

Міністерство науки і освіти України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

МЕТОДИЧНІ ВКАЗІВКИ до практичних занять з дисципліни «РЕСУРСОЗБЕРІГАЮЧІ ТЕХНОЛОГІЇ ЛОГІСТИЧНИХ СИСТЕМ»

(для студентів, що навчаються за спеціальністю 131 «Прикладна механіка», спеціалізація «Автоматизовані логістичні системи»)

Рекомендовано кафедрою Прикладної гідроаеромеханіки і механотроніки (Протокол від «28» 08 2024 р. №1)

УДК 621.311

Методичні вказівки до практичних занять з дисципліни «Ресурсозберігаючі технології логістичних систем» (для студентів, які навчаються за спеціальністю 131 «Прикладна механіка», спеціалізація «Автоматизовані логістичні системи» / Уклад. О.Б. Нєженцев. - Київ: КПІ ім. Ігоря Сікорського, 2024. - 40 с.

Дано рекомендації щодо виконання практичних занять з дисципліни «Ресурсозберігаючі технології логістичних систем». Наведено вихідні дані і варіанти завдань, викладено методики розрахунку втрат і економії електричної енергії в типових електричних установках. Надано приклади розрахунку. Для закріплення знань по кожному заняттю студентам запропоновано контрольні питання.

Укладач: О.Б. Нєженцев, к.т.н., доц.

Відповідальний. за випуск О.Ф. Луговський, д.т.н., проф.

Рецензент Б.С. Воронцов, д.т.н., доц.

ПРАКТИЧНЕ ЗАНЯТТЯ З Тема: ЗАМІНА МАЛОЗАВАНТАЖЕНИХ АСИНХРОННИХ ДВИГУНІВ ДВИГУНАМИ МЕНШОЇ ПОТУЖНОСТІ

Мета заняття - визначити зниження втрат активної потужності при заміні малозавантаженого асинхронного електродвигуна двигуном меншої потужності.

3.1 Умова завдання 5

Електродвигун А-92-2, що працює з навантаженням $P=70~\mathrm{kBr}$, замінюється електродвигуном меншої потужності А-82-2. Коефіцієнт зміни втрат $K_{\mu}=0,1~\mathrm{kBr/kBAp}$. Визначити ефективність виконаної заміни.

В таблиці 5 наведені технічні показники двигунів.

Таблиця5-Технічні показники електродвигунів

Найменування показників	Електродвигун А-92-2	Електродвигун А-82-2
Номінальна потужність Р _н , кВт	$P_{\scriptscriptstyle H} = 125 \text{ kBT}$	$P_{\scriptscriptstyle H} = 75~{\rm kBT}$
ККД двигуна при номінальному завантаженні $\eta_{\scriptscriptstyle H}$	$\eta_{\scriptscriptstyle \rm H}=0{,}92$	$\eta_{\scriptscriptstyle \mathrm{H}} = 0.91$
Коефіцієнт потужності (соsφ _н) при номінальному навантаженні	$\cos \phi_{\scriptscriptstyle H} = 0.92$	$\cos \phi_{\scriptscriptstyle H} = 0.92$
Струм холостого ходу I _x , А	$I_x = 71 A$	$I_x = 42.6 \text{ A}$
Втрати активної потужності при холостому ході ΔP_x , кВт	$\Delta P_{x} = 4,4$ κ B τ	$\Delta P_{x} = 3,2$ κ B τ
Лінійна напруга мережі U, В	U = 380 B	U = 380 B

3.2 Розв'язок

Ефективність заміни малозавантажених електродвигунів визначається зниженням сумарних втрат активної потужності ΔP у двигунах меншої потужності.

Сумарні втрати активної потужності ΔP у двигуні визначаються по формулі:

$$\Delta P = [Q_{\scriptscriptstyle X}(1\text{-}K^2_{\scriptscriptstyle 3}) \text{+} K^2_{\scriptscriptstyle 3} \; Q_{\scriptscriptstyle H}] K_{\scriptscriptstyle H} \text{+} \; \Delta P_{\scriptscriptstyle X} \text{+} K^2_{\scriptscriptstyle 3} \; \Delta P_{a},$$

де Q_x , $Q_{\scriptscriptstyle H}$ - реактивна потужність, споживана з мережі, відповідно при холостому ході і при номінальному навантаженні, кВАр;

К₃ - коефіцієнт завантаження двигуна

$$K_3 = \frac{P_{cp}}{P_{tr}} = \frac{70}{125} = 0.56$$
;

 ΔP_a - приріст втрат активної потужності в електродвигуні при повному навантаженні, кВт;

 $K_{\rm u}$ - коефіцієнт втрат в трансформаторах кВт/кВАр; для знижувальних трансформаторів 110/10кВ, що живляться від районних мереж $K_{\rm u}=0,1$.

