Managing Your Research Data

Data Structure and Formatting

Reproducible Research

- At some point in the future someone might want to repeat your analysis for themselves or re-use your data
 - This will most likely be you!
- Assuming that you'll be able to remember all the steps involved in generating the data is dangerous
 - Making sure that everything is well documented is crucial
- Documentation should cover not only the methods used, but the files used as input and any transformations performed on them

Reproducible Research

Five selfish reasons to work reproducibly – Florian Markowetz (CRUK)

Comment | Open Access | Published: 08 December 2015

Five selfish reasons to work reproducibly

<u>Genome Biology</u> **16**, Article number: 274 (2015) | <u>Cite this article</u> **21k** Accesses | **46** Citations | **492** Altmetric | <u>Metrics</u>

Abstract

And so, my fellow scientists: ask not what you can do for reproducibility; ask what reproducibility can do for you! Here, I present five reasons why working reproducibly pays off in the long run and is in the self-interest of every ambitious, career-oriented scientist.

YouTube video of Florian presenting this in a talk

Reproducible Research

- Probably the most (in)famous example of failure to reproduce a study, which actually put people's lives at risk and rallied statisticians into action Keith Baggerly's lecture on the scandal is a must-see.
- Retraction Watch

Are spreadsheets programs like Excel evil?

- ... Not necessarily ...
- Often much more convenient to eye-ball a spreadsheet and get an overall impression of your data
- But they have limitations making them not ideal for large-scale analyses
- Doing things by-hand increases the chances of mistakes, such as copyand-paste errors
- Languages such as R or Python cannot read all files as if by magic

Data Validation in Excel for data entry

Excel and other spreadsheets have a data validation feature

e.g. In Excel

- Select a column
- In the menu bar, choose Data then Validation...
- You can then choose to limit the acceptable entries in the column to:
 - Integer or decimal number
 - A numeric range
 - List of possible text values
 - Limited length text
 - Date or time

Less helpful features in Excel

- When identifiers are long integers Excel converts them to exponents
 - 1000000 = 1e06
 - Issue with Illumina microarray chip IDs
- Excel can convert gene names to dates
 - SEPT2 (Septin 2) → '2-Sep'
 - MARCH1 (Membrane-Associated Ring Finger (C3HC4) 1, E3 Ubiquitin Protein Ligase) → '1-Mar'
- Conversion of ID codes!

Rule 1 - Never work directly on the raw data

Rule 1 - Never work directly on the raw data

- Hard to reverse all the manual steps performed
- Keep the original data somewhere **safe**
- Make a copy of the original and work on that
- Ideally write protect the original to avoid it being altered or overwritten

Rule 1 - Never work directly on the raw data

Write protection:

Mac

- Right click on the file in Finder
- Select "Get Info"
- Sharing and permission
- Under the "Privilege" column select "Read only"

Windows

- Right click on the file in Windows Explorer
- Properties
- General tab
- Attributes
- Select the box for "read only"

Rule 2 - Maintain consistency

How many inconsistencies can you spot?

Patient ID	Sex	Date of Diagnosis	Tumour Size
Patient_1	M	01-01-2013	3.1 cm
Patient_2	f	04-18-1998	1.5
Patient_3	Male	1st of April 2004	10.5
Patient_4	Female	NA	67
Patient_5	F	2010/03/12	4.2 cm
Patient_6	F		3.6 cm
Patient_7	М	1994-11-05	23.2 mm

Rule 2 - Maintain consistency

- Consistency: F, female, f, fem, 2, ...
- Units cm or mm; days, months or years
- You can introduce inconsistencies without realising it, e.g. blank spaces (whitespace) at the end of text - "Male" is not the same as "Male"
- Controlled vocabularies standardize text entry option
- Use data validation where possible
- Document choices you make in a README file

Rule 2 - Maintain consistency

A note on dates:

- The formatting for dates varies widely e.g.:
 - 2nd May 2023
 - 02-05-2023
 - 2/5/2023
 - 5-2-2023
 - May 2nd 2023
- The clearest is to use YYYY-MM-DD

