

Skript Topologie I.

Mitschrift der Vorlesung "Topologie I." von Prof. Dr. Arthur Bartels

Jannes Bantje

23. März 2015

Aktuelle Version verfügbar bei

⇔GitHub

GitHub ist eine Internetplattform, auf der viele OpenSource-Projekte gehostet werden. Diese Plattform nutzen wir zur Zusammenarbeit, also findet man hier neben den PDFs auch die TFX-Dateien. Außerdem ist über diese Plattform auch direktes Mitarbeiten möglich, siehe nächste Seite.

Sciebo die Campuscloud

https://uni-muenster.sciebo.de/public.php?service=files&t=965ae79080a473eb5b6d927d7d8b0462

Sciebo ist ein Dropbox-Ersatz der Hochschulen in NRW, der von der Uni Münster in leitender Position auf Basis der OpenSource-Software Owncloud aufgebaut wurde. Wenn man auf den Link klickt, kann man die Freigabe zum eigenen Speicher hinzufügen und hat dann immer automatisch die aktuellste Version.

Bittorrent Sync B6WH2DISQ5QVYIRYIEZSF4ZR2IDVKPN3I

BTSync ist ein peer-to-peer Dateisynchronisations-Tool. Dabei werden die Dateien nur auf den Computern der Teilnehmer an einer Freigabe gespeichert. Ein Mini-Computer ist permanent online, sodass jederzeit die aktuellste Version verfügbar ist. Clients 🗗 gibt es für jedes Betriebssystem. Zugang ist über das obige "Secret" bzw. den QR-Code möglich

Vorlesungshomepage

https://wwwmath.uni-muenster.de/reine/u/topos/lehre/WS2014-2015/Topologie1/Topologie1.html Hier ist ein Link zur offiziellen Vorlesungshomepage.

Vorwort — Mitarbeit am Skript

Dieses Dokument ist eine Mitschrift aus der Vorlesung "Topologie I., WiSe 2014/2015", gelesen von Prof. Dr. Arthur Bartels. Der Inhalt entspricht weitestgehend dem Tafelanschrieb. Für die Korrektheit des Inhalts übernehme ich keinerlei Garantie! Für Bemerkungen und Korrekturen – und seien es nur Rechtschreibfehler – bin ich sehr dankbar. Korrekturen lassen sich prinzipiell auf drei Wegen einreichen:

- Persönliches Ansprechen in der Uni, Mails an ☑j.bantje@wwu.de (gerne auch mit annotieren PDFs) oder Kommentare auf https://github.com/JaMeZ-B/latex-wwu♂.
- Direktes Mitarbeiten am Skript: Den Quellcode poste ich auf GitHub (siehe oben), also stehen vielfältige Möglichkeiten der Zusammenarbeit zur Verfügung: Zum Beispiel durch Kommentare am Code über die Website und die Kombination Fork + Pull Request. Wer sich verdient macht oder ein Skript zu einer Vorlesung, die ich nicht besuche, beisteuern will, dem gewähre ich gerne auch Schreibzugriff.

Beachten sollte man dabei, dass dazu ein Account bei github.com notwendig ist, der allerdings ohne Angabe von persönlichen Daten angelegt werden kann. Wer bei GitHub (bzw. dem zugrunde liegenden Open-Source-Programm "git") – verständlicherweise – Hilfe beim Einstieg braucht, dem helfe ich gerne weiter. Es gibt aber auch zahlreiche empfehlenswerte Tutorials im Internet.¹

• Indirektes Mitarbeiten: T_EX-Dateien per Mail verschicken.

Dies ist nur dann sinnvoll, wenn man einen ganzen Abschnitt ändern möchte (zB. einen alternativen Beweis geben), da ich die Änderungen dann per Hand einbauen muss! Ich freue mich aber auch über solche Beiträge!

¹ zB. https://try.github.io/levels/1/challenges/1 🗷, ist auf Englisch, aber dafür interaktives LearningByDoing

Inhaltsverzeichnis

1	Kateg	gorien, Funktoren und natürliche Transformationen	1
	1.1	Definition: Kategorie	. 1
	1.2	Beispiele für Kategorien	. 1
	1.3	Bemerkungen zu Kategorien	. 2
	1.4	Definition: Funktor	. 2
	1.5	Beispiele für Funktoren	
	1.6	Definition: Natürliche Transformation	
	1.7	Ausblick auf Kategorien und Funktoren in der algebraischer Topologie	
2	Komb	pinatorische Beschreibungen topologischer Räume	4
	2.1	Beispiel einer kombinatorischen Beschreibung eines Raumes	. 4
	2.2	Definition: Simplizialer Komplex	
	2.3	Beispiel für simpliziale Komplexe	
	2.4	Definition: Unterkomplex	
	2.5	Definition: Simpliziale Abbildung	
	2.6	Definition: Geometrische Realisierung	
	2.7	<u> </u>	
		Beispiel: Rand des n -Simplizes und der Torus	
	2.8	Definition: Polyeder	
	2.9	Definition: Euler-Charakteristik	
	2.10	Satz über die Euler-Charakteristik	. 6
3	•	liziale Homologie	7
	3.1	Definition: Freier R -Modul mit Basis S	
	3.2	Lemma: Universale Eigenschaft von freien Moduln	
	3.3	Beispiel für freie und nicht-freie Moduln	
	3.4	Definition: <i>n</i> -ter Kettenmodul	. 8
	3.5	Definition: Orientierung eines $(n-1)$ -Simplizes als Teilmenge eines n -Simplizes	. 8
	3.6	Definition: <i>n</i> -te Randabbildung	. 8
	3.7	Proposition: Für die Randabbildung gilt $\partial_{n-1} \circ \partial_n = 0$. 8
	3.8	Lemma: Ein $(n-2)$ -Simplex ist Seite von genau zwei $(n-1)$ -Simplizes	
	3.9	Notation für das Weglassen eines Knotens	
	3.10	Definition: <i>n</i> -ter Homologiemodul	
	3.11	Beispiele für Homologiemoduln	
	3.12	Definition: R -Kettenkomplex, n -te Homologie eines R -Kettenkomplexes	
	3.13	Bemerkungen zu Kettenkomplexen	
	3.14	Definition: Simplizialer Kettenkomplex	
4	Euler-Charakteristik von Kettenkomplexen		
-	4.1	Wiederholung: Torsionsgruppe	
	4.2	Lemma: Rang einer endlich erzeugten abelschen Gruppe	
	4.3	Definition: Kurze exakte Sequenz	
	4.4	Beispiele für kurze exakte Folgen	
	4.5	Bemerkung: Spaltung einer kurzen exakten Sequenz	
	4.6	Bemerkung: Existenz einer Spaltung, wenn M_2 frei ist	
	4.7	Bemerkung: Der Rang ist additiv	
	4.8	Proposition: Der Rang ist für kurze exakte Folgen endl. erz., abelscher Gruppen additiv	
	4.9	Definition: Eulercharakteristik von \mathbb{Z} -Kettenkomplexen	
	4.10	Satz: Eulercharakteristik eines endlich erzeugten \mathbb{Z} -Kettenkomplexes $\dots \dots \dots$. 14

IV

	4.11	Korollar: Die Eulercharakteristik eines simplizialen Komplexes	14	
5	Singuläre Homologie			
-	5.1	Definition: Singuläre Simplizes und n -ter singulärer Kettenmodul	15	
	5.2	Definition: Einschränkung eines singulären Simplizes auf eine Seite	15	
	5.3	Bemerkung zur Inklusion der j -ten Seite	15	
	5.4	Definition: <i>n</i> -te singuläre Randabbildung	15	
	5.5	Proposition: Für die Randabbildungen gilt $\partial_{n-1} \circ \partial_n = 0$	15	
	5.6	Lemma: Hilfslemma für Proposition 5.5	15	
	5.7	Definition: Singuläre Homologie von X	16	
	5.8	Definition: <i>n</i> -Ketten, <i>n</i> -Ränder und <i>n</i> -Zykel und Homologieklasse	16	
	5.9	Beispiel: Die Homologie des Ein-Punkt-Raumes	16	
	5.10	Proposition: Eigenschaften von $H_0(X)$ für $X \neq \emptyset$ und X wegzusammenhängend	17	
	5.11	Bemerkung: Vorgehen, um später zu zeigen: $H_*(K;R)\cong H_*(K ;R)$	17	
6	Funkl	orialität	18	
	6.1	Definition: R-Kettenabbildung	18	
	6.2	Bemerkung: Induzierte Abbildung einer Kettenabbildung auf Homologie	18	
	6.3	Bemerkung: Homologie definiert einen Funktor	18	
	6.4	Definition: Induzierte Abbildung auf Kettenkomplexen	18	
	6.5	Proposition: Der singuläre Kettenkomplex über R bildet einen Funktor \ldots	19	
	6.6	Korollar: Homologie ist ein Funktor $Top \rightarrow R$ -Mod	19	
	6.7	Bemerkung: Notation für die auf Homologie induzierte Abbildung	19	
	6.8	Definition: Summe oder Koprodukt von topologischen Räumen	19	
	6.9	Definition: Summe von R-Moduln	20	
	6.10	Satz: Homologie des Koproduktes topologischer Räume	20	
_				
7		otopieinvarianz	21	
	7.1	Bemerkung: Die induzierte Abbildung eines Homöomorphismus ist ein Isomorphismus .	21	
	7.2	Definition: Homotopieäquivalenz und Homotopieinverse	21	
	7.3	Satz: Homotopieinvarianz der Homologie	21	
	7.4	Korollar: Die induzierte Abbildung einer Homotopieäquivalenz ist ein Isomorphismus	21	
	7.5	Korollar: Homologie eines kontrahierbaren Raumes	21	
	7.6	Definition: Kettenhomotopie	22	
	7.7	Prop.: induzierte Abbildungen von kettenhomotopen Kettenabbildungen sind gleich	22	
	7.8	Lemma: Reduktion von Satz 7.3 auf Beweis eines Spezialfalles	22	
	7.9	Bemerkung zum Vorgehen beim Beweis von [#]	22	
	7.10	Definition: Affin lineare Abbildungen zur Konstruktion der Kettenhomotopie	23	
	7.11	Lemma: Gleichungen für die Abbildungen aus 7.10	24	
	7.12	Beweis von [##]/Konstruktion der Kettenhomotopie	25	
	7.13	Bemerkung: Konstruktion einer Kettenhomotopie aus einer Homotopie	25	
8	Homologie von Paaren 26			
•	8.1	Definition: Paar von topologischen Räumen	26	
	8.2	Definition: Singulärer Kettenkomplex und Homologiemodul von Paaren	26	
	8.3	Definition: Der singuläre Kettenkomplex von Paaren definiert einen Funktor	26	
	8.4	Bemerkung: Topologische Räume als Paar auffassen	26	
		9 , 9		
	8.5	Frage: Können wir $H_n(X,A;R)$ durch $H_n(X;R)$ und $H_n(A;R)$ ausdrücken?	26	
	8.6	Beispiel: Homologie des Paares $(\Delta^n , \partial\Delta^n)$	26	
	8.7	Definition: Lange exakte Sequenz von R-Moduln	27	
	8.8	Satz: Existenz der Paarsequenz	27	

	8.9 8.10 8.11 8.12 8.13 8.14 8.15 8.16	Bemerkung	28 28 30 30 31
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7	hneidung und die Mayer-Vietoris Folge Satz: Ausschneidungsisomorphismus Satz (Mayer-Vietoris-Folge) Bemerkung zur Anwendbarkeit der Mayer-Vietoris-Folge Satz: Homologie der Sphäre S^n Definition: Reduzierte Homologie Bemerkung: Die Aussage von Satz 9.4 in reduzierter Homologie Beweis von [##]	33 35 35 35
10	10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10	Proposition: Einfache Eigenschaften des Abbildungsgrades	37 37 38 39
11	11.1 11.2	Bemerkung zur Existenz und zur Eindeutigkeit des Pushouts	42 42 43
12	Zellul. 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9	Befinition: n -ter zellulärer Kettenmodul und zelluläre Randabbildung	46 46 46 46 47 47 48 48 49

VI Inhaltsverzeichnis

	12.11 12.12 12.13	Korollar: Die Eulercharakteristik ist eine topologische Invariante	49 50 50
13	13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 13.13 13.14 13.15	Simplizes Satz: Ausschneidungs-Isomorphismus	
14	Axiom 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9	Bezeichnung: Funktor mit $(X,A)\mapsto (X,\emptyset)$	58 58 58 58 58 58 59 59 59
15	15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11 15.12 15.13	Definition: Kommutatorgruppe	61 61 61 61 61 62 62 63 63 64 64 64

Inhaltsverzeichnis VII

	15.16 15.17 15.18 15.19 15.20 15.21	Eigenschaften von $\pi_n(X,x_0)$	65 66 66 66 66 66
		Theorem (Hurewicz)	67
		Korollar: Isomorphie von Homotopie- und Homologiegruppen für $(n-1)$ -zusammenhängen	
		Räume	68
	15.25	Satz über höhere Homotopiegruppen der Sphäre	68
16		undamentalklasse	69
	16.1	Beispiele für die Homologiegruppen verschiedener Mannigfaltigkeiten	69
	16.2	Bemerkung	69
	16.3 16.4	Definition: Homologische Orientierung	69 69
	16.4	Notation	69
	16.6	Beispiel	69
	16.7	Beispiel: Orientierung von S^n	70
	16.8	Bezeichnung: Geschlossene Mannigfaltigkeit	70
	16.9	Satz	70
		Definition	70
		Bemerkung	70
		Bemerkung	71
	16.13	Beispiel	71
	16.14	Lemma	71
	16.15	Bemerkung	71
Ind	ex		Α
Abl	bildun	gsverzeichnis	C
Tod	Todo list		

1 Kategorien, Funktoren und natürliche Transformationen

1.1 Definition

Eine **Kategorie** C besteht aus:

- i) Einer Klasse $\mathrm{Ob}(\mathcal{C})$. Die Elemente von $\mathrm{Ob}(\mathcal{C})$ heißen die **Objekte** von \mathcal{C} .
- ii) Zu je zwei Objekten A,B aus $\mathcal C$ einer Menge $\operatorname{Mor}_{\mathcal C}(A,B)$. Die Elemente von $\operatorname{Mor}_{\mathcal C}(A,B)$ heißen **Morphismen** von $\mathcal C$.
- iii) Zu je drei Objekten $A,B,C\in \mathrm{Ob}(\mathcal{C})$ aus einer Abbildung:

$$\operatorname{Mor}_{\mathcal{C}}(B,C) \times \operatorname{Mor}_{\mathcal{C}}(A,B) \to \operatorname{Mor}_{\mathcal{C}}(A,C) , \quad (f,g) \mapsto f \circ g$$

genannt die Komposition in C.

Dabei müssen folgende Axiome erfüllt sein:

(i) Die Komposition ist **assoziativ**: Für Objekte A,B,C,D von $\mathcal C$ und $f\in\operatorname{Mor}_{\mathcal C}(C,D)$, $g\in\operatorname{Mor}_{\mathcal C}(B,C)$ und $h\in\operatorname{Mor}_{\mathcal C}(A,B)$ gilt immer

$$f \circ (g \circ h) = (f \circ g) \circ h$$

(ii) Die Komposition ist **unital**: Für jedes Objekt A von \mathcal{C} gibt es einen Morphismus $\mathrm{id}_A \in \mathrm{Mor}_{\mathcal{C}}(A,A)$ so, dass

$$\forall f \in \operatorname{Mor}_{\mathcal{C}}(B, A) : \operatorname{id}_{A} \circ f = f \quad \text{und} \quad \forall f \in \operatorname{Mor}_{\mathcal{C}}(A, B) : f \circ \operatorname{id}_{A} = f$$

1.2 Beispiele

- (1) Die Kategorie der Mengen Mengen: Objekte sind Mengen und Morphismen sind Abbildungen.
- (2) Die Kategorie der Gruppen Gruppen: Objekte sind Gruppen und Morphismen sind Gruppenhomomorphismen.
- (3) Die Kategorie der K-Vektorräume K-VR: Objekte sind K-Vektorräume und die Morphismen sind K-lineare Abbildungen.
- (4) Die Kategorie der R-Moduln R-Moduln R-Moduln und Morphismen sind R-lineare Abbildungen.
- (5) Die Kategorie der C^{∞} -Mannigfaltigkeiten C^{∞} -Man: Objekte sind C^{∞} -Mannigfaltigkeiten und Morphismen sind C^{∞} -Abbildungen.
- (6) Die Kategorie der topologischen Räume Top: Objekte sind topologische Räume und Morphismen sind stetige Abbildungen.
- (7) Die Kategorie der punktierten topologischen Räume Top.: Objekte sind punktiert-topologische Räume und Morphismen sind punktiert-stetige Abbildungen.
- (8) Die Kategorie HTop: Objekte sind topologische Räume und Morphismen sind Homotopieklassen von stetigen Abbildungen.
- (9) Die Kategorie HTop.: Objekte sind punktiert-topologische Räume und Morphismen sind Homotopieklassen von punktiert-stetigen Abbildungen.
- (10) Sei G eine Gruppe. Wir erhalten eine Kategorie C_G mit genau einem Objekt * und $\mathrm{Mor}_{C_G}(*,*) = G$. Die Komposition wird durch die Verknüpfung in der Gruppe festgelegt.
- (11) Ist \mathcal{C} eine Kategorie, so ist $\mathcal{C}^{\mathrm{op}}$ eine Kategorie, wobei $\mathrm{Ob}(\mathcal{C}^{\mathrm{op}}) = \mathrm{Ob}(\mathcal{C})$ und $\mathrm{Mor}_{\mathcal{C}^{\mathrm{op}}}(A,B) := \mathrm{Mor}_{\mathcal{C}}(B,A)$. Die Komposition ist gegeben durch $f \circ^{\mathrm{op}} g := g \circ f$.

1.3 Bemerkung

- (i) Eine Kategorie heißt klein, wenn ihre Objekte eine Menge bilden.
- (ii) Statt $f \in \operatorname{Mor}_{\mathcal{C}}(A, B)$ schreiben wir oft $f \colon A \to B$ oder $A \xrightarrow{f} B$.

1.4 Definition

Seien $\mathcal C$ und $\mathcal D$ Kategorien: Ein **Funktor** $F\colon \mathcal C\to \mathcal D$ ordnet jedem Objekt C von $\mathcal C$ ein Objekt F(C) von $\mathcal D$ und ordnet jedem Morphismus $f\colon C\to C'$ in $\mathcal C$ einen Morphismus $F(f)\colon F(C)\to F(C')$ in $\mathcal D$ zu. Dabei muss gelten:

$$F(f\circ g)=F(f)\circ F(g)\quad \text{und}\quad F(\mathrm{id}_C)=\mathrm{id}_{F(C)}$$

1.5 Beispiele

(1) Es gibt offensichtliche "Vergiss"-Funktoren:

$$\begin{array}{ccc} K\text{-VR} & \longrightarrow & \text{Mengen} \\ R\text{-Mod} & \longrightarrow & \text{Mengen} \\ \text{Top} & \longrightarrow & \text{Mengen} \\ \text{Top}_{\bullet} & \longrightarrow & \text{Mengen} \\ \text{Top}_{\bullet} & \longrightarrow & \text{Top} \end{array}$$

(2) Sei $\mathcal C$ eine Kategorie und C ein Objekt von $\mathcal C$. Der durch C dargestellte Funktor $F_C \colon \mathcal C \to \operatorname{Mengen}$ ist definiert durch

$$\begin{split} F_C(A) &= \mathrm{Mor}_{\mathcal{C}}(C,A) & \text{für } A \in \mathrm{Ob}(\mathcal{C}) \\ F_C(f) \colon \mathrm{Mor}_{\mathcal{C}}(C,A) &\to \mathrm{Mor}_{\mathcal{C}}(C,A'), g \mapsto f \circ g & \text{für } f \colon A \to A' \text{ in } \mathrm{Mor}(A,A') \end{split}$$

(3) Die Fundamentalgruppe definiert einen Funktor

$$\pi_1 \colon \mathsf{HTop}_{ullet} \longrightarrow \mathsf{Gruppen}$$

Bemerkung

- Ist $F \colon \mathcal{C} \to \mathcal{D}$ ein Funktor so schreiben wir oft kürzer und ungenauer $f_* \coloneqq F(f)$.
- Kleine Kategorien und Funktoren bilden die Kategorie KAT.

1.6 Definition

Seien $F,G\colon\mathcal{C}\to\mathcal{D}$ zwei Funktoren. Eine **natürliche Transformation** $\tau\colon F\to G$ ordnet jedem $C\in\mathrm{Ob}(\mathcal{C})$ einen Morphismus $\tau_C\colon F(C)\to G(C)$ in \mathcal{D} zu, sodass für jedes $f\colon C\to C'$ in \mathcal{C}

$$F(C) \xrightarrow{F(f)} F(C')$$

$$\downarrow^{\tau_C} \qquad \downarrow^{\tau_{C'}}$$

$$G(C) \xrightarrow{G(f)} G(C')$$

kommutiert.

Bemerkung

Natürliche Transformationen lassen sich komponieren. Für $\tau\colon F\to G,\,\eta\colon G\to H$ ist $\eta\circ\tau\colon F\to H$ gegeben durch

 $F, G, H: \mathcal{C} \to \mathcal{D}$

$$(\eta \circ \tau)_C := \eta_C \circ \tau_C \colon F(C) \to H(C)$$

Genauer: Für feste kleine Kategorien $\mathcal C$ und $\mathcal D$ bilden die Funktoren $\mathcal C \to \mathcal D$ mit den natürlichen Transformationen eine Kategorie $\text{Fun}(\mathcal C,\mathcal D)$.

1.7 Ausblick

In der algebraischen Topologie werden topologische Fragen, wie zum Beispiel, wann \mathbb{R}^n und \mathbb{R}^m homöomorph sind, in algebraische Fragen übersetzt. Eine Möglichkeit für eine solche Übersetzung sind Funktoren von einer Kategorie von topologischen Räumen, z.B. $\text{Top}, \text{Top}_{\bullet}, \text{HTop}_{\bullet}$, in eine algebraisch Kategorie, z.B. Gruppen, K-VR, Abel.Gruppen, R-Mod. Ein Beispiel für einen solchen Funktor ist die Fundamentalgruppe π_1 . Ein Nachteil der Fundamentalgruppe ist, dass diese oft schwierig zu berechnen ist. Wir werden in dieser Vorlesung weitere Funktoren und Methoden für ihre Berechnung kennenlernen.

2 Kombinatorische Beschreibungen topologischer Räume

2.1 Beispiel

Graphen sind einerseits topologische Räume und andererseits kombinatorische Objekte:

2.2 Definition

Ein **simplizialer Komplex** $K=(V,\Sigma)$ besteht aus einer Menge V und einer Menge Σ von nichtleeren, endlichen Teilmengen von V, sodass gilt

(i)
$$\{v\} \in \Sigma$$
 für alle $v \in V$

(ii)
$$\sigma \in \Sigma$$
, $\emptyset \neq \tau \subseteq \sigma \Longrightarrow \tau \in \Sigma$.

(Abgeschlossen bzgl. Teilmengenbildung)

Die Elemente von V heißen die **Ecken** oder **Vertices** von K. Die Elemente von Σ heißen die **Simplizes** von K. Enthält $\sigma \in \Sigma$ genau n+1 Elemente, so heißt σ ein \mathbf{n} -**Simplex**. Ist $\tau \subseteq \sigma$, wobei σ ein n-Simplex und τ ein n-1-Simplex ist, so heißt τ eine **Seite** von σ .

Ist V geordnet, so heißt K geordnet. Ist V endlich, so heißt K endlich.

2.3 Beispiel

Ist σ eine endliche Menge, so heißt $\Delta^{\sigma} := \left(\sigma, \mathcal{P}(\sigma) \setminus \{\emptyset\}\right)$ der σ -Simplex. Für $\sigma = \{0, \dots, n\}$ schreiben wir $\Delta^n := \Delta^{\{0, \dots, n\}}$. Es ist

$$\Delta^0 = \mathbf{0}, \qquad \Delta^1 = \mathbf{0}, \qquad \Delta^2 = \mathbf{0}, \qquad \Delta^3 = \mathbf{0}$$

2.4 Definition

Sei $K=(V,\Sigma)$ ein simplizialer Komplex. Ein **Unterkomplex** von K ist ein simplizialer Komplex $K_0=(V_0,\Sigma_0)$ mit $V_0\subseteq V$ und $\Sigma_0\subseteq \Sigma$.

Beispiel

Sei $K=(V,\Sigma)$ ein endlicher simplizialer Komplex. Dann ist K ein Unterkomplex von Δ^V .

2.5 Definition

Eine **simpliziale Abbildung** $f\colon K_1=(V_1,\Sigma_1)\to K_2=(V_2,\Sigma_2)$ zwischen simplizialen Komplexen ist eine Abbildung $f\colon V_1\to V_2$, sodass $f(\sigma_1)\in \Sigma_2$ für alle $\sigma_1\in \Sigma_1$. Simpliziale Komplexe zusammen mit simplizialen Abbildungen bilden eine Kategorie SIMP.

2.6 Definition

Sei σ eine endliche Menge. Sei $\mathbb{R}^\sigma=\prod_{v\in\sigma}\mathbb{R}$ mit der Produkttopologie. Wir setzen nun

$$|\Delta^{\sigma}| := \left\{ x = (x_v)_{v \in \sigma} \in \mathbb{R}^{\sigma} \left| \sum_{v \in \sigma} x_v = 1, x_v \in [0, 1] \ \forall v \in \sigma \right. \right\}$$

Ist $\tau\subseteq\sigma$, so erhalten wir eine Abbildung $\iota_{\tau}^{\sigma}\colon |\Delta^{\tau}|\to |\Delta^{\sigma}|$ indem wir $(x_{v})_{v\in\tau}\in |\Delta^{\tau}|$ durch $x_{v}=0$ für $v\in\sigma\setminus\tau$ zu $(x_{v})_{v\in\sigma}$ auffüllen. Ist $\eta\subseteq\tau\subseteq\sigma$ so gilt offensichtlich $\iota_{\eta}^{\sigma}=\iota_{\tau}^{\sigma}\circ\iota_{\eta}^{\tau}$. Sei nun $K=(V,\Sigma)$ ein simplizialer Komplex. Die **geometrische Realisierung** |K| von K ist definiert als

$$|K| := \coprod_{\sigma \in \Sigma} \{\sigma\} \times |\Delta^{\sigma}| \Big/ \! \sim$$

wobei \sim die durch $(\tau,x)\sim \left(\sigma,\iota_{\tau}^{\sigma}(x)\right)$ für $\tau\subseteq\sigma$ erzeugte Äquivalenzrelation ist. Versehen mit der Quotiententopologie ist |K| ein topologischer Raum.

Anschaulich "klebt" ~ die geometrischen Realisierungen aller Einzelteile passend zusammen

Bemerkung

- In Aufgabe 4 von Blatt 1 haben wir gezeigt, dass |K| homöomorph zu einer Unterraum X von \mathbb{R}^n mit n := #V ist via $\left[(\{\sigma\}, (x_{v_i})_{v_i \in \sigma}) \right] \mapsto \sum_{v_i \in \sigma} x_{v_i} \cdot e_i$.
- In Aufgabe 2 von Blatt 2 haben wir gezeigt, dass $|\cdot|$ einen Funktor $SIMP \to TOP$ definiert. Dazu definiert man eine Abbildung zunächst auf den zugrunde liegenden Räumen durch

$$\left(\sigma, \sum_{v \in \sigma} x_v \cdot v\right) \longmapsto \left(f(\sigma), \sum_{v \in \sigma} x_v \cdot f(v)\right)$$

und wendet diese unter Benutzung der universellen Eigenschaft der Quotiententopologie auf Repräsentanten an.²

2.7 Beispiel

• Sei $\partial \Delta^n := \Big(\{0,\dots,n\}, \mathcal{P}\big(\{0,\dots,n\}\big) \setminus \{\emptyset,\{0,\dots,n\}\}\Big) = \text{,} \Delta^n \setminus \{0,\dots,n\}\text{''}. \ \partial \Delta^n \text{ heißt der Rand des } n\text{-Simplizes. Es gilt}$

$$\begin{aligned} \left| \partial \Delta^1 \right| &= & \bullet \bullet \cong S^0 \\ \left| \partial \Delta^2 \right| &= & \triangle \cong S^1 \\ \left| \partial \Delta^3 \right| &= & \triangle \cong S^2 \end{aligned}$$

Allgemein gilt $|\partial \Delta^n| \cong S^{n-1}$, siehe Aufgabe 1 von Blatt 3.

 $^{^2}$ hier wird eine formale Summe anstatt eines Tupels benutzt; da σ stets eine endliche Menge ist, macht dies aber keinen Unterschied.

2.8 Definition

Ein topologischer Raum X heißt ein **Polyeder**, falls er homöomorph zur geometrischen Realisierung eines simplizialen Komplexes ist.

2.9 Definition

Sei $K=(V,\Sigma)$ ein endlicher simplizialer Komplex. Sei $a_n:=\#\{\sigma\in\Sigma\,|\,\sigma \text{ ist ein }n\text{-Simplex von }K\}.$ Dann heißt $\chi(K):=\sum_{n\in\mathbb{N}}(-1)^n\cdot a_n$ die **Euler-Charakteristik** von K.

Beispiel

$$\chi\left(\bigwedge\right) = 3 - 3 = 0$$

$$\chi\left(\left[\right]\right) = 4 - 4 = 0$$

$$\chi\left(\left[n\text{-Eck}\right]\right) = n - n = 0$$

2.10 Satz

Seinen K und K' endliche simpliziale Komplexe. Gilt $|K| \cong |K'|$, so gilt

$$\chi(K) = \chi(K').$$

Bemerkung

Die Euler-Charakteristik ist also eine topologische Invariante von simplizialen Komplexen. Sie hängt nur von der topologischen Struktur von |K| und nicht von der kombinatorischen Struktur von K ab.

Beweis

Siehe 12.10.

3 Simpliziale Homologie

3.1 Definition

Sei S eine Menge.Sei R ein Ring. Der **freie** R-Modul mit Basis S, R[S], besteht aus allen endlichen formalen R-Linearkombinationen

Ring mit Ein:

$$\sum_{s \in S} r_s \cdot s \quad , r_s \in R \text{ und } r_s \neq 0 \text{ für endliche viele } s \in S$$

Die R-Modulstruktur auf R[S] ist definiert durch:

$$r \cdot \left(\sum_{s \in S} r_s \cdot s\right) := \sum_{s \in S} (r \cdot r_s) \cdot s \qquad \left(\sum_{s \in S} r_s \cdot s\right) + \left(\sum_{s \in S} r_s' s\right) := \sum_{s \in S} (r_s + r_s') \cdot s$$

Bemerkung

Mittels $s = \sum_{s' \in S} \delta_{s,s'} \cdot s'$ fassen wir S als Teilmenge von R[S] auf.

3.2 Lemma

Sei S eine Menge, R ein Ring. Es gilt

- 1) Ist M ein R-Modul und $i \colon S \to M$ eine Abbildung, so gibt es genau eine R-lineare Abbildung $\varphi \colon R[S] \to M$, die i fortsetzt.
- 2) Sei $f\colon R[S] \to M$ R-linear und $p\colon N \twoheadrightarrow M$ R-linear und surjektiv. Dann gibt es $\hat{f}\colon R[S] \to N$ mit $p\circ \hat{f}=f$.

 $R[S] \xrightarrow{\hat{f}} M$

Moduln mit dieser Eigenschaft bezeichnet man als **projektiv**. Freie Moduln sind also projektiv.

Beweis

1) Eine solche Abbildung ist gegeben durch $\varphi\left(\sum_{s\in S}r_s\cdot s\right)=\sum_{s\in S}r_s\cdot i(s)$. Ist φ' eine zweite, so gilt

$$\hat{\varphi}\left(\sum_{s\in S} r_s \cdot s\right) = \sum_{s\in S} r_s \cdot \hat{\varphi}(s) = \sum_{s\in S} r_s \cdot i(s)$$

2) Wähle für jedes $s \in S$ ein Urbild $j(s) \in N$ für $f(s) \in M$ unter $p \colon N \twoheadrightarrow M$. Nun wende 1) auf $j \colon S \to N$ an, um $\hat{f} \colon R[S] \to N$ mit $\hat{f}(s) = j(s)$ zu erhalten. Nun ist $p \circ \hat{f}(s) = f(s)$ für alle $s \in S$. Mit der Eindeutigkeit aus 1) folgt $p \circ \hat{f} = f$.

