1. Let function f be defined by the polynomial below:

$$f(x) = 2x^4 + 9x^3 + 3x^2 - 7x - 5$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials
-f(x) •	$-2x^4 + 9x^3 - 3x^2 - 7x + 5$
-f(-x)	$2x^4 - 9x^3 + 3x^2 + 7x - 5$
f(-x)	$-2x^4-9x^3-3x^2+7x+5$

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\boldsymbol{x}	f(x)	g(x)	h(x)
1	4	7	2
2	7	2	3
3	8	4	9
4	9	6	4
5	1	3	7
6	3	9	5
7	5	8	6
8	6	5	1
9	2	1	8

3. Evaluate h(5).

$$h(5) = 7$$

4. Evaluate $f^{-1}(8)$.

$$f^{-1}(8) = 3$$

5. Assuming f is an **even** function, evaluate f(-2).

If function f is even, then

$$f(-2) = 7$$

6. Assuming g is an **odd** function, evaluate g(-1).

If function g is odd, then

$$g(-1) = -7$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^3 - 1$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^3 - 1$$
$$p(-x) = x^3 - 1$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(x^3 - 1)$$

 $-p(-x) = -x^3 + 1$

c. Is polynomial p even, odd, or neither?

neither

d. Explain how you know the answer to part c.

We see that p(x) is not equivalent to either p(-x) or -p(-x), so p is neither even nor odd.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = \frac{x-6}{7}$$

a. Evaluate f(83).

step 1: subtract 6 step 2: divide by 7

$$f(83) = \frac{(83) - 6}{7}$$
$$f(83) = 11$$

b. Evaluate $f^{-1}(13)$.

step 1: multiply by 7 step 2: add 6

$$f^{-1}(x) = 7x + 6$$

$$f^{-1}(13) = 7(13) + 6$$

$$f^{-1}(13) = 97$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(6).

$$b(6) = 7$$

b. Evaluate $b^{-1}(5)$.

$$b^{-1}(5) = 3$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	3	-3	-3	3
-1	-6	6	6	-6
0	0	0	0	0
1	6	-6	-6	6
2	-3	3	3	-3

b. Is function f even, odd, or neither?

odd

c. How do you know the answer to part b?

Function f is odd because column -f(-x) matches column f(x) exactly.