## 线性规划

- 线性规划模型
  - 模型
  - 二维线性规划的图解法
- 标准形
  - 标准形
  - 标准形的可行解的性质
- 单纯形法
  - 确定初始基本可行解
  - 最优性检验

#### 线性规划

- 基变换
  - 单纯形表
  - 人工变量和两阶段法
  - 单纯形法的有限终止性
- 对偶性
  - 对偶线性规划
  - 对偶单纯形法

## 简要历史

线性规划是应用最广的数学模型

- L.V.Kantorovich 苏联数学家、经济学家、1975年诺贝尔经济学奖获得者,1939年在《组织和计划生产的数学方法》一文中最早提出线性规划
- G.B.Dantzig 1947年 给出一般的线性规划模型和单纯形法.
- L.G. Khachian 苏联数学家 1979年 椭球算法 这是多项式时间算法
- N. Karmarkar 印度数学家 1984年 投影算法

# 线性规划模型

#### 模型

#### 例1 生产计划问题

用3种原料混合配制2种清洁剂

|        | 原料1  | 原料2  | 原料3  | 售价(万元/吨) |
|--------|------|------|------|----------|
| 清洁剂A   | 0.25 | 0.50 | 0.25 | 12       |
| 清洁剂B   | 0.50 | 0.50 |      | 15       |
| 存量 (吨) | 120  | 150  | 50   |          |

这2种清洁剂应各配制多少才能使总价值最大?

## 例1(续)

#### 设清洁剂A和B分别配制x和y

max 
$$z=12x+15y$$
  
s.t.  $0.25x+0.50y \le 120$   
 $0.50x+0.50y \le 150$   
 $0.25x \le 50$   
 $x\ge 0, y\ge 0$ 

## 例2 投资组合问题

10亿元投资5个项目,其中项目1和项目2是高新技术产业的企业债,项目3和项目4是基础工业的企业债,项目5是国债和地方政府债.预测它们的年收益率(%)分别为8.1,10.5,6.4,7.5和5.0.

基于风险的考虑,要求投资组合满足下述条件:

- (1) 每个项目不超过3亿元.
- (2) 高新技术产业的投资不超过总投资的一半, 即5亿元, 其中项目2又不超过高新技术产业投资的一半.
- (3) 国债和地方政府债不少于基础工业项目投资的40%. 试确定投资组合中各项目的投资额, 使年收益率最大.

# 例2(续)

设项目i的投资额为 $x_i$ 亿元,i=1,2,3,4,5.

max 
$$z=8.1x_1+10.5x_2+6.4x_3+7.5x_4+5.0x_5$$
  
s.t.  $x_1 \le 3$ ,  $x_2 \le 3$   
 $x_3 \le 3$ ,  $x_4 \le 3$   
 $x_5 \le 3$   
 $x_1+x_2 \le 5$   
 $x_2 \le 0.5(x_1+x_2)$ ,  $\exists x_1-x_2 \ge 0$   
 $x_5 \ge 0.4(x_3+x_4)$ ,  $\exists x_1-x_2 \ge 0$   
 $x_1+x_2+x_3+x_4+x_5=10$   
 $x_1 \ge 0$ ,  $i=1,2,3,4,5$ 

#### 例3 运输问题

|     | 分销中心1 | 分销中心2 | 分销中心3 | 产量    |
|-----|-------|-------|-------|-------|
| 工厂1 | 3     | 2     | 7     | 5000  |
| 工厂2 | 7     | 5     | 2     | 6000  |
| 需求量 | 6000  | 4000  | 1000  | 11000 |

产销平衡. 试制定供销方案, 使总运费最小.

设工厂i供应分销中心j的数量为 $x_{ij}$ , i=1,2; j=1,2,3.

min 
$$z=3x_{11}+2x_{12}+7x_{13}+7x_{21}+5x_{22}+2x_{23}$$

s.t. 
$$x_{11}+x_{12}+x_{13}=5000$$

$$x_{21} + x_{22} + x_{23} = 6000$$

$$x_{11}+x_{21}=6000, \quad x_{12}+x_{22}=4000$$

$$x_{13}+x_{23}=1000$$
,  $x_{ij}\geq 0$ ,  $i=1,2$ ;  $j=1,2,3$ 

## 例4 饲料配方问题

每头每天至少需要 $b_i$ 个单位的营养素i,  $1 \le i \le n$ . 有n种饲料,饲料j每千克含有 $a_{ij}$ 个单位的营养素i, 售价 $c_j$ 元, $1 \le j \le m$ . 要保证动物有足够营养且饲料成本最低,应如何配方?

设每头每天的饲料中含 $x_j$ 千克饲料j,  $1 \le j \le n$ .

$$\min z = \sum_{j=1}^{n} c_{j} x_{j}$$
s.t 
$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i}, \quad 1 \le i \le m$$

$$x_{j} \ge 0, \quad 1 \le j \le n$$

## 线性规划的一般形式

min(max) 
$$z = \sum_{j=1}^{n} c_{j} x_{j}$$
 目标函数 s.t.  $\sum_{j=1}^{n} a_{ij} x_{j} \le (=, \ge) b_{i}$ ,  $i = 1, 2, ..., m$  约束条件

 $x_j \ge 0$ ,  $j \in J \subseteq \{1,2,...,n\}$  $x_j$ 任意, $j \in \{1,2,...,n\}$ -J 非负条件自由变量

可行解 满足约束条件和非负条件的变量可行域 全体可行解

最优解 目标函数值最小(最大)的可行解 最优值 最优解的目标函数值

#### 二维线性规划的图解法

#### 例1(续)

max 
$$z=12x+15y$$
  
s.t.  $0.25x+0.50y \le 120$   
 $0.50x+0.50y \le 150$   
 $0.25x \le 50$   
 $x\ge 0, y\ge 0$ 

O(0,0), A(0,240),B(120,180), C(200,100),

D(200)

最优解  $x^*=120$ ,  $y^*=180$  (点B) 最优值  $z^*=4140$ .



## 例5

例1中的目标函数改为 max z=12x+12y



最优解  $x^*=120t+200(1-t)=200-80t$   $y^*=180t+100(1-t)=100+80t$ ,  $0 \le t \le 1$  线段BC 最优值  $z^*=3600$ .

#### 例6

min 
$$z=x-2y$$
  
s.t.  $2x+y\ge 2$   
 $x-y\le 2$   
 $x\ge 0, y\ge 0$ 

有可行解 目标函数值可以任意小 无最优解.



 $2x+y\geq 2$  改为  $2x+y\leq 2$ ,可行域为空集,无可行解

## 性质

- (1)解有4种可能
  - (a) 有唯一的最优解.
  - (b) 有无穷多个最优解.
  - (c) 有可行解, 但无最优解(目标函数值无界).
  - (d) 无可行解, 更无最优解.
- (2) 可行域是一个凸多边形(可能无界, 也可能是空集). 如果有最优解,则一定可以在凸多边形的顶点取到.
- 一般的n维线性规划也是如此

# 标准形

## 标准形

min 
$$z = \sum_{j=1}^{n} c_{j} x_{j}$$
  
s.t.  $\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \ge 0, i=1,2,...,m$   
 $x_{j} \ge 0, j=1,2,...,n$ 

#### 化成标准形

- (1) 把 $\max z$  替换成 $\min z' = -z$ , 即取 $c_j' = -c_j$ .
- (2)  $b_i$ <0. 两边同时变号, ≤改变成≥,≥改变成≤...
- (3)  $\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}$  引入松弛变量 $y_{i} \geq 0$ ,替换成  $\sum_{j=1}^{n} a_{ij} x_{j} + y_{i} = b_{i}$
- (4)  $\sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i} \cdot \exists | \lambda$  剩余变量 $y_{i} \geq 0$ ,替换成 $\sum_{j=1}^{n} a_{ij} x_{j} y_{i} = b_{i}$
- (5) 自由变量 $x_i$ 替换成 $x_i'-x_i''$ ,  $x_i'\geq 0$ ,  $x_i''\geq 0$

