LPAIR++ 0.2

Generated by Doxygen 1.8.6

Sat Mar 8 2014 00:36:31

ii CONTENTS

Contents

1	Prin	ciples		2
2	Tode	o List		2
3	Dep	recated	d List	2
4	Hier	archica	al Index	2
	4.1	Class I	Hierarchy	2
5	Data	a Struc	cture Index	3
	5.1	Data 9	Structures	3
6	File	Index		3
	6.1	File Li	st	4
7	Data	a Struc	cture Documentation	4
	7.1	Event	Class Reference	4
		7.1.1	Detailed Description	5
		7.1.2	Constructor & Destructor Documentation	5
		7.1.3	Member Function Documentation	5
		7.1.4	Field Documentation	9
	7.2	GamG	am Class Reference	9
		7.2.1	Detailed Description	11
		7.2.2	Constructor & Destructor Documentation	12
		7.2.3	Member Function Documentation	12
		7.2.4	Field Documentation	15
	7.3	Hadro	niser Class Reference	15
		7.3.1	Detailed Description	16
		7.3.2	Constructor & Destructor Documentation	16
		7.3.3	Member Function Documentation	16
		7.3.4	Field Documentation	17
	7.4	HEPE	UP Class Reference	17
		7.4.1	Constructor & Destructor Documentation	18
		7.4.2	Field Documentation	18
	7.5	HEPR	UP Class Reference	19
		7.5.1	Detailed Description	20
		7.5.2	Constructor & Destructor Documentation	20
		7.5.3	Field Documentation	20
	7.6	Herwig	g6Hadroniser Class Reference	20
		7.6.1	Constructor & Destructor Documentation	21
		7.6.2	Member Function Documentation	21

	7.6.3	Field Documentation	22
7.7	Jetset7	'Hadroniser Class Reference	22
	7.7.1	Constructor & Destructor Documentation	23
	7.7.2	Member Function Documentation	23
	7.7.3	Field Documentation	24
7.8	Kinema	atics Class Reference	24
	7.8.1	Constructor & Destructor Documentation	25
	7.8.2	Member Function Documentation	25
	7.8.3	Field Documentation	25
7.9	MCGer	n Class Reference	26
	7.9.1	Detailed Description	27
	7.9.2	Constructor & Destructor Documentation	27
	7.9.3	Member Function Documentation	28
	7.9.4	Field Documentation	28
7.10	Parame	eters Class Reference	28
	7.10.1	Detailed Description	31
	7.10.2	Constructor & Destructor Documentation	31
	7.10.3	Member Function Documentation	31
	7.10.4	Field Documentation	31
7.11	Particle	e Class Reference	33
	7.11.1	Detailed Description	36
	7.11.2	Constructor & Destructor Documentation	36
	7.11.3	Member Function Documentation	36
	7.11.4	Field Documentation	41
7.12	Proces	s Class Reference	42
	7.12.1	Detailed Description	43
	7.12.2	Constructor & Destructor Documentation	43
	7.12.3	Member Function Documentation	43
	7.12.4	Field Documentation	46
7.13	Pythia	6Hadroniser Class Reference	47
	7.13.1	Detailed Description	48
	7.13.2	Constructor & Destructor Documentation	48
	7.13.3	Member Function Documentation	48
	7.13.4	Field Documentation	48
7.14	Pythia	8Hadroniser Class Reference	49
	7.14.1	Constructor & Destructor Documentation	50
	7.14.2	Member Function Documentation	50
	7.14.3	Field Documentation	50
7.15	Vegas	Class Reference	50
	7.15.1	Detailed Description	51

		7.15.2	Constructor & Destructor Documentation	51
		7.15.3	Member Function Documentation	51
8	File	Docum	nentation	52
	8.1	include	e/event.h File Reference	52
		8.1.1	Typedef Documentation	52
	8.2	include	e/gamgam.h File Reference	53
	8.3	include	e/hadroniser.h File Reference	53
	8.4	include	e/herwig6hadroniser.h File Reference	54
		8.4.1	Macro Definition Documentation	55
		8.4.2	Function Documentation	55
		8.4.3	Variable Documentation	55
	8.5	include	e/jetset7hadroniser.h File Reference	55
		8.5.1	Macro Definition Documentation	56
		8.5.2	Function Documentation	56
		8.5.3	Variable Documentation	56
	8.6	include	e/kinematics.h File Reference	57
	8.7	include	e/Iheutils.h File Reference	57
	8.8	include	e/mcgen.h File Reference	58
		8.8.1	Function Documentation	58
	8.9	include	e/parameters.h File Reference	59
	8.10	include	e/particle.h File Reference	59
		8.10.1	Function Documentation	60
	8.11	include	e/process.h File Reference	60
	8.12	include	e/pythia6hadroniser.h File Reference	61
		8.12.1	Macro Definition Documentation	62
		8.12.2	Function Documentation	62
		8.12.3	Variable Documentation	62
	8.13	include	e/pythia8hadroniser.h File Reference	63
	8.14	include	e/utils.h File Reference	64
		8.14.1	Macro Definition Documentation	65
		8.14.2	Function Documentation	65
	8.15	include	e/vegas.h File Reference	66
		8.15.1	Macro Definition Documentation	66
	8.16	main.c	pp File Reference	66
		8.16.1	Function Documentation	66
Bil	bliogr	aphy		68
Inc	lex			69
****	IT. A			

1 Principles

This Monte Carlo generator, based on the LPAIR code developed in the early 1990s by J. Vermaseren *et al*[5], allows to compute the cross-section and to generate events for the $\gamma\gamma \to \ell^+\ell^-$ process in high energy physics.

The main operation is the integration of the matrix element (given as a GamGam object, subset of a Process object) performed by *Vegas*, an importance sampling algorithm written in 1972 by G. P. Lepage[3].

2 Todo List

Global GamGam::ComputeWeight (int nm_=1)

Find out what this *nm*_ parameter does...

Global GamGam::GamGam (int nOpt_=0)

Figure out how this nOpt_ parameter is affecting the final cross-section computation and events generation

3 Deprecated List

Global MCGen::LaunchGeneration ()

This method is to be suppressed since the events generation can now be launched one event at a time using the *GenerateOneEvent* method

4 Hierarchical Index

4.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Event	4
Hadroniser	15
Herwig6Hadroniser	20
Jetset7Hadroniser	22
Pythia6Hadroniser	47
Pythia8Hadroniser	49
HEPEUP	17
HEPRUP	19
Kinematics	24
MCGen	26
Parameters	28
Particle	33

5 Data Structure Index 3

Process	42
GamGam	9
Vegas	50
5 Data Structure Index	
5.1 Data Structures	
Here are the data structures with brief descriptions:	
Event Kinematic information on the particles in the event	4
GamGam Computes the matrix element for a $\gamma\gamma \to \ell^+\ell^-$ process	9
Hadroniser	15
HEPEUP User-process event information	17
HEPRUP Generic user-process interface for events generator	19
Herwig6Hadroniser Herwig6 hadronisation algorithm	20
Jetset7Hadroniser Jetset7 hadronisation algorithm	22
Kinematics List of kinematic cuts to apply on the central and outgoing phase space	24
MCGen Core of the Monte-Carlo generator	26
Parameters List of parameters used to start and run the simulation job	28
Particle Kinematics of one particle	33
Process	42
Pythia6Hadroniser Pythia6 hadronisation algorithm	47
Pythia8Hadroniser	49
Vegas Vegas Monte-Carlo integrator instance	50

6.1 File List

Here is a list of all files with brief descriptions:

main.cpp	66
include/event.h	52
include/gamgam.h	53
include/hadroniser.h	53
include/herwig6hadroniser.h	54
include/jetset7hadroniser.h	55
include/kinematics.h	57
include/lheutils.h	57
include/mcgen.h	58
include/parameters.h	59
include/particle.h	59
include/process.h	60
include/pythia6hadroniser.h	61
include/pythia8hadroniser.h	63
include/utils.h	64
include/vegas.h	66

7 Data Structure Documentation

7.1 Event Class Reference

Kinematic information on the particles in the event.

Collaboration diagram for Event:

Public Member Functions

- Event ()
- ~Event ()
- int AddParticle (Particle *part_, bool replace_=false)

Add a particle to the event.

- int AddParticle (int role_, bool replace_=false)
- void clear ()
- void Dump (bool stable_=false)
- Particle * GetById (int id_)

Gets one particle by its unique identifier in the event.

Particles GetBylds (std::vector< int > ids_)

Gets a vector of particles by their unique identifier in the event.

Particles GetByRole (int role_)

Gets a list of particles by their role in the event.

Particles GetDaughters (Particle *part_)

Gets a vector containing all the daughters from a particle.

std::string GetLHERecord (const double weight_=1.)

Gets the LHE block for this event.

- Particle * GetMother (Particle *part_)
- Particle * GetOneByRole (int role_)
- Particles GetParticles ()

Gets a vector of particles in the event.

- std::vector< int > GetRoles ()
- Particles GetStableParticles ()

Gets a vector of stable particles in the event.

int NumParticles ()

Number of particles in the event.

Event & operator= (const Event &)

Copies all the relevant quantities from one Event object to another.

void Store (std::ofstream *, double weight_=1.)

Data Fields

float time_cpu

7.1.1 Detailed Description

Class containing all the information on the in- and outgoing particles' kinematics

7.1.2 Constructor & Destructor Documentation

```
7.1.2.1 Event::Event ( )
```

- 7.1.2.2 Event::~Event ()
- 7.1.3 Member Function Documentation
- 7.1.3.1 int Event::AddParticle (Particle * part_, bool replace_ = false)

Sets the information on one particle in the process

Parameters

in	part_	The Particle object to insert or modify in the event
in	replace_	Do we replace the particle if already present in the event or do we append
		another particle with the same role ?

Returns

- 1 if a new Particle object has been inserted in the event
- 0 if an existing Particle object has been modified
- -1 if the requested role to edit is undefined or incorrect
- 7.1.3.2 int Event::AddParticle (int role_, bool replace_ = false)
- 7.1.3.3 void Event::clear () [inline]
- 7.1.3.4 void Event::Dump (bool stable_ = false)

Dumps all the known information on every Particle object contained in this Event container in the output stream

Parameters

in	stable_	Do we only show the stable particles in this event ?
----	---------	--

7.1.3.5 **Particle*** Event::GetByld (int id_)

Returns the pointer to the Particle object corresponding to a unique identifier in the event

Parameters

|--|

Returns

A pointer to the requested Particle object

7.1.3.6 Particles Event::GetBylds (std::vector< int > ids_) [inline]

Returns the pointers to the Particle objects corresponding to the unique identifiers in the event

Parameters

in	ids_	The unique identifiers to the particles to be selected in the event

Returns

A vector of pointers to the requested Particle objects

7.1.3.7 Particles Event::GetByRole (int role_)

Returns the list of pointers to the Particle objects corresponding to a certain role in the process kinematics Parameters

in	role_	The role the particles have to play in the process

Returns

A vector of pointers to the requested Particle objects

7.1.3.8 Particles Event::GetDaughters (Particle * part_) [inline]

Parameters

in	part_	The particle for which the daughter particles have to be retrieved

Returns

A Particle objects vector containing all the daughters' kinematic information

Here is the call graph for this function:

7.1.3.9 std::string Event::GetLHERecord (const double weight_ = 1.)

Returns an event block in a LHE format (a XML-style) with all the information on the particles composing this event

Parameters

in	weight_	The weight of the event
----	---------	-------------------------

Returns

A string containing the kinematic quantities for each of the particles in the event, formatted as the LHE standard requires.

