Computer Graphics

The Rendering Equation

Konstantin Tretyakov kt@ut.ee

Outline

- Raycasting
- Raytracing
- Raymarching / Sphere tracing

- Rendering equation solvers
 - Radiosity, Path tracing, Photon mapping

Quiz

• Explain recursive raytracing in simple terms.

Main problem with raytracing

 Raytracing, although often producing nice results, is not a faithful model of real-world lighting.

• Quiz: Why?

Main problem with raytracing

• In its pure form, it only considers "perfect" reflections and refractions, ignoring *diffuse light transfer* between surfaces.

Raytracing vs Reality

Besides applying a local light model, standard raytracing only takes into account light rays affecting the point from **this** direction.

Raytracing vs Reality

In reality, however, this point is affected by light rays hitting it from *all* directions.

Consider light, leaving some point x in direction w_o :

$$L(\mathbf{w}_o, \mathbf{x}) =$$

Consider light, leaving some point x in direction w_o :

$$L(\mathbf{w}_o, \mathbf{x}) = E(\mathbf{w}_o, \mathbf{x}) +$$

Consider light, leaving some point x in direction w_o :

...and energy, **reflected** towards w_o from direction w_{in}

$$L(\mathbf{w}_o, \mathbf{x}) = E(\mathbf{w}_o, \mathbf{x}) + f(\mathbf{w}_{\text{in}}, \mathbf{w}_o) L_{\text{in}}(\mathbf{w}_{\text{in}}, \mathbf{x})$$

Bidirectional Reflectance Distribution Function (BRDF)

This function indicates how much energy incoming from w_{in} will be reflected towards w_o . It is a property of a particular surface.

$$L(\mathbf{w}_o, \mathbf{x}) = E(\mathbf{w}_o, \mathbf{x}) + f(\mathbf{w}_{\text{in}}, \mathbf{w}_o) L_{\text{in}}(\mathbf{w}_{\text{in}}, \mathbf{x})$$

Consider light, leaving some point x in direction w_o :

...and energy, reflected towards w_o from direction w_{in}

$$L(\mathbf{w}_o, \mathbf{x}) = E(\mathbf{w}_o, \mathbf{x}) + f(\mathbf{w}_{\text{in}}, \mathbf{w}_o) L_{\text{in}}(\mathbf{w}_{\text{in}}, \mathbf{x})$$

Consider light, leaving some point x in direction w_o :

...averaged over all incoming directions

$$L(\boldsymbol{w}_o, \boldsymbol{x}) = E(\boldsymbol{w}_o, \boldsymbol{x}) + \int_{\Omega} f(\boldsymbol{w}_{\text{in}}, \boldsymbol{w}_o) L_{\text{in}}(\boldsymbol{w}_{\text{in}}, \boldsymbol{x}) (\boldsymbol{n}^T \boldsymbol{w}_{\text{in}}) d\boldsymbol{w}_{\text{in}}$$

$$L(\boldsymbol{w}_o, \boldsymbol{x}) = E(\boldsymbol{w}_o, \boldsymbol{x}) + \int_{\Omega} f(\boldsymbol{w}_{\text{in}}, \boldsymbol{w}_o) L_{\text{in}}(\boldsymbol{w}_{\text{in}}, \boldsymbol{x}) (\boldsymbol{n}^T \boldsymbol{w}_{\text{in}}) d\boldsymbol{w}_{\text{in}}$$

- The equation must hold true for all points x in the scene, for all color components (i.e. it is a system of equations, in fact).
- We initially know $E(\cdot)$ for all points (i.e. we know which points emit light)
- "Solving the rendering equation" means finding $L(\mathbf{w}_o, \mathbf{x})$ for points and light directions that reach the camera.

