

Exercise Session 4

Scheduling: Static @ VLIW, Dynamic @ Scoreboard, Compiler @ Int Pipeline

Advanced Computer Architectures

2nd April 2025

Davide Conficconi < davide.conficconi@polimi.it >

Recall: Material (EVERYTHING OPTIONAL)

https://webeep.polimi.it/course/view.php?id=14754

https://tinyurl.com/aca-grid25

Textbook: Hennessy and Patterson, Computer Architecture: A Quantitative Approach

Analog

Other Interesting Reference

News from the outer world: AMD Alveo V80 Versal SoC

https://www.amd.com/en/products/accelerators/alveo/v80.html

Phoenix floorplan

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10592049; https://github.com/Xilinx/mlir-aie/tree/main/programming

guide

Phoenix floorplan

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10592049; https://github.com/Xilinx/mlir-aie/tree/main/programming

quide

Phoenix floorplan

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10592049; https://github.com/Xilinx/mlir-aie/tree/main/programming

quide

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10592049; https://github.com/Xilinx/mlir-aie/tree/main/programming

guide

News from the outer world: Al Engine Compute Accelerator

The Al Engine is a 7-way VLIW processor^[1]

_						.
scalar	move	move	Load	Load	store	vector

Program memory is limited to 1024 instructions^[1]

Recall: Scheduling Idea

To improve ILP (instruction-level parallelism) dependences must be detected and solved, and instructions must be ordered (scheduled) so as to achieve highest parallelism of execution compatible with available resources.

Two properties must be preserved

- Exception behavior: Preserving exception behavior means that any changes in the ordering of instruction execution must not change how exceptions are raised in the program.
- **Data flow**: Actual flow of data values among instructions that produces the correct results and consumes them.

Recall: Instruction Level Parallelism

Two strategies to support ILP:

- Dynamic Scheduling: Depend on the hardware to locate parallelism
- Static Scheduling: Rely on software for identifying potential parallelism

Hardware intensive approaches dominate desktop and server markets

Recall: Static Scheduling

Compilers can use sophisticated algorithms for code scheduling to exploit ILP (Instruction Level Parallelism) in a **basic block** – a straight-line code sequence with no branches in except to the entry and no branches out except at the exit

Static detection and resolution of dependences (static scheduling): accomplished by the compiler ⇒ dependences are avoided by code reordering. Output of the compiler: reordered into dependency-free code.

Typical example: VLIW (Very Long Instruction Word) processors expect dependency-free code.

Recall VLIW and Static Scheduling

Static Scheduling: Rely on software for identifying potential parallelism (example of List Based Scheduling with ASAP)

VLIW (Very Long Instruction Word) processors expect dependency-free code.

Exe VLIW: Architecture

- Consider the program be executed on a 3-issue VLIW MIPS (Very Long Instruction Word) architecture with 3 fully pipelined functional units
- Integer ALU with 1 cycle latency to next Integer/FP and 2 cycle latency to next Branch
- Memory Unit with 3 cycle latency
- Floating Point Unit with 3 cycle latency (each FPU can complete one add or one multiply per clock cycle)
- Branch completed with 1 cycle delay slot (branch solved in ID stage)

Recall Delayed Branch

(Static Branch Prediction Techniques)

- The job of the compiler is to make the instruction placed in the branch delay slot valid and useful.
- There are three ways in which the branch delay slot can be scheduled:
 - From before
 - 2. From target
 - 3. From fall-through

- Considering one iteration of the loop
- schedule the assembly code for the 3-issue VLIW machine in the following table by using the list-based scheduling
- Do not use neither software pipelining nor loop unrolling nor modifying loop indexes.
- Please do not need to write in NOPs (can leave blank).

