TECHNICAL REPORTS SERIES No.

Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis

Final report of a coordinated research project

INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2006

Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis

IAEA, Vienna, 2006

ISBN ..-..-

- H.D. Choi (Seoul National University, Republic of Korea),
- R.B. Firestone (Lawrence Berkeley National Laboratory, USA),
- R.M. Lindstrom (National Institute for Standards and Technology, USA),
- G.L. Molnár (Institute of Isotope and Surface Chemistry, Hungary),
- S.F. Mughabghab (Brookhaven National Laboratory, USA),
- R. Paviotti-Corcuera (IAEA, Austria),
- Zs. Révay (Institute of Isotope and Surface Chemistry, Hungary),
- A. Trkov (IAEA, Austria),
- C.M. Zhou (China Nuclear Data Centre, People's Republic of China).

Technical Assistance:

V. Zerkin (IAEA, Austria).

FOREWORD

The increasing importance of Prompt Gamma-ray Activation Analysis (PGAA) in a broad range of applications is evident, and has been emphasized at many meetings related to this topic (e.g., Technical Consultants' Meeting, Use of neutron beams for low and medium flux research reactors: radiography and materials characterization, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1995). Furthermore, an Advisory Group Meeting (AGM) for the Coordination of the Nuclear Structure and Decay Data Evaluators Network has stated that there is a need for a complete and consistent library of cold- and thermal-neutron capture gamma-ray and cross-section data (AGM held at Budapest, 14-18 October 1996, INDC(NDS)-363); this AGM also recommended the organization of an IAEA Co-ordinated Research Project (CRP) on the subject.

The nuclear data programmes of the IAEA arise as a consequence of the advisory reviews of the International Nuclear Data Committee (INDC). At a biennial meeting in 1997, the INDC strongly recommended that the IAEA support new measurements and update the database on Neutron-induced Prompt Gamma-ray Activation Analysis.

As a consequence of the various recommendations, a CRP on "Development of a Database for Prompt Gamma-ray Neutron Activation Analysis (PGAA)" was initiated in 1999. Prior to this project, several consultants had defined the scope, objectives and tasks of this CRP, as approved subsequently by the IAEA. Each CRP participant assumed responsibility for the execution of specific tasks. The results of their and other research work were discussed and approved by the participants in a series of research co-ordination meetings (see Summary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; and INDC(NDS)-443, 2003).

PGAA is a non-destructive radioanalytical method capable of rapid or simultaneous "in-situ" multi-element analyses across the entire Periodic Table, from hydrogen to uranium. However, inaccurate and incomplete data have been a significant hindrance in the qualitative and quantitative analysis of complicated capture-gamma spectra by means of PGAA. Therefore, the main goal of the CRP was to improve the quality and quantity of the required data in order to make possible the reliable application of PGAA in fields such as materials science, chemistry, geology, mining, archaeology, environment, food analysis and medicine. This aim was achieved thanks to the dedicated work and effort of the participants. The CD-ROM included with this publication contains the database, the retrieval system, the three RCM reports, and other important electronic documents related to the project (see also Chapter 8).

The IAEA wishes to thank all CRP participants who contributed to the success of this project and the formulation of this publication. Special thanks are due to R.B. Firestone for his leading role in the evolution of this CRP and his comprehensive compilation, analysis and provision of the adopted database and V. Zerkin for the software developments associated with the retrieval system. An essential component of this data compilation is the extensive sets of new measurements of capture gamma-ray energies and intensities undertaken at the Institute of Isotope and Surface Chemistry, Budapest, Hungary. Thanks are also due to S.C. Frankle and M.A. Lone for their active involvement as consultants at some of the meetings. Finally, R. Paviotti-Corcuera (Division of Physical and Chemical Sciences) was the responsible officer for the CRP, this publication and the resulting database.

CONTENTS

l.	INTRO	DUCTION	l
2.	NOME SHAPI	ENCLATURE, WESTCOTT gw FACTORS AND NEUTRON SPECTRAL E DEPENDENT FORMALISM	6
	2.1.	Definitions and nomenclature 2.1.1. Prompt k ₀ factor	6
		2.1.2. Elemental cross section	
		2.1.3. Effective capture cross section2.1.4. Thermal and epithermal flux	
		2.1.5. Westcott g-factor	
	2.2.	Generalized formalism	
		2.2.1. Capture rate	
		2.2.2. Non-1/v absorber, effective g-factor and Cd ratio	
		2.2.3. Prompt capture-γ counting rate	
		2.2.4. Experimental k ₀ factor	17
	2.3.	Concluding remarks	18
3.	CHAR	ACTERISTICS OF PGAA FACILITIES	22
	3.1.	SNU-KAERI PGAA facility and diffracted polychromatic neutron beam	22
	3.2.	Characterization of prompt gamma neutron activation analysis at the	
		Dalat research reactor	
		3.2.1. Experimental configuration	
		3.2.2. Characteristics of the system	
	3.3.	NIST PGAA	28
	3.4.	Neutron capture gamma-ray facilities at the Budapest research reactor	
		3.4.1. Beam characteristics	
		3.4.2. PGAA instrumentation	
		3.4.3. Detection efficiency and system non-linearity	
		3.4.4. Data acquisition and analysis	
	3.5.	Prompt gamma-ray neutron activation analysis at Bhabha Atomic	
		Research Centre (BARC)	
		3.5.1. PGAA systems	
		3.5.2. Sample irradiation and data acquisition3.5.3. Energy calibration and peak area analysis	
		3.5.4. Efficiency calibration	
		3.5.5. New beam facility at Dhruva reactor	
	3.6.	Summary of experimental facilities	38
	3.7.	Experiments	40

4.	BENO	CHMARKS AND REFERENCE MATERIALS	47
	4.1.	Characterization of the neutron beam	47
	4.2.	Analysis of the unknown sample	49
	4.3.	Cross-section measurements	50
5.		RMAL NEUTRON CAPTURE CROSS SECTIONS AND NEUTRON RATION ENERGIES	51
	5.1.	Thermal cross-section evaluation methodology	51
	5.2.	Adopted thermal neutron cross sections	52
	5.3.	Experimental thermal neutron cross sections	52
	5.4.	Neutron separation energies	53
6.	DATA	A SOURCES AND EVALUATION METHODOLOGY	70
	6.1.	Prompt gamma-ray source databases 6.1.1. Lone database 6.1.2. ENSDF database 6.1.3. Reedy and Frankle database 6.1.4. Budapest database	70 70 70
	6.2.	Evaluation databases	72
	6.3.	Adopted gamma-ray energies	72
	6.4.	Adopted gamma-ray cross sections	72
	6.5.	Radioactive decay data	75
7.	ADO	PTED DATABASE AND USER TABLES	78
	7.1.	Numerical uncertainty presentation	78
	7.2.	Isotopic data	78
	7.3.	Radioactive decay data	78
	7.4.	k ₀ formulation	79
	7.5.	PGAA data tables 7.5.1. Prompt gamma rays 7.5.2. Radioactive decay gamma rays 7.5.3. Energy-ordered gamma-ray table	79 79
8.	PGA	A-IAEA DATABASE: CD-ROM	178
	8.1.	PGAA-IAEA Database Viewer	178
	8.2.	PGAA data files	181
	8.3.	Evaluated Gamma-ray Activation File (EGAF)	182
	8.4.	PGAA database evaluation	182
	8.5.	Isotope Explorer 2.2, ENSDF Viewer	182

APPENDIX I.	BUDAPEST REACTOR GAMMA-RAY CROSS-SECTION DATA	. 186
APPENDIX II.	ENSDF THERMAL NEUTRON CAPTURE GAMMA-RAY REFERENCES	. 201
DEFINITIONS		. 217
ACRONYMS I	FOR PROMPT-GAMMA ACTIVATION ANALYSIS	. 218
LIST OF PART	TICIPANTS	. 219

1. INTRODUCTION

R.M. Lindstrom

Neutron-capture prompt-gamma activation analysis (PGAA) is especially valuable as a nondestructive nuclear method in the measurement of elements that do not form neutron capture products with delayed gamma-ray emissions. Furthermore, the elemental coverage of PGAA complements that of conventional (delayed) instrumental neutron activation analysis (INAA). The list of measurable elements emphasizes the low-Z and high-abundance elements in organic and geological materials, and the high cross-section elements: B, Cd, Sm and Gd. The analysis for hydrogen and boron is especially important because of the paucity of other reliable analytical techniques for trace levels of these elements. PGAA is extremely sensitive for the quantitative determination of B compared with destructive chemical techniques, particularly since boron is such an important element over a wide range of applications from meteorites to human tissue [1.1-1.4]. Together PGAA and INAA can measure all elements except oxygen in most common materials. Conveniently, in silicate rocks and similar oxidized materials, the completeness of the analysis can be tested by expressing the elements as oxides and comparing their sum with 100% [1.5]. Because nearly every neutron capture is an (n, γ) reaction, the yield of prompt gamma rays per neutron is greater than that of delayed gammas [1.6]. Unfortunately, PGAA has usually poorer sensitivity compared to INAA because the neutron flux is some five orders of magnitude lower in an external reactor beam than an irradiation position near the core.

Many review articles have been published on PGAA and its applications [1.7-1.12], and two extensive bibliographies have been compiled [1.13, 1.14]. The latter lists 522 references up to and including 1983. A dedicated book has also appeared [1.15], and an extensive handbook is in preparation [1.16]. Prompt gamma-ray analysis developed slowly after the first reports of gamma radiation from neutron capture by Lea [1.17] and the Fermi group [1.18]. The first published tabulation of gamma-ray energies and intensities [1.19] and plots of spectra [1.20] led to a number of applications during the era of NaI scintillation counters, from borehole logging [1.21] to planetary exploration [1.22]. Applications involving coincidence counting were first reported at the second international conference on Modern Trends in Activation Analysis (MTAA-2) [1.23].

The first measurements by reactor-based PGAA were published in 1966 [1.6, 1.24, 1.25]. Chopped (pulsed) beams were used in one of the first applications to separate prompt gamma rays from delayed activation products [1.26]. Neutron guides were also first reported in the same year [1.27], and soon afterwards pioneering PGAA work at Saclay with thermal guides and Ge(Li) detectors was reported at MTAA-3 [1.28, 1.29].

A major breakthrough in the late 1960s was the introduction of germanium semiconductor gamma-ray detectors, with energy resolutions twenty or more times better than the best NaI scintillators. This development was a considerable aid in the interpretation of complex spectra resulting from neutron capture [1.30]. Diffraction spectrometers used by the nuclear physics community have still better resolution [1.31], but their efficiency is far too low for practical analysis of materials. Application of Ge detectors to INAA [1.32] and PGAA [1.33] was rapid, and their superior resolution gave improved detection limits [1.34] which led to Ge replacing NaI wherever liquid nitrogen was available to cool the detector.

Early in the application of Ge detectors, a group at the Massachusetts Institute of Technology (MIT) measured the capture-gamma spectra of every element systematically [1.35, 1.36].

Compilations of these data were published in the open literature, with analytical sensitivities and spectral contrasts tabulated [1.37, 1.38]. At this time the combination of high-power research reactors and large, high resolution gamma-ray detectors was pursued in parallel at several reactor centres in the USA, Japan and Canada [1.5, 1.39-1.42]. Each of these laboratories compiled tables of analytical gamma rays and their interferences. For example, at the University of Maryland 28 gamma rays from 20 elements were found to be potential interferences with the sulphur line at 841.1 keV (from the 32 S(n, γ) 33 S reaction) [1.43]. An evaluation directed at the spectrometry of planetary surfaces was published at the same time [1.22].

A major advance was the comprehensive Chalk River compilation of more than 10,000 capture gamma rays of the elements [1.44], with their energies, abundances, and cross sections drawn chiefly from the MIT measurements. The completeness of the data and their convenient format made the "Lone table" indispensable at the desk of every PGAA researcher for twenty years, despite some inadequacies inherent in these early measurements. A substantial computer-readable subset of these data was made available on diskette with an IAEA Technical Report [1.45], and the complete table has been circulated informally in spreadsheet form among many researchers.

Very recently, a carefully evaluated table of capture gamma rays from the elements hydrogen through zinc has been published [1.46]. The present work incorporates this evaluation, and adds recently measured energies and intensities of capture gamma rays of the elements from the PGAA facility at the Budapest Research Reactor, and data from other CRP participants and elsewhere. As discussed in detail in chapter 6, these data are combined and compared with nuclear levels and other information from the Evaluated Nuclear Structure Data File (ENSDF) to produce a comprehensive, self-consistent set of capture gamma rays.

In the past decade the application of PGAA has increased because of the availability of high-flux thermal and cold beams from neutron guides [1.47]. Guided beams can be entirely free of fast neutrons and tramp gamma rays, and therefore signal/background ratios can be much improved. Thermal guide studies at Kyoto have also shown that spectral quality is perhaps as important as flux in performing high- sensitivity analyses [1.4]. Fifteen years after the pioneering work at Grenoble using a flux that is still the highest ever used for PGAA [1.48], there has been a flowering of applications at several neutron sources [1.49-1.55].

Prompt-gamma neutron activation analysis has become a well-established analytical method with applications in many areas. The new data compilation presented here should encourage the further use of PGAA in the future.

REFERENCES

- [1.1] FURUKAWA, Y., KOYAMA, M., YUKI, M., Determination of Boron Content in Several Mediums by Prompt Gamma Ray Analysis, Radioisotopes **16** (1967) 7-11.
- [1.2] GLADNEY, E. S., JURNEY, E. T., CURTIS, D. B., Nondestructive Determination of Boron and Cadmium in Environmental Materials by Thermal Neutron-prompt Gamma-ray Spectrometry, Anal. Chem. **48** (1976) 2139-2142.
- [1.3] CURTIS, D. B., GLADNEY, E. S., JURNEY, E. T., A Revision of the Meteorite Based Cosmic Abundance of Boron, Geochim. Cosmochim. Acta 44 (1980) 1945-1953.

- [1.4] KOBAYASHI, T., KANDA, K., Microanalysis System of PPM-order ¹⁰B Concentrations in Tissue for Neutron Capture Therapy by Prompt Gamma-ray Spectrometry, Nucl. Instrum. Meth. **204** (1983) 525-531.
- [1.5] FAILEY, M. P., ANDERSON, D. L., ZOLLER, W. H., GORDON, G. E., LINDSTROM, R. M., Neutron-capture Prompt Gamma-ray Activation Analysis for Multi-element Determination in Complex Samples, Anal. Chem. 51 (1979) 2209-2221.
- [1.6] ISENHOUR, T. L., MORRISON, G. H., Modulation Technique for Neutron Capture Gamma-ray Measurements in Activation Analysis, Anal. Chem. **38** (1966) 162-167.
- [1.7] GREENWOOD, R. C., "Practical Applications of Neutron Capture Gamma Rays", Proc. Third Int. Symp. Neutron-capture Gamma-ray Spectroscopy and Related Topics, (Chrien, R. E., Kane, W. R., eds.), Plenum, New York (1979) 441-460.
- [1.8] ANDERSON, D. L., ZOLLER, W. H., GORDON, G. E., WALTERS, W. B., LINDSTROM, R. M., "Neutron-capture Prompt Gamma-ray Spectroscopy as a Quantitative Analytical Method", Neutron-capture Gamma-ray Spectroscopy and Related Topics, Inst. Phys. Ser. 62, (von Egidy, T., Gonnenwein, F., Maier, B., eds.), Institute of Physics, London (1982) 655-668.
- [1.9] LINDSTROM, R. M., PAUL, R. L., WALTERS, W. B., MOLNÁR, G., "Analytical Applications of Cold Neutron Capture and Opportunities for Nuclear Physics", Capture Gamma-ray Spectroscopy and Related Topics, (Kern, J., ed.), World Scientific, Singapore (1994) 955-961.
- [1.10] LINDSTROM, R. M., ANDERSON, D. L., PAUL, R. L., "Analytical Applications of Neutron Capture Gamma Rays", Proc. 9th Int. Symp. Capture Gamma-ray Spectroscopy and Related Topics, (Molnár, G. L., Belgya, T., Révay, Z., eds.), Springer, Budapest (1997) 693-704.
- [1.11] SHAW, D. M., Prompt Gamma Neutron Activation Analysis, J. Neutron Res. 7 (1999) 181-194.
- [1.12] PAUL, R. L., LINDSTROM, R. M., Prompt Gamma-ray Activation Analysis: Fundamentals and Applications, J. Radioanal. Nucl. Chem. 243 (2000) 181-189.
- [1.13] GLADNEY, E. S., A Literature Survey of Chemical Analysis by Thermal Neutroninduced Capture Gamma-ray Spectroscopy, Los Alamos Scientific Laboratory Report LA-8028-MS, 1979.
- [1.14] GLASCOCK, M. D., A Literature Survey of Elemental Analysis by Neutron-induced Prompt Gamma-ray Spectroscopy and Related Topics, University of Missouri Report, Columbia, 1984.
- [1.15] ALFASSI, Z. B., CHUNG, C., eds., Prompt Gamma Neutron Activation Analysis, CRC Press, Boca Raton, 1995.
- [1.16] MOLNÁR, G. L., ed., Handbook of Prompt Gamma Activation Analysis, Kluwer, Dordrecht, 2004.
- [1.17] LEA, D. E., Combination of Proton and Neutron, Nature 133 (1934) 24.
- [1.18] AMALDI, E., D'AGOSTINO, O., FERMI, E., PONTECORVO, B., RASETTI, F., SEGRÈ, E., Radioattività Provocata da Bombardamento di Neutroni VII, Ricerca Scientifica 2 (1934) 467-470.
- [1.19] GROSHEV, L. V., DEMIDOV, A. M., LUTSENKO, V. N., PELEKHOV, V. I., Atlas of the Spectra of Gamma Rays from the Radiative Capture of Thermal Neutrons. Pergamon, London (1961).
- [1.20] GREENWOOD, R. C., REED, J. H., Prompt Gamma Rays from Radiative Capture of Thermal Neutrons, IIT Research Institute Report IITRI-1193-53, 1965.
- [1.21] CLAYTON, C. G., SCHWEITZER, J. S., A Review of Aspects of Nuclear Geophysics, Nucl. Geophysics 7 (1993) 143-171.
- [1.22] REEDY, R. C., "Planetary Gamma-ray Spectroscopy", Proc. 9th Lunar Planet. Sci. Conf. (1978), Pergamon, New York, 2961-2984.

- [1.23] LUSSIE, W. G., BROWNLEE, J. L., Jr., The Measurement and Utilization of Neutron-capture Gamma Radiation, Proc. Modern Trends in Activation Analysis, (Guinn, J. P., ed.), Texas A&M, College Station, (1965), 194-199.
- [1.24] KITAO, K., HATTORI, M., NAGAHARA, T., HAM, C., "Elemental Analysis Using Capture Gamma-rays" (in Japanese), Proc. 7th Conf. Radioisotopes, Japanese Atom. Indust. Forum (1966) 249-251.
- [1.25] KOYAMA, M., KOYAMA, Y., MINATO, Y., YUKI, M., "Thermal Neutron Capture Gamma-ray Spectrometry" (in Japanese), Proc. 7th Conf. Radioisotopes, Japanese Atom. Indust. Forum (1966) 246-248.
- [1.26] ISENHOUR, T. L., MORRISON, G. H., Determination of Boron by Thermal Neutron Activation Analysis Using a Modulation Technique, Anal. Chem. **38** (1966) 167- 169.
- [1.27] MAIER-LEIBNITZ, H., Grundlagen fuer die Beurteilung von Intensitaets- und Genaugkeitsfragen bei Neutronenstreumessungen, Nukleonik 8 (1966) 61-67
- [1.28] COMAR, D., CROUZEL, C., CHASTELAND, M., RIVIERE, R., KELLERSHOHN, C., "The Use of Neutron Capture Gamma Radiations for the Analysis of Biological Samples", Modern Trends in Activation Analysis, NBS Special Pub. 312, (DeVoe, J. R., ed.), National Bureau of Standards, Washington DC (1969) 114-127.
- [1.29] COMAR, D., CROUZEL, C., CHASTELAND, M., RIVIERE, R., KELLERSHOHN, C., The Use of Neutron-capture Gamma Radiation for the Analysis of Biological Samples, Nucl. Appl. 6 (1969) 344-351.
- [1.30] ORPHAN, V. J., RASMUSSEN, N. C., A Ge(Li) Spectrometer for Studying Neutron Capture Gamma Rays, Nucl. Instrum. Meth. 48 (1967) 282-295.
- [1.31] KOCH, H. R., BÖRNER, H. G., PINSTON, J. A., DAVIDSON, W. F., FAUDOU, J., ROUSSILLE, R., SCHULT, O. W. B., The Curved Crystal Gamma Ray Spectrometers "GAMS 1, GAMS 2, GAMS 3" for High Resolution (n, γ) Measurements at the High Flux Reactor in Grenoble, Nucl. Instrum. Meth. **175** (1980) 401-423.
- [1.32] GORDON, G. E., RANDLE, K., GOLES, G. G., CORLISS, J. B., BEESON, M. H., OXLEY, S. S., Instrumental Activation of Standard Rocks with High-resolution γ-ray Detectors, Geochim. Cosmochim. Acta **32** (1968) 369-396.
- [1.33] LOMBARD, S. M., ISENHOUR, T. L., Neutron Capture Gamma-ray Activation Analysis Using Lithium Drifted Germanium Semiconductor Detectors, Anal. Chem. **40** (1968) 1990-1994.
- [1.34] ROBERTSON, R., SPYROU, N. M., KENNETT, T. J., Low-level Gamma-ray Spectrometry: NaI(Tl) vs. Ge(Li), Anal. Chem. 47 (1975) 65-70.
- [1.35] RASMUSSEN, N. C., HUKAI, Y., INOUYE, T., ORPHAN, V. J., Thermal Neutron Capture Gamma-ray Spectra of the Elements, Massachusetts Institute of Technology Report AFCRL-69-0071, 1969.
- [1.36] ORPHAN, V. J., RASMUSSEN, N. C., HARPER, T. L., Line and Continuum Gamma-ray Yields from Thermal-neutron Capture in 75 Elements, Gulf General Atomic Report DASA 2570 (GA 10248), 1970.
- [1.37] DUFFEY, D., EL-KADY, A., SENFTLE, F. E., Analytical Sensitivities and Energies of Thermal Neutron Capture Gamma Rays, Nucl. Instrum. Meth. **80** (1970) 149-171.
- [1.38] SENFTLE, F. E., MOORE, H. D., LEEP, D. B., EL-KADY, A. A., DUFFEY, D., Analytical Sensitivities and Energies of Thermal Neutron Capture Gamma Rays II, Nucl. Instrum. Meth. **93** (1971) 425-459.
- [1.39] GLADNEY, E. S., CURTIS, D. B., JURNEY, E. T., Multielement Analysis of Major and Minor Elements by Thermal Neutron Induced Capture Gamma-ray Spectrometry, J. Radioanal. Chem. **46** (1978) 299-308.
- [1.40] TOJO, T., YONEZAWA, C., KOURA, S., ARAI, S., KOMORI, T., A Neutron Capture Gamma-ray Facility, Japan Atomic Energy Research Institute Report JAERI-M 8791, 1980.

- [1.41] HANNA, A. G., BRUGGER, R. M., GLASCOCK, M. D., The Prompt Gamma Neutron Activation Analysis Facility at MURR, Nucl. Instrum. Meth. **188** (1981) 619-627.
- [1.42] HIGGINS, M. D., TRUSCOTT, M. G., SHAW, D. M., BERGERON, M., BUFFET, G. H., COPLEY, J. R. D., PRESTWICH, W. V., "Prompt-gamma Neutron Activation Analysis at McMaster Nuclear Reactor", Use and Development of Low and Medium Flux Research Reactors, (Harling, O. K., Clark, L., von der Hardt, P., eds.), Thiemig, Munich (1984) 690-697.
- [1.43] KITTO, M. E., Receptor Modeling of Atmospheric Particles and Acidic Gases, PhD Thesis, University of Maryland, College Park, 1987.
- [1.44] LONE, M. A., LEAVITT, R. A., HARRISON, D. A., Prompt Gamma Rays from Thermal-neutron Capture, At. Data Nucl. Data Tables 26 (1981) 511-559.
- [1.45] IAEA Handbook on Nuclear Data for Borehole Logging and Mineral Analysis (TR-357), International Atomic Energy Agency, Vienna, Austria (1993).
- [1.46] REEDY, R. C., FRANKLE, S. C., Prompt Gamma Rays from Radiative Capture of Thermal Neutrons by Elements from Hydrogen through Zinc, Atom. Nucl. Data Tables 80 (2002), 1-34.
- [1.47] LINDSTROM, R. M., YONEZAWA, C., "Prompt-Gamma Activation Analysis With Guided Neutron Beams," Prompt Gamma Neutron Activation Analysis, (Alfassi, Z. B., Chung, C., Ed.) CRC Press, Boca Raton (1995), 93-100.
- [1.48] HENKELMANN, R., BORN, H. J., Analytical Use of Neutron-capture Gamma-rays, J. Radioanal. Chem. **16** (1973) 473-481.
- [1.49] KERR, S. A., OLIVER, R. A., VITTOZ, P., VIVIER, G., HOYLER, F., MACMAHON, T. D., WARD, N. I., Elemental Concentrations in Geochemical Reference Samples by Neutron Capture Prompt Gamma-ray Spectroscopy, J. Radioanal. Nucl. Chem. **113** (1987) 249-258.
- [1.50] LINDSTROM, R. M., ZEISLER, R., ROSSBACH, M., Activation Analysis Opportunities Using Cold Neutron Beams, J. Radioanal. Nucl. Chem. **112** (1987) 321-330.
- [1.51] YONEZAWA, C., HOSHI, M., ITO, Y., TACHIKAWA, E., "Construction of Reactor Neutron Induced Prompt Gamma-ray Analyzing System at the Neutron Beam Guide of JRR-3M", Proc. Third Asian Symp. Research Reactors, Japan Atomic Energy Research Institute Report JAERI-M 92-028 (1992) 583.
- [1.52] LINDSTROM, R. M., ZEISLER, R., VINCENT, D. H., GREENBERG, R. R., STONE, C. A., ANDERSON, D. L., CLARK, D. D., MACKEY, E. A., Neutron Capture Prompt Gamma-ray Activation Analysis at the NIST Cold Neutron Research Facility, J. Radioanal. Nucl. Chem. **167** (1993) 121-126.
- [1.53] MOLNÁR, G., RÉVAY, Z., VERES, Á., SIMONITS, A., RAUSCH, H., Cold Neutron Facility for Prompt Gamma Neutron Activation Analysis, J. Radioanal. Nucl. Chem. **167** (1993) 133-137.
- [1.54] ÜNLÜ, K., RÍOS-MARTÍNEZ, C., WEHRING, B. W., Prompt Gamma Activation Analysis with the Texas Cold Neutron Source, J. Radioanal. Nucl. Chem. **193** (1995) 145-154.
- [1.55] CRITTIN, M., KERN, J., SCHENKER, J.-L., The New Prompt Gamma-ray Activation Facility at the Paul Scherrer Institute, Switzerland, Nucl. Instrum. Meth. Phys. Rev. **A449** (2000) 221-236.

2. NOMENCLATURE, WESTCOTT g_W FACTORS AND NEUTRON SPECTRAL SHAPE DEPENDENT FORMALISM

H.D. Choi, A. Trkov

A wide range of neutron source facilities are used for the implementation of PGAA that can be divided into two groups: one group uses thermal or cold neutrons from nuclear reactors, while the other group utilizes smaller mobile systems that involve moderated neutrons from isotopic sources, neutron generators or accelerator driven systems. Reactor-based systems use an internal target [2.1, 2.2] or external direct beam [2.3] to take advantage of the large neutron flux. At present, the common trend is towards building facilities around guided thermal beams [2.4-2.6] or guided cold beams [2.4, 2.7-2.9] in order to prepare a very clean beam free from epithermal neutrons and background gamma rays. Another possibility is to use external filtered beams [2.10] or diffracted beams [2.11, 2.12], which are also characterized by low background.

Among the many differences between the facilities, the neutron energy spectrum and the epithermal neutron fraction have an important influence on the measured capture rate, particularly for large samples and non-1/v absorber nuclides. Even for some nuclides that are commonly considered good 1/v absorbers, slight deviations from 1/v capture may exist. Inhomogeneous flux profile also affects the measurement. Precise measurements and standardization can only be achieved by investigating the impact of these effects before k_0 values from different facilities can be compared for consistency. Hence in the present chapter, definition of nomenclature and a general formalism are reviewed in the context of k_0 standardization to accommodate the various forms of neutron spectra.

2.1. Definitions and nomenclature

2.1.1. Prompt k_0 factor

Co-irradiating in a neutron field an analyte (x) and a comparator (c) element contained in the sample results in the composite nuclear constant (k_0 factor) defined as [2.13-2.15]:

$$k_0 = \frac{P_x(E_{\gamma,x})}{P_c(E_{\gamma,c})} \cdot \frac{\sigma_{0,x}}{\sigma_{0,c}} \cdot \frac{\theta_x / M_x}{\theta_c / M_c}, \tag{1}$$

where the subscripts x and c refer to the analyte and comparator element respectively, θ is the isotopic abundance, M the atomic weight of the element, $P(E_{\gamma})$ the absolute γ emission probability (γ s emitted per capture) of the prompt gamma ray of energy E_{γ} and σ_0 is the 2200 m s⁻¹ neutron capture cross section. It is implicitly assumed that the specific isotope that captures a neutron will decay promptly by emitting a γ ray of energy E_{γ} .

The evolution of k_0 -methodology has resulted in different definitions (e.g., by using either effective capture cross section or effective thermal capture cross section instead of 2200 m s⁻¹ cross section [2.16]). Use of σ_0 is emphasized in the present definition in order to keep the k_0 factor as an absolute constant measurable in a facility-independent manner.

2.1.2. Elemental cross section

Neutron speed-dependent capture cross sections $\sigma_{\gamma}(v)$ and 2200 m s⁻¹ values (σ_0) are defined

for a nucleus of an isotope. The partial capture cross section for the nucleus $(\sigma_{\gamma}(E_{\gamma}))$, is defined by the product $P(E_{\gamma})\sigma_0$; the differential form $P(E_{\gamma})\sigma_{\gamma}(v)$ is also used in physics studies. An elemental cross section is defined for practical convenience in terms of a sample with isotopic natural abundance, and this parameter should be distinguished from the nuclear capture cross section and partial nuclear capture cross section. A partial elemental capture cross section for the element Z is defined by:

$$\sigma_{\gamma}^{Z}(E_{\gamma}) = \theta P(E_{\gamma}) \sigma_{0}, \qquad (2)$$

where the notation is the same as listed previously. This term is the cross section per elemental atom to produce a particular gamma-ray of energy E_{γ} from irradiation with thermal neutrons. Different names are frequently used, such as "gamma-ray production cross section" [2.17] or "partial (elemental) cross section" [2.18], both implying the partial elemental capture cross section.

2.1.3. Effective capture cross section

The effective capture cross section is defined as the averaged cross section over the neutron spectrum by the equation:

$$\hat{\sigma} = \frac{1}{v_0} \cdot \frac{\int_0^\infty n(v)\sigma_{\gamma}(v)vdv}{\int_0^\infty n(v)dv} = \frac{1}{n_i v_0} \int_0^\infty n(v)\sigma_{\gamma}(v)vdv = \frac{1}{v_0} \int_0^\infty \rho(v)\sigma_{\gamma}(v)vdv$$
(3)

where v is the neutron speed and v_0 equals 2200 m s⁻¹, n(v)dv is the number density of neutrons with speed between v and v+dv, $\sigma_{i}(v)$ is the neutron speed-dependent capture cross section of the nuclide under consideration, n_t is the total neutron density including both thermal and epithermal neutrons, and $\rho(v)$ is the neutron speed distribution function after normalization. These are :

$$n_t = \int_0^\infty n(v)dv$$
 and $\int_0^\infty \rho(v)dv = 1$ (4)

in which the Westcott convention is adopted [2.19]. However, when the Stoughton and Halperin convention is used [2.20], thermal neutron density appears in the denominator of Equation (3). A different convention is used for the effective cross section $\langle \sigma \rangle$ in Chapter 4 to characterize the neutron beam:

$$\langle \sigma \rangle = \frac{\int_0^\infty n(v)\sigma_{\gamma}(v)vdv}{\int_0^\infty n(v)vdv} \tag{5}$$

where the integrated total flux is used in the denominator. The average cross section is related to the effective cross section in Equation (3) by $\langle \sigma \rangle = \hat{\sigma} \, v_0 \, / \langle v \rangle$ where $\langle v \rangle$ is the average speed calculated using neutron density n(v) as the weighting function. Equations (3) – (5) are applicable to any arbitrary neutron spectrum.

2.1.4. Thermal and epithermal flux

As a consequence of the importance of thermal neutrons in capture reaction and the very large

differences in the spectral shape and the fraction of epithermal neutrons in different irradiation facilities, the neutron density per unit speed interval is split into thermal and epithermal components:

$$n(v) = n_{th}(v) + n_{en}(v)$$
 (6)

Reactor thermal neutron spectrum is well represented by the Maxwellian speed distribution, and the integrated thermal neutron density is given by:

$$n_{th} = \int_0^\infty n_{th}(v)dv = n_{th} \int_0^\infty \rho_M(v)dv, \qquad (7)$$

where $\rho_M(v)$ is the normalized Maxwellian function. Different definitions for the thermal flux can be found in the literature [2.20]. The widely used definition in activation analysis is the "conventional" thermal flux given by:

$$\phi_{th} = n_{th} v_0 \tag{8}$$

while the "true (integrated)" or "mean" thermal flux is the most convenient in reactor physics calculations and is defined as:

$$F_{th} = \int_0^\infty n_{th}(v)vdv = n_{th} \int_0^\infty \rho_M(v)vdv = n_{th} \overline{v}$$
(9)

where $\overline{\nu}$ is the average speed of the Maxwellian distribution. Hence, the relationship between the two fluxes $[F_{th}/\varphi_{th}=\overline{\nu}/\nu_0=(4T/\pi T_0)^{1/2}]$ holds true for the Maxwellian thermal spectrum (where T is the Maxwellian temperature, $T_0=293.6K$). The thermal capture rates for $1/\nu$ absorbers are the same for either flux representation, so long as the correct cross section is used; for example, $R_{th}=n_{th}\nu_0\sigma_0=n_{th}\overline{\nu}\overline{\sigma}$ where $\overline{\sigma}$ is the capture cross section at neutron speed $\overline{\nu}$. The neutron flux ϕ_{ep} is more convenient in the case of epithermal neutrons, and represents the product of neutron speed and density ($\phi_{ep}=\nu_{ep}$). This approach describes the neutron flux spectrum in terms of energy, and is based on theoretical considerations that ideally the distribution follows 1/E shape. Since the flux integral in neutron speed and in energy domain must be the same, we obtain the relationship between the epithermal neutron density and the flux:

$$n_{ep}(v)vdv = \phi_{ep}(E)dE = \phi_{ep}dE/E$$
 (10)

Slight deviations from 1/E can be described by $1/E^{1+\alpha}$ where α is the epithermal shape parameter used widely in instrumental neutron activation analysis (INAA) [2.13, 2.21]. However, most PGAA facilities prepare a clean thermal or cold beam by means of neutron guide tubes or short wavelength filters. These beams are free from epithermal neutrons as indicated by the cadmium ratio, being typically larger than 10^4 [2.22]. Hence, the need to consider epithermal neutrons is obviated in facilities capable of producing a clean thermal neutron beam.

2.1.5. Westcott g-factor

The effective cross section in Equation (3) is equal to the 2200 m s⁻¹ cross section σ_0 for a perfect 1/v absorber or even a realistic 1/v absorber nuclide irradiated in neutron fields with negligible epithermal neutron fraction in the resonance region of the nuclide. When the nuclide is a non-1/v absorber (113 Cd, 124 Xe, 149 Sm, most Eu isotopes, $^{155, 157}$ Gd, $^{175, 176}$ Lu,

 180 Ta etc.) or the neutron spectrum contains a significant epithermal component, the effective cross section is no longer equal to σ_0 . Westcott approached this problem for the case of a Maxwellian thermal spectrum and a 1/E epithermal spectrum [2.19]. Adopting the Westcott convention, the effective cross section is given by:

$$\hat{\sigma} = \sigma_0 (g_W + rs) \tag{11}$$

where g_W is the Westcott g-factor, r is an index for epithermal fraction in the neutron density, and s is a parameter related to the reduced resonance integral. Parameter r for 1/E epithermal neutrons can be obtained by measuring the Cd ratio with a thin 1/v detector or an activation foil [2.19]. Since the Maxwellian shape depends on the temperature, both g_W and s are dependent on the Maxwellian temperature. Hence, the Westcott g-factor is given by the ratio of the effective cross section for the pure Maxwellian spectrum ($\hat{\sigma}_M$) to the 2200 m s⁻¹ cross section:

$$g_{w}(T) = \frac{\hat{\sigma}_{M}(T)}{\sigma_{0}} = \frac{1}{\sigma_{0} v_{0}} \int_{0}^{\infty} \rho_{M}(v, T) \sigma_{\gamma}(v) v dv = \frac{1}{\sigma_{0} v_{0}} \int_{0}^{\infty} \frac{4}{\sqrt{\pi}} \left(\frac{v}{v_{T}}\right)^{3} e^{-(v/v_{T})^{2}} \sigma_{\gamma}(v) dv \qquad (12)$$

where v_T is the most probable speed of the Maxwellian function, and is related to the temperature (T) by $mv_T^2/2 = kT$ or $v_T = v_0(T/T_0)^{1/2}$.

The latest published values of the Westcott g-factors are given by Holden [2.23] for nuclides with Westcott g-factors that deviate significantly from unity and for temperatures between 0 and 400°C. A series of new g-factor calculations has been carried out for this CRP using the capture cross sections from the EAF-99 library [2.24] over an extended temperature range of 20 to 600K. Almost all isotopes up to ²⁵⁷Fm have been considered in these calculations. Two sets of calculated data have been generated using different codes:

- ENDF utility code INTER was used to generate the Westcott g-factors by direct integration.
- A new code GRUPINT was developed to deal with the general neutron spectrum (e.g., a sum of Maxwellian functions of different temperatures, which is typically adopted to describe the spectrum of guided neutron beam). Instead of using direct integration, GRUPINT reads in fine-group cross sections in 685-group structure, and calculates the Westcott g-factors by group condensation.

GRUPINT was validated by comparing the results from both codes for a pure Maxwellian spectrum. The g-factors agree within considerably less than 1% for all isotopes considered, although a few exceptional cases are noted:

- ¹⁵³Tb exhibits an anomalous jump in the tabulated cross sections at the thermal energy, although the overall trend is 1/v. The INTER result reflects the anomalous behaviour; and the final GRUPINT g-value is produced assuming a smooth 1/v shape.
- ¹⁸⁷Re(n, γ) has different shapes for the cross sections of the final activation products ¹⁸⁸Re (ground state) and ^{188m}Re, in which only the excitation cross section for the ground state exhibits a non-1/v behaviour. Even though the reasons for such cross sectional behaviour need closer investigation, this example indicates that explicit consideration of cross sections for the final production state could be important, depending on the nature of activation detection.

The Westcott g-factors are listed in Tables 2.1-2.3 for those stable isotopes in which the Westcott g-factor deviates from unity by more than 1% at some temperature in the specified range.

Table 2.1 Westcott g-factors (A \leq 143).

	l ¹⁰⁹ Ag ¹¹¹ Cd
$T(K)$ $E(eV)$ ^{30}Si ^{36}S ^{36}Ar ^{38}Ar ^{83}Kr ^{87}Sr ^{103}Rh ^{105}Pe	
20 0.0017 1.000 0.799 1.135 1.266 1.011 0.990 0.964 1.00	
40 0.0034 1.000 0.842 1.104 1.242 1.010 0.991 0.968 1.00	
60 0.0052 1.000 0.871 1.078 1.197 1.009 0.992 0.972 1.00	
80 0.0069 1.000 0.894 1.060 1.161 1.008 0.994 0.976 1.00	6 0.994 1.006
100	5 0.995 1.005
120 0.0103 1.001 0.928 1.040 1.111 1.005 0.996 0.985 1.00	4 0.996 1.004
140 0.0121 1.001 0.942 1.035 1.095 1.004 0.997 0.989 1.00	3 0.997 1.003
160 0.0138 1.003 0.954 1.030 1.082 1.003 0.998 0.993 1.00	2 0.998 1.002
180 0.0155 1.003 0.965 1.026 1.072 1.001 0.999 0.998 1.00	1 0.999 1.001
200 0.0172 1.003 0.975 1.023 1.064 1.000 1.000 1.002 0.99	9 1.000 0.999
220	9 1.001 0.999
240 0.0207 1.005 0.993 1.020 1.051 0.998 1.003 1.011 0.99	3 1.003 0.998
260 0.0224 1.006 1.001 1.018 1.046 0.996 1.004 1.015 0.99	7 1.003 0.996
280 0.0241 1.007 1.009 1.016 1.043 0.996 1.005 1.020 0.99	5 1.005 0.996
293	1.005 0.995
300 0.0258 1.007 1.017 1.016 1.039 0.994 1.006 1.025 0.99	1.005 0.994
320	1.006 0.993
340	3 1.007 0.992
360 0.0310 1.009 1.036 1.013 1.031 0.991 1.010 1.039 0.99	2 1.008 0.991
380 0.0327 1.009 1.042 1.012 1.029 0.989 1.011 1.044 0.99	1 1.009 0.990
400 0.0345 1.010 1.047 1.012 1.027 0.988 1.012 1.048 0.99	1.010 0.989
420 0.0362 1.010 1.053 1.011 1.025 0.987 1.013 1.053 0.98	9 1.011 0.988
440 0.0379 1.011 1.058 1.011 1.024 0.986 1.014 1.059 0.98 460 0.0396 1.012 1.063 1.010 1.023 0.985 1.015 1.064 0.98	3 1.012 0.987
460 0.0396 1.012 1.063 1.010 1.023 0.985 1.015 1.064 0.98	7 1.013 0.986
480 0.0414 1.012 1.068 1.010 1.021 0.984 1.017 1.069 0.98	5 1.015 0.985
500 0.0431 1.013 1.072 1.010 1.020 0.982 1.018 1.074 0.98	1.015 0.984
520 0.0448 1.013 1.077 1.010 1.019 0.981 1.019 1.079 0.98	1.017 0.983
540 0.0465 1.014 1.081 1.010 1.018 0.980 1.020 1.085 0.98	
560 0.0482 1.014 1.086 1.009 1.018 0.979 1.022 1.090 0.98	3 1.019 0.980
580 0.0500 1.015 1.090 1.009 1.017 0.978 1.023 1.096 0.98	
600 0.0517 1.015 1.094 1.009 1.016 0.976 1.024 1.101 0.98	1 1.021 0.979
112	
T(K) $E(eV)$ ¹¹³ Cd ¹¹³ In ¹¹⁵ In ¹²¹ Sb ¹²³ Te ¹²⁴ Xe ¹³³ Cs ¹³² B	a ¹³⁸ Ce ¹⁴³ Nd
T(K) E(eV) ¹¹³ Cd ¹¹³ In ¹¹⁵ In ¹²¹ Sb ¹²³ Te ¹²⁴ Xe ¹³³ Cs ¹³² B	
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00	0.936 1.007
20	0.936 1.007 0.952 1.006
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 8 0.974 1.004
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 8 0.974 1.004 7 0.978 1.003
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.992 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.990 0.998 0.994 0.999 0.999 0.999	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 9 0.969 1.005 8 0.974 1.004 7 0.978 1.003 5 0.981 1.002
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.992 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.990 0.998 0.994 0.999 0.999 0.999 160 0.0138 0.982 0.996 0.994 0.999 0.996 0.999 0.999 0.999	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 8 0.974 1.004 7 0.978 1.003 5 0.981 1.002 3 0.983 1.002
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.992 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.990 0.998 0.994 0.999 0.999 0.999 160 0.0138 0.982 0.996 0.994 0.999 0.996 0.999 0.999 180 0.0155 1.023 0.998 0.998 0.999 0.998 1.000 1.000 0.999 </td <td>0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 9 0.969 1.005 8 0.974 1.004 7 0.978 1.003 5 0.981 1.002 8 0.983 1.002 1 0.985 1.001</td>	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 9 0.969 1.005 8 0.974 1.004 7 0.978 1.003 5 0.981 1.002 8 0.983 1.002 1 0.985 1.001
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.992 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.990 0.998 0.994 0.999 0.999 0.999 160 0.0138 0.982 0.996 0.994 0.999 0.996 0.999 0.999 180 0.0155 1.023 0.998 0.998 0.999 0.998 1.000 1.000 0.999 </td <td>0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 9 0.969 1.005 8 0.974 1.004 7 0.978 1.003 5 0.981 1.002 8 0.983 1.002 1 0.985 1.001 9 0.986 1.000</td>	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 9 0.969 1.005 8 0.974 1.004 7 0.978 1.003 5 0.981 1.002 8 0.983 1.002 1 0.985 1.001 9 0.986 1.000
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.992 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.990 0.998 0.994 0.999 0.999 0.999 160 0.0138 0.982 0.996 0.994 0.999 0.996 0.999 0.999 0.99 180 0.0155 1.023 0.998 0.998 0.999 0.998 1.000 1.000 1.000	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 9 0.969 1.005 8 0.974 1.004 7 0.978 1.003 5 0.981 1.002 8 0.983 1.002 1 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.992 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.990 0.998 0.994 0.999 0.999 0.999 160 0.0138 0.982 0.996 0.994 0.999 0.996 0.999 0.999 0.999 0.999 0.999 0.999 0.998 1.000 1.000 1.000 1.000 0.000 0.98	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 9 0.969 1.005 8 0.974 1.004 7 0.978 1.003 5 0.981 1.002 8 0.983 1.002 1 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998 8 0.990 0.997
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.998 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.990 0.998 0.994 0.999 0.999 0.999 160 0.0138 0.982 0.996 0.994 0.999 0.996 0.999 0.999 0.999 180 0.0155 1.023 0.998 0.998 0.999 0.998 1.000 1.000 1.000	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 9 0.969 1.005 8 0.974 1.004 7 0.978 1.003 5 0.981 1.002 8 0.983 1.002 1 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998 8 0.990 0.997 0 0.991 0.997
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.992 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.990 0.998 0.994 0.999 0.999 0.999 160 0.0138 0.982 0.996 0.994 0.999 0.996 0.999 0.999 0.999 180 0.0155 1.023 0.998 0.998 0.999 0.998 1.000 1.000 1.000	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 9 0.969 1.005 8 0.974 1.004 7 0.978 1.003 5 0.981 1.002 8 0.983 1.002 1 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998 8 0.990 0.997 0 0.991 0.996
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.998 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.990 0.998 0.994 0.999 0.999 0.999 160 0.0138 0.982 0.996 0.994 0.999 0.996 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.998 1.000 1.000 1.000 1.000 1.000 0.00	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 3 0.974 1.004 7 0.978 1.003 5 0.981 1.002 3 0.983 1.002 1 0.985 1.001 0 0.986 1.000 7 0.988 0.999 4 0.989 0.998 3 0.990 0.997 0 0.991 0.996 0 0.992 0.996
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.998 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.990 0.998 0.994 0.999 0.999 0.999 160 0.0138 0.982 0.996 0.994 0.999 0.996 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.998 1.000 1.000 1.000 1.000 1.000 1.000	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 3 0.974 1.004 7 0.978 1.003 5 0.981 1.002 1 0.985 1.001 0 0.986 1.000 7 0.988 0.999 1 0.991 0.997 0 0.991 0.997 0 0.992 0.995 7 0.992 0.995
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.998 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.990 0.998 0.994 0.999 0.999 0.999 160 0.0138 0.982 0.996 0.994 0.999 0.996 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.998 1.000 1.000 1.000 1.000 1.000 1.000	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 8 0.974 1.004 7 0.978 1.003 5 0.981 1.002 8 0.983 1.002 1 0.985 1.001 0 0.986 1.000 7 0.988 0.999 4 0.989 0.998 8 0.990 0.997 0 0.991 0.997 0 0.991 0.996 0 0.992 0.996 7 0.992 0.995 5 0.993 0.994
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.997 0.998 0.997 0.998 0.991 1.00 0.0086 0.880 0.988 0.984 0.997 0.998 0.997 0.998 0.999 0.998 0.999 0.998 0.999 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 8 0.974 1.004 7 0.978 1.003 5 0.981 1.002 8 0.983 1.002 1 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998 8 0.990 0.997 0 0.991 0.997 0 0.991 0.996 0 0.992 0.996 7 0.992 0.995 5 0.993 0.994 8 0.993 0.994
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 0.996 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.990 0.998 0.994 0.999 0.999 0.999 160 0.0138 0.982 0.996 0.994 0.999 0.996 0.999 0.999 0.999 180 0.0172 1.068 1.000 1.0	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 8 0.974 1.004 7 0.978 1.003 5 0.981 1.002 8 0.983 1.002 1 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998 8 0.990 0.997 0 0.991 0.997 0 0.991 0.996 0 0.992 0.996 7 0.992 0.995 5 0.993 0.994 1 0.994 0.993
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.998 0.99 0.998 0.999	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 3 0.974 1.004 7 0.978 1.003 5 0.981 1.002 3 0.983 1.002 1 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998 3 0.990 0.997 0 0.991 0.997 0 0.991 0.997 0 0.991 0.996 7 0.992 0.996 7 0.992 0.995 5 0.993 0.994 1 0.994 0.993 0 0.994 0.993 0 0.994 0.992
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.99 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.998 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.990 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 3 0.974 1.004 7 0.978 1.003 5 0.981 1.002 3 0.983 1.002 1 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998 3 0.990 0.997 0 0.991 0.997 0 0.991 0.996 7 0.992 0.996 7 0.992 0.995 5 0.993 0.994 1 0.994 0.993 0 0.994 0.992 7 0.995 0.991
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.998 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.991 120 0.0103 0.911 0.991 0.987 0.997 0.998 0.999 140 0.0121 0.945 0.993 0.990 0.998 0.999 0.999 0.999 160 0.0138 0.982 0.996 0.994 0.999 0.999 0.999 0.999 180 0.0152 1.068 1.000 1.000 1.000 1	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 3 0.974 1.004 7 0.978 1.003 5 0.981 1.002 3 0.983 1.002 4 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998 3 0.991 0.997 9 0.991 0.995 0 0.992 0.995 0 0.993 0.994 0 0.994 0.992 7 0.995 0.991 6 0.995 0.995 0 0.995 0.995
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.998 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.998 0.994 0.999	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 3 0.974 1.004 7 0.978 1.003 5 0.981 1.002 3 0.983 1.002 4 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998 3 0.991 0.997 9 0.991 0.995 0 0.992 0.995 0 0.993 0.994 0 0.994 0.992 7 0.995 0.991 6 0.995 0.995 7 0.995 0.995 0 0.995 0.990
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 0.996 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.998 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.997 120 0.0103 0.911 0.991 0.987 0.997 0.999 0.997 0.998 0.999 140 0.0121 0.945 0.993 0.990 0.998 0.994 0.999 0.999 0.999 160 0.0138 0.982 0.996 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 0 0.969 1.004 7 0.978 1.003 5 0.981 1.002 3 0.983 1.002 4 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998 3 0.990 0.997 0 0.991 0.996 0 0.992 0.996 0 0.992 0.995 0 0.993 0.994 0 0.994 0.992 0 0.995 0.991 0 0.995 0.991 0 0.995 0.990 0 0.995 0.990 0 0.995 0.990 0 0.995 0.990 0 0.995 0.996 0 0.996 0.989
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.996 0.997 0.998 0.991 100 0.0086 0.880 0.988 0.984 0.997 0.998 0.997 0.998 0.991 120 0.0103 0.911 0.991 0.987 0.997 0.998 0.99 140 0.0121 0.945 0.993 0.990 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 0 0.969 1.004 7 0.978 1.003 5 0.981 1.002 3 0.983 1.002 4 0.985 1.001 6 0.986 1.000 7 0.988 0.999 4 0.989 0.998 3 0.990 0.997 0 0.991 0.996 0 0.992 0.996 0 0.993 0.994 0 0.994 0.993 0 0.994 0.992 0 0.995 0.990 4 0.995 0.990 4 0.995 0.996 0 0.996 0.988 1 0.996 0.988
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.998 100 0.0086 0.880 0.988 0.984 0.997 0.998 0.997 0.998 0.997 0.998 0.997 0.998 0.997 0.998 0.997 0.998 0.997 0.998 0.997 0.998 0.997 0.998 0.997 0.998 0.997 0.998 0.997 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.99	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 0 0.969 1.004 7 0.978 1.003 5 0.981 1.002 3 0.983 1.002 4 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998 3 0.990 0.997 0 0.991 0.996 0 0.992 0.996 0 0.993 0.994 0 0.994 0.993 0 0.994 0.993 0 0.995 0.990 4 0.995 0.990 4 0.995 0.996 0 0.996 0.988 0 0.996 0.988
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.999 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.998 0.997 0.998 0.999 140 0.0121 0.945 0.993 0.990 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 0 0.969 1.004 7 0.978 1.003 5 0.981 1.002 3 0.983 1.002 4 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998 3 0.990 0.997 9 0.991 0.996 0 0.992 0.996 0 0.993 0.994 0 0.994 0.993 0 0.994 0.993 0 0.994 0.995 0 0.995 0.990 4 0.995 0.990 4 0.995 0.996 0 0.996 0.988 0 0.996 0.987 0 0.996 0.987 0 0.996 0.987
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.999 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.997 0.998 0.997 0.998 0.997 0.998 0.991 0.998 0.999 0.99	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 0 0.969 1.004 7 0.978 1.003 5 0.981 1.002 3 0.983 1.002 4 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998 3 0.990 0.997 0 0.991 0.996 0 0.992 0.996 0 0.993 0.994 0 0.994 0.993 0 0.994 0.993 0 0.994 0.995 0 0.995 0.991 0 0.995 0.991 0 0.995 0.990 0 0.995 0.990 0 0.995 0.990 0 0.996 0.987 0 0.996 0.987 <t< td=""></t<>
20 0.0017 0.780 0.979 0.969 0.994 0.980 0.994 0.995 1.00 40 0.0034 0.802 0.982 0.973 0.995 0.983 0.994 0.996 1.00 60 0.0052 0.826 0.984 0.976 0.995 0.985 0.995 0.997 1.00 80 0.0069 0.852 0.986 0.979 0.996 0.987 0.996 0.997 0.999 100 0.0086 0.880 0.988 0.984 0.997 0.989 0.997 0.998 0.99 120 0.0103 0.911 0.991 0.987 0.997 0.998 0.997 0.998 0.999 140 0.0121 0.945 0.993 0.990 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999	0 0.936 1.007 0 0.952 1.006 0 0.962 1.005 0 0.969 1.005 3 0.974 1.004 7 0.978 1.003 5 0.981 1.002 3 0.983 1.002 4 0.985 1.001 9 0.986 1.000 7 0.988 0.999 4 0.989 0.998 3 0.990 0.997 9 0.991 0.996 0 0.992 0.996 0 0.993 0.994 0 0.994 0.993 0 0.994 0.993 0 0.994 0.993 0 0.995 0.990 4 0.995 0.991 0 0.995 0.990 0 0.995 0.990 0 0.995 0.990 0 0.996 0.987 0 0.997 0.985 <t< td=""></t<>

Table 2.2 Westcott g-factors ($149 \le A \le 176$).

T(K)	E(eV)	¹⁴⁹ Sm	¹⁵² Sm	¹⁵¹ Eu	¹⁵³ Eu	¹⁵⁵ Gd	157 Gd	¹⁵⁶ Dy	¹⁵⁸ Dy	¹⁶⁰ Dy	¹⁶¹ Dy
20	0.0017	0.622	0.994	1.273	1.088	0.838	0.794	0.986	1.021	0.985	1.016
40	0.0034	0.656	0.995	1.251	1.078	0.865	0.824	0.988	1.019	0.987	1.014
	0.0051	0.696		1.223	1.068		0.850		1.017		1.013
60		0.090	0.995	1.223	1.008	0.887	0.830	0.990	1.017	0.988	
80	0.0069	0.743	0.996	1.193	1.057	0.904	0.871	0.992	1.015	0.990	1.011
100	0.0086	0.800	0.997	1.161	1.048	0.914	0.887	0.993	1.012	0.992	1.009
120	0.0103	0.867	0.997	1.129 1.097	1.038	0.010	0.898	0.994	1.010	0.994	1.007
140	0.0103	0.007	0.997 0.998	1.127	1.038 1.029	0.919 0.920	0.070	0.994 0.996	1.010	0.995	1.007
140	0.0121	0.947	0.998	1.097	1.029	0.920	0.904	0.990	1.007		1.005
160	0.0138	1.036	0.999	1.067	1.020	0.918	0.905	0.997	1.005	0.997	1.003
180	0.0155	1.135	0.999	1.038	1.012	0.911 0.903	0.904 0.899	0.999	1.002	0.999	1.001
200	0.0172	1.239	1.000	1.010	1.003	0.903	0.899	1.001	1.000	1.000	0.999
200		1.237		0.004		0.703	0.077				
220	0.0190	1.345	1.001	0.984	0.994	0.892	0.891	1.002	0.998	1.002	0.998
240	0.0207	1.452 1.556	1.002	0.959	0.986 0.979	0.880	$0.882 \\ 0.872$	1.004	0.995 0.993	1.004	0.996
260	0.0224	1.556	1.002	0.936	0.979	0.867	0.872	1.006	0.993	1.006	0.994
280	0.0241	1.656	1.003	0.914	0.971	0.853	0.860	1.008	0.991	1.008	0.992
293	0.0253	1.718	1.003	0.000	0.966	0.033	0.000	1.009	0.989	1.009	0.991
293	0.0233	1./10	1.003	$0.900 \\ 0.893$	0.900	$0.843 \\ 0.838$	$0.852 \\ 0.847$	1.009	0.909	1.009	0.991
300	0.0258	1.749	1.003	0.893	0.963	0.838	0.84/	1.009	0.988	1.009	0.991
320	0.0276	1.838	1.004	0.874	0.956	0.823	0.834	1.011	0.986	1.011	0.989
340	$0.0293 \\ 0.0310$	1 918	1.005	0.856 0.840	0.949 0.942	$0.808 \\ 0.793$	$0.821 \\ 0.807$	1.013	0.984 0.982	1.013	0.987
360	0.0210	1.002	1.005	0.030	0.042	0.703	0.021	1.014	0.082	1.015	0.985
200	0.0310	1.918 1.992 2.058		0.040	0.744	U.173	0.007	1.014			
380	0.0327	2.058	1.006	0.825	0.935	0.778	0.793	1.016	0.979	1.016	0.984
400	0.0345	2.119	1.007	0.811	0.928	0.763	0.779	1.018	0.977	1.018	0.982
420	0.0362	2.119 2.172	1.007	0.811 0.799	$0.928 \\ 0.922$	0.763 0.749	0.779 0.765	1.019	0.975	1.020	0.980
440	0.0379	2.219	1.008	0.787	0.916	0.734	0.751	1.021	0.973	1.022	0.979
460		2.417	1.000	0.707	0.710	0.734	0.731	1.041	0.273		0.277
460	0.0396	2.260 2.294 2.325	1.009	0.777	0.910	0.720 0.706	$0.737 \\ 0.723$	1.023 1.025	0.971	1.024	0.977 0.975
480	0.0414	2.294	1.009	0.769	0.903	0.706	0.723	1.025	0.969	1.026	0.975
500	0.0431	2.325	1.010	0.761	0.897	0.692	0.710	1.026	0.966	1.028	0.974
520	0.0448	2.349 2.370	1.011	0.755	0.892	0.678	0.697	1.028	0.964	1.030	0.972
540	0.0476	2.377	1.011	0.750	0.072	0.676	0.077	1.020	0.707	1.030	0.970
540	0.0465	2.370	1.011	0.750	0.886	0.665	0.684	1.030	0.962	1.031	
560	0.0482	2.387	1.012	0.746	0.880	0.653	0.671	1.032	0.960	1.033	0.969
580	0.0500	2.400	1.013	0.744	0.875	0.640	0.659	1.033	0.958	1.035	0.967
600	0.0517	2.409	1.013	0.743	0.870	0.628	0.647	1.036	0.956	1.037	0.965
000	0.0517	2.10)	1.015	0.715	0.070	0.020	0.017	1.050	0.750	1.057	0.703
		162-	162-	164-	167	160-	169	175-	176-	174	176
T(K)	E(eV)	¹⁶² Dy	¹⁶³ Dy	¹⁶⁴ Dy	¹⁶⁷ Er	¹⁶⁹ Tm	¹⁶⁸ Yb	¹⁷⁵ Lu	¹⁷⁶ Lu	¹⁷⁴ Hf	¹⁷⁶ Hf
		¹⁶² Dy	¹⁶³ Dy	¹⁶⁴ Dy	¹⁶⁷ Er	¹⁶⁹ Tm	¹⁶⁸ Yb	¹⁷⁵ Lu	¹⁷⁶ Lu		¹⁷⁶ Hf
20	0.0017	0.991	1.003	1.023	0.917	0.992	0.925	1.065	0.716	1.028	0.995
20 40	0.0017 0.0034	0.991 0.993	1.003 1.002	1.023 1.021	0.917 0.926	0.992 0.993	0.925 0.933	1.065 1.057	0.716 0.744	1.028 1.025	0.995 0.996
20 40	0.0017 0.0034	0.991 0.993	1.003 1.002	1.023 1.021	0.917 0.926	0.992 0.993	0.925 0.933 0.942	1.065 1.057	0.716 0.744	1.028	0.995 0.996
20 40 60	0.0017 0.0034 0.0052	0.991 0.993 0.993	1.003 1.002 1.002	1.023 1.021 1.018	0.917 0.926 0.936	0.992 0.993 0.994	0.925 0.933 0.942	1.065 1.057 1.050	0.716 0.744 0.774	1.028 1.025 1.022	0.995 0.996 0.996
20 40 60 80	0.0017 0.0034 0.0052 0.0069	0.991 0.993 0.993 0.994	1.003 1.002 1.002 1.001	1.023 1.021 1.018 1.015	0.917 0.926 0.936 0.945	0.992 0.993 0.994 0.995	0.925 0.933 0.942 0.951	1.065 1.057 1.050 1.042	0.716 0.744 0.774 0.808	1.028 1.025 1.022 1.019	0.995 0.996 0.996 0.997
20 40 60 80 100	0.0017 0.0034 0.0052 0.0069 0.0086	0.991 0.993 0.993 0.994 0.995	1.003 1.002 1.002 1.001 1.002	1.023 1.021 1.018 1.015 1.013	0.917 0.926 0.936 0.945 0.955	0.992 0.993 0.994 0.995 0.996	0.925 0.933 0.942 0.951 0.960	1.065 1.057 1.050 1.042 1.035	0.716 0.744 0.774 0.808 0.847	1.028 1.025 1.022 1.019 1.016	0.995 0.996 0.996 0.997 0.998
20 40 60 80 100 120	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103	0.991 0.993 0.993 0.994 0.995	1.003 1.002 1.002 1.001 1.002 1.001	1.023 1.021 1.018 1.015 1.013 1.010	0.917 0.926 0.936 0.945 0.955 0.965	0.992 0.993 0.994 0.995 0.996	0.925 0.933 0.942 0.951 0.960	1.065 1.057 1.050 1.042 1.035 1.028	0.716 0.744 0.774 0.808 0.847 0.892	1.028 1.025 1.022 1.019 1.016 1.012	0.995 0.996 0.996 0.997 0.998 0.998
20 40 60 80 100	0.0017 0.0034 0.0052 0.0069 0.0086	0.991 0.993 0.993 0.994 0.995 0.996 0.997	1.003 1.002 1.002 1.001 1.002 1.001 1.001	1.023 1.021 1.018 1.015 1.013	0.917 0.926 0.936 0.945 0.955	0.992 0.993 0.994 0.995 0.996 0.997 0.998	0.925 0.933 0.942 0.951 0.960 0.969 0.978	1.065 1.057 1.050 1.042 1.035 1.028 1.021	0.716 0.744 0.774 0.808 0.847 0.892 0.945	1.028 1.025 1.022 1.019 1.016	0.995 0.996 0.996 0.997 0.998 0.998 0.999
20 40 60 80 100 120 140	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121	0.991 0.993 0.993 0.994 0.995 0.996 0.997	1.003 1.002 1.002 1.001 1.002 1.001 1.001	1.023 1.021 1.018 1.015 1.013 1.010 1.008	0.917 0.926 0.936 0.945 0.955 0.965 0.975	0.992 0.993 0.994 0.995 0.996 0.997 0.998	0.925 0.933 0.942 0.951 0.960 0.969 0.978	1.065 1.057 1.050 1.042 1.035 1.028 1.021	0.716 0.744 0.774 0.808 0.847 0.892 0.945	1.028 1.025 1.022 1.019 1.016 1.012 1.010	0.995 0.996 0.996 0.997 0.998 0.998 0.999
20 40 60 80 100 120 140 160	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998	1.003 1.002 1.002 1.001 1.002 1.001 1.001	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006	0.995 0.996 0.996 0.997 0.998 0.998 0.999
20 40 60 80 100 120 140 160 180	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003	0.995 0.996 0.996 0.997 0.998 0.998 0.999 0.999 1.000
20 40 60 80 100 120 140 160 180 200	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000
20 40 60 80 100 120 140 160 180 200 220	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.001	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000 1.001
20 40 60 80 100 120 140 160 180 200	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000 1.001
20 40 60 80 100 120 140 160 180 200 220 240	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.001 1.001 1.002	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.001	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017 1.028	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000 1.001
20 40 60 80 100 120 140 160 180 200 220 240 260	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.001 1.002 1.002	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017 1.028 1.039	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000 1.001 1.001 1.002
20 40 60 80 100 120 140 160 180 200 220 240 260 280	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.001 1.002 1.002 1.002	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017 1.028 1.039 1.050	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000 1.001 1.001 1.002 1.002
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017 1.028 1.039 1.050 1.057	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.976	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.986	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000 1.001 1.001 1.002 1.002
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.005	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.002 1.003 1.003	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.073	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 1.007 1.017 1.028 1.039 1.050 1.057	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.976 0.975	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.986 0.985	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000 1.001 1.001 1.002 1.002 1.002
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.005	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.002 1.003 1.003	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.073	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 1.007 1.017 1.028 1.039 1.050 1.057	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.976 0.975	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.986 0.985	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000 1.001 1.001 1.002 1.002 1.002
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.005 1.006	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.002 1.003 1.003 1.003	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.073 1.089	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.976 0.975 0.969	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.986 0.985 0.983	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000 1.001 1.001 1.002 1.002 1.002 1.003 1.003
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.005 1.006 1.007	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.003	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.073 1.089 1.104	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005 1.007	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.976 0.975 0.969 0.964	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949 2.099	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.986 0.985 0.983	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000 1.001 1.002 1.002 1.002 1.003 1.003 1.004
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.005 1.006 1.007 1.008	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.003 1.004 1.004	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.073 1.089 1.104 1.120	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005 1.007 1.008	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.098	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.976 0.975 0.969 0.964 0.960	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949 2.099 2.250	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.986 0.985 0.983 0.980	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.004
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.005 1.006 1.007 1.008 1.009	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.003 1.004 1.004	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.976	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.073 1.089 1.104 1.120 1.138	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005 1.007 1.008 1.008	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.098	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.976 0.975 0.969 0.964 0.960 0.955	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949 2.099 2.250 2.399	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.986 0.985 0.983 0.977 0.974	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.004 1.005
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.003 1.004 1.004	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.976 0.974	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.104 1.120 1.138 1.157	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005 1.007 1.008 1.008 1.010	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.098 1.111	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.976 0.975 0.969 0.964 0.960 0.955 0.950	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949 2.099 2.250 2.399 2.545	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.986 0.985 0.983 0.977 0.974 0.971	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.004 1.005 1.005
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.003 1.004 1.004 1.005 1.006	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.976 0.974	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.104 1.120 1.138 1.157	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005 1.007 1.008 1.008 1.010	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.098 1.111	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.976 0.975 0.969 0.964 0.960 0.955 0.950	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949 2.099 2.250 2.399 2.545	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.986 0.985 0.983 0.977 0.974 0.971	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.000 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.004 1.005 1.005
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.003 1.004 1.004 1.005 1.006	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.976 0.974	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.104 1.120 1.138 1.157 1.177	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005 1.007 1.008 1.008 1.010 1.010	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.098 1.111	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.976 0.975 0.969 0.964 0.960 0.955 0.950 0.946	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949 2.099 2.250 2.399 2.545 2.688	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.986 0.985 0.985 0.977 0.974 0.971	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.001 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.005 1.005 1.005
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.003 1.004 1.004 1.005 1.006 1.006	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.976 0.974 0.972 0.969	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.104 1.120 1.138 1.157 1.177 1.199	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005 1.007 1.008 1.008 1.010 1.010 1.012	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.111 1.125 1.139 1.154	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.976 0.975 0.969 0.964 0.960 0.955 0.946 0.941	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949 2.099 2.250 2.399 2.545 2.688 2.826	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.985 0.985 0.985 0.977 0.974 0.971 0.968 0.965	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.001 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.005 1.005 1.006
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.003 1.004 1.004 1.005 1.006 1.006 1.007 1.008	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.976 0.974 0.972 0.969 0.967	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.104 1.120 1.138 1.157 1.177 1.199 1.222	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005 1.007 1.008 1.010 1.010 1.012 1.013 1.013	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.997 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.111 1.125 1.139 1.154 1.170	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.976 0.975 0.969 0.964 0.960 0.955 0.946 0.941 0.937	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949 2.099 2.250 2.399 2.545 2.688 2.826 2.959	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.985 0.985 0.983 0.977 0.974 0.971 0.968 0.965 0.963	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.001 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.005 1.005 1.006 1.006 1.007
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.003 1.004 1.004 1.005 1.006 1.006	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.976 0.974 0.972 0.969	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.104 1.120 1.138 1.157 1.177 1.199	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005 1.007 1.008 1.008 1.010 1.010 1.012	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.098 1.111 1.125 1.139 1.154 1.170 1.187	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.976 0.975 0.969 0.964 0.960 0.955 0.946 0.941 0.937 0.933	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949 2.099 2.250 2.399 2.545 2.688 2.826	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.985 0.985 0.985 0.977 0.974 0.971 0.968 0.965	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.001 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.005 1.005 1.006 1.006 1.007 1.007
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.003 1.004 1.004 1.005 1.006 1.006 1.007 1.008 1.009	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.976 0.974 0.972 0.969 0.967 0.964	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.104 1.120 1.138 1.157 1.177 1.179 1.222 1.248	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.005 1.007 1.008 1.008 1.010 1.010 1.012 1.013 1.013	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.098 1.111 1.125 1.139 1.154 1.170 1.187	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.976 0.975 0.969 0.964 0.960 0.955 0.946 0.941 0.937 0.933	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949 2.099 2.250 2.399 2.545 2.688 2.826 2.959 3.085	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.985 0.985 0.983 0.977 0.974 0.971 0.968 0.965 0.963 0.960	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.001 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.005 1.005 1.006 1.006 1.007 1.007
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.003 1.004 1.004 1.005 1.006 1.006 1.007 1.008 1.009 1.010	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.988 0.987 0.984 0.982 0.979 0.974 0.972 0.969 0.967 0.964 0.962	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.104 1.120 1.138 1.157 1.177 1.199 1.222 1.248 1.276	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.005 1.007 1.008 1.008 1.010 1.010 1.012 1.013 1.013 1.015 1.016	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.098 1.111 1.125 1.139 1.154 1.170 1.187 1.204	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.976 0.975 0.969 0.964 0.960 0.955 0.946 0.941 0.937 0.933 0.929	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949 2.099 2.250 2.399 2.545 2.688 2.826 2.959 3.085 3.205	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.985 0.985 0.983 0.977 0.974 0.971 0.968 0.965 0.963 0.960 0.957	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.001 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.005 1.005 1.006 1.006 1.007 1.007
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015 1.016	1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.003 1.004 1.004 1.005 1.006 1.006 1.007 1.008 1.009 1.010	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.988 0.987 0.984 0.982 0.979 0.974 0.972 0.969 0.967 0.964 0.962 0.960	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.104 1.120 1.138 1.157 1.177 1.177 1.199 1.222 1.248 1.306	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005 1.007 1.008 1.008 1.010 1.010 1.012 1.013 1.013 1.016 1.017	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.098 1.111 1.125 1.139 1.154 1.170 1.187 1.204	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.976 0.975 0.969 0.955 0.950 0.946 0.941 0.937 0.933 0.929 0.925	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949 2.099 2.250 2.399 2.545 2.688 2.826 2.959 3.085 3.205 3.318	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.985 0.985 0.985 0.977 0.974 0.971 0.968 0.965 0.963 0.957 0.955	0.995 0.996 0.996 0.997 0.998 0.999 0.999 1.000 1.001 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.005 1.005 1.006 1.006 1.007 1.008 1.008
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.016 1.017	1.003 1.002 1.002 1.001 1.001 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.004 1.004 1.005 1.006 1.006 1.007 1.008 1.009 1.010	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.988 0.987 0.984 0.982 0.979 0.974 0.972 0.969 0.969 0.964 0.962 0.960 0.957	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.104 1.120 1.138 1.157 1.177 1.177 1.199 1.222 1.248 1.306	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005 1.007 1.008 1.010 1.010 1.012 1.013 1.013 1.016 1.017 1.018	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.111 1.125 1.139 1.154 1.154 1.187 1.204 1.222 1.242	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.975 0.969 0.964 0.960 0.955 0.950 0.946 0.941 0.933 0.929 0.925 0.921	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949 2.099 2.250 2.399 2.545 2.688 2.826 2.959 3.085 3.205 3.318	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.985 0.985 0.985 0.977 0.974 0.971 0.968 0.965 0.963 0.957 0.955 0.952	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.005 1.005 1.005 1.006 1.007 1.007 1.008 1.008
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.016 1.017 1.018	1.003 1.002 1.002 1.001 1.001 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.004 1.004 1.004 1.005 1.006 1.006 1.007 1.008 1.009 1.010 1.011 1.012	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.988 0.987 0.984 0.982 0.979 0.976 0.974 0.972 0.969 0.967 0.964 0.962 0.960 0.957 0.955	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.104 1.120 1.138 1.157 1.177 1.177 1.199 1.222 1.248 1.306 1.339 1.375	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005 1.007 1.008 1.010 1.010 1.012 1.013 1.013 1.016 1.017 1.018 1.019	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.098 1.111 1.125 1.139 1.154 1.170 1.187 1.204 1.222 1.242 1.262	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.975 0.969 0.964 0.960 0.955 0.950 0.946 0.941 0.937 0.933 0.929 0.925 0.921 0.917	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 2.099 2.250 2.399 2.545 2.688 2.826 2.959 3.085 3.205 3.318 3.424 3.524	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.985 0.985 0.983 0.977 0.974 0.971 0.968 0.965 0.965 0.965 0.965 0.965 0.963	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.005 1.005 1.006 1.006 1.007 1.008 1.008 1.009 1.009
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.016 1.017	1.003 1.002 1.002 1.001 1.001 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.004 1.004 1.005 1.006 1.006 1.007 1.008 1.009 1.010	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.988 0.987 0.984 0.982 0.979 0.974 0.972 0.969 0.969 0.964 0.962 0.960 0.957	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.104 1.120 1.138 1.157 1.177 1.177 1.199 1.222 1.248 1.306 1.339 1.375	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005 1.007 1.008 1.010 1.010 1.012 1.013 1.013 1.016 1.017 1.018	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.111 1.125 1.139 1.154 1.154 1.187 1.204 1.222 1.242	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.975 0.969 0.964 0.960 0.955 0.950 0.946 0.941 0.933 0.929 0.925 0.921	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 2.099 2.250 2.399 2.545 2.688 2.826 2.959 3.085 3.205 3.318 3.424 3.524	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.985 0.985 0.985 0.977 0.974 0.971 0.968 0.965 0.963 0.957 0.955 0.952	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.005 1.005 1.006 1.006 1.007 1.008 1.008 1.009 1.009
20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482	0.991 0.993 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.016 1.017 1.018	1.003 1.002 1.002 1.001 1.001 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.003 1.004 1.004 1.004 1.005 1.006 1.006 1.007 1.008 1.009 1.010 1.011 1.012	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.988 0.987 0.984 0.982 0.979 0.976 0.974 0.972 0.969 0.967 0.964 0.962 0.960 0.957 0.955	0.917 0.926 0.936 0.945 0.955 0.965 0.975 0.986 0.998 1.008 1.020 1.033 1.046 1.059 1.069 1.104 1.120 1.138 1.157 1.177 1.177 1.199 1.222 1.248 1.306	0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.004 1.005 1.005 1.005 1.007 1.008 1.010 1.010 1.012 1.013 1.013 1.016 1.017 1.018 1.019	0.925 0.933 0.942 0.951 0.960 0.969 0.978 0.987 0.997 1.007 1.017 1.028 1.039 1.050 1.057 1.061 1.073 1.086 1.098 1.111 1.125 1.139 1.154 1.170 1.187 1.204 1.222 1.242 1.262	1.065 1.057 1.050 1.042 1.035 1.028 1.021 1.015 1.008 1.003 0.996 0.991 0.985 0.980 0.975 0.969 0.964 0.960 0.955 0.950 0.946 0.941 0.937 0.933 0.929 0.925 0.921 0.917	0.716 0.744 0.774 0.808 0.847 0.892 0.945 1.010 1.086 1.176 1.280 1.395 1.523 1.658 1.752 1.802 1.949 2.099 2.250 2.399 2.545 2.688 2.826 2.959 3.085 3.205 3.318	1.028 1.025 1.022 1.019 1.016 1.012 1.010 1.006 1.003 1.000 0.997 0.994 0.992 0.988 0.985 0.985 0.985 0.977 0.974 0.971 0.968 0.965 0.965 0.965 0.965 0.965 0.963	0.995 0.996 0.996 0.997 0.998 0.998 0.999 1.000 1.001 1.002 1.002 1.002 1.003 1.003 1.004 1.005 1.005 1.005 1.006 1.007 1.007 1.008 1.008

Table 2.3 Westcott g-factors (A \geq 177).

T(K) E(eV) 17 Hg 178 Hg 179 Hg 180 Hg 180 Ta 181 Ta 180 W 182 W 183 Re 187 Re 20 0.0017 0.969 0.994 1.006 1.005 0.831 0.993 1.006 0.995 0.991 1.046 40 0.0034 0.973 0.995 1.005 1.005 0.805 0.994 1.005 0.995 0.991 1.046 60 0.0052 0.976 0.996 1.005 1.005 0.860 0.994 1.005 0.996 0.991 1.046 0.0052 0.976 0.996 1.005 1.004 0.869 0.995 1.005 0.996 0.992 1.035 0.0069 0.979 0.996 1.004 1.003 0.889 0.996 1.004 0.997 0.993 1.035 0.0069 0.983 0.997 1.003 1.003 0.911 0.996 1.004 0.997 0.993 1.035 1.000 0.0086 0.983 0.997 1.003 1.003 0.911 0.996 1.003 0.997 0.994 1.025 1.200 1.010 0.0121 0.990 0.998 1.002 1.002 0.962 0.998 1.002 0.999 0.996 1.015 1.000 0.001 0.001 0.001 0.991 0.999 0.997 0.995 1.015 1.000 0.001 0.001 0.001 0.005 0.999 0.002 0.999 0.997 1.011 1.000 0.001 0.000 0.001 0.000 0.005 0.001 0.000 0.000 0.998 1.005 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.002 0.001 0.000 0.000 0.999 0.002 0.999 1.002 0.001 0.000 0.000 0.999 0.002 0.001 0.000 0.000 0.999 0.002 0.001 0.000 0.000 0.999 0.002 0.001 0.000 0.000 0.999 0.002 0.001 0.000 0.000 0.999 0.002 0.001 0.000 0.000 0.999 0.002 0.001 0.000 0.000 0.000 0.000 0.999 0.002 0.001 0.0000 0.0000 0.0000 0.0000 0.0	200 0.0017 0.969 0.994 1.006 1.005 0.831 0.993 1.006 0.995 0.991 1.046 400 0.0034 0.973 0.995 1.005 1.005 0.850 0.994 1.005 0.995 0.991 1.040 60 0.0052 0.976 0.996 1.005 1.004 0.869 0.995 1.005 0.996 0.992 1.035 80 0.0069 0.979 0.996 1.004 1.003 0.889 0.995 1.005 0.996 0.992 1.035 80 0.0069 0.983 0.997 1.003 1.003 0.889 0.996 1.004 0.997 0.993 1.031 100 0.0086 0.983 0.997 1.003 1.003 0.991 0.996 1.004 0.997 0.993 1.032 120 0.0103 0.987 0.997 1.003 1.003 0.991 0.997 0.997 0.994 1.025 120 0.0103 0.987 0.999 1.002 1.002 0.962 0.998 1.002 0.999 0.995 1.020 140 0.0121 0.990 0.999 1.002 1.002 0.962 0.998 1.002 0.999 0.996 1.015 160 0.0138 0.994 0.999 1.001 1.001 0.991 0.999 1.002 0.999 0.996 1.015 180 0.0155 0.998 1.000 1.001 1.001 1.006 0.999 1.002 0.999 0.997 1.011 180 0.0155 0.998 1.000 1.001 1.001 1.065 1.000 1.000 1.000 0.997 1.002 220 0.0190 1.006 1.001 0.000 1.006 1.005 1.000 1.000 1.000 0.999 1.002 220 0.0190 1.006 1.001 0.999 0.999 1.111 1.001 1.000 1.000 0.999 1.002 240 0.0207 1.010 1.002 0.999 0.999 1.166 1.002 0.999 1.002 1.001 0.993 260 0.0224 1.013 1.002 0.999 0.998 1.204 0.099 1.002 1.001 0.993 280 0.0241 1.017 1.003 0.997 0.997 1.354 1.002 0.998 1.002 1.002 0.988 293 0.0253 1.020 1.003 0.997 0.997 1.389 1.004 0.997 1.003 1.004 0.985 293 0.0253 1.020 1.003 0.996 0.996 1.389 1.004 0.997 1.003 1.004 0.983 300 0.0258 1.021 1.003 0.996 0.996 1.484 1.005 0.996 1.004 1.005 0.977 340 0.0293 1.029 1.005 0.996 0.995 1.589 1.005 0.996 1.004 1.005 0.977 340 0.0276 1.025 1.004 0.996 0.995 1.589 1.005 0.996 1.004 1.007 0.973 360 0.0310 1.033 1.005 0.994 0.994 1.829 1.007 0.994 1.005 1.008 0.970 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.008 0.970 380 0.0327 1.038 1.006 0.994 0.995 1.389 1.005 0.996 1.004 1.007 0.993 360 0.0310 1.055 1.008 0.999 0.999 1.2554 1.009 0.993 1.007 1.011 0.959 440 0.0344 1.055 1.008 0.999 0.999 1.2554 1.009 0.991 1.009 1.016 0.946 420 0.0366 1.001 0.090 0.995 0.995 1.389 1.005 0.996 1.004 1.007 0.991 0.990 380 0.0327 1.038 1.006 0.994 0.999 0.999 1.001 0.099 1.009 1.010			177	170		190 2		191-		102	105-	107-
20	20	T(K)	E(eV)	17/Hf	178 H f	179 H f	$^{180}{ m Hf}$	180 Ta	¹⁸¹ Ta	^{180}W	^{182}W	185Re	18/Re
40 0.0034 0.973 0.995 1.005 1.005 0.850 0.994 1.005 0.995 0.991 1.046 60 0.0052 0.976 0.996 1.005 1.004 0.869 0.995 1.005 0.996 0.992 1.035 80 0.0069 0.976 0.996 1.003 1.003 0.889 0.996 1.004 0.997 0.993 1.030 100 0.0086 0.983 0.997 1.003 1.003 0.911 0.996 1.003 0.997 0.993 1.030 100 0.0086 0.983 0.997 1.003 1.003 0.911 0.996 1.003 0.997 0.994 1.022 120 0.0103 0.987 0.997 1.003 1.003 0.911 0.996 1.003 0.997 0.994 1.022 1.000 0.103 0.994 0.999 1.001 1.003 0.995 0.998 1.002 0.999 0.999 0.994 1.022 0.999 1.001 1.001 0.100 0.999 0.997 1.011 1.101 0.101 0.101 0.101 0.101 0.100 0.100 0.999 0.999 1.002 0.001 0.001 0.001 0.000 0.000 0.999 0.999 1.002 0.001 0.001 0.000 0.000 0.999 0.999 1.002 0.001 0.001 0.000 0.000 0.000 0.999 0.999 1.002 0.001 0.001 0.000 0.999 0.999 1.101 0.000 0.000 0.999 0.999 1.002 0.002 0.0024 0.0020 0.0024 0.002 0.999 0.999 0.999 1.106 0.002 0.998 0.0231 0.002 0.998 0.0233 0.0233 0.020 0.033 0.099 0.999 1.304 0.003 0.997 0.997 1.304 0.003 0.998 0.0233 0.020 0.023 0.020 0.003 0.997 0.997 1.304 0.003 0.998 0.0233 0.004 0.982 0.0233 0.002 0.0053 0.002 0.0053 0.995 0.995 0.995 1.388 0.004 0.997 0.003 0.004 0.982 0.0024 0.0207 0.005 0.005 0.995 0.995 0.995 0.995 0.995 0.004 0.004 0.982 0.0024 0.0020 0.005 0.005 0.005 0.995 0.995 0.995 0.005 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.995 0.005	40												
60 0.0052 0.976 0.996 1.005 1.004 0.869 0.995 1.005 0.996 0.992 1.035 80 0.0069 0.979 0.9996 1.004 1.003 0.889 0.996 1.004 0.0907 0.993 1.030 1.000 0.0086 0.983 0.997 1.003 1.003 0.911 0.996 1.004 0.997 0.994 1.025 1.20 0.0103 0.987 0.997 1.003 1.003 0.911 0.996 1.003 0.997 0.994 1.025 1.20 0.0103 0.997 0.998 1.002 1.002 0.962 0.998 1.002 0.999 0.995 1.020 1.016 0.0138 0.994 0.999 1.001 1.001 0.996 0.996 1.003 0.997 0.995 1.020 0.016 0.0153 0.998 1.000 1.001 1.001 0.991 0.999 1.002 0.999 0.999 0.997 1.011 1.000 0.155 0.998 1.000 1.001 1.001 1.002 0.999 1.002 0.999 0.999 1.006 0.0172 1.002 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.002 0.0172 1.002 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.002 0.0101 0.000 0.999 1.002 0.0101 0.000 0.999 1.002 0.0100 0.0106 1.001 0.999 0.999 1.111 1.001 1.000 1.000 1.000 0.999 1.002 0.0100 0.0100 0.0224 1.013 1.002 0.999 0.999 1.166 1.002 0.999 1.002 1.001 0.993 0.0241 1.017 1.003 0.997 0.997 1.358 1.004 0.997 1.003 1.004 0.985 0.0241 1.017 1.003 0.996 0.997 1.358 1.004 0.997 1.003 1.004 0.985 0.0253 1.020 1.003 0.996 0.996 1.484 1.005 0.996 1.004 1.005 0.997 0.997 1.358 1.004 0.997 1.003 1.004 0.981 0.000 0.0258 1.021 1.003 0.996 0.996 1.484 1.005 0.996 1.004 1.007 0.973 0.000 0.0274 1.025 1.004 0.996 0.996 1.484 1.005 0.996 1.004 1.007 0.973 0.000 0.0274 1.025 1.004 0.996 0.996 1.484 1.005 0.996 1.004 1.007 0.973 0.000 0.0274 1.025 1.004 0.996 0.996 1.484 1.005 0.996 1.004 1.007 0.973 0.000 0.0274 1.025 1.004 0.996 0.996 1.484 1.005 0.996 1.004 1.007 0.973 0.000 0.0310 1.033 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.007 0.973 0.900 0.0310 1.033 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.007 0.973 0.000 0.0310 1.033 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.007 0.903 0.0071 0.000 0.006 0.00006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0	60 0.0052 0.976 0.996 1.004 1.003 0.889 0.995 1.005 0.996 0.992 1.035 1.030 100 0.0086 0.983 0.997 0.994 1.004 1.003 0.889 0.996 1.004 0.997 0.993 1.030 1.003 0.911 0.996 1.003 0.997 0.994 1.025 1.20 0.0103 0.987 0.997 0.994 1.025 1.20 0.0103 0.987 0.997 0.994 1.025 1.20 0.0103 0.987 0.999 0.996 1.003 0.997 0.995 1.020 1.003 1.003 0.935 0.997 1.003 0.997 0.995 1.020 1.003 1.003 0.935 0.997 1.003 0.997 0.995 1.020 1.003 1.003 0.935 0.997 1.003 0.997 0.995 1.020 1.003 1.003 0.935 0.997 1.003 0.997 0.995 1.020 1.003 1.003 0.035 0.998 1.002 0.999 0.996 1.015 1.003 0.035 0.035 0.035 0.035 0.035 0.005 0.0	20	0.0017	0.969		1.006	1.005	0.831		1.006			
60 0.0052 0.976 0.996 1.005 1.004 0.869 0.995 1.005 0.996 0.992 1.035 80 0.0069 0.979 0.9996 1.004 1.003 0.889 0.996 1.004 0.0907 0.993 1.030 1.000 0.0086 0.983 0.997 1.003 1.003 0.911 0.996 1.004 0.997 0.994 1.025 1.20 0.0103 0.987 0.997 1.003 1.003 0.911 0.996 1.003 0.997 0.994 1.025 1.20 0.0103 0.997 0.998 1.002 1.002 0.962 0.998 1.002 0.999 0.995 1.020 1.016 0.0138 0.994 0.999 1.001 1.001 0.996 0.996 1.003 0.997 0.995 1.020 0.016 0.0153 0.998 1.000 1.001 1.001 0.991 0.999 1.002 0.999 0.999 0.997 1.011 1.000 0.155 0.998 1.000 1.001 1.001 1.002 0.999 1.002 0.999 0.999 1.006 0.0172 1.002 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.002 0.0172 1.002 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.002 0.0101 0.000 0.999 1.002 0.0101 0.000 0.999 1.002 0.0100 0.0106 1.001 0.999 0.999 1.111 1.001 1.000 1.000 1.000 0.999 1.002 0.0100 0.0100 0.0224 1.013 1.002 0.999 0.999 1.166 1.002 0.999 1.002 1.001 0.993 0.0241 1.017 1.003 0.997 0.997 1.358 1.004 0.997 1.003 1.004 0.985 0.0241 1.017 1.003 0.996 0.997 1.358 1.004 0.997 1.003 1.004 0.985 0.0253 1.020 1.003 0.996 0.996 1.484 1.005 0.996 1.004 1.005 0.997 0.997 1.358 1.004 0.997 1.003 1.004 0.981 0.000 0.0258 1.021 1.003 0.996 0.996 1.484 1.005 0.996 1.004 1.007 0.973 0.000 0.0274 1.025 1.004 0.996 0.996 1.484 1.005 0.996 1.004 1.007 0.973 0.000 0.0274 1.025 1.004 0.996 0.996 1.484 1.005 0.996 1.004 1.007 0.973 0.000 0.0274 1.025 1.004 0.996 0.996 1.484 1.005 0.996 1.004 1.007 0.973 0.000 0.0274 1.025 1.004 0.996 0.996 1.484 1.005 0.996 1.004 1.007 0.973 0.000 0.0310 1.033 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.007 0.973 0.900 0.0310 1.033 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.007 0.973 0.000 0.0310 1.033 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.007 0.903 0.0071 0.000 0.006 0.00006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0	60 0.0052 0.976 0.996 1.004 1.003 0.889 0.995 1.005 0.996 0.992 1.035 1.030 100 0.0086 0.983 0.997 0.994 1.004 1.003 0.889 0.996 1.004 0.997 0.993 1.030 1.003 0.911 0.996 1.003 0.997 0.994 1.025 1.20 0.0103 0.987 0.997 0.994 1.025 1.20 0.0103 0.987 0.997 0.994 1.025 1.20 0.0103 0.987 0.999 0.996 1.003 0.997 0.995 1.020 1.003 1.003 0.935 0.997 1.003 0.997 0.995 1.020 1.003 1.003 0.935 0.997 1.003 0.997 0.995 1.020 1.003 1.003 0.935 0.997 1.003 0.997 0.995 1.020 1.003 1.003 0.935 0.997 1.003 0.997 0.995 1.020 1.003 1.003 0.035 0.998 1.002 0.999 0.996 1.015 1.003 0.035 0.035 0.035 0.035 0.035 0.005 0.0	40	0.0034	0.973	0.995	1.005	1.005	0.850	0.994	1.005	0.995	0.991	1.040
80 0.0069 0.979 0.996 1.004 1.003 0.889 0.996 1.004 0.997 0.993 1.030 100 0.0086 0.983 0.997 1.003 1.003 0.911 0.996 1.003 0.997 0.994 1.025 120 0.0103 0.987 0.997 1.003 1.003 0.935 0.997 1.003 0.997 0.995 1.020 140 0.0121 0.990 0.998 1.002 1.002 0.962 0.998 1.002 0.999 0.995 1.015 160 0.0138 0.994 0.999 1.001 1.001 0.001 1.001 0.991 0.999 1.002 0.999 0.997 1.011 180 0.0155 0.998 1.000 1.001 1.001 1.001 1.026 0.999 1.001 1.000 0.998 1.002 200 0.0172 1.002 1.000 1.000 1.000 1.005 1.005 1.005 1.000 0.998 1.002 220 0.0190 1.006 1.001 0.099 0.999 1.111 1.001 1.000 1.001 1.000 0.993 1.002 220 0.0274 1.013 1.002 0.998 0.998 1.230 1.002 0.998 1.002 1.001 0.993 260 0.0224 1.013 1.002 0.998 0.998 1.230 1.002 0.998 1.002 1.001 0.993 280 0.0241 1.017 1.003 0.997 0.997 1.358 1.004 0.997 1.003 1.004 0.985 293 0.0253 1.020 1.003 0.997 0.997 1.358 1.004 0.997 1.003 1.004 0.985 300 0.0258 1.021 1.003 0.996 0.997 1.389 1.004 0.997 1.003 1.004 0.983 320 0.0258 1.021 1.003 0.996 0.997 1.389 1.004 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.996 1.844 1.005 0.996 1.004 1.005 0.977 340 0.0293 1.029 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.007 0.973 360 0.0310 1.033 1.005 0.994 0.995 1.589 1.005 0.996 1.004 1.007 0.973 360 0.0310 1.033 1.005 0.994 0.995 1.704 1.006 0.995 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.001 0.962 420 0.0362 1.046 1.007 0.993 0.993 1.961 1.008 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.959 540 0.0431 1.064 1.010 0.990 0.990 0.991 2.554 1.010 0.991 1.009 1.015 0.949 550 0.0431 1.065 1.035 1.008 0.993 0.995 1.589 1.003 0.044 1.005 1.009 0.900 0.990 0.991 2.554 1.010 0.991 1.009 1.015 0.949 560 0.0482 1.078 1.012 0.988 0.988 0.989 3.039 1.013 0.099 1.016 0.946 500 0.0482 1.078 1.012 0.988 0.999 1.021 1.009 0.901 1.015 0.949 560 0.0482 1.078 1.015 1.008 0.999 0.990 0.991 1.0	80												
100	100	00		0.570									1.033
120	120							0.889		1.004			1.030
120	120	100	0.0086	0.983	0.997	1.003	1.003	0.911	0.996	1.003	0.997	0.994	1.025
140	140			0.087	0.007	1.003	1.003	0.035	0.007		0.007	0.005	1.020
160	160			0.967	0.997	1.003			0.557	1.003	0.997		1.020
180	180	140		0.990	0.998			0.962	0.998				1.015
180	180	160	0.0138	0.994	0.999	1.001	1.001	0.991	0.999	1.002	0.999	0.997	1.011
200 0.0172 1.002 1.000 1.000 1.000 1.005 1.000 1.000 1.000 0.999 1.002 220 0.0190 1.006 1.001 0.999 0.999 1.111 1.001 1.000 1.001 0.901 240 0.0207 1.010 1.002 0.999 0.999 1.116 1.002 0.999 1.002 1.001 0.993 260 0.0224 1.013 1.002 0.998 0.998 1.230 1.002 0.998 1.002 1.002 0.988 280 0.0241 1.017 1.003 0.997 0.997 1.304 1.003 0.998 1.003 1.004 0.985 293 0.0253 1.020 1.003 0.997 0.997 1.338 1.004 0.998 1.003 1.004 0.985 300 0.0258 1.021 1.003 0.996 0.997 1.338 1.004 0.997 1.003 1.004 0.982 300 0.0258 1.021 1.003 0.996 0.997 1.389 1.004 0.997 1.003 1.004 0.982 320 0.0276 1.025 1.004 0.996 0.996 1.484 1.005 0.996 1.004 1.005 0.977 340 0.0293 1.029 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.005 0.977 360 0.0310 1.033 1.005 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.973 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.0946 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.959 440 0.0396 1.055 1.008 0.991 0.992 2.247 1.009 0.993 1.007 1.012 0.956 460 0.0346 1.055 1.008 0.991 0.992 2.2398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.991 2.554 1.010 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.898 0.990 2.874 1.012 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.898 0.999 2.874 1.012 0.999 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0442 1.007 1.008 1.008 0.991 0.990 2.871 1.012 0.991 1.009 1.016 0.946 580 0.0500 1.083 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.088 1.012 1.022 0.933 600 0.0517 1.008 1.003 1.023 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0066 1.003 1.003 1.003 0.996 0.999 1.002 1.002 1.001 1.001 1.003 1.008 1.004 1.005 1.005 1.008 0.988 0.999 1.008 1.00	200			0 998	1.000	1.001	1.001	1.026	0 999		1.000		1.006
220 0.0190 1.006 1.001 0.999 0.999 1.111 1.001 1.000 1.001 1.000 0.997 240 0.0207 1.010 1.002 0.999 0.999 1.166 1.002 0.999 1.002 1.001 0.993 260 0.0224 1.013 1.002 0.998 0.998 1.230 1.002 0.999 1.002 1.001 0.993 280 0.0224 1.017 1.003 0.997 0.997 1.304 1.003 0.998 1.003 1.004 0.985 293 0.0253 1.020 1.003 0.997 0.997 1.338 1.004 0.998 1.003 1.004 0.985 293 0.0253 1.020 1.003 0.996 0.997 1.358 1.004 0.997 1.003 1.004 0.982 300 0.0258 1.021 1.003 0.996 0.997 1.358 1.004 0.997 1.003 1.004 0.982 300 0.0276 1.025 1.004 0.996 0.996 1.484 1.005 0.996 1.004 1.005 0.997 340 0.0293 1.029 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.007 0.973 340 0.0293 1.029 1.005 0.994 0.995 1.589 1.005 0.996 1.004 1.007 0.973 360 0.0310 1.033 1.005 0.994 0.995 1.589 1.005 0.996 1.004 1.007 0.973 360 0.0310 1.033 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.992 0.993 1.961 1.008 0.994 1.005 1.009 0.966 400 0.0346 1.045 1.007 0.992 0.993 2.101 1.008 0.994 1.007 1.011 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.994 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.992 2.238 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.991 2.554 1.010 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.303 1.013 0.989 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.303 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.898 3.330 1.013 0.988 1.012 1.020 0.933 560 0.0500 1.083 1.013 0.987 0.988 0.995 1.014 0.104 0.988 1.012 1.022 0.930 1.000 0.0086 1.003 1.023 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0066 1.003 1.003 1.023 1.016 0.988 0.999 1.015 1.015 1.005 1.010 1.001 1.003 1.008 1.008 1.008 1.008 1.009 1.000 0.0	220 0.0190 1.006 1.001 0.999 0.999 1.111 1.001 1.000 1.001 1.000 1.001 0.993 260 0.0224 1.013 1.002 0.998 0.998 1.230 1.002 0.998 1.002 1.002 0.908 280 0.0241 1.017 1.003 0.997 0.997 1.304 1.003 0.998 1.003 1.004 0.985 293 0.0253 1.020 1.003 0.997 0.997 1.304 1.003 0.998 1.003 1.004 0.985 300 0.0258 1.021 1.003 0.996 0.996 1.388 1.004 0.997 1.003 1.004 0.985 300 0.0258 1.021 1.003 0.996 0.996 1.388 1.004 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.996 1.484 1.005 0.996 1.004 1.005 0.997 340 0.0293 1.029 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.007 0.973 360 0.0310 1.033 1.005 0.994 0.994 1.829 1.007 0.994 1.005 1.008 0.996 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.009 0.906 400 0.0345 1.042 1.007 0.993 0.993 1.704 1.008 0.995 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.992 440 0.0369 1.051 1.008 0.991 0.992 2.247 1.009 0.993 1.007 1.011 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.238 1.010 0.992 1.008 1.013 0.955 460 0.0414 1.059 1.009 0.990 0.990 1.2554 1.010 0.991 1.009 1.105 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.105 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.106 0.945 520 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.011 1.018 0.933 560 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.011 1.019 0.936 580 0.0501 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.022 0.930 580 0.0501 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.022 0.930 580 0.0501 1.005 1.035 1.018 0.993 0.999 1.003 1.015 1.008 1.015 1.018 80 0.0069 1.003 1.003 1.015 1.008 0.988 0.999 1.018 1.016 1.010 1.018 0.939 580 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.022 0.930 580 0.0501 0.083 1.013 0.987 0.988 0.999 1.010 1.010 1.003 1.008 1.003 580 0.0500 1.083 1.013 0.987 0.988 0.999 1.009 0.999 0.9	200					1.001	1.020					
260 0.0224 1.013 1.002 0.998 0.998 1.230 1.002 0.998 1.002 1.002 0.988 280 0.0241 1.017 1.003 0.997 0.997 1.304 1.003 0.998 1.003 1.004 0.985 293 0.0253 1.020 1.003 0.997 0.997 1.358 1.004 0.997 1.003 1.004 0.982 300 0.0258 1.021 1.003 0.996 0.997 1.389 1.004 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.997 1.389 1.004 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.997 1.488 1.005 0.996 1.004 1.005 0.977 340 0.0293 1.029 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.005 0.977 360 0.0310 1.033 1.005 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.970 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.012 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.998 0.990 2.874 1.012 0.990 1.010 1.015 0.949 560 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.933 1.000 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.933 1.000 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.933 1.000 0.0013 1.003 1.015 1.008 0.988 0.995 1.013 1.015 1.008 1.015 1.018 1.018 1.018 1.000 0.0086 1.003 1.023 1.012 0.988 0.989 3.094 1.015 1.015 1.005 1.012 1.100 1.000 0.0086 1.003 1.023 1.012 0.988 0.989 0.995 1.013 1.015 1.005 1.012 1.100 1.001 1.003 1.006 1.008 1.008 1.008 1.008 1.008 1.008 1.009 1.000 0.0090 0.0013 1.003 1.005 1.008 1.008 0.998 0.995 1.001 1.000 0.0990 0.999 0.999 0.999 1.021 2.000 0	260 0.0224 1.013 1.002 0.998 0.998 1.230 1.002 0.998 1.002 1.002 0.989 280 0.0241 1.017 1.003 0.997 0.997 1.358 1.004 0.998 1.003 1.004 0.982 293 0.0253 1.020 1.003 0.997 0.997 1.358 1.004 0.997 1.003 1.004 0.982 300 0.0258 1.021 1.003 0.996 0.996 1.094 1.005 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.996 1.094 1.005 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.996 1.094 1.005 0.997 1.003 1.004 0.981 340 0.0293 1.029 1.005 0.995 0.995 1.899 1.005 0.996 1.004 1.005 0.977 340 0.0293 1.029 1.005 0.995 0.995 1.899 1.005 0.996 1.004 1.007 0.973 360 0.0310 1.033 1.006 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.970 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.008 0.970 4.000 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 1.907 1.010 0.993 4.000 0.0393 1.007 1.011 0.959 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.993 1.007 1.011 0.959 480 0.0414 1.059 1.009 0.990 0.990 2.713 1.011 0.099 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.980 9.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.989 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.0078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.0078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.000 1.005 1.035 1.018 0.987 0.988 3.350 1.015 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.350 1.015 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.350 1.015 0.989 1.010 1.018 0.939 560 0.0686 1.003 1.023 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0086 1.003 1.005 1.006 0.0086 0.993 0.995 1.003 1.005 1.006 1.005 1.006 1.005 1.006 0.006 1.006 0.006 1.006 0.008 0.998 0.999 1.0099 0.999 0.999 1.001 1.009 0.990 0.9						1.000	1.003	1.000	1.000			1.002
260 0.0224 1.013 1.002 0.998 0.998 1.230 1.002 0.998 1.002 1.002 0.988 280 0.0241 1.017 1.003 0.997 0.997 1.304 1.003 0.998 1.003 1.004 0.985 293 0.0253 1.020 1.003 0.997 0.997 1.358 1.004 0.997 1.003 1.004 0.982 300 0.0258 1.021 1.003 0.996 0.997 1.389 1.004 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.997 1.389 1.004 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.997 1.488 1.005 0.996 1.004 1.005 0.977 340 0.0293 1.029 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.005 0.977 360 0.0310 1.033 1.005 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.970 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.012 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.998 0.990 2.874 1.012 0.990 1.010 1.015 0.949 560 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.933 1.000 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.933 1.000 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.933 1.000 0.0013 1.003 1.015 1.008 0.988 0.995 1.013 1.015 1.008 1.015 1.018 1.018 1.018 1.000 0.0086 1.003 1.023 1.012 0.988 0.989 3.094 1.015 1.015 1.005 1.012 1.100 1.000 0.0086 1.003 1.023 1.012 0.988 0.989 0.995 1.013 1.015 1.005 1.012 1.100 1.001 1.003 1.006 1.008 1.008 1.008 1.008 1.008 1.008 1.009 1.000 0.0090 0.0013 1.003 1.005 1.008 1.008 0.998 0.995 1.001 1.000 0.0990 0.999 0.999 0.999 1.021 2.000 0	260 0.0224 1.013 1.002 0.998 0.998 1.230 1.002 0.998 1.002 1.002 0.989 280 0.0241 1.017 1.003 0.997 0.997 1.358 1.004 0.998 1.003 1.004 0.982 293 0.0253 1.020 1.003 0.997 0.997 1.358 1.004 0.997 1.003 1.004 0.982 300 0.0258 1.021 1.003 0.996 0.996 1.094 1.005 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.996 1.094 1.005 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.996 1.094 1.005 0.997 1.003 1.004 0.981 340 0.0293 1.029 1.005 0.995 0.995 1.899 1.005 0.996 1.004 1.005 0.977 340 0.0293 1.029 1.005 0.995 0.995 1.899 1.005 0.996 1.004 1.007 0.973 360 0.0310 1.033 1.006 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.970 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.008 0.970 4.000 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 1.907 1.010 0.993 4.000 0.0393 1.007 1.011 0.959 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.993 1.007 1.011 0.959 480 0.0414 1.059 1.009 0.990 0.990 2.713 1.011 0.099 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.980 9.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.989 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.0078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.0078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.000 1.005 1.035 1.018 0.987 0.988 3.350 1.015 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.350 1.015 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.350 1.015 0.989 1.010 1.018 0.939 560 0.0686 1.003 1.023 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0086 1.003 1.005 1.006 0.0086 0.993 0.995 1.003 1.005 1.006 1.005 1.006 1.005 1.006 0.006 1.006 0.006 1.006 0.008 0.998 0.999 1.0099 0.999 0.999 1.001 1.009 0.990 0.9	220	0.0190	1.006	1.001	0.999	0.999	1.111	1.001	1.000	1.001	1.000	0.997
260 0.0224 1.013 1.002 0.998 0.998 1.230 1.002 0.998 1.002 1.002 0.988 280 0.0241 1.017 1.003 0.997 0.997 1.304 1.003 0.998 1.003 1.004 0.985 293 0.0253 1.020 1.003 0.997 0.997 1.358 1.004 0.997 1.003 1.004 0.982 300 0.0258 1.021 1.003 0.996 0.997 1.389 1.004 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.997 1.389 1.004 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.997 1.488 1.005 0.996 1.004 1.005 0.977 340 0.0293 1.029 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.005 0.977 360 0.0310 1.033 1.005 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.970 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.012 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.998 0.990 2.874 1.012 0.990 1.010 1.015 0.949 560 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.933 1.000 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.933 1.000 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.933 1.000 0.0013 1.003 1.015 1.008 0.988 0.995 1.013 1.015 1.008 1.015 1.018 1.018 1.018 1.000 0.0086 1.003 1.023 1.012 0.988 0.989 3.094 1.015 1.015 1.005 1.012 1.100 1.000 0.0086 1.003 1.023 1.012 0.988 0.989 0.995 1.013 1.015 1.005 1.012 1.100 1.001 1.003 1.006 1.008 1.008 1.008 1.008 1.008 1.008 1.009 1.000 0.0090 0.0013 1.003 1.005 1.008 1.008 0.998 0.995 1.001 1.000 0.0990 0.999 0.999 0.999 1.021 2.000 0	260 0.0224 1.013 1.002 0.998 0.998 1.230 1.002 0.998 1.002 1.002 0.989 280 0.0241 1.017 1.003 0.997 0.997 1.358 1.004 0.998 1.003 1.004 0.982 293 0.0253 1.020 1.003 0.997 0.997 1.358 1.004 0.997 1.003 1.004 0.982 300 0.0258 1.021 1.003 0.996 0.996 1.094 1.005 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.996 1.094 1.005 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.996 1.094 1.005 0.997 1.003 1.004 0.981 340 0.0293 1.029 1.005 0.995 0.995 1.899 1.005 0.996 1.004 1.005 0.977 340 0.0293 1.029 1.005 0.995 0.995 1.899 1.005 0.996 1.004 1.007 0.973 360 0.0310 1.033 1.006 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.970 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.008 0.970 4.000 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 1.907 1.010 0.993 4.000 0.0393 1.007 1.011 0.959 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.993 1.007 1.011 0.959 480 0.0414 1.059 1.009 0.990 0.990 2.713 1.011 0.099 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.980 9.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.989 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.0078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.0078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.000 1.005 1.035 1.018 0.987 0.988 3.350 1.015 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.350 1.015 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.350 1.015 0.989 1.010 1.018 0.939 560 0.0686 1.003 1.023 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0086 1.003 1.005 1.006 0.0086 0.993 0.995 1.003 1.005 1.006 1.005 1.006 1.005 1.006 0.006 1.006 0.006 1.006 0.008 0.998 0.999 1.0099 0.999 0.999 1.001 1.009 0.990 0.9	240	0.0207	1.010	1 002	0 999	0 999	1 166	1 002	0 999	1 002	1 001	0 993
280	280 0.0241 1.017 1.003 0.997 0.997 1.304 1.003 0.998 1.003 1.004 0.985 2.933 00.0258 1.021 1.003 0.996 0.997 1.389 1.004 0.997 1.003 1.004 0.985 3200 0.0258 1.021 1.003 0.996 0.997 1.389 1.004 0.997 1.003 1.004 0.981 3200 0.0258 1.025 1.004 0.996 0.996 1.004 0.996 1.005 0.997 3.360 0.0310 1.033 1.005 0.995 0.996 1.589 1.005 0.996 1.004 1.005 0.997 3.360 0.0310 1.033 1.005 0.994 0.995 1.589 1.005 0.996 1.004 1.007 0.973 3.60 0.0310 1.033 1.005 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.970 3.80 0.0327 1.038 1.006 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.970 4.00 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.005 1.009 0.966 4.00 0.0345 1.046 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.952 440 0.0379 1.051 1.008 0.991 0.992 2.398 1.010 0.993 1.007 1.011 0.956 4.00 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.991 2.554 1.010 0.991 1.009 1.015 0.949 5.00 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 5.00 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.016 0.946 5.00 0.0448 1.069 1.010 0.988 0.989 3.039 1.013 0.991 1.009 1.016 0.946 5.00 0.0448 1.069 1.010 0.988 0.989 3.00 1.010 0.991 1.009 1.016 0.946 5.00 0.0448 1.068 1.012 0.988 0.989 3.094 1.013 0.987 0.998 1.010 1.017 0.942 5.00 0.0448 1.008 1.013 0.987 0.988 3.536 1.015 0.988 1.011 1.019 0.936 5.00 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.017 0.942 5.00 0.0086 1.003 1.003 1.015 0.988 0.989 3.039 1.013 0.989 1.010 1.017 1.017 1.143 6.0 0.0052 1.004 1.007 1.014 0.988 0.989 3.039 1.013 0.989 1.010 1.007 1.017 1.143 6.0 0.0069 1.003 1.023 1.016 0.985 0.995 1.013 1.019 1.007 1.017 1.143 6.0 0.0068 1.003 1.020 1.010 0.986 0.995 1.013 1.015 1.008 1.019 1.023 1.000 1.0	260		1.013	1.002	0.008		1 220	1.002	0.008			0.000
293	293 0.0253 1.020 1.003 0.997 0.997 1.358 1.004 0.997 1.003 1.004 0.982 300 0.0258 1.021 1.003 0.996 0.996 1.004 1.005 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.996 0.996 1.004 1.005 0.997 340 0.0293 1.029 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.005 0.977 380 0.0237 1.038 1.006 0.994 0.994 1.829 1.007 0.996 1.004 1.007 0.973 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.008 0.970 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.009 0.904 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.991 0.992 2.238 1.009 0.993 1.007 1.011 0.959 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.990 2.713 1.011 0.0991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.017 0.942 540 0.0462 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0341 1.005 1.035 1.018 0.987 0.988 3.370 1.014 0.988 1.012 1.020 0.933 580 0.0500 1.883 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.022 0.930 600 0.0517 1.088 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.022 0.930 600 0.0517 1.088 1.013 0.987 0.988 0.999 1.021 1.019 1.007 1.017 1.042 0.983 1.000 0.0866 1.003 1.023 1.016 0.985 0.995 1.013 1.015 1.008 1.015 1.019 8.000 0.0000 0.0000 0.0000 0.00000 0.000			1.013		0.220		1.230					0.707
293	293 0.0253 1.020 1.003 0.997 0.997 1.358 1.004 0.997 1.003 1.004 0.982 300 0.0258 1.021 1.003 0.996 0.996 1.004 1.005 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.996 0.996 1.005 0.094 1.005 0.997 3.00 0.0293 1.029 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.005 0.977 380 0.0237 1.038 1.006 0.994 0.994 1.0995 1.704 1.006 0.995 1.005 1.008 0.970 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.008 0.970 4.00 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.011 0.959 440 0.0399 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.011 0.959 480 0.0414 1.059 1.009 0.990 0.990 0.991 2.554 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0432 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0452 1.073 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 1.000 0.000 0.000 0.00000 0.0	280	0.0241	1.01/	1.003	0.997	0.997	1.304	1.003	0.998	1.003		0.985
300 0.0258 1.021 1.003 0.996 0.997 1.389 1.004 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.996 1.484 1.005 0.996 1.004 1.005 0.977 340 0.0293 1.029 1.005 0.995 0.995 1.589 1.005 0.996 1.004 1.007 0.973 360 0.0310 1.033 1.005 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.970 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.008 0.970 40 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.992 2.247 1.009 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.012 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0448 1.064 1.010 0.989 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.064 1.010 0.988 0.989 3.039 1.013 0.989 1.010 1.011 0.91 560 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0510 1.083 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 0.0068 1.003 1.023 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.016 0.985 0.995 1.013 1.012 1.002 1.003 1.003 1.023 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 1.00 0.0086 1.003 1.023 1.016 0.985 0.995 1.013 1.012 1.005 1.010 1.083 1.00 0.0086 1.003 1.023 1.016 0.985 0.995 1.013 1.012 1.005 1.010 1.083 1.00 0.0151 1.008 1.003 1.023 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 1.000 0.0153 1.003 1.002 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 1.000 0.0153 1.000 1.000 1.000 0.995 0.998 1.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.999 1.002 1.000 1.000 1.001	300 0.0258 1.021 1.003 0.996 0.997 1.389 1.004 0.997 1.003 1.004 0.981 320 0.0276 1.025 1.004 0.996 0.996 1.004 1.005 0.977 340 0.0293 1.029 1.005 0.994 0.996 1.095 1.095 0.996 1.004 1.007 0.973 360 0.0310 1.033 1.005 0.994 0.995 1.095 1.589 1.005 0.996 1.004 1.007 0.973 380 0.0327 1.038 1.006 0.994 0.995 1.005 0.996 1.004 1.007 0.993 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.008 0.976 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.959 440 0.0350 1.055 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.011 0.959 440 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.991 2.554 1.010 0.991 1.009 1.015 0.996 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.998 0.990 2.874 1.012 0.990 1.016 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.998 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.017 0.942 580 0.0500 1.083 1.013 0.987 0.988 3.730 1.013 0.989 1.010 1.017 0.942 580 0.0500 1.083 1.013 0.987 0.988 3.730 1.014 0.988 1.012 1.022 0.930 1.016 0.0086 1.003 1.023 1.016 0.976 0.992 1.021 1.009 88 1.012 1.022 0.930 1.016 0.0086 1.003 1.023 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.988 0.989 3.039 1.013 0.988 1.012 1.022 0.933 1.000 0.0086 1.003 1.020 1.010 0.988 0.999 1.001 1.001 1.003 1.008 1.006 1.008 1.009 1.009 0.990 0.991 1.023 1.021 1.009 1.000 1.001 1.001 1.003 1.005 1.000 1.000 1.000 0.0086 1.003 1.020 1.010 0.988 0.995 1.013 1.011 1.001 1.003 1.008 1.005 1.012 1.000 1.000 0.0086 1.003 1.020 1.010 0.988 0.995 1.013 1.010 1.000 1.003 1.005 1.001 1.000 0.0086 1.003 1.020 1.010 0.988 0.999 1.005 1.005 1.001 1.001 1.003 1.008 1.006 1.005 0.999	293	0.0253	1.020	1.003	0.997	0.997	1.358	1.004	0.997	1.003	1.004	0.982
320	320 0.0276 1.025 1.004 0.996 0.996 1.484 1.005 0.996 1.004 1.005 0.973 340 0.0293 1.029 1.005 0.995 0.995 1.898 1.005 0.996 1.004 1.007 0.973 360 0.0310 1.033 1.005 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.973 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.008 0.976 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.005 1.009 0.966 400 0.0362 1.046 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.993 0.993 2.101 1.008 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.012 0.956 460 0.0396 1.055 1.008 0.992 0.992 2.274 1.009 0.993 1.007 1.012 0.956 460 0.0346 1.055 1.008 0.992 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.990 2.554 1.010 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.989 0.990 2.874 1.012 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.011 1.018 0.936 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.011 1.018 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 T(K) E(eV) 1860s 1870s 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0036 1.003 1.022 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0050 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.022 0.930 100 0.0051 1.004 1.027 1.014 0.985 0.995 1.013 1.012 1.002 1.014 1.022 1.024 100 0.0131 1.002 1.012 1.008 0.998 0.995 1.013 1.012 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.010 1.003 1.008 1.064 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 0.998 0.995 1.003 1.000 0.999 0.999 0.998 1220 0.0103 1.003 0.906 0.975 0.998 0.999 1.000 0.999 0.999 0.999 0.999 1220 0.0109 0.000 0.990 0.993 0.995 0.999 0.999 0.999	300		1.021	1.003			1 389		0.997			0.981
360 0.0310 1.033 1.005 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.970 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.012 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.991 2.554 1.010 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.999 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.010 1.018 0.939 560 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.022 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 T(K) E(eV) 1860s 1870s 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.999 1.008 1.007 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.995 0.998 1.005 1.005 1.002 1.004 1.042 180 0.0155 1.001 1.004 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 0.999 0.999 0.999 1.021 220 0.0190 1.000 0.999 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.998 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003	360 0.0310 1.038 1.005 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.976 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.994 1.006 1.010 0.962 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.011 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.2398 1.010 0.992 1.008 1.013 0.955 480 0.0414 1.059 1.009 0.990 0.990 2.2398 1.010 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.999 0.990 2.713 1.011 0.991 1.009 1.016 0.945 520 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.204 1.014 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.988 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.536 1.015 0.988 1.011 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 1.016 0.0086 1.003 1.023 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.008 1.019 1.173 60 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.012 0.988 0.995 1.013 1.012 1.005 1.010 1.088 1.020 0.013 1.003 1.015 1.008 0.988 0.996 1.010 1.010 1.003 1.008 1.068 1.004 1.003 0.998 0.999 1.002 1.002 1.001 1.001 1.003 1.006 1.054 1.000 0.0034 1.002 1.001 1.004 1.003 0.998 0.999 1.002 1.002 1.001 1.001 1.003 1.008 1.008 1.008 1.008 1.009 0.999 0.999 0.993 0.999 0.99					0.770		1.307					0.701
360 0.0310 1.033 1.005 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.970 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.012 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.991 2.554 1.010 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.999 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.010 1.018 0.939 560 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.022 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 T(K) E(eV) 1860s 1870s 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.999 1.008 1.007 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.995 0.998 1.005 1.005 1.002 1.004 1.042 180 0.0155 1.001 1.004 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 0.999 0.999 0.999 1.021 220 0.0190 1.000 0.999 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.998 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003	360 0.0310 1.038 1.005 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.976 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.994 1.006 1.010 0.962 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.011 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.2398 1.010 0.992 1.008 1.013 0.955 480 0.0414 1.059 1.009 0.990 0.990 2.2398 1.010 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.999 0.990 2.713 1.011 0.991 1.009 1.016 0.945 520 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.204 1.014 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.988 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.536 1.015 0.988 1.011 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 1.016 0.0086 1.003 1.023 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.008 1.019 1.173 60 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.012 0.988 0.995 1.013 1.012 1.005 1.010 1.088 1.020 0.013 1.003 1.015 1.008 0.988 0.996 1.010 1.010 1.003 1.008 1.068 1.004 1.003 0.998 0.999 1.002 1.002 1.001 1.001 1.003 1.006 1.054 1.000 0.0034 1.002 1.001 1.004 1.003 0.998 0.999 1.002 1.002 1.001 1.001 1.003 1.008 1.008 1.008 1.008 1.009 0.999 0.999 0.993 0.999 0.99	320	0.0276	1.025	1.004	0.996	0.996	1.484	1.005	0.996	1.004		0.977
360 0.0310 1.033 1.005 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.970 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.012 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.991 2.554 1.010 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.999 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.010 1.018 0.939 560 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.022 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 T(K) E(eV) 1860s 1870s 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.999 1.008 1.007 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.995 0.998 1.005 1.005 1.002 1.004 1.042 180 0.0155 1.001 1.004 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 0.999 0.999 0.999 1.021 220 0.0190 1.000 0.999 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.998 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003	360 0.0310 1.038 1.005 0.994 0.995 1.704 1.006 0.995 1.005 1.008 0.976 380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.994 1.006 1.010 0.962 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.011 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.2398 1.010 0.992 1.008 1.013 0.955 480 0.0414 1.059 1.009 0.990 0.990 2.2398 1.010 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.999 0.990 2.713 1.011 0.991 1.009 1.016 0.945 520 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.204 1.014 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.988 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.536 1.015 0.988 1.011 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 1.016 0.0086 1.003 1.023 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.008 1.019 1.173 60 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.012 0.988 0.995 1.013 1.012 1.005 1.010 1.088 1.020 0.013 1.003 1.015 1.008 0.988 0.996 1.010 1.010 1.003 1.008 1.068 1.004 1.003 0.998 0.999 1.002 1.002 1.001 1.001 1.003 1.006 1.054 1.000 0.0034 1.002 1.001 1.004 1.003 0.998 0.999 1.002 1.002 1.001 1.001 1.003 1.008 1.008 1.008 1.008 1.009 0.999 0.999 0.993 0.999 0.99	340	0.0293	1.029	1.005	0.995	0.995	1.589	1.005	0.996	1.004	1.007	0.973
380	380 0.0327 1.038 1.006 0.994 0.994 1.829 1.007 0.994 1.005 1.009 0.966 400 0.0345 1.042 1.007 0.993 0.993 1.011 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.955 460 0.0396 1.055 1.008 0.991 0.992 2.247 1.009 0.993 1.007 1.011 0.955 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.991 2.354 1.010 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.091 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.998 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.303 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.303 1.013 0.989 1.011 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.022 0.933 580 0.0500 1.083 1.013 0.987 0.988 3.336 1.015 0.988 1.012 1.022 0.930 1.014 0.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 0.006 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.002 0.936 1.000 0.0086 1.003 1.023 1.012 0.988 0.996 1.013 1.012 1.002 1.010 1.003 1.003 1.003 1.003 1.015 1.008 0.998 0.997 1.008 1.007 1.003 1.008 1.008 1.009 1.009 0.999 0.999 1.001 1.010 1.003 1.008 1.008 1.009 0.0099 0.999 0.999 1.000 0.0099 0.999 0.999 1.000 0.0099 0.999 0.999 0.993 0.998 0.995 0.998 0.995 0.998 0.995 0.998 0.995 0.998 0.995 0.998 0.995 0.998 0.995 0.998 0.995 0.998 0.995 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.099 0.999	360	0.0310	1.033	1 005	0.994	0 995	1 704	1 006	0 995		1.008	0.970
400 0.0345 1.042 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.012 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.991 2.554 1.010 0.992 1.008 1.013 0.952 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.015 0.949 500 0.0448 1.069 1.010 0.998 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 600 0.0517 1.008 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.006 1.015 1.119 80 0.0068 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.013 1.003 1.015 1.008 0.995 0.995 1.013 1.012 1.005 1.010 1.083 1.20 0.0103 1.003 1.015 1.008 0.998 0.999 1.001 1.001 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.001 1.001 1.031 1.001 1.003 1.008 1.006 1.005 1.000 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 1.000 0.0172 1.000 0.999 0.999 1.001 1.000 0.999 0.999 0.999 1.021 2.000 0.0172 1.000 1.000 1.000 1.002 1.001 1.000 0.999 0.999 0.999 1.021 2.000 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 0.999 0.999 0.999 1.002 0.997 0.999	400 0.0345 1.046 1.007 0.993 0.993 1.961 1.008 0.994 1.006 1.010 0.962 420 0.0362 1.046 1.007 0.992 0.993 1.010 1.008 0.993 1.007 1.011 0.959 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.011 0.959 440 0.0379 1.055 1.008 0.991 0.992 2.388 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.991 2.554 1.010 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 0.991 2.554 1.010 0.991 1.009 1.015 0.949 500 0.0448 1.069 1.010 0.998 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.988 0.990 2.713 1.011 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.024 1.014 0.989 1.011 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.022 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.330 1.015 0.988 1.012 1.022 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.933 600 0.0500 1.003 1.023 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.010 0.985 0.995 1.013 1.012 1.005 1.012 1.100 1.003 1.008 1.008 1.003 1.003 1.015 1.008 0.988 0.999 1.008 1.007 1.003 1.008 1.068 1.068 1.004 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.008 1.068 1.068 1.008 1.009 0.999 0.9			1 029				1 820		0.004			
420	420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.956 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.012 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.348 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.991 2.554 1.010 0.991 1.009 1.016 0.946 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.570 1.014 0.988 1.012 1.020 0.933 580 0.0500 1.083 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 T(K) E(eV)			1.038	1.000	0.994	0.334	1.029	1.007	0.774	1.003		0.900
420	420 0.0362 1.046 1.007 0.992 0.993 2.101 1.008 0.993 1.007 1.011 0.956 440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.012 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.991 2.554 1.010 0.992 1.008 1.013 0.952 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.010 1.018 0.939 580 0.0500 1.083 1.013 0.987 0.988 3.506 1.014 0.988 1.012 1.020 0.933 580 0.0500 1.083 1.013 0.987 0.988 3.506 1.015 0.988 1.012 1.022 0.930 T(K) E(eV)			1.042				1.961		0.994			0.962
440 0.0379 1.051 1.008 0.992 0.992 2.247 1.009 0.993 1.007 1.012 0.956 460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.990 0.991 2.554 1.010 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 1.014 0.0034 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.022 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.010 1.003 1.008 1.068 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.008 1.068 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.001 1.001 1.001 1.031 2.00 0.0172 1.000 1.000 1.002 1.001 1.005 1.001 1.001 1.003 1.006 1.054 1.000 0.0172 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.001 0.999 0.999 1.002 1.002 1.001 1.001 1.001 1.031 2.000 0.0172 1.000 1.000 0.996 1.001 1.005 1.001 0.997 0.999 0.999 1.021 2.000 0.0172 1.000 1.000 0.999 0.999 1.001 1.000 0.999 0.999 0.999 0.999 1.001 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.9	440	420	0.0362	1.046	1.007	0.992	0.993	2.101	1.008	0.993	1.007	1.011	0.959
460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.991 2.554 1.010 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.010 1.018 0.939 580 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 T(K) E(eV)	460 0.0396 1.055 1.008 0.991 0.992 2.398 1.010 0.992 1.008 1.013 0.952 480 0.0414 1.059 1.009 0.990 0.991 2.554 1.010 0.991 1.009 1.015 0.949 500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 1.010 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 1.010 0.00517 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.713 1.00 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 1.00 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.012 1.100 1.003 1.000 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.012 1.100 1.083 1.000 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.011 1.083 1.088 1.000 0.013 1.003 1.015 1.008 0.998 0.996 1.010 1.010 1.003 1.008 1.008 1.008 1.009 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 0.999 0.999 1.002 1.000 1.000 0.999 0.999 1.021 1.000 0.999 0.999 1.021 1.000 0.999 0.999 1.021 1.000 0.999 0.999 1.021 1.000 0.999 0.999 1.021 1.000 0.999 0.999 0.998 1.012 1.000 0.000 0.996 0.991 0.991 0.990 0.999 0.999 1.021 1.000 0.000 0.996 0.991 0.991 0.090 0.999 0.999 0.998 1.012 1.000 0.000 0.990 0.990 0.991 0.000 0.000 0.000 0.990 0.990 0.990 0.991 0.000 0.000 0.000 0.990 0.990 0.990 0.990 0.000 0.000 0.000 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.000 0.0000 0.0000 0.990 0							2 247		0 003			
500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.989 1.011 1.019 0.936 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 1.014 0.0017 1.005 1.005 1.005 1.005 0.988 1.012 1.022 0.930 1.014 0.0017 1.005 1.035 1.018 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 1.014 0.0034 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 1.005 1.035 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 1.005 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 1.006 0.0052 1.004 1.027 1.014 0.985 0.995 1.013 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.015 0.988 0.996 1.010 1.010 1.003 1.008 1.068 1.068 1.005 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.008 1.068 1.068 1.006 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 1.80 0.0155 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 1.80 0.0155 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 1.80 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.002 1.001 1.001 1.031 1.000 0.0172 1.000 1.000 1.002 1.001 1.005 1.001 1.001 1.031 1.000 0.0172 1.000 1.000 1.002 1.001 1.005 1.001 1.000 0.999 0.999 0.999 0.999 1.002 1.002 1.001 1.001 1.031 1.000 0.0000 0.996 1.001 1.005 1.001 1.000 0.996 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.002 1.000 0.999 0.999 0.999 1.002 1.000 0.999 0.999 0.999 1.002 1.000 0.999 0.999 0.999 1.003 1.003 0.999 0.9	T(K) E(eV) 186Os 187Os 191Ir 193Ir 197Au 196Hg 199Hg 232Th 234U 235U			1.051	1.000	0.794	0.772	2.41	1.007	0.773			0.750
500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.989 1.011 1.019 0.936 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 1.014 0.0017 1.005 1.005 1.005 1.005 0.988 1.012 1.022 0.930 1.014 0.0017 1.005 1.035 1.018 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 1.014 0.0034 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 1.005 1.035 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 1.005 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 1.006 0.0052 1.004 1.027 1.014 0.985 0.995 1.013 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.015 0.988 0.996 1.010 1.010 1.003 1.008 1.068 1.068 1.005 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.008 1.068 1.068 1.006 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 1.80 0.0155 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 1.80 0.0155 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 1.80 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.002 1.001 1.001 1.031 1.000 0.0172 1.000 1.000 1.002 1.001 1.005 1.001 1.001 1.031 1.000 0.0172 1.000 1.000 1.002 1.001 1.005 1.001 1.000 0.999 0.999 0.999 0.999 1.002 1.002 1.001 1.001 1.031 1.000 0.0000 0.996 1.001 1.005 1.001 1.000 0.996 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.002 1.000 0.999 0.999 0.999 1.002 1.000 0.999 0.999 0.999 1.002 1.000 0.999 0.999 0.999 1.003 1.003 0.999 0.9	T(K) E(eV) 186Os 187Os 191Ir 193Ir 197Au 196Hg 199Hg 232Th 234U 235U	460		1.055	1.008	0.991	0.992	2.398	1.010	0.992		1.013	0.952
500 0.0431 1.064 1.010 0.990 0.990 2.713 1.011 0.991 1.009 1.016 0.946 520 0.0448 1.069 1.010 0.989 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.989 1.011 1.019 0.936 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 1.014 0.0017 1.005 1.005 1.005 1.005 0.988 1.012 1.022 0.930 1.014 0.0017 1.005 1.035 1.018 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 1.014 0.0034 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 1.005 1.035 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 1.005 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 1.006 0.0052 1.004 1.027 1.014 0.985 0.995 1.013 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 1.00 0.0086 1.003 1.023 1.015 0.988 0.996 1.010 1.010 1.003 1.008 1.068 1.068 1.005 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.008 1.068 1.068 1.006 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 1.80 0.0155 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 1.80 0.0155 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 1.80 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.002 1.001 1.001 1.031 1.000 0.0172 1.000 1.000 1.002 1.001 1.005 1.001 1.001 1.031 1.000 0.0172 1.000 1.000 1.002 1.001 1.005 1.001 1.000 0.999 0.999 0.999 0.999 1.002 1.002 1.001 1.001 1.031 1.000 0.0000 0.996 1.001 1.005 1.001 1.000 0.996 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.002 1.000 0.999 0.999 0.999 1.002 1.000 0.999 0.999 0.999 1.002 1.000 0.999 0.999 0.999 1.003 1.003 0.999 0.9	T(K) E(eV) 186Os 187Os 191Ir 193Ir 197Au 196Hg 199Hg 232Th 234U 235U	480	0.0414	1.059	1.009	0.990	0.991	2.554	1.010	0.991	1.009	1.015	0.949
520 0.0448 1.069 1.010 0.988 0.990 2.874 1.012 0.990 1.010 1.017 0.942 540 0.0465 1.073 1.011 0.988 0.989 3.039 1.013 0.989 1.010 1.018 0.939 560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 T(K) E(eV) 186Os 187Os 191Ir 193Ir 197Au 196Hg 199Hg 232Th 234U 235U T(K) E(eV) 186Os 1035 1.018 0.973 0.991 1.023 1.021 1.022 0.930 <td> S20</td> <td>500</td> <td>0.0431</td> <td>1 064</td> <td>1 010</td> <td>0 990</td> <td>0 990</td> <td>2.713</td> <td>1 011</td> <td>0 991</td> <td>1 009</td> <td>1 016</td> <td>0 946</td>	S20	500	0.0431	1 064	1 010	0 990	0 990	2.713	1 011	0 991	1 009	1 016	0 946
540	540					0.000	0.000	2 974		0.000			0.042
560 0.0482 1.078 1.012 0.988 0.989 3.204 1.014 0.989 1.011 1.019 0.936 580 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.022 0.930 T(K) E(eV) 186Os 187Os 191Ir 193Ir 197Au 196Hg 199Hg 232Th 234U 235U 20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.008 1.019 1.173 40 0.0045 1.004 1.027 1.014 0.979 0.993 1.018 1.010 1.007 1.017 1.143	T(K) E(eV) 186Os 1970 1011 1012 1020	540						2.074					0.942
580 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.020 0.930 T(K) E(eV) 186Os 187Os 191Ir 193Ir 197Au 196Hg 199Hg 232Th 234U 235U 20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.009 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.019 1.007 1.017 1.143 60 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1	T(K) E(eV) 186Os 187Os 191Ir 193Ir 197Au 196Hg 199Hg 232Th 234U 235U							3.039					0.939
580 0.0500 1.083 1.013 0.987 0.988 3.370 1.014 0.988 1.012 1.020 0.933 600 0.0517 1.088 1.013 0.987 0.988 3.536 1.015 0.988 1.012 1.020 0.930 T(K) E(eV) 186Os 187Os 191Ir 193Ir 197Au 196Hg 199Hg 232Th 234U 235U 20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.009 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.019 1.007 1.017 1.143 60 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1	T(K) E(eV) 186Os 187Os 191Ir 193Ir 197Au 196Hg 199Hg 232Th 234U 235U	560	0.0482	1.078	1.012	0.988	0.989	3.204	1.014	0.989	1.011	1.019	0.936
T(K) E(eV) ¹⁸⁶ Os ¹⁸⁷ Os ¹⁹¹ Ir ¹⁹³ Ir ¹⁹⁷ Au ¹⁹⁶ Hg ¹⁹⁹ Hg ²³² Th ²³⁴ U ²³⁵ U 20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.015 1.015 1.017 1.143 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.015 1.015 1.010 1.005 1.012 1.100 100 0.086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.008 1.008 1.008 0.998 0.996 1.010 1.003	T(K) E(eV) 186Os 187Os 191Ir 193Ir 197Au 196Hg 199Hg 232Th 234U 235U 20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.008 1.019 1.173 40 0.0032 1.004 1.027 1.014 0.979 0.993 1.018 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.006 1.007 1.017 1.143 80 0.0669 1.003 1.023 1.012 0.983 0.994 1.015 1.005 1.012 1.100 100 0.086 1.003 1.021 1.000 0.985 0.995 1.013 1.012 1.001 1.003 1.008 1.008 1.005 1.001			1.083	1.013	0.987	0.988	3 370	1 014	0.988			0.933
T(K) E(eV) 186Os 187Os 191Ir 193Ir 197Au 196Hg 199Hg 232Th 234U 235U 20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.003 1.008 1.068 140	T(K) E(eV) ¹⁸⁶ Os ¹⁸⁷ Os ¹⁹¹ Ir ¹⁹³ Ir ¹⁹⁷ Au ¹⁹⁶ Hg ¹⁹⁹ Hg ²³² Th ²³⁴ U ²³⁵ U 20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.022 1.010 0.985 0.995 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.012 1.006 0.992 0.997 1.008 1.001 1.001 1.003 1.006	600											
20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.00	20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.001 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.006 0.992 0.997 1.008 1.004 1.004 1.003 1.998 0.999	000	0.0317	1.088	1.013	0.987	0.988	3.336	1.015	0.988	1.012	1.022	0.930
20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.00	20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.001 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.006 0.992 0.997 1.008 1.004 1.004 1.003 1.998 0.999												
20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.00	20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.001 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.006 0.992 0.997 1.008 1.004 1.004 1.003 1.998 0.999												
20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.00	20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.001 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.006 0.992 0.997 1.008 1.004 1.004 1.003 1.998 0.999												
20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.00	20 0.0017 1.005 1.035 1.018 0.973 0.991 1.023 1.021 1.008 1.019 1.173 40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.001 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.006 0.992 0.997 1.008 1.004 1.004 1.003 1.998 0.999	T(K)	F(eV)	186 O s	187 O s	191 J r	193 Tr	197 A 11	¹⁹⁶ Ha	¹⁹⁹ Ha	²³² Th	234 T T	2351 1
40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.019 1.007 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.002 1.004 1.042 180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.0	40 0.0034 1.005 1.032 1.016 0.976 0.992 1.021 1.017 1.017 1.143 60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.021 1.080 0.994 1.015 1.015 1.015 1.102 100 0.0086 1.003 1.020 1.010 0.983 0.994 1.015 1.005 1.010 1.008 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.003 1.008 1.088 140 0.0121 1.002 1.006 0.992 0.997 1.008 1.003 1.008 1.068 160 0.0138 1.001 1.004 1.003 0.998 0.999 1.002 1.001 1.002 1.001 1.002 1.001 1.002 1.001 1.002 1.001 1.002 1.001							¹⁹⁷ Au		¹⁹⁹ Hg			
60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.010 1.003 1.008 1.083 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.001 1.001 1.001 1.001 1.031 200 0.0172 1.000 1.000 1.002 1.	60 0.0052 1.004 1.027 1.014 0.979 0.993 1.018 1.016 1.006 1.015 1.119 80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.007 1.003 1.006 1.054 180 0.0155 1.001 1.004 1.003 0.999 1.002 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>¹⁹⁷Au 0 991</td> <td></td> <td>¹⁹⁹Hg</td> <td></td> <td></td> <td></td>							¹⁹⁷ Au 0 991		¹⁹⁹ Hg			
80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.010 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.001 1.001 1.031 200 0.0172 1.000 1.002 1.001 1.000 0.999 1.000 0.999 0.999 0.999 0.997 0.997 0.999 0.998 0.91 0.00 0.999 0.999 0.999	80 0.0069 1.003 1.023 1.012 0.983 0.994 1.015 1.005 1.012 1.100 100 0.0086 1.003 1.015 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.003 1.008 1.088 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.003 200 0.0172 1.000 1.000 1.003 1.099 1.000 0.999 1.001 1.000 1.001 1.005 1.001 0.997 0.997 0.999 0.998 1.012 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 <td>20</td> <td>0.0017</td> <td>1.005</td> <td>1.035</td> <td>1.018</td> <td>0.973</td> <td>0.991</td> <td>1.023</td> <td>1.021</td> <td>1.008</td> <td>1.019</td> <td>1.173</td>	20	0.0017	1.005	1.035	1.018	0.973	0.991	1.023	1.021	1.008	1.019	1.173
100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.010 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.001 1.001 1.031 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 1.000 0.999	100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.004 1.042 180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.001 1.001 1.042 200 0.0190 1.000 0.996 1.001 1.000 0.999 1.022 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 250 0.0224 0.998 0.985 0.997	20 40	0.0017 0.0034	1.005 1.005	1.035 1.032	1.018 1.016	0.973 0.976	0.991 0.992	1.023 1.021	1.021 1.019	1.008 1.007	1.019 1.017	1.173 1.143
100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.010 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.001 1.001 1.031 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 1.000 0.999	100 0.0086 1.003 1.020 1.010 0.985 0.995 1.013 1.012 1.005 1.010 1.083 120 0.0103 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.004 1.042 180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.001 1.001 1.042 200 0.0190 1.000 0.996 1.001 1.000 0.999 1.022 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 250 0.0224 0.998 0.985 0.997	20 40 60	0.0017 0.0034 0.0052	1.005 1.005 1.004	1.035 1.032 1.027	1.018 1.016 1.014	0.973 0.976 0.979	0.991 0.992 0.993	1.023 1.021 1.018	1.021 1.019 1.016	1.008 1.007 1.006	1.019 1.017 1.015	1.173 1.143 1.119
120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.010 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.001 1.001 1.031 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 1.000 0.999	120 0.0103 1.003 1.015 1.008 0.988 0.996 1.010 1.003 1.008 1.068 140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.998 1.005 1.005 1.002 1.004 1.042 180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.001 1.001 1.001 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 1.002 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.989 1.011 1.003 0.995 0.998 0.995 1.099 0.993 280 0.0241 0.998 0.983 0.997 1.014	20 40 60	0.0017 0.0034 0.0052	1.005 1.005 1.004	1.035 1.032 1.027	1.018 1.016 1.014	0.973 0.976 0.979	0.991 0.992 0.993	1.023 1.021 1.018 1.015	1.021 1.019 1.016	1.008 1.007 1.006	1.019 1.017 1.015	1.173 1.143 1.119
140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.001 1.001 1.031 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 1.000 0.999 0.998 0.998 0.999 0.001 0.999 <td>140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.002 1.001 1.004 1.032 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 1.001 1.000 0.999 0.999 1.001 1.001 1.001 1.002 1.001 1.000 0.999 0.999 1.001 1.002 1.001 1.002 1.001 0.997 0.997 0.999 0.999 1.001 1.002 1.001 1.003 0.997 0.997 0.999 0.999 1.001 1.005 1.001 0.997 0.997 0.999 0.998 1.012 1.002 1.003 0.997 0.999 0.998 0.995 0.998 1.003 0.994 0.995 0.998 0.995 0.998 0.999 0.993 0.997</td> <td>20 40 60 80</td> <td>0.0017 0.0034 0.0052 0.0069</td> <td>1.005 1.005 1.004 1.003</td> <td>1.035 1.032 1.027 1.023</td> <td>1.018 1.016 1.014 1.012</td> <td>0.973 0.976 0.979 0.983</td> <td>0.991 0.992 0.993 0.994</td> <td>1.023 1.021 1.018 1.015</td> <td>1.021 1.019 1.016 1.015</td> <td>1.008 1.007 1.006 1.005</td> <td>1.019 1.017 1.015 1.012</td> <td>1.173 1.143 1.119 1.100</td>	140 0.0121 1.002 1.012 1.006 0.992 0.997 1.008 1.007 1.003 1.006 1.054 160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.002 1.001 1.004 1.032 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 1.001 1.000 0.999 0.999 1.001 1.001 1.001 1.002 1.001 1.000 0.999 0.999 1.001 1.002 1.001 1.002 1.001 0.997 0.997 0.999 0.999 1.001 1.002 1.001 1.003 0.997 0.997 0.999 0.999 1.001 1.005 1.001 0.997 0.997 0.999 0.998 1.012 1.002 1.003 0.997 0.999 0.998 0.995 0.998 1.003 0.994 0.995 0.998 0.995 0.998 0.999 0.993 0.997	20 40 60 80	0.0017 0.0034 0.0052 0.0069	1.005 1.005 1.004 1.003	1.035 1.032 1.027 1.023	1.018 1.016 1.014 1.012	0.973 0.976 0.979 0.983	0.991 0.992 0.993 0.994	1.023 1.021 1.018 1.015	1.021 1.019 1.016 1.015	1.008 1.007 1.006 1.005	1.019 1.017 1.015 1.012	1.173 1.143 1.119 1.100
160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.005 1.002 1.004 1.042 180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.001 1.001 1.031 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 1.000 0.999 0.999 0.999 0.999 0.999 1.021 220 0.0190 1.000 0.996 1.001 1.005 1.001 0.997 0.997 0.999 0.998 1.012 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.989 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.995	160 0.0138 1.001 1.008 1.005 0.995 0.998 1.005 1.002 1.004 1.042 180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.001 1.001 1.001 1.001 1.002 1.001 1.000 0.999 0.999 0.999 0.999 0.999 0.999 1.002 1.001 1.000 0.999 0.999 0.999 1.021 220 0.0190 1.000 0.996 1.001 1.005 1.001 0.997 0.999 0.999 1.002 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.989 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.995 1.003 293 0.0253 0.998 0.983 0.997 1.014 1.005 0.988 0.989 0.	20 40 60 80 100	0.0017 0.0034 0.0052 0.0069 0.0086	1.005 1.005 1.004 1.003 1.003	1.035 1.032 1.027 1.023 1.020	1.018 1.016 1.014 1.012 1.010	0.973 0.976 0.979 0.983 0.985	0.991 0.992 0.993 0.994 0.995	1.023 1.021 1.018 1.015 1.013	1.021 1.019 1.016 1.015 1.012	1.008 1.007 1.006 1.005 1.005	1.019 1.017 1.015 1.012 1.010	1.173 1.143 1.119 1.100 1.083
180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.002 1.001 1.001 1.031 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.021 220 0.0190 1.000 0.996 1.001 1.005 1.001 0.997 0.997 0.999 0.998 1.012 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.989 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.995	180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.001 1.001 1.031 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.021 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.998 1.012 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.988 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.997 0.993 0.997 0.993 0.997 0.993 0.991 0.996 0.991 0.988 0.991 0.996 0.991 0.988 0.9991 0.996 0.991 0.984	20 40 60 80 100 120	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103	1.005 1.005 1.004 1.003 1.003 1.003	1.035 1.032 1.027 1.023 1.020 1.015	1.018 1.016 1.014 1.012 1.010 1.008	0.973 0.976 0.979 0.983 0.985 0.988	0.991 0.992 0.993 0.994 0.995 0.996	1.023 1.021 1.018 1.015 1.013 1.010	1.021 1.019 1.016 1.015 1.012 1.010	1.008 1.007 1.006 1.005 1.005 1.003	1.019 1.017 1.015 1.012 1.010 1.008	1.173 1.143 1.119 1.100 1.083 1.068
180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.002 1.001 1.001 1.031 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.021 220 0.0190 1.000 0.996 1.001 1.005 1.001 0.997 0.997 0.999 0.998 1.012 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.989 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.995	180 0.0155 1.001 1.004 1.003 0.998 0.999 1.002 1.001 1.001 1.031 200 0.0172 1.000 1.000 1.002 1.001 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.021 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.998 1.012 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.988 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.997 0.993 0.997 0.993 0.997 0.993 0.991 0.996 0.991 0.988 0.991 0.996 0.991 0.988 0.9991 0.996 0.991 0.984	20 40 60 80 100 120 140	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121	1.005 1.005 1.004 1.003 1.003 1.003 1.002	1.035 1.032 1.027 1.023 1.020 1.015 1.012	1.018 1.016 1.014 1.012 1.010 1.008 1.006	0.973 0.976 0.979 0.983 0.985 0.988 0.992	0.991 0.992 0.993 0.994 0.995 0.996 0.997	1.023 1.021 1.018 1.015 1.013 1.010 1.008	1.021 1.019 1.016 1.015 1.012 1.010 1.007	1.008 1.007 1.006 1.005 1.005 1.003 1.003	1.019 1.017 1.015 1.012 1.010 1.008 1.006	1.173 1.143 1.119 1.100 1.083 1.068 1.054
200	200 0.0172 1.000 1.000 1.001 1.000 0.999 1.000 0.999 0.999 1.021 220 0.0190 1.000 0.996 1.001 1.005 1.001 0.997 0.999 0.999 0.998 1.012 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.989 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.995 1.003 280 0.0241 0.998 0.985 0.997 1.014 1.005 0.989 0.991 0.996 0.991 0.988 300 0.0253 0.998 0.996 1.018 1.005 0.988 0.989 0.995 0.990 0.985 300 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.981	20 40 60 80 100 120 140	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138	1.005 1.005 1.004 1.003 1.003 1.003 1.002	1.035 1.032 1.027 1.023 1.020 1.015 1.012	1.018 1.016 1.014 1.012 1.010 1.008 1.006	0.973 0.976 0.979 0.983 0.985 0.988 0.992	0.991 0.992 0.993 0.994 0.995 0.996 0.997	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005	1.008 1.007 1.006 1.005 1.005 1.003 1.003	1.019 1.017 1.015 1.012 1.010 1.008 1.006	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042
220 0.0190 1.000 0.996 1.001 1.005 1.001 0.997 0.997 0.999 0.998 1.012 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.998 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.995	220 0.0190 1.000 0.996 1.001 1.005 1.001 0.997 0.997 0.999 0.998 1.012 240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.989 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.995 280 0.0241 0.998 0.985 0.997 1.014 1.005 0.989 0.991 0.996 0.991 0.998 293 0.0253 0.998 0.983 0.996 1.017 1.005 0.988 0.989 0.991 0.996 0.985 300 0.0258 0.997 0.982 0.996 1.018 1.005 0.988 0.995 0.989 0.993 0.995 0.983 320 0.0276 0.997 0.978 0.995 1.025 1.007 0.982 0.984 0.987 0.977 </td <td>20 40 60 80 100 120 140 160</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138</td> <td>1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005</td> <td>1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042</td>	20 40 60 80 100 120 140 160	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042
240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.998 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.995	240 0.0207 0.999 0.993 0.999 1.008 1.003 0.994 0.995 0.998 0.995 1.003 260 0.0224 0.998 0.989 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.995 280 0.0241 0.998 0.985 0.997 1.014 1.005 0.989 0.991 0.996 0.991 0.989 293 0.0253 0.998 0.998 0.996 1.017 1.005 0.988 0.989 0.995 0.990 0.985 300 0.0258 0.997 0.982 0.996 1.018 1.005 0.988 0.995 0.990 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.994 0.987 0.983 320 0.0276 0.997 0.995 1.022 1.006 0.984 0.996 0.987 0.997 340 0.0293 0.996	20 40 60 80 100 120 140 160 180	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031
260 0.0224 0.998 0.989 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.995	260 0.0224 0.998 0.989 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.995 280 0.0241 0.998 0.985 0.997 1.014 1.005 0.989 0.991 0.996 0.991 0.989 293 0.0253 0.998 0.983 0.996 1.017 1.005 0.988 0.989 0.995 0.990 0.985 300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.990 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.981 0.981 0.963 </td <td>20 40 60 80 100 120 140 160 180 200</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172</td> <td>1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.001</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000</td> <td>1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021</td>	20 40 60 80 100 120 140 160 180 200	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.001	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021
260 0.0224 0.998 0.989 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.995	260 0.0224 0.998 0.989 0.998 1.011 1.003 0.992 0.993 0.997 0.993 0.995 280 0.0241 0.998 0.985 0.997 1.014 1.005 0.989 0.991 0.996 0.991 0.989 293 0.0253 0.998 0.983 0.996 1.017 1.005 0.988 0.989 0.995 0.990 0.985 300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.990 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.981 0.981 0.963 </td <td>20 40 60 80 100 120 140 160 180 200 220</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190</td> <td>1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.001 1.000</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997</td> <td>1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.999</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012</td>	20 40 60 80 100 120 140 160 180 200 220	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.001 1.000	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.999	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012
	280 0.0241 0.998 0.985 0.997 1.014 1.005 0.989 0.991 0.996 0.991 0.989 293 0.0253 0.998 0.983 0.996 1.017 1.005 0.988 0.989 0.995 0.990 0.985 300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.987 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.994 </td <td>20 40 60 80 100 120 140 160 180 200 220</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190</td> <td>1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.001 1.000</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997</td> <td>1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.999</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012</td>	20 40 60 80 100 120 140 160 180 200 220	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.001 1.000	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.999	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012
	293 0.0253 0.998 0.983 0.996 1.017 1.005 0.988 0.989 0.995 0.990 0.985 300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.977 0.990 0.977 0.995	20 40 60 80 100 120 140 160 180 200 220 240	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.001 1.000 1.000 0.999	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003
	300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.981 0.990 0.979 0.981 0.991 0.981 0.963 420 0.0362 0.994 </td <td>20 40 60 80 100 120 140 160 180 200 220 240 260</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224</td> <td>1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.001 1.000 0.999 0.998</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993</td> <td>1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995</td>	20 40 60 80 100 120 140 160 180 200 220 240 260	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.001 1.000 0.999 0.998	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995
Z93	320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.981 0.992 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.957 440 0.0379 0.993 0.957 0.994 1.043 </td <td>20 40 60 80 100 120 140 160 180 200 220 240 260 280</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241</td> <td>1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993</td> <td>1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989</td>	20 40 60 80 100 120 140 160 180 200 220 240 260 280	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989
	320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.981 0.992 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.957 440 0.0379 0.993 0.957 0.994 1.043 </td <td>20 40 60 80 100 120 140 160 180 200 220 240 260 280 293</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253</td> <td>1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003 1.005</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989</td> <td>1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985</td>	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003 1.005	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983	340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003 1.005 1.005	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983	360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003 1.005 1.005	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983
300	380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.987	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972	400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.993	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.987	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967	400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.996	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.993	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967	420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.996	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.993	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963	440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984 0.981	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.993 0.992	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960	460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975 0.971 0.967	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984 0.981 0.979	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.993 0.992 0.991	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963 0.960
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957	460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 220 240 260 280 293 300 320 340 360 380 400 420	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995 0.994	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.979 0.977	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.993 0.992 0.991 0.990	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981 0.979	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043	480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995 0.994 0.993	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.984 0.984 0.979 0.977	1.008 1.007 1.006 1.005 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.993 0.992 0.991 0.990 0.989	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981 0.979	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043	500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995 0.994 0.993	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.984 0.984 0.979 0.977	1.008 1.007 1.006 1.005 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.993 0.992 0.991 0.990 0.989	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981 0.979	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043	520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 440	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.995 0.994 0.994 0.993	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.967	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.984 0.981 0.979 0.975 0.973	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.993 0.992 0.991 0.990 0.989 0.988	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981 0.979 0.977	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043	540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 440 460 480	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.995 0.994 0.993 0.993	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047 1.051	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.977 0.974 0.972 0.969 0.967	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.988 0.988 0.984 0.979 0.977 0.975 0.973 0.970 0.968	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.989 0.988 0.987	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.950
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993	560	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 440 460 480 500	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.014 1.017 1.018 1.022 1.025 1.025 1.036 1.039 1.043 1.047 1.055	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.977 0.974 0.972 0.969 0.967	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.988 0.988 0.988 0.988 0.984 0.979 0.977 0.975 0.973 0.970 0.968 0.966	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.989 0.988 0.987 0.986	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.975 0.973 0.972 0.970	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.949
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993	560	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992 0.992	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.947 0.944	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.994 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.014 1.017 1.018 1.022 1.025 1.025 1.036 1.039 1.043 1.047 1.055 1.055 1.059	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015 1.016	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.989 0.988 0.987 0.984 0.982 0.977 0.974 0.972 0.969 0.967	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.988 0.988 0.988 0.988 0.977 0.975 0.973 0.970 0.968 0.966 0.964	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.989 0.988 0.987	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.949 0.948
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993	580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992 0.992	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.947 0.944	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.994 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.014 1.017 1.018 1.022 1.025 1.025 1.036 1.039 1.043 1.047 1.055 1.055 1.059	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015 1.016	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.989 0.988 0.987 0.984 0.982 0.977 0.974 0.972 0.969 0.967	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.988 0.988 0.988 0.988 0.977 0.975 0.973 0.970 0.968 0.966 0.964	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.989 0.988 0.987	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.949 0.948
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.960 420 0.0362 0.994 0.964 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993		20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 440 460 480 500 520 540	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992 0.992	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.947 0.944	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.997 0.996 0.996 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047 1.055 1.055 1.059 1.062	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.016 1.018	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.960 0.957	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.988 0.988 0.988 0.984 0.981 0.977 0.975 0.973 0.973 0.966 0.964 0.962	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.993 0.991 0.990 0.988 0.988 0.985 0.985	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.987 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.949 0.948 0.947
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.981 0.990 0.979 0.981 0.991 0.981 0.963 420 0.0362 0.994 </td <td><u>600 0.0517 0.989 0.931 1.001 1.075 1.021 0.951 0.955 0.982 0.960 0.946</u></td> <td>20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482</td> <td>1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.993 0.992 0.992 0.990</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.032 1.039 1.043 1.047 1.055 1.059 1.062 1.066</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.018</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.965 0.957</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960</td> <td>1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.999 0.988 0.988 0.988 0.985</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.987 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.947 0.946</td>	<u>600 0.0517 0.989 0.931 1.001 1.075 1.021 0.951 0.955 0.982 0.960 0.946</u>	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.993 0.992 0.992 0.990	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.032 1.039 1.043 1.047 1.055 1.059 1.062 1.066	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.018	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.965 0.957	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.999 0.988 0.988 0.988 0.985	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.987 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.947 0.946
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.981 0.990 0.979 0.981 0.991 0.981 0.963 420 0.0362 0.994 </td <td></td> <td>20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482 0.0500</td> <td>1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992 0.992 0.991 0.990 0.989</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937 0.934</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.996 0.996</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047 1.055 1.059 1.066 1.071</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.016 1.018 1.018 1.020</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.953</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960 0.957</td> <td>1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.990 0.988 0.988 0.985 0.985 0.983</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964 0.962</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.977 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.946 0.946</td>		20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482 0.0500	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992 0.992 0.991 0.990 0.989	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937 0.934	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.996 0.996	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047 1.055 1.059 1.066 1.071	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.016 1.018 1.018 1.020	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.953	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960 0.957	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.990 0.988 0.988 0.985 0.985 0.983	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964 0.962	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.977 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.946 0.946
	293 0.0253 0.998 0.983 0.996 1.017 1.005 0.988 0.989 0.995 0.990 0.985 300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.977 0.990 0.977 0.995	20 40 60 80 100 120 140 160 180 200 220 240	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.001 1.000 1.000 0.999	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003
	300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.981 0.990 0.979 0.981 0.991 0.981 0.963 420 0.0362 0.994 </td <td>20 40 60 80 100 120 140 160 180 200 220 240 260</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224</td> <td>1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.001 1.000 0.999 0.998</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993</td> <td>1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995</td>	20 40 60 80 100 120 140 160 180 200 220 240 260	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.001 1.000 0.999 0.998	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995
	320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.981 0.992 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.957 440 0.0379 0.993 0.957 0.994 1.043 </td <td>20 40 60 80 100 120 140 160 180 200 220 240 260 280</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241</td> <td>1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993</td> <td>1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989</td>	20 40 60 80 100 120 140 160 180 200 220 240 260 280	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989
	320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.981 0.992 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.957 440 0.0379 0.993 0.957 0.994 1.043 </td <td>20 40 60 80 100 120 140 160 180 200 220 240 260 280 293</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253</td> <td>1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003 1.005</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989</td> <td>1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985</td>	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003 1.005	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985
	340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.003 1.005	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983	360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983
300	360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.987	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977
300	380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.987	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972	380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.993	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.987	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972	380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.993	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.987	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972	400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.993	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.987	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967	400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.996	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.993	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967	400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.996	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.993	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967	420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.996	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.993	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967	420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.996	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.993	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963	420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984 0.981	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.993 0.992	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.987 0.985 0.983	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963	420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984 0.981	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.993 0.992	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.987 0.985 0.983	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963	440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984 0.981	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.993 0.992	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.987 0.985 0.983	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960	440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975 0.971 0.967	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984 0.981 0.979	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.993 0.992 0.991	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963 0.960
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960	440 0.0379 0.993 0.957 0.994 1.043 1.012 0.969 0.973 0.989 0.975 0.954 460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995 0.994	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975 0.971 0.967	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984 0.981 0.979	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.993 0.992 0.991	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963 0.960
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960	460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995 0.994	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975 0.971 0.967	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.986 0.984 0.981 0.979	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.993 0.992 0.991	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963 0.960
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.957 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957	460 0.0396 0.993 0.954 0.994 1.047 1.013 0.967 0.970 0.988 0.973 0.952 480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 220 240 260 280 293 300 320 340 360 380 400 420	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995 0.994	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.979 0.977	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.993 0.992 0.991 0.990	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981 0.979	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.957 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957	480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 220 240 260 280 293 300 320 340 360 380 400 420	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995 0.994	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.979 0.977	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.993 0.992 0.991 0.990	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981 0.979	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043	480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995 0.994 0.993	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.984 0.984 0.979 0.977	1.008 1.007 1.006 1.005 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.993 0.992 0.991 0.990 0.989	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981 0.979	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043	480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995 0.994 0.993	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.984 0.984 0.979 0.977	1.008 1.007 1.006 1.005 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.993 0.992 0.991 0.990 0.989	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981 0.979	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043	480 0.0414 0.992 0.950 0.994 1.051 1.014 0.965 0.968 0.987 0.972 0.950 500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995 0.994 0.993	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.984 0.981 0.979 0.975 0.975	1.008 1.007 1.006 1.005 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.993 0.992 0.991 0.990 0.989	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981 0.979	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043	500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995 0.994 0.993	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.984 0.981 0.979 0.975 0.975	1.008 1.007 1.006 1.005 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.993 0.992 0.991 0.990 0.989	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981 0.979	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043	500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.995 0.994 0.993	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.984 0.981 0.979 0.975 0.975	1.008 1.007 1.006 1.005 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.993 0.992 0.991 0.990 0.989	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981 0.979	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043	500 0.0431 0.992 0.947 0.995 1.055 1.015 0.962 0.966 0.986 0.970 0.949 520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 440	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.995 0.994 0.994 0.993	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.967	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.984 0.981 0.979 0.975 0.973	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.993 0.992 0.991 0.990 0.989 0.988	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981 0.979 0.977	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043	520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 440	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396	1.005 1.005 1.004 1.003 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.995 0.994 0.994 0.993	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.967	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.989 0.988 0.984 0.981 0.979 0.975 0.973	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.993 0.992 0.991 0.990 0.989 0.988	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.985 0.983 0.981 0.979 0.977	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043	520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 440 460 480	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.995 0.994 0.993 0.993	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047 1.051	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.977 0.974 0.972 0.969 0.967	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.988 0.988 0.984 0.979 0.977 0.975 0.973 0.970 0.968	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.989 0.988 0.987	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.950
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993 0.957 0.994 1.043	520 0.0448 0.991 0.944 0.996 1.059 1.016 0.960 0.964 0.985 0.968 0.948 540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 440 460 480	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.996 0.995 0.994 0.993 0.993	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047 1.051	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.977 0.974 0.972 0.969 0.967	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.988 0.988 0.984 0.979 0.977 0.975 0.973 0.970 0.968	1.008 1.007 1.006 1.005 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.989 0.988 0.987	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.950
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993	540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 440 460 480 500	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.014 1.017 1.018 1.022 1.025 1.025 1.036 1.039 1.043 1.047 1.055	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.977 0.974 0.972 0.969 0.967	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.988 0.988 0.988 0.988 0.984 0.979 0.977 0.975 0.973 0.970 0.968 0.966	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.989 0.988 0.987 0.986	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.975 0.973 0.972 0.970	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.949
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993	540 0.0465 0.990 0.941 0.997 1.062 1.018 0.957 0.962 0.984 0.966 0.947 560 0.0482 0.990 0.937 0.998 1.066 1.018 0.955 0.960 0.983 0.964 0.946 580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 440 460 480 500	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.014 1.017 1.018 1.022 1.025 1.025 1.036 1.039 1.043 1.047 1.055	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.977 0.974 0.972 0.969 0.967	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.988 0.988 0.988 0.988 0.984 0.979 0.977 0.975 0.973 0.970 0.968 0.966	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.989 0.988 0.987 0.986	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.975 0.973 0.972 0.970	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.949
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993	560	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 440 460 480 500	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.994	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.014 1.017 1.018 1.022 1.025 1.025 1.036 1.039 1.043 1.047 1.055	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.977 0.974 0.972 0.969 0.967	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.988 0.988 0.988 0.988 0.984 0.979 0.977 0.975 0.973 0.970 0.968 0.966	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.989 0.988 0.987 0.986	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.975 0.973 0.972 0.970	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.949
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993	560	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992 0.992	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.947 0.944	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.994 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.014 1.017 1.018 1.022 1.025 1.025 1.036 1.039 1.043 1.047 1.055 1.055 1.059	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015 1.016	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.989 0.988 0.987 0.984 0.982 0.977 0.974 0.972 0.969 0.967	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.988 0.988 0.988 0.988 0.977 0.975 0.973 0.970 0.968 0.966 0.964	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.989 0.988 0.987	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.949 0.948
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.960 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993	580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992 0.992	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.982 0.978 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.947 0.944	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.994 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.014 1.017 1.018 1.022 1.025 1.025 1.036 1.039 1.043 1.047 1.055 1.055 1.059	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015 1.016	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.989 0.988 0.987 0.984 0.982 0.977 0.974 0.972 0.969 0.967	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.988 0.988 0.988 0.988 0.977 0.975 0.973 0.970 0.968 0.966 0.964	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.989 0.988 0.987	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.949 0.948
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.981 0.990 0.979 0.981 0.991 0.981 0.963 420 0.0362 0.994 </td <td>580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946</td> <td>20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 440 460 480 500 520 540</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465</td> <td>1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992 0.992</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.947 0.944 0.941</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.997 0.996 0.996 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047 1.055 1.055 1.059 1.062</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.016 1.018</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.960 0.957</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.988 0.988 0.988 0.984 0.981 0.977 0.975 0.973 0.973 0.966 0.964 0.962</td> <td>1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.993 0.991 0.990 0.988 0.988 0.985 0.985</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.987 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.949 0.948 0.947</td>	580 0.0500 0.989 0.934 1.000 1.071 1.020 0.953 0.957 0.983 0.962 0.946	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 440 460 480 500 520 540	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992 0.992	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.947 0.944 0.941	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.997 0.996 0.996 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047 1.055 1.055 1.059 1.062	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.016 1.018	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.960 0.957	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.988 0.988 0.988 0.984 0.981 0.977 0.975 0.973 0.973 0.966 0.964 0.962	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.993 0.991 0.990 0.988 0.988 0.985 0.985	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.987 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.949 0.948 0.947
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.960 420 0.0362 0.994 0.964 0.994 1.039 1.011 0.972 0.975 0.990 0.977 0.957 440 0.0379 0.993		20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 440 460 480 500 520 540	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992 0.992	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.989 0.985 0.983 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.947 0.944 0.941	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.997 0.996 0.996 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047 1.055 1.055 1.059 1.062	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.016 1.018	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.960 0.957	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.988 0.988 0.988 0.984 0.981 0.977 0.975 0.973 0.973 0.966 0.964 0.962	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.993 0.991 0.990 0.988 0.988 0.985 0.985	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.987 0.972 0.967 0.963 0.960 0.957 0.954 0.952 0.949 0.948 0.947
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.981 0.990 0.979 0.981 0.991 0.981 0.963 420 0.0362 0.994 </td <td></td> <td>20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482</td> <td>1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.993 0.992 0.992 0.990</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.032 1.039 1.043 1.047 1.055 1.059 1.062 1.066</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.018</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.965 0.957</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960</td> <td>1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.999 0.988 0.988 0.988 0.985</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.987 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.947 0.946</td>		20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.993 0.992 0.992 0.990	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.032 1.039 1.043 1.047 1.055 1.059 1.062 1.066	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.018	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.965 0.957	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.999 0.988 0.988 0.988 0.985	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.987 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.947 0.946
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.981 0.990 0.979 0.981 0.991 0.981 0.963 420 0.0362 0.994 </td <td></td> <td>20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482</td> <td>1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.993 0.992 0.992 0.990</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.032 1.039 1.043 1.047 1.055 1.059 1.062 1.066</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.018</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.965 0.957</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960</td> <td>1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.999 0.988 0.988 0.988 0.985</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.987 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.947 0.946</td>		20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.993 0.992 0.992 0.990	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.032 1.039 1.043 1.047 1.055 1.059 1.062 1.066	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.018	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.965 0.957	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.999 0.988 0.988 0.988 0.985	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.987 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.947 0.946
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.981 0.990 0.979 0.981 0.991 0.981 0.963 420 0.0362 0.994 </td <td><u>600 0.0517 0.989 0.931 1.001 1.075 1.021 0.951 0.955 0.982 0.960 0.946</u></td> <td>20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482</td> <td>1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.993 0.992 0.992 0.990</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.032 1.039 1.043 1.047 1.055 1.059 1.062 1.066</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.018</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.965 0.957</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960</td> <td>1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.999 0.988 0.988 0.988 0.985</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.987 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.947 0.946</td>	<u>600 0.0517 0.989 0.931 1.001 1.075 1.021 0.951 0.955 0.982 0.960 0.946</u>	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.993 0.992 0.992 0.990	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.032 1.039 1.043 1.047 1.055 1.059 1.062 1.066	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.018	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.965 0.957	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.999 0.988 0.988 0.988 0.985	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.987 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.947 0.946
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.981 0.990 0.979 0.981 0.991 0.981 0.963 420 0.0362 0.994 </td <td><u> </u></td> <td>20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482</td> <td>1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.993 0.992 0.992 0.990</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.032 1.039 1.043 1.047 1.055 1.059 1.062 1.066</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.018</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.965 0.957</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960</td> <td>1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.999 0.988 0.988 0.988 0.985</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.987 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.947 0.946</td>	<u> </u>	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.993 0.992 0.992 0.990	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.032 1.039 1.043 1.047 1.055 1.059 1.062 1.066	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.001 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.018	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.965 0.957	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.999 0.988 0.988 0.988 0.985	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.985 0.987 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.947 0.946
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.981 0.990 0.979 0.981 0.990 0.979 0.981 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.977 0.990 0.977 <	<u> </u>	20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482 0.0500	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992 0.992 0.991 0.990 0.989	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937 0.934	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.996 0.996	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047 1.055 1.059 1.066 1.071	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.016 1.018 1.018 1.020	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.953	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960 0.957	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.990 0.988 0.988 0.985 0.985 0.983	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964 0.962	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.989 0.985 0.983 0.977 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.946 0.946
300 0.0258 0.997 0.982 0.996 1.018 1.005 0.987 0.988 0.995 0.989 0.983 320 0.0276 0.997 0.978 0.995 1.022 1.006 0.984 0.986 0.994 0.987 0.977 340 0.0293 0.996 0.975 0.995 1.025 1.007 0.982 0.984 0.993 0.985 0.972 360 0.0310 0.996 0.971 0.994 1.029 1.008 0.979 0.981 0.992 0.983 0.967 380 0.0327 0.995 0.967 0.994 1.032 1.009 0.977 0.979 0.991 0.981 0.963 400 0.0345 0.994 0.964 0.994 1.036 1.010 0.974 0.977 0.990 0.979 0.991 0.981 0.963 420 0.0362 0.994 0.961 0.994 1.039 1.011 0.972 0.990 0.977 </td <td></td> <td>20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580</td> <td>0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482 0.0500</td> <td>1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992 0.992 0.991 0.990 0.989</td> <td>1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937 0.934</td> <td>1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.996 0.996</td> <td>0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047 1.055 1.059 1.066 1.071</td> <td>0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.016 1.018 1.018 1.020</td> <td>1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.953</td> <td>1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960 0.957</td> <td>1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.990 0.988 0.988 0.985 0.985 0.983</td> <td>1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964 0.962</td> <td>1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.983 0.977 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.946</td>		20 40 60 80 100 120 140 160 180 200 220 240 260 280 293 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580	0.0017 0.0034 0.0052 0.0069 0.0086 0.0103 0.0121 0.0138 0.0155 0.0172 0.0190 0.0207 0.0224 0.0241 0.0253 0.0258 0.0276 0.0293 0.0310 0.0327 0.0345 0.0362 0.0379 0.0396 0.0414 0.0431 0.0448 0.0465 0.0482 0.0500	1.005 1.005 1.004 1.003 1.003 1.002 1.001 1.000 1.000 0.999 0.998 0.998 0.998 0.997 0.997 0.996 0.995 0.994 0.993 0.993 0.992 0.992 0.991 0.990 0.989	1.035 1.032 1.027 1.023 1.020 1.015 1.012 1.008 1.004 1.000 0.996 0.993 0.985 0.985 0.985 0.975 0.971 0.967 0.964 0.961 0.957 0.954 0.950 0.947 0.944 0.941 0.937 0.934	1.018 1.016 1.014 1.012 1.010 1.008 1.006 1.005 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.996 0.996	0.973 0.976 0.979 0.983 0.985 0.988 0.992 0.995 0.998 1.001 1.005 1.008 1.011 1.014 1.017 1.018 1.022 1.025 1.029 1.032 1.036 1.039 1.043 1.047 1.055 1.059 1.066 1.071	0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000 1.003 1.005 1.005 1.005 1.006 1.007 1.008 1.009 1.011 1.012 1.013 1.014 1.015 1.016 1.018 1.018 1.020	1.023 1.021 1.018 1.015 1.013 1.010 1.008 1.005 1.002 0.999 0.997 0.994 0.992 0.989 0.988 0.987 0.984 0.982 0.979 0.977 0.974 0.972 0.969 0.965 0.965 0.965 0.965 0.953	1.021 1.019 1.016 1.015 1.012 1.010 1.007 1.005 1.002 1.000 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.981 0.977 0.975 0.973 0.977 0.975 0.973 0.968 0.966 0.964 0.962 0.960 0.957	1.008 1.007 1.006 1.005 1.003 1.003 1.002 1.001 0.999 0.998 0.997 0.996 0.995 0.995 0.995 0.995 0.991 0.990 0.990 0.988 0.988 0.985 0.985 0.983	1.019 1.017 1.015 1.012 1.010 1.008 1.006 1.004 1.001 0.999 0.998 0.995 0.993 0.991 0.990 0.989 0.985 0.983 0.981 0.979 0.977 0.975 0.973 0.972 0.970 0.968 0.966 0.964 0.962	1.173 1.143 1.119 1.100 1.083 1.068 1.054 1.042 1.031 1.021 1.012 1.003 0.995 0.985 0.985 0.983 0.977 0.972 0.967 0.963 0.957 0.954 0.952 0.949 0.948 0.946

2.2. Generalized formalism

2.2.1. Capture rate

The instantaneous neutron capture rate dR(t) of a stable nuclide in differential volume d^3r localized at r of a sample in a neutron field is given by :

$$dR(t) = d^3 \mathbf{r} \quad n_x(\mathbf{r}) \quad \int_0^\infty n(\mathbf{r}, v, t) \sigma_y(v) v dv$$
 (13)

where $n_x(\mathbf{r})$ is the capturing nuclide density in the sample target, and $n(\mathbf{r}, v, t)$ is the neutron density per unit speed interval at location \mathbf{r} and time t. By preparing a target sample of homogeneous nuclide density, the time-averaged capture rate by the given nuclide in the sample is given by [2.14]:

$$\langle R \rangle = \frac{1}{t_m} \int_0^{t_m} dt \int_V d^3 \mathbf{r} \ n_x(\mathbf{r}) \int_0^{\infty} n(\mathbf{r}, v, t) \sigma_{\gamma}(v) v dv = \frac{1}{V} \frac{m}{M} N_A \theta \int_V d^3 \mathbf{r} \int_0^{\infty} n(\mathbf{r}, v) \sigma_{\gamma}(v) v dv$$
(14)

where t_m is the irradiation period, V is the volume of sample, m is the mass of the relevant element in the target, M is the atomic mass of the element, N_A is Avogadro's number, θ is the abundance of the capturing isotope in the element, and n(r, v) is the time-averaged neutron density per unit speed interval at location r given by:

$$n(\mathbf{r}, \mathbf{v}) = \frac{1}{t_m} \int_0^{t_m} dt \quad n(\mathbf{r}, \mathbf{v}, t)$$
 (15)

The expressions are greatly simplified for 1/v absorbers. Using the relationship $\sigma(v) = \sigma_0 v_0/v$, the capture rate in Equation (14) becomes proportional to the total neutron density in the sample, and is given by:

$$\left\langle R\right\rangle_{1/\nu} = \frac{1}{V} \frac{m}{M} N_A \theta \int_V d^3 \mathbf{r} \int_0^\infty n(\mathbf{r}, \nu) \sigma_{\gamma}(\nu) \nu d\nu = \frac{m}{M} N_A \theta \sigma_0 \nu_0 \overline{n}_t$$
 (16)

where \overline{n}_t is the volume-averaged total neutron density in the sample. The result is exact even when the spectrum in the sample is distorted or the neutron beam profile is inhomogeneous. Thus, for an approximately good 1/v absorber nuclide over the neutron spectral range, Equation (16) is valid to a reasonable degree. Hence, for a PGAA facility in which the neutron beam is free from an epithermal component, no detailed information about the incident beam spectrum nor the spectrum inside the sample is required for 1/v absorbers as far as k_0 standardization is concerned.

Capture rates of realistic nuclides with resonances in the epithermal region are composed of contributions by thermal and epithermal neutrons within the sample. This problem has been addressed in numerous INAA studies, in which the underlying assumptions are that the thermal neutron spectrum is Maxwellian and the epithermal flux is characterized by 1/E or $1/E^{1+\alpha}$. Since the beam spectrum in PGAA is closely described by a Maxwellian with or without a significant 1/E epithermal flux contribution, the existing formalism in INAA is judged to be equally applicable [2.25].

2.2.2. Non-1/v absorber, effective g-factor and Cd ratio

The capture rate for a non-1/v absorber has been quantified in terms of the Westcott g-factor. As the g-factor is defined for a Maxwellian thermal spectrum, one is faced with the problem of treating realistic neutron spectra, which may deviate significantly from the Maxwellian shape in the thermal energy region. Measured TOF spectra for super-mirror guided cold beams exhibit large deviations of this kind, which are difficult to parametrize [2.26]. The curved mirror guided thermal beam also has spatial inhomogeneity and results in deviations with respect to spectral correlation as a function of position along the mirror curvature [2.27]. Furthermore, the thermal spectrum deviates from Maxwellian in filtered beam facilities [2.28], where the spectrum form is distinctly non-Maxwellian [2.12, 2.29]. As the capture rate for a non-1/v absorber is highly dependent on the shape of the thermal and epithermal spectrum, a generalized approach is described in terms of an effective g-factor.

Even when the neutron spectrum is correlated with the neutron density in the sample, the reduction of the capture rate to measurable quantities is possible for a 1/v absorber. However, this correlation becomes more complex for a non-1/v absorber because the strong capture process causes spectral hardening at low energies and from self-shielding around the resonances. A thin sample with infinite (or sufficiently realistic) dilution of strong absorber nuclides is an important requirement to ensure that the neutron spectrum within the sample does not change compared to that of the incident beam. When the neutron density of the incident beam can be separated $[n(r,v)=n(r)\rho(v)]$, this same separation process is valid for dilute thin samples and simplifies theoretical considerations. If the thermal spectrum deviates significantly from Maxwellian, the Høgdahl convention can be used to classify the thermal and epithermal neutrons in terms of cadmium cutoff [2.30], and the neutron density separates into two terms:

$$n(r, v) = n(r)\rho(v) = n_{th}(r)\rho_{th}(v)\Theta(v_{Cd} - v) + n_{en}(r)\rho_{en}(v)\Theta(v - v_{Cd})$$
(17)

where $n_{th}(r)$ and $n_{ep}(r)$ are local thermal and epithermal neutron density respectively, $\Theta(x)$ is the step function which is unity for the non-negative argument x and zero otherwise, and v_{Cd} is the neutron speed corresponding to the cadmium cutoff energy $E_{Cd} \sim 0.5$ eV (and $mv_{Cd}^2/2 \equiv E_{Cd}$). The speed distribution functions $\rho(v)$, $\rho_{th}(v)$ and $\rho_{ep}(v)$ are normalized so that:

$$\int_{0}^{\infty} \rho(v)dv = \int_{0}^{v_{Cd}} \rho_{th}(v)dv = \int_{v_{Cd}}^{\infty} \rho_{ep}(v)dv = 1$$
(18)

Hence, the capture rate is given by:

$$\langle R \rangle_{non-1/v} = \frac{1}{V} \frac{m}{M} N_A \theta \int_V d^3 \mathbf{r} \quad n(\mathbf{r}) \int_0^\infty \rho(v) \sigma_{\gamma}(v) v dv$$

$$= \frac{m}{M} N_A \quad \theta \left[\overline{n}_{th} \int_0^{v_{Cd}} \rho_{th}(v) \sigma_{\gamma}(v) v dv + \overline{n}_{ep} \int_{v_{Cd}}^\infty \rho_{ep}(v) \sigma_{\gamma}(v) v dv \right]$$
(19)

where \overline{n}_{th} and \overline{n}_{ep} are the volume-averaged thermal and epithermal neutron densities in the sample, respectively. A general beam spectrum can be considered by including the epithermal capture rate in parallel.

Accordingly, an effective g-factor is defined in Ref. [2.31]:

$$\hat{g} = \frac{1}{\sigma_0 v_0} \frac{\int_0^{v_{cd}} \rho_{th}(v) \sigma_{\gamma}(v) v dv}{\int_0^{v_{cd}} \rho_{th}(v) dv} = \frac{1}{\sigma_0 v_0} \int_0^{v_{cd}} \rho_{th}(v) \sigma_{\gamma}(v) v dv$$
(20)

for the realistic thermal neutron spectrum $\rho_{th}(v)$ of the incident beam. Therefore, the effective g-factor for a given non-1/v absorber nuclide is specific for a particular PGAA beam facility, and is unity for an exact 1/v absorber, regardless of the spectral shape. If resonances are present above E_{Cd} and if the epithermal neutron contribution to the reaction rates is not negligible, the definition of the effective g-factor is still valid, but the second integral in Equation (19) must be accounted for explicitly. Procedures developed for INAA can be applied. Generally, the effective g-factor depends on E_{Cd} , but this dependence is usually weak, except for a few nuclides (176 Lu, 151 Eu, 115 In, etc.) with strong resonances near this energy.

If detailed information about the neutron spectral shape is available, the effective g-factors can be calculated from the pointwise capture cross sections (e.g. JEF-2.2 dataset [2.32]). However, there are additional complications that may arise when a cold beam is incident on the target at room temperature. The neutron energy gain by up-scattering in the target can lead to spectral distortion, which is difficult to predict and complicates the interpretation of measurements of non-1/v absorbers [2.33].

Effective g-factors for a particular PGAA facility can be determined by measuring the k_0 factors (described in Section 2.2.4) and comparing them to reference values from the literature. According to Equation (1), k_0 factors are composite nuclear constants independent of the facility. Therefore, if the k_0 value is known, it is possible to determine the ratio of the effective g-factor of the measured nuclide and the comparator, which is normally a 1/v absorber with the g-factor equal to one.

The epithermal contribution to the capture rate of a nuclide can be estimated from the measured cadmium ratio (R_{Cd}), which is the ratio of the specific activities of this nuclide in the sample irradiated without and with a cadmium cover. Activity is proportional to the reaction rate which can be calculated by defining the cadmium transmission function, assuming exponential neutron attenuation through the cadmium cover:

$$t(v) = \exp[-d n_{Cd} \sigma_{Cd}(v)]$$
(21)

where d is the cadmium cover thickness, n_{Cd} is the cadmium number density, and σ_{Cd} is the cadmium cross section. The cadmium ratio is given by:

$$R_{Cd} = \frac{\overline{n} \int_{0}^{\infty} \rho(v) \sigma_{\gamma}(v) v \, dv}{\overline{n} \int_{0}^{\infty} t(v) \rho(v) \sigma_{\gamma}(v) v \, dv}$$
(22)

Due to the nature of the cadmium cross section, the transmission function is close to unity above the cadmium resonance at about 0.5 eV and nearly zero below. This parameter can be approximated by an idealized Heaviside function, with a step from zero to one at speed v_{Cd} , to give a greatly simplified expression for the cadmium ratio:

$$R_{Cd} = \frac{\left[\overline{n}_{th} \int_{0}^{v_{Cd}} \rho_{th}(v) \sigma_{\gamma}(v) v dv + \overline{n}_{ep} \int_{v_{Cd}}^{\infty} \rho_{ep}(v) \sigma_{\gamma}(v) v dv\right]}{\overline{n}_{ep} \int_{v_{Cd}}^{\infty} \rho_{ep}(v) \sigma_{\gamma}(v) v dv} = 1 + \frac{\overline{n}_{th} v_{0} \hat{g} \sigma_{0}}{\overline{n}_{ep} \int_{v_{Cd}}^{\infty} \rho_{ep}(v) \sigma_{\gamma}(v) v dv}, \qquad (23)$$

and the capture rate is given by:

$$\left\langle R \right\rangle_{\text{non-1/v}} = \frac{m}{M} N_A \theta \ \overline{n}_{\text{th}} v_0 \hat{g} \sigma_0 \left(\frac{R_{\text{Cd}}}{R_{\text{Cd}} - 1} \right) \tag{24}$$

which is a generalized expression for Eq. (16). By comparing Equations (22) and (23), an effective cadmium cutoff speed (v_{Cd}) can be determined that depends mainly on the thickness of the cadmium cover. Dependence on the shape of the cross section is weak, except for nuclides with resonances near the cadmium cutoff speed. Cd cutoff energies have been determined for various Cd thicknesses, epithermal neutron components and beam geometries that are applicable to Maxwellian thermal spectra and 1/E epithermal spectra above $\sim 5kT$ [2.19, 2.20, 2.34].

When the Cd ratio is too large to obtain a statistically meaningful γ -count rate, the terms in Equation (24) that involve the Cd ratio are not required. The estimated lower limit of the Cd ratio can be used to assign the error arising from epithermal neutron contribution.

2.2.3. Prompt capture- γ counting rate

The measured count rate of a prompt γ ray of energy E_{γ} emitted from a capturing nuclide is given by:

$$\langle C \rangle = \frac{1}{V} \frac{m}{M} N_A \theta \int_V d^3 \mathbf{r} \ \varepsilon(\mathbf{r}, E_\gamma) \int_0^\infty P(E_\gamma, v) n(\mathbf{r}, v) \sigma_\gamma(v) v dv$$
 (25)

where $\varepsilon(r, E_{\gamma})$ is the detection efficiency for the prompt γ ray of energy E_{γ} emitted at location r, and $P(E_{\gamma}, v)$ is the absolute γ -ray emission probability (gammas emitted per capture) of the prompt γ ray of energy E_{γ} emitted from the nucleus capturing a neutron of speed v.

Using a small sample, the detection efficiency $\varepsilon(r, E_{\gamma})$ is assumed to have the same shape over the sample volume and is separable into $f(r)\varepsilon(E_{\gamma})$ where f(r) is a geometrical factor independent of the γ -ray energy, unless attenuated [2.14]. A high resolution gamma-ray spectroscopy system is assumed for the detection, consisting of a single or Compton-suppressed semiconductor detector and associated electronics. Typically, the sample should be as small as practicable (point source) and located 15-20 cm or more from the detector so that the effects of the gradient of the detection efficiency through the sample is negligible [2.22]. Gamma-ray attenuation within the sample is insignificant due to the small sample size and high prompt γ -ray energy (greater than 200 keV). Typical correction factors arise from sum coincidence, random coincidence and dead time losses, and are introduced during or after the measurement. Typical corrections for saturation, cooling and decay before and during the counting period are not required.

The absolute γ -ray emission probability $P(E_{\beta}, v)$ is dependent on the captured neutron speed (energy) [2.28]. This parameter is related to the partial capture cross section and partial radiative width, which fluctuates from resonance to resonance (Porter-Thomas fluctuation

[2.35]). Neutron capture models based on statistical theory [2.36] or simple direct (potential) capture [2.37-2.39] predict negligible energy dependence for P(E_x v) in the thermal region. However, the neutron energy dependence can only be appreciable when interference occurs [2.40, 2.41] either between different resonance amplitudes [2.42] or between resonance and direct capture amplitudes [2.43]. Such experimental studies are difficult to perform and are scarce, especially in the thermal and cold energy range. Some signatures have been determined for a few transitions from 238 U(n, γ) [2.44], 197 Au(n, γ) [2.45], 195 Pt(n, γ) [2.42], 169 Tm(n, γ) [2.46] and 149 Sm(n, γ) [2.47] resonances that influence the thermal region. Even though there is some experimental evidence and theoretical models that support the energy variation in P, quantitative prediction of this phenomenon requires further study beyond the present scope. For most nuclides, the slow neutron energy region (< 0.1 eV) is far from the lowest positive energy resonance (e.g., Table 2.4 [2.48]), while the negative energy resonance is closest to the neutron threshold. Hence, the absolute γ -ray emission probability $P(E_{\gamma})$ is assumed to be independent of the neutron energy for slow neutron capture. Data for absolute γ-ray emission probabilities are based on the incident neutron energy being thermal, as specified in the current PGAA database [2.49].

E_0	Isotope	E ₀	Isotope						
0.031	¹⁵⁷ Gd	0.178	²⁴² Am	0.307	²⁴¹ Am	0.546	¹⁹² Ir	0.653	¹⁹¹ Ir
0.084	¹³⁵ Xe	0.192	¹⁵⁴ Eu	0.321	¹⁵¹ Eu	0.574	²⁴¹ Am	0.702	²⁴⁹ Cf
0.097	¹⁴⁹ Sm	0.195	249 Bk	0.400	²³¹ Pa	0.584	¹⁶⁷ Er	0.807	¹⁶⁹ Yb
0.141	¹⁷⁶ Lu	0.200	¹⁸⁰ Ta	0.435	¹⁸⁰ Ta		¹⁶⁸ Yb	0.872	¹⁴⁹ Sm
0.148	¹⁸² Ta	0.256	¹⁹² Ir	0.460	¹⁵¹ Eu	0.603	¹⁵⁵ Eu	0.884	¹⁵² Eu
0.169	¹⁴⁸ Pm	0.258	²⁴¹ Pu	0.460	¹⁶⁷ Er	0.609	²²⁹ Th	1.000	²⁵² Cf
0.178	113 Cd	0.296	²³⁹ Pu	0.489	²³⁷ Np	0.615	²⁴² Am	1.060	²⁴⁰ Pu

Table 2.4 Energy (eV)-ordered resonances.*

By combining Equations (24) and (25), the specific count rate (per mass of element in the sample, or the so-called analytic sensitivity) is given by:

$$A = \left\langle \frac{C}{m} \right\rangle = \frac{N_A}{M} \theta P(E_{\gamma}) \varepsilon(E_{\gamma}) \overline{n}_{th} v_0 \, \hat{g} \sigma_0 \left(\frac{R_{Cd}}{R_{Cd} - 1} \right). \tag{26}$$

2.2.4. Experimental k_0 factor

The same irradiation conditions for analyte (x) and comparator (c) elements are achieved by co-irradiating a homogeneous mixture of analyte and comparator element in a neutron field, and measuring the signature of prompt gamma rays in parallel. Hence, the experimental prompt k_0 factor is given from Equations (1) and (26) by:

^{*} extracted from Appendix A of Ref. [2.48].

$$k_{0} = \frac{P_{x}(E_{\gamma,x})}{P_{c}(E_{\gamma,c})} \cdot \frac{\sigma_{0,x}}{\sigma_{0,c}} \cdot \frac{\theta_{x}/M_{x}}{\theta_{c}/M_{c}} = \frac{A_{x}/\epsilon(E_{\gamma,x})}{A_{c}/\epsilon(E_{\gamma,c})} \cdot \frac{\hat{g}_{c}}{\hat{g}_{x}} \cdot \frac{\left(\frac{R_{Cd}}{R_{Cd}-1}\right)_{c}}{\left(\frac{R_{Cd}}{R_{Cd}-1}\right)_{x}}$$

$$(27)$$

This general expression contains two correction factors: \hat{g} for non-1/v absorption, and R_{Cd} for epithermal absorption. Typical comparator elements H and Cl are both good 1/v absorbers with effective g-factors close to unity in most facilities. The last term in parentheses deviates from unity by about $(1/R_{Cd})_c$ - $(1/R_{Cd})_x$ and therefore is closer to unity for a clean beam. Guided or filtered neutron beams result in conditions that do not require epithermal correction.

Accurately determined k_0 factors permit the generation of precisely measured datasets of partial cross sections by normalization to the well-defined comparator element H. Datasets of partial cross sections are known to be considerably more precise than either the isotopic cross section (σ_0) or the absolute γ -ray emission probability (P) [2.49]. Hence, by measuring the ratio of gamma-ray emission rates for two selected elements and using the known k_0 factors, the concentration ratio of the two elements can be precisely determined. Furthermore, the absolute elemental concentrations could be obtained if all the elements in the sample are observed in the measured gamma-ray spectrum (elemental analysis of a sample).

2.3. Concluding remarks

Typical spectra of the neutron beams used for PGAA deviate appreciably from the ideal Maxwellian function. Although analysis in terms of k₀-standardization has been expanded to non-1/v absorbers, the resulting deviation is neglected and the thermal spectrum has been approximated by the Maxwellian with or without 1/E epithermal contribution so that developments in INAA apply. Since the majority of nuclides exhibit 1/v absorption in the thermal energy region and even the non-1/v absorbers behave asymptotically as 1/v absorbers in the cold region (below 5 eV), the analytical solution is relatively simple in most cases. Quantification of the various effects becomes important as the accuracy in the measured k₀ factors is reported to be less than 3% (typically around 1%). Therefore, highly accurate PGAA requires well-defined experimental conditions and procedures, along with the analytical data and the assumptions underlying the final result. PGAA applications are widely diverse in terms of the sample composition and size, neutron beam characteristics, analysis method and procedure, and therefore the validity and limitations of the present approach need to be considered in greater detail.

REFERENCES

- [2.1] THOMAS, G.E., BLATCHLEY, D.E., BOLLINGER, L.M., High-sensitivity Neutron-capture Gamma-ray Facility, Nucl. Instrum. Meth. **56** (1967) 325-337.
- [2.2] NICHOL, L., LOPEZ, A., ROBERTSON, A., PRESTWICH, W.V., KENNETT, T.J., A Versatile Tangential Irradiation Facility, Nucl. Instrum. Meth. **81** (1970) 263-269.
- [2.3] ANDERSON, D.L., FAILEY, M.P., ZOLLER, W.H., WALTERS, W.B., GORDON, G.E., LINDSTROM, R.M., Facility for Non-destructive Analysis for Major and Trace Elements Using Neutron-capture Gamma-ray Spectrometry, J. Radioanal. Nucl. Chem. 63 (1981) 97-119.

- [2.4] YONEZAWA, C., WOOD, A.K.H., HOSHI, M., ITO, Y., TACHIKAWA, E., The Characteristics of the Prompt Gamma-ray Analyzing System at the Neutron Beam Guides of JRR-3M, Nucl. Instrum. Meth. Phys. Res. **A329** (1993) 207-216.
- [2.5] MOLNÁR, G.L., BELGYA, T., DABOLCZI, L., FAZEKAS, B., RÉVAY, Zs., VERES, Á., BIKIT, I., KIS, Z., ÖSTÖR, J., The New Prompt Gamma-activation Analysis Facility at Budapest, J. Radioanal. Nucl. Chem. 215 (1997) 111-115.
- [2.6] SUDARSHAN, K., NAIR, A.G.C., ACHARYA, R.N., SCINDIA, Y.M., REDDY, A.V.R., MANOHAR, S.B., GOSWAMI, A., Capture γ-rays from ⁶⁰Co as Multi γ-ray Efficiency Standard for Prompt γ-ray Neutron Activation Analysis, Nucl. Instrum. Meth. Phys. Res. **A457** (2001) 180-186.
- [2.7] LINDSTROM, R.M., ZEISLER, R., VINCENT, D. H., GREENBERG, R. R., STONE, C. A., ANDERSON, D. L., CLARK, D. D., MACKEY, E. A., Neutron Capture Prompt Gamma-ray Activation Analysis at the NIST Cold Neutron Research Facility, J. Radioanal. Nucl. Chem. **167** (1993) 121-126.
- [2.8] CRITTIN, M., KERN, J., SCHENKER, J.-L., The New Prompt Gamma-ray Activation Facility at the Paul Scherrer Institute Switzerland, Nucl. Instrum. Meth. Phys. Res. **A449** (2000) 221-236.
- [2.9] RÉVAY, Zs., BELGYA, T., KASZTOVSZKY, Zs., WEIL, J.L., MOLNÁR, G.L., "Cold Neutron PGAA Facility at Budapest," Nucl. Instrum. Meth. Phys. Res. **B213** (2004) 385-388.
- [2.10] HANNA, A.G., BRUGGER, R.M., GLASCOCK, M.D., The Prompt Gamma Neutron Activation Analysis Facility at MURR, Nucl. Instrum. Meth. **188** (1981) 619-627.
- [2.11] HARLING, O.K., CHABEUF, J.-M., LAMBERT, F., YASUDA, G., A Prompt Gamma Neutron Activation Analysis Facility Using a Diffracted Beam, Nucl. Instrum. Meth. Phys. Res. **B83** (1993) 557-562.
- [2.12] BYUN, S.H., SUN, G.M., CHOI, H.D., Development of a Prompt Gamma Activation Analysis Facility Using Diffracted Polychromatic Neutron Beam, Nucl. Instrum. Meth. Phys. Res. A487 (2002) 521-529.
- [2.13] DE CORTE, F., SIMONITS, A., DE WISPELAERE, A., HOSTE, J., Accuracy and Applicability of the k₀-standardization Method, J. Radioanal. Nucl. Chem. **113** (1987) 145-161
- [2.14] LINDSTROM, R.M., FLEMING, R.F., PAUL, R.L., MACKEY, E.A., "The k_0 Approach in Cold-neutron Prompt-gamma Activation Analysis," Proc. Int. k_0 Users Workshop (De Corte, F., Editor) Universiteit Gent, Gent (1992) 121-124.
- [2.15] MOLNÁR, G.L., RÉVAY, Zs., PAUL, R.L., LINDSTROM, R.M., Prompt-gamma Activation Analysis Using the k₀ Approach, J. Radioanal. Nucl. Chem. **234** (1998) 21-26.
- [2.16] SIMONITS, A., DE CORTE, F., HOSTE, J., Single-comparator Methods in Reactor Neutron Activation Analysis, J. Radioanal. Nucl. Chem. **24** (1975) 31-46.
- [2.17] MOLNÁR, G.L., "Development of a Database for Prompt γ-ray Neutron Activation Analysis," Summary report of first IAEA Research Coordination Meeting, INDC(NDS)-411, Vienna, Austria (2000) 47-52.
- [2.18] PRESTWICH, W.V., ISLAM, M.A., KENNETT, T.J., A Determination of the Carbon Thermal Neutron Capture Cross Section, Nucl. Sci. Eng. **78** (1981) 182-185.
- [2.19] WESTCOTT, C.H., WALKER, W.H., ALEXANDER, T.K., "Effective Cross Sections and Cadmium Ratios for the Neutron Spectra of Thermal Reactors," Peaceful Uses of Atomic Energy, Proc. 2nd UN Int. Conf. Geneva, 1958, Vol. 16, United Nations, Geneva (1958) 70-76.

- [2.20] STOUGHTON, R.W., HALPERIN, J., Heavy Nuclide Cross Sections of Particular Interest to Thermal Reactor Operation: Conventions, Measurements and Preferred Values, Nucl. Sci. Eng. 6 (1959) 100-118.
- [2.21] RYVES, T.B., PAUL, E.B., The Construction and Calibration of a Standard Thermal Neutron Flux Facility at the National Physical Laboratory, J. Nucl. Energy **22** (1968) 759-775.
- [2.22] LINDSTROM, R.M., YONEZAWA, C., "Prompt-Gamma Activation Analysis With Guided Neutron Beams," Prompt Gamma Neutron Activation Analysis (Alfassi, Z. B., Chung, C., Editors) CRC Press, Boca Raton (1995) 93-100.
- [2.23] HOLDEN, N.E., Temperature Dependence of the Westcott g-factor for Neutron Reactions in Activation Analysis, Pure Appl. Chem. **71** (1999) 2309-2315.
- [2.24] SUBLET, J-Ch., KOPECKY, J., FORREST, R.A., "The European Activation File: EAF-99 Cross Section Library," EURATOM/UKAEA Fusion Report, UKAEA FUS 408 (1998).
- [2.25] DE CORTE, F., SIMONITS, A., DE WISPELAERE, A., k₀-measurements and Related Nuclear Data Compilation for (n, γ) Reactor Neutron Activation Analysis, J. Radioanal. Nucl. Chem. **133** (1989) 3-41.
- [2.26] BAUER, G.S., Operation and Development of the New Spallation Neutron Source SINQ at the Paul Scherrer Institut, Nucl. Instrum. Meth. Phys. Res. **B139** (1998) 65-71
- [2.27] KAWABATA, Y., SUZUKI, M., SAKAMOTO, M., HARAMI, T., TAKAHASHI, H., ONISHI, N., Transmission Efficiency of Neutron Guide Tube With Alignment Errors, J. Nucl. Sci. Technol. **27** 5 (1990) 406-415.
- [2.28] LONE, M.A., MUGHABGHAB, S.F., PAVIOTTI-CORCUERA, R., "Development of a Database for Prompt γ-ray Neutron Activation Analysis," Summary report of second IAEA Research Coordination Meeting, INDC(NDS)-424, Vienna, Austria (2001) 85-92.
- [2.29] BYUN, S.H., SUN, G.M., CHOI, H.D., Characterization of a Polychromatic Neutron Beam Diffracted by Pyrolytic Graphite Crystals, Nucl. Instrum. Meth. Phys. Res. **A490** (2002) 538-545.
- [2.30] HØGDAHL, O.T., "Neutron Absorption in Pile Neutron Activation Analysis Determination of Copper and Gold in Silver," Proc. Symp. Radiochemical Methods of Analysis, Salzburg, 1964, Vol. I, Vienna (1965) 23-40.
- [2.31] SUN, G.M., BYUN, S.H., CHOI, H.D., Prompt k_0 -factors and Relative γ -emission Intensities for the Strong Non-1/v Absorbers 113 Cd, 149 Sm, 151 Eu and 155,157 Gd, J. Radioanal. Nucl. Chem. Vol. **256** (2003) 541-542.
- [2.32] JEF-2.2 Nuclear Data Library, OECD Nuclear Energy Agency (2000).
- [2.33] PAUL, R.L., The Use of Element Ratios to Eliminate Analytical Bias in Cold Neutron Prompt Gamma-ray Activation Analysis, J. Radioanal. Nucl. Chem. **191** (1995) 245-256
- [2.34] DAYTON, I.E., PETTUS, W.G., Effective Cadmium Cutoff Energy, Nucleonics 15 (1957) 86-88.
- [2.35] PORTER, C.E., THOMAS, R.G., Fluctuations of Nuclear Reaction Widths, Phys. Rev. **104** (1956) 483-491.
- [2.36] BLATT, J.M., WEISSKOPF, V.F., "Theoretical Nuclear Physics," Wiley, New York (1960) 647-651.
- [2.37] LANE, A.M., LYNN, J.E., Theory of Radiative Capture in the Resonance Region, Nucl. Phys. 17 (1960) 563-585.
- [2.38] MUGHABGHAB, S.F., Verification of the Lane-Lynn Theory of Direct Neutron Capture, Phys. Lett. **81B** (1979) 93-97.

- [2.39] MUGHABGHAB, S.F., LONE, M.A., ROBERTSON, B.C., Quantitative Test of the Lane-Lynn Theory of Direct Radiative Capture of Thermal Neutrons by ¹²C and ¹³C, Phys. Rev. C26 (1982) 2698-2701.
- [2.40] LANE, A.M., LYNN, J.E., Anomalous Radiative Capture in the Neutron Resonance Region: Analysis of the Experimental Data on Electric Dipole Transitions, Nucl. Phys. 17 (1960) 586-608.
- [2.41] LYNN, J.E., "The Theory of Neutron Resonance Reactions," Clarendon, Oxford (1968) 339-345.
- [2.42] COTÉ, R.E., BOLLINGER, L.M., Interference in the Radiative Capture of Neutrons, Phys. Rev. Lett. **6** (1961) 695-697.
- [2.43] WASSON, O.A., BHAT, M.R., CHRIEN, R.E., LONE, M.A., BEER, M., Direct Neutron Capture in $Co^{59}(n, \gamma)Co^{60}$, Phys. Rev. Lett. **17** (1966) 1220-1222.
- [2.44] PRICE, D.L., CHRIEN, R.E., WASSON, O.A., BHAT, M.R., BEER, M., LONE, M.A., GRAVES, R., Neutron Capture in ²³⁸U, Nucl. Phys. **A121** (1968) 630-654.
- [2.45] WASSON, O.A., CHRIEN, R.E., BHAT, M.R., LONE, M.A., BEER, M., Au¹⁹⁷(n, γ)Au¹⁹⁸ Reaction Mechanism, Phys. Rev. **173** (1968) 1170-1184.
- [2.46] LONE, M.A., CHRIEN, R.E., WASSON, O.A., BEER, M., BHAT, M.R., MUETHER, H.R., Resonant and Nonresonant Capture of Slow Neutrons in Tm¹⁶⁹(n, γ)Tm¹⁷⁰, Phys. Rev. **174** (1968) 1512-1524.
- [2.47] BEČVÁŘ, F., CHRIEN, R.E., WASSON, O.A., A Study of the Distribution of Partial Radiative Widths and Amplitudes for 149 Sm(n, γ) 150 Sm, Nucl. Phys. **A236** (1974) 198-224.
- [2.48] MUGHABGHAB, S.F., Appendix A in "Neutron Cross Sections", Vol. 1, Part B, Z = 61 100, Academic Press, New York, 1984.
- [2.49] FIRESTONE, R.B., Database of IAEA Coordinated Research Project for Prompt Gamma-Ray Neutron Activation Analysis (2002), http://ie.lbl.gov/pgaadatabase/pgaa.htm

3. CHARACTERISTICS OF PGAA FACILITIES

H.D. Choi

3.1. SNU-KAERI PGAA facility and diffracted polychromatic neutron beam

The SNU-KAERI Prompt Gamma Activation Analysis (PGAA) facility was developed through the joint efforts of Seoul National University (SNU) and Korea Atomic Energy Research Institute (KAERI), and has been operational since May 2001. A detailed layout of the facility is shown in Fig. 3.1. The PGAA system is installed on a platform located at the exit of the 4-m long ST1 tangential beam port of Hanaro [3.1]. Pyrolytic graphite (PG) crystals are used to extract the thermal beam by the method of Bragg diffraction, with the Bragg angle set at 45° so that most of the beam flux originates from diffraction orders 2, 3 and 4. The diffracted beam is diverted vertically to the first collimator positioned downstream from the PG crystals, and is controlled further by a second collimator of 6 LiF positioned on the beam shutter. The neutron flux and Cd-ratio for gold at the sample location are 7.9×10^7 n cm⁻² s⁻¹ and 266, respectively. Flux uniformity of within 12% is achieved in the central area of 1×1 cm² of the total beam cross section (of 2×2 cm²).

The neutron beam spectrum has been characterized both experimentally and theoretically [3.1, 3.2]. A time-of-flight (TOF) spectrometer was used to measure the spectrum of the diffracted polychromatic beam, as shown in Fig. 3.2. Bragg peaks up to 6^{th} -order diffraction are recognizable, and hence the measurement is only restricted in the thermal energy region. Higher-order diffractions above 6^{th} order and the epithermal region of the spectrum were obtained indirectly by comparing theoretical predictions with the measured effective cross section for the 10 B(n, α) reaction and Cd-ratios for various nuclides.

FIG. 3.1 SNU-KAERI PGAA facility.

FIG.3. 2 Diffracted neutron TOF spectrum measured by double-layered crystals set at a Bragg angle of 45°.

The theoretical diffracted beam spectrum was obtained from the reflectivity model of the PG crystal. Lattice vibration effects were included in the calculation using the reported vibrational amplitude of the PG crystal and comparing with the measured time-of-flight spectra in the thermal region [3.3]. A continuous spectrum of background neutrons was included as a minor component that originated mainly from the incoherent scattering by the structural materials of the PG crystal mount and goniometer. The calculated neutron spectrum up to 40 eV is shown in Fig. 3.3, while the neutron flux and energy width of each diffraction order up to n = 15 was compared with the TOF measurement in Table 3.1. The energy width was determined theoretically considering the mosaic spread of the PG crystal and the angular divergence of the white neutron beam. Cadmium ratios for Au, Cl, Cd, Sm, Eu and Gd, and the effective cross section of the 10 B(n, α) reaction were measured and compared with theoretical calculations based on the spectrum and pointwise neutron cross sections. These theoretical

FIG. 3.3 Neutron spectrum at the sample position of SNU-KAERI PGAA facility.

Table 3.1 Relative fraction of the diffracted neutron flux as a function of diffraction order.

Diffraction	Energy	Width	Relative flux [%]			
Order (n)	[meV]	[meV]	TOF measurement	Theoretical calculation		
1	3.6	0.2	4.4 ± 0.2	5.2		
2	14.6	0.7	25.9 ± 0.2	29.6		
3	32.8	1.5	39.3 ± 0.3	36.4		
4	58.3	2.6	22.9 ± 0.2	20.4		
5	91.0	4.1	6.2 ± 0.1	6.7		
6	131.1	5.9	1.3 ± 0.1	1.4		
7	178.4	8.0	n/d	2.1×10^{-1}		
8	233.0	10.4	n/d	2.5×10^{-2}		
9	294.9	13.2	n/d	4.1×10^{-3}		
10	364.1	16.3	n/d	1.2×10^{-3}		
11	440.5	19.7	n/d	4.0×10^{-4}		
12	524.3	23.4	n/d	1.3×10^{-4}		
13	615.3	27.5	n/d	4.0×10^{-5}		
14	713.6	31.9	n/d	1.1×10^{-5}		
15	819.1	36.6	n/d	3.0×10^{-6}		

n/d - not detected.

predictions were consistent with the measured quantities, even though the agreement was not perfect.

The measured effective wavelength and velocity of the beam are 1.87 ± 0.02 Å and 2117 ± 21 m s⁻¹, respectively. All of the measured Cd-ratios except that for Au are in the range of 340 to 410, and hence the epithermal neutrons have negligible impact on the capture rate. Details of the method of analysis and the results are reported in Refs. [3.2] and [3.3].

A gamma-ray detector (n-type/HPGe, with a relative efficiency of 43%) is normally placed a distance of 25 cm from the sample. The pulse processing system consists of a preamplifier with resistive feedback, amplifier, 16k ADC, multichannel buffer and a PC with Ethernet connection to the buffer. Data collection and on-line analysis of the spectra are undertaken by commercial software, while off-line analysis is carried out by HYPERMET [3.4]. The total background counting rate for a neutron beam incident on a blank target is approximately 3000 counts s⁻¹, while the ADC deadtime is less than a few percent. Most of the background gamma-ray peaks identified are nitrogen and germanium capture lines, along with gamma rays originating from the inelastic excitation of Ge isotopes. Several methods have been proposed to reduce the background in a future upgrade. Radiation levels around the lead wall and sample position are kept low to ensure safety, with measured γ -ray and neutron dose rates of 10 and 30 µSv h⁻¹, respectively. Both the efficiency and energy calibration of the detection system are determined according to the procedures adopted by the Budapest group [3.5, 3.6]. Full energy peak efficiency is determined by fitting polynomials to the measured data; relative standard uncertainty is < 3% over the low-energy region, and < 5% for the complete spectrum. Non-linearity of the spectrometer is determined in a similar manner by fitting a polynomial function to the observed data for accurately known gamma-ray lines [3.7].

Table 3.2 Measured sensitivities and detection limits for some elements.

Element	Energy [keV]	Sensitivity [counts s ⁻¹ mg ⁻¹]	Detection limit [µg]
Н	2223	4.322 ± 0.005	11.500 ± 0.001
В	478	2131 ± 40	0.067 ± 0.001
Cl	1165	4.170 ± 0.020	11.500 ± 0.001
K	770	0.532 ± 0.010	105.00 ± 0.07
Ti	1382	2.023 ± 0.010	23.600 ± 0.001
Cd	558	452 ± 10	0.165 ± 0.001
Sm	333	2663 ± 40	0.043 ± 0.001
Gd	182	3071 ± 40	0.057 ± 0.001

The facility was first used to determine the sensitivity for boron. Dilute boric acid was used to prepare the solid samples, and a sensitivity of 2131 counts s⁻¹ (mg-B)⁻¹ was derived from the 478 keV Doppler-broadened peak. Sensitivities for various elements are listed in Table 3.2, along with the detection limits for a counting period of 10,000 s [3.1]. Since the neutron spectrum is simple and well-defined, k_0 -standardization can be applied in the study of non-1/v absorbers. The k_0 -factors and relative γ -ray emission intensities have been measured for ¹¹³Cd, ¹⁴⁹Sm, ¹⁵¹Eu and ^{155, 157}Gd [3.7].

Thus, diffracted polychromatic neutrons can be successfully used in a PGAA facility. Even though the purity of the resulting thermal neutrons is inferior to that of a mirror-guided thermal beam, a higher flux and detection sensitivity have been achieved at considerably lower cost and effort. For example, quantification of sub-ppm boron content is feasible in a non-destructive manner within 30 min for a small sample of 0.1 g. Future upgrading of the facility to reduce the background is expected to enhance the performance further.

3.2. Characterization of prompt gamma neutron activation analysis at the Dalat research reactor

The principle of extraction of the neutron beam, and the design of the beam shutter, beam catcher, detector shielding, and gamma-ray spectrometer are briefly described below for the Prompt Gamma Neutron Activation Analysis (PGAA) facility at the Dalat reactor. Neutron flux, cadmium ratio, gamma dose rate and absolute efficiency are also quantified.

3.2.1. Experimental configuration

Neutron beam

The beam emerging from the reactor beam port consists mainly of fast and thermal neutrons and high-energy gamma rays. Peak to background ratio of the gamma-ray spectrum depends upon the background gamma radiation within the thermal neutron beam. Thermal neutrons are extracted from the beam port for PGAA by slowing down the fast neutrons to thermal energy and filtering out the high-energy gamma rays. Radiation beam port No. 4 was selected for the installation of the PGAA facility. The average neutron flux inside the reactor is of the order of 10^{13} n cm⁻² s⁻¹, from which a neutron flux level of 10^{12} n cm⁻² s⁻¹ is required at the base of the collimator for PGAA. Graphite was selected as the moderator because of availability and the large diffusion length (40-cm thick, and placed 85 cm from the end side wall of the reactor). A 20-cm thick block of bismuth is used as a beam filter to minimize the high-energy gamma

radiation at the sample position and to reduce the need for additional shielding outside the biological shield. The beam aperture consists of two boron carbide sheets (each 3-mm thick) to give an aperture diameter of 25 mm. A hollow graphite block 15-cm thick separates the aperture from the moderator block in order to obtain a uniform neutron beam, and the outer diameter of the divergent beam collimator is 30 mm. Streaming of the radiation is eliminated by using bismuth and lead as beam stoppers that intercept all the radiation coming from the core of the reactor, gamma rays that arise from radiative capture of the neutrons, and scattered radiation from the sample and sample holder.

The beam shutter ensures the safe operation of the facility while positioning the sample. This shutter system consists of two parts:

- (a) first segment is made from borated paraffin, cadmium and boron carbide, and cadmium sheets, and is enclosed in aluminium casing thermalized neutrons are attenuated and absorbed by the borated paraffin, cadmium and boron carbide sheets;
- (b) second part consists of 15-cm thick shutter made from lead bricks and boron carbide sheets, and enclosed in a steel casing.

The shutter is mounted on a trolley, and is moved into position by means of an overhead crane. The beam catcher is fabricated from borated paraffin, lead, boron carbide and steel, while an enclosure of concrete blocks provides additional shielding from the scattered gamma rays and neutron radiation. Fig. 3.4 shows the layout of the PGAA facility.

FIG.3.4 Configuration of PGAA facility at DNRI.

90 cm³ horizontal HPGe detector manufactured by Intertechnique is used to count the prompt gamma rays (resolution of 2.5 keV at 1332 keV). The MCA has been calibrated from 0.121 to 8 MeV by means of the delayed gamma rays from 152 Eu and prompt gamma rays from 35 Cl(n, γ) and 14 N(n, γ), using the energies and intensities recommended by Molnár *et al.* [3.8].

Samples are sealed in a film of 25-µm thick fluorinated ethylenepropylen resin (FEP), and placed on the sample holder using 0.3-mm diameter PTFE string. The spectrometer system is directly shielded from the neutrons by a layer of 3-mm thick boron carbide, and on all sides by 10-cm borated paraffin. A 10-cm layer of lead is placed within the borated paraffin to protect the detector from undesired gamma rays that originate from the filtered neutron beam or neutron-capture reactions on the shielding materials (Fig. 3.4). The prompt gamma rays are detected through a window of Li₂CO₃ (32-mm diameter) located in the upper lead layer.

3.2.2. Characteristics of the system

Neutron flux, cadmium ratio and gamma dose rate

The beam position was determined by neutron radiography, and the neutron flux and flux distribution were measured by means of activated Au foils. The cadmium ratio was also determined by activating Au foils with and without a cadmium cover. Neutron flux and cadmium ratio are 2.1×10^7 n cm⁻² s⁻¹ and 21, respectively. Flux variations at the sample position during one reactor operation cycle of 100 hours were measured every 5 hours by means of 0.025-mm thick Au foils, and found to be 1.2%. The gamma dose rate at the sample position was determined by TLD to be 200 mR h⁻¹.

Efficiency calibration

Efficiency measurements have been described by many authors: the full-energy peak efficiency curve is divided into three energy regions of 100 to 658 keV, 447 to 2754 keV and

FIG. 3.5 Absolute efficiency curve.

1262 to 10829 keV. Gamma-ray sources of 24 Na, 54 Mn, 57 Co, 60 Co, 65 Zn, 88 Y, 137 Cs, 152 Eu and 241 Am were used for the absolute efficiency calibration from 100 to 2754 keV (calibrant emission probabilities from all of these sources have been recommended in IAEA-TECDOC 619 [3.9]). Prompt gamma rays from the 14 N(n, γ), Cl(n, γ) and Ti(n, γ) reactions cover a wide energy span from 0.5 to 10.829 MeV, and are sufficiently well-spaced to cover the efficiency curve from the low- to high-energy region; their intensity values (I $_{\gamma}$) are accurately defined in Proc. 4th Int. Symp. Neutron-capture Gamma-ray Spectroscopy and Related Topics, 1981. The resulting absolute efficiency curve is shown in Fig. 3.5.

3.3. NIST PGAA

The National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) is centred on 20-MW research reactor that is cooled and moderated by D_2O [3.10]. This reactor operates on a seven-week cycle, with about 38 days of continuous operation between refuelling. Among the experimental facilities are two instruments for prompt gamma activation analysis (PGAA).

The thermal-neutron system was developed jointly by the University of Maryland and NIST, and has been in regular operation since 1978 [3.11, 3.12]. A vertical collimator extends 7 m down from the top of the reactor to the reactor midplane, with an external beam tube, beam stop and Ge detector with Compton suppressor; a 5-cm sapphire filter was added recently to reduce the background from fast neutrons and gamma rays. With the filter, the neutron fluence rate is 3.0×10^8 n cm⁻² s⁻¹ and the cadmium ratio is 160. All components of the system outside the reactor have recently been replaced, with a large reduction in the background for H, B, C and N [3.13]. Furthermore, the titanium sensitivity for the capture line at 1382 keV is 1120 counts s⁻¹ g⁻¹ in the current configuration (detector efficiency of 40% when located about 45 cm from the irradiated sample).

A second system has been developed for cold-neutron prompt gamma-ray activation analysis (CPGAA), and has been operational since December 1990 [3.14]. Significant modifications have been made to this system [3.15]: CPGAA spectrometer is located 41 m from the liquid-hydrogen cold-neutron source at the end of the lower half of neutron guide NG7. Neutrons are filtered through 127-mm Be and 203-mm single-crystal Bi (both at 77K), before emerging through a 0.25-mm thick Mg-alloy window. The upper half of this neutron beam continues past the prompt gamma-ray station to a 30-m small-angle neutron scattering (SANS) instrument. Walls of 30-cm thick steel shot surround the guide tube, and a shutter composed of ⁶Li-enriched glass can be opened to admit neutrons to the prompt gamma-ray station [3.16]. The neutron beam is collimated to 20 mm or smaller, as required, by apertures of ⁶Li glass located upstream from the sample, and unused neutrons are absorbed by a fixed beam stop of ⁶Li glass. Samples can be irradiated in air, or within a 120-mm cubical magnesium-alloy box that can be evacuated or purged with helium. The CPGAA spectrometer is shown in Fig. 3.6, with the detectors in position.

FIG.3.6 Isometric view of detectors in position with shielding removed.

The sample position is hidden by the gamma-ray collimator (rectilinear block in front of the horizontal BGO Compton detector), and the plate carrying the final neutron collimator, sample support, detectors and associated shielding is movable on the rails perpendicular to the neutron beam.

Prompt gamma rays are measured by a high-purity germanium detector (35% relative efficiency, 1.7 keV resolution) positioned vertically inside a horizontal bismuth germanate (BGO) Compton suppression detector at a distance of 35 cm from the sample. The detectors and their shielding are located on an aluminium plate carried on rails perpendicular to the neutron guide. Both the sample holder and neutron collimator are mounted on the same plate at a fixed position in front of the detector. Exchangeable lead apertures of different sizes placed between the detector and the sample allow variable collimation of the gamma-ray signal in order to balance detector efficiency with the field of view. A third-generation cold-neutron source was installed in early 2002 to give a thermal equivalent neutron fluence rate (reaction rate per atom divided by the 2200 m s⁻¹ cross section) at the sample position of 9.5×10^8 n cm⁻² s⁻¹, and titanium sensitivity of 7700 counts s⁻¹ g⁻¹ at 1382 keV.

Spectra up to 11 MeV can be measured in both the thermal- and cold-neutron PGAA system, using a digital signal processor on the cold-neutron system with Compton suppression electronics and Ethernet 16384-channel pulse height analyzers. Data reduction and spectral manipulation are accomplished by means of standard Canberra nuclear data software, the

HYPERMET program [3.4, 3.17], and an interactive algorithm SUM written at NIST [3.18].

Cold neutrons gain energy by scattering in hydrogenous samples at room temperature, and therefore the cross section for absorption depends on the sample temperature [3.19]. The thermal PGAA system is preferred for the analysis of materials such as biological tissues and foods, while the greater sensitivity and lower hydrogen background make the cold-neutron system advantageous for small samples and low concentrations.

3.4. Neutron capture gamma-ray facilities at the Budapest research reactor

The Budapest research reactor is a light-water moderated and light-water cooled reactor operating at 10 MW thermal power. Three neutron guides serve the external neutron beam facilities, and a liquid-hydrogen cold source was commissioned in early 2001.

The thermal-neutron prompt gamma activation analysis (PGAA) facility has been rebuilt, and includes a neutron-induced prompt gamma-ray spectrometer (NIPS) for a variety of experiments involving nuclear reaction-induced prompt and delayed gamma rays (including γ -coincidences) [3.20-3.22]. A pneumatic beam shutter at the end of the guide tube allows the neutrons to enter the 3-m long evacuated aluminium tube that extends across the experimental area (3 × 5 m²) to the beam stop at the rear wall of the guide hall (Fig. 3.7). This neutron beam can be divided into two separate beams of smaller diameter by appropriate collimation: the upper beam is used for PGAA measurements, while the lower beam is directed to the NIPS station.

FIG. 3.7 PGAA-NIPS experimental area [3.20].

The PGAA target chamber is located at a distance of 1.5 m from the end of the guide tube, and targets are suspended on a thin aluminium frame by fine Teflon strings. Vacuo, ⁴He or other gaseous atmospheres can be maintained inside the sample box to decrease the

background radiation induced by the neutrons. Furthermore, a neutron absorber layer can be placed in the horizontal plane to prevent scattering from the lower beam to the PGAA sample.

NIPS is positioned a further 1 m from the PGAA station, and is shielded with lead bricks to minimize the background radiation that originates from other measurements. The aluminium tubing and NIPS chamber are sufficiently narrow for several detectors to be placed close to the irradiated sample.

All three sections of aluminium tube can be easily removed if necessary, so that samples larger than the target chamber can be studied. A beam chopper is also provided for specific experimental investigations.

3.4.1. Beam characteristics

The thermal-equivalent neutron flux achieved at the old PGAA facility was 2×10^6 n cm⁻² s⁻¹ [3.22]; fluxes at the sample positions of the new cold-neutron PGAA and NIPS facilities are 5×10^7 and 3×10^7 n cm⁻² s⁻¹, respectively [3.20]. Both beams are individually collimated to give a cross section of 2×2 or 1×1 cm². The neutron flux profile at the PGAA sample position is shown in Fig. 3.8

FIG. 3.8 Neutron flux profile at the sample position of the PGAA facility [3.21].

3.4.2. PGAA instrumentation

An n-type high-purity germanium (HPGe) detector with closed-end coaxial geometry is normally used in the PGAA facility, along with a BGO-scintillator guard detector annulus surrounded by 10-cm thick lead shielding [3.21, 3.22]. This complete system is positioned on a movable table. By removing the three lead disks in front of the detector, the HPGe detector can be placed 12 cm from the target, and as close as 3 cm by simply using the bare detector. The BGO annulus and catchers around the HPGe detect most of the scattered gamma photons. Connecting the HPGe and BGO in anticoincidence mode results in the accumulation of Compton-suppressed spectra.

Table 3.3 Main specifications of PGAA facility, Budapest research reactor [3.20].

Beam tube	NV1 guide, end position
Distance from guide end	1.5 m
Beam cross section	$1 \times 1 \text{ cm}^2 \text{ or } 2 \times 2 \text{ cm}^2$
Thermal-equivalent flux at target	$\approx 5 \times 10^7 \text{ cm}^{-2} \text{ s}^{-1}$
Vacuum in target chamber (optional)	≈ 1 mbar
Target chamber Al-window thickness	0.5 mm
Form of target at room temperature	solid/powder/liquid/gas (pressurized chamber)
Target packing at atmospheric pressure	sealed FEP Teflon bag or vial
Activity of target after irradiation	negligible
Largest target dimensions	$4 \times 4 \times 10 \text{ cm}^3$
γ-ray detector	n-type coaxial HPGe with BGO shield
Distance from target to detector window	23.5 cm
HPGe window	0.5 mm Al
Relative efficiency	25% at 1332 keV (⁶⁰ Co)
FWHM	1.8 keV at 1332 keV (⁶⁰ Co)
Compton suppression enhancement	$\approx 5 \text{ (1332 keV) to } \approx 40 \text{ (7000 keV)}$

BUDAPEST COMPTON-SUPPRESSED / PAIR-MODE GAMMA SPECTROMETER

FIG. 3.9 Cross section of HPGe-BGO gamma-ray spectrometer [3.22].

With appropriate electronic gating, the HPGe-BGO gamma-ray spectrometer can also be used in annihilation-pair mode to simplify the spectra at high energies [3.22]. A 16k PC-based multichannel analyzer collects the resulting data. The HPGe-BGO detector assembly is shown

in Fig. 3.9, and the operational characteristics of the PGAA system are listed in Table 3.3. A Compton-suppression ratio of about 5 can be achieved for the 1332 keV gamma-ray emission of ⁶⁰Co (although this ratio is much larger for higher-energy gamma rays, as can be seen in Fig. 3.10).

FIG. 3.10 Normal (upper) and Compton-suppressed (lower) spectra of CCl₄ sample.

3.4.3. Detection efficiency and system non-linearity

The energy and intensity calibration of the γ -ray spectrometer system is important for both nuclear spectroscopic and analytical experiments. However, this essential procedure becomes problematic when the energy of interest is greater than the highest gamma-ray energy of the 56 Co calibrant source. The counting efficiency has been accurately determined over the energy range of 50 keV to 10 MeV using several multi γ -ray sources and (n, γ) reactions in order to avoid this difficulty. The accuracy of the efficiency function is better than 1% from 500 keV to 6 MeV [3.22]. Fig. 3.11 shows the absolute full-energy peak efficiency for a target-to-detector distance of 23.5 cm, with the single- and double-escape peak efficiencies also included.

FIG. 3.11 Efficiency of PGAA spectrometer in Compton-suppressed mode (FE-full energy; SE-single escape; DE-double escape peak).

When constructing the non-linear energy function, long-term instabilities of the system may result in peak shifts and create inconsistencies between independent measurements. Therefore, a non-linear calibration procedure has been introduced to overcome this problem that uses radioactive sources and capture gamma rays with well-known energies [3.6]. When the non-linear function is combined with the normal linear energy calibration for strong gamma-ray peaks, an energy precision of between 0.01 and 0.1 keV can be achieved depending on the statistics. The non-linearity functions are regularly determined at the beginning of each period of reactor operation.

3.4.4. Data acquisition and analysis

A Canberra S100-type single-input, PC-based multichannel analyzer (MCA) has been used to collect PGAA spectra. However, a digital spectrum analyser will soon be installed to achieve a much higher input rate without any substantial deterioration in the spectral resolution.

Gamma-ray spectra from neutron capture are extremely complex, and therefore a high-quality fitting code has been developed for the data analysis [3.23]. HYPERMET-PC is an interactive, non-linear fitting code that evolved from the spectrum evaluation program HYPERMET. The PC version has user-friendly graphics and a database to store the fitted regions, as well as quality assurance, calibration and nuclide identification modules. Peak energies and intensities that result from the fitting process can be corrected within the program for non-linearity and detector efficiency, respectively. Element identification on the basis of peak energies is also possible with the help of the built-in library.

3.5. Prompt gamma-ray neutron activation analysis at Bhabha Atomic Research Centre (BARC)

Initial PGAA studies at BARC were carried out using a guided-beam facility, and subsequent improvements included the installation of a reflected beam. A dedicated beam line is currently being developed. Brief descriptions of these systems are given in below.

3.5.1. PGAA systems

The thermal guided-beam facility in the 100 MW Dhruva reactor at BARC, Trombay has been used for PGAA. A beam tube was used to guide and transport the neutrons about 30 m away from the reactor core to a temporary experimental facility (beam of cross section $2.5 \times 10~\text{cm}^2$). 1-cm thick boron carbide sheet minimized the neutrons scattered towards the detector, except when boron was contained within the sample for analysis. The γ -ray detector was located about 40 cm from the irradiated sample, and was provided with 30-cm thick lead shielding to reduce the background radiation. A lead collimator (3 cm diameter and 30 cm length) was placed in front of the detector to control the gamma rays emitted from the sample. The layout of this PGAA system is shown in Fig. 3.12.

FIG. 3.12 PGAA arrangement at BARC.

The effective thermal neutron flux at the sample irradiation position has been measured by means of In foils, while the cadmium ratio method was used to determine the sub-cadmium to epithermal flux ratio. An In foil (110 mg cm⁻²) was irradiated with and without a covering of cadmium (0.8-mm thick), followed by off-line counting of ^{116m}In by means of 15% relative efficiency HPGe detector coupled to a 4k multichannel analyzer (MCA). The sub-cadmium to epithermal neutron flux ratio was found to 3.45×10^4 , indicating that more than 99.99% of the neutron beam consisted of thermal neutrons at the irradiation position. $Q_o(I_0/\sigma_0)$ value of 16.8 was derived from ^{116m}In gamma rays (E_γ of 1097 and 1293 keV), and used to estimate a total neutron flux of $(1.4 \pm 0.1) \times 10^7$ n cm⁻² s⁻¹ [3.24]. The In foil was estimated to attenuate the beam by as much as 8%, which affected the cadmium ratio. However, this effect does not impact on the k_0 values or elemental analyses based on this method.

