Synthetic Data Pipeline for Pose Estimation (Milestone 2)

Group: Nathan Pichette, William Stern, Stephane Baruch, Hanibal Alazar Faculty Advisor: Dr. Ryan White

Overview of Milestone 1

- Implementing movement and lighting
- Adding background
- Creating and implementing configuration file
- Extracting pose information from each frame

Milestone 1 Matrix

Task	Completion %	Willi am	Nat e	Step hane	Hani bal	To do
Incorporate Movement	75%	37%	0%	38%	0%	Add more complex path options
Add Background	100%	95%	0%	0%	5%	Correct location on camera and add to config file
Configuration file	75%	0%	75 %	0%	0%	Addition of movement options
Lighting	100%	75%	25 %	0%	0%	Test reflections
Pose Information for each frame	100%	80%	0%	20%	0%	
Investigate Nvidia Omniverse	0%	0%	0%	0%	0%	Scrapped

Demo Video

Configuration File

```
[lighting]
     # Lighting type "point" or "sun"
     light type = "POINT"
     # Location of point source
     light x = 0
     light y = 0
     light z = 0
     # Strength of light source
     light wattage = 10000
     [satellite]
11
12
     #path to satellite inside file
     satellite file= "/aqua/nasa-aqua-satellite.obj"
13
14
     [background]
15
     #path to satellite inside file
     background file= "/space.png"
17
```

Quaternions

- Quaternions are a number system extending the complex numbers
- Represented as (X, Y, Z, W)
- X,Y,Z represent the axis of which the rotation takes place
- W represents the angle of rotation where W = $\cos(\Theta/2)$

```
120
0.2230796217918396 -0.431097149848938 0.8506507277488708 -0.2019512802362442
121
0.21151922643184662 -0.43434616923332214 0.8458941578865051 -0.22597795724868774
122
0.1996668130159378 -0.4379829168319702 0.8401929140090942 -0.24975994229316711
123
0.18750619888305664 -0.44201070070266724 0.833561360836029 -0.27320945262908936
124
0.17502059042453766 -0.4464287757873535 0.8260211944580078 -0.296239972114563
125
0.16219161450862885 -0.4512326419353485 0.8176003694534302 -0.31876733899116516
126
0.14899957180023193 -0.45641329884529114 0.8083334565162659 -0.34070974588394165
```

Milestone 3 Goals

- Allow the use of mathematical functions for movement
- Implement compatibility among operating systems
- Test and create demos for each addition individually
- Expand use of configuration file
- Output pose information in COCO dataset format

Milestone 3 Matrix

Task	William	Nate	Stephane	Hanibal
1. Complex movement along path	develope	demo	test	test
2. Enable movement interaction through configuration file	test	develope	demo	develope
3. Implement compatibility among os	demo	test	develop	test
4. Extract poses as coco type annotations	Dev	Test	demo	test

Questions?