Reference Slides COM2107 Logic in Computer Science

Brian Courtehoute based on lecture notes by Georg Struth and slides by Jonni Virtema

University of Sheffield

Week 11

Components of Logic Systems

	Syntax	Deductive System	Semantics	Metalan- guage
purpose	constructs	transforms	interprets	presents
	expressions	expressions	expressions	expressions
symbols	\rightarrow , \leftrightarrow	⊢, ⊣⊢	⊨ , ≡	\Rightarrow , \Leftrightarrow
symbol	\rightarrow ' is part of a	'⊢' means	'⊨' means	'⇒' provides if-
meaning	logical	entailment in a	entailment of	then-reasoning
	expression	proof system	truth values	about the logic
				itself
related	expressions	tabular proofs,	truth tables,	mathematical
objects	(i.e. formulas)	proof trees,	valuations,	statements and
		deduction rules	structures	proofs using
				metalanguage

Section 1

Propositional Logic

Propositional Logic: Syntax

The set Φ of formulas is defined by the following grammar.

$$\mathbf{\Phi} ::= \bot \, | \, \top \, | \, p \, | \, (\neg \mathbf{\Phi}) \, | \, (\mathbf{\Phi} \wedge \mathbf{\Phi}) \, | \, (\mathbf{\Phi} \vee \mathbf{\Phi}) \, | \, (\mathbf{\Phi} \to \mathbf{\Phi})$$

where

- ightharpoonup p is a propositional variable from a countably infinite set P,
- ▶ \bot , \top , \neg , \lor , \land , \rightarrow are propositional connectives,
- (,) are auxiliary symbols.

 \bot , \top , and propositional variables p are $atomic\ formulas$, and all other formulas are composite.

Propositional Logic: Deduction Rules

$$\frac{1}{\varphi \lor \neg \varphi} \operatorname{lem} \quad \stackrel{\square \varphi}{\overset{\square}{\varphi}} \operatorname{pbc} \quad \frac{\neg \neg \varphi}{\varphi} \neg \neg h$$

Propositional Logic: Semantics

▶ Let $v: P \to \mathbb{B}$ be an assignment. A valuation function is defined as follows.

$$\begin{split} \llbracket \top \rrbracket_v &= 1 \\ \llbracket \bot \rrbracket_v &= 0 \\ \llbracket p \rrbracket_v &= v(p) \quad \text{for } p \in P \\ \llbracket \neg \varphi \rrbracket_v &= 1 - \llbracket \varphi \rrbracket_v \\ \llbracket \varphi \wedge \psi \rrbracket_v &= \min(\llbracket \varphi \rrbracket_v, \llbracket \psi \rrbracket_v) \\ \llbracket \varphi \vee \psi \rrbracket_v &= \max(\llbracket \varphi \rrbracket_v, \llbracket \psi \rrbracket_v) \\ \llbracket \varphi \to \psi \rrbracket_v &= \max(1 - \llbracket \varphi \rrbracket_v, \llbracket \psi \rrbracket_v) \end{split}$$

▶ In the following definitions, φ and ψ are formulas and Γ is a set of formulas.

Notation	Name	Definition
$\vdash \varphi$	φ is a	$\llbracket \varphi \rrbracket_v = 1$ for all assignments v
	tautology	
$\Gamma \vDash \varphi$	Γ entails φ	For every assignment v , if $\llbracket \psi \rrbracket_v = 1$ for each
		$\psi \in \Gamma$, then $[\![\varphi]\!]_v = 1$
$\varphi \equiv \psi$	φ and ψ	$\llbracket \varphi \rrbracket_v = \llbracket \psi \rrbracket_v \text{ for all assignments } v$
	are logically	
	equivalent	

Section 2

Predicate Logic

Predicate Logic: Syntax

The set Φ_{Σ} of Σ -formulas is defined by the following grammar.

