实验二-利用 R 语言实现判别分析

张逸敏

2023年4月6日

0.1 6.2 线性判别分析

```
[1]: setwd("C:\\Users\\zym\\Desktop\\multivariate\\exp2\\")
d6.1 = read.table('./data/6_1.txt', header=T)
plot(d6.1$x1, d6.1$x2, main="张逸敏")
text(d6.1$x1, d6.1$x2, d6.1$G, adj=-0.5)
```


[2]: d6.1

	G	x1	x2	G1
	<int></int>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
	1	-1.9	3.2	雨
	1	-6.9	0.4	雨
	1	5.2	2.0	雨
	1	5.0	2.5	雨
	1	7.3	0.0	雨
	1	6.8	12.7	雨
	1	0.9	-5.4	雨
	1	-12.5	-2.5	雨
A data.frame: 20 × 4	1	1.5	1.3	雨
A data.name. 20 ^ 4	1	3.8	6.8	雨
	2	0.2	6.2	晴
	2	-0.1	7.5	晴
	2	0.4	14.6	晴
	2	2.7	8.3	晴
	2	2.1	8.0	晴
	2	-4.6	4.3	晴
	2	-1.7	10.9	晴
	2	-2.6	13.1	晴
	2	2.6	12.8	晴
	2	-2.8	10.0	晴

```
[3]: options(warn = -1)
  library(MASS)
  attach(d6.1)
  ld = lda(G~x1+x2)
  ld
```

Call:

 $lda(G \sim x1 + x2)$

Prior probabilities of groups:

1 2

0.5 0.5

Group means:

```
x1
             x2
    1 0.92 2.10
    2 -0.38 8.85
   Coefficients of linear discriminants:
             LD1
   x1 -0.1035305
   x2 0.2247957
[4]: Z = predict(ld)
    newG = Z\$class
    cbind(G, Z$x, newG)
                                 G LD1
                                                 newG
                                    -0.28674901
                              1
                              2
                                    -0.39852439
                              3
                                 1 -1.29157053
                                 1 -1.15846657
                              4
                              5
                                 1 -1.95857603
                              6
                                 1 0.94809469
                                                 2
                              7
                                 1 -2.50987753
                              8
                                 1 -0.47066104
                                 1 -1.06586461
                              9
   A matrix: 20 \times 3 of type dbl
                             10
                                 1 -0.06760842
                                                 1
                                                 2
                             11
                                 2 0.17022402
                                 2 0.49351760
                                                 2
                             12
                                                 2
                             13
                                 2 2.03780185
                                                 2
                             14
                                 2 0.38346871
                             15
                                 2 -1.24038077
                                                 1
                             16
                                 2 0.24005867
                                                 2
                                                 2
                             17
                                 2 1.42347182
                                 2 2.01119984
                                                 2
                             18
                                                 2
                             19
                                    1.40540244
                                    1.33503926
                             20
                                 2
                                                 2
[5]: # 真实为 1 的样本中有一个错判为 2, 真实为 2 的样本中有一个错判为 1
```

(tab=table(G, newG))

newG

G 12

1 9 1

2 1 9

[6]: sum(diag(prop.table(tab))) #符合率

0.9

[7]: # 预测新样本

predict(ld, data.frame(x1=8.1,x2=2.0))

\$class 1 Levels: 1. ' 1' 2. ' 2'

\$posterior A matrix: 1×2 of type dbl $\frac{1}{1} = \frac{2}{0.9327428} = \frac{2}{0.06725717}$

\$x A matrix: 1×1 of type dbl $\frac{\text{LD1}}{1 - 1.591809}$

0.2 6.3 距离判别法

[1]: options(warn = -1)
 d6.2 = read.table("./data/6_2.txt", header = T)
 attach(d6.2)
 d6.2
G=1 表示畅销, G=2 表示滞销; Q: 质量评分; C: 功能评分; P: 销售价格

