DM 11. Enoncé

Partie I: Nombre de surjections entre ensembles finis

Pour tout $n \in \mathbb{N}^*$, on note $\mathbb{N}_n = \{1, \dots, n\}$.

Soit $n, m \in \mathbb{N}^*$, avec $m \leq n$. Une partition de \mathbb{N}_n en m classes est un ensemble $\{A_1, \ldots, A_m\}$ de parties non vides de \mathbb{N}_n , deux à deux disjointes, dont la réunion est égale à \mathbb{N}_n .

On appelle nombre de Stirling de deuxième espèce le nombre de partitions de \mathbb{N}_n en m classes. On note S_n^m ce nombre.

1°) Une partition ordonnée de \mathbb{N}_n en m classes est une m-liste (A_1, \ldots, A_m) de parties non vides de \mathbb{N}_n , deux à deux disjointes, dont la réunion est égale à \mathbb{N}_n .

Construire une bijection de l'ensemble des surjections de \mathbb{N}_n sur \mathbb{N}_m dans l'ensemble des partitions ordonnées de \mathbb{N}_n en m classes.

En déduire que $m!S_n^m$ est le nombre de surjections de \mathbb{N}_n sur \mathbb{N}_m .

2°) Montrer que
$$m^n = \sum_{k=1}^m \binom{m}{k} (k! S_n^k)$$
.

3°) a) Pour tout $k \in \mathbb{N}_m$, on note E_k l'ensemble des applications f de \mathbb{N}_n dans \mathbb{N}_m telles que $k \notin f(\mathbb{N}_n)$.

Soit $\ell \in \mathbb{N}$ avec $1 \leq \ell \leq m$. Soit k_1, \ldots, k_ℓ des entiers deux à deux distincts de \mathbb{N}_m . Calculer le cardinal de $E_{k_1} \cap \cdots \cap E_{k_\ell}$.

b) Montrer que
$$m!S_n^m = \sum_{k=0}^m (-1)^k \binom{m}{k} (m-k)^n$$
.

Partie II: Formule d'inversion de Möbius

On note A l'ensemble des fonctions de \mathbb{N}^* dans \mathbb{Z} . On munit A de la loi interne T définie par :

$$\forall f, g \in A, \ \forall n \in \mathbb{N}^*, \ (f \ T \ g)(n) = \sum_{\substack{1 \le d \le n \\ d \text{ divise } n}} f(d)g\left(\frac{n}{d}\right).$$

- **4°)** Montrer que $\forall f, g \in A, \ \forall n \in \mathbb{N}^*, \ (f \ T \ g)(n) = \sum_{\substack{1 \leq d, d' \leq n \\ dd' = n}} f(d)g(d').$
- 5°) Montrer que (A, T) est un monoïde commutatif.

Soit $n \in \mathbb{N} \setminus \{0, 1\}$. On note $n = p_1^{\alpha_1} \times \cdots \times p_k^{\alpha_k}$ sa décomposition en produit de nombres premiers, où $k \in \mathbb{N}^*$ et $\alpha_1, \ldots, \alpha_k \in \mathbb{N}^*$.

Pour un tel entier n, lorsqu'il existe $i \in \mathbb{N}_k$ tel que $\alpha_i \geq 2$, on pose $\mu(n) = 0$ et sinon, on pose $\mu(n) = (-1)^k$.

On convient de plus que $\mu(1) = 1$. Ainsi, $\mu \in A$: c'est la fonction de Möbius. Pour tout $n \in \mathbb{N}^*$, on pose z(n) = 1.

