# Diskrétní struktury 1 Logika

Radim Bělohlávek



KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI

#### Co se naučíme



- co je logika
- výroky, pravdivost výroků, logické spojky, kvantifikátory
- výroková logika, formule logiky, vyplývání
- logické (booleovské) funkce, vyjadřování logických spojek jinými
- normální formy
- axiomatický systém logiky (jen nahlédneme)
- logické paradoxy, zajímavosti z logiky a z historie logiky

# Upozornění



Tyto slajdy jsou jen doprovodným materiálem k učebnímu textu

[DS1] R. Bělohlávek, Diskrétní struktury 1, Olomouc, 2020.

Slajdy nejsou plnohodnotným studijním materiálem.

Některé části učebního textu na slajdech probrány nejsou.

Na učební text se odkazujeme [DS1].

# Co je logika



- věda o správném usuzování
- jde o formu, ne o obsah

Prší.

Jestliže prší, pak jsou silnice mokré.

Silnice jsou mokré.

Mám hlad.

Jestliže mám hlad, kručí mi v břiše.

Kručí mi v břiše.

úsudky s různým obsahem, ale stejnou formou:

$$\frac{\varphi}{\varphi \to \psi}$$



- proto: formální logika, popř. symbolická logika
- moderní logika používá matematické metody
- budeme se zabývat klasickou logikou:
  - dvě pravdivostní hodnoty (pravda, nepravda)
  - klasické spojky ("a", "nebo", "jestliže … pak … ", … ne …)
- existují neklasické logiky
  - modální: spojky "je možné, že ... ", "je nutné, že"
  - temporální: výroky závislé na čase
  - fuzzy logika: více pravdivostních hodnot, např. 0.5 (je částečně pravda)

# Proč logika



- obecný význam:
  - vede k přesnosti a srozumitelnosti
  - pevný základ pro ostatní obory
- význam pro informatiku:
  - formální povaha logiky, syntax vs. sémantika ≈ způsob práce v informatice, počítač rozumí jen přesně popsaným informacím
  - základ pro různé oblasti informatiky, např.
     automatické dokazování (odvozování z předpokladů, jazyk Prolog),
     umělá inteligence (reprezentace znalostí, přibližné odvozování, expertní systémy),
     databáze (relační databáze, dotazovací jazyky),
     logická analýza dat
  - kromě toho řada "menších důvodů", např. vyhodnocování podmíněných výrazů programovacích jazyků se provádí podle pravidel logiky

# Výroky



Výrokem je (intuitivně) tvrzení, u kterého má smysl uvažovat o jeho pravdivosti.

# Výroky jsou:

Prší.

Byl jsem v obchodě a koupil jsem si knihu.

Když prší, jsou mokré silnice.

$$2 + 2 = 4$$
 a  $3 < 100$ .

$$2 + 2 = 6$$
.

## Výroky nejsou:

Kniha v obchodě.

$$2 + 2$$

At je pěkné počasí.

# Logické spojky



Logická spojka je (intuitivně) jazykový výraz, který umožňuje z jednodušších výroků tvořit složitější.

#### Příklady logických spojek:

```
"...a...", "...nebo...", "jestliže..., pak...",
"..., právě když ...", "ne ..." (tj. "není pravda, že ...").
```

- Z výroků "2+2=4" a "Prší." vytvoříme pomocí spojky "a" výrok "2+2=4 a Prší."
- Z výroku "Prší." vytvoříme pomocí spojky "ne" (tj. "není pravda, že ...") výrok "Neprší." (tj. "Není pravda, že prší.").
- Z výroků "Prší." a "Silnice jsou mokré." vytvoříme pomocí spojky "jestliže . . . , pak ... " výrok "Jestliže prší, pak jsou silnice mokré."

#### Všimněme si:



- pojem spojka používáme v logice v širším významu, než je běžné (např. "jestliže ..., pak ...")
- výše uvedené jsou takzvané klasické spojky
- existují neklasické ("je možné, že … ", "věří se, že … "), viz [DS1]

### Označení základních spojek klasické logiky:

 $V_1 \wedge V_2$  označuje " $V_1$  a  $V_2$ "

 $V_1 \lor V_2$  označuje " $V_1$  nebo  $V_2$ "

 $V_1 
ightarrow V_2$  označuje "jestliže  $V_1$ , pak  $V_2$ "

 $V_1 \leftrightarrow V_2$  označuje " $V_1$ , právě když  $V_2$ "

 $\neg V$  označuje "není pravda, že V"

# Pravdivostní hodnota výroku



- některé výroky jsou pravdivé ("2+2=4"), některé jsou nepravdivé ("Jaromír Jágr je prezidentem ČR.")
- je-li výrok V pravdivý, resp. nepravdivý, říkáme, že má pravdivostní hodnotu "pravda", resp. "nepravda", a píšeme

$$||V||=1,\quad \mathrm{resp.}\quad ||V||=0,$$

– pravdivostní hodnota výroku V se značí ||V||

# Jak určit pravdivostní hodnotu výroku?



- výrok je "Prší a venkovní teplota je menší než 15°C."
- vznikl použitím spojky "a" na výroky "Prší" a "Venkovní teplota je menší než 15°C."
- jeho pravdivostní hodnota závisí na
  - významu spojky "a"
- pravdivostních hodnotách výroků "Prší" a "Venkovní teplota je menší než 15°C."
- uvedený výrok je pravdivý, právě když je pravdivý první výrok i druhý výrok
- jaké je za tím obecné pravidlo?

### Obecný pohled:



výrok má tvar

$$V_1 \wedge V_2$$

- kde ∧ je symbol spojky "a"
- pravdivostní hodnotu  $||V_1 \wedge V_2||$  "spočítáme" z pravdivostních hodnot  $||V_1||$  a  $||V_2||$  výroků  $V_1$  a  $V_2$  pomocí významu spojky "a"
- význam spojky "a" je dán tabulkou:

$$\begin{array}{c|cccc} \land & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}$$

- je-li např.  $||V_1||=1$  ( $V_1$  je pravdivý) a  $||V_2||=0$  ( $V_2$  je nepravdivý), je dle tabulky  $||V_1\wedge V_2||=0$
- je-li  $||V_1||=1$  a  $||V_2||=1$  (oba výroky pravdivé), je dle tabulky  $||V_1\wedge V_2||=1$
- analogicky postupujeme v případě ostatních spojek





1.  $V_i$  neobsahuje logické spojky (je to atomický výrok) Například  $V_i$  je "Prší." Hodnota  $||V_i||$  je pak dána "zvenčí", tj. zjistíme, jestli prší, popř. se někoho zeptáme.

Určíme ji tedy podle externího zdroje e (stojí mimo logiku).

 $\boldsymbol{e}$ určuje pravdivostní hodnoty atomických výroků, proto taky píšeme

$$||V||_e$$
 místo  $||V||$ 

2.  $V_i$  obsahuje logické spojky (je to složený výrok) například  $V_i$  je "Prší a 2+2=4." Hodnota  $||V_i||$  se pak určí podobně jako na předchozím slajdu.

