Intégration et probabilités

Introduction

Références:

- Billingsley, Probabiliy and measure
- Kolmogorov & Fomin, tome 2

Motivations:

- Définir la longueur d'une partie de \mathbb{R}
- Définir l'aire d'une partie de \mathbb{R}^2
- Définir $\int f dx$ pour $f: \mathbb{R}^d \to \mathbb{R}$
- Définir, préciser la notion mathématique décrivant une suite infinie de jets de dés

Par exemple:

- Si $f : \mathbb{R} \to \mathbb{R}$, on peut définir $\int f$ comme l'aire algébrique définie par le graphe de f. Ainsi, définir une aire permet de définir une intégrale
- De même, $\lambda(A) = \mathbb{1}_A$ avec $\mathbb{1}_A(x) = 1$ ssi $x \in A$. Donc définir une intégrale revient à définir une mesure.
- Tirer un nombre au hasard dans [0,1], cela revient à tirer au hasard la suite de ses décimales au D10, car on mesure une partie de $\{0,1,\ldots 9\}^{\mathbb{N}}$

On se demande alors comment définir la surface d'une partie du plan.

Méthode 1 : à la Riemann. On approxime avec un quadrillage. On compte le nombre de carrés qui intersectent l'ensemble considéré, puis on conclut en passant à la limite quand le côté du quadrillage tend vers 0.

Méthode 2 : on pose $\lambda(A) := \inf_{(R_i)} \sum_{i=1}^{\infty} \lambda(R_i)$ où R_i est une suite de rectangles recouvrant A.

À noter : les deux méthodes ont des cas pathologiques différents.

Ensembles dénombrables

Définition : Un ensemble est dénombrable ssi il est en bijection avec \mathbb{N}

Propriété : Toute partie d'un ensemble dénombrable est au plus dénombrable

Démonstration : On pose $x : \mathbb{N} \to X, Y \subset X$. Si Y n'est pas fini :

$$i_1 = \min\{i \in \mathbb{N}, x_i \in Y\}$$

. . .

$$i_n = \min\{i \in \mathbb{N}, x_i \in Y \setminus \{x_1, \dots, x_{n-1}\}\}\$$

Ainsi, $k \mapsto x_{n_k}$ est une bijection de $\mathbb N$ vers Y.

Propriété: L'image d'une suite est au plus dénombrable.

Démonstration : On note $x: \mathbb{N} \to X$ une suite. On crée de manière analogue une sous-suite injective de x de même image que x (sauf si $f(x(\mathbb{N}))$ est fini).

Propriété : $\mathbb{N} \times \mathbb{N}$ est dénombrable.

Démonstration : $(n_1, n_2) \mapsto 2^{n_1}(2n_2 + 1) - 1$ est une bijection $\mathbb{N}^2 \to \mathbb{N}$.

 $\bf Propriét\'e:$ Une réunion au plus dénombrables d'ensembles au plus dénombrable est au plus dénombrable.

Démonstration : On traite le cas "union dénombrable d'ensembles dénombrables".

Soit A_i des parties dénombrables d'un ensemble X. Pour tout i, il existe $b_i : \mathbb{N} \to A_i$ bijection. (nb : ceci requiert en fait l'axiome du choix dénombrable) $(i,j) \mapsto b_i(j)$

Alors $\mathbb{N}^2 \to \bigcup A_i$ est surjective.

Donc $\bigcup A_i$ est au plus dénombrable.

Or $\bigcup_{i} A_i \supset A_i$.

Donc $\bigcup_{i} A_i$ est dénombrable.

Propriété : Si X est dénombrable, $\mathcal{P}(X)$ ne l'est pas. Plus généralement, quel que soit X, X et $\mathcal{P}(X)$ ne sont jamais en bijection (théorème de Cantor).

Démonstration : Supposons qu'il existe $x: X \to \mathcal{P}(X) \atop x \mapsto A_x$ une bijection.

Considérons $B:=\{x,x\notin A_x\}$. Comme x est une bijection, il existe $y\in X$ tel que $B=A_y$.

Question : a-t-on $y \in B$. On arrive à un paradoxe type Russel.

2

Exercice:

- $\{0,1\}^{\mathbb{N}}$ est non dénombrable.
- \mathbb{R} est non dénombrable.

lim sup et lim inf

Définition :

Soit $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ (plus généralement $\in \bar{\mathbb{R}}^{\mathbb{N}}$). Alors $s_n:=\sup_{k>n}x_k$.

 s_n est décroissante (donc a une limite dans $\bar{\mathbb{R}}$).

Alors $\lim s_n =: \lim \sup x_n = \inf s_n$.

