$x_1 = 1200, x_2 = 0, x_3 = 50$ ondoko programazio linealaren soluzio optimoa bada:

Max
$$z = 3x_1 + 4x_2 + 5x_3$$

s.a. $0.1x_1 + 0.4x_2 \le 120$
 $0.2x_1 + 0.3x_2 + 0.4x_3 \le 260$
 $x_1, x_2, x_3 \ge 0$

Zehaztu problema duala eta bere soluzio optimoa.

Soluzioa:

Min
$$z^* = 120y_1 + 260y_2$$

s.a. $0.1y_1 + 0.2y_2 \ge 3$
 $0.4y_1 + 0.3y_2 \ge 4$
 $0.4y_2 \ge 5$
 $y_1, y_2 \ge 0$

$$y_1 = 5$$
, $y_2 = 12.5$, $y_3 = 0$, $y_4 = 1.75$, $y_5 = 0$ eta $z^* = 3850$

2. ARIKETA

Izan bedi ondoko programazio linealeko problema:

Max
$$z = 2x_1 + 3x_2 - 4x_3$$

s.a. $4x_1 - x_2 - 5x_3 \le 12$
 $2x_1 + 6x_2 + 2x_3 = 12$
 $x_1, x_2, x_3 \ge 0$

Problema honi dagokion problema duala erabiliz, problema honen soluzio optimoa lor dezakezu? Nola? Zehaztu jarraitutako prozesua.

Soluzioa:

Min
$$z^* = 12u_1 + 12u_2$$

s.a. $4u_1 + 2u_2 \ge 2$
 $-u_1 + 6u_2 \ge 3$
 $-5u_1 + 2u_2 \ge -4$
 $u_1 \ge 0, u_2$ ez dago murriztuta

$$x_1 = \frac{42}{13}$$
, $x_2 = \frac{12}{13}$, $x_3 = 0$, $x_4 = 0$ y $z = \frac{120}{13}$

Izan bedi ondoko programazio linealeko problema:

Min
$$z = 3x_1 + 5x_2 - 7x_3$$

s.a. $x_1 + x_2 - 3x_3 \ge 4$
 $2x_2 + 5x_3 = 12$
 $x_1, x_2 \ge 0, x_3$ murriztugabea

Problema honi dagokion problema duala erabiliz, problema honen soluzio optimoa lor dezakezu? Nola? Zehaztu jarraitutako prozesua.

Soluzioa:

Max
$$z^* = 4u_1 + 12u_2$$

s.a. $u_1 \le 3$
 $u_1 + 2u_2 \le 5$
 $-3u_1 + 5u_2 = -7$
 $u_1 \ge 0, u_2$ ez dago murriztuta

$$x_1 = \frac{56}{5}$$
, $x_2 = 0$, $x_3 = \frac{12}{5}$, $x_4 = 0$ y $z = \frac{84}{5}$

4. ARIKETA

Izan bedi ondoko programazio linealeko problema:

Min
$$z = 10x_1 + 3x_2 + 6x_3$$

s.a. $x_1 + x_2 + x_3 \ge 21$
 $\frac{1}{2}x_2 + 2x_3 \le 10$
 $x_2 + x_3 = 16$
 $x_1, x_2, x_3 \ge 0$

Simplex metodoa aplikatu ondoren, hasierako oinarrizko aldagaiak y_1, x_5, y_2 izan direla jakinik, ondoko taula lortzen da:

		\mathbf{C}_{i}	10	3	6	0	0	M	M
$C_{oinarrizkoa}$	$B^{-1} \cdot b$	$A_{oinarrizkoa}$	x_1	x_2	x_3	x_4	x_5	y_1	y_2
10	5	x_1	1	0	0	-1	0	1	-1
0	2	x_5	0	0	3/2	0	1	0	-1/2
3	16	x_2	0	1	1	0	0	0	1
Z=98		\mathbf{Z}_{i}	10	3	3	-10	0	10	-7
		Z_{i} - C_{i}	0	0	-3	-10	0	10-M	-7-M

- a) Zein ebazpen metodoa erabili da?
- b) Zehaztu helburu-funtzioaren c_3 koefizientearen aldaketa posibleak oinarrizko aldagaiak optimoak izaten jarraitzeko.
- c) Ba al dago $\,c_3\,$ -ren baliorik PL problemak soluzio bat baino gehiago izan dezan?
- d) Zehaztu murrizketen b_2 gai askearen aldaketa posibleak oinarrizko aldagaiak bideragarriak izaten jarraitzeko.

