HIT HAN LA

EfficientML.ai Lecture 05 Quantization

Part I

Song Han

Associate Professor, MIT
Distinguished Scientist, NVIDIA

Lecture Plan

Today we will:

- 1. Review the numeric *data types* used in the modern computing systems, including integers and floatingpoint numbers.
- 2. Learn the basic concept of *neural network quantization*
- 3. Learn three types of common neural network quantization:
 - 1. K-Means-based Quantization
 - 2. Linear Quantization
 - 3. Binary and Ternary Quantization

Low Bit-Width Operations are Cheap

Less Bit-Width → **Less Energy**

Operation	Energy [pJ]			
8 bit int ADD	0.03	30 ×	-	
32 bit int ADD	0.1			
16 bit float ADD	0.4			
32 bit float ADD	0.9			
8 bit int MULT	0.2		16 ×	
32 bit int MULT	3.1			
16 bit float MULT	1.1			
32 bit float MULT	3.7			
Rough Energy Cost For Vario		1 10 00 × +	100	1000

Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]

This image is in the public domain

Low Bit-Width Operations are Cheap

Less Bit-Width → **Less Energy**

Operation	Energy [pJ]
8 bit int ADD	0.03
 32 bit int ADD	0.1
16 bit float ADD	0.4

How should we make deep learning more efficient?

Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]

Numeric Data Types

How is numeric data represented in modern computing systems?

Integer

- Unsigned Integer
 - *n*-bit Range: $[0, 2^n 1]$
- Signed Integer
 - Sign-Magnitude Representation
 - *n*-bit Range: $[-2^{n-1}-1, 2^{n-1}-1]$
 - Both 000...00 and 100...00 represent 0
 - Two's Complement Representation
 - *n*-bit Range: $[-2^{n-1}, 2^{n-1} 1]$
 - 000...00 represents 0
 - 100...00 represents -2^{n-1}

Sign Bit

Fixed-Point Number

(using 2's complement representation)

Example: 32-bit floating-point number in IEEE 754

$$0.265625 = 1.0625 \times 2^{-2} = (1 + 0.0625) \times 2^{125-127}$$

Example: 32-bit floating-point number in IEEE 754

$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$$
 Exponent Bias = 127 = 28-1-1 (significant / mantissa)

How should we represent 0?

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$$

(Normal Numbers, Exponent≠0)

$$0.265625 = 1.0625 \times 2^{-2} = (1 + 0.0625) \times 2^{125-127}$$

23 bit Fraction

Should have been $(-1)^{sign} \times (1 + Fraction) \times 2^{0-127}$

But we force to be $(-1)^{sign} \times Fraction \times 2^{1-127}$

(Subnormal Numbers, Exponent=0)

Example: 32-bit floating-point number in IEEE 754

What is the minimum positive value?

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

23 bit Fraction

$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$$

(Normal Numbers, Exponent≠0)

$$(-1)^{sign} \times Fraction \times 2^{1-127}$$

(Subnormal Numbers, Exponent=0)

$$2^{-149} = 2^{-23} \times 2^{-126}$$

Example: 32-bit floating-point number in IEEE 754

What is the maximum positive subnormal value?

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

23 bit Fraction

$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$$

(Normal Numbers, Exponent≠0)

$$(-1)^{sign} \times Fraction \times 2^{1-127}$$

(Subnormal Numbers, Exponent=0)

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

23 bit Fraction

$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$$

(Normal Numbers, Exponent≠0)

$$(-1)^{sign} \times Fraction \times 2^{1-127}$$

(Subnormal Numbers, Exponent=0)

much waste. Revisit in fp8.

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

23 bit Fraction

Exponent	Fraction=0	Fraction≠0	Equation
$00_{H} = 0$	±0	subnormal	(-1)sign × Fraction × 21-127
01 _H FE _H = 1 254 normal		mal	(-1)sign × (1 + Fraction) × 2Exponent-127
FF _H = 255	±INF	NaN	

Exponent Width → Range; Fraction Width → Precision

Numeric Data Types

Question: What is the following IEEE half precision (IEEE FP16) number in decimal?

