Cosmic Inflation

A. Expansion of Universe

Question A.1

Answer	Marks
For any test mass m on the boundary of the sphere,	0.2
$m\ddot{R}(t) = -GmM_s/R^2(t) \tag{A.1.1}$	
where M_s is mass portion inside the sphere	
Multiplying equation (A.1.1) with \dot{R} and integrating it gives $\int \dot{R} \frac{d\dot{R}}{dt} \ dt = \frac{1}{2} \ \dot{R}^2 = \frac{GM_S}{R} + A$	0.6
where A is a integration constant	
Taking $M_s = \frac{4}{3}\pi R^3(t)\rho(t)$, and $\dot{R} = \dot{a}R_s$	0.2
$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \rho(t) + \frac{2A}{R_s^2 a^2(t)}$	0.2
Therefore, we have $A_1 = \frac{8\pi G}{3}$	0.1
Total	1.3

Answer Marks

The $2^{\rm nd}$ Friedmann equation can be obtained from the $1^{\rm st}$ law of thermodynamics : $dE = -pdV + dQ.$	0.1
For adiabatic processes $dE+pdV=0$ and its time derivative is $\dot{E}+p\dot{V}=0$.	0.1
For the sphere $\dot{V} = V (3 \dot{a}/a)$	0.1
Its total energy is $E = \rho(t)V(t) c^2$	0.2
Therefore $\dot{E} = \left(\dot{\rho} + 3\frac{\dot{a}}{a}\right)Vc^2$	0.1
It yields $\dot{\rho} + 3 \left(\rho + \frac{p}{c^2} \right) \frac{\dot{a}}{a} = 0$	0.2
Therefore, we have $A_2 = 3$.	0.1
Total	0.9

Solutions/ Marking Scheme

T3

Answer	Marks
Interpreting $\rho(t)c^2$ as total energy density, and substituting $\frac{p(t)}{c^2}=w\;\rho(t)$ in to the 2 nd Friedmann equation yields:	0.1
$\dot{\rho} + 3 \rho(1+w)\frac{\dot{a}}{a} = 0$	
$\rho \propto a^{-3(w+1)}$	0.2
(i) In case of radiation, photon as example, the energy is given by $E_r=hv=hc/\lambda$ then its energy density $\rho_r=\frac{E_r}{v}\propto a^{-4}$ so that $w_r=\frac{1}{3}$	0.3
(ii) In case of nonrelativistic matter, its energy density nearly $\rho_m \simeq \frac{m_0 c^2}{v} \propto a^{-3}$ since dominant energy comes from its rest energy $m_0 c^2$, so that $w_m=0$	0.3
(iii) For a constant energy density, let say $\epsilon_\Lambda=$ constant, $\epsilon_\Lambda \propto a^0$ so that $w_\Lambda=-1.$	0.3
Total	1.2

Answer	Marks
(i) In case of $k=0$, for radiation we have $\rho_r a^4=$ constant. So by comparing the parameters values with their present value, $\rho_r(t)a^4(t)=\rho_{r0}a_0^4$,	0.2
$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \; ho_{T0} \left(\frac{a_0}{a}\right)^4.$	
$\int a da = \frac{1}{2}a^2 + K = \left(\frac{8\pi G}{3} \rho_{r0} a_0^4\right)^{\frac{1}{2}} t.$	
Because $a(t=0) = 0, K = 0$, then	0.2
$a(t) = (2)^{\frac{1}{2}} \left(\frac{8\pi G}{3} \rho_{r0} a_0^4\right)^{\frac{1}{4}} t^{\frac{1}{2}} = (2H_0)^{\frac{1}{2}} t^{\frac{1}{2}}.$	
where $H_0 = \left(\frac{8\pi G}{3}\; \rho_{r0}\right)^{\frac{1}{2}}$ after taking $a_0 = 1$.	
(ii) for non-relativistic matter domination, using $ ho_m(t)a^3(t)= ho_{m0}a_0^3$, and similar way we will get	0.4
$a(t) = \left(\frac{3}{2}\right)^{\frac{2}{3}} \left(\frac{8 \pi G}{3} \rho_{m0} a_0^4\right)^{\frac{1}{3}} t^{\frac{2}{3}} = \left(\frac{3H_0}{2}\right)^{\frac{2}{3}} t^{\frac{2}{3}}.$	
where $H_0=\left(\frac{8\pi G}{3}\;\rho_{m0}\right)^{\frac{1}{2}}$	
(iii) for constant energy density,	0.4
$\ln a = H_0 t + K'$	0
Where K' is integration constant and $H_0=\left(rac{8\pi G}{3}\; ho_\Lambda ight)^{rac{1}{2}}$. Taking condition $a_0=$	
1,	
$\ln\left(\frac{a}{a_0}\right) = H_0(t - t_0)$	
$a(t) = e^{H_0(t-t_0)}$	
Total	1.2

