Figure 1. Baseline clinical parameters (mean ± SD) in both mild to moderate (NYHA I-II) and severe (NYHA III-IV) congestive heart failure (CHF) groups.

	Mild to Moderate CHF $n = 40$	Severe CHF n = 47
Age (years)	62 ± 7	67 ± 8 §
Ejection fraction (%)	29 ± 4	$20 \pm 6 $ §§
Gender (Male/Female)	36/4	38/9
Ischemic (n)	38	38
Non-ischemic (n)	2	6

§ p<0.01, §§ p<0.001 severe vs. mild to moderate CHF

Kaplan-Meier survival cuves in patients with mild to moderate (NYHA Class I-II) and severe (NYHA Class III-IV) congestive heart failure (CHF) Figure 2.

Figure 3. Values for the natriuretic and vasoactive peptides in healthy control individuals

Parameter	Method	Specificity	Ilnits	5	Geometrical	99.5 % Confidence Limits of the mean	lence Limits mean
				:	mean	Low limit	High limit
Big-ET-1 (1-38)	ELISA (2-site)	C-proET-1 (1-38)	fmol/ml	90	96.0	0.81	1.16
Big-ET-1 (22-38)	RIA	C-proET-1 (1 –38) and fragments of Big-ET-1 with epitopes between (22-38)	lm/gd	92	5.5	5.3	5.8
ET-1	RIA	ET-1 $(1-21)$ and peptides with epitopes between $(1-21)$	lm/gd	92	4.1	3.8	4.4
N-proANP (1-98)	ELISA (2-site)	N-proANP (1-98)	fmol/ml	09	1692	1466	1952
N-proANP (1-25)	RIA	N-proANP (1 – 98) and peptides with epitopes between (1-25)	lm/gd	92	167	149	188
N-proANP (68-98)	RIA	N-proANP (1 – 98) and peptides with epitopes between (68-98)	pg/ml	92	268	236	303
BNP	IRMA (2-site)	BNP (77-108)	pg/ml	28	6	2	15
BNP	RIA	BNP (77 – 108) and peptides with epitopes between 77-108 of N-proBNP	lm/gd	92	5.0	4.4	5.6
N-proBNP	ELISA (Competition)	BNP $(1-76)$ and peptides with epitopes between $(1-76)$	fmol/ml	50	267	224	319

Figure 4. Baseline neurohormonal data [geometric mean (range)] in

both mild to moderate and severe CHF groups,

and comparison with healthy controls.

and the same of th	Controls ^{φφ}	Mild to Moderate	Severe CHF
		CHF	n = 47
		n = 40	
N-proANP (1-98)	1692 (212-3908)	3192 (1001-7768)*	5528 (1129-
fmol/ml	•		18180)**§§
N-proANP (1-25) pg/ml	167 (66-354)	537 (145-2010)	1903 (623-
	,		7148)**§§
N-proANP (68-98)	268 (94-898)	860 (164-2480)*	2507 (709-
pg/ml			88**(5706
N-proBNP fmol/ml	267 (95-1097)	491 (109-1610)	1521 (598-
•			5491)**§§
BNP IRMA pg/ml	9 (2-49)	43 (3-212)	328 (28-1610)**\$
BNP RIA pg/ml	5 (3-15)	22 (10-64)*	75 (15-192)**§§
ET-1 pg/ml	4.1 (2.1-6.6)	3.5 (0.9-8.3)	10.0 (8.7-11.6)**§§
BIG ET-1 RIA pg/ml	5.5 (4.0-7.6)	7.2 (3.8-12.2)	12.0 (5.8-22.9)**§§
BIG ET-1 ELISA	1.0 (0.4-2.8)	1.8 (0.6-4.5)	3.8 (1.3-14.5)**§§
fmol/ml			

*p<0.05, ** p<0.001 vs controls § p<0.01, §§ p<0.001 severe vs mild to moderate CHF $^{\varphi\varphi}$ Data derived from Figure 3

Figure 5. Prognostic values for survival using natriuretic and vasoactive peptide assays, considered independently in NYHA III-IV patients *

