Distributed Hyperparameter Optimization and Model Search with Examples using SHADHO

Jeffery Kinnison, Sadaf Ghaffari, Nathaniel Blanchard, Walter Scheirer

Overview

- 1. Problem Definition
- 2. Manual, Grid, and Random Search
- 3. Bayesian Optimization
- 4. Population-Based Methods
- 5. Additional Methods
- 6. Neural Architecture Search
- 7. Hyperparameter Importance

https://jeffkinnison.github.io/shadho-tutorial/

1. Problem Definition

https://jeffkinnison.github.io/shadho-tutorial/

Learning Algorithms

Some Properties of Learning Algorithms

- Adjustable parameters (internal state)
- Updates to parameters in response to data
- Hyperparameters that control updates

Optimize an instance of an algorithm (model) to predict values from data.

$$| heta|=9$$

$$|\theta|=340,908$$

$$| heta|=3.6 imes10^9$$

Some Properties of Learning Algorithms

- Adjustable parameters (internal state)
- Updates to parameters in response to data
- Hyperparameters that control updates

Hyperparameters

Tunable parameters that control the training process and model quality.

K-Means Clustering

Number of Clusters

Naive Bayes

- Prior Distribution
- Smoothing Factor

SVM

- Kernel Function
- Regularization parameter (C)
- Kernel Parameters

Random Forests

- Ensemble Size
- Split Criterion
- Maximum Depth
- Splitting Threshold

Neural Nets

- Number of layers
- Size of layers
- Activations
- Regularization
- Dropout/Batch Norm
- Optimizer
- Learning Rate
- Momentum
- Learning Rate Decay
- ..

Hyperparameter Domains

Continuous Domains

Values are drawn from a continuous probability distribution.

Categorical Domains

Values selected from a set with some probability.

Dependent Domains

Values selected relative to another hyperparameter.

Hyperparameter Optimization

Select hyperparameters that result in the best performance for a given learning algorithm and data.

Hyperparameter Optimization Objective

Training Performance

e.g., loss, accuracy, precision/recall on the training set

Generalization Performance

e.g., loss, accuracy, precision/recall on the validation set

Learning Speed/Adaptability

e.g., rate of convergence, time to learn a new class

Model Matching

e.g., student/teacher models, biological model similarity

2. Manual, Grid, and Random Search

https://jeffkinnison.github.io/shadho-tutorial/

Manual Search

A human selects hyperparameters, evaluates trained model(s), and decides how to adjust.

Pros

- Extremely easy to implement
- Domain knowledge is easily baked in
- Decision-making is transparent

Cons

- Human in the loop
- Limited in scope/scalability
- Tuning becomes difficult with more complex learning methods

Grid Search

Hyperparameter sets are selected from a regular grid and evaluated.

Grid Search

Pros

- Easy to implement and automate
- Domain knowledge is easily baked in
- Parallelizable over grid points
- Will not get stuck in local minima
- Can be completely searched

Cons

- Limited in scope
- Inbuilt holes in the search space
- Not sensitive to the shape of the objective

Random Search

Hyperparameters are defined over continuous/categorical domains and selected randomly.

Random Search

Continuous Domains

Typically uniform or normal distributions.

ex.
$$\lambda \sim \mathcal{U}(-7,43), \lambda \sim \mathcal{N}(0,1)$$

Categorical Domains

Typically uniform (e.g., randint).

ex.
$$\lambda \sim \{32, 64, 128, 256, 512\}$$

Random Search

Pros

- Easy to implement and automate
- Domain knowledge can be baked in
- Parallelizable over sampled hyperparameters
- No holes in the search domain
- Optimal in the limit

Cons

- No defined "end"
- No guidance to a minimum
- "The limit" is the heat death of the universe

3. Bayesian Optimization

https://jeffkinnison.github.io/shadho-tutorial/

1. Initialize a model mapping parameters to the objective

- Initialize a model mapping hyperparameters to the objective
- 2. Sample hyperparameters from the model

- Initialize a model mapping hyperparameters to the objective
- 2. Sample hyperparameters from the model
- 3. Evaluate the objective using the hyperparameters

- Initialize a model mapping hyperparameters to the objective
- Sample hyperparameters from the prior distribution
- 3. Evaluate the objective using the hyperparameters
- 4. Update the model

- Initialize a model mapping hyperparameters to the objective
- 2. Sample hyperparameters from the prior distribution
- 3. Evaluate the objective using the hyperparameters
- 4. Update the model
- 5. Repeat

Guiding the Search

Bayesian Optimization is guided by evaluating hyperparameters that are predicted to improve model performance.

