ANNAI VAILANKANNI COLLEGE OF ENGINEERING KANYAKUMARI DIST

PROJECT REPORT

REAL-TIME RIVER QUALITY MONITORING ANDCONTROL SYSTEM

TEAM ID: PNT2022TMID51261

Team Members

Babisha M Naveen Kumar S Saranya T Thana Reka R

INDEX

- 1. INTRODUCTION
 - a. Project Overvie

b. Purpose

2. LITERATURE SURVEY

- a. Existing problem
- b.References
- c. Problem Statement Definition

3.IDEATION AND PROPOSED SOLUTION

- a. Empathy Map Canvas
- b. Ideation And Brainstorming
- c. Proposed solution
- d. Problem solution fit

4. REQUIREMENT ANALYSIS

- a. Functional requirement
- b. Non-Functional requirement

5. PROJECT DESIGN

- a. Data Flow Diagrams
- b. Solution & Technical Architecture
- c. User Stories

6. PROJECT PLANNING AND SCHEDULING

a. sprint planning and estimation

b. Sprint Delivery Schedule			
c. Reports from JIRA			
7. CODING AND SOLUTIONING			
a.Feature 1			
b.Feature 2			
8.TESTING			
a.Test cases			
b.User Acceptance testing			
9. RESULTS			
a.Performance Metrics			
10.ADVANTAGES AND DISADVANTAGES			
11.CONCLUSION			
12.FUTURE SCOPE			
13.APPENDIX			
a.Source code			

1.1 PROJECT OVERVIEW

River Water Quality Monitoring System

b.GitHub and project demo link

Water is one of the major compounds that profoundly influence ecosystem. But nowadays it is been exploited heavily due to rapid industrialization, human waste and randomuse of pesticides and chemical fertilizers in agriculture, which leads to water contamination. Thus, a water monitoring system is necessary to observe the water quality in a large area such as lake, river, and aquaculture. As per the current world situation, Internet of Things (IoT) andremote sensing techniques are used in heterogeneous areas of research for supervising, congregate and analyzing data from the remote locations. In this paper, the suggested system is a minimal price real time water

This system comprises of numerous sensors for assessing the physical and chemical parameter. The factors of water that can be assessed using these sensors are pH, turbidity, conductivity, dissolved oxygen. Using this system, the real time quality of water bodies can be determined and the data uploaded over the Internet are analyzed.

quality monitoring system in IoT environment.

b. Purpose:

Water quality refers to chemical, physical biological and radio logical characteristics of water. It is a measure of the condition of water relative to the necessities of one or more bio-tic species and or to any human need or purposes. Water quality monitoring is

defined as a sampling and analysis of the water in lake, stream, ocean and river and conditions of the water body. Smart water quality monitoring is a process of real-time monitoring and the analysis of water to identify changes in parameters based on the physical, chemical and biological characteristics. Monitoring water quality is clearly important: in our seas, our rivers, on the surface and in our ports, for both companies and the public. It enables us to assess how they are changing, analyze trends and to inform plans and strategies that improve water quality and ensures that water meets its designated use. There are several indicators determining water quality. These include dissolved oxygen, turbidity, bio indicators, nitrates, pH scale and water temperature. Monitoring water quality helps to identify specific pollutants, a certain chemical, and the source of the pollution. There are many sources of water pollution: wastewater from sewage seeping into the water supply; agricultural practices (e.g., the use of pesticides and fertilizer); oil pollution, river and marine dumping, port, shipping and industrial activity. Monitoring water quality and a water quality assessment regularly provides a source of data identify immediate issues – and their source.

- 1.Identifying trends, short and long-term, in water quality.
- 2. Data collected over a period of time will show trends, for example identifying increasing concentrations of nitrogen pollution in a river or an inland waterway. Thetotal data will then help to identify key water quality parameters.
- 3. Environmental planning methods: water pollution prevention and management.
- 4. Collecting, interpreting and using data is essential for the development of a sound and effective water quality strategy. The absence of real-time data will however hamper the development of strategies and limit the impact on pollution control. Using digital systems and programs for data collection and management is a solution to this challenge.
- 5. Monitoring water quality is a global issue and concern: on land and at sea. Within the European Union, the European Green Deal sets out goals for restoring biological biodiversity and reducing water pollution, as well as publishing various directives to ensure standards of water quality. Individual nation states, for example France, have also clear regulatory frameworks requiring the effective monitoring of water quality. Inthe United States, the Environmental Protection Agency (EPA) enforces regulations toaddress water pollution in each state. Across the world, countries increasingly understand the importance of effective water quality monitoring parameters and methods.