$$\mathbf{\Phi}_{\Sigma} ::= \bot \mid \top \mid t_{1} = t_{2} \mid P(t_{1}, \dots, t_{n}) \mid (\forall x. \, \mathbf{\Phi}_{\Sigma}) \mid (\exists x. \, \mathbf{\Phi}_{\Sigma}) \mid (\neg \mathbf{\Phi}_{\Sigma}) \mid (\mathbf{\Phi}_{\Sigma} \land \mathbf{\Phi}_{\Sigma}) \mid (\mathbf{\Phi}_{\Sigma} \lor \mathbf{\Phi}_{\Sigma}) \mid (\mathbf{\Phi}_{\Sigma} \to \mathbf{\Phi}_{\Sigma})$$

where

- $\Sigma = \mathcal{F} \cup \mathcal{P}$ is a signature,
- \triangleright $\mathcal{F} = \{f_1, f_2, \dots\}$ is a set of function symbols, each of fixed arity,
- $ightharpoonup \mathcal{P} = \{P_1, P_2, \dots\}$ is a set of *predicate symbols*, each of fixed arity,
- ightharpoonup x is a *variable* from a countably infinite set \mathcal{V} ,
- $ightharpoonup t_1, \ldots, t_n$ are terms defined by the grammar

$$\mathcal{T}_{\Sigma} ::= x \mid f(\mathcal{T}_{\Sigma}, \dots, \mathcal{T}_{\Sigma}), \text{ where } x \in \mathcal{V} \text{ and } f \in \mathcal{F},$$

- \triangleright = is the special binary predicate symbol for *equality*,
- \blacktriangleright \bot , \top , \neg , \lor , \land , \rightarrow , \forall , \exists are connectives,
- (,) are auxiliary symbols.

Predicate Logic: Deduction Rules

Tedicate Logic. Deduction rules
$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge I \quad \frac{\varphi \wedge \psi}{\varphi} \wedge E_{l} \quad \frac{\varphi \wedge \psi}{\psi} \wedge E_{r} \quad \Big| \quad = \top I \quad \frac{\bot}{\varphi} \bot E$$

$$\frac{\varphi}{\varphi \vee \psi} \vee I_{l} \quad \frac{\psi}{\varphi \vee \psi} \vee I_{r} \quad \frac{\varphi \vee \psi \quad \overset{\vdots}{\chi} \quad \overset{\vdots}{\chi} \quad \overset{\vdots}{\chi}}{\chi} \vee E$$

$$\begin{bmatrix} [\varphi] \\ \vdots \\ \frac{\psi}{\varphi \rightarrow \psi} \rightarrow I \quad \frac{\varphi \rightarrow \psi \quad \varphi}{\psi} \rightarrow E \quad \Big| \quad \frac{[\varphi] \\ \vdots \\ \frac{\bot}{\neg \varphi} \neg I \quad \frac{\varphi \quad \neg \varphi}{\bot} \neg E \\ \\ \vdots \\ \neg \varphi \end{bmatrix}$$

$$[\varphi [a/x]]$$

$$\begin{array}{ccc} & & & & & & \\ & \vdots & & & & \\ & & & \frac{\bot}{\varphi} \operatorname{pbc} & & \frac{\neg \neg \varphi}{\varphi} \neg \neg E \end{array}$$

$$\frac{\varphi[t/x]}{\exists x. \, \varphi} \, \exists I \quad \stackrel{\exists x}{\Rightarrow} \quad \text{where } t \text{ is any term}$$

where a is a fresh

parameter

$$\frac{\varphi}{\psi}$$
 where a is a fresh

 ψ

$$t_1 = t_2 \quad \varphi[t_1/x]$$

where
$$t$$
 is any term where a is that is free for x in φ

$$\varphi \left[\frac{\varphi\left[a/x\right] }{\sqrt{t}}\right] \forall I \qquad \frac{\forall x. \varphi}{\sqrt{t}}$$

$$\frac{\sqrt{t}}{\varphi} \frac{\varphi}{[t/x]} \forall E$$
where t is any term that is free for x in φ

Predicate Logic: Semantics (Part 1)

Semantics of predicates and functions

A Σ -structure is a pair $\mathfrak{A} = (A, (-)^{\mathfrak{A}})$, where

- ightharpoonup A is a nonempty set called the *carrier set*,
- $(-)^{\mathfrak{A}}$ is a function that maps
 - an *n*-ary predicate symbol $R \in \Sigma$ to an *n*-ary relation $R^{\mathfrak{A}} \subseteq A^n$,
 - ▶ an *n*-ary function symbol $f \in \Sigma$ to an *n*-ary function $f^{\mathfrak{A}}: A^n \to A$.

