Review quizzes

- What is L2-norm?
- What is L1-norm?
- What are cosine similarity and cosine distance?
- What is entropy?
- What is the main difference between information gain and gain ratio?

Two different gini-indices

Decision tree

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$

Income inequality

- Gini-index = A/(A+B)

Cumulative share of people from lowest to highest incomes

When p_i 's give maximum entropy and minimum entropy? (1/3)

Entropy:

$$\operatorname{Ent}(p_1, ..., p_n) = -\sum_{i=1}^n p_i \log p_i$$

• If n = 2

$$Ent(p_1, p_2) = -p_1 log p_1 - (1 - p_1) log (1 - p_1)$$

- What is the value of p_1 to maximize and minimize $\mathrm{Ent}(p_1,p_2)$?
 - Possible points include
 - Extreme points: $p_1 = 0$, $p_1 = 1$
 - $\nabla_{p_1} \operatorname{Ent}(p_1, p_2) = 0$

When p_i 's give maximum entropy and minimum entropy? (2/3)

$$\operatorname{Ent}(p_1, p_2) = -p_1 \log p_1 - (1 - p_1) \log(1 - p_1)$$

- If $p_1 = 0$, $\text{Ent}(p_1, p_2) = 0$
- If $p_1 = 1$, $\text{Ent}(p_1, p_2) = 0$
- If $\nabla_{p_1} \operatorname{Ent}(p_1, p_2) = 0$

$$\Rightarrow -\log p_1 - \frac{p_1}{p_1} - (-1)\log(1 - p_1) - (1 - p_1)\frac{-1}{1 - p_1} = 0$$

$$\Rightarrow -\log p_1 - 1 + \log(1 - p_1) + 1 = 0$$

$$\Rightarrow \log(1 - p_1) = \log p_1$$

$$\Rightarrow 1 - p_1 = p_1$$

$$\Rightarrow p_1 = \frac{1}{2}$$
, $\operatorname{Ent}(p_1, p_2) = 1$

When p_i 's give maximum entropy and minimum entropy? (3/3)

- Values of $p_1, ..., p_n$ (n > 2) to maximize and minimize entropy?
- Possible points:

•
$$p_i = 1$$
, $p_{-i} = 0$ $(p_{-i} = [p_1, ..., p_{i-1}, p_{i+1}, ..., p_n])$

•
$$\nabla_{p_i} \text{Ent}(p_1, ..., p_n) = 0$$
, $\sum p_i = 1, 0 \le p_i \le 1 \ \forall i$

 This can be solved by Lagrange multiplier, which will be discussed in future lectures

Exercise 2

- Requirement
 - Implement a decision tree classifier using Python. (50%)
 - You **cannot** use existing decision tree libraries (e.g., sklearn.tree.DecisionTreeClassifier)
 - Use your classifier to predict the class of the iris plants based on the Balance Scale Data Set (http://archive.ics.uci.edu/ml/ datasets/Balance+Scale). (40%)
 - Separate the data into training (70%) and test (30%) datasets. Please make sure the dataset is split in a stratified fashion, i.e., the class distributions in the training and the test datasets are the same as the class distribution in the entire dataset.
 - Report both the training and the test error for k = 1, 2, 3, ..., 20
 - A brief discussion of the results. (10%)
- Please submit your code and report to new ee-class

Due date: 10/19 23:59:59