R Markdown Visualizations

Creating Graphs in R Markdown

by Martin Frigaard

Written: October 03 2022

Updated: December 15 2022

Materials

The slides are in the slides pdf file

The materials for this training are in the worksheets folder:

```
worksheets
— import.Rmd
— export.Rmd
— objects.Rmd
— rmd-basic.Rmd
— rmd-tables.Rmd
— rmd-visualizations.Rmd
```

Outline

- 1. Importing data
- 2. Common Data Objects
- 3. R Markdown

- 4. R Markdown Data Visualizations
- 5. R Markdown Tables
- 6. Exporting Data

R Markdown Data Visualizations

Open rmd-visualizations. Rmd to follow along

R Markdown Data Visualizations

The NHANES package comes with data from the 2014 American National Health and Nutrition Examination surveys. We will load a sample from it below:

Standardize names with janitor::clean_names()

```
SmallNhanes <- SmallNhanes |> janitor::clean_names()
glimpse(SmallNhanes)
```

```
Rows: 10,000
Columns: 11
$ id
                                                            <int> 51624, 51624, 51624, 51625, 51630, 51638, 51646, 51647, 51647, 51647, 51654, 51...
                                                           <fct> male, male, male, male, female, male, male, female, female, female, male, male,
$ aender
                                                            <int> 34, 34, 34, 4, 49, 9, 8, 45, 45, 45, 66, 58, 54, 10, 58, 50, 9, 33, 60, 16, 56,...
 $ age
 $ age decade < fct > 30-39, 30-39, 30-39, 0-9, 40-49, 0-9, 40-49, 40-49, 40-49, 40-49, 60-6...
                                                            <fct> White, White, White, Other, White, Whi
 $ race1
$ health_gen <fct> Good, Good, Good, NA, Good, NA, NA, Vgood, Vgood, Vgood, Vgood, Vgood, Fair, NA...
                                                           <dbl> 164.7, 164.7, 164.7, 105.4, 168.4, 133.1, 130.6, 166.7, 166.7, 166.7, 169.5, 18...
$ height
$ bmi
                                                           <dbl> 32.22, 32.22, 32.22, 15.30, 30.57, 16.82, 20.64, 27.24, 27.24, 27.24, 23.67, 23...
                                                           <dbl> 87.4, 87.4, 87.4, 17.0, 86.7, 29.8, 35.2, 75.7, 75.7, 75.7, 68.0, 78.4, 74.7, 3...
$ weight
$ pulse
                                                            <int> 70, 70, 70, NA, 86, 82, 72, 62, 62, 62, 60, 62, 76, 80, 94, 74, 92, 96, 84, 76,...
 $ bp sys ave <int> 113, 113, 113, NA, 112, 86, 107, 118, 118, 118, 111, 104, 134, 104, 127, 142, 9...
```

Formating factors

We have a health_gen variable with the following levels:

Excellent, Vgood, Good, Fair, or Poor. These are ordered.

levels(SmallNhanes\$health_gen)

```
[1] "Poor" "Fair" "Good" "Vgood" "Excellent"
```


ggplot2

The Layered grammar of graphics

How it works:

- 1) Graphs are *initialized* with ggplot()
- 2) Variables are *mapped* to aesthetics
- 3) Geoms are linked to *statistics*

What relationship do we expect to see between height and weight?


```
SmallNhanes |>
```

2) Map variables to aesthetics

```
SmallNhanes |>
ggplot(mapping = aes(x = weight, y = height))
```

3) Add geoms and layers

```
SmallNhanes |>
ggplot(mapping = aes(x = weight, y = height)) +
geom_point()
```

SmallNhanes %>% ggplot() # initialize


```
SmallNhanes %>%
  ggplot(mapping = aes(x = weight, y = height)) # map variables
```



```
SmallNhanes %>%
  ggplot(mapping = aes(x = weight, y = height)) +
  geom_point() # add geoms
```


ggplot2 template

Initialize the plot the ggplot(), map the aesthetics, and add a <GEOM FUNCTION>

```
<DATA> %>%
  ggplot(mapping = aes(<MAPPINGS>)) +
  <GEOM_FUNCTION>()
```

We can add more aesthetics inside geoms

```
<DATA> %>%
  ggplot(mapping = aes(<MAPPINGS>)) +
  <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```


ggplot2 template

Because ggplot2 is a language of layers, we can continue adding more geoms

```
<DATA> %>%
  ggplot(mapping = aes(<MAPPINGS>)) +
  <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>)) +
  <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

Note the different syntax (%>% vs. +)

```
<DATA> %>% #<< pipe!
   ggplot(mapping = aes(<MAPPINGS>)) + #<< plus!
   <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```


Is the relationship between weight and height the same for both genders?

We can explore this by mapping the variables to different aesthetics

Aesthetics as graph elements (color, size, shape, and alpha)

Global ggplot2 mapping

inside the ggplot() function = setting variables globally

Local ggplot2 mapping

inside the geom() function = setting variables locally

Your Turn

Set local vs. global aesthetic mappings

From here...

```
SmallNhanes %>%
   ggplot(
       mapping =
           aes(x = weight, y = height)) +
   geom_point() +
   geom_smooth()
```

...to here.