Semantics of terms

An assignment is a function $v \colon \mathcal{V} \to A$ that associates variables with constants $c^{\mathfrak{A}} \in A$.

An interpretation of terms is a function $[\![-]\!]_v^{\mathfrak{A}} : \mathcal{T}_{\Sigma} \to A$ defined by

$$[x]_v^{\mathfrak{A}} = v(x) \quad \text{if } x \in \mathcal{V},$$

$$[c]_v^{\mathfrak{A}} = c^{\mathfrak{A}} \quad \text{if } c \in \mathcal{F} \text{ is a constant},$$

$$[f(t_1, \dots, t_n)]_v^{\mathfrak{A}} = f^{\mathfrak{A}}([t_1]_v^{\mathfrak{A}}, \dots, [t_n]_v^{\mathfrak{A}}) \quad \text{if } n \geq 1.$$

Predicate Logic: Semantics (Part 2)

Semantics of formulas

We extend $\llbracket - \rrbracket_v^{\mathfrak{A}} \colon \mathcal{T}_{\Sigma} \to A$ to an interpretation of Σ -formulas $\llbracket - \rrbracket_v^{\mathfrak{A}} \colon \Phi_{\Sigma} \to \mathbb{B}$.

$$[P(t_1, \dots, t_n)]_v^{\mathfrak{A}} = \begin{cases} 1 & \text{if } ([t_1]_v^{\mathfrak{A}}, \dots, [t_n]_v^{\mathfrak{A}}) \in P^{\mathfrak{A}} \\ 0 & \text{otherwise} \end{cases}$$
$$[\neg \varphi]_v^{\mathfrak{A}} = 1 - [\varphi]_v^{\mathfrak{A}}$$
$$[\varphi \wedge \psi]_v^{\mathfrak{A}} = \min([\varphi]_v^{\mathfrak{A}}, [\psi]_v^{\mathfrak{A}})$$

$$[\![\varphi \lor \psi]\!]_v^{\mathfrak{A}} = \max([\![\varphi]\!]_v^{\mathfrak{A}}, [\![\psi]\!]_v^{\mathfrak{A}})$$

$$[\![\varphi \to \psi]\!]_v^{\mathfrak{A}} = \max([\![1 - \varphi]\!]_v^{\mathfrak{A}}, [\![\psi]\!]_v^{\mathfrak{A}})$$

 $\llbracket \forall x. \, \varphi \rrbracket_v^{\mathfrak{A}} = \min_{c^{\mathfrak{A}} \in A} (\llbracket \varphi \rrbracket_{v[x \mapsto c^{\mathfrak{A}}]}^{\mathfrak{A}})$

Section 3

Regular Expressions as Predicate Logic Formulas

Regular Expressions and Word Structures

Grammar generating regular expressions

$$R ::= \emptyset \mid \epsilon \mid a \mid R + R \mid R \cdot R \mid R^*$$

where \emptyset is the empty expression, ϵ the empty string, $a \in \Sigma$ a character, + alternation, \cdot concatenation, and * the Kleene star.

Grammar generating star-free regular expressions

$$R ::= \emptyset \mid \epsilon \mid a \mid R + R \mid R \cdot R \mid R \cap R \mid \overline{R}$$

where \cap denotes intersection of languages and \overline{R} the complement of R.

Word structures

A word $w \in \Sigma^*$ using characters in $\Sigma = \{a_1, \ldots, a_n\}$ corresponds to a Σ' -structure \mathfrak{A}_w , with $\Sigma' = \{\leq, P_{a_1}, \ldots, P_{a_n}\}$, where

- \triangleright \leq is a binary relation symbol, and P_{a_1}, \ldots, P_{a_n} are unary relation symbols
- ▶ The carrier set of \mathfrak{A}_w is $\{1, 2, \ldots, |w| + 1\}$
- $ightharpoonup P_a^{\mathfrak{A}_w}$ is the set of positions character a takes in word w

Expanding on Word Structures

Additional word structure symbols

We extend Σ' with

- ightharpoonup Constant symbol m interpreted as 1,
- ightharpoonup Constant symbol M interpreted as |w|+1,
- ▶ Binary relation symbol \prec interpreted as $\{(i, i+1) \mid 1 \le i \le |w|\}$.