3.3 Beispiel

- (i) Sei K ein Körper und V, M, N seien K-Vektorräume, $f\colon V\to M$, $p\colon N\to M$ seien K-linear und p surjektiv. Dann gibt es $\hat f\colon V\to N$ mit $p\circ \hat f=f$. Wir können Lemma 3.2 benutzen, da V eine Basis B hat, also $V\cong K[B]$.
- (ii) Sei $R=\mathbb{Z}$, sei $V=\mathbb{Z}/2\mathbb{Z}$ und $M=\mathbb{Z}/2\mathbb{Z}$, sowie $f=\operatorname{id}\colon V\to M$, $N=\mathbb{Z}$ und $p\colon \mathbb{Z} \twoheadrightarrow \mathbb{Z}/2\mathbb{Z}$ die Projektion mit $p(n)=n+2\mathbb{Z}$. Dann gibt es keine \mathbb{Z} -lineare Abbildung $\hat{f}\colon \mathbb{Z}/2\mathbb{Z}\to \mathbb{Z}$ mit $p\circ \hat{f}=f$ denn falls $\hat{f}(1+2\mathbb{Z})=n\in\mathbb{Z}$ ist, so folgt

$$2n = 2 \cdot \hat{f}(1 + 2\mathbb{Z}) = \hat{f}(2 \cdot (1 + 2\mathbb{Z})) = \hat{f}(0 + 2\mathbb{Z}) = 0$$

also n=0 und somit $p\circ \hat{f}=0$. $\mathbb{Z}/2\mathbb{Z}$ ist also kein freier Modul.

3 Simpliziale Homologie 7

3.4 Definition

Sei $K=(V,\Sigma)$ ein simplizialer Komplex. Sei $\Sigma_n:=\{\sigma\in\Sigma\,|\,\sigma \text{ ist ein }n\text{-Simplex}\}.$ Sei R ein Ring. Der \mathbf{n} -te Kettenmodul von K über R ist definiert als

$$C_n(K;R) := R[\Sigma_n]$$

Ist $R = \mathbb{Z}$, so schreiben wir auch kurz $C_n(K) := C_n(K; \mathbb{Z})$.

3.5 Definition

Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Sei $\sigma=\{v_0,\ldots,v_n\}$ ein n-Simplex von K. Bezüglich der Ordnung von K sei dabei $v_0< v_1<\ldots< v_n$. Sei τ ein (n-1)-Simplex von K. Definiere

$$\varepsilon_\sigma^\tau := \begin{cases} (-1)^i, & \text{falls } \tau = \{v_0, \dots, v_{i-1}, v_{i+1}, \dots, v_n\} \\ 0, & \text{sonst} \end{cases}$$

Bemerkung

Es gilt: $\varepsilon_{\sigma}^{\tau} \neq 0 \iff \tau$ ist eine Seite von σ .

Beispiel

Für den folgenden geordneten simplizialen Komplex gilt

$$\varepsilon_{\{0,1,2\}}^{\{0,1\}} = 1, \quad \varepsilon_{\{0,1,2\}}^{\{0,2\}} = -1, \quad \varepsilon_{\{0,1,2\}}^{\{1,2\}} = 1$$

3.6 Definition

Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Die ${f n ext{-te}}$ Randabbildung

$$\partial_n \colon C_n(K;R) \longrightarrow C_{n-1}(K;R)$$

$$= R[\Sigma_n] = R[\Sigma_{n-1}]$$

ist für ein Basiselement $\sigma \in \Sigma_n$ definiert durch

$$\partial_n(\sigma) = \sum_{\tau \in \Sigma_{n-1}} \varepsilon_{\sigma}^{\tau} \cdot \tau$$

3.7 Proposition

$$\partial_{n-1} \circ \partial_n = 0$$

Damit folgt Im $\partial_n \subseteq \ker \partial_{n-1}$.

Beweis (mit Lemma 3.8)

Sei σ ein n-Simplex von K. Dann gilt

$$\begin{split} \partial_{n-1} \big(\partial_n (\sigma) \big) &= \partial_{n-1} \left(\sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \cdot \tau \right) = \sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \cdot \partial_{n-1} (\tau) = \sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \left(\sum_{\eta \in \Sigma_{n-2}} \varepsilon_\tau^\eta \cdot \eta \right) \\ &= \sum_{\eta \in \Sigma_{n-2}} \left(\sum_{\tau \in \Sigma_{n-1}, \eta \subseteq \tau \subseteq \sigma} \varepsilon_\tau^\eta \cdot \varepsilon_\sigma^\tau \right) \eta \\ &= \sum_{\text{Lemma 3.8}} 0 \end{split}$$

8

3.8 Lemma

Sei σ ein n-Simplex. Sei $\eta \subseteq \sigma$ ein (n-2)-Simplex. Dann gibt es genau zwei (n-1)-Simplizes τ, τ' von K, die eine Seite von σ sind und η als Seite enthalten. Es gilt

$$\varepsilon_{\tau}^{\eta} \cdot \varepsilon_{\sigma}^{\tau} = -\varepsilon_{\tau'}^{\eta} \cdot \varepsilon_{\sigma}^{\tau'}$$

Beweis

Sei $\sigma=\{v_0,\ldots,v_n\}$ mit $v_0< v_1<\ldots< v_n$. Dann ist $\eta=\{v_0,\ldots,v_n\}\setminus\{v_i,v_j\}$ mit i< j. Dann sind $\tau=\{v_0,\ldots,v_{i-1},v_{i+1},\ldots,v_n\}$ und $\tau'=\{v_0,\ldots,v_{j-1},v_{j+1},\ldots,v_n\}$ die gesuchten (n-1)-Simplizes und es gilt

$$\varepsilon_{\sigma}^{\tau} = (-1)^{i} , \ \varepsilon_{\sigma}^{\tau'} = (-1)^{j} , \ \varepsilon_{\tau}^{\eta} = (-1)^{j-1} , \ \varepsilon_{\tau'}^{\eta} = (-1)^{i}$$

3.9 Notation

Für $\sigma \in \Sigma_n$, $\sigma = \{v_0, \dots, v_n\}$ mit $v_0 < \dots < v_n$ schreiben wir

$$\delta^j \sigma := \{v_0, \dots, v_{i-1}, v_{i+1}, \dots, v_n\} \in \Sigma_{n-1}$$

Dann ist $\partial_n(\sigma) = \sum_{j=0}^n (-1)^j \cdot \delta^j \sigma$.

3.10 Definition

Sei K ein geordneter simplizialer Komplex. Der ${f n}$ -te Homologiemodul von K über R ist definiert als

$$H_n(K;R) := \frac{\ker \partial_n \colon C_n(K;R) \to C_{n-1}(K;R)}{\operatorname{Im} \partial_{n+1} \colon C_{n+1}(K;R) \to C_n(K;R)}$$

Für n=0 interpretieren wir ∂_0 als die Nullabbildung. Daher gilt

$$H_0(K; R) = \frac{C_0(K; R)}{\text{Im } \partial_1 \colon C_1(K; R) \to C_0(K; R)}$$

3.11 Beispiele

- (1) Sei $K = \bullet$. Dann ist $C_0(K;R) \cong R$ und $C_i(K;R) = 0$ für i > 0. Weiter ist $H_0(K;R) = C_0(K;R) \cong R$ und $H_i(K;R) = 0$ für i > 0.
- (2) Sein nun $K=K_n$ das n-Eck, wobei $n\geqslant 3$. Also

$$\Sigma_0 = \{ \tau_1 = \{1\}, \tau_2 = \{2\}, \dots, \tau_n = \{n\} \}$$

$$\Sigma_1 = \{ \sigma_1 = \{1, 2\}, \dots, \sigma_{n-1} = \{n - 1, n\}, \sigma_n = \{1, n\} \}$$

Dann gilt

$$C_0(K;R)=R[\Sigma_0]\cong R^n$$

$$C_1(K;R)=R[\Sigma_1]\cong R^n$$

$$C_i(K;R)=0 \text{ für } i>1 \text{, insbesondere } H_i(K;R)=0 \text{ für } i>1$$

Es ist dann $\partial_2 = \partial_3 = \ldots = 0$. Interessant ist $\partial_1 \colon C_1(K;R) \to C_0(K;R)$, denn es gilt

$$\partial_1(\sigma_i) = egin{cases} au_{i+1} - au_i, & ext{ falls } i = 1, \dots, n-1 \ au_n - au_1, & ext{ falls } i = n \end{cases}$$

In Aufgabe 3 von Blatt 3 haben wir gezeigt, dass die Homologiemoduln für verschiedene Ordnungen auf der gleichen Menge isomorph sind.

Mit $\sigma_1':=\sigma_1,\sigma_2':=\sigma_2,\ldots,\sigma_{n-1}':=\sigma_{n-1}$ und $\sigma_n':=-\sigma_n$ gilt dann

$$\partial_1(\sigma_i') = \tau_{i+1} - \tau_i$$

mit der Konvention $\tau_{n+1} = \tau_1$. Also gilt

$$\partial_1 \left(\sum_{i=1}^n r_i \sigma_i' \right) = \sum_{i=1}^n r_i (\tau_{i+1} - \tau_i) = \sum_{i=1}^n (r_{i-1} - r_i) \tau_i$$

Es folgt

$$\ker \partial_1 = \left\{ \sum_{i=1}^n r_i \cdot \sigma_i' \middle| r_1 = r_2 = \dots = r_n \right\} \subseteq C_1(K; R)$$
$$\operatorname{Im} \partial_1 = \left\{ \sum_{i=1}^n s_i \cdot \tau_i \middle| \sum_{i=1}^n s_i = 0 \right\} \subseteq C_0(K; R)$$

Ist $\sum_{i=1}^n s_i = 0$, so folgt für $r_n = 0, r_1 = -s_1, r_2 = -s_1 - s_2, \ldots, r_{n-1} = -s_1 - s_2 - \ldots - s_{n-1}$

$$\partial_1 \left(\sum_{i=1}^n r_i \sigma_i' \right) = \sum_{i=1}^n s_i \tau_i$$

Es folgt $H_1(K;R) = \ker \partial_1 / \operatorname{Im} \partial_2 = \ker \partial_1 \cong R$ und

$$H_0(K; R) = \frac{\ker \partial_0}{\lim \partial_1} = \frac{R[\Sigma_0]}{\{\sum_{i=1}^n s_i \tau_i \mid \sum_{i=1}^n s_i = 0\}} \cong R$$

(via $\sum_{i=1}^n s_i au_i \longmapsto \sum_{i=1}^n s_i$ und Homomorphiesatz)

3.12 Definition

Sei R ein Ring. Ein $\mathbf R$ -Kettenkomplex (C_*,d_*) ist eine Folge von R-Moduln $(C_n)_{n\in\mathbb N}$ zusammen mit R-linearen Abbildungen $(d_n\colon C_n\to C_{n-1})_{n\geqslant 1}$, so dass $d_n\circ d_{n+1}=0$. Die d_n heißen die **Randabbildungen** von (C_*,d_*) , die C_n die **Kettenmoduln**. Die $\mathbf n$ -te Homologie eines Kettenkomplexes (C_*,d_*) ist definiert als

$$H_n(C_*, d_*) := \frac{\ker d_n \colon C_n \to C_{n-1}}{\operatorname{Im} d_{n+1} \colon C_{n+1} \to C_n}$$

3.13 Bemerkung

- (i) Oft werden auch Kettenkomplexe betrachtet, die \mathbb{Z} statt \mathbb{N} verwenden.
- (ii) Ein Kettenkomplex (C_*, d_*) heißt endlich erzeugt, wenn alle C_n endlich erzeugte R-Moduln sind und $C_n \neq 0$ nur für endlich viele n ist.

3.14 Definition

Zu einem geordneten simplizialen Komplex K heißt $\left(C_*(K;R),\partial_*\right)$ der **simpliziale Kettenkomplex** von K über R.

Bemerkung

Ist K endlich, so ist $(C_*(K;R), \partial_*)$ endlich erzeugt.

4 Euler-Charakteristik von Kettenkomplexen

4.1 Wiederholung

Sei A eine abelsche Gruppe. Dann ist

$$TA := \left\{ a \in A \mid \exists n \geqslant 1 : n \cdot a = \underbrace{a + \ldots + a}_{n \cdot \mathsf{mal}} = 0 \right\}$$

die **Torsionsgruppe** von A. Ist A endlich erzeugt, so ist auch TA endlich erzeugt und es gibt Primzahlpotenzen $p_1^{n_1}, \ldots, p_k^{n_k}$ mit

abelsche Gruppen sind **Z**-Moduln

$$TA \cong \mathbb{Z}/(p_1^{n_1}) \oplus \ldots \oplus \mathbb{Z}/(p_k^{n_k})$$

Weiter gibt es dann n mit $A \cong \mathbb{Z}^n \oplus TA$. $\operatorname{Rg} A := n$ ist der **Rang** von A.

4.2 Lemma

Sei A eine endlich erzeugte abelsche Gruppe. Dann gilt $\operatorname{Rg} A = \max\{m \mid \exists C \leqslant A, C \cong \mathbb{Z}^m\}$.

Beweis

Da $A \cong \mathbb{Z}^n \oplus TA$ ist, genügt zu zeigen: Ist $\varphi \colon \mathbb{Z}^m \to \mathbb{Z}^n \oplus TA$ ein injektiver Gruppenhomomorphismus, so ist $m \leqslant n$. Schreibe $\varphi = \varphi_0 \oplus \varphi_1$, also $\varphi(a) = \varphi_0(a) + \varphi_1(a)$ mit $\varphi_0 \colon \mathbb{Z}^m \to \mathbb{Z}^n$, $\varphi_1 \colon \mathbb{Z}^m \to TA$.

Behauptung: φ_0 ist injektiv. Zu $v \in \mathbb{Z}^m$ wähle $k \geqslant 1$ mit $k \cdot \varphi_1(v) = 0 \in TA$. Dann ist $\varphi_1(kv) = k\varphi_1(v) = 0$. Ist $v \neq 0$, so ist $k \cdot v \neq 0 \in \mathbb{Z}^m$, also ist $\varphi(kv) \neq 0$ und damit $\varphi_0(kv) \neq 0$. Es folgt $\varphi_0(v) \neq 0$, da sonst $\varphi_0(k \cdot v) = k \cdot \varphi_0(v) = 0$. Damit ist die Behauptung gezeigt.

Gruppenhomomorphismen $\varphi_0 \colon \mathbb{Z}^m \to \mathbb{Z}^n$ werden durch $n \times m$ -Matrizen beschrieben: Es gibt $A = (a_{ij}) \in \mathbb{Z}^{n \times m}$ mit

$$\varphi_0 \begin{pmatrix} z_1 \\ \vdots \\ z_m \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^m a_{1j} \cdot z_j \\ \vdots \\ \sum_{j=1}^m a_{nj} \cdot z_j \end{pmatrix}$$

Ist m>n, so hat A, aufgefasst als Matrix über $\mathbb Q$, einen Kern. Es gibt also einen Vektor $w=\begin{pmatrix}a_1/b_1\\\vdots\\a_m/b_m\end{pmatrix}$ mit $Aw=0,\,w\neq 0$. Dann ist $(b_1,\ldots,b_m)\cdot w\in\mathbb Z^m$ und

$$\varphi_0((b_1,\ldots,b_m)\cdot w) = A\cdot ((b_1,\ldots,b_m)\cdot w) = (b_1,\ldots,b_m)\cdot A\cdot w = 0 \quad \not$$

Dies ist ein Widerspruch zur Injektivität von φ_0 . Also gilt $m \leqslant n$.

4.3 Definition

Seien M_0, M_1, M_2 R-Moduln und $f_0: M_0 \to M_1, f_1: M_1 \to M_2$ R-lineare Abbildungen. Dann heißt

$$M_0 \stackrel{f_0}{\longleftrightarrow} M_1 \stackrel{f_1}{\longrightarrow} M_2$$

eine kurze exakte Sequenz, wenn gilt:

(i)
$$f_0$$
 ist injektiv,

(ii) Im
$$f_0 = \ker f_1$$
,

(iii) f_1 ist surjektiv.

Bemerkung

Oft sagt man $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ ist exakt in M_1 , wenn $\operatorname{Im} f_0 = \ker f_1$ ist. Dann ist (\star) eine kurze exakte Folge, wenn

$$0 \longrightarrow M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2 \longrightarrow 0$$

exakt in M_0, M_1 und M_2 ist.

4.4 Beispiele

1)

$$M_0 \stackrel{i}{\longleftarrow} M_0 \oplus M_1 \stackrel{p}{\longrightarrow} M_1$$

 $v_0 \stackrel{i}{\longmapsto} (v_0, 0) \ (v_0, v_1) \stackrel{p}{\longmapsto} v_1$

ist eine kurze exakte Folge.

2) $\mathbb{Z} \stackrel{\cdot n}{\longleftrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$ ist eine kurze exakte Folge.

4.5 Bemerkung

Eine **Spaltung** für eine kurze exakte Folge $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ ist eine R-lineare Abbildung $s \colon M_2 \to M_1$ mit $f_1 \circ s = \mathrm{id}_{M_2}$. In diesem Fall erhalten wir einen Isomorphismus $M_0 \oplus M_2 \to M_1$, $(v_0, v_2) \mapsto f_0(v_0) + s(v_2)$.

Injektivität: Sei $(v_0, v_2) \in M_0 \oplus M_2$ mit $f_0(v_0) + s(v_2) = 0$. Dann gilt

$$0 = f_1(f_0(v_0) + s(v_2)) = v_2 \implies f_0(v_0) = 0 \implies v_0 = 0$$

Surjektivität: Sei $v_1 \in M_1$. Betrachte $v_2 := f_1(v_1)$. Dann ist $v_1 - s(v_2) \in \ker f_1 = \operatorname{Im} f_0$, also gibt es v_0 in M_0 mit $f_0(v_0) = v_1 - s(v_1)$. Damit ist $v_1 = f_0(v_0) + s(v_1)$.

4.6 Bemerkung

- 1) Die kurze exakte Sequenz $\mathbb{Z} \stackrel{\cdot n}{\longleftrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$ spaltet nicht.
- 2) Ist $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ eine kurze exakte Folge mit M_2 frei, also $M_2 \cong R[S]$, so spaltet die Folge. Insbesondere ist $M_1 \cong M_0 \oplus M_2$. Dazu wenden wir Lemma 3.2 an und erhalten eine R-lineare Abbildung $s \colon M_2 \to M_1$, sodass folgendes Diagramm kommutiert

$$R[S] \xrightarrow{\text{id}} R[S]$$

$$R[S] \xrightarrow{\text{id}} R[S]$$

s ist also die gesuchte Spaltung. Dieses Vorgehen funktioniert bei jedem projektiven Modul.

4.7 Bemerkung

Der Rang für alle endlich erzeugten abelschen Gruppen ist additiv:

$$\operatorname{Rg}(A \oplus B) = \operatorname{Rg} A + \operatorname{Rg} B$$
,

da $A\cong \mathbb{Z}^{\operatorname{Rg} A}\oplus TA$, $B\cong \mathbb{Z}^{\operatorname{Rg} B}\oplus TB$, also

$$A \oplus B \cong \mathbb{Z}^{\operatorname{Rg} A + \operatorname{Rg} B} \oplus \underbrace{TA \oplus TB}_{=T(A \oplus B)}$$

4.8 Proposition

Der Rang von endlich erzeugten abelschen Gruppen ist additiv für kurze exakte Folgen: Ist

$$A \stackrel{i}{\longleftrightarrow} B \stackrel{p}{\longrightarrow} C \qquad [\star]$$

eine kurze exakte Folge von endlich erzeugten abelschen Gruppen, so gilt $\operatorname{Rg} B = \operatorname{Rg} A + \operatorname{Rg} C$.

Beweis

Spaltet $[\star]$, so ist $B \cong A \oplus C$ und die Behauptung folgt aus der Bemerkung 4.7. Wir können annehmen, dass $C = \mathbb{Z}^n \oplus TC$ gilt. Wir erhalten folgendes Diagramm:

$$A \stackrel{i}{\longleftarrow} p^{-1}(\mathbb{Z}^n) \stackrel{p}{\longrightarrow} \mathbb{Z}^n$$

$$\parallel \qquad \qquad \downarrow^{i''} \qquad \qquad \downarrow^{i'}$$

$$A \stackrel{i}{\longleftarrow} B \stackrel{p}{\longrightarrow} C$$

$$\downarrow^{p''} \qquad \qquad \downarrow^{p'}$$

$$B/p^{-1}(\mathbb{Z}^n) \stackrel{p' \circ p}{\longrightarrow} TC$$

$$[\star]$$

Ist $p' \circ p(b) = 0$, so gibt es $v \in \mathbb{Z}^n$ mit i'(v) = p(b). Nun gibt es $v' \in p^{-1}(\mathbb{Z}^n)$ mit p(v') = v. Es folgt p(i''(v')) = p(b)

also $i''(v') - b \in \ker p = i(A)$. Da $i(A) \subseteq i''(p^{-1}(\mathbb{Z}^n))$, folgt $b \in i''(p^{-1}(\mathbb{Z}^n))$. In dem Diagramm sind die Spalten und Zeilen exakt. Da \mathbb{Z}^n frei ist, spaltet $A \stackrel{i}{\longleftrightarrow} p^{-1}(\mathbb{Z}^n) \stackrel{p}{\longrightarrow} \mathbb{Z}^n$ und es gilt

$$\operatorname{Rg} A + \operatorname{Rg} C = \operatorname{Rg} A + n = \operatorname{Rg} (p^{-1}(\mathbb{Z}^n))$$

Es bleibt zu zeigen: $\operatorname{Rg} B = \operatorname{Rg}(p^{-1}(\mathbb{Z}^n))$.

Nebenbei: Ist $A' \subseteq B'$, so gilt $\operatorname{Rg} A' \leqslant \operatorname{Rg} B'$, denn

$$\operatorname{Rg} A' = \max \left\{ n' \, \middle| \, \mathbb{Z}^{n'} \cong C' \leqslant A' \right\} \leqslant \max \left\{ n' \, \middle| \, \mathbb{Z}^{n'} \cong C' \leqslant B' \right\} = \operatorname{Rg} B'.$$

Betrachte die kurze exakte Folge

$$p^{-1}(\mathbb{Z}^n) \longrightarrow B \longrightarrow B/p^{-1}(\mathbb{Z}^n)$$

Wegen $B/p^{-1}(\mathbb{Z}^n)\cong TC$ gibt es ein k mit $k\cdot \left(b+p^{-1}(\mathbb{Z}^n)\right)=0$ für alle $b\in B$. Also $k\cdot b\in p^{-1}(\mathbb{Z}^n)$. Es folgt $kB\subseteq p^{-1}(\mathbb{Z}^n)$. Ist $B\cong \mathbb{Z}^{\operatorname{Rg} B}+TB$, so ist $kB\cong (k\mathbb{Z})^{\operatorname{Rg} B}+T(kB)$ und $\operatorname{Rg} kB=n=\operatorname{Rg} B$. Mit der Nebenbemerkung folgt $\operatorname{Rg} p^{-1}(\mathbb{Z}^n)=\operatorname{Rg} B$ aus $kB\subseteq p^{-1}(\mathbb{Z}^n)\subseteq B$.

Beweis mit Tensorprodukten (Skizze)

- $\mathbb{Q} \otimes_{\mathbb{Z}} \colon \mathbb{Z}\text{-Mod} \to \mathbb{Q}\text{-VR}$ ist ein Funktor.
- $\operatorname{Rg} A = \dim_{\mathbb{Q}}(\mathbb{Q} \otimes_{\mathbb{Z}} A)$
 - (a) $\mathbb{Q} \otimes_{\mathbb{Z}} (X \oplus Y) = \mathbb{Q} \otimes_{\mathbb{Z}} X \oplus \mathbb{Q} \otimes_{\mathbb{Z}} Y$
 - (b) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}^n \cong \mathbb{Q}^n$
 - (c) $\mathbb{Q} \otimes_{\mathbb{Z}} T \cong 0$ für T ein Torsionsmodul.
- Ist $A \longrightarrow B \longrightarrow C$ eine kurze exakte Folge, so ist auch $\mathbb{Q} \otimes_{\mathbb{Z}} A \longrightarrow \mathbb{Q} \otimes_{\mathbb{Z}} B \longrightarrow \mathbb{Q} \otimes_{\mathbb{Z}} C$ eine kurze exakte Folge.
- Jede kurze exakte Folge $V_0 \longrightarrow V_1 \longrightarrow V_2$ von \mathbb{Q} -Vektorräumen spaltet und daher gilt $V_1 \cong V_0 \oplus V_2$ und $\dim_{\mathbb{Q}}(V \oplus W) = \dim_{\mathbb{Q}}(V) + \dim_{\mathbb{Q}}(W)$.

4.9 Definition

Sei (C_*, d_*) ein endlich erzeugter \mathbb{Z} -Kettenkomplex.

$$\chi(C_*) := \sum_{i=0}^{\infty} \operatorname{Rg}(C_i) = \sum_{i=0}^{n_0} \operatorname{Rg}(C_i)$$

heißt die **Eulercharakteristik** von (C_*, d_*) . Dabei ist n_0 so gewählt, dass $C_n = 0$ für alle $n > n_0$.

4.10 Satz

Sei (C_*, d_*) ein endlich erzeugter \mathbb{Z} -Kettenkomplex. Dann gilt

$$\chi(C_*) = \sum_{i=1}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*).$$

Beweis

Sei $B_{n+1}:=\operatorname{Im} d_{n+1}\colon C_{n+1}\to C_n$ und $Z_n:=\ker d_n\colon C_n\to C_{n-1}$. Also $H_n(C_*,d_*)=Z_n/B_{n+1}$. Als Untermoduln von C_n sind Z_n und B_n endlich erzeugt (LA2). Insbesondere ist auch $H_n(C_*,d_*)$ endlich erzeugt und der Rang somit definiert. Auch B_{n+1} ist Untermodul des endlich erzeugten \mathbb{Z} -Moduls C_n und somit endlich erzeugt. Wir erhalten kurze exakte Folgen:

$$B_{n+1} \longleftrightarrow Z_n \longrightarrow H_n(C_*, d_*)$$

$$Z_n \longleftrightarrow C_n \longrightarrow B_n$$

Nach Proposition 4.8 gilt $\operatorname{Rg} Z_n = \operatorname{Rg} B_{n+1} + \operatorname{Rg} H_n(C_*, d_*)$ und $\operatorname{Rg} C_n = \operatorname{Rg} Z_n + \operatorname{Rg} B_n$. Also gilt

$$\chi(C_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} C_i = \sum_{i=0}^{\infty} (-1)^i \left(\operatorname{Rg} Z_i + \operatorname{Rg} B_i \right)$$

$$= \sum_{i=0}^{\infty} (-1)^i \left(\operatorname{Rg} H_i(C_*, d_*) + \operatorname{Rg} B_{i+1} + \operatorname{Rg} B_i \right)$$

$$= \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*) + \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} B_{i+1} + \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} B_i$$

$$= \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*)$$

4.11 Korollar

Sei K ein endlicher, geordneter simplizialer Kettenkomplex. Dann gilt

$$\chi(K) = \sum_{i=1}^{\dim K} (-1)^i \operatorname{Rg} H_i(K; \mathbb{Z})$$

Beweis

Wende den Satz 4.10 auf den simplizialen Kettenkomplex von ${\cal K}$ an. Da

$$\operatorname{Rg} C_n(K;\mathbb{Z}) = \operatorname{Rg} \mathbb{Z}[\Sigma_n] = \# \ n$$
-Simplizes in K

ist

$$\chi(K) = \chi(C_*(K; \mathbb{Z}), \partial_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*(K; \mathbb{Z}), \partial_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(K; \mathbb{Z})$$

Eine vereinfachte Variante dieser Aussage kam in Aufgabe 2 von Blatt3 vor: Dort haben wir den Homologiemodul über einen Körper betrachtet. Deshalb konnte wir da dann die Dimensionsformelin anwenden, um die beiden Vorraussetzungen für die Rechnung in 4.10 zu erhalten.

5 Singuläre Homologie

5.1 Definition

Sei X ein topologischer Raum. Sei $S_n(X)$ die Menge aller stetigen Abbildungen $\sigma\colon |\Delta^n|\to X$. Elemente von $S_n(X)$ heißen **singuläre Simplizes** in X. Sei R ein Ring. Der $\mathbf n$ -te (singuläre) Kettenmodul von X über R ist

$$C_n(X;R) := R[S_n(X)]$$

5.2 Definition

Für $\sigma \in S_n(X)$ und $j \in \{0, \ldots, n\}$ sei $\delta_j \sigma \in S_{n-1}(X)$ die Einschränkung von σ auf die j-te Seite von $|\Delta^n|$, also $\delta_j(\sigma) = \sigma \circ \iota_{n,j}$, wobei $\iota_{n,j} \colon |\Delta^{n-1}| \to |\Delta^n|$ die Inklusion der j-ten Seite ist:

$$\iota_{n,j}(x_0,\ldots,x_{n-1})=(x_0,\ldots,x_{j-1},0,x_j,\ldots,x_{n-1})$$

5.3 Bemerkung

Es gilt $\iota_{n,j}=|i_{n,j}|$ wobei $i_{n,j}\colon\Delta^{n-1}\to\Delta^n$ gegeben ist durch

vergleiche Blatt 2, Aufgabe 2

$$i_{n,j}(k) = \begin{cases} k, & \text{falls } k < j \\ k+1, & \text{falls } k \geqslant j \end{cases}$$

5.4 Definition

Die n-te singuläre Randabbildung $\partial_n \colon C_n(X;R) \to C_{n-1}(X;R)$ ist definiert durch

$$\partial_n(\sigma) = \sum_{j=0}^n (-1)^j \cdot \delta_j(\sigma).$$

5.5 Proposition

$$\partial_{n-1} \circ \partial_n = 0$$

Beweis (mit Lemma 5.6)

$$\begin{split} \partial_{n-1} \circ \partial_n(\sigma) &= \partial_{n-1} \left(\sum_{j=0}^n (-1)^j \delta_j(\sigma) \right) = \sum_{k=0}^{n-1} \sum_{j=0}^n (-1)^{j+k} \delta_k \delta_j(\sigma) \\ &= \sum_{0 \leqslant k < j \leqslant n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0 \leqslant j \leqslant k \leqslant n-1} (-1)^{k+j} \delta_k \delta_j(\sigma) \\ &\stackrel{\text{Lemma 5.6}}{=} \sum_{0 \leqslant k < j \leqslant n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0 \leqslant j \leqslant k \leqslant n-1} (-1)^{k+j} \delta_j \delta_{k+1}(\sigma) \\ &= \sum_{0 \leqslant k < j \leqslant n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0 \leqslant j < k \leqslant n} (-1)^{k-1+j} \delta_j \delta_k(\sigma) \\ &= 0 \end{split}$$

5.6 Lemma

Für $0 \le j \le k \le n-1$ und $\sigma \in S_n(X)$ ist $\delta_k \delta_j(\sigma) = \delta_j \delta_{k+1}(\sigma)$.

Beweis

Es ist

$$\delta_k(\delta_j(\sigma))(x_0, \dots, x_{n-2}) = \delta_j(\sigma)(x_0, \dots, x_{k-1}, 0, x_k, \dots, x_{n-2})$$

= $(x_0, \dots, x_{j-1}, 0, x_j, \dots, x_{k-1}, 0, x_k, \dots, x_{n-2})$

und

$$\delta_{j}\delta_{k+1}(\sigma)(x_{0},\ldots,x_{n-2}) = \delta_{k+1}(\sigma)(x_{0},\ldots,x_{j-1},0,x_{j},\ldots,x_{n-2})$$

$$= (x_{0},\ldots,x_{j-1},0,x_{j},\ldots,x_{k-1},0,x_{k},\ldots,x_{n-2})$$

5.7 Definition

Sei X ein topologischer Raum. Die Homologie des **singulären Kettenkomplex** über R, $(C_*(X;R), \partial_*)$, heißt die **singuläre Homologie von** X mit Koeffizienten in R:

$$H_n(X;R) := H_n(C_*(X;R), \partial_*)$$

Für $R=\mathbb{Z}$ schreiben wir kürzer $C_*(X):=C_*(X;\mathbb{Z})$ und $H_n(X):=H_n(X;\mathbb{Z})$.

5.8 Definition

- Die Elemente von $C_n(X;R)$ heißen \mathbf{n} -Ketten.
- Die Elemente von $\operatorname{Im} \partial_{n+1} \subseteq C_n(X;R)$ heißen $\mathbf n$ -Ränder.
- Die Elemente von $\ker \partial_n \subseteq C_n(X;R)$ heißen **n-Zykel**.

Jeder n-Zykel $\sigma \in C_n(X;R)$ bestimmt eine **Homologieklasse** $[\sigma] := \sigma + \operatorname{Im} \partial_{n+1} \in H_n(X;R)$.

