Machine Learning: The Hubbard model

Niels Billiet

 $March\ 22,\ 2018$

Contents

0.1	Theoretical background: Quantumchemical fundamentals 2		2
	0.1.1	Quantumchemical description of molecules	2
	0.1.2	The Hubbard model	2
0.2	Theoretical background: Neural networks		2
	0.2.1	Mathematical foundation of the network	2
	0.2.2	Regularization methods	2
	0.2.3	Network analysis	2
0.3			2
	0.3.1	Identification of the roadblocks in modern quantumchem-	
		ical research	2
	0.3.2	Solutions	2
	0.3.3	Overview of planned research topics	2
0.4	Results with regard to predictive power of neural networks		2
	0.4.1	Preliminary test: Can a simple network capture the data	
		in a simple well defined system?	2
	0.4.2	Simple hyperparameter sweep: Performance vs network	
		compelexity	2
	0.4.3	Data augmentation	2
	0.4.4	Performance of networks trained on less complex systems	2
	0.4.5	Performance analysis on networks with simplest architec-	
		tures	2
0.5	Results with regard to the learned features of the neural networks		2
	0.5.1	PES of the neural network	2
	0.5.2	Feature recognision	2
	0.5.3	Stability analysis of the network	2

0.1 Theoretical background: Quantumchemical fundamentals

0.1.1 Quantum chemical description of molecules

Hartree-Fock method

Full CI method

0.1.2 The Hubbard model

The Hubbard Hamiltonian

Overview of the PES of the simplest system

0.2 Theoretical background: Neural networks

0.2.1 Mathematical foundation of the network

General overview of neural networks

Activation functions

Optimization methods

0.2.2 Regularization methods

0.2.3 Network analysis

Training analysis

Weight analysis

Activation analysis

0.3 Research overview

- 0.3.1 Identification of the roadblocks in modern quantumchemical research
- 0.3.2 Solutions
- 0.3.3 Overview of planned research topics

0.4 Results with regard to predictive power of neural networks

- 0.4.1 Preliminary test: Can a simple network capture the data in a simple well defined system?
- 0.4.2 Simple hyperparameter sweep: Performance vs network compelexity
- 0.4.3 Data augmentation 2

Introduction of permutational symmetries in data

Introduction of noise on the output data

- 0.4.4 Performance of networks trained on less complex systems
- 0.4.5 Performance analysis on networks with simplest architectures
- 0.5 Results with regard to the learned features