Serie 9

1) Un cilindro con area di base pari a $6.5 cm^2$ e massa 265 g viene agganciato ad un dinamometro e in seguito immerso progressivamente in un liquido. La seguente tabella riporta il valore della forza esercitata dal dinamometro man mano che si immerge il cilindro nel liquido.

h(cm)	0,0	2,0	4,0	6,0	8,0	10,0	12,0
$V(cm^3)$							
Fd(N)	2,60	2,46	2,34	2,22	2,08	1,96	1,84
FArch(N)							

a) Completare la tabella e dalla tabella costruire un grafico spinta di Archimede in funzione del volume e dalla migliore retta tracciabile ricavare la pendenza.

- b) Dalla pendenza verificare che il liquido era acqua.
- c) Con i dati a disposizione è possibile ricavare la densità del materiale con il quale è fatto il cilindro?

- 2) Si aggancia ad un dinamometro un cilindro di alluminio. Il dinamometro segna $6,35\,N$. Si immerge completamente il cilindro in acqua e il dinamometro segna ora $4,00\,N$. Determinare la massa, il volume e la densità del cilindro di alluminio.
- 3) Un corpo galleggia in alcool ($\rho_{\text{alcool}} = 0.79 \frac{kg}{dm^3}$) e la parte emergente rappresenta il 12% del totale. Determinare la parte emergente del corpo se lo si lascia galleggiare sulla glicerina ($\rho_{\text{glicerina}} = 1.22 \frac{kg}{dm^3}$).
- 4) Un pallone da basket di diametro $24 \, cm$ galleggia sull'acqua. La parte immersa rappresenta il 10% del volume totale. Determinare la forza necessaria per immergerlo completamente in acqua.
- 5) Si appoggia un palloncino su una bilancia quando è completamente privo d'aria e la bilancia segna $4,48\,g$ (questa è la massa della gomma di cui è formato il palloncino). Lo si gonfia fino a che il suo volume diventa $V=4,8\,dm^3$ e lo si pone nuovamente sulla bilancia che segna $4,96\,g$. La densità dell'aria del locale in cui si trova la bilancia vale $\rho_0=1,15\,\frac{g}{dm^3}$. Determinare la massa dell'aria contenuta nel palloncino e la sua densità (che sarà evidentemente superiore a quella del locale in quanto un po' compressa).
- 6) Rifare l'esercizio (4) considerando pure la spinta di Archimede dovuta all'aria ($\rho = 1, 25 \frac{g}{dm^3}$).
- 7) Un cilindro di legno galleggia in acqua e la parte immersa rappresenta l' 88% del volume totale. Versando sull'acqua dell'olio in modo tale che copra completamente il cilindro di legno la parte del cilindro che rimane nell'acqua diventa solo i 1/3 del totale. Determinare la densità dell'olio.
- 8) Un corpo di volume $150\,cm^3$ galleggia in acqua e la parte emergente vale $35\,cm^3$. Un allievo appoggia sulla superficie emersa un cilindretto di alluminio ($\rho_{Al}=2,70\,\frac{kg}{dm^3}$) e il corpo si immerge maggiormente in acqua così che la parte emergente si riduce a $8,0\,cm^3$ (il cilindretto di alluminio non entra in acqua). Determinare:
 - a) la massa del cilindretto di alluminio appoggiato sul corpo.
 - b) quanto varrebbe la parte emersa del corpo se il cilindretto di alluminio fosse stato agganciato alla parte immersa del corpo (il cilindretto sarebbe così stato completamente immerso in acqua).