Rachunek prawdopodobieństwa i statystyka

Lista zadań № 5. Tydzień rozpoczynający się 29. marca

Zadania

- 1. Niech (X,Y) będzie zmienną losową o gęstości f(x,y). Wykazać, że E(X+Y)=E(X)+E(Y).
- 2. X jest zmienną losową typu dyskretnego, tzn. dane są ciągi $\{x_i\}$, $\{p_i\}$ wartości i ppb tej zmiennej. Udowodnić, że dla Y = aX + b jest $V(Y) = a^2V(X)$, $(a, b \in \mathbb{R})$.
- 3. Zmienna losowa podlega standardowemu rozkładowi normalnemu, tzn. $f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$, gdzie $x \in \mathbb{R}$. (Skrótowo: $X \sim N(0,1)$). Znaleźć rozkład (gęstość $f_Y(y) \equiv g(y)$) zmiennej $Y = X^2$.
- 4. Wykazać, że $\Gamma(1/2)=\sqrt{\pi}$. (Wsk.: W zadaniu 1.3 dokonać podstawienia $t=x^2/2$ i porównać z zadaniem 1.6)
- 5. Mówimy, że zmienna losowa X podlega rozkładowi Gamma z parametrami b, p > 0 jedynie wtedy gdy $f(x) = \frac{b^p}{\Gamma(p)} x^{p-1} \exp(-bx)$, dla $x \in (0, \infty)$. (Krótko: $X \sim \text{Gamma}(b, p)$). Czy Y z zadania 3. ma rozkład Gamma? Jeżeli tak, podać wartości parametrów b, p.
- 6. Zmienna X ma standardowy rozkład normalny $X \sim N(0,1)$. Niech $\sigma > 0, \mu \in \mathbb{R}$. Znaleźć rozkład zmiennej $Y = \sigma X + \mu$.
- 7. **2p.** Zmienna (X,Y) ma rozkład o gęstości f(x,y) = xy, na obszarze $[0,2] \times [0,1]$. Wyznaczyć dystrybuantę tej zmiennej, czyli obliczyć $F_{XY}(s,t) = \int_{-\infty}^{s} \int_{-\infty}^{t} xy \, dy \, dx$.
- 8. **2p.** (X,Y) z poprzedniego zadania. Wyznaczyć rozkład zmiennej Z=X+Y.
- 9. Zmienna (X,Y) jest typu ciągłego, zmienne X,Y są niezależne. Wykazać, że Cov(X,Y)=0.

Witold Karczewski