YNIE 214 SAYISAL ANALIA

Dr. Öğretim Üyesi Bihter DAŞ

Fırat Üniversitesi Teknoloji Fakültesi Yazılım Mühendisliği

8.<u>Hafta</u> TEMEL MATRİS İŞLEMLERİ

- Matrisin tersi
- Matrisin determinanti
- Matris transpozu
- Matris normlari

MATRİSLER

 Matriste yatay yöndeki elemanlar dizisi satır, düşey yöndeki elemanlar dizisi sütun olarak adlandırılır.

• i ve j sırasıyla matrisin "satır" ve "sütun" terimlerini temsil etmektedir. nn all ,a22 ,a33 ,...,ann elemanlarından oluşan köşegene matrisin "asal" veya "ana köşegeni" denir.

Matrisin tersi

- Elementer satır işlemleri uygulanır.
- Sadece kare matrislerin tersi vardır ancak her kare matrisin de tersi olmayabilir. Mesela bir satırı tamamen 0 dan oluşan matrislerin)
- ❖ Bir matrisin tersiyle çarpımı birim matrisi (I) verir.

Matrisin tersi

Soru 1:
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Çözüm için izlenecek adımlar:

1. Verilen A matrisini birim matrise dönüştürmek için elementer satır işlemleri yapılır.

Matrisin Tersi

- 2. Matrisin sol alt köşesindeki elemanı 0 yapmakla işlemlere başlanır. Bunun için Matrisin 1. satırı -3 ile çarpılıp 2. satırla toplanır.
- Köşegeni 1 yapmak için 2. satır -1/2 ile çarpılır.

Matrisin Tersi

Matrisin sağ üst köşesini 0 yapmak için 2.satır -2 ile çarpılıp 1.satırla toplanır.

$$\begin{bmatrix}
1 & 2 & | & 1 & 0 \\
0 & 1 & | & 3/2 & -1/2
\end{bmatrix}
-2S_2+S_1$$

$$\begin{bmatrix}
1 & 0 & | & -2 & 1 \\
0 & 1 & | & 3/2 & -1/2
\end{bmatrix}$$

$$I$$

$$A^{-1} = \begin{bmatrix}
-2 & 1 \\
3/2 & -1/2
\end{bmatrix}$$

• Birim matrisi yanındaki matris A matrisinin tersini vermektedir.

Matris Kuralları

- \Box [A]+[B]=[B]+[A]
- \square [A]([B]+[C])=[A][B]+[A][C]
- \Box ([A][B])^T = [B]^T .[A]^T
- \square ([A].[B])⁻¹=[B]⁻¹[A]⁻¹
- \square det([A].[B])=det[A].det[B]
- \Box det[A]^T =det[A]

Matris Determinanti

matrisin determinantını bulmak için yapılacak işlemler;

$$det(A)=(2+0+40)-(-5+0+12)=42-7=35$$

Matrisin Transpozu

$$\bullet$$
 [B]=[A]^T Bij=Aji

Matrisin satırları sütun haline getirilir.

Vektör ve Matris Normları

$$V=x+3y-2z$$
 vektöründe $V_1=1, V_2=3, V_3=-2$

1. Euclidian Norm

$$| | \{V\} | | = \sqrt{v_1^2 + v_2^2 + v_3^2} = \sqrt{1^2 + 3^2 + (-2)^2} = 3.74$$

2. Uniform(tek biçimli) vektör norm

$$| | \{V\} | | = \max |V_i|$$
 $1 \le i \le n$ $\max |1,3,2| = 3$

3. Frobenius matris norm

$$| | \{A\} | | = (\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2)^{1/2}$$

4. Uniform matris normu

$$| | \{A\} | | = \max(\sum_{j=1}^{n} |a_{ij}|) | 1 \le i \le n$$

5. Sütun normu

$$| | \{A\} | | = \max(\sum_{i=1}^{n} |a_{ij}|) | 1 \le j \le n$$

Vektör ve Matris Normları

Örnek:

$$A = \begin{pmatrix} 1 & -2 & -1 \\ 2 & 3 & -2 \\ 3 & 4 & 5 \end{pmatrix}$$

Frobenius norm:

$$| | \{A\} | | = \{1^2 + 2^2 + 3^2 + (-2)^{2+3} + 4^2 + (-1)^2 + (-2)^2 + 5^2\}^{1/2} = 8,54$$

Uniform matris norm:

$$| | \{A\} | | = \max\{(1+2+1), (2+3+2), (3+4+5)\}$$

 $\max(4,7,12)=12$

Sutün matris norm:

$$| | \{A\} | | = \max\{(1+2+3),(2+3+4),(1+2+5)\}$$

 $\max(6,9,8)=9$

Matrisler için Matlab Komutları

```
clear all;close all;clc
A = [4 -2 6;1 8 4;-3 -1 5]
fprintf('Matrisin transpozunu almak için kullanılan komut \n');
tranpozA = A'
fprintf('Matrisin determinantını almak için kullanılan komut \n');
determinantA = det(A)
fprintf('Matrisin tersini almak için kullanılan komut \n');
tersiA = inv(A)
```

Program Çıktısı

A =

4 –2 6 1 8 4 -3 –1 5

Matrisin transpozunu almak için kullanılan komut

tranpozA =

4 1 -3 -2 8 -1 6 4 5

Matrisin determinantını almak için kullanılan komut

determinantA =

348

Matrisin tersini almak için kullanılan komut

tersiA =