

Indian Association for the Cultivation of Science

(Deemed to be University under the *de novo* category)

Master's/Integrated Master's – PhD/PhD program

Mid-Semester (Sem-II) Examination-Spring 2021

Subject: Linear Algebra & Multivariable Calculus Subject Code: MCS 1201A Full marks: 25 Time allotted: 2 hrs

Answer any four questions. The maximum you may score is 25.

1. Consider the following system of equations:

$$ax + by = 1$$

$$cx + dy = 3.$$

- (i) Show that the solution to the above system is unique, if $ad bc \neq 0$.
- (ii) Analyse the cases when ad bc = 0.

(3+4)

- 2. Check whether the following subsets of \mathbb{R}^2 are vector subspaces or not. Answer **Yes** or **No** and justify your answer.
 - (i) $S = \{(x,y) \in \mathbb{R}^2 : ax + by = 0 \text{ where } a,b \in \mathbb{R}\}.$
 - (ii) $S = \{(x, y) \in \mathbb{R}^2 : |x| = |y|\}.$
 - (iii) $S = \{(x, y) \in \mathbb{R}^2 : ax + by = c \text{ where } a, b \in \mathbb{R} \text{ and } c \neq 0\}.$

(2+2+2)

- 3. Let U_1 and U_2 be two distinct subspaces of \mathbb{R}^5 . Then prove or disprove the following:
 - (i) $U_1 \cup U_2$ is always a vector subspace of \mathbb{R}^5 .
 - (ii) $U_1 \cap U_2$ is always a vector subspace of \mathbb{R}^5 .
 - (iii) $U_1 + U_2 = \mathbb{R}^5$ whenever $U_1 \cap U_2 = \{0\}$.

(2+2+2)

- 4. Let $A = \{v_1, v_2, \dots, v_m\}$ be a collection of m-linearly independent vectors of a finite dimensional vector space V. Prove or disprove the following:
 - (i) $A \cup \{w\}$ is a collection of linearly independent vectors whenever $w \notin \operatorname{Span} A$.
 - (ii) The dimension of Span $A \cup \{w\} = m+1$ for every $w \in V$.
 - (iii) The set $A_w := \{v_1 + w, v_2 + w, \dots, v_m + w\}$ is a collection of linearly dependent vectors for every $w \in \text{Span } A$.

(2+2+3)

- 5. Let $P_d[x] := \{\text{polynomials with real coefficients in one variable of degree } d \}$ for every $d \ge 0$ and $d \in \mathbb{N}$. Then answer the following:
 - (i) Prove that $P_d[x]$ is a vector space for every $d \ge 0$.
 - (ii) Construct a basis for $P_d[x]$ and hence conclude the dimension of $P_d[x]$.
 - (iii) Let $A = \{2x^2 + 3x + 1, 3x^2 + x, 1\}$. Prove that A is a basis for $P_2[x]$.

(1+2+3)