We thank reviewers R1, R2, R3 for their feedback. Reviewers had concerns over our work's correctness (R1), counterintuitiveness (R3), citations (R2), and clarity (R1,R2,R3). We address these concerns in squence.

Limits — view the expected testing loss as a function $L(\eta, T)$. For each d is a dth order truncation $L_d(\eta, T)$, a degree-d polynomial in η whose coefficients depend on T. Thm 2 gives a sufficient condition for $L_{d,\infty}(\eta) \triangleq \lim_{T\to\infty} L_d(\eta, T)$ to exist as well as a formula for $L_{d,\infty}$. \mathbb{R}^1 points out that, though Thm 2 controls LHS $(\eta) \triangleq \lim_{T\to\infty} \lim_{T\to\infty} L_d(\eta, T)$, it is RHS $(\eta) \triangleq \lim_{T\to\infty} \lim_{T\to\infty} L_d(\eta, T)$ that more interests us. So how do LHS and RHS relate?

PROPOSITION. Assume Apx B.1's setting and suppose that $\nabla l(\theta_{\star}) = 0$ and that on some neighborhood U of θ_{\star} the hessian $\nabla \nabla l_x(\theta)$ is lower-bounded by some strictly positive definite form $Q(\theta)$ continuous in θ . Then for any initialization $\theta_0 \in V$ in some neighborhood V of θ_{\star} and for any homogeneous polynomial $p(\eta)$ (of η 's dim \times dim many components) with exactly one root (at $\eta = 0$): $\lim_{\eta \to 0} (LHS(\eta) - RHS(\eta))/p(\eta) = 0$.

TODO: prove, discuss, and discuss irrelevance!

Sharp Minima — R2 notes that Cor 5 statement — that the amount of overfitting (defined as the increase in testing loss l upon initializing at a local minimum of l and then training) is, to second order in η , greatest when the hessian has moderate curvature with respect to η — is counterintutive. Comparing Fig 5 — to [Ke]'s Fig 1, we note that SGD's natural noise structure is *not* that of *displacements* in weight space; rather, it is that of additive error terms $\nabla l_x(\theta) - \nabla l(x)$ in the *gradient* estimate. Consider a one-dimensional θ and imagine a quadratic testing loss $l(\theta) = a\theta^2/2$ and a training loss $l(\theta) = l(\theta) + b\theta$. At the training minimum $\theta = -b/a$, the testing loss is $l(\theta) = l(\theta) + b\theta$. Thus, for fixed $l(\theta) = l(\theta) + b\theta$, sharper minima (larger $l(\theta) = l(\theta) + b\theta$) overfit less. The gradient covariance $l(\theta) = l(\theta) + b\theta$ overfit less. The gradient covariance $l(\theta) = l(\theta) + b\theta$ overfit less. The gradient covariance $l(\theta) = l(\theta) + b\theta$ overfit less. The gradient covariance $l(\theta) = l(\theta) + b\theta$ overfit less. The gradient covariance $l(\theta) = l(\theta) + b\theta$ overfit less. The gradient covariance $l(\theta) = l(\theta) + b\theta$ overfit less. The gradient covariance $l(\theta) = l(\theta) + b\theta$ overfit less. The gradient covariance $l(\theta) = l(\theta) + b\theta$ overfit less. But it is near flat minima that convergence is slowest, so for fixed $l(\theta) = l(\theta) + b\theta$ overfitting to vanish as the Hessian shrinks. By making explicit $l(\theta) = l(\theta) + b\theta$ overfitting to vanish as the Hessian shrinks. By making explicit $l(\theta) = l(\theta) + b\theta$ overfitting to vanish as the Hessian shrinks. By making explicit $l(\theta) = l(\theta) + b\theta$ overfitting to vanish as the Hessian shrinks. By making explicit $l(\theta) = l(\theta) + b\theta$ overfitting to vanish as the Hessian shrinks. By making explicit $l(\theta) = l(\theta) + b\theta$ overfitting to vanish as the Hessian shrinks. By making explicit $l(\theta) = l(\theta) + b\theta$ overfitting to vanish as the Hessian shrinks. By making explicit $l(\theta) = l(\theta) + b\theta$ overfit less.

Citations — Thank you for pointing us to Barrett et al.

Clarity — Our work uses a convention standard in physics and in high-dimensional statistics.

[Ba] D.G.Barrett, B.Dherin. Implicit Gradient Regularization. ICLR 2021.

[Di] L.Dinh, R.Pascanu, S.Bengio, Y.Bengio. Sharp Minima Can Generalize for Deep Nets. ICML 2017.

[Dy] E.Dyer, G.Gur-Ari. Asymptotics of Wide Networks from Feynman Diagrams. ICLR 2020.

[Ke] N.S.Keskar et alia. On Large-Batch Training for Deep Learning. ICLR 2017.