1 Körper

1.1 Reelle Zahlen

Ordnungsvollständigkeit: Seien $A, B \subseteq \mathbb{R}$ s. d. $A \neq \emptyset$ (ii) $\forall a \in A \ \forall b \in B \ a \leq b \ Dann: \exists c \in \mathbb{R}$ s.d. $\forall a \in A \ a \leqslant c \ \forall b \in B \ c \leqslant b$ Korollar 1.1.7 (Archimedisches Prinzip) Sei $x > 0y \in \mathbb{R}$ Dann: $\exists n \in \mathbb{N} \quad y \leqslant n * x \text{ Satz } 1.1.8 \quad \forall t \geqslant 0, t \in \mathbb{R} \text{ hat } x^2 = t$ eine Lösung in \mathbb{R} Satz 1.1.10 $\forall x,y \in \mathbb{R}$ (i) $|x| \ge 0$ (ii) |xy| = |x||y| (iii) $|x + y| \le |x| + |y|$ $|x+y| \geqslant ||x|-|y||$ Satz 1.1.11 (Young'sche Ungleichung) $\forall \varepsilon > 0, \forall x, y \in \mathbb{R}$ gilt: $2|xy| \leq \varepsilon x^2 + \frac{1}{\varepsilon}y^2$ Definition 1.1.12 Sei $A \subset \mathbb{R}$ (i) / (ii) $c \in \mathbb{R}$ ist eine obere/untere Schranke von A wenn $\forall a \in A \ a \leq / \geq$ c. A ist nach oben/unten beschränkt, wenn es eine obere/untere Schranke gibt. (iii) / (iv) $m \in \mathbb{R}$ ist ein Maximum/Minimum von \overline{A} wenn $\overline{m} \in A$ und \overline{m} **obere/untere Schranke** von A ist. Satz 1.1.15 Sei $A \subseteq$ \mathbb{R} , $A \neq \emptyset$ Sei A nach oben/unten beschränkt. Dann gibt es eine kleinste obere/ grösste untere Schranke von A: $c := \sup A / c := \inf A$ genannt Supre**mum/Infimum** von A Korollar 1.1.16 Seien A \subseteq $B \subseteq \mathbb{R}$ Wenn B nach oben/unten beschränkt ist, folgt $\sup A \leqslant \sup B / \inf B \leqslant \inf A$ Konvention: Wenn A nicht beschränkt ist, definieren $\overline{\text{wir sup } A} = +\infty$ bzw. $\inf A = -\infty$

1.2 Der Euklidische Raum

1.3 Komplexe Zahlen

Satz 1.3.4 (Fundamentalsatz der Algebra) Sei $n \ge 1$, $n \in \mathbb{N}$, $a_j \in \mathbb{C}$ und $P(z) = z^n + a_{n-1}z^{n-1} + ... + a_0$ Dann $\exists z_1, ..., z_n \in \mathbb{C}$, so dass $P(z) = (z - z_1)(z - z_2)...(z - z_n)$

2 Folgen und Reihen

2.1 Grenzwert einer Folge

Definition 2.1.1 Eine Folge (reeller Zahlen) ist eine Abbildung $a: N^* \longrightarrow \mathbb{R}$. Wir schreiben a_n statt a(n)

und bezeichnen eine Folge mit $(a_n)_{n\geq 1}$ Lemma 2.1.3 Sei $(a_n)_{n\geq 1}$ eine Folge. Dann gibt es höchstens eine reelle Zahl $l \in \mathbb{R}$ mit der Eigenschaft: $\forall \varepsilon > 0$ ist die Menge $\{n \in \mathbb{N} : a_n \notin |l - \varepsilon, l + \varepsilon[\}\}$ endlich. Definition 2.1.4 Eine Folge $(a_n)_{n\geq 1}$ ist konvergent, wenn es $l \in \mathbb{R}$ gibt, so dass $\forall \varepsilon > 0$ die Menge $\{n \in$ $\mathbb{N}: a_n \notin]l - \varepsilon, l + \varepsilon[\}$ endlich ist. Lemma 2.1.6 Sei $(a_n)_{n\geqslant 1}$ eine Folge. Folgende Aussagen sind äquivalent (1) $(a_n)_{n\geqslant 1}$ konvergiert gegen $l=\lim_{n\to\infty}a_n$ $\forall \varepsilon > 0 \exists N \geqslant 1$, so dass $|a_n - l| < \varepsilon \quad \forall n \geqslant N$ Satz 2.1.8 Seien $(a_n)_{n \ge 1}$, $(b_n)_n \ge 1$ konvergent mit $a = \lim_{n \to \infty} a_n$, $b = \lim_{n \to \infty} b_n$ (1) $(a_n + b_n)_{n \geqslant 1}$ ist kon**vergent**: $\lim_{n\to\infty} (a_n + b_n) = a + b$ (2) $(a_n \cdot b_n)_{n\geqslant 1}$ ist konvergent: $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$ (3) Sei $\forall n \geqslant$ 1 $b_n \neq 0$ und $b \neq 0$. Dann ist $(\frac{a_n}{b_n})_{n \geq 1}$ konvergent und $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right)_{n\geqslant 1} = \frac{a}{b}$ (4) Wenn $\exists K\geqslant 1 \text{ mit } \forall n\geqslant K: \ a_n\leqslant 1$ b_n , folgt $a \leq b$ Beispiel 2.1.9 $b \in \mathbb{Z}$: $\lim_{n \to \infty} (1 + \frac{1}{n})^b =$ 1. Das folgt aus $\lim_{n\to\infty} (1+\frac{1}{n}) = 1$ unde wiederholter Anwendung von Satz 2.1.8 (2) und (3).

2.2 Satz von Weierstrass

Definition 2.2.1 (1) [(2)] $(a_n)_{n\geqslant 1}$ ist monoton wachsend [fallend] wenn: $a_n\leqslant [\geqslant]a_{n+1} \ \forall n\geqslant 1$ Satz 2.2.2 (Weierstrass) Sei $(a_n)_{n\geqslant 1}$ monoton wachsend [fallend] und nach oben [unten] beschränkt. Dann konvergiert $(a_n)_{n\geqslant 1}$ mit $\lim_{n\to\infty}a_n=\sup\{a_n:n\geqslant 1\}$ [$\lim_{n\to\infty}a_n=\inf\{a_n:n\geqslant 1\}$] Beispiel 2.2.3 Sei $a\in\mathbb{Z}$ und $0\leqslant q<1$. Dann gilt $\lim_{n\to\infty}n^aq^n=0$. Wir können annehmen, dass q>0. Sei $x_n=n^aq^n$; dann folgt: $x_{n+1}=(n+1)^aa^{n+1}=(\frac{n+1}{n})^aq\cdot n^aq^n=(1+\frac{1}{n})^a\cdot q\cdot x_n$. Also: $x_{n+1}=(1+\frac{1}{n})^a\cdot q\cdot x_n$. Da $\lim_{n\to\infty}(1+\frac{1}{n})^a=1$ (Beispiel 2.1.9), gibt es ein n_0 , so dass $(1+\frac{1}{n})^a<\frac{1}{q}$ $\forall n\geqslant n_0$. Es folgt: $x_{n+1}< x_n$ $\forall n\geqslant n_0$. Da für $x_n>0$ $\forall n\geqslant 1$ die Folge nach unten beschränkt ist und für $n\geqslant n_0$ monoton fallend ist.

Sei $l=\lim_{n\to\infty}x_n=\lim_{n\to\infty}x_{n+1}=\lim_{n\to\infty}(1+\frac{1}{n})^a\cdot qx^n=q\cdot\lim_{n\to\infty}x_n=q\cdot l.$ Also $(1-q)\cdot l=0$ woraus l=0 folgt. Bemerkung 2.2.24 In Beispiel 2.2.3 wird zweimal die folgende einfache Tatsache verwendet: Sei $(a_n)_{n\geqslant 1}$ eine konvergente Folge mit $\lim_{n\to\infty}a_n=a$ und $k\in\mathbb{N}$. Dann ist die durch $b_n:=a_{n+k}$ $n\geqslant 1$ definierte Folge konvergent und $\lim_{n\to\infty}b_n=a$. Lemma 2.2.7 (Bernoulli Ungleichung) $(1+x)^n\geqslant 1+n\cdot x$ $\forall n\in\mathbb{N}, x>-1$

2.3 Limes superior und Limes inferior

Limes inferior/ superior: Sei $(a_n)_{n\geqslant 1}$ eine beschränkte Folge. Sei $\forall n\geqslant 1$: $b_n=\inf\{a_k:k\geqslant n\}$, $c_n=\sup\{a_k:k\geqslant n\}$ Dann folgt $\forall n\geqslant 1$ $b_n\leqslant b_{n+1}$ (monoton wachsend) und $c_n\geqslant c_{n+1}$ (monoton fallend) und beide Folgen beschränkt. Wir definieren: $\liminf_{n\to\infty}a_n:=\lim_{n\to\infty}b_n$ $\limsup_{n\to\infty}a_n:=\lim_{n\to\infty}c_n$

2.4 Cauchy Kriterium

Lemma 2.4.1 $(a_n)_{n\geqslant 1}$ konvergiert genau dann, wenn $(a_n)_{n\geqslant 1}$ beschränkt und $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n$

Satz 2.4.2 (Cauchy Kriterium) $(a_n)_{n\geqslant 1}$ ist genau dann kovergent, wenn $\forall \varepsilon > 0 \,\exists N \geqslant 1$, so dass $|a_n - a_m| < \varepsilon \quad \forall n, m \geqslant N$

2.5 Satz von Bolzano-Wierstrass

Definition 2.5.1 Ein abgeschlossenes Intervall $I\subseteq\mathbb{R}$ ist von der Form (1) [a,b] $a\leqslant b$ $a,b\in\mathbb{R}$ (2) $[a,+\infty[$ $a\in\mathbb{R}$ (3) $]-\infty,a]$ $a\in\mathbb{R}$ (4) $]-\infty,+\infty[=\mathbb{R}$ Bemerkung 2.5.2 Ein Intervall $I\subseteq\mathbb{R}$ ist genau dann abgeschlossen, wenn für jede konvergente Folge $(a_n)_{n\geqslant 1}$ mit $a_n\in I$ $\lim_{n\to\infty}a_n\in I$. Bemerkung 2.5.3 Seien I=[a,b], J=[c,d] mit $a\leqslant b,c\leqslant d,a,b,c,d\in\mathbb{R}$. Dann ist $I\subseteq J$ genau dann, wenn $c\leqslant a,b\leqslant d$ Satz 2.5.5.5 (Cauchy-Cantor) Sei $I_1\supseteq I_2\supseteq ...I_n\supseteq I_{n+1}\supseteq ...$ eine Folge abgeschlossener Intervalle mit $\mathcal{L}(I_1)<+\infty$ Dann gilt $\bigcap_{n\geqslant 1}I_n\not=\emptyset$. Falls zudem $\lim_{n\to\infty}\mathcal{L}(I_n)=0$ gilt, enthält $\bigcap_{n\geqslant 1}I_n$ genau

einen Punkt. Definition 2.5.7 Eine Teilfolge einer Folge $(a_n)_{n\geq 1}$ ist eine Folge $(b_n)_{n\geq 1}$, wobei $b_n=a_{I(n)}$ und $l: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ eine **Abbildung** mit der Eigenschaft $l(n) < l(n+1) \quad \forall n \ge 1$ Satz 2.5.9 (Bolzano-Weierstrass) Jede beschränkte Folge besitzt eine konvergente Teilfolge.