Model the objective with a Gaussian Process and score potential hyperparameters by Expected Improvement.

Model the objective with a Gaussian Process and score potential hyperparameters by Expected Improvement.

- Collect baseline hyperparameter evaluations
- 2. Fit a Gaussian Process to approximate the objective
- 3. Generate hyperparameters and compute El
- 4. Evaluate hyperparameters with best expected improvement
- 5. Repeat 2-4

Model the objective with a Gaussian Process and score potential hyperparameters by Expected Improvement.

$$\mu= ext{GPR}$$
 predictive mean $\sigma= ext{GPR}$ predictive variance $\gamma=rac{y_{best}-\mu}{\sigma}$ $EI=\sigma\gamma\Phi(\gamma)+N(\gamma;0,1)$ Standard Normal CDF

Pros

- Sequentially guides the search towards optimal hyperparameters
- Search spaces can be continuous
- Incorporates all prior knowledge into GP

Cons

- Difficult to account for hyperparameter value dependencies
- Can become stuck in local minima
- Heavily dependent on prior
- Gaussian Process
 hyperparameters must be tuned
- Care must be taken to parallelize searches

Random Forest Regression

Model the objective with a Random Forest and score potential hyperparameters by Expected Improvement.

Random Forest Regression

Model the objective with a Random Forest and score potential hyperparameters by Expected Improvement.

- Collect baseline hyperparameter evaluations
- 2. Fit/update a Random Forest to approximate the objective
- 3. Generate hyperparameters and compute El
- 4. Evaluate hyperparameters with best expected improvement
- 5. Repeat 2-4

Random Forest Regression

Model the objective with a Random Forest and score potential hyperparameters by Expected Improvement.

 $\mu=$ mean predicted score over ensemble

 $\sigma=$ predicted score variance over ensemble

PDF

$$\gamma = rac{y_{best} - \mu}{\sigma}$$
 $EI = \sigma \gamma \Phi(\gamma) + \mathcal{N}(\gamma; 0, 1)$ Standard Normal Standard Normal

CDF

Random Forests Regression

Pros

- Sequentially guides the search towards optimal hyperparameters
- Handles continuous domains
- Handles conditional domains
- Inbuilt ensemble learning

Cons

- Can get stuck in local minima
- Heavily dependent on prior
- Random forest hyperparameters must be tuned
- Care must be taken to parallelize searches

- 1. Collect baseline hyperparameter evaluations
- 2. Fit a Gaussian Process *l* to the top *k* performing hyperparameters
- 3. Fit a Gaussian Process *g* to the remaining *N k* hyperparameters
- 4. Generate hyperparameters and compute El
- Evaluate hyperparameters with best expected improvement
- 6. Repeat 2-4

$$l(x)=l$$
 GMM predicted score $g(x)=g$ GMM predicted score $\gamma=p(y< y^*)$ $EI=(\gamma+rac{g(x)}{l(x)}(1-\gamma))^{-1}$

Model the top k and bottom N - k hyperparameters in separate Gaussian mixture models and update to separate the two models.

	convex	MRBI
TPE	14.13 $\pm 0.30 \%$	$44.55 \pm 0.44\%$
GP	$16.70 \pm 0.32\%$	$47.08 \pm 0.44\%$
Manual	$18.63 \pm 0.34\%$	$47.39 \pm 0.44\%$
Random	$18.97 \pm 0.34~\%$	$50.52 \pm 0.44\%$

Automatic methods were allotted 200 trials; manual search used 82 trials for convex and 27 trials for MRBI.

Dataset	10-Fold C.V. Performance (%)				Test Performance (%)					
	Ex-Def	GRID SEARCH	RAND. SEARCH	AUTO-WEKA		Ex-Def	GRID	RAND.	AUTO-WEKA	
				TPE	SMAC		SEARCH	SEARCH	TPE	SMAC
DEXTER	10.20	5.07	10.60	9.83	5.66	8.89	5.00	9.18	8.89	7.49
GERMANCREDIT	22.45	20.20	20.15	21.26	17.87	27.33	26.67	29.03	27.54	28.24
DOROTHEA	6.03	6.73	8.11	6.81	5.62	6.96	5.80	5.22	6.15	6.21
YEAST	39.43	39.71	38.74	35.01	35.51	40.45	42.47	43.15	40.10	40.67
AMAZON	43.94	36.88	59.85	50.26	47.34	28.44	20.00	41.11	36.59	33.99
SECOM	6.25	6.12	5.24	6.21	5.24	8.09	8.09	8.03	8.10	8.01
SEMEION	6.52	4.86	6.06	6.76	4.78	8.18	6.29	6.10	8.26	5.08
CAR	2.71	0.83	0.53	0.91	0.61	0.77	0.97	0.01	0.18	0.40
MADELON	25.98	26.46	27.95	24.25	20.70	21.38	21.15	24.29	21.56	21.12
KR-vs-KP	0.89	0.64	0.63	0.43	0.30	0.31	1.15	0.58	0.54	0.31
ABALONE	73.33	72.15	72.03	72.14	71.71	73.18	73.42	74.88	72.94	73.51
WINE QUALITY	38.94	35.23	35,36	35.98	34.65	37.51	34.06	34.41	33.56	33.95
WAVEFORM	12.73	12.45	12.43	12.55	11.92	14.40	14.66	14.27	14.23	14.42
GISETTE	3.62	2.59	4.84	3.55	2.43	2.81	2.40	4.62	3.94	2.24
CONVEX	28.68	22.36	33.31	28.56	25.93	25.96	23.45	31.20	25.59	23.17
CIFAR-10-SMALL	66.59	53.64	67.33	58.41	58.84	65.91	56.94	66.12	57.01	56.87
MNIST BASIC	5.12	2.51	5.05	10.02	3.75	5.19	2.64	5.05	12.28	3.64
ROT. MNIST + BI	66.15	56.01	68.62	73.09	57.86	63.14	57.59	66.40	70.20	57.04
SHUTTLE	0.0328	0.0361	0.0345	0.0251	0.0224	0.0138	0.0414	0.0157	0.0145	0.0130
KDD09-APPENTENCY	1.8776	1.8735	1.7510	1.8776	1.7038	1.7405	1.7400	1.7400	1.7381	1.7358
CIFAR-10	65.54	54.04	69.46	67.73	62.36	64.27	63.13	69.72	66.01	61.15

Pros

- Sequentially guides the search towards optimal hyperparameters
- Handles continuous hyperparameters
- Handles conditional hyperparameters
- Maximizes difference between majority and best (tail modeling)
- Simpler El computation

Cons

- Can get stuck in local minima
- Heavily dependent on prior
- Care must be taken to parallelize searches

Additional Related Methods

Bayesian Optimization using Deep Learning

 Snoek, Jasper, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. "Scalable bayesian optimization using deep neural networks." In *International conference on machine learning*, pp. 2171-2180. 2015.

Bayesian Optimization using Gaussian Process Bandits

 Kandasamy, Kirthevasan, Jeff Schneider, and Barnabás Póczos. "High dimensional Bayesian optimisation and bandits via additive models." In *International Conference on Machine Learning*, pp. 295-304. 2015.

Bayesian Optimization using Bayesian Neural Networks

 Springenberg, Jost Tobias, Aaron Klein, Stefan Falkner, and Frank Hutter. "Bayesian optimization with robust Bayesian neural networks." In Advances in neural information processing systems, pp. 4134-4142. 2016.

Bayesian Optimization using Boosted Decision Trees

 Xia, Yufei, Chuanzhe Liu, YuYing Li, and Nana Liu. "A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring." Expert Systems with Applications 78 (2017): 225-241.

Additional Related Methods

- Initializing Bayesian Optimization with Meta Learning
 - Feurer, Matthias, Jost Tobias Springenberg, and Frank Hutter. "Initializing bayesian hyperparameter optimization via meta-learning." In Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.
- Batched Bayesian Optimization
 - González, Javier, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. "Batch bayesian optimization via local penalization." In Artificial intelligence and statistics, pp. 648-657. 2016.
- Bayesian Optimal Stopping
 - Dai, Zhongxiang, Haibin Yu, Bryan Kian Hsiang Low, and Patrick Jaillet. "Bayesian optimization meets Bayesian optimal stopping." In *International Conference on Machine Learning*, pp. 1496-1506. 2019.
- Bayesian Optimization with Adaptive Regressor Hyperparameters
 - Berkenkamp, Felix, Angela P. Schoellig, and Andreas Krause. "No-Regret Bayesian optimization with unknown hyperparameters." arXiv preprint arXiv:1901.03357 (2019).

4. Population-Based Methods

https://jeffkinnison.github.io/shadho-tutorial/

Population-Based Optimization

Population-Based Optimization

- 1. Randomly initialize *n* hyperparameter sets
- 2. Evaluate all *n* hyperparameter sets
- 3. Rank the population by their "fitness"
- Update each hyperparameter set with some criterion
- 5. Repeat 2-3 until hyperparameter sets and/or performance converge

Covariance Matrix Adaptation Evolution

Iteratively update generations of hyperparameters based on a multivariate Gaussian.

- 1. Initialize the $n \times n$ covariance matrix $C_0 = I$
- 2. Sample n hyperparameter sets from a multivariate normal using C_k
- 3. Evaluate all *n* hyperparameter sets
- 4. Compute a maximum likelihood update C_{k+1} over the top m hyperparameter sets
- 5. Repeat 2-4

Covariance Matrix Adaptation Evolution

Iteratively update generations of hyperparameters based on a multivariate Gaussian.

Covariance Matrix Adaptation Evolution

Pros

- Handles continuous hyperparameters
- Convergence guarantees
- Self-balances exploration/exploitation

Cons

- Can get stuck in local minima
- Several parameters must be tuned
- Discrete hyperparameters require extra handling

Particle-Swarm Optimization

Iteratively update generations of hyperparameters with a stochastic velocity term.

- 1. Uniformly sample a population of *n* hyperparameter sets
- 2. Evaluate all *n* members of the population
- 3. Determine the best-performing hyperparameter set from this step and overall
- 4. Compute the velocity vector for each hyperparameter set
- 5. Integrate to update hyperparameter values
- 6. Repeat 2-4

Particle Swarm Optimization

Iteratively update generations of hyperparameters with a stochastic velocity term.

Particle Swarm Optimization

Pros

- Handles continuous hyperparameters
- Convergence guarantees
- Self-balances exploration/exploitation

Cons

- Can get stuck in local minima
- Discrete hyperparameters require extra handling

5. Other Methods

https://jeffkinnison.github.io/shadho-tutorial/

Hyperband

Search over hyperparameters given a budget, a finite number of resources, and successive halving of the search size.

```
Algorithm 1: Hyperband algorithm for hyperparameter optimization.
                     : R, \eta (default \eta = 3)
   input
   initialization: s_{\text{max}} = \lfloor \log_{\eta}(R) \rfloor, B = (s_{\text{max}} + 1)R
1 for s \in \{s_{\max}, s_{\max} - 1, \dots, 0\} do
   n = \lceil \frac{B}{R} \frac{\eta^s}{(s+1)} \rceil, \qquad r = R \eta^{-s}
       // begin SuccessiveHalving with (n,r) inner loop
     T = get_hyperparameter_configuration(n)
   for i \in \{0, ..., s\} do
     n_i = \lfloor n\eta^{-i} \rfloor
       r_i = rn^i
       L = \{ \texttt{run\_then\_return\_val\_loss}(t, r_i) : t \in T \}
       T = \mathsf{top\_k}(T, L, |n_i/\eta|)
10 end
11 return Configuration with the smallest intermediate loss seen so far.
```


Hyperband

Search over hyperparameters given a budget, a finite number of resources, and successive halving of the search size.

Central Idea

Outer loop decreases population.

Inner loop increases resources.

Hyperband Resources

Training Time

Return performance after an allotted amount of training time.

Dataset Subsampling

Only provide some subset of training data for hyperparameter evaluation.

Feature Subsampling

Only allow a subset of features to be used in each evaluation.

Hyperband

Pros

- Wraps around other methods
- Enables joint optimization over the resource and performance

Cons

- Additional constraint of selecting a resource
- Hyperband hyperparameters must be tuned

Radial Basis Function Surrogates

Update a population of hyperparameters by cubic spline RBF modeling.

- 1. Collect baseline hyperparameter evaluations using Latin hypercube sampling
- 2. Fit a surrogate cubic spline RBF model to all evaluated data
- 3. Compute the probability of perturbing a hyperparameter
- 4. Sample *n* candidate points from the hypercube and perturb them with Gaussian noise
- 5. Evaluate hyperparameters using the surrogate RBF model
- 6. Add the evaluated hyperparameters to the session sample
- 7. Repeat 2-5 until a maximum number of samples are collected

RBF Surrogates

Update a population of hyperparameters by cubic spline RBF modeling.

