$12n_{0525} (K12n_{0525})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 730697u^{21} + 8724191u^{20} + \dots + 1495432b + 38274232, \\ &- 1973739u^{21} - 26703501u^{20} + \dots + 5981728a - 159009976, \ u^{22} + 11u^{21} + \dots + 232u + 32 \rangle \\ I_2^u &= \langle -10u^{29} + 31u^{28} + \dots + 8b - 6, \ -54u^{29}a + 37u^{29} + \dots + 104a - 100, \ u^{30} - 5u^{29} + \dots - 2u + 1 \rangle \\ I_3^u &= \langle u^{11} + 2u^{10} + 7u^9 + 10u^8 + 18u^7 + 15u^6 + 19u^5 + 5u^4 + 7u^3 - 2u^2 + b + 2u, \\ &- u^{11} - u^{10} - 5u^9 - 3u^8 - 8u^7 + 3u^6 - 4u^5 + 14u^4 - 2u^3 + 8u^2 + a - 4u + 1, \\ &- u^{12} + 2u^{11} + 7u^{10} + 10u^9 + 19u^8 + 17u^7 + 24u^6 + 11u^5 + 15u^4 + 2u^3 + 6u^2 + 1 \rangle \\ I_4^u &= \langle -u^2a + u^3 - u^2 + b + u, \ u^5a - 2u^4a - 4u^5 + 5u^3a + 5u^4 - 6u^2a - 11u^3 + a^2 + 5au + 9u^2 - 2a - 10u, \\ &- u^6 - u^5 + 3u^4 - 2u^3 + 3u^2 + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 106 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{array}{c} \text{I. }I_1^u = \\ \langle 7.31 \times 10^5 u^{21} + 8.72 \times 10^6 u^{20} + \cdots + 1.50 \times 10^6 b + 3.83 \times 10^7, \ -1.97 \times 10^6 u^{21} - \\ 2.67 \times 10^7 u^{20} + \cdots + 5.98 \times 10^6 a - 1.59 \times 10^8, \ u^{22} + 11 u^{21} + \cdots + 232 u + 32 \rangle \end{array}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.329961u^{21} + 4.46418u^{20} + \dots + 167.160u + 26.5826 \\ -0.488619u^{21} - 5.83389u^{20} + \dots - 164.041u - 25.5941 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.678659u^{21} - 6.54536u^{20} + \dots - 66.3494u - 8.74650 \\ 0.549186u^{21} + 5.23031u^{20} + \dots + 73.2841u + 11.2249 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.309352u^{21} - 2.39786u^{20} + \dots + 59.0207u + 10.7541 \\ -0.730680u^{21} - 8.31181u^{20} + \dots + 59.0207u + 10.7541 \\ 0.549186u^{21} + 5.23031u^{20} + \dots + 6.93466u + 2.47838 \\ 0.549186u^{21} + 5.23031u^{20} + \dots + 73.2841u + 11.2249 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.770630u^{21} + 8.00468u^{20} + \dots + 111.293u + 15.5266 \\ 0.580458u^{21} + 6.16373u^{20} + \dots + 148.964u + 22.7178 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.459930u^{21} - 4.72878u^{20} + \dots + 148.964u + 22.394 \\ 0.109153u^{21} + 1.41941u^{20} + \dots + 32.5161u + 4.14313 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.709930u^{21} - 7.22878u^{20} + \dots - 117.030u - 16.7394 \\ 0.359153u^{21} + 3.66941u^{20} + \dots + 37.0161u + 4.14313 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{297700}{186929}u^{21} - \frac{2758587}{186929}u^{20} + \dots - \frac{6073132}{186929}u - \frac{1067206}{186929}u^{20} + \dots$$

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$u^{22} + 13u^{21} + \dots + 6u + 1$
c_2, c_5, c_6 c_{11}	$u^{22} + u^{21} + \dots - 2u + 1$
c_3, c_8, c_9	$u^{22} + 11u^{21} + \dots + 232u + 32$
c_4	$u^{22} - 15u^{21} + \dots - 480u + 64$
c_7, c_{12}	$u^{22} + 13u^{20} + \dots - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_{10}	$y^{22} + y^{21} + \dots + 34y + 1$