	Test between groups Prob>ChiSq Wilcoxon	0.0005	0.0255	0.0149	0.003	0.0204	0.0092	0.1238	0.0577	0.0423
	Good Prognosis group	31	30	30	43	44	31	28	28	42
	Bad prognosis group	10	10	6	10	13	11	10	6	11
as fold	1 99.5% Confidence	5.0	2.6	2.2	4.4	12.0	10.8	68	21	6.8
Limits	mean	3.5	2.4	1.9	3.3	9.5	8.5	32	16	4.7
Cutoff levels expressed as fold geometric mean of normal		4.1	2.5	2.1	3.8	10.7	9.6	54	18	5.7
Va	alue of the cutoff level	4.0	13.8	8.4	6483	1784	2562	480	92	1512
	>	fmol/ml	lm/gd	lm/gd	fmol/ml	lm/gd	lm/gq	lm/gq	lm/gd	fmol/ml
	ostic parameters red independentl	2-site ELISA	RIA	In-house RIA	2-site ELISA	In-house RIA	In-house RIA	IRMA	In-house RIA	Competition- ELISA
,	Progni	Big-ET-1 (1-38)	Big-ET-1 (22-38)	ET-1	N-proANP (1-98)	N-proANP (1-25)	N-proANP (68- 98)	BNP	BNP	N-proBNP
	Cuto as fold	Cutoff levels expressed as fold 99.5% Confidence Limits of the geometrical mean Cutoff levels expressed as fold geometric mean of normal	ered independently Aline Letter ELISA frou/ml 4.0 4.1 3.5 5.0 10 31	ered independently and postic parameters ered independently and postic parameters are produced independently as a prognosis and postic parameters are post produced by the payment of the post post post post post post post post	ered independently and independently are lead independently and be lead independently are lead independently are lead and a selection and be lead and a selection and a selection and be lead and a selection and a se	Strict parameters	Capting parameters Capting parameters	Prognosis Prog	Selic parameters Selic parameters Selic parameters	Casite ELISA fmol/ml 4.0 4.1 3.5 5.0 10 31

* The specificity of each assay is summarized in Figure 3 and described in full length in the text.

100

90 80 Figure 7. Patients with severe CHF (NYHA Class III-IV) A: N-pro ANP (1-98) <6483 fmol/ml B: N-pro ANP (1-98) >6483 fmol/ml 20 4 09 Time (months) 20 $\mathbf{\omega}$ 30 20 10 1, 0, <u>ο</u> 0,7 9,0 0,3 0,2 0,0 0,1 Bnivivnu

Figure 8. Patients with severe CHF (NYHA Class III-IV) A: N-proBNP <1512 fmol/ml B: N-proBNP >1512 fmol/ml

Figure 9. Patients with severe CHF (NYHA Class III-IV) A: BNP (IRMA) <480 pg/ml B: BNP (IRMA) >480 pg/ml

Time (months)

Figure 10. Prognostic values for survival using Big-ET-1 (1–38) testing determined with a specific 2 site ELISA, used in combination with several other natriuretic and vasoactive peptide assays in NYHA III-IV patients *

Parameters conside	Parameters considered in combination	Classification based on cut-off combinations (Cutoff levels are as in Figure 5)	Estimation of 50 % survival in months	Number of deaths during study period	Survivors at end of study period (censored)	Total Number/Class	Total	Test between groups Prob>ChiSq
Marker 1 (M1)	Marker 2 (M2)	L : marker below cut-off H : marker above cut-off						
		M1L and M2L	× 94	10	1	21		
Big ET-1 (1-38) (2-site ELISA)	N-proANP (2-site ELISA)	M1 H and M2 L OR M1 L and M2 H	22	10	-	1	45	0.0002
		M1 H and M2 H	S	13	0	13		
		M1L and M2L	09	11	11	22		
Big ET-1 (1-38) (2-site ELISA)	N-proanp (1–25) (RIA)	M1 H and M2 L OR M1 L and M2 H	16	#	-	12	46	0.0013
		M1 H and M2 H	S.	12	0	12		
		M1L and M2L	>91	8	10	18		
Big ET-1 (1-38) (2-site ELISA)	N-proANP (68-98) (RIA)	M1 H and M2 L OR M1 L and M2 H	. 12	14	2	16	46	0.0003
; ;		M1 H and M2 H	4.5	12	0	12		

