1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ			
КАФЕДРА	ИУ1 – СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ			
	н а бор а борг		A 30 6	
ЛАБОРАТОРНАЯ РАБОТА № 6				
	«МЕТОД КОРНЕВОГО ГОДОГРАФА»			
ю курсу: «ОСНОВЫ ТЕОРИИ УПРАВЛЕНИЯ»				
Студент:	ИУ2-61	(Подпись, дата)	Аветисян Н. О.	
Преподаватель:		—————————————————————————————————————	Лобачев И.В.	

Вариант 1

Задание:

Построить КГ в соответствии с вариантом из таблицы. Исследовать динамику замкнутой системы при различных значениях коэффициента усиления разомкнутой системы K.

Варианты передаточных функций

1 п/п	Значения параметров	Передаточная функция разомкнутой системы
1	$T=0,1,~\zeta=1$	
2	$T=0.05,~\zeta=0.707$	K
3	$T = 0.03, \; \zeta = 0.1$	$\overline{s(T^2s^2+2T\zeta s+1)}$
4	$T = 0.08, \ \zeta = 0.5$	
5	$T=0,01,~\zeta=0,15$	

Для варианта 1:

$$W(s) = \frac{K}{s(0.1^2s^2 + 2 \cdot 0.1 \cdot 1 \cdot s + 1)}$$

Теоретическая часть

Корневым годографом (КГ) называется совокупность траекторий перемещения всех корней характеристического уравнения замкнутой системы при изменении какого-либо параметра этой системы.

Обычно метод КГ позволяет находить полюса и нули ПФ замкнутой системы, располагая полюсами и нулями разомкнутой системы при изменении коэффициента усиления разомкнутой системы К.

 $\Pi\Phi$ разомкнутой системы $W_{\rm p}(s)$ представим в следующем виде:

$$W_{p}(s) = \frac{KC \prod_{j=1}^{m} (s - s_{j}^{0})}{\prod_{i=1}^{n} (s - s_{i}^{*})}$$
(1)

где s_j^0 – нули ПФ $W_p(s)$, $j=\overline{1,m}; s_i^*$ – полюса ПФ $W_p(s)$, , $i=\overline{1,n}; n$ и m – порядки знаменателя и числителя; , C – коэффициент представления (отношение коэффициентов при старших членах числителя и знаменателя).

При замыкании системы с $\Pi\Phi W_p(s)$ единичной отрицательной обратной связью $\Pi\Phi$ замкнутой системы $W_3(s)$, принимает вид:

$$W_{3}(s) = \frac{W_{p}(s)}{1 + W_{p}(s)} \tag{2}$$

Из выражения (2) следует, что нули ПФ замкнутой системы равны нулям ПФ разомкнутой системы. Для нахождения полюсов рассмотрим выражение

$$1 + W_{\rm p}(s) \tag{3}$$

в соответствии с выражением (1) имеем

$$\frac{KC\prod_{j=1}^{m}(s-s_{j}^{0})}{\prod_{i=1}^{n}(s-s_{i}^{*})} + 1 = 0 \Rightarrow \prod_{i=1}^{n}(s-s_{i}^{*}) + KC\prod_{j=1}^{m}(s-s_{j}^{0}) = 0$$
(4)

На основании выражения (4) можно сказать, что при K=0 корни характеристического уравнения совпадают с полюсами, а при $K=\infty-c$ нулями. При изменении K от 0 до ∞ траектории корней начинаются в полюсах и заканчиваются в нулях. Обычно полюсов больше, чем нулей. В этом случае n-m ветвей корневого годографа стремятся к ∞ .

Для определения полюсов замкнутой системы с отрицательной обратной связью необходимо решить уравнение (его называют основным уравнением метода КГ):

$$W_{\rm p}(s) = -1 \tag{5}$$

Так как $W_p(s)$ является функцией комплексного переменного s, то уравнение (5) распадается на два уравнения: уравнение модулей

$$|W_{\mathbf{p}}(s)| = 1 \tag{6}$$

и уравнение аргументов (фаза вектора -1 есть нечетное число π):

$$\arg W_{\rm D}(s) = \pm (2u+1)\pi, u = 0, 1, 2 \dots$$
 (7)

Как известно, при умножении комплексных чисел их аргументы складываются, а при делении – вычитаются. Поэтому, исходя из выражения (1), уравнение (7) имеет наглядный геометрический смысл.