3.5.2. Sample irradiation and data acquisition

Samples weighing between 100 and 500 mg were wrapped in thin Teflon tape and placed at 90° with respect to the beam direction. Care was taken to ensure that the sample size was significantly less than the beam dimensions. 22% relative efficiency HPGe detector connected to a PC-based 8k MCA was used to assay the prompt gamma rays, with a resolution of 2.4 keV at 1332 keV.

3.5.3. Energy calibration and peak area analysis

The MCA has been calibrated from 0.1 to 8.5 MeV by means of the delayed gamma rays of ¹⁵²Eu and ⁶⁰Co, and prompt gamma rays of ³⁶Cl and ⁴⁹Ti. Non-linearity over this energy range was not significant, and therefore a second-order polynomial was used for the energy calibration. The Lone et al. compilation of capture gamma rays was used to identify the prompt gamma-ray emissions of the different elements [3.25].

Photopeak areas in the gamma-ray spectra were determined using the PHAST-2.6 code developed in Electronics Division, BARC [3.26]. This software can be used to derive energy

FIG. 3.13 Absolute detection efficiency of PGAA system at BARC.

calibrations and determine spectral shape parameters. A second-order polynomial was used to calibrate the width (FWHM) of the photopeaks, and the measured FWHM and shape parameters as functions of energy were subsequently used to identify multiplets and undertake their deconvolution.

3.5.4. Efficiency calibration

Delayed gamma rays from ¹⁵²Eu and prompt gamma rays from ³⁶Cl and ⁴⁹Ti were used for absolute/relative efficiency calibrations of the detector over a wide energy range from 100 keV to 10 MeV. The absolute gamma-ray abundances of ³⁶Cl and ⁴⁹Ti were obtained from the literature [3.9, 3.27]. Ammonium chloride packed in Teflon was irradiated for about 12 hours, and capture gamma-ray spectra were accumulated. Absolute full-energy peak efficiencies were determined for the lower energy region (i.e., up to 1500 keV) using the gamma-ray spectrum of ¹⁵²Eu, and the relative efficiency plot from 0.5 to 8 MeV was obtained from the prompt gamma-ray spectra of ³⁶Cl and ⁴⁹Ti. Relative efficiencies were converted to absolute values using the overlap with equivalent ¹⁵²Eu data.

Efficiencies as a function of gamma-ray energy (E_{γ}) were fitted to a fifth-order polynomial using Equation (1):

$$(\ln \varepsilon)_{E_{\gamma}} = k_{j} + \sum_{i=0}^{5} a_{i} (\ln E_{\gamma})^{i}$$
(1)

where a_i are the coefficients of the polynomial, and k_j is the normalization constant for the jth gamma-ray emitting nuclide used in the efficiency calibration. The number of free parameters used to fit the efficiency data are (6 + (n - 1)), where n is the number of radionuclides whose gamma-ray emissions have been used in the fitting procedure. A standard non-linear least squares program was

used in which the peak areas of the gamma rays from each specific nuclide are fitted with a particular constant k_j so that the relative efficiency curves from different radionuclides are normalized with respect to the absolute efficiency determined from ¹⁵²Eu. The efficiency of the PGAA system at BARC is shown in Fig. 3.13 (insert shows the efficiency on logarithm scale).

3.5.5. New beam facility at Dhruva reactor

Another PGAA system has been established at the Dhruva reactor (BARC), using a reflected neutron beam that is normally applied to neutron diffraction experiments. The tangential beam of neutrons is reflected by a graphite crystal towards the PGAA experimental facility (neutron energy of 0.05 eV, and composed mainly of first-order reflection). Neutron beam characteristics have been determined in terms of dimensions, homogeneity and thermal equivalent flux. A Gd-loaded neutron radiographic film was held in the beam path to measure a neutron beam area of 2.5×3.5 cm². The neutron flux profile was obtained by irradiating Au foil (40 mm \times 40 mm) for 48 hours in the beam, cutting the foil into 64 squares (5 mm x 5 mm), and then measuring the activity.

Separate shielding has been placed in front of the detector: $8 \text{ cm} \times 8 \text{ cm} \times 30 \text{ cm}$ collimator was located inside a lead shield of $30 \text{ cm} \times 30 \text{ cm} \times 60 \text{ cm}$. Graded shielding was also used around the detector. Samples are held in quartz containers placed in front of the collimator and within the path of the neutron beam. Compared to the earlier PGAA system, the background in the newer facility has been reduced by a factor of two. The same data acquisition system is used as previously, and the procedures followed for the energy and efficiency calibrations are identical. Fig. 3.14 shows the efficiency calibration of the new facility presented as both logarithm and linear scales.

FIG. 3.14 Detection efficiency as a function of energy, PGAA system, BARC.

3.6. Summary of experimental facilities

The most important performance characteristics of any PGAA facility are the thermal equivalent neutron flux and the associated neutron spectrum, gamma-ray detection sensitivity, and achieving low background. Other essential features included the method and quality of the calibrations and spectral analyses. The main characteristics of the facilities associated with the present CRP are summarized in Table 3.4. These comparative data show that the development of an excellent performance feature for a particular facility is usually achieved at the expense and degradation of other features. While improved characteristics can be achieved in various ways, the best performance is often achieved by considering conditions at the site and tailoring the facility design accordingly, and by improving operational characteristics gradually during the course of the various work programmes.

Table 3.4 Main characteristics of the PGAA facilities in the CRP.

Facility	Characteristics
SNU-KAERI	Thermal beam extraction: diffraction (pyrolytic graphite) Beam flux: 8.2×10^7 n cm ⁻² s ⁻¹ (thermal equivalent) Beam size: 2×2 cm ² Cd-ratio: 266 (for gold) Effective temperature: 269K Ti (1382 keV) sensitivity: 2020 counts s ⁻¹ g ⁻¹ Detection system: single HPGe with pulse processing system Total background counting rate: 3000 counts s ⁻¹
Dalat Research Reactor	Thermal beam extraction: moderation (graphite) and filtering (Bi) Beam flux: 2.1×10^7 n cm ⁻² s ⁻¹ Beam size: 2.5 cm Cd-ratio: 21 (for gold) Detection system: single HPGe with pulse processing system
NIST (Thermal)	Thermal beam extraction: filtering (sapphire) Beam flux: 3.0×10^8 n cm ⁻² s ⁻¹ Cd-ratio: 160 Effective temperature: 300K Ti (1382 keV) sensitivity: 890 counts s ⁻¹ g ⁻¹ Detection system: HPGe and Compton suppression electronics
(Cold)	Cold beam extraction: filtering (Be, Bi) and mirror guide Beam flux: 9.5×10^8 n cm ⁻² s ⁻¹ (thermal equivalent) Beam size: 2 cm or smaller Effective temperature: 14K Ti (1382 keV) sensitivity: 7700 counts s ⁻¹ g ⁻¹ Detection system: HPGe and Compton suppression electronics
Budapest Research Reactor	Cold beam extraction: mirror guide Beam flux: 5×10^7 n cm ⁻² s ⁻¹ (thermal equivalent) Beam size: 1×1 cm ² or 2×2 cm ² Effective temperature: ~ 60 K Ti (1382 keV) sensitivity: 750 counts s ⁻¹ g ⁻¹ Detection system: HPGe and Compton suppression electronics
BARC (Thermal 1)	Thermal beam extraction: mirror guide Beam flux: 1.4×10^7 n cm ⁻² s ⁻¹ (total) Beam size: 2.5×10 cm ² Cd-ratio: 3.4×10^4 (for indium) Detection system: single HPGe with pulse processing system
(Thermal 2)	Thermal beam extraction: diffraction (graphite) Beam flux: 1.6×10^6 n cm ⁻² s ⁻¹ (thermal equivalent) Beam size: 2.5×3.5 cm ² Detection system: single HPGe with pulse processing system

3.7. Experiments

The largest amount of new PGAA data has come from the Institute of Isotope and Surface Chemistry, Budapest, Hungary. Neutron capture reactions on all naturally-occurring elements except the four noble gases have been studied by means of the guided thermal-neutron beam PGAA facility at the Budapest Research Reactor (i.e., 79 elements from H to U). The 10 B(n, $\alpha\gamma$) reaction on natural boron has also been measured. These results are described below.

A thermal guided beam was used for PGAA experiments at the Bhabha Atomic Research Centre (BARC), India. Activities concentrated on the experimental determination of prompt k_0 -factors with respect to the 1951-keV gamma-ray emission from the 35 Cl(n, γ) 36 Cl reaction using a mixture of ammonium chloride and other stoichiometric compounds [3,28, 3.29]. The emission probabilities of capture gamma rays from 60 Co were also determined [3.29, 3.30].

The Seoul National University-KAERI PGAA system was used in Korea to measure the prompt k_0 -factors for the major non-1/ ν nuclides, and to determine the corresponding effective g-factors for their polychromatic diffracted neutron beam [3.7].

Vietnam Atomic Energy Commission has supported Dalat measurements of prompt k_0 -factors for a number of elements with respect to the 1951-keV gamma-ray emission from chlorine, using a filtered thermal neutron beam [3.31]. The reliability of these k_0 -factors has been tested on all facilities for a number of applications.

The Budapest group has measured partial cross sections for the elements. As the other CRP participants have measured only k₀-factors with respect to the 1951-keV chlorine line, comparison with the adopted set and the new Budapest data is only possible for the similar inferred k₀-factors. Available data are compared in Table 3.5 with the adopted set from the CRP and the new Budapest data [3.32]. Data from the NIST-University of Maryland thermal-beam facility [3.33], as well as recent data obtained in thermal and cold guided beams at the Japan Atomic Energy Research Institute (JAERI) [3.34, 3.35], are also included in order to assess the possible dependence on neutron beam characteristics.

The data in Table 3.5 show that the agreement is generally good for 1/v nuclides at the quoted uncertainty level. Furthermore, it is especially gratifying to observe that the very precise JAERI data corroborate the adopted values, as do the new Budapest data. Moreover, the cold neutron data from JAERI agree well with similar data from NIST and with the thermal data, supporting the 1/v form of the cross sections. The only exceptions are the well-known cases discussed in Chapter 2: ¹¹³Cd, ¹⁴⁹Sm and ^{155, 157}Gd for which the g-factor deviates strongly from unity.

Table 3.5 Comparison of library $k_{0,Cl}$ -factors with other measurements for the most prominent γ rays of selected elements.

Z	Target	E(dE)	Adopted	Dalat	BARC	SNU	NIST-	JAERI	NIST	JAERI	Budapest
	Isotope	, ,	•	thermal beam	thermal guide	diffraction beam		thermal guide	cold guide	cold guide	thermal guide
				[3.31]	[3.28]	[3.7]	[3.33]	[3.34, 3.35]	[3.33]	[3.34, 3.35]	[3.32]
1	1-H	2223.25	1.848(11)		1.800(16)		2.00(10)	1.80(6)	2.05(11)	1.86(6)	1.803(10)
3	7-Li	2032.30(4)	0.0307(8)	$0.0230(5)^*$							
5	10-B	477.595(3)	369.5(23)		312(22)			371(31)		380(32)	360(3)
6	12 - C	1261.765(9)	0.000579(15)	$0.00041(1)^*$				0.000573(5)		0.000551(6)	0.000546(9)
	12-C	4945.301(3)	0.001218(25)					0.00124(3)		0.001160(17)	0.001192(13)
7	14-N	1884.821(16)	0.00588(8)	0.00567(11)				0.005800(13)		0.005890(18)	0.00569(4)
11	23-Na	472.202(9)	0.1165(11)				0.105(4)	0.11600(41)	0.105(4)	0.1160(25)	0.1181(13)
12	25-Mg	585.00(3)	0.0072(3)				0.0065(2)		0.0064(3)		
13	27-A1	1778.92(3)	0.0482(10)				0.0467(18)	0.0440(4)	0.0463(21)	0.0433(14)	0.0472(9)
14	28-Si	2092.902(18)	0.00660(13)	0.00603(11)				. ,		, ,	• •
	28-Si	3538.966(22)	0.0237(4)				0.0214(7)	0.02180(10)	0.0216(9)	0.02110(11)	0.0231(5)
15	31-P	636.663(21)	0.0056(3)					0.00572(9)		0.00570(9)	0.0055(3)
16	32-S	840.993(13)	0.0606(11)	0.0603(15)			0.0558(18)	0.0554(10)	0.0562(23)	0.0570(12)	0.0608(13)
17	35-Cl	786.3020(10)	0.540(3)		$1.30(3)^{\&}$		$1.28(6)^{\&}$	$1.330(45)^{\&}$	$1.26(7)^{\&}$	$1.350(44)^{\&}$	
	35-Cl	788.4280(10)	0.856(9)		$1.30(3)^{\&}$		$1.28(6)^{\&}$	$1.330(45)^{\&}$	$1.26(7)^{\&}$	$1.350(44)^{\&}$	
	35-Cl	1951.1400(20)	1	1	1	1		1		1	1
19	39-K	770.3050(20)	0.1294(18)		0.116(4)		0.126(4)	0.127(4)	0.122(5)	0.128(4)	0.127(3)
20	40-Ca	1942.67(3)	0.0492(10)		0.045(2)		0.0461(16)	0.047(2)	0.0459(19)	0.0464(16)	0.0463(14)
22	48-Ti	341.706(5)	0.215(3)		$0.187(6)^*$			0.211(3)		0.2250(16)	, ,
	48-Ti	1381.745(5)	0.606(15)	$0.433(10)^*$	0.604(13)		$0.582^{@}$	0.582(6)	$0.591^{@}$	0.591(6)	0.591(7)
	48-Ti	1585.941(5)	0.0730(10)	, ,	$0.056(3)^*$			• •			1 ,
24	50-Cr	749.09(3)	0.0614(10)		0.065(8)			0.0562(20)		0.0601(25)	
	50-Cr	834.849(22)	0.149(3)		0.138(8)			0.141(5)		0.142(5)	0.145(2)
	50-Cr	7938.46(23)	0.0457(11)		0.048(3)			` '		`	` ′
25	55-Mn	314.398(20)	0.1488(22)		` '			0.152(5)		0.149(8)	0.150(3)
26		352.347(12)	0.0274(3)				0.0253(9)	0.0273(10)	0.0248(10)	0.0269(11)	` ′
	56-Fe	7631.136(14)	0.0654(13)					$0.0568(24)^*$		$0.0537(27)^*$	0.0676(14)

Table 3.5 Cont.

Z	Target	E(dE)	Adopted	Dalat	BARC	SNU	NIST-	JAERI	NIST	JAERI	Budapest
	Isotope			thermal beam	thermal guide	diffraction beam		thermal guide	cold guide	cold guide	thermal guide
				[3.31]	[3.28]	[3.7]	[3.33]	[3.34, 3.35]	[3.33]	[3.34, 3.35]	[3.32]
27	59-Co	229.879(17)	0.682(8)		0.58(4)			0.67(2)		0.664(22)	0.702(8)
	59-Co	277.161(17)	0.643(8)		$0.55(4)^*$			0.619(21)	*	0.615(21)	
	59-Co	555.972(13)	0.547(6)		$0.46(3)^*$			0.516(18)	$0.460(12)^*$	0.509(20)	
	59-Co	1515.720(25)	0.165(3)		$0.186(6)^*$						
	59-Co	1830.800(25)	0.1616(24)		$0.19(1)^*$						
	59-Co	6485.99(3)	0.220(6)		$0.185(15)^*$						
	59-Co	7214.42(3)	0.131(3)		$0.156(6)^*$						
28	58-Ni	464.978(12)	0.0804(10)				0.075(3)	0.081(3)	0.074(3)	0.0811(28)	0.0781(9)
29	63-Cu	278.250(14)	0.0787(14)		0.068(4)			0.077(3)		0.0762(25)	0.0831(9)
	63-Cu	384.45(5)	0.00617(13)		$0.019(1)^{\&}$			$0.0174(7)^{\&}$		$0.0166(6)^{\&}$. ,
	65-Cu	385.77(3)	0.01155(18)		$0.019(1)^{\&}$			$0.0174(7)^{\&}$		$0.0166(6)^{\&}$	
	63-Cu	7306.93(4)	0.0283(15)		0.0261(14)			, ,		. ,	
37	85-Rb	556.82(3)	0.00599(17)	$0.00210(5)^*$, ,						
38	87-Sr	898.055(11)	0.0449(8)					0.042(2)		0.0425(14)	0.0434(6)
	87-Sr	1836.067(21)	0.0658(12)					. ,		· /	0.0634(7)
49	113-Cd [#]	558.32(3)	92.6(16)		41(2)*	90(6)	132(7)*	81(2)	66(4)*	$61.5(1.5)^*$	90.7(11)
55	133-Cs	116.3740(20)	$0.0\overline{59(6)}$		· /	· /	()	$0.172(6)^{\&}$	· /	$0.172(6)^{\&}$. ,
	133-Cs	116.612(4)	0.061(6)					$0.172(6)^{\&}$		$0.172(6)^{\&}$	
	133-Cs	307.015(4)	0.0612(13)					$0.0692(25)^*$		$0.0711(26)^*$	$0.0546(7)^*$
56		627.29(5)	0.01200(25)		0.0106(3)			0.0111(4)		0.0108(4)	()
	135-Ba	818.514(12)	0.00865(17)		$0.012(2)^*$			()		,	
	137-Ba	1435.77(4)	0.0126(3)		0.011(1)			0.0118(4)		0.0118(4)	
62	149-Sm [#]	333.97(4)	178.4(24)	188(4)	(-)	172(14)	339(18)*	131(9)*	111(7)*	116(1)*	178(2)
63	151-Eu [#]	89.847(6)	52.7(11)	(-)		46(3)	()	(-)	(-)	-(-)	. ~ (-)
64	157-Gd [#]	181.931(4)	257(11)			277(15)	222(12)	255(3)	236(13)	214(1)*	267(6)
	155-Gd [#]	199.2130(10)	` '			68(5)	()	(-)	()	-(-)	- (-)
	157-Gd [#]	, ,	110.0(25)	162(3)							

Table 3.5 Cont

Z	Target Isotope	E(dE)	Adopted	Dalat thermal beam [3.31]	BARC thermal guide [3.28]	SNU diffraction beam [3.7]	NIST- thermal beam [3.33]	JAERI thermal guide [3.34, 3.35]	NIST cold guide [3.33]	JAERI cold guide [3.34, 3.35]	Budapest thermal guide [3.32]
	155-Gd [#]	1187.120(21)	12(4)	[0.00.0]	111(4) ^{&*}	105(6)&*	[c.cc]	[-:-:,-:]	[even]	[0.00.0,0.000]	[5152]
	157-Gd [#]	1187.122(9)	51(3)		111(4)**	105(6)&*					
73	181-Ta	402.623(3)	3.29(8)	$0.156(3)^*$. ,	. ,					
80	199-Hg	367.947(9)	7.00(15)	. ,	5.8(3)			7.11(26)		7.01(14)	6.82(12)
	199-Hg	1693.296(11)	1.57(5)		1.37(8)			1.41(5)		1.40(5)	` ′
	199-Hg	5967.02(4)	1.74(4)		. ,			. /		. /	1.43(6)*
82	207-Pb	7367.78(7)	0.00370(8)					0.00338(6)		0.00329(3)	0.00361(8)

^{*} Value deviates significantly from Adopted Value.

& Doublet line.

Non 1/v nuclide.

@ Normalizing transition - set equal to corresponding JAERI value.

REFERENCES

- [3.1] BYUN, S.H., SUN, G.M., CHOI, H.D., Development of a Prompt Gamma Activation Analysis Facility Using Diffracted Polychromatic Neutron Beam, Nucl. Instrum. Meth. Phys. Res. **A487** (2002) 521-529.
- [3.2] BYUN, S.H., SUN, G.M., CHOI, H.D., Beam Characteristics of Polychromatic Diffracted Neutrons Used for Prompt Gamma Activation Analysis, J. Korean Nucl. Soc. **34** (2002) 30-41.
- [3.3] BYUN, S.H., SUN, G.M., CHOI, H.D., Characterization of a Polychromatic Neutron Beam Diffracted by Pyrolytic Graphite Crystals, Nucl. Instrum. Meth. Phys. Res. **A490** (2002) 538-545.
- [3.4] PHILLIPS, G.W., MARLOW, K.W., Automatic Analysis of Gamma Ray Spectra from Germanium Detectors, Nucl. Instrum. Meth. **137** (1976) 525-536.
- [3.5] KIS, Z., FAZEKAS, B., ÖSTÖR, J., RÉVAY, Zs., BELGYA, T., MOLNÁR, G.L., KOLTAY, L., Comparison of Efficiency Functions for Ge Gamma-ray Detectors in a Wide Energy Range, Nucl. Instrum. Meth. Phys. Res. A418 (1998) 374-386.
- [3.6] FAZEKAS, B., RÉVAY, Zs., ÖSTÖR, J., BELGYA, T., MOLNÁR, G., SIMONITS, A., A New Method for Determination of Gamma-ray Spectrometer Non-linearity, Nucl. Instrum. Meth. Phys. Res. **A422** (1999) 469-473.
- [3.7] SUN, G.M., BYUN, S.H., CHOI, H.D., Prompt k₀-factors and Relative γ-Emission Intensities for the Strong Non-1/v Absorbers ¹¹³Cd, ¹⁴⁹Sm, ¹⁵¹Eu and ^{155,157}Gd, J. Radioanal. Nucl. Chem. Vol. **256** (2003) 541-542
- [3.8] MOLNÁR, G.L., BELGYA, T., DABOLCZI, L., FAZEKAS, B., RÉVAY, Zs., VERES, Á., BIKIT, I., KIS, Z., ÖSTÖR, J., The New Prompt Gamma Activation Analysis Facility at Budapest, J. Radioanal. Nucl. Chem. **215** (1997) 111-115.
- [3.9] X-ray and Gamma-ray Standards for Detector Calibration, IAEA-TECDOC-619, International Atomic Energy Agency, Vienna, Austria, 1991.
- [3.10] PRASK, H.J., ROWE, J.M., RUSH, J.J., SCHRÖDER, I.G., The NIST Cold Neutron Research Facility, J. Res. NIST **98** (1993) 1-14.
- [3.11] FAILEY, M.P., ANDERSON, D.L., ZOLLER, W.H., GORDON, G.E., LINDSTROM, R.M., Neutron-capture Prompt γ-ray Activation Analysis for Multielement Determination in Complex Samples, Anal. Chem. 51 (1979) 2209-2221.
- [3.12] ANDERSON, D.L., FAILEY, M.P., ZOLLER, W.H., WALTERS, W.B., GORDON, G.E., LINDSTROM, R.M., Facility for Non-destructive Analysis for Major and Trace Elements Using Neutron-capture Gamma-ray Spectrometry, J. Radioanal. Chem. **63** (1981) 97-119.
- [3.13] MACKEY, E.A., ANDERSON, D.L., LAMAZE, G., LINDSTROM, R.M., LIPOSKY, P.J., Upgrade of the NIST Thermal Neutron Prompt-gamma-ray Activation Analysis Facility, Trans. Am. Nucl. Soc. **83** (2000) 487-488.
- [3.14] LINDSTROM, R.M., ZEISLER, R., VINCENT, D.H., GREENBERG, R.R., STONE, C.A., MACKEY, E.A., ANDERSON, D.L., CLARK, D.D., Neutron Capture Prompt Gamma-ray Activation Analysis at the NIST Cold Neutron Research Facility, J. Radioanal. Nucl. Chem. **167** (1993) 121-126.
- [3.15] PAUL, R.L., LINDSTROM, R.M., HEALD, A.E., Cold Neutron Prompt Gamma-ray Activation Analysis at NIST Recent Developments, J. Radioanal. Nucl. Chem. **215** (1997) 63-68.
- [3.16] STONE, C.A., BLACKBURN, D.H., KAUFFMAN, D.A., CRANMER, D.C., OLMEZ, I., ⁶Li-doped Silicate Glass for Thermal Neutron Shielding, Nucl. Instrum. Meth. Phys. Res. **A349** (1994) 515-520.

- [3.17] FAZEKAS, B., MOLNÁR, G., BELGYA, T., DABOLCZI, L., SIMONITS, A., Introducing HYPERMET-PC for Automatic Analysis of Complex Gamma-ray Spectra, J. Radioanal. Nucl. Chem. **215** (1997) 271-277.
- [3.18] LINDSTROM, R.M., SUM and MEAN: Standard Programs for Activation Analysis, Biol. Trace Elem. Res. **43-45** (1994) 597-603.
- [3.19] MACKEY, E.A., Effects of Target Temperature on Analytical Sensitivities of Cold Neutron Capture Prompt Gamma-ray Activation Analysis, Biol. Trace Elem. Res. **43-45** (1994) 103-108.
- [3.20] RÉVAY, Zs., BELGYA, T., KASZTOVSZKY, Zs., WEIL, J.L., MOLNÁR, G.L., "Cold Neutron PGAA Facility at Budapest", IRRMA-V, Proc. 5th Int. Topical Meeting Industrial Radiation and Radioisotope Measurement Applications, Bologna, (2002) in press.
- [3.21] BELGYA, T., RÉVAY, Zs., FAZEKAS, B., HÉJJA, I., DABOLCZI, G.L., MOLNÁR, G.L., KIS, Z., ÖSTÖR, J., KASZÁS, Gy., "The New Budapest Capture Gamma-ray Facility", Proc. 9th Int. Symp. Capture Gamma-ray Spectroscopy and Related Topics, Budapest, 1997, (Molnár, G.L., Belgya, T., Révay, Zs., Eds.), Springer Verlag, Budapest (1997) 826-837.
- [3.22] MOLNÁR, G.L., RÉVAY, Zs., BELGYA, T., Wide-energy Range Efficiency Calibration Method for Ge-detectors, Nucl. Instrum. Meth. Phys. Res. **A489** (2002) 140-159
- [3.23] RÉVAY, Zs., BELGYA, T., EMBER, P.P., MOLNÁR, G.L., Recent Developments in HYPERMET-PC, J. Radioanal. Nucl. Chem. **248** (2001) 401-405.
- [3.24] DE CORTE, F., SIMONITS, A., k₀-measurements and Related Nuclear Data Compilation for (n,□) Reactor Neutron Activation Analysis, IIIb: Tabulation, J. Radioanal. Nucl. Chem. **133** (1989) 43-130.
- [3.25] LONE, M.A., LEAVITT, R.A., HARRISON, D.A., Prompt Gamma Rays from Thermal-neutron Capture, At. Data Nucl. Data Tables **26** (1981) 511-559.
- [3.26] MUKOPADHYAY, P.K., Proc. Symp. Intelligent Nuclear Instrumentation, Mumbai (2001) 307.
- [3.27] $\stackrel{.}{R}UYL$, J.F.A.G., ENDT, P.M., Investigation of the $^{48}Ti(\eta,\gamma)^{49}Ti$ Reaction, Nucl. Phys. **A407** (1983) 60-76.
- [3.28] ACHARYA, R.N., SUDARSHAN, K., NAIR, A.G.C., SCINDIA, Y.M., GOSWAMI, A., REDDY, A.V.R., MANOHAR, S.B., Measurement of k₀-factors in Prompt Gamma-ray Neutron Activation Analysis, J. Radioanal. Nucl. Chem. **250** (2001) 303-307.
- [3.29] SUDARSHAN, K., ACHARYA, R.N., NAIR, A.G.C., SCINDIA, Y.M., GOSWAMI, A., REDDY, A.V.R., MANOHAR, S.B., Determination of Prompt k₀-Factors in PGNAA, pp. 39-50, Summary Report 2nd RCM of CRP on Development of a Database for Prompt Gamma-Ray Neutron Activation Analysis, INDC(NDS)-424, International Atomic Energy Agency, Vienna, Austria (2001).
- [3.30] SUDARSHAN, K., NAIR, A.G.C., ACHARYA, R.N., SCINDIA, Y.M., REDDY, A.V.R., MANOHAR, S.B., GOSWAMI, A., Capture Gamma-rays from Co-60 as Multi Gamma-ray Efficiency Standard for Prompt Gamma-ray Neutron Activation Analysis, Nucl. Instrum. Meth. Phys. Res. **A457** (2001) 180-186.
- [3.31] VUONG HUU TAN, NGUYEN CANH HAI, NGUYEN XUAN QUY, LE NGOC CHUNG, Evaluation and Measurement of Prompt k₀-Factors to Use in Prompt Gamma-Ray Neutron Activation Analysis, pp. 33-38, Summary Report 2nd RCM of CRP on Development of a Database for Prompt Gamma-Ray Neutron Activation Analysis, INDC(NDS)-424, International Atomic Energy Agency, Vienna, Austria (2001).

- [3.32] RÉVAY, Z., MOLNÁR, G.L., Standardisation of the Prompt Gamma Activation Analysis Method, Radiochim. Acta, **91** (2003) 361-369.
- [3.33] PAUL, R.L., LINDSTROM, R.M., Measurement of k₀-Factors for Prompt Gamma-Ray Activation Analysis, pp. 54-57, Proc. 2nd Int. k₀ Users Workshop, Jozef Stefan Institute, Ljubljana, Slovenia (1997).
- [3.34] MATSUE, H., YONEZAWA, C., Neutron Spectrum Correction of k₀-factors for k₀-based Neutron Induced Prompt Gamma-ray Analysis, J. Radioanal. Nucl. Chem. **255** (2003) 125-129.
- [3.35] MATSUE, H., YONEZAWA, C., Measurement and Evaluation of k₀-factors for PGA at JAERI, J. Radioanal. Nucl. Chem., **257**, No.3 (2003), 565-571.

4. BENCHMARKS AND REFERENCE MATERIALS

R.M. Lindstrom

Two sets of sample materials were sent to the experimentalists within the CRP to aid in characterizing each neutron beam and detector system, and to analyze an unknown sample.

The first set of samples comprised the following:

- 99.65% titanium foil, 0.25-mm thick: 2.5-cm square, and 6- and 13-mm disks;
- Gold foil, 0.025-mm thick by 5-mm diameter;
- Borophosphosilicate glass on silicon: $\sim 5 \times 10^{16}$ atoms 10 B cm⁻² (surface density measured by neutron depth profiling);
- 10 B-aluminum alloy sheet, 1.3-mm thick and 4.5 wt % 10 B as two ~ 2.5 cm squares;
- Approximately 2 g of an "unknown" mixture of aluminosilicate and graphite.

The titanium foil was used to measure the sensitivity of the PGAA system (i.e., the product of neutron flux and detector efficiency, expressed as the count rate per milligram of Ti of the 1381.5-keV capture gamma ray of ⁴⁸Ti). The effective velocity or wavelength of the beam can be measured by means of the boron samples, as described below. Excel spreadsheets for flux and wavelength were also developed and made available on the IAEA server; as illustrated below.

The unknown sample was distributed in order to demonstrate the participants' ability to perform quantitative analysis. This material was made by blending dried and weighed quantities of two NIST fly ash Standard Reference Materials (SRMs 1633a and 1633b) with spectroscopic graphite as a diluent in a mixer mill. The participants were not informed about the constituents, or their proportions. The known values of eleven elements were calculated from the SRM certificates or from published consensus numbers. Unfortunately for the comparison, the concentrations of hydrogen and boron reported by all three participants are not known in SRM 1633b, so the "correct" value of these elements is unknown as well.

4.1. Characterization of the neutron beam

Foil activation is the simplest and perhaps the most accurate method of measuring the neutron flux [4.1]. A known mass of a monitor element is irradiated for a known time and the resulting radioactivity measured with a detector of known efficiency. If the reaction rate per atom ($R = \sigma \phi$) is calculated with the 2200 m s⁻¹ thermal cross section (for example, $\sigma_0 = 98.65$ b for ¹⁹⁸Au production), the thermal equivalent flux (ϕ_0) can be determined. Epithermal flux is often measured by irradiating a bare monitor and another specimen of the same monitor under 1-mm shielding of cadmium, as described in Section 2.2.2. Fast-neutron (MeV) monitoring is similar, using threshold reactions that cannot be induced by slow neutrons, such as ⁵⁴Fe(n, p)⁵⁴Mn [4.2].

The effective temperature (or wavelength) is a useful single parameter that has been devised to characterize a neutron beam in the thermal and subthermal energy region where most analytically useful reactions take place. This basic concept involves measuring the reaction

rate of a thin sample (proportional to the temperature-sensitive effective cross section), and comparing with the total flux incident on a "black" sample [4.3]. One approach involves the adoption of the same element for both samples, negating the need to determine the detector efficiency, but resulting in a large difference in count rate.

When the effects of neutron absorption and scattering can be neglected, the neutron capture rate (R) of a given element in an irradiated sample is proportional to the product of the number of atoms in the beam (N) and the neutron flux (ϕ) , defined as the number of neutrons entering the sample per unit area per unit time:

$$R = N\phi\langle\sigma\rangle \tag{1}$$

where the effective cross section ($\langle \sigma \rangle$) is the constant of proportionality.

For a thin sample of area S with a known surface density D atoms cm⁻² of the target species, N = DS, and therefore the counting rate C for a detection efficiency ε counts per capture is given by the equation:

$$C_{thin} = \varepsilon R_{thin} = \varepsilon SD\phi \langle \sigma \rangle \tag{2}$$

However, for a thick "black" sample of the same material, every neutron is captured, and the reaction rate is:

$$C_{thick} = \varepsilon S \phi \tag{3}$$

If thick and thin samples are identically irradiated (same sample area (S) and capture-gamma detection efficiency (ε), the ratio of counting rates is given by:

$$\frac{C_{thin}}{C_{thick}} = \frac{\varepsilon SD\phi \langle \sigma \rangle}{\varepsilon S\phi} \tag{4}$$

from which the effective cross section can be derived:

$$\langle \sigma \rangle = \frac{C_{thin}}{D \cdot C_{thick}} \tag{5}$$

For a 1/v absorber for which the cross section is inversely proportional to the neutron velocity, the effective velocity $\langle v \rangle$ is defined as:

$$\langle v \rangle = v_0 \frac{\sigma_0}{\langle \sigma \rangle} \tag{6}$$

where by convention $v_0 = 2200 \text{ m s}^{-1}$. The corresponding effective wavelength is defined as

$$\left\langle \lambda \right\rangle = \frac{h}{m \cdot \left\langle v \right\rangle} \tag{7}$$

where h is Planck's constant, and m is the neutron mass. A spreadsheet in which these calculations can be performed is displayed below.

Neutron Beam Wavelength Measurement

		Clock time,		count/s B		
Sample	Live time, s	s	Dead time	@478	1s uncert	
Thick boron	340.4	391.5	13.1%	6330.6	0.08%	
Thin boron	29989.6	30409.8	1.4%	5.96	0.84%	
	Input	data	SI u	nits	-	
Thick source thickness	1.3	mm				
¹⁰ B content	4.5%					
Density	2.70	g/cm ³				
					Equivalent na	atural B
Thin deposit thickness D	4.83E+16	at 10 B/cm 2	4.83E+20	atom/m ²	4.05E-06	g/cm ²
angle with beam	45.0	deg	7.85E-01	radian		J
thickness in beam direction	6.83E+16	at ¹⁰ B/cm ²	6.83E+20	atom/m ²	5.73E-06	g/cm ²
						3
		Resu	lts		_	
sigma(eff)	13,792	barn	1.38E-24	m^2		
sigma(eff)/sigma(0)	3.6					
v(eff)	612	m/s	612	m/s		
lambda(eff)	6.5	Å	6.47E-10	m		
E(eff)= $mv^2/2$	0.0020	eV	3.13E-22	J		
T(eff) = E/k	22.7	K				
` ,						
Calculated	d absorption of t	hick source	99.9998%			
Calculate	ed absorption of	thin source	9.42E-08	(boron only)		

4.2. Analysis of the unknown sample

Three participants reported measurements of the composition of the unknown mix of silicate and graphite. Some adjustment was necessary to compare results because the Budapest measurements were forced to sum to 100% and the BARC measurements were normalized to an assumed (and incorrect) Fe concentration. Both sets of results were renormalized to the known Fe concentration of 5.35%. Table 4.1 summarizes the comparisons. Eight to ten elements were reported: about half of the elements of known concentrations in the mixture (not H or B) were measured correctly to within $\pm 25\%$. A weak comparison can be made by taking into account the measurement uncertainties (reported by two participants). About a third of the measured concentrations agreed with the expected values to within the stated uncertainties. If the true uncertainties of the expected values had been known and taken into account, this measure of PGAA performance would have been considerably better.

Table 4.1 Measurements made by the different laboratories.

Laboratory	BARC	IISC	NIST	SNU	VAEC	unit
Sensitivity	0.031	0.54	6.2	2.0		cps @1382/mg
Neutron flux		4.3E+07	8.3E+08	7.9E+07		Ti cm ⁻² s ⁻¹ , thermal equivalent
Effective		473	610	2120		$m s^{-1}$
neutron velocity						
Unknown san	nple analys	sis				
Elements reported	8	11		10		
Number within 25%	4	6		5		

4.3. Cross-section measurements

Number within

stated uncertainty

A second set of materials was distributed to assist in the resolution of a discrepancy in the thermal cross section of carbon. These materials were as follows:

- ~ 2 g of urea (NH₂)₂CO (NIST Standard Reference Material 912, 99.7 %);
- ~ 1.2 g of deuterourea (ND₂)₂CO (Aldrich 176087, 98+ at.% D);

3

~ 2.5 g of melamine $C_3N_3(NH_2)_3$ (Fisher ACROS 220481, assay \geq 99%);

spectroscopic graphite (Union Carbide UCAR L4100, palletising grade).

No results from these materials have been reported to NIST.

REFERENCES

- [4.1] Standard E 261-98, Standard Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques, ASTM International, West Conshohocken, PA, (1998).
- [4.2] CALAMAND, A., "Cross-Sections for Fission Neutron Spectrum Induced Reaction", in Handbook on Nuclear Activation Cross-Section, Technical Report 156, IAEA Vienna, Austria (1974) 273-324.
- [4.3] RÉVAY, Z., private communication (2000), Institute of Isotope and Surface Chemistry, Budapest, Hungary.

5. THERMAL NEUTRON CAPTURE CROSS SECTIONS AND NEUTRON SEPARATION ENERGIES

R.B. Firestone, S.F. Mughabghab, G.L. Molnár

Thermal radiative neutron capture cross sections have been re-evaluated [5.1] as part of an ongoing project at the National Nuclear Data Center at Brookhaven National Laboratory to update the *Neutron Cross Sections* compendia, Vol. 1, parts A and B, *Neutron Resonance Parameters and Thermal Capture Cross Sections*, published by Academic Press in 1981 and 1984 [5.2, 5.3]. Neutron separation energies are evaluated as part of an on-going project at the Atomic Mass Data Center in Orsay, France [5.4]. The adopted data are compared with new results derived from this evaluation.

5.1. Thermal cross-section evaluation methodology

A brief description of the evaluation procedure is presented below. As an initial step in the evaluation procedure, CINDA retrievals were carried out on nuclear parameters, such as thermal capture, scattering and total cross sections, as well as coherent scattering amplitudes for measurements since 1979, the cut-off date of the publication of Neutron Cross Sections, Vol.1, part A. The search engines of the American Physical Society and Elsevier Science Web sites were utilized for the most recent publications that may not be referenced in CINDA.

Since the present evaluated capture cross sections are applied to test the validity of the k_0 methodology described elsewhere in this report, the capture cross sections derived by this technique were not included in the present evaluation. As in other previous evaluation studies [5.2, 5.3], various factors were considered in evaluating the thermal capture cross sections:

Normalization of the reported cross section under consideration to recent recommended standard cross sections (¹H, ¹⁴N, ³⁵Cl, ⁵⁵Mn, ⁵⁹Co, ¹⁹⁷Au and ²³⁵U).

- a. Half-lives of the product nuclei, branching ratios, and conversion coefficients.
- b. Measurement accuracy.
- c. Measurement method, as to whether it is specific or non-specific, such as an absorption measurement by a pile oscillator method as compared to quantification by an activation method.
- d. Sample characteristics, which include information regarding the isotopic enrichment, impurities, chemistry and sample thickness.
- e. Measurer's experience and general consistency.
- f. Characterization of the neutron spectrum.
- g. Paramagnetic scattering cross sections of rare earth nuclei in dealing with total cross sections.
- h. Accurate total cross-section measurements, from which capture cross sections can be obtained if the scattering cross sections are well known.

In some cases, measured reactor capture cross sections can be converted to 2200 m s⁻¹ values if the thermal reactor-index and the capture-resonance integrals are known.

For light and medium weight nuclides, as well as near-magic nuclides, the direct capture cross section is computed within the framework of the Lane-Lynn theory [5.5-5.7] following the Mughabghab procedure outlined in Ref. [5.6], and can shed some light on the measured capture cross section.

In the final step of the evaluation procedure, the contribution of positive-energy resonances to the thermal capture cross section is computed and subsequently compared with measurements. For the majority of nuclides, negative-energy resonances are postulated to achieve consistency between calculations and measurements. However, in some cases, the computed thermal capture cross section can be accounted for in terms of positive-energy resonances, such as ¹⁶²Dy [5.3].

Finally, consistency between the isotopic and elemental cross sections is sought. Several iterations in the evaluation procedure may be necessary for this objective to be realized.

5.2. Adopted thermal neutron cross sections

The resulting evaluated thermal neutron capture cross sections for elements Z=1-92 are summarized in column 3 of Table 5.1 for 395 naturally abundant isotopes and isomers [5.1-5.3]. The quoted natural abundances, listed in column 2, are representative isotopic compositions (Atom %) from the 1997 IUPAC values published by Rosman and Taylor [5.8]. The uncertainties of the presently evaluated capture cross-sections have been substantially reduced for the following nuclides:

$$^{14}N,\ ^{24}Mg,\ ^{25}Mg,\ ^{28}Si,\ ^{29}Si,\ ^{29}Si,\ ^{30}Si,\ ^{32}S,\ ^{33}S,\ ^{36}S,\ ^{47}Ti,\ ^{49}Ti,\ ^{51}V,\ ^{55}Mn,\ ^{58}Fe,\ ^{66}Zn,\ ^{71}Ga,\ ^{73}Ge,\ ^{74}Ge,\ ^{75}As,\ ^{79}Br,\ ^{81}Br,\ ^{82}Kr,\ ^{83}Kr,\ ^{105}Pd,\ ^{108}Cd,\ ^{117}Sn,\ ^{128}Xe,\ ^{136}Ba,\ ^{137}Ba,\ ^{146}Nd,\ ^{148}Nd,\ ^{150}Nd,\ ^{144}Sm,\ ^{156}Gd,\ ^{174}Yb,\ ^{174}Hf,\ ^{182}W,\ ^{187}Os,\ ^{192}Os,\ ^{190}Pt\ and\ ^{232}Th.$$

Also, in the cases of

the most recent recommended capture cross sections [5.1] are not consistent with previous evaluation [5.2, 5.3], lying outside the sum of the uncertainties of previous and present recommendations. Of particular importance is the significant change of the capture cross section of 207 Pb from 0.712 ± 0.010 b to 0.620 ± 0.014 b.

5.3. Experimental thermal neutron cross sections

Thermal neutron cross sections have been derived from the evaluated gamma-ray production cross sections discussed in Chapter 7, and are shown in column 4 of Table 5.1. These values are derived from the sum of primary gamma-ray cross sections de-exciting the capture state and/or secondary gamma-ray cross sections populating the ground state and isomers, as indicated in columns 5 and 6 of Table 5.1, and from selected decay gamma-ray cross sections. The primary gamma-ray cross sections are typically incomplete due to large, unobserved statistical feedings, except for the light nuclei. Secondary gamma-ray intensities are also incomplete, but often the total intensity populates only a few gamma rays leading to reliable total cross section determination. Cross sections derived from decay gammas were corrected for neutron irradiation time and are expected to be very reliable. All other cross sections may be considered as lower limits, depending on the completeness of the data.

Inspection of the measured cross sections shows that agreement with the experimentally deduced values is fairly good, especially for light nuclides, and the precision has been improved in many cases. One notable discrepancy is the cross section for 12 C where the new value of 3.89 ± 0.06 mb exceeds the adopted value of 3.53 ± 0.07 mb by 11 ± 3 %. A summary of the eleven measurements [5.9-5.19] considered in deriving the adopted value is

given in Table 5.2. Four measurements agree with the new value within one standard deviation, and five measurements disagree by more than two standard deviations.

In view of the importance of the carbon cross section, new experiments were performed at Budapest on four different compounds containing carbon with a well defined stoichiometry to test the accuracy of the new value. These measurements yielded a cross section of 3.87 ± 0.05 mb, in excellent agreement with the earlier value. Other recent values deduced from JAERI k_0 -factors [5.20, 5.21] are 3.63 ± 0.13 mb for their cold neutron guide and 4.01 ± 0.15 mb for their thermal neutron guide, which appear to corroborate the new value. All of the measurements discussed in Table 5.2 were performed with external comparator standards and may be susceptible to error due to neutron scattering, so we recommend that the new internally calibrated value should be adopted in the future.

 14 N is an important standard for thermal neutron capture cross section and gamma-ray spectra measurements. The measured capture cross sections for this nuclide [5.17, 5.22, 5.23] are presented in Table 5.3. The adopted value of 79.8 ± 1.4 mb [5.1] agrees well with the new value of 79.0 ± 0.9 mb from this work. All of the measured values except one of Islam [5.22] agree within their uncertainties. The discrepant value is based on a 207 Pb standard that in turn was based on the adopted 12 C standard which we have shown to be too low. Adjusting this value to the new 12 C measurement gives 76.4 ± 1.9 mb which is in reasonable agreement with all other values.

5.4. Neutron separation energies

Neutron separation energies (S_n) have been evaluated as part of an ongoing effort at the Atomic Mass Data Center in Orsay, France [5.4]. The most recent S_n values are shown in column 7 of Table 5.1. The gamma-ray energies from this evaluation have undergone least-squares fits to the level scheme to derive "best" level energies including S_n for the capture state. The energies are corrected for the nuclear recoil and uncertainties are adjusted for outliers as described in Chapter 6. The new S_n values are shown in column 8 of Table 5.1; agreement is generally good and greater precision has been achieved in most cases.

REFERENCES

- [5.1] MUGHABGHAB, S.F., Thermal Neutron Capture Cross Sections, Resonance Integrals, and g-factors, INDC(NDS)-440 (2003).
- [5.2] MUGHABGHAB, S.F., DIVADEENAM, M., HOLDEN, N., Neutron Cross Sections, Vol. 1, Part A, Z = 1-60, Academic Press, New York, 1981.
- [5.3] MUGHABGHAB, S.F., Neutron Cross Sections, Vol. 1, Part B, Z = 61-100, Academic Press, New York, 1984.
- [5.4] AUDI, G., WAPSTRA, A.H., The 1995 update to the atomic mass evaluation, Nucl. Phys. **A595** (1995) 409.
- [5.5] LANE, A.M., LYNN, J.E., Theory of radiative capture in the resonance region, Nucl. Phys. **17** (1960) 563; *ibid*, Anomalous radiative capture in the neutron resonance region: Analysis of the experimental data on electric dipole transitions, Nucl. Phys. **17** (1961) 586.
- [5.6] MUGHABGHAB, S.F., Verification of the Lane-Lynn theory of direct neutron capture*1, Phys. Letts. **81B** (1979) 93.
- [5.7] MUGHABGHAB, S.F., CHRIEN, R.E., "Neutron Capture Gamma-Ray Spectroscopy", pp. 265 in Proc. 3rd Int. Symp. Neutron Capture Gamma-ray Spectroscopy and Related Topics, 18-22 September 1978, Brookhaven National

- Laboratory and State University of New York, Chrien, R.E., Kane, W.R. (Eds.), Plenum Press, New York, 1979.
- [5.8] ROSMAN, K.J.R., TAYLOR, P.D.P., "Isotopic Composition of the Elements 1997", Pure Appl. Chem. **70** (1998) 217.
- [5.9] HENDRIE, J.M., PHELPS, J.P., PRICE, G.A., WEINSTOCK, E.V., Slowing down and diffusion lengths of neutrons in graphite-bismuth systems, Nucl. Sci. Eng. 18 (1964) 410.
- [5.10] HENNING, G.R., "The Slow Neutron Absorption Cross Section of Graphite", pp. 19-20 in Proc. French-American Conf. Graphite Reactors, BNL-489 (1957).
- [5.11] MUEHLHAUSE, C.O., HARRIS, S.P., ROSE, D., SCHROEDER, H.P., THOMAS, G.E., WEXLER, S., pp.12 in Proc. French-American Conf. Graphite Reactors, BNL-489 (1957).
- [5.12] French measurements cited by NICHOLS, P.F., in Ref. 16.
- [5.13] KOECHLIN, J.C., TANGUY, P., ZALETSKI, C.P., "French Results on Natural Uranium-Graphite Reactors", BNL-489 (1957).
- [5.14] SAGOT, M., TELLIER, H., Letters to the Editor, Mesure des paramètres de diffusion du graphite, Reactor Sci. Technol. (J. Nucl. Energy A/B) 17 (1963) 347.
- [5.15] STARR, E.G., PRICE, G., "Measurement of the Diffusion Parameters of Graphite and Graphite-Bismuth by Pulsed Neutron Methods", pp. 1034-1073 in Proc. Brookhaven Conf. Neutron Thermalization, BNL-719 (1962) 1034.
- [5.16] NICHOLS, P.F., Absorption Cross Section of Graphite, Nucl. Sci. Eng. 7 (1960) 395.
- [5.17] JURNEY, E.T., MOTZ, H.T., "Thermal Neutron Capture in D and ¹⁶O", pp. 236 in Int. Conf. Neutron Physics with Reactor Neutrons, ANL-6797 (1963) 236.
- [5.18] JURNEY, E.T., BENDT, P.J., BROWNE, J.C., Thermal neutron capture cross section of deuterium, Phys. Rev. C25 (1982) 2810.
- [5.19] PRESTWICH, W.V., ISLAM, M.A., KENNETT, T.J., A determination of the carbon thermal neutron capture cross section, Nucl. Sci. Eng. **78** (1981) 182.
- [5.20] MATSUE, H., YONEZAWA, C., Neutron spectrum correction of k0-factors for k0-based neutron-induced prompt gamma-ray analysis, J. Radioanal. Nucl. Chem. **255** (2003) 125.
- [5.21] [5.21] MATSUE, H., YONEZAWA, C., Measurement and evaluation of k0 factors for PGA at JAERI, J. Radioanal. Nucl. Chem. **257** (2003) 565-571.
- [5.22] ISLAM, M.A., KENNETT, T.J., PRESTWICH, W.V., Re-estimation of the thermal neutron capture cross section of ¹⁴N, Nucl. Instrum. Meth. Phys. Res. **A287** (1990) 460.
- [5.23] ISLAM, M.A., PRESTWICH, W.V., KENNETT, T.J., Determination of the thermal radiative capture cross section of ¹⁴N, Nucl. Instrum. Meth. Phys. Res. **188** (1981) 243.

Table 5.1 Comparison of adopted neutron cross sections σ_{γ} [5.1-5.3] and neutron separation energies Sn [5.4] with the results of this evaluation. Total isotopic (n, γ) cross sections are shown except when the cross section populating a specific level or reaction is indicated. Adopted neutron separation energies were calculated from least-squares fits of the primary gamma-ray energies to the level scheme, and the adopted cross sections are based on primary, secondary and/or decay gamma-ray cross sections. In many cases the decay scheme may be incomplete so the adopted cross sections should be considered as lower limits.

Isotope and	Percent		σ _γ (mb or	b)		Sn (keV)		
(E) , (mode)	Abundance	⁸ Mughabghab ¹⁻³	This work	Secondary	Primary	Audi ⁴	This work	
1H	99.9885(70)	332.6(7) mb	Standard			2224.5725(22)2224.576(19)	
2H	0.0115(70)	0.519(7) mb	0.492(25) mb			6257.2482(24)	
3Не	0.000137(3)	0.031(9) mb				20577.62		
4He	99.999863(3)						
6Li	7.59(4)	39(3) mb	52.6(22) mb	52.7(21) mb	52.5(22) mb	7249.96(9)	7249.94(4)	
$6Li(n, \alpha)$		940(4) b						
7Li	92.41(4)	45(3) mb	45.7(9) mb	45.7(9) mb	45.7(9) mb	2033.8(3)	2032.57(4)	
9Be	100	8.8(4) mb	8.8(6) mb	8.8(6) mb	8.9(6) mb	6812.33(6)	6812.10(3)	
10B	19.9(7)	500(200) mb	303(20) mb	306(16) mb	298(15) mb	11454.12(20)	11454.15(14)	
$10B(n, \alpha)$		3837(9) b	3820(135) b					
11B	80.1(7)	6(3) mb				3370.4(14)		
12C	98.93(8)	3.53(7) mb	3.89(6) mb	3.89(6) mb	3.90(6) mb	4946.310(10)	4946.311(3)	
13C	1.07(8)	1.37(4) mb	1.22(6) mb	1.22(6) mb	1.21(11) mb	8176.440(10)	8176.61(18)	
14N	99.632(7)	79.8(14) mb	79.0(9) mb	78.8(9) mb	79.6(16) mb	10833.230(10)10833.317(12)	
14N(n, p)		1.83(3) b						
15N	0.368(7)	24(8) mb				2490.8(23)		
16O	99.757(16)	0.190(19) mb	0.189(8) mb	0.177(11) mb	0.194(7) mb	4143.33(21)	4143.06(10)	
17O	0.038(1)	0.54(7) mb		0.54(11) mb	0.49(7) mb	8044.4(8)	8043.5(10)	
$17O(n, \alpha)$		235(10) mb						
18O	0.205(14)	0.16(1) mb				3957(3)		
19F	100	9.6(5) mb	9.50(11) mb	9.49(11) mb	9.51(14) mb	6601.31(5)	6601.344(16)	

Isotope and	Percent		σ _γ (mb or	b)		Sn (ke	/ /
(E), (mode)	Abundance ⁸	⁸ Mughabghab ¹⁻³		Secondary	Primary	\mathbf{Audi}^{4}	This work
20Ne	90.48(3)	37(4) mb		36.9(5) mb	37(3) mb	6761.11(4)	6761.19(5)
21Ne	0.27(1)	670(110) mb		670(190) mb	580(100) mb	10363.96(23)	10363.9(4)
22Ne	9.25(3)	45(6) mb		44(6) mb	44(2) mb	5200.62(12)	5200.64(17)
23Na	100	530(5) mb	527(7) mb	516(4) mb	527(7) mb	6959.44(5)	6959.592(15)
23Na(472)		400(30) mb	478(4) mb				
24Mg	78.99(4)	53.6(15) mb	53.7(14) mb	53.6(14) mb	53.9(14) mb	7330.67(4)	7330.53(4)
25Mg	10.00(1)	200(5) mb	197(5) mb	197(5) mb	192.8(22) mb	11093.09(4)	11093.157(21)
26Mg	11.01(3)	38.6(6) mb	37.7(13) mb	37.2(13) mb	38.3(14) mb	6443.35(4)	6443.35(3)
27Al	100	231(3) mb	232(3) mb	232(3) mb	187.2(17) mb	7725.05(6)	7725.170(4)
28Si	92.2297(7)	177(5) mb	186(3) mb	187(3) mb	185.2(23) mb	8473.56(3)	8473.537(23)
29Si	4.6832(5)	119(3) mb	118(3) mb	117(3) mb	120(3) mb	10609.18(3)	10609.23(3)
30Si	3.0872(5)	107(2) mb	116(3) mb	116(3) mb	117(7) mb	6587.40(5)	6587.39(3)
31P	100	172(6) mb	167(5) mb	167(5) mb	159.1(22) mb	7935.65(4)	7935.596(23)
32S	94.93(31)	548(10) mb	536(8) mb	528(8) mb	543(8) mb	8641.58(3)	8641.809(25)
33S	0.76(2)	454(25) mb	461(15) mb	461(15) mb	383(14) mb	11416.94(5)	11417.219(16)
34S	4.29(28)	235(5) mb	277(8) mb	277(8) mb	278(19) mb	6985.84(4)	6986.091(15)
36S	0.02(1)	230(20) mb		230(25) mb	247(21) mb	4303.58(9)	4303.61(4)
35Cl	75.78(4)	43.6(4) b	43.84(17) b	43.84(17) b	41.89(20) b	8579.70(7)	8579.672(18)
37Cl	24.22(4)	430(6) mb	553(23) mb	553(23) mb	550(40) mb	6107.78(10)	6107.73(9)
36Ar	0.3365(30)	5.2(5) b		5.2(8) b	4.1(7) b	8788.9(4)	8789.9(9)
38Ar	0.0632(5)	800(200) mb				6598(5)	
40Ar	99.6003(30)	660(10) mb		710(50) mb	660(40) mb	6098.7(6)	6099.1(4)
39K	93.2581(44)	2.1(2) b	2.19(3) b	2.19(3) b	1.737(14) b	7799.50(8)	7799.558(14)
40K	0.0117(1)	30(4) b	76(3) b	96(15) b	76(3) b	10095.18(10)	10095.255(15)
41K	6.7302(44)	1.46(3) b	1.64(6) b	1.64(6) b	1.37(5) b	7533.77(15)	7533.822(10)
40Ca	96.94(16)	410(20) mb	415(7) mb	415(7) mb	378(6) mb	8363.7(3)	8362.86(5)
42Ca	0.647(23)	680(70) mb	740(40) mb	740(40) mb	670(80) mb	7933.0(3)	7932.73(16)
43Ca	0.135(10)	6.2(6) b	7.3(5) b	7.3(5) b	3.3(2) b	11132.0(7)	11131.54(18)
44Ca	2.09(11)	880(50) mb	1055(25) mb	1055(25) mb	990(70) mb	7414.8(3)	7414.79(15)

Isotope and	Percent		σ _γ (mb or	b)		Sn (ke	<u>V)</u>
(E), (mode)	Abundance	⁸ Mughabghab ¹⁻³		Secondary	Primary	$\mathbf{Audi}^{\widehat{\mathbf{A}}}$	This work
46Ca	0.004(3)	720(30) mb		730(70) mb	750(60) mb	7276.1(5)	7276.1(3)
48Ca	0.187(21)	1090(70) mb	1050(120) mb	920(110) mb	1050(120) m	b5146.6(4)	5146.48(21)
45Sc	100	27.2(2) b	26.28(23) b	26.28(23) b	19.29(24) b	8760.62(11)	8760.745(20)
45Sc(143)		9.8(11) b	7.78(11) b				
46Ti	8.25(3)	590(180) mb	310(16) mb	229(19) mb	310(16) mb	8877.7(10)	8880.5(3)
47Ti	7.44(2)	1.52(11) b	1.63(4) b	1.63(4) b	1.177(11) b	11626.59(4)	11626.657(14)
48Ti	73.72(3)	7.88(25) b	8.6(3) b	8.32(16) b	8.84(15) b	8142.36(5)	8142.351(14)
49Ti	5.41(2)	1.79(12) b	1.88(4) b	1.88(4) b	1.675(18) b	10939.13(4)	10939.201(13)
50Ti	5.18(2)	179(3) mb	172(3) mb	142(2) mb	172(3) mb	6372.3(9)	6372.6(6)
50V	0.250(4)	21(4) b	20.4(8) b	20.4(8) b	13.5(3) b	11051.28(9)	11051.142(24)
51V	99.750(4)	4.92 b 4	5.18(18) b	5.18(18) b	4.65(11) b	7311.24(23)	7311.273(15)
50Cr	4.345(13)	15.9(2) b	15.73(21) b	15.73(21) b	16.0(5) b	9261.6(3)	9260.63(8)
52Cr	83.789(18)	760(60) mb	871(14) mb	871(14) mb	855(17) mb	7939.17(16)	7939.10(23)
53Cr	9.501(17)	18.2(15) b	19.0(4) b	19.0(4) b	18.2(6) b	9719.01(25)	9720.00(5)
54Cr	2.365(7)	360(40) mb	440(40) mb	440(40) mb	390(40) mb	6246.3(4)	6246.28(17)
55Mn	100	13.36(5) b	11.33(9) b	11.36(10) b	11.31(9) b	7270.5(3)	7270.419(25)
54Fe	5.845(35)	2.25(18) b	2.44(6) b	2.31(10) b	2.44(6) b	9297.9(3)	9298.53(19)
56Fe	91.754(36)	2.59(14) b	2.49(5) b	2.49(5) b	2.447(24) b	7646.03(10)	7646.0954(6)
57Fe	2.119(10)	2.5(3) b	1.9(5) b	1.9(5) b	1.5(5) b	10044.5(3)	10044.65(14)
58Fe	0.282(4)	1.30(3) b	1.30(5) b	1.30(5) b	1.20(2) b	6580.90(20)	6581.02(6)
59Co	100	37.18(6) b	38.4(3) b	38.4(3) b	32.4(5) b	7491.93(8)	7492.05(3)
59Co(59)		20.4(8) b	20.76(20) b				
58Ni	68.077(9)	4.5(2) b	4.36(5) b	4.36(5) b	4.30(5) b	8999.44(14)	8999.151(15)
60Ni	26.223(8)	2.9(2) b	2.42(3) b	2.42(3) b	2.36(3) b	7820.04(10)	7820.055(21)
61Ni	1.1399(6)	2.5(8) b	1.65(12) b	1.65(12) b	1.28(11) b	10597.2(4)	10595.6(3)
62Ni	3.6345(17)	14.5(3) b	14.99(22) b	14.99(22) b	14.97(22) b	6837.85(7)	6837.89(3)
64Ni	0.9256(9)	1.63(7) b	2.2(3) b	2.2(3) b	2.1(4) b	6098.01(20)	6098.28(14)
63Cu	69.17(3)	4.52(2) b	4.75(4) b	4.75(4) b	4.74(11) b	7915.96(11)	7916.14(4)
65Cu	30.83(3)	2.17(3) b	2.134(18) b	2.134(18) b	1.81(3) b	7065.93(11)	7066.13(4)

Isotope and	Percent		σ _γ (mb or	· b)		Sn (ke	<u>V)</u>
(E), (mode)	Abundance	⁸ Mughabghab ¹⁻³	This work	Secondary	Primary	$\mathbf{Audi}^{\widehat{\mathbf{A}}}$	This work
64Zn	48.6(6)	1100(100) mb	843(20) mb	843(20) mb	627(7) mb	7979.6(5)	7979.28(7)
66Zn	27.9(3)	620(60) mb	376(6) mb	375(6) mb	360(20) mb	7052.2(4)	7052.5(3)
67Zn	4.10(13)	9.5(14) b	11.44(14) b	11.44(15) b	4.93(11) b	10198.2(5)	10198.06(7)
68Zn(0)	18.8(5)	1000(100) mb	790(50) mb	790(50) mb	660(40) mb	6482.2(5)	6482.07(10)
69Zn(439)		72(4) mb	68(9) mb				
70Zn(0)	0.62(3)	83(5) mb				5834(10)	
70Zn(158)		8.7(5) mb					
69Ga	60.108(9)	1.68(7) b	1.753(16) b	1.753(16) b	0.373(11) b	7655.1(8)	7653.65(8)
71Ga	39.892(9)	4.73(15) b	4.29(17) b	4.29(17) b	2.61(4) b	6521.0(10)	6520.44(14)
71Ga(120)		150(50) mb	429(9) mb				
70Ge	20.8(9)	3.45(16) b	3.69(7) b	3.69(7) b	1.71(10) b	7415.90(5)	7415.925(23)
70Ge(198)		280(70) mb	400(30) mb				
72Ge	27.54(34)	950(110) mb	770(80) mb	770(80) mb	620(19) MB	6782.90(5)	6783.12(6)
72Ge(67)			460(40) mb				
73Ge	7.73(5)	14.4(4) b	16.5(3) b	16.5(3) b	5.43(18) b	10196.20(6)	10196.056(13)
74Ge	36.3(7)	530(50) mb	505(10) mb	505(10) mb	231(13) mb	6505.22(8)	6505.45(4)
75Ge(140)		170 mb 30	164 mb 5				
76Ge(0)	7.61(38)	140(20) mb	140(30) mb	140(30) mb	330(60) mb	6072.6(11)	6072.3(4)
76Ge(160)		100(10) mb	155(21) mb				
75As	100	4.23(8) b	4.01(5) b	4.01(5) b	3.07(4)	7328.44(7)	7328.808(8)
74Se	0.89(4)	51.8(12) b	49(3) b	49(3) b	27(7) b	8027.53(8)	8027.585(18)
76Se	9.37(29)	85(7) b	84.3(8) b	84.3(8) b	46.6(9) b	7418.81(7)	7418.850(21)
76Se(162)		22(1) b	17.2(4) b				
77Se	7.63(16)	42(4) b	36.3(7) b	36.3(7) b	18.4(5) b	10498.0(3)	10497.75(3)
78Se(0)	23.77(28)	50(10) mb	98(15) mb	198(6) mb	9 mb	6962.9(7)	6963.11(10)
78Se(96)		380(20) mb	135(30) mb				
80Se(0)	49.61(41)	530(50) mb	441(17) mb	545(18) mb	280(60) mb	6701.0(6)	6700.9(5)
80Se(103)		80(10) mb	104(7) mb				
82Se(0)	8.73(22)	5.2(4) mb				5818(3)	

Isotope and	Percent		σ _γ (mb or		Sn (keV	V)	
(E), (mode)	Abundance	⁸ Mughabghab ¹⁻³	This work	Secondary	Primary	\mathbf{Audi}^{4}	This work
82Se(228)		39(3) mb			•		
79Br	50.69(7)	10.32(13) b	8.97(14) b	8.97(14) b	1.035(13) b	7892.19(20)	7892.41(8)
79Br(86)		2.4(6) mb	2.16(6) b				
81Br	49.31(7)	2.36(5) b	2.40(10) b	2.40(10) b	0.50(2) b	7592.90(20)	7593.017(22)
81Br(46)		2.4(4) b	2.32(10) b				
78Kr	0.35(2)	4.7(7) b				8355(8)	
78Kr(130)		170(20) mb					
80Kr	2.28(6)	11.5(5) b				7872(3)	
80Kr(190)		4.6(7) b					
82Kr	11.58(14)	19(4) b				7464(4)	
82Kr(42)		14.0(25) b					
83Kr	11.49(6)	202(10) b		180(3) b	41.1(4) b	10520.4(19)	10520.60(25)
84Kr	57.00(4)	111(15) mb				7119(4)	
84Kr(305)		90(13) mb					
86Kr	17.3(2)	3(2) mb		3.0(3) mb	2.8(4) mb	5515.4(8)	5515.20(25)
85Rb(0)	72.17(2)	427(11) mb	426(7) mb	426(7) mb	94(2) mb	8651.2(10)	8650.98(10)
85Rb(556)		53(5) mb	57.4(14) mb				
87Rb	27.83(2)	120(30) mb	122(4) mb	95(2) mb	44(2) mb	6080(3)	6082.52(11)
84Sr	0.56(1)	620(60) mb	630(80) mb	630(80) mb	300(50) mb	8529(4)	
84Sr(239)		600(60) mb	300(50) mb				
86Sr(0)	9.86(1)	200(30) mb	124(10) mb	1090(30) mb	910(17) mb	8428.12(17)	8428.170(15)
86Sr(389)		840(60) mb	970(30) mb				
87Sr	7.00(1)	17(3) b	15.0(3) b	15.0(3) b	8.31(9) b	11112.63(22)	11112.64(3)
88Sr	82.58(1)	5.8(4) mb	4.1(4) mb	4.1(4) mb	89(11) mb	6358.71(13)	6358.73(4)
89Y	100	1.28(2) b	1.282(13) b	1.282(13) b	1.22(4) b	6857.08(15)	6857.008(17)
89Y(682)		1.0(2) mb	1.8(5) mb				
90Zr	51.45(40)	11(5) mb	470(40) mb	470(40) mb	5.6(25) mb	7194.6(5)	7192.7(8)
91 Z r	11.22(5)	1240(250) mb	1210(40) mb	1210(40) mb	405(21) mb	8634.8(3)	8635.00(16)
92Zr	17.15(8)	220(60) mb	101(5) mb	101(5) mb	46(3) mb	6734.2(6)	6735.3(7)

Isotope and	Percent		σ _γ (mb or b)			Sn (keV)	
(E), (mode)	Abundance	⁸ Mughabghab ¹⁻³	This work	Secondary	Primary	\mathbf{Audi}^{4}	This work
94Zr	17.38(28)	49.9(24) mb	110(9) mb	110(9) mb	32(4) mb	6462.6(9)	6357.8(3)
96 Z r	2.80(9)	22.9(10) mb	920(30) mb	920(30) mb	82(14) mb	5580(3)	5575.1(4)
93Nb	100	1.15(5) b	1.138(14) b	1.138(14) b	0.828(8) b	7227.47(9)	7227.631(13)
93Nb(41)			783 mb 13				
92Mo	14.84(35)	19 mb	82(9) mb	82(9) mb	31(4) mb	8069.71(9)	8070.0(3)
94Mo	9.25(12)	15 mb	340(30) mb	340(30) mb	42(4) mb	7369.06(10)	7368.4(5)
95Mo	15.92(13)	13.4(3) b	13.6(4) b	13.6(4) b	2.30(6) b	9154.26(5)	9153.90(9)
96Mo	16.68(2)	500(200) mb	780(40) mb	780(40) mb	220(20) mb	6821.13(25)	6821.5(4)
97Mo	9.55(8)	2.5(2) b	2.20(7) b	2.20(7) b	0.50(11) b	8642.50(7)	8642.57(6)
98Mo	24.13(31)	137(5) mb	160(30) mb	160(30) mb	28 mb	5925.39(15)	5927.7(5)
100Mo	9.63(23)	199(3) mb	150(13) mb	150(13) mb	50(4) mb	5398.50(20)	5398.27(8)
96Ru	5.54(14)	220(20) mb	270(30) mb	270(30) mb	0	8112(3)	
98Ru	1.87(3)	<8 b	>480 mb	480(90) mb	0	7464(7)	
99Ru	12.76(14)	7.1(10) b	13.7(10) b	13.7(10) b	3.03(14) b	9673.16(14)	9673.413(19)
100Ru	12.60(7)	5.0(6) b	0.93(5) mb	0.93(5) b	0.69(3) b	6802.1(7)	6802.04(21)
101Ru	17.06(2)	3.4(9) b	6.4(5) b	6.4(5) b	1.34(7) b	9219.59(5)	9219.632(15)
102Ru	31.55(14)	1.21(7) b	2.5(1) mb	2.5(1) b	0.49(3) b	6232.4(3)	6232.00(11)
102Ru(238)			120(13) mb				
104Ru	18.62(27)	470(20) mb	860(40) mb	860(40) mb	570(90) mb	5910.07(19)	5910.11(7)
103Rh	100	145(2) b	156(5) b	103(2) b	7.69(10) b	6999.05(6)	6998.946(24)
103Rh(129)		10(1) b	9.7(8) b				
102Pd	1.02(1)	3.4(3) b	1.11(22) b	1.11(22) b	0	7624.7(15)	7625.6(9)
104Pd	11.14(8)	600(300) mb	373(25) mb	373(25) mb	0	7094.1(7)	
105Pd	22.33(8)	21.0(15) b	19.95(18) b	19.95(18) b	0.55(3) b	9561.5(3)	9561.4(4)
106Pd(0)	17.33(8)	290(30) mb	197(12) mb	197(12) mb	44(11) mb	6539(7)	6536.4(5)
106Pd(242)		13(2) mb					
108Pd	26.46(9)	7.6(4) b	7.01(6) b	7.01(6) b	2.76(9) b	6153.3(3)	6153.54(12)
108Pd(189)		180(30) mb	185(10) mb				
110Pd(0)	11.72(9)	190(30) mb	160(30) mb	144(25) mb	175(25) mb	5750(40)	5726.3(4)

Isotope and	Percent	cent σ_{γ} (mb or b)				Sn (keV)	
(E), (mode)	Abundance	⁸ Mughabghab ¹⁻³	This work	Secondary	Primary	Audi ⁴	This work
110Pd(172)		36(6) mb					
107Ag	51.839(8)	37.6(12) b	38.2(5) b	38.2(5) b	3.08(9) b	7269.6(6)	7271.41(8)
107Ag(109)		330(80) mb	170(40) mb				
109Ag(0)	48.161(8)	86(3) b	78(3) b	78(3) b	10.21(11) b	6809.20(10)	6808.20(9)
109Ag(118)		4.7(2) b	8.82(16) b				
106Cd	1.25(6)	~1 b				7926(9)	
108Cd	0.89(3)	720(130) mb				7324(6)	
110Cd	12.49(18)	11(1) b		11.0(6) b	0.147(13) b	6975.84(19)	6975.1(4)
110Cd(396)		140(50) mb	780(70) mb				
111Cd	12.80(12)	24(3) b		24(3) b	0	9398.1(22)	
112Cd	24.13(21)	2.2(5) b				6540.2(6)	
113Cd	12.22(12)	20600(400) b	19560(250) b	19560(250) b	1970(30) b	9042.7(3)	9043.18(6)
114Cd(0)	28.73(42)	300(20) mb				6140.9(6)	
114Cd(181)		36(7) mb					
116Cd(0)	7.49(18)	50(8) mb				5777.2(10)	
116Cd(136)		25(10) mb					
113In(0)	4.29(5)	3.9(4) b	6.2(12) b	15.0(18) b	0.92(7) b	7274.4(12)	7273.83(23)
113In(190)		8.1(8) b	8.2(13) b				
113In(502)		3.1(7) b	0.63(21) b				
115In(0)	95.71(5)	40(2) b	42(3) b	190(7) b	7.27(21) b	6784.3(8)	6784.72(17)
115In(127)		162.3(7) b	88(4) b				
115In(290)		81(8) b	60(4) b				
112Sn	0.97(1)	860(90) mb				7742.9(18)	
112Sn(77)		300(40) mb					
114Sn	0.66(1)	120(30) mb				7545.7(16)	
115Sn	0.34(1)	30(7) b	58.0(8) b	12.5(4) b		9563.41(11)	9563.55(3)
116Sn(0)	14.54(9)	130(30) mb	154 mb 3	154(3) mb	6.7(14) mb	6944.5(11)	6942.9(5)
116Sn(314)		6(2) mb					
117Sn	7.68(7)	1.32(18) b	1.045(18) b	1.045(18) b	0.027(3) b	9326.3(14)	9327.9(11)

Isotope and	Percent		σ _γ (mb or b)			Sn (keV)	
(E), (mode)	Abundance	⁸ Mughabghab ¹⁻³	This work	Secondary	Primary	\mathbf{Audi}^{4}	This work
118Sn	24.22(9)	220(50) mb	83(3) mb	83(3) mb	3(1) mb	6585.2(14)	6483.3(6)
118Sn(90)		10(6) mb					
119Sn	8.59(4)	2.2(5) b	1.134(16) b	1.134(16) b	0	9107.2(22)	
120 Sn(0)	32.58(9)	140(30) mb	118(8) mb	118(8) mb	4(1) mb	6170.8(6)	6170.1(4)
120Sn(6)		1(1) mb	1.9(4) mb				
122Sn(0)	4.63(3)	1 mb 1				5946.0(12)	
122Sn(25)		138(15) mb	126(4) mb	79(6) mb	0		
124Sn(0)	5.79(5)	4(2) mb	13(2) mb	13(2) mb	0	5733.0(5)	
124Sn(28)		130(5) mb	148(3) mb				
121Sb	57.21(5)	5.9(2) b	8.0(11) b	8.0(11) b	0.74(2) b	6806.6(10)	6806.36(7)
121Sb(164)		60(10) mb	49(10) mb				
123Sb(0)	42.79(5)	4.1(1) b	3.14(25) b	4.19(26) b	0.68(3) B	6467.45(7)	6467.58(5)
123Sb(11)		37(10) mb	740(80) mb				
123Sb(37)		19(10) mb	310(16) mb				
120 Te(0)	0.09(1)	2.0(3) B				7230(30)	
120Te(294)		340(60) mb					
122Te	2.55(12)	3.9(5) b	1.49(9) b	1.49(9) b	0.88(10) b	6939.4(25)	6929.16(10)
122Te(248)		1.1(5) b	300(30) mb				
123Te	0.89(3)	418(30) b	339(18) b	339(18) b	49(2) b	9424.1(12)	9423.89(7)
124Te	4.74(14)	6.8(13) b	7.73(25) b	7.73(25) b	4.18(20) b	6575.9(14)	6569.39(14)
124Te(145)		40(25) mb	770(70) mb				
125Te	7.07(15)	1.55(16) b	0.70(7) b	0.70(7) b	0	9113.8(4)	
126Te(0)	18.84(25)	900(150) mb	28(7) mb	28(7) mb	12(4) mb	6291(3)	6287.8(4)
126Te(88)		135(23) mb					
128Te(0)	31.74(8)	200(8) mb	195(9) mb	157(10) mb	195(9) mb	6083(3)	6082.36(14)
128Te(106)		15(1) mb	29.0(22) mb				
130 Te(0)	34.08(62)	270(6) mb	132(10) mb	132(10) mb	79(9) mb	5929.7(5)	5930.16(15)
130Te(182)		20(10) mb					
127I	100	6.2(2) b	4.4(3) b	4.4(3) b	0.98(5) b	6826.07(5)	6826.215(4)

Isotope and	Percent		σ _γ (mb or	b)		Sn (ke	V)
(E), (mode)	Abundance	⁸ Mughabghab ¹⁻³	This work	Secondary	Primary	\mathbf{Audi}^{4}	This work
124Xe	0.09(1)	165(20) b	11(2) b	11(2)	0	7603.3(4)	
124Xe(253)		28(5) b	5.0(5) b				
126Xe	0.09(1)	3.8(5) b				7223(6)	
126Xe(297)		450(130) mb					
128Xe	1.92(3)	5.2(13) b	1.23(15) b	1.23(15) b	0.57(12) b	6907.6(16)	
128Xe(236)		480(100) mb	190(40) mb				
129Xe	26.44(24)	21(5) b	7.2(9) b	7.2(9) b	1.95(14) b	9255.2(9)	9255.57(23)
130Xe	4.08(2)	4.8(12) b	0.76(9) b	0.76(9) b	0.23(6) b	6605.2(19)	
130Xe(164)		450(100) mb					
131Xe	21.18(3)	85(10) b	35.7(24) b	35.7(24) b	10.7(9) b	8936.0(9)	8936.65(12)
132Xe	26.89(6)	415(50) mb				6440(4)	
132Xe(233)		50(10) mb					
134Xe	10.44(10)	265(20) mb				8548(4)	
134Xe(527)		3.0(3) mb					
136Xe	8.87(16)	260(20) mb	130(30) mb	130(30) mb	102(16) mb	4025.5(3)	4025.53(8)
133Cs	100	30.3(11) b	23.3(7) b	23.3(7) b	3.58(8) b	6891.540(10)	6891.3909(23)
133Cs(139)		2.5(2) b	2.47(4) b				
130 Ba(0)	0.106(1)	8.7(9) b				6493.5(3)	
130Ba(187)		2.5(3) b	4.4(4) b				
132Ba(0)	0.101(1)	6.5(8) b				7189.9(4)	
132Ba(288)		500(200) mb					
134Ba	2.417(18)	1.5(3) b	1.07(4) b	1.07(4) b	0.457(17) b	6971.97(12)	6971.87(12)
134Ba(268)		158(24) mb	46(3) mb				
135Ba	6.592(12)	5.8(9) b	4.02(7) b	4.02(7) b	0.69(6) b	9107.74(4)	9107.73(4)
135Ba(2030)		13.9(7) mb	35(15) mb				
136Ba	7.854(24)	680(170) mb	735(24) mb	735(24) mb	613(19) mb	6905.76(3)	6905.74(8)
136Ba(662)		10(1) mb	20(4) mb				
137Ba	11.232(24)	3.6(2) b	4.06(8) b	4.06(8) b	2.05(3) b	8611.72(4)	8611.63(5)
138Ba	71.698(42)	400(40) mb	435(12) mb	435(12) mb	366(10) mb	4723.43(4)	4723.20(10)

Isotope and	Percent		σ _γ (mb or	b)		Sn (ke	<u>V)</u>
(E), (mode)	Abundance	⁸ Mughabghab ¹⁻³		Secondary	Primary	$\mathbf{Audi}^{\mathbf{A}^{\widehat{\mathbf{A}}}}$	This work
138La	0.090(1)	57(6) b	57(6) b	57(6) b	10(3) b	8778(3)	
139La	99.910(1)	9.04(4) b	6.13(24) b	6.13(24) b	5.76(5) b	5160.97(5)	5161.004(6)
136Ce(0)	0.185(2)	6.5(10) b	3.8(4) b	3.8(4) b	0.070(6) b	7480.7(4)	7481.58(9)
136Ce(254)		950(250) mb	200(60) mb				
138Ce(0)	0.251(2)	1.00(24) b	6.1(4) b	6.1(4) b	0.87(12) b	7456(12)	
138Ce(754)		15 mb 5					
140Ce	88.450(51)	580(20) mb	284(17) mb	284(17) mb	250(10) mb	5428.6(7)	5428.19(6)
142Ce	11.114(51)	970(20) mb	732(23) mb	732(23) mb	422(20) mb	5145.1(3)	5144.81(6)
141Pr	100	11.5(3) b	7.72(15) b	7.72(15) b	3.65(4) b	5843.06(10)	5843.155(5)
141Pr(3.7)		3.9(3) b	3.45(13) b				
142Nd	27.2(5)	18.7(7) b	17.6(15) b	17.6(15) b	7.8(4) b	6123.59(13)	6123.41(7)
143Nd	12.2(2)	325(10) b	288(19) b	288(19) b	38(2) b	7817.02(7)	7816.94(17)
144Nd	23.8(3)	3.6(3) b	5.3(3) b	5.3(3) b	2.02(18) b	5755.5(6)	5755.26(22)
145Nd	8.3(1)	42(2) b	39.9(10) b	39.9(10) b	18.8(6) b	7565.25(14)	7565.05(9)
146Nd	17.2(3)	1.41(5) b	1.21(11) b	1.21(11) b	0.178(6) b	5292.07(15)	5292.19(4)
148Nd	5.7(1)	2.58(14) b	1.9(3) b	1.9(3) b	0.37(6) b	5038.68(10)	5038.82(3)
150Nd	5.6(2)	1.03(8) b	1.8(5) b	1.8(5) b	0.6(1) b	5334.43(20)	5334.552(24)
144Sm	3.07(7)	1.64(10) b				6757.1(3)	
147Sm	14.99(18)	57(3) b	67(4) b	67(4) b	338(17) b	8141.5(6)	8141.3(3)
148Sm	11.24(10)	2.4(6) b				5871.6(9)	
149Sm	13.82(7)	40140(600) b	37970(150) b	37970(150) b	18223(70) b	7985.7(7)	7986.7(4)
150Sm	7.38(1)	100(4) b	105(8) b	105(8) b	46(2) b	5596.44(10)	5596.44(6)
152Sm	26.75(16)	206(6) b	167(10) b	167(10) b	36(2) b	5867.73(23)	5868.40(10)
154Sm	22.75(29)	8.3(5) b		8.4(9) b	0	5807.2(3)	
151Eu(0)	47.81(3)	5900(200) b	6700(300) b	6700(300) b	243(9) b	6306.72(10)	6307.11(6)
151Eu(46)		3300(200) b	4500(2200) b				
151Eu(148)		4(2) b					
153Eu	52.19(3)	312(7) b	387(70) b	387(70) b	18(5) b	6442.0(3)	6442.2(4)
152Gd	0.20(1)	735(20) b	>370 b	734(30) b	46(3) b	6247.3(3)	6247.48(17)

Isotope and	Percent		σ _γ (mb or	b)		Sn (ke	V)
(E), (mode)	Abundance	⁸ Mughabghab ¹⁻³	This work	Secondary	Primary	$\mathbf{Audi}^{4^{\circ}}$	This work
154Gd	2.18(3)	85(12) b		85(7) b	17(1) b	6435.1(3)	6435.29(19)
154Gd(122)		49(15) mb					
155Gd	14.80(12)	60900(500) b	51700(1800) b	51700(1800) b	8680(400) b	8536.37(12)	8536.04(9)
156Gd	20.47(9)	1.8(7) b				6360.05(15)	
157Gd	15.65(2)	254000(800) b	210000(5000) 8	210000(5000) t	541000(500) b	7937.33(12)	7937.39(5)
158Gd	24.84(7)	2.2(2) b				5943.29(15)	
160Gd	21.86(19)	1.4(3) b				5635.4(10)	
159Tb	100	23.3(4) b	30(3) b	30(3) b	2.09(7) b	6375.2(3)	6375.13(7)
156Dy	0.06(1)	33(3) b				6969(6)	
158Dy	0.10(1)	43(6) b				6831.5(24)	
160Dy	2.34(8)	55(3) b	2910 b 200	56(4) b	66(4) b	6454.36(9)	6454.34(6)
161Dy	18.91(24)	600(25) b	560(15) b	560(15) b	9(2) b	8196.95(12)	8193(3)
162Dy	25.51(26)	194(10) b	154(6) b	154(6) b	44(4) b	6270.93(7)	6271.14(3)
163Dy	24.90(16)	134(7) b	68(8) b	68(8) b	5.0(4) b	7658.08(12)	7655.0(9)
164Dy(0)	28.18(37)	1040(140) b	770(50) b	770(50) b	696(15) b	5715.89(10)	5715.95(3)
164Dy(108)		1610(240) b	1514(40) b				
165 Ho(0)	100	61.2(11) b	52.8(13) b	54.6(13) b	9.82(14) b	6243.640(20)	6243.677(6)
165Ho(6)		3.5(4) b	1.85(11) b				
162Er	0.14(1)	19(2) b				6903(5)	
164Er	1.61(3)	13(2) b				6650.0(7)	
166Er	33.61(35)	16.9(16) b	20.8(14) b	20.8(14) b	9.8(8) b	6436.1(4)	6436.46(18)
166Er(208)		15(2) b	11.6(13) b				
167Er	22.93(17)	649(8) b	688(30) b	688(30) b	271(7) b	7771.07(25)	7771.45(3)
168Er	26.78(26)	2.74(8) b	17.4(24) b	17.4(24) b	8.3(9) b	6003.1(3)	6003.16(14)
170Er	14.93(27)	8.85(30) b	5.5(10) b	5.5(10) b	4.0(6) b	5681.5(5)	5681.6(5)
169Tm	100	92(4) b	110.7(12) b	110.7(12) b	16.2(4) b	6593.3(11)	6591.95(11)
169Tm(183)		8.2(17) b	2.3(7) b				
168Yb	0.13(1)	2300(170) b	1640(160) b	1640(160 b	149(18) b	6867.2(3)	6866.97(11)
170Yb	3.04(15)	9.9(18) b	18(3) b	18(3) b	1.8(3) b	6614.8(7)	6616.6(4)

Isotope and	Percent		σ _γ (mb or	. p)		Sn (ke	V)
(E), (mode)	Abundance	⁸ Mughabghab ¹⁻³	This work	Secondary	Primary	\mathbf{Audi}^{4}	This work
171Yb	14.28(57)	58(4) b	50(7) b	50(7) b	3.63(18) b	8019.7(3)	8019.27(4)
172Yb	21.83(67)	1.3(8) b	0.92(10) b	0.92(10) b	0.18(2) b	6367.6(5)	6367.2(6)
173Yb	16.13(27)	15.5(15) b	25(3) b	25(3) b	0.97(11) b	7464.60(10)	7465.5(4)
174Yb	31.83(92)	63.2(15) b	55(8) b	55(8) b	13.5(21) b	5822.33(12)	5822.5(4)
175Yb(515)			40(8) b				
176Yb	12.76(41)	2.85(5) b	0.39(4) b	0.39(4) b	0.24(3) b	5566.8(12)	5566.40(19)
176Yb(332)			300(30) mb				
175Lu(0)	97.41(2)	6.9(13) b	2.71(22) b	23.5(10) b	1.05(7) b	6287.98(15)	6289.78(20)
175Lu(123)		16.2(5) b	20.8(10) b				
176Lu	2.59(2)	2090(70) b	1864(30) b	1864(30) b	222(6) b	7072.2(7)	7072.85(9)
176Lu(150)		317(58) b	597(17) b				
176Lu(970)		2.8(7) b					
174Hf	0.16(1)	549(7) b	411(7) b	411(7) b	72(6) b	6708.7(5)	6708.8(6)
176Hf	5.26(7)	24(3) b	24.8(15) b	24.8(15) b	4.4(8) b	6378.8(15)	6385.8(8)
177Hf	18.60(9)	373(10) b	450(30) b	450(30) b	25.3(10) b	7626.3(3)	7625.80(16)
177Hf(1147)		960(50) mb	790(180) mb				
177Hf(2446)		0.2(1) mb					
178Hf	27.28(7)	84(4) b	105(5) b	105(5) b	34.9(11) b	6099.03(10)	6098.946(22)
178Hf(375)		53(6) b	69(4) b				
179Hf	13.629(6)	41(3) b	39.2(21) b	39.2(21) b	14.7(8) b	7388.2(4)	7387.85(9)
179Hf(1142)		445(3) mb					
180Hf	35.08(16)	13.04(7) b	12.2(13) b	12.2(13) b	8.9(8) b	5695.7(7)	5695.58(17)
180Ta	0.012(2)	563(60) b				7577.0(13)	
181Ta(0)	99.988(2)	20.5(5) b	9.01(22) b	9.01(22) b	1.54(3) b	6062.96(16)	6062.89(6)
181Ta(520)		11(2) mb					
180W	0.12(1)	<150 b	19.3(18) b	19.3(18) b	0	6681(6)	
182W	26.50(16)	19.9(2) b	12.6(5) b	12.6(5) b	4.66(20) b	6190.7(10)	6190.89(3)
182W(309)			88(18) mb				
183W	14.31(4)	10.3(2) b	7.21(17) b	7.21(17) b	4.12(11) b	7411.7(3)	7411.15(7)

Isotope and	Percent		σ _γ (mb or	b)		Sn (ke	V)
(E), (mode)	Abundance	⁸ Mughabghab ¹⁻	This work	Secondary	Primary	\mathbf{Audi}^{4}	This work
184W	30.64(2)	1.7(1) b	2.0(4) b	2.0(4) b	1.58(21) b	5753.7(3)	5754.62(21)
184W(197)		2(1) mb					
186W	28.42(19)	38.5(5) b	20.3(3) b	20.3(3) b	14.21(24) b	5466.72(21)	5466.59(6)
185Re	37.40(2)	112(2) b	113(12) b	113(12) b	17.6(5) b	6179.7(7)	6179.34(13)
187Re	62.60(2)	76.4(5) b	79(10) b	79(10) b	7.16(24) b	5871.6(3)	5871.75(6)
187Re(172)		2.8(1) b	1.73(18) b				
184Os	0.02(1)	3000(150) b	4410(60) b	4410(60) b	1175(80) b	6625.4(9)	6624.52(25)
186Os	1.59(3)	80(13) b	16.4(16) b	16.4(16) b	3.3(5) b	6292.6(13)	6289.4(8)
187Os	1.96(2)	245(40) b	169(3) b	169(3) b	45.9(13) b	7989.3(3)	7989.58(7)
188Os	13.24(8)	4.7(5) b	5.5(11) b	5.5(11) b	2.4(3) b	5920.6(5)	5922.0(4)
189Os	16.15(5)	25(4) b	25.1(5) b	25.1(5) b	4.56(18) b	7791.6(9)	7792.31(11)
189Os(1705)		0.26(3) mb					
190Os(0)	26.26(2)	3.9(6) b	0.85(4) b	17.5(11) b	3.11(12) b	5758.67(16)	5758.81(9)
190Os(74)		9.2(7) b	16.6(11) b				
192Os	40.78(19)	3.12(16) b	2.69(12) b	2.69(12) b	0.83(5) b	5585.1(9)	5584.01(12)
191Ir(0)	37.3(2)	309(30) b	630(70) b	1080(70) b	154(3) b	6198.08(20)	6198.14(3)
191Ir(57)		645(32) b	450(20) b				
191Ir(155)		160(70) mb					
193Ir	62.7(2)	111(5) b	97(17) b	97(17) b	23.0(4) b	6066.8(4)	6066.71(7)
193Ir(112+y)		5.8(2) b					
190Pt	0.014(1)	122(4) b				6437(6)	
192Pt	0.782(7)	10.0(25) b				6255.5(19)	
192Pt(150)		2.2(8) b					
194Pt	32.967(99)	580(190) mb	745(25) mb	745(25) mb	231(22) mb	6105.06(12)	6109.17(4)
194Pt(259)		98(11) mb	65(4) mb				
195Pt	33.832(10)	28.5(12) b	22.37(22) b	22.37(22) b	8.25(21) b	7921.88(15)	7921.92(7)
196Pt(0)	25.242(41)	410(40) mb	550(40) mb		630(30) mb	5846.4(3)	5846.0(7)
196Pt(400)		44(4) mb					
198Pt	7.163(55)	3.66(19) b	2.69(12) b			5556.1(5)	

Isotope and	Percent		σ _γ (mb or	· b)		Sn (ke	<u>V)</u>
(E), (mode)	Abundance	⁸ Mughabghab ¹⁻³	This work	Secondary	Primary	$\mathbf{Audi}^{\mathbf{A}}$	This work
198Pt(424)		350(40) mb		•			
197Au	100	98.65(9) b	108(5) b	108(5) b	12.8(5) b	6512.17(22)	6512.32(10)
196 Hg(0)	0.15(1)	3080(180) b	1240(120) b	1240(120) b	578(50) b	6785.4(15)	
196Hg(299)		109(6) b					
198Hg	9.97(20)	2.0(3) b				6664.0(6)	
198Hg(532)		18(4) mb					
199Hg	16.87(22)	2150(50) b	2215(30) b	2215(30)	1571(14)	8028.26(25)	8028.37(4)
200Hg	23.10(19)	<60 b				6230.2(6)	
201Hg	13.18(9)	5.7(12) b	4.9(6) b	4.9(6) b	2.17(13) b	7754.31(23)	7753.93(15)
202Hg	29.86(26)	4.42(7) b				5992.9(17)	
204Hg	6.87(15)	430(100) mb				5668(4)	
203Tl	29.524(14)	11.4(2) b	12.09(12) b	12.09(12) b	10.58(9) b	6655.8(3)	6654.88(4)
205Tl	70.476(14)	104(17) mb	101(3) mb	101(3) mb	44(4) mb	6503.7(4)	6502.87(24)
204Pb	1.4(1)	660(70) mb	397(11) mb	388(7) mb	419(11) mb	6731.50(15)	6731.80(9)
206Pb	24.1(1)	26.6(12) mb	29.2(8) mb	29.5(8)	28.9(8)	6737.79(11)	6737.74(10)
206Pb(1633)		6.3(13) mb					
207Pb	22.1(1)	620(14) mb	622(14) mb	622(14) mb	622(14) mb	7367.82(9)	7367.92(7)
208Pb	52.4(1)	0.23(3) mb				3935.9(13)	
209Bi(0)	100	24.2(4) mb	21.3(23) mb	21.3(23) mb	61(3) mb	4604.58(13)	4604.63(5)
209Bi(271)		9.6(8) mb	17(6) mb				
232Th	100	7.35(3) b	9.5(12) b	9.5 (12) b	0.91(2) b	4786.35(25)	4786.34(3)
234 U	0.0055(5)	99.8(13) b				5297.84(23)	
235 U	0.7200(51)	98.3(8) b	28 b	28 b	0.44(6) b	6544.8(5)	
238U	99.274(11)	2.68(19) b	2.34(4) b	2.3(4) b	0.491(12) b	4806.26(21)	

Note: y in 193Ir(112+y) means that the absolute isotope level energy is not known but is above 112 keV by some value y.

Table 5.2 Comparison of thermal neutron-capture cross-section measurements on ¹²C with the value adopted by Mughabghab [5.1] and the results of this evaluation.

Measurement	¹² C Cross Section	Reference
Method	(millibarns)	
Diffusion length	3.44 ± 0.8	Hendrie [5.9]
Mass spectrometry	3.30 ± 0.15	Henning [5.10]
Pile oscillator	3.5 ± 0.3	Muehlhause [5.11]
Pile oscillator	3.65 ± 0.15	[5.12]
Pile oscillator	3.85 ± 0.15	Koechlin [5.13]
Pulsed neutrons	3.72 ± 0.15	Sagot [5.14]
Pulsed neutrons	3.83 ± 0.06	Starr [5.15]
Reactivity	3.57 ± 0.03	Nichols [5.16]
Capture	3.8 ± 0.4	Jurney [5.17]
Capture	3.53 ± 0.07	Jurney [5.18]
Capture	3.50 ± 0.16	Prestwich [5.19]
Adopted value	$3.53 \pm 0.07 \text{ mb}$	Mughabghab [5.1]
This work	$3.89 \pm 0.06 \text{ mb}$	

Table 5.3 Nitrogen thermal neutron-capture cross-section measurements measured by the capture gamma-ray level scheme intensity balance. Column 1 shows the comparator standard that was used; column 2 lists the reported capture cross section; and column 3 gives the cross section renormalized to the new adopted standard value [5.1].

Cross S	Section σ _γ (millib	arns)	
Standard	Measured	Renormalized	Reference
$^{-12}$ C (3.53 ± 0.07)	79.7 ± 2.4	79.7 ± 2.4	Islam [5.22]
35 Cl(43.6 ± 0.4 b)	80.1 ± 2.0	80.0 ± 2.0	Islam [5.22]
207 Pb(712 ± 10)	79.6 ± 1.6	69.3 ± 1.4	Islam [5.22]
27 Al(230 ± 3)	76.7 ± 2.7	77.0 ± 2.7	Islam [5.23]
35 Cl(43.6 ± 0.5 b)	79.7 ± 2.4	79.6 ± 2.4	Islam [5.23]
$^{1}\text{H}(332 \pm 2)$	75.0 ± 7.5	75.1 ± 7.5	Jurney[5.17]
Adopted Value	79.8 ± 1.4 mb		Mughabgab[5.1]
This work	$79.0 \pm 0.9 \text{ mb}$		

6. DATA SOURCES AND EVALUATION METHODOLOGY

R.B. Firestone, G.L. Molnár, Zs. Révay

6.1. Prompt gamma-ray source databases

Four primary databases were used in this evaluation.

6.1.1. Lone database

Database of Lone et al [6.1] was based primarily on measurements of elemental spectra by Orphan and Rasmussen using small Ge(Li) detectors [6.2, 6.3]. These data were not constrained by nuclear structure information, so the gamma-ray assignments were often unreliable.

6.1.2. ENSDF database

Evaluated Nuclear Structure Data File (ENSDF) is a comprehensive nuclear structure and decay database evaluated internationally under the auspices of the IAEA Nuclear Structure and Decay Data Evaluators Network [6.4]. ENSDF contains experimental data compiled from literature sources and organized by isotope with separate datasets for each reaction type including thermal neutron capture. Intensity data are generally normalized per 100 neutron captures. Primary emphasis of ENSDF evaluations is the determination of nuclear structure properties, i.e., these datasets were not evaluated for use in applications. ENSDF capture gamma-ray datasets are often intermixed with information from epithermal reactions, and sometimes the gamma-ray intensity scale has multiple normalization factors for different energy regions. Updated ENSDF datasets for A = 1 - 44 and some nuclides with A > 190 were provided by Chunmei [6.5-6.8]. The primary ENSDF thermal neutron capture gamma-ray literature references are listed in Appendix B.

6.1.3. Reedy and Frankle database

The database of Reedy and Frankle encompasses essentially the same literature as ENSDF for the isotopes of elements from Z = 1-30 [6.9, 6.10]. These data are normalized per 100 neutron captures, but have been carefully evaluated for use in various important applications.

6.1.4. Budapest database

The largest amount of new data and the only complete source of radiative neutron capture gamma-ray cross sections came from the Institute of Isotope and Surface Chemistry, Budapest, Hungary. Neutron capture reactions on all naturally occurring elements except four noble gases (He, Ne, Ar, Kr), i.e., 79 elements from H to U, were studied on the PGAA guided thermal-neutron beam facility of the Budapest Research Reactor.

Capture gamma ray spectra were measured with natural targets using a Compton suppression spectrometer [6.11]. All elemental targets were measured together with a chlorine target in order to achieve a consistent energy calibration. The precise energies of two peaks from the $35Cl(n, \gamma)$ reaction [6.12] were used to determine the energies of two distinct peaks, which were then used for the energy calibration of elemental spectra after non-linearity correction. The accurate new energy and intensity data were sufficient to identify over 13,000 gamma rays from 79 elements. The data for transitions with cross sections greater than 5% of the largest cross section for each element are reported in Appendix A, and the complete Budapest measurements are included on the accompanying CD-ROM.

Measurements with composite targets (stoichiometric compounds, mixtures, or solutions) yielded accurate normalizing factors, with respect to the $H(n, \gamma)$ cross section, by means of internal k_0 standardization [6.13]. Thus, very accurate determinations of the partial gamma-ray production cross sections and related k_0 -factors became possible. Energies and k_0 -factors for the most important gamma lines have been published [6.14, 6.15], and the data library has been discussed in Refs. [6.16-6.18]. Partial cross sections and k_0 -factors for the best lines for each element were remeasured [6.19], often with several targets, and complemented with gamma-rays from short-lived decay products [6.20], as summarized in Table 6.1.

Table 6.1. Partial γ -ray cross sections for the elements as measured by internal standardization at the Budapest thermal guide [6.19]. Decay gamma rays are denoted by d in the energy column.

Z	El	Eγ-keV	σ _γ ^z (Εγ)-barns	$\overline{\mathbf{z}}$	El	Eγ-keV	σ _γ ^z (Εγ
1	Н	2223.2590(10)	0.3326(7)	45	Rh	470.41(3)	2.50(7
3	Li	2032.300(20)	0.038(1)	46	Pd	616.219(15)	0.638(
4	Be	6809.58(10)	0.0054(5)	47	Ag	657.741(22)	1.93(4)
5	В	478(3)	713(5)	48	Cd	558.32(3)	1866(2
6	\mathbf{C}	1261.71(6)	0.00120(2)	49	In	5892.38(15)	2.1(2)
		4945.30(7)	0.00262(3)	50	Sn	1293.53(6)	0.134(
7	N	1884.85(3)	0.01458(6)	51	Sb	921.04(4)	0.086(
8	O	870.68(3)	0.000175(8)	52	Te	602.723(12)	2.4(2)
9	F	1633.53(3)d	0.0093(3)	53	I	133.59(4)	1.42(5)
11	Na	472.222(13)	0.497(5)	54	Xe	667.87(9)	6.9(10)
12	Mg	584.936(24)	0.0327(7)	55	Cs	5505.46(20)	0.306(
13	Al	1778.92(3)d	0.233(4)	56	Ba	1435.65(6)	0.308(
14	Si	3538.98(5)	0.119(2)		La	567.413(23)	0.333(
15	P	636.570(17)	0.031(1)	58	Ce	662.03(5)	0.233(
16	\mathbf{S}	841.013(14)	0.357(7)	59	Pr	176.95(3)	1.06(2)
17	Cl	1951.150(15)	6.51(4)	60	Nd	696.487(20)	33.2(7)
19	K	770.325(23)	0.91(2)	62	Sm	334.02(5)	4900(6
20	Ca	1942.68(3)	0.34(1)	63	Eu	89.97(8)	1450(2
21	Sc	584.80(3)	1.83(3)	64	Gd	182.12(6)	7680(1
22	Ti	1381.74(3)	5.18(5)	65	Tb	74.89(8)	0.35(4)
23	\mathbf{V}	1434.10(3)d	5.2(1)	66	Dy	184.34(7)	146(3)
24	Cr	834.80(3)	1.38(2)	67	Ho	136.67(4)	14.5(7)
25	Mn	846.829(1)d	13.3(2)	68	Er	184.301(25)	57(2)
26	Fe	7631.05(9)	0.68(1)	69	Tm	204.41(5)	8.7(1)
27	Co	229.811(12)	7.18(7)	70	Yb	639.73(3)	1.5(1)
28	Ni	464.972(18)	0.843(9)	71	Lu	150.34(6)	13.7(4)
29	Cu	277.993(25)	0.893(9)	72	Hf	213+214	1.97(4)
30	Zn	1077.336(17)	0.358(4)	73	Ta	270.48(6)	2.60(4)
31	Ga	690.943(24)	0.26(3)	74	W	145.74(9)	0.97(2)
32	Ge	595.879(20)	1.59(4)	75	Re	207.92(4)	4.5(2)
33	As	165.09(3)	1.00(1)	76	Os	186.85(3)	2.08(4)
34	Se	6600.67(12)	0.57(3)	77	Ir	351.59(5)	2.42(8)
35	Br	1248.78(12)	0.054(1)		Pt	355.54(4)	6.17(5)
37	Rb	556+557	0.132(2)	79	Au	215.01(3)	7.77(5)
38	Sr	1836.05(3)	1.02(1)	80	Hg	5967.00(10)	53(2)
39	Y	6080.12(7)	0.85(2)	81	Tl	873.16(8)	0.168(
40	Zr	213+214	0.125(6)		Pb	7367.83(12)	0.137(
41	Nb	499.48(3)	0.065(5)	83	Bi	319.83(4)	0.017(
42	Mo	778.221(10)	2.04(5)	90	Th	256.25(11)	0.093(
44	Ru	539.522(11)	1.5(1)	92	U	4060.35(5)	0.186(3

6.2. Evaluation databases

Two ENSDF-formatted datasets were created for each isotope, one from the Budapest experimental data, and another combining isotopic data from the above sources. The Budapest measurements were elemental, and gamma rays were assigned to an isotope and placed in the level scheme by comparing the energies and relative intensities with those in ENSDF. Additional, new gamma-ray placements were determined for some transitions by comparing the experimental data with the ENSDF Adopted Levels, and Gammas dataset. The gamma-ray energies and intensities from the literature and experimental datasets were then averaged to determine the adopted energies and cross sections.

The isotopic ENSDF database combines data from ENSDF, Reedy and Frankle, and additional references retrieved from the Nuclear Sciences Reference file (NSR) [6.21]. This dataset was evaluated further for the consistency of the normalization factors and the completeness of the data. Additional gamma-ray branches, internal conversion coefficients and other data were added from the ENSDF Adopted Levels and Gammas dataset.

6.3. Adopted gamma-ray energies

Gamma-ray energies were determined by a weighted least-squares fit of both the isotopic and experimental database gamma-ray energies to the level energies. Since the adopted gamma-ray energies are the level energy differences after correction for recoil, weak transitions could be determined to good precision. A chi-squared analysis was performed by comparing the input to the adopted data, and the uncertainties of individual outliers with $\chi^2/f > 4$ and/or all data in datasets with $\chi^2/f > 1$ were increased and the fit repeated until $\chi^2/f = 1$. Badly discrepant outliers were discarded, particularly when more accurate data were available. A typical fit of gamma-ray energies is shown in Table 6.2 for $^{24}Mg(n, \gamma)$.

6.4. Adopted gamma-ray cross sections

Measured experimental gamma-ray intensities were reported as elemental cross sections, whereas the corresponding literature values were typically compiled per 100 neutron captures of the isotope. These data were averaged by one of two methods:

- If a well-defined gamma-ray cross section existed in the literature, the gamma-ray intensities in the literature dataset were renormalized to that value, converted to an elemental cross section by means of the isotopic abundance [6.22], and averaged with the experimental values.
- If no precise normalization factor existed for most cross sections, the intensities in the literature dataset were renormalized by a factor chosen to minimize the weighted average difference between the literature and experimental intensity data. The renormalized intensities were then averaged with the experimental data to obtain the adopted cross sections.

A similar chi-squared analysis to that described for the energies was performed to handle outliers and discrepant data. The skew in the chi-squared distribution as a function of energy was used to probe systematic differences in the underlying efficiency curves, and discrepant data were adjusted or removed as necessary. A typical fit of gamma-ray intensities is shown in Table 6.3 for 24 Mg(n, γ).

Table 6.2 First iteration of a least squares fit of gamma-ray energies to the level scheme for 24 Mg(n, γ). Numbers in parentheses represent the discrepancy in the number to the right,

compared to the adopted value, expressed in terms of the number of standard deviations. The uncertainties in each dataset were increased and additional iterations were performed until $\chi^2/f=1$.

FITTED LEVEL	ENERGIES -	-24Mg
--------------	------------	-------

1.	0.0		7.	3413.341	23
2.	585.001	16	8.	4276.32	3
3.	974.689	18	9.	4358.2	5
4.	1964.69	9	10.	5116.36	14
5.	2563.32	3	11.	7330.52	3
6.	2801.53	9			

389.69 5 (1) 389.64 3 389.685 18 3 2 (2) 585.06 3 (2) 584.936 24 584.994 16 2 1 611.8 10 611.80 9 7 6 (1) 836.95 10) 836.75 8 836.82 6 6 4 849.9 3 849.93 16 850.01 3 7 5 (2) 863.09 5 (2) 862.88 4 862.962 23 8 7 (3) 974.84 5 (1) 974.61 3 974.669 18 3 1 989.7 4 989.98 9 4 3 1379.7 3 1379.69 19 1379.65 9 4 2
611.8 10 611.80 9 7 6 (1) 836.95 10) 836.75 8 836.82 6 6 4 849.9 3 849.93 16 850.01 3 7 5 (2) 863.09 5 (2) 862.88 4 862.962 23 8 7 (3) 974.84 5 (1) 974.61 3 974.669 18 3 1 989.7 4 989.98 9 4 3 1379.7 3 1379.69 19 1379.65 9 4 2
(1) 836.95 10) 836.75 8 836.82 6 6 4 849.9 3 849.93 16 850.01 3 7 5 (2) 863.09 5 (2) 862.88 4 862.962 23 8 7 (3) 974.84 5 (1) 974.61 3 974.669 18 3 1 989.7 4 989.98 9 4 3 1379.7 3 1379.69 19 1379.65 9 4 2
849.9 3 849.93 16 850.01 3 7 5 (2) 863.09 5 (2) 862.88 4 862.962 23 8 7 (3) 974.84 5 (1) 974.61 3 974.669 18 3 1 989.7 4 989.98 9 4 3 1379.7 3 1379.69 19 1379.65 9 4 2
(2) 863.09 5 (2) 862.88 4 862.962 23 8 7 (3) 974.84 5 (1) 974.61 3 974.669 18 3 1 989.7 4 989.98 9 4 3 1379.7 3 1379.69 19 1379.65 9 4 2
(3) 974.84 5 (1) 974.61 3 974.669 18 3 1 989.7 4 989.98 9 4 3 1379.7 3 1379.69 19 1379.65 9 4 2
989.7 4 1379.7 3 1379.69 19 1379.65 9 4 3 2
1379.7 3 1379.69 19 1379.65 9 4 2
4440 = 40
1448.7 10 1448.61 9 7 4
1474.8 10 1474.74 9 8 6
1588.65 9 (1) 1588.40 9 1588.58 3 5 3
1702.6 7 1702.96 14 10 7
1713.05 (1) 1712.85 6 1712.94 3 8 5
1964.7 4 1964.63 25 1964.61 9 4 1
1978.25 5 (1) 1978.14 8 1978.24 3 5 2
2213.8 5 2214.29 25 2214.05 14 11 10
2216.5 6 2216.8 4 2216.42 9 6 2
(1) 2438.48 4 (1) 2438.42 9 2438.524 22 7 3
2553.7 8 2552.90 14 10 5
2563.6 5 2563.18 3 5 1
(1) 2801.0 3 2801.5 4 2801.36 9 6 1
(1) 2828.21 4 2828.12 10 2828.168 22 7 2
2972.4 8 2972.2 5 11 9
3053.99 4 (1) 3053.85 12 3054.00 3 11 8
3301.42 5 3301.29 13 3301.40 3 8 3
(1) 3413.15 5 3413.04 14 3413.091 23 7 1
3691.07 3690.98 18 3691.03 3 8 2
3916.86 4 (1) 3916.65 16 3916.85 3 11 7
4141.43 4141.38 24 4141.31 14 10 3
4357.9 6 4357.8 5 9 1
4528.47 4528.66 22 4528.55 9 11 6
4766.86 4766.68 25 4766.71 4 11 5
6355.02 6354.9 3 6354.9 6 3 11 3
(1) 6744.9 3 6744.54 3 11 2
(1) 7330.6 9 7329.37 3 11 1

ENSDF: $\chi^2/f = 1.561$, f = 25; Budapest: $\chi^2/f = 1.907$, f = 17 Total $\chi^2/f = 1.429$ (fit of 61 gamma transitions to 10 levels)

Table 6.3 First iteration of a least squares fit of gamma-ray intensities for 24 Mg(n, γ). Numbers between asterisks represent the discrepancy in the data to the left expressed in terms of the number of standard deviations. The uncertainties in each dataset were increased and additional iterations were performed until $\chi^2/f = 1$. Fitted cross sections from the Budapest reactor measurements were adopted.

I_{γ} -ENSDF		SDF	σ _γ -Bud		
$\mathbf{E}_{oldsymbol{\gamma}}$	I _Y (input)	$I_{\gamma}(fit)$	input	fit	Relative I _y
389.670 21	7.5 4	7.4 3	0.0058 3	0.00585 24	18.3 7
585.00 3	39.8 12	39.9 11	0.0316 15	0.0314 11	98.1 25
611.81 9	0.015 15	0.015 15		1.2E-05 12	0.04 4
836.83 6	0.21 3	0.200 19	1.52E-04 18	1.57E-04 15	0.49 5
849.99 4	0.070 20	0.084 14	7.2E-05 15	6.6E-05 11	0.21 4
862.96 3	0.48 5	0.52 3	0.000420 25	0.000410 21	1.28 7
974.66 3	8.3 4	8.4 3	0.0067 3	0.00662 24	20.7 7
989.99 10	0.050 10	0.050 10		3.9E-05 8	0.123 25
1379.64 9	0.100 20	0.107 14	8.8E-05 14	8.4E-05 11	0.26 3
1448.62 10	0.015 15	0.015 15		1.2E-05 12	0.04 4
1474.75 10	0.015 15	0.015 15		1.2E-05 12	0.04 4
1588.61 4	0.37 4	0.316 22 *1*	2.22E-04 19	2.49E-04 17 *1*	0.78 5
1702.95 15	0.040 10	0.040 10		3.1E-05 10	0.098 25
1712.92 4	1.5 3	1.50 10	0.00118 7	0.00118 7	3.69 21
1964.61 10	0.060 20	0.092 18*1*	8.5E-05 20	7.2E-05 14	0.23 4
1978.25 3	1.42 11	1.41 7	0.00110 6	0.00111 5	3.46 15
2214.06 15	0.40 5	0.36 4	2.3E-04 4	0.00029 3 *1*	0.89 9
2216.42 9	0.25 4	0.22 3	1.3E-04 3	1.75E-04 23 *1*	0.55 7
2438.54 3	6.3 4	6.0 3	0.00459 22	0.00472 19	14.8 6
2552.88 15	0.030 10	0.030 10		2.4E-05 9	0.074 25
2563.21 4	0.070 20	0.070 20		5.5E-05 16	0.17 5
2801.37 9	0.170 20	0.158 17	8.2E-05 20	1.24E-04 14 *2*	0.39 4
2828.172 25	30.5 10	30.5 9	0.0239 11	0.0240 8	74.9 20
2972.2 5	0.090 20	0.090 20		7.1E-05 17	0.22 5
3054.00 3	10.4 5	10.5 4	0.0083 4	0.0082 3	25.8 9
3301.41 3	7.7 4	7.9 3	0.0063 3	0.00619 24	19.3 7
3413.10 3	5.1 3	5.09 21	0.00400 20	0.00400 16	12.5 5
3691.02 3	0.908	0.86 5	0.00065 5	0.00067 4	2.11 12
3916.84 3	41.0 13	40.7 11	0.0314 15	0.0320 11	100 3
4141.31 14	0.21 3	0.195 20	1.42E-04 20	1.53E-04 16	0.48 5
4528.55 9	0.46 4	0.44 3	0.00029 5	0.00035 3 *1*	1.09 8
4766.69 4	0.41 4	0.42 3	0.00033 3	0.000326 22	1.02 7
6354.98 3	1.31 9	1.35 7	0.001098	0.00106 6	3.31 17
6744.54 3	0.18 3	0.18 3		1.42E-04 25	0.44 7
7329.38 4	0.018 4	0.018 4		1.4E-05 3	0.044 10

ENSDF: $\chi^2/f = 0.266 \text{ skew} = -0.214, f = 35.$ Budapest: $\chi^2/f = 0.595 \text{ skew} = -1.780, f = 25.$ Gamma-ray intensity balances through the level scheme were used to determine the quality and completeness of the evaluated data. The total gamma-ray cross section feeding the ground state was compared with the corresponding values from Mughabghab et al [6.23-6.25], and the ratio of the total primary gamma-ray cross section to the cross section feeding the ground state indicated the completeness of the dataset. Intensity balances through intermediary levels indicate missing or anomalous intensities, and such problems were corrected whenever possible. An example of an intensity balance analysis with no important discrepancies is shown in Table 6.4 Level schemes are complete for the more abundant isotopes of the light nuclei, but significant inconsistencies in the intensity balance may arise for heavier nuclei and remain unresolved in the continuum.

Table 6.4 Cross-section balance for $^{24}Mg(n, \gamma)$ adopted data.

