Notes de cours – Programmation 1

Les NOMBRES

En décimal (base 10)

La base 10 signifie que nos nombres sont formée de chiffre de 0 à 9. Si je prends une autre base, par exemple la base 6, les nombres seraient composés de chiffre de 0 à 5. Il serait impossible que 1543 soit en base 4, car un nombre en base 4 doit être composé des chiffres de 0 à 3, par contre 13324 est tout à fait possible.

Prenons 1654 en base 10 par exemple :

Poids correspondants au chiffre	10^{3}	10^{2}	10^{1}	10^{0}
Chiffre	1	6	5	4

Donc $1654_{10} = 1 \times 10^3 + 6 \times 10^2 + 5 \times 10^1 + 4 \times 10^0$

Prenons 1001₂ en binaire (base 2)

Poids correspondants au chiffre	2^3	2^2	21	2^{0}
Chiffre	1	0	0	1

Ce nombre (1001₂) en binaire correspond à 9_{10} en décimal car : $1x2^3+1x2^0=9_{10}$

Les ALGORITHMES

1. Passer de la base X à la base 10 (où X correspond à n'importe quel nombre ou chiffre)

Il suffit de multiplier le chiffre avec le poids qu'il contient et d'additionner le résultat pour tous les chiffres composants ce nombre.

Exemple 1 : 1223₄ en base 10?

Poids correspondants au chiffre	4 ³	4 ²	41	4^{0}
Chiffre	1	2	2	3

 $1x4^3 + 2x4^2 + 2x4^1 + 3x4^0 = 107_{10}$

Exemple 2: 110011₂ en base 10

Poids correspondants au chiffre	2^5	2^4	2^3	2^2	21	2^{0}
Chiffre	1	1	0	0	1	1

 $1x2^5 + 1x2^4 + 1x2^1 + 1x2^0 = 51_{10}$

2. Passer de la base 10 à la base X.

Méthode 1

Divisions multiples

Exemple: 25₁₀ en base 5

1ère étape : diviser le nombre voulu par la base désirée (dans ce cas, diviser 25 par 5)

par 5)

Répété les étapes jusqu'à ce que le quotient de la division soit 0.

2^e étape: Rediviser le quotient de la division

3e étape : Étape 2 mais avec le quotient de la division de l'étape précédente. (diviser 1

par la même base (diviser 5 par 5

ne étape: le nombre initial (25) en base désirée (5) est les restes des divisions successives du plus récent au plus ancien (100₅).

Donc $25_{10} = 100_5$

Méthode 2

Exemple: 25₁₀ en base 2

$$2^0=1$$
, $2^1=2$, $2^2=4$, $2^3=8$, $2^4=16$, $2^5=32$

 $25_{10} - 16$ (le plus grand 2^n qui entre dans 25, dans ce cas n=4) = 9

9 - 8 (le plus grand 2^n qui entre dans 9, dans ce cas n=3) = 1

1 - 1 (le plus grand 2^n qui entre dans 1, dans ce cas n=0) = 0 STOP

2 ⁴	2 ³	2^{2}	21	<mark>2</mark> 0
1	1	0	0	1

Donc $25_{10} = 11001_2$

REPRÉSENTATION DES CHIFFRES ET DES NOMBRES UTILISANT PLUSIEURS NOTATIONS

1. Représentation binaire non signée sur n bits

NB : le nombre de bits signifie le nombre de poids disponibles pour représenter le chiffre.

Si n=nb de bits, le « range » des chiffres que nous pouvons représenter est de 2ⁿ-1.

Ex : avec 4 bits on peut représenter les nombres de 0 à 2⁴-1, 0 à 15.

Min:
$$0000 \to 0$$
 Max: $1111 \to 15$

Avec cette méthode, nous pouvons facilement représenter les <u>nombres entiers positifs</u> seulement.

2. Encodage binaire signé en complément à 2

Complément: représentation d'un nombre négatif avec son complément (ils se complètent) positif.

Le nombre de bits nous permet de seulement représenter un certain « range » de nombre. Par exemple, avec 2 bits en base 10 nous pouvons seulement représenter les nombres de 0 à 99.

Méthode 1 en mode décimal

« Range » des nombres que je peux représenter avec 2 bits en base 10 (ex) :

Il faut « couper » le domaine de valeur en 2, la section de droite de la ligne médiane représente les nombre de 0 à 49 qui demeure leur valeur exacte. La section à gauche de la médiane contenant les chiffres de 50 à 99 représentent les nombres négatifs où 99 équivaut à -1 et 50 équivaut à -49.

NB: il devient donc impossible de représenter des nombres plus grands que 50 avec seulement 2 bits.

Ex 1 : S'il y est demandé de représenter -39 à l'aide de 2 bits :

(Maximum possible) 99 - 39 = 60 + 1 (le zéro)= 61. Donc -39 est représenté par 61 en notation complément sur 2 chiffres décimaux. (Pouvons faire 100-39)

Ex 2 : Trouver le complément de 61 : 99-61=38+1=39

Je sais que 61 représente un nb négatif car il est plus grand que la moitié de mon range.

Méthode 2 : en mode binaire

Exemple : n=6 en mode binaire. Représente -16₁₀ sur 6 bits.

1) Convertir 16₁₀ (valeur absolue) en base 2

$$16_{10} = 2^4 = 10000$$

2) Écrire sur le nombre de bits alloué (ajouter des zéros au besoin)

010000 (6 bits)

3) Si le nombre binaire débute par zero : valeur positive, si le nombre binaire **débute par 1 : valeur négative.** Si jamais ça ne correspond pas (comme dans notre cas), utiliser les méthodes d'encodage.

complément à 1 ou « flip and add »

complément à 2 ou soustraction binaire

Emprunt			2 1	2					
1 suivi de 0 x		1	0	0	0	0	0	0	0
n									
Nombre	_		0	1	0	0	0	0	0
binaire									
Complément		X	1	1	0	0	0	0	0
à 2									

Dans les deux cas : $-16_{10} \rightarrow \text{complément à deux sur 6 bits} \rightarrow 110000_2$

La position la plus à gauche est -2^{n-1} .

Ex:

-2^{3}	2^{2}	2^{1}	2^{0}			
0	1	0	1			
-1 + 1 - 5						

$$= 4+1=5$$

-23	2^{2}	21	2^{0}
1	0	0	0

$$= -8$$

Le plus petit nombre possible

avec 4 bits: $1000 \rightarrow -8$

Le plus grand nombre possible

avec 4 bits : $0111 \rightarrow 7$

Donc le range est de -8 à 7

^{*}Méthode 3*