7.1.3.10 Particle* Event::GetMother (Particle * part_) [inline]

Returns the pointer to the mother particle of any given Particle object in this event

Parameters

in	part_	The pointer	to the	Particle	object	from	which	we	want	to	extract	the
		mother parti	cle									

Returns

A pointer to the mother Particle object

Here is the call graph for this function:

7.1.3.11 Particle* Event::GetOneByRole (int role_) [inline]

Returns the first Particle object in the particles list whose role corresponds to the given argument Parameters

2	wala.	The vale the moutiele has to play in the execut
1n	roie_	The role the particle has to play in the event

Returns

A Particle object corresponding to the first particle found in this event

Here is the call graph for this function:

7.1.3.12 **Particles** Event::GetParticles ()

Returns

A vector containing all the pointers to the Particle objects contained in the event

7.1.3.13 std::vector<int> Event::GetRoles ()

Gets a list of roles for the given event (really process-dependant for the central system)

Returns

A vector of integers corresponding to all the roles the particles can play in the event

7.1.3.14 Particles Event::GetStableParticles (

Returns

A vector containing all the pointers to the stable Particle objects contained in the event

7.1.3.15 int Event::NumParticles () [inline]

Returns

The number of particles in the event, as an integer

7.1.3.16 **Event**& Event::operator= (const **Event** &)

7.1.3.17 void Event::Store (std::ofstream * , double weight_ = 1.)

Stores in a file (raw format) all the kinematics on the outgoing leptons

Parameters

in weight_ The weight of the event

7.1.4 Field Documentation

7.1.4.1 float Event::time_cpu

7.2 GamGam Class Reference

Computes the matrix element for a $\gamma\gamma \to \ell^+\ell^-$ process.

Inheritance diagram for GamGam:

Collaboration diagram for GamGam:

Public Member Functions

- GamGam (int nOpt_=0)
 - Class constructor.
- ~GamGam ()
- void ComputeCMenergy ()

Computes \sqrt{s} for the system.

- double ComputeMX (double x_, double outmass_, double *dw_)
 - Computes the ougoing proton remnant mass.
- double ComputeWeight (int nm_=1)

Computes the process' weight for the given point.

- virtual void DumpPoint ()
- void FillKinematics (bool)

Fills the Event object with the particles' kinematics.

- double GetD3 ()
- virtual Event * GetEvent ()

Returns the event content (list of particles with an assigned role)

- virtual std::string GetName ()
- double GetS1 ()
- double GetS2 ()
- double GetT1 ()
- void GetT1extrema (double &t1min_, double &t1max_)
- double GetT2 ()
- void GetT2extrema (double &t2min_, double &t2max_)
- double GetU1 ()
- double GetU2 ()

- double GetV1 ()
- double GetV2 ()
- virtual bool IsKinematicsDefined ()

Is the system's kinematics well defined?

- virtual unsigned int ndim () const
- void PrepareHadronisation (Particle *part_)
- bool SetIncomingParticles (Particle, Particle)

Sets the momentum and PDG id for the incoming particles.

void SetKinematics (Kinematics)

Sets the list of kinematic cuts to apply on the outgoing particles' final state.

bool SetOutgoingParticles (int, int)

Sets the PDG id for the outgoing particles.

virtual void SetPoint (const unsigned int ndim_, double x_[])

Sets the phase space point to compute.

- void StoreEvent (std::ofstream *, double)
- virtual double x (const unsigned int idx_)

Protected Attributes

Event * _ev

Event object containing all the information on the in- and outgoing particles.

- std::string __name
- bool _point_set

Is the phase space point set ?

bool setin

Are the event's incoming particles set ?

bool _setkin

Is the full event's kinematic set ?

bool _setout

Are the event's outgoing particles set ?

7.2.1 Detailed Description

Full class of methods and objects to compute the full analytic matrix element [5] for the $\gamma\gamma \to \ell^+\ell^-$ process according to a set of kinematic constraints provided for the incoming and outgoing particles (the GamGam-Kinematics object). The particle roles in this process are defined as following :

Figure 1: Detailed particle roles in the two-photon

process as defined by the *GamGam* object. The incoming protons/electrons are denoted by a role 1, and 2, as the outgoing protons/protons remnants/ electrons carry the indices 3 and 5. The two outgoing leptons have the roles 6 and 7, while the lepton/antilepton distinction is done randomly (thus, the arrow convention is irrelevant here).

7.2.2 Constructor & Destructor Documentation

7.2.2.1 $GamGam:GamGam (int nOpt_= 0)$

Sets the mandatory parameters used in the methods computing the kinematics and the cross-section for the $\gamma\gamma\to\ell^+\ell^-$ process

Parameters

in	nOpt_	Optimisation???

Todo Figure out how this *nOpt*_ parameter is affecting the final cross-section computation and events generation

- 7.2.2.2 GamGam:: \sim GamGam ()
- 7.2.3 Member Function Documentation
- 7.2.3.1 void GamGam::ComputeCMenergy ()

Computes the centre of mass energy for the system, according to the incoming particles' kinematics

7.2.3.2 double GamGam::ComputeMX (double $x_{,}$ double outmass_, double $*dw_{,}$)

Computes the mass of the outgoing proton remnant if any

Parameters

in	x_	A random number (between 0 and 1)
in	outmass_	The maximal outgoing particles' invariant mass
out	dw_	The size of the integration bin

Returns

The mass of the outgoing proton remnant

7.2.3.3 double GamGam::ComputeWeight (int nm_ = 1) [virtual]

Computes the cross-section for the $\gamma\gamma\to\ell^+\ell^-$ process with the given kinematics

Parameters

in

Returns

 $\frac{d\sigma}{d\mathbf{x}}(\gamma\gamma\to\ell^+\ell^-)$, the differential cross-section for the given point in the phase space.

Todo Find out what this *nm*_ parameter does...

Implements Process.

7.2.3.4 virtual void Process::DumpPoint () [virtual], [inherited]

7.2.3.5 void GamGam::FillKinematics (bool symmetrise_) [virtual]

Fills the private Event object with all the Particle object contained in this event.

Parameters

in	symmetrise_	Do we have to symmetrise the event (randomise the production of the
		positively- and negatively-charged lepton) ?

Reimplemented from Process.

```
7.2.3.6 double GamGam::GetD3 ( ) [inline]
7.2.3.7 virtual Event* Process::GetEvent ( ) [inline], [virtual], [inherited]
```

Returns the complete list of Particle with their role in the process for the point considered in the phase space as an Event object.

Returns

The Event object containing all the generated Particle objects

```
7.2.3.8 virtual std::string Process::GetName ( ) [inline], [virtual], [inherited]
7.2.3.9 double GamGam::GetS1 ( ) [inline]
7.2.3.10 double GamGam::GetS2 ( ) [inline]
7.2.3.11 double GamGam::GetT1 ( ) [inline]
```

Returns the value for the first photon virtuality

Returns

 t_1 , the first photon virtuality

7.2.3.12 void GamGam::GetT1extrema (double & t1min_, double & t1max_) [inline]

Returns the two limit values for the first photon virtuality

Parameters

out	t1min_	The minimal value for t_1
out	t1max_	The maximal value for t_1

7.2.3.13 double GamGam::GetT2 () [inline]

Returns the value for the second photon virtuality

Returns

 t_2 , the second photon virtuality

7.2.3.14 void GamGam::GetT2extrema (double & t2min_, double & t2max_) [inline]

Returns the two limit values for the second photon virtuality

Parameters

out	t2min_	The minimal value for t_2
out	t2max_	The maximal value for t_2

7.2.3.15 double GamGam::GetU1 () [inline]

7.2.3.16 double GamGam::GetU2 () [inline]

```
7.2.3.17 double GamGam::GetV1 ( ) [inline]
7.2.3.18 double GamGam::GetV2 ( ) [inline]
```

7.2.3.19 virtual bool Process::IsKinematicsDefined () [inline], [virtual], [inherited]

Is the system's kinematics well defined and compatible with the process? This check is mandatory to perform the (_ndim)-dimensional point's cross-section computation.

Returns

A boolean stating if the input kinematics and the final states are well defined

```
7.2.3.20 virtual unsigned int Process::ndim ( ) const [inline], [virtual], [inherited]
```

```
7.2.3.21 void GamGam::PrepareHadronisation ( Particle * part_ )
```

Sets all the kinematic variables for the outgoing proton remnants in order to be able to hadronise them afterwards

Parameters

in	part_	Particle to "prepare" for the hadronisation to be performed
----	-------	---

```
7.2.3.22 bool GamGam::SetIncomingParticles ( Particle ip1_, Particle ip2_ ) [virtual]
```

Specifies the incoming particles' kinematics as well as their properties using two Particle objects.

Parameters

in	ip1	Information on the first incoming particle
in	ip2_	Information on the second incoming particle

Returns

A boolean stating whether or not the incoming kinematics is properly set for this event

Reimplemented from Process.

```
7.2.3.23 void GamGam::SetKinematics ( Kinematics cuts_ ) [virtual]
```

Parameters

in	cuts_	The Cuts object containing the kinematic parameters

Reimplemented from Process.

```
7.2.3.24 bool GamGam::SetOutgoingParticles (int part_, int pdgld_) [virtual]
```

Parameters

in	part_	Role of the particle in the process
in	pdgld_	Particle ID according to the PDG convention

Returns

A boolean stating whether or not the outgoing kinematics is properly set for this event

Reimplemented from Process.

```
7.2.3.25 virtual void Process::SetPoint ( const unsigned int ndim_, double x_[] ) [virtual], [inherited]
```

Sets the phase space point to compute the weight associated to it.

Parameters

in	ndim_	The number of dimensions of the point in the phase space
in	x_[]	The (ndim_)-dimensional point in the phase space on which the kinematics
		and the cross-section are computed

- 7.2.3.26 void GamGam::StoreEvent (std::ofstream * , double)
- 7.2.3.27 virtual double Process::x (const unsigned int idx_) [inline], [virtual], [inherited]
- 7.2.4 Field Documentation
- 7.2.4.1 **Event*** Process::_ev [protected], [inherited]
- 7.2.4.2 std::string Process::_name [protected], [inherited]
- 7.2.4.3 bool Process::_point_set [protected], [inherited]
- 7.2.4.4 bool Process::_setin [protected], [inherited]
- 7.2.4.5 bool Process::_setkin [protected], [inherited]
- 7.2.4.6 bool Process::_setout [protected], [inherited]
- 7.3 Hadroniser Class Reference

Inheritance diagram for Hadroniser:

Collaboration diagram for Hadroniser:

Public Member Functions

Hadroniser ()

```
∼Hadroniser ()
   std::vector< Particle > GetHadrons ()
   std::string GetName ()
   virtual bool Hadronise (Particle *part_)
         Main caller to hadronise a particle.
   virtual bool Hadronise (Event *ev_)
         Hadronises a full event.
Protected Attributes
   std::vector< Particle > * _hadrons
         List of hadrons produced by this hadronisation process.
   std::string __name
         Name of the hadroniser.
7.3.1 Detailed Description
Class template to define any hadroniser as a general object with defined methods
Author
     Laurent Forthomme laurent.forthomme@uclouvain.be
Date
     January 2014
7.3.2 Constructor & Destructor Documentation
7.3.2.1 Hadroniser::Hadroniser ( )
7.3.2.2 Hadroniser::~Hadroniser()
7.3.3 Member Function Documentation
7.3.3.1 std::vector<Particle> Hadroniser::GetHadrons ( ) [inline]
Gets the full list of hadrons (as Particle objects) produced by the hadronisation
Returns
     A vector of Particle containing all the hadrons produced
7.3.3.2 std::string Hadroniser::GetName (
                                          ) [inline]
7.3.3.3 virtual bool Hadroniser::Hadronise ( Particle * part_ ) [inline], [virtual]
Reimplemented in Pythia6Hadroniser, and Jetset7Hadroniser.
7.3.3.4 virtual bool Hadroniser::Hadronise ( Event * ev_ ) [inline], [virtual]
Launches the hadroniser on the full event information
```

Parameters

in.out	ev	The event to hadronise
111,000	_ ·-	The event to hadronise

Returns

A boolean stating whether or not the hadronisation occured successfully

Reimplemented in Pythia6Hadroniser, Herwig6Hadroniser, Jetset7Hadroniser, and Pythia8Hadroniser.

