ỦY BAN NHÂN DÂN THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐAI HOC SÀI GÒN

BÁO CÁO ĐỀ CƯƠNG NGHIÊN CỨU KHOA HỌC NGÀNH: TOÁN ỨNG DỤNG

Phương pháp giải bài toán Tối ưu tuyến tính nguyên

Hướng dẫn: PGS.TS. Tạ Quang Sơn

Thực hiện: Đỗ Ngọc Minh Thư, Nguyễn Chí Bằng

Ngày 10 tháng 5 năm 2024

Sinh viên lớp: DTU1221, Khóa: 22 @ Đại học Sài Gòn

NỘI DUNG BÁO CÁO

1 Giới thiệu và Đặt vấn đề

- 2 Phương pháp lát cắt Gomory
- 3 Phương pháp Land-Doig

4 Kết luận và Hướng phát triển

Giới thiệu và Đặt vấn đề

Mục đích nghiên cứu

Tối ưu tuyến tính là một nội dung quan trọng trong chương trình đào tạo Cử nhân Toán ứng dụng. Lý thuyết về việc giải bài toán tối ưu tuyến tính đã được cung cấp cho sinh viên. Tuy vậy, có nhiều bài toán tối ưu cần được giải với nghiệm nguyên. Chẳng hạn như:

- Bài toán tối ưu nhân lực.
- Bài toán tối ưu vận chuyển hàng hóa.
- Bài toán tối ưu áp dụng trong tin học.

Có một lý thuyết riêng cho việc xử lý các bài toán Tối ưu tuyến tính và tìm nghiệm nguyên.

Mục đích của đề tài này là tìm hiểu một số phương pháp giải bài toán Tối ưu tuyến tính và tìm nghiệm nguyên cho bài toán.

Tại sao cần có một lý thuyết riêng cho bài toán Tối ưu tuyến tính nguyên

Max
$$f(x) = 2x_1 + 2x_2$$

$$\begin{cases}
2x_1 + x_2 \le 8 \\
x_1 + 3x_2 \le 10 \\
x_i \ge 0, \forall i = 1, 2.
\end{cases}$$

Hình 1: Hình minh hoa bài toán

Nhận xét

- ullet Nếu giải bài toán trên bằng phương pháp thông thường, ta nhận được nghiệm $x_1=2.8,\ x_2=2.4.$
- \bullet Nếu làm tròn nghiệm $x_1\to 3$ và $x_2\to 3$ thì điểm (x_1,x_2) không còn thuộc miền chấp nhận được.
- Nếu làm tròn nghiệm $x_1 \to 2$ và $x_2 \to 2$ thì điểm (x_1,x_2) chưa biết có phải nghiệm tối ưu hay không?

Nếu giải bài toán QHTT rồi sau đó làm tròn số thì có thể cho kết không như mong đợi.

Tối ưu nguyên hoàn toàn (Pure integer linear program)

- Trong đó $c^T=(c_1\ c_2\ \dots\ c_n)$, A là ma trận $m\times n$, $b=\begin{pmatrix}b_1\\b_2\\\vdots\\b_m\end{pmatrix}$, với
 - $x \in \mathbb{Z}^n$.
- ullet Bài toán (H) gọi là bài toán **Tối ưu nguyên hoàn toàn.**
- Tập $S_h := \{x \in Z^n_+ : Ax \leq b\}$ là tập nghiệm của bài toán Tối ưu nguyên hoàn toàn.

