$$Math. - ES 2 - S2 - Analyse$$

jeudi 24 mai 2018 - Durée 2 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Exercice 1

Un individu joue avec une pièce non nécessairement équilibrée. On note p la probabilité d'obtenir Pile, et on suppose que $p \in]0,1[$.

Dans un premier temps, il lance la pièce jusqu'à obtenir pour la première fois Pile. On note N le nombre de lancers nécessaires.

Dans un second temps, il lance N fois cette même pièce, et on note X le nombre de Pile obtenus au cours de cette seconde série de lancers.

- **1.** Préciser la loi de N, et la loi conditionnelle de X sachant (N = n), avec $n \in \mathbb{N}^*$.
- **2.** Déterminer la loi du couple (N, X).
- **3.** On considère la fonction f définie sur]-1,1[par :

$$\forall x \in]-1, 1[, f(x) = \frac{1}{1-x}$$

- a. Donner l'expression de la dérivée $k^{\text{ème}}$ de f pour tout $k \geq 0$.
- **b.** En déduire le développement en série entière de la fonction $x \mapsto \frac{1}{(1-x)^{k+1}}$ au voisinage de 0, pour $k \in \mathbb{N}$.
- 4. A l'aide de la question précédente, montrer que la loi de X est donnée par :

$$\mathbb{P}(X=0) = \frac{1-p}{2-p}$$
 et $\forall k \ge 1, \mathbb{P}(X=k) = \frac{(1-p)^{k-1}}{(2-p)^{k+1}}$

- 5. Soient $\lambda \in]0,1[$, U une variable aléatoire de Bernoulli de paramètre λ , et V une variable aléatoire géométrique de paramètre λ , indépendante de U. On note Y=UV.
 - a. Sans calculer sa loi, calculer l'espérance de Y.
 - **b.** Pour $k \in \mathbb{N}$, calculer $\mathbb{P}(Y = k)$ (on traitera séparément le cas k = 0).
 - \mathbf{c} . Calculer la variance de Y.
- **6.** En déduire que X a la même loi qu'un produit de variables aléatoires indépendantes, l'une étant une variable de Bernoulli, l'autre une variable géométrique de même paramètre.

T.S.V.P.

Exercice II

On considère les fonctions

$$F: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{1 + n^2 x^2}$$
 et $G: x \mapsto \int_0^{+\infty} \frac{\sin(t)}{e^{xt} - 1} dt$

- 1. Déterminer le domaine de définition et F et préciser sa parité.
- 2. Montrer (sans calculer F') que F est monotone sur \mathbb{R}_+^* et préciser sa monotonie.
- 3. Pour x>0, justifier la convergence de l'intégrale

$$\int_0^{+\infty} \frac{1}{1 + t^2 x^2} \mathrm{d}t$$

et en donner sa valeur.

4. Pour x > 0 et $n \in \mathbb{N}^*$, justifier l'inégalité

$$\frac{1}{1+n^2x^2} \le \int_{n-1}^n \frac{1}{1+t^2x^2} \mathrm{d}t$$

En déduire que

$$F(x) \le \int_0^{+\infty} \frac{1}{1 + t^2 x^2} \mathrm{d}t$$

5. Démontrer de même que l'on a :

$$\forall x > 0, \int_0^{+\infty} \frac{1}{1 + t^2 x^2} dt - 1 \le F(x)$$

- **6.** Déduire de ce qui précède un équivalent de F(x) en 0^+ , ainsi que la limite de F(x) quand x tend vers $+\infty$.
- 7. Représenter l'allure du graphe de F sur \mathbb{R}^* .
- 8. Démontrer que G est définie et continue sur \mathbb{R}_+^* (on ne s'intéressera pas aux valeurs négatives de x).
- 9. Pour $\alpha > 0$, établir la convergence, puis donner la valeur de l'intégrale :

$$\int_0^{+\infty} \sin(t) e^{-\alpha t} dt$$

10. Démontrer que

$$\forall t > 0, \forall x > 0, \frac{\sin(t)}{e^{xt} - 1} = \sum_{n=1}^{+\infty} \sin(t)e^{-nxt}$$

Remarque : A l'aide d'un théorème qui n'est pas au programme, on en déduit que

$$\forall x > 0, F(x) = G(x)$$

Fin de l'énoncé d'analyse