

Need another test...

- dN/dS can be too conservative for finding adaptive aminoacid changes
 - Many false negatives
- Neutral theory predicts that ratio of nonsynonymous to synonymous changes should be constant through time
 - Ratio observed among individuals within species should be equal to ratio observed between species

Why NS:S ratio constant through time???

- Neutral Theory Assumption: most non-deleterious nonsynonymous mutations are neutral
 - Non-deleterious (neutral) nonsynonymous mutations behave just like synonymous mutations
 - Arise at a relatively constant rate (assumption)
 - Fix with same probability as synonymous: 1/(2N)

McDonald-Kreitman test

- Proposed test of selection by seeing if NS:S ratio is constant within and between species
 - Contrasts "present" (within) with "historical" (between)
- Align sets of sequences and identify if variable nucleotide sites have:
 - Nonsynonymous differences within species
 - Synonymous differences within species
 - Nonsynonymous differences between species
 - Synonymous differences between species

CTG ACT TAT ACC CGT

CTT ACT TAT ACC CGT

CTG ACT TCT ACC CGT

ACT TCT ACA CGT

Species 2

Species 1

ATG ACC TCT ACC CGT

non-

syn

syn

Courtesy of M. Rausher

Courtesy of M. Rausher

syn

syn

McDonald-Kreitman test prediction

If all non-synonymous differences are neutral, expect A/C = B/D

If some non-synonymous differences between species were advantageous & selected, expect A/C > B/D

Examples (human-chimp):

nonsyn

syn

SENP1:

Enables cellular survival during periods of low oxygen, a target for cancer therapy

CIAS1:

Affects autoinflammatory response

		Among Humans
non- syn	4	1
syn	1	5

Between Human-Chimp	Among Humans
5	1
10	2

4:1 >> 1:

5:10 = 1:2

Examples (human-chimp):

AGT:

Mutations in it affect hypertension and associate with coronary heart disease

Between Among Human-Chimp Humans					
1	3				
13	1				

nonsyn

syn

 What does it mean if there's proportionately *more* nonsynonymous variable sites within species than between species?

1:13 << 3:1

Examples (human-chimp):

AGT:

Mutations in it affect hypertension and associate with coronary heart disease

associate with coronary heart disease					
Between Human-Chimp	Among Humans				
1	3				
13	1				

non-

syn

syn

- What does it mean if there's proportionately *more* nonsynonymous variable sites within species than between species?
 - What kind of variation may persist for a long time but never fix?

1:13 << 3:1

Variation that persists but doesn't fix...

- Hard to eliminate unfit recessive allele
 - Better dominant allele "never quite" gets to fixation
- Diseases tend to be recessive

 Mutations causing disease stick around but don't fix

McDonald-Kreitman test prediction

If all non-synonymous differences are neutral, expect A/C = B/D

If some non-synonymous differences between species were advantageous & selected, expect A/C > B/D

If maladaptive non-synonymous differences persist within species, expect A/C < B/D

McDonald-Kreitman Test

- If A/C = B/D
 - Can't reject neutrality

- If A/C > B/D
 - Increased nonsynonymous changes between species- "positive selection"

- If A/C < B/D
 - Decreased nonsynonymous changes between species-"negative selection"

McDonald-Kreitman tests

across human-chimp genomes

Positive selection (adaptive species difference)

 Negative selection (maladaptive variation)

McDonald-Kreitman tests across human-chimp genomes

- Positively selected genes (304):
 - Immunity protein genes, gamete formation genes, sensory perception genes

- Negatively selected genes (813):
 - Many involved in cytoskeleton formation: associated with diseases like muscular dystrophy, congenital deafness, cardiovascular disease

• arsD (controls arsenic resistance) 2112

```
Human1TCTCCTACAGGGCGTCTAGTTHuman2TCTCCTACAGGGCGTCTAGTTHuman3TCTCCTACTGGGCGTCTAATTHuman4TCTCCTACAGGGCGTCTAGTTHuman5TCTCCTACAGGGCGTCTAGTTChimp1TATCCTACAGGCCGTCTTGTT
```