Rule 2 - Maintain consistency

Corrected Data Table

Patient ID	Sex	Date of Diagnosis	Tumour Size (mm)
Patient_1	М	2013-01-01	31
Patient_2	F	1998-04-18	15
Patient_3	М	2004-04-01	10.5
Patient_4	F	NA	67
Patient_5	F	2010-03-12	42
Patient_6	F	NA	36
Patient_7	М	1994-11-05	23.2

Rule 3 – Don't use 0 to mean missing

- Zero values are data!
 - Sometimes extreme values such as 999 are sometimes used
- "NA" is okay, except if NA is a valid category in your data
 - Languages such as R or Python will recognise NA as a missing value and will ignore it in analyses
- Another option is to leave the cell empty
 - You need to be careful with blank spaces
 - Does it mean the data weren't collected or was it a data entry error?

Rule 4 - Fill in all the cells

Sample ID	Date	Value
Sample_1	2015-06-14	213
Sample_2		76.5
Sample_3	2015-06-18	32
Sample_4		120.3
Sample_5		109
Sample_6	2015-06-20	95.6
Sample_7		143

Rule 4 - Fill in all the cells

- It is tempting to make the table look cleaner by not repeating some values
- Fill in all cells!
 - otherwise, problems when sorting
- Empty cell:
 - missing value?
 - value meant to be repeated multiple times?
- Make sure it's clear that the data is missing and not unintentionally left blank

Rule 4 - Fill in all the cells

Sample ID	Date	Value
Sample_1	2015-06-14	213
Sample_2	2015-06-14	76.5
Sample_3	2015-06-18	32
Sample_4	2015-06-18	120.3
Sample_5	2015-06-18	109
Sample_6	2015-06-20	95.6
Sample_7	2015-06-20	143

Rule 5 - Make it rectangular

- The computer expects a very rigid shape of data with rows and columns
- Each column is a *variable* being examined
- Each row is an observation
- A concept commonly known as tidy data

Rule 5 - Make it rectangular

	А	В	С	D	E	F	G	Н	I
1		1 min				5 min			
2	strain	normal		mutant		normal		mutant	
3	Α	147	139	166	179	334	354	451	474
4	В	246	240	178	172	514	611	412	447

Rule 5 - Make it rectangular

	Α	В	С	D	Е
1	strain	genotype	min	replicate	response
2	Α	normal	1	1	147
3	Α	normal	1	2	139
4	В	normal	1	1	246
5	В	normal	1	2	240
6	Α	mutant	1	1	166
7	Α	mutant	1	2	179
8	В	mutant	1	1	178
9	В	mutant	1	2	172
10	Α	normal	5	1	334
11	Α	normal	5	2	354
12	В	normal	5	1	514
13	В	normal	5	2	611
14	Α	mutant	5	1	451
15	Α	mutant	5	2	474
16	В	mutant	5	1	412
17	В	mutant	5	2	447

Rule 6 – Do your data entry in a timely fashion

- It is tempting to focus on data collection and leave data entry to later date
- This can lead to problems if your records are not perfect
- Lab/Field notebooks can be easily damaged or lost

- Rule 1 Never work directly on the raw data
- Rule 2 Maintain consistency
- Rule 3 Don't use 0 to mean missing
- Rule 4 Fill in all the cells
- Rule 5 Make it rectangular
- Rule 6 Do your data entry in a timely fashion

Additional best practices

- Don't put too much information in one cell
 - 1 cell = 1 piece of information
- Don't include units such as "30 g" → "g" in the column name
 - http://unitsofmeasure.org/ucum.html
- Write notes in a separate column or data dictionary or metadata
 - "0 (below threshold)"
- Design for machine readability
 - No calculations
 - Don't use highlighting or font/fill colours to indicate data

Practical

- Download the file <u>patient data.txt</u> to your computer
- Open it in Excel or any other spreadsheet software
- This is a simulated, but representative, example of bad data
- Spend a few minutes identifying problems with the data
- In the next session we will look at the software OpenRefine, which we can use to clean up the problems with the data table.

