massedine benbelleaceme with b. edu. dz

Cours 02:

- 3) Famille de vecteurs d'un espace vectoriel.
 - 3.1 Combinaison lineaire
 - 3.2 Famille libre
 - 3.3 Famille génératrice
 - 3.4 Base d'un espace vectoriel

3) Famille de vecteurs à un espace vectoriel (EU) 3.1 Combinaison lineaire

Soit E un Kev et 2, 2,..., en une famille de m vecteurs de E. Inappelle Combinaison lineaire de la famille 2, 2,..., en tont vecteur de la forme:

Remanques: a si un vectoir V est combinaison linéaire de vi, (i=1...m) il m'y a pas for l'ement unicité des scalaires 2: (voir l'exemple 2)

@ Engineral: U= 21°xi = 2 yixi + Ai= ti pour tout i=1...

O Soil (un uz, uz) une famille de vecteurs de R' avec Un= (1,2,-3), U2= (1,-2,3) et U3= (-1,2,3) Le Vecteur U= (9,4,2) est un Combinaison le réaire de la famille (4,14,4) car: U= 1.4 2.4 + 3.43 ② x=(1,4,-1) est combinaison lineaire des treis recturs : $u_1=(1,2,0)$, $u_2=(1,0,1)$ et $u_3=(1,2,-2)$ Eneffet, on Constate que: x=1.4+1.42+143=2.4,-1.42+0.43 3 Dans C, (Considéré comme un Respace vectories), tout nombre (200) est combinaison linéaire de 1 et i. @ Dans F(R,R), on considère les fonctions: fix+oshx, fix->exet-fix->ex Alors f'est combinaison lineaire de fiel ficlaire de fiel ficlaire $\forall x \in \mathbb{R}$, $s = \frac{e^{x} - e^{x}}{2} = \frac{1}{2}e^{x} - \frac{1}{2}e^{x}$ Cequi entraîne la relation: f= 26,-262

(5) Le polynôme. $P(x) = 3 - x + 2x^2 - 3x^3$ est une combinaison lineaire de A, X, X^2, X^3

Proposition 3: Soient $V_1, V_2, ..., V_m$ des vecteurs d'un k- ev de E. L'ensemble de loutes les combinaisons linéaires de $V_1, V_2, ..., V_m$ est un sous-espace vectoriel de E.

Autiement det & leusemble F= 2AV++++AVn 1 Ann, An Ett Jestun sous-espace vectoriel de E.

Preuve: Sans perdu la genéralité, en montrons, ce résultat dans caventres On Suppose que F= } 2, 14 + 21/2+ 2 1/3 / 2, 12/3 6 # 3, ona:

- i) 0= 0:1/+ 9:1/4 Q:1/2 CF donc F+0
- ii) Social U= AVn+ A2V2+ A3V3 ance AnA21A3 Etk V= 211+212+21 V3 anc 21, 21, 21 = K llet V deux vecteurs de Fet 2, BEK, ona:

YU+ PV= Y(2, V+ 2, V2+ 2, V3) + B(2, V1+ 2, V2+ 2, V3) = (x2+B2)/1+ (x2+B2) V2+ (x2+B2) V3 EK (X2+B2) V2+ (x2+B2) V3

donc 944BV est Combinaison l'énéaixe de V, V2 et V3, d'on

Frest un s. ev de E.

Le passage un Cas général me présente gas de difficulté

3.2 famille libre

Définition 048 Soient Em Kev, 12, 12, ..., on des valeurs de E. On déléque la famille [v, v, ..., v, } et libre on que les recleurs 20,..., 20, sont linéairement indépendantes (L.I) si pour lous Scalaires 2, 2, m, 2, m, 2 etc, ona:

(2 2+22+...+ 2 2n = 0 = 2= A= 0

Si non, on dit que la famille ? 12, ..., 2, } est liée ou que les vectures 2, 2, ..., vont lineairement dependants

Memarques:

O Toute sous famille d'une famille libre et libre.

Des vecteurs d'une famille libre pont tous non ruls.

3 {V} est libre => V+0E

4 Une famille et lice si et soulement si elle contient un vecteur qui est Combinaison lineaire ples autres. (voir l'exemple 2)

Exemples @Dans E= R3, les vecteurs e,= (1,0,0), e= (0,1,0) et e,= (0,0,1) sont

@ Dans R2, les vecteurs u= (1,-2) et v= (-3,6) sont liées Car 3.4+ 1.10 = (0,0) mais 3+0 et 1+0

De plus "Remarque @" on a v=3. M donc ve et Combinaison liciaire de u

(3) Les vecteurs (1,1) et (-2,-2) sont colindaire, donc la famille) (1,1), (-2,-2)} est liée (1,1)=-{\frac{1}{2}}(-2,-2)

Remanq e une famille de deux vecteurs non Colindaires (on non proportionnels) est libre

Deux vecteurs met v sont lobenéaires s'ilexiste & EK, telque.

[11=4.2] "voir l'exemple 5

3.3 Famille génératrice

Soient E un 1K-ev et H partie de E. Un sous copace vectoriel Contenant H c'est-l'intersection de tous les sous-espaces vectoriels de Contement H, et on le mote vect (H)

Futument det:

Vect (H):= L'intersection de lons les seu de E Contenant H := le plus petit s. ev de E Continant H.
on encore

Vect (H):= l'ensemble de l'enter les combinaisons liviaires Les vecteurs de H.

