

TIES483 Nonlinear Optimization

Decision-making under Uncertainty (part1)

Spring 2025

Contents

- Uncertainty
- Different types of uncertainty
- Why it should be treated
- How to handle uncertainty
- Dealing with uncertainty in (MO)O
- Traditional and novel approaches

Learning outcomes

- To understand the importance of handling uncertainty in real-world problems
- To understand different types of uncertainty in (MO)OPs
- To understand how to deal with uncertainty in (MO)OPs
- Example approaches

Decision-making under uncertainty

- So far, we assumed that all the required information are certainty known.
- i.e., all the parameters, objectives, constraints are certain without any variation.
- However, most of the decisions in real-life problems need to be made in the absence of complete knowledge about the consequences of the decision.
- The presence of uncertainty brings more complexity to the problem.

- If a complete detailed map were reached; i.e., we know everything, with absolute certainty.
- Consequences of all alternatives could be seen and compared → Choose the most preferred one.
- However, sometimes, the decisions need to be made when the complete, detailed map is unavailable.
- Lack of any details in the map could be viewed as uncertainty.

Different definitions of uncertainty

- "Any deviation from the unachievable ideal of completely deterministic knowledge
- of the relevant system" [Walker et al., 2003].
- "At a most fundamental level, uncertainty relates to a state of the human mind, i.e. lack of complete knowledge about something" [Stewart, 2005].
- "Incomplete information about a particular subject" [Ascough II et al., 2008].
- "Lack of confidence in knowledge related to a specific question" [Sigel et al., 2010].
- "In general, uncertainty can be defined as limited knowledge about the future, the
- past, or current events" [Walker et al., 2013a].

Important note!

- Uncertainties are not merely caused by the lack of knowledge and information
- Uncertainty can exist in a situation where lots of information are available
- However, new knowledge can either increase or decrease uncertainty
- New information and knowledge on a complex process can unfold previously unknown uncertainties
- In this case, more knowledge clarifies that the processes are more complex or that our cognition is more limited than previously thought

- Three sources/dimensions of uncertainty related to modelbased decision support exercises:
 - Nature:
 - Variability (Aleatory) Alea (Latin) → Die
 - Epistemic (Limited knowledge)

Different sources of the nature of uncertainty

Three sources/dimensions of uncertainty related to modelbased decision support exercises:

- Nature:

- Variability (Aleatory) Alea (Latin) → Die
- Epistemic (Limited knowledge)

- Location:

The where the uncertainty manifests itself within the model complex (Models, Outcomes, Weights, etc.)

- Internal (DM judgement and preferences)
- External (lack of knowledge about outcomes)

Author(s)	Different categories				
	Uncertainties expressed during	What might happen or what can be done			
	modeling	Meaning/ambiguity			
	_	Related decisions			
		Physical randomness or lack of knowledge			
Franch [1005]	Uncertainties expressed during	The evolution of future beliefs and performances			
French [1995]	exploration of the models	Judgments			
		The accuracy of calculations			
	Uncertainty expressed during	Appropriateness of a descriptive model			
	interpretation	Appropriateness of a normative model			
		the depth of analysis			
	Context				
	Model	Structure			
	Model	Technology			
Walker et al. [2003]	T	Controllable			
-	Input	Uncontrollable			
	parameter				
	Model outcome				
Stewart [2005]	Internal				
Stewart [2000]	External				
	Internal variability of the system	Ω			
Hawkins and Sutton [2009]	Model Uncertainty				
	Scenario Uncertainty				
	The value system(s) to be used to rank alternative policies				
Marchau et al. [2010]	The system models				
-	How the future will develop				
	External Forces				
T 11-1 1 W-11 [0010]	Relations within a system				
Kwakkel and Walker [2010]	Outcomes of interest				
	Weights				
	Context				
11111 / 1 [00101]	System model				
Walker et al. [2013b]	System Outcome				
	Weights				
	Weights on outcome				

Different classifications of the location of uncertainty.

UNIVERSITY OF IYVÄSKYL

- Three sources/dimensions of uncertainty related to modelbased decision support exercises:
 - Nature:
 - Variability (Aleatory)
 - Epistemic (Limited knowledge)
 - Location:

The where the uncertainty manifests itself within the model complex (Models, Outcomes, Weights, etc.)