Визначаємо втрати в малозавантаженому двигуні А 92-2.

Реактивна потужність, споживана асинхронним двигуном з мережі при холостому ході

$$Q_x = \sqrt{3} U I_x = \sqrt{3} \cdot 380 \cdot 71 \cdot 10^{-3} = 46,6 \text{ kBAp} .$$

Реактивна потужність, споживана асинхронним двигуном при номінальному завантаженні

$$Q_{_{\mathrm{H}}} = P_{_{\mathrm{H}}} \frac{\mathrm{tg}\phi_{_{\mathrm{H}}}}{\eta_{_{\mathrm{H}}}} = \frac{125 \cdot 0,426}{0,92} = 58,0 \text{ кВАр} \ .$$

Приріст втрат активної потужності в двигуні при 100% завантаженні

$$\Delta P_{a} = P_{H} \frac{1 - \eta_{H}}{\eta_{H} (1 + \gamma)},$$

де γ - розрахунковий коефіцієнт, що залежить від конструкції двигуна

$$\gamma = \frac{\Delta P_x'}{100 - \eta_y' - \Delta P_x'} = \frac{3.5}{100 - 92 - 3.5} = 0.8$$

де $\Delta P_{x}^{'}$ - втрати активної потужності при холостому ході, виражені у відсотках

$$\Delta P_{x}^{'} = \frac{\Delta P_{x}}{P_{H}} \cdot 100\% = \frac{4.4}{125} \cdot 100\% = 3.5\%;$$

 $\eta_{\rm H}^{'}$ - ККД двигуна при номінальному навантаженні, виражений у відсотках.

Таким чином, приріст втрат активної потужності в двигуні А 92-2 при 100% завантаженні

$$\Delta P_a = 125 \cdot \frac{1 - 0.92}{0.92(1 + 0.8)} = 6 \text{ kBT}.$$

Сумарні втрати активної потужності в двигуні А 92-2

$$\begin{split} \Delta P_1 &= [Q_x(1\text{-}K^2_{_3})\text{+}K^2_{_3}\;Q_{_H}]K_{_H}\text{+}\;\Delta P_x\text{+}K^2_{_3}\;\Delta P_a = \\ &= \Big[46\text{,}6\Big(1\text{-}1\text{,}56^2\Big)\text{+}\;0\text{,}56^2\cdot58\Big)\text{,}1\text{+}\;4\text{,}4\text{+}\;0\text{,}56^2\cdot6\text{=}11\text{,}6\;\;\text{kBt}\;. \end{split}$$

Аналогічно розрахуємо втрати в двигуні меншої потужності А 82-2.

Реактивна потужність, споживана асинхронним двигуном А 82-2 з мережі при холостому ході

$$Q_x = \sqrt{3}UI_x = \sqrt{3} \cdot 380 \cdot 42,6 \cdot 10^{-3} = 27,9 \text{ кВАр}.$$

Реактивна потужність, споживана асинхронним двигуном A 82-2 при номінальному завантаженні

$$Q_{_{\rm H}} = P_{_{\rm H}} \frac{\mathrm{tg}\phi_{_{\rm H}}}{\eta_{_{_{\rm H}}}} = \frac{75 \cdot 0,426}{0,91} = 35 \text{ kBAp}.$$

Приріст втрат активної потужності в двигуні А 82-2 при 100% завантаженні

$$\Delta P_a = P_H \frac{1 - \eta_H}{\eta_H (1 + \gamma)} = 75 \cdot \frac{1 - 0.91}{0.91(1 + 0.91)} = 3.86 \, \text{kBt},$$

де

$$\gamma = \frac{\Delta P_{x}^{'}}{100 - \eta_{H}^{'} - \Delta P_{x}^{'}} = \frac{4,3}{100 - 91 - 4,3} = 0,91;$$

$$\Delta P_{x}^{'} = \frac{\Delta P_{x}}{P_{H}} \cdot 100\% = \frac{3,2}{75} \cdot 100\% = 4,3\%.$$

