STA 1013 : Statistics through Examples

Lecture 32: Linear Regression Analysis 2, and Final review

Hwiyoung Lee

December 4, 2019

Department of Statistics, Florida State University

Linear Regression analysis 2

Coefficient of determination R^2

 A statistical measure of how close the data are to the fitted regression line

$$R^2 = \frac{\sum (\hat{y} - \bar{y})^2}{\sum (y - \bar{y})^2} = \frac{\text{Variation explained by the model}}{\text{Total variation}}$$

- The proportion of the variation in a variable that is accounted for by the best-fit line
- $R^2 = \text{correlation}^2$
- R-squared is always between 0 and 1

Coefficient of determination R^2

- 0% indicates that the model explains none of the variability of the response data
- 1 (or 100%) indicates that the model explains all the variability of the response data
- The higher the R-squared, the better the model fits your data

Example : Coefficient of determination R^2

	Prices and	Prices and Characteristics of a Sample of 23 Diamonds from Gem Dealers					
Diamond	Price	Weight (carats)	Depth	Table	Color	Clarity	
1	\$6,958	1.00	60.5	65	3	4	
2	\$5,885	1.00	59.2	65	5	4	
3	\$6,333	1.01	62.3	55	4	4	
4	\$4,299	1.01	64.4	62	5	5	
5	\$9,589	1.02	63.9	58	2	3	
6	\$6,921	1.04	60.0	61	4	4	
7	\$4,426	1.04	62.0	62	5	5	
8	\$6,885	1.07	63.6	61	4	3	
9	\$5,826	1.07	61.6	62	5	5	
10	\$3,670	1.11	60.4	60	9	4	
11	\$7,176	1.12	60.2	65	2	3	
12	\$7,497	1.16	59.5	60	5	3	
13	\$5,170	1.20	62.6	61	6	4	
14	\$5,547	1.23	59.2	65	7	4	
15	\$7,521	1.29	59.6	59	6	2	
16	\$7,260	1.50	61.1	65	6	4	
17	\$8,139	1.51	63.0	60	6	4	
18	\$12,196	1.67	58.7	64	3	5	
19	\$14,998	1.72	58.5	61	4	3	
20	\$9,736	1.76	57.9	62	8	2	
21	\$9,859	1.80	59.6	63	5	5	
22	\$12,398	1.88	62.9	62	6	2	
23	\$11,008	2.03	62.0	63	8	3	

$$\hat{y} = b_0 + b_1 \times x_{\mathsf{weight}}$$

Example : Coefficient of determination \mathbb{R}^2

- Estimated regression line : $\hat{y} = -873.1 + 6593.2 \cdot x_{\text{weight}}$
- $R^2=0.604$ which we can interpret as follows: About 0.6, or 60%, of the variation in the diamond prices is accounted for by the best-fit line relating weight and price.
- That leaves 40% of the variation in price that must be due to other factors, presumably such things as depth, table, color, and clarity

Note: Multiple Regression

- Multiple regression is an extension of simple linear regression
- It is used when we want to predict the response variable based on the value of two or more other explanatory variables
- Model : $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p + \varepsilon$
- For example :

$$\underbrace{y}_{\text{Price of Diamond}} = \beta_0 + \beta_1 x_{\text{weight}} + \beta_2 x_{\text{Depth}}$$

$$+ \beta_3 x_{\text{table}} + \beta_4 x_{\text{Color}} + \beta_5 x_{\text{Clarity}}$$

More accurate result

Nonlinear pattern

DO NOT use the least-squares line when the relationship between x and y is not linear

- $\hat{y} = 6.2047 0.2639x$
- $R^2 = 0.0630$

- $\hat{y} = 0.1029 + 0.0004x$
- $R^2 = 4.201e 06 \approx 0$

Look at the scatterplot before fitting the data.

Extrapolation

DO NOT extrapolate the fitted line outside the range of the data.

- Extrapolation is a type of estimation, beyond the original observation range
- The linear relationship may not hold there.

Example: Age vs Height

- We only observed data (Age 0 \sim 20)
- If we extrapolate the best-fit lines as drawn, the average height will greater than 8.

Example: Height and Age

• The linear relationship is not hold

Example: Will Women Be Faster Than Men?

