

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
	<u> </u>
КАФЕДРА	Прикладная математика

Лабораторная работа N2

Решение задач интерполирования

Студент	ФН2-52Б		Г.А. Швецов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподават	ель		А.О. Гусев
<u> </u>		(Подпись, дата)	(И.О. Фамилия)

Оглавление 2

Оглавление

1. Контрольные вопросы		3
2. Результаты		7
2.1. Функция x		7
$2.2.$ Функция x^2		7
$2.3. \Phi$ ункция $\frac{1}{\operatorname{arcctg}(1+10x^2)}$	• -	10
$2.4. \Phi$ ункция $\frac{1}{1+x^2}$	•	11
$2.5. \Phi$ ункция $\frac{1}{1+25x^2} \dots \dots$	•	12
2.6. Функция $(4x^3 + 2x^2 - 4x + 2)^{\sqrt{2}} + \arcsin\left(\frac{1}{5 + x - x^2}\right) - 5$	•	13
Список использованных источников		14

1. Контрольные вопросы

1. Определите количество арифметических операций, требуемое для интерполирования функции в некоторой точке многочленом Лагранжа (включая построение самого многочлена) на сетке с числом узлов, равным п.

Многочлен Лагранжа имеет вид

$$L_n = \sum_{k=0}^n y_k \prod_{j=0, j \neq k}^n \frac{x - x_j}{x_k - x_j}.$$
 (1.1)

Как видно из формулы (1.1), в произведении мы имеем ровно n делений и n-1 умножений. Каждое произведение мы домножаем на y_k (1 умножение). В результате получаем n+n-1+1=2n мультипликативных операций на каждом шаге. Просуммировав от 0 до n, получаем $2n^2+2n$ арифметических операций.

2. Определите количество арифметических операций, требуемое для интерполирования функции в некоторой точке кубическим сплайном (включая затраты на вычисление коэффициентов сплайна) на сетке с числом узлов, равным п.

Для нахождения вспомогательного параметра g_i необходимо n делений. Для составления СЛАУ необходимо посчитать коэффициенты, требующие 2(n-1) умножений. Решаем СЛАУ методом прогонки, что требует 5n операций. Осталось заполнить оставшиеся коэффициенты. Это 5(n-1)+5=5n действий. Таким образом, для составления многочлена третьей степени необходимо затратить n+2(n-1)+5n+5n=13n-2 мультипликативных операций. Для интерполирования же функции в некоторой точке по формуле

$$s_i = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_{i-1})^3$$
(1.2)

требуется затратить еще 6 умножений. Итого 6 + 13n - 2 = 13n + 4 операций.

3. Функция $f(x) = e^x$ интерполируется многочленом Лагранжа на отрезке [0,2] на равномерной сетке с шагом h = 0,2. Оцените ошибку экстраполяции в точке x = 2,2, построив многочлен Лагранжа и подставив в него это значение, а также по формуле для погрешности экстраполяции.

Точка x = 2,2 находится в интервале $x \in [b, b + h] = [2, 2,2]$, поэтому оценим ошибку экстраполяции по следующей формуле

$$|y(x) - L_n(x)| \le h^{n+1} \max_{\xi \in [a, x]} |y^{(n+1)}(\xi)|.$$

В нашем же случае

$$|y(x) - L_n(x)| = 6.2664084e-8 \le h^{n+1} \max_{\xi \in [a, x]} |y^{(n+1)}(\xi)| = 0.000000184832262.$$

4. Выпишите уравнения для параметров кубического сплайна, если в узлах x_0 и x_n помимо значений функции y_0 и y_n заданы первые производные $y'(x_0)$ и $y'(x_n)$.

