1 Auswertung

Zunächst sollte die Zeitkonstante λ durch die Beobachtung eines Auf- oder Entladevorganges des Kondensators bestimmt werden. Anschließend wurden Phasenunterschied ϕ und Amplitude $U_{\rm C}$ in Abhängigkeit der Frequenz ω aufgezeichnet, um die in ?? hergeleiteten Beziehungen zu untersuchen. Die Funktion des RC-Gliedes als Integrierer haben wir schlielich mit einigen Screenshots des Oszilloskopes veranschaulicht (siehe *009* bis *014*??).

1.1 Bestimmung der Zeitkonstante λ

Hierfür haben wir einen Entladevorgang des Kondensators betrachtet und mit Hilfe des Oszilloskopes zehn Messwerte der Spannung $U_{\rm C}$ zu verschiedenen Zeitpunkten t genommen.

* 004 *

Indem wir die Werte auf halblogarithmischem Papier einzeichnen, lässt sich λ leicht als Steigung der Ausgleichsgeraden durch die Werte berechnen. Tabelle ?? zeigt die Messdaten. Eine lineare Regression mit numpy ergibt eine Steigung von m= und ein Offset von b=. Abbildung ?? zeigt den entsprechenden Graphen. Der Funktionsgenerator lieferte hierbei eine rechteckförmige Spannung U_0 der Frequenz $\omega=55\,\mathrm{Hz}$.

* Tabelle zu Aufgabe 1 *

* Graph t UC *

Anmerkung: Die Messfehler waren zu klein, um sie händisch einzeichnen zu können.

Die Daten der Ausgleichsrechnung liefern für

$$R_{qes}C = (1.3476 \pm 0.0136) \,\mathrm{ms}$$

1.2 Frequenzabhängigkeit der Amplitude $U_{\rm C}$

Hier sollte der Zusammenhang ?? überprüft werden. Dafür haben wir im Versuchsaufbau ?? mit dem Millivoltmeter 17 Messwerte der Spannung $U_{\rm C}$ aufgenommen. Weil $U_{\rm C}$ im Bereich von einigen Hertz leicht schwankte, mitteln wir dort über fünf bzw. sechs Werte. Tabelle ?? zeigt die Messwerte.

* Tabelle zu Aufgabe 2 *

Im folgenden Graphen erkennt man gut, dass das RC-Glied bei großen Frequenzen ω sperrt.

* Graph zu Aufgabe 2 *

1.3 Frequenzabhängigkeit der Phasendifferenz ϕ

Nun untersuchen wir die Beziehung ?? aus Teil ??. Nachdem die Nulldurchgänge der Kondensatorspannung $U_{\rm C}$ und der Eingangsspannung U_0 angeglichen wurden, ließ sich die Phasendifferenz ϕ , wie in ?? beschrieben, bestimmen. Die Werte wurden mit dem Curser des digitalen Oszilloskopes aufgenommen.

Diese Messung wurde für Frequenzen von 1 Hz bis 1 kHz durchgeführt. Tabelle $\ref{thm:model}$ zeigt die Messdaten, sowie die resultierenden Werte für a und b.

Der Vergleich mit der Theoriekurve zeigt, dass die Vorhersage gut erfüllt wird.

1.4 RC-Glied als Integrierglied

Zuletzt haben wir eine Frequenz von $\omega = 10\,\mathrm{kHz}$ gewählt und damit $\omega \gg \frac{1}{RC}$ gewählt. Die folgenden Abbildungen zeigen das Eingangssignal U_0 und das Ausgangssignal U_{C} .

- * Abbildung A3.1 *
- * Abbildung A3.2 *
- * Abbildung A3.3 *
- * Abbildung A3.4 *

 $^{^*}$ Tabelle zu Aufgabe 3 *

 $^{^*}$ Graph zu Aufgabe 3 *