

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

Curso: Engenharia de Computação

Disciplina: Controle de Sistemas Dinâmicos (CSD)

Ensino Remoto Emergencial (ERE) - 2021

Semestre 2021/2

PLANO DE ESTUDOS

SEMANA 03

Aula 5 - Revisão: a Transformada de Laplace

Data: 09/11/2021

Entrega: 23/11/2021

Estude:

- 1) Texto: Seção 2.2 do livro do Norman Nise: "Revisão da Transformada de Laplace", tópicos:
 - Definição;
 - Teoremas (tabela 2.2).

Considerações importantes:

- As equações diferenciais são modelos matemáticos bastante usados em controle de sistemas.
- A Transformada de Laplace é um método operacional que pode ser usado vantajosamente para resolver equações diferenciais lineares. Com ela, podem-se converter funções comuns em funções algébricas de uma variável complexa s.
 Operações como diferenciação e integração podem ser substituídas por operações algébricas no plano complexo s. Os cálculos ficam mais simples.
- A solução da equação diferencial no domínio do tempo é obtida usando-se a Transformada Inversa de Laplace.
- Muitas funções já estão mapeadas no domínio do tempo e no domínio de Laplace em uma tabela.
- A variável s é uma variável complexa, s = re + im (re: parte real, im: parte imaginária). A
 parte real é responsável pelo amortecimento do sistema, e a parte imaginária, pelas
 oscilações do sistema.
- Tabelas para consultar (livro NISE):

TABELA 2.1 Tabela de transformadas de Laplace

ltem nº	f(t)	F(s)
1.	$\delta(t)$	1
2.	u(t)	$\frac{1}{s}$
3.	tu(t)	$\frac{1}{s^2}$
4.	$t^n u(t)$	$\frac{n!}{s^n+1}$
5.	$e^{-at}u(t)$	$\frac{1}{s+a}$
6.	$\operatorname{sen} \omega t u(t)$	$\frac{\omega}{s^2 + \omega^2}$
7.	$\cos \omega t u(t)$	$\frac{s}{s^2 + \omega^2}$

TABELA 2.2 Teoremas da transformada de Laplace

ltem n º	Teorema	Nome	e
1.	$\mathscr{L}[f(t)] = F(s) = \int_{0-}^{\infty} f(t)e^{-st}dt$	Definição	
2.	$\mathcal{L}[kf(t)] = kF(s)$	Teorema da linearidade	
3.	$\mathcal{L}[f_1(t) + f_2(t)] = F_1(s) + F_2(s)$	Teorema da linearidade	
4.	$\mathscr{L}[e^{-at}f(t)] \qquad = F(s+a)$	Teorema do deslocamento em frequência	
5.	$\mathscr{L}[f(t-T)] = e^{-sT}F(s)$	Teorema do deslocamento no tempo	
6.	$\mathcal{L}[f(at)] = \frac{1}{a}F\left(\frac{s}{a}\right)$	Teorema da escala	
7.	$\mathscr{L}\left[\frac{df}{dt}\right] = sF(s) - f(0-)$	Teorema da derivação	
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right] = s^2F(s) - sf(0-) - f'(0-)$	Teorema da derivação	
9.	$\mathscr{L}\left[\frac{d^n f}{dt^n}\right] = s^n F(s) - \sum_{k=1}^n s^{n-k} f^{k-1}(0-1)$	Teorema da derivação	
10.	$\mathscr{L}\left[\int_{0-}^{t} f(\tau)d\tau\right] = \frac{F(s)}{s}$	Teorema da integração	
11.	$f(\infty) = \lim_{s \to 0} s F(s)$	Teorema do valor final ¹	
12.	$f(0+) = \lim_{s \to \infty} sF(s)$	Teorema do valor inicial ²	

2) Vídeos:

- A transformada de Laplace: definição e propriedades https://www.youtube.com/watch?v=HMbxi1OT6oY
- Resolução de PVI utilizando Laplace (até a parte dos teoremas/corolários)
 https://www.youtube.com/watch?v=Ele_v15whYU

Atividades:

- 1) Aplicando a definição, encontre a Transformada de Laplace das seguintes funções:
 - a) f(t) = 1
 - b) $f(t) = A.e^{-at}$
- 2) Utilizando os pares da transformada de Laplace da Tabela 2.1 e os teoremas da transformada de Laplace da Tabela 2.2, deduza as transformadas de Laplace para as seguintes funções do tempo:
 - a) $e^{-at} \operatorname{sen} \omega t u(t)$
 - b) $e^{-at} \cos \omega t u(t)$
 - c) $t^3 u(t)$
- 3) Encontre o valor inicial e o valor final das seguintes funções:

a)
$$F(s) = \frac{s+3}{s(s+1)(s+2)}$$

b)
$$F(s) = \frac{2s+12}{s^2+2s+5}$$

4) Encontre a transformada de Laplace da função abaixo utilizando as propriedades estudadas. Faça o esboço do gráfico.

$$f(t) = \begin{cases} A, & 0 \le t < T \\ 2A, & T \le t \le 2T \\ 0, & t > 2T \end{cases}$$