Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2022

Nichtdeterministische Endliche Automaten

und $\varepsilon\text{-} \ddot{\mathbf{U}} \mathbf{berg \ddot{a}nge}$

Prof. Dr. David Sabel

LFE Theoretische Informatik

Wiederholung: NFA

Definition

Ein nichtdeterministischer endlicher Automat

(nondeterministic finite automaton, NFA) ist ein 5-Tupel (Z,Σ,δ,S,E) wobei

- Z ist eine endliche Menge von Zuständen,
- Σ ist das (endliche) Eingabealphabet mit $(Z \cap \Sigma) = \emptyset$,
- $S \subseteq Z$ ist die Menge der Startzustände,
- ullet $E\subseteq Z$ ist die Menge der Endzustände und
- ullet $\delta: Z imes \Sigma o \mathcal{P}(Z)$ ist die Zustandsüberführungsfunktion

Wiederholung: DFAs & NFAs sind Formalismen für Typ 3-Sprachen

Theorem 4.5.4

DFAs und NFAs erkennen genau die regulären Sprachen.

Beachte: Determinisierung von NFA mit Potenzmengenkonstruktion

- Sei M ein NFA mit n Zuständen.
- ullet Der durch die Potenzmengenkonstruktion erstellte DFA hat 2^n Zustände!
- D.h. der Platz explodiert uns!
- Frage: Geht es besser (unsere Kodierung ist zu einfach) oder nicht?
- Das folgende Lemma zeigt, dass es nicht wirklich besser geht

Lemma

Sei $L_n = \{uav \mid u \in \{a,b\}^*, v \in \{a,b\}^{n-1}\}$ für $n \in \mathbb{N}_{>0}$. (Sprache aller Wörter aus $\{a,b\}^*$, die an n-letzter Stelle ein a haben).

- Es gibt NFA M_n mit $L(M_n) = L_n$ und M_n hat n+1 Zustände.
- Jeder DFA M'_n mit $L(M'_n) = L_n$, hat mindestens 2^n Zustände.

Lemma

Sei $L_n = \{uav \mid u \in \{a,b\}^*, v \in \{a,b\}^{n-1}\}$ für $n \in \mathbb{N}_{>0}$. (Sprache aller Wörter aus $\{a,b\}^*$, die an n-letzter Stelle ein a haben).

- Es gibt NFA M_n mit $L(M_n) = L_n$ und M_n hat n+1 Zustände.
- Jeder DFA M'_n mit $L(M'_n) = L_n$, hat mindestens 2^n Zustände.

Beweis (Teil 1): Sei M_n der folgende NFA:

 $L(M_n) = L_n$, denn:

- zum Akzeptieren müssen $z_0, z_1, \dots z_n$ nacheinander durchlaufen werden, was genau mit Wörtern av mit $v \in \{a,b\}^{n-1}$ möglich ist
- In z_0 kann zuvor jedes $u \in \{a, b\}^*$ gelesen werden (Verbleib in z_0).

Beweis (Teil 2): Beweis durch Widerspruch.

• Annahme: Es gibt $n\in\mathbb{N}_{>0}$ und DFA $M'=(Z,\{a,b\},\delta,z_0,E)$ mit $L(M')=L_n=\{uav\mid u\in\{a,b\}^*,v\in\{a,b\}^{n-1}\}$ und $|Z|<2^n$

Beweis (Teil 2): Beweis durch Widerspruch.

- Annahme: Es gibt $n \in \mathbb{N}_{>0}$ und DFA $M' = (Z, \{a, b\}, \delta, z_0, E)$ mit $L(M') = L_n = \{uav \mid u \in \{a, b\}^*, v \in \{a, b\}^{n-1}\}$ und $|Z| < 2^n$
- Menge $W=\{a,b\}^n$ enthält 2^n Worte der Länge n und da $|Z|<2^n$, muss es $w\neq w'\in W$ geben mit $\widehat{\delta}(z_0,w)=\widehat{\delta}(z_0,w')=z_i$

Beweis (Teil 2): Beweis durch Widerspruch.

