Moritz Boos

Data Scientist

Search statement

I am a Data Scientist and researcher at the intersection of Machine Learning and Neuroscience with deep domain expertise in Statistical Modeling, Deep Learning, and Neuroimaging. I am looking for a data-driven position in industry, either remotely or in the London area, starting in Fall 2020.

Technical skills

Programming Python, R, MATLAB, SQL

Machine Deep Learning, linear and nonlinear regression and classification, Natural Lan-Learning guage Processing, audio recognition, unsupervised learning, approximate variational inference, Monte Carlo sampling

Statistics Bayesian statistics, hierarchical Bayesian modeling, classical siginificance testing

Software NumPy, SciPy, Pandas, Scikit-Learn, Pytorch, Keras, Stan

Experience

Work

- 11/2016- Research Associate, Applied Neurocognitive Psychology Lab, Carlvon-Ossietzky University, Oldenburg.
 - Developed a Machine Learning model to relate Bayesian unsupervised learning to brain activity. This model employs sparse coding, principal component analysis, and linear and non-linear regression to build an interpretable model of neuronal speech processing.
 - o Built a model of speech signal to noise ratio that combines unsupervised learning of audio signals with a Machine Learning model of human neuronal speech processing.
 - o Designed and developed a tool for voxel-wise encoding models with continuous stimuli using Python and Docker.
- 6/2019- Staff Associate, Neural Acoustic Processing Lab, Columbia Univer-1/2020 SITY, New York.
 - o Developed a new Deep Learning model for relating auditory stimuli to neuroimaging data based on self attention in recurrent neuronal networks.
- 2/2015— **Contractual Work**, GEORG-AUGUST UNIVERSITY, Göttingen, Statistical analysis 11/2015 of questionnaire data using R.
- 11/2013- **Contractual Work**, Medical School Hanover, Hanover, Statistical analysis 12/2015 of EEG data using Python.

Education

- 2016– PhD student in the Applied Neurocognitive Psychology Lab, Carl-von-Ossietzky University, Oldenburg.
- 2013–2017 Masters of Science in Neurocognitive Psychology (in English), Carl-von-Ossietzky University, Oldenburg.
- 2009–2013 **Bachelor of Science in Psychology**, *Technische Universität Carolo-Wilhelmina*, Braunschweig.

Selected Internships

- 7/2016-- Internship, $\mathrm{INRIA\ Saclay},$ Saclay, Developed machine learning models of brain
- 10/2016 activity using Natural Language Processing..
- 5/2015— Internship, Otto-von-Guericke University, Magdeburg, Developed a pipeline
- 8/2015 for comparing different validation criteria for encoding models in neuroimaging...

Machine Learning competitions

- 2015 **How much did it rain? II**, *Predict hourly rainfall using data from polarimetric radars*, Place 72/587, Top 13%.
- 2018 **Toxic Comment classification challenge**, *Identify and classify toxic online comments*, Place 119/4551, Top 3%.

Open source contributions

- Nilearn A machine learning library for neuroimaging
- Datalad-OSF A Datalad extension for the Open Science Framework
 - Voxel-wise A Docker container for running voxel-wise encoding models on large neuroimaging encoding datasets

BIDS app

Attended Hackathons

- 2/2016 and **Brainhack**, *Paris*, Collaborative development of open source software for 3/2017 neuroscience.
 - 5/2018 **Brainhack**, *Magdeburg*, Collaborative development of open source software for neuroscience.
 - 2/2019 **Brainhack**, *Warsaw*, Collaborative development of open source software for neuroscience.
 - 11/2019 **Brainhack**, *New York City*, Collaborative development of open source software for neuroscience.

Selected Publications

Moritz Boos et al. "Probabilistic inference: Task dependency and individual differences of probability weighting revealed by hierarchical Bayesian modelling". In: *Frontiers in Psychology* 7 (2016), p. 755.

Moritz Boos et al. "The role of auxiliary parameters in evaluating voxel-wise encoding models for

3T and 7T BOLD fMRI data". In: bioRxiv (2020). DOI: 10.1101/2020.04.07.029397. URL: https://www.biorxiv.org/content/early/2020/04/09/2020.04.07.029397.

Caroline Seer et al. "Prior probabilities modulate cortical surprise responses: A study of event-related potentials". In: *Brain and cognition* 106 (2016), pp. 78–89.