Estimación de parámetros

Dada una variable aleatoria X, se busca estimar uno de sus parámetros desconocidos a partir de una muestra $X_1, ... X_n$

Variable poblacional	parámetro	$\operatorname{estimador}$	Estadístico	Intervalo de confianza
$X \sim Normal(\mu, \sigma^2)$	$\mu \\ (\sigma^2 conocido)$	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim Normal(0, 1)$	$LI = \overline{x} - z_{NC} \frac{\sigma}{\sqrt{n}} $ $LS = \overline{x} + z_{NC} \frac{\sigma}{\sqrt{n}} $ $LI = \overline{x} - t_{NC} \frac{s_{n-1}}{\sqrt{n}} $ $LS = \overline{x} + t_{NC} \frac{s_{n-1}}{\sqrt{n}} $ $(**)$
$X \sim Normal(\mu, \sigma^2)$	$\mu \\ (\sigma^2 desconocido)$	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\frac{\overline{X} - \mu}{s_{n-1}/\sqrt{n}} \sim t_{n-1}$	$LI = \overline{x} - t_{NC} \frac{s_{n-1}}{\sqrt{n}}$ $LS = \overline{x} + t_{NC} \frac{s_{n-1}}{\sqrt{n}} $ (**)
$X \sim Normal(\mu, \sigma^2)$	σ^2 ($\mu \ desconocido$)	$s_{n-1}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$	$\frac{(n-1)s_{n-1}^2}{\sigma^2} \sim \chi_{n-1}^2$	$LI = \frac{(n-1)s_{n-1}^2}{\chi_{SUP}^2}$ $LS = \frac{(n-1)s_{n-1}^2}{\chi_{INF}^2} $ (***)
$X \sim Bernoulli(p)$	p	$\widehat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{R}{n} (****)$	$\frac{\widehat{p} - p}{\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}} \underset{TCL}{\approx} Normal(0,1)$	$LI = \widehat{p} - z_{NC} \sqrt{rac{\widehat{p}(1-\widehat{p})}{n}} \ LS = \widehat{p} + z_{NC} \sqrt{rac{\widehat{p}(1-\widehat{p})}{n}} \ (*)$

^(*) z_{NC} es el valor de la variable $Z \sim Normal(0,1)$ tal que $P(-z_{NC} \leq Z \leq z_{NC})$ corresponda al nivel de confianza requerido. (**) t_{NC} es el valor de la variable $T \sim t_{n-1}$ tal que $P(-t_{NC} \leq T \leq t_{NC})$ corresponda al nivel de confianza requerido. (***) χ^2_{SUP} y χ^2_{INF} son los valores variable $Y \sim \chi^2_{n-1}$ tal que $P(\chi^2_{INF} \leq Y \leq \chi^2_{SUP})$ corresponda al nivel de confianza requerido.

^(****) La variable $R = \sum_{i=1}^{n} X_i$: # éxitos observados $\sim Binomial(n, p)$