Definition 2.6.1 Eine Folge in \mathbb{R}^d ist eine Abbildung

2.6 Folgen in \mathbb{R}^d und \mathbb{C}

 $a: \mathbb{N}^* \longrightarrow \mathbb{R}^d$. Wir schreiben a_n statt a(n) und bezeichnen die Folge mit $(a_n)_{n \ge 1}$ Definition 2.6.2 Eine Folge $(a_n)_{n\geq 1}$ in \mathbb{R}^d ist **konvergent**, wenn $\exists a\in\mathbb{R}^d$, so dass $\forall \varepsilon > 0 \,\exists N \geqslant 1 \,\text{mit} \, \|a_n - a\| < \varepsilon \qquad \forall n \geqslant N \,\, \text{Satz 2.6.3}$ Sei $b = (b_1, ..., b_d)$. Folgende Aussagen sind äquivalent: (1) $\lim_{n\to\infty} a_n = b$ (2) $\lim_{n\to\infty} a_{nj} = b_j$ $\forall 1 \leqslant j \leqslant d$ Bemerkung 2.6.4 Sei $x = (x_1, ..., x_d)$. Dann ist $\forall 1 \leqslant$ $j \leqslant d$: $x_j^2 \leqslant \sum_{i=1}^d x_i^2 = ||x||^2 \leqslant d \cdot \max_{1 \leqslant i \leqslant d} x_i^2$ woraus $|x_j| \leqslant ||x|| \leqslant \sqrt{d} \cdot \max_{1 \leqslant i \leqslant d} |x_i|$ folgt. Bemerkung 2.6.5 Eine konvergente Folge $(a_n)_{n\geq 1}$ in \mathbb{R}^d ist beschränkt. Das heisst: $\exists R \geqslant 0 \text{ mit } ||a_n|| \leqslant R \ \forall n \geqslant 1 \ \text{Satz 2.6.6}$ (1) Eine Folge $(a_n)_{n\geq 1}$ konvergiert genau dann, wenn sie eine Cauchy Folge ist: $\forall \varepsilon > 0 \,\exists N \geqslant 1 \, \text{mit} \, \|a_n - a_m\| < 1 \, \text{mi$ $\varepsilon \quad \forall n, m \geqslant N.$ (2) Jede beschränkte Folge hat eine konvergente Teilfolge.

2.7 Reihen

Definition 2.7.1 Die Reihe $\sum_{k=1}^{\infty} a_k$ ist konvergent, wenn die Folge $(S_n)_{n\geqslant 1}$ der Partialsummen kon**vergiert**. In diesem Fall definieren wir: $\sum_{k=1}^{\infty} a_k =$ $\lim S_n$ Beispiel 2.7.2 (Geometrische Reihe) Sei $q \in \mathbb{C}$ mit |q| < 1. Dann konvergiert $\sum_{k=0}^{\infty} q^k$ und dessen Wert ist: $\frac{1}{1-q}$. Sei $S_n = \sum_{k=0}^n q^k = 1 + q + ... + q^n$. $q \cdot S_n = q + \dots + q^n + q^{n+1}$ woraus $(1 - q)S_n = 1 - q^{n+1}$ folgt. Es gilt also: $S_n = \frac{1-q^{n+1}}{1-a}$ Nun zeigen wir die Konvergenz: $|S_n - \frac{1}{1-q}| = \left| \frac{-q^{n+1}}{1-q} \right| = \frac{|q|^{n+1}}{|1-q|}$. Es folgt aus Beispiel 2.2.3 und $0 \le |q| < 1$: $\lim_{n \to \infty} |S_n - \frac{1}{1-1}| =$

 $\lim_{n\to\infty}\frac{|q|^{n+1}}{|1-q|}=0. \text{ Somit konvergiert } (S_n)_{n\geqslant 1} \text{ gegen } \frac{1}{1-q}.$ Beispiel 2.7.3 (Harmonische Reihe) Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert. Satz 2.7.4 Seien $\sum_{k=1}^{\infty} a_k$, $\sum_{j=1}^{\infty} b_j$ konvergent sowie $\alpha \in \mathbb{C}$. Dann ist: (1) $\sum_{k=1}^{\infty} (a_k + b_k)$ konvergent und $\sum_{k=1}^{\infty} (a_k + b_k) = (\sum_{k=1}^{\infty} a_k) + (\sum_{i=1}^{\infty} b_i)$ (2) $\sum_{k=1}^{\infty} (\alpha \cdot a_k)$ **konvergent** und $\sum_{k=1}^{\infty} (\alpha \cdot a_k) = \alpha \cdot \sum_{k=1}^{\infty} \overline{a_k}$ Satz 2.7.5 (Cauchy Kriterium) Die Reihe $\sum_{k=1}^{\infty} a_k$ ist genau dann konvergent, wenn: $\forall \varepsilon > 0 \exists N \geqslant 1$ mit $\left|\sum_{k=n}^{m} a_k\right| < \varepsilon \quad \forall m \geqslant n \geqslant N$. Satz 2.7.6 Sei $\sum_{k=1}^{\infty} a_k$ eine Reiehe mit $a_k \geqslant 0 \quad \forall k \in \mathbb{N}^*$. $\sum_{k=1}^{\infty} a_k$ konvergiert genau dann, wenn die Folge $(S_n)_{n\geqslant 1}, S_n = \sum_{k=1}^n a_k \operatorname{der}$ Partialsummen nach oben beschränkt ist. Korollar 2.7.7 (Vergleichssatz) Seien $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ Reihen mit: $0 \leqslant a_k \leqslant b_k \quad \forall k \geqslant 1$. Dann gelten: $\sum_{k=1}^{\infty} b_k$ konvergent $\implies \sum_{k=1}^{\infty} a_k$ konvergent $\sum_{k=1}^{\infty} a_k$ divergent $\Longrightarrow \sum_{k=1}^{\infty} b_k$ divergent Die Implikationen treffen auch zu, wenn $\exists K \geqslant 1$ Reihe $\sum_{k=1}^{\infty} a_k$ ist **absolut konvergent**, wenn $\sum_{k=1}^{\infty} |a_k|$ konvergiert. Satz 2.7.10 Eine absolut konvergente Reihe $\sum_{k=1}^{\infty} a_k$ ist auch konvergent und es gilt: $\left|\sum_{k=1}^{\infty} a_k\right| \leqslant \sum_{k=1}^{\infty} \left|a_k\right|$ Satz 2.7.12 (Leibniz 1682) Sei $(a_n)_{n\geqslant 1}$ monoton fallend mit $a_n\geqslant 0 \quad \forall n\geqslant 1$ und $\lim a_n = 0$. Dann konvergiert $S := \sum_{k=1}^{\infty} (-1)^{k+1} a_k$ und es gilt: $a_1 - a_2 \leqslant S \leqslant a_1$ Definition 2.7.14 Eine Reihe $\sum_{n=1}^{\infty} a'_n$ ist eine **Umordnung der Reihe** $\sum_{n=1}^{\infty} a_n$ wenn es eine bijektive Abbildung $\phi: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ **gibt**, so dass $a'_n = a_{\phi(n)}$ Satz 2.7.16 (Drichlet 1837) Wenn $\sum_{n=1}^{\infty} a_n$ absolut konvergiert, dann konvergiert jede Umordnung der Reihe mit demselben Grenzwert. Satz 2.7.17 (Quotientenkriterium, Cauchy 1821) Sei $(a_n)_{n \ge 1}$ mit $a_n \ne 0 \quad \forall n \ge 1$ und $\sum_{n=1}^{\infty} a_n$ eine Reihe. Wenn: $\limsup_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} < 1$ kovergiert die Reiehe $\sum_{n=1}^{\infty} a_n$ absolut. Wenn: $\liminf_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} > 1$ divergiert die Reihe Beispiel 2.7.18 (Exponentialfunktion) Für $a_0b_0 + (a_0b_1 + a_1b_0) + (a_0b_2 + a_1b_1 + a_2b_0) + ...$

 $z \in \mathbb{C}$ betrachte die Reihe: $1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$ mit allgemeinem Glied $a_n = \frac{z^n}{n!}$. Fann folgt für $z \neq 0$: $\frac{|a_{n+1}|}{|a_n|} = \left| \frac{z^{n+1}}{(n+1)!} \frac{n!}{z^n} \right| = \frac{|z|}{n+1}$. Also gilt: $\lim_{n \to \infty} rac{|a_{n+1}|}{|a_n|} = 0$ und die Reihe konvergiert für alle $z \in \mathbb{C}$. Wir definieren die Exponentialfunktion: $\exp z :=$ $1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\ldots=\sum_{n=0}^{\infty}\frac{z^n}{n!}$ Bemerkung 2.7.19 Das Quotientenkriterium versagt, wenn z. B. unenedlich viele Glieder a_n der Reihe verschwinden (= 0 sind) Satz 2.7.20 (Wurzelkriterium, Cauchy 1821) (1) $\limsup \sqrt[n]{|a_n|} < 1 \Longrightarrow \sum_{n=1}^{\infty} a_n$ konvergiert absolut. (2) $\limsup \sqrt[n]{|a_n|} > 1 \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ und } \sum_{n=1}^{\infty} |a_n|$ **divergieren**. Konvergenzradius ρ : Sei $(c_k)_{k>0}$ eine Folge (in \mathbb{R} oder \mathbb{C}). Wenn $\limsup_{k \to \infty} \sqrt[k]{|c_k|}$ existiert, definieren wir: $\rho = +\infty$ wenn $\limsup \sqrt[k]{|c_k|} = 0$ mit $0 \leqslant a_k \leqslant b_k \ \forall k \geqslant K$ Definition 2.7.9 Die und $\rho = \frac{1}{\limsup \sqrt[k]{|c_k|}}$ wenn $\limsup \sqrt[k]{|c_k|} > 0$ Riemann Zeta Funktion Sei s > 1 und $\zeta(s) =$ $\sum_{n=1}^{\infty} \frac{1}{n^s}$. Wir wissen, dass $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert. Die Reihe konvergiert $\forall s > 1$ Korollar 2.7.21 Die Potenzreihe $\sum_{k=0}^{\infty} c_k z^k$ konvergiert absolut $\forall |z| < \rho$ und **divergiert** $\forall |z| > \rho$. **Definition 2.7.22** $\sum_{k=0}^{\infty} b_k$ ist eine lineare Anordnung der Doppelreihe $\sum_{i,j\geq 0} a_{ij}$, wenn es eine **Bijektion** $\sigma : \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$ **gibt**, mit $b_k = a_{\sigma(k)}$. Satz 2.7.23 (Cauchy 1821) Wir nehmen an, dass es $\overline{B} \geqslant 0$ gibt, so dass $\sum_{i=0}^{m} \sum_{j=0}^{m} |a_{ij}| \leqslant B \quad \forall m \geqslant 0$. Dann kovergieren die folgenden Reihen absolut: $S_i := \sum_{i=0}^{\infty} a_{ij} \quad \forall i \geqslant 0 \text{ und } U_i := \sum_{i=0}^{\infty} a_{ij} \quad \forall j \geqslant 0$ sowie $\sum_{i=0}^{\infty} S_i$ und $\sum_{i=0}^{\infty} U_i$ und es gilt: $\sum_{i=0}^{\infty} S_i =$ $\sum_{i=0}^{\infty} U_i$ Und jede lineare Anordnug der Doppelreihe konvergiert absolut mit gleichem Grenzwert. Definition 2.7.24 Das Cauchy Produkt der Reihen $\sum_{i=0}^{\infty} a_i$, $\sum_{j=0}^{\infty} b_j$ ist die Reihe: $\sum_{n=0}^{\infty} (\sum_{j=0}^{\infty} a_{n-j} b_j) =$

