ESE446: Robotics and Dynamics Final Project: RRR Robotic Arm Name: Chih Yun Pai / ID: 452667

Abstract:

The RRR Robotic Arm project starts from developing dynamic equation for manipulator to implement general simulation of dynamics and path trajectory with MATLAB Simulink.

Derivation of Dynamic Equation for manipulator:

Initial parameters:

$$\theta_{1_initial} = 10 \ degree$$

$$\theta_{2_initial} = 20 \ degree$$

$$\theta_{3 initial} = 30 degr$$

$$L_1 = 4 meters$$

$$L_2 = 3 meters$$

$$L_3 = 2$$
 meters

$$m_1 = 20 \text{ Kg}$$

$$m_2 = 15 \, Kg$$

$$m_3 = 10 \, Kg$$

$$I_1 = 0.5 Kg - m^2$$

$$I_2 = 0.2 Kg - m^2$$

$$I_3 = 0.1 Kg - m^2$$

$$I_{c1} = \begin{bmatrix} I_{1xx} & 0 & 0 \\ 0 & I_{1yy} & 0 \\ 0 & 0 & I_{1zz} \end{bmatrix}$$

$$I_{c2} = \begin{bmatrix} I_{2xx} & 0 & 0 \\ 0 & I_{2yy} & 0 \\ 0 & 0 & I_{2zz} \end{bmatrix}$$

$$I_{c3} = \begin{bmatrix} I_{3xx} & 0 & 0 \\ 0 & I_{3yy} & 0 \\ 0 & 0 & I_{3zz} \end{bmatrix}$$

$$J_{v1} = \begin{bmatrix} \frac{\partial P_1}{\partial q_1} & \frac{\partial P_1}{\partial q_2} & \frac{\partial P_1}{\partial q_3} \\ \frac{\partial P_2}{\partial q_1} & \frac{\partial P_2}{\partial q_2} & \frac{\partial P_2}{\partial q_3} \end{bmatrix}$$

$$J_{v3} = \begin{bmatrix} \frac{\partial P_3}{\partial q_1} & \frac{\partial P_3}{\partial q_2} & \frac{\partial P_3}{\partial q_3} \\ \frac{\partial P_3}{\partial q_1} & \frac{\partial P_3}{\partial q_2} & \frac{\partial P_3}{\partial q_3} \end{bmatrix}$$

$$J_{w1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$J_{w2} = \begin{bmatrix} 0 & \hat{z}_1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$J_{w3} = \begin{bmatrix} 0 & \hat{z}_1 & 0 & 0 \\ 0 & \hat{z}_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$M(q) = \sum_{i=1}^{3} \left[m_{i} J_{vi}^{T} J_{vi}^{T} + J_{wi}^{T} I_{ci} J_{wi} \right]$$

$$C(q,\dot{q}) = \begin{bmatrix} b_{111} & b_{122} & b_{133} \\ b_{211} & b_{222} & b_{233} \\ b_{311} & b_{323} & b_{333} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}m_{111} & m_{122} - \frac{1}{2}m_{211} & m_{133} - \frac{1}{2}m_{331} \\ m_{211} - \frac{1}{2}m_{112} & \frac{1}{2}m_{222} & m_{233} - \frac{1}{2}m_{332} \\ m_{311} - \frac{1}{2}m_{113} & \frac{1}{2}(m_{323} + m_{332} - m_{233}) & \frac{1}{2}m_{333} \end{bmatrix}$$

$$B(q,\dot{q}) = 2 \begin{bmatrix} b_{112} & b_{113} & b_{123} \\ b_{212} & b_{213} & b_{223} \\ b_{312} & b_{313} & b_{323} \end{bmatrix} = \begin{bmatrix} m_{112} & m_{113} & (m_{123} + m_{132} - m_{231}) \\ (m_{212} + m_{221} - m_{122}) & (m_{213} + m_{231} - m_{132}) & m_{223} \\ (m_{312} + m_{321} - m_{123}) & (m_{313} + m_{331} - m_{133}) & (m_{323} + m_{332} - m_{233}) \end{bmatrix}$$

