Практика 9.

Шахматов Андрей, Б02-304

6 апреля 2024 г.

Содержание

1	1.1 Сдано	1
2	1.2 Сдано	2
3	1.3 Сдано	2
4	1.4	2
5	2.1 Сдано	2
6	2.2 Сдано	3
7	2.3	3
8	2.4	3
9	2.5	4
10	3.1	4
11	3.2	5
12	3 3	5

1 1.1 Сдано

Если $x \in A \triangle C$, то он принадлежит либо в $A \setminus C$, либо в $C \setminus A$. Тогда без ограничения общности $x \in A$ и $x \notin C$. Тогда если $x \in B$, то он принадлежит $B \triangle C \implies x \in (A \triangle B) \cup (B \triangle C)$, иначе $x \in (A \triangle B)$.

2 1.2 Сдано

Так как мера множества равна нулю, то существует покрытие элементарными $X \in A = \bigcup_{k=1}^{\infty} A_k$, такое, что:

$$\sum_{k=1}^{\infty} m(A_k) < \varepsilon$$

Возьмём множество A_1 :

$$\mu^*(X \triangle A_1) \le \mu(A_1 \triangle A) + \mu(A \triangle X) < 2\varepsilon$$

3 1.3 Сдано

Если мера Лебега равна 0, то его внешняя мера Лебега тоже равна 0, тогда по субаддитивности верхней меры лебега:

$$\mu^*(X_1 \subset X) \le \mu^*(X) = 0$$

Тогда по предыдущей задаче X_1 - измеримо.

4 1.4

$$|\mu(A) - \mu(B)| \le \mu(A \triangle B) = 0$$

Тогда $\mu(A) = \mu(B)$. А дальше как...

5 2.1 Сдано

а) Данное множество соответствует графику функции y(x) = 1 - x на множестве [0,1]. Тогда так как такая функция равномерно непрерывна, то для всякого $\varepsilon > 0$ найдётся $\delta > 0$, такая, что $|f(x_1) - f(x_2)| < \varepsilon$, $|x_1 - x_2| < \delta$. Разобъём множество [0,1] на дельта промежутки $[x_k, x_{k+1}], x_{k+1} - x_k < \delta$, тогда весь график покрывается $[x_k, x_{k+1}] \times [f(x_k), f(x_{k+1})]$, причём верхняя мера Жордана такого покрытия:

$$\mu^* X \le \sum_{k=1}^n [x_k, x_{k+1}] \cdot \varepsilon = \varepsilon$$

Тогда так как верхняя мера сколь угодно мала, то мера множества равна 0. Значит множество измеримо по Жорадну и по Лебегу. б) Граница такого множества - весь квадрат, его мера не равна 0, значит множество не измеримо по Жордану. Представленное множество можно представить как счётное объединение множеств:

$$X = \bigcup_{q \in \mathbb{Q}} \left\{ y = q - x \mid (x, y) \in [0, 1]^2 \right\}$$

Каждое из таких множеств представляет двумерную прямую, то есть имеет Лебегову меру 0. А значит по суббаддитивности верхней меры Лебега множество X имеет меру 0, а значит множество измеримо по Лебегу с мерой 0.

6 2.2 Сдано

Построим такое множество, разделим отрезок на 10 частей и выбросим из него 3 часть, тогда в полученном множестве F_1 не будет чисел с 4 в первом разряде. Далее из каждой из 9 оставшихся частей проведём аналогичную операцию - в полученном множестве F_2 не будет чисел с 4 в первом и втором разряде. Тогда множество:

$$F = \bigcap_{n=1}^{\infty} F_n$$

не будет иметь 4 в своей десятичной записи. Такое множество измеримо по Лебегу, так как является пересечением измеримых множеств. При этом мера $\mu F_n = \frac{9}{10} \mu F_{n-1}$, тогда $\mu F_n = \left(\frac{9}{10}\right)^n \to 0, n \to \infty$, тогда из непрерывности меры Лебега $\mu F = 0$. Так как множество нигде не плотно, то его внутренность пустая, тогда мера Лебега его границы равна 0. Так как такая граница компактна, то она также имеет нулевую меру Жордана. А значит измеримо по Жордану.

$7 \quad 2.3$

Докажем по индукции, база индукции очевидна. Для начала покажем, с учётом $\mu(X_k) \leq 1$:

$$\sum_{k=1}^{n} X_k > n-1 \implies \sum_{k=1}^{n-1} X_k > n-1 - \mu(X_n) > (n-1)-1$$

То есть условие сохраняется при шаге индукции. Тогда докажем от противного, пусть $\sum_{k=1}^{n} X_k > n-1$ и $\mu(\bigcap_{k=1}^{n} X_k) = \mu(X \cap X_n) = 0$:

$$\mu(X \cap X_n) + \mu(X \cup X_n) = \mu(X) + \mu(X_n) > n - 1 \implies 1 \ge \mu(X \cup X_n) > n - 1$$

Получили противоречие для n > 1.

8 2.4

Представленное множество монжно записать как:

$$X = \bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} X_k \right)$$

Тогда помтроим последовательность вложенных множеств:

$$\bigcup_{k=1}^{\infty} X_k \supset \bigcup_{k=2}^{\infty} X_k \supset \cdots \supset \bigcup_{k=n}^{\infty} X_k$$

Тогда по непрерывности меры:

$$\mu(X) = \lim_{n \to \infty} \mu\left(\bigcup_{k=n}^{\infty} X_k\right) \le \lim_{n \to \infty} \sum_{k=n}^{\infty} \mu(X_k) = 0$$

$9 \quad 2.5$

Из-за $K \subset X \subset U \implies \mu^*(X \setminus K) = \mu^*(X \triangle K) < \varepsilon$ Разобъём открытое множество на объединение открытых шаров с центрами в рациональных точках:

$$U = \bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} (x_k - \frac{1}{n} dist(x_k - \mathbb{R}^n \setminus U), x_k - \frac{1}{n} dist(x_k - \mathbb{R}^n \setminus U))^{\otimes n}$$

Тогда так как $K \subset U$, то наше разбиение покрывает K, тогда выберем счётное подпокрытие по определению компактности. Тогда полученное $A = A_1 \cup A_2 \cup \cdots \cup A_N$ по монотонности меры:

$$\mu(K) \le \mu(A) \le \mu(U)$$

С учётом $\mu(U\setminus K)<\varepsilon$ получим $\mu(U\setminus A)<\varepsilon$ и $\mu(A\setminus K)<\varepsilon$. Каждое из шаров A_k измеримо и потому приближается с точностью $\frac{\varepsilon}{2^k}$ элементарными $P_k,\ P=\bigcup_{k=1}^N P_k$:

$$\mu(A\triangle P) \le \sum_{k=1}^{N} \mu(A_k \triangle P_k) < \varepsilon$$

Тогда:

$$\mu^*(X\triangle P) \le \mu^*(X\triangle K) + \mu^*(K\triangle A) + \mu^*(A\triangle P) < 3\varepsilon.$$

10 3.1

По регулярности меры найдём открытое U, в котором содердится X, и выполняется $\mu(U\setminus X)<\varepsilon$. Тогда так как U - открытое, то оно представляется как

$$U = \bigsqcup_{k=1}^{\infty} (a_k, b_k)$$

Тогда запишем условие задачи для каждого из интервалов:

$$\mu(X \cap (a_k, b_k)) \le \frac{b_k - a_k}{2}$$

Тогда счётно просуммировав неравенства получим:

$$\mu(X \cap U) \le \frac{\mu(U)}{2}$$

Тогда получаем:

$$\mu(U) = \mu(X \cap U) + \mu(U \setminus X) < \frac{\mu(U)}{2} + \varepsilon \implies \mu(U) < 2\varepsilon \implies \mu(X) < 2\varepsilon.$$

Так как ε выбиралось произвольное, то $\mu(X) = 0$.

11 3.2

Рассмотрим произвольное α . Построим множество Витали V на отрезке $[0,\alpha]$, его внешняя мера $\mu^*(V)=\beta\leq\alpha$. Тогда дополним множество V до $V'=V\sqcup(\beta-\alpha-1,-1)$. Так как множество покрытий множества витали непересекается с множеством покрытий $(\beta-\alpha-1,-1)$, то их внешние меры суммируются. Также полученное множество не может быть измеримым. Тогда мы нашли неизмеримое V' с мерой $\mu^*(V')=\beta+(\alpha-\beta)=\alpha$. Р.Ѕ Я знаю что дополнение у множеству Витали на отрезке $[0,\alpha]$ имеет внешнюю меру α , но я не знаю как это доказать.

12 3.3

Докажем, что из того, что множество X измеримо, то $\forall A$ выполняется:

$$\mu^*(A) = \mu^*(A \setminus X) + \mu^*(A \cap X)$$

По теореме (5.31) найдём измеримое множество B, содержащее A, такое, что $\mu^*(A) = \mu(B)$:

$$\mu^*(A) = \mu(B) = \mu(B \cap X) + \mu(B \setminus X) = \mu^*(B \cap X) + \mu^*(B \setminus X) \ge \mu^*(A \cap X) + \mu^*(A \setminus X)$$

Покажем неравенство в обратную сторону по суббаддитивности внешней меры:

$$\mu^*(A\cap X) + \mu^*(A\setminus X) \ge \mu^*\left((A\cap X) \cup (A\setminus X)\right) = \mu^*(A)$$

Теперь докажем, что из выполнения равенства для любого A следует измеримость X. В другую сторону не знаю).