Introduction to Machine Learning

Fall 2021

University of Science and Technology of China

Lecturer: Jie Wang

Posted: Sep. 17, 2021

Homework 1

Due: Sep. 29, 2021

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Basis and coordinates

Suppose that $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is a basis of an *n*-dimensional vector space V.

- 1. Show that $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$ is also a basis of V for nonzero scalars $\lambda_1, \lambda_2, \dots, \lambda_n$.
- 2. Let $V = \mathbb{R}^n$ and $(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)\mathbf{P}$, where $\mathbf{P} \in \mathbb{R}^{n \times n}$ and $\mathbf{b}_i \in \mathbb{R}^n$, for any $i \in \{1, \dots, n\}$. Show that $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is also a basis of V for any invertible matrix \mathbf{P} .
- 3. Suppose that the coordinate of a vector \mathbf{v} under the basis $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is $\mathbf{x} = (x_1, x_2, \dots x_n)$.
 - (a) What is the coordinate of **v** under $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$?
 - (b) What are the coordinates of $\mathbf{w} = \mathbf{a}_1 + \cdots + \mathbf{a}_n$ under $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ and $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$? Note that $\lambda_i \neq 0$ for any $i \in \{1, \dots, n\}$.

Exercise 2: Derivatives with matrices

Definition 1 (Differentiability). [1] Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function, $\mathbf{x}_0 \in \mathbb{R}^n$ be a point, and let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. We say that f is differentiable at \mathbf{x}_0 with derivative L if we have

$$\lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{\|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)\|_2}{\|\mathbf{x} - \mathbf{x}_0\|_2} = 0.$$

We denote this derivative by $f'(\mathbf{x}_0)$.

- 1. Let $\mathbf{x}, \mathbf{a} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$. Consider the functions as follows. Please show that they are differentiable and find $f'(\mathbf{x})$.
 - (a) $f(\mathbf{x}) = \mathbf{a}^{\top} \mathbf{x}$.
 - (b) $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{x}$.
 - (c) $f(\mathbf{x}) = \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$.
- 2. Please follow Definition 1 and give the definition of the differentiability of the functions $f: \mathbb{R}^{n \times n} \to \mathbb{R}$.
- 3. Let $f(\mathbf{X}) = \det(\mathbf{X})$, where $\det(\mathbf{X})$ is the determinant of $\mathbf{X} \in \mathbb{R}^{n \times n}$. Please discuss the differentiability of f rigorously according to your definition in the last part. If f is differentiable, please find $f'(\mathbf{X})$.
- 4. Let $f(\mathbf{X}) = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{X})$, where $\mathbf{A}, \mathbf{X} \in \mathbb{R}^{n \times m}$, and $\operatorname{tr}(\cdot)$ denotes the trace of a matrix. Please discuss the differentiability of f and find f' if it is differentiable.
- 5. Let \mathbf{S}_{++}^n be the space of all positive definite $n \times n$ matrices. Prove the function $f: \mathbf{S}_{++}^n \to \mathbb{R}$ defined by $f(\mathbf{X}) = \operatorname{tr} \mathbf{X}^{-1}$ is differentiable on \mathbf{S}_{++}^n . (Hint: Expand the expression $(\mathbf{X} + t\mathbf{Y})^{-1}$ as a power series.)
- 6. Define a function $f: \mathbf{S}_{++}^n \to \mathbb{R}$ by $f(\mathbf{X}) = \log \det \mathbf{X}$. Prove $\nabla f(\mathbf{I}) = \mathbf{I}$. Deduce $\nabla f(\mathbf{X}) = \mathbf{X}^{-1}$ for any \mathbf{X} in \mathbf{S}_{++}^n .

Exercise 3: Rank of matrices

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$.

- 1. Please show that
 - (a) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\top});$
 - (b) $rank(AB) \le rank(A)$;
 - (c) $rank(AB) \le rank(B)$;
 - (d) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\top}\mathbf{A}).$
- 2. The *column space* of \mathbf{A} is defined by

$$C(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x}, \, \mathbf{x} \in \mathbb{R}^n \}.$$

The $null\ space$ of **A** is defined by

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0 \}.$$

Notice that, the rank of A is the dimension of the column space of A.

