BOTTOM, STRANGE MESONS $(B = \pm 1, S = \mp 1)$

 $B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s}\,b, \quad \text{similarly for } B_s^*\text{'s}$

 B_s^0

$$I(J^P) = 0(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B_s^0}=5366.89\pm0.19$$
 MeV $m_{B_s^0}-m_B=87.42\pm0.19$ MeV Mean life $\tau=(1.505\pm0.005)\times10^{-12}$ s $c\tau=451.2~\mu\mathrm{m}$ $\Delta\Gamma_{B_s^0}=\Gamma_{B_{sL}^0}-\Gamma_{B_{sH}^0}=(0.086\pm0.006)\times10^{12}~\mathrm{s}^{-1}$

$B_s^0 - \overline{B}_s^0$ mixing parameters

$$\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0} = (17.757 \pm 0.021) \times 10^{12} \ \hbar \ {\rm s}^{-1}$$

$$= (1.1688 \pm 0.0014) \times 10^{-8} \ {\rm MeV}$$
 $x_s = \Delta m_{B_s^0} / \Gamma_{B_s^0} = 26.72 \pm 0.09$
 $\chi_s = 0.499304 \pm 0.000005$

CP violation parameters in B_s^0

$$\begin{array}{l} \operatorname{Re}(\epsilon_{B_s^0}) \ / \ (1 + \left| \epsilon_{B_s^0} \right|^2) = (-0.15 \pm 0.70) \times 10^{-3} \\ C_{KK}(B_s^0 \to K^+ K^-) = 0.14 \pm 0.11 \\ S_{KK}(B_s^0 \to K^+ K^-) = 0.30 \pm 0.13 \\ \gamma = (65 \pm 7)^\circ \\ \delta_B(B_s^0 \to D_s^\pm K^\mp) = (3 \pm 20)^\circ \\ r_B(B_s^0 \to D_s^\mp K^\pm) = 0.53 \pm 0.17 \\ CP \ \text{Violation phase} \ \beta_s = (1.5 \pm 1.6) \times 10^{-2} \ \text{rad} \\ \left| \lambda \right| \ (B_s^0 \to J/\psi(1S)\phi) = 0.964 \pm 0.020 \\ \left| \lambda \right| = 1.03_{-0.04}^{+0.05} \\ A, \ CP \ \text{violation parameter} = 0.5_{-0.7}^{+0.8} \\ C, \ CP \ \text{violation parameter} = -0.3 \pm 0.4 \\ S, \ CP \ \text{violation parameter} = -0.1 \pm 0.4 \\ A_{CP}^L(B_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.06 \\ A_{CP}^{\parallel}(B_s \to J/\psi \overline{K}^*(892)^0) = 0.17 \pm 0.15 \\ A_{CP}^{\perp}(B_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.10 \\ A_{CP}(B_s \to \pi^+ K^-) = 0.26 \pm 0.04 \\ \end{array}$$

$$A_{CP}(B_s^0 \to [K^+ K^-]_D \overline{K}^* (892)^0) = -0.04 \pm 0.07$$

 $A_{CP}(B_s^0 \to [\pi^+ K^-]_D K^* (892)^0) = -0.01 \pm 0.04$
 $A_{CP}(B_s^0 \to [\pi^+ \pi^-]_D K^* (892)^0) = 0.06 \pm 0.13$
 $A^{\Delta}(B_s \to \phi \gamma) = -1.0 \pm 0.5$
 $\Delta a_{\perp} < 1.2 \times 10^{-12} \text{ GeV}, \text{ CL} = 95\%$
 $\Delta a_{\parallel} = (-0.9 \pm 1.5) \times 10^{-14} \text{ GeV}$
 $\Delta a_{\chi} = (1.0 \pm 2.2) \times 10^{-14} \text{ GeV}$
 $\Delta a_{\gamma} = (-3.8 \pm 2.2) \times 10^{-14} \text{ GeV}$
 $Re(\xi) = -0.022 \pm 0.033$
 $Im(\xi) = 0.004 \pm 0.011$

These branching fractions all scale with $B(\overline{b} \to B_s^0)$.

The branching fraction B($B_s^0 \to D_s^- \ell^+ \nu_\ell$ anything) is not a pure measurement since the measured product branching fraction B($\overline{b} \to B_s^0$) \times B($B_s^0 \to D_s^- \ell^+ \nu_\ell$ anything) was used to determine B($\overline{b} \to B_s^0$), as described in the note on " $B^0 - \overline{B}{}^0$ Mixing"

For inclusive branching fractions, e.g., $B\to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B_s^0 DECAY MODES	Fraction	(Γ_i/Γ)	Scale factor/ Confidence level	•
D_s^- anything	(93	±25)%		_
$\ell \nu_{\ell} X$	(9.6	\pm 0.8) %		_
$e^+ u X^-$	(9.1	\pm 0.8) %		_
$\mu^+ \nu X^-$	(10.2	\pm 1.0) %		_
$D_{s}^{-}\ell^{+} u_{\ell}$ anything	[a] (8.1	\pm 1.3) %		_
$D_s^{*-}\ell^+ u_\ell$ anything	(5.4	\pm 1.1) %		_
$D_{s1}(2536)^- \mu^+ \nu_{\mu}$,	(2.6	\pm 0.7) \times	10-3	_
$D_{s1}^- \rightarrow D^{*-}K_s^0$				
$D_{s1}(2536)^- X \mu^+ \nu$,	(4.4	\pm 1.3) $ imes$	10^{-3}	_
$D_{s1}^- ightarrow \ \overline{D}{}^0 K^+$				
$D_{s2}(2573)^{-} X \mu^{+} \nu$,	(2.7	\pm 1.0) \times	10 ⁻³	_
$D_{s2}^- ightarrow \; \overline{D}{}^0 K^+$				
$D_s^- \pi^+$	(3.00	0.23) ×	10 ⁻³	2320
$D_s^- \rho^+$	(6.9	\pm 1.4) $ imes$	10 ⁻³	2249
$D_{s}^{-}\pi^{+}\pi^{+}\pi^{-}$	(6.1	\pm 1.0) $ imes$	10 ⁻³	2301
$D_{s1}(2536)^-\pi^+$,	(2.5	\pm 0.8) $ imes$	10 ⁻⁵	_
$D_{s1}^{-} \to D_{s}^{-} \pi^{+} \pi^{-}$				
$D_{\varepsilon}^{\mp}K^{\pm}$	(2.2	7± 0.19) ×	10^{-4}	2293
$D_{c}^{3}K^{+}\pi^{+}\pi^{-}$	(3.2	± 0.6)×	10-4	2249
5	`	,		

