Parallel Computing with GPUs: GPU Assignment Project Exam Help Architectures https://powcoder.com

Dr Paul Richmond http://paulrichmond.sher.ac.uk/teaching/COM4521/

Last week

- ☐ Parallelism can add performance to our code
- ☐ We must identify parallel regions
- OpenMP can be both data and task parallel

 Assignment Project Exam Help
 OpenMP data parallelism is parallel over data elements
 - Dbut threads operate in the pender wooder.com
- Critical sections cause serialisation which can slow performance
- ☐ Scheduling is required to achieve best performance

This Lecture

- ☐What is a GPU?
- ☐ General Purpose Computation on GPUs (and GPU History)
- ☐GPU CUDA Hardware Model

Assignment Project Exam Help

Accelerated Systems

https://powcoder.com

Add WeChat powcoder

GPU Refresher

Latency vs. Throughput

- Latency: The time required to perform some action
 - ☐ Measure in units of time
- ☐ Throughput: The number of actions executed per unit of time
 - Measured in units Automatical traject Exam Help

https://powcoder.com

□ E.g. An assembly line manufactures GPUs. It takes 6 hours to manufacture a GPU but Athe Wselmtly time odermanufacture 100 GPUs per day.

CPU vs GPU

- **□**CPU
 - ☐ Latency oriented
 - □Optimised for serial code performance
 - Good for single complexitation Project Exam Help
- **□**GPU
 - □Throughput oriented https://powcoder.com
 - ☐ Massively parallel architecture eChat powcoder
 - □Optimised for performing many similar tasks simultaneously (data parallel)

CPU vs GPU

- □ Large Cache

 Add WeChat powerache
 - ☐ Hide long latency memory access
- ☐ Powerful Arithmetic Logical Unit (ALU)
 - ☐ Low Operation Latency
- □ Complex Control mechanisms
 - ☐ Branch prediction etc.

- ☐ But faster memory throughput
- ☐ Energy efficient ALUs
 - ☐ Long latency but high throughput
- ☐Simple control
 - ☐ No branch prediction

* * *	
* **	Data Parallelism
	□Program has many similar threads of execution □Each thread performs the same behaviour on different data □Good for high throughput
	We can classify an architecture based on instructions and data (Flynn's Taxonomy)
	□Instructions: https://powcoder.com □Single instruction (SI)
	□Multiple Instruction (MAdd WeChat powcoder
	□Single Program (SP) □Multiple Program (MP) Not part of the original taxonomy
製子庫 預報報 選舉 - 提供問題 最子單級報 - 世	□ Data:
	☐Single Data (SD) — w.r.t. work item not necessarily single word ☐Multiple Data (MD)
	☐e.g. SIMD = Single Instruction and Multiple Data

SISD and SIMD

SISD

☐ Classic von Neumann architecture

□PU = Processing Unit

Assignment Project Exam Help

https://powcoder.com

Add SWe hat powcoder

- ☐ Multiple processing elements performing the same operation simultaneously
- ☐ E.g. Early vector super computers
- ☐ Modern CPUs have SIMD instructions
 - ☐But are not SIMD in general

MISD and MIMD

□MISD

☐ E.g. Pipelining architectures

Assignment Project Exam Help

https://pww.coder.com

Add Wechat powcoder

- ☐ Different processors may execute different instructions on different data
- ☐ E.g. Most parallel computers
- ☐ E.g. OpenMP programming model

□ SPMD				
☐Multiple a different d	•	ssors simultaneo	ously executing a p	rogram on
□Program es □E.g. Messa	kecution can have Assignm ge passing on dis	an independent ent Project Exa cributed memory	path for each dat m Help machines.	ta point
□ MPMD	https	://powcoder.co	om	
□Multiple a independe	utonomous proce nt programs.	ssors simultaneo	usly executing at	least two
☐Typically cl	ient & host progr	amming models f	fit this description	١.
	layStation 3 SPU	PPU combination	n, Some system or	n chip

Taxonomy of a GPU

☐ What taxonomy best describes data parallelism with a GPU?

□SISD?

Assignment Project Exam Help □SIMD?

□MISD?

■MIMD?

□SPMD?

■MPMD?

https://powcoder.com

Add WeChat powcoder

Taxonomy of a GPU

☐ What taxonomy best describes data parallelism with a GPU?

