LM201 UPMC, 3 novembre 2014. T. Leblé, leble@ann.jussieu.fr

$\mathbf{DM2}:\mathbf{Autour}\;\mathbf{de}\;\mathbb{Q}^{\mathbb{N}}$

On note $\mathbb{Q}^{\mathbb{N}}$ l'ensemble des suites de nombres rationnels (l'ensembles des applications de \mathbb{N} dans \mathbb{Q}) et $\mathbb{R}^{\mathbb{N}}$ l'ensemble des suites réelles (l'ensemble des applications de \mathbb{N} dans \mathbb{R}). On note aussi $\mathbb{N}^{\mathbb{N}}$ l'ensemble des suites d'entiers. Si E,F sont deux ensembles on note parfois $\mathcal{F}(E,F)$ l'ensemble des applications de E dans F. On a ainsi, avec cette notation $\mathbb{Q}^{\mathbb{N}} = \mathcal{F}(\mathbb{N},\mathbb{Q})$ etc.

- **0.** Injection, surjection, bijection Donner la définition d'une injection, d'une surjection, d'une bijection. Montrer que la composée de deux fonctions injectives est injective, que la composée de deux fonctions bijectives est bijective.
- **1. Cardinalité** On veut montrer que $\mathbb{Q}^{\mathbb{N}}$ est en bijection avec \mathbb{R} . Dans la suite, il ne faut pas hésiter à donner des noms aux injections, surjections, bijections que l'on rencontre, même si on ne les connaît pas explicitement. Il ne faut pas hésiter à les composer lorsque la composée a un sens, et à utiliser les résultats du paragraphe 0.
 - 1. Revoir son cours sur la cardinalité.
 - 2. On rappelle que l'ensemble $\{0,1\}^{\mathbb{N}}$ des applications de \mathbb{N} dans $\{0,1\}$ est en bijection avec \mathbb{R} . En déduire qu'il existe une injection de \mathbb{R} dans $\mathbb{Q}^{\mathbb{N}}$ (on pourra commencer par chercher une injection très simple de $\{0,1\}^{\mathbb{N}}$ dans $\mathbb{Q}^{\mathbb{N}}$).
 - 3. Montrer qu'il existe une injection de $\mathbb{N}^{\mathbb{N}}$ dans $\mathbb{R}^{\mathbb{N}}$. En déduire qu'il existe une injection de $\mathbb{N}^{\mathbb{N}}$ dans $(\{0,1\}^{\mathbb{N}})^{\mathbb{N}}$ (l'ensemble des applications de \mathbb{N} dans $\{0,1\}^{\mathbb{N}}$).
 - 4. Soit E, F, G trois ensembles. Expliciter une bijection entre

$$\mathcal{F}(E,\mathcal{F}(F,G))$$
 et $\mathcal{F}(E\times F,G)$.

Cette identité est connue en informatique sous le nom de Curryfication.

- 5. En déduire que $\mathcal{F}(\mathbb{N}, \mathcal{F}(\mathbb{N}, \{0, 1\}))$ est en bijection avec $\mathcal{F}(\mathbb{N} \times \mathbb{N}, \{0, 1\})$.
- 6. Rappel : $\mathbb{N} \times \mathbb{N}$ est en bijection avec \mathbb{N} . En déduire que

$$\mathcal{F}(\mathbb{N} \times \mathbb{N}, \{0, 1\})$$
 est en bijection avec $\mathcal{F}(\mathbb{N}, \{0, 1\})$.

- 7. En déduire finalement qu'il existe une injection de $\mathbb{N}^{\mathbb{N}}$ dans $\mathcal{F}(\mathbb{N}, \{0, 1\})$. Conclure qu'il existe une injection de $\mathbb{N}^{\mathbb{N}}$ dans \mathbb{R} (on rappelle une fois encore que \mathbb{R} et $\mathcal{F}(\mathbb{N}, \{0, 1\})$ sont en bijection).
- 8. En déduire qu'il existe en fait une injection de $\mathbb{Q}^{\mathbb{N}}$ dans \mathbb{R} (on rappelle que \mathbb{Q} et \mathbb{N} sont en bijection).
- 9. En déduire que $\mathbb{Q}^{\mathbb{N}}$ et \mathbb{R} sont en bijection (on pourra utiliser le théorème de Cantor-Bernstein).

2. Analyse Soit $u = (u_n)_n$ une suite réelle bornée. Justifier que $\{|u_n|, n \in \mathbb{N}\}$ possède une borne supérieure. On note $l^{\infty}(\mathbb{R})$ l'ensemble des suites réelles bornées et on définit l'application $||.||: l^{\infty}(\mathbb{R}) \to \mathbb{R}^+$ par

$$||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|.$$

- 1. Montrer que $l^{\infty}(\mathbb{R})$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$. On pourra en particulier montrer que $||u+v||_{\infty} \leq ||u||_{\infty} + ||v||_{\infty}$ et $||\lambda u||_{\infty} = |\lambda| \times ||u||_{\infty}$ pour tout u, v dans $l^{\infty}(\mathbb{R})$ et $\lambda \in \mathbb{R}$.
- 2. Montrer que $||uv||_{\infty} \leq ||u||_{\infty} \times ||v||_{\infty}$ pour tout u, v dans $l^{\infty}(\mathbb{R})$.

Cela fait de $l^{\infty}(\mathbb{R})$ une "algèbre de Banach".

1. Soit $u \in l^{\infty}(\mathbb{R})$. Montrer que pour tout $\epsilon > 0$ il existe une suite $v \in \mathbb{Q}^{\mathbb{N}} \cap l^{\infty}(\mathbb{R})$ telle que

$$||u-v||_{\infty} \le \epsilon.$$

Il est fortement recommandé de penser à utiliser la densité de \mathbb{Q} dans \mathbb{R} , et ce "plusieurs" fois.. Cela montre que " $l^{\infty}(\mathbb{Q})$ est dense dans $l^{\infty}(\mathbb{R})$ ".

2. Soit $(u^{(k)})_k$ une suite d'élements de $l^{\infty}(\mathbb{R})$, c'est à dire une suite de suites bornées! On dit que $(u^{(k)})_k$ est de Cauchy lorsque :

$$\forall \epsilon > 0 \exists K \in \mathbb{N}, \forall k, l \geq K, ||u^{(k)} - u^{(l)}||_{\infty} \leq \epsilon.$$

Montrer que si $(u^{(k)})_k$ est une suite de Cauchy dans $l^{\infty}(\mathbb{R})$ (au sens de la définition précédente) alors pour tout $n \in \mathbb{N}$ la suite $(u_n^{(k)})_k$ est de Cauchy dans \mathbb{R} (c'est la suite du n-ième coefficient de $u^{(k)}$, quand n est fixé et k varie). En déduire qu'elle admet une limite dans \mathbb{R} . On note v_n cette limite.

3. On définit ainsi une suite $v = (v_n)_n$. Montrer que la suite (de suites!) $(u^{(k)})_k$ converge vers v c'est à dire que :

$$\forall \epsilon > 0, \exists K \in \mathbb{N}, \forall k \ge K, ||u^{(k)} - v||_{\infty} \le \epsilon.$$

Cela montre que " $l^{\infty}(\mathbb{R})$ est complet".

4. Montrer qu'en revanche $l^{\infty}(\mathbb{Q})$ n'est pas complet (avec la notion définie précédemment de suite de Cauchy et de convergence).