5.9 Beispiel

Ist $X = \{x_0\}$ der Ein-Punkt-Raum, so ist

$$H_*(\{x_0\}; R) \cong \begin{cases} R, & \text{falls } * = 0 \\ 0, & \text{sonst} \end{cases}$$

Beweis

Es gibt für jedes n genau eine Abbildung $\sigma_n\colon |\Delta^n|\to \{x_0\}$ nämlich die konstant. Diese ist offensichtlich stetig. Also ist $C_n(\{x_0\};R)=R[\sigma_n]$. Für alle j ist $\delta_j\sigma_n=\sigma_{n-1}$. Daher ist

$$\partial_n(\sigma_n) = \begin{cases} 0, & \text{falls } n \text{ ungerade} \\ \sigma_{n-1}, & \text{falls } n \text{ gerade} \end{cases}$$

Der singuläre Kettenkomplex von $\{x_0\}$ hat also folgende Gestalt:

$$C_0(\lbrace x_0\rbrace;R) \xleftarrow{0} C_1(\lbrace x_0\rbrace;R) \xleftarrow{\cong} C_2(\lbrace x_0\rbrace;R) \xleftarrow{0} C_3(\lbrace x_0\rbrace;R) \xleftarrow{\cong} \cdots$$

$$R \xleftarrow{\mathbb{R}} R \xleftarrow{\mathbb{R}} R \xleftarrow{\mathbb{R}} R \xleftarrow{\mathbb{R}} R \xrightarrow{\mathbb{R}} R$$

Es folgt

FACHBEREICH 10 MATHEMATIK UND INFORMATIK

5.10 Proposition

- 1) Ist $X \neq \emptyset$, so ist $H_0(X) \neq 0$.
- 2) Ist X wegzusammenhängend, so gilt $H_0(X) \cong \mathbb{Z}^3$

Eine analoge Aussage für simpliziale Komplexe haben wir in Aufgabe 3 von Blatt 2 bewiesen

Beweis

1) Sei die sogenannte **Augmentierung** $\epsilon \colon C_0(X) \to \mathbb{Z}$ definiert durch

$$\epsilon\Biggl(\sum_{\sigma\in S_0(X)}\!\!r_\sigma\cdot\sigma\Biggr):=\sum_\sigma r_\sigma.$$

Dann ist $\epsilon \circ \partial_1 \colon C_1(X) \to \mathbb{Z}$ trivial, denn für $\sigma \in S_1(X)$ ist $\epsilon \circ \partial_1(\sigma) = \epsilon(\delta_0 \sigma - \delta_1 \sigma) = 0$. Daher induziert ϵ eine Abbildung $\overline{\epsilon} \colon H_0(X) \to \mathbb{Z}$. Da $X \neq \emptyset$ ist, gibt es einen singulären 0-Simplex $\sigma \colon |\Delta^0| \to X$. Für σ gilt $\overline{\epsilon}([\sigma]) = 1$ und daher ist $\overline{\epsilon}$ surjektiv und $H_0(X) \neq 0$.

2) Wir zeigen, dass $\overline{\epsilon}\colon H_0(X) \to \mathbb{Z}$ ein Isomorphismus ist, falls X wegzusammenhängend ist. Dazu zeigen wir $\ker \epsilon = \operatorname{Im} \partial_1$. Dazu definieren wir $s\colon C_0(X) \to C_1(X)$ wie folgt: Sei σ_0 ein fest gewählter singulärer 0-Simplex. Zu $\sigma \in S_0(X)$ gibt es, da X wegzusammenhängend ist, $s(\sigma) \in S_1(X)$ mit $\delta_0 s(\sigma) = \sigma$, $\delta_1 s(\sigma) = \sigma_0$. Es gilt nun

$$\partial_1 \circ s(\sigma) = \sigma - \sigma_0 = (\mathrm{id}_{C_0(X)} - i \circ \epsilon)(\sigma)$$

wobei $i: \mathbb{Z} \to C_0(X)$, $n \mapsto n \cdot \sigma_0$. Ist nun $v \in \ker \epsilon$, so folgt

$$\partial_1 \circ s(v) = v - i \circ \underbrace{\epsilon(v)}_{=0} = v$$

also ist $v \in \operatorname{Im} \partial_1$ und es folgt die Behauptung.

5.11 Bemerkung

Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Sei $\sigma=\{v_o,\ldots,v_n\}\in\Sigma_n$ ein n-Simplex von K mit $v_0< v_1<\ldots< v_n$. Wir ordnen σ den singulären n-Simplex $f_\sigma\colon |\Delta^n|\to |\Delta^\sigma|\subseteq |K|$ zu, wobei

$$f_{\sigma}\left(\sum_{i=0}^{n} t_i \cdot e_i\right) = \sum_{i=0}^{n} t_i \cdot v_i.$$

Nun erhalten wir eine Abbildung

$$C_*(K;R) \to C_*(|K|,R)$$
 , $\sum_{\sigma \in \Sigma_n} r_\sigma \cdot \sigma \longmapsto \sum_{\sigma \in \Sigma_n} r_\sigma \cdot f_\sigma$.

Diese Abbildung induziert(!) eine weitere Abbildung $H_*(K;R) \xrightarrow{\cong} H_*(|K|;R)$ von der wir später zeigen werden, dass sie ein Isomorphismus ist.

5 Singuläre Homologie 17

³ Tatsächlich gilt auch die Umkehrung, wie in Aufgabe 4 von Blatt 3 gezeigt.

6 Funktorialität

6.1 Definition

Seien (C_*,d_*) und (C'_*,d'_*) zwei R-Kettenkomplexe. Eine $\mathbf R$ -Kettenabbildung $f_*\colon (C_*,d_*)\to (C'_*,d'_*)$ ist eine Folge von R-linearen Abbildungen $f_n\colon C_n\to C'_n$, sodass

$$d'_n \circ f_n = f_{n-1} \circ d_n$$

für alle $n \geqslant 1$ gilt. Also kommutiert folgendes Diagramm

$$C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2 \xleftarrow{d_3} C_3 \longleftarrow \dots$$

$$\downarrow^{f_0} \qquad \downarrow^{f_1} \qquad \downarrow^{f_2} \qquad \downarrow^{f_3}$$

$$C'_0 \xleftarrow{d'_1} C'_1 \xleftarrow{d'_2} C'_2 \xleftarrow{d'_3} C'_3 \longleftarrow \dots$$

6.2 Bemerkung

Ist $f_*:(C_*,d_*)\to (C'_*,d'_*)$ eine Kettenabbildung, so erhalten wir eine induzierte Abbildung auf Homologie $H_n(f_*):H_n(C_*,d_*)\to H_n(C'_*,d'_*)$ durch

$$H_n(f_*)([v]) := [f_n(v)]$$

für $v \in \ker d_n$. Dies ist wohldefiniert, denn:

- $d'_n(f_n(v)) = f_{n-1}(d_n(v)) = 0$, also $f_n(v) \in \ker d'_n$ für $v \in \ker d_n$.
- Ist [v] = [w], mit $v, w \in \ker d_n$, so gibt es $x \in C_{n+1}$ mit $d_{n+1}(x) = v w$. Dann ist

$$d'_{n+1}(f_{n+1}(x)) = f_n(d_{n+1}(x)) = f_n(v) - f_n(w)$$

also
$$[f_n(v)] = [f_n(w)] \in H_n(C'_*, d'_*).$$

6.3 Bemerkung

- a) R-Kettenkomplexe mit R-Kettenabbildungen bilden die Kategorie R-Ketten.
- b) Homologie definiert nun einen Funktor: $H_n \colon R ext{-Ketten} o R ext{-Mod}.$

Es gilt
$$H_n(\mathrm{id}_{(C_*,d_*)})=\mathrm{id}_{H_n(C_*,d_*)}$$
 und $H_n(f\circ g)=H_n(f)\circ H_n(g)$, da

$$H_n(f \circ g)([v]) = [f_n \circ g_n(v)] = [f_n(g_n(v))] = H_n(f)([g_n(v)]) = H_n(f)(H_n(g)(v))$$

c) Definiert man die Kategorie der **graduierten** R-Moduln als die Kategorie, deren Objekte Folgen $(V_n)_n$ von \mathbb{R} -Moduln sind und deren Morphismen Folgen von R-linearen Abbildungen $(f_n)_n$ sind, so kann man die H_n , $n \in \mathbb{N}$ zu einem Funktor

$$H_*: R\text{-Ketten} \longrightarrow GR\text{-}R\text{-Mod}$$
 , $(C_*, d_*) \longmapsto (H_n(C_*, d_*))_n$

zusammensetzen.

6.4 Definition

Sei $f: X \to Y$ stetig. Wir definieren $C_n(f;R): C_n(X;R) \to C_n(Y;R)$ durch

$$C_n(f;R)\left(\sum_{\sigma\in S_n(X)} r_{\sigma}\cdot\sigma\right) := \sum_{\sigma\in S_n(X)} r_{\sigma}\cdot(f\circ\sigma)$$

Dies ist wohldefiniert, denn für $\sigma \in S_n(X)$ ist $f \circ \sigma \in S_n(Y)$.

18 6 Funktorialität

6.5 Proposition

Mit dieser Definition von $C_*(f;R)$ wird der singuläre Kettenkomplex über R zu einem Funktor

$$C_*(-;R)\colon \mathsf{Top}\to R\text{-Ketten}$$

Beweis

(i) $C_*(f;R)$ ist eine R-Kettenabbildung: Es gilt

$$C_{n-1}(f;R) \circ \partial_n(\sigma) = C_{n-1}(f;R) \left(\sum_{l=0}^n (-1)^l \cdot \sigma \circ \iota_{n,l} \right) = \sum_{l=0}^n (-1)^l \cdot (f \circ \sigma) \circ \iota_{n,l}$$
$$= \partial_n(f \circ \sigma) = \partial \left(C_n(f;R)(\sigma) \right).$$

(ii) Zu zeigen: $C_*(f \circ g; R) = C_*(f; R) \circ C_*(g; R)$. Es gilt

$$C_n(f \circ g; R)(\sigma) = f \circ (g \circ \sigma) = C_n(f; R)(g \circ \sigma) = C_n(f; R)(C_n(g; R)(\sigma)).$$

(iii) Zu zeigen: $C_*(\mathrm{id}_X;R)=\mathrm{id}_{C_*(X;R)}$. Es gilt

$$C_n(\mathrm{id}_X; R)(\sigma) = \mathrm{id}_X \circ \sigma = \sigma$$

6.6 Korollar

Mit $H_n(f;R) := H_n(C_*(f;R))$ wird $H_n(-;R)$ zu einem Funktor: $H_n(-;R)$: Top $\to R$ -Mod.

Beweis

 $H_n(-;R)$ ist die Komposition des Funktors $C_*(-;R)$: Top $\to R$ -Ketten aus 6.5 mit dem Funktor $H_n\colon R$ -Ketten $\to R$ -Mod aus 6.3.

6.7 Bemerkung

• Oft schreiben wir kurz $f_* = H_n(f;R)$.

$$\bullet \ \text{F\"{u}r} \left[\sum_{\sigma \in S_n(X)} r_\sigma \sigma \right] \in H_n(X;R) \ \text{ist} \ f_* \left(\left[\sum_{\sigma \in S_n(X)} r_\sigma \sigma \right] \right) = \left[\sum_{\sigma \in S_n(X)} r_\sigma f \circ \sigma \right] \in H_n(Y;R)$$

6.8 Definition

Seien X_i , $i \in I$ topologische Räume. Mit

$$X := \coprod_{i \in I} X_i$$

bezeichnen wir die **Summe** (oder auch das **Koprodukt**) der X_i . Als Menge ist X die disjunkte Vereinigung der X_i . $U \subseteq X$ ist offen genau dann, wenn $X_i \cap U \subseteq X_i$ offen ist für jedes $i \in I$. Für jedes i_0 erhalten wir eine stetige Inklusion $j_{i_0} \colon X_{i_0} \to \coprod_i X_i$.

Bemerkung

Für jedes i_0 ist $X_{i_0} \subseteq \coprod_i X_i$ offen und abgeschlossen.

6 Funktorialität 19

6.9 Definition

Seien V_i , $i \in I$ R-Moduln. Mit

$$V := \bigoplus_{i \in I} V_i$$

bezeichnen wir die **Summe** (oder auch das **Koprodukt**) der V_i . Elemente von V sind I-Folgen $(v_i)_{i \in I}$ mit $v_i \in V_i$ und $v_i = 0$ für alle bis auf endlich viele i. Die R-Modulstruktur ist erklärt durch:

$$(v_i)_{i \in I} + (w_i)_{i \in I} := (v_i + w_i)_{i \in I}$$
 , $r \cdot (v_i)_{i \in I} := (r \cdot v_i)_{i \in I}$

Für jedes $i_0 \in I$ erhalten wir eine R-lineare Abbildung $j_{i_0} \colon V_{i_0} \to V$ mit

$$(j_{i_0}(v))_i = \begin{cases} v, & \text{falls } i = i_0 \\ 0, & \text{sonst} \end{cases}$$

Bemerkung

Seien V_i für $i \in I$ R-Moduln. Sei W ein weiterer R-Modul. Dann gibt es zu jeder Folge $f_i \colon V_i \to W$ von R-linearen Abbildungen eine R-linearen Abbildung $\bigoplus_{i \in I} f_i \colon \bigoplus_{i \in I} V_i \to W$ mit

$$(\bigoplus_{i\in I} f_i)((v_i)_{i\in I}) = \sum_{i\in I} f_i(v_i)$$

Ist umgekehrt $f \colon \bigoplus_{i \in I} V_i \to W$ eine R-lineare Abbildung, so ist $f_i \coloneqq f \circ j_i$ eine Folge von R-linearen Abbildungen mit $f = \bigoplus_{i \in I} f_i$.

6.10 Satz

Sei $X = \coprod_{i \in I} X_i$. Dann induzieren die Inklusionen $j_i \colon X_i \hookrightarrow X$ einen Isomorphismus

$$\bigoplus_{i \in I} H_n(X_i; R) \xrightarrow{\bigoplus_{i \in I} (j_i)_*} H_n(X; R)$$

Beweis

Da die $X_i\subseteq X$ offen und abgeschlossen sind und $|\Delta^n|$ zusammenhängend ist (sogar wegzusammenhängend), gibt es für jedes $\sigma\colon |\Delta^n|\to X$ ein eindeutiges i mit $\mathrm{Im}\,\sigma\subseteq X_i$. Es gilt also $S_n(X)=\dot\bigcup S_n(X_i)$. Daher induzieren die j_i für jedes n einen Isomorphismus

$$\bigoplus_{i \in I} C_n(j_i; R) \colon \bigoplus_{i \in I} C_n(X_i; R) \xrightarrow{\cong} C_n(X; R)$$

Da diese Isomorphismen mit den Randabbildungen vertauschen, erhalten wir einen Isomorphismus von R-Kettenkomplexen

$$\varphi := \bigoplus_{i \in I} C_*(j_i; R) : \bigoplus_{i \in I} C_*(X_i; R) \xrightarrow{\cong} C_*(X; R)$$

 $\operatorname{Da} \bigoplus_i H_n ig(C_*(X_i;R) ig) \cong H_n ig(\bigoplus_i C_*(X_i;R) ig)$ induzieren dann auch die $(j_i)_*$ einen Isomorphismus

$$\bigoplus_{i \in I} (j_i)_* \colon \bigoplus_{i \in I} H_n(X_i; R) \xrightarrow{\cong} H_n(X; R) \qquad \Box$$

20 6 Funktorialität

7 Homotopieinvarianz

7.1 Bemerkung

Sei $f: X \to Y$ ein Homöomorphismus. Dann ist $f_*: H_n(X;R) \longrightarrow H_n(Y;R)$ ein Isomorphismus.

Beweis

Da Homologie ein Funktor ist, gilt

$$f_* \circ (f^{-1})_* = (f \circ f^{-1})_* = (\mathrm{id}_Y)_* = \mathrm{id}_{H_n(Y;R)} \qquad \text{und}$$
$$(f^{-1})_* \circ f_* = (f^{-1} \circ f)_* = (\mathrm{id}_X)_* = \mathrm{id}_{H_n(X;R)}$$

Also ist $(f_*)^{-1} = (f^{-1})_*$. Insbesondere ist f_* ein Isomorphismus.

7.2 Definition

Eine stetige Abbildung $f\colon X\to Y$ heißt eine **Homotopieäquivalenz**, falls es eine stetige Abbildung $g\colon Y\to X$ gibt, so dass $g\circ f$ homotop zu id_X ist und $f\circ g$ homotop zu id_Y ist. g heißt dann eine **Homotopieinverse** zu f.

Bemerkung

- (i) f ist genau dann eine Homotopieäquivalenz, wenn [f] in HTop invertierbar ist. In HTop ist dann $[f]^{-1} = [g]$.
- (ii) Die Homotopieinverse ist eindeutig bis auf Homotopie.

7.3 Satz

Seien $f,g\colon X\to Y$ stetige Abbildungen. Sind f und g homotop, so gilt für die induzierten Abbildungen $H_n(f;R)=H_n(g;R)$ für alle $n\in\mathbb{N}$.

Beweis

Siehe 7.8, sowie 7.13

7.4 Korollar

Ist $f\colon X\to Y$ eine Homotopieäquivalenz, so ist $f_*\colon H_n(X;R)\to H_n(Y;R)$ ein Isomorphismus.

Beweis

Sei $g \colon Y \to X$ ein Homotopieinverses zu f. Es folgt

7.5 Korollar

Ist X kontrahierbar, d.h. es gibt eine Homotopie $H\colon X\times [0,1]\to X$ mit $H_0=\mathrm{id}_X$ und H_1 konstant, so gilt

7 Homotopieinvarianz 21

Beweis

Sei $\{x_0\} = \operatorname{Im} H_1$. Dann ist die Inklusion $\{x_0\} \to X$ eine Homotopieäquivalenz. Also gilt nach 7.4

$$H_n(X;R) \cong H_n(\{x_0\};R) \stackrel{\text{5.9}}{=} \begin{cases} R, & \text{falls } n=0\\ 0, & \text{sonst} \end{cases}$$

Beispiel

$$H_n(\mathbb{R}^k;R)\cong \begin{cases} R, & \text{falls } n=0\\ 0, & \text{sonst} \end{cases} \quad \text{und} \quad H_n(D^k;R)\cong \begin{cases} R, & \text{falls } n=0\\ 0, & \text{sonst} \end{cases}$$

7.6 Definition

Seien (C_*,d_*) und (C_*',d_*') R-Kettenkomplexe. Seien $f_*,g_*\colon (C_*,d_*)\to (C_*',d_*')$ R-Kettenabbildungen. Eine **Kettenhomotopie** von f_* nach g_* ist eine Folge von R-linearen Abbildungen $h_n\colon C_n\to C_{n+1}'$, $n\in\mathbb{N}$, sodass für alle n gilt:

$$d'_{n+1} \circ h_n + h_{n-1} \circ d_n = f_n - g_n$$

In diesem fall heißen f_* und g_* **kettenhomotop**.

7.7 Proposition

Seien $f_*, g_* \colon (C_*, d_*) \to (C'_*, d'_*)$ Kettenabbildungen. Sind f_* und g_* kettenhomotop, so gilt für alle n

$$H_n(f_*) = H_n(g_*)$$

Beweis

Sei $x \in H_n(C_*, d_*)$. Also x = [v] mit $v \in \ker d_n \colon C_n \to C_{n-1}$. Dann gilt, da $v \in \ker d_n$

$$H_n(f_*)(x) = H_n(f_*)([v]) = [f_n(v)] = \left[g_n(v) + \underbrace{d'_{n+1} \circ h_n(v)}_{\in \operatorname{Im} d'_{n+1}} + \underbrace{h_{n-1} \circ d_n(v)}_{=0}\right]$$
$$= [g_n(v)] = H_n(g_*)([v]) = H_n(g_*)(x) \qquad \Box$$

7.8 Lemma

Die Homotopieinvarianz von $H_n(-;R)$, also Satz 7.3, folgt aus folgenden Spezialfall:

Seien
$$i_0, i_1 \colon X \hookrightarrow X \times [0,1]$$
 Inklusionen mit $i_0(x) = (x,0)$, $i_1(x) = (x,1)$. $\Longrightarrow (i_0)_* = (i_1)_*$ [#]

Beweis

Sei $H\colon X\times [0,1]\to Y$ eine Homotopie zwischen $f,g\colon X\to Y$, also $f=H\circ i_0$ und $g=H\circ i_1$. Dann folgt mittels Funktorialität

$$f_* = (H \circ i_0)_* = H_* \circ (i_0)_* = H_* \circ (i_1)_* = (H \circ i_1)_* = q_*$$

7.9 Bemerkung

Zum Beweis von [#] werden wir eine explizite Kettenhomotopie h_* zwischen $C_*(i_0;R)$ und $C_*(i_1;R)$ konstruieren. Wir brauchen also $h_n\colon C_n(X;R)\to C_{n+1}(X\times[0,1];R)$ für alle $n\in\mathbb{N}$ mit

$$\partial_{n+1} \circ h_n + h_{n-1} \circ \partial_n = C_n(i_0; R) - C_n(i_1; R).$$
 [##]

Kettenhomotopie definiert eine Äquivalenzrelation wie in Aufgabe 2 von Blatt 5 gezeigt.

"Ansatz"

Für $\sigma\colon |\Delta^n| \to X$ setze $h_n(\sigma) = \sigma \times \mathrm{id}_{[0,1]}\colon |\Delta^n| \times [0,1] \to X \times [0,1]$. Dann ist " $h_{n-1}(\partial_n \sigma) = \partial_n \sigma \times \mathrm{id}_{[0,1]}$ "und

$$\partial_{n+1}(h_n\sigma) = \partial_{n+1}(\sigma \times \mathrm{id}_{[0,1]}) = (\sigma \times \mathrm{id})\Big|_{\partial(|\Delta^n| \times [0,1])} = \partial_n\sigma \times \mathrm{id}_{[0,1]} + i_0\sigma + i_1\sigma$$

$$\operatorname{da} \partial(|\Delta^n| \times [0,1]) = \partial|\Delta^n| \times [0,1] \dot{\cup}|, |\Delta^n| \times \{0,1\}.$$

Um daraus Sinn zu machen, zerlegen wir $|\Delta^n| \times [0,1]$ in eine Vereinigung von (n+1)-Simplizes. $\Delta^n \times [0,1]$ hat die folgende Form für $n \in \{0,1,2\}$:

Abbildung 1: $\Delta^n \times [0,1]$ für n=0,1,2

Die Zerlegung in 3-Simplizes ist für $\Delta^2 \times [0,1]$ gegeben durch

Abbildung 2: Zerlegung von $\Delta^2 \times [0,1]$ in 3-Simplizes

Dieses Vorgehen verallgemeinern wir jetzt für beliebiges $n \in \mathbb{N}$:

7.10 Definition

Für $j=0,\ldots,n$ seien $k_{n,j}\colon |\Delta^{n+1}|\to |\Delta^n|\times [0,1]$ und $\iota_{n,j}\colon |\Delta^{n-1}|\to |\Delta^n|$ die eindeutigen affin linearen Abbildungn, für die gilt:

 e_1, \dots, e_n sind wieder die Einheitsvektoren von \mathbb{R}^n

$$k_{n,j}(e_0) = (e_0, 0)$$
 $\iota_{n,j}(e_0) = e_0$
 $k_{n,j}(e_1) = (e_1, 0)$... $\iota_{n,j}(e_1) = e_1$... $\iota_{n,j}(e_{j-1}) = e_{j-1}$
 $k_{n,j}(e_{j+1}) = (e_j, 1)$... $\iota_{n,j}(e_{j-1}) = e_{j+1}$... $\iota_{n,j}(e_{n-1}) = e_n$

7 Homotopieinvarianz 23

7.11 Lemma

Es gelten folgende fünf Gleichungen für die Abbildungen $k_{n,j}$ und $\iota_{n,j}$:

(i) Für
$$0 \le l < j \le n$$
 gilt $k_{n,j} \circ \iota_{n+1,l} = (\iota_{n,l} \times \mathrm{id}_{[0,1]}) \circ k_{n-1,j-1}$

(ii) Für
$$1 \le j+1 < l \le n+1$$
 gilt $k_{n,j} \circ \iota_{n+1,l} = (\iota_{n,l-1} \times \mathrm{id}_{[0,1]}) \circ k_{n-1,j}$

(iii) Für
$$1\leqslant j+1=l\leqslant n$$
 gilt $k_{n,j}\circ\iota_{n+1,l}=k_{n,j+1}\circ\iota_{n+1,l}$

(iv) Für
$$l=0, j=0$$
 ist $k_{n,j} \circ \iota_{n+1,l}=i_1:\Delta^n\to\Delta^n\times[0,1]$

(v) Für
$$l=n, j=n+1$$
 ist $k_{n,j} \circ \iota_{n+1,l}=i_0:\Delta^n \to \Delta^n \times [0,1]$

Beweis

Wir zeigen hier nur exemplarisch die erste Gleichung: Die linke Seite der Gleichung entspricht

und die rechte Seite entspricht

Also folgt insgesamt die Gleichheit. Die anderen Gleichungen folgen genauso.

24 7 Homotopieinvarianz

7.12 Beweis von [##]

Sei $h_n: C_n(X;R) \to C_{n+1}(X \times [0,1];R)$ definiert durch

$$h_n(\sigma) := \sum_{j=0}^n (-1)^j \cdot (\sigma \times \mathrm{id}) \circ k_{n,j}$$

 h_* ist die gesuchte Kettenhomotopie, da für $n \in \mathbb{N}$ unter Anwendung der Gleichungen aus 7.12 gilt:

$$\begin{split} \partial_{n+1} \big(h_n(\sigma) \big) &= \partial_{n+1} \left(\sum_{j=0}^n (-1)^j \cdot (\sigma \times \operatorname{id}) \circ k_{n,j} \right) \\ &= \sum_{l=0}^{n+1} \sum_{j=0}^n (-1)^{j+l} \cdot (\sigma \times \operatorname{id}) \circ k_{n,j} \circ \iota_{n+1,l} \qquad \text{(nach Definition 5.2)} \\ &= \sum_{0 \le l < j \le n} (-1)^{j+l} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j-1} + \sum_{1 \le j+1 < l \le n+1} (-1)^{j+l} \big((\sigma \circ \iota_{n,l-1}) \times \operatorname{id} \big) \circ k_{n-1,j} \\ &+ \sum_{1 \le j+1 = l \le n} (-1)^{j+l} (\sigma \times \operatorname{id}) \circ k_{n,j+1} \circ \iota_{n+1,l} + \sum_{1 \le j=l \le n} (-1)^{j+l} (\sigma \times \operatorname{id}) \circ k_{n,j} \circ \iota_{n+1,l} \\ &+ \sum_{0 = l = j} (-1)^{j+l} (\sigma \times \operatorname{id}) \circ i_1 + \sum_{n+1 = j+1 = l} (-1)^{j+l} (\sigma \times \operatorname{id}) \circ i_0 \\ &= \sum_{0 \le l \le j \le n-1} (-1)^{j+l+1} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j} + \sum_{1 \le j+1 \le l \le n} (-1)^{j+l+1} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j} \\ &+ \sum_{1 \le j=l \le n} (-1)^{j+l-1} \big(\sigma \times \operatorname{id} \big) \circ i_1 + \sum_{n+1 = j+1 = l} (-1)^{j+l} \big(\sigma \times \operatorname{id} \big) \circ i_0 \\ &= -\sum_{0 \le l \le n} (-1)^{j+l} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j} + (\sigma \times \operatorname{id}) \circ i_1 - (\sigma \times \operatorname{id}) \circ i_0 \\ &= -\sum_{0 \le l \le n} (-1)^{j+l} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j} + (\sigma \times \operatorname{id}) \circ i_1 - (\sigma \times \operatorname{id}) \circ i_0 \\ &= -\sum_{j=0} (-1)^{j} \sum_{l=0} (-1)^{l} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j} + \underbrace{(\sigma \times \operatorname{id}) \circ i_1 - (\sigma \times \operatorname{id}) \circ i_0}_{=i_0 \circ \sigma} \\ &= -k_{n-1} (\partial_n \sigma) + C_n(i_1; R) (\sigma) - C_n(i_0; R) (\sigma) \end{split}$$

7.13 Bemerkung

Ist $H\colon X\times [0,1]\to Y$ eine Homotopie zwischen f und g, so erhalten wir eine Kettenhomotopie k zwischen $C_*(f;R)$ und $C_*(g;R)$ durch

$$k_n(\sigma) := C_{n+1}(H; R) \circ h_n = \sum_{j=0}^n (-1)^j H \circ (\sigma \times \mathrm{id}) \circ k_{n,j}$$

7 Homotopieinvarianz 25

8 Homologie von Paaren

8.1 Definition

Sei A ein Teilraum von X, dann heißt (X,A) ein **Paar von topologischen Räumen**. Eine Abbildung von Paaren $f\colon (X,A)\to (Y,B)$ ist eine stetige Abbildung $f\colon X\to Y$ mit $f(A)\subseteq B$. Manchmal schreiben wir $(f,f|_A)\colon (X,A)\to (Y,B)$.

Die Kategorie von Paaren von topologischen Räumen bezeichnen wir mit Tor².

8.2 Definition

Sei (X,A) ein Paar. Dann definieren wir den **singulären Kettenkomplex** von (X,A) über R durch

$$C_n(X, A; R) := {}^{C_n(X;R)}/{}_{C_n(A;R)}$$
$$\partial_n(\sigma + C_n(A; R)) := \partial_n\sigma + C_{n-1}(A; R)$$

Dies ist wohldefiniert, da $\partial_n (C_n(A;R)) \subseteq C_{n-1}(A;R)$. Weiter heißt

$$H_n(X, A; R) := H_n(C_*(X, A; R), \partial_*)$$

der n-te singuläre Homologiemodul von (X, A) mit Koeffizienten in R.

8.3 Bemerkung

Homologie von Paa-

ren ist auch wieder

1 von Blatt 7 gezeigt.

homotopieinvariant. wie in Aufaabe Der singuläre Kettenkomplex von Paaren definiert einen Funktor $\mathrm{Top^2} \to R\text{-}\mathrm{Ketten}$. Durch Komposition mit Homologie (als Funktor $R\text{-}\mathrm{Ketten} \to R\text{-}\mathrm{Mod}$) erhalten wir einen Funktor

$$H_n(-,-;R) \colon \mathsf{Top}^2 \longrightarrow R\mathsf{-Mod}$$

8.4 Bemerkung

Via $X \mapsto (X, \emptyset)$ können wir jeden Raum auch als Paar auffassen. Es gilt $H_n(X, \emptyset; R) = H_n(X; R)$.

8.5 Frage

Können wir $H_n(X, A; R)$ durch $H_n(X; R)$ und $H_n(A; R)$ ausdrücken?

Ansatz 1:

$$H_n(X, A; R) \cong H_n(X; R)/H_n(A; R)$$

A Problem: $H_n(A;R)$ ist kein Untermodul von $H_n(X;R)$.

Ansatz 2: Ist $H_n(X;R) \to H_n(X,A;R)$ surjektiv?

Sei
$$x \in H_n(X,A;R)$$
. Dann gibt es $\sigma + C_n(A;R) \in C_n(X,A;R)$ mit $\partial_n \left(\sigma + C_n(A;R)\right) = 0$ und $x = [\sigma]$. Es ist $\sigma \in C_n(X;R)$, aber wir wissen nur $\partial_n \sigma \in C_{n-1}(A;R)$, nicht $\partial_n (\sigma) = 0$.

8.6 Beispiel

In $C_n(|\Delta^n|, |\partial \Delta^n|; R)$ gilt für $\sigma := \mathrm{id} \colon |\Delta^n| \to |\Delta^n|$, dass $\partial_n([\sigma]) = 0$ ist, da $\partial_n \sigma \in C_{n-1}(|\partial \Delta^n|; R)$. Wir werden später sehen, dass $[\sigma]$ den Homologiemodul

$$H_n(|\Delta^n|, |\partial \Delta^n|; R) \cong R$$

erzeugt.

erze

8.7 Definition

Eine Folge von R-linearen Abbildungen zwischen R-Moduln M_i

$$\cdots \longrightarrow M_n \xrightarrow{f_n} M_{n-1} \xrightarrow{f_{n-1}} M_{n-2} \longrightarrow \cdots \longrightarrow M_1 \longrightarrow M_0$$

heißt lange exakte Folge, wenn sie exakt an jeder Stelle M_i ist, d.h. für alle i gilt $\operatorname{Im} f_i = \ker f_{i-1}$.

8.8 Satz

Es gibt eine natürliche Transformation ∂_n von $(X,A)\mapsto H_n(X,A;R)$ nach $(X,A)\mapsto H_{n-1}(A;R)$, sodass für jedes Paar (X,A)

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A;R) \xrightarrow{i_*} H_n(X;R) \xrightarrow{j_*} H_n(X,A;R) \xrightarrow{\partial_n} H_{n-1}(A;R) \longrightarrow \cdots$$

$$[*]$$

$$\cdots \xrightarrow{\partial_1} H_0(A;R) \longrightarrow H_0(X;R) \longrightarrow H_0(X,A;R) \longrightarrow 0$$

eine lange exakte Folge ist. Dabei sind $i\colon A\hookrightarrow X$ und $j\colon (X,\emptyset)\hookrightarrow (X,A)$ die Inklusionen. Das bedeutet:

Für jedes Paar (X,A) haben wir eine R-lineare Abbildung $\partial_n\colon H_n(X,A;R)\to H_{n-1}(A;R)$, sodass für jede Abbildung $(f,f|_A)\colon (X,A)\to (Y,B)$ von Paaren folgendes Diagramm kommutiert

$$H_n(X, A; R) \xrightarrow{\partial_n} H_{n-1}(A; R)$$

$$\downarrow (f, f|_A)_* \qquad \qquad \downarrow (f|_A)_*$$

$$H_n(Y, B; R) \xrightarrow{\partial_n} H_{n-1}(B; R)$$

Beweis

siehe 8.13.