De même pour $\liminf x_n$.

Propriété : $\lim x_n$ existe ssi $\lim \inf x_n = \lim \sup x_n$. Dans ce cas, $\lim x_n = \lim \sup x_n = \lim \inf x_n$.

Démonstration : $\Leftarrow: i_n \leq x_n \leq s_n$. On conclut par théorème d'encadrement.

 $\Rightarrow : \text{Si } x_n \to l \text{ alors } : \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, l - \varepsilon \leq i_n \leq l \leq s_n \leq l + \varepsilon.$ Donc $s_n \to l \text{ et } i_n \to l$.

Propriété : Si y_n est une sous-suite de x_n , alors $\liminf x_n \le \liminf y_n \le \limsup y_n \le \limsup x_n$

Ainsi, si l est valeur d'adhérence de x_n , alors $\liminf x_n \leq l \leq \limsup x_n$.

Propriété : $\limsup x_n = -\liminf(-x_n)$

Propriété : Il existe une sous-suite de x_n qui converge vers $\limsup x_n$. Idem pour $\liminf x_n$.

Démonstration : On choisit $k_n \ge n$ tel que $s_n - \frac{1}{n} \le x_{k_n} \le s_n$. $n \mapsto x_{k_n}$ converge vers $\limsup x_n$.

Familles sommables

On pose $(a_i)_{i \in I}$ famille de nombres positifs. **Définition :** $\sum_{i \in I} a_i := \sup_{F \subset I \text{fini}} \sum_{i \in F} a_i$

Si $\sum_{i \in I} a_i$ est fini, alors $\{i \in I, a_i \neq 0\}$ est au plus Propriété: dénombrable.

Démonstration :
$$\{i \in I, a_i \in \mathbb{R} \setminus \{0\}\} \subset \bigcup_{k \in \mathbb{N}} \underbrace{\{i \in I, a_i \ge \frac{1}{k}\}}_{\# \le k \sum_{i \in I} a_i}$$

À partir de maintenant, on considérera I dénombrable.

Propriété : Si
$$\sigma: \mathbb{N} \to I$$
 est une bijection, alors $\sum_{i \in I} a_i = \lim_{n \to +\infty} \sum_{k=1}^n a_{\sigma(k)} =: \sum_{k=1}^{+\infty} a_{\sigma(k)}$

Démonstration : $\forall F \subset I \text{ fini, } \sigma^{-1}(F) \text{ est fini donc majoré par un entier}$ N.

$$\begin{array}{l} \sum_{i \in F} a_i = \sum_{k \in \sigma^{-1}(F)} a_{\sigma(k)} \leq \sum_{k=1}^N a_{\sigma(k)} \leq \sum_{k=1}^{+\infty} a_{\sigma(k)} \\ \text{Donc par passage au sup} : \sum_{i \in I} a_i \leq \sum_{k=1}^{+\infty} a_{\sigma(k)}. \end{array}$$

Réciproquement, $\sum_{k=1}^{N} a_{\sigma(k)} = \sum_{i \in \sigma([\![1,N]\!])} a_i \leq \sum_{i \in I} a_i$. On conclut par passage à la limite.

Corollaire: Si $(a_k) \in \mathbb{R}_+^{\mathbb{N}}, \sum_{k=1}^{+\infty} a_k = \sum_{k=1}^{+\infty} a_{\sigma(k)}$ et ce quel que soit $\sigma: \mathbb{N} \to \mathbb{N}$ bijection.

En particulier dans le cas $I = \mathbb{N}^2, (a_{i,j})_{(i,j) \in I} \in \mathbb{R}_+^I$:

Propriété :
$$\sum_{(i,j)\in I} a_{i,j} = \sum_{i=1}^{+\infty} \left(\sum_{j=1}^{+\infty} a_{i,j}\right) = \sum_{j=1}^{+\infty} \left(\sum_{i=1}^{+\infty} a_{i,j}\right)$$

Démonstration : $F \subset I$ fini. Il existe $N \in \mathbb{N}$ tel que $F \subset [1, N]^2$. Donc $\sum_{(i,j)\in F} a_{i,j} \leq \sum_{i=1}^N \sum_{j=1}^N a_{i,j} \leq \sum_{i=1}^N \sum_{j=1}^{+\infty} a_{i,j} \leq \sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} a_{i,j}$. Réciproquement, $\forall N \in \mathbb{N}, \forall M \in \mathbb{N}, \sum_{i=1}^N \sum_{j=1}^M a_{i,j} \leq \sum_{(i,j)\in \mathbb{N}^2} a_{i,j}$.

