选作习题: 设 $\lambda_1, \dots, \lambda_s$ 为 s 个互异的数(实数或复数), 设 l_1, \dots, l_s 为 s 个正整数. 证明以下 $l := l_1 + \dots + l_s$ 个函数在 \mathbb{R} 上线性无关。

$$e^{\lambda_1 t}, \quad t e^{\lambda_1 t} \quad \cdots, \quad t^{l_1 - 1} e^{\lambda_1 t},$$

$$e^{\lambda_2 t}, \quad t e^{\lambda_2 t} \quad \cdots, \quad t^{l_2 - 1} e^{\lambda_2 t},$$

$$\cdots, \quad \cdots, \quad \cdots,$$

$$e^{\lambda_s t}, \quad t e^{\lambda_s t} \quad \cdots, \quad t^{l_s - 1} e^{\lambda_s t}.$$

$$(1)$$

(提示:可考虑对 s 用归纳法.)

证明: 我们对 s 用归纳法来证明结论。 显然当 s=1 时, 结论成立。 假设结论对正整数 s-1 成立 ($s\geq 2$)。我们来证明结论对 s 也成立。

设 $\lambda_1, \dots, \lambda_s$ 为 s 个互异的数(实数或复数), 设 l_1, \dots, l_s 为 s 个正整数. 记 $l := l_1 + \dots + l_s$. 以下我们来证明表达式 (1) 中的 l 函数在 \mathbb{R} 上线性无关。

令式 (1) 中的 l 个函数的任意一个线性组合恒为零得

$$p_1(t)e^{\lambda_1 t} + \dots + p_s(t)e^{\lambda_s t} \equiv 0, \quad \forall t \in \mathbb{R},$$
 (2)

这里 $p_i(t)$ 为 l_i-1 次多项式。在等式 (2) 两边同除以 $e^{\lambda_s t}$ 得

$$p_1(t)e^{\mu_1 t} + \dots + p_{s-1}(t)e^{\mu_{s-1} t} + p_s(t) \equiv 0, \quad \forall t \in \mathbb{R},$$
 (3)

这里 $\mu_i = \lambda_i - \lambda_s, i = 1, \cdots, s-1$ 为 s-1 互异且非零的常数。 对等式 (4) 求导并稍加组合得

$$[\mu_1 p_1(t) + p_1'(t)]e^{\mu_1 t} + \dots + [\mu_{s_1} p_{s-1}(t) + p_{s-1}'(t)]e^{\mu_{s-1} t} + p_s'(t) \equiv 0, \quad \forall t \in \mathbb{R}.$$
 (4)

这里我们应该注意一个事实: 对等式 (4) 作一次求导运算后,指数函数 $e^{\mu_i t}$ 的组合系数函数 $(e^{\mu_i t})$ 的次数不变,因为 $(e^{\mu_i t})$ 的次数不变,因为 $(e^{\mu_i t})$ 为至多 $(e^{\mu_i t})$ 为于

$$q_1(t)e^{\mu_1 t} + \dots + q_{s-1}(t)e^{\mu_{s-1} t} \equiv 0, \quad \forall t \in \mathbb{R},$$
 (5)

这里 $q_i(t)$ 均为多项式且次数与 $p_i(t)$ 相同。等式 (5) 和归纳假设表明 $q_i(t) \equiv 0$, $i=1,\dots,s-1$. 由此可知 $p_i(t) \equiv 0$, $i=1,\dots,s-1$. 再根据等式 (2) 可知 $p_s(t) \equiv 0$. 这就证明了函数组 (1) 线性无关。 证毕。