## Ještě k tabulce spojky ∧ (později vysvětlíme znovu):



tabulka

$$\begin{array}{c|cccc} \land & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}$$

popisuje tzv. pravdivostní funkci spojky ∧ (také: logická nebo booleovská funkce)

– tato funkce se značí  $\wedge$ , jejími argumenty jsou 0 a 1 a podle tabulky pro ni platí:

$$0 \land 0 = 0,$$
  $0 \land 1 = 0,$   $1 \land 0 = 0,$   $1 \land 1 = 1$ 

- máme tedy
  - − ∧ · · · symbol spojky (syntax)
  - ∧ · · · · význam spojky (sémantika)
- někdy píšeme pro jednoduchost  $\land$  místo  $\land$ , ale přísně vzato je třeba rozlišovat
- a další spojky?



| název       | zápis v přirozeném<br>jazyce | symbol            | pravdivostní<br>funkce | tabulka<br>pravd. funkce                                                                                                                                                                                                                                |
|-------------|------------------------------|-------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| negace      | "ne"                         | ¬                 | ¬.                     | $\begin{array}{c c} a & \neg a \\ \hline 0 & 1 \\ 1 & 0 \end{array}$                                                                                                                                                                                    |
| konjunkce   | "a"                          | ٨                 | ۸.                     | $\begin{array}{c cccc} & \wedge & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$                                                                                                                                                                |
| disjunkce   | "nebo"                       | V                 | ٧.                     | $\begin{array}{c cccc} \lor^{\cdot} & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$                                                                                                                                                            |
| implikace   | "jestliže , pak "            | $\rightarrow$     | ightarrow              | $\begin{array}{c cccc}  & \rightarrow & 0 & 1 \\ \hline  & 0 & 1 & 1 \\  & 1 & 0 & 1 \end{array}$                                                                                                                                                       |
| ekvivalence | ", právě když"               | $\leftrightarrow$ | $\leftrightarrow$      | $\begin{array}{c cccc}  & & & & & & & \\ \hline  & & & & & & & \\ \hline  & & & & & & & \\  & & & & & & & \\ \hline  & & & & & & & \\  & & & & & & & \\ \hline  & & & & & & & \\  & & & & & & & \\ \hline  & & & & & & & \\  & & & & & & & \\  & & & &$ |

## Příklad



Určete pravdivostní hodnotu výroku "2+2=5 nebo číslo 10 je dělitelné číslem 6."

 $\operatorname{\mathsf{Jde}}$  o výrok V tvaru

$$V_1 \vee V_2$$

Zřejmě je (to víme z "externího zdroje" e)

$$||V_1||=||\,\mathtt{,}2+2=5\,\mathrm{``}||=0\quad\mathrm{a}\quad ||V_2||=||\,\mathtt{,}\mathsf{``}\mathsf{\'s}\mathsf{islo}\ 10\ \mathsf{je}\ \mathsf{d\'eliteln\'e}\ \mathsf{\'s}\mathsf{\'islem}\ 6\,\mathrm{``}||=0$$

a tedy

$$||V|| = ||,2 + 2 = 5$$
 nebo číslo  $10$  je dělitelné číslem  $6.$  " $|| = ||V_1 \lor V_2|| = ||V_1|| \lor ||V_2|| = 0 \lor 0 = 0.$ 

Daný výrok je tedy nepravdivý.

K čemu takhle? Odpověď je přeci zřejmá? Ano, ale výše je u postup, jak ji mechanicky odvodit.

#### Uzávorkování



U složených výroků používáme kvůli jednoznačnosti závorky.

Uvažujme

$$2 \cdot 3 = 5$$
 a  $2 + 2 = 5$  nebo  $2 + 2 = 4$ 

Není jasné, jestli myslíme

$$(2 \cdot 3 = 5 \text{ a } 2 + 2 = 5) \text{ nebo } 2 + 2 = 4"$$

nebo

$$2 \cdot 3 = 5$$
 a  $(2 + 2 = 5 \text{ nebo } 2 + 2 = 4)$ "

Při prvním uzávorkování dostaneme pravdivý výrok, zatímco při druhém uzávorkování dostaneme výrok nepravdivý.

Závorky používáme i při symbolickém zápisu. Píšeme např.  $V_1 \wedge (V_2 \vee V_3)$ ,  $(V_1 \wedge V_2) \vee V_3$ .

#### Příklad



Určete pravdivostní hodnotu výroku:

"(2+2=4 a číslo 10 je dělitelné číslem 6), právě když není pravda, že Čína je nejlidnatější stát světa", víme-li, že "Čína je nejlidnatější stát světa" je pravdivý výrok.

Tři atomické výroky,  $V_1$ ,  $V_2$  a  $V_3$ :

"2+2=4", "číslo 10 je dělitelné číslem 6" a "Čína je nejlidnatější stát světa."

Víme, že  $||V_1|| = 1$ ,  $||V_2|| = 0$ ,  $||V_3|| = 1$ .

Symbolická podoba zadaného výroku je

$$(V_1 \wedge V_2) \leftrightarrow \neg V_3.$$

Pravdivostní hodnota je

$$||(V_1 \wedge V_2) \leftrightarrow \neg V_3|| = ||V_1 \wedge V_2|| \leftrightarrow ||\neg V_3|| = (||V_1|| \wedge ||V_2||) \leftrightarrow (\neg ||V_3||) = (1 \wedge 0) \leftrightarrow (\neg 1) = 0 \leftrightarrow 0 = 1,$$

tedy výrok je pravdivý.

# Proměnné a výroky s kvantifikátory



Číslo x je větší nebo rovno 3.

$$2 + y = 4$$
.

Jestliže je x dělitelné deseti, pak je x sudé.

$$x + y \ge z$$
.

Nejsou to výroky. Obsahují proměnné.

Dosazením číselných hodnot za proměnné vzniknou výroky. Pokud dosadíme 1 za  $x,\ 2$  za  $y,\ 103$  za z, dostaneme výroky

Číslo 1 je větší nebo rovno 3.

$$2 + 2 = 4$$
.

Jestliže je 1 dělitelné deseti, pak je 1 sudé.

$$1 + 2 \ge 103$$
.

První a čtvrtý výrok je nepravdivý, druhý a třetí je pravdivý.

Výroky s proměnnými se nazývají výrokové formy.



V(x) označuje výrokovou formu s proměnnou x, např. "Číslo x je větší nebo rovno 3.". V(1) označuje V(x) po dosazení 1 za x, tedy např. "Číslo 1 je větší nebo rovno 3."

Podobně " $x+y\geq z$ " označíme např. U(x,y,z).

K proměnné x musíme určit obor jejích hodnot  $\mathcal{D}_x$ . Např.

$$D_x = \{0, 1, -1, 2, -2, 3, -3, \dots\}.$$



## Obecný kvantifikátor s proměnnou $\boldsymbol{x}$ je výraz

"Pro každý x platí, že ...", symbolicky  $(\forall x)$  ...

## Tedy

"Pro každý x platí, že x je větší nebo rovno 1" zapíšeme  $(\forall x)$   $(x \ge 1)$ .

Tento výraz je výrokem.

Existenční kvantifikátor s proměnnou x je výraz

"Existuje x tak, že platí ...", symbolicky  $(\exists x)$ ...

## Tedy

"Existuje x tak, že x je větší nebo rovno 1" zapíšeme  $(\exists x)$   $(x \ge 1)$ .

Ten výraz je také výrokem.