c_2, c_5, c_6 c_{11}	$y^{22} + 13y^{21} + \dots + 6y + 1$
c_3, c_8, c_9	$y^{22} + 11y^{21} + \dots + 3264y + 1024$
c_4	$y^{22} + 7y^{21} + \dots + 39936y + 4096$
c_7, c_{12}	$y^{22} + 26y^{21} + \dots + 17y + 1$

u = -0.767910 + 0.699836I		
a = 0.888145 - 0.307129I	-0.286662 + 0.737446I	3.26178 - 2.36364I
b = -0.688888 - 0.277789I		
u = -0.767910 - 0.699836I		
a = 0.888145 + 0.307129I	-0.286662 - 0.737446I	3.26178 + 2.36364I
b = -0.688888 + 0.277789I		
u = -0.350255 + 1.075900I		
a = 0.81263 - 1.53152I	-2.88260 + 1.01233I	-4.09792 + 3.96823I
b = -0.240178 + 0.810554I		
u = -0.350255 - 1.075900I		
a = 0.81263 + 1.53152I	-2.88260 - 1.01233I	-4.09792 - 3.96823I
b = -0.240178 - 0.810554I		
u = -1.033280 + 0.527627I		
a = -0.721729 - 0.194727I	-8.25550 - 1.54810I	-5.19018 + 2.03970I
b = 0.417851 - 1.163520I		
u = -1.033280 - 0.527627I		
a = -0.721729 + 0.194727I	-8.25550 + 1.54810I	-5.19018 - 2.03970I
b = 0.417851 + 1.163520I		
u = 0.755708 + 0.364616I		
a = 0.685218 + 0.575896I	-4.85462 - 1.77876I	-4.79807 + 3.91708I
b = -0.063685 + 1.154200I		
u = 0.755708 - 0.364616I		
a = 0.685218 - 0.575896I	-4.85462 + 1.77876I	-4.79807 - 3.91708I
b = -0.063685 - 1.154200I		
u = -0.774895 + 1.020220I		
a = -0.766277 + 0.769605I	0.61034 + 5.16314I	3.96974 - 2.90756I
b = 0.885411 - 0.402143I		
u = -0.774895 - 1.020220I		
a = -0.766277 - 0.769605I	0.61034 - 5.16314I	3.96974 + 2.90756I
b = 0.885411 + 0.402143I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.221500 + 0.677927I		
a = 0.567702 - 0.117730I	-6.12965 - 9.37239I	-3.35170 + 5.78555I
b = -0.558982 + 1.253320I		
u = -1.221500 - 0.677927I		
a = 0.567702 + 0.117730I	-6.12965 + 9.37239I	-3.35170 - 5.78555I
b = -0.558982 - 1.253320I		
u = -0.127935 + 1.398640I		
a = -1.71401 - 0.32772I	6.04024 + 2.92164I	4.28614 + 0.75325I
b = 0.565971 + 0.644936I		
u = -0.127935 - 1.398640I		
a = -1.71401 + 0.32772I	6.04024 - 2.92164I	4.28614 - 0.75325I
b = 0.565971 - 0.644936I		
u = -0.304981 + 0.451421I		
a = 0.960223 - 0.185150I	0.090652 + 0.977959I	1.72728 - 6.82657I
b = -0.310004 - 0.375864I		
u = -0.304981 - 0.451421I		
a = 0.960223 + 0.185150I	0.090652 - 0.977959I	1.72728 + 6.82657I
b = -0.310004 + 0.375864I		
u = -0.76091 + 1.25738I		
a = 1.92912 + 0.01305I	-5.97217 + 8.17735I	-2.07600 - 6.92513I
b = -0.557890 - 1.095380I		
u = -0.76091 - 1.25738I		
a = 1.92912 - 0.01305I	-5.97217 - 8.17735I	-2.07600 + 6.92513I
b = -0.557890 + 1.095380I		
u = -0.89339 + 1.20903I		
a = -1.79322 + 0.05043I	-4.4232 + 16.8853I	-1.04656 - 9.40882I
b = 0.663517 + 1.230310I		
u = -0.89339 - 1.20903I		
a = -1.79322 - 0.05043I	-4.4232 - 16.8853I	-1.04656 + 9.40882I
b = 0.663517 - 1.230310I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.02066 + 1.63363I		
a = -0.972799 + 0.791268I	3.03407 - 4.86939I	-4.68451 + 3.83035I
b = 0.386878 - 1.096150I		
u = -0.02066 - 1.63363I		
a = -0.972799 - 0.791268I	3.03407 + 4.86939I	-4.68451 - 3.83035I
b = 0.386878 + 1.096150I		

II.
