

Capacitive Fingerprint Reader 用户手册

产品概述

- Capacitive Fingerprint Reader 是一款专用于二次开发集成应用的电容式指纹开发模块, 高速度、快识别、高稳定性。
- Capacitive Fingerprint Reader 电容式指纹模块是以 STM32F105R8 高速数字处理器为核心,结合高安全性商用指纹算法, 配高级半导体指纹传感器,并具有指纹录入、图像处理、特征值提取、模板生成、模板储存、指纹比对和搜索等功能的智能型集成模块;专业为科研单位,指纹产品生产企业, 应用集成厂商提供标准二次开发指纹组件,快速、方便集成应用。

产品特性

- 使用方便,不需要了解指纹技术,模块内部结构和运算,只需简单的指令就能完成相 应操作
- 采用商用算法,性能稳定,识别速度快
- 手指感应灵敏,手指只要轻轻地触碰采集窗就能快速识别,不需要用力按压
- 可以自由输入、输出指纹图片、指纹特征值文件及各种指纹操作
- 提供 UART 串口和 USB 双通讯方式
- 具有处理器掉电睡眠,手指感应唤醒功能,低功耗
- 提供完善的配套资料手册(配有 PC 机软件、SDK 开发板包、相关的工具和 Raspberry/Arduino/STM32 等示例程序

应用案例

• 开发指纹锁, 指纹保险箱, 指纹门禁, 指纹考勤

目录

产品概述	1
产品特性	1
应用案例	1
使用说明	4
规格参数	4
接口说明	5
硬件连接	5
操作说明	6
正确按指纹	6
错误按指纹	6
传感器尺寸图	6
串口控制说明	7
实际操作	9
附加操作	11
USB 控制说明	14
示例程序	18
XNUCLEO-F103RB	19
硬件连接	19
下载程序	19
操作指令说明	20
UNO PLUS	20
硬件连接	20
下载程序	21
Raspberry Pi	21
硬件连接	21
树莓派串口配置	21
Python	22
wiringPi	22
- 程序运行结果	22

串口控制开发协议	23
USB SDK 开发包协议	40
1 枚举设备	40
2 打开设备	40
3 关闭设备	40
4 设置公司标记 KEY	41
5 检验公司标记 key	41
6 设备蜂鸣提示	42
7 打开 LED 灯提示	42
8 关闭 LED 灯	42
9 从位图中载入图像数据	43
10 将图像数据存储为位图	43
11 从设备中读取图像	44
12 检测某图像是否有指纹	44
13 指纹转成特征值	44
14 两个指纹特征值进行 1:1 比对	45
15 对输入的指纹特征值与指纹库内特征值进行快速 1:N 比对	45
附录:应用方案	47

使用说明

规格参数

类别	参数
处理器(CPU)	STM32F105
传感器	半导体传感器(电容式)
模块尺寸(mm)	45 x 30
传感器尺寸(mm)	33.4 x 20.4
图像	DPI 508
图像像素阵列	192 x 256
传感器感应面积(mm)	9.6 x 12.8
指纹容量	1000 枚 (可增容)
比对等级	默认 5,可设置为 0-9,越大越严格
比对时间	1 秒
认假率	0.00%
拒真率	0.01%

动态电流	<40mA
工作电压	3.3-5V
通讯接口	UART 或 USB
抗静电能力	空气放电 达到 ± 15KV
3.00	接触放电 达到 ±8KV

注:如果将存储芯片改为 W25Q32,模块将可扩展存储 4000 枚指纹。

接口说明

VCC ----- 3.3V 或 5V

GND ----- 接地

TXD(指纹模块串口发送) ----- RXD (PC 或单片机串口接收)

RXD(指纹模块串口接收) ----- TXD (PC 或单片机串口发送)

WAKE (指纹头唤醒, 可不接) ----- IO □

RST(指纹模块复位,可不接)-----IO口

硬件连接

传感器和主控板之间通过异向排线连接, 接线如下:

用户拿到模块后,可先使用测试软件对模块进行测试。在对模块有了一定的了解后,可使用下面的开发协议进行二次开发。

模块可以通过 UART 串口控制或者通过主控板上的 Micro USB 接口控制。

操作说明

本模块采用高精密元件, 在采集指纹时:

手指轻轻地触碰到采集窗口就能识别,不需要用力按压指纹采集窗

(感应灵敏、速度快、是本模块最大的特点)

正确按指纹

错误按指纹

传感器尺寸图

串口控制说明

- 1. 使用 CP2102 USB 转串口模块进行测试(如用户使用其它 USB 转串口模块,操作也类似,模块需要另外购买),安装 CP2102 驱动
- 2. 按下图连接模块(注意 RXD TXD 是交叉相连的):

