$12n_{0195} (K12n_{0195})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -1.62072 \times 10^{18}u^{23} + 1.95726 \times 10^{19}u^{22} + \dots + 1.72477 \times 10^{21}b + 8.62668 \times 10^{20}, \\ -2.65800 \times 10^{20}u^{23} + 1.49704 \times 10^{20}u^{22} + \dots + 1.03486 \times 10^{22}a - 3.34302 \times 10^{22}, \ u^{24} - 2u^{23} + \dots - 8u - 10^{20}u^{24} + 10^{20}u^{24} +$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 39 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -1.62 \times 10^{18} u^{23} + 1.96 \times 10^{19} u^{22} + \dots + 1.72 \times 10^{21} b + 8.63 \times 10^{20}, \ -2.66 \times 10^{20} u^{23} + 1.50 \times 10^{20} u^{22} + \dots + 1.03 \times 10^{22} a - 3.34 \times 10^{22}, \ u^{24} - 2u^{23} + \dots - 8u - 8 \rangle$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0256846u^{23} - 0.0144661u^{22} + \dots - 1.52339u + 3.23040 \\ 0.000939669u^{23} - 0.0113479u^{22} + \dots + 0.985369u - 0.500163 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0266242u^{23} - 0.0258140u^{22} + \dots - 0.538021u + 2.73023 \\ 0.000939669u^{23} - 0.0113479u^{22} + \dots + 0.985369u - 0.500163 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0583259u^{23} - 0.126312u^{22} + \dots + 3.65005u + 0.821695 \\ -0.0138991u^{23} + 0.0340693u^{22} + \dots + 0.0978404u - 0.00653011 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.00790799u^{23} + 0.00662412u^{22} + \dots - 2.90944u + 2.73115 \\ -0.00229500u^{23} - 0.00348046u^{22} + \dots + 1.12451u - 0.423114 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0350146u^{23} - 0.0584050u^{22} + \dots + 4.17403u + 0.781518 \\ -0.000987363u^{23} - 0.00177968u^{22} + \dots - 0.799250u - 0.0593477 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0439159u^{23} - 0.0866142u^{22} + \dots + 2.91071u + 0.725782 \\ -0.00988867u^{23} + 0.0264295u^{22} + \dots + 0.464073u - 0.00361092 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{2356346852274434342467}{51743177775940902237716}u^{23} - \frac{1159968679518319967807}{1293579444398522559429}u^{22} + \cdots + \frac{50179924203167367792392}{1293579444398522559429}u + \frac{1352352571446172898474}{1293579444398522559429}$$

Crossings	u-Polynomials at each crossing
c_1	$u^{24} - 2u^{23} + \dots + 1885u + 81$
c_2, c_4	$u^{24} - 10u^{23} + \dots + 25u + 9$
c_3, c_7	$u^{24} + 2u^{23} + \dots + 960u - 576$
c_5, c_6, c_{10}	$u^{24} - 2u^{23} + \dots - 8u - 8$
c_8, c_{11}, c_{12}	$u^{24} - 5u^{23} + \dots - 357u + 49$
<i>c</i> 9	$u^{24} + 2u^{23} + \dots + 8216u - 1448$

