Fields and Galois Theory

J. S. Milne

February 15, 2022

Contents

1	Basi	c Definitions and Results	2
	1.1	The characteristic of a field	2
	1.2	Review of polynomial rings	3
	1.3	Factoring polynomials	3
	1.4	Extensions	5
	1.5	The subring generated by a subset	5
	1.6	The subfield generated by a subset	6
	1.7	Construction of some extensions	6
	1.8	Stem fields	7
	1.9	Algebraic and transcendental elements	7
	1.10	Transcendental numbers	9
	1.11	Constructions with straight-edge and compass	9
		Algebraically closed fields	11
	1.13	Exercises	13
2	Splitting Fields; Multiple Roots		
	2.1	Homomorphisms from simple extensions	13
	2.2	Splitting fields	15
	2.3	Multiple roots	18
	2.4	Exercises	20
3	The Fundamental Theorem of Galois Theory		21
	3.1	Groups of automorphism of fields	21
	3.2	Separable, normal, and Galois extensions	23
	3.3	The fundamental theorem of Galois theory	26
	3.4	Examples	29

4 Problem 30

1 Basic Definitions and Results

1.1 The characteristic of a field

Given a field F and consider a map

$$\mathbb{Z} \to F$$
, $n \mapsto n \cdot 1_F$

If the kernel of the map is $\neq (0)$, so that $n \cdot 1_F = 0$ for some $n \neq 0$. The smallest positive such n will be a prime p (otherwise $(m \cdot n) \cdot 1_F = (m \cdot 1_F) \cdot (n \cdot 1_F) = 0$ there will be two nonzero elements in F whose product is zero, but a field is an integral domain) and p generates the kernel. Thus the map $n \mapsto n \cdot 1_F : \mathbb{Z} \to F$ defines an isomorphism from $\mathbb{Z}/p\mathbb{Z}$ onto the subring

$$\{m \cdot 1_F \mid m \in \mathbb{Z}\}$$

of F. In this case, F contains a copy of \mathbb{F}_p

A field isomorphic to one of the fields \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_5 , ..., \mathbb{Q} is called a **prime** field. Every field contains exactly one prime field (as a subfield)

A commutative ring R is said to have **characteristic** p (resp. 0) if it contains a prime field (as a subring) of characteristic p (resp. 0). Then the prime field is unique and, by definition, contains 1_R . Thus if R has characteristic $p \neq 0$, then $1_R + \dots + 1_R = 0$ (p terms)

Let *R* be a nonzero commutative ring. If *R* has characteristic $p \neq 0$, then

$$pa := \underbrace{a + \dots + a}_{p \text{ terms}} = \underbrace{(1_R + \dots + 1_R)}_{p \text{ terms}} a = 0a = 0$$

for all $a \in R$. Conversely, if pa = 0 for all $a \in R$, then R has characteristic p Let R be a nonzero commutative ring. The usual proof by induction shows that the binomial theorem

$$(a+b)^m = a^m + \binom{m}{1} a^{m-1} b + \binom{m}{2} a^{m-2} b^2 + \dots + b^m$$

holds in R. If p is prime, then it divides

$$\binom{p}{r} := \frac{p!}{r!(p-r)!}$$

for all r with $1 \le r \le p-1$. Therefore, when R has characteristic p

$$(a+b)^p = a^p + b^p$$
 for all $a, b \in R$

and so the map $a\mapsto a^p:R\to R$ is a homomorphism of rings (even of \mathbb{F}_p -algebras). It is called the **Frobenius endomorphsim** of R. The map $a\mapsto a^{p^n}:R\to R$, $n\ge 1$, is hte composite of n copies of the Frobenius endomorphsim, and so it also is a homomorphism. Therefore

$$(a_1, \dots, a_m)^{p^n} = a_1^{p^n} + \dots + a_m^{p^n}$$

for all $a_i \in R$.

When F is a field, the Frobenius endomorphsim is injective

1.2 Review of polynomial rings

The F-algebra F[X] has the following universal property: for any F-algebra R and element $r \in R$, $\exists !$ F-homomorphism $\alpha : F[X] \to R$ s.t. $\alpha(X) = r$

1.3 Factoring polynomials

Proposition 1.1. *Let* $r \in \mathbb{Q}$ *be a root of a polynomial*

$$a_m X^m + a_{m-1} X^{m-1} + \dots + a_0, \quad a_i \in \mathbb{Z}$$

and write r = c/d, $c, d \in \mathbb{Z}$, $\gcd(c, d) = 1$. Then $c \mid a_0$ and $d \mid a_m$

Proof.

$$a_m c^m + a_{m-1} c^{m-1} d + \dots + a_0 d^m = 0$$

 $d \mid a_m c^m$ and therefore $d \mid a_m$. Similarly $c \mid a_0$

Example 1.1. The polynomial $f(X) = X^3 - 3X - 1$ is irreducible in $\mathbb{Q}[X]$ because its only possible roots are ± 1 and $f(1) \neq 0 \neq f(-1)$

Proposition 1.2 (Gauss's Lemma). Let $f(X) \in \mathbb{Z}[X]$. If f(X) factors nontrivially in $\mathbb{Q}[X]$, then it factors nontrivially in $\mathbb{Z}[X]$

Proof. Let $f=gh\in\mathbb{Q}[X]$ with g,h nonconstant. For suitable integers m and $n,g_1:=mg$ and $h_1:=nh$ have coefficients in \mathbb{Z} , so we have a factorization

$$mnf = g_1 \cdot h_1$$

in $\mathbb{Z}[X]$. If a prime p divides mn, then looking modulo p, we obtain

$$0=\overline{g_1}\cdot\overline{h_1}\in\mathbb{F}_p[X]$$

Since $\mathbb{F}_p[X]$ is an integral domain, this implies that p divides all the coefficients of at least one of the polynomials g_1,h_1 , say g_1 , so that $g_1=pg_2$ for some $g_2\in\mathbb{Z}[X]$. Thus we have a factoriztion

$$(mn/p)f = g_2 \cdot h_1 \in \mathbb{Z}[X]$$

Continuing in this fashion, we eventually remove all the prime factors of mn.

Proposition 1.3. *If* $f \in \mathbb{Z}[X]$ *is monic, then every monic factor of* f *in* $\mathbb{Q}[X]$ *lies in* $\mathbb{Z}[X]$

Proof. Let g be a monic factor of f in $\mathbb{Q}[X]$, so that f=gh with $h\in\mathbb{Q}[X]$ also monic. Let m,n be the positive integers with the fewest prime factors s.t. $mg, nh \in \mathbb{Z}[X]$. As in the proof of Gauss's Lemma, if a prime p divides mn, then it divides all the coefficients of at least one of the polynomials mg, nh, say mg, in which case it divides m because g is monic. Now $\frac{m}{p}g \in \mathbb{Z}[X]$ which contradicts the definition of m.

Proposition 1.4 (Eisenstein's Criterion). *Let*

$$f = a_m X^m + \dots + a_0, \quad a_i \in \mathbb{Z}$$

suppose that there is a prime p s.t.

- 1. $p \nmid a_m$
- 2. $p \mid a_i \text{ for } i = 0, \dots, m-1$
- 3. $p^2 \nmid a_0$

Then f is irreducible in $\mathbb{Q}[X]$

Proof. If f(X) factors nontrivially in $\mathbb{Q}[X]$, then it factors nontrivially in $\mathbb{Z}[X]$, say

$$a_mX^m+\cdots+a_0=(b_rX^r+\cdots+b_0)(c_sX^s+\cdots+c_0)$$

where $b_i, c_i \in \mathbb{Z}$. Since p, but not p^2 , divides $a_0 = b_0 c_0$, p must divide exactly one of b_0, c_0 , say b_0 . Now from the equation

$$a_1 = b_0 c_1 + b_1 c_0$$

we see that $p \mid b_1$, and from the equation

$$a_2 = b_0 c_2 + b_1 c_1 + b_2 c_0$$

that $p \mid b_2$. By continuing in this way, we find that p divides b_0, b_1, \dots, b_r , which contradicts the condition that p does not divide a_m

1.4 Extensions

Let F be a field. A field containing F is called an **extension** of F. In other words, an extension is an F-algebra whose underlying ring is a field. An extension E of F is, in particular, an F-vector space, whose dimension is called the **degree** of E over F. It is denoted by [E:F]. An extension is **finite** if its degree is finite.