Here is the call graph for this function:

7.3.4 Field Documentation

- 7.3.4.1 std::vector<**Particle**>* Hadroniser::_hadrons [protected]
- 7.3.4.2 std::string Hadroniser::_name [protected]

7.4 HEPEUP Class Reference

User-process event information.

Collaboration diagram for HEPEUP:

Public Member Functions

- HEPEUP (const int nup_=500)
- ~HEPEUP ()

Data Fields

double aqcdup

QCD coupling $\alpha_{\rm QCD}$ used for this event.

double aqedup

QED coupling $\alpha_{\rm QED}$ used for this event.

■ int * icolup [2]

Index for the colour flow line passing through the colour (resp. anti-colour) of the particle.

• int idprup

ID of the process in this event.

■ int * idup

Particle ID according to the Particle Data Group convention.

■ int * istup

Status code.

■ int * mothup [2]

Index of first and last mother.

int nup

Number of particle entries in this event.

double * pup [5]

Lab-frame momentum of the particle, in GeV.

double scalup

Scale of the event in GeV, as used for the calculation of PDFs.

double * spinup

Cosine of the angle between the spin-vector of the particle and the 3-momentum of the decaying particle, in the lab frame.

■ double * vtimup

Invariant lifetime c au in mm.

double xwgtup

Event weight.

Static Public Attributes

■ static const int maxnup = 500

Maximum number of particle entries.

- 7.4.1 Constructor & Destructor Documentation
- 7.4.1.1 HEPEUP::HEPEUP (const int nup_ = 500)
- 7.4.1.2 HEPEUP::~HEPEUP ()
- 7.4.2 Field Documentation
- 7.4.2.1 double HEPEUP::aqcdup
- 7.4.2.2 double HEPEUP::aqedup
- 7.4.2.3 int* HEPEUP::icolup[2]
- 7.4.2.4 int HEPEUP::idprup
- 7.4.2.5 int* HEPEUP::idup
- 7.4.2.6 int* HEPEUP::istup

- 7.4.2.7 const int HEPEUP::maxnup = 500 [static]
- 7.4.2.8 int* HEPEUP::mothup[2]
- 7.4.2.9 int HEPEUP::nup
- 7.4.2.10 double* HEPEUP::pup[5]
- 7.4.2.11 double HEPEUP::scalup
- 7.4.2.12 double* HEPEUP::spinup
- 7.4.2.13 double* HEPEUP::vtimup
- 7.4.2.14 double HEPEUP::xwgtup

7.5 HEPRUP Class Reference

Generic user-process interface for events generator.

Collaboration diagram for HEPRUP:

Public Member Functions

- HEPRUP (const int nprup_=1)
- ~HEPRUP ()

Data Fields

• double ebmup [2]

Energy in GeV of the beam 1 and 2 particles.

• int idbmup [2]

ID of the beam 1 and 2 particles according to the Particle Data Group convention.

- int idwtup
- int * lprup
- int nprup
- int pdfgup [2]

Author group for beam 1 and 2, according to PDFLIB.

- int pdfsup [2]
 - PDF set ID for beam 1 and 2, according to PDFLIB.
- double * xerrup
- double * xmaxup
- double * xsecup

7.5.1 Detailed Description

User-process run information

- 7.5.2 Constructor & Destructor Documentation
- 7.5.2.1 HEPRUP::HEPRUP (const int nprup_ = 1)
- 7.5.2.2 HEPRUP::~HEPRUP ()
- 7.5.3 Field Documentation
- 7.5.3.1 double HEPRUP::ebmup[2]
- 7.5.3.2 int HEPRUP::idbmup[2]
- 7.5.3.3 int HEPRUP::idwtup
- 7.5.3.4 int* HEPRUP::Iprup
- 7.5.3.5 int HEPRUP::nprup
- 7.5.3.6 int HEPRUP::pdfgup[2]
- 7.5.3.7 int HEPRUP::pdfsup[2]
- 7.5.3.8 double* HEPRUP::xerrup
- 7.5.3.9 double* HEPRUP::xmaxup
- 7.5.3.10 double* HEPRUP::xsecup

7.6 Herwig6Hadroniser Class Reference

Herwig6 hadronisation algorithm.

Inheritance diagram for Herwig6Hadroniser:

Collaboration diagram for Herwig6Hadroniser:

Public Member Functions

- Herwig6Hadroniser ()
- ~Herwig6Hadroniser ()
- std::vector< Particle > GetHadrons ()
- std::string GetName ()
- virtual bool Hadronise (Particle *part_)

Main caller to hadronise a particle.

bool Hadronise (Event *ev_)

Hadronises a full event.

Protected Attributes

std::vector< Particle > * _hadrons

List of hadrons produced by this hadronisation process.

std::string __name

Name of the hadroniser.

- 7.6.1 Constructor & Destructor Documentation
- 7.6.1.1 Herwig6Hadroniser::Herwig6Hadroniser ()
- 7.6.1.2 Herwig6Hadroniser::~Herwig6Hadroniser ()
- 7.6.2 Member Function Documentation
- 7.6.2.1 std::vector<Particle> Hadroniser::GetHadrons () [inline], [inherited]

Gets the full list of hadrons (as Particle objects) produced by the hadronisation

Returns

A vector of Particle containing all the hadrons produced

```
7.6.2.2 std::string Hadroniser::GetName ( ) [inline], [inherited]
```

7.6.2.3 virtual bool Hadroniser::Hadronise (Particle * part_) [inline], [virtual], [inherited]

Reimplemented in Pythia6Hadroniser, and Jetset7Hadroniser.

```
7.6.2.4 bool Herwig6Hadroniser::Hadronise ( Event * ev_ ) [virtual]
```

Launches the hadroniser on the full event information

Parameters

in,out	ev_	The event to hadronise

Returns

A boolean stating whether or not the hadronisation occured successfully

Reimplemented from Hadroniser.

7.6.3 Field Documentation

- 7.6.3.1 std::vector<**Particle**>* Hadroniser::_hadrons [protected], [inherited]
- 7.6.3.2 std::string Hadroniser::_name [protected], [inherited]
- 7.7 Jetset7Hadroniser Class Reference

Jetset7 hadronisation algorithm.

Inheritance diagram for Jetset7Hadroniser:

Collaboration diagram for Jetset7Hadroniser:

Public Member Functions

- Jetset7Hadroniser ()
- ~Jetset7Hadroniser ()
- std::vector< Particle > GetHadrons ()
- std::string GetName ()
- bool Hadronise (Particle *part_)

Main caller to hadronise a particle.

bool Hadronise (Event *ev_)

Hadronises a full event.

Protected Attributes

std::vector< Particle > * _hadrons

List of hadrons produced by this hadronisation process.

std::string __name

Name of the hadroniser.

- 7.7.1 Constructor & Destructor Documentation
- 7.7.1.1 Jetset7Hadroniser::Jetset7Hadroniser ()
- 7.7.1.2 Jetset7Hadroniser::~Jetset7Hadroniser ()
- 7.7.2 Member Function Documentation
- 7.7.2.1 std::vector<Particle> Hadroniser::GetHadrons () [inline], [inherited]

Gets the full list of hadrons (as Particle objects) produced by the hadronisation

Returns

A vector of Particle containing all the hadrons produced

```
7.7.2.2 std::string Hadroniser::GetName ( ) [inline], [inherited]
```

7.7.2.3 bool Jetset7Hadroniser::Hadronise (Particle * part_) [virtual]

Reimplemented from Hadroniser.

```
7.7.2.4 bool Jetset7Hadroniser::Hadronise ( Event * ev_ ) [virtual]
```

Launches the hadroniser on the full event information

Parameters

in,out	ev_	The event to hadronise

Returns

A boolean stating whether or not the hadronisation occured successfully

Reimplemented from Hadroniser.

7.7.3 Field Documentation

```
7.7.3.1 std::vector<Particle>* Hadroniser::_hadrons [protected], [inherited]
```

7.7.3.2 std::string Hadroniser::_name [protected], [inherited]

7.8 Kinematics Class Reference

List of kinematic cuts to apply on the central and outgoing phase space.

Collaboration diagram for Kinematics:

Public Member Functions

- Kinematics ()
- ∼Kinematics ()

void Dump ()

Dumps all the parameters used in this process cross-section computation / events generation.

Data Fields

double emax

Maximal energy of the central two-photons system.

double emin

Minimal energy of the central two-photons system.

int kinematics

Type of kinematics to consider for the phase space.

int mode

Sets of cuts to apply on the final phase space.

double mxmax

Maximal mass (in GeV/c^2) of the outgoing proton remnant(s)

double mxmin

Minimal mass (in GeV/c^2) of the outgoing proton remnant(s)

double ptmax

Maximal transverse momentum of the single outgoing leptons.

double ptmin

Minimal transverse momentum of the single outgoing leptons.

double q2max

The maximal value of Q^2 .

double q2min

The minimal value of Q^2 .

double thetamax

Maximal polar (θ_{max}) angle of the outgoing leptons, expressed in degrees.

double thetamin

Minimal polar ($\theta_{\rm min})$ angle of the outgoing leptons, expressed in degrees.

double wmax

The maximal s on which the cross section is integrated. If negative, the maximal energy available to the system (hence, $s = (\sqrt{s})^2$) is provided.

double wmin

The minimal s on which the cross section is integrated.

- 7.8.1 Constructor & Destructor Documentation
- 7.8.1.1 Kinematics::Kinematics ()
- 7.8.1.2 Kinematics::~Kinematics (
- 7.8.2 Member Function Documentation
- 7.8.2.1 void Kinematics::Dump ()
- 7.8.3 Field Documentation
- 7.8.3.1 double Kinematics::emax
- 7.8.3.2 double Kinematics::emin
- 7.8.3.3 int Kinematics::kinematics

Type of kinematics to consider for the process. Can either be :

- 0 for the electron-electron elastic case
- 1 for the proton-proton elastic case
- 2 for the proton-proton single-dissociative (or inelastic) case
- 3 for the proton-proton double-dissociative case
- 7.8.3.4 int Kinematics::mode
- 7.8.3.5 double Kinematics::mxmax
- 7.8.3.6 double Kinematics::mxmin
- 7.8.3.7 double Kinematics::ptmax
- 7.8.3.8 double Kinematics::ptmin
- 7.8.3.9 double Kinematics::q2max
- 7.8.3.10 double Kinematics::q2min
- 7.8.3.11 double Kinematics::thetamax
- 7.8.3.12 double Kinematics::thetamin
- 7.8.3.13 double Kinematics::wmax
- 7.8.3.14 double Kinematics::wmin

7.9 MCGen Class Reference

Core of the Monte-Carlo generator.

Collaboration diagram for MCGen:

Public Member Functions

MCGen ()

Class constructor.

MCGen (Parameters *ip_)

Class constructor.

- ~MCGen ()
- void AnalyzePhaseSpace (const std::string)

Returns the set of parameters used to setup the phase space to integrate.

void ComputeXsection (double *xsec_, double *err_)

Compute the cross-section for the given process.

- Event * GenerateOneEvent ()
- void LaunchGeneration ()
- void PrintHeader ()
- void Test ()

Data Fields

Event * last_event

Last event generated in this run.

Parameters * parameters

7.9.1 Detailed Description

This object represents the core of this Monte Carlo generator, with its allowance to generate the events (using the embedded Vegas object) and to study the phase space in term of the variation of resulting cross section while scanning the various parameters (point x in the DIM-dimensional phase space).

The phase space is constrained using the InputParameters object given as an argument to the constructor, and the differential cross-sections for each value of the array \mathbf{x} are computed in the f-function defined outside (but populated inside) this object.

