Tecnologia em Análise e Desenvolvimento de Sistemas - TADS

Fundamentos da Computação

TADS – IFRS – 2023/1

Prof. Luciano Vargas Gonçalves

Aula 2

Aula 2 – Representação da Informação

Computadores Digitais

• Processamento das Informações e o Sistema Binário

Representação da Informação

Existem diversas fontes de informação (dados).

- Como representar imagens, sons, textos e números decimais nos circuitos do computador?
- Computador é um equipamento eletrônico, composto por inúmeros circuitos digitais.

Representação da Informação

- Textos
 - Os textos são formados por vários símbolos chamados caracteres;
 - Cada carácter é representado por um número inteiro, de acordo com tabelas de codificação
 - Uma das mais conhecidas é a tabela ASCII
 - Link:
 - https://pt.wikipedia.org/wiki/ASCII

Parte da Tabela ASCII

Cada carácter (CHAR) possui um código numérico: Representado em por um valor:

> Dec = Decimal Hex = Hexadecimal

Os códigos variam de 0 a 127 na versão ASC padrão (Link 1, Link 2)

Os códigos variam de 0 a 255 na versão ASCII estendida (8bits);

Codificação com acentuação.

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`
1	01	Start of heading	33	21	!	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	c
4	04	End of transmit	36	24	Ş	68	44	D	100	64	d
5	05	Enquiry	37	25	*	69	45	E	101	65	e
6	06	Acknowledge	38	26	٤	70	46	F	102	66	Í
7	07	Audible bell	39	27	1	71	47	G	103	67	ġ.
8	08	Backspace	40	28	(72	48	Н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k
12	OC.	Form feed	44	2C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	-	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	р
17	11	Device control 1	49	31	1	81	51	Q	113	71	đ
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	S	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	v	118	76	v
23	17	End trans, block	55	37	7	87	57	W	119	77	w
24	18	Cancel	56	38	8	88	58	X	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z
27	1B	Escape	59	3 B	;	91	5B	[123	7B	{
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	ı
29	1D	Group separator	61	ЗD	=	93	5D]	125	7D	}
30	1E	Record separator	62	3 E	>	94	5E	^	126	7E	~
31	1F	Unit separator	63	3 F	?	95	5F		127	7F	

Exemplo de Texto

ABba

Caráct	ter	Código ASC II Decimal
- A	=	65
- B	=	66
- b	=	98
- a	=	97

Imagens

- Cada imagem é divida em pontos chamados Pixel
- Cada pixel contém uma cor, representada por um ou três números inteiros

Sons

Números representam amostras da onda sonora (amplitude, frequência, etc)

A Língua do Computador

- · Linguagem de Máquina ou linguagem do processador
 - Tudo é representado na forma de números inteiros
- Cada instrução diferente é representada por um número diferente
 - Por exemplo
 - Instrução de soma (ADD) = código 1
 - Instrução de entrada (Load) = código 5
 - Etc.
- Cada tipo de processador possui sua própria linguagem de máquina
 - Exemplos:
 - Família X86, AMD64

Representação da Informação

- Por que toda a informação é representada por números inteiros?
 - Números inteiros podem ser facilmente representados na memória RAM do computador;
 - Isso se deve ao fato de como a memória é organizada "em Células de 8bits ou 1Byte";
 - Cada Byte pode representar valores de 0 à 255;
 - Semelhante a tabela ASCII

Organização da Memória

	Endereço	Conteúdo da Célula
Célula -{	0	XXXXXX Informação
	1	XXXXXX
	2	XXXXXX
	3	XXXXXX
	4	XXXXXX
	5	XXXXXX
	!	

- Memória é organizada em células;
- •Cada célula armazena 1Byte (8 bits) que corresponde a informação armazenada;

8bits = 1Byte

Cada célula tem um endereço sua para localização;

Células da memória

- Cada célula é conhecida como byte
- Cada byte é formado por 8 bits

 Exemplo: Pente de memória 2GB (dois GigaBytes ou ~2 bilhões de Bytes ou Células de memória)

Bytes na memória

 Cada célula armazena oito bits, cada bit pode assumir um dos valores (Zero (0 - Desligado) ou UM(1 - Ligado))

Endereço		Conteúdo da Célula						
О	0	0	0	0	1	1	0	О
1	1	1	1	1	1	1	0	0
2	0	1	1	0	0	1	1	0
3	0	1	0	1	0	1	0	1
4	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	1
i	Memória com valores armazenados							

BH

Bytes na memória

 Todo valor binário pode ser convertido para decimal e vice-versa.

Endereço		C	onte	eúdo	da (Célul	а		
О	0	0	0	0	1	1	0	0	
1	1	1	1	1	1	1	0	0	
2	0	1	1	0	0	1	1	0	
3	0	1	0	1	0	1	0	1	
4	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	1	
i i									
Memória com valores armazenados 🗡 🗀 📙						Ċ			

Informação e sua Representação

Vídeo para exemplificar a informação e suas representações

https://www.youtube.com/watch?v=uIG1SIOqn9s

John von Neumann: 1945

Sugeriu que o sistema binário fosse adotado em todos os computadores, e que as *instruções e dados* fossem compilados e armazenados internamente no computador, na sequência correta de utilização.

Mais tarde esse computador foi construído recebendo o nome de EDVAC.

John von Neumann

Computadores Digitais

Processamento das Informações (Dados Binários)

Informações transmitidas em impulsos elétricos representado em dois estados (ligado (1) ou desligado (0))

Sistema binário

- Um bit pode assumir dois valores
 - Zero (desligado)
 - Um (ligado)
- Por quê?
 - Representam a variação da grandeza Tensão Elétrica.
 - Exemplo:
 - 0 2 volts = Zero(0)
 - 4 a 5 volts = Um (1)
 - Fácil leitura e interpretação pelos circuitos eletrônicos.

Operação de Soma Binária

- Componentes principais primeiros computadores
 - Chave automática foi implementada através de:
 - Relés >> Válvulas >> transistores >> Circuitos integrados
 - Elementos da Eletrônica para representar bits.

b

- Utiliza apenas dois símbolos para representar números:
 - 0 (zero desligado) e o 1 (um Ligado)

 Que coincidência, é exatamente o que cabe em um bit!!!

Relação entre a quantidade de bits e as representações das informações.

o total de representações =
$$2^n$$

onde n = número de bits
com 1 bit = 2^1 = 2 valores

N(n°bits)	Valores
1	0
1	1

Relação entre a quantidade de bits e as representações das informações.

o total de representações = 2^n onde n = número de bits com 1 bit = 2^1 = 2 valores com 2 bits = 2^2 = 4 valores

N(n°bits)	Valores
	00
2	01
2	10
	11

Relação entre a quantidade de bits e as representações das informações.

o total de representações = 2^n

onde n = número de bits

com 1 bit = 2^1 = 2 valores

com 2 bits = 2^2 = 4 valores

com 3 bits = 2^3 = 8 valores

com 4 bits = 2^4 = 16 valores

N(n°bits)	Valores
	00
2	01
	10
	11

Relação entre a quantidade de bits e as representações das informações.

O total de representações = 2^n onde n = número de bits com 1 bit = 2^1 = 2 valores com 2 bits = 2^2 = 4 valores com 3 bits = 2^3 = 8 valores com 4 bits = 2^4 = 16 valores

Representações	1 Bit	2 Bits	3 Bits	Com 4 Bits
	0	0 0	000	0000
21 = 2	1	0 1	001	0001
		10	010	0010
$2^2 = 4$		11	011	0011
			100	0100
			101	0101
			110	0110
$2^3 = 8$			111	0111
				1000
				1001
				1010
				1011
				1100
				1101
				1110
$2^4 = 16$				1111

Relação entre a quantidade de bits e as representações das informações.