HTTP://PDG.LBL.GOV

Page 2

$D_s^+ D_s^-$	$(4.4 \pm 0.5) \times 10^{-3}$		1824
$D_s^- D^+$	$(2.8 \pm 0.5) \times 10^{-4}$		1875
D^+D^-	$(2.2 \pm 0.6) \times 10^{-4}$		1925
$D^0 \overline{D}{}^0$	$(1.9 \pm 0.5) \times 10^{-4}$		1930
$D_s^{*-}\pi^+$	$(2.0 \pm 0.5) \times 10^{-3}$		2265
$D_s^{*\mp}K^{\pm}$	$(1.33\pm\ 0.35)\times10^{-4}$		_
$D_s^{3-}\rho^+$	$(9.6 \pm 2.1) \times 10^{-3}$		2191
$D_{s}^{*+}D_{s}^{-} + D_{s}^{*-}D_{s}^{+}$	(1.37± 0.16) %		1742
$D_{s}^{*+}D_{s}^{*-}$	(1.43± 0.19) %	S=1.1	1655
$D_{s}^{*+}D_{s}^{*-}$ $D_{s}^{(*)+}D_{s}^{(*)-}$ $\overline{D}_{0}^{*}\overline{K}_{0}^{(*)}$	(4.5 ± 1.4) %		_
$\frac{S}{D} * 0 \frac{S}{K} 0$	$(2.8 \pm 1.1) \times 10^{-4}$		2278
$\overline{D}^0 \overline{K}^0$	$(4.3 \pm 0.9) \times 10^{-4}$		2330
$\overline{D}^0 K^- \pi^+$	$(1.04\pm 0.13) \times 10^{-3}$		2312
$\overline{D}^0 \overline{K}^* (892)^0$	$(4.4 \pm 0.6) \times 10^{-4}$		2264
$\overline{D}^{0} \overline{K}^{*} (1410)$	$(3.9 \pm 3.5) \times 10^{-4}$		2114
$\overline{D}^{0} \overline{K}_{0}^{*}(1430)$	$(3.0 \pm 0.7) \times 10^{-4}$		2113
$\overline{D}^0 \overline{K}_2^*(1430)$	$(1.1 \pm 0.4) \times 10^{-4}$		2113
$\frac{D^0}{K^*}(1680)$		CL=90%	1997
$\frac{D}{D^0}\frac{K}{K_0^*}(1950)$	$< 1.1 \times 10^{-4}$		1890
$\frac{D^0}{\overline{K}_3^*}(1780)$	$< 2.6 \times 10^{-5}$		1971
$\overline{D}^0 \overline{K}_4^* (2045)$	$< 3.1 \times 10^{-5}$		1837
$\overline{D}^0 K^- \pi^+$ (non-	$(2.1 \pm 0.8) \times 10^{-4}$	CL—90/0	2312
resonant)	$(2.1 \pm 0.8) \times 10$		2312
$D_{52}^*(2573)^-\pi^+$,	(2.6 \pm 0.4) \times 10 ⁻⁴		_
$D_{s2}^* \stackrel{\longrightarrow}{\longrightarrow} \overline{D}{}^0 K^-$	(2.0 ± 0.1) × 10		
$D_{s2}^* \to D^* R$ $D_{s1}^* (2700)^- \pi^+,$	$(16 \pm 0.9) \times 10^{-5}$		_
$D_{s1}^*(2700) \stackrel{\pi}{\sim} ,$ $D_{s1}^* \rightarrow \overline{D}{}^0 K^-$	$(1.6 \pm 0.8) \times 10^{-5}$		
	(5		
$D_{s1}^*(2860)^-\pi^+$	$(5 \pm 4) \times 10^{-5}$		_
$D_{s1}^* \rightarrow \overline{D}{}^0 K^-$	-		
$D_{s3}^*(2860)^- \frac{\pi^+}{2}$	$(2.2 \pm 0.6) \times 10^{-5}$		_
$D_{s3}^* ightarrow \overline{D}{}^0 K^-$			
$\overline{D}{}^{0}K^{+}K^{-}$	$(4.4 \pm 2.0) \times 10^{-5}$		2243
$\overline{D}^{0} f_{0}(980)$	$< 3.1 \times 10^{-6}$	CL=90%	2242
$\overline{D}{}^0 \phi$ $D^{*\mp} \pi^{\pm}$	$(3.0 \pm 0.8) \times 10^{-5}$		2235
	$< 6.1 \times 10^{-6}$	CL=90%	_
$J/\psi(1S)\phi$	$(1.08\pm\ 0.08)\times10^{-3}$		1588
$J/\psi(1S)\phi\phi$	$(1.25^{+}_{-}0.17_{-}) \times 10^{-5}$		764
$J/\psi(1S)\pi^0$	$< 1.2 \times 10^{-3}$	CL=90%	1787
$J/\psi(1S)\eta$	$(4.0 \pm 0.7) \times 10^{-4}$	S=1.4	1733
$J/\psi(1S)K_S^0$	$(1.88 \pm 0.15) \times 10^{-5}$		1743
$J/\psi(1S)K^*(892)^0$	$(4.1 \pm 0.4) \times 10^{-5}$		1637
	, , , , , ,		

