

PHYSICS

Chapter 14

FUERZA ELÉCTRICA

Es aquella propiedad de toda materia sustancial asociada a las partículas fundamentales que lo componen, como protones y neutrones, y es debido a ella que se producen los fenómenos de naturaleza eléctrica.

Un átomo contiene cargas eléctricas; su núcleo está constituido por protones y neutrones.

Tanto el ELECTRÓN como el PROTÓN, poseen esta propiedad y para diferenciarlos, usamos una convención de signos, tal que:

Para cuantificar la carga eléctrica, usamos una cantidad física de naturaleza escalar denominada

Su unidad en el S.I. es el

coulomb : C

UNIDADES DE CARGA ELÉCTRICA

SUBMULTIPLO	ESCRITURA	VALOR
mili coulomb	mC	10 ⁻³ C
micro coulomb	μC	10 ⁻⁶ C
nano coulomb	nC	10 ⁻⁹ C
pico coulomb	pC	10 ⁻¹² C

CUERPOS ELECTRIZADOS

Son aquellos que presentan una diferencia entre las cantidades de electrones y protones,

tal que:

Una barra de vidrio que se frota con lana adquiere "carga eléctrica positiva".

Presenta un DEFECTO de electrones.

Una barra de plástico que se frota con lana adquiere "carga eléctrica negativa".

Presenta un EXCESO de electrones.

Para determinar la cantidad de carga eléctrica de todo cuerpo electrizado, usamos:

FORMAS DE ELECTRIZACION

Son los proceso, mediante los cuales un cuerpo que se encontraba neutralizado, se electriza o queda cargado eléctricamente.

FUERZA ELÉCTRICA

Es aquella que surge entre los cuerpos electrizados, presentando las siguientes características:

I. Es de carácter atractiva o repulsiva, según sus respectivos signos.

REPULSIÓN MUTUA

ATRACCIÓN

REPULSIÓN MUTUA

FUERZA ELÉCTRICA

II. Para cuerpos pequeños la fuerza esta dirigida a lo largo de la recta que une a los cuerpos electrizados.

FUERZA ELÉCTRICA

El módulo de esta fuerza para cuerpos electrizados pequeños, que se encuentran en el vacío (o en el aire), se obtiene usando:

K_{vacío}: Constante de Coulomb (para el aire o vacío)

$$F_{Electrica} = K_{vacío} \frac{|Q_1||Q_2|}{d^2}$$

$$K_{\text{vacio}} = 9.10^9 \frac{\text{N m}^2}{\text{C}^2}$$

Ley de

Q1 y Q2: en coulomb (C)

Coulomb

d: en metros (m)

Una esfera gana 10^{20} electrones por frotamiento. Determine la cantidad de carga que presenta dicha esfera si inicialmente estaba eléctricamente neutra.

Luego, se electriza negativamente.

$$Q^{cuerpo} = n | e^-|$$

Gana electrones;

10²⁰

$$\therefore Q = -16 C$$

 $Q = -(10^{20}).(1,6.10^{-19}C)$

2

La figura muestra las partículas A, B y C electrizadas tal que B repele a C con una fuerza eléctrica de módulo 18 N y A atrae a la partícula B con una fuerza eléctrica de módulo 12 N. Determine el módulo de la fuerza eléctrica resultante sobre B.

RESOLUCIÓN

Representando las fuerzas eléctricas

Finalmente la resultante sobre B se obtiene;

3

Determine el módulo de la fuerza de repulsión entre dos partículas electrizadas con $+10^{-4}$ C y $+2 \times 10^{-4}$ C separadas 3 m.

