DESENVOLVIMENTO DE UM SISTEMA CIBERFÍSICO PARA APLICAÇÃO NO PROCESSO DE MANIPULAÇÃO E TRANSPORTE DE MATERIAIS NA INDÚSTRIA 4.0

AUTOR: RENAN PRADA DOS ANJOS

ORIENTADOR: PROF. DR. SÉRGIO RONALDO BARROS DOS SANTOS

UNIVERSIDADE FEDERAL DE SÃO PAULO - UNIFESP Instituto de Ciência e Tecnologia Curso de Engenharia de Computação

> São José dos Campos Agosto de 2020

Resumo

- Sistema ciberfísico aplicado à indústria 4.0;
- 4 rodas mecanum, braço robótico, garra magnética;
- Robô autônomo, ROS, Servidor Local, Servidor Web;
- Processamento de imagem para estimar a localização;
- Algoritmos de busca em grafos;

Introdução

Mudanças na indústria

Fases da revolução industrial

Deslocamento de cargas

- Fundamental na indústria;
- Esteiras (não versáteis);
- Novos modelos de produção.

Nova estrutura de produção

Sistemas robóticos de transporte - Exemplos

MiR
Easily and Flexibly
Transport Parts
Inside Your Facility

Exemplos de sistemas robóticos de transporte

Sistemas robóticos de transporte - Características

- Capacidade de se localizar e se locomover no ambiente;
- Buscar, transportar e descarregar cargas;
- Percepção do ambiente (uso de sensores embarcados ou externos).

Precisão para manipular uma carga

Detecção de obstrução no caminho

Objetivos

- Manipular e transportar cargas, dentro dos conceitos da Indústria 4.0.
- Sistema controlado remotamente.
- Diversos sensores estabelecendo um sistema com retroalimentação.
- Específicos
 - Construir a plataforma robótica móvel constituído por hardware e software;
 - Estabelecer a comunicação entre o Servidor Local, a plataforma móvel e os sensores disponíveis no ambiente, utilizando o framework ROS (Robot Operating System);
 - Projetar um controlador de baixo nível, o planejador de trajetórias e o gerenciador da tarefa.
 - Conectar o sistema ciberfísico à rede, a partir de um Servidor Web, permitindo a interação do usuário de maneira remota.

Fundamentação teórica

Sistemas Ciberfísicos

O que são:

- Dispositivos conectados em rede (internet);
- Une atributos físicos com sistemas virtuais;
- Tarefa realizada em grupo;
- Dependência entre sistemas.

Potencial:

- Soluções inovadoras;
- Novos modelos de negócios e de produção;
- Mudanças nos mercados.

Robôs móveis

- Uniciclo:
 - Estrutura simples;
 - Uma roda;
- Diferencial:
 - Duas rodas em um eixo comum;
- Omnidirecional:
 - Rodas omnidirecionais;
 - Rodas mecanum (suecas).

Navegação autônoma

Sistema complexo, com diversos subsistemas.

Diagrama de blocos - Navegação autônoma

Tipos de Mapa e Representação do Ambiente

- Mapa topológico:
 - Não possui informações geométricas do ambiente;
 - Representados por grafos;
- Mapa métrico:
 - Possui informações geométricas do ambiente;
 - Representado por grades compostas por células uniformes.

Planejamento de caminho

- Algoritmo que deve encontrar a melhor rota;
- Dijkstra:
 - Estratégia gulosa;
 - Corretude n\u00e3o garantida com arestas negativas;
- A-Estrela:
 - Realiza busca informada;
 - Utiliza equações heurísticas (distância euclidiana).

$$d(a,b) = \sqrt{(Xa - Xb)^2 + (Ya - Yb)^2}$$

Localização

- Posicionamento relativo:
 - Informações locais do robô (sensores embarcados);
- Posicionamento absoluto:
 - Localização no ambiente (sensores externos);

Variedade de sensores:

- Odômetro:
 - Quantidade de rotações;
 - Distância, localização;
 - Alinhamento, erro de sinal, falta de atrito;
- Câmera:
 - Processamento de imagem;
 - Uso diverso;
- Sonar:
 - Ondas ultrassônicas;
 - Determinar distância;
 - Necessita de menor processamento.

Sistema de controle

Dispositivos que coordenam atuadores a partir de um sinal de entrada.

- Malha aberta:
 - Sinal de saída não é lido;
- Malha fechada:
 - Processo de realimentação.

- PID: u(t) = up(t) + ui(t) + ud(t)
 - Ganho proporcional: up(t) = Kpe(t)
 - Ganho integral: $ui(t) = Ki \int_0^t e(\tau) d\tau$
 - Ganho derivativo: $ud(t) = Kd \frac{de(t)}{dt}$

ROS

- Framework que facilita a integração entre dispositivos:
 - Compatível com sistemas robóticos de diferentes compatibilidades;
 - Grafo de comunicação entre os dispositivos (nós);
 - Integração com ferramentas, bibliotecas e diferentes linguagens de programação;
- Resulta em maior agilidade no desenvolvimento.

Principais estruturas:

- Nós;
- Tópicos (assíncrona);
- Serviços (síncrona);
- Mestre;
- Mensagens.

Tópicos

Desenvolvimento do Transportador Autônomo

Diagrama dos componentes do sistema

Concepção do Robô Transportador

- Fixar braço robótico;
- Fixar fios, placas, bateria e sensores;
- Instalar guias;
- Círculos vermelho e azul.

Arquitetura geral do sistema

Interface Web

- Controle:
 - Inserir tarefas;
- Monitoramento:
 - Imagem em tempo real;
 - Histórico de tarefas.

Fluxo de dados ao criar uma tarefa

Interface Web

Configuração ROS

- Configuração da rede ROS:
 - ROS_HOSTNAME;
 - ROS_IP;
 - ROS_MASTER_URI;
- Configurar tópicos:
 - Talker String;
 - Answer String, um caractere.

Tamanho (caractere)	2	2	2	2
Campo	Comando	Velocidade	Curva	Intensidade

Formato da mensagem talker

Sistema físico operando um mapa topológico

Planejador de Trajetória em Mapas Topológico

- Mapa conhecido (grafo);
- Dijkstra:
 - Inserir e remover arestas do grafo;
 - Algoritmo calcula rota ótima.

```
Dijkstra.graph = Dijkstra.Graph([
    ("0", "1", d_p(targets[0], targets[1]),2),
    ("1", "2", d_p(targets[1], targets[2]),2),
    ("2", "3", d_p(targets[2], targets[3]),2),
    ("3", "4", d_p(targets[3], targets[4]),2),
    ("4", "5", d_p(targets[4], targets[5]),2),
    ("5", "6", d_p(targets[5], targets[6]),2),
    ("6", "7", d_p(targets[6], targets[7]),2),
    ("7", "8", d_p(targets[7], targets[8]),4),
    ("8", "9", d_p(targets[8], targets[9]),4),
```

Inserindo um novo grafo no Dijkstra

Valor	Direção Frente e trás		
0			
1	Para os lados		
2	Omnidirecional		
3	Frente		
4	Trás		

Planejador de trajetória em mapa topológico

Desvio dos obstáculos

Caso identifique algum obstáculo a menos de 10 cm:

- Obstáculo móvel:
 - Aguarda 5 segundos;
 - Mantém a rota;
- Obstáculo fixo:
 - Acima de 5 segundos;
 - Gera uma rota alternativa (se existir).

Localização por visão externa

Conversão dos valores:

•
$$H = 0.5 * Hgimp$$

•
$$S = 2.55 * Sgimp$$

•
$$V = 2.55 * Vgimp$$

Cor	H (matriz)	S (saturação)	V (valor)
Azul	85 a 125	155 a 255	135 a 192
Vermelho	160 a 190	90 a 180	130 a 190

Valores HSV utilizados

Parâmetros HSV no GIMP

Representação do parâmetro HSV

Localização por visão externa

Controlador de Seguimento de Trajetória

Controlador de Seguimento de Trajetória

Após o planejamento local, o controlador guia o robô até o próximo destino local.

- Controlador P utilizado;
- Etapas:
 - Alinhar com a trajetória;
 - Deslocamento;
 - Ajustar orientação, caso necessário.

Sistema simulado operando em mapas métricos

Planejador de Trajetória em Mapas Métricos

- Feito em simulação com o intuito de compreender uma abordagem diferente ao mapa topológico;
- Dijkstra;
- A-Estrela;
- Definir características:
 - Ponto inicial;
 - Objetivo final;
 - Raio do robô;
 - Resolução do grid.

Resultados

Estudos realizados

- Avaliação em simulação:
 - Dijkstra;
 - A estrela;
- Avaliação experimental:
 - Sem obstáculo;
 - Obstáculo móvel;
 - Obstáculo fixo:
 - Sem obstáculo;
 - Um obstáculo;
 - Dois obstáculos.

	Ambiente Simulado	Ambiente Físico
Comprimento	100 cm	220 cm
Largura	60 cm	110 cm
Grid	2 cm x 2 cm	N/A

Características dos ambientes utilizados

Avaliação em simulação

Avaliação em simulação

Categoria	Carga 1	Desc 1	Carga 2	Desc 2	Carga 3	Desc 3	Carga 4	Desc 4
1 Carga	D	A						
4 Cargas	D	A	C	В	D	В	C	A
7 Cargas	D	A	C	В	D	В	C	A
10 Cargas	D	A	C	В	D	В	C	A
Categoria	Carga 5	Desc 5	Carga 6	Desc 6	Carga 7	Desc 7	Carga 8	Desc 8
1 Carga								
4 Cargas								
7 Cargas	D	A	C	В	D	В		
10 Cargas	D	A	C	В	D	В	D	A

Categoria	Carga 9	Desc 9	Carga 10	Desc 10
1 Carga				
4 Cargas	,			
7 Cargas				Ī
10 Cargas	C	В	D	В

Avaliação em simulação - Dijkstra

Tempo total de execução do algoritmo e custo calculado

Simulação Dijkstra - Tempo total

Simulação Dijkstra - Distância ideal estimada pelo algoritmo Dijkstra

Avaliação em simulação - Dijkstra

Carga

Descarga

Pontos de carga

Trajetória executada

Avaliação em simulação – A estrela

Tempo total de execução do algoritmo e custo calculado

Simulação A estrela - Tempo total

Simulação A-estrela - Distância ideal estimada pelo algoritmo A-estrela

Avaliação em simulação – A estrela

Carga

Descarga

Pontos de carga

Trajetória executada

Avaliação experimental

Acompanhe em tempo real

··· ☑ ☆ Q Pesquisar

Histórico de tarefas

Avaliação experimental - Mapa

Mapa topológico - Grafo completo

Avaliação experimental - Ambiente

Mapa topológico - Sobreposto no ambiente

Categoria	Carga 1	Desc 1	Carga 2	Desc 2	Carga 3	Desc 3	Carga 4	Desc 4
1 Carga	8	3						
4 Cargas	8	3	0	5	8	5	0	3
7 Cargas	8	3	0	5	8	5	0	3
10 Cargas	8	3	0	5	8	5	0	3
Categoria	Carga 5	Desc 5	Carga 6	Desc 6	Carga 7	Desc 7	Carga 8	Desc 8
1 Carga								
4 Cargas								
7 Cargas	8	3	0	5	8	5		
10 Cargas	8	3	0	5	8	5	8	3

Categoria	Carga 9	Desc 9	Carga 10	Desc 10
1 Carga				
4 Cargas				
7 Cargas				
10 Cargas	0	5	8	5

Tempo total de execução e erro absoluto na descarga

Erro absoluto 2.0 1.5 0.5 0.0 10 Quantidade de cargas transportadas

Experimental - Tempo total

Experimental - Erro absoluto para descarregar

Distância total percorrida e distância total calculada (custo)

Experimental - Distância total executada pelo robô

Experimental - Distância total ideal estimada pelo algoritmo Dijkstra

Trajetória executada

Legenda:
Carga
Descarga

49/63

Experimental – Obstáculo móvel

Trajetória executada

Experimental – Obstáculo móvel

Trajetória X,Y, Theta vs Tempo

Experimental – Obstáculo fixo

Tempo total de execução

4 execuções em cada categoria:

- Sem obstáculos;
- 1 obstáculo;
- 2 obstáculos.

Tempo total

Experimental - Tempo total com obstáculos fixos

Experimental – Obstáculo fixo

Distância total percorrida e distância total calculada (custo)

Experimental - Distância total percorrida com obstáculos fixos

Experimental - Distância total ideal estimada pelo Dijkstra com obstáculos fixos

Experimental – Obstáculo fixo (Nenhum)

Experimental – Obstáculo fixo (Um)

Experimental - Trajetória executada pelo robô com um obstáculo fixo

Experimental – Obstáculo fixo (Um)

Trajetória X,Y, Theta vs Tempo

Experimental – Obstáculo fixo (Dois)

Experimental – Obstáculo fixo (Dois)

Trajetória X,Y, Theta vs Tempo

Resultados

Apresentação do vídeo

Conclusão

Conclusão

- Projeto amplo com subsistemas complexos;
- Resultados obtidos conforme o esperado;
- Tarefas realizadas com sucesso;
- Desafios:
 - ROS;
 - Espaço limitado;
 - Complexidade do controlador;
 - Vídeo em tempo real.

Trabalhos futuros

- Incluir novas funcionalidades ou estudo na usabilidade na página Web;
- Melhorias no processamento da imagem, evitar falso reconhecimento e reconhecer novos objetos;
- Buscar um controlador com um melhor desempenho;
- Estudo e melhoria na representação do ambiente para obter uma rota com uma otimização melhor;
- Implementação do SLAM para mapeamento do ambiente em tempo real;
- Desenvolver um planejador de tarefas;
- Expandir o projeto proposto para um sistema de transporte com múltiplos robôs.

Obrigado!