Optimization in Machine Learning

Univariate optimization: Golden ratio

Learning goals

- Simple nesting procedure
- Golden ratio

UNIVARIATE OPTIMIZATION

Let $f: \mathbb{R} \to \mathbb{R}$.

Goal: Iteratively improve eval points. Assume function is unimodal. Will not rely on gradients, so this also works for black-box problems.

Let $f: \mathbb{R} \to \mathbb{R}$.

Always maintain three points: left, right, and current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

Propose random point in interval.

NB: Later we will define the optimal choice for a new proposal.

Let $f: \mathbb{R} \to \mathbb{R}$.

Compare proposal against current best.

Let $f : \mathbb{R} \to \mathbb{R}$.

If it is better: proposal becomes current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

New search interval: around current best.

Let $f : \mathbb{R} \to \mathbb{R}$.

Propose a random point.

Let $f : \mathbb{R} \to \mathbb{R}$.

Compare proposal against current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

If it is better: proposal becomes current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

New search interval: around current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

Propose a random point.

Let $f : \mathbb{R} \to \mathbb{R}$.

Compare proposal against current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

If it is better: proposal becomes current best.

Let $f : \mathbb{R} \to \mathbb{R}$.

New search interval: around current best.

- Initialization: Search interval $(x^{\text{left}}, x^{\text{right}}), x^{\text{left}} < x^{\text{right}}$
- Choose x^{best} randomly.
- For t = 0, 1, 2, ...
 - Choose x^{new} randomly in $[x^{\text{left}}, x^{\text{right}}]$
 - If $f(x^{\text{new}}) < f(x^{\text{best}})$:
 - $x^{\text{best}} \leftarrow x^{\text{new}}$
 - New interval: Points around x^{best}

Key question: How can x^{new} be chosen better than randomly?

- Insight 1: Always in bigger subinterval to maximize reduction.
- **Insight 2:** x^{new} symetrically to x^{best} for uniform reduction.

Consider two hypothetical outcomes x^{new} : $f_{\text{new},a}$ and $f_{\text{new},b}$.

If $f_{new,a}$ is the outcome, x_{best} stays best and we search around x_{best} :

If $f_{new,b}$ is outcome, x_{new} becomes best point and search around x_{new} :

For uniform reduction, require the two potential intervals equal sized:

$$b := x_{right} - x_{best} = x_{new} - x_{left}$$

One iteration ahead: require again the intervals to be of same size.

$$c := x_{best} - x_{left} = x_{right} - x_{new}$$

To summarize, we require:

$$a = x^{right} - x^{left},$$
 $b = x_{right} - x_{best} = x_{new} - x_{left}$
 $c = x_{best} - x_{left} = x_{right} - x_{new}$

- We require the same percentage improvement in each iteration
- For φ reduction factor of interval sizes (a to b, and b to c)

$$\varphi := \frac{b}{a} = \frac{c}{b}$$
$$\varphi^2 = \frac{b}{a} \cdot \frac{c}{b} = \frac{c}{a}$$

• Divide a = b + c by a:

$$\frac{a}{a} = \frac{b}{a} + \frac{c}{a}$$

$$1 = \varphi + \varphi^{2}$$

$$0 = \varphi^{2} + \varphi - 1$$

• Unique positive solution is $\varphi = \frac{\sqrt{5}-1}{2} \approx 0.618$.

- With x^{new} we always go φ percentage points into the interval.
- Given x^{left} and x^{right} it follows

$$x^{best} = x^{right} - \varphi(x^{right} - x^{left})$$

= $x^{left} + (1 - \varphi)(x^{right} - x^{left})$

and due to symmetry

$$x^{new} = x^{left} + \varphi(x^{right} - x^{left})$$

= $x^{right} - (1 - \varphi)(x^{right} - x^{left}).$

Termination criterion:

 A reasonable choice is the absolute error, i.e. the width of the last interval:

$$|x^{best} - x^{new}| < \tau$$

 In practice, more complicated termination criteria are usually applied, for example in Numerical Recipes in C, 2017

$$|x^{right} - x^{left}| \le \tau(|x^{best}| + |x^{new}|)$$

is proposed as a termination criterion.