# CS3230 – Design and Analysis of Algorithms (S2 AY2024/25)

**Lecture 4a: Lower Bound for Comparison-Based Sorting** 

- Input: an array  $A = (a_1, a_2, ..., a_n)$  of elements.
- **Goal:** Sort the elements in *A* in non-decreasing order.
  - A permutation  $(a_1', a_2', \dots, a_n')$  of A such that  $a_1' \le a_2' \le \dots \le a_n'$ .

### **Examples:**

- Insertion sort
- Selection sort
- Merge sort
- Heap sort
- Quick sort

- Input: an array  $A = (a_1, a_2, ..., a_n)$  of elements.
- **Goal:** Sort the elements in A in non-decreasing order.
  - A permutation  $(a'_1, a'_2, ..., a'_n)$  of A such that  $a'_1 \le a'_2 \le \cdots \le a'_n$ .

#### Worst-case time complexity

### **Examples:**

- Insertion sort  $O(n^2)$
- Selection sort  $O(n^2)$
- Merge sort  $O(n \log n)$
- Heap sort  $O(n \log n)$
- Quick sort  $O(n^2)$

• Intuition:  $O(n \log n)$  should be the best possible bound attainable.

- Input: an array  $A=(a_1,a_2,\ldots,a_n)$  of elements.
- **Goal:** Sort the elements in A in non-decreasing order.
  - A permutation  $(a'_1, a'_2, ..., a'_n)$  of A such that  $a'_1 \le a'_2 \le \cdots \le a'_n$ .

#### Worst-case time complexity

### **Examples:**

- Insertion sort  $O(n^2)$
- Selection sort  $O(n^2)$
- Merge sort  $O(n \log n)$
- Heap sort  $O(n \log n)$
- Quick sort  $O(n^2)$
- Intuition:  $O(n \log n)$  should be the best possible bound attainable.
  - How to turn this intuition into an actual lower bound proof?
  - There are too many ways of designing a sorting algorithm.

- Input: an array  $A = (a_1, a_2, ..., a_n)$  of elements.
- **Goal:** Sort the elements in A in non-decreasing order.
  - A permutation  $(a'_1, a'_2, ..., a'_n)$  of A such that  $a'_1 \le a'_2 \le \cdots \le a'_n$ .

#### Worst-case time complexity

### **Examples:**

- Insertion sort  $O(n^2)$
- Selection sort  $O(n^2)$
- Merge sort  $O(n \log n)$
- Heap sort  $O(n \log n)$
- Quick sort  $O(n^2)$
- Intuition:  $O(n \log n)$  should be the best possible bound attainable.
  - How to turn this intuition into an actual lower bound proof?
  - There are too many ways of designing a sorting algorithm.

We will restrict our attention to a certain class of algorithms.

### • Comparison-based algorithms:

- Elements can only be compared with each other:
  - <, ≤, =, >, ≥
- No other information of the elements can be used.

All of them are comparison-based.

### **Examples:**

- Insertion sort
- Selection sort
- Merge sort
- Heap sort
- Quick sort

### All of them are comparison-based.

### Comparison-based algorithms:

- Elements can only be compared with each other:
  - <, ≤, =, >, ≥
- No other information of the elements can be used.

### **Examples:**

- Insertion sort
- Selection sort
- Merge sort
- Heap sort
- Quick sort

#### **Allowed**

### If (A[i] < A[j]), then { Do some work } If (A[i] = A[j]), then { Do some work }

#### Not allowed

If 
$$(A[i] + A[j] = A[k])$$
, then { Do some work }

If  $(A[i] = k)$ , then { Do some work }

If  $(A[i] \text{ is odd})$ , then { Do some work }

If (the  $j$ th bit of  $A[i]$  is 1), then { Do some work }

### • Comparison-based algorithms:

• Elements can only be compared with each other:

No other information of the elements can be used.

All of them are comparison-based.

### **Examples:**

- Insertion sort  $O(n^2)$
- Selection sort  $O(n^2)$
- Merge sort  $O(n \log n)$
- Heap sort  $O(n \log n)$
- Quick sort  $O(n^2)$

**Theorem:** The worst-case time complexity of any comparison-based sorting algorithm is  $\Omega(n \log n)$ .

### Comparison-based algorithms:

- Elements can only be compared with each other:
  - <, ≤, =, >, ≥
- No other information of the elements can be used.

All of them are comparison-based.

### **Examples:**

- Insertion sort  $O(n^2)$
- Selection sort  $O(n^2)$
- Merge sort  $O(n \log n)$
- Heap sort  $O(n \log n)$
- Quick sort  $O(n^2)$

**Theorem:** The worst-case time complexity of any comparison-based sorting algorithm is  $\Omega(n \log n)$ .



Merge sort and heap sort are asymptotically optimal!

### Decision trees

• The proof of the theorem uses decision trees.



### Decision trees

- A decision tree is a rooted tree.
  - Start from the root.
  - At every vertex, a question is asked.
  - Depending on the answer, a child is chosen.
  - At a leaf, a decision is taken.