Сумарні втрати активної потужності в двигуні А 82-2

$$\begin{split} \Delta P_2 &= [Q_x(1\text{-}K^2_{_3}) + K^2_{_3} \; Q_{_H}] K_{_H} + \Delta P_x + K^2_{_3} \; \Delta P_a = \\ &= \Big[27.9 \Big(1 - 0.93^2 \Big) + 0.93^2 \cdot 35 \Big] 0.1 + 3.2 + 0.93^2 \cdot 3.86 = 9.8 \; \text{ кBt }. \end{split}$$

Зниження сумарних втрат активної потужності після заміни двигунів

$$\Delta P = \Delta P_1 - \Delta P_2 = 11,6-9,8 = 1,8 \text{ kBt}$$
.

Заміна малозавантаженого асинхронного електродвигуна А 92-2 двигуном меншої потужності А 82-2 дозволить знизити втрати активної енергії ΔE_a за рік

$$\Delta E_a = \Delta P \cdot T_{poo} = 1,8 \cdot 3000 = 5400$$
 к $B_T \cdot г$ од.

Для виконання умов рентабельності необхідно, щоб економія від зниження втрат електроенергії (на протязі не більше 7 років) перевищила додаткові капіталовкладення на демонтаж старого двигуна, придбання і монтаж нового двигуна, а також різницю у вартості знятого обладнання (з урахуванням зносу) і встановлюваного (нового або такого, яке було в експлуатації).

Варіанти розрахунків при заміні малозавантажених асинхронних двигунів двигунами меншої потужності визначаються значеннями фактичного навантаження на двигун Р і наведені в таблиці 6.

Т а б л и ц я 6 – Початкові дані для розрахунків при заміні малозавантаженого асинхронного двигуна двигуном меншої потужності

Варіант	1	2	3	4	5	6	7	8	9	10	11	12
Р, кВт	48	50	52	54	56	58	60	62	64	66	68	70

3.3 Умова завдання 6

Електродвигун насоса гідроприводу механізму зміни вильоту стріли крана завантажений на 50% ($K_3 = 0.5$), коефіцієнт використання двигуна $K_B = 0.7$, к.к.д. насоса $\eta_H = 0.8$. Визначити збільшення питомих витрат електроенергії внаслідок неповного завантаження електродвигуна. Коефіцієнт, що залежить від типу робочої машини $\alpha = 0.8$.

3.4 Розв'язок

Визначаємо збільшення питомих втрат електроенергії за виразом:

$$\frac{A_{_{\Pi.B}}}{A_{_{\Pi.B}}^{'}} = \frac{K_{_3} \cdot K_{_B} + \alpha \cdot (1 - \eta_{_H})}{[1 + \alpha \cdot (1 - \eta_{_H}) \cdot K_{_3} \cdot K_{_B}} = \frac{0.5 \cdot 0.7 + 0.8(1 - 0.8)}{[1 + 0.8 \cdot (1 - 0.8) \cdot 0.5 \cdot 0.7]} = 1,43 \,,$$

де $A_{\text{п.в.}}$ - питомі витрати електроенергії, які рівні відношенню електроенергії, що споживається з мережі до енергії повної роботи технологічного обладнання при $K_{\text{\tiny B}}=1$;

 ${\bf A}_{{f n}.{f B}}^{'}$ - питомі витрати електроенергії при завантаженні машини до повної потужності;

К₃ - коефіцієнт завантаження;

К_в - коефіцієнт використання;

η_н - к.к.д. насоса;

 α - коефіцієнт, який залежить від типу робочої машини і знаходиться в межах 0,7÷0,9.

Початкові дані для розрахунку збільшення питомих витрат електроенергії внаслідок неповного завантаження електродвигуна за різними варіантами наведено в таблиці 7.

Таблиця7 - Початкові дані для розрахунку збільшення питомих витрат електроенергії внаслідок неповного завантаження електродвигуна

Варіант	Коефіцієнт завантаження К ₃	Коефіцієнт використання К _в	$\eta_{\scriptscriptstyle H}$	α
1	0,30	0,80	0,63	0,70
2	0,35	0,75	0,65	0,75
3	0,40	0,70	0,68	0,80
4	0,45	0,65	0,70	0,85
5	0,50	0,60	0,72	0,70
6	0,55	0,55	0,74	0,75
7	0,60	0,50	0,76	0,80
8	0,65	0,45	0,78	0,85
9	0,70	0,40	0,80	0,70
10	0,75	0,35	0,82	0,75
11	0,40	0,30	0,84	0,80
12	0,55	0,75	0,86	0,85

