Amendments to the Claims

The listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

Claim 1 (currently amended): A method of preparing samples for analysis in headspace gas chromatography comprising the steps of dissolving or dispersing a sample in at least one ionic liquid, wherein the ionic liquid is a molten salt, and volatilizing the volatile components of the sample by headspace gas chromatography.

Claim 2 (previously presented): The method according to claim 1 wherein the ionic liquid has a melting point of less than 100°C.

Claim 3 (original): The method according to claim 2 wherein the ionic liquid has a melting point of less than 30°C.

Claim 4 (previously presented): The method according to claim 1 wherein the ionic liquid has a vapor pressure of less than about 1 mm/Hg at 25°C.

Claim 5 (original): The method according to claim 4 wherein the ionic liquid has a vapor pressure of less than about 0.1 mm/Hg at 25°C.

Claim 6 (original): The method according to claim 5 wherein the ionic liquid has essentially no vapor pressure.

Claim 7 (previously presented): The method according to claim 1 wherein the thermal stability of the ionic liquid is from 150°C to 400° C.

Claim 8 (original): The method according to claim 7 wherein the thermal stability of the ionic liquid is from 200° C to 300° C.

Claim 9 (previously presented): The method according to claim 1 wherein the ionic liquid has a melting point of less than 250°C, a vapor pressure less than about 1mm/Hg at 25°C and the thermal stability of the ionic liquid is from 150° C to 400° C.

Claim 10: (previously presented): The method according to claim 1 wherein the anion of the ionic liquid is selected from the group consisting of Cl⁻, Br⁻, NO₂⁻, NO₃⁻, AlCl₄⁻, BF₄⁻, PF₆⁻, CF₃COO⁻, CF₃SO₃⁻, (CF₃SO₂)₂N⁻, OAc⁻, CuCl₃⁻, GaBr₄⁻, GaCl₄⁻, and SbF₆⁻.

Claim 11 (previously presented): The method according to claim 1 wherein the cation of the ionic liquid is selected from the group consisting of pyridinium, ammonium, imidazolium, phosphonium, and sulphonium.

Claim 12 (previously presented): The method according to claim 1 wherein the ionic liquid is selected from the group consisting of an imidazolium salt, pyridinium salt, ammonium salt, phosphonium salt, and sulphonium salt, and mixtures thereof.

Claim 13 (original): The method according to claim 12 wherein the imidazolium salt has formula (I)

$$\begin{bmatrix}
N \\
N \\
A^{-}
\end{bmatrix}$$
(I)

wherein R^1 and R^2 are independently selected from the group consisting of a C_1 - C_{18} aliphatic group and a C_4 - C_{18} aromatic group; and A^- is an anion.

Claim 14 (original): The method according to claim 12 wherein the ammonium salt has formula (II)

wherein R^3 , R^4 , R^5 and R^6 are independently selected from the group consisting of a C_1 - C_{18} aliphatic group and a C_4 - C_{18} aromatic group; and A^- is an anion.

Claim 15 (original): The method according to claim 12 wherein the phosphonium salt has formula (III)

wherein R^7 , R^8 , R^9 , and R^{10} are independently selected from the group consisting of a C_1 - C_{18} aliphatic group and a C_4 - C_{18} aromatic group; and A^- is an anion.

Claim 16 (original): The method according to claim 12 wherein the pyridinium salt has formula (IV)

wherein R^{11} is selected from the group consisting of a C_1 - C_{18} aliphatic group and a C_4 - C_{18} aromatic group; and A^- is an anion.

Claim 17 (previously presented): The method according to claim 1 wherein the ionic liquid is selected from the group consisting of 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium hexafluorophosphate, 1-decyl-3-methylimidazolium hexafluorophosphate, 1-decyl-3-methylimidazolium hexafluorophosphate, 1-decyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulphonyl)amide, 1-hexyl-3-methylimidazolium bis((trifluoromethyl)sulphonyl)amide, 1-hexylpyridinium tetrafluoroborate, 1-octylpyridinium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-methyl-3-ethyl imidazolium chloride, 1-methyl-3-butyl imidazolium chloride, 1-methyl-3-butyl imidazolium chloride, 1-methyl-3-hexyl imidazolium bromide, 1-methyl-3-octyl imidazolium chloride, 1-methyl-3-decyl imidazolium chloride, 1-methyl-3-hexadecyl imidazolium chloride, 1-methyl-3-octadecyl imidazolium chloride, 1-methyl-3-octadecyl imidazolium chloride, 1-methyl-3-octadecyl imidazolium chloride, 1-methyl-3-octadecyl imidazolium chloride, ethyl pyridinium bromide, ethyl pyridinium chloride, benzyl pyridinium bromide, and mixtures thereof.

Claim 18 (original): The method according to claim 17 wherein the ionic liquid is selected from the group consisting of 1-octyl-3-methyl-imidazolium hexafluorophosphate, 1-hexyl-3-methyl-imidazolium hexafluorophosphate, 1-butyl-3-methyl-imidazolium tetrafluoroborate, 1-butyl-3-methyl-imidazolium trifluoromethanesulfonate, 1-ethyl-3-methyl-imidazolium trifluoromethanesulfonate, and 1-ethyl-3-methyl-imidazolium bis-(trifluoromethanesulfonyl)-amide.

Claims 19 through 23(previously cancelled)