$$I_2^u = \langle -10u^{29} + 31u^{28} + \dots + 8b - 6, -54u^{29}a + 37u^{29} + \dots + 104a - 100, u^{30} - 5u^{29} + \dots - 2u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{5}{4}u^{29} - \frac{31}{8}u^{28} + \dots + \frac{25}{8}u + \frac{3}{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{3}{2}u^{29}a + \frac{5}{4}u^{29} + \dots - \frac{7}{8}a + \frac{3}{8}\\\frac{7}{8}u^{29}a - \frac{1}{8}u^{29} + \dots - \frac{3}{4}a - \frac{29}{8} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.500000au^{29} + 2.12500u^{29} + \dots - 1.62500a - 2.75000\\ -\frac{3}{2}u^{29}a - \frac{11}{2}u^{29} + \dots + 2a + \frac{69}{8} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{5}{8}u^{29}a + \frac{9}{8}u^{29} + \dots - \frac{13}{4}a - \frac{13}{4}\\\frac{7}{8}u^{29}a - \frac{1}{8}u^{29} + \dots - \frac{3}{4}a - \frac{29}{8} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -4u^{29}a + 4u^{29} + \dots + \frac{19}{4}a - \frac{19}{4}\\u^{29}a + \frac{9}{4}u^{29} + \dots + \frac{3}{4}a - \frac{9}{8} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2u^{29}a - \frac{5}{8}u^{29} + \dots + \frac{3}{8}a + \frac{15}{8}\\\frac{5}{4}u^{29}a + \frac{13}{4}u^{29} + \dots + \frac{5}{8}a - \frac{49}{8} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -3u^{29}a + \frac{15}{8}u^{29} + \dots + \frac{11}{2}a - \frac{5}{2}\\\frac{3}{4}u^{29}a - \frac{13}{8}u^{29} + \dots + \frac{11}{2}a - \frac{5}{2}\\\frac{3}{4}u^{29}a - \frac{13}{4}u^{29} + \dots - \frac{5}{4}a - \frac{1}{8} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $19u^{29} \frac{169}{2}u^{28} + \dots + 26u \frac{5}{2}$

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$u^{60} + 30u^{59} + \dots + 31603u + 2209$
c_2, c_5, c_6 c_{11}	$u^{60} - 2u^{59} + \dots + 81u + 47$
c_3, c_8, c_9	$(u^{30} - 5u^{29} + \dots - 2u + 1)^2$
c_4	$(u^{30} + 6u^{29} + \dots + 9u + 1)^2$
c_7, c_{12}	$u^{60} + 5u^{59} + \dots - 18u + 1$

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$y^{60} + 6y^{59} + \dots - 90081877y + 4879681$
c_2, c_5, c_6 c_{11}	$y^{60} + 30y^{59} + \dots + 31603y + 2209$
c_3, c_8, c_9	$(y^{30} + 9y^{29} + \dots + 14y + 1)^2$
c_4	$(y^{30} + 10y^{29} + \dots - 9y + 1)^2$
c_7, c_{12}	$y^{60} + 39y^{59} + \dots - 40y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.408738 + 0.809128I		
a = 1.47348 + 0.03228I	1.95297 + 0.83755I	3.80919 - 0.73546I
b = -0.881093 - 0.652728I		
u = -0.408738 + 0.809128I		
a = 0.65867 + 1.49537I	1.95297 + 0.83755I	3.80919 - 0.73546I
b = 0.483976 - 0.827208I		
u = -0.408738 - 0.809128I		
a = 1.47348 - 0.03228I	1.95297 - 0.83755I	3.80919 + 0.73546I
b = -0.881093 + 0.652728I		
u = -0.408738 - 0.809128I		
a = 0.65867 - 1.49537I	1.95297 - 0.83755I	3.80919 + 0.73546I
b = 0.483976 + 0.827208I		
u = 0.204797 + 0.865298I		
a = 0.913167 + 0.827489I	0.86908 + 5.05707I	0.52377 - 4.80046I
b = -0.717809 - 1.010560I		
u = 0.204797 + 0.865298I		
a = 0.79610 - 2.03259I	0.86908 + 5.05707I	0.52377 - 4.80046I
b = 0.378609 + 0.969447I		
u = 0.204797 - 0.865298I		
a = 0.913167 - 0.827489I	0.86908 - 5.05707I	0.52377 + 4.80046I
b = -0.717809 + 1.010560I		
u = 0.204797 - 0.865298I		
a = 0.79610 + 2.03259I	0.86908 - 5.05707I	0.52377 + 4.80046I
