An Introduction to Abelian Categories

Gabriel Antonio Videtta

May 2025

Preliminary steps (i)

The intuition for abelian categories comes from the behaviour of a kind of mathematical object which is found everywhere in each science: **vector spaces**.

Vector spaces are considered to be well understood and have interesting categorical properties.

Preliminary steps (ii)

First of all, we will denote with $Vect_K$ the category of vector spaces over the field K, whose objects are vector spaces and morphisms are linear maps.

We will denote with $FinDimVect_K$ the subcategory of $Vect_K$ which contains only finite dimensional K-vector spaces.

Preliminary steps (iii): zero objects

Vector spaces have a peculiar property: initial objects are isomorphic to final objects! This tells use that 0 (the zero dimensional vector space) is a special object.

Definition (Zero object)

Let C be a category. We say 0 is a **zero object** if it's both an initial and a final object.

Preliminary steps (iv)

Moreover, the hom-set hom(V, W) has an additional structure: it's not just a set, it has a natural structure of a vector space as well!

We can sum linear maps (f + g), multiply a linear map by a scalar (λf) , and all these operations behave "bilinearly" with the composition (\circ) :

$$(f+g) \circ h = f \circ h + g \circ h,$$

 $f \circ (g+h) = f \circ g + f \circ h,$
 $(\lambda f) \circ g = \lambda (f \circ g) = f \circ (\lambda g).$

This gives rise to an important definition...

Preliminary steps (v): enriched categories

Definition (Enriched categories)

Let $\mathcal C$ be a category. We say that $\mathcal C$ is a category **enriched over a monoidal category** $(\mathcal D,\otimes)$ if the hom-sets of $\mathcal C$ are objects from $\mathcal D$ and if the composition of morphisms makes the composition \circ bilinear over \otimes , namely:

$$(F \otimes G) \circ H = (F \circ H) \otimes (G \circ H),$$

$$F \circ (G \otimes H) = (F \circ G) \otimes (F \circ H).$$

Therefore, we can say that $Vect_K$ is enriched over itself!

Preliminary steps (vi): preadditive categories

Recall that an abelian group is a monoid which allows inverses and satisfies the law of commutativity. For example, a vector space V is itself an abelian group.

Definition (Preadditive category)

Let $\mathcal C$ be a category. We say that $\mathcal C$ is a **preadditive category** if it's enriched over the category of abelian groups (Ab).

In short, a preadditive category is such that its morphisms can be added and subtracted in a way that respects composition.

