Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Filip Binkiewicz

Nr albumu: 332069

Własność A dla kompleksów kostkowych CAT(0)

Praca licencjacka na kierunku MATEMATYKA

> Praca wykonana pod kierunkiem prof. dr hab. Sławomira Nowaka Instytut Matematyki

Czerwiec 2015

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

Streszczenie

Praca ta skupia się na dowodzie, iż kompleksy kostkowe CAT(0) mają własność A.

Słowa kluczowe

Kompleks kostkowy CAT(0), własność A

Dziedzina pracy (kody wg programu Socrates-Erasmus)

- 11.0 Matematyka, Informatyka:
- 11.1 Matematyka

Klasyfikacja tematyczna

14 Algebraic Geometry

Tytuł pracy w języku angielskim

Property A for CAT(0) cube complexes

Spis treści

M	lotywacja															5
1.	Wprowadzenie .									 						7
	1.1. Własność A .									 						7
	1.2. Przestrzenie C	CAT(0)								 						9
	1.3. Kompleksy ko	stkowe	CAT())						 						10

Motywacja

Motywacja bpeaasdgdagafg

Rozdział 1

Wprowadzenie

Pierwszy rozdział tej pracy poświęcę przypomnieniu podstawowych definicji, twierdzeń i przykładów dotyczących jej tematu. Aby zachować ciągłość pracy, postaram się uniknąć przytaczania rozległych dowodów. Dla zainteresowanych w odpowiednich miejscach znajdą się odsyłacze do literatury.

1.1. Własność A

Własność A jest pewnym przeniesieniem pojęcia średniowalności na przestrzenie metryczna. Przed właściwym wprowadzeniem tego pojęcia przypomne kilka podstawowych definicji dotyczących geometrii zgrubnej.

Przez X, Y będziemy oznaczać przestrzenie metryczne, d będzie oznaczać metrykę pochodzącą z przestrzeni, z której pochodzą jej argumenty. Jeśli będzie to konieczne, przez d_X, d_Y bedziemy dla ścisłości oznaczać metryki pochodzące odpowiednio z X i Y.

Definicja 1.1.1. Powiemy, że funkcja $\varphi:X\to Y$ jest **zgrubna**, jeśli spełnia następujące dwa warunki:

• (Bornologiczność) Dla każdego R > 0 istnieje S > 0 takie, że

$$d(x_1, x_2) < R \Rightarrow d(\varphi(x_1), \varphi(x_2)) < S$$

• (Właściwość) Dla każdego S>0 istnieje R>0 takie, że

$$d(\varphi(x_1), \varphi(x_2)) < S \Rightarrow d(x_1, x_2) < R$$

Przykład 1.1.1. Zanurzenie $\mathbb{Z} \hookrightarrow \mathbb{R}$ jest zgrubne. Każde przekształcenie liniowe $\mathbb{Z} \to \mathbb{Z}$, $n \to an+b$ jest zgrubne. Przekształcenie $\mathbb{Z} \ni n \to n^2 \in \mathbb{Z}$ nie jest zgrubne, bo nie jest bornologiczne $(d(n,n+1)=1, \text{ a } d(n^2,n^2+2n+1)=|2n+1|$ jest dowolnie duże).

Powiemy, że dwa przekształcenia $f_1, f_2: X \to Y$ są blisko, jeśli istnieje C > 0 takie, że

$$d(f_1(x), f_2(x)) < C$$
 dla każdego $x \in X$

Zbiór $A \subset X$ jest r-gęsty, jeśli dla każdego $x \in X$ istnieje element $a \in A$ taki, że d(x, a) < r. Zbiór A jest zgrubnie gęsty, jeśli jest r-gęsty dla pewnego r > 0.

Definicja 1.1.2. Powiemy, że przestrzenie X,Y są **zgrubnie równoważne**, jeśli istnieją przekształcenia zgrubne $\varphi: X \to Y, \ \psi: Y \to X$ takie, że $\varphi \circ \psi$ jest blisko id $_X$, zaś $\psi \circ \varphi$ jest blisko id $_X$. Przestrzenie X,Y są zgrubnie równoważne wtedy i tylko wtedy, gdy istnieje $\varphi: X \to Y$ takie, że $\varphi(X) \subset Y$ jest podzbiorem zgrubnie gęstym.