Minh hoạ bài toán

$$2x_1 + 2x_2 \longrightarrow Max$$

$$\begin{cases} x_1 + 3x_2 \le 24 \\ \frac{13}{3}x_1 + 2x_2 \le 32.5 \\ x_1 \ge 0, \text{ nguyên.} \\ x_2 \ge 0, \text{ nguyên.} \end{cases}$$
 (2)

Hình 2: Tập nghiệm của bài toán Tối ưu nguyên hoàn toàn

Tối ưu nguyên bộ phận (Mixed integer linear program)

(B)
$$z_b = c^T x + h^T y \longrightarrow Max$$

$$\begin{cases} Ax + Gy \le b, \\ x \ge 0, \text{ nguyên} \\ y \ge 0. \end{cases}$$
 (3)

• Trong đó $c^T=(c_1\ c_2\ \dots\ c_n),\ h^T=(h_1\ h_2\ \dots\ h_p),\ A$ là ma trận $m\times n$, $G \text{ là ma trận } m\times p,\ b=\begin{pmatrix}b_1\\b_2\\\vdots\\b_m\end{pmatrix},\ \text{với } x\in Z^n \text{ và } y\in R^p.$

- ullet Bài toán (B) gọi là bài toán **Tối ưu nguyên bộ phân.**
- Tập $S_b := \{(x,y) \in Z_+^n \times R_+^p : Ax + Gy \le b\}$ là tập nghiệm của bài toán Tối ưu nguyên bộ phân.

Minh hoạ bài toán

$$\begin{aligned} x_1 + 2x_2 &\longrightarrow Max \\ 5x_1 + \frac{15}{7}x_2 \leq 20 \\ -2.4x_1 + \frac{30}{7}x_2 \leq 15 \\ x_1 \geq 0, \text{ nguyên.} \\ x_2 \geq 0. \end{aligned}$$

Hình 3: Tập nghiệm của bài toán Tối ưu nguyên bộ phận

Phương pháp lát cắt Gomory

Giới thiệu

Ta xét:

(P) Min
$$\langle c, x \rangle$$

s.t
$$\begin{cases} Ax = b, \\ x_j \ge 0, j = 1, 2, ..., n. \end{cases}$$
 (5)

Ta ký hiệu tập $F \subset \mathbb{R}^n$ là miền xác định của bài toán (P).

Giới thiệu

$$(P^{N}) \quad \text{Min} \quad \langle c, x \rangle$$

$$\text{s.t} \quad \begin{cases} Ax = b, \\ x_{j} \geq 0, j = 1, 2, ..., n. \\ x_{j} \text{ nguyên}, j = 1, 2..., n_{1} \ (n_{1} \leq n). \end{cases}$$

$$(6)$$

Ta goi:

 ${\cal P}^N$ là bài toán tối ưu nguyên.

 F^N là miền xác định của bài toán.

Ý tưởng về phương pháp cắt

Ta kí hiệu co(F) là bao lồi của đa diện lồi F

Định lý 3.1

 $\operatorname{Giả}$ sử F là một đa diện lồi, F^N là tập các điểm nguyên của nó,

R là bao lồi của F^N (tức là $R = co(F^N)$) khi đó:

- 1) R là một đa diện nguyên.
- 2) $R^N = F^N$.
- 3) Tập R^* các phương án chấp nhận được của đa diện R chứa trong R^N :

$$R^* \subseteq R^N$$

Hệ quả 3.1

Giả sử X là phương án tựa tối ưu của bài toán Q (bài toán tối ưu tuyến tính có miền xác định là đa diện R, khi đó X cũng là phương án tối ưu của bài toán P^N . Vì vậy để giải bài toán quy hoạch tuyến tính nguyên P^N ta đi giải bài toán Q.

Định lý 3.2

Giả sử L là một đa diện lồi, U là một đa diện lồi nguyên và $U^N=F^N$, khi đó :

$$U = R = co(F^N)$$

Ví du minh hoa:

vi da illilli liça.		
BÀI TOÁN (P^N)	BÀI TOÁN (P)	BÀI TOÁN (Q)
$Max(x_1+x_2)$	$Max(x_1+x_2)$	$Max(x_1+x_2)$
$2x_1 + 11x_2 \le 38$ (a)	$2x_1 + 11x_2 \le 38$ (a)	$x_2 \le 3$
$x_1 + x_2 \le 7$ (b)	$x_1 + x_2 \le 7$ (b)	$x_1 + x_2 \le 5$
$4x_1 - 5x_2 \le 5$ c	$4x_1 - 5x_2 \le 5$ (c)	$x_1 - x_2 \le 1$
$x_j \ge 0$	$x_j \ge 0$	$x_j \ge 0$
x_j nguyên		
Max = 5	Max = 7	Max = 5
Tối ưu là 2 điểm	Tối ưu là một đoạn	Tối ưu là đoạn
(2;3);(3;2)	$\left[\left(\frac{13}{3}, \frac{8}{3}\right); \left(\frac{40}{9}; \frac{23}{9}\right)\right]$	[(2;3);(3;2)]

