Simulation

Sam Lee

Data-Generating Process for Simulation

Bootstrap samples by cluster

```
DGP <- function(clusters, Y, cluster=F){
   G = length(clusters)
   if(cluster){
     return(Y[unlist(sapply(1:G, function(g){
        lag(cumsum(clusters), default=0)[g]+
          floor(clusters[g]*runif(clusters[g]))+1
     }))])
} else {
   return(Y[floor(length(Y)*runif(length(Y)))+1])
}</pre>
```

```
g.map <- women.cleaned %>% group_by(countryid) %>%
summarize(
   total = n()
) %>% ungroup() %>% mutate(
   g.index = cumsum(total)
)
```

Two-Stage Inference with Homoskedasticity Assumption

```
twosls <- function(X, Y, Z){
    n <- nrow(X)

if(ncol(X) == ncol(Z)){
    #Just Identified

    beta.hat <- solve(t(Z)%*%X)%*%t(Z)%*%Y

} else {
    #Assume homoskedasticity

W <- solve(t(Z)%*%Z)

beta.hat <- solve(t(X)%*%Z%*%W%*%t(Z)%*%X)%*%</pre>
```

```
}
    sigma2 = (1/n)*sum((Y-X%*\%beta.hat)^2)
    #Variance-Covariance Matrix
    V \leftarrow sigma2*solve((t(X)%*%Z)%*%(solve(t(Z)%*%Z))%*%
                          t(t(X)%*%Z))
    #95% C.I.
    beta.hat[1,]+c(-1,1)*qnorm(0.975)*sqrt(V[1,1])
  }
  #These two are the same via the Frisch-Waugh Theorem
  #twosls(X, Z, Y)
  twosls(X.tilde, Y.tilde, Z.tilde)
[1] -133.36956 -82.31544
Cluster Robust Variance Function
  cluster.robust.iv <- function(X, Y, Z, clusters){ #Assumes data is sorted</pre>
    n \leftarrow nrow(X)
```

t(X)%*%Z%*%W%*%t(Z)%*%Y

```
k <- ncol(X)
G <- length(clusters)</pre>
if(ncol(X) == ncol(Z)){
  #Just Identified
  beta.hat <- solve(t(Z)\%*\%X)\%*\%t(Z)\%*\%Y
}
u.hat <- X%*%beta.hat - Y
xtz \leftarrow t(X)%*%Z
Sigma <- matrix(0, k, k)</pre>
for(g in 1:G){
  cluster = (lag(cumsum(clusters), default = 0)[g]+1):cumsum(clusters)[g]
  M.z <- solve(diag(1, clusters[g])-</pre>
                   Z[cluster,]%*%solve(t(Z)%*%Z)%*%t(Z[cluster,]))
  zeta.g <- t(Z[cluster,])%*%M.z%*%u.hat[cluster]</pre>
  Sigma <- Sigma+zeta.g%*%t(zeta.g)</pre>
}
V \leftarrow (G-1)/G*solve(n^-1*xtz\%*\%solve(n^-1*Sigma)\%*\%t(n^-1*xtz))
#95% C.I.
```

3. Cluster Robust Variance #3 (Jackknife)

$$\begin{split} \frac{G-1}{G} (\hat{X}'\hat{X})^{-1} (\sum_{g=1}^{G} \acute{s}_{g} \acute{s}_{g}') (\hat{X}'\hat{X})^{-1} \\ \acute{s}_{g} = \hat{X}'_{g} M_{gg}^{-1} \hat{u}_{g} \end{split}$$

