Методи Обчислень.

Лектор: доц. каф. ІБ

Стьопочкіна І.В. @ivst1113

Практика Кіфорчук Кирило Олегович

Курс Методи обчислень на платформі Сікорський

РСО (див. силабус)

Для обов'язкової дисципліни:

Рейтингова система оцінювання

Nº 3/⊓	Контрольний захід	Макс. бал	Ваговий коеф.	Кіл-ть	Всього
1.	MKP	5	4	1	20
2.	Комп'ютерні практикуми	5	1	6	30
3.	Розрахунково-графічна робота	5	2	1	10
4.	Екзамен	40	1	1	40
	Всього	·			100

Для вибіркової:

Рейтингова система оцінювання

Nº 3/⊓	Контрольний захід	Макс. бал	Ваговий коеф.	Кіл-ть	Всього
1.	МКР (блок 1, практичні завдання)	5	4	1	20
2.	МКР (блок 2, теоретичні питання)	5	4	1	20
3.	Комп'ютерні практикуми	5	2	6	60
	Всього				

Наближені числа

Означення.

Наближеним числом a називається число, яке незначно відрізняється від точного A та використовується замість нього у

обчисленнях.

«...Я прилечу за тобою приблизно годині о третій, або в чотири, або в п'ять, але ні в якому разі не раніше шести », - сказав йому Карлсон. Малюк так толком і не зрозумів, коли ж, власне, Карлсон має намір прилетіти, і перепитав його. «Вже не пізніше семи, але навряд чи раніше восьми ... Чекай мене приблизно до дев'яти»

Абсолютна похибка

Означення

Абсолютною похибкою наближеного числа називається величина

$$\Delta = |A - a|. \tag{1}$$

Існує два випадки:

- А-відоме. Тоді користуємось (1).
- *А*-невідоме. В такому разі вводять оцінку зверху, так звану граничну абсолютну похибку

$$\Delta = |A - a| \le \Delta_a, \ a - \Delta_a \le A \le a + \Delta_a. \tag{2}$$

Визначити граничну абсолютну похибку числа a = 3,14, яке використовується замість числа π .

Оскільки 3,14 < π < 3,15, то $|a-\pi|$ < 0,01, $\Delta_a = 0,01$.

Абсолютної похибки нам недостатньо!

200±0,5 см

1,1±0,5 см.

Необхідна відносна похибка!

Відносна похибка

Означення. Відносною похибкою наближеного числа а називають:

$$\delta = \frac{\Delta}{|A|}.$$

Граничною відносною похибкою наближеного числа а називають будь-яке δ_a ,

$$\frac{\Delta}{|A|} \le \delta_a, \ \delta_a = \frac{\Delta_a}{a - \Delta_a}.$$

Класифікація похибок

За джерелом походження похибки поділяють на:

- Похибки моделі.
- Похибки метода.
- Залишкові похибки (sinx=x-x³/3!+x⁵/5!-...+0(.)).
- Похибки початкових даних.
- Похибки округлення.
- Похибки дій (+,-,/,*).

Приклади моделей кібератак на ОКІ (automatic gain control systems)

$$x'(t) = Ax(t) + kBu(t) + \xi u(t) + F,$$

$$u(t) = -C_1 y(t),$$

$$y(t) = C_2 x(t).$$

$$\underbrace{\begin{bmatrix} \Delta f_i' \\ \Delta P_{m_i}' \\ \Delta P_{v_i}' \\ \Delta P_{tie_i}' \\ x_i' \end{bmatrix}}_{X_i'} = \underbrace{\begin{bmatrix} -\frac{1}{T_{f_i}} & \frac{Nf_i}{T_{f_i}} & 0 & -\frac{Nf_i}{T_{f_i}} \\ 0 & -\frac{1}{T_{m_i}} & \frac{K_{m_i}}{T_{m_i}} & 0 \\ 0 & 0 & -\frac{1}{T_{v_i}} & 0 \\ 2\pi \sum_{j}^{N} T_{ij} & 0 & 0 & 0 \end{bmatrix}}_{A_{ii}} \underbrace{\begin{bmatrix} \Delta f_i \\ \Delta P_{m_i} \\ \Delta P_{v_i} \\ \Delta P_{tie_i} \end{bmatrix}}_{X_i} + \underbrace{\begin{bmatrix} 0 \\ 0 \\ K_{v_i} \\ T_{v_i} \\ 0 \\ B_{ii} \end{bmatrix}}_{B_{ii}} u_i + \underbrace{\begin{bmatrix} -1 \\ T_{f_i} \\ 0 \\ 0 \\ 0 \\ F_{ii} \end{bmatrix}}_{F_{ii}} \Delta P_{L_i}$$

де N - кількість зон керування; $\Delta f'_{i}$ – похідна по часу від показника Δf_{i} ; $\Delta P'_{mi}$, $\Delta P'_{vi}$, $\Delta P'_{tiei}$ – аналогічно.

