Assignment 1

Name: Mythresh Maddina

Uid No: 700741162

Video link:

https://drive.google.com/file/d/1BuBz2YrbX37-F I Da-DKmf3rK 29G7Q/view?usp=share link

Github Link:https://github.com/MythreshM/CS5710 Assignment1

Document Link:

https://docs.google.com/document/d/1Kuq-Su6bbsePuQEmh5sJ7ymqP4uwFyHDGTJEtgJaTms/edit?usp=sharing

Question 1:

Question 2:

Question 3:

Question 4:

Code:

Output:

```
| Tuble | Pipe |
```

Question 5:

```
Question 5

In [5]: M radius=30
PI=3.14
#compute area of circle
area of circle=PI* radius*radius
print("The area of circle is {} square meters.".format(area_of_circle))
#compute circumference of circle
circum_of_circle=PI*radius
print("The circumference of circle is {} meters.".format(circum_of_circle))
# radius as user input
radii=float(input("Enter the radius: "))
#compute area
print("The area of circle for radii {} is {} square meters.".format(radii,PI*radii*radii))

The area of circle is 2826.0 square meters.
The circumference of circle is 188.4 meters.
Enter the radius: 20
The area of circle for radii 20.0 is 1256.0 square meters.
```

Question 6:

Question 7:

Question 7

```
In [7]: #Here we use \t escape character to provide space tab between string
print("Name","Age","Country","City",sep='\t')
print("Asabeneh",250,"Finland","Helsinki",sep='\t')

Name Age Country City
Asabeneh 250 Finland Helsinki
```

Question 8:

```
Question 8

In [8]: N radius = 10
area = 3.14 * radius ** 2
print("The area of a circle with radius {} is {} meters square.".format(radius,int(area)))

The area of a circle with radius 10 is 314 meters square.
```

Question 9:

```
Question 9

In [9]: M Naint(input("Inter no of students: "))
    weight in lbs=[int(input()) for i in range(N)]
    print("11:", weight in lbs)
    weight in kgs=[weight in lbs[i]*0.453592 for i in range(N)]
    print("Output:", weight in kgs)

Enter no of students: 4
    150
    155
    145
    148
    L1: [150, 155, 145, 148]
    Output: [68.0388, 70.30676, 65.7708399999999, 67.131616]
```

Question 10:

- Given there are 2 classes and 8 datasets with feature value f.
- The class with "O" is taken as zero and the class with "X" is taken as 1.

DataSet:

S.No	Feature Value	Class	ClassValue
1	1	0	0
2	2	0	0
3	3	Х	1
4	6	Х	1
5	6	Х	1
6	7	0	0
7	10	0	0
8	11	0	0

Put the first 4 data points as a training set.

Training Set:

S.No	Feature Value	Class	Class Value
1	1	0	0
2	2	0	0
3	3	X	1
4	6	Х	1

Testing set:

S. No	Feature Value
1	6
2	7
3	10
4	11

• Here we use KNN classifier with value K value K=3

For Feature Value f=6:

- F=2, F=3 and F=6 are the nearest three neighbors.
- Now calculate distance b/w testing value and its neighbors.

Feature Value(F)	Distance	
2	(2-6)^2=4^2=16	
3	(3-6)^2=3^2=9	

The feature value 6 is near to the testing data point. So, it is predicted to be class value 1.

For Feature Value f=7:

- F=2, F=3 and F=6 are the nearest three neighbors.
- Now calculate distance b/w testing value and its neighbors.

Feature Value(F)	Distance
2	(2-7)^2=5^2=25
3	(3-7)^2=4^2=16
6	(6-7)^2=1

The feature value 6 is near to the testing data point. So, it is predicted to be class value 1.

For Feature Value f=10:

- F=2, F=3 and F=6 are the nearest three neighbors.
- Now calculate distance b/w testing value and its neighbors.

Feature Value(F)	Distance
2	(2-10)^2=8^2=64
3	(3-10)^2=7^2=49
6	(6-10)^2=4^2=16

The feature value 6 is near to the testing data point. So, it is predicted to be class value 1.

For Feature Value f=11:

- F=2, F=3 and F=6 are the nearest three neighbors.
- Now calculate distance b/w testing value and its neighbors.

Feature Value(F)	Distance
2	(2-11)^2=9^2=81
3	(3-11)^2=8^2=64
6	(6-11)^2=5^2=25

The feature value 6 is near to the testing data point. So, it is predicted to be class value 1.

Feature Value	Original Class	Predicted Class
6	1	1
7	0	1
10	0	1
11	0	1

2.

Three values of class 1 of type O are predicted as false and one value of class X is predicted as true.

		Predicted Class	
		X	0
Actual Class	X	1	0
	0	3	0

True Positive(TP)=1

False Positive(FP)=3

True Negative(TN)=0

False Negative(FN)=0

Accuracy=(TP+FN)/(TP+FP+TN+FN)=1/4=25%

Sensitivity=TP/(TP+FN)=1/(1+0)=100%

Specificity=(TN)/(TN+FP)=(0)/(0+3)=0