# (1) During the designing process of V-Belt, why should we limit $d_{min}$ (minimum shaft diameter) and $v_{max}$ (maximum belt speed)?

#### The reason for limiting $d_{min}$

We should make sure that  $d_{d1} \ge d_{min}$  to avoid the over stress of bending, which would reduce the life of the belt.

#### The reason for limiting $v_{max}$

If the belt speed is too large, the following problems will occur:

- 1) The centrifugal force will be too large and the friction force between the shaft and the belt will be reduced. Creep may occur.
- 2) The bending numbers will increase, reducing the belt's life.

So we should limit  $v_{max}$  to avoid these problems.

# (2) During the designing process of belt drive, why should we limit the number of belts(z)? If z>10, how to handle it?

#### The reason for limiting the number of belts(z)

The number of belts should be lower than 10 to make the stress uniform.

If z > 10, belt model or the diameter of the large wheel should be changed and conduct recalculation.

- (3) Please design an ordinary v-belt drive for lathes. The following parameters are known: rated power P =
  - 3.2 kW, rotational speed of small pulley  $n_1 =$
  - $1460 \ r/min$ , transmission ratio i =
  - 3.6,  $daily\ working\ time = 16\ hours$ . The structure should be as compact as possible.

#### Step 1 Determine calculated power $P_c$

The working machine: lathes
Daily working time = 16hours

From table 13-9 on the Chinese text book:

$$K_A = 1.2$$
  
 $P_c = K_A P = 1.2 \times 3.2 = 3.84 \text{ kW}$ 

|        | -                                                                                     | 原动机  |                  |      |                              |         |     |  |
|--------|---------------------------------------------------------------------------------------|------|------------------|------|------------------------------|---------|-----|--|
| 载荷性质   | 工作机                                                                                   |      | .(交流起琴<br>并励)、四( |      | 电动机(联机交流起动、直流复励或串励)、四缸以下的内燃机 |         |     |  |
|        | B 8                                                                                   |      |                  | 每天工作 | 小时数/h                        | 5       |     |  |
|        | т т м                                                                                 | <10  | 10 ~ 16          | >16  | <10                          | 10 ~ 16 | >16 |  |
| 载荷变动很小 | 液体搅拌机、通风机和鼓风<br>机(≤7.5 kW)、离心式水泵和<br>压缩机、轻负荷输送机                                       | 1.0  | 1.1              | 1. 2 | 1. 1                         | 1. 2    | 1.3 |  |
| 载荷变动较小 | 带式输送机(不均匀负荷)、<br>通风机(>7.5 kW),旋转式水<br>泵和压缩机(非离心式)、发电<br>机 金属切削机床,印刷机、旋<br>转筛、锯木机和木工机械 | 1. 1 | 1. 2             | 1.3  | 1. 2                         | 1.3     | 1.4 |  |

Table 13-9 on text book

## Step 2 Select V-belt model



choose Type A  $d_1 = 80 \sim 100 mm$ 

Step 3 Select shaft diameters  $d_{d1}, d_{d2}$ 

| 친묵         | Y           | Z               | A      | В                                                         | С             | D            | E           |
|------------|-------------|-----------------|--------|-----------------------------------------------------------|---------------|--------------|-------------|
| 最小直径       | 20          | 50              | 75     | 125                                                       | 200           | 355          | 500         |
| $d_{\min}$ |             |                 |        |                                                           |               |              |             |
| 基准直径系列     | 118, 125, 1 | 32, 140, 150, 1 | 60, 17 | 0, 45, 50, 56, 63<br>0, 180, 200, 212<br>0, 530, 560, 600 | , 224, 236, 2 | 50, 265, 280 | , 300, 315, |

$$d_{d1} \ge d_{min} = 75mm$$
  
 $since \text{ type A} \quad d_1 = 80 \sim 100mm$   
 $\therefore choose \quad d_{d1} = 100mm$   
 $d_{d2} \approx id_{d1} = 3.6 \times 100 = 360mm$   
 $\therefore choose \quad d_{d2} = 375mm$ 

#### Step4 Verify the speed of the belt (V)

$$v = \frac{\pi d_{d1} n_1}{60 \times 1000} = \frac{\pi \times 100 \times 1460}{60 \times 1000} = 7.64 m/s \in (5m/s, 25m/s)$$

#### Step 5 Verify rotational speed error

Actual rotational speed of the follower:

$$n_2' \approx \frac{n_1 d_{d1}}{d_{d2}} = \frac{1460 \times 100}{375} = 389.3 r/min$$