3. 将 CP2102 连接到 PC 机的 USB 接口, 打开设备管理器, 查看相应的 COM 口:

4. 下载测试软件: Capacitive-Fingerprint-Reader_(UART), 并注册控件:

注册 MSCOMM32.OCX,如提示:*模块'mscomm32.ocx'已加载,但对 DllRegisterServer* 的调用失败,错误代码为 0x8002801c

则按下面方法处理:

在 64 位系统中,需要把 MSCOMM32.OCX 复制到 *C:\Windows\SysWOW64*,再运行注 册脚本。如果还是提示同样的错误,则需要将 MSCOMM32.OCX 复制到 *C:\Windows\System32*,再运行注册脚本(有时可能还要以管理员身份运行才可以注册 成功!)。

打开 UART Fingerprint Reader,正常运行入下图所示(如果 USB 转串口默认不是 COM1,还会提示" Comm port error !",选择确定即可):

实际操作

1. 配置 COM 口:选择设置,在通信串口选择相应的串口号(默认波特率为 19200)

2. 检查通信:选择测试,在基本操作中选择"取用户总数",点击发送命令,如在返回数据 窗口中有相关内容显示,则说明模块与上位机通信成功。如无显示,请咨询查看前面 几个步骤是否有误操作

3. 用户录入:在基本操作中选择"用户录入",勾选"采集两次"和"ID 号自增 1",参数分辨设置为"011"(也可以设置其它,只要 ID 好不重复即可),点击发送,此时可以听到模块"嘀"一声,并且指纹头等亮起,手指触摸指纹头,录入两次后,正常情况下会提示"用户录入成功"

注意不可勾选"特征值上传"。如果选中该选项,特征值将上传到 PC 上而不写入指纹模块,会导致虽然显示添加指纹成功,但进行指纹匹配是无法匹配成功,且用户总数也

不会增加

4. 指纹对比:在基本操作中选择"1:N 比对",点击发送,此时可以听到模块"滴"一声,并且指纹头灯亮起,手指触摸指纹头,如果该指纹已录入模块,则会提示比对成功,否则会提示"无匹配指纹"

附加操作

注:以下涉及到修改波特率,如果你有改过波特率,导致下次使用时无法连接的情况,请先检查波特率是否正常!

更改波特率:以 19200 比特率改为 115200 波特率为例:
 选择设置,在通信串口选择相应的串口号,在更改模块波特率设置中选择"115200",点

击发送命令即可

注:此时波特率已改为 115200,下次使用注意要用 115200 的波特率来配置上位机, 否则将导致通信失败

如果忘记了模块的波特率,可以用以下方法测试出正确的波特率:

打开<u>串口调试助手</u>,选择相应的串口号,打开串口,勾选"HEX 显示"和"HEX 发送",在 发送窗口中输入"F5 09 00 00 00 00 09 F5",点击发送,如果是正确的波特率,则在接 收窗口转给你会显示相应的数据,类似:"F5 09 00 01 00 00 08 F5",如果波特率不正 确,则无显示,通过修改不同的波特率,重复上面的步骤,就可以得到正确的波特

率。

2. 采集图像:在基本操作中选择"采集图像",点击发送,此时可以听到模块"滴"一声,并且指纹头灯亮起,手指触摸指纹头,大约6秒后上位机会显示采集到的图像

注:如果采集不到图像,或者采集到的图像不完整,则需要降低波特率,一般推荐在

9600 波特率下进行图像采集。改命令为测试命令,一般不推荐用于实际产品。

休眠:在基本操作中选择"休眠",点击发送,此时会提示"模块进入休眠状态,不再响应任何命令",模块进入休眠后,只能通过重新上电进行唤醒。

USB 控制说明

1. 插入指纹识别仪,指纹以采用仿真 CD 驱动接口,不需要安装驱动,直接插入既可以使用。

未接入如下图

已接入,如下图: (都出来一个 CD 驱动器)

2. 打开测试软件

2.1. 下载测试软件: Capacitive-Fingerprint-Reader_(UART), 并解压, 打开 "\D5ScannerS77Demo\Release\D5ScannerS77Demo.exe"

2.2. 定义设备, 点 Enum Device, 枚举当前电脑下所接指纹仪数量, 在下选择框中选中所要操作的指纹模块, 如图:

2.3. 打开设备,点:Open Device,提示:Open Device OK 或 Open Device Fail

2.4. 按手指采集指纹,按一次,嘀一声

2.5. 存图像, 点:Save Image,保存成.BMP

2.6. 存特征值, 点:Save Feature, 保存成*.fea 格式

示例程序

下面以接入微雪 XNUCLEO-F103RB、UNO PLUS 开发板、树莓派 3B 为例介绍模块的使用方法 (使用 UART 串口通讯)。

XNUCLEO-F103RB

- 本历程使用的开发板主控芯片为 STM32F103RBT6
- 本例程基于 HAL 库,一次可以用使用 STM32CubeMX 移植程序到其他的 STM 芯片
- 本例程在 Keil v5 环境下编译通过

