Comprehensive Lecture: Handling Imbalanced Data in Machine Learning

1. Understanding Imbalanced Data

1.1 What is Imbalanced Data?

Imbalanced data refers to classification problems where the classes are not represented equally. For example:

- Fraud detection: 99.9% legitimate vs 0.1% fraudulent transactions
- Medical diagnosis: 98% healthy vs 2% disease cases
- Network intrusion detection: 99.9% normal vs 0.1% malicious traffic

1.2 Why is Imbalanced Data Problematic?

- Algorithmic Bias: Most ML algorithms optimize for accuracy, biasing predictions toward the majority class
- Insufficient Learning: Too few minority samples to learn meaningful patterns
- Misleading Evaluation: High accuracy despite poor minority class detection
- **Business Impact**: The minority class is often the class of interest (fraud, disease, etc.)

1.3 Real-World Consequences

If a fraud detection system has 99.9% accuracy but misses most fraudulent transactions, it fails its primary purpose despite appearing successful by traditional metrics.

2. Evaluation Metrics for Imbalanced Data

2.1 Confusion Matrix Fundamentals

- **True Positives (TP)**: Correctly predicted positive cases
- True Negatives (TN): Correctly predicted negative cases
- False Positives (FP): Incorrectly predicted positives (Type I error)
- False Negatives (FN): Incorrectly predicted negatives (Type II error)

2.2 Beyond Accuracy

Accuracy = (TP + TN) / (TP + TN + FP + FN)

 Problem: In a dataset with 99% negative class, predicting everything as negative yields 99% accuracy

2.3 Better Metrics

- **Precision = TP / (TP + FP)**: Of all predicted positives, how many are actually positive?
- Recall (Sensitivity) = TP / (TP + FN): Of all actual positives, how many did we predict correctly?
- **Specificity = TN / (TN + FP)**: Of all actual negatives, how many did we predict correctly?
- F1-Score = 2 × (Precision × Recall) / (Precision + Recall): Harmonic mean of precision and recall
- F-beta Score: Weighted F-score for when precision or recall is more important

2.4 ROC and PR Curves

- ROC (Receiver Operating Characteristic): Plots TPR (Recall) vs FPR at different thresholds
- AUC-ROC: Area under ROC curve; higher is better, with 1 being perfect
- PR (Precision-Recall) Curve: Plots Precision vs Recall at different thresholds
- AUC-PR: Area under PR curve; better for imbalanced data than AUC-ROC

2.5 Code Example: Evaluation Metrics

```
import numpy as np
from sklearn.metrics import (accuracy score, precision score, recall score,
                            fl score, roc auc score, precision recall curve,
                            roc curve, auc, confusion matrix)
import matplotlib.pyplot as plt
# Example imbalanced predictions and true labels
y_{true} = np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]) # 25% positive class
y_pred = np.array([0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1]) # Predictions
y pred proba = np.array([0.1, 0.2, 0.1, 0.2, 0.3, 0.2, 0.3, 0.4, 0.7, 0.5, 0.8, 0.9])
# Basic metrics
print(f"Accuracy: {accuracy_score(y_true, y_pred):.3f}")
print(f"Precision: {precision score(y true, y pred):.3f}")
print(f"Recall: {recall score(y true, y pred):.3f}")
print(f"F1-Score: {f1 score(y true, y pred):.3f}")
print(f"AUC-ROC: {roc_auc_score(y_true, y_pred_proba):.3f}")
# Confusion matrix
cm = confusion matrix(y true, y pred)
print("Confusion Matrix:")
print(cm)
# Visualize ROC curve
fpr, tpr, = roc curve(y true, y pred proba)
plt.figure(figsize=(10, 6))
plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {auc(fpr, tpr):
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
# Visualize Precision-Recall curve
precision, recall, = precision recall curve(y true, y pred proba)
plt.figure(figsize=(10, 6))
plt.plot(recall, precision, color='green', lw=2)
plt.axhline(y=sum(y true)/len(y true), color='red', linestyle='--', label=f'Baseline (
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Precision-Recall Curve')
```

```
plt.legend(loc="lower left")
plt.show()
```

3. Data-Level Approaches

3.1 Resampling Fundamentals

Resampling attempts to balance class distribution before training:

- Advantages: Simple, algorithm-agnostic
- **Disadvantages**: May lose information or introduce noise

3.2 Undersampling Techniques

3.2.1 Random Undersampling

Randomly removes majority class samples until classes are balanced.

