Алгебра, коллоквиум

vk: vk.com/uselessofflane, tg: @fmakhnach

Были использованы материалы Sofiika: github.com/Sofiika/AlgebraKollok

СОДЕРЖАНИЕ

ОПРЕДЕЛЕНИЯ
Модуль 1
1.1. Дать определение умножения матриц. Коммутативна ли эта операция? Ответ пояснить
1.2. Дать определения ступенчатого вида матрицы и канонического
вида матрицы
1.4. Сформулировать теорему о методе Гаусса
1.5. Дать определения перестановки и подстановки
вольного порядка
1.8. Выписать формулы для разложения определителя по строке и по столбцу
1.9. Что такое фальшивое разложение?
1.10. Выписать формулы Крамера для квадратной матрицы произвольного порядка. Когда с их помощью можно найти решение
СЛАУ?
1.11. Дать определение союзной матрицы
её существования.
1.13. Выписать формулу для нахождения обратной матрицы
1.14. Дать определение минора
1.15. Дать определение базисного минора. Какие строки называются
базисными?
1.16. Дать определение ранга матрицы
виальная линейная комбинация?
1.18. Дать определение линейной зависимости строк матрицы

	1.19. Дать определение линейно независимых столбцов матрицы	1
	1.20. Сформулировать критерий линейной зависимости	1
	1.21. Сформулировать теорему о базисном миноре	1
	1.22. Сформулировать теорему о ранге матрицы	1
	1.23. Сформулировать критерий невырожденности квадратной матри-	
	цы	1
	1.24. Выписать свойства решений однородных и неоднородных СЛАУ.	1
	1.25. Сформулировать теорему Кронекера-Капелли	1
	1.26. Дать определение фундаментальной системы решений (ФСР) од-	
	нородной СЛАУ.	1
	1.27. Сформулировать критерий существования ненулевого решения	
	однородной системы линейных уравнений с квадратной матрицей.	1
M	одуль 2	2
	2.1. Сформулируйте теорему о структуре общего решения однородной	_
	СЛАУ	6
	2.2. Сформулируйте теорему о структуре общего решения неоднород-	-
	ной системы линейных алгебраических уравнений	6
	2.3. Что такое алгебраическая и тригонометрическая формы записи	_
	комплексного числа?	6
	2.4. Дайте определения модуля и аргумента комплексного числа. Что	
	такое главное значение аргумента комплексного числа?	6
	2.5. Сложение, умножение комплексных чисел. Что происходит с ар-	
	гументами и модулями комплексных чисел при умножении и при	
	делении?	6
	2.6. Что такое комплексное сопряжение? Как можно делить комплекс-	
	ные числа в алгебраической форме?	
	2.7. Выпишите формулу Муавра	6
	$2.8. \ { m Kak} \ { m найти комплексные корни} \ n$ -ой степени из комплексного чис-	
	ла? Сделайте эскиз, на котором отметьте исходное число и все	
	корни из него.	6
	2.9. Сформулируйте основную теорему алгебры. Сформулируйте тео-	
	рему Безу.	4
	2.10. Выпишите формулу Эйлера. Выпишите выражения для синуса и	
	косинуса через экспоненту.	4
	2.11. Выпишите формулы Виета для многочлена третьей степени	6
	2.12. Какие многочлены называются неприводимыми?	6

2.13. Сформулируйте утверждение о разложении многочленов на непри-
водимые множители над полем комплексных чисел
2.14. Дайте определение векторного произведения векторов в трехмер-
ном пространстве
2.15. Выпишите формулу для вычисления векторного произведения в
координатах, заданных в ортонормированном базисе
2.16. Дайте определение смешанного произведения векторов. Как вы-
числить объем тетраэдра с помощью смешанного произведения?
2.17. Выпишите формулу для вычисления смешанного произведения
в координатах, заданных в ортонормированном базисе
2.18. Сформулируйте критерий компланарности трех векторов с по-
мощью смешанного произведения
2.19. Что такое уравнение поверхности и его геометрический образ?
2.20. Сформулируйте теорему о том, что задает любое линейное урав-
нение на координаты точки в трехмерном пространстве
2.21. Что такое нормаль к плоскости?
2.22. Выпишите формулу для расстояния от точки до плоскости
2.23. Общие уравнения прямой. Векторное уравнение прямой. Пара-
метрические и канонические уравнения прямой
скрещивающимися прямыми
2.25. Какие бинарные операции называются ассоциативными, а какие
коммутативными?
2.26. Дайте определения полугруппы и моноида. Приведите примеры.
2.27. Сформулируйте определение группы. Приведите пример
2.28. Что такое симметрическая группа? Укажите число элементов в
ней
2.29. Что такое общая линейная и специальная линейная группы?
2.30. Сформулируйте определение абелевой группы. Приведите при-
Mep
2.31. Дайте определение подгруппы. Приведите пример группы и её
подгруппы
2.32. Дайте определение гомоморфизма групп. Приведите пример
2.33. Что такое ядро гомоморфизма групп? Приведите пример
2.34. Дайте определение изоморфизма групп. Приведите пример
2.35. Сформулируйте определение циклической группы. Приведите
пример

	2.36. Дайте определение порядка элемента.	3(
	2.37. Сформулируйте утверждение о связи порядка элемента, порож-	
	дающего циклическую группу, с порядком группы	3(
	2.38. Сколько существует, с точностью до изоморфизма, циклических	
	групп данного порядка?	3(
	2.39. Что такое группа диэдра? Что такое знакопеременная группа?	
	Укажите число элементов в них	3(
	2.40. Сформулируйте утверждение о том, какими могут быть подгруп-	
	пы группы целых чисел по сложению.	3(
	2.41. Дайте определение левого смежного класса по некоторой под-	
	группе	31
	2.42. Что такое индекс подгруппы?	31
	2.43. Сформулируйте теорему Лагранжа	31
	2.44. Сформулируйте две леммы, которые нужны для доказательства	
	теоремы Лагранжа.	31
ъ л	o.	
11/10		32
	3.1. Сформулируйте критерий нормальности подгруппы, использую-	.
		32
		32
	1 1	32
	3.4. Сформулируйте критерий нормальности подгруппы, использую-	
		32
	3.5. Сформулируйте теорему о гомоморфизме групп. Приведите при-	
	1	32
	5.0. Тто такое прямое произведение групп:	32
	3.7. Сформулируйте определение автоморфизма и внутреннего авто-	
	• •	33
		33
		33
		33
	3.11. Дайте определение кольца.	33
	3.12. Что такое коммутативное кольцо? Приведите примеры коммута-	
	тивного и некоммутативного колец	34
	3.13. Дайте определение делителей нуля	34
	3.14. Дайте определение целостного кольца. Приведите пример	34
	3.15. Сформулируйте критерий целостности для нетривиального ком-	
	мутативного кольца с единицей	34

3.16. Какие элементы кольца называются обратимыми?	35
3.17. Дайте определение поля. Приведите три примера	35
3.18. Дайте определение подполя. Приведите пример пары: поле и его	
подполе	35
3.19. Дайте определение характеристики поля. Привести примеры: по-	
ля конечной положительной характеристики и поля нулевой ха-	
рактеристики	35
3.20. Сформулируйте утверждение о том, каким будет простое подполе	0.5
в зависимости от характеристики	35
3.21. Дайте определение идеала. Что такое главный идеал?	36
3.22. Сформулируйте определение гомоморфизма колец	36
3.23. Сформулируйте теорему о гомоморфизме колец. Приведите при-	
Mep	36
3.24. Сформулируйте критерий того, что кольцо вычетов по модулю n является полем	36
3.25. Сформулируйте теорему о том, когда факторкольцо кольца мно-	
гочленов над полем само является полем.	36
3.26. Дайте определение алгебраического элемента над полем	37
3.27. Сформулируйте утверждение о том, что любое конечное поле	٠.
может быть реализовано как факторкольцо кольца многочленов	
по некоторому идеалу.	37
3.28. Сформулируйте утверждение о том, сколько элементов может	٠.
быть в конечном поле.	37
3.29. Дайте определение линейного (векторного) пространства	37
3.30. Дайте определение базиса линейного (векторного) пространства.	38
3.31. Что такое размерность пространства?	38
3.32. Дайте определение матрицы перехода от старого базиса линей-	
ного пространства к новому.	38
3.33. Выпишите формулу для описания изменения координат вектора	0.0
при изменении базиса.	38
3.34. Дайте определение подпространства в линейном пространстве	39
3.35. Дайте определения линейной оболочки конечного набора векто-	
ров и ранга системы векторов.	39
3.36. Дайте определения суммы и прямой суммы подпространств	39
3.37. Сформулируйте утверждение о связи размерности суммы и пе-	96
ресечения подпространств	39
3.38. Дайте определение билинейной формы.	39
3.39. Дайте определение квадратичной формы	40
o.oo. Amiro onbodonomio madalami mon dobimi	1

	3.40. Дайте определения положительной и отрицательной определенности квадратичной формы.
	3.41. Какую квадратичную форму называют знакопеременной?
	3.42. Дайте определения канонического и нормального вида квадра-
	тичной формы
	3.43. Как меняется матрица билинейной формы при замене базиса? Как меняется матрица квадратичной формы при замене базиса? 3.44. Сформулируйте критерий Сильвестра и его следствие
	3.48. Выпишите формулу для преобразования матрицы линейного отображения при замене базиса. Как выглядит формула в случае линейного оператора?
Mo	одуль 4
	4.1. Сформулируйте утверждение о связи размерностей ядра и образа
	линейного отображения
	4.2. Дайте определения собственного вектора и собственного значения
	линейного оператора
	4.3. Дайте определения характеристического уравнения и характеристического многочлена квадратной матрицы.
	4.4. Сформулируйте утверждение о связи характеристического уравнения и спектра линейного оператора.
	4.5. Дайте определение собственного подпространства.
	4.6. Дайте определения алгебраической и геометрической кратности
	собственного значения. Какое неравенство их связывает? 4.7. Каким свойством обладают собственные векторы линейного опе-
	ратора, отвечающие различным собственным значениям?
	4.8. Сформулируйте критерий диагональности матрицы оператора
	4.9. Сформулируйте критерий диагонализируемости матрицы оператора с использованием понятия геометрической кратности
	4.10. Дайте определение жордановой клетки. Сформулируйте теорему
	о жордановой нормальной форме матрицы оператора
	4.11. Выпишите формулу для количества жордановых клеток заданного размера
	4.12. Сформулируйте теорему Гамильтона-Кэли

4.13. Дайте определение корневого подпространства
4.14. Дайте определение минимального многочлена линейного опера-
тора
4.15. Дайте определение инвариантного подпространства
4.16. Дайте определение евклидова пространства.
4.17. Выпишите неравенства Коши–Буняковского и треугольника
4.18. Дайте определения ортогонального и ортонормированного бази-
сов
4.19. Дайте определение матрицы Грама.
4.20. Выпишите формулу для преобразования матрицы Грама при пе-
реходе к новому базису
4.21. Как меняется определитель матрицы Грама (грамиан) при при-
менении процесса ортогонализации Грама-Шмидта?
4.22. Сформулируйте критерий линейной зависимости с помощью мат-
рицы Грама
4.23. Дайте определение ортогонального дополнения.
4.24. Дайте определения ортогональной проекции вектора на подпро-
странство и ортогональной составляющей.
4.25. Выпишите формулу для ортогональной проекции вектора на под-
пространство, заданное как линейная оболочка данного линейно
независимого набора векторов.
4.26. Выпишите формулу для вычисления расстояния с помощью опре-
делителей матриц Грама.
4.27. Дайте определение сопряженного оператора в евклидовом про-
странстве.
4.28. Дайте определение самосопряженного (симметрического) опера-
Topa
4.29. Как найти матрицу сопряженного оператора в произвольном ба-
зисе?
4.30. Каким свойством обладают собственные значения самосопряжен-
ного оператора?
4.31. Что можно сказать про собственные векторы самосопряженного
оператора, отвечающие разным собственным значениям?
4.32. Сформулируйте определение ортогональной матрицы
4.33. Сформулируйте определение ортогонального оператора
4.34. Сформулируйте критерий ортогональности оператора, использу-
ющий его матрицу.
ionani oro marping.

4.35. Каков канонический вид ортогонального оператора? Сформули-	۲1
руйте теорему Эйлера.	51
4.36. Сформулируйте теорему о существовании для самосопряженного	۲۵
оператора базиса из собственных векторов	52
4.37. Сформулируйте теорему о приведении квадратичной формы к	
диагональному виду при помощи ортогональной замены коорди-	۲.
Hat	52
4.38. Сформулируйте утверждение о QR-разложении	52
4.39. Сформулируйте теорему о сингулярном разложении	53
4.40. Сформулируйте утверждение о полярном разложении	53
4.41. Дайте определение сопряженного пространства	53
4.42. Выпишите формулу для преобразования координат ковектора	۲۹
при переходе к другому базису.	53
4.43. Дайте определение взаимных базисов.	53
4.44. Дайте определение биортогонального базиса.	54
4.45. Сформулируйте определение алгебры над полем. Приведите два	54
примера	54 54
4.40. Сформулируите определение тензора. Приведите два примера 4.47. Дайте определение эллипса как геометрического места точек.	04
Выпишите его каноническое уравнение. Что такое эксцентриситет	
эллипса? В каких пределах он может меняться?	55
4.48. Дайте определение гиперболы как геометрического места точек.	00
Выпишите её каноническое уравнение. Что такое эксцентриситет	
гиперболы? В каких пределах он может меняться?	55
4.49. Дайте определение параболы как геометрического места точек.	00
Выпишите её каноническое уравнение.	56
4.50. Дайте определение цилиндрической поверхности.	56
4.51. Дайте определение дининдри неской поверхности. Приведите три при-	50
мера.	56
ДОКАЗАТЕЛЬСТВА	57
Модуль 1	57
1.1. Сформулировать и доказать критерий существования обратной	
матрицы. Свойства определителя предполагаются известными	57
1.2. Какие три условия достаточно наложить на функцию от столб-	
цов матрицы, чтобы она обязательно была детерминантом? Ответ	
обоснуйте для матриц второго порядка	57

1.3.	Сформулировать и доказать утверждение о том, что кососиммет-
	ричность для линейной функции эквивалентна обнулению на паре
	совпадающих элементов
1.4.	Чему равен определитель произведения двух квадратных матриц?
	Ответ обосновать
1.5.	Выписать формулы Крамера для квадратной матрицы произволь-
	ного порядка и доказать их
1.6.	Сформулировать и доказать критерий линейной зависимости
1.7.	Сформулировать и доказать следствие теоремы о базисном миноре
	для квадратных матриц (критерий невырожденности)
	Сформулируйте и докажите теорему о базисном миноре
	Сформулируйте теорему Кронекера-Капелли и докажите её
1.10	. Сформулируйте и докажите теорему о ранге матрицы (теорема о
	базисном миноре предполагается известной)
Модул	т. 9
	Сформулируйте теорему о структуре общего решения неоднород-
2.1.	ной системы линейных алгебраических уравнений и докажите её.
2.2.	Выпишите формулу Муавра и докажите её.
	Докажите теорему о том, что любое линейное уравнение на коор-
	динаты точки в трехмерном пространстве задает плоскость и что
	любая плоскость определяется линейным уравнением
2.4.	Сформулируйте и докажите утверждение о связи порядка элемен-
	та, порождающего циклическую группу, с порядком группы
2.5.	Сформулируйте и докажите утверждение о том, какими могут
	быть подгруппы группы целых чисел по сложению
2.6.	Сформулируйте и докажите утверждение о том, сколько существу-
	ет, с точностью до изоморфизма, циклических групп данного по-
	рядка
2.7.	Докажите утверждение о том, что ядро гомоморфизма групп все-
	гда является подгруппой
2.8.	Сформулируйте и докажите теорему Лагранжа (включая леммы).
	Дайте определение фундаментальной системы решений (ФСР) од-
	нородной системы линейных уравнений. Докажите теорему о су-
	ществовании ФСР.

2.10. Сформулируйте критерий существования ненулевого решения од- нородной системы линейных уравнений с квадратной матрицей и	
докажите его	
Модуль 3	71
3.1. Докажите, что гомоморфизм инъективен тогда и только тогда, когда его ядро тривиально	
3.2. Сформулируйте и докажите критерий нормальности подгруппы, использующий сопряжение	
3.3. Сформулируйте и докажите критерий нормальности подгруппы, использующий понятие ядра гомоморфизма	
3.4. Докажите, что центр группы является её нормальной подгруппой	
3.5. Сформулируйте и докажите утверждение о том, чему изоморфна факторгруппа группы по её центру	
3.6. Сформулируйте и докажите теорему Кэли	
3.7. Докажите, что характеристика поля может быть либо простым числом, либо нулём	
3.8. Сформулируйте и докажите утверждение о том, каким будет простое подполе в зависимости от характеристики	
3.9. Сформулируйте и докажите критерий того, что кольцо вычетов по	
модулю n является полем	
3.10. Докажите, что ядро гомоморфизма колец является идеалом 3.11. Сформулируйте и докажите утверждение о том, когда фактор-	
кольца кольца многочленов над полем само является полем	
3.12. Выпишите и докажите формулу для описания изменения координат вектора при изменении базиса	
3.13. Выпишите формулу для преобразования матрицы билинейной	
формы при замене базиса и докажите её	
3.14. Выпишите формулу для преобразования матрицы линейного отоб-	
ражения при замене базиса и докажите её	
3.15. Сформулируйте и докажите теорему о гомоморфизме групп 3.16. Что такое сумма и прямая сумма подпространств? Сформулируй-	
те и докажите критерий того, что сумма подпространств является	
прямой	. 78

одулн	. 4
4.1. (
	ского уравнения и спектра линейного оператора
4.2. (Сформулируйте и докажите утверждение о том, каким свойством
	обладают собственные векторы линейного оператора, отвечающи ϵ
	различным собственным значениям
4.3. (Сформулируйте и докажите критерий диагональности матрицы
	оператора
4.4. K	Хаким свойством обладает оператор в n -мерном вещественном про-
	странстве, у характеристического многочлена которого есть n раз-
	личных действительных корней? Ответ обоснуйте
4.5. E	Выпишите и докажите неравенство Коши–Буняковского. Выпиши-
	те и докажите неравенство треугольника
4.6. Z	Цокажите теорему о том, что евклидово пространство можно пред-
	ставить в виде прямой суммы подпространства и его ортогональ-
	ного дополнения
	Выпишите формулу для преобразования матрицы Грама при пере-
	ходе к новому базису и докажите её. Что происходит с определи-
	телем матрицы Грама при применении процесса ортогонализации
	Грама—Шмидта? Что можно сказать про знак определителя мат-
	рицы Грама? Ответ обоснуйте
	Сформулируйте и докажите критерий линейной зависимости набо-
	ра векторов с помощью матрицы Грама.
	Выпишите формулу для ортогональной проекции вектора на под-
	пространство, заданное как линейная оболочка данного линейно
	независимого набора векторов, и докажите её
	Докажите, что для любого оператора в конечномерном евклидо-
	вом пространстве существует единственный сопряженный опера-
	тор
	Сформулируйте и докажите свойство собственных векторов само-
	сопряженного оператора, отвечающих разным собственным значе- ниям

4.13.	Сформулируйте и докажите теорему о том, что ортогональный	
	оператор переводит ортонормированный базис в ортонормирован-	
	ный. Верно ли обратно? Ответ обоснуйте	89
4.14.	Сформулируйте и докажите критерий ортогональности операто-	
	ра, использующий его матрицу.	89
4.15.	Сформулируйте теорему о существовании для самосопряженно-	
	го оператора базиса из собственных векторов. Приведите доказа-	
	тельство в случае различных вещественных собственных значе-	
	ний	90
4.16.	Сформулируйте и докажите утверждение о QR-разложении	91
4.17.	Сформулируйте и докажите теорему о сингулярном разложении.	91
4.18.	Сформулируйте и докажите теорему о приведении квадратичных	
	форм к диагональному виду при помощи ортогональной замены	
	координат	92
4.19.	Выпишите и докажите формулу для преобразования координат	
	ковектора при перехоле к другому базису	93

ОПРЕДЕЛЕНИЯ

Модуль 1

1.1. Дать определение умножения матриц. Коммутативна ли эта операция? Ответ пояснить.