Контрольні питання

- 1 При який мірі завантаження двигуна:
 - а) доцільна його заміна?
 - б) доцільність заміни має бути підтверджена необхідними розрахунками?
 - в) заміна двигуна недоцільна?
- 2 Визначите реактивну потужність, споживану двигуном з мережі:
 - а) при холостому ході?
 - б) при номінальному навантаженні?
- 3 Як визначити коефіцієнт завантаження двигуна?
- 4 Як впливає коефіцієнт завантаження двигуна на втрати потужності в двигуні?
- 5 Яким показником визначається доцільність заміни малозавантаженого двигуна двигуном меншої потужності?

ЛІТЕРАТУРА

- 1 Мартинов А.В., Нєженцев О.Б., Шевченко М.О. Основи енергозбереження: Навчальній посібник. Луганськ: Вид-во СНУ ім. В. Даля, 2003. 232с.
- 2 Гольстрем В.А., Кузнецов Ю.Л. Справочник по экономии топливно-энергетических ресурсов. К.: Техніка, 1985. 383 с.
 - 3 Чиликин М.Г. Общий курс електропривода. М.: Энергия, 1971. 423 с.
- 4 Справочник по электроснабжению промышленных предприятий. / Под общ. ред. А.А.Федорова, Г.В.Сербиновского / Кн - 1. - М.: Энергия, 1973. – 520 с.
- 5 Мартынов А.В. Основы энергоэнтропии машин и процессов на промышленном транспорте. Луганск: Изд-во Восточноукр. гос. ун-та, 1997. 210 с.
- 6 Методичні рекомендації щодо нормування витрат палива, теплової енергії та опалення житлових, громадських будинків, споруд та на господарсько-побутові потреби в України.- К.: Держаний комітет України з енергозбереження. 2000, 636 с.

7 Методичні вказівки до практичних занять з дисципліни "Основи енергозбереження в ПТДБММ" (для студентів, що навчаються за напрямом "Машинобудування", спеціальність "Підйомно-транспортні, дорожні, будівельні, меліоративні машини і обладнання") / Уклад. О.Б. Нєженцев, М.О. Шевченко. - Сєвєродонецьк: Вид-во СНУ ім. В. Даля, 2016. - 40 с.

Додаток А

Таблиця А.1 – Питомий активний опір кабелів, Ом / км

Перетин жил, мм2	Алюміній	Мідь
10	3.12	1.84
16	1.95	1.16
25	1.25	0.74
35	0.894	0.53
50	0.62	0.37
70	0.447	0,265
95	0.329	0.195
120	0.261	0.154
150	0.2	0.124
185	0.169	0.1
240	0.13	0.077
300	0.1	0.061
400	0.077	0.046

Таблиця А.2 – Питомий активний і реактивний опір повітряних ліній, Ом / км

Перетин	a service of	Алюміній		Стале	алюміній	
проводу,	r_0 x_0		Пров	Провід АСУ, АСО		
		144	r_0	x_0	r ₀	x_0
16	1.96	0.39	2.06	0.411		La decreta de la composición dela composición de la composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición de la composición de la composición dela composic
25	1.27	0.377	1.38	0.398	a sa san Berse	
35	0.91	0.366	0.85	0.385		-
50	0.63	0.355	0.65	0.374	-	-
70	0.45	0.345	0.46	0.364	-	(10) (6.1)
95	0.33	0.333	0.33	0.353	-	1000
120	0.27	0.327	0.27	0.347	0.28	0.4
150	0.21	0.319	0.21	0.34	0.21	0.4
185	0.17	0.311	TVV = 1	1 1	0.17	0.393
240	0.13	0.304	7 7	الله الله الله الله الله الله الله الله	0.13	0.384
300		G -	- "		0.1	0.378
400	-	-			0.08	0.368

Додаток Б
Т а б л и ц я Б.1 - Технічні характеристики двохобмоткових трифазних трансформаторів

