单调区间、极值

15 年试题

- 2. 已知函数 f(x) 在 x_0 处有二阶导数,且 $f'(x_0) = 0$, $f''(x_0) = 1$,则下列结论正确的是
 - A. x_0 为f(x)的极小值点
 - B. x_0 为f(x)的极大值点
 - $C. x_0$ 为 f(x)的极值点
 - D. $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点

解:因为 $f'(x_0) = 0$, $f''(x_0) = 1 > 0$,

所以 x_0 为f(x)的极小值点

14 年试题

求函数 $f(x) = \log_4(4^x + 1) - \frac{1}{2}x - \log_4 2$ 的单调

区间和极值。

13. 解: f(x)的定义域为 $(-\infty, +\infty)$

$$f'(x) = \frac{4^x \ln 4}{(4^x + 1) \ln 4} - \frac{1}{2} = \frac{4^x - 1}{2(4^x + 1)}$$

令 f'(x) = 0,解得 x = 0

当x < 0时,f'(x) < 0,当x > 0时,f'(x) > 0,

所以 f(x) 在区间($-\infty$,0) 递减,在(0,+ ∞) 内递增;

f(0) = 0是 f(x)的极小值

13 年试题

设函数 $f(x) = x \sin x + \cos x$,则下列结论正确的是

- A. f(0)是 f(x)的极小值, $f(\frac{\pi}{2})$ 是 f(x)的极大值
- B. f(0)是 f(x)的极大值, $f(\frac{\pi}{2})$ 是 f(x)的极小值
 - C. f(0)和 $f(\frac{\pi}{2})$ 都是f(x)的极小值
 - D. f(0)和 $f(\frac{\pi}{2})$ 都是f(x)的极大值

解: $f'(x) = x \cos x$ $f''(x) = \cos x - x \sin x$ f'(0) = 0, f''(0) = 1 > 0 , 所以, f(0)是 f(x)的极小值,

$$f'(\frac{\pi}{2}) = 0, f''(\frac{\pi}{2}) = -\frac{\pi}{2} < 0$$
,

所以, $f(\frac{\pi}{2})$ 是 f(x)的极大值

12 年试题

13. 确定函数 $f(x) = (x-1)e^{\frac{\pi}{4} + \arctan x}$ 的单调区间和极值

(6分)

13. 解:函数 f(x) 的定义域为 $(-\infty, +\infty)$,

$$f'(x) = e^{\frac{\pi}{4} + \arctan x} + (x - 1)e^{\frac{\pi}{4} + \arctan x} \cdot \frac{1}{1 + x^2}$$
$$= \frac{x(1 + x)}{1 + x^2} e^{\frac{\pi}{4} + \arctan x}$$

(2分)

令 f'(x) = 0,解得 x = 0, x = -1

因为在区间($-\infty$,-1)内,f'(x) > 0;在区间(-1,0)内,f'(x) < 0;

在区间 $(0,+\infty)$ 内, f'(x) > 0,

所以 f(x) 的递增区间是 $(-\infty,-1)$ 及

 $(0,+\infty)$, 递减区间是(-1,0) (4分)

f(x)的极大值是f(-1) = -2, f(x)的极小

值
$$f(0) = -e^{\frac{\pi}{4}}$$

(6分)

11 年试题

已知 f(x)的二阶导数存在,且 f(2) = 1,则 x = 2是函数 $F(x) = (x-2)^2 f(x)$ 的

A. 极小值点

B. 最小值点

C. 极大值点

D. 最大值点

解:
$$F'(x) = 2(x-2)f(x) + (x-2)^2 f'(x)$$

$$F''(x) = 2f(x) + 4(x-2)f'(x) + (x-2)^{2}f''(x)$$

$$F'(2) = 0, \quad F''(2) = 2f(2) = 2 \times 1 = 2 > 0$$

x = 2是函数 $F(x) = (x-2)^2 f(x)$ 的极小值点

2008 年试题

求函数 $f(x) = 3 - x - \frac{4}{(x+2)^2}$ 在区间 [-1, 2]上

的最大值及最小值。

12. 【解析】由题意,知

$$f(-1) = 0, f(0) = 2, f(2) = \frac{3}{4}$$

令 f'(x) = 0,即 $(x+2)^3 = 8$,解得驻点 x=0, 又 f(-1) = 0,f(0) = 2, $f(2) = \frac{3}{4}$,所以 f(x)在 区间 [-1,2] 上最大值 M = 2 及最小值 m = 0.

2005 年试题

21. 设
$$f(x) = xe^{-\frac{1}{2}x^2}$$
,

- (1) 求 f(x)的单调区间及极值;
- (2) 求 f(x)的闭区间[0,2]上的最大值和最小值。

21. 【解析】 $f(x) = xe^{-\frac{1}{2}x^2}$ 的定义域为 $(-\infty, +\infty)$, $f'(x) = (1-x^2)e^{-\frac{1}{2}x^2}$ 令 f'(x) = 0,解出驻点(即稳定点) $x_1 = -1, x_2 = 1$