硬件连接

Capacitive Fingerprint Reader	XNUCLEO-F103RB
VCC	3.3V
GND	GND
TXD	D2 (PA10)
RXD	D8 (PA9)
WAKE	D3 (PB3)
RST	D4 (PB5)

下载程序

- 1. 将模块连接到开发板后,接上 ST-Link 下载器,打开位于 MDK-ARM 目录下的 Capacitive Fingerprint Reader.uvprojx 文件。点击 Build 编译工程,点击 Download,把工程写入到芯片中
- 2. 用 USB 转串口线连接开发板和 PC, 打开串口监视软件, 选择正确的串口号, 并设置如下: 波特率: 115200; 数据位:8; 停止位:1; 校验位:None; 控制流:None
- 3. 按下开发板的复位按键,便可以在串口助手看到如下的操作提示:

注:若串口助手窗口一直返回错误提示"***ERROR***",则请确保模块供电为 3.3 或 5V、串口接线是否正确,模块波特率默认为 19200,最后断电,再重新上电

4. 从以上的操作提示可以知道,当前模块的匹配等级为 5, 当前比对等级为:5(可设置为 0-9, 数值越大越严格), 当前模块中已存在的指纹数为 1, 用户可以通过串口助手发送 CMD1-CMD6 来操作模块。注:不要勾选"发送新行"和"HEX 发送",发送各种命令后,请留

20

意串口助手回应的各种操作提示!

多条字符	串定义 串口资料	
HEX	字符串	发送
CMOD1		1
		2
		3
CMD4		4
□ (CMID5		5
CMD6		6
		7

操作指令说明

CMD1:查询已录入指纹个数

CMD2:指纹录入(每次录入需要读取 2 次,嘀,把手指放上探头,滴,拿开,滴,再放上

去, 重复2次), 注意尽量把指纹中心对准传感器窗口

CMD3:指纹匹配(发送命令,在滴一声后,把手指放上探头,每发送一次命令,模块会等待

并匹配一次),注意尽量把指纹中心对准传感器窗口

CMD4:清空指纹库

CMD5: 进入休眠模式,此时可以使用手指自动唤醒功能 (发送命令后模块进入休眠状态,此时只有 CMD6 命令有效,当有手指放上探头会唤醒模块,并进行手指匹配,无须每次都发送命令来匹配。可发送 CMD6 退出休眠)

CMD6: 切为启动模式, 退出休眠并使所有指令有效

UNO PLUS

硬件连接

Capacitive Fingerprint Reader	Arduino UNO PLUS
VCC	3.3V or 5V
GND	GND
TXD	D10
RXD	D11
WAKE	D8
RST	D9

注:由于 Arduino UNO PLUS 只有一个硬件串口,并且已经用来连接 PC 下载程序和作串口调试工具用,因此使用 D10、D11 来模拟软件串口与 Capacitive Fingerprint Reader 通信

下载程序

- 1. 将示例程序包中的 Arduino\Capacitive_Fingerprint_Reader 文件夹复制到 Arduino 软件的安装目录 Arduino\libraries 下面。点击 File --> Examples --> Capacitive_Fingerprint_Reader--> Finger_Test 打开程序,并编译、下载。
- 2. 点击 Tools -> Port 选择 Arduino 开发板的串口号,用打开串口监视器,设置 No line ending, 115200baud。按下开发板的复位按键,便可以在串口监视器看到如下操作提示:

注:若串口助手窗口一直返回错误提示"***ERROR***",则请确保模块供电为 3.3 或 5V、串口线接线是否正确,模块波特率默认为 19200,最后断电再重新上电具体的操作方法、命令说明、注意事项,请参考上面 XNUCLEO-F103RB 的使用介绍

RASPBERRY PI

硬件连接

这里使用 Raspberry Pi 3 Model B。引脚连接使用 BCM 管脚编码

Capacitive Fingerprint Reader	RaspberryPi 3B
VCC	3.3V or 5V
GND	GND
TXD	15 (BCM)
RXD	14 (BCM)
WAKE	23 (BCM)
RST	24 (BCM)

注:例程运行前需要安装必要的函数库(WiringPi、 bcm2835、 python 库),安装方法详见: http://www.waveshare.net/wiki/Pioneer600_Datasheets

