

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica

Argumentos gráficos Outros pacotes gráficos

Introdução ao uso do software R

Fernando de Pol Mayer¹ Rodrigo Sant'Ana²

¹Laboratório de Estatística Ambiental (LEA) Instituto de Matemática, Estatística e Física (IMEF) Universidade Federal do Rio Grande (FURG) fernando.mayer@furq.br

> ²Instituto Albatroz oc.rodrigosantana@gmail.com

25 de outubro, 2014

Sumário

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos Outros pacotes gráficos Importação de dados

2 Estatística descritiva

- 3 Análise gráfica
 - Argumentos gráficos
 - Outros pacotes gráficos

Sumário

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos Outros pacotes gráficos Importação de dados

Estatística descritiva

- Análise gráfica
 - Argumentos gráficos
 - Outros pacotes gráficos

Antes de importar para o R

Módulo II

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos Outros pacotes gráficos

- Se houverem valores perdidos, preencha com NAs
- A matriz de dados deve formar um bloco só. Se houverem colunas de diferentes comprimentos, preencha com NAs
- Salve o arquivo como "valores separados por vírgula" (.csv), mas atenção:
 - Se o separador de decimal for ",", o separador de campos será ";" automaticamente (o que é mais comum nos sistemas em português).

A função read.table()

Módulo II Descritiva

Importação de dados

Estatística

descritiva

Análise gráfica Argumentos gráficos Quitros pacotes gráficos

O método mais comum de importação de dados para o R, é utilizando a função read.table(). Para importar um arquivo .csv faça:

```
dados <- read.table("../dados/crabs.csv", header = T,</pre>
                     sep = ":". dec = ".")
```

Argumentos:

- "crabs.csv": nome do arquivo
- header = T: significa que a primeira linha do arquivo deve ser inrpretada como os nomes das colunas
- sep = ";": o separador de colunas (também pode ser "\t" para tabulação e "" para espaços)
- dec = ",": o separador de decimais

Estrutura dos dados importados

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística

descritiva

Análise gráfica Argumentos gráficos Quitros pacotes gráficos

A função str() serve para demonstrar a estrutura de um objeto, como o nome das colunas e suas classes:

```
str(dados)
'data.frame': 156 obs. of 7 variables:
 $ especie: Factor w/ 2 levels "azul","laranja": 1 1 1 1 1 1
          : Factor w/ 2 levels "F", "M": 2 2 2 2 2 2 2 2 2 2 ...
 $ sexo
  FL
                8.1 8.8 9.2 9.6 10.8 11.6 11.8 12.3 12.6 12.8
  RW
                                   9.1 10.5 11 10 10.9 ...
          : num
               16.1 18.1 19 20.1 23 24.5 25.2 26.8 27.7 27.4
  CL
          : num
               19 20.8 22.4 23.1 26.5 28.4 29.3 31.5 31.7 31
  CW
           num
                7 7.4 7.7 8.2 9.8 10.4 10.3 11.4 11.4 11 ...
  BD
```


Estrutura dos dados importados

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos Outros pacotes gráficos

Para visualizar as 10 primeiras linhas do data frame:

```
head(dados, 10) # ou: dados[1:10,]
                   FI
   especie sexo
                        RW
                                   CW
                                        BD
      azul
                       6.7 16.1 19.0
      azul
                 8.8
                       7.7 18.1 20.8
3
                       7.8 19.0 22.4
      azul
4
      azul
                  9.6
                       7.9 20.1 23.1
5
                       9.0 23.0 26.5
      azul
              M 10.8
6
      azul
                       9.1 24.5 28.4 10.4
7
      azul
                      10.5 25.2 29.3 10.3
8
      azul
                 12.3 11.0 26.8 31.5 11.4
9
      azul
                12.6 10.0 27.7 31.7 11.4
10
      azul
              M 12.8 10.9 27.4 31.5 11.0
```


Sumário

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos Outros pacotes gráficos Importação de dados

2 Estatística descritiva

- Análise gráfica
 - Argumentos gráficos
 - Outros pacotes gráficos

Medidas de centro

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

descritiva

Análise gráfica

Analise grafic
Argumentos
gráficos
Outros
pacotes
gráficos

Média (utilizando a coluna CL):

mean(dados\$CL) # ou sum(dados\$CL)/length(dados\$CL)

[1] 32.004

Média (utilizando a coluna BD):

mean(dados\$BD)

