

Optimization Algorithms

Module 3 Objectives

- 1. Describe the purpose and process of gradient descent.
- 2. Discuss the error loss function.
- 3. Describe optimizers.
- 4. Adjust a model's hyperparameters to guide its performance.

It's All Downhill From Here

Introduction to Error and Loss Functions

Loss Functions

How do we quantify prediction error?

Mean Squared Error (MSE)

Cross Entropy

Cross Entropy Yellow Point Prediction 4.5 3.5 1.5 0.5 0.05 0.25 0.45 0.65

Predicted probability yellow

Optimizers and Advanced Gradient Descent Techniques

Choosing the Right Optimizer: A Quick Guide

Hyperparameter Optimization

04_bees_vs_wasps.ipynb

This notebook will walk you through building and training your own image classification model, then allow you to compare different hyperparameter optimization configurations!