8.9 Korollar

- (1) Ist die Inklusion $i: A \to X$ eine Homotopieäquivalenz, so ist $H_n(X, A; R) = 0$ für alle n.
- (2) Sei A kontraktibel. Dann gilt für alle $n \ge 1$. $H_n(X;R) \cong H_n(X,A;R)$

Beweis

(1) Betrachte den folgenden Ausschnitt aus der langen exakten Folge:

$$H_n(A;R) \xrightarrow{i_*} H_n(X;R) \xrightarrow{j_*} H_n(X,A;R) \xrightarrow{\partial_n} H_{n-1}(A;R) \xrightarrow{i_*} H_n(X;R)$$

Nach 7.4 ist $i_*\colon H_n(A;R)\to H_n(X;R)$ ein Isomorphismus. Wegen der Exaktheit gilt $\ker j_*=\operatorname{Im} i_*=H_n(X;R)$, also folgt $j_*=0$. Da $\operatorname{Im} \partial_n=\ker i_*=0$, folgt $\partial_n=0$. Nun ist

$$H_n(X, A; R) = \ker \partial_n = \operatorname{Im} j_* = 0$$

(2) Folgt leicht aus 7.5 und der Exaktheit der Paarsequenz [*]. Für n=1 brauchen wir außerdem, dass ∂_1 für A wegzusammenhängend trivial ist. Dies folgt aus Aufgabe 1a) von Blatt 6, denn dort wurde gezeigt, dass $i_*\colon H_0(A)\to H_0(X)$ injektiv ist.

8 Homologie von Paaren 27

8.10 Definition

Seien

$$(C_*, d_*) \xrightarrow{i_*} (C'_*, d'_*) \xrightarrow{p_*} (C''_*, d''_*)$$
 [#]

R-Kettenabbildungen. Ist für jedes n die Folge $C_n \xrightarrow{i_n} C'_n \xrightarrow{p_n} C''_n$ kurz exakt, so heißt [#] eine kurze exakte Folge von Kettenkomplexen.

8.11 Beispiel

Für jedes Paar (X, A) ist

$$(C_*(A;R),\partial_*) \xrightarrow{i_*} (C_*(X;R),\partial_*) \xrightarrow{j_*} (C_*(X,A;R),\partial_*)$$

eine kurze exakte Folge von R-Kettenkomplexen.

8.12 Schlangenlemma

Sei

$$(C_*, d_*) \xrightarrow{i_*} (C'_*, d'_*) \xrightarrow{p_*} (C''_*, d''_*)$$

eine kurze exakte Folge von R-Kettenkomplexen.

a) Für jedes n gibt es eine eindeutige wohldefinierte R-lineare Abbildung $\partial_n\colon H_n(C_*'',d_*'')\to H_{n-1}(C_*,d_*)$ mit: Für $v'\in C_n'$ mit $d_n''\circ p_n(v')=0$ ist

$$\partial_n \underbrace{\left([p_n(v')] \right)}_{\in H_n(C_*'', d_*'')} = [v] \in H_{n-1}(C_*, d_*)$$

wobei $v \in C_{n-1}$ bestimmt ist durch $i_{n-1}(v) = d'_n(v')$.

b)
$$\cdots \xrightarrow{\partial_{n+1}} H_n(C_*, d_*) \xrightarrow{i_*} H_n(C_*', d_*') \xrightarrow{p_*} H_n(C_*'', d_*'') \xrightarrow{\partial_n}$$

$$\downarrow H_{n-1}(C_*, d_*) \xrightarrow{i_*} H_{n-1}(C_*', d_*') \xrightarrow{p_*} \cdots \xrightarrow{\partial_1}$$

$$\downarrow H_0(C_*, d_*) \xrightarrow{i_*} H_0(C_*', d_*') \xrightarrow{p_*} H_0(C_*'', d_*'') \xrightarrow{\rho_*} 0$$

ist eine lange exakte Folge.

Beweis

$$C_{n+1} \xrightarrow{i_{n+1}} C'_{n+1} \xrightarrow{p_{n+1}} C''_{n+1}$$

$$\downarrow^{d_{n+1}} \qquad \downarrow^{d'_{n+1}} \qquad \downarrow^{d''_{n+1}}$$

$$C_{n} \xrightarrow{i_{n}} C'_{n} \xrightarrow{p_{n}} C''_{n}$$

$$\downarrow^{d_{n}} \qquad \downarrow^{d'_{n}} \qquad \downarrow^{d''_{n}}$$

$$C_{n-1} \xrightarrow{i_{n-1}} C'_{n-1} \xrightarrow{p_{n-1}} C''_{n-1}$$

$$\downarrow^{d_{n-1}} \qquad \downarrow^{d'_{n-1}} \qquad \downarrow^{d''_{n-1}}$$

$$C_{n-2} \xrightarrow{i_{n-2}} C'_{n-2} \xrightarrow{p_{n-2}} C''_{n-2}$$

a) Sei $x'' \in H_n(C_*'', d_*'')$, also x'' = [v''] mit $v'' \in \ker d_n''$. Da p_n surjektiv ist, existiert $v' \in C_n'$ mit $p_n(v') = v''$. Es gilt

$$p_{n-1} \circ d'_n(v') = d''_n \circ p_n(v') = d''_n(v'') = 0$$

Also ist $d'_n(v') \in \ker p_{n-1}$. Weiter gilt $\ker p_{n-1} = \operatorname{Im} i_{n-1}$, also existiert $\operatorname{ein} v \in C_{n-1}$ mit $i_{n-1}(v) = d'_n(v')$. Dann gilt

$$i_{n-2}(d_{n-1}(v)) = d'_{n-1}(i_{n-1}(v)) = d'_{n-1}(d'_n(v')) = 0$$

Da i_{n-2} injektiv ist, folgt somit $d_{n-1}(v)=0$. Also setzen wir $\partial_n(x''):=[v]\in H_{n-1}(C_*,d_*)$.

Es bleibt zu zeigen, dass $[v] \in H_{n-1}(C_*,d_*)$ unabhängig von der Wahl von v'' und v' ist. Seien $w'' \in \ker d_n''$, $w' \in C_n'$ und $w \in C_{n-1}$ mit x'' = [w''], $p_n(w') = w''$ und $i_{n-1}(w) = d_n'(w')$. Es ist [v''] = [w''], also existiert ein $a'' \in C_{n+1}''$ mit $d_{n+1}''(a'') = v'' - w''$. p_{n+1} ist surjektiv, also existiert $a' \in C_{n+1}'$ mit $p_{n+1}(a') = a''$. Es gilt

$$p_n(v' - w' - d'_{n+1}(a')) = v'' - w'' - \underbrace{d''_{n+1}(p_{n+1}(a'))}_{=v'' - w''} = 0$$

Mit $\ker p_n = \operatorname{Im} i_n$ folgt die Existenz von $a \in C_n$ mit $i_n(a) = v' - w' - d_{n+1}(a')$. Es gilt nun

$$i_{n-1}(d_n(a) - (v - w)) = i_{n-1}(d_n(a)) - i_{n-1}(v - w)$$

$$= d'_n(i_n(a)) - (d'_n(v') - d'_n(w'))$$

$$= d'_n(-d'_{n+1}(a') + v' - w') - d'_n(v' - w')$$

$$= -d'_n d'_{n+1}(a') + d'_n(v' - w') - d'_n(v' - w') = 0$$

Da i_{n-1} injektiv ist, folgt $d_n(a) - (v - w) = 0$, also $d_n(a) = (v - w)$. Es folgt [v] = [w].

b) Exaktheit der langen Folge:

$$\boxed{ \mathrm{Im}(i_n)_* = \ker(p_n)_* }$$
: "⊆" folgt aus $(p_n)_* \circ (i_n)_* = (p_n \circ i_n)_* = (0)_* = 0.$

Für " \supseteq " betrachte $x' \in \ker(p_n)_*$, wobei x' = [v'] mit $v' \in C_n'$ und $d_n'(v') = 0$. Da nun $[p_n(v')] = (p_n)_*[x'] = 0$ ist, gibt es $a'' \in C_n''$ mit $d_{n+1}''(a'') = p_n(v')$. Da p_{n+1} surjektiv ist, existiert $a' \in C_{n+1}'$ mit $p_{n+1}(a') = a''$. Dann gilt

$$p_n \left(v' - d'_{n+1}(a') \right) = p_n(v') - p_n \circ d'_{n+1}(a') = p_n(v') - d''_{n+1} \left(\underbrace{p_{n+1}(a')}_{=a''} \right) = 0$$

Da $\ker p_n = \operatorname{Im} i_n$, gibt es $a \in C_n$ mit $i_n(a) = v' - d'_{n+1}(a')$. Nun ist

$$i_{n-1}(d_n(a)) = d'_n(i_n(a)) = d'_n(v' - d'_{n+1}(a')) = d'_n(v') = 0$$

Da i_{n-1} injektiv ist, folgt $d_n(a)=0$. Insbesondere $[a]\in H_n(C_*,d_*)$. Nun ist

$$(i_n)_*[a] = [i_n(a)] = [v' - d'_{n+1}(a')] = [v'] = x'$$

Also ist $x' \in \operatorname{Im}(i_n)_*$.

 $\boxed{ \operatorname{Im}(p_n)_* = \ker \partial_n } : \text{Für "\subseteq" betrachte $x'' \in \operatorname{Im}(p_n)_*$. Dann gibt es $v' \in C_n'$ mit $d_n'(v') = 0$ und $x'' = [p_n(v')]$. Es ist $d_n'(v') \in \ker p_{n-1} = \operatorname{Im} i_{n-1}$, also existiert ein $v \in C_{n-1}$ mit $i_{n-1}(v) = d_n'(v')$. Es gilt nun $\partial_n(x'') = [v]$. Wegen der Injektivität von i_{n-1} ist $v = 0$, also $\partial_n(x'') = [0]$.}$

8 Homologie von Paaren 29

Sei nun umgekehrt $x'' \in \ker \partial_n$. Wir finden wieder $v' \in C_n'$ und $v \in C_{n-1}$ mit $x'' = [p_n(v')]$, $i_{n-1}(v) = d_n'(v')$ und $0 = \partial_n(x'') = [v]$. Daher gibt es $a \in C_n$ mit $d_n(a) = v$. Es folgt

$$d'_n(v'-i_n(a)) = i_{n-1}(v) - i_{n-1}(d_n(a)) = 0$$

Es gilt nun
$$(p_n)_*[v'-i_n(a)] = [p_n(v')-p_n(i_n(a))] = [p_n(v')] = x''$$
.

 $\overline{\mathrm{Im}\,\partial_n=\ker(i_{n-1})_*}$: Für " \subseteq " sei $x\in\mathrm{Im}\,\partial_n$. Dann gibt es wieder $v'\in C_n'$ und $v\in C_{n-1}$ mit $d_n''(p_n(v'))=0,$ $d_n'(v')=i_{n-1}(v)$ und x=[v]. Dann gilt

$$(i_{n-1})_*(x) = (i_{n-1})_*[v] = [i_{n-1}(v)] = [d'_n(v')] = 0$$

Sei nun umgekehrt $x\in \ker(i_{n-1})_*$ und $v\in C_{n-1}$ mit $d_{n-1}(v)=0$ und x=[v]. Da nun $(i_{n-1})_*(x)=[i_{n-1}(v)]$ und $x\in \ker(i_{n-1})_*$ ist, gibt es $v'\in C_n'$ mit $d_n'(v')=i_{n-1}(v)$. Es gilt nun

$$d_n''(p_n(v')) = p_{n-1}(d_n'(v')) = p_{n-1}(i_{n-1}(v)) = 0$$

Daraus folgt $\partial_n[p_n(v')] = x$.

8.13 Beweis von Satz 8.8

Für jedes Paar (X,A) ist die Folge der singulären Kettenkomplexe

$$\left(C_*(A;R),\partial_*^A\right) \xrightarrow{C_*(i;R)} \left(C_*(X;R),\partial_*^X\right) \xrightarrow{C_*(j;R)} \left(C_*(X,A;R),\partial_*^{(X,A)}\right)$$

kurz exakt. Das Schlangenlemma 8.12 produziert $\partial_n\colon H_n(X,A;R)\to H_{n-1}(A;R)$ und die lange exakte Sequenz [*]. Es bleibt zu zeigen, dass die Randabbildungen aus dem Schlangenlemma wie behauptet eine natürliche Transformation definieren: Sei $(f,f|_A)\colon (X,A)\to (Y,B)$ eine Abbildung von Paaren. Zu zeigen ist, dass

$$H_n(X, A; R) \xrightarrow{\partial_n} H_{n-1}(A; R)$$

$$\downarrow^{(f, f|_A)_*} \qquad \downarrow^{(f|_A)_*}$$

$$H_n(Y, B; R) \xrightarrow{\partial_n} H_{n-1}(B; R)$$

kommutiert. Sei $x'' \in H_n(X,A;R)$. Sei $v' \in C_n(X;R)$ mit $\partial_n^X(v') \in C_n(A;R)$ und $[v' + C_n(A;R)] = x''$. Dann ist $\partial_n(x'') = \left[\partial_n^X(v')\right] \in H_{n-1}(A;R)$. Dann ist

$$(f, f|_A)_*(x'') = (f, f|_A)_*[v' + C_n(A; R)] = [f_*(v') + C_n(B; R)] \in H_n(Y, B; R)$$

Es ist
$$\partial_n^Y ig(f_*(v')ig) = (f|_A)_* \Big(\underbrace{\partial_n^X(v')}_{\in C_n(A;R)}\Big) \in C_n(B;R)$$
. Also

$$\partial_n^Y \left(\left(f, f|_A \right)_* (x'') \right) = \left[\partial_n^Y \left(f_*(v') \right) \right] = \left[f_* \circ \partial_n^X (v') \right] = f_* \circ \partial_n (x'')$$

8.14 Bemerkung

Für eine Abbildung $(f, f|_A)$: $(X, A) \to (Y, B)$ erhalten wir ein kommutierendes Diagramm:

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A;R) \xrightarrow{i_*^A} H_n(X;R) \xrightarrow{j_*^X} H_n(X,A;R) \xrightarrow{\partial_n} H_{n-1}(A;R) \xrightarrow{} \cdots$$

$$\downarrow (f|_A)_* \qquad \qquad \downarrow f_* \qquad \qquad \downarrow (f,f|_A)_* \qquad \qquad \downarrow (f|_A)_* \qquad \qquad \downarrow (f|_A)$$

30

8.15 Fünfer-Lemma

Seien die Zeilen in folgendem kommutativen Diagramm von R-Moduln exakt.

Sind f_4, f_3, f_1 und f_0 Isomorphismen, so ist auch f_2 ein Isomorphismus.

Beweis

Injektivität: Sei $a_2 \in A_2$ mit $f_2(a_2) = 0$. Wir erhalten

$$f_1(\alpha_2(a_2)) = \beta_2(f_2(a_2)) = \beta_2(0) = 0.$$

Da f_1 ein Isomorphismus ist, folgt $\alpha_2(a_2)=0$. Damit ist $a_2\in\ker\alpha_2=\operatorname{Im}\alpha_3$, also existiert $a_3\in A_3$ mit $\alpha_3(a_3)=a_2$. Es gilt

$$\beta_3(f_3(a_3)) = f_2(\alpha_3(a_3)) = f_2(a_2) = 0$$

Also ist $f_3(a_3) \in \ker \beta_3 = \operatorname{Im} \beta_4$. Da f_4 Isomorphismus ist, gibt es $a_4 \in A_4$ mit $\beta_4(f_4(a_4)) = f_3(a_3)$. Nun gilt

$$f_3(\alpha_4(a_4) - a_3) = f_3(\alpha_4(a_4)) - f_3(a_3) = \beta_4(f_4(a_4)) - f_3(a_3) = f_3(a_3) - f_3(a_3) = 0$$

Da f_3 ein Isomorphismus ist, folgt nun $\alpha_4(a_4)=a_3$. Nun ist

$$a_2 = \alpha_3(\alpha_3) = \alpha_3(\alpha_4(a_4)) = \underbrace{\alpha_3 \circ \alpha_4}_{=0}(a_4) = 0$$

Surjektivität: Sei $b_2 \in B_2$. Fall 1: $\beta_2(b_2) = 0$. Da $\operatorname{Im} \beta_3 = \ker \beta_2$ und f_3 Isomorphismus, existiert $a_3 \in A_3$ mit $\beta_3 \left(f_3(a_3) \right) = b_2$. Also ist $b_2 = \beta_3 \left(f_3(a_3) \right) = f_2 \left(\alpha_3(a_3) \right) \in \operatorname{Im} f_2$.

Ist b_2 beliebig, so genügt es zu zeigen: Es existiert ein $a_2 \in A_2$ mit $\beta_2(b_2 - f_2(a_2)) = 0$. f_1 ist ein Isomorphismus, also existiert ein $a_1 \in A_1$ mit $f_1(a_1) = \beta_2(b_2)$. Dann folgt

$$f_0(\alpha_1(a_1)) = \beta_1(f_1(a_1)) = \beta_1(\beta_2(b_2)) = \underbrace{\beta_1 \circ \beta_2}_{=0}(b_2) = 0$$

Da f_0 ein Isomorphismus ist, folgt $\alpha_1(a_1)=0$. Da $\ker \alpha_1=\operatorname{Im}\alpha_2$, folgt $\alpha_2(a_2)=a_1$. Es gilt nun

$$\beta_2(b_2 - f_2(a_2)) = \beta_2(b_2) - \beta_2(f_2(a_2)) = \beta_2(b_2) - f_1(\alpha_2(a_2))$$
$$= \beta_2(b_2) - f_1(a_1) = \beta_2(b_2) - \beta_2(b_2) = 0 \qquad \Box$$

8.16 Lemma ("2 von 3")

Sei $f : (X, A) \rightarrow (Y, B)$ eine Abbildung von Paaren. Seien von den drei Abbildungen

- (i) $(f|_A)_*: H_n(A;R) \to H_n(B;R)$
- (ii) $f_*: H_n(X;R) \to H_n(Y;R)$
- (iii) $(f, f|_A)_* : H_n(X, A; R) \to H_n(Y, B; R)$

zwei für jeweils alle n Isomorphismen. Dann ist auch die dritte für alle n ein Isomorphismus.

Beweis

Da die Randabbildung in der Paarfolge eine natürliche Transformation ist, erhalten wir ein kommutatives Leiterdiagramm:

"R"aus Platzgründen weggelassen

$$H_{n+1}(A) \longrightarrow H_{n+1}(X) \longrightarrow H_{n+1}(X,A) \xrightarrow{\partial_{n+1}} H_n(A) \longrightarrow H_n(X) \longrightarrow H_n(X,A) \xrightarrow{\partial_n} H_{n-1}(A)$$

$$\downarrow (f|_A)_* \qquad \downarrow f_* \qquad \downarrow (f,f|_A)_* \qquad \downarrow (f|_A)_* \qquad \downarrow f_* \qquad \downarrow (f,f|_A)_* \qquad \downarrow (f|_A)_*$$

$$H_{n+1}(B) \longrightarrow H_{n+1}(Y) \longrightarrow H_{n+1}(Y,B) \xrightarrow{\partial_{n+1}} H_n(B) \longrightarrow H_n(Y) \longrightarrow H_n(Y,B) \xrightarrow{\partial_n} H_{n-1}(B)$$

Da die Zeilen lang exakt sind, folgt die Behauptung aus dem Fünfer-Lemma.

32

9 Ausschneidung und die Mayer-Vietoris Folge

9.1 Satz

Sei (X,A) ein Paar und $L\subseteq A$, sodass der Abschluss \overline{L} von im Inneren \mathring{A} von A liegt. Dann induziert die Inklusion $(X \setminus L, A \setminus L) \xrightarrow{j} (X, A)$ einen Isomorphismus $j_* : H_n(X \setminus L, A \setminus L; R) \to H_n(X, A; R)$.

Beweis

Siehe Kapitel 13.

9.2 Satz (Mayer-Vietoris-Folge)

Seien $A,B\subseteq X$ offen und $X=A\cup B$. Seien $i_A\colon A\hookrightarrow X$, $i_B\colon B\hookrightarrow X$, $j_A\colon A\cap B\hookrightarrow A$ und $j_B\colon A\cap B\hookrightarrow B$ die Inklusionen. Dann gibt es eine Randabbildung $\partial_n=\partial_n^{\scriptscriptstyle X=A\cup B}\colon H_n(X;R)\to H_{n-1}(A\cap B;R)$,

Für simpliziale Homologie gibt es auch eine Mayer-Vietoris-Folge, siehe Aufgabe 4 von

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A \cap B) \xrightarrow{\binom{(j_A)_*}{(j_B)_*}} \bigoplus_{H_n(B)}^{H_n(A)} \bigoplus_{H_n(B)}^{(i_A)_* - (i_B)_*} H_n(X) \xrightarrow{\partial_n} H_{n-1}(A \cap B) \longrightarrow \cdots$$

"R"aus Platzgründen weggelassen

eine lange exakte Folge ist. Die Randabbildung ist dabei eine natürlicher Transformation: Seien $A', B' \subseteq$ X' offen mit $X' = A' \cup B'$ und sei $f \colon X \to X'$ mit $f(A) \subseteq A'$ und $f(B) \subseteq B'$. Dann kommutiert

$$H_n(X;R) \xrightarrow{\partial_n^{X=A\cup B}} H_{n-1}(A\cap B;R)$$

$$\downarrow^{f_*} \qquad \qquad \downarrow^{(f|_{A\cap B})_*}$$

$$H_n(X';R) \xrightarrow{\partial_n^{X'=A'\cup B'}} H_n(A'\cap B';R)$$

Beweis

Sei $L:=X\setminus B$. Dann ist L abgeschlossen und $L\subseteq A=\mathring{A}$. Wir erhalten daher einen Ausschneideisomorphismus

$$H_n(B, A \cap B; R) = H_n(X \setminus L, A \setminus L; R) \xrightarrow{\cong} H_n(X, A; R)$$

Betrachte nun das folgende kommutative Leiterdiagramm, das zwei Paarfolgen vergleicht:

$$\cdots \longrightarrow H_{n+1}(B,A\cap B) \xrightarrow{\partial_{n+1}^{B,A\cap B}} H_n(A\cap B) \xrightarrow{(j_B)_*} H_n(B) \xrightarrow{(l_B)_*} H_n(B,A\cap B) \xrightarrow{\partial_n^{B,A\cap B}} H_{n-1}(A\cap B) \longrightarrow \cdots$$

$$\cong \left| (i_B,j_A)_* \right| \qquad \qquad \downarrow (j_A)_* \qquad \qquad \downarrow (i_B)_* \qquad \qquad \downarrow (i_B)_* \qquad \qquad \downarrow (i_B,j_A)_* \qquad \qquad \downarrow (j_A)_* \qquad \qquad \qquad \text{"R"aus Platzgr"unden weggelassen}$$

$$\cdots \longrightarrow H_{n+1}(X,A) \xrightarrow{\partial_{n+1}^{X,A}} H_n(A) \xrightarrow{(i_A)_*} H_n(X) \xrightarrow{(l_X)_*} H_n(X,A) \xrightarrow{\partial_n^{X,A}} H_{n-1}(A) \longrightarrow \cdots$$

dabei sind $l_B\colon (B,\emptyset) \to (B,A\cap B)$ und $l_X\colon (X,\emptyset) \to (X,A)$ die Inklusionen von Paaren. Definiere nun $\partial_n: H_n(X;R) \to H_{n-1}(A \cap B;R)$ durch

$$\partial_n := \partial_n^{B,A\cap B} \circ (i_B, j_A)_*^{-1} \circ (l_X)_*$$

Die Natürlichkeit von $\partial_n^{B,A\cap B}$ impliziert die Natürlichkeit von ∂_n (siehe auch 8.8). Wir müssen noch die Exaktheit zeigen:

• Zu zeigen:
$$\operatorname{Im} \binom{(j_A)_*}{(j_B)_*} = \ker ((i_A)_* - (i_B)_*)$$
:

"
$$\supseteq$$
": Sei $(a,b) \in \ker((i_A)_* - (i_B)_*)$. Also $(i_A)_*(a) = (i_B)_*(b)$. Es ist

$$(i_B, j_A)_* ((l_B)_*(b)) = (l_X)_* \circ (i_B)_*(b) = \underbrace{(l_X)_* \circ (i_A)_*}_{=0} (a) = 0$$

 $(i_B,j_A)_*$ ist ein Isomorphismus, also $(l_B)_*(b)=0$. Es gilt $\ker(l_B)_*=\operatorname{Im}(j_B)_*$, also folgt $\exists x\in H_n(A\cap B;R): (j_B)_*(x)=b$. Dann gilt

$$(i_A)_*(a - (j_A)_*(x)) = (i_A)_*(a) - (i_B)_*((j_B)_*(x)) = (i_A)_*(a) - (i_B)_*(b) = 0$$

 $\text{Mit } \ker(i_A)_* = \operatorname{Im} \partial_{n+1}^{x,A} \text{ und } (i_B,j_A)_* \text{ ist Isomorphismus, folgt } \exists y \in H_{n+1}(B,A \cap B;R) \text{ mit } \exists y \in H_{n+1}(B,$

$$\partial_{n+1}^{X,A} \circ (i_B, j_A)_*(y) = a - (j_A)_*(x)$$

Es folgt für $z:=x+\partial_{n+1}^{\scriptscriptstyle B,A\cap B}(y)$ nun $(j_B)_*(z)=(j_B)_*(x)=b$ und

$$(j_A)_*(z) = (j_A)_*(x) + (j_A)_* \left(\partial_{n+1}^{B,A \cap B}(y)\right) = (j_A)_*(x) + \partial_{n+1}^{X,A} \circ (i_B, j_A)_*(y)$$
$$= (j_A)_*(x) + a - (j_A)_*(x) = a$$

" \subseteq ": Sei $x \in H_n(A \cap B; R)$. Dann gilt

$$((i_A)_* - (i_B)_*) \binom{(j_A)_*}{(j_B)_*} (x) = (i_A)_* \circ (j_A)_* (x) - (i_B)_* \circ (j_B)_* (x)$$
$$= (i_A)_* \circ (j_A)_* (x) - (i_A)_* \circ (j_A)_* (x) = 0$$

da $i_A \circ j_A = i_B \circ j_B$.

• Wir zeigen nun $\operatorname{Im}((i_A)_* - (i_B)_*) = \ker \partial_n$:

" \supseteq ": Sei $v \in \ker \partial_n$, also $\partial_n^{B,A\cap B} \circ (i_B,j_A)^{-1}_* \circ (l_X)_*(v) = 0$. Da $\ker \partial_n^{B,A\cap B} = \operatorname{Im}(l_B)_*$, gibt es ein $b \in H_n(B;R)$ mit

$$(l_B)_*(b) = (i_B, j_A)_*^{-1} \circ (l_X)_*(v) \iff (i_B, j_A)_* \circ (l_B)_*(b) = (l_X)_*(v)$$

Nun ist

$$(l_X)_*(v-(i_B)_*b) = (l_X)_*(v)-(l_X)_*\circ (i_B)_*(b) = (l_X)_*(v)-(i_B,j_A)_*\circ (l_B)_*(b) = 0$$

Da $\ker(l_X)_*=\operatorname{Im}(i_A)_*$ ist, gibt es ein $a\in H_n(A;R)$ mit $(i_A)_*(a)=v-(i_B)_*(b)$ und somit ist $\big((i_A)_*-(i_B)_*\big)(a,-b)=v.$

" \subseteq ": Sei $\left(\begin{smallmatrix} a \\ b \end{smallmatrix} \right) \in \bigoplus_{H_n(B)}^{H_n(A)}$. Dann gilt

$$\partial_{n} ((i_{A})_{*} - (i_{B})_{*}) \binom{a}{b} = \partial_{n}^{B,A \cap B} \circ (i_{B}, j_{A})_{*}^{-1} \circ (l_{X})_{*} ((i_{A})_{*}(a) - (i_{B})_{*}(b))$$

$$= \partial_{n}^{B,A \cap B} \circ (i_{B}, j_{A})_{*}^{-1} \circ (\underline{l_{X}})_{*} \circ (i_{A})_{*}(a)$$

$$- \underbrace{\partial_{n}^{B,A \cap B} \circ (l_{B})_{*}}_{=0} (b) = 0$$

• Noch zu zeigen: $\operatorname{Im} \partial_n = \ker \left(\begin{smallmatrix} (j_A)_* \\ (j_B)_* \end{smallmatrix} \right)$.

"
$$\supseteq$$
": Sei $x \in \ker((j_A)_* \oplus (j_B)_*)$, also $(j_A)_*(x) = 0 = (j_B)_*(x)$. Da $\operatorname{Im} \partial_n^{B,A\cap B} = \ker(j_B)_*$ ist, gibt es $v \in H_n(B,A\cap B;R)$ mit $\partial_n^{B,A\cap B}(v) = x$. Nun ist
$$\partial_n^{X,A} \circ (i_B,J_A)_*(v) = (j_A)_* \left(\partial_n^{B,A\cap B}(v)\right) = (j_A)_*(x) = 0$$
 Da $\ker \partial_n^{X,A} = \operatorname{Im}(l_X)_*$, finden wir $w \in H_n(X;R)$ mit $(l_X)_*(w) = (i_B,j_A)_*(v)$. Also folgt
$$\partial_n(w) = \partial_n^{B,A\cap B} \circ (i_B,j_A)_*^{-1} \circ (l_X)_*(w) = \partial_n^{B,A\cap B} \circ (i_B,j_A)_*^{-1} \circ (i_B,j_A)_*(v) = \partial_n^{B,A\cap B}(v) = x$$
 " \subseteq ": Für $v \in H_n(X;R)$ ist
$$((j_A)_* \oplus (j_B)_*) \circ \partial_n(v) = \left((j_A)_* \circ \partial_n^{B,A\cap B} \circ (i_B,j_A)_*^{-1} \circ (l_X)_*(v), \underbrace{(j_B)_* \circ \partial_n^{B,A\cap B}}_{=0} \circ (i_B,j_A)_*^{-1} \circ (l_X)_*(v)\right) = \left(\underbrace{\partial_n^{X,A}}_{=0} \circ (l_X)_*(v), 0\right) = (0,0)$$

9.3 Bemerkung

Für die Mayer-Vietoris-Folge müssen A und B nicht notwendig offen sein. Es genügt, dass die Inklusion $(B,A\cap B)\hookrightarrow (X,A)$ einen Isomorphismus $H_*(B,A\cap B;R)\to H_*(X,A;R)$ induziert.

9.4 Satz

Für die Homologie der n-Sphäre S^n gilt

$$H_k(S^n;R)\cong \begin{cases} R\oplus R, & \text{falls } k=n=0\\ R, & \text{falls } k=0, n\neq 0\\ R, & \text{falls } k=n\neq 0\\ 0, & \text{sonst} \end{cases}$$

9.5 Definition

Sei X ein nichtleerer topologischer Raum. Sei $p\colon X\to \{\mathrm{pt}\}$ die Projektion auf den Ein-Punkt-Raum. Die **reduzierte singuläre Homologie** von X ist definiert durch

$$\tilde{H}_k(X;R) := \ker \Big(p_* \colon H_k(X;R) \to H_k(\{\text{pt}\};R) \Big)$$

Bemerkung

• Es gilt $\tilde{H}_k(X;R)=H_k(X;R)$ für k>0, da $H_k(\{\mathrm{pt}\};R)=0$ ist für k>0 (siehe 5.9) und somit p_* die Nullabbildung ist.

Weiter gilt $H_0(X;R) = R \oplus \tilde{H}_0(X;R)$, da $H_0(\{\text{pt}\};R) = R$ frei ist.

- Es ist nicht schwer die Eigenschaften von singulärer Homologie auf die reduzierte singuläre Homologie zu übertragen. Insbesondere ist \tilde{H}_* homotopieinvariant und es gibt eine Mayer-Vietoris-Folge.
- Es ist $\tilde{H}_k(\{\text{pt}\})=0$ und für jeden kontrahierbaren Raum X ist somit $\tilde{H}_n(X;R)=0$ für alle n.