O total de representações = 2^n onde n = número de bits com 1 bit = 2^1 = 2 valores com 2 bits = 2^2 = 4 valores com 3 bits = 2^3 = 8 valores com 4 bits = 2^4 = 16 valores com 5 bits = 2^5 =

Representações	Com 5 Bits
	00000
	00001
	00010
	00011
	00100
	00101
	00110
$2^5 = 32$	00111
	01000
	01001
	01010
	01011
	01100
	0 1 1 0 1
	01110
	01111

Relação entre a quantidade de bits e as representações das informações.

O total de representações = 2^n onde n = número de bits com 1 bit = 2^1 = 2 valores com 2 bits = 2^2 = 4 valores com 3 bits = 2^3 = 8 valores com 4 bits = 2^4 = 16 valores com 5 bits = 2^5 =

Representações	Com 5 Bits
	10000
	10001
	1 0010
	10011
	10100
	10101
	1 0 1 1 0
25 = 32	1 0 1 1 1
	1 1000
	11001
	1 1010
	1 1011
	1 1100
	11101
	1 1 1 1 0
	1 1 1 1 1

Representação dos Números

- Existem formas diferentes de dizer a mesma coisa;
- Existem formas diferentes de representar grandezas;
 - Exemplo (10):
 - 10(decimal)
 - X (romano)
 - Dez (extenso)
- Nós comumente utilizamos o sistema decimal para representar os valores (grandezas).
 - Dinheiro, objetos, medidas e etc.

Sistema Decimal = 10 símbolos

- Utiliza dez algarismos (base 10) para representar qualquer número.
 - Algarismos: 0,1,2,3,4,5,6,7,8,9
- As posições dos algarismos nos números indica seu valor
 - Sistema Posicional

•
$$132_{10} = 1^2 3^1 2^0 = 1 \times 10^2 + 3 \times 10^1 + 2 \times 10^0$$

Posição = Expoente

•
$$5078_{10} = 5^3 0^2 7^1 8^0 = 5x10^3 + 0x10^2 + 7x10^1 + 8x10^0$$

 $5000 + 0 + 70 + 8 = 5078$

Sistema de Numeração

- Podemos utilizar outras quantidades de algarismos (Bases) para representar grandezas(valores).
- A isso se dá o nome de Sistemas de Numeração
 - Cada sistema de numeração é identificado por uma base, que indica a quantidade de algarismos:
 - Sistema Decimal (base₁₀ = 10) <> (0,1,2,3,4,5,6,7,8,9)
 - Sistema Binário (base₂ = 2) $\langle (0,1) \rangle$
 - Sistema OctaDecimal (base₈ = 8) <> (0,1,2,3,4,5,6,7)
 - Sistema HexaDecimal (base₁₆ = 16) <> (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

Sistemas de Numerações

- Sistema Decimal (Dez algarismo):
 - Nosso Sistema de Contagem:
 - Possui 10 símbolos para representar grandezas

$$\bullet$$
 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9

- Base (10)
- Sistema Posicional ou polinomial

Notação Polinomial ou Posicional

- Válida para qualquer base numérica.
- LEI DE FORMAÇÃO

(Notacão ou Representação Polinomial):

Número =
$$a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + ... + a_0 b^0$$

- a_n = algarismo, b = base do número, n = (qtd de algarismo 1) ou posição Exemplo:
 - Valor 5437 tem 4 elementos (n = 3)

Notação Polinomial ou Posicional

• Exemplos:

Número =
$$a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + ... + a_0 b^0$$

•
$$123_{10} <=> (n = 2)$$

 $123_{10} = 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$ Posição
 $123_{10} = 1 \times 100 + 2 \times 10 + 3 \times 1$
 $123_{10} = 100 + 20 + 3$
 $123_{10} = 123_{10}$

