Ćwiczenia XIV Symulacja chaotycznej mapy kwantowej

Jakub Tworzydło

Katedra Teorii Materii Skondensowanej Instytut Fizyki Teoretycznej telefon: (022)5532-314

15/01/2013 Hoża, Warszawa

Plan

Wzory definiujące mapę

Symulacja mapy

3 Czułość na warunki początkowe

Plan

Wzory definiujące mapę

2 Symulacja mapy

3 Czułość na warunki początkowe

Plan

Wzory definiujące mapę

Symulacja mapy

3 Czułość na warunki początkowe

Dynamika mapy kwantowej

W obrazie Schrödingera: $\psi(x,t) = \mathcal{F}^t \psi(x,0)$ z operatorem (stroboskopowej) ewolucji

$$\mathcal{F} = \exp\left(-rac{i\hat{p}^2}{2\hbar}
ight) \exp\left(-rac{iK\cos(\hat{x})}{\hbar}
ight)$$

 $x, p \in [0, 2\pi]$ periodyczne dla $\hbar = 2\pi/M$ oraz dyskretne $x = 2\pi n/M$, $p = 2\pi I/M$ przy $n, I = 0, \dots, M-1$ funkcja falowa – wektor $\psi_n = \psi(x_n)$

Unitarny operator ewolucji w przedstawieniu położeniowym

$$\mathcal{F}_{n'n} = \frac{1}{\sqrt{M}} \exp\left(\frac{i\pi(n'-n)^2}{M} - i\frac{MK}{2\pi}\cos\frac{2\pi n}{M}\right)$$

Pakiet gaussowski

• pakiet centrowany na (x_0, p_0) ma postać

$$\psi_0(x) = \mathcal{N}e^{ip_0x/\hbar}e^{-(x-x_0)^2/2\hbar}$$

(zapewnia minimalną nieoznaczoność $\Delta x \Delta p = \hbar/2$)

• dla mapy kwantowej: periodyczny oraz $(x_0, p_0) = \frac{2\pi}{M}(n_0, l_0)$

$$\psi_0(x_n) = \mathcal{N}e^{i2\pi I_0 n/M} \sum_m e^{-\frac{\pi}{M}(n-n_0+mM)^2}$$

• wystarczy $m = -4, \dots, 4$; obliczamy numerycznie \mathcal{N}

Funkcja Husimi

Funkcję falową ψ przedstawiamy w p. fazowej za pomocą

$$Q(x_0, p_0) = \sum_n \psi_0^*(x_n) \psi(x_n)$$

gdzie ψ_0 jest pakietem gaussowskim centrowanym w (x_0, p_0)

Uwaga techniczna:

całą zależność od $p_0 = 2\pi I_0/M$ uzyskujemy jedną FFT

Zadanie 1

- napisz funkcję przygotowującą (unormowany) pakiet Gaussa $\psi_0(x_n)$
- ullet wykreśl amplitudę prawdopodobieństwa $|\psi_0|^2$ zaznaczając wartość x_0
- wykreśl amplitudę prawdopodobieństwa dyskretnej transformaty Fouriera (FFT) wektora $\psi_0(x_n)$, zaznacz p_0 , sprawdź unormowanie

wektor indeksów można reprezentować np. tablicą numpy

```
n = np.arange(mbig)
```

... i dalej obliczamy na tej tablicy: np.exp, np.cos, sp.fft

Zadanie 2

- zaimplementować dynamikę mapy kwantowej Chirikova przy pomocy jednej FFT (!)
- wykreślić $|\psi(x_n)|^2$ dla kilku pierwszych kroków czasowych, biorąc pakiet gaussowski jako początkowy (z niewielkim $p_0 \neq 0$) oraz dla K = 0
- to same dla K = 2.1

Zadanie 3

- obliczać funkcję Husimi Q(x₀, p₀) i przedstawić jej amplitudę kolorowym wykresem (plt.imshow lub plt.pcolor)
- wykreślić funkcję Husimi dla kilku pierwszych kroków czasowych naszej dynamiki, biorąc pakiet gaussowski jako początkowy oraz dla K=0.6,2.1,6.1

Zadanie 4: obliczanie fidelity (wierności)