10 KIX] = vect (X") new can KIXI est l'ensemble des combinaisons l'inéaires de la famille (1, X, X²,..., X"), Puisque un vecteur PEIKIN s'écrit sous la forme: P(X) = 90+91X+...+ 91X" = Dai X' avec ai EIR, X'EKIN

@ si K = R, vect (1) = { ax1 | a ∈ R } = R Vect (1,i) = { a.1+b.i | a,66 R } = Ra+ib | a,66 R } = C si K= C Vect (1)= { a.1 | a E P } = C 3 Soil F= { (x-y, y+x, y) | x, y & R}, alors, E= J(x,x,0)+(-2,2,2)) x,2 EB3 = \frac{1}{2} \times \left(\lambda, \l

Scanned by CamScanner

Praposition 4: Soit Fune partie d'un K-en de E. Alors:
Fest un sous espace vectoriet de E siet sentement di Veci !-
EAstrice 3 Courmontier qu'une pontie d'un espace vectoriel et un voit l'écure comme un voit.
Exemple Montions que E= {(x,y,3,t) eR' x+2y-3=0 et x-y+t=0}
1 - P / WT
Collin Pour lout (xxxx t) CR, ona: (xxxx)
Donc: [] (x1y13, t) & R" x+2y-8=0el-x-y-4t=0 }
= } (x, x+6,3x+26,1) x, E (1x)
= 3 x (1, x, 3, 0) + t (0,1,2,1) x, E = 11]
(0.2(2(1)))
d'où E est un sous-espace vecas.
((1,1,3,0), (1,1,0))
Définition 05: Une famille (2, 2, -, 2, de vecteurs d'un K en de E est dile:
adneratrice de E (ou ingenotie t) si lout vectur de C plui secrire remine
Combinaison lénéaire de V11/2,, vn, l'est-à-dire: Vect (2, -, vn) = E
aqui se nédorit: (Y NO E E, 3 (An, m, An) EKM, No =) Aivi = Avit Averture Avit (EX NO E E, 3 (An, m, An) EKM)
A VEEL 2000 JULY)

hemorg ness 1) La décomposition du vecteur v mest pas mécessairement unique, il peut y avoir plusieurs Combinaisons lineaius de (v, v, v, v,) égales au même (2) Vect (2, 2, ..., 2) CE étant une inclusion toujours vérifiei, on re montiera que sa réciption_e. O la famille ((1,1)) n'est-pas génératrices de R2. Par exemple la vecleur (2,5) de R² me peut gas s'écrire comme combinaisonlinéaux de (1,1). (2) la famille ((1,0), (0,1)) est généra trice de R2. Can Soit $u = (x, y) \in \mathbb{R}^2$ on $\alpha : u = (x, y) = x(\Lambda, 0) + y(0, \lambda) \in \text{Vect}((\Lambda, 0), (9, \Lambda))$ Done $\mathbb{R}^2 \subset \text{Vect}((\Lambda, 0), (0, \Lambda))$. Puisque l'inclusion réciproque est vérifice alors R2= Vect ((1,0), (0,1)) et la famille ((1,0), (0,1)) est génératrice de fR2 (1+X+X2, 1-X2, 2X+1) est une famille génératrice de ReIX], eneffet Soit P(x)= ax2+6x+c. e R2[X], on cherche 2, 2pt-3 ER les que: P(x)= 3 (1+x+x2)+ 3 (1-x2)+ 3 (2x+1) Le qui est équivant au système d'équations suivant: Ant Az+ Az = C ... (1) $\begin{cases} A_1 + 2A_3 = 5 & \dots & (2) \\ A_1 - A_2 = a & \dots & (3) \end{cases}$ (1)4 (3) -D 2A+3= a+c... (4) (4)-P(1)-D A3- 1 (26-a-c) (3) -b $A_{1} = b - \frac{1}{3}(2b - a - c)$ (A) -D 2- C- A-3 Le système admet une solutioni, donc: P E Vect (1+X+X², 1-X², 2X+1)
Ainsi la famille est génératii ce.
-16-

Proposition 5
Proposition 5 Toute sur-famille d'une famille généralise de E est encore généralise de E
(1,2), (2,11) } est générative de R2, donc il en est de nième de }(1,2)(4,1), (8,11) }.
3.4 base d'un espace vectoriel
Delfastion Ob: (Base)
Soil- B= (29) iEI une famille de Mélleurs à un
on dit que B est une base de Esti B est à la fois libre et génératice de E
Exemples i
O ((1,0), (0,1)) est une basse de R2 (dite basse Canonique de R2).
Dans P. Comma R. espace vectoriet, la gamille
Ce qui signifie que tont complère s'écrit de façon unique sous la forme
1.a ich - a+bi , où a, b ER
3 Dans KIXI, (1, X, X2,, XM) est une base (dite base canonique de KIXI)
in 3 P(x)- X(x-1). P(x)- X(x 2) P(x) (x 1)(x 2) } L Land P(x)

@ ? P_(x)= X(x-1), P_2(x)= X(x-2), P_3(x)= (x-1)(x-2) } esture base de P_2 [x]

Remarque

La base canonique de k^m est la généralisation de la base "Classique" du plan (oloms R²) on de l'espace (dans R²).

Propostion 6: Soit B= (ui)iEI une famille de vecteurs d'untre espece entorid E. Hors les 04 énoncis suivant sont équipalents. 1) B esture base de E (3) Best libre maximale, c'est-à-dire Best libre et VXEE, BUjrquest que l'est que l'est que l'été pas l'été Jest pas l'été Jes Q VXEE, 3! (A) EK, X = ZEI A; W Les scalaires (Ai) iEI pont appelés les Coordonnies du recteur x dans la base &