E(Level)	σ(in)	σ(out)	Δσ
0	0.0536(14)	0.0	0
585.01(3)	0.0406(11)	0.0398(14)	0.0008(18)
974.68(3)	0.0157(4)	0.0158(4)	0.0001(6)
1964.69(10)	0.00022(2)	0.00026(3)	0.00004(4)
2563.35(4)	0.00202(10)	0.00179(7)	0.00023(12)
2801.54(9)	0.00047(4)	0.00061(5)	0.00013(6)
3413.35(3)	0.0411(14)	0.0416(11)	0.0005(18)
4276.33(4)	0.0105(4)	0.0107(3)	0.0002(5)
4358.2(5)	0.00009(2)	0.0	0.00009(2)
5116.37(15)	0.00038(4)	0.00027(3)	0.00011(5)
7330.53(4)	0.0	0.0539(14)	0.0539(14)

 σ (Mughabghab [6.23]) 0.0536(15) b σ (Measured, average) 0.0538(14) b

6.5. Radioactive decay data

Gamma rays emitted by radioactive decay from isomers and activation products were observed simultaneously with the prompt gamma rays and have been included in this evaluation. Decay data were taken from the relevant ENSDF datasets and renormalized using the total cross sections from Mughabghab et al. [6.23-6.25], other literature, or the Budapest experimental data (only used when corrections for bombardment time were negligible). These data must be corrected for decay and saturation as described in Chapter 7.

Several naturally abundant isotopes emit gamma rays that can be used for quantitative analysis. Data are included for 40 K (1.265 × 10⁹ y), 50 V (1.4 × 10¹⁴ y), 138 La (1.05 × 10¹¹ y), 176 Lu (4.00 × 10¹⁰ y), 232 Th (1.405 × 10¹⁰ y), and 235 U (7.038 × 10⁸ y). These gamma-ray intensities are provided in units of disintegrations per second per gram of the element.

REFERENCES

- [6.1] LONE, M.A., LEAVITT, R.A., HARRISON, D.A., Prompt Gamma Rays from Thermal-neutron Capture, At. Data Nucl. Data Tables **26**, (1981) 511.
- [6.2] RASMUSSEN, N. C., HUKAI, Y., INOUYE, T., ORPHAN, V. J., Thermal Neutron Capture Gamma-Ray Spectra of the Elements, Massachusetts Institute of Technology Report AFCRL-69-0071, 1969.
- [6.3] ORPHAN, V. J., RASMUSSEN, N. C., HARPER, T. L., Line and Continuum Gamma-Ray Yields from Thermal-Neutron Capture in 75 Elements, Gulf General Atomic Report DASA 2570 (GA 10248), 1970.
- [6.4] Evaluated Nuclear Structure Data File, a computer file of evaluated experimental nuclear structure data maintained by the National Nuclear Data Center, Brookhaven National Laboratory, USA.
- [6.5] CHUNMEI, Z., Thermal Neutron Capture Data for A = 1-25, INDC(CPR)-051, 2000.
- [6.6] CHUNMEI, Z., Thermal Neutron Capture Data for A = 26-35, INDC(CPR)-054, 2001.
- [6.7] CHUNMEI, Z., Thermal Neutron Capture Data Update and Revision for Some Nuclides with A > 190, INDC(CPR)-055, 2001.
- [6.8] CHUNMEI, Z., FIRESTONE, R.B., Thermal Neutron Capture Data for A = 36-44, INDC(CPR)-057, 2003.
- [6.9] REEDY, R.C., FRANKLE, S.C., Prompt Gamma Rays from Radiative Capture of Thermal Neutrons by Elements from Hydrogen through Zinc, At. Data Nucl. Data Tables **80** (2002) 1.
- [6.10] REEDY, R.C., FRANKLE, S.C., Evaluated Database for Prompt Gamma Rays from Radiative Capture of Thermal Neutrons by Elements from Hydrogen to Zinc, IAEA-NDS-209, 2003.
- [6.11] MOLNÁR, G.L., RÉVAY, Z., BELGYA, T., Wide energy range efficiency calibration method for Ge detectors, Nucl. Instrum. Meth. Phys. Res. **A489** (2002) 140-159.
- [6.12] KRUSCHE, B., LIEB, K.P., DANIEL, H., VON EGIDY, T., BARREAU, G., NORNER, H.G., BRISSOT, R., HOFMEYR, C., RASCHER, R., Gamma ray energies and ³⁶Cl level scheme from the reaction ³⁵Cl(n,)*1, Nucl. Phys. **A386** (1982) 245-268.
- [6.13] MOLNÁR, G.L., RÉVAY, Z., PAUL, R.L., LINDSTROM, R.M., Prompt-gamma activation analysis using the k₀ approach, J. Radioanal. Nucl. Chem. **234** (1998) 21-26.
- [6.14] RÉVAY, Z., MOLNÁR, G.L., BELGYA, T., KASZTOVSZKY, Z., FIRESTONE, R.B., A new gamma-ray spectrum catalog for PGAA, J. Radioanal. Nucl. Chem. **244** (2000) 383-389.
- [6.15] RÉVAY, Z., MOLNÁR, G.L., "Characterization of neutron beam and gamma spectrometer for PGAA, pp. 57-68 in Summary Report of 2nd Research Coordination Mtg. on Development of a Database for Prompt Gamma-ray Activation Analysis, INDC(NDS)-424, International Atomic Energy Agency, Vienna, 2001.
- [6.16] FIRESTONE, R.B., RÉVAY, Z., MOLNÁR, G.L., "New capture gamma-ray library and atlas of spectra for all elements", pp. 507-513 in Proc. 11th Int. Symp. Capture Gamma-Ray Spectroscopy and Related Topics, KVASIL, J., CEJNAR, P., KRTIČKA, M., (Eds.), World Scientific, Singapore, 2003.
- [6.17] MOLNÁR, G.L., RÉVAY, Z., BELGYA, T., FIRESTONE, R.B., The new prompt gamma-ray catalogue for PGAA, Appl. Radiat. Isot. **53** (2000) 527-533.
- [6.18] RÉVAY, Z., MOLNÁR, G.L., BELGYA, T., KASZTOVSZKY, Z., FIRESTONE, R.B., A new gamma-ray spectrum catalog and library for PGAA, J. Radioanal. Nucl. Chem. 248 (2001) 395-399.
- [6.19] RÉVAY, Z., MOLNÁR, Standardisation of the prompt gamma activation analysis method, Radiochim. Acta **91** (2003) 361-369.

- [6.20] RÉVAY, Z., MOLNÁR, G.L., BELGYA, T., KASZTOVSZKY, Z., In-beam determination of k₀ factors of short-lived nuclides, J. Radioanal. Nucl. Chem. **257** (2003) 561-564.
- [6.21] Nuclear Science Reference File, a bibliographic computer file of nuclear science references continually updated by the National Nuclear Data Center, Brookhaven National Laboratory; recent literature scanned by D. Winchell.
- [6.22] ROSMAN, K.J.R., TAYLOR, P.D.P., "Isotopic Composition of the Elements 1997", Pure Appl. Chem. **70** (1998) 217.
- [6.23] MUGHABGHAB, S.F., Thermal Neutron Capture Cross Sections, Resonance Integrals, and g-factors, INDC(NDS)-440, 2003.
- [6.24] MUGHABGHAB, S.F., DIVADEENAM, M., HOLDEN, N., Neutron Cross Sections, Vol. 1, Part A, Z = 1-60, Academic Press, New York, 1981.
- [6.25] MUGHABGHAB, S.F., Neutron Cross Sections, Vol. 1, Part B, Z = 61-100, Academic Press, New York, 1984.

7. ADOPTED DATABASE AND USER TABLES

R.B. Firestone

The Evaluated Gamma-ray Activation File (EGAF) is a database of \approx 32,000 adopted prompt gamma rays and \approx 3000 gamma rays emitted by radioactive decay, and has been created for all stable isotopes of the elements from hydrogen to uranium. This complete EGAF database is available on the accompanying CD-ROM in both tabulated and Evaluated Nuclear Structure Data File (ENSDF) format [7.1]. Selected gamma rays with partial cross sections >1% of the most intense transitions are presented in the following tables, in which at least one prompt gamma ray and at least one decay gamma ray (when applicable) are listed for each isotope regardless of intensity. Energy-ordered gamma rays are given for each element with isotopic identification, energy and uncertainty in keV, and partial elemental cross section and k_0 and their uncertainties.

7.1. Numerical uncertainty presentation

Uncertainties in the tables are contained within parentheses, and expressed in terms of the last digit or digits of the recommended value without a decimal point. These uncertainties are defined as standard deviations corresponding to the 1σ confidence level, for example:

$$1234.5(12) \equiv 1234.5 \pm 1.2$$

$$1.234(5) \equiv 1.234 \pm 0.005$$

$$1.23(4) \times 10^{-5} \equiv (1.23 \pm 0.04) \times 10^{-5}$$

7.2. Isotopic data

The isotopic data are presented in Table 7.1. The first three columns give the atomic number Z, element symbol El, and mass number A, respectively. The natural abundances (θ) quoted in column 4 are representative isotopic compositions (Atom %) from the 1997 IUPAC values listed by Rosman and Taylor [7.2]. Thermal radiative cross sections (σ_{γ}) are listed in column 5 and discussed in Chapter 5 [7.3-7.5], while Trkov calculated the Westcott g-factors for 293K as listed in column 6 [7.6]. The number of prompt gamma rays reported for each isotope is given in column 7 (N_{γ}), and the most intense prompt capture gamma rays for that element is quantified in column 8.

7.3. Radioactive decay data

Gamma rays emitted by the radioactive decay of isomers and activation products are observed simultaneously with the prompt gamma rays and have been included in this evaluation. Decay data were taken from the ENSDF file and renormalized to the total radiative cross sections of Mughabghab [7.3-7.5] or to Budapest experimental data if corrections for the bombardment time were negligible. Radioactive decay data are presented in Table 7.2. The first column gives the mass number A and element symbol El. The decay mode is given in column 2 and the half-life in column 3. Column 4 indicates the %BR branching intensity for the indicated decay mode and column 5 gives the number of decay gamma rays N_{γ} reported for each parent and decay mode. Column 6 shows the energies E_{γ} and partial elemental gamma ray cross sections $\sigma_{\gamma}^{z}(E_{\gamma})$ for the principal decay gammas. The naturally abundant radioisotopes 40 K, 50 V, 138 La, 176 Lu, 232 Th, and 235 U are indicated by (nat) next to the element symbol and the principal decay gamma ray activity in disintegrations per second per gram of the element is shown instead of the partial elemental gamma ray cross section $\sigma_{\gamma}^{z}(E_{\gamma})$.

7.4. k_0 formulation

The k_0 formulation is commonly used in activation analysis because the product of the yield and cross section can usually be measured with greater accuracy than either parameter alone. A value of k_0 for a gamma ray emitted from isotope i is defined relative to the hydrogen standard on a mass scale:

$$\begin{split} k_0(E_{\gamma}) &= k_z(E_{\gamma}) / k_H(2223) \\ &= \left[\sigma_{\gamma}^{\ z}(E_{\gamma}) / A_r(Z) \right] / \left[\sigma_{\gamma}^{\ H}(2223) / A_r(H) \right] \\ &= 3.03 \times \left[\sigma_{\gamma}^{\ z}(E_{\gamma}) / A_r(Z) \right] \end{split}$$

where $\sigma_{\gamma}^{z}(E_{\gamma})$ is the partial elemental cross section in barns for the production of gamma ray E_{γ} from element Z, assuming natural abundance, and $A_{r}(Z)$ is the relative atomic weight of element Z. The partial elemental cross section for neutron capture on hydrogen is $\sigma_{\gamma}^{H}(2223) = 0.3326(7)$ and the $A_{r}(H) = 1.00794$, and $k_{0}(2223) \equiv 1$ by definition. For example, consider the 841.0-keV gamma ray from $^{32}S(n, \gamma)$ with $\sigma(841) = 0.347$ b and $A_{r}(S) = 32.066$:

$$k_0(841) = 3.03 \times 0.347 / 32.066 = 0.0328$$

7.5. PGAA data tables

Adopted PGAA database of prompt and delayed gamma rays is presented in Table 7.3.

7.5.1. Prompt gamma rays

Only k_0 values that are >1% of the largest value for each element are listed in Table 7.3, while those that are >10% are shown in bold type. Gamma rays with k_0 < 1% of the largest value are included in the full database on the CD-ROM. Both $\sigma_{\gamma}^{z}(E_{\gamma})$ and $k_0(E_{\gamma})$ values presented in this evaluation have the same percentage uncertainties because they are measured with respect to the very precise hydrogen value.

The 477.6-keV gamma ray from the 10 B(n, α) reaction is uniquely identified in Table 7.3 because this emission undergoes Doppler broadening to a width of \approx 15 keV.

The IUPAC atomic weight values [7.7] were used in the calculation of k_0 , and the elemental cross section are shown in the header for each element in Table 7.3.

7.5.2. Radioactive decay gamma rays

Gamma rays from radioactive decay are denoted in Table 7.3 by d immediately after the energy and uncertainty. Saturation values for k_0 are listed, but many half-lives are too long for saturation to occur under normal experimental conditions. Percent saturation has been calculated, assuming 1-hour irradiation:

% Saturation =
$$100 \times [1.0 - (1.0 - e^{-\lambda t}) / \lambda t]$$

where $\lambda = \ln(2) / t_{1/2}$ and t = 3600 s. They are given in parentheses after the $k_0(E_\gamma)$ decay values in Table 7.3. Only decay gamma rays with $k_0(E_\gamma) > 10\%$ of the largest k_0 values or the most intense gamma ray are listed in Table 7.3.

Gamma rays from several naturally abundant radioisotopes are included in Table 7.3 and indicated as "abundant" in the k_0 column. Instead of k_0 and $\sigma_{\gamma}^{z}(E_{\gamma})$, the gamma emission rate

per second per gram of the element is given as calculated by:

Gamma Emission Rate $(s^{-1}g^{-1}) = \lambda NP_{\gamma}$

=
$$[\ln(2) / t_{1/2}] \times [N_A / A_r(Z)] \times \theta \times P_{\gamma}$$

where $t_{1/2}$ is the half-life, $N_A = 6.022 \times 10^{23} \, \text{mol}^{-1}$, θ is the isotopic abundance (atom %), and P_{γ} is the absolute gamma-ray intensity per decay.

7.5.3. Energy-ordered gamma-ray table

Table 7.4 presents a list of energy-ordered gamma rays with $\sigma_{\gamma}^{z}(E_{\gamma})$ and $k_{0}(E_{\gamma})$ values and the most intense gamma rays associated with these transitions. This table was abbreviated to include only those gamma rays with $k_{0}(E_{\gamma}) > 10\%$ of the largest value for each element (total of ≈ 1300 transitions). Radioactive decay transitions are also included, and have been appended with *d* immediately after the gamma-ray energy and uncertainty.

REFERENCES

- [7.1] TULI, J.K., "The Evaluated Nuclear Structure Data File: A Manual for the Preparation of Datasets", BNL-NCS-51655-01/02-Rev, February 2001.
- [7.2] ROSMAN, K.J.R., TAYLOR, P.D.P., "Isotopic Composition of the Elements 1997", Pure Appl. Chem. **70** (1998) 217.
- [7.3] MUGHABGHAB, S.F., Thermal Neutron Capture Cross Sections, Resonance Integrals, and g-factors, INDC(NDS)-440 (2003).
- [7.4] MUGHABGHAB, S.F., DIVADEENAM, M., HOLDEN, N., Neutron Cross Sections, Vol. 1, Part A, Z = 1-60, Academic Press, New York, 1981.
- [7.5] MUGHABGHAB, S.F., Neutron Cross Sections, Vol. 1, Part B, Z = 61-100, Academic Press, New York, 1984.
- [7.6] TRKOV, A., IAEA Nuclear Data Section, private communication, 2003.
- [7.7] COPLEN, T.B., Atomic Weights of Elements 1999, J. Phys. Chem. Res. **30** (2001) 701-712.

Table 7.1 Isotopic data. Abundances are from Rosman and Taylor [7.2], σ_{γ} from Mughabab et al [7.3-5], and g-factors are from Trkov [7.6]. The number of prompt gamma rays (N_{γ}) reported for each isotope and the most intense gamma rays for each element are shown.

Z El	A	Abundance(%)	σ _γ (total)	g(293K)	$N_{\gamma} \ E_{\gamma}, \sigma_{\gamma}^{\ z}(E_{\gamma})$ for most intense capture gammas for each element
1 H	1	99.9885(70)	0.3326(7)	0.999	1 2223.24835(0.3326)
Н	2	0.0115(70)	0.000519(7)	1.000	1
2 He	3	0.000137(3)	0.000031(9)	1.000	1
Не	4	99.999863(3)	0	1.000	0
3 Li	6	7.59(4)	0.039(4)	1.000	3
Li	7	92.41(4)	0.045(3)	1.000	3 2032.30(0.0381), 980.53(0.00415), 1051.90(0.00414)
4 Be	9	100	0.0088(4)	1.000	13 6809.61(0.0058), 3367.448(0.00285), 853.630(0.00208)
5 B	10	19.9(7)	0.5(1)	1.000	10 477.595(716)
В	11	80.1(7)	0.005(3)	1.000	0
6 C	12	98.93(8)	0.00353(5)	1.000	6 4945.301(0.00261), 1261.765(0.00124), 3683.920(0.00122)
C	13	1.07(8)	0.00137(4)	0.998	7
7 N	14	99.632(7)	0.0798(14)	1.000	60 5269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155)
N	15	0.368(7)	0.000024(8)	1.003	12
8 O	16	99.757(16)	0.000190(19)	1.000	4
O	17	0.038(1)	0.00054(7)	0.999	20
O	18	0.205(14)	0.00016(1)	1.000	13
9 F	19	100	0.0096(5)	1.000	168 1633.53(0.0096)d, 583.561(0.00356), 656.006(0.00197)
10 Ne	20	90.48(3)	0.037(4)	1.000	27 2035.67(0.0245), 350.72(0.0198), 4374.13(0.01910)
Ne	21	0.27(1)	0.67(11)	1.000	11
Ne	22	9.25(3)	0.045(6)	1.000	15 1979.89(0.00306), 1017.00(0.0030)
11 Na	23	100	0.530(5)	1.000	240 1368.66(0.530)d, 2754.13(0.530)d, 472.202(0.478)d
12 Mg	24	78.99(4)	0.0536(15)	1.001	35 3916.84(0.0320), 585.00(0.0314), 2828.172(0.0240)
Mg	25	10.00(1)	0.200(5)	1.001	206 1808.668(0.0180), 1129.575(0.00891), 3831.480(0.00418)
Mg	26	11.01(3)	0.0386(6)	1.001	44
13 Al	27	100	0.231(3)	1.000	216 1778.92(0.232)d, 30.6380(0.0798), 7724.027(0.0493)
14 Si	28	92.2297(7)	0.177(5)	1.001	46 3538.966(0.1190), 4933.889(0.1120), 2092.902(0.0331)
Si	29	4.6832(5)	0.119(3)	1.003	99
Si	30	3.0872(5)	0.107(2)	1.007	39
15 P	31	100	0.172(6)	1.001	158 512.646(0.079), 78.083(0.059), 636.663(0.0311)
16 S	32	94.93(31)	0.548(10)	1.000	101 840.993(0.347), 5420.574(0.308), 2379.661(0.208)

Z El	A	Abundance(%)	$\sigma_{\gamma}(total)$	g(293K)	$N_{\gamma} \ E_{\gamma}, \sigma_{\gamma}^{ z}(E_{\gamma}) $ for most intense capture gammas for each element
S	33	0.76(2)	0.454(25)	1.001	249
S	34	4.29(28)	0.235(5)	1.001	55
S	36	0.02(1)	0.23(2)	1.014	22
17 Cl	35	75.78(4)	43.5(4)	1.000	384 1164.8650(8.91), 517.0730(7.58), 6110.842(6.59)
Cl	37	24.22(4)	0.430(6)	1.000	71
18 Ar	36	0.3365(30)	5.2(5)	1.016	10
Ar	38	0.0632(5)	0.8(2)	1.040	0
Ar	40	99.6003(30)	0.66(1)	1.002	40 167.30(0.53), 4745.3(0.36), 1186.8(0.34)
19 K	39	93.2581(44)	2.1(2)	1.001	308 29.8300(1.380), 770.3050(0.903), 1158.887(0.1600)
K	40	0.0117(1)	30(4)	1.000	490
K	41	6.7302(44)	1.45(3)	1.001	638
20 Ca	40	96.94(16)	0.41(2)	1.001	49 1942.67(0.352), 6419.59(0.176), 4418.52(0.0708)
Ca	42	0.647(23)	0.68(7)	1.001	44
Ca	43	0.135(10)	6.2(6)	1.001	129
Ca	44	2.09(11)	0.88(5)	1.001	41
Ca	46	0.004(3)	0.72(3)	1.000	10
Ca	48	0.187(21)	1.09(14)	1.001	15
21 Sc	45	100	27.2(2)	1.002	440 227.773(7.13), 147.011(6.08), 142.528(4.88)d
22 Ti	46	8.25(3)	0.59(18)	1.001	23
Ti	47	7.44(2)	1.52(11)	1.001	175
Ti	48	73.72(3)	7.88(25)	1.002	92 1381.745(5.18), 6760.084(2.97), 6418.426(1.96)
Ti	49	5.41(2)	1.79(12)	1.001	88
Ti	50	5.18(2)	0.179(3)	1.001	19
23 V	50	0.250(4)	21(4)	0.999	328
V	51	99.750(4)	4.92(4)	1.001	309 1434.10(4.81)d, 125.082(1.61), 6517.282(0.78)
24 Cr	50	4.345(13)	15.9(2)	1.000	64 749.09(0.569), 8510.77(0.233), 8482.80(0.169)
Cr	52	83.789(18)	0.76(6)	1.000	16 7938.46(0.424)
Cr	53	9.501(17)	18.2(15)	1.000	90 834.849(1.38), 8884.36(0.78), 9719.06(0.260)
Cr	54	2.365(7)	0.36(4)	1.000	38
25 Mn	55	100	13.36(5)	1.000	126 846.754(13.10)d, 1810.72(3.62)d, 26.560(3.42)
26 Fe	54	5.845(35)	2.25(18)	1.001	33 9297.68(0.0747)
Fe	56	91.754(36)	2.59(14)	1.000	193 7631.136(0.653), 7645.5450(0.549), 352.347(0.273)
Fe	57	2.119(10)	2.5(3)	1.001	35

Z El	A	Abundance(%)	σ _γ (total)	g(293K)	$N_{\gamma} \ E_{\gamma}, \sigma_{\gamma}^{\ z}(E_{\gamma})$ for most intense capture gammas for each element
76 Fe	58	0.282(4)	1.30(3)	1.002	67
27 Co	59	100	37.18(6)	1.000	340 229.879(7.18), 277.161(6.77), 555.972(5.76)
28 Ni	58	68.0769(89)	4.5(2)	1.000	236 8998.414(1.49), 464.978(0.843), 8533.509(0.721)
Ni	60	26.2231(77)	2.9(2)	1.000	137 7819.517(0.336), 282.917(0.211), 7536.637(0.190)
Ni	61	1.1399(6)	2.5(8)	1.000	64
Ni	62	3.6345(17)	14.5(3)	1.000	53 6837.50(0.458)
Ni	64	0.9256(9)	1.63(7)	1.000	35
29 Cu	63	69.17(3)	4.52(2)	1.001	306 278.250(0.893), 7915.62(0.869), 159.281(0.648)
Cu	65	30.83(3)	2.17(3)	1.002	350 185.96(0.244), 465.14(0.1350), 385.77(0.1310)
30 Zn	64	48.63(60)	1.1(1)	1.001	78 115.225(0.167), 7863.55(0.1410), 855.69(0.066)
Zn	66	27.90(27)	0.62(6)	1.000	17 6958.8(0.043)
Zn	67	4.10(13)	9.5(14)	1.000	175 1077.335(0.356), 1883.12(0.0718), 1340.14(0.0457)
Zn	68	18.75(51)	1.07(10)	1.000	33 1007.809(0.056), 5474.02(0.042), 834.77(0.037)
Zn	70	0.62(3)	0.091(5)	1.000	79
31 Ga	69	60.108(9)	1.68(7)	1.000	68 508.19(0.349), 690.943(0.305), 187.84(0.1080)
Ga	71	39.892(9)	4.73(15)	1.001	245 834.08(1.65)d, 2201.91(0.52)d, 629.96(0.490)d
32 Ge	70	20.84(87)	3.45(16)	1.000	84 175.05(0.164), 499.87(0.162)
Ge	72	27.54(34)	0.95(11)	1.000	48
Ge	73	7.73(5)	14.4(4)	1.000	603 595.851(1.100), 867.899(0.553), 608.353(0.250)
Ge	74	36.28(73)	0.53(5)	1.000	47
Ge	76	7.61(38)	0.14(2)	1.000	196
33 As	75	100	4.23(8)	1.000	348 559.10(2.00)d, 165.0490(0.996), 86.7880(0.579)
34 Se	74	0.89(4)	51.8(12)	1.001	142 286.5710(0.280)
Se	76	9.37(29)	85(7)	1.000	456 238.9980(2.06), 520.6370(1.260), 161.9220(0.855)d
Se	77	7.63(16)	42(4)	1.000	215 613.724(2.14), 694.914(0.443), 1308.632(0.317)
Se	78	23.77(28)	0.430(22)	1.000	37
Se	80	49.61(41)	0.61(5)	1.000	71
Se	82	8.73(22)	0.044(3)	1.000	0
35 Br	79	50.69(7)	10.32(13)	1.000	257 245.203(0.80), 271.374(0.462), 314.982(0.460)
Br	81	49.31(7)	2.36(5)	1.000	181 776.517(0.990)d, 554.3480(0.838)d, 619.106(0.515)d
36 Kr	78	0.35(1)	4.7(7)	1.000	1
Kr	80	2.28(6)	11.5(5)	1.000	1
Kr	82	11.58(14)	19(4)	1.000	2

Z El	A	Abundance(%)	σ _γ (total)	g(293K)	$N_{\gamma} \ E_{\gamma}, \sigma_{\gamma}^{\ z}(E_{\gamma})$ for most intense capture gammas for each element
Kr	83	11.49(6)	202(10)	0.995	75 881.74(20.8), 1213.42(8.28), 1463.86(7.10)
Kr	84	57.00(4)	0.111(15)	1.000	7
Kr	86	17.30(22)	0.003(2)	1.000	38
37 Rb	85	72.17(2)	0.48(9)	1.000	90 556.82(0.0913), 487.89(0.0494), 555.61(0.0407)d
Rb	87	27.83(2)	0.12(3)	1.000	86 196.34(0.00964)
38 Sr	84	0.56(1)	0.62(6)	1.000	5
Sr	86	9.86(1)	1.04(7)	1.000	375
Sr	87	7.00(1)	17(3)	1.006	210 1836.067(1.030), 898.055(0.702), 850.657(0.275)
Sr	88	82.58(1)	0.0058(4)	1.000	57
39 Y	89	100	1.28(2)	1.005	397 6080.171(0.76), 776.613(0.659), 202.53(0.289)
40 Zr	90	51.45(40)	0.011(5)	1.000	15 1465.7(0.037), 1205.6(0.025), 2042.2(0.019)
Zr	91	11.22(5)	1.24(25)	1.000	81 934.4640(0.0737), 1405.159(0.0178), 560.958(0.0169)
Zr	92	17.15(8)	0.22(6)	1.000	18
Zr	94	17.38(28)	0.0499(24)	1.000	14
Zr	96	2.80(9)	0.020(1)	1.000	34 1102.67(0.0139)
41 Nb	93	100	1.15(5)	1.002	535 99.4070(0.211), 255.9290(0.190), 253.115(0.1420)
42 Mo	92	14.84(35)	0.019	1.000	5
Mo	94	9.25(12)	0.015	1.001	13
Mo	95	15.92(13)	13.4(3)	0.998	139 778.221(2.02), 849.85(0.43), 847.603(0.324)
Mo	96	16.68(2)	0.5(2)	1.001	36
Mo	97	9.55(8)	2.5(2)	0.998	110
Mo	98	24.13(31)	0.137(5)	1.000	56
Mo	100	9.63(23)	0.199(3)	1.000	332
44 Ru	96	5.54(14)	0.22(2)	1.001	2
Ru	98	1.87(3)	<8.0	1.002	1
Ru	99	12.76(14)	7.1(10)	1.002	134 539.538(1.53), 686.907(0.52)
Ru	100	12.60(7)	5.0(6)	1.000	32
Ru	101	17.06(2)	3.4(9)	1.001	60 475.0950(0.98), 631.22(0.30), 627.970(0.176)
Ru	102	31.55(14)	1.21(7)	1.000	173 1959.30(0.210)
Ru	104	18.62(27)	0.47(2)	1.000	183
45 Rh	103	100	145(2)	1.023	264 180.87(22.6), 97.14(19.5), 51.50(16.0)
46 Pd	102	1.02(1)	3.4(3)	0.997	4
Pd	104	11.14(8)	0.6(3)	1.000	11

Z El	A	Abundance(%)	σ _γ (total)	g(293K)	$N_{\gamma} \ E_{\gamma}, \sigma_{\gamma}^{ z}(E_{\gamma}) $ for most intense capture gammas for each element
Pd	105	22.33(8)	21.0(15)	0.995	114 511.843(4.00), 717.356(0.777), 616.192(0.629)
Pd	106	27.33(3)	0.31(3)	0.999	7
Pd	108	26.46(9)	7.6(4)	1.000	140
Pd	110	11.72(9)	0.23(3)	1.000	87
47 Ag	107	51.839(8)	37.6(12)	0.998	172 78.91(3.90), 206.46(3.58), 192.90(2.20)
Ag	109	48.161(8)	91(1)	1.005	130 198.72(7.75), 235.62(4.62), 117.45(3.85)
48 Cd	106	1.25(6)	~1.0	1.000	0
Cd	108	0.89(3)	0.72(13)	1.001	0
Cd	110	12.49(18)	11(1)	1.000	191 245.3(274)
Cd	111	12.80(12)	24(3)	0.995	5
Cd	112	24.13(21)	2.2(5)	1.000	0
Cd	113	12.22(12)	20600(400)	1.337	135 558.32(1860), 651.19(358)
Cd	114	28.73(42)	0.34(2)	1.000	0
Cd	116	7.49(18)	0.075(20)	1.000	0
49 In	113	4.29(5)	15.1(13)	1.012	232
In	115	95.71(5)	283(8)	1.019	199 1293.54(131)d, 1097.30(87.3)d, 416.86(43.0)d
50 Sn	112	0.97(1)	0.86(9)	1.000	0
Sn	114	0.66(1)	0.12(3)	1.001	0
Sn	115	0.34(1)	30(7)	1.000	395 1293.591(0.1340), 972.619(0.0158), 2112.302(0.0152)
Sn	116	14.54(9)	0.14(3)	1.000	9 158.65(0.0145)
Sn	117	7.68(7)	1.32(18)	1.000	19 1229.64(0.0673)
Sn	118	24.22(9)	0.23(5)	1.000	9
Sn	119	8.59(4)	2.2(5)	1.000	9 1171.28(0.0879)
Sn	120	32.58(9)	0.14(3)	1.000	10
Sn	122	4.63(3)	0.139(15)	1.000	9
Sn	124	5.79(5)	0.134(5)	1.000	25
51 Sb	121	57.21(5)	5.9(2)	1.003	151 564.24(2.700)d, 61.4130(0.75), 78.0910(0.48)
Sb	123	42.79(5)	4.1(1)	1.001	175 87.6010(0.212), 40.8040(0.10), 155.1780(0.081)
52 Te	120	0.09(1)	2.3(3)	1.000	0
Te	122	2.55(12)	3.9(5)	1.000	113
Те	123	0.89(3)	418(30)	1.011	162 602.729(2.46), 722.772(0.52), 645.819(0.263)
Те	124	4.74(14)	6.8(13)	1.000	280
Те	125	7.07(15)	1.55(16)	1.000	8

Z El	A	Abundance(%)	σ _γ (total)	g(293K)	$N_{\gamma} \ E_{\gamma}, \sigma_{\gamma}^{z}(E_{\gamma})$ for most intense capture gammas for each element
Те	126	18.84(25)	1.0(15)	1.000	2
Те	128	31.74(8)	0.215(8)	1.000	23
Те	130	34.08(62)	0.29(6)	1.000	258
53 I	127	100	6.2(2)	0.999	348 133.6110(1.42), 442.901(0.595)d, 27.3620(0.43)
54 Xe	124	0.09(1)	165(11)	1.004	4
Xe	126	0.09(1)	3.8(8)	1.000	0
Xe	128	1.92(3)	5.2(13)	0.998	7
Xe	129	26.44(24)	21(7)	1.001	59 536.17(1.71)
Xe	130	4.08(2)	4.8(12)	0.998	13
Xe	131	21.18(3)	85(10)	1.002	72 667.79(6.7), 772.72(1.78), 630.29(1.41)
Xe	132	26.89(6)	0.41(5)	1.000	0
Xe	134	10.44(10)	0.265(20)	0.999	0
Xe	136	8.87(16)	0.26(2)	1.000	113
55 Cs	133	100	30.3(11)	1.002	384 176.4040(2.47), 205.615(1.560), 510.795(1.54)
56 Ba	130	0.106(1)	8.7(9)	1.000	2
Ba	132	0.101(1)	7.0(8)	0.979	2
Ba	134	2.417(18)	1.5(3)	1.000	120
Ba	135	6.592(12)	5.8(9)	1.000	87 818.514(0.212), 1261.52(0.095)
Ba	136	7.854(24)	0.68(17)	1.000	96 283.58(0.0404)
Ba	137	11.232(24)	3.6(2)	1.000	210 1435.77(0.308), 1444.91(0.0801), 462.78(0.0660)
Ba	138	71.698(42)	0.40(4)	1.000	48 627.29(0.294), 4095.84(0.155), 454.73(0.0853)
57 La	138	0.090(1)	57(6)	1.003	6
La	139	99.910(1)	9.04(4)	0.999	308 1596.21(5.84)d, 487.021(2.79)d, 815.772(1.430)d
58 Ce	136	0.185(2)	6.5(10)	0.999	109
Ce	138	0.251(2)	1.02(24)	0.991	1
Ce	140	88.450(51)	0.58(2)	0.999	29 661.99(0.241), 4766.10(0.113), 475.04(0.082)
Ce	142	11.114(51)	0.97(2)	0.998	48 1107.66(0.040), 737.43(0.026), 4336.46(0.0251)
59 Pr	141	100	11.5(3)	0.999	213 176.8630(1.06), 140.9050(0.479), 1575.6(0.426)d
60 Nd	142	27.2(5)	18.7(7)	0.998	208 742.106(3.8)
Nd	143	12.2(2)	325(10)	0.996	119 696.499(33.3), 618.062(13.4), 814.12(4.98)
Nd	144	23.8(3)	3.6(3)	1.000	16
Nd	145	8.3(1)	42(2)	1.000	123
Nd	146	17.2(3)	1.41(5)	0.999	73

Z El	A	Abundance(%)	$\sigma_{\gamma}(total)$	g(293K)	$N_{\gamma} \ E_{\gamma}, \sigma_{\gamma}^{z}(E_{\gamma})$ for most intense capture gammas for each element
Nd	148	5.7(1)	2.58(14)	1.000	298
Nd	150	5.6(2)	1.03(8)	0.999	581
62 Sm	144	3.07(7)	1.64(10)	0.999	0
Sm	147	14.99(18)	57(3)	1.001	22
Sm	148	11.24(10)	2.4(6)	1.000	0
Sm	149	13.82(7)	40100(600)	1.718	160 333.97(4790), 439.40(28601), 737.44(597)
Sm	150	7.38(1)	100(4)	0.998	301
Sm	152	26.75(16)	206(6)	1.003	160
Sm	154	22.75(29)	8.3(5)	1.000	136
63 Eu	151	47.81(3)	9200(300)	0.900	148 89.847(1430), 77.23(187), 48.31(181)
Eu	153	52.19(3)	312(7)	0.966	64
64 Gd	152	0.20(1)	735(20)	0.998	503
Gd	154	2.18(3)	85(12)	1.000	329
Gd	155	14.80(12)	60900(500)	0.843	324 199.2130(2020), 88.9670(1380)
Gd	156	20.47(9)	1.8(7)	1.001	0
Gd	157	15.65(2)	254000(800)	0.852	390 181.931(72003), 79.5100(40101), 944.174(3090)
Gd	158	24.84(7)	2.2(2)	1.000	20
Gd	160	21.86(19)	1.4(3)	1.000	98
65 Tb	159	100	23.3(4)	1.000	224 75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
66 Dy	156	0.06(1)	33(3)	1.009	25
Dy	158	0.10(1)	43(6)	0.989	0
Dy	160	2.34(8)	55(3)	1.009	100
Dy	161	18.91(24)	600(25)	0.991	78 185.19(31.6), 882.27(14.8), 80.64(13.3)
Dy	162	25.51(26)	194(10)	1.005	328
Dy	163	24.90(16)	134(7)	1.003	45
Dy	164	28.18(37)	2650(70)	0.988	271 184.257(118), 538.609(55.9), 496.931(36.3)
67 Ho	165	100	64.7(12)	1.002	550 136.6650(14.5), 116.8360(8.1), 80.574(3.87)d
68 Er	162	0.14(1)	19(2)	1.001	1
Er	164	1.61(3)	13(2)	1.000	0
Er	166	33.61(35)	16.9(16)	1.000	87
Er		22.93(17)	649(8)	1.069	805 184.2850(56), 815.9890(42.5), 198.2440(29.9)
Er		26.78(26)	2.74(8)	1.000	102
Er	170	14.93(27)	8.9(3)	1.000	97

Z El	A	Abundance(%)	σ _γ (total)	g(293K)	$N_{\gamma} \ E_{\gamma}, \sigma_{\gamma}^{\ z}(E_{\gamma})$ for most intense capture gammas for each element
69 Tm	169	100	105(2)	1.005	303 204.4480(8.72), 149.7180(7.11), 144.4800(5.96)
70 Yb	168	0.13(1)	2300(170)	1.057	233 191.2140(0.22)
Yb	170	3.04(15)	9.9(18)	1.001	24
Yb	171	14.28(57)	58(4)	0.999	266 78.7430(0.67), 181.529(0.53), 1076.246(0.52)
Yb	172	21.83(67)	1.3(8)	1.000	25
Yb	173	16.13(27)	15.5(15)	1.001	47 175.30(0.58), 102.60(0.44), 76.9960(0.40)
Yb	174	31.83(92)	63.2(15)	0.999	176 514.868(9.0)d, 639.261(1.43), 396.329(1.42)d
Yb	176	12.76(41)	2.85(5)	1.000	129
71 Lu	175	97.41(2)	23.1(14)	0.976	304 71.5170(3.96), 225.4030(1.73), 310.1870(1.49)
Lu	176	2.59(2)	2090(70)	1.752	184 150.392(13.8), 457.944(8.3), 138.607(6.79)
72 Hf	174	0.16(1)	549(7)	0.986	23
Hf	176	5.26(7)	24(3)	1.002	5
Hf	177	18.60(9)	373(10)	1.020	308 213.439(29.3), 93.182(13.3), 325.559(6.69)
Hf	178	27.28(7)	137(7)	1.003	347 214.3410(17.7)d, 214.3410(7.2), 303.9880(4.27)
Hf	179	13.629(6)	41(3)	0.997	339
Hf	180	35.08(16)	13.04(7)	0.997	105
73 Ta	180	0.012(2)	563(60)	1.358	0
Ta	181	99.988(2)	20.5(5)	1.004	262 270.4030(2.60), 173.2050(1.210), 402.623(1.180)
74 W	180	0.12(1)	<150	0.997	3
W	182	26.50(16)	19.9(2)	1.003	131 6190.78(0.45), 46.4840(0.192), 5164.43(0.19)
W	183	14.31(4)	10.3(2)	0.999	211 111.216(0.195), 792.059(0.119), 903.274(0.115)
W	184	30.64(2)	1.7(1)	0.999	75 4573.7(0.104)
W	186	28.42(19)	38.5(5)	1.001	225 685.73(3.24)d, 479.550(2.59)d, 72.002(1.32)d
75 Re	185	37.40(2)	112(2)	1.004	188 59.0100(5.5), 137.157(5.29)d, 214.647(2.53)
Re	187	62.60(2)	79.2(10)	0.982	218 63.5820(8.0), 155.041(7.16)d, 207.853(4.44)
76 Os	184	0.02(1)	3000(150)	1.000	72
Os	186	1.59(3)	80(13)	0.998	38
Os	187	1.96(2)	245(40)	0.983	174 155.10(1.19), 633.14(0.585), 478.04(0.523)
Os	188	13.24(8)	4.7(5)	1.002	163 272.82(0.242)
Os	189	16.15(5)	25(4)	1.004	147 186.7180(2.08), 557.978(0.84), 569.344(0.694)
Os	190	26.26(2)	13.1(9)	0.997	76 5146.63(0.409), 527.60(0.300)
Os	192	40.78(19)	3.12(16)	1.000	95
77 Ir	191	37.3(2)	954(10)	0.996	286 351.689(10.9), 84.2740(7.7), 136.1250(6.5)

Z El	A	Abundance(%)	σ _γ (total)	g(293K)	$N_{\gamma} \ E_{\gamma}, \sigma_{\gamma}^{z}(E_{\gamma})$ for most intense capture gammas for each element
Ir	193	62.7(2)	111(5)	1.017	303 328.448(9.1)d, 371.5020(2.11), 278.5040(1.8)
78 Pt	190	0.014(1)	142(4)	0.998	0
Pt	192	0.782(7)	10.0(25)	1.001	0
Pt	194	32.967(99)	0.58(19)	1.000	64
Pt	195	33.832(10)	28.5(12)	1.000	235 355.6840(6.17), 332.985(2.580)
Pt	196	25.242(41)	0.45(4)	1.000	36
Pt	198	7.163(55)	3.66(19)	1.000	44
79 Au	197	100	98.65(9)	1.005	737 411.8020(94.29)d, 214.9710(9.0), 247.5730(5.56)
80 Hg	196	0.15(1)	3190(180)	0.988	10
Hg	198	9.97(20)	2.0(3)	1.001	3
Hg	199	16.87(22)	2150(50)	0.989	425 367.947(251), 5967.02(62.5), 1693.296(56.2)
Hg	200	23.10(19)	<60	1.000	0
Hg	201	13.18(9)	5.7(12)	1.000	97
Hg	202	29.86(26)	4.42(7)	1.000	0
Hg	204	6.87(15)	0.43(10)	1.000	13
81 Tl	203	29.524(14)	11.4(2)	1.000	115 139.94(0.400), 347.96(0.361), 318.88(0.325)
T1	205	70.476(14)	0.104(17)	1.000	13
82 Pb	204	1.4(1)	0.66(7)	1.001	35
Pb	206	24.1(1)	0.0266(12)	1.001	6
Pb	207	22.1(1)	0.63(3)	1.001	23 7367.78(0.137)
Pb	208	52.4(1)	0.00023(3)	1.003	0
83 Bi	209	100	0.0338(7)	0.999	230 4171.05(0.0131), 4054.57(0.0105), 319.78(0.0088)
90 Th	232	100	7.35(3)	0.995	196 583.27(0.279), 566.63(0.19), 472.30(0.165)
92 U	234	0.0055(5)	99.8(13)	0.990	49
U	235	0.7200(51)	98.3(8)	0.985	8 297.00(0.220), 1279.01(0.200), 943.14(0.082)
U	238	99.274(11)	2.680(19)	1.002	267 74.6640(1.30000)d, 106.1230(0.723)d, 277.5990(0.382)d

Table 7.2 Summary of Data for Radioactive Isotopes Produced by Thermal Neutron Activation.

Isotope	Mode	Half-life	%BR	Nγ	E_{γ} , $\sigma_{\gamma}^{z}(E_{\gamma})$ for principal decay gammas
¹⁶ N	β–	7.13(2) s	100	12	6128.63(5.90x10 ⁻⁸)
¹⁹ O	β–	26.88(5) s	100	13	$197.142(3.15 \times 10^{-7}), 1356.843(1.66 \times 10^{-7})$
$^{20}{ m F}$	β–	11.163(8) s	100	3	1633.53(0.0096)
²³ Ne	β–	37.24(12) s	100	5	440.0(0.00140)
²⁴ Na	β–	14.9590(12) h	100	6	2754.13(0.530), 1368.66(0.530)
²⁴ Na	IT	20.20(7) ms	99.95(1)	1	472.202(0.478)
$^{27}\mathrm{Mg}$	β–	9.462(11) m	100	3	843.71(0.00298), 1014.30(0.00117)
²⁸ Al	β–	2.2414(1) m	100	1	1778.92(0.232)
³¹ Si	β–	157.3(3) m	100	1	$1266.15(2.5\times10^{-6})$
37 S	β–	5.05(2) m	100		$3103.4(2.8\times10^{-5})$
³⁸ Cl	β–	37.24(5) m	100		2166.90(0.0568), 1642.5(0.0427)
³⁸ Cl	ΙΤ	715(3) ms	100		671.355(0.0122)
40 K(nat)	EC	$1.265(13) \times 10^9 \text{ y}$			1460.822(3.24 cps/g)
⁴² K		12.360(12) h	100		1524.6(0.0200)
⁴⁹ Ca	β–	8.718(6) m	100		3084.40(0.00190)
⁴⁶ Sc	IT	18.75(4) s	100		142.528(4.88)
⁵¹ Ti	β–	5.76(1) m	100		320.076(0.00860)
⁵⁰ V(nat)	β–	$1.4(4) \times 10^{17} \text{ y}$	17(11)		$783.29(8x10^{-7} \text{ cps/g})$
⁵⁰ V(nat)	EC	$1.4(4) \times 10^{17} \text{ y}$	83(11)		1553.77(3.8x10 ⁻⁶ cps/g)
^{52}V		3.75(1) m	100		1434.10(4.81)
⁵⁵ Cr	β–	3.497(3) m	100		1528.00(3.80x10 ⁻⁶)
⁵⁶ Mn	β–	2.5789(1) h	100		846.754(13.1), 1810.72(3.62), 2113.05(1.91)
⁶⁰ Co	IT	10.467(6) m	99.76(3)		58.603(0.411)
⁶⁰ Co	β–	10.467(6) m	0.24(3)		1332.89(0.068)
⁶⁵ Ni	β–	2.51719(3) h	100		1481.84(0.00330), 1115.53(0.00219), 366.27(0.000680)
⁶⁴ Cu		12.700(2) h	61.0(3)		1345.77(0.0155)
⁶⁶ Cu	β–	5.120(14) m	100		1038.97(0.0598)
⁶⁹ Zn	β–	13.76(2) h	0.033(3)		573.90(4.2x10 ⁻⁶)
⁶⁹ Zn	β–	56.4(9) m	100		318.40(2.6x10 ⁻⁶), 871.70(5.5x10 ⁻⁷)
⁶⁹ Zn	IT	13.76(2) h	99.967(3)		438.634(0.0128)
71 Zn	β–	2.45(10) m	100		511.60(1.60x10 ⁻⁴), 910.30(4.0x10 ⁻⁵), 390.0(1.97x10 ⁻⁵)
71 Zn		3.96(5) h	100		487.34(3.34x10 ⁻⁵), 620.19(3.04x10 ⁻⁵), 511.55(1.52x10 ⁻⁵)
⁷⁰ Ga	β–	21.14(3) m	99.59(6)		1039.20(0.0070), 176.170(0.0030)
⁷² Ga	ρ– β–	14.10(1) h	100		834.08(1.65), 2201.91(0.52), 629.96(0.490)
⁷² Ga	р– IT	39.68(13) ms	100		103.25(0.0526), 16.43(0.0125)
⁷¹ Ge	IT	20.40(17) ms	100		175.05(0.078)
⁷³ Ge	IT	0.499(11) s	100		53.440(0.0134)
75 Ge	β–	82.78(4) m	100		264.60(0.0180), 198.60(0.00190)
75 Ge	р– IT	` '	99.970(6)		139.68(0.0232)
77 Ge	β–	47.7(5) s	100		264.44(0.00640), 211.03(0.00367), 215.50(0.00341)
77 Ge	•	11.30(1) h			
Ge ⁷⁷ Ge	IT	52.9(6) s	19(2)		159.61(0.00100)
76 As	β–	52.9(6) s	81(2)		215.53(0.0025)
	β–	26.24(9) h	100		559.10(2.00), 657.05(0.279)
⁷⁷ Se ⁷⁹ Se	IT	17.36(5) s	100	1	161.9220(0.855)
	IT	3.92(1) m	100		
⁸¹ Se	β–	18.45(12) m	100		275.93(0.00160), 290.04(0.00135), 828.27(0.00069)
⁸¹ Se	IT	57.28(2) m	99.949(13)	1	102.89(0.0065)
⁸⁰ Br	β–	17.68(2) m	91.7(2)		616.3(0.39)
⁸⁰ Br	EC	17.68(2) m	8.3(2)		665.80(0.0628)
⁸⁰ Br	IT	4.4205(8) h	100		37.0520(0.428)
⁸² Br	β–	35.30(2) h	100	31	776.517(0.990), 554.3480(0.838), 619.106(0.515)

Isotope	Mode	Half-life	%BR	Nγ	E_{γ} , $\sigma_{\gamma}^{z}(E_{\gamma})$ for principal decay gammas
⁸² Br	IT	6.13(5) m	97.6(3)		45.949(0.00285)
⁸² Br	β–	6.13(5) m	2.4(3)	16	776.50(0.00250), 1474.83(0.00090), 698.21(0.00053)
⁷⁹ Kr	IT	50(3) s	100	1	$130.010(1.60x10^{-4})$
⁸¹ Kr	IT	13.10(3) s	99.9975(4)	1	190.46(0.072)
⁸³ Kr	IT	1.83(2) h	100	2	9.4050(0.122)
⁸⁵ Kr	β–	4.480(8) h	78.6(4)	6	151.195(0.0385)
⁸⁵ Kr	IT	4.480(8) h	21.4(4)	1	304.870(0.0071)
⁸⁷ Kr	β–	76.3(6) m	100	28	$402.587(0.000257), 2554.80(4.78x10^{-5}), 845.44(3.80x10^{-5})$
⁸⁶ Rb	β–	18.631(18) d	99.9948(5)	1	1076.64(0.0301)
⁸⁶ Rb	IT	1.017(3) m	100	1	555.61(0.0407)
⁸⁸ Rb	β–	17.78(11) m	100	30	1836.00(0.00714), 898.03(0.00468)
⁸⁵ Sr	EC	67.63(4) m	13.4(4)	1	150.75(0.00046)
⁸⁵ Sr	IT	67.63(4) m	86.6(4)	2	231.68(0.0029)
⁸⁷ Sr	IT	2.803(3) h	99.70(8)	1	388.526(0.0785)
⁹⁰ Y	IT	3.19(6) h	99.9979(2)	2	202.53(0.0018), 479.60(0.0016)
97 Zr	β–	16.744(11) h	100	31	743.36(0.00101)
⁹⁴ Nb	β–	6.26(1) m	0.50(6)	1	871.1(0.00390)
⁹⁴ Nb	IT	6.26(1) m	99.50(6)	1	40.887(0.000574)
¹⁰¹ Mo	β–	14.61(3) m	100		590.10(0.00380), 191.920(0.00360), 1012.47(0.00258)
⁹⁹ Mo	β–	65.94(1) h	100		140.5110(0.0276), 739.500(0.00405)
¹⁰³ Ru	İT	1.69(7) ms	100		210.519(0.033)
¹⁰⁵ Ru	β–	4.44(2) h	100		724.30(0.0760), 469.37(0.0281), 676.36(0.0251)
¹⁰⁴ Rh	β–	42.3(4) s	99.55		555.81(3.14)
¹⁰⁴ Rh	IT	4.34(5) m	99.87(1)		51.50(5.2)
¹⁰⁷ Pd	IT	21.3() s	100	1	214.9(0.0024)
¹⁰⁹ Pd	IT	4.69(1) m	100	1	188.9900(0.0273)
¹¹¹ Pd	β–	23.4(2) m	100		580.00(1.90x10 ⁻⁴), 70.43(1.68x10 ⁻⁴), 1459.0(1.25x10 ⁻⁴)
¹¹¹ Pd	IT	5.5(1) h	73(3)	1	172.18(0.0015)
108 Ag	β–	2.37(1) m	97.15(20)	1	632.98(0.369)
108 Ag	EC	2.37(1) m	2.85(20)		433.96(0.0990), 618.86(0.052)
110 Ag	β–	24.6(2) s	99.70(6)		657.50(1.86)
¹¹⁴ In	β–	71.9(1) s	99.50(15)		1299.83(2.4x10-4)
¹¹⁴ In	ΙΤ	43.1(6) ms	100		311.646(0.13)
¹¹⁶ In	β–	54.41(6) m	100		1293.54(131), 1097.30(87.3), 416.86(43.0)
¹¹⁶ In	ΙΤ	2.18(4) s	100		162.393(15.8)
¹¹⁶ In	β–	14.10(3) s	100		1293.4(0.470), 463.3(0.0930)
¹²³ Sn	β–	40.06(1) m	100		160.32(0.00580)
¹²⁵ Sn	β–	9.52(5) m	100		331.90(0.00830)
¹²² Sb	β–	2.7238(2) d	97.59(12)		564.24(2.70)
¹²² Sb	IT	4.191(3) m	97.59(12)		61.4130(0.0200), 76.0590(0.0081)
¹²⁴ Sb	β–	93(5) s	25(5)		498.40(0.068), 645.82(0.068), 602.72(0.068)
¹²⁴ Sb	IT	93(5) s	75(5)		10.8630(1.40x10 ⁻⁵)
¹²⁴ Sb	IT	20.2(2) m	100		10.8630(6.04x10 ⁻⁶), 25.9820(4.45x10 ⁻⁶)
¹³¹ Te	β–	25.0(1) m	100		149.716(0.0630), 452.3230(0.0168)
¹³¹ Te	β–	30(2) h	77.8(16)		773.67(0.00355), 852.21(0.00192), 793.75(0.00129)
¹³¹ Te	IT	30(2) h	22.2(16)		182.250(0.00026)
¹²⁸ I	β–	24.99(2) m	93.1(6)		442.901(0.595)
¹²⁸ I	EC	24.99(2) m	6.9(1)		743.50(0.0051)
¹²⁵ Xe	IT	56.9(9) s	100		111.3(0.0027), 141.4(0.00091)
¹²⁹ Xe	IT	8.88(2) d	100		39.578(0.00069), 196.56(0.00042)
¹³⁷ Xe	β–	3.818(13) m	100		455.490(0.00350)
134 Cs	IT	2.903(8) h	100		127.500(0.310)
¹³¹ Ba	IT	14.6(2) m	100		108.45(0.00150)

135 Ba	Isotope	Mode	Half-life	%BR	Nγ	E_{γ} , $\sigma_{\gamma}^{z}(E_{\gamma})$ for principal decay gammas
18	¹³³ Ba	IT	38.9(1) h	99.99	2	275.925(9.00x10-5)
1978 Ba	¹³⁵ Ba	IT	28.7(2) h	100	1	268.218(0.00060)
198	¹³⁶ Ba	IT	0.3084(19) s	100	3	1048.073(0.000919), 818.514(0.000916), 163.920(0.000280)
198	¹³⁷ Ba	IT	2.552(1) m	100	1	661.657(0.00071)
18 La(mat) β 1.05(3) x 10 ¹¹ y 33.6(5) 1 788.7(0.273 cps/g) 18 La(mat) EC 1.05(3) x 10 ¹¹ y 66.4(5) 1 435.795(0.539 cps/g) 19 La β 1.6781(7) d 100 28 1596.21(5.84), 487.021(2.79), 815.772(1.43) 197 Ce EC 9.0(3) h 100 20 447.15(1.30x10 ⁻⁵), 10.61(5.6x10 ⁻⁵), 436.59(1.86x10 ⁻³) 19 Ce IT 54.8(10) s 100 1 754.24(3.5x10 ⁻⁵) 19 Ce IT 54.8(10) s 100 1 754.24(3.5x10 ⁻⁵) 19 Nd β 1.728(1) h 99.98 2 1575.60(4.26) 19 Nd β 1.728(1) h 100 213 211.309(0.0370), 114.314(0.0274), 270.166(0.0153) 15 Sm β 22.3(2) m 100 471.116.800(0.0262), 255.680(0.0099), 1180.890(0.0089) 15 Sm β 22.3(2) m 100 50 104.320(1.43) 15 Gd Γ 31.97(3) ms 100 3 85.45(0.00074), 13.47(7.6x10 ⁻⁵) 19 Gd β 18.56(8) h 100 20 363.5430(0.063), 88.000(0.0118) 16 Gd β 3.66(5) m 100 23 326.16(0.018) 16 Gd β 3.34(6) h 100 25 326.16(0.018) 16 Dy β 1.257(6) m 2.24(11) 11 515.467(6.93), 361.471(2.42), 153.803(1.10) 16 Dy β 1.257(6) m 2.24(11) 11 515.467(6.93), 361.471(2.42), 153.803(1.10) 16 Ho β 26.80(2) h 100 1 48.0574(8.87), 1379.40(0.537) 16 Ho β 26.80(2) h 100 1 48.0574(8.87), 1379.40(0.537) 17 Fr β 7.516(2) h 100 58 308.291(0.559), 295.901(0.251), 111.621(0.178) 17 Yb Γ 64.2(3) ms 100 1 24.200(5.6x10 ⁻⁶) 17 Yb β 1.911(3) h 100 24 150.6(0.073), 1080.20(0.0201), 1241.20(0.0125) 17 Yb Γ 64.4(3) s 100 2 104.50(0.029), 227.02(0.0047), 123.439(0.1470) 17 Hr IT 1.67(3) m 100 2 104.50(0.029), 227.02(0.0047), 123.439(0.1470) 18 W IT 1.57(4) m 100 6 268.380(0.175), 325.559(0.170), 213.439(0.1470) 18 Re β 3.7183(11) d 7.47(10) 1 122.640(0.250) 18 Re β 3.7183(11) d 7.47(10) 1 122.640(0.250) 18 Re β 3.7183(11) d 7.47(10) 1 122.640(0.250) 18 Re	¹³⁹ Ba	β–	83.06(3) m	100	28	165.8570(0.074)
18	¹⁴⁰ Ba	β–	12.752(3) d	100	16	537.261(0.066), 29.966(0.0381), 162.660(0.0168)
18	138 La(nat)		$1.05(3) \times 10^{11} \text{ y}$	33.6(5)	1	788.7(0.273 cps/g)
137 Ce	138 La(nat)	EC	$1.05(3) \times 10^{11} \text{ y}$	66.4(5)	1	1435.795(0.539 cps/g)
137 Ce	¹⁴⁰ La	β–	1.6781(7) d	100		
19 19 19 10 10 1 17 14 16 10 1 17 14 16 17 18 18 19 18 19 18 19 18 18		EC	9.0(3) h	100	20	$447.15(1.30x10^{-4}), 10.61(5.6x10^{-5}), 436.59(1.86x10^{-5})$
1-12 Pr	¹³⁷ Ce	IT	34.4(3) h	99.22(3)	1	$254.29(2.0x10^{-4})$
149 Nd		IT	54.8(10) s	100	1	$754.24(3.5x10^{-5})$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		β–	19.12(4) h	99.98		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		β–	1.728(1) h	100	213	211.309(0.0370), 114.314(0.0274), 270.166(0.0153)
152 Eu		β–	12.44(7) m	100	471	116.800(0.0262), 255.680(0.0099), 1180.890(0.0089)
155 Gd		β–	22.3(2) m	100	50	104.320(1.43)
159 Gd	¹⁵² Eu	IT	96(1) m	100		
161 Gd	¹⁵⁵ Gd	IT	31.97(3) ms	100		
157 Dy EC 8.14(4) h 100 25 326.16(0.018) 165 Dy β 2.334(6) h 100 55 94.700(10.6), 361.680(2.50), 633.415(1.69) 165 Dy β 1.257(6) m 2.24(11) 11 515.467(6.93), 361.471(2.42), 153.803(1.10) 166 Ho β 26.80(2) h 100 14 80.574(3.87), 1379.40(0.537) 167 Er IT 2.269(6) s 100 1 207.801(2.15) 171 Er β 7.516(2) h 100 58 308.291(0.559), 295.901(0.251), 111.621(0.178) 173 Yb Γ 46(2) s 100 1 24.200(5.6x10-6) 175 Yb Γ 68.2(3) ms 100 1 514.868(9.0) 177 Yb β 1.911(3) h 100 24 150.6(0.073), 1080.20(0.0201), 1241.20(0.0125) 176 Lu(nat) β 6.73(1) d 100 6 208.366(6.0), 112.9500(3.47) 178 Hf IT 4.0(2) s 100 6 426.380(0.175), 325.559(0.170), 213.439(0.1470) 179 Hf IT 18.67(4) s 100 2 214.341(16.3) 180 Hf IT 5.5(1) h 99.7(1) 6 332.275(0.0586), 443.163(0.0509), 215.426(0.0566) 181 W IT 5.2(3) s 100 6 107.932(0.00438), 99.079(0.00189), 52.595(0.00157) 188 W IT 5.2(3) s 100 6 107.932(0.00438), 99.079(0.00189), 52.595(0.00157) 188 Re EC 3.7183(11) d 92.53(10) 8 137.157(5.29) 188 Re EC 3.7183(11) d 7.477(10) 1 122.640(0.250) 188 Re IT 18.67(4) s 100 5 155.041(7.16) 188 Re IT 18.67(4) s 100 7.488(0.0032) 189 Re EC 3.7183(11) d 92.53(10) 8 137.157(5.29) 188 Re IT 18.67(4) s 100 7.47(10) 1 122.640(0.250) 189 Re IT 18.67(4) s 100 7.47(10) 1 122.640(0.250) 189 Re IT 18.67(4) s 100 7.47(10) 1 122.640(0.250) 189 Re IT 18.67(4) s 100 7.47(10) 1 122.640(0.250) 189 Re IT 18.67(4) s 100 7.47(10) 1 122.640(0.250) 189 Re IT 18.67(4) s 100 7.47(10) 1 122.640(0.250) 189 Re IT 18.67(4) s 100 7.47(10) 1 122.640(0.250) 189 Re IT 18.67(4) s 100 7.47(10) 1 122.640(0.250) 189 Re IT 18.67(4) s 100 7.47(10) 1 122.640(0.250) 189 Re IT 14.45(5)	¹⁵⁹ Gd	β–	18.56(8) h			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁶¹ Gd	•	* *			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		EC	* *			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁶⁵ Dy	β–	2.334(6) h	100		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁶⁵ Dy	β–	1.257(6) m	2.24(11)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁶⁵ Dy		* *			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			* *			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			* *			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•	* *			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁶⁹ Yb		* *			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	175 Yb	•				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/5 Yb		* *			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	177 Yb	•	* *			
177 Lu β $_{-}$ 6.73(1) d 100 6 208.366(6.0), 112.9500(3.47) 178 Hf IT 4.0(2) s 100 6 426.380(0.175), 325.559(0.170), 213.439(0.1470) 179 Hf IT 18.67(4) s 100 2 214.341(16.3) 180 Hf IT 5.5(1) h 99.7(1) 6 332.275(0.0586), 443.163(0.0509), 215.426(0.0506) 182 Ta IT 15.84(10) m 100 5 171.580(0.00540), 146.7740(0.00408), 184.951(0.00268) 183 W IT 5.2(3) s 100 6 107.932(0.00438), 99.079(0.00189), 52.595(0.00157) 185 W IT 1.67(3) m 100 12 65.86(3.44x10 $^{-5}$), 131.550(2.56x10 $^{-5}$), 173.680(1.93x10 $^{-5}$) 187 W β $_{-}$ 23.72(6) h 100 74 685.73(3.24), 479.550(2.59), 72.002(1.32) 186 Re β $_{-}$ 3.7183(11) d 92.53(10) 8 137.157(5.29) 186 Re β $_{-}$ 17.005(4) h 100 51 155.041(7.16) 188 Re IT 18.6(1) m 100 5 63.582(0.279), 105.862(0.140), 92.4640(0.066) 191 Os IT 13.10(5) h 100 1 74.380(0.0032) 193 Os β $_{-}$ 30.11(1) h 100 63 138.92(0.0467), 460.49(0.0432), 73.040(0.035) 192 Ir IT 1.45(5) m 99.9825 1 56.719(0.085) 194 Ir β $_{-}$ 19.28(13) h 100 65 328.448(9.1), 293.541(1.76) 194 Ir IT 31.85(24) ms 100 9 112.231(0.302), 84.2840(0.168) 197 Pt β $_{-}$ 19.8915(19) h 100 3 77.35(0.031), 191.437(0.00660) 197 Pt IT 95.41(18) m 96.7(4) 2 346.50(0.00132)			()			
178 Hf	¹⁷⁰ Lu(nat)					1 6/
179 Hf	177 Lu		` /			
180 Hf			* *			
Ta IT 15.84(10) m 100 5 171.580(0.00540), 146.7740(0.00408), 184.951(0.00268) IT 5.2(3) s 100 6 107.932(0.00438), 99.079(0.00189), 52.595(0.00157) IT 1.67(3) m 100 12 65.86(3.44x10 ⁻⁵), 131.550(2.56x10 ⁻⁵), 173.680(1.93x10 ⁻⁵) IF W β- 23.72(6) h 100 74 685.73(3.24), 479.550(2.59), 72.002(1.32) IF Re BC 3.7183(11) d 92.53(10) 8 137.157(5.29) IF Re BC 3.7183(11) d 7.47(10) 1 122.640(0.250) IF Re BC 3.7183(11) d 7.47(10) IF Re BC			* *			
183 W IT 5.2(3) s 100 6 107.932(0.00438), 99.079(0.00189), 52.595(0.00157) 185 W IT 1.67(3) m 100 12 65.86(3.44x10 ⁻⁵), 131.550(2.56x10 ⁻⁵), 173.680(1.93x10 ⁻⁵) 187 W β- 23.72(6) h 100 74 685.73(3.24), 479.550(2.59), 72.002(1.32) 186 Re β- 3.7183(11) d 92.53(10) 8 137.157(5.29) 188 Re EC 3.7183(11) d 7.47(10) 1 122.640(0.250) 188 Re β- 17.005(4) h 100 51 155.041(7.16) 188 Re IT 18.6(1) m 100 5 63.582(0.279), 105.862(0.140), 92.4640(0.066) 191 Os IT 13.10(5) h 100 1 74.380(0.0032) 193 Os β- 30.11(1) h 100 63 138.92(0.0467), 460.49(0.0432), 73.040(0.035) 192 Ir IT 1.45(5) m 99.9825 1 56.719(0.085) 194 Ir β- 19.28(13) h 100 65 328.448(9.1), 293.541(1.76) 194 Ir IT 31.85(24) ms 100 9 112.231(0.302), 84.2840(0.168) 197 Pt β- 19.8915(19) h 100 3 77.35(0.031), 191.437(0.00660) 197 Pt IT 95.41(18) m 96.7(4) 2 346.50(0.00132)	182 TF		` '			
185 W IT 1.67(3) m 100 12 65.86(3.44x10 ⁻⁵), 131.550(2.56x10 ⁻⁵), 173.680(1.93x10 ⁻⁵) 187 W β- 23.72(6) h 100 74 685.73(3.24), 479.550(2.59), 72.002(1.32) 186 Re β- 3.7183(11) d 92.53(10) 8 137.157(5.29) 186 Re EC 3.7183(11) d 7.47(10) 1 122.640(0.250) 188 Re β- 17.005(4) h 100 51 155.041(7.16) 188 Re IT 18.6(1) m 100 5 63.582(0.279), 105.862(0.140), 92.4640(0.066) 191 Os IT 13.10(5) h 100 1 74.380(0.0032) 193 Os β- 30.11(1) h 100 63 138.92(0.0467), 460.49(0.0432), 73.040(0.035) 192 Ir IT 1.45(5) m 99.9825 1 56.719(0.085) 194 Ir β- 19.28(13) h 100 65 328.448(9.1), 293.541(1.76) 194 Ir IT 31.85(24) ms 100 9 112.231(0.302), 84.2840(0.168) 197 Pt β- 19.8915(19) h 100 3 77.35(0.031), 191.437(0.00660) 197 Pt IT 95.41(18) m 96.7(4) 2 346.50(0.00132)	183 TA		* *			
187 W β $^{-}$ 23.72(6) h 100 74 685.73(3.24), 479.550(2.59), 72.002(1.32) 186 Re β $^{-}$ 3.7183(11) d $^{92.53(10)}$ 8 137.157(5.29) 186 Re EC 3.7183(11) d $^{7.47(10)}$ 1 122.640(0.250) 188 Re β $^{-}$ 17.005(4) h 100 5 155.041(7.16) 188 Re IT 18.6(1) m 100 5 63.582(0.279), 105.862(0.140), 92.4640(0.066) 191 Os IT 13.10(5) h 100 1 74.380(0.0032) 193 Os β $^{-}$ 30.11(1) h 100 63 138.92(0.0467), 460.49(0.0432), 73.040(0.035) 192 Ir IT 1.45(5) m $^{99.9825}$ 1 56.719(0.085) 194 Ir β $^{-}$ 19.28(13) h 100 65 328.448(9.1), 293.541(1.76) 194 Ir IT 31.85(24) ms 100 9 112.231(0.302), 84.2840(0.168) 197 Pt β $^{-}$ 19.8915(19) h 100 3 77.35(0.031), 191.437(0.00660) 197 Pt IT 95.41(18) m $^{96.7(4)}$ 2 346.50(0.00132)			* *			
186 Re 186 Be 186 EC 186 3.7183(11) d 186 7.47(10) 188 1.22.640(0.250) 188 Re 188 Be 186 From 188 Re 186 From 188 Re 188 Re 188 Re 188 From 188 Re 188			* *			
186 Re EC 3.7183(11) d 7.47(10) 1 122.640(0.250) 188 Re β- 17.005(4) h 100 51 155.041(7.16) 188 Re IT 18.6(1) m 100 5 63.582(0.279), 105.862(0.140), 92.4640(0.066) 191 Os IT 13.10(5) h 100 1 74.380(0.0032) 193 Os β- 30.11(1) h 100 63 138.92(0.0467), 460.49(0.0432), 73.040(0.035) 192 Ir IT 1.45(5) m 99.9825 1 56.719(0.085) 194 Ir β- 19.28(13) h 100 65 328.448(9.1), 293.541(1.76) 194 Ir IT 31.85(24) ms 100 9 112.231(0.302), 84.2840(0.168) 197 Pt β- 19.8915(19) h 100 3 77.35(0.031), 191.437(0.00660) 197 Pt IT 95.41(18) m 96.7(4) 2 346.50(0.00132)			* *			
188 Re β- 17.005(4) h 100 51 155.041(7.16) 188 Re IT 18.6(1) m 100 5 63.582(0.279), 105.862(0.140), 92.4640(0.066) 191 Os IT 13.10(5) h 100 1 74.380(0.0032) 193 Os β- 30.11(1) h 100 63 138.92(0.0467), 460.49(0.0432), 73.040(0.035) 192 Ir IT 1.45(5) m 99.9825 1 56.719(0.085) 194 Ir β- 19.28(13) h 100 65 328.448(9.1), 293.541(1.76) 194 Ir IT 31.85(24) ms 100 9 112.231(0.302), 84.2840(0.168) 197 Pt β- 19.8915(19) h 100 3 77.35(0.031), 191.437(0.00660) 197 Pt IT 95.41(18) m 96.7(4) 2 346.50(0.00132)		•				
188 Re IT 18.6(1) m 100 5 63.582(0.279), 105.862(0.140), 92.4640(0.066) 191 Os IT 13.10(5) h 100 1 74.380(0.0032) 193 Os β- 30.11(1) h 100 63 138.92(0.0467), 460.49(0.0432), 73.040(0.035) 192 Ir IT 1.45(5) m 99.9825 1 56.719(0.085) 194 Ir β- 19.28(13) h 100 65 328.448(9.1), 293.541(1.76) 194 Ir IT 31.85(24) ms 100 9 112.231(0.302), 84.2840(0.168) 197 Pt β- 19.8915(19) h 100 3 77.35(0.031), 191.437(0.00660) 197 Pt IT 95.41(18) m 96.7(4) 2 346.50(0.00132)			* *			
191 Os IT 13.10(5) h 100 1 74.380(0.0032) 193 Os β- 30.11(1) h 100 63 138.92(0.0467), 460.49(0.0432), 73.040(0.035) 192 Ir IT 1.45(5) m 99.9825 1 56.719(0.085) 194 Ir β- 19.28(13) h 100 65 328.448(9.1), 293.541(1.76) 194 Ir IT 31.85(24) ms 100 9 112.231(0.302), 84.2840(0.168) 197 Pt β- 19.8915(19) h 100 3 77.35(0.031), 191.437(0.00660) 197 Pt IT 95.41(18) m 96.7(4) 2 346.50(0.00132)	188 D a	•	* *			
193 Os 192 Ir 11 IT $^{1.45(5)}$ m 100 63 $^{138.92(0.0467)}$, 460.49(0.0432), 73.040(0.035) 192 Ir IT $^{1.45(5)}$ m $^{199.9825}$ 1 100 65 100 328.448(9.1), 293.541(1.76) 194 Ir IT 194 Ir IT 194 Ir 197 Pt 194 β- $^{198915(19)}$ h 190 3 190 3 197 Pt IT $^{195.41(18)}$ m $^{196.7(4)}$ 2 $^{196.50(0.00132)}$	191 Oc		* *			
IT 1.45(5) m 99.9825 1 56.719(0.085) 194 Ir β- 19.28(13) h 100 65 328.448(9.1), 293.541(1.76) 194 Ir IT 31.85(24) ms 100 9 112.231(0.302), 84.2840(0.168) 197 Pt β- 19.8915(19) h 100 3 77.35(0.031), 191.437(0.00660) 197 Pt IT 95.41(18) m 96.7(4) 2 346.50(0.00132)	193 Og		* *			
194 Ir β- 19.28(13) h 100 65 328.448(9.1), 293.541(1.76) 194 Ir IT 31.85(24) ms 100 9 112.231(0.302), 84.2840(0.168) 197 Pt β- 19.8915(19) h 100 3 77.35(0.031), 191.437(0.00660) 197 Pt IT 95.41(18) m 96.7(4) 2 346.50(0.00132)	192 Ir	•	* *			
194 Ir IT 31.85(24) ms 100 9 112.231(0.302), 84.2840(0.168) 197 Pt β- 19.8915(19) h 100 3 77.35(0.031), 191.437(0.00660) 197 Pt IT 95.41(18) m 96.7(4) 2 346.50(0.00132)			* *			
¹⁹⁷ Pt β- 19.8915(19) h 100 3 77.35(0.031), 191.437(0.00660) ¹⁹⁷ Pt IT 95.41(18) m 96.7(4) 2 346.50(0.00132)		•	* *			
¹⁹⁷ Pt IT 95.41(18) m 96.7(4) 2 346.50(0.00132)						
199 Pt		•	` '			
	199 Pt	β–	30.8(4) m	100		

Isotope	Mode	Half-life	%BR	N_{γ}	E_{γ} , $\sigma_{\gamma}^{z}(E_{\gamma})$ for principal decay gammas
¹⁹⁹ Pt	IT	13.6(4) s	100	2	391.93(0.0212)
¹⁹⁸ Au	β–	2.69517(21) d	100	3	411.8(94.29)
¹⁹⁷ Hg	EC	23.8(1) h	8.6(7)	5	279.00(0.00330)
¹⁹⁷ Hg	IT	23.8(1) h	91.4(7)	2	133.98(0.0155)
¹⁹⁹ Hg	IT	42.6(2) m	100	3	158.30(0.000940), 374.10(2.47x10 ⁻⁴)
²⁰⁵ Hg	β–	5.2(1) m	100	13	203.750(0.00064)
²⁰⁶ T1	β–	4.200(17) m	100	2	$803.30(3.5 \times 10^{-6})$
²⁰⁷ Pb	IT	0.806(6) s	100	2	569.7(0.0014), 1063.662(0.0013)
²³² Th(nat)	α	$14.05(6) \times 10^9 \text{ y}$	100	2	63.810(10.7 cps/g)
²³⁵ U(nat)	α	$7.038(5) \times 10^8 \text{ y}$	100	49	185.715(329 cps/g), 143.760(63.0 cps/g)
²³⁹ Np	β–	2.3565(4) d	100	36	106.1230(0.723), 277.5990(0.382), 228.1830(0.286)
²³⁹ U	β–	23.45(2) m	100	97	74.664(1.30)

Table 7.3 Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements.

^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	ıs k ₀	^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barr	
	Hydrogen (7=1)	Δt Wt =1 0070	$I(7), \sigma_{y}^{z} = 0.3326(7)$	¹⁶ O	1087.75(6)	1.58(7)E-4	2.99(13)E-5
н .			· · · · · · · · · · · · · · · · · · ·	¹⁷ O	1981.95(9)	2.0(4)E-7	3.8(8)E-8
	2223.24835(9)	` '	1.0000(21)	¹⁶ O	2184.42(7)	1.64(7)E-4	3.11(13)E-5
H	6250.243(3)	0.000519(7)(a)	0.001560(21)	¹⁶ O	3272.02(8)	3.53(23)E-5	6.7(4)E-6
			2), $\sigma_{\gamma}^{z} = 4.2E-11(12)$		uorine (Z=9), <i>At.</i>	Wt.=18.9984032	$2(5), \sigma_{\gamma}^{z} = 0.0096$
He	20520.46	4.2(12)E-11	3.2(9)E-11	¹⁹ F	166.700(20)	0.000413(18)	6.6(3)E-5
	l ithi /7-	2) 44 14/4 - 6 0.4	1(2), $\sigma_{\gamma}^{z} = 0.045(3)$	¹⁹ F	325.606(24)	4.0(3)E-5	6.4(5)E-6
	Litiliulii (Z-			¹⁹ F	556.40(4)	2.01(8)E-4	3.21(13)E-5
			Li)=71.3(5)	¹⁹ F	583.561(16)	0.00356(12)	0.000568(19)
Li	477.595(3)	0.00153(8)	0.00067(4)	¹⁹ F	656.006(18)	0.00197(7)	0.000314(11)
Li	980.53(7)	0.00415(13)	0.00181(6)	¹⁹ F	661.647(21)	2.24(14)E-4	3.57(22)E-5
Li	1051.90(7)	0.00414(12)	0.00181(5)	¹⁹ F	662.25(10)	1.02(15)E-4	1.63(24)E-5
Li	2032.30(4)	0.0381(8)	0.0166(4)	¹⁹ F	665.207(18)	0.00149(6)	2.38(10)E-4
Li	6768.81(4)	0.00151(9)	0.00066(4)	¹⁹ F	822.700(19)	2.20(9)E-4	3.51(14)E-5
Li	7245.91(4)	0.00247(14)	0.00108(6)	¹⁹ F	978.19(5)	6.8(6)E-5	1.08(10)E-5
В	Bervilium (Z=4). A	1.Wt.=9.012182	$2(3), \sigma_{\gamma}^{z} = 0.0088(4)$	¹⁹ F	983.538(20)	0.00116(4)	1.85(6)E-4
Be	853.630(12)	0.00208(24)	0.00070(8)	¹⁹ F	1045.98(3)	1.79(8)E-4	2.86(13)E-5
Be	2590.014(19)	0.00191(15)	0.00064(5)	¹⁹ F	1056.776(17)	0.00095(3)	1.52(5)E-4
Be	3367.448(25)	0.00285(22)	0.00096(7)	¹⁹ F	1148.077(20)	0.000258(12)	4.12(19)E-5
Be	3443.406(20)	0.00098(7)	0.000330(24)	¹⁹ F	1187.725(25)	4.5(3)E-5	7.2(5)E-6
Be	5956.53(3)	1.46(12)E-4	4.9(4)E-5	¹⁹ F	1282.15(4)	8.5(5)E-5	1.36(8)E-5
Be	6809.61(3)	0.0058(5)	0.00195(17)	¹⁹ F	1309.126(17)	0.00076(3)	1.21(5)E-4
200		. ,	` '	¹⁹ F	1371.520(24)	1.44(7)E-4	2.30(11)E-5
	Boron (Z=5)		$I(7), \sigma_{\gamma}^{z} = 0.104(20)$	¹⁹ F	1387.901(20)	0.00082(3)	1.31(5)E-4
		σ_{α}^{z} (10)	B)=764(25)	¹⁹ F	1392.191(23)	8.3(5)E-5	1.32(8)E-5
B(n,	α) 477.595(3)	716(25)	201(7)	¹⁹ F	1542.498(20)	0.000271(11)	4.32(18)E-5
В	6739.67(17)	0.0113(10)	0.0032(3)	¹⁹ F	1633.53(3)d	0.0096(4)	0.00153[100%
	Carbon (7-6)	N# 14/# -42 040 7 /	8), $\sigma_{\gamma}^{z} = 0.00351(5)$	¹⁹ F	1644.538(25)	7.3(6)E-5	1.16(10)E-5
C			· ·	¹⁹ F	1843.688(20)	0.000600(23)	9.6(4)E-5
C	1261.765(9)	0.00124(3)	0.000313(8)	¹⁹ F	1935.52(3)	7.3(5)E-5	1.16(8)E-5
C	3683.920(9)	0.00122(3)	0.000308(8)	¹⁹ F	1970.726(20)	8.5(6)E-5	1.36(10)E-5
C	4945.301(3) 8174.04(18)	0.00261(5) 1.09(6)E-5	0.000659(13)	¹⁹ F	2009.52(6)	4.6(4)E-5	7.3(6)E-6
	` ′	. ,	2.75(15)E-6	¹⁹ F	2043.858(20)	7.0(4)E-5	1.12(6)E-5
ı	Nitrogen (Z=7), A	A <i>t.Wt.</i> =14.0067(2), $\sigma_{\gamma}^{z} = 0.0795(14)$	¹⁹ F	2143.248(21)	1.95(8)E-4	3.11(13)E-5
			z(14N)=1.82(3)	¹⁹ F	2179.091(20)	8.9(6)E-5	1.42(10)E-5
N	583.59(3)	0.000429(14)	9.3(3)E-5	¹⁹ F	2194.159(21)	1.32(6)E-4	2.11(10)E-5
N N	1678.281(14)	0.0063(3)	0.00136(7)	¹⁹ F	2229.75(9)	5.3(5)E-5	8.5(8)E-6
¹N	1681.24(5)	0.00129(8)	0.000279(17)	¹⁹ F	2255.83(3)	8.5(5)E-5	1.36(8)E-5
N	1853.922(19)	0.000508(10)	1.099(22)E-4	¹⁹ F	2309.929(25)	4.5(3)E-5	7.2(5)E-6
N	1884.821(16)	0.01470(18)	0.00318(4)	¹⁹ F	2324.12(3)	1.18(5)E-4	1.88(8)E-5
N	1988.632(20)	0.000289(16)	6.3(4)E-5	¹⁹ F	2427.82(3)	1.89(8)E-4	3.01(13)E-5
N	1999.690(16)	0.00323(4)	0.000699(9)	¹⁹ F	2431.084(10)	0.000392(24)	6.3(4)E-5
N	2520.457(17)	0.00441(24)	0.00095(5)	¹⁹ F	2431.425(19)	7(3)E-5	1.1(5)E-5
N	2830.789(17)	0.00134(3)	0.000290(7)	¹⁹ F	2447.574(21)	1.44(7)E-4	2.30(11)E-5
N	3013.482(21)	0.00057(5)	1.23(11)E-4	¹⁹ F	2469.34(3)	1.94(9)E-4	3.09(14)E-5
N	3531.981(15)	0.0071(4)	0.00154(9)	¹⁹ F	2504.658(25)	3.8(4)E-5	6.1(6)E-6
N	3677.732(13)	0.0115(6)	0.00249(13)	¹⁹ F	2519.02(3)	6.8(5)E-5	1.08(8)E-5
N	3855.577(19)	0.000626(16)	1.35(4)E-4	¹⁹ F	2529.212(18)	0.00061(3)	9.7(5)E-5
N	3884.242(18)	0.000436(13)	9.4(3)E-5	¹⁹ F	2529.553(18)	9(3)E-5	1.4(5)E-5
	4508.731(12)	0.0132(7)	0.00286(15)	¹⁹ F	2623.16(3)	4.5(3)E-5	7.2(5)E-6
	5269.159(13)	0.0236(3)	0.00511(7)	¹⁹ F	2636.09(3)	9.6(5)E-5	1.53(8)E-5
N		0.01680(23)	0.00363(5)	¹⁹ F	2655.70(3)	7.6(6)E-5	1.21(10)E-5
N N	5297.821(15)		` '	¹⁹ F	2920.96(3)	9.6(5)E-5	1.53(8)E-5
N N N	5297.821(15) 5533.395(14)	0.0155(8)	0.00335(17)		2930.284(21)	8.5(5)E-5	1.36(8)E-5
N N N N	, ,	0.0155(8) 0.0084(5)	0.00335(17)	¹⁹ F			
N N N N	5533.395(14) 5562.057(13)		` '	¹⁹ F	2965.854(22)	9.3(5)E-5	1.48(8)E-5
N N N N N	5533.395(14)	0.0084(5)	0.00182(11)	¹⁹ F ¹⁹ F	2965.854(22) 3014.568(10)	9.3(5)E-5 0.000405(15)	6.46(24)E-5
N N N N N	5533.395(14) 5562.057(13) 6128.63(4)d 6322.428(12)	0.0084(5) 5.90(12)E-8 0.01450(22)	0.00182(11) 1.28E-8[100%] 0.00314(5)	¹⁹ F ¹⁹ F ¹⁹ F	2965.854(22) 3014.568(10) 3025.10(3)	9.3(5)E-5 0.000405(15) 8.4(9)E-5	6.46(24) E- 5 1.34(14)E-5
N N N N N N	5533.395(14) 5562.057(13) 6128.63(4)d 6322.428(12) 7298.983(17)	0.0084(5) 5.90(12)E-8	0.00182(11) 1.28E-8[100%] 0.00314(5) 0.00161(3)	¹⁹ F 19 F ¹⁹ F	2965.854(22) 3014.568(10) 3025.10(3) 3051.435(20)	9.3(5)E-5 0.000405(15) 8.4(9)E-5 0.000297(12)	6.46(24) E- 5 1.34(14)E- 5 4.74(19)E- 5
N N N N N N N	5533.395(14) 5562.057(13) 6128.63(4)d 6322.428(12) 7298.983(17) 8310.161(19)	0.0084(5) 5.90(12)E-8 0.01450(22) 0.00746(12) 0.00330(6)	0.00182(11) 1.28E-8[100%] 0.00314(5) 0.00161(3) 0.000714(13)	¹⁹ F ¹⁹ F ¹⁹ F ¹⁹ F	2965.854(22) 3014.568(10) 3025.10(3) 3051.435(20) 3074.78(3)	9.3(5)E-5 0.000405(15) 8.4(9)E-5 0.000297(12) 1.86(8)E-4	6.46(24)E-5 1.34(14)E-5 4.74(19)E-5 2.97(13)E-5
N N N N N N N	5533.395(14) 5562.057(13) 6128.63(4)d 6322.428(12) 7298.983(17) 8310.161(19) 9148.98(5)	0.0084(5) 5.90(12)E-8 0.01450(22) 0.00746(12) 0.00330(6) 0.00129(6)	0.00182(11) 1.28E-8[100%] 0.00314(5) 0.00161(3) 0.000714(13) 0.000279(13)	¹⁹ F ¹⁹ F ¹⁹ F ¹⁹ F	2965.854(22) 3014.568(10) 3025.10(3) 3051.435(20) 3074.78(3) 3112.693(18)	9.3(5)E-5 0.000405(15) 8.4(9)E-5 0.000297(12) 1.86(8)E-4 2.36(9)E-4	6.46(24) E-5 1.34(14)E-5 4.74(19)E-5
N N N N N N N N	5533.395(14) 5562.057(13) 6128.63(4)d 6322.428(12) 7298.983(17) 8310.161(19) 9148.98(5) 10829.120(12)	0.0084(5) 5.90(12)E-8 0.01450(22) 0.00746(12) 0.00330(6) 0.00129(6) 0.0113(8)	0.00182(11) 1.28E-8[100%] 0.00314(5) 0.00161(3) 0.000714(13) 0.000279(13) 0.00244(17)	19 F 19 F 19 F 19 F 19 F 19 F	2965.854(22) 3014.568(10) 3025.10(3) 3051.435(20) 3074.78(3) 3112.693(18) 3220.00(3)	9.3(5)E-5 0.000405(15) 8.4(9)E-5 0.000297(12) 1.86(8)E-4	6.46(24)E-5 1.34(14)E-5 4.74(19)E-5 2.97(13)E-5
N N N N N N N N N	5533.395(14) 5562.057(13) 6128.63(4)d 6322.428(12) 7298.983(17) 8310.161(19) 9148.98(5) 10829.120(12) Oxygen (Z=8), A	0.0084(5) 5.90(12)E-8 0.01450(22) 0.00746(12) 0.00330(6) 0.00129(6) 0.0113(8) t.Wt.=15.9994(3)	0.00182(11) 1.28E-8[100%] 0.00314(5) 0.00161(3) 0.000714(13) 0.000279(13) 0.000244(17) 2), $\sigma_{\gamma}^{z} = 1.90E-4(19)$	19 F 19 F 19 F 19 F 19 F 19 F 19 F	2965.854(22) 3014.568(10) 3025.10(3) 3051.435(20) 3074.78(3) 3112.693(18) 3220.00(3) 3293.23(4)	9.3(5)E-5 0.000405(15) 8.4(9)E-5 0.000297(12) 1.86(8)E-4 2.36(9)E-4 6.1(4)E-5 3.8(8)E-5	6.46(24)E-5 1.34(14)E-5 4.74(19)E-5 2.97(13)E-5 3.76(14)E-5
N N N N N N N N N N	5533.395(14) 5562.057(13) 6128.63(4)d 6322.428(12) 7298.983(17) 8310.161(19) 9148.98(5) 10829.120(12) Oxygen (Z=8), A 197.142(4)d	0.0084(5) 5.90(12)E-8 0.01450(22) 0.00746(12) 0.00330(6) 0.00129(6) 0.0113(8) t.Wt.=15.9994(3 3.15(22)E-7	0.00182(11) 1.28E-8[100%] 0.00314(5) 0.00161(3) 0.0007714(13) 0.000279(13) 0.000244(17) 2), $\sigma_{\gamma}^{z} = 1.90E-4(19)$ 6.0E-8[99%]	19 F 19 F 19 F 19 F 19 F 19 F 19 F	2965.854(22) 3014.568(10) 3025.10(3) 3051.435(20) 3074.78(3) 3112.693(18) 3220.00(3) 3293.23(4) 3387.58(9)	9.3(5)E-5 0.000405(15) 8.4(9)E-5 0.000297(12) 1.86(8)E-4 2.36(9)E-4 6.1(4)E-5 3.8(8)E-5 6.1(5)E-5	6.46(24)E-5 1.34(14)E-5 4.74(19)E-5 2.97(13)E-5 3.76(14)E-5 9.7(6)E-6 6.1(13)E-6 9.7(8)E-6
N N N N N N N N	5533.395(14) 5562.057(13) 6128.63(4)d 6322.428(12) 7298.983(17) 8310.161(19) 9148.98(5) 10829.120(12) Oxygen (Z=8), A	0.0084(5) 5.90(12)E-8 0.01450(22) 0.00746(12) 0.00330(6) 0.00129(6) 0.0113(8) t.Wt.=15.9994(3 3.15(22)E-7	0.00182(11) 1.28E-8[100%] 0.00314(5) 0.00161(3) 0.0007714(13) 0.000279(13) 0.000244(17) 2), $\sigma_{\gamma}^{z} = 1.90E-4(19)$ 6.0E-8[99%]	19 F 19 F 19 F 19 F 19 F 19 F 19 F	2965.854(22) 3014.568(10) 3025.10(3) 3051.435(20) 3074.78(3) 3112.693(18) 3220.00(3) 3293.23(4)	9.3(5)E-5 0.000405(15) 8.4(9)E-5 0.000297(12) 1.86(8)E-4 2.36(9)E-4 6.1(4)E-5 3.8(8)E-5	6.46(24)E-5 1.34(14)E-5 4.74(19)E-5 2.97(13)E-5 3.76(14)E-5 9.7(6)E-6 6.1(13)E-6

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barn	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barı	ns k ₀
¹⁹ F	3589.45(3)	1.79(8)E-4	2.86(13)E-5	²³ Na	781.435(11)	0.0175(5)	0.00231(7)
¹⁹ F	3679.79(3)	8.7(8)E-5	1.39(13)E-5	²³ Na	835.292(18)	0.0109(3)	0.00144(4)
¹⁹ F	3741.46(3)	5.7(5)E-5	9.1(8)E-6	²³ Na	869.210(9)	0.1080(13)	0.01424(17)
¹⁹ F	3823.093(24)	1.07(6)E-4	1.71(10)E-5	²³ Na	874.389(6)	0.0760(11)	0.01002(15)
¹⁹ F	3964.872(20)	0.000435(18)	6.9(3)E-5	²³ Na	886.749(11)	0.00402(16)	0.000530(21)
¹⁹ F	4046.504(23)	6.0(16)E-5	1.0(3)E-5	²³ Na	1006.23(4)	0.00370(18)	0.000488(24)
¹⁹ F	4081.71(3)	5.6(4)E-5	8.9(6)E-6	²³ Na	1150.002(17)	0.00528(21)	0.00070(3)
¹⁹ F	4094.85(10)	5.1(17)E-5	8(3)E-6	²³ Na	1282.764(8)	0.0055(3)	0.00073(4)
¹⁹ F	4173.527(23)	1.66(7)E-4	2.65(11)E-5	²³ Na	1322.262(14)	0.0062(3)	0.00082(4)
¹⁹ F	4200.68(4)	1.11(6)E-4	1.77(10)E-5	²³ Na	1337.73(4)	0.00313(20)	0.00041(3)
¹⁹ F	4245.68(3)	9.5(5)E-5	1.52(8)E-5	²³ Na	1344.607(11)	0.0217(5)	0.00286(7)
¹⁹ F	4335.08(4)	4.6(4)E-5	7.3(6)E-6	²³ Na	1368.66(3)d	0.530(8)	0.0699[2.3%]
¹⁹ F	4556.817(20)	0.000517(23)	8.2(4)E-5	²³ Na	1373.751(8)	0.0079(19)	0.00104(25)
¹⁹ F ¹⁹ F	4708.007(20)	5.1(4)E-5	8.1(6)E-6	²³ Na	1504.92(7)	0.00293(23)	0.00039(3)
¹⁹ F	4735.16(4)	5.6(4)E-5	8.9(6)E-6	²³ Na	1562.470(21)	0.00256(20)	0.00034(3)
19 F	4756.957(23)	1.86(9)E-4	2.97(14)E-5	²³ Na ²³ Na	1620.49(4)	0.00294(22)	0.00039(3)
19 F	4951.90(3)	6.2(6)E-5	9.9(10)E-6	²³ Na	1633.080(23)	0.0074(4)	0.00098(5)
19 F	5033.530(23) 5279.360(20)	0.00063(3) 0.000421(20)	1.00(5)E-4 6.7(3)E-5	¹ Na ²³ Na	1636.293(21) 1712.43(20)	0.0250(7) 0.0112(6)	0.00330(9) 0.00148(8)
19 F	5291.420(19)	2.35(11)E-4	3.75(18)E-5	²³ Na	1885.421(14)	0.0039(3)	0.00148(8)
¹⁹ F	5360.986(21)	1.17(5)E-4	1.87(8)E-5	²³ Na	1899.06(4)	0.0037(3)	0.00031(4)
¹⁹ F	5543.713(10)	0.000407(17)	6.5(3)E-5	23 Na	1899.86(3)	0.0036(16)	0.00047(21)
¹⁹ F	5554.51(3)	5.1(4)E-5	8.1(6)E-6	²³ Na	1914.44(3)	0.00606(21)	0.00080(3)
19 F	5616.933(23)	1.41(8)E-4	2.25(13)E-5	²³ Na	1928.16(4)	0.00480(19)	0.000633(25)
¹⁹ F	5935.179(20)	9.1(8)E-5	1.45(13)E-5	²³ Na	1928.37(4)	0.0055(5)	0.00073(7)
¹⁹ F	6016.802(16)	0.00094(4)	1.50(6)E-4	²³ Na	1950.112(23)	0.0087(3)	0.00115(4)
¹⁹ F	6600.175(16)	0.00096(3)	1.53(5)E-4	²³ Na	2019.50(8)	0.0025(3)	0.00033(4)
			$7(6), \sigma_{\gamma}^{z} = 0.039(4)$	²³ Na	2025.139(22)	0.0341(8)	0.00450(11)
²⁰ Ne	350.72(6)	0.0198(4)	0.00297(6)	²³ Na	2027.104(25)	0.0038(5)	0.00050(7)
²² Ne	439.986d	0.001400(5)	2.102E-4[99%]	²³ Na	2030.318(23)	0.0219(7)	0.00289(9)
²⁰ Ne	768.55(7)	2.5(4)E-4	3.8(6)E-5	²³ Na	2071.78(3)	0.0059(3)	0.00078(4)
²⁰ Ne	964.41(7)	0.00029(11)	4.4(17)E-5	²³ Na	2208.40(3)	0.0259(9)	0.00341(12)
²² Ne	1017.00(20)	0.0030(5)	0.00045(8)	²³ Na	2361.026(21)	0.0084(3)	0.00111(4)
²⁰ Ne	1071.34(7)	0.0054(4)	0.00081(6)	²³ Na	2397.433(25)	0.0069(4)	0.00091(5)
²¹ Ne	1274.542(7)	0.0018(5)	0.00027(8)	²³ Na ²³ Na	2414.457(21)	0.0237(5)	0.00312(7)
²² Ne	1364.8(3)	0.00091(12)	1.37(18)E-4	²³ Na	2505.439(21)	0.0167(5)	0.00220(7)
²² Ne	1822.40(20)	0.00052(5)	7.8(8)E-5	²³ Na	2517.81(3) 2595.49(3)	0.0699(15) 0.0052(3)	0.00921(20) 0.00069(4)
²⁰ Ne	1931.08(6)	0.00591(22)	0.00089(3)	²³ Na	2630.66(3)	0.0032(3)	0.000381(18)
²² Ne ²² Ne	1979.89(6) 2013.8(4)	0.00306(17) 0.00040(5)	0.00046(3)	²³ Na	2715.87(3)	0.00289(14)	0.000381(18)
20 Ne	2015.8(4)	0.00040(3)	6.0(8)E-5 0.0037(4)	²³ Na	2752.271(23)	0.0654(12)	0.00862(16)
²¹ Ne	2082.5(4)	0.0243(23)	1.7(5)E-4	²³ Na	2754.13(6)d	0.530(8)	0.0699[2.3%]
²¹ Ne	2165.9(7)	0.00084(21)	1.3(3)E-4	²³ Na	2763.17(7)	0.0053(12)	0.00070(16)
²² Ne	2203.58(6)	0.00238(23)	0.00036(4)	²³ Na	2808.468(22)	0.0168(7)	0.00221(9)
²⁰ Ne	2437.84(25)	0.00036(7)	5.4(11)E-5	²³ Na	2860.355(20)	0.0177(5)	0.00233(7)
²⁰ Ne	2793.94(5)	0.00900(11)	0.001352(17)	²³ Na	2865.534(22)	0.0130(4)	0.00171(5)
²² Ne	2819.22(16)	0.00052(5)	7.8(8)E-5	²³ Na	2904.89(3)	0.0059(3)	0.00078(4)
²⁰ Ne	2895.32(10)	0.00252(7)	0.000378(11)	²³ Na	2940.91(3)	0.00347(18)	0.000457(24)
²¹ Ne	2987.8(5)	0.00086(22)	1.3(3)E-4	²³ Na	2981.97(3)	0.0142(6)	0.00187(8)
²¹ Ne	3181.8(16)	0.00048(12)	7.2(18)E-5	²³ Na	3025.99(4)	0.0146(6)	0.00192(8)
²² Ne	3220.42(16)	0.00057(23)	9(4)E-5	²³ Na ²³ Na	3092.50(5)	0.0025(4)	0.00033(5)
²⁰ Ne	3971.98(15)	0.00039(3)	5.9(5)E-5	²³ Na	3093.79(8) 3096.78(3)	0.00280(20) 0.0199(7)	0.00037(3)
²¹ Ne	4018.3(5)	0.00090(23)	1.4(4)E-4	²³ Na	3099.99(3)	0.0199(7)	0.00262(9) 0.00211(12)
²⁰ Ne	4374.13(6)	0.01910(22)	0.00287(3)	²³ Na	3116.97(4)	0.00523(24)	0.00211(12)
²¹ Ne ²¹ Ne	4634.83	0.00042(11)	6.3(17)E-5	²³ Na	3209.59(10)	0.00323(24)	0.00050(3)
Ne 20 Ne	4840.1(5) 5688.97(6)	0.00038(10)	5.7(15)E-5	²³ Na	3214.22(4)	0.0054(4)	0.00071(5)
²⁰ Ne	6760.06(6)	0.00214(3) 0.002100(25)	0.000321(5) 0.000315(4)	²³ Na	3277.32(10)	0.0037(17)	0.000497(22)
²¹ Ne	9087.3(5)	0.002100(23)	4.2(11)E-5	²³ Na	3369.94(4)	0.0133(4)	0.00175(5)
		* *	$\sigma_{\gamma}^{2} = 0.530(5)$	²³ Na	3409.39(3)	0.00237(11)	0.000312(15)
²³ Na	90.9920(10)	0.235(3)	0.0310(4)	²³ Na	3413.97(3)	0.00441(18)	0.000581(24)
23 Na	472.202(9)d	0.233(3)	0.0630[100%]	²³ Na	3504.94(3)	0.00676(23)	0.00089(3)
²³ Na	499.381(5)	0.0143(3)	0.00189(4)	²³ Na	3546.00(3)	0.00454(22)	0.00060(3)
²³ Na	501.347(13)	0.00314(13)	0.000414(17)	²³ Na	3587.460(25)	0.0596(11)	0.00786(15)
²³ Na	563.1920(20)	0.0085(3)	0.00112(4)	²³ Na	3643.655(20)	0.0067(3)	0.00088(4)
²³ Na	711.967(10)	0.00430(22)	0.00057(3)	²³ Na ²³ Na	3878.10(3)	0.0218(6)	0.00287(8)
²³ Na	778.221(9)	0.0058(3)	0.00076(4)	²³ Na ²³ Na	3981.450(25) 4187.49(3)	0.0677(11)	0.00892(15) 0.00096(7)
				- INa	410/.47(3)	0.0073(5)	0.00090(7)

^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn		$^{\mathbf{A}}\mathbf{Z}$	EγkeV	σ _γ ^z (E _γ)-barı	
²³ Na	5113.007(16)	0.00250(14)	0.000330(18)	²⁷ Al	1073.94(4)	0.00100(4)	1.12(5)E-4
²³ Na	5612.274(16)	0.0026(11)	0.00034(15)	²⁷ Al	1102.06(4)	0.00103(4)	1.16(5)E-4
²³ Na	5614.239(18)	0.005(3)	0.0007(4)	²⁷ Al	1125.289(14)	0.00083(4)	9.3(5)E-5
²³ Na	5617.452(17)	0.016(5)	0.0021(7)	²⁷ Al	1193.476(22)	0.00097(4)	1.09(5)E-4
²³ Na	6395.478(15)	0.1000(20)	0.0132(3)	²⁷ Al	1283.693(12)	0.00222(6)	2.49(7)E-4
Magn	esium (Z=12), A	At.Wt.=24.3050(6	6), $\sigma_{v}^{z} = 0.0666(13)$	²⁷ Al	1342.320(20)	0.00209(6)	2.35(7)E-4
²⁴ Mg	389.670(21)	0.00586(24)	0.00073(3)	²⁷ Al	1408.344(9)	0.00640(13)	0.000719(15)
²⁴ Mg	585.00(3)	0.0314(11)	0.00392(14)	²⁷ Al	1526.246(12)	0.00339(9)	0.000381(10)
²⁶ Mg	843.71(3)d	0.00298(14)	0.000372[78%]	²⁷ Al	1589.62(3)	0.00247(7)	0.000277(8)
²⁴ Mg	862.96(3)	0.000410(21)	5.1(3)E-5	²⁷ Al	1622.877(18)	0.00989(15)	0.001111(17)
²⁴ Mg	974.66(3)	0.00663(24)	0.00083(3)	²⁷ Al	1705.509(22)	0.00080(5)	9.0(6)E-5
²⁶ Mg	984.88(4)	0.00064(4)	8.0(5)E-5	²⁷ Al	1778.92(3)d	0.232(4)	0.0261[95%]
²⁵ Mg	1003.14(3)	0.00161(6)	2.01(8)E-4	²⁷ Al ²⁷ Al	1864.33(3)	0.00091(4)	1.02(5)E-4
²⁵ Mg	1129.575(23)	0.00891(25)	0.00111(3)	²⁷ Al	1927.527(25)	0.00262(7) 0.00207(8)	0.000294(8)
²⁵ Mg	1411.70(3)	0.00130(5)	1.62(6)E-4	²⁷ Al	1983.978(14) 2108.197(10)	0.00207(8) 0.00549(11)	2.32(9)E-4 0.000617(12)
²⁶ Mg	1615.11(4)	0.00070(4)	8.7(5)E-5	²⁷ Al	2138.833(10)	0.00549(11)	0.000617(12)
²⁴ Mg	1712.92(4)	0.00118(7)	1.47(9)E-4	²⁷ Al	2170.70(3)	0.00424(9)	9.2(6)E-5
²⁵ Mg	1775.31(3)	0.00129(5)	1.61(6)E-4	²⁷ Al	2255.37(3)	0.00082(5)	1.22(6)E-4
²⁵ Mg ²⁵ Mg	1808.668(22)	0.0180(5)	0.00224(6)	²⁷ Al	2271.686(21)	0.00109(3)	0.000445(11)
²⁴ Mg	1896.72(3)	0.00094(4)	1.17(5)E-4	²⁷ Al	2282.794(9)	0.00390(10)	0.001000(19)
Mg 25 Mg	1978.25(3)	0.00111(5) 0.00089(4)	1.38(6)E-4	²⁷ Al	2451.565(11)	0.00106(7)	1.19(8)E-4
25 Mg	2132.67(3) 2189.57(4)	0.00089(4)	1.11(5)E-4 7.4(3)E-5	²⁷ Al	2577.701(12)	0.00412(10)	0.000463(11)
25 Mg	2353.27(4)	0.000392(22)	5.6(3)E-5	²⁷ Al	2590.193(9)	0.00807(16)	0.000906(18)
25 Mg	2426.12(3)	0.000519(20)	6.47(25)E-5	²⁷ Al	2625.859(14)	0.00264(6)	0.000297(7)
²⁴ Mg	2438.54(3)	0.000319(20)	0.000590(24)	²⁷ Al	2709.62(3)	0.00140(7)	1.57(8)E-4
²⁵ Mg	2510.02(4)	0.00058(3)	7.2(4)E-5	²⁷ Al	2821.444(7)	0.00752(15)	0.000845(17)
²⁵ Mg	2523.65(4)	0.00100(4)	1.25(5)E-4	²⁷ Al	2954.47(7)	0.00098(5)	1.10(6)E-4
²⁵ Mg	2541.21(3)	0.00148(7)	1.85(9)E-4	²⁷ Al	3033.896(6)	0.0179(3)	0.00201(3)
²⁴ Mg	2828.172(25)	0.0240(8)	0.00299(10)	²⁷ Al	3265.538(13)	0.00082(6)	9.2(7)E-5
²⁶ Mg	2881.64(3)	0.00272(14)	0.000339(17)	²⁷ Al	3303.146(10)	0.00241(7)	0.000271(8)
$^{25}\mathrm{Mg}$	2938.159(25)	0.00094(4)	1.17(5)E-4	²⁷ Al	3346.970(13)	0.00111(5)	1.25(6)E-4
²⁴ Mg	3054.00(3)	0.0083(3)	0.00103(4)	²⁷ Al	3391.699(23)	0.00117(5)	1.31(6)E-4
²⁵ Mg	3208.97(4)	0.000398(19)	4.96(24)E-5	²⁷ Al	3465.058(7)	0.0146(3)	0.00164(3)
²⁴ Mg	3301.41(3)	0.00620(24)	0.00077(3)	²⁷ Al ²⁷ Al	3560.555(8)	0.00206(8)	2.31(9)E-4
²⁵ Mg	3319.65(3)	0.00100(4)	1.25(5)E-4	²⁷ Al	3591.189(8) 3708.939(14)	0.01000(21) 0.00088(8)	0.001123(24) 9.9(9)E-5
²⁵ Mg ²⁵ Mg	3341.00(4)	0.00046(3)	5.7(4)E-5	²⁷ Al	3789.326(12)	0.00088(8)	2.15(9)E-4
²⁴ Mg	3406.41(16) 3413.10(3)	0.0014(5) 0.00401(16)	1.7(6)E-4 0.000500(20)	²⁷ Al	3823.909(23)	0.00111(0)	1.28(8)E-4
25 Mg	3551.19(3)	0.00401(10)	1.36(5)E-4	²⁷ Al	3849.111(8)	0.00699(17)	0.000785(19)
²⁶ Mg	3561.29(3)	0.00109(4)	0.000310(15)	²⁷ Al	3875.487(8)	0.00618(14)	0.000694(16)
²⁴ Mg	3691.02(3)	0.00068(4)	8.5(5)E-5	²⁷ Al	4015.658(13)	0.00166(7)	1.86(8)E-4
²⁵ Mg	3744.00(3)	0.00136(5)	1.70(6)E-4	²⁷ Al	4133.407(7)	0.0149(3)	0.00167(3)
²⁵ Mg	3810.13(4)	0.00097(4)	1.21(5)E-4	²⁷ Al	4259.534(7)	0.0153(3)	0.00172(3)
²⁵ Mg	3831.480(24)	0.00418(14)	0.000521(17)	²⁷ Al	4377.618(12)	0.00103(8)	1.16(9)E-4
²⁶ Mg	3843.00(5)	0.00033(3)	4.1(4)E-5	²⁷ Al	4428.414(13)	0.00185(8)	2.08(9)E-4
²⁴ Mg	3916.84(3)	0.0320(11)	0.00399(14)	²⁷ Al	4660.043(5)	0.00605(16)	0.000680(18)
²⁵ Mg	4216.38(3)	0.00145(5)	1.81(6)E-4	²⁷ Al	4690.676(5)	0.01090(24)	0.00122(3)
²⁵ Mg	4410.13(3)	0.00067(4)	8.4(5)E-5	²⁷ Al ²⁷ Al	4733.844(11) 4736.92(10)	0.0126(3)	0.00142(3)
²⁴ Mg	4528.55(9)	0.00035(3)	4.4(4)E-5	27 Al	4754.377(24)	0.00100(22) 0.00080(7)	1.12(25)E-4 9.0(8)E-5
²⁵ Mg	4602.93(3)	0.000363(17)	4.53(21)E-5	²⁷ Al	4764.477(11)	0.00030(7)	2.36(11)E-4
²⁴ Mg ²⁵ Mg	4766.69(4)	0.000327(22)	4.1(3)E-5 2.02(9)E-4	²⁷ Al	4903.113(6)	0.00216(18)	0.000804(20)
²⁵ Mg	4967.19(3) 5067.14(3)	0.00162(7) 0.00096(4)	1.20(5)E-4	²⁷ Al	5103.711(8)	0.00097(6)	1.09(7)E-4
25 Mg	5452.025(25)	0.00090(4)	0.000257(9)	²⁷ Al	5134.343(8)	0.00722(23)	0.00081(3)
²⁴ Mg	6354.98(3)	0.00106(6)	1.32(8)E-4	²⁷ Al	5302.642(11)	0.00124(9)	1.39(10)E-4
²⁶ Mg	6442.52(3)	0.00039(4)	4.9(5)E-5	²⁷ Al	5411.077(8)	0.00481(19)	0.000540(21)
²⁵ Mg	6742.14(3)	0.000411(19)	5.12(24)E-5	²⁷ Al	5585.651(11)	0.00279(12)	0.000313(13)
²⁵ Mg	8153.448(21)	0.00285(11)	0.000355(14)	²⁷ Al	5709.853(13)	0.00148(8)	1.66(9)E-4
²⁵ Mg	9282.642(20)	0.000438(18)	5.46(22)E-5	²⁷ Al	5766.296(25)	0.00091(8)	1.02(9)E-4
Alur	ninum (Z=13), <i>A</i>	At.Wt.=26.98153	$8(2), \sigma_{\gamma}^{z} = 0.231(3)$	²⁷ Al	6101.529(18)	0.00570(21)	0.000640(24)
²⁷ Al	30.6380(10)	0.0798(20)	0.00896(22)	²⁷ Al	6198.143(11)	0.00210(14)	2.36(16)E-4
²⁷ Al	400.589(25)	0.00141(4)	1.58(5)E-4	²⁷ Al ²⁷ Al	6316.024(9)	0.00500(20)	0.000562(22)
²⁷ Al	831.426(22)	0.00269(7)	0.000302(8)	²⁷ Al	6440.650(11) 6619.73(4)	0.00147(8) 0.00093(7)	1.65(9)E-4 1.04(8)E-4
²⁷ Al	865.84(3)	0.00087(3)	9.8(3)E-5	²⁷ Al	6710.699(10)	0.00093(7)	2.47(13)E-4
²⁷ Al	941.75(3)	0.00246(5)	0.000276(6)	27 Al	7693.397(4)	0.00220(12)	0.00091(3)
²⁷ Al ²⁷ Al	982.951(10)	0.00902(14)	0.001013(16) 0.000623(11)	²⁷ Al	7724.027(4)	0.0493(15)	0.00554(17)
AI	1013.588(10)	0.00555(10)	0.000023(11)		` '	` '	` /