When E and E' are extensions of F, an F-homomorphism $E \to E'$ is a homomorphism $\varphi: E \to E'$ s.t. $\varphi(c) = c$ for all $c \in F$

Proposition 1.5 (Multiplicity of degrees). *Consider fields* $L \supset E \supset F$. *Then* L/F *is of finite degree iff* L/E *and* E/F *are both of finite degree, in which case*

$$[L:F] = [L:E][E:F]$$

1.5 The subring generated by a subset

Let F be a subfield of a field E and let S be a subset of E. The intersection of all the subrings of E containing F and S is obviously the smallest subring of E containing both F and S. We call it the subring of E generated by F and S (generated over F by S), and we denote it by F[S].

Lemma 1.6. The ring F[S] consists of the elements of E that can be expressed as finite sums of the form

$$\sum a_{i_1\cdots i_n}\alpha_1^{i_1}\cdots\alpha_n^{i_n},\quad a_{i_1\cdots i_n}\in F,\quad \alpha_i\in S,\quad i_j\in\mathbb{N}$$

Lemma 1.7. Let R be an integral domain containing a subfield F (as a subring). If R is finite-dimensional when regarded as an F-vector space, then it is a field

Proof. Let $\alpha \in R$ be nonzero. The map $h: x \mapsto \alpha x$ is an injective linear map of finite-dimensional F-vector spaces, and is therefore surjective. In particular, there is an element $\beta \in R$ s.t. $\alpha \beta = 1$

 $\alpha x = \alpha y$, we need R to be integral domain to make x = y Also for $f \in R$, we need R to be a field to make $\alpha f x = f \alpha x$ Surjection is trivial

1.6 The subfield generated by a subset

The intersection of all the subfields of E containing F and S is the smallest subfield of E containing both F and S. We call it the subfield of E **generated** by F and S, and we denote it by F(S), it is the fraction field of F[S]

An extension E of F is **simple** if $E = F(\alpha)$ for some $\alpha \in E$

Let F and F' be subfields of a field E. The intersection of the subfields of E containing both F and F' is obviously the smallest subfield of E containing both F and F. We call it the **composite** of F and F' in E, and we denote it by $F \cdot F'$. It can also be described as the subfield of E generated over F by F', or the subfield generated over F' by F

$$F(F') = F \cdot F' = F'(F)$$

1.7 Construction of some extensions

Let $f(X) \in F(X)$ be a monic polynomial of degree m. Consider the quotient F[X]/(f(X)), and write x for the image of X in F[X]/(f(X)), i.e., x = X + (f(X))

1. The map

$$P(X)\mapsto P(x):F[X]\to F[x]$$

is a homomorphism sending f(X) to 0, therefore f(x) = 0. F[x] = F[X]/(f) since for each $x^n = (X + (f(X))^n) = X^n + (f(X))$.

2. The division algorithm shows that every element $g \in F[X]/(f)$ is represented by a unique polynomial r of degree < m. Hence each element of F[x] can be expressed uniquely as a sum

$$a_0 + a_1 x + \dots + a_{m-1} x^{m-1}, \quad a_i \in F$$

3. Now assume that f(X) is irreducible. Then every nonzero $\alpha \in F[x]$ has an inverse, which can be found as follows. Use 2 to write $\alpha = g(x)$ with g(X) a polynomial of degree $\leq m-1$, and apply Euclid's algorithm in F[X] to find polynomials a(X) and b(X) s.t.

$$a(X)f(X) + b(X)g(X) = d(X)$$

with d(X) the gcd of f and g. In our case, d(X) is 1 because f(X) is irreducible and $\deg g(X) < \deg f(X)$. When we replace X with x, the equality becomes

$$b(x)g(x) = 1$$

Hence b(x) is the inverse of g(x)

We have proved the following statement

Proposition 1.8. For a monic irreducible polynomial f(X) of degree m in F[X]

$$F[x] := F[X]/(f(X))$$

is a field of degree m over F. Computations in F[x] come down to computations in F

Since F[x] is a field, F(x) = F[x]

Example 1.2. Let $f(X)=X^2+1\in\mathbb{R}[X].$ Then $\mathbb{R}[x]$ has elements $a+bx,a,b\in\mathbb{R}$

We usually write i for x and \mathbb{C} for $\mathbb{R}[x]$

1.8 Stem fields

Let f be a monic irreducible polynomial in F[X]. A pair (E,α) consisting of an extension E of F and an $\alpha \in E$ is called a **stem field for** f if $E = F[\alpha]$ and $f(\alpha) = 0$. For example, the pair (E,α) with E = F[X]/(f) = F[x] and $\alpha = x$.

Let (E,α) be a stem field, and consider the surjective homomorphism of F-algebras

$$g(X) \to g(\alpha) : F[X] \to E$$

Its kernel is generated by a nonzero monic polynomial, which divides f, and so must equal it. Therefore the homomorphism defines an F-isomorphism

$$x \mapsto \alpha : F[x] \to E, \quad F[x] = F[X]/(f)$$

In other words, the stem field (E,α) of f is F-isomorphic to the standard stem field (F[X]/(f),x). It follows that every element of a stem field (E,α) for f can be written uniquely in the form

$$a_0+a_1\alpha+\dots+a_{m-1}\alpha^{m-1},\quad a_i\in F,\quad m=\deg(f)$$

and that arithmetic in $F[\alpha]$ can be performed using the same rules in F[x].

1.9 Algebraic and transcendental elements

Let F be a field. An element α of an extension E of F defines a homomorphism

$$f(X) \mapsto f(\alpha) : F[X] \to E$$

There are two possibilities:

1. Kernel is (0), so that for $f \in F[X]$

$$f(\alpha) = 0 \Rightarrow f = 0(\text{in } F[X])$$

In this case we say that α **transcendental over** F. The homomorphism $X \mapsto \alpha$ is an isomorphism, and it extends to an isomorphism $F(X) \to F(\alpha)$

2. The kernel \neq (0), so that $g(\alpha)=0$ for some nonzero $g\in F[X]$. In this case, we say that α is **algebraic over** F. The polynomials g s.t. $g(\alpha)=0$ form a nonzero ideal in F[X], which is generated by the monic polynomial f of least degree such $f(\alpha)=0$. We call f the **minimal polynomial** of α over F.

Note that $F[X]/(f) \cong F[\alpha]$, since the first is a field, so is the second

Example 1.3. Let $\alpha \in \mathbb{C}$ be s.t. $\alpha^3 - 3\alpha - 1 = 0$. Then $X^3 - 3X - 1$ is monic, irreducible in $\mathbb{Q}[X]$ and has α as a root, and so it is the minimal polynomial of α over \mathbb{Q} . The set $\{1, \alpha, \alpha^2\}$ is a basis for $\mathbb{Q}[\alpha]$ over \mathbb{Q} .

An extension E of F is **algebraic** (E is **algebraic over** F) if all elements of E are algebraic over F; otherwise it is said to be **transcendental**

Proposition 1.9. Let $E \supset F$ be fields. If E/F is finite, then E is algebraic and finitely generated (as a field) over F; conversely if E is generated over F by a finite set of algebraic elements, then it is finite over F

Proof. ⇒. α of E is transcendental over F iff $1, \alpha, \alpha^2, ...$ are linearly independent over F iff $F[\alpha]$ is of infinite degree. Thus if E is finite over F, then every element of E is algebraic over F. If $E \neq F$, then we can pick $\alpha_1 \in E \setminus F$ and compare E and $F[\alpha_1]$. If $E \neq F[\alpha_1]$, then there exists an $\alpha_2 \in E \setminus F[\alpha_1]$, and so on. Since

$$[F[\alpha_1]:F]<[F[\alpha_1,\alpha_2]:F]<\dots<[E:F]$$

this process terminates with $E=F[\alpha_1,\dots,\alpha_n]$

 $\Leftarrow: \operatorname{Let} E = F(\alpha_1, \dots, \alpha_n) \text{ with } \alpha_1, \dots, \alpha_n \text{ algebraic over } F. \text{ The extension } F(\alpha_1)/F \text{ is finite because } \alpha_1 \text{ is algebraic over } F. \text{ And } F(\alpha_1, \alpha_2)/F \text{ is finite because } \alpha_2 \text{ is algebraic over } F \text{ and hence over } F(\alpha_1). \text{ Thus by } 1.5 \ F(\alpha_1, \alpha_2) \text{ is finite over } F$

Corollary 1.10. 1. If E is algebraic over F, then every subring R of E containing F is a field

2. Consider fields $L \supset E \supset F$. If L is algebraic over E and E is algebraic over F, then L is algebraic over F

Proof. 1. If $\alpha \in R$, then $F[\alpha] \subset R$. But $F[\alpha]$ is a field because α is algebraic, and so R contains α^{-1}

2. By assumption, every $\alpha \in L$ is a root of a monic polynomial

$$X^m + a_{m-1}X^{m-1} + \dots + a_0 \in E[X]$$

Each of the extensions

$$F[a_0,\ldots,a_{m-1},\alpha]\supset F[a_0,\ldots,a_{m-1}]\supset\cdots\supset F$$

is finite. Therefore $F[a_0,\dots,a_{m-1},\alpha]$ is finite over F , which implies that α is algebraic over F

1.10 Transcendental numbers

Proposition 1.11. *The set of algebraic numbers is countable*

Theorem 1.12. The number $\alpha = \sum \frac{1}{2^{n!}}$ is transcendental

1.11 Constructions with straight-edge and compass

A real number (length) is **constructible** if it can be constructed by forming successive intersections of

- lines drawn through two points already constructed
- circles with center a point already constructed and radius a constructed length

This led them to three famous questions: is it possible to duplicate the cube, trisect an angle, or square the circle by straight-edge and compass constructions? We'll see that the answer to all three is negative.

