Toc

1 NFA transition table

1 DFA transition table

COMPUTER CENTRE

Whimpzation of DFA.

i) Remove unleachable states (92 and 94)

Wg. L	0	1
→ 90	9,	93
9,	90	913
* 93	9,5	95
4 95	95	25

JI have no semilar nows, T2 has.

so remove ex replace with previous state

8 Reduced transition table

,	0	
-> 10	91	93
æ 91 ·	90	93
× 93	93	93

B state d'agram:-

subset method.

J. ramsation table

states	0	1 1
90	9,2	2193
91	24	Φ
92	Ф	9,3
73	93	95
2F	ф	' •

Kleen's theorem

Argumentation for = 0

2) Eclosure NFA to DFA.

1)
$$t$$
 closure of $2903 = 290,91,923 \rightarrow A$
 $2913 = 2913 \rightarrow B$
 $2923 = 2923 \rightarrow C$
 $2933 = 2933 \rightarrow D$
 $2943 = 2943 \rightarrow E$