Exe VLIW: the code

Assembly Code:

```
FOR: Id $f2, VB($r6) fadd $f3, $f2, $f6 st $f3, VA($r7) Id $f3, VC($r6) st $f3, VC($r7) fadd $f4,$f4,$f3 addi $r6, $r6, 4 addi $r7, $r7, 4 blt $r7, $r8, FOR
```

Assembly Code:

```
11: FOR: Id $f2, VB($r6)
12: fadd $f3, $f2, $f6
13: st $f3, VA($r7)
14: Id $f3, VC($r6)
15: st $f3, VC($r6)
16: fadd $f4,$f4,$f3
17: addi $r6, $r6, 4
18: addi $r7, $r7, 4
19: blt $r7, $r8, FOR
```

Assembly Code:

|11: FOR: |d (\$f2)VB(\$r6)

12: fadd \$f3(\$f2)\$f6

13: st (\$f3) VA (\$r7)

14: Id (\$f3) VC(\$r6)

15: st (\$f3) VC(\$r7)

16: fadd \$f4,\$f4,\$f3

17: addi \$r6, \$r6, 4

18: addi \$r7, \$r7, 4

19: blt \$r7, \$r8, FOR

RAW F2 I1-I2

RAW F3 I2-I3

RAW F3 I4-I5

RAW F3 I4-I6

RAW R7 I8-I9

Assembly Code: FOR: Id Sf2 VE

12: fadd \$f3\\$f2\\$f6

13: st (\$f3) VA(\$r7)

14: Id (\$f3) VC (\$r6)

15: st (\$f3) VC(\$r7)

16: fadd \$f4,\$f4,\$f3

17: addi (\$r6, \$r6, 4

18: addi Sr7, \$r7, 4

19: blt \$r7, \$r8, FOR

RAW F2 I1-I2

RAW F3 I2-I3

RAW F3 I4-I5

RAW F3 I4-I6

RAW R7 I8-I9

WAR R7 I8-I5

WAR R7 18-13

WAR R6 I7-I1

WAR R6 I7-I4

WAW F3 I2-I4

WAR **F3** I3-I4

```
Assembly Code:
    FOR:
12:
           fadd Stasstz
13:
           st
14:
15:
           st
16:
           fadd $f4,$f4,$
17:
           addi (Sr6.)
18:
           addi
19:
                 $r7, $r8, FOR
```

RAW F2 I1-I2 RAW F3 I2-I3 **RAW F3 I4-I5** RAW F3 I4-I6 **RAW R7 I8-I9 WAR R7 I8-I5** WAR R7 I8-I3 **WAR R6 I7-I1 WAR R6 I7-I4 WAW F3 I2-I4 WAR F3 I3-I4 CNTRL**

FOR: Id \$f2, VB(\$r6)
fadd \$f3, \$f2, \$f6
st \$f3, VA(\$r7)
Id \$f3, VC(\$r6)
st \$f3, VC(\$r7)
fadd \$f4,\$f4,\$f3
addi \$r6, \$r6, 4
addi \$r7, \$r7, 4
blt \$r7, \$r8, FOR

ALU 1 cc Integer, 2 cc Branch

MU 3 cc

FPU 3 cc

FOR: Id \$f2, VB(\$r6)
fadd \$f3, \$f2, \$f6
st \$f3, VA(\$r7)
Id \$f3, VC(\$r6)
st \$f3, VC(\$r7)
fadd \$f4,\$f4,\$f3
addi \$r6, \$r6, 4
addi \$r7, \$r7, 4
blt \$r7, \$r8, FOR

ALU 1 cc Integer, 2 cc Branch

MU 3 cc

FPU 3 cc

FOR: Id \$f2, VB(\$r6)
fadd \$f3, \$f2, \$f6
st \$f3, VA(\$r7)
Id \$f3, VC(\$r6)
st \$f3, VC(\$r7)
fadd \$f4,\$f4,\$f3
addi \$r6, \$r6, 4
addi \$r7, \$r7, 4
blt \$r7, \$r8, FOR

- Schedule the instructions
- Calculate the FP ops / cycle

ALU 1 cc Integer, 2 cc Branch

MU 3 cc

FPU 3 cc

	Integer ALU(1/2 b)	Memory Unit (3cc)	FPU(3cc)
C1			
C2			
C3			
C4			
C5			
C6			
C7			
C8			
С9			
C10			
C11			
C12			
C13			
C14			
C15			