- Annahme: Es gibt $n \in \mathbb{N}_{>0}$ und DFA $M' = (Z, \{a, b\}, \delta, z_0, E)$ mit $L(M') = L_n = \{uav \mid u \in \{a, b\}^*, v \in \{a, b\}^{n-1}\}$ und $|Z| < 2^n$
- Menge $W=\{a,b\}^n$ enthält 2^n Worte der Länge n und da $|Z|<2^n$, muss es $w\neq w'\in W$ geben mit $\widehat{\delta}(z_0,w)=\widehat{\delta}(z_0,w')=z_i$
- Sei j die erste Position, an der sich w und w' unterscheiden.

Beweis (Teil 2): Beweis durch Widerspruch.

- Annahme: Es gibt $n \in \mathbb{N}_{>0}$ und DFA $M' = (Z, \{a, b\}, \delta, z_0, E)$ mit $L(M') = L_n = \{uav \mid u \in \{a,b\}^*, v \in \{a,b\}^{n-1}\} \text{ und } |Z| < 2^n$
- Menge $W = \{a, b\}^n$ enthält 2^n Worte der Länge n und da $|Z| < 2^n$, muss es $w \neq w' \in W$ geben mit $\widehat{\delta}(z_0, w) = \widehat{\delta}(z_0, w') = z_i$
- Sei i die erste Position, an der sich w und w' unterscheiden.

Falls j=1, dann ist o.B.d.A. $w=au\in L_n$ aber $w'=bu'\not\in L_n$ und $z_i\in E$ und $z_i \notin E$ müsste gleichzeitig gelten. Widerspruch!

Beweis (Teil 2): Beweis durch Widerspruch.

- Annahme: Es gibt $n \in \mathbb{N}_{>0}$ und DFA $M' = (Z, \{a, b\}, \delta, z_0, E)$ mit $L(M') = L_n = \{uav \mid u \in \{a, b\}^*, v \in \{a, b\}^{n-1}\}$ und $|Z| < 2^n$
- Menge $W=\{a,b\}^n$ enthält 2^n Worte der Länge n und da $|Z|<2^n$, muss es $w\neq w'\in W$ geben mit $\widehat{\delta}(z_0,w)=\widehat{\delta}(z_0,w')=z_i$
- Sei j die erste Position, an der sich w und w' unterscheiden.

Falls j=1, dann ist o.B.d.A. $w=au\in L_n$ aber $w'={\color{red}b}u'\not\in L_n$ und $z_i\in E$ und $z_i\not\in E$ müsste gleichzeitig gelten. Widerspruch!

Falls j > 1: O.B.d.A. w = uav und w' = ubv' mit |v| = |v'| = n - j

Beweis (Teil 2): Beweis durch Widerspruch.

- Annahme: Es gibt $n\in\mathbb{N}_{>0}$ und DFA $M'=(Z,\{a,b\},\delta,z_0,E)$ mit $L(M')=L_n=\{uav\mid u\in\{a,b\}^*,v\in\{a,b\}^{n-1}\}$ und $|Z|<2^n$
- Menge $W=\{a,b\}^n$ enthält 2^n Worte der Länge n und da $|Z|<2^n$, muss es $w\neq w'\in W$ geben mit $\widehat{\delta}(z_0,w)=\widehat{\delta}(z_0,w')=z_i$
- Sei j die erste Position, an der sich w und w' unterscheiden.

Falls j=1, dann ist o.B.d.A. $w=au\in L_n$ aber $w'={\color{red}b}u'\not\in L_n$ und $z_i\in E$ und $z_i\not\in E$ müsste gleichzeitig gelten. Widerspruch!

Falls j>1: O.B.d.A. w=uav und w'=ubv' mit |v|=|v'|=n-j

Sei
$$w_0 = wb^{j-1} = uavb^{j-1}$$

 $w'_0 = w'b^{j-1} = ubv'b^{j-1}$

Dann muss gelten $\widehat{\delta}(w_0) = \widehat{\delta}(w_0')$, da $\widehat{\delta}(uav) = z_i = \widehat{\delta}(ubv')$.