Let F be a subfield of $\mathbb R.$ For a positive $a\in F$, The F-plane is $F\times F\subset \mathbb R\times \mathbb R$

An *F*-line is a line in $\mathbb{R} \times \mathbb{R}$ through two points in the *F*-plane. These are the lines given by equations

$$ax + by + c = 0$$
, $a, b, c \in F$

An F-circle is a circle in $\mathbb{R} \times \mathbb{R}$ with center an F-point and radius an element of F. These are the circles given by the equations

$$(x-a)^2 + (y-b)^2 = c^2$$
, $a, b, c \in F$

Lemma 1.13. Let $L \neq L'$ be F-lines, and let $C \neq C'$ be F-circles

- 1. $L \cap L' = \emptyset$ or consists of a single F-point
- 2. $L \cap C = \emptyset$ or consists of one or two points in the $F[\sqrt{e}]$ -plane, some $e \in F$, e > 0
- 3. $C \cap C' = \emptyset$ or consists of one or two poitns in the $F[\sqrt{e}]$ -plane, some $e \in F$, e > 0

Lemma 1.14. 1. If c and d are constructive, then so also are c+d, -c, cd and $\frac{c}{d}, d \neq 0$

2. If c > 0 is constructible, then so is \sqrt{c}

Proof. First show that it is possible to construct a line perpendicular to a given line through a given point (link), and then a line parallel to a given line through a given point (link). Hence it is possible to construct a triangle similar to a given one on a side with given length.

$$\sqrt{c}$$
 link

Theorem 1.15. 1. The set of constructible numbers is a field

2. A number α is constructible iff it is contained in a subfield of \mathbb{R} of the form

$$\mathbb{Q}[\sqrt{a_1},\dots,\sqrt{a_r}],\quad a_i\in\mathbb{Q}[\sqrt{a_1},\dots,\sqrt{a_{i-1}}],\quad a_i>0$$

Corollary 1.16. *If* α *is constructible, then* α *is algebraic over* \mathbb{Q} *, and* $[\mathbb{Q}[\alpha] : \mathbb{Q}]$ *is a power of* 2

Proof.
$$[\mathbb{Q}[\alpha]:\mathbb{Q}]$$
 divides $[\mathbb{Q}[\sqrt{a_1}]...[\sqrt{a_r}]:\mathbb{Q}]$ and $[\mathbb{Q}[\sqrt{a_1},...,\sqrt{a_r}]:\mathbb{Q}]$ is a power of 2

Corollary 1.17. *It is impossible to duplicate the cube by straight-edge and compass constructions*

Proof. This requires constructing the real root of the polynomial X^3-2 . But this polynomial is irreducible and $[\mathbb{Q}[\sqrt[3]{2}]:\mathbb{Q}]=3$

Corollary 1.18. *In general, it is impossible to trisect an angle by straight-edge and compass constructions*

Proof. Knowing an angle is equivalent to knowing the cosine of the angle. Therefore, to trisect 3α , we have to construct a solution to

$$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$$

For example take $3\alpha = 60^{\circ}$. As $\cos 60^{\circ} = 0.5$, we have to solve $8x^3 - 6x - 1 = 0$, which is irreducible, and so $[\mathbb{Q}[\alpha] : \mathbb{Q}] = 3$

Corollary 1.19. *It is impossible to square the circle by straight-edge and compass constructions*

Proof. A square with the same area as a circle of radius r has side $\sqrt{\pi}r$. Since π is transcendental, so also is $\sqrt{\pi}$

$$X^{p} - 1 = (X - 1)(X^{p-1} + X^{p-2} + \dots + 1)$$

Lemma 1.20. If p is prime, then $X^{p-1}+\cdots+1$ is irreducible; hence $\mathbb{Q}[e^{2\pi i/p}]$ has degree p-1 over \mathbb{Q}

Proof. Let
$$f(X) = (X^p - 1)/(X - 1) = X^{p-1} + \dots + 1$$
; then

$$f(X+1) = \frac{(X+1)^p - 1}{X} = X^{p-1} + \dots + a_i X^i + \dots + p$$

with $a_i = \binom{p}{i+1}$

 $p \mid a_i$ for $i=1,\ldots,p-2$, and so f(X+1) is irreducible by Eisenstein's criterion 1.4. This implies that f(X) is irreducible

1.12 Algebraically closed fields

Let F be a field. A polynomial is said to **split** in F[X] if it is a product of polynomials of degree at most 1 in F[X]

Proposition 1.21. *For a field* Ω *, TFAE*

- 1. Every nonconstant polynomial in $\Omega[X]$ splits in $\Omega[X]$
- 2. Every nonconstant polynomial in $\Omega[X]$ has at least one root in Ω
- 3. The irreducible polynomials in $\Omega[X]$ are those of degree 1
- 4. Every field of finite degree over Ω equals Ω

Proof. $3 \to 4$: Let E be a finite extension of Ω , and let $\alpha \in E$. The minimal polynomial of α , being irreducible, has degree 1, and so $\alpha \in \Omega$

 $4 \to 3$: Let f be an irreducible polynomial of Ω , then $\Omega[X]/(f)$ is an extension of Ω of degree $\deg(f)$, and so $\deg(f) = 1$

Definition 1.22. 1. A field Ω is **algebraically closed** if it satisfies the equivalent statements in Proposition 1.21

2. A field Ω is an **algebraic closure** of a subfield F if it is algebraically closed and algebraic over F

Proposition 1.23. *If* Ω *is algebraic over* F *and every polynomial* $f \in F[X]$ *splits in* $\Omega[X]$ *, then* Ω *is algebraically closed*

Proof. Let f be a nonconstant polynomial in $\Omega[X]$. We know (1.8) that f has a root α in some finite extension Ω' of Ω . Set

$$f = a_n X^n + \dots + a_0, \quad a_i \in \Omega$$

and consider the fields

$$F \subset F[a_0, \dots, a_n] \subset F[a_0, \dots, a_n, \alpha]$$

Each extension generated by a finite set of algebraic elements, and hence is finite (??) Therefore α lies in a finite extension of F and so is algebraic over F - it is a root of a polynomial g with coefficients in F. By assumption, g splits in $\Omega[X]$, and so the root of g in Ω' all lie in Ω . In particular, $\alpha \in \Omega$

Proposition 1.24. *Let* $\Omega \supset F$ *, then*

$$\{\alpha \in \Omega \mid \alpha \text{ algebraic over } F\}$$

is a field

Proof. If α and β are algebraic over F, then $F[\alpha, \beta]$ is a field of finite degree over F. Thus every element of $F[\alpha, \beta]$ is algebraic over F, in particular $\alpha \pm \beta$, α/β and $\alpha\beta$ are algebraic over F

The field constructed in the proposition is called the **algebraic closure** of F in Ω

Corollary 1.25. $\Omega \vDash ACF$, for any subfield F of Ω , the algebraic closure E of F in Ω is an algebraic closure of F

Proof. It is algebraic over F by definition. Every polynomial in F[X] splits in $\Omega[X]$ and has its roots in E, and so splits in E[X]. Now apply Proposition 1.23

1.13 Exercises

1. $f(x)=x^3-\alpha^2+\alpha+2$, f(x) is irreducible in $\mathbb{Q}[x]$. Thus $\mathbb{Q}[\alpha]\cong\mathbb{Q}[x]/(f)$, which is a field

$$(\alpha - 1)^{-1} = -\frac{1}{3}(\alpha^2 + 1)$$

2. 4

3.

