1. Circuit diagram showing the position sensor, hand-drawn or PCB Artist, like Figure 8.1 (part a),

a.

2. Time measurements and a photo-showing the ADC/LCD execution time profile (part d)

Name	Value	Туре	
- ADCtime	65	uint	
 OutDectime 	4442	uint	
<enter expression=""></enter>			

a.

3. Calibration data, like the first three columns of Table 8.1 (part d)

a.

Position	Analog Input	ADC Sample
0.10	0.07	82
0.50	0.79	998
0.90	1.64	2050
1.10	2.02	2522
1.50	2.87	3589

b.

4. Final version of distance meter with SysTick, ADC, convert, and main (your code for parts c, e, f, g and h)

a.

```
16 -void ADC Init (void) {
                 volatile unsigned long delay;
    17
    18
                 SYSCTL_RCGCGPIO_R |= 0x08; // 1) activate clock for Port D
                                                     11
                 delay = SYSCTL RCGCGPIO R;
    19
                                                           allow time for clock to stabilize
    20
                 delay = SYSCTL RCGCGPIO R;
                 delay = SYSCTL RCGCGPIO R;
    21
                 delay = SYSCTL RCGCGPIO R;
                 delay = SYSCTL RCGCGPIO R;
    23
    24
                 delay = SYSCTL RCGCGPIO R;
    25
                 delay = SYSCTL RCGCGPIO R;
                 delay = SYSCTL RCGCGPIO R;
    26
    27
                 delay = SYSCTL RCGCGPIO R;
                 GPIO PORTD DIR R &= ~0x04;
                                                  // 2) make PD2 input
    28
    29
                 GPIO PORTD AFSEL R |= 0x04;
                                                  // 3) enable alternate function on PD2
                 GPIO PORTD DEN R &= ~0x04;
                                                   // 4) disable digital I/O on PD2
    30
                GPIO PORTD AMSEL R |= 0x04;
                                                 // 5) enable analog function on PD2
    31
    32
                 SYSCTL RCGCADC R |= 0x01;
                                             // 6) activate ADCO
    33
                 delay = SYSCTL_RCGCADC_R;
                 delay = SYSCTL RCGCADC R;
    34
                 delay = SYSCTL RCGCADC R;
    35
                 delay = SYSCTL RCGCADC R;
                 delay = SYSCTL_RCGCADC_R;
    37
                 delay = SYSCTL RCGCADC R;
    38
                 delay = SYSCTL RCGCADC R;
    39
                 delay = SYSCTL RCGCADC R;
    40
    41
                 delay = SYSCTL_RCGCADC_R;
                                          //edit // 7) configure for 125K ?
    42
          ADCO PC R = 0x03;
    43
          ADCO SSPRI R = 0x0123;
                                            // 8) Sequencer 3 is highest priority
          ADCO ACTSS R &= ~0x0008;
                                            // 9) disable sample sequencer 3
    44
          ADCO EMUX R &= ~0xF000;
                                            // 10) seq3 is software trigger
    45
          ADCO SSMUX3 R=(ADC1 SSMUX3 R & ~0xF)+5; // channel Ain5 (PD2)
    46
          ADCO SSCTL3 R = 0x0006; // 12) no TSO DO, yes IEO ENDO
    47
          ADCO IM R &= ~0x0008;
    48
    49
          ADCO ACTSS R |= 0x0008;
    50
b.
    51
    8 = uint32_t ADC_In(void) {
              //uint32_t result =0;
    0
              unsigned long result; //edit
              ADCO_PSSI_R = 0x008; //start sequencer 3
    2
              while ((ADCO_RIS_R & 0x08) == 0) {}; //busy-wait
              result = ADCO_SSFIFO3_R & OxFFF; //read data from FIFO buffer
              ADCO ISC R = 0x00008; //clear flag in RIS
              return result;
       }
    7
c.
    111 // your function to convert ADC sample to distance (0.01cm)
     112 \understand uint32 t data) {
          return 162*data/4096+8; // replace this line with your Lab 8 solution //data = 162*data/4096+8
     113
     114
    115 -}
d
    132 = int main (void) {
            TExaS Init();
     133
            ST7735 InitR (INITR REDTAB); // your Lab 8
     134
     135
            PortF_Init();
     136
            ADC Init();
            SysTick Init ();
     137
     138
            EnableInterrupts();
     139
            while(1){
     140
               if (ADCstatus == 1) { //check if one or zero
                  uint32_t x = ADCmail;
     141
     142
                  ADCstatus = 0;
     143
                 x = Convert(x);
                  ST7735_SetCursor(1,1);
     144
     145
                  LCD OutFix(x);
                  ST7735 OutString("cm ");
     146
     147
     148
     149 -
            }
     150 }
e
```

5. A photo or screenshot verifying the sampling rate is 10 Hz, like Figure 8.8 (part h)

Ave=1.68V, Peak-peak=3.27V, Period=200.0ms, Freq= 5Hz high-pulse=99.9ms, low-pulse=100.1ms

a.

6. Accuracy data and accuracy calculation, Table 8.2 (part i)

a.

True Position	Measured Position	True-Measured
0.10	0.13	-0.03
0.50	0.52	-0.02
0.90	0.90	0.00
1.10	1.13	-0.03
1.50	1.51	-0.01