```
In [1]:
         import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib as plt
In [2]: #Load the data
         df = pd.read_csv("cardio_train.csv",delimiter=";")
In [3]: df.head()
Out[3]:
                  age gender height weight ap_hi ap_lo cholesterol gluc smoke alco active cardio
            id
          0
            0 18393
                                 168
                                       62.0
                                              110
                                                                                                 0
                           2
                                                     80
                                                                 1
                                                                              0
                                                                                   0
                                                                                          1
                                                                       1
             1 20228
                                              140
          1
                           1
                                156
                                       85.0
                                                     90
                                                                 3
                                                                       1
                                                                              0
                                                                                   0
                                                                                          1
                                                                                                 1
             2 18857
                                 165
                                       64.0
                                              130
          2
                           1
                                                     70
                                                                  3
                                                                       1
                                                                              0
                                                                                   0
                                                                                          0
                                                                                                 1
          3
             3 17623
                           2
                                169
                                       82.0
                                              150
                                                     100
                                                                  1
                                                                       1
                                                                              0
                                                                                   0
                                                                                          1
                                                                                                 1
             4 17474
                                156
                                       56.0
                                              100
                                                     60
                                                                                          0
                                                                                                 0
In [4]: | df.tail()
Out[4]:
                    id
                         age gender height weight ap_hi ap_lo cholesterol gluc smoke alco active cardio
          69995 99993 19240
                                   2
                                              76.0
                                                                                          0
                                                                                                 1
                                        168
                                                     120
                                                             80
                                                                         1
                                                                              1
                                                                                     1
                                                                                                        0
          69996 99995
                       22601
                                   1
                                        158
                                              126.0
                                                     140
                                                             90
                                                                         2
                                                                              2
                                                                                     0
                                                                                          0
                                                                                                 1
                                                                                                        1
          69997
                 99996 19066
                                  2
                                        183
                                              105.0
                                                     180
                                                                         3
                                                             90
                                                                              1
                                                                                     0
                                                                                          1
                                                                                                 0
                                                                                                        1
          69998
                 99998 22431
                                   1
                                        163
                                              72.0
                                                     135
                                                             80
                                                                         1
                                                                              2
                                                                                     0
                                                                                          0
                                                                                                 0
                                                                                                        1
          69999 99999 20540
                                   1
                                        170
                                              72.0
                                                     120
                                                             80
                                                                         2
                                                                              1
                                                                                     0
                                                                                          0
                                                                                                 1
                                                                                                        0
In [5]:
        df = df.drop(['id'],axis=1)
In [6]:
        df.dtypes
Out[6]: age
                            int64
         gender
                            int64
         height
                            int64
         weight
                          float64
                            int64
         ap hi
         ap_lo
                            int64
         cholesterol
                            int64
                            int64
         gluc
         smoke
                            int64
         alco
                            int64
         active
                            int64
                            int64
         cardio
```

dtype: object

```
In [7]: df.isnull().sum()
Out[7]: age
                        0
        gender
                        0
        height
                        0
        weight
                        0
                        0
        ap hi
                        0
        ap_lo
        cholesterol
                        0
                        0
        gluc
                        0
        smoke
        alco
                        0
        active
                        0
        cardio
                        0
        dtype: int64
In [8]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 70000 entries, 0 to 69999
        Data columns (total 12 columns):
         #
             Column
                           Non-Null Count Dtype
                           70000 non-null int64
         0
             age
                           70000 non-null int64
```

gender 2 height 70000 non-null int64 weight 70000 non-null float64 4 ap_hi 70000 non-null int64 ap_lo 70000 non-null int64 cholesterol 70000 non-null int64 6 7 gluc 70000 non-null int64 70000 non-null int64 8 smoke alco 70000 non-null int64 10 active 70000 non-null int64 11 cardio 70000 non-null int64 dtypes: float64(1), int64(11)

In [9]: df['age'] = (df['age']/365).round().astype(int)

In [10]: df.describe()

memory usage: 6.4 MB

Out[10]:

	age	gender	height	weight	ap_hi	ap_lo	cholesterol
count	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000
mean	53.338686	1.349571	164.359229	74.205690	128.817286	96.630414	1.366871
std	6.765294	0.476838	8.210126	14.395757	154.011419	188.472530	0.680250
min	30.000000	1.000000	55.000000	10.000000	-150.000000	-70.000000	1.000000
25%	48.000000	1.000000	159.000000	65.000000	120.000000	80.000000	1.000000
50%	54.000000	1.000000	165.000000	72.000000	120.000000	80.000000	1.000000
75%	58.000000	2.000000	170.000000	82.000000	140.000000	90.000000	2.000000
max	65.000000	2.000000	250.000000	200.000000	16020.000000	11000.000000	3.000000

```
In [11]: def age_group(age):
    if age>30 and age<41:
        age_group = '31-40'
    elif age>40 and age<51:
        age_group = '41-50'
    elif age>50 and age<61:
        age_group = '51-60'
    else:
        age_group = '>60'
    return(age_group)
```

In [12]: df["Age_group"] = df['age'].apply(age_group)

In [13]: df

Out[13]:

	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio	Age_group
0	50	2	168	62.0	110	80	1	1	0	0	1	0	41-50
1	55	1	156	85.0	140	90	3	1	0	0	1	1	51-60
2	52	1	165	64.0	130	70	3	1	0	0	0	1	51-60
3	48	2	169	82.0	150	100	1	1	0	0	1	1	41-50
4	48	1	156	56.0	100	60	1	1	0	0	0	0	41-50
69995	53	2	168	76.0	120	80	1	1	1	0	1	0	51-60
69996	62	1	158	126.0	140	90	2	2	0	0	1	1	>61
69997	52	2	183	105.0	180	90	3	1	0	1	0	1	51-60
69998	61	1	163	72.0	135	80	1	2	0	0	0	1	>60
69999	56	1	170	72.0	120	80	2	1	0	0	1	0	51-60

70000 rows × 13 columns

In [14]: df['gender'].value_counts(normalize=True)*100

Out[14]: 1 65.042857 2 34.957143

Name: gender, dtype: float64

```
In [15]: sns.set_theme(style='darkgrid')
sns.countplot(data=df, x='gender',palette='flare')
```

Out[15]: <AxesSubplot:xlabel='gender', ylabel='count'>


```
In [16]: sns.countplot(data=df, x = 'Age_group')
```

Out[16]: <AxesSubplot:xlabel='Age_group', ylabel='count'>

In [17]: |pd.crosstab(df['Age_group'],df['cardio'],margins=True)

Out[17]:

cardio	0	1	All
Age_group			
31-40	2394	715	3109
41-50	12715	8188	20903
51-60	16677	18872	35549
>60	3235	7204	10439
All	35021	34979	70000

```
In [18]: sns.catplot(data=df,x='Age_group',y='cardio',kind='bar',palette='flare')
```

Out[18]: <seaborn.axisgrid.FacetGrid at 0x21d55e9e310>

In [19]: pd.crosstab(df['Age_group'],df['cardio']).plot(kind = 'bar',figsize = (12,5))

Out[19]: <AxesSubplot:xlabel='Age_group'>


```
In [20]: corr = df.corr()
sns.heatmap(corr)
```

Out[20]: <AxesSubplot:>


```
In [21]: #split into features and target
X = df.drop(['cardio','Age_group'],axis=1)
Y = df['cardio']
```

In [22]: #Normalize the features
 from sklearn.preprocessing import StandardScaler
 scaler = StandardScaler()
 X = scaler.fit_transform(X)

In [23]: | print(X)

```
In [24]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score
```

```
In [25]: X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.25,random_state=(32)
```

```
In [26]: #train a logistic regression model
         Lr = LogisticRegression()
         Lr.fit(X_train,Y_train)
Out[26]: LogisticRegression()
In [27]: #Evaluate on testing dataset
         y_pred = Lr.predict(X_test)
         accuracy = accuracy_score(Y_test,y_pred)
In [28]: print(accuracy)
         0.7212571428571428
In [29]: new_data = pd.DataFrame({'age': [50], 'gender': [2], 'height': [165], 'weight': [75], 'a
                                   'cholesterol': [2], 'gluc': [1], 'smoke': [0], 'alco': [0], 'acti
         new_data = scaler.transform(new_data)
         prediction = Lr.predict(new_data)
         print("Prediction:", prediction)
         Prediction: [1]
In [ ]:
```