Пусть даны две прямоугольных матрицы A и B размерности $n \times m$ и $m \times k$ соответственно. Произведением матриц A и B (обозначается как $A \times B$ или AB) называется такая матрица C размерности $n \times k$, что её элементы задаются формулой

$$c_{ij}=\sum_{r=1}^m(a_{ir}\cdot b_{rj}),$$
где $i=\overline{1,n};\ j=\overline{1,k}$

Умножение матриц возможно тогда и только тогда, когда количество столбцов первой матрицы равно количеству строк второй. Из этого следует некоммутитивность этой операции $(\exists A \times B \Rightarrow \exists B \times A)$.

1.2. Дать определения ступенчатого вида матрицы и канонического вида матрицы.

Матрица M имеет ступенчатый вид, если номера первых ненулевых элементов всех строк возрастают, а все нулевые строки находятся на нижних строках матрицы.

Матрица M имеет канонический (улучшенный ступенчатый) вид, если она имеет ступенчатый вид, а также все первые ненулевые (ведущие) элементы всех строк равны единице и являются единственными нунулевыми элементами в своих столбцах.

1.3. Перечислить элементарные преобразования строк матрицы.

- 1) умножение i-ой строки на число $\lambda \neq 0$;
- 2) перестановка местами двух строк;
- 3) добавление к *i*-ой строке *j*-ую строки с коэффициентом $\lambda \neq 0$.

1.4. Сформулировать теорему о методе Гаусса.

Любую конечную матрицу можно элементарными преобразованиями строк привести к каноническому виду.

1.5. Дать определения перестановки и подстановки.

Перестановка — упорядоченный набор чисел $1,2\dots n$ без повторений. Подстановка — взаимнооднозначное отображение множества $\{1,2\dots n\}$ в самого себя, n называется степенью подстановки.

1.6. Выписать общую формулу для вычисления определителя произвольного порядка.

Пусть $\sigma(\varphi)$ – число инверсий подстановки φ .

$$\det A = \sum_{\varphi \in Sn} (-1)^{\sigma(\varphi)} a_{\varphi(1)1} \cdot \dots \cdot a_{\varphi(n)n} = \sum_{\varphi \in Sn} (-1)^{\sigma(\varphi)} \prod_{i=1}^n a_{\varphi(i)i}$$

1.7. Что такое алгебраическое дополнение?

Алгебраическим дополнением элемента a_{ij} матрицы A называется число $A_{ij} = (-1)^{i+j} \cdot M_{ij}$, где M_{ij} – дополнительный минор, т.е. определитель матрицы, получающейся из матрицы A путём исключения i-ой строки и j-ого столбца.

1.8. Выписать формулы для разложения определителя по строке и по столбцу.

По i-ой строке:

$$\det A = \sum_{j=1}^{n} a_{ij} A_{ij}$$

По *j*-ому столбцу:

$$\det A = \sum_{i=1}^{n} a_{ij} A_{ij}$$

1.9. Что такое фальшивое разложение?

Фальшивое разложение — следствие из теоремы Лапласа, заключающееся в следующем: сумма произведений всех элементов некоторой строки (столбца) матрицы A на алгебраические дополнения соответствующих элементов любой другой строки (столбца) равна нулю.

$$\sum_{i=1}^{n} a_{ij_1} A_{ij_2} = \sum_{j=1}^{n} a_{i1} j A_{i_2j} = 0, \quad i_1 \neq i_2, \ j_1 \neq j_2$$

1.10. Выписать формулы Крамера для квадратной матрицы произвольного порядка. Когда с их помощью можно найти решение СЛАУ?

Пусть есть вектор $b=\begin{pmatrix}b_1\\ \vdots\\ b_n\end{pmatrix}$ квадратная матрица A размера $n\times n$

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

которые соответствуют СЛАУ

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{n1}x_1 + \dots + a_{nn}x_n = b_n \end{cases}$$

Введём Δ_i как определитель матрицы, получающейся из A заменой i-ого столбца на вектор b:

$$\Delta_i = \begin{vmatrix} a_{11} & \dots & a_{1i-1} & b_1 & a_{1i+1} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{ni-1} & b_n & a_{ni+1} & \dots & a_{nn} \end{vmatrix}$$

Тогда неизвествую x_i $(1 \le i \le n))$ можно найти по формуле

$$x_i = \frac{\Delta_i}{\Delta}$$

где $\Delta = \det A$.

Найти решение СЛАУ этим методом можно тогда и только тогда, когда $\det A \neq 0$.

1.11. Дать определение союзной матрицы.

Матрица C называется союзной относительно матрицы A, если она составлена из алгебраических дополнений соответствующих элементов транспонированной матрицы A^T :

$$C = \begin{pmatrix} A_{11} & \dots & A_{n1} \\ \dots & \dots & \dots \\ A_{1n} & \dots & A_{nn} \end{pmatrix}$$

1.12. Дать определение обратной матрицы. Сформулировать критерий её существования.

Матрица A^{-1} называется обратной квадратной матрице A, если $A^{-1}A = AA^{-1} = E$ (единичная матрица). Обратная матрица для матрицы A существует тогда и только тогда, когда A – квадратная и $\det A \neq -0$.

1.13. Выписать формулу для нахождения обратной матрицы.

$$A^{-1} = \frac{1}{\det A} \cdot C$$

где C – союзная к A матрица, то есть

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & \dots & A_{n1} \\ \dots & \dots & \dots \\ A_{1n} & \dots & A_{nn} \end{pmatrix}$$

1.14. Дать определение минора.

Минором порядка k матрицы A называется определитель матрицы $k \times k$, состоящей из элементов, стоящих на пересечении заданных k строк и k столбцов матрицы A.

Минором M_{ij} зачастую обозначается минор, полученный исключением из исходной матрицы i-ой строки и j-ого столбца.

1.15. Дать определение базисного минора. Какие строки называются базисными?

Базисным называется любой ненулевой минор матрицы максимального порядка. Порядок минора = порядок матрицы, определителем которой является минор.

Строки, входящие в базисный минор называются базисными.

1.16. Дать определение ранга матрицы.

Рангом матрицы называется наибольший порядок ненулевого минора матрицы.

1.17. Дать определение линейной комбинации строк. Что такое нетривиальная линейная комбинация?

Линейной комбинацией строк $s_1, ..., s_k$ называется выражение $a_1s_1 + ... + a_ks_k$, где $a_1, ..., a_k$ – произвольные коэффициенты. Линейная комбинация строк называется нетривиальной, если $\exists a_i \neq 0$.

1.18. Дать определение линейной зависимости строк матрицы.

Система строк матрицы называется линейно зависимой, если существует их нетривиальная линейная комбинация, равная нулевой строке.

1.19. Дать определение линейно независимых столбцов матрицы.

Система столбцов матрицы называется линейно независимой, если не существует их нетривиальной линейной комбинации, равной нулевому столбцу.

1.20. Сформулировать критерий линейной зависимости.

Система строк линейно зависима тогда и только тогда, когда одна из строк может быть представлена как линейная комбинация оставшихся.

1.21. Сформулировать теорему о базисном миноре.

Строки (столбцы) матрицы A, входящие в базисный минор, образуют линейно независимую систему. Любая строка (столбец) A выражается через линейную комбинацию строк (столбцов) базисного минора.

1.22. Сформулировать теорему о ранге матрицы.

Ранг матрицы равен максимальному числу линейно независимых строк (столбцов) матрицы.

1.23. Сформулировать критерий невырожденности квадратной матрицы.

Не знаю, что из этого критерий, а что определение, но для произвольной квадратной матрицы A размера $n \times n$ следующие три условия эквивалентны:

- 1) $\det A \neq 0$
- 2) RgA = n
- 3) Все строки (столбцы) матрицы A линейно независимы

1.24. Выписать свойства решений однородных и неоднородных СЛАУ.

Однородная СЛАУ: Ax = 0Неоднородная СЛАУ: Ax = b

Однородные СЛАУ:

Если столбцы $x^1, ..., x^k$ — решения однородной СЛАУ Ax = 0, то любая их линейная комбинация также является решением этой СЛАУ. Так, если однородная СЛАУ имеет ненулевое решение, она имеет бесконечно много решений.

Неоднородные СЛАУ:

Если x^0 – решение Ax = b, то произвольный столбец x является решением этой СЛАУ тогда и только тогда, когда $x = x^0 + y$, где y – решение соответствующей однородной СЛАУ, то есть Ay = 0.

Если x^1, x^2 – решения СЛАУ Ax = b, то $y = x^1 - x^2$ является решением однородной СЛАУ Ax = 0.

1.25. Сформулировать теорему Кронекера-Капелли.

СЛАУ Ax = b совместна тогда и только тогда, когда RgA = Rg[Ab], где [Ab] – матрица, полученная из столбцов матрицы A и столбца b.

1.26. Дать определение фундаментальной системы решений (Φ CP) однородной СЛАУ.

ФСР однородной СЛАУ Ax = 0 — множество линейно независимых решений данной СЛАУ. Всего таких решений $n_x - RgA$, где n_x — число переменных в СЛАУ.

1.27. Сформулировать критерий существования ненулевого решения однородной системы линейных уравнений с квадратной матрицей.

Однородная СЛАУ Ax = 0 имеет ненулевое решение тогда и только тогда, когда $\det A = 0$, т.е. матрица вырождена.

Модуль 2

2.1. Сформулируйте теорему о структуре общего решения однородной СЛАУ.

Пусть $f_1, f_2, ..., f_k$ (k = n - r) – ФСР однородной СЛАУ Ax = 0. Тогда $x = \lambda_1 f_1 + \lambda_2 f_2 + ... + \lambda_k f_3$ является решением СЛАУ при любых $\lambda_1, ..., \lambda_k$. Иными словами, любое решение СЛАУ является линейной комбинацией ФСР.

2.2. Сформулируйте теорему о структуре общего решения неоднородной системы линейных алгебраических уравнений.

Пусть $f_1, f_2, ..., f_k$ (k = n - r) – ФСР однородной СЛАУ Ax = 0, а также известно некоторое частное решение x_0 неоднородной СЛАУ Ax = b. Тогда $x = x_0 + \lambda_1 f_1 + \lambda_2 f_2 + ... + \lambda_k f_k$ является решением неоднородной СЛАУ Ax = b при любых $\lambda_1, ..., \lambda_k$.

2.3. Что такое алгебраическая и тригонометрическая формы записи комплексного числа?

Пусть z — комплексное число.

Алгебраическая запись: $z = a + ib, a, b \in \mathbb{R}$.

a и b являются координатами точки z на плоскости комплексных чисел по действительной и мнимой осям соответственно.

Тригонометрическая запись: $z = r(\cos \varphi + i \sin \varphi), r, \varphi \in \mathbb{R}$.

Здесь r — длина радиус-вектора числа z на плоскости комплексных чисел, φ — угол между радиусвектором z и действительной осью.

$$r = |z| = \sqrt{a^2 + b^2}$$
$$\cos \varphi = \frac{a}{r}, \quad \sin \varphi = \frac{b}{r}$$

2.4. Дайте определения модуля и аргумента комплексного числа. Что такое главное значение аргумента комплексного числа?

Модулем комплексного числа z называется $r=|z|=\sqrt{a^2+b^2}$ – величина, отражающая длину радиус-вектора точки z в плоскости комплексных чисел. Аргументом комплексного числа называется угол между радиус-вектором точки z и положительным направлением действительной оси. <u>Главным</u> аргументом комплексного числа называется такой его аргумент который лежит в $(-\pi,\pi]$

$$Arg(z) = arg(z) + 2\pi k, \quad k \in \mathbb{Z}, \ arg(z) \in (-\pi, \pi]$$

2.5. Сложение, умножение комплексных чисел. Что происходит с аргументами и модулями комплексных чисел при умножении и при делении?

Операции над комплексными числами выполняются по следующим правилам:

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$

 $(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2 - b_1 b_2, a_1 b_2 + a_2 b_1)$

В тригонометрической форме умножение и деление выглядят так:

$$z_1 = r_1(\cos\varphi_1 + i\sin\varphi_1)$$

$$z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2)$$

$$z_1 \cdot z_2 = r_1 r_2(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2}(\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$$

2.6. Что такое комплексное сопряжение? Как можно делить комплексные числа в алгебраической форме?

Сопряженным числом \bar{z} для комплексного числа z называется такое число, которое симметрично z относительно вещественной оси.

$$z = a + ib, \ \bar{z} = a - ib$$

Делить комплексные числа в алгебраической форме возможно путем домножение на сопряженное делителя:

$$\frac{z_1}{z_2} = \frac{z_1 \bar{z_2}}{z_2 \bar{z_2}} = \frac{z_1 \bar{z_2}}{a_2^2 + b_2^2} = \frac{z_1 \bar{z_2}}{|z_2|^2}$$

2.7. Выпишите формулу Муавра.

Пусть $z = r(\cos \varphi + i \sin \varphi)$, тогда

$$z^n = r^n(\cos(n\varphi) + i\sin(n\varphi)), \ n \in \mathbb{Z}$$

2.8. Как найти комплексные корни n-ой степени из комплексного числа? Сделайте эскиз, на котором отметьте исходное число и все корни из него.

Пусть $z=r(\cos\varphi+i\sin\varphi)$, тогда корнем степени $n\in\mathbb{N}$ из z называется множество

$$\sqrt[n]{z} = \left\{ \sqrt[n]{r} \left(\cos \left(\frac{\varphi + 2\pi k}{n} \right) + i \sin \left(\frac{\varphi + 2\pi k}{n} \right) \right), \ k = \overline{0, n - 1} \right\}$$

Пример: $\sqrt[6]{1}$

2.9. Сформулируйте основную теорему алгебры. Сформулируйте теорему Безу.

Основная теорема алгебры:

$$\forall f(z) = \sum_{i=0}^{n} a_i z^i \neq const, \ a_i \in \mathbb{C} \ \exists z_0 \in C : \ f(z_0) = 0$$

Теорема Безу:

Остаток от деления f(x) на (x-a) равен f(a).

2.10. Выпишите формулу Эйлера. Выпишите выражения для синуса и косинуса через экспоненту.

Формула Эйлера: $e^{ix} = \cos x + i \sin x$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}, \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

2.11. Выпишите формулы Виета для многочлена третьей степени.

Пусть $P(x) = ax^3 + bx^2 + cx + d$, x_1, x_2, x_3 – корни многочлена P(x).

$$x_{1} + x_{2} + x_{3} = -\frac{b}{a}$$

$$x_{1}x_{2} + x_{2}x_{3} + x_{1}x_{3} = \frac{c}{a}$$

$$x_{1}x_{2}x_{3} = -\frac{d}{a}$$

2.12. Какие многочлены называются неприводимыми?

Многочлен P(x) называется <u>приводимым</u>, если существуют многочлены $g(x) \neq const$, $h(x) \neq const$ такие, что $P(x) = g(x) \cdot h(x)$ (это называется нетривиальное разложение) и неприводимым в противном случае.

2.13. Сформулируйте утверждение о разложении многочленов на неприводимые множители над полем комплексных чисел.

Любой неконстантный многочлен степени n над полем комплексных чисел можно разложить как

$$a(x-x_1)(x-x_2)...(x-x_n)$$

где $a \neq 0$, а значения x_1, x_2, \dots, x_n могут попарно совпадать.

2.14. Дайте определение векторного произведения векторов в трехмерном пространстве.

Вектор \vec{c} назвается векторным произведением векторов \vec{a} и \vec{b} если:

- 1) $|\vec{c}|=|\vec{a}|\cdot|\vec{b}|\cdot\sin\varphi$, где φ угол между \vec{a} и \vec{b} 2) $\vec{c}\perp\vec{a}$, $\vec{c}\perp\vec{b}$
- $\vec{a}, \vec{b}, \vec{c}$ правая тройка векторов

2.15. Выпишите формулу для вычисления векторного произведения в координатах, заданных в ортонормированном базисе.

Пусть $\vec{i}, \vec{j}, \vec{k}$ задают правый ортонормированный базис, векторы \vec{a} и \vec{b} раскладываются в этом базисе следующим образом:

$$\vec{a} = a_i \vec{i} + a_j \vec{j} + a_k \vec{k}$$
 $\vec{b} = b_i \vec{i} + b_j \vec{j} + b_k \vec{k}$
Тогла

$$ec{a} imes ec{b} = egin{bmatrix} ec{i} & ec{j} & ec{k} \ a_i & a_j & a_k \ b_i & b_j & b_k \ \end{bmatrix}$$

2.16. Дайте определение смешанного произведения векторов. Как вычислить объем тетраэдра с помощью смешанного произведения?

Смешанным произведением векторов $\vec{a}, \vec{b}, \vec{c}$ называют число $<\vec{a}, \vec{b}, \vec{c}>=(\vec{a}\times\vec{b}, \vec{c})$ – скалярное произведение $\vec{a}\times\vec{b}$ и \vec{c} . Объем тетраэдра, построенного на векторах $\vec{a}, \vec{b}, \vec{c}$ равен

$$V = \frac{1}{6} \mid \langle \vec{a}, \vec{b}, \vec{c} \rangle \mid$$

2.17. Выпишите формулу для вычисления смешанного произведения в координатах, заданных в ортонормированном базисе.

Пусть $\vec{i}, \vec{j}, \vec{k}$ задают правый ортонормированный базис, векторы \vec{a}, \vec{b} и \vec{c} раскладываются в этом базисе следующим образом:

$$ec{a} = a_i \vec{i} + a_j \vec{j} + a_k \vec{k}$$
 $ec{b} = b_i \vec{i} + b_j \vec{j} + b_k \vec{k}$
 $ec{c} = c_i \vec{i} + c_j \vec{j} + c_k \vec{k}$
Тогда

$$\langle \vec{a}, \vec{b}, \vec{c} \rangle = \begin{vmatrix} a_i & a_j & a_k \\ b_i & b_j & b_k \\ c_i & c_j & c_k \end{vmatrix}$$

2.18. Сформулируйте критерий компланарности трех векторов с помощью смешанного произведения.

Векторы \vec{a} , \vec{b} и \vec{c} компланарны тогда и только тогда, когда $<\vec{a}$, \vec{b} , $\vec{c}>=0$.

2.19. Что такое уравнение поверхности и его геометрический образ?

Уравнение F(x,y,z)=0 называют уравнением поверхности S, если этому уравнению удовлетворяют координаты каждой из точек, лежащих на S, и не удовлетворяют никакие точки, не лежащие на S. При этом S называется геометрическим образом уравнения F(x,y,z)=0.

2.20. Сформулируйте теорему о том, что задает любое линейное уравнение на координаты точки в трехмерном пространстве.

Любое уравнение вида Ax + By + Cz + D = 0, где $A^2 + B^2 + C^2 > 0$ (т.е. линейное уравнение), определяет плоскость в пространстве \mathbb{R}^3 .

2.21. Что такое нормаль к плоскости?

Нормалью к плоскости α называется такой вектор \vec{n} , что $\vec{n} \perp \alpha$. В частности, если $\alpha: Ax + By + Cz + D = 0$, то $\vec{n} = (A, B, C)$ является вектором нормали к α .

2.22. Выпишите формулу для расстояния от точки до плоскости.

Пусть $P(x_0,y_0,z_0)$ – точка, Ax+By+Cz+D=0 – уравнение плоскости α . Тогда

$$\rho(P,\alpha) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

2.23. Общие уравнения прямой. Векторное уравнение прямой. Параметрические и канонические уравнения прямой.

Общие уравнения прямой задают прямую как пересечение двух плоскостей:

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

Векторное уравнение прямой: $\vec{r}(t) = \vec{r_0} + \vec{s}t$ где $\vec{r}(t)$ – радиус-вектор <u>любой</u> точки прямой $\vec{r_0}$ – радиус-вектор <u>определённой</u> точки прямой \vec{s} – направляющий вектор прямой.

Параметрические уравнения прямой:

$$\begin{cases} x = x_0 + s_x \cdot t \\ y = y_0 + s_y \cdot t \\ z = z_0 + s_z \cdot t \end{cases}$$

где $M(x_0, y_0, z_0)$ – точка прямой, $\vec{s}(s_x, s_y, s_z)$ – направляющий вектор прямой. Каноническое уравнение прямой ($npeofpasobahhoe\ napamempuчeckoe$):

$$\frac{x - x_0}{s_x} = \frac{y - y_0}{s_y} = \frac{z - z_0}{s_z}$$

2.24. Выпишите формулу для вычисления расстояния между двумя скрещивающимися прямыми.