- (a) f(X)-f(a)=q(X)(X-a)+r(X) and $\deg r<1$, hence $\deg r=0$
- (b) obvious
- (c) obvious
- 5. Let g be the irreducible factor in E[X] and let (L,α) be a stem field for g over E. Then $L=E[\alpha]\cong E/(f)$. Then $m\mid [E[\alpha]:F]$. Since $f(\alpha)=0$. $[F[\alpha]:F]=n$. Now $n\mid [L:F]$. We deduce that [L:F]=mn and [L:E]=n. But $[E[\alpha]:E]=\deg(g)$. Hence $\deg(g)=\deg(f)$

$$E[\alpha] \xrightarrow{\leq n} E \xrightarrow{m} F$$

$$\downarrow \\ F[\alpha] \\ \downarrow n$$

$$F$$

- 6. The polynomials f(X)-1 and f(X)+1 have only finitely many roots, and so there is $n\in\mathbb{Z}$ s.t. $f(n)\neq \pm 1$, then there is prime p s.t. $p\mid f(n)$. Hence f(x) is reducible in $\mathbb{F}_p[x]$
- 7. Let $f(x) = x^3 2$, then $R \cong \mathbb{Q}[x]/(f)$.

2 Splitting Fields; Multiple Roots

2.1 Homomorphisms from simple extensions

Let F be a field and E, E' fields containing F. Recall that an F-homomorphism is a homomorphim $\varphi: E \to E'$ s.t. $\varphi(a) = a$ for all $a \in F$. Thus an F-homomorphism φ maps a polynomial

$$\sum a_{i_1\dots i_m}\alpha_1^{i_1}\dots\alpha_m^{i_m},\quad a_{i_1\dots i_m}\in F,\quad \alpha_i\in E$$

to

$$\sum a_{i_1\dots i_m}\varphi(\alpha_1)^{i_1}\dots\varphi(\alpha_m)^{i_m}$$

An *F*-isomorphism is a bijective *F*-homomorphism

An F-homomorphism $E \to E'$ of fields is, in particular, an injective F-linear map of F-vector spaces, and so it is an F-isomorphism if E and E' have the same finite degree over F

Proposition 2.1. Let $F(\alpha)$ be a simple extension of F and Ω a second extension of F

1. Let α be transcendental over F. For every F-homomorphism $\varphi: F(\alpha) \to \Omega$, $\varphi(\alpha)$ is transcendental over F, and the map $\varphi \mapsto \varphi(\alpha)$ defines a one-to-one correspondence

 $\{F$ -homomorphisms $F(\alpha) \to \Omega\} \leftrightarrow \{\text{elements of } \Omega \text{ transcendental over } F\}$

2. Let α be algebraic over F with minimal polynomial f(X). For every F-homomorphism $\varphi: F[\alpha] \to \Omega$, $\varphi(\alpha)$ is a root of f(X) in Ω , and the map $\varphi \mapsto \varphi(\alpha)$ defines a one-to-one correspondence

$$\{F$$
-homomorphisms $\varphi: F[\alpha] \to \Omega\} \leftrightarrow \{\text{roots of } f \text{ in } \Omega\}$

In particular, the number of such maps is the number of distinct roots of f in Ω

- Proof. 1. To say that α is transcendental over F means that $F[\alpha]$ is isomorphic to the polynomial ring in the symbol α . Therefore for every $\gamma \in \Omega$, there is a unique F-homomorphism $\varphi: F[\alpha] \to \Omega$ s.t. $\varphi(\alpha) = \gamma$. This φ extends (uniquely) to the field of fractions $F(\alpha)$ iff nonzero elements of $F[\alpha]$ are sent to nonzero elements of $F[\alpha]$, which is the case iff Y is transcendental over Y. Thus there is a one-to-one correspondence between
 - (a) $F(\alpha) \to \Omega$
 - (b) $\varphi: F[\alpha] \to \Omega$ s.t. $\varphi(\alpha)$ is transcendental
 - (c) the transcendental elements of Ω
 - 2. If $\gamma \in \Omega$ is a root of f(X), then the map $F[X] \to \Omega$, $g(X) \mapsto g(\gamma)$, factor through F[X]/(f(X)). When composed with the inverse of the canonical isomorphism $F[\alpha] \to F[X]/(f(X))$, this becomes a homomorphism $F[\alpha] \to \Omega$ sending α to γ

Proposition 2.2. Let $F(\alpha)$ be a simple extension of F and $\varphi_0: F \to \Omega$ a homomorphism from F into a second field Ω

1. if α is transcendental over F, then the map $\varphi \mapsto \varphi(\alpha)$ defines a one-to-one correspondence

 $\{extensions\ \varphi: F(\alpha) \to \Omega\ of\ \varphi_0\} \leftrightarrow \{elements\ of\ \Omega\ transcendental\ over\ \varphi_0(F)\}$

2. If α is algebraic over F, with minimal polynomial f(X), then the map $\varphi \mapsto \varphi(\alpha)$ defines a one-to-one correspondence

$$\{extensions \ \varphi : F[\alpha] \to \Omega \ of \ \varphi_0\} \leftrightarrow \{roots \ of \ \varphi_0 f \ in \ \Omega\}$$

2.2 Splitting fields

Let f be a polynomial with coefficients in F. A field $E \supseteq F$ is said to **split** f if f splits in E[X], i.e.,

$$f(X) = a \prod_{i=1}^{m} (X - \alpha_i), \quad \alpha_i \in E$$

If E splits f and is generated by the roots of f

$$E=F[\alpha_1,\dots,\alpha_m]$$

then it is called a **splitting** or **root field** for f

Proposition 2.3. Every polynomial $f \in F[X]$ has a splitting field E_f , and

$$[E_f:F] \leq (\deg f)!$$

Proof. Let $F_1=F[\alpha_1]$ be a stem field for some monic irreducible factor of f in F[X]. Then $f(\alpha_1)=0$, and we let $F_2=F_1[\alpha_2]$ be a stem field for some monic irreducible factor of $f(X)/(X-\alpha_1)$ in $F_1[X]$. Continuing in this fashion, we arrive at a splitting field E_f . Let $n=\deg f$. Then $[F_1:F]=\deg g_1\leq n, [F_2:F_1]\leq n-1$, and so $[E_f:F]\leq n!$

- **Example 2.1.** 1. Let $f(X) = (X^p 1)/(X 1) \in \mathbb{Q}[X]$, p prime. If ξ is one root of f, then the remaining roots are $\xi^2, \xi^3, \dots, \xi^{p-1}$, and so the splitting field of f is $\mathbb{Q}[\xi]$
 - 2. Let F have characteristic $p \neq 0$, and let $f = X^p X a \in F[X]$. If α is one root of f in some extension of F, then the remaining roots are $\alpha + 1, \ldots, \alpha + p 1$, and so the splitting field of f is $F[\alpha]$
 - 3. If α is one root of X^n-a , then the remaining roots are all of the form $\xi \alpha$, where $\xi^n=1$. Therefore $F[\alpha]$ is a splitting field for X^n-a iff F contains all the nth roots of 1. Note that if p is the characteristic of F, then $X^p-1=(X-1)^p$, and so F automatically contains all the pth roots of 1

Proposition 2.4. Let $f \in F[X]$. Let E be the extension of F generated by the roots of f in E, and let Ω be an extension of F splitting f

- 1. There exists an F-homomorphism $\varphi: E \to \Omega$; the number of such homomorphisms is at most [E:F], and equals [E:F] if f has distinct roots in Ω
- 2. If E and Ω are both splitting fields for f, then every F-homomorphism $E \to \Omega$ is an isomorphism. In particular, any two splitting fields for f are F-isomorphic

Proof. We may assume that *f* is monic

Let F, f, Ω be as in the statement of the proposition, let L be a subfield of Ω containing F, and let g be a monic factor of f in L[X]; as g divides f in $\Omega[X]$, it is a product of certain number of the factors $X - \beta_i$ of f in $\Omega[X]$; in particular, we see that g splits in Ω , and that it has distinct roots in Ω if f does