Please show that

- (a) $\operatorname{rank}(\mathbf{A}) + \dim(\mathcal{N}(\mathbf{A})) = n;$
- (b) $\mathbf{y} = \mathbf{0}$ if and only if $\mathbf{a}_i^{\top} \mathbf{y} = 0$ for $i = 1, \dots, m$, where $\mathbf{y} \in \mathbb{R}^m$ and $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ is a basis of \mathbb{R}^m .
- 3. Show that

$$rank(AB) = rank(B) - dim(C(B) \cap N(A)).$$
 (1)

- 4. Suppose that the first term on the right-hand side (RHS) of Eq. (1) changes to $\mathbf{rank}(\mathbf{A})$. Please find the second term on the RHS of Eq. (1) such that it still holds.
- 5. Show the results in 1. by Eq. (1) or the one you established in 4.

Exercise 4: Linear equations

Consider the system of linear equations in w

$$\mathbf{y} = \mathbf{X}\mathbf{w},\tag{2}$$

where $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{w} \in \mathbb{R}^d$, and $\mathbf{X} \in \mathbb{R}^{n \times d}$.

- 1. Give an example for "X" and "y" to satisfy the following three situations respectively:
 - (a) there exists one unique solution;
 - (b) there does not exist any solution;
 - (c) there exists more than one solution.
- 2. Suppose that **X** has full column rank and $\operatorname{rank}((\mathbf{X}, \mathbf{y})) = \operatorname{rank}(\mathbf{X})$. Show that the system of linear equations (2) always admits a unique solution.
- 3. (Normal equations) Consider another system of linear equations in w

$$\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{X}\mathbf{w}.\tag{3}$$

Please show that the system (3) always admits a solution. Moreover, does it always admit a unique solution?

Exercise 5: Linear regression

Consider a data set $\{(x_i, y_i)\}_{i=1}^n$, where $x_i, y_i \in \mathbb{R}$.

1. If we want to fit the data by a linear model

$$y = w_0 + w_1 x, \tag{4}$$

please find \hat{w}_0 and \hat{w}_1 by the least squares approach (you need to find expressions of \hat{w}_0 and \hat{w}_1 by $\{(x_i, y_i)\}_{i=1}^n$, respectively).

2. **Programming Exercise** We provide you a data set $\{(x_i, y_i)\}_{i=1}^{30}$. Consider the model in (4) and the one as follows:

$$y = w_0 + w_1 x + w_2 x^2. (5)$$

Which model do you think fits better the data? Please detail your approach first and then implement it by your favorite programming language. The required output includes

- (a) your detailed approach step by step;
- (b) your code with detailed comments according to your planned approach;
- (c) a plot showing the data and the fitting models;
- (d) the model you finally choose $[\hat{w}_0 \text{ and } \hat{w}_1 \text{ if you choose the model in (4), or } \hat{w}_0, \hat{w}_1, \text{ and } \hat{w}_2 \text{ if you choose the model in (5)}].$

Exercise 6: Projection

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^m$. Define

$$\mathbf{P}_{\mathbf{A}}(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{z} \in \mathbb{R}^m} \{ \|\mathbf{x} - \mathbf{z}\|_2 : \mathbf{z} \in \mathcal{C}(\mathbf{A}) \}.$$

We call $P_{\mathbf{A}}(\mathbf{x})$ the projection of the point \mathbf{x} onto the column space of \mathbf{A} .