树莓派串口配置

由于树莓派串口默认用于终端调试,如需使用串口,则需要修改树莓派设置。执行如下命令进入树莓派配置:

sudo raspi-config

22

- 选择 Advanced Options -> Serial -> no, 关闭串口终端功能。(不同版本的 Raspbian 会有区别, 具体可以上网查)
- 打开/boot/config.txt 文件, 找到如下配置语句使能串口, 如果没有, 可添加在文件最后面:

enable_uart=1 重启生效。

注:本例程使用树莓派 3B, 串口设备号为 ttyS0。使用 树莓派 2B/zero 的用户需要把例程中的串口设备号改为 ttyAMA0

PYTHON

把程序下载到树莓派中去, 并安装好需要的函数库, 并且配置好串口

执行命令: sudo python3.5 main.py 或 sudo ./main.py 运行程序

(程序基于 python3.5 及以上版本)

WIRINGPI

执行命令: make, 编译代码, 生成一个名为 test 的可执行文件。

执行命令: sudo ./test 运行程序

程序运行结果

具体的操作方法、命令说明、注意事项,请参考上面 XNUCLEO-F103RB 的使用介绍

按下 Ctrl+C 可以退出程序

Please input command (CMD1-CMD6): ^C
Test finished !

注:若串口助手窗口一直返回错误提示"***ERROR***",则请确保模块供电为 3.3 或 5V、串口线接线是否正确,模块波特率默认为 19200,最后断电再重新上电

串口控制开发协议

一. 通信方式

DSP 模块作为从设备,由主设备发送相关命令对其进行控制。

命令接口: 19200bps 1 起始位 1 停止位 (无校验位)

主设备发送的命令及 DSP 模块的应答按数据长度可分为两类:

1) = 8 字节,数据格式如下:

字节	1	2	3	4	5	6	7	8
命令	0xF5	CMD	P1	P2	Р3	0	СНК	0xF5
应答	0xF5	CMD	Q1	Q2	Q3	0	СНК	0xF5

说明:

CMD:: 命令/应答类型P1, P2, P3: 命令参数Q1, Q2, Q3: 应答参数

Q3: 多用于返回操作的有效性信息,此时可有如下取值:

#define ACK_SUCCESS 0x00 //操作成功 #define ACK_FAIL 0x01 //操作失败

#define ACK_FULL 0x04 //指纹数据库已满

#define ACK_NOUSER 0x05 //无此用户 #define ACK_USER_EXIST 0x06 //用户已存在 #define ACK_TIMEOUT 0x08 //采集超时

CHK: 校验和, 为第 2 字节到第 6 字节的异或值

2) > 8 字节,数据由两部分组成:数据头+数据包

数据头格式:

字	节	1	2	3	4	5	6	7	8
命令	\$	0xF5	CMD	Hi(Len)	Low(Len)	0	0	СНК	0xF5

应答	0xF5	CMD	Hi(Len)	Low(Len)	Q3	0	СНК	0xF5
----	------	-----	---------	----------	----	---	-----	------

说明:

CMD, Q3 的定义同上

Len: 数据包内有效数据长度, 16 位, 由两字节组成

 Hi(Len):
 数据包长度高 8 位

 Low(Len):
 数据包长度低 8 位

CHK: 校验和, 为第 2 字节到第 6 字节的异或值

数据包格式:

字节	1	2Len + 1	Len + 2	Len + 3
命令	0xF5	Data	СНК	0xF5
应答	0xF5	Data	СНК	0xF5

说明:

Len: 即为 Data 的字节数

CHK: 校验和, 为第 2 字节到第 Len - 2 字节的异或值

发送完数据头后紧接着发送数据包。

二. 各通讯协议命令说明

2.1 使模块进入休眠状态(命令/应答均为8字节)

命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x2C	0	0	0	0	СНК	0xF5

应答数据格式:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x2C	0	0	0	0	СНК	0xF5

2.2 设置/读取指纹添加模式(命令/应答均为8字节)

指纹添加分两种模式:允许重复模式/禁止重复模式,在"禁止重复模式"下,同一枚手指只能添加一个用户,若强行进行第二轮添加将返回错误信息。上电后系统处于禁止重复模式。

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x2D	0	Byte5=0: 0: 允许重复 1: 禁止重复 Byte5=1: 0	0: 设置新的添加模 式 1: 读取当前添加模式	0	СНК	0xF5
应答	0xF5	0x2D	0	当前添加模式	ACK_SUCCUSS ACK_FAIL	0	СНК	0xF5

2.3 添加指纹(命令/应答均为 8 字节)

为确保有效性,用户必须录入 3 次指纹,主机须向 DSP 模块发送 3 次命令

i) 第 1 次

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x01	用户 号 (高 8 位)	用户 号 (低 8 位)	用户权限 (1/2/3)	0	СНК	0xF5
应答	0xF5	0x01	0	0	ACK_SUCCESS ACK_FAIL ACK_FULL ACK_TIMEOUT	0	СНК	0xF5