RBF Surrogates

Pros

- Handles continuous hyperparameters
- Does not require explicit training and evaluation after initial sample

Cons

- Requires possibly extensive pre-sampling
- Requires solving a linear system over all evaluated hyperparameters
- Performance is tied to the initial sample

Compute the gradient of validation loss with respect to hyperparameters.

- Initialize hyperparameter weight gradient and velocity gradient vectors
- 2. Train a model with hyperparameters λ
- Exactly reverse backprop to compute validation loss gradient w.r.t. hyperparameters
- 4. Update hyperparameters in the direction of this gradient
- 5. Repeat 2-4

Compute the gradient of validation loss with respect to hyperparameters.

Compute the gradient of validation loss with respect to hyperparameters.

```
Algorithm 2 Reverse-mode differentiation of SGD
```

```
1: input: \mathbf{w}_T, \mathbf{v}_T, \gamma, \alpha, train loss L(\mathbf{w}, \boldsymbol{\theta}, t), loss f(\mathbf{w})
  2: initialize d\mathbf{v} = \mathbf{0}, d\theta = \mathbf{0}, d\alpha_t = \mathbf{0}, d\gamma = \mathbf{0}
  3: initialize d\mathbf{w} = \nabla_{\mathbf{w}} f(\mathbf{w}_T)
  4: for t = T counting down to 1 do
  5: d\alpha_t = d\mathbf{w}^\mathsf{T} \mathbf{v}_t
 6: \mathbf{w}_{t-1} = \mathbf{w}_t - \alpha_t \mathbf{v}_t

7: \mathbf{g}_t = \nabla_{\mathbf{w}} L(\mathbf{w}_t, \boldsymbol{\theta}, t)

8: \mathbf{v}_{t-1} = [\mathbf{v}_t + (1 - \gamma_t)\mathbf{g}_t]/\gamma_t exactly reverse gradient descent operations
  9: d\mathbf{v} = d\mathbf{v} + \alpha_t d\mathbf{w}
10: d\gamma_t = d\mathbf{v}^\mathsf{T}(\mathbf{v}_t + \mathbf{g}_t)
11: d\mathbf{w} = d\mathbf{w} - (1 - \gamma_t) d\mathbf{v} \nabla_{\mathbf{w}} \nabla_{\mathbf{w}} L(\mathbf{w}_t, \boldsymbol{\theta}, t)
12: d\theta = d\theta - (1 - \gamma_t) d\mathbf{v} \nabla_{\theta} \nabla_{\mathbf{w}} L(\mathbf{w}_t, \theta, t)
13:
             d\mathbf{v} = \gamma_t d\mathbf{v}
14: end for
15: output gradient of f(\mathbf{w}_T) w.r.t \mathbf{w}_1, \mathbf{v}_1, \gamma, \alpha and \theta
```


Pros

- Works with all standard neural network optimizers
- Makes use of more information to guide search
- Can be incorporated into other hyperparameter optimization methods

Cons

- Requires specialized handling of parameter vector updates
- Has many of the same issues as standard backpropagation
- Number of hyperparameters bounded by validation set size
- Discrete hyperparameters require special handling

6. Neural Architecture Search

https://jeffkinnison.github.io/shadho-tutorial/

Compute Costs

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

Source: https://openai.com/blog/ai-and-compute/

Compute Costs

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

Source: https://openai.com/blog/ai-and-compute/

Optimization Opportunities

Search Space

Search Space Reduction

Search Space Reduction

Pros:

- Smaller Search Space = speed up in search
- 2. Cells can be transferred/adapted to other datasets
- Historical intuition for model building aligns with cells e.g. repeating an LSTM block

Cons:

- 1. Cells allow us to ignore microstructures ... but what cells should we consider? How should they be connected?
- 2. No room for architectural innovation
- 3. The search space is still huge

Performance Estimation

Low Fidelity estimates

Reduce training time

Train on a subset of data

Downscale models

Downscale data

Low Fidelity Estimates

Training time is reduced

Fails when approximations aren't good approximates!

