SEMICONDUCTOR DEVICES

 $V_{P_{sec}}$ when $V_{P_{pri}}$ given:

$$V_{P_{sec}} = (\frac{N_{sec}}{N_{pri}})(V_{P_{pri}})$$

 $V_{rms_{sec}}$ when $V_{rms_{pri}}$ given:

$$V_{rms_{sec}} = (\frac{N_{sec}}{N_{pri}})(V_{rms_{pri}})$$

Convert $V_{rms_{sec}}$ to $V_{P_{sec}}$:

$$V_{P_{sec}} = (\sqrt{2})(V_{rms_{sec}})$$
@ 1.414 $V_{rms_{sec}}$

RECTIFIER

	Half wave Rectifier	Full wave Rectifier	Bridge Rectifier
No. of diodes	1	2	4
Output Voltage (V_o)	$V_{P_{sec}}-0.7V$	$\frac{V_{P_{sec}}}{2} - 0.7V$	$V_{P_{sec}} - 1.4V$
Average Voltage (V_{avg})	$\frac{V_o}{\pi}$ or 0.318 V_o	$\frac{2V_o}{\pi}$ or 0.636 V_o	
Average Current (I_{avg})	$\frac{V_{avg}}{RL}$		
Root Mean Square Voltage (V_{rms})	$rac{V_{P_{sec}}}{\sqrt{2}}$ or 0.707 $V_{P_{sec}}$		
Output Frequency	Same as input 2 x input Frequency Frequency		

Example Of Halfwave Rectifier

Half Wave Rectifier

Example Of Fullwave Rectifier

Example Of Bridge Rectifier

TRANSISTOR

	Common Base	Common Emitter	Common Collector
Common Terminal	Base	Emitter	Collector
Input Terminal	Emitter	Base	Base
Output Terminal	Collector	Collector	Emitter
Input Equation	VEE = VRE + VEB	VBB = VRB + VBE	
	VEE = IERE + VEB	VBB = IBRB + VBE	
Output Equation	VCC = VRC + VCB	VCC = VRC + VCE	
	VCC = ICRC + VCB	VCC = ICRC + VCE	
Current Gain	NO GAIN	HIGH	HIGH
	$Ai = \frac{Out\ Current}{In\ Current} = \frac{IC}{IE}$	$Ai = \frac{Out\ Current}{In\ Current} = \frac{IC}{IB}$	$Ai = \frac{Out\ Current}{In\ Current} = \frac{IE}{IB}$
	Known; IE=IC	Known; IC > IB	Known; IE > IB
Input Resistance	Low	Low	High
Output Resistance	High	High	Low
Power Gain	Low	High	High
Voltage Gain	High	High	Low
Phase Shift	No Phase Shift	180° Phase Shift	No Phase Shift

Maximum Input Voltage, $V_{i_{(max)}}$

$$V_{i_{(\max)}} = rac{V_o}{A_v}$$
 $A_v = rac{rc}{re'}$ $re' = rac{25mv}{ie}$ $ie pprox ic$

Voltage Divider

$$I_c = \frac{R_2}{R_1 + R_2} x \frac{V_{cc}}{R_E}$$

Maximum Voltage Gain (Avmax)

$$Avmax = \frac{V_o}{V_i}$$

Maximum Voltage Gain in dB

$$Avmax (dB) = 20 \log Avmax$$

Cut-off frequency (fc1 and fc2)

- Gain of 3Db @ 0.707 falls at the cut off frequency.
- Low cut-off frequency (fc1): when Am ≈ 0.707 Am.
- High cut-off frequency (fc2): when Am less than 0.707 Am.

Frequency Bandwidth (BW)

$$BW = fc_2 - fc_1$$

Center Frequency

$$f_o = \sqrt{(fc_1 fc_2)}$$

POSITIVE FEEDBACK

Overall Voltage Gain (G):

$$\frac{V_o}{A} = V_i + BV_o$$

$$V_o = AV_i + ABV_o$$

$$V_o - ABV_o = AV_i$$

$$V_o(1 - AB) = AV_i$$

$$\frac{V_o}{V_i} = \frac{A}{1 - AB}$$

A= Open loop Gain

G= Close loop Gain @ Overall Gain

AB= Loop Gain

POSITIVE FEEDBACK

Overall Voltage Gain (G):

$$\frac{V_o}{A} = V_i - BV_o$$

$$V_o = AV_i - ABV_o$$

$$V_o + ABV_o = AV_i$$

$$V_o(1 + AB) = AV_i$$

$$\frac{V_o}{V_i} = \frac{A}{1 + AB}$$

A= Open loop Gain

G= Close loop Gain @ Overall Gain

AB= Loop Gain

Relationship Between I_D and V_{GS} :

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

 I_{DSS} = Saturation Drain Current V_P = Pinch-off Voltage

DC loadline

$$ID(sat) = \frac{VDD}{RL}$$

$$VDS (cut - off) = VDD$$

$$VDSQ = \frac{VDD}{2}$$

$$IDSQ = \frac{VDD/2}{RS + RL}$$