Code Example:

```
python
```

```
from imblearn.under sampling import RandomUnderSampler
from sklearn.datasets import make classification
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification report
# Create imbalanced dataset (90% class 0, 10% class 1)
X, y = make classification(n samples=10000, n features=10, weights=[0.9, 0.1], random_
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=
# Check original class distribution
print("Original training dataset shape:", dict(zip(*np.unique(y train, return counts=T
# Apply random undersampling
rus = RandomUnderSampler(random state=42)
X train rus, y train rus = rus.fit resample(X train, y train)
# Check resampled class distribution
print("Resampled training dataset shape:", dict(zip(*np.unique(y train rus, return cour)
# Train model on resampled data
model rus = RandomForestClassifier(random state=42)
model rus.fit(X train rus, y train rus)
y pred rus = model rus.predict(X test)
print("\nClassification Report with Random Undersampling:")
print(classification report(y test, y pred rus))
```

3.2.2 Informed Undersampling

More sophisticated methods to select which majority samples to remove:

Near Miss: Selects majority samples based on their distance to minority samples.

```
from imblearn.under_sampling import NearMiss

# Apply Near Miss undersampling (version 1)
nm = NearMiss(version=1)
X_train_nm, y_train_nm = nm.fit_resample(X_train, y_train)

# Check resampled class distribution
print("Near Miss resampled shape:", dict(zip(*np.unique(y_train_nm, return_counts=True))

# Train model
model_nm = RandomForestClassifier(random_state=42)
model_nm.fit(X_train_nm, y_train_nm)
y_pred_nm = model_nm.predict(X_test)
print("\nClassification_report(y_test, y_pred_nm))
```

Tomek Links: Removes majority samples that form Tomek links with minority samples.

```
python
from imblearn.under_sampling import TomekLinks

# Apply Tomek Links undersampling
tl = TomekLinks()
X_train_tl, y_train_tl = tl.fit_resample(X_train, y_train)

# Check resampled class distribution
print("Tomek Links resampled shape:", dict(zip(*np.unique(y_train_tl, return_counts=Tr

# Train model
model_tl = RandomForestClassifier(random_state=42)
model_tl.fit(X_train_tl, y_train_tl)
y_pred_tl = model_tl.predict(X_test)
print("\nClassification Report with Tomek Links:")
print(classification_report(y_test, y_pred_tl))
```

Condensed Nearest Neighbor (CNN): Iteratively selects samples to preserve decision boundaries.

```
from imblearn.under_sampling import CondensedNearestNeighbour

# Apply CNN undersampling
cnn = CondensedNearestNeighbour(random_state=42)
X_train_cnn, y_train_cnn = cnn.fit_resample(X_train, y_train)

# Check resampled class distribution
print("CNN resampled shape:", dict(zip(*np.unique(y_train_cnn, return_counts=True))))
```

3.3 Oversampling Techniques

3.3.1 Random Oversampling

Randomly duplicates minority class samples until classes are balanced.

```
python
from imblearn.over_sampling import RandomOverSampler

# Apply random oversampling
ros = RandomOverSampler(random_state=42)
X_train_ros, y_train_ros = ros.fit_resample(X_train, y_train)

# Check resampled class distribution
print("Random oversampling shape:", dict(zip(*np.unique(y_train_ros, return_counts=Tru

# Train model
model_ros = RandomForestClassifier(random_state=42)
model_ros.fit(X_train_ros, y_train_ros)
y_pred_ros = model_ros.predict(X_test)
print("\nClassification_report(y_test, y_pred_ros))
```

3.3.2 SMOTE (Synthetic Minority Oversampling Technique)

Generates synthetic samples by interpolating between minority class examples.

```
python
from imblearn.over sampling import SMOTE
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
# Visualize original data
pca = PCA(n components=2)
X train pca = pca.fit transform(X train)
plt.figure(figsize=(10, 6))
plt.scatter(X_train_pca[y_train==0, 0], X_train_pca[y_train==0, 1], alpha=0.5, label='0.5
plt.scatter(X train pca[y train==1, 0], X train pca[y train==1, 1], alpha=0.5, label='0.5
plt.title('Original imbalanced dataset (PCA-reduced)')
plt.legend()
plt.show()
# Apply SMOTE
smote = SMOTE(random state=42)
X train smote, y train smote = smote.fit resample(X train, y train)
# Visualize SMOTE-resampled data
X smote pca = pca.transform(X train smote)
plt.figure(figsize=(10, 6))
plt.scatter(X smote pca[y train smote==0, 0], X smote pca[y train smote==0, 1], alpha=
plt.scatter(X smote pca[y train smote==1, 0], X smote pca[y train smote==1, 1], alpha=
plt.title('SMOTE-resampled dataset (PCA-reduced)')
plt.legend()
plt.show()
# Train model
model smote = RandomForestClassifier(random state=42)
model smote.fit(X train smote, y train smote)
```

3.3.3 ADASYN (Adaptive Synthetic Sampling)

y_pred_smote = model_smote.predict(X_test)
print("\nClassification Report with SMOTE:")

print(classification report(y test, y pred smote))

Similar to SMOTE but focuses on generating samples near difficult-to-learn examples.

```
from imblearn.over_sampling import ADASYN

# Apply ADASYN
adasyn = ADASYN(random_state=42)
X_train_adasyn, y_train_adasyn = adasyn.fit_resample(X_train, y_train)

# Check resampled class distribution
print("ADASYN resampled shape:", dict(zip(*np.unique(y_train_adasyn, return_counts=Tru/
# Train model
model_adasyn = RandomForestClassifier(random_state=42)
model_adasyn.fit(X_train_adasyn, y_train_adasyn)
y_pred_adasyn = model_adasyn.predict(X_test)
print("\nClassification Report with ADASYN:")
print(classification report(y test, y_pred_adasyn))
```