2.LITERATURE SURVEY

a. Existing Problem:

Due to population growth, urbanization, and climatic change, competition for water resources is expected to increase, with a particular impact on agriculture, river water. Water will be suitableness to potable water monitoring compound spillage identification done rivers, remote estimation for swimming pools. It holds self-sufficient hubs that unite with the cloud to ongoing water control. The River water needed to be treated before it is used in agriculture fields, hence the parameters affecting the quality of river-water need to be analyzed and to be used for water treatment purpose.

b.References:

- 1. Smart water quality Monitoing System [Author: Mr. Kumar K]
- 2. Real Time Water Quality Monitoring and Management [Author:

Deepika gupta]3.The Monitoring of Water Quality in IOT

Environment [Author: Anuadha T]

4.IOT Based Real time River Water Quality Monitoring System [Author:

Elsevier B.V] **5.SmartPortable Water Monitoring [Author:** Okoli Chinedu

David]

6. Intelligent System for Monitoring and Detecting Water Quality [Author: Jamal Mabrouki]

c. **Problem Statement:**

The reduce the river water pollution and to monitor the parameters of river water and control measures can impact vegetation,health. The Real time analysis of Indicators of River water(Ph,salinity,nutrients,etc..,)

Problem Stateme nt (PS)	I am (Custome r)	I'm trying to	But	Because	Which makes me feel
PS-1	A Farmer	use river water for irrigation	i don't know the quali ty and level of the water	i don't know how to measure the quality of thewater	frustrat ed
PS-2	An Industriali st	use river water for drinks manufactur ing	i don't know the pH level of river water	we can't use water with acidic nature for cool drinks manufacturi ng	indecisi ve

IDEATION & PROPOSED SOLUTION

a. Empathy Map Canvas:

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user'sbehaviours and attitudes. It is a useful tool to helps teams better understand their users. Creatingan effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with

his or her goals and challenges.

b.Ideation & Brainstorming:

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

Proposed Solution:

S.N	Parameter	Description
о.		

Problem Statement
 (Problem to besolved)

Pollution of water is one of the main threats in recent times as drinking water is getting contaminated and polluted. The polluted water can cause various diseases to humans and animals, which in turn affects the life cycle of the ecosystem. If water pollution is detected in an early stage, suitable measures can be taken and critical situations can be avoided. To make certain the supply of pure water, the quality of the water should be examined in realtime. Smart solutions for monitoring of water pollution are getting more and more significant these days with innovation sensors, communication. and Internet of Things (IoT) technology. In this paper, a detailed review of the latest works that were implemented in the arena of smart water pollution monitoring systems is presented. The paper proposes a cost effective and efficient IoT based smart water quality monitoring system which monitors the quality parameters uninterruptedly. The developed model is tested with three water samples and the parameters are transmitted to the cloud server for further action.

2.	Idea / Solution description	An assembled Arduino
		microcontroller is used as the core
		controller of the system. Once the
		code is uploaded to the
		microcontroller, no PC system,
		keyboard command, monitor is
		required to operate the system.The
		system functions automatically and
		independently according to the code
		uploaded to the microcontroller. In
		this system, three sensors are used to
		measure the essential water
		parameters. As it was studied from
		the previous researches, the most
		essential water parameters needed to
		be monitored
		by the average users are water pH
		level,