- 1. Please prove that $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ is unique for any $\mathbf{x} \in \mathbb{R}^m$.
- 2. Let $\mathbf{v}_i \in \mathbb{R}^n$, $i = 1, \dots, d$ with $d \leq n$, which are linearly independent.
 - (a) For any $\mathbf{w} \in \mathbb{R}^n$, please find $\mathbf{P}_{\mathbf{v}_1}(\mathbf{w})$, which is the projection of \mathbf{w} onto the subspace spanned by \mathbf{v}_1 .
 - (b) Please show $\mathbf{P}_{\mathbf{v}_1}(\cdot)$ is a linear map, i.e.,

$$\mathbf{P}_{\mathbf{v}_1}(\alpha \mathbf{u} + \beta \mathbf{w}) = \alpha \mathbf{P}_{\mathbf{v}_1}(\mathbf{u}) + \beta \mathbf{P}_{\mathbf{v}_1}(\mathbf{w}),$$

where $\alpha, \beta \in \mathbb{R}$ and $\mathbf{w} \in \mathbb{R}^n$.

(c) Please find the projection matrix corresponding to the linear map $\mathbf{P}_{\mathbf{v}_1}(\cdot)$, i.e., find the matrix $\mathbf{H}_1 \in \mathbb{R}^{n \times n}$ such that

$$\mathbf{P}_{\mathbf{v}_1}(\mathbf{w}) = \mathbf{H}_1 \mathbf{w}.$$

- (d) Let $V = (v_1, ..., v_d)$.
 - i. For any $\mathbf{w} \in \mathbb{R}^n$, please find $\mathbf{P_V}(\mathbf{w})$ and the corresponding projection matrix \mathbf{H} .
 - ii. Please find **H** if we further assume that $\mathbf{v}_i^{\top} \mathbf{v}_j = 0, \forall i \neq j$.
- 3. (a) Suppose that

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

What are the coordinates of $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ with respect to the column vectors in \mathbf{A} for any $\mathbf{x} \in \mathbb{R}^2$? Are the coordinates unique?

(b) Suppose that

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}.$$

What are the coordinates of $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ with respect to the column vectors in \mathbf{A} for any $\mathbf{x} \in \mathbb{R}^2$? Are the coordinates unique?

4. A matrix **P** is called a projection matrix if **Px** is the projection of **x** onto $C(\mathbf{P})$ for any **x**.

6

Homework 1

- (a) Let λ be the eigenvalue of **P**. Show that λ is either 1 or 0. (*Hint: you may want to figure out what the eigenspaces corresponding to* $\lambda = 1$ *and* $\lambda = 0$ *are, respectively.*)
- (b) Show that **P** is a projection matrix if and only if $\mathbf{P}^2 = \mathbf{P}$ and **P** is symmetric.
- 5. Let $\mathbf{B} \in \mathbb{R}^{m \times s}$ and $\mathcal{C}(\mathbf{B})$ be its column space. Suppose that $\mathcal{C}(\mathbf{B})$ is a proper subspace of $\mathcal{C}(\mathbf{A})$. Is $\mathbf{P}_{\mathbf{B}}(\mathbf{x})$ the same as $\mathbf{P}_{\mathbf{B}}(\mathbf{P}_{\mathbf{A}}(\mathbf{x}))$? Please show your claim rigorously.

Exercise 7: Linear regression by maximum likelihood

Suppose that the samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ are i.i.d., where $\mathbf{x}_i = (x_{i,1}, \dots, x_{i,d})^{\top} \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$. For any $i \in \{1, \dots, n\}$, we assume that

$$y_i = w_0 + w_1 x_{i,1} + \dots + w_d x_{i,d} + \epsilon_i,$$

where $\mathbf{w} = (w_0, w_1, \dots, w_d)^{\top} \in \mathbb{R}^{d+1}$ and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$. For simplicity, we define $\bar{\mathbf{x}}_i = (1, x_{i,1}, \dots, x_{i,d})^{\top}$, $\mathbf{X} = (\bar{\mathbf{x}}_1, \dots, \bar{\mathbf{x}}_n)^{\top}$, and $\mathbf{y} = (y_1, \dots, y_n)^{\top}$, where \mathbf{X} has full rank.

