几个常用的收敛

Renhe W.

1 Definitions

统计学中的几个收敛的定义如下:

Definition 1 (几乎必然收敛 (Almost Surely Convergence, a.s.)). 序列 $\{X_n\}$ 几乎必然收敛到 X, 记为 $X_n \xrightarrow{a.s.} X$, 如果:

$$P\left(\lim_{n\to\infty} X_n = X\right) = 1.$$

Definition 2 (依概率收敛 (Convergence in Probability)). 序列 $\{X_n\}$ 依概率收敛到 X ,记为 $X_n \xrightarrow{p} X$,如果对任意 $\epsilon > 0$,有:

$$\lim_{n \to \infty} P\left(|X_n - X| > \epsilon\right) = 0.$$

Definition 3 (依分布收敛 (Convergence in Distribution)). 序列 $\{X_n\}$ 依分布收敛到 X ,记为 $X_n \stackrel{d}{\longrightarrow} X$,如果对于任意连续有界函数 g ,有 :

$$\lim_{n \to \infty} E\left[g\left(X_n\right)\right] = E[g(X)]$$

或者等价地,对所有x在哪里分布函数F是连续的,有:

$$\lim_{n \to \infty} F_n(x) = F(x).$$

三者关系

- 1. 几乎必然收敛 \Rightarrow 依概率收敛 如果 $X_n \xrightarrow{\text{a.s.}} X$,则 $X_n \xrightarrow{p} X$. 这个结果可以通过 Egorov 定理来证明.
- 2. 依概率收敛 \Rightarrow 依分布收敛 如果 $X_n \stackrel{p}{\longrightarrow} X$,则 $X_n \stackrel{d}{\longrightarrow} X$. 这可以从依概率收敛的定义直接推导出来.
- 3. 几乎必然收敛 \Rightarrow 依分布收敛 几乎必然收敛不一定导致依分布收敛,除非 X_n 和 X 定义在同一个概率空间中。当它 们在同一概率空间时,由1和2的关系,我们可以说几乎必然收敛导致依分布收敛.

2 PROOFS 2

2 Proofs

2.1 证明 1: 几乎必然收敛 ⇒ 依概率收敛

Theorem 2.1. $\omega \mathbb{R} X_n \xrightarrow{a.s.} X$, $\mathbb{M} X_n \xrightarrow{p} X$.

Proof. 假设 $X_n \xrightarrow{\text{a.s.}} X$, 我们要证明对于任意的 $\epsilon > 0$, 有:

$$\lim_{n \to \infty} P\left(|X_n - X| > \epsilon\right) = 0$$

由于 X_n 几乎必然收敛到 X , 我们有:

$$P\left(\lim_{n\to\infty} X_n = X\right) = 1,$$

这意味着,对于任意的 $\epsilon>0$,事件 $\{|X_n-X|>\epsilon \text{ i.o. }\}$ (i.o. 是指无穷次) 的概率是 0 ,即:

$$P(|X_n - X| > \epsilon \text{ i.o. }) = 0,$$

由 Borel-Cantelli 引理,如果 $P(|X_n-X|>\epsilon \text{ i.o. })=0$,那么 $P(|X_n-X|>\epsilon \text{ finitely many})=1$,即只有有限个 n 使得 $|X_n-X|>\epsilon$ 。这意味着对于足够大的 n ,我们有:

$$P(|X_n - X| > \epsilon) = 0,$$

所以 $X_n \xrightarrow{p} X$.

Theorem 2.2 (反推条件). 如果 $X_n \stackrel{p}{\longrightarrow} X$ 且 $\{X_n\}$ 是单调的,则 $X_n \stackrel{a.s.}{\longrightarrow} X$.

2.2 证明 2: 依概率收敛 ⇒ 依分布收敛

Proposition 2.1 (准备知识). 这里介绍几个要用的知识:

$$P(X + Y \leqslant a + b) \le P(X \leqslant a) + P(Y \leqslant b)$$

$$P(X + Y \le a + b) \geqslant P(X \le a \perp X \le b)$$

 $P(AB) \geqslant P(A) - P(\bar{B})$

$$P(AB) = P(A\bar{B}) = P(A - \bar{B})$$

$$= P(A) - P(A\bar{B})$$

$$P(A\bar{B}) \le P(\bar{B})P(AB) \ge P(A) - P(\bar{B})$$

Theorem 2.3. $\omega \mathbbmsp{X} X_n \stackrel{p}{\longrightarrow} X$, $\mathbbmsp{N} X_n \stackrel{d}{\longrightarrow} X$.

2 PROOFS 3

Proof. 假设 $X_n \stackrel{p}{\longrightarrow} X$, 我们要证明 $X_n \stackrel{d}{\longrightarrow} X$, 即对于任意的连续点 x , 我们有:

$$\lim_{n \to \infty} F_n(x) = F(x),$$

其中 F_n 和 F 分别是 X_n 和 X 的分布函数. 我们可以用依概率收敛的定义来证明这一点. 首先,我们注意到:

$$|F_n(x) - F(x)| = |P(X_n \le x) - P(X \le x)| \le P(|X_n - X| > \epsilon)$$

由于 $X_n \stackrel{p}{\longrightarrow} X$, 我们知道:

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0,$$

这意味着:

$$\lim_{n \to \infty} |F_n(x) - F(x)| = 0,$$

所以 $X_n \stackrel{d}{\longrightarrow} X$.

Theorem 2.4 (反推条件: 退化分布条件下). 如果 $X_n \stackrel{d}{\longrightarrow} C$, C 为常数, 则 $X_n \stackrel{p}{\longrightarrow} C$.