1. $E=F[lpha_1,\dots,lpha_m]$, each $lpha_i$ a root of f(X) in E. The minimal polynomial of $lpha_1$ is an irreducible polynomial f_1 dividing f. From the initial observation with L=F, we see that f_1 splits in Ω , and that its roots are distinct if the roots of f are distinct. According to Proposition 2.1, there exists an F-homomorphism $arphi_1:F[lpha_1]\to\Omega$ and the number of such homomorphisms is at most $[F[lpha_1]:F]$, with equality holding when f has distinct roots in Ω

The minimal polynomial of α_2 over $F[\alpha_1]$ is an irreducible factor f_2 of f in $F[\alpha_1][X]$. On applying the initial observation with $L=\varphi_1F[\alpha_1]$ and $g=\varphi_1f_2$ we see that φ_1f_2 splits in Ω . According to Proposition

2.2, each φ_1 extends to a homomorphism $\varphi_2: F[\alpha_1,\alpha_2] \to \Omega$, and the number of extensions is at most $[F[\alpha_1,\alpha_2]:F[\alpha_1]]$, with equality holding when f has distinct roots in Ω

On combining these statements we conclude that there exists an ${\cal F}$ -homomorphism

$$\varphi: F[\alpha_1, \alpha_2] \to \Omega$$

and that the number of such homomorphisms is at most $[F[\alpha_1,\alpha_2]:F]$, with equality holding if f has distinct roots in Ω

2. Every F-homomorphism $E \to \Omega$ is injective if $\alpha_1 \neq \alpha_2$, then α_1 is not a root of f_2 , otherwise f_2 is not minimal in $F[\alpha_1][X]$. Thus $f_2(\varphi_2\alpha_2) = 0 \neq f_2(\varphi_2\alpha_1)$, and so $\varphi_2\alpha_2 \neq \varphi_2\alpha_1$. Thus every F-homomorphism is injective. And so, if there exists such a homomorphism, then $[E:F] \leq [\Omega:F]$. If E and Ω are both splitting fields for f, then 1 shows that there exist homomorphism $E \leftrightarrows \Omega$, and so $[E:F] = [\Omega:F]$

Corollary 2.5. *Let* E *and* L *be extension of* F *, with* E *finite over* F

- 1. The number of F-homomorphisms $E \to L$ is at most [E : F]
- 2. There exists a finite extension Ω/L and an F-homomorphism $E \to \Omega$

Proof. Write $E=F[\alpha_1,\ldots,\alpha_m]$, and let $f\in F[X]$ be the product of the minimal polynomials of the α_i ; thus E is generated over F by roots of f. Let Ω be a splitting field for f regarded as an element of L[X]. The proposition shows that there exists an F-homomorphism $E\to\Omega$, and the number of such homomorphisms is $\leq [E:F]$. This proves (2). And since an F-homomorphism $E\to L$ can be regarded as an F-homomorphism $E\to\Omega$, it also proves (1)

Remark. 1. Let E_1,\ldots,E_m be finite extensions of F, and let L be an extension of F. From the corollary we see that there exists a finite extension L_1/L s.t. L_1 contains an isomorphic image of E_1 ; then there exists a finite extension L_2/L_1 s.t. L_2 contains an isomorphic image of E_2 . Finally we can find a finite extension Ω/L s.t. Ω contains an isomorphic copy of each E_i

2.

2.3 Multiple roots

Even when polynomials in F[X] have no common factor in F[X], one might expect that they could acquire a common factor in $\Omega[X]$ for some $\Omega \supset F$. In fact, this doesn't happen

Proposition 2.6. Let f and g be polynomials in F[X], and let Ω be an extension of F. If r(X) is the gcd of f and g computed in F[X], then it is also the gcd of f and g in $\Omega[X]$. In particular, distinct monic irreducible polynomials in F[X] do not acquire a common root in any extension of F

Proof. Let $r_F(X)$ and $r_\Omega(X)$ be the greatest common divisors of f and g in F[X] and $\Omega[X]$ respectively. Certainly $r_F(X) \mid r_\Omega(X)$ in $\Omega[X]$, but Euclid's algorithm shows that there are polynomials a and b in F[X] s.t.

$$a(X)f(X) + b(X)g(X) = r_F(X)$$

and so $r_{\Omega}(X)$ divides $r_F(X)$ in $\Omega[X]$

The proposition allows us to speak of the gcd of f and g without reference to a field

Let $f \in F[X]$, then f splits into linear factors

$$f(X) = a \prod_{i=1}^r (X - \alpha_i)^{m_i}, \alpha_i \text{ distinct}, m_i \geq 1, \sum_{i=1}^r m_i = \deg(f)$$

in E[X] for some extension E of F (2.3). We say that α_i is a root of f of **multiplicity** m_i in E. If $m_i > 1$, then α_i is said to be a **multiple root** of f, and otherwise it is a **simple root**

Let E and E' be splitting fields for F, and suppose that $f(X) = a \prod_{i=1}^r (X - \alpha_i)^{m_i}$ in E[X] and $f(X) = a' \prod_{i=1}^{r'} (X - \alpha_i')^{m_i'}$ in E'[X]. Let $\varphi : E \to E'$ be an F-isomorphism, which exists by 2.4, and extend it to an isomorphism $E[X] \to E'[X]$ by sending X to X. Then φ maps the factorization of f in E[X] onto a factorization

$$f(X) = \varphi(a) \prod_{i=1}^{r} (X - \varphi(\alpha_i))^{m_i}$$

in E'[X]. By unique factorization, this coincides with the earlier factorization in E'[X] up to a renumbering of the α_i . Therefore r=r' and

$$\{m_1,\ldots,m_r\}=\{m_1',\ldots,m_r'\}$$

f has a multiple root when at least one of the $m_i>1$, and that f has only simple roots when all $m_i=1$. Thus "f has a multiple root" means "f has a multiple root in one, hence every, extension of F splitting f", and similarly for "f has only simple roots"

When will an irreducible polynomial has a multiple root

Example 2.2. Let F be of characteristic $p \neq 0$, and assume that F contains an element a that is not a pth-power, a = T in the field $\mathbb{F}_p(T)$. Then $X^p - a$ is irreducible, but $X^p - a = (X - \alpha)^p$ in its splitting field. Thus an irreducible polynomial can have multiple roots

The derivative of a polynomial $f(X) = \sum a_i X^i$ is defined to be $f'(X) = \sum i a_i X^{i-1}$.

Proposition 2.7. For a nonconstant irreducible polynomial f in F[X], TFAE

- 1. f has a multiple root
- 2. $gcd(f, f') \neq 1$
- 3. F has nonzero characteristic p and f is a polynomial in X^p
- 4. all the roots of f are multiple

Proof. $2 \to 3$: W.L.O.G., we assume f is monic. If $\deg(f') > 0$, then $\gcd(f, f') = 1$ for otherwise f is not irreducible. If $\deg(f') = 0$ and $f' \neq 0$, then f' = 1 and so $\gcd(f, f') \neq 1$. Thus f' = 0.

$$3 o 4$$
. $f(X) = g(X^p)$. Suppose $g(X) = \prod_i (X - a_i)^{m_i}$ in some extension field. Then $f(X) = g(X^p) = \prod_i (X^p - a_i) = \prod_i (X - a_i)^{pm_i}$

Proposition 2.8. For a nonzero polynomial $f \in F[X]$, TFAE

- 1. gcd(f, f') = 1 in F[X]
- 2. f only has simple roots

Proof. A root α of f in Ω is multiple iff it is also a root of f'.

