Tarea 3: Economía Morfemática.

1. (16.33) p= a-T-BU(+)+gn(+) (16.34) $\pi(t) = j(\rho - \pi(t))$ Jea U(1)= $u \rightarrow exágena$. (16.33) en (16.34): $\pi(t) = j[\alpha-T-\beta u+g\pi(t)-\pi(t)]$ a) $\pi(t) + j(1-g)\pi(t) = j(\alpha-T-\beta u)$. \rightarrow Emaior diferencial ordinaria fineal no homogénea de 1er orden de coeficientes b) Como es una EDO de primer orden, el polinomio característico de la EDO homogénea asociada es de orden 1; por lo tanto, se tiene 1 raiz característica. Por otra parte, como se tiene una sola raíz, no se queden tener fluctuaciorles, presencia de funciones periodicas. 2. (16.33) $\rho = \alpha - T - \beta u(t) + q \pi(t)$ (16.33) en (16.35): $u(t) = -\kappa [m - \alpha + T + \beta u(t) - g \pi(t)]$ (16.35) $u(t) = -\kappa [m - \alpha + T + \beta u(t) - g \pi(t)]$ (16.35) $u(t) = -\kappa [m - \rho]$ derivando respecto αt :

1) $u(t) = -\kappa [u(t) + g \kappa \pi(t)]$ (1) Keemplazando (46.36) en (1): $\ddot{u}(t) = -\kappa \beta \dot{u}(t) + g \kappa \left[\dot{j}(\alpha - 1 - \beta u(t)) - \dot{j}(1 - g) \pi(t) \right]$ (0) Ve (16.33) se puede obtener: $\pi(t) = p - \alpha + T + \beta u(t)$ (*) De (16.35) se obtiene: ρ= mk+u(+) (+*) 9 De (**) en (*): T(t) = mK+ u(t)-K(a-T-bu(t)) (1) Ahora, (1) en (0): $ii(t) = -k\beta ii(t) + gK \left[j(\alpha - T - \beta ii(t)) - j(1 - g) / mK + ii(t) - (\alpha - T - \beta ii(t))K \right]$ $\ddot{u}(t) = -K\beta \dot{u}(t) + jKg(\alpha - T - \beta u(t)) - j(1 - g)[mK + \dot{u}(t) - (\alpha - T - \beta u(t))K]$ $\ddot{u}(t) = -\kappa \beta \dot{u}(t) - j \kappa g \beta u(t) + \kappa j g(\alpha - 7) - j(1 - g) \dot{u}(t) - j(1 - g) \beta \kappa u(t) - j(1 - g) [m \kappa - \kappa(\alpha - 7)]$ $\ddot{u}(t) + \left[\beta \kappa + j(1 - g)\right] \dot{u}(t) + j \beta \kappa u(t) = \kappa j \left[\alpha - 7 - (1 - g)m\right]$ La EDO 2 do orden en U(t). energy motor call

a) derivando (16.33) respecto a t: 3. TE=p j=-Bü(+)+gj (4) (16.33) p= \arangle -T-Bu(+)+g\pi(t) (16.35) en (1): (16.35) UCt) = -K(m-p) p=-B[-K(m-p)]+gp b) Ve (16.33) se puede (1-g)p=BKm-BKp obtenor que $\rho = \alpha - T - \beta u(t)$ 1 - g(1) (II) en (16.35): $u(t) = -\kappa \left(m - \alpha - T - \beta u(t) \right) - \frac{1-q}{1-q}$ u(t) + KBu(t) = - K(m - \alpha - T \\ 1-g, e) En principio se tiene que el modelo que se obtiene lavo la hipótesis de espectativas adaptativas (16.34): $fi(t) = j(\rho - \pi(t))$, es de Zdo viden. Por la tanto tiene Z raíces layo la hipótesis perfecta ($\rho = \pi$), se llegan a modelos de orden 1. Luego, bayo la hipótesis perfecta se pierde la pasibilidad de tener fluctuaciones. d) Se debe imponer g + 1.