water turbidity (cloudiness) and water temperature which is a measurement of of the amount water in container. Therefore, four essential water parameters which are temperature, pH level and turbidity can be measured by this proposed system. Sensors circuits are connected to the microcontroller and the probes of the turbidity, pH, and temperature sensors placed inside the water.A water proof temperature sensor is used to avoid any damage or electrical shock to the system and the user. An ultrasonic sensor is used to measure the level of the water in the container. The ultrasonic sensor is connected in the system such that it will be placed on the top of the water container. The ultrasonic sensor sends electromagnetic waves to the water surface and receives the wave back after touched the water surface. From the time taken to send and receive the wave by the ultrasonic sensor and the velocity of the electromagnetic waves, the distance which shows the water level in the container is calculated by the microcontroller.All sensors water quality parameters and send the data to the microcontroller in the form of electrical signals. The microcontroller is programmed such that is will analyze the result and compare it with the standard ranges which are predetermined in the code. If any water parameter crossed the standard limit, the alarm system will turn on.In case of any abnormality in a water detected bv the parameter microcontroller, the buzzer will buzz to indicate that the water is not proper for use. To show the sensor readings (The water parameters) on the device itself, an LCD (Liquid Crystal Display) screen is used. The LCD screen is connected to the microcontroller, and through the wired connection, it receives the sensor

3.	Novelty / Uniqueness	 To measure various chemical and physical properties of water like pH,temperature and particle density of water usingsensors. Send the data collected to a Raspberry Pi, show the data in display and send it to acloud based Database using Wired/WirelessChannel. Trigger alarm when any discrepancies are found in the water quality. Datavisualizationandanalysis using cloud based visualization tools.

4.	Social Impact / Customer	The main objectives of this research were
	Satisfaction	to assess the level of customer satisfaction
		on urban water supply services of Southern
		Region, Ethiopia, and identify major
		determinants. Quantitative data were
		collected from 8,413 customers in
		seventeen towns, using a questionnaire
		based on the SERVQUAL model.
		Qualitative data were collected from
1		customers via focus group discussion, and
1		interviews were used with utility
		employees and officials. The results showed
İ		47% of customers were satisfied with the
		water supply enterprise services, while 43%
1		were dissatisfied for various reasons. The
		customer satisfaction score was below the
1		acceptable level for all service quality
		dimensions, and understanding of
1		customers, communication, and
		responsiveness were far below the
		benchmark. The correlation analysis
		revealed the existence of a monotonic,
		positive relationship between customers'
		total satisfaction and service quality
		dimensions. The proportional odds model
		indicated that total customer satisfaction
		was highly dependent on the nine service
		quality dimensions used in this research.
5.	Business Model (Revenue	We can sell this technology to
	Model)	theindustries and also to the
		small scaleand large scale
		industries to develop their
		industrial security and wellness.

		 We can also provide it as a servicebased to earn money out of it.
		 For example we may offer our services to the company as a contract for a period of time to make revenue.
6	Scalability of the Solution	The scalability on this model is high as there are involves more demand on safety and security of workers and the companies too.so, the danger the losses caused are get reduced by this system. And we need lesser man power to work with this kind of activities

1. **REQUIREMENT ANALYSIS**

a. Functional Requirements:

Following are the functional requirements of the proposed solution.

FR	Functional	Sub Requirement (Story / Sub-Task)
No.	Requirement	
	(Epic)	
FR-1	User Registration	Registration
		through Form
		Registration
		through Email
		Registration through product mobile UI
FR-2	User Confirmation	Confirmation via
		Email,Confirmation via OTP
		Confirmation via Message
FR-3	Ph level detection	To monitor the water quality Ph sensor is

		used andthe signals are send to Ardino.
FR-4	Turbidity detection	Turbidity sensor measures the clarity of element or muddiness utter in the water and the signals are sendto Arduino.
FR-5	Ultrasonic generator	At regular interval times the waves are generated to clear algae 25%,50%,75%,100%

b. Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR	Non-Functional	Description	
No.	Requirement		
NFR-1	Usability	It has simple monitoring system and	
		efficient touse.	
NFR-2	Security	Mobile application is secured	
		with firewallprotection.	
NFR-3	Reliability	Real time sensor output values with	
		future predicted data storage. 98%	
		efficient monitoring output. It also	
		gives assurance for aquaculture	
		safety.	
NFR-4	Performance	It has greater performance and	
		environmentallysafe model.	
NFR-5	Availability	In the form of mobile UI 24 x 7	
		monitoringsystem.	