Survivors at end Total Total Total Prob>ChiSq (censored)		9 18	2 10 41 0.0009	0 13	10 22	2 16 0.0044	8	8 21	4 15 46 0.0011	10
Number of Survivor deaths during of study study period (cens		o,	ω	13	12	41	8	13	£	10
Estimation of 50 % survival dei in months str		19	22	7.5	44	16	4.5	33	20	4.5
Classification based on cut-off combinations (Cutoff levels are as in Figure 5)	L : marker below cut-off H : marker above cut-off	M1L and M2L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H	M1L and M2L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H	M1L and M2L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H
red in combination	Marker 2 (M2)		N-proBNP Competition one site ELISA			BNP (IRMA)			BNP (RIA)	
Parameters considered in combination	Marker 1 (M1)		Big ET-1 (1-38) (2-site ELISA)			Big ET-1 (1-38) (2-site ELISA)			Big ET-1 (1-38) (2-site ELISA)	

Parameters considered in combination	red in combination	Classification based on cut-off combinations (Cutoff levels are as in Figure 5)	Estimation of 50 % survival in months	Number of deaths during study period	Survivors at end of study period (censored)	Total Number/Class	Total	Test between groups Prob>ChiSq
Marker 1 (M1)	Marker 2 (M2)	L : marker below cut-off H : marker above cut-off						
		M1L and M2L	37	10	2	17		
Big ET-1 (1-38) (2-site ELISA)	ET-1 (RIA)	M1 Hand M2 L OR M1 Land M2 H	12	10	-	11	36	0.0055
		M1 H and M2 H	4.5	ω	0	ω		

* The specificity of each assay is summarized in Figure 3 and described in full length in the text.

Figure 13. Prognostic values for survival using N-proBNP testing determined with a single site competition ELISA used in combination with 2 different BNP assays in NYHA III-IV patients *

Test between groups	Prob>ChiSq Wilcoxon			0.0282			0.0343	
	l otal			45			45	
Total	Number/ Class		70	16	6	19	16	10
Survivors at end of study	period (censored)		∞	4	0	&	က	-
Number of deaths	during study period		12	12	6	=	13	6
Estimation of 50 % ssurvival in months			44	18	ß	44	18	လ
Classification based on cut-off combinations Cut-off levels are as in Fig. 5) L: below cut-off H: above cut-off			M1L and M2L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H	M1L and M2L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H
red in combination	Marker 2			BNP IRMA			BNP RIA	
Parameters considered in combination	Marker 1			N-proBNP Competition one site ELISA			N-proBNP Competition one site ELISA	

* The specificity of each assay is summarized in Figure 3 and described in full length in the text.

100 8 80 A: N-proBNP <1512 fmol/ml AND BNP (IRMA) <480 pg/ml B: N-proBNP >1512 fmol/ml OR BNP (IRMA) >480 pg/ml C: N-proBNP >1512 fmol/ml AND BNP (IRMA) >480 pg/ml BNP (IRMA) >480 pg/ml $\mathbf{\omega}$ Figure 14. Patients with severe CHF (NYHA Class III-IV) 20 S 9 4 Time (months) 50 30 20 10 0,0 0,5 0,8 0,7 **Bniviving**

A: N-proBNP <1512 fmol/ml AND BNP (IRMA) <480 pg/ml C: N-proBNP >1512 fmol/ml AND BNP (IRMA) >480 pg/ml Figure 15. Patients with severe CHF (NYHA Class III - IV) Solid lines: survival

Figure 16. Prognostic values for survival using several natriuretic and vasoactive peptide assays, considered independently in NYHA I - II patients *

·	Test between groups Prob>ChiSq Wilcoxon	7010		0.0772	7	0.0474		0.1078	5	0.0178			
	Total Number/ Class	19	17	19	18	15	22	16	21	22	15		
	Survivors at end of study period (censored)	16	80	15	10	13	12	13	12	18	7		
	Number of deaths during study period	ო	6	4	8	2	10	3	6	4	80		
	% Survival at end of study	28	47	62	55	87	54	84	25	81	57		
	75% survival estimation (months)	۰ 4	43	> 91	49	>91	09	>91	50	>91	47		
	Best estimate of cutoff level segregating patients with good and poor survival prognosis of the geometrical mean Crassification Crassification Crassification Crassification Crassification Crassification Crassification And the geometric and as fold geometric mean of normal Crassification Value of the craft-off And the geometric and the craft-off And the geometric and the craft-off Crassification Cr		Ξ	_	x	7	Ŧ	_	I	_	Н		
l segregating oor survival			2.2	2.6	e. E.	2.4		2.6	7.0	4.4	5.7		
ate of cutoff leve with good and po prognosis			pure so control of the solution of the solutio		<u>.</u>	C	o,	o	0.7	Ç	7.	u C	0.0
Best estim patients			प्रवाधिक of the cutoff level		Value of the cutoff level				38		25		
		1/1	EL/JOHN	[w/20	E Do	a/cu		1	E John Committee of the	lw/sc	E No		
	Prognostic parameters considered independently	VOI III	Z-Site ELISA	d d	AIN aspoil-iii	4 c	AN acron-li	2		4 G	AIN econoli-li		
	Progno: considere	OO EX CIMA COS	(96-1) JUNYOID-N		(כארו) אווייטול-או	AIG COURT OF 100 69/ GIAACOG M	(06-00) LANCOID-N	CN	2	Q			