Solving the Rendering Equation

Two primary approaches

- Replace the integral with a *finite sum*:
 - Radiosity

- Replace the integral with a random sample:
 - Path tracing
 - Photon mapping

$$L(\boldsymbol{w}_o, \boldsymbol{x}) = E(\boldsymbol{w}_o, \boldsymbol{x}) + \int_{\Omega} f(\boldsymbol{w}_{\text{in}}, \boldsymbol{w}_o) L_{\text{in}}(\boldsymbol{w}_{\text{in}}, \boldsymbol{x}) (\boldsymbol{n}^T \boldsymbol{w}_{\text{in}}) d\boldsymbol{w}_{\text{in}}$$

First, assume the scene consists of a **finite** number of patches (e.g triangles)

$$L(\mathbf{w}_o, \mathbf{x}) = E(\mathbf{w}_o, \mathbf{x}) + \int_{\Omega} f(\mathbf{w}_{\text{in}}, \mathbf{w}_o) L_{\text{in}}(\mathbf{w}_{\text{in}}, \mathbf{x}) (\mathbf{n}^T \mathbf{w}_{\text{in}}) d\mathbf{w}_{\text{in}}$$
$$L(\mathbf{w}_o, \mathbf{x}_k) = E(\mathbf{w}_o, \mathbf{x}_k) + \sum_{i} f(\mathbf{w}_{\text{in}}, \mathbf{w}_o) L_{\text{in}}(\mathbf{x}_i, \mathbf{x}) (\mathbf{n}^T \mathbf{w}_{\text{in}})$$

First, assume the scene consists of a **finite** number of patches (e.g triangles)

$$L(\boldsymbol{w}_{o}, \boldsymbol{x}) = E(\boldsymbol{w}_{o}, \boldsymbol{x}) + \int_{\Omega} f(\boldsymbol{w}_{\text{in}}, \boldsymbol{w}_{o}) L_{\text{in}}(\boldsymbol{w}_{\text{in}}, \boldsymbol{x}) (\boldsymbol{n}^{T} \boldsymbol{w}_{\text{in}}) d\boldsymbol{w}_{\text{in}}$$
$$L(\boldsymbol{w}_{o}, \boldsymbol{x}_{k}) = E(\boldsymbol{w}_{o}, \boldsymbol{x}_{k}) + \sum_{i} f(\boldsymbol{w}_{\text{in}}, \boldsymbol{w}_{o}) L_{\text{in}}(\boldsymbol{x}_{i}, \boldsymbol{x}) (\boldsymbol{n}^{T} \boldsymbol{w}_{\text{in}})$$

Second, assume each patch radiates equally in all directions, i.e. all lighting is *diffuse*.

$$L(\boldsymbol{w}_{o}, \boldsymbol{x}) = E(\boldsymbol{w}_{o}, \boldsymbol{x}) + \int_{\Omega} f(\boldsymbol{w}_{\text{in}}, \boldsymbol{w}_{o}) L_{\text{in}}(\boldsymbol{w}_{\text{in}}, \boldsymbol{x}) (\boldsymbol{n}^{T} \boldsymbol{w}_{\text{in}}) d\boldsymbol{w}_{\text{in}}$$

$$L(\boldsymbol{w}_{o}, \boldsymbol{x}_{k}) = E(\boldsymbol{w}_{o}, \boldsymbol{x}_{k}) + \sum_{j} f(\boldsymbol{w}_{\text{in}}, \boldsymbol{w}_{o}) L_{\text{in}}(\boldsymbol{x}_{j}, \boldsymbol{x}) (\boldsymbol{n}^{T} \boldsymbol{w}_{\text{in}})$$

$$L(\boldsymbol{x}_{k}) = E(\boldsymbol{x}_{k}) + \sum_{j} \rho_{k} F_{kj} L(\boldsymbol{x}_{j})$$

Second, assume each patch radiates equally in all directions, i.e. all lighting is *diffuse*.

