# **Discrete Mathematics (ITP30003)**

# **Programming Assignment 2 Report**

| I. Fractal 1                                             | 2 |
|----------------------------------------------------------|---|
| i) Description on the Recursion That Creates the Fractal |   |
| ii) Description on the Parameters                        |   |
| iii) Images Generated with Different Parameters          |   |
| II. Fractal 2                                            | 3 |
| i) Description on the Recursion That Creates the Fractal |   |
| ii) Description on the Parameters                        |   |
| iii) Images Generated with Different Parameters          |   |
| III. Fractal Designed by Our Team                        | 4 |
| i) Description on the Recursion That Creates the Fractal |   |
| ii) Description on the Parameters                        |   |
| iii) Images Generated with Different Parameters          |   |
| IV. Triomino-Tiling Problem                              | 5 |
| i) Description on the Recursion That Solves the Problem  |   |
| ii) Description on the Parameters                        |   |
| iii) Images Generated with Different Parameters          |   |

# Team 2

21200439 Seungjin Yang 21400738 Seungyun Ji 21500830 Minho Kim 21700581 Jihyun Lee 21700097 Minju Kim

#### I. Fractal 1



(Pic. 1) Representative Result Image of the Program

# i) Description on the Recursion That Solves the Problem

First, draw three lines to form a triangle and call recursive function for each of the lines. The recursive function behaves as the following:

- 1) Basis Step: if depth is equal to 1, return.
- 2) Recursive Step: if depth is greater than 1, execute the following.
  - Given that start-point and end-point of a line, find three points: A, B, C.
  - A and B are determined by one third point and two third point in the line, respectively.
  - x-position of C is determined by (x-coordinate of A + cos (angle of the line PI / 3) \* (length of the line / 3)).
  - y-position of C is determined by (y-coordinate of A + cos (angle of the line PI / 3) \* (length of the line / 3)).
  - Draw the lines that connect the following pairs of pointers.
    - (start-point, A), (A, C), (C, B), (B, end-point)
  - Decrease *depth* by 1 and call this function recursively for the four lines that are newly constructed.

#### ii) Description on the Parameters

- 1) x1: determines the x-coordinate of the start-point of the line in consideration
- 2) y1: determines the y-coordinate of the start-point of the line in consideration
- 3) x2: determines the x-coordinate of the end-point of the line in consideration
- 4) y2: determines the y-coordinate of the end-point of the line in consideration
- 5) depth: determines how many times the recursive function is called



(Pic. 2) Result Images with Different Depths

#### II. Fractal 2







(pic.2) Reference Diagram

#### i) Description on the Recursion That Solves the Problem

- **1) Basis Step:** if *depth* is equal to 1, execute the same instructions as the recursive steps, except for the recursive calling part.
- 2) Recursive Step: if depth is greater than 1, execute the following.
  - Rotate the plane according to the given angle.
  - Given that a reference point, draw a base square. Reference point represents the left-down vertex of the base square just drawn.
  - Draw two rotated squares, A and B, upon the base square, so that the three squares form a reference diagram (see pic. 2), which demonstrates Pythagorean theorem.
  - Decrease depth by 1 and call this function recursively for the left-down vertex (reference point) and size and angle of each of the squares A and B.

#### ii) Description on the Parameters

- 1) x: determines the x-coordinate of the left-down vertex of the base square
- 2) y: determines the y-coordinate of the left-down vertex of the base square
- 3) angle: determines the angle of rotation of plane
- 4) size: determines the length of the side of the base square
- **5)** *depth*: determines how many times the recursive function is called





(Pic. 2) Result Images with Different Depths

## III. Fractal Designed by Our Team



(Pic. 1) Result Image of the Program

#### i) Description on the Recursion That Creates the Fractal

From an origin point, call recursive function for the twelve times with the different parameter values for *angle*: {-150, -120, -90, -60, -30, 0, 30, 60, 90, 120, 150, 180}. The function behaves as the following:

- 1) Basis Step: if depth is equal to 1, return.
- 2) Recursive Step: if depth is greater than 1, execute the following.
  - Given that start-point of a line and angle, find the end-point of a line, A.
  - x-coordinate of A is determined by (x-coordinate of start-point + cos(angle \* depth \* 8.0)
  - y-coordinate of A is determined by (y-coordinate of start-point + sin(angle \* depth \* 8.0)
  - Draw a line that connects the start-point and A.
  - Decrease depth by 1 and multiply branchWidth by 0.6.
  - Call this function recursively for the line that are newly constructed. Call it for the two times, with the different parameter values for angle (angle + 15 and angle 15).

#### ii) Description on the Parameters

- 1) x1: determines the x-coordinate of the start-point of the line in consideration
- 2) y1: determines the y-coordinate of the start-point of the line in consideration
- 3) x2: determines the x-coordinate of the end-point of the line in consideration
- 4) y2: determines the y-coordinate of the end-point of the line in consideration
- **5)** *angle*: determines the angle of direction of a tree to be drawn
- 6) depth: determines how many times the recursive function is called
- 7) branchWidth: determines the width of the lines





(Pic. 2) Result Images with Different Depths

# **IV. Triomino-Tiling Problem**



(Pic. 1) Representative Result Image of the Program

#### i) Description on the Recursion That Solves the Problem

- 1) Basis Step: if *n* is equal to 1, return.
- **2) Recursive Step:** if *n* is greater than 1, execute the following.
  - Consider dividing the checkerboard in half in horizontal and vertical directions to make four sub-checkerboards.
  - Determine which of the four sub-checkerboards contains the missing square. Suppose that we call that sub-checkerboard, A.
  - Tile the squares from the corner of the center of the checkerboard, each from three subcheckerboards except for A.
  - Now, all of four sub-checkerboards have one missing square each.
  - Call this function recursively for the four sub-checkerboards with the size  $n/2 \times n/2$ .

#### ii) Description on the Parameters

- 1) start\_x: determines the starting column index of the checkerboard in consideration
- 2) start y: determines the starting row index of the checkerboard in consideration
- 3) missing x: determines the column index of the missing square in consideration
- 4) missing y: determines the row index of the missing square in consideration
- 5) n: determines the number of rows and columns  $(n \times n)$  of the checkerboard in consideration





(Pic. 2) Result Images with Different Size of Checkerboards and Different Index of the Missing Squares