Пусть L_1, L_2 — скрещивающиеся прямые, $\vec{s_1}, \vec{s_2}$ — их направляющие векторы, $M_1 \in L_1, M_2 \in L_2$ — произвольные точки на прямых. Тогда

$$\rho(L_1, L_2) = \frac{\langle \vec{s_1}, \vec{s_2}, \vec{M_1 M_2} \rangle}{|\vec{s_1} \times \vec{s_2}|} \ (= \frac{V}{S_{\text{OCH}}})$$

2.25. Какие бинарные операции называются ассоциативными, а какие коммутативными?

Операция × называется:

- ассоциативной, если $\forall x,y,z \ (x\times y)\times z = x\times (y\times z)$
- коммутативной, если $\forall x,y \;\; x \times y = y \times x$

2.26. Дайте определения полугруппы и моноида. Приведите примеры.

<u>Полугруппа</u> — группоид (*множество с заданной на нём операцией*), операция которой ассоциативна. Пример: $(\mathbb{N}, +)$.

Моноид – полугруппа, в которой есть нейтральный элемент.

Примеры: $(\mathbb{N} \cup \{0\}, +), (\mathbb{N}, \cdot).$

2.27. Сформулируйте определение группы. Приведите пример.

Группа – множество с заданной на нём ассоциативной операцией, имеющая нейтральный элемент, причём все элементы являются обратимыми, т.е.

$$\forall g \in G \; \exists a^{-1} \in G : a \cdot a^{-1} = a^{-1} \cdot a = e \; ($$
нейтральный элемент $)$

Иначе говоря – моноид, все элементы которого обратимы.

Пример: GL_n – множество всех невырожденных матриц $n \times n$ с операцией умножения.

2.28. Что такое симметрическая группа? Укажите число элементов в ней.

Симметрическая группа — множество всех подстановок длины n с операцией композиции. Обозначается S_n , число элементов n!.

2.29. Что такое общая линейная и специальная линейная группы?

Общая линейная группа (GL_n) – множество всех невырожденных матриц $n \times n$ с операцией умножения. Запись $GL_n(\mathbb{F})$ означает, что элементы матрицы принадлежат полю (кольцу) \mathbb{F} , например $GL_n(\mathbb{R})$.

Специальная линейная группа — множество всех матриц $n \times n$ с определителем, равным 1, и операцией умножения:

$$SL_n(\mathbb{F}) = \{ A \in GL_n(\mathbb{F}) \mid \det A = 1 \}$$

2.30. Сформулируйте определение абелевой группы. Приведите пример.

Абелева группа – группа, операция которой коммутативна. Пример: $(\mathbb{Z},+)$.

2.31. Дайте определение подгруппы. Приведите пример группы и её подгруппы.

Подмножество H множества группы G с определённой на нём операцией G называется подгруппой, если она сама является группой относительно данной операции.

Подмножество H является подгруппой G тогда и только тогда, когда выполняются все три условия:

- 1) H содержит нейтральный элемент G;
- 2) $\forall h_1, h_2 \in H \ h_1 \cdot h_2 \in H$;
- 3) $\forall h \in H \ \exists h^{-1} \in H : h \cdot h^{-1} = h^{-1} \cdot h = e;$

Пример: $SL_n(\mathbb{R})$ – подгруппа $GL_n(\mathbb{R})$.

2.32. Дайте определение гомоморфизма групп. Приведите пример.

Отображение $f: G_1 \to G_2$ группы (G_1, \circ) в группу (G_2, \diamond) называется гомоморфизмом, если $\forall a, b \in G_1$ $f(a \circ b) = f(a) \diamond f(b)$.

Пример: $\ln: (\mathbb{R}^+ \setminus \{0\}, \cdot) \to (R, +)$ – гомоморфизм, так как $\ln(ab) = \ln a + \ln b$.

2.33. Что такое ядро гомоморфизма групп? Приведите пример.

Ядром гомоморфизма $f:G_1\to G_2$ называется множество всех элементов первой группы, которые переходят в нейтральный элемент второй:

$$Kerf = \{g \in G_1 \mid f(g) = e_2\}$$

Пример: для гомоморфизма $\det : GL_n(\mathbb{R}) \to R^*$ $Ker(\det) = SL_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) \mid \det A = 1\}.$

2.34. Дайте определение изоморфизма групп. Приведите пример.

Изоморфизм – биективный гомоморфизм.

Пример: $f: (\mathbb{R}, +) \to (\mathbb{R}^+, \cdot), f(x) = e^x$.

2.35. Сформулируйте определение циклической группы. Приведите пример.

 (G, \circ) – циклическая группа, если $\exists g_1 \in G \ \forall g \in G \ g = g_1 \circ ... \circ g_1$ (все элементы порождены каким-то элементом). Пример: $(Z_n, +)$, где $Z_n = \{0, 1, ..., n-1\}$ – циклическая группа $(g_1 = 1)$.

2.36. Дайте определение порядка элемента.

Порядок элемента $g\in (G,\circ)$ – наименьшее $p\in \mathbb{N}\mid g^p=e$, где $g^p=\underbrace{g\circ ...\circ g}_p$. Обозначение: ord(g).

2.37. Сформулируйте утверждение о связи порядка элемента, порождающего циклическую группу, с порядком группы.

Пусть < g > – группа, порожденная элементом g, тогда ord(g) = | < g > |.

2.38. Сколько существует, с точностью до изоморфизма, циклических групп данного порядка?

Для каждого натурального порядка n существует ровно одна циклическая группа, с точностью до изоморфизма.

2.39. Что такое группа диэдра? Что такое знакопеременная группа? Укажите число элементов в них.

Группа диэрдра – группа симметрий правильного n-угольника. Обозначение: $D_n, \, |D_n| = 2n.$

$$D_n = \{r, s \mid r^n = 1, s^2 = 1, s^{-1}rs = r^{-1}\}\ (r - rotation, s - symmetry)$$

Знакопеременная группа – все чётные подстановки длины n. Обозначение: A_n . $A_n \subset S_n, |A_n| = \frac{n!}{2}$.

2.40. Сформулируйте утверждение о том, какими могут быть подгруппы группы целых чисел по сложению.

Любая подгруппа группы целых чисел по сложению имеет вид G = kZ, где $k \in \mathbb{N} \cup \{0\}$. Т.е. это группа всех чисел, кратных определенному значению.

2.41. Дайте определение левого смежного класса по некоторой подгруппе.

Пусть G – группа, $H \subseteq G$, $g \in G$. Левым смежным классом элемента g по подгруппе H называется множество $gH = \{gh \mid h \in H\}$.

2.42. Что такое индекс подгруппы?

Индексом подгруппы $H \subseteq G$ называется число различных левых смежных классов группы G по подгруппе H. Обозначение: [G:H].

2.43. Сформулируйте теорему Лагранжа.

Пусть G – конечная группа, $H \subseteq G$. Тогда |G| = |H|[G:H], где [G:H] – индекс подгруппы, т.е. число левых смежных классов по H.

2.44. Сформулируйте две леммы, которые нужны для доказательства теоремы Лагранжа.

Лемма 1:

$$\forall g_1, g_2 \in G \ (g_1H = g_2H) \oplus (g_1H \cap g_1H = \varnothing)$$

<u>Лемма 2</u>:

$$\forall g \in G \ \forall H \subseteq G \ |gH| = |H|$$

Модуль 3

3.1. Сформулируйте критерий нормальности подгруппы, использующий сопряжение.

Пусть $H \subseteq G$ — подгруппа в группе G. Тогда если $gHg^{-1} = \{ghg^{-1} \mid h \in H\}$ 3 условия эквивалентны:

- 1. H нормальна
- $2. \ \forall g \in G \ gHg^{-1} \subseteq H$
- 3. $\forall g \in G \ gHg^{-1} = H$

3.2. Дайте определение факторгруппы.

Факторгруппа – множество смежных классов G по нормальной подгруппе $H \triangleleft G$ с определённой на ней операцией умножения: $(g_1H) \cdot (g_2H) = g_1g_2H$. Обозначение: G/H – факторгруппа G по нормальной подгруппе H.

3.3. Что такое естественный гомоморфизм?

Естественный гомоморфизм для группы G – отображение $f:G\to G/H$ такое, что $f(g)=gH\ \forall g\in G.$

3.4. Сформулируйте критерий нормальности подгруппы, использующий понятие ядра гомоморфизма.

 $H \triangleleft G \Leftrightarrow \exists f$ – гомоморфизм $G \rightarrow G'$ для нек. группы G', причём Kerf = H.

3.5. Сформулируйте теорему о гомоморфизме групп. Приведите пример.

Пусть $f: G_1 \to G_2$ — гомоморфизм групп, $Imf = \{g_2 \in G_2 | \exists g_1 \in G_1 : f(g_1) = g_2\}$ (образ группы G по f), $Kerf = \{g_1 \in G_1 | f(g_1) = e_2\}$ (ядро гомоморфизма f). Тогда $G_1/Kerf \cong Imf$.

Пример:

 $\overline{\Pi}$ усть $f: \mathbb{Z} \to \mathbb{Z}_n$ такое, что $\forall z \in \mathbb{Z} \ f(z) = z \% \ n$ (остаток от деления на n). Очевидно, $Kerf = n\mathbb{Z}$ – числа, кратные n. Тогда $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$.

3.6. Что такое прямое произведение групп?

Прямое произведение групп – группа из всех пар элементов групп с операцией поэлементого умножения.

$$(G, +) \times (H, \circ) = \{(g, h) \mid g \in G, h \in H\}, (g_1, h_1) \times (g_2, h_2) = (g_1 + g_2, h_1 \circ h_2)$$

3.7. Сформулируйте определение автоморфизма и внутреннего автоморфизма.

Автоморфизм – изоморфное отображение группы в себя. Внутренний автоморфизм – отображение $I_a: g \mapsto aga^{-1}$, где $a, g \in G$.

3.8. Что такое центр группы? Приведите пример.

Центр группы G – подгруппа коммутирующих элементов, т.е.

$$Z(G) = \{ a \in G \mid ab = ba \ \forall b \in G \}.$$

Для абелевых групп центр группы совпадает с самой группой. Например, классы вычетов: $Z(\mathbb{Z}_n) = \mathbb{Z}_n$.

3.9. Чему изоморфна факторгруппа группы по её центру?

$$G/Z(G) \cong Inn(G)$$

Inn – подгруппа всех внутренних автоморфизмов: $Inn = \{g \mapsto aga^{-1} \mid a, g \in G\}.$

3.10. Сформулируйте теорему Кэли.

Любая конечная группа порядка n изоморфна некоторой подгруппе группы перестановок S_n .

3.11. Дайте определение кольца.

Кольцо — множество $K \neq \emptyset$, на котором заданы 2 бинарные операции + и · такие, что

1.
$$(K, +)$$
 – абелева группа;

- 2. (K, \cdot) полугруппа;
- 3. Умножение дистрибутивно относительно сложения: $\forall a, b, c \in K$

$$\begin{cases} a(b+c) = ab + ac \\ (a+b)c = ac + bc \end{cases}$$

Обозначение: $(K, +, \cdot)$.

Для профилактики:

Группоид – замкнутость относительно операции.

Полугруппа – ассоциативность.

Моноид – нейтральный элемент.

Группа – обратные элементы.

3.12. Что такое коммутативное кольцо? Приведите примеры коммутативного и некоммутативного колец.

Коммутативное кольцо – кольцо с коммутативным умножением: $\forall a,b \in K \ ab = ba$

Примеры:

 $\overline{\text{Коммутативное}} - (Z, +, \cdot).$

Некоммутативное – $(M_n(\mathbb{R}), \times)$ – полное матричное кольцо $n \times n$ над \mathbb{R} .

3.13. Дайте определение делителей нуля.

Если $\exists a,b \in K : (a \neq 0 \neq b) \land (a \cdot b = 0),$ то a – левый делитель нуля, b – правый делитель нуля.

3.14. Дайте определение целостного кольца. Приведите пример.

Целостное кольцо – коммутативное кольцо без делителей нуля и с единицей (не равной нулю). Целостное кольцо \equiv область целостности.

3.15. Сформулируйте критерий целостности для нетривиального коммутативного кольца с единицей.

Нетривиальное коммутативное кольцо K является целостным тогда и только тогда, когда в нем выполняется закон сокращения, т.е. $\forall a, b, c \in K$

$$\begin{cases} (ab = ac) \land (a \neq 0) \Rightarrow b = c \\ (ac = bc) \land (c \neq 0) \Rightarrow a = b \end{cases}$$

3.16. Какие элементы кольца называются обратимыми?

Элемент a кольца K называется обратимым, если $\exists a^{-1} \in K : a \cdot a^{-1} = a^{-1} \cdot a = 1$.

3.17. Дайте определение поля. Приведите три примера.

Поле – коммутативное кольцо с единицей (не равной нулю), в котором каждый элемент $a \neq 0$ обратим.

Примеры: \mathbb{R} , \mathbb{C} , \mathbb{Q} с операциями $(+,\cdot)$.

3.18. Дайте определение подполя. Приведите пример пары: поле и его подполе.

Подполе – подмножество поля, которое само является полем относительно операций поля.

<u>Пример:</u> $\mathbb{Q} \subset \mathbb{R}$ — поле рациональных чисел является подполем поля действительных чисел.

3.19. Дайте определение характеристики поля. Привести примеры: поля конечной положительной характеристики и поля нулевой характеристики.

Характеристикой поле P (обозначение: char P) называется наименьшее $p \in \mathbb{N}$ такое, что $1+1+\ldots+1=0$. Если такого p не существует, то char P=0.

Примеры:

- Если p простое, то $\operatorname{char}\mathbb{Z}_p = p$;
- $-\operatorname{char}\mathbb{R}=0$;

3.20. Сформулируйте утверждение о том, каким будет простое подполе в зависимости от характеристики.

Пусть P – поле, P_0 – его простое подполе. Тогда

- 1) $\operatorname{char} P = p > 0 \Rightarrow P_0 \cong \mathbb{Z}_p;$
- 2) $\operatorname{char} P = 0 \Rightarrow P_0 \cong \mathbb{Q};$

3.21. Дайте определение идеала. Что такое главный идеал?

Подмножество I кольца K называется идеалом, если

- 1. $(I, +) \subseteq (K, +)$.
- 2. $\forall a \in I \ \forall k \in K \ ak \in I \land ka \in I$.

Идеал называется главным, если $\exists a \in K : I = aK = < a >$.

3.22. Сформулируйте определение гомоморфизма колец.

Отображение $f:(K_1,+,\cdot)\to (K_2,\oplus,\odot)$ называется гомоморфизмом колец $K_1,K_2,$ если

- 1. $\forall a, b \in K_1 \ f(a+b) = f(a) \oplus f(b)$
- 2. $\forall a, b \in K_1$ $f(a \cdot b) = f(a) \odot f(b)$

3.23. Сформулируйте теорему о гомоморфизме колец. Приведите пример.

Пусть $f:K_1\to K_2$ – гомоморфизм колец, Imf – гомоморфный образ K_2 по f. Тогда

$$K_1/Kerf \cong Imf$$

Пример:

Пусть $f: \mathbb{Z} \to \mathbb{Z}_n$ такое, что $\forall z \in \mathbb{Z} \ f(z) = z \% \ n$ (остаток от деления на n). Очевидно, $Kerf = n\mathbb{Z}$ – числа, кратные n. Тогда $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$.

3.24. Сформулируйте критерий того, что кольцо вычетов по модулю n является полем.

Кольцо вычетов \mathbb{Z}_n является полем $\Leftrightarrow n$ – простое.

3.25. Сформулируйте теорему о том, когда факторкольцо кольца многочленов над полем само является полем.

Факторкольцо $P[x]/\langle f(x)\rangle$ является полем $\Leftrightarrow f(x)$ неприводимо над полем P.

3.26. Дайте определение алгебраического элемента над полем.

Элемент поля $\alpha \in P_2$ называется алгебраическим над полем $P_1 \subseteq P_2$, если $\exists f(x) \in P_1[x] : (f(x) \neq 0) \land (f(\alpha) = 0).$

3.27. Сформулируйте утверждение о том, что любое конечное поле может быть реализовано как факторкольцо кольца многочленов по некоторому идеалу.

Любое конечное поле \mathbb{F}_q (где $q=p^n, p$ – простое) можно реализовать в виде $\mathbb{Z}_p[x]/\langle h(x) \rangle$, где h(x) – неприводимый многочлен степени n над \mathbb{Z}_p .

3.28. Сформулируйте утверждение о том, сколько элементов может быть в конечном поле.

Число элементов в конечном поле всегда p^n , где p – простое, $n \in \mathbb{N}$.

3.29. Дайте определение линейного (векторного) пространства.

Пусть F – поле, V – произвольное множество, на котором корректно заданы 2 операции: сложение и умножение на скаляр (элемент поля \mathbb{F}). Иными словами, $\forall x,y \in V \ \forall \alpha \in \mathbb{F}$

$$\begin{cases} \exists z = x + y, \ z \in V \\ \exists w = \alpha x, \ w \in V \end{cases}$$

Множество V называют линейным (векторным) пространством, если выполнены следующие 8 условий:

- 1. $\forall x, y, z \in V \ x + (y + z) = (x + y) + z$ ассоциативность сложения;
- 2. $\exists 0 \in V \ \forall x \in V : x + 0 = 0 + x = x$ нейтральный эл-т по сложению;

- 3. $\forall x \in V \exists (-x) \in V : x + (-x) = (-x) + x = 0$ обратный эл-т по сложению;
- $4. \ \forall x, y \in V \ \ x + y = y + x;$

1-4 свойства – абелева группа по сложению

- 5. $\exists 1 \in \mathbb{F} : \forall x \in V \ x \cdot 1 = 1 \cdot x = x$ нейтральный эл-т по умножению;
- 6. $\forall x \in V \ \forall \alpha, \beta \in \mathbb{F} \ (\alpha\beta)x = \alpha(\beta x)$ ассоциативность умножения на число;
- 7. $\forall x, y \in V \ \forall \alpha, \beta \in \mathbb{F} \ (\alpha + \beta)x = \alpha x + \beta x$ дистрибутивность 1;
- 8. $\forall x, y \in V \ \forall \alpha, \beta \in \mathbb{F} \ \alpha(x+y) = \alpha x + \alpha y$ дистрибутивность 2;

3.30. Дайте определение базиса линейного (векторного) пространства.

Базисом линейного пространства V называется упорядоченный набор векторов $b_1,...,b_n\in V$ такой, что:

- 1) $b_1, ..., b_n$ линейно независимы;
- 2) любой вектор из V представим в виде линейной комбинации $b_1,...,b_n$:

 $\forall x \in V \ x = \lambda_1 b_1 + \ldots + \lambda_n b_n, \ \lambda_i \in \mathbb{F}$, причём единственным образом;

3.31. Что такое размерность пространства?

Размерность пространства V — максимальное количество линейно независимых векторов в нём. Обозначение: $\dim V$.

3.32. Дайте определение матрицы перехода от старого базиса линейного пространства к новому.

Пусть в линейном пространстве есть 2 базиса $A = \{a_1, ..., a_n\}$ и $B = \{b_1, ..., b_n\}$. Разложим векторы B по базису A:

$$\begin{cases} b_1 = t_{11}a_1 + \dots + t_{n1}a_n \\ \dots \\ b_n = t_{1n}a_1 + \dots + t_{nn}a_n \end{cases}$$

где $t_{ij} \in \mathbb{F}$. Тогда матрицей перехода от базиса A к базису B называется матрица

$$T_{a \to b} = \begin{pmatrix} t_{11} & \dots & t_{1n} \\ \dots & \dots & \dots \\ t_{n1} & \dots & t_{nn} \end{pmatrix}$$

Используется так: $x^b = T_{A \to B}^{-1} x^a$.

3.33. Выпишите формулу для описания изменения координат вектора при изменении базиса.

