第六部分 中央处理器

- 1. CPU 有哪些基本功能?需要哪些基本部件?有哪些基本操作?
- 答: ①CPU 具有指令控制、操作控制、时间控制、数据加工、外部访问、异常及中断处理的功能。②为完成上述功能需要的基本部件有: PC、IR、ID(指令控制),控制单元(操作和时间控制),ALU、FPU、GPRs、PSR(数据运算),MAR、MDR、BIU、MMU(外部访问)、中断机构等。③CPU 中的基本操作有寄存器间数据传送、存储器读、存储器写、算逻运算4种,它们的功能分别是: RD \leftarrow (RS)、MDR \leftarrow M[(MAR)]、M[(MAR)] \leftarrow (MDR)、RD \leftarrow (RS1) op (RS2),其中 RS、RD、MAR、MDR 都是 CPU 中的寄存器。
- 2. 根据本章单总线数据通路的结构图,写出 Demo 指令系统中下列指令执行阶段的 μ OP 和 μ OPCmd。
- (1) ADD (2) JNZ (双字长)

答: (1) 若 ADD 的源操作数采用寄存器寻址,指令 R1 \leftarrow (R1)+(R0)执行阶段的 μ OP 序列 及 μ OPCmd 序列为:

t4: $Y \leftarrow (R1)$; Rsel=0, GR_{out} , Y_{in}

t5: $Z\leftarrow(Y)+(R0)$; Rsel=1, GR_{out} , op=00, Z_{in}

t6: $R1\leftarrow(Z)$, $End\leftarrow 1$; Z_{out} , GR_{in} , End

若 ADD 的源操作数采用寄存器间接寻址,指令 R1←(R1)+M[(R0)]执行阶段的 μOP 序列及 μOPCmd 序列为:

t4: MAR←(R0) t4: GR_{out}, Rsel, MAR_{in}

t5: MDR←M[(MAR)] t5: Read、WMFC

t6: $Y \leftarrow (R1)$ t6: GR_{out} , Y_{in}

t7: $Z\leftarrow(Y)+(MDR)$ t7: MDR_{out} , op=00, Z_{in}

t8: $R1\leftarrow(Z)$, $End\leftarrow 1$ t8: Z_{out} , GR_{in} , End

(2) ZF=0 时,指令 JNZ 执行阶段的 μOP 序列及 μOPCmd 序列为:

t4: $MAR \leftarrow (PC)$; PC_{out} , MAR_{in}

t5: MDR \leftarrow M[(MAR)], PC \leftarrow (PC)+1 ; Read, WMFC, PC $_{+1}$

t6: $PC \leftarrow (MDR)$, $End \leftarrow 1$; MDR_{out} , PC_{in} , End

ZF=1 时,指令 JNZ Address 执行阶段的 μOP 序列及 μOPCmd 序列为:

t4: $PC\leftarrow(PC)+1$, $End\leftarrow1$; PC_{+1} , End

- 3. 根据本章点点结构数据通路的结构图,写出 Demo 指令系统中下列指令执行阶段的 μ OP 和 μ OPCmd。
- (1) LD (2) ADD (3) JNZ (双字长)

答: (1) 指令 R1←M[(R0)]执行阶段的 µOP 序列及 µOPCmd 序列为:

t4: $MAR \leftarrow (R0)$; $MAR_{sel} = 1$, MAR_{in}

t5: MDR←M[(MAR)] ; Read、WMFC

t6: $R1\leftarrow(MDR)$, $End\leftarrow1$; $GR_{sel}=1$, GR_{in} , End

(2) 若 ADD 的源操作数采用寄存器寻址,指令 R1←(R1)+(R0)执行阶段的 μOP 序列

及 μOPCmd 序列为:

t4:
$$R1 \leftarrow (R1) + (R0)$$
, $End \leftarrow 1$; $ALUA_{sel} = 1$, $ALUB_{sel} = 01$, $op = 00$, $GR_{sel} = 0$, GR_{in} , End

若 ADD 的源操作数采用寄存器间接寻址,指令 R1←(R1)+M[(R0)]执行阶段的 μOP 序列及 μOPCmd 序列为:

t4:
$$MAR \leftarrow (R0)$$
 t4: $MAR_{sel} = 0$, MAR_{in}

(3) ZF=0 时,指令 JNZ 执行阶段的 μOP 序列及 $\mu OPCmd$ 序列为:

t4:
$$MAR \leftarrow (PC)$$
 ; $MARsel=0$, MAR_{in}

t5:
$$MDR \leftarrow M[(MAR)]$$
, $PC \leftarrow (PC) + 1$; Read, $WMFC$, PC_{+1}

t6:
$$PC \leftarrow (MDR)$$
, $End \leftarrow 1$; $GR_{sel} = 1$, PC_{in} , End

ZF=1 时,指令 JNZ 执行阶段的 μOP 序列及 μOPCmd 序列为:

t4:
$$PC\leftarrow(PC)+1$$
, $End\leftarrow 1$; PC_{+1} , End