This f-function embeds a GamGam object which defines all the methods to obtain this differential cross-section as well as the in- and outgoing kinematics associated to each particle.

Author

Laurent Forthomme laurent.forthomme@uclouvain.be

Date

February 2013

7.9.2 Constructor & Destructor Documentation

```
7.9.2.1 MCGen::MCGen ( )
```

Sets the number of dimensions on which to perform the integration, according to the set of input parameters given as an argument and propagated to the whole object

```
7.9.2.2 MCGen::MCGen ( Parameters * ip_ )
```

Sets the number of dimensions on which to perform the integration, according to the set of input parameters given as an argument and propagated to the whole object

Parameters

in	ip_	List of input parameters defining the phase space on which to perform the
		integration

```
7.9.2.3 MCGen::~MCGen ( )
```

7.9.3 Member Function Documentation

```
7.9.3.1 void MCGen::AnalyzePhaseSpace ( const std::string )
```

Returns

The Parameter object embedded in this class

```
7.9.3.2 void MCGen::ComputeXsection ( double * xsec_, double * err_ )
```

Computes the cross-section for the run defined by this object. This returns the cross-section as well as the absolute error computed along.

Parameters

out	xsec_	The computed cross-section, in pb
out	err_	The absolute integration error on the computed cross-section, in pb

7.9.3.3 **Event*** MCGen::GenerateOneEvent ()

Generates one single event given the phase space computed by Vegas in the integration step

Returns

A pointer to the **Event** object generated in this run

Launches the full events generation

Deprecated This method is to be suppressed since the events generation can now be launched one event at a time using the *GenerateOneEvent* method

```
7.9.3.5 void MCGen::PrintHeader ( )
```

7.9.3.6 void MCGen::Test ()

7.9.4 Field Documentation

7.9.4.1 **Event*** MCGen::last_event

7.9.4.2 **Parameters*** MCGen::parameters

7.10 Parameters Class Reference

List of parameters used to start and run the simulation job.

Collaboration diagram for Parameters:

Public Member Functions

- Parameters ()
- \sim Parameters ()
- void Dump ()

Dumps the input parameters in the console.

bool ReadConfigFile (std::string inFile_)

Reads content from config file to load the variables.

void SetEtaRange (double etamin_, double etamax_)

Sets the pseudo-rapidity range for the produced leptons.

bool StoreConfigFile (std::string outFile_)

Stores the full run configuration to an external config file.

Data Fields

bool debug

Do we need control plots all along the process?

std::ofstream * file

The file in which to store the events generation's output.

bool generation

Are we generating events ? (true) or are we only computing the cross-section ? (false)

• int gpdf

PDFLIB group to use.

Hadroniser * hadroniser

 $Hadronisation\ algorithm\ to\ use\ for\ the\ proton(s)\ remnants\ fragmentation.$

double in1p

First incoming particle's momentum (in GeV/c)

double in2p

Second incoming particle's momentum (in GeV/c)

int itvg

Maximal number of iterations to perform by VEGAS.

Event * last_event

The pointer to the last event produced in this run.

double maxenergy

Maximal energy of the outgoing leptons.

int maxgen

Maximal number of events to generate in this run.

double maxmx

Maximal M_X of the outgoing proton remnants.

double maxpt

Maximal p_T of the outgoing leptons.

■ double maxq2

Maximal value of Q^2 , the internal photons lines' virtuality.

double maxtheta

Maximal polar angle θ of the outgoing leptons.

int mcut

Set of cuts to apply on the outgoing leptons.

double minenergy

Minimal energy of the outgoing leptons.

double minmx

Minimal M_X of the outgoing proton remnants.

double minpt

Minimal p_T of the outgoing leptons.

double minq2

Minimal value of Q^2 , the internal photons lines' virtuality.

double mintheta

Minimal polar angle θ of the outgoing leptons.

- int ncvg
- int ngen

Number of events already generated in this run.

int npoints

Number of points to "shoot" in each integration bin by the algorithm.

• int ntreat

Maximal number of TREAT calls.

• int p1mod

First particle's mode.

int p2mod

Second particle's mode.

int pair

PDG id of the outgoing leptons.

- Process * process
- int qpdf

Number of quarks.

int spdf

PDFLIB set to use.

bool store

Are the events generated in this run to be stored in the output file?

bool symmetrise

Control plots objects.

7.10.1 Detailed Description

Note

The default parameters are derived from GMUINI in LPAIR

7.10.2 Constructor & Destructor Documentation

```
7.10.2.1 Parameters::Parameters (
```

7.10.2.2 Parameters::~Parameters ()

7.10.3 Member Function Documentation

7.10.3.1 void Parameters::Dump (

7.10.3.2 bool Parameters::ReadConfigFile (std::string inFile_)

Reads the list of parameters to be used in this cross-section computation/events generation from an external input card.

Parameters

in	inFile_	Name of the configuration file to load
----	---------	--

Returns

A boolean stating whether this input configuration file is correct or not

7.10.3.3 void Parameters::SetEtaRange (double etamin_, double etamax_)

Defines the range to cover in pseudo-rapidity for the outgoing leptons produced in this process. This method converts this range into a range in θ , the polar angle.

Parameters

in	etamin_	The minimal value of η for the outgoing leptons
in	etamax_	The maximal value of η for the outgoing leptons

7.10.3.4 bool Parameters::StoreConfigFile (std::string outFile_)

Parameters

in	outFile_	Name of the configuration file to create

Returns

A boolean stating whether this output configuration file is correctly written or not

7.10.4 Field Documentation

7.10.4.1 bool Parameters::debug

Enables or disables the production of control plots for several kinematic quantities in this process

7.10.4.2 std::ofstream* Parameters::file

7.10.4.3 bool Parameters::generation

7.10.4.4 int Parameters::gpdf

- 7.10.4.5 **Hadroniser*** Parameters::hadroniser
- 7.10.4.6 double Parameters::in1p
- 7.10.4.7 double Parameters::in2p
- 7.10.4.8 int Parameters::itvg
- 7.10.4.9 **Event*** Parameters::last_event
- 7.10.4.10 double Parameters::maxenergy
- 7.10.4.11 int Parameters::maxgen
- 7.10.4.12 double Parameters::maxmx

Maximal mass of the outgoing proton remnants, M_X , in GeV/c 2 .

7.10.4.13 double Parameters::maxpt

Maximal transverse momentum cut to apply on the outgoing lepton(s)

- 7.10.4.14 double Parameters::maxq2
- 7.10.4.15 double Parameters::maxtheta
- 7.10.4.16 int Parameters::mcut

Set of cuts to apply on the outgoing leptons in order to restrain the available kinematic phase space :

- 0 No cuts at all (for the total cross section)
- 1 Vermaserens' hypothetical detector cuts : for both leptons,
 - $-rac{|p_z|}{|\mathbf{p}|} \leq$ 0.75 and $p_T \geq 1$ GeV/c, or
 - 0.75 $< rac{|p_z|}{|\mathbf{p}|} \le$ 0.95 and $p_z > 1$ GeV/c,
- 2 Cuts on both the outgoing leptons, according to the provided cuts parameters
- 3 Cuts on at least one outgoing lepton, according to the provided cut parameters
- 7.10.4.17 double Parameters::minenergy
- 7.10.4.18 double Parameters::minmx

Minimal mass of the outgoing proton remnants, M_X , in GeV/c 2 .

7.10.4.19 double Parameters::minpt

Minimal transverse momentum cut to apply on the outgoing lepton(s)

- 7.10.4.20 double Parameters::minq2
- 7.10.4.21 double Parameters::mintheta
- 7.10.4.22 int Parameters::ncvg
- 7.10.4.23 int Parameters::ngen
- 7.10.4.24 int Parameters::npoints
- 7.10.4.25 int Parameters::ntreat

Note

Is it correctly implemented?

7.10.4.26 int Parameters::p1mod

The first incoming particle type and kind of interaction :

- 1 electron.
- 2 proton elastic,
- 3 proton inelastic without parton treatment,
- 4 proton inelastic in parton model

Note

Was named PMOD in ILPAIR

7.10.4.27 int Parameters::p2mod

Note

Was named EMOD in ILPAIR

7.10.4.28 int Parameters::pair

The particle code of produced leptons, as defined by the PDG convention :

- 11 for e^+e^- pairs
- 13 for $\mu^+\mu^-$ pairs
- 15 for $\tau^+\tau^-$ pairs
- 7.10.4.29 **Process*** Parameters::process
- 7.10.4.30 int Parameters::qpdf
- 7.10.4.31 int Parameters::spdf
- 7.10.4.32 bool Parameters::store
- 7.10.4.33 bool Parameters::symmetrise

List of Gnuplot objects which can be used to produce control plots all along the cross-section determination and events generation process

Note

Maximum number of these can be raised in the utils.h file, but pay attention to the memory load since these Gnuplot objects are still under development!

7.11 Particle Class Reference

Kinematics of one particle.

Collaboration diagram for Particle:

Public Member Functions

- Particle ()
- Particle (int role_, int pdgld_=0)

Object constructor (providing the role of the particle in the process, and its Particle Data Group identifier)

- ∼Particle ()
- bool AddDaughter (Particle *part_)

Specify a decay product for this particle.

void Dump ()

Dumps all the information on this particle.

void E (double E_)

Sets the particle's energy.

double E ()

Gets the particle's energy.

double Eta ()

Pseudo-rapidity.

std::vector< int > GetDaughters ()

Gets a vector containing all the daughters unique identifiers from this particle.

- std::string GetLHEline (bool revert_=false)
- int GetMother ()

Gets the unique identifier to the mother particle from which this particle arises.

bool Hadronise (std::string algo_)

Hadronises the particle using Pythia.

double M ()

Gets the particle's mass.

bool M (double m_)

Set the particle's mass in GeV/c 2 .

double M2 ()

Gets the particle's squared mass.

unsigned int NumDaughters ()

Gets the number of daughter particles arising from this one.

bool operator< (const Particle &rhs)

Comparison operator to enable the sorting of particles in an event according to their unique identifier.

Particle & operator= (const Particle &)

```
Copies all the relevant quantities from one Particle object to another.
   bool P (double px_, double py_, double pz_)
         Sets the 3-momentum associated to the particle.
   bool P (double px_, double py_, double pz_, double E_)
         Sets the 4-momentum associated to the particle.
   bool P (double p_[3], double E_)
         Sets the 4-momentum associated to the particle.

    bool P (double p_[4])

         Sets the 4-momentum associated to the particle.
   double P ()
         Norm of the 3-momentum, in GeV/c.

    double * P3 ()

         Returns the particle's 3-momentum.

    double * P4 ()

         Returns the particle's 4-momentum.
   void PDF2PDG ()
     double Phi ()
     bool Primary ()
         Is this particle a primary particle?
   double Pt ()
         Transverse momentum, in GeV/c.
   double Rapidity ()
         Rapidity.
   void SetMother (Particle *part_)
         Sets the mother particle (from which this particle arises)
   bool Valid ()
         Is this particle a valid particle which can be used for kinematic computations?
Data Fields
   float charge
          The particle's electric charge (given as a float number, for the quarks and bound states)
   int id
         Unique identifier of the particle (in a Event object context)
   std::string name
         Particle's name in a human-readable format.
   int pdgld
         Particle Data Group integer identifier.
   double px
         Momentum along the x-axis in GeV/c.
   double py
         Momentum along the y-axis in GeV/c.
   double pz
         Momentum along the z-axis in GeV/c.
   int role
         Role in the considered process.
   int status
         Particle status.
```

7.11.1 Detailed Description

Kinematic information for one particle

7.11.2 Constructor & Destructor Documentation

```
7.11.2.1 Particle::Particle ( )
```

7.11.2.2 Particle::Particle (int role_, int pdgld_ = 0)

7.11.2.3 Particle::~Particle ()

7.11.3 Member Function Documentation

7.11.3.1 bool Particle::AddDaughter (Particle * part_)

Adds a "daughter" to this particle (one of its decay product(s))

Parameters

in	part_	The Particle object in which this particle will desintegrate or convert
----	-------	---

Returns

A boolean stating if the particle has been added to the daughters list or if it was already present before

7.11.3.2 void Particle::Dump ()

Dumps into the standard output stream all the available information on this particle

7.11.3.3 void Particle::E (double E_) [inline]

Parameters

in E_ Energy, in GeV	
----------------------	--

7.11.3.4 double Particle::E() [inline]

Here is the call graph for this function:

7.11.3.5 double Particle::Eta () [inline]

Computes and returns η , the pseudo-rapidity of the particle

Returns

The pseudo-rapidity of the particle

Here is the call graph for this function:

7.11.3.6 std::vector<int> Particle::GetDaughters ()

Returns

An integer vector containing all the daughters' unique identifier in the event

7.11.3.7 std::string Particle::GetLHEline (bool revert_ = false)

Returns a string containing all the particle's kinematics as expressed in the Les Houches format

Parameters

in	revert_	Is the event symmetric ? If set to true, the third component of the mo-
		mentum is reverted.

