Graphs

Beyond Sequential Dependency

- Spatial dependency (e.g., road network)
- General graph dependency
 - Spread of memes, fake news ...
 - Product recommendation (users, items, vendors)
 - Relational databases
- Cannot write as sequence but needs graph. Popular choices:

Directed graphical model
$$p(x) = \prod p(x_i | x_{\pi(i)})$$

Undirected graphical model
$$p(x) = \prod_{C} \psi_{C}(x_{C})$$

Graphs gennady_zyuganov vladimir vakunin sergei_udaltsov anatoliy serdyukov tatiana navka sergey sobyanin sergey_lavrov boris_yeltsin Feature dmitry_peske dmitry ropozin Regression embedding garry_kasparov sergey_shoygu on edge alina kabaeva aleksei_navalny mikhail_khodorkovsky anatoly_chubais vladimir_putin kseniya_sobchak dmitry_medvedev sergey kunginyan sergei kurginyan igor_strelkov vladislav_surkov arkady_dvorkovich sergei_ivanov sergey_glazyev vyacheslav volodin valentina_matviyenko nikolai patrushev alexei_kudrin Regression alexey_miller boris arvzlov german_gref on vertex igor_sechin dmitry_kozak igor_shuvalov anton siluanov vladimir_ustinov vladimir_yevtushenkov elvira_nab)ullina gennady timchenko aws alisher usmanov

Graphs gennady_zyuganov vladimir vakunin sergei_udaltsov anatoliy serdyukov tatiana navka sergey sobyanin sergey_lavrov boris_yeltsin dmitry_peske dmitry ropozin Fuse data Social garry_kasparov sergey_shoygu Recommender alina kabaeva aleksei_navalny lyudmila putina mikhail_khodorkovsky anatoly_chubais vladimir_putin kseniya_sobchak dmitry_medvedev sergey kunginyan sergei kurginyan igor_strelkov vladislav_surkov arkady_dvorkovich sergei_ivanov sergey_glazyev vyacheslav volodin valentina_matviyenko viktor zuokov nikolai patrushev alexei_kudrin Fraud alexey_miller boris gryzlov german_gref detection igor_sechin dmitry_kozak igor_shuvalov anton siluanov vladimir_ustinov vladimir_yevtushenkov elvira_nab)ullina gennady timchenko aws alisher usmanov yury_skuratov

Graphs G(V,E)

- Vertices $i \in V$ (with attributes)
- Edges $(i, j) \in E$ (with attributes)
- Estimation problems
 - Given some vertex labels y estimate the remaining ones (e.g. fraud detection)
 - Given some edge attributes e estimate the remaining ones (e.g. link recommendation)

Weisfeiler-Lehman algorithm (1976)

- Key idea
 - Graph isomorphism ... is trivial if vertices are unique
 - Make them unique by repeated hashing

$$v(i) \leftarrow h(v(i), \{v(j) \text{ with } j \sim i\})$$
 Local updates

- Terminate once stationary
- Machine Learning variant (Shervashidze & Borgwardt, 2013)
 - The vertex hashes are good features $i \to \phi(i)$
 - Can prove equivalence to some graph kernels
- Crazy thought ... what about vertices with attributes?

Page Rank (Page, Brin, Motwani, Kleinberg, 1990s)

Random surfer model with restarts

- Start at uniformly random location
- Follow random link at each vertex
- Page rank is stationary distribution

Self consistency equation

$$p(i) = \frac{\epsilon}{|V|} + (1 - \epsilon) \sum_{i \sim j} \frac{p(j)}{d(j)} \iff r(i) = \epsilon + (1 - \epsilon) \sum_{i \sim j} \frac{r(j)}{d(j)}$$

Solve by iterating fixed number of times or until convergence

Random

Link following

Random

Restart

(naive) PageRank Implementation in DGL

Random surfer

Random surfer

Belief Propagation / Message Passing

- Graphical models (we operate on clique graph)
- Vertex potential and directed messages

$$\phi_C = \psi_C \prod_{D \sim C} \mu_{D \to C}$$

$$\mu_{D \to C}(x_{C \cap D}) = \sum_{x_{C \setminus D}} \phi_C(x_C) \, \mu_{D \to C}^{-1}(x_{C \cap D})$$

- Finite time convergence if clique graph is a junction tree
- In practice ignore and run for some time on clique graph (loopy belief propagation)

Belief Propagation / Message Passing

- Graphical models (we operate on clique graph)
- Vertex potential and directed messages

$$\phi_C = \psi_C \prod_{D \sim C} \mu_{D \to C}$$

$$\mu_{D \to C}(x_{C \cap D}) = \sum_{x_{C \setminus D}} \phi_C(x_C) \, \mu_{D \to C}^{-1}(x_{C \cap D})$$

 Crazy thought ... what if we didn't care about graphical models (they might not converge anyway)?

This looks like vertex updates Can we learn them? Can we get vertex features?