Proposed CRVE for Two-Stage Least Squares

$$\begin{split} \sqrt{n}(\hat{b}-\beta) &\underset{d}{\to} N(0, (\mathbb{E}[X_i Z_i'] \Sigma^{-1} \mathbb{E}[X_i Z_i']')^{-1}) \\ \implies \hat{V} &= (\frac{1}{n} X' Z \hat{\Sigma}^{-1} (\frac{1}{n} X' Z)')^{-1}; \quad \Sigma^{-1} = \mathbb{E}[Z_i Z_i' u_i^2] \implies \hat{\Sigma}^{-1} = (\frac{1}{n} \sum_{g=1}^G Z_g' Z_g \hat{u_g}^2)^{-1} \\ &\qquad \qquad \frac{G-1}{G} (X' Z)^{-1} (\sum_{g=1}^G \hat{\zeta}_g \hat{\zeta}_g') (X' Z)^{-1} \\ &\qquad \qquad \hat{\zeta}_g = Z_g' \overset{z}{M}_{gg}^{-1} \hat{u_g}; \quad \overset{z}{M}_{gg} = I_{N_g} - Z_g (Z' Z)^{-1} Z' \end{split}$$

cluster.robust.iv(X.tilde, Y.tilde, Z.tilde, g.map\$total)

[1] -166.85855 -48.82644

Simulated CRVE Intervals

```
simulate.CRVE <- function(n, bootstrap.cluster=F){</pre>
  n.sims <- n
  sims.ci <- matrix(0, nrow=n.sims, ncol=2*2)</pre>
  for(i in 1:n.sims){
    Y.new = DGP(g.map$total, Y.tilde, cluster=bootstrap.cluster) %>% as.matrix()
    for(j in 1:2){
      if(j == 2){
        sims.ci[i,(j+(j-1)):(j+(j-1)+1)] = twosls(X.tilde, Y.new, Z.tilde)
      } else {
        sims.ci[i,(j+(j-1)):(j+(j-1)+1)] =
          cluster.robust.iv(X.tilde, Y.new, Z.tilde, g.map$total)
      }
    }
  }
  colnames(sims.ci) <- c("JackKnife.025", "JackKnife.975",</pre>
                           "2SLS.025", "2SLS.975")
  return(sims.ci)
}
```

```
coverage <- function(sims){</pre>
 coverages = c()
  k = 1
  for(i in 1:(ncol(sims)/2)){
    coverages[i] = sum(0 < sims[,k] & 0 < sims[,k+1] |
      (0 > sims[,k] \& 0 > sims[,k+1]))/nrow(sims)
    k = k+2
  }
 names(coverages) = unlist(lapply(str_split(colnames(sims), "[.]"), first)) %>%
    unique()
 return(coverages)
}
simulate.CRVE(10) %>% round(2) %>% knitr::kable()
```

2SLS.975	2SLS.025	JackKnife.975	JackKnife.025
10.26	-28.84	34.26	-52.84
17.18	-15.54	29.14	-27.50
25.48	-13.10	37.16	-24.78
36.12	-11.39	52.43	-27.70

2SLS.975	2SLS.025	JackKnife.975	JackKnife.025
26.77	-15.83	43.12	-32.18
16.58	-28.52	15.15	-27.09
12.64	-20.79	9.31	-17.45
15.06	-24.25	13.02	-22.20
20.98	-14.28	20.22	-13.52
26.15	-16.02	23.20	-13.06

Simulated CRVE Intervals with Clustered Bootstrap Sampling

```
sims.cluster = simulate.CRVE(1000, bootstrap.cluster = F)
sims.cluster %>%
round(2) %>% head(10) %>% knitr::kable()
```

JackKnife.025	JackKnife.975	2SLS.025	2SLS.975
-13.22	25.85	-12.49	25.13
-42.16	52.77	-14.56	25.18
-36.76	16.55	-30.92	10.71
-34.08	2.39	-33.56	1.87
-21.61	3.07	-27.12	8.58
-28.63	36.88	-17.26	25.51
-18.35	22.95	-16.44	21.04
-15.58	28.74	-12.59	25.74
-77.46	28.70	-45.39	-3.38
-12.51	27.83	-11.68	27.00

coverage(sims.cluster)

JackKnife 2SLS

0.016 0.047