Uwaga 1.1.1. Każda przestrzeń metryczna X zawiera dyskretny podzbiór zgrubnie gęsty.

Dowód. Ustalmy $\varepsilon > 0$. Niech $\mathcal{D} = \{D \subset X : \forall_{x_1, x_2 \in D, x_1 \neq x_2} d(x_1, x_2) > \varepsilon\}$. Rodzina \mathcal{D} jest niepusta oraz każdy łańcuch jest ograniczony z góry przez swoją sumę. Wobec lematu Kuratowskiego- Zorna istnieje więc maksymalny element $D_0 \in \mathcal{D}$. Jest on ε - gęstym podzbiorem X. Istotnie, załóżmy przeciwnie - istnieje $x \in X$ taki, że $d(x, D_0) > \varepsilon$. Wtedy zbiór $D_0 \cup \{x\}$ należy do rodziny \mathcal{D} i zawiera w sobie D_0 , co przeczy maksymalności $D_0 \cup \{x\}$

Definicja 1.1.3. Przestrzeń dyskretna X ma **własność A**, jeśli dla każdego R > 0 oraz $\varepsilon > 0$ istnieje rodzina niepustych, skończonych zbiorów $A_x \subset X \times \mathbb{N}$ indeksowana $x \in X$ oraz stała S > 0 taka, że spełnione są następujące warunki:

1. Dla każdych dwóch $x, x' \in X$ zachodzi

$$d(x, x') < R \Rightarrow \frac{\#(A_x \Delta A_{x'})}{\#A_x} < \varepsilon$$

2. Dla dowolnego elementu $(x', n) \in A_x$ zachodzi

$$d(x, x') \leqslant S$$

Dowolna przestrzeń metryczna ma własność A, jeśli zawiera zgrubnie gęsty podzbiór o tej własności.

Symbol # oznacza liczbę elementów zbioru, zaś symbol Δ - operację różnicy symetrycznej (a więc $A\Delta B = (A \setminus B) \cup (B \setminus A)$)

Uwaga 1.1.2. Własność A jest niezmiennikiem zgrubnej równoważności przestrzeni dyskretnych. Dokładniej, jeśli przestrzenie dyskretne X, Y są zgrubnie równoważne, to X ma własność A wtedy i tylko wtedy, gdy Y ma własność A.

Uwaga ta jest bezpośrednia konsekwencja poniższego lematu:

Lemat 1.1.1. Jeśli $\varphi: X \to Y$ jest przekształceniem zgrubnym przestrzeni dyskretnych oraz Y ma własność A, to X ma własność A.

Dowód. Łatwo sprawdzić, że istnieje funkcja $\psi: Y \to X$ taka, że

$$d(y, \varphi(\psi(y))) \leq d(y, \varphi(X))$$
 dla każdego $y \in Y$

W tym celu wystarczy dla każdego $y \in Y$ wybrać $x \in X$ taki, że $\varphi(x)$ jest odpowiednio blisko y i ustalić $x = \psi(y)$.

Ustalmy teraz $R>0,\ \varepsilon>0$. Przekształcenie φ jest zgrubne, zatem istnieje R_0 takie, że

$$d(x, x') < R \Rightarrow d(\varphi(x), \varphi(x')) < R_0$$

Dla stałych R_0, ε istnieje rodzina $\{B_y \subset Y \times \mathbb{N}\}_{y \in Y}$ indeksowana $y \in Y$ oraz stała S' spełniającaewarunki definicji własności A. Zdefiniujmy teraz

$$X \times \mathbb{N} \supset A_x = \{(x', n) : n \leqslant \#\{(y, m) \in B_{\varphi(x)} : \psi(y) = x'\}\}$$