The Figure shows data and best-fit lines for both men's and women's world record times in the 1-mile race.

- If we accept the best-fit lines as drawn, the women's world record will equal the men's world record by about 2040.
- However, this is **not** a valid prediction because it is based on extending the best-fit lines beyond the range of the actual data

Statistical Hypothesis for μ

• Two-tailed hypothesis test :

$$H_0: \mu = \mu_0$$
$$H_a: \mu \neq \mu_0$$

Left-tailed hypothesis test :

$$H_0: \mu = \mu_0$$
$$H_a: \mu < \mu_0$$

Right-tailed hypothesis test :

$$H_0: \mu = \mu_0$$
$$H_a: \mu > \mu_0$$

Z-test for μ (when σ is known)

Test Statistic

• Test Statistic under H_0 (when σ known):

$$z_0 = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

- We will reject H_0 if our test statistic (z_0) is too "extreme."
- "Too extreme" means the test statistic is located in the rejection region

Rejection Region approach

Rejection Regions

1. Left-Tailed test:

Rejection Region
$$<-z_{\alpha}$$

2. Right-Tailed test:

Rejection Region
$$> z_{\alpha}$$

3. Two-Tailed test:

Rejection Region $> z_{\alpha/2}$ or Rejection Region $< -z_{\alpha/2}$

Commonly used critical values

- $z_{0.1} = 1.28$
- $z_{0.05} = 1.645$
- $z_{0.025} = 1.96$
- $z_{0.01} = 2.326$
- $z_{0.005} = 2.576$

P-value

1. Left-Tailed test

P-value =
$$P(Z \leqslant z_0)$$

2. Right-Tailed test

P-value =
$$P(Z \ge z_0)$$

3. Two-Tailed test

P-value =
$$P(Z \leqslant -|z_0| \text{ or } Z \geqslant |z_0|)$$

= $2*P(Z \geqslant |z_0|)$

Calculator (Z-Test)

Z-Test from statistics

- 1. Press the stat and highlight TESTS
- 2. Scroll down to 1: **Z-Test**
- 3. Inpt: Highlight Stats
- 4. Enter values for
 - μ_0 : Claimed value in the null hypothesis (H_0)
 - \bullet σ : Population standard deviation
 - ullet $ar{X}$: Sample mean
 - \bullet n: sample size
 - $\bullet \ \mu : \ \text{Select the test type} \ \big(\underbrace{ \neq \mu_0 }_{Two-Tailed} \ , \ \underbrace{ < \mu_0 }_{Left-Tail} \ , \ \underbrace{ > \mu_0 }_{Right-Tail} \big)$

Calculator (Z-Test)

Z-Test from Data

- 1. Press the stat and highlight **TESTS**
- 2. Scroll down to 1: Z-Test
- 3. Inpt: Highlight Data
- 4. Enter values for
 - μ_0 : Claimed value in the null hypothesis (H_0)
 - ullet σ : Population standard deviation
 - List : Data (ex : L_1)
 - μ : Select the test type ($\underbrace{\neq \mu_0}_{Two-Tailed}$, $\underbrace{<\mu_0}_{Left-Tail}$, $\underbrace{>\mu_0}_{Right-Tail}$)

Alternative Hypothesis supported? ($\alpha = 0.05$)

1.
$$H_a: \mu < 75, n = 100, \bar{X} = 70, \sigma = 15$$

2.
$$H_a: \mu < 75, n = 36, \bar{X} = 72, \sigma = 15$$

3.
$$H_a: \mu > 12, n = 64, \bar{X} = 14, \sigma = 2$$

4.
$$H_a: \mu > 1007, n = 225, \bar{X} = 1021, \sigma = 35$$

5.
$$H_a: \mu \neq 2.55, n = 100, X = 2.58, \sigma = 0.29$$

6.
$$H_a: \mu \neq 156.2, n = 225, \bar{X} = 155.5, \sigma = 29$$

1. When $\sigma = 5, n = 100, z_0 = 4, \mu_0 = 10$, Find \bar{x} ?

2. When $\sigma=16, n=64, z_0=4, \bar{x}=9$, Find μ_0 ?

- 1. Suppose we perform two-tailed test with $\alpha=0.05$
 - $H_0 = 50$
 - $H_0 \neq 50$

and $\bar{x}=51, \sigma=5$ are fixed. How many sample do we need to reject the H_0 ?