Пусть $x \in V$, A и B – базисы в V, $x^a = (x_1^a, ..., x_n^a)^T$, $x^b = (x_1^b, ..., x_n^b)^T$ – столбцы координат вектора x в базисах A и B соответственно. Тогда $x^b = T_{A \to B}^{-1} x^a$.

3.34. Дайте определение подпространства в линейном пространстве.

Подмножество L линейного пространства V называется подпространством, если оно само является пространством относительно операций в V.

3.35. Дайте определения линейной оболочки конечного набора векторов и ранга системы векторов.

Линейной оболочной системы векторов $a_1,...,a_k$ называется множество $L(a_1,...,a_k)=$ = $\{\lambda_1a_1+...+\lambda_ka_k\mid \lambda_i\in \mathbb{F}\}$ – множество всех линейных комбинаций векторов $a_1,...,a_k.$

Рангом системы векторов $a_1, ..., a_k$ в линейном пространстве называется размерность линейной оболочки системы: $Rg(a_1, ..., a_k) = \dim L(a_1, ..., a_k)$.

3.36. Дайте определения суммы и прямой суммы подпространств.

Суммой подпространств $H_1, H_2 \subseteq V$ называется множество $H_1 + H_2 = \{h_1 + h_2 \mid h_1 \in H_1, h_2 \in H_2\}$. $H_1 + H_2$ называется прямой суммой подпространств и обозначается как $H_1 \oplus H_2$, если $H_1 \cap H_2 = \{0\}$, т.е. пересечение тривиально.

3.37. Сформулируйте утверждение о связи размерности суммы и пересечения подпространств.

Пусть $H_1, H_2 \subseteq V$, тогда $\dim(H_1 + H_2) = \dim H_1 + \dim H_2 - \dim(H_1 \cap H_2)$.

3.38. Дайте определение билинейной формы.

Пусть V – линейное пространство над \mathbb{R} . Билинейной формой называется функция $\varphi:V\times V\to\mathbb{R}$, которая паре векторов ставит в соответствие число, при этом выполняются следующие условия:

 $\forall x, y, z \in V \ \forall \alpha \beta \in \mathbb{R}$

- 1) $\varphi(\alpha x + \beta y, z) = \alpha \varphi(x, z) + \beta \varphi(y, z);$
- 2) $\varphi(x, \alpha y + \beta z) = \alpha \varphi(x, y) + \beta \varphi(x, z);$

3.39. Дайте определение квадратичной формы.

Квадратичная форма — однородный многочлен второй степени от n переменных:

$$Q(x) = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j; \ a_{ij} \in \mathbb{R}$$

3.40. Дайте определения положительной и отрицательной определенности квадратичной формы.

Квадратичную форму называют:

- положительно определенной, если $\forall x \neq 0 \ \ Q(x) > 0$
- отрицательно определенной, если $\forall x \neq 0 \;\; Q(x) < 0$

3.41. Какую квадратичную форму называют знакопеременной?

Квадратичную форму Q(x) называют знакопеременной, если $\exists x,y\in V: Q(x)<0< Q(y).$

3.42. Дайте определения канонического и нормального вида квадратичной формы.

Квадратичной формой <u>канонического</u> вида называют кв. форму вида $Q(x) = a_1 x_1^2 + ... + a_n x_n^2, a_i \in R$, т.е. не имеющую попарных произведений элементов. Если при этом $\forall i \in [1,n] \ a_i \in \{-1,0,1\}$, то это <u>нормальный</u> вид квадратичной формы.

3.43. Как меняется матрица билинейной формы при замене базиса? Как меняется матрица квадратичной формы при замене базиса?

Пусть $T_{A\to B}$ — матрица перехода от базиса A в базис B. Пусть M_A — матрица билинейной формы в базисе A, M_B — матрица билинейной формы в базисе B. Тогда

$$M_B = T_{A \to B}^T M_A T_{A \to B}$$

Матрица квадратичной формы меняется точно также.

3.44. Сформулируйте критерий Сильвестра и его следствие.

Квадратичная форма от n переменных Q(x) положительно определена тогда и только тогда, когда

$$\begin{cases} \Delta_1 > 0 \\ \Delta_2 > 0 \\ \dots \\ \Delta_n > 0 \end{cases}$$

где Δ_i – *i*-й главный угловой минор матрицы Q(x), т.е. если $Q(x) = x^T A x$,

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & \dots \\ a_{21} & a_{22} & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & a_{nn} \end{pmatrix}$$

ТО

$$\begin{cases} \Delta_1 = a_{11} \\ \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \\ \dots \\ \Delta_n = \det A \end{cases}$$

Следствие:

Q(x) отрицательно определена тогда и только тогда, когда знаки главных угловых чередуются начиная с минуса: $\Delta_1 < 0, \, \Delta_2 > 0, \, ..., (-1)^n \Delta_n > 0.$

3.45. Сформулируйте закон инерции квадратичных форм. Что такое индексы инерции?

Для любых двух канонических видов

$$Q_1(y_1, ..., y_m) = \lambda_1 y_1^2 + ... + \lambda_m y_m^2, \ \lambda_i \neq 0$$

$$Q_2(z_1, ..., z_k) = \mu_1 z_1^2 + ... + \mu_m z_k^2, \ \mu_i \neq 0$$

одной и той же квадратичной формы

- 1) m = k = RgA рангу матрицы квадратичной формы.
- 2) кол-во положительных $\lambda_i =$ кол-во положительных $\mu_i =$
- $=i_{+}$ положительный индекс инерции.
- 3) кол-во отрицательных $\lambda_i =$ кол-во отрицательных $\mu_i =$
- $=i_{-}$ отрицательный индекс инерции.

3.46. Дайте определение линейного отображения. Приведите пример.

Отображение $\varphi: V_1 \to V_2$, где V_1, V_2 – линейные пространства над одним полем \mathbb{F} , называется линейным, если

- 1) $\forall u, v \in V_1 \ \varphi(u+v) = \varphi(u) + \varphi(v)$
- 2) $\forall u \in V_1 \, \forall \lambda \in \mathbb{F} \, \varphi(\lambda u) = \lambda \varphi(u)$

Пример:

В линейном пространстве матриц $n \times m$ существует линейное отображение $\varphi: X \to AX$ т.е. умножение слева на фиксированную матрицу A размера $l \times n$. Результатом является элемент пространства матриц $l \times m$.

3.47. Дайте определение матрицы линейного отображения.

Матрица линейного отображения $\varphi: V_1 \to V_2$ – это матрица

$$A = \begin{pmatrix} a_{11} & \dots & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & \dots & a_{nn} \end{pmatrix}$$

где по столбцам стоят координаты образов векторов базиса V_1 в базисе V_2 .

3.48. Выпишите формулу для преобразования матрицы линейного отображения при замене базиса. Как выглядит формула в случае линейного оператора?

Пусть $\varphi: V_1 \to V_2$ — линейное отображение. Пусть A_{EF} — матрица линейного отображения в паре базисов E пространства V_1 и F пространства V_2 . Пусть T_1 — матрица перехода от E к E', T_2 — матрица перехода от F к F'. Тогда

$$A_{E'F'} = T_2^{-1} A_{EF} T_1$$

Для линейных операторов:

$$A_{E'} = T^{-1}A_ET$$

Модуль 4

4.1. Сформулируйте утверждение о связи размерностей ядра и образа линейного отображения.

Пусть $A:X \to Y$ – линейное отображение.

Ядром A называется множество $KerA = \{x \in X \mid Ax = 0\}.$

Образом A называется множество $ImA = \{y \in Y \mid y = Ax\}.$

Тогда $\dim KerA + \dim ImA = \dim X = n$

4.2. Дайте определения собственного вектора и собственного значения линейного оператора.

Собственным вектором линейного оператора $A:V\to V$ называется такой вектор $v\in V,\,v\neq 0$, что $\exists\lambda\in\mathbb{F}:(A-\lambda E)v=0$. Число λ называется собственным значением, соответствующим данному собственному вектору v.

4.3. Дайте определения характеристического уравнения и характеристического многочлена квадратной матрицы.

Характеристическим многочленом квадратной матрицы A называется многочлен $\mathcal{X}_A(\lambda) = \det(A - \lambda E)$.

Характеристическим уравнением квадратной матрицы A называется многочлен $\mathcal{X}_A(\lambda)=0.$

4.4. Сформулируйте утверждение о связи характеристического уравнения и спектра линейного оператора.

Спектр линейного оператора – множество его собственных значений. Скаляр $\lambda_0 \in \mathbb{F}$ является собственным значением линейного оператора A (т.е. принадлежит его спектру) тогда и только тогда, когда $\mathcal{X}_A(\lambda_0) = 0$.

4.5. Дайте определение собственного подпространства.

Собственным подпространством линейного оператора A относительно собственного значения λ называется множество $\{v \in V \mid (A - \lambda)v = 0\}$.

4.6. Дайте определения алгебраической и геометрической кратности собственного значения. Какое неравенство их связывает?

Алгебраическая кратность собственного значения λ_0 есть кратность λ_0 как корня характеристического уравнения (т.е. в какой степени входит $(\lambda - \lambda_0)$ в характеристический многочлен).

Геометрическая кратность собственного значения λ_0 – размерность собственного подпространства относительно λ_0 . Иначе говоря, $\dim(Ker(A-\lambda E))$, т.е. число элементов ФСР в соответствующей СЛАУ.

Геометрическая кратность $\lambda_0 \leq$ алгебраическая кратность λ_0 .

4.7. Каким свойством обладают собственные векторы линейного оператора, отвечающие различным собственным значениям?

Собственные векторы, отвечающие различным собственным значениям, линейно независимы.

4.8. Сформулируйте критерий диагональности матрицы оператора.

Матрица линейного оператора диагональна тогда и только тогда, когда все векторы базиса, в котором представлена эта матрица, являются её собственными векторами.

4.9. Сформулируйте критерий диагонализируемости матрицы оператора с использованием понятия геометрической кратности.

Матрица линейного оператора диагонализируема тогда и только тогда, когда для всех собственных значений линейного оператора верно, что алгебраическая и геометрическая кратности равны.

4.10. Дайте определение жордановой клетки. Сформулируйте теорему о жордановой нормальной форме матрицы оператора.

Жорданова клетка $n \times n$ есть матрица $n \times n$ вида

т.е. на главной диагонали собственное значение λ_i , над диагональю – единицы, остальное – нули.

Жорданова нормальная форма – блочная матрица с жордановыми клетками на главной диагонали.

Теорема о жордановой нормальной форме: $\forall A \in M_n(\mathbb{F})$, где \mathbb{F} – алгебраически замкнутое поле (например \mathbb{C}) существует невырожденная матрица $C \in M_n(\mathbb{F})$ такая, что $C^{-1}AC = J$, где J – жорданова нормальная форма.

4.11. Выпишите формулу для количества жордановых клеток заданного размера.

Количество жордановых клеток с λ_i на диагонали размера $k \times k$ вычисляется по следующей формуле:

$$h_k(\lambda_i) = \rho_{k+1} - 2\rho_k + \rho_{k-1}$$

где $\rho_j = Rg(A - \lambda_i E)^j, \ p_0 = n.$

4.12. Сформулируйте теорему Гамильтона-Кэли.

Если A – квадратная матрица и $\mathcal{X}(\lambda)$ – её характеристический многочлен, то $\mathcal{X}(A)=0.$

4.13. Дайте определение корневого подпространства.

Корневой вектор для собственного значения λ есть такой ненулевой вектор x, что для некоторого $m \in \mathbb{N}$ $(A - \lambda \cdot I)^m x = 0$.

Корневое подпространство – множество всех корневых векторов, соответсвующих определенному собственному числу.

4.14. Дайте определение минимального многочлена линейного оператора.

Многочлен $\mu(x)$ называется минимальным для линейного оператора с матрицей A, если

- 1. $\mu(A) = 0$.
- 2. $\forall f: f(A) = 0 \Rightarrow \deg f \ge \deg \mu$.
- 3. Коэффициент при старшем члене единица.

4.15. Дайте определение инвариантного подпространства.

Подпространство L векторного пространства V называют инвариантным относительно оператора $\varphi: V \to V$, если $\forall x \in L \ \varphi(x) \in L$, иначе говоря, $\varphi(L) \subseteq L$.

4.16. Дайте определение евклидова пространства.

Евклидово пространство есть линейное пространство V с определенной на нем билинейной формой g(x,y), называемой скалярным произведением. Скалярное произведение обладает свойствами билинейной формы (напоминаю)

- 1. $\forall x, y, z \in V \ g(x+y,z) = g(x,z) + g(y,z), \quad g(x,y+z) = g(x,y) + g(x,z).$
- 2. $\forall x, y \in V \ \forall \lambda \in \mathbb{F} \ g(\lambda x, y) = \lambda g(x, y) = g(x, \lambda y).$
- а также дополнительными свойствами
 - 3. $\forall x, y \in V \ g(x, y) = g(y, x)$ симметричность.
 - 4. $\forall x \in V \ g(x,x) \ge 0$, причём $g(x,x) = 0 \Leftrightarrow x = 0$.

4.17. Выпишите неравенства Коши-Буняковского и треугольника.

Пусть $||x|| = \sqrt{(x,x)}$.

Неравенство Коши-Буняковского:

$$\forall x, y \in \mathcal{E} \ |(x, y)| \le ||x|| \cdot ||y||$$

Неравенство треугольника:

$$\forall x, y \in \mathcal{E} \ ||x+y|| \le ||x|| + ||y||$$

4.18. Дайте определения ортогонального и ортонормированного базисов.

Векторы v_1, v_2 ортогональны, если $(v_1, v_2) = 0$.

Базис называют <u>ортогональным</u>, если все его векторы попарно ортогональны. Базис называет <u>ортонормированным</u>, если все его векторы попарно ортонональны, а также каждый вектор имеет норму 1. Иначе говоря,

$$(e_i,e_j)=\delta_{ij}\;(\mathit{символ}\;\mathit{Кронекерa})= egin{cases} 1,&i=j\ 0,&i
eq j \end{cases}$$

4.19. Дайте определение матрицы Грама.

Матрица Грама системы векторов $(e_1, ..., e_n)$ называется квадратная матрица, где на позиции i, j стоит скалярное произведение (e_i, e_j) :

$$\Gamma = \begin{pmatrix} (e_1, e_1) & (e_1, e_2) & \dots & (e_1, e_n) \\ (e_2, e_1) & (e_2, e_2) & \dots & (e_2, e_n) \\ \dots & \dots & \dots & \dots \\ (e_n, e_1) & (e_n, e_2) & \dots & (e_n, e_n) \end{pmatrix}$$

4.20. Выпишите формулу для преобразования матрицы Грама при переходе к новому базису.

Матрицы Грама двух базисов e и e' связаны отношением $\Gamma' = U^T \Gamma U$, где U – матрица перехода от e к e'.

4.21. Как меняется определитель матрицы Грама (грамиан) при применении процесса ортогонализации Грама—Шмидта?

Грамиан не меняется при применении процесса ортогонализации Грама-Шмидта.

4.22. Сформулируйте критерий линейной зависимости с помощью матрицы Грама.

Система векторов $e_1, ..., e_n$ линейно зависима тогда и только тогда, когда определитель матрицы Грама (грамиан) этой системы равен нулю.

4.23. Дайте определение ортогонального дополнения.

Пусть $H\subseteq V$. Множество $H^{\perp}=\{x\in V\mid \forall y\in H\;(x,y)=0\}$ называется ортогональным дополнением подпространства H.

4.24. Дайте определения ортогональной проекции вектора на подпространство и ортогональной составляющей.

Пусть L — линейное подпространство евклидова пространства \mathcal{E} , a — произвольный вектор пространства \mathcal{E} . Если a=b+c, причём $b\in L, c\in L^\perp$, то b называется ортогональной проекцией вектора a на подпространство L ($proj_La$), а c — ортогональной составляющей при (ортогональном) проектировании вектора a на подпространство L (ort_La).

4.25. Выпишите формулу для ортогональной проекции вектора на подпространство, заданное как линейная оболочка данного линейно независимого набора векторов.

Пусть $L = \langle a_1, ..., a_n \rangle$ – линейная оболочка. Тогда $proj_L x = A(A^TA)^{-1}A^Tx$, где A – матрица, составленная из столбцов $a_1, ..., a_n$.

(прим.) Если долго смотреть на эту формулу, можно увидеть

$$proj_e x = \frac{(e,x)}{(e,e)}e$$

4.26. Выпишите формулу для вычисления расстояния с помощью определителей матриц Грама.

Пусть $S \subset \mathcal{E}$ – подпространство, $x \in \mathcal{E}$, $(e_1, ..., e_n)$ – базис S. Тогда:

$$(p(x,S))^2 = \langle x, S \rangle = \frac{\Gamma(e_1, e_2, ..., e_n, x)}{\Gamma(e_1, e_2, ..., e_n)}$$

4.27. Дайте определение сопряженного оператора в евклидовом пространстве.

Линейный оператор \mathcal{A}^* называется сопряженным к линейному оператору \mathcal{A} , если $\forall x, y \in \mathcal{E}$ $(\mathcal{A}x, y) = (x, \mathcal{A}^*y)$.

4.28. Дайте определение самосопряженного (симметрического) оператора.

Линейный оператор \mathcal{A} называется самосопряженным (симметрическим), если $\forall x,y\in\mathcal{E}$ верно, что $(\mathcal{A}x,y)=(x,\mathcal{A}y)$, т.е. $\mathcal{A}^*=\mathcal{A}$.

4.29. Как найти матрицу сопряженного оператора в произвольном базисе?

Пусть Γ – матрица Γ рама в необходимом нам базисе, \mathcal{A} – матрица линейного оператора. Тогда матрица сопряженного линейного оператора выражается как:

$$A^* = \Gamma^{-1} A^T \Gamma$$

4.30. Каким свойством обладают собственные значения самосопряженного оператора?

Все собственные значения значения самосопряженного оператора вещественны.

4.31. Что можно сказать про собственные векторы самосопряженного оператора, отвечающие разным собственным значениям?

Собственные векторы самосопряженного оператора, отвечающие разным собственным значениям, ортогональны.

4.32. Сформулируйте определение ортогональной матрицы.

Квадратная матрица O называется ортогональной, если $O^TO = OO^T = E$.

4.33. Сформулируйте определение ортогонального оператора.

Линейный оператор $A:\mathcal{E}\to\mathcal{E}$ называется ортогональным, если

$$\forall x, y \in \mathcal{E} \ (Ax, Ay) = (x, y)$$

4.34. Сформулируйте критерий ортогональности оператора, использующий его матрицу.

Линейный оператор A ортогонален тогда и только тогда, когда его матрица ортогональна в ОНБ (ортонормированном базисе).

4.35. Каков канонический вид ортогонального оператора? Сформулируйте теорему Эйлера.

Для любого ортогонального оператора существует ОНБ, в котором матрица оператора имеет следующий блочно-диагональный вид:

Теорема Эйлера:

 $\overline{\text{Любое ортогональное преобразование в }\mathbb{R}^3$ имеет вид

$$\begin{pmatrix}
\cos\varphi & -\sin\varphi & 0 \\
\sin\varphi & \cos\varphi & 0 \\
0 & 0 & \pm 1
\end{pmatrix}$$

в некотором ОНБ (т.е. это поворот + возможно, отражение).

4.36. Сформулируйте теорему о существовании для самосопряженного оператора базиса из собственных векторов.

Для всякого самосопряженного оператора A существует ОНБ из собственных векторов, в котором матрица оператора имеет диагональный вид (на диагонали стоят собственные значения, соответствующие собственным векторам).

4.37. Сформулируйте теорему о приведении квадратичной формы к диагональному виду при помощи ортогональной замены координат.

Любую квадратичную форму можно привести к каноническому (диагональному) виду ортогональными преобразованиями.

4.38. Сформулируйте утверждение о QR-разложении.

Пусть $A \in M_n(\mathbb{R})$ и столбцы $A_1, ..., A_n$ – линейно независимы. Тогда существуют матрицы Q, R: A = QR, где Q – ортогональная, R – верхнетреугольная с положительными значениями на главной диагонали.

4.39. Сформулируйте теорему о сингулярном разложении.

Для любой матрицы $A \in M_{mn}(\mathbb{R})$ справедливо сингулярное разложение

$$A = V \Sigma U^T$$

где V — ортогональная матрица $m \times m$, U — ортогональная матрица $n \times n$, $\Sigma \in M_{mn}(\mathbb{R})$ и она является диагональной с числами $\sigma_i \geq 0$ (сингулярными числами) и нулями на диагонали.