Приклад впливу початкових даних

$$\frac{dX}{dt} = \sigma(Y - X); \qquad r = \frac{R}{R_c};$$

$$\frac{dY}{dt} = -Y + X(r - Z); \qquad b = \frac{4}{1 + k^2};$$

$$\frac{dZ}{dt} = -bZ + XY; \qquad \sigma = \frac{v}{\kappa};$$

 σ = 10, b = 8/3 та r<1; r=5; r=15; r=25. Початкові умови можна обрати, наприклад, такими:

$$x(0) = 2$$
, $y(0) = -1$, $z(0) = 0$.

Динамічний хаос — при r > 24,74

Поняття значущих та вірних цифр

Будь-яке
$$a>0$$
:
$$a = \alpha_m 10^m + \alpha_{m-1} 10^{m-1} + ... + \alpha_{m-n+1} 10^{m-n+1} + ...,$$
 $\alpha_m \neq 0.$

Приклад $312,5...=3\cdot10^2+1\cdot10^1+2\cdot10^0+5\cdot10^{-1}+...$

На практиці- скінчені десяткові дроби:

$$b = \beta_m 10^m + \beta_{m-1} 10^{m-1} + ... + \beta_{m-n+1} 10^{m-n+1}, \beta_m \neq 0.$$

Значущі цифри

Означення.

Значущою цифрою наближеного числа називається будь яка цифра в його десятковому представленні, відмінна від нуля, і нуль, якщо він міститься між значущими цифрами чи є представником збереженого десяткового розряду.

Приклад

123,04 — 5 значущих цифр. 0,123 — 3 значущі цифри (1,2,3). 123,000 — не менше 3 значущих цифр 123,010 - ?

Вірні цифри

Означення.

Перші n значущих цифр α_m , α_{m-1} , ..., α_{m-n+1} наближеного числа вірні, якщо:

$$\Delta \le \frac{1}{2} 10^{m-n+1}$$

Приклад

Знайти кількість вірних цифр у наближеному числі a=39,00, якщо A=38,99. За означенням вірних цифр ,

$$\Delta = |A - a| = 0.01 < \frac{1}{2}10^{-1}, \ m - n + 1 = -1$$

Звідси одержуємо *n*=3- три вірних цифри.

Округлення

Означення. Округлення — це заміна наближеного чи точного числа a числом a_1 з меншою кількістю значущих цифр. Число a_1 обирають так, щоб величина $|a-a_1|$ була якнайменшою.

Але ми так робити не будемо

Rounding in Excel

	A	8	C	
	Number	Function Used	Result	
	45.78956	=ROUND(A2,2)	45.79	
6	23.436	=ROUNDUP(A3,1)	23.5	
4	23.436	=ROUNDDOWN(A4,1)	23.4	
5	53.789	=MROUND(A5,5)	55	
6	18.2543	=TRUNC(A9)	18	
7	21.6	=CEILING(A6,4)	24	
8	38.567	=ODD(A7)	39	
9	38.567	=EVEN(A7)	40	
10	10.7	=INT(A10)	10	
11	1:25:34 PM	=MROUND(A10,TIME(0,20,"0"))	4:40:00 PM	

При застосуванні Правила похибка округлення не перевищує половини одиниці десяткового розряду, який визначається останньою залишеною значущею цифрою

Правило округлення за доповненням

$$b = \beta_m 10^m + \beta_{m-1} 10^{m-1} + \dots + \beta_{m-n+1} 10^{m-n+1} + \beta_{m-n} 10^{m-n} + \dots, \beta_m \neq 0.$$

Треба відкинути Тут йдеться все-ж таки про округлення дробових чисел!

- 2,13->2,11) Якщо β_{m-n} <5, то інші цифри зліва залишаються без зміни;
- 2,17->2,22) Якщо β_{m-n} >5, то $\beta_{m-n+1} = \beta_{m-n+1} + 1;$
 - 3) Якщо $\beta_{m-n} = 5$ та

2,153 -> 2,2 3.1)
$$\exists \beta_i \neq 0, i \leq m-n-1, \text{ To } \beta_{m-n+1} = \beta_{m-n+1}+1;$$

3.2)
$$\forall \beta_i = 0, i \le m - n - 1$$
 Ta

2,4500..->2,4 3.2.1)
$$\beta_{m-n+1} = 2l$$
, $l \in \mathbb{Z}$, то усі цифри зліва від β_{m-n} залишаються без зміни;

2,1500..->2,2 3.2.2)
$$\beta_{m-n+1} = 2l+1$$
, $l \in \mathbb{Z}$, to $\beta_{m-n+1} = \beta_{m-n+1} + 1$.