Hình 4: Ẩnh minh họa

Khái niệm lát cắt đúng

Giả sử bài toán P^N là bài toán quy hoạch nguyên nào đó và phương án tựa tối ưu của bài toán quy hoạch tuyến tính tương ứng X không thoả mãn điều kiện nguyên, tức là $X \notin F^N$.

Khi đó, bất đẳng thức:

$$\sum_{j} a_j x_j \le \beta$$

được gọi là lát cắt đúng nếu thỏa mãn hai điều kiện.

1) Điều kiện cắt:

X không thỏa mãn điều kiện (29), tức là $Ax > \beta$.

2) Điều kiện đúng:

Nếu X là phương án của bài toán tối ưu nguyên thì X thỏa mãn điều kiện (29), tức là $F^N\subset\{X\mid aX\leq\beta\}$.

Khái niệm lát cắt đúng

Nói cách khác, lát cắt thêm vào sẽ không cắt đi một phương án nguyên nào của bài toán.

Ý tưởng phương pháp cắt của Danzig

Việc giải một bài toán P^N là một quá trình gồm nhiều bước:

- a) Ở bước thứ r, giải bài toán bài toán quy hoạch tuyến tính phụ $P_r, r=0,1,\ldots$. với $F_0=F$
- b) Tập các điểm nguyên của tất cả các đa diện lồi là như nhau:

$$F_0^N = F_1^N = F_2^N = \dots = F_r^N = \dots$$

Do đó, nếu phương án tối ưu X_r^* của bài toán P_r thoả mãn điều kiện nguyên thì nó cũng là phương án tối ưu X_0 của bài toán xuất phát P_0^N và quá trình kết thúc.

Ý tưởng phương pháp cắt của Danzig

c) Nếu X_r^* không thoả mãn điều kiện nguyên thì X_r^* không phải là phương án của bài toán P_{r+1} , tức là $X_r^* \notin F_{r+1}$.

Chuyển từ bước r sang bước r+1, tức là chuyển từ bài toán P_r sang P_{r+1} khi X_r^* không nguyên được thực hiện nhờ một lát cắt đúng $a_rx \leq \beta_r$.

Việc bổ sung lát cắt này vào ràng buộc của bài toán P_r sẽ chuyển đa diện lồi F_r thành F_{r+1} .

Thuật toán Gomory

Ta xét bài toán tối ưu nguyên hoàn toàn:

$$(P^N) \quad \operatorname{Max}\langle c,x\rangle$$

$$\operatorname{s.t} \begin{cases} Ax = b, \\ x_j \geq 0, j = 1,2,...,n. \\ x_j \operatorname{nguy\hat{e}n}, j = 1,2...,n. \end{cases} \tag{7}$$

Dinh nghĩa 4.1

Giả sử hệ véc-tơ $\{A^j, j \in J\}$ là cơ sở tương ứng với phương án cực biên ban đầu của bài toán P^N , các véc-tơ A^j và các biến x_j với $j \in J$ được gọi là các véc tơ cơ sở và biến cơ sở; còn các véc-tơ A^j và các biến x_j mà $j \notin J$ được gọi là các véc-tơ tự do và các biến tự do (biến phi cơ sở).