□Obvious Answer: SIMD

Assignment Project Exam Help

□ Less Obvious answer: SPMD https://powcoder.com

- □Slightly confusing answeld SWeCT(Single thateuction Multiple Thread)
 - ☐ This is a combination of both it differs from SIMD in that;
 - 1) Each thread has its own registers
 - Each thread has multiple addresses
 - Each thread has multiple flow paths
 - ☐ We will explore this in more detail when we look at the hardware!
 - http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

This Lecture

- ☐What is a GPU?
- ☐ General Purpose Computation on GPUs (and GPU History)
- ☐GPU CUDA Hardware Model

Assignment Project Exam Help

Accelerated Systems

https://powcoder.com

Add WeChat powcoder

GPU Early History

☐ Hardware has evolved from the demand for increased quality of 3D computer graphics □ Initially specialised processors for each part of the graphics pipeline Uvertices (points of triangles) earth in ignerate its (protential pixels) can be manipulated in parallel ☐ The stages of the graphics pipeline became programmable in early 2000's Add WeChat powcoder ■NVIDIA GeForce 3 and ATI Radeon 9700 □ DirectX 9.0 required programmable pixel and vertex shaders

The Graphics Pipeline

Source: NVidia Cg Users Manual

GPGPU

□ General Purpose computation on Graphics Hardware
□ First termed by Mark Harris (NVIDIA) in 2002
□ Recognised the use of GPUs for non graphics applications
□ Requires mapping Assproblem tiltto graphics of Indepts
□ Data into textures (images)
□ Computation into shaders
□ Later unified processors devenues at the other fixed stages
□ 2006: GeForce 8 series

Unified Processors and CUDA

- ☐ Compute Unified Device Architecture (CUDA)
 - ☐ First released in 2006/7
- ☐ Targeted new bread of unified "streaming multiprocessors"
- C like programming soignment Project Exam Help
 - □ No computer graphics: General purpose programming model
 - Revolutionised GPU programming for general purpose use Add WeChat powcoder

Other GPU Programming Techniques

ons (MATLAB, Ansys, etc)
TT 1
kam Help
GO MA
coder
eral data parallel architectures

Other GPU Programming Techniques

☐GPU Accelerated Libraries and Applications (MATLAB, Ansys, etc)
☐GPU mostly abstracted from end user
□ Pros: Easy to learn and use
□Cons: difficult to master (High level of abstraction reduces ability to perform bespoke optimisations ignment Project Exam Help
☐GPU Accelerated Directives (OpenACC)
☐ Helps compiler auto generate sode for com
□Very similar to OpenMP
□ Very similar to OpenMP □ Pros: Performance portability, limited understanding of hardware required
☐ Cons: Limited fine grained control of optimisation
□OpenCL
☐ Inspired by CUDA but targeted at more general data parallel architectures
□Pros: Cross platform
☐ Cons: Limited access to cutting edge NVIDIA specific functionality, limited support

This Lecture

- ☐What is a GPU?
- ☐General Purpose Computation on GPUs (and GPU History)
- ☐GPU CUDA Hardware Model

Assignment Project Exam Help

Accelerated Systems

https://powcoder.com

Add WeChat powcoder

Hardware Model

- NVIDIA GPUs have a 2-level hierarchy
- Help Multiprocessor (SMP) has multiple vector "CUDA" cores
 - ☐ The number of SMs varies across different hardware implementations
 - ☐ The design of SMPs varies between GPU families
 - ☐ The number of cores per SMP varies between GPU families

NVIDIA CUDA Core

□CUDA Core

□ Vector processing unit

☐Stream processor

□Works on a single Assignment Project Exam Help operation

https://powcoder.com

Add WeChat powcoder

NVIDIA GPU Range

□GeForce ☐ Consumer range ☐Gaming oriented for mass market Quadro Range Assignment Project Exam Help □ Workstation and professional graphics https://powcoder.com ■Tesla □Number crunching boxesdd WeChat powcoder ☐ Much better support for double precision ☐ Faster memory bandwidth **□**Better Interconects

Tesla Range Specifications

	"Kepler" K20	"Kepler" K40	"Maxwell" M40	Pascal P100	Volta V100
CUDA cores	2496	2880	3072	3584	5120
Chip Variant	GK110 AS			kam Help	GV100
Cores per SM	192		opwcoder.		64
Single Precision Performance	3.52 Tflops	4.29 Thops	eChat pov	VCOGET 9.51Flops	15TFFlops
Double Precision Performance	1.17 TFlops	1.43 Tflops	0.21 Tflops	4.7 Tflops	7.5Tflops
Memory Bandwidth	208 GB/s	288 GB/s	288GB/s	720GB/s	900GB/s
Memory	5 GB	12 GB	12GB	12/16GB	16GB

Fermi Family of Tesla GPUs

Kepler Family of Tesla GPUs

- ☐Streaming Multiprocessor Extreme (SMX)
- ☐ Huge increase in the number of cores per SMX
 - ☐Smaller 28nm processes
- ☐Increased L2 Cache
- ☐ Cache coherency at L2 not at L1

Maxwell Family Tesla GPUs

Pascal P100 GPU

- ☐ Many more SMPs
- ☐ More GPCs
- ☐ Each CUDA core is more Helefficient
 - ☐ More registers available
 - ☐Same die size as Maxwell
 - ☐ Memory bandwidth improved drastically
 - **□**NVLink