RESOLUCIÓN

$$Q_1 = +10^{-4}$$
 $Q_2 = +2.10^{-4}$
 $Q_3 = +2.10^{-4}$
 $Q_4 = +2.10^{-4}$
 $Q_5 = +2.10^{-4}$
 $Q_7 = +2.10^{-4}$
 $Q_7 = +2.10^{-4}$
 $Q_7 = +2.10^{-4}$
 $Q_7 = +2.10^{-4}$

Piden la magnitud de la fuerza eléctrica

$$F_{\text{Electrica}} = K_{\text{vacío}} \frac{|Q_1||Q_2|}{d^2}$$

$$F_{\text{Electrica}} = \left(9.10^9 \frac{\text{Nm}^2}{\text{C}^2}\right) \frac{(10^{-4}\text{C})(2.10^{-4}\text{C})}{(3\text{m})^2}$$

$$F_{Electrica} = \left(9.10^{9} \frac{\text{Nm}^{2}}{\text{C}^{2}}\right) \frac{(2.10^{-8} \text{C}^{2})}{9\text{m}^{2}}$$

$$\therefore F_{Electrica} = 20 \text{ N}$$

Determine el módulo de la fuerza eléctrica entre dos partículas distantes 200 cm y electrizadas con cantidades de cargas + 4 mC y -1 µC.

Piden el módulo de la fuerza eléctrica

$$F_{\text{Electrica}} = K_{\text{vacío}} \frac{|Q_1||Q_2|}{d^2}$$

$$F_{\text{Eléctrica}} = \left(9.10^9 \frac{\text{Nm}^2}{\text{C}^2}\right) \frac{(4.10^{-3}\text{C})(1.10^{-6}\text{C})}{(2\text{ m})^2}$$

$$F_{\text{Eléctrica}} = \left(9.10^9 \frac{\text{Nm}^2}{\text{C}^2}\right) \frac{(4.10^{-9} \text{C}^2)}{4\text{m}^2}$$

$$\therefore F_{\text{Eléctrica}} = 9 \text{ N}$$

RESOLUCIÓN

Dos partículas electrizadas con cargas de 2×10^{-4} C y 5×10^{-5} C, se atraen con una fuerza de módulo 10 N. Determine la distancia de separación entre las mismas.

Reemplazando datos;

$$10 N = \left(9.10^9 \frac{\text{Nm}^2}{\text{C}^2}\right) \frac{(2.10^{-4} \text{C})(5.10^{-5} \text{C})}{d^2}$$

$$d^{2} = \left(9.10^{9} \frac{\text{Nm}^{2}}{\text{C}^{2}}\right) \frac{(10.10^{-9} \text{ C}^{2})}{10 \text{ N}}$$

$$d = 3 \text{ m}$$

Cuando nos peinamos sobre todo con peine de plástico ocurre el fenómeno de electrización por frotamiento, este puede llegar a tal punto que suele escucharse chasquidos de tanto pasar el peine por el cabello, en este proceso se detectó que el peine ha adquirido 10^{23} electrones. Con esta información, indique la(s) proposición(es) correcta(s).

(El peine inicialmente se encuentra neutro)

- El peine se electrizó negativamente.
- II. El peine se electrizó positivamente.
- III. El peine tiene una carga de 16 000 C.

RESOLUCIÓN

I.(CORRECTO)cuando un cuerpo gana electrones queda cargado negativamente

II.(INCORRECTO)los cuerpos cargados positivamente pierden electrones

III. (INCORRECTO)

$$Q^{cuerpo} = n | e^-|$$

$$Q = -(10^{23}). (1,6.10^{-19}C)$$

$$\therefore$$
 Q = -16000 C

fotoeléctrico es ionización producida por la luz. Una luz intensa al golpear la superficie de un material puede hacer que escapen electrones del mismo, quedando este cargado positivamente. Si escaparon 10^{20} electrones del material, ¿cuál será la cantidad de carga del material?

Luego, se electriza positivamente.

$$Q^{cuerpo} = +n \mid e^- \mid$$

$$Q = + (10^{20}). (1,6.10^{-19}C)$$

RESOLUCIÓN

$$\therefore Q = + 16 C$$

Se agradece su colaboración y participación durante el tiempo de la clase.

