

Installation Home **Documentation Examples**

Custom Search

sklearn.preprocessing.OneHotEn coder

class

sklearn.preprocessing.OneHotEncoder(n values='auto', categorical_features='all', dtype=<class 'numpy.float64'>, [source] sparse=True, handle unknown='error')

Encode categorical integer features using a one-hot aka oneof-K scheme.

The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete) features. The output will be a sparse matrix where each column corresponds to one possible value of one feature. It is assumed that input features take on values in the range [0, n values).

This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and SVMs with the standard kernels.

Note: a one-hot encoding of y labels should use a LabelBinarizer instead.

Read more in the User Guide.

Parameters: n_values: 'auto', int or array of ints

Number of values per feature.

- 'auto' : determine value range from training data.
- int : number of categorical values per feature.

Previous Next

第1页 共6页 2017/10/24 下午1:33

Each feature value should be in range(n_values)

 array: n_values[i] is the number of categorical values in

> X[:, i]. Each feature value should be in range(n_values[i])

categorical_features: "all" or array of indices or mask

Specify what features are treated as categorical.

- 'all' (default): All features are treated as categorical.
- array of indices: Array of categorical feature indices.
- mask: Array of length
 n_features and with dtype=bool.

Non-categorical features are always stacked to the right of the matrix.

dtype: number type, default=np.float

Desired dtype of output.

sparse: boolean, default=True

Will return sparse matrix if set True else will return an array.

handle_unknown : str, 'error' or 'ignore'

Whether to raise an error or ignore if a unknown categorical feature is present during transform.

Attributes: active_features_: array

Indices for active features,

Previous

第2页 共6页

2017/10/24 下午1:33

meaning values that actually occur in the training set. Only available when n_values is 'auto'.

feature_indices_ : array of shape
(n_features,)

Indices to feature ranges. Feature i in the original data is mapped to features from feature_indices_[i] to feature_indices_[i+1] (and then potentially masked by active_features_ afterwards)

n_values_ : array of shape (n_features,)

Maximum number of values per feature.

See also:

sklearn.feature_extraction.DictVectorizer

performs a one-hot encoding of dictionary items (also handles string-valued features).

sklearn.feature_extraction.FeatureHasher

performs an approximate one-hot encoding of dictionary items or strings.

sklearn.preprocessing.LabelBinarizer

binarizes labels in a one-vs-all fashion.

sklearn.preprocessing.MultiLabelBinarizer

transforms between iterable of iterables and a multilabel format, e.g. a (samples x classes) binary matrix indicating the presence of a class label.

sklearn.preprocessing.LabelEncoder

encodes labels with values between 0 and n_classes-1.

Examples

Previous

Given a dataset with three features and four samples, we let the

第3页 共6页 2017/10/24 下午1:33

encoder find the maximum value per feature and transform the data to a binary one-hot encoding.

```
>>> from sklearn.preprocessing import OneHotEncoder |>>>
>>> enc = OneHotEncoder()
>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
OneHotEncoder(categorical_features='all', dtype=<... 'numpy.f
    handle_unknown='error', n_values='auto', sparse=True)
>>> enc.n_values_
array([2, 3, 4])
>>> enc.feature_indices_
array([0, 2, 5, 9])
>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]])
```

Methods

fit(X[, y])	Fit OneHotEncoder to X.
fit_transform(X[, y])	Fit OneHotEncoder to X, then transform X.
get_params([deep])	Get parameters for this estimator.
<pre>set_params(**params)</pre>	Set the parameters of this estimator.
transform(X)	Transform X using one-hot encoding.

```
__init__(n_values='auto', categorical_features='all', dtype=
<class 'numpy.float64'>, sparse=True,
                                                     [source]
handle unknown='error')
```

```
fit(X, y=None)
                                                    [source]
```

Fit OneHotEncoder to X.

Parameters: X : array-like, shape [n_samples, n_feature]

self:

Input array of type int.

fit_transform(X, y=None)	[source]

Previous

第4页 共6页 2017/10/24 下午1:33

Returns:

Fit OneHotEncoder to X, then transform X.

Equivalent to self.fit(X).transform(X), but more convenient and more efficient. See fit for the parameters, transform for the return value.

Parameters: X : array-like, shape [n_samples,

n_feature]

Input array of type int.

get_params(deep=True)

[source]

Get parameters for this estimator.

Parameters: deep: boolean, optional

If True, will return the parameters for this estimator and contained subobjects that

are estimators.

Returns: params: mapping of string to any

Parameter names mapped to

their values.

set_params(**params)

[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it's possible to update each component of a nested object.

Returns: self:

transform(X)

[source]

Previous

第5页 共6页

2017/10/24 下午1:33

Transform X using one-hot encoding.

Parameters: X : array-like, shape [n_samples,

n_features]

Input array of type int.

Returns: X out : spa

X_out: sparse matrix if sparse=True else

a 2-d array, dtype=int

Transformed input.

Examples using sklearn.preprocessing.OneHotEncoder

Feature transformations with ensembles of trees

Previous Next

第6页 共6页 2017/10/24 下午1:33