 $\gcd(f,f')=1\Rightarrow f$ and f' have no common roots $\Rightarrow f$ only has simple roots

Let Ω be an extension of F splitting f. If a root α of f in Ω is multiple iff it is also a root of f'

Definition 2.9. A polynomial is **separable** if it is nonzero and satisfied the equivalent conditions in 2.8

Definition 2.10. A field F is **perfect** if it has characteristic zero or it has characteristic p and every element of F is a pth power

Thus F is perfect iff $F = F^p$

Proposition 2.11. A field F is perfect iff every irreducible polynomial in F[X] is separable

Proof. If F has characteristic 0, the statement is obvious. If F has characteristic $p \neq 0$. If F contains an element a that is not a pth power, then $X^p - a$ is irreducible in F[X] but not separable

If F is perfect and f is not separable, then f is a polynomial in X^p . Then f can't be irreducible

If every element of F is a pth power, then every polynomial in X^p with coefficients in F is a pth power in F[X]

$$\sum a_i X^{ip} = (\sum b_i X^i)^p, \quad a_i = b_i^p$$

and so it is not irreducible

Example 2.3. 1. A finite field F is perfect, because the Frobenius endomorphism $a \mapsto a^p : F \to F$ is injective and therefore surjective

- 2. A field that can be written as a union of perfect fields is perfect. Therefore, every field algebraic over \mathbb{F}_p is perfect
- 3. Every algebraically closed field is perfect
- 4. If F_0 has characteristic $p \neq 0$, then $F = F_0(X)$ is not perfect, because X is not a pth power

2.4 Exercises

Exercise 2.4.1. Let F be a field of characteristic $\neq 2$

1. Let *E* be a quadratic extension of *F*; show that

$$S(E) = \{a \in F^{\times} \mid a \text{ is a square in } E\}$$

is a subgroup of F^{\times} containing $F^{\times 2}$

2. Let E and E' be quadratic extension of F; show that there exists an F-isomorphism $\varphi:E\to E'$ iff S(E)=S(E')

- 3. Show that there is an infinite sequence of fields $E_1, E_2, ...$ with E_i a quadratic extension of $\mathbb Q$ s.t. E_i is not isomorphic to E_i for $i \neq j$
- 4. Let p be an odd prime. Show that, up to isomorphism, there is exactly one field with p^2 elements

Exercise 2.4.2. Construct a splitting field for X^5-2 over $\mathbb Q$. What is its degree over $\mathbb Q$

2.4.6

- Exercise 2.4.3. 1. Let F be a field of characteristic p. Show that if $X^p X a$ is reducible in F[X], then it splits into distinct factors in F[X]
 - 2. For every prime p, show that $X^p X 1$ is irreducible in $\mathbb{Q}[X]$

Proof. x^5-2 is irreducible in $\mathbb Q$

Let $\xi^5=1$, and $\alpha=\sqrt[5]{2}$, then the five solutions are $\alpha,\xi\alpha,\xi^2\alpha,\xi^3\alpha,\xi^4\alpha$. Note that $[\mathbb{Q}[\alpha]:\mathbb{Q}]=5$ and $[\mathbb{Q}[\xi]:\mathbb{Q}]=4$. Then $[\mathbb{Q}[\alpha,\xi]:\mathbb{Q}[\alpha]]\leq 4$. Hence $[\mathbb{Q}[\alpha,\xi]:\mathbb{Q}]=20$

Exercise 2.4.4. Find a splitting field of $X^{p^m}-1\in \mathbb{F}_p[X]$. What is its degree over \mathbb{F}_p

Exercise 2.4.5. Let $f \in F[X]$, where F is a field of characteristic 0. Let $d(X) = \gcd(f,f')$. Show that $g(X) = f(X)d(X)^{-1}$ has the same roots as f(X), and these are all simple roots of g(X)

Exercise 2.4.6. Let f(X) be an irreducible polynomial in F[X], where F has characteristic p. Show that f(X) can be written $g(X) = g(X^{p^e})$ where g(X) is irreducible and separable. Deduce that every root of f(X) has the same multiplicity p^e in any splitting field

Proof. If f is not separable, then f is a polynomial in X^p , say $f(X) = g(X^p)$. If g is not separable, then $g(X^p) = h(X^{2p})$. This process will end since each polynomial has finite degree.

3 The Fundamental Theorem of Galois Theory

3.1 Groups of automorphism of fields

Consider fields $E \supset F$. An F-isomorphism $E \to E$ is called an F-automorphism of E. The F-automorphisms of E form a group, which we denote $\operatorname{Aut}(E/F)$

Example 3.1. Let $E=\mathbb{C}(X)$. A \mathbb{C} -automorphism of E sends X to another generator of E over \mathbb{C} . It follows from $\ref{thm:property}$? below that these are exactly the elements $\frac{aX+b}{cX+d}$, $ad-bc\neq 0$. Therefore $\operatorname{Aut}(E/\mathbb{C})$ consists of the maps $f(X)\mapsto f\left(\frac{aX+b}{cX+d}\right)$, $ad-bc\neq 0$, and so

$$\operatorname{Aut}(E/\mathbb{C}) \cong \operatorname{PGL}_2(\mathbb{C})$$

the group of invertible 2×2 matrices with complex coefficients modulo its centre.

Proposition 3.1. Let E be a splitting field of a separable polynomial f in F[X]; then Aut(E/F) has order [E:F]

Proof. As f is separable, it has deg f different roots in E. Therefore Proposition 2.4 shows that the number of F-homomorphisms $E \to E$ is [E:F]. Because E is finite over F, all such homomorphisms \square

When G is a group of automorphisms of a field E, we set

$$E^G = \mathrm{Inv}(G) = \{ \alpha \in E \mid \sigma\alpha = \alpha, \forall \sigma \in G \}$$

It is a subfield of E , called the subfield of G-invariants of E or the fixed field of G

Theorem 3.2 (E. Artin). Let G be a finite group of automorphisms of a field E, then

$$[E:E^G] \le (G:1)$$

Proof. Let $F=E^G$, and let $G=\{\sigma_1,\ldots,\sigma_m\}$ with σ_1 the identity map. It suffices to show that every set $\{\alpha_1,\ldots,\alpha_n\}$ of elements of E with n>m is linearly dependent over F. For such a set, consider the system of linear equations

$$\begin{split} \sigma_1(\alpha_1)X_1+\cdots+\sigma_1(\alpha_n)X_n&=0\\ &\vdots\\ \sigma_m(\alpha_1)X_1+\cdots+\sigma_m(\alpha_n)X_n&=0 \end{split}$$

with coefficients in E. There are m equations and n>m unknowns, and hence there are nontrivial solutions in E. We choose one (c_1,\ldots,c_n) having the fewest possible nonzero elements. After renumbering the α_i , we may choose that $c_1\neq 0$, and then, after multiplying by a scalar, that $c_1\in F$ Let $d_i=-(\sigma_i(\alpha_1^{-1}\alpha_2)c_2+\cdots+\sigma_i(\alpha_1^{-1}\alpha_n)c_n)$ Then $c_1=d_i$ for $i=1,\ldots,n$, for

any $i \in \{1, ..., n\}$, $\sigma_i(c_1) = \sigma_i(d_1) = d_i = c_1$. Thus $c_1 \in F$ With these normalizations, we'll show that all $c_i \in F$, and so the first equation

$$\alpha_1 c_1 + \dots + \alpha_n c_n = 0$$

is a linear relation on the α_i

If not all c_i are in F, then $\sigma_k(c_i) \neq c_i$ for some $k \neq 1$ and $i \neq 1$. On applying σ_k to the system of linear equations

$$\begin{split} \sigma_1(\alpha_1)c_1+\cdots+\sigma_1(\alpha_n)c_n&=0\\ \vdots\\ \sigma_m(\alpha_1)c_1+\cdots+\sigma_m(\alpha_n)c_n&=0 \end{split}$$

and using that $\{\sigma_k \sigma_1, \dots, \sigma_k \sigma_m\} = \{\sigma_1, \dots, \sigma_m\}$, we find that

$$(c_1, \sigma_k(c_2), \dots, \sigma_k(c_n))$$

is also a solution to the system of equations. On subtracting it from the first solution, we obtain a solution $(0,\ldots,c_i-\sigma_k(c_i),\ldots)$, which is nonzero, but has more zeros than the first solutions - contradiction If $c_i=0$, then $\sigma_k(c_i)=0$ since this is an automorphism

Corollary 3.3. *Let G be a finite group of automorphisms of a field E*; *then*

$$G = \operatorname{Aut}(E/E^G)$$

Proof. As $G \subset \operatorname{Aut}(E/E^G)$, we have inequalities

$$[E:E^G] \leq (G:1) \leq (\operatorname{Aut}(E/E^G):1) \leq [E:E^G]$$

last inequality by 2.5 (1)

3.2 Separable, normal, and Galois extensions

Definition 3.4. An algebraic extension E/F is **separable** if the minimal polynomial of every element of E is separable; otherwise it is **inseparable**

Thus, an algebraic extension E/F is separable if every irreducible polynomial in F[X] having at least one root in E is separable, and it is inseparable if

• F is nonperfect, and in particular has characteristic $p \neq 0$, and

• there is an element $\alpha \in E$ whose minimal polynomial is of the form $g(X^p)$, $g \in F[X]$

 $\mathbb{F}_p(T)/\mathbb{F}_p(T^p)$ is inseparable extension because T has minimal polynomial X^p-T^p

Definition 3.5. An extension E/F is **normal** if it is algebraic and the minimal polynomial of every element of E splits in E[X]

an algebraic extension E/F separable and normal \Leftrightarrow every irreducible polynomial $f \in F[X]$ having at least one root in E splits in E[X]

