Pensamento Computacional WEBINAR 02 – Unidade 01

- Premissas: são declarações que descrevem fatos;
- Método indutivo: baseado em padrão de comportamento -> repetição leva a conclusão lógica;
- Método dedutivo: baseado em causa e efeito -> premissas devem levar a conclusão lógica;

Método indutivo:

Determinação do ponto de ebulição da água:

```
    1ª repetição: 100º C;
    2ª repetição: 100º C;
    3ª repetição: 100º C;
    4ª repetição: 100º C;
```

■ 100º repetição: 100º C;

Resultado: O ponto de ebulição da água é igual à 100º C.

E se estivermos no Monte Everest?

O ponto de ebulição da água no Monte Everest é de aproximadamente 71º C.

Então devemos dizer: O ponto de ebulição da água em condições normais de temperatura e pressão é igual à 100º C.

Método dedutivo:

- Todo ser humano possui em seu corpo uma estrutura molecular denominada DNA.
- O DNA é único para cada ser humano e está presente no seu corpo e no corpo de seus descendentes.
- Descendente é todo ser humano gerado a partir de outros dois seres humanos.
- Ao ser humano gerador, denominamos pai ou mãe.
- Ao ser humano gerado, denominamos filho ou filha.
- O DNA de um ser humano pode ser identificado utilizando-se de teste inequívoco, chamado teste de DNA.
- O teste de DNA mostra o DNA presente no corpo do indivíduo, incluindo os componentes de DNA de seus geradores.
- Maria foi submetida ao teste de DNA.
- Não foi identificado componente de DNA de João no teste de Maria.

Resultado: João não é pai de Maria ou Maria não é filha de João.

- Método indutivo: Para chegar a uma conclusão, esse tipo de raciocínio parte do específico para o geral.
 - Todo gato é mortal;
 - Todo cão é mortal;
 - Todo pássaro é mortal;
 - Todo peixe é mortal;
 - Logo, todo animal é mortal.

- Método dedutivo: esse tipo de método argumentativo parte do geral para o específico.
 - Todos os animais são mortais;
 - Peixe é um animal;
 - Logo, o peixe é mortal.

- Operadores lógicos:
 - Implicação: causa → efeito (se ..., então...)
 - Cuidado com modus ponens (dedução inválida acerca de uma premissa)
 - Quando A ocorre B também ocorre, ou seja, B é uma consequência de A.
 - Entretanto B pode ocorrer independentemente de A

- Operadores lógicos:
 - OU: A + B (inclusão) (outras formas: A v B)

Α	В	A + B
F	F	F
F	V	V
V	F	V
V	V	V

- Operadores lógicos:
 - E: A . B (conjunção) (outras formas: A ^ B)

A	В	A.B
F	F	F
F	v	F
V	F	F

- Operadores lógicos:
 - Negação: ~A (outras formas: −A)

Quadro 4. Tabela verdade do operador NEGAÇÃO			
Α	~A		
F	V		
V	F		

- Operadores lógicos:
 - Exemplos utilizando vários operadores:

Α	(~A)	В	(~A).B
F	V	F	F
F	V	V	V
V	F	F	F
V	F	V	F

- Operadores lógicos:
 - Exemplos utilizando vários operadores:

$$(^{\sim}A) + B$$

A	(~A)	В	(~A)+B
F	V	F	V
F	V	V	V
V	F	F	F
V	F	V	V

Operadores lógicos:

Exemplos utilizando 3 proposições: p, q, r

3 proposições: 2³ = 8 linhas

• (p+q).r

р	q	(p + q)	r	(p+q) . r
V	V	V	V	V
V	V	V	F	F
V	F	V	V	V
V	F	V	F	F
F	V	V	V	V
F	V	V	F	F
F	F	F	V	F
F	F	F	F	V

- Operadores lógicos:
 - Dado:
 - p = verdadeiro
 - q = verdadeiro
 - r = falso
 - Responda as expressões abaixo:
 - p. (q.r) = V. (F) = F
 - $(p + q) \cdot r = (V) \cdot F = F$
 - $(p . q) \rightarrow r = (V) -> F = F$
 - **p**.(~r) = V.(V) = V

- Algoritmos: Comandos estruturados de forma clara, ordenada e finita
 -> objetivo bem definido;
- Os quatro passos para criação de algoritmos:
 - 1º Passo Descrição do problema: deve ser claro e objetivo;
 - Exemplo: Algoritmo -> "Calcular a média das notas de um aluno"
 - 2º Passo Decomposição do problema: relacionar os itens necessários para realização da tarefa;
 - Ler as notas da prova 01, prova 02 e prova 03;
 - Retornar "A média das notas das provas 01, 02 e 03 do aluno: ", nome do aluno, " é igual à: ", média;
 - 3º Passo Ordenação lógica das ações: ordenar os itens de forma lógica para resolução do problema.
 - 4º Passo: Conclusão: Objetivo foi atingindo? Sim -> fim do algoritmo // Não -> retorne ao 2º passo;
 - É possível retornar a média sem antes ter realizado o cálculo desta variável?

- Construção de algoritmos:
 - Após a realização de todos os passos, temos nosso algoritmo finalizado:

```
Algoritmo "Média das notas"
     Declare nome aluno Texto
     Declare p1, p2 e p3 Numérico
     Escreva "Digite o nome do Aluno: "
     Leia nome aluno
     Escreva "Digite a nota da P1: "
     Leia p1
     Escreva "Digite a nota da P2: "
     Leia p2
     Escreva "Digite a nota da P3: "
     Leia p3
     média := (p1 + p2 + p3)/3
     Escreva "A média do aluno: ", nome_aluno, "foi igual à: ", média
Fim algoritmo
```


- O que é o Python?
 - Linguagem simples, com curva de aprendizado inicial bem elevada;
 - Abstração elevada: semelhante construir de algoritmos na língua inglesa;

```
Algoritmo n = input('Favor insira um número inteiro: ')

Declare n Numérico n = int(n)

Leia n if n%2 == 0:

Se resto (n, 2) = 0 print('O número n: {:d}, é par'.format(n))

então Escreva 'É par', else:

senão Escreva 'É impar' print('O número n: {:d}, é

Fim se impar'.format(n))

Fim algoritmo
```


- O que é o Python?
 - Multiparadigma: Procedural e Orientada a Objetos;
 - Multiplataforma e portável: interpretada;
 - Extensiva: várias bibliotecas que expande suas funcionalidades de forma prática e rápida;
 - Open Source e gratuita;
 - Gerenciadores de ambientes -> Anaconda e Virtual Env;
 - Fácil utilização de paradigmas de desenvolvimento, como: TDD (test driven development) -> Unit Test Framework;
 - Instalação e utilização do Ambiente de desenvolvimento Python;
 - https://docs.python.org/3.8/tutorial/index.html
 - https://www.python.org/dev/peps/
 - https://www.w3schools.com/python/

Variáveis e constantes:

- Referem-se a um espaço em memória através de um nome;
- Servem para armazenar valores;
- Devem ser iniciadas com uma letra ou sublinhado (_);
- São case sensitive; nomealuno ≠ nomeAluno;
- Observando os princípios Pythonicos, vamos utilizar o camel case: nome_aluno;
- Não podem começar com um dígito;
- Ter no máximo 256 caracteres;
- Letras, dígitos, sublinhados e cifrões podem ser inseridos;
- Não conter espaços e símbolos matemáticos (+, -, /, *, parenteses);
- Nomes de variáveis e funções devem representar sua ação -> nomes claros e significativos;
- Atribuição de valor através do sinal de igualdade (=);
- Sinal de igualdade em Python não tem significado matemático;
- Exemplo: nome_aluno = 'Maria Torres' // p1 = 9.50

- Palavras reservadas ou palavras-chave:
 - Algumas palavras não podem ser utilizadas para declaração de variáveis;
 - Irá gerar um erro de sintaxe

as	assert	break	class
def	des	elif	else
exec	if	import	in
lambda	not	or	pass
raise	return	try	while
True	False	None	
	def exec lambda raise	def des exec if lambda not raise return	def des elif exec if import lambda not or raise return try

- Os principais tipos de variáveis na linguagem Python são:
 - bool: assume somente 02 valores: True ou False;
 - int: representa números inteiros, por exemplo: numero_n = 10;
 - float: representa números reais. Parte decimal utiliza-se "." (ponto) e não "," (virgula), por exemplo: PI = 3.14;
 - str: representa uma sequência de caracteres ou texto;
 - None: é um objeto que representa um espaço vazio, ou seja, naquele espaço de memória alocada para uma variável não possui nenhum valor;

Transformação de variáveis:

- Texto para números:
 - Todo input realizado no terminal é recebido como uma string;
 - nota_1 = float(input("Favor insira a nota da P1: ")) -> nota_1 -> tipo float
 - nota_1 = input("Favor insira a nota da P1: ") -> nota_1 -> tipo str
 - nota_1 = float(nota_1) -> nota_1 -> tipo float
 - Somente a parte inteira: nota_1 = int(nota_1) -> nota_1 -> tipo int
- Números para números:
 - nota_inteira = int(nota_1) -> nota_inteira irá retornar o valor igual à 9 -> tipo int
 - nota_float = float(7) -> nota_float irá retornar o valor igual à 7.0 -> tipo float

Comandos de entrada e saída:

input() -> Entrada de dados;

Ex.: nota_1 = float(input("Favor insira a nota da P1: "))

Receberá o valor digitado pelo usuário e fará a mudança para uma variável de número decimal (float).

print() -> Saída de informação;

Ex.: print("A média do aluno: {0} foi igual à: {1}".format(nome_aluno, media_aluno))

Figura 1: Funcionamento de um programa de computador com linguagem interpretada, como o Python.

Implementar algoritmo "Calcular média de notas" em Python

```
Algoritmo "Média das notas"
   Declare nome aluno Texto
   Declare p1, p2 e p3 Numérico
   Escreva "Digite o nome do
   Aluno: "
   Leia nome aluno
   Escreva "Digite a nota da P1: "
   Leia p1
   Escreva "Digite a nota da P2: "
   Leia p2
   Escreva "Digite a nota da P3: "
   Leia p3
   média := (p1 + p2 + p3)/3
   Escreva "A média do aluno: ",
   nome aluno, "foi igual à: ",
   média
Fim algoritmo
```

```
In [6]: nome aluno = input('Favor insira o nome do aluno: ')
        nota 1 = float(input('Favor insira a nota da prova 01: '))
        nota 2 = float(input('Favor insira a nota da prova 02: '))
        nota 3 = float(input('Favor insira a nota da prova 03: '))
        media = (nota 1 + nota 2 + nota 3)/3
        print('A média do aluno: {0}, foi igual à: {1}'.format(nome aluno, media))
        Favor insira o nome do aluno: Maria Torres
        Favor insira a nota da prova 01: 9.80
        Favor insira a nota da prova 02: 8.50
        Favor insira a nota da prova 03: 9.00
        A média do aluno: Maria Torres, foi igual à: 9.1
```