[1] NA

Observe que a presença de NAs interfere no resultado. O argumento na.rm pode ser utilizado para que o cálculo seja feito sem os NAs:

mean(dados\$BD, na.rm=T)

[1] 14.019

O argumento na.rm é utilizado também em outras funções como median(), sum() e var()

Medidas de variação

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos Outros pacotes

gráficos

Desvio padrão (coluna CL):

sd(dados\$CL)

[1] 7.2278

Variância:

var(dados\$CL) # sd(dados\$CL)^2

[1] 52.242

Coeficiente de variação:

sd(dados\$CL)/mean(dados\$CL)

[1] 0.22584

Medidas de posição relativa

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

descritiva

Análise gráfica Argumentos gráficos Outros pacotes gráficos

Quartis:

```
quantile(dados$CL)
```

```
0% 25% 50% 75% 100% 14.700 27.075 32.300 37.050 47.600
```

Decis:

47.60

```
quantile(dados$CL, probs = seq(0, 1, 0.1))
    0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
14.70 22.10 25.40 28.15 30.10 32.30 34.20 36.10 38.10 41.40
100%
```


Sumários

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos Outros pacotes gráficos A função summary() resume os dados de forma lógica:

```
summary(dados$CL)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 14.7 27.1 32.3 32.0 37.0 47.6
```

1st Qu. e 3rd Qu. se referem ao 1^o e 3^o quartis. Se houverem NAs, eles também serão contados:

```
summary(dados$BD)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 6.1 11.5 13.8 14.0 16.6 21.6 2
```


Sumários

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos Outros pacotes gráficos

A função summary() pode ser utilizada para resumir todo o data frame:

```
summary(dados)
                            FL
    especie
                                           RW
              sexo
azul
        :77
              F:87
                     Min.
                           : 7.2
                                     Min.
                                            : 6.5
 laranja:79
              M:69
                     1st Qu.:12.9
                                     1st Qu.:11.0
                     Median: 15.6
                                     Median: 12.8
                     Mean
                            :15.6
                                     Mean
                                             :12.8
                     3rd Qu.:18.2
                                     3rd Qu.:14.5
                     Max.
                            :23.1
                                     Max.
                                             :20.2
                     NA's
                             :2
       CL
                      CW
                                      BD
        :14.7
                        :17.1
                                Min.
Min.
                Min.
                                       : 6.1
1st Qu.:27.1
                1st Qu.:31.4
                                1st Qu.:11.5
Median:32.3
                Median :36.9
                                Median:13.8
Mean
        :32.0
                Mean
                        :36.3
                                Mean
                                       :14.0
3rd Qu.:37.0
                3rd Qu.:41.9
                                3rd Qu.:16.6
        :47.6
Max.
                Max.
                        :54.6
                                Max.
                                       :21.6
                                NA'S
```

13 / 49

Tabelas de contingência

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística

descritiva

Análise gráfica Argumentos gráficos Quitros pacotes gráficos

A função table() é usada para formar tabelas de contingência:

```
azul laranja
  77
          79
```

table(dados\$especie)

Pode também ser utilizada para a contagem de combinações de fatores:

```
table(dados$especie, dados$sexo)
  azul
  laranja 44 35
```


As funções *apply()

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

descritiva .

Análise gráfica Argumentos gráficos Outros pacotes gráficos A função lapply() retorna uma lista com os resultados de uma função aplicada a elemento(s) de um data frame:

lapply(dados[, 3:7], mean) # na.rm = T para lidar com NAs

\$FL

[1] NA

\$RW

[1] 12.815

\$CL

[1] 32.004

\$CW

[1] 36.31

\$BD

[1] NA

As funções *apply()

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística

descritiva

Análise gráfica Argumentos gráficos Quitros pacotes gráficos

sapply() simplifica os resultados em um vetor:

```
sapply(dados[, 3:7], mean, na.rm = T)
   FI
          RW
                 CI CW
                               BD
15.577 12.815 32.004 36.310 14.019
```

apply() aplica a função especificada por linha (1) ou coluna (2):

```
apply(dados[, 3:7], 2, mean, na.rm=T)
   FL RW CL CW
                            BD
15.577 12.815 32.004 36.310 14.019
```


As funções *apply()

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

descritiva

Análise gráfica Argumentos gráficos Outros pacotes gráficos A função tapply() aplica a função (mean) a um vetor (dados\$CL) para cada combinação dos níveis dos fatores (list()):

A função aggregate() ("tabela dinâmica")