b = 0.378609 - 0.969447I		
u = 0.846145 + 0.766192I	F 00F10 2 1225-	0.00440
a = -0.742838 + 0.117308I	-5.03543 - 2.48830I	-2.08110 + 3.16963I
b = 0.633812 - 0.058357I		
u = 0.846145 + 0.766192I		
a = 0.161640 + 0.601130I	-5.03543 - 2.48830I	-2.08110 + 3.16963I
b = 0.123075 + 1.176780I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.846145 - 0.766192I		
a = -0.742838 - 0.117308I	-5.03543 + 2.48830I	-2.08110 - 3.16963I
b = 0.633812 + 0.058357I		
u = 0.846145 - 0.766192I		
a = 0.161640 - 0.601130I	-5.03543 + 2.48830I	-2.08110 - 3.16963I
b = 0.123075 - 1.176780I		
u = 0.476164 + 0.624124I		
a = 1.065700 + 0.769850I	-0.16540 - 7.91184I	-1.25799 + 13.37489I
b = -0.560439 + 1.270490I		
u = 0.476164 + 0.624124I		
a = -3.03202 - 0.17816I	-0.16540 - 7.91184I	-1.25799 + 13.37489I
b = 0.670131 - 1.010730I		
u = 0.476164 - 0.624124I		
a = 1.065700 - 0.769850I	-0.16540 + 7.91184I	-1.25799 - 13.37489I
b = -0.560439 - 1.270490I		
u = 0.476164 - 0.624124I		
a = -3.03202 + 0.17816I	-0.16540 + 7.91184I	-1.25799 - 13.37489I
b = 0.670131 + 1.010730I		
u = 0.843824 + 0.910765I		
a = 0.922245 + 0.095668I	-5.24308 - 3.14036I	3.38309 + 6.95597I
b = -0.146948 + 1.374310I		
u = 0.843824 + 0.910765I		
a = 0.418535 + 0.014710I	-5.24308 - 3.14036I	3.38309 + 6.95597I
b = 0.036650 + 0.609588I		
u = 0.843824 - 0.910765I		
a = 0.922245 - 0.095668I	-5.24308 + 3.14036I	3.38309 - 6.95597I
b = -0.146948 - 1.374310I		
u = 0.843824 - 0.910765I		
a = 0.418535 - 0.014710I	-5.24308 + 3.14036I	3.38309 - 6.95597I
b = 0.036650 - 0.609588I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.535931 + 0.532997I		
a = 1.74162 - 0.15387I	1.99448 - 4.75213I	1.25920 + 8.38226I
b = -0.945912 + 0.839676I		
u = 0.535931 + 0.532997I		
a = -1.15336 - 2.63260I	1.99448 - 4.75213I	1.25920 + 8.38226I
b = 0.461109 - 0.821998I		
u = 0.535931 - 0.532997I		
a = 1.74162 + 0.15387I	1.99448 + 4.75213I	1.25920 - 8.38226I
b = -0.945912 - 0.839676I		
u = 0.535931 - 0.532997I		
a = -1.15336 + 2.63260I	1.99448 + 4.75213I	1.25920 - 8.38226I
b = 0.461109 + 0.821998I		
u = -0.009746 + 0.748854I		
a = 0.263930 - 0.170722I	3.73099 + 2.66963I	10.94282 - 2.46654I
b = -0.891285 - 0.086936I		
u = -0.009746 + 0.748854I		
a = -2.60774 - 1.78017I	3.73099 + 2.66963I	10.94282 - 2.46654I
b = 0.695330 + 0.857378I		
u = -0.009746 - 0.748854I		
a = 0.263930 + 0.170722I	3.73099 - 2.66963I	10.94282 + 2.46654I
b = -0.891285 + 0.086936I		
u = -0.009746 - 0.748854I		
a = -2.60774 + 1.78017I	3.73099 - 2.66963I	10.94282 + 2.46654I
b = 0.695330 - 0.857378I		
u = 1.008520 + 0.761169I		
a = 1.152310 + 0.354766I	-2.70377 + 3.89986I	-0.32016 - 2.93300I
b = -0.976428 + 0.128566I		
u = 1.008520 + 0.761169I		
a = 0.479203 - 0.132479I	-2.70377 + 3.89986I	-0.32016 - 2.93300I
b = -0.523001 - 1.118150I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.008520 - 0.761169I		
a = 1.152310 - 0.354766I	-2.70377 - 3.89986I	-0.32016 + 2.93300I
b = -0.976428 - 0.128566I		
u = 1.008520 - 0.761169I		
a = 0.479203 + 0.132479I	-2.70377 - 3.89986I	-0.32016 + 2.93300I
b = -0.523001 + 1.118150I		
u = 0.716463 + 1.086870I		
a = 0.985703 + 0.963170I	-4.00624 - 3.41764I	-0.54348 + 2.60438I
b = -0.637549 - 0.440747I		