- Internal (DM judgement and preferences)
- External (lack of knowledge about outcomes)
- Depth or Level:

The where the uncertainty manifests itself along the spectrum between absolute certainty and total ignorance.

Shavazipour [2018]	aty)	Mild uncertainty (First-degree)		Moderate uncertainty (Second-degree)		Deep uncertainty (Third-degree)	
Walker et al. [2013a]	certain	Level 1 (A clear enough future)	Level 2 (Alternate futures with probabilities)	Level 3 (Alternate futures with ranking)	Level 4 (Multiplicity of futures)	Level 5 (Unknown future)	al ignorance)
Walker et al. [2003]	plete	statistical uncertainty		scenario uncertainty	Recog Reducible	gnized ignorance Irreducible	(tota
Kwakkel et al. [2010]	(con	Shallow Uncertainty (Level 1)		Medium Uncertainty (Level 2)	Deep Uncertainty (Level 3)	Recognized Ignorance (Level 4)	ainty
Courtney [2001]	Courtney [2001] Level 1 (so low that traditional methods employ point forecast be used with great su		Level 2 (manager can identify a set of distinct possible outcomes, one of which will occur)	Level (manager ca the rang possible ou	an bound ge of	Level 4 (analysis cannot even bound the range of possibilities)	of uncerta
Morgan et al. [1992]	nty o	Uncertainties can be treated through probabilities Uncertainties cannot be treated probabilities			babilistically	gree	
Quade [1989]	ertai	Stochastic uncertainty			Real uncertainty	ity de	
Knight [1921]	Unc	Risk				Uncertainty	Infinity

Different classifications of the depth of uncertainty.

- > We use the term degree of uncertainty as depth or level of uncertainty.
- ➤ Uncertainty of degree '0' as absolute certainty or deterministic knowledge.
- ➤ Uncertainty of infinity degree as total ignorance.

Degrees of Uncertainty

- Absolute Certainty (clear enough future deterministic)
- Mild uncertainty (1st): Outcomes can be enumerated, and probabilities (or probability distribution) are specified (probable futures).

 Moderate uncertainty (2nd): Outcomes can be enumerated but probabilities are difficult to specify generally (few possible/plausible futures).

• Deep uncertainty (3rd): Outcomes cannot be completely enumerated, so that, probabilities are not definable (many plausible futures).

No nothing

Absolute Certainty	Mild	Moderate	Deep	$Total \ Ignorance$
0	1	2	3	∞

A more general definition of Deep Uncertainty

- A situation in which the relevant actors do not know or cannot agree upon:
 - how likely or plausible various future states are
 - how the system works (or would work)
 - how to value the various outcomes of interest

Dealing with uncertainty

Why must uncertainty be treated?

Dealing with uncertainty

Why must uncertainty be treated?

- Many people have ignored uncertainty for many years
- Still, some try to avoid the higher degrees of uncertainty
- However, they must face this challenge eventually

Why must uncertainty be treated?

COVID-19 Pandemic (2019-?)

- In 2018: The probability of an extreme epidemics was < 0.5 percent in a year
- 31.12.2019: The first COVID-19 case is reported
- 31.08.2021: the probability of a pandemic with similar impact to COVID-19 is about 2% in any year*
- 15.09.2021: most countries removed the restrictions and said the pandemic was over
- 10.11.2021: 250 million cases, > 5 million death, ...
- 21.11.2021: a new variant has found in South Africa (Omicron)
- 14.12.2021: many restrictions came back
- 01.02.2022: many goverments say we are entering the endemic Covid. (Do we??)
- 21.02.2022: > 424 million cases, > 5.89 million death, + 4996 death since yesterday

Why must uncertainty be treated?

A major challenge is the requirement to accept, understand, and manage uncertainty, since:

- 1. Not all uncertainties can be eliminated;
- 2. Ignoring uncertainty limits our ability to make corrective action in the future and result in positions that could have been avoided;
- 3. Ignoring uncertainty can throw away the opportunity of studying real-world problems, and/or lead to get some unsustainable approaches.