Exponent Bias = 15₁₀

- Sign: -
- Exponent: $10001_2 15_{10} = 17_{10} 15_{10} = 2_{10}$ Fraction: $1100000000_2 = 0.75_{10}$
- Decimal Answer = $-(1 + 0.75) \times 2^2 = -1.75 \times 2^2 = -7.0_{10}$

Numeric Data Types

• Question: What is the decimal 2.5 in Brain Float (BF16)?

$$2.5_{10} = 1.25_{10} \times 2^{1}$$

Exponent Bias = 127₁₀

- Sign: +
- Exponent Binary: $1_{10} + 127_{10} = 128_{10} = 10000000_2$
- Fraction Binary: $0.25_{10} = 0100000_2$
- Binary Answer

Exponent Width → Range; Fraction Width → Precision

IEEE 754 Single Precision 32-bit Float (IEEE FP32)	Exponent (bits)	Fraction (bits)	Total (bits)
	8	23	32
IEEE 754 Half Precision 16-bit Float (IEEE FP16)			
	5	10	16
Nvidia FP8 (E4M3)			
* FP8 E4M3 does not have INF, and S.1111.111 ₂ is used for NaN. * Largest FP8 E4M3 normal value is S.1111.110 ₂ =448.	4	3	8
Nvidia FP8 (E5M2) for gradient in the backward			
* FP8 E5M2 have INF (S.11111.00 ₂) and NaN (S.11111.XX ₂). * Largest FP8 E5M2 normal value is S.11110.11 ₂ =57344.	5	2	8

INT4 and FP4

Exponent Width → Range; Fraction Width → Precision

INT4

$$-1, -2, -3, -4, -5, -6, -7, -8$$
 $0, 1, 2, 3, 4, 5, 6, 7$

FP4 (E1M2)

-0, -0.5, -1, -1.5, -2, -2.5, -3, -3.50, 0.5, 1, 1.5, 2, 2.5, 3, 3.5

$$-0,-1,-2,-3,-4,-5,-6,-7 \times 0.5$$

0, 1, 2, 3, 4, 5, 6, 7

 $=0.25\times2^{1-0}=0.5$

$$=(1+0.75)\times2^{1-0}=3.5$$

FP4 (E2M1)

-0, -0.5, -1, -1.5, -2, -3, -4, -60, 0.5, 1, 1.5, 2, 3, 4, 6

$$-0,-1,-2,-3,-4,-6,-8,-12$$

0, 1, 2, 3, 4, 6, 8, 12 ×0.5

 $=(1+0.5)\times2^{3-1}=1$

 $=0.5\times2^{1-1}=0.5$

no inf, no NaN

FP4 (E3M0)

1 1 =
$$(1+0)\times 2^{7-3}=16$$

no inf, no NaN

What is Quantization?

Quantization is the process of constraining an input from a continuous or otherwise large set of values to a discrete set.

The difference between an input value and its quantized value is referred to as quantization error.

Original Image

16-Color Image

<u>Images</u> are in the public domain. "Palettization"

Quantization [Wikipedia]

Neural Network Quantization: Agenda

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	3	1	0	1:	0.00
3	1	2	2	0:	-1.00

1	0	1	1
1	0	0	1
0	1	1	0
1	1	1	1

K-Means-based Quantization

Linear Quantization **Binary/Ternary** Quantization

Storage	Floating-Point Weights
Computation	Floating-Point Arithmetic

Neural Network Quantization: Agenda

1		1	1
1			1
0	1	1	
1	1	1	1

K-Means-based Quantization

Linear Quantization **Binary/Ternary** Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic

Neural Network Quantization

Weight Quantization

weights (32-bit float)

	\		
2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Neural Network Quantization

Weight Quantization

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

3.2 × smaller

Assume N-bit quantization, and #parameters = $M >> 2^{N}$.

