Projective Geometry & Homography

Chul Min Yeum

Assistant Professor

Civil and Environmental Engineering
University of Waterloo, Canada

CIVE 497 – CIVE 700: Smart Structure Technology

Last updated: 2021-01-09

ON 3D-CameraMeasure App

Measurement Demo

Measurement Demo (Continue)

Reference

We will study this topic using

ECE 661: Computer Vision (by Avinash Kak)

- Lecture 2: World 2D: Representing and Manipulating Points, Lines And Conics Using Homogeneous Coordinates
- <u>Lecture 3: World 2D: Projective Transformations and Transformation Groups</u>
- Lecture 4: Characterization of Distortions Caused by Projective Imaging and the Principle of Point/Line Duality
- Lecture 5: Estimating a Plane-to-Plane Homography with Angle-to-Angle and Point-to-Point Correspondences

Course website: https://engineering.purdue.edu/kak/computervision/ECE661Folder/

Point in the Homogeneous Coordinate

An arbitrary homogeneous vector representation of a point is of the form $\mathbf{x} = (x_1, x_2, x_3)^T$ in **HC**, representing the point $(x_1/x_3, x_2/x_3)^T$ in \mathbb{R}^2 .

Example)
$$\mathbf{x_1} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix}$$
 $\mathbf{x_2} = \begin{pmatrix} 10 \\ 6 \\ 2 \end{pmatrix}$ $\mathbf{x_3} = \begin{pmatrix} 5k \\ 3k \\ k \end{pmatrix}$, $k \neq 0$ in HC up to a scale

 $\mathbf{x_1}, \mathbf{x_2}$, and $\mathbf{x_3}$ indicate the same point of (5, 3) in \mathbb{R}^2

 \mathbb{R}^n : n-dimension real coordinate system

Line in the Homogeneous Coordinate (HC)

$$ax + by + c = 0$$

$$l = (a, b, c)^{\mathsf{T}}$$

Line equation in \mathbb{R}^2

Line representation in HC

Example)
$$\mathbf{l_1} = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}$$
 $\mathbf{l_2} = \begin{pmatrix} 9 \\ 12 \\ 9 \end{pmatrix}$ $\mathbf{l_3} = \begin{pmatrix} 3k \\ 4k \\ 3k \end{pmatrix}$, $k \neq 0$ in HC up to a scale

 $\mathbf{x_1}, \mathbf{x_2}$, and $\mathbf{x_3}$ indicate the same line of 3x + 4y + 3 = 0 in \mathbb{R}^2

Points and lines have the same representation in HC.

Points and Lines in the Homogeneous Coordinate (HC)

$$ax + by + c = 0$$

$$(x_1, x_2, x_3)(a, b, c)^{\mathsf{T}} = 0$$

The point x lies on the line **l** if and only if $\mathbf{l}^{\mathsf{T}}\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{l} = 0$.

Example) A point (2, 11) is on a line y = 3x + 5

$$(2,11,1)\begin{pmatrix} 3\\-1\\5 \end{pmatrix} = 0$$

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$

 $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$

$$\mathbf{a} \times \mathbf{b} = (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) \times (b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k})$$

$$= a_1 b_1 (\mathbf{i} \times \mathbf{i}) + a_1 b_2 (\mathbf{i} \times \mathbf{j}) + a_1 b_3 (\mathbf{i} \times \mathbf{k}) +$$

$$a_2 b_1 (\mathbf{j} \times \mathbf{i}) + a_2 b_2 (\mathbf{j} \times \mathbf{j}) + a_2 b_3 (\mathbf{j} \times \mathbf{k}) +$$

$$a_3 b_1 (\mathbf{k} \times \mathbf{i}) + a_3 b_2 (\mathbf{k} \times \mathbf{j}) + a_3 b_3 (\mathbf{k} \times \mathbf{k})$$

$$\mathbf{a} imes \mathbf{b} = -a_1b_1\mathbf{0} + a_1b_2\mathbf{k} - a_1b_3\mathbf{j} \\ -a_2b_1\mathbf{k} - a_2b_2\mathbf{0} + a_2b_3\mathbf{i} \\ +a_3b_1\mathbf{j} - a_3b_2\mathbf{i} - a_3b_3\mathbf{0} \\ = (a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

$$x_1 = [1 \ 3 \ 1], \quad x_2 = [2 \ 1 \ 2]$$

Q. Compute $x_1 \times x_2$

$$\boldsymbol{x_1} \times \boldsymbol{x_2} = \begin{vmatrix} i & j & k \\ 1 & 3 & 1 \\ 2 & 1 & 2 \end{vmatrix}$$