Próximo valor será o anterior + 1

•
$$0 = 0$$

•
$$0 + 1 = 1$$

•
$$1 + 1 = 2$$

$$\cdot$$
 2 + 1 = 3

•
$$9 + 1 = 10$$

 Houve estouro Buffer para valor 10, se considerar apenas um dígito, conhecido com "Overflow"

Decimal	Decimal
0	0
1	0 + 1 = 1
2	1 + 1 = 2
3	2 + 1 = 3
4	3 + 1 = 4
5	4 + 1 = 5
9	8 + 1 = 9
10	9 + 1 = 10

Sistema Binário – Base 2

- Sistema Binário (Dois algarismo):
 - Sistema dos equipamentos digitais
 - Possui 2 símbolos para representar grandezas
 - 0 1
 - Base (2)
 - Sistema Posicional ou polinomial

Sistema Binário – Base 2

- Sistema Binário (Dois algarismo):
 - Sistema dos equipamentos digitais
 - Possui 2 símbolos para representar grandezas
 - 0,1
 - Sistema de contagem:
 - Anterior + 1 = próximo
 - 0 = 0
 - 0+1=1
 - 1+1 = 10 (Overflow) para um bit

1		Τ
<u> </u>	<u>+</u>	<u>1</u>
1	1	.0
bina	ária	a

<u>+1</u>

Adição

13	1100+1 = 1101
14	1101+1 = 1110

Binário

0+1=1

1+1 = 10

10+1=11

11+1 = 100

100+1 = 101

101+1 = 110

110+1 = 111

111+1 = 1000

1000+1 = 1001

1001+1 = 1010

1010+1 = 1011

1011+1 = 1100

Decimal

4

6

9

10

11

12

Sistema Binário – Base 2

Notação Polinomial ou Posicional

Exemplos:

Número =
$$a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + ... + a_0 b^0$$

•
$$1101_2 = 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0$$

•
$$1101_2 = 1x8 + 1x4 + 0x2 + 1x1$$

Base dos valores;

Sistema Octal – Base 8

- Sistema Octal (Oito algarismo):
 - Sistema dos equipamentos digitais
 - Possui 8 símbolos para representar grandezas

•
$$0-1-2-3-4-5-6-7$$

- Base (8)
- Sistema Posicional ou polinomial

Sistema Octal – Base 8

- Sistema Octal (Oito algarismo):
 - Possui 8 símbolos para representar grandezas
 - 0,1,2,3,4,5,6,7

Adição binária

Decimal	Octal Decimal		
0	0		
1	1		
2	2		
3	3		
4	4		
5	5		
6	6		
7	7		
8	10		
9	11		
10	12		
11	13		
12	14		
13	15		
14	16		
15	17		
16	20		

Octal Decimal

Decimal

Sistema Octal – Base 8

Notação Polinomial ou Posicional

• Exemplos:

Número =
$$a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + ... + a_0 b^0$$

$$257_8 = 2x8^2 + 5x8^1 + 7x8^0$$

$$257_8 = 2x64 + 5x8 + 7x1$$

Sistema Hexadecimal – Base 16

- Sistema Hexadecimal (Dezesseis algarismo):
 - Sistema dos equipamentos digitais
 - Possui 16 símbolos para representar grandezas

- Base (16)
- Sistema Posicional ou polinomial

Sistema Hexadecimal – Base 16

- Sistema Hexadecimal (Dezesseis algarismo):
 - Sistema dos equipamentos digitais
 - Possui 16 símbolos para representar grandezas

Adição HexaDecinal

Vai um

12 13

Decimal

2

6

10

11

16

14

Е

Hexadecimal

6

A

B

15 F

10

Sistema Hexadecimal – Base 16

 $a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + \dots + a_0 b^0$

Notação Polinomial ou Posicional

• Exemplos:

$$2A2_{16} =$$
 $2A2_{16} = 2x16^2 + Ax16^1 + 2x16^0$
 $2A2_{16} = 2x256 + Ax16 + 2x1$
 $2A2_{16} = 512 + 10x16 + 2$
 $2A2_{16} = 512 + 160 + 2$
 $2A2_{16} = 674_{10}$

