O'Connell-Dobson-Schouten estimators of agreement applied to Landis and Koch (1976)

Mark Clements

Karolinska Institutet

Abstract

This vignette applies the O'Connell-Dobson-Schouten estimators of agreement to a classical set of data on inter-rater agreement from Landis and Koch (1976). The analysis here follows the analysis given in O'Connell and Dobson (Biometrics 1984; 40: 973–983) and Schouten (Statistica Neerlandica 1982: 36: 45-61). We propose that the O'Connell-Dobson-Schouten estimators are valuable and encourage their broader use.

Keywords: agreement.

O'Connell and Dobson (1984) and Schouten (1982) provide a technical discussion on the statistical properties of averaged measures of agreement, particularly un-weighted and weighted kappa statistics that adjust for the probability of chance agreement. Such measures of agreement are common for studies of multi-rater agreement with nominal or ordinal variables. We have adapted the Fortran code from the 1984 paper by O'Connell and Dobson for use in R and implemented the algorithms described by Schouten (1982) in Fortran. In the following, we apply the resulting package to the dataset analysed in both articles. We propose that the O'Connell-Dobson-Schouten estimators are valuable and encourage their broader use.

Landis and Koch (Biometrics 1977; 33: 363–374) provide a dataset on inter-rater agreement by seven pathologists for classifying carcinoma in situ for uterine cancer. The data are included in the **magree** package as the landis data, which is a matrix.

After loading the package, we can produce summary statistics for i=1, which is the unweighted analysis, for the linear weights (i=2) or for quadratic weights (i=3). The summary statistics include marginal summaries and \hat{S}_{av} for each slide.

Observed marginal distributions for categories:

```
1 2 3 4 5
0.28087167 0.25423729 0.36440678 0.07384988 0.02663438
```

Observed marginal distributions for categories by observer:

```
1 2 3 4 5
A 0.2203390 0.2203390 0.3220339 0.186440678 0.050847458
B 0.2288136 0.1016949 0.5847458 0.059322034 0.025423729
C 0.2627119 0.3559322 0.3135593 0.050847458 0.016949153
D 0.3220339 0.4067797 0.1949153 0.067796610 0.008474576
E 0.1355932 0.2627119 0.4491525 0.118644068 0.033898305
F 0.5254237 0.2627119 0.1694915 0.008474576 0.033898305
G 0.2711864 0.1694915 0.5169492 0.025423729 0.016949153
```

Agreement statistics S_i for each subject:

1	2	3	4	5	6
0.08088076	1.00000000	1.00000000	0.34348626	1.00000000	0.34348626
7	8	9	10	11	12
0.60609175	0.21218351	0.27783488	0.60609175	0.60609175	0.60609175
13	15	16	17	18	19
0.60609175	0.21218351	0.08088076	0.60609175	0.21218351	0.21218351
22	23	24	25	26	27
0.08088076	0.60609175	0.34348626	0.34348626	1.00000000	0.34348626
28	29	30	31	32	33
0.08088076	0.34348626	0.60609175	1.00000000	0.27783488	1.00000000
34	35	36	37	38	39
1.00000000	0.27783488	0.27783488	0.08088076	0.01522939	0.34348626
40	41	42	43	44	45
0.08088076	0.60609175	1.00000000	0.08088076	0.27783488	0.60609175
46	47	48	49	51	52
-0.05042199	0.21218351	0.34348626	0.08088076	0.60609175	0.27783488
53	54	55	56	57	58
0.27783488	0.01522939	0.60609175	0.60609175	0.01522939	1.00000000
59	60	61	62	63	64
1.00000000	0.60609175	0.08088076	0.27783488	0.08088076	0.21218351
65	66	67	68	69	70
0.60609175	0.08088076	1.00000000	0.34348626	0.27783488	1.00000000
71	72	73	74	76	77
0.60609175	0.27783488	0.60609175	0.01522939	0.60609175	0.34348626
78	79	80	81	82	83
0.08088076	0.34348626	-0.11607336	1.00000000	0.21218351	0.08088076
84	85	86	87	88	89
0.27783488	-0.18172474	0.60609175	0.60609175	0.01522939	-0.11607336
90	91	92	93	94	95
0.08088076	0.01522939	-0.11607336	0.21218351	0.34348626	0.27783488

```
96
                     98
                                 99
                                            100
                                                         101
                                                                     102
-0.11607336 0.21218351
                         0.21218351 0.08088076 0.34348626
                                                              0.34348626
        103
                    104
                                105
                                            106
                                                         107
                                                                     108
 1.00000000
            0.01522939
                         0.60609175
                                     0.08088076
                                                 0.21218351
                                                              0.08088076
        110
                    111
                                112
                                            113
                                                         114
0.21218351 0.60609175
                         0.21218351 0.08088076 0.08088076
                                                              0.21218351
                                                         120
                                                                     121
        116
                    117
                                118
                                            119
0.60609175 0.34348626
                         0.08088076  0.60609175  1.00000000  0.21218351
        122
                    123
                                124
                                            126
-0.11607336 -0.11607336
                        0.60609175 0.01522939
```

