black-friday-sales-basic-eda

June 5, 2024

1 Analyzing the Raw data given wrt Black Friday Sales

2 Installing necessary libraries

[1]: pip install pandas numpy matplotlib seaborn

```
Requirement already satisfied: pandas in
c:\users\shubh\appdata\local\programs\python\python312\lib\site-packages (2.2.2)
Requirement already satisfied: numpy in
c:\users\shubh\appdata\local\programs\python\python312\lib\site-packages
Requirement already satisfied: matplotlib in
c:\users\shubh\appdata\local\programs\python\python312\lib\site-packages (3.9.0)
Requirement already satisfied: seaborn in
c:\users\shubh\appdata\local\programs\python\python312\lib\site-packages
Requirement already satisfied: python-dateutil>=2.8.2 in
c:\users\shubh\appdata\local\programs\python\python312\lib\site-packages (from
pandas) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in
\verb|c:\users\hubh\appdata\local\programs\python\python312\lib\site-packages (from the construction of the 
pandas) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in
c:\users\shubh\appdata\local\programs\python\python312\lib\site-packages (from
pandas) (2024.1)
Requirement already satisfied: contourpy>=1.0.1 in
c:\users\shubh\appdata\local\programs\python\python312\lib\site-packages (from
matplotlib) (1.2.1)
Requirement already satisfied: cycler>=0.10 in
c:\users\shubh\appdata\local\programs\python\python312\lib\site-packages (from
matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in
c:\users\shubh\appdata\local\programs\python\python312\lib\site-packages (from
matplotlib) (4.53.0)
Requirement already satisfied: kiwisolver>=1.3.1 in
c:\users\shubh\appdata\local\programs\python\python312\lib\site-packages (from
matplotlib) (1.4.5)
```

```
Requirement already satisfied: packaging>=20.0 in
```

c:\users\shubh\appdata\local\programs\python\python312\lib\site-packages (from matplotlib) (24.0)

Requirement already satisfied: pillow>=8 in

c:\users\shubh\appdata\local\programs\python\python312\lib\site-packages (from matplotlib) (10.3.0)

Requirement already satisfied: pyparsing>=2.3.1 in

c:\users\shubh\appdata\local\programs\python\python312\lib\site-packages (from matplotlib) (3.1.2)

Requirement already satisfied: six>=1.5 in

c:\users\shubh\appdata\local\programs\python\python312\lib\site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)

Note: you may need to restart the kernel to use updated packages.

```
[2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

3 Reading the csv file