# Pravdivost výroků s kvantifikátory



Je dána výroková forma V(x), kde x je proměnná s oborem hodnot  $D_x$ . Jak definovat pravdivostní hodnoty  $(\forall x)V(x)$  a  $(\exists x)V(x)$ ?

$$||(\forall x)V(x)|| = \left\{ \begin{array}{ll} 1 & \text{pokud pro každ\'e } m \in D_x \text{ je } ||V(m)|| = 1 \\ 0 & \text{jinak}. \end{array} \right.$$

Tedy:  $(\forall x)V(x)$  je pravdivý, pokud pro každou hodnotu m z oboru  $D_x$  je výrok V(m), který vznikne dosazením m do výrokové formy V(x), pravdivý.

$$||(\exists x)V(x)|| = \left\{ \begin{array}{ll} 1 & \text{pokud aspoň pro jedno } m \in D_x \text{ je } ||V(m)|| = 1 \\ 0 & \text{jinak}. \end{array} \right.$$

Tedy:  $(\exists x)V(x)$  je pravdivý, pokud pro alespoň jednu hodnotu m z oboru  $D_x$  je výrok V(m), který vznikne dosazením m do výrokové formy V(x), pravdivý.

#### Příklad



Je dán výrok "Pro každé x platí, že jestliže x je dělitelné 6, pak x je dělitelné 3." a  $D_x=\{1,2,3,4,\dots\}$ . Určete pravdivostní hodnotu daného výroku.

Výrok má tvar  $(\forall x)(V(x))$ , kde V(x) je "Jestliže x je dělitelné 6, pak x je dělitelné 3."

Podle pravidla výše je  $||(\forall x)(V(x))||=1$ , p.k. pro každé číslo m z  $D_x$  je ||V(m)||=1.

V(m) je  $V_1(m) \rightarrow V_2(m)$ , kde  $V_1(m)$  je "m je dělitelné 6",  $V_2(m)$  je "m je dělitelné 3".

Je zřejmé, že  $||V_1(m) \rightarrow V_2(m)|| = 1$ , tj. že ||V(m)|| = 1. Proč?:

- (a) pro m dělitelná 6 je  $||V_1(m) \to V_2(m)|| = ||V_1(m)|| \to ||V_2(m)|| = 1 \to 1 = 1$ ;
- (b) pro m nedělitelná 6 je

$$||V_1(m) \to V_2(m)|| = ||V_1(m)|| \to ||V_2(m)|| = 0 \to ||V_2(m)|| = 1$$
.

Proto je  $||(\forall x)V(x)|| = ||(\forall x)(V_1(x) \to V_2(x))|| = 1.$ 

#### Příklad



Je dán výrok "Existuje x tak, že pro každé y platí, že  $x \le y$ ".  $D_x = D_y = \{1, 2, 3, 4, \dots\}$ . Výrok je pravdivý, viz [DS1].

Co když 
$$D_x = D_y = \{\dots, -2 - 1 - 0, 1, 2, \dots\}$$
?

## Zkratka



Kvantifikátory se někdy objevují v následující podobě.

- "Pro každé liché x platí, že  $x^2-1$  je sudé."
- "Existuje liché x tak, že  $x^2-2$  je prvočíslo.",

#### obecně tedy:

- "Pro každé x splňující P(x) platí V(x)."
- "Existuje x splňující P(x) tak, že V(x)."

### Tato tvrzení jsou zkratkou za

- "Pro každé x platí, že jestliže P(x), pak V(x)."
- "Existuje x tak, že P(x) a V(x)."

#### u výroku výše tedy

- "Pro každé x platí, že jestliže x je liché, pak  $x^2-1$  je sudé."
- "Existuje x tak, že x je liché a že  $x^2-2$  je prvočíslo."

### Shrnutí



- ukázali jsme si základní pojmy a postupy logiky, zejm.
  - zejména výrok, logická spojka,
  - prvadivostní funkce spojek,
  - pravdivost výroku,
  - kvantifikátory
- většinu pojmů jsme definovali jen intuitivně, nepřesně
- to někdy stačí, nepřesnost ale může vést k problémům
- v dalším se proto seznámíme s úvodem do (formální) výrokové logiky

# Odbočka: paradoxy



Existuje velké množství tzv. logických paradoxů, některé plynou z nepřesného zacházení s jazykem a ukazují potřebu formálního systému logiky.

Paradox Iháře: Člověk C říká: "Lžu". Mluví pravdu?

Jiné ukazují např. na meze klasické logiky.

Paradox hromady: 1 je malé přirozené číslo. Je-li n malé, je i n+1 malé. Tedy každé přirozené číslo je malé.

Vrátíme se k němu později.



# ZÁKLADY VÝROKOVÉ LOGIKY

# Výroková logika



- definovat výroky, pravdivost apod. intuitivně nestačí
- přirozený jazyk je bohatý a intuitivní přístup vede k logickým sporům (p. lháře)
- možné řešení: pojmy výrok, pravdivost apod. definovat přesně, formálně
- výroková logika je nejjednodušším formálním systémem logiky

# Jazyk a formule výrokové logiky



- výroková logika (VL) nepracuje se skutečnými výroky, ale s formami (tvary) výroků
- ty se nazývají formule
- jsou to přesně definované řetězce symbolů, např.  $(p \wedge \neg q)$ ,  $(p \to (q \wedge r))$ ,  $(p \wedge r) \vee q$
- výrok vznikne z formule dosazením výroků za výrokové symboly  $p,\ q,\ r,\ \dots$
- z formule  $(p \to (q \land r))$  vznikne výrok "Jestliže prší, pak jsou silnice mokré a hrozí nebezpečí smyku.",
- práce s formulemi = soustředíme se na formu, odhlížíme od obsahu
- symboly, ze kterých sestávají formule tvoří jazyk VL



#### Definice Jazyk výrokové logiky se skládá z

- výrokových symbolů  $p, q, r, \ldots$ , popř. s indexy,  $p_1, p_2$ ; je jich neomezeně mnoho;
- symbolů výrokových spojek:
  - $\neg$  (negace),  $\rightarrow$  (implikace), popř. dále  $\land$  (konjunkce),  $\lor$  (disjunkce),  $\leftrightarrow$  (ekvivalence);
- pomocných symbolů (, ), [, ], atd. (různé druhy závorek).



## Definice Formule daného jazyka výrokové logiky je definována následovně:

- 1. každý výrokový symbol p je formule (tzv. atomická formule);
- 2. jsou-li  $\varphi$  a  $\psi$  formule, jsou i výrazy

$$(\varphi \wedge \psi),$$

$$(\varphi \vee \psi),$$

$$(\varphi \to \psi),$$

$$(\varphi \leftrightarrow \psi)$$

formule (tzv. složené formule).

Definice je tzv. induktivní.

Formulemi jsou: 
$$p$$
,  $q_1$ ,  $\neg p$ ,  $(p \rightarrow q)$ ,  $((p \land r) \lor p)$ ,  $(\neg p \rightarrow (q \land \neg r))$ .

Formulemi nejsou řetězce:  $\wedge p$ ,  $p \wedge \vee p$ ,  $pp \rightarrow (p \wedge)$ , atd.



