Machine Learning Report

A Description of DataSet

Problem of Interest

Predict Production Trunc by using other features of the data.

Data Source

The data was provided by **turkyaljehni** to perform data analysis and predict Production Trunc with the help of other features provided.

A Detailed explanation of the data attributes

Data issues and description

Fortunately, this dataset contains no missing values. However it contains column **Scenario and Section which is quite trivial**, when working on that data, therefore we removed it while working on our data.

Basic statistics of attributes

	Production TRUNC	degree trun	distance	height
count	750.000000	750.000000	750.000000	750.000000
mean	83.209333	52.204000	110.000000	96.666667
std	16.406963	19.804781	57.483962	86.980705
min	43.000000	5.000000	20.000000	0.000000
25%	75.000000	36.000000	60.000000	30.000000
50%	90.000000	53.000000	110.000000	70.000000
75%	96.000000	68.000000	160.000000	150.000000
max	100.000000	87.000000	200.000000	300.000000

Table 2: Summary statistics

In table 2 we have expressed the general statistics describing the data. All aur features are numerical so we have got the count, mean, standard deviation, minimum, maximum and quartiles. These are the basic statistics which are required for doing data analysis and selecting the right model for prediction.

Data visualization

The distribution of the attributes

In this section, an analysis of the distributions of the attributes will be made on the data set.

Histogram and Normal Probability Plot for the attribute Degree Trunc

In this case, we see that the data for the attribute **Degree Trunc** resembles a normal distribution a bit, but it skews more to the left .

Histogram and Normal Probability Plot for the attribute distance

When considering **distance** attributes, the data is not normally distributed.

Histogram and Normal Probability Plot for the attribute height

As for **height**, by looking at the histogram and the normal probability plot, we can see that it is skewed towards right and is not completely normally distributed.

Histogram and Normal Probability Plot for the attribute Production TRUNC

For **Production TRUNC** the graph is skewed towards the left as it is visible from histogram and probability plot.

Correlation between the variables

HeatMap

The attributes have both positive and negative correlations. It is interesting to notice that degree trunc is negatively correlated with the distance and Production Trunc. On the other hand, distance is strongly correlated with Production Trunc and negatively with height. Height is not very highly correlated with Production Trunc but is correlated with degree Trunc.

Scatter Matrix

PairPlot

Plotted Correlation of Specific Attributes

Primary machine learning applicability based on visualizations

Based on the initial visualizations there are good indications that the data set is capable of supporting the intended aim with the respective methods proposed. The data is consistent but **not completely normally distributed** and the continuous attributes hold regressional possibilities. There appear to be various correlations between the continuous attributes that can be used as indicators.

Applying Linear Regression:

linear regression is a linear approach to modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). We have to select input and output of the models.

Input:

As we have seen the correlation of the attributes of the dataset. Distance and Production Trunc are highly positively correlated and Degree trunc is highly negatively correlated with the Production Trunc. Note that production trunc is the output variable for which we need to make prediction.

Height is note very strongly correlated with Production Trunc but it is weakly correlated with degree Trunc so we cannot simply ignore is.

We would use **Degree Trunc, Distance and Height** as the input to the linear regression model.

Output:

As we only want to predict Production Trunc so **Production Trunc** is Output of our Model.

Preprocessing:

Before training our model we would need to preprocess our data as the output accuracy is highly dependent on the data we are entering into the model.

We will convert all our data attributes into standard form so that there standard deviation is 1. This technique is called **Standard Scalar**.

Now we are ready to train the model.

Before Preprocessing

	degree trun	distance	height
0	78	20	0
1	79	20	10
2	80	20	20
3	81	20	30
4	81	20	40

After Preprocessing

	degree trun	distance	height
0	1.303383	-1.566699	-1.112099
1	1.353910	-1.566699	-0.997054
2	1.404436	-1.566699	-0.882010
3	1.454963	-1.566699	-0.766965
4	1.454963	-1.566699	-0.651920

Model:

We have split our data **20% and 80% for testing and training** respectively. We applied Linear Regression with Input Provided above and predict Output Production Trunc.

Testing:

After testing on the testing data we get the following results.

	OUTPUT	Prediction	Absolute Error
506	88	88.309296	0.309296
357	82	77.282577	4.717423
133	61	62.117435	1.117435
250	80	74.905805	5.094195
299	77	70.532935	6.467065
680	98	104.525177	6.525177
336	89	82.161660	6.838340
155	82	71.308382	10.691618
528	97	96.362783	0.637217
736	97	109.851483	12.851483

These are the Original Output Predicted Output and the absolute error of the testing dataset.

Error:

So the error values of the model are

Mean Absolute Error: 6.8702456312522315 Mean Squared Error: 79.33291892413993 Root Mean Squared Error: 8.906902880583123

Discussion

Summary

All in all, we can conclude the following points about what we have learned from the data:

- There was a strong negative correlation between Degree Trunc and Production Trunc and a strong positive correlation between Distance and Production Trunc. Height does not have any correlation with Production Trunc but has a weak correlation with Degree Trunc.
- 2. As there is correlation between attributes and the output is numerical value so it is a good idea to **use Regression**. We have used Simple Linear Regression to fit a line to predict on the testing Data.
- 3. We used all three attribute to train the Linear Model. Leaving Height attribute was not a good idea as Height is correlated with degree Trunc.
- 4. The mean squared error comes out to be 79.33 and absolute error comes out to be 6.87 which means the for every test observation we had a difference of 6.87 units between original and predicted values.

Note:

The Dataset was **not adequate** as there were only **750 observations**. From these 750 observations 20% (150 observations) were used as test data. **600 observation** for training are not enough. We should try to **increase the number of observation to get better results**.