Returns

The LHE line associated to the particle, and containing the particle's history (mother/daughters), its kinematics, and its status

7.11.3.8 int Particle::GetMother () [inline]

Returns

An integer representing the unique identifier to the mother of this particle in the event

7.11.3.9 bool Particle::Hadronise (std::string algo_)

Hadronises the particle with Pythia, and builds the shower (list of Particle objects) embedded in this object Parameters

1fi algo_ Algorithm in use to hadronise the particle	in	algo_	Algorithm in use to hadronise the particle
--	----	-------	--

7.11.3.10 double Particle::M () [inline]

Gets the particle's mass in GeV/c 2 .

Returns

The particle's mass

- 7.11.3.11 bool Particle::M (double m_)
- 7.11.3.12 double Particle::M2 () [inline]
- 7.11.3.13 unsigned int Particle::NumDaughters () [inline]
- 7.11.3.14 bool Particle::operator< (const **Particle** & rhs) [inline]
- 7.11.3.15 Particle& Particle::operator= (const Particle &)
- 7.11.3.16 bool Particle::P (double px_, double py_, double pz_) [inline]

Parameters

in	px_	Momentum along the x -axis, in GeV/c
in	py_	Momentum along the y -axis, in GeV/c
in	pz_	Momentum along the z -axis, in GeV/c

Returns

A boolean stating the validity of this particle (according to its 4-momentum norm)

Here is the call graph for this function:

7.11.3.17 bool Particle::P (double px_, double py_, double pz_, double E_) [inline]

Sets the 4-momentum associated to the particle, and computes its (invariant) mass.

Parameters

in	px_	Momentum along the x -axis, in GeV/c
in	py_	Momentum along the y -axis, in GeV/c
in	pz_	Momentum along the z -axis, in GeV/c
in	E_	Energy, in GeV

Returns

A boolean stating the validity of the particle's kinematics

Here is the call graph for this function:

7.11.3.18 bool Particle::P (double $p_[3]$, double $E_$)

Parameters

in	p_	3-momentum
in	E_	Energy, in GeV

Returns

A boolean stating the validity of the particle's kinematics

7.11.3.19 bool Particle::P (double p_[4]) [inline]

Parameters

in	<i>p_</i>	4-momentum

Returns

A boolean stating the validity of the particle's kinematics

Here is the call graph for this function:

7.11.3.20 double Particle::P() [inline]

Returns

The particle's 3-momentum norm as a double precision float

Here is the call graph for this function:

Returns

The particle's 3-momentum as a 3 components double array

Builds and returns the particle's 4-momentum as an array ordered as $(\mathbf{p},E)=(p_x,p_y,p_z,E)$

Returns

The particle's 4-momentum as a 4 components double array

Here is the call graph for this function:

7.11.3.23 void Particle::PDF2PDG ()

7.11.3.24 double Particle::Phi () [inline]

Here is the call graph for this function:


```
7.11.3.25 bool Particle::Primary ( ) [inline]
```

7.11.3.26 double Particle::Pt () [inline]

7.11.3.27 double Particle::Rapidity () [inline]

Computes and returns y, the rapidity of the particle

Returns

The rapidity of the particle

Here is the call graph for this function:

7.11.3.28 void Particle::SetMother (Particle * part_)

Sets the "mother" of this particle (particle from which this particle is issued)

Parameters

in	part_	A Particle object containing all the information on the mother particle

- 7.11.3.29 bool Particle::Valid ()
- 7.11.4 Field Documentation
- 7.11.4.1 float Particle::charge
- 7.11.4.2 int Particle::id
- 7.11.4.3 std::string Particle::name
- 7.11.4.4 int Particle::pdgld

Unique identifier for a particle type. From [1]: The Monte Carlo particle numbering scheme [...] is intended to facilitate interfacing between event generators, detector simulators, and analysis packages used in particle physics.

- 7.11.4.5 double Particle::px
- 7.11.4.6 double Particle::py
- 7.11.4.7 double Particle::pz
- 7.11.4.8 int Particle::role
- 7.11.4.9 int Particle::status

Codes 1-10 correspond to currently existing partons/particles, and larger codes contain partons/particles which no longer exist, or other kinds of event information

7.12 Process Class Reference

Inheritance diagram for Process:

Collaboration diagram for Process:

Public Member Functions

- Process ()
- ~Process ()
- virtual double ComputeWeight (int nm_=1)=0

Returns the weight for this point in the phase-space.

- virtual void DumpPoint ()
- virtual void FillKinematics (bool symmetrise_=false)

Fills the Event object with the particles' kinematics.

virtual Event * GetEvent ()

Returns the event content (list of particles with an assigned role)

virtual std::string GetName ()

```
virtual bool IsKinematicsDefined ()
         Is the system's kinematics well defined?
   virtual unsigned int ndim () const

    virtual bool SetIncomingParticles (Particle ip1_, Particle ip2_)

         Sets the momentum and PDG id for the incoming particles.
   virtual void SetKinematics (Kinematics cuts_)
         Sets the list of kinematic cuts to apply on the outgoing particles' final state.
   virtual bool SetOutgoingParticles (int part_, int pdgld_)
         Sets the PDG id for the outgoing particles.

    virtual void SetPoint (const unsigned int ndim_, double x_[])

         Sets the phase space point to compute.

    virtual double x (const unsigned int idx_)

Protected Attributes
   Kinematics _cuts
         Set of cuts to apply on the final phase space.
   Event * _ev
         Event object containing all the information on the in- and outgoing particles.
   std::string __name
   unsigned int _ndim
   bool _point_set
         Is the phase space point set ?
   bool setin
         Are the event's incoming particles set ?
   bool _setkin
         Is the full event's kinematic set?
   bool setout
         Are the event's outgoing particles set ?

    double * __x

7.12.1 Detailed Description
Class template to define any process to compute using this MC integrator/events generator
Author
     Laurent Forthomme laurent.forthomme@uclouvain.be
Date
     January 2014
7.12.2 Constructor & Destructor Documentation
7.12.2.1 Process::Process (
7.12.2.2 Process::∼Process (
7.12.3 Member Function Documentation
7.12.3.1 virtual double Process::ComputeWeight ( int nm_ = 1 ) [pure virtual]
```

Implemented in GamGam.

```
7.12.3.2 virtual void Process::DumpPoint ( ) [virtual]7.12.3.3 virtual void Process::FillKinematics ( bool symmetrise_ = false ) [inline], [virtual]
```

Fills the private Event object with all the Particle object contained in this event.

Parameters

in	symmetrise_	Do we have to symmetrise the event (randomise the production of the
		positively- and negatively-charged lepton)?

Reimplemented in GamGam.

Returns the complete list of Particle with their role in the process for the point considered in the phase space as an Event object.

Returns

The Event object containing all the generated Particle objects

```
7.12.3.5 virtual std::string Process::GetName ( ) [inline], [virtual]
```

Is the system's kinematics well defined and compatible with the process? This check is mandatory to perform the (_ndim)-dimensional point's cross-section computation.

Returns

A boolean stating if the input kinematics and the final states are well defined

```
7.12.3.7 virtual unsigned int Process::ndim ( ) const [inline], [virtual]
```

Specifies the incoming particles' kinematics as well as their properties using two Particle objects.

Parameters

in	ip1_	Information on the first incoming particle
in	ip2_	Information on the second incoming particle

Returns

A boolean stating whether or not the incoming kinematics is properly set for this event

Reimplemented in GamGam.

Here is the call graph for this function:

7.12.3.9 virtual void Process::SetKinematics (Kinematics cuts_) [inline], [virtual]

Parameters

in	cuts	The Cuts object containing the kinematic parameters

Reimplemented in GamGam.

7.12.3.10 virtual bool Process::SetOutgoingParticles (int part_, int pdgld_) [inline], [virtual]

Parameters

in	part_	Role of the particle in the process
in	pdgld_	Particle ID according to the PDG convention

Returns

A boolean stating whether or not the outgoing kinematics is properly set for this event

Reimplemented in GamGam.

Here is the call graph for this function:

7.12.3.11 virtual void Process::SetPoint (const unsigned int ndim_, double $x_[]$) [virtual]

Sets the phase space point to compute the weight associated to it.

Parameters

in	ndim_	The number of dimensions of the point in the phase space
in	x_[]	The (ndim_)-dimensional point in the phase space on which the kinematics
		and the cross-section are computed

- 7.12.3.12 virtual double Process::x (const unsigned int idx_) [inline], [virtual]
- 7.12.4 Field Documentation
- 7.12.4.1 **Kinematics** Process::_cuts [protected]
- 7.12.4.2 **Event*** Process::_ev [protected]
- 7.12.4.3 std::string Process::_name [protected]
- 7.12.4.4 unsigned int Process::_ndim [protected]
- 7.12.4.5 bool Process::_point_set [protected]
- 7.12.4.6 bool Process::_setin [protected]
- 7.12.4.7 bool Process::_setkin [protected]
- 7.12.4.8 bool Process::_setout [protected]

7.12.4.9 double* Process::_x [protected]

7.13 Pythia6Hadroniser Class Reference

Pythia6 hadronisation algorithm.

Inheritance diagram for Pythia6Hadroniser:

Collaboration diagram for Pythia6Hadroniser:

Public Member Functions

- Pythia6Hadroniser ()
- ~Pythia6Hadroniser ()
- std::vector< Particle > GetHadrons ()
- std::string GetName ()
- bool Hadronise (Particle *part_)

Main caller to hadronise a particle.

bool Hadronise (Event *ev_)

Hadronises a full event.

Protected Attributes

std::vector< Particle > * _hadrons

List of hadrons produced by this hadronisation process.

std::string __name

Name of the hadroniser.