Sprawdzimy, że rodzina ta spełnia warunki definicji 1.3.3. Jeśli d(x,x') < R, to $d(\varphi(x),\varphi(x')) < R'$, a więc

$$\frac{\#(A_x \Delta A_{x'})}{\#A_x} \leqslant \frac{\#B_{\varphi(x)} \Delta B_{\varphi(x')}}{\#B_{\varphi(x)}} < \varepsilon$$

Załóżmy wreszcie, że $(x', n) \in A_x$. Wówczas istnieje para $(y, m) \in B_{\varphi(x)}$ taka, że $\psi(y) = x'$. Wówczas $d(y, \varphi(x)) \leq S'$ oraz

$$d(\varphi(x), \varphi(x')) \leqslant d(\varphi(x), y) + d(y, \varphi(x')) = d(\varphi(x), y) + d(y, \varphi(\psi(y))) \leqslant 2S' + 1$$

Korzystając znów ze zgrubności φ , możemy znaleźć stałą S taką, aby

$$d(\varphi(x), \varphi(x')) < 2S' + 1 \Rightarrow d(x, x') < S$$

Otrzymujemy więc, że d(x, x') < S, co kończy dowód.

W dalszych rozważaniach będziemy korzystać z następującej charakteryzacji własności A:

Stwierdzenie 1.1.1. Dyskretna przestrzeń metryczna X ma własność A wtedy i tylko wtedy, gdy istnieje ciąg rodzin funkcji o skończonym nośniku $f_{n,x}: X \to \mathbb{N} \cup \{0\}$, indeksowany $x \in X$, oraz ciąg $S_n \in \mathbb{R}_+$ taki, że

- 1. Dla każdego n oraz x nośnikiem $f_{n,x}$ jest $B(S_n,x)$.
- 2. Dla każdego R > 0 ciąg

$$\frac{\|f_{n,x} - f_{n,x'}\|}{\|f_{n,x}\|}$$

zbiega jednostajnie do zera na zbiorze $\{(x,x'): d(x,x') \leq R\}$ przy $n \to \infty$. Norma $\|\cdot\|$ oznacza normę ℓ_1 na przestrzeni funkcji na o skończonym nośniku określonych na X.

Dowód. Powyższe warunki są równoważne z następującym: dla każdego $R>0,\ \varepsilon>0$ istnieje rodzina funkcji o skończonym nośniku $f_x:X\to\mathbb{N}\cup\{0\}$, indeksowana $x\in X$, oraz S>0 takie, że supp $f_x=B(S,x)$ oraz

$$d(x, x') \leqslant R \Rightarrow \frac{\|f_x - f_{x'}\|}{\|f_x\|} < \varepsilon$$

Konieczność tego warunku wynika stąd, że przekształcenie $f_x(y) = \#(A_x \cap (\{y\} \times \mathbb{N}))$ spełnia powyższe warunki, zaś dostateczność - stąd, iż $A_x = \{(y,n) \in X \times \mathbb{N} : 1 \le n \le f_x(y)\}$ spełnia warunki definicji 1.3.3.

1.2. Przestrzenie CAT(0)

Niech (X,d) będzie przestrzenią metryczną. Odcinkiem geodezyjnym nazywamy przekształcenie izometryczne $\mathbb{R} \supset I \xrightarrow{\rho} X$, gdzie I = [a,b] jest odcinkiem. Przestrzeń X nazwiemy (jednoznacznie) geodezyjną, jeśli każde dwa punkty można połączyć (jednoznacznie wyznaczonym) odcinkiem geodezyjnym.

Przykład 1.2.1. Każda przestrzeń euklidesowa \mathbb{R}^n jest jednoznacznie geodezyjna, jak również każdy jej wypukły podzbiór. Sfera S^2 jest geodezyjna, ale nie jednoznacznie - dwa bieguny można połączyć ścieżką geodezyjną na nieskończenie wiele sposobów. Każdy spójny graf metryczny jest przestrzenią geodezyjną.

