SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

VNORENÉ RIADIACE SYSTÉMY VYHRIEVANÁ PODLOŽKA S RIADENÍM TEPLOTY SEMESTRÁLNE ZADANIE

Bc. Martin Minár Bc. František Durdy Bc. Juraj Fojtík Bc. Peter Čech

ZS 2016/2017

1. Hardvér zariadenia

Cieľom zadania bolo zostaviť zariadenie, ktoré umožní riadiť teplotu vyhrievanej podložky, pričom sme použili nasledovné komponenty:

- Programovateľná platforma NUCLEO L152RE
- Vyhrievaná podložka
- Relé
- Potenciometer
- Snímač teploty DS18B20
- TFT displej

Zapojenie jednotlivých komponentov možno vidieť na obr.1

Obr.1 Bloková schéma zariadenia

Obr.2 Reálne zariadenie

Obr.3 Displej s príslušnými hodnotami a grafickým vykresľovaním

2. Popis zbernice onewire použitej pri komunikácií z DS18B20

One-Wire zariadenie pracuje v open-drain prostredí na napätí od 2.0 do 5.5 V. Presné logické úrovne a minimálne pullup napätie závisí od zariadenia, kde minimálne pullup napätie je 2.8V pre dobíjanie vnútornej pamäte a kondenzátor slúži na napájanie počas nízkej úrovne.

Využíva sa časovanie, teda sleduje sa aký dlhý čas trvá napäťová úroveň. Komunikácia funguje na logických úrovniach a to vysoká úroveň – nízka úroveň. Ak chcem nastaviť logickú nulu alebo logickú jednotku zopnem napäťový výstup, od dĺžky trvania napäťového signálu rozoznávam o akú logickú úroveň ide.

Obr.4 čítanie logickej nuly

Obr.5 čítanie logickej jednotky

Ak čítam logickú nulu na RX mám 0xFE a TX 0xFF, ak čítam logickú jednotku tak Rx mám 0xFF a TX 0xFF

Obr.6 zapisovanie logickej nuly

Obr.7 zapisovanie logickej jednotky

Ak zapisujem logickú nulu budem mať RX 0x00 a TX 0x00 , pri zapisovaní logickej jednotky budem mať na RX 0xFF a TX 0xFF

3. Dvojpólový regulátor s hysterézou

Jedná sa o zariadenie pre ovplyvnenie regulovaného systému, k dosiahnutiu a udržaniu požadovaného stavu. Porovnáva skutočnú a žiadanú hodnotu regulačnej veličiny. V závislosti od regulačnej odchýlky ovpluvňujeme akčnú veličinu. Regulátor reguluje systém s cieľom buď úplne eliminovať odchýlku, alebo udržuje odchýlku aspoň v nejakom povolenom rozsahu.

Ideálne relé: ak e>0, znamená to, že žiadaná hodnota je väčšia ako meraná, výstup regulátoru $u_2 \rightarrow$ nárast regulovanej veličiny, max. prísun energie.

V opačnom prípade $u_1 \rightarrow$ pokles regulovanej veličiny, max. odber "zápornej" energie – nie často, napr. chladenie; prakticky – odvod energie do prostredia.

Nevhodný režim: neustále prepínanie okolo w – zničenie mechanických častí, citlivé na šum – prakticky nepoužiteľné

Relé s hysterézou "H": zhoršenie kvality regulácie voči ideálnemu relé, prepínanie až na ±H/2 (vhodná veľkosť – jednotky % z rozsahu reg. veličiny).

Obr.8 Graf prepínacej priamky dvojpolohového relé s hysteréziou

4. Programátorská príručka

- Knižnica tft/ili9163.h
 - knižnica slúži na riadenie grafického driveru displeja(dostali sme k zadaniu)
- Knižnica tft/spi.h
 - o knižnica slúži na komunikáciu z grafickým displejom prostredníctvom SPI zbernice(dostali sme k zadaniu)
- Knižnica tft/graf.h
 - #define GRAFOFFSETX konštanta na nastavenie lavého vrchného rohu grafu
 - #define GRAFOFFSETY konštanta na nastavenie lavého vrchného rohu grafu
 - o #define GRAFVYSKA 80 výška v pixeloch grafu
 - o #define GRAFSIRKA 100 šírka v pixeloch grafu
 - o #define MINYGRAF 20 minimálna hodnota na grafe
 - o #define MAXYGRAF 80 maximálna hodnota na grafe
 - o void vykresliOsiGrafu() vykreslí osi grafu
 - void pridajPozadovanuHodnotuDoGrafu(float temp) pridáva požadovanú hodnotu do grafu a prekresluje ho
 - void pridajAktualnuHodnotuDoGrafu(float temp) pridáva aktuálnu hodnotu do grafu a prekresluje ho
- Knižnica tft/texty.h
 - void showPozadovanaHodnota(float temp); vypíše požadovanú hodnotu na displeji
 - void showAktualnaHodnota(float temp); vypíše aktuálnu hodnotu na displeji
 - void showAkcnyZasah(int status); vypíše hodnotu akčného zásahu na displeji
- Knižnica regulator/regulator.h
 - #define REGULATOR_HYSTERESIS_UP konštanta, v ktorej je uložená hysteréza zhora
 - #define REGULATOR_HYSTERESIS_DOWN konštanta, v ktorej je uložená hysteréza zdola
 - #define REGULATOR_INVERSE slúži na určenie, či akčný zásah je v pôvodnom tvare alebo v inverznom
 - #define #define REGULATOR_PIN_NUM slúži na nastavenie pinu, na ktorom je pripojená riadiaca doska na spínanie akčného zásahu
 - #define REGULATOR_PORT slúži na nastavenie portu, na ktorom je pripojená riadiaca doska na spínanie akčného zásahu
 - #define REGULATOR_CLK slúži na nastavenie hodinového signálu pre port

```
    void regulatorInit(void); - inicializuje výstup regulátora
```