#### Konvence o vynechávání závorek

- vnější závorky místo  $(p \to q)$  jen  $p \to q$
- priority spojek od největší po nejmenší:  $\neg$ ,  $\wedge$ ,  $\vee$ ,  $\rightarrow$ ,  $\leftrightarrow$

$$\begin{array}{l} \text{misto } (p \wedge (q \wedge r)) \text{ jen } p \wedge (q \wedge r), \\ \text{misto } (p \rightarrow ((p \wedge q) \vee r)) \text{ jen } p \rightarrow p \wedge q \vee r \end{array}$$

#### Pravdivostní ohodnocení



Formule jsou syntaktické objekty, samy o sobě nemají pravdivostní hodnotu, význam. Proto musíme definovat sémantiku VL. Základní sémantický pojem je následující:

**Definice** (Pravdivostní) ohodnocení je libovolné zobrazení e výrokových symbolů daného jazyka do množiny  $\{0,1\}.$ 

- e tedy přiřazuje každému symbolu p hodnotu 0 (nepravda) nebo 1 (pravda).
- význam ohodnocení e:
  - výrokové symboly označují atomické výroky
  - e(p)=1 znamená, že atomický výrok označený symbolem p je pravdivý
  - e(p)=0 znamená, že atomický výrok označený symbolem p je nepravdivý.

### Pravdivostní hodnota formule



**Definice** Pravdivostní hodnota formule  $\varphi$  při daném ohodnocení e, označujeme ji  $\|\varphi\|_e$ , je definována následovně:

- Je-li  $\varphi$  výrokovým symbolem p, pak  $\|p\|_e = e(p).$
- Je-li  $\varphi$  složná formule, tj. jednoho z tvarů  $\neg \psi$ ,  $\psi \land \theta$ ,  $\psi \lor \theta$ ,  $\psi \to \theta$ ,  $\psi \leftrightarrow \theta$ , pak

$$\begin{split} & \|\neg\psi\|_e = \neg \cdot \|\psi\|_e, \\ & \|\psi \wedge \theta\|_e = \|\psi\|_e \wedge \cdot \|\theta\|_e, \\ & \|\psi \vee \theta\|_e = \|\psi\|_e \vee \cdot \|\theta\|_e, \\ & \|\psi \to \theta\|_e = \|\psi\|_e \to \cdot \|\theta\|_e, \\ & \|\psi \leftrightarrow \theta\|_e = \|\psi\|_e \leftrightarrow \|\theta\|_e, \end{split}$$

kde  $\neg$ ',  $\land$ ',  $\lor$ ',  $\rightarrow$ ',  $\leftrightarrow$ ' jsou pravdivostní funkce logických spojek z výše uvedené tabulky.

Definice je induktivní, "kopíruje" definici formule.



- $\|\varphi\|_e=1$  ( $\|\varphi\|_e=0$ ) ... formule  $\varphi$  je při ohodnocení e pravdivá (nepravdivá)
- důležité:
  - otázka "je formule  $\varphi$  pravdivá?" nemá smysl
  - teprve otázka "je formule  $\varphi$  pravdivá při daném e?" má smysl
- alternativní definice  $\|\varphi\|_e$  (slovně):

$$\begin{split} \|\neg\psi\|_e &= \left\{ \begin{array}{l} 1 & \text{pokud } \|\psi\|_e = 0, \\ 0 & \text{jinak,} \end{array} \right. \\ \|\psi\wedge\theta\|_e &= \left\{ \begin{array}{l} 1 & \text{pokud } \|\psi\|_e = 1 \text{ a } \|\theta\|_e = 1, \\ 0 & \text{jinak,} \end{array} \right. \\ \|\psi\vee\theta\|_e &= \left\{ \begin{array}{l} 1 & \text{pokud } \|\psi\|_e = 1 \text{ nebo } \|\theta\|_e = 1, \\ 0 & \text{jinak,} \end{array} \right. \\ \|\psi\to\theta\|_e &= \left\{ \begin{array}{l} 1 & \text{pokud } \|\psi\|_e = 0 \text{ nebo } \|\theta\|_e = 1, \\ 0 & \text{jinak,} \end{array} \right. \\ \|\psi\leftrightarrow\theta\|_e &= \left\{ \begin{array}{l} 1 & \text{pokud } \|\psi\|_e = \|\theta\|_e, \\ 0 & \text{jinak.} \end{array} \right. \end{split}$$

## Příklad



Jakou pravdivostní hodnotu má formule  $p \vee \neg q$  při ohodnocení e?

- 1. e je dáno takto: e(p)=0, e(q)=0. Pak  $\|p\vee \neg q\|_e=\|p\|_e\vee \cdot \|\neg q\|_e=\|p\|_e\vee \cdot \neg \cdot \|q\|_e=0\vee \cdot \neg \cdot 0=0\vee \cdot 1=1$
- 2. e je dáno takto: e(p)=0, e(q)=1. Pak  $\|p\vee \neg q\|_e=\|p\|_e\vee \cdot \|\neg q\|_e=\|p\|_e\vee \cdot \neg \cdot \|q\|_e=0\vee \cdot \neg \cdot 1=0\vee \cdot 0=0.$

# Tautologie, sémantické vyplývání



#### Definice Formule se nazývá

- tautologie, je-li při každém ohodnocení pravdivá,
- kontradikce, je-li při každém ohodnocení nepravdivá,
- splnitelná, je-li při aspoň jednom ohodnocení pravdivá.

Formule  $\varphi$  sémanticky vyplývá z množiny T formulí, označujeme

$$T \models \varphi,$$

je-li  $\varphi$  pravdivá při každém ohodnocení, při kterém jsou pravdivé všechny formule z T.

### Příklad



- 1. Formule  $p \vee \neg p$  i  $p \to (p \vee q)$  jsou tautologie.
- 2. Formule  $p \land \neg p$  i  $p \leftrightarrow \neg p$  jsou kontradikce.
- 3. Formule  $p \to \neg p$  je splnitelná, ale není to ani tautologie, ani kontradikce.
- 4. Formule  $p \to q$  sémanticky vyplývá z množiny formulí  $T = \{p \to r, \neg q \to \neg r\}.$

### Tabulková metoda



- jak zjistit a zapsat pravdivostní hodnoty formule při všech možných ohodnoceních
- sloupce  $\approx$  výrokové symboly  $p_1, p_2, \ldots, p_n$  a jeden sloupec pro formuli  $\varphi(p_1, \ldots, p_n)$  řádky  $\approx$  jednotlivá pravdivostní ohodnocení

Tabulka (nebo pravdivostní tabulka) pro formuli  $(p \to q) \land (p \to r)$  je

| p | q | r | $(p \to q) \land (p \to r)$ |
|---|---|---|-----------------------------|
| 0 | 0 | 0 | 1                           |
| 0 | 0 | 1 | 1                           |
| 0 | 1 | 0 | 1                           |
| 0 | 1 | 1 | 1                           |
| 1 | 0 | 0 | 0                           |
| 1 | 0 | 1 | 0                           |
| 1 | 1 | 0 | 0                           |
| 1 | 1 | 1 | 1                           |

Tabulka popisuje tzv. pravdivostní funkci formule  $(p \to q) \land (p \to r)$ .