^A Z	Eγ-keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$	^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	
	Silicon (Z=14)	, At.Wt.=28.085	$5(3), \sigma_{\gamma}^{z} = 0.172(5)$	³¹ P	4199.87(4)	0.0055(3)	0.00054(3)
30 Si	752.215(23)	0.00316(10)	0.000341(11)	³¹ P	4359.57(3)	0.00195(7)	1.91(7)E-4
30 Si	1266.15(10)d	2.5(4)E-6	2.7E-7[12%]	³¹ P	4364.30(4)	0.0073(3)	0.00071(3)
²⁸ Si	1273.349(17)	0.0289(6)	0.00312(7)	³¹ P	4491.00(4)	0.00323(12)	0.000316(12)
²⁸ Si	1446.176(22)	0.00134(13)	1.45(14)E-4	³¹ P	4628.94(4)	0.00082(10)	8.0(10)E-5
²⁸ Si	1867.32(3)	0.00129(14)	1.39(15)E-4	³¹ P	4661.07(4)	0.00568(21)	0.000556(21)
²⁸ Si				³¹ P	4671.37(3)	0.0194(7)	0.00190(7)
29 Si	2092.902(18)	0.0331(6)	0.00357(7)	³¹ P	4876.87(4)	0.00111(9)	1.09(9)E-4
	2235.227(22)	0.00250(11)	0.000270(12)	³¹ P	4912.30(5)	0.00111(5)	
²⁸ Si	2425.767(23)	0.00494(15)	0.000533(16)	³¹ P			1.12(5)E-4
³⁰ Si	2780.552(22)	0.00241(13)	0.000260(14)	³¹ P	5194.91(5)	0.00236(23)	2.31(23)E-4
30 Si	3054.321(23)	0.00245(14)	0.000264(15)	³¹ P	5265.51(4)	0.0058(4)	0.00057(4)
²⁹ Si	3101.19(3)	0.00149(8)	1.61(9)E-4		5277.66(6)	0.00188(9)	1.84(9)E-4
²⁸ Si	3538.966(22)	0.1190(20)	0.01284(22)	³¹ P	5699.99(4)	0.00102(4)	9.98(4)E-5
²⁸ Si	3660.713(23)	0.00703(21)	0.000759(23)	³¹ P	5705.37(3)	0.00428(16)	0.000419(16)
²⁹ Si	3864.900(23)	0.00166(9)	1.79(10)E-4	³¹ P	5778.06(4)	0.00152(6)	1.49(6)E-4
²⁸ Si	3954.39(3)	0.00449(19)	0.000484(21)	³¹ P	6785.504(24)	0.0267(15)	0.00261(15)
²⁸ Si	4933.889(24)	0.1120(23)	0.01209(25)	³¹ P	7422.022(25)	0.0082(3)	0.00080(3)
²⁸ Si	5106.693(22)	0.0064(3)	0.00069(3)	³¹ P	7856.48(3)	0.00150(8)	1.47(8)E-4
²⁸ Si	6379.801(21)	0.0207(6)	0.00223(7)				(5), $\sigma_{\gamma}^{z} = 0.534(10)$
²⁹ Si	6743.25(3)	0.00170(9)	1.83(10)E-4	³⁶ S	646.171(14)	4.5(5)E-5	4.3(5)E-6
²⁸ Si				³² S			
28 Si	7199.199(23)	0.0125(4)	0.00135(4)	32 S	840.993(13)	0.347(6)	0.0328(6)
	8472.209(23)	0.00381(18)	0.000411(19)		1472.401(14)	0.00870(19)	0.000822(18)
Phosp			$1(2), \sigma_{\gamma}^{z} = 0.172(6)$	³⁴ S	1572.333(6)	0.00408(12)	0.000386(11)
³¹ P	78.083(20)	0.059(3)	0.0058(3)	³² S	1697.24(3)	0.01250(25)	0.001181(24)
³¹ P	512.646(19)	0.079(4)	0.0077(4)	³² S	1964.86(3)	0.00659(22)	0.000623(21)
31 P	558.46(7)	0.0010(3)	1.0(3)E-4	³² S	1967.11(3)	0.00357(18)	0.000337(17)
³¹ P	636.663(21)	0.0311(14)	0.00304(14)	³³ S	2127.491(12)	0.00246(10)	2.32(10)E-4
³¹ P	744.99(5)	0.00101(5)	9.9(5)E-5	³² S	2216.722(17)	0.01210(23)	0.001144(22)
³¹ P	1034.16(4)	0.00206(11)	2.02(11)E-4	³² S	2313.354(17)	0.00366(13)	0.000346(12)
³¹ P	1071.217(23)	0.0249(12)	0.00244(12)	³⁴ S	2347.695(7)	0.0060(3)	0.00057(3)
³¹ P	1149.298(19)	0.00380(19)	0.000372(19)	³² S	2379.661(14)	0.208(5)	0.0197(5)
³¹ P	1244.64(3)	0.00357(17)	0.000349(17)	³² S	2490.14(3)	0.0125(3)	0.00118(3)
³¹ P	1322.72(3)	0.00529(25)	0.000549(17)	³² S	2753.16(3)	0.0277(5)	0.00262(5)
г ³¹ Р			, ,	³² S	2867.580(23)	0.00425(15)	0.000402(14)
³¹ P	1353.56(5)	0.00126(7)	1.23(7)E-4	³² S	2930.67(3)	0.0832(13)	0.00786(12)
³¹ P	1508.85(3)	0.00318(16)	0.000311(16)	³⁶ S	3103.36d	2.8(14)E-5	2.7E-6[88%]
	1676.84(3)	0.00405(20)	0.000396(20)	³² S	3220.588(17)		
³¹ P	1739.14(5)	0.00201(10)	1.97(10)E-4	32 S		0.117(5)	0.0111(5)
³¹ P	1873.52(4)	0.00320(16)	0.000313(16)	32 S	3369.70(4)	0.0271(5)	0.00256(5)
³¹ P	1941.05(3)	0.00413(20)	0.000404(20)		3397.37(3)	0.00544(15)	0.000514(14)
³¹ P	2114.47(3)	0.0115(5)	0.00113(5)	³² S	3723.54(4)	0.0133(3)	0.00126(3)
³¹ P	2151.52(4)	0.0100(5)	0.00098(5)	³² S	4430.60(4)	0.0262(6)	0.00248(6)
³¹ P	2156.90(4)	0.0128(6)	0.00125(6)	³⁴ S	4637.981(14)	0.00734(22)	0.000694(21)
31 P	2227.50(5)	0.00248(15)	2.43(15)E-4	³² S	4869.61(3)	0.0650(13)	0.00614(12)
³¹ P	2229.59(3)	0.00080(9)	7.8(9)E-5	32 S	5047.10(3)	0.0163(4)	0.00154(4)
31 P	2234.07(6)	0.00123(8)	1.20(8)E-4	³² S	5420.574(24)	0.308(7)	0.0291(7)
31 P	2426.29(3)	0.00265(13)	0.000259(13)	³² S	5583.50(3)	0.0086(3)	0.00081(3)
³¹ P	2514.65(4)	0.00156(9)	1.53(9)E-4	32 S	5887.96(3)	0.00373(17)	0.000353(16)
³¹ P	2579.27(6)	0.00082(6)	8.0(6)E-5	32 S	7799.815(24)	0.0144(5)	0.00136(5)
³¹ P	2586.00(4)	0.0089(4)	0.00087(4)	³² S	8640.594(25)	0.0098(7)	0.00093(7)
³¹ P	2657.35(6)	0.0035(4)	2.47(14)E-4			` /	$53(2), \sigma_{\gamma}^{z} = 33.1(3)$
³¹ P	2740.11(5)	0.00232(14)	8.3(5)E-5	³⁵ Cl	292.177(8)	0.0893(10)	0.00763(9)
³¹ P		()	* *	35 Cl	436.222(4)	` /	0.02641(17)
³¹ P	2863.01(7)	0.00359(18)	0.000351(18)		* *	0.3090(20)	
-	2885.99(3)	0.0064(3)	0.00063(3)	³⁵ Cl	508.866(4)	0.108(17)	0.0092(15)
³¹ P	3058.17(4)	0.0110(4)	0.00108(4)	³⁵ Cl	517.0730(10)	7.58(5)	0.648(4)
³¹ P	3185.61(3)	0.00326(12)	0.000319(12)	³⁵ Cl	632.437(5)	0.1110(16)	0.00949(14)
³¹ P	3273.98(4)	0.0083(3)	0.00081(3)	³⁵ Cl	786.3020(10)	3.420(7)	0.2923(6)
³¹ P	3365.98(5)	0.00112(5)	1.10(5)E-4	35 Cl	788.4280(10)	5.42(5)	0.463(4)
³¹ P	3444.06(5)	0.00121(5)	1.18(5)E-4	³⁵ C1	936.920(8)	0.1720(13)	0.01470(11)
³¹ P	3522.59(3)	0.0219(8)	0.00214(8)	³⁵ Cl	1034.27(22)	0.100(16)	0.0085(14)
³¹ P	3548.73(4)	0.00135(6)	1.32(6)E-4	³⁵ Cl	1131.250(9)	0.626(3)	0.0535(3)
31 P	3554.31(5)	0.00084(4)	8.2(4)E-5	³⁵ Cl	1162.7390(20)	0.76(3)	0.065(3)
³¹ P	3899.89(3)	0.0294(10)	0.00288(10)	³⁵ Cl	1164.8650(10)	8.91(4)	0.762(3)
³¹ P	3922.87(7)	0.00302(12)	0.000295(12)	³⁵ Cl	1170.946(4)	0.154(5)	0.0132(4)
³¹ P	3926.48(5)	0.00368(14)	0.000360(14)	³⁵ Cl	1327.405(9)	0.4020(23)	0.03436(20)
³¹ P	3930.52(5)	0.00108(5)	1.06(5)E-4	³⁵ Cl	1372.872(12)	0.105(4)	0.0090(3)
³¹ P	3957.10(3)	0.00103(5)	9.98(5)E-5	³⁵ Cl	1601.072(4)	1.210(7)	0.1034(6)
31 P	4008.59(5)	0.00102(5)	1.19(5)E-4	³⁵ Cl	1627.04(8)	0.094(5)	0.0080(4)
1	1000.37(3)	0.00122(3)	1.17(J)L-T	CI	1027.07(0)	0.074(3)	J.0000(⊤)

^A Z	Eγ-keV	σ _γ ^z (E _γ)-barns		^A Z	EγkeV	σ _γ ^z (E _γ)-barns	
³⁵ Cl	1640.099(10)	0.158(17)	0.0135(15)	³⁵ Cl	4524.87(4)	0.148(7)	0.0127(6)
35 Cl	1648.306(9)	0.174(5)	0.0149(4)	35 Cl	4547.5(5)	0.146(8)	0.0125(7)
35 Cl	1729.929(9)	0.107(12)	0.0091(10)	35 Cl	4616.45(9)	0.210(10)	0.0180(9)
35 Cl	1787.82(8)	0.177(6)	0.0151(5)	35 Cl	4728.94(4)	0.223(9)	0.0191(8)
35 Cl	1828.49(4)	0.111(5)	0.0095(4)	35 Cl	4944.36(4)	0.379(8)	0.0324(7)
35 Cl	1936.97(5)	0.153(9)	0.0131(8)	35 Cl	4945.25(3)	0.194(18)	0.0166(15)
35 Cl	1951.1400(20)	6.33(4)	0.541(3)	35 Cl	4979.759(20)	1.230(10)	0.1051(9)
³⁵ Cl	1959.346(4)	4.10(3)	0.350(3)	³⁵ Cl	4989.66(12)	0.10(6)	0.009(5)
35 Cl	1975.22(7)	0.214(22)	0.0183(19)	35 Cl	5017.74(7)	0.161(8)	0.0138(7)
³⁷ Cl	1980.94(7)	0.045(4)	0.0038(3)	35 Cl	5246.958(21)	0.195(10)	0.0167(9)
³⁵ Cl	2022.091(7)	0.161(6)	0.0138(5)	35 Cl	5517.25(4)	0.560(5)	0.0479(4)
35 Cl	2034.63(3)	0.239(5)	0.0204(4)	³⁵ Cl	5584.525(23)	0.158(11)	0.0135(9)
³⁵ Cl	2041.40(6)	0.121(5)	0.0103(4)	³⁵ Cl	5603.76(9)	0.11(3)	0.009(3)
³⁵ Cl	2075.440(13)	0.252(7)	0.0215(6)	³⁵ Cl	5702.58(6)	0.127(10)	0.0109(9)
³⁵ Cl	2104(5)	0.105(7)	0.0090(6)	35 Cl	5715.244(21)	1.820(16)	0.1556(14)
³⁵ Cl	2156.19(4)	0.205(7)	0.0175(6)	35 Cl	5733.56(3)	0.161(11)	0.0138(9)
³⁷ Cl	2166.90(20)d	0.0568(15)	0.00486[40%]	35 Cl	5902.74(3)	0.372(4)	0.0318(3)
35 Cl	2179.51(4)	0.12(5)	0.010(4)	³⁵ Cl	6086.804(20)	0.295(15)	0.0252(13)
35 Cl	2200.10(4)	0.123(5)	0.0105(4)	35 Cl	6110.842(18)	6.59(6)	0.563(5)
35 Cl	2289.78(16)	0.102(14)	0.0087(12)	³⁵ Cl	6267.63(4)	0.13(4)	0.011(3)
35 Cl	2311.38(4)	0.35(10)	0.030(9)	35 Cl	6619.615(19)	2.530(23)	0.2163(20)
35 Cl	2468.1830(20)	0.097(8)	0.0083(7)	35 Cl	6627.821(18)	1.470(16)	0.1257(14)
35 Cl	2469.97(3)	0.24(3)	0.021(3)	³⁵ Cl	6977.836(19)	0.741(10)	0.0633(9)
35 Cl	2478(5)	0.101(20)	0.0086(17)	³⁵ Cl	7413.968(18)	3.29(5)	0.281(4)
35 Cl	2489.74(9)	0.141(6)	0.0121(5)	35 Cl	7790.330(18)	2.66(3)	0.227(3)
³⁵ Cl	2492.223(9)	0.11(4)	0.009(3)	³⁵ Cl	8578.575(18)	0.883(13)	0.0755(11)
³⁵ Cl	2529.2(11)	0.121(13)	0.0103(11)				1), $\sigma_{\gamma}^{z} = 0.675(10)$
³⁵ Cl	2537.25(7)	0.135(14)	0.0115(12)	⁴⁰ Ar	167.30(20)	0.53(5)	0.040(4)
³⁵ Cl	2549.74(7)	0.090(15)	0.0077(13)	⁴⁰ Ar	348.7(3)	0.044(9)	0.0033(7)
³⁵ Cl	2622.86(5)	0.178(6)	0.0152(5)	40 Ar	516.0(3)	0.167(17)	0.0127(13)
³⁵ Cl ³⁵ Cl	2676.31(3)	0.533(4)	0.0456(3)	⁴⁰ Ar	518.7	0.0060(20)	0.00046(15)
	2797.90(4)	0.095(10)	0.0081(9)	40 Ar	837.7(3)	0.063(7)	0.0048(5)
³⁵ Cl ³⁵ Cl	2800.96(12)	0.183(7)	0.0156(6)	⁴⁰ Ar	867.3(6)	0.0070(20)	0.00053(15)
35 Cl	2808.86(7)	0.10(5)	0.009(4)	⁴⁰ Ar	1044.3(4)	0.040(8)	0.0030(6)
35 Cl	2810.988(9) 2845.50(3)	0.144(7)	0.0123(6)	40 Ar	1186.8(3)	0.34(3)	0.0258(23)
35 CI	2863.819(12)	0.349(3)	0.0298(3) 0.1556(9)	⁴⁰ Ar	1354.0(4)	0.015(4)	0.0011(3)
35 Cl	2866.9(5)	1.820(10) 0.192(12)	0.0164(10)	³⁶ Ar	1409.7(10)	0.0060(12)	0.00046(9)
35 Cl	2876.49(5)	0.164(7)	0.0140(6)	⁴⁰ Ar	1828.8(12)	0.0070(20)	0.00053(15)
35 Cl	2896.212(8)	0.146(6)	0.0125(5)	⁴⁰ Ar ⁴⁰ Ar	1881.5(10)	0.009(3)	0.00068(23)
35 Cl	2975.21(7)	0.377(4)	0.0322(3)	Ar 40 Ar	2130.8(8)	0.029(5)	0.0022(4)
35 Cl	2994.548(15)	0.279(8)	0.0238(7)	36 Ar	2432.5(8)	0.0055(14)	0.00042(11)
35 Cl	3001.07(5)	0.216(7)	0.0185(6)	Ar 40 Ar	2490.8(8)	0.0088(22)	0.00067(17)
35 Cl	3015.97(4)	0.328(3)	0.0280(3)	Ar ⁴⁰ Ar	2566.1(8)	0.018(4)	0.0014(3) 0.0014(3)
35 Cl	3061.82(4)	1.130(7)	0.0966(6)	⁴⁰ Ar	2614.4(8)	0.019(4)	0.0014 (3) 0.0043 (7)
35 Cl	3116.04(5)	0.297(3)	0.0254(3)	⁴⁰ Ar	2771.9(8) 2781.8(15)	0.057(9) 0.011(3)	0.0043(7)
³⁵ Cl	3332.87(8)	0.241(7)	0.0206(6)	⁴⁰ Ar	2810.6(8)	0.039(8)	0.0030(6)
³⁵ Cl	3374.7(11)	0.179(7)	0.0153(6)	⁴⁰ Ar	2842.6(10)	0.0058(14)	0.0030(0)
35 Cl	3428.83(5)	0.271(3)	0.0232(3)	⁴⁰ Ar	3089.5(10)	0.0070(20)	0.00053(15)
35 Cl	3500.35(9)	0.100(6)	0.0085(5)	⁴⁰ Ar	3150.3(10)	0.026(5)	0.0020(4)
35 Cl	3561.37(7)	0.21(4)	0.018(3)	⁴⁰ Ar	3365.6(10)	0.028(6)	0.0020(4)
35 Cl	3566.32(4)	0.093(24)	0.0079(21)	⁴⁰ Ar	3452.0(10)	0.013(3)	0.00099(23)
35 Cl	3589.16(13)	0.18(5)	0.015(4)	⁴⁰ Ar	3700.6(8)	0.065(7)	0.0049(5)
35 Cl	3599.350(9)	0.164(6)	0.0140(5)	⁴⁰ Ar	4745.3(8)	0.36(4)	0.027(3)
35 Cl	3604.14(17)	0.119(6)	0.0102(5)	⁴⁰ Ar	5582.4(8)	0.077(8)	0.0058(6)
35 Cl	3634.75(3)	0.098(6)	0.0084(5)	³⁶ Ar	6298.9(10)	0.0076(19)	0.00058(14)
³⁵ Cl	3749.91(10)	0.096(5)	0.0082(4)				$\sigma_{y}^{z} = 2.06(19)$
³⁵ Cl	3821.33(16)	0.320(10)	0.0274(9)	³⁹ K	29.8300(10)	1.380(20)	0.1070(16)
35 Cl	3825.22(13)	0.250(9)	0.0214(8)	⁴¹ K	106.836(7)	0.0320(6)	0.00248(5)
35 Cl	3827.06(12)	0.238(17)	0.0203(15)	³⁹ K	522.319(7)	0.0347(7)	0.00269(5)
35 Cl	3962.67(4)	0.118(8)	0.0101(7)	³⁹ K	646.222(5)	0.0451(8)	0.00350(6)
35 Cl	3980.98(8)	0.331(7)	0.0283(6)	⁴¹ K	681.937(8)	0.0149(5)	0.00115(4)
³⁵ Cl	4054.25(5)	0.194(8)	0.0166(7)	³⁹ K	770.3050(20)	0.903(12)	0.0700(9)
³⁵ Cl	4082.67(7)	0.263(5)	0.0225(4)	³⁹ K	843.468(10)	0.0197(5)	0.00153(4)
35 Cl	4138.39(9)	0.113(17)	0.0097(15)	³⁹ K	891.385(13)	0.019(4)	0.0015(3)
³⁵ Cl	4138.73(4)	0.095(10)	0.0081(9)	³⁹ K	1086.707(16)	0.0222(7)	0.00172(5)
³⁵ Cl	4298.33(4)	0.122(10)	0.0104(9)	³⁹ K	1158.887(10)	0.1600(25)	0.01240(19)
35 Cl	4440.39(4)	0.377(4)	0.0322(3)	³⁹ K	1247.193(11)	0.0784(13)	0.00608(10)

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barr	is \mathbf{k}_0	A	\mathbf{Z}	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$
⁴⁰ K	1293.589(5)	0.0041(8)	0.00032(6)	39	K	5068.870(21)	0.0224(12)	0.00174(9)
³⁹ K	1303.515(19)	0.0550(12)	0.00426(9)		K	5173.196(21)	0.048(3)	0.00372(23)
³⁹ K	1373.227(18)	0.0251(7)	0.00195(5)	39	K	5380.018(16)	0.146(4)	0.0113(3)
40 K	1460.822(6)	$3.24(5) \text{ s}^{-1}\text{g}^{-1}$	Abundant	39	K	5508.660(21)	0.066(4)	0.0051(3)
³⁹ K	1480.024(24)	0.0353(9)	0.00274(7)		K	5695.442(20)	0.114(3)	0.00884(23)
³⁹ K	1489.676(10)	0.0277(8)	0.00215(6)	39	K	5729.308(22)	0.0437(18)	0.00339(14)
⁴¹ K	1524.6(3)d	0.02000(4)	0.001550[2.8%]	39	K	5751.758(17)	0.108(3)	0.00837(23)
³⁹ K	1613.756(10)	0.1190(20)	0.00922(16)	39	K	6998.758(14)	0.0447(20)	0.00346(16)
³⁹ K	1618.973(10)	0.1300(21)	0.01008(16)	39	K	7768.919(14)	0.117(7)	0.0091(5)
³⁹ K ³⁹ K	1704.656(23)	0.0244(8)	0.00189(6)	44				(4), $\sigma_{\gamma}^{z} = 0.431(19)$
³⁹ K	1795.438(24)	0.0292(8)	0.00226(6)	44	Ca	174.12(7)	0.0168(4)	0.00127(3)
³⁹ K	1825.815(19) 1929.169(10)	0.0147(7) 0.0397(9)	0.00114(5) 0.00308(7)	40	Ca	519.66(5)	0.0503(13)	0.00380(10)
³⁹ K	1929.109(10)	0.0397(9)	0.00308(7)	40	Ca Ca	660.00(5)	0.00487(18)	0.000368(14)
³⁹ K	2007.69(3)	0.0513(12)	0.00313(9)		Ca Ca	727.17(5)	0.0117(4)	0.00088(3)
³⁹ K	2017.472(11)	0.0540(12)	0.00378(7)		Ca Ca	1126.12(10) 1150.95(5)	0.00471(23)	0.000356(17) 0.000393(23)
³⁹ K	2039.924(18)	0.0519(13)	0.00402(10)	43	Ca	1156.94(12)	0.0052(3) 0.0088(4)	0.000393(23)
³⁹ K	2047.301(11)	0.0537(13)	0.00416(10)	44	Ca	1260.62(6)	0.00394(24)	0.00007(3)
³⁹ K	2069.752(18)	0.0363(10)	0.00281(8)	40	Ca	1389.82(5)	0.00394(24)	0.000298(18)
³⁹ K	2073.793(19)	0.1370(24)	0.01062(19)	40	Ca	1481.67(5)	0.0051(3)	0.000386(23)
³⁹ K	2153.86(3)	0.0158(7)	0.00122(5)	40	Ca	1670.60(6)	0.0069(3)	0.000522(23)
³⁹ K	2206.22(4)	0.0166(12)	0.00129(9)	44	Ca	1725.71(7)	0.0090(4)	0.00068(3)
³⁹ K	2206.26(3)	0.0157(17)	0.00122(13)		Ca	1942.67(3)	0.352(7)	0.0266(5)
³⁹ K	2230.54(3)	0.0202(10)	0.00157(8)	40	Ca	2001.31(3)	0.0659(15)	0.00498(11)
³⁹ K	2290.420(19)	0.0582(13)	0.00451(10)	40	Ca	2009.84(3)	0.0409(10)	0.00309(8)
³⁹ K	2346.22(4)	0.0138(7)	0.00107(5)	46	Ca	2013.57(20)	2.90E-05	2.20E-06
³⁹ K	2367.30(3)	0.0157(7)	0.00122(5)	40	Ca	2290.43(5)	0.0077(4)	0.00058(3)
³⁹ K	2389.245(10)	0.0301(10)	0.00233(8)	40	Ca	2605.34(6)	0.0061(4)	0.00046(3)
³⁹ K	2545.99(3)	0.0536(12)	0.00415(9)	40	Ca	2660.37(7)	0.0074(4)	0.00056(3)
³⁹ K	2609.97(3)	0.0213(7)	0.00165(5)	40	Ca	2767.92(7)	0.0070(15)	0.00053(11)
³⁹ K	2614.18(3)	0.0165(6)	0.00128(5)	40	Ca	2810.06(5)	0.0167(5)	0.00126(4)
³⁹ K ³⁹ K	2638.866(24)	0.0144(6)	0.00112(5)	48	Ca	3084.40(10)d	0.00190(21)	1.44E-4[79%]
³⁹ K	2726.780(24)	0.0225(9)	0.00174(7)		Ca	3584.77(7)	0.0100(5)	0.00076(4)
³⁹ K	2756.678(17) 2799.04(3)	0.0404(22) 0.0145(7)	0.00313(17) 0.00112(5)	40	Ca	3609.80(6)	0.0283(9)	0.00214(7)
³⁹ K	2806.42(3)	0.0143(7)	0.00112(3)	40	Ca	3759.48(7)	0.0117(5)	0.00088(4)
³⁹ K	2938.17(3)	0.0230(9)	0.00198(7)	40	Ca Ca	4418.52(5)	0.0708(18)	0.00535(14)
³⁹ K	3055.30(3)	0.0464(12)	0.00360(9)	40	Ca Ca	4516.54(17)	0.0049(3)	0.000371(23)
³⁹ K	3262.28(4)	0.0376(11)	0.00291(9)	40	Ca Ca	4749.21(7) 4962.79(7)	0.0134(7) 0.0067(4)	0.00101(5) 0.00051(3)
³⁹ K	3304.17(4)	0.0146(7)	0.00113(5)	48	Ca	5146.19(21)	0.0067(4)	1.11(15)E-4
³⁹ K	3338.05(6)	0.036(17)	0.0028(13)	44	Ca	5514.55(14)	0.00147(20)	0.00079(6)
³⁹ K	3348.72(3)	0.0172(8)	0.00133(6)	40	Ca	5692.53(6)	0.0067(5)	0.00051(4)
³⁹ K	3403.58(3)	0.0167(8)	0.00129(6)	42	Ca	5885.87(16)	0.0024(4)	1.8(3)E-4
³⁹ K	3453.38(3)	0.0247(14)	0.00191(11)	40	Ca	5900.02(6)	0.0258(12)	0.00195(9)
³⁹ K	3518.77(6)	0.0186(9)	0.00144(7)	40	Ca	6419.59(5)	0.176(5)	0.0133(4)
³⁹ K	3526.97(3)	0.0170(9)	0.00132(7)				* *	(8), $\sigma_{\gamma}^{z} = 27.20(20)$
³⁹ K	3545.71(3)	0.0746(18)	0.00578(14)	45	Sc	52.0110(10)	0.87(3)	0.0586(20)
³⁹ K	3650.37(3)	0.0355(13)	0.00275(10)	45	Sc	142.528(8)d	4.88(7)	0.329[99%]
³⁹ K	3688.54(3)	0.0276(11)	0.00214(9)	45	Sc	147.011(10)	6.08(9)	0.410(6)
³⁹ K	3694.91(4)	0.0231(10)	0.00179(8)	45	Sc	216.44(4)	2.49(4)	0.168(3)
³⁹ K	3736.81(3)	0.0193(6)	0.00150(5)	45	Sc	227.773(12)	7.13(11)	0.481(7)
³⁹ K ³⁹ K	3778.97(4)	0.0143(7)	0.00111(5)		Sc	228.716(12)	3.31(5)	0.223(3)
³⁹ K	3911.43(5)	0.0168(9)	0.00130(7) 0.00213(9)		Sc	280.726(12)	0.248(7)	0.0167(5)
³⁹ K	3930.63(4) 3943.78(3)	0.0275(11)			Sc	295.243(10)	3.97(11)	0.268(7)
³⁹ K	3943.78(3) 3959.10(3)	0.0205(11)	0.00159(9) 0.00195(8)		Sc	399.691(19)	0.202(7)	0.0136(5)
³⁹ K	3939.10(3) 3977.89(3)	0.0252(10) 0.0219(10)	0.00195(8)		Sc	402.87(5)	0.107(6)	0.0072(4)
³⁹ K	4001.80(3)	0.0219(10)	0.00170(8)		Sc	442.254(13)	0.096(6)	0.0065(4)
³⁹ K	4060.91(3)	0.0203(11)	0.00204(9)		Sc	478.14(13)	0.073(10)	0.0049(7)
³⁹ K	4135.586(23)	0.0563(17)	0.00436(13)	45	Sc	486.026(21)	0.593(14)	0.0400(9)
³⁹ K	4200.04(3)	0.0398(14)	0.00308(11)		Sc	539.437(20)	0.738(19)	0.0497(13)
³⁹ K	4360.201(25)	0.0776(21)	0.00601(16)		Sc Sc	547.15(4)	0.373(12)	0.0251(8)
³⁹ K	4384.88(3)	0.0247(11)	0.00191(9)		Sc Sc	554.44(4) 594.795(13)	1.82(4)	0.123(3)
³⁹ K	4507.03(3)	0.0159(9)	0.00123(7)	45	Sc Sc	584.785(13) 627.462(18)	1.77(3)	0.1193(20)
³⁹ K	4670.76(3)	0.0138(9)	0.00107(7)	45	Sc Sc	627.462(18) 643.037(25)	2.23(5) 0.259(9)	0.150(3) 0.0175(6)
³⁹ K	4991.34(3)	0.0432(14)	0.00335(11)	45	Sc	685.71(3)	0.239(9)	0.0173(6)
³⁹ K	5012.48(3)	0.0226(11)	0.00175(9)	45	Sc	711.21(6)	0.104(8)	0.0070(5)
³⁹ K	5042.507(25)	0.0351(15)	0.00272(12)			(-)	(~)	(+)

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barns	\mathbf{k}_0	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
⁴⁵ Sc	721.841(17)	0.487(15)	0.0328(10)	⁴⁵ Sc	3080.8(5)	0.087(12)	0.0059(8)
⁴⁵ Sc	773.851(17)	0.572(13)	0.0386(9)	⁴⁵ Sc	3265.48(7)	0.146(14)	0.0098(9)
⁴⁵ Sc	807.754(20)	0.523(13)	0.0353(9)	⁴⁵ Sc	3281.87(8)	0.08(4)	0.005(3)
⁴⁵ Sc	835.16(4)	0.265(8)	0.0179(5)	⁴⁵ Sc	3309.70(9)	0.08(3)	0.0054(20)
⁴⁵ Sc	843.494(23)	0.138(6)	0.0093(4)	⁴⁵ Sc	3351.10(12)	0.121(14)	0.0082(9)
⁴⁵ Sc	860.707(19)	0.396(13)	0.0267(9)	⁴⁵ Sc	3458.45(19)	0.156(15)	0.0105(10)
⁴⁵ Sc	899.27(5)	0.133(9)	0.0090(6)	⁴⁵ Sc	3596.86(10)	0.077(14)	0.0052(9)
⁴⁵ Sc	941.95(5)	0.107(24)	0.0072(16)	⁴⁵ Sc	3623.19(10)	0.13(6)	0.009(4)
⁴⁵ Sc	1015.22(3)	0.256(12)	0.0173(8)	⁴⁵ Sc	3799.13(8)	0.125(13)	0.0084(9)
⁴⁵ Sc	1057.89(3)	0.322(14)	0.0217(9)	⁴⁵ Sc	3878.05(12)	0.088(11)	0.0059(7)
⁴⁵ Sc	1082.52(4)	0.160(11)	0.0108(7)	⁴⁵ Sc	3999.48(12)	0.086(17)	0.0058(11)
⁴⁵ Sc	1123.17(5)	0.380(14)	0.0256(9)	⁴⁵ Sc	4006.31(10)	0.091(17)	0.0061(11)
⁴⁵ Sc	1134.43(8)	0.132(9)	0.0089(6)	⁴⁵ Sc	4021.46(9)	0.092(17)	0.0062(11)
⁴⁵ Sc	1166.45(6)	0.386(14)	0.0260(9)	⁴⁵ Sc	4059.52(8)	0.18(3)	0.0121(20)
⁴⁵ Sc	1227.77(4)	0.332(13)	0.0224(9)	⁴⁵ Sc	4065.97(9)	0.079(19)	0.0053(13)
⁴⁵ Sc	1251.68(6)	0.101(9)	0.0068(6)	⁴⁵ Sc	4109.60(9)	0.073(10)	0.0049(7)
⁴⁵ Sc	1251.69(6)	0.129(23)	0.0087(16)	⁴⁵ Sc	4173.36(17)	0.11(3)	0.0074(20)
⁴⁵ Sc	1268.87(6)	0.10(3)	0.0067(20)	⁴⁵ Sc	4231.81(16)	0.073(9)	0.0049(6)
⁴⁵ Sc	1270.49(3)	0.269(13)	0.0181(9)	⁴⁵ Sc	4237.72(10)	0.096(17)	0.0065(11)
⁴⁵ Sc	1285.34(4)	0.373(19)	0.0251(13)	⁴⁵ Sc	4293.30(21)	0.073(11)	0.0049(7)
⁴⁵ Sc	1321.18(4)	0.206(23)	0.0139(16)	⁴⁵ Sc	4377.46(8)	0.127(15)	0.0086(10)
⁴⁵ Sc	1321.96(4)	0.139(9)	0.0094(6)	⁴⁵ Sc	4465.89(13)	0.106(13)	0.0071(9)
⁴⁵ Sc	1335.05(3)	0.640(22)	0.0431(15)	⁴⁵ Sc	4498.85(11)	0.149(15)	0.0100(10)
⁴⁵ Sc	1510.13(6)	0.13(4)	0.009(3)	⁴⁵ Sc	4617.93(9)	0.089(15)	0.0060(10)
⁴⁵ Sc	1575.27(3)	0.317(13)	0.0214(9)	⁴⁵ Sc	4679.04(18)	0.112(14)	0.0075(9)
⁴⁵ Sc	1592.71(17)	0.11(3)	0.0074(20)	⁴⁵ Sc	4720.86(11)	0.171(16)	0.0115(11)
⁴⁵ Sc	1618.36(6)	0.362(19)	0.0244(13)	⁴⁵ Sc	4823.18(9)	0.078(11)	0.0053(7)
⁴⁵ Sc	1658.21(7)	0.107(12)	0.0072(8)	⁴⁵ Sc	4883.71(13)	0.128(13)	0.0086(9)
⁴⁵ Sc	1693.30(4)	0.465(19)	0.0313(13)	⁴⁵ Sc	4891.84(10)	0.094(12)	0.0063(8)
⁴⁵ Sc	1707.94(5)	0.077(10)	0.0052(7)	⁴⁵ Sc	4919.38(11)	0.092(13)	0.0062(9)
⁴⁵ Sc	1753.85(4)	0.170(12)	0.0115(8)	⁴⁵ Sc	4974.76(9)	0.498(24)	0.0336(16)
⁴⁵ Sc	1763.12(10)	0.077(10)	0.0052(7)	⁴⁵ Sc	4993.58(10)	0.177(15)	0.0119(10)
⁴⁵ Sc	1777.43(11)	0.125(12)	0.0084(8)	⁴⁵ Sc	5085.09(10)	0.103(14)	0.0069(9)
⁴⁵ Sc	1803.69(12)	0.075(9)	0.0051(6)	⁴⁵ Sc	5128.48(12)	0.093(15)	0.0063(10)
⁴⁵ Sc	1814.92(4)	0.271(13)	0.0183(9)	⁴⁵ Sc	5163.42(10)	0.149(20)	0.0100(13)
⁴⁵ Sc	1829.68(6)	0.152(10)	0.0102(7)	⁴⁵ Sc	5210.11(12)	0.085(15)	0.0057(10)
45 Sc	1857.59(4)	0.393(17)	0.0265(11)	⁴⁵ Sc	5267.04(7)	0.38(3)	0.0256(20)
45 Sc	1870.06(5)	0.206(13)	0.0139(9)	⁴⁵ Sc	5286.20(8)	0.123(15)	0.0083(10)
⁴⁵ Sc	1885.97(7)	0.090(11)	0.0061(7)	⁴⁵ Sc	5335.89(8)	0.20(3)	0.0135(20)
45 Sc	1900.85(4)	0.274(11)	0.0185(7)	45 Sc	5346.19(10)	0.094(19)	0.0063(13)
⁴⁵ Sc	1913.59(6)	0.077(7)	0.0052(5)	⁴⁵ Sc	5445.75(8)	0.170(19)	0.0115(13)
⁴⁵ Sc	1966.59(8)	0.080(8)	0.0054(5)	⁴⁵ Sc	5481.62(9)	0.142(19)	0.0096(13)
⁴⁵ Sc	1975.36(6)	0.078(8)	0.0053(5)	⁴⁵ Sc	5555.57(10)	0.079(14)	0.0053(9)
⁴⁵ Sc	2005.24(4)	0.351(11)	0.0237(7)	⁴⁵ Sc	5583.82(10)	0.118(16)	0.0080(11)
⁴⁵ Sc	2058.84(9)	0.097(10)	0.0065(7)	⁴⁵ Sc	5624.09(8)	0.198(20)	0.0133(13)
⁴⁵ Sc	2106.25(8)	0.143(11)	0.0096(7)	⁴⁵ Sc	5665.71(9)	0.145(19)	0.0098(13)
⁴⁵ Sc	2110.20(10)	0.117(11)	0.0079(7)	⁴⁵ Sc	5678.79(13)	0.077(16)	0.0052(11)
⁴⁵ Sc	2114.14(6)	0.210(13)	0.0142(9)	⁴⁵ Sc	5743.38(7)	0.184(17)	0.0124(11)
⁴⁵ Sc	2129.69(4)	0.101(10)	0.0068(7)	⁴⁵ Sc	5781.24(15)	0.072(15)	0.0049(10)
⁴⁵ Sc ⁴⁵ Sc	2203.45(13)	0.102(10)	0.0069(7)	⁴⁵ Sc ⁴⁵ Sc	5896.94(8)	0.42(3)	0.0283(20)
⁴⁵ Sc	2243.06(6)	0.110(11)	0.0074(7)	⁴⁵ Sc	5904.31(12)	0.084(17)	0.0057(11)
	2351.59(15)	0.074(9)	0.0050(6)		5977.32(10)	0.075(12)	0.0051(8)
⁴⁵ Sc ⁴⁵ Sc	2362.36(9)	0.085(9)	0.0057(6) 0.0058(6)	⁴⁵ Sc ⁴⁵ Sc	6046.15(9)	0.144(19)	0.0097(13)
45 Sc	2373.41(17)	0.086(9)	()	45 Sc	6055.05(5)	0.265(24)	0.0179(16)
45 Sc	2404.82(7)	0.127(10)	0.0086(7)	45 Sc	6097.64(10)	0.082(12)	0.0055(8)
45 Sc	2410.40(4)	0.087(9)	0.0059(6)	45 Sc	6170.22(4)	0.47(5)	0.032(3)
45 Sc	2477.42(6)	0.145(14)	0.0098(9)	5c 45 Sc	6201.40(13)	0.073(8)	0.0049(5)
45 Sc	2502.20(10) 2635.55(8)	0.082(12) 0.301(15)	0.0055(8) 0.0203(10)	45 Sc	6300.79(8) 6309.27(11)	0.183(25)	0.0123(17) 0.0051(5)
45 Sc	2635.55(8)	` /	` /	45 Sc	6309.27(11)	0.075(8)	` /
45 Sc	2667.03(11) 2693.90(9)	0.127(14) 0.107(14)	0.0086(9) 0.0072(9)	45 Sc	6329.00(13)	0.58(4) 0.185(22)	0.039(3) 0.0125(15)
45 Sc	2693.90(9) 2697.12(8)	0.107(14) 0.084(14)	0.0072(9)	45 Sc	6349.80(4)	0.185(22) 0.53(4)	0.0123(13)
45 Sc	2721.37(16)	0.084(14)	0.0037(9)	45 Sc	6364.43(9)	0.33(4)	0.0080(13)
45 Sc	2721.37(10) 2797.52(10)	0.105(11)	0.0003(3)	45 Sc	6457.68(7)	0.099(14)	0.0067(9)
45 Sc	2991.04(11)	0.103(11)	0.0062(9)	45 Sc	6468.55(13)	0.122(21)	0.0082(14)
45 Sc	2995.96(11)	0.079(13)	0.0053(9)	45 Sc	6507.47(10)	0.122(21)	0.0082(14)
⁴⁵ Sc	3011.73(8)	0.278(19)	0.0187(13)	45 Sc	6557.06(6)	0.384(24)	0.0072(8)
45 Sc	3049.06(7)	0.106(12)	0.0071(8)	45 Sc	6640.96(6)	0.150(23)	0.0101(16)
٠,٠	22.2.00(//	,()		50	32.2.20(0)	,,	

Sec 646-60(40) 0.11312) 0.0076(8) "V 1272-67(3) 0.291(21) 0.00174(11) Sec 616-60(4) 0.0024(11) "V 1322-664(22) 0.047(10) 0.0028(1) Sec 6889-09(4) 0.95(1) 0.0064(3) "V 1322-664(22) 0.047(10) 0.0028(1) Sec 6814-18(7) 0.1251(4) 0.0054(2) "V 1333-23(3) 0.0145(21) 0.00208(1) Sec 7.171-6(7) 0.93(3) 0.0054(2) "V 1333-23(3) 0.0145(21) 0.0034(3) Sec 7.273-38(3) 0.107(12) 0.0034(3) V 1418-791(3) 0.004(4) 0.004(9) Sec 7.273-38(3) 0.007(12) 0.004(12) "V 1418-791(3) 0.004(12) 0.004(12) Sec 7.273-38(3) 0.007(12) 0.006(12) "V 1438-78(23) 0.004(12) 0.004(12) Sec 8.123-16(21) 1.008(4) 0.006(41) "V 1.638-84(18) 0.014(10) 0.004(12) Sec 8.1	^A Z	E ₇ -keV	σ _γ ^z (E _γ)-barns	s k ₀	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	
68 (889.09.04) 0.95(4) 0.064(3) 0.064(3) 0.047(10) 0.072(10) 0.0028(0) 85 (86) 68.74(4) 0.76(11) 0.004(7) 0.7 0.1333.52(3) 0.025(12) 0.0025(12) 85 (2) 67.14(3) 0.30(3) 0.026(3) 0.1 0.1 0.004(12) <td>45 Sc</td> <td>6646.04(6)</td> <td>0.113(12)</td> <td>0.0076(8)</td> <td>⁵¹ V</td> <td>1272.67(3)</td> <td>0.0291(21)</td> <td>0.00173(12)</td>	45 Sc	6646.04(6)	0.113(12)	0.0076(8)	⁵¹ V	1272.67(3)	0.0291(21)	0.00173(12)
**S 6840-34(4) 0.76(1) 0.081/7) 9 V 1322,98(3) 0.0260(2) 0.0005(2) *S 717.74(63) 0.39(3) 0.0005(2) 2 V 1358,49(1) 0.151(5) 0.0009(3) *S 713.33(3) 0.110(1) 0.0004(4) 2 V 1318,49(1) 0.015(1) 0.0004(1) *S 7489,83(3) 0.071(2) 0.0004(2) 4 V 1418,79(15) 0.068(4) 0.040(1) *S 789,83(3) 0.071(2) 0.0004(1) 4 V 1418,79(3) 0.004(1) 0.004(1) *S 7924,84(4) 0.095(8) 0.0024(2) 4 V 1618,72(2) 0.023(1) 0.004(2) *S 815,176(2) 1.04(3) 0.021(2) 4 V 1612,72(2) 0.0014(1) 0.0014(1) *S 8175,176(2) 1.08(4) 0.006(3) 2 V 1634,08(2) 0.032(1) 0.0014(1) *S 8175,16(2) 0.04(2) 0.0034(6) 2 V 1634,08(2) 0.016(4) 0.0014(1) *S 8175,0(3) <td></td> <td>6716.79(4)</td> <td>0.312(22)</td> <td>0.0210(15)</td> <td></td> <td>1307.279(17)</td> <td>0.0410(19)</td> <td>0.00244(11)</td>		6716.79(4)	0.312(22)	0.0210(15)		1307.279(17)	0.0410(19)	0.00244(11)
"SC 6874 [NT] 0.125(14) 0.0034(2) 0.0034(2) 0.1333.2(3) 0.0345(2) 0.004(2) "SC 7148-5(3) 0.39(3) 0.0054(2) 0.1 1.8 1.81(16) 0.009(2) 0.004(2) "SC 7383.3(3) 0.107(12) 0.0052(8) 1.9 1.410.641(16) 0.009(10) 0.004(2) "SC 7353.4(3) 0.007(12) 0.005(18) 0.004(12) 1.9 1.431.0(3) 4.81(10) 0.256(9)*5(1) "SC 7353.4(3) 0.002(1) 0.0032(2) 0.0034(2) 0.0034(2) 0.0039(2) 0.0034(2) 0.0039(2) 0.0032(2) 0.0034(2) 0.0039(2) 0.0034(2) 0.0039(2) 0.0034(2) 0.0034(2) 0.0039(2) 0.0034(2) 0.0039(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0032(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0034(2) 0.0034(2) 0		6839.09(4)	0.95(4)	0.064(3)		1322.664(22)	0.047(10)	0.0028(6)
*S 7117 4(3) 0.30(3) 0.0263(20) 3V 1.016.1(6) 0.0000(3) 0.0000(3) *Sc 7238 58(3) 0.07(12) 0.0052(8) 3V 1.141.0(3) 0.0010(2) 0.0000(3) *Sc 7358 58(3) 0.07(12) 0.0052(8) 3V 1.141.0(3) 0.0054(1) 0.0001(2) *Sc 7352 58(3) 0.0051(8) 0.0054(12) 4V 1.141.0(3) 0.0214(1) *Sc 83153.7(2) 1.80(6) 0.121(4) 3V 1.117.8(25) 0.035(7) 0.0012(4) *Sc 83153.7(3) 0.10(14) 0.008(9) 3V 1.633.08(22) 0.035(9) 0.0012(4) *Sc 8379.35(20) 0.18(16) 0.011(11) 1.V 1.634.08(22) 0.050(9) 0.0037(3) *Sc 8379.85(20) 0.18(16) 0.011(11) 1.V 1.754.31(21) 0.001(4) 0.001(4) *Ti 1.375.04(8) 0.052(9) 0.0034(16) 1.V 1.754.31(21) 0.001(4) 0.0000(4) *Ti 1.375.04(8) <td>⁴⁵ Sc</td> <td>6840.34(4)</td> <td>0.76(11)</td> <td>0.051(7)</td> <td>⁵¹ V</td> <td>1322.98(3)</td> <td>0.0260(21)</td> <td></td>	⁴⁵ Sc	6840.34(4)	0.76(11)	0.051(7)	⁵¹ V	1322.98(3)	0.0260(21)	
68 bc 7233 39(5) 0.101(14) 0.0074(9) % V 1401 641(64) 0.004(64) 0.0040(24) 68 bc 738 58(3) 0.07(12) 0.005(9) % V 1434,10(3) 4.81(10) 0.026(91) 68 bc 7635 84(3) 0.00(3) 0.007(20) % V 1534,834(3) 0.019(5) 68 bc 8132,507(25) 0.48(6) 0.0324(20) % V 1609,220(20) 0.035(17) 0.00214(10) 78 bc 8135,73(4) 0.41(3) 0.027(620) % V 163,688(22) 0.035(17) 0.00214(1) 8 bc 8315,73(4) 0.41(3) 0.027(620) % V 163,688(22) 0.035(17) 0.0013(4) 8 bc 833,122(20) 0.89(4) 0.060(3) % V 163,538(24) 0.020(4) 0.0011(10) 8 bc 852,122(20) 0.89(4) 0.060(1) % V 172,256(20) 0.016(16) 0.0013(1) 8 bc 853,122(20) Activity 850(20) 0.0044(865) % V 177796(10) 0.004(1) 0.0019(1) <	⁴⁵ Sc		0.125(14)	0.0084(9)	⁵¹ V	1333.52(3)	0.0345(21)	
'SS '489.58(3) 0.071(12) 0.0052(8) 3'V 1418.793(15) 0.006(4) 0.0040(12) 'SS '79.24 84(4) 0.095(18) 0.0064(12) "V 1585.843(18) 0.323(8) 0.012(5) 'SS 8125.07(25) 0.83(3) 0.0324(20) "V 160.220(20) 0.035(17) 0.0013(4) 'SS 8175.17(42) 1.80(6) 0.121(4) 0.0014(1) "V 161.17.88(25) 0.035(67) 0.0013(4) 'SS 8.817.37(42) 0.180(4) 0.06(6) "V 163.408(22) 0.035(9) 0.0014(11) "V 163.408(22) 0.039(9) 0.0014(1) 'SS 8.793.80(20) 0.18(16) 0.0114(11) "V 166.192(17) 0.051(24) 0.0009(10) 'SS 8.793.80(20) 0.08(14) 0.0034(5) "V 177.541(20) 0.071(6) 0.0009(6) 'TI 1.3754(8) 0.654(29) 0.0043(5) "V 177.541(20) 0.071(6) 0.001(6) 'TI 1.37534(8) 0.114(10) 0.0024(18) <td>⁴⁵ Sc</td> <td>7117.46(3)</td> <td>0.39(3)</td> <td>0.0263(20)</td> <td></td> <td>1358.498(19)</td> <td>0.151(5)</td> <td>0.0090(3)</td>	⁴⁵ Sc	7117.46(3)	0.39(3)	0.0263(20)		1358.498(19)	0.151(5)	0.0090(3)
Sc 735.8 34(3) 0.093(8) 0.0270(20) "V 138.10(3) 4.81(10) 0.286(91%) Sc 8132.507(25) 0.48(3) 0.0324(20) "V 158.881(3) 0.031(3) 0.00214(10) Sc 8137.76(1) 1.88(6) 0.12(14) "V 115.78(25) 0.032(15) 0.0010(19) Sc 8.13.77(4) 0.48(6) 0.027(20) 3V 163.68(22) 0.010(3) 0.002(14) 0.0013(4) Sc 8.13.57(4) 0.41(4) 0.001(1) 3V 163.58(22) 0.010(4) 0.0013(4) Sc 8.73.58(20) 0.168(16) 0.013(11) 3V 166.04(27) 0.019(4) 0.0019(1) Sc 8.73.58(20) 0.168(16) 0.013(11) 3V 175.78(112) 0.0014(10) 0.0014(10) Tianium (2-22) Attifum (20) 0.0005(18) 0.0013(11) 0.014(11) 0.0014(11) 0.0014(11) 0.0014(11) 0.0014(11) 0.0014(11) 0.0014(11) 0.0014(11) 0.0014(11) 0.0014(11) 0.0014(11) 0.0014(11) <td>⁴⁵ Sc</td> <td>7233.39(5)</td> <td>0.110(14)</td> <td>0.0074(9)</td> <td></td> <td>1401.641(16)</td> <td>0.070(4)</td> <td>0.00416(24)</td>	⁴⁵ Sc	7233.39(5)	0.110(14)	0.0074(9)		1401.641(16)	0.070(4)	0.00416(24)
Sc. 7924 8444 0.095(18) 0.0064(12) 4"V 1588.843(18) 0.234(8) 0.0192(5) Sc. 815.71x(21) 1.80(6) 0.121(4) 3"V 1611.738(25) 0.0236(15) 0.0014(0) Sc. 817.51x(21) 1.80(6) 0.121(4) 0.008(0) 3"V 1621.20(20) 0.83(15) 0.0014(10) Sc. 837.03 (5)(20) 0.161(16) 0.013(11) 2"V 1634.08(22) 0.035(9) 0.0021(41) Sc. 837.92 (800) 0.168(16) 0.013(11) 2"V 1664.192(77) 0.0519(24) 0.0000(0) Sc. 83.52 (800) 0.168(16) 0.013(11) 2"V 1775.431(21) 0.001(16) 0.0000(0) Ti 135.076(14) 0.008(09) 0.0054(15) 2"V 1775.431(21) 0.001(10) 0.001(10) Ti 134.706(5) 1.840(21) 0.1165(13) 3"V 124.532(10) 0.003(15) 0.003(15) Ti 134.706(5) 0.008(14) 0.00399(0) 3"V 214.532(13) 0.14(17)	⁴⁵ Sc		0.077(12)				0.068(4)	0.00405(24)
SS 8132 507(25) 0.48(3) 0.0324(20) "V 1617-8225 0.035(15) 0.001(4) *Sc 813 573(4) 0.41(3) 0.0276(20) "V 162 2.96(25) 0.006(7) 0.00123(4) *Sc 833 033(30) 0.120(4) 0.0081(9) "V 162 2.96(25) 0.006(7) 0.00123(4) *Sc 833 122(20) 0.89(4) 0.060(8) "V 163 5.83(24) 0.020(4) 0.0014(4) *Sc 875 98(00) 0.168(6) 0.064(1) "V 173 5.41(20) 0.0014(4) 0.0014(4) *Ti 1375,04(8) 0.054(29) 0.0034(6) "V 173 5.41(20) 0.0161(6) 0.0016(4) *Ti 1320,076(6) 0.008(9) 0.0034(8) "V 173 7.41(20) 0.0016(1) 0.0004(1) *Ti 133,174(5) 0.110(10) 0.0072(10) "V 2108,55(21) 0.0004(1) 0.0009(1) *Ti 134,174(5) 1.314(1) 0.105(13) "V 2108,55(21) 0.0005(1) 0.0009(1) *	⁴⁵ Sc	7635.84(3)	0.40(3)	0.0270(20)			4.81(10)	0.286[91%]
65 (c) 8175.176(1) 1.89(6) 0.121(4) 21V 1.611.758(25) 0.023(1) 0.00140(4) 85 (c) 8370.363(20) 0.120(14) 0.008(19) 2V 1.634.068(22) 0.0204(4) 0.00123(4) 85 (c) 8375.850(20) 0.168(16) 0.013(11) 2V 1.664.192(17) 0.0019(4) 0.00304(4) 87 (c) 875.850(20) 0.168(16) 0.013(41) 2V 1.732.563(20) 0.016(16) 0.00304(6) 81 (7) 135.934(8) 0.0542(9) 0.0034(6) 2V 1.773.64(10) 0.016(4) 0.0016(4) 81 (7) 135.936(14) 0.0542(9) 0.0034(8) 3V 1.773.64(12) 0.0016(4) 0.0016(4) 81 (7) 341.706(5) 1.840(21) 0.166(13) 0.0034(4) 0.0034(4) 0.0027(4) 0.004(4) 0.007(4) 0.0014(4) 0.007(4) 0.004(4) 0.007(4) 0.004(4) 0.007(4) 0.004(4) 0.007(4) 0.004(4) 0.007(4) 0.004(4) 0.007(4) 0.004(4) 0.007(4) 0.004(4) 0.0034(4	⁴⁵ Sc	7924.84(4)	0.095(18)	0.0064(12)			0.323(8)	0.0192(5)
*Sc 8315.73(4) 0.41(3) 0.0276(20) 8V 1622.95(25) 0.0204(1) 0.0012(4) *Sc 8432.122(20) 0.89(4) 0.060(3) 2V 1635.38(24) 0.0012(4) 0.0013(4) *Sc 8759.85(20) 0.16(10) 0.113(11) 2V 1635.38(24) 0.0019(24) 0.0039(14) *Sc 8759.85(20) 0.16(10) 0.0113(1) 2V 1635.38(22) 0.0019(24) 0.0039(14) *Ti 153.75(41) 0.0098(0) 0.0034(6) 2V 1777.5431(21) 0.01(10) 0.0016(4) *Ti 153.75(41) 0.0098(0) 0.0054(56) 3V 1777.5431(21) 0.057(25) 0.0016(15) *Ti 133.75(41) 0.008(0) 0.0054(15) 3V 100.74(11) 0.067(25) 0.0016(15) *Ti 133.15(6) 0.030(14) 0.0057(21) 0.0054(15) 3V 2.003.74(11) 0.0027(10) *Ti 134.75(5) 5.18(12) 3.28(8) 3V 2.105.85(18) 0.104(12) 0.0032(11)		8132.507(25)	0.48(3)	0.0324(20)	$^{50}\mathrm{V}$, ,
*Sc 8470.363(20) 0.120(14) 0.0081(9) 9 V 1634 068(22) 0.059(19) 0.00214(11) *Sc 831212(20) 0.89(4) 0.060(3) 3 V 1634 082(21) 0.030(4) 0.0030(1) *Sc 8759,850(20) 0.18(16) 0.0113(11) 3 V 1664 192(17) 0.051(24) 0.0009(10) *Ti 1375(8) 0.052(9) 0.0034(36) 3 V 1777.5431(21) 0.016(16) 0.0006(10) *Ti 159.376(14) 0.0090(8) 0.0063(15) 3 V 1777.5431(21) 0.0007(21) 0.010(8) *Ti 131.706(5) 1.840(21) 0.1165(13) 1 V 1295.964(14) 0.033(11) 0.0012(11) *Ti 131.736(5) 1.840(21) 0.1165(13) 1 V 2109.355(52)(14) 0.0012(11) *Ti 141.1381(745) 5.18(12) 0.328(8) 1 V 2108.364(14) 0.023(17) 0.0012(11) *Ti 1438,745(5) 5.18(12) 0.328(8) 1 V 214.134(21) 0.0015(11) 0.003(11) 0.003(11) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
6'Sc 8321.12(20) 0.89(4) 0.666(3) 21 V 1635.88(24) 0.0019(24) 0.0019(34) Titanium (Z=22), ALMX =47.867(1), of =6.08(19) 1 V 1732.54(20) 0.019(124) 0.0039(14) # Ti 137.54(18) 0.054(20) 0.0343(6) 2 V 1775.541(21) 0.0016(14) # Ti 139.54(18) 0.054(20) 0.0034(6) 2 V 1775.541(21) 0.0016(14) # Ti 131.50(18) 0.0086(9) 0.0054(86) 3 V 1775.341(21) 0.0017(15) 0.0017(15) # Ti 320.076(6) 0.0086(9) 0.0054(16) 3 V 2020.749(18) 0.0214(17) 0.0127(10) # Ti 331.13(6) 0.014(1) 0.00722(11) 3 V 200.85(6) 0.023(11) 0.0029(11) # Ti 131.54(55) 5.18.10 0.328(8) 3 V 2145.82(81) 0.14(14) 0.0039(14) # Ti 1498.663(7) 0.297(5) 0.018(3) 3 V 2416.82(81) 0.14(21) 0.005(14) # Ti 1498.663(7) 0.			* *					
e9 Sc 8759 839(20) 0.18×1(6) 0.0113x(1) 3° V 16c4 1992(17) 0.0519(24) 0.00090(14) 4° Ti 137.504(8) 0.0542(9) 0.00343(6) 3° V 1775.431(21) 0.027(6) 0.0016(14) 4° Ti 137.504(8) 0.0542(9) 0.00054(8) 3° V 1777.961(19) 0.169(13) 0.0118(8) 3° Ti 320.70(6) 0.0808(9) 0.0054(8) 3° V 1925.2964(14) 0.067(12) 0.00003(15) 3° Ti 33.07(6) 1.840(21) 0.1165(13) 3° V 2020.749(18) 0.0214(17) 0.0012(10) 5° Ti 33.17(4) 0.11d(16) 0.0039(9) 3° V 2100.808(14) 0.0339(19) 0.0022(11) 6° Ti 1121.130(6) 0.050(14) 0.0039(9) 3° V 2145.826(18) 0.166(12) 0.0013(14) 4° Ti 1381.745(5) 5.18(12) 0.328(8) 3° V 2146.826(18) 0.0015(12) 0.0015(11) 4° Ti 1385.745(8) 0.9067(22) 0.00612(14) 3° V 2410.345(21) 0.001								
Titanium (Z=2Z), At Wit.=47.867(1), 67 =6.08(19)			` '					
ST 137.504(8)	45 Sc	8759.850(20)	0.168(16)	0.0113(11)			` /	
σ+11 159.376(14) 0.0090(8) 0.00057(5) 8 V 1777.96(14) 0.01(3) 0.010(8) σ+17 320.076(6)d 0.0086(9) 0.00534[86%] 3 V 1952.964(14) 0.0677(25) 0.0020(17) 0.0020(17) σ+17 341.70(6) 1.840(21) 0.1166(13) 3 V 2020.749(18) 0.0214(17) 0.00127(10) σ+17 341.70(6) 0.060(30)(14) 0.0033(14) 0.0023(15) 0.0012(12) σ+17 131.213(6) 0.060(30)(14) 0.0033(24) 0.014(14) 0.0233(15) 0.0014(14) 0.0233(15) 0.0014(14) 0.0233(17) 0.0014(10) σ+17 131.74(56) 5.18(12) 0.328(8) 3 V 216.858(18) 0.016(12) 0.0009(17) 0.0118(10) σ+17 135.73(66) 0.067(22) 0.0016(12) 3 V 2410.436(21) 0.0033(10) 0.018(12) σ+11 158.59.41(5) 6.24(8) 0.0395(5) 3 V 284.64(3) 0.033(10) 0.018(12) σ+11 158.59.41(6) 6.24(8) 0.035(8) <td></td> <td></td> <td>2), <i>At.Wt.</i>=47.86</td> <td>$7(1), \sigma_{\gamma}^{z} = 6.08(19)$</td> <td></td> <td></td> <td></td> <td></td>			2), <i>At.Wt.</i> =47.86	$7(1), \sigma_{\gamma}^{z} = 6.08(19)$				
Section Sect			0.0542(9)	0.00343(6)			` /	
			0.0090(8)	0.00057(5)			` /	
ST ST ST ST ST ST ST ST		320.076(6)d	0.00860(9)	0.000544[86%]		` /		1 /
			1.840(21)	0.1165(13)		` /		
			0.1140(16)	0.00722(10)		` /	` /	
18 1381,745(5) 5.18(12) 0.328(8) 3 V 216S.89V(18) 0.0166(12) 0.00099(7) 18 17 1498,663(7) 0.297(5) 0.0188(3) 3 V 2410.436(21) 0.0253(17) 0.00151(10) 19 11 1885.941(5) 0.624(8) 0.0095(5) 5 V 2241.84(3) 0.0133(19) 0.00198(11) 18 17 1885.941(5) 0.624(8) 0.00332(10) 5 V 2302.64(4) 0.00332(10) 0.00184(12) 18 17 1761.974(7) 0.311(4) 0.01969(25) 3 V 3032.64(4) 0.0306(18) 0.00182(11) 18 17 1793.476(8) 0.1530(24) 0.00569(15) 3 V 3579.80(3) 0.0243(2) 0.00182(11) 18 17 1793.476(8) 0.1530(24) 0.00569(15) 3 V 3577.98(3) 0.0271(20) 0.00161(12) 18 17 2836.9(7) 0.055(12) 0.0035(8) 3 V 3779.80(3) 0.0256(21) 0.00152(12) 18 17 2836.9(7) 0.055(12) 0.0035(8) 3 V 4158.2(13) 0.0956(21) 0.00152(12) 18 17 3026.704(20) 0.145(3) 0.00889(11) 3 V 4158.2(13) 0.094(4) 0.00559(24) 18 17 3027.077 0.13(3) 0.0082(19) 3 V 4452.20(3) 0.050(10) 0.0030(6) 18 17 3733.627(20) 0.0873(25) 0.00553(16) 3 V 4772.17(3) 0.018(6) 0.0011(12) 18 17 3733.627(20) 0.0873(25) 0.00553(16) 3 V 4772.17(3) 0.018(6) 0.0011(14) 18 17 3733.627(20) 0.0873(25) 0.00531(16) 3 V 4772.17(3) 0.018(6) 0.0011(14) 18 17 4713.859(25) 0.0661(21) 0.00418(13) 3 V 5752.64(22) 0.073(4) 0.0043(24) 18 17 4966.802(15) 0.196(5) 0.0124(3) 3 V 5718.83(24) 0.019(3) 0.0011(18) 18 17 4966.802(15) 0.196(5) 0.0124(3) 3 V 5718.83(24) 0.019(3) 0.0011(18) 18 17 4966.802(15) 0.196(5) 0.0124(3) 3 V 5752.064(22) 0.366(24) 0.0054(24) 18 17 4966.802(15) 0.196(5) 0.0124(3) 3 V 5718.83(24) 0.019(3) 0.0011(18) 18 17 4966.802(15) 0.196(5) 0.0148(1) 3 V 5718.83(24) 0.019(5) 0.0054(24) 18 17 4966.802(15) 0.196(5) 0.0148(1) 3 V 5718.83(24) 0.019(5) 0.0054(24)			0.0630(14)	0.00399(9)		. ,	\ /	1 /
198.663(7) 0.297(5) 0.0188(3) 9 V 2410.436(21) 0.0253(17) 0.00151(10) 19		1166.6(4)	3.90E-03		51 V		()	` /
***Ti 1553.786(6) 0.0967(22) 0.00612(14) ***JT 1585.941(5) 0.624(8) 0.0995(5) ***JV 2422.18(3) 0.0132(19) 0.00198(11) ***JT 1585.941(5) 0.624(8) 0.0935(10) ***JV 3032.60(9) 0.0249(20) 0.00184(12) ***JT 1589.282(10) 0.00524(16) 0.00332(10) ***JV 3032.60(9) 0.0249(20) 0.00148(12) ***JT 1793.476(8) 0.1530(24) 0.00969(15) ***JV 3502.64(4) 0.0306(18) 0.00148(12) ***JT 1793.476(8) 0.1530(24) 0.00969(15) ***JV 3502.64(4) 0.0306(18) 0.00148(12) ***JT 1793.476(8) 0.1530(24) 0.00969(15) ***JV 3502.64(4) 0.0306(18) 0.00148(12) ***JT 1893.67(7) 0.055(12) 0.0035(8) ***JV 3577.98(3) 0.0271(20) 0.00145(12) ***JT 1893.07(3) 0.051(12) 0.0035(8) ***JV 3715.86(3) 0.0254(21) 0.00152(12) ***JT 1893.07(3) 0.054(18) 0.00389(11) ***JV 4716.821(23) 0.094(4) 0.00559(24) ***JT 1893.07(3) 0.0614(18) 0.00389(11) ***JV 4452.20(3) 0.094(4) 0.00559(24) ***JT 1892.07(7) 0.13(3) 0.0082(19) ***JV 4452.20(3) 0.0501(10) 0.0030(6) ***JT 1892.07(7) 0.13(3) 0.0082(19) ***JV 4452.20(3) 0.0187(20) 0.0011(12) ***JT 1892.07(7) 0.13(3) 0.0082(19) ***JV 4488.37(32) 0.0187(20) 0.0011(12) ***JT 1892.07(7) 0.13(3) 0.0082(19) ***JV 4488.37(32) 0.0186(6) 0.0011(4) ***JT 1892.07(7) 0.13(3) 0.0082(19) ***JV 4772.17(3) 0.0186(6) 0.0011(12) ***JT 1892.07(7) 0.13(3) 0.0082(19) ***JV 4883.37(24) 0.073(4) 0.0034(24) ***JT 1892.07(4) 0.00389(23) 0.00531(15) ***JV 4883.37(24) 0.073(4) 0.0034(24) ***JT 1892.07(4) 0.00389(23) 0.00531(15) ***JV 4883.39(15) 0.308(7) 0.00114(18) ***JT 1892.07(4) 0.00418(13) **JT 1892.07(4) 0.00418(13) **JV 1892.07(4) 0.00418(14) 0.00418(14) **JV 1892.07(4) 0.00418(14) 0.00418(14) **JV 1892.07(4) 0.00418(14) 0.00418(14) 0.00418(14) 0.00418(14) 0.00418(14) 0.00418(14) 0.00418(14) 0.00418(14) 0.00418(14) 0.00418(14) 0.00418(14) 0.00418(14) 0.	⁴⁸ Ti		5.18(12)	0.328(8)			()	
## Ti 1585.941(5)			0.297(5)	0.0188(3)	51 V	` /	` /	
1589 282(10) 0.0524(16) 0.00332(10) 31 V 3032.60(9) 0.0249(20) 0.00148(12)		1553.786(6)	0.0967(22)	0.00612(14)	51 V	\ /	\ /	
## Ti 1761.974(7) 0.311(4) 0.01969(2S)	⁴⁸ Ti	. ,	` '	` /				
Ti 1793.476(8) 0.1530(24) 0.00969(15) **IV 3534.07(3) 0.0243(21) 0.00145(12) **IT 2836.1(7) 0.055(12) 0.0035(8) **IV 3577.98(3) 0.0271(20) 0.00161(12) **IT 2836.1(7) 0.055(12) 0.0035(8) **IV 3577.98(3) 0.0271(20) 0.00161(12) **IT 2943.07(3) 0.0614(18) 0.00389(11) **IV 4116.821(23) 0.0944(4) 0.00559(24) **IT 3026.704(20) 0.145(3) 0.00918(19) **IV 4452.20(3) 0.050(10) 0.0030(6) **IT 3027.0(7) 0.13(3) 0.0082(19) **IV 4452.20(3) 0.050(10) 0.0030(6) **IT 3027.0(7) 0.13(3) 0.0082(19) **IV 4452.20(3) 0.0187(20) 0.00111(12) **IT 3733.627(20) 0.0873(25) 0.00553(16) **IV 4772.17(3) 0.018(6) 0.00111(2) **IT 3920.404(22) 0.0839(23) 0.00531(15) **IV 4992.94(4) 0.073(4) 0.00434(24) **IT 3920.404(22) 0.0839(23) 0.00531(15) **IV 4992.94(4) 0.073(4) 0.00434(24) **IT 3920.404(22) 0.0839(23) 0.00531(15) **IV 4992.94(4) 0.073(4) 0.00434(24) **IT 3920.404(22) 0.0839(23) 0.00531(15) **IV 4992.94(4) 0.073(4) 0.00114(18) **IT 4713.859(25) 0.0661(21) 0.00418(13) **IV 5142.363(23) 0.200(6) 0.0119(4) *IT 4981.3594(15) 0.308(7) 0.0155(4) **IV 5142.363(23) 0.200(6) 0.0119(4) ***IT 4981.3594(15) 0.308(7) 0.0154(4) **IV 5515.813(23) 0.39(4) 0.0232(24) ***IT 4966.802(15) 0.196(5) 0.124(3) **IV 5515.813(23) 0.39(4) 0.0232(24) ***IT 4684.840(14) 1.96(6) 0.124(4) **IV 5752.064(22) 0.366(24) 0.00113(18) ***IT 6555.911(14) 0.334(8) 0.0211(5) **IV 5752.064(22) 0.366(24) 0.00113(18) ***IT 6555.911(14) 0.334(8) 0.0211(5) **IV 5752.064(22) 0.366(24) 0.00113(18) ***IT 6555.911(14) 0.334(8) 0.0211(5) **IV 7787.96(115) 0.094(1) 0.0015(4) ***IV 17.152(6) 0.260(20) 0.0155(12) **IV 17.152(6) 0.260(20) 0.0155(12) **IV 6517.289(15) 0.094(4) 0.0351(24) ***IV 17.152(6) 0.236(5) 0.0114(3) **IV 7787.96(115) 0.056(4) 0.0333(24) ***IV 17.152(6) 0.236(5) 0.0114(3) **IV 7787.96(115) 0.056(4) 0.0333(24) ***IV 17.152(6) 0.236(5) 0.0114(3) **IV 7787.96(115) 0.056(4) 0.0033(24) ***IV 17.152(6) 0.236(5) 0.0114(3) **IV 7787.96(115) 0.056(4) 0.0033(2) ***IV 49.455(13) 0.297(9) 0.0135(5) ***IV 49.455(13) 0.297(9) 0.0135(5) ***IV 49.456(13) 0.297(19) 0.0597(23) 0.0015(14)				. ,		\ /	\ /	` /
***Ti			\ /	\ /				1 /
## Ti 2836.9(7) 0.055(12) 0.0035(8) 51 V 3715.86(3) 0.0256(21) 0.00152(12) ## Ti 2943.07(3) 0.0614(18) 0.00389(11) 51 V 4116.821(23) 0.094(4) 0.00559(24) ## Ti 2943.07(3) 0.0614(18) 0.00389(11) 51 V 4452.20(3) 0.090(4) 0.00359(24) ## Ti 3027.0(7) 0.13(3) 0.0082(19) 51 V 4486.46(3) 0.0187(20) 0.00111(12) ## Ti 3475.58(3) 0.1020(25) 0.00646(16) 51 V 4772.17(3) 0.018(6) 0.0011(4) ## Ti 3373.627(20) 0.0873(25) 0.00553(16) 51 V 4883.379(24) 0.073(4) 0.00434(24) ## Ti 3920.404(22) 0.0839(23) 0.00531(15) 51 V 4992.94(4) 0.036(3) 0.00214(18) ## Ti 3923.4(7) 0.13(3) 0.0082(19) 51 V 5142.363(23) 0.200(6) 0.0119(4) ## Ti 4713.859(25) 0.0661(21) 0.00418(13) 51 V 5210.143(19) 0.244(20) 0.0145(12) ## Ti 4881.394(15) 0.308(7) 0.0195(4) 51 V 5513.38(24) 0.027(3) 0.00161(18) ## Ti 4866.802(15) 0.196(5) 0.0124(3) 51 V 5551.32(3) 0.097(3) 0.00161(18) ## Ti 6468.426(14) 1.96(6) 0.124(4) 51 V 5578.358(24) 0.019(3) 0.00113(18) ## Ti 6468.426(14) 0.334(8) 0.0211(5) 51 V 5752.064(22) 0.366(24) 0.0218(14) ## Ti 676.084(14) 2.97(9) 0.188(6) 51 V 5752.064(22) 0.366(24) 0.0218(14) ## Ti 676.084(14) 0.334(8) 0.0211(5) 51 V 5752.064(22) 0.366(24) 0.0218(14) ## Ti 676.084(14) 0.345(8) 0.0015(12) 51 V 6617.282(19) 0.78(4) 0.0464(24) ## Ti 676.084(14) 0.29(9) 0.188(6) 51 V 5752.064(22) 0.366(24) 0.0218(14) ## Ti 676.084(14) 0.34(8) 0.0015(12) 51 V 6646.887(18) 0.43(4) 0.0256(24) ## V 17.152(6) 0.260(20) 0.0155(12) 51 V 6617.282(19) 0.78(4) 0.0464(24) ## V 22.764(3) 0.0700(20) 0.00416(12) 51 V 728.796(15) 0.056(4) 0.0033(24) ## V 17.152(6) 0.260(20) 0.0155(12) 51 V 6617.282(19) 0.49(6) 0.0029(4) ## V 17.152(6) 0.260(20) 0.0155(12) 51 V 729.57(16) 0.095(3) ## V 29.50.23(14) 0.164(4) 0.00976(24) 51 V 729.57(16) 0.095(5) 0.0035(3) ## V 22.764(3) 0.769(17) 0.045(71) 52 Cr 564.05(12) 0.1130(20) 0.0055(12) ## V 33.48(13) 0.299(6) 0.0148(1) 51 V 729.57(16) 0.099(6) 0.0033(24) ## V 17.152(6) 0.099(10) 0.005(6) 51 V 729.57(16) 0.099(10) 0.0065(12) ## V 33.48(13) 0.299(6) 0.0148(1) 51 V 729.57(16) 0.099(10) 0.0065(12) ## V 33.54(13) 0.099(5				. ,				
## Ti				* *				
** Ti 302.6.704(20) 0.145(3) 0.0093(19) 51 V 4452.20(3) 0.050(10) 0.0030(6) *** Ti 3027.0(7) 0.13(3) 0.0082(19) 51 V 4486.46(3) 0.0187(20) 0.00111(12) *** Ti 3475.58(3) 0.1020(25) 0.00646(16) 51 V 4772.17(3) 0.108(6) 0.0011(4) *** Ti 3733.627(20) 0.0873(25) 0.00553(16) 51 V 4883.379(24) 0.073(4) 0.00434(24) *** Ti 3920.404(22) 0.0839(23) 0.00531(15) 51 V 4992.94(4) 0.036(3) 0.00214(18) *** Ti 3923.4(7) 0.13(3) 0.0082(19) 51 V 5142.36(23) 0.200(6) 0.0119(4) *** Ti 3923.4(7) 0.13(3) 0.0082(19) 51 V 5142.36(23) 0.200(6) 0.0119(4) *** Ti 4713.859(25) 0.0661(21) 0.00418(13) 51 V 5210.143(19) 0.244(20) 0.0145(12) *** Ti 4881.394(15) 0.308(7) 0.0195(4) 51 V 5515.813(23) 0.399(4) 0.0232(24) *** Ti 4966.802(15) 0.196(5) 0.0124(3) 51 V 5551.388(24) 0.019(3) 0.00113(18) *** Ti 6418.426(14) 1.96(6) 0.124(4) 51 V 5578.358(24) 0.019(3) 0.00113(18) *** Ti 6760.084(14) 2.97(9) 0.188(6) 51 V 5752.064(22) 0.366(24) 0.0218(14) *** Ti 6760.084(14) 2.97(9) 0.188(6) 51 V 5752.064(22) 0.366(24) 0.0218(14) *** Ti 6760.084(14) 2.97(9) 0.0155(12) 51 V 6846.4887(18) 0.43(4) 0.0256(24) 51 V 17.152(6) 0.260(20) 0.0155(12) 51 V 6847.887(18) 0.43(4) 0.0256(24) 51 V 17.152(6) 0.260(20) 0.0155(12) 51 V 6874.157(19) 0.949(6) 0.029(4) 51 V 124.453(4) 0.23(5) 0.014(3) 51 V 7287.961(15) 0.056(4) 0.0033(24) 51 V 125.082(3) 1.61(4) 0.0958(24) 51 V 7287.961(15) 0.056(4) 0.0033(24) 51 V 125.082(3) 1.61(4) 0.0958(24) 51 V 7293.5721(6) 0.089(5) 0.0053(3) 51 V 295.023(14) 0.164(4) 0.0097(24) 51 V 7287.961(15) 0.056(4) 0.0033(24) 51 V 464.570(31) 0.259(6) 0.0148(4)				. ,				
** Ti 3027.0(7) 0.13(3) 0.0082(19) \$1 V 4486.46(3) 0.0187(20) 0.00111(12) \$1 V 4772.17(3) 0.018(6) 0.0011(4) \$1 V 4783.379(24) 0.073(4) 0.0043(24) \$1 V 5112.363(23) 0.006(6) 0.0119(4) \$1 V 5112.363(23) 0.006(6) 0.0119(4) \$1 V 5112.363(23) 0.006(6) 0.0119(4) \$1 V 5112.363(23) 0.0006(6) 0.0119(4) \$1 V 5112.363(23) 0.006(6) 0.0119(4) \$1 V 5112.363(23) 0.006(6) 0.0119(4) \$1 V 5112.363(23) 0.009(6) 0.00113(18) \$1 V 5112.363(23) 0.009(6) 0.009(6) \$1 V 5112.363(23) 0.009(6) 0.009(6) \$1 V 5112.363(23) 0.009(6) 0.009(6) \$1 V 7112.363(23) 0.009(6) 0.009(6) \$1 V 7112.363(` /	
## Ti				, ,			` /	
## Ti 3733.627(20) 0.0873(25) 0.00553(16)	48 T1		` /	` /				
** Ti 3920,404(22) 0.0839(23) 0.00531(15)				. ,				
18 Ti 3923.4(7) 0.13(3) 0.0082(19) 51 V 5142.363(23) 0.200(6) 0.0115(4) 18 Ti 4713.859(25) 0.0661(21) 0.00418(13) 51 V 5210.143(19) 0.244(20) 0.0145(12) 18 Ti 4881.394(15) 0.308(7) 0.0195(4) 51 V 5515.312(3) 0.39(4) 0.0232(24) 18 Ti 4966.802(15) 0.196(5) 0.0124(3) 51 V 5551.32(3) 0.027(3) 0.00161(18) 18 Ti 6418.426(14) 1.96(6) 0.124(4) 51 V 5551.32(3) 0.027(3) 0.00161(18) 18 Ti 6418.426(14) 1.96(6) 0.124(4) 51 V 5578.358(24) 0.019(3) 0.00113(18) 18 Ti 6418.426(14) 1.96(6) 0.124(4) 51 V 5578.358(24) 0.019(3) 0.00113(18) 18 Ti 6555.911(14) 0.334(8) 0.0211(5) 51 V 5752.064(22) 0.366(24) 0.0218(14) 18 Ti 6760.084(14) 2.97(9) 0.188(6) 51 V 5892.101(20) 0.126(7) 0.0075(4) 19 Vanadium (Z=23) At.Wt.=50.9415(1) σ_t^2 =4.96(4) 51 V 6874.157(19) 0.49(6) 0.0256(24) 51 V 17.152(6) 0.260(20) 0.00416(12) 51 V 6874.157(19) 0.49(6) 0.029(4) 51 V 124.453(4) 0.23(5) 0.014(3) 51 V 7162.898(15) 0.59(4) 0.0351(24) 51 V 124.453(4) 0.23(5) 0.014(3) 51 V 7287.961(15) 0.056(4) 0.00333(24) 51 V 124.846(3) 0.253(6) 0.0151(4) 51 V 7293.572(16) 0.089(5) 0.0053(3) 51 V 419.475(13) 0.249(6) 0.0148(4) 0.00724(24) 51 V 7310.721(15) 0.227(9) 0.0135(5) 51 V 436.627(13) 0.397(9) 0.035(5) 52 Cr 564.05(12) 0.1130(20) 0.00659(12) 51 V 682.031(17) 0.0180(10) 0.00107(6) 50 Cr 749.09(3) 0.569(9) 0.0332(5) 51 V 682.031(17) 0.0180(10) 0.00107(6) 50 Cr 834.849(22) 1.38(3) 0.0804(17) 51 V 793.546(13) 0.199(5) 0.0118(3) 50 Cr 149.83(3) 0.0214(4) 0.001247(23) 51 V 886.631(21) 0.017(17) 0.00102(4) 51 Cr 1898.90(3) 0.014(4) 0.001247(23) 51 V 886.631(21) 0.0651(21) 0.00387(12) 50 Cr 1898.90(0) 0.0545(14) 0.00				. ,			` /	
48 Ti 4713.859(25) 0.0661(21) 0.00418(13) 51 V 5210.143(19) 0.244(20) 0.0145(12) 48 Ti 4881.394(15) 0.308(7) 0.0195(4) 51 V 5515.813(23) 0.39(4) 0.0232(24) 48 Ti 4966.802(15) 0.196(5) 0.0124(3) 51 V 5551.32(3) 0.027(3) 0.00161(18) 48 Ti 6418.426(14) 1.96(6) 0.124(4) 51 V 5578.358(24) 0.019(3) 0.00113(18) 48 Ti 6555.911(14) 0.334(8) 0.0211(5) 51 V 5752.064(22) 0.366(24) 0.0218(14) 48 Ti 6760.084(14) 2.97(9) 0.188(6) 51 V 5892.101(20) 0.126(7) 0.0075(4) Vanadium (Z=23), At.Wt.=50.9415(1), στ = 4.96(4) 51 V 6464.887(18) 0.43(4) 0.0256(24) 51 V 17.152(6) 0.260(20) 0.0155(12) 51 V 6517.282(19) 0.78(4) 0.0464(24) 51 V 124.453(4) 0.23(5) 0.014(3) 51 V 7162.898(15) 0.59(4) 0.0351(24) 51 V 124.453(4) 0.23(5) 0.014(3) 51 V 7287.961(15) 0.056(4) 0.0333(24) 51 V 124.453(4) 0.23(6) 0.0151(4) 51 V 7287.961(15) 0.056(4) 0.00333(24) 51 V 147.846(3) 0.253(6) 0.0151(4) 51 V 7293.572(16) 0.089(5) 0.0053(3) 51 V 295.023(14) 0.164(4) 0.00976(24) 51 V 7293.572(16) 0.089(5) 0.0053(3) 51 V 419.475(13) 0.249(6) 0.0148(4)				* /			` /	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		` /	* *	\ /				
48 Ti 4966.802(15) 0.196(5) 0.0124(3) 48 Ti 4966.802(15) 0.196(5) 0.0124(4) 51 V 5578.358(24) 0.019(3) 0.00113(18) 48 Ti 6418.426(14) 1.96(6) 0.124(4) 52 V 5578.358(24) 0.019(3) 0.00113(18) 48 Ti 6555.911(14) 0.334(8) 0.0211(5) 51 V 5752.064(22) 0.366(24) 0.0218(14) 48 Ti 6760.084(14) 2.97(9) 0.188(6) 52 V 5892.101(20) 0.126(7) 0.0075(4) 53 V 6464.887(18) 0.43(4) 0.0256(24) 54 V 17.152(6) 0.260(20) 0.0155(12) 55 V 22.764(3) 0.0700(20) 0.00416(12) 56 V 124.453(4) 0.23(5) 0.014(3) 57 V 7162.898(15) 0.59(4) 0.0351(24) 58 V 125.082(3) 1.61(4) 0.0958(24) 59 V 127.802(3) 1.64(4) 0.0958(24) 51 V 127.846(3) 0.253(6) 0.0151(4) 51 V 295.023(14) 0.164(4) 0.00976(24) 51 V 419.475(13) 0.249(6) 0.0148(4) 51 V 419.475(13) 0.249(6) 0.0148(4) 51 V 682.031(17) 0.0180(10) 0.00107(6) 51 V 682.031(17) 0.0180(10) 0.00107(6) 51 V 698.104(13) 0.049(4) 0.00291(24) 51 V 712.907(19) 0.0597(23) 0.00355(14) 51 V 7287.961(22) 0.1130(20) 0.00659(12) 51 V 886.631(21) 0.019(5) 0.0118(3) 51 V 712.907(19) 0.0597(23) 0.00355(14) 51 V 886.631(21) 0.017(7) 0.00102(4) 51 V 886.631(21) 0.017(7) 0.00102(4) 51 V 886.631(21) 0.017(7) 0.00102(4) 51 V 886.631(21) 0.017(7) 0.0183(10) 51 V 886.631(21) 0.017(7) 0.0183(10) 51 V 886.631(21) 0.017(7) 0.0183(10) 51 V 1001.583(21) 0.0651(21) 0.00387(12) 51 V 1001.583(21) 0.0651(21) 0.00387(12) 51 V 127.0951(15) 0.022(5) 0.0013(3)				, ,				
** Ti 6418.426(14) 1.96(6) 0.124(4) 51 V 5578.358(24) 0.019(3) 0.00113(18) 648 Ti 6555.911(14) 0.334(8) 0.0211(5) 51 V 5752.064(22) 0.366(24) 0.0218(14) 6760.084(14) 2.97(9) 0.188(6) 51 V 5892.101(20) 0.126(7) 0.0075(4) 70.0013 10 10 10 10 10 10 10 10 10 10 10 10 10		` '						
** Ti	48 TC:	` ′			51 V			
**Ti 6760.084(14) 2.97(9) 0.188(6) \$^{51}\$V 5892.101(20) 0.126(7) 0.0075(4) \$^{51}\$V 17.152(6) 0.260(20) 0.0155(12) \$^{51}\$V 6674.157(19) 0.49(6) 0.029(4) \$^{51}\$V 124.453(4) 0.23(5) 0.014(3) \$^{51}\$V 7287.961(15) 0.056(4) 0.00333(24) \$^{51}\$V 147.846(3) 0.253(6) 0.0151(4) \$^{51}\$V 295.023(14) 0.164(4) 0.00976(24) \$^{51}\$V 310.721(15) 0.227(9) 0.0135(5) \$^{51}\$V 436.627(13) 0.397(9) 0.0236(5) \$^{50}\$Cr 27.97(7) 0.124(4) 0.00723(23) \$^{51}\$V 682.031(17) 0.0180(10) 0.00107(6) \$^{50}\$Cr 749.09(3) 0.569(9) 0.0332(5) \$^{51}\$V 793.546(13) 0.049(4) 0.00291(24) \$^{51}\$V 793.546(13) 0.199(5) 0.018(3) \$^{51}\$V 793.546(13) 0.320(8) 0.0190(5) \$^{50}\$Cr 1149.83(3) 0.0214(4) 0.001247(23) \$^{51}\$V 886.631(21) 0.017(17) 0.00102(4) \$^{51}\$V 882.184(13) 0.320(8) 0.0190(5) \$^{50}\$Cr 1241.33(7) 0.0180(10) 0.00116(6) \$^{50}\$Cr 1898.90(3) 0.0852(21) 0.00087(12) \$^{51}\$V 882.185(17) 0.0307(17) 0.00183(10) \$^{50}\$Cr 1898.90(3) 0.0852(21) 0.00082(3) \$^{51}\$V 982.175(19) 0.0337(17) 0.00183(10) \$^{50}\$Cr 1898.90(3) 0.0852(21) 0.00497(12) \$^{51}\$V 125.4878(17) 0.025(13) 0.0013(8) \$^{50}\$Cr 1994.52(6) 0.054(14) 0.001247(23) \$^{51}\$V 125.4878(17) 0.025(13) 0.0013(8) \$^{50}\$Cr 1994.52(6) 0.054(14) 0.001247(23) \$^{51}\$V 125.4878(17) 0.025(13) 0.0013(8) \$^{50}\$Cr 1994.52(6) 0.054(14) 0.00497(12) \$^{51}\$V 125.4878(17) 0.025(13) 0.0013(8) \$^{50}\$Cr 1994.52(6) 0.054(14) 0.001247(23) \$^{51}\$V 125.4878(17) 0.025(13) 0.0013(8) \$^{50}\$Cr 1994.52(6) 0.0545(14) 0.00318(8) \$^{51}\$V 1270.951(15) 0.022(5) 0.0013(3) \$^{50}\$Cr 2001.05(5) 0.0019(10) 0.00116(6)								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Si V 17.152(6) 0.260(20) 0.0155(12) 51 V 6517.282(19) 0.78(4) 0.0464(24)	11	` ′	` '	* *				` /
Si V 22.764(3) 0.0700(20) 0.00416(12) 51 V 7162.898(15) 0.59(4) 0.0351(24)	51 x z							. ,
124.453(4) 0.23(5) 0.00416(12) 51 V 7162.898(15) 0.59(4) 0.0351(24) 125.082(3) 1.61(4) 0.0958(24) 51 V 7287.961(15) 0.056(4) 0.00333(24) 147.846(3) 0.253(6) 0.0151(4) 51 V 7293.572(16) 0.089(5) 0.0053(3) 149.475(13) 0.249(6) 0.0148(4) 0.00976(24) 0.00331(17) 15			` /	` '	⁵¹ V		()	
v 124.435(4) 0.23(5) 0.014(5) 51 V 7287.961(15) 0.056(4) 0.0033(24) 51 V 125.082(3) 1.61(4) 0.0958(24) 51 V 7287.961(15) 0.089(5) 0.0033(24) 51 V 147.846(3) 0.253(6) 0.0151(4) 51 V 7293.572(16) 0.089(5) 0.0053(3) 51 V 295.023(14) 0.164(4) 0.00976(24) 51 V 7310.721(15) 0.227(9) 0.0135(5) 51 V 419.475(13) 0.249(6) 0.0148(4) Chromium (Z=24), At.Wt.=51.9961(6), σ _x ² = 3.07(15) 51 V 436.627(13) 0.397(9) 0.0236(5) 50 Cr 27.97(7) 0.124(4) 0.00723(23) 51 V 645.703(13) 0.769(17) 0.0457(10) 52 Cr 564.05(12) 0.1130(20) 0.00659(12) 51 V 682.031(17) 0.0180(10) 0.00107(6) 50 Cr 749.09(3) 0.569(9) 0.0332(5) 51 V 698.104(13) 0.049(4) 0.00291(24) 53 Cr 834.849(22) 1.38(3) 0.0804(17) 51				` /	⁵¹ V			
51 V 147.846(3) 0.253(6) 0.0151(4) 51 V 7293.572(16) 0.089(5) 0.0053(3) 51 V 295.023(14) 0.164(4) 0.00976(24) 51 V 7310.721(15) 0.227(9) 0.0135(5) 51 V 419.475(13) 0.249(6) 0.0148(4) Chromium (Z=24), At.Wt.=51.9961(6), σ _x = 3.07(15) 51 V 436.627(13) 0.397(9) 0.0236(5) 50 Cr 27.97(7) 0.124(4) 0.00723(23) 51 V 645.703(13) 0.769(17) 0.0457(10) 52 Cr 564.05(12) 0.1130(20) 0.00659(12) 51 V 682.031(17) 0.0180(10) 0.00107(6) 50 Cr 749.09(3) 0.569(9) 0.0332(5) 51 V 698.104(13) 0.049(4) 0.00291(24) 53 Cr 834.849(22) 1.38(3) 0.0804(17) 51 V 712.907(19) 0.0597(23) 0.00355(14) 50 Cr 888.95(7) 0.015(5) 0.0009(3) 51 V 823.184(13) 0.320(8) 0.0190(5) 50 Cr 1149.83(3) 0.0214(4) 0.001247(23)					⁵¹ V		, ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					⁵¹ V		0.089(5)	0.0053(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			` /	* *	⁵¹ V	7310.721(15)	0.227(9)	0.0135(5)
51 V 436.627(13) 0.397(9) 0.0236(5) 50 Cr 27.97(7) 0.124(4) 0.00723(23) 51 V 645.703(13) 0.769(17) 0.0457(10) 52 Cr 564.05(12) 0.1130(20) 0.00659(12) 51 V 682.031(17) 0.0180(10) 0.00107(6) 50 Cr 749.09(3) 0.569(9) 0.0332(5) 51 V 698.104(13) 0.049(4) 0.00291(24) 53 Cr 834.849(22) 1.38(3) 0.0804(17) 51 V 712.907(19) 0.0597(23) 0.00355(14) 50 Cr 888.95(7) 0.015(5) 0.0009(3) 51 V 793.546(13) 0.199(5) 0.0118(3) 53 Cr 989.074(23) 0.0139(5) 0.00081(3) 51 V 823.184(13) 0.320(8) 0.0190(5) 50 Cr 1149.83(3) 0.0214(4) 0.001247(23) 51 V 845.948(13) 0.252(7) 0.0150(4) 53 Cr 1241.33(7) 0.0140(5) 0.00082(3) 51 V 886.631(21) 0.0171(7) 0.00183(10) 53 Cr 1784.70(4) 0.1760(20) <t< td=""><td></td><td></td><td></td><td>, ,</td><td>Ch</td><td>romium (Z=24)</td><td></td><td>(6), $\sigma_{x}^{z} = 3.07(15)$</td></t<>				, ,	Ch	romium (Z=24)		(6) , $\sigma_{x}^{z} = 3.07(15)$
51 V 645.703(13) 0.769(17) 0.0457(10) 52 Cr 564.05(12) 0.1130(20) 0.00659(12) 51 V 682.031(17) 0.0180(10) 0.00107(6) 50 Cr 749.09(3) 0.569(9) 0.0332(5) 51 V 698.104(13) 0.049(4) 0.00291(24) 53 Cr 834.849(22) 1.38(3) 0.0804(17) 51 V 712.907(19) 0.0597(23) 0.00355(14) 50 Cr 888.95(7) 0.015(5) 0.0009(3) 51 V 793.546(13) 0.199(5) 0.0118(3) 53 Cr 989.074(23) 0.0139(5) 0.00081(3) 51 V 823.184(13) 0.320(8) 0.0190(5) 50 Cr 1149.83(3) 0.0214(4) 0.001247(23) 51 V 845.948(13) 0.252(7) 0.0150(4) 53 Cr 1241.33(7) 0.0140(5) 0.00082(3) 51 V 886.631(21) 0.0171(7) 0.00102(4) 54 Cr 1528.00(20)d 3.800(12)E-6 2.215E-7[92%] 51 V 982.175(19) 0.0307(17) 0.00183(10) 53 Cr 1784.70(4) 0.1760(20) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
51 V 682.031(17) 0.0180(10) 0.00107(6) 50 Cr 749.09(3) 0.569(9) 0.0332(5) 51 V 698.104(13) 0.049(4) 0.00291(24) 53 Cr 834.849(22) 1.38(3) 0.0804(17) 51 V 712.907(19) 0.0597(23) 0.00355(14) 50 Cr 888.95(7) 0.015(5) 0.0009(3) 51 V 793.546(13) 0.199(5) 0.0118(3) 53 Cr 989.074(23) 0.0139(5) 0.00081(3) 51 V 823.184(13) 0.320(8) 0.0190(5) 50 Cr 1149.83(3) 0.0214(4) 0.001247(23) 51 V 845.948(13) 0.252(7) 0.0150(4) 53 Cr 1241.33(7) 0.0140(5) 0.00082(3) 51 V 886.631(21) 0.0171(7) 0.00102(4) 54 Cr 1528.00(20)d 3.800(12)E-6 2.215E-7[92%] 51 V 982.175(19) 0.0307(17) 0.00183(10) 53 Cr 1784.70(4) 0.1760(20) 0.01026(12) 51 V 1001.583(21) 0.0651(21) 0.00387(12) 50 Cr 1898.90(3) 0.0852(21)							()	` /
51 V 698.104(13) 0.049(4) 0.00291(24) 53 Cr 834.849(22) 1.38(3) 0.0804(17) 51 V 712.907(19) 0.0597(23) 0.00355(14) 50 Cr 888.95(7) 0.015(5) 0.0009(3) 51 V 793.546(13) 0.199(5) 0.0118(3) 53 Cr 989.074(23) 0.0139(5) 0.00081(3) 51 V 823.184(13) 0.320(8) 0.0190(5) 50 Cr 1149.83(3) 0.0214(4) 0.001247(23) 51 V 845.948(13) 0.252(7) 0.0150(4) 53 Cr 1241.33(7) 0.0140(5) 0.00082(3) 51 V 886.631(21) 0.0171(7) 0.00102(4) 54 Cr 1528.00(20)d 3.800(12)E-6 2.215E-7[92%] 51 V 982.175(19) 0.0307(17) 0.00183(10) 53 Cr 1784.70(4) 0.1760(20) 0.01026(12) 51 V 1001.583(21) 0.0651(21) 0.00387(12) 50 Cr 1898.90(3) 0.0852(21) 0.00497(12) 51 V 1254.878(17) 0.0257(13) 0.00153(8) 53 Cr 1994.52(6) 0.05		` '	` /	` /	⁵⁰ Cr			1 /
51 V 712.907(19) 0.0597(23) 0.00355(14) 50 Cr 888.95(7) 0.015(5) 0.0009(3) 51 V 793.546(13) 0.199(5) 0.0118(3) 53 Cr 989.074(23) 0.0139(5) 0.00081(3) 51 V 823.184(13) 0.320(8) 0.0190(5) 50 Cr 1149.83(3) 0.0214(4) 0.001247(23) 51 V 845.948(13) 0.252(7) 0.0150(4) 53 Cr 1241.33(7) 0.0140(5) 0.00082(3) 51 V 886.631(21) 0.0171(7) 0.00102(4) 54 Cr 1528.00(20)d 3.800(12)E-6 2.215E-7[92%] 51 V 982.175(19) 0.0307(17) 0.00183(10) 53 Cr 1784.70(4) 0.1760(20) 0.01026(12) 51 V 1001.583(21) 0.0651(21) 0.00387(12) 50 Cr 1898.90(3) 0.0852(21) 0.00497(12) 51 V 1254.878(17) 0.0257(13) 0.00153(8) 53 Cr 1994.52(6) 0.0545(14) 0.00318(8) 51 V 1270.951(15) 0.022(5) 0.0013(3) 50 Cr 2001.05(5) 0.0				* *	⁵³ Cr			* *
51 V 793.546(13) 0.199(5) 0.0118(3) 53 Cr 989.074(23) 0.0139(5) 0.00081(3) 51 V 823.184(13) 0.320(8) 0.0190(5) 50 Cr 1149.83(3) 0.0214(4) 0.001247(23) 51 V 845.948(13) 0.252(7) 0.0150(4) 53 Cr 1241.33(7) 0.0140(5) 0.00082(3) 51 V 886.631(21) 0.0171(7) 0.00102(4) 54 Cr 1528.00(20)d 3.800(12)E-6 2.215E-7[92%] 51 V 982.175(19) 0.0307(17) 0.00183(10) 53 Cr 1784.70(4) 0.1760(20) 0.01026(12) 51 V 1001.583(21) 0.0651(21) 0.00387(12) 50 Cr 1898.90(3) 0.0852(21) 0.00497(12) 51 V 1254.878(17) 0.0257(13) 0.00153(8) 53 Cr 1994.52(6) 0.0545(14) 0.00318(8) 51 V 1270.951(15) 0.022(5) 0.0013(3) 50 Cr 2001.05(5) 0.0199(10) 0.00116(6)			* *	* /	⁵⁰ Cr		` '	. ,
51 V 823.184(13) 0.320(8) 0.0190(5) 50 Cr 1149.83(3) 0.0214(4) 0.001247(23) 51 V 845.948(13) 0.252(7) 0.0150(4) 53 Cr 1241.33(7) 0.0140(5) 0.00082(3) 51 V 886.631(21) 0.0171(7) 0.00102(4) 54 Cr 1528.00(20)d 3.800(12)E-6 2.215E-7[92%] 51 V 982.175(19) 0.0307(17) 0.00183(10) 53 Cr 1784.70(4) 0.1760(20) 0.01026(12) 51 V 1001.583(21) 0.0651(21) 0.00387(12) 50 Cr 1898.90(3) 0.0852(21) 0.00497(12) 51 V 1254.878(17) 0.0257(13) 0.00153(8) 53 Cr 1994.52(6) 0.0545(14) 0.00318(8) 51 V 1270.951(15) 0.022(5) 0.0013(3) 50 Cr 2001.05(5) 0.0199(10) 0.00116(6)			` ′	` /	⁵³ Cr	, ,		* *
51 V 845.948(13) 0.252(7) 0.0150(4) 53 Cr 1241.33(7) 0.0140(5) 0.00082(3) 51 V 886.631(21) 0.0171(7) 0.00102(4) 54 Cr 1528.00(20)d 3.800(12)E-6 2.215E-7[92%] 51 V 982.175(19) 0.0307(17) 0.00183(10) 53 Cr 1784.70(4) 0.1760(20) 0.01026(12) 51 V 1001.583(21) 0.0651(21) 0.00387(12) 50 Cr 1898.90(3) 0.0852(21) 0.00497(12) 51 V 1254.878(17) 0.0257(13) 0.00153(8) 53 Cr 1994.52(6) 0.0545(14) 0.00318(8) 51 V 1270.951(15) 0.022(5) 0.0013(3) 50 Cr 2001.05(5) 0.0199(10) 0.00116(6)					⁵⁰ Cr			` /
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								` ′
51 V 982.175(19) 0.0307(17) 0.00183(10) 53 Cr 1784.70(4) 0.1760(20) 0.01026(12) 51 V 1001.583(21) 0.0651(21) 0.00387(12) 50 Cr 1898.90(3) 0.0852(21) 0.00497(12) 51 V 1254.878(17) 0.0257(13) 0.00153(8) 53 Cr 1994.52(6) 0.0545(14) 0.00318(8) 51 V 1270.951(15) 0.022(5) 0.0013(3) 50 Cr 2001.05(5) 0.0199(10) 0.00116(6)						` /	` /	` /
51 V 1001.583(21) 0.0651(21) 0.00387(12) 50 Cr 1898.90(3) 0.0852(21) 0.00497(12) 51 V 1254.878(17) 0.0257(13) 0.00153(8) 53 Cr 1994.52(6) 0.0545(14) 0.00318(8) 51 V 1270.951(15) 0.022(5) 0.0013(3) 50 Cr 2001.05(5) 0.0199(10) 0.00116(6)				* *				
51 V 1254.878(17) 0.0257(13) 0.00153(8) 53 Cr 1994.52(6) 0.0545(14) 0.00318(8) 51 V 1270.951(15) 0.022(5) 0.0013(3) 50 Cr 2001.05(5) 0.0199(10) 0.00116(6)				, ,	⁵⁰ Cr	` '	` '	` '
⁵¹ V 1270.951(15) 0.022(5) 0.0013(3) ⁵⁰ Cr 2001.05(5) 0.0199(10) 0.00116(6)			` ′			1994.52(6)	0.0545(14)	0.00318(8)
	⁵¹ V			* *				` /
		. ,	* /		⁵² Cr	2105.8(5)	0.021(4)	0.00122(23)

$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barı	ns k ₀	$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barı	ns k ₀
⁵³ Cr	2239.04(8)	0.186(3)	0.01084(17)	⁵⁵ Mn	2210.29(9)	0.080(5)	0.0044(3)
⁵² Cr	2320.8(3)	0.136(3)	0.00793(17)	⁵⁵ Mn	2294.42(7)	0.112(6)	0.0062(3)
⁵⁰ Cr	2348.52(7)	0.0164(10)	0.00096(6)	⁵⁵ Mn	2330.55(7)	0.191(8)	0.0105(4)
⁵⁰ Cr	2376.49(5)	0.0362(9)	0.00211(5)	⁵⁵ Mn	2469.99(12)	0.083(6)	0.0046(3)
⁵³ Cr	2558.19(11)	0.0197(7)	0.00115(4)	⁵⁵ Mn	2677.20(19)	0.068(10)	0.0038(6)
⁵³ Cr	2601.79(8)	0.0404(12)	0.00235(7)	⁵⁵ Mn	2873.23(11)	0.070(4)	0.00386(22)
⁵² Cr	2669.8(5)	0.0263(12)	0.00153(7)	⁵⁵ Mn	2953.77(11)	0.069(5)	0.0038(3)
⁵⁰ Cr	3021.27(12)	0.0139(8)	0.00081(5)	55 Mn	3002.85(15)	0.055(5)	0.0030(3)
⁵³ Cr	3177.78(15)	0.0234(8)	0.00136(5)	55 Mn	3267.17(7)	0.188(6)	0.0104(3)
⁵² Cr	3616.7(4)	0.0260(12)	0.00152(7)	55 Mn	3408.61(5)	0.303(10)	0.0167(6)
⁵³ Cr	3719.70(6)	0.0675(24)	0.00393(14)	⁵⁵ Mn	3641.21(13)	0.061(5)	0.0034(3)
⁵² Cr	4322.1(3)	0.0269(15)	0.00157(9)	⁵⁵ Mn	3751.50(15)	0.054(5)	0.0030(3)
⁵³ Cr	4847.56(8)	0.0346(15)	0.00202(9)	⁵⁵ Mn	3813.99(9)	0.088(8)	0.0049(4)
⁵³ Cr ⁵⁰ Cr	4871.96(8)	0.0180(10)	0.00105(6)	⁵⁵ Mn ⁵⁵ Mn	3820.48(16)	0.042(5)	0.0023(3)
53 Cr	5220.72(12) 5268.15(11)	0.0184(17) 0.0465(25)	0.00107(10)	55 Mn	3927.8(3) 3979.0(3)	0.044(6)	0.0024(3)
52 Cr	5268.13(11)	0.0463(23)	0.00271(15) 0.0029(4)	55 Mn	4222.85(17)	0.039(5) 0.066(5)	0.0022(3) 0.0036(3)
50 Cr	5489.85(14)	0.030(0)	0.0029(4)	55 Mn	4267.69(12)	0.000(3)	0.0030(3)
50 Cr	5493.99(12)	0.016(3)	0.00093(17)	55 Mn	4379.90(16)	0.073(6)	0.0049(3)
52 Cr	5617.9(3)	0.132(5)	0.00073(17)	55 Mn	4445.06(20)	0.077(8)	0.0040(3)
⁵³ Cr	5706.94(16)	0.024(4)	0.00140(23)	55 Mn	4549.70(23)	0.056(6)	0.0031(3)
⁵³ Cr	5858.72(9)	0.0266(21)	0.00155(12)	⁵⁵ Mn	4566.56(10)	0.197(9)	0.0109(5)
⁵³ Cr	5999.80(7)	0.085(7)	0.0050(4)	⁵⁵ Mn	4588.23(18)	0.053(5)	0.0029(3)
⁵⁰ Cr	6134.58(9)	0.078(4)	0.00455(23)	⁵⁵ Mn	4643.40(13)	0.073(10)	0.0040(6)
⁵⁴ Cr	6245.89(17)	0.0056(9)	0.00033(5)	55 Mn	4689.14(11)	0.120(9)	0.0066(5)
⁵³ Cr	6282.90(9)	0.036(3)	0.00210(17)	⁵⁵ Mn	4724.84(8)	0.281(10)	0.0155(6)
⁵³ Cr	6326.49(12)	0.0212(23)	0.00124(13)	⁵⁵ Mn	4840.72(16)	0.064(6)	0.0035(3)
⁵⁰ Cr	6370.15(10)	0.028(17)	0.0016(10)	⁵⁵ Mn	4874.52(13)	0.069(5)	0.0038(3)
⁵³ Cr	6645.61(8)	0.183(13)	0.0107(8)	55 Mn	4907.36(19)	0.070(7)	0.0039(4)
⁵³ Cr	6890.11(7)	0.042(3)	0.00245(17)	⁵⁵ Mn	4934.09(18)	0.055(6)	0.0030(3)
⁵³ Cr	7099.91(6)	0.146(9)	0.0085(5)	⁵⁵ Mn	4949.21(8)	0.274(10)	0.0151(6)
⁵⁰ Cr	7361.12(8)	0.092(4)	0.00536(23)	⁵⁵ Mn	4969.28(21)	0.043(5)	0.0024(3)
⁵² Cr ⁵² Cr	7374.49(22)	0.080(4)	0.00466(23)	⁵⁵ Mn ⁵⁵ Mn	5014.37(7)	0.737(20)	0.0407(11)
50 Cr	7938.46(23) 8482.80(9)	0.424(11)	0.0247(6)	55 Mn	5034.60(15) 5067.87(9)	0.108(8) 0.265(12)	0.0060(4) 0.0146(7)
50 Cr	8510.77(8)	0.169(7) 0.233(8)	0.0098(4) 0.0136(5)	55 Mn	5110.97(22)	0.263(12)	0.0140(7)
⁵³ Cr	8884.36(5)	0.78(5)	0.045(3)	55 Mn	5180.89(8)	0.412(13)	0.0227(7)
⁵³ Cr	9719.06(5)	0.260(18)	0.0152(10)	55 Mn	5198.52(13)	0.095(7)	0.0052(4)
		` '	49(9), σ_{γ}^{z} =13.36(5)	⁵⁵ Mn	5253.98(12)	0.132(13)	0.0073(7)
55 Mn	26.560(20)	3.42(4)	0.1887(22)	⁵⁵ Mn	5403.7(3)	0.050(6)	0.0028(3)
⁵⁵ Mn	83.884(23)	3.11(5)	0.172(3)	⁵⁵ Mn	5437.71(15)	0.087(7)	0.0048(4)
⁵⁵ Mn	104.611(23)	1.74(3)	0.0960(17)	⁵⁵ Mn	5527.08(8)	0.788(22)	0.0435(12)
⁵⁵ Mn	118.77(4)	0.0526(22)	0.00290(12)	⁵⁵ Mn	5761.23(11)	0.200(12)	0.0110(7)
⁵⁵ Mn	123.46(4)	0.0612(23)	0.00338(13)	⁵⁵ Mn	5920.39(8)	1.06(3)	0.0585(17)
⁵⁵ Mn	188.521(22)	0.330(6)	0.0182(3)	⁵⁵ Mn	6031.03(18)	0.067(7)	0.0037(4)
⁵⁵ Mn	212.039(21)	2.13(3)	0.1175(17)	⁵⁵ Mn ⁵⁵ Mn	6104.29(12)	0.213(10)	0.0117(6)
⁵⁵ Mn	215.150(22)	0.168(3)	0.00927(17)	55 Mn	6430.04(19) 6783.74(12)	0.088(7)	0.0049(4) 0.0209(9)
⁵⁵ Mn ⁵⁵ Mn	230.096(24)	0.193(4)	0.01065(22)	55 Mn	6929.22(13)	0.378(17) 0.248(12)	0.0209(9)
55 Mn	271.198(22)	0.94(6) 0.075(6)	0.052(3)	55 Mn	7057.89(9)	1.22(3)	0.0673(17)
55 Mn	274.32(5) 314.398(20)	1.460(20)	0.0041(3)	⁵⁵ Mn	7159.63(10)	0.643(24)	0.0355(13)
55 Mn	335.502(24)	0.147(3)	0.0805(11) 0.00811(17)	⁵⁵ Mn	7243.52(9)	1.36(3)	0.0750(17)
55 Mn	341.01(3)	0.0912(25)	0.00503(14)	⁵⁵ Mn	7270.14(12)	0.362(15)	0.0200(8)
55 Mn	354.12(4)	0.093(4)	0.00513(22)		Iron (Z=2		45(2), $\sigma_{\gamma}^{z} = 2.56(13)$
⁵⁵ Mn	375.192(22)	0.124(3)	0.00684(17)	⁵⁶ Fe	14.411(14)	0.149(3)	0.00809(16)
⁵⁵ Mn	454.378(21)	0.388(7)	0.0214(4)	⁵⁶ Fe	122.077(14)	0.096(3)	0.00521(16)
⁵⁵ Mn	459.754(23)	0.210(5)	0.0116(3)	⁵⁶ Fe	136.488(14)	0.0118(3)	0.000640(16)
⁵⁵ Mn	499.57(4)	0.0402(20)	0.00222(11)	⁵⁶ Fe	230.270(13)	0.0274(5)	0.00149(3)
⁵⁵ Mn	504.74(4)	0.096(4)	0.00530(22)	⁵⁸ Fe	287.025(19)	0.00218(15)	1.18(8)E-4
⁵⁵ Mn	716.20(5)	0.055(3)	0.00303(17)	⁵⁶ Fe	352.347(12)	0.273(3)	0.01481(16)
⁵⁵ Mn	846.754(20)d	13.10(4)	0.7226[12%]	⁵⁶ Fe	366.758(10)	0.0497(7)	0.00270(4)
⁵⁵ Mn	1810.72(4)d	3.62(11)	0.200[12%]	⁵⁴ Fe	411.57(21)	0.022(5)	0.0012(3)
⁵⁵ Mn ⁵⁵ Mn	2016.47(5)	0.0527(25)	0.00291(14)	⁵⁶ Fe	569.885(19)	0.0139(3)	0.000754(16)
55 Mn 55 Mn	2043.99(5)	0.243(5) 0.0384(23)	0.0134(3) 0.00212(13)	⁵⁶ Fe ⁵⁶ Fe	657.46(11)	0.0067(18)	0.00036(10)
55 Mn	2045.76(15) 2062.81(4)	0.0384(23)	0.00212(13)	⁵⁷ Fe	691.960(19) 810.71(3)	0.1370(18) 0.0274(9)	0.00743(10) 0.00149(5)
55 Mn	2002.81(4) 2113.05(4)d	1.91(5)	0.105[12%]	57 Fe	863.80(5)	0.0274(9)	0.00149(3)
55 Mn	2175.91(5)	0.111(4)	0.00612(22)	⁵⁷ Fe	867.4(4)	~0.007	~0.0004
	(-)	()	()				•

