1. In complex notation, we use the Complex wave function which, as discussed in the class, is given by $\tilde{f}(z,t) = \tilde{A}e^{i(kz-\omega t)}$ with $\tilde{A} = Ae^{i\delta}$ being the complex amplitude. Use the method of separation of variables to solve the wave equation and to show that any wave can be expressed as a linear combination of sinusoidal waves:

$$\tilde{f}(z,t) = \int_{-\infty}^{\infty} \tilde{A}(k)e^{i(kz-\omega t)}dk.$$

Solution:

Let us assume the solution of the wave equation $(\frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2})$ is of the form f(z,t) = Z(z)T(t). Using this separation of variable and dividing by ZT, $\frac{1}{Z} \frac{d^2 Z}{dz^2} = \frac{1}{v^2 T} \frac{d^2 T}{dt^2}$. The left side depends only on z, and the right side only on t, so both sides must be constant (say, $-k^2$). Then the equations are,

$$\frac{d^2Z}{dz^2} = -k^2Z; \qquad \qquad \frac{d^2T}{dt^2} = -(kv)^2T.$$

The solutions being,

$$Z(z) = Ae^{ikz} + Be^{-ikz};$$
 $T(t) = Ce^{ikvt} + De^{-ikvt}.$

$$f(z,t) = (Ae^{ikz} + Be^{-ikz})(Ce^{ikvt} + De^{-ikvt})$$

= $A_1e^{i(kz+kvt)} + A_2e^{i(kz-kvt)} + A_3e^{i(-kz+kvt)} + A_4e^{i(-kz-kvt)}$.

k is real to not to blow up Z and T and with no loss of generality one can assume k > 0. Therefore the general linear combination of separable solution is,

$$f(z,t) = \int_0^\infty [A_1(k)e^{i(kz+\omega t)} + A_2(k)e^{i(kz-\omega t)} + A_3(k)e^{i(-kz+\omega t)} + A_4(k)e^{i(-kz-\omega t)}]dk.$$

where $\omega \equiv kv$ and by allowing k to run negative one can combine the third term with the first and the second with the fourth, but $\omega = |k|v$ remains positive;

 $f(z,t) = \int_{-\infty}^{\infty} [A_1(k)e^{i(kz+\omega t)} + A_2(k)e^{i(kz-\omega t)}]dk$, so f has both real and imaginary part and we are interested in the real one.

$$Re(f) = \int_{-\infty}^{\infty} [Re(A_1)\cos(kz + \omega t) - Im(A_1)\sin(kz + \omega t) + Re(A_2)\cos(kz - \omega t) - Im(A_2)\sin(kz - \omega t)]dk.$$

Now, k goes negative hence both terms include waves traveling in both directions and it is enough to keep only one term. The term, $\cos(kz + \omega t) = \cos(-kz - \omega t)$, combines with the $\cos(kz - \omega t)$, as the negative k is picked up from the other half of

the integration. Similarly, the second, $\sin(kz + \omega t) = -\sin(-kz - \omega t)$, combines with the $\sin(kz - \omega t)$. Thus the general solution, can be written in the form

$$\tilde{f}(z,t) = \int_{-\infty}^{\infty} \tilde{A}(k)e^{i(kz-\omega t)}dk,$$

here \tilde{f} is the real part.

- 2. The linearly polarised wave is denoted by $\tilde{f}(z,t) = \tilde{A}e^{i(kz-\omega t)}\hat{n}$. Linear polarisation results from the combination of horizontally and vertically polarised waves of the same phase. If the two components are of equal amplitude, but out of phase by $\pi/2$ (say, $\delta_v = 0, \delta_h = \pi/2$), the result is a circularly polarised wave. In that case:
 - (a) At a fixed point z, show that the string moves in a circle about the z axis. Does it go clockwise (right circular polarised) or counterclockwise (left circular polarised), as you look down the axis toward the origin? How would you construct a wave circling the other way?
 - (b) Sketch the string at time t = 0.
 - (c) How would you shake the string in order to produce a circularly polarised wave? **Solution:** (a) The vertical polarisation is $\vec{f_v}(z,t) = A\cos(kz \omega t) \hat{x}$ and the hori-

Figure 1: Figure for solution to problem 2.

zontal one is $\vec{f_h}(z,t) = A\cos(kz - \omega t + 90^\circ) \ \hat{y} = -A\sin(kz - \omega t) \ \hat{y}$.

Now, $f_v^2 + f_h^2 = A^2$, so $\vec{f} = \vec{f_v} + \vec{f_h}$ lies on a circle of radius A. At t = 0, $\vec{f} = A\cos(kz) \hat{x} - A\sin(kz) \hat{y}$ and at $t = \frac{\pi}{2\omega}$, $\vec{f} = A\cos(kz - 90^\circ) \hat{x} - A\sin(kz - 90^\circ) \hat{y} = A\sin(kz) \hat{x} + \cos(kz) \hat{y}$. It is circling *counterclockwise*, to make it circling the other way, use $\delta_h = -\pi/2$.

(b) The sketch of the string at t = 0 is shown in figure 2.

Figure 2: Figure for solution to problem 2.

- To produce a circularly polarised wave in a string, one needs to shake it around in a circle instead of up and down.
- 3. A paradoxical case of Poynting's theorem occurs when a static electric field is applied perpendicularly to a static magnetic field, as in the case of a pair of electrodes placed within a magnetic circuit with N turns, (see figure 3).
 - (a) What are \vec{E} , \vec{H} and \vec{S} ?
 - (b) What is the energy density stored in the system?
 - (c) Verify Poynting's theorem.

Figure 3: Figure for problem 3.