	Integer ALU(1/2b)	Memory Unit (3cc)	FPU(3cc)
C1			
C2			
C3			
C4			
C5			
C6			
C7			
C8			
С9			
C10			
C11			
C12			
C13			
C14			
C15			

	Integer ALU(1/2 b)	Memory Unit(3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			
C5			
C6			
C7			
C8			
C9			
C10			
C11			
C12			
C13			
C14			
C15			

	Integer ALU(1/2 b)	Memory Unit (3cc)	FPU(3cc)
C1		Id \$f2, VB(\$r6) 1cc	
C2		2cc	
C3		3cc	
C4			
C5			
C6			
C7			
C8			
C9			
C10			
C11			
C12			
C13			
C14			
C15			

	Integer ALU(1/2 b)	Memory Unit(3cc)		FPU(3cc)
C1		ld \$f2, VB(\$r6) 1	СС	
C2		2	2CC	
C3		3	icc	
C4				fadd \$f3, \$f2, \$f6
C5				
C6				
C7				
C8				
C9				
C10				
C11				
C12				
C13				
C14				
C15				

	Integer ALU(1/2 b)	Memory Unit (3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			fadd \$f3, \$f2, \$f6
C5			
C6			
C7			
C8			
C9			
C10			
C11			
C12			
C13			
C14			
C15			

	Integer ALU(1/2 b)	Memory Unit(3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4		1cc	fadd \$f3, \$f2, \$f6
C5		2cc	
C6		3cc	
C7			
C8			
C9			
C10			
C11			
C12			
C13			
C14			
C15			

	Integer ALU(1/2b)	Memory Unit(3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4		1cc	fadd \$f3, \$f2, \$f6
C5		2cc	
C6		3cc	
C7		st \$f3, VA(\$r7)	
C8			
C9			
C10			
C11			
C12			
C13			
C14			
C15			

	Integer ALU(1/2 b)	Memory Unit(3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			fadd \$f3, \$f2, \$f6
C5			
C6			
C7		st \$f3, VA(\$r7)	
C8		ld \$f3, VC(\$r6)	
C9			
C10			
C11			
C12			
C13			
C14			
C15			

	Integer ALU(1/2b)	Memory Unit(3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			fadd \$f3, \$f2, \$f6
C5			
C6			
C7		st \$f3, VA(\$r7)	
C8		ld \$f3, VC(\$r6)	
C9			
C10			
C11			
C12			
C13			
C14			
C15			

	Integer ALU(1/2b)	Memory Unit(3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			fadd \$f3, \$f2, \$f6
C5			
C6			
C7		st \$f3, VA(\$r7)	
C8		ld \$f3, VC (\$r6) 1cc	
C9		2cc	
C10		3cc	
C11			
C12			
C13			
C14			
C15			

	Integer ALU(1/2 b)	Memory Unit (3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			fadd \$f3, \$f2, \$f6
C5			
C6			
C7		st \$f3, VA(\$r7)	
C8		ld \$f3, VC(\$r6)	
C9			
C10			
C11		st \$f3, VA(\$r7)	
C12			
C13			
C14			
C15			

	Integer ALU(1/2 b)	Memory Unit (3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			fadd \$f3, \$f2, \$f6
C5			
C6			
C7		st \$f3, VA(\$r7)	
C8		ld \$f3, VC(\$r6)	
C9			
C10			
C11		st \$f3, VA(\$r7)	fadd \$f4, \$f4, \$f3
C12			
C13			
C14			
C15			

	Integer ALU(1/2 b)	Memory Unit(3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			fadd \$f3, \$f2, \$f6
C5			
C6			
C7		st \$f3, VA(\$r7)	
C8	addi \$r6, \$r6, 4	ld \$f3, VC(\$r6)	
C9			
C10			
C11		st \$f3, VA (\$r7)	fadd \$f4, \$f4, \$f3
C12			
C13			
C14			
C15			

