On rendra seulement une copie par trinôme de colle.

PROBLEME

On note f la fonction définie pour tout x>0 par $f\left(x\right)=\ln\left(x\right)-x\ln\left(1+\frac{1}{x}\right)$

- **1.** Etude de *f* :
 - a) Justifier que f est dérivable sur \mathbb{R}_{+}^{*} et calculer f'(x) pour x > 0
 - b) Justifier que f' est dérivable sur \mathbb{R}_+^* et calculer f''(x) pour x>0. On l'écrira sous la forme $-\frac{P(x)}{x^2(x+1)^2}$ où P est un polynôme de degré 2 à déterminer.
 - c) En déduire les variations de f' sur $]0, +\infty[$.
 - d) Calculer $\lim_{x \to +\infty} f'(x)$ et en déduire le signe de f' sur $]0, +\infty[$.
 - e) Etudier les limites de f en 0 et en $+\infty$ et dresser le tableau de variations de f. Pour la limite en $+\infty$, on pourra poser y=1/x.
 - f) Vérifier que f(2) < 0 < f(3)
- **2.** Réciproque de f:
 - a) Montrer que f réalise une bijection de $]0, +\infty[$ sur \mathbb{R} . On notera g sa réciproque.
 - b) Quel est le sens de variations de g sur \mathbb{R} ? Quel encadrement de g (0) peut on préciser?
 - c) Tracer dans un même repère orthonormé les courbes de f et de g.
- **3.** On note φ la composée de g et de \ln , c'est à dire : $\forall x > 0, \ \varphi(x) = g(\ln(x))$
 - a) Montrer en étudiant une fonction que $\forall x \ge 0$, $\ln(1+x) \le x$
 - b) En déduire que $\forall x > 0, \ 0 \le x \ln \left(1 + \frac{1}{x}\right) \le 1$, puis que $f(x) \le \ln x \le f(ex)$
 - c) Montrer alors que $\forall x > 0, \ x \leqslant \varphi(x) \leqslant ex$
 - d) Donner un majorant de φ (10) (on rappelle que 2, 71 < e < 2, 72).
 - e) Vérifier que $\forall x > 0$, $f(x) = (x+1)\ln(x) x\ln(x+1)$
 - f) Montrer que $\forall x > 0$, $x^{x+1} > 10 (x+1)^x \iff x > \varphi(10)$
- **4.** Encore une fonction : soit $a \in [e, +\infty]$. On pose $f_a: [a, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto a^x x^{-a}]$

Etudier les variations de f_a et préciser sa limite en $+\infty$.

5. Soient p et q deux entiers supérieurs ou égaux à 28 tels que p^q et q^p aient le même nombre de chiffres dans le système de numération décimal. On cherche à montrer que p = q.

On suppose par l'absurde que p > q, i.e. $p \ge q + 1$ puisque p et q sont entiers.

- a) Vérifier que $f_q(p) \ge f_q(q+1)$
- b) Montrer que $q^{q+1} > 10 (q+1)^q$
- c) En déduire que $f_q(p) > 10$
- d) En déduire une contradiction et conclure.

PCSI 1 2019/2020

EXERCICE

Soit n un entier naturel non nul. On considère la fonction f définie par :

$$\forall x \in \mathbb{R}, f(x) = \sum_{k=0}^{n-1} \left\lfloor \frac{x+k}{n} \right\rfloor$$

- 1. Montrer que f est constante sur [0,1[et préciser sa valeur.
- **2.** Montrer que : $\forall x \in \mathbb{R}$, f(x+1) = f(x) + 1. Que peut-on en déduire sur la courbe de f?
- **3.** Soit p un entier naturel. Déterminer, en le justifiant, la valeur de f(x) pour $x \in [p, p+1[$.
- **4.** Déterminer, en le justifiant, une expression de f(x) à l'aide de $\lfloor x \rfloor$ si $x \in \mathbb{R}^+$, puis si $x \in \mathbb{R}^-$. Conclure.