

 二维数组的存储结构

 ElemType b[2][4]; //2行4列的二维数组

 b[0][0] b[0][1] b[0][2] b[0][3]
 逻辑视角

 b[1][0] b[1][1] b[1][2] b[1][3]
 逻辑视角

 内存
 b[0][0] b[0][1] b[0][2] b[0][3] b[1][0] b[1][1] b[1][2] b[1][3]
 存优先存储

 内存
 b[0][0] b[1][0] b[0][1] b[1][1] b[0][2] b[1][2] b[0][3] b[1][3]
 列优先存储

 王道考研/CSKAOYAN.COM

王道考 /// 23/2007211120111

 二维数组的存储结构

 ElemType b [2] [4]; //2行4列的二维数组

 b[0][0] b[0][1] b[0][2] b[0][3]
 逻辑视角

 b[1][0] b[1][1] b[1][2] b[1][3]
 逻辑视角

 内存
 b[0][0] b[1][0] b[0][1] b[1][1] b[0][2] b[1][2] b[0][3] b[1][3]
 列优先存储

 M行N列的二维数组 b[M][N] 中, 若按列优先存储,则
 b[i][j] 的存储地址 = LOC + (j*M+i)* sizeof(ElemType)

5

对称矩阵的压缩存储 若 n 阶<mark>方阵</mark>中任意一个元素 a_{i,j} 都有 a_{i,j} = a_{j,i} $a_{1,1}$ a_{1,2} a_{1,3} a_{1,n-1} $a_{1,n}$ 则该矩阵为对称矩阵 a_{2,2} a_{2,3} a_{2,n-1} $a_{2,1}$ $a_{2,n}$ 普通存储: n*n 二维数组 $a_{3,1}$ $a_{3,2}$ $a_{3,3}$ $a_{3,n-1}$ $a_{3,n}$ 压缩存储策略: 只存储主对角线+下三角区 (或主对角线+上三角区) a_{n-1,3} $a_{n-1,n-1}$ $a_{n-1,n}$ a_{n-1,1} a_{n-1,2} $a_{n,n-1}$ $a_{n,n}$ $a_{n,1}$ $a_{n,2}$ $a_{n,3}$ 王道考研/CSKAOYAN.COM

8

对称矩阵的压缩存储 策略: 只存储主对角线+下三角区 $a_{1,n}$ a_{1,1} a_{1,2} $a_{1,3}$ a_{1,n-1} 按行优先原则将各元素存入一维数组中。 a_{2,1} $a_{2,2}$ $a_{2,3}$ $\mathsf{B}[\frac{n(n+1)}{2}\operatorname{-}\!1]$ $a_{2,n-1}$ $a_{2,n}$ B[0] B[1] B[2] B[3] $a_{3,1}$ $a_{3,2}$ $a_{3,3}$ $a_{3,n-1}$ $a_{3,n}$ a_{1,1} a_{2,1} a_{3,1} a_{n,n-1} a_{n,n} 100 矩阵下标 →一维数组下标 a_{i,i} (i≥j) $a_{n-1,n-1}$ $a_{n-1,n}$ a_{n-1,1} a_{n-1,2} $a_{n-1,3}$ Key: 按<mark>行优先</mark>的原则,a_{i,j}是第几个元素? $a_{n,1}$ $a_{n,n-1}$ $a_{n,2}$ $a_{n,3}$ $a_{n,n}$ \rightarrow 第 $\frac{i(i-1)}{2}$ + j 个元素 [1+2+···+(i-1)] + j $\Rightarrow k = \frac{i(i-1)}{2} + j - 1$ 王道考研/CSKAOYAN.COM

对称矩阵的压缩存储 策略: 只存储主对角线+下三角区 a_{1,1} a_{1,2} a_{1,3} a_{1,n-1} $a_{1,n}$ 按行优先原则将各元素存入一维数组中。 $\mathsf{B}[\frac{n(n+1)}{2}\operatorname{-}\!1]$ a_{2,n-1} B[0] B[1] B[2] B[3] a_{3,3} $a_{3,1}$ $a_{3,2}$ $a_{3,n}$ $a_{2,1}$ a_{3,1} a_{n,n-1} a_{n,n} 矩阵下标 →一维数组下标 \rightarrow B[k] a_{n-1,3} $a_{n-1,n-1}$ $a_{n-1,n}$ a_{i,i}=a_{i,i}(对称矩阵性质) $a_{n,n-1}$ $a_{n,n}$ $a_{n,1}$ $a_{n,2}$ $a_{n,3}$ $\left[\frac{i(i-1)}{2} + j - 1, i \ge j \right]$ (下三角区和主对角线元素) $\frac{j(j-1)}{2}+i-1$, i < j (上三角区元素 $a_{ij} = a_{ji}$) 王道考研/CSKAOYAN.COM

三角矩阵的压缩存储

下三角矩阵: 除了主对角线和下三角区,其余的 元素都相同 压缩存储策略:按<mark>行优先</mark>原则将橙色区元素 存入一维数组中。并<mark>在最后一个位置存储常量c</mark>

B[0] B[1] B[2] B[3] B[$\frac{n(n+1)}{2}$ -1] B[$\frac{n(n+1)}{2}$] $a_{1,1} \quad a_{2,1} \quad a_{2,2} \quad a_{3,1} \quad \quad a_{n,n} \quad C$

矩阵下标 → 一维数组下标 a_{i,j} (i≥j) → B[k]

Key: 按<mark>行优先</mark>的原则,a_{i,j}是第几个元素?

 $k = \begin{cases} \frac{i(i-1)}{2} + j - 1, & i \geqslant j \text{ (下三角区和主对角线元素)} \\ \frac{n(n+1)}{2}, & i < j \text{ (上三角区元素)} \end{cases}$

王道考研/CSKAOYAN.COM

15

三角矩阵的压缩存储

上三角矩阵: 除了主对角线和上三角区,其余的元素都相同

压缩存储策略:按<mark>行优先</mark>原则将绿色区元素 存入一维数组中。并<mark>在最后一个位置存储常 量c</mark>

B[0] B[1] B[2] B[3] B[$\frac{n(n+1)}{2}$ -1] B[$\frac{n(n+1)}{2}$] $a_{1,1} \quad a_{1,2} \quad a_{1,3} \quad a_{1,4} \quad \quad a_{n,n} \quad C$

矩阵下标 → 一维数组下标 a_{i,j} (i≤j) → B[k]

Key:按<mark>行优先</mark>的原则,a_{i,j}是第几个元素?

 $k = \begin{cases} \frac{(i-1)(2n-i+2)}{2} + (j-i), & i \leq j \text{ (上三角区和主对角线元素)} \\ \frac{n(n+1)}{2}, & i > j \text{ (下三角区元素)} \end{cases}$

王道考研/CSKAOYAN.COM

三对角矩阵的压缩存储 若已知数组下标k,如何得到i,j? 0 0 0 $a_{1,1}$ $a_{1,2}$ B[k] a_{2,2} a_{2,3} 0 0 $a_{2,1}$ 第 k+1 个元素,在第几行?第几列? 前i-1行共 3(i-1)-1 个元素 0 0 前i行共 3i-1 个元素 0 $a_{3.2}$ $a_{3,3}$ 显然, 3(i-1)-1 < k+1 ≤ 3i-1 ... i≥(k+2)/3 / 可以理解为"刚好"大于等于 i = [(k+2)/3] 0 0 0 a_{n-1,n-1} a_{n-1,n} 0 0 0 a_{n,n-1} 王道书的计算逻辑: 3(i-1)-1≤k<3i-1 $a_{n,n}$ i ≤ (k+1)/3+1 可以理解为"刚好"小于等于 i = [(k+1)/3+1] 向下取整即可满足 "刚好"小于等于 上退专研/CSKAOYAN.COM

17

18

稀疏矩阵的压缩存储

 稀疏矩阵: 非零元素远远少于矩阵元素的个数

压缩存储策略:

顺序存储——三元组 <行,列,值>

i (行)	j (列)	v (值)
1	3	4
1	6	5
2	2	3
2	4	9
3	5	7
4	2	2

(注:此处行、列标从1开始)

王道考研/CSKAOYAN.COM

知识回顾与重要考点 矩阵的压缩存储需要多长的数组 由矩阵行列号 <i, j> 推出对应的数组下标号 k 数列 求和

由 k 推出 <i,j> ○ 向上取整/向下取整

行优先?列优先? 矩阵元素的下标从0? 1? 开始

存储上三角? 下三角?

数组下标从0? 1? 开始

是否忘了,等差数列求和???

易错点

王道考研/CSKAOYAN.COM

如何处理不等式中的"刚好大于等于/小于等于"

24