=			
	Exam 2, Fall 2011 Solutions	ME460/660	
	X = 1000-100ω ² + 1ω		
	W F X (red)	+X(deg)	
	2T 1.187×163-1,70×106; 9.626×164 3.140	179.9 2 Trop	
	6TT -2.374×103-2.125×105; 2.138×104 0.009	0.513	
	2TT -3,592×104-7,231×107 1,100×105 0.002	0.122 ~0	
	x(t) = 9.626×10 4 cos (5 + +3.14) + 2.138×104 cos (5 + +0.009)		
	+ 1.100×105cos (2Tit + 0.002)		

$$2) = t = a + b$$

$$x/(t) = \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} cos \sqrt{se} (t-t) dt$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin \sqrt{se} (t-t) dt + c$$

$$= \frac{1}{10 + b} \int_{0}^{\infty} sin$$

3) a) 300 x + Cx + 40000 X = 40000 y + c g X = 40000 + C/W Y = 40000 - 300002 + C/W At resonance $\frac{X}{Y} = 40$, $\omega = \sqrt{\frac{40000}{300}} = 11.55$ ralls 40000 -cj 11.55 11.55 cj = 40 let's be honest.

11.65 cj = 40 let's be honest.

I solved this using

12 13333 = 1600 the silver in my I solved this using Calculator. 4000° = 1599.133362 C = 86,61 kg/s Farmy = 40000 | X-Y = 40000 | 0.1 e -0.0025 = 4004 N Flashpot = CWX = 86.61. 11,55 (X-Y) = 100.1N