	Integer ALU(1/2 b)	Memory Unit(3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			fadd \$f3, \$f2, \$f6
C5			
C6			
C7		st \$f3, VA(\$r7)	
C8	addi \$r6, \$r6, 4	ld \$f3, VC(\$r6)	
C9			
C10			
C11	addi \$r7, \$r7, 4	st \$f3, VA(\$r7)	fadd \$f4, \$f4, \$f3
C12			
C13			
C14			
C15			

	Integer ALU(1/2 b)	Memory Unit (3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			fadd \$f3, \$f2, \$f6
C5			
C6			
C7		st \$f3, VA(\$r7)	
C8	addi \$r6, \$r6, 4	ld \$f3, VC(\$r6)	
C9			
C10			
C11	addi \$r7, \$r7, 4	st \$f3, VA(\$r7)	fadd \$f4, \$f4, \$f3
C12			
C13			
C14			
C15			

Recall: Early-evaluation PC

	Integer ALU(1/2 b)	Memory Unit(3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			fadd \$f3, \$f2, \$f6
C5			
C6			
C7		st \$f3, VA (\$r7)	
C8	addi \$r6, \$r6, 4	ld \$f3, VC(\$r6)	
C9			
C10			
C11	addi \$r7, \$r7, 4	st \$f3, VA (\$r7)	fadd \$f4, \$f4, \$f3
C12			
C13	blt \$r7, \$r8, FOR		
C14			
C15			

	Integer ALU(1/2 b)	Memory Unit (3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			fadd \$f3, \$f2, \$f6
C5			
C6			
C7		st \$f3, VA(\$r7)	
C8	addi \$r6, \$r6, 4	ld \$f3, VC(\$r6)	
C9			
C10			
C11	addi \$r7, \$r7, 4	st \$f3, VA(\$r7)	fadd \$f4, \$f4, \$f3
C12			
C13	blt \$r7, \$r8, FOR		
C14	(br delay slot)		
C15			

Exe VLIW: actual code

?	Integer ALU(1/2 b)	Memory Unit(3cc)	FPU(3cc)
C1	NOP	ld \$f2, VB(\$r6)	NOP
C2	NOP	NOP	NOP
C3	NOP	NOP	NOP
C4	NOP	NOP	fadd \$f3, \$f2, \$f6
C5	NOP	NOP	NOP
C6	NOP	NOP	NOP
C7	NOP	st \$f3, VA(\$r7)	NOP
C8	addi \$r6, \$r6, 4	ld \$f3, VC(\$r6)	NOP
C9	NOP	NOP	NOP
C10	NOP	NOP	NOP
C11	addi \$r7, \$r7, 4	st \$f3, VA(\$r7)	fadd \$f4, \$f4 , \$f3
C12	NOP	NOP	NOP
C13	blt \$r7, \$r8, FOR	NOP	NOP
C14	(br delay slot)	NOP	NOP
C15	NOP	NOP	NOP

	Integer ALU(1/2b)	Memory Unit(3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			fadd \$f3, \$f2, \$f6
C5			
C6			
C7		st \$f3, VA (\$r7)	
C8	addi \$r6, \$r6, 4	ld \$f3, VC(\$r6)	
C9			
C10			
C11	addi \$r7, \$r7, 4	st \$f3, VA (\$r7)	fadd \$f4, \$f4, \$f3
C12			
C13	blt \$r7, \$r8, FOR		
C14	(br delay slot)		
C15			

Exe VLIW: performanc

FOR: Id \$f2, VB(\$r6)
fadd \$f3, \$f2, \$f6
st \$f3, VA(\$r7)
Id \$f3, VC(\$r6)
st \$f3, VC(\$r7)
fadd \$f4,\$f4,\$f3
addi \$r6, \$r6, 4
addi \$r7, \$r7, 4
blt \$r7, \$r8, FOR

FPops/cycle=

•	Integer ALU(1/2 b)	Memory Unit(3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			fadd \$f3, \$f2, \$f6
C5			
C6			
C7		st \$f3, VA(\$r7)	
C8	addi \$r6, \$r6, 4	ld \$f3, VC(\$r6)	
C9			
C10			
C11	addi \$r7, \$r7, 4	st \$f3, VA(\$r7)	fadd \$f4, \$f4, \$f3
C12			
C13	blt \$r7, \$r8, FOR		
C14	(br delay slot)		
C15			

Exe VLIW: performanc

FOR: Id \$f2, VB(\$r6)
fadd \$f3, \$f2, \$f6
st \$f3, VA(\$r7)
Id \$f3, VC(\$r6)
st \$f3, VC(\$r7)
fadd \$f4,\$f4,\$f3
addi \$r6, \$r6, 4
addi \$r7, \$r7, 4
blt \$r7, \$r8, FOR

FPops/cycle=

=2 fadds / 14 cycles =

= 0.143

	Integer ALU(1/2 b)	Memory Unit (3cc)	FPU(3cc)
C1		ld \$f2, VB(\$r6)	
C2			
C3			
C4			fadd \$f3, \$f2, \$f6
C5			
C6			
C7		st \$f3, VA(\$r7)	
C8	addi \$r6, \$r6, 4	ld \$f3, VC(\$r6)	
C9			
C10			
C11	addi \$r7, \$r7, 4	st \$f3, VA(\$r7)	fadd \$f4, \$f4 , \$f3
C12			
C13	blt \$r7, \$r8, FOR		
C14	(br delay slot)		
C15			
	C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14	C1 C2 C3 C4 C5 C6 C7 C8 addi \$r6, \$r6, 4 C9 C10 C11 addi \$r7, \$r7, 4 C12 C13 blt \$r7, \$r8, FOR C14 (br delay slot)	C1

Recall: Instruction Level Parallelism

Two strategies to support ILP:

• Dynamic Scheduling: Depend on the hardware to locate parallelism

Static Scheduling: Rely on software for identifying potential parallelism

Hardware intensive approaches dominate desktop and server markets

Recall: Key Idea: dynamic scheduling

Problem:

data dependences that cannot be hidden with bypassing or forwarding cause hardware stalls of the pipeline

Solution: allow instructions behind a stall to proceed

HW rearranges the instruction execution to reduce stalls

Enables out-of-order execution and completion (commit)

Out-of order execution introduces possibility of WAR, WAW data hazards.

First implemented in CDC6600 (1963)

Exe Scoreboard

Parallel operation in the control data 6600

Recall: the Scoreboard pipeline

ISSUE	READ OPERAND	EXE COMPLETE	WB
Decode instruction;	Read operands;	Operate on operands;	Finish exec;
Structural FUs check; WAW checks	RAW check; WAR if need to read	Notify Scoreboard on completion;	WAR &Struct check (FUs will hold results); Can overlap issue/read&write 4 Structural Hazard;