Satz 2.7.26 Falls die Reihen $\sum_{i=0}^{\infty} a_i$, $\sum_{j=0}^{\infty} b_j$ absolut konvergieren, konvergiert ihr Cauchy Produkt und es gilt: $\sum_{n=0}^{\infty} (\sum_{j=0}^{\infty} a_{n-j}b_j) = (sum_{i=0}^{\infty} a_i)(\sum_{j=0}^{\infty} b_j)$. Anwendung 2.7.27 (Exponentialfunktion) $\forall z, w \in \mathbb{C}$: $\exp(w+z) = \exp(w) \exp(z)$. Wir berechnen das Cauchy Produkt der Reihen: $\sum_{i=0}^{\infty} \frac{w^i}{i!}$, $\sum_{i=0}^{\infty} \frac{z^i}{i!}$. Dies ist: $\sum_{n=0}^{\infty} (\sum_{j=0}^{n} \frac{w^{n-j}}{(n-j)!} \frac{z^j}{j!})$ Woraus die Behauptung folgt. Satz 2.7.28 Sei $f_n : \mathbb{N} \longrightarrow \mathbb{R}$ eine Folge. Wir nehmen an, dass: (1) $f(j) := \lim_{n \to \infty} f_n(j) \quad \forall j \in \mathbb{N}$ existiert (2) es eine Funktion $g : \mathbb{N} \longrightarrow [0, \infty[$ gibt, so dass 2.1 $|f_n(j)| \leq g(j) \quad \forall j \geq 0$, $\forall n \geq 0$ 2.2 $\sum_{j=0}^{\infty} g(j)$ konvergiert. Dann folgt: $\sum_{j=0}^{\infty} f(j) = \lim_{n \to \infty} \sum_{j=0}^{i} nfty f_n(j)$. Korollar 2.7.29 (Exponentialfunktion) $\forall z \in \mathbb{C}$ konvergiert die Folge $((1 + \frac{z}{n})^n)_{n \geq 1}$ und $\lim_{n \to \infty} (1 + \frac{z}{n})^n = exp(z)$

3 Stetige Funktionen

3.1 Reellwertige Funktionen

Definition 3.1.1 [(1) / (2)] (3) f ist nach **[oben/unten] beschränkt** wenn $f(D) \subseteq \mathbb{R}$ nach **[oben/unten] beschränkt Definition 3.1.2** Eine Funktion $f:D \longrightarrow \mathbb{R}$, wobei $D \subseteq \mathbb{R}$, ist: **(1) [(2)] [streng] monoton wachsend**, wenn $\forall x,y \in D$ $x \in [<]y \Rightarrow f(x) \le [<]f(y)$ **(3) [(4)] [streng] monoton fallend**, wenn $\forall x,y \in D$ $x \le [<]y \Rightarrow f(x) \ge [>]f(y)$ **(5) [(6)] [streng] monoton**, wenn f **[streng] monoton** wachsend oder **fallend** ist.

3.2 Stetigkeit

Definition 3.2.1 Sei $D \subseteq \mathbb{R}$, $x_0 \in D$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 **stetig**, wenn $\forall \varepsilon > 0 \ \exists \delta > 0$, so dass $\forall x \in D$ die Implikation: $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$ gilt **Definition 3.2.2** Die Funktion $f: D \longrightarrow \mathbb{R}$ ist **stetig**, wenn sie in **jedem Punkt von D stetig** ist. Satz 3.2.4 Sei $x_0 \in D \subseteq \mathbb{R}$ und $f: D \longrightarrow \mathbb{R}$. Die Funktion f ist genau dann in x_0 **stetig**, wenn für

jede Folge $(a_n)_{n\geqslant 1}$ in D die folgende Implikation gilt: $\lim_{n\to\infty}a_n=x_0\Longrightarrow\lim_{n\to\infty}f(a_n)=f(x_0)$. Korollar 3.2.5 Seien $x_0\in D\subseteq\mathbb{R}, \lambda\in\mathbb{R}$ und $f:D\longrightarrow\mathbb{R}, g:D\longrightarrow\mathbb{R}$ beide stetig in x_0 : (1) $f+g,\lambda\cdot f, f\cdot g$ sind stetig in x_0 . (2) Wenn $g(x_0)\neq 0$ ist, ist $\frac{f}{g}:D\cap\{x\in D:g(x)\neq 0\}\longrightarrow\mathbb{R}, x\longmapsto\frac{f(x)}{g(x)}$ stetig in x_0 Definition 3.2.6 Eine polynomielle Funktion $P:\mathbb{R}\longrightarrow\mathbb{R}$ ist eine Funktion der Form: $P(x)=a_nx^n+...+a_0$ wobei: $a_n,...,a_0\in\mathbb{R}$. Wenn $a_n\neq 0$ ist, ist n der Grad von n. Korollar 3.2.7 Polynomielle Funktionen sind auf ganz n stetig Korollar 3.2.8 Seien n0. Seien n1, ..., n2 die Nullstellen von n2. Dann ist n3 stetig.

3.3 Zwischenwertsatz

Satz 3.3.1 (Zwischenwertsatz, Bolzano 1817) Seien $I \subseteq \mathbb{R}$ ein Intervall, $f: I \longrightarrow \mathbb{R}$ eine stetige Funktion und $a,b \in I$. Für jedes c zwischen f(a) und f(b) gibt es ein z zwischen a und b mit f(z) = c.

3.4 Min-Max Satz

Definition 3.4.2 Ein Intervall $I \subset \mathbb{R}$ ist kompakt, wenn es von der Form $I = [a,b], a \leqslant b$ ist. Lemma 3.4.3 Sei $D \subseteq \mathbb{R}, x_0 \in D$ und $f,g:D \longrightarrow \mathbb{R}$ stetig in x_0 . So sind |f|, $\max(f,g)$, $\min(f,g)$ stetig in x_0 . Lemma 3.4.4 Sei $(x_n)_{n\geqslant 1}$ eine konvergente Folge in \mathbb{R} mit Grenzwert $\lim_{n\to\infty} x_n \in \mathbb{R}$. Sei $a \leqslant b$. Wenn $\{x_n:n\geqslant 1\}\subseteq [a,b]$, folgt: $\lim_{n\to\infty} x_n\in [a,b]$. Satz 3.4.5 Sei $f:I=[a,b]\longrightarrow \mathbb{R}$ stetig auf einem kompakten Intervall I. Dann gibt es $u\in I$ und $v\in I$ mit: $f(u)\leqslant f(x)\leqslant f(v)$ $\forall x\in I$. Insbesondere ist f beschränkt.

3.5 Umkehrabbildung

Satz 3.5.1 Seien $D_1, D_2 \subseteq \mathbb{R}$, $f: D_1 \longrightarrow D_2$, $g: D_2 \longrightarrow \mathbb{R}$ und $x_0 \in D_1$. Wenn f in x_0 und g in $f(x_0)$ stetig sind, so ist $g \circ f: D_1 \longrightarrow \mathbb{R}$ in x_0 stetig. Korollar 3.5.2 Wenn in Satz 3.5.1 f auf D_1 und g auf

 D_2 stetig sind, ist $g \circ f$ auf D_1 stetig. Satz 3.5.3 Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \longrightarrow \mathbb{R}$ stetig, streng monoton. Dann ist $J:=f(i)\subseteq \mathbb{R}$ ein Intervall und $f^{-1}: J \longrightarrow I$ ist stetig, streng monoton.

3.6 Reelle Exponentialfunktion

Satz 3.6.1 exp : $\mathbb{R} \longrightarrow]0, +\infty[$ ist streng monoton wachsend, stetig und surjektiv. Korollar 3.6.2 $\exp(x) > 0 \quad \forall x \in \mathbb{R}$. Aus der Potenzreihendarstel**lung** von exp folgt ausserdem: $\exp(x) > 1 \quad \forall x > 0$. Wenn y < z ist, folgt (aus 2.7.27) $\exp(z) = \exp(y + z)$ (z-y)) = $\exp(y) \exp(z-y)$ und da $\exp(z-y) > 1$ ist folgt folgendes Korollar: Korollar 3.6.3 $\exp(z)$ > Korollar 3.6.4 $\exp(x) \ge 1 +$ $exp(y) \quad \forall z > y$ $x \quad \forall x \in \mathbb{R}$ Korollar 3.6.5 Der natürlich Logarithmus $\ln :]0, +\infty[\longrightarrow \mathbb{R}$ ist eine streng monoton wachsende, stetige, bijektive Funktion. Des weiteren gilt $ln(a \cdot b) = ln a + ln b \quad \forall a, b \in]0, +\infty[$. Korollar 3.6.6 (1) / (2) Für a > /< 0 ist $]0, +\infty[\longrightarrow]0, +\infty[, x \longmapsto]$ x^a eine stetige, streng monoton wachsende/fallende **Bijektion**. $\forall a, b \in \mathbb{R}, \forall x > 0$: (3) $\ln(x^a) = a \ln(x)$ (4) $x^{a} \cdot x^{b} = x^{a+b}$ (5) $(x^{a})^{b} = x^{a} \cdot \overline{b}$

3.7 Konvergenz von Funktionenfolgen

Definition 3.7.1 Die Funktionenfolge $(f_n)_{n\geqslant 0}$ konvergiert punktweise gegen eine Funktion $f:D\longrightarrow \mathbb{R}$, wenn $\forall x\in D:$ $f(x)=\lim_{n\to\infty}f_n(x).$ Definition 3.7.3 (Weierstrass 1841) Die Folge $f_n:D\longrightarrow \mathbb{R}$ konvergiert gleichmässig in D gegen $f:D\longrightarrow \mathbb{R}$, wenn gilt: $\forall \varepsilon>0\,\exists N\geqslant 1$, so dass: $\forall n\geqslant N,\,\forall x\in D:$ $|f_n(x)-f(x)|<\varepsilon.$ Satz 3.7.4 Sei $D\subseteq \mathbb{R}$ und $f_n:D\longrightarrow \mathbb{R}$ eine Funktionenfolge bestehend aus (in D) stetigen Funktionen, die (in D) gleichmässig gegen eine Funktion $f:D\longrightarrow \mathbb{R}$ konvergiert. Dann ist f (in D) stetig. Definition 3.7.5 Eine Funktionenfolge $f_n:D\longrightarrow \mathbb{R}$ ist gleichmässig konvergent, wenn $\forall x\in D$ der Grenzwert $f(x):=\lim_{n\to\infty}f_n(x)$ existiert und die Folge $(f_n)_{n\geqslant 0}$ gleichmässig gegen f konvergiert.

 $f_n: D \longrightarrow \mathbb{R}$ konvergiert genau dann gleichmässig 0. (1) $\sin \pi = 0, \pi \in]2,4$ in *D*, wenn: $\forall \varepsilon > 0 \exists N \ge 1$, so dass $\forall n, m \ge N$ und $\forall x \in D: |f_n(x) - f_m(x)| < \varepsilon.$ Korollar 3.7.7 Sei $D \subseteq \mathbb{R}$. Wenn $f_n : D \longrightarrow \mathbb{R}$ eine gleichmässig konvergente Folge stetiger Funktionen ist, dann ist die Funktion $f(x) := \lim_{n \to \infty} f_n(x)$ stetig. Definition 3.7.8 Die Reihe $\sum_{k=0}^{\infty} f_k(x)$ konvergiert gleichmässig (in D), wenn die durch $S_n(x) := \sum_{k=0}^{\infty} f_k(x)$ definierte Funktionenfolge gleichmässig konvergiert. Satz 3.7.9 Sei $D \subseteq \mathbb{R}$ und $f_n : D \longrightarrow \mathbb{R}$ eine Folge stetiger Funk**tionen**. Wir nehmen an, dass $|f_n(x)| \leq c_n \ \forall x \in D$ und, dass $\sum_{n=0}^{\infty} c_n$ konvergiert. Dann konvergiert die Reihe $\sum_{n=0}^{\infty} f_n(x)$ **gleichmässig** in *D* und deren Grenzwert $f(x) := \sum_{n=0}^{\infty} f_n(x)$ ist eine in D stetige Funk-Definition 3.7.10 Die Potenzreihe $\sum_{k=0}^{\infty} c_k x^k$ hat **positiven Konvergenzradius**, wenn $\limsup \sqrt[k]{|c_k|}$ existiert. Der Konvergenzradius ist dann definiert als: $\rho = +\infty$ für $\limsup \sqrt[k]{|c_k|} = 0$, $ho = rac{1}{\limsup \sqrt[k]{|c_k|}} \quad ext{für } \limsup_{k o \infty} \sqrt[k]{|c_k|} > 0. \quad ext{Satz 3.7.11}$

Sei $\sum_{k=0}^{\infty}$ eine Potenzreihe mit positivem Konvergen**zradius** $\rho > 0$ und $f(x) := \sum_{k=0}^{\infty} c_k c^k$, $|x| < \rho$. Dann gilt: $\forall 0 \le r < \rho$ konvergiert $\sum_{k=0}^{\infty} c_k x^k$ gleichmässig auf [-r, r], insbesondere ist $f:]-\rho, \rho[\longrightarrow \mathbb{R}$ stetig.

3.8 Trigonometrische Funktionen

Satz 3.8.1 $\sin : \mathbb{R} \longrightarrow \mathbb{R}$ und $\cos : \mathbb{R} \longrightarrow \mathbb{R}$ sind stetige Funktionen. Satz 3.8.2 Sei $z \in \mathbb{C}$ (1) $\exp iz =$ cos(z) + i sin(z) (2) cos(z) = cos(-z) und sin(-z) = $-\sin(z)$ (3) $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$, $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$ (4) $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$, $\cos(z+w)$ $w) = \cos(z)\cos(w) - \sin(z)\sin(w)$ (5) $\cos^2(z) + \cos^2(z)$ $\sin^2(z) = 1$ Korollar 3.8.3 $\sin(2z) = 2\sin(z)\cos(z)$, $\cos(2z) = \cos^2(z) - \sin^2(z)$

3.9 Die Kreiszahl π

Satz 3.9.1 Die Sinusfunktion hat auf $]0, +\infty[$ mindestens eine Nullstelle. Sei $\pi := \inf\{t > 0 : \sin t = t\}$

(3) $e^{\frac{i\pi}{2}} = i$ Korollar 3.9.2 $x \ge$ $\sin x \geqslant x - \frac{x^3}{3!} \quad \forall 0 \leqslant x \leqslant \sqrt{6}$ Korollar 3.9.3 Sei $x \in \mathbb{R}$ (1) $e^{i\pi} = -1, e^{2i\pi} = 1$ (2) $\sin(x + \frac{\pi}{2}) =$ $\cos(x)$, $\cos(x + \frac{\pi}{2}) = -\sin(x)$ (3) $\sin(x + \pi) =$ $-\sin(x), \sin(x + 2\pi) = \sin(x)$ (4) $\cos(x + \pi) =$ $-\cos(x)$, $\cos(x+2\pi) = \cos(x)$ (5) Nullstellen von **Sinus** = $\{k \cdot \pi : k \in \mathbb{Z}\}$ $\sin(x) > 0 \ \forall x \in \mathbb{Z}$ $|2k\pi, (2k+1)\pi|, k \in \mathbb{Z} \sin(x) < 0 \ \forall x \in](2k+1)$ $1)\pi_{k}(2k+2)\pi[$, $k \in \mathbb{Z}$ (6) Nullstellen von Cosinus $= \{\frac{\pi}{2} + k \cdot \pi : k \in \mathbb{Z}\} \cos(x) > 0 \ \forall x \in]-\frac{\pi}{2} +$ $2k\pi, -\frac{\pi}{2} + (2k+1)\pi[, k \in \mathbb{Z} \cos(x) < 0 \quad \forall x \in] \frac{\pi}{2} + (2k+1)\pi, -\frac{\pi}{2} + (2k+2)\pi[, k \in \mathbb{Z}]$

3.10 Grenzwerte von Funktionen

Definition 3.10.1 $x_0 \in \mathbb{R}$ ist ein Häufungspunkt der Menge D, wenn $\delta > 0$: $(|x_0 - \delta, x_0 + \delta|) \setminus \{x_0\} \cap D \neq \emptyset$ \emptyset . Definition 3.10.3 Sei $f: D \longrightarrow \mathbb{R}$, $x_0 \in \mathbb{R}$ ein Häu**fungspunkt** von D. Dann ist $A \in \mathbb{R}$ der Grenzwert von f(x) für $x \to x_0$, bezeichnet mit $\lim_{x \to x_0} f(x) = A$, wenn $\forall \varepsilon > 0 \,\exists \delta > 0$, so dass $\forall x \in D \cap (|x_0 - \delta, x_0 +$ $\delta[\setminus \{x_0\}): |f(x) - A| < \varepsilon.$ Bemerkung 3.10.4 (1) Sei $f: D \longrightarrow \mathbb{R}$ und x_0 ein **Häufungspunkt** von D. Dann gilt $\lim_{x \to x_0} f(x) = A$ genau, dann wenn für jede Folge $(a_n)_{n\geqslant 1}$ in $D\setminus\{x_0\}$ mit $\lim_{n\to\infty}a_n=x_0$ folgendes gilt: $\lim_{n\to\infty} f(a_n) = A$. (2) Sei $x_0 \in D$. Dann ist fgenau dann stetig, wenn $\lim_{x\to x_0} f(x) = f(x_0)$. (3) Mittels (1) zeigt man leicht, dass wenn $f,g:D\longrightarrow \mathbb{R}$ und $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} g(x)$ existieren: $\lim_{x \to x_0} (f + g)(x) =$ $\lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) \text{ und } \lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot$ $\lim g(x)$ folgen. (4) Seien $f,g:D\longrightarrow \mathbb{R}$ mit $f \leqslant g$. Dann folgt $\lim_{x \to x_0} f(x) \leqslant \lim_{x \to x_0} g(x)$ falls beide Grenzwerte existieren. (5) Wenn $g_1 \leqslant f \leqslant g_2$ und

(2) $\forall x \in]0, \pi[: \lim_{x \to x_0} g_1(x) = \lim_{x \to x_0} g_2(x), \text{ so existiert } l := \lim_{x \to x_0} f(x)$ und $l = \lim_{x \to \infty} g_1(x)$ Satz 3.10.6 Seien $D, E \subseteq \mathbb{R}, x_0$ Häufungspunkt von $D, f : D \longrightarrow E$ eine Funktion. Wir nehmen an, dass $y_0 := \lim_{x \to x_0} f(x)$ existiert und $y_0 \in E$. Wenn $g: E \longrightarrow \mathbb{R}$ in y_0 stetig ist, folgt: $\lim_{x \to x_0} g(f(x)) = g(y_0).$