- 2. Suppose we perform one-tailed test with $\alpha=0.05$
 - $H_0 = 10$
 - $H_0 > 10$

and $\bar{x}=10.2, \sigma=2$ are fixed. How many sample do we need to reject the H_0 ?

- 3. Suppose we perform one-tailed test with $\alpha=0.1$
 - $H_0 = 5$
 - $H_0 < 5$

and $\bar{x}=4, \sigma=10$ are fixed. How many sample do we need to reject the H_0 ?

(Weights of Bears) The health of the bear population in Yellowstone National Park is monitored by periodic measurements taken from anesthetized bears. A sample of 54 bears has a mean weight of 182.9 lb. Assuming that σ is known to be 121.8 lb, test the claim that the population mean of all such bear weights is greater than 150 lb $(\alpha=0.05)$

- 1. State the hypothesis
- 2. Find the p-value
- 3. Conclusion

Coke

Randomly selected cans of Coke are measured for the amount of cola, in ounces. The sample values listed below.

```
12.3
12.1
12.2
12.3
12.2
12.3
12.0
12.1
12.2

12.1
12.3
12.3
11.8
12.3
12.1
12.1
12.0
12.2

12.2
12.2
12.2
12.2
12.4
12.2
12.2
12.3

12.2
12.2
12.3
12.2
12.1
12.4
12.2
12.2

12.2
12.3
12.2
12.1
12.4
12.2
12.2
```

Assume that we want to use a 0.05 significance level to test the claim that cans of Coke have a mean amount of cola greater than 12 ounces. Assume that the population has a standard deviation of $\sigma=0.115$ ounce.

1. State the Hypothesis

2. Perform Z-test

t-test for μ (when σ is unknown)

Test Statistic

When we don't know the population standard deviation σ ,

- Use t distirbution
- Test statistic for t-test :

$$t_0 = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}$$

Rejection Region Approach

1. Left-Tail Test

Rejection Region
$$< -t_{\alpha,df}$$

2. Right-Tail Test

Rejection Region
$$> t_{\alpha,df}$$

3. Two-Tailed Test

Rejection Region
$$<-t_{lpha/2,d\!f}$$
 or Rejection Region $>t_{lpha/2,d\!f}$

- Rejection region approach depends on t distribution
- df = n-1

P-value approach

1. Left-Tailed test

P-value =
$$P(T_{df} \leq t_0)$$

2. Right-Tailed test

P-value =
$$P(T_{df} \geqslant t_0)$$

3. Two-Tailed test

P-value =
$$2 * P(T_{df} \ge |t_0|)$$

- Reject H_0 when : P-value $\leqslant \alpha$
- Can't reject H_0 when : P-value $> \alpha$

Calculator (T-Test)

T-Test from Statistics

- 1. Press the stat and highlight TESTS
- 2. Scroll down to 2: T-Test
- 3. Inpt: Highlight Stats
- 4. Enter values for
 - μ_0 : Claimed value in the null hypothesis (H_0)
 - ullet $ar{X}$: Sample mean
 - S_x : Sample standard deviation
 - \bullet n: sample size
 - $\bullet \ \, \mu : \mbox{ Select the test type } \big(\underbrace{\neq \mu_0}_{Two-Tailed} \ \, , \ \, \underbrace{<\mu_0}_{Left-Tail} \ \, , \ \, \underbrace{>\mu_0}_{Right-Tail} \big)$

Calculator (T-Test)

T-Test from Data

- 1. Press the stat and highlight TESTS
- 2. Scroll down to 2: T-Test
- 3. Inpt: Highlight Data
- 4. Enter values for
 - μ_0 : Claimed value in the null hypothesis (H_0)
 - List : Data (ex : L_1)
 - $\bullet \ \, \mu : \mbox{ Select the test type } \big(\underbrace{\neq \mu_0}_{Two-Tailed} \ \, , \quad \underbrace{<\mu_0}_{Left-Tail} \ \, , \quad \underbrace{>\mu_0}_{Right-Tail} \big)$

(Brain Volume) Listed below are brain volumes (cm^3) of unrelated subjects used in a study. Use a 0.1 significance level to test the claim that the population of brain volumes has a mean equal to $1100.0cm^3$. Data : 963, 1027, 1272, 1079, 1070, 1173, 1067, 1347, 1100, 1204

(Multiple choice). Find the critical value (boundary of the rejection region) ?