Dalej będziemy rozważać przestrzenie geodezyjne. Dla wygody przez [x, y] będziemy oznaczać (dowolny) odcinek geodezyjny łączący $x \in X$ z $y \in X$ (a dokładniej obraz tego odcinka).

Zwróćmy uwagę, że jeśli X jest przestrzenią geodezyjną, to dla każdej trójki $(x,y,z) \in X^3$ istnieje trójka $(\overline{x},\overline{y},\overline{z}) \in (\mathbb{R}^2)^3$ taka, że $d(x,y) = d_{\mathbb{R}^2}(\overline{x},\overline{y}), \ d(x,z) = d_{\mathbb{R}^2}(\overline{x},\overline{z}), \ d(y,z) = d_{\mathbb{R}^2}(\overline{y},\overline{z}).$ Innymi słowy, każdemu trójkątowi z X można przypisać trójkąt z przestrzeni euklidesowej \mathbb{R}^2 o bokach takiej samej długości. Taki trójkąt jest wyznaczony jednoznacznie z dokładnością do izometrii przestrzeni \mathbb{R}^2 i nazwiemy go trójkątem porównania (x,y,z).

Definicja 1.2.1. Powiemy, że przestrzeń geodezyjna X jest CAT(0), jeśli dla każdej trójki $(x, y, z) \in X^3$ oraz punktu $p \in [y, z]$ oraz odpowiadającym im trójkątowi porównania $(\overline{x}, \overline{y}, \overline{z}) \in (\mathbb{R}^2)^3$ i punktowi $\overline{p} \in [\overline{y}, \overline{z}]$ zachodzi nierówność:

$$d(x,p) \leqslant d_{\mathbb{R}^2}(\overline{x},\overline{p})$$

Innymi słowy, w przestrzeniach CAT(0) trójkąty są "szczuplejsze" niż w przestrzeni euklidesowej. O takich przestrzeniach powiemy, że mają niedodatnią krzywizne.

Przykład 1.2.2. Nietrudno jest o kilka przykładów takich przestrzeni:

- Każda przestrzeń euklidesowa \mathbb{R}^n jest CAT(0). Wówczas wymieniona nierówność jest po prostu równością.
- Graf metryczny jest przestrzenią CAT(0) wtedy i tylko wtedy, gdy jest drzewem.

Uwaga 1.2.1. Każda przestrzeń CAT(0) jest jednoznacznie geodezyjna.

Dowód. Przypuśćmy przeciwnie i niech $x,y \in X$ łączą dwa różne odcinki geodezyjne, powiedzmy $[x,y], \overline{[x,y]}$. Wówczas istnieją $[x,y] \ni p \neq \overline{p} \in \overline{[x,y]}$ takie, że $d(x,p) = d(x,\overline{p})$ oraz $d(y,p) = d(y,\overline{p})$. Wówczas trójkątowi (x,y,\overline{p}) w \mathbb{R}^2 odpowiada trójkąt zdegenerowany, zaś $d(p,\overline{p}) > 0$, co przeczy nierówności CAT(0)

Wniosek 1.2.1. Sfera S^2 nie jest przestrzenią CAT(0). Płaszczyzna \mathbb{R}^2 wyposażona w metrykę pochodzącą od normy ℓ_1 nie jest przestrzenią CAT(0)

1.3. Kompleksy kostkowe CAT(0)

Niech $K = [0, 1]^n$ będzie n-wymiarową kostką. Będzie to podstawowy "budulec" interesujących nas przestrzeni. Przez ścianę o kowymiarze równym 1 będziemy rozumieć zbiór

$$F_{i,\varepsilon} = \{x \in K : x_i = \varepsilon\}, \text{ dla } i = 1 \dots n \text{ oraz } \varepsilon \in \{0,1\}$$

Wszystkie ściany o niższym kowymiarze (o wyższym wymiarze) można otrzymać jako przecięcie ścian o wyższym kowymiarze.

Definicja 1.3.1. Niech K, K' będą dwiema kostkami oraz $F \subset K$, $F' \subset K'$ będą ich ścianami. **Sklejeniem** (lub **przyłączeniem**) K z K' nazwiemy izometrię $\varphi : F \to F'$.