Exe Scoreboard: the Code

I1: LD F6 32+ R2

I2: ADDD F2 F6 F4

I3: MULTD F0 F4 F2

I4: SUBD F12 F2 F6

I5: ADDD F0 F12 F2

I1: LD F6 32+ R2

I2: ADDD F2 F6 F4

I3: MULTD F0 F4 F2

I4: SUBD F12 F2 F6

I5: ADDD F0 F12 F2

RAW F6 I1-I2

```
I1: LD F6 32+ R2
```

I2: ADDD F2 F6 F4

I3: MULTD F0 F4 F2

I4: SUBD F12 F2 F6

I5: ADDD F0 F12 F2

I1: LD F6 32+ R2

I2: ADDD F2 F6 F4

I3: MULTD F0 F4 F2

I4: SUBD F12 F2 F6

I5: ADDD F0 F12 F2

RAW F6 I1-I2

I1: LD F6 32+ R2

12: ADDD F2 F6 F4

I3: MULTD F0 F4 F2

I4: SUBD F12 F2 F6

I5: ADDD F0 F12 F2

RAW F6 I1-I2

RAW F6 I1-I4

RAW F2 I2-I3

I1: LD(F6)32+ R2

12: ADDD F2 F6 F4

I3: MULTD F0 F4 F2

I4: SUBD F12 F2 F6

I5: ADDD F0 F12 F2

RAW F6 I1-I2

RAW F6 I1-I4

RAW F2 I2-I3

RAW F2 I2-I4

I1: LD F6 32+ R2

I2: ADDD **F2** F6 F4

I3: MULTD F0 F4 F2

I4: SUBD F12 F2 F6

I5: ADDD F0 F12 F2

RAW F6 I1-I2

RAW **F6** I1-I4

RAW F2 I2-I3

RAW F2 I2-I4

RAW F2 I2-I5

I1: LD F6 32+ R2

12: ADDD **F2**F6 F4

I3: MULTD F0 F4 F2

I4: SUBD F12 F2 F6

I5: ADDD F0 F12 F2

RAW F6 I1-I2

RAW F6 I1-I4

RAW F2 I2-I3

RAW F2 I2-I4

RAW F2 I2-I5

RAW F12 I4-I5

I1: LD(F6)32+ R2

12: ADDD **F2**F6 F4

I3: MULTO F0 F4 F2

I4: SUBD (F12) F2 F6

I5: ADDD F0 F12 F2

RAW F6 I1-I2

RAW F6 I1-I4

RAW F2 I2-I3

RAW F2 I2-I4

RAW F2 I2-I5

RAW F12 I4-I5

WAW FO 13-15

Exe 1.2 Scoreboard: exists a configuration?

	Issue	Read Op	Exec Co.	Write R.
I1: LD F6 32+ R2	1	2	7	8
12: ADDD F2 F6 F4	2	9	11	12
13: MULTD F0 F4 F2	4	13	43	44
I4: SUBD F12 F2 F6	3	9	11	12
I5: ADDD F0 F12 F2	13	17	19	20

- Is there a "configuration" that can respect the shown execution?
- How many units? Which kind? What latency?

Exe 1.2 Scoreboard: exists a configuration?

	Issue	Read Op	Exec Co.	Write R.
I1: LD F6 32+ R2	1	2	7	8
12: ADDD F2 F6 F4	2	9	11	12
13: <u>MULTD</u> F0 F4 F2	4	13	43	44
14 01100 540 50 50				10
I4: SUBD F12 F2 F6	3	9	11	12
I5: ADDD F0 F12 F2	13	17	19	20

- Is there a "configuration" that can respect the shown execution?
- How many units? Which kind? What latency?

Exe 1.2 Scoreboard: exists a configuration?

	Issue	Read Op	Exec Co.	Write R.
I1: LD F6 32+ R2	1	2	7	8
12: ADDD F2 F6 F4	2	9	11	12
13: MULTD F0 F4 F2	4	13	43	44
I4: SUBD F12 F2 F6	3	9	11	12
IE ADDD 50 510 50	10	47	10	20
I5: ADDD F0 F12 F2	13	17	19	20

- Is there a "configuration" that can respect the shown execution?
- How many units? Which kind? What latency?

Exe 1.2 Scoreboard: exists a configuration?

	Issu	е	Read Op	Exe	c Co.	Write R.	
I1: LD F6 32+ R2	1		2	7		8	
12: ADDD F2 F6 F4	2		9	11		12	
I3: MULTD F0 F4 F2	4		13	43		44	
I4: SUBD F12 F2 F6	3		9	11		12	
I5: ADDD F0 F12 F2	13		17	19		20	
	V			V			

- Is there a "configuration" that can respect the shown execution?
- How many units? Which kind? What latency?

Exe 1.2 Scoreboard: exists a configuration?

	Issue		Read Op	Exec Co.		Write R.	
I1: LD F6 32+ R2	1		2	7		8	
12: ADDD F2 F6 F4	2		9	11		12	
I3: <u>MULTD</u> F0 F4 F2	4		13	43		44	
I4: SUBD F12 F2 F6	3		9	11		12	
I5: ADDD F0 F12 F2	13		17	19		20	
	V			V			

- Is there a "configuration" that can respect the shown execution?
- How many units? Which kind? What latency?