u = 0.716463 + 1.086870I		
a = 1.73164 + 0.46125I	-4.00624 - 3.41764I	-0.54348 + 2.60438I
b = -0.354117 + 1.056240I		
u = 0.716463 - 1.086870I		
a = 0.985703 - 0.963170I	-4.00624 + 3.41764I	-0.54348 - 2.60438I
b = -0.637549 + 0.440747I		
u = 0.716463 - 1.086870I		
a = 1.73164 - 0.46125I	-4.00624 + 3.41764I	-0.54348 - 2.60438I
b = -0.354117 - 1.056240I		
u = -0.464563 + 0.517217I		
a = 0.810151 - 0.727418I	0.97854 + 2.53138I	-0.41612 - 5.99517I
b = -0.576786 - 1.098220I		
u = -0.464563 + 0.517217I		
a = -0.46286 + 1.86979I	0.97854 + 2.53138I	-0.41612 - 5.99517I
b = 0.737137 - 0.620730I		
u = -0.464563 - 0.517217I		
a = 0.810151 + 0.727418I	0.97854 - 2.53138I	-0.41612 + 5.99517I
b = -0.576786 + 1.098220I		
u = -0.464563 - 0.517217I		
a = -0.46286 - 1.86979I	0.97854 - 2.53138I	-0.41612 + 5.99517I
b = 0.737137 + 0.620730I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.037400 + 0.901379I		
a = -1.183640 + 0.552154I	-7.97522 + 6.40080I	-3.44445 - 6.75759I
b = 0.465103 + 1.121610I		
u = -1.037400 + 0.901379I		
a = 0.145261 + 0.219918I	-7.97522 + 6.40080I	-3.44445 - 6.75759I
b = 0.19421 - 1.45130I		
u = -1.037400 - 0.901379I		
a = -1.183640 - 0.552154I	-7.97522 - 6.40080I	-3.44445 + 6.75759I
b = 0.465103 - 1.121610I		
u = -1.037400 - 0.901379I		
a = 0.145261 - 0.219918I	-7.97522 - 6.40080I	-3.44445 + 6.75759I
b = 0.19421 + 1.45130I		
u = 0.862751 + 1.092420I		
a = -1.077000 - 0.739852I	-1.66664 - 10.74240I	0. + 6.67563I
b = 1.047710 + 0.340566I		
u = 0.862751 + 1.092420I		
a = -1.77506 - 0.35041I	-1.66664 - 10.74240I	0. + 6.67563I
b = 0.627078 - 1.150130I		
u = 0.862751 - 1.092420I		
a = -1.077000 + 0.739852I	-1.66664 + 10.74240I	0 6.67563I
b = 1.047710 - 0.340566I		
u = 0.862751 - 1.092420I		
a = -1.77506 + 0.35041I	-1.66664 + 10.74240I	0 6.67563I
b = 0.627078 + 1.150130I		
u = 0.173166 + 1.400750I		
a = -1.367910 - 0.170007I	4.99765 + 1.93280I	0 5.83991I
b = 0.212711 - 0.577463I		
u = 0.173166 + 1.400750I		
a = -1.38631 - 0.99061I	4.99765 + 1.93280I	0 5.83991I
b = 0.646364 + 0.999117I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.173166 - 1.400750I		
a = -1.367910 + 0.170007I	4.99765 - 1.93280I	0. + 5.83991I
b = 0.212711 + 0.577463I		
u = 0.173166 - 1.400750I		
a = -1.38631 + 0.99061I	4.99765 - 1.93280I	0. + 5.83991I
b = 0.646364 - 0.999117I		
u = -1.00992 + 1.06850I		
a = 1.291960 + 0.152355I	-7.50048 + 1.00444I	0
b = -0.39965 - 1.37579I		
u = -1.00992 + 1.06850I		
a = 0.154134 + 0.113540I	-7.50048 + 1.00444I	0
b = -0.344881 + 1.084600I		
u = -1.00992 - 1.06850I		
a = 1.291960 - 0.152355I	-7.50048 - 1.00444I	0
b = -0.39965 + 1.37579I		
u = -1.00992 - 1.06850I		
a = 0.154134 - 0.113540I	-7.50048 - 1.00444I	0
b = -0.344881 - 1.084600I		
u = -0.237396 + 0.363229I		
a = 0.87244 - 1.36981I	1.67828 - 1.77422I	-0.88602 - 3.46618I
b = -0.849393 + 0.936354I		
u = -0.237396 + 0.363229I		
a = -0.74915 + 5.11939I	1.67828 - 1.77422I	-0.88602 - 3.46618I
b = 0.392284 + 0.725566I		
u = -0.237396 - 0.363229I		
a = 0.87244 + 1.36981I	1.67828 + 1.77422I	-0.88602 + 3.46618I
b = -0.849393 - 0.936354I		
u = -0.237396 - 0.363229I		
a = -0.74915 - 5.11939I	1.67828 + 1.77422I	-0.88602 + 3.46618I
b = 0.392284 - 0.725566I		

III.