- void vygenerujAkcnyZasah(float pozadovana, float aktualna);
 - vygeneruje akčný zásah na základe požadovanej a aktuálnej hodnoty
- o void setAkcnyZasah(char status); nastaví akčný zásah
- o char getAkcnyZasah(); získa hodnotu akčného zásahu
- Knižnica onewire/onewire.h
 - uint8_t OW_Init(); slúži na inicializáciu zbernice onewire, ktorá je prevádzkovaná cez UART
 - uint8_t OW_Send(uint8_t sendReset, uint8_t *command, uint8_t cLen, uint8_t *data, uint8_t dLen, uint8_t readStart); - funkcia slúži na príjem/odosielanie dát na/z zbernice onewire
- Hlavná časť programu main.c
 - void adc_init(void) inicializuje AD prevodník, pre získavanie žiadanej hodnoty
 - void ADC1_IRQHandler(void) prerušenie na získanie
 žiadanej hodnoty a zobrazenie na grafe, po dokončení prevodu

```
o int main(void) {
                                   //inicializácia onewire
        OW Init();
        lcdInitialise(LCD ORIENTATION1); //nastavenie
   rotácie a inicializácia displeja
        lcdClearDisplay(decodeRgbValue(0, 0, 0));
   //vymazanie displeja, nastavenie pozadia na čierno
        regulatorInit(); //inicializácia regulátora
                             //inicializácia AD prevodníka
        adc init();
        vykresliOsiGrafu(); //vykreslenie základných osí
   grafu
        while (1) {
              ADC SoftwareStartConv(ADC1); //štart prevodu
   žiadanej hodnoty
              OW_Send(OW_SEND_RESET, "\xcc\x44", 2, NULL,
   NULL, OW_NO_READ); // odoslanie resetu a spustenie
   začiatku konverzie z teplotného snímača
              for (long i = 0; i < 10000; i++) // počkatie</pre>
```

;
uint8_t buf[2];
OW_Send(OW_SEND_RESET, "\xcc\xbe\xff\xff", 4,
buf, 2, 2); //načítanie hodnoty zo teplotného snímača
//-----

požadovaného času, ovplyvňuje aj vzorkovaciu frekvenciu

5. Používateľská príručka/princíp činnosti

Pomocou potenciometra si nastavíme žiadanú teplotu podložky. Túto teplotu spolu s aktuálnou teplotou podložky vidíme na displeji, na ktorom vykresľujeme formou grafu priebehy týchto dvoch veličín, pričom žiadaná hodnota má červenú farbu a aktuálna hodnota má zeleno-modrú farbu. Aktuálnu hodnotu teploty snímame pomocou snímača teploty DS18B20. Aktuálnu a žiadanú hodnotu teploty porovnávame a na základe toho zopíname alebo vypíname relé, teda riadime vyhrievanie podložky na žiadanú teplotu. Stav relé potom sledujeme na displeji pomocou premennej zasah. Hodnota 1 znamená, že je relé zopnuté a podložka hreje a stav 0 znamené, že relé je vypnuté a podložka nehreje. Reléový regulátor má nastavenú hysteréziu 0 zhora a 0,5 zdola. V praxi to znamená to, že ak je napr. želaná hodnota 20°C a aktuálna hodnota tiež 20°C je relé vypnuté a pri poklese aktuálnej teploty na podložke na hodnotu 19,5°C sa zase zopne až pod dobu, keď nebude aktuálna teplota na podložka 20°C. Ak by došlo k poškodeniu snímača, program túto chybu zdetekuje a vypne vyhrievanie podložky a na displeji sa zobrazí hodnota "--.--".