По договоренности σ_i располагают так: $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r > 0$.

4.40. Сформулируйте утверждение о полярном разложении.

Любой линейный оператор в евклидовом пространстве представляется как композиция самосопряженного (симметрического) и ортогонального оператора.

4.41. Дайте определение сопряженного пространства.

Пространством, сопряженным к линейному пространству L, называется множество L^* всех линейных форм на L с операциями сложения и умножения на число:

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$
$$(\lambda f)(x) = \lambda f(x)$$

$$(L^*=Hom(L,\mathbb{F}))$$

4.42. Выпишите формулу для преобразования координат ковектора при переходе к другому базису.

Пусть $f \in V^*$ – ковектор, e и g – два базиса в V. Тогда $[f]_g = [f]_e \cdot T_{e \to g}$, где [f] – строка координат ковектора. Если записывать координаты в столбцы, то формула принимает следущий вид: $[f]_g^T = T_{e \to g}^T \cdot [f]_e^T$.

4.43. Дайте определение взаимных базисов.

Базисы $e = (e_1, ..., e_n)$ в линейном пространстве L и $f = (f^1, ..., f^n)$ в сопряженном пространстве L^* называют взаимными, если

$$f^{i}(e_{j}) = \delta^{i}_{j} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

4.44. Дайте определение биортогонального базиса.

Если $L=L^*$, то взаимный к данному базис называется биортогональным.

4.45. Сформулируйте определение алгебры над полем. Приведите два примера.

Алгебра — векторное пространство A над \mathbb{F} с операцией умножения $A \times A \to A$, для которой выполняются следующие свойства:

 $\forall x, y, z \in A, \ \forall \alpha, \beta \in \mathbb{F}$

- 1) (x + y) * z = x * z + y * z дистрибутивность 1
- 2) x * (y + z) = x * y + x * z дистрибутивность 2
- 3) $(\alpha x) * (\beta y) = \alpha \beta (x * y)$

Примеры:

- 1) Матрицы с операцией умножения;
- 2) \mathbb{C} двумерная алгебра над \mathbb{R} ;
- 3) Алгебра многочленов $\mathbb{F}[x]$;
- 4) Кватернионы;

4.46. Сформулируйте определение тензора. Приведите два примера.

Пусть \mathbb{F} — поле, V — векторное пространство над \mathbb{F} , V^* — сопряженное к V пространство. Тогда любое полилинейное отображение

$$f:V\times \ldots \times V\times V^*\times \ldots \times V^*\to \mathbb{F}$$

где p пространств V и q пространств V^* $(p,q\in\mathbb{N}\cup\{0\})$ называется <u>тензором</u> на V типа (p,q) и валентности p+q.

Примеры:

- 1) тензор типа (1, 0) линейные функции на V, т.е. элементы V^* .
- 2) тензор типа (0, 1) линейные функции на V^* , т.е. элементы V.
- 3) тензор (2, 0) билинейные формы на V.
- 4) тензор (1, 1) можно интерпретировать как линейный оператор.
- $P.S.\ B$ Интернетах вы можете встретить вариацию, в которой (p,q) стоят наоборот (напр. билинейные формы определяются как тензор $(0,\ 2)$). Допустимы оба варианта. Представленный вариант был на лекциях.

4.47. Дайте определение эллипса как геометрического места точек. Выпишите его каноническое уравнение. Что такое эксцентриситет эллипса? В каких пределах он может меняться?

Эллипсом называют геометрическое место точек, сумма расстояний от которых до двух заданных точек, называемых фокусами, постоянна. Каноническое уравнение эллипса:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Эксцентриситет эллипса:

$$\varepsilon = \sqrt{1 - \frac{b^2}{a^2}}$$

где a — большая полуось, b — малая полуось. Он лежит на полуинтервале [0,1) и служит мерой «сплюснутости» эллипса. При $\varepsilon=0$ эллипс превращается в окружность. При $\varepsilon\to 1$ эллипс вырождается в отрезок F_1F_2 .

4.48. Дайте определение гиперболы как геометрического места точек. Выпишите её каноническое уравнение. Что такое эксцентриситет гиперболы? В каких пределах он может меняться?

Гиперболой называют геометрическое место точек, модуль разности расстояний от которых до двух заданных точек, называемых фокусами, постоянен.

Каноническое уравнение гиперболы:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Экцентриситет гиперболы:

$$\varepsilon = \sqrt{1 + \frac{b^2}{a^2}}$$

характеризует угол между асимптотами. Лежит в интервале $(1, +\infty)$, при $\varepsilon \to 1$ гипербола вырождается в два луча.

4.49. Дайте определение параболы как геометрического места точек. Выпишите её каноническое уравнение.

Параболой называют геометрическое место точек плоскости, равноудалённых от данной точки (фокуса) и от данной прямой (директрисы). Каноническое уравнение параболы:

$$y^2 = 2px$$

где p — параметр параболы — расстояние от фокуса до директрисы.

4.50. Дайте определение цилиндрической поверхности.

Рассмотрим кривую γ , лежащую в некоторой плоскости P и прямую L, не лежащую в P.

Цилиндрической поверхностью называют множество всех прямых, параллельных L и пересекающих γ .

4.51. Дайте определение линейчатой поверхности. Приведите три примера.

Линейчатой называют поверхность, образованную движением прямой линии. Примерами линейчатых поверхностей являются цилиндр, однополосный гиперболоид, гиперболический параболоид.

ДОКАЗАТЕЛЬСТВА

Модуль 1

1.1. Сформулировать и доказать критерий существования обратной матрицы. Свойства определителя предполагаются известными.

Формулировка:

$$\exists A \Leftrightarrow \det A \neq 0$$

Доказательство:

Необходимость:

$$\overline{AA^{-1} = E} \Rightarrow \det AA^{-1} = \det E \Rightarrow \det A \det A^{-1} = 1 \rightarrow \det A \neq 0$$

Достаточность:

Рассмотрим матрицу

$$B = \frac{1}{\det A} \begin{pmatrix} A_{11} & \dots & A_{n1} \\ \dots & \dots & \dots \\ A_{1n} & \dots & A_{nn} \end{pmatrix}$$

где $A_{ij}=(-1)^{i+j}M_{ij}$ – алгебраическое дополнение. Рассмотрим $A\cdot B$:

$$[A \cdot B]_{ij} = \sum_{r=0}^{n} [A]_{ir} [B]_{rj} = \frac{1}{\det A} \sum_{r=0}^{n} [A]_{ir} A_{jr} = \begin{cases} \det A, & i = j \\ 0, & i \neq j \end{cases} \Rightarrow A \cdot B = E$$

Здесь при i=j – разложение определителя по строке, при $i\neq j$ – фальшивое разложение. Получили $B=A^{-1}$, т.е. A обратима.

1.2. Какие три условия достаточно наложить на функцию от столбцов матрицы, чтобы она обязательно была детерминантом? Ответ обоснуйте для матриц второго порядка.

Φ ормулировка:

Определителем является любая функция f от столбцов матрицы, которая удовлетворяет следующим трём условиям:

1) f линейная;

- 2) f кососимметрическая;
- 3) f(E) = 1;

Доказательство:

Пояснение для n=2:

$$f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = f\begin{pmatrix} a_{11} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{21} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} \end{pmatrix} =$$

$$= a_{11} f\begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, a_{12} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{22} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + a_{21} f\begin{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, a_{12} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{22} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} =$$

$$a_{11} a_{22} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + a_{12} a_{21} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = a_{11} a_{22} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - a_{12} a_{21} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = a_{11} a_{22} - a_{12} a_{21}$$

1.3. Сформулировать и доказать утверждение о том, что кососимметричность для линейной функции эквивалентна обнулению на паре совпадающих элементов.

Внимание! Формулировка и доказательство взяты из головы (совсем).

Формулировка:

Линейная функция $f(x_1, ..., x_n)$ кососимметрична тогда и только тогда, когда она равна нулю при паре совпадающих элементов, т.е. $\forall i \neq j \ x_i = x_j \Rightarrow f(x_1, ..., x_n) = 0$.

Доказательство:

Определить кососимметричность можно так:

$$\forall i \neq j \quad f(x_1, ..., x_i, ..., x_j, ..., x_n) = -f(x_1, ..., x_j, ..., x_i, ..., x_n)$$

C учётом линейности f получаем

$$f(x_1, ..., x_i, ..., x_j, ..., x_n) + f(x_1, ..., x_j, ..., x_i, ..., x_n) = 0 \Rightarrow$$
$$\Rightarrow (2x_1, ..., x_i + x_j, ..., x_j + x_i, ..., 2x_n) = 0$$

Получили, что условие кососимметричности равносильно обнулению на паре совпадающих элементов.

1.4. Чему равен определитель произведения двух квадратных матриц? Ответ обосновать.

Формулировка:

 $\forall A, B \in M_n(\mathbb{R}) \ \det AB = \det A \cdot \det B$

Доказательство:

здесь могла быть ваша реклама

1.5. Выписать формулы Крамера для квадратной матрицы произвольного порядка и доказать их.

Формулировка:

Пусть есть вектор $b=\begin{pmatrix}b_1\\ \vdots\\ b_n\end{pmatrix}$ квадратная матрица A размера $n\times n$

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

которые соответствуют СЛАУ

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{n1}x_1 + \dots + a_{nn}x_n = b_n \end{cases}$$

Введём Δ_i как определитель матрицы, получающейся из A заменой i-ого столбца на вектор b:

$$\Delta_i = \begin{vmatrix} a_{11} & \dots & a_{1i-1} & b_1 & a_{1i+1} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{ni-1} & b_n & a_{ni+1} & \dots & a_{nn} \end{vmatrix} = \sum_{k=1}^n b_i A_{ki}$$

Тогда неизвествую x_i ($1 \le i \le n$)) можно найти по формуле

$$x_i = \frac{\Delta_i}{\Lambda}$$

где $\Delta = \det A$.

Доказательство:

Пусть A_{ij} – алгебраическое дополнение элемента a_{ij} матрицы A для СЛАУ Ax = b. Домножим каждое уравнение системы на соответствующее дополнение столбца i:

$$\begin{cases} A_{1i}a_{11}x_1 + \dots + A_{1i}a_{1n}x_n = A_{1i}b_1 \\ A_{2i}a_{21}x_1 + \dots + A_{2i}a_{2n}x_n = A_{2i}b_2 \\ \dots \\ A_{ni}a_{n1}x_1 + \dots + A_{ni}a_{nn}x_n = A_{ni}b_n \end{cases}$$

Сложим левые и правые части, а затем сгруппируем по переменным:

$$x_1(A_{1i}a_{11} + \dots + A_{ni}a_{n1}) + \dots + x_i(A_{1i}a_{1i} + \dots + A_{ni}a_{ni}) + \dots + x_n(A_{1i}a_{1n} + \dots + A_{ni}a_{nn}) =$$

$$= A_{1i}b_1 + \dots + A_{ni}b_n = \sum_{k=1}^n b_i A_{ki}$$

Обратим внимаение, что все коэффициенты при $x_j \neq x_i$ обнулятся (фальшивое разложение), а коэффициент при x_i будет равен определителю матрицы A (разложение по столбцу j). В то же время в правой части мы получили разложение определителя матрицы, полученной заменой i-ого столбца матрицы A на столбец b. Итого получили

$$x_i \det A = \begin{vmatrix} a_{11} & \dots & a_{1i-1} & b_1 & a_{1i+1} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{ni-1} & b_n & a_{ni+1} & \dots & a_{nn} \end{vmatrix} = \Delta_i \Rightarrow x_i = \frac{\Delta_i}{\Delta}$$

1.6. Сформулировать и доказать критерий линейной зависимости.

Формулировка:

Система строк линейно зависима тогда и только тогда, когда одна из строк может быть представлена как линейная комбинация оставшихся.

Доказательство:

Пусть $a_1,...,a_n$ – система строк, их линейная зависимость означает существование $\lambda_1,...,\lambda_n:\exists \lambda_i\neq 0.$ Пусть $\lambda_k\neq 0,$ тогда

$$\lambda_1 a_1 + \ldots + \lambda_n a_n = 0, \ \lambda_k \neq 0 \Leftrightarrow a_k = -\frac{\lambda_1}{\lambda_k} a_1 - \frac{\lambda_2}{\lambda_k} a_2 - \ldots - \frac{\lambda_n}{\lambda_k} a_n$$

1.7. Сформулировать и доказать следствие теоремы о базисном миноре для квадратных матриц (критерий невырожденности).

Формулировка:

Для произвольной квадратной матрицы A размера $n \times n$ следующие три условия эквивалентны:

- 1) $\det A \neq 0$
- 2) RgA = n
- 3) Все строки (столбцы) матрицы A линейно независимы

Доказательство:

$1 \Rightarrow 2$:

 $\det A \neq 0 \Rightarrow$ в A есть ненулевой минор размера $n \times n \Rightarrow RgA = n$.

$2 \Rightarrow 3$:

 $RgA = n \Rightarrow$ в A есть ненулевой минор размера $n \times n$, который является базисным. Строки базисного минора линейно независимы (по теореме о базисном миноре).

$3 \Rightarrow 1$:

Если $\det A=0$, то RgA< n и существует строка, которая выражается через другие строки (строки базисного минора). Тогда, по критерию линейной зависимости, строки линейно зависимы – противоречие.

1.8. Сформулируйте и докажите теорему о базисном миноре.

Формулировка:

Строки (столбцы) матрицы A, входящие в базисный минор, образуют линейно независимую систему. Любая строка (столбец) A выражается через линейную комбинацию строк (столбцов) базисного минора.

Доказательство:

Предположим, входящие в базисный минор строки линейно зависимы. Тогда одна из них представима в виде линейной комбинации оставшихся и по свойствам

определителя, данный минор будет равен нулю. В этом случае он не будет базисным – противоречие. Значит, строки базисного минора линейно независимы. Докажем вторую часть теоремы. Пусть RgA = r, будем считать, что базисный минор M находися в левом верхнем углу матрицы, то есть

$$M = \begin{vmatrix} a_{11} & \dots & a_{1r} \\ \dots & \dots & \dots \\ a_{r1} & \dots & a_{rr} \end{vmatrix}$$

Добавим справа элементы произвольного столбца j, а снизу элементы строки k > r:

$$\Delta = \begin{vmatrix} a_{11} & \dots & a_{1r} & a_{1j} \\ \dots & \dots & \dots \\ a_{r1} & \dots & a_{rr} & a_{rj} \\ a_{k1} & \dots & a_{kr} & a_{kj} \end{vmatrix}$$

Если $j \leq r$, то в полученной матрице есть 2 одинаковых столбца, тогда $\Delta = 0$. Если j > r, то Δ является минором матрица A порядка r+1. Тогда $RgA = r \Rightarrow \Delta = 0$. Разложим Δ по последнему столбцу, получим $\Delta = a_{ij}A_i + ... + a_{rj}A_r + a_{kj}A_k = 0$, где $A_1, ..., A_r, A_k$ – алгебраические дополнения соответствующих элементов, $A_k = M \neq 0 \Rightarrow a_{kj} = -\frac{A_1}{A_k}a_{ij} - ... - \frac{A_r}{A_k}a_{rj}$ при $j = \overline{1,n}, k > r$, т.е. $(a_{k1}, ..., a_{kn}) = -\frac{A_1}{A_k}(a_{11}, ..., a_{1n}) - ... - \frac{A_r}{A_k}(a_{r1}, ..., a_{rn})$ – выразили произвольную строку через строки базисного минора.

1.9. Сформулируйте теорему Кронекера-Капелли и докажите её.

Формулировка:

СЛАУ Ax = b совместна тогда и только тогда, когда RgA = Rg[Ab], где [Ab] – матрица, полученная из столбцов матрицы A и столбца b.

Доказательство:

Необходимость:

СЛАУ
$$Ax = b$$
 совместна $\Leftrightarrow \exists x^0 = \begin{pmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{pmatrix} \neq 0 : Ax_0 = b$, т.е.

$$\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = A_1 x_1^0 + \dots + A_n x_n^0$$

где $A_1, ..., A_n$ – столбцы A. Видим, что столбец b является линейной комбинацией столбцов матрицы, а значит при добавлении его в матрицу ранг не изменится, т.е. RgA = Rg[Ab]. Достаточность:

Имеем RgA = Rg[Ab]. Возьмем в A произвольный базисный минор, тогда в [Ab] этот минор также будет базисным. По теореме о базисном миноре столбец b, находящийся в [Ab], будет раскладываться через линейную комбинацию столбцов базисного. Коэффициенты данной линейной комбинации будут являться решением СЛАУ $Ax = b \Rightarrow$ СЛАУ совместна.

1.10. Сформулируйте и докажите теорему о ранге матрицы (теорема о базисном миноре предполагается известной).

Формулировка:

Ранг матрицы равен максимальному числу линейно независимых строк (столбцов) матрицы.

Доказательство:

Пусть RgA=r, максимальное число линейно независимых строк k. Покажем, что r=k.

Ранг есть размер базисного минора, строки которого линейно независимы по теореме о базисном миноре. На основании этого делаем вывод, что $r \leq k$. Возьмём k линейно независимых строк и составим квадратную матрицу A', исключив лишние столбцы – очевидно, строки линейно независимыми от этого быть не перестанут. По теореме-следствию из теоремы о базисном миноре, для квадратной матрицы размера k верно, что если все её строки линейно независимы, то её ранг равен k. То есть RgA' = k, в то время как A была получена из строк и столбцов A. Тогда $RgA \geq RgA' = k$, и в то же время $r \leq k$. Вывод: r = k.

Модуль 2

2.1. Сформулируйте теорему о структуре общего решения неоднородной системы линейных алгебраических уравнений и докажите её (теорема о структуре общего решения однородной системы линейных алгебраических уравнений предполагается известной).

Формулировка:

Пусть $f_1, f_2, ..., f_k$ (k = n - r) – ФСР однородной СЛАУ Ax = 0, а также известно некоторое частное решение x_0 неоднородной СЛАУ Ax = b. Тогда $x = x_0 + \lambda_1 f_1 + \lambda_2 f_2 + ... + \lambda_k f_k$ является решением неоднородной СЛАУ Ax = b при любых $\lambda_1, ..., \lambda_k$.

Доказательство:

Пусть x_0 – произвольное решение СЛАУ Ax = b, Пусть $f_1, f_2, ..., f_k$ (k = n - r) – ФСР однородной СЛАУ Ax = 0. Пусть x – произвольное решение Ax = b, рассмотрим $Ax - Ax_0 = b - b \Rightarrow A(x - x_0) = 0$. Это есть однородная СЛАУ, решение которой представимо в виде линейной комбинации известных нам векторов ФСР, то есть $x - x_0 = \lambda_1 f_1 + \lambda_2 f_2 + ... + \lambda_k f_k$, откуда и получаем $x = x_0 + \lambda_1 f_1 + \lambda_2 f_2 + ... + \lambda_k f_k$.

2.2. Выпишите формулу Муавра и докажите её.

Формулировка:

Пусть $z = r(\cos \varphi + i \sin \varphi)$, тогда

$$z^n = r^n(\cos(n\varphi) + i\sin(n\varphi)), \ n \in \mathbb{Z}$$

Доказательство:

Если вам лень доказывать в две стороны, докажите только для $n \in \mathbb{N}$. Не помню, как нам её давали.

Докажем при помощи математической индукции. Так как доказываем для $n \in \mathbb{Z}$, будем рассматривать еще и отрицательный шаг.

База:
$$n = 1 - z^1 = r^1(\cos(1 \cdot \varphi) + i\sin(1 \cdot \varphi))$$
 – верно.

