Assignment 1 - Linear Regression

Name: Vikas Vijaykumar Bastewad

Roll Number: 20CS10073

```
In []: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

1. Spliting the dataset into 50% for training, 30% for validation and 20% for testing.

```
In [ ]: # Loading the dataset

df = pd.read_csv('../../dataset/linear-regression.csv')

df.head()
```

Out[]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0 1 2 3	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
	4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

```
In []: # Shuffling the dataset
data = df.sample(frac=1, random_state=42).reset_index(drop=True)
data.head()
```

Out[]:	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0 7.7	0.56	0.08	2.50	0.114	14.0	46.0	0.9971	3.24	0.66	9.6	6
	1 7.8	0.50	0.17	1.60	0.082	21.0	102.0	0.9960	3.39	0.48	9.5	5
	2 10.7	0.67	0.22	2.70	0.107	17.0	34.0	1.0004	3.28	0.98	9.9	6
	3 8.5	0.46	0.31	2.25	0.078	32.0	58.0	0.9980	3.33	0.54	9.8	5
	4 6.7	0.46	0.24	1.70	0.077	18.0	34.0	0.9948	3.39	0.60	10.6	6

```
In []: # Spliting the dataset into features and labels
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values

# Normalizing the features using (Min-Max Scaling)
X_normalized = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))

# Spliting the dataset into training, validation, and test sets
train_size = int(0.5 * len(data))
val_size = int(0.3 * len(data))
X_train, y_train = X_normalized[:train_size], y[:train_size]
X_val, y_val = X_normalized[train_size:train_size+val_size], y[train_size:train_size+val_size]
X_test, y_test = X_normalized[train_size+val_size:], y[train_size+val_size:]
```

2. Using the mean squared error loss function to fit the models.

```
In []: # Defining the mean squared error loss function
def mean_squared_error_loss(y_true, y_pred):
    return np.mean((y_true - y_pred) ** 2)

# Defining the function to calculate r2 score
def cal_r2_score(y_true, y_pred):
    y_mean = np.mean(y_true)
    return 1 - (np.sum((y_true - y_pred) ** 2) / np.sum((y_true - y_mean) ** 2))
```

3. Formulating the linear regression models for the given data set.

```
In []: # First Model - Analytic Solution
X_train_1 = np.concatenate((np.ones((X_train.shape[0], 1)), X_train), axis=1)
theta_analytic = np.dot(np.dot(np.linalg.inv(np.dot(X_train_1.T, X_train_1)), X_train_1.T), y_train)
# Here theta_analytic is the vector of parameters, i.e. theta_analytic = [theta_0, theta_1, ..., theta_n]
# where theta_0 is the intercept and theta_1, ..., theta_n are the coefficients of the independent variables
# calculation of the theta is as follows
# theta = (X^T * X)^-1 * X^T * y
# where X is the augmented matrix of the independent variables and y is the vector of the dependent variable

# Augmenting validation set with ones
X_val_1 = np.concatenate((np.ones((X_val.shape[0], 1)), X_val), axis=1)

# Predicting using the learned parameters on validation set
y_pred_val_analytic = np.dot(X_val_1, theta_analytic)

# Calculate R-squared and RMSE for the analytic model on validation set
r2_val_analytic = cal_r2_score(y_val, y_pred_val_analytic) # cal_r2_score is a function that calculates R-squared (defined above)
rmse_val_analytic = np.sqrt(mean_squared_error_loss(y_val, y_pred_val_analytic))
```

