Белгородский Государственный Технологический Университет им. В.Г. Шухова

Кафедра электротехни	ики и автоматики
Преподаватель	
	20 года
Группа	
Студент	
Рабочее место №	
18 перемычек ——	

Лабораторная работа №6 (M218)

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ И ИССЛЕДОВАНИЕ РЕЖИМОВ РАБОТЫ ТРЕХФАЗНОЙ ЦЕПИ ПРИ СОЕДИНЕНИИ ПОТРЕБИТЕЛЕЙ ЗВЕЗДОЙ.

- Цель работы: 1. Исследование трехфазной цепи при соединении потребителей звездой.
 - 2. Изучение методов расчета трехфазных цепей при соединении потребителей звездой.

Рис. 6.1

1.Исследование резистивной симметричной нагрузки с нейтральным проводом. (Общая точка PW на N).

Нагрузка называется симметричной, если сопротивление всех фаз одинаковы по величине и по характеру, т.е. Za=Zb=Zc.

Таблица 6.1

		Расчетные значения							
U _A , B	U _B , B	U _C , B	P_{B+C} , B_T	I _C ,	I _C ,A (обрыв фазы)	I _N ,	I _N ,A (обрыв фазы)	Р, Вт	R37,Ом
PV4	PV2	PV3	PW1, PW2	PA1	PA1	PA2	PA2		

Проверка P_{Σ} =

Расчетные формулы.

При симметричной нагрузке R37=R39=R40, $I_A=I_B=I_C$, $R37=U_C/I_C$. Мощность, потребляемая симметричной нагрузкой: $P=3 \cdot I_{C}^{2} \cdot R37$.

Проверка.

PW1, PW2 измеряют суммарную мощность в фазах «В» и «С» (P_{B+C}) .

Общая мощность, потребляемая схемой, равна сумме мощностей фазы «А» и показаний ваттметра:

$$P_{\Sigma} = I_A^2 \cdot R39 + P_{B+C}$$
 Tak kak $I_C = I_A$, to $P_{\Sigma} = I_C^2 \cdot R37 + P_{B+C}$.

2. Определение параметров для равномерной нагрузки.

Нагрузка называется равномерной, если одинаковы величины (модули) сопротивления фаз, т.е. Za=Zb=Zc.

Таблица 6.2

R18+R _{L2} ,	X_{L2} ,	R38,	R37=R39=R40,	C11,	X_{C11} ,	Z_a ,	Z_b ,	Z _c ,
Ом	Ом	Ом	Ом	мкФ	Ом	Ом	Ом	Ом

Устанавливаем С11=16мкФ

Расчетные формулы.

$$Z_a=R38+R39$$
 $Z_b=\sqrt{(R40^2+X_{C11}^2)}$;

$$Z_c = \sqrt{(R37 + R18 + R_{L2})^2 + X_{L2}^2}$$
; R38= Z_c -R39.

Приняв $Z_b=Z_c$, определяем значение C11 для получения равномерной нагрузки $R40^2+X^2_{C11}=(R37+R18+R_{L2})^2+X^2_{L2};$ $X_{C11}=\sqrt{(R37+R18+R_{L2})^2+X^2_{L2}-R40^2}$; $C11=\frac{1}{2\pi\!f\!X_{C11}}$.

$$X_{C11} = \sqrt{(R37 + R18 + R_{L2})^2 + X_{L2}^2 - R40^2}$$
; $C11 = \frac{1}{2\pi f X_{C11}}$.

Значения R18+R_{1.2}, X_{1.2} берут из лабораторной работы №5. Если лабораторная работа №5 не выполнялась, то эти данные берут для конкретного рабочего места из «Таблицы величин сопротивлений стендов лаборатории M218».

3.Опыт равномерной нагрузки без нейтрального провода.

(Общая точка PW на фазу A)

Таблица 6.3

	Экспе	Расчетные значения						
U_A , B	$U_{\rm B}$, B	U_c , B	P,BT	Ic,A	Р ,Вт	Ia,A	Ib,A	Ic,A
PV4	PV2	PV3		PA1				

Расчетные формулы.

$$P=I_a^2(R38+R39)+I_b^2\bullet R40+I_c^2(R37+R18+R_{L2})$$

4. Расчет $\grave{\textbf{U}}_{nN}$ в опыте равномерной нагрузки без нейтрального провода.