MATLAB implementation

Points and Lines in the Homogeneous Coordinate (HC) - Continue

Given any two lines $\mathbf{l_1}=(a_1,b_1,c_1)$ and $\mathbf{l_2}=(a_2,b_2,c_2)$, the point (x) of intersection of the two lines :

$$x = l_1 \times l_2$$

Given any two points $\mathbf{x_1}=(x_1,y_1,z_1)$ and $\mathbf{x_2}=(x_2,y_2,z_2)$, the line (l) that passes through the two points :

$$l = x_1 \times x_2$$

Supplement

Prove the Relationship using the Triple Scalar Identity

Dot product

$$A \cdot B = |A||B|\cos(\theta)$$

if the magnitude of B is 1, then...

$$C = A \cdot B = |A| \cos(\theta)$$

Cross product

The dot product of two vectors $\mathbf{a} = [a_1, a_2, ..., a_n]$ and $\mathbf{b} = [b_1, b_2, ..., b_n]$ is defined as

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^n a_i b_i = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$$

 $l_1 \cdot (l_1 \times l_2) = l_2 \cdot (l_1 \times l_2) = 0$

Triple scalar identity

$$a \cdot (a \times b) = b \cdot (a \times b) = 0$$

$$l_1^T x = l_2^T x = 0 \qquad x = l_1 \times l_2$$

Q1: When
$$a = [2 \ 4 \ 2], b = [0 \ 5 \ 5]$$
, compute $a \times b$

Q2: Line passes through two points (0,1) and (1,2)

Two-point form [edit]

Given two different points (x_1, y_1) and (x_2, y_2) , there is exactly one line that passes through them. There are several ways to write a linear equation of is line.

If $x_1 \neq x_2$, the slope of the line is $\dfrac{y_2-y_1}{x_2-x_1}$. Thus, a point-slope form is [3]

$$y-y_1=rac{y_2-y_1}{x_2-x_1}(x-x_1).$$

Quiz 1 (Answer)

Two-point form [edit]

Given two different points (x_1, y_1) and (x_2, y_2) , there is exactly one line that passes through them. There are several ways to write a linear equation of is line.

If $x_1 \neq x_2$, the slope of the line is $\dfrac{y_2-y_1}{x_2-x_1}$. Thus, a point-slope form is [3]

$$y-y_1=rac{y_2-y_1}{x_2-x_1}(x-x_1).$$

Given any two points $\mathbf{x_1} = (x_1, y_1, z_1)$ and $\mathbf{x_2} = (x_2, y_2, z_2)$, the line (l) that passes through the two points :

$$l = x_1 \times x_2$$

Intersection point (p_x, p_y) of two lines l_1 and l_2

 l_1 passes through two distinct points, (0,1) and (1,2) l_2 passes through two distinct points, (4,0) and (5,3)

Quiz 2: Graph

Quiz 2: Method 1

Given two points on each line [edit]

First we consider the intersection of two lines L_1 and L_2 in 2-dimensional space, with line L_1 being defined by two distinct points (x_1,y_1) and (x_2,y_2) , and line L_2 being defined by two distinct points (x_3,y_3) and (x_4,y_4) . [1]

```
denom = (0-1)*(0-3)-(1-2)*(4-5);
numerx = (0*2-1*1)*(4-5)-(0-1)*(4*3-0*3);
numery = (0*2-1*1)*(0-3)-(1-2)*(4*3-0*3);
px = numerx/denom;
py = numery/denom;
```

$$(px,py) = (6.50, 7.50)$$

$$(P_x,P_y) = \left(rac{(x_1y_2-y_1x_2)(x_3-x_4)-(x_1-x_2)(x_3y_4-y_3x_4)}{(x_1-x_2)(y_3-y_4)-(y_1-y_2)(x_3-x_4)},
ight. \ \left. rac{(x_1y_2-y_1x_2)(y_3-y_4)-(y_1-y_2)(x_3y_4-y_3x_4)}{(x_1-x_2)(y_3-y_4)-(y_1-y_2)(x_3-x_4)}
ight)$$