```
[3]: df = pd.read_csv(r'C:\Users\Shubh\Desktop\PROJECTS\PYTHON\EDA_

→_BlackFridaySales\Data\BlackFriday.csv')
```

4 Total number of rows and column

To find total number of rows and column, here we have stored csv file in "df" variable. If we execute this df we will get total rows and total columns

Here total rows: 537577 rows total columns: 12 columns

[4]: df

[4]:		User_ID	Product_ID	Gender	Age	Occupation	City_Category	\
	0	1000001	P00069042	F	0-17	10	A	
	1	1000001	P00248942	F	0-17	10	A	
	2	1000001	P00087842	F	0-17	10	A	
	3	1000001	P00085442	F	0-17	10	A	
	4	1000002	P00285442	M	55+	16	C	
		•••		•••	•••	•••		
	537572	1004737	P00193542	M	36-45	16	C	
	537573	1004737	P00111142	M	36-45	16	C	
	537574	1004737	P00345942	M	36-45	16	C	
	537575	1004737	P00285842	M	36-45	16	C	
	537576	1004737	P00118242	M	36-45	16	C	

	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	\
0	2	0	3	
1	2	0	1	
2	2	0	12	
3	2	0	12	
4	4+	0	8	
•••		•••	•••	
537572	1	0	1	
537573	1	0	1	
537574	1	0	8	
537575	1	0	5	
537576	1	0	5	

	Product_Category_2	Product_Category_3	Purchase
0	NaN	NaN	8370
1	6.0	14.0	15200
2	NaN	NaN	1422
3	14.0	NaN	1057
4	NaN	NaN	7969
	•••	•••	•••
537572	2.0	NaN	11664
537573	15.0	16.0	19196
537574	15.0	NaN	8043
537575	NaN	NaN	7172
537576	8.0	NaN	6875

[537577 rows x 12 columns]

5 Analyzing Dataframe (initial level)

[5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 537577 entries, 0 to 537576
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	User_ID	537577 non-null	int64
1	Product_ID	537577 non-null	object
2	Gender	537577 non-null	object
3	Age	537577 non-null	object
4	Occupation	537577 non-null	int64
5	City_Category	537577 non-null	object
6	Stay_In_Current_City_Years	537577 non-null	object
7	Marital_Status	537577 non-null	int64
8	Product_Category_1	537577 non-null	int64

9 Product_Category_2 370591 non-null float64 10 Product_Category_3 164278 non-null float64 11 Purchase 537577 non-null int64

dtypes: float64(2), int64(5), object(5)

memory usage: 49.2+ MB

Observation 1: Now here we can notice age datatype is object which should be int ;

In Product_Category_2 and Product_Category_3 there seems to be some null value

	r	rest all see	ms ok.					
: df								
:	User_ID	Product_ID	Gender	Age	Occupat	ion City_C	Category \	
0	1000001		F	0-17	-	10	A	
1	1000001	P00248942	F	0-17		10	Α	
2	1000001	P00087842	F	0-17		10	Α	
3	1000001	P00085442	F	0-17		10	Α	
4	1000002	P00285442	M	55+		16	C	
•••	•••		•••	•••		•••		
53757	72 1004737	P00193542	M	36-45		16	C	
53757			M	36-45		16	С	
53757			M	36-45		16	С	
53757			M			16	С	
53757	76 1004737	P00118242	M	36-45		16	C	
	Stav In	Current_City	, Years	Marita	l Status	Product	Category 1	\
0	2 3 4 7	044 - 044 - 04	2	1101110	0	_	3	•
1			2		0		1	
2			2		0		12	
3			2		0		12	
4			4+		0		8	
	70							
53757			1		0		1	
53757			1		0		1	
53757			1		0		8	
53757 53757			1 1		0		5 5	
33737	O		1		O		5	
	Product	_Category_2	Produc	t_Categ	ory_3 P	urchase		
0		NaN			NaN	8370		
1		6.0			14.0	15200		
2		NaN			NaN	1422		
3		14.0			NaN	1057		
4		NaN			NaN	7969		
 52757	70			•••	··· No N	11664		
53757		2.0			NaN	11664		
53757		15.0			16.0	19196		
53757	4	15.0			NaN	8043		

537575	NaN	NaN	7172
537576	8.0	NaN	6875

[537577 rows x 12 columns]

Identifying columns with missing values and decide how to handle them, such as imputing missing

6 Handling Missing Value

The df.isnull().sum() method in pandas is used to count the number of missing values (NaN) in each column of a DataFrame.

Here's a breakdown of how it works:

- 1) df.isnull() returns a DataFrame of the same shape as the original DataFrame (df), where each cell contains a boolean value indicating whether the corresponding cell in the original DataFrame is missing (True) or not (False).
- 2) sum() is then applied to this DataFrame, which sums up the boolean values along each column. Since in Python, True is treated as 1 and False as 0 when summed, this effectively counts the number of missing values in each column.

When we run df.isnull().sum(), we will get a Series object where each index corresponds to a column name in df, and each value indicates the number of missing values in that column.

[7]: df.isnull().sum()

User_ID	0
Product_ID	0
Gender	0
Age	0
Occupation	0
City_Category	0
Stay_In_Current_City_Years	0
Marital_Status	0
Product_Category_1	0
Product_Category_2	166986
Product_Category_3	373299
Purchase	0
dtype: int64	
	Product_ID Gender Age Occupation City_Category Stay_In_Current_City_Years Marital_Status Product_Category_1 Product_Category_2 Product_Category_3 Purchase

Observation2: Product_Category_2 and Product_Category_3 have 166986 and 373299 missing values

The dropna() method is commonly used in data preprocessing to remove rows or columns with missing data before analysis. The df.dropna() method in pandas is used to remove rows or columns from a DataFrame that contain any missing values (NaN).