Exe 1.2 Scoreboard: exists a configuration?

	Issu	e Read Op	Exec Co.	Write R.
I1: LD F6 32+ R2	1	2	7	8
I2: <u>ADDD</u> F2 F6 F4	2	9	11	12
I3: <u>MULTD</u> F0 F4 F2	4	13	43	44
I4: SUBD F12 F2 F6	3	9	11	12
I5: ADDD F0 F12 F2	13	17	19	20
	V			

- Is there a "configuration" that can respect the shown execution?
- How many units? Which kind? What latency?

Exe 1.2 Scoreboard: exists a configuration?

	Issu	е	Read Op	Exec	Co.	Write	e R.
	Λ						
I1: LD F6 32+ R2	1		2	7		8	
I2: ADDD F2 F6 F4	2		9	11		12	
I3: MULTD F0 F4 F2	4		13	43		44	
I4: SUBD F12 F2 F6	3		9	11		12	
I5: ADDD F0 F12 F2	13		17	19		20	
	V			V		V	

- Is there a "configuration" that can respect the shown execution?
- How many units? Which kind? What latency?

Exe 1.2 Scoreboard: ■ a configuration?

	Issue	Read Op	FAC Co	. Write R.
I1: LD F6 32+ R2	1	2	7	8
12: ADDD F2 F6 F4	2	9	11	12
I3: <u>MULTD</u> F0 F4 F2	4	13	43	44
I4: SUBD F12 F2 F6	3	9	11	12
I5: <u>ADDD</u> F0 F12 F2	13	17	19	20
			V	

- Is there a **■**configuration**■** that can respect the shown execution?
- How many units? Which kind? What latency?

	Instruction	ISSUE	READ OPERAND	EXE COMPLETE	WB	Hazards	Unit
I1	LD F6 32+ R2						
12	ADDD F2 F6 F4						
13	MULTD F0 F4 F2						
14	SUBD F12 F2 F6						
15	ADDD F0 F12 F2						

If the previous table was not correct, please, write the right one and specify the number, kind and latency for each unit.

	Instruction	ISSUE	READ OPERAND	EXE COMPLETE	WB	Hazards	Unit
I1	LD F6 32+ R2						
12	ADDD F2 F6 F4						
13	MULTD F0 F4 F2						
14	SUBD F12 F2 F6						
15	ADDD F0 F12 F2						

If the previous table was not correct, please, write the right one and specify the number,

kind and latency for each unit.

4 FPALU 3 cc latency, <u>single write</u> port for the pool 1 MEM 2 cc latency RAW F6 I1-I4 RAW F2 I2-I3 RAW F2 I2-I4 RAW F2 I2-I5 RAW F12 I4-I5 WAW F0 I3-I5

	Instruction	ISSUE	READ OPERAND	EXE COMPLETE	WB	Hazards	Unit
I1	LD F6 32+ R2	1					MU
12	ADDD F2 F6 F4						
13	MULTD F0 F4 F2						
14	SUBD F12 F2 F6						
15	ADDD F0 F12 F2						

If the previous table was not correct, please, write the right one and specify the number,

kind and latency for each unit.

4 FPALU 3 cc latency, <u>single write</u> port for the pool 1 MEM 2 cc latency RAW F6 I1-I4 RAW F2 I2-I3 RAW F2 I2-I4 RAW F2 I2-I5 RAW F12 I4-I5

WAW FO I3-I5

	Instruction	ISSUE	READ OPERAND	EXE COMPLETE	WB	Hazards	Unit
11	LD F6 32+ R2	1	2				MU
12	ADDD F2 F6 F4	2					FPU1
13	MULTD F0 F4 F2						
14	SUBD F12 F2 F6						
15	ADDD F0 F12 F2						

If the previous table was not correct, please, write the right one and specify the number,

kind and latency for each unit.

