

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 22 Learning Outcome

 Show that the transformation equations for plane stress can be expressed in the form of the equation for a circle (Mohr's Circle)

Plane Stress
$$\sigma_n = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$\tau_{nt} = -\left(\frac{\sigma_x - \sigma_y}{2}\right) \sin 2\theta + \tau_{xy} \cos 2\theta$$

$$\tau_{nt} = -\left(\frac{\sigma_x - \sigma_y}{2}\right) \sin 2\theta + \tau_{xy} \cos 2\theta$$

Principal Stresses

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \qquad \tan 2\theta_P = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$

Maximum In-Plane Shear Stress

$$\tau_{MAX} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \qquad \tan 2\theta_S = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}}$$

The planes on which the maximum in-plane shear stresses occur are 45° from the Principal Planes

Stress Invariant

$$\sigma_1 + \sigma_2 = \sigma_x + \sigma_y$$

$$\tau_{MAX} = \left(\frac{\sigma_1 - \sigma_2}{2}\right)$$

Plane Stress $\sigma_n = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$

$$\tau_{nt} = -\left(\frac{\sigma_x - \sigma_y}{2}\right) \sin 2\theta + \tau_{xy} \cos 2\theta$$
rearrange first equation
$$\sigma_n - \frac{\sigma_x + \sigma_y}{2} = \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$-\frac{\sigma_x + \sigma_y}{2} = \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$\tau_{nt} = -\left(\frac{\sigma_x - \sigma_y}{2}\right) \sin 2\theta + \tau_{xy} \cos 2\theta$$

square equations and add
$$\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 \qquad \tau_{xy}^2$$

$$\left(\sigma_n - \frac{\sigma_x + \sigma_y}{2}\right)^2 + \tau_{nt}^2 = \left(\frac{\sigma_x - \sigma_y}{2}\right)^2 \cos^2 2\theta + \left(\frac{\sigma_x - \sigma_y}{2}\right)^2 \sin^2 2\theta + \tau_{xy}^2 \sin^2 2\theta + \tau_{xy}^2 \cos^2 2\theta$$

$$\left(\sigma_{n} - \frac{\sigma_{x} + \sigma_{y}}{2}\right)^{2} + \tau_{nt}^{2} = \left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}$$

Plane Stress

Recall the equation of a circle

$$(x-a)^{2} + (y-b)^{2} = R^{2}$$
y
(a,b)

Mohr's Circle

German Engineer

Otto Mohr (1835-1918)

transformation equations for plane stress
$$(x-a)^2 + (y-b)^2 = R^2$$

$$(x-a)^2 + (y-b)^2 = R^2$$

$$(x-a)^{2} + (y-b)^{2} = R^{2}$$

$$(x-a)^2 + (y-b)^2 = R^2$$

$$\left(\sigma_n - \frac{\sigma_x + \sigma_y}{2}\right)^2 + (\tau_{nt} - 0)^2 = \left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2$$

$$\left(\sigma_{n} - \frac{\sigma_{x} + \sigma_{y}}{2}\right) + (\tau_{nt} - 0)^{2} = \left(\frac{\sigma_{x} + \sigma_{y}}{2}\right)^{2}$$

Radius =
$$\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Center:
$$\left(\frac{\sigma_x + \sigma_y}{2}, 0\right) = \left(\sigma_{AVG}, 0\right)$$

Where Average Normal Stress $= \sigma_{AVG} = \frac{\sigma_x + \sigma_y}{2}$

The stress transformation equation is based on an angle 2θ

Georgia