```
#Remove rows with any missing values df_cleaned = df.dropna()
```

#Remove columns with any missing values df cleaned = df.dropna(axis=1)

 $\#Remove\ rows\ with\ missing\ values\ in\ specific\ columns\ df_cleaned = df.dropna(subset=['column1', 'column2'])$

#Remove rows with at least 3 non-missing values df_cleaned = df.dropna(thresh=3)

7 Removing Missing Values in Rows and Column

df.dro	pna()							
:	User_ID	Product_ID	Gender	Age	Occupat	ion (City_Category	\
1	1000001	P00248942	F	0-17		10	A	
6	1000004	P00184942	M	46-50		7	В	
13	1000005	P00145042	M	26-35		20	A	
14	1000006	P00231342	F	51-55		9	A	
16	1000006	P0096642	F	51-55		9	A	
•••	•••		•••	•••		•••		
537549		P00345842		51-55		1	В	
537551		P00313442		46-50		3	C	
537562		P00146742		18-25		20	A	
537571		P00221442		36-45		16	C	
537573	1004737	P00111142	М	36-45		16	С	
	Stay_In_0	Current_Cit	y_Years	Marita	.1_Status	Pro	oduct_Category	_1 \
1			2		C)	-	1
6			2		1	-		1
13			1		1	-		1
14			1		C)		5
16			1		C)		2
•••					•••			
537549			1		1	-		2
537551			3		C)		5
537562			1		1	-		1
537571			1		C)		1
537573			1		C)		1
	Product	_Category_2	Produc	t_Categ	ory_3 F	urcha	ase	
1		6.0			14.0	152	200	
6		8.0			17.0	192	215	
13		2.0			5.0	156	665	
14		8.0			14.0	53	378	
16		3.0			4.0		055	
•••		•••		•••	•••			
537549		8.0			14.0		082	
537551		6.0			8.0		863	
537562		13.0			14.0		508	
537571		2.0			5.0		852	
537573		15.0			16.0	19:	196	

[164278 rows x 12 columns]

Writing below

del df['Product_Category_2'] del df['Product_Category_3']

or df.dropna(axis=1) will do one and the same thing as here we need to delete the entire column.

[9]: df.dropna(axis=1)

[9]:		User_ID	${\tt Product_ID}$	Gender	Age	Occupation	City_Category	\
	0	1000001	P00069042	F	0-17	10	A	
	1	1000001	P00248942	F	0-17	10	A	
	2	1000001	P00087842	F	0-17	10	A	
	3	1000001	P00085442	F	0-17	10	A	
	4	1000002	P00285442	M	55+	16	C	
	•••	•••		•••	•••	•••		
	537572	1004737	P00193542	M	36-45	16	C	
	537573	1004737	P00111142	M	36-45	16	C	
	537574	1004737	P00345942	M	36-45	16	C	
	537575	1004737	P00285842	M	36-45	16	C	
	537576	1004737	P00118242	M	36-45	16	C	

	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	\
0	2	0	3	
1	2	0	1	
2	2	0	12	
3	2	0	12	
4	4+	0	8	
•••	•••	•••	•••	
537572	1	0	1	
537573	1	0	1	
537574	1	0	8	
537575	1	0	5	
537576	1	0	5	

	Purchase
0	8370
1	15200
2	1422
3	1057
4	7969
	•••
537572	11664
537573	19196
537574	8043
537575	7172

537576 6875

[537577 rows x 10 columns]

[537577 rows x 12 columns]

: df								
:	User_ID	Product_ID	Gender	Age	Occup	ation	City_Category	\
0	1000001		F	0-17	-	10	A	
1	1000001	P00248942	F	0-17		10	A	
2	1000001	P00087842	F	0-17		10	A	
3	1000001	P00085442	F	0-17		10	A	
4	1000002	P00285442	М	55+		16	C	
•••	•••	•••	•••					
537572	1004737	P00193542	M	36-45		16	C	
537573	1004737	P00111142	M	36-45		16	C	
537574	1004737	P00345942	M	36-45		16	C	
537575	1004737	P00285842	M	36-45		16	C	
537576	1004737	P00118242	М	36-45		16	C	
	Stav In (Current City	y Years	Marita	l Stat	us Pi	roduct_Category	, 1 \
0	<i>y</i>		2		_	0	_ 0 ,	3
1			2			0		1
2			2			0		12
3			2			0		12
4			4+			0		8
•••			•••		•••		•••	
537572			1			0		1
537573			1			0		1
537574			1			0		8
537575			1			0		5
537576			1			0		5
	Product	_Category_2	Produc	t_Categ	ory_3	Purcl	nase	
0		NaN			${\tt NaN}$	8	3370	
1		6.0			14.0	15	5200	
2		NaN			${\tt NaN}$:	1422	
3		14.0			${\tt NaN}$:	1057	
4		NaN			NaN	-	7969	
•••						•••		
537572		2.0			NaN	1:	1664	
537573		15.0			16.0	19	9196	
537574		15.0			NaN	8	3043	
537575		NaN			NaN	-	7172	
537576		8.0			${\tt NaN}$	6	8875	

8

8 Step 2: Now Lets Analyze the columns of the data

```
[11]: df.head()
         User_ID Product_ID Gender
                                     Age Occupation City_Category
[11]:
      0 1000001 P00069042
                                 F 0-17
                                                   10
      1 1000001 P00248942
                                    0-17
                                                   10
                                                                  Α
      2 1000001 P00087842
                                 F 0-17
                                                   10
                                                                  Α
      3 1000001 P00085442
                                 F
                                   0-17
                                                   10
                                                                  Α
      4 1000002 P00285442
                                                   16
                                     55+
                                                                  C
        Stay_In_Current_City_Years
                                   Marital_Status Product_Category_1
      0
                                 2
                                                 0
      1
                                                                      1
      2
                                 2
                                                 0
                                                                     12
                                                 0
      3
                                 2
                                                                     12
                                4+
                                                 0
                                                                      8
         Product_Category_2 Product_Category_3 Purchase
      0
                                            NaN
                        {\tt NaN}
                                                      8370
                        6.0
                                           14.0
      1
                                                     15200
      2
                        NaN
                                            {\tt NaN}
                                                      1422
      3
                       14.0
                                            NaN
                                                      1057
                        NaN
                                            NaN
                                                      7969
[12]: df['User_ID'].nunique()
[12]: 5891
[13]: df['Product_ID'].nunique()
[13]: 3623
[14]: df['Gender'].unique()
[14]: array(['F', 'M'], dtype=object)
[15]: df['Age'].unique()
[15]: array(['0-17', '55+', '26-35', '46-50', '51-55', '36-45', '18-25'],
            dtype=object)
[16]: df['Occupation'].unique()
[16]: array([10, 16, 15, 7, 20, 9, 1, 12, 17, 0, 3, 4, 11, 8, 19, 2, 18,
              5, 14, 13, 6], dtype=int64)
```

```
[17]: df['City_Category'].unique()
[17]: array(['A', 'C', 'B'], dtype=object)
[18]: df['Stay_In_Current_City_Years'].unique()
[18]: array(['2', '4+', '3', '1', '0'], dtype=object)
[19]: df['Marital_Status'].unique()
[19]: array([0, 1], dtype=int64)
[20]: df['Product_Category_1'].unique()
[20]: array([3, 1, 12, 8, 5, 4, 2, 6, 14, 11, 13, 15, 7, 16, 18, 10, 17,
             9], dtype=int64)
[21]: df['Purchase'].sum()/len(df['Purchase'])
[21]: 9333.859852635065
[22]: for column in df.columns:
         print(column, ":" ,df[column].nunique())
     User_ID : 5891
     Product_ID : 3623
     Gender: 2
     Age : 7
     Occupation: 21
     City_Category : 3
     Stay_In_Current_City_Years : 5
     Marital_Status : 2
     Product_Category_1 : 18
     Product_Category_2 : 17
     Product_Category_3 : 15
     Purchase: 17959
```

9 Step3: Analyzing Gender

```
Column Unique Counts
                       User_ID
0
                                          5891
                    Product_ID
                                          3623
1
2
                        Gender
                                             2
3
                            Age
                                             7
4
                    Occupation
                                             21
                 City_Category
5
                                             3
6
   Stay_In_Current_City_Years
                                             5
7
                Marital_Status
                                             2
8
            Product_Category_1
                                             18
            Product_Category_2
9
                                             17
10
            Product_Category_3
                                             15
                      Purchase
                                         17959
11
```

Creating a pie chart to visualize the gender distribution in the DataFrame df.

[24]: <Axes: ylabel='Ratio'>

[25]: <Axes: title={'center': 'Gender Ratio'}>

Gender Ratio

[26]: <Axes: xlabel='Gender'>


```
[27]: df.groupby('Gender').size()
```

[27]: Gender

F 132197 M 405380 dtype: int64

10 Analyzing Age and Marital Status

```
[28]: df.groupby('Age').size().plot(kind = 'bar', figsize = (12, 6), title = 'Purchase Distribution by Age')
```

[28]: <Axes: title={'center': 'Purchase Distribution by Age'}, xlabel='Age'>


```
[29]: lst = []
  for i in df['Age'].unique():
        lst.append([i, df[df['Age'] == i]['Product_ID'].nunique()])
        data = pd.DataFrame(lst , columns = ['Age', 'Products'])

[30]: data.plot.bar(x = 'Age', figsize = (8,6))
```

[30]: <Axes: xlabel='Age'>


```
[31]: df.groupby('Age').sum()['Purchase'].plot(kind = 'bar', figsize = (12, 6), title__ 

= 'Amount Spend by Age')
```

[31]: <Axes: title={'center': 'Amount Spend by Age'}, xlabel='Age'>

[37]: <Axes: title={'center': 'Amount Spend by Age'}, xlabel='Age'>


```
[39]: #df.groupby('Age').mean()['Purchase'].plot(kind = 'pie', autopct = '%0.1f')

# Group by 'Age' and calculate the mean purchase amount
mean_purchase_by_age = df.groupby('Age')['Purchase'].mean()

# Plot the pie chart
mean_purchase_by_age.plot(kind='pie', autopct='%0.1f%%')
plt.ylabel('') # Remove the y-label
plt.title('Average Purchase Amount by Age Group')
plt.show()
```

Average Purchase Amount by Age Group


```
[40]: df.groupby('Marital_Status').size().plot(kind = 'pie', autopct = '%0.1f')
```

[40]: <Axes: >


```
[41]: df.groupby('Gender').size().plot(kind = 'pie', autopct = '%0.1f')
```

[41]: <Axes: >

11 MultiColumn Analysis


```
[44]: sns.set(rc = {'figure.figsize' : (12,6)})
sns.countplot(x = "Age", hue = 'Gender', data = df)
```

[44]: <Axes: xlabel='Age', ylabel='count'>


```
[45]: sns.set(rc = {'figure.figsize' : (12,6)})
sns.countplot(x = "Gender", hue = 'Age', data = df)
```

[45]: <Axes: xlabel='Gender', ylabel='count'>


```
[46]: sns.set(rc = {'figure.figsize' : (6,6)})
sns.countplot(x = "Marital_Status", hue = 'Gender', data = df)
```

[46]: <Axes: xlabel='Marital_Status', ylabel='count'>


```
[47]: sns.countplot(x = df['City_Category'])
```

[47]: <Axes: xlabel='City_Category', ylabel='count'>

[48]: <Axes: xlabel='City_Category', ylabel='count'>

[49]: <Axes: xlabel='Age', ylabel='count'>

[50]: <Axes: xlabel='Marital_Status', ylabel='count'>


```
[51]: df.groupby('City_Category').size().plot(kind = 'pie', autopct = '%0.1f')
```

[51]: <Axes: >


```
[52]: sns.countplot(x = 'City_Category', hue = 'Gender', data = df)
```

[52]: <Axes: xlabel='City_Category', ylabel='count'>

[53]: <Axes: ylabel='Purchase'>