Табл. 6.4

	<u>Y</u> a,CM	\underline{Y}_{b} ,CM	\underline{Y}_{c} ,CM	Ù _A Y _a	$\dot{U}_{\mathrm{B}}\underline{Y}_{\mathrm{b}}$	Ù _C Y _c	$ \dot{\mathbf{U}}_{A}\underline{\mathbf{Y}}_{a} + \dot{\mathbf{U}}_{B}\underline{\mathbf{Y}}_{b} + \\ + \dot{\mathbf{U}}_{C}\underline{\mathbf{Y}}_{c} $	$\underline{Y}_a + \underline{Y}_b + \underline{Y}_c$	Ùnn
модуль									
φ,°									
1									
J									

Расчетные формулы.

$$\begin{split} \grave{\textbf{U}}_{n_N} &= (\grave{\textbf{U}}_{\underline{A}}\underline{\textbf{Y}}_a + \grave{\textbf{U}}_{\underline{B}}\underline{\textbf{Y}}_b + \grave{\textbf{U}}_{\underline{C}}\underline{\textbf{Y}}_c)/(\ \underline{\textbf{Y}}_a + \underline{\textbf{Y}}_b + \underline{\textbf{Y}}_c) \\ \underline{\textbf{Y}}_a &= 1/\underline{\textbf{Z}}_a \ ; \ \underline{\textbf{Y}}_b = 1/\underline{\textbf{Z}}_b \ ; \ \underline{\textbf{Y}}_c = 1/\underline{\textbf{Z}}_c \end{split}$$

5. Расчет токов в фазах в опыте равномерной нагрузки без нейтрального провода.

Таблица 6.5

											ислиц		
	Ùnn	Ù _A , B	Ù _A - Ùn _N ,B	<u>Ү</u> а, См.	Í _{A,} A	Ù _B , B	\dot{U}_{B^-} $\dot{U}_{n_N,B}$	<u>Ү</u> ь, См.	Í _{B,} A	Ù _{C,} B	Ùc- Ùn _N ,B	<u>Ү</u> с, См.	$\acute{I}_{c,}A$
модуль													
φ,°													
1													
j													

Расчетные формулы

$$\grave{\boldsymbol{U}}_{a} = \grave{\boldsymbol{U}}_{A} - \grave{\boldsymbol{U}}_{nN}; \quad \grave{\boldsymbol{U}}_{b} = \grave{\boldsymbol{U}}_{B} - \grave{\boldsymbol{U}}_{nN}; \quad \grave{\boldsymbol{U}}_{c} = \grave{\boldsymbol{U}}_{C} - \grave{\boldsymbol{U}}_{nN}; \quad \acute{\boldsymbol{I}}_{A} = \grave{\boldsymbol{U}}_{a} \ / \underline{\boldsymbol{Z}}_{a}; \quad \acute{\boldsymbol{I}}_{B} = \grave{\boldsymbol{U}}_{b} \ / \underline{\boldsymbol{Z}}_{b}; \quad \acute{\boldsymbol{I}}_{c} = \grave{\boldsymbol{U}}_{c} \ / \underline{\boldsymbol{Z}}_{c};$$

6. Равномерная нагрузка с нейтральным проводом.

Таблица 6.6

	Экспе	Расчетные значения						
Ua,B PV4	U _b ,B PV2	U _c ,B PV3	P _{B+C} ,B _T PW1+PW2	Ic,A PA1	In,A PA2	Ia, A	Ib, A	Р, Вт

Расчетные формулы

$$\begin{split} &\underline{Z} = R + j(X_L - X_C) = Ze^{j\varphi}; \\ &Z = \sqrt{R^2 + (X_L - X_C)^2} \; ; \; X_L = 2\pi fL \\ &\varphi = arctg \; \frac{X_L - X_C}{R} \; ; \; X_C = \frac{1}{2\pi fC} \\ &\dot{U}_a = U_a \cdot e^{j0^\circ}; \; \dot{U}_e = U_e \cdot e^{-j120^\circ}; \; \; \dot{U}_c = U_c \cdot e^{j120^\circ}; \end{split}$$

$$\begin{split} &\acute{I}_{A}{=}\grave{U}_{a}\,/\underline{Z}_{a};\, \acute{I}_{B}{=}\grave{U}_{b}\,/\underline{Z}_{b};\, \acute{I}_{c}{=}\grave{U}_{c}\,/\underline{Z}_{c};\\ &P{=}{I_{a}}^{2}\cdot\,(R38{+}R39){+}{I_{b}}^{2}{\bullet}R40{+}{I_{c}}^{2}\cdot\,(R37{+}R18{+}R_{L2})\\ &\Pi poверка:\,P{=}P_{a}{+}P_{b{+}c}{=}\,{I_{a}}^{2}(R38{+}R39){+}P_{b{+}c} \end{split}$$