На каждом из отрезков $[x_{i-1}, x_i]$, $i = \overline{1, n}$ функция $S(x) = s_i(x)$ ищется в виде многочлена третьей степени:

$$s_i = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_{i-1})^3.$$

Найдем коэффициенты a_i, b_i, c_i, d_i . Т.к. $S(x_i) = y_i, i = \overline{0, n}$ получим:

$$a_i = y_{i-1}, i = \overline{1, n},$$

 $a_i + b_i h_i + c_i h_i^2 + d_i h_i^3 = y_i, i = \overline{1, n}.$

Здесь $h_i = x_i - x_{i-1}$ — длина отрезка $[x_{i-1}, x_i]$.

Из условия непрерывности первой и второй производной для внутренних узлов сетки получим:

$$S'(x_i - 0) = S'(x_i + 0),$$

$$S''(x_i - 0) = S''(x_i + 0), i = \overline{1, (n - 1)},$$

откуда:

$$b_i + 2c_i h_i + 3d_i h_i^2 = b_{i+1}, \ i = \overline{1, (n-1)},$$

 $2c_i + 6d_i h_i = 2c_{i+1}, \ i = \overline{1, (n-1)}.$

Получаем систему из (4n-2) уравнений с 4n неизвестными. Недостающие два уравнения получим из граничных условий для S(x):

$$S'(x_0) = y'_0, \qquad S'(x_n) = y'_n.$$

Получим

$$S'(x_0) = s'_1(x_0) = b_1 = y'(x_0),$$

$$S'(x_n) = s'_n(x_n) = b_n + 2c_nh_n + 3d_nh_n^2 = y'(x_n).$$

Выражения для коэффициентов b_i и d_i имеют вид

$$b_{i} = g_{i} - \frac{(c_{i+1} + 2c_{i})h_{i}}{3},$$

$$d_{i} = \frac{c_{i+1} - c_{i}}{3h_{i}}, i = \overline{1, n},$$

где
$$g_i = \frac{y_i - y_{i-1}}{h_i}$$
.

Тогда граничные условия для S(x) можно переписать в следующем виде:

$$c_1 = \frac{3(g_1 - y_0')}{2h_1} - \frac{c_2}{2},$$

$$c_{n+1} = \frac{3(y_n' - g_n)}{2h_n} - \frac{c_n}{2}.$$

Тогда, исключая из предыдущих уравнений переменные a_i , b_i , d_i , получим систему

$$\begin{cases} c_1 = \frac{3(g_1 - y_0')}{2h_1} - \frac{c_2}{2}, \\ h_{i-1}c_{i-1} + 2(h_{i-1} + h_i)c_i + h_ic_{i+1} = 3(g_i - g_{i-1}), \ i = \overline{2, n}. \\ c_{n+1} = \frac{3(y_n' - g_n)}{2h_n} - \frac{c_n}{2}. \end{cases}$$

5. Каковы достоинства и недостатки сплайн-интерполяции и интерполяции многочленом Лагранжа?

Интерполяция многочленом Лагранжа

Достоинства:

- (a) Построенная функция имеет непрерывные производные любого порядка; Недостатки:
- (a) Интерполирование функции при большом числе узлов интерполяции приводит к плохому приближению;
- (b) Рост погрешности округления;
- (c) По сравнению со сплайн-интерполяцией сложность алгоритма на порядок выше $(O(n^2))$;
- (d) При добавлении новых узлов интерполяции, многочлен Лагранжа требуется заново строить;
- (e) Применение многочленов высоких степеней приводит к осцилляциям (пример Рунге).

Сплайн-интерполяция

Достоинства:

- (a) Степень многочленов не зависит от числа узлов сетки и, следовательно, не изменяется при его увеличении;
- (b) Построенная функция имеет (p-1) непрерывных производных;
- (c) В случае интерполяции кубическими сплайнами не только сам сплайн S(x), но и его первая и вторая производные S'(x) и S''(x) также сходятся в равномерной норме к соответствующим производным функциям y(x).