Giả sử X là phương án tối ưu của bài toán P^N , từ đó ta có thể biểu diễn các biến cơ sở qua Các biến phi cơ sở:

$$x_i = x_{i0} + \sum_{j \in N} x_{ij}(-x_j), i = \overline{0, m}.$$
 (8)

Định lý 4.1

Giả sử X có x_{i0} không nguyên với $1 \le i \le n$ và:

1)

$$z_i \equiv z_i(X) = -\{x_{i0}\} + \sum_{j \in \mathbb{N}} (-\{x_{ij}\})(-x_j), i = \overline{1, n}.$$
 (9)

- 2) x là phương án của bài toán P^N . Khi đó:
- a) z_i nguyên.
- b) $z_i > 0$.

Hê quả 4.1

Giả sử X(L,C) không thoả mãn điều kiện nguyên, như vậy đối với i nào đó $(1 \le i \le 0)$ x_{i0} không nguyên . Khi đó các hệ thức (9) và $z_i \ge 0$ xác định một lát cắt đúng.

Dấu hiệu bài toán không có lời giải

Hình 5: \overline{P} không có lời giải

Dấu hiệu bài toán không có lời giải

Về sau ta sẽ giả thiết:

- 1) Hàm mục tiêu $x_0 \equiv CX$ bị chặn trên F.
- 2) Nếu tập hợp các phương án tối ưu của P khác trống thì nó phải bị chặn, tức là nếu bài toán P giải được thì bài toán \overline{P} cũng giải được.

Thuật toán Gomory

Bước 1: Giải bài toán $P \equiv P_0$ đã cho bằng phương pháp đơn hình đối ngẫu.

- Nếu P_0 không giải được thì P_0^N cũng không giải được.
- Nếu P_0 giải được và nghiệm của nó thỏa mãn điều kiện nguyên thì nó cũng là phương án tối ưu của P_0^N , còn nếu chưa thỏa điều kiện thì chuyển sang bước 2.

Thuật toán Gomory

Bước 2: Chọn dòng đầu tiên ứng với thành phần không nguyên: $k=min\{i|i\in\{1,...,n\},x_{i0}^r$ không nguyên $\}$ và xây dựng lát cắt đúng:

$$\begin{cases} x_{n+r+1} = -\{x_{k0}^r\} + \sum_{j \in N_r} (-\{x_{kj}^r\}) (-x_j) \\ x_{n+r+1} \geq 0 \\ x_{n+r+1} \text{ nguyên} \end{cases}$$

Thêm lát cắt vào bảng đơn hình và tiếp tục giải bài toán P_{r+1}^{N} .

Bước 3: Sau khi tính toán với lát cắt nếu được phương án tối ưu thỏa mãn điều kiện nguyên thì thuật toán dừng lại. Nếu không thỏa mãn thì quay lại bước 2 cứ lần lượt như vậy thực hiện các bước lặp $r \geq 0$ cho đến khi thỏa mãn điều kiên.

Tính hữu hạn của thuật toán

Định lý 4.2

Giả sử có các điều kiện sau:

- 1) Tính nguyên của hàm mục tiêu $x_0 \equiv CX$ được đảm bảo và x_0 được xét khi chọn dòng xây dựng lát cắt đúng.
- 2) Một trong các khẳng định sau là đúng:
- i) Hàm mục tiêu x_0 bị chặn dưới trên F_0 .
- ii) Bài toán P_0^N có ít nhất một phương án X^\prime .

Khi đó thuật toán Gomory thứ nhất kết thúc sau một số hữu hạn bước lặp lớn.

Phương pháp Land-Doig

Bài toán quan tâm

$$(P) \quad z_p = c^T x + h^T y \longrightarrow Max$$

$$\begin{cases} Ax + Gy \le b, \\ x, y \ge 0. \end{cases}$$
(10)

- Trong đó (P) là bài toán (B) (hoặc (H)) với nghiệm thuộc tập số thực.
- Bài toán (P) là một bài toán Tối ưu tuyến tính thông thường hay gọi đơn giản là bài toán Tối ưu tuyến tính (Natural linear programming relaxation).
- Tập $S_p:=\{(x,y)\in R^n_+\times R^p_+: Ax+Gy\leq b\}$ là tập nghiệm của bài toán Tối ưu tuyến tính.