7.13.1 Detailed Description

Full interface to the Pythia6 [4] algorithm. It can be used in a single particle decay mode as well as a full event hadronisation using the string model, as in Jetset.

```
7.13.2 Constructor & Destructor Documentation
```

```
7.13.2.1 Pythia6Hadroniser::Pythia6Hadroniser ( )
```

- 7.13.2.2 Pythia6Hadroniser::~Pythia6Hadroniser ()
- 7.13.3 Member Function Documentation

```
7.13.3.1 std::vector<Particle> Hadroniser::GetHadrons ( ) [inline], [inherited]
```

Gets the full list of hadrons (as Particle objects) produced by the hadronisation

Returns

A vector of Particle containing all the hadrons produced

```
7.13.3.2 std::string Hadroniser::GetName( ) [inline], [inherited]
```

```
7.13.3.3 bool Pythia6Hadroniser::Hadronise ( Particle * part_ ) [virtual]
```

Reimplemented from Hadroniser.

```
7.13.3.4 bool Pythia6Hadroniser::Hadronise ( Event * ev_ ) [virtual]
```

Launches the hadroniser on the full event information

Parameters

```
in,out ev_ The event to hadronise
```

Returns

A boolean stating whether or not the hadronisation occured successfully

Reimplemented from Hadroniser.

```
7.13.4 Field Documentation
```

```
7.13.4.1 std::vector<Particle>* Hadroniser::_hadrons [protected], [inherited]
```

7.13.4.2 std::string Hadroniser::_name [protected], [inherited]

7.14 Pythia8Hadroniser Class Reference

Inheritance diagram for Pythia8Hadroniser:

Collaboration diagram for Pythia8Hadroniser:

Public Member Functions

- Pythia8Hadroniser ()
- ~Pythia8Hadroniser ()
- std::vector< Particle > GetHadrons ()
- std::string GetName ()
- bool Hadronise (Event *ev_)

Hadronises a full event.

virtual bool Hadronise (Particle *part_)

Main caller to hadronise a particle.

Protected Attributes

std::vector < Particle > * _hadrons
 List of hadrons produced by this hadronisation process.

std::string __name

Name of the hadroniser.

7.14.1 Constructor & Destructor Documentation

7.14.1.1 Pythia8Hadroniser::Pythia8Hadroniser ()

7.14.1.2 Pythia8Hadroniser::~Pythia8Hadroniser ()

7.14.2 Member Function Documentation

7.14.2.1 std::vector< Particle> Hadroniser::GetHadrons () [inline], [inherited]

Gets the full list of hadrons (as Particle objects) produced by the hadronisation

Returns

A vector of Particle containing all the hadrons produced

7.14.2.2 std::string Hadroniser::GetName () [inline], [inherited]

7.14.2.3 bool Pythia8Hadroniser::Hadronise (**Event** * ev_) [virtual]

Launches the hadroniser on the full event information

Parameters

in,out	ev_	The event to hadronise
--------	-----	------------------------

Returns

A boolean stating whether or not the hadronisation occured successfully

Reimplemented from Hadroniser.

7.14.2.4 virtual bool Hadroniser::Hadronise (Particle * part_) [inline], [virtual], [inherited]

Reimplemented in Pythia6Hadroniser, and Jetset7Hadroniser.

- 7.14.3 Field Documentation
- 7.14.3.1 std::vector<**Particle**>* Hadroniser::_hadrons [protected], [inherited]
- 7.14.3.2 std::string Hadroniser::_name [protected], [inherited]
- 7.15 Vegas Class Reference

Vegas Monte-Carlo integrator instance.

Public Member Functions

- Vegas (const int dim_, double f_(double *, size_t, void *), Parameters *inParam_)
- ~Vegas ()

Class destructor.

- void Generate ()
 - Launches the generation of events.
- bool GenerateOneEvent ()

Generates one single event according to the method defined in the Fortran 77 version of LPAIR.

• int Integrate (double *result_, double *abserr_)

7.15.1 Detailed Description

Main occurence of the Monte-Carlo integrator[3] developed by G.P. Lepage in 1978

7.15.2 Constructor & Destructor Documentation

```
7.15.2.1 Vegas::Vegas ( const int dim_, double f_double *, size_t, void *, Parameters * inParam_ )
```

Constructs the class by booking the memory and structures for the Vegas integrator. This code is based on the Vegas Monte Carlo integration algorithm developed by P. Lepage, as documented in [3]

Parameters

in	dim_	The number of dimensions on which the function will be integrated
in	f_	The function one is required to integrate
in,out	inParam_	A list of parameters to define the phase space on which this integration is performed (embedded in an Parameters object)

```
7.15.2.2 Vegas::~Vegas ( )
```

7.15.3 Member Function Documentation

```
7.15.3.1 void Vegas::Generate ( )
```

Launches the Vegas generation of events according to the provided input parameters.

```
7.15.3.2 bool Vegas::GenerateOneEvent ( )
```

Generates one event according to the grid parameters set in Vegas::SetGen

Returns

A boolean stating if the generation was successful (in term of the computed weight for the phase space point)

```
7.15.3.3 int Vegas::Integrate ( double * result_, double * abserr_ )
```

Vegas algorithm to perform the (_dim)-dimensional Monte Carlo integration of a given function as described in [3]

Author

```
Primary author : G.P. Lepage
This C++ implementation : L. Forthomme
```

Date

September 1976 Reviewed in Apr 1978 FTN5 version 21 Aug 1984 This C++ implementation is from 12 Dec 2013

Parameters

out	result_	The cross section as integrated by Vegas for the given phase space restrictions
out	abserr_	The error associated to the computed cross section

Returns

0 if the integration was performed successfully

8 File Documentation

8.1 include/event.h File Reference

This graph shows which files directly or indirectly include this file:

Data Structures

class Event

Kinematic information on the particles in the event.

Typedefs

typedef std::vector< Particle * > Particles

Convention to simplify the user interface while fetching a list of particles in the event.

typedef std::multimap< int, Particle > ParticlesMap

8.1.1 Typedef Documentation

8.1.1.1 typedef std::vector<**Particle***> **Particles**

 $8.1.1.2 \quad \mathsf{typedef} \ \mathsf{std} :: \mathsf{multimap} {<} \mathsf{int}, \\ \textbf{Particle} {>} \ \textbf{ParticlesMap}$

8.2 include/gamgam.h File Reference

This graph shows which files directly or indirectly include this file:

Data Structures

class GamGam

Computes the matrix element for a $\gamma\gamma \to \ell^+\ell^-$ process.

8.3 include/hadroniser.h File Reference

This graph shows which files directly or indirectly include this file:

Data Structures

class Hadroniser

8.4 include/herwig6hadroniser.h File Reference

This graph shows which files directly or indirectly include this file:

Data Structures

class Herwig6Hadroniser

Herwig6 hadronisation algorithm.

Macros

■ #define NMXHEP 4000

Functions

- void hwaend_ ()
- void hwdhad_ ()

Variables

```
struct {
  int idhep [NMXHEP]
  int isthep [NMXHEP]
  int jdahep [NMXHEP][2]
  int jmohep [NMXHEP][2]
  int nevhep
  int nhep
  double phep [NMXHEP][5]
  double vhep [NMXHEP][4]
  } hepevt_
```

- 8.4.1 Macro Definition Documentation
- 8.4.1.1 #define NMXHEP 4000
- 8.4.2 Function Documentation
- 8.4.2.1 void hwaend_ ()
- 8.4.2.2 void hwdhad_ ()
- 8.4.3 Variable Documentation
- 8.4.3.1 struct { ... } hepevt_
- 8.5 include/jetset7hadroniser.h File Reference

This graph shows which files directly or indirectly include this file:

Data Structures

class Jetset7Hadroniser
 Jetset7 hadronisation algorithm.

Macros

#define NAME_CHR 16

Functions

- int luchge_ (int &)
- void luexec_ ()
- void lugive_ (const char *, int)
- void lujoin_ (int &, int &)

```
void lulist_ (int &)
```

```
void luname_ (int &, char *, int)
```

• float ulmass_ (int &)

Variables

```
    struct {
        int k [5][4000]
        int n
        float p [5][4000]
        float v [5][4000]
        } lujets_
```

```
8.5.1 Macro Definition Documentation
```

```
8.5.1.1 #define NAME_CHR 16
```

8.5.2 Function Documentation

```
8.5.2.1 int luchge_ ( int & )

8.5.2.2 void luexec_ ( )

8.5.2.3 void lugive_ ( const char * , int )
```

8.5.2.4 void lujoin_ (int & , int &)

8.5.2.5 void lulist_ (int &)

8.5.2.6 void luname_ (int & , char * , int)

8.5.2.7 float ulmass_ (int &)

8.5.3 Variable Documentation

8.5.3.1 struct { ... } lujets_

8.6 include/kinematics.h File Reference

This graph shows which files directly or indirectly include this file:

Data Structures

class Kinematics

List of kinematic cuts to apply on the central and outgoing phase space.

8.7 include/lheutils.h File Reference

Data Structures

class HEPEUP

User-process event information.

class HEPRUP

Generic user-process interface for events generator.

8.8 include/mcgen.h File Reference

This graph shows which files directly or indirectly include this file:

Data Structures

class MCGen

Core of the Monte-Carlo generator.

Functions

double f (double *, size_t, void *)

8.8.1 Function Documentation

8.8.1.1 double f (double
$$*$$
 , size_t , void $*$)

The function to be integrated, which returns the value of the weight of an event, including the matrix element of the process, all the kinematic factors, and the cut restrictions. x is an array of random numbers used to select a random point inside the phase space.

8.9 include/parameters.h File Reference

This graph shows which files directly or indirectly include this file:

Data Structures

class Parameters

List of parameters used to start and run the simulation job.

8.10 include/particle.h File Reference

This graph shows which files directly or indirectly include this file:

Data Structures

class Particle
 Kinematics of one particle.

Functions

bool compareParticlePtrs (Particle *a, Particle *b)

- 8.10.1 Function Documentation
- 8.10.1.1 bool compareParticlePtrs (**Particle** * a, **Particle** * b) [inline]
- 8.11 include/process.h File Reference

This graph shows which files directly or indirectly include this file:

Data Structures

class Process

8.12 include/pythia6hadroniser.h File Reference

This graph shows which files directly or indirectly include this file:

Data Structures

class Pythia6Hadroniser

Pythia6 hadronisation algorithm.

Macros

#define NAME_CHR 16

Maximal number of characters to fetch for the particle's name.

Functions

```
void pyckbd_ ()
```

void pyexec_ ()

Launch the Pythia6 fragmentation.

void pygive_ (const char *, int)

Set a parameter value to the Pythia6 module.

void pyjoin_ (int &, int &)

Joins two coloured particles in a colour singlet.

void pylist_ (int &)

Lists all the particles in the event in a human-readable format.

double pymass_ (int &)

Get the particle's mass in GeV from the Pythia6 module.

void pyname_ (int &, char *, int)

Get a particle's human-readable name from the Pythia6 module.

double pyp_ (int &, int &)

Get information on a particle from the Pythia6 module.

Variables

Particles content of the event.

```
8.12.1 Macro Definition Documentation
```

```
8.12.1.1 #define NAME_CHR 16

8.12.2 Function Documentation

8.12.2.1 void pyckbd_ ( )

8.12.2.2 void pyexec_ ( )

8.12.2.3 void pygive_ ( const char * , int )

8.12.2.4 void pyjoin_ ( int & , int & )

8.12.2.5 void pylist_ ( int & )

8.12.2.6 double pymass_ ( int & )

8.12.2.7 void pyname_ ( int & , char * , int )

8.12.2.8 double pyp_ ( int & , int & )

8.12.3 Variable Documentation
```

8.13 include/pythia8hadroniser.h File Reference

This graph shows which files directly or indirectly include this file:

Data Structures

class Pythia8Hadroniser

8.14 include/utils.h File Reference

This graph shows which files directly or indirectly include this file:

Macros

#define alphaF 1./137.04

Electromagnetic coupling constant $\alpha_{em} = \frac{e^2}{4\pi\epsilon_0\hbar c}$.

■ #define muBarn 1./389.39

$$\frac{1}{(\hbar c)^2}$$
 [b⁻¹]?

- #define pi 3.1415926535897932384626434
- #define sconst 3.89351824E8
- #define sconstb 2.1868465E10

Functions

double GetMassFromPDGId (int pdgId_)

Gets the mass of a particle.