Warp Scheduling

- □GPU Threads are always executed in groups called warps (32 threads)
 □Warps are transparent to users
- □SMPs have zero overniead warp scheduling Help
 - □ Warps with instructions ready/to execute are eligible for scheduling
 - ☐ Eligible warps are selected for execution on priority (context switching)
 - □ All threads execute the Aside Methat (MAD) when executed on the vector processors (CUDA cores)
- ☐ The specific way in which warps are scheduled varies across families
 - ☐ Fermi, Kepler and Maxwell have different numbers of warp schedulers and dispatchers

NVIDIA Roadmap

Performance Characteristics

Source: NVIDIA Programming Guide (http://docs.nvidia.com/cuda/cuda-c-programming-guide)

Performance Characteristics

This Lecture

- ☐What is a GPU?
- ☐General Purpose Computation on GPUs (and GPU History)
- ☐GPU CUDA Hardware Model
- Assignment Project Exam Help

 Accelerated Systems

https://powcoder.com

Add WeChat powcoder

Accelerated Systems

- □ CPUs and Accelerators are used together
 - ☐GPUs cannot be used instead of CPUs
 - ☐GPUs perform compute heavy parts
- Communication is Aisi @ Communication is Aisi @ Collection

 Leading to the control of the cont

 - □PCle 3.0: up to 8 GB per second throughput https://powcoder.com
 □NVLINK: 5-12x faster than PCle 3.0

Simple Accelerated Workstation

- ☐ Insert your accelerator into PCI-e
- Make sure that Assignment Project Exam Help
 - ☐ There is enough space

 - ☐You install the latest GPU drivers Chat powcode

Larger Accelerated Systems

PCle ☐ Can have multiple CPUs and Accelerators within each "Shared Memory ent Project Exam Help GPU/ Node" https://powcoder.com **GDRAM** ☐ CPUs share memory but Interconnect **DRAM** accelerators do not! Add WeChat powcoder **GDRAM** GPU/ **CPU PCle**

GPU Workstation Server

☐ Multiple Servers can be

connected via interconnect

Assignment Project

Several vendors offer GPU

servers

https://powcode

□ For example 2 multi coxel FRUE that po 4 GPUS

☐ Make sure your case and power supply are upto the job!

Accelerated Supercomputers

DGX-1 (Volta V100)

SYSTEM SPECIFICATIONS

GPUs	8X Tesla V100	8X Tesla P100		1
TFLOPS (GPU FP16)	960	170		
GPU Memory		tal system		→ I GPU
CPU Dual 20-Core Intel Xeon 1 E5-2698 v4 2.2 GHz			ment Project Exam F	Help

NVIDIA CUDA® Cores	40,960	28,672
NVIDIA Tensor Cores (on V100 based systems)	5,120	N/A https://powcoder.com

Maximum Power Requirements Add WeChat powcoder

requirements	
System Memory	512 GB 2,133 MHz DDR4 LRDIMM
Storage	4X 1.92 TB SSD RAID 0
Network	Dual 10 GbE, 4 IB EDR
Software	Ubuntu Linux Host OS See Software Stack for Details
System Weight	134 lbs
System Dimensions	866 D x 444 W x 131 H (mm)
Packing Dimensions	1,180 D x 730 W x 284 H (mm)
Operating Temperature Range	10-35 °C

NVIDIA® NVLink™ Hybrid Cube Mesh

NVIDIA DGX-1 Delivers 96X Faster Training

Workload: ResNet50, 90 epochs to solution | CPU Server: Dual Xeon E5-2699 v4, 2.6GHz

Capabilities of Machines Available to you

Summary

- ☐GPUs are better suited to parallel tasks that CPUs
- Accelerators are typically not used alone, but work in tandem with CPUs

 Assignment Project Exam Help
- GPU hardware is constamply./epowingler.com
- □GPU accelerated systems scale supercomputers
- □CUDA is a language for general purpose GPU (NVIDIA only) programming

Mole Quiz Next Week

- **■Next Weeks lecture 15:00-16:00 in LECT DIA-LT08**
- ☐ This time next week (16:00) will be a MOLE quiz.
 - **□Where**? DIA-004 (Computer room 4)
 - **□When**? Now
 - How Long: 45 mins (25 coestions) Project Exam Help
 - □What? Everything up to the end of this weeks lectures... https://powcoder.com

□E.g.

Add WeChat powcoder

```
int a[5] = \{1, 2, 3, 4, 5\};

x = &a[3];

\squareWhat is x?
```

- 1. a pointer to an integer with value of 3
- 2. a pointer to an integer with value of 4
- 3. a pointer to an integer with a value of the address of the third element of a
- 4. an integer with a value of 4

