

Learning to Model Pixel-Embedded Affinity for Homogeneous Instance Segmentation

Wei Huang¹, Shiyu Deng¹, Chang Chen¹, Xueyang Fu¹, and Zhiwei Xiong^{1,2} \bowtie

¹University of Science and Technology of China, ²Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

Introduction

Homogeneous Instance Segmentation

➤ Homogeneous instance segmentation focuses on the identification of instances belonging to the same category in an image, which is desired in many practical applications, especially for biomedical image analysis.

Motivation

- ➤ Affinity learning (AL-Gao) straightforwardly generates affinity but suffers from the absence of the semantic instance information (b).
- Metric learning (ML-De) aims to push all instances away from each other but ignores the spatial information between instances (c).
- > Our method better preserves the semantic information of instances and pays more attention to the distinguishability of adjacent instances, producing superior segmentation results (d).

Method

Overall Pipeline

- > Self-Correlation Module explicitly models the pairwise relationship between pixels to preserve the semantic instance information.
- **Cross-Correlation Module** mutually estimates the pairwise relationships under different views and appearances of the input image to improve the distinguishability of adjacent instances.
- **Embedding Pyramid Module** models affinity on different scales to integrate the global instance information.

Training & Inference

- ➤ In the training phase, we combine these three modules together and train the network to generate affinities in an end-to-end way.
- ➤ In the inference phase, we only use the self-correlation affinity as the final affinity prediction, and adopt the Mutex algorithm as post-processing to obtain instance masks from the predicted affinity. In addition, we merge too small instances to further refine the final segmentation result.

Evaluation

Evaluation on CVPPP (Plant leaves)

Methods	Param.	$\mid SBD$	DiC	Dataset	Methods	Clustering	SBD	DiC
MSU (Scharr et al. 2016)	-	66.7	2.3		AL-Gao	Mutex	87.1	1.25
Nottingham (Scharr et al. 2016)	-	68.3	3.8	A 1	ML-De	Mean-shift	87.3	1.45
Wageningen (Yin et al. 2014)		71.1	2.2	A1	ML-De	Mutex	88.5	1.10
IPK (Pape and Klukas 2014)	-	74.4	2.6		Ours	Mutex	89.1	0.85
Coloring (Kulikov et al. 2018)	30.2M	80.4	2.0		AT C	M	71.1	2.61
ML-De (De Brabandere et al. 2017)	23.1M	84.2	1.0	A2	AL-Gao	Mutex	71.1	2.61
Recurrent (Ren and Zemel 2017)	-	84.9	0.8		ML-De	Mean-shift	71.2	2.52
Aug. (Kuznichov et al. 2019)	-	88.7	5.3		ML-De Ours	Mutex	73.4	2.00
Harmonic (Kulikov et al. 2020)	43.1M	89.0	3.0			Mutex	76.3	1.71
Synthesis (Ward et al. 2018)	105.7M	90.0	121	****				
PFFNet (Liu et al. 2021)	105.7M	91.1	-	When trained on A1 and tested				
Ours w/ ResNet-50	15.3M	91.7	1.5	on A2, our method significantly				
Ours w/ ResNet-101	34.3M	91.9	1.4					
Ours w/ ResUNet	4.7M	92.3	2.4	outperforms the competitors.				rs.

Evaluation on BBBC039V1 (Nuclei of U2OS cells)

Methods	AJI	Dice	PQ	4 2, 40
Mask R-CNN (He et al. 2017)	0.7983	0.9277	0.7773	100
Cell R-CNN (Zhang et al. 2018)	0.8070	0.9290	0.7959	
UPSNet (Xiong et al. 2019)	0.8128	0.9274	0.7857	000 100 00 1
JSISNet (De Geus et al. 2018)	0.8134	0.9316	0.7913	404 601
PanFPN (Kirillov et al. 2019)	0.8193	0.9320	0.7960	400
OANet (Liu et al. 2019b)	0.8198	0.9372	0.8085	
AUNet (Li et al. 2019)	0.8252	0.9377	0.8090	2
Cell R-CNN v2 (Liu et al. 2019a)	0.8260	0.9336	0.8010	0 00 60
PFFNet (Liu et al. 2021)	0.8477	0.9478	0.8330	200
Ours	0.8674	0.9673	0.8420	Raw/Groundtruth

Evaluation on AC3/AC4 (Neurons of mouse brain)

Methods	$ VOI_S $	VOI_{M}	VOI	ARAND
ML-De	1.5752	0.6151	2.1903	0.1964
SuperHuman	1.1445	0.2630	1.4075	0.1220
MALA	1.3039	0.2423	1.5462	0.1203
Ours	0.8522	0.2322	1.0844	0.0938

We also demonstrate the effectiveness of our method on the 3D instance segmentation task.

Ablation study

SCM	CCM	EPM	SBD	DiC
✓			87.7	1.15
\checkmark		\checkmark	88.1	1.00
✓	✓		88.5	0.95
_ <	✓	✓	89.1	0.85