#### 例7

写出下述线性规划的标准形,

max 
$$z=3x_1-2x_2+x_3$$
  
s.t.  $x_1+3x_2-3x_3\leq 10$   
 $4x_1-x_2-5x_3\leq -30$   
 $x_1\geq 0, x_2\geq 0, x_3$  任意

解

min 
$$z' = -3x_1 + 2x_2 - x_3' + x_3''$$
  
s.t.  $x_1 + 3x_2 - 3x_3' + 3x_3'' + x_4 = 10$   
 $-4x_1 + x_2 + 5x_3' - 5x_3'' - x_5 = 30$   
 $x_1 \ge 0, x_2 \ge 0, x_3' \ge 0, x_3'' \ge 0, x_4 \ge 0, x_5 \ge 0,$ 

## 标准形

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \quad c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

矩阵形式

向量形式

min 
$$z=c^Tx$$
  
s.t.  $Ax=b$   
 $x \ge 0$ 

min 
$$z = \sum_{j=1}^{n} c_{j} x_{j}$$
  
s.t. 
$$\sum_{j=1}^{n} P_{j} x_{j} = b$$
$$x_{j} \ge 0, \ j = 1, 2, ..., n$$
$$P_{j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

$$P_{j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

## 标准形的可行解的性质

定义 设A的秩为m, A的m个线性无关的列向量称作标准 形的基. 给定基 $B=(P_{i_1},P_{i_2},\cdots,P_{i_m})$ , 对应基中列向量的 变量  $x_{i_1},x_{i_2},\cdots,x_{i_m}$  称作基变量, 其余的变量称作非基变量.

基变量构成的向量记作 $x_B$ , 非基变量构成的向量记作 $x_N$ . 令 $x_N$ =0, 等式约束变成

$$Bx_B=b$$

解得 $x_B=B^{-1}b$ . 这个向量x满足约束Ax=b且非基变量全为0,称作关于基B的基本解. 如果x是一个基本解且 $x\geq 0$ ,则称x是一个基本可行解,对应的基B为可行基.

#### 例8

min 
$$z=-12x_1-15x_2$$
  
s.t.  $0.25x_1+0.50x_2+x_3=120$   
 $0.50x_1+0.50x_2+x_4=150$   
 $0.25x_1$   
 $0.25x_1$ 

=50

解得 $x_1$ =200,  $x_2$ =100,  $x_3$ =20.

 $0.25x_1$ 

 $x^{(1)}=(200,100,20,0,0)^T$ 是基本可行解, $B_1$ 是可行基.

 $0.50x_1 + 0.50x_2 = 150$ 

# 例8(续)

取基 $B_2$ =( $P_1$ , $P_2$ , $P_4$ ). 基变量  $x_1$ , $x_2$ , $x_4$ , 非基变量  $x_3$ , $x_5$ . 令 $x_3$ =0,  $x_5$ =0, 由  $0.25x_1$ + $0.50x_2$  =120  $0.50x_1$ + $0.50x_2$ + $x_4$ =150  $0.25x_1$  =50

解得 $x_1$ =200,  $x_2$ =140,  $x_4$ =-20.

 $x^{(2)}=(200,140,0,-20,0)^T$ 是基本解, 但不是基本可行解. B,不是可行基.

这个线性规划是例1中线性规划的标准形,  $x^{(1)}$ 是例1图中的顶点C.  $x^{(2)}$ 是直线0.25x+0.5y=120与0.25x=50的交点, 不在可行域内.

## 基本可行解的性质

引理1 Ax=b的解 $\alpha$ 是基本解 $\Leftrightarrow x$ 中非零分量对应的列向量线性无关.

证 必要性 根据基本解的定义, 这是显然的.

充分性 设 $\alpha$ 的非零分量为  $\alpha_{j_1}$ , $\alpha_{j_2}$ ,…, $\alpha_{j_r}$ ,对应的列向量  $P_{j_1}$ , $P_{j_2}$ ,…, $P_{j_r}$  线性无关. A的秩为m,必存在  $P_{j_r+1}$ ,…, $P_{j_m}$  使得  $P_{j_1}$ , $P_{j_2}$ ,…, $P_{j_m}$ 线性无关,构成一个基,记作B.  $\alpha$ 是方程 $Bx_B=b$ 的解,而这个方程的解是惟一的,故 $\alpha$ 是关于B的基本解.

## 基本可行解的性质

定理1 如果标准形有可行解,则必有基本可行解.

证 设 $\alpha$ 是一个可行解,从 $\alpha$ 开始,构造出一个基本可行解.

设 $\alpha$ 的非零分量为 $\alpha_1$ ,  $\alpha_2$ ,...,  $\alpha_r$ ,  $r \le n$ . 如果对应的列向量 $P_1$ , $P_2$ ,..., $P_r$ 线性无关,则 $\alpha$ 是一个基本可行解.

否则,存在不全为0的 $\lambda_1,\lambda_2,...,\lambda_r$ 使

$$\lambda_1 P_1 + \lambda_2 P_2 + \ldots + \lambda_r P_r = 0$$

取 $\lambda_{r+1} = \dots = \lambda_n = 0$ ,有

$$\lambda_1 P_1 + \lambda_2 P_2 + \ldots + \lambda_r P_n = 0$$

于是,对任意的 $\delta$ ,

$$\sum_{j=1}^{n} (\alpha_j + \delta \lambda_j) P_j = \sum_{j=1}^{n} \alpha_j P_j + \delta \sum_{j=1}^{n} \lambda_j P_j = b$$

## 定理1(续)

 $i \lambda = (\lambda_1, \lambda_2, ..., \lambda_n)^T$ ,为使 $\alpha + \delta \lambda$ 成为一个可行解,要求所有  $\alpha_i + \delta \lambda_i \ge 0$ . 当 $\lambda_i = 0$ 时,不等式自然成立. 当 $\lambda_i$ >0时,要求 $\delta$ ≥ - $\alpha_i$  / $\lambda_i$ ;当 $\lambda_i$ <0时,要求 $\delta$ ≥ - $\alpha_i$  / $\lambda_i$ . 综上所述,要求当 $\lambda_j \neq 0$ 时, $\delta \leq |\alpha_j|/\lambda_j|$ .  $\left|\alpha_{i_0}/\lambda_{i_0}\right| = \min\left\{\alpha_{i}/\lambda_{i}: \lambda_{i} \neq 0\right\}, \quad 1 \leq j_0 \leq r$ 取  $\delta^* = -\alpha_{j_0}/\lambda_{j_0}$ , 令  $\beta_i = \alpha_i + \delta^* \lambda_i$  (j = 1, 2, ..., n), 则  $\beta_1 P_1 + \ldots + \beta_n P_n = b$ 且 $\beta_{j}\geq 0$  (j=1,2,...,n),  $\beta_{j_0}=0$ ,  $\beta_{r+1}=...=\beta_n=0$ . 从而,  $\beta = (\beta_1, \beta_2, ..., \beta_n)$ 是可行解且比 $\alpha$ 至少少一个非零分量. 上述过程至多进行r-1次一定可以得到一个基本可行解。

#### 基本可行解的性质

定理2 如果标准形有最优解,则必存在一个基本可行解是 最优解.