- počet řádků = počet možných přiřazení 0 a 1 symbolům  $p_1,\ldots,p_n$  ve formuli  $\varphi$
- tento počet je  $2^n$
- v řádku odpovídajícím ohodnocení e jsou hodnoty:  $e(p_1), \ldots, e(p_n), \|\varphi\|_e$
- předchozí tabulka: 3 výrokové symboly p,q,r, tabulka má tedy  $2^3=8$  řádků
- drobná nepřesnost: u tabulkové metody nepracujeme s "celými" ohodnoceními e, ale jen s "částmi ohodnocení", tj. s hodnotami ohodnocení e pro  $p_1,\ldots,p_n$ ; to můžeme, protože hodnota  $\|\varphi(p_1,\ldots,p_n)\|_e$  závisí jen na  $e(p_1),\ldots,e(p_n)$ ; viz [DS1]
- zřejmě platí: arphi je
  - tautologie, právě když ve sloupci odpovídajícím formuli  $\varphi$  jsou samé 1;
  - kontradikce, právě když ve sloupci odpovídajícím formuli  $\varphi$  jsou samé 0;
  - splnitelná, právě když ve sloupci odpovídajícím formuli  $\varphi$  je aspoň jedna 1.





$$\varphi \vee \neg \varphi$$
 (zákon vyloučeného třetího)

více viz [DS1]



– Lze pro více formulí. Tabulka pro formule  $\neg \neg p$ ,  $(\neg q \rightarrow \neg p)$  a q:

| p | $\overline{q}$ | $\neg \neg p$ | $(\neg q \to \neg p)$ | q |
|---|----------------|---------------|-----------------------|---|
| 0 | 0              | 0             | 1                     | 0 |
| 0 | 1              | 0             | 1                     | 1 |
| 1 | 0              | 1             | 0                     | 0 |
| 1 | 1              | 1             | 1                     | 1 |

- Zjistit, zda  $\{\varphi_1,\ldots,\varphi_m\}\models \varphi$ , tj. formule  $\varphi$  sémanticky plyne z formulí  $\varphi_1,\ldots,\varphi_m$ : právě když v každém řádku, kde mají  $\varphi_1,\ldots,\varphi_m$  hodnotu 1, má i  $\varphi$  hodnotu 1.
- Např. výše vidíme, že

$$\{\neg\neg p, (\neg q \to \neg p)\} \models q,$$

ale

$$\{\neg q \to \neg p), q\} \not\models \neg \neg p,$$

neboť ve druhém řádku mají  $(\neg q \rightarrow \neg p)$  a q hodnotu 1, ale  $\neg \neg p$  tam má 0.

# (Sémanticky) ekvivalentní formule



**Definice** Formule  $\varphi$  a  $\psi$  se nazývají (sémanticky) ekvivalentní, značíme  $\varphi \equiv \psi$ , právě když pro každé ohodnocení e je  $\|\varphi\|_e = \|\psi\|_e$ .

**Věta** Formule  $\varphi$  a  $\psi$  jsou ekvivalentní, právě když  $\varphi \models \psi$  a  $\psi \models \varphi$ . **Důkaz** Plyne přímo z definice  $\equiv$  a  $\models$ .

**Příklad** Ukažte, že (a)  $\varphi \lor \psi \equiv \neg(\neg \varphi \land \neg \psi)$  a že (b)  $\varphi \to \psi \equiv \neg \varphi \lor \psi$ . Ověříme tabulkou:

| $\varphi$ | $\psi$ | $\varphi \lor \psi$ | $\neg(\neg\varphi\wedge\neg\psi)$ | $\varphi \to \psi$ | $\neg \varphi \vee \psi$ |
|-----------|--------|---------------------|-----------------------------------|--------------------|--------------------------|
| 0         | 0      | 0                   | 0                                 | 1                  | 1                        |
| 0         | 1      | 1                   | 1                                 | 1                  | 1                        |
| 1         | 0      | 1                   | 1                                 | 0                  | 0                        |
| 1         | 1      | 1                   | 1                                 | 1                  | 1                        |

(a): 3. a 4. sloupec mají stejné hodnoty;

(b): 5. a 6. sloupec mají stejné hodnoty.

## Důležité dvojice ekvivalentních formulí





(obměněná implika

## Obměněná a obrácená implikace



Pro formuli  $\varphi \to \psi$  se často uvažují následující formule:

$$\neg \psi \rightarrow \neg \varphi$$
 (obměněná implikace)

$$\psi 
ightarrow arphi$$
 (obrácená implikace)

Jak ukazuje následující tabulka,  $\neg\psi\to\neg\varphi$  je ekvivalentní s  $\varphi\to\psi$ , ale  $\psi\to\varphi$  ne.

| $\varphi$ | $\psi$ | $\varphi \to \psi$ | $\neg \psi \to \neg \varphi$ | $\psi \to \varphi$ |
|-----------|--------|--------------------|------------------------------|--------------------|
| 0         | 0      | 1                  | 1                            | 1                  |
| 0         | 1      | 1                  | 1                            | 0                  |
| 1         | 0      | 0                  | 0                            | 1                  |
| 1         | 1      | 1                  | 1                            | 1                  |





Máme-li dokázat tvrzení ve tvaru  $\varphi \to \psi$ , můžeme místo toho dokázat  $\neg \psi \to \neg \varphi$ , což může být snazší.

Příklad **DOPLNIT** 

#### Booleovské funkce



**Definice** Booleovská funkce s n argumenty je libovolná funkce f, která každé uspořádané n-tici hodnot 0 nebo 1 přiřadí hodnotu 0 nebo 1, tedy libovolná

$$f: \{0,1\}^n \to \{0,1\}.$$

– B. funkci f s n argumenty lze zapsat tabulkou podobně jako u tabulkové metody. Zde jsou tabulky binárních b. funkcí f a g:

| $x_1$ | $x_2$ | f |
|-------|-------|---|
| 0     | 0     | 0 |
| 0     | 1     | 1 |
| 1     | 0     | 1 |
| 1     | 1     | 1 |

| $x_1$ | $x_2$ | g |
|-------|-------|---|
| 0     | 0     | 0 |
| 0     | 1     | 1 |
| 1     | 0     | 1 |
| 1     | 1     | 0 |

-f je shodná s  $\vee$  (pravdivostní funkce spojky  $\vee$ ). g je nová pravdivostní funkce (odpovídá spojce "buď ..., nebo ...").

- Každou booleovskou funkci 2 proměnných můžeme považovat za pravdivostní funkci logické spojky se dvěma argumenty.
- Tedy spojky  $\land$ ,  $\lor$ ,  $\rightarrow$  a  $\leftrightarrow$  jen některé z logických spojek se dvěma argumety (viz funkce g výše).
- Kolik je ale booleovských funkcí s n argumenty, tj. kolik je různých logických spojek s n argumenty?

**Věta** Existuje právě  $2^{(2^n)}$  booleovských funkcí s n argumenty.

Důkaz Funkcí je tolik, kolika způsoby lze vyplnit příslušnou tabulku.

Protože funkce mají n argumentů, má tabulka  $2^n$  řádků.

V každém řádku je jedno volné místo pro hodnotu funkce, a tu můžeme vyplnit libovolným způsobem (napsat tam 0 nebo 1).