Quiz 2: Method 2

Given any two lines $\mathbf{l_1}=(a_1,b_1,c_1)$ and $\mathbf{l_1}=(a_2,b_2,c_2)$, the point (x) of intersection of the two lines : $\mathbf{x}=\mathbf{l_1}\times\mathbf{l_2}$

Given any two points $\mathbf{x_1} = (x_1, y_1, z_1)$ and $\mathbf{x_2} = (x_2, y_2, z_2)$, the line (I) that passes through the two points :

$$l = x_1 \times x_2$$

```
11 = cross([0,1,1]',[1,2,1]');
12 = cross([4,0,1]',[5,3,1]');
x = cross(11,12);
px = x(1)/x(3);
py = x(2)/x(3);
```

```
>> [px py]
ans =
6.5000 7.5000
```

Summary of the Homogenous Coordinate

1. An arbitrary homogeneous vector representation of a point is of the form $\mathbf{x} = (x_1, x_2, x_3)^T$, representing the point $(x_1/x_3, x_2/x_3)^T$ in \mathbb{R}^2 .

2. Line equation, ax + by + c = 0, in \mathbb{R}^2 is represented as $I = (a, b, c)^T$ in the homogeneous coordinate.

Pinhole Camera Model

Projective Transformation (Homography)

A <u>planar</u> projective transformation (homography) is a <u>linear</u> transformation on homogeneous 3-vectors, the transformation being represented by a <u>non-singular</u> 3x3 matrix H, as in

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$x' = Hx$$

Projective Transformation (continue)

In planar perspective transformation, all rays that join a scene point **x** with its corresponding image point x' must pass through the same point that is referred to as the center of projection or the focal center. Obviously, an image formed with a planar perspective transformation will, in general, suffer from distortions including projective, affine, and similarity.

Example: Perspective Distortion

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Example: Homography

$$\begin{pmatrix} x_1' \\ y_1' \\ 1 \end{pmatrix} = H \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} x_2' \\ y_2' \\ 1 \end{pmatrix} = H \begin{pmatrix} x_2 \\ y_2 \\ 1 \end{pmatrix} = H \begin{pmatrix} x_3 \\ y_3' \\ 1 \end{pmatrix} = H \begin{pmatrix} x_3 \\ y_3 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x_2' \\ y_2' \\ 1 \end{pmatrix} = H \begin{pmatrix} x_2 \\ y_2 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} x_3' \\ y_3' \\ 1 \end{pmatrix} = H \begin{pmatrix} x_3 \\ y_3 \\ 1 \end{pmatrix}$$

Property of the Projective Transformation

It always maps a straight line to a straight line.

$$x' = Hx$$

$$\mathbf{l'}^{\mathsf{T}}\mathbf{x'} = \mathbf{l'}^{\mathsf{T}}\mathbf{H}\mathbf{x} = (\mathbf{l'}^{\mathsf{T}}\mathbf{H})\mathbf{x} = \mathbf{l}\mathbf{x} = \mathbf{0}$$

$$l'^{\mathsf{T}}H=l$$
 $l'=H^{-\mathsf{T}}l$

Hierarchy of Transformation

(correct) A similarity transform is an affine transform.

(incorrect) A projective transform is an affine transform.

(correct) An Euclidean transform is an affine transform.

(correct) An affine transform is a projective transform.

(incorrect) An similarity transform is an Euclidean transform.

Geometric Transformation (Euclidean Transformation)

Rigid body motions

1. Translation — 2 dof in 2D

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} t_x \\ t_y \end{array}\right)$$

$$x' = x + t$$

2. Rotation — 1 dof in 2D

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$x' = Rx$$

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\mathbf{x'} = \mathbf{R}\mathbf{x} + \mathbf{t} \qquad \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{vmatrix} \cos\theta & -\sin\theta & t_x \\ \sin\theta & \cos\theta & t_y \\ 0 & 0 & 1 \end{vmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Example: Euclidean Transformation

Example: Testing Euclidean Transformation

Translation: X' = X + (2, 3)'

HE2 = 3×3 0.8660 -0.5000 0 0.5000 0.8660 0 0 0 1.0000

HE3 = 3×3 0.8660 -0.5000 3.0000 0.5000 0.8660 4.0000 0 0 1.0000

Geometric Transformation (Similarity Transformation)

Preserve angles and ratios of lengths => Preserve "shape" (isotropic scale)

$$x' = sRx + t$$

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} s & 0 & t_{\chi} \\ 0 & s & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} s & 0 & t_x \\ 0 & s & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} cos\theta & -sin\theta & 0 \\ sin\theta & cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= \begin{bmatrix} s * cos\theta & -s * sin\theta & t_x \\ s * sin\theta & s * cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Example: Similarity Transformation

Example: Testing Similarity Transformation

Isometric scaling: X' = 2X

X' = 2X + rotation 30 degrees + translation (3,4)

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Geometric Transformation (Affine Transformation)

Keep parallel lines parallel.

