Dati第一次作业答案: 2, Y a < b a 6 Q, b 6 Q I nen st n(b-a) 72 : 3 MGN na< m< mt | < nb 2: m+(12-1) 6 Cm, m+1) (Cna, nb) · m+(元-1) ∈ Ca, b) 且是无理数 3 岩丘+万二台6Q 别 (左+万)2二十分 \$P 5+216Q &P 166Q 考万=号 a. bEN (a.b)=1 则 ~=66 以 《为的信数 没 ~~691 与(a,b)=1 希伯! : 5+万 年Q $4 > 0.249 = \frac{1}{4} 0.375 = \frac{375}{999}$ $4.518 = 4 + \frac{518}{999} = \frac{122}{27}$ 52 11 8 540 1 rt 5/2=0 1/2= -3 GQ 矛盾 :: S=D | K Y=D (21- #55t + # MAY) - MAY (2) 5.七年の ま 5.七年の 別 : Y= -左5+ 万七) $\gamma^2 = 25^2 + 3t^2 + 2/6 5t$: 16= 本-25-5t2 GQ 剂值!
: 5· t= 0 势 5+0 日 t=0 1010-20 Y+万5=0 -: 1=0 t=0,5=0 :1 5=0 A t=0 => 7=0

1. 证明: (1) $\lim_{n\to\infty} \frac{n}{5+3n} = \frac{1}{3}$; $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.

解答: (1) $\forall \epsilon > 0, \exists N = \left[\frac{5}{9\epsilon}\right] + 1 \in \mathbf{N}^*, s.t. \forall n > N, \left|\frac{n}{5+3n} - \frac{1}{3}\right| = \left|\frac{5}{15+9n}\right| < \left|\frac{5}{9n}\right| < \epsilon;$ (2) $\forall \epsilon > 0, \exists N = \left[\frac{1}{\epsilon}\right] + 1 \in \mathbf{N}^*, s.t. \forall n > N, \left|\frac{\sin n}{n} - 0\right| = \left|\frac{\sin n}{n}\right| < \left|\frac{1}{n}\right| < \epsilon.$

2. 证明: 若 $\forall \epsilon > 0, \exists N \in \mathbf{N}^*, s.t. \forall n > N, |a_n - a| < M\epsilon, M \in R 则 <math>\lim_{n \to \infty} a_n = a.$

解答: 取 $\epsilon_0 = \frac{\epsilon}{M}$, 这也是任意正数,则 $\forall \epsilon > 0, \exists N \in \mathbf{N}^*, s.t. \forall n > N, |a_n - a| < M\epsilon = \epsilon_0$,有 $\lim_{n \to \infty} a_n = a$. 按定义知 $\lim_{n \to \infty} a_n = a$.

4. 证明: 若 $\lim_{n\to\infty} a_n = a$, 则 $\lim_{n\to\infty} |a_n| = |a|$. 反之不对. 但若 $\lim_{n\to\infty} |a_n| = 0$, 则 $\lim_{n\to\infty} a_n = 0$.

解答: (1) $\forall \epsilon > 0, \exists N \in \mathbf{N}^*, s.t. \forall n > N, ||a_n| - |a|| \le |a_n - a| < \epsilon,$ 有 $\lim_{n \to \infty} |a_n| = |a|$; (2) 反之,取 $a_n = (-1)^n$,则 $\lim_{n \to \infty} |a_n| = 1$,但 $\lim_{n \to \infty} a_n$ 不存在; (3) $\forall \epsilon > 0, \exists N \in \mathbf{N}^*, s.t. \forall n > N, ||a_n| - 0| = |a_n - 0| < \epsilon,$ 则有 $\lim_{n \to \infty} a_n = 0$.

5. 证明: 若 $\lim_{n\to\infty} |a_n| = 0$ 且 $|b_n| \le M$,则 $\lim_{n\to\infty} a_n b_n = 0$.

解答: $\forall \epsilon > 0, \exists N \in \mathbb{N}^*, s.t. \forall n > N, |a_n b_n| < M \epsilon$, 由习题 2 可知 $\lim_{n \to \infty} a_n = 0$.

6. 证明: 若数列 $\{a_n\}$ 满足 $\lim_{k\to\infty}a_{2k+1}=a$ 及 $\lim_{k\to\infty}a_{2k}=a$,则 $\lim_{n\to\infty}a_n=a$.

解答: 见学习指导 P8. 对奇数项, $\forall \epsilon > 0$, $\exists N_1 \in \mathbf{N}^*$, $s.t. \forall k > N_1$, $|a_{2k+1} - a| < \epsilon$. 对偶数项和这个 ϵ , $\exists N_2 \in \mathbf{N}^*$, $s.t. \forall k > N_2$, $|a_{2k} - a| < \epsilon$. 则 $N = 2 \max\{N_1, N_2\} + 1$, $\forall n > N$, $|a_n - a| < \epsilon$.

