

1° Teste de Eletromagnetismo MEFT Prof. Pedro Abreu 28 de junho de 2021

R

Por determinação do Conselho Pedagógico, informamos que só serão cotadas as respostas que contribuam de forma significativa para os resultados ou demonstrações pedidas.

(4,0) 1) Considere o sistema da figura, em que o condutor 1, esférico e de raio $R_1 = 5$ cm, é rodeado por material dielétrico de constante dielétrica (relativa) $\varepsilon_r = 8$ e por um condutor 2, uma coroa esférica de raio interior $R_2 = 10$ cm e raio exterior $R_3 = 12$ cm.

Admita que o potencial elétrico no infinito é nulo.

O condutor 1 (interior) está ligado à Terra e o condutor 2 tem carga $Q_2 = 50$ nC.

- [1,0] **a)** Calcule o campo elétrico em todo o espaço em função da carga Q_1 no condutor interior;
- [1,0] **b)** Calcule a carga Q_1 e o potencial elétrico V_2 do condutor 2;
- [1,0] **c)** Calcule a capacidade do sistema;
- [1,0] **d)** Calcule as cargas de polarização nas superfícies de separação dos diferentes meios.
- (3,0) **2)** Duas coroas esféricas condutoras e concêntricas, de raios a = 0.2 m e b = 0.5 m, estão separadas por um material com condutividade elétrica $\sigma = 2.17 \,\Omega^{-1} \text{m}^{-1}$.
- [1,5] **a)** Calcule a resistência elétrica entre as coroas esféricas. Qual a resistência se $b \to \infty$?
- [0,5] **b)** Se numa dada altura existir uma diferença de potencial elétrico V = 10 V, calcule a corrente que flui nesse instante de uma coroa para a outra.
- [1,0] **c)** Suponha agora que coloca duas esferas de raios a = 0.2 m imersas num meio líquido, de condutividade elétrica σ_L desconhecida, muito longe uma da outra, sujeitas a uma diferença de potencial elétrico V = 10 V, e que mede uma corrente I = 2 A. Calcule a condutividade σ_L .
- (3,0) **3)** Um fio com 0,001 m de diâmetro transporta uma corrente I=10 A. Envolvendo o fio temos uma camada de espessura $R_e-R_i=0,0495$ m, que transporta a corrente de retorno I=10 A (no sentido oposto), feita em cobre (condutividade elétrica $\sigma=6\times10^7~\Omega^{-1}{\rm m}^{-1}$, permeabilidade magnética μ_0 , densidade de eletrões de condução $n_e=8.5\times10^{28}/{\rm m}^3$, carga do eletrão $e=-1.6\times10^{-19}$ C).
- [1,0] **a)** Calcule o campo magnético em todo o espaço;
- [0,5] **b)** Calcule a velocidade de deriva dos eletrões no condutor exterior;
- [0,5] **c)** Calcule a força magnética que se faz sentir sobre um eletrão de condução no condutor exterior, em função da distância ao eixo (intensidade, direção, sentido);
- [0,5] **d)** Devido à força magnética da alínea anterior, os eletrões vão-se deslocar (ligeiramente) na direção radial até atingirem o equilíbrio, mantendo então apenas a deslocação paralela ao eixo. Calcule o campo elétrico criado por esta assimetria na direção radial após atingido este equilíbrio, em função da distância ao eixo (despreze as alterações na distribuição da corrente elétrica no condutor exterior).
- [0,5] **e)** Calcule a pequena diferença de potencial elétrico na direção radial entre as fronteiras interior e exterior do condutor exterior.