说明:

用户号的取值范围为 1-0xFFF;

用户权限取值范围为 1、 2、 3, 其含义由二次开发者自行定义。

ii) 第 2 次

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x02	用户号 (高 8 位)	用户号 (低 8 位)	用户权限 (1/2/3)	0	СНК	0x F5
应答	0xF5	0x02	0	0	ACK_SUCCE SS ACK_FAIL ACK_TIMEO UT	0	СНК	0xF 5

iii) 第 3 次

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x03	用户 号 (高 8 位)	用户号 (低 8 位)	用户权限(1/2/3)	0	СНК	0xF5
应答	0xF5	0x03	0	0	ACK_SUCCESS ACK_FAIL ACK_USER_EXI ST ACK_TIMEOUT	0	СНК	0xF5

说明: 三次命令中用户号与用户权限应为相同值。

2.4 删除指定用户(命令/应答均为 8 字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x04	用户 号(高 8 位)	用户号 (低 8 位)	0	0	СНК	0xF5

应答	0xF5	0x04	0	0	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5
----	------	------	---	---	-------------------------	---	-----	------

2.5 删除所有用户(命令/应答均为8字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x05	0	0	0	0	СНК	0xF5
应答	0xF5	0x05	0	0	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

2.6 取用户总数(命令/应答均为8字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x09	0	0	0	0	СНК	0xF5
应答	0xF5	0x09	用户 数 (高 8 位)	用户 数 (低 8 位)	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

2.7 比对 1: 1 (命令/应答均为 8 字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x0B	用户 号 (高 8 位)	用户 号 (低 8 位)	0	0	СНК	0xF5
应答	0xF5	0x0B	0	0	ACK_SUCCESS ACK_FAIL ACK_TIMEOUT	0	СНК	0xF5

2.8 比对 1: N (命令/应答均为 8 字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x0C	0	0	0	0	СНК	0xF5
应答	0xF5	0x0C	用户 号 (高 8 位)	用户 号 (低 8 位)	用户权限(1/2/3) ACK_NOUSER ACK_TIMEOUT	0	СНК	0xF5

2.9 取用户权限(命令/应答均为8字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x0A	用户 号 (高 8 位)	用户 号(低 8 位)	0	0	СНК	0xF5
应答	0xF5	0x0A	0	0	用户权限 (1/2/3) ACK_NOUSER	0	СНК	0xF5

2.10 取 DSP 模块版本号(命令为 8 字节/应答>8 字节)

命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x26	0	0	0	0	СНК	0xF5

应答数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x26	Hi(Len)	Low(Len)	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

2) 数据包:

字节	1	2 Len + 1	Len + 2	Len + 3
应答	0xF5	版本数据	СНК	0xF5

说明: 此协议暂不公开

2.11 设置/读取比对等级(命令/应答均为 8 字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x28	0	Byte5=0: 新比对等 级; Byte5=1: 0	0: 设置新的比 对等级 1: 读取当前比 对等级	0	СНК	0xF5
应答	0xF5	0x28	0	当前比对等级	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

说明: 比对等级取值为 0-9, 取值越大比对越严格, 默认值为 5

2.12 采集图像并上传(命令为 8 字节/应答>8 字节)

命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x24	0	0	0	0	СНК	0xF5

应答数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x24	Hi(Len)	Low(Len)	ACK_SUCCESS ACK_FAIL ACK_TIMEOUT	0	СНК	0xF5

2) 数据包:

字节	1	2 Len + 1	Len + 2	Len + 3

应答	0xF5	图像数据	СНК	0xF5

说明:

在 DSP 模块中,指纹图像为 200*264 像素,每个像素灰度由 8 位表示。在上传过程中,为了减小数据量,在横/纵方向进行跳像素采样,这样图像变为 100*132,并取灰度的高 4 位,每两个像素合成一个字节传输(前一像素在低四位,后一像素在高四位)。

传输从第一行开始逐行进行,每一行从第一个像素开始,总共传输 100*132/2 个字节的数据。

图像数据长度 Len 恒为 6600 字节。

// 具体产品型号不同,此数值可能有变动或差别,如有用到此命令,请与我公司技术 人员联系!