Mục tiêu

Giả sử ta nhận được tập phương án tối ưu của bài toán (8) sau hữu hạn lần giải, ký hiệu (x_b,y_b) và giá trị tối ưu là z_b thì ta có nhận xét sau:

Nhận xét 5.1

- Nếu $S_b \subseteq S_p$ thì ta luôn nhận được $z_b \le z_p$ và phương án có thể cải thiên.
- Nếu $S_b=S_p$ thì ta nhận được $z_b=z_p$ và bài toán được giải.

Vì thế, ta chọn xử lý bài toán (B) (hoặc (H)) thông qua bài toán (P) bằng cách cải thiện phương án thu được từ bài toán (P) sao cho thoả điều kiện của bài toán (B) (hoặc (H)).

Ví dụ

$$\begin{cases} -1x_1 & +x_2 & \leq & 2 \\ 8x_1 & +2x_2 & \leq & 17 \\ x_1 & & \geq & 0, \text{ nguyên} \\ & & x_2 & \geq & 0, \text{ nguyên.} \end{cases} \Longrightarrow \begin{cases} x_1 & = & 1.3 \\ x_2 & = & 3.3 \\ z & = & 14.08 \end{cases}$$
 (11)

Phương án có thể cải thiện.

Ví dụ

$$\begin{cases}
4x_1 + 4x_2 & \longrightarrow Max \\
2.5x_1 + \frac{15}{4}x_2 & \le 20 \\
x_1 + \frac{5}{3}x_2 & \le \frac{50}{3} \\
x_1 & \ge 0, \\
x_2 & \ge 0.
\end{cases}
\Longrightarrow
\begin{cases}
x_1 = 5 \\
x_2 = 7 \\
z = 43
\end{cases}$$
(12)

Bài toán được giải.

Thuật toán Land-Doig

Phương pháp xác định cận

Ta gọi x_j với $1 \le j \le n$ là nghiệm thu được từ bài toán (P).

Dinh lý 6.1

- Với mỗi $x_j \in \mathbb{R}$, tồn tại duy nhất số nguyên $k \in \mathbb{Z}$ sao cho $k \leq x_j < k+1$.
 - Giá trị k khi đó ta gọi là phần nguyên nhỏ nhất của x_j , ký hiệu là $\lfloor x_j \rfloor$.
 - Giá trị k+1 gọi là phần nguyên lớn nhất của x_j , ký hiệu là $\lceil x_j \rceil$.

Ví dụ 6.1

Ta có $x_1=3.3$, vậy khi đó phần nguyên nhỏ nhất của x_1 là $\lfloor x_1 \rfloor = 3$ và phần nguyên lớn nhất là $\lceil x_1 \rceil = 4$.

Phương pháp xử lý bài toán

- Từ bài toán minh hoạ (11) và (12), ta thấy rằng nếu $\exists x_j \notin \mathbb{Z}$, thì ta có thể tiếp tục cải thiện phương án cho đến khi $\forall x_j \in \mathbb{Z}$.
- Nếu nghiệm thu được là $x_j \notin \mathbb{Z}$ ta thiết lập được 2 bài toán con từ bài toán (P) ban đầu, ký hiệu (P_1) và (P_2) .

$$(P_1) \quad z_1 = c^T x + h^T y \longrightarrow Max$$

$$\begin{cases} Ax + Gy \le b \\ x_j \le \lfloor x_j \rfloor, \\ x, y \ge 0. \end{cases}$$

$$(13)$$

• Tập $S_1:=S_p\cap\{(x,y):x_j\leq \lfloor x_j\rfloor\}$ là tập nghiệm tối ưu của bài toán con (P_1) .

$$(P_2) \quad z_2 = c^T x + h^T y \longrightarrow Max$$

$$\begin{cases} Ax + Gy \le b \\ x_j \ge \lceil x_j \rceil, \\ x, y \ge 0. \end{cases}$$

$$(14)$$

• Tập $S_2:=S_p\cap\{(x,y):x_j\geq \lceil x_j\rceil\}$ là tập nghiệm tối ưu của bài toán con (P_2) .