... додаткове правило

При виконанні наближених обчислень число значущих цифр проміжкових результатів не повинно перевищувати кількості вірних цифр більше, ніж на 1 або 2 одиниці.

```
Приклад. Округлюючи число 3,141592... до 5, 4, 3 значущих цифр, одержимо

3,1416, абс. похибка менше 1/2*10-4

3,142 абс. похибка менше 1/2*10-3

3,14
```

Як впливає точність округлень?

$$ax^2 + bx + c = 0$$

3 формули для коренів:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Припустимо:

$$a = 1, \quad b = 10^8, \quad c = 1$$

Аналітично:

$$x_{1,2} = rac{-10^8 \pm \sqrt{(10^8)^2 - 4}}{2} \ = rac{-10^8 \pm \sqrt{10^{16} - 4}}{2}$$

Реальні наслідки:

Подібні помилки призводили до серйозних наслідків:

- •Помилка ракети Ariane 5 (1996): помилка обробки чисел з плаваючою комою спричинила вибух ракети вартістю \$370 млн.
- •Помилки в фінансових алгоритмах: навіть мікроскопічні похибки можуть призвести до серйозних фінансових втрат при багатьох ітераціях.

На типових машинах з обмеженою точністю обчислення виглядатимуть так:

- $(10^8)^2 = 10^{16}$
- $\sqrt{10^{16}-4} \approx 10^8$, оскільки різниця в 4 настільки незначна, що вона втрачається через обмежену точність (особливо у float з 7–8 значущими цифрами).

Через величезну різницю в порядках чисел, обчислення $\sqrt{10^{16}-4}$ на машинному рівні дає приблизно 10^8 , бо віднімання 4 майже не впливає на результат.

$$x_2pprox rac{-10^8-10^8}{2} = rac{-2\cdot 10^8}{2} = -10^8$$

Порівняння результатів:

- Аналітично (точно): $x_1 pprox -10^{-8}$
- Машинне обчислення: $x_1 pprox 0$

Теорема

Якщо a>0 має п вірних десяткових знаків, то відносна похибка δ цього числа задовольняє нерівності:

$$\delta \le \left(\frac{1}{10}\right)^{n-1} \frac{1}{\alpha_m}$$
, α_m - перша значуща цифра числа a .

Доведення

$$\Delta = |A - \alpha| \le \frac{1}{2} 10^{m-n+1},$$

$$A \ge a - \frac{1}{2} 10^{m-n+1} \ge \alpha_m 10^m - \frac{1}{2} 10^{m-n+1} = \frac{1}{2} 10^m (2\alpha_m - \frac{1}{10^{n-1}}).$$

$$A \ge \frac{1}{2} 10^m (2\alpha_m - 1) \ge \frac{1}{2} \alpha_m 10^m.$$

$$|\delta = \frac{\Delta}{A} \le \frac{\frac{1}{2} 10^{m-n+1}}{\frac{1}{2} \alpha_m 10^m} = \frac{1}{\alpha_m} \left(\frac{1}{10}\right)^{n-1}.$$

Похибки дій: сума

Похибка суми-?

$$f = \pm x_1 \pm x_2 \pm \dots \pm x_n.$$

$$|\Delta f| = |\pm \Delta x_1 \pm \Delta x_2 \pm \dots \pm \Delta x_n|.$$

$$|\Delta f| \le |\Delta x_1| + |\Delta x_2| + \dots + |\Delta x_n|.$$

$$|\Delta f| = \Delta_{x_1} + \Delta_{x_2} + \dots + \Delta_{x_n}.$$

$$\delta_f = \frac{\Delta_f}{|A|}.$$

Похибки дій: різниця

Похибка при відніманні?

$$\Delta f = \Delta x_{1} - \Delta x_{2}$$

$$\Delta x_{1} = x_{1t} - x_{1n}$$

$$\Delta x_{2} = x_{2t} - x_{2n}$$

$$\Delta f = x_{1t} - x_{1n} - x_{2t} + x_{2n} = (x_{1t} - x_{2t}) - (x_{1n} - x_{2n})$$

$$\Delta f = \Delta x_{1} + \tilde{\Delta} x_{2}$$

$$\Delta f = \Delta x_{1} + \Delta x_{2}$$

$$\delta_f = \frac{\Delta_f}{|A|}$$

Похибки дій: добуток

Похибка добутку?