Calculate & interpret McDonald-Kreitman test

• arsD (controls arsenic resistance) 2112

Human1	TСГ	CCT	ACA	GGG	CGT	CTA	GIT
Human2	ΙCΓ	CCT	ACA	GGG	CGT	CTA	GTT
Human3	ΤCΓ	CCT	ACT	GGG	CGT	CTA	A <mark>TT</mark>
Human4	ΙCΓ	CCT	ACT	GGG	CGT	CTA	GTT
Human5	ΙCΓ	CCT	ACA	GGG	CGT	CTA	GTT
Human6	ΊCΓ	CAT	ACA	GGG	CGT	CTA	GTT
Chimp1	ТАГ	CT	ACA	GGC	CGT	CTT	GTT

• arsD (controls arsenic resistance) 2112

Human1	ТСГ	C T	ACA	GGG	CGT	CTA	GIT
Human2	ΊCΓ	CCT	ACA	GGG	CGT	CTA	GTT
Human3	ICT	CCT	ACT	GGG	CGT	CTA	ATT
Human4	ΙCΓ	CCT	ACT	GGG	CGT	CTA	GTT
Human5	ICT	CCT	ACA	GGG	CGT	CTA	GTT
Human6	ТCГ	СAГ	ACA	GGG	CGT	CTA	GTT
Chimp1	ТАГ	CCT	ACA	GGC	CGT	CTT	GTT

NS between: 1

S between: 2

NS within: 2

S within: 1

Between Within

1:2 vs 2:1

• arsD (controls arsenic resistance) 2112

Human1	TCT	QCT	ACA	GGG	CGT	СТА	GIT
Human2	ТCГ	CCT	ACA	GGG	CGT	CTA	GTT
Human3	ТCГ	CCT	ACT	GGG	CGT	CTA	ATT
Human4	ТCГ	CCT	ACT	GGG	CGT	CTA	GTT
Human5	TCT	CCT	ACA	GGG	CGT	CTA	GTT
Human6	ТCГ	CAT	ACA	GGG	CGT	CTA	GTT
Chimp1	ТАГ	CCT	ACA	GGC	CGT	CTT	GTT

NS between: 1

S between: 2

NS within: 2

S within: 1

Between Within

1:2 vs 2:1

Result in direction of negative selection

Recap: McDonald Kreitman Test

- If A/C = B/D
 - Can't reject neutrality

	Between Species	Within Species			
non- syn	Α	В			
syn	С	D			

- If A/C > B/D
 - Increased nonsynonymous changes between species- "positive selection"

- If A/C < B/D
 - Decreased nonsynonymous changes between species-"negative selection"

Other metrics

dN/dS and McDonald-Kreitman are just two approaches

- Many others also exist (we won't use in class)
 - Tajima's D: looks at frequencies of alleles to test for recent selection or recent changes in population size

Implementing these tests

- Two general approaches for studying
 - 1. Scan whole genome using these metrics and look for possible selection, then try to interpret
 - 2. Look at "candidate genes" (e.g., brain size, speech) and look for signature of selection
- Both are active areas of research
 - Both have given us some clues as to what changes were "important" in our divergence

What makes humans special?

- These DNA sequence-based tests showed:
 - Hundreds of genes underwent selection to change
 - More genes under selection to stay the same (our sequence same as chimpanzee)
 - Some "bad" alleles are sticking around
 - No single gene change made us what we are today, but we're not so different from chimpanzees (genetically) as we might like to think we are...

Image Credits, Unit 15-3

 Selection map, © 2005 Reprinted by permission from Macmillan Publishers Ltd: Nature, Bustamente, C. D. et al. (2005). "Natural selection on protein-coding genes in the human genome." Nature 437, 1153-1157, all rights reserved