Decimal ₁₀	Binário ₂	Octal ₈	Hexadecimal ₁₆	
0	0	0	0	
1	1	1	1	
2	10	2	2	
3	11	3	3	
4	100	4	4	
5	101	5	5	
6	110	6	6	
7	111	7	7	
8	1000	10	8	
9	1001	11	9	
10	1010	12	Α	
11	1011	13	В	
12	1100	14	С	
13	1101	15	D	
14	1110	16	E	
15	1111	17	F	
16	10000	20	10	

Converter de Qualquer Base >> Decimal

Notação Polinomial ou Posicional

- Válida para qualquer base numérica.
- LEI DE FORMAÇÃO
- (Notação ou Representação Polinomial):

Número =
$$a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + ... + a_0 b^0$$

- $a_n = algarismo$, b = base do número
- **n** = quantidade de algarismo 1

Sistema Binário >> Decimal

Número =
$$a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + ... + a_0 b^0$$

- Exemplo:
 - Número em binário = 101011₂ (n = 6 termos)

101011₂=
$$1x2^5 + 0x2^4 + 1x2^3 + 0x2^2 + 1x2^4 + 1x2^0 = 43_{10}$$

- Número: $101011_2 = 43_{10}$ **Decimal**

Sistema Octal >> Decimal

Número =
$$a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + ... + a_0 b^0$$

- Exemplo:
 - Número 327_8 (n = 3 termos)

$$327_8 = 3x8^2 + 2x8^1 + 7x8^0 = 215_{10}$$

- Número: $327_8 = 215_{10}$ **Decimal**

Sistema Hexadecimal >> Decimal

Número =
$$a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + ... + a_0 b^0$$

- Exemplo:
 - Número 16_{16} (n = 2 termos)

$$16_{16} = 1.16^{2-1} + 6.16^{2-2} = 16 + 6 = 22_{10}$$

- Número: $16_8 = 22_{10}$ **Decimal**

Sistema Hexadecimal >> Decimal

Número =
$$a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + ... + a_0 b^0$$

Exemplo:

- Número $A2F_{16}$ (n = 3 termos)

$$A2F_{16} = Ax16^{2} + 2x16^{1} + Fx16^{0} = 2607_{10}$$

$$A2F_{16} = 10*16^{2} + 2x16^{1} + 15x16^{0} = 2607_{10}$$

- Número: $A2F_{16} = 2607_{10}$ **Decimal**

Exercícios

- Converta para decimal
 - 1) 101001₂ =
 - 2) 11010111₂ =
 - 3) 146₈ =
 - 4) 8528 =
 - 5) 123₁₆ =
 - 6) $ABC_{16} =$
 - 7) $DEF_{16} =$
 - 8) $2C3_{16} =$

	Decimal ₁₀	Binário ₂	Octal ₈	Hexadecimal ₁₆
	17			
	18			
	19			
	20			
Complete a tabela	21			
	22			
	23			
	24			
	25			
	26			
	27			
	28			
	29			
	30			
	31			
	32			
	33			

	Decimal ₁₀	Binário ₂	Octal ₈	Hexadecimal ₁₆
	34			
	35			
	36			
Complete a tabela	37			
	38			
	39			
	40			
	41			
	42			
	43			
	44			
	45			
	46			
	47			
	48			
	49			
	50			

	Decimal ₁₀	Binário ₂	Octal ₈	Hexadecimal ₁₆
	100			
	101			
	102			
Complete e tehele	103			
Complete a tabela	104			
	105			
	106			
	150			
	151			
	152			
	153			
	154			
	155			
	200			
	201			
	202			
	203			

Conversão de Bases

Próxima aula!!!

Perguntas??