$$I_3^u = \langle u^{11} + 2u^{10} + \dots + b + 2u, -u^{11} - u^{10} + \dots + a + 1, u^{12} + 2u^{11} + \dots + 6u^2 + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{11} + u^{10} + 5u^{9} + 3u^{8} + 8u^{7} - 3u^{6} + 4u^{5} - 14u^{4} + 2u^{3} - 8u^{2} + 4u - 1 \\ -u^{11} - 2u^{10} + \dots + 2u^{2} - 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{11} - 2u^{10} + \dots - u + 6 \\ 2u^{11} + 4u^{10} + \dots + 4u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{11} + 3u^{9} - 4u^{8} - 2u^{7} - 22u^{6} - 13u^{5} - 38u^{4} - 10u^{3} - 24u^{2} + u - 7 \\ -2u^{11} - 4u^{10} + \dots - 6u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2u^{10} + 5u^{9} + \dots + 3u + 5 \\ 2u^{11} + 4u^{10} + \dots + 4u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{10} + 2u^{9} + 6u^{8} + 8u^{7} + 13u^{6} + 9u^{5} + 11u^{4} + 2u^{3} + 3u^{2} - u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{11} - u^{10} + \dots - u + 4 \\ 2u^{11} + 5u^{10} + \dots + 3u^{2} + 5u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{11} + 3u^{10} + 8u^{9} + 14u^{8} + 21u^{7} + 22u^{6} + 20u^{5} + 12u^{4} + 4u^{3} + u^{2} + 1 \end{pmatrix}$$

(ii) Obstruction class = 1

$$= -7u^{11} - 13u^{10} - 41u^9 - 49u^8 - 86u^7 - 47u^6 - 71u^5 + 13u^4 - 26u^3 + 32u^2 - 13u + 14u^4 - 13u^4 - 13u^4$$

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$u^{12} - 7u^{11} + \dots - 9u + 1$
c_2, c_6	$u^{12} + u^{11} + \dots + u + 1$
<i>c</i> ₃	$u^{12} + 2u^{11} + \dots + 6u^2 + 1$
c_4	$u^{12} - 2u^{11} + \dots - 2u + 1$
c_5, c_{11}	$u^{12} - u^{11} + \dots - u + 1$
c_7,c_{12}	$u^{12} + 2u^{10} - u^9 + u^8 - 2u^7 + u^6 + 4u^4 + 3u^3 - 2u^2 + 1$
c_{8}, c_{9}	$u^{12} - 2u^{11} + \dots + 6u^2 + 1$

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$y^{12} + 3y^{11} + \dots - 11y + 1$
c_2, c_5, c_6 c_{11}	$y^{12} + 7y^{11} + \dots + 9y + 1$
c_3, c_8, c_9	$y^{12} + 10y^{11} + \dots + 12y + 1$
c_4	$y^{12} + 6y^{11} + \dots - 2y + 1$
c_7, c_{12}	$y^{12} + 4y^{11} + \dots - 4y + 1$

$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
-2.45692 + 1.58415I	2.68356 - 4.01575I
-2.45692 - 1.58415I	2.68356 + 4.01575I
6.04841 - 3.70923I	4.35790 + 9.04746I
6.04841 + 3.70923I	4.35790 - 9.04746I
0.26042 - 7.07580I	3.22594 + 4.98075I
0.26042 + 7.07580I	3.22594 - 4.98075I
2.91227 + 3.67114I	6.22425 - 5.54178I
2.91227 - 3.67114I	6.22425 + 5.54178I
-7.51749 + 3.74982I	-4.74315 - 3.41984I
-7.51749 - 3.74982I	-4.74315 + 3.41984I
	-2.45692 + 1.58415I $-2.45692 - 1.58415I$ $6.04841 - 3.70923I$ $6.04841 + 3.70923I$ $0.26042 - 7.07580I$ $0.26042 + 7.07580I$ $2.91227 + 3.67114I$ $2.91227 - 3.67114I$ $-7.51749 + 3.74982I$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.11683 + 1.44227I		
a = -0.803868 - 0.992511I	4.04318 + 5.16032I	4.25149 - 6.22222I
b = 0.488896 + 1.051410I		
u = 0.11683 - 1.44227I		
a = -0.803868 + 0.992511I	4.04318 - 5.16032I	4.25149 + 6.22222I
b = 0.488896 - 1.051410I		