Definicja 1.3.2. Przypuśćmy, że \mathcal{K} jest zbiorem kostek (dla każdego $K \in \mathcal{K}$ istnieje $n(K) \in \mathbb{N}$ takie, że $K \simeq [0,1]^{n(K)}$), zaś \mathcal{S} - zbiorem sklejeń elementów \mathcal{K} (każdemu $\varphi \in \mathcal{S}$ odpowiadają kostki $K = K(\varphi), K' = K'(\varphi) \in \mathcal{K}$ oraz ściany $F \subset K, F' \subset K'$. Załóżmy wreszcie, że taka para $(\mathcal{K}, \mathcal{S})$ spełnia następujące warunki:

- 1. Žadna kostka nie jest sklejona sama ze sobą.
- 2. Dla każdych dwóch kostek $K \neq K'$ istnieje co najwyżej jedno sklejenie K z K'.

Wówczas w następujący sposób można zdefiniować kompleks kostkowy:

$$X = \left(\bigsqcup_{K \in \mathcal{K}} C\right) /_{\sim}$$

gdzie \sim dla każdego $\varphi \in \mathcal{S}$ utożsamia dziedzinę φ z jego obrazem, to znaczy:

$$\{x \sim \varphi(x) \mid \varphi \in \mathcal{S}, \ x \in \text{dom}(\varphi)\}\$$

Jeśli istnieje stała M > 0 taka, że dla każdego $K \simeq [0,1]^{n(K)} \in \mathcal{K}$ zachodzi n(K) < M, to kompleks kostkowy X jest **skończenie wymiarowy**. Wtedy **wymiarem** tego kompleksu nazwiemy liczbę

$$\dim X = \max_{K \in \mathcal{K}} n(K)$$

Uwaga 1.3.1. W ten sposób zdefiniowany kompleks kostkowy jest przestrzenią metryczną, przy czym metryka długości indukowana jest z metryki euklidesowej na $[0,1]^n \subset \mathbb{R}^n$. Odległość punktów x,y mierzona w metryce długości jest to infinum długości krzywych $\gamma:[a,b]\to X$ łączących x z y. Długość krzywej definiujemy następująco:

$$l(\gamma) = \sup_{a=t_0 \leqslant \dots \leqslant t_n = b} \sum_{i=0}^{n-1} d(\gamma(t_i), \gamma(t_{i+1}))$$

Stwierdzenie 1.3.1. Z powyższej definicji łatwo wynikają następujące fakty:

- Obcięcie rzutowania $p: \bigsqcup_{K \in \mathcal{K}} \to X$ do jednej kostki $K \in \mathcal{K}$ jest iniekcją.
- Niepuste przecięcie dwóch kostek jest ścianą obydwu.

Przykład 1.3.1. Łatwo o kilka prostych przykładów kompleksów kostkowych:

- Rozważmy graf metryczny bez wierzchołków izolowanych, w którym każda krawędź ma długość 1. Każda krawędź jest izometryczna z [0, 1], zaś sklejenia to po prostu izometrie punktów. Jest to prosty przykład kompleksu kostkowego.
- Torus można interpretować jako kompleks kostkowy. Rozważmy zbiór $[0,3] \times [0,3] \subset \mathbb{R}^2$, w którym można wprowadzić podział na dziewięć części izometrycznych z $[0,1]^2$. Wtedy odpowiednie izometrie prowadzą do konstrukcji torusa (rysunek).

Uwaga 1.3.2. Na zbiorze wierzchołków można wprowadzić metrykę długości krawędziowej, gdzie odległość dwóch wierzchołków to minimum długości łączących ich ścieżek złożonych z krawędzi kompleksu (przez krawędź rozumiemy ścianę o wymiarze 1). Z naszego punktu widzenia możemy utożsamić te metryki, z uwagi na następujący fakt:

Stwierdzenie 1.3.2. Niech X będzie kompleksem kostkowym CAT(0). Metryka długości na zbiorze wierzchołków X jest zgrubnie równoważna z metryką długości krawędziowej. Jeśli X jest skończenie wymiarowy, to zbiór wierzchołków z pierwszą bądź drugą z tych metryk jest sobie zgrubnie równoważny.