Axioms on word structures

 \triangleright Position M is not labelled with any character:

$$\bigwedge_{a \in \Sigma} \neg P_a(M)$$

 \triangleright Every non-M position is labelled with exactly one character:

$$\forall x \left(x \neq M \to \bigvee_{a \in \Sigma} \left(P_a(x) \land \bigwedge_{\substack{b \in \Sigma \\ b \neq a}} \neg P_b(x) \right) \right)$$

From Regular Expressions to Predicate Logic

For a word w, w(i) is the i^{th} character of w, and w[i,j] is the subword $w(i)w(i+1)\dots w(j-1)$.

Recursive definition of $\varphi_R(x,y)$ for regular expression R such that

$$\mathfrak{A}_w \vDash \varphi_R(i/x, j/y) \iff w[i, j] \in R$$

- Characters a: $\varphi_a(x,y) := x \prec y \land P_a(x)$
- ightharpoonup Empty word: $\varphi_{\epsilon}(x,y) := x = y$
- ▶ Empty language: $\varphi_{\emptyset}(x,y) := \bot$
- ▶ Concatenation: $\varphi_{RS}(x,y) := \exists z \ (x \leq z \land z \leq y \land \varphi_{R}(x,z) \land \varphi_{S}(z,y))$
- Alternation: $\varphi_{R+S}(x,y) := \varphi_R(x,y) \vee \varphi_S(x,y)$
- ▶ Intersection: $\varphi_{R \cap S}(x, y) := \varphi_R(x, y) \land \varphi_S(x, y)$
- ▶ Complement: $\varphi_{\overline{R}}(x,y) := \neg \varphi_R(x,y)$

Section 4

Automated Proof Search

Conjunctive Normal Form (Propositional Formulas)

Step 1: Eliminate \leftrightarrow and \rightarrow from the input formula.

$$\varphi \leftrightarrow \psi \equiv (\varphi \to \psi) \land (\psi \to \varphi)$$
$$\varphi \to \psi \equiv \neg \varphi \lor \psi$$

Step 2: Push negation towards literals.

$$\neg\neg\varphi \equiv \varphi \qquad \neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi \qquad \neg\bot \equiv \top$$
$$\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi \qquad \neg\top \equiv \bot$$

Step 3: Distribute disjunctions into conjunctions.

$$\varphi \lor (\psi \land \chi) \equiv (\varphi \lor \psi) \land (\varphi \lor \chi)$$
$$(\varphi \lor \psi) \land \chi \equiv (\varphi \lor \chi) \land (\psi \lor \chi)$$

Step 4: (optional) Simplify the resulting CNF formula:

- ▶ Rewrite clauses with complementary literals (e.g. p and $\neg p$) to \top .
- ▶ Rewrite $\varphi \land \top \equiv \varphi$, $\varphi \land \bot \equiv \bot$, $\varphi \lor \top \equiv \top$, $\varphi \lor \bot \equiv \varphi$.
- ightharpoonup Delete clause C if all literals of another clause C' occur in C (subsumption).

The DPLL Algorithm (Propositional Formulas)

Step 1: Delete all tautological clauses $\{p, \neg p, \dots\}$

Step 2: For each unit clause $\{l\}$:

- \triangleright Delete all clauses containing l.
- ightharpoonup Delete $\neg l$ from all clauses.

Step 3: Delete all clauses that contain pure literals l (i.e. no clause in the clause set contains the negation of l).

Step 4:

- ightharpoonup If the empty clause \square is generated, return "No".
- ▶ If the clause set \emptyset is generated, return "Yes".