Theoretical rotational speed of the follower:

$$n_2 = \frac{n_1}{i} = \frac{1460}{3.6} = 405.6r/min$$

Rotational speed error:

$$\left| \frac{n_2' - n_2}{n_2} \right| = \left| \frac{389.3 - 405.6}{405.6} \right| = 0.04018 < 5\%$$

#### Step 6 Determine central distance (a) and belt length (L)

1) Determine initial central distance

$$a_0 = 1.5(d_{d1} + d_{d2}) = 1.5 \times (100 + 375) = 712.5mm$$
 
$$choose \ a_0 = 750mm$$
 
$$which \in (0.7(d_{d1} + d_{d2}), 2(d_{d1} + d_{d2}))$$

2) Determine the belt length

$$L_0 \approx 2a_0 + \frac{\pi}{2}(d_{d1} + d_{d2}) + \frac{(d_{d2} - d_{d1})^2}{4a_0} = 2 \times 750 + \frac{\pi}{2}(100 + 375) + \frac{(375 - 100)^2}{4 \times 750} = 2271mm$$

| Z型        |                | A                   | 型              | В                   | 型              | C 型                |                |  |
|-----------|----------------|---------------------|----------------|---------------------|----------------|--------------------|----------------|--|
| $L_d$ /mm | K <sub>L</sub> | $L_{\rm d}/{ m mm}$ | K <sub>L</sub> | $L_{\rm d}/{ m mm}$ | K <sub>L</sub> | L <sub>d</sub> /mm | K <sub>L</sub> |  |
| 405       | 0.87           | 630                 | 0.81           | 930                 | 0.83           | 1 565              | 0.82           |  |
| 475       | 0.90           | 700                 | 0.83           | 1 000               | 0.84           | 1 760              | 0.85           |  |
| 530       | 0.93           | 790                 | 0.85           | 1 100               | 0.86           | 1 950              | 0.87           |  |
| 625       | 0.96           | 890                 | 0.87           | 1 210               | 0.87           | 2 195              | 0.90           |  |
| 700       | 0.99           | 990                 | 0.89           | 1 370               | 0.90           | 2 420              | 0.92           |  |
| 780       | 1.00           | 1 100               | 0.91           | 1 560               | 0.92           | 2 715              | 0.94           |  |
| 920       | 1.04           | 1 250               | 0.93           | 1 760               | 0.94           | 2 880              | 0.95           |  |
| 1 080     | 1.07           | 1 430               | 0.96           | 1 950               | 0.97           | 3 080              | 0.97           |  |
| 1 330     | 1.13           | 1 550               | 0.98           | 2 180               | 0.99           | 3 520              | 0.99           |  |
| 1 420     | 1.44           | 1 640               | 0.99           | 2 300               | 1.01           | 4 060              | 1.02           |  |
| 1 540     | 1.54           | 1 750               | 1.00           | 2 500               | 1.03           | 4 600              | 1.05           |  |
|           |                | 1 940               | 1.02           | 2 700               | 1.04           | 5 380              | 1.08           |  |
|           |                | 2 050               | 1.04           | 2 870               | 1.05           | 6 100              | 1.11           |  |
| - 100     |                | 2 200               | 1.06           | 3 200               | 1.07           | 6 815              | 1.14           |  |
|           |                | 2 300               | 1.07           | 3 600               | 1.09           | 7 600              | 1.17           |  |
|           |                | 2 480               | 1.09           | 4 060               | 1.13           | 9 100              | 1.21           |  |
|           |                | 2 700               | 1.10           | 4 430               | 1.15           | 10 700             | 1.24           |  |
|           |                |                     |                | 4 820               | 1.17           |                    |                |  |
|           |                |                     |                | 5 370               | 1.20           |                    |                |  |
| 1.00      |                |                     |                | 6 070               | 1.24           |                    |                |  |

From the table:  $L_d = 2300mm$ 

3) Calculate the actual central distance a

$$a \approx a_0 + \frac{L_d - L_0}{2} = 750 + \frac{2300 - 2271}{2} = 764.5mm$$

4) Adjust range of central distance

$$a_{min} = a - 0.015L_d = 764.5 - 0.015 \times 2300 = 730mm$$
 
$$a_{max} = a + 0.03L_d = 764.5 + 0.03 \times 2300 = 833.5mm$$

#### Step 7 Verify the contact angle

$$\alpha_1 = 180^{\circ} - \frac{d_{d2} - d_{d1}}{a} \times 57.3^{\circ} = 180^{\circ} - \frac{375 - 100}{764.5} \times 57.3^{\circ} = 159.4^{\circ}$$