A simple print of the object provides a short description of the estimator. This is shown here for the linear and quadratic weights.

```
> ## Table 1 (O'Connell and Dobson, 1984), continued
> print(update(fit, weight="linear"))
O'Connell-Dobson-Schouten estimator (linear weights)
Sav(hetero):
                    0.515924 (se: 0.034694; 95% CI: 0.448050, 0.583216)
Sav(homoge):
                    0.509672 (se: 0.036048; 95% CI: 0.439295, 0.579667)
Pr(Overall agreement due to chance | hetero):
                                                     < 2.22e-16
Pr(Overall agreement due to chance | homoge):
                                                     < 2.22e-16
> print(update(fit, weight="quadratic"))
O'Connell-Dobson-Schouten estimator (quadratic weights)
Sav(hetero):
                    0.646884 (se: 0.039399; 95% CI: 0.566433, 0.719791)
Sav(homoge):
                    0.641728 (se: 0.040832; 95% CI: 0.558428, 0.717270)
Pr(Overall agreement due to chance | hetero):
                                                     < 2.22e-16
Pr(Overall agreement due to chance | homoge):
                                                     < 2.22e-16
```

Table 3 of O'Connell and Dobson (1984) includes an analysis where the slides are grouped by level of disagreement. We reproduce the table here.

```
> slideTypeGroups <-
+ list(c(2,3,5,26,31,34,42,58,59,67,70,81,103,120),
+ c(7,10:13,17,23,30,41,51,55,56,60,65,71,73,76,86,87,105,111,116,119,124),
+ c(4,6,24,25,27,29,39,48,68,77,79,94,101,102,117),
+ c(9,32,36,44,52,62,84,95),
+ c(35,53,69,72),
+ c(8,15,18,19,47,64,82,93,98,99,107,110,112,115,121),
+ c(1,16,22,49,63,66,78,90,100,113),
+ c(28,37,40,61,108,114,118),
+ 106,</pre>
```

4 O'Connell-Dobson-Schouten estimators of agreement applied to Landis and Koch (1976)

```
43,
           83,
+
           c(54,57,88,91,126),
           c(74,104),
           38,
           46,
           c(89,122),
           c(80,92,96,123),
           85)
The average \hat{S}_i in those groups can be readily calculated by:
> data.frame(SlideType=1:18,
             S1=sapply(slideTypeGroups,
                 function(ids) mean(fit$s1[as.character(ids)])),
+
             S2=sapply(slideTypeGroups,
                 function(ids) mean(fit$s2[as.character(ids)])))
   SlideType
             1.00000000 1.000000000
1
2
           2 0.60609175 0.601802471
3
           3 0.34348626 0.336337452
4
           4 0.27783488 0.269971197
5
           5 0.27783488 0.269971197
           6 0.21218351 0.203604942
7
           7 0.08088076 0.070872432
           8 0.08088076 0.070872432
8
9
           9 0.08088076 0.070872432
10
          10 0.08088076 0.070872432
11
          11 0.08088076 0.070872432
          12 0.01522939 0.004506178
12
13
          13 0.01522939 0.004506178
14
          14 0.01522939 0.004506178
15
          15 -0.05042199 -0.061860077
```

which follows part of Table 2. Finally, Table 5 from O'Connell and Dobson (1984) can be easily reproduced by dichotomising the outcomes:

```
> magree(landis==1)
```

16 17

18

O'Connell-Dobson-Schouten estimator (unweighted)

16 -0.11607336 -0.128226332

17 -0.11607336 -0.128226332

18 -0.18172474 -0.194592587

```
Sav(hetero): 0.563058 (se: 0.043851; 95% CI: 0.476079, 0.646324)
Sav(homoge): 0.558453 (se: 0.045153; 95% CI: 0.469036, 0.644234)
```

```
Pr(Overall agreement due to chance | hetero):
                                                    < 2.22e-16
Pr(Overall agreement due to chance | homoge):
                                                     < 2.22e-16
> magree(landis==2)
O'Connell-Dobson-Schouten estimator (unweighted)
Sav(hetero):
                   0.159782 (se: 0.029600; 95% CI: 0.109879, 0.226580)
                  0.152886 (se: 0.030545; 95% CI: 0.102073, 0.222719)
Sav(homoge):
Pr(Overall agreement due to chance | hetero):
                                                     7.1863e-14
Pr(Overall agreement due to chance | homoge):
                                                    3.8278e-11
> magree(landis==3)
O'Connell-Dobson-Schouten estimator (unweighted)
Sav(hetero):
                   0.373709 (se: 0.036869; 95% CI: 0.304686, 0.448289)
Sav(homoge):
                    0.364046 (se: 0.038646; 95% CI: 0.292140, 0.442584)
Pr(Overall agreement due to chance | hetero):
                                                    < 2.22e-16
Pr(Overall agreement due to chance | homoge):
                                                    < 2.22e-16
> magree(landis==4)
O'Connell-Dobson-Schouten estimator (unweighted)
Sav(hetero):
                   0.180271 (se: 0.043233; 95% CI: 0.110276, 0.280679)
                    0.173971 (se: 0.043852; 95% CI: 0.103787, 0.276947)
Sav(homoge):
Pr(Overall agreement due to chance | hetero):
                                                    < 2.22e-16
Pr(Overall agreement due to chance | homoge):
                                                    1.8569e-14
> magree(landis==5)
O'Connell-Dobson-Schouten estimator (unweighted)
Sav(hetero):
                    0.626828 (se: 0.145957; 95% CI: 0.330852, 0.850890)
                   0.626413 (se: 0.146334; 95% CI: 0.329882, 0.850997)
Sav(homoge):
Pr(Overall agreement due to chance | hetero):
                                                     < 2.22e-16
Pr(Overall agreement due to chance | homoge):
                                                   < 2.22e-16
We can also compare the raters using the results due to Schouten (1982).
> fit2 <- magree(landis)</pre>
> summary(fit2)
O'Connell-Dobson-Schouten estimator (unweighted)
```

```
Sav(hetero): 0.361290 (se: 0.028881; 95% CI: 0.306811, 0.419587)
Sav(homoge): 0.354335 (se: 0.030018; 95% CI: 0.297924, 0.415112)
Pr(Overall agreement due to chance | hetero): < 2.22e-16
```