Crossings	Riley Polynomials at each crossing
c_1	$y^{24} + 66y^{23} + \dots - 3758641y + 6561$
c_2, c_4	$y^{24} + 2y^{23} + \dots - 1885y + 81$
c_3, c_7	$y^{24} + 48y^{23} + \dots - 3022848y + 331776$
c_5, c_6, c_{10}	$y^{24} + 16y^{23} + \dots - 1472y + 64$
c_8, c_{11}, c_{12}	$y^{24} - 41y^{23} + \dots - 196539y + 2401$
<i>c</i> ₉	$y^{24} - 80y^{23} + \dots + 25123008y + 2096704$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.036962 + 1.068950I		
a = 0.84695 - 1.21226I	-2.00407 + 1.55521I	2.34191 - 4.04611I
b = -0.194048 + 0.569807I		
u = -0.036962 - 1.068950I		
a = 0.84695 + 1.21226I	-2.00407 - 1.55521I	2.34191 + 4.04611I
b = -0.194048 - 0.569807I		
u = -0.323995 + 1.223880I		
a = 0.417290 - 0.742338I	2.23459 - 5.45156I	5.30376 + 8.39066I
b = 0.894371 + 0.359693I		
u = -0.323995 - 1.223880I		
a = 0.417290 + 0.742338I	2.23459 + 5.45156I	5.30376 - 8.39066I
b = 0.894371 - 0.359693I		
u = -0.538454 + 0.449191I		
a = -1.08603 + 1.29257I	5.01148 + 2.07959I	5.62929 + 1.97986I
b = 1.060300 - 0.751864I		
u = -0.538454 - 0.449191I		
a = -1.08603 - 1.29257I	5.01148 - 2.07959I	5.62929 - 1.97986I
b = 1.060300 + 0.751864I		
u = 0.024256 + 1.316950I		
a = 0.95732 + 1.55302I	-4.97907 - 0.78003I	-5.02882 + 0.00732I
b = -1.005510 - 0.226269I		
u = 0.024256 - 1.316950I		
a = 0.95732 - 1.55302I	-4.97907 + 0.78003I	-5.02882 - 0.00732I
b = -1.005510 + 0.226269I		
u = -0.846526 + 1.045030I		
a = -0.40282 - 2.36685I	6.66087 - 5.31357I	3.74628 + 3.91274I
b = 0.92407 + 1.32486I		
u = -0.846526 - 1.045030I		
a = -0.40282 + 2.36685I	6.66087 + 5.31357I	3.74628 - 3.91274I
b = 0.92407 - 1.32486I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.586420 + 0.250857I		
a = 1.02868 - 2.84832I	0.984746 + 0.178881I	6.09874 - 3.14218I
b = -0.586430 + 0.543498I		
u = 0.586420 - 0.250857I		
a = 1.02868 + 2.84832I	0.984746 - 0.178881I	6.09874 + 3.14218I
b = -0.586430 - 0.543498I		
u = 0.182077 + 1.361640I		
a = 0.527856 + 0.849532I	-3.21229 + 2.94427I	1.02339 - 4.25834I
b = 0.493008 - 0.547865I		
u = 0.182077 - 1.361640I		
a = 0.527856 - 0.849532I	-3.21229 - 2.94427I	1.02339 + 4.25834I
b = 0.493008 + 0.547865I		
u = -0.976649 + 0.994558I		
a = -0.62257 + 2.02385I	6.90898 - 1.54857I	4.91054 + 1.41410I
b = 0.09341 - 1.47455I		
u = -0.976649 - 0.994558I		
a = -0.62257 - 2.02385I	6.90898 + 1.54857I	4.91054 - 1.41410I
b = 0.09341 + 1.47455I		_
u = 1.46226 + 0.22351I		
a = -1.52657 + 2.40294I	-17.7659 + 5.2038I	4.94066 - 2.06441I
b = 1.43989 - 1.34762I		
u = 1.46226 - 0.22351I	15 5050 5 0000 5	
a = -1.52657 - 2.40294I	-17.7659 - 5.2038I	4.94066 + 2.06441I
b = 1.43989 + 1.34762I		
u = 0.401729	0.0107.17	40.0550
a = 2.19393	0.910545	12.3570
b = -0.203908		
u = 0.56079 + 1.60245I	15 0 100 10 000 -	0
a = -0.31621 + 1.95238I	15.8466 + 12.3266I	2.77536 - 4.87802I
b = 1.40238 - 1.01134I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.56079 - 1.60245I		
a = -0.31621 - 1.95238I	15.8466 - 12.3266I	2.77536 + 4.87802I
b = 1.40238 + 1.01134I		
u = -0.235957		
a = 3.84635	-1.27848	-10.9250
b = -0.892923		
u = 0.82389 + 1.57851I		
a = -1.34403 - 1.58945I	17.6395 + 2.9890I	3.87648 - 0.98637I
b = 1.02698 + 1.58176I		
u = 0.82389 - 1.57851I		
a = -1.34403 + 1.58945I	17.6395 - 2.9890I	3.87648 + 0.98637I
b = 1.02698 - 1.58176I		