Protože volných míst je  $2^n$ , lze je hodnotami 0 nebo 1 vyplnit  $2^{(2^n)}$  způsoby.

Všechny unární 
$$(n=1)$$
 booleovské funkce:



Dle Věty jich je  $2^{(2^n)} = 2^{(2^1)} = 2^2 = 4$ . Zde jsou:

| $x_1$ | $f_1$ |
|-------|-------|
| 0     | 0     |
| 1     | 0     |

| $x_1$ | $f_2$ |
|-------|-------|
| 0     | 0     |
| 1     | 1     |

| $x_1$ | $f_3$ |
|-------|-------|
| 0     | 1     |
| 1     | 0     |

$$egin{array}{c|ccc} x_1 & f_4 \\ \hline 0 & 1 \\ 1 & 1 \\ \hline \end{array}$$

 $f_1 \ldots$  nepravda,  $f_2 \ldots$  identita,  $f_3 \ldots$  negace,  $f_4 \ldots$  pravda

## Všechny binární (n=2) booleovské funkce:



Dle Věty jich je  $2^{(2^n)} = 2^{(2^2)} = 2^4 = 16$ . Zde jsou:

| $x_1$ | $x_2$ | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ | $f_6$ | $f_7$ | $f_8$ | $f_9$ | $f_{10}$ | $f_{11}$ | $f_{12}$ | $f_{13}$ | $f_{14}$ | $f_{15}$ | $f_{16}$ |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|----------|----------|----------|----------|----------|
| 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1     | 1        | 1        | 1        | 1        | 1        | 1        | 1        |
| 0     | 1     | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     | 0     | 0        | 0        | 0        | 1        | 1        | 1        | 1        |
| 1     | 0     | 0     | 0     | 1     | 1     | 0     | 0     | 1     | 1     | 0     | 0        | 1        | 1        | 0        | 0        | 1        | 1        |
| 1     | 1     | 0     | 1     | 0     | 1     | 0     | 1     | 0     | 1     | 0     | 1        | 0        | 1        | 0        | 1        | 0        | 1        |

#### všimněme si:

- $-f_2$ ,  $f_8$ ,  $f_{10}$  a  $f_{14}$  jsou po řadě pravdivostní funkce spojek  $\land$ ,  $\lor$ ,  $\leftrightarrow$  a  $\rightarrow$ .
- Funkce  $f_7$  je pravdivostní funkce výše zmíněné spojky "buď  $\dots$ , anebo  $\dots$ "

# Booleovské funkce vytvořené formulemi



- Každá formule  $\varphi(p_1,\ldots,p_n)$  vytvoří (indukuje) booleovskou funkci  $f_{\varphi}$  s n argumenty. Je to právě funkce, jejíž tabulku získáme vytvořením tabulky pro formuli  $\varphi$ .
- Pro formuli  $(p \to q) \land (q \to r)$  je  $f_{(p \to q) \land (q \to r)}$  znázorněna v tabulce

| _ |   |   |                              |
|---|---|---|------------------------------|
| p | q | r | $f_{(p\to q)\wedge(p\to r)}$ |
| 0 | 0 | 0 | 1                            |
| 0 | 0 | 1 | 1                            |
| 0 | 1 | 0 | 1                            |
| 0 | 1 | 1 | 1                            |
| 1 | 0 | 0 | 0                            |
| 1 | 0 | 1 | 0                            |
| 1 | 1 | 0 | 0                            |
| 1 | 1 | 1 | 1                            |

– Platí i naopak: Ke každé booleovské funkci f s n argumenty existuje formule  $\varphi$  taková, že tato formule indukuje právě funkci f, tj.  $f=f_{\varphi}$ . Dokonce k tomu stačí spojky  $\neg$ ,  $\land$  a  $\lor$ . Ukážeme nyní.

# Úplné disjunktivní a konjunktivní normální formy



### **Definice** Nechť V je množina výrokových symbolů. Pak

- literál je libovolný výrokový symbol z V nebo jeho negace;
- úplná elementární konjunkce (ÚEK) je konjunkce literálů, kde se každý symbol z V vyskytuje právě v jednom literálu;
- úplná elementární disjunkce (ÚED) je disjunkce literálů, kde se každý symbol z V vyskytuje právě v jednom literálu;
- úplná konjunktivní normální forma (ÚKNF) je konjunkce úplných el. disjunkcí nad V;
- úplná disjunktivní normální forma (ÚDNF) je disjunkce úplných el. konjunkcí nad  $V.\,$

### Význam:

 $\dot{\mathsf{UDNF}}$  a  $\dot{\mathsf{UKNF}}=\mathsf{standardizovan\acute{e}}$  tvary formulí

## **Příklad** Pro $V = \{p, q, r\}$



- literály:  $p, q, r, \neg p, \neg q, \neg r$  (ne  $\neg \neg p$ )
- ÚEK:  $p \wedge q \wedge r$ ,  $\neg p \wedge q \wedge \neg r$  (ne  $p \wedge r$ )
- ÚED:  $p \vee \neg q \vee r$
- ÚDNF:  $(p \land q \land r) \lor (p \land q \land \neg r)$
- ÚKNF:  $(p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg r)$

# Konstrukce úplné disjunktivní normální formy k dané f



- Je dána (tabulkou) booleovská funkce  $f(x_1,\ldots,x_n):\{0,1\}^n\to\{0,1\}.$
- Uvažujme následující postup pro vytvoření ÚDNF  $\varphi$  nad  $V = \{p_1, \dots, p_n\}$ :
- 1. Pro každý řádek tabulky odpovídající ohodnocení e, při kterém má funkce f hodnotu f (tedy  $f(e(p_1), \dots, e(p_n)) = 1$ ) sestrojíme ÚEK

$$l_1 \wedge l_2 \wedge \cdots \wedge l_n$$

kde

$$l_i = \left\{ \begin{array}{ll} p_i & \text{pokud } e(p_i) = 1 \\ \neg p_i & \text{pokud } e(p_i) = 0 \end{array} \right.$$

2.  $\varphi$  je disjunkcí ÚEK postupně sestrojených v bodu 1.

# Příklad konstrukce ÚDNF k dané f



Booleovská funkce f je dána následující tabulkou:

| p | q | r | f |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |
|   |   |   |   |

Krok 1.: projdeme řádky s 1 ve sloupci "f" a vytvoříme příslušné ÚEK:

ř. 1. : ÚEK je  $\neg p \wedge \neg q \wedge \neg r$ 

ř. 2. : ÚEK je  $\neg p \wedge \neg q \wedge r$ 

ř. 8. : ÚEK je  $p \wedge q \wedge r$ 

Krok 2.: výsledná ÚDNF je disjunkcí ÚEK z kroku 1., tedy je to formule

$$(\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (p \land q \land r)$$

# Správnost konstrukce



**Věta** Pokud f má aspoň v jednom řádku hodnotu 1 (tedy nepředstavuje kontradikci), pak sestrojená ÚDNF  $\varphi$  splňuje  $f=f_{\varphi}$  (tedy  $\varphi$  vytváří (reprezentuje) funkci f; tabulky f a  $\varphi$  jsou stejné).

(Pokud má f ve všech řádcích 0, postup vrátí "prázdnou formuli".)