2.13 采集图像并提取特征值上传(命令为 8 字节/应答>8 字节)

命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x23	0	0	0	0	СНК	0xF5

应答数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x23	Hi(Len)	Low(Len)	ACK_SUCCESS ACK_FAIL ACK_TIMEOUT	0	СНК	0xF5

2) 数据包:

字节	1	2	3	4	5 Len + 1	Len + 2	Len + 3
应答	0xF5	0	0	0	特征值 数据	СНК	0xF5

说明:特征值数据长度 Len-3 恒为 193 字节。

2.14 下传特征值与采集指纹比对(命令>8 字节/应答为 8 字节) 命令数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x44	Hi(Len)	Low(Len)	0	0	СНК	0xF5

2) 数据包:

字节	1	2	3	4	5 Len + 1	Len + 2	Len + 3
命令	0xF5	0	0	0	特征值 数据	СНК	0xF5

说明:特征值数据长度 Len-3 恒为 193 字节。

应答数据格式:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x44	0	0	ACK_SUCCESS ACK_FAIL ACK_TIMEOUT	0	СНК	0xF5

2.15 下传指纹特征值与 DSP 模块数据库指纹比对 1: 1(命令>8 字节/应答为 8字节)

命令数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x42	Hi(Len)	Low(Len)	0	0	СНК	0xF5

2) 数据包:

字节 1	2	3	4	5 Len + 1	Len + 2	Len + 3
------	---	---	---	--------------	---------	---------

命令	0xF5	用户 号 (高 8 位)	用户号 (低 8 位)	0	特征值 数据	СНК	0xF5
----	------	--------------------------	-------------------	---	-----------	-----	------

说明:特征值数据长度 Len-3 恒为 193 字节。 应答数据格式:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x42	0	0	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

2.16 下传指纹特征值与 DSP 模块数据库指纹比对 1: N(命令>8 字节/应答为 8字节)

命令数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x43	Hi(Len)	Low(Len)	0	0	СНК	0xF5

2) 数据包:

字节	1	2	3	4	5 Len + 1	Len + 2	Len + 3
命令	0xF5	0	0	0	特征值 数据	СНК	0xF5

说明:特征值数据长度 Len-3 恒为 193 字节。 应答数据格式:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x43	用户 号(高 8位)	用户 号(低 8位)	用户权限 (1/2/3) ACK_NOUSER	0	СНК	0xF5

2.17 上传 DSP 模块数据库内指定用户特征值(命令为 8 字节/应答>8 字节) 命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x31	用户 号(高 8位)	用户 号(低 8位)	0	0	СНК	0xF5

应答数据格式:

1)数据头:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x31	Hi(Len)	Low(Len)	ACK_SUCCESS ACK_FAIL ACK_NOUSER	0	СНК	0xF5

2) 数据包:

字节	1	2	3	4	5 Len + 1	Len + 2	Len + 3
应答	0xF5	用户号 (高 8 位)	用户号 (低 8 位)	用户权 限 (1/2/3)	特征值 数据	СНК	0xF5

说明:

特征值数据长度 Len-3 恒为 193 字节。

2.18 下传特征值并按指定用户号存入 DSP 模块数据库(命令>8 字节/应答为 8 字节)

命令数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x41	Hi(Len)	Low(Len)	0	0	СНК	0xF5

2) 数据包:

字节	1	2	3	4	5 Len +	Len + 2	Len + 3
命令	0xF5	用户号 (高 8 位)	用户号 (低 8 位)	用户权限 (1/2/3)	特征值数据	СНК	0xF5

说明:特征值数据长度 Len-3 恒为 193 字节

应答数据格式:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x41	存入 用户 号(高 8位)	存入 用户 号(低 8位)	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

2.19 取已登录所有用户用户号及权限(命令为 8 字节/应答>8 字节)

命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x2B	0	0	0	0	СНК	0xF5

应答数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x2B	Hi(Len)	Low(Len)	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

2) 数据包:

字节	1	2	3	4 Len +	Len + 2	Len + 3
----	---	---	---	---------	---------	---------

应答	0xF5	用户数 (高 8 位)	用户数 (低 8 位)	用户信息 数据(用 户号及权 限)	СНК	0xF5
----	------	-------------------	-------------------	----------------------------	-----	------

说明:

数据包中数据长度 Len 恒为 "3* 用户数 + 2"。

用户信息数据格式如下:

字节	4	5	6	7	8	9	
数据	用户号 1(高 8 位)	用户号 1(低 8 位)	用户 1 权限 (1/2/3)	用户号 2(高 8 位)	用户号 2(低 8 位)	用户 2 权限 (1/2/3)	

2.20 取单条记录数据(命令为 8 字节/应答>8 字节) -- 注: 此协议模块内暂不提供 此协议返回记录库中由"记录位置"指定的记录数据。 命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x38	记录位 置(高 8 位)	记录位 置(低 8 位)	0	0	СНК	0xF5

应答数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x38	Hi(Len)	Low(Len)	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

2) 数据包:

字节	1	2	3	4	5

					位 7-4: 分
		位 7-1: 年	位 7-5: 月	位 7-2: 时	(位 3-0)
应答	0xF5	位 0: 月	(位 2-0)	位 1-0:分	位 3-0: 记
		(位 3)	位 4-0: 日	(位 5-4)	录
					号(位 21-18)

字节	6	7	8	9	10	11
应答	记录号 (位 17- 10)	记录号 (位 9-2)	位 7-6: 记录号 (位 1- 0) 位 5-0: 用户号(位 13-8)	用户号 (位 7-0)	СНК	0xF5

说明:

记录数据长度 Len 恒为 8;

2.21 取新记录数据(命令为 8 字节/应答>8 字节) -- 注: 此协议模块内暂不提供

此协议返回记录库中记录号大于等于"最小记录号"的接续 50 条记录数据。 命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x39	位 7-6: 0 位 5-0: 最小记 录号 (位 21- 16)	最小记 录号 (位 15-8)	最小记录 录号(位 7- 0)	0	СНК	0xF5

应答数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x39	Hi(Len)	Low(Len)	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

2) 数据包:

字节	1	29	10-17	 Len + 2	Len + 3
应答	0xF5	第 1 条记录	第 2 条记录	 СНК	0xF5

说明:

2.22 清空记录数据(命令/应答均为 8 字节) -- 注: 此协议模块内暂不提供

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x3A	0	0	0	0	СНК	0xF5
应答	0xF5	0x3A	0	0	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

2.23 设置模块时间(命令>8 字节/应答为 8 字节) -- 注: 此协议模块内暂不提供 命令数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x48	Hi(Len)	Low(Len)	0	0	СНК	0xF5

2) 数据包:

字节	1	2	3	4	5	6	7	8	9	10
命令	0xF5	星期	年	月	日	时	分	秒	СНК	0xF5

说明:

时间数据长度 Len 恒为 7。

应答数据格式:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x48	0	0	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

2.24 读取系统时间 -- 注: 此协议模块内暂不提供

命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x3C	0	0	0	0	СНК	0xF5

应答数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x3C	Hi(Len)	Low(Len)	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

2) 数据包:

字节	1	2	3	4	5	6	7	8	9	10
应答	0xF5	星期	年	月	日	时	分	秒	СНК	0xF5

说明: 时间数据长度 Len 恒为 7。

2.25 设置/读取指纹采集等待超时时间(命令/应答均为8字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x2E	0	Byte5=0: 新超时时 间;	0: 设置新的超时时间	0	СНК	0xF5

				Byte5=1:	1: 读取当前超时时间			
应答	0xF5	0x2E	0	当前超时 时间	ACK_SUCCUSS ACK_FAIL	0	СНК	0xF5

说明:

指纹等待超时时间(tout)范围为 0-255。若此值为 0,若无指纹按压则指纹采集过程将一直持续;若此值非 0,在 tout * T0 时间内若无指纹按压则系统将超时退出。注: T0 为采集/处理一幅图像所需的时间,一般为 0.2-0.3s。

USB SDK 开发包协议

_D5_SCANNER_H_ #ifndef #define _D5_SCANNER_H_ #define DEV_MAX_NUM 5 #define LED R 0x01#define LED_G 0x02#define LED_B 0x04

1枚举设备

unsigned short WINAPI D5EnumDevice (char pDeviceName[DEV_MAX_NUM][128])

说明:

枚举已连接设备(每台电脑最多接 5 台)

参数:

pDeviceName: 已连接设备名称

返回:

0: 无连接设备

其它: 已连接设备数目

2 打开设备

long WINAPI D5OpenDevice (unsigned short uDeviceID);

说明:

打开设备(注:某设备如果已被打开,则需先关闭才能再打开)

参数:

uDeviceID: 设备号(0-4)

返回:

0: 打开成功

-1: 操作失败

3 关闭设备

long WINAPI D5CloseDevice (unsigned short uDeviceID);

说明:

关闭设备

参数:

uDeviceID: 设备号(0-4)

返回:

- 0: 关闭成功
- -1: 操作失败

4设置公司标记 KEY

long WINAPI D5SetMark (unsigned short uDeviceID, unsigned char *pMark);

说明:

设置公司标记

参数:

uDeviceID:设备号(0-4) pMark:公司标记(8 字节)

返回:

0:设置成功 -1:操作失败

5 检验公司标记 key

long WINAPI D5CheckMark (unsigned short wDevID, unsigned char *pMark);

说明:

检验公司标记

参数

uDeviceID:设备号(0-4) pMark:公司标记(8 字节)

返回:

0:检验匹配

1:检验不匹配

-1:操作失败

6设备蜂鸣提示

long WINAPI D5Beep (unsigned short uDeviceID, unsigned short uMS);