- **6°)** a) Montrer que z est l'inverse de μ pour la loi T.
- **b)** Soit $f, g \in A$. Montrer que

$$[\forall n \in \mathbb{N}^*, \ f(n) = \sum_{\substack{1 \le d \le n \\ d \text{ divise } n}} g(d)] \iff [\forall n \in \mathbb{N}^*, \ g(n) = \sum_{\substack{1 \le d \le n \\ d \text{ divise } n}} \mu(d) f\left(\frac{n}{d}\right)].$$

- **7°)** Application: On fixe m et n dans \mathbb{N}^* . Un alphabet est un ensemble de m symboles distincts $\{a_1, \ldots, a_m\}$. Un mot de longueur n est une application de \mathbb{N}_n dans $\{a_1, \ldots, a_m\}$.
- a) Lorsque φ et φ' sont deux mots de longueur n, on convient que φ R φ' si et seulement si il existe $p \in \mathbb{N}^*$ tel que, pour tout $i \in \mathbb{N}_n$, $\varphi'(i) = \varphi(i+p)$ (où i+p est à prendre modulo n).

Montrer que R est une relation d'équivalence sur l'ensemble des mots de longueur n. Lorsque φ est un mot de longueur n, sa classe d'équivalence, notée $\overline{\varphi}$ est appelée un mot circulaire de longueur n. On dit que φ représente le mot circulaire $\overline{\varphi}$.

Soit φ un mot de longueur n et $p \in \mathbb{N}^*$. Si, pour tout $i \in \mathbb{N}_n$, $\varphi(i) = \varphi(i+p)$ (où i+p est à prendre modulo n), on dit que p est une période du mot circulaire $\overline{\varphi}$.

- **b)** Soit φ un mot de longueur n. Montrer que l'on peut définir la plus petite période p_0 du mot circulaire $\overline{\varphi}$ et que p_0 divise n. On dira que p_0 est la période primitive de $\overline{\varphi}$.
- c) On note M(p) le nombre de mots circulaires de longueur n et de période primitive p. Si p divise n, montrer que

$$M(p) = \frac{1}{p} \sum_{\substack{1 \le q \le p \\ q \text{ divise } p}} \mu\left(\frac{p}{q}\right) m^q.$$

Partie III : Utilisation de fonctions génératrices

8°) Montrer que, pour tout $m \in \mathbb{N}^*$ et $x \in \mathbb{R}$,

$$\sum_{n=0}^{+\infty} S_n^m \frac{x^n}{n!} = \frac{1}{m!} (e^x - 1)^m.$$

Pour tout $n \in \mathbb{N}^*$, on note I_n le nombre d'involutions de \mathbb{N}_n .

- 9°) Montrer que, pour tout $n \geq 3$, $I_n = I_{n-1} + (n-1)I_{n-2}$.
- 10°) Soit $(a_n)_{n\in\mathbb{N}}$ une suite de complexes. Lorsque c'est défini, on pose

 $f(x) = \sum_{n=0}^{+\infty} a_n x^n$. On dit que f est une série entière. On admettra que s'il existe r > 0 tel que f est définie en r, alors f est définie et de classe C^{∞} sur]-r,r[, avec

$$\forall x \in]-r, r[, \ \forall p \in \mathbb{N}, \ f^{(p)}(x) = \sum_{n=0}^{+\infty} a_n \frac{d^p}{dx^p}(x^n).$$

Montrer que dans ce cas, pour tout $n \in \mathbb{N}$, $a_n = \frac{f^{(n)}(0)}{n!}$.

- 11°) Pour tout $x \in \mathbb{R}$, lorsque c'est défini, on pose $S(x) = \sum_{n=0}^{+\infty} \frac{I_n}{n!} x^n$. Montrer que S(r) est défini pour tout $r \in]0,1[$.
- 12°) On convient que $I_0 = 0$. Montrer que

$$\forall x \in]-1,1[, S'(x) = (1+x)(S(x)+1).$$

- 13°) Montrer que $x \mapsto (S(x)+1)e^{-x-\frac{x^2}{2}}$ est constante puis en déduire une expression de S(x).
- **14°)** Montrer que, pour tout $n \in \mathbb{N}^*$,

$$I_n = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n!}{k! \ 2^k \ (n-2k)!}.$$