Final Exam

Quiz, 10 questions

2 points	5
two dis	er a directed graph $G=(V,E)$ with non-negative edge lengths and tinct vertices s and t of V . Let P denote a shortest path from s to t in e add 10 to the length of every edge in the graph, then: [Check all that
	P definitely does not remain a shortest $s-t$ path.
	If P has only one edge, then P definitely remains a shortest $s-t$ path.
	P might or might not remain a shortest $s-t$ path (depending on the graph).
	P definitely remains a shortest $s-t$ path.
2 points	5
the inp	the running time of depth-first search, as a function of n and m , if ut graph $G=(V,E)$ is represented by an adjacency matrix (i.e., adjacency list), where as usual $n= V $ and $m= E $?
What is	ut graph $G=(V,E)$ is represented by an adjacency matrix (i.e.,
What is	ut graph $G=(V,E)$ is represented by an adjacency matrix (i.e., adjacency list), where as usual $n= V $ and $m= E $?

heta(n+m)

Fin	a 1	Exam
rm	aт	cxaiii

2 points

Quiz, 10 questions

3.

What is the asymptotic running time of the Insert and Extract-Min operations, respectively, for a heap with n objects?

- $\Theta(1)$ and $\Theta(\log n)$
- $\Theta(\log n)$ and $\Theta(\log n)$
- $\Theta(n)$ and $\Theta(1)$
- $\Theta(\log n)$ and $\Theta(1)$

2 points

4.

On adding one extra edge to a directed graph G, the number of strongly connected components...?

- ...cannot decrease
- ...might or might not remain the same (depending on the graph).
- ...cannot change
- ...cannot decrease by more than 1

2 points

5

Which of the following statements hold? (As usual n and m denote the number of vertices and edges, respectively, of a graph.) [Check all that apply.]

- Breadth-first search can be used to compute shortest paths in O(m+n) time (when every edge has unit length).
- Depth-first search can be used to compute a topological ordering of a directed acyclic graph in O(m+n) time.

2 points

8.

	Which of the following patterns in a computer program suggests that a heap data structure could provide a significant speed-up (check all that apply)?			
Final Exam	data structure could provide a significant speed-up (check all triat apply):			
Quiz, 10 questions	Repeated minimum computations			
	Repeated maximum computations			
	Repeated lookups			
	None of the other options			
	2 points 9.			
	Which of the following patterns in a computer program suggests that a hash table could provide a significant speed-up (check all that apply)?			
	Repeated maximum computations			
	None of the other options			
	Repeated lookups			
	Repeated minimum computations			
	2 points			
	Which of the following statements about Dijkstra's shortest-path algorithm are true for input graphs that might have some negative edge lengths? [Check all that apply.]			
	It may or may not terminate (depending on the graph).			
	It may or may not correctly compute shortest-path distances (from a given source vertex to all other vertices), depending on the graph.			
	It is guaranteed to terminate.			
	It is guaranteed to correctly compute shortest-path distances (from a given source vertex to all other vertices).			

Final Exam Quiz, 10 questions	I, David Bai , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code	ra
	Submit Quiz	