证 补充证明: 在定理1证明中, 当 $\alpha$ 是最优解时,  $\beta$ 也是最优解。由 $\alpha_j=0 \Rightarrow \lambda_j=0$ , 对足够小的 $\delta>0$ ,  $\alpha+\delta\lambda$ 和 $\alpha-\delta\lambda$ 都是可行

解. 从而

$$\sum_{j=1}^{n} c_j \alpha_j \leq \sum_{j=1}^{n} c_j (\alpha_j + \delta \lambda_j) = \sum_{j=1}^{n} c_j \alpha_j + \delta \sum_{j=1}^{n} c_j \lambda_j$$

$$\sum_{j=1}^{n} c_j \alpha_j \leq \sum_{j=1}^{n} c_j (\alpha_j - \delta \lambda_j) = \sum_{j=1}^{n} c_j \alpha_j - \delta \sum_{j=1}^{n} c_j \lambda_j$$

得 
$$\sum_{j=1}^n c_j \lambda_j = 0.$$

# 定理2(续)

于是

$$\sum_{j=1}^{n} c_j \beta_j \leq \sum_{j=1}^{n} c_j (\alpha_j + \delta^* \lambda_j) = \sum_{j=1}^{n} c_j \alpha_j + \delta^* \sum_{j=1}^{n} c_j \lambda_j = \sum_{j=1}^{n} c_j \alpha_j$$

得证 $\beta=\alpha+\delta^*\lambda$ 也是最优解.

根据定理2,解线性规划问题只需考虑标准形的基本可行解. A有m行n列,至多有 $C_n^m$ 个基,故至多有 $C_n^m$ 个基本解. 从而,线性规划成为一个组合优化问题.

## 单纯形法

#### 基本步骤

- (1) 确定初始基本可行解.
- (2) 检查当前的基本可行解.

若是最优解或无最优解,计算结束;

否则作基变换,用一个非基变量替换一个基变量,得到一个新的可行基和对应的基本可行解,且使目标函数值下降(至少不升).

(3) 重复(2).

#### 确定初始基本可行解

暂时只考虑最简单的情况,设约束条件为  $a_{i1}x_1+a_{i2}x_2+...+a_{in}x_n \le b_i \ge 0$ , i=1,2,...,m 其中 $b_i \ge 0$ (i=1,2,...,m). 引入m个松弛变量 $x_{n+i} \ge 0$ (i=1,2,...,m),  $a_{i1}x_1+a_{i2}x_2+...+a_{in}x_n+x_{n+i}=b_i$ , i=1,2,...,m 取 $x_{n+i}$ (i=1,2,...,m)作为基变量,初始基本可行解为  $x^{(0)}=(0,0,...,0,b_1,b_2,...,b_m)^T$ 

#### 例

#### 例1(续)

$$\max z=12x+15y$$

s.t. 
$$0.25x+0.50y \le 120$$

$$0.50x + 0.50y \le 150$$

$$x \ge 0, y \ge 0$$

#### 标准形

$$\min z' = -12x_1 + 15x_2$$

s.t. 
$$0.25x_1 + 0.50x_2 + x_3 = 120$$

$$0.50x_1 + 0.50x_2 + x_4 = 150$$

$$0.25x_1 + x_5 = 50$$

$$x_i \ge 0, i=1,2,...,5$$

取 $x_3, x_4, x_5$ 作为基变量

$$x^{(0)} = (0,0,120,150,50)^T$$

## 最优性检验

给定可行基 $B=(P_{\pi(1)},P_{\pi(2)},...,P_{\pi(m)}),Ax=b$  两边同乘 $B^{-1}$ ,得  $B^{-1}Ax=B^{-1}b$ . 记A中对应非基变量的列构成的矩阵为N,

$$x_B + B^{-1}Nx_N = B^{-1}b$$

解得

$$x_B = B^{-1}b - B^{-1}Nx_N$$

代入目标函数  $z=c^Tx$ 

$$z=c^Tx$$

$$= c_B^T x_B + c_N^T x_N$$

$$= c_B^T (B^{-1}b - B^{-1}Nx_N) + c_N^T x_N$$

$$= c_B^T B^{-1}b + (c_N^T - c_B^T B^{-1}N)x_N$$

基本可行解  $x_R^{(0)} = B^{-1}b$ ,  $x_N^{(0)} = 0$ , 目标函数值  $z_0 = c_R^T B^{-1}b$ 

#### 最优性检验

$$z=c^Tx$$

$$= z_0 + (c_N^T - c_B^T B^{-1} N) x_N$$

$$= z_0 + (c_B^T - c_B^T B^{-1} B) x_B + (c_N^T - c_B^T B^{-1} N) x_N$$

$$= z_0 + (c^T - c_B^T B^{-1} A) x$$
记  $\lambda^T = c^T - c_B^T B^{-1} A$  检验数
$$z=z_0 + \lambda^T x$$
 简化的目标函数

## 最优性检验

记 $B^{-1}A = (\alpha_{ij})_{m \times n}, P'_j = B^{-1}P_j (1 \le j \le n), \beta = B^{-1}b.$ 

定理3 给定基本可行解 $x^{(0)}$ ,若所有检验数大于等于0,则  $x^{(0)}$ 是最优解. 若存在检验数 $\lambda_k$ <0且所有 $\alpha_{ik}$ ≤0(1≤i≤m),则无最优解.

证 如果 $\lambda \geq 0$ ,则对任意可行解 $x \geq 0$ , $z \geq z_0$ ,故 $x^{(0)}$ 是最优解.

如果存在检验数 $\lambda_k$ < $0(\lambda_k$ 必对应非基变量)且所有 $\alpha_{ik}$ < $0(1 \le i \le m)$ ,取 $x_k = M > 0$ ,其余非基变量 $x_i = 0$ ,解得

$$x_{\pi(i)} = \beta_i - \alpha_{ik} M \ge 0, \qquad 1 \le i \le m$$

这是一个可行解,其目标函数值为

$$z=z_0+\lambda_k M$$

当 $M \rightarrow +\infty$ 时,  $z \rightarrow -\infty$ . 得证无最优解.

## 基变换

给定可行基 $B=(P_{\pi(1)},P_{\pi(2)},...,P_{\pi(m)})$ ,设 $\lambda_k<0$ 且 $\alpha_{lk}>0$ , $x_k$ 必是非基变量.

基变换: 用非基变量 $x_k$ 替换基变量 $x_{\pi(l)}$ , 用 $P_k$ 替换B中的  $P_{\pi(l)}$ , 新的基为 $B'=(P_{\pi(1)},...,P_{\pi(l-1)},P_k,P_{\pi(l+1)},...,P_{\pi(m)})$ . 称 $x_k$ 为换入变量,  $x_{\pi(l)}$ 为换出变量.

(1) 要证B'实是一个基,即 $P_{\pi(1)}, \ldots, P_{\pi(l-1)}, P_k, P_{\pi(l+1)}, \ldots, P_{\pi(m)}$ 是线性无关的. 由于 $P_{\pi(1)}, P_{\pi(2)}, \ldots, P_{\pi(m)}$ 是线性无关的,只需证 $P_{\pi(l)}$ 可表成 $P_{\pi(1)}, \ldots, P_{\pi(l-1)}, P_k, P_{\pi(l+1)}, \ldots, P_{\pi(m)}$ 的线性组合. 由于 $(P'_{\pi(1)}, P'_{\pi(2)}, \ldots, P'_{\pi(m)}) = B^{-1}B = E$ ,

$$P'_k = \sum_{i=1}^m \alpha_{ik} P'_{\pi(i)}$$
 两边同乘 $B$   $P_k = \sum_{i=1}^m \alpha_{ik} P_{\pi(i)}$ 

## 基变换

解得

$$P_{\pi(l)} = \frac{1}{\alpha_{lk}} P_k - \sum_{\substack{i=1 \ \exists l \neq l}}^m \frac{\alpha_{ik}}{\alpha_{lk}} P_{\pi(i)}$$

得证B'是一个基.

(2) 要保证B'是可行基.

$$Ax=b$$

$$B^{-1}Ax=B^{-1}b=\beta$$

$$x_B+B^{-1}Nx_N=\beta$$

 $B^{-1}A=(P_1',P_2',...,P_m')$ 中对应 $x_B$ 的列(第 $\pi(1),...,\pi(n)$ 列)构成单位矩阵. 用 $P_k$ 替换 $P_{\pi(l)}$ 得到B',将 $x_B$ 中的 $x_{\pi(l)}$ 替换成 $x_k$ ,即解出第l个方程中的 $x_k$ . 这只需用 $\alpha_{lk}$ 除第l个方程,再用第l个方程消去其它方程中的 $x_k$ 

#### 基变换

计算公式 
$$\alpha_{lj}'=\alpha_{lj}/\alpha_{lk}$$
,  $1\leq j\leq n$   $\alpha_{ij}'=\alpha_{ij}-\alpha_{ik}\alpha_{lj}/\alpha_{lk}$ ,  $1\leq i\leq m$ 且 $i\neq l$ ,  $1\leq j\leq n$   $\beta_l'=\beta_l/\alpha_{lk}$   $\beta_l'=\beta_l-\alpha_{ik}\beta_l/\alpha_{lk}$ ,  $1\leq i\leq m$ 且 $i\neq l$  要保证 $B'$ 是可行的,只需  $\beta_i'=\beta_i-\alpha_{ik}\beta_l/\alpha_{lk}\geq 0$ ,  $1\leq i\leq m$ 且 $i\neq l$  注意到 $\beta_i\geq 0$ ,  $\beta_i\geq 0$ ,  $\alpha_{lk}>0$ , 当 $\alpha_{ik}\leq 0$ 时不等式自然成立.于是,只需当 $\alpha_{ik}>0$ 时  $\beta_l/\alpha_{lk}\leq \beta_i/\alpha_{ik}$  应取 $l$ 使得  $\beta_l/\alpha_{lk}=\min\{\beta_i/\alpha_{ik}\mid\alpha_{ik}>0,1\leq i\leq m\}$  用第 $l$ 个方程消去简化的目标函数中的 $x_k$ ,  $\lambda_j'=\lambda_j-\lambda_k\alpha_{lj}/\alpha_{lk}$ ,  $1\leq j\leq m$   $z_0'=z_0+\lambda_k\beta_l/\alpha_{lk}$ 

## 单纯形法

#### 算法 单纯形法 (针对最小化)

- 1. 设初始可行基 $B=(P_{\pi(1)}, P_{\pi(2)}, ..., P_{\pi(m)}), \alpha=B^{-1}A, \beta=B^{-1}b,$   $\lambda^T=c^T-B^{-1}A, z_0=B^{-1}b.$
- 2. 若所有 $\lambda_j \geq 0$ ( $1 \leq j \leq n$ ), 则 $x_B = \beta$ ,  $x_N = 0$ 是最优解, 计算结束.
- 3. 取 $\lambda_k$ <0. 若所有 $\alpha_{ik}$ <0(1 $\leq i \leq m$ ),则无最优解,计算结束.
- 4. 取/使得

$$\beta_l/\alpha_{lk} = \min\{\beta_i/\alpha_{ik} \mid \alpha_{ik} > 0, 1 \le i \le m\}$$

- 5. 以 $x_k$ 为换入变量、 $x_{\pi(l)}$ 为换出变量做基变换.
- 6. 转2.

对最大化,  $2 + \lambda_j \ge 0$  改为 $\lambda_j \le 0$ ,  $3 + \lambda_k < 0$  改为 $\lambda_k > 0$ .

## 单纯形表

|              |              |                 | $c_1$         | $c_2$              |       | $c_n$              |          |
|--------------|--------------|-----------------|---------------|--------------------|-------|--------------------|----------|
| $c_B$        | $x_B$        | b               | $x_1$         | $\boldsymbol{x_2}$ | •••   | $\boldsymbol{x}_n$ | $\theta$ |
| $c_{\pi(1)}$ | $x_{\pi(1)}$ | $\beta_1$       | $\alpha_{11}$ | $\alpha_{12}$      | • • • | $\alpha_{1n}$      |          |
| $c_{\pi(2)}$ | $x_{\pi(2)}$ | $eta_2$         | $\alpha_{21}$ | $lpha_{22}$        | • • • | $\alpha_{2n}$      |          |
| •            | •            | •               | •             | •                  | • • • | •                  |          |
| $C_{\pi(m)}$ | $X_{\pi(m)}$ | $\beta_m$       | $\alpha_{m1}$ | $\alpha_{m2}$      | • • • | $\alpha_{mn}$      |          |
|              | -z           | -z <sub>0</sub> | $\lambda_1$   | $\lambda_2$        | • • • | $\lambda_n$        |          |

$$-z+\lambda_1x_1+\lambda_2x_2+\ldots+\lambda_nx_n=-z_0$$

# 例1(续)

|       |            |            | -12   | -15   | 0     | 0          | 0     |          |
|-------|------------|------------|-------|-------|-------|------------|-------|----------|
| $c_B$ | $x_B$      | b          | $x_1$ | $x_2$ | $x_3$ | $x_4$      | $x_5$ | $\theta$ |
| 0     | $x_3$      | 120        | 0.25  | 0.50  | 1     | 0          | 0     | 240      |
| 0     | $ x_4 $    | <b>150</b> | 0.50  | 0.50  | 0     | 1          | 0     | 300      |
| 0     | $ x_5 $    | <b>50</b>  | 0.25  | 0     | 0     | 0          | 1     |          |
|       | <b>-</b> z | 0          | -12   | -15   | 0     | 0          | 0     |          |
| -15   | $ x_2 $    | 240        | 0.50  | 1     | 2     | 0          | 0     | 480      |
| 0     | $ x_4 $    | <b>30</b>  | 0.25  | 0     | -1    | 1          | 0     | 120      |
| 0     | $ x_5 $    | <b>50</b>  | 0.25  | 0     | 0     | 0          | 1     | 200      |
|       | -z         | 3600       | -4.5  | 0     | 30    | 0          | 0     |          |
| -15   | $x_2$      | 180        | 0     | 1     | 4     | -2         | 0     |          |
| -12   | $ x_1 $    | 120        | 1     | 0     | -4    | 4          | 0     |          |
| 0     | $ x_5 $    | 20         | 0     | 0     | 1     | <b>-</b> 1 | 1     |          |
|       | -z         | 4140       | 0     | 0     | 12    | 18         | 0     |          |

#### 例9

#### 用单纯形法解下述线性规划

min 
$$z=x_1-2x_2$$
  
s.t.  $x_1-x_2\le 1$   
 $-2x_1+x_2\le 4$   
 $x_1\ge 0, x_2\ge 0$   
解 引入2个松弛变量 $x_3,x_4$ ,得到标准形  
min  $z=x_1-2x_2$   
s.t.  $x_1-x_2+x_3=1$   
 $-2x_1+x_2+x_4=4$   
 $x_j\ge 0, j=1,2,3,4$ 

# 例9(续)

|       |       |   | 1     | -2    | 0     | 0     |          |
|-------|-------|---|-------|-------|-------|-------|----------|
| $c_B$ | $x_B$ | b | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $\theta$ |
| 0     | $x_3$ | 1 | 1     | -1    | 1     | 0     |          |
| 0     | $x_4$ | 4 | -2    | 1     | 0     | 1     | 4        |
|       | -z    | 0 | 1     | -2    | 0     | 0     |          |
| 0     | $x_3$ | 5 | -1    | 0     | 1     | 1     |          |
| -2    | $x_2$ | 4 | -2    | 1     | 0     | 1     |          |
|       | -z    | 8 | -3    | 0     | 0     | 2     |          |

目标函数值没有下界, 无最优解

### 人工变量和两阶段法

现考虑剩余的两种情况:

$$(1) \sum_{j=1}^n a_{ij} x_j \ge b_i$$

$$(2) \sum_{j=1}^{n} a_{ij} x_{j} = b_{i}$$

其中 $b_i$ ≥0. 对于(1), 引入剩余变量转化成(2).

