	Review:	
ı	recurrence relation	(
	Use generating functions to find a solution	
2	binomial coefficient theorem	
	$\binom{m}{n} = m \cdot (m-1) \cdot (m-n+1)$	
3	integer functions	(
	LXJ the greatest integer = x	
	1. P [x] = 1 then 1 \(\times \(\times 2 \) or \(\times \(\times 1, 2 \)	

20		
	6	
	4	pigeonhole principle
	5	graph theory { complete graph kn trees { colouring questions - chromatic polynomial ramsey # chromatic # polynomial
	b	distribution problems partition of integers recurrence relation through young diagram
		number of partitions of integers use generating functions
	7	principle of inclusion and exclusion counting the size of unions of sets famous examples: 2nd sterling # (onto functions) derangement: permutation w/ no fixed point
	8	group action permutation group: Symmetry group, dihadral group, cyclic group ZL, ZnZL orbit-stabiliter theorem + Burnside's lemma # of colonings invariant under certain symmetries polya's formula: Cycle Index
	9	Fuclidean algorithm $gcd(m,n) = am + bn$ $a,b \in \mathbb{Z}$
		Z and Z/nZ as cyclic groups
		congruence class