 $\mathbf{D}\mathbf{\hat{u}kaz}$  Máme ukázat, že pro libovolné ohodnocení e platí:

 $\|\varphi\|_e=1$ , p. k. v tabulce f je v řádku odpovídajícímu e hodnota 1.

 $\varphi$  má tvar  $k_1 \vee \cdots \vee k_m$ .

" $\Rightarrow$ ": Nechť  $\|\varphi\|_e = 1$ . Z vlastností  $\vee$ : pro nějakou  $k_j = l_1 \wedge \cdots \wedge l_n$  musí být  $\|k_j\|_e = 1$ . Tedy musí být: pro  $l_i = p_i$  je  $e(p_i) = 1$  a pro  $l_i = \neg p_i$  je  $e(p_i) = 0$ .

To e je ale právě ohodnocení odpovídající řádku, díky kterému se  $k_j$  dostala do  $\varphi$ , tedy v tomto řádku je hodnota 1.

" $\Leftarrow$ ": Je-li v nějakém řádku 1, uvažujme odpovídající ohodnocení e a odpovídající  $k_j$ . Z konstrukce plyne, že  $\|k_j\|_e=1$ , a tedy  $\|\varphi\|_e=\|k_1\vee\cdots\vee k_m\|_e=1$ .





**Věta** Ke každé booleovské funkci f, která nepředstavuje kontradikci, existuje ÚDNF  $\varphi$  tak, že  $f=f_{\varphi}$ .

**Důkaz** Požadovanou  $\varphi$  je například ÚDNF sestrojená k tabulce funkce f.

# Konstrukce ÚDNF k dané formuli $\psi$



Úlohu lze obměnit:

Je dána formule  $\psi$  (místo funkce f). Najděte ÚDNF  $\varphi$  tak, že  $\varphi$  a  $\psi$  jsou sémanticky ekvivalentní (tj. mají stejné tabulky).

**Příklad** Sestrojte ÚDNF formule  $(p \rightarrow q) \land (p \rightarrow r)$ .

Vytvoříme tabulku. Rovnou přidáme sloupec, kam zapíšeme ÚEK:

| p | q | r | $(p \to q) \land (p \to r)$ | ÚEK                                |
|---|---|---|-----------------------------|------------------------------------|
| 0 | 0 | 0 | 1                           | $\neg p \land \neg q \land \neg r$ |
| 0 | 0 | 1 | 1                           | $\neg p \land \neg q \land r$      |
| 0 | 1 | 0 | 1                           | $\neg p \land q \land \neg r$      |
| 0 | 1 | 1 | 1                           | $\neg p \land q \land r$           |
| 1 | 0 | 0 | 0                           |                                    |
| 1 | 0 | 1 | 0                           |                                    |
| 1 | 1 | 0 | 0                           |                                    |
| 1 | 1 | 1 | 1                           | $p \wedge q \wedge r$              |

 $\mathsf{ÚDNF} \mathsf{\ tedy\ je\ } (\neg p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge \neg r) \vee (\neg p \wedge q \wedge r) \vee (p \wedge q \wedge r) \wedge (p \wedge q \wedge r) \vee (p \wedge q \wedge r) \wedge (p$ 

# Konstrukce ÚKNF k dané funkci f (formuli $\psi$ )



- Místo hledání ÚDNF můžeme hledat ÚKNF  $\varphi$  k dané funkci  $f:\{0,1\}^n \to \{0,1\}$  (nebo k dané formuli  $\psi$ ).
- Postup je "duální":
- 1. Pro každý řádek tabulky odpovídající ohodnocení e, při kterém má funkce f hodnotu 0 (tedy  $f(e(p_1),\ldots,e(p_n))=0$ ) sestrojíme ÚED

$$l_1 \vee l_2 \vee \cdots \vee l_n$$

kde

$$l_i = \begin{cases} p_i & \text{pokud } e(p_i) = 0 \\ \neg p_i & \text{pokud } e(p_i) = 1 \end{cases}$$

2.  $\varphi$  je konjunkcí ÚED postupně sestrojených v bodu 1.





Vytvoříme tabulku pravdivostní funkce formule  $(p \to q) \land (p \to r)$ ; do dalšího sloupce zapíšeme příslušné ÚED.

| p | q | r | $(p \to q) \land (p \to r)$ | ÚED                         |
|---|---|---|-----------------------------|-----------------------------|
| 0 | 0 | 0 | 1                           |                             |
| 0 | 0 | 1 | 1                           |                             |
| 0 | 1 | 0 | 1                           |                             |
| 0 | 1 | 1 | 1                           |                             |
| 1 | 0 | 0 | 0                           | $\neg p \vee q \vee r$      |
| 1 | 0 | 1 | 0                           | $\neg p \vee q \vee \neg r$ |
| 1 | 1 | 0 | 0                           | $\neg p \lor \neg q \lor r$ |
| 1 | 1 | 1 | 1                           |                             |

Tedy ÚKNF je:  $(\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r)$ 

# Analogická (duální) tvrzení pro ÚKNF



**Věta** Pokud f má aspoň v jednom řádku hodnotu 0 (tedy f nepředstavuje tautologii), pak sestrojená ÚKNF  $\varphi$  splňuje  $f = f_{\varphi}$ .

Jako snadný důsledek tedy dostaneme:

**Věta** Ke každé booleovské funkci f, která nepředstavuje tautologii, existuje ÚKNF  $\varphi$  tak, že  $f=f_{\varphi}.$ 

# Vyjadřování spojek jinými spojkami



#### Víme:

$$\begin{array}{l} \varphi\vee\psi\equiv\neg(\neg\varphi\wedge\neg\psi)\text{, tedy}\\ \varphi\vee\psi\text{ a }\neg(\neg\varphi\wedge\neg\psi)\text{ nabývají stejných hodnot.} \end{array}$$

Jinak řečeno, pro libovolné pravdivostní hodnoty a a b je  $a \vee b = \neg \cdot (\neg \cdot a \wedge b \neg \cdot b)$ 

To znamená, že spojku  $\vee$  lze vyjádřit pomocí  $\neg$  a  $\wedge$ .



### Další příklady:

$$a \lor b = \neg (\neg a \land \neg b)$$

$$a \lor b = \neg a \rightarrow b$$

$$a \land b = \neg (\neg a \lor \neg b)$$

$$a \land b = \neg (a \rightarrow \neg b)$$

$$a \rightarrow b = \neg (a \land \neg b)$$

$$a \rightarrow b = \neg a \lor b$$



$$\begin{array}{c|cccc} \uparrow & 0 & 1 \\ \hline 0 & 1 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

Peirceova (také Nicodova, 
$$\downarrow$$
, NOR):

$$\begin{array}{c|cccc} \downarrow^{\cdot} & 0 & 1 \\ \hline 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{array}$$

#### Všimněme si:

$$a \uparrow b = \neg (a \land b)$$

$$a \uparrow b = \neg a \lor \neg b$$

$$a \downarrow b = \neg a \land \neg b$$

$$a\downarrow^{\cdot}b \ = \ \neg^{\cdot}(a\vee^{\cdot}b)$$





$$\neg a = a \uparrow a 
a \land b = (a \uparrow b) \uparrow (a \uparrow b) 
a \lor b = (a \uparrow a) \uparrow (b \uparrow b) 
\neg a = a \downarrow a 
a \land b = (a \downarrow a) \downarrow (b \downarrow b) 
a \lor b = (a \downarrow b) \downarrow (a \downarrow b)$$

Úkol: Ověřte výše uvedené tabulkovou metodou. Vyjádřete podobně  $\to$  a  $\leftrightarrow$ .