$J/\psi(1S)\eta'$	(3.3 ± 0.4) \times 10	_	1612
$J/\psi(1S)\pi^+\pi^-$	$(2.14\pm 0.18) \times 10$		1775
$J/\psi(1S) f_0(500), f_0 \rightarrow \pi^+\pi^-$	< 1.7 × 10	^{−6} CL=90%	_
$J/\psi(1S) ho, \;\; ho ightarrow \pi^+\pi^-$	< 1.2 × 10	0 ^{−6} CL=90%	-
$J/\psi(1S) f_0(980), f_0 \to$	$(1.19\pm~0.22) \times 10$	s=2.0	_
$J/\psi(1S)f_0(980)_0$	(5.1 ± 0.9) $ imes 10$	-5	_
$f_0 ightarrow \ \pi^+ \pi^- \ J/\psi(1S) f_2(1270),$	(1.1 ± 0.4) $ imes 10$	_6	_
$f_2 ightarrow \pi^+ \pi^- \ J/\psi(1S) f_2(1270)_0,$	($2.6~\pm~0.7$) $ imes~10$	_7	_
$f_2 \rightarrow \pi^+\pi^-$			
$J/\psi(1S)f_2(1270)_{\parallel}, \ f_2 ightarrow \ \pi^+\pi^-$	(3.8 ± 1.3) \times 10	<i>-1</i>	_
$J/\psi(1S)f_2(1270)_\perp, \ f_2 ightarrow \pi^+\pi^-$	(4.6 \pm 2.8) \times 10	_7	-
$J/\psi(1S) f_0(1370),$	($4.5 \begin{array}{c} + & 0.7 \\ - & 4.0 \end{array}$) $ imes$ 10	₁ –5	_
$f_0 ightarrow \ \pi^+ \pi^- \ J/\psi(1S) f_0(1500),$	$(7.4 + 1.6 \times 10^{-1}) \times 10^{-1}$	₀ –6	_
$f_0 ightarrow \pi^+ \pi^- \ J/\psi(1S) f_2'(1525)_0,$	$(3.7 \pm 1.0) \times 10$	₋ -7	_
$f_2' \rightarrow \pi^+\pi^-$	(0.1 1.0) // 10		
$J/\psi(1S)f_2'(1525)_{\parallel}$,	$(4.4 \ ^{+10.0}_{-3.1}) \times 10$	₁ –8	_
$f_2' ightarrow \ \pi^+ \pi^- \ J/\psi(1S) f_2'(1525)_\perp$,	(1.9 ± 1.4) $ imes$ 10	-7	_
$f_2' ightarrow \pi^+ \pi^-$			
$J/\psi(1S) f_0(1790), \ f_0 ightarrow \pi^+ \pi^-$	$(1.7 \ ^{+} \ ^{4.0} \) \times 10$	₁ –6	_
$J/\psi(1S)\pi^+\pi^-$ (nonres-	$(1.8 \ ^{+} \ ^{1.1}_{-} \) imes 10$	_J –5	1775
onant)	-	_	
$J/\psi(1S)\overline{K}^0\pi^+\pi^-$	< 4.4 × 10	_	1675
$J/\psi(1S)K^+K^-$	$(7.9\pm0.7)\times10$		1601
$J/\psi(1S)K^{0}K^{-}\pi^{+} + \text{c.c.}$	(9.3 \pm 1.3) \times 10		1538
$J/\psi(1S)\overline{K}{}^0K^+K^-$	< 1.2 × 10		1333
$J/\psi(1S)f_2'(1525)$	(2.6 ± 0.6) \times 10	_	1304
$J/\psi(1S) p \overline{p}$	< 4.8 × 10		982
$J/\psi(1S)\gamma$	< 7.3 × 10		1790
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	(8.0 ± 0.9) \times 10		1731
$J/\psi(1S) f_1(1285)$	(7.0 \pm 1.4) $ imes$ 10	_	1460
$\psi(2S)\eta$	(3.3 ± 0.9) \times 10	-4	1338

