Borel functions and the Baire stratification

Alessandro Andretta

Dipartimento di Matematica Università di Torino

A. Andretta (Torino)

Borel functions

AA 2024-2025

1/12

Definition [Kec95, Definition 24.2]

Let X, Y be metrizable spaces, and Γ be a boldface pointcass. A function $f\colon X\to Y$ if Γ -measurable if $f^{-1}(U)\in \Gamma(X)$ for every open $U\subseteq Y$.

Notice that if $\Gamma(X)$ is closed under countable unions and finite intersections and Y is second-countable, then in the previous definition it is enough to restrict U to any countable subbasis for Y. Clearly, the notion of Σ_1^0 -measurability coincides with continuity.

Definition

Let X, Y be metrizable spaces. A function $f \colon X \to Y$ is called **Borel** if it is $\operatorname{\bf Bor}$ -measurable. Equivalently, f is Borel if and only if $f^{-1}(B) \in \operatorname{\bf Bor}(X)$ for every $B \in \operatorname{\bf Bor}(Y)$, i.e. if it is Borel as a function between the Borel spaces $(X,\operatorname{\bf Bor}(X))$ and $(Y,\operatorname{\bf Bor}(Y))$. $f \colon X \to Y$ is a **Borel isomorphism** if it is a bijection and both f and f^{-1} are Borel; when such a function exists, we say that X and Y are **Borel isomorphic**.

A. Andretta (Torino) Borel functions AA 2024–2025 2 / 12

Remark 2.4.3

If Y is second-countable, then $f\colon X\to Y$ is Borel if and only if there is $1\le \alpha<\omega_1$ such that f is $\mathbf{\Sigma}_{\alpha}^0$ -measurable. (Indeed, it is enough to set $\alpha=\sup\{\alpha_n\mid n\in\omega\}$, where the α_n are such that $f^{-1}(U_n)\in\mathbf{\Sigma}_{\alpha_n}^0(X)$ for $\{U_n\mid n\in\omega\}$ a countable basis for Y.) Since $\mathbf{\Sigma}_{\alpha}^0(X)\subseteq\mathbf{\Sigma}_{\beta}^0(X)$ when $\alpha\le\beta$, $\mathbf{\Sigma}_{\alpha}^0$ -measurability gives a stratification of the Borel functions in at most ω_1 -many levels. If X is an uncountable Polish space and $|Y|\ge 2$, this hierarchy does not collapse before ω_1 . To see this, fix distinct $y_0,y_1\in Y$, and given $1\le\alpha<\omega_1$ pick $A\in\mathbf{\Delta}_{\alpha}^0(X)\setminus\bigcup_{1\le\beta<\alpha}(\mathbf{\Sigma}_{\beta}^0(X)\cup\mathbf{\Pi}_{\beta}^0(X))$: then the function defined by $f(x)=y_0$ if $x\in A$ and $f(x)=y_1$ if $x\notin A$ is $\mathbf{\Sigma}_{\alpha}^0$ -measurable but not $\mathbf{\Sigma}_{\beta}^0$ -measurable for any $1\le\beta<\alpha$.

A. Andretta (Torino)

Borel functions

AA 2024-2025

3/12

Here are some basic facts (EXERCISE!) concerning Σ_{α}^{0} -measurable functions.

- If $f\colon X\to Y$ is $\mathbf{\Sigma}^0_{\alpha}$ -measurable, then for every $\beta<\omega_1$: if $A\in\mathbf{\Sigma}^0_{1+\beta}(Y)/\mathbf{\Pi}^0_{1+\beta}(Y)/\mathbf{\Delta}^0_{1+\beta}(Y)$ then $f^{-1}(A)\in\mathbf{\Sigma}^0_{\alpha+\beta}(X)/\mathbf{\Pi}^0_{\alpha+\beta}(X)/\mathbf{\Delta}^0_{\alpha+\beta}(X)$. Thus if $f\colon X\to Y$ is $\mathbf{\Sigma}^0_{\alpha}$ -measurable and $g\colon Y\to Z$ is $\mathbf{\Sigma}^0_{1+\beta}$ -measurable, then $g\circ f\colon X\to Z$ is $\mathbf{\Sigma}^0_{\alpha+\beta}$ -measurable.
- If X_i and Y_i are metrizable, Y_i second-countable, $i < I \le \omega$, and each $f_i \colon X_i \to Y_i$ is Σ^0_α -measurable, then the product function $\prod_{i < I} f_i \colon \prod_{i < I} X_i \to \prod_{i < I} Y_i$ is Σ^0_α -measurable as well.
- If X,Y_i are metrizable with Y_i second-countable, $i < I \le \omega$, and each $f_i \colon X \to Y_i$ is Σ^0_{α} -measurable, then $g \colon X \to \prod_{i < I} Y_i$ sending $x \in X$ to $(f_i(x))_{i < I}$ is Σ^0_{α} -measurable.

