แบบฝึกหัดเรื่อง Equivalent Class Partitioning และ Boundary Value Analysis

แบบฝึกหัดนี้เป็นงานเดี่ยว ให้นักศึกษาดาวน์โหลดไฟล์นี้เพื่อเติมคำตอบ เมื่อนักศึกษาทำเสร็จแล้วให้เซฟไฟล์เป็น PDF แล้วส่งงาน บน MyCourses พร้อมกับ Source Code ที่มี Unit Tests ครบถ้วน

Zoo Project นักศึกษากำลังทดสอบโปรแกรมสวนสัตว์แห่งหนึ่ง ซึ่งรับค่าเป็นอายุของผู้เข้าชม และกำหนดราคาค่าตั๋วตามช่วงอายุ ดังต่อไปนี้

อายุ (age)	ราคาตั๋ว
0-12	50
13-20	100
21-60	150
60 ขึ้นไป	100

ข้อที่ 1: จากหลักการของ Equivalent Class Partitioning ให้นักศึกษาออกแบบคลาสของค่าอายุ (age) และเลือกค่าตัวแทน (representative)

Class	Representative	Expected Result	
Age < 0	-1	Err	
0 <= age < 13	1	50	
13 <= age < 21	14	100	
21 <= age < 61	22	150	
Age >= 61	62	100	

ข้อที่ 2: จากหลักการของ Boundary Value Analysis ให้นักศึกษาออกแบบคลาสของค่า amount และเลือกค่าตัวแทน (representative) โดยแบ่งออกเป็น All Cases, Belonging Cases และ Reduced Class

Class	All Cases	Belonging Cases	Reduced Class	Expected Result	
Low	-1,0,1	-1	-1	Err	
0-12	-1,0,1 / 11,12,13	0,1,11,12	0,12	50	
13-20	12,13,14 / 19,20,21	13,14,19,20	13,20	100	
21-60	20,21,22 / 59,60,61	21,22,59,60	21,60	150	
High	59,60,61	61	61	100	

ข้อที่ 3: Source code ของโปรเจคท์นี้อยู่ที่ https://github.com/MUICT-SERU/zoo-project ให้นักศึกษาทำการศึกษาโค้ดของ คลาส Zoo และใช้เทคนิค Path Analysis เพื่อหา test case ที่เป็น Linearly Independent Set

3.1 จงวาดกราฟของเมธอด get_ticket_price

3.2 จงลิสต์ linearly independent set ของเมธอดนี้ทั้งหมด

	1	2	3	4	5	6	7	8
Path 1	1	1						
Path 2	1		1	1				
Path 3	1		1		1	1		
Path 4	1		1		1		1	1

Path 1: S1-C1-S2 (segment 1, 2)

Path 2: S1-C1-C2-S3 (segment 1, 3, 4)

Path 3: S1-C1-C2-C3-S4 (segment 1, 3, 5, 6)

Path 4: S1, C1, C2, C3, C4, S5 (segment 1, 3, 5, 7, 8)

ข้อที่ 4: ให้นักศึกษานำ test case ทั้งหมดที่ได้จากข้อที่ 1, 2, และ 3 มาแปลงเป็น unit test case โดยการ Fork โปรเจคท์ Zoo ไปยัง GitHub Account ของนักศึกษา และทำการเขียน unit test cases ดังกล่าวด้วยภาษา Python เมื่อทำเสร็จแล้วให้ ตรวจสอบว่า test case ทั้งหมดรันผ่าน หากรันไม่ผ่านให้แก้ไขโค้ดของเมธอด get_ticket_price ให้ถูกต้อง (มี fault อยู่ 4 จุด ใน โปรแกรมนี้)

เมื่อนักศึกษาทำเสร็จแล้ว ให้ commit & push และดาวน์โหลด zip file ของโปรเจคท์ Zoo เพื่อส่งพร้อมกับคำตอบในไฟล์นี้บน MyCourses