- 1. Please find the maximum likelihood estimation (MLE) $\hat{\mathbf{w}}$ of the weights \mathbf{w} . Specifically, please give the expression of \hat{w}_0 .
- 2. Please find the MLE of σ .

Exercise 8: Multicollinearity

Consider the linear regression problem formulated as below:

$$\mathbf{y} = \mathbf{X}\mathbf{w} + \mathbf{e}, \mathbb{E}(\mathbf{e}) = \mathbf{0}, \operatorname{Cov}(\mathbf{e}) = \sigma^2 \mathbf{I_n},$$

where $\mathbf{y} = (y_1, \dots, y_n)^{\top}$ and $\mathbf{X} \in \mathbb{R}^{n \times p}$. Suppose that $\mathbf{X}^{\top} \mathbf{X}$ is invertible, then $\hat{\mathbf{w}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$ is the least squares estimator of \mathbf{w} .

1. Recall that the covariance matrix of p-dimensional random vectors is defined as

$$\operatorname{Cov}(\hat{\mathbf{w}}) = \mathbb{E}[(\hat{\mathbf{w}} - \mathbb{E}(\hat{\mathbf{w}}))(\hat{\mathbf{w}} - \mathbb{E}(\hat{\mathbf{w}}))^{\top}].$$

Please show that

- (a) $\mathbb{E}(\hat{\mathbf{w}}) = \mathbf{w}$;
- (b) $\operatorname{Cov}(\hat{\mathbf{w}}) = \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1}$.
- 2. We usually measure the quality of an estimator by mean squared error (MSE). The mean squared error (MSE) of estimator $\hat{\mathbf{w}}$ is defined as

$$MSE(\hat{\mathbf{w}}) = \mathbb{E}[\|\hat{\mathbf{w}} - \mathbf{w}\|^2].$$

Please derive that MSE can be decomposed into the variance of the estimator and the squared bias of the estimator, i.e.,

$$MSE(\hat{\mathbf{w}}) = trCov(\hat{\mathbf{w}}) + ||\mathbb{E}\hat{\mathbf{w}} - \mathbf{w}||^2$$
$$= \sum_{i=1}^{p} Var(\hat{w}_i) + \sum_{i=1}^{p} (\mathbb{E}\hat{w}_i - w_i)^2.$$

3. Please show that

$$MSE(\hat{\mathbf{w}}) = \sigma^2 \sum_{i=1}^p \frac{1}{\lambda_i},$$

where $\lambda_1, \lambda_2, \dots, \lambda_p$ are the eigenvalues of $\mathbf{X}^{\top} \mathbf{X}$.

4. What would happen if there exists an eigenvalue $\lambda_k \approx 0$?

Homework 1

Exercise 9: Regularized least squares

Suppose that $\mathbf{X} \in \mathbb{R}^{n \times d}$.

- 1. Please show that $\mathbf{X}^{\top}\mathbf{X}$ is always positive semi-definite. Moreover, $\mathbf{X}^{\top}\mathbf{X}$ is positive definite if and only if $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_d$ are linearly independent.
- 2. Please show that $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}$ is always invertible, where $\lambda > 0$ and $\mathbf{I} \in \mathbb{R}^{d \times d}$ is an identity matrix.
- 3. Consider the regularized least squares linear regression and denote

$$\mathbf{w}^*(\lambda) = \operatorname*{argmin}_{\mathbf{w}} L(\mathbf{w}) + \lambda \Omega(\mathbf{w}),$$

where $L(\mathbf{w}) = \frac{1}{n} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$ and $\Omega(\mathbf{w}) = \|\mathbf{w}\|_2^2$. For regular parameters $0 < \lambda_1 < \lambda_2$, please show that $L(\mathbf{w}^*(\lambda_1)) < L(\mathbf{w}^*(\lambda_2))$ and $\Omega(\mathbf{w}^*(\lambda_1)) > \Omega(\mathbf{w}^*(\lambda_2))$. Explain intuitively why this holds.

References

 $[1]\,$ T. Tao. Analysis II. Springer, 2015.