A. Andretta (Torino) Borel functions AA 2024–2025 4 / 13

The next result generalizes to all countable α 's the following well-know topological fact (when $\alpha=1$): if X,Y are topological spaces with Y Hausdorff and $f\colon X\to Y$ is continuous, then its graph is a closed set.

Proposition 2.4.4

Let X, Y be metrizable spaces with Y separable. If $f: X \to Y$ is Σ^0_α -measurable, then its graph

$$graph(f) = \{(x, y) \in X \times Y \mid f(x) = y\}$$

is in $\Pi^0_{\alpha}(X \times Y)$. In particular, the graph of a Borel function is Borel.

Proof.

The set $\operatorname{graph}(f)$ is the preimage of the diagonal of Y, which is a closed set, via the Σ^0_{α} -measurable function $f \times \operatorname{id}_Y \colon X \times Y \to Y \times Y$.

When X and Y are both Polish, then a partial converse is true: if $f: X \to Y$ has a Borel graph, then f is Borel (Theorem 3.2.4).

A. Andretta (Torino)

Borel functions

AA 2024-2025

5 / 12

Theorem 2.4.5 (Lebesgue, Hausdorff, Banach, see [Kec95, Theorem 24.3])

Let X, Y be metrizable spaces, with Y separable. Let $1 < \alpha < \omega_1$.

- ① If α is a successor ordinal, then f is $\Sigma^0_{\alpha+1}$ -measurable if and only if $f=\lim_{n\to\infty}f_n$, where each $f_n\colon X\to Y$ is Σ^0_{α} -measurable.
- ② If α is a limit ordinal, then f is $\Sigma^0_{\alpha+1}$ -measurable if and only if $f=\lim_{n\to\infty}f_n$, where each $f_n\colon X\to Y$ is $\Sigma^0_{\beta_n}$ -measurable for some $1\le\beta_n<\alpha$.

Remark

When λ is a (countable) limit ordinal, there is no natural way to obtain the collection of Σ^0_λ -measurable functions as pointwise limits of simpler functions. Indeed, by part 2 of the previous theorem the closure under pointwise limits of all the preceding classes (that is, of the collection of all functions which are Σ^0_β -measurable for some $1 \leq \beta < \lambda$) already coincide with the collection of all $\Sigma^0_{\lambda+1}$ -measurable, a class which is in general strictly larger than the class of Σ^0_λ -measurable functions by Remark 2.4.3.

The situation when $\alpha=1$ is more delicate. It is still true that a limit of Σ^0_1 -measurable (i.e. continuous) functions is Σ^0_2 -measurable, but the converse may fail. Indeed, if X is connected and Y is totally disconnected, then any continuous functions $f\colon X\to Y$ is constant, and therefore also a limit of continuous functions must be constant; however, if both X and Y contain at least two points, then there are non-constant Σ^0_2 -measurable functions (for example, we can let $f=\chi_{\{0\}}\colon \mathbb{R}\to\{0,1\}$ be the characteristic function of the singleton $\{0\}$.) This problem can be overcome by requiring that either Y is a well-behaved space, or X is far from being connected.

Theorem 2.4.7 (Lebesgue, Hausdorff, Banach, see [Kec95, Theorem 24.10])

Let X,Y be separable metrizable and $f\colon X\to Y$ be Σ^0_2 -measurable. If either $Y=\mathbb{R}$ (or $Y=\mathbb{R}^n$, $Y=\mathbb{C}^n$, Y is an interval in \mathbb{R} , and so on), or else X is zero-dimensional, then f is the (pointwise) limit of a sequence of continuous functions.

A. Andretta (Torino)

Borel functions

AA 2024-2025

7/12

Definition

Suppose that X and Y satisfy the hypothesis of Theorem 2.4.7. Let $\mathcal{B}_0(X,Y)$ be the collection of all continuous functions $f\colon X\to Y$, and for $\alpha<\omega_1$ inductively define

 $\mathcal{B}_{\alpha}(X,Y) = \{\lim_{n\to\infty} f_n \mid f_n \in \bigcup_{\nu<\alpha} \mathcal{B}_{\nu}(X,Y)\}.$ Functions in $\mathcal{B}_{\alpha}(X,Y)$ are called **Baire class** α functions.

Remark

By definition, $\mathcal{B}_{\alpha}(X,Y) \subseteq \mathcal{B}_{\beta}(X,Y)$ whenever $\alpha \leq \beta < \omega_1$, and $\bigcup_{\alpha < \omega_1} \mathcal{B}_{\alpha}(X,Y)$ is the smallest collection of functions containing the continuous ones and closed under (pointwise) limits.