Solution:

- (a) The electric field would be in the x-direction, $E_x = \frac{v}{s}$.
- The magnetic field $B_y = \frac{\mu Ni}{l}$ and $H_y = \frac{Ni}{l}$. Therefore, $S_z = E_x H_y = \frac{Nvi}{ls}$. (b) Energy density $(w) = \frac{1}{2}(\mu H_y^2 + \epsilon E_x^2) = \frac{1}{2}\mu(\frac{Ni}{l})^2 + \frac{1}{2}\epsilon(\frac{v}{s})^2$.
- (c) Poynting's theorem: $\vec{\nabla} \cdot \vec{s} = \frac{\partial w}{\partial t} = 0$ as both the fields are static. Thus, $\vec{\nabla} \cdot \vec{s} + \frac{\partial w}{\partial t} = 0$
- 4. A uniformly distributed volume current of thickness 2d, $J_o \cos(\omega t)\hat{x}$ is a source of plane waves (see figure 4).
 - (a) From Maxwell's equations obtain a single differential equation relating E_x to J_x .

Figure 4: Figure for problem 4.

Solution:

The Maxwell's equations $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ and $\nabla \times \vec{B} = \mu \vec{J}_f + \mu \epsilon \frac{\partial \vec{E}}{\partial t}$ can connect E_x to J_x . The induced electric field direction is given by the current direction (\hat{x}) . The Magnetic field circles around and in the y-direction. Component wise, $\frac{\partial E_x}{\partial z} = -\frac{\partial B_y}{\partial t}$ and $-\frac{\partial B_y}{\partial z} = \mu J_x + \mu \epsilon \frac{\partial E_x}{\partial t}$. Differentiating the later equation and using first one,

$$\mu\epsilon \frac{\partial^2 E_x}{\partial t^2} + \mu \frac{\partial J_x}{\partial t} = -\frac{\partial^2 B_y}{\partial t \partial z} = -\frac{\partial^2 B_y}{\partial z \partial t} = \frac{\partial^2 E_x}{\partial z^2}$$
$$\frac{\partial^2 E_x}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 E_x}{\partial t^2} = \mu \frac{\partial J_x}{\partial t}$$

- 5. A polarising filter to microwaves is essentially formed by many highly conducting parallel wires whose spacing is much smaller than a wavelength (see figure 5). That polarisation whose electric field field is transverse to the wires passes through. The incident electric field is $\vec{E} = E_x \cos(\omega t kz)\hat{x} + E_y \sin(\omega t kz)\hat{y}$.
 - (a) What is the incident magnetic field and incident power density?
 - (b) What are the transmitted fields and power density?
 - (c) Another set of polarising wires are placed parallel but a distance d and oriented at an angle ϕ to the first. What are the transmitted fields?

Figure 5: Figure for problem 5.

Solution:

(a) The incident electric field is $\vec{E} = E_x \cos{(\omega t - kz)} \hat{x} + E_y \sin{(\omega t - kz)} \hat{y}$. The incident magnetic field is $\vec{B} = \frac{1}{c} \hat{k} \times \vec{E} = \frac{1}{c} (E_x \cos{(\omega t - kz)} \hat{y} - E_y \sin{(\omega t - kz)} \hat{x})$. The incident power density, $\vec{S} = \frac{1}{\mu} \vec{E} \times \vec{B} = \frac{1}{\mu c} [E_x^2 \cos^2{(\omega t - kz)} + E_y^2 \sin^2{(\omega t - kz)}] \hat{z}$.

(b) The transmitted fields are,

$$\vec{E}_t = E_x \cos(\omega t - kz)\hat{x} \; ; \quad \vec{B}_t = \frac{E_x}{c} \cos(\omega t - kz)\hat{y}$$
$$\vec{S}_t = \frac{E_x^2}{uc} \cos^2(\omega t - kz)\hat{z}$$

- (c) The other set of parallel polarising wires are kept at an angle ϕ . Thus only the $\cos \phi$ component of the electric field would get transmitted through the next filter. The fields will have the following magnitude, $|\vec{E_{t2}}| = |\vec{E_t} \cos \phi|$, $|\vec{B_{t2}}| = |\frac{\vec{E_t} \cos \phi}{c}|$ and $\vec{S_{t2}} = \frac{|\vec{E_t}|^2}{\mu c} \cos^2 \phi$.
- 6. Consider a satellite in a stationary orbit of earth, i.e, to earth based observers the satellite would appear motionless, at a fixed position in the sky. The satellite beams a signal towards earth. The beam covers a region with area $A \text{ km}^2$ on earth. Assume the field to be a monochoromatic plane wave with electric field amplitude E_0 . Find the power delivered at the receiver on earth. What is energy density at the receiver on earth?

Solution:

The energy flux density (energy per unit time per unit area) transported by the fields is given by the Poynting vector (\vec{S}) . Given the stationary orbit and the monochromatic plane wave nature of the signal we need to consider the time averaged quantities.

The time averaged power $(\langle P \rangle)$ per unit area transported by the electromagnetic wave, i.e, intensity $(I = \frac{\langle P \rangle}{A})$ is the Poynting vector (\vec{S}) time averaged over a complete cycle.

$$\frac{\langle P \rangle}{A} = \langle S \rangle = \frac{1}{2} c \epsilon_0 E_0^2$$

Thus the power delivered at the receiver on earth $\frac{1}{2}c\epsilon_0 E_0^2 A$.

For a monochromatic plane wave the time averaged energy density (energy per unit volume), $\langle u \rangle = \frac{\langle S \rangle}{c} = \frac{1}{2} \epsilon_0 E_0^2$. This is the energy density at the receiver on earth.