Voice Cloning

Computer Vision Reading Group (IITK)
March 22, 2022

Neural Voice Cloning with a Few Samples

Arik, Sercan O., Jitong Chen, Kainan Peng, Wei Ping, and Yanqi Zhou (NeurIPS 2018)

https://arxiv.org/abs/1802.06006v3

Introduction

- Multi-speaker Speech synthesis
 - Synthesizing speech conditioned on text and speaker identity
 - **Text:** linguistic information
 - **Speaker identity:** characteristics such as pitch, speech rate and accent
 - Can only generate speech for seen speakers
- Voice cloning
 - Learning the voice of an unseen speaker from a few speech samples
 - Challenges:
 - Learning speaker characteristics from limited amount of data
 - Generalize to unseen texts

Multi-speaker Speech Model

Multi-speaker generative modeling

$$\min_{W,\mathbf{e}} \mathbb{E}_{\substack{s_i \sim \mathcal{S}, \\ (\mathbf{t}_{i,j}, \mathbf{a}_{i,j}) \sim \mathcal{T}_{s_i}}} \left\{ L\left(f(\mathbf{t}_{i,j}, s_i; W, \mathbf{e}_{s_i}), \mathbf{a}_{i,j}\right) \right\}$$

Voice Cloning Pipeline

- Voice Cloning:
 - Training: Train a multi-speaker generative model on seen speakers
 - Cloning: Extract speaker characteristics of an unseen speaker from a set of cloning audios
 - Audio Generation: Generate an audio given any text for that speaker
- Two approaches
 - Speaker adaptation
 - Speaker Encoding

Speaker Adaptation

Training

Cloning

Audio Generation

- Fine-tune a trained multi-speaker model for unseen speakers using a few audio-text pairs
- Embedding-only adaptation

$$\min_{\mathbf{e}_{s_k}} \mathbb{E}_{(\mathbf{t}_{k,j},\mathbf{a}_{k,j}) \sim \mathcal{T}_{s_k}} \left\{ L\left(f(\mathbf{t}_{k,j}, s_k; \widehat{W}, \mathbf{e}_{s_k}), \mathbf{a}_{k,j} \right) \right\}$$

Whole model adaptation

$$\min_{W,\mathbf{e}_{s_k}} \mathbb{E}_{(\mathbf{t}_{k,j},\mathbf{a}_{k,j}) \sim \mathcal{T}_{s_k}} \left\{ L\left(f(\mathbf{t}_{k,j},s_k;W,\mathbf{e}_{s_k}),\mathbf{a}_{k,j}\right)\right\}$$

Speaker Encoding

- Uses a speaker encoder
 - Estimates speaker embeddings from a set of cloning audio samples

Speaker Encoding

- **Training Step 1:** Train multi-speaker generative model and extract the speaker embeddings
- Training Step 2: Train speaker encoder with an L1 loss to predict the trained embeddings from cloning audios:

$$\min_{\mathbf{\Theta}} \mathbb{E}_{s_i \sim \mathcal{S}} \left\{ |g(\mathcal{A}_{s_i}; \mathbf{\Theta}) - \widehat{\mathbf{e}}_{\mathbf{s_i}})| \right\}$$

• Training Step 3: $\min_{W,\Theta} \mathbb{E} \sup_{\substack{s_i \sim \mathcal{S}, \\ (\mathbf{t}_{i,j}, \mathbf{a}_{i,j}) \sim \mathcal{T}_{s_i}}} \{L\left(f(\mathbf{t}_{i,j}, s_i; W, g(\mathcal{A}_{s_i}; \mathbf{\Theta})), \mathbf{a}_{i,j}\right)\}$

Speaker encoder Architecture

Experiments

Datasets

- Multi-speaker generative model and speaker encoders are trained using LibriSpeech dataset (2484 speakers, 820 hours)
- Voice cloning is performed on VCTK dataset (108 speakers, 44 hours)

