A. R. Onojeghuo PhD, Geog (Sci)

Data Scientist/GIS & Remote Sensing Specialist

About me

I'm a result-oriented and experienced Data Science, GIS & Remote Sensing Specialist with over 10 years of experience. I have hands-on experience using Excel, Tableau, SQL, R (ggplot2, tidyverse, Rmarkdown, leaflet, knitr), Power BI, ArcGIS, and more for data analytics and visualization. I have a good command of English and relay technical results in simple terms

Portfolio samples

Bike-share trend analysis using R

- Analysis to determine bikeshare trends in the Chicago area for Cyclistic (Apr 2021 -Mar 2022).
- Data was downloaded from <u>https://divvy-</u> <u>tripdata.s3.amazonaws.com</u> under a license agreement for educational purposes.
- Data download, unzipping, merging and cleaning was done in R.

Bike-share trend analysis (contd.): Sample R code for descriptive analysis

```
SA <-read_csv("Cvclistic202104_202203.csv" )
##Delete duplicate ride ids and fill in missing values using other similar rows
S1 <- SA %>%
  group_by(start_station_id,start_station_name) %>% fill(start_lat, start_lng) %>% ungroup %>%
  group_by(end_station_id,end_station_name) %>% fill(end_lat, end_lng) %>% ungroup %>%
  group_by(start_lat, start_lng)%>% fill(start_station_id,start_station_name) %>% ungroup %>%
  group_by(end_lat, end_lng) %>% fill(end_station_id,end_station_name) %>% ungroup
##distinct(ride_id. .keep_all= TRUE) %>%
#%>% group_by()
S1$RideLength <- difftime(S1$ended_at, S1$started_at,units="mins")
##Extract day of the week. 1=Sunday and 7 is Saturday ##List all files
                                                           L1 <- list.files(pattern ="20")
S1$day_of_the_week<-wday(S1$started_at)
                                                            ##Create empty list to store column names
S1$Hour <-hour((S1$started_at))</pre>
                                                            XLlist <-list()
S1$Month<-month((S1$started_at))
                                                            ##read files and extract column names
S1$Wd2 <-wday(S1$started_at,label=T)
                                                            for (i in L1) {
                                                            A1 <- read.csv(file = i, header = T)
                                                             A2 <- as.data.frame(colnames(A1))
                                                            XLlist[[i]] <- A2
                                                           XList2 <- list.cbind(XLlist)</pre>
                                                           L2 <- L1 %>%
                                                              lapply(read_csv) %>% # Store all files in list
                                                              bind_rows # Combine data sets into one data set
                                                            write.csv(L2, "Cyclistic202104_202203.csv")
```

Bike-share trend analysis (contd.): Most popular bike-share station

```
find the mode of the months of incidents
Mode = function(x)
  ta = table(x)
  tam = max(ta)
 if (all(ta == tam))
    mod = NA
                                                                                                  Ohio Street Beach
  else
    if(is.numeric(x))
                                                                                               E Grand Ave & N Streeter Dr
      mod = as.numeric(names(ta)[ta == tam])
  else
   mod = names(ta)[ta == tam]
  return(mod)
MinMode <- function(x){
 ta = table(x)
  tam = min(ta)
 if (all(ta == tam))
    mod = NA
  else
    if(is.numeric(x))
      mod = as.numeric(names(ta)[ta == tam])
                                                                                                                                          Google Earth
  else
   mod = names(ta)[ta == tam]
 return(mod)
S2 <- S1 %>% filter(!start_lat >=45) %>% group_by(member_casual) %>%
 summarize(Most_popular_takeoff_Station_id=Mode(start_station_id),
            Most_popular_takeoff_Station=Mode(start_station_name),
           Most_popular_destination= Mode(end_station_name), Mosttravelled_Hour=Mode(Hour),
            Weekday_most_travel= Mode(day_of_the_week), Mean_rideLength=mean(RideLength),
            Max_ridelength= as_hms(max(RideLength)), Month_Most_Travel=Mode(Month))
write.csv(S2,"Cyclistic_summary2.csv")
```

Bike-share trend analysis (contd.): Monthly bike rides by members and casual riders

Bike-share trend analysis (contd.): Weekly bike rides by members and casual riders

- More casual riders used the bike-share service in summer months and on weekends (suggesting leisure & tourism related travel)
- Bike-share was mostly from Station 13022 (Streeter Dr & Grand Ave) for casual riders and from Kingsbury St & Kinzie St for annual members

Full report available at: https://rpubs.com/aronojeghuo/Google-Cyclistic
Code repository: https://github.com/aonojeghuo/Google-Data-Analytics-Capstone-Project/blob/main/Capstone RKnit%20report%20from%20Markdown4.Rmd

Bike-share trend analysis (contd.): Visualization using Tableau Public

https://public.tableau.com/app/profile/ajoke.onojeghuo/viz/CyclisticDataAnalysis_16527444370630/Dashboard1

Sales analysis using Power BI Desktop

Power BI sheet showing top customers by value of total purchases per country. The slider allows the client shift between countries.

Sales analysis using Power BI (contd.): Power BI Service App

Power BI App showing a dashboard of Sales. It features a 4-year profit trend and percentage profit by region.

Career highlights

Data Scientist/GIS & Remote Sensing Specialist

Solstice Environmental Management, Edmonton November 2019 - February 2022

Data Scientist/GIS & Remote Sensing Specialist

Jolexy Environmental Services, Edmonton September 2012 - Till Date

GIS Analyst/ Data Scientist

PLACE Research Lab, School of Public Health, University of Alberta, Edmonton March 2018 - October 2019

Sample Publication

- Onojeghuo, A. O., Onojeghuo, A. R., Cotton, M., Potter, J., & Jones, B. (2021). Wetland mapping with multi-temporal sentinel-1 &-2 imagery (2017–2020) and LiDAR data in the grassland natural region of Alberta. GIScience & Remote Sensing, 1-23.
- Rasul, A., Ibrahim, S. A., **Onojeghuo, A. R.**, & Balzter, H. (2020). A trend analysis of leaf area index and land surface temperature and their relationship from global to local scale. *Land*, 9(10), 388.
- Onojeghuo, A. R., Nykiforuk, C. I., Belon, A. P., & Hewes, J. (2019). Behavioral mapping of children's physical activities and social behaviors in an indoor preschool facility: methodological challenges in revealing the influence of space in play. International journal of health geographics, 18(1), 1-16.
- Onojeghuo, A.O and **Onojeghuo, A.R.** (2017). Object-based habitat mapping using very high spatial resolution multispectral and hyperspectral imagery with LiDAR data. International Journal of Applied Earth Observation and Geoinformation, Vol. 59, 79–91 (Publisher: Elsevier).