说明:

设备蜂鸣

参数:

uDeviceID:设备号(0-4)

uMS:蜂鸣时间(毫秒为单位)

返回:

0:蜂鸣成功

-1:操作失败

7打开 LED 灯提示

long WINAPI D5OpenLED (unsigned short uDeviceID, unsigned short uLEDS);

说明:

打开 LED

参数:

uDeviceID:设备号(0-4)

uLEDS: LED 组合(红-Bit0/绿-Bit1/蓝-Bit2)

返回:

0:打开成功 -1:操作失败

8 关闭 LED 灯

long WINAPI D5CloseLED (unsigned short uDeviceID, unsigned short uLEDS);

说明:

关闭 LED

参数:

uDeviceID:设备号(0-4)

uLEDS: LED 组合(红-Bit0/绿-Bit1/蓝-Bit2)

返回:

0:关闭成功 -1:操作失败

9从位图中载入图像数据

long WINAPI D5LoadBMPFile (char *strFileName, unsigned char *pImage);

说明:

从位图中载入图像数据

参数:

strFileName: 位图文件名

plmage:图像数据

宽度 192, 高度 256, 数据按行顺序排列, 每个像素用 1 字节表示灰度

返回:

0:载入成功

-1: 文件无法打开或格式不对

10 将图像数据存储为位图

long WINAPI D5SaveBMPFile (char *strFileName, unsigned char *plmage);

说明:

将图像数据存储为位图

参数:

strFileName: 位图文件名

plmage:图像数据

宽度 192, 高度 256, 数据按行顺序排列, 每个像素用 1 字节表示灰度

返回:

0:存储成功

-1: 文件无法打开

11 从设备中读取图像

long WINAPI D5GetImage (unsigned short wDeviceID,unsigned char *pImage);

说明:

读取图像

参数:

wDeviceID:设备号(0-4)

plmage:图像数据

宽度 192, 高度 256, 数据按行顺序排列, 每个像素用 1 字节表示灰度

返回:

0:读取成功 -1:操作失败

12 检测某图像是否有指纹

bool WINAPI D5CheckFP (unsigned char *plmage);

说明:

检测某图像是否有指纹

参数:

plmage:图像数据

宽度 192, 高度 256, 数据按行顺序排列, 每个像素用 1 字节表示灰度

返回:

1:检测到指纹

0:无指纹

13 指纹转成特征值

long WINAPI D5Process (unsigned char *pImage,unsigned char *pFeature);

说明:

对输入的指纹图像数据提取特征值

参数:

plmage:输入的指纹图像数据

宽度 192, 高度 256, 数据按行顺序排列, 每个像素用 1 字节表示灰度

pFeature:生成的指纹特征值(256 非符号字节的数组)

返回:

0:提取成功 -1:提取失败 -2:系统错误

14 两个指纹特征值进行 1:1 比对

long WINAPI D5Match (unsigned char *pFeature1,unsigned char *pFeature2, unsigned short uRotate = 60,unsigned short uLevel = 5);

说明:

对输入的两个指纹特征值进行比对

参数:

pFeature1:指纹特征值 1 pFeature2:指纹特征值 2 uRotate:旋转角度(1-180) uLevel:匹配等级(0-9)

返回:

0: 匹配成功 -1: 匹配失败 -2: 系统错误

15 对输入的指纹特征值与指纹库内特征值进行快速 1:N 比对

long WINAPI D5MatchN (unsigned char *pFeatureIn,unsigned char pFeatureLib[][256],unsigned long IFingernum,unsigned short uRotate = 60, unsigned short uLevel = 5);

说明:

对输入的指纹特征值与指纹库内特征值进行快速 1:N 比对

参数:

pFeatureIn: 需比对的特征值 pFeatureLib: 指纹特征值库数组

IFingernum:指纹库指纹数,数目不限

uRotate:旋转角度 (1-180) uLevel:匹配等级 (0-9)

返回:

-1: 匹配不成功 -2: 系统错误

其他: 匹配成功的指纹库内指纹下标

附录:应用方案

一、典型应用方案:

指纹采集应用方案之一:终端采集,终端比对

指纹采集应用方案之一:终端采集, 服务器比对

联机比对应用方案之一:终端输入ID,取指纹数据库中指定指纹,终端比对

联机比对应用方案之二:分类(批)下载指纹到终端,终端比对

联机比对应用方案之三:终端采集指纹,上传服务器 1:1 比对

联机比对应用方案之四:终端采集指纹,上传服务器1:N比对

指纹卡应用方案之一:卡号取数据库指纹,下载终端与采集指纹比对

指纹卡应用方案之二:指纹存于卡内,下载卡内指纹与采集指纹对比