对(2)引入人工变量 $y_i \ge 0$ ,

$$\sum_{j=1}^{n} a_{ij} x_j + y_j = b_i$$

取所有松弛变量和人工变量作为基变量,得到初始可行基.

### 例10

min 
$$z=-3x_1+x_2+x_3$$
  
s.t.  $x_1-2x_2+x_3 \le 11$   
 $-4x_1+x_2+2x_3 \ge 3$   
 $-2x_1+x_3=1$   
 $x_j \ge 0, j=1,2,3$ 

引入松弛变量
$$x_4$$
,剩余变量 $x_5$ ,  
标准形为  
min  $z=-3x_1+x_2+x_3$   
s.t.  $x_1-2x_2+x_3+x_4=11$   
 $-4x_1+x_2+2x_3-x_5=3$   
 $-2x_1+x_3=1$   
 $x_j\geq 0$ ,  $1\leq j\leq 5$ 

### 例10

再引入人工变量
$$x_6, x_7$$

$$\min z = -3x_1 + x_2 + x_3$$

s.t. 
$$x_1-2x_2 + x_3 + x_4 = 11$$
  
 $-4x_1+x_2 + 2x_3 - x_5 + x_6 = 3$   
 $-2x_1 + x_3 + x_7 = 1$   
 $x_i \ge 0, 1 \le j \le 7$ 

取基变量 $x_4, x_6, x_7, x^{(0)} = (0,0,0,11,0,3,1)^T$ 

问题: x<sup>(0)</sup>不对应标准形的可行解.

只有当所有人工变量等于0时,才能舍去人工变量得到标准形的可行解

设问题

min 
$$z = \sum_{j=1}^{n} c_j x_j$$
  
s.t. 
$$\sum_{j=1}^{n} a_{ij} x_j = b_i, 1 \le i \le m$$

$$x_j \ge 0, \qquad 1 \le j \le n$$

其中 $b_i \ge 0$ ,  $(1 \le i \le m)$ .

引入人工变量 $y_i$  (1 $\leq j \leq m$ ) 辅助问题  $\min z = \sum_{i=1}^n c_i x_j$ s.t.  $\sum_{i=1}^{n} a_{ij} x_j + y_j = b_i$   $1 \le i \le m$  $x_i \ge 0,$   $1 \le j \le n$ 其中 $b_i \geq 0$ ,  $(1 \leq i \leq m)$ .

由于 $w \ge 0$ ,辅助问题必有最优解. 设最优值为 $w^*$ . 有3种可能 (1)  $w^* > 0$ . 原问题无可行解.

假如不然,设 $(x_1,...,x_n)^T$ 是原问题的可行解,则  $(x_1,...,x_n,0,...,0)^T$ 是辅助问题的可行解,对应的w=0.与 $w^*>0$ 矛盾.

- (2) 在最优解中所有的人工变量都是非基变量.此时,人工变量都等于 $0, w^*=0, \text{删去人工变量得到是原问题的基本可行解.}$
- (3)  $w^*=0$ , 但基变量中含有人工变量. 这种情况可以进一步转化成情况(2).

此时,所有人工变量都等于0. 设 $y_k$ 是基变量,

$$y_k + \sum_{j=1}^n \alpha_{ij} x_j + \sum_{\substack{t=1 \\ \exists t \neq k}}^m \alpha'_{it} y_t = 0$$

且у,不出现在其它约束等式中.

- (a) 若所有 $\alpha_{ij}=0$ ( $1 \le j \le n$ ),则表明原问题中m个约束等式不是线性无关的,可以把这个等式删去. 这样就删去了 $y_k$ .
- (b) 否则, 存在某个 $\alpha_{ii}\neq 0$ (可正可负). 用 $x_i$ 作换入变量,  $y_k$ 作换出变量, 做基变换. 由于 $\beta_i=0$ , 经过基变量,  $\beta$ 的所有值均不改变, 从而新的基本解是可行解且w=0不变.

总之,可以使基变量中的人工变量少一个,且保持w=0.重复进行,最终总能变成情况(2).

阶段一 引入人工变量,写出辅助问题,用单纯形法求解.若为情况(1),则原问题无可行解,计算结束.若为情况(2),则进入阶段二.

阶段二 删去人工变量,得到原问题的一个基本可行解.以这个解为初始基本可行解,用单纯形法解原问题.

例10(续) 用两阶段法. 阶段一 辅助问题为  $min w=x_6+x_7$ 

s.t. 
$$x_1$$
-2 $x_2$  + $x_3$  + $x_4$  =11  
-4 $x_1$ + $x_2$  +2 $x_3$  - $x_5$  + $x_6$  =3  
-2 $x_1$  +  $x_3$  + $x_7$ =1  
 $x_i \ge 0, j=1,2,...,7$ 

# 例10(续)

|       |       |           | 0     | 0         | 0     | 0     | 0     | 1     | 1     |          |
|-------|-------|-----------|-------|-----------|-------|-------|-------|-------|-------|----------|
| $c_B$ | $x_B$ | b         | $x_1$ | $x_2$     | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $\theta$ |
| 0     | $x_4$ | 11        | 1     | <b>-2</b> | 1     | 1     | 0     | 0     | 0     | 11       |
| 1     | $x_6$ | 3         | -4    | 1         | 2     | 0     | -1    | 1     | 0     | 1.5      |
| 1     | $x_7$ | 1         | -2    | 0         | 1     | 0     | 0     | 0     | 1     | 1        |
|       | -w    | <b>-4</b> | 6     | -1        | -3    | 0     | 1     | 0     | 0     |          |
| 0     | $x_4$ | 10        | 3     | -2        | 0     | 1     | 0     | 0     | -1    | _        |
| 1     | $x_6$ | 1         | 0     | 1         | 0     | 0     | -1    | 1     | -2    | 1        |
| 0     | $x_3$ | 1         | -2    | 0         | 1     | 0     | 0     | 0     | 1     | _        |
|       | -w    | -1        | 0     | -1        | 0     | 0     | 1     | 0     | 3     |          |
| 0     | $x_4$ | 12        | 3     | 0         | 0     | 1     | -2    | 2     | -5    |          |
| 0     | $x_2$ | 1         | 0     | 1         | 0     | 0     | -1    | 1     | -2    |          |
| 0     | $x_3$ | 1         | -2    | 0         | 1     | 0     | 0     | 0     | 1     |          |
|       | -w    | 0         | 0     | 0         | 0     | 0     | 0     | 0     | 1     |          |

# 例10(续)

#### 阶段二

|       |            |          | -3    | 1     | 1     | 0     | 0     |          |
|-------|------------|----------|-------|-------|-------|-------|-------|----------|
| $c_B$ | $x_B$      | <b>b</b> | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $\theta$ |
| 0     | $x_4$      | 12       | 3     | 0     | 0     | 1     | -2    | 4        |
| 1     | $x_2$      | 1        | 0     | 1     | 0     | 0     | -1    | _        |
| 1     | $x_3$      | 1        | -2    | 0     | 1     | 0     | 0     | _        |
|       | <b>-</b> z | -2       | -1    | 0     | 0     | 0     | 1     |          |
| -3    | $x_1$      | 4        | 1     | 0     | 0     | 1/3   | -2/3  |          |
| 1     | $x_2$      | 1        | 0     | 1     | 0     | 0     | -1    |          |
| 0     | $x_3$      | 9        | 0     | 0     | 1     | 2/3   | -4/3  |          |
|       | -z         | 2        | 0     | 0     | 0     | 1/3   | 1/3   |          |