$$L(\boldsymbol{w}_{o}, \boldsymbol{x}) = E(\boldsymbol{w}_{o}, \boldsymbol{x}) + \int_{\Omega} f(\boldsymbol{w}_{\text{in}}, \boldsymbol{w}_{o}) L_{\text{in}}(\boldsymbol{w}_{\text{in}}, \boldsymbol{x}) (\boldsymbol{n}^{T} \boldsymbol{w}_{\text{in}}) d\boldsymbol{w}_{\text{in}}$$

$$L(\boldsymbol{w}_{o}, \boldsymbol{x}_{k}) = E(\boldsymbol{w}_{o}, \boldsymbol{x}_{k}) + \sum_{j} f(\boldsymbol{w}_{\text{in}}, \boldsymbol{w}_{o}) L_{\text{in}}(\boldsymbol{x}_{j}, \boldsymbol{x}) (\boldsymbol{n}^{T} \boldsymbol{w}_{\text{in}})$$

$$L(\boldsymbol{x}_{k}) = E(\boldsymbol{x}_{k}) + \sum_{j} \rho_{k} F_{kj} L(\boldsymbol{x}_{j})$$

$$L_{k} = E_{k} + \rho_{k} \sum_{j} F_{kj} L_{j}$$

Second, assume each patch radiates equally in all directions, i.e. all lighting is *diffuse*.

"View factor": How much of *j*'s energy is received by *k*.

E.g. $F_{kj} = 0$ if k is occluded from j.

How much incoming energy *k* rediffuses. i.e. "patch color"

View factors

The amount of energy that patch *i* receives from patch *j* is proportional to the projected solid angle of that patch as seen from *i*

$$L_k = E_k + \rho_k \sum_j F_{kj} L_j$$

$$l = e + \rho \cdot Fl$$

$$\boldsymbol{l} = \boldsymbol{e} + \boldsymbol{\rho} \cdot \boldsymbol{F} \boldsymbol{l}$$

$$l = e + \rho \cdot Fl$$

This is a linear equation. Analytically the solution is:

$$\boldsymbol{l} \coloneqq (\boldsymbol{I} - \boldsymbol{\rho} \boldsymbol{F})^{-1} \boldsymbol{e}$$

The number of patches is usually prohibitively large to use this approach.

$$l = e + \rho \cdot Fl$$

Instead we can use the Jacobi iteration method:

$$egin{aligned} l_0 &= e \ l_1 &= e +
ho \cdot F l_0 \ l_2 &= e +
ho \cdot F l_1 \ l_3 &= e +
ho \cdot F l_2 \end{aligned}$$

. . .

The algorithm converges in a few iterations.

In simple terms:

- In the beginning all patches except lightemitting ones have zero *radiosity* value.
- For each patch, recompute its radiosity value as a weighted sum of received radiosity + emitted radiosity.
- Repeat several times.

Quiz

- Assuming the scene has 10000 patches:
 - How much memory is used by the iterative Radiosity algorithm?
 - How many operations are performed per iteration (i.e. what is the computational complexity)?

Quiz

- Assuming the scene has 10000 patches:
 - How much memory is used by the iterative Radiosity algorithm? ~ 10000 (i.e. O(n))
 - How many operations are performed per iteration (i.e. what is the computational complexity)?

```
~100 000 000 (i.e. the complexity is O(n^2))
```


Progressive refinement radiosity

 Quadratic complexity is prohibitive for many scenes.

• A good approximation to radiosity which works in linear time per iteration (although requires more iterations) is *progressive* refinement.

Progressive refinement radiosity

- Deposit "energy chunks" on light-emitting patches only
- Pick the most energetic patch as the "shooter", and distribute its energy to all other patches ("receivers"), according to view factors.
- Repeat

Quiz

• Suppose we run the radiosity algorithm for a scene.

Then viewer position changes.

• Do we need to re-run the algorithm?

 Radiosity values are fixed and viewerindependent, so they can be pre-computed for the scene and stored as light maps.

• Consequently, radiosity is usually used together with other techniques (e.g. raytracing or standard pipeline).

 Progressive-refinement radiosity can be GPU-optimized

 The technique is pretty much always used in professional architecture / interior design CAD renderings.