- void Lorenb (double u_, double ps_[], double pi_[], double pf_[])
- void Map (double expo_, double xmin_, double xmax_, double *out_, double *dout_)

Defines modified variables of integration to avoid peaks integrations (see [5] for details) Returns a set of two modified variables of integration to maintain the stability of the integrant. These two new variables are:

- void Mapla (double, double, int, double, double, double *, double *)
- bool PSF (double, double *, double *, double *)

8.14.1 Macro Definition Documentation

8.14.1.1 #define alphaF 1./137.04

8.14.1.2 #define muBarn 1./389.39

8.14.1.3 #define pi 3.1415926535897932384626434

8.14.1.4 #define sconst 3.89351824E8

8.14.1.5 #define sconstb 2.1868465E10

8.14.2 Function Documentation

8.14.2.1 double GetMassFromPDGId (int pdgId_)

Gets the mass in GeV/c**2 of a particle given its PDG identifier

Parameters

```
pdgld_ PDG ID of the particle whose mass is requested
```

Returns

Mass of the particle in GeV/c**2

- 8.14.2.2 void Lorenb (double u_, double ps_[], double pi_[], double pf_[])
- 8.14.2.3 void Map (double expo_, double xmin_, double xmax_, double * out_, double * dout_)
 - $y_{out} = x_{min} \left(\frac{x_{max}}{x_{min}} \right)^{exp}$ the new variable
 - $\mathrm{d}y_{out} = x_{min} \left(\frac{x_{max}}{x_{min}}\right)^{exp} \log \frac{x_{min}}{x_{max}}$, the new variable's differential form Redefines the variables of integration in order to avoid the strong peaking of the integrant.

Parameters

expo_	Exponant
xmin_	Minimal value of the variable
xmax_	Maximal value of the variable
out_	The new variable definition
dout_	The differential variant of the new variable definition

Note

This method overrides the set of mapxx subroutines in ILPAIR, with a slight difference according to the sign of the $\mathrm{d}y_{out}$ parameter :

```
- left unchanged :
```

- opposite sign :

mapt1, mapt2

```
8.14.2.4 void Mapla (double, double, int, double, double, double *, double *)
```

8.14.2.5 bool PSF (double , double
$$*$$
 , double $*$, double $*$)

Computes the proton structure function (F.W Brasse et al., DESY 76/11 (1976), http://dx.doi.org/10.-1016/0550-3213(76)90231-5) [2]

8.15 include/vegas.h File Reference

This graph shows which files directly or indirectly include this file:

Data Structures

class Vegas

Vegas Monte-Carlo integrator instance.

Macros

#define MAX_ND 50

8.15.1 Macro Definition Documentation

8.15.1.1 #define MAX_ND 50

8.16 main.cpp File Reference

Functions

int main (int argc, char *argv[])

8.16.1 Function Documentation

8.16.1.1 int main (int argc, char * argv[])

Author

Laurent Forthomme laurent.forthomme@uclouvain.be Main caller for this Monte Carlo generator. Loads the configuration files' variables if set as an argument to this program, else loads a default "LH-C-like" configuration, then launches the cross-section computation and the events generation.

Here is the call graph for this function:

68 REFERENCES

References

- [1] J. Beringer et al. Review of Particle Physics (RPP). Phys. Rev., D86:010001, 2012. 41
- [2] F.W. Brasse, W. Flauger, J. Gayler, S.P. Goel, R. Haidan, M. Merkwitz, and H. Wriedt. Parametrization of the q^2 dependence of $\gamma_{\nu}p$ total cross sections in the resonance region. *Nuclear Physics B*, 110(4–5):413 433, 1976. 65
- [3] G Peter Lepage. A new algorithm for adaptive multidimensional integration. *Journal of Computational Physics*, 27(2):192 203, 1978. 2, 51
- [4] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4 Physics and Manual. *JHEP*, 0605:026, 2006. 48
- [5] J.A.M. Vermaseren. Two-photon processes at very high energies. *Nuclear Physics B*, 229(2):347 371, 1983. 2, 11, 64

Index

_	0 0 15
~Event	GamGam, 15
Event, 5	Process, 46
\sim GamGam	_setkin
GamGam, 12	GamGam, 15
~HEPEUP	Process, 46
HEPEUP, 18	_setout
~HEPRUP	GamGam, 15
HEPRUP, 20	Process, 46
\sim Hadroniser	_x
Hadroniser, 16	Process, 46
\sim Herwig6Hadroniser	
Herwig6Hadroniser, 21	AddDaughter
\sim Jetset7Hadroniser	Particle, 36
Jetset7Hadroniser, 23	AddParticle
\sim Kinematics	Event, 5, 6
Kinematics, 25	alphaF
~MCGen	utils.h, 65
MCGen, 28	Analyze Phase Space
~Parameters	MCGen, 28
Parameters, 31	aqcdup
~Particle	HEPEUP, 18
	aqedup
Particle, 36 ~Process	HEPEUP, 18
	,
Process, 43	charge
~Pythia6Hadroniser	Particle, 41
Pythia6Hadroniser, 48	clear
~Pythia8Hadroniser	Event, 6
Pythia8Hadroniser, 50	compareParticlePtrs
\sim Vegas	particle.h, 60
Vegas, 51	ComputeCMenergy
_cuts	GamGam, 12
Process, 46	ComputeMX
_ev	GamGam, 12
GamGam, 15	ComputeWeight
Process, 46	GamGam, 12
_hadrons	Process, 43
Hadroniser, 17	ComputeXsection
Herwig6Hadroniser, 22	MCGen, 28
Jetset7Hadroniser, 24	MCGen, 20
Pythia6Hadroniser, 48	debug
Pythia8Hadroniser, 50	Parameters, 31
name	Dump
GamGam, 15	Event, 6
Hadroniser, 17	Kinematics, 25
Herwig6Hadroniser, 22	
Jetset7Hadroniser, 24	Parameters, 31
Process, 46	Particle, 36
Pythia6Hadroniser, 48	DumpPoint
Pythia8Hadroniser, 50	GamGam, 12
	Process, 43
_ndim	_
Process, 46	E
_point_set	Particle, 36
GamGam, 15	ebmup
Process, 46	HEPRUP, 20
_setin	emax

	Kinematics, 25	GetT2, 13
emii		GetT2extrema, 13
	Kinematics, 25	GetU1, 13
Eta		GetU2, 13
	Particle, 36	GetV1, 13
Fve	nt, 4	GetV2, 14
LVC	~Event, 5	IsKinematicsDefined, 14
	AddParticle, 5, 6	
		ndim, 14
	clear, 6	PrepareHadronisation, 14
	Dump, 6	SetIncomingParticles, 14
	Event, 5	SetKinematics, 14
	GetByld, 6	SetOutgoingParticles, 14
	GetBylds, 6	SetPoint, 14
	GetByRole, 6	StoreEvent, 15
	GetDaughters, 6	x, 15
	GetLHERecord, 7	Generate
	GetMother, 7	Vegas, 51
	GetOneByRole, 8	GenerateOneEvent
	GetParticles, 8	MCGen, 28
	GetRoles, 8	Vegas, 51
	GetStableParticles, 8	generation
	NumParticles, 9	Parameters, 31
	operator=, 9	GetByld
	Store, 9	Event, 6
	time_cpu, 9	GetBylds
ever	nt.h	Event, 6
	Particles, 52	GetByRole
	ParticlesMap, 52	-
	1,	Event, 6
f		GetD3
	mcgen.h, 58	GamGam, 13
file		GetDaughters
	Parameters, 31	Event, 6
Fillk	Kinematics	Particle, 37
	GamGam, 12	GetEvent
	Process, 44	GamGam, 13
	1100000, 11	Process, 45
Gan	nGam, 9	GetHadrons
	~GamGam, 12	Hadroniser, 16
	_ev, 15	Herwig6Hadroniser, 21
	_name, 15	Jetset7Hadroniser, 23
	_point_set, 15	Pythia6Hadroniser, 48
	setin, 15	Pythia8Hadroniser, 50
	_setkin, 15	GetLHERecord
	_setout, 15	Event, 7
	ComputeCMenergy, 12	GetLHEline
	ComputeMX, 12	Particle, 37
	ComputeWeight, 12	GetMassFromPDGId
		utils.h, 65
	DumpPoint, 12	GetMother
	FillKinematics, 12	Event, 7
	GamGam, 12	Particle, 37
	GamGam, 12	GetName
	GetD3, 13	
	GetEvent, 13	GamGam, 13
	GetName, 13	Hadroniser, 16
	GetS1, 13	Herwig6Hadroniser, 21
	GetS2, 13	Jetset7Hadroniser, 23
	GetT1, 13	Process, 45
	GetT1extrema, 13	Pythia6Hadroniser, 48

D. H. Olf, J	15 00
Pythia8Hadroniser, 50	pdfgup, 20
GetOneByRole	pdfsup, 20
Event, 8	xerrup, 20
GetParticles	xmaxup, <mark>20</mark>
Event, 8	xsecup, 20
GetRoles	Hadronise
Event, 8	Hadroniser, 16
GetS1	Herwig6Hadroniser, 22
GamGam, 13	Jetset7Hadroniser, 24
GetS2	Particle, 37
GamGam, 13	Pythia6Hadroniser, 48
GetStableParticles	Pythia8Hadroniser, 50
Event, 8	Hadroniser, 15
GetT1	
	~Hadroniser, 16
GamGam, 13	_hadrons, 17
GetT1extrema	_name, 17
GamGam, 13	GetHadrons, 16
GetT2	GetName, 16
GamGam, 13	Hadronise, 16
GetT2extrema	Hadroniser, 16
GamGam, 13	hadroniser
GetU1	Parameters, 31
GamGam, 13	hepevt_
GetU2	herwig6hadroniser.h, 55
GamGam, 13	Herwig6Hadroniser, 20
GetV1	~Herwig6Hadroniser, 21
GamGam, 13	_hadrons, 22
GetV2	_name, 22
	
GamGam, 14	Get Hadrons, 21
gpdf	GetName, 21
Parameters, 31	Hadronise, 22
HEPEUP, 17	Herwig6Hadroniser, 21
~HEPEUP, 18	Herwig6Hadroniser, 21
	herwig6hadroniser.h
aqcdup, 18	hepevt, 55
aqedup, 18	hwaend, 55
HEPEUP, 18	hwdhad <u></u> , <mark>55</mark>
HEPEUP, 18	NMXHEP, 55
icolup, 18	hwaend
idprup, 18	herwig6hadroniser.h, 55
idup, 18	hwdhad
istup, 18	herwig6hadroniser.h, 55
maxnup, 18	g , ,
mothup, 19	icolup
nup, 19	HEPEUP, 18
pup, 19	id
scalup, 19	Particle, 41
spinup, 19	idbmup
vtimup, 19	
xwgtup, 19	HEPRIIP 20
	HEPRUP, 20
HEDDIID 10	idprup
HEPRUP 20	idprup HEPEUP, 18
∼HEPRUP, 20	idprup HEPEUP, 18 idup
\sim HEPRUP, 20 ebmup, 20	idprup HEPEUP, 18 idup HEPEUP, 18
\sim HEPRUP, 20 ebmup, 20 HEPRUP, 20	idprup HEPEUP, 18 idup HEPEUP, 18 idwtup
~HEPRUP, 20 ebmup, 20 HEPRUP, 20 HEPRUP, 20	idprup HEPEUP, 18 idup HEPEUP, 18 idwtup HEPRUP, 20
~HEPRUP, 20 ebmup, 20 HEPRUP, 20 HEPRUP, 20 idbmup, 20	idprup HEPEUP, 18 idup HEPEUP, 18 idwtup HEPRUP, 20 in1p
~HEPRUP, 20 ebmup, 20 HEPRUP, 20 HEPRUP, 20 idbmup, 20 idwtup, 20	idprup HEPEUP, 18 idup HEPEUP, 18 idwtup HEPRUP, 20 in1p Parameters, 32
~HEPRUP, 20 ebmup, 20 HEPRUP, 20 HEPRUP, 20 idbmup, 20 idwtup, 20 Iprup, 20	idprup HEPEUP, 18 idup HEPEUP, 18 idwtup HEPRUP, 20 in1p Parameters, 32 in2p
~HEPRUP, 20 ebmup, 20 HEPRUP, 20 HEPRUP, 20 idbmup, 20 idwtup, 20	idprup HEPEUP, 18 idup HEPEUP, 18 idwtup HEPRUP, 20 in1p Parameters, 32