Aber $w_0 \in L_n$ und $w'_0 \not\in L_n$, Widerspruch!

NFAs mit ε -Übergängen

- ε -Übergänge erlauben Zustandswechsel ohne Lesen eines Zeichens (es wird sozusagen das leere Wort ε gelesen)
- Ausdruckskraft ändert sich mit ε -Übergängen nicht
- \bullet ε -Übergänge machen manche Konstruktionen einfacher.

Definition (NFA mit ε -Übergängen)

Ein nichtdeterministischer endlicher Automat mit ε -Übergängen (NFA mit ε -Übergängen) ist ein Tupel $M=(Z,\Sigma,\delta,S,E)$ wobei

- Z ist eine endliche Menge von Zuständen,
- Σ ist das (endliche) Eingabealphabet mit $(Z \cap \Sigma) = \emptyset$,
- $\bullet \ S \subseteq Z$ ist die Menge der Startzustände,
- \bullet $E \subseteq Z$ ist die Menge der Endzustände und
- $\delta: Z \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Z)$ ist die Zustandsüberführungsfunktion

Beispiel: NFA mit ε -Übergängen

Akzeptierte Sprache: ?

Beispiel: NFA mit ε -Übergängen

Akzeptierte Sprache:

alle Worte aus $\{a,b,c\}^*$, die an letzter, vorletzter, oder drittletzter Postion ein a haben, und das leere Wort

Definition (ε -Hülle)

Sei $M=(Z,\Sigma,\delta,S,E)$ ein NFA mit ε -Übergängen. Die ε -Hülle $clos_{\varepsilon}(z)$ eines Zustands $z\in Z$ ist induktiv definiert als die kleinste Menge von Zuständen, welche die folgenden Eigenschaften erfüllt:

Für eine Zustandsmenge $X\subseteq Z$ definieren wir $clos_{\varepsilon}(X):=\bigcup_{z\in X}\, clos_{\varepsilon}(z).$

Die ε -Hülle fügt für eine Zustandsmenge alle durch ε -Übergänge erreichbaren Zustände hinzu.

TCS | 09 NFA $+\epsilon$ | SoSe 2022 9/14

ε -Hülle (2)

Die ε -Hülle für eine Zustandsmenge $X\subseteq Z$ kann auch berechnet werden durch:

$$clos_{\varepsilon}(X) := \left\{ \begin{array}{ll} X, & \text{wenn } \bigcup_{z \in X} \delta(z, \varepsilon) \subseteq X \\ clos_{\varepsilon}(X \cup \bigcup_{z \in X} \delta(z, \varepsilon)), \text{ sonst} \end{array} \right.$$

TCS | 09 NFA+ ϵ | SoSe 2022 10/14

NFA mit ε -Übergängen: Akzeptierte Sprache

Akzeptierte Sprache eines NFA mit ε -Übergängen

Sei $M=(Z,\Sigma,\delta,S,E)$ ein NFA mit ε -Übergängen.

Wir definieren $\delta: (\mathcal{P}(Z) \times \Sigma^*) \to \mathcal{P}(Z)$ induktiv durch:

$$\begin{array}{ll} \widetilde{\delta}(X,\varepsilon) &:= X \\ \widetilde{\delta}(X,aw) := \bigcup\limits_{z \in X} \widetilde{\delta}(clos_{\varepsilon}(\delta(z,a)),w) \text{ für alle } X \subseteq Z \end{array}$$

Die von M akzeptierte Sprache ist

$$L(M) := \{ w \in \Sigma^* \mid \widetilde{\delta}(clos_{\varepsilon}(S), w) \cap E \neq \emptyset \}$$

TCS | 09 NFA+ ϵ | SoSe 2022

Satz 4.6.7

NFAs mit ε -Übergängen akzeptieren genau die regulären Sprachen.

Satz 4.6.7

NFAs mit ε -Übergängen akzeptieren genau die regulären Sprachen.

Beweis "←":

• Jede reguläre Sprache wird von einem "normalen" NFA akzeptiert.

