CAP 3. COMPRESSÃO DE DADOS MULTIMÍDIA

Aula 5: Técnicas de compressão de áudio, vídeo e imagens

INE5431 Sistemas Multimídia Prof. Roberto Willrich (INE/UFSC) roberto.willrich@ufsc.br

Compressão de Dados Multimídia

Conteúdo:

- Necessidade de compressão
- Princípios da compressão
- Classificação das técnicas de compressão
- Medição do desempenho de compressão
- Técnicas de compressão sem perdas
 - RLE, Huffman, LZW (GIF), Codificação Preditiva
- Técnicas de compressão de áudio, vídeo e imagens
- Padrões de compressão multimídia
 - JPEG, MPEG, MPEG-4, H.261, H.263

Codificação PCM

Amostras são quantificadas com mesmo passo

Codificação PCM não linear

- · Passo de quantificação aumenta com o aumento da amplitude do sinal
- Pode ser visto como compressão, pois melhora qualidade com a mesma taxa do PCM

Técnicas de compressão de áudio

DPCM (Codificação Preditiva)

- Amostragens adjacentes são similares:
 - o próximo valor pode ser previsto baseado no valor atual
 - Exemplo ilustrativo:
 - Original (amostras de 8bits)
 - 23, 24, 26, 25, 27 (8*5 = 40 bits)
 - Compactado com função de predição a_i = a_{i-1} + erro
 - 23, +1, +2, -1, +2 (8 + 4*4 = 24 bits)

Áudio DPCM: Quantização e codificação do erro de predição

• Exemplo de DPCM para áudio com função de predição $a_i = a_{i-1} + erro$

No LPC (Linear Predictive Coding)

 Uma amostra de áudio é prevista com base nas amostras anteriores

$$x[n] = \sum_{k=1}^{P} a_k x[n-k] + e[n]$$

- x[n-k]: amostras anteriores
- p: ordem do modelo
- a_k: coeficiente de predição
- e[n]: erro de predição

Codificação ADPCM (DPCM adaptativo)

- Existem várias maneiras de implementar ADPCM, a mais comum é variar o tamanho de passo representado pelos erros
 - tamanho do passo de quantificação aumenta com o aumento da variação do sinal
 - Se o sinal passa bruscamente de uma tensão elevada a uma tensão baixa, o valor do passo será grande; ao contrário, se o sinal de entrada apresenta variações de tensão baixas, o tamanho do passo será pequeno

Imagens digitais puras são codificadas em PCM

• Representados por matrizes de píxeis

Também é possível compactar usando DPCM e ADPCM

Um vídeo é uma sequência de imagens amostradas rapidamente

 A velocidade da amostragem engana o cérebro, criando a ilusão de movimento

Foreman 30fps (30 imagens exibidas a cada segundo)

Técnicas de compressão de vídeo e imagens

- Baseiam-se na alta redundância das imagens e vídeos
- Certas áreas de figuras são uniformemente coloridas ou altamente correlatas (podendo formar padrões)
 - redundância espacial ou correlação espacial
 - removida tanto quanto possível para uma certa qualidade de apresentação
- Não existem grandes diferenças entre quadros de um vídeo
 - redundância temporal ou correlação temporal
 - alta taxa de compressão

Técnica de Redução da Resolução Geométrica

- Redução da resolução das imagens
 - Redução de linhas e colunas do bitmap

Técnica de Truncagem

- Consiste em truncar dados arbitrariamente baixando o número de bits por pixel (imagem) ou taxa de quadros (vídeo)
 - feito pela eliminação dos bits menos significativos de cada pixel (imagem) e imagens por segundo (vídeo)
- Técnica é atrativa pois ela é simples

 Exemplo: imagens coloridas com 24 bits por pixel poderiam ser reduzidas para 8 bits

Codificação Preditiva

- Imagem original e imagem com apenas o erro de predição
 - Se os pixeis tiverem valores muito próximos, pode-se usar um número menor de bits para armazenar o erro de predição do que aquele usado para codificar o valor absoluto

Codificação Preditiva

Preditores típicos

 $s_n = 0.97 s_{n-1}$ Preditor de 1^a ordem, 1D $s_{m,n} = 0.48 s_{m,n-1} + 0.48 s_{m-1,n}$ Preditor de 2^a ordem, 2D $s_{m,n} = 0.8 s_{m,n-1} - 0.62 s_{m-1,n-1} + 0.8 s_{m-1,n}$ Preditor de 3^a ordem, 2D

S _{m-1,n-1}	S _{m,n-1}	
S _{m-1,n}	S _{m,n}	

Codificação Preditiva

Usar para a primeira fila e primeira coluna o preditor de 1º ordem

$$s_n = 0.97 s_{n-1} \text{ Preditor de 1}^{\text{a}} \text{ ordem, 1D}$$

Para as outras filas e colunas o de 3º ordem.

$$s_{m,n} = 0.8s_{m,n-1} - 0.62s_{m-1,n-1} + 0.8s_{m-1,n}$$
 Preditor de 3^a ordem, 2D

Saída DPCM calculada subtraindo a saída predita com os valores originais

Codificação Preditiva

- Imagem original e imagem com apenas o erro de predição
 - Se os pixeis tiverem valores muito próximos, pode-se usar um número menor de bits para armazenar o erro de predição do que aquele usado para codificar o valor absoluto

Preenchimento Condicional

- Explora redundância temporal em vídeos
 - animação de imagens implica que píxeis na imagem anterior estão em diferentes posições que na imagem atual

Preenchimento Condicional

- o Imagem é segmentada em áreas estacionarias e com movimento
 - são transmitidos apenas os dados de áreas com movimento
 - detector de movimento localiza diferenças interquadros significantes
- Uma forma particular de DPCM onde se envia o erro de predição se este for superior a um dado limite

Preenchimento Condicional

Quadro Preditor

Quadro Atual

Diferença

Estimativa e Compensação de Movimento

- Imagem é dividida em blocos de tamanho fixos
 - um casamento para cada bloco é procurado na imagem anterior
 - deslocamento entre estes dois blocos é chamado vetor de movimento
 - uma diferença de blocos é obtida calculando diferenças pixel a pixel
- Vetor de movimento e a diferença de bloco é codificado e transmitido

Exemplo simples: Compara a similaridade entre blocos

- Mantém a diferença entre os blocos (resíduo);
- Cria o vetor de movimento, referenciando o bloco do quadro anterior;

Pontos Importantes

Técnicas gerais de compressão de áudio, imagens e vídeos

• Entender o princípio geral