Тип трансформатора	P_{H} , $\kappa B T$	ΔP_{c} , $\kappa B T$	$\Delta P_{_{\mathrm{M}}}$, $\kappa \mathbf{B} \mathbf{T}$	I _{xx} , %	U _{K3} , %
TM-25/10	25	0,135	0,6	3,2	4,5
TM-40/10	40	0,190	0,88	3,0	4,5
TM-63/10	63	0,265	1,28	2,8	4,5
TM-100/10	100	0,365	1,97	2,6	4,5
TM-100/35	100	0,465	1,97	2,4	6,5
TM-160/10	160	0,565	2,65	2,4	4,5
TMBM-160/10	160	0,460	2,65	2,4	4,5
ТМФ-160	160	0,565	3,1	2,4	4,7
TM-160/35	160	0,700	3,1	2,4	6,8
TM-250/10	250	0,820	3,7	2,3	4,5
TMBM-250/10	250	0,660	3,7	2,3	4,5
ТМФ-250	250	0,820	4,2	2,3	4,5
TM-250/35	250	1,0	4,2	2,3	6,8
TM-320/10	320	1,600	6,0	6,0	5,5
TM-400/10	400	1,050	5,5	2,1	4,5
TM-400/35	400	1,150	4,2	3,5	4,5
TM-630/10	630	1,56	7,6	2,0	5,5
ТМФ-630/10	630	1,56	8,5	2,0	5,5
TM-630/35	630	1,42	7,6	3,0	6,5
TM-1000/10	1000	2,40	12,2	1,4	5,5
TMC-1000/10 3T3	1000	2,75	12,2	1,5	8,0
TM-1000/35	1000	2,75	12,2	1,5	6,5
TM-1600/10	1600	3,30	18,0	1,3	5,5
TM-1600/35	1600	3,65	18,0	1,4	6,5
TM-2500/10	2500	4,60	25,0	1,0	5,5
TM-2500/35	2500	5,10	25,0	1,1	6,5
TM-4000/10	4000	6,40	33,5	0,9	6,5
TM-4000/35	4000	6,70	33,5	1,0	7,5
TM-6300/10	6300	9,0	46,5	0,8	6,5
TM-6300/35	6300	9,40	46,5	0,9	7,5
TM-10000/35	6300	14,5	65,0	0,8	7,5
TM-16000/35	6300	21,0	90,0	0,6	8,0
		•			•

Додаток В

Т а б л и ц я В.1 - Технічні дані компенсуючих конденсаторів

Тип конденсатора	U, B	N, кВАр	Масса, кг
УК1-0.415-20Т3	415	20	32
УК2-0.415-40Т3	415	40	70
УК3-0.415-60Т3	415	60	102
УК4-0.415-80Т3	415	80	136
УК4-0.38-100У3	380	100	140
УКЛ-6.3-450У3	6300	450	600
УКП-6.3-900У3	6300	900	885
УКЛ-6.3-1350У3	6300	1350	1170
УКЛ-10.5-450У3	10500	450	600
KM-0.38-3	380	10	25
KM-10.5-1	10500	25	35

Т а б л и ц я В.2 – Характеристики статичних конденсаторів

Фірма	Напруга,	Land to the second popular of the second	Питома вартість,	Питома
виробник і тип	кВ	Ряд номінальних	Дол.	потужність,
конденсаторів		потужностей,	США/кВАр	кВАр/дм3
X7 X6 ?	0.4	кВАр	5,6-10,7	2,25-5,42
Усть-Кам'яно-	0,4	12,5; 30; 33; 60;		
горський	1,05	67	3,9-9,8	дані відсутні
конденсатор-	6,3	45,63; 125	3,3-3,4	дані відсутні
ний завод	10,5	75:150	3,3-10	дані відсутні
	0,4	2; 3,15; 4; 5;	3,8-13,8	2,0-9,0
ZEZ	A.R. 78899	6,25;		. errah
ZAMBERK		8; 10; 12,5; 15;	4.	
(CNAKP,	6,3	20;	2,4 -5,3	дані відсутні
CPAKB)	v dystas	25; 30; 40; 50	Notice Type of the dispers	
CIARD)	590 00 10 50-5	50; 100; 150;200		1 KNEW CHARLES
Чехія				
BERLINER	0,4	5; 8,3; 10; 12,5;	13,3-42,0	1,8-3,0
CONDENSAT		16,7; 20; 25; 30;	m in a max of	7.0
ORENFABRIK	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33,3; 40; 50; 60;	Took or literal extil state	Estable 11 1 man was a series of popular series