Solving the Rendering Equation

Two primary approaches

- Replace the integral with a *finite sum*:
 - Radiosity

- Replace integral with a random sample:
 - Path tracing
 - Photon mapping

$$L(\boldsymbol{w}_o, \boldsymbol{x}) = E(\boldsymbol{w}_o, \boldsymbol{x}) + \int_{\Omega} f(\boldsymbol{w}_{\text{in}}, \boldsymbol{w}_o) L_{\text{in}}(\boldsymbol{w}_{\text{in}}, \boldsymbol{x}) (\boldsymbol{n}^T \boldsymbol{w}_{\text{in}}) d\boldsymbol{w}_{\text{in}}$$

Rather than taking the integral, sum over a *random sample* of directions

$$L(\mathbf{w}_o, \mathbf{x}) = E(\mathbf{w}_o, \mathbf{x}) + \int_{\Omega} f(\mathbf{w}_{\text{in}}, \mathbf{w}_o) L_{\text{in}}(\mathbf{w}_{\text{in}}, \mathbf{x}) (\mathbf{n}^T \mathbf{w}_{\text{in}}) d\mathbf{w}_{\text{in}}$$

$$L(\mathbf{w}_o, \mathbf{x}) = E(\mathbf{w}_o, \mathbf{x}) + \sum_{\mathbf{w}_{in} \in \text{Random}} f(\mathbf{w}_{in}, \mathbf{w}_o) L_{in}(\mathbf{w}_{in}, \mathbf{x}) (\mathbf{n}^T \mathbf{w}_{in})$$

Rather than taking the integral, sum over a *random sample* of directions

It is an integral over light coming into this point, so we can approximate it using a large enough random sample

Path tracing

Instead of averaging directions at each step, we shoot several random paths and average **over paths**.

Path tracing

Instead of averaging directions at each step, we shoot several random paths and average **over paths**.

Path tracing

Instead of averaging directions at each step, we shoot several random paths and average **over paths**.


```
color trace path(ray, depth) {
 hit = raycast scene(ray);
  if (hit == None || depth is too large) return Black;
 else {
     dir = random direction()
     new ray = Ray(origin = hit.point,
                   direction = dir);
     incoming color = trace path(new ray, depth+1)
     return hit.emittance +
             BRDF(hit.material, ray, new ray) *
             dot(new ray, hit.normal) *
             incoming color
```


- In simple terms:
 - Cast rays into the scene, each bouncing randomly around.
 - Rays that do not reach light sources contribute nothing.
 - Rays that reach light sources, contribute color, determined by the diffusion/reflectance properties of the surfaces they bounced off.

Quiz

• How is this different from conventional recursive raytracing?

Quiz

- How is this different from conventional recursive raytracing?
 - Rays bounce randomly, thus taking into account light diffusion, not only pure reflections or refractions.
 - No light model computations are performed at the bounce points. The ray has to reach a light source to contribute any color.

Problem with Path tracing

• We have to trace the ray until it hits the light (or we are tired).

• If light sources are small (e.g. points), rays may never hit them (or hit extremely rarely).

Problem with Path tracing

• Solution?

Problem with Path tracing

• Solution?

• We could try to trace the rays from light sources, but this leads to a similar problem: some rays wouldn't ever reach the camera.

• Solution:

- Trace a path for some steps starting from the camera.
- Trace another path for some steps starting from the light source.
- Connect the two parts and process the result as a single random path.

Light source

Photon mapping

- A method "inbetween" path tracing and radiosity:
 - Simulate "photons" shooting from light sources in all directions.
 - When photon hits a surface, it is split into parts

 part of its intensity "gets stuck" in the surface.

 Remaining intensity continues its path in some direction.
 - Eventually, many (~millions) of photons will be deposited all over the scene.

Photon mapping

- With each "stuck" photon we store the direction it came from and its color (intensity).
- We index all photons in a data structure for fast nearest-neighbor retrieval (e.g. k-d tree).
- Now for any point we can easily evaluate the rendering equation by replacing the integral with the sum over nearby photons.

Photon mapping

Combined methods

- Various combinations of methods are possible:
 - Radiosity light maps + standard pipeline
 - Radiosity / photon mapping + raytracing
 - Path tracing + Photon mapping (irradiance caching)

Summary: Core rendering methods

Standard graphics pipeline

- Direct raycasting
 - Raytracing, Raymarching, Sphere tracing
- Rendering equation solvers
 - Radiosity, Path tracing, Photon mapping
- Hybrid approaches

Quiz