3.3.4 Borderline-SMOTE

Generates synthetic samples specifically along the decision boundary.

```
python

from imblearn.over_sampling import BorderlineSMOTE

# Apply Borderline SMOTE
bsmote = BorderlineSMOTE(random_state=42)
X_train_bsmote, y_train_bsmote = bsmote.fit_resample(X_train, y_train)

# Train model
model_bsmote = RandomForestClassifier(random_state=42)
model_bsmote.fit(X_train_bsmote, y_train_bsmote)
y_pred_bsmote = model_bsmote.predict(X_test)
print("\nClassification Report with Borderline-SMOTE:")
print(classification_report(y_test, y_pred_bsmote))
```

3.4 Hybrid Methods

3.4.1 SMOTETomek

Combines SMOTE with Tomek links removal.

```
from imblearn.combine import SMOTETomek

# Apply SMOTETomek
smote_tomek = SMOTETomek(random_state=42)
X_train_smt, y_train_smt = smote_tomek.fit_resample(X_train, y_train)

# Train model
model_smt = RandomForestClassifier(random_state=42)
model_smt.fit(X_train_smt, y_train_smt)
y_pred_smt = model_smt.predict(X_test)
print("\nClassification Report with SMOTETomek:")
print(classification report(y_test, y_pred_smt))
```

3.4.2 SMOTEENN

Combines SMOTE with Edited Nearest Neighbors (ENN).

```
python

from imblearn.combine import SMOTEENN

# Apply SMOTEENN

smote_enn = SMOTEENN(random_state=42)

X_train_smenn, y_train_smenn = smote_enn.fit_resample(X_train, y_train)

# Train model

model_smenn = RandomForestClassifier(random_state=42)

model_smenn.fit(X_train_smenn, y_train_smenn)

y_pred_smenn = model_smenn.predict(X_test)

print("\nClassification Report with SMOTEENN:")

print(classification report(y test, y pred smenn))
```

3.5 Resampling Strategies Comparison

```
import pandas as pd
# Compare all the resampling techniques
methods = ['No resampling', 'Random Under', 'Near Miss', 'Tomek Links',
          'Random Over', 'SMOTE', 'ADASYN', 'Borderline-SMOTE',
          'SMOTETomek', 'SMOTEENN']
# Simple function to evaluate model
def evaluate model(model, X_test, y_test):
    y pred = model.predict(X test)
    return {
        'accuracy': accuracy score(y test, y pred),
        'precision': precision_score(y_test, y_pred),
        'recall': recall score(y test, y pred),
        'f1': f1 score(y test, y pred),
        'roc auc': roc auc score(y test, model.predict proba(X test)[:, 1])
    }
# Train base model without resampling
model base = RandomForestClassifier(random state=42)
model base.fit(X train, y train)
# Collect results
results = []
results.append(evaluate model(model base, X test, y test))
results.append(evaluate model(model rus, X test, y test))
results.append(evaluate model(model nm, X test, y test))
results.append(evaluate model(model tl, X test, y test))
results.append(evaluate model(model ros, X test, y test))
results.append(evaluate model(model smote, X test, y test))
results.append(evaluate model(model adasyn, X test, y test))
results.append(evaluate model(model bsmote, X test, y test))
results.append(evaluate model(model smt, X test, y test))
results.append(evaluate model(model smenn, X test, y test))
# Display results
df results = pd.DataFrame(results, index=methods)
print("\nResampling Strategies Comparison:")
print(df results)
# Visualize comparison
plt.figure(figsize=(14, 8))
df_results[['precision', 'recall', 'f1', 'roc_auc']].plot(kind='bar', ax=plt.gca())
plt.title('Performance Comparison of Different Resampling Techniques')
```

plt.ylabel('Score')

plt.xlabel('Resampling Method')

```
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```

4. Algorithm-Level Approaches

4.1 Cost-Sensitive Learning

Assigns different misclassification costs to different classes.

4.1.1 Class Weights

Many algorithms accept class weights to penalize misclassification of the minority class more heavily.

```
python
# Create a basic model without class weights
model basic = RandomForestClassifier(random state=42)
model basic.fit(X train, y train)
y pred basic = model basic.predict(X test)
print("Without class weights:")
print(classification report(y test, y pred basic))
# Create a model with balanced class weights
model balanced = RandomForestClassifier(class weight='balanced', random state=42)
model balanced.fit(X train, y train)
y pred balanced = model balanced.predict(X test)
print("\nWith 'balanced' class weights:")
print(classification report(y test, y pred balanced))
# Create a model with custom class weights
# More weight to minority class (higher penalty for misclassification)
model custom = RandomForestClassifier(class weight={0: 1, 1: 10}, random state=42)
model custom.fit(X train, y train)
y pred custom = model custom.predict(X test)
print("\nWith custom class weights {0: 1, 1: 10}:")
print(classification report(y test, y pred custom))
```

4.1.2 Sample Weights

Adjusting importance of individual samples during training.