9.6 Bemerkung

In reduzierter singulärer Homologie wird [#] zu

9.7 Beweis von [##]

Wir berechnen die reduzierte Homologie der Sphäre per Induktion nach n:

Induktionsanfang: n = 0: Es gilt

$$H_k(S^0;R) \stackrel{\varphi}{\cong} H_k\big(\{\mathrm{pt}\};R\big) \oplus H_k\big(\{\mathrm{pt}\};R\big) = \begin{cases} R \oplus R, & \text{ falls } k = 0 \\ 0, & \text{ sonst} \end{cases}$$

Seien $i_-\colon \{\mathrm{pt}\} \hookrightarrow S^0$ und $i_+\colon \{\mathrm{pt}\} \hookrightarrow S^0$ die Inklusionen mit $\mathrm{Im}\, i_\pm = \{\pm 1\}$. Der Isomorphismus φ ist gegeben durch $\varphi = (i_-)_* + (i_+)_*$. Für $(a,b) \in H_k(\{-1\};R) \oplus H_k(\{+1\};R)$ gilt dann

$$p_*(i_-(a) + i_+(b)) = (p \circ i_-)_*(a) + (p \circ i_+)(b) = \mathrm{id}_*(a) + \mathrm{id}_*(b) = a + b$$

Also ist $\ker p_* = \big\{(a,-a) \, \big| \, a \in H_k\big(\{\mathrm{pt}\};R\big)\big\}$ und damit folgt

$$\tilde{H}_k(S^0;R) = \begin{cases} 0, & \text{falls } k \neq 0 \\ R, & \text{falls } k = 0 \end{cases}$$

Induktionsschritt: $n-1\mapsto n$: Sei $D^n_+=S^n\setminus\{(1,0,\dots,0)\}$ und $D^n_-=S^n\setminus\{-1,0,\dots,0\}$. Dann sind D^n_+ und D^n_- offene Teilmengen von S^n mit $S^n=D^n_+\cup D^n_-$. Weiter gilt $D^n_+\simeq\{\mathrm{pt}\}$ und $D^n_-\simeq\{\mathrm{pt}\}$. Für den Schnitt der beiden Mengen erhalten wir

$$D_{+}^{n} \cap D_{-}^{n} = \left\{ x = (x_{0}, \dots, x_{n}) \in S^{n} \, \middle| \, x_{0} \notin \{\pm 1\} \right\} \simeq S^{n-1} = \left\{ x = (0, x_{1}, \dots, x_{n}) \in S^{n} \right\}.$$

Betrachte nun die Mayer-Vietoris-Folge zu $S^n=D^n_+\cup D^n_-$:

$$\text{Es folgt } \tilde{H}_k(S^n;R) \cong \tilde{H}_{k-1}(S^{n-1};R) \stackrel{\text{I.A.}}{=} \begin{cases} R, & \text{falls } k=n \\ 0, & \text{sonst} \end{cases} \qquad \square$$

"R"aus Platzgründen weggelassen

10 Anwendungen

10.1 Satz (Invarianz der Dimension)

Sind \mathbb{R}^n und \mathbb{R}^m homöomorph, so gilt n=m.

Beweis

Sei $h\colon \mathbb{R}^n \to \mathbb{R}^m$ ein Homöomorphismus. Sei $x_0 \in \mathbb{R}^n$ beliebig. Dann erhalten wir auch einen Homöomorphismus $k := h|_{\mathbb{R}^n \setminus \{x_0\}} \colon \mathbb{R}^n \setminus \{x_0\} \to \mathbb{R}^m \setminus \{h(x_0)\}$. Nun ist $\mathbb{R}^n \setminus \{x_0\}$ homotopieäquivalent zu S^{n-1} und $\mathbb{R}^m \setminus \{h(x_0)\}$ ist homotopieäquivalent zu S^{m-1} . Da k ein Homöomorphismus ist, ist k_* ein Isomorphismus. Wir erhalten

$$H_*(S^{n-1}) \cong H_*(\mathbb{R}^n \setminus \{x_0\}) \cong H_*(\mathbb{R}^m \setminus \{h(x_0)\}) \cong H_*(S^{m-1})$$

Es ist aber $H_*(S^{n-1}) \cong H_*(S^{m-1})$ genau dann, wenn n=m.

10.2 Fixpunktsatz von Brouwer

Jede stetige Abbildung $f \colon D^n \to D^n$ besitzt einen Fixpunkt.

Beweis

Durch Widerspruch: Angenommen es gibt $f\colon D^n\to D^n$ ohne Fixpunkt. Aus dem letzten Semester wissen wir, dass es dann eine stetige Abbildung $F\colon D^n\to S^{n-1}$ gibt mit $F|_{S^{n-1}}=\mathrm{id}_{S^{n-1}}$. In Homologie erhalten wir folgendes kommutatives Diagramm

 $E: n \geqslant 2, n = 1$ haben wir bereits im letzen Semester hewiesen

wobei $i: S^{n-1} \hookrightarrow D^n$ die Inklusion ist. Da $F \circ i = \operatorname{id}_{S^{n-1}}$ ist, gilt $F_* \circ i_* = \operatorname{id}_{H_{n-1}(S^{n-1})}$. $\not\downarrow$

Der Abbildungsgrad

10.3 Definition

Sei $f\colon S^n\to S^n$ eine stetige Abbildung. Da $\tilde{H}_n(S^n)\cong\mathbb{Z}$ ist, gibt es eine ganze Zahl d(f), so dass reduzierte Homologiel $f_*(x)=d(f)\cdot x$ für alle $x\in \tilde{H}_n(S^n)$. Diese Zahl heißt der **Abbildungsgrad** von f.

10.4 Proposition

Für den Abbildungsgrad d gilt

- a) $d(id_{S^n}) = 1$.
- b) Sind f und g homotop, so gilt d(f) = d(g).
- c) $d(f \circ g) = d(f) \cdot d(g)$.

10 Anwendungen 37

Beweis

- a) Es ist $(\mathrm{id}_{S^n})_*(x) = \mathrm{id}_{\mathbb{Z}}(x) = x$.
- b) Sind f und g homotop, so gilt $f_* = g_*$ und damit folgt d(f) = d(g).

c) Für alle
$$x \in \tilde{H}_n(S^n)$$
 gilt: $d(f \circ g) \cdot x = (f \circ g)_*(x) = f_* \circ g_*(x) = d(f) \cdot d(g) \cdot x$. Da $\tilde{H}_n(S^n) \cong \mathbb{Z}$ folgt $d(f \circ g) = d(f) \cdot d(g)$.

10.5 Beispiel

Sei $i \in \{0, ..., n\}$ und $R_i : S^n \to S^n$ die Spiegelung an der x_i -Achse, also

$$R_i(x_0,\ldots,x_n)=(x_0,\ldots,-x_i,\ldots,x_n)$$

Dann ist $d(R_i) = -1$.

Beweis

Sei $f\colon S^n\to S^n$ der Homöomorphismus, der die 0-te und die i-te Koordinate vertauscht, also gilt $f(x_0,\dots,x_n)=(x_i,\dots,x_0,\dots,x_m)$. Dann ist $R_i=f\circ R_0\circ f$. Da f ein Homöomorphismus ist, ist f_* ein Isomorphismus und daher ist d(f) invertierbar, also $d(f)\in\{\pm 1\}$. Mit $d(R_i)=d(f)\cdot d(R_0)\cdot d(f)$ folgt $d(R_0)=d(R_i)$. Es genügt also R_0 zu betrachten. Wir zeigen $d(R_0)=-1$ durch Induktion nach n.

Induktionsanfang: Sei $i_-: \{ \mathrm{pt} \} \to S^0$ die Abbildung mit $\mathrm{Im}\, i_- = \{ -1 \}$ und $i_+: \{ \mathrm{pt} \} \to S^0$ die Abbildung mit $\mathrm{Im}\, i_+ = \{ +1 \}$. Dann ist

$$\begin{split} H_0(S^0) &= \left\{ (i_-)_*(a) + (i_+)_*(b) \, \middle| \, a,b \in H_0(\{\text{pt}\}) \right\} \qquad \text{unc} \\ \tilde{H}_0(S^0) &= \left\{ (i_-)_*(a) - (i_+)_*(a) \, \middle| \, a \in H_0(\{\text{pt}\}) \right\} \end{split}$$

Nun ist

$$(R_0)_* \Big((i_-)_*(a) - (i_+)_*(a) \Big) = (R_0)_*(i_-)_*(a) - (R_0)_*(i_+)_*(a) = (R_0 \circ i_-)_*(a) - (R_0 \circ i_+)_*(a)$$

$$= (i_+)_*(a) - (i_-)_*(a)$$

$$= -((i_-)_*(a) - (i_+)_*(a))$$

Also folgt $d(R_0)=-1$, da wir den Abbildungsgrad für reduzierte Homologie definiert hatten.

Induktionsschritt: Wir definieren zwei offene Teilmengen von S^n wie folgt

$$D_{+}^{n} = \{(x_0, \dots, x_n) \in S^n \mid x_n \neq -1\}$$

$$D_{-}^{n} = \{(x_0, \dots, x_m) \in S^n \mid x_n \neq +1\}$$

Wir wissen schon aus 9.7, dass die Randabbildung aus der dazugehörigen Mayer-Vietoris-Folge $\tilde{H}_n(S^n) \xrightarrow{\partial_n} \tilde{H}_{n-1}(D^n_+ \cap D^n_-)$ ein Isomorphismus ist. Da die Randabbildung natürlich ist, erhalten wir ein kommutatives Diagramm

$$\begin{split} \tilde{H}_n(S^n) & \xrightarrow{\quad \partial_n \quad } \tilde{H}_{n-1}(D^n_- \cap D^n_+) \xleftarrow{\quad \cong \quad } \tilde{H}_{n-1}(S^{n-1}) \\ \downarrow^{(R_0)_*} & \downarrow^{\left(R_0|_{D^n_- \cap D^n_+}\right)_*} & \downarrow^{\left(R_0|_{S^{n-1}}\right)_*} \\ \tilde{H}_n(S^n) & \xrightarrow{\quad \cong \quad } \tilde{H}_{n-1}(D^n_- \cap D^n_+) \xleftarrow{\quad \cong \quad } \tilde{H}_{n-1}(S^{n-1}) \end{split}$$

Unter $H_0(S_0) \cong \mathbb{Z} \otimes \mathbb{Z}$ induziert R_0 $(x,y) \mapsto (y,x)$

dabei ist $i\colon S^{n-1}\to D^n_-\cap D^n_+$ die Homotopieäquivalenz $i(x_0,\dots,x_{n-1})=(x_0,\dots,x_{n-1},0)$. Nach Induktionsannahme ist $\left(R_0\big|_{S^{n-1}}\right)_*(y)=-y$ für alle $y\in \tilde{H}_{n-1}(S^{n-1})$. Für $x\in \tilde{H}_n(S^n)$ folgt dann

$$(R_0)_*(x) = (\partial_n)^{-1} \circ (i_*) \circ (R_0|_{S^{n-1}})_* ((i_*^{-1} \circ \partial_n)(x))$$

= $(\partial_n)^{-1} \circ (i_*) (-i_*^{-1}(\partial_n(x)))$
= $-\partial_n^{-1} \circ (i_*) \circ (i_*)^{-1} \circ \partial_n(x) = -x$

Also gilt für den Abbildungsgrad der Spiegelung $d(R_0) = -1$.

10.6 Beispiel

Der Grad der Punktspiegelung $R: S^n \to S^n, x \mapsto -x$ ist $d(R) = (-1)^{n+1}$.

Reweis

$$d(R) = d(R_0 \circ R_1 \circ \dots \circ R_n) = d(R_0) \cdot \dots \cdot d(R_n) = (-1)^{n+1}.$$

10.7 Erinnerung

Sei M eine C^{∞} -Mannigfaltigkeit. Ein **Vektorfeld** auf M ist eine stetige Abbildung $v\colon M\to TM$ mit $v(x)\in T_xM$ für alle $x\in M$. Für $M=S^n$ entspricht ein Vektorfeld genau einer stetigen Abbildung $v\colon S^n\to \mathbb{R}^{n+1}$ mit $\langle v(x)\,|\, x\rangle=0$ für alle $x\in S^n$.

Abbildung 3: Ein nirgends verschwindendes Vektorfeld auf S^1

10.8 Satz

Es gibt genau dann ein Vektorfeld ohne Nullstellen auf S^n , wenn n ungerade ist.

Beweis

Ist n ungerade, so ist $S^n\subseteq\mathbb{R}^{n+1}=\mathbb{C}^k$ mit $k=\frac{n+1}{2}$. Punkte in S^n sind dann genau k-Tupel $z=(z_1,\ldots,z_k)$ mit $|z_1|^2+\ldots+|z_k|^2=1$. Ein Vektorfeld entspricht dann einer stetigen Abbildung $v\colon S^n\to\mathbb{C}^k$, so dass für das kanonische komplexe Skalarprodukt $\langle\cdot\,|\cdot\rangle_\mathbb{C}$ auf \mathbb{C}^k gilt

$$\langle z \, | \, v(z) \rangle_{\mathbb{C}} \in i\mathbb{R}$$

einfach nachzurechnen

Definiere nun $v\colon S^n\to\mathbb{C}^k$ durch v(z):=iz. Dann $iz\neq 0$ für alle $z\in S^n$ und $\langle z\,|\,iz\rangle=-i\|z\|_2\in i\mathbb{R}$. Sei umgekehrt $v\colon S^n\to\mathbb{R}^{n+1}$ ein Vektorfeld ohne Nullstellen. Zu zeigen: d(R)=1, denn dann folgt die Behauptung, da $d(R)=(-1)^{n+1}$. Zeige dazu: R ist homotop zu id. Seien $H,K\colon S^n\times [0,1]\to S^n$ definiert durch

$$H(x,t) := \frac{tx + (1-t)v(x)}{\|tx + (1-t)v(x)\|} \qquad \text{bzw.} \qquad K(x,t) := \frac{-tx + (1-t)v(x)}{\|-tx + (1-t)v(x)\|}$$

10 Anwendungen 39

für orthogonale Vektoren gilt der Satz von Pythagoras Da $\langle v(x) | x \rangle = 0$ und $v(x) \neq 0$ folgt für alle $x \in S^n$, folgt

$$||tx + (1 - t)v(x)||^2 = ||tx||^2 + ||(1 - t)v(x)||^2 \neq 0$$
$$||-tx + (1 - t)v(x)||^2 = ||-tx||^2 + ||(1 - t)v(x)||^2 \neq 0$$

Also sind H und K wohldefiniert. H ist Homotopie zwischen id und $x\mapsto \frac{v(x)}{\|v(x)\|}$ und K ist Homotopie zwischen $-\mathrm{id}=R$ und $x\mapsto \frac{v(x)}{\|v(x)\|}$.

10.9 Satz (Jordanscher Kurvensatz)

Sei $f \colon S^1 \to \mathbb{R}^2$ eine stetige, injektive Abbildung. Dann hat $\mathbb{R}^2 \setminus f(S^1)$ genau zwei Wegzusammenhangskomponenten. Eine davon ist beschränkt, die andere nicht.

Beweis (mit 10.10)

Wir können f auch als injektive Abbildung $f\colon S^1\to\mathbb{R}^2\subseteq S^2=\mathbb{R}^2\cup\{\infty\}$ auffassen. Nun ist $\tilde{H}_0\big(S^2\setminus f(S^1)\big)=\mathbb{Z}$ nach Satz 10.10 b). Also $H_0\big(S^2\setminus f(S^1)\big)=\mathbb{Z}\oplus\mathbb{Z}$. Daher besteht $S^2\setminus f(S^1)$ aus zwei Wegzusammenhangskomponenten U_1 und U_2 . Sei ohne Einschränkungen $\infty\in U_2$. Dann ist $U_2\setminus\{\infty\}$ immer noch wegzusammenhängend: Seien $x,y\in U_2$, dann gibt es eine Umgebung V von $\infty\in S^2$ mit $V\setminus\{\infty\}\cong D^2\setminus\{0\}, x,y\not\in V$ und $f(S^1)\cap V=\emptyset$. Also sind U_1 und $U_2\setminus\{\infty\}$ die Wegzusammenhangskomponenten von $\mathbb{R}^2\setminus f(S^1)$. U_1 ist beschränkt und U_2 ist unbeschränkt.

10.10 Satz

- a) Sei $f \colon D^k \to S^n$ eine stetige, injektive Abbildung mit $0 \leqslant k < n$. Dann gilt $\tilde{H}_i \big(S^n \setminus f(D^k) \big) = 0$ für alle i.
- b) Sei $f \colon S^k \to S^n$ eine stetige, injektive Abbildung mit $0 \leqslant k < n$. Dann gilt

$$\tilde{H}_i\big(S^n\setminus f(S^k)\big) = \begin{cases} \mathbb{Z}, & \text{falls } i=n-k-1\\ 0, & \text{sonst} \end{cases}$$

10.11 Proposition

Seien $U_1 \subseteq U_2 \subseteq \ldots \subseteq X$ offen mit $X = \bigcup_{i=1}^{\infty} U_i$. Seien $i_{a,b} \colon U_a \hookrightarrow U_b$ für a < b und $i_a \colon U_a \hookrightarrow X$ die entsprechenden Inklusionen. Dann gilt

- (1) Für jedes $x \in H_k(X; R)$ gibt es a > 0 und $x_a \in H_k(U_a; R)$ mit $(i_a)_*(x_a) = x$.
- (2) Ist $x_a \in H_k(U_a; R)$ mit $(i_a)_*(x_a) = 0$, so gibt es b > a mit $(i_{a,b})_*(x_a) = 0$.

Bemerkung

Diese Proposition gilt genauso für reduzierte Homologie.

Beweis

Sei $\sigma\colon |\Delta^n|\to X$ ein singulärer Simplex in X. Dann ist $\left\{\sigma^{-1}(U_a)\right\}_{a\in\mathbb{N}}$ eine offene Überdeckung von $|\Delta^n|$. Da $|\Delta^n|$ kompakt ist, gibt es a mit $|\Delta^n|\subseteq\sigma^{-1}(U_a)$, also $\sigma(|\Delta^n|)\subseteq U_a$. Da Elemente von $C_n(X;R)$ endliche R-Linearkombinationen von singulären Simplizes sind, folgt

$$C_n(X;R) = \bigcup_a C_n(U_a;R).$$

Damit ergeben sich direkt (1) und (2).

10.12 Beweis von Satz 10.10

a) Durch Induktion nach k. Für k=0 ist $S^n\setminus f(D^0)$ homöomorph zu \mathbb{R}^n und die Behauptung folgt. Induktionsschritt $k\mapsto k+1$: Da D^{k+1} und $[0,1]^{k+1}$ homöomorph sind, können wir D^{k+1} durch $[0,1]^{k+1}$ ersetzen. Sei $x\in \tilde{H}_i(S^n\setminus f([0,1]^{k+1}))$. Es ist

$$S^n \setminus f\left(\left\{\frac{1}{2}\right\} \times [0,1]^k\right) = \underbrace{S^n \setminus f\left([0,\frac{1}{2}] \times [0,1]^k\right)}_{=:A} \cup \underbrace{S^n \setminus f\left(\left[\frac{1}{2},1\right] \times [0,1]^k\right)}_{=:B} = A \cup B$$

eine Vereinigung von offenen Mengen. Weiter ist

$$A \cap B = \left(S^n \setminus f([0, 1/2] \times [0, 1]^k)\right) \cap \left(S^n \setminus f([1/2, 1] \times [0, 1]^k)\right) = S^n \setminus f([0, 1]^{k+1})$$

Die zugehörige Mayer-Vietoris-Folge liefert nun einen Isomorphismus:

Angenommen $x \neq 0$. Dann ist das Bild von x in $\tilde{H}_i(A)$ ungleich Null oder in $\tilde{H}_i(B)$ ungleich Null. Indem wir dieses Argument iterieren, erhalten wir eine Folge von Intervallen

$$[0,1]\supseteq I_1\supseteq I_2\supseteq\dots\quad \text{sodass }\bigcap_a I_a=\{t\}$$

und das Bild von $x\in \tilde{H}_i\big(S^n\setminus f\big([0,1]^{k+1}\big)\big)$ unter der von der Inklusion $\iota_{0,a}\colon S^n\setminus f\big([0,1]^{k+1}\big)\to S^n\setminus f\big(I_a\times [0,1]^k\big)$ induzierten Abbildung $(\iota_{0,a})_*$ ungleich Null ist. Nun ist aber

$$\bigcup \left(S^n \setminus f(I_a \times [0,1]^k)\right) = S^n \setminus f(\{t\} \times [0,1]^k)$$

und wieder nach Induktionsannahme ist $\tilde{H}_iig(S^n\setminus fig(\{t\}\times[0,1]^kig)ig)=0$. Für die von der Inklusion $\iota_a\colon S^n\setminus fig(I_a\times[0,1]^kig)\to S^n\setminus fig(\{t\}\times[0,1]^kig)$ induzierte Abbildung gilt also $(\iota_a)_*(x)=0$. Nach Proposition 10.11(2) muss x dann aber schon für ein i in $\tilde{H}_iig(S^n\setminus fig(I_a\times[0,1]^kig)ig)$ trivial sein. $\not\subset f$

b) Durch Induktion nach k. Für k=0 ist $S^n\setminus f(S^0)\cong \mathbb{R}^n\setminus \{0\}$. Da $\mathbb{R}^n\setminus \{0\}\simeq S^{n-1}$ folgt für k=0 die Behauptung.

Induktionsschritt $k-1 \mapsto k$: Wir setzen

$$D_{+}^{k} := \{(x_0, \dots, x_k) \in S^k \mid x_k \ge 0\}$$

$$D_{-}^{k} := \{(x_0, \dots, x_k) \in S^k \mid x_k \le 0\}$$

Dann ist $D_{+}^{k} \cap D_{-}^{k} = \{(x_0, \dots, x_k) \in S^k \mid x_k = 0\} \cong S^{k-1}$. Wieder ist

$$S^n \setminus f \left(D^k_+ \cap D^k_- \right) = \left(S^n \setminus f(D^k_+) \right) \cup \left(S^n \setminus f(D^k_-) \right)$$

eine offene Vereinigung mit $\left(S^n\setminus f(D_+^k)\right)\cap (S^n\setminus f(D_-^k))=S^n\setminus f(S^k)$. Es ist $D_\pm^k\cong D^k$, also ist wegen a) ist die Randabbildung in der zugehörigen Mayer-Vietoris-Folge

$$\tilde{H}_i(S^n \setminus f(D^k_+ \cap D^k_-)) \xrightarrow{\partial_i} \tilde{H}_{i-1}(S^n \setminus f(S^k))$$

ein Isomorphismus. Die Behauptung folgt dann per Induktion.

10 Anwendungen 41

11 CW-Komplexe

11.1 Definition

Ein kommutatives Diagramm von topologischen Räumen der Form

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & X \\ \downarrow^g & & \downarrow_{\overline{g}} \\ Y & \stackrel{\overline{f}}{\longrightarrow} & Z \end{array}$$
 [#]

heißt ein **Pushout**, falls es folgende universelle Eigenschaft hat:

$$\forall \hat{f} \colon X \to \hat{Z}, \, \hat{g} \colon Y \to \hat{Z} \text{ mit } \hat{f} \circ f = \hat{g} \circ g \text{ gilt:}$$

$$\exists ! \varphi \colon Z \to \hat{Z} \text{ mit } \hat{f} = \varphi \circ \overline{g}, \hat{g} = \varphi \circ \overline{f}.$$

Wir sagen dann auch: [#] ist der Pushout von $Y \xleftarrow{g} A \xrightarrow{f} X$.

11.2 Bemerkung

Jedes Diagramm $Y \stackrel{g}{\leftarrow} A \stackrel{f}{\rightarrow} X$ lässt sich zu einem Pushout vervollständigen: Betrachte dazu den Raum $X \cup_A Y := X \coprod Y/f(a) \sim g(a) \forall a \in A$ mit der Quotiententopologie. Sind $\overline{f} \colon Y \to X \cup_A Y$ und $\overline{g} \colon X \to X \cup_A Y$ die von den Inklusionen $X \hookrightarrow X \coprod Y$ und $Y \hookrightarrow X \coprod Y$ induzierten Abbildungen, so ist

$$\begin{array}{ccc}
A & \stackrel{f}{\longrightarrow} & X \\
\downarrow g & & \downarrow \overline{g} \\
Y & \stackrel{\overline{f}}{\longrightarrow} & X \cup_A Y
\end{array}$$

ein Pushout. Existenz und Eindeutigkeit aus der universellen Eigenschaft können benutzt werden um zu zeigen, dass der Pushout eindeutig bis auf kanonischen Homöomorphismus ist.

11.3 Definition

Ein $\mathbf{CW} ext{-}\mathbf{Komplex}^4$ ist ein topologischer Raum X zusammen mit einer Filtrierung 5 durch Unterräume von X:

$$\emptyset = X^{(-1)} \subseteq X^{(0)} \subseteq X^{(1)} \subseteq X^{(2)} \subseteq \ldots \subseteq X^{(n)} \subseteq X^{(n+1)} \subseteq \ldots \subseteq X$$

sodass die folgenden zwei Eigenschaften erfüllt sind:

 $X^{(i)}$ bezeichnet man auch als i-Gerüst oder i-Skelett

⁴ Zitat von Wikipedia 🗗 zum Namen: The C stands for closure-finite", and the W for "weak topology". C für cell" scheint mir allerdings auch sinnvoll.

⁵ siehe auch https://de.wikipedia.org/wiki/Filter_(Mathematik) ☐

(i) **Zellstruktur**: Zu jedem $n \in \mathbb{N}$ gibt einen Pushout von topologischen Räumen

$$\begin{split} & \coprod_{i \in I^{(n)}} S^{n-1} \xrightarrow{\coprod_{i \in I^{(n)}} q_i^{(n)}} X^{(n-1)} \\ & \coprod_{i \in I^{(n)}} j_i \hspace{-0.5cm} \int \\ & \coprod_{i \in I^{(n)}} D^n \xrightarrow{\coprod_{i \in I^{(n)}} Q_i^{(n)}} X^{(n)} \end{split}$$

wobei $j_i \colon S^{n-1} \hookrightarrow D^n$ und $k_n \colon X^{(n-1)} \hookrightarrow X^{(n)}$ die Inklusionen sind.

(ii) **Schwache Topologie**: Es ist $X=\bigcup_{n\in\mathbb{N}}X^{(n)}$ und $U\subseteq X$ ist genau dann offen, wenn $U\cap X^{(n)}\subseteq X^{(n)}$ für alle n offen ist.

Eine Abbildung $f \colon X \to Y$ zwischen CW-Komplexen heißt **zellulär**, falls $f(X^{(n)}) \subseteq Y^{(n)}$ für alle $n \in \mathbb{N}$ gilt.

11.4 Bemerkung

- (i) Die Abbildungen $q_i^{(n)}$ und $Q_i^{(n)}$ sind nicht Teil der Struktur eines CW-Komplex. Nur die Existenz von $q_i^{(n)}$ und $Q_i^{(n)}$ wird gefordert sie ist nicht notwendig eindeutig. Hat man $q_i^{(n)}$ und $Q_i^{(n)}$ gewählt, so heißt $q_i^{(n)}$ die **anklebende Abbildung** der i-ten n-Zelle und $Q_i^{(n)}$ die **charakteristische Abbildung** der i-ten n-Zelle.
- (ii) Sei $\mathring{D}^n = D^n \setminus S^{n-1}$ das Innere von D^n . Die Abbildungen $Q_i^{(n)}$ schränken sich zu einem Homöomorphismus $\coprod_{i \in I^{(n)}} \mathring{D}^n \to X^{(n)} \setminus X^{(n-1)}$ ein.⁶ Insbesondere lässt ich $I^{(n)}$ mit der Menge der Wegzusammenhangskomponenten von $X^{(n)} \setminus X^{(n-1)}$ identifizieren. Die Wegzusammenhangskomponenten heißen die **offenen Zellen** von X. Damit ist jeder CW-Komplex die disjunkte Vereinigung seiner offenen Zellen.

 \triangle Achtung: Jede offene n-Zelle ist offen in $X^{(n)}$, aber nicht notwendig in X.

(iii) Der Abschluss einer offenen Zelle $Q_i^{(n)}(\mathring{D}^n)$ ist $Q_i^{(n)}(D^n)$ und insbesondere kompakt. Die $Q_i^{(n)}(D^n)$ heißen die **abgeschlossenen Zellen** und sind als Abschluss von offenen Zellen unabhängig von der Wahl der $Q_i^{(n)}$.

f A Achtung: Abgeschlossene Zellen sind Bilder von D^n unter stetigen Abbildungen, aber nicht notwendig homöomorph zu D^n .

(iv) Ein CW-Komplex X heißt **endlich**, wenn er nur aus endlich vielen Zellen besteht, also wenn $I=\bigcup_{n\in\mathbb{N}}I^{(n)}$ endlich ist. Insbesondere gibt es dann ein n mit $X=X^{(n)}$.

Die Dimension von X ist die maximale Dimension von Zellen von X, also $\dim X := N$, falls $X^{(N)} = X$, $X^{(N-1)} \subseteq X$. Gibt es kein solches N so setzen wir $\dim X := \infty$.

11.5 Beispiele

(i) S^n mit

$$(S^n)^{(k)} = \begin{cases} \emptyset, & \text{falls } k = -1 \\ \{(1, 0, \dots, 0)\}, & \text{falls } k = 0, \dots n - 1 \\ S^n, & \text{falls } k \geqslant n \end{cases}$$

11 CW-Komplexe 43

⁶ Dass dies ein Homöomorphismus ist, folgt aus der Pushout-Eigenschaft und dem letzen Teil der Bemerkung 11.2, denn es gilt demnach $X^{(n)} \cong X^{(n-1)} \cup_{\prod S^{n-1}} \coprod D^n$.

ist ein CW-Komplex via $S^n \cong {\mathbb P}^n/{\mathbb S}^{n-1}$

$$S^{n-1} \longrightarrow (S^n)^{(n-1)} = \{(1,0,\dots,0)\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^n \longrightarrow S^n$$

- (ii) S^n mit $(S^n)^{(k)} = \{(x_0, \dots, x_k, 0, \dots, 0) \in S^n\}$ ist ebenfalls eine CW-Struktur auf S^n .
- (iii) Sei $K=(V,\Sigma)$ ein simplizialer Komplex. Es ist $|\Delta^n|\cong D^n$ und $|\partial\Delta^n|\cong S^{n-1}$. Sei $\Sigma^{(n)}:=\Sigma_0\cup\Sigma_1\cup\ldots\cup\Sigma_n$. Dann wird |K| durch $|K|^{(n)}:=\left|\left(V,\Sigma^{(n)}\right)\right|$ für $n\geqslant 0$ zu einem CW-Komplex. Ist $f\colon K\to L$ eine simpliziale Abbildung, so ist $|f|\colon |K|\to |L|$ eine zelluläre Abbildung.
- (iv) Der n-dimensionale reelle projektive Raum $\mathbb{R}P^n$ kann definiert werden durch

$$\mathbb{R}P^n := \mathbb{R}^{n+1} \setminus \{0\}/x \sim \lambda x = S^n/x \sim -x$$

Punkte in $\mathbb{R}P^n$ sind Äquivalenzklassen von (n+1)-Tupeln reeller Zahlen und werden als die sogenannten homogenen Koordinaten $[x_0:\ldots:x_n]$ geschrieben. Es ist

$$\mathbb{R}P^{n} = \left\{ [x_{0} : \dots : x_{n}] \mid (x_{0}, \dots, x_{n}) \in S^{n} \right\} = \left\{ [x_{0} : \dots : x_{n}] \mid (x_{0}, \dots, x_{n}) \in S^{n}, x_{n} \geqslant 0 \right\}$$

Wir erhalten einen Homöomorphismus $f^{(n)} : D^n/x \sim -x, x \in S^{n-1} \to \mathbb{R}P^n$ mit

$$f^{(n)}(x_1,...,x_n) = \left[x_1:...:x_n:\sqrt{1-\sum_{i=1}^n x_i^2}\right]$$

Ist $Q^{(n)}\colon D^n\to \mathbb{R}P^n$ die Komposition von $f^{(n)}$ mit der Projektion $D^n\twoheadrightarrow D^n/x\sim -x, x\in S^{n-1}$ und $q^{(n)}\colon S^{n-1}\twoheadrightarrow \mathbb{R}P^{n-1}$ die Projektion, so erhalten wir einen Pushout

$$S^{n-1} \xrightarrow{q^{(n)}} \mathbb{R}P^{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^n \xrightarrow{Q^{(n)}} \mathbb{R}P^n$$

Induktiv erhalten wir einen CW-Struktur auf $\mathbb{R}P^n$ mit genau einer k-Zelle für $k=0,\ldots,n$ und

$$(\mathbb{R}P^n)^{(k)} \cong \mathbb{R}P^k$$

(v) Der n-dimensionale komplexe projektive Raum $\mathbb{C}P^n$ kann definiert werden durch

$$\mathbb{C}P^n := \mathbb{C}^{n+1} \setminus \{0\}/z \sim \lambda z = S^{2n+1}/z \sim \lambda z, \lambda \in S^1 \subseteq \mathbb{C}$$

Punkte in $\mathbb{C}P^n$ sind Äquivalenzklassen von (n+1)-Tupeln komplexer Zahlen und werden als homogenen Koordinaten $[z_0:\ldots:z_n]$ geschrieben. Es ist wieder

$$\mathbb{C}P^{n} = \left\{ [z_{0}: \ldots: z_{n}] \,\middle|\, (z_{0}, \ldots, z_{n}) \in S^{2n+1} \right\} = \left\{ [z_{0}: \ldots: z_{n}] \,\middle|\, (z_{0}, \ldots, z_{n}) \in S^{2n+1}, |z_{n}| \geqslant 0 \right\}$$

Wir erhalten wieder einen Homöomorphismus $f^{(n)}: D^{2n+1}/z \sim \lambda z, z \in S^{2n-1}, \lambda \in S^1 \to \mathbb{C}P^n$ durch

$$f^{(n)}(z_1,...,z_n) = \left[z_1:...:z_n:\sqrt{1-\sum_{i=1}^n|z_i|^2}\right]$$

44 11 CW-Komplexe

Ist $Q^{(2n)}\colon D^{2n}\to \mathbb{C}P^n$ die Komposition von $f^{(n)}$ mit der Projektion $D^{2n} \twoheadrightarrow D^{2n}/z\sim \lambda z, z\in S^{2n}$ und $q^{(n)}\colon S^{2n+1}\to \mathbb{C}P^{n-1}$ die Projektion, so erhalten wir auch wieder einen Pushout

$$S^{2n-1} \xrightarrow{q^{(n)}} \mathbb{C}P^{n-1} \\ \downarrow \qquad \qquad \downarrow \\ D^{2n} \xrightarrow{Q^{(n)}} \mathbb{C}P^{n}$$

Induktiv erhalten wir einen CW-Struktur auf $\mathbb{C}P^n$ mit genau einer k-Zelle für $k=0,2,\ldots,2n$ und

$$(\mathbb{C}P^n)^{(k)} \cong \mathbb{C}P^{\left\lfloor \frac{k}{2} \right\rfloor}$$

11.6 Lemma

Sei X ein $\mathrm{CW} ext{-}Komplex$ und $K\subseteq X$. Dann ist K genau dann kompakt, wenn K abgeschlossen ist und K nur endlich viele offene Zellen von K schneidet.