4 FPALU 3 cc latency, <u>single write</u> port for the pool 1 MEM 2 cc latency RAW F6 I1-I4 RAW F2 I2-I3 RAW F2 I2-I4 RAW F2 I2-I5 RAW F12 I4-I5 WAW F0 I3-I5

	Instruction	ISSUE	READ OPERAND	EXE COMPLETE	WB	Hazards	Unit
I1	LD F6 32+ R2	1	2				MU
12	ADDD F2 F6 F4	2				RAW F6	FPU1
13	MULTD F0 F4 F2	3					FPU2
14	SUBD F12 F2 F6						
15	ADDD F0 F12 F2						

If the previous table was not correct, please, write the right one and specify the number,

kind and latency for each unit.

4 FPALU 3 cc latency, <u>single write</u> port for the pool 1 MEM 2 cc latency RAW F0 H-14
RAW F2 I2-I3
RAW F2 I2-I4
RAW F2 I2-I5
RAW F12 I4-I5
WAW F0 I3-I5

	Instruction	ISSUE	READ OPERAND	EXE COMPLETE	WB	Hazards	Unit
I1	LD F6 32+ R2	1	2	4			MU
12	ADDD F2 F6 F4	2				RAW F6	FPU1
13	MULTD F0 F4 F2	3				RAW F2	FPU2
14	SUBD F12 F2 F6	4					FPU3
15	ADDD F0 F12 F2						

If the previous table was not correct, please, write the right one and specify the number, kind and latency for each unit.

RAW F6 I1-I2

4 FPALU 3 cc latency, <u>single write</u> port for the pool 1 MEM 2 cc latency RAW FO II-IZ RAW FC II I4 PAW F2 I2-I3 RAW F2 I2-I4 RAW F2 I2-I5 RAW F12 I4-I5 WAW F0 I3-I5

	Instruction	ISSUE	READ OPERAND	EXE COMPLETE	WB	Hazards	Unit
11	LD F6 32+ R2	1	2	4	5		MU
12	ADDD F2 F6 F4	2				RAW F6	FPU1
13	MULTD F0 F4 F2	3				RAW F2	FPU2
14	SUBD F12 F2 F6	4					FPU3
15	ADDD F0 F12 F2					WAW FO	

If the previous table was not correct, please, write the right one and specify the number,

kind and latency for each unit.

4 FPALU 3 cc latency, <u>single write</u> port for the pool 1 MEM 2 cc latency RAW F6 I1-I4 RAW F2 I2-I3 RAW F2 I2-I4 RAW F2 I2-I5 RAW F12 I4-I5

	Instruction	ISSUE	READ OPERAND	EXE COMPLETE	WB	Hazards	Unit
11	LD F6 32+ R2	1	2	4	5		MU
12	ADDD F2 F6 F4	2				RAW F6	FPU1
13	MULTD F0 F4 F2	3				RAW F2	FPU2
14	SUBD F12 F2 F6	4				RAW F2	FPU3
15	ADDD F0 F12 F2					WAW F0	

If the previous table was not correct, please, write the right one and specify the number, kind and latency for each unit.

RAW F6 I1-I2

4 FPALU 3 cc latency, <u>single write</u> port for the pool 1 MEM 2 cc latency RAW F6 I1-I4 RAW F2 I2-I3 RAW F2 I2-I4 RAW F2 I2-I5 RAW F12 I4-I5 WAW F0 I3-I5

Thanks for your attention

Davide Conficconi < davide.conficconi@polimi.it >

Acknowledgements

E. Del Sozzo, Marco D. Santambrogio, D. Sciuto Part of this material comes from:

- "Computer Organization and Design" and "Computer Architecture A Quantitative Approach" Patterson and Hennessy books
- "Digital Design and Computer Architecture" Harris and Harris
- «On the Role of Reconfigurable Systems in Domain-Specific Computing»
- Elsevier Inc. online materials
- Papers/news cited in this lecture

and are properties of their respective owners