Donc
$$(M \to +\infty)$$
, $\sum_{i=1}^{N} \sum_{j=1}^{+\infty} a_{i,j} \le \sum_{(i,j) \in \mathbb{N}^2} a_{i,j}$.
Donc $(N \to +\infty)$, $\sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} a_{i,j} \le \sum_{(i,j) \in \mathbb{N}^2} a_{i,j}$.

Donc
$$(N \to +\infty)$$
, $\sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} a_{i,j} \leq \sum_{(i,j) \in \mathbb{N}^2} a_{i,j}$

Séries absolument convergentes

Soit $(a_i)_{i\in I}$ une famille de réels tels que $\sum_{i\in I} |a_i|$ soit finie.

On définit
$$a_i^+ := \max(a_i, 0), a_i^- := \max(-a_i, 0).$$

Donc $a_i^+ - a_i^- = a_i$ et $a_i^+ + a_i^- = |a_i|.$

Donc
$$a_i^+ - a_i^- = a_i$$
 et $a_i^+ + a_i^- = |a_i|$.

Propriété :
$$\sum_{i \in I} a_i^+ - \sum_{i \in I} a_i^- = \sum_{k=1}^{+\infty} a_{\sigma(k)}$$
 et ce quel que soit $\sigma : \mathbb{N} \to I$ bijection.

Démonstration : $\sum_{i \in I} a_i^+ \leq \sum_{i \in I} |a_i|$ donc la somme est finie. Idem pour $\sum_{i \in I} a_i^-$.

$$\sum_{k=1}^{n} a_{\sigma(k)} = \sum_{k=1}^{n} a_{\sigma(k)}^{+} - \sum_{k=1}^{n} a_{\sigma(k)}^{-} \xrightarrow[n \to +\infty]{} \sum_{k=1}^{+\infty} a_{\sigma(k)}^{+} - \sum_{k=1}^{+\infty} a_{\sigma(k)}^{-}$$

Corollaire : Sous réserve de convergence absolue, on a :

$$\sum_{k=1}^{+\infty} a_k = \sum_{k=1}^{+\infty} a_{\sigma(k)}$$

$$\sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} a_{i,j} = \sum_{j=1}^{+\infty} \sum_{i=1}^{+\infty} a_{i,j}$$

Vocabulaire

Définition : Soit X un ensemble. On dit que $A \subset \mathcal{P}(X)$ est :

- une algèbre (d'ensembles) si elle est stable par union finie, intersection finie et passage au complémentaire, contient \emptyset et X.
- une tribu (ou σ -algèbre) si c'est une algèbre stable par réunion/intersection dénombrable.

Exemple:

- $\mathcal{P}(X)$ est une tribu.
- $\{\emptyset, X\}$ est une tribu.

Si on se donne une partition finie de $X:X=X_1\sqcup X_2\cdots\sqcup X_k$, alors l'ensemble des $A\subset X$ de la forme $A=\bigcup_{n\in I\subset [\![1,k]\!]}X_n$ est une tribu finie.

Lemme: Toute algèbre finie est associée à une partition finie.

Démonstration : Soit A une algèbre finie.

$$\forall x \in X, A(x) := \bigcap_{\substack{A \in \mathcal{A} \\ x \in A}} A.$$

Pour x et y donnés, soit A(x) = A(y), soit $A(x) \cap A(y) = \emptyset$.

Fixons $x \in X, B \in \mathcal{A}$.

- Soit $x \in B$ et alors $A(x) \subset B$.
- Soit $x \in {}^c B$ et alors $A(x) \subset {}^c B$ i.e. $A(x) \cap B = \emptyset$

On conclut avec B = A(y).

Définition : Si \mathcal{A} est une algèbre de X et $m: \mathcal{A} \to [0, +\infty]$ une fonction. On dit que m est une mesure additive si :

5

$$-m(\emptyset) = 0$$

$$- m(A \sqcup B) = m(A) + m(B) \qquad (A \cap B = \emptyset)$$

Définition: Si $\mathcal{T} \subset \mathcal{P}(X)$ est une tribu, $m: \mathcal{T} \to [0, +\infty]$ est une mesure si:

$$-m(\emptyset) = 0$$

—
$$m(\bigcup_{i \in I} A_i) = \sum_{i \in I} m(A_i)$$
 pour $(A_i)_{i \in I}$ famille dénombrable disjointe.

Remarque: Toute mesure est une mesure additive.

Remarque: On appelle parfois les mesures "mesures σ -additives".