Beweis

Zunächst: Ist $S\subseteq X$ ein Unterraum der jede offene Zelle höchstens in einem Punkt schneidet, so ist S diskret. Für $S_0\subseteq S$ ist $S_0\cap (X^{(n)}\setminus X^{(n-1)})$ abgeschlossen in $X^{(n)}$, da S_0 jede offene n-Zelle von X höchstens in einem Punkt schneidet. Daher ist $S_0\cap X^{(n)}\subseteq X^{(n)}$ abgeschlossen für alle n. Damit ist also jede Teilmenge $S_0\subseteq S$ abgeschlossen in X und S somit diskret.

Sei nun $K\subseteq X$ kompakt. Dann ist K sicher abgeschlossen. Sei $S\subseteq K$ ein Teilraum, der aus jeder offenen Zelle von X, die K schneidet, genau einen Punkt enthält. Wegen der Vorüberlegung ist S diskret. Da $S\subseteq K$ abgeschlossen und K kompakt ist, ist S auch kompakt. Damit ist S endlich und S0 schneidet nur endlich viele offene Zellen.

Ist nun umgekehrt K abgeschlossen und schneidet nur endlich viele offene Zellen, so ist K enthalten in einer endlichen Vereinigung von abgeschlossen Zellen von X. Da diese abgeschlossen Zellen kompakt sind, ist auch diese Vereinigung kompakt, K ist also ein abgeschlossener Teilraum eines kompakten Teilraums und damit selbst kompakt.

11.7 Korollar

Ein CW-Komplex ist genau dann kompakt, wenn er endlich ist.

11 CW-Komplexe 45

12 Zelluläre Homologie

12.1 Definition

Sei X ein $\operatorname{CW-Komplex}$. Dann heißt

$$C_n^{\text{cell}}(X;R) := H_n(X^{(n)}, X^{(n-1)}; R)$$

der ${f n}$ -te zelluläre Kettenmodul von X mit Koeffizienten in R. Die ${f n}$ -te Randabbildung $\partial_n^{{
m cell}}\colon C_n^{{
m cell}}(X;R) o C_{n-1}^{{
m cell}}(X;R)$ wird durch die Komposition

$$H_n(X^{(n)}, X^{(n-1)}; R) \xrightarrow{\partial_n^{(X^{(n)}, X^{(n-1)})}} H_{n-1}(X^{(n-1)}; R)$$

$$\downarrow (j^{(n-1)})_*$$

$$H_{n-1}(X^{(n-1)}, X^{(n-2)}; R)$$

definiert. Dabei ist $\partial_n^{(X^{(n)},X^{(n-1)})}$ die Randabbildung aus der Paarfolge für $(X^{(n)},X^{(n-1)})$ und $j^{(n-1)}$ die Inklusion $(X^{(n-1)},\emptyset)\hookrightarrow (X^{(n-1)},X^{(n-2)})$.

12.2 Lemma

$$\partial_{n-1}^{\text{cell}} \circ \partial_n^{\text{cell}} = 0$$

Beweis

Wir schreiben die Paarsequenz für $(X^{(n)}, X^{(n-1)})$ dreimal übereinander und erhalten:

"R"aus Platzgründen weggelassen

Also $\partial_{n-1}^{\mathrm{cell}} \circ \partial_n^{\mathrm{cell}} = 0$, da wegen der Exaktheit der Paarfolge schon $\partial_{n-1} \circ j_*^{(n-1)} = 0$ ist. \Box

12.3 Definition

 $\left(C_*^{\operatorname{cell}}(X;R),\partial_*^{\operatorname{cell}}\right)$ heißt der **zelluläre Kettenkomplex** von X über R. Seine Homologie $H_*^{\operatorname{cell}}(X;R)$ heißt die **zelluläre Homologie** von X.

12.4 Bemerkung

Der zelluläre Kettenkomplex und die zelluläre Homologie sind Funktoren auf der Kategorie der CW-Komplexe und zellulären Abbildungen.

46

12.5 Lemma

Sei X ein $\operatorname{CW-Komplex}$. Wähle $q_i^{^{(n)}}$ und $Q_i^{^{(n)}}$ für die Zellstruktur auf X. Dann gilt

a) Die Abbildung

$$\left(\coprod_{i\in I^{(n)}}Q_i^{(n)},\coprod_{i\in I^{(n)}}q_i^{(n)}\right)\colon \left(\coprod_i D^n,\coprod_i S^{n-1};R\right)\longrightarrow (X^{(n)},X^{(n-1)};R)$$

induziert einen Isomorphismus in Homologie.

b) Es gilt

$$H_k\Biggl(\coprod_{i\in I^{(n)}} D^n, \coprod_{i\in I^{(n)}} S^{n-1}; R\Biggr) = \begin{cases} R[I^{(n)}], & \text{ falls } k=n \\ 0, & \text{ sonst} \end{cases}$$

Beweis

a) Sei $D^n_0:=D^n\setminus\{0\}$, $\frac12D^n:=\left\{\frac x2\,\big|\,x\in D^n\right\}$ und $\frac12D^n_0:=\frac12D^n\setminus\{0\}$. Wir definieren

$$X_{++}^{(n-1)} := X^{(n)} \setminus \bigcup_{i \in I^{(n)}} Q_i^{(n)}(\{0\}) \quad \text{ und } \quad X_{+}^{(n-1)} := X^{(n)} \setminus \bigcup_{i \in I^{(n)}} Q_i^{(n)} \left(\frac{1}{2}D^n\right)$$

Dann sind $X^{(n-1)}\hookrightarrow X^{(n-1)}_+\hookrightarrow X^{(n-1)}_{++}$ Homotopieäquivalenzen, da $\coprod_{i\in I^{(n)}}Q^{(n)}_i$ ein Homöomorphismus auf den offenen n-Zellen ist. Betrachte:

(1), (2) und (5) sind Homotopieäquivalenzen und induzieren Isomorphismen in Homologie. (3) ist ein Homöomorphismus und induziert einen Isomorphismus in Homologie. (4) erfüllt die Vorraussetzungen für den Ausschneideisomorphismus und induziert daher auch einen Isomorphismus in Homologie. Damit folgt a).

b) Da die Randabbildung aus der Paarsequenz in diesem Fall ein Isomorphismus ist, gilt

$$\begin{split} H_k\bigg(\coprod_i D^n, \coprod_i S^{n-1}; R\bigg) & \stackrel{\cong}{\longleftarrow} \bigoplus_i H_k(D^n, S^{n-1}; R) \stackrel{\cong}{\longrightarrow} \bigoplus_i \tilde{H}_{k-1}(S^{n-1}; R) \\ & \cong \bigoplus_i \begin{cases} R, & \text{falls } k = n \\ 0, & \text{sonst} \end{cases} \\ & \cong \begin{cases} R[I^{(n)}], & \text{falls } k = n \\ 0, & \text{sonst} \end{cases} \end{split}$$

12.6 Bemerkung

Wir haben soeben gezeigt, dass die folgenden Isomorphismen existieren:

$$C_{n}^{\text{cell}}(X;R) \xrightarrow{\partial_{n}^{\text{cell}}} C_{n-1}^{\text{cell}}(X;R)$$

$$H_{n}(X^{(n)}, X^{(n-1)}; R) \xrightarrow{\parallel} H_{n-1}(X^{(n-1)}, X^{(n-2)}; R)$$

$$R[I^{(n)}] \xrightarrow{\parallel} R[I^{(n-1)}]$$

Die Randabbildung $\partial_n^{\mathrm{cell}}$ wird unter diesen Isomorphismen zu einer $I^{(n-1)} \times I^{(n)}$ -Matrix. Für $j \in I^{(n-1)}$ und $k \in I^{(n)}$ ist der (j,k)-Eintrag dieser Matrix genau der Abbildungsgrad einer Selbstabbildung der (n-1)-Sphäre:

Die $(Q_i^{(n-1)},q_i^{(n-1)})$ induzieren einen Homöomorphismus $\coprod_i D^{n-1}/\coprod_i S^{n-2} \cong X^{(n)}/X^{(n-1)}$. Durch Komposition mit der Projektion auf die j-te Zelle erhalten wir die folgenden Abbildung

$$\coprod_i D^{n-1} / \coprod_i S^{n-2} \xrightarrow{p_j^{(n-1)}} D^{n-1} / S^{n-2} \cong S^{n-1}.$$

Der (j,k)-te Eintrag ist nun der Abbildungsgrad von

$$S^{n-1} \xrightarrow{q_k^{(n-2)}} X^{(n-1)} \xrightarrow{} X^{(n-1)} / X^{(n-2)} \xrightarrow{\cong} \coprod_i D^{n-1} / \coprod_i S^{n-2} \xrightarrow{p_j^{(n-1)}} S^{n-1}$$

12.7 Definition

Eine natürliche Transformation τ zwischen Funktoren $F,G\colon\mathcal{C}\to\mathcal{D}$ heißt ein **natürlicher Isomorphismus**, wenn $\tau_C\colon F(C)\to G(C)$ für alle Objekte C von \mathcal{C} ein Isomorphismus in \mathcal{D} ist.

12.8 Satz

Für CW-Komplexe gibt es einen natürlichen Isomorphismus $\tau_X \colon H^{\operatorname{cell}}_*(X;R) \xrightarrow{\cong} H_*(X;R)$.

Beweis (mit Lemma 12.9)

Betrachte folgendes Diagramm; die diagonalen Folgen sind Ausschnitte aus den Paarsequenzen:

"R"aus Platzgründen weggelassen

Es folgt, dass $j_*^{(n)}$ wegen Exaktheit einen Isomorphismus $H_n(X^{(n)};R) \xrightarrow{\cong} \ker \partial_n^{\operatorname{cell}}$ induziert. Da $j_*^{(n)}$ injektiv ist, induziert $j_*^{(n)}$ außerdem einen Isomorphismus $\operatorname{Im} \partial_{n+1}^{X^{(n+1)},X^{(n)}} \xrightarrow{\cong} \operatorname{Im} \partial_{n+1}^{\operatorname{cell}}$. Insgesamt erhalten wir natürliche Isomorphismen

$$H_n(X;R) \cong H_n(X^{(n+1)};R) \cong H_n(X^{(n)};R)/\operatorname{Im} \partial_{n+1}^{X^{(n+1)},X^{(n)}} \cong \operatorname{ker} \partial_n^{\operatorname{cell}}/\operatorname{Im} \partial_{n+1}^{\operatorname{cell}} \cong H_n^{\operatorname{cell}}(X;R) \qquad \square$$

48

12.9 Lemma

Sei X ein CW-Komplex.

- a) Für k > n ist $H_k(X^{(n)}; R) = 0$.
- b) Für k < n induziert die Inklusion $l_n \colon X^{(n)} \hookrightarrow X$ einen Isomorphismus $(l_n)_* \colon H_k(X^{(n)}; R) \to H_k(X; R)$.

Beweis

a) Ist k > n, so erhalten wir aus der Paarfolge einen Isomorphismus

$$H_{k+1}(X^{(n)}, X^{(n-1)}; R) \to H_k(X^{(n-1)}; R) \xrightarrow{\cong} H_k(X^{(n)}; R) \to H_k(X^{(n)}, X^{(n-1)}; R)$$

$$\stackrel{12.5}{=} 0$$

Da $H_k(X^{(0)};R)=0$ für k>0, folgt a) nun durch endliche Induktion für $n=0,1,\ldots,k-1$.

b) Ist n > k, so erhalten wir aus der Paarfolge

$$H_{k+1}(X^{(n+1)}, X^{(n)}; R) \to H_k(X^{(n)}; R) \xrightarrow{\cong} H_k(X^{(n+1)}; R) \to H_k(X^{(n+1)}, X^{(n)}; R)$$

$$\stackrel{12.5}{=} 0$$

Für $m \geqslant n > k$ induziert die Inklusion $X^{(n)} \hookrightarrow X^{(m)}$ daher einen Isomorphismus $H_k(X^{(n)};R) \to H_k(X^{(m)};R)$. Ist $\dim X$ endlich, so folgt die Behauptung.

Für den allgemeinen Fall beobachten wir zunächst, dass es zu jeder stetigen Abbildung $\sigma\colon |\Delta^j|\to X$ ein n gibt mit $\mathrm{Im}\,\sigma\subseteq X^{(n)}$, da $\mathrm{Im}\,\sigma\subseteq X$ kompakt ist und daher nur endlich viele offene Zellen von X trifft (siehe 11.5). Also gilt $C_*(X;R)=\bigcup_n C_*(X^{(n)};R)$. Damit folgt

- (1) $\forall x \in H_k(X;R)$ existiert ein n, sodass x im Bild von $H_k(X^{(n)};R) \to H_k(X;R)$.
- (2) $\forall x \in H_k(X^{(n)}; R)$ mit trivialem Bild von x in $H_k(X; R)$, gibt es ein $m \geqslant n$, sodass das Bild von x in $H_k(X^{(m)}; R)$ trivial ist.

Da für $m \geqslant n > k$ die Abbildung $H_k(X^{(n)};R) \to H_k(X^{(m)};R)$ ein Isomorphismus ist, ergibt sich damit die Behauptung.

12.10 Korollar

Die Eulercharakteristik eines endlichen simplizialen Komplexes ist eine topologische Invariante.

Beweis

Sei a_n die Anzahl der n-Simplizes von K. Dann gibt es eine $\operatorname{CW-Struktur}$ auf |K|, die für jedes n genau a_n Zellen hat.

$$\chi(K) = \sum_{i=0}^{\infty} (-1)^i a_i \stackrel{\text{12.5}}{=} \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} C_i^{\operatorname{cell}} \big(|K| \big) \stackrel{\text{4.10}}{=} \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i^{\operatorname{cell}} \big(|K| \big) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i \big(|K| \big)$$

Da die $H_i(|K|)$ eine topologische Invariante sind, ist auch $\chi(K)$ eine topologische Invariante.

12.11 Bemerkung

Ist X ein $\operatorname{CW-Komplex}$ mit endlich vielen n- und n+1-Zellen, so ist $H_n(X)$ ein endlich erzeugter \mathbb{Z} -Modul. Man definiert dann die \mathbf{n} -te Bettizahl von X als $b_n := \operatorname{Rg} H_n(X)$. Ist X ein endlicher $\operatorname{CW-Komplex}$, so definiert man die Euler-Charakteristik von X als

$$\chi(X) := \sum_{n=0}^{\infty} (-1)^n b_n.$$

Man beachte, dass 4.10 für beliebige Z-Kettenkomplexe und deren Homologie gilt

12 Zelluläre Homologie 49

Ist a_n die Anzahl der n-Zellen von X, so gilt $\chi(X) = \sum_{n=0}^{\infty} (-1)^n a_n$.

12.12 Beispiel

Es gilt

$$H_k(\mathbb{C}P^n;R)\cong \begin{cases} R, & \text{ falls } k=0,2,4,\dots,2n\\ 0, & \text{ sonst} \end{cases}$$

Beweis

Aus Beispiel 11.5 (v) wissen wir, dass es auf $\mathbb{C}P^n$ eine $\mathrm{CW} ext{-}\mathrm{Struktur}$ gibt mit genau einer Zelle in der Dimension $0,2,4,\ldots,2n$ (und keine weiteren Zellen). Der zelluläre Kettenkomplex hat daher folgende Form:

$$0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad \cdots \qquad 2n-1 \qquad 2n \qquad 2n+1 \qquad \cdots$$

$$R \longleftarrow 0 \longleftarrow R \longleftarrow 0 \longleftarrow R \longleftarrow \cdots \longleftarrow 0 \longleftarrow \cdots \qquad \cdots$$

Alle Randabbildungen sind trivial und die Homologie von $\mathbb{C}P^n$ stimmt mit den zellulären Kettenkomplexen überein.

RevChap12

12.13 Beispiel

Es gilt

$$H_k(\mathbb{R}P^n;\mathbb{Z}) \cong \begin{cases} \mathbb{Z}, & \text{ falls } k = 0 \text{ oder } (k = n \text{ und } k \text{ ungerade}) \\ \mathbb{Z}/2\mathbb{Z}, & \text{ falls } 0 < k < n \text{ und } k \text{ ungerade} \\ 0, & \text{ sonst} \end{cases}$$

Beweis

Aus Beispiel 11.5 (iv) wissen wir, dass es eine CW-Struktur auf $\mathbb{R}P^n$ gibt, die für $k=0,\ldots,n$ genau eine k-Zelle und keine weiteren Zellen besitzt. Der zelluläre Kettenkomplex von $\mathbb{R}P^n$ (über \mathbb{Z}) hat also die Form:

$$\mathbb{Z} \xleftarrow{\partial_1^{\mathrm{cell}}} \mathbb{Z} \xleftarrow{\partial_2^{\mathrm{cell}}} \mathbb{Z} \xleftarrow{\partial_2^{\mathrm{cell}}} \mathbb{Z} \xleftarrow{} \cdots \leftarrow \mathbb{Z} \xleftarrow{\partial_n^{\mathrm{cell}}} \mathbb{Z} \xleftarrow{} 0$$

Wir müssen die Randabbildung verstehen. In der CW-Struktur können wir $(\mathbb{R}P^n)^{(k)}$ mit $\mathbb{R}P^k$ identifizieren. Die anklebende Abbildung $q^{(k+1)}\colon S^k\to\mathbb{R}P^k$ der (k+1)-Zelle ist die Projektion $(x_0,\ldots,x_k)\mapsto [x_0:\ldots:x_k]$. Die charakteristische Abbildung $Q^{(k+1)}\colon D^{k+1}\to\mathbb{R}P^{k+1}$ der (k+1)-Zelle ist gegeben durch

$$(x_0,\ldots,x_k) \mapsto \left[x_0:\ldots:x_k:\sqrt{1-\|(x_1,\ldots,x_k)\|^2}\right]$$

Betrachte folgendes kommutatives Diagramm:

Das linke untere Quadrat kommutiert, da die Randabbildung aus der Paarfolge eine natürliche Transformation ist. Das rechte, da die zugrunde liegenden Abbildungen kommutieren.

Das Bild von $\partial_{k+1}^{\mathrm{cell}}$ stimmt also mit dem Bild der Komposition

$$H_k(S^k) \xrightarrow{j_*} H_k(S^k, S^{k-1}) \xrightarrow{\left(q^{(k+1)}, q^{(k)}\right)_*} H_k\left(\mathbb{R}P^k, \mathbb{R}P^{k-1}\right)$$

überein. Sei $i_\pm\colon D^k\to S^k$ definiert durch $i_\pm(x)=\left(\pm x,\pm\sqrt{1-\|x\|^2}\right)$. Sei $l\colon S^{k-1}\hookrightarrow i_-(D^k)$ die Inklusion und $R\colon S^k\to S^k$ die Punktspiegelung $x\mapsto -x$. Es ist $i_+=R\circ i_-$. Betrachte

faktorisieren über 0

$$\begin{array}{cccc}
& & & & & & & \\
 & & & \downarrow & & & & \\
 & & & \downarrow & & & \\
 & & & & \downarrow & & \\
 & & & & & \downarrow & & \\
 & & & & & \downarrow & & \\
 & & & & & \downarrow & & \\
 & & & & & \downarrow & & \\
 & & & & & \downarrow & & \\
 & & & & & \downarrow & & \\
 & & & & & \downarrow & & \\
 & & & & & \downarrow & & \\
 & & & & & \downarrow & & \\
 & & & & & \downarrow & & \\
 & & & & & \downarrow & & \\
 & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & &$$

In der Übungen haben wir gesehen, dass die horizontalen Abbildungen Isomorphismen sind. Sei $x\in \tilde{H}_k(S^k)$ ein Erzeuger. Seien (x_+,x_-) und (y_+,y_-) die Elemente, die $j_*(x)$ unter den horizontalen Isomorphismen in [#] entsprechen. Mit Hilfe der Paarfolge zu $(S^k,i_-(D^k))$ sehen wir, dass die Inklusion $j_-\colon (S^k,\emptyset)\hookrightarrow (S^k,i_-(D^k))$ einen Isomorphismus $(j_-)_*\colon \tilde{H}_k(S^k)\to \tilde{H}_k(S^k,i_-(D^k))$ induziert. Es ist nun $(\mathrm{id}_{S^k},l)\circ j=j_-$ und $(R,R|_{S^{k-1}})\circ j=j_-\circ R$. Damit ist x_+ ein Erzeuger von $H_k(S^k,i_+(D^k))$. Weiter entspricht R_* der Multiplikation mit $(-1)^{k+1}$ nach 10.6. Damit folgt

eventuell in Anhang?

$$x_{-} = \left(R, R \big|_{S^{k+1}} \right)_{*} \circ j_{*}(x) = (\mathrm{id}_{S^{k}}, l) \circ j_{*} \circ R_{*}(x) = (\mathrm{id}_{S^{k}}, l)_{*} \circ j_{*} \left((-1)^{k+1} x \right) = (-1)^{k+1} \cdot x_{+} + (-1)^{k+1} \cdot$$

Die Komposition der horizontalen Isomorphismen in [#] ist gegeben durch

Da bin ich anderer Meinung, bzw. sehe ich nicht ein warum ...

$$\begin{pmatrix} (i_{+}, l \circ i_{+}|_{S^{k-1}})_{*} & 0 \\ 0 & (R, R|_{S^{k-1}})_{*} \circ (i_{-}, i_{-}|_{S^{k-1}})_{*} \end{pmatrix} = \begin{pmatrix} (i_{+}, l \circ i_{+}|_{S^{k-1}})_{*} \\ (i_{+}, l \circ i_{+}|_{S^{k-1}})_{*} \end{pmatrix}$$

Es folgt, dass y_+ ein Erzeuger von $H_k(D^k,S^{k-1})$ ist und $y_-=(-1)^{k+1}y_+$ ist. In [#] wird y_+ auf $(q^{(k+1)},q^{(k)})_*\circ (i_+,i_+|_{S^{k-1}})_*(y_+)=(Q^{(k)},q^{(k)})_*(y_+)$ abgebildet. Insbesondere wird y_+ auf einen Erzeuger $z_k\in H_k(\mathbb{R}P^k,\mathbb{R}P^{k-1})$ abgebildet, da diese Abbildung nach 12.5 ein Isomorphismus ist. Es folgt

Für die Gleichung unten brauchen wir doch

Problem behe-

ben/Details hinzufügen

$$\begin{split} \left(q^{(k+1)},q^{(k)}\right)_* \left(j_*(x)\right) &= \left(q^{(k+1)},q^{(k)}\right)_* \left(\left(i_+,i_+\big|_{S^{k-1}}\right)_* (y_+) + \left(i_-,i_-\big|_{S^{k-1}}\right)_* (y_-)\right) \\ &= \left(Q^{(k)},q^{(k)}\right)_* \left(y_+ + (-1)^{k+1}y_+\right) \\ &= \begin{cases} 2z_k, & \text{falls } k \text{ ungerade} \\ 0, & \text{sonst} \end{cases} \end{split}$$

Es folgt

$$\operatorname{Im} \partial_{k+1}^{\operatorname{cell}} = \begin{cases} 2 \cdot C_k^{\operatorname{cell}}(X), & \text{ falls } k \text{ ungerade} \\ 0, & \text{ sonst} \end{cases}$$

Der zelluläre Kettenkomplex ist daher isomorph zu:

$$\mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{2} \mathbb{Z} \xleftarrow{0} \mathbb{Z} \longleftarrow \cdots \longleftarrow \overset{n}{\mathbb{Z}} \longleftarrow 0 \longleftarrow 0$$

Womit die Behauptung folgt.

Beispiel

Für $R=\mathbb{Z}/2\mathbb{Z}$ ist

$$H_k(\mathbb{R}P^n; \mathbb{Z}/2\mathbb{Z}) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & \text{falls } k = 0, \dots, n \\ 0, & \text{sonst} \end{cases}$$

12.14 Satz

Sei K ein geordneter simplizialer Komplex. Für $\sigma=\{v_0,\ldots,v_n\}\in \Sigma_n$ mit $v_0< v_1<\ldots< v_n$ sei $f_\sigma\colon |\Delta^n|\to |K|$ gegeben durch $f_\sigma(\sum_{i=0}^n t_i e_i)=\sum_{i=0}^n t_i v_i$. Wir erhalten

$$[f_{\sigma}] \in H_n(|K|^{(n)}, |K|^{(n-1)}; R) = C_n^{\text{cell}}(|K|; R).$$

Diese Zuordnung definiert einen Isomorphismus zwischen dem simplizialen Kettenkomplex von K und dem zellulären Kettenkomplex von |K|

$$\tau \colon C_*(K;R) \longrightarrow C_*^{\operatorname{cell}}(|K|,R)$$

Insbesondere ist $H_*(K;R) \cong H_*(|K|;R)$ eine topologische Invariante von K.

Beweis

Betrachte

$$\bigoplus_{\sigma \in \Sigma_n} R \xrightarrow{\cong} \bigoplus_{\sigma \in \Sigma_n} H_n(|\Delta^{\sigma}|, |\partial \Delta^{\sigma}|; R)$$

$$\cong \downarrow \qquad \qquad \cong \downarrow$$

$$C_n(K; R) \xrightarrow{\tau} H_n(|K|^{(n)}, |K|^{(n-1)}; R)$$

Nun ist auch τ ein Isomorphismus, da $[f_{\sigma}]$ ein Erzeuger von $H_n(|\Delta^{\sigma}|, |\partial\Delta^{\sigma}|; R)$ ist, siehe Blatt 8. Es bleibt zu zeigen, dass $\sigma \mapsto [f_{\sigma}]$ mit den Randabbildungen vertauscht. Dies ergibt sich sofort aus $f_{\partial_j \sigma} = \partial_j f_{\sigma}$.

52 12 Zelluläre Homologie

13 Kleine Simplizes

13.1 Ausschneindungssatz

Sei (X,A) ein Paar von topologische Räumen. Sei $L\subseteq A$ mit $\overline{L}\subseteq \mathring{A}$. Dann induziert die Inklusion $(X\setminus L,A\setminus L)\hookrightarrow (X,A)$ den Ausschneidungs-Isomorphismus $H_*(X\setminus L,A\setminus L;R)\stackrel{\cong}{\longrightarrow} H_*(X,A;R)$.

Abbildung 4: Skizze zur Ausschneidung mit kleinen Simplizes

13.2 Definition

Sei $\mathcal U$ eine offene Überdeckung von X. Ein singulärer Simplex $\sigma\colon |\Delta^n|\to X$ heißt $\mathcal U$ -klein, falls es ein $U\in\mathcal U$ gibt mit $\mathrm{Im}\,\sigma\subseteq U$. Die $\mathcal U$ -kleinen Simplizes erzeugen den Unterkettenkomplex $\left(C_*^{\mathcal U}(X;R),\partial_*\right)$ des simplizialen Kettenkomplexes $(C_*(X;R),\partial_*)$.

13.3 Satz über kleine Simplizes

Die Inklusion $C_*^{\mathcal{U}}(X;R) \hookrightarrow C_*(X;R)$ induziert einen Isomorphismus in Homologie.

13.4 Bemerkung

Der Satz über kleine Simplizes lässt sich leicht auf Paare von topologischen Räumen verallgemeinern. Für eine Überdeckung $\mathcal U$ von X setzen wir

$$C_*^{\mathcal{U}}(X,A;R) := C_*^{\mathcal{U}}(X;R)/C_*(A;R) \cap C_*^{\mathcal{U}}(X;R)$$

Dann induziert die Inklusion $C_*^{\mathcal{U}}(X,A;R) \hookrightarrow C_*(X,A;R)$ einen Isomorphismus in Homologie. Der Beweis benutzt die Paarfolge und das Fünfer-Lemma.

13.5 Beweis des Ausschneidungssatzes (13.1)

Seien $\mathcal{U}:=\left\{\mathring{A},X\setminus\overline{L}\right\}$ und $\mathcal{U}_L:=\left\{\mathring{A}\setminus L,X\setminus\overline{L}\right\}$. Nach dem Satz über kleine Simplizes induzieren die beiden vertikalen Inklusionen in folgendem Diagramm Isomorphismen in Homologie:

$$C^{\mathcal{U}_L}_*(X \setminus L, A \setminus L; R) \xrightarrow{\cong} C^{\mathcal{U}}_*(X, A; R)$$

$$\downarrow \qquad \qquad \downarrow$$

$$C_*(X \setminus L, A \setminus L; R) \xrightarrow{(\star)} C_*(X, A; R)$$

13 Kleine Simplizes 53

RevChap13

Wie man sich leicht überlegt, ist außerdem die obere Abbildung ein Isomorphismus. Daher induziert auch die Inklusion (\star) einen Isomorphismus in H_* .

13.6 Idee zum Beweis des Satzes über kleine Simplizes

Um den Satz über kleine Simplizes beweisen zu können, müssen wir uns überlegen, wie wir einen Simplex systematisch in kleinere zerlegen können:

Abbildung 5: Zerteilung eines 2-Simplex

13.7 Definition

 $s_n:=\left(rac{1}{n+1},\ldots,rac{1}{n+1}
ight)\in |\Delta^n|$ heißt der **Schwerpunkt** von $|\Delta^n|$. Ist $\sigma\colon |\Delta^p| o |\Delta^n|$ ein singulärer p-Simplex, so definieren wir $(K_{\Delta^n})(\sigma)\colon \left|\Delta^{p+1}\right| o |\Delta^n|$ durch

$$(K_{\Delta^n})(\sigma)(t_0,\ldots,t_{p+1}) = t_0 \cdot s_n + (1-t_0) \cdot \sigma\left(\frac{(t_1,\ldots,t_{p+1})}{1-t_0}\right)$$

Wir erhalten eine Abbildung $(K_{\Delta^n})_p : C_p(|\Delta^n|;R) \to C_{p+1}(|\Delta^n|;R)$.

13.8 Lemma

Sei $\operatorname{const}_{s_n} \colon |\Delta^n| \to |\Delta^n|$ die konstante Abbildung mit $\operatorname{Im}(\operatorname{const}_{s_n}) = \{s_n\}$. Dann ist $(K_{\Delta^n})_*$ eine Kettenhomotopie zwischen id und $(\operatorname{const}_{s_n})_*$.

Reweis

Sei σ ein singulärer p-Simplex in $|\Delta^n|$. Dann ist

$$\begin{split} \partial_{p+1} \circ (K_{\Delta^n})_p(\sigma) &= \sum_{j=0}^{p+1} (-1)^j (K_{\Delta^n})_p(\sigma) \circ \iota_{p+1,j} = \sigma + \sum_{j=1}^{p+1} (-1)^j (K_{\Delta^n})_p(\sigma) \circ \iota_{p+1,j} \\ &= \sigma + \begin{cases} \sum_{j=0}^p (-1)^{j+1} (K_{\Delta^n})_{p-1} (\sigma \circ \iota_{p,j}), & p \geqslant 1 \\ -\mathrm{const}_{s_n} \colon \left| \Delta^0 \right| \to \{s_n\}, & p = 0 \end{cases} \\ &= \sigma - \begin{cases} (K_{\Delta^n})_{p-1} (\partial_p \circ \sigma), & \text{falls } p \geqslant 1 \\ \mathrm{const}_{s_0}, & \text{falls } p = 0 \end{cases} \end{split}$$

Die Rechnung stimmt noch nicht so ganz ...

