COMP7103 Data Mining

Tutorial 1

Data Preparation / Weka

Typical data mining process

Scope of this tutorial

Data preparation is an important step in data mining, it includes:

- Collecting and processing of raw data;
- Preparing data file in an appropriate format;
- Pre-processing of data.

Data preparation tools

An open-source data mining software in Java
https://www.cs.waikato.ac.nz/ml/weka/
(Download version 3.8 or above)

WEKA

The University of Waikato

Of Waikato

Weka

- Allow you to apply filters to existing data set
- Not useful if raw data is in a format not readable by Weka
- Spreadsheets (Excel, Google Sheets, etc.)
 - Good for small data set, especially if you are familiar with the formulas
 - Explore potion of dataset before action
 - Cannot process large amount of data

Own program

- Require the most effort
- Most customizable

In any cases, data needs to be converted into a format appropriate for the data mining exercise depending on the choice of tools.

Example dataset for this tutorial

- 150 Iris data is collected in a CSV file
 - https://archive.ics.uci.edu/ml/datasets/iris
- Available on Moodle: iris.csv

- There are 4 attributes
 - Sepal length and width
 - Petal length and width
- Three species of iris

Understanding the data

- Read carefully the information in the data source.
 - https://archive.ics.uci.edu/ml/datasets/iris

"...The 35th sample should be: 4.9,3.1,1.5,0.2,"Iris-setosa" where the error is in the fourth feature. The 38th sample: 4.9,3.6,1.4,0.1,"Iris-setosa" where the errors are in the second and third features."

- Plan the preprocessing steps:
 - Fix data as described in the data source
 - Remove attributes that may not be useful
 - Save data for future use

Pre-processing CSV file in Weka

Data preparation

Weka Explorer – opening CSV file

Edit data

"...The 35th sample should be: 4.9,3.1,1.5,0.2,"Iris-setosa" where the error is in the fourth feature. The 38th sample: 4.9,3.6,1.4,0.1,"Iris-setosa" where the errors are in the second and third features."

Open the data in Weka and edit the data.

Remove attribute (if needed)

Save data

ARFF is the default data file type in Weka

• Then we can save the data into an ARFF file

ARFF file

• An ARFF file is a plain-text file with a specific format:

```
% comments
@RELATION relation_name

@ATTRIBUTE attribute_name attribute_type
@ATTRIBUTE attribute_name attribute_type
...

@DATA
comma-separated values
```

https://waikato.github.io/weka-wiki/formats_and_processing/arff_stable/

For example, this is the iris dataset:

```
% Iris Plants Database
@RELATION iris

@ATTRIBUTE sepallength NUMERIC
@ATTRIBUTE sepalwidth NUMERIC
@ATTRIBUTE petallength NUMERIC
@ATTRIBUTE petalwidth NUMERIC
```

Data-type can be either:

- numeric
- {list, of, normal, values}
- string

{Iris-setosa, Iris-versicolor, Iros-virginica}

date [<date-format>]

After this line, the data is presented in CSV format

```
►@DATA
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
```

@ATTRIBUTE class

Weka Explorer – opening ARFF file

Then we can open the ARFF file using Weka

Visualize one attribute

Using plot matrix

Interpreting the matrix

Looks good: classes are separated

Interpreting the matrix again

Applying filter

 Applying filter under the "Pre-process" tab of Weka is one of the easiest way to preprocess the data.

Result

Data Denormalization

Pre-processing Raw data

Pre-processing raw data

- In this demonstration, we are using data from the UCI Machine Learning Repository.
 - https://archive.ics.uci.edu/ml/datasets/Anonymous+Microsoft+Web+Data

```
I, 4, "www.microsoft.com", "created by getlog.pl"
T, 1, "VRoot", 0, 0, "VRoot"
N, 0, "0"
N, 1, "1"
T, 2, "Hide1", 0, 0, "Hide"
N, 0, "0"
N, 1, "1"
A, 1287, 1, "International AutoRoute", "/autoroute"
A, 1288, 1, "library", "/library"
A,1289,1, "Master Chef Product Information", "/masterchef"
A,1297,1, "Central America", "/centroam"
A, 1215, 1, "For Developers Only Info", "/developer"
                                                       Available on Moodle:
                                                       webdata.csv
```

Understanding the raw data

- The raw data is in CSV form
- For each row, the first column indicate the type of the data:
 - 'A' for attribute (a page);
 - 'C' for case (a user);
 - 'V' for vote (a visit of a page);
 - All others are ignored in our case.

```
A,1008,1,"Free Downloads","/msdownload"
...
A,1046,1,"IE Support","/iesupport"
...
A,1034,1,"Internet Explorer","/ie"
...
C,10027,10027
V,1008,1
V,1046,1
V,1034,1
...
```

So basically, we can create a set of relational data from the data set:

user_id	user_id	page_id
	10027	1008
10027	10027	1034
	10027	1046

page_id	path
1008	/msdownload
1034	/ie
1046	/iesupport

Users

Visits

Pages

What do we need?

Users user_id Visits user_id, page_id Pages page_id, url

- What is the purpose of our data mining exercise?
- What is the data mining exercise that we are going to do?
- Suppose, we only focus on classifying whether a user will visit a page, we need a
 data set like this:

User_	_id page :	L page 2	page 3	page 4	page 5	•••	
1	Yes	No	Yes	No	No		
2	No	No	Yes	No	No		
•••							

What can we do?

Denormalization

user_id	 1008	1034	1046	•••
	 •••	•••	•••	•••
10027	 Yes	Yes	Yes	•••
•••				

• We can denormalize the data to fit our purpose.

user_id	page_id	path
10027	1008	/msdownload
10027	1034	/ie
10027	1046	/iesupport

user_id
10027
Users

user_id	page_id
10027	1008
10027	1034
10027	1046

page_id	path
1008	/msdownload
1034	/ie
1046	/iesupport

Visits

Pages

Creating .arff file for Weka

By implementing a custom program to process the raw data, a CSV file is generated:

```
activeplatform, activex, athome, corpinfo, education, exchange, ...

N, N, Y, N, N, N, N, ...

Available on Moodle:

Webdata.processed.csv
```

 One can easily convert it to .arff file by converting the first row (the labels) into ARFF header.

```
@relation web_log_data

@attribute activeplatform {Y,N}
@attribute activex {Y,N}
...

@data
N,N,Y,N,N,N,...
N,N,N,N,N,N,...
...
```

Auto-conversion by Weka

• If you open the CSV file in Weka and save it as ARFF file, you may need to check the nominal attributes for compatibility.

```
@relation web.data.processed

@attribute activeplatform {N,Y}

@attribute activex {N,Y}

@attribute athome {Y,N}

The two attributes will be considered incompatible in Weka

...

@data
N,N,Y,N,N,N,...
N,N,N,N,N,N,...
```