<u>Предположим</u>, что формула верна для $n: z^n = r^n(\cos(n\varphi) + i\sin(n\varphi))$. <u>Положительный шаг</u>: рассмотрим n+1. Представим $z^{n+1} = z^n \cdot z$:

$$z^{n} \cdot z = r^{n}(\cos{(n\varphi)} + i\sin{(n\varphi)}) \cdot r(\cos{\varphi} + i\sin{\varphi}) =$$

$$= r^{n+1}(\cos{(n\varphi)}\cos{\varphi} + i\cos{(n\varphi)}\sin{\varphi} + i\sin{(n\varphi)}\cos{\varphi} + i^{2}\sin{(n\varphi)}\sin{(\varphi)}) =$$

$$= r^{n+1}(\underbrace{(\cos{(n\varphi)}\cos{\varphi} - \sin{(n\varphi)}\sin{(\varphi)})}_{\cos{(n\varphi+\varphi)}} + i\underbrace{(\cos{(n\varphi)}\sin{\varphi} + \sin{(n\varphi)}\cos{\varphi})}_{\sin{(n\varphi+\varphi)}}) =$$

$$= r^{n+1}(\cos{((n+1)\varphi)} + i\sin{((n+1)\varphi)}) - \text{формула выполняется для } n+1$$

Отрицательный шаг: рассмотрим n-1. Представим $z^{n-1} = \frac{z^n}{z}$:

$$\frac{z^n}{z} = \frac{r^n \cos{(n\varphi)} + i \sin{(n\varphi)}}{r} = r^{n-1} \frac{(\cos{(n\varphi)} + i \sin{(n\varphi)})(\cos{\varphi} - i \sin{(\varphi)})}{(\cos{\varphi} + i \sin{(\varphi)})(\cos{\varphi} - i \sin{(\varphi)})} =$$

$$= r^{n-1} \frac{(\cos{(n\varphi)}\cos{\varphi} + i \sin{(n\varphi)}\cos{\varphi} - i \cos{(n\varphi)}\sin{(\varphi)}) - i^2 \sin{(n\varphi)}\sin{(\varphi)})}{(\cos^2{(\varphi)} + \sin^2{(\varphi)})} =$$

$$r^{n-1} \underbrace{(\cos{(n\varphi)}\cos{\varphi} + \sin{(n\varphi)}\sin{(\varphi)} + i \sin{(n\varphi)}\cos{\varphi} - \cos{(n\varphi)}\sin{(\varphi)})}_{\sin{(n\varphi-\varphi)}} =$$

$$= r^{n-1} (\cos{((n\varphi)}\cos{\varphi} + i \sin{((n\varphi)}\sin{(\varphi)})) - \frac{\sin{(n\varphi-\varphi)}}{\sin{(n\varphi-\varphi)}} =$$

$$= r^{n-1} (\cos{((n\varphi)}\cos{\varphi} + i \sin{((n\varphi)}\sin{(\varphi)})) - \frac{\sin{(n\varphi-\varphi)}}{\sin{(n\varphi-\varphi)}} =$$

Вывод: по принципу математической индукции формула верна для всех $n \in \mathbb{Z}$.

2.3. Докажите теорему о том, что любое линейное уравнение на координаты точки в трехмерном пространстве задает плоскость и что любая плоскость определяется линейным уравнением.

Формулировка:

- 1. Любая плоскость в трёхмерном пространстве задается уравнением вида Ax + By + Cz + D = 0, $A^2 + B^2 + C^2 > 0$.
- 2. Любое линейное уравнение вида Ax + By + Cz + D = 0, $A^2 + B^2 + C^2 > 0$, определяет плоскость в трёхмерном пространстве.

Доказательство:

- 1. Рассмотрим плоскость π . Пусть $M(x_0, y_0, z_0) \in \pi$, $\vec{n}(A, B, C) \perp \pi$, $\vec{n} \neq 0$. Тогда $\forall x, y, z \in \mathbb{R}$ $M(x, y, z) \in \pi \Leftrightarrow (\vec{n}, \overline{MM_0}) = 0 \Leftrightarrow A(x x_0) + B(y y_0) + C(z z_0) = 0$, т.е. Ax + By + Cz + D, где $D = -Ax_0 By_0 Cz_0$. Таким образом, координаты любой точки M плоскости π удовлетворяют определённому линейному уравнению.
- 2. Рассмотрим уравнение Ax+By+Cz+D=0, где $A^2+B^2+C^2>0$. В силу ограничения, оно имеет хотя бы одно решение. Обозначим за M_0 точку (x_0,y_0,z_0) . Пусть точка M(x,y,z) удовлетворяет уравнению Ax+By+Cz+D=0. Вычтем из него равенство $Ax_0+By_0+Cz_0+D=0$: $A(x-x_0)+B(y-y_0)+C(z-z_0)=0 \Leftrightarrow (\vec{n}, \overrightarrow{MM_0})=0$, где $\vec{n}(A,B,C)\Leftrightarrow \vec{n}\perp \overrightarrow{MM_0}\Leftrightarrow$ точка лежит в плоскости, проходящей через M_0 и $\perp \vec{n}\Rightarrow Ax+By+Cz+D$ задает плоскость.

2.4. Сформулируйте и докажите утверждение о связи порядка элемента, порождающего циклическую группу, с порядком группы.

Формулировка:

Пусть < g > - группа, порожденная элементом g, тогда ord(g) = | < g > |.

Доказательство:

Если g имеет бесконечный порядок, то все элементы g^n , $n \in \mathbb{Z}$ различны – докажем это. Допустим обратное: $s \neq k$, $g^s = g^k$; $g^{s-k} = e \Rightarrow$ порядок конечен. Тогда и порядок группы бесконечен, т.е. он совпадает с порядком g.

Если $ord(g) = m \neq \infty$, то $\forall i, j < m \ i \neq j \Rightarrow g^i \neq g^j$. Представим произвольное $n \in \mathbb{Z}$ как n = mp + r, где r – остаток n по m. Значит $g^n = (g^m)^p g^r = (e)^p g^r = g^r$, то есть любая степень g сопоставима элементом из $\{e, g, \dots, g^{m-1}\} \Rightarrow$ в группе m элементов.

2.5. Сформулируйте и докажите утверждение о том, какими могут быть подгруппы группы целых чисел по сложению.

Формулировка:

Любая подгруппа группы целых чисел по сложению имеет вид G = kZ, где $k \in \mathbb{N} \cup \{0\}$. Т.е. это группа всех чисел, кратных определенному значению.

Доказательство:

Если $G = \{0\}$, то k = 0, т.е. $\{0\} = 0\mathbb{Z}$. Иначе, $k = min(G \cap \mathbb{N})$, тогда $kZ \subseteq G$. Если $a \in G$ и a = qk + r, где $q, r \in \mathbb{Z}$, $0 \le r < k$. Тогда $r = a - qk \in G$, так как $a \in G, qk \in G$. Но при этом k — минимальный натуральный элемент, а r < k, следовательно, r = 0. Значит, $\forall a \in G \ a = qk \Rightarrow G = k\mathbb{Z}$.

2.6. Сформулируйте и докажите утверждение о том, сколько существует, с точностью до изоморфизма, циклических групп данного порядка.

Формулировка:

Для каждого натурального порядка n существует ровно одна циклическая группа, с точностью до изоморфизма.

Доказательство:

Рассмотрим произвольную циклическую группу $\langle g \rangle$ порядка n. Отображение $f:\langle g \rangle \to \mathbb{Z}_n$, действующее как $f(g^n)=n$ является изоморфизмом, так как

- 1) $f(g^mg^k) = m + k = f(g^m) + f(g^k)$ это гомоморфизм.
- 2) $f(g^k) = f(g^m) \Rightarrow k = m$ по свойствам степеней $(g \neq 0, \text{ так как это порождающий элемент}) это инъекция.$
- 3) $\forall k \in \mathbb{Z}_n \; \exists g^k : f(g^k) = k$ это сюръекция.

Вывод: любая группа порядка n изоморфна \mathbb{Z}_n , а значит, с точностью до изоморфизма, существует единственная циклическая группа порядка n.

2.7. Докажите утверждение о том, что ядро гомоморфизма групп всегда является подгруппой.

Формулировка:

Для любого гомоморфизма $f: G_1 \to G_2 \ Kerf$ – подгруппа G_1 .

Доказательство:

- 1) $e_1 \in Kerf$ по свойствам гомоморфизма $(f(e_1) = e_2)$.
- 2) $\forall g_1, g_2 \in Kerf \ f(g_1g_2) = f(g_1)f(g_2) = e_2e_2 = e_2 \Rightarrow g_1g_2 \in Kerf.$
- 3) $\forall g_1 \ f(g_1^{-1}) = f(g_1)^{-1} = e_2^{-1} = e_2 \Rightarrow g_{-1} \in Kerf$

Все условия подгруппы выполнены $\Rightarrow Kerf$ – подгруппа G_1 .

2.8. Сформулируйте и докажите теорему Лагранжа (включая леммы).

Формулировка:

Лемма 1:

 $\forall g_1, g_2 \in G \ (g_1H = g_2H) \oplus (g_1H \cap g_1H = \varnothing)$

Лемма 2:

 $\forall g \in G \ \forall H \subseteq G \ |gH| = |H|$

Теорема Лагранжа:

Пусть G – конечная группа, $H \subseteq G$. Тогда |G| = |H|[G:H], где [G:H] – индекс подгруппы, т.е. число левых смежных классов по H.

Доказательство:

<u>Лемма 1</u>:

Если $g_1H \cap g_2H \neq \emptyset$, то $\exists h_1, h_2 \in H: g_1h_1 = g_2h_2 \Rightarrow g_1 = g_2h_2h_1^{-1} \Rightarrow g_1H = g_2\underbrace{h_2h_1^{-1}}_{\in H} H \subseteq g_2H$. Аналогично для $g_2H \subseteq g_1H$, тогда $g_1H = g_2H$, что и требовалось доказать.

<u>Лемма 2</u>:

 $|gH| \leq |H|$, так как $gH = \{gh, h \in H\}$. Предположим, |gH| < |H|, тогда $\exists h_1, h_2 \in H : (h_1 \neq h_2) \land (gh_1 = gh_2)$. Но $gh_1 = gh_2 \Rightarrow h_1 = h_2 \Rightarrow$ нет совпадений $\Rightarrow |gH| = |H|$.

Теорема Лагранжа:

Любой $g \in G$ лежит в своем левом смежном классе по H и смежные классы не пересекаются (по лемме 1). В то же время, любой смежный класс содержит |H| элементов (по лемме 2).

2.9. Дайте определение фундаментальной системы решений (ФСР) однородной системы линейных уравнений. Докажите теорему о существовании ФСР.

Φ ормулировка:

ФСР однородной СЛАУ Ax = 0 – множество линейно независимых решений данной СЛАУ. Всего таких решений $n_x - RgA$, где n_x – число переменных в СЛАУ.

Доказательство:

здесь могла быть ваша реклама

2.10. Сформулируйте критерий существования ненулевого решения однородной системы линейных уравнений с квадратной матрицей и докажите его.

Формулировка:

Однородная СЛАУ с квадратной матрицей Ax=0 имеет ненулевое решение тогда и только тогда, когда $\det A=0$, т.е. матрица вырождена.

Доказательство:

Необходимость:

Пусть Ax=0 имеет решение $x_0\neq 0$. Предположим, что $\det A\neq 0$, тогда можем воспользоваться формулами Крамера. В этом случае получится, что все $\Delta_i=0$, т.к. b=0, а значит система имеет лишь нулевое решение – противоречие.

Достаточность:

Пусть $\det A = 0$, тогда $RgA < n \Rightarrow$ существует n - RgA > 0 столбцов ФСР. Тогда любая линейная комбинация ФСР будет решением, причём ненулевым.

2.11. Докажите теорему о структуре общего решения однородной системы линейных алгебраических уравнений, то есть о том, что произвольное решение однородной СЛАУ может быть представлено в виде линейной комбинации элементов ФСР.

Формулировка:

Пусть $f_1, f_2, ..., f_k$ (k = n - r) – ФСР однородной СЛАУ Ax = 0. Тогда $x = \lambda_1 f_1 + \lambda_2 f_2 + ... + \lambda_k f_k$ является решением СЛАУ при любых $\lambda_1, ..., \lambda_k$. Иными словами, любое решение СЛАУ является линейной комбинацией ФСР.

Доказательство:

По определению, ФСР есть n-RgA линейно независимых решений СЛАУ Ax=0. Тогда для произвольной линейной комбинации СЛАУ $\lambda_1 f_1 + \lambda_2 f_2 + ... + \lambda_k f_k$ имеем

$$A(\lambda_1 f_1 + \ldots + \lambda_k f_k) = A\lambda_1 f_1 + \ldots + A\lambda_k f_k = \lambda_1 A f_1 + \ldots + \lambda_k A f_k = \lambda_1 \cdot 0 + \ldots + \lambda_k \cdot 0 = 0$$

Как видим, любая линейная комбинация $\Phi {\rm CP}$ является решением.

Допустим, столбец x_0 является решением, но не выражается как линейная комбинация Φ CP. Тогда он линейно независим с Φ CP, но в Φ CP входят все линейно независимые решения СЛАУ – противоречие.

Модуль 3

3.1. Докажите, что гомоморфизм инъективен тогда и только тогда, когда его ядро тривиально.

Формулировка:

Гомоморфизм $f: G \to G'$ инъективен тогда и только тогда, когда $Kerf = \{e_G\}$ (ядро тривиально).

Доказательство:

Необходимость:

Инъективность f означает, что $\forall x_1, x_2 \in G$ $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ и мы знаем, что $f(e_G) = e_{G'}$ (по свойствам гомоморфизма). Следовательно, $\forall x \in G$ $x \neq e_G \Rightarrow f(x) \neq e_{G'}$, из чего следует, что в ядре только e_G , т.е. ядро тривиально.

Достаточность:

Пусть f не инъективен, т.е. $\exists x_1 \neq x_2 : f(x_1) = f(x_2)$. Тогда $f(x_1) \cdot (f(x_2))^{-1} = f(x_2) \cdot (f(x_2))^{-1} = e_{G'} \Rightarrow f(x_1 \cdot x_2^{-1}) = e_{G'}$ (так как f гомоморфизм) $\Rightarrow x_1 \cdot x_2^{-1} \in Kerf \Rightarrow x_1 \cdot x_2^1 = e_G$ (так как ядро тривиально) $\Rightarrow x_1 = x_2$ – противоречие. Значит, f инъективно, что и требовалось доказать.

Необходимость и достаточность выполняются, значит утверждения равносильны.

3.2. Сформулируйте и докажите критерий нормальности подгруппы, использующий сопряжение.

Формулировка:

Пусть $H \subseteq G$ — подгруппа в группе G. Тогда если $gHg^{-1} = \{ghg^{-1} \mid h \in H\}$ 3 условия эквивалентны:

- $1. \ H$ нормальна
- $2. \ \forall g \in G \ gHg^{-1} \subseteq H$
- 3. $\forall g \in G \ gHg^{-1} = H$

Доказательство:

Докажем 3 импликации: $1 \Rightarrow 2, 2 \Rightarrow 3, 3 \Rightarrow 1$.

$1 \Rightarrow 2$:

Пусть $h \in H$ и $g \in G$. Из определения нормальности подгруппы

$$\exists h, h' \in H : gh = h'g \Rightarrow ghg^{-1} = h' \in H$$
, T.e. $gHg^{-1} \subseteq H$.

$$2 \Rightarrow 3$$
:

Для $h \in H$ имеем $h = gg^{-1}hgg^{-1} = g(g^{-1}hg)g^{-1} \in gHg^{-1}$, так как $g^{-1}hg \in H$ по 2 (вместо g берём g^{-1}).

$3 \Rightarrow 1$:

 $\forall g \in G$ по пункту 3 $gH = gHg^{-1}g \subseteq Hg$. Аналогично $Hg \subseteq gH \Rightarrow Hg = gH$ по определению, H нормальна.

3.3. Сформулируйте и докажите критерий нормальности подгруппы, использующий понятие ядра гомоморфизма.

Формулировка:

 $H \triangleleft G \Leftrightarrow \exists f$ – гомоморфизм $G \rightarrow G'$ для нек. группы G', причём Kerf = H.

Доказательство:

Необходимость:

 $f=\varepsilon$ — естественный гомоморфизм, сопоставляющий $\forall g\in G$ его смежный класс gH, т.е. $\varepsilon:G\to G/H$. Видим, что Kerf=H.

Достаточность:

Пусть $f: G \to G'$ – гомоморфизм и $z \in Kerf$. Тогда $f(g^{-1}zg) = f(g^{-1})f(z)f(g) = f(g^{-1})e_2f(g) = f(g^{-1})f(g) = f(g^{-1}g) = f(e_1) = e_2$, т.е. $\forall g \in G \ g^{-1}Hg \subseteq H$, где $H = Kerf \Rightarrow$ по критерию H – нормальна.

3.4. Докажите, что центр группы является её нормальной подгруппой.

Формулировка:

Для любой группы G её центр Z(G) является нормальной подгруппой G.

Доказательство:

Покажем, что Z(G) – подгруппа G. Для этого достаточно доказать, что $\forall a,b\in Z(G)\ ab^{-1}\in Z(G)$. Для произвольного $g\in G$:

$$ab^{-1}g = ab^{-1}(g^{-1})^{-1} = a(g^{-1}b)^{-1} = agb^{-1} = gab^{-1} \Rightarrow ab^{-1} \in Z(G)$$

Нормальность доказывается с помощью критерия с сопряжением. Рассмотрим произвольные $z \in Z(G), \ a,b \in G.$

$$(aza^{-1})b = aa^{-1}zb = zb = bz = bzaa^{-1} = b(aza^{-1})$$

Видим, что для любого $z \in Z(G)$ и любого $a \in G$ верно, что $aza^{-1} \in Z(G)$, а по критерию это означает нормальность.

3.5. Сформулируйте и докажите утверждение о том, чему изоморфна факторгруппа группы по её центру.

Формулировка:

$$G/Z(G) \cong Inn(G)$$

Inn – подгруппа всех внутренних автоморфизмов: $Inn = \{g \mapsto aga^{-1} \mid a, g \in G\}.$

Доказательство:

Рассмотрим отображение $f: G \to Aut(G)$, которое задается формулой $\varphi_g(h) = ghg^{-1}$. Тогда Imf = Inn(G) по определению. Kerf = Z(G), так как $ghg^{-1} = ege^{-1} = h \Rightarrow gh = hg$. По теореме о гомоморфизме $G/Kerf \cong Imf$, то есть $G/Z(G) \cong Inn(G)$.

3.6. Сформулируйте и докажите теорему Кэли.

Формулировка:

Любая конечная группа порядка n изоморфна некоторой подгруппе группы перестановок S_n .

Доказательство:

Пусть |G|=n. $\forall a\in G$ рассмотрим отображение $L_a:G\to G$ по формуле: $L_a(g)=ag$.

Пусть $e, g_1, ..., g_{n-1}$ – элементы группы. Тогда $a, ag_1, ..., ag_{n-1}$ – те же элементы, но в другом порядке $(ag_i = ag_j \Rightarrow g_i = g_j$, так как $\exists a^{-1} \, \forall a \in G)$. Значит, L_a – биективное отображение G в себя (то есть перестановка элементов g). Рассмотрим множество этих отображений. Эти отображения можно умножать (взяв композицию), есть единичный элемент L_e , обратным к L_a является $L_{a^{-1}}$, из ассоциативности в G $L_{ab}(g) = (ab)g = a(bg) = L_a(L_b(g))$ – умножение ассоциативно. Значит, множество $L_e, L_{g_1}, ..., L_{g_{n-1}}$ образует подгруппу H в множестве всех биективных отображений G в себя, то есть S(G). А изоморфизм устроен так: $a \mapsto L_a$.

3.7. Докажите, что характеристика поля может быть либо простым числом, либо нулём.

Формулировка:

Характеристика поля можетс быть либо простым числом, либо нулём.

Доказательство:

Допустим, это не так и charP=p=mk, тогда 0=1+...+1, где mk единиц. Пусть $a_m=1+...+1\neq 0$, где m единиц, $a_k=1+...+1\neq 0$, где k единиц, тогда $0=a_ma_k\Rightarrow a_m,\ a_k$ – делители нуля, что недопустимо в поле – противоречие.

3.8. Сформулируйте и докажите утверждение о том, каким будет простое подполе в зависимости от характеристики.

Формулировка:

Пусть \mathbb{F} – поле, \mathbb{F}_0 – его простое подполе. Тогда:

- 1) $\operatorname{char} \mathbb{F} = p > 0 \Rightarrow \mathbb{F}_0 \cong \mathbb{Z}_p$.
- 2) $\operatorname{char} \mathbb{F} = 0 \Rightarrow \mathbb{F}_0 \cong \mathbb{Q}$.