	Test between groups Prob>ChiSq Wilcoxon	0.0766	600	7000	0.020	777	<u> </u>	0.36.0	0202:0			
	Total Number/ Class	41	23	24	13	ı	1	. !	l			
	Survivors at end of study period (censored)	12	13	19	9	ı	•	I	1			
	Number of deaths during study period	7	10	ıo.	7	ı	I	1	ı			
	% Survival at end of study	98	99	62	46	I		i	i			
	75% survival estimation (months)	>91	53	>91	39	ı	I	ı	1			
	Classification based on cut-off L : below cut-off H : above cut-off				Ξ	ـ ـا	ı	_	π			
l segregating oor survival			4.8	1.6	2.4		I					
Best estimate of cutoff level segregating patients with good and poor survival prognosis	Cutoff levels expressed as fold geometric mean of normal		<u>:</u>	2.0		I		l				
Best estim patients :	Best estimate o patients with Value of the cutoff level			Value of the cutoff level		t t	ο.		l		I	
		m/low#		- Land		[w]	<u> </u>	lm/cc	<u> </u>			
	Prognostic parameters considered independently	Competition-	ELISA	die c	Acida Erios	Š	<u> </u>	Ald cauch a				
	Progno	QNG N		oio ET 4 (4 20)	(05-1) 1-13-810	100 cd 1 4 (00 00)	(00-22)	H H	J			

* The specificity of each assay is summarized in Figure 3 and described in full length in the text.

Figure 17. Patients with mild to moderate CHF (NYHA Class I-II) A: N-proANP (1-98) < 3292 fmol/ml B: N-proANP (1-98) > 3292 fmol/ml

Figure 20. Prognostic values for survival using N-proANP (1-98) testing determined with a specific 2-site ELISA, used in combination with several other natriuretic and vasoactive peptide assays in NYHA I-II patients *

Test between groups Prob>ChiSq Wilcoxon			0.0596			0.0114	
Total			36			36	
Total Number/ Class		12	10	14	14	12	10
Survivors at end of study period (censored)		£	မ	7	13	7	4
Number of deaths during study period		-	4	7	1	rO	9
75% survival estimation (months)	×91	70	42	>91	59	35	
% Survival at end of study	92	09	50	93	58	40	
Classification based on cut-off combinations (Cut-off levels are as in Fig 5)	L : below cut-off H : above cut-off	M1 L and M2 L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H	M1 L and M2 L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H
rred in combination	Marker 2 (M2)		BNP (IRMA)			BNP (RIA)	
Parameters considered in combination	Marker 1 (M1)		N-proANP (1-98) (2-site ELISA)	:		N-proANP (1-98) (2-site ELISA)	

Test between groups Prob>ChiSq Wilcoxon			0.0417			0.0365	
Total		, .	36			36	
Total Number/ Class		12	თ	15	19	4	13
Survivors at end of study period (censored)		11	9	7	16	2	9
Number of deaths during study period		1	ဗ	80	က	7	7
75% survival estimation (months)		>91	50	40	>91	14	40
% Survival at end of study		92	29	47	84	50	46
Classification based on cut-off combinations (Cut-off levels are as in Fig 5)	L : below cut-off H : above cut-off	M1L and M2L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H	M1L and M2L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H
	Marker 2 (M2)		N-proBNP Competition one site ELISA			Big ET-1 (2-site ELISA)	
Parameters considered in combination	Marker 1 (M1)		N-proANP (1-98) (2-site ELISA)			N-proanp (1-98) (2-site ELISA)	

* The specificity of each assay is summarized in Figure 3 and described in full length in the text.