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Review of Linear Algebra

See the PDF file

Singular value decomposition (SVD): A factorization of a matrix that generalizes the eigendecomposition of a square normal matrix.

U, V: Orthonormal matrix

D: Diagonal matrix

$$A=UDV^{\mathsf{T}}=(UV^{\mathsf{T}})(VDV^{\mathsf{T}})=R(\theta)R(-\phi)DR(\phi)$$

Product of two orthonormal matrices become an orthonormal matrix

$$Q^TQ = I$$

$$R^TR = I$$
,

$$(QR)^T(QR) = R^T(Q^TQ)R = R^TR = I.$$

Every orthonormal matrix having determinant 1 acts as a rotation.

Rotation — 1 dof in 2D
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$A = UDV^{\mathsf{T}} = (UV^{\mathsf{T}})(VDV^{\mathsf{T}}) = R(\theta)R(-\phi)\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}R(\phi)$$

The affine matrix A is seen to be the concatenation of a rotation (by ϕ); a scaling by λ_1 and λ_2 respectively in the (rotated) x and y directions; a rotation back (by $-\phi$); and finally, another rotation (by θ). The only "new" geometry, compared to a similarity, is the non-isotropic scaling.

See tutorials

$$A = \begin{bmatrix} 2 & -0.534 \\ 0.1916 & 0.5265 \end{bmatrix}$$

$$A=R(\theta)R(-\phi)\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}R(\phi)$$

 θ :16.02

 $-\phi:14.55$

 λ_1 :2.0707

 λ_2 :0.5579

Geometric Transformation (Projective Transformation)

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Cross ratio

Point Correspondences for Estimating a Homography

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} \cong \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \qquad \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} \cong \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} \cong \begin{pmatrix} xh_{11} + yh_{12} + h_{13} \\ xh_{21} + yh_{22} + h_{23} \\ xh_{31} + yh_{32} + h_{33} \end{pmatrix} \qquad \begin{bmatrix} x & y & 1 & 0 & 0 & 0 & -xx' & -x'y & -x' \\ 0 & 0 & 0 & x & y & 1 & -xy' & -y'y & -y' \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \\ h_{31} \\ h_{32} \\ h_{33} \end{bmatrix}$$

$$x' = \frac{xh_{11} + yh_{12} + h_{13}}{xh_{31} + yh_{32} + h_{33}}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} \cong \begin{pmatrix} xh_{11} + yh_{12} + h_{13} \\ xh_{21} + yh_{22} + h_{23} \end{pmatrix}$$

$$x' = \frac{xh_{11} + yh_{12} + h_{13}}{xh_{31} + yh_{32} + h_{33}}$$

$$y = \frac{xh_{21} + yh_{22} + h_{23}}{xh_{31} + yh_{32} + h_{33}}$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} \cong \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\begin{bmatrix} x & y & 1 & 0 & 0 & 0 & -xx' & -x'y & -x' \\ 0 & 0 & 0 & x & y & 1 & -xy' & -y'y & -y' \end{bmatrix}$$

$$3x + 2y + z = 3$$

$$3x + 2y + z = 3 \qquad [3 \quad 2 \quad 1] \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 3$$

Point Correspondences for Estimating a Homography (Continue)

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1x_1' & -x_1'y_1 & -x_1' \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -x_1y_1' & -y_1'y_1 & -y_1' \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2x_2' & -x_2'y_2 & -x_2' \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -x_2y_2' & -y_2'y_2 & -y_2' \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3x_3' & -x_3'y_3 & -x_3' \\ 0 & 0 & 0 & x_3 & y_3 & 1 & -x_3y_3' & -y_3'y_3 & -y_3' \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4x_4' & -x_4'y_4 & -x_4' \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -x_4y_4' & -y_4'y_4 & -y_4' \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{23} \\ h_{31} \\ h_{32} \\ h_{33} \end{bmatrix}$$

How Do We Know the Length? (Continue)