	G	Q	C	Р
	<int></int>	<dbl></dbl>	<dbl></dbl>	<int></int>
	1	8.3	4.0	29
	1	9.5	7.0	68
	1	8.0	5.0	39
	1	7.4	7.0	50
	1	8.8	6.5	55
	1	9.0	7.5	58
	1	7.0	6.0	75
	1	9.2	8.0	82
A data.frame: 20 × 4	1	8.0	7.0	67
A data.iiaiiie. 20 ^ 4	1	7.6	9.0	90
	1	7.2	8.5	86
	1	6.4	7.0	53
	1	7.3	5.0	48
	2	6.0	2.0	20
	2	6.4	4.0	39
	2	6.8	5.0	48
	2	5.2	3.0	29
	2	5.8	3.5	32
	2	5.5	4.0	34
	2	6.0	4.5	36

[2]: # 质量评分和功能评分的散点图

plot(Q,C,main="张逸敏")

text(Q,C,G,adj=-0.8)


```
[3]: # 质量评分和销售价格的散点图 plot(Q,P,main="张逸敏") text(Q,P,G,adj=-0.8)
```



```
[4]: # 功能评分和销售价格的散点图 plot(C,P,main="张逸敏") text(C,P,G,adj=-0.8)
```

张逸敏

0.2.1 二次判别函数 qda() 的用法

Call: $qda(G \sim Q + C + P)$

Prior probabilities of groups:

1 2 0.65 0.35

Group means:

Q C P

1 7.976923 6.730769 61.53846

2 5.957143 3.714286 34.00000

[6]: predict(qd)

cbind(G,newG=predict(qd)\$class)

发现预测值和真实值全都一样

\$class 1. 1 2. 1 3. 1 4. 1 5. 1 6. 1 7. 1 8. 1 9. 1 10. 1 11. 1 12. 1 13. 1 14. 2 15. 2 16. 2 17. 2 18. 2 19. 2 20. 2

1

2

Levels: 1. ' 1' 2. ' 2'

	1	1.0000000000	1.038272e-13
	2	0.9999999943	5.696656e-09
	3	0.999999669	3.313397e-08
	4	0.999999957	4.297984e-09
	5	0.9999999969	3.117297e-09
	6	1.0000000000	7.625938e-15
	7	1.0000000000	4.793512e-18
	8	0.999999952	4.810094e-09
	9	0.9990859902	9.140098e-04
\$posterior A matrix: 20 × 2 of type dbl	10	1.0000000000	3.454373e-11
	11	1.0000000000	3.770380e-11
	12	0.9976747923	2.325208e-03
	13	0.5401116448	4.598884e-01
	14	0.0006321752	9.993678e-01
	15	0.0094288115	9.905712e-01
	16	0.1453044024	8.546956e-01
	17	0.0004122557	9.995877e-01
	18	0.0009545983	9.990454e-01
	19	0.0019820983	9.980179e-01
	20	0.0346609285	9.653391e-01

```
G newG
                        1
                           1
                           1
                          1
                        1
                        1 1
                        1 1
                        1 1
                           1
A matrix: 20 \times 2 of type int 1
                        1
                           1
                        1 1
                        2 2
                        2 2
                        2 2
                        2 2
                        2 2
                        2 2
                        2 2
```

[7]: # 新样本判定 predict(qd, data.frame(Q=8,C=7.5,P=65))

\$class 1 Levels: 1. ' 1' 2. ' 2'

\$posterior A matrix: 1 × 2 of type dbl 1 0.9998462 0.0001537705

0.2.2 线性判别函数的应用

Call:
$$lda(G \sim Q + C + P)$$

```
1 2
0.65 0.35

Group means:
Q C P
1 7.976923 6.730769 61.53846
2 5.957143 3.714286 34.00000

Coefficients of linear discriminants:
LD1
Q -0.82211427
C -0.64614217
P 0.01495461

[9]: W = predict(ld)
cbind(G, Wx = W$x, newG=W$class)
```