32 bit
$$\times M$$

= 32M bit = NM bit = 2^{N+5} bit 32/N \times smaller

Deep Compression [Han et al., ICLR 2016]

reconstructed weights (32-bit float)

2.00	-1.00	1.50	0.00
0.00	0.00	-1.00	2.00
-1.00	2.00	0.00	-1.00
2.00	0.00	1.50	1.50

quantization error

0.09	0.02	-0.02	0.09
0.05	-0.14	-0.08	0.12
0.09	-0.08	0	-0.03
-0.13	0	0.03	-0.01

storage

Fine-tuning Quantized Weights

gradient

-0.03	-0.01	0.03	0.02
-0.01	0.01	-0.02	0.12
-0.01	0.02	0.04	0.01
-0.07	-0.02	0.01	-0.02

Fine-tuning Quantized Weights

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Model Size Ratio after Compression

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Before Quantization: Continuous Weight

After Quantization: Discrete Weight

After Quantization: Discrete Weight after Training

How Many Bits do We Need?

Huffman Coding

- In-frequent weights: use more bits to represent
- Frequent weights: use less bits to represent

Summary of Deep Compression

Deep Compression Results

Network	Original Size	Compressed Size	Compression Ratio	Original Accuracy	Compressed Accuracy
LeNet-300	1070KB	27KB	40x	98.36%	98.42%
LeNet-5	1720KB	44KB	39x	99.20%	99.26%
AlexNet	240MB	6.9MB	35x	80.27%	80.30%
VGGNet	550MB	11.3MB	49x	88.68%	89.09%
GoogleNet	28MB	2.8MB	10x	88.90%	88.92%
ResNet-18	44.6MB	4.0MB	11x	89.24%	89.28%

Can we make compact models to begin with?

Deep Compression [Han et al., ICLR 2016]

SqueezeNet

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [landola et al., arXiv 2016]

Deep Compression on SqueezeNet

Network	Approach	Size	Ratio	Top-1 Accuracy	Top-5 Accuracy
AlexNet	-	240MB	1x	57.2%	80.3%
AlexNet	SVD	48MB	5x	56.0%	79.4%
AlexNet	Deep Compression	6.9MB	35x	57.2%	80.3%
SqueezeNet	_	4.8MB	50x	57.5%	80.3%
SqueezeNet	Deep Compression	0.47MB	510x	57.5%	80.3%

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [landola et al., arXiv 2016]

K-Means-based Weight Quantization

- The weights are decompressed using a lookup table (i.e., codebook) during runtime inference.
- K-Means-based Weight Quantization only saves storage cost of a neural network model.
 - All the computation and memory access are still floating-point.

Neural Network Quantization

1		1	1
1			1
0	1	1	
1	1	1	1

K-Means-based
Quantization

Linear Quantization

Binary/Ternary Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

What is Linear Quantization?

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

What is Linear Quantization?

An affine mapping of integers to real numbers

weights (32-bit float)

-0.98 1.48 2.09 0.09 **-0.14** -1.08 **2.12** 1.92 -1.03 -0.91 1.87 1.53 1.49

quantized weights (2-bit signed int)

1	-2	0	-1
-1	-	-2	1
-2	1	-1	-2
1	-1	0	0

zero point (2-bit signed int)

<u>scale</u> (32-bit float)

reconstructed weights (32-bit float)

2.14	-1.07	1.07	0
0	0	-1.07	2.14
-1.07	2.14	0	-1.07
2.14	0	1.07	1.07

quantization error

-0.05	0.09	0.41	0.09
0.05	-0.14	-0.01	-0.02
0.16	-0.22	0	0.04
-0.27	0	0.46	0.42

Binary	Decimal
01	1
00	0
11	-1
10	-2

What is Linear Quantization?

