Phase Retrieval Using Conditional Generative Adversarial Networks

Tobias Uelwer, Alexander Oberstraß, Stefan Harmeling

Heinrich Heine University Düsseldorf, Germany

Problem Definition

Phase retrieval aims at recovering a signal \boldsymbol{x} from its Fourier magnitudes

$$y = |\mathcal{F}x|$$
, where \mathcal{F} is the DFT. (1)

Proposed Method

We train a cGAN [2, 5] to recover images given their magnitudes.

At training time we solve

$$\min_{G} \max_{D} \mathcal{L}_{\text{adv}}(D, G) + \lambda \mathcal{L}_{\text{rec}}(G), \tag{2}$$

consisting of an adversarial component

$$\mathcal{L}_{\text{adv}}(D,G) = \mathbb{E}_x \big[\log D(x,y) \big] + \mathbb{E}_{x,z} \big[\log \big(1 - D(G(z,y),y) \big) \big],$$
 (3) and a reconstruction component

$$\mathcal{L}_{\text{rec}}(G) = \mathbb{E}_{x,z} [\|x - G(z,y)\|_1]. \tag{4}$$

• At test time the latent variable z is optimized for each measurement y to minimize the error

$$z^* = \arg\min_{z} ||y - |\mathcal{F}G(z, y)||_2^2.$$
 (5)

to find an $\hat{x} = G(z^*, y) \approx x$.

Our Model

- Our model can be seen as a hybrid of end-to-end learning and a generative prior.
- Including knowledge about the *measurement process* and the *data* distribution can greatly improve the reconstruction quality.
- PRCGAN: model trained with adversarial and reconstruction loss
- PRCGAN*: same as PRCGAN but with additional latent optimization during test time

Results on MNIST and Fashion-MNIST

Results on CelebA

Quantitative Results

Dataset	Metric	HIO	RAAR	E2E	DPR	PRCGAN	PRCGAN*
MNIST	MSE MAE SSIM	0.1016	0.0489 0.1150 0.5232	0.0411	0.0221	0.0168 0.0399 0.8449	$0.0010 \\ 0.0043 \\ 0.9898$
Fashion-MNIST	MSE MAE SSIM	0.1604	0.0669 0.1673 0.4314	0.0526	0.0856	0.0151 0.0572 0.7749	$0.0087 \\ 0.0412 \\ 0.8580$
CelebA	MSE MAE SSIM	0.2088	0.0729 0.2073 0.2274	0.0699	0.1323	0.0138 0.0804 0.6799	$0.0093 \\ 0.0642 \\ 0.7631$

References

- [1] James R Fienup. Phase retrieval algorithms: a comparison. Applied optics, 21(15):2758--2769, 1982.
- [2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in neural information processing systems*, pages 2672--2680, 2014.
- [3] Paul Hand, Oscar Leong, and Vlad Voroninski. Phase retrieval under a generative prior. pages 9136--9146, 2018.
- [4] D Russell Luke. Relaxed averaged alternating reflections for diffraction imaging. Inverse problems, 21(1):37--50, 2005.
- [5] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.