Model details

Deep Voice 3 with Griffin Lim Decoder

Evaluation

- Speaker Classification (Accuracy %)
 - A speaker classifier is trained with the set of speakers used for cloning
- Speaker Verification (EER %)
 - Binary classification to identify whether a test audio and an enrolled audio are from the same speaker
 - Can be used for unseen speakers

Time and Memory Footprint

	Speaker ac	daptation	Speaker encoding			
Approaches	Embedding-only	Whole-model	Without fine-tuning	With fine-tuning		
Data	Text and audio		Audio			
Cloning time	~ 8 hours	$\sim 0.5-5 \ \mathrm{mins}$	$\sim 1.5 - 3.5 \mathrm{\ secs}$	$\sim 1.5 - 3.5 \mathrm{\ secs}$		
Inference time	$\sim 0.4-0.6~{ m secs}$					
Parameters per speaker	128	~ 25 million	512	512		

Table 1: Comparison of speaker adaptation and speaker encoding approaches.

Speaker classification accuracy and verification EER

Figure 4: (a) Speaker classification accuracy with different numbers of cloning samples. (b) EER (using 5 enrollment audios) for different numbers of cloning samples. LibriSpeech (unseen speakers) and VCTK represent EERs estimated from random pairing of utterances from ground-truth datasets.

Whole model adaptation vs Speaker embedding adaptation

Naturalness

Approach	Sample count					
	1	2	3	5	10	
Ground-truth (16 KHz sampling rate)			4.66 ± 0.06	5		
Multi-speaker generative model	2.61 ± 0.10					
Speaker adaptation (embedding-only)	2.27 ± 0.10	2.38 ± 0.10	2.43 ± 0.10	2.46 ± 0.09	2.67 ± 0.10	
Speaker adaptation (whole-model)	2.32 ± 0.10	2.87 ± 0.09	2.98 ± 0.11	2.67 ± 0.11	3.16 ± 0.09	
Speaker encoding (without fine-tuning)	2.76 ± 0.10	2.76 ± 0.09	2.78 ± 0.10	2.75 ± 0.10	2.79 ± 0.10	
Speaker encoding (with fine-tuning)	2.93 ± 0.10	3.02 ± 0.11	$2.97{\pm}0.1$	2.93 ± 0.10	2.99 ± 0.12	

Table 2: Mean Opinion Score (MOS) evaluations for naturalness with 95% confidence intervals (training with LibriSpeech speakers and cloning with 108 VCTK speakers).

Similarity with ground-truth

Approach	Sample count					
	1	2	3	5	10	
Ground-truth (same speaker)			3.91 ± 0.03			
Ground-truth (different speakers)			1.52 ± 0.09			
Speaker adaptation (embedding-only)	2.66 ± 0.09	2.64 ± 0.09	2.71 ± 0.09	2.78 ± 0.10	2.95 ± 0.09	
Speaker adaptation (whole-model)	2.59 ± 0.09	2.95 ± 0.09	3.01 ± 0.10	3.07 ± 0.08	3.16 ± 0.08	
Speaker encoding (without fine-tuning)	2.48 ± 0.10	2.73 ± 0.10	2.70 ± 0.11	2.81 ± 0.10	2.85 ± 0.10	
Speaker encoding (with fine-tuning)	2.59 ± 0.12	2.67 ± 0.12	2.73 ± 0.13	2.77 ± 0.12	2.77 ± 0.11	

Table 3: Similarity score evaluations with 95% confidence intervals (training with LibriSpeech speakers and cloning with 108 VCTK speakers).

Embedding manipulation

Figure 5: Visualization of estimated speaker embeddings by speaker encoder. The first two principal components of speaker embeddings (averaged across 5 samples for each speaker). Only British and North American regional accents are shown as they constitute the majority of the labeled speakers in the VCTK dataset. Please see Appendix E for more detailed analysis.