Lista 4

- 1. Sejam X_1, \ldots, X_n identicamente distribuídos com $E(X_i) = \mu$ e $Var(X_i) = \sigma^2$, não necessariamente independentes. Como sempre, $\bar{X} = \sum X_i/n$ e $S^2 = \sum (X_i \bar{X})^2/(n-1)$.
 - (a) Continua a ser verdade que $E(\bar{X}) = \mu$? Se sim, mostre. Se não, apresente valores a e b (como função de μ ou σ) tais que sempre $a \leq E(\bar{X}) \leq b$.
 - (b) Continua a ser verdade que $Var(\bar{X}) = \sigma^2/n$? Se sim, mostre. Se não, apresente valores a e b (como função de μ ou σ) tais que sempre $a \leq Var(\bar{X}) \leq b$.
 - (c) Continua a ser verdade que $E(S^2)=\sigma^2$? Se sim, mostre. Se não, apresente valores a e b (como função de μ ou σ) tais que sempre $a \leq E(S^2) \leq b$.
- 2. Prove a segunda parte do teorema de Slutsky: se $X_n \to X$ em distribuição e $Y_n \to a$ em probabilidade, então $X_n Y_n \to a X$ em distribuição.
- 3. Em cada uma das questões abaixo, responda se a sequência converge no sentido proposto. Se a resposta for sim, **apresente a v.a. ou o número para o qual a sequência converge**; se não, justifique.
 - (a) (tudo ou nada) Considere um apostador jogando infinitas vezes num cassino. Ele tem inicialmente um real e aposta sempre tudo no vermelho da roleta. Seja $p \in (0,1)$ a probabilidade dele ganhar; se ele ganhar, sua aposta é dobrada. Seja Y_n o montante em n; $Y_1 = 1$, e $Y_n = 2Y_{n-1}$ com probabilidade p e 0 com probabilidade 1 p.
 - i. $Y_1, Y_2 \dots$ converge quase certamente?
 - ii. e em média quadrática?
 - (b) Sejam U e V duas v.a.s independentes com distribuição normal padrão (média 0 e variância 1). Sejam $X_1=U,\,X_2=V,\,X_3=U,\,X_4=V,\,$ etc.

- i. A sequência X_1, X_2, \dots converge em distribuição?
- ii. e em probabilidade?
- iii. $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ converge em probabilidade?

4. (Por que normal?)

- (a) Mostre que a distribuição normal padrão tem a seguinte propriedade: se Y, Z i.i.d. N(0,1), então $(Y+Z)/\sqrt{2} \sim N(0,1)$.
- (b) Considere uma amostra aleatória X_1,\ldots,X_n , com $E[X_i]=\mu$ e n par. Defina $P_n=(2/n)\sum_i X_{2i}$ e $I_n=(2/n)\sum_i X_{2i-1}$, a média dos termos pares e dos termos ímpares na amostra. Suponha que saibamos que $\sqrt{n}(\bar{X}_n-\mu)\sim F$ (mas não sabemos se F é a normal). Argumente que $\sqrt{n/2}(P_n-\mu)\sim F$ e $\sqrt{n/2}(I_n-\mu)\sim F$.
- (c) Conclua que se $\sqrt{n}(\bar{X}_n-\mu)$ converge em distribuição para F, então F precisa ter a propriedade do item a.
- 5. (Por que anormal?) Considere uma distribuição F (não degenerada) com a seguinte propriedade: Se X_1, \ldots, X_n i.i.d. F, então $\bar{X}_n \sim F$. (Uma distribuição que tem essa propriedade é a distribuição de Cauchy.) Use a lei dos grandes números para provar que a esperança de F não pode existir.