AMENDMENTS TO THE CLAIMS

1. (Currently amended) Spirobifluorene ("SBF") derivatives and corresponding radical anions having the following general formula (II):

in which K, L, M and N, the same or different from each other, are independently: H or A-C=O, with the proviso that it is never K = L = M = N = H, wherein A is an aromatic group bearing at least one radical R, with R = H or aliphatic group.

- 2. (Original) Spirobifluorene derivatives and corresponding radical anions according to claim 1 wherein A is selected among: aromatic groups, aromatic groups containing heteroatoms, condensed aromatic groups, condensed aromatic groups containing heteroatoms, and corresponding derivatives.
- 3. (Original) Spirobifluorene derivatives and corresponding radical anions according to claim 1 wherein A is selected in the group of the following derivatives: phenyl, biphenyl, 1-naphthyl, 2-naphthyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 3-thienyl, 3-furyl, 3-pyrrolyl, 9-anthryl, biphenylenyl, perylenyl, fullerenyl, and corresponding derivatives.
- 4. (Currently amended) Spirobifluorene derivatives and corresponding radical anions according to claim 1 wherein R = linear, branched or cyclic aliphatic C_1 - C_n , with n positive integer ≥ 0 integer ≥ 0 , preferably C_1 - C_{18} ; more preferably C_1 - C_6 .

Application No.: Not Yet Assigned Docket No.: 09931-00035-US

5. (Currently amended) Spirobifluorene derivatives and corresponding radical anions according to claim 1 wherein A is substituted with at least one R' group where R' is selected in the group of: halogens, trifluoromethyl, hydroxyl, -SH, -SC[C₁₋₆(alkyl)], alkoxy, nitro, cyano, -COOH, -COOC[C₁₋₄(alkyl)], -NH₂, -NC[C₁₋₄(alkyl)]₂, benzyl, or benzoyl.

6. (Original) Spirobifluorene derivatives having the general formula (III) and corresponding radical anions:

$$R_1$$
 R_2
 R_3
 R_3
 R_1
 R_2
 R_3
 R_3
 R_3

wherein A is an aromatic group and $R_1 = R_2 = R_3 = H$; or $R_1 = R_3 = H$ and $R_2 = C_{1-6}(alkyl)$; or $R_1 = R_2 = H$ and $R_3 = C_{1-6}(alkyl)$; or $R_2 = H$ and $R_1 = R_3 = C_{1-6}(alkyl)$.

7. (Original) Spirobifluorene derivatives having the general formula (IV) and corresponding radical anions:

$$R_4$$
 R_5
 R_6
 R_6
 R_6
 R_6
 R_6
 R_6
 R_6
 R_6

Docket No.: 09931-00035-US

wherein R_5 = A-C=O with A = aromatic group and R_4 = R_6 = H; or R_5 = A-C=O and R_4 = R_6 = C_{1-4} (alkyl); or R_6 = A-C=O and R_4 = R_5 = H; or R_6 = A-C=O and R_4 = R_5 = C_{1-4} (alkyl).

8. (Original) Spirobifluorene derivatives having the general formula (V) and corresponding radical anions:

wherein $R_7 = R_9 = A$ -C=O with A = aromatic group and $R_8 = H$; or $R_7 = R_9 = A$ -C=O and $R_8 = C_{1-4}$ (alkyl).

9. (Original) Spirobifluorene derivatives having the general formula (VI) and corresponding radical anions;

$$R_{10}$$
 R_{10}
 R_{10}
 R_{11}
 R_{12}
 R_{12}
 R_{12}

wherein $R_{10} = R_{11} = R_{12} = A-C=O$ with A = aromatic group.

10. (Currently amended) Spirobifluorene derivatives and corresponding radical anions according to elaims 6-9 claim 6 wherein A is selected among: aromatic groups, aromatic groups containing heteroatoms, condensed aromatic groups, condensed aromatic groups containing heteroatoms, and corresponding derivatives.