```
# Displaying results for the first model using analytic solution
      print("First Model - Analytic Solution")
      print("Analytic Solution (Validation Set):")
      print("R-squared:", r2 val analytic)
      print("RMSE:", rmse_val_analytic)
      # Predicting using the learned parameters on test set
      X test 1 = np.concatenate((np.ones((X test.shape[0], 1)), X test), axis=1)
      y pred test analytic = np.dot(X test 1,theta analytic)
      # Calculating R-squared and RMSE for the analytic model on test set
       r2 test analytic = cal r2 score(y test, y pred test analytic) # cal r2 score is a function that calculates R-squared (defined above)
       rmse test analytic = np.sqrt(mean squared error loss(y test, y pred test analytic))
      # Displaying the results for the first model using analytic solution
      print("\nAnalytic Solution (Test Set):")
      print("R-squared:", r2 test analytic)
      print("RMSE:", rmse_test_analytic)
      First Model - Analytic Solution
     ______
     Analytic Solution (Validation Set):
     R-squared: 0.2894510183280409
     RMSE: 0.6901349433054016
     Analytic Solution (Test Set):
     R-squared: 0.4057707102674537
     RMSE: 0.5993990056751543
     _______
In [ ]: # Second Model - Gradient Ascent
      learning rates = [0.01, 0.001, 0.0001]
      num iterations = 10000 # Number of iterations for gradient ascent
      losses = {lr: [] for lr in learning rates} # Losses for each learning rate
      # Plotting loss function for different learning rates
      plt.figure(figsize=(9, 6))
      plt.xlabel("Iteration")
      plt.ylabel("Loss")
       plt.title("Loss Function for Training and Validation Sets")
      best lr = None # Best learning rate
       best r2 = -float('inf') # Best R-squared value for validation set
      for lr in learning rates:
                               # Training the model for each learning rate
          theta ga = np.random.randn(X train.shape[1]) # Initializing the parameters
```

```
for i in range(num iterations): # Running gradient ascent for num iterations
       y pred = np.dot(X train, theta ga) # Predicting on the training set
       error = y_pred - y_train # Calculating the error
       gradient = np.dot(X train.T,error) # Calculating the gradient
        theta ga -= lr * gradient / len(y train) # Updating the parameters
       loss = mean squared error loss(y train, y pred) # Calculating the loss
        losses[lr].append(loss) # Storing the loss for each iteration
       # Validating the model using validation set
       y pred val = np.dot(X val, theta ga)
       r2 val = cal r2 score(y val, y pred val) #cal r2 score is defined in step 2
       if r2 val > best r2: # Finding the best learning rate
           best r2 = r2 val # Updating the best R-squared value
           best lr = lr # Updating the best learning rate
    # Ploting the losses for each learning rate
    plt.plot(losses[lr], label=f"Learning Rate: {lr}")
# Training the model using the best learning rate on the entire training set
theta ga best = np.random.randn(X train.shape[1]) # Initializing the parameters
   __in range(num_iterations):  # Running gradient ascent for num
y_pred = np.dot(X_train,theta_ga_best)  # Predicting on the training set
for in range(num iterations):
                                                     # Running gradient ascent for num iterations
    error = y pred - y train
                                                  # Calculating the error
   gradient = np.dot(X_train.T,error) # Calculating the gradient
   theta ga best -= best lr * gradient / len(y train) # Updating the parameters
# Predicting on the test set using the best model
y_pred_test_ga = np.dot(X_test,theta_ga_best)
# Calculating R-squared and RMSE for the best model using gradient ascent on the test set
r2 test ga = abs(cal r2 score(y test, y pred test ga)) #cal r2 score is defined in step 2
rmse test ga = np.sqrt(mean squared error loss(y test, y pred test ga))
# Displaying the results for the second model using gradient ascent
print("Second Model - Gradient Ascent:")
print("Number of Iterations:", num iterations)
print("Best Learning Rate:", best lr)
print("R-squared:", r2 test ga)
print("RMSE:", rmse test ga)
print("=========
# Ploting the loss functions for different learning rates
# I have plotted the losses for each learning rate in the same plot to compare them easily
# You can easily see that the loss function for learning rate 0.01 is decreasing faster than the other two
```

```
plt.legend()
plt.show()
```

Second Model - Gradient Ascent: Number of Iterations: 10000 Best Learning Rate: 0.01 R-squared: 0.06833729789690746

RMSE: 0.8036985528269445
