Discrete Structures. CSCI-150. Spring 2016.

Homework 6.

Due Wed. Mar 16, 2016.

Problem 1 (Graded)

Given the recurrence

$$S(0) = 0,$$

 $S(n+1) = 3S(n) + 1,$

prove by induction that for all $n \geq 0$:

$$S(n) = \frac{3^n - 1}{2}.$$

Problem 2 (Graded)

Given the recurrence

$$T(0) = 1,$$

 $T(n) = n! + n \cdot T(n-1)$ (for $n > 0$),

first, find the closed form expression for T(n). Apply the method we used in class, where we repeatedly substitute T(n) in terms of T(n-1), then T(n-1) in terms of T(n-2), and so on, eventually identifying the pattern. This method is also described in Lehman and Leighton's book (p.147), where it is called "Plug-and-Chug" method.

After that, prove by induction that the closed form expression you've found is correct.

<u>Hint:</u> The closed-form solution should be [] (select the line above to see the spoiler; If your PDF viewer cannot do so, feel free to ask me)

Problem 3

Solve another recurrence (do the same steps as in the previous problem):

$$R(1) = 1,$$

 $R(n) = 2R(n/2) + n^2$ (for $n > 1$),

(You can assume that n is a power of 2, that is, $n = 2^k$).

Hint: The closed-form formula for the recurrence will be [] (select the line above to see the spoiler; If your PDF viewer cannot do so, feel free to ask me)

Linear recurrences (we will learn it on Monday, March 14)

Problem 4

Solve the linear recurrence (for $n \geq 0$)

$$f(0) = 1,$$
 $f(1) = -1,$
 $f(n) = f(n-2).$

Although this problem is not graded, it's easier than the other linear recurrences in this homework, so you are advised to do it first, before solving problems 6 and 7.

Problem 5

Solve the linear recurrence (for $n \ge 1$)

$$f(1) = 10, \quad f(2) = -2,$$

 $f(n) = f(n-1) + 12f(n-2).$

Problem 6 (Graded)

Solve linear recurrence

$$f(0) = 3, \quad f(1) = 1,$$

 $f(n) = 4f(n-1) + 21f(n-2).$

Problem 7 (Graded)

First, verify that $x^3 - 3x^2 + 4 = (x^2 - 4x + 4)(x + 1)$.

Then, solve the linear recurrence

$$f(0) = 1$$
, $f(1) = 0$, $f(2) = 14$, $f(n) = 3f(n-1) - 4f(n-3)$.

Problem 8 (Graded)

Consider a rewriting operation that transforms a given bit string into a new bit string according the following two rules:

each
$$1$$
 is replaced by 100 each 0 is replaced by 1

For example, if we apply this rewriting operation several times to the string "1", it will be transforming as follows:

$$1 \; \mapsto \; 100 \; \mapsto \; 100111 \; \mapsto \; 10011100100 \; \mapsto \; \cdots$$

(a) Assume that the starting string is "1" as in the example above. Find a recurrent formula for the number of 1s in the string after n rewrites.

2

(b) Prove that the recurrence has the following closed-form solution: $\frac{2^{n+1} + (-1)^n}{3}$.