Learning Curve Extrapolation

Weight Inheritance

Identifying Stability:

Measure Human-model Similarity at every epoch
Assume stability if, for the last 25 epochs, HMS standard deviation over those epochs < 0.01

Experiment:

Trained 117 CNNs for variable epochs

96% converged

Average convergence 31 epochs, 19% of training

Converged HMS predicts final similarity

Correlation of 0.656

Search Strategy

Generate architectures using a recurrent neural network controller trained by reinforcement learning.

- Encode architectural hyperparameters as token sequences
- 2. Initialize the recurrent controller
- 3. Sample an architecture
- 4. Train the sampled architecture
- 5. Update the controller to minimize validation loss using REINFORCE
- 6. Repeat 3-5

Generate architectures using a recurrent neural network controller trained by reinforcement learning.

Generate architectures using a recurrent neural network controller trained by reinforcement learning.

Model		Parameters	Error rate (%)	
Wide ResNet (Zagoruyko & Komodakis, 2016)	16	11.0M	4.81	
	28	36.5M	4.17	
ResNet (pre-activation) (He et al., 2016b)	164	1.7M	5.46	
Secretary of the second	1001	10.2M	4.62	
DenseNet $(L = 40, k = 12)$ Huang et al. (2016a)	40	1.0M	5.24	
DenseNet($L = 100, k = 12$) Huang et al. (2016a)	100	7.0M	4.10	
DenseNet $(L = 100, k = 24)$ Huang et al. (2016a)	100	27.2M	3.74	
DenseNet-BC ($L=100, k=40$) Huang et al. (2016b)	190	25.6M	3.46	
Neural Architecture Search v1 no stride or pooling	15	4.2M	5.50	
Neural Architecture Search v2 predicting strides	20	2.5M	6.01	
Neural Architecture Search v3 max pooling	39	7.1M	4.47	
Neural Architecture Search v3 max pooling + more filters	39	37.4M	3.65	

Generate architectures using a recurrent neural network controller trained by reinforcement learning.

Reportedly required 800 GPUs

3 weeks of training

Efficient Neural Architecture Search

Update NAS to operate on arbitrary digraphs of architectural hyperparameters.

Efficient Neural Architecture Search

Update NAS to share weights across many generated architectures.

$$\nabla_{\omega} \mathbb{E}_{\mathbf{m} \sim \pi(\mathbf{m}; \theta)} \left[\mathcal{L}(\mathbf{m}; \omega) \right] \approx \frac{1}{M} \sum_{i=1}^{M} \nabla_{\omega} \mathcal{L}(\mathbf{m}_{i}, \omega)$$

Efficient Neural Architecture Search

Update NAS to share weights across many generated architectures.

Method	GPUs	Times (days)	Params (million)	Error (%)
SMASH (Brock et al., 2018)	1	1.5	16.0	4.03
NAS (Zoph & Le, 2017)	800	21-28	7.1	4.47
NAS + more filters (Zoph & Le, 2017)	800	21-28	37.4	3.65
ENAS + macro search space	1	0.32	21.3	4.23
ENAS + macro search space + more channels	1	0.32	38.0	3.87
Hierarchical NAS (Liu et al., 2018)	200	1.5	61.3	3.63
Micro NAS + Q-Learning (Zhong et al., 2018)	32	3	4 - 4 - 1 - 1 - 1	3.60
Progressive NAS (Liu et al., 2017)	100	1.5	3.2	3.63
NASNet-A (Zoph et al., 2018)	450	3-4	3.3	3.41
NASNet-A + CutOut (Zoph et al., 2018)	450	3-4	3.3	2.65
ENAS + micro search space	1	0.45	4.6	3.54
ENAS + micro search space + CutOut	1	0.45	4.6	2.89

Additional Related Methods

Progressive Neural Architecture Search

 Snoek, Jasper, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Mostofa Patwary, Mr Prabhat, Liu, Chenxi, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. "Progressive neural architecture search." In *Proceedings of the European Conference on Computer Vision* (ECCV), pp. 19-34. 2018.

Autoaugment: Learning Augmentation Strategies from Data

 Cubuk, Ekin D., Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. "Autoaugment: Learning augmentation strategies from data." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 113-123. 2019.

MNASNet: Platform-Aware Neural Architecture Search for Mobile

Tan, Mingxing, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V. Le. "Mnasnet: Platform-aware neural architecture search for mobile." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 2820-2828. 2019.

Differentiable Architecture Search

Determine the optimal architecture through continuous relaxation to approximate the architecture gradient.

