实验七 实验箱 194/自制 194 显示学号

宋渝杰 18340146

一、74LS194移位寄存器显示学号(上个实验报告已写)

1. 实验内容

194 输出与学号 BCD 码对应关系表:

194 输出				BCD 码(18340146)							
Q4	Q3	Q2	Q1	D3	D2	D1	D0	D3	D2	D1	D0
0	1	1	1	0	0	0	1	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0	1
1	1	0	1	0	0	1	1	0	1	0	0
1	1	1	0	0	1	0	0	0	1	1	0

函数表达式:

左: D3 = Q3 反, D2 = Q1 反, D1 = Q2 反, D0 = Q4 反 + Q2 反 右: D3 = 0, D2 = Q2 反 + Q1 反, D1 = Q1 反, D0 = Q3 反

设计思路说明:

根据实验书上的图连接好 74LS194,实现 0111->1011->1101->1110 的循环输出,将该输出接入到 7 段管的显示选择端,然后根据上述学号函数表达式,输入到 7 段管的 BCD 码端,即可实现。

2. 仿真电路与结果

由于仿真 7 段管的输入端结构与实验箱上有很大区别,使用了 74LS47 进行编码,数码管位选通段也加了反相器 (共阳极),实现效果基本一致。

上图中 A0 波形为时钟, A2-A5 为 4 位数码管端选通信号, A7-A10, A11-A14 为 8 位 BCD 码的波形

3. 实验结果与分析

结果分析论证:

结果基本符合预期。

二、自制 194 移位寄存器显示学号

1. 实验内容

194 输出与学号 BCD 码对应关系表:

194 输出				BCD 码(18340146)							
Q4	Q3	Q2	Q1	D3	D2	D1	D0	D3	D2	D1	D0
0	1	1	1	0	0	0	1	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0	1
1	1	0	1	0	0	1	1	0	1	0	0
1	1	1	0	0	1	0	0	0	1	1	0

函数表达式:

左: D3 = Q3 反, D2 = Q1 反, D1 = Q2 反, D0 = Q4 反 + Q2 反

右: D3 = 0, D2 = Q2 反 + Q1 反, D1 = Q1 反, D0 = Q3 反

设计思路说明:

使用 4 个 J-K 触发器实现循环移位寄存器,然后通过某种方式(见下文)实现 1110 的置位,之后循环移位,然后根据上面实验的思路和连线实现学号显示即可。

置位方式:

(实验箱) 先把 4 个 J-K 触发器连接成约翰逊计数器, 然后当计数为 1110 时,除去时钟,把电路修改为循环移位寄存器,此时该寄存器已拥有 1110 的置位。

(仿真) 先用一个额外的 J-K 触发器,设定其初始状态位 1,将其 Q 输出端连接到自制 194 其中一个 J-K 触发器的 J 输入端,当该 J-K 触发器经过一个时钟然后置位时,用门电路使得额外的 J-K 触发器变成复位状态且不再变回置位,即对自制 194 不再造成影响,此时自制 194 中拥有了 0001 的置位状态,之后循环即可,输出各接一个反相器实现 1110 的状态。

2. 仿真电路与结果

由于仿真 7 段管的输入端结构与实验箱上有很大区别,使用了 74LS47 进行编码,数码管位选通段也加了反相器 (共阳极),实现效果基本一致。

上图中 A1 波形为时钟,A2-A5 为自制 194 左移输出信号(置位为 0001)

3. 实验结果与分析

结果分析论证:

结果基本符合预期。

三、实验总结

实验中遇到的问题:

- 1. 仿真中用了几个或门,而实验箱中没有或门;
- 2. 实验课前不明白如何进行置位。

解决方案:

- 1. 用逻辑等价变换把"或"改成"与非",然后用实验箱的与非门实现
- 2. 借鉴了约翰逊计数器,使用手动置位实现(方法见上文) 收获:
 - 1. 按时完成了两个实验
 - 2. 加深了对移位寄存器的原理和 74LS194 的用法的理解