Продовження Таблиці В.2

ELEKTRONIK	0,4	Конденсатори	дані відсутні	3,9-8,5
ON	٠,٠	1; 2; 2,5; 3; 4; 6;		
CONDENSAT		6,25:		
OREN GERA		7,5; 8; 10; 12,5;		
(MPP, MKP-		13,3;	23,8-64,0	дані відсутні
конденсатори;		15; 20; 25		
EM-		конденсаторні	(4) (40)45 II (6) (5)	
конденсаторні		модулі		
модулі),		10; 12,5; 15; 20;	Declaration (Asia)	
Німеччина		25;	and the same of the same of	
		30; 40; 50; 60;		2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		80; 100		The second second
ндпкі	6,3	50; 75; 150	3,5-4,0	2,85-4,35
«Молнія»	10,5	50; 75; 150	3,5-4,0	2,85-4,35
(KMP1,				
KMP2),			We have	,
Україна				
EMEK	0,4	10; 20; 30; 40;	4,0	2,75-3,45
ELECTRIK		50; 60	1412 140 B	a 14
(ECOVAR-5,	30.0	Programme In the Company	Variote Afflication	
ECOVAR-5M),				
Туреччина	ar car			
ELEKTROMO	0,4	2,5; 5,8; 8; 10;	7,9-22,5	0,6-3,7
NTAZ		12; 15;	Andrews (Albertsenson H. 1966 - 1	
BUDGOSZCZ		20; 25; 30; 35;		e y
(CLMP),	2 to more com	40; 45;	and the second of the second o	
Польща		50; 60; 70; 80;		
	1. E. J	100;		A
2813.0		120;		

Додаток Г Т а б л и ц я Г.1 – Значення тригонометричних функцій

Градуси	sin	tg	ctg	cos	Градуси
0	0,0000	0,0000	-	1,0000	0
1	0,0175	0,0175	57,290	0,9998	I
2	0,0349	0.0349	28,636	0,9994	2
3	0,0523	0,0524	19,081	0,9986	3
4	0,0698	0,0699	14,301	0,9976	4
5	0,0872	0,0875	11,430	0,9962	5
6	0,1045	0,1051	9,5144	0.9945	6
7	0,1219	0,1228	8,1443	0.9925	7
8	0,1392	0.1405	7,1154	0,9903	8
9	0,1564	0,1584	6,3138	0,9877	9
10	0,1736	0,1763	5,6713	0,9818	10
11	0,1908	0,1944	5,1446	0,9816	11
12	0,2079	0,2126	4,7046	0,9781	12
13	0,2250	0.2309	4,3315	0,9744	13
14	0,2419	0,2493	4,0108	0,9703	14
15	0,2588	0,2679	3,7321	0,9659	15
16	0,2756	0,2867	3,4874	0.9613	16
17	0,2924	0.3057	3,2709	0,9563	17
18	0,3090	0.3249	3,0777	0,9511	18
19	0,3256	0,3443	2,9042	0,9455	19
20	0,3420	0,3640	2,7475	0,9397	20
21	0,3584	0,3839	2,6051	0,9336	21
22	0,3746	0,4040	2,4751	0,9272	22
23	0,3907	0,4245	2,3559	0,9205	23
24	0,4067	0,4452	2,2460	0,9135	24
25	0,4226	0,4663	2,1445	0,9063	25
26	0,4384	0,4877	2,0503	0,8988	26
27	0,4540	0,5095	1,9626	0,8910	27
28	0,4695	0,5317	1,8807	0,8829	28
29	0,4848	0,5543	1,8040	0,8746	29
30	0,5000	0,5774	1,7320	0,8660	30
31	0,5150	0,6009	1,6643	0,8572	31
32	0,5299	0,6249	1,6003	0,8480	32
33	0,5446	0,6494	1,5395	0,8387	33
34	0,5592	0,6745	1,4826	0,8290	34
35	0,5736	0,7002	1,4281	0,8192	35
36	0,5878	0,7265	1,3764	0,8090	36
37	0,6018	0,7536	1,3270	0,7986	37
38	0,6157	0,7813	1,2799	0,7880	38
39	0,6293	0,8098	1,2349	0,7771	39
40	0,6428	0,8391	1,1918	0,7660	40
41	0,6561	0,8693	1,1504	0,7547	41
42	0,6691	0,9004	1,1106	0,7431	42
43	0,6820	0,9325	1,0724	0,7314	43
. 44	0,6947	0;9657	1,0355	0,7193	- 44
45 -	0,7071	1,000	1,0000	0,7001	45
Градуси	cos	ctg	tg	sin	Градуси