最优解  $x_1*=4$ ,  $x_2*=1$ ,  $x_3*=9$ , 最优值 z\*=-2

### 例11

min 
$$z=3x_1-2x_2$$
  
s.t.  $2x_1+x_2 \le 4$ 

$$x_1 - x_2 \ge 3$$

$$x_1 \ge 0, x_2 \ge 0$$

#### 标准形

min 
$$z=3x_1-2x_2$$

s.t. 
$$2x_1 + x_2 + x_3 = 4$$

$$x_1$$
- $x_2$  - $x_4$  =3

$$x_i \ge 0$$
,  $1 \le j \le 4$ 

#### 阶段一 辅助问题

$$\min w=x_5$$

s.t. 
$$2x_1 + x_2 + x_3 = 4$$

$$x_1$$
- $x_2$  - $x_4$ + $x_5$  =3

$$x_j \ge 0$$
,  $1 \le j \le 5$ 

# 例11(续)

|       |       |    | 0     | 0     | 0     | 0     | 1     |          |
|-------|-------|----|-------|-------|-------|-------|-------|----------|
| $c_B$ | $x_B$ | b  | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $\theta$ |
| 0     | $x_3$ | 4  | 2     | 1     | 1     | 0     | 0     | 2        |
| 1     | $x_5$ | 3  | 1     | -1    | 0     | -1    | 1     | 3        |
|       | -w    | -3 | -1    | 1     | 0     | 1     | 0     |          |
| 0     | $x_1$ | 2  | 1     | 1/2   | 1/2   | 0     | 0     |          |
| 1     | $x_5$ | 1  | 0     | -3/2  | -1/2  | -1    | 1     |          |
|       | -w    | -1 | 0     | 3/2   | 1/2   | 1     | 0     |          |

w\*=1>0, 原规划没有可行解.

#### 例12

min 
$$z = x_1 + 3x_2 - 2x_3$$
  
s.t.  $3x_1 + 6x_2 + 2x_3 - x_4 = 12$   
 $2x_1 + x_3 = 4$   
 $3x_1 - 6x_2 + x_3 + x_4 = 0$   
 $x_j \ge 0$ ,  $1 \le j \le 4$   
阶段一 辅助问题  
min  $z = x_1 + 3x_2 - 2x_3$   
s.t.  $3x_1 + 6x_2 + 2x_3 - x_4 + x_5 = 12$   
 $2x_1 + x_3 + x_6 = 4$   
 $3x_1 - 6x_2 + x_3 + x_4 + x_7 = 0$   
 $x_j \ge 0$ ,  $1 \le j \le 7$ 

# 例12(续)

|       |       |     | 0     | 0         | 0     | 0     | 1     | 1     | 1     |          |
|-------|-------|-----|-------|-----------|-------|-------|-------|-------|-------|----------|
| $c_B$ | $x_B$ | b   | $x_1$ | $x_2$     | $x_3$ | $x_4$ | $X_5$ | $x_6$ | $x_7$ | $\theta$ |
| 1     | $x_5$ | 12  | 3     | 6         | 2     | -1    | 1     | 0     | 0     | 4        |
| 1     | $x_6$ | 4   | 2     | 0         | 1     | 0     | 0     | 1     | 0     | 2        |
| 1     | $x_7$ | 0   | 3     | -6        | 1     | 1     | 0     | 0     | 1     | 0        |
|       | -w    | -16 | -8    | 0         | -4    | 0     | 0     | 0     | 0     |          |
| 1     | $x_5$ | 12  | 0     | <b>12</b> | 1     | -2    | 1     | 0     | -1    | 1        |
| 1     | $x_6$ | 4   | 0     | 4         | 1/3   | -2/3  | 0     | 1     | -2/3  | 1        |
| 0     | $x_1$ | 0   | 1     | -2        | 1/3   | 1/3   | 0     | 0     | 1/3   | _        |
|       | -w    | -16 | 0     | -16       | -4/3  | 8/3   | 0     | 0     | 8/3   |          |
| 1     | $x_5$ | 0   | 0     | 0         | 0     | 0     | 1     | -3    | 1     |          |
| 0     | $x_2$ | 1   | 0     | 1         | 1/12  | -1/6  | 0     | 1/4   | -1/6  |          |
| 0     | $x_1$ | 2   | 1     | 0         | 1/2   | 0     | 0     | 1/2   | 0     |          |
|       | -w    | 0   | 0     | 0         | 0     | 0     | 0     | 4     | 0     |          |

# 例12(续)

 $w^*=0$ ,人工变量 $x_5$ 是基变量且 $\alpha_{11}=\alpha_{12}=\alpha_{13}=\alpha_{14}=0$ , $\beta_1$ 必为0. 原规划中第1个约束等式是另两个的线性组合,可以删去. 阶段二

|       |            |           | 1     | 3     | -2    | 0     |          |
|-------|------------|-----------|-------|-------|-------|-------|----------|
| $c_B$ | $x_B$      | b         | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $\theta$ |
| 0     | $x_2$      | 1         | 0     | 1     | 1/12  | -1/6  | 12       |
| 0     | $x_1$      | 2         | 1     | 0     | 1/2   | 0     | 4        |
|       | -7         | <b>-5</b> | 0     | 0     | -11/4 | 1/2   |          |
| 3     | $x_2$      | 2/3       | -1/6  | 1     | 0     | -1/6  |          |
| -2    | $x_3$      | 4         | 2     | 0     | 1     | 0     |          |
|       | <b>-</b> z | 6         | 11/2  | 0     | 0     | 1/2   |          |

最优解  $x_1*=0, x_2*=2/3, x_3*=4, x_4*=0$ , 最优值z\*=-6.

#### 例13

min 
$$z=x_1+x_2+x_3-x_4$$
  
s.t.  $6x_1+3x_2-4x_3+3x_4=12$   
 $-x_2+3x_4=6$   
 $-6x_1+4x_3+3x_4=0$   
 $x_i \ge 0, \ 1 \le j \le 4$ 

# 例13(续)

阶段一 引入人工变量 $x_5, x_6, x_7$ .

|       |       |     | 0     | 0     | 0     | 0     | 1     | 1     | 1     |          |
|-------|-------|-----|-------|-------|-------|-------|-------|-------|-------|----------|
| $c_B$ | $x_B$ | b   | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $\theta$ |
| 1     | $x_5$ | 12  | 6     | 3     | -4    | 3     | 1     | 0     | 0     | 4        |
| 1     | $x_6$ | 6   | 0     | -1    | 0     | 3     | 0     | 1     | 0     | 2        |
| 1     | $x_7$ | 0   | -6    | 0     | 4     | 3     | 0     | 0     | 1     | 0        |
|       | -w    | -18 | 0     | -2    | 0     | -9    | 0     | 0     | 0     |          |
| 1     | $x_5$ | 12  | 12    | 3     | -8    | 0     | 1     | 0     | -1    | 1        |
| 1     | $x_6$ | 6   | 6     | -1    | -4    | 0     | 0     | 1     | -1    | 1        |
| 0     | $x_4$ | 0   | -2    | 0     | 4/3   | 1     | 0     | 0     | 1/3   | _        |
|       | -w    | -18 | -18   | -2    | 12    | 0     | 0     | 0     | 3     |          |

# 例13(续)

| $c_B$ | $x_B$ | <b>b</b> | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$       | $\theta$ |
|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------------|----------|
| 0     | $x_1$ | 1        | 1     | 1/4   | -2/3  | 0     | 1/12  | 0     | -1/12       |          |
| 1     | $x_6$ | 0        | 0     | -5/2  | 0     | 0     | -1/2  | 1     | <b>-1/2</b> |          |
| 0     | $x_4$ | 2        | 0     | 1/2   | 0     | 1     | 1/6   | 0     | 1/6         |          |
|       | -w    | 0        | 0     | 5/2   | 0     | 0     | 3/2   | 0     | 3/2         |          |
| 0     | $x_1$ | 1        | 1     | 0     | 2/3   | 0     | 1/30  | 1/10  | -2/15       |          |
| 0     | $x_2$ | 0        | 0     | 1     | 0     | 0     | 1/5   | -2/5  | 1/5         |          |
| 0     | $x_4$ | 2        | 0     | 0     | 0     | 1     | 1/15  | 1/5   | 1/15        |          |
|       | -w    | 0        | 0     | 0     | 0     | 0     | 1     | 1     | 1           |          |

在倒数第2个表中, w=0, 但 $x_6$ 是基变量且 $\alpha_{22}\neq 0$ , 取 $x_6$ 为换出变量、 $x_2$ 为换入变量作基变量.

