

Ayudantía 9

ML, KNN y Árboles

Por Bernardita Alliende y Carlos Stappung

18 de octubre 2024

Contenidos

- Terminología Machine Learning
- Entrenamiento de Modelos
- KNN
- Árboles y ensambles
- Ejemplo de código

Conjunto de datos (dataset)

id	Tamaño	Peso	Color	Tipo
1	38	20	Negro	Perro
2	40	14	Café	Perro
3	20	5	Naranjo	Gato
4	23	4	Negro	Gato

Dato/Instancia

id	Tamaño	Peso	Color	Tipo
1	38	20	Negro	Perro
2	40	14	Café	Perro
3	20	5	Naranjo	Gato
4	23	4	Negro	Gato

Atributos/Características/Variables/Columnas

id	Tamaño	Peso	Color	Tipo
1	38	20	Negro	Perro
2	40	14	Café	Perro
3	20	5	Naranjo	Gato
4	23	4	Negro	Gato

Objetivo/Target/Salida/Clase

id	Tamaño	Peso	Color	Tipo
1	38	20	Negro	Perro
2	40	14	Café	Perro
3	20	5	Naranjo	Gato
4	23	4	Negro	Gato

Predicción

id	Tamaño	Peso	Color	Tipo
1	38	20	Negro	?

Etiqueta

Etiqueta 1: **Perro**

Etiqueta 2: **Gato**

Terminología Machine Learning

Parámetro

Valores internos que el modelo ajusta (solito, nosotros no hacemos nada) durante el proceso de entrenamiento para minimizar el error del modelo.

Terminología Machine Learning

Hiperparámetro

Valores que nosotros podemos modificar para que el modelo tenga un mejor rendimiento.

Entrenamiento Modelo

1. Preprocesamiento de datos

 La calidad de los datos impacta en la efectividad del modelo

 Asegurar que los datos estén limpios, completos, y del formato necesario

Mejorar el rendimiento

1. Preprocesamiento de datos

- Normalización y Estandarización de los datos
- Codificación de los datos
- Reducción de dimensionalidad, extrayendo características
- Imputación para reemplazar datos faltantes

Separación de los Datos

2. Entrenamiento y 3. Validación

Sobreajuste (overfitting)

4. Testeo

 Proceso de evaluar la precisión final del modelo usando un conjunto de datos separado que no se usó durante el entrenamiento o la validación

- Clasificación de datos nuevos
- No hay entrenamiento como tal
- De los algoritmos más simples para probar experimentos rápido
- Basado en distancias.

Algoritmo KNN:

1. Distancias desde

0.7935 0.0278 0.4788 0.0835 0.1108 0.7716 0.6692 0.0075 0.8256 0.8887 0.6573 0.5489 0.3124 0.4698 0.4479

Algoritmo KNN:

- 1. Distancias desde
- 2. Ordenarlas

0.0075
0.0278
0.0835
0.1108
0.3124
0.4479
0.4698
0.4788
0.5489
0.6573
0.6692
0.7716
0.7935
0.8256
0.8887

Algoritmo KNN:

- 1. Distancias desde 🥊
- 2. Ordenarlas
- 3. Seleccionar las K más cercanas

0.0075 **K = 7**

0.0278

0.0835

0.1108

0.3124

0.4479

0.4698

0.4788

0.5489

0.6573

0.6692

0.7716

0.7935

0.8256

0.8887

Algoritmo KNN:

- 1. Distancias desde •
- 2. Ordenarlas
- 3. Seleccionar las K más cercanas
- Clasificar por mayoría de votos

0.0075 **K = 7**

0.0278

0.0835

0.1108

0.3124

0.4479

0.4698

0.4788

0.5489

0.6573

0.6692

0.7710

0.8256

0.0230

0.8887

4. Clasificar por mayoría de votos

PARÁMETROS

 Conjunto de datos del entrenamiento

HIPERPARÁMETROS

- Número k de vecinos
- Métrica para medir las distancias
- Pesos de los vecinos

Usados para clasificación y regresión.

Organizan datos para dividirlos en diferentes clases.

Clima	Temperatura	Humedad	Viento	Jugar?
soleado	alta	alta	F	No
soleado	alta	alta	V	No
nublado	alta	alta	F	Si
lluvioso	Agradable	alta	F	Si
lluvioso	frio	normal	F	Si
lluvioso	frio	normal	V	No
nublado	frio	normal	V	Si
soleado	Agradable	alta	F	No
soleado	frio	normal	F	Si
lluvioso	Agradable	normal	F	Si
soleado	Agradable	normal	V	Si
nublado	Agradable	alta	V	Si
nublado	alta	normal	F	Si
lluvioso	Agradable	alta	V	No

Imagen obtenida de la clase de árboles del profesor Hans Löbel 2023-1

Árboles de decisión

Estructura del Árbol:

- Raíz: Representa la totalidad de los datos.
- Nodos:
 - Cada nodo es una pregunta o condición sobre alguna característica.
 - Según la respuesta, los datos se dividen en nodos del siguiente nivel.

Árboles de decisión

Estructura del Árbol:

- Para decidir la mejor división en un nodo se utilizan métricas como Gini, Entropía o índice de impureza.
- Estas son calculadas por los modelos automáticamente

Hiperparámetros: Árboles

- criterion: función para calcular la calidad de la división de un nodo (ej. gini, entropy).
- max_depth: profundidad máxima del árbol
- min_samples_split: número mínimo de muestras requeridas para dividir un nodo
- min_samples_leaf: Número mínimo de muestras requeridas en una hoja.

Ensamblajes

Random Forest

XGBoosting

Random Forest

Random Forest

- Un árbol para cada muestra aleatoria (subconjunto) de los datos.
- Árboles de poca profundidad para evitar el overfitting.
- La predicción final se obtiene de un promedio entre las predicciones de los árboles del bosque

Hiperparámetros: RF

- Los mismos de un árbol
- n_estimators: número de árboles en el bosque

XGBoosting

XGBoosting

 Árboles secuenciales donde cada árbol corrige los errores de los anteriores

La predicción final se obtiene por el último árbol

Hiperparámetros: XGB

- booster: tipo de modelo base (se puede construir con árboles o con modelos lineales)
- objective: función de pérdida que se optimiza (Estima que tanto error tiene el árbol)
- subsample: Proporción de muestras a utilizar para entrenar cada modelo

Ayudantía 9

ML, KNN y Árboles

Por Bernardita Alliende y Carlos Stappung

18 de octubre 2024