Недостатки:

- (а) Большая вероятность, что экстраполяция функции приведет к большой ошибке.
- 6. Какие свойства полиномов Чебышева и чебышевских сеток Вам известны? При проведении интерполяции желательно, чтобы была достигнута минимальная ошибка $\|f \tilde{f}\|$ в некоторой норме.

$$||f - \tilde{f}||_C = ||r_n||_C \leqslant \frac{M_{n+1}}{(n+1)!} ||\omega||_C.$$
 (1.3)

Поэтому выбирают такой набор узлов, чтобы норма в правой части оценки (1.3) была минимальной, тем самым уменьшая ошибку интерполяции

$$\min_{x_0,\dots,x_n} \max_{[a,b]} |\omega(x)|, \quad \omega(x) = \prod_{i=0}^n (x - x_i).$$

Это задача о построении полинома (n+1)-го порядка, которая решена В.А. Марковым. Искомый полином является полиномом Чебышева первого рода и имеет вид

$$\omega(x) = T_{n+1}(x) = \frac{(b-a)^{n+1}}{2^{2n+1}} \cos\left((n+1)\arccos\frac{2x - (b+a)}{b-a}\right),$$

корни полинома задаются следующим соотношением:

$$x_k = \frac{a+b}{2} + \frac{b-a}{2} \cos \frac{(2k+1)\pi}{2(n+1)}, \quad k = 0, 1, \dots, n,$$

при этом они являются узлами интерполяции. Для такого набора узлов

$$\|\omega\|_C = \frac{1}{2^{2n+1}} (b-a)^{n+1}$$

И

$$||f - L_n||_C \le \frac{M_{n+1}}{(n+1)!} \frac{(b-a)^{n+1}}{2^{2n+1}}.$$

Полученная оценка является неулучшаемой.

2. Результаты

• Точная функция • Равномерная сетка • Чебышевская сетка

2.1. Функция *x*

Таблица 1. Нормы ошибок интерполяции.

Количество	Интерполирование многочленом Лагранжа		еном Лагранжа Сплайн-интерполирование	
узлов	Равномерная сетка	Чебышевская сетка	Равномерная сетка	Чебышевская сетка
4	0.00000000	0.00000000	0.00000000	0.00000000
8	0.00000000	0.00000000	0.00000000	0.00000000
16	0.00000000	0.00000000	0.00000000	0.00000000
32	0.00000000	0.00000000	0.00000000	0.00000000
64	0.00000000	0.00000000	0.00000000	0.00000000

(а) Интерполяция многочленом

Лагранжа

(b) Сплайн-интерполяция

Рис. 1. n = 8.

2.2. Функция x^2

Таблица 2. Нормы ошибок интерполяции.

Количество	Интерполирование многочленом Лагранжа		Сплайн-интерполирование	
узлов	Равномерная сетка	Чебышевская сетка	Равномерная сетка	Чебышевская сетка
4	0.00000000	0.00000000	0.02406589	0.01356303
8	0.00000000	0.00000000	0.00613592	0.00150945
16	0.00000000	0.00000000	0.00153414	0.00012378
32	0.00000000	0.00000000	0.00038353	0.00000882
64	0.23398295	0.00000000	0.00000000	0.00000000

(a) Интерполяция многочленом Лагранжа

Рис. 2. n = 4.

(a) Интерполяция многочленом Лагранжа

Рис. 3. n = 64.

Таблица 3. Нормы ошибок интерполяции.

Количество	Интерполирование многочленом Лагранжа		Сплайн-инте	рполирование
узлов	Равномерная сетка	Чебышевская сетка	Равномерная сетка	Чебышевская сетка
100	749213958068.13720703	0.00000000	0.00000000	0.00000000

(a) Интерполяция многочленом Лагранжа

(b) Сплайн-интерполяция

Рис. 4. n = 100.

Количество	Интерполирование многочленом Лагранжа		Сплайн-интер	рполирование
узлов	Равномерная сетка	Чебышевская сетка	Равномерная сетка	Чебышевская сетка
4	0.14720062	0.12317574	0.08583173	0.09777330
8	0.31575341	0.06697527	0.04251731	0.05758552
16	11.13706900	0.03520988	0.02125762	0.03116576

(a) Интерполяция многочленом Лагранжа

(b) Сплайн-интерполяция

Рис. 5. n = 4.

