of current			90	mA

Total Power Consumption

TBD

7. Timing Diagram

Figure 4: Power on Sequence

Power on Sequence Timing Specification

Symbols	Parameter	Min.	Тур.	Max.	Units
t 5V2VCCH	V _{CCH} (90%) available after 5V or VBUS (90%) available		3	10	ms
t vcch2vccl	V _{CCL} (90%) available after V _{CCH} (90%) available	0	5	10	ms
t vcch2vdd	V _{DD} (90%) available after V _{CCH} (90%) available			90	ms
trst	RST (90%) ready after V _{CCH} (90%) available	0			ms
t _{25CLKOUT}	25MHz clock available after RST#(90%) assertion			10	ms

8. Package Information

SYMBOL	ML	LIMETE	R		INCH			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α			0.90			0.035		
A1	0.00	0.01	0.05	0.00	0.00 0.0004			
A2		0.65	0.70		0.026	0.028		
A3	C	.20 R	EF.	0	0.008	08 REF.		
ь	0.13	0.18	0.23	0.005	0.007	0.009		
D	10.00 bsc			0.394 bsc				
D1	9	.75 b	9C	0.384 bsc				
D2	5.45	5.60	5.75	0.215	0.220	0.226		
E	1	0.00	bsc	0.394 bsc				
E1	9	.75 b	9C	0.384 bsc				
E2	5.45	5.60	5.75	0.215	0.220	0.226		
L	0.30	0.40	0.50	0.012	0.016	0.020		
е	0.40 bsc			0.	016 b	sc		
0 1	0.		12	O,		12*		
R	0.065			0.003				

TOLERANCES OF FORM AND POSITION

0.004

0.004

0.002

0.10

0.10

0.05

add bbb

ccc

NOTES : 1.ALL DIMENSIONS ARE IN MILLIMETERS. 2.DIE THICKNESS ALLOWABLE IS 0.305 mm MAXIMUM(.012 INCHES MAXIMUM) 3.DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. -1994. 4.DIMENSION APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.13 AND 0.23 mm FROM TERMINALTIP. (REFER TO SPEC "b") 5.THE PIN #1 DENTIFIER MUST BE PLACED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY. 6.EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL. 7.PACKAGE WARPAGE MAX 0.08 mm. 8.APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDING PART OF EXPOSED PAD FROM MEASURING. (TIN PLATING) 9.APPLIED ONLY TO TERMINALS.(TIN PLATING) 10.PACKAGE CORNERS UNLESS OTHERWISE SPECIPIED ARE R0.175±0.025 mm.

9. Top Marking Information

- 1. asmedia: ASMedia Logo
- 2. ASM3074C: Product Name
- 3. B: Version of ASMedia Logo
- 4. XXXXXXXXX Serial No. Reserved for Vendor
- 5. YYWW: Date Code