```
SmallNhanes %>%
  ggplot() +
  geom_point(
    mapping =
        aes(x = weight, y = height)) +
  geom_smooth(
    mapping =
        aes(x = weight, y = height))
```



```
SmallNhanes %>%
  ggplot(mapping = aes(x = weight, y = height)) +
  geom_point() +
  geom_smooth()
```


20 / 52


```
SmallNhanes %>%
  ggplot() +
  geom_point(mapping = aes(x = weight, y = height)) +
  geom_smooth(mapping = aes(x = weight, y = height))
```


21 / 52

Variables, Aestheitcs, and Geoms

Variables, Aestheitcs, and Geoms (1)

Each graph needs a variable or value, an aesthetic, and geom (the accompanying graphic, geometry)

```
geom_point(mapping = aes(x = weight, y = height)) + # layer 1 geom_smooth(mapping = aes(x = weight, y = height)) # layer 2
```

```
variable aesthetic geom

weight position = x dots = point
height position = y dots = point
weight position = x line = smooth
height position = y line = smooth
```

These have the same aesthetics! What if we added a layer with a variable mapped to a different aesthetic?

Variables, Aestheitcs, and Geoms (2)

But we can add *more* variables, map them to *different* aesthetics, and *adding* another geom layer

Add another layer, coloring the points by gender

```
SmallNhanes %>%
  ggplot() +
  geom_point(mapping = aes(x = weight, y = height)) +
  geom_point(mapping = aes(color = gender))
```

variable	aesthetic	geom
weight	position = x	dots = point
height	position = y	dots = point
gender	color = color	dots = point

Variables, Aestheitcs, and Geoms (3)

ERROR!

```
SmallNhanes %>%
  ggplot() +
  geom_point(
    aes(x = weight, y = height)) +
  geom_point(
    aes(color = gender))
```

```
# Error: geom_point requires the following
missing aesthetics: x and y
```

SOLUTION

All geoms have required aesthetics—map variables globally

```
SmallNhanes %>%
  ggplot(
   aes(x = weight, y = height)) +
   geom_point(aes(color = gender))
```

Aesthetics: color


```
SmallNhanes %>%
  ggplot(aes(x = weight, y = height)) +
  geom_point(aes(color = gender))
```


Aesthetics: size


```
SmallNhanes %>%
  ggplot(aes(x = weight, y = height)) +
   geom_point(aes(color = gender, size = gender))
```


Aesthetics: shape


```
SmallNhanes %>%
  ggplot(aes(x = weight, y = height)) +
   geom_point(aes(color = gender, size = gender, shape = gender))
```



```
SmallNhanes %>%
  ggplot(aes(x = weight, y = height)) +
   geom_point(aes(color = gender, alpha = gender))
```


Legend is automatically included

Continuous variables best with size

Setting values vs. mapping variables

How can we create this plot?

Inside aes ()


```
SmallNhanes %>%
  ggplot(aes(x = weight, y = height)) +
   geom_point(aes(color = "red")) # inside aes
```



```
SmallNhanes %>%
  ggplot(aes(x = weight, y = height)) +
  geom_point(color = "red") # outside aes
```


aes() expected a variable, not a value ("red").

```
SmallNhanes %>%
  ggplot(aes(x = weight, y = height)) +
  geom_point(aes(color = "red")) # "value" in aes
```


Geoms

These are visual elements used to represent the data of the graph

Examples include:

- geom_boxplot
- geom_col
- geom_line
- geom_smooth

See the cheatsheet for more examples:

https://bit.ly/ggplot2-cheat

Your Turn

How does BMI vary across levels of self-reported general health?

Complete the code below:

Map the variables locally inside the geom_boxplot() function

```
SmallNhanes %>%
   ggplot() %>%
   geom_boxplot(mapping = aes(x = _____, y = ___))
```

```
SmallNhanes %>%
  ggplot() +
  geom_boxplot(mapping = aes(x = health_gen, y = bmi))
```

Box-plots are great for seeing how a continuous variable varies across a categorical variable

Fill in the code below to change the colors in the boxplot for each level of health_gen

```
SmallNhanes %>%
  ggplot() +
  geom_boxplot(
  aes(x = health_gen, y = bmi, ____ = health_gen))
```

```
SmallNhanes %>%
  ggplot() +
  geom_boxplot(
  aes(x = health_gen, y = bmi, color = health_gen))
```

Color is not the setting we want here...


```
SmallNhanes %>%
   ggplot() +
   geom_boxplot(
   aes(x = health_gen, y = bmi, fill = health_gen))
```

Fill is better

Adding layers

The 'infinitely extensible' part of ggplot2 is where we start to really see it's power

Consider the relationship between height and weight again

```
SmallNhanes %>%
  ggplot(aes(x = weight, y = height)) + # global
  geom_point(aes(color = gender))
```


Faceting

Facet layers display subplots for levels of categorical variables

Facet layer	Display
<pre>facet_wrap(. ~ gender)</pre>	Plot for each level of gender
<pre>facet_wrap(race1 ~ gender)</pre>	Plot for each level of gender and race
<pre>facet_wrap(. ~ gender, ncol = 1)</pre>	Specify the number of columns
<pre>facet_wrap(. ~ gender, nrow = 1)</pre>	Specify the number of rows


```
SmallNhanes %>%
  ggplot(aes(x = weight, y = height)) +
  geom_point(aes(color = gender)) +
  facet_wrap(. ~ gender)
```



```
SmallNhanes %>%
  ggplot(aes(x = weight, y = height)) +
  geom_point(aes(color = gender)) +
  facet_wrap(race1 ~ gender)
```



```
SmallNhanes %>%
  ggplot(aes(x = weight, y = height)) +
  geom_point(aes(color = gender)) +
  facet_wrap(race1 ~ gender, ncol = 5)
```



```
SmallNhanes %>%
  ggplot(aes(x = weight, y = height)) +
  geom_point(aes(color = gender)) +
  facet_wrap(race1 ~ gender, nrow = 2)
```


Recap

- 1) Introduction the grammar of graphics syntax
- 2) Identifying graph aesthetics (position, color, shape, opacity, etc.)
- 3) Recognizing and using geoms (geom_point, geom_smooth, etc.)
- 4) Facetting graphs (facet_wrap with 1 or two variables)