(a) Сплайн-интерполяция (n = 8)

(b) Сплайн-интерполяция (n=16)

Рис. 6. n = 8.

2.3. Функция $\frac{1}{\arccos(1+10x^2)}$

Таблица 4. Нормы ошибок интерполяции.

Количество	Интерполирование многочленом Лагранжа		Сплайн-инте	рполирование
узлов	Равномерная сетка	Чебышевская сетка	Равномерная сетка	Чебышевская сетка
4	0.41874070	0.43984510	0.37888740	0.40442884
8	1.24549676	0.31118342	0.20291020	0.28341571
16	54.25190820	0.14203880	0.04443190	0.12179101
32	194964.99928579	0.02735275	0.00297114	0.01344388
64	3255214956736.39648438	0.00108219	0.00049753	0.00236323

(a) Интерполяция многочленом Лагранжа

(b) Сплайн-интерполяция

Рис. 7. n = 4.

(a) Интерполяция многочленом Лагранжа

(b) Сплайн-интерполяция

Рис. 8. n = 8.

2.4. Функция $\frac{1}{1+x^2}$

Таблица 5. Нормы ошибок интерполяции.

Количество	Интерполирование многочленом Лагранжа		а Сплайн-интерполирование	
узлов	Равномерная сетка	Чебышевская сетка	Равномерная сетка	Чебышевская сетка
4	0.02228186	0.01219512	0.01027558	0.00448152
8	0.00225838	0.00035894	0.00162533	0.00085716
16	0.00003991	0.00000031	0.00038882	0.00007959
32	0.00000003	0.00000000	0.00009620	0.00000530
64	16.96613580	0.00000000	0.00002399	0.00000034

Рис. 9. n = 4.

Рис. 10. n = 64.

2.5. Функция $\frac{1}{1+25x^2}$

Таблица 6. Нормы ошибок интерполяции.

Количество	Интерполирование многочленом Лагранжа		нжа Сплайн-интерполирование	
узлов	Равномерная сетка	Чебышевская сетка	Равномерная сетка	Чебышевская сетка
4	0.43835712	0.40201690	0.27931341	0.33008954
8	1.04517650	0.17083545	0.05607385	0.13375079
16	14.39385129	0.03261358	0.00374540	0.01362665
32	5058.95984109	0.00140174	0.0006555	0.00275683
64	1078549277.25717545	0.00000245	0.00004034	0.00024212

(a) Интерполяция многочленом Лагранжа

(b) Сплайн-интерполяция

Рис. 11. n = 4.

(a) Интерполяция многочленом Лагранжа

Рис. 12. n = 8.

2.6. Функция
$$(4x^3 + 2x^2 - 4x + 2)^{\sqrt{2}} + \arcsin\left(\frac{1}{5 + x - x^2}\right) - 5$$

Таблица 7. Нормы ошибок интерполяции.

Количество	Интерполирование многочленом Лагранжа		терполирование многочленом Лагранжа Сплайн-интерполирование	
узлов	Равномерная сетка	Чебышевская сетка	Равномерная сетка	Чебышевская сетка
4	0.59961429	0.33079347	1.15371582	0.63506019
8	0.02477320	0.00794910	0.32412950	0.07820568
16	0.00853480	0.00007259	0.08226211	0.00660738
32	0.00321827	0.00000003	0.02065464	0.00047461
64	33.93813773	0.00000000	0.00516903	0.00003170

(a) Интерполяция многочленом Лагранжа

(b) Сплайн-интерполяция

Рис. 13. n = 4.

(a) Интерполяция многочленом Лагранжа

(b) Сплайн-интерполяция

Рис. 14. n = 4.

Список использованных источников

1. *Галанин М.П., Савенков Е.Б.* Методы численного анализа математических моделей. М.: Изд-во МГТУ им. Н.Э. Баумана, 2010. 592 с.