# Funkčně úplné systémy spojek



**Definice** Množina  $\{f_1,\ldots,f_k\}$  booleovských funkcí je funkčně úplná, pokud každou  $f:\{0,1\}^n \to \{0,1\}$  lze vyjádřit jako složení některých funkcí z  $\{f_1,\ldots,f_k\}$ . Množina výrokových spojek je úplná, jestliže je úplná množina jejich pravdivostních funkcí.

**Věta**  $\{\neg^{\cdot}, \wedge^{\cdot}, \vee^{\cdot}\}$  je funkčně úplná. (Jinak řečeno:  $\{\neg, \wedge, \vee\}$  je funkčně úplná.)

**Důkaz** Máme dokázat, že každou booleovskou funkci f lze získat složením  $\neg$ ,  $\land$  a  $\lor$ . To plyne z věty o ÚDNF (i z věty o ÚKNF):

K libovolné funkci f existuje odpovídající ÚDNF  $\varphi$ . Její pravdivostní funkce  $\varphi$  je složená z  $\neg$ ,  $\land$  a  $\lor$ .

### Následující tvrzení je zřejmé:



**Lemma** Je-li možné každou z  $\{f_1,\ldots,f_k\}$  vyjádřit jako složení některých z  $\{g_1,\ldots,g_l\}$ , pak je-li  $\{f_1,\ldots,f_k\}$  funkčně úplná, je i  $\{g_1,\ldots,g_l\}$  funkčně úplná.

Např.: Každou ze spojek z  $\{\neg^{\cdot}, \wedge^{\cdot}, \vee^{\cdot}\}$  lze vyjádřit složením logických funkcí z  $\{\neg^{\cdot}, \rightarrow^{\cdot}\}$  (např.  $a \vee^{\cdot} b = \neg^{\cdot} a \rightarrow^{\cdot} b$ ). Protože je  $\{\neg^{\cdot}, \wedge^{\cdot}, \vee^{\cdot}\}$  úplná, je dle lemma i  $\{\neg^{\cdot}, \rightarrow^{\cdot}\}$  úplná.

Z uvedených vztahů o vzájemném vyjadřování spojek a z uvedeného lemma tedy plyne:

**Věta** Následující množiny logických funkcí jsou funkčně úplné:  $\{\neg^{\cdot}, \wedge^{\cdot}\}, \{\neg^{\cdot}, \vee^{\cdot}\}, \{\neg^{\cdot}, \rightarrow^{\cdot}\}, \{\uparrow^{\cdot}\}, \{\downarrow^{\cdot}\}.$ 

Ale: žádná z následujících množin není funkčně úplná:  $\{\neg^{\cdot}\}, \{\wedge^{\cdot}\}, \{\vee^{\cdot}\}, \{\wedge^{\cdot}, \vee^{\cdot}\}, \{\rightarrow^{\cdot}\}, \{\rightarrow^{\cdot}\}, \{\neg^{\cdot}, \leftrightarrow^{\cdot}\}.$ 

Pokuste se zdůvodnit proč (poslední tři jsou obtížnější).

# Z dějin logiky



Aristotelés (384–322 př. n. l.) zakladatel logiky



- směr, kterým se logika ubírala až do 19. století (aristotelovská logika)
- sylogismy:

Každý člověk je smrtelný. Sókratés je člověk. Sókratés je smrtelný.

- oddělil formu a obsah



#### mezi Aristotelem a 19. stoletím

- středověk: logika a scholastici
- raný novověk: moderní úvahy od praktickém využití logiky např. Gottfried Wilhelm Leibniz (1646–1716):
  - lidské myšlení je možné redukovat na matematické výpočty
  - univerzální jazyk, characteristica universalis, ve kterém mělo být možné pracovat s matematickými a vědeckými pojmy
  - koncept zařízení, tzv. calculus ratiocinator, které mělo provádět příslušné výpočty





George Boole (1815-1864)

- revoluční kniha The Laws of Thought (Zákony myšlení)
- matematický přístup k logice
- vliv: hlavní směr moderní logiky se nazývá Booleova logika



#### 2. pol. 19. století

- matematizace logiky
  - formalizace a používání matematických metod
  - logika jako metodický základ pro matematiku a exaktní vědy
- významní logici:
  - Gottlob Frege (1848-1925),
  - Giuseppe Peano (1858-1932),
  - Charles Sanders Peirce (1839–1914),
  - David Hilbert (1862–1943)
- začal vznikat logický kalkul, který později podrobně popsali Bertrand Russell (1872–1970) a Alfred Whitehead (1887–1974): Principia Mathematica (1910–1913)
- vyvinula se z něj moderní predikátová logika
- předmětem intenzívního zkoumání v 1. pol. 20. stol.



- 1. pol. 20. stol.
- významné objevy v logice:
  - možnosti (objevena axiomatizace)
  - meze formálních systémů (nerozhodnutelnost, neúplnost)
  - výpočetní aspekty logiky





Kurtl Gödel (1906–1978)



Alonzo Church (1903–1955)



Alan Turing (1912–1954)

# Nahlédnutí do dalších oblastí moderní logiky



#### Axiomatický systém logiky

- čistě syntaktický systém, ve kterém lze mechanickou manipulací se symboly z formulí logicky správně odvozovat další formule
- axiomatický systém výrokové logiku
  - axiomy:

$$\varphi \to (\psi \to \varphi)$$

$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

$$(\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$$

- odvozovací pravidlo (tzv. modus ponens)

$$\frac{\varphi, \varphi \to \psi}{\psi} \qquad \text{(z } \varphi \text{ a } \varphi \to \psi \text{ odvod' } \psi \text{)}$$

– platí např. věta o úplnosti: Formule  $\varphi$  je odvoditelná z axiomů, právě když  $\varphi$  je tautologie.



#### Predikátová logika

- rozšíření výrokové logiky
- značně bohatší jazyk: relace, funkce, kvantifikátory, . . .
- základ pro mnoho oblastí informatiky, např. relační databáze, umělá inteligence, logické programování



#### Logické programování a Prolog

- programování založené na predikátové logice
- program = množina logických formulí (předpoklady)
- spuštění programu:
  - uživatel položí dotaz (logická formule)
  - prologovský interpret zjistí, zda dotaz logicky vyplývá z předpokladů
  - založeno na algoritmech automatického dokazování
- pro programování expertních systémů



### Fuzzy logika

- neklasická logika
- vznik 1965, Lotfi Zadeh (1921–2017)



- více pravdivostních hodnot, místo  $\{0,1\}$  máme např.  $\{0,\frac{1}{2},1\}$  nebo [0,1]
- proč:  $\parallel$  Zaběhnout 100 m za 13 sekund je vynikající výkon  $\parallel$  = 0.8
- mnoho aplikací:
  - fuzzy regulátory, expertní systémy
  - spotřební elektronika (pračky, kamery, myčky nádobí, ...)
  - automatické převodovky, řízení metra, ...
- výzkum na naší katedře