$$II. \\ I_2^u = \langle b+1, \ 2u^5 - 4u^4 + 7u^3 - 8u^2 + 3a + 6u - 5, \ u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{2}{3}u^{5} + \frac{4}{3}u^{4} + \dots - 2u + \frac{5}{3}\\-1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{2}{3}u^{5} + \frac{4}{3}u^{4} + \dots - 2u + \frac{2}{3}\\-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{2}{3}u^{5} + \frac{4}{3}u^{4} + \dots - 2u + \frac{5}{3}\\-1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1\\-u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1\\-u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} - 2u\\u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{5} + 2u^{3} + u\\-u^{5} + u^{4} - 2u^{3} + u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{7}{9}u^5 + \frac{41}{9}u^4 \frac{62}{9}u^3 + \frac{103}{9}u^2 6u + \frac{70}{9}u^3 + \frac{103}{9}u^3 \frac{103}{9}u^3 + \frac{103}{9}u^3 \frac{103}{9}u^3 + \frac{103}{9}u^3$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^6$
c_{3}, c_{7}	u^6
C ₄	$(u+1)^6$
c_5, c_6	$u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1$
<i>c</i> ₈	$u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1$
c_9, c_{11}, c_{12}	$u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1$
c_{10}	$u^6 + u^5 + 3u^4 + 2u^3 + 2u^2 + u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_7	y^6
c_5, c_6, c_{10}	$y^6 + 5y^5 + 9y^4 + 4y^3 - 6y^2 - 5y + 1$
c_8, c_9, c_{11} c_{12}	$y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.873214		
a = 0.836730	6.01515	8.93190
b = -1.00000		
u = -0.138835 + 1.234450I		
a = 0.366605 + 0.544193I	-4.60518 - 1.97241I	-1.96265 + 3.88708I
b = -1.00000		
u = -0.138835 - 1.234450I		
a = 0.366605 - 0.544193I	-4.60518 + 1.97241I	-1.96265 - 3.88708I
b = -1.00000		
u = 0.408802 + 1.276380I		
a = -0.031424 - 0.540243I	2.05064 + 4.59213I	3.29989 + 0.22957I
b = -1.00000		
u = 0.408802 - 1.276380I		
a = -0.031424 + 0.540243I	2.05064 - 4.59213I	3.29989 - 0.22957I
b = -1.00000		
u = -0.413150		
a = 3.15957	-0.906083	12.8380
b = -1.00000		

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.235294a^{2}u + 0.470588au + \cdots - 0.705882a + 1.17647 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.235294a^{2}u + 0.470588au + \cdots + 0.294118a + 1.17647 \\ -0.235294a^{2}u + 0.470588au + \cdots - 0.705882a + 1.17647 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.352941a^{2}u - 0.294118au + \cdots + 0.941176a + 1.76471 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.411765a^{2}u - 0.823529au + \cdots + 0.235294a - 0.0588235 \\ -0.117647a^{2}u - 0.764706au + \cdots + 1.64706a - 0.411765 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u\\-u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.352941a^{2}u - 0.294118au + \cdots + 0.941176a + 1.76471 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0\\-u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.352941a^{2}u - 0.294118au + \cdots + 0.941176a + 1.76471 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{16}{17}a^2u + \frac{24}{17}a^2 + \frac{32}{17}au - \frac{48}{17}a - \frac{8}{17}u + \frac{80}{17}a^2 + \frac{80}{17}a^2 + \frac{10}{17}a^2 + \frac{1$$

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_3	$(u^3 + u^2 + 2u + 1)^2$
C_4	$(u^3 - u^2 + 1)^2$
c_5, c_6, c_9 c_{10}	$(u^2+2)^3$
<i>c</i> ₈	$(u-1)^6$
c_{11}, c_{12}	$(u+1)^6$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_4	$(y^3 - y^2 + 2y - 1)^2$
c_5, c_6, c_9 c_{10}	$(y+2)^6$
c_8, c_{11}, c_{12}	$(y-1)^6$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.414210I		
a = 0.520153 - 0.983610I	-0.26574 - 2.82812I	3.50976 + 2.97945I
b = 0.877439 + 0.744862I		
u = 1.414210I		
a = -0.275030 + 0.506114I	-0.26574 + 2.82812I	3.50976 - 2.97945I
b = 0.877439 - 0.744862I		
u = 1.414210I		
a = 1.75488 - 1.64382I	-4.40332	-3.01951 + 0.I
b = -0.754878		
u = -1.414210I		
a = 0.520153 + 0.983610I	-0.26574 + 2.82812I	3.50976 - 2.97945I
b = 0.877439 - 0.744862I		
u = -1.414210I		
a = -0.275030 - 0.506114I	-0.26574 - 2.82812I	3.50976 + 2.97945I
b = 0.877439 + 0.744862I		
u = -1.414210I		
a = 1.75488 + 1.64382I	-4.40332	-3.01951 + 0.I
b = -0.754878		

IV.
$$I_1^v = \langle a, -v^2 + b + 3v + 1, v^3 - 2v^2 - 3v - 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} v^{2} - 3v - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} v^{2} - 3v - 1 \\ v^{2} - 3v - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} v^{2} - 3v - 1 \\ -v^{2} + 2v + 3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2v^{2} + 5v + 4 \\ -2v^{2} + 5v + 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -v^{2} + 3v + 1 \\ v^{2} - 2v - 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} v^{2} - 2v - 1 \\ -v^{2} + 2v + 3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $8v^2 26v 14$

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^3 - u^2 + 2u - 1$
c_2	$u^3 + u^2 - 1$
C ₄	$u^3 - u^2 + 1$
c_5, c_6, c_9 c_{10}	u^3
	$u^3 + u^2 + 2u + 1$
<i>C</i> ₈	$(u+1)^3$
c_{11}, c_{12}	$(u-1)^3$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$y^3 + 3y^2 + 2y - 1$
c_2, c_4	$y^3 - y^2 + 2y - 1$
c_5, c_6, c_9 c_{10}	y^3
c_8, c_{11}, c_{12}	$(y-1)^3$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.539798 + 0.182582I		
a = 0	4.66906 + 2.82812I	2.09911 - 6.32406I
b = 0.877439 - 0.744862I		
v = -0.539798 - 0.182582I		
a = 0	4.66906 - 2.82812I	2.09911 + 6.32406I
b = 0.877439 + 0.744862I		
v = 3.07960		
a = 0	0.531480	-18.1980
b = -0.754878		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^3-u^2+2u-1)^3(u^{24}-2u^{23}+\cdots+1885u+81)$
c_2	$((u-1)^6)(u^3+u^2-1)^3(u^{24}-10u^{23}+\cdots+25u+9)$
<i>c</i> ₃	$u^{6}(u^{3}-u^{2}+2u-1)(u^{3}+u^{2}+2u+1)^{2}(u^{24}+2u^{23}+\cdots+960u-576)$
C ₄	$((u+1)^6)(u^3-u^2+1)^3(u^{24}-10u^{23}+\cdots+25u+9)$
c_5, c_6	$u^{3}(u^{2}+2)^{3}(u^{6}-u^{5}+\cdots-u-1)(u^{24}-2u^{23}+\cdots-8u-8)$
<i>C</i> ₇	$u^{6}(u^{3}-u^{2}+2u-1)^{2}(u^{3}+u^{2}+2u+1)(u^{24}+2u^{23}+\cdots+960u-576)$
C ₈	$(u-1)^{6}(u+1)^{3}(u^{6}+u^{5}-3u^{4}-2u^{3}+2u^{2}-u-1)$ $\cdot (u^{24}-5u^{23}+\cdots-357u+49)$
<i>c</i> 9	$u^{3}(u^{2}+2)^{3}(u^{6}-u^{5}-3u^{4}+2u^{3}+2u^{2}+u-1)$ $\cdot (u^{24}+2u^{23}+\cdots+8216u-1448)$
c_{10}	$u^{3}(u^{2}+2)^{3}(u^{6}+u^{5}+\cdots+u-1)(u^{24}-2u^{23}+\cdots-8u-8)$
c_{11}, c_{12}	$(u-1)^{3}(u+1)^{6}(u^{6}-u^{5}-3u^{4}+2u^{3}+2u^{2}+u-1)$ $\cdot (u^{24}-5u^{23}+\cdots-357u+49)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^6)(y^3+3y^2+2y-1)^3(y^{24}+66y^{23}+\cdots-3758641y+6561)$
c_2, c_4	$((y-1)^6)(y^3-y^2+2y-1)^3(y^{24}+2y^{23}+\cdots-1885y+81)$
c_3, c_7	$y^{6}(y^{3} + 3y^{2} + 2y - 1)^{3}(y^{24} + 48y^{23} + \dots - 3022848y + 331776)$
c_5, c_6, c_{10}	$y^{3}(y+2)^{6}(y^{6}+5y^{5}+9y^{4}+4y^{3}-6y^{2}-5y+1)$ $\cdot (y^{24}+16y^{23}+\cdots-1472y+64)$
c_8, c_{11}, c_{12}	$(y-1)^9(y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1)$ $\cdot (y^{24} - 41y^{23} + \dots - 196539y + 2401)$
<i>c</i> 9	$y^{3}(y+2)^{6}(y^{6}-7y^{5}+17y^{4}-16y^{3}+6y^{2}-5y+1)$ $\cdot (y^{24}-80y^{23}+\cdots+25123008y+2096704)$