#### **Step 8 Determine number of belts (z)**

$$z \ge \frac{P_c}{(P_0 + \Delta P_0) K_\alpha K_L}$$

| Z                   | 囙           | A                   | 型              | В                   | 型              | -1                  | C型             |
|---------------------|-------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|
| $L_{\rm d}/{ m mm}$ | $K_{\rm L}$ | $L_{\rm d}/{ m mm}$ | K <sub>L</sub> | $L_{\rm d}/{ m mm}$ | K <sub>L</sub> | $L_{\rm d}/{ m mm}$ | K <sub>L</sub> |
| 405                 | 0.87        | 630                 | 0.81           | 930                 | 0.83           | 1 565               | 0.82           |
| 475                 | 0.90        | 700                 | 0.83           | 1 000               | 0.84           | 1 760               | 0.85           |
| 530                 | 0.93        | 790                 | 0.85           | 1 100               | 0.86           | 1 950               | 0.87           |
| 625                 | 0.96        | 890                 | 0.87           | 1 210               | 0.87           | 2 195               | 0.90           |
| 700                 | 0.99        | 990                 | 0.89           | 1 370               | 0.90           | 2 420               | 0.92           |
| 780                 | 1.00        | 1 100               | 0.91           | 1 560               | 0.92           | 2 715               | 0.94           |
| 920                 | 1.04        | 1 250               | 0.93           | 1 760               | 0.94           | 2 880               | 0.95           |
| 1 080               | 1.07        | 1 430               | 0.96           | 1 950               | 0.97           | 3 080               | 0.97           |
| 1 330               | 1.13        | 1 550               | 0.98           | 2 180               | 0.99           | 3 520               | 0.99           |
| 1 420               | 1.44        | 1 640               | 0.99           | 2 300               | 1.01           | 4 060               | 1.02           |
| 1 540               | 1.54        | 1 750               | 1.00           | 2 500               | 1.03           | 4 600               | 1.05           |
|                     |             | 1 940               | 1.02           | 2 700               | 1.04           | 5 380               | 1.08           |
|                     |             | 2 050               | 1.04           | 2 870               | 1.05           | 6 100               | 1.11           |
| 20.                 |             | 2 200               | 1.06           | 3 200               | 1.07           | 6 815               | 1.14           |
|                     |             | 2 300               | 1.07           | 3 600               | 1.09           | 7 600               | 1.17           |
|                     |             | 2 480               | 1.09           | 4 060               | 1.13           | 9 100               | 1.21           |
| 10                  |             | 2 700               | 1.10           | 4 430               | 1.15           | 10 700              | 1.24           |
|                     |             | = =                 |                | 4 820               | 1.17           |                     | 7              |
|                     |             |                     |                | 5 370               | 1.20           |                     |                |
|                     |             |                     |                | 6 070               | 1.24           |                     |                |

$$K_{I} = 1.07$$

|        | 小帶轮 |       |       |       |       | 小带轮包  | *速n <sub>1</sub> / ( | (r/min) |      |      |      |      |
|--------|-----|-------|-------|-------|-------|-------|----------------------|---------|------|------|------|------|
| 型<br>号 | 基准宣 | 400   | 730   | 800   | 980   | 1200  | 1460                 | 1600    | 2000 | 2400 | 2800 | 3200 |
|        | 50  | 0.06  | 0. 09 | 0. 10 | 0.12  | 0.14  | 0.16                 | 0.17    | 0.20 | 0.22 | 0.26 | 0.28 |
|        | 63  | 0. 08 | 0. 13 | 0. 15 | 0.18  | 0. 22 | 0.25                 | 0.27    | 0.32 | 0.37 | 0.41 | 0.45 |
| Z      | 71  | 0. 09 | 0. 17 | 0. 20 | 0.23  | 0.27  | 0.31                 | 0.33    | 0.39 | 0.46 | 0.50 | 0.54 |
|        | 80  | 0. 14 | 0. 20 | 0. 22 | 0.26  | 0.30  | 0.36                 | 0.39    | 0.44 | 0.50 | 0.56 | 0.61 |
|        | 90  | 0. 14 | 0. 22 | 0. 24 | 0.28  | 0.33  | 0.37                 | 0.40    | 0.48 | 0.54 | 0.60 | 0.64 |
|        | 75  | 0. 27 | 0. 42 | 0. 45 | 0.52  | 0.60  | 0.68                 | 0.73    | 0.84 | 0.92 | 1.00 | 1.04 |
|        | 90  | 0. 39 | 0.63  | 0. 68 | 0.79  | 0.93  | 1.07                 | 1.15    | 1.34 | 1.50 | 1.64 | 1.75 |
| A      | 100 | 0. 47 | 0. 77 | 0. 83 | 0.97  | 1.14  | 1.32                 | 1.42    | 1.66 | 1.87 | 2.05 | 2.19 |
|        | 125 | 0.67  | 1. 11 | 1. 19 | 1.40  | 1.66  | 1.93                 | 2.07    | 2.44 | 2.74 | 2.98 | 3.16 |
|        | 160 | 0. 94 | 1. 56 | 1. 69 | 2.00  | 2.36  | 2.74                 | 2. 94   | 3.42 | 3.80 | 4.06 | 4,19 |
|        | 125 | 0. 84 | 1. 34 | 1. 44 | 1.67  | 1.93  | 2.20                 | 2.33    | 2.50 | 2.64 | 2.76 | 2.85 |
|        | 160 | 1. 32 | 2. 16 | 2. 32 | 2.72  | 3.17  | 3.64                 | 3.86    | 4.15 | 4.40 | 4.60 | 4.75 |
| В      | 200 | 1. 85 | 3. 06 | 3. 30 | 3.86  | 4.50  | 5.15                 | 5,46    | 6.13 | 6.47 | 6.43 | 5.95 |
|        | 250 | 2. 50 | 4. 14 | 4. 46 | 5. 22 | 6.04  | 6.85                 | 7.20    | 7.87 | 7.89 | 7.14 | 5.60 |
|        | 280 | 2. 89 | 4. 77 | 5. 13 | 5. 93 | 6.90  | 7.78                 | 8.13    | 8.60 | 8.22 | 6.80 | 4.26 |