Let f be a monic irreducible polynomial of degree m in F[X], and let E be an algebraic extension of F. If f has a root in E, so that it is the minimal polynomial of an element of E, then

$$\begin{array}{ccc} E/F \text{ separable} & \Rightarrow & f \text{ has only simple roots} \\ E/F \text{ normal} & \Rightarrow & f \text{ splits in } E \end{array} \right\} \quad \Rightarrow \quad f \text{ has } m \text{ distinct roots in } E$$

It follows that E/F is separable and normal iff the minimal polynomial of every element α of E has $[F[\alpha]:F]$ distinct roots in E

Example 3.2. 1. The polynomial X^3-2 has one real root $\sqrt[3]{2}$ and two nonreal roots in $\mathbb C$. Therefore the extension $\mathbb Q[\sqrt[3]{2}]/\mathbb Q$ (which is separable) is not normal

Theorem 3.6. For an extension E/F, TFAE

- 1. E is the splitting field of a separable polynomial $f \in F[X]$
- 2. E is finite over F and $F = E^{Aut(E/F)}$
- 3. $F = E^G$ for some finite group G of automorphisms of E
- 4. E is normal, separable and finite over F

Proof. $1 \to 2$: Let $F' = E^{\operatorname{Aut}(E/F)} \supset F$. E is also the splitting field of f regarded as a polynomial with coefficients in F', and that f is still separable when it is regarded in this way. Hence

$$|\mathrm{Aut}(E/F')| = [E:F'] \leq [E:F] = |\mathrm{Aut}(E/F)|$$

According to Corollary 3.3, $\operatorname{Aut}(E/F) = \operatorname{Aut}(E/F')$, and so [E:F'] = [E:F] and F' = F Note that $F[\alpha_1, \dots, \alpha_n] = F'[\alpha_1, \dots, \alpha_n]$. Then for any

 $a\in F'$, there is $f(\alpha_1,\dots,\alpha_n)=a\in F'$, but since $\alpha_1,\dots,\alpha_n\notin F'$, f is a constant function and hence $a\in F$

- $2 \rightarrow 3$: Let $G = \operatorname{Aut}(E/F)$, G is finite since E is finite over F 2.5
- $3 \to 4$: According to Theorem 3.2, $[E:F] \le (G:1)$; in particular, E/F is finite. Let $\alpha \in E$, and let f be the minimal polynomial of α ; we have to show that f splits into distinct factors in E[X]. Let $\{\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_m\}$ be the orbit of α under the action of G on E Since α is algebraic over F, we can take a minimal polynomial of α . Then there is at most deg f different solutions and let

$$g(X)=\prod_{i=1}^m(X-\alpha_i)=X^m+a_1X^{m-1}+\cdots+a_m$$

The coefficients a_j are symmetric polynomials in the α_i , and each $\sigma \in G$ permutes the α_i , and so $\sigma a_j = a_j$ for all a_j . Thus $g(X) \in F[X]$. As it is monic and $g(\alpha) = 0$, it is divisible by f. Let $\alpha_i = \sigma \alpha$, then $f(\alpha_i) = 0$. Therefore every α_i is a root of f, and so g divides f. Hence f = g and f(X) splits in E

 $4 \to 1$: Because E has finite degree over F, it is generated over F by a finite number of elements, say $E = F[\alpha_1, \dots, \alpha_m]$, $\alpha_i \in E$, α_i algebraic over F. Let f_i be the minimal polynomial of α_i over F, and let f be the product of the distinct f_i . Because E is normal over F, each f_i splits in E, and so E is the splitting field of f. Because E is separable over F, f is separable \Box

Definition 3.7. An extension E/F of fields is **Galois** if it satisfies the equivalent conditions of 3.6. When E/F is Galois, $\operatorname{Aut}(E/F)$ is called the **Galois group** of E over F, and is denoted by $\operatorname{Gal}(E/F)$

- Remark. 1. Let E be Galois over F with Galois group G, and let $\alpha \in E$. The elements $\alpha_1, \ldots, \alpha_m$ of the orbit of α under G are called the **conjugates** of α . We showed that the minimal polynomial of α is $\prod (X-\alpha_i)$, i.e., the conjugates of α are exactly the roots of its minimal polynomial in E
 - 2. Let G be a finite group of automorphisms of a field E, and let $F = E^G$. Then E is Galois over F. Moreover $\operatorname{Gal}(E/F) = G$ (3.3) and $[E:F] = |\operatorname{Gal}(E/F)|$ (3.1)

Corollary 3.8. Every finite separable extension F of F is contained in a Galois extension

Proof. Let $E = F[\alpha_1, \dots, \alpha_m]$, and let f_i be the minimal polynomial of α_i over F. The product of the distinct f_i is a separable polynomial in F[X] whose splitting field is a Galois extension of F containing E

Corollary 3.9. *Let* $E \supset M \supset F$; *if* E *is Galois over* F, *then it is Galois over* M

Proof. E is the splitting field of some separable $f \in F[X]$; it is also the splitting field of f regarded as an element of M[X]

Definition 3.10. An extension E of F is **cyclic** (resp. **abelian**, resp. **solvable**) if it is Galois with cyclic (resp. abelian, resp. solvable) Galois group

3.3 The fundamental theorem of Galois theory

Let E be an extension of F. A **subextension** of E/F is an extension M/F with $M \subset E$, i.e., a field M with $F \subset M \subset E$. When E is Galois over F, the subextensions of E/F are in one-to-one correspondence with the subgroups of $\operatorname{Gal}(E/F)$.

Theorem 3.11 (Fundamental theorem of Galois theory). Let E be a Galois extension of F with Galois group G. The map $H \mapsto E^H$ is a bijection from the set of subgroups of G to the set of subextensions of E/F,

$$\{subgroups\ H\ of\ G\} \stackrel{1:1}{\longleftrightarrow} \{subextensions\ F\subset M\subset E\}$$

with inverse $M \mapsto \operatorname{Gal}(E/M)$

- 1. the correspondence is inclusion-reversing: $H_1 \supset H_2 \Leftrightarrow E^{H_1} \subset E^{H_2}$
- 2. indexes equal degrees: $(H_1 : H_2) = [E^{H_2} : E^{H_1}]$
- $3. \ \ \sigma H \sigma^{-1} \leftrightarrow \sigma M, \textit{i.e.,} \ E^{\sigma H \sigma^{-1}} = \sigma(E^H); \mathrm{Gal}(E/\sigma M) = \sigma \, \mathrm{Gal}(E/M) \sigma^{-1}$
- 4. *H* is normal in $G \Leftrightarrow E^H$ is normal (hence Galois) over F, in which case

$$\operatorname{Gal}(E^H/F) \simeq G/H$$

Proof. For the first statement, we have to show that $H\mapsto E^H$ and $M\mapsto \operatorname{Gal}(E/M)$ are inverse maps. Let H be a subgroup of G. Then Corollary 3.3 shows that $\operatorname{Gal}(E/E^H)=H$. Let M/F be a subextension. Then E is Galois over M by 3.9, which means that $E^{\operatorname{Gal}(E/M)}=M$

1. We have

$$H_1\supset H_2\Rightarrow E^{H_1}\subset E^{H_2}\Rightarrow {\rm Gal}(E/E^{H_1})\supset {\rm Gal}(E/E^{H_2})$$
 and ${\rm Gal}(E/E^{H_i})=H_i$

2. Let H be a subgroup of G. According to 3.2 (2)

$$(\operatorname{Gal}(E/E^H):1) = [E:E^H]$$

This proves (2) in the case ${\cal H}_2=$ 1, and the general case follows, using that

$$\begin{split} (H_1:1) &= (H_1:H_2)(H_2:1) \\ [E:E^{H_1}] &= [E:E^{H_2}][E^{H_2}:E^{H_1}] \end{split}$$

3. For $\tau \in G$ and $\alpha \in E$,

$$\tau\alpha = \alpha \Leftrightarrow \sigma\tau\sigma^{-1}(\sigma\alpha) = \sigma\alpha$$

Therefore τ fixes M iff $\sigma\tau\sigma^{-1}$ fixes σM , and so $\sigma\operatorname{Gal}(E/M)\sigma^{-1}=\operatorname{Gal}(E/\sigma M)$. This shows that $\sigma\operatorname{Gal}(E/M)\sigma^{-1}$ corresponds to σM

