Bachelor of Computer Science (Hons) Year-2

Introduction to Artificial Intelligence

CAI3014

Bayes net II

Probability Recap

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

■ Product rule

$$P(x,y) = P(x|y)P(y)$$

■ Chain rule

$$P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$
$$= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$$

- X, Y independent if and only if: $\forall x, y : P(x,y) = P(x)P(y)$
- \blacksquare X and Y are conditionally independent given Z if and only if: $\underset{X \perp \!\!\! \perp Y \mid Z}{\coprod Y \mid Z}$

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

Bayes' Nets

 A Bayes' net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is P(X | e)?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example: Alarm Network

В	P(B)
+b	0.001
-b	0.999

0.95

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05

-a

Е	P(E)
+e	0.002
-е	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

$$P(+b, -e, +a, -j, +m) =$$

В	ш	A	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Example: Alarm Network

В	P(B)
+b	0.001
-b	0.999

0.95

A	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05

Е	P(E)
+e	0.002
-е	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	L	А	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

P(+b, -e, +a, -j, +m) =
P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) =
$0.001 imes 0.998 imes 0.94 imes_{ imes_A} 0.14$ is a hard of the Artificial Intelligence- JJ/Dan Klein

Size of a Bayes' Net

 How big is a joint distribution over N Boolean variables?

2^N

 How big is an N-node net if nodes have up to k parents?

$$O(N * 2^{k+1})$$

Both give you the power to calculate

$$P(X_1, X_2, \dots X_n)$$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Bayes' Nets

- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Conditional Independence

X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) --- \rightarrow X \perp \!\!\!\perp Y$$

X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) --- \rightarrow X \perp \perp Y|Z$$

• (Conditional) independence is a property of a distribution

• Example:

$$Alarm \bot Fire | Smoke$$

Bayes Nets: Assumptions

 Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

• Conditional independence assumptions directly from simplifications in chain rule:

$$Z \perp \perp X \mid Y \qquad W \perp \perp \{Y, X\} \mid Z$$

Additional implied conditional independence assumptions?

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?

D-separation: Outline

D-separation: Outline

• Study independence properties for triples

Analyze complex cases in terms of member triples

• D-separation: a condition / algorithm for answering such queries

Causal Chains

• This configuration is a "causal chain"

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

- Guaranteed X independent of Z? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:

$$P(+y | +x) = 1, P(-y | -x) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Causal Chains

• This configuration is a "causal chain"

• Guaranteed X independent of Z given Y?

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$
Yes!

Evidence along the chain "blocks" the influence

Common Cause

This configuration is a "common cause"

Guaranteed X independent of Z? No!

- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example:
 - Project due causes both forums busy and lab full
 - In numbers:

$$P(+x | +y) = 1, P(-x | -y) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Common Cause

This configuration is a "common cause"

P(x, y, z) = P(y)P(x|y)P(z|y)

Z: Lab full

• Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Yes!

y)P(z|y) • Observing the cause blocks influence CAI3014/188-Introduction to Artificial Intellige between effects.

Common Effect

 Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case

The General Case

• General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

 Any complex example can be broken into repetitions of the three canonical cases

Active / Inactive Paths

- Question: Are X and Y conditionally independent given Active Triples evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) paths from X to Y
 - Inactive paths = Guaranteed independence!

- Causal chain A → B → C where B is unobserved (either direction)
- Common cause A ← B → C where B is unobserved
- Common effect (aka v-structure)
 A → B ← C where B or one of its descendents is observed

• All it takes to block a path is a single inactive segment

Inactive Triples (Guaranteed Independent)

D-Separation

- Query: $X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- lacktriangle Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed

$$X_i \not \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Otherwise (i.e. if all paths are inactive),
 then independence is guaranteed

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Active Triples

Inactive Triples

(Guaranteed Independent)

 $R \bot\!\!\!\bot B | T$

 $R \perp \!\!\! \perp B | T'$

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:

$$T \perp \!\!\! \perp D$$
 $T \perp \!\!\! \perp D | R$

 $T \perp \!\!\! \perp D | R, S$

Active Triples

Inactive Triples

Structure Implications

 Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 This list determines the set of probability distributions that can be represented

Computing All Independences

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Nets

- Representation
- Conditional Independences
 - Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
 - Learning Bayes' Nets from Data

Seminar

Thank you