Differentiable Architecture Search

Determine the optimal architecture through continuous relaxation to approximate the architecture gradient.

Architecture	Test Error (%)	Params (M)	Search Cost (GPU days)	#ops	Search Method	
DenseNet-BC (Huang et al., 2017)	3.46	25.6	N -	-	manual	
NASNet-A + cutout (Zoph et al., 2018)	2.65	3.3	2000	13	RL	
NASNet-A + cutout (Zoph et al., 2018)†	2.83	3.1	2000	13	RL	
BlockQNN (Zhong et al., 2018)	3.54	39.8	96	8	RL	
AmoebaNet-A (Real et al., 2018)	3.34 ± 0.06	3.2	3150	19	evolution	
AmoebaNet-A + cutout (Real et al., 2018)†	3.12	3.1	3150	19	evolution	
AmoebaNet-B + cutout (Real et al., 2018)	2.55 ± 0.05	2.8	3150	19	evolution	
Hierarchical evolution (Liu et al., 2018b)	3.75 ± 0.12	15.7	300	6	evolution	
PNAS (Liu et al., 2018a)	3.41 ± 0.09	3.2	225	8	SMBO	
ENAS + cutout (Pham et al., 2018b)	2.89	4.6	0.5	6	RL	
ENAS + cutout (Pham et al., 2018b)*	2.91	4.2	4	6	RL	
Random search baseline [‡] + cutout	3.29 ± 0.15	3.2	4	7	random	
DARTS (first order) + cutout	3.00 ± 0.14	3.3	1.5	7	gradient-based	
DARTS (second order) + cutout	2.76 ± 0.09	3.3	4	7	gradient-based	

7. Hyperparameter Importance

https://jeffkinnison.github.io/shadho-tutorial/

Assessments for Random Search

How does a hyperparameter influence performance when taking on different values?

- 1. Evaluate a number of different hyperparameters
- 2. Model the objective with respect to each hyperparameter individually with a Gaussian Process with RBF kernel
- 3. Estimate length scale of the kernel of each model

QIM

Evaluate hyperparameter importance with Plackett-Burman design.

- Evaluate a number of different hyperparameters to determine a viable range for each hyperparameter
- 2. Apply Plackett-Burman matrix to combine performance measures for each trial
- 3. The resulting vector gives an importance score for each hyperparameter

Table 1. The PB design matrix with 8 experiments.

Assembly	Parameters or factors							
	x1	x2	x3	x4	x5	x6	x7	
1	+1	+1	+1	-1	+1	-1	-1	
2	-1	+1	+1	+1	-1	+1	-1	
3	-1	-1	+1	+1	+1	-1	+1	
4	+1	-1	-1	+1	+1	+1	-1	
5	-1	+1	-1	-1	+1	+1	+1	
6	+1	-1	+1	-1	-1	+1	+1	
7	+1	+1	-1	+1	-1	-1	+1	
8	-1	-1	-1	-1	-1	-1	-1	

QIM

Evaluate hyperparameter importance with Plackett-Burman design.

Hyperparameters

LeNet on MNIST

Autoencoder on MNIST

Jia, Dan, Rui Wang, Chengzhong Xu, and Zhibin Yu. "QIM: Quantifying Hyperparameter Importance for Deep Learning." In *IFIP International Conference on Network and Parallel Computing*, pp. 180-188. Springer, Cham, 2016.

QIM

Evaluate hyperparameter importance with Plackett-Burman design.

LeNet on MNIST

LeNet on CIFAR-10

Jia, Dan, Rui Wang, Chengzhong Xu, and Zhibin Yu. "QIM: Quantifying Hyperparameter Importance for Deep Learning." In *IFIP International Conference on Network and Parallel Computing*, pp. 180-188. Springer, Cham, 2016.

Functional ANOVA

Evaluate hyperparameter importance with Plackett-Burman design.

- 1. Evaluate a number of different hyperparameters
- 2. Model the objective with a functional ANOVA random forest
- 3. Retrieve the variance contribution for each hyperparameter from the forest

Functional ANOVA

SVM w/RBF kernel

SVM w/sigmoid kernel

Functional ANOVA

Random Forest

Adaboost

32

Takeaway

Hyperparameter importance methods consistently show that their impact on performance depends on the learning algorithm (e.g. varying ANN architectures) and dataset.

THANKS!

Any questions?