$$\text{IV. } I_4^u = \\ \langle -u^2a + u^3 - u^2 + b + u, \ u^5a - 4u^5 + \dots + a^2 - 2a, \ u^6 - u^5 + 3u^4 - 2u^3 + 3u^2 + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2}a - u^{3} + u^{2} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{5}a + u^{4}a - 2u^{5} - u^{3}a + 2u^{4} - 4u^{3} + 3u^{2} - a - 4u + 2 \\ u^{5}a - u^{4}a + u^{5} + 2u^{3}a - u^{4} - u^{2}a + 2u^{3} + au - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3}a - 2u^{4} + 3u^{3} - 5u^{2} + a + 3u - 3 \\ u^{5} - u^{3}a + u^{2}a - au + 2u^{2} - u + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} + u^{3}a + u^{4} - u^{2}a - 2u^{3} + au + 2u^{2} - a - 2u + 1 \\ u^{5}a - u^{4}a + u^{5} + 2u^{3}a - u^{4} - u^{2}a + 2u^{3} + au - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{5}a - u^{4}a - u^{5} + 3u^{3}a + u^{4} - 2u^{2}a - 3u^{3} + 2au + 2u^{2} - 2u \\ -u^{3}a + u^{4} - au + 2u^{2} + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{5} + 2u^{4} - u^{2}a - 3u^{3} + 4u^{2} - a - 3u + 2 \\ -u^{4}a + u^{5} + u^{3}a - 2u^{4} - u^{2}a + 3u^{3} + au - 3u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{5}a - u^{4}a - u^{5} + 2u^{3}a + 2u^{4} - 2u^{2}a - 3u^{3} + au + 4u^{2} - 3u + 1 \\ -u^{5}a - u^{3}a - u^{4} + u^{3} - 2u^{2} - 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^5 + 5u^4 u^3 + 11u^2 9u + 9$

Crossings	u-Polynomials at each crossing
c_1, c_{10}	$u^{12} - 7u^{11} + \dots - 7u + 1$
c_2, c_6	$u^{12} + u^{11} + \dots + u + 1$
<i>c</i> ₃	$(u^6 - u^5 + 3u^4 - 2u^3 + 3u^2 + 1)^2$
C ₄	$(u^6 + 2u^4 + 2u^3 + u + 1)^2$
c_5, c_{11}	$u^{12} - u^{11} + \dots - u + 1$
c_7, c_{12}	$u^{12} + 4u^{10} + 5u^9 + 6u^8 + 11u^7 + 9u^6 + 6u^5 + 2u^4 - 2u^3 - 2u^2 + 1$
c_{8}, c_{9}	$(u^6 + u^5 + 3u^4 + 2u^3 + 3u^2 + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$y^{12} + 3y^{11} + \dots + 3y + 1$
c_2, c_5, c_6 c_{11}	$y^{12} + 7y^{11} + \dots + 7y + 1$
c_3, c_8, c_9	$(y^6 + 5y^5 + 11y^4 + 16y^3 + 15y^2 + 6y + 1)^2$
c_4	$(y^6 + 4y^5 + 4y^4 - 2y^3 - y + 1)^2$
c_7, c_{12}	$y^{12} + 8y^{11} + \dots - 4y + 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.751720 + 0.952459I		
a = 1.161910 + 0.208933I	-5.66414 - 2.84527I	-10.09526 - 1.04786I
b = -0.169435 + 1.321240I		
u = 0.751720 + 0.952459I		
a = -0.214542 + 0.486127I	-5.66414 - 2.84527I	-10.09526 - 1.04786I
b = -0.095489 - 0.744618I		
u = 0.751720 - 0.952459I		
a = 1.161910 - 0.208933I	-5.66414 + 2.84527I	-10.09526 + 1.04786I
b = -0.169435 - 1.321240I		
u = 0.751720 - 0.952459I		
a = -0.214542 - 0.486127I	-5.66414 + 2.84527I	-10.09526 + 1.04786I
b = -0.095489 + 0.744618I		
u = -0.081708 + 1.363140I		
a = -1.41421 + 0.28398I	5.25930 - 1.24964I	4.40551 - 3.55084I
b = 0.456929 + 0.708982I		
u = -0.081708 + 1.363140I		
a = -1.40363 + 1.20387I	5.25930 - 1.24964I	4.40551 - 3.55084I
b = 0.642260 - 0.996545I		
u = -0.081708 - 1.363140I		
a = -1.41421 - 0.28398I	5.25930 + 1.24964I	4.40551 + 3.55084I
b = 0.456929 - 0.708982I		
u = -0.081708 - 1.363140I		