```
python
```

```
from sklearn.linear_model import LogisticRegression

# Create sample weights (higher for minority class)
sample_weights = np.ones(len(y_train))
sample_weights[y_train == 1] = 10  # Weight minority samples 10x more

# Train with sample weights
model_sample_weights = LogisticRegression(max_iter=1000)
model_sample_weights.fit(X_train, y_train, sample_weight=sample_weights)
y_pred_sw = model_sample_weights.predict(X_test)
print("\nWith sample weights:")
print(classification report(y test, y pred sw))
```

4.2 Ensemble Methods

4.2.1 Balanced Random Forest

```
python

from imblearn.ensemble import BalancedRandomForestClassifier

# Create a Balanced Random Forest

brf = BalancedRandomForestClassifier(random_state=42)

brf.fit(X_train, y_train)

y_pred_brf = brf.predict(X_test)

print("\nClassification Report with Balanced Random Forest:")

print(classification_report(y_test, y_pred_brf))
```

4.2.2 EasyEnsemble

```
from imblearn.ensemble import EasyEnsembleClassifier

# Create an EasyEnsemble classifier

eec = EasyEnsembleClassifier(random_state=42)

eec.fit(X_train, y_train)

y_pred_eec = eec.predict(X_test)

print("\nClassification Report with EasyEnsemble:")

print(classification_report(y_test, y_pred_eec))
```

4.2.3 RUSBoost

```
python
```

```
from imblearn.ensemble import RUSBoostClassifier

# Create a RUSBoost classifier
rusboost = RUSBoostClassifier(random_state=42)
rusboost.fit(X_train, y_train)
y_pred_rusboost = rusboost.predict(X_test)
print("\nClassification Report with RUSBoost:")
print(classification_report(y_test, y_pred_rusboost))
```

4.3 Anomaly Detection

For extreme imbalance, treating the minority class as anomalies.

```
python
from sklearn.ensemble import IsolationForest
from sklearn.svm import OneClassSVM
# Isolate the majority class
X train maj = X train[y train == 0]
# Train Isolation Forest on majority class only
iso forest = IsolationForest(contamination=0.1, random state=42)
iso forest.fit(X train maj)
# Predict anomalies (-1) or normal (1)
y pred iso = iso forest.predict(X test)
# Convert to binary classification (0: normal, 1: anomaly)
y pred iso = np.where(y pred iso == 1, 0, 1)
print("\nIsolation Forest Anomaly Detection:")
print(classification report(y test, y pred iso))
# One-Class SVM
one class svm = OneClassSVM(nu=0.1, gamma='scale')
one class svm.fit(X train maj)
y pred svm = one class svm.predict(X test)
# Convert predictions (1: normal, -1: anomaly)
y pred svm = np.where(y pred svm == 1, 0, 1)
print("\nOne-Class SVM Anomaly Detection:")
print(classification report(y test, y pred svm))
```

5. Threshold Moving & Probability Calibration

5.1 Decision Threshold Optimization

Finding the optimal decision threshold for classification.

```
from sklearn.linear model import LogisticRegression
import numpy as np
# Train a probability-calibrated classifier
model = LogisticRegression(max iter=1000)
model.fit(X train, y train)
# Get probabilities
y pred proba = model.predict proba(X test)[:, 1]
# Evaluate at different thresholds
thresholds = np.arange(0.1, 1.0, 0.1)
results = []
for threshold in thresholds:
    y pred threshold = (y pred proba >= threshold).astype(int)
    precision = precision_score(y_test, y_pred_threshold)
    recall = recall score(y test, y pred threshold)
    f1 = f1 score(y test, y pred threshold)
    results.append([threshold, precision, recall, f1])
# Display results
df thresholds = pd.DataFrame(results, columns=['Threshold', 'Precision', 'Recall', 'F1
print("\nPerformance at different thresholds:")
print(df thresholds)
# Plot precision-recall tradeoff
plt.figure(figsize=(10, 6))
plt.plot(df thresholds['Threshold'], df thresholds['Precision'], label='Precision')
plt.plot(df thresholds['Threshold'], df thresholds['Recall'], label='Recall')
plt.plot(df thresholds['Threshold'], df thresholds['F1'], label='F1')
plt.xlabel('Threshold')
plt.ylabel('Score')
plt.title('Precision-Recall Tradeoff at Different Thresholds')
plt.legend()
plt.grid(True)
plt.show()
# Find optimal threshold for F1
best idx = df thresholds['F1'].idxmax()
best threshold = df thresholds.loc[best idx, 'Threshold']
print(f"\nOptimal threshold for F1: {best threshold}")
# Apply optimal threshold
y pred best = (y pred proba >= best threshold).astype(int)
```

```
print("\nClassification Report with optimal threshold:")
print(classification_report(y_test, y_pred_best))
```

5.2 Probability Calibration

Ensuring predicted probabilities are well-calibrated.

