On the conductor of Cran	dan quartics
(, ww I Bonw, N Coppela	
genus 0 $y^2 = x \ge$ $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	dim 0
genus 1 $y^2 = f(x)$, deg $f = 3$.	4 dem 1
$y^2 = f(x), deq f = 3$	5,6 dim 3
$\int_{A}^{\infty} \int_{A}^{\infty} f(x), dy = \int_{A}^{\infty} \int_{$	= 7,8 dim 5
genus 1 $y = f(x), deg f = 3$ genus 2 $y^2 = f(x), deg f = 3$ $y^2 = f(x), deg f = 3$ genus 3 $f(x), deg f = 3$	dem 6
non-hyperelliptic curves Dixmer-Ohno invariants 7 alg undependent inversants	Ms Ms
+ 6 alg dep. ones Les point in	12 1P3,6,9,9,12,12,15,18,4 21,21,27
Field of Field def. C moduli § uno	
K-isom info	K-isom info
(geometry)	(arithmetic)
Fi-0	I do Trold dol

[LRRSIN] & | Autr (Y) > 2 => Field of = Field def mod conve

The largest-dimensiona	1 statum in M3 mith
Aut = (y) > 2 w the one	of Cian quarties
(family mth no ayches special, i e non Y	map to IP, i.e. non super $= f(x)$
Def. (Cam quartic) is	a non. hyperelliptic curve
Def. (Cam quartic) is Y/r of genus 3 together $V \subseteq Aut_{\bar{K}}(Y)$ isomory	nuth a subgroup
V = Ant _k (Y) isomory	ohic to $4/274 \times 7/274$ and
such that g(Y/V) =	o V is called a Gan
subyroup	
V={1,51,52,53}	E
	P, P, P, P, P3
Strathfrakon of Cian quar	ties by automorphisms
	dem 3
D 4	dim 2
G ₁₆ 54	dem 1
G48 G48 G48	dim 0

Def a standard K-model of (Y, V) vs a K-model Y, of Y given by an equation.

Y1. Ax4. By4. (24 + ay22+bx22+cx2y2=0

Such that Vacts as (x y 2) -> (±x ±y 2).

demma. Let $(Y_0, V)/K$ be a Command Then there exists a Galors extension L/K with Gal $(L/K) \subseteq S_3$ such that Y_0 admits a standard L-model Y_1 with $Y_0 \otimes_K L \cong Y_1$

We introduce now the Can inversants.

$$I_{3} = ABC$$

$$I'_{3} = A(a^{2} - 4BC) + B(b^{2} - 4AC) + C(c^{2} - 4AB)$$

$$I''_{3} = -4ABC + Aa^{2} + Bb^{2} + Cc^{2} - abc$$

$$I''_{3} = (a^{2} - 4BC)(b^{2} - 4AC)(c^{2} - 4AB)$$

The discriminant is $\Delta(Y_4) = 2^2 I_3 I_3^4 I_4^2$ $P = 8 I_3 + I_3^4 - I_3^4$ $Q = -4 I_3 I_3^2 I_6 - 27 I_3^2 I_6^2 + 18 I_3 I_8^4 I_6 I_4 I_3^4 I_4 I_5^4 I_5 I_6 I_4 I_5^4 I_6 I_3 I_3^4 + 2 I_3^4 I_3^4 I_5^4 I_5 I_6 I_5 I_5^4 I_5^4 I_6 I_3 I_3^4 + 2 I_3^4 I_3^4 I_5^4 I_$ S3 = I3 P² and noots \$6, \$B and C The discriminant of \$9 is the invariant a The Gam quartic Y is special (=> Q(Y) = 0

Stable reduction.

- The reduction of a curve depends on the model
 - the "best" model is the stuble model The reduction is a stable curve (at worst double points and finite automorphism group)

Examples.

- * X + Y + T Z'= o has bad reduction modulo 7 but the curve has potentially good (quartic) reduction
- · $(x^2+y^2+z^2)^2+\pi(x^2y^2+y^2z^2+z^2x^2)=0$ has bad reduction modulo n but the curve has potentially good (hyperelliptic!) reduction
- . $x^4 + y^4 + z^4 = (z+\pi)x^2y^2 + z^2(x^2 + y^2) = 0$ has geometrically) bad reduction

[111R21] Characterisation of primes dividing the disournment

[BCKKLS 21] Characterisation of reduction type in terms of Ciani invariants valuations $(p \neq 2)$

Admissible covers theory dru (g=2), Boun-Wewers (Y=f(x)), Dokchitser-Dokchitser-Maistnet-Morgan (Y=q(x)) The conductor exponent is a number that gives information on the reduction type of the jacobian of Y, and on the Galois representation associated to t. Remark for example elliptic curves appear by conductor in the Gremona tables or the newest

version, the LMFDB. Ogg'67 fp(E) < op(D(E))

Let Y/K with potentially good reduction. Let M be the minimal (Galois) extension over which Y has a mode with good reduction of Then G = Gal (M/K) acts with good reduction of Assume M/K is tamely on J. Let Z = J/G Assume M/K is tamely ramped. Then

p # 2,3, Y/K Cam quartic

y good reduction (=>) fp=0 CZ

Reconstruction of Cham quartics from its invariants

Let $(I_3, I_3', I_3', I_6) \in K^4$ Assume $\Delta = 2^{20}I_3I_3''I_6^2 \neq 0 \text{ Let } L/K \text{ be the spltting}$

field of P (L=K(A,B,e))

Assume P ≠ 0 Then

y, Ax4 By4 C24 P(xy+y22+2x2)=0/L

has invaviants (PI3, PI3, PI3, PI6) and

discriminant $\Delta(Y_A) = \Delta P^{18}$

3 [L K] Ehen

$$\phi = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 3 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & 3 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & 3 \\ 3$$

 $\phi = \begin{pmatrix} 1 & d & d^{2} \\ 1 & B & B^{2} \\ 1 & C & C^{2} \end{pmatrix} \cdot y_{o} \rightarrow y_{1}$ defines y_{o}/K with $\Delta (y_{o}) = \Delta P^{18} Q^{36}$

We get equivalent results when P = 0

OUR RESULTS

p > 3, $\underline{I} = (I_3 I_3 I_3 I_6)$ pot, good red normalised

8 non-special (Q 70) * Potentially good quartic reduction $\sigma(I_3) = \sigma(I_3) = \sigma(I_6) = 0$, $\sigma(I_3) > 0$ G(Q) > 0 6 (Q) = 0 ther there exist a standar Games Model Y/K and Jor all twists Then there exists a standard Cianu model Y/K nuth good reduction. fp(Y)=0 The other twists have $\mathcal{L}_{\rho} \left(y' \right) = 4$ Pp (y') = 4 * Potentially good hyper reduction $\sigma(I_3) = 0$, $\sigma(I_3) \ge 0$, $\sigma(I_3) \ge 0$, $\sigma(I_3) = 20$, $\sigma(I_3) = 30$ There exists a model Y/K and for all Enists the conductor exponent is given by: e odd 6 2 6 even 0 4 4 Ca Y/\mathbb{Q}_p^m Cham quartic and non-special p > 3 of pot good red Then $f_p(Y) \leq \sigma_p(\Delta(Y))$ Example. $I_3 = I'_3 = I_6 = 1$ $I_3 = -6 \implies P = 1, \Delta = 2$ $P = T^3 - 6T^2 + 8T - 1$ Q = 229 Q = 36 Q = (14) - 4

$$Q = 229$$

 $\Delta(Y_0) = 2^{20} 229$, $f_{229}(Y_0) = 4$