10.37") Till)+[BK+j(1-g)]Till)+[jBK]Till)=jBKm. $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left[\rho(t) - \pi(t) \right], \ \dot{u}(t) = \frac{1}{2} \left[m - \rho(t) \right] y \ \rho(t) = \frac{1}{6} - 3u(t) + \pi(t)$ Lugo, $\beta = 3$; $g = \frac{1}{3}$; $f = \frac{3}{4}$; $K = \frac{1}{2} \Rightarrow \beta K + j(1-g) = \frac{3}{2} + \frac{3}{4}[1-\frac{1}{3}] = 2$. $j\beta K = \frac{9}{8}$ y $j\beta Km$ $\Rightarrow \vec{\pi}(\ell) + 2\vec{\pi}(\ell) + \frac{9}{8}\pi(\ell) = \frac{9}{8}m. \quad Homogenea: \vec{\pi}(\ell) + 2\vec{\pi}(\ell) + \frac{9}{8}\pi(\ell) = 0.$ $\lambda^{2}+2\lambda+9=0 \Rightarrow \lambda_{1,2}=\frac{1}{2}\left[-2\pm\sqrt{4-9'}\right]\Rightarrow \lambda_{1,2}=-1\pm\sqrt{2'}i$ Luego $\pi_h(t) = e^{-t} \left[C_r C_{os} \left(\frac{d\vec{z}}{4} t \right) + C_2 S_{in} \left(\frac{d\vec{z}}{4} t \right) \right]$ Particular: Se propone $\pi_p(t) = m \rightarrow \pi(t) = 0$ y $\pi(t) = 0$. En (1): $\frac{d}{d}m = \frac{d}{d}m$ Solucion general: $\pi(t) = e^{-t} \left[C_r C_{os} \left(\frac{d\vec{z}}{4} t \right) + C_2 S_{in} \left(\frac{d\vec{z}}{4} t \right) \right] + m$. Alhora, $\rho(t) = \frac{4}{3}\pi(t) + \pi(t)$ $\pi(t) = -e^{t}\left[C_{1}Cos(\frac{\sqrt{2}t}{4}) + C_{2}Sin(\frac{\sqrt{2}t}{4})\right] + e^{t}\left[-\frac{C_{1}\sqrt{2}}{4}Sin(\frac{\sqrt{2}t}{4}) + \frac{C_{2}\sqrt{2}}{4}Cos(\frac{\sqrt{2}t}{4})\right]$ An(t) + T(t) = -e [4C, Cos (12t) + 4C2 Sin (12t)] + e [-C, V2 Sin (12t) + Ce 12 Cos (12t)] + et [C, Cos(12t)+C2 Sin(12t)]+m P(t)=e-t/(-C1+C2V2) Cos(V2t)+(-C2-C1V2) Sin(V2t)]+m. Finalmente $\rho(t) = \frac{1}{6} - 3u(t) + \frac{1}{3}\pi(t) \Rightarrow u(t) = \frac{1}{18} + \frac{\pi(t)}{9} - \frac{\rho(t)}{3}$ $U(t) = \frac{1}{18} + \frac{1}{9} \left\{ e^{-t} \left[C_{*} Cos(\frac{\sqrt{2}t}{4}) + C_{2} Sin(\frac{\sqrt{2}t}{4}) \right] + in \right\} - \frac{1}{3} \left\{ e^{-t} \left[C_{*} + C_{2} \sqrt{2} \right] \left[Cos(\frac{\sqrt{2}t}{4}) + \left(-C_{2} - C_{*} \sqrt{2} \right) Sin(\frac{\sqrt{2}t}{4}) \right] + in \right\}$ $u(t) = \frac{1}{18} + e^{-t} \left[\left(\frac{ZC_1 - C_2\sqrt{z}}{q} \right) Cos \left(\frac{\sqrt{Z}t}{4} \right) + \left(\frac{ZC_2 + C_1\sqrt{z}}{q} \right) Sin \left(\frac{\sqrt{Z}t}{4} \right) \right] - \frac{Z}{q}m.$ b) Todavia fluctuien y son convergentes. c) $\bar{u} = \lim_{t \to \infty} u(t) = \frac{1}{18} - \frac{1}{9}m. \bar{\rho} = \lim_{t \to \infty} \rho(t) = m.$ d) Como $\bar{u} = \frac{1}{18} - \frac{7}{9}m$ y, $\bar{\rho} = m \Rightarrow \bar{u} = \frac{1}{2} - \frac{7}{9}\bar{\rho}$. Luego, \bar{u} y $\bar{\rho}$ estan funcionalmente hay una dependencia funcional (lineal) con pendiente nagativa. La suparicial que permite tener la linear vertical es g = 1.