CORRECTION DU DEVOIR MAISON N°2

Nom: Prénom: Classe:

Ce deuxième devoir est une épreuve E3C de première. Voici quelques conseils...

- L'exercice n°1 est censé être fait en 20 min : pensez à vous chronométrer afin de voir si vous êtes dans les temps.
- Suivez précisément les consignes : si on vous demande de recopier un tableau, il faut le faire et ne pas compléter sur le sujet.
- Comme c'est un devoir maison, il est tout à fait autorisé de relire ses cours et exercices pour le faire. Il ne faut pas oublier les cours de première dans cette relecture.
- Sur votre copie, séparez clairement les exercices, faites les dans l'ordre et encadrez vos résultats.
- Pensez aussi à numéroter vos questions de la même façon que sur le sujet et si vous ne faites pas une question alors inscrivez quand même son numéro et écrivez : « ADMIS »

EXERCICE N°1 Entraînement aux automatismes SANS CALCULATRICE (5 points)

Pour chaque question, indiquer la réponse dans la case correspondante. Aucune justification n'est demandée.

	Énoncé	Réponse						
1)	Calculer 30% de 80 $\frac{3\theta}{100} \times 8\theta = 3 \times 8 = 24$	24						
2)	Comparer les deux fractions ci-contre $\frac{11}{4} = \frac{33}{12}$ et $\frac{8}{3} = \frac{32}{12}$	$\frac{11}{4} > \frac{8}{3}$						
3)	Calculer $\frac{2}{3} + \frac{1}{5}$ $\frac{5 \times 2}{3 \times 5} + \frac{3 \times 1}{5 \times 3} = \frac{10}{15} + \frac{3}{15} = \frac{13}{15}$	13 15						
4)	Écrire $\frac{(5^2)^3}{5^{10}}$ sous la forme d'une puissance de 5. $\frac{5^{2\times3}}{5^{10}} = 5^{6-10}$	5 ⁻⁴						
5)	Donner l'écriture scientifique de 0,00145	1,45×10 ⁻³						
6)	Sachant que $b \neq 0$, exprimer h en fonction des autres variables : $A = \frac{b \times h}{2}$	$h = \frac{2A}{b}$						
7)	Développer et réduire : $(3x+2)^2$	$9x^2 + 12x + 4$						
8)	Factoriser: $9x^2 - 4$	(3x-2)(3x+2)						
9)	C_f est la représentation graphique de la fonction f définie sur \mathbb{R} par : $f(x) = x^2 + 1$. Compléter	$A(2;5) \in C_f$						
	Tracer, dans le repère ci-dessous, la droite d'équation $y = \frac{1}{3}x + 1$							
	3							
10)		0 3						
	$y = \frac{1}{3}x + 1$	1 2						
	-4 -3 -2 -1 0 1 2 3 4 point	(0;1) (3;2)						

EXERCICE N°2 (5 points)

1) On considère la suite u de premier terme $u_0 = 80$ et telle que

pour tout entier naturel $n: u_{n+1} = 1.06 \times u_n$.

1.a) Quelle est la nature de la suite u?

On reconnaît la définition par récurrence d'une suite géométrique de raison q=1,06 et de premier terme $u_0=80$

1.b) Calculer u_2 . Arrondir le résultat à l'unité.

```
u_1 = u_0 \times q = 80 \times 1,06 = 84,8
u_2 = u_1 \times q = 84,8 \times 1,06
u_2 \approx 90
```

1.c) Quel est le sens de variation de la suite u? Justifier la réponse.

```
La suite u est une suite géométrique de raison strictement supérieure à 1

et de premier terme strictement positif .

Elle est donc strictement croissante
```

- 2) Une association a été créée en 2019. On suppose que le nombre de bénévoles qui y sont engagés augmentera de 6 % chaque année. On modélise ce nombre de bénévoles par u_n , où n désigne le nombre entier d'années écoulées depuis 2019.
- **2.a)** On admet que $u_5 \approx 107,05$. Interpréter cette valeur dans le contexte de l'exercice. D'après l'énoncé u_5 désigne le nombre de bénévoles à l'année 2019 + 5 = 2024. On peut donc considérer qu' en 2024 l'association comptera 107 bénévoles .
- **2.b)** On cherche à déterminer au bout de combien d'années le nombre de bénévoles dépassera pour la première fois 140. On suppose que cela est possible.

