

Algèbre linéaire et analyse 1

(HLMA101 – Année universitaire 2020–2021)

Feuille d'exercices N°7

1. ÉCHAUFFEMENT (AVANT LES TD)

Question 1. Suite à un copier-coller malheureux, l'ordre des différents éléments de l'assertion suivante portant sur une fonction $f:\mathbb{R}\to\mathbb{R}$ et un réel ℓ a été chamboulé :

$$\forall \, x \in \mathbb{R} \ \Rightarrow \ \exists \, A > 0 \ \lim_{x \to +\infty} f(x) = \ell \ \forall \, \delta > 0 \ |f(x) - \ell| < \delta \ \Leftrightarrow \ x > A.$$

Remettre la phrase dans le bon ordre.

Question 2. Vrai ou faux?

- (a) Si f a une limite en x_0 , alors elle a une limite épointée en x_0 .
- (b) Si f(0) = 0, alors f a une limite nulle en 0.
- (c) Si f a une limite nulle en 0 et si f est définie en 0, alors f(0) = 0.
- (d) Si x_0 est dans le domaine de définition de f alors f a une limite en x_0 .

Question 3. Les énoncés suivants sont-il vrais pour toutes les fonctions f et g telles que $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = 0$, $\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} g(x) = -\infty?$ (a) $\lim_{x \to 0} \frac{f(x)}{g(x)} = 1$ (b) $\lim_{x \to 0} f(x)g(x) = 0$ (c) $\lim_{x \to +\infty} f(x) + g(x) = 0.$ (d) $\lim_{x \to +\infty} f(x) - g(x) = +\infty.$

(a)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

(b)
$$\lim_{x \to 0} f(x)g(x) = 0$$

(c)
$$\lim_{x \to 0} f(x) + g(x) = 0$$

(d)
$$\lim_{x \to +\infty} f(x) - g(x) = +\infty$$

2. Travaux dirigés

Exercice 1. Soit $f(x) = \frac{3x+1}{x-7}$ et soit $\varepsilon = 10^{-6}$. Trouver un réel A explicite tel que $|f(x)-3| < \varepsilon$ pour tout x < A.

Exercice 2. Montrer en utilisant la définition de la limite que la fonction f définie par $x\mapsto \frac{x+1}{x-1}$ tend vers 1 lorsque x tend vers $+\infty$, puis que $\lim_{\substack{x\to 1\\x<1}} f(x) = -\infty$ et que $\lim_{\substack{x\to 1\\x>1}} f(x) = +\infty$.

Exercice 3. Soient f et g deux fonctions admettant comme limites ℓ et ℓ' en un point a. Redémontrer en s'inspirant de ce qui est fait en cours que $\lim (f(x) - g(x)) = \ell - \ell'$.

Exercice 4. Déterminer rigoureusement $\lim_{x \to +\infty} \frac{E(x)}{x}$ et $\lim_{x \to +\infty} xE(\frac{1}{x})$.

Exercice 5. Déterminer les limites suivantes :

(a)
$$\lim_{x \to 0} \frac{x^2 + 2|x|}{x}$$

(b)
$$\lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos x}$$

(c)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

(d)
$$\lim_{x \to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2}$$

Pour (b), on pourra utiliser une identité remarquable. Pour (c) et (d), on pourra utiliser les identités remarquables suivantes : $(a - b)(a + b) = a^2 - b^2$ et $(a - b)(a^2 + ab + b^2) = a^3 - b^3$ pour tous a et b réels.

3. Révisions et approfondissement

Exercice 6. On admet ici le fait « classique » suivant : $y \mapsto \frac{\ln(y)}{y}$ tend vers 0 en $+\infty$. Déterminer : (a) $\lim_{x \to +\infty} \frac{\ln(x^4)}{x^3}$ (b) $\lim_{x \to +\infty} \left(x^2 - \ln(x)\right)$ (c) $\lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{\sqrt{x^3 + 1}}$.

(a)
$$\lim_{x \to a} \frac{\ln(x^4)}{x^3}$$

(b)
$$\lim_{x \to -\infty} (x^2 - \ln(x))$$

(c)
$$\lim_{x \to +\infty} \frac{\ln(x^2+2)}{\sqrt{x^3+1}}$$
.

Exercice 7. Soit $f: \mathbb{R} \to \mathbb{R}$ et l'ensemble : $X_f = \{y \in \mathbb{R} \mid \forall A \in \mathbb{R}, \exists x > A, f(x) = y\}.$

- (a) On suppose que f est injective; montrer que X_f est vide.
- (b) On suppose que f(x) tend vers $+\infty$ en $+\infty$, montrer que X_f est vide.
- (c) On suppose que f admet une limite ℓ en $+\infty$. Montrer que $X_f \subset \{\ell\}$ et donner des exemples où cette inclusion est stricte et des exemples où c'est une égalité.

Exercice 8. Soit $f: \mathbb{R} \to \mathbb{R}$ avec $\lim_{x \to \infty} f(x) = +\infty$. Prouver qu'il n'est pas possible qu'il existe un ℓ réel tel que fconverge vers ℓ en x_0 .

Défi. Trouver une fonction $f: \mathbb{R} \to \mathbb{R}$ explicite qui n'a pas de limite en $+\infty$ mais dont la valeur absolue tend vers $+\infty$.