Похибки дій: частка

Похибка при діленні?

$$f = \frac{x_1}{x_2}$$

Логарифмування

Різниця In точного та наближеного значень

Перехід через dlnx

Перехід до модулів

$$\boldsymbol{\delta}_f = \boldsymbol{\delta}_{x_1} + \boldsymbol{\delta}_{x_2}$$

$$\Delta_f = |f| \delta_f$$
.

Похибки дій: степінь

Похибка при піднесенні в степінь?

$$f = x^m$$
, де $m = const$.

Логарифмування

Різниця In точного та наближеного значень

Перехід через dlnx

Перехід до модулів

$$\delta_f = m\delta_x$$
.

$$\Delta_f = |f| \delta_f$$
.

Основна (пряма) задача теорії похибок

Задано неперервно диференційовану функцію $f=f(x_1,x_2,...x_n)$, також відомі абсолютні похибки аргументів x_i . Необхідно знайти абсолютну похибку функції f.

$$|\Delta f| = |f(x_1 + \Delta x_1, x_2 + \Delta x_2, ..., x_n + \Delta x_n) - f(x_1, ..., x_n)|$$

$$|\Delta f| = |df(x_1, x_2, ..., x_n)| = |\sum_{i=1}^n \frac{\partial f}{\partial x_i} \Delta x_i| \le \sum_{i=1}^n \left|\frac{\partial f}{\partial x_i}\right| \Delta x_i|.$$

$$\Delta_f = \sum_{i=1}^n \left|\frac{\partial f}{\partial x_i}\right| \Delta_{x_i}$$

Зворотна задача теорії похибок

Визначити, якими мають бути абсолютні похибки аргументів, щоб абсолютна похибка функції не перевищувала заданої величини.

Задача недовизначена: граничну похибку функції, яка менш або дорівнює заданій величині, можна забезпечити при різних сукупностях значень абсолютних похибок аргументів.

Найпростіший розв'язок цієї задачі дається принципом рівних впливів.

$$\begin{split} & \Delta_f = \sum_{i=1}^n \left| \frac{\partial f}{\partial x_i} \right| \Delta_{x_i} \,. \\ & \left| \frac{\partial f}{\partial x_1} \right| \Delta_{x_1} = \left| \frac{\partial f}{\partial x_2} \right| \Delta_{x_2} = \dots = \left| \frac{\partial f}{\partial x_n} \right| \Delta_{x_n} = \frac{\Delta_f}{n} \,. \\ & \Delta_{x_i} = \frac{\Delta_f}{n \left| \frac{\partial u}{\partial x_i} \right|}; i = 1, 2, \dots, n. \end{split}$$

Приклад.

Знайти
$$\Delta$$
 для $V = \frac{1}{6}\pi d^3$ $d = 8,7 \pm 0,05$. $\pi = 3,14$.
$$\frac{\partial V}{\partial \pi} = \frac{1}{6}d^3 = 8,44$$
.
$$\frac{\partial V}{\partial d} = \frac{1}{2}\pi d^2 = 21,5$$
.
$$\Delta V = \left|\frac{\partial V}{\partial \pi}\right| |\Delta \pi| + \left|\frac{\partial V}{\partial d}\right| |\Delta d| = 1,088 \approx 1,1$$
. $0,005$

 $R \approx 2$, $h \approx 3$.

З якими абсолютними похибками треба визначити R та h , щоби об'єм $V=\pi R^2 h$ можна було обчислити з точністю до 0,1м 3 .

$$\frac{\partial V}{\partial \pi} = R^2 h = 12.$$

$$\frac{\partial V}{\partial R} = 2\pi RH = 37,7.$$

$$\tfrac{\partial V}{\partial h}=\pi R^2=12,6.$$

$$\Delta x_i = \frac{\Delta_V}{n \left| \frac{\partial V}{\partial x_i} \right|}.$$

$$\Delta_{\pi} = \Delta_{R} = \Delta_{H} = \Delta_{H}$$

Коли варто відступати від Принципу Рівних Впливів?

$$\delta S < 0.1\% = 0.001.$$

 $S = \pi R^2.$
 $\ln S = \ln \pi + 2 \ln R.$
 $\frac{\Delta S}{S} = \frac{\Delta \pi}{\pi} + \frac{2\Delta R}{R} = 0.001.$

$$\frac{\Delta \pi}{\pi} = 0,0005, \frac{2\Delta R}{R} = 0,0005.$$

 $\Delta \pi \le 0,0016, \Delta R \le 0,00025R = 0,0076.$

!!
$$\pi = 3,142, \frac{\Delta \pi}{\pi} = 0,00013, \frac{2\Delta R}{R} = 0,001 - 0,00013 = 0,0087, \Delta R \le 0,13.$$