54

13.9 Definition

Wir definieren induktiv natürliche Transformationen $B_n\colon C_n(-;R)\to C_n(-;R)$ und $H_n\colon C_n(-;R)\to C_{n+1}(-;R)$ wie folgt: Für n=0 setzen wir $(B_0)_X=\mathrm{id}$. Sei B_k nun schon für $k=0,\ldots,n-1$ definiert. Betrachte zunächst $\mathrm{id}_{|\Delta^n|}\in C_n(|\Delta^n|;R)$. Setze

$$(B_n)_{|\Delta^n|}(\mathrm{id}_{|\Delta^n|}) := (K_{\Delta^n})_{n-1} \circ (B_{n-1})_{|\Delta^n|} \circ \partial_n(\mathrm{id}_{|\Delta^n|})$$

Ist $\sigma: |\Delta^n| \to X$ ein beliebiger singulärer n-Simplex in X, so ist $\sigma = \sigma_*(\mathrm{id}_{|\Delta^n|})$, also setzen wir⁷

$$(B_n)_X(\sigma) := \sigma_* ((B_n)_{|\Delta^n|} (\mathrm{id}_{|\Delta^n|}))$$

Für n=0 und $\sigma\colon \left|\Delta^0\right|\to X$ setzen wir $(H_0)_X(\sigma)$ als den konstanten 1-Simplex τ mit $\operatorname{Im} \tau=\operatorname{Im} \sigma$. Ist H_{n-1} schon definiert, so setzen wir für einen singulären n-Simplex $\sigma\colon \left|\Delta^n\right|\to X$

$$(H_n)_X(\sigma) := \sigma_* \left((K_{\Delta^n})_n \left(\mathrm{id}_{|\Delta^n|} - (H_{n-1})_{|\Delta^n|} \circ \partial_n \left(\mathrm{id}_{|\Delta^n|} \right) \right) \right)$$

13.10 Lemma 1

Für jeden topologischen Raum X ist $(B_*)_X$ eine Kettenabbildung und $(H_*)_X$ eine Kettenhomotopie zwischen $(B_*)_X$ und der Identität.

13.11 Lemma 2

Sei \mathcal{U} eine offene Überdeckung von X. Sei $\alpha \in C_n(X;R)$. Dann gibt es $k_0 \geqslant 0$ so, dass $(B_n)_X^k(\alpha) \in C_n^{\mathcal{U}}(X;R)$ für alle $k \geqslant k_0$.

Beweis (mit Lemma 3, 13.16)

Es genügt $\alpha = \sigma \colon |\Delta^n| \to X$ zu betrachten. Sei $\sigma^* \mathcal{U} = \{ \sigma^{-1}(U) \, | \, U \in \mathcal{U} \}$. Dann gilt

$$\sigma^* \left(C_*^{\sigma^* \mathcal{U}}(|\Delta^n|; R) \right) \subseteq C_*^{\mathcal{U}}(X; R).$$

Da $(B_n)_X^k(\sigma) = \sigma_*\Big((B_n)_{|\Delta^n|^k}(\mathrm{id}_{|\Delta^n|})\Big)$ genügt es zu zeigen: $(B_n)_{|\Delta^n|}^k(\mathrm{id}_{|\Delta^n|}) \in C_*^{\sigma^*\mathcal{U}}(|\Delta^n|;R)$. Sei $\varepsilon > 0$ eine Lebesguezahl⁸ für $\sigma^*\mathcal{U}$, das heißt $\forall x \in |\Delta^n|: \exists V \in \sigma^*\mathcal{U}: B_\varepsilon(x) \subseteq V$. Ist k > 0 mit $\Big(\frac{n}{n+1}\Big)^k \operatorname{diam}(\mathrm{id}_{|\Delta^n|}) < \varepsilon$, so ist $\Big((B_n)_{|\Delta^n|}\Big)^k(\mathrm{id}_{|\Delta^n|}) \in C_*^{\sigma^*\mathcal{U}}(|\Delta^n|;R)$ nach Lemma 3 (iii). \square

13.12 Beweis des Satzes über kleine Simplizes (13.3)

Sei $x \in H_n(X;R)$. Wähle $\alpha \in C_n(X;R)$ mit $[\alpha] = x$. Nach Lemma 2 gibt es ein k mit $(B_n)_X^k(\alpha) \in C_n^{\mathcal{U}}(X;R)$. Mit Lemma 1 folgt $x = [\alpha] = \left[(B_n)_X^k(\alpha) \right]$. Daher ist die von $C_*^{\mathcal{U}} \to C_*(X;R)$ induzierte Abbildung in H_* surjektiv.

Sei nun $x \in \ker H_n \left(C_*^{\mathcal{U}}(X;R) \to C_*(X;R) \right)$. Sei $\alpha \in C_n^{\mathcal{U}}(X;R)$ mit $x = [\alpha]$. Da x im Kern liegt, gibt es $\beta \in C_{n+1}(X;R)$ mit $\partial_n(\beta) = \alpha$. Nach Lemma 2 gibt es k mit $(B_n)_X^k(\beta) \in C_n^{\mathcal{U}}(X;R)$. Mit Lemma 1 folgt

$$x = [\alpha] = \left[(B_n)_X^k(\alpha) \right] = \left[(B_n)_X^k(\partial_n \beta) \right] = \left[\partial_n \left((B_{n+1})_X^k(\beta) \right) \right]$$

Also ist x = 0 in $H_*(C_*^{\mathcal{U}}(X;R))$.

 7 $(B_{n})_{X}(\sigma)=(B_{n})_{X}\left(\sigma_{*}(\mathrm{id}_{|\Delta^{n}|})\right)=\sigma_{*}\left((B_{n})_{|\Delta^{n}|(\mathrm{id}_{|\Delta^{n}|})}\right)$ muss wegen Natürlichkeit gelten

13 Kleine Simplizes 55

⁸ siehe https://de.wikipedia.org/wiki/Lebesguezahl

13.13 Bemerkung

Seien (C_*, ∂_*) und (C'_*, ∂'_*) Kettenkomplexe. $s_n \colon C_n \to C'_{n+1}$ eine Abbildung, die den Grad um 1 erhöht. Dann ist $s_{n-1} \circ \partial_n + \partial'_{n+1} \circ s_n$ eine Kettenabbildung:

$$(s_{n-1} \circ \partial_n + \partial'_{n+1} \circ s_n) \circ \partial_{n+1} = \partial'_{n+1} \circ (s_n \circ \partial_{n+1} + \partial'_{n+2} \circ s_{n+1})$$

Insbesondere ist $s \circ \partial + \partial' \circ s = f - g$ mit f eine Kettenabbildung. Dann ist auch g eine Kettenabbildung.

13.14 Definition

Seien $v_0,\ldots,v_p\in |\Delta^n|$. Dann bezeichnen wir mit $[v_0,\ldots,v_p]$ den singulären p-Simplex mit $\sum_{i=0}^p t_i e_i \to \sum_{i=1}^p t_i v_i$. Singuläre Simplizes dieser Form heißen **affin**.

13.15 Definition

Sei $\|\cdot\|$ eine Norm auf \mathbb{R}^{n+1} . Für einen singulären Simplex $\sigma\colon |\Delta^p|\to |\Delta^n|$ definieren wir den **Durchmesser** durch

$$\operatorname{diam}(\sigma) := \max\{\|\sigma(x) - \sigma(y)\| \,|\, x, y \in |\Delta^p|\}$$

13.16 Lemma 3

Sei $[v_0, \ldots, v_p]$ ein affiner singulärer p-Simplex in $|\Delta^n|$. Dann gilt:

(i)
$$\operatorname{diam}([v_0, \dots, v_p]) = \max\{||v_i - v_j|| \mid 0 \le i, j \le p\}$$

(ii) Es ist

$$(B_p)_{|\Delta^n|}([v_0,\ldots,v_p]) = \sum_{\sigma \in \sum_{\{v_0,\ldots,v_p\}}} \operatorname{sgn}(\sigma) \underbrace{\left[\frac{\sum_{i=0}^p \sigma(v_i)}{p+1}, \frac{\sum_{i=0}^{p-1} \sigma(v_i)}{p}, \ldots, \sigma(v_0)\right]}_{=:\tau_{\sigma}}$$

(iii) Für $\sigma \in \sum_{\{v_0,\dots,v_p\}}$ ist $\dim \tau_\sigma \leqslant \frac{n}{n+1} \dim [v_0,\dots,v_p]$.

Beweis

(i) Seien $v,v'\in \mathrm{Im}[v_0,\ldots,v_p]$. Dann ist $v=\sum_{i=0}^p t_iv_i$, $v'=\sum_{i=0}^p t_i'v_i$ mit $t_i,t_i'\geqslant 0$, $\sum_{i=0}^p t_i=1=\sum_{i=0}^p t_i'$. Dann gilt

$$||v - v'|| = \left\| \sum_{i=0}^{p} t_i v_i - v' \right\| = \left\| \sum_{i=0}^{p} t_i v_i - \sum_{i=0}^{p} t_i v' \right\| = \left\| \sum_{i=0}^{p} t_i (v_i - v') \right\| \leqslant \sum_{i=0}^{p} ||v_i - v'||$$

$$\leqslant \left(\sum_{i=0}^{p} t_i \right) \max_{i} ||v_i - v'|| = \max_{i} ||v_i - v|| \leqslant \max_{i,j} ||v_i - v_j||.$$

(ii) Per Induktion nach p. p = 0: Klar.

56 13 Kleine Simplizes

 $p-1\mapsto p$: Es genügt n=p, $v_0=e_0,\ldots,v_n=e_n$ zu betrachten. Es gilt

$$\begin{split} \left(B_{|\Delta^p|}\right)_p ([v_0,\dots,v_p]) &= (K_{\Delta^p}) \circ (B_{|\Delta^p|})_{p-1} \circ \partial_p [e_0,\dots,e_p] \\ &= \sum_{i=0}^p (-1)^i (K_{\Delta^p}) \circ (B_{|\Delta^p|})_{p-1} \circ [e_0,\dots,e_{i-1},e_{i+1},\dots,e_p] \\ &= \sum_{i=0}^p (-1)^i \sum_{\sigma \in \Sigma_{\{e_0,\dots,e_{i-1},e_{i+1},\dots e_p\}}} & \operatorname{sgn}(\sigma) (K_{\Delta^p}) \Big(\Big[\frac{\sigma(e_0) + \dots \sigma(e_{i-1}) + \sigma(e_{i+1}) + \dots + \sigma(e_p)}{p} \Big] \Big) \\ &= \sum_{i=0}^p (-1)^i \sum_{\sigma \in \Sigma_{\{e_0,\dots,e_{i-1},e_{i+1},\dots e_p\}}} & \operatorname{sgn}(\sigma) \Big[\frac{e_0 + \dots + e_p}{p+1}, \frac{\sigma(e_0) + \dots \sigma(e_{i-1}) + \sigma(e_{i+1}) + \dots + \sigma(e_p)}{p}, \dots \Big] \\ &= \dots = \sum_{\sigma \in \Sigma_{\{e_0,\dots,e_n\}}} & \operatorname{sgn}(\sigma) \Big[\frac{\sum_{i=0}^p \sigma(e_i)}{p}, \dots, \dots \Big] \end{split}$$

(iii) Es genügt $\sigma = id$ zu betrachten. Es ist

$$\begin{aligned} \dim \left[\frac{v_0 + \ldots + v_p}{p+1}, \frac{v_0 + \ldots v_{p-1}}{p}, \ldots, v_0 \right] & \overset{(i)}{=} \max_{i < j} \left\| \frac{v_0 + \ldots + v_i}{i+1} - \frac{v_0 + \ldots + v_j}{j+1} \right\| \\ &= \max_{i < j} \left\| \frac{v_0 + \ldots + v_i}{i+1} - \frac{v_0 + \ldots + v_j}{j+1} - \frac{v_{i+1} + \ldots + v_j}{j+1} \right\| \\ &= \max_{i < j} \left\| \frac{(j+1) - (i+1)}{(i+1)(j+1)} (v_0 + \ldots + v_i) - \frac{1}{j+1} (v_{i+1} + \ldots + v_j) \right\| \\ &= \max_{i < j} \frac{j-1}{j+1} \left\| \underbrace{v_0 + \ldots + v_i}_{i+1} - \underbrace{v_{i+1} + \ldots + v_j}_{j-1} \right\| \\ &\leq \max_{i < j} \frac{j-1}{j+1} \operatorname{diam}[v_0, \ldots, v_n] \leq \frac{n}{n+1} \operatorname{diam}[v_0, \ldots, v_n] \end{aligned}$$

13 Kleine Simplizes 57

14 Axiome für Homologie

14.1 Bezeichnung

Mit $V: \operatorname{Top}^2 \to \operatorname{Top}^2$ bezeichnen wir den Funktor $V(X,A) = (A,\emptyset) = A$.

14.2 Definition

Eine Homologietheorie mit Werten in R-Moduln ist ein Funktor

$$E_* \colon \mathsf{HTop}^2 \longrightarrow \mathsf{Gr}\text{-}R\text{-}\mathsf{Mod}$$

zusammen mit einer natürlichen Transformation $\partial_{*+1}: E_{*+1} \to E_* \circ V$, sodass folgende Axiome gelten:

(i) **Paarfolge**: Sei (X,A) ein Paar von topologischen Räumen. Seien $X=(X,\emptyset) \xrightarrow{j} (X,A)$ und $A=(A,\emptyset) \xrightarrow{i} X=(X,\emptyset)$ die Inklusionen. Dann ist

$$\cdots \longrightarrow E_{n+1}(X,A) \xrightarrow{\partial_{n+1}} E_n(A) \xrightarrow{E_n(i)} E_n(X) \xrightarrow{E_n(j)} E_n(X,A) \xrightarrow{\partial_{n-1}} E_{n-1}(A) \longrightarrow \cdots$$

eine lange exakte Folge.

(ii) **Ausschneidung**: Sei (X,A) ein Paar von topologischen Räumen und $L\subseteq A$ mit $\overline{L}\subseteq \mathring{A}$. Dann induziert die Inklusion $i\colon (X\setminus L,A\setminus L)\hookrightarrow (X,A)$ einen Isomorphismus

$$E_*(i) \colon E_*(X \setminus L, A \setminus L) \xrightarrow{\cong} E_*(X, A)$$

14.3 Bemerkung

Homologietheorien sind homotopieinvariant. Oft wird dies als eigenes Axiom formuliert.

14.4 Bemerkung

Für jede Homologietheorie gibt es eine Mayer-Vietoris-Folge. Dies ist eine formale Konsequenz aus der Paarfolge und dem Ausschneidungsisomorphismus. Eine einfache Folgerung aus der Mayer-Vietoris-Folge ist, dass jede Homologietheorie mit endlichen disjunkten Vereinigungen verträglich ist: Sei dazu $X=X_1\amalg\dots\amalg X_n$ und $j_i\colon X_i\to X$ die Inklusion, dann ist

$$E_*(X_1) \oplus \cdots \oplus E_*(X_n) \xrightarrow{E_*(j_1) \oplus \cdots \oplus E_*(j_n)} E_*(X)$$

ein Isomorphismus.

14.5 Definition

Zwei weitere Axiome, die Homologietheorien mit Werten in R-Moduln erfüllen können, sind:

Dimensionsaxiom: Für den Einpunktraum $\{x_0\}$ ist $E_0(\{x_0\}) \cong R$ und $E_n(\{x_0\}) = 0$ für $n \neq 0$.

Disjunkte Vereinigung: Sei $X = \coprod_{i \in I} X_i$ und $j_i \colon X_i \to X$ die Inklusion. Dann ist

$$\bigoplus_{i \in I} E_*(j_i) \colon \bigoplus_{i \in I} E_*(X_i) \longrightarrow E_*(X)$$

ein Isomorphismus.

58

⁹ Genauer: Sei S: GR-R-MoD \to GR-R-MoD der Funktor $(SM)_n = M_{n+1}$. Dann ist ∂_* eine natürliche Transformation $S \circ E_* \to E_* \circ V$, für (X,A) also $S(E_*(X,A)) \to E_*(V(X,A))$, $E_{n+1}(X,A) \xrightarrow{\partial_*} E_n(A)$.

14.6 Bemerkung

In Kapitel 6 haben wir GR-R-MoD als die Kategorie der $\mathbb N$ -graduierten R-Moduln definiert. Für viele Homologietheorien muss man diese Kategorie etwas vergrößern und $\mathbb Z$ -graduierte R-Moduln zulassen. Objekte sind dann Folgen $(M_n)_{n\in\mathbb Z}$ über $\mathbb Z$ von R-Moduln M_n .

14.7 Bemerkung

• Für jede Homologietheorie E_* gilt: $E_*(S^n) \cong E_*(\{\mathrm{pt}\}) \oplus E_{*-n}(\{\mathrm{pt}\})$

Aufgabe 1 Blatt 12

 Die Konstruktion des zellulären Kettenkomplexes in singulärer Homologie benutzte nur die Axiome aus 14.2. Für die Identifikation der zellulären Homologie mit der singulären Homologie waren zusätzlich die Axiome aus 14.5 notwendig. Ohne das Axiom über disjunkte Vereinigungen kann man nur endliche CW-Komplexe behandeln. Ohne das Dimensionsaxiom erhält man an der Stelle der zellulären Kettenkomplex eine sogenannte Spektralfolge, die Atiyah-Hirzebruch Spektralfolge.

14.8 Definition

Seien (E_*,∂_*^E) und (F_*,∂_*^F) Homologietheorien. Ein **Morphismus von Homologietheorien** ist eine natürliche Transformation $\tau_*\colon E_*\to F_*$, sodass $\tau_*\circ\partial_{*+1}^E=\partial_*^F\circ\tau_{*+1}$. Also kommutiert für alle (X,A) das folgende Diagramm

$$E_{n+1}(X,A) \xrightarrow{\partial_{n+1}^{E}} E_{n}(A)$$

$$\downarrow^{\tau_{n+1,(X,A)}} \qquad \downarrow^{\tau_{n,A}}$$

$$F_{n+1}(X,A) \xrightarrow{\partial_{n+1}^{F}} F_{n}(A)$$

14.9 Satz

Sei $\tau_* : (E_*, \partial_*^E) \to (F_*, \partial_*^F)$ ein Morphismus von Homologietheorien. Ist

$$(\tau_*)_{\{\mathrm{pt}\}} \colon E_*(\{\mathrm{pt}\}) \to F_*(\{\mathrm{pt}\})$$

ein Isomorphismus, dann ist $(\tau_*)_X$ für jeden endlichen CW-Komplex ein Isomorphismus. Sind E_* und F_* mit beliebigen disjunkten Vereinigungen verträglich, so ist $(\tau_*)_X$ für alle CW-Komplexe ein Isomorphismus.

Beweis

Schritt 1: Sei X ein 0-dimensionaler endlicher CW-Komplex, also eine endliche Menge mit der diskreten Topologie. Für $x \in X$ sei $i_x \colon \{x\} \to X$ die Inklusion. Wir erhalten folgendes Diagramm:

$$E_*(X) \xrightarrow{(\tau_*)_X} F_*(X)$$

$$\stackrel{\cong}{=} \qquad \qquad \stackrel{\cong}{=} \qquad \qquad \stackrel{\cong}{=} \qquad \qquad \stackrel{\cong}{=} \qquad \qquad \stackrel{\cong}{=} \qquad \qquad F_*(\{x\})$$

$$\underset{x \in X}{\bigoplus} E_*(\{x\}) \xrightarrow{\bigoplus_{x \in X} (\tau_*)_{\{x\}}} \bigoplus_{x \in X} F_*(\{x\})$$

Das Diagramm kommutiert, da τ_* eine natürliche Transformation ist.

14 Axiome für Homologie 59

Schritt 2: Angenommen $(\tau_*)_X$ ist ein Isomorphismus für jeden endlichen $\mathrm{CW} ext{-}Komplex$ von Dimension echt kleiner als n. Sei X ein n-dimensionaler endlicher $\mathrm{CW} ext{-}Komplex$:

$$\coprod_{i \in I} S^{n-1} \xrightarrow{\coprod q_i^{(n)}} X^{(n-1)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\coprod_{i \in I} D^n \xrightarrow{\coprod Q_i^{(n)}} X$$

Sei $X_+^{(n-1)}:=X^{(n-1)}\cup\coprod_{i\in I}Q_i^{(n)}(D^n\setminus\{0\})$ und $Z:=\coprod_{i\in I}Q_i^{(n)}(\mathring{D^n})$. Dann sind $X_+^{(n-1)}$, Z und $Z\cap X_+^{(n-1)}$ homotopieäquivalent zu endlichen CW-Komplexen mit Dimension echt kleiner n. Insbesondere sind $(\tau_*)_{X_+^{(n-1)}}$, $(\tau_*)_Z$ und $(\tau_*)_{X_+^{(n-1)}\cap Z}$ Isomorphismen. Da $X_+^{(n-1)}\subseteq X$ und $Z\subseteq X$ offen sind, erhalten wir in E_* und F_* zugehörigen Mayer-Vietoris-Folgen:

$$\cdots \longrightarrow E_*(X_+^{(n-1)} \cap Z) \longrightarrow E_*(X_+^{(n-1)}) \oplus E_*(Z) \longrightarrow E_*(X) \xrightarrow{\partial_*^{\mathrm{MV},E}} E_{*-1}(X_+^{(n-1)} \cap Z) \longrightarrow \cdots$$

$$\cong \downarrow^{(\tau_*)} X_+^{(n-1)} \cap Z \qquad \cong \downarrow^{(\tau_*)} X_+^{(n-1)} \oplus (\tau_*)_Z \qquad \downarrow^{(\tau_*)} X \qquad \cong \downarrow^{(\tau_{*-1})} X_+^{(n-1)} \cap Z$$

$$\cdots \longrightarrow F_*(X_+^{(n-1)} \cap Z) \longrightarrow F_*(X_+^{(n-1)}) \oplus F_*(Z) \longrightarrow F_*(X) \xrightarrow{\partial_*^{\mathrm{MV},F}} F_{*-1}(X_+^{(n-1)} \cap Z) \longrightarrow \cdots$$

Da τ_* eine natürliche Transformation ist, kommutierten die beiden linken Vierecke. Da τ_* mit der Randabbildung der Paarfolgen von E_* und F_* kommutiert, kommutiert auch τ_* mit den Randabbildungen der Mayer-Vietoris-Folgen in E_* und F_* . Also kommutiert auch das das dritte Viereck. Mit dem 5er-Lemma (8.15) folgt, dass auch $(\tau_*)_X$ ein Isomorphismus ist.

Erfüllen E_* und F_* auch das Dimensionsaxiom, so zeigen die Argumente aus Schritt 1 und 2, dass $(\tau_*)_X$ ein Isomorphismus ist für jeden endlich dimensionalen CW-Komplex.

Schritt 3: Sei X ein $\operatorname{CW-Komplex}$. Sei

$$X^{+} := \{(x,t) \mid x \in X^{(n)}, t \in (n+1/2,\infty)\} \subseteq X \times (1/2,\infty)$$

Sei weiter

$$X_0 := X^+ \cap \left(X \times \left((1/2, \infty) \setminus \{1, 3, 4, \ldots\} \right) \right) \qquad X_1 := X^+ \cap \left(X \times \left((1/2, \infty) \setminus \{2, 4, 6, \ldots\} \right) \right)$$

Dann sind X_0, X_1 und $X_0 \cap X_1$ homotopieäquivalent zu disjunkten Vereinigungen von endlichen dimensionalen CW-Komplexen. Sind E_* und F_* mit beliebigen Vereinigungen verträglich, so folgt dass $(\tau_*)_{X_0}$, $(\tau_*)_{X_1}$ und $(\tau_*)_{X_0 \cap X_1}$ Isomorphismen sind. Da X homotopieäquivalent zu X^+ ist, $X^+ = X_0 \cup X_1$ und X_0 und X_1 offen in X^+ sind, folgt wie in Schritt 2 mit der 5er-Lemma und der Mayer-Vietoris-Folge, dass auch $(\tau_*)_X$ ein Isomorphismus ist. \square

60 14 Axiome für Homologie

15 Zusammenhang zwischen $\pi_1(X,x_0)$ und $H_1(X;\mathbb{Z})$

Zur Vorbereitung müssen wir kurz wiederholen, was eine Abelisierung ist:

15.1 Definition

Sei G eine Gruppe. Dann heißt die Untergruppe von G, die erzeugt wird von Elementen der Form $[g,h] := ghg^{-1}h^{-1}$, **Kommutatorgruppe** von G. Wir schreiben hierfür auch $[G,G] \subset G$.

15.2 Lemma

 $[G,G]\subset G$ ist ein Normalteiler von G.

Beweis

Seien $g_0, \ldots, g_n, h \in G$. Dann ist

$$h[g_0, g_1] \cdot \ldots \cdot [g_{n-1}, g_n] \cdot h^{-1} = [hg_0h^{-1}, hg_1h^{-1}] \cdot \ldots \cdot [hg_{n-1}h^{-1}, hg_nh^{-1}]$$

15.3 Definition

Der Quotient $G^{ab} := G/[G,G]$ heißt **Abelisierung** (manchmal auch Abelianisierung) von G und ist offensichtlich stets abelsch.

Für eine abelsche Gruppe G ist sinnigerweise $G^{ab} = G$.

15.4 Bemerkung

- Gruppen $\stackrel{
 m ab}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-}$ Abel.Gruppen, $G \longmapsto G^{
 m ab}$ definiert einen Funktor.
- Dieser Funktor hat die folgende universelle Eigenschaft: Zu jeder abelschen Gruppe A und einem Homomorphismus $\varphi\colon G\to A$ existiert ein eindeutiger Gruppenhomomorphismus $\varphi^{\mathrm{ab}}\colon G^{\mathrm{ab}}\to A$, sodass folgendes Diagramm kommutiert

15.5 Schleifen und 1-Zykel

Sei X ein topologischer Raum. Da $\left|\Delta^1\right|\cong [0,1]$, liefert jeder Pfad $\omega\colon [0,1]\to X$ einen 1-Simplex in $C_1(X;\mathbb{Z})$.

15.6 Lemma 1

Seien $\omega,\omega'\colon [0,1]\to X$ Pfade in X mit $\omega(1)=\omega'(0)$, dann ist $\omega*\omega'-\omega-\omega'\in C_1(X;\mathbb{Z})$ der Rand eines 2-Simplex.

"*" bezeichnet die Verkettung von Pfaden und wird noch links nach rechts gelesen

Beweis

Zur Erinnerung: Die geometrische Realisierung des 2-Simplex ist gegeben durch

$$\left|\Delta^{2}\right| = \left\{ (x_{0}, x_{1}, x_{2}) \in \mathbb{R}^{3} \left| \sum_{i=0}^{2} x_{i} = 1, x_{j} \geqslant 0 \,\forall j \in \{0, 1, 2\} \right. \right\}.$$

Abbildung 6: Skizze zum Beweis von Lemma 15.6

Betrachte nun folgenden singulären Simplex $\sigma\colon |\Delta^2| \to X$ definiert durch

$$(x_0, x_1, x_2) \longmapsto (\omega * \omega') \left(\frac{1}{2}(1 + x_0 - x_2)\right) = \omega * \omega' \left(\frac{1}{2}(2x_0 + x_1)\right)$$

Die Ränder sind

$$(\delta_0 \sigma)(s) = \sigma(0, s, 1 - s) = \omega * \omega' \left(\frac{1}{2}s\right) = \omega(s)$$

$$(\delta_1 \sigma)(s) = \sigma(s, 0, 1 - s) = \omega * \omega'(s)$$

$$(\delta_2 \sigma)(s) = \sigma(s, 1 - s, 0) = (\omega * \omega') \left(\frac{1}{2}(1 + s)\right) = \omega'(s)$$

Dann folgt $\partial \sigma = \delta_0 \sigma - \delta_1 \sigma + \delta_2 \sigma = \omega - \omega * \omega' + \omega'$.

15.7 Lemma 2

- a) Sei $\omega \colon [0,1] \to X$ ein Pfad und $\omega^{-1}(s) = \omega(1-s)$ der umgekehrte Pfad. Dann ist $\omega + \omega^{-1}$ der Rand einer 2-Kette, also von einem Element aus $C_2(X;\mathbb{Z})$.
- b) Der konstante Pfad ist der Rand einer 2-Kette.

Beweis

a) Sei $\sigma \colon |\Delta^2| \to X$ gegeben durch $\sigma(x_0, x_1, x_2) = \omega(x_1)$. Dann ist

$$\partial \sigma = \omega - \underbrace{\operatorname{const}_{\omega(0)}}_{=:\partial \tau} + \omega^{-1}$$

Also gilt nach b) $\omega + \omega^{-1} = \partial(\sigma + \tau)$.

b) Der Rand des konstanten 2-Simplex ist der konstante Pfad.

Abbildung 7: Skizze zum Beweis von Lemma 15.7

15.8 Lemma 3

Sind $\omega, \omega' \colon [0,1] \to X$ Pfade in X mit $\omega(0) = \omega'(0)$ und $\omega(1) = \omega'(1)$, dann gilt: Ist ω homotop zu ω' relativ zu den Endpunkten, dann ist $\omega - \omega'$ der Rand einer 2-Kette.

Abbildung 8: Skizze zum Beweis von Lemma 15.8

Beweis

Sei $H \colon [0,1] \times [0,1] \to X$ eine Homotopie zwischen ω und ω' mit $H(0,s) = \omega(s)$, $H(1,s) = \omega'(s)$, $H(t,0) = \mathrm{const}_{\omega(0)}$ und $H(t,1) = \mathrm{const}_{\omega(1)}$. Wähle einen Homöomorphismus durch

$$\kappa \colon [0,1] \times [0,1] / [0,1] \times \{0\} \to |\Delta^2|, \qquad [t,s] \longmapsto (st,s(1-t),(1-s))$$

Betrachte nun $\sigma:=H\circ\kappa^{-1}\colon \left|\Delta^2\right|\to X$. Die Ränder sind $\delta_0\sigma=\omega$ und $\delta_1\sigma=\omega'$ und $\delta_2\sigma=\mathrm{const}_{\omega(1)}$. Also folgt, dass $\omega-\omega'$ der Rand einer 2-Kette ist.

15.9 Die Hurewicz-Abbildung

Falls $\omega\colon [0,1]\to X$ eine Schleife ist, dann ist $\partial\omega=\omega(1)-\omega(0)=0$. Also repräsentiert ω ein Element $[\![\omega]\!]\in H_1(X)$. Nach Lemma 3 erhalten wir eine wohldefinierte Abbildung $\theta\colon \pi_1(X,x_0)\to H_1(X)$. Nach Lemma 1 bildet diese Abbildung die Verknüpfung von Schleifen auf Summen von 1-Ketten ab.

[[·]] für die Homologieklassen und [·] für Homotopieklassen

$$\llbracket \omega * \omega' \rrbracket = \llbracket \omega \rrbracket + \llbracket \omega' \rrbracket \quad , \quad \llbracket \omega^{-1} \rrbracket = -\llbracket \omega \rrbracket$$

Zusammen mit Lemma 2 erhalten wir einen Gruppenhomomorphismus. Aus der universellen Eigenschaft der Abelisierung erhalten wir

$$\theta^{\mathrm{ab}} \colon \pi_1(X, x_0)^{\mathrm{ab}} \longrightarrow H_1(X; \mathbb{Z})$$

15.10 Theorem (Hurewicz)

Für wegzusammenhängende Räume ist θ^{ab} ein Isomorphismus.

Beweis (mit Lemma 4 und 5)

Sei X wegzusammenhängend. Wähle für jedes $x\in X$ einen Pfad λ_x von x_0 nach x. Wähle $\lambda_{x_0}=\mathrm{const}_{x_0}$. Betrachte

$$\overline{\rho} \colon C_1(X; \mathbb{Z}) \longrightarrow \pi_1(X, x_0)^{\mathrm{ab}} \quad , \qquad \omega \longmapsto \left[\lambda_{\omega(0)} * \omega * \lambda_{\omega(1)}^{-1}\right]$$

Dies ist ein Gruppenhomomorphismus, den wir auf den Generatoren angegeben haben. Hier benutzen wir, dass $\pi_1(X,x_0)^{\mathrm{ab}}$ abelsch ist. Nach Lemma 4 induziert $\overline{\rho}$ einen Homomorphismus $\rho\colon H_1(X;\mathbb{Z})\to \pi_1(X,x_0)^{\mathrm{ab}}$. Für eine Schleife ω in x_0 gilt

$$(\rho\circ\theta)[\omega]=\left[\lambda_{\omega(0)}*\omega*\lambda_{\omega(0)}^{-1}\right]=\left[\lambda_{x_0}*\omega*\lambda_{x_0}^{-1}\right]=[\omega]$$

Die Zuordnung $x\mapsto \lambda_x$ liefert einen Gruppenhomomorphismus $\lambda\colon C_0(X;\mathbb{Z})\to C_1(X;\mathbb{Z})$

$$\sum_{i} n_i \cdot x_i \longmapsto \sum_{i} n_i \cdot \lambda_{x_i}$$

Mit Lemma 5 folgt $(\theta \circ \rho)(\llbracket c \rrbracket) = \llbracket c \rrbracket$ für alle $\llbracket c \rrbracket \in H_1(X)$. Damit ist θ^{ab} ein Isomorphismus für wegzusammenhängende Räume X.

15.11 Lemma 4

 $\overline{
ho}$ bildet die Ränder von 2-Simplizes auf $1 \in \pi_1(X,x_0)^{\mathrm{ab}}$ ab.