Graph Convolutions (e.g. Kipf & Welling, 2016)

Basic idea

- Vertex (and edge) features x_i and x_{ij}
- Compute new vertex (and edge) features using local update function

$$v_i \leftarrow f(v_i, \{v_j, v_{ij} \text{ with } i \sim j\})$$

$$v_{ij} \leftarrow g(v_{ij}, v_i, v_j)$$
 Optional (e.g. not in K&W'16)

Variants

- Run for a fixed number of steps (like graph kernel)
- Run to convergence (like page rank)

Forward model

```
G.ndata['feat'] = torch.eye(34)
def gcn message(edges):
    # The argument is a batch of edges using source node's feature 'h'
    return {'msq' : edges.src['h']}
def gcn reduce(nodes):
    # The argument is a batch of nodes with features summed over 'msg'
    return {'h' : torch.sum(nodes.mailbox['msg'], dim=1)}
class GCNLayer(nn.Module):
    def __init__(self, in_feats, out_feats):
        super(GCNLayer, self). init ()
        self.linear = nn.Linear(in feats, out_feats)
    def forward(self, g, inputs):
        q.ndata['h'] = inputs
        g.send(g.edges(), gcn message) # trigger message passing
        g.recv(g.nodes(), gcn_reduce) # trigger aggregation at all nodes
        h = g.ndata.pop('h')
                                       # get the result node features
        return self.linear(h)
                                       # perform linear transformation
```

Forward Model

```
class GCN(nn<sub>•</sub>Module):
    def __init__(self, in_feats, hidden_size, num_classes):
        super(GCN, self).__init__()
        self.gcn1 = GCNLayer(in_feats, hidden_size)
        self_gcn2 = GCNLayer(hidden_size, num_classes)
    def forward(self, g, inputs):
        h = self_gcn1(g, inputs)
        h = torch.relu(h)
        h = self_gcn2(g, h)
        return h
# First layer - 34 inputs to 5 dimensions
# Second layer - 2 dimensional embedding for 2 groups
net = GCN(34, 5, 2)
```

Training it

```
optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
all_logits = []
for epoch in range(30):
    logits = net(G, inputs)
    # save the logits for visualization later
    all_logits.append(logits.detach())
    logp = F.log_softmax(logits, 1)
    # only compute loss for labeled nodes
    loss = F.nll loss(logp[labeled nodes], labels)
    optimizer.zero_grad()
    loss_backward()
    optimizer.step()
```

Graph Convolutions with state (GeniePath - Liu et al., 2018, Platanios & S, 2018)

Basic idea

- Vertex (and edge) features x_i and x_{ij}
- Vertex has internal state, LSTM or similar (GeniePath)
- Compute new vertex (and edge) features using local update function

$$(v_i^{t+1}, h_i^{t+1}, c_i^{t+1}) \leftarrow \text{LSTM}(v_i^t, h_i^t, c_i^t, \{v_j, v_{ij} \text{ with } i \sim j\})$$

$$v_{ij} \leftarrow g(v_{ij}, v_i, v_j)$$
Optional

This works better on some datasets

Graph Convolutions with state (GeniePath - Liu et al., 2018, Platanios & S, 2018)

- Basic idea
 - Vertex (and edge) features x_i and x_{ij}
 - Vertex has internal state, LSTM or similar (GeniePath)
- Minor twist (Deep Sets Zaheer et al., 2017)
 All functions on sets are nonlinear sums

$$(v_i^{t+1}, h_i^{t+1}, c_i^{t+1}) \leftarrow \text{LSTM}\left(v_i^t, h_i^t, c_i^t, g\left(\sum_{j \sim i} f(v_j, v_{ij})\right)\right)$$

$$v_{ij} \leftarrow g(v_{ij}, v_i, v_j)$$

Graph Attention Networks (Velickovic et al., 2017)

• Basic idea

- Aggregation from neighboring vertices should be attention gated (self attention strategy)
- Without attention

$$v_i \leftarrow f\left(v_i, \sum_{i \neq i} h(v_i)\right)$$

With attention

$$v_i \leftarrow f\left(v_i, \sum_{i \neq j} \alpha_{ij} h(v_j)\right) \text{ where } \alpha_{ij} = \operatorname{softmax}\left(\left\{v_i^\top M v_j\right\}\right)$$

· This works better on some datasets

Tree-LSTM as message-passing

Deconstruct Transformer as a graph

Deconstruct Transformer as a graph

Transformer:

data & compute hungry

Star-Transformer (in NAACL'19)

- much less data hungry
- · leverages ngram prior,
- has issues with long dependency

<u>SegTree-Transformer</u> (in ICLR'19 RLGM)

- less data hungry
- A good compromise in between

Making it Practical (Dai et al., 2018)

- Learning the vertex update function is expensive
 - Backprop over graph has to deal with entire graph quickly (6 degrees of separation kill BPTT)
 - Not much benefit in finite iterations
- Replace with fixed point iteration
 - Can learn it directly
 - Local convergence
 - Sample vertex updates (much smaller subset)
- This works better on some datasets

Making it Practical (Dai et al., 2018)

- Initialize
- Compute update $v_i \leftarrow f(v_i, \{v_j \text{ with } i \sim j\}$
- Compute (regression) loss from embedding
- Backprop to change
 - f via loss
 - f via self consistency