Điều kiện nghiệm

- Nếu tồn tại (P_i) với i=1,2 không giải được $(S_i=\emptyset)$, ta gọi bài toán **vô nghiệm**.
- Giả sử $x^{(i)}$ là nghiệm tối ưu của bài toán (P_i) và giá trị tối ưu là z_i với i=1,2.
 - Nếu $\forall x^{(i)} \in Z_+^n$, ta nói S_i là tập nghiệm thoả mãn bài toán tối ưu nguyên bộ phận, z_i^* là giá trị tối ưu và bài toán con (P_i) được giải (gọt bởi nghiệm nguyên).
 - Nếu $\exists x^{(i)} \notin Z_+^n$ đồng thời $z_i \leq z_i^*$, ta dừng phân nhánh và bỏ qua bài toán (gọt bởi cận).
 - Nếu $\exists x^{(i)} \notin Z_+^n$ đồng thời $z_i > z_i^*$, bài toán chưa tối ưu và có thể tiếp tục cải thiện.

Chú ý 6.1

Ta gọi $x_j^{(i)}$ là biến thứ j của bài toán thứ i.

Ví dụ minh hoạ

(P)
$$z_p = 5.5x_1 + 2.1x_2 \longrightarrow Max$$

$$\begin{cases}
-x_1 + x_2 \leq 2 \\
8x_1 + 2x_2 \leq 17 \\
x_1 \geq 0, \\
x_2 \geq 0.
\end{cases}$$

Giải bài toán bằng phương pháp đơn hình thông thường ta được nghiệm $x_1=1.3,\ x_2=3.3$ và $z_p=14.08.$

Hình 6: Tập nghiệm của bài toán

Chọn $x_1 = 1.3$ để cải thiện phương án, ta thu được 2 bài toán con sau:

$$(P_1) \quad z_1 = 5.5x_1^{(1)} + 2.1x_2^{(1)} \qquad (P_2) \quad z_2 = 5.5x_1^{(2)} + 2.1x_2^{(2)}$$

$$\begin{cases}
-x_1^{(1)} + x_2^{(1)} \le 2 \\
8x_1^{(1)} + 2x_2^{(1)} \le 17
\end{cases} \qquad \begin{cases}
-x_1^{(2)} + x_2^{(2)} \le 2 \\
8x_1^{(2)} + 2x_2^{(2)} \le 17
\end{cases}$$

$$\begin{cases}
x_1^{(1)} \le 1 \\
x_1^{(1)} \ge 0
\end{cases} \qquad \begin{cases}
x_1^{(2)} + 2.1x_2^{(2)} \le 2 \\
x_1^{(2)} + 2.1x_2^{(2)} \le 2
\end{cases}$$

$$\begin{cases}
x_1^{(2)} + 2.1x_2^{(2)} \le 2 \\
x_1^{(2)} + 2.1x_2^{(2)} \le 2
\end{cases}$$

$$\begin{cases}
x_1^{(2)} + 2.1x_2^{(2)} \le 2 \\
x_1^{(2)} + 2.1x_2^{(2)} \le 2
\end{cases}$$

$$\begin{cases}
x_1^{(2)} + 2.1x_$$

$$(P_1) \quad z_1 = 5.5x_1^{(1)} + 2.1x_2^{(1)}$$

$$\begin{cases}
-x_1^{(1)} + x_2^{(1)} \leq 2 \\
8x_1^{(1)} + 2x_2^{(1)} \leq 17
\end{cases}$$

$$\begin{cases}
x_1^{(1)} & \leq 1 \\
x_1^{(1)} & \geq 0 \\
x_2^{(1)} \geq 0.
\end{cases}$$

Giải bài toán ta được $x_1^{(1)}=1, x_2^{(1)}=3$ và $z_1=11.8.$ Bài toán được giải (gọt bởi nghiệm nguyên).