```
# Original model
model uncal = RandomForestClassifier(random state=42)
model uncal.fit(X train, y train)
# Calibrated model with sigmoid calibration (Platt scaling)
model cal = CalibratedClassifierCV(model uncal, method='sigmoid', cv=5)
model cal.fit(X train, y train)
# Get probabilities
y prob uncal = model uncal.predict proba(X test)[:, 1]
y_prob_cal = model_cal.predict_proba(X_test)[:, 1]
# Plot calibration curves
plt.figure(figsize=(10, 8))
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))
ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
# Calculate calibration curves
fraction of positives uncal, mean predicted value uncal = calibration curve(
    y test, y prob uncal, n bins=10)
fraction of positives cal, mean predicted value cal = calibration curve(
    y test, y prob cal, n bins=10)
# Plot calibration curves
ax1.plot(mean predicted value uncal, fraction of positives uncal, "s-",
         label="Uncalibrated")
ax1.plot(mean predicted value cal, fraction of positives cal, "s-",
         label="Calibrated")
ax1.set ylabel("Fraction of positives")
ax1.set ylim([-0.05, 1.05])
ax1.legend(loc="lower right")
ax1.set title('Calibration plots (reliability curve)')
# Plot histogram of probabilities
ax2.hist(y prob uncal, range=(0, 1), bins=10, label="Uncalibrated",
         histtype="step", lw=2)
ax2.hist(y prob cal, range=(0, 1), bins=10, label="Calibrated",
         histtype="step", lw=2)
ax2.set xlabel("Mean predicted value")
ax2.set ylabel("Count")
ax2.legend(loc="upper center")
```

from sklearn.calibration import CalibratedClassifierCV, calibration curve

```
plt.tight_layout()
plt.show()
```

6. Real-World Case Study: Credit Card Fraud Detection

6.1 Problem Definition

Credit card fraud detection is a classic imbalanced learning problem with fraud transactions typically being less than 0.1% of all transactions.

6.2 Mock Data Generation

```
python
# Create a more realistic credit card fraud dataset
# With temporal patterns and feature correlations
np.random.seed(42)
n \text{ samples} = 100000
n features = 10
# Generate transaction amounts: most are small, few are large
amounts = np.exp(np.random.normal(4, 1, n samples))
# Generate time features (hour of day)
hours = np.random.randint(0, 24, n samples)
# Fraud happens more at night
fraud prob = np.zeros(n samples)
fraud prob = 0.001 + 0.003 * (hours >= 22) + 0.002 * (hours <= 3)
fraud_prob += 0.002 * (amounts > 500) # Higher fraud risk for large amounts
# Generate labels
y = np.random.binomial(1, fraud prob)
# Generate correlated features
X = np.random.normal(0, 1, (n samples, n features))
# Fraud transactions have slightly different feature distributions
X[y == 1] += np.random.normal(0.5, 0.5, (sum(y), n features))
# Add hour and amount as features
X = np.hstack((X, hours.reshape(-1, 1), amounts.reshape(-1, 1)))
print(f"Dataset shape: {X.shape}")
print(f"Fraud rate: {sum(y)/len(y)*100:.3f}%")
print(f"Number of fraud cases: {sum(y)}")
# Split the data
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=
# Feature names for interpretation
feature names = [f'feature {i}' for i in range(n features)] + ['hour', 'amount']
```

6.3 Comprehensive Fraud Detection Pipeline

```
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
# Create preprocessing pipeline
preprocessor = ColumnTransformer(
    transformers=[
        ('num', StandardScaler(), list(range(X.shape[1])))
    1
)
# Define multiple approaches to test
approaches = {
    'Baseline': {
        'resampler': None,
        'classifier': RandomForestClassifier(random state=42)
    },
    'SMOTE + RF': {
        'resampler': SMOTE(random state=42),
        'classifier': RandomForestClassifier(random state=42)
    },
    'Weighted RF': {
        'resampler': None,
        'classifier': RandomForestClassifier(class weight='balanced', random state=42)
    },
    'Balanced RF': {
        'resampler': None,
        'classifier': BalancedRandomForestClassifier(random state=42)
    },
    'SMOTE + XGBoost': {
        'resampler': SMOTE(random state=42),
        'classifier': None # We'll use a simple logistic regression as proxy
    }
}
# Evaluate all approaches
results fraud = {}
for approach name, config in approaches.items():
    print(f"\nEvaluating {approach name}...")
    # Prepare training data
    if config['resampler'] is not None:
        X train resampled, y train resampled = config['resampler'].fit resample(X train
    else:
        X train resampled, y train resampled = X train, y train
```