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0	$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -bar	ns k ₀
⁵⁶ Fe	898.27(3)	0.0540(10)	0.00293(5)	⁵⁹ Co	349.954(24)	0.124(4)	0.00638(21)
⁵⁶ Fe	920.839(19)	0.0199(6)	0.00108(3)	⁵⁹ Co	391.218(15)	1.080(14)	0.0555(7)
⁵⁶ Fe	1018.93(3)	0.0507(11)	0.00275(6)	⁵⁹ Co	435.677(17)	0.789(10)	0.0406(5)
⁵⁶ Fe	1260.448(19)	0.0684(11)	0.00371(6)	⁵⁹ Co	447.711(19)	3.41(4)	0.1754(21)
⁵⁶ Fe	1358.540(22)	0.0211(6)	0.00115(3)	⁵⁹ Co	461.061(18)	0.519(9)	0.0267(5)
⁵⁶ Fe	1612.786(18)	0.1530(22)	0.00830(12)	⁵⁹ Co	484.257(16)	0.804(11)	0.0413(6)
⁵⁶ Fe	1627.197(20)	0.0100(5)	0.00054(3)	⁵⁹ Co	497.269(16)	2.16(4)	0.1111(21)
⁵⁷ Fe	1674.31(21)	~0.007	~0.0004	⁵⁹ Co	555.972(13)	5.76(6)	0.296(3)
⁵⁷ Fe ⁵⁶ Fe	1674.49(6)	~0.007	~0.0004	⁵⁹ Co ⁵⁹ Co	602.71(4)	0.132(7)	0.0068(4)
⁵⁶ Fe	1722.38(10)	0.0074(6)	0.00040(3) 0.00982(16)	⁵⁹ Co	665.48(3) 680.15(3)	0.0769(24) 0.273(5)	0.00395(12) 0.0140(3)
⁵⁶ Fe	1725.288(21) 1810.54(16)	0.181(3) 0.0067(7)	0.00982(16)	⁵⁹ Co	717.310(18)	0.845(14)	0.0140(3)
⁵⁶ Fe	1965.39(15)	0.0078(14)	0.00036(4)	⁵⁹ Co	726.640(21)	0.448(10)	0.0433(7)
⁵⁶ Fe	2066.08(6)	0.0146(7)	0.00072(8)	⁵⁹ Co	781.79(4)	0.146(6)	0.0230(3)
⁵⁶ Fe	2129.47(7)	0.0206(7)	0.00112(4)	⁵⁹ Co	785.628(21)	2.41(7)	0.124(4)
⁵⁴ Fe	2469.24(13)	0.0116(7)	0.00063(4)	⁵⁹ Co	798.97(7)	0.120(10)	0.0062(5)
⁵⁶ Fe	2526.34(7)	0.0112(5)	0.00061(3)	⁵⁹ Co	854.06(4)	0.187(6)	0.0096(3)
⁵⁶ Fe	2682.69(11)	0.0114(9)	0.00062(5)	⁵⁹ Co	862.30(6)	0.079(8)	0.0041(4)
⁵⁶ Fe	2697.10(11)	0.0090(9)	0.00049(5)	⁵⁹ Co	883.11(4)	0.075(5)	0.0039(3)
⁵⁶ Fe	2721.21(4)	0.0384(13)	0.00208(7)	⁵⁹ Co	884.98(4)	0.156(6)	0.0080(3)
⁵⁶ Fe	2755.93(19)	0.015(5)	0.0008(3)	⁵⁹ Co	901.28(3)	0.418(9)	0.0215(5)
⁵⁶ Fe	2832.84(10)	0.0142(22)	0.00077(12)	⁵⁹ Co	908.37(3)	0.100(4)	0.00514(21)
⁵⁶ Fe	2835.82(7)	0.0067(14)	0.00036(8)	⁵⁹ Co	928.48(3)	0.145(9)	0.0075(5)
⁵⁶ Fe	2873.00(7)	0.0099(14)	0.00054(8)	⁵⁹ Co	930.612(23)	0.408(22)	0.0210(11)
⁵⁶ Fe	2954.12(10)	0.0110(7)	0.00060(4)	⁵⁹ Co	944.07(6)	0.18(7)	0.009(4)
⁵⁶ Fe	3103.26(7)	0.0172(7)	0.00093(4)	⁵⁹ Co	945.314(17)	0.98(4)	0.0504(21)
⁵⁶ Fe	3168.40(10)	0.0092(7)	0.00050(4)	⁵⁹ Co	947.41(6)	0.121(7)	0.0062(4)
⁵⁶ Fe	3185.86(9)	0.0183(8)	0.00099(4)	⁵⁹ Co	963.58(3)	0.191(11)	0.0098(6)
⁵⁶ Fe	3225.33(7)	0.0105(7)	0.00057(4)	⁵⁹ Co	972.82(16)	0.082(8)	0.0042(4)
⁵⁶ Fe	3239.74(7)	0.0094(13)	0.00051(7)	⁵⁹ Co	1005.668(22)	0.127(6)	0.0065(3)
⁵⁶ Fe	3267.25(8)	0.0367(13)	0.00199(7)	⁵⁹ Co	1023.64(3)	0.22(3)	0.0113(15)
⁵⁶ Fe	3291.06(5)	0.0072(6)	0.00039(3)	⁵⁹ Co	1075.66(10)	0.099(7)	0.0051(4)
⁵⁶ Fe ⁵⁶ Fe	3356.67(12)	0.0098(6)	0.00053(3)	⁵⁹ Co ⁵⁹ Co	1103.73(6)	0.277(12)	0.0142(6)
⁵⁶ Fe	3413.13(5)	0.0449(14)	0.00244(8)	⁵⁹ Co	1117.76(8)	0.106(5)	0.0055(3)
⁵⁷ Fe	3436.66(9) 3486.74(11)	0.045(4) 0.0114(6)	0.00244(22) 0.00062(3)	⁵⁹ Co	1206.47(3) 1207.77(3)	0.072(11)	0.0037(6) 0.0104(6)
⁵⁶ Fe	3776.90(6)	0.0075(7)	0.00041(4)	⁵⁹ Co	1207.77(3)	0.202(12) 0.520(9)	0.0104(0)
⁵⁴ Fe	3790.80(25)	0.0075(7)	0.00041(4)	⁵⁹ Co	1216.44(18)	0.320(9)	0.012(11)
⁵⁶ Fe	3842.43(9)	0.0086(7)	0.00047(4)	⁵⁹ Co	1226.78(5)	0.100(4)	0.00514(21)
⁵⁶ Fe	3854.51(6)	0.0333(12)	0.00181(7)	⁵⁹ Co	1238.566(24)	0.290(7)	0.0149(4)
⁵⁶ Fe	3921.5(8)	0.036(4)	0.00195(22)	⁵⁹ Co	1274.32(4)	0.205(6)	0.0105(3)
⁵⁶ Fe	4218.27(5)	0.099(3)	0.00537(16)	⁵⁹ Co	1277.46(3)	0.175(6)	0.0090(3)
⁵⁶ Fe	4274.74(12)	0.0141(8)	0.00077(4)	⁵⁹ Co	1283.22(7)	0.194(6)	0.0100(3)
⁵⁶ Fe	4378.56(8)	0.0067(6)	0.00036(3)	⁵⁹ Co	1334.74(6)	0.155(9)	0.0080(5)
⁵⁶ Fe	4406.07(7)	0.0453(13)	0.00246(7)	⁵⁹ Co	1362.53(4)	0.092(6)	0.0047(3)
⁵⁶ Fe	4463.01(10)	0.0162(11)	0.00088(6)	⁵⁹ Co	1419.30(8)	0.077(6)	0.0040(3)
⁵⁶ Fe	4674.99(11)	0.0125(11)	0.00068(6)	⁵⁹ Co	1472.04(3)	0.195(8)	0.0100(4)
⁵⁶ Fe	4724.54(10)	0.0075(11)	0.00041(6)	⁵⁹ Co	1507.33(3)	0.463(9)	0.0238(5)
⁵⁶ Fe	4809.99(7)	0.0416(13)	0.00226(7)	⁵⁹ Co	1515.720(25)	1.740(25)	0.0895(13)
⁵⁶ Fe	4948.70(11)	0.0173(10)	0.00094(5)	⁵⁹ Co	1553.65(3)	0.120(6)	0.0062(3)
⁵⁴ Fe	5507.29(19)	0.0247(15)	0.00134(8)	⁵⁹ Co	1556.08(9)	0.099(6)	0.0051(3)
⁵⁶ Fe	5920.449(21)	0.225(5)	0.0122(3)	⁵⁹ Co	1690.72(3)	0.215(14)	0.0111(7)
⁵⁶ Fe	6018.532(20)	0.227(5)	0.0123(3)	⁵⁹ Co	1692.83(5)	0.214(14)	0.0110(7)
⁵⁶ Fe	6380.67(3)	0.0187(20)	0.00101(11)	⁵⁹ Co ⁵⁹ Co	1703.91(10)	0.074(5)	0.0038(3)
⁵⁶ Fe ⁵⁶ Fe	7278.838(10)	0.137(4)	0.00743(22)	⁵⁹ Co	1774.65(4)	0.30(8)	0.015(4)
56 Fe	7631.136(14)	0.653(13)	0.0354(7)	⁵⁹ Co	1786.01(17)	0.157(9)	0.0081(5)
⁵⁴ Fe	7645.5450(10) 8886.18(23)	0.549(11)	0.0298(6)	⁵⁹ Co	1787.45(4) 1799.92(4)	0.08(5)	0.004(3)
⁵⁴ Fe	9297.68(19)	0.0162(12) 0.0747(25)	0.00088(7) 0.00405(14)	⁵⁹ Co	1799.92(4) 1808.82(7)	0.269(7) 0.211(7)	0.0138(4) 0.0109(4)
ге		` '	` '	⁵⁹ Co	1808.82(7)	0.211(7) 0.15(8)	0.0109(4)
⁵⁹ Co			$O(9), \sigma_{\gamma}^{z} = 37.18(6)$	⁵⁹ Co	1818.58(5)	0.13(8)	0.008(4)
⁵⁹ Co	58.603(7)d	0.411(4)	0.02113[75%]	⁵⁹ Co	1830.800(25)	1.700(23)	0.0092(4)
⁵⁹ Co	158.517(17) 195.90(3)	1.200(15) 0.190(4)	0.0617(8)	⁵⁹ Co	1844.96(8)	0.092(5)	0.0047(3)
⁵⁹ Co	195.90(3) 224.12(7)	0.190(4)	0.00977(21) 0.0055(12)	⁵⁹ Co	1852.70(3)	0.456(10)	0.0234(5)
⁵⁹ Co	229.879(17)	7.18(8)	0.0035(12) 0.369(4)	⁵⁹ Co	1888.77(4)	0.089(6)	0.0046(3)
⁵⁹ Co	254.379(17) 254.379(17)	1.290(16)	0.0663(8)	⁵⁹ Co	1933.82(8)	0.094(6)	0.0048(3)
⁵⁹ Co	277.161(17)	6.77(8)	0.348(4)	⁵⁹ Co	2022.51(16)	0.082(6)	0.0042(3)
⁵⁹ Co	337.296(18)	0.226(4)	0.01162(21)	⁵⁹ Co	2032.83(7)	0.393(11)	0.0202(6)
		()	(!-)				* *

^A Z	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0	$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
⁵⁹ Co	2074.83(8)	0.102(9)	0.0052(5)	⁵⁹ Co	5358.44(8)	0.160(8)	0.0082(4)
⁵⁹ Co	2099.19(7)	0.089(8)	0.0046(4)	⁵⁹ Co	5370.21(8)	0.188(9)	0.0097(5)
⁵⁹ Co	2221.61(4)	0.261(8)	0.0134(4)	⁵⁹ Co	5510.56(6)	0.163(11)	0.0084(6)
⁵⁹ Co	2279.78(6)	0.079(11)	0.0041(6)	⁵⁹ Co	5602.97(4)	0.434(16)	0.0223(8)
⁵⁹ Co	2281.57(9)	0.123(11)	0.0063(6)	⁵⁹ Co	5614.67(5)	0.399(15)	0.0205(8)
⁵⁹ Co	2309.66(10)	0.087(6)	0.0045(3)	⁵⁹ Co	5639.03(4)	0.379(15)	0.0195(8)
⁵⁹ Co	2319.46(10)	0.122(7)	0.0063(4)	⁵⁹ Co	5660.93(4)	1.89(6)	0.097(3)
⁵⁹ Co	2453.82(20)	0.072(5)	0.0037(3)	⁵⁹ Co	5704.28(5)	0.177(9)	0.0091(5)
⁵⁹ Co	2527.12(7)	0.146(8)	0.0075(4)	⁵⁹ Co	5742.53(4)	0.766(23)	0.0394(12)
⁵⁹ Co	2557.46(21)	0.086(6)	0.0044(3)	⁵⁹ Co	5852.04(5)	0.110(10)	0.0057(5)
⁵⁹ Co	2569.92(9)	0.154(7)	0.0079(4)	⁵⁹ Co	5925.89(4)	0.643(18)	0.0331(9)
⁵⁹ Co	2607.47(10)	0.165(8)	0.0085(4)	⁵⁹ Co	5975.98(4)	2.9(4)	0.149(21)
⁵⁹ Co	2680.64(24)	0.11(3)	0.0057(15)	⁵⁹ Co	6040.60(4)	0.166(13)	0.0085(7)
⁵⁹ Co	2692.02(15)	0.076(7)	0.0039(4)	⁵⁹ Co	6110.81(6)	0.213(11)	0.0110(6)
⁵⁹ Co	2727.19(13)	0.100(7)	0.0051(4)	⁵⁹ Co	6149.99(7)	0.186(9)	0.0096(5)
⁵⁹ Co	2740.06(18)	0.103(7)	0.0053(4)	⁵⁹ Co	6274.84(3)	0.222(11)	0.0114(6)
⁵⁹ Co	2790.22(20)	0.080(19)	0.0041(10)	⁵⁹ Co	6283.91(4)	0.204(11)	0.0105(6)
⁵⁹ Co	2900.50(24)	0.076(20)	0.0039(10)	⁵⁹ Co	6485.99(3)	2.32(5)	0.119(3)
⁵⁹ Co	2926.19(18)	0.116(8)	0.0060(4)	⁵⁹ Co	6706.01(3)	3.02(6)	0.155(3)
⁵⁹ Co	2978.11(17)	0.075(7)	0.0039(4)	⁵⁹ Co	6877.16(3)	3.02(6)	0.155(3)
⁵⁹ Co	2995.43(13)	0.097(7)	0.0050(4)	⁵⁹ Co	6948.87(3)	0.249(11)	0.0128(6)
⁵⁹ Co	3193.65(16)	0.089(6)	0.0046(3)	⁵⁹ Co	6985.41(3)	1.05(13)	0.0128(0)
⁵⁹ Co		` /	0.0054(7)	⁵⁹ Co			
⁵⁹ Co	3216.43(19)	0.105(13)	` /	⁵⁹ Co	7055.92(3)	0.666(19)	0.0342(10)
59 Co	3238.16(19)	0.089(8) 0.101(8)	0.0046(4)	⁵⁹ Co	7203.22(3)	0.369(16)	0.0190(8)
59 Co	3283.78(13)		0.0052(4)	⁵⁹ Co	7214.42(3)	1.38(3)	0.0710(15)
⁵⁹ Co	3335.29(14)	0.104(7)	0.0053(4)		7433.07(3)	0.083(7)	0.0043(4)
59 C	3380.22(14)	0.210(10)	0.0108(5)	⁵⁹ Co	7491.54(3)	1.16(3)	0.0596(15)
⁵⁹ Co	3664.13(21)	0.080(9)	0.0041(5)	(2			$I(2), \sigma_{\gamma}^{z} = 4.39(15)$
⁵⁹ Co	3677.05(13)	0.109(8)	0.0056(4)	⁶² Ni	155.500(16)	0.0666(12)	0.00344(6)
⁵⁹ Co	3749.21(7)	0.415(13)	0.0213(7)	⁶⁰ Ni	282.917(18)	0.211(3)	0.01089(15)
⁵⁹ Co	3815.20(19)	0.081(7)	0.0042(4)	⁵⁸ Ni	339.420(11)	0.1670(21)	0.00862(11)
⁵⁹ Co	3823.54(19)	0.073(7)	0.0038(4)	⁶² Ni	362.385(18)	0.0342(5)	0.00177(3)
⁵⁹ Co	3840.83(15)	0.129(8)	0.0066(4)	⁵⁸ Ni	464.978(12)	0.843(10)	0.0435(5)
⁵⁹ Co	3897.02(17)	0.092(7)	0.0047(4)	⁶² Ni	483.351(20)	0.0156(3)	0.000805(15)
⁵⁹ Co	3929.84(12)	0.272(11)	0.0140(6)	⁶² Ni	845.733(18)	0.0184(3)	0.000950(15)
⁵⁹ Co	3966.15(18)	0.239(11)	0.0123(6)	⁵⁸ Ni	877.977(11)	0.236(3)	0.01219(15)
⁵⁹ Co	3994.92(24)	0.095(17)	0.0049(9)	⁶¹ Ni	1172.84(5)	0.0122(4)	0.000630(21)
⁵⁹ Co	4026.26(12)	0.272(10)	0.0140(5)	⁵⁸ Ni	1188.781(13)	0.0559(9)	0.00289(5)
⁵⁹ Co	4032.03(18)	0.208(9)	0.0107(5)	⁵⁸ Ni	1301.434(13)	0.052(3)	0.00268(15)
⁵⁹ Co	4148.74(21)	0.086(21)	0.0044(11)	⁵⁸ Ni	1340.230(20)	0.0200(5)	0.00103(3)
⁵⁹ Co	4155.64(24)	0.128(8)	0.0066(4)	⁶⁴ Ni	1481.84(5)d	0.003300(7)	1.704E-4[13%]
⁵⁹ Co	4208.01(12)	0.255(13)	0.0131(7)	60 Ni	1502.04(6)	0.0154(4)	0.000795(21)
⁵⁹ Co	4212.56(14)	0.082(9)	0.0042(5)	⁵⁸ Ni	1536.920(16)	0.0194(5)	0.00100(3)
⁵⁹ Co	4329.00(18)	0.105(8)	0.0054(4)	⁵⁸ Ni	1734.687(16)	0.0172(4)	0.000888(21)
⁵⁹ Co	4350.40(12)	0.091(13)	0.0047(7)	⁵⁸ Ni	1949.911(17)	0.0476(10)	0.00246(5)
⁵⁹ Co	4370.46(19)	0.078(12)	0.0040(6)	⁶⁰ Ni	2123.93(3)	0.0379(10)	0.00196(5)
⁵⁹ Co	4377.29(19)	0.119(10)	0.0061(5)	⁵⁸ Ni	2554.116(19)	0.0431(9)	0.00223(5)
⁵⁹ Co	4395.62(11)	0.128(11)	0.0066(6)	⁵⁸ Ni	2842.130(17)	0.0463(10)	0.00239(5)
⁵⁹ Co	4547.05(11)	0.115(9)	0.0059(5)	⁵⁸ Ni	3221.146(23)	0.0157(11)	0.00081(6)
⁵⁹ Co	4607.00(7)	0.311(13)	0.0160(7)	⁵⁸ Ni	3675.24(3)	0.0281(7)	0.00145(4)
⁵⁹ Co	4624.29(16)	0.104(8)	0.0053(4)	⁵⁸ Ni	4858.59(3)	0.0442(10)	0.00228(5)
⁵⁹ Co	4646.83(15)	0.081(10)	0.0042(5)	⁵⁸ Ni	5312.674(24)	0.0536(13)	0.00227(7)
⁵⁹ Co	4666.15(10)	0.085(8)	0.0044(4)	⁵⁸ Ni	5435.77(4)	0.0188(6)	0.00097(3)
⁵⁹ Co	4706.11(13)	0.137(9)	0.0070(5)	60 Ni	5695.80(3)	0.0416(12)	0.00097(3)
⁵⁹ Co	4731.06(17)	0.089(8)	0.0046(4)	58 Ni		` /	* *
⁵⁹ Co	4884.30(10)	0.237(10)	0.0122(5)	62 Ni	5817.219(20)	0.1090(22)	0.00563(11)
⁵⁹ Co	4893.76(10)	0.217(11)	0.0122(6)		5836.37(3)	0.0348(10)	0.00180(5)
⁵⁹ Co	4906.17(7)	0.43(3)	0.0221(15)	⁵⁸ Ni ⁶⁴ Ni	5973.06(3)	0.0258(8)	0.00133(4)
⁵⁹ Co	4900.17(7)	0.43(3)	0.0147(7)		6034.60(11)	0.013(3)	0.00067(15)
⁵⁹ Co	5003.24(8)	0.264(11)	0.0147(7)	⁵⁸ Ni	6105.215(22)	0.0706(17)	0.00365(9)
⁵⁹ Co	5040.76(16)	0.284(11)	0.0130(6)	62 Ni 58 Ni	6319.67(3)	0.0236(9)	0.00122(5)
⁵⁹ Co	5068.69(9)	0.109(10)	0.0044(4)	⁵⁸ Ni	6583.831(19)	0.0830(20)	0.00429(10)
⁵⁹ Co	5127.84(9)	0.109(10)	0.0105(6)	62 Ni	6837.50(3)	0.458(8)	0.0236(4)
⁵⁹ Co				⁶⁰ Ni	7536.637(25)	0.190(4)	0.00981(21)
⁵⁹ Co	5150.08(9)	0.302(13)	0.0155(7)	⁵⁸ Ni	7697.163(18)	0.0374(14)	0.00193(7)
⁵⁹ Co	5181.77(7)	0.912(23)	0.0469(12)	⁶⁰ Ni	7819.517(21)	0.336(6)	0.0173(3)
59 C	5217.00(20)	0.072(11)	0.0037(6)	⁵⁸ Ni	8120.567(16)	0.133(3)	0.00687(15)
⁵⁹ Co	5217.09(20)	0.081(10)	0.0042(5)	⁵⁸ Ni	8533.509(17)	0.721(13)	0.0372(7)
⁵⁹ Co	5270.15(4)	0.404(11)	0.0208(6)	⁵⁸ Ni	8998.414(15)	1.49(3)	0.0769(15)

^A Z	Eγ-keV	σ _γ ^z (E _γ)-barı		^A Z	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -bar	
<i>(</i> =			$6(3), \sigma_{\gamma}^{z} = 3.795(17)$	65 Cu 65 Cu	1582.50(4)	0.0094(7)	0.00045(3)
⁶⁵ Cu	89.08(4)	0.0970(17)	0.00463(8)		1637.46(5)	0.0135(15)	0.00064(7)
63 Cu	159.281(5)	0.648(10)	0.0309(5)	63 Cu	1682.98(7)	0.0167(8)	0.00080(4)
⁶³ Cu	184.618(13)	0.0106(9)	0.00051(4)	⁶⁵ Cu	1743.30(7)	0.014(4)	0.00067(19)
⁶⁵ Cu	185.96(4)	0.244(3)	0.01164(14)	⁶³ Cu	1852.57(8)	0.0141(10)	0.00067(5)
⁶³ Cu	202.950(8)	0.193(3)	0.00920(14)	⁶³ Cu	2141.61(12)	0.0091(5)	0.000434(24)
⁶³ Cu	212.389(15)	0.0362(9)	0.00173(4)	⁶³ Cu	2153.51(5)	0.0105(11)	0.00050(5)
⁶³ Cu	214.99(7)	0.0112(14)	0.00053(7)	⁶³ Cu	2291.40(10)	0.0115(8)	0.00055(4)
⁶⁵ Cu	237.80(4)	0.0230(4)	0.001097(19)	⁶³ Cu	2497.85(7)	0.0252(13)	0.00120(6)
⁶³ Cu	247.58(6)	0.0119(15)	0.00057(7)	⁶³ Cu	2932.30(13)	0.0101(7)	0.00048(3)
⁶³ Cu	261.33(8)	0.0095(14)	0.00037(7)	⁶³ Cu	3152.95(16)	0.0099(9)	0.00047(4)
⁶³ Cu	264.869(22)	0.0093(14)	0.00138(3)	⁶³ Cu	3315.5(3)	0.0097(7)	0.00046(3)
				⁶³ Cu	3464.49(14)	0.0094(15)	0.00045(7)
63 Cu	278.250(14)	0.893(15)	0.0426(7)	⁶³ Cu	3588.50(9)	0.0122(14)	0.00043(7)
65 Cu	315.69(4)	0.0250(4)	0.001192(19)	⁶³ Cu	3844.49(15)		0.00038(7)
63 Cu	318.80(4)	0.0120(4)	0.000572(19)	63 Cu	` /	0.0176(11)	
⁶³ Cu	330.52(3)	0.0107(8)	0.00051(4)		4089.19(14)	0.0090(5)	0.000429(24)
⁶³ Cu	343.898(14)	0.215(4)	0.01025(19)	⁶³ Cu	4133.04(12)	0.0138(10)	0.00066(5)
⁶³ Cu	376.80(3)	0.0250(6)	0.00119(3)	⁶³ Cu	4204.26(19)	0.0091(5)	0.000434(24)
⁶³ Cu	384.45(5)	0.0700(14)	0.00334(7)	⁶³ Cu	4286.55(15)	0.0121(6)	0.00058(3)
⁶⁵ Cu	385.77(3)	0.1310(18)	0.00625(9)	⁶³ Cu	4312.76(24)	0.0104(8)	0.00050(4)
⁶⁵ Cu	436.909(20)	0.0112(4)	0.000534(19)	⁶³ Cu	4319.92(9)	0.047(5)	0.00224(24)
⁶³ Cu	449.486(22)	0.0382(10)	0.00182(5)	⁶⁵ Cu	4384.92(9)	0.0206(12)	0.00098(6)
⁶³ Cu	460.78(3)	0.0143(5)	0.00162(3)	⁶³ Cu	4404.91(18)	0.0111(5)	0.000529(24)
65 Cu	465.14(3)		\ /	⁶³ Cu	4443.9(3)	0.0110(11)	0.00052(5)
63 Cu	` '	0.1350(21)	0.00644(10)	⁶³ Cu	4475.88(13)	0.0171(6)	0.00082(3)
63 C	467.95(5)	0.0668(14)	0.00319(7)	⁶³ Cu	4503.94(12)	0.0174(7)	0.00083(3)
63 Cu	494.81(5)	0.0242(6)	0.00115(3)	63 Cu	` /	0.0174(7)	
⁶³ Cu	503.41(4)	0.0596(13)	0.00284(6)	63 Cu	4563.20(7)	()	0.000534(24)
⁶³ Cu	533.25(11)	0.0148(8)	0.00071(4)		4603.01(20)	0.0196(6)	0.00093(3)
⁶³ Cu	534.28(5)	0.021(6)	0.0010(3)	63 Cu	4658.55(9)	0.0278(7)	0.00133(3)
⁶⁵ Cu	543.86(3)	0.0256(5)	0.001221(24)	⁶³ Cu	5019.16(12)	0.0100(15)	0.00048(7)
⁶³ Cu	579.75(3)	0.0898(15)	0.00428(7)	⁶⁵ Cu	5042.68(6)	0.0346(14)	0.00165(7)
⁶³ Cu	608.766(23)	0.270(6)	0.0129(3)	⁶⁵ Cu	5047.56(7)	0.0206(14)	0.00098(7)
⁶³ Cu	617.47(6)	0.0270(4)	0.001288(19)	⁶³ Cu	5085.54(11)	0.0118(5)	0.000563(24)
⁶³ Cu	632.24(4)	0.0092(4)	0.000439(19)	⁶³ Cu	5151.98(15)	0.0096(4)	0.000458(19)
⁶³ Cu	648.80(3)	0.102(3)	0.00486(14)	⁶³ Cu	5183.55(17)	0.0132(6)	0.00063(3)
⁶³ Cu	662.69(4)	0.072(3)	0.00343(14)	⁶³ Cu	5189.81(11)	0.0241(7)	0.00115(3)
63 Cu		· /		65 Cu	5245.59(4)	0.043(3)	0.00205(14)
	739.03(3)	0.0096(3)	0.000458(14)	⁶³ Cu	5258.73(7)	0.0372(9)	0.00203(14)
⁶³ Cu	767.77(3)	0.0254(17)	0.00121(8)	65 Cu	5320.08(8)	0.0372(3)	0.00177(4)
⁶⁵ Cu	822.673(24)	0.0238(17)	0.00114(8)	63 Cu		` /	
⁶⁵ Cu	831.14(4)	0.0160(10)	0.00076(5)		5408.64(17)	0.0144(6)	0.00069(3)
⁶³ Cu	878.17(5)	0.0421(20)	0.00201(10)	63 Cu	5418.45(5)	0.0668(12)	0.00319(6)
⁶³ Cu	897.07(17)	0.0102(4)	0.000486(19)	⁶³ Cu	5555.38(19)	0.0098(5)	0.000467(24)
⁶³ Cu	927.05(3)	0.0119(3)	0.000568(14)	⁶³ Cu	5614.96(12)	0.0178(6)	0.00085(3)
⁶³ Cu	946.65(7)	0.0091(8)	0.00043(4)	⁶³ Cu	5636.11(7)	0.0147(5)	0.000701(24)
⁶³ Cu	962.76(4)	0.0152(9)	0.00072(4)	⁶³ Cu	5771.47(9)	0.0183(8)	0.00087(4)
⁶⁵ Cu	972.11(3)	0.0115(7)	0.00055(3)	⁶³ Cu	5823.60(20)	0.0108(22)	0.00052(10)
⁶⁵ Cu	997.63(3)	0.0093(11)	0.00044(5)	⁶³ Cu	6010.80(5)	0.0574(12)	0.00274(6)
⁶³ Cu	1019.59(4)	0.0141(12)	0.00067(6)	⁶⁵ Cu	6048.73(5)	0.0101(6)	0.00048(3)
65 Cu	1019.39(4) 1038.97(3)d	0.0598(13)	0.00285[88%]	⁶³ Cu	6063.24(9)	0.0218(6)	0.00104(3)
65 Cu	1058.97(5)u 1052.01(5)	` /	0.00283[88%]	⁶³ Cu	6166.7(3)	0.0133(21)	0.00063(10)
63 Cu		0.0117(8)		⁶⁵ Cu	6243.14(4)	0.0133(21)	0.00069(4)
	1076.44(4)	0.0097(5)	0.000463(24)	⁶³ Cu	6321.58(6)	0.0144(5)	0.000620(24)
63 Cu	1081.72(3)	0.0117(3)	0.000558(14)	63 Cu			
63 Cu	1138.82(3)	0.0296(10)	0.00141(5)		6394.76(5)	0.0503(10)	0.00240(5)
⁶³ Cu	1158.833(15)	0.0267(6)	0.00127(3)	63 Cu	6595.52(8)	0.0227(8)	0.00108(4)
⁶³ Cu	1194.92(4)	0.0106(3)	0.000506(14)	65 Cu	6600.63(4)	0.085(5)	0.00405(24)
⁶⁵ Cu	1212.53(4)	0.0105(5)	0.000501(24)	⁶³ Cu	6617.66(5)	0.0407(11)	0.00194(5)
⁶³ Cu	1231.98(4)	0.0110(3)	0.000525(14)	⁶³ Cu	6673.15(9)	0.053(3)	0.00253(14)
⁶³ Cu	1241.52(9)	0.0345(16)	0.00165(8)	⁶³ Cu	6674.76(5)	0.0719(21)	0.00343(10)
⁶³ Cu	1242.61(9)	0.0181(22)	0.00086(10)	⁶⁵ Cu	6680.00(4)	0.081(6)	0.0039(3)
⁶³ Cu	1298.10(3)	0.0147(7)	0.00070(3)	⁶⁵ Cu	6790.72(4)	0.0155(10)	0.00074(5)
⁶³ Cu	1320.25(8)	0.0263(10)	0.00076(5)	63 Cu	6988.68(5)	0.126(6)	0.0060(3)
65 Cu			0.00123(3)	⁶³ Cu	7037.55(5)	0.0140(7)	0.00067(3)
63 Cu	1355.16(3)	0.0133(16)	` /	⁶⁵ Cu	7065.72(4)	0.0132(8)	0.00063(4)
Cu	1361.75(4)	0.0167(5)	0.000796(24)	⁶³ Cu	7169.51(5)	0.0132(8)	0.00052(3)
63.0	1.417.07(0)		0.000463(19)				0.00032(3)
63 Cu	1417.27(6)	0.0097(4)		63 🗸	7177 (0/5)	0.0025(15)	0.0044170
⁶³ Cu	1438.66(4)	0.013(6)	0.0006(3)	63 Cu	7176.68(5)	0.0925(17)	0.00441(8)
⁶³ Cu ⁶⁵ Cu	1438.66(4) 1439.37(5)	0.013(6) 0.0111(16)	0.0006(3) 0.00053(8)	⁶³ Cu	7253.01(5)	0.1500(23)	0.00715(11)
⁶³ Cu	1438.66(4)	0.013(6)	0.0006(3)				` '

$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn		$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	s k ₀
⁶³ Cu	7637.40(4)	0.54(7)	0.026(3)	⁶⁴ Zn	3109.05(25)	0.0073(10)	0.00034(5)
⁶³ Cu	7756.36(4)	0.0571(12)	0.00272(6)	⁶⁷ Zn	3287.02(9)	0.0088(9)	0.00041(4)
63 Cu	7915.62(4)	0.869(20)	0.0414(10)	⁶⁷ Zn	3331.21(20)	0.0049(5)	2.27(23)E-4
	Zinc (Z:	=30), <i>At.Wt.</i> =65.	$39(2), \sigma_{\gamma}^{z} = 1.30(8)$	67 Zn	3458.14(17)	0.0048(4)	2.22(19)E-4
64 Zn	53.972(17)	0.0109(6)	0.00051(3)	⁶⁷ Zn	3832.94(25)	0.0048(5)	2.22(23)E-4
64 Zn	61.2530(20)	0.0290(9)	0.00134(4)	⁶⁸ Zn	4071.4(4)	0.0036(5)	1.67(23)E-4
⁶⁶ Zn	91.267(5)	0.0046(3)	2.13(14)E-4	⁶⁸ Zn	4103.3(3)	0.0089(21)	0.00041(10)
⁶⁶ Zn	93.311(5)	0.0344(8)	0.00159(4)	⁶⁸ Zn	4137.29(10)	0.0205(25)	0.00095(12)
⁶⁴ Zn	115.225(18)	0.167(3)	0.00774(14)	⁶⁸ Zn	4430.69(14)	0.0055(13)	0.00025(6)
⁶⁴ Zn	153.095(21)	0.0322(6)	0.00149(3)	⁶⁷ Zn ⁶⁴ Zn	4504.5(4) 4582.9(4)	0.0042(13)	1.9(6)E-4
66 Zn	184.578(6)	0.0321(4)	0.001488(19)	68 Zn	4582.9(4)	0.00507(10) 0.0059(7)	2.35(5)E-4 0.00027(3)
⁶⁴ Zn ⁶⁶ Zn	207.067(22)	0.0101(3)	0.000468(14)	67 Zn	4782.8(3)	0.0039(7)	2.09(19)E-4
66 Zn	300.219(7) 393.530(7)	0.0201(6)	0.00093(3)	67 Zn	4795.0(11)	0.0037(9)	1.7(4)E-4
68 Zn	417.30(4)	0.00486(22) 0.0043(5)	2.25(10)E-4 1.99(23)E-4	⁶⁴ Zn	4828.4(3)	0.00676(11)	0.000313(5)
68 Zn	434.03(3)	0.0128(16)	0.00059(7)	⁶⁴ Zn	4870.0(3)	0.00380(10)	1.76(5)E-4
⁶⁸ Zn	438.634(18)d	0.0128(5)	0.000593[2.5%]	⁶⁸ Zn	4887.82(13)	0.0080(10)	0.00037(5)
⁶⁸ Zn	531.44(3)	0.0163(20)	0.00076(9)	⁶⁷ Zn	4899.63(19)	0.0053(5)	2.46(23)E-4
⁶⁷ Zn	578.48(5)	0.0121(5)	0.000561(23)	⁶⁷ Zn	4914.15(20)	0.0044(4)	2.04(19)E-4
64 Zn	653.51(7)	0.0050(14)	2.3(7)E-4	68 Zn	5229.78(11)	0.0044(5)	2.04(23)E-4
⁶⁶ Zn	749.29(7)	0.0058(13)	0.00027(6)	⁶⁷ Zn	5245.84(15)	0.0058(6)	0.00027(3)
64 Zn	751.69(3)	0.0307(10)	0.00142(5)	⁶⁷ Zn	5287.4(3)	0.0048(6)	2.2(3)E-4
68 Zn	759.29(9)	0.0039(5)	1.81(23)E-4	67 Zn	5346.37(21)	0.0039(6)	1.8(3)E-4
⁶⁴ Zn	768.74(7)	0.0040(4)	1.85(19)E-4	⁶⁷ Zn	5402.8(5)	0.0043(24)	2.0(11)E-4
⁶⁴ Zn	794.44(3)	0.0089(5)	0.000412(23)	⁶⁸ Zn	5474.02(10)	0.042(5)	0.00195(23)
⁶⁷ Zn	805.79(3)	0.045(3)	0.00209(14)	⁶⁴ Zn ⁶⁴ Zn	5521.5(3)	0.0076(11)	0.00035(5)
⁶⁸ Zn	834.77(3)	0.037(5)	0.00171(23)	64 Zn	5541.0(5)	0.0047(7) 0.01110(15)	2.2(3)E-4 0.000514(7)
⁶⁴ Zn	855.69(3)	0.066(6)	0.0031(3)	⁶⁸ Zn	5559.82(15) 5647.05(10)	0.01110(13)	0.000314(7)
⁶⁴ Zn ⁶⁴ Zn	864.43(6)	0.0094(6)	0.00044(3)	⁶⁷ Zn	5662.23(18)	0.0062(10)	0.00038(3)
⁶⁴ Zn	909.66(3) 932.10(6)	0.0187(8) 0.0047(4)	0.00087(4) 2.18(19)E-4	67 Zn	5677.3(3)	0.0053(7)	2.5(3)E-4
66 Zn	958.24(7)	0.0047(4)	0.000269(23)	⁶⁷ Zn	5685.90(19)	0.0051(4)	2.36(19)E-4
⁶⁴ Zn	993.35(6)	0.0059(6)	0.000209(23)	⁶⁴ Zn	5776.31(10)	0.01360(17)	0.000630(8)
68 Z n	1007.809(25)	0.056(7)	0.0026(3)	⁶⁷ Zn	5789.15(21)	0.0045(6)	2.1(3)E-4
⁶⁴ Zn	1047.32(7)	0.0036(5)	1.67(23)E-4	⁶⁶ Zn	5909.4(3)	0.0110(11)	0.00051(5)
⁶⁷ Zn	1077.335(16)	0.356(5)	0.01650(23)	⁶⁴ Zn	6037.28(8)	0.01490(20)	0.000691(9)
67 Zn	1126.100(25)	0.0229(6)	0.00106(3)	⁶⁷ Zn	6262.43(12)	0.0085(6)	0.00039(3)
⁶⁸ Zn	1178.55(9)	0.0102(13)	0.00047(6)	⁶⁸ Zn	6481.75(10)	0.0100(12)	0.00046(6)
⁶⁸ Zn	1252.07(5)	0.0073(9)	0.00034(4)	⁶⁴ Zn	6509.27(8)	0.01190(16)	0.000552(7)
⁶⁷ Zn	1261.15(3)	0.0431(10)	0.00200(5)	66 Zn	6658.6(3)	0.019(4)	0.00088(19)
64 Zn	1262.58(6)	0.0053(15)	2.5(7)E-4	⁶⁷ Zn	6701.79(12)	0.0066(4)	0.000306(19)
⁶⁴ Zn	1293.02(8)	0.0061(6)	0.00028(3)	⁶⁷ Zn ⁶⁶ Zn	6768.21(10)	0.0112(9)	0.00052(4)
⁶⁷ Zn	1300.96(6)	0.010(4)	0.00046(19)	67 Zn	6867.5(3) 6910.58(11)	0.0254(17) 0.0194(14)	0.00118(8) 0.00090(7)
⁶⁷ Zn ⁶⁴ Zn	1340.14(3)	0.0457(16)	0.00212(7)	66 Z n	6958.8(3)	0.043(3)	0.00099(14)
64 Zn	1354.42(5) 1415.67(5)	0.0103(9) 0.0043(7)	0.00048(4) 2.0(3)E-4	⁶⁴ Zn	7069.20(7)	0.0204(3)	0.00199(14)
⁶⁷ Zn	1546.33(8)	0.0043(7)	0.00038(3)	⁶⁴ Zn	7111.95(7)	0.0198(3)	0.000918(14)
⁶⁴ Zn	1593.0(3)	0.0053(13)	2.5(6)E-4	⁶⁷ Zn	7188.40(8)	0.0131(7)	0.00061(3)
⁶⁸ Zn	1594.05(9)	0.0051(6)	2.4(3)E-4	⁶⁷ Zn	7859.07(8)	0.0084(7)	0.00039(3)
67 Zn	1673.46(4)	0.0260(10)	0.00120(5)	⁶⁴ Zn	7863.55(7)	0.1410(19)	0.00653(9)
⁶⁷ Zn	1744.47(5)	0.0147(7)	0.00068(3)	67 Zn	8314.37(8)	0.0105(5)	0.000487(23)
⁶⁸ Zn	1813.18(8)	0.0051(6)	2.4(3)E-4	⁶⁷ Zn	9120.06(7)	0.0136(6)	0.00063(3)
⁶⁴ Zn	1826.45(6)	0.0161(10)	0.00075(5)		Gallium (Z=	31), <i>At.Wt.</i> =69.7	$^{\prime}$ 23(1), σ_{γ}^{z} =2.90(7)
⁶⁷ Zn	1882.09(10)	0.0056(15)	0.00026(7)	⁷¹ Ga	16.43(3)	0.078(5)	0.00339(22)
⁶⁷ Zn	1883.12(3)	0.0718(18)	0.00333(8)	⁷¹ Ga	41.89(4)	0.0050(4)	2.17(17)E-4
64 Zn	2087.44(9)	0.0047(6)	2.2(3)E-4	⁷¹ Ga	46.97(4)	0.013(3)	0.00057(13)
⁶⁷ Zn	2106.74(6)	0.0071(7)	0.00033(3)	⁷¹ Ga	79.75(4)	0.0224(10)	0.00097(4)
⁶⁷ Zn	2209.73(9)	0.0269(13)	0.00125(6)	⁷¹ Ga	88.86(4)	0.0305(9)	0.00133(4)
⁶⁴ Zn ⁶⁸ Zn	2212.10(16)	0.0071(17)	0.00033(8)	⁷¹ Ga ⁷¹ Ga	103.25(3)d	0.0526(11)	0.00229[100%]
⁶⁷ Zn	2344.60(8)	0.0100(12)	0.00046(6)	'' Ga ⁷¹ Ga	110.06(4) 112.36(3)	0.0118(8)	0.00051(4)
67 Zn	2347.58(14) 2352.10(8)	0.0048(7) 0.0059(9)	2.2(3)E-4 0.00027(4)	⁷¹ Ga	112.36(3)	0.155(3) 0.0142(6)	0.00674(13) 0.00062(3)
68 Zn	2378.6(3)	0.0039(5)	1.81(23)E-4	71 Ga	121.01(3)	0.0142(6)	0.00062(3)
67 Zn	2418.53(10)	0.0039(3)	0.00044(3)	71 Ga	132.07(11)	0.013(3)	0.00027(4)
⁶⁴ Zn	2432.3(5)	0.0037(8)	1.7(4)E-4	⁷¹ Ga	145.14(3)	0.466(7)	0.0203(3)
⁶⁷ Zn	2648.75(21)	0.0056(10)	0.00026(5)	⁷¹ Ga	153.78(3)	0.0319(8)	0.00139(4)
67 Zn	2698.91(17)	0.0061(9)	0.00028(4)	⁷¹ Ga	162.90(4)	0.021(5)	0.00091(22)
67 Zn	2857.91(10)	0.0070(8)	0.00032(4)	⁷¹ Ga	181.54(4)	0.040(3)	0.00174(13)

^A Z	E _{y-} keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$	^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -bar	ns k ₀
⁷¹ Ga	184.09(3)	0.1040(21)	0.00452(9)	⁷¹ Ga	1217.5(9)	0.0075(21)	0.00033(9)
⁶⁹ Ga	187.84(3)	0.1080(21)	0.00469(9)	⁷¹ Ga	1296.9(7)	0.0065(9)	0.00028(4)
⁷¹ Ga	192.11(3)	0.194(3)	0.00843(13)	⁶⁹ Ga	1306.73(12)	0.0140(20)	0.00061(9)
⁷¹ Ga	194.66(4)	0.1070(21)	0.00465(9)	⁶⁹ Ga	1311.89(6)	0.0259(12)	0.00113(5)
⁷¹ Ga	197.94(5)	0.1330(24)	0.00578(10)	⁶⁹ Ga		0.0148(11)	0.00064(5)
⁷¹ Ga	210.37(11)	0.019(7)	0.0008(3)	⁷¹ Ga	1359.53(17)	0.0148(11)	0.00064(5)
⁷¹ Ga	210.50(20)	0.0343(8)	0.00149(4)	⁶⁹ Ga	1456.39(7)	0.0168(11)	0.00073(5)
⁷¹ Ga	212.58(4)	0.0583(12)	0.00253(5)	⁷¹ Ga	1464.00(7)d	0.0609(19)	0.00265[2.4%]
⁷¹ Ga	228.97(4)	0.0379(10)	0.00165(4)	⁶⁹ Ga	1518.21(8)	0.0219(13)	0.00095(6)
⁷¹ Ga	231.06(4)	0.0111(6)	0.00048(3)	⁷¹ Ga	1532.91(17)	0.0172(12)	0.00075(5)
⁷¹ Ga	246.91(20)	0.0118(19)	0.00051(8)	⁷¹ Ga	1596.68(8)d	0.0732(16)	0.00318[2.4%]
⁷¹ Ga	248.89(4)	0.136(8)	0.0059(4)	⁶⁹ Ga	1621.55(12)	0.0096(10)	0.00042(4)
⁷¹ Ga	264.03(4)	0.0238(9)	0.00103(4)	⁶⁹ Ga	1725.48(8)	0.0108(7)	0.00047(3)
⁷¹ Ga	266.14(3)	0.0361(11)	0.00157(5)	⁶⁹ Ga	1794.15(13)	0.0088(9)	0.00038(4)
⁷¹ Ga	306.11(14)	0.015(4)	0.00065(17)	⁶⁹ Ga	1846.5(3)	0.0053(10)	2.3(4)E-4
⁷¹ Ga	306.62(12)	0.0097(8)	0.00042(4)	⁷¹ Ga	1861.09(6)d	0.0904(19)	0.00393[2.4%]
⁷¹ Ga	313.62(11)	0.0209(8)	0.00091(4)	⁶⁹ Ga	1866.6(5)	0.0060(17)	0.00026(7)
71 Ga	315.40(6)	0.0275(9)	0.00120(4)	⁶⁹ Ga	1907.63(13)	0.0089(11)	0.00039(5)
⁶⁹ Ga	318.87(3)	0.0592(14)	0.00257(6)	⁶⁹ Ga	1930.5(3)	0.0058(11)	0.00025(5)
⁶⁹ Ga	344.79(7)	0.0070(6)	0.00030(3)	⁶⁹ Ga	2115.98(17)	0.0066(8)	0.00029(4)
⁶⁹ Ga	363.93(13)	0.0048(6)	2.1(3)E-4	⁶⁹ Ga	2142.88(14)	0.0085(9)	0.00037(4)
⁶⁹ Ga	374.37(4)	0.0303(10)	0.00132(4)	⁶⁹ Ga	2164.1(7)	0.0056(13)	2.4(6)E-4
⁷¹ Ga	384.17(5)	0.0058(6)	0.00025(3)	⁷¹ Ga	2201.91(13)d	0.52(4)	0.0226[2.4%]
⁷¹ Ga	390.66(4)	0.0476(12)	0.00207(5)	⁷¹ Ga		0.17(4)	0.0074[2.4%]
⁶⁹ Ga	393.26(3)	0.021(3)	0.00091(13)	⁷¹ Ga		0.28(4)	0.0122[2.4%]
⁷¹ Ga	393.28(3)	0.1340(23)	0.00582(10)	⁷¹ Ga		0.15(3)	0.0065[2.4%]
⁷¹ Ga	402.86(4)	0.0172(8)	0.00075(4)	⁷¹ Ga	4543.3(5)	0.0104(11)	0.00045(5)
⁷¹ Ga	408.44(20)	0.0179(9)	0.00078(4)	⁷¹ Ga	4578.2(7)	0.0058(12)	0.00025(5)
⁷¹ Ga	411.07(14)	0.019(5)	0.00083(22)	⁷¹ Ga	4595.4(5)	0.0093(13)	0.00040(6)
⁷¹ Ga	411.13(4)	0.0384(11)	0.00167(5)	⁷¹ Ga	4686.8(5)	0.0066(9)	0.00029(4)
⁷¹ Ga	439.26(6)	0.0154(7)	0.00067(3)	⁷¹ Ga	4719.2(9)	0.0052(8)	2.3(4)E-4
⁷¹ Ga	444.65(6)	0.021(5)	0.00091(22)	⁷¹ Ga	4761.5(4)	0.0078(9)	0.00034(4)
⁷¹ Ga	458.54(12)	0.0092(7)	0.00040(3)	⁷¹ Ga	4792.6(3)	0.0207(17)	0.00090(7)
⁷¹ Ga	488.81(4)	0.0227(8)	0.00099(4)	⁷¹ Ga	4839.89(23)	0.040(3)	0.00174(13)
⁷¹ Ga	488.81(4)	0.017(4)	0.00074(17)	⁷¹ Ga	4868.2(3)	0.0189(14)	0.00082(6)
⁶⁹ Ga	508.19(3)	0.349(6)	0.0152(3)	⁷¹ Ga	4890.5(3)	0.0191(14)	0.00083(6)
⁶⁹ Ga	516.564(25)	0.012(4)	0.00052(17)	⁶⁹ Ga	4955.2(4)	0.0095(13)	0.00041(6)
⁷¹ Ga	547.90(5)	0.0090(8)	0.00039(4)	⁷¹ Ga	5054.0(4)	0.0094(11)	0.00041(5)
⁶⁹ Ga ⁷¹ Ga	561.97(5)	0.0078(3)	0.000339(13)	⁷¹ Ga ⁶⁹ Ga	5091.8(9)	0.0070(9)	0.00030(4)
71 Ga	564.29(5) 579.55(12)	0.0097(3)	0.000422(13)	71 Ga		0.0051(11) 0.0154(13)	2.2(5)E-4
⁷¹ Ga	` '	0.0068(9)	0.00030(4)	⁶⁹ Ga	5160.69(21) 5189.2(9)	` /	0.00067(6)
⁷¹ Ga	601.21(6)d 603.24(4)	0.471(22) 0.0155(7)	0.0205[2.4%] 0.00067(3)	71 Ga	5189.2(9)	0.0074(20) 0.034(3)	0.00032(9) 0.00148(13)
71 Ga	619.63(5)	0.0053(12)	2.3(5)E-4	71 Ga	5223.3(7)	0.034(3)	0.00148(13)
71 Ga	620.23(14)	0.0053(12)	2.3(5)E-4 2.3(5)E-4	71 Ga	5233.57(25)	0.0137(13)	0.00058(0)
⁷¹ Ga	629.96(5)d	0.490(22)	0.0213[2.4%]	71 Ga	5272.7(6)	0.0057(15)	2.5(7)E-4
⁶⁹ Ga	632.34(4)	0.0183(7)	0.00080(3)	⁷¹ Ga	5313.3(8)	0.0037(13)	2.1(4)E-4
⁶⁹ Ga	651.09(3)	0.1030(22)	0.00448(10)	⁶⁹ Ga	5334.13(18)	0.0271(18)	0.00118(8)
⁶⁹ Ga	690.943(24)	0.305(4)	0.01326(17)	⁷¹ Ga	5334.9(5)	0.020(7)	0.0009(3)
⁷¹ Ga	786.17(16)d	0.160(22)	0.0070[2.4%]	⁷¹ Ga	5340.45(25)	0.0406(21)	0.00176(9)
⁷¹ Ga	834.08(3)d	1.65(5)	0.0717[2.4%]	⁷¹ Ga	5390.2(5)	0.0049(10)	2.1(4)E-4
⁶⁹ Ga	851.34(7)	0.0127(9)	0.00055(4)	⁷¹ Ga	5487.2(13)	0.0090(25)	0.00039(11)
⁶⁹ Ga	868.3(3)	0.0071(15)	0.00031(7)	⁶⁹ Ga	5488.31(17)	0.0296(19)	0.00129(8)
⁷¹ Ga	894.84(20)	0.0111(9)	0.00048(4)	⁷¹ Ga	5497.6(5)	0.0091(13)	0.00040(6)
⁷¹ Ga	894.91(11)d	0.35(3)	0.0152[2.4%]	⁶⁹ Ga	5510.0(4)	0.0047(9)	2.0(4)E-4
⁶⁹ Ga	904.91(7)	0.0149(10)	0.00065(4)	⁷¹ Ga	5543.83(19)	0.0142(17)	0.00062(7)
⁷¹ Ga	976.37(13)	0.0101(8)	0.00044(4)	⁷¹ Ga	5577.0(6)	0.0058(18)	0.00025(8)
⁶⁹ Ga	995.68(5)	0.0173(9)	0.00075(4)	⁷¹ Ga	5601.75(25)	0.063(4)	0.00274(17)
⁷¹ Ga	1002.71(25)	0.0073(8)	0.00032(4)	⁷¹ Ga	5625.35(24)	0.0077(16)	0.00033(7)
⁶⁹ Ga	1010.34(6)	0.0146(8)	0.00063(4)	⁷¹ Ga	5644.8(7)	0.0065(21)	0.00028(9)
⁶⁹ Ga	1014.99(8)	0.0077(7)	0.00033(3)	⁷¹ Ga	5651.3(4)	0.0134(20)	0.00058(9)
⁶⁹ Ga	1044.90(15)	0.0107(11)	0.00047(5)	⁷¹ Ga	5664.0(5)	0.0099(11)	0.00043(5)
⁷¹ Ga	1050.69(5)d	0.119(13)	0.0052[2.4%]	⁷¹ Ga	5692.2(3)	0.0211(13)	0.00092(6)
⁷¹ Ga	1051.25(17)	0.0114(10)	0.00050(4)	⁷¹ Ga	5721.1(13)	0.020(4)	0.00087(17)
⁷¹ Ga	1075.6(5)	0.0053(8)	2.3(4)E-4	⁶⁹ Ga	5722.9(3)	0.0067(25)	0.00029(11)
⁶⁹ Ga	1140.37(4)	0.0422(16)	0.00183(7)	⁷¹ Ga	5779.11(18)	0.022(4)	0.00096(17)
⁷¹ Ga	1200.3(3)	0.0078(9)	0.00034(4)	⁶⁹ Ga	5783.8(4)	0.0114(13)	0.00050(6)
⁶⁹ Ga	1203.40(6)	0.0286(14)	0.00124(6)	⁶⁹ Ga	5806.4(3)	0.0152(15)	0.00066(7)

^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn		$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barr	
⁷¹ Ga	5883.55(19)	0.0096(4)	0.000417(17)	⁷⁶ Ge	1250.55(10)	0.0110(21)	0.00046(9)
⁷¹ Ga	5900.55(14)	0.0173(14)	0.00075(6)	⁷² Ge	1251.30(7)	0.032(9)	0.0013(4)
⁷¹ Ga	5919.38(15)	0.0131(12)	0.00057(5)	⁷⁰ Ge	1298.61(6)	0.049(4)	0.00204(17)
⁷¹ Ga	6007.25(14)	0.069(5)	0.00300(22)	⁷³ Ge	1332.081(11)	0.0122(10)	0.00051(4)
⁷¹ Ga	6111.72(24)	0.055(4)	0.00239(17)	⁷⁰ Ge	1378.73(6)	0.017(4)	0.00071(17)
⁷¹ Ga	6127.57(14)	0.0227(23)	0.00099(10)	⁷³ Ge	1471.712(10)	0.083(3)	0.00346(13)
⁶⁹ Ga	6134.5(5)	0.0058(14)	0.00025(6)	⁷³ Ge	1489.491(24)	0.0234(12)	0.00098(5)
⁷¹ Ga	6190.14(17)	0.0218(19)	0.00095(8)	⁷³ Ge	1509.719(11)	0.0422(17)	0.00176(7)
⁶⁹ Ga	6238.6(4)	0.0067(10)	0.00029(4)	⁷³ Ge	1513.41(8)	~0.01	~0.0005
⁷¹ Ga	6311.64(14)	0.0194(16)	0.00084(7)	⁷³ Ge	1513.74(9)	~0.01	~0.0005
71 Ga	6322.20(14)	0.0186(16)	0.00081(7)	⁷³ Ge	1573.87(3)	0.0115(9)	0.00048(4)
⁶⁹ Ga	6346.4(3)	0.0140(15)	0.00061(7)	⁷³ Ge	1617.539(14)	0.0197(12)	0.00082(5)
⁷¹ Ga	6358.61(14)	0.138(5)	0.00600(22)	⁷⁰ Ge	1631.1(3)	0.0189(13)	0.00079(5)
⁶⁹ Ga	6513.06(18)	0.0325(20)	0.00141(9)	⁷³ Ge	1631.83(7)	0.0175(12)	0.00073(5)
71 Ga	6520.12(14)	0.017(3)	0.00074(13)	⁷³ Ge	1635.84(7)	0.0138(11)	0.00058(5)
⁶⁹ Ga	7002.30(16)	0.0203(12)	0.00088(5)	⁷³ Ge	1640.749(12)	0.0128(10)	0.00053(4)
	Germanium (Z	=32), <i>At.Wt.</i> =72	$.64(1), \sigma_{\gamma}^{z} = 2.30(6)$	⁷³ Ge	1712.780(20)	0.0129(9)	0.00054(4)
⁷² Ge	68.750(17)	0.0201(7)	0.00084(3)	⁷³ Ge	1755.86(3)	0.014(4)	0.00058(17)
⁷⁰ Ge	175.05(3)	0.164(4)	0.00684(17)	⁷³ Ge	1940.422(12)	0.0382(16)	0.00159(7)
⁷⁰ Ge	175.05(3)d	0.078(5)	0.00325[100%]	⁷⁰ Ge	1964.98(5)	0.0112(11)	0.00047(5)
⁷⁴ Ge	177.49(4)	0.0118(5)	0.000492(21)	⁷³ Ge	2014.478(24)	0.0127(12)	0.00053(5)
⁷⁰ Ge	247.27(5)	0.0123(6)	0.000513(25)	⁷³ Ge	2073.746(14)	0.0205(14)	0.00086(6)
⁷⁴ Ge	253.21(5)	0.0609(16)	0.00254(7)	⁷³ Ge	4423.23(6)	0.014(3)	0.00058(13)
⁷² Ge	284.98(5)	0.0164(7)	0.00068(3)	⁷³ Ge	4423.81(8)	0.014(4)	0.00058(17)
⁷² Ge	297.41(3)	0.0414(12)	0.00173(5)	⁷⁴ Ge	4706.98(23)	0.0151(13)	0.00063(5)
⁷⁰ Ge	306.18(4)	0.0136(8)	0.00057(3)	⁷⁰ Ge	4881.79(4)	0.017(3)	0.00071(13)
⁷² Ge	325.74(3)	0.0649(18)	0.00271(8)	⁷³ Ge	5165.56(5)	0.013(9)	0.0005(4)
⁷⁰ Ge	326.83(3)	0.058(5)	0.00242(21)	⁷³ Ge	5361.77(6)	0.0111(12)	0.00046(5)
⁷⁰ Ge	391.43(4)	0.0253(10)	0.00106(4)	⁷⁰ Ge	5383.85(7)	0.0131(15)	0.00055(6)
⁷² Ge	430.34(5)	0.0161(7)	0.00067(3)	⁷⁰ Ge	5450.69(5)	0.028(4)	0.00117(17)
⁷² Ge	432.86(5)	0.0125(6)	0.000521(25)	⁷² Ge	5518.30(4)	0.0290(17)	0.00121(7)
⁷³ Ge	492.933(5)	0.133(3)	0.00555(13)	⁷² Ge	5650.80(6)	0.0115(12)	0.00048(5)
⁷⁰ Ge	499.87(3)	0.162(6)	0.00676(25)	⁷² Ge	5740.07(10)	0.0151(15)	0.00063(6)
⁷³ Ge	516.19(4)	~0.02	~0.0008	⁷⁰ Ge ⁷⁰ Ge	5817.17(4)	0.028(3)	0.00117(13)
⁷⁰ Ge	517.78(8)	0.0114(10)	0.00048(4)		6036.90(6)	0.045(3)	0.00188(13)
⁷³ Ge	531.654(7)	0.0133(7)	0.00055(3)	⁷⁰ Ge ⁷³ Ge	6117.02(7)	0.043(6)	0.00179(25)
⁷² Ge	541.77(4)	0.0154(6)	0.000642(25)	⁷⁴ Ge	6199.96(5)	0.0120(13) 0.0188(18)	0.00050(5) 0.00078(8)
⁷⁰ Ge	572.27(5)	0.018(4)	0.00075(17)	73 Ge	6251.97(6) 6265.84(6)	0.0188(18)	0.00078(8)
⁷⁴ Ge	574.91(3)	0.0306(12)	0.00128(5)	⁷⁰ Ge	6276.35(6)	0.013(4)	0.00089(9)
⁷³ Ge	595.851(5)	1.100(24)	0.0459(10)	70 Ge	6320.19(5)	0.0214(21)	0.00064(6)
⁷³ Ge	606.80(4)	0.015(12)	0.0006(5)	⁷² Ge	6390.29(5)	0.0299(19)	0.00125(8)
73 Ge	608.353(4)	0.250(6) 0.0642(19)	0.01043(25)	⁷² Ge	6418.62(4)	0.0178(15)	0.00123(6)
70 Ge	701.509(8)	0.0825(24)	0.00268(8) 0.00344(10)	⁷⁰ Ge	6707.43(3)	0.0388(25)	0.00162(10)
⁷³ Ge	708.15(3) 770.211(8)	` /	0.00344(10)	⁷² Ge	6716.00(4)	0.0160(15)	0.00067(6)
⁷⁰ Ge	788.60(7)	0.0135(8) 0.014(3)	0.00058(13)	⁷³ Ge	6717.462(23)	0.020(5)	0.00083(21)
⁷⁰ Ge	808.14(4)	0.030(5)	0.00038(13)	⁷⁰ Ge	6915.69(3)	0.031(5)	0.00129(21)
⁷³ Ge	808.218(10)	0.0197(18)	0.00123(21)	⁷³ Ge	7091.164(15)	0.0170(11)	0.00071(5)
⁷⁰ Ge	831.30(3)	0.0445(16)	0.00082(8)	⁷³ Ge	7260.187(14)	0.0270(15)	0.00113(6)
⁷⁰ Ge	851.70(13)	0.0443(10)	0.00180(7)	⁷⁰ Ge	7415.510(23)	0.016(5)	0.00067(21)
⁷³ Ge	867.899(5)	0.553(12)	0.003(5)	⁷³ Ge	8030.317(13)	0.0117(9)	0.00049(4)
⁷³ Ge	878.130(19)	0.0112(8)	0.00047(3)	⁷³ Ge	8498.388(13)	0.0120(9)	0.00050(4)
⁷³ Ge	939.249(11)	0.0315(13)	0.00131(5)	⁷³ Ge	8731.744(13)	0.0128(8)	0.00053(3)
⁷³ Ge	961.055(7)	0.129(4)	0.00538(17)				$160(2), \sigma_{\gamma}^{z} = 4.23(8)$
⁷³ Ge	999.775(8)	0.0581(19)	0.00242(8)	⁷⁵ As	44.4250(10)	0.560(20)	0.0227(8)
⁷⁰ Ge	1095.42(5)	0.053(5)	0.00221(21)	75 As	46.0980(10)	0.337(15)	0.0136(6)
⁷⁰ Ge	1098.62(5)	0.0165(10)	0.00069(4)	⁷⁵ As	74.8720(10)	0.12(3)	0.0049(12)
⁷³ Ge	1101.282(6)	0.134(3)	0.00559(13)	⁷⁵ As	81.4110(20)	0.0107(15)	0.00043(6)
⁷³ Ge	1105.557(10)	0.0708(20)	0.00295(8)	⁷⁵ As	83.2840(10)	0.0142(16)	0.00057(7)
⁷³ Ge	1131.360(8)	0.0487(15)	0.00203(6)	⁷⁵ As	86.7880(10)	0.579(11)	0.0234(4)
⁷⁰ Ge	1139.27(6)	0.0441(23)	0.00184(10)	⁷⁵ As	91.3670(10)	0.0218(17)	0.00088(7)
⁷³ Ge	1150.441(22)	0.0127(8)	0.00053(3)	⁷⁵ As	116.7550(10)	0.107(18)	0.0043(7)
⁷³ Ge	1200.75(10)	~0.01	~0.0005	⁷⁵ As	117.3320(10)	0.071(18)	0.0029(7)
⁷³ Ge	1200.89(18)	~0.01	~0.0005	⁷⁵ As	118.680(3)	0.0140(10)	0.00057(4)
⁷³ Ge	1200.94(3)	~0.01	~0.0005	⁷⁵ As	120.2580(10)	0.402(8)	0.0163(3)
⁷³ Ge	1204.199(6)	0.141(4)	0.00588(17)	⁷⁵ As	122.2470(10)	0.227(5)	0.00918(20)
⁷³ Ge	1205.862(13)	0.0114(21)	0.00048(9)	⁷⁵ As	127.5090(20)	0.096(3)	0.00388(12)
⁷³ Ge	1228.20(9)	0.0116(9)	0.00048(4)	⁷⁵ As	135.4110(10)	0.156(4)	0.00631(16)

^A Z	E _γ -keV	σ _γ ^z (E _γ)-barns		$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barn	$\mathbf{s} = \mathbf{k}_0$
⁷⁵ As	136.3430(10)	0.031(3)	0.00125(12)	75 As	473.1540(10)	0.176(5)	0.00712(20)
⁷⁵ As	137.0270(10)	0.0391(19)	0.00158(8)	⁷⁵ As	477.584(9)	0.0124(18)	0.00050(7)
⁷⁵ As	141.2150(20)	0.0625(21)	0.00253(9)	⁷⁵ As	479.102(5)	0.0115(17)	0.00047(7)
⁷⁵ As	142.4590(10)	0.0211(16)	0.00085(7)	⁷⁵ As	480.137(6)	0.0126(18)	0.00051(7)
⁷⁵ As	144.5480(10)	0.1000(22)	0.00404(9)	⁷⁵ As	487.393(4)	0.0139(20)	0.00056(8)
⁷⁵ As	152.8430(20)	0.0114(13)	0.00046(5)	⁷⁵ As	494.105(7)	0.0100(17)	0.00040(7)
⁷⁵ As	155.0830(10)	0.0423(19)	0.00171(8)	⁷⁵ As	506.4970(20)	0.0283(23)	0.00114(9)
⁷⁵ As	156.8900(20)	0.0136(18)	0.00055(7)	⁷⁵ As	517.873(10)	0.024(3)	0.00097(12)
⁷⁵ As	157.7450(10)	0.117(24)	0.0047(10)	⁷⁵ As	529.907(8)	0.0111(18)	0.00045(7)
⁷⁵ As	162.6820(10)	0.0257(19)	0.00104(8)	⁷⁵ As	550.460(3)	0.071(3)	0.00287(12)
⁷⁵ As	165.0490(10)	0.996(16)	0.0403(7)	⁷⁵ As	554.937(24)	0.0230(24)	0.00093(10)
⁷⁵ As	178.0190(10)	0.0979(23)	0.00396(9)	⁷⁵ As	559.10(5)d	2.00(10)	0.081[1.3%]
⁷⁵ As	178.831(3)	0.0169(11)	0.00068(4)	⁷⁵ As	565.547(7)	0.0463(25)	0.00187(10)
⁷⁵ As	180.121(3)	0.0136(7)	0.00055(3)	⁷⁵ As	582.291(5)	0.0115(15)	0.00047(6)
⁷⁵ As	180.2100(10)	0.0157(8)	0.00064(3)	⁷⁵ As	585.492(8)	0.0161(17)	0.00065(7)
⁷⁵ As	186.0720(10)	0.0285(17)	0.00115(7)	⁷⁵ As	624.685(6)	0.0225(20)	0.00091(8)
⁷⁵ As	186.734(3)	0.0103(6)	0.000417(24)	⁷⁵ As	628.7440(10)	0.0116(17)	0.00047(7)
⁷⁵ As	187.3130(20)	0.0152(8)	0.00061(3)	⁷⁵ As	632.396(24)	0.0219(20)	0.00089(8)
⁷⁵ As	188.0620(10)	0.090(3)	0.00364(12)	⁷⁵ As	640.119(10)	0.0141(20)	0.00057(8)
⁷⁵ As	191.2620(20)	0.0117(17)	0.00047(7)	⁷⁵ As	644.329(23)	0.015(3)	0.00061(12)
⁷⁵ As	193.273(3)	0.0119(15)	0.00048(6)	⁷⁵ As	657.05(5)d	0.279(14)	0.0113[1.3%]
⁷⁵ As	198.8550(10)	0.089(3)	0.00360(12)	⁷⁵ As	669.113(4)	0.0278(13)	0.00112(5)
⁷⁵ As	200.446(3)	0.011(3)	0.00044(12)	⁷⁵ As	687.103(8)	0.010(5)	0.00040(20)
⁷⁵ As	201.1800(20)	0.0140(18)	0.00057(7)	⁷⁵ As	687.618(7)	0.0126(15)	0.00051(6)
75 As	211.1470(10)	0.113(3)	0.00457(12)	⁷⁵ As	706.783(4)	0.0339(22)	0.00137(9)
⁷⁵ As	220.3810(10)	0.0373(23)	0.00151(9)	⁷⁵ As	725.909(24)	0.0118(18)	0.00048(7)
⁷⁵ As	221.5320(10)	0.0534(25)	0.00216(10)	⁷⁵ As	731.840(9)	0.0102(17)	0.00041(7)
⁷⁵ As	224.004(4)	0.0126(12)	0.00051(5)	⁷⁵ As	822.346(23)	0.0303(22)	0.00123(9)
⁷⁵ As	225.7020(10)	0.0803(24)	0.00325(10)	⁷⁵ As	848.593(9)	0.0282(21)	0.00114(9)
⁷⁵ As	235.8770(10)	0.181(4)	0.00732(16)	⁷⁵ As	859.76(22)	0.0210(21)	0.00085(9)
⁷⁵ As	238.9960(10)	0.023(10)	0.0009(4)	⁷⁵ As	880.326(9)	0.0234(21)	0.00095(9)
⁷⁵ As	241.6580(10)	0.0262(13)	0.00106(5)	⁷⁵ As	941.116(13)	0.0194(19)	0.00078(8)
⁷⁵ As	246.2030(20)	0.0223(14)	0.00090(6)	⁷⁵ As	942.240(8)	0.0161(8)	0.00065(3)
⁷⁵ As	256.0350(10)	0.045(11)	0.0018(4)	⁷⁵ As	944.229(8)	0.0146(19)	0.00059(8)
75 As	263.8940(10)	0.18(4)	0.0073(16)	75 As	1216.08(5)d	0.155(8)	0.0063[1.3%]
⁷⁵ As	271.7540(10)	0.013(4)	0.00053(16)	⁷⁵ As ⁷⁵ As	5527.02(12)	0.0112(7)	0.00045(3)
⁷⁵ As ⁷⁵ As	281.5750(10)	0.085(20)	0.0034(8)	75 As	5533.94(3)	0.151(7)	0.0061(3)
75 As	297.248(10) 297.5420(10)	0.010(4) 0.055(3)	0.00040(16) 0.00222(12)	75 As	5540.51(15)	0.0131(9)	0.00053(4)
75 As	300.4610(10)	0.053(3)	0.00222(12)	75 As	5546.04(8) 5568.99(5)	0.0181(11) 0.0354(18)	0.00073(4) 0.00143(7)
75 As	300.4610(10)	0.031(3)	0.00206(12)	75 As	5580.21(3)	0.0334(18)	0.00143(7)
75 As	306.639(9)	0.0109(24)	0.00044(10)	75 As	5601.37(7)	0.0138(8)	0.00077(12)
75 As	308.3190(10)		0.00073(12)	75 As	5612.9(4)	0.0138(8)	0.00030(3)
75 As	311.004(5)	0.0161(25)	0.00065(10)	75 As	5614.99(13)	0.015(3)	0.00042(7)
75 As	314.243(3)	0.031(3)	0.00125(12)	75 As	5629.53(7)	0.0181(11)	0.00073(4)
⁷⁵ As	322.572(4)	0.016(3)	0.00065(12)	75 As	5645.75(8)	0.0119(7)	0.00048(3)
⁷⁵ As	326.9120(20)	0.015(3)	0.00061(12)	⁷⁵ As	5655.22(6)	0.0172(9)	0.00070(4)
⁷⁵ As	330.100(7)	0.023(3)	0.00093(12)	⁷⁵ As	5663.81(3)	0.019(4)	0.00077(16)
⁷⁵ As	340.1560(20)	0.0413(21)	0.00167(9)	⁷⁵ As	5675.89(3)	0.026(4)	0.00105(16)
⁷⁵ As	352.3620(20)	0.071(3)	0.00287(12)	⁷⁵ As	5684.20(4)	0.0414(19)	0.00167(8)
⁷⁵ As	357.4070(10)	0.074(3)	0.00299(12)	⁷⁵ As	5690.54(3)	0.023(4)	0.00093(16)
⁷⁵ As	360.3830(20)	0.0228(14)	0.00092(6)	⁷⁵ As	5698.05(3)	0.0479(22)	0.00194(9)
⁷⁵ As	363.9040(10)	0.059(3)	0.00239(12)	⁷⁵ As	5723.39(7)	0.0160(9)	0.00065(4)
⁷⁵ As	378.976(3)	0.030(3)	0.00121(12)	⁷⁵ As	5757.22(3)	0.015(3)	0.00061(12)
⁷⁵ As	379.3230(20)	0.0231(20)	0.00093(8)	⁷⁵ As	5778.12(3)	0.0482(23)	0.00195(9)
⁷⁵ As	384.002(5)	0.0186(18)	0.00075(7)	⁷⁵ As	5786.82(3)	0.026(4)	0.00105(16)
⁷⁵ As	394.231(8)	0.0131(20)	0.00053(8)	⁷⁵ As	5816.39(5)	0.0247(12)	0.00100(5)
⁷⁵ As	399.3490(20)	0.0465(23)	0.00188(9)	⁷⁵ As	5834.21(7)	0.0210(11)	0.00085(4)
⁷⁵ As	402.7440(20)	0.061(3)	0.00247(12)	⁷⁵ As	5854.92(13)	0.0218(16)	0.00088(7)
⁷⁵ As	412.7930(20)	0.0117(12)	0.00047(5)	⁷⁵ As	5869.65(7)	0.015(4)	0.00061(16)
⁷⁵ As	426.5750(10)	0.100(3)	0.00404(12)	⁷⁵ As	5877.68(6)	0.0276(14)	0.00112(6)
⁷⁵ As	428.187(3)	0.0130(14)	0.00053(6)	⁷⁵ As	5884.72(3)	0.0504(24)	0.00204(10)
⁷⁵ As	430.7920(20)	0.0134(12)	0.00054(5)	⁷⁵ As	5906.24(8)	0.0128(8)	0.00052(3)
⁷⁵ As	436.8030(10)	0.0113(12)	0.00046(5)	⁷⁵ As	5931.22(9)	0.0143(9)	0.00058(4)
⁷⁵ As	460.7790(20)	0.0111(10)	0.00045(4)	⁷⁵ As	5942.97(9)	0.0119(7)	0.00048(3)
⁷⁵ As	463.647(3)	0.0333(23)	0.00135(9)	⁷⁵ As	5970.12(5)	0.0210(10)	0.00085(4)
⁷⁵ As	467.965(13)	0.0165(19)	0.00067(8)	⁷⁵ As	5976.18(5)	0.0199(10)	0.00080(4)
⁷⁵ As	471.0000(10)	0.203(5)	0.00821(20)	⁷⁵ As	6006.34(5)	0.0297(15)	0.00120(6)

$^{\mathrm{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns		$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	
⁷⁵ As	6014.00(8)	0.0224(12)	0.00091(5)	⁷⁶ Se	303.7930(20)	0.052(3)	0.00200(12)
⁷⁵ As	6019.17(11)	0.0161(10)	0.00065(4)	⁷⁶ Se	331.2210(20)	0.0526(25)	0.00202(10)
⁷⁵ As	6027.524(22)	0.020(3)	0.00081(12)	⁷⁶ Se	368.733(4)	0.026(3)	0.00100(12)
⁷⁵ As	6059.483(22)	0.026(3)	0.00105(12)	⁷⁶ Se	378.9540(20)	0.022(3)	0.00084(12)
⁷⁵ As	6142.79(3)	0.014(3)	0.00057(12)	⁷⁶ Se	384.9800(20)	0.032(5)	0.00123(19)
⁷⁵ As	6171.99(9)	0.0105(6)	0.000425(24)	⁷⁶ Se	390.8920(20)	0.029(4)	0.00111(15)
⁷⁵ As	6180.14(5)	0.0264(13)	0.00107(5)	⁷⁸ Se	432.12(14)	0.0227(15)	0.00087(6)
⁷⁵ As	6203.57(4)	0.016(3)	0.00065(12)	⁷⁶ Se	439.4510(20)	0.319(8)	0.0122(3)
⁷⁵ As	6223.06(3)	0.012(3)	0.00049(12)	⁸⁰ Se	467.81(10)	0.128(4)	0.00491(15)
⁷⁵ As	6231.24(4)	0.0413(19)	0.00167(8)	⁷⁶ Se	484.5440(20)	0.125(4)	0.00480(15)
⁷⁵ As	6294.295(25)	0.064(6)	0.00259(24)	⁸⁰ Se	491.46(22)	0.022(3)	0.00084(12)
⁷⁵ As	6303.71(22)	0.024(4)	0.00097(16)	⁷⁶ Se	504.7970(20)	0.024(5)	0.00092(19)
⁷⁵ As	6305.37(3)	0.085(4)	0.00344(16)	⁷⁶ Se	518.1810(20)	0.273(7)	0.0105(3)
⁷⁵ As	6342.976(15)	0.010(3)	0.00040(12)	⁷⁶ Se	520.6370(20)	1.260(18)	0.0484(7)
⁷⁵ As	6357.58(7)	0.0204(10)	0.00083(4)	⁷⁷ Se	545.297(12)	0.0635(25)	0.00244(10)
⁷⁵ As	6370.124(9)	0.0274(13)	0.00111(5)	⁷⁶ Se	565.7300(20)	0.0398(23)	0.00153(9)
⁷⁵ As	6388.768(10)	0.0329(18)	0.00133(7)	⁷⁶ Se	568.0660(20)	0.103(8)	0.0040(3)
⁷⁵ As	6393.133(12)	0.032(4)	0.00129(16)	⁷⁶ Se	569.185(4)	0.024(8)	0.0009(3)
⁷⁵ As	6403.761(12)	0.022(3)	0.00089(12)	⁷⁶ Se	574.6420(20)	0.054(3)	0.00207(12)
⁷⁵ As	6419.378(23)	0.031(4)	0.00125(16)	⁷⁶ Se	578.8550(20)	0.243(5)	0.00933(19)
⁷⁵ As	6465.17(12)	0.0111(24)	0.00045(10)	⁷⁶ Se	585.4320(20)	0.077(4)	0.00296(15)
⁷⁵ As	6526.051(13)	0.0123(7)	0.00050(3)	⁷⁶ Se	607.471(4)	0.027(5)	0.00104(19)
⁷⁵ As	6534.932(9)	0.0316(15)	0.00128(6)	⁷⁶ Se	610.3800(20)	0.0345(21)	0.00132(8)
⁷⁵ As	6542.669(10)	0.0408(19)	0.00165(8)	⁷⁴ Se	610.7130(20)	0.0316(22)	0.00121(8)
⁷⁵ As	6583.556(10)	0.027(3)	0.00109(12)	⁷⁷ Se	613.724(3)	2.14(5)	0.0821(19)
⁷⁵ As	6587.038(13)	0.045(3)	0.00182(12)	⁷⁶ Se	645.8300(20)	0.099(3)	0.00380(12)
⁷⁵ As	6600.71(3)	0.0372(17)	0.00150(7)	⁷⁷ Se	687.251(5)	0.063(5)	0.00242(19)
⁷⁵ As	6620.59(5)	0.0304(15)	0.00123(6)	⁷⁷ Se	694.914(4)	0.443(10)	0.0170(4)
⁷⁵ As	6659.378(9)	0.0227(11)	0.00092(4)	⁷⁶ Se	707.9800(20)	0.0281(20)	0.00108(8)
⁷⁵ As	6691.241(9)	0.0246(12)	0.00100(5)	⁷⁶ Se	749.6060(20)	0.042(3)	0.00161(12)
⁷⁵ As	6699.744(8)	0.0109(7)	0.00044(3)	⁷⁶ Se	755.3920(20)	0.186(4)	0.00714(15)
⁷⁵ As	6718.514(11)	0.0101(6)	0.000409(24)	⁷⁶ Se	817.8520(20)	0.174(5)	0.00668(19)
⁷⁵ As	6778.047(9)	0.0143(9)	0.00058(4)	⁷⁷ Se	828.188(12)	0.0300(17)	0.00115(7)
⁷⁵ As	6784.456(9)	0.0133(25)	0.00054(10)	⁷⁶ Se	881.840(4)	0.040(3)	0.00154(12)
75 As	6808.872(8)	0.160(8)	0.0065(3)	⁷⁷ Se	884.867(7)	0.100(6)	0.00384(23)
75 As	6810.898(8)	0.56(3)	0.0227(12)	⁷⁶ Se	885.8270(20)	0.262(7)	0.0101(3)
⁷⁵ As	6823.272(8)	0.0133(8)	0.00054(3)	⁷⁷ Se	889.095(9)	0.096(6)	0.00368(23)
⁷⁵ As	6828.896(9)	0.0161(9)	0.00065(4)	⁷⁶ Se	889.108(4)	0.180(5)	0.00691(19)
⁷⁵ As	6857.474(8)	0.0168(10)	0.00068(4)	⁷⁶ Se	890.981(5)	0.083(4)	0.00319(15)
⁷⁵ As	6881.302(8)	0.0162(9)	0.00066(4)	⁷⁶ Se	946.9760(20)	0.089(4)	0.00342(15)
⁷⁵ As	6926.635(8)	0.061(4)	0.00247(16)	⁷⁶ Se	951.809(6)	0.047(3)	0.00180(12)
⁷⁵ As	6976.101(9)	0.0130(21)	0.00053(9)	⁷⁶ Se	990.377(4)	0.028(3)	0.00107(12)
⁷⁵ As	7020.139(8)	0.104(7)	0.0042(3)	⁷⁶ Se	991.629(6)	0.057(5)	0.00219(19)
⁷⁵ As	7027.998(8)	0.0534(25)	0.00216(10)	⁷⁶ Se	1005.1770(20)	0.117(5)	0.00449(19)
⁷⁵ As	7048.154(8)	0.0103(21)	0.00042(9)	⁷⁶ Se	1091.64(3)	0.026(5)	0.00100(19)
⁷⁵ As	7063.648(8)	0.045(3)	0.00182(12)	⁷⁶ Se	1128.104(4)	0.023(4)	0.00088(15)
⁷⁵ As	7163.396(8)	0.0181(9)	0.00073(4)	⁷⁷ Se	1144.952(16)	0.076(3)	0.00292(12)
⁷⁵ As	7208.183(8)	0.0127(7)	0.00051(3)	⁷⁶ Se	1161.828(5)	0.079(4)	0.00303(15)
⁷⁵ As	7241.649(8)	0.0167(20)	0.00068(8)	⁷⁶ Se	1163.476(4)	0.087(4)	0.00334(15)
⁷⁵ As	7284.007(8)	0.036(3)	0.00146(12)	⁷⁶ Se	1172.617(5)	0.058(3)	0.00223(12)
	Selenium (Z=	34). <i>At.Wt.</i> =78.9	96(3), $\sigma_{\gamma}^{z} = 12.0(7)$	⁷⁶ Se	1186.973(3)	0.033(3)	0.00127(12)
⁷⁶ Se	51.3610(10)	~0.03	~0.001	⁷⁶ Se	1194.111(10)	0.022(3)	0.00084(12)
⁷⁶ Se	87.8660(10)	0.210(4)	0.00806(15)	⁷⁷ Se	1198.72(10)	0.0379(23)	0.00145(9)
⁷⁴ Se	112.3880(10)	0.0317(15)	0.00122(6)	⁸⁰ Se	1202.0(3)	0.037(3)	0.00142(12)
⁷⁶ Se	125.8440(10)	0.074(17)	0.0028(7)	⁷⁷ Se	1240.206(12)	0.106(4)	0.00407(15)
⁷⁶ Se	139.2270(10)	0.543(9)	0.0208(4)	⁷⁶ Se	1296.986(7)	0.240(7)	0.0092(3)
⁷⁴ Se	141.3140(20)	0.0246(21)	0.00094(8)	⁷⁶ Se	1306.540(10)	0.061(6)	0.00234(23)
⁷⁶ Se	161.9220(10)d	0.855(23)	0.0328[99%]	⁷⁷ Se	1308.632(5)	0.317(8)	0.0122(3)
⁷⁶ Se	180.751(3)	0.0291(12)	0.00112(5)	⁷⁷ Se	1338.817(12)	0.0354(19)	0.00136(7)
⁷⁶ Se	200.4530(20)	0.233(9)	0.0089(4)	⁷⁶ Se	1378.172(7)	0.048(4)	0.00184(15)
⁷⁶ Se	231.4270(20)	0.105(3)	0.00403(12)	⁷⁷ Se	1382.159(6)	0.069(3)	0.00265(12)
⁷⁶ Se	238.9980(10)	2.06(3)	0.0791(12)	⁷⁶ Se	1384.131(6)	0.080(4)	0.00307(15)
⁷⁷ Se	248.43(8)	0.023(5)	0.00088(19)	⁷⁶ Se	1395.42(3)	0.024(6)	0.00092(23)
⁷⁶ Se	249.7880(10)	0.538(9)	0.0206(4)	⁷⁶ Se	1402.471(4)	0.032(4)	0.00123(15)
⁷⁶ Se	281.6400(20)	0.124(5)	0.00476(19)	⁷⁶ Se	1411.612(5)	0.115(6)	0.00441(23)
⁷⁴ Se	286.5710(20)	0.280(6)	0.01075(23)	⁷⁶ Se	1475.746(10)	0.030(20)	0.0012(8)
⁷⁴ Se	292.8430(20)	0.0297(21)	0.00114(8)	⁷⁶ Se	1529.27(15)	0.034(6)	0.00130(23)
⁷⁶ Se	297.2160(20)	0.337(7)	0.0129(3)	⁷⁷ Se	1529.71(5)	0.061(13)	0.0023(5)

^A Z	EγkeV	σ _γ ^z (E _γ)-barns		^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
⁷⁶ Se	1578.621(7)	0.042(4)	0.00161(15)	⁷⁶ Se	4367.73(15)	0.024(3)	0.00092(12)
⁷⁶ Se	1623.124(6)	0.063(5)	0.00242(19)	⁷⁶ Se	4378.36(8)	0.085(16)	0.0033(6)
⁷⁶ Se	1677.06(3)	0.023(4)	0.00088(15)	⁷⁶ Se	4435.83(11)	0.032(7)	0.0012(3)
⁷⁶ Se	1712.75(5)	0.023(3)	0.00088(12)	⁷⁶ Se	4526.75(5)	0.115(8)	0.0044(3)
⁷⁷ Se	1713.544(22)	0.163(8)	0.0063(3)	⁷⁶ Se	4545.72(9)	0.049(5)	0.00188(19)
⁷⁶ Se	1714.739(10)	0.033(3)	0.00127(12)	⁷⁶ Se	4565.56(5)	0.156(11)	0.0060(4)
⁷⁷ Se	1721.43(8)	0.078(4)	0.00299(15)	⁷⁶ Se	4609.57(7)	0.058(9)	0.0022(4)
⁸⁰ Se	1724.88(18)	0.044(5)	0.00169(19)	⁷⁶ Se	4641.97(5)	0.027(6)	0.00104(23)
⁷⁶ Se	1790.24(7)	0.036(4)	0.00138(15)	⁷⁶ Se	4702.43(15)	0.023(4)	0.00088(15)
⁷⁶ Se	1847.93(5)	0.046(4)	0.00177(15)	⁷⁶ Se	4926.78(7)	0.048(8)	0.0018(3)
⁷⁶ Se	1872.21(5)	0.048(4)	0.00184(15)	⁷⁶ Se	4963.217(24)	0.039(5)	0.00150(19)
⁷⁷ Se ⁷⁶ Se	1923.32(10)	0.068(5)	0.00261(19)	⁷⁶ Se ⁷⁶ Se	5025.80(5)	0.150(12)	0.0058(5)
⁷⁶ Se	1963.15(7) 1980.40(5)	0.034(4)	0.00130(15)	⁷⁶ Se	5078.75(5) 5098.56(10)	0.033(11) 0.031(8)	0.0013(4)
77 Se	1980.40(3)	0.022(16) 0.119(5)	0.0008(6) 0.00457(19)	⁷⁶ Se	5154.33(7)	0.053(5)	0.0012(3) 0.00203(19)
⁷⁶ Se	2035.26(5)	0.043(5)	0.00457(19)	⁷⁶ Se	5169.734(22)	0.031(4)	0.00203(19)
⁷⁶ Se	2074.08(5)	0.043(3)	0.0013(8)	⁷⁶ Se	5206.60(9)	0.045(5)	0.00173(19)
⁷⁶ Se	2142.65(8)	0.040(4)	0.0015(8)	⁷⁶ Se	5275.98(9)	0.024(9)	0.00173(17)
⁷⁶ Se	2212.02(9)	0.033(3)	0.00127(12)	⁷⁶ Se	5600.995(21)	0.301(14)	0.0116(5)
⁷⁶ Se	2249.88(12)	0.0221(21)	0.00085(8)	⁷⁶ Se	5703.864(23)	0.029(5)	0.00111(19)
⁷⁷ Se	2257.48(13)	0.022(21)	0.00084(12)	⁷⁶ Se	5795.473(21)	0.127(16)	0.0049(6)
⁷⁶ Se	2264.68(17)	0.031(4)	0.00119(15)	⁷⁷ Se	5813.24(10)	0.0269(13)	0.00103(5)
⁷⁷ Se	2284.36(6)	0.054(5)	0.00207(19)	⁷⁶ Se	6006.973(21)	0.289(20)	0.0111(8)
⁷⁷ Se	2319.4(4)	0.025(10)	0.0010(4)	⁷⁶ Se	6016.113(21)	0.101(10)	0.0039(4)
⁷⁷ Se	2391.87(10)	0.043(4)	0.00165(15)	⁷⁷ Se	6049.20(13)	0.0291(13)	0.00112(5)
⁷⁷ Se	2391.89(9)	0.038(7)	0.0015(3)	⁷⁶ Se	6231.597(21)	0.10(4)	0.0038(15)
⁷⁶ Se	2417.59(12)	0.024(17)	0.0009(7)	⁸⁰ Se	6232.9(5)	0.10(3)	0.0038(12)
⁷⁷ Se	2572.70(8)	0.025(4)	0.00096(15)	⁷⁷ Se	6244.07(13)	0.043(3)	0.00165(12)
⁷⁶ Se	2590.77(5)	0.039(13)	0.0015(5)	⁷⁷ Se	6315.30(9)	0.044(3)	0.00169(12)
⁷⁶ Se	2600.85(8)	0.0221(21)	0.00085(8)	⁷⁶ Se	6413.379(21)	0.192(15)	0.0074(6)
⁷⁶ Se	2614.09(5)	0.047(5)	0.00180(19)	⁷⁷ Se	6498.52(12)	0.047(4)	0.00180(15)
⁷⁷ Se	2674.47(6)	0.060(5)	0.00230(19)	⁷⁶ Se	6600.690(21)	0.623(20)	0.0239(8)
⁷⁶ Se	2749.78(15)	0.023(5)	0.00088(19)	⁷⁷ Se	6811.00(13)	0.0257(22)	0.00099(8)
⁷⁷ Se	2769.87(8)	0.035(3)	0.00134(12)	⁷⁷ Se	6905.75(8)	0.0234(22)	0.00090(8)
⁷⁶ Se	2809.08(7)	0.034(24)	0.0013(9)	⁷⁷ Se	7113.76(8)	0.037(3)	0.00142(12)
⁷⁶ Se	2872.93(9)	0.046(3)	0.00177(12)	⁷⁶ Se	7179.492(21)	0.261(25)	0.0100(10)
⁷⁷ Se	2873.47(9)	0.061(8)	0.0023(3)	⁷⁷ Se	7209.15(6)	0.056(3)	0.00215(12)
⁷⁶ Se	2922.68(11)	0.0214(21)	0.00082(8)	⁷⁶ Se	7418.467(21)	0.350(13)	0.0134(5)
⁷⁶ Se ⁷⁶ Se	2982.82(11)	0.030(9)	0.0012(4)	⁷⁷ Se ⁷⁴ Se	7491.71(9)	0.0295(15)	0.00113(6)
77 Se	3039.95(11)	0.038(16)	0.0015(6)	77 Se	7734.052(18) 8162.11(9)	0.13(6)	0.0050(23)
⁷⁶ Se	3072.64(13) 3206.54(17)	0.0257(17) 0.027(14)	0.00099(7) 0.0010(5)	77 Se	8162.11(9)	0.058(3) 0.054(4)	0.00223(12) 0.00207(15)
⁷⁷ Se	3242.39(12)	0.027(14)	0.0013(3)	⁷⁷ Se	8501.35(3)	0.048(3)	0.00207(13)
⁷⁶ Se	3279.09(12)	0.023(4)	0.00088(15)	⁷⁷ Se	9188.52(3)	0.150(8)	0.00184(12)
⁷⁶ Se	3296.55(13)	0.028(4)	0.00107(15)	⁷⁷ Se	9883.35(3)	0.220(22)	0.0038(3)
⁷⁷ Se	3385.13(12)	0.038(11)	0.0015(4)	⁷⁷ Se	10496.99(3)	0.0221(25)	0.00085(10)
⁷⁷ Se	3439.40(13)	0.028(3)	0.00107(12)	50		` '	$04(1), \sigma_{\gamma}^{z} = 6.39(7)$
⁷⁶ Se	3466.82(17)	0.022(4)	0.00084(15)	⁸¹ Br	29.1130(10)	0.1680(20)	0.00637(8)
⁷⁶ Se	3517.60(17)	0.032(5)	0.00123(19)	⁷⁹ Br	37.0520(20)d	0.428(12)	0.0162[7.5%]
⁷⁶ Se	3550.31(20)	0.042(17)	0.0016(7)	⁷⁹ Br	37.054(3)	0.160(10)	0.0061(4)
⁷⁶ Se	3620.46(17)	0.028(4)	0.00107(15)	⁷⁹ Br	50.112(3)	0.0081(6)	0.000307(23)
⁷⁶ Se	3636.29(17)	0.030(4)	0.00115(15)	⁷⁹ Br	59.471(4)	0.202(5)	0.00766(19)
⁷⁶ Se	3693.06(20)	0.024(9)	0.0009(4)	⁸¹ Br	72.0210(20)	0.0121(4)	0.000459(15)
⁷⁶ Se	3700.14(12)	0.034(24)	0.0013(9)	⁷⁹ Br	74.972(3)	0.0323(7)	0.00123(3)
⁷⁶ Se	3858.09(11)	0.037(6)	0.00142(23)	⁸¹ Br	85.267(7)	0.0096(4)	0.000364(15)
⁷⁶ Se	3866.33(10)	0.024(5)	0.00092(19)	⁷⁹ Br	124.028(3)	0.0268(5)	0.001016(19)
⁷⁶ Se	3873.00(12)	0.025(4)	0.00096(15)	⁷⁹ Br	126.280(3)	0.0174(4)	0.000660(15)
⁷⁶ Se	3901.06(17)	0.073(8)	0.0028(3)	⁷⁹ Br	146.904(3)	0.0184(7)	0.00070(3)
⁷⁶ Se	3945.94(17)	0.033(5)	0.00127(19)	⁷⁹ Br	159.044(4)	0.0171(7)	0.00065(3)
⁷⁶ Se	3968.30(13)	0.040(4)	0.00154(15)	⁷⁹ Br	159.800(4)	0.0232(7)	0.00088(3)
⁷⁶ Se	4003.78(5)	0.025(4)	0.00096(15)	⁷⁹ Br	175.084(3)	0.0173(12)	0.00066(5)
⁷⁶ Se	4020.78(7)	0.0225(16)	0.00086(6)	⁸¹ Br	184.6440(10)	0.0258(12)	0.00098(5)
⁷⁶ Se	4056.54(11)	0.031(5)	0.00119(19)	⁷⁹ Br	195.602(4)	0.434(14)	0.0165(5)
⁷⁶ Se	4064.52(11)	0.0229(14)	0.00088(5)	⁷⁹ Br	197.607(3)	0.0175(11)	0.00066(4)
⁷⁶ Se	4174.76(12)	0.037(7)	0.0014(3)	⁷⁹ Br	211.594(3)	0.0454(21)	0.00172(8)
⁷⁶ Se ⁷⁶ Se	4185.94(13) 4243.49(13)	0.042(10)	0.0016(4) 0.00084(5)	⁷⁹ Br	213.816(5)	0.0104(11)	0.00039(4)
⁷⁶ Se	4243.49(13) 4354.79(9)	0.0220(13)	` '	⁷⁹ Br	218.785(4)	0.019(8)	0.0007(3)
se	4334./9(9)	0.040(5)	0.00154(19)	⁷⁹ Br	219.377(3)	0.399(14)	0.0151(5)

$^{\mathbf{A}}\mathbf{Z}$	EγkeV	σ _γ ^z (E _γ)-barı		$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -bar	
⁸¹ Br	221.0950(20)	0.0123(14)	0.00047(5)	81 Br	541.856(9)	0.0151(23)	0.00057(9)
⁷⁹ Br	223.627(3)	0.153(5)	0.00580(19)	⁷⁹ Br	542.515(6)	0.114(5)	0.00432(19)
⁷⁹ Br	226.53(5)	0.0080(20)	0.00030(8)	⁷⁹ Br	545.667(7)	0.0094(14)	0.00036(5)
⁷⁹ Br	234.320(3)	0.205(10)	0.0078(4)	⁷⁹ Br	549.559(3)	0.0593(14)	0.00225(5)
⁷⁹ Br	236.454(3)	0.0372(23)	0.00141(9)	⁸¹ Br	552.1730(20)	0.0161(11)	0.00061(4)
⁷⁹ Br	244.237(3)	0.45(3)	0.0171(11)	⁸¹ Br	554.3480(20)d	0.838(8)	0.0318(3)
⁸¹ Br	244.8310(10)	0.15(5)	0.0057(19)	⁷⁹ Br	557.257(21)	0.0315(23)	0.00119(9)
⁷⁹ Br	245.203(4)	0.80(3)	0.0303(11)	⁸¹ Br	566.0990(20)	0.0551(12)	0.00209(5)
⁸¹ Br	245.54(3)	0.018(4)	0.00068(15)	⁸¹ Br	581.2860(20)	0.0231(11)	0.00088(4)
⁸¹ Br	250.2080(20)	0.0145(19)	0.00055(7)	⁸¹ Br	595.2120(20)	0.0177(11)	0.00067(4)
⁷⁹ Br	263.460(8)	0.0105(25)	0.00040(10)	81 Br	599.27(3)	0.0124(9)	0.00047(3)
⁸¹ Br	264.4350(10)	0.035(3)	0.00133(11)	⁷⁹ Br	604.61(5)	0.013(5)	0.00049(19)
⁷⁹ Br	271.374(3)	0.462(7)	0.0175(3)	⁸¹ Br	608.115(19)	0.0438(13)	0.00166(5)
⁷⁹ Br	274.532(5)	0.158(3)	0.00599(11)	⁷⁹ Br	616.3(5)d	0.39(4)	0.0148[62%]
⁷⁹ Br	278.186(3)	0.0238(14)	0.00090(5)	⁸¹ Br	619.106(4)d	0.515(5)	0.01953(19)
⁸¹ Br	278.3620(20)	0.014(5)	0.00053(19)	⁷⁹ Br	619.17(3)	0.0308(12)	0.00117(5)
⁸¹ Br	287.7390(20)	0.253(4)	0.00960(15)	⁷⁹ Br	630.710(12)	0.0224(13)	0.00085(5)
⁷⁹ Br	294.349(3)	0.1160(22)	0.00440(8)	⁷⁹ Br	636.681(8)	0.018(4)	0.00068(15)
⁷⁹ Br	296.908(4)	0.0307(15)	0.00116(6)	⁸¹ Br	643.291(6)	0.0373(20)	0.00141(8)
⁷⁹ Br	299.886(4)	8.00E-02	3.00E-03	⁷⁹ Br	660.561(4)	0.082(3)	0.00311(11)
⁷⁹ Br	303.02(5)	0.008(3)	0.00030(11)	⁷⁹ Br	678.69(4)	0.0089(19)	0.00034(7)
⁷⁹ Br	311.090(6)	0.0080(12)	0.00030(5)	⁸¹ Br	684.885(3)	0.050(3)	0.00190(11)
⁷⁹ Br	314.982(3)	0.460(9)	0.0174(3)	⁷⁹ Br	684.94(5)	0.0120(20)	0.00046(8)
⁷⁹ Br	315.524(17)	0.030(8)	0.0011(3)	⁷⁹ Br	686.930(5)	0.014(3)	0.00053(11)
⁸¹ Br	315.770(5)	0.022(8)	0.0008(3)	⁸¹ Br	687.02(8)	0.0157(20)	0.00060(8)
⁸¹ Br	316.8510(20)	0.017(5)	0.00064(19)	⁷⁹ Br	689.994(16)	0.083(4)	0.00315(15)
⁷⁹ Br	321.937(8)	0.0262(18)	0.00099(7)	⁸¹ Br	698.374(5)d	0.337(3)	0.01278(12)
⁷⁹ Br	329.551(4)	0.0213(16)	0.00081(6)	⁷⁹ Br	702.025(9)	0.0648(14)	0.00246(5)
⁸¹ Br	339.881(3)	0.0134(14)	0.00051(5)	⁸¹ Br	716.14(8)	0.0420(23)	0.00159(9)
⁷⁹ Br	343.405(3)	0.118(4)	0.00448(15)	81 Br	717.756(20)	0.0373(8)	0.00141(3)
⁸¹ Br	345.0060(10)	0.154(4)	0.00584(15)	⁷⁹ Br	721.417(12)	0.026(6)	0.00099(23)
⁷⁹ Br	345.580(4)	0.023(4)	0.00087(15)	⁷⁹ Br	723.983(5)	0.019(3)	0.00072(11)
⁸¹ Br	346.986(4)	0.0122(18)	0.00046(7)	⁷⁹ Br	731.147(4)	0.0139(6)	0.000527(23)
⁸¹ Br	350.3830(20)	0.0188(15)	0.00071(6)	⁸¹ Br	746.970(23)	0.0091(14)	0.00035(5)
⁷⁹ Br	366.604(4)	0.233(6)	0.00884(23)	⁷⁹ Br	751.014(10)	0.029(3)	0.00110(11)
⁷⁹ Br	370.530(5)	0.0171(19)	0.00065(7)	⁷⁹ Br	755.728(11)	0.0126(17)	0.00048(6)
⁷⁹ Br	370.531(3)	0.0171(9)	0.00065(3)	⁷⁹ Br	765.957(10)	0.0537(16)	0.00204(6)
⁷⁹ Br	373.44(5)	0.0140(19)	0.00053(7)	⁸¹ Br	776.517(3)d	0.990(10)	0.0375(4)
⁸¹ Br	374.1180(10)	0.011(3)	0.00042(11)	⁷⁹ Br	809.28(3)	0.0084(22)	0.00032(8)
⁷⁹ Br	377.397(14)	0.0100(19)	0.00038(7)	⁸¹ Br	816.578(20)	0.0191(15)	0.00072(6)
⁸¹ Br	379.988(12)	0.0190(11)	0.00072(4)	⁷⁹ Br	827.31(4)	0.015(3)	0.00057(11)
⁷⁹ Br	385.598(11)	0.0232(9)	0.00088(3)	81 Br	827.828(6)d	0.285(3)	0.01081(11)
⁷⁹ Br	389.189(4)	0.0486(13)	0.00184(5)	⁷⁹ Br	830.856(14)	0.0413(12)	0.00157(5)
81 Br	397.147(3)	0.0125(18)	0.00047(7)	⁷⁹ Br	845.70(3)	0.0257(21)	0.00097(8)
⁸¹ Br	400.906(20)	0.0234(16)	0.00089(6)	⁷⁹ Br	850.93(4)	0.0082(14)	0.00031(5)
⁸¹ Br	402.743(3)	0.0170(16)	0.00064(6)	⁸¹ Br	856.13(3)	0.0081(11)	0.00031(4)
⁷⁹ Br	408.55(8)	0.0116(20)	0.00044(8)	⁷⁹ Br	860.488(18)	0.0450(19)	0.00171(7)
⁷⁹ Br	409.002(6)	0.0150(20)	0.00057(8)	⁷⁹ Br	876.59(4)	0.0111(7)	0.00042(3)
⁷⁹ Br	414.04(7)	0.0332(17)	0.00126(6)	⁷⁹ Br	883.60(6)	0.0278(10)	0.00105(4)
⁷⁹ Br	432.216(4)	0.0783(14)	0.00297(5)	⁸¹ Br	888.599(20)	0.0224(15)	0.00085(6)
⁷⁹ Br	450.906(5)	0.0170(13)	0.00064(5)	⁷⁹ Br	889.949(11)	0.0128(17)	0.00049(6)
⁷⁹ Br	452.611(5)	0.0679(24)	0.00258(9)	81 Br	895.87(5)	0.0213(10)	0.00081(4)
⁷⁹ Br	455.830(3)	0.0230(13)	0.00087(5)	⁷⁹ Br	908.97(9)	0.0144(9)	0.00055(3)
⁷⁹ Br	459.775(4)	0.0455(19)	0.00173(7)	⁸¹ Br	910.73(3)	0.0400(12)	0.00152(5)
⁸¹ Br	465.89(3)	0.026(4)	0.00099(15)	⁷⁹ Br	914.574(7)	0.0508(14)	0.00193(5)
⁸¹ Br	466.63(3)	0.008(4)	0.00030(15)	⁷⁹ Br	919.36(5)	0.016(3)	0.00061(11)
⁷⁹ Br	468.980(3)	0.29(3)	0.0110(11)	81 Br	932.794(25)	0.0216(10)	0.00082(4)
⁷⁹ Br	470.619(16)	0.018(3)	0.00068(11)	⁷⁹ Br	933.823(12)	0.010(3)	0.00038(11)
⁷⁹ Br	479.082(10)	0.018(9)	0.0007(3)	⁷⁹ Br	952.58(9)	0.0182(8)	0.00069(3)
⁷⁹ Br	482.813(21)	0.0120(20)	0.00046(8)	⁸¹ Br	976.508(24)	0.0459(13)	0.00174(5)
⁸¹ Br	483.886(3)	0.042(18)	0.0016(7)	⁷⁹ Br	977.431(12)	0.013(3)	0.00049(11)
⁷⁹ Br	492.884(4)	0.0292(10)	0.00111(4)	⁸¹ Br	1013.03(3)	0.023(3)	0.00087(11)
⁷⁹ Br	494.045(7)	0.009(5)	0.00034(19)	⁷⁹ Br	1022.385(10)	0.0167(14)	0.00063(5)
⁸¹ Br	495.0380(20)	0.0342(14)	0.00130(5)	81 Br	1034.706(23)	0.0231(9)	0.00088(3)
⁷⁹ Br	498.19(3)	0.0336(13)	0.00127(5)	⁸¹ Br	1036.890(9)	0.0081(7)	0.00031(3)
⁸¹ Br	512.488(20)	0.21(3)	0.0080(11)	81 Br	1044.002(5)d	0.323(3)	0.01225(12)
⁷⁹ Br	529.247(7)	0.0321(9)	0.00122(3)	⁸¹ Br	1079.99(5)	0.0350(19)	0.00133(7)
⁸¹ Br	538.219(20)	0.0109(10)	0.00041(4)	⁷⁹ Br	1087.46(3)	0.0092(10)	0.00035(4)

$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	σ _γ ^z (E _γ)-barn	$\mathbf{s} = \mathbf{k}_0$
⁸¹ Br	1133.427(20)	0.0110(15)	0.00042(6)	⁸⁶ Kr	1475.94(17)	2.4(4)E-4	8.7(14)E-6
⁷⁹ Br	1143.370(21)	0.0225(18)	0.00085(7)	⁸³ Kr	1543.27(19)	0.486(17)	0.0176(6)
⁷⁹ Br	1147.96(4)	0.0205(17)	0.00078(6)	⁸³ Kr	1623.20(20)	0.327(15)	0.0118(5)
⁸¹ Br	1157.506(25)	0.0210(17)	0.00080(6)	⁸³ Kr	1656.15(18)	0.28(5)	0.0101(18)
⁷⁹ Br	1175.25(3)	0.0116(11)	0.00044(4)	⁸³ Kr	1682.0(3)	0.212(17)	0.0077(6)
⁷⁹ Br	1190.73(5)	0.0216(10)	0.00082(4)	⁸³ Kr	1741.7(3)	0.437(19)	0.0158(7)
⁸¹ Br	1201.13(3)	0.0185(8)	0.00070(3)	⁸³ Kr	1897.79(8)	2.24(3)	0.0810(11)
⁷⁹ Br	1248.801(12)	0.0527(22)	0.00200(8)	⁸³ Kr	1979.34(11)	1.070(22)	0.0387(8)
⁸¹ Br	1317.473(10)d	0.314(3)	0.01191(12)	⁸³ Kr	2160.48(7)	0.577(15)	0.0209(5)
⁷⁹ Br	1320.19(4)	0.012(5)	0.00046(19)	⁸³ Kr	2200.86(11)	0.241(10)	0.0087(4)
⁷⁹ Br	1321.96(11)	0.0152(14)	0.00058(5)	⁸³ Kr	2544.72(19)	0.27(3)	0.0098(11)
⁸¹ Br	1474.880(10)d	0.1930(20)	0.00732(8)	83 Kr	6281.4(7)	2.70E-01	9.80E-03
⁸¹ Br	6349.19(4)	0.0168(12)	0.00064(5)	⁸³ Kr	6306.8(7)	4.80E-01	1.70E-02
⁸¹ Br	6360.18(3)	0.015(5)	0.00057(19)	83 Kr	6519.1(7)	8.80E-01	3.20E-02
⁸¹ Br	6413.36(3)	0.0136(11)	0.00052(4)	83 Kr	6803.5(8)	6.40E-01	2.30E-02
⁸¹ Br	6437.69(5)	0.0328(17)	0.00124(6)	83 Kr	6880.7(7)	1.30E+00	4.70E-02
⁷⁹ Br	6533.28(8)	0.0196(14)	0.00074(5)	83 Kr	6931.7(8)	5.40E-01	2.00E-02
⁷⁹ Br	6570.15(13)	0.0285(13)	0.00108(5)	⁸³ Kr	7207.5(9)	2.50E-01	9.00E-03
⁸¹ Br	6570.27(3)	0.008(3)	0.00030(11)		Rubidium (Z=37	7), At.Wt.=85.46	78(3), $\sigma_{\gamma}^{z} = 0.38(7)$
⁸¹ Br	6621.81(3)	0.0104(22)	0.00039(8)	85 Rb	54.01(6)	0.006(3)	2.1(11)E-4
⁷⁹ Br	6643.30(8)	0.0318(18)	0.00121(7)	85 Rb	59.75(6)	0.010(4)	0.00035(14)
⁷⁹ Br	6668.16(11)	0.0306(18)	0.00116(7)	85 Rb	84.85(8)	0.0052(22)	1.8(8)E-4
⁷⁹ Br	6689.13(9)	0.0321(14)	0.00122(5)	85 Rb	96.87(10)	0.0026(9)	9(3)E-5
⁷⁹ Br	6701.38(9)	0.0168(10)	0.00064(4)	85 Rb	113.76(4)	0.00535(14)	1.90(5)E-4
⁸¹ Br	6746.030(22)	0.0386(16)	0.00146(6)	85 Rb	119.94(4)	0.00267(9)	9.5(3)E-5
⁷⁹ Br	6894.78(8)	0.0101(7)	0.00038(3)	⁸⁷ Rb	166.01(3)	0.00215(8)	7.6(3)E-5
⁷⁹ Br	6977.51(8)	0.0110(8)	0.00042(3)	85 Rb	176.2(9)	0.0031(13)	1.1(5)E-4
⁷⁹ Br	7031.43(8)	0.0447(22)	0.00170(8)	⁸⁷ Rb	196.34(3)	0.00964(19)	0.000342(7)
⁷⁹ Br	7078.18(8)	0.0566(24)	0.00215(9)	85 Rb	198.96(10)	0.00266(9)	9.4(3)E-5
⁷⁹ Br	7126.18(8)	0.0154(15)	0.00058(6)	85 Rb	224.31(6)	0.00132(7)	4.68(25)E-5
⁷⁹ Br	7168.08(8)	0.0103(8)	0.00039(3)	⁸⁷ Rb	240.76(3)	0.00224(8)	7.9(3)E-5
⁸¹ Br	7172.612(22)	0.0238(12)	0.00090(5)	85 Rb	283.80(8)	0.00092(6)	3.26(21)E-5
⁸¹ Br	7229.873(22)	0.0250(14)	0.00095(5)	85 Rb	316.13(4)	0.00138(8)	4.9(3)E-5
⁸¹ Br	7301.888(22)	0.0101(8)	0.00038(3)	85 Rb	322.80(4)	0.00254(10)	9.0(4)E-5
⁷⁹ Br	7422.77(8)	0.0495(18)	0.00188(7)	87 Rb	362.62(5)	0.00314(12)	1.11(4)E-4
⁷⁹ Br	7511.57(8)	0.0108(9)	0.00041(3)	85 Rb	362.78(9)	0.0061(22)	2.2(8)E-4
⁷⁹ Br	7577.04(8)	0.108(3)	0.00410(11)	⁸⁷ Rb	390.60(4)	0.00179(8)	6.3(3)E-5
⁷⁹ Br	7610.73(8)	0.0093(8)	0.00035(3)	85 Rb	421.50(3)	0.0259(5)	0.000918(18)
02			$O(1), \sigma_{\gamma}^{z} = 25.8(12)$	85 Rb	487.89(4)	0.0494(12)	0.00175(4)
82 Kr	9.4050(10)d	0.122(24)	0.0044[17%]	85 Rb	514.57(4)	0.00653(20)	2.32(7)E-4
83 Kr	367.7(5)	0.532(10)	0.0192(4)	85 Rb	529.9(9)	0.0031(13)	1.1(5)E-4
83 Kr	419.4(5)	0.630(10)	0.0228(4)	85 Rb	536.48(4)	0.0167(5)	0.000592(18)
83 Kr	425.30(11)	2.960(19)	0.1070(7)	85 Rb	538.66(4)	0.0169(5)	0.000599(18)
83 Kr	448.11(11)	0.590(19)	0.0213(7)	85 Rb	555.61(3)d	0.0407(10)	0.00144[98%]
83 Kr	541.50(12)	0.295(12)	0.0107(4)	85 Rb	556.82(3)	0.0913(24)	0.00324(9)
83 Kr	546.98(12)	0.328(12)	0.0119(4)	85 Rb	565.37(4)	0.00383(10)	1.36(4)E-4
83 Kr	605.5(4)	0.398(25)	0.0144(9)	85 Rb	638.93(5)	0.0101(13)	0.00036(5)
83 Kr	612.0(3)	0.42(3)	0.0152(11)	85 Rb	640.20(10)	0.0032(7)	1.13(25)E-4
83 Kr	637.13(18)	0.251(22)	0.0091(8)	85 Rb	668.76(7)	0.00211(10)	7.5(4)E-5
⁸³ Kr ⁸³ Kr	708.24(21)	0.220(21)	0.0080(8)	85 Rb 85 Rb	691.57(5)	0.00725(18)	0.000257(6)
	737.0(9)	0.31(6)	0.0112(22)	85 Rb 85 Rb	726.98(5)	0.00421(15)	1.49(5)E-4
83 Kr 83 W	802.62(8)	1.520(22)	0.0550(8)	85 Rb 85 Rb	747.67(4)	0.00268(12)	9.5(4)E-5
⁸³ Kr ⁸³ Kr	881.74(11)	20.8(3)	0.752(11)	⁸⁵ Rb ⁸⁷ Rb	816.59(6)	0.0031(9)	1.1(3)E-4
	919.79(19)	0.222(17)	0.0080(6)		834.79(6)	0.00197(13)	7.0(5)E-5
⁸³ Kr ⁸³ Kr	938.12(13)	0.449(21)	0.0162(8)	⁸⁵ Rb ⁸⁵ Rb	872.94(4)	0.0321(5)	0.001138(18)
83 Kr	943.36(14)	0.713(8)	0.0258(3)	85 Rb	881.50(4)	0.00480(17)	1.70(6)E-4
83 Kr	946.5(5)	0.447(19)	0.0162(7)	85 Rb	913.12(6)	0.00497(15) 0.0035(13)	1.76(5)E-4
83 Kr	963.44(13) 987.69(19)	0.660(22) 0.256(25)	0.0239(8)	85 Rb	944.49(9)		1.2(5)E-4 1.38(5)E-4
83 Kr	987.69(19) 1016.2(3)	0.256(25) 1.08(7)	0.0093(9) 0.0391(25)	85 Rb	945.72(7) 1026.55(6)	0.00390(15) 0.0218(4)	0.000773(14)
83 Kr	1077.55(25)	0.47(3)	0.0391(23)	85 Rb	1020.33(6)	0.0218(4)	0.000775(14)
83 Kr	1124.44(6)	1.420(21)	0.0170(11)	85 Rb	1032.32(5) 1076.64(20)d	0.0227(4)	0.001067[<0.1%]
83 Kr	1213.42(12)	8.28(17)	0.0314(8) 0.299(6)	85 Rb	1076.64(20)d 1105.52(10)	0.0301(3)	0.001007[<0.176]
83 Kr	1213.42(12)	0.310(12)	0.299(6)	87 Rb	1141.49(15)	0.0131(3)	4.0(4)E-5
83 Kr	1293.20(13)	0.383(25)	0.0112(4)	85 Rb	1178.86(10)	0.00113(11)	1.6(5)E-4
83 Kr	1331.89(13)	0.39(6)	0.0139(9)	85 Rb	1219.80(9)	0.00446(21)	1.58(7)E-4
83 Kr	1443.43(11)	0.237(10)	0.0086(4)	87 Rb	1245.20(6)	0.00253(12)	9.0(4)E-5
83 Kr	1463.86(6)	7.10(8)	0.257(3)	85 Rb	1304.48(4)	0.0204(5)	0.000723(18)
	(0)	(*)	- (-)		(•)		()