```
[55]: # Group by 'City_Category' and calculate the mean purchase amount
mean_purchase_by_city = df.groupby('City_Category')['Purchase'].mean()

# Plot the pie chart
mean_purchase_by_city.plot(kind='pie', autopct='%0.1f%%')
plt.ylabel('') # Remove the y-label
plt.title('Average Purchase Amount by City Category')
plt.show()
```

Average Purchase Amount by City Category

12 Occupation and Products Analysis

```
[56]: sns.countplot(x = df['Stay_In_Current_City_Years'])
```

[56]: <Axes: xlabel='Stay_In_Current_City_Years', ylabel='count'>


```
[57]: df.groupby('Stay_In_Current_City_Years').size().plot(kind = 'pie', autopct = "%. 

→1f")
```

[57]: <Axes: >


```
[58]: sns.countplot(x = 'Stay_In_Current_City_Years', hue = 'Gender', data = df)
```

[58]: <Axes: xlabel='Stay_In_Current_City_Years', ylabel='count'>

[59]: sns.countplot(x = 'Stay_In_Current_City_Years', hue = 'Marital_Status', data =
$$\Box$$
 \Box df)

[59]: <Axes: xlabel='Stay_In_Current_City_Years', ylabel='count'>

[60]: <Axes: xlabel='Stay_In_Current_City_Years', ylabel='count'>

[61]: <Axes: xlabel='City_Category', ylabel='count'>

[63]: <Axes: xlabel='Stay_In_Current_City_Years'>


```
[67]: sns.countplot(x = df['Occupation'])
```

[67]: <Axes: xlabel='Occupation', ylabel='count'>

[68]: <Axes: xlabel='Occupation'>


```
[69]: df.groupby('Occupation').sum()['Purchase'].sort_values().plot(kind = 'bar')
```

[69]: <Axes: xlabel='Occupation'>

[74]: <Axes: xlabel='Occupation', ylabel='count'>


```
[75]: sns.countplot(x = 'Occupation', hue = 'Gender', data = df)
```

[75]: <Axes: xlabel='Occupation', ylabel='count'>


```
[76]: df.groupby('Occupation').nunique()['Product_ID'].plot(kind = 'bar')
```

[76]: <Axes: xlabel='Occupation'>

[77]: <Axes: xlabel='Occupation'>

[78]: <Axes: xlabel='Product_Category_1'>


```
[79]: df.groupby('Product_Category_1').size().sort_values().plot(kind = 'bar')
```

[79]: <Axes: xlabel='Product_Category_1'>

[80]: <Axes: xlabel='Product_ID'>


```
[81]: df.groupby('Product_ID').size().nlargest(10).sort_values().plot(kind = 'bar')
```

[81]: <Axes: xlabel='Product_ID'>


```
[83]: sns.countplot(x = 'Product_Category_1', hue = 'Gender', data = df)
```

[83]: <Axes: xlabel='Product_Category_1', ylabel='count'>

[84]: <Axes: xlabel='Product_Category_1', ylabel='count'>

13 Combining Age & Marital Status

```
[85]: l = []
    for i in range(len(df)):
        l.append(df['Gender'][i] +"_"+ str(df['Marital_Status'][i]))
        df['MaritalGender'] = l

[86]: sns.countplot(x = df['MaritalGender'])

[86]: <Axes: xlabel='MaritalGender', ylabel='count'>
```



```
[87]: sns.countplot(x = df['Age'], hue = df['MaritalGender'])
```

[87]: <Axes: xlabel='Age', ylabel='count'>

[88]: <Axes: xlabel='Product_Category_1', ylabel='count'>


```
[89]: sns.countplot(x = df['Stay_In_Current_City_Years'], hue = df['MaritalGender'])
```

[89]: <Axes: xlabel='Stay_In_Current_City_Years', ylabel='count'>


```
[90]: sns.countplot(x = df['City_Category'], hue = df['MaritalGender'])
```

[90]: <Axes: xlabel='City_Category', ylabel='count'>

[]: