CLASE 02 - VARIABLES ALEATORIAS CUANTITATIVAS

Curso Introducción al Análisis de datos con R para la Acuicultura.

Dra. Angélica Rueda Calderón

Pontificia Universidad Católica de Valparaíso

09 July 2022

PLAN DE LA CLASE

1. Introducción

- Diferencia entre variable, variable aleatoria, datos y factores.
- Clasificación de variables aleatorias.
- Observar variables cuantitativas continuas y discretas.
- Distribución de variables aleatorias: normal, binomial, bernoulli.
- Formato correcto para importar datos a R.

2. Práctica con R y Rstudio cloud

- Elaborar un script de R e importar datos desde excel.
- Observar variable aleatoria continua y discreta.

CONCEPTOS Y DEFINICIONES

1. Variable

Características que se pueden medir u observar en un individuo o en un ambiente: peso, temperatura, oxígeno, sexo, crecimiento, madurez, flotabilidad, rendimiento, sobrevivencia, biomasa cosechada.

2. Variable aleatoria

Es un número que representa un resultado de un experimento aleatorio. Depende entonces de función matemática o distribución de probabilidad: normal, binomial, bernoulli.

CONCEPTOS Y DEFINICIONES

3. Datos u observaciones

Son los valores que puede tomar una variable aleatoria. 6078 gramos, 55 mm, células por mililitro, macho / hembra, 13° C, Maduro /No maduro, Kg wfe/N, vivo/muerto.

4. Factor

Usado para identificar tratamientos de un experimento o variables de clasificación. Se usan como *variables independientes o predictoras*, es decir, tienen un efecto sobre una *variable dependiente o respuesta*. Ej. Sexo (niveles: macho o hembra) tiene un efecto sobre nivel de hormonas.

CLASIFICACIÓN DE VARIABLES

VARIABLES CUANTITATIVAS

- ➤ Continua: Puede tomar cualquier valor dentro de un intervalo (a,b), (a,lnf), (-lnf,b),(-lnf,lnf) y la probabilidad que toma cualquier punto es 0, debido a que existe un número infinito de posibilidades: Peso del cuerpo (g), Talla (cm), Temperatura ^QC
- ▶ Discreta: Son aquellas que presentan un número contable de valores; por ejemplo:
- a) Fecundidad medida como número de huevos: (1, 15, 26, 50, etc.).
- b) Número de parásitos (1, 3, 5, 6, etc.).
- c) Número de días a la muerte durante desafío contra patógenos (1, 2, 3,..., 40).
- d) Número de larvas: (1, 15, 26, 50, etc.).

IDENTIFICA CORRECTAMENTE TU VARIABLE

- ► Es importante identificar la naturaleza que tiene nuestra variable en estudio, y así evitar errores en los análisis estadísticos que llevemos a cabo.
- Las variables cuantitativas continuas usualmente tienen una distribución normal, pero también t de Student, Exponencial, entre otras
- Según sea la variable aleatoria discreta, ésta tendrá una función de distribución de probabilidad asociada que NO es normal. Por ejemplo: Bernoulli, Binomial, Binomial Negativa, Poisson, entre otras.
- Las variables aleatorias que son expresadas como proporciones, podrían ser analizadas con la distribución binomial.

OBSERVAR VARIABLE CONTINUA CON HISTROGRAMA

Al observar con un histograma **hist()** notamos que cuando aumenta el **n** muestral se perfila una distribución llamada **normal**.

LA DISTRIBUCIÓN NORMAL

 $X \sim \mathsf{Normal}(\mu, \sigma)$

BOXPLOT: CAJAS Y BIGOTES

Las gráficas de cajas y bigotes son muy adecuadas para observar la distribución de las variables aleatorias continuas **boxplot()**.