Prior probabilities of groups:

```
G LD1
                                              newG
                              1
                                  -0.1069501
                           1
                                              1
                           2
                                  -2.4486840
                           3
                                 -0.3569119
                              1
                                              1
                                  -0.9914270
                           4
                                              1
                           5
                                 -1.7445428
                                              1
                                  -2.5102440
                           6
                                              1
                              1
                           7
                              1
                                  0.3574261
                                              1
                           8
                                 -2.6388274
                                              1
                           9
                                 -1.2304672
                              1
                                              1
A matrix: 20 \times 3 of type dbl
                          10
                                 -1.8499498
                                              1
                                 -1.2578515
                          11
                                              1
                                  -0.1244489
                          12
                                              1
                          13
                                  0.3531596
                                              1
                          14
                              2 2.9416056
                                              2
                          15
                              2 1.6046131
                                              2
                          16
                              2 0.7642167
                                              2
                                              2
                          17
                              2 3.0877463
                          18
                              2 2.3162705
                                              2
                          19
                              2
                                  2.2697429
                                              2
                              2
                          20
                                  1.5655239
                                              2
```

[10]: # 线性判别函数判断结果,和二次判别函数结果相同 predict(ld,data.frame(Q=8,C=7.5,P=65))

\$class 1 Levels: 1. ' 1' 2. ' 2'

\$posterior A matrix: 1 × 2 of type dbl 1 0.999266 0.0007339578

\$x A matrix: 1×1 of type dbl $\frac{\text{LD1}}{1 - 1.583447}$

0.3 多总体距离判别

[11]: d6.3 = read.table("./data/6_3.txt", header = T) d6.3 # G=1 是畅销, G=2 是平销, G=3 是滞销

	G	Q	C	Р
	<int></int>	<dbl></dbl>	<dbl></dbl>	<int></int>
	1	8.3	4.0	29
	1	9.5	7.0	68
	1	8.0	5.0	39
	1	7.4	7.0	50
	1	8.8	6.5	55
	2	9.0	7.5	58
	2	7.0	6.0	75
	2	9.2	8.0	82
A data.frame: 20 × 4	2	8.0	7.0	67
A data.irainic. 20 ^ 4	2	7.6	9.0	90
	2	7.2	8.5	86
	2	6.4	7.0	53
	2	7.3	5.0	48
	3	6.0	2.0	20
	3	6.4	4.0	39
	3	6.8	5.0	48
	3	5.2	3.0	29
	3	5.8	3.5	32
	3	5.5	4.0	34
	3	6.0	4.5	36

```
[12]: options(warn = -1)
attach(d6.3)
plot(Q,C, main="张逸敏")
text(Q,C,G,adj=-0.8,cex=0.75)
```

The following objects are masked from d6.2:

C, G, P, Q

张逸敏


```
[13]: plot(Q,P, main="张逸敏")
text(Q,P,G,adj=-0.8,cex=0.75)
```



```
[14]: plot(C,P, main="张逸敏")
text(C,P,G,adj=-0.8,cex=0.75)
```


0.3.1 线性判别

Call:

$$lda(G \sim Q + C + P)$$

Prior probabilities of groups:

1 2 3

0.25 0.40 0.35

```
Group means:
```

Q C P

1 8.400000 5.900000 48.200

2 7.712500 7.250000 69.875

3 5.957143 3.714286 34.000

Coefficients of linear discriminants:

LD1 LD2

Q -0.81173396 0.88406311

C -0.63090549 0.20134565

P 0.01579385 -0.08775636

Proportion of trace:

LD1 LD2

0.7403 0.2597

[16]: Z = predict(ld)

newG = Z\$class

cbind(G,Z\$x,newG)

```
G LD1
                                                     LD2
                                                                    newG
                                  1
                                     1
                                        -0.1409984
                                                     2.582951755
                                                                    1
                                  2
                                        -2.3918356
                                                     0.825366275
                                                                    1
                                  3
                                        -0.3704452
                                                     1.641514840
                                                                    1
                                     1
                                         -0.9714835
                                  4
                                                     0.548448277
                                                                    1
                                  5
                                         -1.7134891
                                                     1.246681993
                                                                    1
                                        -2.4593598
                                                     1.361571174
                                  6
                                     2
                                                                    1
                                  7
                                     2
                                        0.3789617
                                                     -2.200431689
                                                                    2
                                     2
                                                                    2
                                  8
                                         -2.5581070
                                                    -0.467096091
                                  9
                                                                    2
                                     2
                                        -1.1900285
                                                     -0.412972027
     A matrix: 20 \times 4 of type dbl
                                        -1.7638874
                                                     -2.382302324
                                                                    2
                                 11
                                     2
                                         -1.1869165
                                                     -2.485574940
                                                                    2
                                 12
                                     2
                                         -0.1123680
                                                     -0.598883922
                                                                    2
                                 13
                                         0.3399132
                                                     0.232863397
                                                                    3
                                         2.8456561
                                                     0.936722573
                                                                    3
                                 14
                                 15
                                     3
                                         1.5592346
                                                     0.025668216
                                                                    3
                                 16
                                         0.7457802
                                                     -0.209168159
                                                                    3
                                         3.0062824
                                                                    3
                                 17
                                                     -0.358989534
                                         2.2511708
                                 18
                                     3
                                                     0.008852067
                                                                    3
                                         2.2108260
                                 19
                                     3
                                                     -0.331206768
                                                                    3
                                     3
                                         1.5210939
                                                     0.035984885
                                                                    3
                                 20
[17]: (tab=table(G,newG))
        newG
         1 2 3
       1 5 0 0
       2 1 6 1
       3 0 0 7
[18]: diag(prop.table(tab,1))
     1
                         1 2
                                              0.75 3
                                                                      1
[19]: sum(diag(prop.table(tab)))
     0.9
```


\$class 2 Levels: 1. ' 1' 2. ' 2' 3. ' 3'

\$posterior A matrix: 1 × 3 of type dbl 1 2 3 1 0.2114514 0.786773 0.001775594

```
$x A matrix: 1 × 2 of type dbl LD1 LD2 1 -1.537069 -0.1367865
```

0.3.2 二次判别

```
1
                                   1
                                1
                                2 2
                                2 2
                                2 2
                                   2
     A matrix: 20 \times 2 of type int 2
                                   2
                                   2
                                2
                                   2
                                2
                                   3
                                3
                                   3
                                3 3
                                3 3
                                3 3
                                3 3
                                   3
                                   3
[24]: (tab=table(G,newG))
        newG
         1 2 3
       1 5 0 0
       2 0 7 1
       3 0 0 7
[25]: sum(diag(prop.table(tab)))
     0.95
[26]: predict(ld, data.frame(Q=8,C=7.5,P=65))
     $class 2 Levels: 1. ' 1' 2. ' 2' 3. ' 3'
```