- 1. $t_{0.1.9}$
- $2. t_{0.1.10}$
- 3. $t_{0.05,9}$
- 4. $t_{10.05,10}$

Note : $t_{\text{tail probability,df}}$

ages of Race Car drivers Listed below are the ages (years) of randomly selected race car drivers (based on data reported in USa Today). Use a 0.05 significance level to test the claim that the mean age of all race car drivers is greater than 30 years.

Data: 32, 32, 33, 33, 41, 29, 38, 32, 33, 23, 27, 45, 52, 29, 25

- 1. State the hypothesis
- 2. Find the p-value
- 3. Conclusion

Z-test for p

Hypothesis Tests For Population Proportions

Test Statistic

Under the H_0 , our z test statistic is given by,

$$z_0 = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} \sim N(0, 1)$$

Hypothesis Tests For Population Proportions

We now consider hypothesis testing with proportions

$$H_0: p=p_0$$

$$H_a: p \neq p_0 \ {\it Two-Tailed test}$$

$$H_a: p < p_0 \ {\it Left-Tailed test}$$

$$H_a: p > p_0 \ {\it Right-Tailed test}$$

- All the ideas from previous tests apply
- p (or π) : denotes the population proportion
- \hat{p} : denotes the sample proportion

Calculator (1-PropZTest)

Z-Test for proportion

- 1. Press the stat and highlight **TESTS**
- 2. Scroll down to 5: 1-PropZTest
- 3. Enter values for
 - p_0 : Claimed proportion in the null hypothesis (H_0)
 - x: Number of success
 - n : Sample size
 - prop : Select the test type
 - $\neq p_0$: Two-Tailed $< p_0$: Left-Tail $> p_0$: Right-Tail

Proportion Z test: Exerciese 1

Under the H_0

$$z_0 = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} \sim N(0, 1)$$

What is the distribution of \hat{p} ?

Proportion Z test: Exerciese 2

(Voter Poll) In a pre-election poll, a candidate for district attorney receives 250 of 400 votes. Assuming that the people polled represent a random sample of the voting population, test the claim that a majority of voters support the candidate.

- 1. State the hypothesis
- 2. Find the test statistic
- 3. Find the p-value
- 4. Conclusion

Proportion Z test: Exerciese 3

(Poverty) According to recent estimates, 12.6% of the 4,342 people in Custer County, Idaho, live in poverty. Assume that the people in this county represent a random sample of all people in Idaho. Based on this sample, test the claim that the poverty rate in Idaho is less than the national rate of 13.3%. ($\alpha=0.1$)

- 1. State the hypothesis
- 2. Find the test statistic
- 3. Find the rejection region
- 4. Conclusion

Linear Regression: Exercise 1

Does it make sense ? (Yes or No)

1. Suppose $s_x = s_y$, then $b_1 > 1$

2. Suppose r < 0, then $b_1 > 0$

Linear Regression: Exercise 2

1. Suppose
$$b_1=3$$
, $s_x=1$, and $s_y=6$, Find r

2. Suppose
$$r=0.9$$
, $s_x=3$, and $s_y=5$, Find b_1

3. Suppose
$$r=-0.5$$
, $b_1=-3$, and $s_y=6$, Find s_x

4. Suppose $\hat{y} = 5 - 0.4x$, and $R^2 = 0.81$, Find r

Linear Regression: Exercise 3

1. Suppose
$$b_0=3$$
, $\bar{x}=2$, $\bar{y}=5$, find b_1

2. Suppose
$$b_0 = 5$$
, $b_1 = 2$, $\bar{y} = -3$, find \bar{x}

3. Suppose
$$b_0 = 10, \bar{y} = 4, \bar{x} = 2, s_x = 3, s_y = 10$$
, find r

Thank you