Sei $\sigma \in C_2(X; \mathbb{Z})$ ein 2-Simplex. Es gilt mit $\omega_i := \delta_i \sigma$

$$\begin{split} \overline{\rho}(\partial\sigma) &= \overline{\rho}(\delta_0\sigma - \delta_1\sigma + \delta_2\sigma) = \overline{\rho}(\omega_0) \cdot \overline{\rho}(\omega_1)^{-1} \cdot \overline{\rho}(\omega_2) \\ &= \left[\lambda_{\omega_0(0)} * \omega_0 * \lambda_{\omega_0(1)}^{-1} * \underbrace{\left(\lambda_{\omega_1(0)} * \omega_1 * \lambda_{\omega_1(1)}^{-1}\right)^{-1}}_{=\lambda_{\omega_0(1)} * \omega_1^{-1} * \lambda_{\omega_1(0)}^{-1}} * \lambda_{\omega_2(0)} * \omega_2 * \lambda_{\omega_2(1)}\right] \\ &= \left[\lambda_{\omega_0(0)} * \underbrace{\omega_0 * \omega_1^{-1} * \omega_2}_{=:\gamma} * \lambda_{\omega_2(1)=\omega_0(0)}^{-1}\right] \end{split}$$

Der Pfad γ ist die Schleife, die einmal auf dem Rand des 2-Simplex herumläuft. Also $\gamma\colon [0,1] \to \left|\partial\Delta^2\right| \hookrightarrow 0$ $|\Delta^2| \to X$. Aber $|\partial \Delta^2| \hookrightarrow |\Delta^2|$ ist homotop zur konstanten Abbildung auf $\omega_0(0)$ mit einer Homotopie, die den Punkt $\omega_0(0)$ fixiert.

$$= \left[\lambda_{\omega_0(0)} * \lambda_{\omega_0(0)}^{-1} \right] = 1 \qquad \qquad \Box$$

Abbildung 9: Skizze zum Beweis von Lemma 15.11

15.12 Lemma 5

Sei $\omega\colon \left|\Delta^1\right| o X$ ein 1-Simplex, dann gilt $\theta\circ \overline{\rho}(\omega) = \llbracket \omega + \lambda_{\partial\omega}
rbracket$

Beweis Es gilt
$$(\theta \circ \overline{\rho})(\omega) = \theta\left(\left[\lambda_{\omega(0)} * \omega * \lambda_{\omega(1)}^{-1}\right]\right) = \left[\left[\lambda_{\omega(0)} * \omega * \lambda_{\omega(1)}^{-1}\right]\right] = \left[\left[\omega\right]\right] \underbrace{-\left[\left[\lambda_{\omega(1)}\right]\right] + \left[\left[\lambda_{\omega(0)}\right]\right]}_{\lambda_{\omega(0)-\omega(1)} = \lambda_{\partial\omega}}$$

15.13 Corollar

Sind X_1, \ldots, X_n wegzusammenhängende Räume, dann gilt

$$H_1(X_1 \times \ldots \times X_n) \cong H_1(X_1) \oplus \ldots \oplus H_1(X_n)$$

Beweis

$$\begin{split} H_1(X_1 \times \ldots \times X_n) &\cong \pi_1 \left(X_1 \times \ldots \times X_n, (x_0^{(1)}, \ldots, x_0^{(n)}) \right)^{\mathrm{ab}} \\ &\cong \left(\pi_1 \left(X_1, x_0^{(1)} \right) \times \ldots \times \pi_1 \left(X_n, x_0^{(n)} \right) \right)^{\mathrm{ab}} \\ &\cong \pi_1 \left(X_1, x_0^{(1)} \right)^{\mathrm{ab}} \oplus \ldots \oplus \pi_1 \left(X_n, x_0^{(n)} \right)^{\mathrm{ab}} \\ &\cong H_1(X_1) \oplus \ldots \oplus H_1(X_n) \end{split}$$
 (Übungsaufgabe)

Der Satz von Hurewicz

15.14 Definition

Sei X ein topologischer Raum mit Basispunkt $x_0 \in X$, sei I = [0,1] und $n \in \mathbb{N}_0$. Die \mathbf{n} -te absolute Homotopiegruppe $\pi_n(X,x_0)$ ist die Menge der Äquivalenzklassen von stetigen Abbildungen $\omega \colon I^n \to X$ mit $\omega(\partial I^n) = \{x_0\}$. Die Äquivalenzrelation ist Homotopie relativ zu ∂I^n , d.h. $H \colon I^n \times [0,1] \to X$ erfüllt $H_t(\partial I^n) = \{x_0\}$ für alle $t \in [0,1]$. Die Gruppenverknüpfung in $\pi_n(X,x_0)$ ist gegeben durch

$$(\omega*\omega')(s_1,\ldots,s_n) = \begin{cases} \omega(2s_1,s_2,\ldots,s_n), & \text{falls } 0\leqslant s_1\leqslant \frac{1}{2} \\ \omega'(2s_1-1,s_2,\ldots,s_n), & \text{falls } \frac{1}{2}\leqslant s_1\leqslant 1 \end{cases}$$

Bild für n=2:

$$\boxed{ \quad \omega \quad * \quad \omega' \quad = \quad \omega \quad \omega'}$$

15.15 Eigenschaften von $\pi_n(X, x_0)$

- Die Verknüpfung "*" ist assoziativ, hat const_{x_0} , also die konstante Abbildung auf x_0 , als neutrales Element und $\omega^{-1}(s_1,\ldots,s_n)=\omega(1-s_1,s_2,\ldots,s_n)$ als inverses Element.
- Die Verknüpfung "*" ist abelsch für $n \ge 2$ (Eckmann-Hilton Argument¹⁰)

- $\pi_n \colon \text{Top} \to \text{Abel.Gruppen}$ ist ein Funktor, das heißt eine stetige Abbildung $f \colon (X, x_0) \to (Y, y_0)$ induziert einen Gruppenhomomorphismus $\pi_n(f) \colon \pi_n(X, x_0) \to \pi_n(Y, y_0)$.
- Da $I^n/\partial I^n\cong S^n$ ist, ergibt sich $\pi_n(X,x_0)$ auch aus den punktierten Homotopieklassen von Abbildungen $(S^n,*)\to (X,x_0)$.
- Falls x_0 und x_0' in der gleichen Wegzusammenhangskomponente von X liegen, dann induziert ein Weg von x_0 nach x_0' einen Isomorphismus $\pi_n(X,x_0)\cong\pi_n(X,x_0')$.

15.16 Definition

Sei $n \in \mathbb{N}_0$. Ein topologischer Raum X heißt \mathbf{n} -zusammenhängend, falls $\pi_0(X) = \{*\}$ und $\pi_k(X, x_0)$ trivial ist für alle $k \leqslant n$ und einen Basispunkt $x_0 \in X$.

¹⁰ siehe auch letztes Semester 14.5 und 14.6

15.17 Bemerkung

Da ein n-zusammenhängender Raum X für $n \geqslant 0$ mindestens wegzusammenhängend ist, gilt $\pi_k(X, x_0) \cong \pi_k(X, x_0')$. Somit ist die Definition unabhängig von der Wahl des Basispunktes.

15.18 Beispiel

0-zusammenhängend entspricht wegzusammenhängend und 1-zusammenhängend entspricht wegzusammenhängend und einfach zusammenhängend.

15.19 Definition: Relative Homotopiegruppen

Sei X ein topologischer Raum, $A\subset X$ ein Unterraum und $x_0\in A$ ein Basispunkt von A und X. Wir identifizieren $I^{n-1}\subset I^n$ mit der Seitenfläche von I^n , für die $s_n=0$ gilt. Außerdem setzen wir

$$J^{n-1} := \overline{\partial I^n \setminus I^{n-1}}$$

Die **relative Homotopiegruppe** $\pi_n(X,A,x_0)$ besteht aus den Homotopieklassen von stetigen Abbildungen $\omega\colon I^n\to X$ mit $\omega(I^{n-1})\subset A$ und $\omega(J^{n-1})=\{x_0\}$. Die Homotopien müssen ebenfalls $H_t(I^{n-1})\subset A$ und $H_t(J^{n-1})=\{x_0\}$ für alle $t\in[0,1]$ erfüllen. $\pi_n(X,A,x_0)$ ist eine Menge für

Abbildung 10: Verknüpfung in der relativen Homotopiegruppe für n=2

 $n\geqslant 1$, eine Gruppe für $n\geqslant 2$ und eine abelsche Gruppe für n>2. Alternativ können wir relative Homotopiegruppen auch wie folgt beschreiben: $\pi_n(X,A,x_0)$ sind Homotopieklassen von Abbildungen $(D^n,S^{n-1},*)\to (X,A,x_0)$.

15.20 Bemerkung

- Homotopiegruppen bilden *keine* verallgemeinerte Homologietheorie, da sie nicht das Ausschneidungsaxiom erfüllen.
- Es gibt eine lange exakte Sequenz von Homotopiegruppen:

$$\cdots \longrightarrow \pi_n(A, x_0) \longrightarrow \pi_n(X, x_0) \longrightarrow \pi_n(X, A, x_0) \stackrel{\partial}{\longrightarrow} \pi_{n-1}(A, x_0) \longrightarrow \cdots$$

15.21 Die Hurewicz-Abbildung

Sei $\vartheta\colon |\Delta^n| \xrightarrow{\cong} D^n$ ein Homöomorphismus. Dann gilt $\vartheta(|\partial\Delta^n|) = S^{n-1}$ und ϑ liefert eine Homologie-klasse $[\![\vartheta]\!] \in H_n(D^n,S^{n-1}) \cong \mathbb{Z}$. Diese Klasse ist ein Generator der Gruppe $H_n(D^n,S^{n-1})$. Sei nun $[\omega] \in \pi_n(X,A,x_0)$ repräsentiert durch $\omega\colon (D^n,S^{n-1},*) \to (X,A,x_0)$. Setze

$$\theta_n : \pi_n(X, A, x_0) \longrightarrow H_n(X, A) , [\omega] \longmapsto \omega_* \llbracket \vartheta \rrbracket$$

für $n\geqslant 2$. Dies ist wohldefiniert, denn falls ω homotop zu ω' ist (bezüglich (A,x_0)), dann ist $\omega_*=\omega'_*.$

Abbildung 11: Die Abbildung γ aus Lemma 15.22

15.22 Lemma

 $\theta_n \colon \pi_n(X,A,x_0) \longrightarrow H_n(X,A)$ ist ein Gruppenhomomorphismus.

Beweis

Wir brauchen eine alternative Beschreibung der Gruppenverknüpfung: Sei dazu $\gamma\colon D^n\to D^n/S^{n-2}\cong D^n\vee D^n$. Dann gilt $\gamma(S^{n-1})=S^{n-1}\vee S^{n-1}$, das heißt γ ist eine Abbildung von Raumpaaren $\gamma\colon (D^n,S^{n-1})\to (D^n\vee D^n,S^{n-1}\vee S^{n-1})$. Seien nun $\omega,\omega'\colon (D^n,S^{n-1},*)\to (X,A,x_0)$ Für die Verknüpfung $[\omega*\omega']\in \pi_n(X,A,x_0)$ gilt

$$[(\omega \vee \omega') \circ \gamma] = [\omega * \omega']$$

Sei $p_j\colon (D^n\vee D^n,S^{n-1}\vee S^{n-1})\to (D^n,S^{n-1})$ die Abbildung, die die j-te Kopie von D^n auf den Basispunkt abbildet und auf der anderen Kopie die Identität ist. Sei weiter $i_k\colon (D^n,S^{n-1})\to (D^n\vee D^n,S^{n-1}\vee S^{n-1})$ die Inklusion auf die k-te Kopie von (D^n,S^{n-1}) . Betrachte nun die Abbildung

$$((p_1)_*, (p_2)_*): H_n(D^n \vee D^n, S^{n-1} \vee S^{n-1}) \longrightarrow H_n(D^n, S^{n-1}) \oplus H_n(D^n, S^{n-1})$$

Dies ist ein Isomorphismus mit inverser Abbildung

$$(i_1)_* + (i_2)_* : H_n(D^n, S^{n-1}) \oplus H_n(D^n, S^{n-1}) \longrightarrow H_n(D^n \vee D^n, S^{n-1} \vee S^{n-1})$$

denn es gilt

$$\left((p_1)_*,(p_2)_*\right)\circ\left((i_1)_*+(i_2)_*\right)=\left(\underbrace{\left(\underline{p_1\circ i_1}\right)_*}_{\mathrm{id}}+\underbrace{\left(\underline{p_1\circ i_2}\right)_*}_{\mathrm{const}},\underbrace{\left(\underline{p_2\circ i_1}\right)_*}_{\mathrm{const}}+\underbrace{\left(\underline{p_2\circ i_2}\right)_*}_{\mathrm{id}}\right)=\mathrm{id}$$

Also ist $((p_1)_*, (p_2)_*)$ eine surjektive Abbildung und Quelle und Ziel sind freie abelsche Gruppen von gleichem Rang. Die Abbildung $p_j \circ \gamma$ ist homotop zur Identität (Übung). Also folgt $((p_1)_*, (p_2)_*) \circ \gamma(\llbracket \vartheta \rrbracket) = (\llbracket \vartheta \rrbracket, \llbracket \vartheta \rrbracket)$ und weiter

$$\theta_{n}([\omega * \omega']) = (\omega \vee \omega')_{*} \circ \gamma_{*}(\llbracket \vartheta \rrbracket) = (\omega \vee \omega')_{*} \circ \left((i_{1})_{*} + (i_{2})_{*} \right) \circ \left((p_{1})_{*}, (p_{2})_{*} \right) \circ \gamma_{*}(\llbracket \vartheta \rrbracket)$$

$$= (\omega \vee \omega')_{*} \circ \left((i_{1})_{*}(\llbracket \vartheta \rrbracket) + (i_{2})_{*}(\llbracket \vartheta \rrbracket) \right)$$

$$= \omega_{*}(\llbracket \vartheta \rrbracket) + \omega'_{*}(\llbracket \vartheta \rrbracket)$$

15.23 Theorem (Hurewicz)

Seien (X,A) mit $A\subset X$ beide wegzusammenhängend. Sei $\pi_1(A,x_0)=1$ und sei $\pi_k(X,A,x_0)=0$ für $1\leqslant k\leqslant n-1,\, n\geqslant 2.$ Dann ist

$$\theta_n \colon \pi_n(X, A, x_0) \longrightarrow H_n(X, A)$$

ein Isomorphismus.

15.24 Korollar

Ist X ein (n-1)-zusammenhängender Raum für ein $n \ge 2$, dann ist

$$\theta_n : \underbrace{\pi_n(X, x_0)}_{=\pi_n(X, \{x_0\}, x_0)} \longrightarrow H_n(X, x_0) \cong H_n(X)$$

ein Isomorphismus.

15.25 Satz

Sei $n \ge 1$. Dann ist $\pi_n(S^n, *) \cong \mathbb{Z}$ und $\pi_k(S^n, *) = 0$ für k < n.

Beweis

Für n=1 gilt $\pi_0(S^n,*)=\{*\}$ und $\pi_1(S^1,*)\cong \mathbb{Z}$. Für n>1 wissen wir aus dem letzten Semester, dass $\pi_1(S^n,*)=1$ und S^n wegzusammenhängend ist, also 1-zusammenhängend ist.

Angenommen $\pi_i(S^n,*)=0$ für $i=0,\ldots,k$ und $0\leqslant k< n$. Dann ist S^n k-zusammenhängend und wir erhalten aus dem vorigen Korollar

$$\pi_{k+1}(S^n,*) \xrightarrow{\cong} H_{k+1}(S^n) = \begin{cases} \mathbb{Z}, & \text{falls } k+1 = n \\ 0, & \text{sonst} \end{cases}$$

Falls k+1 < n ist, so ist auch $\pi_{k+1}(S^n,*) = 0$, sonst sind wir fertig.

16 Die Fundamentalklasse

16.1 Beispiel

Wir betrachten zu einigen uns gut bekannten Mannigfaltigkeiten die Homologiegruppen in der Dimension der Mannigfaltigkeit:

•
$$H_n(\mathbb{R}^n) = 0$$

•
$$H_{2n}(\mathbb{C}P^n)=\mathbb{Z}$$

•
$$H_n(S^n) = \mathbb{Z}$$

•
$$H_{2n}(S^n \times \mathbb{R}^n) = 0$$

•
$$H_2(T^2) = \mathbb{Z}$$

•
$$H_n(\mathbb{R}P^n) = \mathbb{Z}$$
, falls n ungerade, 0 sonst.

RevChap16

16.2 Bemerkung

Sei M ein n-Mannigfaltigkeit und $x \in M$. Dann gilt (wegen Ausschneidung und der Paarfolge)

$$H_n(M, M \setminus \{x\}; R) \cong H_n(\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}; R) \cong H_{n-1}(\mathbb{R}^n \setminus \{0\}; R) \cong H_{n-1}(S^{n-1}; R) \cong R$$

16.3 Definition

Sei M eine n-Mannigfaltigkeit und $x \in M$. Eine (homologische) **Orientierung** (über R) im Punkt x ist ein Erzeuger μ_x von $H_n(M, M \setminus \{x\}, R)$.

Bemerkung

Über $R = \mathbb{Z}$ gibt es in jedem Punkt genau zwei Orientierungen, da \mathbb{Z} genau zwei Erzeuger hat. Über $R = \mathbb{F}_2$ gibt es in jedem Punkt eine eindeutige Orientierung, da \mathbb{F}_2 genau einen Erzeuger hat.

16.4 Notation

Seien $A \subseteq B \subseteq X$ Unterräume. Sei $i \colon (X, X \setminus B) \hookrightarrow (X, X \setminus A)$ die Inklusion. Ist $v \in H_n(X, X \setminus B; R)$, so nennen wir

$$v|_A := i_*(v)$$

die Einschränkung von v auf A. Für $A = \{x\}$ schreiben wir $v|_x := v|_{\{x\}}$.

16.5 Definition

Sei M eine n-Mannigfaltigkeit. Eine (homologische) **Orientierung** von M über R ist eine Zuordnung $M\ni x\mapsto \mu_x\in H_n(M,M\setminus\{x\};R)$, die für jeden Punkt $x\in M$ eine Orientierung über R im Punkt x auswählt, sodass folgende Bedingung erfüllt ist: Für alle $x\in M$ gibt es eine Umgebung U von $x\in M$ und $\mu_U\in H_n(M,M\setminus U;R)$ mit $\mu_y=\mu_U|_y$ für alle $y\in U$.

Gibt es eine solche Orientierung, so heißt M orientierbar. Eine Mannigfaltigkeit zusammen mit einer Orientierung heißt eine orientierte Mannigfaltigkeit.

16.6 Beispiel

Für $M = \mathbb{R}^n$ betrachte $U = \{x \in \mathbb{R}^n \mid ||x|| < 1\}$. Dann ist wegen Homotopieinvarianz

$$H_n(\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}; R) \cong H_n(\overline{U}, \overline{U} \setminus U; R) \cong H_n(D^n, S^{n-1}; R) = R$$

mit $\overline{U}=D^n=\{x\in\mathbb{R}^n\,|\,\|x\|\leqslant1\}$ und $\overline{U}\setminus U=S^{n-1}=\{x\in\mathbb{R}^n\,|\,\|x\|=1\}$. Für jedes $y\in U$ ist $(\mathbb{R}^n,\mathbb{R}^n\setminus U)\to (\mathbb{R}^n,\mathbb{R}^n\setminus\{y\})$ eine Homotopieinvarianz. Ist $\mu_U\in H_n(\mathbb{R}^n,\mathbb{R}^n\setminus\{0\};R)$ ein Erzeuger, so ist also $\mu_y=\mu_U|_y$ eine Orientierung von \mathbb{R}^n in y für alle $y\in U$.

16 Die Fundamentalklasse 69

16.7 Beispiel

Sei $\mu_{S^n}\in \tilde{H}_n(S^n;R)$ ein Erzeuger. Für $x\in S^n$ ist $\tilde{H}_*(S^n\setminus\{x\};R)=0$ und daher die Einschränkungsabbildung $\tilde{H}_n(S^n;R)\to \tilde{H}_*(S^n\setminus\{x\};R)=0$ ein Isomorphismus und $\mu_{S^n}|_x$ ist ein Erzeuger von $\tilde{H}_n(S^n,S^n\setminus\{x\};R)$. Daher ist $(\mu_{S^n}|_x)_{x\in S^n}$ eine Orientierung von M über R.

16.8 Bezeichnung

Eine geschlossene Mannigfaltigkeit ist eine kompakte Mannigfaltigkeit (ohne Rand).

16.9 Satz

Sei M eine geschlossene n-Mannigfaltigkeit. Dann ist M genau dann R-orientierbar, wenn es $\mu \in H_n(M;R)$ gibt, sodass $\mu|_x \in H_n(M,M\setminus\{x\};R)$ für jedes x eine Orientierung von M in x ist. Ist M zusammenhängend, so ist μ ein Erzeuger von $H_n(M;R)$ und $H_n(M;R)\cong R$.

Beweis (mit 16.14)

 $H_n(M;R)$ und $\Gamma(M,\mathcal{H})$ sind beide mit \coprod verträglich. Daher können wir auch annehmen, dass M zusammenhängend ist. Da M kompakt ist, können wir in dem Lemma 16.14 A=M setzen und wir erhalten für jede Orientierung $s\in\Gamma(M,\mathcal{H})$ eine Klasse $\mu\in H_n(M;R)$ mit $\mu|_x$. Nach der Überlagerungstheorie aus dem letzten Semester ist jeder Schnitt von \mathcal{H} schon durch seinen Wert an einem Punkt festgelegt. Insbesondere ist $\mathrm{ev}_x\colon\Gamma(M,\mathcal{H})\to H_n(M,M\setminus\{x\};R)\cong R$ injektiv. Ist M R-orientierbar, so ist ev_x ein Isomorphismus.

16.10 Definition

Sei M eine geschlossene n-Mannigfaltigkeit. Sei $\mathcal{H}=\mathcal{H}_R$ die disjunkte Vereinigung aller $H_n(M,M\setminus\{x\};R)$ mit $x\in M$. Wir definieren eine Topologie auf \mathcal{H} durch:

$$V\subseteq H \text{ offen } :\Leftrightarrow \forall v\in V \text{ mit } v\in H_n(M,M\setminus \{x\};R) \text{ gibt es eine Umgebung } U \text{ von } x \text{ in } M$$

$$\text{und } v_U\in H_n(M,M\setminus U,R) \text{ mit } v_U\big|_x=v \text{ und } v_U\big|_y\in V \text{ für alle } y\in U.$$

Wir definieren $\pi \colon \mathcal{H} \to M$ durch $\pi(v) = x$ für $v \in H_n(M, M \setminus \{x\}; R)$. Es gilt $\pi^{-1}(\{x\}) = H_n(M, M \setminus \{x\}; R)$. Mit $\Gamma(M, \mathcal{H})$ bezeichnen wir die Menge aller stetigen Schnitte $s \colon M \to \mathcal{H}$ für π , das heißt

$$\Gamma(M, \mathcal{H}) = \{s \colon M \to \mathcal{H} \text{ stetig} \mid \pi \circ s = \mathrm{id}_M \}$$

16.11 Bemerkung

- 1) Für jedes $x \in M$ erbt $H_n(M, M \setminus \{x\}; R) \subseteq \mathcal{H}$ die diskrete Topologie.
- 2) $\pi \colon \mathcal{H} \to M$ ist eine Überlagerung.
- 3) $\Gamma(M,\mathcal{H})$ ist ein R-Modul. Sind $s,s'\in\Gamma(M,\mathcal{H})$ und $r\in R$, so können wir s+s' und $r\cdot s$ punktweise erklären:

$$(s+s')(x) := s(x) + s'(x) \in H_n(M, M \setminus \{x\}; R)$$
$$(r \cdot s)(x) := r \cdot s(x) \in H_n(M, M \setminus \{x\}; R)$$

4) R-Orientierungen von M entsprechen genau den Schnitten $s \in \Gamma(M, \mathcal{H})$ für die $s(x) \in H_n(M, m \setminus \{x\}; R)$ für alle $x \in M$ ein Erzeuger ist.

70 16 Die Fundamentalklasse

- 5) Eine Folgerung aus der Eindeutigkeit im Hebungssatz aus der Überlagerungstheorie ist folgende Aussage:
 - Sei M zusammenhängend. Dann ist für jedes $x \in M$ die Auswertungsabbildung $\operatorname{ev}_x \colon \Gamma(M, \mathcal{H}) \to H_n(M, M \setminus \{x\}; R)$, $\operatorname{ev}_x(s) = s(x)$ injektiv.
- 6) Sei $v \in H_n(M;R)$. Dann erhalten wir durch $(s_v)(x) := v|_x$ einen Schnitt $s_v \in \Gamma(M,\mathcal{H})$. Wir erhalten einen R-Modul-Homomorphismus $H_n(M;R) \to \Gamma(M,\mathcal{H})$, $v \mapsto s_v$.
- 7) Es gibt immer den Nullschnitt in $\Gamma(M, \mathcal{H}), x \mapsto 0 \in H_n(M, M \setminus \{x\}; R)$.
- 8) Ist M zusammenhängend, so ist $\Gamma(M,\mathcal{H}) \neq 0$ genau dann, wenn M R-orientierbar ist.

16.12 Bemerkung

Für M zusammenhängend gilt: M ist R-orientierbar $\iff H_n(M;R) \cong R$.

16.13 Beispiel

Für $R = \mathbb{F}_2$ ist $\pi \colon \mathcal{H} \to M$ eine 2-fache Überlagerung. Da \mathcal{H} immer den Nullschnitt zulässt, ist \mathcal{H} dann trivial. Insbesondere ist jede n-Mannigfaltigkeit \mathbb{F}_2 -orientierbar.

16.14 Lemma

Sei M eine n-Mannigfaltigkeit und $A \subseteq M$ kompakt. Dann gilt

- a) Zu jedem $s \in \Gamma(M, \mathcal{H})$ gibt es ein eindeutiges $v_A \in H_n(M, M \setminus A; R)$ mit $v_A|_x = s(x)$ für alle $x \in A$.
- b) Für i > n ist $H_i(M, M \setminus A; R) = 0$.

Beweisskizze

- Schritt 1: Mit der MV-Folge (siehe 16.15) folgt: Sind die Aussagen a) und b) für A_1, A_2 und $A_1 \cap A_2$ richtig, so auch für $A_1 \cup A_2$.
- Schritt 2: Das Lemma ist richtig, wenn A eine abgeschlossene konvexe Teilmenge von \mathbb{R}^n ist. Dazu benutze wir den Isomorphismus $H_n(\mathbb{R}^n,\mathbb{R}^n\setminus A;R)\longrightarrow H_n(\mathbb{R}^n,\mathbb{R}^n\setminus \{x\};R)$ (für jedes $x\in A$). Mit Schritt 1 folgt die Aussage für $M=\mathbb{R}^n$ und A endliche Vereinigung von abgeschlossen konvexen Teilmengen.

Schritt 3: Das Lemma gilt für $M = \mathbb{R}^n$ und A beliebig.

Für den allgemeinen Fall schreibt an $A=A_1\cup\ldots\cup A_n$, sodass jedes A_i in einer Kartenumgebung von M enthalten ist. Mit Schritt 1 und 3 folgt dann die Aussage für A.

16.15 Bemerkung

1) Zu Unterräumen $A \subseteq X$ gibt es eine kurze exakte Folge von Kettenkomplexen $C_*(B,A;R) \hookrightarrow C_*(X,A;R) \twoheadrightarrow C_*(X,B;R)$. Damit erhalten wir eine lange exakte Sequenz:

$$\cdots \to H_{n+1}(X,B;R) \xrightarrow{\partial} H_n(B,A;R) \to H_n(X,A;R) \to H_n(X,B;R) \to \cdots$$

16 Die Fundamentalklasse 71

2) Zu abgeschlossenen Unterräumen $A,B\subseteq X$ ist $A\setminus B\subseteq X\setminus A\cap B$ abgeschlossen und $X\setminus B\subseteq X\setminus A\cap B$ offen. Da $A\setminus B\subseteq X\setminus B$ und

$$(X \setminus A \cap B) \setminus (A \setminus B) = X \setminus A$$
$$(X \setminus B) \setminus (A \setminus B)X \setminus (A \cup B)$$

erhalten wir einen Ausschneideisomorphismus $H_*(X\setminus A, X\setminus (A\cup B))\cong H_*(X\setminus A\cap B, X\setminus B; R)$. Zusammen mit der Paarfolge aus 1) erhalten wir eine Mayer-Vietoris-Folge:

"R"aus Platzgründen weggelassen

$$\cdots \longrightarrow H_{n+1}(X, X \setminus A \cap B) \stackrel{\partial}{\longrightarrow} H_n(X, X \setminus A \cup B) \longrightarrow \bigoplus_{H_n(X, X \setminus B)}^{H_n(X, X \setminus A)} \longrightarrow H_n(X, X \setminus A \cap B) \longrightarrow \cdots$$

72 16 Die Fundamentalklasse

Index

Die Seitenzahlen sind mit Hyperlinks zu den entkettenhomotop, 22 sprechenden Seiten versehen, also anklickbar 🖒 Kettenhomotopie, 22 Kettenmoduln, 10 Abbildungsgrad, 37 Kommutatorgruppe, 61 Abelisierung, 61 Komposition, 1 abgeschlossene Zelle, 43 kontrahierbar, 21 affin, 56 Koprodukt anklebende Abbildung, 43 topologischer Räume, 19 assoziativ, 1 von R-Moduln, 20 Augmentierung, 17 kurze exakte Folge von Kettenkomplexen, 28 Ausschneidung, 58 kurze exakte Sequenz, 11 charakteristische Abbildung, 43 lange exakte Folge, 27 CW-Komplex, 42 endlicher, 43 Morphismen, 1 Morphismus von Homologietheorien, 59 Dimensionsaxiom, 58 disjunkte Vereinigung n-Ketten, 16 Axiom, 58 n-Ränder, 16 Durchmesser, 56 n-Simplex, 4 n-te Bettizahl, 49 Ecken, 4 n-te Homologie, 10 Euler-Charakteristik, 6 n-te Randabbildung eines CW-Komplex, 49 simplizial, 8 von Z-Kettenkomplexen, 14 singulär, 15 zellulär, 46 freier Modul, 7 *n*-ter Homologiemodul Funktor, 2 simplizial, 9 dargestellter, 2 singulär, von Paaren, 26 n-ter Kettenmodul geometrische Realisierung, 5 simplizial, 8 geschlossene Mannigfaltigkeit, 69 singulär, 15 graduierten, 18 n-ter zelluläre Kettenmodul, 46 Graphen, 4 n-zusammenhängend, 65 n-Zykel, 16 homogene Koordinaten, 44 natürliche Transformation, 2, 33 Homologieklasse, 16 natürlicher Isomorphismus, 48 Homologietheorie, 58 homologische Orientierun Objekte, 1 im Punkt, 68 offene Zelle, 43 überall, 68 orientierbar, 68 Homotopiegruppe, 65 orientierte Mannigfaltigkeit, 68 Homotopieinverse, 21 Homotopieäquivalenz, 21 Paar von topologischen Räumen, 26 Paarfolge, 58 Jordanscher Kurvensatz, 40 Polyeder, 6 Kategorie, 1 projektiver Modul, 7, 12 klein, 2 Pushout, 42

Index A

R-Kettenabbildung, 18 R-Kettenkomplex, 10 Rand des n-Simplizes, 5 Randabbildungen, 10 Rang einer abelschen Gruppe, 11 reduzierte singuläre Homologie, 35 reell projektiver Raum, 44 relative Homotopiegruppe, 66

Schwache Topologie, 43 Schwerpunkt, 54 Seite, 4 Simplizes, 4 simpliziale Abbildung, 5 simplizialer Kettenkomplex, 10 simplizialer Komplex, 4 singuläre Homologie von X, 16 singuläre Simplizes, 15 singulärer Kettenkomplex, 16 von Paaren, 26 Skalarprodukt, 39 Spaltung, 12 Spektralfolge, 59 Summe topologischer Räume, 19 von R-Moduln, 20

Torsionsgruppe, 11

U-klein, 53unital, 1Unterkomplex, 4

Vektorfeld, 39 Vertices, 4

Zellstruktur, 43 zellulär, 43 zelluläre Homologie, 46 zellulärer Kettenkomplex, 46

B

Abbildungsverzeichnis

	1	$\Delta^n imes [0,1]$ für $n=0,1,2$	23
	2	Zerlegung von $\Delta^2 \times [0,1]$ in 3-Simplizes	23
	3	Ein nirgends verschwindendes Vektorfeld auf S^1	39
	4	Skizze zur Ausschneidung mit kleinen Simplizes	53
	5	Zerteilung eines 2-Simplex	54
	6	Skizze zum Beweis von Lemma 15.6	62
	7	Skizze zum Beweis von Lemma 15.7	62
	8	Skizze zum Beweis von Lemma 15.8	63
	9	Skizze zum Beweis von Lemma 15.11	64
	10	Verknüpfung in der relativen Homotopiegruppe für $n=2$	66
	11	Die Abbildung γ aus Lemma 15.22	67
To-do's und andere Baustellen			
RevChap12			50
eventuell in Anhang?		51	
Problem beheben/Details hinzufügen		51	
Für die Gleichung unten brauchen wir doch $\left(i,i _{S^{k-1}}\right)_*(y)=(-1)^{k+1}\left(i_+,i_+ _{S^{k-1}}\right)_*(y_+)$??		51	
RevChap13			54
Die Rechnung stimmt noch nicht so ganz			54
RevChap16		69	

Abbildungsverzeichnis C