- 11. (Currently amended) Spirobifluorene derivatives and corresponding radical anions according to elaims 6-9 claim 6 wherein A is selected in the group of: phenyl, biphenyl, 1-naphthyl, 2-naphthyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 3-thienyl, 3-furyl, 3-pyrrolyl, 9-anthryl, biphenylenyl, perylenyl, fullerenyl, and corresponding derivatives.
- 12. (Original) Spirobifluorene derivatives and corresponding radical anions according to claim 1 wherein L = M = N = H and K = A-C=O in position 2, with A = phenyl and R = H.
- 13. (Original) Spirobifluorene derivatives and corresponding radical anions according to claim 1 wherein L = N = H, K and M in position 2 and 2' are A-C=O, with A = phenyl and R = H.
- 14. (Original) Spirobifluorene derivatives and corresponding radical anions according to claim 1 wherein L = N = H, K and M in position 2 and 7' are A-C=O, with A = phenyl and R = H.
- 15. (Original) Spirobifluorene derivatives and corresponding radical anions according to claim 1 wherein L = M = N = H, K in position 2 is A-C=O with A = phenyl and R = p-tert-Bu.
- 16. (Original) Spirobifluorene derivatives and corresponding anionic radicals according to claim 1 wherein is: L = N = H, K and M in position 2 and 2' are A-C=O, with A = phenyl and R = p-tert-Bu.
- 17. (Original) Spirobifluorene derivatives and corresponding radical anions according to claim 1 wherein is: L = M = H, K and N in position 2 and 7' are A-C=O, with A = phenyl and R = p-tert-Bu.

Application No.: Not Yet Assigned Docket No.: 09931-00035-US

18. (Currently amended) Spirobifluorene derivatives and corresponding radical anions according to elaims 1-17 claim 1 in a mixture of them as enantiomers.

- 19. (Currently amended) Spirobifluorene derivatives and corresponding radical anions according to claims 1–17-claim 1 in optically pure form.
- 20. (Currently amended) Method for preparing the Spirobifluorene derivatives according to claim 1 comprising the following steps: use the non-functionalised SBF as the starting product (formula (I)) and add to it the compound A-C=OCl with A = aromatic group, in the presence of a Lewis acid, preferably selected among AlCl₃, AlBr₃, FeCl₃, particularly preferably AlCl₃, in a solvent preferably selected between CH₂Cl₂ and CS₂, particularly preferably CH₂Cl₂, at a reaction temperature from 10 °C to reflux.
- 21. (Original) Method for preparing the Spirobifluorene derivatives according to claim 1 comprising the use, as intermediate, of SBF functionalised as acid chloride SBF(COCl)_x, with x positive integer ≥ 1 and equal to the number of substituents to be obtained on the SBF; said acid chloride is then combined with A-H, in which A = aromatic group, said acid chloride intermediate being prepared from the corresponding carboxylic acids of the SBF, SBF(COOH)_x, in turn obtained from the corresponding acetyl derivatives SBF(COCH₃)_x, x having in both cases the above-mentioned meaning.

22-24 cancelled

25. (Currently amended) Electrochemical method for preparing the radical anions corresponding to the derivatives of the SBF according to elaims 1-24 claim 1, said method being characterised in that said derivatives, to be transformed into radical anions, at a concentration between 0.1 M and 0.1 mM, preferably between 0.01 M and 0.5 mM, particularly preferably approximately 1 mM, are added to an anhydrous aprotic solvent containing a supporting electrolyte, also anhydrous, in order to obtain a concentration of the latter of between 1 M and 0.01 M, preferably 0.2 M and 0.05 M, particularly preferably approximately 0.1 M, the mixture then being placed in an electrolysis cell and a d.d.p. applied between the electrodes in order to

Application No.: Not Yet Assigned Docket No.: 09931-00035-US

obtain the required radical anion.

26. (Currently amended) Electronic devices, in particular systems for electroluminescence, molecular-based computational systems, OLEDs, molecular switching components, components for non-linear optics, molecular-based computational systems, field-effect transistors, semiconductors with negative differential resistance, said systems comprising elements provided on their surface with at least one layer of a film or coating comprising at least one of the compounds according to elaims 1-24 claim 1.

27. cancelled.

- 28. (New) Systems for electroluminescence, molecular-based computational systems, OLEDs, molecular switching components, components for non-linear optics, molecular-based computational systems, field-effect transistors, semiconductors with negative differential resistance, said systems comprising elements provided on their surface with at least one layer of a film or coating comprising at least one of the compounds according to claim 1.
- 29. (New) 9,9'-Spirobi[9H-fluorene]-2,-carbonyl chloride, 9,9'-Spirobi[9H-fluorene]-2,2',7-tricarbonyl trichloride or 9,9'-Spirobi[9H-fluorene]-2,2',7-7'-tetracarbonyl tetrachloride.