Musterlösung der Lernaufgabe "Velotour"

1. s(t)-Diagramm

- 2. Zeitpunkt: t = 35 min, Ort: s = 10.5 km
- 3. $s_B(15 \text{ min}) = 5 \text{ m/s} \cdot 15 \cdot 60 \text{ s} = 4'500 \text{ m} \text{ (stimmt überein)}$
- 4. $s_B(t) = v_B \cdot t$
- 5. $s_A(15 \text{ min}) = 7 \text{ m/s} \cdot 5 \cdot 60 \text{ s} = 2'100 \text{ m} \text{ (stimmt überein)}$ $s_A(t) = v_A \cdot (t - t_A) \text{ (Fahrzeit = } t - t_A, t_A = 10 \text{ min)}$
- 6. Beim Überholen muss gelten: $s_B(t) = s_A(t)$

7.
$$V_A \cdot (t - t_A) = V_B \cdot t$$

 $V_A \cdot t - V_A \cdot t_A = V_B \cdot t$
 $V_A \cdot t - V_B \cdot t = V_A \cdot t_A$
 $(V_A - V_B) \cdot t = V_A \cdot t_A$

$$t = \frac{v_A \times t_A}{v_A - v_B} = \frac{7 \,\text{m/s} \times 600 \,\text{s}}{2 \,\text{m/s}} = 2'100 \,\text{s} = 35 \,\text{min}$$
 (stimmt mit 2. überein)

$$s_A(t) = s_B(t) = v_B \times t = 5 \text{ m/s} \times 2'100 \text{ s} = 10'500 \text{ m} = 10.5 \text{ km}$$
 (stimmt mit 2. überein)

8. v(t)-Diagramm

- 9. Fläche = $\mathbf{v} \cdot \Delta \mathbf{t} = \Delta \mathbf{s} = \text{in } \Delta \mathbf{t}$ zurückgelegte Strecke (Einheit: $[\mathbf{v} \cdot \Delta \mathbf{t}] = [\mathbf{v}] \cdot [\Delta \mathbf{t}] = 1 \text{ m/s} \cdot 1 \text{ s} = 1 \text{ m}$)
- 10. Beim Überholen müssen nach 9. die Flächen unter den beiden Graphen gleich gross sein. Häuschen zählen zeigt, dass dies zutrifft!