```
# Train model
    if config['classifier'] is not None:
        model = Pipeline([
            ('preprocessor', preprocessor),
            ('classifier', config['classifier'])
        1)
    else: # SMOTE + XGBoost proxy (using LogisticRegression)
        model = Pipeline([
            ('preprocessor', preprocessor),
            ('classifier', LogisticRegression(class weight='balanced', max iter=1000))
        1)
   model.fit(X train resampled, y train resampled)
    # Predictions
    y_pred = model.predict(X_test)
    y pred proba = model.predict proba(X test)[:, 1]
    # Evaluate
    results fraud[approach name] = {
        'accuracy': accuracy_score(y_test, y_pred),
        'precision': precision score(y test, y pred),
        'recall': recall score(y test, y pred),
        'f1': f1 score(y test, y pred),
        'roc auc': roc auc score(y test, y pred proba),
        'confusion matrix': confusion matrix(y test, y pred)
    }
    print(f"Precision: {results fraud[approach name]['precision']:.3f}")
    print(f"Recall: {results fraud[approach name]['recall']:.3f}")
    print(f"F1-Score: {results fraud[approach name]['f1']:.3f}")
    print(f"ROC-AUC: {results fraud[approach name]['roc auc']:.3f}")
# Create comprehensive results comparison
df fraud results = pd.DataFrame({
    method: {metric: values[metric] for metric in ['accuracy', 'precision', 'recall',
    for method, values in results fraud.items()
}).T
print("\n" + "="*50)
print("FRAUD DETECTION RESULTS COMPARISON")
print("="*50)
print(df fraud results)
# Visualize results
plt.figure(figsize=(14, 10))
```

```
# Plot 1: Performance metrics
plt.subplot(2, 2, 1)
df_fraud_results[['precision', 'recall', 'f1', 'roc auc']].plot(kind='bar', ax=plt.qca
plt.title('Performance Comparison - Fraud Detection')
plt.ylabel('Score')
plt.xticks(rotation=45)
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
# Plot 2: Precision vs Recall
plt.subplot(2, 2, 2)
plt.scatter(df fraud results['recall'], df fraud results['precision'], s=100, alpha=0.
for i, method in enumerate(df fraud results.index):
    plt.annotate(method, (df fraud results['recall'][i], df fraud results['precision']
                xytext=(5, 5), textcoords='offset points', fontsize=8)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Precision vs Recall Trade-off')
plt.grid(True, alpha=0.3)
# Plot 3: Confusion matrices for best methods
best methods = df fraud results.nlargest(2, 'f1').index
for i, method in enumerate(best methods):
    plt.subplot(2, 2, 3+i)
    cm = results fraud[method]['confusion matrix']
    plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
    plt.title(f'Confusion Matrix - {method}')
    plt.colorbar()
    # Add text annotations
    thresh = cm.max() / 2.
    for j in range(cm.shape[0]):
        for k in range(cm.shape[1]):
            plt.text(k, j, format(cm[j, k], 'd'),
                    horizontalalignment="center",
                    color="white" if cm[j, k] > thresh else "black")
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
plt.tight layout()
plt.show()
```

```
# Business impact analysis for fraud detection
def calculate business impact(cm, avg transaction=100, fraud loss multiplier=10):
    Calculate business impact of fraud detection model
   Args:
        cm: confusion matrix [[TN, FP], [FN, TP]]
        avg transaction: average transaction amount
        fraud loss multiplier: how much more a fraud costs vs legitimate transaction
    tn, fp, fn, tp = cm.ravel()
    # Costs
    false positive cost = fp * avg transaction * 0.01 # 1% cost for blocking legitima
    false negative cost = fn * avg transaction * fraud loss multiplier # Full fraud a
    investigation cost = tp * 10 # Cost to investigate true positives
    total cost = false positive cost + false negative cost + investigation cost
    # Savings (frauds caught)
    fraud prevented = tp * avg transaction * fraud loss multiplier
    net benefit = fraud prevented - total cost
    return {
        'false positive cost': false positive cost,
        'false negative cost': false negative cost,
        'investigation cost': investigation cost,
        'total cost': total cost,
        'fraud prevented': fraud prevented,
        'net benefit': net benefit,
        'roi': (net benefit / total_cost * 100) if total_cost > 0 else 0
    }
print("\n" + "="*50)
print("BUSINESS IMPACT ANALYSIS")
print("="*50)
for method, results in results fraud.items():
    impact = calculate business impact(results['confusion matrix'])
    print(f"\n{method}:")
    print(f" Net Benefit: ${impact['net benefit']:,.2f}")
    print(f" ROI: {impact['roi']:.1f}%")
    print(f" False Positive Cost: ${impact['false positive cost']:,.2f}")
    print(f" False Negative Cost: ${impact['false negative cost']:,.2f}")
```

7. Advanced Techniques and Considerations

7.1 Deep Learning for Imbalanced Data

7.1.1 Focal Loss

Modifies cross-entropy loss to focus on hard examples.

```
# Simplified focal loss implementation (conceptual)

def focal_loss(y_true, y_pred, alpha=0.25, gamma=2.0):
    """
    Focal Loss for addressing class imbalance

FL(pt) = -alpha * (1-pt)^gamma * log(pt)
    """
    # This is a conceptual implementation
    # In practice, you would use frameworks like TensorFlow or PyTorch
    pass

print("Focal Loss concept:")
print("- Reduces loss for well-classified examples")
print("- Focuses training on hard, misclassified examples")
print("- Particularly effective for extreme imbalance")
```

7.1.2 Autoencoders for Anomaly Detection

```
# Conceptual autoencoder for fraud detection
print("Autoencoder approach for anomaly detection:")
print("1. Train autoencoder on majority class (normal transactions)")
print("2. Measure reconstruction error for new samples")
print("3. High reconstruction error indicates potential fraud")
print("4. Particularly useful for high-dimensional data")
```

7.2 Multi-class Imbalanced Problems