Hình 7: Tập nghiệm của bài toán (P_1)

Tương tự bài toán (P_2) ta được $x_1^{(2)}=2, x_2^{(2)}=0.5$ và $z_2=12.05$. Ta chọn $x_2^{(2)}=0.5$ để cải thiện phương án. Ta được 2 bài toán con (P_3) và (P_4) :

$$(P_3) \quad z_3 = 5.5x_1^{(3)} + 2.1x_2^{(3)} \qquad (P_4) \quad z_4 = 5.5x_1^{(4)} + 2.1x_2^{(4)}$$

$$\begin{cases}
-x_1^{(3)} + x_2^{(3)} \le 2 \\
8x_1^{(3)} + 2x_2^{(3)} \le 17
\end{cases} \qquad \begin{cases}
-x_1^{(4)} + x_2^{(4)} \le 2 \\
8x_1^{(4)} + 2x_2^{(4)} \le 17
\end{cases}$$

$$\begin{cases}
x_1^{(3)} & \ge 2 \\
x_2^{(3)} \le 0
\end{cases} \qquad \begin{cases}
x_1^{(4)} & \ge 2 \\
x_2^{(4)} \ge 1
\end{cases}$$

$$\begin{cases}
x_1^{(4)} & \ge 0 \\
x_2^{(4)} \ge 0
\end{cases}$$

- Giải bài toán (P_3) ta được $x_1^{(3)} = 2.125, x_2^{(3)} = 0$ và $z_3 = 11.6875 \Rightarrow$ không khả thi do $z_3 < z_1$ (gọt bởi cận).
- Bài toán (P_4) vô nghiệm.
- Vậy phương án tối ưu của bài toán là $x_1^{(1)} = 1, x_2^{(1)} = 3$ và z = 11.8.

Sơ đồ thuật toán

- Ta gọi bài toán (P) có nút ban đầu là N_0 , tương ứng mỗi bài toán tối ưu tuyến tính thông thường (P_i) ứng với mỗi nút N_i trên sơ đồ nhánh và $\mathcal L$ là danh sách chứa các nút được lập thông qua lý thuyết xác định cận và lý thuyết nghiệm.
- Ta đánh dấu giá trị tối ưu tốt nhất và nghiệm tối ưu tốt nhất của bài toán lần lượt là z^* và (x^*,y^*) .

Sơ đồ thuật toán

Bước 1. Thiết lập

Đặt
$$\mathcal{L} := \{N_0\}, \ z^* = z_p \ \text{và} \ (x^*, y^*) = (x, y).$$

Bước 2. Kiểm tra

Nếu $\mathcal{L}=\emptyset$ thì nghiệm tối ưu của bài toán là (x^*,y^*) , giá trị tối ưu là z^* và bài toán được giải.

Nếu $\mathcal{L} \neq \emptyset$, chuyển sang bước 3.

Bước 3. Chọn nút

Chọn nút N_i từ danh sách $\mathcal L$ và xoá khỏi $\mathcal L$ sau đó chuyển sang bước 4.

Bước 4. Xác định cận

Giải bài toán (P_i) , nếu bài toán vô nghiệm hoặc $z_i \leq z^*$, quay lai bước 2, nếu không, chuyển sang bước 5.

Bước 5. Gọt nghiệm

Nếu tồn tại $x^{(i)} \notin Z_+^n$, ta thêm nút N_{i+1}, \ldots, N_k vào \mathcal{L} và quay về bước 2.

Nếu không tồn tại $x^{(i)} \notin Z^n_+$, tức $\forall x^{(i)} \in Z^n_+$, ta đặt $z_i = z^*$, $(x^{(i)},y^{(i)})=(x^*,y^*)$ và quay lại bước 2.

Sơ đồ thuật toán

Hình 8: Lưu đồ giải thuật của thuật toán nhánh cận.

Kết luận và Hướng phát triển

Tài liệu tham khảo

Cảm ơn quý thầy cô và các anh chị đã quan tâm theo dõi!