## 例13(续)

#### 阶段二

|       |                                                   |          | 1     | 1     | 1     | -1    |          |
|-------|---------------------------------------------------|----------|-------|-------|-------|-------|----------|
| $c_B$ | $x_B$                                             | <b>b</b> | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $\theta$ |
| 1     | $x_1$                                             | 1        | 1     | 0     | -2/3  | 0     |          |
| 1     | $\begin{bmatrix} x_1 \\ x_2 \\ x_4 \end{bmatrix}$ | 0        | 0     | 1     | 0     | 0     |          |
| 1     | $x_4$                                             | 2        | 0     | 0     | 0     | 1     |          |
|       | -z                                                | 1        | 0     | 0     | 2/3   | 0     |          |

最优解  $x_1*=1, x_2*=0, x_3*=0, x_4*=2$ ,最优值z\*=-1.

### 单纯形法的有限终止

定义如果基本可行解中基变量的值都大于0,则称这个基本可行解是非退化的,否则称作退化的.

如果线性规划的所有基本可行解都是非退化的,则称这个线性规划是非退化的.

如果线性规划有可行解并且是非退化的,则在计算的每一步

$$z_0'=z_0+\lambda_k\beta_l/\alpha_{lk}< z_0,$$

可行基不会重复出现,因此单纯形法在有限步内终止. 如果不是非退化的,当 $\beta_l=0$ 且取 $x_{\pi(l)}$ 为换出变量时,基变换不改变目标函数值. 这就可能使计算出现循环,计算永不终止.

#### 单纯形法出现循环的例子

1955年E.Beal给出一个例子

min 
$$z = -0.75x_1 + 20x_2 - 0.5x_3 + 6x_4$$
  
s.t.  $0.25x_1 - 8x_2$   $-x_3 + 9x_4 + x_5$   $= 0$   
 $0.5x_1 - 12x_2 - 0.5x_3 + 3x_4$   $+x_6$   $= 0$   
 $x_3$   $+x_7 = 1$   
 $x_j \ge 0$ ,  $1 \le j \le 7$ 

取 $x_5,x_6,x_7$ 作为初始基变量,并规定: 当有多个 $\lambda_j$ <0时,设  $|\lambda_k|=\max\{|\lambda_j|:\lambda_j<0\}$ ,取 $x_k$ 作为换入变量; 当有多个 $\theta_i$ 同时取到最小值时,取对应的下标最小的基变量作为换出变量.计算经过6次基变换回到初始可行基,从而计算出现循环,永不终止.

#### 避免循环的方法

1954年G.B.Dantzigt提出字典序方法.

1977年R.G.Bland提出避免循环的两条十分简单的规则.

#### Bland规则

规则1. 当有多个 $\lambda_j$ <0时, 取对应的非基变量中下标最小的作为换入变量.

规则2. 当有多个 $\theta_i = \beta_i / \alpha_{ik} (\alpha_{ik} > 0)$ 同时取到最小值时,取对应的基变量中下标最小的作为换出变量.

#### 对偶性

#### 对偶线性规划

再看例1公司甲用3种原料混合成2种清洁剂. 这2种清洁剂应各配制多少才能使总价值最大?

|        | 原料1  | 原料2  | 原料3  | 售价(万元/吨) |
|--------|------|------|------|----------|
| 清洁剂A   | 0.25 | 0.50 | 0.25 | 12       |
| 清洁剂B   | 0.50 | 0.50 |      | 15       |
| 存量 (吨) | 120  | 150  | 50   |          |

公司乙急需这3种原料,打算向公司甲购买,应出什么价钱?

### 实例

设清洁剂A和B分别配制x和y

max 
$$z=12x+15y$$
  
s.t.  $0.25x+0.50y \le 120$   
 $0.50x+0.50y \le 150$   
 $0.25x \le 50$   
 $x\ge 0, y\ge 0$ 

设公司乙出价原料每吨分别 为y<sub>1</sub>, y<sub>2</sub>,y<sub>3</sub>万元.显然,希望总 价尽可能的小,但又不能低于 公司甲用这些原料生产清洁 剂所产生的价值

min 
$$w=120y_1+150y_2+50y_3$$
  
s.t.  $0.25y_1+0.50y_2+0.25y_3 \ge 12$   
 $0.50y_1+0.50y_2 \ge 15$   
 $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$ 

### 对偶线性规划

#### 定义 原始线性规划 (P)

 $\max c^T x$ 

s.t.  $Ax \leq b$ 

 $x \ge 0$ 

#### 对偶线性规划(D)

 $\min b^T y$ 

s.t.  $A^T y \ge c$ 

*y*≥0

#### 定理4对偶的对偶是原始线性规划.

证 (D)可改写成(D')

 $\max -b^T y$ 

s.t.  $-A^T y \leq -c$ 

*y*≥0

(D')的对偶为

 $\min -c^T x$ 

s.t.  $(-A^T)^T x \ge -b$ 

 $x \ge 0$ 

#### 例14

#### 写出下述线性规划的对偶

max 
$$2x_1-x_2+3x_3$$
  
s.t.  $x_1+3x_2-2x_3 \le 5$   
 $-x_1-2x_2+x_3=8$   
 $x_1 \ge 0, x_2 \ge 0, x_3$  任意

#### 对偶规划为

min 
$$5y_1+8y_2'-8y_2''$$
  
s.t.  $y_1-y_2'+y_2''\geq 2$   
 $3y_1-2y_2'+2y_2''\geq -1$   
 $-2y_1+y_2'-y_2''\geq 3$   
 $2y_1-y_2'+y_2''\geq -3$   
 $y_1\geq 0, y_2'\geq 0, y_2''\geq 0$ 

令
$$x_3=x_3'-x_3''$$
,  
 $A=B$ 等价于 $A\leq B$ 和- $A\leq -B$ ,  
max  $2x_1-x_2+3x_3'-3x_3''$   
s.t.  $x_1+3x_2-2x_3'+2x_3''\leq 5$   
 $-x_1-2x_2+x_3'-x_3''\leq 8$   
 $x_1+2x_2-x_3'+x_3''\leq -8$   
 $x_1\geq 0, x_2\geq 0, x_3'\geq 0, x_3''\geq 0$ 

$$\phi_{y_2}=y_2'-y_2''$$
,合并后2个不等式 min  $5y_1+8y_2$  s.t.  $y_1-y_2 \ge 2$   $3y_1-2y_2 \ge -1$   $-2y_1+y_2=3$   $y_1 \ge 0$  ,  $y_2$  任意

### 对偶规划的一般形式

原始规划

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$

$$\sum_{i=1}^{n} a_{ij} x_{j} \leq b_{i}, 1 \leq i \leq s$$

$$\sum_{i=1}^{n} a_{ij} x_j = b_i, s+1 \le i \le m$$

$$x_j \ge 0$$
,  $1 \le j \le t$ 

$$x_i$$
任意,  $t+1 \le j \le n$ 

对偶规划

$$\min \sum_{i=1}^m b_i y_i$$

$$y_i \ge 0, 1 \le i \le s$$

$$y_i$$
任意,  $s+1 \le i \le m$ 

$$\sum_{i=1}^{m} a_{ij} y_i \leq c_j, 1 \leq j \leq t$$

$$\sum_{i=1}^{m} a_{ij} y_i = c_j, t+1 \leq j \leq n$$

### 性质

定理5 设x是原始规划(P)的可行解,y是对偶规划(D)的可行解,则恒有

$$c^{T}x \leq b^{T}y$$

$$c^{T}x \leq (A^{T}y)^{T}x = y^{T}(Ax) \leq y^{T}c = c^{T}y$$

定理6 如果x和y分别是原始规划(P)和对偶规划(D)的可行解,且 $c^Tx=b^Ty$ ,则x和y分别是它们的最优解.