Доказательство:

Рассмотрим циклическую подгруппу $<1>\subseteq (\mathbb{F},+)$, порожденную единицей поля (нейтральным элементом по умножению). Заметим, что $|<1>|=\mathrm{char}\mathbb{F}.$

1) Если
$$\operatorname{char} \mathbb{F} = p > 0$$
, то $<1> \cong \mathbb{Z}_p$ – поле $\Rightarrow \mathbb{F}_0 = <1> \cong \mathbb{Z}_p$.

2) Если char $\mathbb{F} = 0$, то $<1>\cong \mathbb{Z}$ – не поле. Но \mathbb{F}_0 содержит и обратные по умножению элементы, т.е. дроби вида $\frac{a}{b}: a,b \in <1>,\ b\neq 0$. Они образуют подполе, изоморфное \mathbb{Q} (поле частных для кольца \mathbb{Z}).

3.9. Сформулируйте и докажите критерий того, что кольцо вычетов по модулю n является полем.

Формулировка:

Кольцо вычетов \mathbb{Z}_k является полем тогда и только тогда, когда k – простое.

Доказательство:

Необходимость:

Допустим, k – не простое, т.е. k=mt. Тогда найдутся ненулевые $z_m, z_t \in \mathbb{Z}_k$: $z_m \cdot z_t = 0$. Это означает, что в \mathbb{Z}_k есть делители нуля, то есть \mathbb{Z}_k – не поле. Следовательно, k – простое.

Достаточность:

 \mathbb{Z}_k — коммутативное кольцо с единицей, значит для того, чтобы оно было полем, достаточно доказать существование обратного элемента, т.е.

 $\forall \overline{a} \in (\mathbb{Z}_p \setminus \{0\}, \cdot) \ \exists \overline{a}^{-1} : \overline{a} \cdot \overline{a}^{-1} = \overline{1}$. Рассмотрим $A = \{\overline{1} \cdot \overline{a}, \overline{2} \cdot \overline{a}, ..., \overline{k-1} \cdot \overline{a}\}$. Все эти элементы $\neq 0$, т.к. $\overline{a} \neq 0 \pmod{k} \Rightarrow \overline{p} \cdot \overline{a} \neq 0 \pmod{k}$ при $p \in \overline{1, k-1}$ (следует из простоты k). Все эти элементы также различны, так как $\overline{p} \cdot \overline{a} = \overline{l} \cdot \overline{a} \Rightarrow (\overline{p} - \overline{l})\overline{a} = 0 \Rightarrow \overline{p} = \overline{l}$. Следовательно, $A \cong \mathbb{Z}_k \setminus \{0\}$, а значит в A существует единица, т.е. один из элементов $\{\overline{1} \cdot \overline{a}, \overline{2} \cdot \overline{a}, ..., \overline{k-1} \cdot \overline{a}\}$ равен

единице. Значит, для \overline{a} есть обратный элемент $\Rightarrow \mathbb{Z}_k$ – поле.

3.10. Докажите, что ядро гомоморфизма колец является идеалом.

Формулировка:

Если $f:K_1\to K_2$, то Kerf – идеал в K_1 .

Доказательство:

f – гомоморфизм групп (по сложению) $(K_1, +)$ и $(K_2, +) \Rightarrow (Kerf, +)$ – нормальная подгруппа. Покажем, что $\forall a \in Kerf, \ \forall k \in K_1 \ ak, ka \in Kerf$:

$$f(ra) = f(r)f(a) = f(r) \cdot 0 = 0 \Rightarrow ra \in Kerf$$

$$f(ar) = f(a)f(r) = 0 \cdot f(r) = 0 \Rightarrow ar \in Kerf$$

Вывод: Kerf – идеал в K_1 , что и требовалось доказать.

3.11. Сформулируйте и докажите утверждение о том, когда факторкольца кольца многочленов над полем само является полем.

Формулировка:

Факторкольцо P[x] / < f(x) > является полем тогда и только тогда, когда f(x) неприводим над полем P.

Доказательство:

Необходимость:

Допустим, $f(x) = f_1(x) \cdot f_2(x)$, т.е. приводим над P. Тогда $\overline{f_1}, \overline{f_2} \in P[x] / < f(x) >$ отличны от нуля, где $\overline{f_i} = f_i + < f(x) > -$ смежные классы по идеалу < f(x) >, при этом $\overline{f_1(x)} \cdot \overline{f_2(x)} = \overline{f_1(x)} \cdot f_2(x) = \overline{f(x)} = \overline{0}$. Тогда $\overline{f_1}, \overline{f_2}$ являются делителями нуля, следовательно, факторкольцо не является полем. Вывод: f(x) неприводим над P.

Достаточность:

Рассмотрим, произвольный $a(x) \in P[x]: dega < degf$. Так как f(x) неприводим, то по алгоритму Евклида $\exists b(x), c(x) \in P[x]: a(x)b(x) + c(x)f(x) = 1$. Видим, что второе слагаемое является элементом < f(x) >, а значит $\overline{a} \cdot \overline{b} = \overline{1}$. Тогда $\overline{b(x)}$ является обратным к $\overline{a(x)} \Rightarrow$ факторкольцо является полем.

3.12. Выпишите и докажите формулу для описания изменения координат вектора при изменении базиса.

Формулировка:

Пусть $x \in V$, A и B – базисы в V, $x^a = (x_1^a, ..., x_n^a)^T$, $x^b = (x_1^b, ..., x_n^b)^T$ – столбцы координат вектора x в базисах A и B соответственно. Тогда $x^b = T_{A \to B}^{-1} x^a$, где $T_{A \to B}$ – матрица перехода от A к B.

Доказательство:

$$x = A \cdot x^a = B \cdot x^b$$

По определению матрицы перехода в матричной форме $B = A \cdot T_{A \to B}$. $A \cdot x^a = A \cdot T_{A \to B} \cdot x^b \Rightarrow$ так как разложение по базису единственно, то $x^a = T_{A \to B} x^b$.

3.13. Выпишите формулу для преобразования матрицы билинейной формы при замене базиса и докажите её.

Формулировка:

Пусть $T_{A\to B}$ — матрица перехода от базиса A в базис B. Пусть M_A — матрица билинейной формы в базисе A, M_B — матрица билинейной формы в базисе B. Тогда

$$M_B = T_{A \to B}^T M_A T_{A \to B}$$

Доказательство:

$$b(x,y) = (x^A)^T M_A y^A = (T_{A\to B} x^B)^T M_A (T_{A\to B} y^B) = (x^B)^T (T_{A\to B}^T M_A T_{A\to B}) y^B$$

С другой стороны

$$b(x,y) = (x^B)^T M_B y^B$$

Видим, что

$$(x^B)^T (T_{A\to B}^T M_A T_{A\to B}) y^B = (x^B)^T y^B \Rightarrow T_{A\to B}^T M_A T_{A\to B} = M_B$$

что и требовалось доказать.

3.14. Выпишите формулу для преобразования матрицы линейного отображения при замене базиса и докажите её.

Формулировка:

Пусть $\varphi: V_1 \to V_2$ — линейное отображение. Пусть A_{EF} — матрица линейного отображения в паре базисов E пространства V_1 и F пространства V_2 . Пусть T_1 — матрица перехода от E к E', T_2 — матрица перехода от F к F'. Тогда

$$A_{E'F'} = T_2^{-1} A_{EF} T_1$$

Доказательство:

Пусть x – произвольный вектор, тогда $x^{E'} = T_1^{-1} x^E$, $x^{F'} = T_2^{-1} x^F$. Значит

$$\begin{cases} x^F = A_{EF}x^E \\ x^{F'} = A_{E'F'}x^{E'} \end{cases} \Rightarrow T_2x^{F'} = A_{EF}T_1x^{E'} \Rightarrow T_2A_{E'F'}x^{E'} = A_{EF}T_1x^{E'} \Rightarrow A_{E'F'} = T_2^{-1}A_{EF}T_1$$

3.15. Сформулируйте и докажите теорему о гомоморфизме групп.

Формулировка:

Пусть $f: G_1 \to G_2$ – гомоморфизм групп, $Imf = \{g_2 \in G_2 | \exists g_1 \in G_1 : f(g_1) = g_2\}$ (образ группы G по f), $Kerf = \{g_1 \in G_1 | f(g_1) = e_2\}$ (ядро гомоморфизма f). Тогда $G_1/Kerf \cong Imf$.

Доказательство:

Рассмотрим отображение $\tau = G_1/Kerf \to Imf$, заданной формулой $\tau(gKerf) = f(g)$. Докажем, что это изоморфизм. Проверим корректность:

$$\forall h_1, h_2 \in Kerf \ f(gh_1) = f(g)f(h_1) = f(g)e_2 = f(g)f(h_2) = f(gh_2)$$

Отображение сюръктивно по построению $(\forall f(g) \exists \tau(gKerf))$ и инъективно в силу того, что $f(g) = e_2 \Leftrightarrow g \in Kerf \Leftrightarrow gKerf = Kerf$. Проверим то, что τ – гомоморфизм:

$$\tau((g_1Kerf)(g_2Kerf)) = \tau(g_1g_2Kerf) = f(g_1g_2) = f(g_1)f(g_2) = \tau(g_1Kerf)\tau(g_2Kerf)$$

Как видим, это изоморфизм, что и требовалось доказать.

3.16. Что такое сумма и прямая сумма подпространств? Сформулируйте и докажите критерий того, что сумма подпространств является прямой.

Формулировка:

Пусть $H_1, H_2 \subseteq L$ — подпространства. Множество $H_1 + H_2 = \{h_1 + h_2 \mid h_1 \in H_1, h_2 \in H_2\}$ называется суммой подпространств.

Сумма H_1+H_2 называется прямой, если $H_1\cap H_2=\{0\}$, обозначается как $H_1\oplus H_2$.

Сумма $H_1 + H_2$ является прямой тогда и только тогда, когда

 $\forall x \in H_1 + H_2 \; \exists ! x_1 \in H_1 \; \exists ! x_2 \in H_2 : x = x_1 + x_2$, т.е. его представление в виде суммы пары элементов из H_1 и H_2 единственно. x_1 называется проекцией x на H_1 вдоль H_2 , x_2 называется проекцией x на H_2 вдоль H_1 .

Доказательство:

Необходимость:

Пусть сумма прямая, т.е. $H_1 \cap H_2 = \{0\}$. Предположим, что существует 2 различных представления, т.е. $x = x_1 + x_2 = y_1 + y_2$. Тогда $0 = x_1 + x_2 - y_1 - y_2 \Rightarrow x_1 - y_1 = y_2 - x_2$. В то же время $x_1 - y_1 \in H_1$, $y_2 - x_2 \in H_2$, а значит $H_1 \cap H_2 = \{0\} \Rightarrow x_1 - y_1 = y_2 - x_2 = 0 \Rightarrow x_1 = y_1$, $x_2 = y_2$.

Достаточность:

Пусть представление единственно: $x = x_1 + x_2$. Предположим, $\exists x' \in H_1 \cap H_2$: $x' \neq 0$, т.е. $H_1 \cap H_2 \neq \{0\}$. Тогда $\forall \alpha \in \mathbb{F} \ (\alpha x' \in H_1) \wedge (\alpha x' \in H_2) \Rightarrow \forall \beta \in \mathbb{F}$ $((1 - \beta)x' \in H_1) \wedge (\beta x' \in H_2) \Rightarrow \forall \beta \in \mathbb{F} x = (1 - \beta)x + \beta x$ – представление не единственно, противоречие.

3.17. Сформулируйте и докажите (включая лемму) теорему об инвариантности ранга матрицы квадратичной формы.

Формулировка:

<u>Лемма</u>: Пусть $A, S \in M_n(\mathbb{R})$, тогда $\det S \neq 0 \Rightarrow RgAS = RgSA = RgA$.

<u>Теорема</u>: Ранг матрицы квадратичной формы не меняется при переходе к новому базису.

Доказательство:

<u>Лемма</u>: Известно, что $RgAB \le RgA$, $RgAB \le RgB$. Рассмотрим произвольную матрицу A и невырожденную S. Пусть $C_1 = AS$, $C_2 = SA$ тогда

 $RgC_1 \leq RgA, RgC_2 \leq RgA$. Рассмотрим $A = C_1S^{-1} = S^{-1}C_2$, здесь уже получаем $RgA = RgC_1S^{-1} \leq RgC_1, RgA = RgS^{-1}C_2 \leq RgC_2$. Получили $RgA = RgC_1 = RgC_2$, что и требовалось доказать.

 $\overline{\text{Теорема}}$: Матрица квадратичной формы A при переходе к новому базису меняется по следующей формуле: $A' = S^T A S$, где S – матрица перехода от старого базиса к новому – она невырождена по определению. Применяя вышеуказанную лемму, получаем RgA' = RgA, что и требовалось доказать.

Модуль 4

4.1. Сформулируйте и докажите утверждение о связи характеристического уравнения и спектра линейного оператора.

Формулировка:

Спектр линейного оператора – множество его собственных значений. Скаляр $\lambda_0 \in \mathbb{F}$ является собственным значением линейного оператора A (т.е. принадлежит его спектру) тогда и только тогда, когда $\mathcal{X}_A(\lambda_0) = 0$.

Доказательство:

 $\mathcal{X}_A(\lambda_0) = 0 \Leftrightarrow \det(A - \lambda_0 E) = 0 \Leftrightarrow \text{СЛАУ } (A - \lambda_0 E)x = 0$ имеет ненулевое решение, то есть x – собственный вектор с собственным значением λ_0 .

4.2. Сформулируйте и докажите утверждение о том, каким свойством обладают собственные векторы линейного оператора, отвечающие различным собственным значениям.

Формулировка:

Собственные векторы, отвечающие различным собственным значениям, линейно независимы.

Доказательство:

Докажем утверждение с помощью математической индукции.

База индукции: 1 собственный вектор и 1 собственное значение. По определению собственный вектор ненулевой ⇒ линейно независим.

Предположение индукции: пусть утверждение выполняется для множества n собственных векторов v_1, \ldots, v_n матрицы A, отвечающих различным собственным значениям $\lambda_1, \ldots, \lambda_n$.

Шаг индукции: добавим новый собственный вектор v_{n+1} и соответствующее ему собственное значение λ_{n+1} , отличное от всех предыдущих. Рассмотрим уравнение (1) $\alpha_1 v_1 + ... + \alpha_n v_n + \alpha_{n+1} v_{n+1} = 0$. Применим к нему оператор A: (2) $\alpha_1 A v_1 + ... + \alpha_{n+1} A v_{n+1} = 0$. По определению собственного вектора $A v_k = \lambda_k v_k$,

тогда получаем (3) $\alpha_1\lambda_1v_1+...+\alpha_n\lambda_{n+1}v_{n+1}=0$. Теперь вычтём из (3) (1), умноженное на λ_{n+1} : $\alpha_1(\lambda_1-\lambda_{n+1})v_1+...+\alpha_n(\lambda_n-\lambda_{n+1})v_n=0$. По предположению $v_1,...,v_n$ – линейно независимы, а значит уравнение равносильно системе

$$\begin{cases} \alpha_1(\lambda_1 - \lambda_{n+1}) = 0 \\ \dots \\ \alpha_n(\lambda_n - \lambda_{n+1}) = 0 \end{cases}$$

Так как $i \neq j \Rightarrow \lambda_i \neq \lambda_j$, из этой системы следует, что $\alpha_1 = \ldots = \alpha_n = 0$, а значит (исходя из (1)) и $\alpha_{n+1} = 0$, т.е. векторы $v_1, \ldots, v_n, v_{n+1}$ линейно независимы. Согласно принципу математической индукции, утверждение верно для всех $n \geq 1$, что и требовалось доказать.

4.3. Сформулируйте и докажите критерий диагональности матрицы оператора.

Формулировка:

Матрица линейного оператора диагональна тогда и только тогда, когда все векторы базиса, в котором представлена эта матрица, являются её собственными векторами.

Доказательство:

Необходимость:

Пусть матрица A_f оператора φ в базисе f диагональна. По определению матрицы оператора a^j (j-ый столбец матрицы A_f) есть $\varphi(f_j)$. В то же время j-ый столбец диагональной матрицы имеет вид $a^j=(0,\ldots,0,\lambda_j,0,\ldots,0)^T$, то есть $a^j=\varphi(f_j)=\boxed{Af_j=\lambda_jf_j}$ – это есть определение собственного вектора. Достаточность:

Как мы уже установили, j-й столбец матрицы $A_f a^j = \varphi(f_j) = A f_j$. При этом f_j – собственный вектор, значит $A f_j = \lambda_j f_j$ – значит, в столбце a^j единственный ненулевой элемент λ_j стоит на j-ой строке – матрица диагональна.

4.4. Каким свойством обладает оператор в n-мерном вещественном пространстве, у характеристического многочлена которого есть n различных действительных корней? Ответ обоснуйте.

Формулировка:

Если характеристический многочлен оператора в n-мерном вещественном пространстве имеет n различных действительных корней, то матрица этого оператора диагонализируема.

Доказательство:

Корни характеристического многочлена оператора являются собственными значениями, а значит, если они попарно различны, существует n линейно независимых собственных векторов. Число этих линейно независимых векторов совпадает с размерностью пространства, значит, они образуют в данном пространстве базис. В базисе из собственных векторов матрица оператора имеет диагональный вид с собственными значениями на главной диагонали, то есть оператор диагонализируем, что и требовалось доказать.

4.5. Выпишите и докажите неравенство Коши–Буняковского. Выпишите и докажите неравенство треугольника.

Формулировка:

Пусть $||x|| = \sqrt{(x,x)}$.

Неравенство Коши-Буняковского:

$$\forall x, y \in \mathcal{E} \ |(x, y)| \le ||x|| \cdot ||y||$$

Неравенство треугольника:

$$\forall x, y \in \mathcal{E} \ ||x+y|| \le ||x|| + ||y||$$

Здесь \mathcal{E} — евклидово пространство.

Доказательство:

Коши-Буняковский:

Рассмотрим $b = \lambda x - y$ для произвольных $\lambda \in \mathbb{F}, x, y \in \mathcal{E}$. По свойству скаляр-

ного произведения, $(b, b) \ge 0$. Далее – арифметические махинации:

$$(\lambda x - y, \lambda x - y) = (\lambda x, \lambda x - y) - (y, \lambda x - y) = \lambda^{2}(x, x) - \lambda(x, y) - \lambda(y, x) + (y, y) =$$

$$= \lambda^{2} ||x||^{2} - 2\lambda(x, y) + ||y||^{2} \ge 0$$

$$D_{\lambda} = 4(x, y)^{2} - 4||x||^{2} \cdot ||y||^{2}$$

Так как выражение ≥ 0 , дискриминант должен быть ≤ 0

$$(x,y)^2 - ||x||^2 \cdot ||y||^2 \le 0 \Rightarrow |(x,y)| \le ||x|| \cdot ||y||$$

что и требовалось доказать.

Неравенство треугольника:

$$||x+y||^2 = (x+y, x+y) = (x,x) + 2(x,y) + (y,y)$$
$$(||x|| + ||y||)^2 = ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 = (x,x) + 2||x|| \cdot ||y|| + (y,y)$$

Согласно неравенству Коши-Буняковского, $|(x,y)| \leq ||x|| \cdot ||y||$, а значит и $(x,y) \leq ||x|| \cdot ||y|| \Rightarrow ||x+y||^2 \leq (||x||+||y||)^2 \Rightarrow ||x+y|| \leq ||x||+||y||$ (нормы всегда положительны, можем спокойно извлекать корень).

4.6. Докажите теорему о том, что евклидово пространство можно представить в виде прямой суммы подпространства и его ортогонального дополнения.