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos Outros pacotes gráficos A função aggregate() agrega valores utilizando uma função, de acordo com uma lista de fatores especificados:

```
aggregate(cbind(FL, RW, CL, CW, BD) ~ especie + sexo,
          data = dados. median. na.rm=T)
  especie sexo
                 FI
                      RW
                             CI
                                   CW
                                        BD
     azul
             F 13.3 12.2 28.15 32.65 11.8
 laranja
             F 18.0 14.6 34.70 39.40 15.7
3
     ลรมโ
               15.3 12.0 32.75 37.35 13.6
4 laranja
             M 16.3 12.0 32.30 35.30 14.7
```


Sumário

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos Outros pacotes

gráficos

1 Importação de dados

2 Estatística descritiva

- 3 Análise gráfica
 - Argumentos gráficos
 - Outros pacotes gráficos

Gráficos

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos

Argumentos gráficos Outros pacotes gráficos Os comandos para gráficos se dividem em três grupos:

- Alto-nível: são as funções que criam novos gráficos, com eixos, títulos, etc. Exemplo: plot(), hist(), barplot()
- Baixo-nível: funções que adicionam mais informações (pontos, linhas, texto, etc.) a um gráfico já existente Exemplo: lines(), points(), legend()
- Interativo: funções que permitem adicionar ou extrair informações a um gráfico já existente, de modo interativo. Exemplo: locator()

Ainda existem uma série de parâmetros gráficos que podem ser manipulados e customizados.

Gráficos Terminologia

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica

Gráficos Regiões do gráfico

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica

Gráficos Regiões de múltiplos gráficos

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica

Gráficos Sistema de coordenadas

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica

Gráficos Tipos de linhas (lty)

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica

Integer	Sample line	String
Predefine	d	
0		"blank"
1		"solid"
2		"dashed"
3		"dotted"
4		"dotdash"
5		"longdash"
6		"twodash"
Custom		
		"13"
	- $ -$	"F8"
		"431313"
		"22848222"

Gráficos Tipos de pontos (pch)

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica

24 🛆	25 ♥	Α Α	b b		# #	
18 ◆	19 •	20 •	21 🔘	22 🗖	23 🔷	
12 🖽	13 ⊠	14 🔼	15 🔳	16 •	17 🛦	
6 🗸	7 🛭	8 *	9 💠	10 ⊕	11 💢	
0 🗆	1 0	2 Δ	3 +	4 ×	5 🔷	

Gráficos Tipos de plot (type)

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiv<u>a</u>

Análise gráfica

Gráficos Expressões matemáticas (expression())

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica

Argumentos gráficos Outros pacotes gráficos

Temperature (°C) in 2003

expression(paste("Temperature (", degree, "C) in 2003"))

$$\overline{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$

expression(bar(x) == sum(frac(x[i], n), i==1, n))

$$\hat{\beta} = (X^tX)^{-1}X^ty$$

expression(hat(beta) == (X^t * X)^{-1} * X^t * y)

$$\mathbf{z} = \sqrt{\mathbf{x}^2 + \mathbf{v}^2}$$

 $expression(z[i] == sqrt(x[i]^2 + y[i]^2))$

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

descritiva Análise gráfica

Argumentos gráficos Outros pacotes gráficos A função plot() é uma **função genérica**. Os gráficos serão representados de forma diferente dependendo da **classe** dos objetos. A forma geral desta função é:

```
plot(x, y, ...)
```

Note que y não precisa ser necessariamente especificado. O mesmo resultado pode ser obtido em formato de **fórmula**:

```
plot(y ~ x, data, ...)
```

Onde lê-se "y descrito utilizando-se x", ou "y em função de x"

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos Outros pacotes

gráficos

plot(dados)

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

descritiva

Análise gráfica Argumentos gráficos Outros pacotes gráficos plot(dados\$CL) # uma variável

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica

Argumentos gráficos Outros pacotes gráficos plot(dados\$especie, dados\$CL) # fator, numérico

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos Quitros gráficos

Os **boxplots** são úteis para revelar o centro, a dispersão e a distribuição dos dados, além de outliers. São construídos da seguinte forma:

- A linha central mais escura representa a mediana. Os extremos da caixa são o 1° (q1) e o 3° (q3) quartis.
- As linhas que se extendem das caixas são definidas como:

$$q1 - 1, 5 \cdot IQR$$
 e $q3 + 1, 5 \cdot IQR$

$$q3+1, 5 \cdot IQR$$

onde IQR é o intervalo inter-quartil. As linhas vão até os valores máximo e mínimo que ainda se encontram dentro deste intervalo.

