NAME:

Math 331 March 22, 2018 W. Smith

QUIZ 2

- (4) 1. Give the definitions of:
 - **a.** A function uniformly continuous on its domain $D \subset \mathbb{R}$

A function $f: D \to \mathbb{R}$ is uniformly continuous if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that if $x, y \in D$ and $|x - y| < \delta$, then $|f(x) - f(y)| < \varepsilon$.

b. A compact set of real numbers (Give the definition, don't state the Heine-Borel Theo-

A set $E \subset \mathbb{R}$ is compact if every open cover of E has a finite subcover.

2. State the Heine-Borel Theorem, which has to do with when a set of real numbers is compact.

A set $E \subset \mathbb{R}$ is compact if and only if it is closed and bounded.

(4) **3.** Let $E = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ and define $f : E \to \mathbb{R}$ by $f(1/n) = (-1)^n$. Is f continuous? You must justify your answer! Little credit will be given for a correct

answer without proper justification.

Each point $\frac{1}{n}$ of E is an isolated point, since for each n, $\left(\frac{1}{n} - \frac{1}{10n^2}, \frac{1}{n} + \frac{1}{10n^2}\right) \cap E =$

 $\left\{\frac{1}{n}\right\}$. We've seen that every function is continuous at any isolated points in its domain,

(6) **4.** Are the following sets of real numbers compact? For each, just say "yes" or "no"; no explanation is required.

a.
$$\{-1,0,1\}$$

Yes, it is compact. We've seen that every finite set is compact.

b.
$$\{0\} \cup (1,4]$$

No, it is not compact. It is not closed since 1 is an accumulation point of the set that is not in the set. By the Heine-Borel Theorem, compact sets are always closed, so this set is not compact.

$$\mathbf{c.} \ \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$$

No, it is not compact. It is not closed since 0 is an accumulation point of the set that is not in the set. By the Heine-Borel Theorem, compact sets are always closed, so this set is not compact.

(4) 5. Give an example of an open cover of the set $[0,\infty)$ that has no finite subcover.

One example is $\{(-1,n)\}_{n=1}^{\infty}$. Each set is open, and $\bigcup_{n=1}^{\infty} (-1,n) \supset [0,\infty)$, so it is an open cover. There is no finite subcover, since any finite union of these sets is bounded, while $[0,\infty)$ is unbounded.

(4) **6.** Define a function
$$f: \mathbb{R} \to \mathbb{R}$$
 by $f(x) = \begin{cases} x \sin(1/x), & x \neq 0; \\ 0, & x = 0. \end{cases}$

a. Explain why f is continuous at each point of $\mathbb{R} \setminus \{0\}$. (You can cite theorems and you may use that $\sin(x)$ is continuous on all of \mathbb{R} to show continuity at these points.)

We've seen that every quotient of polynomials is continuous at all points where the denominator is not zero. Hence 1/x is continuous at each point of $\mathbb{R} \setminus \{0\}$. We've also seen that $\sin x$ is continuous on all of \mathbb{R} , and that the composition of continuous functions is continuous. Hence $\sin(1/x)$ is continuous at each point of $\mathbb{R} \setminus \{0\}$. Finally, we know that the product of continuous functions is continuous, so $x \sin(1/x)$ is continuous at each point of $\mathbb{R} \setminus \{0\}$.

b. Show that f is continuous at x = 0. (A different argument is required here; one way is to argue from the definition of continuity.)

Let $\varepsilon > 0$ and set $\delta = \varepsilon$, so that $\delta > 0$ also. Suppose that $|x - 0| < \delta$. Then

$$|f(x) - f(0)| = |x \sin(1/x) - 0| \le |x| < \delta = \varepsilon.$$

Hence f is continuous at x = 0, by the definition of continuity.