An affine mapping of integers to real numbers

weights (32-bit float)

-0.98 1.48 2.09 0.09 **-0.14** -1.08 **2.12** -1.03 -0.91 1.92 1.87 1.53 1.49

quantized weights (2-bit signed int)

1	-2	0	-1
-1	-1	-2	1
-2	1	-1	-2
1	-1	0	0

zero point (2-bit signed int)

<u>scale</u>

(32-bit float)

reconstructed weights (32-bit float)

2.14	-1.07	1.07	0
0	0	-1.07	2.14
-1.07	2.14	0	-1.07
2.14	0	1.07	1.07

quantization error

-0.05	0.09	0.41	0.09
0.05	-0.14	-0.01	-0.02
0.16	-0.22	0	0.04
-0.27	0	0.46	0.42

Binary Decimal 01 00 -2 10

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

quantized integer Z

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Scale of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

$$r_{\text{max}} = S \left(q_{\text{max}} - Z \right)$$

$$r_{\text{min}} = S \left(q_{\text{min}} - Z \right)$$

$$\downarrow$$

$$r_{\text{max}} - r_{\text{min}} = S \left(q_{\text{max}} - q_{\text{min}} \right)$$

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

Scale of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

q_{\min} q_{\max}	
$-2 - 1 \ 0 \ 1$	

Binary	Decimal
01	1
00	0
11	-1
10	-2

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$= \frac{2.12 - (-1.08)}{1 - (-2)}$$
$$= 1.07$$

Zero Point of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

$$r_{\min} = S \left(q_{\min} - Z \right)$$

$$\downarrow$$

$$Z = q_{\min} - \frac{r_{\min}}{S}$$

$$\downarrow$$

$$= \text{round} \left(q_{\min} - \frac{r_{\min}}{S} \right)$$

Zero Point of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

q_{min}	q_{max}	
		—
-2 - 1 () 1	

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$Z = q_{\min} - \frac{r_{\min}}{S}$$

Decimal

-2

01

00

11

10

= round(
$$-2 - \frac{-1.08}{1.07}$$
)
= -1

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following matrix multiplication.

$$Y = WX$$

$$S_{\mathbf{Y}}\left(\mathbf{q}_{\mathbf{Y}}-Z_{\mathbf{Y}}\right)=S_{\mathbf{W}}\left(\mathbf{q}_{\mathbf{W}}-Z_{\mathbf{W}}\right)\cdot S_{\mathbf{X}}\left(\mathbf{q}_{\mathbf{X}}-Z_{\mathbf{X}}\right)$$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q_W} - Z_{\mathbf{W}} \right) \left(\mathbf{q_X} - Z_{\mathbf{X}} \right) + Z_{\mathbf{Y}}$$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{V}}} \left(\mathbf{q_W}\mathbf{q_X} - Z_{\mathbf{W}}\mathbf{q_X} - Z_{\mathbf{X}}\mathbf{q_W} + Z_{\mathbf{W}}Z_{\mathbf{X}} \right) + Z_{\mathbf{Y}}$$

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following matrix multiplication.

$$\mathbf{Y} = \mathbf{WX}$$

$$\mathbf{q_Y} = \frac{S_\mathbf{W} S_\mathbf{X}}{S_\mathbf{Y}} \left(\mathbf{q_W} \mathbf{q_X} - Z_\mathbf{W} \mathbf{q_X} - Z_\mathbf{X} \mathbf{q_W} + Z_\mathbf{W} Z_\mathbf{X} \right) + Z_\mathbf{Y}$$
 N-bit Integer Multiplication *N*-bit Integer 32-bit Integer Addition/Subtraction Addition

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following matrix multiplication.

$$\mathbf{Y} = \mathbf{WX}$$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q_W}\mathbf{q_X} - Z_{\mathbf{W}}\mathbf{q_X} - Z_{\mathbf{X}}\mathbf{q_W} + Z_{\mathbf{W}}Z_{\mathbf{X}} \right) + Z_{\mathbf{Y}}$$

Empirically, the scale $\frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}}$ is always in the interval (0, 1). Fixed-point Multiplication

$$\frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} = 2^{-n}M_0$$
, where $M_0 \in [0.5,1)$

Bit Shift

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following matrix multiplication.

