Examen Juillet 2013

I Mouvement d'un satellite

4)
$$r = 1.07 \cdot 10^9 \text{ m}$$
; $T = 171.7 \text{ h} = 6.18 \cdot 10^5 \text{ s}$; $M = 1.89 \cdot 10^{27} \text{ kg}$

6)
$$T_J = 9.93 \text{ h} = 3.57 \cdot 10^4 \text{ s}$$
; $z_S = 8.84 \cdot 10^7 \text{ m} = 88 360 \text{ km}$

II Oscillations électriques

b)
$$C = 6.9 \mu F$$
; $T = 4 ms$; $U_m = 15 V$

- 1) $f_0 = 250 \text{ Hz}$
- 2) L = 58.8 nH
- 3) $E_{em} = 0.776 \text{ mJ}$
- 4) $Q_0 = 0.104 \text{ mC}$
- 5) Oscillations amorties, amplitude décroit exponentiellement au cours du temps

III Ondes progressives / Ondes stationnaires

$$1 = 1.5 \text{ m}$$
; $n = 5$; $m = 0.415 \text{ kg}$

- 1) $\lambda = 0.6 \text{ m}$; c = 45 m/s
- 2) $\mu = 2 \text{ g/m}$
- 3) pour que n ne change pas si F double il faut multiplier f par $\sqrt{2}$; f' = 106 Hz

IV Atome d'hydrogène

b)
$$E_1 = -13.6 \text{ eV} = -2.18 \cdot 10^{-18} \text{ J}$$

- 1) énergie minimale pour $n_i = 1$ et $n_2 = 2$; $E_{min} = 1,63 \cdot 10^{-18}$ J
- 2) $f_{ion} = 3.28 48 \cdot 10^{15} \text{ Hz}$

V Radioactivité

2)
$$_{56}^{137}Cs \rightarrow _{56}^{137}Ba^* + _{-1}^{0}e + _{0}^{0}\overline{\nu}$$

 $_{56}^{137}Ba^* \rightarrow _{56}^{137}Ba + \gamma$

4)
$$A_0 = 5 \cdot 10^8 \, \text{Bq}$$
; $T_{1/2} = 30 \, \text{y} = 9,47 \cdot 10^8 \, \text{s}$, $M = 0,137 \, \text{kg/mol}$ $\lambda = 7,32 \cdot 10^{-10} \, \text{s}^{-1}$; $N_0 = 6,83 \cdot 10^{17}$; $m_0 = 155 \, \mu \text{g}$

5)
$$A = 3.15 \cdot 10^8 \text{ Bq}$$

6)
$$A = 0.1 A_0$$
; $t' = 99.7 y$