

Understanding Pennsylvania School Performance

Chris Chung Springboard Capstone Project 3 February 2022

The Problem

PENNSYLVANIA SYSTEM OF SCHOOL ASSESSMENT (PSSA)

Every PA student in grades 3-8 attending district, charter, and cyber schools is assessed in English Language Arts and Math.

Need to understand the factors that affect school performance on the PSSAs.

- School Performance Profile
- Turnaround interventions
- School closures
- Charter school renewals

Goals

Investigate the magnitude of gaps in school performance and understand what factors are associated with school performance.

Create two models (ELA and Math) to establish relationship between the features of a school and the percentage of students that are proficient or advanced in that school.

Select one school and use the model to produce counterfactual explanations.

Key Results

ELA

• r^2 score: 0.81

- MAE: 6.41

Worst case residuals: [-16.45, 15.87]

Math

 r^2 score: 0.72

- MAE: 8.91

Worst case residuals: [-22.09, 23.24]

Data Acquisition

Data Acquisition

Two datasets from <u>Future Ready PA Index</u>.

SCHOOL PERFORMANCE DATA FROM 2018-2019 SCHOOL YEAR

- School level
- General school information
- Demographics
- Learning profile
- Socioeconomic makeup
- Target: Percent Proficient or Advanced in ELA
- Target: Percent Proficient or Advanced in Math

SCHOOL FISCAL DATA FROM 2018-2019 SCHOOL YEAR

- School level
- Personnel and non-personnel expenditures per student from different sources (Local, State, Federal)

Data Acquisition

School Name	School Enrollment	Male	% Regular Attendance	 Federal Personnel	% Proficient or Adv. ELA	% Proficient or Adv. Math
Abington Heights MS	1119	52.28	90.9	 203.33	76.0	53.9
ASPIRA Bilingual Charter School	365	54.79	68.1	 1467.44	11.1	4.9
Barrett Elementary School	200	50.00	71.8	 3259.03	42.2	22.7
Clarks Summit Elementary School	339	57.52	96.2	 206.43	75.2	61.0

<u>Cleaned dataset</u>: 2673 rows

32 columns

Exploratory Data Analysis

Percent Regular Attendance

The percentage of students enrolled in a school for 90 or more school days and present 90 percent or more of these school days.

Demographics

Local Expenditures

Federal Expenditures

Baseline Model

Extended Modeling

Model Selection

Feature Impact

Modeling

Baseline Model

Extended Modeling

Model Selection

Feature Impact

Baseline Model: Linear Regression

PREDICTING ELA PERFORMANCE

r^2	0.77
MAE	6.95
95% Worst Residuals	-18.04 17.50

PREDICTING MATH PERFORMANCE

.2	0.66
MAE	10.12
95% Worst	-24.41
Residuals	23.48

Modeling

Baseline Model

Extended Modeling

Model Selection

Feature Impact

Search space for extended modeling

6 models to compare for ELA and Math

Modeling

Baseline Model

Extended Modeling

Model Selection

Feature Impact

ELA Model

XGBoost with all features included

- r^2 score = 0.81
- MAE = 6.41
- Worst case residuals:[-16.45, 15.87]

Math Model

XGBoost with high correlation features removed

- r^2 score = 0.72
- MAE = 8.91
- Worst case residuals:

[-22.09, 23.24]

Feature Impact

Approach

Observation:

0% proficient or advanced in both ELA and Math

Goal: Can we find alternative scenarios so that this school can reach 10% (or as close to 10% as possible) proficiency in both ELA and Math?

Features to change:

- Economically disadvantaged (66.09)
- Percent Regular Attendance (12.60)
- Local Personnel (25885.22)

ELA

Math

With Bayesian Optimization

	Economically Disadvantaged	66.09%	\downarrow	56.58%
ELA	Percent Regular Attendance	12.60%	↑	21.23%
	Local - Personnel	\$25885.22	↑	\$28041.70
	% Proficient (or adv.) in ELA	0%	↑	8.59%
Math	Economically Disadvantaged	66.09%	\downarrow	56.11%
	Percent Regular Attendance	12.60%	↑	13.68%
	Local - Personnel	\$25885.22	↑	\$27372.17
	% Proficient (or adv.) in ELA	0%	↑	9.43%

Future Work

- Additional metric: adjusted r^2 score
- Counterfactuals with Bayesian Optimization, add more features to solution space
- Incorporate ML algorithms that can establish
 causal inferences between our features and target
- Combine datasets from two different school years
 - Features: change in feature values from one year to another
 - Target: change in percent proficient or advanced

Recommendations

- Research and invest in ideas to improve the quality of life for impoverished neighborhoods, such as:
 - Offering social services
 - Providing funding for adults to attend trade school or other educational opportunities
 - Providing micro loans to families with small businesses to expand their ventures
- Connect with the families of local communities of underperforming schools to emphasize the significance of consistent attendance.
 - Identify any common barriers that families may face in preventing their children from attending school regularly.

Thank you!

Email: cchung106@gmail.com

LinkedIn: https://www.linkedin.com/in/cchung106/

GitHub: https://github.com/cchung106/Capstone-Three

Tableau:

https://public.tableau.com/app/profile/christopher.chung6215/vi

z/02_EDA_Tableau/PASchoolPerformanceEDA

Appendix

Sources

https://www.ncnewsonline.com/news/local_news/budget-report-on-pa-education-agency-provokes-spat-between-lawmakers-watchdogs/article_f332fd80-533c-5619-858d-fcecb3a8afb5.html

https://shap.readthedocs.io/en/latest/index.html

https://github.com/fmfn/BayesianOptimization

Image Sources

https://themedialine.org/life-lines/paradise-lost-a-year-of-disrupted-education-in-the-middle-east/

https://elearningindustry.com/9-things-shape-future-of-education-learning-20-years

https://www.science.org/doi/10.1126/science.1235590

https://www.istockphoto.com/photo/innovative-learning-creative-educational-study-concept-for-graduation-and-school-gm1165957815-321001604