Automated School Scheduling System

A Genetic Algorithm Approach to Optimizing Educational Timetables

Submitted By:

ID	Name	Section
320210273	Mahmoud Robaa	5
320210091	Aya Osama	2
320210182	Esraa Mamdouh	3
320210301	Mazen Mahmoud	5

Table 1: Team Members

Supervised By:

- Prof. Marghany Hassan
- Eng. Salma Elashry
- Eng. Hend Adel

Department of Computer Science and Information Teachnology EJUST December 4, 2024

Automated School Scheduling System: A Genetic Algorithm Approach

Team Scheduling Optimization

December 4, 2024

1 Project Overview

1.1 Objective

The primary objective of this project was to develop an automated university timetable scheduling system using a Genetic Algorithm (GA) to efficiently assign teachers to subjects, rooms, and time slots while minimizing scheduling conflicts and optimizing resource utilization.

1.2 Scope

- Included: Scheduling for 10 teachers, 7 subjects, 5 rooms, across 15 time slots (5 days, 3 hours per day)
- Excluded: Long-term course planning, individual student scheduling, external constraints like teacher preferences

1.3 Key Deliverables

- 1. Optimized timetable schedule
- 2. Fitness progress visualization
- 3. Enhanced timetable heatmap
- 4. Detailed performance log
- 5. Comprehensive scheduling algorithm

1.4 Stakeholders

- University administration
- Faculty members
- Scheduling department
- Facility management

2 Methodology

2.1 Overview

The project utilized a Genetic Algorithm to solve the complex timetable scheduling problem through iterative optimization and constraint satisfaction.

2.2 Tools and Technologies

- Programming Language: Python
- Libraries:
 - DEAP (Distributed Evolutionary Algorithms)
 - NumPy (Numerical computing)
 - Matplotlib (Visualization)
 - Seaborn (Statistical data visualization)
 - Pandas (Data manipulation)

2.3 Solution Representation

- Each individual (chromosome) represents a complete timetable
- Encoded as a list of (teacher, subject, room, time_slot) tuples
- Total of 45 classes to be scheduled

2.4 Fitness Function

- Hard Constraints:
 - Teacher qualifications
 - Preventing double bookings (teachers and rooms)
- Soft Constraints:
 - Balanced teaching load
 - Subject distribution diversity

3 Results and Analysis

3.1 Performance Metrics

- Fitness value (penalties)
- Minimization of scheduling conflicts
- Teaching load balance
- Subject distribution

3.2 Key Findings

- Reduced fitness penalties from 820 to 201 over 100 generations
- Generated a feasible and optimized timetable
- Visualized fitness progress and timetable distribution
- Created an enhanced heatmap for schedule visualization

4 Challenges and Insights

4.1 Technical Challenges

- Balancing hard and soft constraints
- Preventing scheduling conflicts
- Ensuring teacher specialization is respected
- Managing computational complexity

4.2 Key Insights

- Genetic Algorithms are effective for complex scheduling problems
- Targeted mutation and crossover strategies improve solution quality
- Comprehensive fitness functions are crucial for realistic scheduling

5 Future Work

5.1 Optimization Recommendations

- Implement machine learning techniques for parameter tuning
- Develop more nuanced specialization modeling
- Explore hybrid optimization algorithms

5.2 Potential Expansions

- Extend to more complex scheduling scenarios
- Integrate real-world constraints
- Develop a user-friendly interface
- Create a more dynamic scheduling system

6 Conclusion

The Automated School Scheduling System demonstrates the potential of Genetic Algorithms in solving complex optimization problems. By effectively managing constraints and iteratively improving solutions, we have developed a robust approach to timetable scheduling that can be further refined and adapted to various educational contexts.