ALGORITMOS EM GRAFOS

CAMINHAMENTOS

ALGORITMO DE FLOYD-WARSHALL

Prof. Alexei Machado

PUC MINAS

CIÊNCIA DA COMPUTAÇÃO

- Calcula o menor caminho entre todos os pares de vértices em um digrafo
- Envolve publicações de Robert Floyd (em 1962),
 Bernard Roy (em 1959) e Stephen Warshall (em 1962)

- Peter Ingerman (em 1962) deu a forma atual ao algoritmo
- □ É um exemplo de programação dinâmica
 - Técnica que utiliza cálculos previamente realizados no cálculo da solução atual.

Premissa: um caminho entre dois vértices, v_i e v_l , passa por um vértice v_k . Logo, o caminho pode ser visto como $c(v_i,v_k)+c(v_k,v_l)$

□ Tenta minimizar as partes do caminho

- Para todo caminho (i, l), o algoritmo verifica se existe outro menor que passa por um vértice k, ou seja, se c(i, l) é menor que c(i, k) + c(k, l) para cada vértice k do grafo
- Insere um ou mais vértices nos caminhos quando for uma vantagem fazer isso

Estruturas de dados

- Matriz de entrada, inicializada com
 - \blacksquare Se i = I, matrizEntrada(i, I) = 0
 - □ Se $i \neq I$ e (i, l) \in E, matrizEntrada(i,l) = getPeso(i, l)
 - Senão, matrizEntrada(i, j) = ∞

Estruturas de dados

 \square Matriz de saída $D_{|V|\times |V|}$, na qual cada célula d_{il} contém a distância mínima entre os vértices i e l

```
void floydWarshall(Peso mat[][]){
  for (int k = 0; k < n; k++)
    for (int i = 0; i < n; i++)
        for (int l = 0; l < n; l++)
        mat[i][l] = min(mat[i][l], mat[i][k] + mat[k][l])
}

    k: intermediário
    i: origem
| destino</pre>
```

```
void floydWarshall(Peso mat[][]){
  for (int k = 0; k < n; k++)
    for (int i = 0; i < n; i++)
      for (int l = 0; l < n; l++)
        mat[i][l] = min(mat[i][l], mat[i][k] + mat[k][l])
}</pre>
```

Exemplo


```
void floydWarshall(Peso mat[][]){
  for (int k = 0; k < n; k++)
    for (int i = 0; i < n; i++)
      for (int l = 0; l < n; l++)
      mat[i][l] = min(mat[i][l], mat[i][k] + mat[k][l])
}</pre>
```

Exemplo

5

Matriz de entrada

0	8	5
3	0	8
8	2	0

```
void floydWarshall(Peso mat[][]){
  for (int k = 0; k < n; k++)
    for (int i = 0; i < n; i++)
        for (int l = 0; l < n; l++)
        mat[i][l] = min(mat[i][l], mat[i][k] + mat[k][l])
}</pre>
i: origem
l: destino k:0 i:0 l:0
```

Exemplo

11

5

Matriz de entrada

0	8	5
3	0	∞
8	2	0

Exemplo

v0 como intermediário

0	8	5
3	0	∞
8	2	0

k: intermediário

Exemplo

v0 como intermediário

0	8	5
3	0	∞
8	2	0

Exemplo

v0 como intermediário

0	8	5
3	0	8
8	2	0

Exemplo

v0 como intermediário

0	8	5
3	0	8
8	2	0

k: intermediário

Exemplo

5

v0 como intermediário

0	8	5
3	0	∞
8	2	0

Exemplo

v0 como intermediário

0	8	5
3	0	8
8	2	0

Exemplo

v0 como intermediário

0	8	5
3	0	8
8	2	0

Exemplo

v0 como intermediário

0	8	5
3	0	8
8	2	0

k: intermediário

Exemplo

5

v0 como intermediário

0	8	5
3	0	8
∞	2	0

k: intermediário

```
void floydWarshall(Peso mat[][]){
   for (int k = 0; k < n; k++)
     for (int i = 0; i < n; i++)
        for (int l = 0; l < n; l++)
        mat[i][l] = min(mat[i][l], mat[i][k] + mat[k][l])
}</pre>
i: origem
l: destino k:1 i:2 l:2
```

Exemplo

5

v1 como intermediário

0	8	5
3	0	8
5	2	0

```
void floydWarshall(Peso mat[][]){
   for (int k = 0; k < n; k++)
      for (int i = 0; i < n; i++)
        for (int l = 0; l < n; l++)
        mat[i][l] = min(mat[i][l], mat[i][k] + mat[k][l])
}</pre>
i: origem
l: destino k:2 i:2 l:2
```

Exemplo

5

v2 como intermediário

0	7	5
3	0	8
5	2	0

k: intermediário