One-Shot Capacity of Discrete Channels

Rui A. Costa

Joint work with Michael Langberg and João Barros

Instituto de Telecomunicações
Faculdade de Ciências da Universidade do Porto, Portugal
rfcosta@fe.up.pt

instituto de telecomunicações

creating and sharing knowledge for telecommunications,

U PORTO

Classical Channel Capacity

Binary Symmetric Channel

Shannon's Channel Capacity:
$$C = \sup_{p_X} I(X, Y) = 1 - H(p)$$

Classical Channel Capacity

Shannon's Channel Capacity:
$$C = \sup_{p_X} I(X, Y) = 1 - H(p)$$

Implicit in the definition:

- Arbitrarily large block length of the channel code
- Error probability goes to zero as the block length goes to infinity

Previous Approaches

- Limited number of channel uses
 - Rate at which the error probability decays to zero: Error Exponents (Shannon, Gallager, Berlekamp, 1967)
- Error probability precisely zero
 - Achievable rates with error probability is precisely zero: Zero-Error Capacity (Shannon, 1956)

The One-Shot Case

How many bits can we transmit over the channel if:

- we can use the channel only once and
- we allow the error probability to go up to a user-defined value

The One-Shot Case

How many bits can we transmit over the channel if:

- we can use the channel only once and
- we allow the error probability to go up to a user-defined value

Why do we care?

- Cases where power must be concentrated in a single transmission:
 - Military Scenarios
 - Random Short Encounters
 - Critical Systems

The One-Shot Case

How many bits can we transmit over the channel if:

- we can use the channel only once and
- we allow the error probability to go up to a user-defined value

Why do we care?

- Cases where power must be concentrated in a single transmission:
 - Military Scenarios
 - Random Short Encounters
 - Critical Systems

Previous work has provided bounds for the one-shot capacity, but no precise characterization (Renner, Wolf, Wullschleger, 2006)

4 / 16

Definitions

- A discrete channel is composed of:
 - ullet An input alphabet ${\mathcal X}$ and an output alphabet ${\mathcal Y}$
 - The transition probabilities $\mathcal{P}(Y = y | X = x)$
- A one-shot communication scheme over a $P_{Y|X}$ channel is composed of:
 - A codebook $\mathcal{X} \subseteq \mathcal{X}$
 - A decoding function $\gamma: \mathcal{Y} \to \mathcal{X}$
- The maximum error probability associated with a pair (\mathcal{X}, γ) is defined as

$$\epsilon_{\underline{\mathcal{X}},\gamma} = \max_{x \in \underline{\mathcal{X}}} \mathcal{P}(\gamma(Y) \neq x | X = x)$$

Admissibility and Capacity

Definition (Admissible Codebooks)

The pair $(\underline{\mathcal{X}}, \gamma)$ is maximum- ϵ -admissible if $\epsilon_{\underline{\mathcal{X}}, \gamma} \leq \epsilon$. The set of all ϵ -admissible pairs is denoted by \mathcal{A}_{ϵ} .

Definition (One-Shot Capacity)

For $\epsilon \in [0,1]$, the ϵ -maximum one-shot channel capacity is defined as

$$C_{\epsilon} = \max_{(\underline{\mathcal{X}}, \gamma) \in \mathcal{A}_{\epsilon}} \log(|\underline{\mathcal{X}}|).$$

Zero-Error One-Shot Capacity

The Zero-Error One-Shot Capacity was fully characterized using a combinatorial approach: (Shannon, 1956; Korner, Orlitsky, 1998)

- Confusion Graph: two input symbols are connected if they can be "confused"
- Zero-Error One-Shot Capacity = Independence Number of the Confusion Graph.

Can we transmit more?

- Zero-Error One-Shot Capacity = 0
- If we allow for a small error probability, can we transmit some bits in a single use of the channel?

Can we transmit more?