 $P_0 = 1.32kW$ 

|   |     | 小帶轮       |      |      |      | 15   | 美动   | 比    | i    |      |      |      |
|---|-----|-----------|------|------|------|------|------|------|------|------|------|------|
|   | 带型  | 转速        | 1.00 | 1.02 | 1.05 | 1.09 | 1.13 | 1.19 | 1.25 | 1.35 | 1.52 |      |
|   |     | n (r/min) | 1.01 | 1.04 | 1.08 | 1.12 | 1.18 | 1.24 | 1.34 | 1.51 | 1.99 | ≥2.0 |
|   |     | 200       | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.03 |
|   |     | 400       | 0.00 | 0.01 | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | 0.04 | 0.05 |
|   |     | 700       | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
|   | Α型  | 950       | 0.00 | 0.01 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.8  | 0.10 | 0.11 |
|   | AΨ  | 1450      | 0.00 | 0.02 | 0.04 | 0.06 | 80.0 | 0.09 | 0.11 | 0.13 | 0.15 | 0.17 |
|   |     | 2800      | 0.00 | 0.04 | 0.08 | 0.11 | 0.15 | 0.19 | 0.23 | 0.26 | 0.30 | 0.34 |
|   |     | 4000      | 0.00 | 0.02 | 0.04 | 0.06 | 80.0 | 0.09 | 0.11 | 0.13 | 0.15 | 0.17 |
| J |     | 5000      | 0.00 | 0.05 | 0.11 | 0.16 | 0.22 | 0.27 | 0.32 | 0.38 | 0.43 | 0.48 |
|   | 0.1 |           | l    |      |      |      |      |      |      |      |      |      |

$$\Delta P_0 = 0.17 + \frac{1460 - 1450}{2800 - 1450} \times (0.34 - 0.17) = 0.171 kW$$

| 小带轮包角 | 180 <sup>0</sup> | 170° | 160° | 150°  | 140° | 1300 | 120° |
|-------|------------------|------|------|-------|------|------|------|
| К "   | 1.00             | 0.98 | 0.95 | 0. 92 | 0.89 | 0.86 | 0.82 |

$$K_{\alpha}=0.95$$

$$z \ge \frac{P_c}{(P_0 + \Delta P_0)K_{\alpha}K_L} = \frac{3.84}{(1.32 + 0.171) \times 0.95 \times 1.07} = 2.5$$
  
\(\therefore\) choose  $z = 3$ 

**Step 9 Determine initial tension** 

| 帯 型      | Z    | A    | В    | С    | D    | E    |
|----------|------|------|------|------|------|------|
| q/(kg/m) | 0.06 | 0.10 | 0.17 | 0.30 | 0.62 | 0.90 |

$$F_0 = \frac{500 P_c}{zv} \left( \frac{2.5}{K_\alpha} - 1 \right) + qv^2 = \frac{500 \times 3.84}{3 \times 7.64} \times \left( \frac{2.5}{0.95} - 1 \right) + 0.10 \times 7.64^2 = 143N$$

### **Step 10 Determine force on shafts**

$$F = 2zF_0 \sin\frac{\alpha_1}{2} = 2 \times 3 \times 143 \times \sin\frac{159.4^{\circ}}{2} = 844.2N$$