Bayesball

Steven Tsai

KIN482D: Computational Modeling of

Human Sensorimotor Control and Learning

Dr. Hyosub Kim

University of British Columbia

April 10 2024

Image created by Chat GPT | DALL-E

Brantley & Körding (2022)

- "You can't think and hit at the same time"
 - Yogi Berra
- Would a batter be Bayesian?
 - Making decision with posterior that comes from integrating prior and likelihood

Three special cases

Brantley & Körding (2022) discussed three special cases where we may have different prior and/or likelihood:

- 1. Pitch tipping
 - Narrower prior -> narrower posterior
- 2. Knuckleball
 - Wide prior, wide likelihood
 - Likelihood is still more informative than prior
 - Posterior relied on likelihood
- 3. Eephus
 - Wide prior, narrow likelihood -> narrow posterior

Knuckleball (source: Tread Athletics)

The issues

- Uncommon! (of these three cases)
- Only considering the vertical distance above the plate (z-axis)

Motivation/Goals

- Try to visualize the decision-making process on the strike zone plane (both x-axis and z-axis)
- 2. "What kind of pitch is coming?"
 - Uncertainty in the pitch type of the incoming pitch
 - Explore it using bayesian framework

Case 1: only fastball

- In-lab (batting cage) experiment
 - With technologies to track movements of the ball & the swing
- A finely calibrated pitching machine
 - Gives us access to the stimulus distribution
- Feed the stimulus distribution to the batter
 - Artificially create his prior
 - In reality, we won't have access to the batter's prior (Brantley & Körding, 2022)

$$p(x) \sim \mathcal{N}(\mu_x, \sigma_{s,x}^2)$$
$$p(z) \sim \mathcal{N}(\mu_z, \sigma_{s,z}^2)$$
$$p(x, z) = p(x) * p(z)$$

FF stimulus distribution

probability

Likelihood

$$f(x,z) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-((x-x_{obs})^2 + (z-z_{obs})^2)}{2\sigma^2}}$$

Prior

Posterior

posterior w/ perfect prior (MAP)

Case 1: find sigma (batter's measurement param)

- Assumptions:
 - Batter uses stimulus distribution as his prior
 - Batter aims to hit at 25deg (optimal launch angle for a homerun)
 - Contact error (Brantley & Körding, 2022) $\mathbf{e}_{\text{contact}} = -\mathbf{r}_{\text{baseball}} \times \left(\sin(\theta_{\text{optimal}}) \sin(\theta_{\text{contact}})\right)$
 - Collect data -> Calculate the max log likelihood of sigma! (textbook C.5)
- Concerns:
 - Motor noise!
 - Z-axis only?
 - Contact happens in a 3D space

Case 1: surprise pitch

Prior, with a ball landing at the very centre

surprise pitch - result

Prior, with a ball landing at the very centre

Likelihood

Posterior

About Prior

- Powerful when there is some level of measurement uncertainty
 - But can be misleading if incorrect
- Actually, if only fastballs, an elite batter may have a lot narrower likelihood
 - Pulls the posterior closer to the observation even if it is a surprise pitch
 - Would be interesting to run in the lab
- In reality, is not necessarily Gaussian
 - Can just be a probability matrix ->
 - Do the pointwise multiplication w/likelihood
 - Happens in the batter's brain not measurable

Timeline of a fastball (Brantley & Körding, 2022)

A. Typical "Plate Appearance" In Baseball

Case 2: uncertainty in pitch type

Cutter
239 Pitches (7%)

Cutter
239 Pitches (7%)

Case 2: Generative Model (tentative)

Step 1: infer pitch type

Prior: p(pitch)

- Fastball (50%)
- Slider (35%)
- Changeup (15%)

Observation *from the 1st half of the trajectory:

- V: speed
- Sp: spin
- Sp°: spin angle
- HM: horizontal movement
- VM: vertical movement
- x,z: horizontal & vertical positions

Cue Combination:

 $p(pitch|V, Sp, ...) \propto p(pitch)p(V|pitch) ... p(x, z|pitch)$

Find the pitch type:

pitch=np,max(p(FF|obs), p(SL|obs), p(CH|obs))

(some of the) Concerns/Future Directions

- This model is confined to a 2D plane
 - Good: easy to visualize & understand
 - Bad:
 - Cannot consider swing timing
 - inference happens during the flight of the pitch; not on the strike zone plane
 - Contact not only happens on the strike zone plane; inaccurate when calculating response distribution/utility
 - A 3D model can be built if possible
- Data gathering
 - Using technologies e.g. HitTrax, high speed camera, radar
- When using launch angle to find the sigma (using max log likelihood)
 - Motor noise is not differentiated from it
 - How significant is the motor noise, given that swinging involves movement from multiple joints

Reference & GitHub

Brantley, J. A., & Körding, K. P. (2022). Bayesball: Bayesian Integration in Professional Baseball Batters. BiorXiv.

doi: https://doi.org/10.1101/2022.10.12.511934.

https://www.biorxiv.org/content/10.1101/2022.10.12.511934v1.full

GitHub to this project: https://github.com/Stevey8/Bayesball