$$F(\dot{q}) = c_1 \dot{q} + c_2 sign(\dot{q})$$

$$\begin{split} F(\dot{q}) &= c_1 \dot{q} + c_2 sign(\dot{q}) \\ G(q) &= - \begin{bmatrix} J_{v1}^T \begin{bmatrix} 0 \\ m_1 g \\ 0 \end{bmatrix} & J_{v2}^T \begin{bmatrix} 0 \\ m_2 g \\ 0 \end{bmatrix} & J_{v3}^T \begin{bmatrix} 0 \\ m_3 g \\ 0 \end{bmatrix} \end{bmatrix} \\ \ddot{q} &= \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \\ \ddot{q}_3 \end{bmatrix} = M^{-1}(q) \begin{bmatrix} \tau - C(q, \dot{q}) \begin{bmatrix} \dot{q}_1^2 \\ \dot{q}_2^2 \\ \dot{q}_3^2 \end{bmatrix} - B(q, \dot{q}) \begin{bmatrix} \dot{q}_1 \dot{q}_2 \\ \dot{q}_1 \dot{q}_3 \\ \dot{q}_2 \dot{q}_3 \end{bmatrix} - G(q) - F(\dot{q}) \end{bmatrix} \end{split}$$

Demonstration for dynamics of the robot through simulation:

- 1: No actuator torque, no gravity. -> See 1_1.gif
- 2. No actuator torque, with gravity. -> See 1_2.gif
- 3. Joint-1, Joint-2, and Joint-3 actuator torque in order to provide equilibrium, with gravity. -> See 1_3.gif

Robot Simulation – with control partitioning:

With
$$K_p: 10$$
. $K_v = 2\sqrt{K_p}$.

$$\theta_{1 \ initial} = 10 \ degree$$

$$\theta_{2_initial} = 20 \ degree$$

$$\theta_{3_initial} = 30 \ degr$$

$$\theta_{1_desired} = 30 \ degree$$

$$\theta_{2_desired} = -20 \; degree$$

$$\theta_{3_desired} = -10 \ degr$$

Simulation -> see 2_1.gif

Experiment with various K_p : 1, 10, 100, 200, 500, 1000. $K_v = 2\sqrt{K_p}$.

K_p	1	10	100	200	500	1000
gif	3_1.gif	3_2.gif	3_3.gif	3_4.gif	3_5.gif	3_6.gif
Rise Time: T_r	≅ 6 <i>sec</i>	≅ 2 sec	≅ 0.7 sec	≅ 0.5 <i>sec</i>	≅ 1.5 <i>sec</i>	N/A
Situation	Critical	Critical	Critical	Critical	Underdamped	Underdamped
	Damped	Damped	Damped	Damped	/ Overshoot	/ Blows up

Overshoot begins when $K_p \ge 225$. The system can be critical damped with single K_p values for each joint. The following figure of joint1 "0 to 30 degree" step response shows the response behaves like a second order system:

Robot Simulation – path trajectory:

Given the following timeline table:

Time (seconds)	Theta-1 (degrees)	Theta-2 (degrees)	Theta-3 (degrees)
0	0	0	90
2	30	-10	70
4	45	.130	-85
6	.150	.10	.70
8	.180	.0	90

The following figure demonstrates the path trajectory calculating by MATLAB function spline fit with the given timeline table. Starting and ending slopes for each joints trajectory are set to zero.

There're two functions to deal with the path trajectory control. The first one "CreatTimeTble" fits the spline curve and creates more detailed version of "TimeLineTable", then passes the variable to the second function "path_trajectory". The second function, which has two input variable "T" (current time) and "TimeLineTable" (more continuous version of the given table), finds the closest time and return the corresponding joint position "q". The simulation makes it to the end stopping at (180,0,-90) degree, and the gains change the simulation. The higher gain makes the joints follow closer to the desired path trajectory, in other words, the actual path trajectory is not exact what we set in the "TimeLineTable".

Experiment with various K_p : 1, 10, 100, 200. $K_v = 2\sqrt{K_p}$.

K_p	1	10	100	200
gif	4_1.gif	4_2.gif	4_3.gif	4_4.gif
Figure	4_1	4_2	4_3	4_4

Final Design:

