Introduction to Networks

INTRODUCTION TO NETWORK ANALYSIS IN PYTHON

Eric Ma

Data Carpentry instructor and author of nxviz package

Networks!

- Examples:
 - Social
 - Transportation
- Model relationships between entities

Networks!

- Insights:
- Important entities: influencers in social network
- Pathfinding: most efficient transport path
- Clustering: finding communities

NetworkX API Basics

```
import networkx as nx
G = nx.Graph()
G.add_nodes_from([1, 2, 3])
G.nodes()
[1, 2, 3]
G.add_edge(1, 2)
G.edges()
[(1, 2)]
```

NetworkX API Basics

```
G.node[1]['label'] = 'blue'
G.nodes(data=True)
```

```
[(1, {'label': 'blue'}), (2, {}), (3, {})]
```

NetworkX API Basics

```
nx.draw(G)
import matplotlib.pyplot as plt
plt.show()
```


Let's practice!

INTRODUCTION TO NETWORK ANALYSIS IN PYTHON

Types of graphs

INTRODUCTION TO NETWORK ANALYSIS IN PYTHON

Eric Ma

Data Carpentry instructor and author of nxviz package

Undirected graphs

Facebook social graph

Undirected graphs

```
import networkx as nx
G = nx.Graph()
type(G)
```

networkx.classes.graph.Graph

Directed graphs

• Directed: Twitter social graph

Directed graphs

```
D = nx.DiGraph()
type(D)
```

networkx.classes.digraph.DiGraph

Types of graphs

• Multi(Di)Graph: Trip records between bike sharing stations

Multi-edge (Directed) graphs

```
M = nx.MultiGraph()
type(M)
```

networkx.classes.multigraph.MultiGraph

```
MD = nx.MultiDiGraph()
type(MD)
```

networkx.classes.multidigraph.MultiDiGraph

Weights on graphs

• Edges can contain weights

Weights on graphs

• Edges can contain weights

Weights on graphs

• Edges can contain weights

Self-loops

Nodes that are connected to themselves

Let's practice!

INTRODUCTION TO NETWORK ANALYSIS IN PYTHON

Network visualization

INTRODUCTION TO NETWORK ANALYSIS IN PYTHON

Eric Ma

Data Carpentry instructor and author of nxviz package

Irrational vs. Rational visualizations

Visualizing networks

- Matrix plots
- Arc plots
- Circos plots

Visualizing networks

- Matrix plots
- Arc plots
- Circos plots

Directed matrices

Visualizing networks

- Matrix Plots
- Arc Plots
- Circos Plots

Arc plot

Visualizing networks

- Matrix Plots
- Arc Plots
- Circos Plots

Circos plot

Circos plot

nxviz API

```
import nxviz as nv
import matplotlib.pyplot as plt
ap = nv.ArcPlot(G)
ap.draw()
plt.show()
```

Let's practice!

INTRODUCTION TO NETWORK ANALYSIS IN PYTHON