### Decision trees

- A decision tree is a rooted tree.
  - Start from the root.
  - At every vertex, a question is asked.
  - Depending on the answer, a child is chosen.
  - At a leaf, a decision is taken.
- Any comparison-based algorithm can be modeled using a decision tree:
  - A comparison ← A question asked at a node.
  - Program state depends on the result of the comparison ← Chosen child depends on the answer to the question.
  - Output of the algorithm ← Decision at a leaf.

A permutation  $(a'_1, a'_2, ..., a'_n)$  of A

# An example

• A comparison-based algorithm for sorting  $A=(a_1,a_2,a_3)$ .



# An example

Worst-case running time ≥ worst-case number of comparisons = height of the tree



### Proof of the theorem

**Theorem:** The worst-case time complexity of any comparison-based sorting algorithm is  $\Omega(n \log n)$ .

#### **Proof:**

- Model the algorithm as a decision tree, which is a binary tree with at least n! leaves:
  - Each permutation is a possible answer.
- The height of the binary tree is at least log(n!).

### Proof of the theorem

**Theorem:** The worst-case time complexity of any comparison-based sorting algorithm is  $\Omega(n \log n)$ .

#### **Proof:**

- Model the algorithm as a decision tree, which is a binary tree with at least n! leaves:
  - Each permutation is a possible answer.
- The height of the binary tree is at least log(n!).

$$\log(n!) \in n \log n - n \log e + O(\log n) \subseteq \Theta(n \log n)$$



Stirling's approximation

### Question

• Is the following claim **true** or **false**?

There exists a comparison-based sorting algorithm that can sort any 5-element array using at most 6 comparisons.

• Is the following claim **true** or **false**?

There exists a comparison-based sorting algorithm that can sort any 5-element array using at most 6 comparisons.

#### False:

- There are 5! = 120 permutations of 5 elements.
- In any binary tree of height at most 6, the number of leaves is at most  $2^6 = 64$ .
- 120 > 64, so 6 comparisons are not enough.

## Question

**Input:** k sorted arrays  $A_1[1..n], A_2[1..n], ..., A_k[1..n].$ 

**Goal:** Merge the k sorted arrays into one sorted array of length kn.



# Question

**Input:** k sorted arrays  $A_1[1..n]$ ,  $A_2[1..n]$ , ...,  $A_k[1..n]$ .

**Goal:** Merge the k sorted arrays into one sorted array of length kn.

**Question:** What is a tight lower bound of the worst-case running time for comparison-based algorithms for this task?

- $\Omega(kn)$
- $\Omega(kn \log k)$
- $\Omega(kn \log n)$
- $\Omega(k^2n)$



•  $\Omega(kn \log k)$  is a **tight** lower bound.



There is an  $O(kn \log k)$ -time algorithm.

•  $\Omega(kn \log k)$  is a **tight** lower bound.



There is an  $O(kn \log k)$ -time algorithm.

#### Proof of the lower bound:

- As the k arrays are sorted, the number of possible ways to combine them is  $\frac{(kn)!}{(n!)^k}$ .
- Therefore, any comparison-based algorithm requires at least  $\log \frac{(kn)!}{(n!)^k}$  comparisons.

•  $\Omega(kn \log k)$  is a **tight** lower bound.



There is an  $O(kn \log k)$ -time algorithm.

#### Proof of the lower bound:

- As the k arrays are sorted, the number of possible ways to combine them is  $\frac{(kn)!}{(n!)^k}$ .
- Therefore, any comparison-based algorithm requires at least  $\log \frac{(kn)!}{(n!)^k}$  comparisons.

$$\log\left(\frac{(kn)!}{(n!)^k}\right) = \log((kn)!) - k\log(n!)$$

$$\Rightarrow \in \left(kn\log(kn) - kn\log e + O(\log kn)\right) - k(n\log n - n\log e + O(\log n)) \le kn\log k + O(\log kn)$$

$$\subseteq \Theta(kn\log k)$$

$$\log(n!) \in n \log n - n \log e + O(\log n)$$

# Non-comparison sorts

**Question:** Can we bypass the  $\Omega(n \log n)$  lower bound by an algorithm that is not comparison-based?

# Non-comparison sorts

**Question:** Can we bypass the  $\Omega(n \log n)$  lower bound by an algorithm that is not comparison-based?

Suppose each element in the array A belongs to the range  $\{1,2,...,k\}$ .

### CountingSort(A)

- For all  $i \in \{1,2,...,k\}$ , compute **count**<sub>i</sub> = the number of appearances of i in A.
- Set the initial **count**<sub>1</sub> entries of *A* to be 1.
- Set the next **count**<sub>2</sub> entries of *A* to be 2.
- Set the next count<sub>3</sub> entries of A to be 3.
- •

**Exercise:** Show that the algorithm can be implemented to finish in O(n + k) time.

# Acknowledgement

 The slides are modified from previous editions of this course and similar course elsewhere.

#### • List of credits:

- Diptarka Chakraborty
- Yi-Jun Chang
- Erik Demaine
- Steven Halim
- Sanjay Jain
- Wee Sun Lee
- Charles Leiserson
- Hon Wai Leong
- Warut Suksompong
- Wing-Kin Sung