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Symmetric Linear Quantization

Zero point Z=0 and Symmetric floating-point range

Bit Width	Q min	Q _{max}
2	-2	1
3	-4	3
4	-8	7
N	-2N-1	2N-1-1

Symmetric Linear Quantization

Full range mode

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$S = \frac{r_{\min}}{q_{\min} - Z} = \frac{-|r|_{\max}}{q_{\min}} = \frac{|r|_{\max}}{2^{N-1}}$$

- use full range of quantized integers
- example: PyTorch's native quantization, ONNX

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• Consider the following matrix multiplication, when Zw=0.

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

So far, we ignore bias. Now we consider the following fully-connected layer with bias.

$$Y = WX + b$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} \left(\mathbf{q}_{\mathbf{W}} - Z_{\mathbf{W}} \right) \cdot S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

$$\downarrow Z_{\mathbf{W}} = 0$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

So far, we ignore bias. Now we consider the following fully-connected layer with bias.

$$Y = WX + b$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} \left(\mathbf{q}_{\mathbf{W}} - Z_{\mathbf{W}} \right) \cdot S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

$$\downarrow Z_{\mathbf{W}} = 0$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

$$\downarrow Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}} S_{\mathbf{X}}$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} + \mathbf{q}_{\mathbf{b}} \right)$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

So far, we ignore bias. Now we consider the following fully-connected layer with bias.

$$\mathbf{Y} = \mathbf{W}\mathbf{X} + \mathbf{b}$$

$$Z_{\mathbf{W}} = 0 \quad \downarrow \quad Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}}S_{\mathbf{X}}$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}}S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}} + \mathbf{q}_{\mathbf{b}} \right)$$

$$\mathbf{q}_{\mathbf{Y}} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} + \frac{\mathbf{p}_{\mathbf{recompute}}}{\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}}} \right) + Z_{\mathbf{Y}}$$

$$\downarrow \quad \mathbf{q}_{bias} = \mathbf{q}_{\mathbf{b}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}}$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

So far, we ignore bias. Now we consider the following fully-connected layer with bias.

Note: both q_b and q_{bias} are 32 bits.

Linear Quantized Convolution Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following convolution layer.

Note: both q_b and q_{bias} are 32 bits.

Linear Quantized Convolution Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following convolution layer.

Note: both q_b and q_{bias} are 32 bits.

INT8 Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

Neural Network	ResNet-50	Inception-V3
Floating-point Accuracy	76.4%	78.4%
8-bit Integer- quantized Acurracy	74.9%	75.4%

Latency-vs-accuracy tradeoff of float vs. integer-only MobileNets on ImageNet using Snapdragon 835 big cores.

Neural Network Quantization

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	3	1	0	1:	0.00
3	1	2	2	0:	-1.00

K-Means-based Quantization

Linear Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

Summary of Today's Lecture

Today, we reviewed and learned

- the numeric data types used in the modern computing systems, including integers and floating-point numbers.
- the basic concept of neural network quantization: converting the weights and activations of neural networks into a limited discrete set of numbers.
- two types of common neural network quantization:
 - K-Means-based Quantization
 - Linear Quantization

References

- 1. Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey [Deng et al., IEEE 2020]
- 2. Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]
- 3. Deep Compression [Han et al., ICLR 2016]
- 4. Neural Network Distiller: https://intellabs.github.io/distiller/algo-quantization.html
- 5. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]
- 6. BinaryConnect: Training Deep Neural Networks with Binary Weights during Propagations [Courbariaux et al., NeurlPS 2015]
- 7. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. [Courbariaux et al., Arxiv 2016]
- 8. XNOR-Net: ImageNet Classification using Binary Convolutional Neural Networks [Rastegari et al., ECCV 2016]
- 9. Ternary Weight Networks [Li et al., Arxiv 2016]
- 10. Trained Ternary Quantization [Zhu et al., ICLR 2017]