5.PROJECTDESIGN

Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows

within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

a. SOLUTION AND TECHNICAL ARCHITECTURE

Summary

This code pattern explains how to build an IOT based

river water monitoring and controlling system with some predefined values.

Flow

- i. Feed the data received from the Sensor unit which are placed in the river sides.
- ii. The collected data will be displayed in the Web page to the user.
- iii. Then the collected data is sent to the data base, where the collected data and the predefined data are checked and monitored.
- iv. If any data exceed the predefined data then the control signal will send to the Admin.
- v. The collected data will be stored in the IBM cloud storage. Later thedata will be controlled by the admin via UI.

Components & Technologies:

S.No	Component	Description	Technology
1.	Sensor Data	The data is collected form the various sensor placed in the river sides.	Raspberry Pie.
2.	Database for Storage	The data/info need to be stored for accessing it in future	MySQL-Oracle

3.	File Storage	File storage requirements	IBM Block Storage
			or Other Storage
			Service or Local
			Filesystem
4.	Cloud Database	DatabaseServiceonCloud	IBM cloud
5.	Data Storage	File storage requirements	IBM Block Storage

Application Characteristics:

S.No	Characteristics	Description	Technology
1.	PH level Monitoring	The PH level of river watercanbe	PH-sensor
		monitoredviaplacing	
		sensorsin rivers.	
2.	Air Quality	The clarity and purity	Surface Mount
	Monitori	of river water can be	Sensor
	ng	monitored	
3.	Temperatu	The temperature of	Temperature
	re	riverwater can be	sensor
	Monitoring	monitored	

4.	Water Treatment	can be used as both a NDIR gas
		safety device in the sensors
		water purification
		process as carbon
		dioxide, methane, and
		carbon monoxide are
		some of the key gases
		produced during the
		treatment process

	4.	Soil	Soil condition	Acoustic sensor
		Condition	monitoringsensors	
		Monitoring	allow farmers to	
			collect data about	
			rainfall,temperature,	
			and other metrics	
			over time to track	
			trends and predict	
			irrigation needs.	
ı				

c. User Stories

Use the below template to list all the user stories for the product.

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	Akash k
Sprint-1		USN-2	As a user, I will receive confirmation email once I have registered for the application	1	High	Abimanyu M
Sprint-2		USN-3	As a user, I can register for the application through Facebook	2	Low	Mohammed Riswan
Sprint-1		USN-4	As a user, I can register for the application through Gmail	2	Medium	Deepak k
Sprint-1	Login	USN-5	As a user, I can log into the application by Entering email & password	1	High	Akash K

SPRINT PLANNING & SCHEDULING

TITLE	DESCRIPTION	DATE
Literatu	Literature survey	06
reSurvey	on the	OCTOBER
&	selected	2022
a.	project is done by	
	gathering	
	informationabo	
	ut related details	
Information	on	
Gathering	technicalpapers	
	and web browsing.	

Empathy Map	Prepared Empathy Map Canvas to combine thoughts and pains, gains of the project with all team members .	08 OCTOBER 2022
Ideation	Brainstorming session is conducted with all team members to list out all theideas and prioritise the top3 ideas.	09 OCTOB ER 2022
Proposed Solution	Prepared the proposed solution document, which includes the novelty feasibility of idea, business model, social impact scalability of solution, etc.	28 OCTOBER 2022
Problem Solution Fit	Prepared problem solutionfit document.	30 OCTOBER 2022

a. SPRINT DELIVERY SCHEDULE Product Backlog, Sprint Schedule, and Estimate

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	30	30 Oct 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	49	06 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	50	07 Nov 2022

Velocity:

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

b. REPORT FROM JIRA

7 CODING AND SOLUTIONING

TESTING

a. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cas es
Print Engine	15
Client Application	45
Security	1
Outsource Shipping	2
Exception Reporting	10
Final Report Output	4
Version Control	3

OUTPUT

M

O

В

L

Ε

Α

P

P

•

https://drive.google.com/fil e/d/1utX_1afl55zvs6irrl8Y7

vMhSbyx-95g/view?usp=drivesdk

7.1 NODE RED SERVICE ASSOCIATED WITH IBM CLOUD: