嵌入式体系结构基于ZYNQ 第一讲

ZYNQ-SoC FPGA+ARM

- 一嵌入式概述
- ZYNQ的基本架构
- ZYNQ的应用范围
- ZYNQ的开发流程与方法

ZYNQ-SoC 嵌入式概述

ZYNQ-SoC 嵌入式概述

- 嵌入性
- 专用性
- 计算机

ZYNQ-SoC ZYNQ基本架构

ZYNQ-SoC ZYNQ基本架构

处理器	处理器类型	器件类型	速度(MHz)	DMIPS
ARM Cortex A9	硬核	Zynq 7000	800	2000
PowerPC405	硬核	Virtex-4	450	680
MicroBlaze	软核	Virtex-IIpro	150	123
MicroBlaze	软核	Spartan-3	85	65

PS:

- Cortex A9
 - Application Processing Unit
 - Platform Device
 - Device Controller

PL:

- Xilinx Artix7
 - 7Z010
 - 7Z020
- Xilinx Kintex7
 - 7Z030
 - 7Z045
 - 7Z100

ZYNQ-SoC ZYNQ基本架构

- 应用
 - 4G通信
 - 语音和视频数据共享
- Zynq 功能
 - Linux OS与外围管理
 - 集成接口和4G LTE

- 应用
 - 千兆以太网
 - 高速数据采集
- Zynq 功能
 - Linux OS管理采样流控制
 - 高速信号分析与处理

- 应用
 - 视频采集与分析
 - 图像存储于传输
- Zynq 功能
 - Linux OS及视频分析
 - 视频处理算法映射到PL

https://www.xilinx.com/video/corporate/deephi-deep-learning-platforms.html

ZYNQ-SoC ZYNQ开发流程与方法

采用 Zynq-7000 的嵌入式设计流程 系统架构师 软件开发人员 硬件设计师 • 业界领先的工具 - C-Gates / AutoESL ■ 业界领先的工具 编程 设计 - System Generator - 賽灵思 SDK - VHDL/Verilog - ARM 生态系统 定制IP核 ■大量硬件 IP 核资源 大量软件 IP 核资源 集成 IP 核 集成IP核 賽灵思IP 技 - 围绕 AXI 实现标准化 - 围绕 AMBA-AXI 实现标准化 合作伙伴 - 第三方的 - 賽灵思、ARM库 測試 测试 - 第三方的 调试 调试 ZYNO = ZYNO

ZYNQ-SoC ZYNQ开发流程与方法

基于Soc的混合设计				
FPGA设计	PS+AXI+IP的Standalone设计	Linux drivers和APP设计		
Vivado 环境及操作	SDK 环境及操作	Petalinux 环境及操作		

思考题