定理7 如果原始规划(P)有最优解,则对偶规划(D)也有最优解,且它们的最优值相等.反之亦然.

### 定理7证明

证 引入松弛变量u,将(P)写成

 $\max c^T x$ 

A是m×n矩阵

s.t. Ax+Eu=b

E是 $m \times m$ 单位矩阵

 $x \ge 0, u \ge 0$ 

u是m维向量

设最优解基为B, 基变量 $x_B=B^{-1}b$ , 检验数 $\lambda \le 0$ (这是最大化).  $\lambda$ 分成两部分, 对应x的 $\lambda_1$ 和对应u的 $\lambda_2$ . u在目标函数中的系数都为0, 有  $\lambda_1^{T}=c^T-c_R^TB^{-1}A \le 0$ 

$$\lambda_2^{\mathrm{T}} = -c_B^{\mathrm{T}} B^{-1} E = -c_B^{\mathrm{T}} B^{-1} \le 0$$

 $\Leftrightarrow y^T = c_B^T B^{-1}$ ,有

$$y \ge 0$$
,  $A^T y \ge c$ 

从而y是(D)的可行解. 又

$$w = b^{T}y = y^{T}b = c_{B}^{T}B^{-1}b = c_{B}^{T}x = z$$

得证y是(D)的最优解.

#### 原始规划和对偶规划解的可能情况

- (1) 都有最优解,且最优值相等.
- (2) 一个有可行解且目标函数值无界, 而另一个无可行解.
- (3) 都没有可行解.

|        |             | 对偶规划 |             |      |
|--------|-------------|------|-------------|------|
|        |             | 有最优解 | 有可行解<br>且无界 | 无可行解 |
| 原      | 有最优解        | (1)  | ×           | ×    |
| 始<br>规 | 有可行解<br>且无界 | ×    | ×           | (2)  |
| 划      | 无可行解        | ×    | (2)         | (3)  |

#### 互补松弛性

定理8 设x和y分别是原始规划(P)和对偶规划(D)的可行解,则x和y分别是它们的最优解当且仅当

$$(b_{i} - \sum_{j=1}^{n} a_{ij} x_{j}) y_{i} = 0, \quad 1 \leq i \leq m$$

$$x_{j} (\sum_{i=1}^{m} a_{ij} y_{i} - c_{j}) = 0, \quad 1 \leq j \leq n$$

$$(**)$$
证  $u_{i} = (b_{i} - \sum_{j=1}^{n} a_{ij} x_{j}) y_{i} \geq 0, \quad v_{j} = x_{j} (\sum_{i=1}^{m} a_{ij} y_{i} - c_{j}) \geq 0$ 

$$(*) 和 (**) 成 立 \Leftrightarrow \sum_{i=1}^{m} u_{i} + \sum_{j=1}^{n} u_{j} = 0$$

### 定理8证明(续)

$$\sum_{i=1}^{m} u_i + \sum_{j=1}^{n} u_j = \sum_{i=1}^{m} (b_i - \sum_{j=1}^{n} a_{ij} x_j) y_i + \sum_{j=1}^{n} x_j (\sum_{i=1}^{m} a_{ij} y_i - c_j)$$

$$= \sum_{i=1}^{m} b_i y_i - \sum_{j=1}^{n} c_j x_j$$

得证

(\*)和(\*\*)成立 
$$\Leftrightarrow \sum_{j=1}^{n} c_j x_j = \sum_{i=1}^{m} b_i y_i$$

 $\Leftrightarrow x$ 是(P)的最优解, y是(D)的最优解.

原始规划(P)

 $\min z = c^T x$ 

s.t. Ax=b

 $x \ge 0$ 

对偶规划(D)

 $\max w = b^T y$ 

s.t.  $A^T y \leq c$ 

y任意

设B是(P)的一个可行基,对应的可行解 $x_B = B^{-1}b, x_N = 0$ ,  $\lambda^T = c^T - c_B^T B^{-1}A, z_0 = c_B^T B^{-1}b.$  令 $y^T = c_B^T B^{-1}$ ,恒有  $w_0 = b^T v = v^T b = c_B^T B^{-1}b = z_0$ 

只要y是(D)的可行解,则x和y分别是(P)和(D)的最优解.

由 $\lambda^T = c^T - c_B^T B^{-1} A = c^T - y^T A$ ,有

y是(D)的可行解⇔  $\lambda$ ≥0

定义 设B是一个基, 如果 $\lambda \geq 0$ , 则称B是正则的.

如果B是正则的,那么y是(D)的可行解,从而只要x是(P)的可行解,亦即 $x_B=B^{-1}b\geq 0$ ,则x和y分别是(P)和(D)的最优解.

单纯形法 保持x是(P)的可行解(保持B是可行基),即保持  $B^{-1}b \ge 0$ ,通过基变换使y逐步成为(D)的可行解(B变成正则基),即逐步使 $\lambda \ge 0$ .

对偶单纯形法 保持y是(D)的可行解(保持B是正则基),即保持 $\lambda \geq 0$ ,通过基变换使x逐步成为(P)的可行解(B变成可行基),即逐步使 $B^{-1}b \geq 0$ .

设 $\lambda \ge 0$ ,  $\beta_l < 0$ , 若所有 $\alpha_{li} \ge 0$ ( $1 \le j \le n$ ), 则不存在 $x \ge 0$ 使得

$$\sum_{j=1}^{n} \alpha_{lj} x_j = \beta_l, (P) 无可行解. 若存在 \alpha_{lk} < 0, 则以x_{\pi(l)} 为换$$

出变量、 $x_k$ 为换入变量做基变换,必须保证

$$\lambda_i' = \lambda_i - \lambda_k \alpha_{li} / \alpha_{lk} \ge 0, \qquad 1 \le j \le n$$

注意到 $\lambda_j \ge 0$ ,  $\lambda_k \ge 0$ ,  $\alpha_{lk} < 0$ , 当 $\alpha_{lj} \ge 0$ 时, 不等式自然成立. 于是, 只要当 $\alpha_{li} < 0$ 时,

$$\lambda_j / \alpha_{lj} \leq \lambda_k / \alpha_{lk}$$

故应取k使得

$$|\lambda_k/\alpha_{lk}|=\min\{|\lambda_j/\alpha_{lj}|:\alpha_{lj}<0\}$$

#### 算法 对偶单纯形法

- 1. 取正则基*B*.
- 2. 如果 $\beta$ ≥0, 则x是最优解, 计算结束.
- 3. 取 $\beta_l$ <0. 若所有 $\alpha_{li}$ >0(1 $\leq j \leq n$ ), 则无可行解, 计算结束.
- 4. 取k使得

$$|\lambda_k/\alpha_{lk}|=\min\{|\lambda_j/\alpha_{lj}|:\alpha_{lj}<0\}$$

- 5. 以 $x_{\pi(l)}$ 为换出变量、 $x_k$ 为换入变量做基变换.
- 6. 转2.