```
python
# Extend to multi-class imbalanced scenario
from sklearn.datasets import make classification
# Create multi-class imbalanced dataset
X multi, y multi = make classification(
    n samples=10000,
    n features=10,
   n_classes=4,
   weights=[0.7, 0.2, 0.08, 0.02], # Highly imbalanced
    random state=42
)
print("Multi-class distribution:")
unique, counts = np.unique(y multi, return counts=True)
for cls, count in zip(unique, counts):
    print(f"Class {cls}: {count} samples ({count/len(y multi)*100:.1f}%)")
# Apply SMOTE for multi-class
X train multi, X test multi, y train multi, y test multi = train test split(
   X multi, y multi, test size=0.3, random state=42, stratify=y multi
)
smote multi = SMOTE(random state=42)
X train multi smote, y train multi smote = smote multi.fit resample(X train multi, y t
print("\nAfter SMOTE:")
unique, counts = np.unique(y train multi smote, return counts=True)
for cls, count in zip(unique, counts):
    print(f"Class {cls}: {count} samples")
# Train multi-class model
model multi = RandomForestClassifier(random state=42)
model multi.fit(X train multi smote, y train multi smote)
y pred multi = model multi.predict(X test multi)
print("\nMulti-class Classification Report:")
print(classification report(y test multi, y pred multi))
```

7.3 Time Series Imbalanced Data

python

```
# Special considerations for time series data
print("Time Series Imbalanced Data Considerations:")
print("1. Temporal dependencies: Can't randomly resample")
print("2. Data leakage: Future information shouldn't influence past predictions")
print("3. Concept drift: Patterns may change over time")
print("4. Seasonal patterns: Imbalance may vary by time period")
print("\nRecommended approaches:")
print("- Use time-aware cross-validation")
print("- Apply resampling within time windows")
print("- Consider ensemble methods with temporal awareness")
print("- Monitor model performance over time")
```

8. Best Practices and Guidelines

8.1 Choosing the Right Technique

```
python
```

```
def recommend technique(imbalance ratio, dataset size, problem type):
    Recommend techniques based on problem characteristics
    recommendations = []
    if imbalance ratio < 10: # Mild imbalance</pre>
        recommendations.append("Class weights")
        recommendations.append("Threshold tuning")
    elif imbalance ratio < 100: # Moderate imbalance
        recommendations.append("SMOTE")
        recommendations.append("Balanced Random Forest")
        recommendations.append("Cost-sensitive learning")
    else: # Extreme imbalance
        recommendations.append("Anomaly detection")
        recommendations.append("Ensemble methods")
        recommendations.append("Focal loss (if using deep learning)")
    if dataset size < 1000: # Small dataset
        recommendations.append("Avoid oversampling (risk of overfitting)")
        recommendations.append("Use cross-validation carefully")
    if problem type == "fraud detection":
        recommendations.append("Prioritize recall over precision")
        recommendations.append("Consider business costs in evaluation")
    elif problem type == "medical diagnosis":
        recommendations.append("Minimize false negatives")
        recommendations.append("Use ensemble methods for robustness")
    return recommendations
# Example usage
print("Recommendations for fraud detection (ratio 1:1000, large dataset):")
recs = recommend technique(1000, 100000, "fraud detection")
for i, rec in enumerate(recs, 1):
    print(f"{i}. {rec}")
```

8.2 Evaluation Strategy

```
python
```

```
def comprehensive evaluation(y true, y pred, y pred proba=None):
    0.00
    Comprehensive evaluation for imbalanced datasets
    results = {}
    # Basic metrics
    results['accuracy'] = accuracy_score(y_true, y_pred)
    results['precision'] = precision_score(y_true, y_pred)
    results['recall'] = recall score(y true, y pred)
    results['f1'] = f1 score(y true, y pred)
    results['specificity'] = recall score(y true, y pred, pos label=0)
    # Advanced metrics
    if y pred proba is not None:
        results['roc auc'] = roc auc score(y true, y pred proba)
        precision_curve, recall_curve, = precision_recall_curve(y_true, y_pred_proba
        results['pr auc'] = auc(recall curve, precision curve)
    # Class-specific metrics
    cm = confusion matrix(y true, y pred)
    results['confusion matrix'] = cm
    # Balanced accuracy
    results['balanced accuracy'] = (results['recall'] + results['specificity']) / 2
    return results
print("Comprehensive evaluation framework includes:")
print("- Multiple metrics (precision, recall, F1, AUC-ROC, AUC-PR)")
print("- Confusion matrix analysis")
print("- Class-specific performance")
print("- Balanced accuracy")
print("- Business impact assessment")
```

8.3 Common Pitfalls and How to Avoid Them