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

.....

Análise gráfica Argumentos gráficos Outros pacotes gráficos boxplot(dados[, 3:7])

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

descritiva

Análise gráfica Argumentos gráficos Outros pacotes gráficos boxplot(CL ~ especie, data = dados) # um fator
boxplot(CL ~ especie + sexo, data = dados) # dois fatores

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica

Argumentos gráficos Outros pacotes gráficos Na função hist(), dois argumentos controlam a configuração das classes:

Argumentos	resultado
<pre>include.lowest = T, right = T</pre>	
include.lowest = F, right = T	(a,b],, (c,d]
include.lowest = F, right = F	[a,b),, [c,d)
include.lowest = T, right = F	[a,b),, [c,d]

O argumento breaks também pode ser utilizado para especificar as "quebras" das classes.

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica

Argumentos gráficos Outros pacotes gráficos

hist(dados\$CL)

Histogram of dados\$CL

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica

Argumentos gráficos Outros pacotes gráficos hist(dados\$CL, breaks = seq(10, 50, 1)) # ou
hist(dados\$CL, nclass = 40) # aproximado

h <- hist(dados\$CL)

```
Módulo II
Descritiva
CBO 2014
```

Importação de

dados

Estatística descritiva

Análise gráfica

Argumentos gráficos Outros pacotes gráficos

\$breaks

h

[1] 10 15 20 25 30 35 40 45 50

\$counts

[1] 1 7 22 31 41 34 14 6

\$density

[1] 0.0012821 0.0089744 0.0282051 0.0397436 0.0525641 0.0435897

\$mids

[7] 0.0179487 0.0076923

uma lista com as uma série de informações:

A função hist(), além de produzir histogramas também retorna

[1] 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5

40 / 49

\$xname "1)220hsh" [1]

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística

descritiva

Análise gráfica Argumentos gráficos Outros pacotes gráficos hist(dados\$CL) # contagem
hist(dados\$CL, freq = F) # densidade

Histogram of dados\$CL

A função barplot()

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

descritiva Análise gráfica

Argumentos gráficos Outros pacotes gráficos A função barplot() gera gráficos de barra a partir de uma tabela

table(dados\$especie)

azul laranja 77 79

barplot(table(dados\$especie))

A função barplot()

Módulo II Descritiva

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos Quitros pacotes gráficos

```
table(dados$especie, dados$sexo)
```

```
azul
laranja 44 35
```

```
barplot(table(dados$especie, dados$sexo))
barplot(table(dados$especie, dados$sexo), beside = T)
```


Sumário

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos

gráficos Outros pacotes gráficos

- 1 Importação de dados
- 2 Estatística descritiva
- 3 Análise gráfica
 - Argumentos gráficos
 - Outros pacotes gráficos

Argumentos gráficos

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos

gráficos Outros pacotes gráficos Os principais argumentos que servem uma grande quantidade de funções gráficas são

- xlab, ylab: ("caracter") alteram o nome dos eixos (x e y label)
- xlim, ylim: (c(min, max)) alteram os limites dos eixos (x e y limits)
- main: ("caracter") altera o título do gráfico

Argumentos gráficos

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

descritiva

Análise gráfica Argumentos

gráficos Outros pacotes gráficos

```
plot(dados$CL, dados$CW,
    xlab = "Comprimento da carapaça (cm)",
    ylab = "Largura da carapaça (cm)",
    main = "Relação entre CL e CW")
```

Relação entre CL e CW

Argumentos gráficos

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica

Argumentos

gráficos

Outros pacotes gráficos

```
hist(dados$CL, main = "", xlim = c(0, 60),
    xlab = "Comprimento da carapaça (cm)",
    ylab = "Frequência")
```


Sumário

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos

gráficos Outros pacotes gráficos

- 1 Importação de dados
- 2 Estatística descritiva
- 3 Análise gráfica
 - Argumentos gráficos
 - Outros pacotes gráficos

Ouros pacotes gráficos

Módulo II Descritiva

CBO 2014

Importação de dados

Estatística descritiva

Análise gráfica Argumentos gráficos

Outros pacotes gráficos Além do pacote de gráficos padrão do R, **graphics**, existem outros que incorporam opções mais avançadas

- lattice (mais antigo)
- ggplot2 (mais recente)