7. (2) 证明: 数列不收敛

$$a_n = 5\left(1 - \frac{2}{n}\right) + (-1)^n$$

解答: 注意到奇数列和偶数列分别有不同的极限

$$\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} 5 - \frac{10}{2n} + 1 = 6$$

$$\lim_{n \to \infty} a_{2n+1} = \lim_{n \to \infty} 4 - \frac{10}{2n+1} = 4$$

8. (1) 求极限:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{4n^2 + 5n + 2}{3n^2 + 2n + 1}$$

解答: 多项式分式求极限只需看最高次数和最高项系数

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{4n^2 + 5n + 2}{3n^2 + 2n + 1} = \frac{4}{3}$$

(5) 求极限:

$$a_n = (1+q)(1+q^2)(1+q^4)\cdots(1+q^{2n}), (|q|<1)$$

解答: 考虑利用 $(1-q)(1+q) = 1-q^2$ 裂变

$$a_n = \frac{(1-q)(1+q)(1+q^2)(1+q^4)\cdots(1+q^{2n})}{1-q}$$

$$= \frac{(1-q^2)(1+q^2)(1+q^4)\cdots(1+q^{2n})}{1-q}$$

$$= \frac{1-q^{2n+1}}{1-q}$$

再取极限

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1 - q^{2n+1}}{1 - q} = \frac{1}{1 - q}$$

9. 若 $a_n \neq 0$ 且 $\lim_{n\to\infty} a_n = a$,能否断定 $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = 1$ 解答:

(i) $\lim_{n\to\infty} \frac{a_n}{a_{n+1}}$ 可能不存在: 比如取

$$a_n = \begin{cases} \frac{1}{2^n}, & n = 2k+1\\ \frac{1}{3^n}, & n = 2k \end{cases}$$

则

$$\frac{a_n}{a_{n+1}} = \begin{cases} \frac{3^{n+1}}{2^n} \to \infty, & n = 2k+1\\ \frac{2^n}{3^{n+1}} \to 0, & n = 2k \end{cases}$$

不存在极限

(ii) $\lim_{n\to\infty} \frac{a_n}{a_{n+1}}$ 存在但不为 0: 比如取 $a_n=\frac{1}{2^n}$,有 $\lim_{n\to\infty} \frac{a_n}{a_{n+1}}=2$

10. 若数列 $\{a_n\}$, $\{b_n\}$ 满足 $\lim_{n\to\infty}a_n\cdot b_n=0$, 是否必有 $\lim_{n\to\infty}a_n=0$ 或 $\lim_{n\to\infty}b_n=0$? 若还假设 $\lim_{n\to\infty}a_n=a$, 回答同样的问题

解答: 不一定. 考虑两个发散的数列

$$a_n = \begin{cases} 0, & n = 2k + 1 \\ 1, & n = 2k \end{cases}$$

$$b_n = \begin{cases} 1, & n = 2k+1 \\ 0, & n = 2k \end{cases}$$

这样就有

$$\lim_{n\to\infty} a_n b_n = 0$$

但是 $\lim_{n\to\infty} a_n$ 和 $\lim_{n\to\infty} b_n$ 不存在再考虑 a_n 极限存在时,

- (i) 若 $\lim_{n\to\infty} a_n = a \neq 0$,则 $\lim_{n\to\infty} b_n = 0$
- (ii) 若 $\lim_{n\to\infty} a_n = 0$, 则 $\lim_{n\to\infty} b_n$ 不确定

- 11. 若数列 $\{a_n\}$ 收敛, $\{b_n\}$ 发散,则数列 $\{a_n\pm b_n\}$, $\{a_n\cdot b_n\}$ 收敛性如何?请举例说明. 若数列 $\{a_n\}$ 和 $\{b_n\}$ 都发散,重新考虑上面的问题. 解答:
 - (i) 若数列 $\{a_n\}$ 收敛, $\{b_n\}$ 发散
 - (a) $a_n \pm b_n$ 发散, 比如 $a_n = 1$, $b_n = n$, 则 $1 \pm n$ 发散
 - (b) $a_n \cdot b_n$ 不确定,比如 $\frac{1}{n} \cdot \sin n$ 收敛, $\frac{1}{n} \cdot n^2$ 发散
 - (ii) 若数列 $\{a_n\}$, $\{b_n\}$ 都发散
 - (a) $a_n \pm b_n$ 不确定, 比如 -n + n 收敛, n + n 发散
 - (b) $a_n \cdot b_n$ 不确定, 比如 $(-1)^n \cdot (-1)^n$ 收敛, $(-1)^n \cdot n$ 发散