4. Let $H \triangleleft G$. Because $\sigma H \sigma^{-1} = H$ for all $\sigma \in G$, we must have $\sigma E^H = E^{\sigma H \sigma^{-1}} = E^H$ for all $\sigma \in G$. Therefore we have a homomorphism

$$\sigma \mapsto \sigma|E^H:G \to \operatorname{Aut}(E^H/F)$$

whose kernel is H and $G/H \simeq \operatorname{Aut}(E^H/F)$. As $(E^H)^{G/H} = (E^H)^{\operatorname{Aut}(E^H/F)} = F$, we see that E^H is Galois over F by Theorem 3.6 and that $G/H \simeq \operatorname{Gal}(E^H/F)$ (3.2 (2))

Conversely, suppose that $M=E^H$ is normal over F, and let α_1,\ldots,α_m generate M over F. For $\sigma\in G,\sigma\alpha_i$ is a root of the minimal polynomial of α_i over F, and so lies in M. Hence $\sigma M=M$, and this implies $\sigma H\sigma^{-1}=H$ by (3)

Remark. Let E/F be a Galois extension, so that there is an order reversing bijection between the subextensions of E/F and the subgroups of G. From this, we can read off the following results

1. Let M_1, M_2, \ldots, M_r be subextensions of E/F, and let H_i be the subgroup corresponding to M_i (i.e., $H_i = \operatorname{Gal}(E/M_i)$). Then $M_1 M_2 \ldots M_r$ is the smallest field containing all M_i ; hence it must correspond to the largest subgroup contained in all H_i , which is $\bigcap H_i$, therefore

$$\operatorname{Gal}(E/M_1 \dots M_r) = H_1 \cap \dots \cap H_r$$

2. Let H be a subgroup of G and let $M=E^H$. The largest normal subgroup contained in H is $N=\bigcap_{\sigma\in G}\sigma H\sigma^{-1}$, and so E^N is the smallest normal extension extension of F containing M. Note that, by (1), E^N is the composite of the fields σM . It is called the **normal**, or **Galois**, closure of M in E

Proposition 3.12. *Let* E *and* L *be extensions of* F *contained in some common field. If* E/F *is Galois, then* EL/L *and* $E/E \cap L$ *are Galois, and the map*

$$\sigma \mapsto \sigma | E : \operatorname{Gal}(EL/L) \to \operatorname{Gal}(E/E \cap L)$$

is an isomorphism

Proof. Because E is Galois over F, it is the splitting field of a separable polynomial $f \in F[X]$. Then EL is the splitting field of f over L, and E is the splitting field of f over $E \cap L$. Hence EL/L and $E/E \cap L$ are Galois.

Every automorphism σ of EL fixing the elements of L maps roots of f to roots of f, and so $\sigma E = E$. There is therefore a homomorphism

$$\sigma \mapsto \sigma | E : \operatorname{Gal}(EL/L) \to \operatorname{Gal}(E/E \cap L)$$

If $\sigma \in \operatorname{Gal}(EL/L)$ fixes the elements of E, then it fixes the elements of EL, and hence is the identity map. Thus $\sigma \mapsto \sigma|E$ is injective. If $\alpha \in E$ is fixed by all $\sigma \in \operatorname{Gal}(EL/L)$, then $\alpha \in E \cap L$ and so $E^{\operatorname{Gal}(EL/L)} \subseteq E \cap L$. By Corollary 3.3, $\operatorname{Gal}(EL/L) = \operatorname{Aut}(E/E^{\operatorname{Gal}(EL/L)}) \supseteq \operatorname{Aut}(E/E \cap L) = \operatorname{Gal}(E/E \cap L)$. Thus $|\operatorname{Gal}(EL/L)| = |\operatorname{Gal}(E/E \cap L)|$

Corollary 3.13. Suppose, in the proposition, that L is finite over F. Then

$$[EL:F] = \frac{[E:F][L:F]}{[E\cap L:F]}$$

Proof. According to Proposition 1.5,

$$[EL:F] = [EL:L][L:F]$$

but

$$[EL:L] \stackrel{3.12}{=} [E:E\cap L] = \frac{[E:F]}{[E\cap L:F]}$$

Proposition 3.14. Let E_1 and E_2 be extensions of F contained in some common field. If E_1 and E_2 are Galois over F, then E_1E_2 and $E_1 \cap E_2$ are Galois over F, and the map

$$\sigma \mapsto (\sigma|E_1, \sigma|E_2) : \operatorname{Gal}(E_1E_2/F) \to \operatorname{Gal}(E_1/F) \times \operatorname{Gal}(E_2/F)$$

is an isomorphism of $Gal(E_1E_2/F)$ onto the subgroup

$$H = \{(\sigma_1, \sigma_2) \mid \sigma_1 \mid E_1 \cap E_2 = \sigma_2 \mid E_1 \cap E_2\}$$

of
$$Gal(E_1/F) \times Gal(E_2/F)$$

Proof. Let $\alpha \in E_1 \cap E_2$, and let f be its minimal polynomial over F. Then f has deg f distinct roots in E_1 and deg f distinct roots in E_2 . Since f can have at most deg f roots in E_1E_2 , it follows that it has deg f distinct root in $E_1 \cap E_2$. This shows that $E_1 \cap E_2$ is normal and separable over F, and hence Galois. As E_1 and E_2 are Galois over F, they are splitting fields for separable polynomials $f_1, f_2 \in F[X]$. Now E_1E_2 is a splitting field for $\operatorname{lcm}(f_1, f_2)$ and hence it is Galois over F. The map $\sigma \mapsto (\sigma|E_1, \sigma|E_2)$ is clearly an injective homomorphism, and its image is contained in H

From the (group) fundamental theorem

$$\frac{\operatorname{Gal}(E_2/F)}{\operatorname{Gal}(E_2/E_1\cap E_2)}\simeq\operatorname{Gal}(E_1\cap E_2/F)$$

and so, for each $\sigma_1 \in \operatorname{Gal}(E_1/F)$, $\sigma_1|E_1 \cap E_2$ has exactly $[E_2: E_1 \cap E_2]$ extensions to an element of $\operatorname{Gal}(E_2/F)$. Therefore

$$(H:1) = [E_1:F][E_2:E_1\cap E_2] = \frac{[E_1:F][E_2:F]}{[E_1\cap E_2:F]}$$

which equals $[E_1E_2:F]$ by 3.13

3.4 Examples

Example 3.3. We analyse the extension $\mathbb{Q}[\zeta]/\mathbb{Q}$ where ζ is a primitive 7th root of 1, say $\zeta = e^{2\pi i/7}$

Note that $\mathbb{Q}[\zeta]$ is the splitting field of the polynomial X^7-1 , and that ζ has minimal polynomial

$$X^6 + X^5 + \dots + X + 1$$

Therefore, $\mathbb{Q}[\zeta]$ is Galois of degree 6 over \mathbb{Q} . For any $\sigma \in \operatorname{Gal}(\mathbb{Q}[\zeta]/\mathbb{Q})$, $\sigma \zeta = \zeta^i$, $1 \leq i \leq 6$, and the map $\sigma \mapsto i$ defines an isomorphism $\operatorname{Gal}(\mathbb{Q}[\zeta]/\mathbb{Q}) \to (\mathbb{Z}/7\mathbb{Z})^\times$. Let σ be the element of $\operatorname{Gal}(\mathbb{Q}[\zeta]/\mathbb{Q})$ s.t. $\sigma \zeta = \zeta^3$. Then σ generates $\operatorname{Gal}(\mathbb{Q}[\zeta]/\mathbb{Q})$ because the class of 3 in $(\mathbb{Z}/7\mathbb{Z})^\times$ generates it. We investigate the subfields of $\mathbb{Q}[\zeta]$ corresponding to the subgroups $\langle \sigma^3 \rangle$ and $\langle \sigma^2 \rangle$

Note that $\sigma^3\zeta=\zeta^6=\bar{\zeta}$ (complex conjugate of ζ), and so $\zeta+\bar{\zeta}=2\cos\frac{2\pi}{7}$ is fixed by σ^3 . Now $\mathbb{Q}[\zeta]\supseteq\mathbb{Q}[\zeta]^{\langle\sigma^3\rangle}\supseteq\mathbb{Q}[\zeta+\bar{\zeta}]\neq\mathbb{Q}$, and so $\mathbb{Q}[\zeta]^{\langle\sigma^3\rangle}=\mathbb{Q}[\zeta+\bar{\zeta}]$

4 Problem