Формулировка:

Если V – линейное пространство, L – его подпространство, то $L^\perp \subseteq V$ и $V = L \oplus L^\perp.$

Доказательство:

Докажем, что $L^{\perp} \subseteq V$. $\forall x, y \in L^{\perp} \ \forall l \in L \ \forall \alpha \in \mathbb{F}$:

$$(x+y,l) = (x,l) + (y,l) = 0 + 0 = 0 \Rightarrow x+y \in L^{\perp}$$
$$(\alpha x, h) = \alpha(x, h) = \alpha \cdot 0 = 0 \Rightarrow \alpha x \in L^{\perp}$$

Вывод: операции сложения и умножения на число замкнуты, $L^{\perp} \subseteq V$. Тогда можем рассматривать $L + L^{\perp}$. Покажем, что их сумма прямая. $x \in L \cap L^{\perp} \Rightarrow (x,x) = 0 \Rightarrow x = 0$ по свойству скалярного произведения. Значит, $L \cap L^{\perp} = \{0\}$ – сумма прямая.

Пусть f_1, \ldots, f_k — ОНБ в L (он всегда существует). Дополним его до базиса во всем пространстве V векторами f_{k+1}, \ldots, f_n и применим ортогонализацию Грама-Шмидта. Векторы f_1, \ldots, f_k уже ортонормированны, потому останутся прежними; векторы f_{k+1}, \ldots, f_n перейдут в b_{k+1}, \ldots, b_n . Они будут ортогональны каждому из векторов f_1, \ldots, f_k , а значит и всему L, т.е. они принадлежат L^{\perp} . Тогда любой $x \in V$ можно представить в виде

$$x = \underbrace{a_1 f_1 + \dots + a_k f_k}_{z_1 \in L} + \underbrace{a_{k+1} f_{k+1} + \dots + a_n f_n}_{z_2 \in L^{\perp}}$$

это означает, что $V = L \oplus L^{\perp}$, что и требовалось доказать.

4.7. Выпишите формулу для преобразования матрицы Грама при переходе к новому базису и докажите её. Что происходит с определителем матрицы Грама при применении процесса ортогонализации Грама—Шмидта? Что можно сказать про знак определителя матрицы Грама? Ответ обоснуйте.

Формулировка:

- 1) Пусть e и e' два базиса, Γ и Γ' соответствующие им матрицы Γ рама. Тогда $\Gamma' = U^T \Gamma U$, где U матрица перехода от e к e'.
- 2) Определитель матрицы Грама не меняется при процессе ортогонализации.
- 3) Определитель матрицы Грама положительный.

Доказательство:

- 1) Матрица Грама является матрицей билинейной формы (скалярного умножения): $(x,y)=x^T\Gamma y$. Матрицы билинейных форм при переходе к новому базису меняются именно так: $\Gamma'=U^T\Gamma U$.
- 2) Рассмотрим, как меняются векторы базиса при процессе ортогонализации:

$$b_1 = a_1, \quad b_k = a_k - \sum_{i=1}^{k-1} \frac{(a_k, b_i)}{(b_i, b_i)} b_i$$

Видим, что матрица перехода от a к b имеет вид

$$U = \begin{pmatrix} 1 & * & * \\ \vdots & \ddots & * \\ 0 & \dots & 1 \end{pmatrix}$$

Теперь рассмотрим определитель матрицы Грама при переходе в новый базис: $\det(U^T\Gamma U) = \det U^T \cdot \det \Gamma \cdot \det U = 1 \cdot \det \Gamma \cdot 1 = \det \Gamma \Rightarrow \det \Gamma' = \det \Gamma$, что и требовалось доказать.

3) При переходе в новый базис имеем $\det \Gamma' = \det U^T \Gamma U = \det U^T \cdot \det \Gamma \cdot \det U = \det \Gamma \cdot (\det U)^2$. В стандартном ортонормированном базисе матрица Грама совпадает с единичной матрицей, значит $\det \Gamma_0 = 1$. Тогда в произвольном базисе $\det \Gamma = 1 \cdot (\det U)^2$. U — матрица перехода, а значит $\det U \neq 0$. Тогда получаем, что $\det \Gamma > 0$.

4.8. Сформулируйте и докажите критерий линейной зависимости набора векторов с помощью матрицы Грама.

Формулировка:

Система векторов $e_1,...,e_n$ линейно зависима тогда и только тогда, когда определитель матрицы Грама (грамиан) этой системы равен нулю.

Доказательство:

Рассмотрим линейную комбинацию системы векторов $\alpha_1 e_1 + ... + \alpha_n e_n = 0$. Домножим скалярно на векторы $e_1, ..., e_n$:

$$\begin{cases} \alpha_1(e_1, e_1) + \dots + \alpha_n(e_n, e_1) = 0 \\ \dots \\ \alpha_1(e_1, e_n) + \dots + \alpha_n(e_n, e_n) = 0 \end{cases}$$

Получили $\Gamma_e \cdot (\alpha_1, \dots, \alpha_n)^T = 0$. Это однородная СЛАУ, для которой, как известно, существует ненулевое решение только тогда, когда $\det \Gamma = 0$. Иначе говоря, система линейно зависима тогда и только тогда, когда определитель матрицы Грама этой системы равен нулю, что и требовалось доказать.

4.9. Выпишите формулу для ортогональной проекции вектора на подпространство, заданное как линейная оболочка данного линейно независимого набора векторов, и докажите её.

Формулировка:

Пусть $L = \langle a_1, ..., a_n \rangle$ – линейная оболочка. Тогда $proj_L x = A(A^TA)^{-1}A^Tx$, где A – матрица, составленная из столбцов $a_1, ..., a_n$.

Доказательство:

Пусть $x = \underbrace{\alpha_1 a_1 + \ldots + \alpha_n a_n}_{proj_L x} + ort_L(x)$. Домножим скалярно на векторы a_1, \ldots, a_n :

$$\begin{cases} \alpha_1(a_1, a_1) + \dots + \alpha_n(a_n, a_1) + \underbrace{(ort(x), a_1)}_{=0} = (x, a_1) \\ \dots \\ \alpha_1(a_1, a_n) + \dots + \alpha_n(a_n, a_n) + \underbrace{(ort(x), a_n)}_{=0} = (x, a_n) \end{cases}$$

В матричной форме это выражается как $\Gamma \alpha = A^T A \alpha = A^T x$, где $\alpha = (\alpha_1, \dots, \alpha_n)^T$. a_1, \dots, a_n – линейно независимы, а значит $\det A^T A \neq 0 \Rightarrow \exists (A^T A)^{-1} \Rightarrow \Rightarrow \alpha = (A^T A)^{-1} A^T x$. При этом $proj_L x = A \alpha = A(A^T A)^{-1} A^T x$.

4.10. Докажите, что для любого оператора в конечномерном евклидовом пространстве существует единственный сопряженный оператор.

Φ ормулировка:

Для любого оператора в конечномерном евклидовом пространстве существует единственный сопряженный оператор. Оператор, сопряжённый к A вычисляется по формуле $A^* = \Gamma^{-1}A^T\Gamma$, где Γ – матрица Γ рама соответствующего базиса.

Доказательство:

Найдем сопряженный оператор исходя из его определения:

$$(Ax,y) = (x,A^*y) \Rightarrow (Ax)^T \Gamma y = x^T \Gamma A^* y \Rightarrow x^T A^T \Gamma y = x^T \Gamma A^* y \Rightarrow A^T \Gamma = \Gamma A^* \Rightarrow x^T A^T \Gamma y = x^T \Gamma A^* y \Rightarrow x^T A^T \Gamma y = x^T \Gamma A^* y \Rightarrow x^T A^T \Gamma y = x^T \Gamma A^* y \Rightarrow x^T A^T \Gamma y = x^T \Gamma A^* y \Rightarrow x^T A^T \Gamma y = x^T \Gamma A^* y \Rightarrow x^T A^T \Gamma y = x^T \Gamma A^* y \Rightarrow x^T A^T \Gamma y = x^T \Gamma A^* y \Rightarrow x^T A^T \Gamma y = x^T \Gamma A^* y \Rightarrow x^T A^T \Gamma y = x^T \Gamma A^* y \Rightarrow x^T A^T \Gamma y = x^T \Gamma A^* y \Rightarrow x^T A^T \Gamma y = x^T \Gamma A^* y \Rightarrow x^T A^T \Gamma y \Rightarrow x^T A^T$$

$$\Rightarrow A^* = \Gamma^{-1}A^T\Gamma$$

В силу единственности матрицы Грама для заданного базиса получаем единственный сопряжённый оператор.

4.11. Сформулируйте и докажите свойство собственных векторов самосопряженного оператора, отвечающих разным собственным значениям.

Формулировка:

Собственные векторы самосопряжённого линейного оператора, отвечающие различным собственным значениям, ортогональны.

Доказательство:

Пусть v_1, v_2 — собственные векторы, отвечающие $\lambda_1 \neq \lambda_2$ соответственно. По определению $Av_i = \lambda_i v_i, \ v_i \neq 0$. Тогда $(Av_1, v_2) = \lambda_1(v_1, v_2), \ (v_1, Av_2) = \lambda_2(v_1, v_2),$ при этом A самосопряжённый, то есть $(Av_1, v_2) = (v_1, Av_2),$ а значит, по полученному выше, $\lambda_1(v_1, v_2) = \lambda_2(v_1, v_2) \Rightarrow (\lambda_1 - \lambda_2)(v_1, v_2) = 0$. $\lambda_1 \neq \lambda_2 \Rightarrow (v_1, v_2) = 0$. Вывод: любая пара собственных векторов v_i, v_j , отвечающих собственным значениям $\lambda_i \neq \lambda_j$ ортогональна.

4.12. Каким свойством обладают собственные значения самосопряженного оператора? Ответ обоснуйте.

Формулировка:

Если A – самосопряжённый, то все его собственные значения вещественны.

Доказательство:

Рассмотрим произвольное собственное значение λ самосопряжённого линейного оператора A. Тогда существует $x \neq 0$: $(A - \lambda E)x = 0$. Рассмотрим \overline{x} – столбец, состоящий из значений, сопряжённых к значениям координат x. Умножим уравнение на \overline{x}^T слева: $\overline{x}^T(A - \lambda E)x = 0 \Rightarrow \overline{x}^TAx = \lambda \overline{x}^Tx$.

$$\overline{x}^T x = \overline{x_1} x_1 + \dots + \overline{x_n} x_n = |x_1|^2 + \dots + |x_n|^2 > 0 \Rightarrow \boxed{\lambda = \frac{\overline{x}^T A x}{\overline{x}^T x}}$$

Знаменатель вещественный, рассмотрим числитель: обзовём его $w = \overline{x}^T A x$.

 $w=w^T=(\overline{x}^TAx)^T=x^TA\overline{x};\ \overline{w}=\overline{\overline{x}^TAx}=x^TA\overline{x}$ (насколько я понимаю, $A=\overline{A}$ допустимо потому, что A состоит их вещественных элементов). Получили $w=\overline{w}\Rightarrow w$ — вещественное значение. Числитель и знаменатель вещественны, значит и само собственное значение λ вещественно.

4.13. Сформулируйте и докажите теорему о том, что ортогональный оператор переводит ортонормированный базис в ортонормированный. Верно ли обратно? Ответ обоснуйте.

Формулировка:

Оператор A ортогональный тогда и только тогда, когда A переводит ОНБ e_1, \ldots, e_n в ОНБ Ae_1, \ldots, Ae_n .

Доказательство:

Необходимость:

Пусть оператор A ортогональный. По определению

$$(Ae_i, Ae_j) = (e_i, e_j) = \delta_i^j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

т.е. система $\{Ae_i\}$ состоит из ненулевых попарно ортогональных векторов \Rightarrow векторы этой системы линейно независимы и, так как таких векторов $n = \dim \mathcal{E}$, это базис в этом пространстве.

Достаточность:

Имеем 2 ОНБ e_1, \ldots, e_n и Ae_1, \ldots, Ae_n . В базисе e вектор x имеет координаты $(x_1, \ldots, x_n)^T$, в базисе Ae вектор Ax также имеет координаты $(x_1, \ldots, x_n)^T$, т.к. $Ax = A(x_1e_1 + \ldots + x_ne_n) = x_1Ae_1 + \ldots + x_nAe_n$. Тогда $(x,y) = x^Ty = (x_1, \ldots, x_n)(y_1, \ldots, y_n)^T$ в ОНБ e, в то же время $(Ax, Ay) = (Ax)^TAy = (x_1, \ldots, x_n)(y_1, \ldots, y_n)^T$ в ОНБ Ae. Видим, что (Ax, Ay) = (x, y), т.е. оператор A – ортогональный.

4.14. Сформулируйте и докажите критерий ортогональности оператора, использующий его матрицу.

Формулировка:

Линейный оператор A ортогонален тогда и только тогда, когда матрица этого оператора ортогональна в OHF.

Доказательство:

В ОНБ
$$(x,y)=x^Ty$$
, тогда
$$\underbrace{(Ax,Ay)=(x,y)}_{\text{ортогональность}}\Leftrightarrow (Ax)^TAy=x^Ty\Leftrightarrow xA^TAy=x^TEy\Leftrightarrow \underbrace{A^TA=E}_{\text{ортогональность}}$$

4.15. Сформулируйте теорему о существовании для самосопряженного оператора базиса из собственных векторов. Приведите доказательство в случае различных вещественных собственных значений.

Формулировка:

Для любой самосопряжённого линейного оператора A существует ОНБ, состоящий из собственных векторов A, в котором матрица оператора диагональная. На диагонали стоят собственные значения, каждый из которых повторяется столько раз, какова его алгебраическая кратность.

Доказательство:

Для случая различных собственных значений доказательство практически совпадает с доказательством утверждения 4.11. Дублирую его сюда, т.к. вряд ли получится отделаться одной ссылкой на доказательство этого утверждения:

Пусть v_1, v_2 — собственные векторы, отвечающие $\lambda_1 \neq \lambda_2$ соответственно. По определению $Av_i = \lambda_i v_i, v_i \neq 0$. Тогда $(Av_1, v_2) = \lambda_1(v_1, v_2), (v_1, Av_2) = \lambda_2(v_1, v_2)$, при этом A самосопряжённый, то есть $(Av_1, v_2) = (v_1, Av_2)$, а значит, по полученному выше, $\lambda_1(v_1, v_2) = \lambda_2(v_1, v_2) \Rightarrow (\lambda_1 - \lambda_2)(v_1, v_2) = 0$. $\lambda_1 \neq \lambda_2 \Rightarrow (v_1, v_2) = 0$. Вывод: любая пара собственных векторов v_i, v_j , отвечающих собственным значениям $\lambda_i \neq \lambda_j$ ортогональна.

Получив n ортогональных векторов из собственных векторов, нормируем каждый вектор $\left(\frac{v_i}{||v_i||}\right)$ и получаем желанный ОНБ.

4.16. Сформулируйте и докажите утверждение о QR-разложении.

Формулировка:

Пусть $A \in M_n(\mathbb{R})$ и столбцы $A_1, ..., A_n$ – линейно независимы. Тогда существуют матрицы Q, R: A = QR, где Q – ортогональная, R – верхнетреугольная с положительными значениями на главной диагонали.

Доказательство:

Применим к A_1, \ldots, A_n – столбцам A – процесс ортогонализации Грама-Шмидта. Получим столбцы B_1, \ldots, B_n нормируем, получим Q_1, \ldots, Q_n – это ортонормированная система. Следовательно, если составить из этих столбцов матрицу $Q = (Q_1, \ldots, Q_n)$, она будет ортогональна. Так как в процессе ортогонализации Грама-Шмидта не используются столбцы с большими номерами, столбец A_k представим в виде

$$A_k = \sum_{i=1}^k r_{ik} Q_i$$

В матричной форме получили A=QR, где

$$R = \begin{pmatrix} r_{11} & \dots & r_{1n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & r_{nn} \end{pmatrix}$$

где $r_{kk} > 0$ в силу того, что это длина соответствующего вектора B_k .

4.17. Сформулируйте и докажите теорему о сингулярном разложении.

Φ ормулировка:

Для любой матрицы $A \in M_{mn}(\mathbb{R})$ справедливо сингулярное разложение:

$$A = V \Sigma U^T$$

где V – ортогональная матрица $m \times m, U$ – ортогональная матрица $n \times n, \Sigma \in M_{mn}(\mathbb{R})$ и она является диагональной с числами $\sigma_i \geq 0$ на главной диагонали

 $(\sigma_i$ называются сингулярными числами). По договорённости сингулярные числа располагают на диагонали в порядке невозрастания: $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > 0$.

Доказательство:

Рассмотрим матрицу A^TA – симметричная матрица $((A^TA)^T = A^TA)$ и соответственная квадратичная форма неотрицательно определена $(Q(x) = x^T(A^TA)x = (Ax)^TAx = (Ax,Ax) = ||Ax||^2 \ge 0)$. Следовательно, линейный оператор с матрицей A^TA является самосопряжённым \Rightarrow все собственные значения этого оператора вещественны. Запишем собственные значения в виде σ_i^2 (т.е. $\sigma_i = \sqrt{\lambda_i}$) и пронумеруем по невозрастанию. Так как A^TA – самосопряжённый, для него существует ОНБ из собственных векторов

$$A^{T} A u_{i} = \begin{cases} \sigma_{i}^{2} u_{i}, & 1 \leq i \leq r \\ 0, & r < i \leq n \end{cases}$$

Положим $v_i = \frac{Au_i}{\sigma_i}, \ 1 \le i \le r$ — нормированные собственные векторы:

$$(v_i, v_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Дополним систему v_1, \ldots, v_r векторами v_{r+1}, \ldots, v_m до ОНБ (видимо еще надо $\{u_i\}$ дополнять, потому что я не понимаю откуда u_n берётся). В итоге $Au_i = v_i \sigma_i \Rightarrow A \cdot [u_1, \ldots, u_n] = [v_1, \ldots, v_m] \Sigma$, где

$$\Sigma = \begin{pmatrix} \sigma_1 & \dots & \dots & \dots & 0 \\ \vdots & \ddots & & & \vdots \\ \vdots & & \sigma_r & & \vdots \\ \vdots & & & 0 & \vdots \\ \vdots & & & \ddots & \vdots \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix}$$

Тогда $V=[v_1,\dots,v_m]$ – ортогональная, $U=[u_1,\dots,u_n]$ – тоже ортогональная, $A=V\Sigma U^{-1}=V\Sigma U^T-\text{сингулярное разложение}$

4.18. Сформулируйте и докажите теорему о приведении квадратичных форм к диагональному виду при помощи ортогональной замены координат.

Формулировка:

Любую квадратичную форму можно привести к каноническому (диагональному) виду ортогональными преобразованиями.

Доказательство:

Матрица квадратичной формы является симметрической ($Q^T=Q$). Рассмотрим n-мерное евклидово пространство L, где n — число переменных в квадратичной форме Q, и некоторый ОНБ e. В нём матрица Q является матрицей некоторого самосопряженного оператора A в данном базисе (по критерию самосопряжённости в ОНБ). Тогда существует новый ОНБ f такой, что матрица A' линейного оператора в этом базисе является диагональной (а базис состоит из собственных векторов A). Матрица линейного оператора преобразуется по формуле по формуле $A' = S^{-1}AS$, где S — матрица перехода от e к f. При этом матрица квадратичной формы преобразуется по формуле $Q' = S^TQS$. Оба базиса e и f ортонормированны, то есть матрица перехода ортогональна ($S^{-1} = S^T$). Исходя из этого получаем, что Q' = A' — это и есть канонический вид, так как A' диагональна.

4.19. Выпишите и докажите формулу для преобразования координат ковектора при переходе к другому базису.

Формулировка:

Пусть $f \in V^*$ – ковектор, e и g – два базиса в V. Тогда $[f]_g = [f]_e \cdot T_{e \to g}$, где [f] – строка координат ковектора. Если записывать координаты в столбцы, то формула принимает следущий вид: $[f]_g^T = T_{e \to g}^T \cdot [f]_e^T$.

Доказательство:

Результат действия f не зависит от базиса: $[f]_g \cdot x_g = [f]_e \cdot x_e$. В то же время для векторов верна формула $x_g = T_{e \to g}^{-1} \cdot x_e$, используя её получаем:

$$[f]_g \cdot x_g = [f]_e \cdot x_e \Rightarrow [f]_g \cdot x_g = [f]_e \cdot T_{e \to g} \cdot x_g \Rightarrow [f]_g = [f]_e \cdot T_{e \to g}$$

Вариант для столбцов является прямым следствием этой формулы:

$$[f]_g^T = ([f]_e \cdot T_{e \to g})^T = T_{e \to g}^T \cdot [f]_e^T$$