```
print("COMMON PITFALLS IN IMBALANCED LEARNING:")
print()
print("1. RELYING SOLELY ON ACCURACY")
        Problem: 99% accuracy might mean 0% minority class detection")
print("
print("
          Solution: Use precision, recall, F1, AUC-PR")
print()
print("2. IMPROPER CROSS-VALIDATION")
print("
          Problem: Random splits may not preserve class distribution")
          Solution: Use stratified cross-validation")
print("
print()
print("3. RESAMPLING BEFORE SPLITTING")
print("
          Problem: Data leakage between train and test sets")
          Solution: Always split first, then resample training data only")
print("
print()
print("4. IGNORING BUSINESS COSTS")
          Problem: False positives and false negatives may have different costs")
print("
print("
          Solution: Incorporate business metrics in evaluation")
print()
print("5. OVERFITTING WITH OVERSAMPLING")
          Problem: Synthetic samples may not represent real patterns")
print("
print("
          Solution: Use cross-validation, ensemble methods, regularization")
print()
print("6. IGNORING TEMPORAL ASPECTS")
print(" Problem: In time series, past and future data get mixed")
print(" Solution: Use time-aware validation, respect temporal order")
```

9. Practical Implementation Checklist

9.1 Step-by-Step Implementation Guide

python

```
python
print("IMBALANCED DATA HANDLING CHECKLIST:")
print()
print("□ 1. EXPLORE AND UNDERSTAND THE DATA")
print(" - Calculate imbalance ratio")
print(" - Understand business context")
print(" - Identify if it's truly imbalanced or just rare events")
print()
print("□ 2. CHOOSE APPROPRIATE EVALUATION METRICS")
print(" - Avoid accuracy for severe imbalance")
print(" - Use precision, recall, F1, AUC-PR")
print(" - Consider business-specific metrics")
print()
print("□ 3. SET UP PROPER VALIDATION STRATEGY")
print(" - Use stratified cross-validation")
print(" - Ensure temporal consistency for time series")
print(" - Never resample before splitting")
print()
print("□ 4. TRY MULTIPLE APPROACHES")
print(" - Start with class weights")
print(" - Try resampling techniques (SMOTE, undersampling)")
print(" - Consider ensemble methods")
print(" - Test anomaly detection for extreme cases")
print()
print("□ 5. OPTIMIZE DECISION THRESHOLD")
print(" - Don't use default 0.5 threshold")
print(" - Optimize based on business requirements")
print(" - Consider precision-recall trade-offs")
print()
print("□ 6. VALIDATE WITH BUSINESS STAKEHOLDERS")
print(" - Ensure metrics align with business goals")
print(" - Test edge cases and failure modes")
```

10. Summary and Key Takeaways

print(" - Plan for model monitoring and updating")

10.1 When to Use Each Technique

Technique	Best For	Avoid When	
Class Weights	Quick baseline, mild imbalance	Need interpretable probabilities	
Random Oversampling	Small datasets, as baseline	Risk of overfitting	
SMOTE	Moderate imbalance, tabular data	High-dimensional, categorical data	
Random Undersampling	Large datasets, fast training	Small datasets, information loss	
Ensemble Methods	Robust performance needed	Interpretability required	
Anomaly Detection	Extreme imbalance (>1:1000)	Moderate imbalance	
Threshold Tuning	Business cost considerations	Balanced datasets	
◀	•	•	

10.2 Final Recommendations

```
python
print("KEY TAKEAWAYS:")
print()
print("1. UNDERSTAND YOUR PROBLEM DOMAIN")
print("
         - Not all imbalanced datasets require special handling")
       - Business context determines success metrics")
print("
print()
print("2. START SIMPLE, THEN ITERATE")
print("
         - Begin with class weights or threshold tuning")
print("
         - Add complexity only if needed")
print()
print("3. EVALUATION IS CRUCIAL")
print(" - Use multiple metrics")
print("
         - Focus on minority class performance")
print(" - Consider business impact")
print()
print("4. COMBINE TECHNIQUES")
print(" - Data-level + algorithm-level approaches")
print(" - Ensemble different strategies")
print()
print("5. MONITOR IN PRODUCTION")
print(" - Class distribution may drift over time")
print(" - Performance may degrade")
print(" - Plan for model updates")
```

Practice Problems

Problem 1: Medical Diagnosis

You're building a model to detect a rare disease that affects 0.5% of the population. False negatives are 10x more costly than false positives. Which techniques would you use and why?

Problem 2: Email Spam Detection

Your spam detection system has 95% accuracy but users complain that too many legitimate emails are marked as spam. The spam rate is about 20%. How would you improve this?

Problem 3: Quality Control

In manufacturing, defective products occur in 2% of cases. You have 100,000 samples. Detection cost is \$1 per item, missed defects cost \$100 each, and false alarms cost \$10 each. Design an optimal strategy.

Problem 4: Time Series Anomaly Detection

You're monitoring server logs where anomalies occur in 0.01% of records. The data has strong temporal patterns. How would you handle this extreme imbalance while respecting temporal dependencies?

Problem 5: Multi-class Imbalance

A customer segmentation problem has 5 classes with distribution [60%, 25%, 10%, 4%, 1%]. You need to predict all classes accurately. What's your approach?

This comprehensive lecture covers the fundamental concepts, practical implementations, and real-world considerations for handling imbalanced data in machine learning. Each technique includes both theoretical understanding and hands-on coding examples to reinforce learning.