Step 5: Otherwise, pick a literal l and do a case split $\Gamma[\top/l]$ and $\Gamma[\bot/l]$ on the clause set Γ , simplifying as follows:

- ▶ Case \top : Delete all clauses containing l, delete $\neg l$ from all clauses.
- ▶ Case \bot : Delete all clauses containing $\neg l$, delete l from all clauses.

Run DPLL recursively on $\Gamma[\top/l]$ and $\Gamma[\bot/l]$. Return "Yes" if one of the case splits returns "Yes", return "No" otherwise.

Prenex Normal Form (Predicate Formulas)

Step 1: Rename variables such that:

- ▶ No variable occurs both bound and free.
- ▶ Different occurrences of quantifiers bind different variables.

Step 2: Transform into negation normal form:

- ightharpoonup Neither \leftrightarrow nor \rightarrow occur.
- ▶ Every negation symbol immediately precedes an atomic formula.

$$\neg \forall x. \ \varphi \equiv \exists x. \ \neg \varphi$$
$$\neg \exists x. \ \varphi \equiv \forall x. \ \neg \varphi$$

Step 3: Pull quantifiers to the top of the syntax tree using the following equivalences:

$$(\forall x. \ \varphi) \land \psi \equiv \forall x. \ (\varphi \land \psi)$$
$$(\forall x. \ \varphi) \lor \psi \equiv \forall x. \ (\varphi \lor \psi)$$
$$(\exists x. \ \varphi) \land \psi \equiv \exists x. \ (\varphi \land \psi)$$

$$(\exists x. \ \varphi) \lor \psi \equiv \exists x. \ (\varphi \lor \psi)$$

$$(\forall x. \ \varphi) \land (\forall y. \ \psi) \equiv \forall x. \ (\varphi \land \psi[x/y])$$
$$(\exists x. \ \varphi) \lor (\exists y. \ \psi) \equiv \exists x. \ (\varphi \lor \psi[x/y])$$

Clause Normal Form (Predicate Formulas)

Step 1: Bring formula into prenex normal form.

Step 2: Skolemise (get rid of existential quantifiers): For each existentially quantified variable $\exists y$ occurring in the formula

$$\forall x_1 \dots \forall x_n \exists y. \ \varphi$$

expand the signature with an n-ary function symbol f and transform the formula into

$$\forall x_1 \dots \forall x_n. \ \varphi[f(x_1, \dots, x_n)/y].$$

Step 3: Transform into CNF and delete universal quantifiers.

Refutational Theorem Proving

To show that φ is valid:

- ▶ Transform $\neg \varphi$ into a CNF-formula ψ .
- ▶ Use resolution to derive \Box from ψ :

$$\frac{C \vee l \qquad C' \vee \neg l}{C \vee C'}$$

More general resolution (for terms L and L'): if σ is a substitution such that $L\sigma = L'\sigma$ then:

$$\frac{C \vee L \qquad C' \vee \neg L'}{(C \vee C')\sigma}$$

Unification

Substitution σ is a *unifier* of terms s and t if $s\sigma = t\sigma$.

Unifier σ is the most general unifier (mgu) of s and t if for all unifiers ρ of s and t there exists a substitution τ such that $\rho = \tau \circ \sigma$.

By $s \approx t$, we denote that s and t are to be unified.

Unification Algorithm

The unification algorithm finds a most general unifier for a set $E = \{s_1 \approx t_1, \dots, s_n \approx t_n\}$ of pairs of terms.

We abbreviate $E \cup \{s \approx t\}$ as $E, s \approx t$.

$$E, s \approx s \rightsquigarrow E$$

$$E, f(s_1, \dots, s_n) \approx f(t_1, \dots, t_n) \rightsquigarrow E, s_1 \approx t_1, \dots, s_n \approx t_n$$

$$E, f(\dots) \approx g(\dots) \rightsquigarrow \bot$$

$$E, t \approx x \rightsquigarrow E, x \approx t \qquad \text{if } t \notin \mathcal{V}$$

$$E, x \approx t \rightsquigarrow \bot \qquad \text{if } x \neq t, x \in V(t)$$

$$E, x \approx t \rightsquigarrow E[t/x], x \approx t \qquad \text{if } x \in V(E), x \notin V(t)$$