Solutions/ Marking Scheme

T3

Question A.5

Answer	Marks
Condition for critical energy condition:	0.1
$\rho_c(t) = \frac{3H^2}{8\pi G}$	
Friedmann equation can be written as	
$H^{2}(t) = H^{2}(t)\Omega(t) - \frac{kc^{2}}{R_{0}^{2}a^{2}(t)}$	
$\left(\frac{R_0^2}{c^2}\right)a^2H^2(\Omega-1) = k \tag{A.5.1}$	
Total	0.1

Answer	Marks
Because $\left(\frac{R_0^2}{c^2}\right)a^2H^2>0$, then $k=+1$ corresponds to $\Omega>1$, $k=-1$ corresponds to $\Omega<1$ and $k=0$ corresponds to $\Omega=1$	0.3
Total	0.3

T3

B. Motivation To Introduce Inflation Phase and Its General Conditions Question B.1

Answer	Marks
Equation (A.5.1) shows that	0.1
$(\Omega - 1) = \frac{kc^2}{R_0^2} \frac{1}{\dot{a}^2}.$	
In a universe dominated by non-relativistic matter or radiation, scale factor can	0.2
be written as a function of time as $a=a_0\left(\frac{t}{t_0}\right)^p$ where $p<1$ ($p=\frac{1}{2}$ for	
radiation and $p=rac{2}{3}$ for non-relativistic matter)	
$(\Omega - 1) = \tilde{k} t^{2(1-p)}$	0.2
Total	0.5

Answer	Marks
For a period dominated by constant energy provides the solution $a(t)=e^{Ht}$ so that $\dot{a}=He^{Ht}$	0.1
$(\Omega - 1) = \frac{k}{H^2} t^{-2Ht}$	0.2
Total	0.3

Question B.3

Answer	Marks
Inflation period can be generated by constant energy period, therefore it is a phase where $w=-1$ so that $p=w\rho c^2=-\rho c^2$ (negative pressure).	0.2
Differentiating Friedmann equation leads to $\dot{a}^2 = \frac{8\pi G}{3} \ \rho a^2 - \frac{kc^2}{R_0^2}$ $2\dot{a}\ddot{a} = \frac{8\pi G}{3} \ (\dot{\rho}a^2 + 2\rho a \ \dot{a}) = \frac{8\pi G}{3} \ (-3 \ \left(\rho + \frac{p}{c^2}\right) a \dot{a} + 2\rho a \dot{a}).$ $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \ (\rho + \frac{3p}{c^2})$	0.4
So that because during inflation $p = -\rho c^2$, it is equivalent with condition $\ddot{a} > 0$ (accelerated expansion)	0.1
As a result, $\ddot{a}=d(\dot{a})/dt=d(Ha)/dt>0$ or $d(Ha)^{-1}/dt<0$ (shrinking Hubble radius).	0.2
Total	0.9