On considère ci-dessous le script écrit en langage « Python » :

```
def nombre_annees(s):
    u = 80
    n = 0
    while u <+ s:
        u = u*1.06
        n = n++1
    return n</pre>
```

Quelle commande faut-il exécuter pour que le script renvoie la valeur qui réponde au problème ?

```
Dans la console, on tape : nombre_annees(140)
```

EXERCICE N°3 (5 points)

180 personnes ont été interrogées sur leur lieu d'habitation (Centre-ville, banlieue, campagne) et sur leur type d'habitation (appartement, maison).

Voici ce que l'enquête a révélé :

- 20 % des personnes habitent en centre-ville. Parmi elles, 13 habitent dans une maison ;
- 88 personnes habitent dans un appartement en banlieue ;
- 5 % des personnes habitent à la campagne dans une maison ;
- 10 personnes habitent à la campagne.
 - 1) Reproduire et compléter le tableau suivant :

Lieu d'habitation Type d'habitation	Centre-ville	Banlieue	Campagne	Total
Appartement	36-13=23	88	10-9=1	23+88+1=112
Maison	13	134-88 = 46	5% de 180=9	180-112=68
Total	20% de 180=36	180-36-10=134	10	180

Lieu d'habitation Type d'habitation	Centre-ville	Banlieue	Campagne	Total
Appartement	23	88	1	112
Maison	13	46	9	68
Total	36	134	10	180

2) On choisit au hasard et de façon équiprobable une personne parmi celles qui ont été interrogées.

Les probabilités seront données sous forme décimale, approchée au centième.

2.a) Quelle est la probabilité que la personne habite à la campagne ?

$$\frac{10}{180} \approx \mathbf{0.06}$$

2.b) Quelle est la probabilité que la personne habite dans une maison en banlieue ?

$$\frac{46}{180} \approx \mathbf{0.26}$$

2.c) Quelle est la probabilité que la personne habite dans une maison qui ne soit pas en centre-ville?

$$\frac{46+9}{180} \approx 0.31$$

3) On choisit à présent au hasard une personne parmi celles qui habitent dans un appartement. Quelle est la probabilité que cette personne habite en centre-ville ?

$$\frac{23}{112} \approx 0,21$$

On s'intéresse à la fonction polynôme f définie sur \mathbb{R} par : $f(x) = -3x^2 + 30x + 33$

- 1) On admet que pour tout réel x, f(x) = -3(x+1)(x-11).
- 1.a) Quelles sont les racines de f?

On reconnaît la forme factorisée et on en déduit que les racines sont : $\begin{bmatrix} -1 & \text{et } 11 \end{bmatrix}$.

1.b) Parmi les trois courbes ci-dessous, déterminer celle qui représente la fonction f. Expliquer la démarche.

On sait que $f(x)=a(x-x_1)(x-x_2)^{-1}$ avec a=-3, $x_1=-1$ et $x_2=11$.

Comme a < 0 on élimine la Courbe 3, puis comme la parabole doit couper l'axe des abscisses en x_1 et x_2 , on élimine la Courbe 1.

Il reste donc la Courbe 2

1.c) La courbe représentative de la fonction f admet un axe de symétrie. Donner son équation.

On sait que $f(x)=ax^2+bx+c$ avec a=-3, b=30 et c=33.

Par conséquent l'axe de symétrie de sa représentation graphique admet pour équation $x = \frac{-b}{2a} = \frac{-30}{2 \times (-3)} = 5$. Ainsi l'axe de symétrie admet pour équation $x = \frac{-b}{2a} = \frac{-30}{2 \times (-3)} = 5$.

2) Dresser le tableau de variation de la fonction f sur \mathbb{R} en précisant la valeur de l'extremum.

3) L'équation f(x)=50 admet-elle des solutions sur \mathbb{R} ? Dans l'affirmative préciser leur nombre.

On sait que le maximum de f est 108. On en déduit que f(x) = 50 admet deux solutions.