- Zero-Error One-Shot Capacity = 0
- If we allow for a small error probability, can we transmit some bits in a single use of the channel?
- "Yes, we can":

$$C_{\epsilon} = \begin{cases} 0 & \text{if } \epsilon < 0.01\\ 1 & \text{if } 0.01 \le \epsilon < 0.02\\ \log(3) & \text{if } \epsilon \ge 0.02 \end{cases}$$

A family of examples

Definition (A Class of Discrete Channels)

- $\mathcal{X} = \mathcal{Y} = \{0, 1, \dots, n-1\}$
- $\mathcal{P}(Y = 0 | X = 0) = 1$ and, with $0 < e_1 < e_2 < \dots < e_{n-1} \le 1$, for $i \in \mathcal{X} \setminus \{0\}$,

$$P(Y = y | X = i) = \begin{cases} 1 - e_i & \text{if } y = i \\ e_i & \text{if } y = 0 \\ 0 & \text{otherwise} \end{cases}$$

A family of examples

Definition (A Class of Discrete Channels)

- $\mathcal{X} = \mathcal{Y} = \{0, 1, \dots, n-1\}$

$$P(Y = y | X = i) = \begin{cases} 1 - e_i & \text{if } y = i \\ e_i & \text{if } y = 0 \\ 0 & \text{otherwise} \end{cases}$$

Lemma

For
$$e_i \le \epsilon < e_{i+1}$$
, with $e_0 = 0$ and $e_n = 1$, we have that $C_{\epsilon} = \log(i+1)$.

Definition

For each $x \in \mathcal{X}$, let

$$D_{\epsilon}(x) = \left\{ D \subset \mathcal{Y} : \sum_{y \in D} \mathcal{P}(Y = y | X = x) \ge 1 - \epsilon \right\}$$

Definition

For each $x \in \mathcal{X}$, let

$$D_{\epsilon}(x) = \left\{ D \subset \mathcal{Y} : \sum_{y \in D} \mathcal{P}(Y = y | X = x) \ge 1 - \epsilon \right\}$$

Definition (Maximum-One-Shot Graph)

- Nodes: (x, D) with $x \in \mathcal{X}$ and $D \in D_{\epsilon}(x)$
- $\bullet \ (x,D) \ {\rm and} \ (x',D') \ {\rm are} \ {\rm connected} \Leftrightarrow x=x' \ {\rm or} \ D\cap D' \neq \emptyset$

- Independent Set: no two nodes are connected.
- Independence Number: size of the largest independent set; denoted by $\alpha(G)$.

Main Result

Theorem

Consider a channel described by $P_{Y|X}$ and the corresponding one-shot graph $G_{\epsilon}=(V,E_{\epsilon})$, with $\epsilon\in[0,1)$. The ϵ -maximum one-shot capacity satisfies

$$C_{\epsilon} = \log(\alpha(G_{\epsilon})).$$

Main Argument in the Proof:

Decoding Function

 Independent Set in the maximum one-shot graph

Complexity

- The one-shot capacity is directly related to an independent set problem
- The independent set problem in 3-regular graphs (NP-Hard) can be reduced to an instance of the ϵ -maximum one-shot capacity problem, for $\epsilon < 1/3$

Theorem

The computation of the ϵ -maximum one-shot capacity is NP-Hard, for $\epsilon < 1/3$.

Average One-Shot Capacity

 Similar techniques are used to analyze the case of Average Error Probability:

$$\bar{\epsilon}_{\underline{\mathcal{X}},\gamma} = \frac{1}{|\underline{\mathcal{X}}|} \sum_{x \in \mathcal{X}} \mathcal{P}(\gamma(Y) \neq x | X = x)$$

• The main result is again combinatorial, based on sparse sets in a graph.

Conclusions

- We formalize the notion of ϵ -one-shot capacity, both for the maximum and average error cases
- We present a family of channels for which the zero-error capacity is null, but by allowing a small error probability, we can transmit a significant number of bits
- In contrast with previous work, we provide a precise characterization of one-shot capacity, using combinatorial techniques
- We prove that computing the one-shot capacity is NP-Hard

Future Steps

- We are aiming at an extension of our techniques to the *n*-shot case
- ullet Using the n-shot framework, we will analyze classic channels and compare results with the standard capacity notions
- We are also considering the case where security constrains are present: how can we describe the one-shot secrecy capacity?