VARIABLE DISCRETA: DISTRIBUCIÓN BERNOULLI

- La distribución de Bernoulli, describe un experimento aleatorio que sólo admite dos resultados excluyentes (éxito y fracaso).
- ► El éxito es usualmente el evento de interes, a aveces considerado como lo "malo": Muerte, enfermo, patógeno +.
- La variable aleatoria discreta X asociada a este experimento toma el valor 1 cuando ocurre el suceso éxito con probabilidad P(X=1)=p y el valor 0 cuando ocurre el suceso fracaso con probabilidad P(X=0)=1-p.

EJEMPLO VARIABLE DISTRIBUCIÓN BERNOULLI

- ➤ Se saca un camarón al azar de una piscina, la probabilidad de que tenga síndrome de la mancha blanca es de 0.65.
- Sea X=1 si el camarón tiene síndrome de la mancha blanca y
 X=0 en el caso de que no tenga síndrome de la mancha blanca.
- ¿ Cuál es la distribución de X?

	Fracaso	Éxito	
×	0	1	
f(x)=P(X=x)	1-p	р	
	0.35	0.65	

VARIABLE DISCRETA: DISTRIBUCIÓN BINOMIAL

- Cuando se realizan n pruebas de Bernoulli sucesivas e independientes, la variable aleatoria discreta X se denomina variable binomial.
- ► X = "número de veces que ocurre el suceso éxito en n pruebas".
- La mayoría de las variables discretas muestran distribución binomial.
- La mejor manera de representarlas una variable discreta es con gráficas de barra **barplot()**.

EJEMPLO VARIABLE DISTRIBUCIÓN BINOMIAL

COMO IMPORTAR DATOS A R

Asuntos importantes:

- 1. Prefiera archivos sin formato como **txt, csv**. Si tiene un excel se recomienda transformarlo, particularmente cuando trabaje con miles de filas o columnas.
- 2. El paquete **readxl** es muy util para importar datos a R. Pero debe tener cuidado con: separador de columnas, decimales y valores faltantes.

FORMATO CORRECTO PARA IMPORTAR A R

	Α	В	С	D	Е	F	G	Н
1	Animal	Talla	Peso	Sexo	Nombre de variables			
2	1	72,28747	2820,659	Hembra				
3	2	79,80557	5638,815	Macho				
4	3	62,4055	5263,206	Hembra				
5	4	75,14471	7397,472	Macho				
6	5	85,8213	6742,149	Macho				
7	6	84,65912	6754,632	Hembra				
8	7	72,89857	7674,795	Hembra	II \			
9	8	82,39114	4528,756	Macho				
10	9	74,07506	3430,988	Hembra		Observa	ciones o	datos
11	10	77,44438	6032,77	Hembra	II <i>1</i>			
12	11	72,02014	4604,848	Hembra	II /			
13	12	80,36905	5669,301	Macho				
14	13	73,11514	4768,415	Macho				
15	14	79,27122	7350,092	Hembra	15/			
16	15	70,60855	6325,635	Hembra				
17	16	85,10738	8526,119	Macho				
18	17	74,39336	3466,113	Hembra				
19	18	83,64237	6798,916	Hembra				

COMO EXPORTAR DATOS A R

```
Exportar objeto datos_all en formato .txt, .csv y .xlsx
library(utils)
write.table(x = datos_all, file = "datos_all.txt",
            sep = "\t", row.names = FALSE,
            col.names = TRUE)
library(utils)
write.csv(x = datos_all, file = "datos_all.csv",
          row.names = FALSE)
library(xlsx)
write.xlsx(datos all, "datos all.xlsx",
           sheetName = "Base_datos",
           col.names = TRUE, row.names = FALSE)
```

PRÁCTICA VARIABLES ALETORIAS

Guía de trabajo programación con R en Rstudio.cloud.

RESUMEN DE LA CLASE

- ldentificamos y clasificamos variables.
- Observamos la distribución de una variable cuantitativa continua usando histograma y boxplot.
- Observamos la distribución de una variable cuantitativa discreta usando barplot.
- Reconocemos diferentes distribuciones de probabilidad: normal, bernoulli, binomial.