G newG

1 1

0.2114514 0.786773 0.001775594

\$posterior A matrix: 1×3 of type dbl

0.4 案例分析:企业财务状况的判别分析

	C	CE TD	NII TA	CA CI	CA NC
	G <int></int>	CF_TD <dbl></dbl>	NI_TA <dbl></dbl>	CA_CL <dbl></dbl>	CA_NS <dbl></dbl>
	1				0.54
	1	0.51 0.08	0.10	2.49	
	1		0.02	2.01	0.53
	1	0.38 0.19	0.11 0.05	3.27	0.35
	1	0.19	0.03	2.25 4.24	0.33 0.63
	1	0.32	0.07	4.45	0.69
	1	0.31	0.05	2.52	0.69
	1	-0.02	0.03	2.05	0.09
	1	0.22	0.02	2.35	0.33
	1	0.22	0.08	1.80	0.52
	1	0.17	0.07	2.17	0.55
	1	-0.10	-0.01	2.17	0.58
	1	0.14	-0.01	0.46	0.26
	1	0.14	0.03	2.61	0.52
	1	0.14	0.07	2.23	0.56
	1	0.15	0.05	2.31	0.20
	1	0.10	0.06	1.84	0.38
	1	0.54	0.00	2.33	0.48
	1	-0.33	-0.09	3.01	0.47
	1	0.48	0.09	1.24	0.18
A data.frame: 46 × 5	1	0.56	0.03	4.29	0.44
	1	0.20	0.08	1.99	0.30
	1	0.47	0.14	2.92	0.45
	1	0.17	0.04	2.45	0.14
	1	0.58	0.04	5.06	0.13
	2	-0.45	-0.41	1.09	0.45
	2	-0.56	-0.31	1.51	0.16
	2	0.06	0.02	1.01	0.40
	2	-0.07	-0.09	1.45	0.26
	2	-0.10	-0.09	1.56	0.67
	2	-0.14	-0.07	0.71	0.28
	2	0.04	0.01	1.50	0.71
	2	-0.06	-0.06	1.37	0.40
	2	0.07	-0.01	1.37	0.34
	2	-0.13	-0.14	1.42	0.43
	2	-0.23	-0.30	0.33	0.18
	2	0.07	0.02 24	1.31	0.25
	2	0.01	0.00	2.15	0.70
	2	-0.28	-0.23	1.19	0.66

0.4.1 线性判别

[28]: library(MASS)
ld=lda(G~.,data=Case5);ld # 线性判别

Call:
lda(G ~ ., data = Case5)

Prior probabilities of groups:

1

0.5434783 0.4565217

Group means:

CF_TD NI_TA CA_CL CA_NS

1 0.23520000 0.05560000 2.593600 0.426800

2 -0.06809524 -0.08142857 1.366667 0.437619

Coefficients of linear discriminants:

LD1

CF_TD -0.6291667

NI_TA -4.4458516

CA_CL -0.8892843

CA_NS 1.1844801

[29]: plot(ld)

mtext("张逸敏")


```
[30]: Zld=predict(ld)
    data.frame(Case5$G,Zld$class,round(Zld$x,3))
    tab1=table(Case5$G,Zld$class);tab1
    sum(diag(tab1))/sum(tab1)
    addmargins(tab1)
```

		Case5.G	Zld.clas	s LD1
		<int></int>	<fct></fct>	<dbl></dbl>
-	1	1	1	-1.013
	2	1	1	0.028
	3	1	1	-1.895
	4	1	1	-0.625
	5	1	1	-2.210
	6	1	1	-2.230
	7	1	1	-0.395
	8	1	1	-0.158
	9	1	1	-0.783
	10	1	1	-0.076
	11	1	1	-0.268
	12	1	1	-0.102
	13	1	2	1.271
	14	1	1	-0.778
	15	1	1	-0.354
	16	1	1	-0.813
	17	1	1	-0.308
	18	1	1	-1.005
	19	1	1	-0.185
	20	1	1	-0.265
	21	1	1	-2.808
A data.frame: 46 × 3	22	1	1	-0.569
A data.iiaiiie. 40 ^ 3	23	1	1	-1.655
	24	1	1	-0.971
	25	1	1	-3.562
	26	2	2	2.997
	27	2	2	1.904
	28	2	2	0.776
	29	2	2	0.790
	30	2	2	1.196
	31	2	2	1.426
	32	2	2	0.764
	33	2	2	0.887
	34	2	2	0.512
	35	2	2	1.278
	36	2	2	2.725
	37	2	2 28	8 0.325
	38	2	2	0.238
	39	2	2	2.249

1 2

1 24 1

2 3 18

0.91304347826087

线性判别符合率: 91.3%

0.4.2 二次判别

Call:

qda(G ~ ., data = Case5)

Prior probabilities of groups:

1

0.5434783 0.4565217

Group means:

2 -0.06809524 -0.08142857 1.366667 0.437619

1 2

1 24 1

2 2 19

0.934782608695652

A table: 3 × 3 of type dbl 1 2 Sum 2 2 19 21 Sum 26 20 46

二次判别符合率: 93.5%, 高于线性判别