Differenzierbare Funktionen

4.1 Die Ableitung

Definition 4.1.1 f ist in x_0 **differenzierbar**, wenn der Grenzwert $\lim_{x\to x_0} \frac{f(x)-f(x-0)}{x-x_0}$ existiert. Ist dies der Fall, wird der Grenzwert mit $f'(x_0)$ bezeichnet. Bemerkung 4.1.2 Es ist oft von Vorteil in der Definition von $f'(x_0)$, $x = x_0 + h$ zu setzen, so dass: $f'(x_0) =$ $\lim_{h \to \infty} \frac{f(x_0+h)-f(x_0)}{h}$ Satz 4.1.3 (Weierstrass 1861) Sei f: $D \longrightarrow \mathbb{R}$, $x_0 \in D$ Häufungspunkt von D. Folgende Aussagen sind äquivalent: (1) f ist in x_0 differenzierbar (2) Es gibt $c \in \mathbb{R}$ und $r : D \longrightarrow \mathbb{R}$ mit: **2.1** $f(x) = f(x_0) + c(x - x_0) + r(x)(x - x_0)$ $r(x_0) = 0$ und r ist stetig in x_0 Wenn dies zutrifft, ist $c = f'(x_0)$ eindeutig bestimmt. Satz 4.1.4 Eine Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 genau dann differenzierbar, **wenn** es eine Funktion $\phi: D \longrightarrow \mathbb{R}$ gibt, die in x_0 **stetig** ist und $f(x) = f(x_0) + \phi(x)(x - x_0) \quad \forall x \in D$. In diesem Fall gilt: $\phi(x) = f'(x)$. Korollar 4.1.5 Sei $f: D \longrightarrow \mathbb{R}$ und x_0 ein Häufungspunkt von D. Wenn f in x_0 differenzierbar ist, ist f in x_0 stetig. **Definition 4.1.7** $f: D \longrightarrow \mathbb{R}$ ist in D differenzier**bar**, wenn für jeden Häufungspunkt $x_0 \in D$, f in x_0 **differenzierbar** ist. Satz 4.1.9 Sei $D \subseteq \mathbb{R}$, $x_0 \in D$ ein **Häufungspunkt** von D und $f,g:d \longrightarrow \mathbb{R}$ in x_0 dif**ferenzierbar**. Dann gelten: (1) f + g ist in x_0 differen**zierbar** und $(f+g)'(x_0) = f'(x_0) + g'(x_0)$ (2) $f \cdot g$ ist in x_0 differenzierbar und $(f \cdot g)'(x_0) = f'(x_0)g(x_0) +$ $f(x_0)g'(x_0)$ (3) Wenn $g(x_0) \neq 0$ ist, ist $\frac{f}{g}$ in x_0

differenzierbar und $(\frac{f}{g})'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$ Satz 4.1.11 Seien $D, E \subseteq \mathbb{R}$, sei $x_0 \in D$ ein Häufungspunkt, sei $f: D \longrightarrow E$ eine in x_0 differenzierbare Funktion, so dass $y_0 := f(x_0)$ ein Häu**fungspunkt** von E ist und sei $g: E \longrightarrow \mathbb{R}$ eine in y_0 **differenzierbare Funktion**. Dann ist $g \circ f : D \longrightarrow \mathbb{R}$ in x_0 differenzierbar und $(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$ Korollar 4.1.12 Sei $f: D \longrightarrow E$ eine bijektive Funk**tion**, sei $x_0 \in D$ ein **Häufungspunkt**. Wir nehmen an f ist in x_0 differenzierbar und $f'(x_0) \neq 0$. Zudem nehmen wir an f^{-1} ist in $y_0 = f(x_0)$ stetig. Dann ist y_0 ein Häufungspunkt von E, f^{-1} ist in y_0 differenzierbar und $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$ Definition 4.2.1 Sei $f: D \longrightarrow \mathbb{R}, D \subseteq \mathbb{R} \text{ und } x_0 \in D.$ (1) [(2)] f besitzt ein **lokales Maximum [Minimum]** in x_0 , wenn $\exists \delta > 0 \text{ mit: } f(x) \leqslant [\geqslant] f(x_0) \quad \forall x \in]x_0 - \delta, x_0 + \delta[\cap D]$ (3) f besitzt ein lokales Extremum in x_0 , wenn es ein lokales Minimum oder Maximum ist. Satz 4.2.2 Sei $f:]a, b[\longrightarrow \mathbb{R}, x_0 \in]a, b[$. Wir nehmen an, ist in x_0 differenzierbar. (1) Wenn $f'(x_0) > 0$ ist, $\exists \delta > 0 \text{ mit: } f(x) > f(x_0) \quad \forall x \in]x_0, x_0 + \delta[$ $f(x) < f(x_0) \quad \forall x \in]x_0 - \delta, x_0[$ (2) Wenn $f'(x_0) < 0$ ist, $\exists \delta > 0$ mit: $f(x) < f(x_0) \quad \forall x \in]x_0, x_0 + \delta[$ $f(x) > f(x_0) \quad \forall x \in]x_0 - \delta, x_0[$ (3) Wenn f in x_0 ein lokales Extremum besitzt, folgt $f'(x_0) = 0$. Satz 4.2.3 (Rolle 1690) Sei $f: [a,b] \longrightarrow \mathbb{R}$ stetig und in [a,b] dif**ferenzierbar**. Wenn f(a) = f(b), so gibt es $\xi \in]a,b[$ mit: $f'(\xi) = 0$. Satz 4.2.4 (Lagrange 1797) Sei $f \longrightarrow \mathbb{R}$ stetig und in a, b differenzierbar. Es gibt $\xi \in a, b$ mit: $f(b) - f(a) = f'(\xi)(b - a)$. Korollar 4.2.5 Seien $f,g:[a,b]\longrightarrow \mathbb{R}$ stetig und in [a,b] differenzier**bar.** (1) Wenn $f'(\xi) = 0 \quad \forall \xi \in]a,b[$ ist, ist f konstant. (2) Wenn $f'(\xi) = g'(\xi) \quad \forall \xi \in]a,b[$ ist, gibt es $c \in \mathbb{R}$ mit: $f(x) = g(x) + c \quad \forall x \in [a, b]$. (3) [(4)] Wenn $f'(\xi) \geqslant [>]0 \quad \forall \xi \in]a,b[$ ist, ist f auf [a,b][strikt] monoton wachsend. (5) [6] Wenn $f'(\xi) \leq$

fallend. (7) Wenn es $M \ge 0$ gibt, mit: $|f'(\xi)| \le$ $M \quad \forall \xi \in]\overline{a,b}[$, folgt $\forall x_1, x_2 \in [a,b]: |f(x_1) - f(x_2)| \leqslant$ $M|x_1-x_2|$. Satz 4.2.9 (Cauchy) Seien $f,g:[a,b] \longrightarrow$ \mathbb{R} stetig und in a, b differenzierbar. Es gibt $\xi \in a, b$ mit: $g'(\xi)(f(b) - f(a)) = f'(\xi)(g(b) - g(a))$. Wenn $g'(x) \neq 0 \quad \forall x \in]a,b[$ ist, folgt: $g(a) \neq g(b)$ und $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}$ Satz 4.2.10 (Bernoulli 1691/92, de l'Hôpital 1696) Seien $f,g:]a,b[\longrightarrow \mathbb{R}$ differenzier**bar** mit $g'(x) \neq 0 \quad \forall x \in]a,b[$. Wenn $\lim_{x\to b^-} f(x) =$ 0, $\lim_{x\to b^-} g(x) = 0$ und $\lim_{x\to b^-} \frac{f'(x)}{g'(x)} =: \lambda$ existiert, folgt: $\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)}.$ Bemerkung 4.2.11 Der Satz gilt auch wenn: $b = +\infty$ $\lambda = +\infty$ $x \to \infty$ Definition 4.2.13 (1) f ist konvex (auf I), wenn $\forall x, y \in I, x \leq y \text{ und } \lambda \in [0,1]$ folgendes gilt: $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$ (2) f ist streng konvex, wenn $\forall x,y \in I, x < y \text{ und } \lambda$ [0,1] folgendes gilt: $f(\lambda x + (1-\lambda)y) < \lambda f(x) +$ $(1 - \lambda) f(y)$ Bemerkung 4.2.14 Sei $f: I \longrightarrow \mathbb{R}$ konvex. Ein einfacher Induktionsbeweis zeigt, dass $\forall n \geqslant 1, \{x_1,...,x_n\} \subseteq I \text{ und } \lambda_1,...\lambda_n \text{ in } [0,1] \text{ mit}$ $\sum_{i=1}^{n} \lambda_i = 1$ folgendes gilt: $f(\sum_{i=1}^{n} \lambda_i x_i) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i)$ Lemma 4.2.15 Sei $f: I \longrightarrow \mathbb{R}$ eine beliebige Funktion. Die Funktion f ist genau dann konvex, wenn $\forall x_0 < x < x_1 \text{ in } I \text{ folgendes gilt: } \frac{f(x) - f(x_0)}{x - x_0} \leqslant \frac{f(x_1) - f(x)}{x_1 - x}$ Satz 4.2.16 Sei $f:]a,b[\longrightarrow \mathbb{R}$ differenzierbar. f ist genau dann (streng) konvex, wenn f' (streng) monoton wachsend ist. Korollar 4.2.17 Sei $f:]a,b[\longrightarrow \mathbb{R}$ zweimal differenzierbar in a, b. f ist (streng) konvex, wenn $f'' \ge 0$ (bzw. f'' > 0) auf |a, b|. Definition 4.3.1 (1) Für $n \ge 2$ ist f n-mal differenzierbar in D, wenn $\overline{f^{(n-1)}}$ in *D* differenzierbar ist. Dann ist $f^{(n)} :=$ $(f^{(n-1)})'$ und nennt sich die *n*-te Ableitung von f (2) f ist n-mal stetig differenzierbar in D, wenn f n-mal **differenzierbar** in $D \& f^{(n)}$ in D **stetig** ist. (3) Die

 $[<]0 \quad \forall \xi \in]a,b[$ ist, ist f auf [a,b] [strikt] monoton Funktion f ist in D glatt, wenn sie $\forall n \ge 1$ n-mal differenzierbar ist. Bemerkung 4.3.2 Es folgt aus Korollar 4.1.5, dass für $n \ge 1$ eine n-mal differenzierbare Funktion (n-1)-mal stetig differenzierbar ist. Satz 4.3.3 (analog zu Satz 4.1.9) Sei $D \subseteq \mathbb{R}$ wie in **Definition 4.3.1,** $n \ge 1$ und $f,g:D \longrightarrow \mathbb{R}$ n-mal differenzierbar in D. (1) f + g ist n-mal differenzier**bar** und $(f+g)^{(n)} = f^{(n)} + g^{(n)}$ (2) $f \cdot g$ ist *n*-mal **differenzierbar** und $(f \cdot g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$. Satz 4.3.5 Sei $D \subseteq \mathbb{R}$ wie in **Definition 4.3.1**, $n \ge 1$ und $f,g:D\longrightarrow \mathbb{R}$ *n*-mal differenzierbar in *D*. Wenn $g(x) \neq 0 \quad \forall x \in D \text{ ist, ist } \frac{f}{g} \text{ in } D \text{ } n\text{-mal dif-}$ **ferenzierbar**. Satz 4.3.6 Seien $E,D\subseteq\mathbb{R}$ Teilmengen für die jeder Punkt Häufungspunkt ist. Seien $f: D \longrightarrow E, g: E \longrightarrow \mathbb{R}$ *n*-mal differenzierbar. Dann ist $f \circ g$ *n*-mal differenzierbar und $(g \circ f)^{(n)}(x) =$ $\sum_{k=1}^{n} A_{n,k}(x) (g^{(k)} \circ f)(x)$ wobei $A_{n,k}$ ein Polynom in den Funktionen $f', f^{(2)}, ..., f^{n+1-k}$ ist. Satz 4.4.1 Seien $f_n:]a,b[\longrightarrow \mathbb{R}$ eine Funktionenfolge wobei f_n einmal in $]a,b[\forall n \ge 1 \text{ stetig differenzierbar ist. Wir}]$ nehmen an, dass sowohl die Folge $(f_n)_{n\geq 1}$ wie auch $(f'_n)_{n\geq 1}$ gleichmässig in]a,b[mit $\lim f_n =: f$ und $\lim_{n \to \infty} f'_n =: p$ konvergieren. Dann ist f stetig differen**zierbar** und f' = p. Satz 4.4.2 Sei $\sum_{k=0}^{\infty} c_k x^k$ eine **Potenzreihe** mit pos. Konvergenzradius $\rho > 0$. Dann ist $f(x) = \sum_{k=0}^{\infty} c_k (x - x_0)^k$ auf $]x_0 - \rho, x_0 + \rho[$ dif**ferenzierbar** und $f'(x) = \sum_{k=0}^{\infty} kc_k(x-x_0)^{k-1} \quad \forall x \in$ $|x_0 - \rho, x_0 + \rho|$. Korollar 4.4.3 Unter der Voraussetzung von Satz 4.4.1 ist f auf $|x_0 - \rho, x_0 + \rho|$ glatt und $f^{(j)}(x) = \sum_{k=j}^{\infty} c_k \frac{k!}{(k-j)!} (x-x_0)^{k-j}$. Insbesondere ist $c_j = \frac{f^{(j)}(x_0)}{i!}$. Satz 4.4.5 Sei $f: [a,b] \longrightarrow \mathbb{R}$ stetig und in a, b (n + 1)-mal differenzierbar. Für jedes $a < x \le 1$ b gibt es $\xi \in]a, x[$ mit: $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k +$ $\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$. Korollar 4.4.6 (Taylor Approxi**mation**) Sei $f:[c,d] \longrightarrow \mathbb{R}$ stetig und in [c,d] (n+1)-