$^{\mathbf{A}}\mathbf{Z}$	EγkeV	σ _γ ^z (E _γ)-barn		$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -bar	
⁸⁵ Rb	1389.32(7)	0.00809(21)	0.000287(7)	⁸⁸ Sr	4078.39(5)	0.0055(9)	1.9(3)E-4
85 Rb	1438.31(4)	0.00200(15)	7.1(5)E-5	⁸⁷ Sr	4604.81(6)	0.0169(7)	0.000585(24)
85 Rb	1666.74(9)	0.00774(23)	0.000274(8)	⁸⁷ Sr	5161.37(5)	0.0138(6)	0.000477(21)
85 Rb	1890.7(4)	0.017(4)	0.00060(14)	⁸⁶ Sr	5361.652(25)	0.0104(6)	0.000360(21)
85 Rb	2130.59(17)	0.0031(5)	1.10(18)E-4	⁸⁷ Sr	5423.43(8)	0.0146(7)	0.000505(24)
85 Rb	2149.4(7)	0.00153(19)	5.4(7)E-5	⁸⁷ Sr	5684.81(4)	0.0131(9)	0.00045(3)
85 Rb	2179.33(16)	0.00168(17)	6.0(6)E-5	⁸⁷ Sr	5791.07(4)	0.0196(9)	0.00068(3)
⁸⁵ Rb	2353.43(17)	0.00122(9)	4.3(3)E-5	⁸⁷ Sr	5999.31(5)	0.0109(6)	0.000377(21)
⁸⁷ Rb	2391.86(21)	0.00094(12)	3.3(4)E-5	⁸⁷ Sr	6101.72(4)	0.0477(17)	0.00165(6)
85 Rb	2461.41(17)	0.00251(17)	8.9(6)E-5	⁸⁷ Sr	6266.87(4)	0.077(3)	0.00266(10)
85 Rb	2476.2(7)	0.0013(4)	4.6(14)E-5	⁸⁷ Sr	6660.40(3)	0.0644(23)	0.00223(8)
85 Rb	2568.8(5)	0.0017(4)	6.0(14)E-5	87 Sr	6671.58(4)	0.0132(7)	0.000457(24)
85 Rb	2585.58(16)	0.00240(18)	8.5(6)E-5	87 Sr	6698.39(5)	0.0127(6)	0.000439(21)
87 Rb	3690.17(20)	0.00184(18)	6.5(6)E-5	87 Sr	6885.14(3)	0.0478(20)	0.00165(7)
87 Rb	4640.79(25)	0.00292(19)	1.04(7)E-4	87 Sr	6941.93(3)	0.0502(20)	0.00174(7)
87 Rb	5220.8(3)	0.00176(18)	6.2(6)E-5	⁸⁷ Sr	7527.490(25)	0.0687(24)	0.00238(8)
⁸⁷ Rb	5886.30(24)	0.00217(17)	7.7(6)E-5	⁸⁶ Sr	8039.250(19)	0.0260(14)	0.00090(5)
85 Rb	6065.13(17)	0.0047(3)	1.67(11)E-4	⁸⁷ Sr	8378.069(23)	0.0197(7)	0.000681(24)
85 Rb	6081.9(5)	0.00097(16)	3.4(6)E-5		Yttrium (Z=39), A		$35(2), \sigma_{\gamma}^{z} = 1.280(20)$
87 Rb	6082.4(4)	0.00097(16)	3.4(6)E-5	⁸⁹ Y	176.923(22)	0.0129(7)	0.000440(24)
85 Rb	6143.2(4)	0.00132(19)	4.7(7)E-5	⁸⁹ Y	202.53(3)	0.289(7)	0.00985(24)
85 Rb	6189.29(18)	0.0036(3)	1.28(11)E-4	⁸⁹ Y	202.53(3)d	0.0018(5)	6.1E-5[10%]
85 Rb	6319.4(8)	0.00107(18)	3.8(6)E-5	⁸⁹ Y	574.106(20)	0.174(7)	0.00593(24)
85 Rb	6351.44(17)	0.00173(16)	6.1(6)E-5	⁸⁹ Y	604.99(3)	0.0084(7)	0.000286(24)
85 Rb	6385.11(25)	0.00148(19)	5.2(7)E-5	⁸⁹ Y	776.613(18)	0.659(9)	0.0225(3)
85 Rb	6471.37(17)	0.0049(3)	1.74(11)E-4	⁸⁹ Y	953.534(21)	0.0135(11)	0.00046(4)
85 Rb	6501.3(7)	0.00165(19)	5.9(7)E-5	⁸⁹ Y	1211.573(22)	0.0453(22)	0.00154(8)
85 Rb	6520.11(18)	0.0064(4)	2.27(14)E-4	⁸⁹ Y	1214.060(23)	0.0096(12)	0.00033(4)
85 Rb	6831.64(10)	0.0064(4)	2.27(14)E-4	⁸⁹ Y	1369.099(23)	0.0087(12)	0.00030(4)
85 Rb	6942.98(13)	0.00161(15)	5.7(5)E-5	⁸⁹ Y	1371.124(20)	0.0404(22)	0.00138(8)
85 Rb	7212.34(10)	0.00129(17)	4.6(6)E-5	⁸⁹ Y	1416.566(22)	0.0173(13)	0.00059(4)
85 Rb	7346.16(10)	0.0059(3)	2.09(11)E-4	⁸⁹ Y	1558.459(23)	0.0163(11)	0.00056(4)
85 Rb	7545.10(13)	0.00099(14)	3.5(5)E-5	⁸⁹ Y	1571.604(22)	0.0148(11)	0.00050(4)
85 Rb	7624.07(11)	0.0114(5)	0.000404(18)	⁸⁹ Y	1640.913(22)	0.0146(15)	0.00050(5)
85 Rb	8093.76(10)	0.00211(20)	7.5(7)E-5	⁸⁹ Y	1760.964(23)	0.0086(10)	0.00029(3)
85 Rb	8650.52(10)	0.0022(4)	7.8(14)E-5	⁸⁹ Y	1780.70(6)	0.0082(18)	0.00028(6)
			$\sigma_{\gamma}^{z} = 1.30(21)$	⁸⁹ Y	1815.15(3)	0.0223(15)	0.00076(5)
⁸⁴ Sr	231.68(4)	0.0017(3)	5.9(10)E-5	⁸⁹ Y	2139.11(4)	0.0101(12)	0.00034(4)
⁸⁶ Sr	388.526(22)d	0.0785(23)	0.00272[11%]	⁸⁹ Y	2196.10(3)	0.0107(10)	0.00036(3)
87 Sr	434.925(20)	0.0346(8)	0.00120(3)	89 Y	2273.38(4)	0.0121(24)	0.00041(8)
86 Sr	484.822(14)	0.0315(12)	0.00109(4)	89 Y	2327.31(5)	0.0108(18)	0.00037(6)
87 Sr	585.613(14)	0.0703(14)	0.00243(5)	⁸⁹ Y	2405.36(4)	0.0095(18)	0.00032(6)
87 Sr	850.657(12)	0.275(4)	0.00951(14)	⁸⁹ Y	2504.60(4)	0.0139(17)	0.00047(6)
87 Sr	898.055(11)	0.702(10)	0.0243(4)	89 Y	2546.68(3)	0.0219(17)	0.00075(6)
87 Sr	934.49(3)	0.024(4)	0.00083(14)	89 Y	2589.56(5)	0.0137(15)	0.00047(5)
⁸⁷ Sr	1218.523(16)	0.0599(13)	0.00207(5)	89 Y	2749.181(24)	0.0246(19)	0.00084(7)
⁸⁷ Sr	1323.92(6)	0.013(3)	0.00045(10)	89 Y	2756.47(5)	0.0103(12)	0.00035(4)
⁸⁷ Sr	1368.677(25)	0.038(8)	0.0013(3)	89 Y	2819.38(5)	0.0096(9)	0.00033(3)
⁸⁷ Sr	1382.44(4)	0.0239(8)	0.00083(3)	89 Y	2847.23(7)	0.0096(9)	0.00033(3)
⁸⁷ Sr	1407.89(5)	0.0104(20)	0.00036(7)	89 Y	2922.48(3)	0.0090(9)	0.00031(3)
⁸⁷ Sr	1436.264(17)	0.0124(6)	0.000429(21)	⁸⁹ Y ⁸⁹ Y	3160.17(4)	0.0109(6)	0.000372(20)
⁸⁷ Sr	1493.06(3)	0.0130(8)	0.00045(3)		3164.64(5)	0.0120(6)	0.000409(20)
⁸⁷ Sr ⁸⁷ Sr	1534.561(22)	0.0317(9)	0.00110(3)	⁸⁹ Y ⁸⁹ Y	3229.29(3)	0.0116(6)	0.000395(20)
	1565.48(5)	0.0136(12)	0.00047(4)	89 Y	3254.87(4)	0.0119(6)	0.000406(20)
⁸⁷ Sr	1565.54(5)	0.027(4)	0.00093(14)		3282.41(4)	0.0192(10)	0.00065(3)
⁸⁷ Sr ⁸⁷ Sr	1706.62(4)	0.0231(8)	0.00080(3)	⁸⁹ Y ⁸⁹ Y	3301.23(3)	0.0276(18)	0.00094(6)
	1717.804(23)	0.0674(15)	0.00233(5)	89 Y	3380.87(4)	0.0159(8)	0.00054(3)
⁸⁷ Sr ⁸⁷ Sr	1736.33(7)	0.0140(14)	0.00048(5)	89 Y	3544.52(4)	0.0163(10)	0.00056(3)
87 Sr 87 Sr	1736.54(3)	0.018(3)	0.00062(10)	89 Y	3696.70(4)	0.0138(8)	0.00047(3)
87 Sr 87 Sr	1799.06(3)	0.0356(11)	0.00123(4)	89 Y	3713.08(4)	0.0078(4)	0.000266(14)
87 C	1836.067(21)	1.030(18)	0.0356(6)	89 Y	3870.79(5)	0.0089(5)	0.000303(17)
⁸⁷ Sr ⁸⁷ Sr	2111.36(3)	0.0279(10)	0.00096(4)	89 Y	4009.64(7)	0.0089(6)	0.000303(20)
87 Sr	2202.92(3)	0.0341(10)	0.00118(4)	89 Y	4098.82(3)	0.0108(6)	0.000368(20)
87 Sr	2276.52(3)	0.0431(13)	0.00149(5)	89 Y	4107.68(3)	0.067(12)	0.0023(4)
87 Sr	2391.09(3)	0.0471(15)	0.00163(5)	89 Y	4352.26(4) 4380.97(4)	0.0207(16) 0.0085(5)	0.00071(6)
87 Sr	2463.52(4) 2577.85(4)	0.0131(6) 0.0246(9)	0.000453(21) 0.00085(3)	89 Y	4380.97(4) 4490.91(3)	0.0085(5)	0.000290(17) 0.000317(20)
87 Sr	3009.39(3)	0.0246(9)	0.00085(3)	89 Y	4660.75(3)	0.0093(6)	0.000317(20)
31	5009.59(5)	0.0373(13)	0.00177(3)	1	T000.73(3)	0.0000(3)	0.000300(17)

^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn		^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	
⁸⁹ Y	5645.236(25)	0.029(3)	0.00099(10)	⁹¹ Zr	4994.61(18)	0.0027(5)	9.0(17)E-5
⁸⁹ Y	6080.171(22)	0.76(4)	0.0259(14)	⁹¹ Zr	5006.56(16)	0.0049(7)	1.63(23)E-4
	Zirconium (Z=	40), At.Wt.=91.2	$24(2), \sigma_{\gamma}^{z} = 0.19(3)$	⁹⁰ Zr	5150.3(9)	0.0017(12)	6(4)E-5
⁹⁴ Zr	101.17(9)	0.0026(3)	8.6(10)E-5	⁹¹ Zr	5182.73(17)	0.0019(4)	6.3(13)E-5
⁹⁶ Zr	160.94(10)	0.0111(7)	0.000369(23)	⁹¹ Zr	5263.42(17)	0.0064(8)	2.1(3)E-4
92 Zr	266.78(16)	0.0091(5)	0.000302(17)	92 Zr	5309.9(7)	0.0024(4)	8.0(13)E-5
⁹¹ Zr	273.036(5)	0.0029(4)	9.6(13)E-5	⁹¹ Zr	5372.23(17)	0.0016(4)	5.3(13)E-5
⁹¹ Zr	403.898(13)	0.00137(25)	4.6(8)E-5	⁹⁶ Zr	5574.9(4)	0.0023(4)	7.6(13)E-5
⁹¹ Zr	448.217(5)	0.0067(3)	2.23(10)E-4	⁹¹ Zr	6295.13(16)	0.0279(20)	0.00093(7)
91 Zr	492.398(8)	0.0027(3)	9.0(10)E-5	⁹⁴ Zr	6357.8(4)	0.0026(4)	8.6(13)E-5
⁹¹ Z r	560.958(3)	0.0285(5)	0.000947(17)			` /	38(2), $\sigma_{\gamma}^{z} = 1.15(5)$
94 Zr	569.5(3)	0.0013(3)	4.3(10)E-5	⁹³ Nb	17.810(7)	0.0579(14)	0.00189(5)
91 Zr	571.171(5)	0.0013(3)	7.3(10)E-5	93 Nb	54.704(7)	0.0058(7)	1.89(23)E-4
90 Zr	652.8(4)	0.0022(3)	1.0(5)E-4	93 Nb			
96 Zr		` /	` '	93 Nb	78.6680(10)	0.0169(3)	0.000551(10)
91 Zr	743.36(3)d	0.00101(6)	3.36E-5[2.0%]		99.4070(10)	0.196(9)	0.0064(3)
	844.206(4)	0.0095(4)	0.000316(13)	93 Nb	113.4010(10)	0.117(3)	0.00382(10)
⁹¹ Zr	902.861(8)	0.0047(5)	1.56(17)E-4	⁹³ Nb	135.47(6)	0.0029(9)	9(3)E-5
91 Zr	912.766(7)	0.0117(5)	0.000389(17)	93 Nb	136.21(12)	0.0027(7)	8.8(23)E-5
91 Zr	934.4640(10)	0.125(5)	0.00415(17)	93 Nb	138.614(8)	0.0089(19)	0.00029(6)
94 Zr	939.11(10)	0.0017(5)	5.6(17)E-5	⁹³ Nb	140.10(3)	0.00226(21)	7.4(7)E-5
92 Zr	946.6(5)	0.0020(5)	6.6(17)E-5	⁹³ Nb	150.711(22)	0.00201(21)	6.6(7)E-5
94 Zr	953.77(15)	0.0030(5)	9.97(17)E-5	⁹³ Nb	161.2610(20)	0.0190(5)	0.000620(16)
91 Zr	972.332(10)	0.0025(17)	8(6)E-5	⁹³ Nb	193.96(13)	0.0022(4)	7.2(13)E-5
91 Zr	990.540(7)	0.0029(5)	9.6(17)E-5	⁹³ Nb	253.115(5)	0.1320(19)	0.00431(6)
94 Zr	1030.83(24)	0.0013(4)	4.3(13)E-5	⁹³ Nb	255.9290(20)	0.176(3)	0.00574(10)
94 Zr	1054.75(16)	0.0037(5)	1.23(17)E-4	⁹³ Nb	270.45(4)	0.0046(3)	1.50(10)E-4
90 Zr	1067.5(7)	0.0017(8)	6(3)E-5	⁹³ Nb	293.206(4)	0.0651(16)	0.00212(5)
⁹⁶ Zr	1102.67(6)	0.0235(8)	0.00078(3)	⁹³ Nb	309.915(8)	0.0690(17)	0.00225(6)
91 Zr	1132.126(4)	0.0100(7)	0.000332(23)	⁹³ Nb	319.703(14)	0.00320(23)	1.04(8)E-4
⁹⁴ Zr	1198.25(19)	0.0042(5)	1.40(17)E-4	⁹³ Nb	329.178(12)	0.0108(4)	0.000352(13)
⁹⁰ Zr	1205.6(7)	0.042(5)	0.00140(17)	⁹³ Nb	329.185(10)	0.0080(9)	0.00026(3)
⁹¹ Zr	1222.44(4)	0.0018(4)	6.0(13)E-5	⁹³ Nb	337.527(7)	0.054(6)	0.00176(20)
⁹¹ Zr	1248.100(12)	0.0038(4)	1.26(13)E-4	⁹³ Nb	338.661(19)	0.0080(19)	0.00026(6)
⁹⁴ Zr	1300.1(5)	0.0015(5)	5.0(17)E-5	⁹³ Nb	355.3360(20)	0.0056(3)	1.83(10)E-4
94 Zr	1323.20(25)	0.0025(5)	8.3(17)E-5	93 Nb	450.98(9)	0.00238(20)	7.8(7)E-5
⁹¹ Zr	1405.159(3)	0.0301(10)	0.00100(3)	93 Nb	454.60(5)	0.00328(22)	1.07(7)E-4
92 Zr	1425.2(4)	0.00287(20)	9.5(7)E-5	93 Nb	456.20(10)	0.00526(22)	1.89(23)E-4
91 Zr	1463.814(8)	0.0017(7)	5.6(23)E-5	93 Nb	458.467(10)	0.0240(5)	0.000783(16)
90 Z r	1465.7(7)	0.063(15)	0.0021(5)	93 Nb	482.72(3)	0.0032(5)	1.04(16)E-4
⁹² Zr	1650.1(5)	0.003(13)	1.0(4)E-4	93 Nb	484.14(5)	0.0032(3)	2.38(20)E-4
91 Zr	1847.220(7)	0.0029(12)	0.00028(3)	93 Nb	499.426(8)	0.0648(18)	0.00211(6)
90 Z r	1880.4(4)	0.016(4)	0.00028(3)	93 Nb	518.113(12)	0.0579(13)	0.00211(0)
94 Zr		0.0034(7)		93 Nb		0.0074(6)	
92 Zr	1892.9(4)	` /	1.13(23)E-4	93 Nb	525.81(3) 527.595(9)	` /	2.41(20)E-4 0.000414(23)
91 Zr	1917.2(9) 1956.66(4)	0.0017(8) 0.0035(5)	6(3)E-5 1.16(17)E-4	93 Nb	547.73(7)	0.0127(7) 0.0045(4)	` /
91 Zr			8.0(17)E-4 8.0(17)E-5	93 Nb			1.47(13)E-4
21 91 Zr	1974.91(4)	0.0024(5)	()	93 Nb	562.328(9)	0.0293(11)	0.00096(4)
90 Zr	1988.71(3)	0.0049(5)	1.63(17)E-4	93 Nb	573.07(4)	0.0020(3)	6.5(10)E-5
	2042.2(4)	0.032(8)	0.0011(3)		583.837(11)	0.0022(3)	7.2(10)E-5
91 Zr	2105.16(5)	0.0025(5)	8.3(17)E-5	93 Nb	590.627(14)	0.0086(5)	0.000281(16)
⁹¹ Zr ⁹² Zr	2132.84(3)	0.0014(3)	4.7(10)E-5	⁹³ Nb ⁹³ Nb	600.43(3)	0.0035(5)	1.14(16)E-4
	2190.2(5)	0.0044(5)	1.46(17)E-4		635.80(5)	0.0059(5)	1.92(16)E-4
⁹¹ Zr	2328.10(4)	0.0019(8)	6(3)E-5	⁹³ Nb	636.081(16)	0.0043(5)	1.40(16)E-4
91 Zr	2436.92(3)	0.0015(7)	5.0(23)E-5	93 Nb	640.995(9)	0.0048(5)	1.57(16)E-4
⁹⁰ Zr	2533.2(5)	0.0037(14)	1.2(5)E-4	⁹³ Nb	642.62(4)	0.0069(5)	2.25(16)E-4
⁹¹ Zr	2537.17(19)	0.0014(5)	4.7(17)E-5	⁹³ Nb	645.40(5)	0.0022(7)	7.2(23)E-5
⁹⁰ Zr	2557.8(8)	0.016(4)	0.00053(13)	⁹³ Nb	672.30(5)	0.0023(4)	7.5(13)E-5
⁹⁰ Zr	2577.3(14)	0.016(4)	0.00053(13)	⁹³ Nb	689.79(5)	0.0164(6)	0.000535(20)
⁹⁰ Zr	2640.1(8)	0.0105(25)	0.00035(8)	⁹³ Nb	693.74(4)	0.0085(4)	0.000277(13)
⁹¹ Zr	2693.79(3)	0.006(3)	2.0(10)E-4	⁹³ Nb	711.47(4)	0.0024(3)	7.8(10)E-5
⁹¹ Zr	2705.74(9)	0.0019(8)	6(3)E-5	⁹³ Nb	748.71(11)	0.0028(4)	9.1(13)E-5
90 Zr	3082.6(12)	0.0096(25)	0.00032(8)	⁹³ Nb	751.671(11)	0.0143(6)	0.000466(20)
⁹¹ Zr	3371.36(3)	0.0020(5)	6.6(17)E-5	⁹³ Nb	755.354(8)	0.0123(6)	0.000401(20)
92 Zr	3459.4(15)	0.00137(17)	4.6(6)E-5	⁹³ Nb	775.93(3)	0.0158(6)	0.000515(20)
⁹⁰ Zr	3475.8(15)	0.019(5)	0.00063(17)	⁹³ Nb	782.247(11)	0.0042(6)	1.37(20)E-4
91 Zr	3830.13(8)	0.0017(5)	5.6(17)E-5	⁹³ Nb	783.02(7)	0.0065(5)	2.12(16)E-4
⁹⁰ Zr	3982.3(15)	0.015(4)	0.00050(13)	⁹³ Nb	801.91(18)	0.0020(4)	6.5(13)E-5
$^{94}\mathrm{Zr}$	4104.3(3)	0.0029(5)	9.6(17)E-5	⁹³ Nb	812.64(7)	0.0084(5)	0.000274(16)
92 Zr	4278.1(7)	0.00147(10)	4.9(3)É-5	⁹³ Nb	835.72(3)	0.0376(8)	0.00123(3)
	` /	` ′	* *		` /	` '	` /

^A Z	EγkeV	σ _γ ^z (E _γ)-barns		^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	
⁹³ Nb	850.93(5)	0.0025(5)	8.2(16)E-5	⁹³ Nb	3194.65(19)	0.0021(5)	6.8(16)E-5
⁹³ Nb	853.98(3)	0.0028(5)	9.1(16)E-5	⁹³ Nb	3241.04(12)	0.0026(3)	8.5(10)E-5
⁹³ Nb	871.06d	0.00390(8)	1.27E-4[85%]	⁹³ Nb	3260.34(12)	0.0041(5)	1.34(16)E-4
⁹³ Nb	876.64(11)	0.0077(5)	0.000251(16)	⁹³ Nb	3266.45(12)	0.0042(5)	1.37(16)E-4
⁹³ Nb	878.61(5)	0.0191(17)	0.00062(6)	⁹³ Nb	3267.12(20)	0.0021(6)	6.8(20)E-5
⁹³ Nb	883.42(5)	0.0192(7)	0.000626(23)	⁹³ Nb	3319.93(12)	0.0028(6)	9.1(20)E-5
⁹³ Nb	894.45(11)	0.0185(7)	0.000603(23)	⁹³ Nb	3343.94(12)	0.0023(6)	7.5(20)E-5
⁹³ Nb	898.58(5)	0.0144(7)	0.000470(23)	⁹³ Nb	3353.64(12)	0.0028(6)	9.1(20)E-5
⁹³ Nb	911.476(15)	0.0176(7)	0.000574(23)	⁹³ Nb	3361.64(12)	0.0027(3)	8.8(10)E-5
⁹³ Nb	932.65(3)	0.0020(4)	6.5(13)E-5	⁹³ Nb	3367.05(12)	0.0020(6)	6.5(20)E-5
⁹³ Nb	944.61(4)	0.0056(4)	1.83(13)E-4	⁹³ Nb	3383.54(12)	0.0022(6)	7.2(20)E-5
⁹³ Nb	957.28(5)	0.0248(7)	0.000809(23)	⁹³ Nb	3388.53(12)	0.0034(6)	1.11(20)E-4
⁹³ Nb	976.71(4)	0.0021(5)	6.8(16)E-5	⁹³ Nb	3428.34(12)	0.0020(3)	6.5(10)E-5
⁹³ Nb	1001.82(11)	0.0037(5)	1.21(16)E-4	⁹³ Nb	3430.66(20)	0.0031(6)	1.01(20)E-4
⁹³ Nb	1100.05(5)	0.0067(6)	2.19(20)E-4	⁹³ Nb	3431.74(12)	0.0030(4)	9.8(13)E-5
⁹³ Nb	1106.86(5)	0.0076(7)	2.48(23)E-4	⁹³ Nb	3458.34(12)	0.0030(6)	9.8(20)E-5
⁹³ Nb	1117.85(5)	0.0080(11)	0.00026(4)	⁹³ Nb	3465.55(14)	0.0025(3)	8.2(10)E-5
⁹³ Nb	1118.54(3)	0.022(7)	0.00072(23)	⁹³ Nb	3502.64(12)	0.0022(3)	7.2(10)E-5
⁹³ Nb	1120.54(7)	0.0062(8)	2.0(3)E-4	⁹³ Nb	3508.04(12)	0.0041(5)	1.34(16)E-4
⁹³ Nb	1122.55(7)	0.0106(13)	0.00035(4)	⁹³ Nb	3538.94(12)	0.00198(22)	6.5(7)E-5
⁹³ Nb	1128.97(6)	0.0175(15)	0.00057(5)	⁹³ Nb	3543.43(12)	0.0021(6)	6.8(20)E-5
93 Nb	1151.47(7)	0.0071(6)	2.32(20)E-4	93 Nb	3561.54(12)	0.0027(3)	8.8(10)E-5
93 Nb	1159.61(10)	0.0066(6)	2.15(20)E-4	93 Nb	3634.02(12)	0.0027(5)	8.8(16)E-5
⁹³ Nb	1188.45(5)	0.0074(6)	2.41(20)E-4	⁹³ Nb	3646.03(12)	0.0022(3)	7.2(10)E-5
93 Nb	1191.06(3)	0.0137(7)	0.000447(23)	93 Nb	3651.22(12)	0.0023(5)	7.5(16)E-5
93 Nb	1206.26(5)	0.0284(10)	0.00093(3)	93 Nb	3658.53(12)	0.0023(3)	7.5(10)E-5
⁹³ Nb	1214.31(10)	0.0073(7)	2.38(23)E-4	93 Nb	3676.62(12)	0.0028(6)	9.1(20)E-5
93 Nb	1216.09(9)	0.0021(5)	6.8(16)E-5	93 Nb	3680.54(12)	0.0028(3)	9.1(10)E-5
93 Nb	1219.01(7)	0.0050(6)	1.63(20)E-4	93 Nb	3720.63(12)	0.0033(6)	1.08(20)E-4
93 Nb	1222.41(9)	0.0121(7)	0.000395(23)	93 Nb	3740.94(12)	0.0021(3)	6.8(10)E-5
⁹³ Nb	1227.8(4)	0.0114(7)	0.000372(23)	93 Nb	3745.55(14)	0.0033(4)	1.08(13)E-4
93 Nb	1230.13(7)	0.0051(7)	1.66(23)E-4	93 Nb	3760.94(12)	0.00200(22)	6.5(7)E-5
93 Nb	1240.22(9)	0.0096(7)	0.000313(23)	93 Nb	3773.94(12)	0.0045(5)	1.47(16)E-4
93 Nb	1256.97(9)	0.0059(8)	1.9(3)E-4	93 Nb	3837.12(12)	0.0020(5)	6.5(16)E-5
93 Nb	1258.90(8)	0.0039(8)	1.3(3)E-4	93 Nb	3867.53(12)	0.0026(3)	8.5(10)E-5
93 Nb	1264.5(7)	0.0021(5)	6.8(16)E-5	93 Nb	3879.13(12)	0.0048(6)	1.57(20)E-4
93 Nb	1273.72(7)	0.0052(12)	1.7(4)E-4	93 Nb	3888.74(12)	0.0051(6)	1.66(20)E-4
93 Nb	1291.52(7)	0.0097(7)	0.000316(23)	93 Nb 93 Nb	3892.83(12)	0.0039(5)	1.27(16)E-4
93 Nb 93 Nb	1308.1(4)	0.0068(13)	2.2(4)E-4	93 Nb	3907.03(12)	0.00207(23)	6.8(8)E-5
93 Nb	1361.66(19)	0.0043(5)	1.40(16)E-4	93 Nb	3912.73(12)	0.0022(3)	7.2(10)E-5
93 Nb	1392.73(7)	0.0105(8)	0.00034(3)	93 Nb	3919.65(12)	0.0038(7)	1.24(23)E-4
93 Nb	1394.0(4) 1419.39(11)	0.0058(13)	1.9(4)E-4	93 Nb	3927.83(12)	0.0026(3) 0.0024(3)	8.5(10)E-5 7.8(10)E-5
93 Nb	1419.39(11)	0.0048(6) 0.0068(15)	1.57(20)E-4	93 Nb	3931.73(12) 3936.72(12)	0.0024(3) 0.0033(7)	
93 Nb	1440.03(9)	0.0068(13)	2.2(5)E-4 1.99(20)E-4	93 Nb	3972.03(12)	0.0033(7)	1.08(23)E-4 9.8(13)E-5
93 Nb	1459.6(7)	0.0001(0)	0.000310(20)	93 Nb	3972.03(12)	0.0030(4)	7.8(10)E-5
93 Nb	1460.02(9)	0.0097(22)	0.000310(20)	93 Nb	4000.22(12)	0.0024(3)	1.08(13)E-4
93 Nb	1478.58(14)	0.0037(22)	9.5(20)E-5	93 Nb	4010.72(12)	0.0033(4)	1.08(13)E-4 1.08(13)E-4
93 Nb	1481.19(13)	0.0029(8)	1.3(3)E-4	93 Nb	4015.91(12)	0.0055(7)	1.79(23)E-4
93 Nb	1487.9(4)	0.0039(8)	1.3(3)E-4	93 Nb	4090.53(12)	0.0033(7)	6.8(13)E-5
93 Nb	1492.55(24)	0.0022(5)	7.2(16)E-5	93 Nb	4109.13(12)	0.0027(3)	8.8(10)E-5
93 Nb	1614.72(8)	0.0028(5)	9.1(16)E-5	93 Nb	4115.32(12)	0.0026(3)	8.5(10)E-5
93 Nb	1620.12(8)	0.0022(5)	7.2(16)E-5	93 Nb	4130.33(12)	0.0063(7)	2.05(23)E-4
93 Nb	1678.05(17)	0.0022(5)	1.08(16)E-4	93 Nb	4143.52(12)	0.0021(3)	6.8(10)E-5
93 Nb	1716.16(8)	0.0034(5)	1.11(16)E-4	93 Nb	4153.82(12)	0.0028(6)	9.1(20)E-5
93 Nb	1763.20(10)	0.0034(5)	1.11(16)E-4	93 Nb	4191.06(12)	0.00196(21)	6.4(7)E-5
93 Nb	1863.63(8)	0.0028(6)	9.1(20)E-5	93 Nb	4196.68(11)	0.0027(6)	8.8(20)E-5
93 Nb	1878.88(8)	0.0081(7)	0.000264(23)	93 Nb	4208.36(11)	0.0029(6)	9.5(20)E-5
93 Nb	1881.96(10)	0.0036(7)	1.17(23)E-4	93 Nb	4237.17(13)	0.0020(5)	6.5(16)E-5
93 Nb	1919.51(8)	0.0024(4)	7.8(13)E-5	93 Nb	4260.84(12)	0.0036(6)	1.17(20)E-4
93 Nb	1974.93(9)	0.0052(6)	1.70(20)E-4	93 Nb	4304.78(12)	0.0049(8)	1.6(3)E-4
⁹³ Nb	2001.4(3)	0.0025(6)	8.2(20)E-5	93 Nb	4314.26(12)	0.0022(6)	7.2(20)E-5
⁹³ Nb	2019.49(9)	0.0021(5)	6.8(16)E-5	⁹³ Nb	4327.32(11)	0.0027(3)	8.8(10)E-5
⁹³ Nb	2285.80(21)	0.0026(5)	8.5(16)E-5	⁹³ Nb	4330.80(12)	0.0043(7)	1.40(23)E-4
⁹³ Nb	2313.81(9)	0.0046(8)	1.5(3)E-4	⁹³ Nb	4347.62(11)	0.0027(7)	8.8(23)E-5
⁹³ Nb	2319.95(12)	0.0022(9)	7(3)E-5	⁹³ Nb	4384.27(11)	0.0029(3)	9.5(10)E-5
⁹³ Nb	2896.68(12)	0.0025(5)	8.2(16)E-5	93 Nb	4389.04(11)	0.00196(21)	6.4(7)É-5
⁹³ Nb	2922.70(12)	0.0021(6)	6.8(20)E-5	⁹³ Nb	4395.07(9)	0.0044(12)	1.4(4)E-4

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barn	s k ₀	$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -bar	rns k ₀
⁹³ Nb	4431.97(9)	0.0043(9)	1.4(3)E-4	⁹³ Nb	5964.58(7)	0.0055(6)	1.79(20)E-4
⁹³ Nb	4455.30(10)	0.0027(3)	8.8(10)E-5	⁹³ Nb	5980.27(5)	0.0029(5)	9.5(16)E-5
⁹³ Nb	4459.03(11)	0.0030(6)	9.8(20)E-5	⁹³ Nb	5995.47(3)	0.0033(5)	1.08(16)E-4
⁹³ Nb	4466.50(10)	0.0028(3)	9.1(10)E-5	⁹³ Nb	6068.67(5)	0.0026(4)	8.5(13)E-5
⁹³ Nb	4470.69(11)	0.0033(7)	1.08(23)E-4	⁹³ Nb	6292.06(11)	0.0033(4)	1.08(13)E-4
⁹³ Nb	4501.43(10)	0.0056(7)	1.83(23)E-4	⁹³ Nb	6331.751(16)	0.0029(4)	9.5(13)É-5
⁹³ Nb	4505.78(10)	0.0029(3)	9.5(10)É-5	⁹³ Nb	6434.833(18)	0.0047(4)	1.53(13)E-4
⁹³ Nb	4524.10(9)	0.0038(6)	1.24(20)E-4	⁹³ Nb	6595.867(18)	0.0020(3)	6.5(10)É-5
⁹³ Nb	4538.64(9)	0.0058(7)	1.89(23)E-4	⁹³ Nb	6831.141(14)	0.0175(8)	0.00057(3)
⁹³ Nb	4553.99(10)	0.0033(4)	1.08(13)E-4	⁹³ Nb	6915.546(15)	0.0024(3)	7.8(10)E-5
⁹³ Nb	4558.53(11)	0.0049(7)	1.60(23)E-4	⁹³ Nb	7186.449(14)	0.0089(6)	0.000290(20)
⁹³ Nb	4594.44(9)	0.0047(7)	1.53(23)E-4		` ′		5.94(1), $\sigma_{\gamma}^{z} = 2.51(6)$
⁹³ Nb	4606.89(13)	0.0046(6)	1.50(20)E-4	⁹⁸ Mo	140.5110(10)d	0.0276(7)	0.000872[<0.1%]
⁹³ Nb	4629.91(9)	0.0049(7)	1.60(23)E-4	100 Mo	180.711(15)	0.0270(7)	5.4(13)E-5
⁹³ Nb	4635.44(9)	0.0047(6)	1.53(20)E-4	98 Mo	198.38(11)	0.0017(4)	0.00034(3)
93 Nb	4662.32(9)	0.0028(6)	9.1(20)E-5	94 Mo	204.20(5)	0.0108(9)	0.00034(3)
93 Nb	4672.16(9)	0.0065(7)	2.12(23)E-4	95 Mo	349.77(4)	0.0117(0)	0.000370(19)
93 Nb	4681.99(9)	0.0059(7)	1.92(23)E-4	95 Mo	369.68(9)	0.0327(13)	0.00103(4)
93 Nb	4711.67(10)	0.0052(7)	1.70(23)E-4	95 Mo	. ,	` /	
93 Nb	4739.00(8)	0.0052(7)	0.00050(3)		480.57(3)	0.028(5)	0.00088(16)
93 Nb	4749.12(9)	0.0133(5)	1.24(20)E-4	⁹⁶ Mo	480.97(13)	0.0604(23)	0.00191(7)
93 Nb	4756.28(9)	0.0039(6)	1.27(20)E-4	⁹⁵ Mo	568.88(3)	0.0280(11)	0.00088(4)
93 Nb	4772.35(8)	0.0039(0)	1.47(23)E-4	⁹⁵ Mo	591.21(3)	0.0315(14)	0.00100(4)
93 Nb	4791.62(13)	0.0043(7)	2.32(23)E-4	⁹⁵ Mo	608.744(14)	0.121(4)	0.00382(13)
93 Nb	4828.2(4)	0.0071(7)	1.86(20)E-4	95 Mo	719.528(14)	0.310(10)	0.0098(3)
93 Nb	4913.65(9)	` /	0.000254(23)	⁹⁵ Mo	721.54(4)	0.025(3)	0.00079(10)
93 Nb	` '	0.0078(7)	` /	97 Mo	723.338(19)	0.051(11)	0.0016(4)
93 Nb	4927.94(8)	0.0027(6)	8.8(20)E-5	⁹⁵ Mo	736.820(14)	0.119(4)	0.00376(13)
	4942.7(4)	0.0029(3)	9.5(10)E-5	95 Mo	778.221(10)	2.02(6)	0.0638(19)
93 Nb 93 Nb	4949.70(10)	0.0051(7)	1.66(23)E-4	⁹⁷ Mo	787.39(3)	0.168(6)	0.00531(19)
93 Nb	4982.53(9)	0.0078(7)	0.000254(23)	⁹⁵ Mo	812.26(5)	0.0264(15)	0.00083(5)
	4997.97(8)	0.0033(6)	1.08(20)E-4	95 Mo	847.603(11)	0.324(9)	0.0102(3)
93 Nb	5032.08(8)	0.0058(7)	1.89(23)E-4	95 Mo	849.85(3)	0.43(3)	0.0136(10)
93 Nb	5052.89(9)	0.0022(5)	7.2(16)E-5	⁹⁵ Mo	852.93(3)	0.0444(17)	0.00140(5)
93 Nb	5065.65(8)	0.0034(6)	1.11(20)E-4	⁹² Mo	943.6(3)	0.0075(9)	2.4(3)E-4
93 Nb	5070.27(7)	0.0102(8)	0.00033(3)	⁹⁵ Mo	968.46(5)	0.0323(19)	0.00102(6)
93 Nb	5087.36(8)	0.0030(5)	9.8(16)E-5	⁹⁵ Mo	1091.289(20)	0.201(6)	0.00635(19)
93 Nb	5103.34(7)	0.0232(12)	0.00076(4)	⁹⁵ Mo	1106.36(4)	0.0309(18)	0.00098(6)
93 Nb	5129.16(8)	0.0034(5)	1.11(16)E-4	⁹⁵ Mo	1190.28(6)	0.0240(14)	0.00076(4)
93 Nb	5179.99(7)	0.0072(7)	2.35(23)E-4	⁹⁵ Mo	1200.10(3)	0.124(4)	0.00392(13)
93 Nb	5193.62(18)	0.0114(8)	0.00037(3)	⁹⁷ Mo	1230.13(5)	0.0253(15)	0.00080(5)
93 Nb	5207.96(9)	0.0072(7)	2.35(23)E-4	⁹⁵ Mo	1317.35(8)	0.091(6)	0.00287(19)
93 Nb	5213.75(9)	0.00196(21)	6.4(7)E-5	⁹⁵ Mo	1497.742(17)	0.122(4)	0.00385(13)
⁹³ Nb	5252.52(9)	0.0080(8)	0.00026(3)	⁹⁵ Mo	1625.817(15)	0.0264(15)	0.00083(5)
⁹³ Nb	5257.70(9)	0.00214(23)	7.0(8)E-5	⁹⁵ Mo	1702.78(4)	0.0220(15)	0.00069(5)
93 Nb	5284.14(8)	0.0050(7)	1.63(23)E-4	⁹⁵ Mo	1846.26(15)	0.022(3)	0.00069(10)
⁹³ Nb	5290.46(8)	0.0022(3)	7.2(10)E-5	⁹⁵ Mo	1923.47(13)	0.0250(18)	0.00079(6)
⁹³ Nb	5301.22(8)	0.0031(6)	1.01(20)E-4	⁹⁵ Mo	2011.87(5)	0.0226(16)	0.00071(5)
⁹³ Nb	5307.94(8)	0.0063(7)	2.05(23)E-4	⁹⁵ Mo	2663.47(9)	0.0455(21)	0.00144(7)
93 Nb	5348.57(8)	0.0082(7)	0.000267(23)	⁹⁵ Mo	5602.15(15)	0.0242(17)	0.00076(5)
⁹³ Nb	5363.82(8)	0.0073(7)	2.38(23)E-4	⁹⁵ Mo	5711.98(12)	0.048(4)	0.00152(13)
⁹³ Nb	5368.1(4)	0.0039(6)	1.27(20)E-4	⁹⁵ Mo	6363.55(10)	0.0235(17)	0.00074(5)
⁹³ Nb	5399.86(7)	0.0050(7)	1.63(23)E-4	⁹⁷ Mo	6624.801(20)	0.027(10)	0.0009(3)
⁹³ Nb	5447.70(7)	0.0026(3)	8.5(10)E-5	⁹⁵ Mo	6919.05(9)	0.106(6)	0.00335(19)
⁹³ Nb	5450.96(7)	0.0053(7)	1.73(23)E-4	⁹⁵ Mo	7527.75(9)	0.0264(20)	0.00083(6)
⁹³ Nb	5496.24(10)	0.0205(14)	0.00067(5)			` /	$.07(2), \sigma_{\gamma}^{z} = 2.75(21)$
⁹³ Nb	5507.79(7)	0.0041(5)	1.34(16)E-4	¹⁰⁴ Ru	75.251(25)	0.0233(22)	0.00070(7)
⁹³ Nb	5511.28(8)	0.0053(7)	1.73(23)E-4	98 Ru	89.69(10)	` /	1.08(21)E-4
⁹³ Nb	5532.16(8)	0.0027(5)	8.8(16)E-5	104 Ru	107.917(14)	0.0036(7) 0.0153(14)	0.00046(4)
⁹³ Nb	5572.33(8)	0.0037(5)	1.21(16)E-4	100 Ru	107.917(14)		0.00046(4)
⁹³ Nb	5591.31(6)	0.0080(7)	0.000261(23)	102 Ru		0.049(4)	` /
⁹³ Nb	5607.32(8)	0.0041(5)	1.34(16)E-4	104 Ru	136.05(4)	0.066(6)	0.00198(18)
93 Nb	5612.72(8)	0.0037(5)	1.21(16)E-4	104 Ru 104 Ru	143.206(9)	0.0206(20)	0.00062(6)
93 Nb	5645.93(7)	0.0026(4)	8.5(13)E-5	102 P	159.303(16)	0.0179(20)	0.00054(6)
93 Nb	5769.77(7)	0.0054(6)	1.76(20)E-4	¹⁰² Ru	174.27(3)	0.076(7)	0.00228(21)
93 Nb	5880.80(9)	0.0035(4)	1.14(13)E-4	⁹⁶ Ru	189.24(4)	0.0099(11)	0.00030(3)
93 Nb	5895.01(7)	0.0183(8)	0.00060(3)	102 Ru	250.78(6)	0.0238(23)	0.00071(7)
93 Nb	5946.31(9)	0.0045(6)	1.47(20)E-4	¹⁰² Ru	270.58(8)	0.034(3)	0.00102(9)
93 Nb	5954.41(10)	0.0025(3)	8.2(10)E-5	¹⁰² Ru	294.66(4)	0.071(6)	0.00213(18)
1.0	(10)		(-0)20				

^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$	^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
¹⁰⁴ Ru	301.75(5)	0.0192(19)	0.00058(6)	¹⁰⁴ Ru	4943.1(3)	0.020(3)	0.00060(9)
¹⁰⁴ Ru	321.526(24)	0.0175(18)	0.00052(5)	¹⁰⁰ Ru	6266.6(3)	0.0180(13)	0.00054(4)
¹⁰² Ru	346.23(6)	0.030(3)	0.00090(9)	¹⁰¹ Ru	6274.68(4)	0.017(3)	0.00051(9)
¹⁰⁴ Ru	358.57(7)	0.0173(24)	0.00052(7)	⁹⁹ Ru	6340.59(6)	0.024(4)	0.00072(12)
¹⁰² Ru	403.10(5)	0.062(6)	0.00186(18)	¹⁰¹ Ru	6627.200(20)	0.093(9)	0.0028(3)
⁹⁹ Ru	403.18(8)	0.050(10)	0.0015(3)	¹⁰¹ Ru	6978.81(16)	0.041(5)	0.00123(15)
¹⁰¹ Ru	418.531(22)	0.033(4)	0.00099(12)	⁹⁹ Ru	7103.08(8)	0.018(3)	0.00054(9)
⁹⁹ Ru	424.87(5)	0.0170(21)	0.00051(6)	99 Ru	7792.04(3)	0.132(13)	0.0040(4)
¹⁰² Ru	432.00(6)	0.0267(25)	0.00080(8)				(2), $\sigma_{\gamma}^{z} = 145.0(20)$
¹⁰⁴ Ru	462.93(7)	0.025(3)	0.00075(9)	103 Rh	32.18(4)	0.25(5)	0.0074(15)
¹⁰¹ Ru	468.69(4)	0.049(5)	0.00147(15)	103 Rh	35.56(13)	0.65(7)	0.0074(13)
¹⁰¹ Ru	475.0950(20)	0.98(9)	0.029(3)	103 Rh	46.20(5)	0.37(5)	0.0191(21)
¹⁰² Ru	500.96(10)	0.0175(19)	0.00052(6)	103 Rh	51.50(3)d	5.2(3)	` /
99 Ru	518.92(4)	0.026(3)	0.00078(9)	103 Rh	51.50(3)u 51.50(3)	()	0.153[90%]
99 Ru	539.538(15)	1.53(13)	0.046(4)	103 Rh	55.46(4)	16.0(4) 0.76(15)	0.471(12) 0.022(4)
¹⁰² Ru	545.44(5)	0.0253(25)	0.00076(8)	103 Rh		, ,	0.022(4)
¹⁰² Ru	554.54(7)	0.027(3)	0.00081(9)	103 Rh	80.80(3)	0.73(16)	
¹⁰⁴ Ru	562.70(6)	0.028(3)	0.00084(9)	103 Rh	83.74(3)	0.63(14)	0.019(4)
¹⁰² Ru	562.86(12)	0.017(4)	0.00051(12)	103 Rh	85.19(3) 85.97(4)	3.2(3)	0.094(9)
99 Ru	590.91(6)	0.053(5)	0.00159(15)	103 Rh	()	0.30(6)	0.0088(18)
¹⁰¹ Ru	627.970(22)	0.176(16)	0.00139(13)	103 Rh	97.14(3)	19.5(4)	0.574(12)
101 Ru	631.22(4)	0.30(3)	0.0090(9)		100.74(4)	4.96(10)	0.146(3)
99 Ru	631.48(6)	0.017(5)	0.00051(15)	103 Rh	105.40(6)	0.47(4)	0.0138(12)
101 Ru	636.86(6)	0.017(3)	0.00031(13)	103 Rh	118.10(3)	0.570(15)	0.0168(4)
104 Ru		` /	()	103 Rh	119.50(3)	1.5(3)	0.044(9)
101 Ru	640.16(7) 680.57(6)	0.0171(22)	0.00051(7)	103 Rh	127.20(3)	5.27(21)	0.155(6)
99 Ru	()	0.0162(22)	0.00049(7)	103 Rh	129.37(3)	0.465(20)	0.0137(6)
101 Ru	686.907(17)	0.52(5)	0.0156(15)	¹⁰³ Rh	131.86(6)	0.437(24)	0.0129(7)
101 D	692.28(9)	0.025(3)	0.00075(9)	103 Rh	134.54(3)	6.8(4)	0.200(12)
¹⁰¹ Ru	695.53(9)	0.039(5)	0.00117(15)	103 Rh	135.16(4)	0.66(16)	0.019(5)
¹⁰¹ Ru	697.31(15)	0.020(3)	0.00060(9)	103 Rh	137.65(3)	0.45(4)	0.0133(12)
99 Ru	700.53(3)	0.018(3)	0.00054(9)	¹⁰³ Rh	138.74(4)	0.54(4)	0.0159(12)
99 Ru	710.70(4)	0.034(3)	0.00102(9)	¹⁰³ Rh	146.72(3)	1.5(3)	0.044(9)
104 Ru	724.30(3)d	0.0760(11)	0.00228[7.4%]	¹⁰³ Rh	157.00(3)	1.05(3)	0.0309(9)
⁹⁹ Ru	734.60(6)	0.0254(25)	0.00076(8)	¹⁰³ Rh	159.49(3)	0.380(16)	0.0112(5)
¹⁰¹ Ru	739.614(21)	0.0196(20)	0.00059(6)	¹⁰³ Rh	161.55(4)	1.00(3)	0.0294(9)
¹⁰¹ Ru	766.82(10)	0.019(3)	0.00057(9)	¹⁰³ Rh	165.20(4)	0.89(4)	0.0262(12)
99 Ru	822.579(22)	0.137(12)	0.0041(4)	¹⁰³ Rh	168.21(5)	0.45(10)	0.013(3)
99 Ru	836.20(3)	0.029(5)	0.00087(15)	¹⁰³ Rh	169.16(5)	2.88(19)	0.085(6)
⁹⁹ Ru	849.23(4)	0.030(3)	0.00090(9)	¹⁰³ Rh	170.08(6)	0.64(19)	0.019(6)
¹⁰¹ Ru	940.42(3)	0.038(4)	0.00114(12)	¹⁰³ Rh	177.64(4)	1.85(12)	0.054(4)
¹⁰¹ Ru	1046.498(3)	0.103(9)	0.0031(3)	¹⁰³ Rh	178.66(4)	3.27(14)	0.096(4)
¹⁰² Ru	1075.37(14)	0.0188(21)	0.00056(6)	¹⁰³ Rh	180.87(3)	22.6(15)	0.67(4)
¹⁰¹ Ru	1103.062(22)	0.100(9)	0.0030(3)	¹⁰³ Rh	186.04(3)	1.50(5)	0.0442(15)
¹⁰¹ Ru	1105.54(6)	0.055(5)	0.00165(15)	¹⁰³ Rh	196.55(5)	0.80(16)	0.024(5)
⁹⁹ Ru	1107.20(5)	0.0236(24)	0.00071(7)	¹⁰³ Rh	198.89(4)	0.52(10)	0.015(3)
99 Ru	1207.93(8)	0.022(6)	0.00066(18)	¹⁰³ Rh	202.85(6)	1.6(3)	0.047(9)
⁹⁹ Ru	1266.58(4)	0.0178(20)	0.00053(6)	¹⁰³ Rh	213.05(3)	1.27(3)	0.0374(9)
⁹⁹ Ru	1325.51(4)	0.034(4)	0.00102(12)	¹⁰³ Rh	215.340(22)	5.20(12)	0.153(4)
⁹⁹ Ru	1341.50(3)	0.137(12)	0.0041(4)	¹⁰³ Rh	215.36(3)	1.54(12)	0.045(4)
99 Ru	1362.111(24)	0.111(13)	0.0033(4)	103 Rh	216.54(8)	5.0(10)	0.15(3)
⁹⁹ Ru	1365.29(4)	0.023(3)	0.00069(9)	¹⁰³ Rh	217.82(3)	7.38(13)	0.217(4)
99 Ru	1520.71(8)	0.022(3)	0.00066(9)	103 Rh	218.44(4)	0.30(6)	0.0088(18)
⁹⁹ Ru	1523.10(3)	0.034(4)	0.00102(12)	103 Rh	219.85(4)	0.480(19)	0.0141(6)
⁹⁹ Ru	1535.75(19)	0.0155(21)	0.00046(6)	$^{103}{ m Rh}$	222.74(5)	0.26(3)	0.0077(9)
⁹⁹ Ru	1559.51(6)	0.027(3)	0.00081(9)	103 Rh	235.93(6)	0.345(10)	0.0102(3)
¹⁰¹ Ru	1568.383(20)	0.044(4)	0.00132(12)	103 Rh	245.07(5)	0.29(4)	0.0085(12)
⁹⁹ Ru	1627.32(3)	0.129(12)	0.0039(4)	¹⁰³ Rh	245.45(4)	0.387(17)	0.0114(5)
99 Ru	1701.11(7)	0.032(3)	0.00096(9)	103 Rh	246.61(5)	0.27(5)	0.0080(15)
¹⁰² Ru	1730.6(3)	0.0176(23)	0.00053(7)	103 Rh	247.55(5)	0.387(17)	0.0114(5)
⁹⁹ Ru	1827.09(5)	0.045(4)	0.00135(12)	103 Rh	261.38(5)	1.09(3)	0.0321(9)
99 Ru	1865.04(4)	0.028(3)	0.00084(9)	103 Rh	266.84(3)	2.66(17)	0.078(5)
⁹⁹ Ru	1929.77(4)	0.025(3)	0.00075(9)	103 Rh	269.18(3)	1.42(11)	0.042(3)
¹⁰² Ru	1959.30(7)	0.210(19)	0.0063(6)	103 Rh	273.62(3)	0.814(18)	0.042(3)
⁹⁹ Ru	1996.62(6)	0.0223(25)	0.00067(8)	103 Rh	284.36(4)	0.26(3)	0.0240(3)
¹⁰² Ru	2074.98(20)	0.022(3)	0.00066(9)	103 Rh	286.18(8)	0.42(4)	0.0077(3)
99 Ru	3016.61(9)	0.0175(21)	0.00052(6)	103 Rh	303.59(5)	0.794(17)	0.0124(12)
99 Ru	3981.1(3)	0.0186(24)	0.00056(7)	103 Rh	305.7(3)	1.070(21)	0.0234(3)
¹⁰² Ru	4627.38(14)	0.0187(24)	0.00056(7)	103 Rh	317.07(4)	0.74(3)	0.0218(9)
		(= •)		IXII	317.07(4)	0.77(3)	0.0210(9)

$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$
¹⁰³ Rh	323.48(4)	1.54(19)	0.045(6)	¹⁰⁸ Pd	178.0340(10)	0.1090(22)	0.00310(6)
¹⁰³ Rh	324.64(4)	0.57(9)	0.017(3)	¹⁰⁸ Pd	188.9900(10)d	0.0273(15)	0.00078[89%]
¹⁰³ Rh	333.44(3)	3.27(8)	0.0963(24)	¹⁰⁸ Pd	197.346(5)	0.0650(20)	0.00185(6)
103 Rh	352.99(3)	0.668(19)	0.0197(6)	¹⁰⁸ Pd	211.8840(20)	0.0540(18)	0.00154(5)
¹⁰³ Rh	352.99(3)	0.668(19)	0.0197(6)	¹⁰⁸ Pd	245.0790(20)	0.250(4)	0.00712(11)
¹⁰³ Rh	356.82(3)	0.668(19)	0.0197(6)	¹⁰⁸ Pd	266.3430(20)	0.0515(12)	0.00147(3)
¹⁰³ Rh	370.48(7)	0.429(18)	0.0126(5)	¹⁰⁸ Pd	276.289(6)	0.0562(18)	0.00160(5)
¹⁰³ Rh	374.826(23)	1.300(25)	0.0383(7)	¹⁰⁴ Pd	280.65(6)	0.0158(14)	0.00045(4)
¹⁰³ Rh	379.823(5)	0.301(21)	0.0089(6)	¹⁰⁸ Pd	291.4350(20)	0.1040(20)	0.00296(6)
¹⁰³ Rh	382.24(3)	0.374(25)	0.0110(7)	¹⁰⁸ Pd	325.2840(20)	0.208(3)	0.00592(9)
¹⁰³ Rh	385.10(3)	0.819(19)	0.0241(6)	¹⁰⁸ Pd	326.8690(20)	0.0793(20)	0.00226(6)
¹⁰³ Rh	391.18(5)	0.358(17)	0.0105(5)	¹⁰⁸ Pd	333.960(4)	0.1110(25)	0.00316(7)
¹⁰³ Rh	403.96(11)	0.350(15)	0.0103(4)	¹⁰⁸ Pd	339.5290(20)	0.195(3)	0.00555(9)
¹⁰³ Rh	408.16(4)	0.293(18)	0.0086(5)	¹⁰⁸ Pd	359.4290(20)	0.120(3)	0.00342(9)
103 Rh	420.62(3)	2.06(4)	0.0607(12)	108 Pd	378.1890(20)	0.0411(20)	0.00342(5)
103 Rh	427.44(3)	1.12(3)	0.0330(9)	¹⁰⁸ Pd	428.409(4)	0.0504(21)	0.00144(6)
103 Rh	431.91(12)	0.461(23)	0.0136(7)	105 Pd	429.63(4)	0.145(3)	0.00413(9)
103 Rh	440.55(3)	2.23(10)	0.066(3)	108 Pd	433.5640(20)	0.143(3)	0.00276(9)
103 Rh	459.69(6)		0.0163(5)	105 Pd	511.843(20)		
103 Rh	()	0.555(17)		105 Pd		4.00(4)	0.1139(11)
103 Rh	470.40(3)	2.61(7)	0.0769(21)	¹⁰⁵ Pd	616.192(20)	0.629(9)	0.0179(3)
	482.230(25)	1.78(6)	0.0524(18)		621.95(6)	0.126(7)	0.00359(20)
103 Rh	497.80(4)	0.88(4)	0.0259(12)	¹⁰⁸ Pd	685.914(8)	0.042(7)	0.00120(20)
103 Rh	503.00(13)	0.23(6)	0.0068(18)	105 Pd	717.356(22)	0.777(9)	0.0221(3)
103 Rh	529.98(5)	0.885(21)	0.0261(6)	105 Pd	748.34(5)	0.0802(23)	0.00228(7)
103 Rh	538.04(3)	2.43(7)	0.0716(21)	108 Pd	754.894(9)	0.0474(18)	0.00135(5)
103 Rh	542.31(8)	0.48(3)	0.0141(9)	105 Pd	804.33(4)	0.091(3)	0.00259(9)
¹⁰³ Rh	550.87(8)	0.31(3)	0.0091(9)	¹⁰⁵ Pd	846.29(10)	0.0452(18)	0.00129(5)
¹⁰³ Rh	555.81(4)d	3.14(9)	0.092[98%]	¹⁰⁵ Pd	848.16(6)	0.1000(25)	0.00285(7)
¹⁰³ Rh	562.78(4)	0.299(22)	0.0088(7)	¹⁰⁸ Pd	1019.872(9)	0.0467(25)	0.00133(7)
¹⁰³ Rh	574.07(5)	0.539(20)	0.0159(6)	¹⁰⁵ Pd	1045.82(3)	0.321(7)	0.00914(20)
¹⁰³ Rh	577.92(5)	0.342(19)	0.0101(6)	¹⁰⁵ Pd	1050.31(4)	0.360(8)	0.01025(23)
¹⁰³ Rh	597.65(3)	0.997(23)	0.0294(7)	¹⁰⁵ Pd	1053.68(9)	0.057(3)	0.00162(9)
¹⁰³ Rh	609.55(12)	0.58(3)	0.0171(9)	¹⁰⁵ Pd	1128.03(3)	0.323(6)	0.00920(17)
¹⁰³ Rh	633.45(6)	0.239(17)	0.0070(5)	¹⁰⁵ Pd	1168.16(8)	0.0588(22)	0.00167(6)
103 Rh	680.61(6)	0.25(5)	0.0074(15)	¹⁰⁵ Pd	1397.54(7)	0.089(3)	0.00253(9)
¹⁰³ Rh	689.47(5)	0.35(8)	0.0103(24)	¹⁰⁵ Pd	1572.54(7)	0.207(25)	0.0059(7)
¹⁰³ Rh	695.38(7)	1.07(3)	0.0315(9)	¹⁰⁵ Pd	1909.40(11)	0.0423(20)	0.00120(6)
¹⁰³ Rh	702.72(7)	0.869(25)	0.0256(7)	¹⁰⁵ Pd	1927.25(10)	0.041(3)	0.00117(9)
¹⁰³ Rh	707.67(6)	0.843(25)	0.0248(7)	¹⁰⁵ Pd	1988.14(12)	0.060(4)	0.00171(11)
¹⁰³ Rh	710.69(5)	0.46(4)	0.0135(12)	¹⁰⁵ Pd	2484.73(25)	0.052(4)	0.00148(11)
¹⁰³ Rh	718.26(6)	0.267(10)	0.0079(3)	¹⁰⁸ Pd	4794.02(12)	0.112(10)	0.0032(3)
¹⁰³ Rh	720.58(9)	0.297(9)	0.0087(3)	¹⁰⁸ Pd	5212.31(12)	0.061(5)	0.00174(14)
¹⁰³ Rh	722.81(4)	0.255(11)	0.0075(3)	110 Pd	5531.9(4)	0.0120(20)	0.00034(6)
¹⁰³ Rh	734.90(7)	0.68(5)	0.0200(15)	1 4			82(2), σ_{y}^{z} =63.3(8)
103 Rh	762.83(6)	0.339(21)	0.0100(6)	¹⁰⁹ Ag			
103 Rh	787.12(4)	1.16(3)	0.0342(9)	109 A	68.36(4)	0.113(8)	0.00317(22)
103 Rh	790.43(12)	0.7(4)	0.021(12)	109 Ag	72.67(5)	~0.9	~0.03
103 Rh	790.43(12)	0.84(5)	0.0247(15)	¹⁰⁷ Ag	78.91(4)	3.90(12)	0.110(3)
103 Rh	817.71(8)	* *	` /	109 Ag	79.91(6)	~1.0	~0.03
103 Rh	` '	0.5(3)	0.015(9)	¹⁰⁹ Ag	93.34(5)	0.5(3)	0.014(8)
	834.94(7)	0.277(13)	0.0082(4)	¹⁰⁷ Ag	101.55(8)	0.189(20)	0.0053(6)
103 Rh	868.28(6)	0.56(3)	0.0165(9)	109 Ag	105.95(6)	0.87(13)	0.024(4)
103 Rh	872.24(4)	0.440(16)	0.0130(5)	¹⁰⁷ Ag	110.24(7)	0.273(22)	0.0077(6)
103 Rh	907.66(7)	0.28(6)	0.0082(18)	¹⁰⁷ Ag	113.51(6)	0.52(3)	0.0146(8)
103 Rh	951.96(6)	1.090(24)	0.0321(7)	¹⁰⁹ Ag	117.45(8)	3.85(7)	0.1082(20)
103 Rh	5798.18(14)	0.59(3)	0.0174(9)	¹⁰⁹ Ag	124.86(5)	0.158(12)	0.0044(3)
¹⁰³ Rh	5917.43(5)	1.31(4)	0.0386(12)	¹⁰⁷ Ag	143.94(4)	0.121(5)	0.00340(14)
103 Rh	6046.79(6)	0.88(4)	0.0259(12)	107 Ag	147.11(4)	0.114(5)	0.00320(14)
¹⁰³ Rh	6082.98(7)	0.58(4)	0.0171(12)	107 Ag	148.79(3)	0.214(6)	0.00601(17)
¹⁰³ Rh	6110.21(6)	0.278(19)	0.0082(6)	109 Ag	152.58(4)	0.326(6)	0.00916(17)
¹⁰³ Rh	6172.33(5)	0.75(3)	0.0221(9)	¹⁰⁷ Ag	155.22(11)	0.081(13)	0.0023(4)
¹⁰³ Rh	6211.62(4)	0.89(3)	0.0262(9)	109 Ag	161.69(5)	0.217(8)	0.00610(22)
¹⁰³ Rh	6354.87(7)	0.46(3)	0.0135(9)	109 Ag	166.62(4)	0.295(10)	0.0083(3)
¹⁰³ Rh	6785.66(4)	0.470(20)	0.0138(6)	¹⁰⁷ Ag	178.32(4)	0.208(8)	0.00584(22)
	Palladium (Z	=46), <i>At.Wt.</i> =106	$6.42(1), \sigma_{\gamma}^{z} = 6.9(4)$	107 Ag	191.39(3)	1.81(5)	0.0509(14)
¹⁰⁸ Pd	113.4010(10)	0.335(5)	0.00954(14)	107 Ag	192.90(3)	2.20(6)	0.0618(17)
¹⁰⁶ Pd	115.86(7)	0.0141(13)	0.00040(4)	109 Ag	194.56(14)	~0.2	~0.006
¹⁰² Pd	118.68(3)	0.0042(11)	1.2(3)E-4	109 Ag	195.33(6)	0.50(3)	0.0140(8)
¹⁰⁸ Pd	152.9420(10)	0.1450(22)	0.00413(6)	109 Ag	195.74(8)	~0.2	~0.006
- 44				5			

$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
¹⁰⁹ Ag	198.72(4)	7.75(13)	0.218(4)	¹⁰⁹ Ag	488.66(6)	0.149(12)	0.0042(3)
107 Ag	201.31(6)	0.45(3)	0.0126(8)	¹⁰⁹ Ag	495.71(3)	1.080(18)	0.0303(5)
107 Ag	204.02(9)	0.088(22)	0.0025(6)	¹⁰⁷ Ag	497.57(8)	0.157(9)	0.00441(25)
$^{107}\mathrm{Ag}$	206.46(3)	3.58(7)	0.1006(20)	¹⁰⁷ Ag	499.97(4)	0.265(13)	0.0074(4)
107 Ag	212.30(4)	0.26(4)	0.0073(11)	¹⁰⁷ Ag	522.43(9)	0.125(7)	0.00351(20)
107 Ag	215.15(4)	1.55(3)	0.0435(8)	¹⁰⁹ Ag	524.47(3)	0.804(11)	0.0226(3)
109 Ag	220.77(10)	~0.08	~0.002	109 Ag	526.07(8)	0.364(7)	0.01023(20)
109 Ag	231.46(5)	0.224(12)	0.0063(3)	¹⁰⁷ Ag	527.23(5)	0.371(10)	0.0104(3)
109 Ag	235.62(4)	4.62(7)	0.1298(20)	¹⁰⁹ Ag	536.13(3)	1.090(16)	0.0306(5)
107 Ag	236.85(4)	1.95(3)	0.0548(8)	109 Ag	544.14(5)	0.34(3)	0.0096(8)
¹⁰⁹ Ag	236.89(7)	1.3(9)	0.037(25)	¹⁰⁹ Ag	549.56(3)	1.540(24)	0.0433(7)
107 Ag	237.63(3)	0.26(5)	0.0073(14)	¹⁰⁷ Ag	563.91(5)	0.191(6)	0.00537(17)
107 Ag	239.10(4)	0.327(11)	0.0092(3)	107 Ag	572.10(6)	0.080(6)	0.00225(17)
107 Ag	244.56(6)	0.146(20)	0.0041(6)	¹⁰⁷ Ag	574.77(3)	0.299(7)	0.00840(20)
107 Ag	249.15(6)	0.087(7)	0.00244(20)	109 Ag	586.85(3)	0.459(8)	0.01290(22)
109 Ag	252.17(5)	0.096(6)	0.00270(17)	¹⁰⁹ Ag	593.86(4)	0.484(11)	0.0136(3)
107 Ag	259.17(3)	1.560(25)	0.0438(7)	$^{107}\mathrm{Ag}$	599.87(4)	0.37(3)	0.0104(8)
107 Ag	262.31(6)	0.161(11)	0.0045(3)	109 Ag	610.33(15)	0.105(25)	0.0029(7)
¹⁰⁹ Ag	267.08(3)	2.73(6)	0.0767(17)	¹⁰⁷ Ag	611.98(18)	0.09(3)	0.0025(8)
109 Ag	269.05(4)	0.6(5)	0.017(14)	109 Ag	614.15(8)	0.20(5)	0.0056(14)
109 Ag	269.97(4)	0.565(25)	0.0159(7)	¹⁰⁷ Ag	616.89(4)	0.20(4)	0.0056(11)
109 Ag	282.66(6)	0.079(10)	0.0022(3)	109 Ag	620.07(5)	0.40(5)	0.0112(14)
107 Ag	286.91(4)	0.400(25)	0.0112(7)	107 Ag	626.41(4)	0.39(6)	0.0110(17)
107 Ag	294.39(3)	2.05(12)	0.058(3)	¹⁰⁷ Ag	629.499(20)	0.12(3)	0.0034(8)
107 Ag	295.22(18)	0.10(4)	0.0028(11)	109 Ag	632.47(10)	0.42(12)	0.012(3)
107 Ag	299.95(3)	1.15(5)	0.0323(14)	107 Ag	636.53(4)	0.31(11)	0.009(3)
107 Ag	301.75(7)	0.187(15)	0.0053(4)	¹⁰⁷ Ag	640.18(4)	0.24(6)	0.0067(17)
109 Ag	302.83(13)	0.129(14)	0.0036(4)	¹⁰⁷ Ag	652.041(20)	0.117(19)	0.0033(5)
109 Ag	304.43(15)	0.135(9)	0.00379(25)	¹⁰⁹ Ag	652.96(5)	0.255(12)	0.0072(3)
109 Ag	316.88(3)	0.206(7)	0.00579(20)	¹⁰⁹ Ag	655.02(11)	0.107(14)	0.0030(4)
107 Ag	320.36(6)	0.091(7)	0.00256(20)	¹⁰⁹ Ag	657.50(10)d	1.86(5)	0.0523[99%]
107 Ag	328.99(3)	0.795(12)	0.0223(3)	¹⁰⁷ Ag	662.55(11)	0.088(12)	0.0025(3)
109 Ag	338.74(3)	0.595(10)	0.0167(3)	¹⁰⁷ Ag	664.91(3)	0.329(22)	0.0092(6)
107 Ag	349.95(3)	0.70(4)	0.0197(11)	107 Ag	670.53(7)	0.104(17)	0.0029(5)
107 Ag	350.99(9)	0.145(12)	0.0041(3)	¹⁰⁷ Ag	674.07(6)	0.094(16)	0.0026(5)
109 Ag	357.82(5)	0.561(22)	0.0158(6)	¹⁰⁷ Ag	685.8(3)	0.081(20)	0.0023(6)
¹⁰⁹ Ag	360.41(3)	1.55(3)	0.0435(8)	¹⁰⁷ Ag	687.48(8)	0.35(5)	0.0098(14)
¹⁰⁷ Ag	365.41(23)	0.16(4)	0.0045(11)	¹⁰⁹ Ag	698.44(6)	0.158(6)	0.00444(17)
109 Ag	366.97(10)	0.21(4)	0.0059(11)	¹⁰⁷ Ag	718.17(6)	0.199(12)	0.0056(3)
¹⁰⁷ Ag	372.1(3)	0.09(3)	0.0025(8)	109 Ag	724.75(5)	0.393(14)	0.0110(4)
¹⁰⁷ Ag	376.71(9)	0.294(13)	0.0083(4)	¹⁰⁷ Ag	746.21(19)	0.088(10)	0.0025(3)
109 Ag	378.11(6)	0.744(20)	0.0209(6)	¹⁰⁹ Ag	748.40(6)	0.328(9)	0.00921(25)
107 Ag	380.90(3)	1.59(3)	0.0447(8)	109 Ag	750.77(4)	0.529(11)	0.0149(3)
109 Ag	380.97(15)	0.7(5)	0.020(14)	109 Ag	767.01(5)	0.31(4)	0.0087(11)
107 Ag	384.31(13)	0.128(22)	0.0036(6)	¹⁰⁹ Ag	773.32(8)	0.22(3)	0.0062(8)
¹⁰⁷ Ag	386.18(13)	0.192(24)	0.0054(7)	¹⁰⁷ Ag	781.21(11)	0.094(22)	0.0026(6)
¹⁰⁹ Ag	387.99(7)	0.121(21)	0.0034(6)	¹⁰⁹ Ag	785.57(5)	0.34(4)	0.0096(11)
¹⁰⁷ Ag	396.25(4)	0.138(6)	0.00388(17)	¹⁰⁷ Ag	796.15(8)	0.38(4)	0.0107(11)
¹⁰⁷ Ag	399.87(7)	0.093(6)	0.00261(17)	¹⁰⁷ Ag	812.10(6)	0.131(5)	0.00368(14)
¹⁰⁹ Ag	408.61(4)	0.459(9)	0.01290(25)	¹⁰⁷ Ag	819.26(8)	0.291(6)	0.00818(17)
¹⁰⁷ Ag	410.31(6)	0.142(6)	0.00399(17)	¹⁰⁷ Ag	845.19(14)	0.085(19)	0.0024(5)
¹⁰⁹ Ag	416.93(5)	0.243(13)	0.0068(4)	¹⁰⁷ Ag	881.01(7)	0.178(7)	0.00500(20)
¹⁰⁹ Ag	427.96(16)	0.273(11)	0.0077(3)	¹⁰⁷ Ag	895.48(3)	0.376(8)	0.01056(22)
¹⁰⁷ Ag	429.09(7)	0.253(11)	0.0071(3)	¹⁰⁷ Ag	918.97(11)	0.124(22)	0.0035(6)
¹⁰⁹ Ag	431.36(7)	0.248(13)	0.0070(4)	¹⁰⁷ Ag	938.04(5)	0.186(6)	0.00523(17)
¹⁰⁷ Ag	437.713(15)	0.079(10)	0.0022(3)	¹⁰⁷ Ag	960.13(4)	0.199(10)	0.0056(3)
¹⁰⁷ Ag	438.26(12)	0.191(11)	0.0054(3)	¹⁰⁷ Ag	972.69(7)	0.078(9)	0.00219(25)
¹⁰⁷ Ag	439.69(12)	0.216(11)	0.0061(3)	¹⁰⁷ Ag	1013.11(3)	0.698(13)	0.0196(4)
¹⁰⁷ Ag	441.79(8)	0.181(21)	0.0051(6)	¹⁰⁷ Ag	1051.36(5)	0.225(8)	0.00632(22)
109 Ag	446.10(7)	0.183(10)	0.0051(3)	¹⁰⁷ Ag	1079.68(13)	0.165(15)	0.0046(4)
109 Ag	450.80(7)	0.098(16)	0.0028(5)	109 Ag	5539.17(21)	0.106(9)	0.00298(25)
¹⁰⁹ Ag	461.56(6)	0.265(16)	0.0074(5)	¹⁰⁹ Ag	5545.6(3)	0.106(12)	0.0030(3)
¹⁰⁷ Ag	464.04(12)	0.236(20)	0.0066(6)	¹⁰⁹ Ag	5554.8(3)	0.111(10)	0.0031(3)
¹⁰⁷ Ag	465.37(6)	0.46(3)	0.0129(8)	¹⁰⁹ Ag	5580.62(19)	0.302(14)	0.0085(4)
¹⁰⁹ Ag	468.65(7)	0.166(9)	0.00466(25)	¹⁰⁹ Ag	5615.11(20)	0.208(11)	0.0058(3)
¹⁰⁷ Ag	479.36(7)	0.095(12)	0.0027(3)	¹⁰⁹ Ag	5642.24(22)	0.199(12)	0.0056(3)
¹⁰⁹ Ag	484.18(8)	0.253(18)	0.0071(5)	109 Ag	5701.49(19)	0.716(18)	0.0201(5)
¹⁰⁷ Ag	485.68(13)	0.098(7)	0.00275(20)	¹⁰⁹ Ag	5710.22(20)	0.229(10)	0.0064(3)

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barn	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-bar	ns k ₀
¹⁰⁹ Ag	5773.12(21)	0.225(9)	0.00632(25)	¹¹⁵ In	126.3720(20)	4.0(3)	0.106(8)
109 Ag	5795.0(3)	0.513(14)	0.0144(4)	¹¹⁵ In	138.326(8)d	5.11(18)	0.135[30%]
¹⁰⁹ Ag	5913.3(5)	0.084(7)	0.00236(20)	¹¹⁵ In	140.4560(20)	1.58(11)	0.042(3)
¹⁰⁹ Ag	5996.81(10)	0.154(7)	0.00433(20)	115 In	141.1700(20)	2.63(18)	0.069(5)
¹⁰⁹ Ag	6022.46(10)	0.250(10)	0.0070(3)	¹¹⁵ In	149.6700(20)	0.69(5)	0.0182(13)
¹⁰⁹ Ag	6034.70(11)	0.080(6)	0.00225(17)	¹¹⁵ In	155.272(3)	2.48(18)	0.065(5)
109 Ag	6057.25(9)	0.663(19)	0.0186(5)	115 In	159.932(4)	1.07(7)	0.0282(18)
¹⁰⁹ Ag	6101.98(11)	0.080(5)	0.00225(14)	115 In	162.393(3)d	15.8(8)	0.417[100%]
107 Ag	6268.80(24)	0.146(7)	0.00410(20)	115 In	163.802(8)	0.67(5)	0.0177(13)
107 Ag	6372.7(9)	0.11(4)	0.0031(11)	¹¹⁵ In	171.059(5)	3.44(25)	0.091(7)
109 Ag	6540.92(9)	0.259(11)	0.0073(3)	¹¹⁵ In ¹¹⁵ In	173.886(6)	4.1(3)	0.108(8)
¹⁰⁷ Ag ¹⁰⁹ Ag	6707.6(3)	0.083(7)	0.00233(20)	115 In	175.066(4)	1.12(7)	0.0296(18)
107 Ag	6807.13(11)	0.083(3)	0.00233(8)	115 In	186.2100(20)	26.6(18)	0.70(5)
107 Ag	6892.1(3)	0.079(6) 0.121(8)	0.00222(17)	111 115 In	196.738(5) 202.602(3)	0.89(7)	0.0235(18)
107 Ag	6977.2(3) 7065.3(3)	0.121(8)	0.00340(22) 0.00289(22)	111 115 In	213.625(12)	2.70(20) 0.64(5)	0.071(5) 0.0169(13)
107 Ag	7078.5(3)	0.103(8)	0.00289(22)	1115 In	234.618(11)	0.04(3)	0.0109(13)
107 Ag	7078.3(3)	0.284(14)	0.0082(4)	1115 In	235.275(4)		0.019(7) 0.129(8)
			()	111 115 In	240.30(3)	4.9(3) 0.44(3)	0.0116(8)
113 Cd	admium (Z=48)		1(8), $\sigma_{\gamma}^{z} = 2522(50)$	1115 In	267.960(20)	0.44(3)	0.0116(8)
	95.88(4)	21.2(6)	0.572(16)	115 In	272.9660(20)	33.1(24)	0.87(6)
¹¹⁰ Cd ¹¹⁰ Cd	171.3(3)	57(6)	1.54(16)	115 In	284.914(4)	4.5(3)	0.119(8)
	245.3(3)	274(25)	7.4(7)	113 In	287.726(19)	0.20(5)	0.0053(13)
110 Cd	284.3(3)	29(3)	0.78(8)	115 In	290.952(15)	2.55(18)	` '
110 Cd 113 Cd	342.2(3)	1.00E+02	2.70E+00	1115 In	293.393(15)	0.40(16)	0.067(5) 0.011(4)
	558.32(3)	1860(30)	50.1(8)	1115 In	293.644(14)	1.38(11)	0.036(3)
113 Cd 111 Cd	576.04(3)	107.0(17)	2.88(5)	1115 In	295.515(17)	2.86(20)	0.075(5)
110 Cd	617.54(15)	2.9(4)	0.078(11)	115 In	298.664(3)	9.4(7)	0.075(3)
113 Cd	620.3(3)	38(4)	1.02(11)	115 In	300.388(4)	0.45(3)	0.0119(8)
113 Cd	648.79(10)	34.1(9)	0.919(24)	115 In	305.108(8)	1.30(9)	0.0343(24)
113 Cd	651.19(3)	358(5) 24.1(0)	9.65(13)	115 In	315.053(12)	0.69(5)	0.0182(13)
113 Cd	654.47(4) 707.39(3)	34.1(9) 29.3(5)	0.919(24) 0.790(13)	115 In	318.48(4)	0.60(4)	0.0158(11)
113 Cd	707.39(3)	107.0(13)	2.88(4)	115 In	320.895(8)	2.30(16)	0.061(4)
113 Cd	748.04(6)	37(3)	1.00(8)	115 In	321.653(18)	0.7(3)	0.018(8)
113 Cd	805.85(3)	134.0(18)	3.61(5)	115 In	335.450(10)	9.1(7)	0.240(18)
113 Cd	1209.65(4)	122.0(19)	3.29(5)	115 In	337.687(8)	2.52(18)	0.067(5)
113 Cd	1283.45(4)	47.5(9)	1.281(24)	¹¹⁵ In	339.15(4)	0.47(11)	0.012(3)
113 Cd	1300.98(5)	31.1(11)	0.84(3)	¹¹⁵ In	364.995(20)	0.53(4)	0.0140(11)
113 Cd	1364.30(4)	123.0(21)	3.32(6)	¹¹⁵ In	373.149(24)	0.38(3)	0.0100(8)
113 Cd	1370.55(5)	30.2(9)	0.814(24)	¹¹⁵ In	375.969(12)	2.66(20)	0.070(5)
113 Cd	1399.54(4)	97.7(15)	2.63(4)	¹¹⁵ In	384.421(11)	2.9(7)	0.077(18)
¹¹³ Cd	1489.53(4)	68.5(11)	1.85(3)	¹¹⁵ In	385.111(8)	12.1(9)	0.319(24)
113 Cd	1660.36(5)	66.7(13)	1.80(4)	¹¹⁵ In	387.636(13)	0.344(25)	0.0091(7)
113 Cd	1826.19(7)	25.2(7)	0.679(19)	115 In	393.09(11)	0.39(3)	0.0103(8)
¹¹³ Cd	2102.39(8)	24.0(9)	0.647(24)	¹¹⁵ In	396.496(12)	0.51(4)	0.0135(11)
¹¹³ Cd	2398.27(12)	22.4(8)	0.604(22)	¹¹⁵ In	410.433(11)	0.69(5)	0.0182(13)
¹¹³ Cd	2455.93(7)	87.3(18)	2.35(5)	115 In	416.86(3)d	43.0(18)	1.13[30%]
¹¹³ Cd	2550.30(8)	38.7(11)	1.04(3)	115 In	422.213(11)	1.70(13)	0.045(3)
¹¹³ Cd	2659.96(7)	64.0(15)	1.73(4)	115 In	433.723(8)	6.0(4)	0.158(11)
113 Cd	2767.67(13)	22.4(13)	0.60(4)	115 In	443.229(13)	0.58(4)	0.0153(11)
113 Cd	2799.98(9)	27.6(9)	0.744(24)	115 In	447.531(11)	0.39(3)	0.0103(8)
¹¹³ Cd	2999.69(12)	29.1(14)	0.78(4)	115 In	471.349(11)	4.3(3)	0.113(8)
¹¹³ Cd	3109.08(12)	28.6(12)	0.77(3)	115 In	475.906(10)	1.88(13)	0.050(3)
¹¹³ Cd	3218.96(12)	19.0(9)	0.512(24)	115 In	489.314(10)	0.63(5)	0.0166(13)
113 Cd	5824.31(16)	69.1(18)	1.86(5)	115 In	490.374(12)	0.80(11)	0.021(3)
113 Cd	5934.39(20)	19.3(10)	0.52(3)	115 In	492.532(11)	3.31(24)	0.087(6)
	Indium (Z=4		818(3), σ_{γ}^{z} =272(8)	¹¹⁵ In ¹¹⁵ In	497.670(19)	0.67(5)	0.0177(13)
¹¹⁵ In	22.796(7)	7(3)	0.18(8)	115 In 115 In	499.875(8)	0.37(3)	0.0098(8)
¹¹⁵ In	60.9160(10)	15.8(11)	0.42(3)	115 In	515.661(8)	0.60(4)	0.0158(11)
¹¹⁵ In	76.7580(20)	0.41(3)	0.0108(8)	115 In	517.957(20)	2.8(4)	0.074(11)
¹¹⁵ In	84.3080(20)	1.32(9)	0.0348(24)	115 In	518.119(12)	3.15(22)	0.083(6)
¹¹⁵ In	85.5690(20)	22.1(16)	0.58(4)	115 In	521.501(9)	1.97(14)	0.052(4)
¹¹⁵ In	95.380(4)	1.0(4)	0.026(11)	115 In	540.382(8) 548.720(9)	0.60(4)	0.0158(11)
¹¹⁵ In	96.036(5)	11.4(14)	0.30(4)	115 In	548.720(9) 555.47(11)	2.01(14)	0.053(4) 0.018(13)
115 In	96.062(3)	24.6(18)	0.65(5)	115 In	556.169(8)	0.7(5) 1.6(9)	0.018(13) 0.042(24)
115 In	112.4540(20)	1.38(9)	0.0364(24)	115 In	556.845(21)	4.7(3)	0.042(24) 0.124(8)
¹¹⁵ In	114.997(3)	0.47(3)	0.0124(8)	1115 In	560.095(9)	0.85(5)	0.0224(13)
				111	200.075(7)	5.55(5)	0.022 1(13)

^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	\mathbf{k}_0
¹¹⁵ In	567.596(20)	0.94(7)	0.0248(18)	117 Sn	1173.66(8)	0.0050(3)	1.28(8)E-4
¹¹⁵ In	577.523(18)	1.92(14)	0.051(4)	¹¹⁹ Sn	1184.19(8)	0.0051(3)	1.30(8)E-4
¹¹⁵ In	602.36(4)	2.86(20)	0.075(5)	¹¹⁵ Sn	1200.56(12)	0.00163(22)	4.2(6)E-5
¹¹⁵ In	608.422(11)	3.51(25)	0.093(7)	¹¹⁵ Sn	1202.70(12)	0.0022(3)	5.6(8)E-5
¹¹⁵ In	622.57(11)	0.83(5)	0.0219(13)	¹¹⁷ Sn	1229.64(6)	0.0673(13)	0.00172(3)
¹¹⁵ In	633.740(11)	1.54(11)	0.041(3)	118 Sn	1249.62(7)	0.0052(3)	1.33(8)E-4
¹¹⁵ In	634.288(9)	1.68(13)	0.044(3)	115 Sn	1252.119(23)	0.00348(19)	8.9(5)E-5
¹¹⁵ In	647.72(8)	1.18(9)	0.0311(24)	¹¹⁵ Sn	1291.99(3)	0.0050(10)	1.3(3)E-4
¹¹⁵ In	654.95(7)	0.47(3)	0.0124(8)	¹¹⁵ Sn	1293.591(15)	0.1340(21)	0.00342(5)
¹¹⁵ In	657.084(11)	1.52(11)	0.040(3)	115 Sn	1356.846(20)	0.0075(3)	1.91(8)E-4
¹¹⁵ In	662.115(10)	0.44(3)	0.0116(8)	119 Sn	1415.76(10)	0.00291(19)	7.4(5)E-5
¹¹⁵ In	693.29(9)	1.83(13)	0.048(3)	117 Sn	1447.09(14)	0.00212(21)	5.4(5)E-5
¹¹⁵ In	706.21(10)	0.40(9)	0.0106(24)	117 Sn	1508.43(11)	0.0058(3)	1.48(8)E-4
¹¹⁵ In	746.978(9)	0.71(5)	0.0187(13)	115 Sn	1546.40(6)	0.00140(15)	3.6(4)E-5
¹¹⁵ In	771.01(8)	1.52(11)	0.040(3)	115 Sn	1550.71(18)	0.00170(16)	4.3(4)E-5
¹¹⁵ In	792.16(6)	1.34(9)	0.0354(24)	115 Sn	1650.72(6)	0.0021(3)	5.4(8)E-5
¹¹⁵ In	807.897(25)	0.44(3)	0.0116(8)	118 Sn	1695.0(3)	0.00138(22)	3.5(6)E-5
¹¹⁵ In	818.70(20)d	17.8(7)	0.470[30%]	¹¹⁵ Sn	1702.67(3)	0.00169(17)	4.3(4)E-5
¹¹⁵ In	819.04(11)	2.59(18)	0.068(5)	¹¹⁵ Sn	1711.17(7)	0.00151(19)	3.9(5)E-5
¹¹⁵ In	847.54(8)	2.15(16)	0.057(4)	¹¹⁵ Sn	1886.09(7)	0.0026(3)	6.6(8)E-5
¹¹⁵ In	992.10(10)	0.91(7)	0.0240(18)	115 Sn	1900.72(5)	0.0025(3)	6.4(8)E-5
¹¹⁵ In	1097.30(20)d	87.3(17)	2.30[30%]	¹¹⁵ Sn	1926.02(19)	0.0014(6)	3.6(15)E-5
¹¹⁵ In	1293.54(15)d	131(3)	3.46[30%]	115 Sn	1934.93(18)	0.0027(4)	6.9(10)E-5
¹¹⁵ In	1507.40(20)d	15.5(5)	0.409[30%]	115 Sn	1975.73(18)	0.0016(3)	4.1(8)E-5
¹¹⁵ In	1753.8(6)d	3.82(12)	0.101[30%]	117 Sn	2042.74(10)	0.0067(4)	1.71(10)E-4
¹¹⁵ In	2112.1(4)d	24.1(7)	0.636[30%]	115 Sn	2050.76(5)	0.0025(4)	6.4(10)E-5
¹¹⁵ In	5333.54(18)	0.89(7)	0.0235(18)	¹¹⁵ Sn	2077.80(8)	0.0016(6)	4.1(15)E-5
¹¹⁵ In	5347.4(6)	0.362(25)	0.0096(7)	¹¹⁹ Sn	2097.01(9)	0.0048(3)	1.23(8)E-4
¹¹⁵ In	5358.9(5)	0.51(4)	0.0135(11)	¹¹⁵ Sn	2112.302(16)	0.0152(5)	0.000388(13)
¹¹⁵ In	5410.56(19)	0.53(4)	0.0140(11)	115 Sn	2148.03(5)	0.0021(4)	5.4(10)E-5
¹¹⁵ In	5891.89(17)	2.10(14)	0.055(4)	115 Sn	2211.69(8)	0.0018(6)	4.6(15)E-5
	Tin (Z=50	0), <i>At.Wt.</i> =118.7	$10(7), \sigma_{\gamma}^{z} = 0.54(5)$	115 Sn	2220.00(23)	0.0019(5)	4.9(13)E-5
120 Sn	60.66(15)	0.0052(7)	1.33(18)E-4	115 Sn	2225.40(3)	0.0082(5)	2.09(13)E-4
¹²² Sn	125.80(7)	0.00178(9)	4.54(23)E-5	115 Sn	2244.19(6)	0.0029(10)	7(3)E-5
¹¹⁶ Sn	158.65(6)	0.0145(3)	0.000370(8)	119 Sn	2355.3	1.80E-03	4.60E-05
124 Sn	187.67(7)	0.00363(12)	9.3(3)E-5	119 Sn	2420.83(15)	0.0029(3)	7.4(8)E-5
124 Sn	331.90(20)d	0.00830(20)	2.12E-4[77%]	115 Sn	2585.57(3)	0.0047(4)	1.20(10)E-4
115 Sn	416.99(4)	0.00251(11)	6.4(3)E-5	117 Sn	2677.47(20)	0.0022(3)	5.6(8)E-5
¹¹⁵ Sn	463.242(17)	0.0128(3)	0.000327(8)	115 Sn	2707.43(6)	0.0024(6)	6.1(15)E-5
¹¹⁷ Sn	528.85(6)	0.00425(14)	1.08(4)E-4	117 Sn	2738.1	2.00E-03	5.10E-05
¹¹⁶ Sn	552.90(9)	0.00137(13)	3.5(3)E-5	115 Sn	2843.82(5)	0.0032(4)	8.2(10)E-5
¹¹⁹ Sn	703.87(7)	0.0078(3)	1.99(8)E-4	115 Sn	2907.53(18)	0.0027(5)	6.9(13)E-5
115 Sn	733.89(3)	0.00925(21)	2.36(5)E-4	115 Sn	2960.03(4)	0.0023(3)	5.9(8)E-5
¹¹⁷ Sn	813.26(7)	0.0071(3)	1.81(8)E-4	115 Sn	2985.00(25)	0.0025(8)	6.4(20)E-5
¹¹⁵ Sn	818.721(14)	0.0128(4)	0.000327(10)	115 Sn	3088.55(5)	0.00184(19)	4.7(5)E-5
¹¹⁷ Sn	827.37(8)	0.00361(23)	9.2(6)E-5	115 Sn	3330.6(4)	0.0016(5)	4.1(13)E-5
¹¹⁶ Sn	861.39(10)	0.00191(19)	4.9(5)E-5	115 Sn	3333.75(5)	0.0061(5)	1.56(13)E-4
¹²⁰ Sn	869.38(8)	0.00320(22)	8.2(6)E-5	115 Sn	3658.30(17)	0.0022(4)	5.6(10)E-5
118 Sn	897.28(8)	0.00368(21)	9.4(5)E-5	115 Sn	4013.00(11)	0.00169(16)	4.3(4)E-5
¹²⁰ Sn	908.89(8)	0.00307(19)	7.8(5)E-5	115 Sn	4392.56(8)	0.00148(16)	3.8(4)E-5
¹²² Sn	920.87(7)	0.00404(21)	1.03(5)E-4	115 Sn	4695.80(8)	0.0031(3)	7.9(8)E-5
¹¹⁸ Sn	920.87(7)	0.00404(21)	1.03(5)E-4	115 Sn	4780.1(4)	0.0048(5)	1.23(13)E-4
¹¹⁹ Sn	925.90(6)	0.0097(3)	2.48(8)E-4	115 Sn	4809.43(9)	0.00165(16)	4.2(4)E-5
¹²⁰ Sn	925.90(6)	0.0097(3)	2.48(8)E-4	115 Sn	5173.5(7)	0.0016(4)	4.1(10)E-5
¹¹⁵ Sn	931.819(23)	0.0111(3)	0.000283(8)	115 Sn	5361.91(6)	0.0043(4)	1.10(10)E-4
¹²⁰ Sn	943.20(12)	0.00150(17)	3.8(4)E-5	115 Sn	5423.57(11)	0.00188(21)	4.8(5)E-5
115 Sn	972.619(17)	0.0158(5)	0.000403(13)	115 Sn	5449.51(5)	0.00191(19)	4.9(5)E-5
119 Sn	988.67(7)	0.00668(22)	1.71(6)E-4	115 Sn	5562.35(6)	0.0021(5)	5.4(13)E-5
116 Sn	1004.49(8)	0.00388(18)	9.9(5)E-5	115 Sn	5904.65(6)	0.00223(17)	5.7(4)E-5
120 Sn	1041.60(14)	0.00189(20)	4.8(5)E-5	115 Sn	6229.57(6)	0.00159(16)	4.1(4)E-5
117 Sn	1050.66(9)	0.00293(22)	7.5(6)E-5	115 Sn	6335.30(12)	0.0023(3)	5.9(8)E-5
118 Sn	1065.17(13)	0.00214(21)	5.5(5)E-5	115 Sn	6335.89(5)	0.0014(3)	3.6(8)E-5
117 Sn	1095.18(10)	0.0067(3)	1.71(8)E-4	115 Sn	6603.27(4)	0.00168(19)	4.3(5)E-5
115 Sn	1097.323(18)	0.0039(5)	9.96(13)E-5	115 Sn	7450.97(3)	0.00137(14)	3.5(4)E-5
¹²⁰ Sn	1101.25(16)	0.00322(25)	8.2(6)E-5	¹¹⁷ Sn	9327.5(11)	0.00204(20)	5.2(5)E-5
115 Sn	1115.15(4)	0.00150(16)	3.8(4)E-5	122			$0(1), \sigma_{\gamma}^{z} = 5.13(12)$
115 Sn	1118.95(5)	0.00155(22)	4.0(6)E-5	¹²³ Sb	39.96	0.028(6)	0.00070(15)
¹¹⁹ Sn	1171.28(6)	0.0879(13)	0.00224(3)	¹²³ Sb	40.8040(10)	0.10(3)	0.0025(8)

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barns	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
¹²³ Sb	44.0910(10)	0.016(3)	0.00040(8)	¹²³ Sb	351.567(3)	0.0344(20)	0.00086(5)
¹²¹ Sb	45.7330(10)	0.027(7)	0.00067(17)	¹²¹ Sb	378.1380(20)	0.0500(18)	0.00124(5)
¹²¹ Sb	45.8480(10)	0.0076(21)	1.9(5)E-4	¹²³ Sb	384.533(3)	0.069(3)	0.00172(8)
¹²¹ Sb	46.8350(10)	0.0082(25)	2.0(6)E-4	¹²³ Sb	390.4960(20)	0.008(3)	2.0(8)E-4
¹²¹ Sb	61.4130(10)	0.75(18)	0.019(5)	¹²¹ Sb	392.3340(20)	0.0121(25)	0.00030(6)
¹²¹ Sb	67.5940(10)	0.0082(22)	2.0(6)E-4	¹²³ Sb	410.285(7)	0.0127(20)	0.00032(5)
¹²¹ Sb	71.4670(10)	0.095(22)	0.0024(6)	¹²¹ Sb	418.8240(20)	0.0127(20)	0.00032(8)
¹²¹ Sb	76.0590(10)	0.039(9)	0.00097(22)	¹²¹ Sb	419.925(5)	0.064(7)	0.00159(17)
¹²¹ Sb	78.0910(10)	0.48(11)	0.012(3)	¹²¹ Sb	422.231(3)	0.004(7)	0.00155(17)
¹²¹ Sb	86.7140(10)	0.0080(19)	2.0(5)E-4	¹²¹ Sb	437.601(18)	0.0175(18)	0.00033(12)
¹²³ Sb	87.601	0.212(8)	0.00528(20)	123 Sb	441.9270(20)	0.0173(18)	0.00044(3)
121 Sb	88.2690(10)	0.083(19)	0.00328(20)	¹²¹ Sb	453.7470(20)	0.0101(7)	0.000231(17)
123 Sb	88.3850(10)	0.0196(11)	0.0021(3)	123 Sb	455.240(13)	0.0095(7)	2.36(17)E-4
¹²¹ Sb	101.5520(10)	0.0190(11)	0.00049(3)	123 Sb	462.001(4)	0.0097(23)	2.4(6)E-4
123 Sb	101.5520(10)	0.028(6)	0.00070(13)	123 Sb	466.964(3)	0.0097(23)	0.00029(6)
121 Sb	105.8160(10)	` /	* *	123 Sb	473.1350(20)	0.0113(23)	` '
121 Sb		0.21(5)	0.0052(12)	121 Sb	473.1330(20)	0.013(4)	0.00032(10)
121 Sb	113.8870(10)	0.014(3)	0.00035(8)	121 Sb			0.00053(5)
121 Sb	114.8680(10)	0.31(7)	0.0077(17)	121 Sb	491.215(5)	0.0344(16)	0.00086(4)
	115.4210(10)	0.0110(25)	0.00027(6)	123 Sb	501.034(3)	0.0076(21)	1.9(5)E-4
121 Sb	121.4970(10)	0.40(9)	0.0100(22)		501.151(4)	0.0129(10)	0.000321(25)
¹²¹ Sb	124.0290(10)	0.037(9)	0.00092(22)	121 Sb	513.96(4)	0.0356(21)	0.00089(5)
123 Sb	133.8390(10)	0.056(4)	0.00139(10)	121 Sb	542.304(17)	0.0267(20)	0.00066(5)
¹²³ Sb	137.9190(10)	0.0207(10)	0.000515(25)	¹²¹ Sb	546.056(10)	0.0313(20)	0.00078(5)
¹²¹ Sb	141.4390(10)	0.060(14)	0.0015(4)	¹²³ Sb	555.057(5)	0.021(5)	0.00052(12)
¹²³ Sb	143.2080(10)	0.028(4)	0.00070(10)	121 Sb	564.24(4)d	2.700(5)	0.06720[<0.1%]
¹²¹ Sb	148.238	0.26(6)	0.0065(15)	¹²¹ Sb	564.4720(20)	0.0532(25)	0.00132(6)
¹²¹ Sb	148.6540(10)	0.016(4)	0.00040(10)	¹²³ Sb	571.051(4)	0.0080(20)	2.0(5)E-4
¹²¹ Sb	149.9720(10)	0.013(3)	0.00032(8)	¹²³ Sb	598.656(3)	0.055(4)	0.00137(10)
¹²¹ Sb	153.3850(10)	0.0085(11)	2.1(3)E-4	¹²¹ Sb	603.65(4)	0.019(3)	0.00047(8)
123 Sb	155.1780(10)	0.081(9)	0.00202(22)	¹²¹ Sb	631.82(3)	0.0586(16)	0.00146(4)
¹²¹ Sb	166.4510(10)	0.074(4)	0.00184(10)	¹²³ Sb	634.003(15)	0.0101(14)	0.00025(4)
¹²³ Sb	167.6050(10)	0.046(4)	0.00114(10)	¹²³ Sb	647.012(13)	0.0113(24)	0.00028(6)
¹²¹ Sb	173.7880(20)	0.0192(11)	0.00048(3)	¹²¹ Sb	692.65(4)d	0.146(5)	0.00363[<0.1%]
¹²³ Sb	173.7990(10)	0.0171(9)	0.000426(22)	¹²³ Sb	695.372(13)	0.008(3)	2.0(8)E-4
¹²¹ Sb	177.4070(10)	0.0085(20)	2.1(5)E-4	¹²³ Sb	704.145(6)	0.009(3)	2.2(8)E-4
¹²¹ Sb	184.0480(10)	0.031(7)	0.00077(17)	¹²¹ Sb	718.52(4)	0.015(6)	0.00037(15)
¹²³ Sb	185.1190(10)	0.0116(17)	0.00029(4)	¹²³ Sb	723.49(3)	0.016(3)	0.00040(8)
¹²¹ Sb	194.0850(10)	0.0534(18)	0.00133(5)	¹²³ Sb	737.717(7)	0.012(3)	0.00030(8)
¹²¹ Sb	201.5950(10)	0.091(3)	0.00226(8)	¹²¹ Sb	746.861(17)	0.030(3)	0.00075(8)
¹²¹ Sb	204.5580(10)	0.0354(15)	0.00088(4)	¹²³ Sb	763.44(3)	0.0169(24)	0.00042(6)
¹²¹ Sb	217.4170(20)	0.0118(8)	0.000294(20)	¹²³ Sb	768.364(6)	0.0114(24)	0.00028(6)
¹²¹ Sb	229.7080(10)	0.021(5)	0.00052(12)	¹²³ Sb	775.395(7)	0.015(6)	0.00037(15)
¹²¹ Sb	232.1880(10)	0.039(3)	0.00097(8)	¹²¹ Sb	796.61(4)	0.015(4)	0.00037(10)
¹²¹ Sb	233.1690(10)	0.0996(24)	0.00248(6)	¹²¹ Sb	824.952(17)	0.040(3)	0.00100(8)
123 Sb	246.3260(20)	0.0586(21)	0.00146(5)	¹²¹ Sb	842.91(7)	0.017(10)	0.00042(25)
¹²³ Sb	252.841(3)	0.0468(24)	0.00116(6)	¹²³ Sb	862.996(7)	0.009(4)	2.2(10)E-4
¹²¹ Sb	255.4980(10)	0.030(4)	0.00075(10)	¹²¹ Sb	921.00(7)	0.075(4)	0.00187(10)
¹²¹ Sb	256.2270(10)	0.019(6)	0.00047(15)	¹²³ Sb	972.024(17)	0.015(3)	0.00037(8)
¹²¹ Sb	261.6790(10)	0.0087(16)	2.2(4)E-4	¹²³ Sb	1020.942(10)	0.015(5)	0.00037(12)
¹²³ Sb	265.629(6)	0.024(4)	0.00060(10)	¹²³ Sb	5224.99(24)	0.0083(23)	2.1(6)E-4
¹²³ Sb	269.3960(20)	0.0093(25)	2.3(6)E-4	¹²³ Sb	5338.31(23)	0.0078(25)	1.9(6)E-4
¹²¹ Sb	272.2670(10)	0.019(3)	0.00047(8)	¹²³ Sb	5407.83(6)	0.014(5)	0.00035(12)
¹²¹ Sb	274.0010(10)	0.031(6)	0.00077(15)	¹²³ Sb	5446.51(5)	0.008(3)	2.0(8)E-4
¹²³ Sb	275.2780(20)	0.0135(8)	0.000336(20)	¹²¹ Sb	5558.3(4)	0.0149(21)	0.00037(5)
¹²¹ Sb	275.4400(10)	0.0306(16)	0.00076(4)	¹²¹ Sb	5563.43(24)	0.0210(25)	0.00052(6)
¹²³ Sb	276.2670(20)	0.0095(5)	2.36(12)E-4	¹²¹ Sb	5600.4(3)	0.016(3)	0.00040(8)
¹²¹ Sb	282.6500(10)	0.274(7)	0.00682(17)	¹²³ Sb	5604.45(5)	0.012(3)	0.00030(8)
¹²¹ Sb	286.5180(20)	0.034(3)	0.00085(8)	¹²¹ Sb	5619.2(4)	0.015(3)	0.00037(8)
123 Sb	288.0170(20)	0.018(6)	0.00045(15)	¹²¹ Sb	5685.1(3)	0.0141(21)	0.00037(6)
123 Sb	313.938(3)	0.015(4)	0.00043(13)	121 Sb	5775.50(25)	0.0141(21)	0.00033(3)
123 Sb	313.938(3)	0.013(4)	0.00037(10)	121 Sb	5787.62(25)	0.0011(7)	2.3(4)E-4
123 Sb	313.990(6)	0.0317(24)	0.00079(8)	121 Sb	5800.65(24)	0.0093(17)	0.00027(5)
121 Sb	330.555(3)	0.058(3)	0.00144(8)	123 Sb	5868.78(5)	0.0107(19)	0.00027(3)
121 Sb	331.3030(20)	0.038(3)	0.00144(8)	121 Sb	5885.19(9)	0.054(4)	0.00083(10)
123 Sb	331.4600(20)	0.011(3)	0.00027(8)	121 Sb	6009.58(8)	0.034(4)	0.00134(10)
121 Sb	331.4600(20) 332.2860(10)		* *	123 Sb	6048.36(5)	0.020(3)	0.00030(8)
123 Sb		0.101(3)	0.00251(8)	123 Sb	6082.89(5)	` /	0.00045(8)
123 Sb	334.980(3) 338.2980(20)	0.028(3)	0.00070(8)	121 Sb	` '	0.018(3)	` '
30	JJ0.490U(2U)	0.0142(16)	0.00035(4)	30	6163.62(7)	0.0121(18)	0.00030(5)

$^{\mathrm{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	ıs k ₀	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barı	
¹²³ Sb	6335.72(5)	0.017(3)	0.00042(8)	¹²⁷ I	124.2810(20)	0.180(13)	0.0043(3)
¹²³ Sb	6363.76(5)	0.025(4)	0.00062(10)	¹²⁷ I	126.989(3)	0.031(3)	0.00074(7)
¹²³ Sb	6379.80(5)	0.044(6)	0.00110(15)	¹²⁷ I	131.8640(20)	0.016(3)	0.00038(7)
¹²³ Sb	6456.54(5)	0.0077(20)	1.9(5)E-4	127 I	133.3940(10)	0.049(6)	0.00117(14)
¹²³ Sb	6467.40(5)	0.021(4)	0.00052(10)	¹²⁷ I	133.6110(10)	1.42(10)	0.0339(24)
¹²¹ Sb	6494.91(7)	0.0076(24)	1.9(6)E-4	¹²⁷ I	134.911(3)	0.015(11)	0.0004(3)
¹²¹ Sb	6523.52(7)	0.075(3)	0.00187(8)	¹²⁷ I	142.1370(20)	0.140(14)	0.0033(3)
¹²¹ Sb	6728.06(7)	0.044(4)	0.00110(10)	¹²⁷ I	144.025(3)	0.0157(24)	0.00037(6)
¹²¹ Sb	6744.74(7)	0.0090(16)	2.2(4)E-4	¹²⁷ I	147.105(3)	0.101(8)	0.00241(19)
¹²¹ Sb	6806.15(7)	0.0102(11)	0.00025(3)	¹²⁷ I	153.011(3)	0.209(14)	0.0050(3)
			7.60(3), $\sigma_{\gamma}^{z} = 4.6(4)$	¹²⁷ I	156.5060(20)	0.116(10)	0.00277(24)
¹³⁰ Te	149.716(5)d	0.0630(11)	0.00150[51%]	¹²⁷ I ¹²⁷ I	160.7570(10)	0.187(16)	0.0045(4)
¹³⁰ Te	296.017(16)	0.029(3)	0.00069(7)	127 I	164.1390(20)	0.040(4)	0.00096(10)
¹²³ Te	353.820(23)	0.100(8)	0.00237(19)	127 I	193.5630(20) 205.412(3)	0.124(12)	0.0030(3)
¹²² Te	440.04(4)	0.0100(14)	2.4(3)E-4	1 127 I	203.412(3) 224.098(3)	0.0227(20) 0.07(3)	0.00054(5) 0.0017(7)
¹²⁴ Te	443.53(4)	0.030(3)	0.00071(7)	127 I	231.245(3)	0.07(3)	0.0017(7)
¹²³ Te ¹²³ Te	557.46(4)	0.038(4)	0.00090(10)	127 I	235.900(4)	0.017(4)	0.00047(70)
123 Te	602.729(17)	2.46(16)	0.058(4)	¹²⁷ I	248.7410(20)	0.11(4)	0.0026(10)
¹²⁵ Te	645.819(20) 666.3100(20)	0.263(22)	0.0062(5)	127 I	251.534(5)	0.025(3)	0.0026(10)
¹²³ Te	709.18(6)	0.045(5) 0.026(3)	0.00107(12) 0.00062(7)	¹²⁷ I	255.517(5)	0.028(3)	0.00067(7)
¹²³ Te	713.79(3)	0.020(3)	0.00032(7)	¹²⁷ I	259.040(4)	0.0251(24)	0.00060(6)
¹²³ Te	722.772(25)	0.52(4)	0.0123(10)	¹²⁷ I	268.305(3)	0.080(8)	0.00191(19)
¹²³ Te	790.74(3)	0.025(4)	0.00059(10)	¹²⁷ I	282.611(12)	0.0193(20)	0.00046(5)
¹²³ Te	1054.51(4)	0.063(5)	0.00150(12)	¹²⁷ I	283.968(4)	0.028(3)	0.00067(7)
¹²³ Te	1325.50(3)	0.074(6)	0.00176(14)	¹²⁷ I	291.511(7)	0.0172(21)	0.00041(5)
¹²³ Te	1355.00(6)	0.025(3)	0.00059(7)	¹²⁷ I	297.393(17)	0.0155(25)	0.00037(6)
¹²³ Te	1376.09(6)	0.039(4)	0.00093(10)	¹²⁷ I	301.906(5)	0.17(6)	0.0041(14)
¹²³ Te	1436.55(3)	0.098(9)	0.00233(21)	¹²⁷ I	310.419(6)	0.0166(18)	0.00040(4)
¹²³ Te	1461.82(13)	0.028(7)	0.00066(17)	¹²⁷ I	314.349(4)	0.060(5)	0.00143(12)
¹²³ Te	1488.88(5)	0.120(9)	0.00285(21)	¹²⁷ I	325.35(4)	0.020(3)	0.00048(7)
¹²³ Te	1579.50(8)	0.072(10)	0.00171(24)	¹²⁷ I ¹²⁷ I	330.801(5)	0.0146(21)	0.00035(5)
¹²³ Te	1691.06(6)	0.073(7)	0.00173(17)	127 I	344.758(7) 364.640(3)	0.100(9)	0.00239(21)
¹²³ Te	1720.15(5)	0.083(8)	0.00197(19)	1 127 I	369.358(17)	0.0211(25) 0.0170(21)	0.00050(6) 0.00041(5)
¹²⁴ Te ¹²³ Te	1851.37(10) 1918.71(7)	0.030(3)	0.00071(7)	127 I	374.218(5)	0.0170(21)	0.00041(3)
¹²³ Te	1918.71(7)	0.047(4) 0.035(4)	0.00112(10) 0.00083(10)	¹²⁷ I	374.456(7)	0.028(6)	0.00067(14)
¹²³ Te	2038.91(6)	0.064(7)	0.00083(10)	¹²⁷ I	385.447(5)	0.086(7)	0.00205(17)
¹²³ Te	2078.76(9)	0.031(3)	0.00074(7)	¹²⁷ I	388.911(5)	0.022(3)	0.00053(7)
¹²³ Te	2091.21(8)	0.031(3)	0.00074(7)	¹²⁷ I	392.002(3)	0.045(14)	0.0011(3)
¹²³ Te	2144.20(5)	0.034(4)	0.00081(10)	¹²⁷ I	392.687(6)	0.028(9)	0.00067(21)
¹²³ Te	2214.56(10)	0.027(3)	0.00064(7)	¹²⁷ I	398.975(4)	0.018(3)	0.00043(7)
¹²³ Te	2385.57(5)	0.034(4)	0.00081(10)	¹²⁷ I	416.579(6)	0.065(5)	0.00155(12)
¹²³ Te	2609.36(10)	0.039(4)	0.00093(10)	¹²⁷ I	420.826(7)	0.139(18)	0.0033(4)
¹²³ Te	2746.92(5)	0.138(11)	0.0033(3)	¹²⁷ I ¹²⁷ I	442.901(10)d	0.595(4)	0.0140(1)
¹²³ Te	2783.15(10)	0.035(3)	0.00083(7)	127 I	458.056(9)	0.0266(23)	0.00064(6) 0.00146(12)
¹²³ Te	2974.83(14)	0.025(3)	0.00059(7)	1 127 I	502.607(18) 528.91(9)	0.061(5) 0.054(5)	0.00146(12)
¹²³ Te	3152.85(12)	0.026(3)	0.00062(7)	127 I	557.43(4)	0.034(3)	0.00129(12)
¹³⁰ Te ¹²³ Te	3347.35(10)	0.027(3)	0.00064(7)	1 127 I	4950.10(7)	0.027(3) 0.037(10)	0.00088(24)
¹²⁸ Te	3543.10(10) 3721.75(12)	0.039(4) 0.0209(21)	0.00093(10)	127 I	5018.648(17)	0.037(10)	0.00088(24)
123 Te	5668.13(13)	0.0209(21) 0.037(3)	0.00050(5) 0.00088(7)	¹²⁷ I	5091.988(12)	0.015(7)	0.00036(17)
¹²³ Te	5880.59(11)	0.037(3)	0.00088(7)	¹²⁷ I	5096.357(17)	0.024(8)	0.00057(19)
¹²³ Te	6211.61(12)	0.0262(25)	0.00062(6)	¹²⁷ I	5197.957(12)	0.032(14)	0.0008(3)
¹²⁶ Te	6287.6(4)	0.0023(7)	5.5(17)E-5	¹²⁷ I	5298.245(12)	0.031(7)	0.00074(17)
¹²³ Te	6322.95(8)	0.099(8)	0.00235(19)	¹²⁷ I	5463.453(12)	0.018(6)	0.00043(14)
¹²³ Te	7332.04(8)	0.027(4)	0.00064(10)	¹²⁷ I	5482.853(12)	0.018(13)	0.0004(3)
	lodine (Z=53), A	At.Wt.=126.9044	$47(3), \sigma_{\gamma}^{z} = 6.20(20)$	¹²⁷ I	5524.28(5)	0.015(5)	0.00036(12)
¹²⁷ I	27.3620(10)	0.43(4)	0.0103(10)	¹²⁷ I	5559.662(12)	0.044(22)	0.0011(5)
¹²⁷ I	42.767(4)	0.038(5)	0.00091(12)	¹²⁷ I	5574.501(12)	0.021(5)	0.00050(12)
¹²⁷ I	52.385(3)	0.167(19)	0.0040(5)	¹²⁷ I ¹²⁷ I	5725.929(12)	0.020(13)	0.0005(3)
¹²⁷ I	58.1100(20)	0.28(4)	0.0067(10)	127 I	6307.586(6) 6692.417(5)	0.024(8) 0.037(8)	0.00057(19) 0.00088(19)
¹²⁷ I	58.734(4)	0.028(3)	0.00067(7)	1			
¹²⁷ I	67.120(3)	~0.1	~0.002	¹³¹ Xe	Xenon (Z= 324.80(16)	: 54), At.Wt.=13 : 0.09(5)	1.293(6), σ_{γ}^{z} =24(3) 0.0021(12)
¹²⁷ I ¹²⁷ I	68.256(4)	0.023(13)	0.0005(3)	124 Xe	324.80(16)	0.09(5)	1.2(3)E-4
127 I	96.637(3) 102.344(5)	0.0156(22) 0.0165(21)	0.00037(5) 0.00039(5)	¹²⁸ Xe	403.1(3)	0.0106(23)	2.4(5)E-4
¹²⁷ I	106.2490(10)	0.0103(21)	0.00039(3)	¹³⁰ Xe	404.8(3)	0.0096(23)	2.2(5)E-4
•	100.2170(10)	0.000(0)	5.00150(1 <u>2</u>)		` '	` '	* *