include/event.h, 52	thetamax, 26
include/gamgam.h, 53	thetamin, 26
include/hadroniser.h, 53	wmax, <mark>26</mark>
include/herwig6hadroniser.h, 54	wmin, 26
include/jetset7hadroniser.h, 55	kinematics
include/kinematics.h, 57	Kinematics, 25
include/lheutils.h, 57	,
include/mcgen.h, 58	last_event
include/parameters.h, 59	MCGen, 28
include/particle.h, 59	Parameters, 32
include/process.h, 60	LaunchGeneration
include/pythia6hadroniser.h, 61	MCGen, 28
include/pythia8hadroniser.h, 63	Lorenb
include/utils.h, 64	utils.h, 65
·	lprup
include/vegas.h, 66	HEPRUP, 20
Integrate	luchge_
Vegas, 51	jetset7hadroniser.h, 56
IsKinematicsDefined	luexec_
GamGam, 14	_
Process, 45	jetset7hadroniser.h, 56
istup	lugive_
HEPEUP, 18	jetset7hadroniser.h, 56
itvg	lujets_
Parameters, 32	jetset7hadroniser.h, 56
	lujoin_
Jetset7Hadroniser, 22	jetset7hadroniser.h, 56
\sim Jetset7Hadroniser, 23	lulist
_hadrons, 24	jetset7hadroniser.h, 56
name, 24	luname
GetHadrons, 23	jetset7hadroniser.h, 56
GetName, 23	
Hadronise, 24	M
Jetset7Hadroniser, 23	Particle, 37
Jetset7Hadroniser, 23	M2
jetset7hadroniser.h	Particle, 38
luchge_, 56	MAX_ND
luexec , 56	vegas.h, <mark>66</mark>
lugive_, 56	MCGen, 26
lujets_, 56	\sim MCGen, 28
lujoin_, 56	AnalyzePhaseSpace, 28
lulist_, 56	ComputeXsection, 28
luname_, 56	GenerateOneEvent, 28
NAME_CHR, 56	last_event, 28
ulmass, 56	LaunchGeneration, 28
diiiid33_, 30	MCGen, 27
Kinematics, 24	MCGen, 27
~Kinematics, 25	parameters, 28
Dump, 25	
	-
•	PrintHeader, 28
emax, 25	PrintHeader, 28 Test, 28
emax, 25 emin, 25	PrintHeader, 28 Test, 28 main
emax, 25 emin, 25 Kinematics, 25	PrintHeader, 28 Test, 28 main main.cpp, 66
emax, 25 emin, 25 Kinematics, 25 kinematics, 25	PrintHeader, 28 Test, 28 main main.cpp, 66 main.cpp, 66
emax, 25 emin, 25 Kinematics, 25 kinematics, 25 mode, 26	PrintHeader, 28 Test, 28 main main.cpp, 66 main.cpp, 66 main, 66
emax, 25 emin, 25 Kinematics, 25 kinematics, 25 mode, 26 mxmax, 26	PrintHeader, 28 Test, 28 main main.cpp, 66 main.cpp, 66 main, 66 Map
emax, 25 emin, 25 Kinematics, 25 kinematics, 25 mode, 26 mxmax, 26 mxmin, 26	PrintHeader, 28 Test, 28 main main.cpp, 66 main.cpp, 66 main, 66 Map utils.h, 65
emax, 25 emin, 25 Kinematics, 25 kinematics, 25 mode, 26 mxmax, 26 mxmin, 26 ptmax, 26	PrintHeader, 28 Test, 28 main main.cpp, 66 main.cpp, 66 main, 66 Map utils.h, 65 Mapla
emax, 25 emin, 25 Kinematics, 25 kinematics, 25 mode, 26 mxmax, 26 mxmin, 26 ptmax, 26 ptmin, 26	PrintHeader, 28 Test, 28 main main.cpp, 66 main.cpp, 66 main, 66 Map utils.h, 65 Mapla utils.h, 65
emax, 25 emin, 25 Kinematics, 25 kinematics, 25 mode, 26 mxmax, 26 mxmin, 26 ptmax, 26 ptmin, 26 q2max, 26	PrintHeader, 28 Test, 28 main main.cpp, 66 main.cpp, 66 main, 66 Map utils.h, 65 Mapla utils.h, 65 maxenergy
emax, 25 emin, 25 Kinematics, 25 kinematics, 25 mode, 26 mxmax, 26 mxmin, 26 ptmax, 26 ptmin, 26	PrintHeader, 28 Test, 28 main main.cpp, 66 main.cpp, 66 main, 66 Map utils.h, 65 Mapla utils.h, 65

maxgen	NumParticles
Parameters, 32	Event, 9
maxmx	nup
Parameters, 32	HEPEUP, 19
maxnup	·
HEPEUP, 18	operator<
maxpt	Particle, 38
Parameters, 32	operator=
maxq2	Event, 9
Parameters, 32	Particle, 38
maxtheta	
Parameters, 32	Р
mcgen.h	Particle, 38, 39
f, 58	p1mod
•	Parameters, 33
mcut	p2mod
Parameters, 32	Parameters, 33
minenergy	P3
Parameters, 32	Particle, 40
minmx	P4
Parameters, 32	Particle, 40
minpt	PDF2PDG
Parameters, 32	
minq2	Particle, 40
Parameters, 32	PSF
mintheta	utils.h, 65
Parameters, 32	pair
mode	Parameters, 33
Kinematics, 26	Parameters, 28
mothup	\sim Parameters, 31
HEPEUP, 19	debug, 31
muBarn	Dump, 31
utils.h, 65	file, 31
mxmax	generation, 31
Kinematics, 26	gpdf, 31
mxmin	hadroniser, 31
Kinematics, 26	in1p, 32
Terrettatics, 20	in2p, 32
NAME_CHR	itvg, 32
jetset7hadroniser.h, 56	last_event, 32
pythia6hadroniser.h, 62	maxenergy, 32
NMXHEP	maxgen, 32
herwig6hadroniser.h, 55	maxmx, 32
name	maxpt, 32
Particle, 41	maxq2, 32
	maxtheta, 32
ncvg	
Parameters, 32	mcut, 32
ndim	minenergy, 32
GamGam, 14	minmx, 32
Process, 45	minpt, 32
ngen	minq2, 32
Parameters, 32	mintheta, 32
npoints	ncvg, 32
Parameters, 32	ngen, 32
nprup	npoints, 32
HEPRUP, 20	ntreat, 32
ntreat	p1mod, 33
Parameters, 32	p2mod, 33
NumDaughters	pair, <mark>33</mark>
Particle, 38	Parameters, 31

process, 33	Particle, 40
qpdf, 33	pi
ReadConfigFile, 31	utils.h, 65
SetEtaRange, 31	PrepareHadronisation
spdf, 33	GamGam, 14
store, 33	Primary
StoreConfigFile, 31	Particle, 40
symmetrise, 33	PrintHeader
parameters	MCGen, 28
MCGen, 28	Process, 42
Particle, 33	
	~Process, 43
~Particle, 36	_cuts, 46
AddDaughter, 36	_ev, 46
charge, 41	_name, 46
Dump, 36	_ndim, 46
E, 36	_point_set, 46
Eta, 36	_setin, 46
GetDaughters, 37	_setkin, 46
GetLHEline, 37	_setout, 46
GetMother, 37	_x, 46
Hadronise, 37	ComputeWeight, 43
id, 41	DumpPoint, 43
M, 37	FillKinematics, 44
M2, 38	GetEvent, 45
name, 41	GetName, 45
NumDaughters, 38	IsKinematicsDefined, 45
operator<, 38	ndim, 45
operator=, 38	Process, 43
P, 38, 39	SetIncomingParticles, 45
P3, 40	SetKinematics, 45
P4, 40	SetOutgoingParticles, 46
PDF2PDG, 40	SetPoint, 46
Particle, 36	x, 46
pdgld, 41	process
Phi, 40	Parameters, 33
Primary, 40	Pt
_	
Pt, 41	Particle, 41
px, 41	ptmax
py, 41	Kinematics, 26
pz, 41	ptmin
Rapidity, 41	Kinematics, 26
role, 41	pup
SetMother, 41	HEPEUP, 19
status, 41	px
Valid, 41	Particle, 41
particle.h	ру
compareParticlePtrs, 60	Particle, 41
Particles	pyckbd_
	· •
event.h, 52	pythia6hadroniser.h, 62
ParticlesMap	pyexec_
event.h, 52	pythia6hadroniser.h, 62
pdfgup	pygive_
HEPRUP, 20	pythia6hadroniser.h, 62
pdfsup	pyjets_
HEPRUP, 20	pythia6hadroniser.h, 62
pdgld	pyjoin_
Particle, 41	pythia6hadroniser.h, 62
Phi	pylist_
• • • •	F.J

pythia6hadroniser.h, 62	SetEtaRange
pymass_	Parameters, 31
pythia6hadroniser.h, 62	SetIncomingParticles
pyname_	GamGam, 14
pythia6hadroniser.h, 62	Process, 45
pyp_	SetKinematics
pythia6hadroniser.h, 62	GamGam, 14
Pythia6Hadroniser, 47	Process, 45
~Pythia6Hadroniser, 48	SetMother
hadrons, 48	Particle, 41
name, 48	SetOutgoingParticles
GetHadrons, 48	GamGam, 14
GetName, 48	Process, 46
Hadronise, 48	SetPoint
Pythia6Hadroniser, 48	GamGam, 14
Pythia6Hadroniser, 48	Process, 46
pythia6hadroniser.h	
• •	spdf
NAME_CHR, 62	Parameters, 33
pyckbd_, 62	spinup
pyexec_, 62	HEPEUP, 19
pygive_, 62	status
pyjets_, 62	Particle, 41
pyjoin_, 62	Store
pylist_, 62	Event, 9
pymass, 62	store
pyname, 62	Parameters, 33
pyp_, 62	StoreConfigFile
Pythia8Hadroniser, 49	Parameters, 31
\sim Pythia 8 Hadroniser, 50	StoreEvent
_hadrons, 50	GamGam, 15
_name, 50	symmetrise
GetHadrons, 50	Parameters, 33
GetName, 50	
Hadronise, 50	Test
Pythia8Hadroniser, 50	MCGen, 28
Pythia8Hadroniser, 50	thetamax
pz	Kinematics, 26
Particle, 41	thetamin
	Kinematics, 26
q2max	time_cpu
Kinematics, 26	Event, 9
q2min	
Kinematics, 26	ulmass
qpdf	jetset7hadroniser.h, 56
Parameters, 33	utils.h
·	alphaF, 65
Rapidity	GetMassFromPDGId, 65
Particle, 41	Lorenb, 65
ReadConfigFile	Map, 65
Parameters, 31	Mapla, 65
role	muBarn, 65
Particle, 41	PSF, 65
,	pi, 65
scalup	sconst, 65
HEPEUP, 19	sconstb, 65
sconst	, 30
utils.h, 65	Valid
sconstb	Particle, 41
utils.h, 65	Vegas, 50
,	5 ,

```
\simVegas, 51
    Generate, 51
    GenerateOneEvent,\ {\color{red}51}
    Integrate, 51
    Vegas, 51
vegas.h
    MAX_ND, 66
vtimup
    HEPEUP, 19
wmax
    Kinematics, 26
wmin
    Kinematics, 26
Χ
    GamGam, 15
    Process, 46
xerrup
    HEPRUP, 20
xmaxup
    HEPRUP, 20
xsecup
    HEPRUP, 20
xwgtup
    HEPEUP, 19
```