Градиент.

 $\mathbb{R}^n = \{(x_1, \dots, x_n) | \forall i : x_i \in \mathbb{R}\}$ — этом множество наборов из n вещественных чисел. Элементы \mathbb{R}^n мы будем называть векторами и обозначать жирными буквами, а значения отдельных чисел в векторе – той же буквой, только нежирной и с индексом. Например x_i - это i-тое число в векторе \mathbf{x} . Вектора можно складывать и умножать на числа. Любую функцию от n переменных можно считать функцией из \mathbb{R}^n в \mathbb{R} .

Cтандартное скалярное произведение двух векторов $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ это:

$$(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} x_i \cdot y_i$$

Для функции $\mathbf{u}: \mathbb{R} \to \mathbb{R}^n, \, \mathbf{u}(t) = (u_1(t), \dots, u_n(t)).$ Будем писать, что $\mathbf{u}(t) = o(t),$ если

$$\forall i \in \{1, \dots, n\} : u_i(t) = o(t).$$

??? разные нормы и их эквивалентность

??? дифференцируемость $\mathbb{R}^n \to \mathbb{R}^m$

переделать! Функция f om n переменных **дифференцируема** в точке \mathbf{x} , если существует такой вектор $\nabla f(\mathbf{x}) \in \mathbb{R}^n$, что для любого $v \in \mathbb{R}^n$

$$f(\mathbf{x} + \mathbf{v} \cdot t + o(t)) = f(\mathbf{x}) + (v, \nabla \mathbf{x}) \cdot t + o(t)$$

Вектор $\nabla f(\mathbf{x})$ называется **градиентом** функции f в точке \mathbf{x} .

Задача 1. Пусть f и q – дифференцируемые функции из \mathbb{R} в \mathbb{R} и из \mathbb{R}^n в \mathbb{R} соответственно. Докажите, что $f(g(\mathbf{x}))$ – дифференцируемая функция из \mathbb{R}^n в \mathbb{R} .

Задача 2. Пусть f и g – дифференцируемые функции из \mathbb{R}^n в \mathbb{R} . Докажите, что следующие функции дифференцируемы (и выразите их градиенты, через градиенты f и q):

- a) f+g
- $\mathbf{6}$) $f \cdot g$
- **в)** f/g (в точках **x**, где $g(\mathbf{x}) \neq 0$)

Задача 3. Докажите, что $f(g_1(\mathbf{x}), \dots, g_m(\mathbf{x}))$ – дифференцируемая функция из \mathbb{R}^n в \mathbb{R} , если $q_i:\mathbb{R}^n\to\mathbb{R}$ и $f:\mathbb{R}^m\to\mathbb{R}$ – дифференцируемы.

Задача 4. Докажите, что следующие функции $\mathbb{R}^n \to \mathbb{R}$ дифференцируемы:

- a) $x_1 \cdot \ldots \cdot x_n$
- **б)** $\sin(x_1 + \ldots + x_n)$
- в) $\log \left(\frac{1}{1+\exp(-(\mathbf{x},\mathbf{w}))}\right)$, где \mathbf{w} какой-то вектор из \mathbb{R}^n г) ??? $softmax(\mathbf{x}) = \frac{(e^{x_1},...,e^{x_n})}{e^{x_1}+...+e^{x_n}}$

 $extbf{ extbf{ extit{Yacmhas}}}$ производная функции $f:\mathbb{R}^n o \mathbb{R}$ по i-той переменной в точке \mathbf{x} это:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} = \lim_{\varepsilon \to 0} \frac{f(x_1, \dots, x_i + \varepsilon, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{\varepsilon}$$

Иными словами мы фиксируем все переменные кроме $i ext{-moй}$, рассматриваем f как функцию от одной переменной и берем ее производную в точке $x_i.$

Задача 5. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке **х**. Докажите что:

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right).$$

Задача 6* (**ненужная**). Докажите, что f дифференцируема в точке \mathbf{x} , если ее частные производные определены в некоторой окрестности ${\bf x}$ и непрерывны в ${\bf x}$.