 $Dow \acute{o}d.$

Kompleksy kostkowe CAT(0) posiadają strukturę kombinatoryczną. Zbiór wierzchołków drogowo spójnego kompleksu kostkowego CAT(0) można podzielić na dwa drogowo spójne podzbiory zbioru wierzchołków. Taki podział nazwiemy **hiperpłaszczyzną**, zaś oba spójne podzbiory nazwiemy **półprzestrzenią**.

Dwie hiperpłaszczyzny tworzą podział kompleksu na cztery przecięcia półpłaszczyzn. Jeśli wszystkie są niepuste, to hiperpłaszczyzny **przecinają się**. Dwa wierzchołki x, y są**oddzielone** przez hiperpłaszczyznę H, jeśli należą do różnych wyznaczonych przez nią półprzestrzeni.

¹length metric

Zbiór hiperpłaszczyzn oddzielających x od y będziemy oznaczać przez $\mathfrak{H}(x,y)$. **Odcinkiem** łączącym x oraz y nazwiemy przecięcie wszystkich półprzestrzeni zawierających obydwa te punkty i oznaczymy [x,y]. Zbiór wierzchołków V nazwiemy **wypukłym**, jeśli dla każdych $x,y\in V$ również $[x,y]\subset V$.

Dla trzech wierzchołków w, x, y możemy wyróżnić ich **medianę**, zdefiniowaną jako jedyny wierzchołek należący do $[w, x] \cap [x, y] \cap [w, y]$

Dla kompleksu kostkowego CAT(0) X możemy wprowadzićbrzeg kombinatoryczny. Niech funkcja σ przypisuje hiperpłaszczyźnie X jedną z wyznaczonych przez nią półprzestrzeni, przy czym dla każdych dwóch hiperpłaszczyzn H_1, H_2 zachodzi $\sigma(H_1) \cap \sigma(H_2) \neq \emptyset$. Taką funkcję nazwiemy **ultrafiltrem**.

Wierzchołek x definiuje takie przekształcenie: dla hiperpłaszczyzny H wyznacza półprzestrzeń H_x zawierającą x (rzeczywiście, dla każdych dwóch hiperpłaszczyzn H, K mamy $x \in H \cap K$). Jeśli więc oznaczymy przez $\mathfrak U$ zbiór wszystkich ultrafiltrów na X, zaś przez V(X) - zbiór wierzchołków X, to wskazaliśmy iniekcję

$$\iota:V(X)\to\mathfrak{U}$$

Wówczas elementy zbioru

$$\partial X = \mathfrak{U} \setminus \iota(V(X))$$

nazwiemy **krawędziami w nieskończoności**. Utożsamiając z wierzchołkiem x ultrafiltr $\iota(x)$, możemy więc zdefiniować

$$\overline{X} = X \cup \partial X$$

Powyższy zbiór nazwiemy **dopełnieniem w nieskończoności** kompleksu X.

Możemy przenieść podstawowe kombinatoryczne własności kompleksu kostkowego **CAT()** na jego dopełnienie w nieskończoności. Jeśli $z,w\in\overline{X}$, to dla hiperpłaszczyzny H przez H_z,H_w będziemy oznaczać obraz z,w (jako ultrafiltrów) na H, a więc odpowiednią półprzestrzeń (wtedy powiemy, że H_z zawiera z. Hiperpłaszczyzna H oddziela x od w, jeśli $H_z\neq H_w$. Można więc na \overline{X} uogólnić definicję zbioru $\mathfrak{H}(x,w)$. Podobnie możemy zdefiniować odcinek [x,w] jako

$$[x,w] = \bigcap H_{x,w}$$
 $x,w \in H_{x,w}$, $H_{x,w}$ – półprzestrzeń