

Polarimetric Camera Calibration Using an LCD Monitor

Zhixiang Wang¹ Yinqiang Zheng² Yung-Yu Chuang¹¹National Taiwan University ²National Institute of Informatics

2. Characteristics of LCD Monitors

 $\cos 2(\phi - \vartheta_{a})$

 $\cos 2(\boldsymbol{\phi} - \boldsymbol{\sigma})$

Polarizer angle 🗖

References

[1] Z. Cui, J. Gu, B. Shi, P. Tan, and J. Kautz. Polarimetric multi-view stereo. In *CVPR*, 2017.

[2] Y. Y. Schechner. Self-calibrating imaging polarimetry. In *ICCP*, 2015. [3] D. Teo, B. Shi, Y. Zheng, and S.-K. Yeung. Self-calibrating polarising radiometric calibration. In *CVPR*, 2018.

3. Method

a. Known Inverse CRF

$$\hat{g}(M_{k,p}) = t_p + a_p \cos 2(\phi_k - \hat{\psi}_p)$$

$$I_{\min} \approx 0$$

$$\frac{\hat{g}(M_{k,p})}{\hat{g}(M_{1,p})} = \frac{1 + \alpha_p \cos 2\phi_k + \beta_p \sin 2\phi_k}{1 + \alpha_p \cos 2\phi_1 + \beta_p \sin 2\phi_1}$$

$$\tilde{\mathbf{P}} = (\tilde{\mathbf{O}}^T \tilde{\mathbf{O}})^{-1} \tilde{\mathbf{O}}^T \tilde{\mathbf{D}}$$
d) Linear Method

b. <u>Unknown Inverse CRF</u>

$$I = g(M) = \sum_{n=0}^{N} c_n M^n$$

$$\hat{g} = \operatorname{argmin}_{g \in \mathcal{W}} ||\mathbf{I} - g(\mathbf{M})||^2 + \lambda |\frac{\partial^2 g}{\partial M^2}|$$
c) Estimate CRF

4. Experiments

a. Simulation (sensitivity analysis)

b. Real-world Experiments (comparison)

5. LCDs' suitability