Remarque: Lorsque $m: A \to [0, +\infty]$ est une mesure additive sur une algèbre, les propriétés suivantes sont équivalentes :

1. Si
$$A_i \in \mathcal{A}$$
 sont disjoints, (A_i) dénombrable, $\bigsqcup_{i \in I} A_i \in \mathcal{A}$, alors $m(\bigsqcup_{i \in I} A_i) = \sum_{i \in I} m(A_i)$

$$\sum_{i \in I} m(A_i)$$
2. Si $A, A_i \in \mathcal{A}, A \subset \bigcup_{i \in I} A_i$, alors $m(A) \leq \sum_{i \in I} m(A_i)$.

Dans ce cas, on dit que m est σ -additive.

Démonstration: $(1) \Rightarrow (2)$:

Soit
$$A_i \in \mathcal{A}$$
. On définit \tilde{A}_i par : $\tilde{A}_1 = A_1, \dots \tilde{A}_n = A_n \setminus \tilde{A}_{n-1} \quad \forall n \geq 1$
Alors $\bigcup A_i = \bigcup \tilde{A}_i$.

Si
$$A \subset \bigcup A_i$$
, alors $A \subset \bigcup \tilde{A}_i$. Alors $A = \bigcup (A \cap \tilde{A}_i)$.

Donc
$$m(A) = m(\bigsqcup(\tilde{A}_i \cap A)) \leq \sum m(A_i)$$
.

$$(2) \Rightarrow (1)$$
:

Si
$$A = \bigsqcup A_i \stackrel{(2)}{\Rightarrow} m(A) \le \sum m(A_i)$$
.

Si
$$A = \bigsqcup_{i=1}^{n} A_i \stackrel{(2)}{\Rightarrow} m(A) \leq \sum_{i=1}^{n} m(A_i)$$
.
 $A \supset \bigsqcup_{i=1}^{n} A_i$ quel que soit n .

Donc
$$m(A) \ge \sum_{i=1}^n m(A_i)$$
. Donc $(n \to +\infty)$, $m(A) \ge \sum_{i=1}^{+\infty} m(A_i)$.

Définition: Soit $f: \Omega \to X$ une application. Si \mathcal{A} est une algèbre (ou une tribu) sur Ω , alors on définit l'algèbre (tribu) image par :

$$f_*\mathcal{A} = \{A \subset X, f^{-1}(A) \in \mathcal{A}\}$$

Si \mathcal{A} est une algèbre (tribu) sur X, alors

$$f^*\mathcal{A} = \{f^{-1}(A), A \in \mathcal{A}\}$$

est une algèbre (tribu) sur Ω .

La vérification du fait que f^*A et f_*A est une algèbre (tribu) découle des propriétés des préimages :

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

$$f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$$

Définition: Si $f:(\Omega,\mathcal{A},m)\to X$ est une application, on définit la mesure image (ou la loi) comme la mesure :

$$(f_*m)(Y) := m(f^{-1}(Y))$$

définie sur $f_*\mathcal{A}$.

Définition : m est dite finie ssi $m(X) < +\infty$ **Définition :** m est dite de probabilité ssi m(X) = 1**Définition :** $f: (\Omega, \tau) \to (X, T)$ est dite mesurable si :

$$\forall Y \in \mathcal{T}, f^{-1}(Y) \in \tau$$

i.e.

$$f_*\tau \supset \mathcal{T}$$
$$f^*\mathcal{T} \subset \tau$$

Exercice: Soit Ω, X des ensembles, \mathcal{T} une tribu sur X. Soit $f: \Omega \to X$ une application, $g: \Omega \to X$ une application à valeurs dans un ensemble fini Y. Alors g est $f^*\mathcal{T}$ mesurable ssi $\exists h: (X, \mathcal{T}) \to (Y, \mathcal{P}(Y))$ mesurable telle que $g = h \circ f$. i.e. "g est f-mesurable ssi g ne dépend que de f".

Modélisation d'une expérience aléatoire finie (ex : jets de dés)

Soit Y un ensemble fini représentant les issues possibles. Il y a 2 manières de représenter un tirage aléatoire sur Y.

- 1. On se donne une mesure de probabilité sur $(Y, \mathcal{P}(Y))$. Pour ceci, il suffit de donner $p: Y \to [0,1]$ tel que $\sum_{y \in Y} p(y) = 1$. On note P la mesure de probabilité ainsi créée.
- 2. On se donne un espace de probabilité abstrait $(\Omega, \mathcal{T}, \mathbb{P})$ et une application mesurable $f: \Omega \to Y$ telle que $f_*\mathbb{P} = P$.

Pour passer de 1. à 2., il suffit de prendre $\Omega = Y$, $\mathcal{T} = \mathcal{P}(Y)$, $\mathbb{P} = P$, $f = \mathrm{id}$.