7. Расчет тока ${\bf I}_{N}$ в опыте равномерной нагрузки с нейтральным проводом.

Табл. 6.7

	Ía, A	Íb, A	Íc, A	Í _N , A	I _N , A
модуль					
φ,°					
1					
j					

Расчетные формулы.

$$\dot{I}_{N} = \dot{I}_{a} + \dot{I}_{b} + \dot{I}_{c}$$

Выводы:

Порядок выполнения лабораторной работы №6 (М218)

- 1. Убедиться, что все выключатели стенда выключены (находятся в нижнем положении).
- 2. Собрать схему рис.6.1. Закоротить перемычками элементы R38, C11, L2 и R18.
- 3. Изучить работу схемы, назначение органов управления и приборов.
- 4. Определить цену деления приборов, задействованных в опыте. Кнопки переключения пределов измерений приборов при выполнении этой работы нажимать только по команде преподавателя.
- 5. Доложить преподавателю о готовности к выполнению работы.
- 6. С разрешения преподавателя подать напряжение на стенд (нажать черную кноп-ку SB1).

Исследование симметричной нагрузки с нейтральным проводом

7. Подать напряжение на исследуемую схему (включить SA15 и SA14).

Быстро снять показания приборов и записать их в таблицу 6.1. Выключить SA14 и SA15.

8. Снять перемычку в линейном проводе фазы А, имитируя обрыв фазы.

Включить SA15 и SA14. Снять показания PA2, PA1 и записать их в табл. 6.1(обрыв фазы). Убедиться, что показания других приборов, кроме PV4, не изменились, а ток в нейтральном проводе (показание PA2) стал равен току фазы (показание PA1). Выключить SA14 и SA15. поставить снятую перемычку в провод фазы A.

Исследование равномерной нагрузки без нейтрального провода

- 9. Снять перемычки с элементов R38, C11, L2 и R18.
- 10. Отключить нейтральный провод (снять верхнюю перемычку в проводе N). **Тумблер SA15** не включать! Общую точку ваттметров PW1 и PW2 отсоединить от нейтрального провода и подключить к фазе «А». Тумблерами набрать емкость C11=16мкФ.
- 11. Включить тумблер SA14. **Быстро** снять показания приборов и записать их в таблицу 6.3.
- 12. Выключить SA14.

Исследование равномерной нагрузки с нейтральным проводом

- 13. Отсоединить общую точку ваттметров от фазы «А» и присоединить ее к нейтральному проводу N. Последовательно с PA1 подсоединить выносной амперметр с пределом измерения 1A.
- 14. Поставить снятую ранее перемычку в нейтральный провод N.

Проверить, что включено С11=16мкФ.

- 15. Включить SA15 и SA14.
- 16. **Быстро** снять показания приборов и записать их в таблицу 6.6.
- 17. Выключить SA14 и SA15.
- 18. Снять напряжение со стенда (нажать красную кнопку SB2).
- 19. Доложить преподавателю о выполнении работы. Разобрать схему и сдать рабочее место преподавателю.
- 20. Произвести необходимые расчеты и их результаты записать в соответствующие таблицы:
 - рассчитать сопротивления и проводимости фаз равномерной нагрузки (табл. 6.2 и 6.4);
 - рассчитать значение емкости C11 для обеспечения равномерной нагрузки (табл. 6.2);
 - -рассчитать напряжение смещения нейтрали \dot{U}_{nN} , токи в фазах A, B, C, а также активную мощность, потребляемую из сети (табл. 6.1, 6.3, 6.4, 6.5, 6.6, 6.7)
 - Рассчитать ток в нейтральном проводе I_N (табл. 6.7).
- 21. Сравнить расчетные данные с экспериментальными.
- 22. Сделать выводы по работе.