Пусть точка s — полюс замкнутой системы. Если провести в s вектора из всех нулей $W_p(s)$ (обозначим аргументы этих векторов θ_j^0) и вектора из всех полюсов $W_p(s)$ (обозначим аргументы этих векторов θ_i^*), то уравнение (7) можно записать в следующем виде:

$$\sum_{j=1}^{m} \theta_{j}^{0} + \sum_{i=1}^{n} \theta_{i}^{*} = \pm (2u+1)\pi, u = 0, 1, 2 \dots$$
 (8)

Углы q отсчитываются от положительного направления действительной оси. Знак угла «+» соответствует повороту против часовой стрелки, знак угла «-» соответствует повороту по часовой стрелке.

Таким образом, любая точка КГ должна удовлетворять уравнению (8), из которого следует, что конфигурация КГ не зависит от коэффициента усиления K, но каждому конкретному значению K однозначно соответствуют точки на КГ.

При умножении комплексных чисел их модули перемножаются, а при делении – делятся. Поэтому на основании уравнения (6) можно записать

$$\frac{KC \prod_{j=1}^{m} l_{j}^{0}}{\prod_{i=1}^{n} l_{i}^{*}} = 1$$
(9)

где l_j^0 – модуль (длина) вектора, проведенного из j-нуля в точку s КГ; l_i^* – модуль вектора, проведенного из i-полюса в ту же точку s.

Корневой годограф системы с отрицательной обратной связью обладает следующими основными свойствами:

- 1. Ветви КГ непрерывны и расположены на комплексной плоскости симметрично относительно действительной оси.
- 2. Число ветвей КГ равно порядку системы п. Ветви начинаются в п полюсах разомкнутой системы при K=0. При возрастании K от 0 до ∞ полюса замкнутой системы двигаются по ветвям КГ.
- 3. m ветвей КГ при возрастании K от 0 до ∞ заканчиваются в m нулях Wp(s), а (n m) ветвей при K, стремящемся к ∞ , удаляются от полюсов вдоль асимптот.
- 4. При расположении ветвей корневого годографа в левой полуплоскости s САУ устойчива. При пересечении ветвей КГ мнимой оси слева направо САУ становится неустойчивой. Пусть при $K = K^{\kappa p}$ пересечение КГ с мнимой осью произойдет в некоторой точке $i\omega^{\kappa p}$.

Использование MatLab

Поведение и полюса замкнутой системы при К = 1

 $Puc.\ 1$ Переходная характеристика замкнутой системы $npu\ K=1$

 $Puc.\ 2$ Полюса системы $npu\ K=1$

Все полюса слева и система устойчива.

Построение корневого годографа (root locus) (по РАЗОМКНУТОЙ системе)

Получили корневой годограф с помощью команды rlocus.

Рис. 3 Корневой годограф разомкнутой системы

Точка К = 1 годографе

 $Puc.\ 4\ Toчка\ K=1\ гoдoграфе$

Как видно при К = 1 нет мнимых корней => нет колебаний

 $Puc.\ 5\ Toчка\ K=1.48\ годографе$

Когда K>1.48(Pис. 5) получаем мнимые корни => появляются колебания. Переходная характеристика при K = 2(Puc. 6):

 $Puc.\ 6\ \Pi ереходная\ характеристика замкнутой системы <math>npu\ K=2$

 $Puc.\ 7\ Toчка\ K = 20\ годографе$

При K=20(Рис. 7) достигаем границу устойчивости(корни находятся на мнимой оси), т. к. если корень окажется в правой полуплоскости, то система сразу станет неустойчивой.

Переходная характеристика при K = 20(Рис. 8):

 $Puc.\ 8\ \Pi$ ереходная характеристика замкнутой системы $npu\ K=20$

Система на границе устойчивости.

Puc. 9 Точка K = 20 годографе

И наконец при K = 21 > 20 (мнимые корни на правой $\Pi\Pi$):

 $Puc.\ 10\ \Pi$ ереходная характеристика замкнутой системы при K=21 Система неустойчива.