a = -1.40363 - 1.20387I	5.25930 + 1.24964I	4.40551 + 3.55084I
b = 0.642260 + 0.996545I		
u = -0.170012 + 0.579072I		
a = 1.72240 + 0.01156I	2.04978 + 2.32699I	7.18975 - 6.61882I
b = -0.828025 - 0.974687I		
u = -0.170012 + 0.579072I		
a = -1.35194 - 3.13856I	2.04978 + 2.32699I	7.18975 - 6.61882I
b = -0.506239 + 0.595906I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.170012 - 0.579072I		
a = 1.72240 - 0.01156I	2.04978 - 2.32699I	7.18975 + 6.61882I
b = -0.828025 + 0.974687I		
u = -0.170012 - 0.579072I		
a = -1.35194 + 3.13856I	2.04978 - 2.32699I	7.18975 + 6.61882I
b = -0.506239 - 0.595906I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1, c_{10}	$(u^{12} - 7u^{11} + \dots - 7u + 1)(u^{12} - 7u^{11} + \dots - 9u + 1)$ $\cdot (u^{22} + 13u^{21} + \dots + 6u + 1)(u^{60} + 30u^{59} + \dots + 31603u + 2209)$	
c_2, c_6	$ (u^{12} + u^{11} + \dots + u + 1)(u^{12} + u^{11} + \dots + u + 1)(u^{22} + u^{21} + \dots + u^{11} + \dots + u^{11})(u^{12} + u^{11} + \dots +$	-2u + 1)
c_3	$((u^{6} - u^{5} + 3u^{4} - 2u^{3} + 3u^{2} + 1)^{2})(u^{12} + 2u^{11} + \dots + 6u^{2} + 1)$ $\cdot (u^{22} + 11u^{21} + \dots + 232u + 32)(u^{30} - 5u^{29} + \dots - 2u + 1)^{2}$	
c_4	$((u^{6} + 2u^{4} + 2u^{3} + u + 1)^{2})(u^{12} - 2u^{11} + \dots - 2u + 1)$ $\cdot (u^{22} - 15u^{21} + \dots - 480u + 64)(u^{30} + 6u^{29} + \dots + 9u + 1)^{2}$	
c_5, c_{11}	$(u^{12} - u^{11} + \dots - u + 1)(u^{12} - u^{11} + \dots - u + 1)(u^{22} + u^{21} + \dots - u^{11} + \dots - $	-2u + 1)
c_7, c_{12}	$(u^{12} + 2u^{10} - u^9 + u^8 - 2u^7 + u^6 + 4u^4 + 3u^3 - 2u^2 + 1)$ $\cdot (u^{12} + 4u^{10} + 5u^9 + 6u^8 + 11u^7 + 9u^6 + 6u^5 + 2u^4 - 2u^3 - 2u^2 + 1)$ $\cdot (u^{22} + 13u^{20} + \dots - u + 1)(u^{60} + 5u^{59} + \dots - 18u + 1)$	- 1)
c_{8}, c_{9}	$((u^{6} + u^{5} + 3u^{4} + 2u^{3} + 3u^{2} + 1)^{2})(u^{12} - 2u^{11} + \dots + 6u^{2} + 1)$ $\cdot (u^{22} + 11u^{21} + \dots + 232u + 32)(u^{30} - 5u^{29} + \dots - 2u + 1)^{2}$	

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_{10}	$(y^{12} + 3y^{11} + \dots + 3y + 1)(y^{12} + 3y^{11} + \dots - 11y + 1)$ $\cdot (y^{22} + y^{21} + \dots + 34y + 1)(y^{60} + 6y^{59} + \dots - 9.00819 \times 10^{7}y + 4879681)$
c_2, c_5, c_6 c_{11}	$(y^{12} + 7y^{11} + \dots + 9y + 1)(y^{12} + 7y^{11} + \dots + 7y + 1)$ $\cdot (y^{22} + 13y^{21} + \dots + 6y + 1)(y^{60} + 30y^{59} + \dots + 31603y + 2209)$
c_3, c_8, c_9	$(y^{6} + 5y^{5} + 11y^{4} + 16y^{3} + 15y^{2} + 6y + 1)^{2}$ $\cdot (y^{12} + 10y^{11} + \dots + 12y + 1)(y^{22} + 11y^{21} + \dots + 3264y + 1024)$ $\cdot (y^{30} + 9y^{29} + \dots + 14y + 1)^{2}$
C4	$((y^{6} + 4y^{5} + 4y^{4} - 2y^{3} - y + 1)^{2})(y^{12} + 6y^{11} + \dots - 2y + 1)$ $\cdot (y^{22} + 7y^{21} + \dots + 39936y + 4096)(y^{30} + 10y^{29} + \dots - 9y + 1)^{2}$
c_7, c_{12}	$(y^{12} + 4y^{11} + \dots - 4y + 1)(y^{12} + 8y^{11} + \dots - 4y + 1)$ $\cdot (y^{22} + 26y^{21} + \dots + 17y + 1)(y^{60} + 39y^{59} + \dots - 40y + 1)$