1 (5.0)			4		
$\psi(2S)\eta'$		$(1.29\pm\ 0.35)$			1158
$\psi(2S)\pi^+\pi^-$		(7.3 ± 1.2)			1397
$\psi(2S)\phi$		(5.4 ± 0.6)			1120
$\psi(2S)\underline{K}^-\pi^+$		$(3.12\pm\ 0.30)$			1310
$\psi(2S)\overline{K}^{*}(892)^{0}$		(3.3 ± 0.5):	_		1196
$\chi_{c1}\phi$		$(2.05\pm\ 0.30)$	_		1274
$\pi^+\pi^-$		(6.8 ± 0.8)	\times 10 ⁻⁷		2680
$\pi^{0}\pi^{0}$			\times 10 ⁻⁴	CL=90%	2680
$\eta \pi^0$		< 1.0	$\times 10^{-3}$	CL=90%	2654
$\eta\eta$			\times 10 ⁻³	CL=90%	2627
$ ho^0 ho^0$		< 3.20	\times 10 ⁻⁴	CL=90%	2569
$\eta'\eta'$		(3.3 ± 0.7)	$\times 10^{-5}$		2507
$\phi f_0(980), f_0(980) \to$		$(1.12\pm\ 0.21)$	$\times 10^{-6}$		_
$\pi^+\pi^-$					
$\phi f_2(1270)$,		(6.1 + 1.8)	$\times 10^{-7}$		_
$f_2(1270) \to \pi^+\pi^-$		\ - 1.5 /			
$\phi \rho^0$		(2.7 ± 0.8)	$\times 10^{-7}$		2526
$\phi \pi^+ \pi^-$		(3.5 ± 0.5)			2579
$\phi \dot{\phi}$		(1.87± 0.15)			2482
$\pi^+ K^-$		(5.6 ± 0.6)			2659
K^+K^-		(2.54 ± 0.16)			2638
$K^0\overline{K}^0$		(2.0 ± 0.6)			2637
$K^0\pi^+\pi^-$		(1.5 ± 0.4)			2653
$\mathcal{K}^0\mathcal{K}^\pm\pi^\mp$		(7.7 ± 1.0)			2622
$K^*(892)^-\pi^+$		(3.3 ± 1.2)	_		2607
$K^*(892)^{\pm}K^{\mp}$		$(1.25\pm\ 0.26)$	_		2585
$K_S^0 \overline{K}^* (892)^0 + \text{c.c.}$		(1.6 ± 0.4)	_		2585
$K^{0}K^{+}K^{-}$		` ,	$\times 10^{-6}$	CL=90%	2568
$\overline{K}^*(892)^0 \rho^0$			× 10 ⁻⁴	CL=90%	2550
$\frac{K}{K}$ *(892) ⁰ K *(892) ⁰		(1.11 ± 0.27)		CL-3070	2531
$\phi K^*(892)^0$		(1.11 ± 0.27)			2507
p p		$(2.8 + 2.2 \atop -1.7)$	× 10 ⁻⁶		2514
$\Lambda_c^- \Lambda \pi^+$		(3.6 ± 1.6)	\times 10 ⁻⁴		_
$\Lambda_c^- \Lambda_c^+$		< 8.0	\times 10 ⁻⁵	CL=95%	_
$\gamma \gamma$	B1	< 3.1	$\times 10^{-6}$	CL=90%	2683
$\phi \gamma$		(3.52 ± 0.34)			2587
' '		` ,			

Lepton Family number (LF) violating modes or $\Delta B=1$ weak neutral current (B1) modes

$\mu^+\mu^-$	B1	(2.4 +	(0.900000000000000000000000000000000000	S=1.5	2681
e^+e^-	B1	< 2.8	$\times 10^{-7}$	CL=90%	2683
$\mu^{+}\mu^{-}\mu^{+}\mu^{-}$	B1	< 1.2	$\times 10^{-8}$	CL=90%	2673

$$I(J^P) = 0(1^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m=5415.4^{+1.8}_{-1.5}~{\rm MeV}~{\rm (S=2.9)}$$
 $m_{B_s^*}-m_{B_s}=48.5^{+1.8}_{-1.5}~{\rm MeV}~{\rm (S=2.8)}$

B* DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$B_s \gamma$$

dominant

48

$B_{s1}(5830)^0$

$$I(J^P) = O(1^+)$$

I, J, P need confirmation.

Mass
$$m=5828.63\pm0.27$$
 MeV $m_{B_{s1}^0}-m_{B^{*+}}=503.98\pm0.18$ MeV Full width $\Gamma=0.5\pm0.4$ MeV

$B_{s1}(5830)^0$ DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

$$R^{*+}K^{-}$$

dominant

91

$B_{s2}^*(5840)^0$

$$I(J^P) = 0(2^+)$$

I, J, P need confirmation.

Mass
$$m=5839.85\pm0.17$$
 MeV (S $=1.1$) $m_{B_{s2}^{*0}}-m_{B^{+}}=560.53\pm0.17$ MeV (S $=1.1$) Full width $\Gamma=1.47\pm0.33$ MeV

B_{s2}^* (5840) DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 5/30/2017 17:13

 B^+K^-

dominant

252

NOTES

- [a] Not a pure measurement. See note at head of \boldsymbol{B}_s^0 Decay Modes.
- [b] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 $\rm GeV/c^2$ and 214.3 $\rm MeV/c^2$, respectively.
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.