Soluzioa:

- a) Zigortze metodoa
- b) $3 \le c_3$
- c) $c_3 = 3$
- d) $b_2 \ge 8$

5. ARIKETA

Izan bedi ondoko programazio linealeko problema:

Min
$$z = 5x + 2y + 4z$$

s.a. $3x + y + 2z \ge 4$
 $6x + 3y + 5z \ge 10$
 $x, y, z \ge 0$

Ebatzi Simplex dual metodoa erabiliz.

Soluzioa:

x=2/3,y=2,z=0, $h_1=0,h_2=0$ soluzio optimoa eta bideragarria.

Izan bedi ondoko programazio linealeko problema:

Min
$$z = 6x_1 + 4x_2 + 2x_3$$

s.a. $6x_1 + 2x_2 + 6x_3 - x_4 + y_1 = 6$
 $6x_1 + 4x_2 + y_2 = 12$
 $2x_1 - 2x_2 + x_5 = 2$
 $x_1, x_2, x_3, x_4, x_5, y_1, y_2 \ge 0$

 y_1,y_2,x_5 hasierako oinarrizko aldagaiak direla jakinik eta problema ebazteko metodo bat erabiliz ondoko taula optimoa lortu da:

		Ci	6	4	2	0	0	М	M
$C_{oinarrizkoa}$	$B^{-1} \cdot b$	$A_{oinarrizkoa}$	x_1	x_2	x_3	x_4	x_5	y_1	y_2
6	0	x_1	1	0	2	-1/3	0	1/3	-1/6
4	3	x_2	0	1	-3	1/2	0	-1/2	1/2
0	8	x_5	0	0	-10	5/3	1	-5/3	4/3
Z=12		Zi	6	4	0	0	0	0	1
		Z _i -C _i	0	0	-2	0	0	-M	1-M

- a) Zein ebazpen metodo erabili da?
- b) Zehaztu helburu funtzioaren $\,c_3\,$ koefizientearen aldaketak, oinarrizko aldagaiak optimoak izaten jarraitzeko.
- c) Ba al dago $\,c_3\,$ -ren baliorik, problemak soluzio bakarra ez izateko?
- d) Aztertu 2.murrizketaren b_2 gai askearen aldaketak, oinarrizko aldagaiak bideragarriak izaten jarraitzeko.

Soluzioa:

- a) Zigortze metodoa
- b) $0 \le c_3$
- c) $c_3 = 0$
- d) $6 \le b_2 \le 12$

Izan bedi ondoko programazio linealeko problema:

Max
$$z = 3x_1 + 2x_2 + 5x_3$$

s.a. $x_1 + x_2 + 2x_3 \le 10$
 $2x_1 - x_2 + x_3 \le 7$
 $x_1, x_2, x_3 \ge 0$

- a) Ebatzi Simplex metodoa erabiliz
- b) Aurreko atalean lortutako taula optimoa erabiliz, kalkulatu zein balio artean egon behar den c2 helburu-funtzioaren koefizientea taula optimoa izaten jarraitzeko.
- c) Aztertu $x_1 x_2 + 2x_3 \le 5$ murrizketa gehitzean gertatzen dena.

Soluzioa:

- a) x1=13/3, x2=4/3, Zmax=77/3
- b) $c_2 \in (-\infty, 2)$
- c)x1=23/6, x2=5/2, x3=11/6 Zmax=77/3