mal differenzierbar. Sei c < a < d. $\forall x \in [c,d] \exists \xi$ zwischen x und a, so dass: $f(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$. Korollar 4.4.7 Sei $n \ge 0$, $a < x_0 < b$ und $f:[a,b] \longrightarrow \mathbb{R}$ in $]a,b[\ (n+1)$ -mal stetig differenzierbar. Annahme: $f'(x_0) = f^{(2)}(x_0) = \ldots = f^{(n)}(x_0) = 0$. (1) Wenn n gerade ist und x_0 eine lokale Extremalstelle ist, folgt $f^{(n+1)}(x_0) = 0$. (2) Wenn n ungerade ist und $f^{(n+1)}(x_0) > 0$ ist, ist x_0 eine strikt lokale Minimalstelle. (3) Wenn n ungerade ist und $f^{(n+1)}(x_0) < 0$ ist, ist x_0 eine strikt lokale Maximalstelle. Korollar 4.4.8 Sei $f:[a,b] \longrightarrow \mathbb{R}$ stetig und in]a,b[zweimal stetig differenzierbar. Sei $a < x_0 < b$. Annahme: $f'(x_0) = 0$. (1) Wenn $f^{(2)}(x_0) > 0$ ist, ist x_0 eine strikt lokale Minimalstelle. (2) Wenn $f^{(2)}(x_0) < 0$ ist, ist x_0 eine strikt lokale Maximalstelle.

5 Riemann Integral

5.1 Definition und Integrabilitätskriterien

Definition 5.1.1 Eine **Partition** von *I* ist eine endliche Teilmenge $P \subseteq [a,b]$ wobei $\{a,b\} \subseteq P$. Es gilt: $n := \operatorname{card} P - 1 \geqslant 1$ und es gibt genau eine Bijektion $\{0,1,2,...,n\} \longrightarrow P, j \mapsto x_i$ mit der Eigenschaft i < i $j \Longrightarrow x_i < x_i$. Eine **Partition** P' ist eine Verfeinerung von P, wenn $P \subset P'$. Offensichtlich ist die Vereinigung $P_1 \cup P_2$ zweier Partitionen wieder eine Partition. Insbesondere haben zwei Partitionen immer eine gemeinsame Vereinigung. Sei $f:[a,b] \longrightarrow \mathbb{R}$ eine **beschränkte Funktion**, das heisst es gibt $M \ge 0$ mit $|f(x)| \le M \quad \forall x \in [a,b]$. Sei $P = \{x_0, x_1, ..., x_n\}$ eine **Partition** von *I*. Insbesondere gilt: $x_0 = a <$ $x_1 < ... < x_n = b$ Länge des Teilintervalls $[x_{i-1}, x_i]$, δ_i := $x_i - x_{i-1}$, $i \geqslant 1$ Untersumme s(f, P) := $\sum_{i=1}^{n} f_i \delta_i$, $f_i = \inf_{x_{i-1} \le x \le x_i} f(x)$ Obersumme S(f, P) := $\sum_{i=1}^{n} F_i \delta_i$, $F_i = \sup f(x)$ Lemma 5.1.2 (1) Sei P' eine **Verfeinerung** von P. Dann gilt: $s(f,P) \leq P$

 $s(f, P') \leqslant S(f, P') \leqslant S(f, P)$. (2) Für beliebige Partitionen P_1, P_2 gilt: $s(f, P_1) \leq \overline{S(f, P_2)}$. Sei $\mathcal{P}(I)$ die Menge der Partitionen von I. Wir definieren: $s(f) = \sup s(f, P), S(f) =$ $\inf_{P\in\mathcal{P}(I)}S(f,P).$ Definition 5.1.3 Eine beschränkte Funktion f: $[a,b] \longrightarrow \mathbb{R}$ ist (Riemann) integrierbar, wenn s(f) =S(f). In diesem Fall bezeichnen wir den **gemeinsamen** Wert von s(f) und S(f) mit $\int_a^b f(x) dx$. Satz 5.1.4 Eine beschränkte Funktion ist genau dann integrierbar, wenn $\forall \varepsilon > 0 \exists P \in \mathcal{P}(I)$: S(f,P) - s(f,P) <ε. Satz 5.1.8 (Du Bois-Reymond 1875, Darboux 1875) Eine beschränkte Funktion $f:[a,b] \longrightarrow \mathbb{R}$ ist genau dann integrierbar, wenn $\forall \varepsilon > 0 \exists \delta > 0$, so dass: $\forall P \in \mathcal{P}_{\delta}(I), S(f,P) - s(f,P) < \varepsilon$. Hier bezeichnet $\mathcal{P}_{\delta}(I)$ die Menge der Partitionen P_{δ} , für welche $\max \delta_i \leq \delta$. Korollar 5.1.9 Die beschränkte Funktion $f:[a,b] \longrightarrow \mathbb{R}$ ist genau dann integrierbar mit $A := \int_a^b f(x) dx$, wenn: $\forall \varepsilon > 0 \ \exists \delta > 0$, so dass $\forall P \in$ $\mathcal{P}(I)$ mit $\delta(P) < \delta$ und $\xi_1, ..., \xi_n$ mit $\xi_i \in [x_{i-1}, x_i], P =$ $\{x_0,...,x_n\} |A - \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})| < \varepsilon$. Satz 5.2.1 Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ beschränkt, integrierbar und $\lambda \in \mathbb{R}$. Dann sind f + g, $\lambda \cdot f$, $f \cdot g$, |f|, $\max(f,g)$, $\min(f,g)$ und (falls $|g(x)| \ge \beta > 0$ $\forall x \in [a,b]$) $\frac{f}{g}$ inte**grierbar**. Bemerkung 5.2.2 Sei $\phi : [c,d] \longrightarrow \mathbb{R}$ eine beschränkte Funktion. Dann ist (*) sup $|\phi(x)|$ $|\phi(y)| = \sup |\phi(x)| - \inf |\phi(x)|$. Einerseits gilt offen $x \in [c,d]$ $x \in [c,d]$ sichtlich $\forall x, y \in [c, d]$: $\phi(x) \leq \sup \phi$, $\phi \geq \inf \phi$ also ist $\phi(x) - \phi(y) \leq \sup \phi - \inf \phi$, woraus durch vertauschen von x, y folgt: $|\phi(x) - \phi(y)| \leq \sup - \inf_{x \in \mathcal{X}} \phi$. Andererseits sei $\varepsilon > 0$. Dann gibt es $\xi \in [c,d]$ und $\eta \in [c,d] \phi(\xi) > \varepsilon \text{ und } \phi(\eta) < \inf_{[c,d]} \phi + \varepsilon \text{ woraus}$

 $\phi(\xi) - \phi(\eta) > \sup \phi - \inf \phi - 2\varepsilon$ folgt. Dies zeigt die Aussage (*) Korollar 5.2.3 Seien P, Q Polynome und [a, b] ein Intervall in dem Q keine Nullstelle besitzt. Dann ist $[a,b] \longrightarrow \mathbb{R}, x \mapsto \frac{P(x)}{O(x)}$ integrierbar. **Definition 5.2.4** Eine Funktion $f: D \longrightarrow \mathbb{R}, D \subseteq \mathbb{R}$ ist in *D* gleichmässig stetig, wenn $\forall \varepsilon > 0 \ \exists \delta >$ $0 \quad \forall x, y \in D: \qquad |x-y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon.$ Satz 5.2.6 (Heine 1872) Sei $f:[a,b] \longrightarrow \mathbb{R}$ stetig in dem kompakten Intervall [a, b]. Dann ist f in [a, b] gleichmässig stetig. Satz 5.2.7 Sei $f:[a,b] \longrightarrow \mathbb{R}$ stetig. So ist f integrierbar. Satz 5.2.8 Sei $f : [a,b] \longrightarrow \mathbb{R}$ monoton. So ist *f* integrierbar. Bemerkung 5.2.9 Seien a < b < c und $f : [a,c] \longrightarrow \mathbb{R}$ beschränkt mit $f|_{[a,b]}$ und $f|_{[b,c]}$ integrierbar. Dann ist f integrierbar und (*) $\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$. In der Tat ergibt die Summe einer Obersumme (respektive Untersumme) für $f|_{[a,b]}$ und $f|_{[b,c]}$ eine Ober**summe (respektive Untersumme)** für *f*. Wir erweitern jetzt die Definition von $\int_a^b f(x) dx$ auf: $\int_a^a f(x) dx = 0$ und wenn a < b, $\int_{b}^{a} f(x) dx := -\int_{a}^{b} f(x) dx$. Dann gilt (*) für alle Tripel a, b, c unter den entsprechenden Integrabilitätsvoraussetzungen. Satz 5.2.10 Sei $I \subseteq \mathbb{R}$ ein kompaktes Intervall mit Endpunkten a, bsowie $f_1, f_2 : I \longrightarrow \mathbb{R}$ beschränkt integrierbar und $\lambda_1, \lambda_2 \in \mathbb{R}$. Dann gilt: $\int_a^b (\lambda_1 f_1(x) + \lambda_2 f_2(x)) dx =$ $\lambda_1 \int_1^b f_1(x) dx + \lambda_2 \int_a^b f_2(x) dx$. Satz 5.3.1 Seien f, g: $[a, b] \longrightarrow \mathbb{R}$ beschränkt integrierbar, und $f(x) \le$ $g(x) \quad \forall x \in [a,b].$ Dann folgt: $\int_a^b f(x) dx \leq$ $\int_a^b g(x) dx$. Korollar 5.3.2 Wenn $f: [a,b] \longrightarrow$ \mathbb{R} beschränkt integrierbar, folgt: $\left| \int_{a}^{b} f(x) dx \right| \leq$ $\int_a^b |f(x)| dx$. Satz 5.3.3 (Bunjakovski 1859, Cauchy 1821, Schwarz 1885: Cauchy-Schwarz Ungleichung) Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ beschränkt integrierbar. Dann gilt: $\left| \int_{a}^{b} f(x)g(x) \, dx \right| \leq \sqrt{\int_{a}^{b} f^{2}(x) \, dx} \sqrt{\int_{a}^{b} g^{2}(x) \, dx}$. Satz 5.3.4 (Mittelwertsatz, Cauchy 1821) Sei f:

Jonas Degelo Analysis I FS2020

 $[a,b] \longrightarrow \mathbb{R}$ stetig. So $\exists \xi \in [a,b]$: $\int_a^b f(x) dx = \text{so dass } \sum_{n=0}^{\infty} f_n \text{ auf } [a,b]$ gleichmässig konvergiert. und q > 1 mit $\frac{1}{p} + 1q = 1$. Dann gilt $\forall a,b \geqslant 0$: $f(\xi)(b-a)$. Satz 5.3.6 (Cauchy 1821) Seien $f(\xi)$: $[a,b] \longrightarrow \mathbb{R}$ wobei f stetig, g beschränkt und in**tegrierbar** mit $g \ge 0 \quad \forall x \in [a,b]$. Dann gibt es $\xi \in [a,b]$ mit: $\int_a^b f(x)g(x) dx = f(\xi) \int_a^b g(x) dx$. Satz 5.4.1 (Fundamentalsatz der Analysis) Seien a < \overline{b} und $f:[a,b] \longrightarrow \mathbb{R}$ stetig. Die Funktion F(x)= $\int_a^x f(t) dt$, $a \le x \le b$ ist in [a, b] stetig differenzier**bar** und $F'(x) = f(x) \quad \forall x \in [a,b]$. Definition 5.4.2 Sei a < b und $f : [a, b] \longrightarrow \mathbb{R}$ stetig. Eine Funktion $F: [a,b] \longrightarrow \mathbb{R}$ heisst **Stammfunktion** von f, wenn F (stetig) differenzierbar in [a,b] ist und F'=f in [a, b] gilt. Satz 5.4.3 (Fundamentalsatz der Differentialrechnung) Sei $f:[a,b] \longrightarrow \mathbb{R}$ stetig. So gibt es eine **Stammfunktion** *F* von *f* , die bis auf eine addidive Konstante **eindeutig** bestimmt ist und: $\int_a^b f(x) dx =$ F(b) - F(a). Satz 5.4.5 (Partielle Integration) Seien $a < b \in \mathbb{R} \text{ und } f,g : [a,b] \longrightarrow \mathbb{R} \text{ stetig differen-}$ **zierbar**. Dann gilt: $\int_a^b f(x)g'(x) dx = f(b)g(b) - \int_a^b f(x)g'(x) dx$ $f(a)g(a) - \int_a^b f'(x)g(x) dx$. Satz 5.4.6 (Substitution) Sei $a < b, \phi : [a,b] \longrightarrow \mathbb{R}$ stetig differenzierbar, $I \subseteq \mathbb{R}$ ein Intervall mit $\phi([a,b]) \subseteq I$ und $f:I \longrightarrow$ \mathbb{R} eine **stetige Funktion**. Dann gilt: $\int_{\phi(a)}^{\phi(b)} f(x) dx =$ $\int_a^b f(\phi(t))\phi'(t)dt$. Korollar 5.4.8 Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \longrightarrow \mathbb{R}$ stetig. (1) Seien $a,b,c \in \mathbb{R}$, so dass das abgeschlossene Intervall mit Endpunkten $a + c, b + c \in I$. Dann gilt: $\int_{a+c}^{b+c} f(x) dx = \int_{a}^{b} f(t+c) dx$ c) dt. (2) Seien $a,b,c \in \mathbb{R}$ mit $c \neq 0$, so dass das abgeschlossene Intervall mit den **Endpunkten** $ac,bc \in$ I. Dann gilt: $\int_a^b f(ct) dt = \frac{1}{c} \int_{ac}^{bc} f(x) dx$. Satz 5.5.1 Sei $f_n : [a,b] \longrightarrow \mathbb{R}$ eine Folge von beschränkten, integrierbaren Funktionen, die gleichmässig gegen eine Funktion $f:[a,b] \longrightarrow \mathbb{R}$ konvergiert. So ist f beschränkt integrierbar und $\lim_{a \to a} \int_a^b f_n(x) dx =$ $\int_a^b f(x) dx$. Korollar 5.5.2 Sei $f_n : [a, b] \longrightarrow \mathbb{R}$ eine Folge beschränkter, integrierbarer Funktionen,

Dann gilt: $\sum_{n=0}^{\infty} \int_a^b f_n(x) dx = \int_a^b (\sum_{n=0}^{\infty} f_n(x)) dx$. $a \cdot b \leqslant \frac{a^p}{v} + \frac{b^q}{q}$. Satz 5.8.14 (Hölder Ungleichung) Korollar 5.5.3 Sei $f(x) = \sum_{n=0}^{\infty} c_k x^k$ eine **Potenzreihe** Seien p, q > 1 mit $\frac{1}{p} + \frac{1}{1}$. Für alle stetigen Funktionen mit positivem Konvergenzradius $\rho > 0$. Dann ist für jedes $0 \leqslant r < \rho, f$ auf [-r, r] integrierbar und es gilt $\forall x \in]-\rho, \rho[: \int_0^x f(t) dt = \sum_{n=0}^\infty \frac{c_n}{n+1} x^{n+1}.$ Definition 5.8.1 Sei $f: [a, \infty[\longrightarrow \mathbb{R} \text{ beschränkt} \ \operatorname{grad}(Q) \ \operatorname{und} \ Q \ \operatorname{mit} \ \operatorname{Produktzerlegung} \ (*) \ \operatorname{Dann} \ \operatorname{gibt}$ **und integrierbar** auf [a,b] für alle b > a. Wenn $\lim_{a} \int_{a}^{b} f(x) dx$ existiert, bezeichnen wir den **Grenzw**ert mit $\int_a^{\infty} f(x) dx$ und sagen, dass f auf $[a, +\infty]$ integrierbar ist. Lemma 5.8.3 Sei $f: [a, \infty] \longrightarrow \mathbb{R}$ beschränkt und integrierbar auf $[a, b] \forall b > a$. (1) Wenn $|f(x)| \leq g(x) \quad \forall x \geq a \text{ und } g(x) \text{ auf } [a, \infty]$ integrierbar ist, ist f auf $[a, \infty]$ integrierbar. Wenn $0 \le g(x) \le f(x)$ und $\int_a^\infty g(x) dx$ divergiert, **divergiert** auch $\int_a^{\infty} f(x) dx$. Satz 5.8.5 (McLaurin 1742) Sei $f: [1, \infty] \longrightarrow [0, \infty]$ monoton fallend. Die Reihe $\sum_{n=1}^{\infty} f(n)$ konvergiert genau dann, wenn $\int_{1}^{\infty} f(x) dx$ konvergiert. Eine Situation, die zu einem uneigentlichen Integral führt, ist wenn $f:]a, b] \longrightarrow \mathbb{R}$ auf jedem Intervall $[a + \varepsilon, b]$, $\varepsilon > 0$ beschränkt und integrierbar ist, aber auf [a, b] nicht notwendigerweise beschränkt ist. Definition 5.8.8 In dieser Situation ist $f:]a,b] \longrightarrow \mathbb{R}$ integrierbar, wenn $\lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x) dx$ existiert. In diesem Fall wird der **Grenzwert** mit $\int_a^b f(x) dx$ bezeichnet. Definition 5.8.11 Für s > 0definieren wir $\Gamma(s) := \int_0^\infty e^{-x} x^{s-1} dx$. Satz 5.8.12 (Bohr-Mollerup) (1) Die Gamma Funktion erfüllt die Relationen: (a) $\Gamma(1) = 1$ (b) $\Gamma(s+1) =$ $s\Gamma(s)$ $\forall s > 0$ (c) γ ist logarithmisch konvex, d.h. $\Gamma(\lambda x + (1 - \overline{\lambda})y) \leq \Gamma(x)^{\lambda} \Gamma(y)^{1--\lambda}$ für alle x,y > 0 und $0 \le \lambda \le 1$. (2) Die Gamma **Funktion** ist die **einzige** Funktion $]0, \infty[\longrightarrow]0, \infty[$, die (a), (b) und (c) erfüllt. Darüberhinaus gilt: $\Gamma(x) =$ $\lim_{n \to +\infty} \frac{n! n^x}{x(x+1)...(x+n)} \quad \forall x > 0 \text{ Lemma 5.8.13 Sei } p > 1$

 $f,g:[a,b]\longrightarrow \mathbb{R}$ gilt: $\int_a^b |f(x)g(x)| dx \leqslant ||f||_p ||g||_q$ Satz 5.9.3 Seien P,Q Polynome mit grad(P) < es A_{ij} , B_{ij} , $C_{ij} \in \mathbb{R}$ mit: $\frac{P(x)}{Q(x)} = \sum_{i=1}^{l} \sum_{j=1}^{m_i} \frac{(A_{ij} + B_{ij}x)}{((x-a_i)^2 + \beta_i^2)^j} +$ $\sum_{i=1}^k \sum_{j=1}^{n_i} \frac{c_{ij}}{x - \gamma_i)^j}.$

Anhang A

Satz A.0.1 (Binomialsatz) $\forall x, y \in \mathbb{C}, n \geqslant 1$ gilt: $(x+y)^n = \sum_n kx^k y^{n-k}$

Wichtige Beispiele

Ungerade und gerade Funktionen Sei f(x) eine gerade Funktion. Dann: f(x) = f(-x). Sei g(x)eine **ungerade** Funktion. Dann: -g(x) = g(-x). Das Produkt von 2 geraden Funktionen ist gerade. Das Produkt von 2 ungeraden Funktionen ist gerade. Das Produkt einer ungeraden und einer geraden Funktion, ist ungerade. Für ungerade Funktionen gilt: $\int_{-a}^{+a} g(x) dx = 0$. (Dies kann man sich graphisch vorstellen). Konvergenztest für Reihen Gegeben: $\sum_{n=0}^{\infty} a_n$. (1) Spezieller Typ? 1.1 Geometrische Reihe: $\sum q^n$? Konvergent, wenn: |q| < 1. 1.2 Alternierende Reihe: $\sum_{n=0}^{\infty} (-1)^n a_n$? Konvergent, wenn: $\lim a_n = 0$. 1.3 Riemann Zeta: $\zeta(s) =$ $\sum \frac{1}{n^s}$ Konvergent, wenn: s > 1. 1.4 Teleskopreihe $\sum (b_n - b_{n-1})$? **Konvergent**, wenn: $\lim b_n$ existiert. (2) Kein spezieller Typ: 2.1 $\lim a_n = 0$? Nein: divergent. 2.2 Quotientenkriterium anwendbar? 2.3 Wurzelkriterium anwendbar? 2.4 Gibt es eine konvergente Majorante? 2.5 Gibt es eine divergente Minorante? 2.6 Nichts von all dem? \implies kreativ sein.

Allgemeine Potenzen Wir können die Exponen-

x > 0 und $a \in \mathbb{R}$ beliebig definieren wir: $x^a :=$ $\exp(a \ln x)$. Insbesondere: $x^0 = 1 \ \forall x > 0$.

Trigonometrische Funktionen Sinusfunktion für $z \in \mathbb{C} : \sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}.$ Kosinusfunktion für $z \in \mathbb{C}$: $\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!}$ $\frac{z^6}{6!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n+1)!}$. Tangensfunktion für $z \notin$ $\frac{\pi}{2} + \pi \cdot \mathbb{Z}$: $\tan z = \frac{\sin z}{\cos z}$. Cotangensfunktion für $z \notin \pi \cdot \mathbb{Z}$: $\cot z = \frac{\cos z}{\sin z}$. Hyperbelfunktionen $\forall x \in$ \mathbb{R} : $\cosh x = \frac{e^x + e^{-x}}{2}$. $\sinh x = \frac{e^x - e^{-x}}{2}$. $\tanh x =$ $\frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$. Es gilt offensichtlich: $\cosh x \geqslant$ $1 \ \forall x \in \mathbb{R}$, $\sinh x \geqslant 1 \ \forall x \in]0, +\infty[$, $\sin(0) = 0$. Daraus folgt: cosh ist auf $[0, \infty]$ strikt monoton wachsend, $\cosh(0) = 1$ und $\lim_{x \to +\infty} \cosh x = +\infty$. Also ist $\cosh: [0, \infty[\longrightarrow [1, \infty[\text{ bijektiv. Deren Umkehrfunk-}$ tion wird mit arcosh : $[1, \infty] \longrightarrow [0, \infty]$ bezeichnet. Unter Verwendung von $\cosh^2 x - \sinh^2 x = 1 \ \forall x \in \mathbb{R}$ folgt: arcosh'y = $\frac{1}{\sqrt{y^2-1}} \forall y \in]1, +\infty[$. Analog zeigt man, dass sinh : $\mathbb{R} \longrightarrow \mathbb{R}$ streng monoton wachsend und bijektiv ist. Dessen Umkehrfunktion wird mit arsinh : $\mathbb{R} \longrightarrow \mathbb{R}$ bezichnet und es gilt: arsinh' y = $\frac{1}{\sqrt{1+y^2}} \ \forall y \in \mathbb{R}$. Für $\tanh x$ folgt: $\tanh' x = \frac{1}{\cosh^2 x} > 0$ Also ist tanh auf R streng monoton wachsend und man zeigt, dass $\lim_{x\to +\infty} \tanh x = 1$, $\lim_{x\to -\infty} \tanh x = -1$. Die Funktion tanh : $\mathbb{R} \longrightarrow]-1,1[$ ist bijektiv. Ihre Umkehrfunktion wird mit artanh :] $-1,1[\longrightarrow \mathbb{R}$ bezeichnet. Es gilt dann: artanh' $y = \frac{1}{1-\nu^2} \ \forall y \in]-1,1[.$ Arcusfunktionen Beispiel 4.2.6 (1) arcsin: Da sin' = $\cos \operatorname{und} \cos(x) > 0 \ \forall x \in]-\frac{\pi}{2},\frac{\pi}{2}[\text{ folgt aus Korol-}]$

tialfunktion und den natürlichen Logarithmus ver- lar 4.2.5 (4), dass die Sinusfunktion auf $[-\frac{\pi}{2}, \frac{\pi}{2}]$ strikt $]1, +\infty[$ artanh $'y = \frac{1}{1-y^2} \quad \forall y \in]-1,1[$ wenden, um allgemeine Potenzen zu definieren. Für monoton wachsend ist. Also ist sin : $[-\frac{\pi}{2}, \frac{\pi}{2}] \rightarrow$ 7.2 Integrale [-1,1] bijektiv. Wir definieren arcsin : [-1,1] \longrightarrow $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ als die Umkehrfunktion von sin. Nach Ko $y = \sin x$, $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ folgt nach 4.1.12: $\arcsin'(y) = \sin x + C \int \sinh x \, dx = \cosh x + C \int \cosh x \, dx =$ Wir erhalten also $\forall y \in]-1,1[\arcsin'(y)=\frac{1}{\sqrt{1-y^2}}.$

> (2) arccos: Eine analoge Diskussion, wie in (1) zeigt, $\overline{\mathrm{dass}}$ cos : $[0,\pi] \longrightarrow [-1,]$ strikt monoton fallend ist und $[0,\pi]$ auf [-1,1] bijektiv abbildet. Sei: $\arccos: n \geqslant 1$ $I_n = \int \sin^n x \, dx = -\frac{1}{n} \cos x \sin^{n-1} x + 1$ $[-1,1] \longrightarrow [0,\pi]$ die Umkehrfunktion. Sie ist auf -1,1[differenzierbar und $\arccos'(y) = \frac{-1}{\sqrt{1-y^2}} \ \forall y \in$

> Tangensfunktion definiert: $\tan x = \frac{\sin x}{\cos x}$ und deren Ableitung berechnet: $\tan' x = \frac{1}{\cos^2 x}$. Also ist tan auf $\sin 2x = 2\sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = [-\frac{\pi}{2}, \frac{\pi}{2}]$ streng monoton wachsend mit $\lim \tan x = 2\cos^2 x - 1 = 1 - 2\sin^2 x \tan 2x = \frac{2\tan x}{1 - \tan^2 x}$ $+\infty$, $\lim_{x \to \frac{\pi}{2}^+} \tan x = -\infty$. Also ist $\tan \left[\frac{x \to \frac{\pi}{2}}{2}, \frac{\pi}{2} \right] \longrightarrow$ $-\infty, \infty$ [bijektiv. Sei arctan :] $-\infty, \infty$ [\longrightarrow] $-\frac{\pi}{2}, \frac{\pi}{2}$ [die Umkehrfunktion. Dann ist arctan differenzierbar und $\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2} \sin x - \sin y =$ für $y = \tan x$: $\arctan'(y) = \cos^x = \frac{1}{1+u^2}$.

7.1 Ableitungen

 $-\sin x \tan' x = \frac{1}{\cos^2 x} \cot' x = -\frac{1}{\sin^2 x} \ln' x = \frac{1}{x}$ 7.4 Grenzwerte $\arcsin' x = \frac{1}{\sqrt{1-x^2}}\arccos' x = \frac{-1}{\sqrt{1-x^2}}\arctan' x = \frac{1}{1+x^2}\lim_{x\to\infty}(1+\frac{x}{n})^n = e^x \ \forall \alpha\in\mathbb{R}\lim_{x\to\infty}\sqrt[n]{n^\alpha} = 1\lim_{x\to\infty}\sqrt[n]{n!} = 1\lim_{x\to\infty}\sqrt[n]{n^\alpha} = 1\lim_{x\to\infty}$ $\sinh' x = \cosh x \cosh' x = \sinh x \tanh' x = \frac{1}{\cosh^2 x} \quad \infty \quad \forall \alpha \in \mathbb{R}, |q| < 1 \quad \lim_{x \to \infty} n^{\alpha} \cdot q^n = 0 \lim_{x \to 0} \sqrt[x]{x} = \dots$ $\operatorname{arsinh}' y = \frac{1}{\sqrt{1+u^2}} \quad \forall y \in \mathbb{R} \ \operatorname{arcosh'y} = \frac{1}{\sqrt{u^2-1}} \quad \forall y \in \lim_{x \to 0} x^x = \dots$

7.2 Integrale

 $\int x^s dx = \frac{x^{s+1}}{s+1} + C \quad s \neq -1 \qquad \int x^s dx = \ln x +$ rollar 4.1.12 ist sie auf] -1,1[differenzierbar und für C s=-1 $\int \sin x \, dx = -\cos x + C$ $\int \cos x \, dx =$ $\frac{1}{\sin'(x)} = \frac{1}{\cos x}$. Wir verwenden nun: $y^2 = \sin^2 x = \sinh x + C \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C \int \frac{1}{\sqrt{1+x^2}} dx =$ $1-\cos^2 x$ woraus mit $\cos c > 0$ folgt: $\cos x = \sqrt{1-y^2}$. arsinh x + C $\int \frac{1}{1+x^2} dx = \arctan x + C$ $\int \frac{1}{\sqrt{x^2-1}} dx = \cot x$ $\operatorname{arcosh} + C \int e^x dx = e^x + C \int \ln x dx = x \ln x - x +$ C (verwende $\ln x = \ln x \cdot 1$) $\int x \ln x \, dx = \frac{x^2}{2} \ln x - 1$ $\frac{x^2}{4} + C \int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2 \cos x$ $\frac{n-1}{n}I_{n-2}\int (ax+b)^s dx = \frac{1}{a(s+1)}(ax+b)^{s+1} + C \quad s \neq 1$ $\int (ax+b)^s dx = \frac{1}{a} \ln|ax+b| + C$

7.3 Additionstheoreme

(3) arctan: Für $x \notin \frac{\pi}{2} + \pi \cdot \mathbb{Z}$ hatten wir die $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y \cos(x \pm y) =$ $\cos x \cos y \mp \sin x \sin y \quad \tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$ $\sin 3x = 3\sin x - 4\sin^3 x \cos 3x = 4\cos^3 x - 3\cos x$ $\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x} \sin^2 \frac{x}{2} = \frac{1 - \cos x}{2} \cos^2 \frac{x}{2} =$ $\frac{1 + \cos x}{2} \tan^2 \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x} \tan \frac{x}{2} = \frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}$ $2\cos\frac{x+y}{2}\sin\frac{x-y}{2}\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$ $\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}\sin x\sin y =$ $(ax^{z})' = azx^{z-1} (x^{x})' = (e^{x \ln x})' = (\ln(x) + 1)e^{x} \quad \frac{1}{2}(\cos(x-y) - \cos(x+y))\cos x \cos y = \frac{1}{2}(\cos(x-y) + (x \ln x)' = \ln(x) + 1)e^{x} = e^{x} \sin' x = \cos x \cos' x = \cos(x+y))\sin x \cos y = \frac{1}{2}(\sin(x-y) + \sin(x+y))$