Pr(Overall agreement due to chance | hetero): < 2.22e-16
Pr(Overall agreement due to chance | homoge): < 2.22e-16

Observed marginal distributions for categories:

```
1 2 3 4 5
0.28087167 0.25423729 0.36440678 0.07384988 0.02663438
```

Observed marginal distributions for categories by observer:

```
1 2 3 4 5
A 0.2203390 0.2203390 0.3220339 0.186440678 0.050847458
B 0.2288136 0.1016949 0.5847458 0.059322034 0.025423729
C 0.2627119 0.3559322 0.3135593 0.050847458 0.016949153
D 0.3220339 0.4067797 0.1949153 0.067796610 0.008474576
E 0.1355932 0.2627119 0.4491525 0.118644068 0.033898305
F 0.5254237 0.2627119 0.1694915 0.008474576 0.033898305
G 0.2711864 0.1694915 0.5169492 0.025423729 0.016949153
```

Agreement statistics S_i for each subject:

6	5	4	3	2	1
0.34348626	1.00000000	0.34348626	1.00000000	1.00000000	0.08088076
12	11	10	9	8	7
0.60609175	0.60609175	0.60609175	0.27783488	0.21218351	0.60609175
19	18	17	16	15	13
0.21218351	0.21218351	0.60609175	0.08088076	0.21218351	0.60609175
27	26	25	24	23	22
			0.34348626		
33	32	31	30	29	28
1.00000000	0.27783488	1.00000000	0.60609175	0.34348626	0.08088076
39	38	37	36	35	34
0.34348626	0.01522939	0.08088076	0.27783488	0.27783488	1.00000000
45	44	43	42	41	40
0.60609175	0.27783488	0.08088076	1.00000000	0.60609175	0.08088076
52	51	49	48	47	46
0.27783488	0.60609175	0.08088076	0.34348626	0.21218351	-0.05042199
58	57	56	55	54	53
			0.60609175		
64	63	62	61	60	59
			0.08088076		
70	69	68	67	66	65
1.00000000	0.27783488	0.34348626	1.00000000	0.08088076	0.60609175
77	76	74	73	72	71
0.34348626	0.60609175	0.01522939	0.60609175	0.27783488	0.60609175

78	79	80	81	82	83
0.08088076	0.34348626	-0.11607336	1.00000000	0.21218351	0.08088076
84	85	86	87	88	89
0.27783488	-0.18172474	0.60609175	0.60609175	0.01522939	-0.11607336
90	91	92	93	94	95
0.08088076	0.01522939	-0.11607336	0.21218351	0.34348626	0.27783488
96	98	99	100	101	102
-0.11607336	0.21218351	0.21218351	0.08088076	0.34348626	0.34348626
103	104	105	106	107	108
1.00000000	0.01522939	0.60609175	0.08088076	0.21218351	0.08088076
110	111	112	113	114	115
0.21218351	0.60609175	0.21218351	0.08088076	0.08088076	0.21218351
116	117	118	119	120	121
0.60609175	0.34348626	0.08088076	0.60609175	1.00000000	0.21218351
122	123	124	126		
-0.11607336	-0.11607336	0.60609175	0.01522939		

Agreement statistics for each observer:

Kappa [Lower,	Upper]	Pr(kappa_av=kappa_observer)
A 0.37274 0.30394	0.4471	0.60718
B 0.40591 0.33691	0.4788	0.03444 *
C 0.38173 0.31292	0.4556	0.40306
D 0.33866 0.27026	0.4145	0.33175
E 0.32894 0.25801	0.4086	0.23888
F 0.24269 0.17536	0.3257	< 1e-05 ***
G 0.46538 0.40385	0.5280	< 1e-05 ***
Signif. codes: 0	'*** [,] (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Affiliation:

Mark Clements

Department of Medical Epidemiology and Biostatistics

Karolinska Institutet

Email: mark.clements@ki.se