A. Andretta (Torino) Borel functions AA 2024–2025 8 / 12

Baire class 1 functions are ubiquitous in analysis and in mathematics.

Example

- Upper semicontinuous and lower semicontinuous functions $f: X \to \mathbb{R}$ (where X is an arbitrary Polish space) are Baire class 1 functions.
- If X is Polish and $f \colon X \to \mathbb{R}$ has only countably many discontinuities, then f is of Baire class 1. In particular, all $f \colon [0;1] \to \mathbb{R}$ which are monotone or of bounded variation are of Baire class 1.
- Let $F: [0;1] \to \mathbb{R}$ be differentiable (at endpoints we take one-sided derivatives). Then its derivative F' is a Baire class 1 function.

A. Andretta (Torino) Borel functions AA 2024–2025 9 / 12

The following result is a corollary of Theorems 2.4.5 and 2.4.7.

Theorem 2.4.11 (Lebesgue, Hausdorff, see [Kec95, Theorem 11.6])

Let X,Y be spaces satisfying the hypotheses of Theorem 2.4.7. Then $f\colon X\to Y$ is of Baire class α (for $\alpha<\omega_1$) if and only if it is $\mathbf{\Sigma}^0_{\alpha+1}$ -measurable. Moreover, $\mathcal{B}_\alpha(X,Y)\subset\mathcal{B}_\beta(X,Y)$ for any $\alpha<\beta<\omega_1$, and the class of all Borel functions between X and Y is the smallest collection of functions containing the continuous ones and closed under (pointwise) limits.

A. Andretta (Torino) Borel functions AA 2024–2025 10 / 12

Proposition 2.4.12 [Kec95, Exercise 24.5]

Let (X,τ) be a Polish space, Y be a separable metrizable space, and $1 \leq \alpha < \omega_1$. Then $f\colon (X,\tau) \to Y$ is $\mathbf{\Sigma}^0_\alpha$ -measurable if and only if there is a Polish topology $\tau' \supseteq \tau$ on X such that $\tau' \subseteq \mathbf{\Sigma}^0_\alpha(X,\tau)$ and $f\colon (X,\tau') \to Y$ is continuous. In particular, $f\colon (X,\tau) \to Y$ is Borel if and only if there is a Polish topology $\tau' \supseteq \tau$ on X such that $\mathbf{Bor}(X,\tau') = \mathbf{Bor}(X,\tau)$ and $f\colon (X,\tau') \to Y$ is continuous.

Proof.

One direction is obvious, so let us assume that f is Σ^0_{α} -measurable for some $\alpha>1$ (the case $\alpha=1$ is trivial). Let $\{U_n\mid n\in\omega\}$ be a countable basis for Y, and let $B_{n,i}\in \Delta^0_{\alpha}(X,\tau)$ be such that $f^{-1}(U_n)=\bigcup_{i\in\omega}B_{n,i}$. Apply Theorem 2.2.2 to these $B_{n,i}$: then the resulting topology τ' is as required.

A. Andretta (Torino)

Borel functions

AA 2024-2025

11 / 12

Theorem

Let X be a Polish space and $\alpha < \omega_1$. Then $A \subseteq X$ is $\Pi^0_{\alpha+1}$ if and only if it is the zero-set of a real-valued Baire class α function.

Proof.

If $f\colon X\to\mathbb{R}$ is of Baire class α , then f is $\Sigma^0_{\alpha+1}$ -measurable (Theorem 2.4.11) so $f^{-1}(0)\in \Pi^0_{\alpha+1}(X)$ as $\{0\}$ is closed. For the converse consider first $\alpha=0$. Let d be a compatible metric on X. Given $A\subseteq X$, the function $f\colon X\to\mathbb{R},\ f(x)=d(x,A)$ is continuous, and $A\subseteq f^{-1}(0)$. On the other hand, f(x)=0 implies that x is a limit point of A, hence if A is closed $x\in A$: therefore in this case $A=f^{-1}(0)$. Let now $\alpha\geq 1$. Let $A\in \Pi^0_{\alpha+1}(X)$, so that $A=\bigcap_{n\in\omega}A_n$ with $A_n\in \Delta^0_{\alpha+1}(X)$. By Theorem 2.2.2, there is a Polish topology τ' refining the topology τ of X such that each A_n is τ' -clopen and $\tau'\subseteq \Sigma^0_{\alpha+1}(X,\tau)$. Then A is τ' -closed, so there if a continuous $f\colon (X,\tau')\to\mathbb{R}$ such that $f^{-1}(0)=A$. But then $f\colon (X,\tau)\to\mathbb{R}$ is $\Sigma^0_{\alpha+1}$ -measurable, whence f is of Baire class α by Theorem 2.4.11.