Satz 4.6.7

NFAs mit ε -Übergängen akzeptieren genau die regulären Sprachen.

Beweis "←":

- Jede reguläre Sprache wird von einem "normalen" NFA akzeptiert.
- Transformiere diesen NFA in einen NFA mit ε -Übergängen:

Setze $\delta(z,\varepsilon)=\emptyset$ für alle Zustände z

Offensichtlich ist die akzeptierte Sprache diesselbe.

Satz 4.6.7

NFAs mit ε -Übergängen akzeptieren genau die regulären Sprachen.

Beweis "←":

- Jede reguläre Sprache wird von einem "normalen" NFA akzeptiert.
- ullet Transformiere diesen NFA in einen NFA mit arepsilon-Übergängen:

Setze
$$\delta(z,\varepsilon)=\emptyset$$
 für alle Zustände z

Offensichtlich ist die akzeptierte Sprache diesselbe.

ullet Daher wird jede reguläre Sprache von einem NFA mit arepsilon-Übergängen akzeptiert.

Beweis " \Rightarrow ": Sei $M=(Z,\Sigma,\delta,S,E)$ ein NFA mit ε -Übergängen.

Beweis " \Rightarrow ": Sei $M=(Z,\Sigma,\delta,S,E)$ ein NFA mit ε -Übergängen.

• Konstruiere NFA M' mit L(M) = L(M'). Dann ist L(M) regulär.

Beweis " \Rightarrow ": Sei $M=(Z,\Sigma,\delta,S,E)$ ein NFA mit ε -Übergängen.

- Konstruiere NFA M' mit L(M) = L(M'). Dann ist L(M) regulär.
- $M' = (Z, \Sigma, \delta', S', E)$ mit $S' = clos_{\varepsilon}(S)$, $\delta'(z, a) = clos_{\varepsilon}(\delta(z, a))$.

Beweis " \Rightarrow ": Sei $M=(Z,\Sigma,\delta,S,E)$ ein NFA mit ε -Übergängen.

- Konstruiere NFA M' mit L(M) = L(M'). Dann ist L(M) regulär.
- $M' = (Z, \Sigma, \delta', S', E)$ mit $S' = clos_{\varepsilon}(S)$, $\delta'(z, a) = clos_{\varepsilon}(\delta(z, a))$.

L(M) = L(M'):

- Wir zeigen $\widetilde{\delta}(clos_{\varepsilon}(X), w) = \widehat{\delta}'(clos_{\varepsilon}(X), w)$ für alle $X \subseteq Z$ und $w \in \Sigma^*$. Wir verwenden Induktion über die Wortlänge |w|.
- Basis: $w = \varepsilon$. Dann gilt $\widetilde{\delta}(clos_{\varepsilon}(X), \varepsilon) = clos_{\varepsilon}(X) = \widehat{\delta'}(clos_{\varepsilon}(X), \varepsilon)$
- Schritt: Sei w = au mit $a \in \Sigma$. Wir formen um:

$$\widetilde{\delta}(clos_{\varepsilon}(X), au) \overset{\mathsf{Def.}}{=} \underbrace{\widetilde{\delta}}_{z \in clos_{\varepsilon}(X)} \underbrace{\widetilde{\delta}(clos_{\varepsilon}(\delta(z, a)), u)}_{z \in clos_{\varepsilon}(X)} \overset{\mathsf{l.H.}}{=} \underbrace{\bigcup_{z \in clos_{\varepsilon}(X)}}_{\widetilde{\delta}'(clos_{\varepsilon}(\delta(z, a)), u)}$$

$$\stackrel{\mathsf{Def.}}{=} \overset{\delta'}{\underset{z \in clos_{\varepsilon}(X)}{\bigcup}} \widehat{\delta'}(\delta'(z,a),u) \stackrel{\mathsf{Def.}}{=} \widehat{\delta} \ \widehat{\delta'}(clos_{\varepsilon}(X),au)$$

TCS | 09 NFA $+\epsilon$ | SoSe 20