列表

X	$(-\infty,-1)$	-1	(-1, 1)	1	$(1,+\infty)$
f'(x)	_	0	+	0	_

公众号: 高数专题复习

可知极小值
$$f(-1) = -\frac{1}{\sqrt{e}}$$

极大值
$$f(1) = \frac{1}{\sqrt{e}}$$

(2) 因 f(x)在 [0,2] 上连续,由 (1) 知 f(x) 在 (0,2) 内可导,且在 (0,2),内只有一个驻点 x=1 (极大值点),因

$$f(0) = 0, f(1) = \frac{1}{\sqrt{6}}, f(2) = \frac{2}{e^2}, \text{ } \blacksquare$$

$$f(0) = 0 < f(2) = \frac{2}{e^2} < f(1) = \frac{1}{\sqrt{e}}$$

故 $f(x) = xe^{\frac{1}{2}x^2}$ 在闭区间[0,2]上的最大值为 $f(1) = \frac{1}{\sqrt{e}}$,最小值为 f(0) = 0

凹凸性与拐点

16 年试题

3. 若点(1,2)为曲线 $y = ax^3 + bx^2$ 的拐点,则常数

a与b的值应分别为

A. -1和3

B. 3和-1

C. -2和6

D.6和-2

解析:

$$f'(x) = (ax^{3} + bx^{2})' = 3ax^{2} + 2bx$$
$$f''(x) = (3ax^{2} + 2bx)' = 6ax + 2b$$
$$f''(1) = 6a + 2b = 0$$

$$\sum f(1) = a + b = 2$$

解方程组
$$\begin{cases} 6a+2b=0 \\ a+b=2 \end{cases}$$
得
$$\begin{cases} a=-1 \\ b=3 \end{cases}$$

14 年试题

曲线 $y = \ln x + \frac{1}{2}x^2 + 1$ 的凸区间是

A.
$$(-\infty,1)$$

B.
$$(-1,0)$$

D.
$$(1,+\infty)$$

解:
$$y' = \frac{1}{x} + x$$
, $y'' = \frac{x^2 - 1}{x^2}$

在区间
$$(0,1)$$
, $y'' < 0$, 曲线 $y = \ln x + \frac{1}{2}x^2 + 1$ 凸

13 年试题

求曲线 $y = \ln(\sqrt{x^2 + 4} + x)$ 的凹、凸区间及其拐点坐标。

解:函数的定义域为 $(-\infty, +\infty)$,

$$y' = \frac{1}{\sqrt{x^2 + 4} + x} \left(\frac{x}{\sqrt{x^2 + 4}} + 1 \right) = \frac{1}{\sqrt{x^2 + 4}},$$

$$y'' = \frac{-x}{(x^2 + 4)^{\frac{3}{2}}},$$

令y'' = 0,解得x = 0,

当x < 0时y'' > 0; 当x > 0时y'' < 0。

故曲线的凹区间为 $(-\infty,0)$; 曲线的凸区间为 $(0,+\infty)$;

曲线的拐点为(0,ln2)。

12 年试题

8. 若曲线 $y = x^3 + ax^2 + bx + 1$ 有拐点(-1,0),则

常数*b* = _____。

解:
$$f'(x) = 3x^2 + 2ax + b$$
, $f''(x) = 6x + 2a$
曲线 $y = x^3 + ax^2 + bx + 1$ 有拐点(-1,0)

所以,
$$f(-1) = 0$$
, $f''(-1) = 0$,

即
$$a+b=0, -6+2a=0$$
,解得: $a=3, b=-3$

11 年试题

- 13. 求曲线 $y = x \arctan kx(k < 0)$ 的凹凸区间和拐点。
- 13. 解:函数的定义域为

$$(-\infty, +\infty), y' = 1 - \frac{k}{1 + k^2 x^2}, y'' = \frac{2k^3 x}{(1 + k^2 x^2)^2}$$

$$\Leftrightarrow y'' = 0, \mathbf{A} = 0,$$

在区间 $(-\infty,0)$ 内, y''>0; 在区间 $(0,+\infty)$ 内, y''<0,

所以该曲线的凸区间是 $(0,+\infty)$,凹区间是 $(-\infty,0)$;

拐点是(0,0)。

10 年试题

已知点(1, 1)是曲线 $y = ae^{\frac{1}{x}} + bx^2$ 的拐点,求常数 a,b 的值。

13. 解: 由题意知 *ae* + *b* = 1 ① 又因为

$$y' = -\frac{a}{x^2}e^{\frac{1}{x}} + 2bx, y'' = \frac{2a}{x^3}e^{\frac{1}{x}} + \frac{a}{x^4}e^{\frac{1}{x}} + 2b$$

所以,由题意知

$$2ae + ae + 2b = 3ae + 2b = 0$$

由①和②解得
$$a = -\frac{2}{e}, b = 3$$

09 年试题

设函数 $f(x) = x^2 + 4x - 4x \ln x - 8$.

(1)判断 f(x)在区间(0,2)上的图形的凹凸

性,并说明理由;

20. 【解析】(1)

所以f(x)在(0,2)上的图形是凸的。

 $\therefore f'(x)$ 在(0,2)上单调减少,

由此知: 当0 < x < 2时,有

 $f'(x) > f'(2) = 4 - 4 \ln 2 > 0$

故f(x)在区间(0,2)上单调增加.

因此当0 < x < 2时,有

$$f(x) < f(2) = 4 + 8 - 8 \ln 2 - 8 = 4 - 8 \ln 2 = 4 - 4 \ln 4 < 0.$$