Answer	Marks
Inflation condition can be written as $\frac{d(aH)^{-1}}{dt}$ < 0, with $H = \dot{a}/a$ as such	0.2
$d(aH)^{-1} - \dot{a}H + a\dot{H} - \dot{a}(1-\epsilon) < 0 \rightarrow \epsilon < 1$	
at (aH) ² a	
Total	0.2

T3

C. Inflation Generated by Homogenously Distributed Matter

Answer	Marks
Differentiating equations (4) and employing equation 4 we can get	0.3
$2H\dot{H} = \frac{1}{3M_{pl}^2} \left[\dot{\phi} \ddot{\phi} + \left(\frac{\partial V}{\partial \phi} \right) \dot{\phi} \right] = \frac{1}{3M_{pl}^2} \left[-3H \dot{\phi}^2 \right]$	
$\dot{H} = -\frac{1}{2} \frac{\dot{\phi}^2}{M_{pl}^2}$	
Therefore $\epsilon = \frac{1}{2} \frac{\dot{\phi}^2}{M_{pl}^2 H^2}$	0.1
The inflation can occur when the potential energy dominates the particle's energy $(\dot{\phi}^2 \ll V)$ such that $H^2 \approx V/(3M_{pl}^2)$.	0.2
Slow-roll approximation: $3H\dot{\phi} \approx -V'$	0.1
Implies	0.3
$\epsilon \approx \frac{M_{pl}^2}{2} \left(\frac{V'}{V}\right)^2 \tag{C.1.1}$	
we also have	0.4
$3\dot{H}\dot{\phi} + 3H\ddot{\phi} = -V''\dot{\phi}$	
$\delta = -\frac{\ddot{\phi}}{H\dot{\phi}} = \frac{V''}{3H^2} - \epsilon$	
Therefore	
$\eta_V \approx M_{Pl}^2 \frac{v^{\prime\prime}}{v} \tag{C.1.2}$	
$dN = H dt = \left(\frac{H}{\dot{\phi}}\right) d\phi \approx -\frac{1}{M_{pl}^2} (V/V') d\phi \qquad (C.1.3)$	0.3
$\frac{dN}{d\phi} \approx -\frac{1}{M_{pl}^2} (V/V')$	
Total	1.7

T3

D. Inflation with A Simple Potential

Question D.1

Answer	Marks	
Inflation ends at $\epsilon=1$. Using $V(\phi)=\Lambda^4ig(\phi/M_{pl}ig)^n$ yields	0.5	
$\epsilon = \frac{M_{pl}^2}{2} \left[\frac{n}{\phi_{\text{end}}} \right]^2 = 1 \implies \phi_{end} = \frac{n}{\sqrt{2}} M_{pl}$		
Total	0.5	

Answer	Marks
From equations (C.1.1), (C.1.2) and (C.1.3) we can obtain	0.2
$N = -\left[\frac{\phi}{M_{pl}}\right]^2 \frac{1}{2n} + \beta$	
where β is a integration constant. As $N=0$ at ϕ_{end} then $\beta=\frac{n}{4}$.	
$N = -\left[\frac{\phi}{M_{pl}}\right]^2 \frac{1}{2n} + \frac{n}{4}$	
$\eta_V = n(n-1)\left[\frac{M_{pl}}{\phi}\right]^2 = \frac{2(n-1)}{n-4N}$	0.2
$\varepsilon = \frac{n^2}{2} \left[\frac{M_{pl}}{\phi} \right]^2 = \frac{n}{n - 4N}$	0.2
so that	0.1
$r = 16\varepsilon = \frac{16n}{n - 4N}$	

$n_s = 1 + 2\eta_V - 6\epsilon = 1 - \frac{2(n+2)}{(n-4N)}$	0.1
To obtain the observational constraint $n_s=0.968$ we need $n=-5.93$ which is inconsistent with the condition $r<0.12$. There is <u>no a closest integer</u> n that can obtains $r<0.12$. As example, for $n=-6$ leads a contradiction $0<(-0.27)$ and for $n=-5$ leads a contradiction $0<(-0.2)$.	0.1
Total	0.9