Resolution

We can show validity via refutational theorem proving by using the resolution rule

$$\frac{C \vee L \qquad C' \vee \neg L'}{(C \vee C')\sigma} \qquad \sigma = \mathrm{mgu}(L, L')$$

and the factoring rule

$$\frac{C \vee L \vee L'}{(C \vee L)\sigma} \qquad \sigma = \operatorname{mgu}(L, L')$$

Section 5

Linear Temporal Logic

Labelled Transition Systems

Labelled transition system (LTS): a structure $(S, \rightarrow, \lambda)$ over a set P of propositional variables where

- \triangleright S is a finite set of states,
- $ightharpoonup \to \subseteq S \times S$ is a binary transition relation,
- ▶ $\lambda: S \to \mathcal{P}(P)$ is a labelling function that maps states to sets of propositional variables.

We require that for all $s \in S$ there exists $s' \in S$ such that $s \to s'$.

Path: a sequence $\pi: \mathbb{N} \to S$ such that $\pi(i) \to \pi(i+1)$ for all $i \in \mathbb{N}$. We write

- \blacksquare $\pi = t_0 t_1 t_2 \dots$ for a path,
- $\mathbf{r}^i = t_i t_{i+1} t_{i+2} \dots$ for the i^{th} suffix of π .

Linear Temporal Logic: Syntax

Linear temporal logic: Formulas are defined by the syntax

$$\Phi ::= \bot \mid \top \mid p \mid \neg \Phi \mid \Phi \wedge \Phi \mid \Phi \vee \Phi \mid \Phi \rightarrow \Phi \mid X\Phi \mid F\Phi \mid G\Phi \mid \Phi U\Phi \mid \Phi W\Phi$$

Connective	Pronunciation	Meaning on a path π
$X\varphi$	next φ	φ holds on π^1
$F\varphi$	eventually φ	φ holds on π^k , for some k
$G \varphi$	globally φ	φ holds on π^k , for all k
$\varphi U \psi$	$arphi$ until ψ	ψ holds on π^k , for some k , and φ holds on π^i , for all $i < k$
$\varphi W \psi$	φ weak until ψ	Either $\varphi U \psi$ or $G \varphi$.

Linear Temporal Logic: Semantics

Satisfiability relation: $\pi \models \varphi$ defined by

 $\triangleright \pi \not\models \bot \text{ and } \pi \models \top$

 $\blacktriangleright \pi \models \varphi \land \psi \Leftrightarrow \pi \models \varphi \text{ and } \pi \models \psi$

- $\blacktriangleright \pi \vDash \varphi \lor \psi \Leftrightarrow \pi \vDash \varphi \text{ or } \pi \vDash \psi$

 $\blacktriangleright \pi \vDash \varphi \rightarrow \psi \Leftrightarrow \pi \vDash \psi \text{ whenever } \pi \vDash \varphi$

- $\blacktriangleright \ \pi \vDash X\varphi \ \Leftrightarrow \ \pi^1 \vDash \varphi$

- $\blacktriangleright \pi \vDash \varphi U \psi \Leftrightarrow \pi^k \vDash \psi \text{ for some } k \in \mathbb{N} \text{ and } \pi^i \vDash \varphi \text{ for all } 0 \le i < k$

Equivalence and Model Checking

Equivalence: φ and ψ are equivalent, $\varphi \equiv \psi$ if $\pi \vDash \varphi \Leftrightarrow \pi \vDash \psi$ holds for all paths π of all LTS's \mathfrak{G} .

Some equivalences:

$$F(\varphi \vee \psi) \equiv F\varphi \vee F\psi$$

$$G(\varphi \wedge \psi) \equiv G\varphi \wedge G\psi$$

$$F\varphi \equiv \top U\varphi$$

$$G\varphi \equiv \neg (\top U \neg \varphi)$$

Model Checking Problem: $\mathfrak{G}, s \models \varphi$

is the problem of deciding whether $\pi \vDash \varphi$ for all paths π of \mathfrak{G} with $s = s_0$.