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barn	$\mathbf{s} = \mathbf{k}_0$	^A Z	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$
¹³⁶ Xe	455.490(3)d	0.00350(6)	8.08E-5[91%]	¹³³ Cs	142.7680(20)	0.073(4)	0.00166(9)
¹³¹ Xe	471.72(12)	0.19(3)	0.0044(7)	¹³³ Cs	174.3040(20)	0.420(11)	0.00958(25)
¹³¹ Xe	483.66(10)	0.55(4)	0.0127(9)	¹³³ Cs	176.4040(20)	2.47(4)	0.0563(9)
¹³¹ Xe	505.84(8)	0.40(3)	0.0092(7)	¹³³ Cs	177.068(3)	0.098(16)	0.0022(4)
¹²⁹ Xe	510.33(8)	0.33(7)	0.0076(16)	¹³³ Cs	179.0180(20)	0.15(5)	0.0034(11)
¹³¹ Xe	522.78(7)	0.273(22)	0.0063(5)	¹³³ Cs	180.0770(20)	0.087(7)	0.00198(16)
¹²⁹ Xe	536.17(9)	1.71(24)	0.039(6)	133 Cs	186.8400(20)	0.282(9)	0.00643(21)
¹³¹ Xe	546.95(11)	0.094(16)	0.0022(4)	¹³³ Cs	189.8320(20)	0.093(10)	0.00212(23)
¹³¹ Xe	570.13(7)	0.188(15)	0.0043(4)	¹³³ Cs	193.7250(20)	0.042(9)	0.00096(21)
¹²⁹ Xe	586.17(5)	0.48(7)	0.0111(16)	¹³³ Cs	194.724(3)	0.045(9)	0.00103(21)
¹³¹ Xe	600.19(8)	0.52(4)	0.0120(9)	¹³³ Cs	198.3010(20)	1.100(19)	0.0251(4)
¹³⁶ Xe	600.99(8)	0.010(3)	2.3(7)E-4	¹³³ Cs	200.847(4)	0.135(10)	0.00308(23)
¹³¹ Xe	621.13(10)	0.085(8)	0.00196(18)	133 Cs	205.615(3)	1.560(25)	0.0356(6)
¹³¹ Xe	630.29(4)	1.41(11)	0.0325(25)	¹³³ Cs	207.675(4)	0.093(6)	0.00212(14)
¹³¹ Xe	667.79(6)	6.7(5)	0.155(12)	¹³³ Cs	209.5460(20)	0.073(6)	0.00166(14)
¹²⁹ Xe ¹³¹ Xe	668.59(15)	0.17(9)	0.0039(21)	¹³³ Cs ¹³³ Cs	211.3190(10)	0.223(10)	0.00508(23)
	670.02(10)	0.22(3)	0.0051(7)	133 Cs	218.341(3)	0.309(9)	0.00705(21)
¹³¹ Xe ¹³¹ Xe	772.72(4)	1.78(14)	0.041(3)	133 Cs	219.7530(20)	0.344(9)	0.00784(21)
¹³¹ Xe	812.45(10)	0.082(8)	0.00189(18)	133 Cs	232.165(3)	0.125(9)	0.00285(21)
¹³¹ Xe	832.43(12) 889.54(8)	0.108(15)	0.0025(4)	133 Cs	234.3340(20)	1.070(23)	0.0244(5)
¹³¹ Xe		0.084(8)	0.00194(18)	133 Cs	245.8620(20) 254.740(3)	0.740(15)	0.0169(3)
¹³¹ Xe	954.65(12) 984.54(9)	0.076(8) 0.093(18)	0.00175(18) 0.0021(4)	133 Cs	256.6210(20)	0.069(7) 0.235(8)	0.00157(16)
131 Xe	1028.86(6)	0.40(3)	0.0021(4)	133 Cs	261.1640(20)	0.233(8) 0.401(11)	0.00536(18) 0.00914(25)
129 Xe	1028.80(0)	0.40(3)	0.0092(7)	133 Cs	263.8260(20)	0.079(7)	0.00314(23)
131 Xe	1115.34(9)	0.087(12)	0.0020(3)	133 Cs	268.987(3)	0.199(6)	0.00180(10)
¹²⁹ Xe	1113.34(9)	0.149(20)	0.0034(3)	133 Cs	271.3490(20)	0.127(15)	0.00434(14)
131 Xe	1136.13(7)	0.45(4)	0.0027(4)	133 Cs	272.212(4)	0.069(12)	0.0029(3)
¹³¹ Xe	1140.84(11)	0.067(9)	0.00155(21)	133 Cs	277.6310(20)	0.066(5)	0.00150(11)
¹³¹ Xe	1171.29(6)	0.217(19)	0.0050(4)	¹³³ Cs	279.648(3)	0.065(5)	0.00148(11)
¹³¹ Xe	1298.09(7)	0.12(3)	0.0028(7)	¹³³ Cs	284.987(3)	0.044(5)	0.00100(11)
¹³¹ Xe	1317.93(8)	0.89(7)	0.0205(16)	¹³³ Cs	293.295(3)	0.185(9)	0.00422(21)
¹²⁹ Xe	1482.06(9)	0.112(16)	0.0026(4)	¹³³ Cs	295.431(3)	0.231(10)	0.00527(23)
¹³¹ Xe	1519.83(8)	0.131(25)	0.0030(6)	¹³³ Cs	302.463(3)	0.13(4)	0.0030(9)
¹³¹ Xe	1801.58(6)	0.272(22)	0.0063(5)	¹³³ Cs	303.164(3)	0.055(6)	0.00125(14)
¹³¹ Xe	1888.05(8)	0.225(23)	0.0052(5)	¹³³ Cs	305.058(3)	0.061(7)	0.00139(16)
¹³¹ Xe	1985.71(10)	0.54(5)	0.0125(12)	¹³³ Cs	307.015(4)	1.45(3)	0.0331(7)
¹³¹ Xe	2713.93(10)	0.079(9)	0.00182(21)	¹³³ Cs	309.776(3)	0.237(9)	0.00540(21)
¹³¹ Xe	3699.40(15)	0.082(16)	0.0019(4)	¹³³ Cs	317.0720(20)	0.149(10)	0.00340(23)
¹³¹ Xe	4734.85(17)	0.071(10)	0.00164(23)	¹³³ Cs	329.060(3)	0.055(6)	0.00125(14)
¹³¹ Xe	4841.70(14)	0.107(15)	0.0025(4)	133 Cs	338.027(6)	0.043(6)	0.00098(14)
¹³¹ Xe	5078.91(18)	0.106(16)	0.0024(4)	133 Cs	345.358(5)	0.075(7)	0.00171(16)
¹²⁹ Xe	5956.18(18)	0.16(3)	0.0037(7)	¹³³ Cs	347.148(7)	0.073(6)	0.00166(14)
¹³¹ Xe	6380.62(13)	0.21(3)	0.0048(7)	133 Cs	347.152(4)	0.030(4)	0.00068(9)
¹³¹ Xe	6467.09(12)	1.33(19)	0.031(4)	¹³³ Cs	349.846(3)	0.030(6)	0.00068(14)
C			$5(2), \sigma_{\gamma}^{z} = 30.3(11)$	¹³³ Cs ¹³³ Cs	356.157(4)	0.445(12)	0.0101(3)
¹³³ Cs	11.2450(20)	0.142(7)	0.00324(16)	133 Cs	356.345(3) 365.8570(20)	0.14(7) 0.04(3)	0.0032(16) 0.0009(7)
¹³³ Cs ¹³³ Cs	17.2130(20)	0.110(18)	0.0025(4)	133 Cs	365.859(6)	0.103(6)	0.00235(14)
	38.6240(20)	0.080(12)	0.0018(3)	133 Cs	367.870(5)	0.173(8)	0.00394(18)
¹³³ Cs ¹³³ Cs	48.790(20) 60.0300(10)	0.345(10)	0.00787(23) 0.0101(3)	133 Cs	371.7380(20)	0.173(8)	0.00299(16)
133 Cs	67.2540(20)	0.443(14) 0.088(5)	0.0101(3)	133 Cs	377.311(5)	0.310(9)	0.00707(21)
133 Cs	73.5660(20)	0.088(3)	0.00201(11)	¹³³ Cs	381.628(5)	0.066(7)	0.00150(16)
133 Cs	74.0460(20)	0.117(19)	0.0027(4)	¹³³ Cs	384.290(5)	0.034(7)	0.00078(16)
133 Cs	87.2520(20)	0.107(4)	0.0032(7)	¹³³ Cs	386.855(3)	0.163(9)	0.00372(21)
133 Cs	93.1850(20)	0.043(3)	0.00244(7)	¹³³ Cs	391.3960(20)	0.080(7)	0.00182(16)
133 Cs	113.7650(20)	0.777(15)	0.0177(3)	¹³³ Cs	393.535(5)	0.065(8)	0.00148(18)
133 Cs	114.3270(20)	0.05(3)	0.0011(7)	133 Cs	402.491(4)	0.051(10)	0.00116(23)
¹³³ Cs	116.3740(20)	1.39(12)	0.032(3)	¹³³ Cs	405.484(4)	0.079(12)	0.0018(3)
¹³³ Cs	116.612(4)	1.44(12)	0.033(3)	¹³³ Cs	408.483(7)	0.032(12)	0.0007(3)
¹³³ Cs	117.1730(20)	0.04(3)	0.0009(7)	¹³³ Cs	412.448(5)	0.051(13)	0.0012(3)
¹³³ Cs	118.3630(20)	0.230(7)	0.00524(16)	¹³³ Cs	417.277(4)	0.095(17)	0.0022(4)
¹³³ Cs	120.588(3)	0.414(10)	0.00944(23)	¹³³ Cs	421.052(5)	0.086(8)	0.00196(18)
¹³³ Cs	127.5000(20)d	0.310(11)	0.0071(3)	¹³³ Cs	422.491(6)	0.029(6)	0.00066(14)
¹³³ Cs	130.2320(20)	1.410(21)	0.0322(5)	¹³³ Cs	426.258(4)	0.041(7)	0.00093(16)
¹³³ Cs	131.171(3)	0.054(5)	0.00123(11)	¹³³ Cs	434.334(3)	0.066(7)	0.00150(16)
¹³³ Cs	133.5860(20)	0.038(3)	0.00087(7)	¹³³ Cs	438.9920(20)	0.140(9)	0.00319(21)
¹³³ Cs	137.7530(20)	0.030(4)	0.00068(9)	¹³³ Cs	442.8430(20)	0.316(12)	0.0072(3)

$^{\mathbf{A}}\mathbf{Z}$	EγkeV	σ _γ ^z (E _γ)-barn	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	s k ₀
¹³³ Cs	444.465(7)	0.114(9)	0.00260(21)	¹³³ Cs	722.343(5)	0.116(11)	0.00265(25)
¹³³ Cs	450.2370(20)	0.07(3)	0.0016(7)	¹³³ Cs	730.033(4)	0.045(8)	0.00103(18)
¹³³ Cs	450.345(3)	0.99(5)	0.0226(11)	¹³³ Cs	741.277(4)	0.071(9)	0.00162(21)
¹³³ Cs	451.4250(20)	0.058(10)	0.00132(23)	¹³³ Cs	770.544(5)	0.104(11)	0.00237(25)
¹³³ Cs	454.0870(20)	0.056(11)	0.00128(25)	¹³³ Cs	799.668(4)	0.075(10)	0.00171(23)
¹³³ Cs	458.357(6)	0.072(5)	0.00164(11)	¹³³ Cs	799.904(4)	0.029(6)	0.00066(14)
¹³³ Cs	461.180(5)	0.099(5)	0.00226(11)	¹³³ Cs	814.739(6)	0.056(13)	0.0013(3)
¹³³ Cs	464.481(4)	0.095(5)	0.00217(11)	¹³³ Cs	820.763(7)	0.059(11)	0.00135(25)
¹³³ Cs	479.624(6)	0.030(10)	0.00068(23)	¹³³ Cs	852.574(5)	0.034(8)	0.00078(18)
¹³³ Cs	485.038(3)	0.094(10)	0.00214(23)	¹³³ Cs	861.766(7)	0.070(9)	0.00160(21)
¹³³ Cs	486.200(5)	0.08(3)	0.0018(7)	¹³³ Cs	868.99(10)	0.140(11)	0.00319(25)
¹³³ Cs	487.388(4)	0.047(6)	0.00107(14)	¹³³ Cs	869.099(4)	0.140(11)	0.00319(25)
¹³³ Cs	490.843(4)	0.042(10)	0.00096(23)	¹³³ Cs	880.343(4)	0.114(14)	0.0026(3)
¹³³ Cs	495.593(3)	0.077(11)	0.00176(25)	¹³³ Cs	894.509(7)	0.103(12)	0.0023(3)
¹³³ Cs	502.840(3)	0.256(13)	0.0058(3)	¹³³ Cs	894.808(7)	0.052(16)	0.0012(4)
¹³³ Cs	508.077(3)	0.057(10)	0.00130(23)	¹³³ Cs	901.360(5)	0.053(11)	0.00121(25)
¹³³ Cs	508.380(3)	0.053(10)	0.00121(23)	¹³³ Cs	904.288(4)	0.040(11)	0.00091(25)
133 Cs	510.795(3)	1.54(3)	0.0351(7)	¹³³ Cs	911.784(7)	0.177(14)	0.0040(3)
¹³³ Cs	517.601(7)	0.028(21)	0.0006(5)	133 Cs	912.021(7)	0.057(8)	0.00130(18)
133 Cs	519.101(4)	0.349(18)	0.0080(4)	133 Cs	930.112(15)	0.126(9)	0.00287(21)
¹³³ Cs	519.321(3)	0.086(14)	0.0020(3)	¹³³ Cs	931.72(15)	0.073(8)	0.00166(18)
¹³³ Cs	524.1500(20)	0.151(23)	0.0034(5)	133 Cs	935.69(11)	0.130(9)	0.00296(21)
133 Cs	525.356(4)	0.39(3)	0.0089(7)	¹³³ Cs	966.454(5)	0.168(13)	0.0038(3)
133 Cs	525.592(3)	0.13(6)	0.0030(14)	¹³³ Cs	985.863(5)	0.078(12)	0.0018(3)
133 Cs	526.072(4)	0.03(3)	0.0007(7)	133 Cs	986.100(5)	0.027(9)	0.00062(21)
¹³³ Cs	528.409(6)	0.08(3)	0.0018(7)	133 Cs	998.502(7)	0.103(11)	0.00235(25)
133 Cs	529.504(6)	0.519(23)	0.0118(5)	133 Cs	1009.2(5)	0.05(3)	0.0011(7)
¹³³ Cs	529.891(4)	~0.03	~0.0007	¹³³ Cs	1028.394(7)	0.038(15)	0.0009(3)
133 Cs	539.180(4)	0.360(11)	0.00821(25)	¹³³ Cs	1034.519(4)	0.028(8)	0.00064(18)
¹³³ Cs	539.416(4)	0.18(7)	0.0041(16)	¹³³ Cs	1045.251(7)	0.120(11)	0.00274(25)
¹³³ Cs	540.679(9)	0.134(8)	0.00306(18)	¹³³ Cs	1072.547(6)	0.066(19)	0.0015(4)
¹³³ Cs	554.642(5)	0.206(9)	0.00470(21)	¹³³ Cs	1077.557(6)	0.209(12)	0.0048(3)
¹³³ Cs	559.084(3)	0.076(10)	0.00173(23)	133 Cs	1077.794(5)	0.088(12)	0.0020(3)
¹³³ Cs ¹³³ Cs	561.964(5)	0.130(10)	0.00296(23)	¹³³ Cs	1102.473(5)	0.047(8)	0.00107(18)
133 Cs	564.019(4)	0.040(8)	0.00091(18)	¹³³ Cs	1114.65(21)	0.049(10)	0.00112(23)
133 Cs	567.483(4)	0.052(9)	0.00119(21)	¹³³ Cs ¹³³ Cs	1118.04(16)	0.069(9)	0.00157(21)
133 Cs	570.825(3)	0.221(12)	0.0050(3)	133 Cs	1209.54(11)	0.138(11)	0.00315(25) 0.0052(4)
133 Cs	574.574(4) 576.060(4)	0.061(12) 0.073(14)	0.0014(3) 0.0017(3)	133 Cs	5493.52(23) 5505.46(20)	0.230(19) 0.333(22)	0.0032(4)
133 Cs	576.296(3)	0.073(14)	0.0017(3)	133 Cs	5572.00(25)	0.249(20)	0.0070(3)
133 Cs	579.131(4)	0.038(21)	0.0009(3)	133 Cs	5625.091(17)	0.111(13)	0.0037(3)
133 Cs	584.180(3)	0.027(14)	0.0006(3)	133 Cs	5637.056(17)	0.277(21)	0.0063(5)
¹³³ Cs	591.680(5)	0.027(14)	0.00071(18)	133 Cs	5728.747(17)	0.087(16)	0.0020(4)
¹³³ Cs	601.381(5)	0.080(9)	0.00182(21)	¹³³ Cs	5748.392(17)	0.146(15)	0.0033(3)
¹³³ Cs	601.775(5)	0.034(11)	0.00078(25)	¹³³ Cs	5790.920(17)	0.137(13)	0.0031(3)
¹³³ Cs	603.457(5)	0.061(8)	0.00139(18)	¹³³ Cs	5802.823(18)	0.120(13)	0.0027(3)
¹³³ Cs	610.896(4)	0.068(6)	0.00155(14)	¹³³ Cs	5899.368(17)	0.116(12)	0.0026(3)
¹³³ Cs	623.831(9)	0.055(8)	0.00125(18)	¹³³ Cs	5914.935(17)	0.047(8)	0.00107(18)
¹³³ Cs	628.595(4)	0.097(7)	0.00221(16)	¹³³ Cs	5949.884(22)	0.045(10)	0.00103(23)
133 Cs	633.809(6)	0.112(7)	0.00255(16)	¹³³ Cs	5975.068(17)	0.027(10)	0.00062(23)
¹³³ Cs	645.453(5)	0.248(13)	0.0057(3)	¹³³ Cs	5978.636(17)	0.099(14)	0.0023(3)
133 Cs	646.195(3)	0.064(11)	0.00146(25)	¹³³ Cs	6051.426(17)	0.240(20)	0.0055(5)
¹³³ Cs	648.511(4)	0.233(13)	0.0053(3)	¹³³ Cs	6138.534(17)	0.061(8)	0.00139(18)
¹³³ Cs	663.171(4)	0.155(9)	0.00353(21)	¹³³ Cs	6149.955(17)	0.038(6)	0.00087(14)
¹³³ Cs	663.407(3)	0.07(3)	0.0016(7)	133 Cs	6175.412(17)	0.252(16)	0.0057(4)
¹³³ Cs	666.017(4)	0.089(8)	0.00203(18)	¹³³ Cs	6189.235(17)	0.191(14)	0.0044(3)
133 Cs	678.271(5)	0.078(13)	0.0018(3)	133 Cs	6197.392(17)	0.035(8)	0.00080(18)
133 Cs	681.247(4)	0.110(24)	0.0025(6)	¹³³ Cs	6247.267(17)	0.038(6)	0.00087(14)
¹³³ Cs	682.562(4)	0.12(3)	0.0027(7)	¹³³ Cs	6307.046(17)	0.044(10)	0.00100(23)
¹³³ Cs	688.625(4)	0.058(10)	0.00132(23)	¹³³ Cs	6320.400(17)	0.050(8)	0.00114(18)
¹³³ Cs	691.434(5)	0.030(10)	0.00068(23)	¹³³ Cs	6439.794(16)	0.082(8)	0.00187(18)
¹³³ Cs	692.670(3)	0.037(6)	0.00084(14)	¹³³ Cs	6514.114(16)	0.044(7)	0.00100(16)
¹³³ Cs	695.340(6)	0.039(10)	0.00089(23)	¹³³ Cs	6697.590(16)	0.224(17)	0.0051(4)
¹³³ Cs	701.38(21)	0.036(10)	0.00082(23)	¹³³ Cs	6714.802(16)	0.090(11)	0.00205(25)
¹³³ Cs	703.290(5)	0.043(10)	0.00098(23)	¹³³ Cs	6831.169(16)	0.035(4)	0.00080(9)
¹³³ Cs ¹³³ Cs	708.417(5)	0.220(11)	0.00502(25)	125 —			$27(7), \sigma_{\gamma}^{z} = 1.18(7)$
133 Cs	708.646(4)	0.105(14)	0.0024(3)	135 Ba	66.32(16)	0.0067(6)	1.48(13)E-4
CS	712.268(5)	0.113(9)	0.00258(21)	¹³⁵ Ba	87.08(13)	0.0093(6)	2.05(13)E-4

^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barr		^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -bar	
¹³⁵ Ba	157.3(4)	0.0057(11)	1.26(24)E-4	¹³⁷ Ba	2210.82(16)	0.0038(8)	8.4(18)E-5
¹³⁵ Ba	158.58(12)	0.0077(4)	1.70(9)E-4	¹³⁷ Ba	2217.84(8)	0.044(5)	0.00097(11)
¹³⁸ Ba	165.8570(10)d	0.074(8)	0.00163[21%]	¹³⁸ Ba	2242.58(13)	0.0116(13)	0.00026(3)
¹³⁷ Ba	191.65(10)	0.0081(3)	1.79(7)E-4	¹³⁷ Ba	2401.96(15)	0.0031(3)	6.8(7)E-5
¹³⁴ Ba	220.969(17)	0.0067(5)	1.48(11)E-4	¹³⁵ Ba	2485.20(8)	0.00349(24)	7.7(5)E-5
¹³⁵ Ba	273.77(11)	0.0079(5)	1.74(11)E-4	¹³⁸ Ba	2537.72(10)	0.0102(7)	2.25(15)E-4
¹³⁶ Ba	283.58(6)	0.0404(12)	0.00089(3)	¹³⁸ Ba	2566.0(11)	0.009(5)	2.0(11)E-4
¹³⁷ Ba	325.11(7)	0.00368(19)	8.1(4)E-5	¹³⁷ Ba	2582.87(8)	0.0033(3)	7.3(7)E-5
¹³⁷ Ba	364.32(13)	0.00407(20)	9.0(4)E-5	¹³⁸ Ba	2593.42(11)	0.0187(8)	0.000413(18
¹³⁷ Ba	408.88(7)	0.0096(6)	2.12(13)E-4	¹³⁷ Ba	2639.20(7)	0.0184(16)	0.00041(4)
¹³⁸ Ba	454.73(5)	0.0853(22)	0.00188(5)	¹³⁶ Ba	2662.66(5)	0.00401(16)	8.8(4)E-5
¹³⁷ Ba	462.78(4)	0.0660(16)	0.00146(4)	¹³⁷ Ba	2806.29(11)	0.0032(4)	7.1(9)E-5
¹³⁶ Ba	480.41(6)	0.00350(16)	7.7(4)E-5	¹³⁵ Ba	2976.64(17)	0.0181(7)	0.000399(15
¹³⁴ Ba	480.543(24)	0.00320(20)	7.1(4)E-5	¹³⁵ Ba	3045.19(23)	0.00336(16)	7.4(4)E-5
¹³⁷ Ba	516.76(8)	0.0083(6)	1.83(13)E-4	¹³⁷ Ba	3049.93(12)	0.0037(3)	8.2(7)E-5
¹³⁷ Ba	546.95(5)	0.00604(23)	1.33(5)E-4	¹³⁷ Ba	3099.89(14)	0.0032(5)	7.1(11)E-5
¹³⁸ Ba	627.29(5)	0.294(6)	0.00649(13)	¹³⁷ Ba	3338.60(10)	0.0090(5)	1.99(11)E-4
¹³⁸ Ba	665.98(9)	0.0053(3)	1.17(7)E-4	¹³⁵ Ba	3435.5(4)	0.0043(5)	9.5(11)E-5
¹³⁵ Ba	671.60(9)	0.0045(3)	9.9(7)E-5	¹³⁷ Ba	3503.94(17)	0.0046(4)	1.02(9)E-4
¹³⁵ Ba	732.49(7)	0.0238(8)	0.000525(18)	¹³⁸ Ba	3641.12(9)	0.0562(16)	0.00124(4)
¹³⁵ Ba	746.6(4)	0.0031(3)	6.8(7)E-5	¹³⁷ Ba	3643.59(3)	0.0033(17)	7(4)E-5
¹³⁷ Ba	754.03(7)	0.0067(3)	1.48(7)E-4	¹³⁴ Ba	3676.5(5)	0.0045(3)	9.9(7)E-5
¹³⁵ Ba	760.31(11)	0.0073(5)	1.61(11)E-4	¹³⁷ Ba	3739.50(12)	0.0042(5)	9.3(11)E-5
¹³⁵ Ba	818.514(12)	0.212(4)	0.00468(9)	¹³⁷ Ba	3965.98(13)	0.00342(22)	7.5(5)E-5
¹³⁷ Ba	871.66(6)	0.0124(4)	0.000274(9)	¹³⁷ Ba	4025.52(14)	0.0038(4)	8.4(9)E-5
¹³⁵ Ba	880.01(17)	0.0042(5)	9.3(11)E-5	¹³⁷ Ba	4025.70(14)	0.0038(8)	8.4(18)E-5
¹³⁵ Ba	981.61(9)	0.0040(3)	8.8(7)É-5	¹³⁷ Ba	4083.64(16)	0.0067(6)	1.48(13)E-4
¹³⁷ Ba	1009.73(5)	0.0167(5)	0.000369(11)	¹³⁸ Ba	4095.84(9)	0.155(4)	0.00342(9)
¹³⁷ Ba	1041.42(8)	0.00422(22)	9.3(5)E-5	¹³⁷ Ba	4103.50(19)	0.0032(5)	7.1(11)E-5
¹³⁸ Ba	1047.73(6)	0.0319(10)	0.000704(22)	¹³⁷ Ba	4114.45(19)	0.00329(24)	7.3(5)É-5
¹³⁵ Ba	1048.0730(20)	0.025(4)	0.00055(9)	¹³⁷ Ba	4166.05(12)	0.0052(3)	1.15(7)E-4
¹³⁸ Ba	1103.43(8)	0.0044(4)	9.7(9)E-5	¹³⁶ Ba	4242.98(8)	0.0087(10)	1.92(22)E-4
¹³⁷ Ba	1147.11(7)	0.0150(5)	0.000331(11)	¹³⁷ Ba	4251.82(13)	0.0057(4)	1.26(9)E-4
¹³⁵ Ba	1235.29(12)	0.0148(7)	0.000327(15)	¹³⁷ Ba	4279.55(14)	0.0039(5)	8.6(11)E-5
¹³⁵ Ba	1261.52(7)	0.095(5)	0.00210(11)	¹³⁷ Ba	4280.25(16)	0.0038(3)	8.4(7)E-5
¹³⁷ Ba	1264.54(10)	0.00352(22)	7.8(5)E-5	¹³⁷ Ba	4288.15(14)	0.0059(3)	1.30(7)E-4
¹³⁵ Ba	1310.21(9)	0.0094(7)	2.07(15)E-4	¹³⁷ Ba	4323.34(14)	0.0079(4)	1.74(9)E-4
¹³⁷ Ba	1343.53(8)	0.0087(4)	1.92(9)E-4	¹³⁷ Ba	4331.24(16)	0.0091(12)	2.0(3)E-4
135 Ba	1404.08(9)	0.0051(5)	1.13(11)E-4	¹³⁷ Ba	4331.94(14)	0.0090(6)	1.99(13)E-4
134 Ba	1415.30(19)	0.0067(5)	1.48(11)E-4	¹³⁷ Ba	4369.47(10)	0.0069(5)	1.52(11)E-4
138 Ba	1420.41(9)	0.0090(5)	1.99(11)E-4	137 Ba	4445.44(12)	0.0039(3)	8.6(7)E-5
137 Ba	1435.77(4)	0.308(7)	0.00680(15)	137 Ba	4597.95(22)	0.0037(3)	9.7(9)E-5
¹³⁷ Ba	1444.91(5)	0.0801(20)	0.00177(4)	137 Ba	4689.43(9)	0.0140(8)	0.000309(18
137 Ba	1495.58(9)	0.0104(7)	2.30(15)E-4	136 Ba	4723.38(8)	0.0264(8)	0.000503(18
135 Ba	1537.0(5)		1.1(3)E-4	137 Ba	4773.79(15)		1.39(9)E-4
135 Ba	1551.01(6)	0.0049(13) 0.0231(9)	0.000510(20)	137 Ba	4967.90(6)	0.0063(4) 0.0098(7)	2.16(15)E-4
137 Ba	1555.32(11)	0.0231(9)	9.6(5)E-5	137 Ba	5107.54(17)	0.0098(7)	1.32(9)E-4
138 Ba	1558.16(8)	` /		137 Ba			
135 Ba		0.0078(5)	1.72(11)E-4	135 Ba	5272.88(10)	0.0088(10)	1.94(22)E-4
135 Ba	1572.12(18)	0.0055(10)	1.21(22)E-4	137 Ba	5312.42(17)	0.0082(3)	1.81(7)E-4
	1581.46(6)	0.0096(7)	2.12(15)E-4	¹³⁷ Ba	5448.42(11)	0.0053(6)	1.17(13)E-4
¹³⁷ Ba	1614.18(11)	0.015(7)	0.00033(15)	137 P	5730.81(6)	0.0617(20)	0.00136(4)
¹³⁷ Ba	1614.68(10)	0.0147(10)	0.000324(22)	¹³⁷ Ba	5972.26(9)	0.0044(3)	9.7(7)E-5
¹³⁷ Ba	1619.88(15)	0.00328(24)	7.2(5)E-5	¹³⁷ Ba	6028.60(8)	0.0093(6)	2.05(13)E-4
135 Ba	1666.69(9)	0.0047(5)	1.04(11)E-4	¹³⁵ Ba	6062.37(23)	0.00516(14)	1.14(3)E-4
135 Ba	1714.09(9)	0.0076(12)	1.7(3)E-4	¹³⁷ Ba	6421.67(8)	0.00337(19)	7.4(4)E-5
¹³⁷ Ba	1717.16(20)	0.0071(8)	1.57(18)E-4	136 Ba	6621.99(8)	0.0034(6)	7.5(13)E-5
¹³⁷ Ba	1727.32(10)	0.0056(4)	1.24(9)E-4	135 Ba	8288.93(5)	0.00349(11)	7.70(24)E-5
137 Ba	1745.07(6)	0.0035(4)	7.7(9)E-5	¹³⁵ Ba	9107.41(4)	0.00635(23)	1.40(5)E-4
135 Ba	1842.90(11)	0.0054(7)	1.19(15)E-4	La	inthanum (Z=57	7), <i>At.Wt.</i> =138.9	$0055(2), \sigma_{\gamma}^{z} = 9.0$
¹³⁸ Ba	1853.30(12)	0.0074(6)	1.63(13)E-4	¹³⁹ La	14.2380(20)	0.028(6)	0.00061(13)
136 Ba	1898.68(5)	0.0305(10)	0.000673(22)	¹³⁹ La	28.5330(10)	0.0103(11)	2.25(24)E-4
¹³⁸ Ba	1951.9(5)	0.009(6)	2.0(13)E-4	¹³⁹ La	29.9640(10)	0.169(8)	0.00369(17)
¹³⁵ Ba	1955.19(19)	0.0031(9)	6.8(20)E-5	139 La	34.6460(10)	0.0220(20)	0.00048(4)
¹³⁵ Ba	1993.15(16)	0.0044(11)	9.7(24)E-5	¹³⁹ La	45.913(6)	0.0120(7)	0.000262(15
¹³⁷ Ba	2023.55(8)	0.0091(6)	2.01(13)E-4	¹³⁹ La	54.9440(10)	0.143(7)	0.00312(15)
¹³⁵ Ba	2080.04(5)	0.0074(5)	1.63(11)E-4	¹³⁹ La	63.1790(10)	0.208(8)	0.00454(17)
						` '	
¹³⁵ Ba ¹³⁷ Ba	2128.73(9) 2207.85(5)	0.0114(6)	0.000252(13)	¹³⁹ La	69.1830(20)	0.0137(5)	0.000299(11)

$^{\mathbf{A}}\mathbf{Z}$	E _{y⁻keV}	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	
¹³⁹ La	155.560(5)	0.192(7)	0.00419(15)	¹³⁸ La	1215.72(22)	0.019(4)	0.00041(9)
¹³⁹ La	162.659(3)	0.489(18)	0.0107(4)	¹³⁸ La	1219.79(17)	0.026(4)	0.00057(9)
¹³⁸ La	166.04(7)	0.0119(12)	0.00026(3)	¹³⁸ La	1435.795(10)	$0.539(7) \text{ s}^{-1}\text{g}^{-1}$	Abundant
¹³⁹ La	169.392(10)	0.0382(14)	0.00083(3)	138 La	1537.7(3)	0.009(3)	2.0(7)E-4
139 La	209.127(4)	0.0431(16)	0.00094(4)	¹³⁹ La	1596.21(4)d	5.84(9)	0.1274[<0.1%]
139 La	215.02(16)	0.025(6)	0.00055(13)	¹³⁹ La	2345.21(6)	0.0164(6)	0.000358(13)
¹³⁹ La	218.225(22)	0.78(3)	0.0170(7)	139 La	2512.55(17)	0.0194(7)	0.000423(15)
139 La	235.771(8)	0.111(4)	0.00242(9)	139 La	2517.04(8)	0.0353(13)	0.00077(3)
139 La	237.660(4)	0.320(12)	0.0070(3)	¹³⁹ La ¹³⁹ La	2521.40(5)d	0.2120(23)	0.00463[<0.1%]
¹³⁹ La ¹³⁹ La	255.040(5)	0.017(4)	0.00037(9)	139 La	2532.39(4)	0.0188(7)	0.000410(15)
¹³⁹ La	258.875(22)	0.0233(9)	0.000508(20)	139 La	2538.82(7)	0.0119(5)	0.000260(11)
139 La	272.306(4) 279.979(22)	0.502(19) 0.0640(24)	0.0110(4) 0.00140(5)	139 La	2555.76(4) 2561.85(3)	0.0231(9) 0.0259(10)	0.000504(20) 0.000565(22)
139 La	279.979(22) 283.617(16)	0.0409(15)	0.00140(3)	139 La	2564.79(3)	0.0239(10) 0.0373(14)	0.00081(3)
139 La	287.408(22)	0.0409(13)	0.00089(3)	139 La	2598.16(4)	0.0373(14)	0.00081(3)
139 La	288.255(5)	0.73(3)	0.00028(9)	139 La	2607.17(3)	0.0231(3)	0.000304(20)
139 La	290.92(3)	0.0167(6)	0.0139(7)	139 La	2611.6(3)	0.0086(3)	1.88(7)E-4
139 La	305.04(8)	0.0147(6)	0.000304(13)	139 La	2617.76(4)	0.0149(6)	0.000325(13)
139 La	310.14(3)	0.0184(7)	0.000401(15)	139 La	2637.97(6)	0.0084(5)	1.83(11)E-4
139 La	328.762(8)d	1.250(18)	0.0273[<0.1%]	139 La	2640.00(3)	0.0160(6)	0.000349(13)
139 La	329.727(12)	0.0140(5)	0.000305(11)	139 La	2661.55(4)	0.0263(10)	0.000574(22)
¹³⁹ La	422.66(4)	0.370(14)	0.0081(3)	¹³⁹ La	2668.00(4)	0.0247(9)	0.000539(20)
¹³⁹ La	426.49(3)	0.0435(16)	0.00095(4)	¹³⁹ La	2677.63(12)	0.0100(4)	2.18(9)E-4
¹³⁹ La	432.493(12)d	0.1780(18)	0.00388[<0.1%]	139 La	2688.09(3)	0.0254(10)	0.000554(22)
¹³⁹ La	478.05(5)	0.0407(15)	0.00089(3)	¹³⁹ La	2692.30(6)	0.0115(7)	0.000251(15)
¹³⁹ La	487.021(12)d	2.79(4)	0.0609[<0.1%]	¹³⁹ La	2698.19(4)	0.0185(7)	0.000404(15)
¹³⁹ La	495.620(13)	0.081(3)	0.00177(7)	¹³⁹ La	2702.38(6)	0.0109(4)	2.38(9)E-4
¹³⁹ La	528.34(11)	0.0197(7)	0.000430(15)	¹³⁹ La	2710.62(4)	0.0117(4)	0.000255(9)
¹³⁹ La	538.854(12)	0.0455(17)	0.00099(4)	¹³⁹ La	2714.63(3)	0.0141(5)	0.000308(11)
¹³⁹ La	549.01(3)	0.098(4)	0.00214(9)	¹³⁹ La	2724.26(4)	0.0151(6)	0.000329(13)
¹³⁹ La	553.148(12)	0.0602(23)	0.00131(5)	¹³⁹ La	2735.13(4)	0.0188(7)	0.000410(15)
¹³⁹ La	567.386(12)	0.335(13)	0.0073(3)	¹³⁹ La	2739.00(4)	0.0200(8)	0.000436(17)
¹³⁹ La	592.05(18)	0.0128(5)	0.000279(11)	¹³⁹ La	2747.65(4)	0.0198(8)	0.000432(17)
¹³⁹ La	595.099(12)	0.103(4)	0.00225(9)	¹³⁹ La	2757.726(24)	0.0515(19)	0.00112(4)
¹³⁹ La	602.032(12)	0.0522(20)	0.00114(4)	¹³⁹ La	2764.51(4)	0.0289(11)	0.000631(24)
139 La	623.632(12)	0.0517(20)	0.00113(4)	139 La	2767.58(4)	0.0287(11)	0.000626(24)
139 La	628.314(12)	0.0284(11)	0.000620(24)	139 La	2799.65(6)	0.0109(4)	2.38(9)E-4
¹³⁹ La ¹³⁹ La	640.88(3)	0.0534(20)	0.00117(4)	¹³⁹ La ¹³⁹ La	2804.82(4)	0.0203(8)	0.000443(17)
139 La	658.278(12)	0.103(4)	0.00225(9)	139 La	2837.50(4)	0.0195(7)	0.000425(15)
139 La	667.594(14) 708.244(14)	0.0580(22) 0.134(5)	0.00127(5) 0.00292(11)	139 La	2852.55(4) 2863.06(3)	0.0139(5)	0.000303(11)
139 La	710.07(3)	0.0668(25)	0.00292(11)	139 La	2880.60(6)	0.073(3) 0.0101(4)	0.00159(7) 2.20(9)E-4
139 La	710.07(3)	0.0164(6)	0.000358(13)	139 La	2896.63(6)	0.0081(5)	1.77(11)E-4
139 La	722.538(14)	0.212(8)	0.00463(17)	139 La	2903.65(5)	0.0112(4)	2.44(9)E-4
139 La	725.11(20)	0.0125(5)	0.000273(11)	139 La	2913.16(4)	0.0112(4)	0.000271(11)
139 La	736.777(14)	0.0388(15)	0.00085(3)	139 La	2916.89(4)	0.0130(8)	0.000284(17)
¹³⁹ La	744.71(3)	0.010(4)	2.2(9)E-4	139 La	2919.73(6)	0.0086(3)	1.88(7)E-4
¹³⁹ La	751.637(18)d	0.2650(23)	0.00578[<0.1%]	¹³⁹ La	2925.00(3)	0.0435(16)	0.00095(4)
139 La	766.30(5)	0.0127(5)	0.000277(11)	¹³⁹ La	2961.34(4)	0.0262(10)	0.000572(22)
¹³⁹ La	782.733(20)	0.0396(15)	0.00086(3)	¹³⁹ La	2969.27(4)	0.0409(15)	0.00089(3)
¹³⁹ La	787.3(4)	0.008(4)	1.7(9)E-4	¹³⁹ La	2977.35(5)	0.0164(6)	0.000358(13)
¹³⁸ La	788.742	$0.273(5) \text{ s}^{-1}\text{g}^{-1}$	Abundant	¹³⁹ La	2985.02(6)	0.0100(4)	2.18(9)E-4
¹³⁹ La	796.27(5)	0.0162(6)	0.000353(13)	¹³⁹ La	2988.53(3)	0.0458(17)	0.00100(4)
¹³⁹ La	815.772(19)d	1.430(12)	0.0312[<0.1%]	¹³⁹ La	2998.36(5)	0.0136(5)	0.000297(11)
¹³⁹ La	848.99(3)	0.0290(11)	0.000633(24)	¹³⁹ La	3017.070(24)	0.0671(25)	0.00146(6)
¹³⁹ La	863.28(3)	0.0149(6)	0.000325(13)	¹³⁹ La	3031.27(4)	0.0330(12)	0.00072(3)
¹³⁹ La	867.846(20)d	0.337(4)	0.00735[<0.1%]	¹³⁹ La	3035.56(3)	0.0518(20)	0.00113(4)
¹³⁹ La	868.32(5)	0.0558(21)	0.00122(5)	139 La	3040.94(4)	0.0294(11)	0.000641(24)
¹³⁹ La	882.21(3)	0.0343(13)	0.00075(3)	139 La	3051.49(5)	0.0183(7)	0.000399(15)
¹³⁹ La	887.70(11)	0.0222(8)	0.000484(17)	139 La	3057.66(6)	0.0194(7)	0.000423(15)
¹³⁹ La	919.550(23)d	0.1630(18)	0.00356[<0.1%]	139 La	3078.80(6)	0.0130(5)	0.000284(11)
139 La	925.189(21)d	0.422(4)	0.00921[<0.1%]	139 La	3082.979(24)	0.140(5)	0.00305(11)
139 La	941.79(17)	0.0236(9)	0.000515(20)	139 La	3091.30(6)	0.0114(4)	2.49(9)E-4
139 La	986.74(3)	0.008(4)	1.7(9)E-4	139 La	3095.50(4)	0.0191(7)	0.000417(15)
139 La	991.859(20)	0.0487(18)	0.00106(4)	¹³⁹ La	3112.38(3)	0.0320(12)	0.00070(3)
¹³⁹ La	1006.153(20)	0.0347(13)	0.00076(3)	¹³⁹ La	3115.94(3)	0.0176(7)	0.000384(15)
¹³⁹ La	1020.392(20)	0.0535(20)	0.00117(4)	¹³⁹ La	3119.05(4)	0.0118(8)	0.000257(17)
¹³⁹ La	1055.038(20)	0.015(5)	0.00033(11)	¹³⁹ La	3137.21(4)	0.0239(9)	0.000521(20)

$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	s k ₀	$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
¹³⁹ La	3142.75(3)	0.0320(12)	0.00070(3)	¹⁴² Ce	820.07(8)	0.0026(3)	5.6(7)E-5
¹³⁹ La	3155.06(6)	0.0090(3)	1.96(7)E-4	¹⁴² Ce	862.23(7)	0.0044(4)	9.5(9)E-5
¹³⁹ La	3163.792(24)	0.0324(12)	0.00071(3)	¹⁴² Ce	915.03(7)	0.0086(11)	1.86(24)E-4
¹³⁹ La	3174.77(4)	0.0135(5)	0.000295(11)	¹⁴² Ce	987.69(9)	0.0040(5)	8.7(11)E-5
¹³⁹ La	3189.09(3)	0.0538(20)	0.00117(4)	¹⁴⁰ Ce	1052.58(5)	0.0051(5)	1.10(11)E-4
¹³⁹ La	3197.52(6)	0.0213(8)	0.000465(17)	¹⁴² Ce	1107.66(5)	0.040(3)	0.00087(7)
139 La	3213.35(4)	0.0144(5)	0.000314(11)	¹⁴⁰ Ce	1146.68(4)	0.0096(9)	2.08(19)E-4
¹³⁹ La	3219.80(3)	0.0300(11)	0.000655(24)	¹⁴² Ce	1153.97(5)	0.0146(12)	0.00032(3)
¹³⁹ La	3265.263(24)	0.0532(20)	0.00116(4)	¹⁴² Ce	1165.71(8)	0.0040(4)	8.7(9)E-5
¹³⁹ La	3281.248(24)	0.0506(19)	0.00110(4)	¹⁴⁰ Ce	1288.69(5)	0.0076(6)	1.64(13)E-4
139 La	3318.99(4)	0.0319(12)	0.00070(3)	¹⁴⁰ Ce ¹³⁸ Ce	1331.63(7)	0.0058(5)	1.25(11)E-4
¹³⁹ La ¹³⁹ La	3341.48(4)	0.0090(5)	1.96(11)E-4	¹⁴⁰ Ce	1347.24(13)	0.0028(3)	6.1(7)E-5
139 La	3359.88(3)	0.0120(7)	0.000262(15)	¹⁴⁰ Ce	1385.74(6)	0.0060(6)	1.30(13)E-4
139 La	3383.39(3) 3395.44(4)	0.0242(9)	0.000528(20) 0.000351(13)	¹⁴⁰ Ce	1497.03(12) 1527.61(6)	0.0062(9)	1.34(19)E-4
139 La	3404.81(4)	0.0161(6) 0.0171(6)	0.000331(13)	¹⁴² Ce	1587.90(11)	0.0027(3) 0.0028(3)	5.8(7)E-5 6.1(7)E-5
139 La	3417.24(4)	0.0171(0)	0.000375(15)	¹⁴⁰ Ce	1673.95(9)	0.0028(3)	7.1(9)E-5
139 La	3424.29(3)	0.0181(7)	0.000593(13)	¹⁴⁰ Ce	1747.90(7)	0.0033(4)	1.69(15)E-4
139 La	3425.399(24)	0.0232(14)	0.00127(7)	¹⁴⁰ Ce	1808.67(6)	0.0078(7)	8.2(9)E-5
139 La	3437.83(4)	0.0247(9)	0.000539(20)	¹⁴² Ce	2203.36(10)	0.0039(5)	8.4(11)E-5
139 La	3442.20(3)	0.0410(15)	0.00089(3)	¹⁴⁰ Ce	2905.37(7)	0.0058(5)	1.25(11)E-4
139 La	3459.91(3)	0.0199(8)	0.000434(17)	¹⁴² Ce	2931.94(14)	0.0029(3)	6.3(7)E-5
139 La	3477.14(3)	0.0444(17)	0.00097(4)	¹⁴⁰ Ce	3002.41(6)	0.0104(8)	2.25(17)E-4
139 La	3488.77(3)	0.0170(6)	0.000371(13)	¹⁴⁰ Ce	3018.24(7)	0.0114(10)	2.47(22)E-4
139 La	3564.87(4)	0.0130(5)	0.000284(11)	¹⁴⁰ Ce	3092.19(8)	0.0072(6)	1.56(13)E-4
¹³⁹ La	3580.90(4)	0.0129(5)	0.000281(11)	¹⁴⁰ Ce	3238.52(6)	0.0066(6)	1.43(13)E-4
139 La	3596.45(4)	0.0157(6)	0.000343(13)	¹⁴⁰ Ce	3434.50(8)	0.0039(4)	8.4(9)E-5
¹³⁹ La	3606.467(24)	0.0556(21)	0.00121(5)	¹⁴⁰ Ce	3619.46(5)	0.0095(8)	2.05(17)E-4
¹³⁹ La	3610.026(24)	0.0548(21)	0.00120(5)	¹⁴² Ce	3990.70(15)	0.0038(4)	8.2(9)E-5
¹³⁹ La	3665.631(24)	0.135(5)	0.00295(11)	¹⁴² Ce	4282.22(12)	0.0037(4)	8.0(9)E-5
¹³⁹ La	3679.641(24)	0.139(5)	0.00303(11)	¹⁴⁰ Ce	4291.08(4)	0.053(4)	0.00115(9)
¹³⁹ La	3683.89(3)	0.0322(21)	0.00070(5)	¹⁴² Ce	4336.46(8)	0.0251(20)	0.00054(4)
¹³⁹ La	3691.35(3)	0.0350(13)	0.00076(3)	¹⁴⁰ Ce	4766.10(5)	0.113(8)	0.00244(17)
¹³⁹ La	3718.321(24)	0.0384(15)	0.00084(3)	Praseod		At.Wt.=140.9076	$65(2), \sigma_{\gamma}^{z} = 11.5(3)$
¹³⁹ La	3727.700(24)	0.073(3)	0.00159(7)	¹⁴¹ Pr	32.276(3)	0.055(11)	0.00118(24)
¹³⁹ La	3735.30(4)	0.0170(6)	0.000371(13)	¹⁴¹ Pr	54.5530(20)	0.022(4)	0.00047(9)
¹³⁹ La ¹³⁹ La	3738.56(4)	0.0352(13)	0.00077(3)	¹⁴¹ Pr	55.957(3)	0.014(3)	0.00030(7)
139 La	3744.87(4) 3821.40(4)	0.0234(9)	0.000511(20) 0.000286(20)	¹⁴¹ Pr	60.0630(20)	0.134(14)	0.0029(3)
139 La	3900.979(24)	0.0131(9) 0.0531(20)	0.00116(4)	¹⁴¹ Pr	64.5050(20)	0.137(6)	0.00295(13)
139 La	3951.14(3)	0.0198(8)	0.000432(17)	¹⁴¹ Pr ¹⁴¹ Pr	68.6110(20) 84.998(3)	0.116(6)	0.00249(13)
139 La	3973.56(4)	0.0120(5)	0.000152(17)	141 Pr	86.37(7)	0.207(11) 0.085(7)	0.00445(24) 0.00183(15)
¹³⁹ La	4044.182(21)	0.0297(11)	0.000648(24)	¹⁴¹ Pr	104.570(3)	0.0397(13)	0.00185(13)
139 La	4060.007(20)	0.0297(11)	0.000648(24)	¹⁴¹ Pr	115.528(4)	0.0419(13)	0.00090(3)
139 La	4105.897(20)	0.0238(9)	0.000519(20)	¹⁴¹ Pr	124.5680(20)	0.0339(18)	0.00073(4)
¹³⁹ La	4125.31(3)	0.0183(7)	0.000399(15)	¹⁴¹ Pr	126.8460(20)	0.307(15)	0.0066(3)
¹³⁹ La	4389.505(14)	0.255(10)	0.00556(22)	¹⁴¹ Pr	140.9050(20)	0.479(10)	0.01030(22)
¹³⁹ La	4416.22(3)	0.247(9)	0.00539(20)	¹⁴¹ Pr	153.28(3)	0.0135(7)	0.000290(15)
¹³⁹ La	4502.647(13)	0.164(6)	0.00358(13)	¹⁴¹ Pr	159.1230(20)	0.0122(7)	0.000262(15)
¹³⁹ La	4558.891(13)	0.0488(18)	0.00106(4)	¹⁴¹ Pr	176.8630(20)	1.06(4)	0.0228(9)
¹³⁹ La	4842.695(7)	0.661(25)	0.0144(6)	¹⁴¹ Pr	182.786(4)	0.377(14)	0.0081(3)
139 La	4888.606(7)	0.150(6)	0.00327(13)	¹⁴¹ Pr	185.62(7)	0.017(4)	0.00037(9)
¹³⁹ La	4998.250(6)	0.0145(8)	0.000316(17)	¹⁴¹ Pr	187.85(5)	0.048(12)	0.0010(3)
¹³⁹ La ¹³⁹ La	5097.726(6)	0.68(3)	0.0148(7)	¹⁴¹ Pr	200.526(4)	0.0379(12)	0.00082(3)
139 La	5126.257(6) 5130.939(6)	0.114(4)	0.00249(9)	¹⁴¹ Pr	231.18(4)	0.0127(10)	0.000273(22)
139 La	5160.902(6)	0.0159(9) 0.089(5)	0.000347(20) 0.00194(11)	¹⁴¹ Pr ¹⁴¹ Pr	251.53(4)	0.0172(19)	0.00037(4)
La			` '	··· Pr ¹⁴¹ Pr	268.38(4)	0.0166(8)	0.000357(17)
¹³⁶ Ce	254.29(5)d	2.0(6)E-4	(1), $\sigma_{\gamma}^{z} = 0.635(18)$ 4.3E-6[1.0%]	Pr ¹⁴¹ Pr	294.87(3) 360.64(3)	0.0275(18) 0.0342(19)	0.00059(4) 0.00074(4)
138 Ce	255.65(6)	0.0082(7)	1.77(15)E-4	141 Pr	403.976(24)	0.0342(14)	0.000/4(4)
¹⁴⁰ Ce	475.04(4)	0.0082(7) 0.082(7)	0.00177(15)	141 Pr	403.976(24)	0.0322(14)	0.0003(3)
¹³⁶ Ce	513.7(4)	0.0021(5)	4.5(11)E-5	¹⁴¹ Pr	460.16(4)	0.057(3)	0.000202(22)
¹⁴⁰ Ce	661.99(5)	0.241(15)	0.0052(3)	¹⁴¹ Pr	508.78(4)	0.104(10)	0.00224(22)
¹⁴⁰ Ce	671.64(5)	0.0057(5)	1.23(11)E-4	¹⁴¹ Pr	528.219(23)	0.0579(19)	0.00125(4)
¹⁴² Ce	737.43(7)	0.026(3)	0.00056(7)	¹⁴¹ Pr	546.448(15)	0.148(4)	0.00318(9)
¹⁴² Ce	765.97(5)	0.0145(12)	0.00031(3)	¹⁴¹ Pr	557.75(3)	0.15(4)	0.0032(9)
¹⁴² Ce	789.40(8)	0.0050(6)	1.08(13)E-4	¹⁴¹ Pr	560.495(23)	0.150(7)	0.00323(15)
¹⁴² Ce	808.35(6)	0.0102(9)	2.21(19)E-4	¹⁴¹ Pr	570.111(14)	0.112(5)	0.00241(11)

$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -bar	ns k ₀	$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -bar	rns k ₀
¹⁴¹ Pr	573.28(4)	0.12(3)	0.0026(7)	¹⁴¹ Pr	4163.89(3)	0.035(3)	0.00075(7)
¹⁴¹ Pr	619.29(4)	0.152(4)	0.00327(9)	¹⁴¹ Pr	4177.00(3)	0.0387(25)	0.00083(5)
¹⁴¹ Pr	630.04(3)	0.16(6)	0.0034(13)	¹⁴¹ Pr	4252.14(3)	0.032(3)	0.00069(7)
¹⁴¹ Pr	633.34(4)	0.113(4)	0.00243(9)	¹⁴¹ Pr	4276.54(3)	0.044(4)	0.00095(9)
¹⁴¹ Pr	645.720(24)	0.311(7)	0.00669(15)	¹⁴¹ Pr	4325.50(3)	0.0124(17)	0.00027(4)
¹⁴¹ Pr	684.59(3)	0.098(22)	0.0021(5)	¹⁴¹ Pr	4347.62(3)	0.0166(18)	0.00036(4)
¹⁴¹ Pr	698.65(3)	0.22(6)	0.0047(13)	¹⁴¹ Pr	4372.53(3)	0.0269(22)	0.00058(5)
¹⁴¹ Pr	705.309(24)	0.0399(20)	0.00086(4)	¹⁴¹ Pr	4440.54(3)	0.0252(20)	0.00054(4)
¹⁴¹ Pr	718.014(24)	0.0435(21)	0.00094(5)	¹⁴¹ Pr	4449.26(3)	0.0228(19)	0.00049(4)
¹⁴¹ Pr	729.233(14)	0.0712(23)	0.00153(5)	¹⁴¹ Pr	4496.44(3)	0.098(6)	0.00211(13)
¹⁴¹ Pr	737.65(7)	0.0396(17)	0.00085(4)	¹⁴¹ Pr	4579.64(3)	0.0126(17)	0.00027(4)
¹⁴¹ Pr	746.973(14)	0.146(4)	0.00314(9)	¹⁴¹ Pr	4592.28(3)	0.0165(19)	0.00035(4)
¹⁴¹ Pr	772.566(24)	0.044(16)	0.0009(3)	¹⁴¹ Pr	4692.120(22)	0.291(10)	0.00626(22)
¹⁴¹ Pr	790.306(24)	0.051(3)	0.00110(7)	¹⁴¹ Pr	4722.82(4)	0.083(4)	0.00179(9)
¹⁴¹ Pr	801.29(4)	0.10(3)	0.0022(7)	¹⁴¹ Pr	4731.284(9)	0.0149(18)	0.00032(4)
¹⁴¹ Pr	804.91(7)	0.0455(25)	0.00098(5)	¹⁴¹ Pr	4801.22(3)	0.140(8)	0.00301(17)
¹⁴¹ Pr	822.65(7)	0.0179(15)	0.00038(3)	¹⁴¹ Pr	4864.91(4)	0.0112(16)	2.4(3)E-4
¹⁴¹ Pr	864.98(3)	0.14(3)	0.0030(7)	¹⁴¹ Pr	5020.41(7)	0.0135(17)	0.00029(4)
¹⁴¹ Pr	893.16(4)	0.053(3)	0.00114(7)	¹⁴¹ Pr	5052.750(24)	0.0329(21)	0.00071(5)
¹⁴¹ Pr	956.84(3)	0.091(7)	0.00196(15)	¹⁴¹ Pr	5096.081(15)	0.208(8)	0.00447(17)
¹⁴¹ Pr	974.47(4)	0.076(22)	0.0016(5)	¹⁴¹ Pr	5137.972(24)	0.098(4)	0.00211(9)
¹⁴¹ Pr	992.00(4)	0.138(10)	0.00297(22)	¹⁴¹ Pr	5140.72(3)	0.269(11)	0.00579(24)
¹⁴¹ Pr	1006.361(22)	0.153(8)	0.00329(17)	¹⁴¹ Pr	5206.03(4)	0.033(3)	0.00071(7)
¹⁴¹ Pr	1024.10(3)	0.048(3)	0.00103(7)	¹⁴¹ Pr	5666.170(6)	0.379(15)	0.0082(3)
¹⁴¹ Pr	1102.51(4)	0.056(3)	0.00120(7)	¹⁴¹ Pr	5698.445(6)	0.0117(14)	0.00025(3)
¹⁴¹ Pr	1150.946(21)	0.141(5)	0.00303(11)	¹⁴¹ Pr	5770.736(6)	0.0371(23)	0.00080(5)
¹⁴¹ Pr	1575.6(5)d	0.426(12)	0.0092[1.8%]	¹⁴¹ Pr	5825.286(5)	0.040(3)	0.00086(7)
¹⁴¹ Pr	3532.83(3)	0.026(3)	0.00056(7)	¹⁴¹ Pr	5843.026(5)	0.147(6)	0.00316(13)
¹⁴¹ Pr	3535.33(3)	0.026(3)	0.00056(7)	Ne	odymium (Z=6	0), <i>At.Wt.</i> =144	$6.24(3), \sigma_{\gamma}^{z} = 49.5(12)$
¹⁴¹ Pr	3549.71(3)	0.0288(24)	0.00062(5)	¹⁴⁸ Nd	165.0870(10)	0.032(8)	0.00067(17)
¹⁴¹ Pr	3556.85(3)	0.0127(17)	0.00027(4)	¹⁵⁰ Nd	189.0530(10)	0.020(7)	0.00042(15)
¹⁴¹ Pr	3563.23(3)	0.0110(23)	2.4(5)E-4	¹⁴³ Nd	201.86(7)	0.343(23)	0.0072(5)
¹⁴¹ Pr	3582.48(3)	0.0236(21)	0.00051(5)	¹⁴⁸ Nd	211.309(7)d	0.0370(16)	0.00078[18%]
¹⁴¹ Pr	3587.84(3)	0.0128(17)	0.00028(4)	¹⁴⁶ Nd	314.675(4)	0.0280(24)	0.00059(5)
¹⁴¹ Pr	3591.03(3)	0.0139(19)	0.00030(4)	¹⁴³ Nd	426.73(5)	0.574(15)	0.0121(3)
¹⁴¹ Pr	3599.14(3)	0.0234(24)	0.00050(5)	¹⁴⁵ Nd	453.89(5)	3.03(8)	0.0637(17)
¹⁴¹ Pr	3602.51(3)	0.054(3)	0.00116(7)	¹⁴³ Nd	476.82(5)	1.93(5)	0.0405(11)
¹⁴¹ Pr	3620.02(3)	0.024(3)	0.00052(7)	¹⁴² Nd	563.87(3)	0.74(3)	0.0155(6)
¹⁴¹ Pr	3629.19(3)	0.020(4)	0.00043(9)	¹⁴⁵ Nd	589.46(6)	0.97(4)	0.0204(8)
¹⁴¹ Pr	3645.82(3)	0.015(3)	0.00032(7)	¹⁴³ Nd	618.062(19)	13.4(3)	0.282(6)
¹⁴¹ Pr	3650.20(3)	0.061(3)	0.00131(7)	¹⁴³ Nd	696.499(10)	33.3(23)	0.70(5)
¹⁴¹ Pr	3651.73(3)	0.0127(8)	0.000273(17)	¹⁴⁵ Nd	735.85(9)	0.479(13)	0.0101(3)
¹⁴¹ Pr	3654.47(3)	0.060(4)	0.00129(9)	¹⁴² Nd	742.106(22)	3.8(4)	0.080(8)
¹⁴¹ Pr	3664.35(3)	0.0193(25)	0.00042(5)	¹⁴³ Nd	778.58(4)	0.791(20)	0.0166(4)
¹⁴¹ Pr	3678.37(3)	0.034(3)	0.00073(7)	¹⁴³ Nd	814.12(3)	4.98(12)	0.1046(25)
¹⁴¹ Pr	3690.27(3)	0.0107(19)	2.3(4)E-4	¹⁴³ Nd	834.9(5)	0.333(24)	0.0070(5)
¹⁴¹ Pr	3713.73(3)	0.047(3)	0.00101(7)	¹⁴³ Nd	863.89(8)	1.07(4)	0.0225(8)
¹⁴¹ Pr	3742.46(3)	0.0191(24)	0.00041(5)	¹⁴³ Nd	864.301(10)	4.27(11)	0.0897(23)
¹⁴¹ Pr ¹⁴¹ Pr	3762.26(3)	0.0177(24)	0.00038(5)	¹⁴³ Nd	980.60(4)	1.21(3)	0.0254(6)
¹⁴¹ Pr	3771.88(3)	0.023(3)	0.00049(7)	¹⁴³ Nd	1136.92(6)	0.669(18)	0.0141(4)
¹⁴¹ Pr	3776.46(3)	0.0117(8)	0.000252(17)	¹⁴³ Nd	1357.04(8)	0.337(9)	0.00708(19)
¹⁴¹ Pr	3790.37(3)	0.140(6)	0.00301(13)	¹⁴³ Nd	1376.19(7)	0.751(20)	0.0158(4)
141 Pr	3800.04(3)	0.0144(23)	0.00031(5)	¹⁴³ Nd	1413.16(4)	1.90(5)	0.0399(11)
Pr ¹⁴¹ Pr	3811.64(3)	0.0231(23)	0.00050(5)	¹⁴³ Nd	1418.07(10)	0.353(11)	0.00742(23)
Pr ¹⁴¹ Pr	3862.86(3) 3871.70(3)	0.0199(25)	0.00043(5)	¹⁴³ Nd	1481.95(8)	0.608(21)	0.0128(4)
141 Pr	38/1./0(3) 3892.63(3)	0.0164(23) 0.039(3)	0.00035(5)	¹⁴³ Nd	1515.84(9)	0.455(13)	0.0096(3)
141 Pr	3892.63(3)	0.039(3)	0.00084(7) 0.00025(4)	¹⁴³ Nd	1560.796(14)	0.404(11)	0.00849(23)
141 Pr	3902.30(3) 3911.07(3)	0.0117(20)	0.00023(4)	¹⁴³ Nd	1671.74(10)	0.97(8)	0.0204(17)
141 Pr	3911.07(3)	0.042(3)	0.00090(7)	¹⁴³ Nd	1895.74(16)	0.387(12)	0.00813(25)
141 Pr	3923.07(3) 3941.19(3)	0.023(3) 0.0153(25)	0.00049(7)	¹⁴⁴ Nd	4836.36(25)	0.32(3)	0.0067(6)
141 Pr	3941.19(3) 3947.09(3)	0.0153(23)	0.00033(5)	¹⁴² Nd	5381.19(7)	0.49(4)	0.0103(8)
141 Pr	4000.97(3)	0.0169(23)	0.00036(3)	143 Nd 143 Nd	6255.99(17)	1.50(12)	0.0315(25)
141 Pr	4012.20(3)	0.0187(24)	0.00040(3)	143 Nd 145 Nd	6502.22(17)	3.18(17)	0.067(4)
141 Pr	4058.05(3)	0.027(3)	0.00038(7)	¹⁴⁵ Nd	7110.98(8)	0.368(11)	0.00773(23)
141 P r	4038.03(3)	0.0133(16)	0.00029(3)	S			.36(3), σ_{γ}^{z} =5621(80)
¹⁴¹ Pr	4120.77(3)	0.0137(10)	0.00029(3)	154 Sm	104.320(5)d	1.43(4)	0.0288[55%]
¹⁴¹ Pr	4134.04(3)	0.0408(25)	0.00028(5)	152 Sm	127.297(3)	4.1(3)	0.083(6)
	(3)	00(20)		¹⁵⁰ Sm	167.77(5)	0.73(13)	0.015(3)

$^{\mathbf{A}}\mathbf{Z}$	E _γ keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	s k ₀
149 Sm	333.97(4)	4790(60)	96.5(12)	¹⁵¹ Eu	244.88(24)	26.3(22)	0.52(4)
¹⁴⁹ Sm	403.02(3)	85.2(16)	1.72(3)	¹⁵¹ Eu	246.5(3)	15(3)	0.30(6)
¹⁴⁹ Sm	439.40(4)	2860(150)	58(3)	¹⁵¹ Eu	260.66(9)	15.9(18)	0.32(4)
¹⁴⁹ Sm	485.95(7)	72(3)	1.45(6)	¹⁵¹ Eu	273.65(8)	17.3(12)	0.345(24)
¹⁴⁹ Sm	505.51(3)	528(80)	10.6(16)	¹⁵³ Eu	281.78(9)	20.4(8)	0.407(16)
¹⁴⁷ Sm	550.10(9)	9.6(6)	0.193(12)	¹⁵¹ Eu	285.10(9)	23.2(18)	0.46(4)
¹⁴⁹ Sm	584.27(3)	480(70)	9.7(14)	¹⁵³ Eu	299.83(8)	24.0(6)	0.479(12)
¹⁴⁹ Sm	675.83(3)	172(7)	3.47(14)), $\sigma_{\rm y}^{\rm z} = 48770(150)$
149 Sm	712.20(3)	267(4)	5.38(8)	157 Gd	79.5100(10)	4010(100)	
¹⁴⁹ Sm	731.20(4)	54(4)	1.09(8)	154 Gd	` '		77.3(19)
149 Sm	737.44(4)	597(8)	12.03(16)	155 Gd	86.5470(10)	0.57(9)	0.0110(17)
¹⁴⁹ Sm	748.13(4)	67.9(20)	1.37(4)		88.9670(10)	1380(40)	26.6(8)
154 Sm	819.880(5)	0.153(10)	0.00308(20)	¹⁵² Gd	109.7600(10)	0.089(4)	0.00172(8)
149 Sm	831.78(5)	62.7(17)	1.26(3)	¹⁵⁷ Gd	181.931(4)	7200(300)	139(6)
149 Sm	859.86(4)			155 Gd	199.2130(10)	2020(60)	38.9(12)
149 Sm	` /	88(4)	1.77(8)	¹⁵⁷ Gd	255.654(4)	350(19)	6.7(4)
149 Sm	869.29(3)	119(6)	2.40(12)	¹⁵⁷ Gd	277.544(7)	493(12)	9.50(23)
	1165.76(5)	61(3)	1.23(6)	155 Gd	296.526(3)	187(5)	3.60(10)
¹⁴⁹ Sm	1170.59(4)	230(10)	4.64(20)	¹⁶⁰ Gd	360.940(20)d	0.199(5)	0.00384[91%]
¹⁴⁹ Sm	1177.3(4)	57(3)	1.15(6)	¹⁵⁷ Gd	528.024(8)	97(11)	1.87(21)
¹⁴⁹ Sm	1193.84(4)	106(3)	2.14(6)	¹⁵⁷ Gd	539.608(5)	144(5)	2.78(10)
¹⁴⁹ Sm	1247.04(8)	51(3)	1.03(6)	¹⁵⁷ Gd	595.728(7)	75(3)	1.45(6)
¹⁴⁹ Sm	1262.07(10)	62(5)	1.25(10)	¹⁵⁷ Gd	606.400(8)	271(8)	5.22(15)
149 Sm	1321.95(7)	76(9)	1.53(18)	¹⁵⁵ Gd	626.275(8)	73(22)	1.4(4)
¹⁴⁹ Sm	1350.39(5)	94(12)	1.89(24)	¹⁵⁷ Gd	637.474(12)	114(4)	2.20(8)
Eur	opium (Z=63),	At.Wt.=151.964(1), σ _γ ^z =4560(140)	¹⁵⁷ Gd	675.43(3)	76(5)	1.46(10)
¹⁵¹ Eu	19.700(10)	59(30)	1.2(6)	¹⁵⁷ Gd	688.892(11)	122(7)	2.35(13)
¹⁵¹ Eu	48.31(17)	181(70)	3.6(14)	¹⁵⁷ Gd	743.066(21)	177(5)	3.41(10)
¹⁵¹ Eu	52.39(9)	55(3)	1.10(6)	¹⁵⁷ Gd	750.109(10)	118(11)	2.27(21)
¹⁵¹ Eu	65.1(3)	16(8)	0.32(16)	¹⁵⁷ Gd	768.37(3)	221(11)	4.26(21)
¹⁵³ Eu	68.23(9)	69(20)	1.4(4)	¹⁵⁷ Gd	780.174(10)	1010(22)	19.5(4)
¹⁵³ Eu	71.24(12)	45(14)	0.9(3)	¹⁵⁷ Gd	782.28(3)	134(5)	2.58(10)
¹⁵¹ Eu	73.21(9)	106(22)	2.1(4)	¹⁵⁷ Gd	814.602(10)	89(8)	1.72(15)
153 Eu	74.86(12)	43(12)	0.86(24)	¹⁵⁷ Gd	820.107(24)	118(7)	2.27(13)
¹⁵¹ Eu	77.23(4)	187(13)	3.7(3)	¹⁵⁷ Gd	824.127(24)	133(8)	2.56(15)
151 Eu	87.13(11)	29(3)	0.58(6)	155 Gd	841.218(12)	80(24)	1.5(5)
151 Eu	88.31(12)	42(5)	0.84(10)	157 Gd	852.885(25)	194(5)	3.74(10)
151 Eu	89.847(6)	1430(30)	28.5(6)	157 Gd	852.947(9)	202(30)	3.9(6)
151 Eu	89.847(6)d	1.300(3)	0.02592[19%]	157 Gd	867.682(11)	83(4)	1.60(8)
151 Eu	91.20(10)			157 Gd	870.690(25)		
153 Eu	100.86(23)	20(10)	0.40(20)	157 Gd		127(19)	2.4(4)
151 Eu	100.86(23)	24(5)	0.48(10)	157 Gd	870.815(25)	434(11)	8.36(21)
153 Eu		48(5)	0.96(10)	157 Gd	870.877(9)	216(40)	4.2(8)
	106.57(14)	42(6)	0.84(12)	157 Gd	874.93(3)	151(5)	2.91(10)
¹⁵¹ Eu ¹⁵¹ Eu	111.0(3)	22(6)	0.44(12)	157 G J	879.29(3)	139(5)	2.68(10)
151 Eu	113.1(3)	15(5)	0.30(10)	¹⁵⁷ Gd	897.502(10)	1200(50)	23.1(10)
¹⁵¹ Eu	117.54(10)	14.7(22)	0.29(4)	157 Gd	897.611(10)	1090(50)	21.0(10)
¹⁵¹ Eu	121.71(11)	17.7(25)	0.35(5)	¹⁵⁷ Gd	915.017(10)	394(10)	7.59(19)
¹⁵¹ Eu	124.01(16)	25(3)	0.50(6)	¹⁵⁷ Gd	917.378(25)	262(16)	5.0(3)
153 Eu	125.19(16)	25(3)	0.50(6)	¹⁵⁷ Gd	917.54(3)	268(7)	5.16(13)
¹⁵³ Eu	129.06(12)	14.7(16)	0.29(3)	¹⁵⁷ Gd	922.466(20)	98(8)	1.89(15)
¹⁵¹ Eu	132.71(10)	20.7(13)	0.41(3)	¹⁵⁷ Gd	942.404(11)	120(11)	2.31(21)
¹⁵¹ Eu	135.42(9)	27.8(14)	0.55(3)	¹⁵⁷ Gd	944.174(10)	3090(70)	59.5(13)
¹⁵¹ Eu	140.19(9)	21(4)	0.42(8)	¹⁵⁷ Gd	953.067(21)	73(6)	1.41(12)
¹⁵¹ Eu	143.54(8)	43(3)	0.86(6)	¹⁵⁷ Gd	954.296(10)	89(15)	1.7(3)
¹⁵³ Eu	154.14(9)	22(3)	0.44(6)	155 Gd	959.774(12)	147(50)	2.8(10)
¹⁵¹ Eu	167.01(13)	18.9(19)	0.38(4)	¹⁵⁷ Gd	960.082(11)	216(17)	4.2(3)
¹⁵¹ Eu	169.28(9)	54.8(22)	1.09(4)	¹⁵⁵ Gd	960.553(14)	84(40)	1.6(8)
¹⁵¹ Eu	171.95(9)	40(3)	0.80(6)	¹⁵⁷ Gd	962.104(10)	2050(130)	39.5(25)
¹⁵³ Eu	179.83(13)	20(3)	0.40(6)	¹⁵⁵ Gd	969.877(18)	172(50)	3.3(10)
¹⁵¹ Eu	182.38(11)	23(3)	0.46(6)	¹⁵⁷ Gd	977.121(10)	1440(21)	27.8(4)
¹⁵³ Eu	187.37(8)	31.2(14)	0.62(3)	¹⁵⁵ Gd	987.908(21)	144(40)	2.8(8)
¹⁵¹ Eu	190.96(11)	19.7(14)	0.39(3)	¹⁵⁷ Gd	998.398(9)	559(40)	10.8(8)
¹⁵¹ Eu	193.11(13)	28.3(20)	0.56(4)	¹⁵⁷ Gd	1000.859(10)	93(4)	1.79(8)
¹⁵¹ Eu	199.12(10)	25.5(15)	0.51(3)	¹⁵⁷ Gd	1004.058(9)	404(22)	7.8(4)
¹⁵¹ Eu	203.63(10)	18.4(14)	0.37(3)	¹⁵⁷ Gd	1007.340(20)	105(4)	2.02(8)
¹⁵¹ Eu	206.53(8)	58.7(20)	1.17(4)	¹⁵⁷ Gd	1010.19(3)	232(7)	4.47(13)
¹⁵¹ Eu	208.51(18)	16.1(21)	0.32(4)	¹⁵⁷ Gd	1034.45(4)	142(5)	2.74(10)
151 Eu	221.30(8)	73(3)	1.46(6)	155 Gd	1040.430(12)	209(60)	4.0(12)
151 Eu	233.22(14)	15.9(23)	0.32(5)	155 Gd	1065.136(12)	410(120)	7.9(23)
	()	()	(-)	Su	(12)	(1-0)	()

$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	$\mathbf{s} = \mathbf{k}_0$	^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
155 Gd	1067.185(12)	160(50)	3.1(10)	¹⁵⁷ Gd	4058.48(18)	74(5)	1.43(10)
¹⁵⁵ Gd	1079.25(3)	87(30)	1.7(6)	¹⁵⁷ Gd	4310.0(3)	76(5)	1.46(10)
¹⁵⁷ Gd	1097.002(10)	662(15)	12.8(3)	157 Gd	4925.25(13)	235(8)	4.53(15)
157 Gd	1107.612(9)	1830(40)	35.3(8)	157 Gd	5058.37(17)	105(5)	2.02(10)
¹⁵⁷ Gd	1116.624(12)	419(9)	8.07(17)	157 Gd	5179.16(16)	110(6)	2.12(12)
¹⁵⁷ Gd	1119.163(10)	1180(30)	22.7(6)	¹⁵⁷ Gd	5239.83(17)	83(10)	1.60(19)
¹⁵⁷ Gd	1141.458(10)	530(30)	10.2(6)	157 Gd	5250.2(4)	103(17)	2.0(3)
157 Gd	1145.225(9)	82(9)	1.58(17)	¹⁵⁷ Gd	5403.38(20)	120(5)	2.31(10)
155 Gd	1154.102(12)	290(170)	6(3)	157 Gd	5542.93(12)	112(5)	2.16(10)
155 Gd	1158.986(12)	490(150)	9(3)	157 Gd	5582.26(15)	155(6)	2.99(12)
155 Gd	1168.874(13)	140(40)	2.7(8)	¹⁵⁷ Gd	5592.95(21)	91(4)	1.75(8)
155 Gd	1174.058(13)	110(30)	2.1(6)	157 Gd	5609.80(20)	75(4)	1.45(8)
157 Gd	1180.328(9)	223(21)	4.3(4)	157 Gd	5661.19(16)	124(5)	2.39(10)
155 Gd	1180.36(4)	189(60)	3.6(12)	157 Gd	5677.28(5)	138(15)	2.7(3)
157 Gd	1183.968(10)	958(60)	18.5(12)	157 Gd	5784.15(5)	105(5)	2.02(10)
157 Gd	1185.988(9)	1600(90)	30.8(17)	157 Gd	5903.39(6)	457(14)	8.8(3)
155 Gd	1187.120(21)	340(100)	6.6(19)	157 Gd	6419.82(5)	131(6)	2.52(12)
157 Gd			* *	157 Gd	6671.73(5)	83(4)	
157 Gd	1187.122(9) 1219.947(9)	1420(90)	27.4(17)	157 Gd		· /	1.60(8)
155 Gd		242(12)	4.66(23)		6750.11(5)	965(30)	18.6(6)
155 Gd	1222.349(12)	139(40)	2.7(8)	150			$34(2), \sigma_{\gamma}^{z} = 23.3(4)$
157 Gd	1230.789(23)	390(120)	7.5(23)	¹⁵⁹ Tb	15.413(6)	0.071(12)	0.00135(23)
	1237.625(9)	208(9)	4.01(17)	159 Tb	29.0170(20)	0.21(4)	0.0040(8)
155 Gd	1242.481(17)	204(60)	3.9(12)	¹⁵⁹ Tb	32.652(3)	0.19(3)	0.0036(6)
155 Gd	1250.637(21)	113(30)	2.2(6)	¹⁵⁹ Tb	33.1590(10)	0.22(4)	0.0042(8)
157 Gd	1255.980(10)	109(4)	2.10(8)	¹⁵⁹ Tb	41.8900(10)	0.64(10)	0.0122(19)
¹⁵⁷ Gd	1259.837(9)	417(10)	8.04(19)	¹⁵⁹ Tb	50.8690(10)	0.60(15)	0.011(3)
157 Gd	1263.478(10)	641(15)	12.4(3)	¹⁵⁹ Tb	54.1290(10)	0.60(15)	0.011(3)
155 Gd	1277.508(18)	180(50)	3.5(10)	¹⁵⁹ Tb	59.6430(10)	0.48(6)	0.0092(11)
¹⁵⁷ Gd	1278.932(9)	228(12)	4.39(23)	¹⁵⁹ Tb	62.374(6)	0.052(15)	0.0010(3)
¹⁵⁷ Gd	1301.093(9)	213(6)	4.10(12)	159 Tb	63.6860(10)	1.46(16)	0.028(3)
¹⁵⁷ Gd	1323.387(10)	641(16)	12.4(3)	¹⁵⁹ Tb	64.1100(20)	1.2(3)	0.023(6)
¹⁵⁷ Gd	1327.154(9)	294(9)	5.67(17)	¹⁵⁹ Tb	64.8240(20)	0.13(4)	0.0025(8)
¹⁵⁵ Gd	1366.473(18)	97(30)	1.9(6)	¹⁵⁹ Tb	68.413(3)	0.035(14)	0.0007(3)
¹⁵⁷ Gd	1372.805(10)	195(15)	3.8(3)	¹⁵⁹ Tb	75.0500(10)	1.78(18)	0.034(3)
¹⁵⁷ Gd	1377.86(8)	87(5)	1.68(10)	¹⁵⁹ Tb	75.7880(10)	0.14(4)	0.0027(8)
¹⁵⁷ Gd	1405.877(10)	101(4)	1.95(8)	¹⁵⁹ Tb	78.137(7)	0.034(18)	0.0006(3)
¹⁵⁷ Gd	1437.910(10)	276(10)	5.32(19)	¹⁵⁹ Tb	78.8670(10)	0.19(4)	0.0036(8)
¹⁵⁵ Gd	1449.849(21)	106(30)	2.0(6)	¹⁵⁹ Tb	79.099(6)	0.43(6)	0.0082(11)
¹⁵⁷ Gd	1517.419(10)	219(18)	4.2(4)	¹⁵⁹ Tb	83.8940(20)	0.050(10)	0.00095(19)
¹⁵⁷ Gd	1530.279(12)	107(8)	2.06(15)	¹⁵⁹ Tb	87.7150(10)	0.160(19)	0.0031(4)
¹⁵⁷ Gd	1587.806(10)	105(4)	2.02(8)	¹⁵⁹ Tb	89.4080(20)	0.21(3)	0.0040(6)
¹⁵⁷ Gd	1663.561(11)	105(8)	2.02(15)	¹⁵⁹ Tb	92.7590(10)	0.052(16)	0.0010(3)
¹⁵⁵ Gd	1682.081(19)	108(30)	2.1(6)	159 Tb	93.3060(20)	0.218(25)	0.0042(5)
¹⁵⁷ Gd	1692.30(6)	88(13)	1.70(25)	159 Tb	94.0440(20)	0.052(14)	0.0010(3)
¹⁵⁷ Gd	1774.37(12)	122(40)	2.4(8)	¹⁵⁹ Tb	94.829(3)	0.071(11)	0.00135(21)
¹⁵⁷ Gd	1781.711(10)	91(22)	1.8(4)	159 Tb	97.194(10)	0.024(8)	0.00046(15)
¹⁵⁷ Gd	1815.045(11)	92(20)	1.8(4)	159 Tb	97.503(3)	0.50(6)	0.0095(11)
¹⁵⁷ Gd	1856.41(3)	147(50)	2.8(10)	159 Tb	97.967(3)	0.077(19)	0.0015(4)
¹⁵⁷ Gd	1944.269(20)	181(24)	3.5(5)	159 Tb	101.0660(20)	0.023(5)	0.00044(10)
157 Gd	1956.29(12)	175(21)	3.4(4)	159 Tb	104.0670(20)	0.15(3)	0.0029(6)
¹⁵⁵ Gd	1965.970(25)	80(25)	1.5(5)	159 Tb	104.0076(20)	0.026(5)	0.0025(0)
¹⁵⁷ Gd	2023.778(20)	114(30)	2.2(6)	159 Tb	112.3730(20)	0.089(10)	0.00170(19)
157 Gd	2073.593(11)	84(7)	1.62(13)	159 Tb	117.950(4)	0.028(5)	0.00170(19)
157 Gd	2180.474(22)	159(50)	3.1(10)	159 Tb	131.058(5)	0.028(3)	0.00033(10)
157 Gd	2196.56(16)	120(12)	2.31(23)	159 Tb	\ /	0.004(8) 0.39(4)	0.00122(13) 0.0074(8)
157 Gd	2203.51(11)	151(10)	2.91(19)	159 Tb	135.5970(20) 138.5840(10)	` '	` '
157 Gd	2259.983(23)	92(6)	1.77(12)	159 Tb	` /	0.052(6)	0.00099(11)
157 Gd	2314.82(12)	142(6)	2.74(12)	159 Tb	140.784(6)	0.107(12)	0.00204(23)
157 Gd	2459.07(18)	75(6)	1.45(12)	159 Tb	150.603(3)	0.144(15)	0.0027(3)
157 Gd	2515.41(20)	88(6)	1.70(12)		153.6870(20)	0.44(5)	0.0084(10)
157 Gd	2577.32(15)	100(6)	1.93(12)	159 Tb	158.9430(20)	0.111(12)	0.00212(23)
157 Gd	2617.93(16)	100(6)	1.93(12)	159 Tb	163.2420(20)	0.105(11)	0.00200(21)
157 Gd	2678.60(16)	101(20)	1.93(12)	159 Tb	176.833(3)	0.070(9)	0.00133(17)
157 Gd	2678.60(16) 2702.34(14)		2.24(10)	¹⁵⁹ Tb	178.674(5)	0.049(8)	0.00093(15)
157 Gd	2702.34(14) 2799.39(17)	116(5)		159 Tb	178.881(3)	0.42(8)	0.0080(15)
157 Gd	2799.39(17) 3520.6(3)	87(7)	1.68(13)	159 Tb	179.832(7)	0.023(4)	0.00044(8)
157 Gd	` '	83(9)	1.60(17)	159 Tb	181.864(5)	0.072(13)	0.00137(25)
157 Gd	3700.3(4)	99(17)	1.9(3)	¹⁵⁹ Tb	184.456(5)	0.11(3)	0.0021(6)
Ga	3989.3(4)	103(22)	2.0(4)	¹⁵⁹ Tb	185.187(7)	0.094(17)	0.0018(3)

$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	E ₇ keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$
159 Tb	193.431(4)	0.37(4)	0.0071(8)	¹⁵⁹ Tb	414.870(6)	0.132(24)	0.0025(5)
¹⁵⁹ Tb	209.738(6)	0.055(6)	0.00105(11)	¹⁵⁹ Tb	420.630(8)	0.092(12)	0.00175(23)
¹⁵⁹ Tb	215.026(6)	0.036(5)	0.00069(10)	¹⁵⁹ Tb	427.158(9)	0.147(17)	0.0028(3)
¹⁵⁹ Tb	221.029(6)	0.022(4)	0.00042(8)	¹⁵⁹ Tb	430.905(14)	0.023(4)	0.00044(8)
¹⁵⁹ Tb	228.252(11)	0.032(4)	0.00061(8)	¹⁵⁹ Tb	432.079(13)	0.021(8)	0.00040(15)
¹⁵⁹ Tb	234.724(7)	0.026(5)	0.00050(10)	¹⁵⁹ Tb	437.445(9)	0.077(16)	0.0015(3)
¹⁵⁹ Tb	236.094(6)	0.032(6)	0.00061(11)	¹⁵⁹ Tb	442.212(14)	0.077(12)	0.00147(23)
¹⁵⁹ Tb	238.653(7)	0.023(5)	0.00044(10)	¹⁵⁹ Tb	447.390(9)	0.10(3)	0.0019(6)
¹⁵⁹ Tb	241.809(5)	0.035(8)	0.00067(15)	¹⁵⁹ Tb	448.105(12)	0.054(10)	0.00103(19)
¹⁵⁹ Tb	242.548(5)	0.018(4)	0.00034(8)	159 Tb	451.617(10)	0.21(3)	0.0040(6)
159 Tb	242.973(12)	0.219(24)	0.0042(5)	¹⁵⁹ Tb	453.266(10)	0.033(12)	0.00063(23)
¹⁵⁹ Tb	243.277(6)	0.16(3)	0.0031(6)	159 Tb	455.783(10)	0.029(12)	0.00055(23)
159 Tb	248.062(5)	0.30(3)	0.0057(6)	¹⁵⁹ Tb	459.519(10)	0.085(12)	0.00162(23)
159 Tb	255.038(6)	0.112(16)	0.0021(3)	159 Tb	464.264(17)	0.192(21)	0.0037(4)
159 Tb	255.927(6)	0.052(9)	0.00099(17)	¹⁵⁹ Tb	492.460(13)	0.024(6)	0.00046(11)
¹⁵⁹ Tb ¹⁵⁹ Tb	257.541(4)	0.045(7)	0.00086(13)	159 Tb	496.916(17)	0.041(9)	0.00078(17)
159 Tb	258.565(9)	0.033(6)	0.00063(11)	¹⁵⁹ Tb ¹⁵⁹ Tb	519.790(14)	0.059(13)	0.00113(25)
159 Tb	262.964(11)	0.022(6)	0.00042(11)	159 Tb	521.308(21)	0.046(12)	0.00088(23)
159 Tb	264.989(5)	0.031(7)	0.00059(13)	159 Tb	525.194(17)	0.080(17)	0.0015(3)
159 Tb	270.762(7)	0.102(12)	0.00194(23)	159 Tb	525.933(17)	0.22(3)	0.0042(6)
159 Tb	274.385(11) 275.707(5)	0.021(4) 0.124(14)	0.00040(8) 0.0024(3)	159 Tb	529.054(10) 530.981(24)	0.022(8) 0.037(10)	0.00042(15)
159 Tb	273.707(3) 277.818(6)	0.124(14)	0.0024(3)	159 Tb	532.689(21)	0.037(10)	0.00071(19) 0.0025(3)
159 Tb	277.818(0)	0.093(11)	0.00177(21)	159 Tb	532.733(9)	0.129(10)	0.0029(6)
159 Tb	278.803(7)	0.023(0)	0.00158(21)	159 Tb	542.840(21)	0.034(8)	0.0025(0)
159 Tb	282.698(5)	0.049(8)	0.00138(21)	159 Tb	544.922(10)	0.064(10)	0.00122(19)
159 Tb	283.289(7)	0.052(9)	0.00099(17)	159 Tb	545.661(10)	0.056(11)	0.00122(1)
¹⁵⁹ Tb	284.148(9)	0.087(11)	0.00166(21)	¹⁵⁹ Tb	554.509(6)	0.021(7)	0.00040(13)
¹⁵⁹ Tb	287.738(9)	0.029(5)	0.00055(10)	¹⁵⁹ Tb	585.575(17)	0.054(8)	0.00103(15)
¹⁵⁹ Tb	288.212(5)	0.126(14)	0.0024(3)	¹⁵⁹ Tb	598.656(14)	0.020(6)	0.00038(11)
¹⁵⁹ Tb	290.625(10)	0.052(7)	0.00099(13)	¹⁵⁹ Tb	600.206(24)	0.155(18)	0.0030(3)
¹⁵⁹ Tb	295.757(9)	0.062(8)	0.00118(15)	¹⁵⁹ Tb	611.513(24)	0.034(9)	0.00065(17)
¹⁵⁹ Tb	302.735(13)	0.086(10)	0.00164(19)	¹⁵⁹ Tb	625.994(21)	0.027(7)	0.00051(13)
¹⁵⁹ Tb	303.114(10)	0.042(8)	0.00080(15)	¹⁵⁹ Tb	634.737(24)	0.037(7)	0.00071(13)
159 Tb	308.102(9)	0.056(8)	0.00107(15)	159 Tb	5184.2(3)	0.023(9)	0.00044(17)
¹⁵⁹ Tb	310.470(5)	0.177(21)	0.0034(4)	159 Tb	5199.9(3)	0.033(8)	0.00063(15)
¹⁵⁹ Tb ¹⁵⁹ Tb	310.804(6)	0.019(5)	0.00036(10)	¹⁵⁹ Tb ¹⁵⁹ Tb	5204.5(3)	0.040(9)	0.00076(17)
159 Tb	315.857(5) 316.564(9)	0.118(14)	0.0023(3) 0.00051(10)	159 Tb	5225.0(3) 5228.45(25)	0.040(13)	0.00076(25)
159 Tb	317.597(5)	0.027(5) 0.121(15)	0.00031(10)	159 Tb	5238.1(3)	0.052(12) 0.026(10)	0.00099(23) 0.00050(19)
159 Tb	317.397(3)	0.121(15)	0.0025(3)	159 Tb	5245.6(3)	0.020(10)	0.00030(19)
159 Tb	323.809(6)	0.022(4)	0.0023(8)	159 Tb	5250.2(3)	0.064(12)	0.00110(23)
159 Tb	339.487(5)	0.35(4)	0.0067(8)	¹⁵⁹ Tb	5259.2(3)	0.022(5)	0.00042(10)
¹⁵⁹ Tb	339.821(6)	0.040(9)	0.00076(17)	¹⁵⁹ Tb	5288.99(25)	0.027(7)	0.00051(13)
¹⁵⁹ Tb	340.780(6)	0.069(9)	0.00132(17)	¹⁵⁹ Tb	5306.9(3)	0.021(6)	0.00040(11)
¹⁵⁹ Tb	341.731(6)	0.089(15)	0.0017(3)	¹⁵⁹ Tb	5373.1(4)	0.024(5)	0.00046(10)
¹⁵⁹ Tb	345.581(8)	0.041(8)	0.00078(15)	¹⁵⁹ Tb	5461.09(25)	0.029(7)	0.00055(13)
¹⁵⁹ Tb	347.032(6)	0.020(4)	0.00038(8)	¹⁵⁹ Tb	5516.2(5)	0.019(7)	0.00036(13)
¹⁵⁹ Tb	348.924(13)	0.053(10)	0.00101(19)	¹⁵⁹ Tb	5524.2(3)	0.051(13)	0.00097(25)
159 Tb	351.095(9)	0.176(22)	0.0034(4)	159 Tb	5551.8(3)	0.029(5)	0.00055(10)
¹⁵⁹ Tb	352.027(10)	0.020(4)	0.00038(8)	159 Tb	5607.07(7)	0.042(9)	0.00080(17)
¹⁵⁹ Tb ¹⁵⁹ Tb	352.514(6)	0.160(21)	0.0031(4)	¹⁵⁹ Tb ¹⁵⁹ Tb	5611.6(3)	0.025(5)	0.00048(10)
159 Tb	356.224(10) 357.748(5)	0.117(17)	0.0022(3)	159 Tb	5661.8(5) 5682.5(3)	0.037(7)	0.00071(13)
159 Tb	357.748(5) 359.960(10)	0.26(3) 0.048(9)	0.0050(6) 0.00092(17)	159 Tb	5696.8(3)	0.027(7) 0.034(6)	0.00051(13) 0.00065(11)
159 Tb	361.680(14)	0.048(9)	0.00181(23)	159 Tb	5710.36(7)	0.034(0)	0.00055(11)
159 Tb	363.821(6)	0.120(15)	0.00131(23)	159 Tb	5754.34(21)	0.025(3)	0.00059(15)
¹⁵⁹ Tb	370.320(7)	0.057(7)	0.00109(13)	¹⁵⁹ Tb	5776.37(7)	0.120(17)	0.0023(3)
¹⁵⁹ Tb	372.980(6)	0.070(8)	0.00133(15)	¹⁵⁹ Tb	5782.28(7)	0.041(9)	0.00078(17)
¹⁵⁹ Tb	373.055(12)	0.074(13)	0.00141(25)	¹⁵⁹ Tb	5842.29(7)	0.054(10)	0.00103(19)
¹⁵⁹ Tb	374.678(6)	0.099(11)	0.00189(21)	¹⁵⁹ Tb	5860.03(23)	0.036(8)	0.00069(15)
¹⁵⁹ Tb	376.515(9)	0.039(9)	0.00074(17)	¹⁵⁹ Tb	5890.70(7)	0.137(19)	0.0026(4)
¹⁵⁹ Tb	378.740(8)	0.024(8)	0.00046(15)	¹⁵⁹ Tb	5896.46(7)	0.023(7)	0.00044(13)
159 Tb	398.252(14)	0.024(5)	0.00046(10)	159 Tb	5953.58(7)	0.103(13)	0.00196(25)
159 Tb	399.512(9)	0.074(11)	0.00141(21)	¹⁵⁹ Tb	5993.73(7)	0.114(15)	0.0022(3)
¹⁵⁹ Tb ¹⁵⁹ Tb	403.800(13)	0.028(6)	0.00053(11)	¹⁵⁹ Tb ¹⁵⁹ Tb	6138.03(7)	0.110(15)	0.0021(3)
159 Tb	406.214(12) 413.492(9)	0.027(6) 0.066(12)	0.00051(11) 0.00126(23)	159 Tb	6218.56(7) 6235.53(7)	0.190(22) 0.020(6)	0.0036(4) 0.00038(11)
10	713.474(7)	0.000(12)	0.00120(23)	10	0233.33(1)	0.020(0)	0.00030(11)

$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	\mathbf{k}_0	$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$
¹⁵⁹ Tb	6241.78(7)	0.072(10)	0.00137(19)	¹⁶⁴ Dy	499.395(6)	13.0(10)	0.242(19)
¹⁵⁹ Tb	6269.43(7)	0.029(6)	0.00055(11)	¹⁶⁴ Dy	500.37(8)	10.3(5)	0.192(9)
¹⁵⁹ Tb	6311.32(7)	0.028(6)	0.00053(11)	¹⁶⁴ Dy	500.587(6)	10(3)	0.19(6)
D	ysprosium (Z=6	66), <i>At.Wt.</i> =162.5	$50(3), \sigma_{\gamma}^{z} = 944(21)$	¹⁶⁴ Dy	506.47(4)	6.4(4)	0.119(8)
¹⁶⁴ Dy	50.4310(20)	33.9(15)	0.63(3)	¹⁶⁴ Dy	508.96(4)	9.5(6)	0.177(11)
¹⁶⁴ Dy	72.765(3)	7.1(3)	0.132(6)	¹⁶⁴ Dy	519.05(7)	1.5(3)	0.028(6)
¹⁶³ Dy	73.392(8)	1.70(24)	0.032(5)	¹⁶⁴ Dy	524.41(6)	4.7(5)	0.088(9)
¹⁶⁴ Dy	77.520(3)	2.7(5)	0.050(9)	¹⁶⁴ Dy	529.46(7)	3.0(10)	0.056(19)
¹⁶¹ Dy	80.64(7)	16.5(5)	0.308(9)	¹⁶⁴ Dy	529.54(8)	2.5(4)	0.047(8)
¹⁶⁴ Dy	83.395(3)	3.51(20)	0.065(4)	¹⁶⁴ Dy	538.609(8)	69.2(19)	1.29(4)
¹⁶⁴ Dy	108.159(3)d	13.6(5)	0.254[97%]	¹⁶⁴ Dy	546.54(4)	3.7(4)	0.069(8)
¹⁶⁴ Dy	116.768(4)	3.28(17)	0.061(3)	¹⁶⁴ Dy ¹⁶⁴ Dy	556.932(7)	2.2(4)	0.041(8)
¹⁶⁴ Dy	139.102(4)	6.16(19)	0.115(4)	164 Dy	565.567(4)	5.1(5)	0.095(9)
¹⁶⁴ Dy	156.245(5)	1.82(10)	0.0339(19)	164 Dy	569.53(7)	8.3(25)	0.15(5)
¹⁶³ Dy	168.838(5)	4.7(6)	0.088(11)	161 Dy	569.79(6) 572.7(4)	9.7(5) 2.2(9)	0.181(9) 0.041(17)
¹⁶⁴ Dy	178.382(5)	1.8(3)	0.034(6)	161 Dy	572.7(4)	1.65(12)	0.041(17)
¹⁶⁴ Dy ¹⁶¹ Dy	184.257(4)	146(15)	2.7(3)	164 Dy	583.982(5)	24(7)	0.45(13)
¹⁶³ Dy	185.19(9)	39.1(12)	0.729(22)	164 Dy	596.71(4)	5.1(3)	0.095(6)
¹⁶² Dy	215.082(21)	3.07(17)	0.057(3)	164 Dy	613.13(9)	2.5(3)	0.047(6)
¹⁶¹ Dy	250.8900(20) 260.11(7)	5.2(6)	0.097(11)	¹⁶¹ Dy	647.50(12)	3.11(21)	0.058(4)
164 Dy	271.727(9)	8.3(3) 2.90(17)	0.155(6) 0.054(3)	¹⁶³ Dy	673.71(4)	1.7(4)	0.032(8)
163 Dy	277.500(16)	1.51(16)	0.028(3)	¹⁶³ Dy	688.36(4)	4.7(4)	0.088(8)
161 Dy	282.89(7)	7.8(3)	0.145(6)	¹⁶¹ Dy	697.16(9)	3.3(3)	0.062(6)
163 Dy	294.575(13)	2.78(19)	0.052(4)	¹⁶¹ Dy	711.41(12)	2.28(22)	0.043(4)
161 Dy	311.39(15)	2.1(4)	0.039(8)	163 Dy	754.75(4)	6.4(4)	0.119(8)
162 Dy	316.3090(10)	3.0(4)	0.056(8)	¹⁶³ Dy	761.76(4)	4.1(3)	0.076(6)
¹⁶¹ Dy	321.84(12)	1.74(25)	0.032(5)	¹⁶¹ Dy	795.27(8)	6.8(4)	0.127(8)
¹⁶⁴ Dy	331.126(8)	4.5(4)	0.084(8)	¹⁶¹ Dy	807.46(7)	12.1(5)	0.226(9)
¹⁶¹ Dy	334.08(8)	4.9(4)	0.091(8)	¹⁶¹ Dy	842.48(22)	1.6(4)	0.030(8)
¹⁶² Dy	338.5310(20)	1.50(17)	0.028(3)	¹⁶¹ Dy	842.5(4)	1.48(25)	0.028(5)
¹⁶⁴ Dy	343.312(4)	3.2(4)	0.060(8)	¹⁶¹ Dy	882.27(6)	18.3(6)	0.341(11)
¹⁶⁴ Dy	345.860(12)	1.8(3)	0.034(6)	¹⁶¹ Dy	888.13(7)	10.4(5)	0.194(9)
¹⁶² Dy	347.9050(20)	1.84(22)	0.034(4)	¹⁶¹ Dy	917.16(10)	5.4(5)	0.101(9)
¹⁶⁴ Dy	349.248(10)	14.7(6)	0.274(11)	¹⁶⁴ Dy	922.11(7)	1.6(6)	0.030(11)
¹⁶² Dy	351.1490(10)	10.9(9)	0.203(17)	¹⁶¹ Dy	933.70(23)	3.1(7)	0.058(13)
¹⁶⁴ Dy	352.581(10)	1.7(4)	0.032(8)	¹⁶⁴ Dy	933.94(8)	4.6(7)	0.086(13)
¹⁶² Dy	354.2360(10)	3.5(21)	0.07(4)	¹⁶¹ Dy	944.40(7)	7.2(3)	0.134(6)
¹⁶⁴ Dy	354.353(8)	3.3(10)	0.062(19)	¹⁶¹ Dy	976.83(13)	3.4(3)	0.063(6)
¹⁶⁴ Dy	357.686(8)	2.4(4)	0.045(8)	¹⁶¹ Dy	979.98(9)	8.5(4)	0.159(8)
¹⁶¹ Dy	361.70(10)	4.1(4)	0.076(8)	¹⁶¹ Dy ¹⁶⁴ Dy	994.64(7)	9.2(4)	0.172(8)
¹⁶⁴ Dy	368.727(8)	1.6(3)	0.030(6)	161 D	994.87(7)	5.6(17)	0.10(3)
¹⁶⁴ Dy	380.020(8)	4.1(4)	0.076(8)	¹⁶¹ Dy ¹⁶⁴ Dy	1008.42(22)	2.0(3)	0.037(6)
164 Dy	385.9840(20)	34.8(10)	0.649(19)	161 Dy	1018.35(8) 1025.5(3)	3.7(12) 1.7(4)	0.069(22) 0.032(8)
¹⁶² Dy	389.7530(10)	7.7(7)	0.144(13)	161 Dy	1023.3(3)	5.9(4)	0.032(8)
¹⁶⁴ Dy ¹⁶⁴ Dy	392.651(7)	11.3(5)	0.211(9)	164 Dy	1059.63(9)	2.2(7)	0.041(13)
¹⁶⁴ Dy	396.208(4) 399.726(6)	2.4(9)	0.045(17)	164 Dy	1064.18(9)	2.2(7)	0.041(13)
¹⁶² Dy		2.0(4)	0.037(8)	164 Dy	1074.59(9)	4.5(14)	0.08(3)
164 Dy	401.9440(10) 403.059(6)	1.62(19) 3.5(4)	0.030(4) 0.065(8)	161 Dy	1091.99(13)	2.7(4)	0.050(8)
164 Dy	403.039(0) 411.651(5)		0.655(19)	¹⁶¹ Dy	1108.53(10)	5.1(4)	0.095(8)
164 Dy	411.051(5) 414.985(7)	35.1(10) 31(5)	0.58(9)	164 Dy	1110.06(9)	2.6(7)	0.048(13)
162 Dy	415.0610(20)	1.57(19)	0.029(4)	¹⁶¹ Dy	1124.81(9)	4.0(3)	0.075(6)
¹⁶⁴ Dy	420.833(3)	11.8(11)	0.220(21)	¹⁶¹ Dy	1129.40(9)	5.7(4)	0.106(8)
162 Dy	421.8440(10)	7.1(9)	0.132(17)	¹⁶¹ Dy	1158.2(3)	2.1(4)	0.039(8)
¹⁶⁴ Dy	425.346(10)	2.4(7)	0.045(13)	¹⁶¹ Dy	1185.0(3)	1.5(4)	0.028(8)
¹⁶¹ Dy	427.57(13)	1.66(25)	0.031(5)	¹⁶¹ Dy	1187.7(3)	1.6(4)	0.030(8)
¹⁶² Dy	427.6800(10)	1.86(22)	0.035(4)	¹⁶¹ Dy	1195.37(12)	3.6(4)	0.067(8)
¹⁶⁴ Dy	430.451(8)	4.2(3)	0.078(6)	¹⁶¹ Dy	1219.6(3)	2.7(10)	0.050(19)
¹⁶⁴ Dy	447.893(7)	17.4(5)	0.324(9)	¹⁶⁴ Dy	1260.19(13)	2.0(6)	0.037(11)
¹⁶⁴ Dv	465.416(6)	38.0(10)	0.709(19)	¹⁶¹ Dy	1260.66(21)	3.2(5)	0.060(9)
¹⁶⁴ Dy	470.227(7)	9.3(6)	0.173(11)	¹⁶¹ Dy	1276.3(6)	1.9(4)	0.035(8)
¹⁶⁴ Dy	474.22(7)	6.4(4)	0.119(8)	¹⁶¹ Dy	1276.78(12)	6.3(6)	0.117(11)
¹⁶⁴ Dy	474.95(4)	3.3(10)	0.062(19)	¹⁶¹ Dy	1308.5(3)	1.7(4)	0.032(8)
¹⁶² Dy	475.3880(10)	1.71(21)	0.032(4)	¹⁶¹ Dy	1316.7(5)	1.5(4)	0.028(8)
¹⁶⁴ Dy	477.061(6)	22(7)	0.41(13)	¹⁶¹ Dy	1371.4(3)	2.4(4)	0.045(8)
¹⁶⁴ Dy	477.08(4)	15.8(5)	0.295(9)	¹⁶⁴ Dy	1410.99(8)	4.6(5)	0.086(9)
¹⁶⁴ Dy	496.931(5)	44.9(11)	0.837(21)	¹⁶⁴ Dy	1433.33(8)	1.9(4)	0.035(8)

$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
¹⁶⁴ Dy	1483.76(8)	3.6(4)	0.067(8)	¹⁶⁴ Dy	4123.97(8)	13.1(9)	0.244(17)
¹⁶¹ Dy	1573.95(23)	1.7(3)	0.032(6)	¹⁶⁴ Dy	4155.82(8)	2.1(3)	0.039(6)
¹⁶⁴ Dy	1596.37(15)	2.5(4)	0.047(8)	¹⁶⁴ Dy	4459.45(8)	1.6(3)	0.030(6)
$^{164}\mathrm{Dy}$	1604.4(3)	1.7(4)	0.032(8)	¹⁶⁴ Dy	4607.48(6)	1.9(4)	0.035(8)
¹⁶⁴ Dy	1616.1(3)	1.5(4)	0.028(8)	¹⁶⁴ Dy	4612.84(7)	5.7(5)	0.106(9)
$^{164}\mathrm{Dy}$	1646.80(15)	2.2(3)	0.041(6)	¹⁶⁴ Dy	4635.84(5)	2.6(4)	0.048(8)
¹⁶⁴ Dv	1671.84(13)	3.6(5)	0.067(9)	¹⁶⁴ Dy	5110.77(3)	6.1(9)	0.114(17)
¹⁶¹ Dy	1717.18(13)	3.0(4)	0.056(8)	¹⁶⁴ Dy	5142.29(3)	15.7(10)	0.293(19)
¹⁶⁴ Dy	1722.27(13)	3.2(4)	0.060(8)	¹⁶⁴ Dy	5145.62(3)	8.4(24)	0.16(5)
¹⁶⁴ Dy	1737.35(15)	3.8(4)	0.071(8)	$^{164}\mathrm{Dy}$	5177.25(3)	6.6(5)	0.123(9)
¹⁶¹ Dy	1781.5(3)	3.5(6)	0.065(11)	¹⁶¹ Dy	5450.27(25)	2.1(4)	0.039(8)
¹⁶⁴ Dy	1806.00(25)	2.4(5)	0.045(9)	¹⁶⁴ Dy	5557.26(3)	28.7(14)	0.54(3)
¹⁶¹ Dy	1823.7(7)	1.9(5)	0.035(9)	¹⁶⁴ Dy	5607.69(3)	35.9(16)	0.67(3)
¹⁶⁴ Dy	1835.40(18)	3.2(6)	0.060(11)	¹⁶⁰ Dy	6087.25(13)	0.85(5)	0.0159(9)
¹⁶⁴ Dy	1866.28(13)	2.6(4)	0.048(8)	Hol	mium (Z=67), A	t.Wt.=164.93032	$2(2), \sigma_{\gamma}^{z} = 64.7(12)$
¹⁶⁴ Dy	2019.4(3)	2.5(5)	0.047(9)	¹⁶⁵ Ho	19.8290(20)	0.57(8)	0.0105(15)
¹⁶⁴ Dy	2091.58(11)	2.6(5)	0.048(9)	¹⁶⁵ Ho	38.494(5)	0.179(20)	0.0033(4)
¹⁶¹ Dy	2110.01(16)	3.6(4)	0.067(8)	¹⁶⁵ Ho	54.2400(10)	1.41(4)	0.0259(7)
¹⁶⁴ Dy	2113.91(11)	4.0(4)	0.075(8)	¹⁶⁵ Ho	57.521(6)	0.17(3)	0.0031(6)
¹⁶⁴ Dy	2164.34(11)	3.1(4)	0.058(8)	¹⁶⁵ Ho	69.7610(10)	1.09(6)	0.0200(11)
¹⁶⁴ Dy	2226.92(19)	2.7(5)	0.050(9)	¹⁶⁵ Ho	72.8870(10)	0.17(3)	0.0031(6)
¹⁶⁴ Dy	2242.3(3)	3.3(5)	0.062(9)	¹⁶⁵ Ho	76.4670(10)	0.179(20)	0.0033(4)
¹⁶⁴ Dy	2259.3(3)	2.8(5)	0.052(9)	¹⁶⁵ Ho	76.7270(10)	0.33(3)	0.0061(6)
¹⁶⁴ Dy	2272.0(6)	3.6(7)	0.067(13)	¹⁶⁵ Ho	80.574(8)d	3.87(5)	0.0711[1.3%]
¹⁶⁴ Dy	2305.5(3)	2.2(5)	0.041(9)	¹⁶⁵ Ho	82.4710(20)	0.42(3)	0.0077(6)
¹⁶⁴ Dy	2313.8(4)	7.2(6)	0.134(11)	¹⁶⁵ Ho	87.5950(20)	0.71(4)	0.0130(7)
¹⁶⁴ Dy	2369.89(24)	4.2(6)	0.078(11)	¹⁶⁵ Ho	94.628(6)	0.156(23)	0.0029(4)
¹⁶⁴ Dy	2412.2(4)	2.6(6)	0.048(11)	¹⁶⁵ Ho	98.8590(10)	0.270(17)	0.0050(3)
¹⁶⁴ Dy	2552.64(19)	5.3(6)	0.099(11)	¹⁶⁵ Ho	105.516(3)	0.234(16)	0.0043(3)
¹⁶⁴ Dy	2593.02(19)	3.0(5)	0.056(9)	¹⁶⁵ Ho	108.2000(20)	0.40(3)	0.0073(6)
¹⁶⁴ Dy	2606.94(19)	4.1(5)	0.076(9)	¹⁶⁵ Ho	111.3260(20)	0.294(20)	0.0054(4)
¹⁶⁴ Dy	2635.0(3)	3.0(5)	0.056(9)	¹⁶⁵ Ho	116.8360(10)	8.1(4)	0.149(7)
¹⁶² Dy	2660.1(4)	6.6(11)	0.123(21)	¹⁶⁵ Ho	126.230(3)	0.55(4)	0.0101(7)
¹⁶⁴ Dy	2683.54(24)	2.4(5)	0.045(9)	¹⁶⁵ Ho	136.6650(20)	14.5(7)	0.266(13)
¹⁶⁴ Dy	2702.83(21)	6.9(22)	0.13(4)	¹⁶⁵ Ho	140.122(5)	0.27(3)	0.0050(6)
¹⁶⁴ Dy	2823.8(4)	1.7(5)	0.032(9)	¹⁶⁵ Ho	149.309(3)	2.25(12)	0.0413(22)
¹⁶⁴ Dy	2832.15(21)	1.9(5)	0.035(9)	¹⁶⁵ Ho	163.353(7)	0.223(15)	0.0041(3)
¹⁶⁴ Dy	2840.1(3)	3.8(5)	0.071(9)	¹⁶⁵ Ho	167.453(5)	0.55(3)	0.0101(6)
¹⁶⁴ Dy	2854.48(21)	4.0(5)	0.075(9)	¹⁶⁵ Ho	169.715(5)	0.150(14)	0.0028(3)
¹⁶⁴ Dy	2863.5(4)	5.1(5)	0.095(9)	¹⁶⁵ Ho	179.036(5)	0.220(16)	0.0040(3)
¹⁶⁴ Dy	2872.20(21)	4.5(5)	0.084(9)	¹⁶⁵ Ho	181.0870(20)	0.94(5)	0.0173(9)
¹⁶⁴ Dy	2931.8(3)	2.7(5)	0.050(9)	¹⁶⁵ Ho	186.579(4)	0.197(22)	0.0036(4)
¹⁶⁴ Dy ¹⁶⁴ Dy	2950.37(19)	4.5(5)	0.084(9)	¹⁶⁵ Ho	197.342(3)	0.34(3)	0.0062(6)
164 Dy	2999.9(4)	1.7(4)	0.032(8)	¹⁶⁵ Ho	199.700(5)	0.48(3)	0.0088(6)
164 Dy	3012.42(17)	7.8(5)	0.145(9)	¹⁶⁵ Ho	210.309(4)	0.180(15)	0.0033(3)
164 Dy	3035.55(15) 3071.02(24)	10.9(6)	0.203(11)	¹⁶⁵ Ho	221.186(4)	2.05(11)	0.0377(20)
164 Dy	3071.02(24)	3.8(5) 2.1(4)	0.071(9) 0.039(8)	¹⁶⁵ Ho	231.960(7)	0.23(5)	0.0042(9)
164 Dy	3105.83(21)	5.8(5)	0.108(9)	¹⁶⁵ Ho	233.116(8)	0.38(4)	0.0070(7)
164 Dy	3114.06(19)	7.4(6)	0.138(11)	¹⁶⁵ Ho	239.132(4)	2.25(12)	0.0413(22)
164 Dy	3114.00(19)	3.3(4)	0.138(11)	¹⁶⁵ Ho	245.010(5)	0.47(5)	0.0086(9)
164 Dy	3198.3(3)	1.6(3)	0.030(6)	¹⁶⁵ Ho	257.806(11)	0.18(4)	0.0033(7)
164 Dy	3238.1(3)	4.7(5)	0.088(9)	¹⁶⁵ Ho ¹⁶⁵ Ho	265.983(10)	0.170(14)	0.0031(3)
164 Dy	3276.05(13)	6.1(5)	0.114(9)		267.241(6)	0.199(15)	0.0037(3)
164 Dy	3315.0(3)	3.0(4)	0.056(8)	¹⁶⁵ Ho	289.124(14)	1.16(6)	0.0213(11)
164 Dy	3443.39(11)	10.6(16)	0.20(3)	¹⁶⁵ Ho ¹⁶⁵ Ho	290.617(7)	0.96(5)	0.0176(9)
164 Dy	3537.9(3)	3.2(5)	0.060(9)		297.905(4)	0.188(14)	0.0035(3)
164 Dy	3555.71(20)	4.7(5)	0.088(9)	¹⁶⁵ Ho ¹⁶⁵ Ho	304.617(6)	1.34(7)	0.0246(13)
164 Dy	3608.5(4)	3.1(4)	0.058(8)	¹⁶⁵ Ho	328.239(10) 333.614(5)	0.391(23)	0.0072(4)
164 Dy	3628.2(3)	1.9(4)	0.035(8)	но ¹⁶⁵ Но	333.614(5) 335.585(6)	1.04(6) 0.33(7)	0.0191(11) 0.0061(13)
164 Dy	3772.33(18)	3.1(4)	0.058(8)	но ¹⁶⁵ Но	343.540(6)	0.33(7)	0.0061(13)
164 Dy	3819.95(15)	2.7(5)	0.050(9)	но ¹⁶⁵ Но	343.340(b) 357.056(5)	0.203(13)	0.00373(24)
164 Dy	3840.49(24)	4.9(6)	0.091(11)	165 Ho	371.772(5)	1.56(8)	0.00298(22) 0.0287(15)
$^{164}\mathrm{Dy}$	3885.46(13)	5.2(4)	0.097(8)	165 Ho	391.819(7)	0.51(5)	0.0094(9)
¹⁶⁴ Dy	3944.8(3)	2.2(3)	0.041(6)	¹⁶⁵ Ho	401.595(8)	1.07(9)	0.0094(9)
¹⁶⁴ Dy	3960.93(15)	4.7(4)	0.088(8)	¹⁶⁵ Ho	410.265(6)	1.23(7)	0.0197(17)
$^{164}\mathrm{Dy}$	4067.73(9)	2.5(4)	0.047(8)	¹⁶⁵ Ho	411.087(12)	0.40(12)	0.0073(22)
¹⁶⁴ Dy	4083.81(14)	4.3(4)	0.080(8)	¹⁶⁵ Ho	412.030(8)	0.32(7)	0.0079(22)
•		•			(0)	(1)	(==)

$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0	$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\nu}^{z}(E_{\nu})$ -barns	\mathbf{k}_0
¹⁶⁵ Ho	416.550(5)	0.42(4)	0.0077(7)	¹⁶⁷ Er	645.7600(20)	0.96(5)	0.0174(9)
¹⁶⁵ Ho	425.300(21)	0.69(17)	0.013(3)	¹⁶⁷ Er	673.655(3)	0.56(3)	0.0101(5)
¹⁶⁵ Ho	426.012(5)	2.88(15)	0.053(3)	¹⁶⁷ Er	713.2440(10)	0.69(5)	0.0125(9)
¹⁶⁵ Ho	427.196(6)	0.21(5)	0.0039(9)	¹⁶⁷ Er	715.1610(20)	1.92(8)	0.0348(14)
¹⁶⁵ Ho	442.231(21)	0.22(3)	0.0040(6)	¹⁶⁷ Er	719.5460(20)	1.09(20)	0.020(4)
¹⁶⁵ Ho	443.148(8)	0.164(12)	0.00301(22)	¹⁶⁷ Er	720.3850(20)	1.54(16)	0.028(3)
¹⁶⁵ Ho	455.567(11)	0.78(4)	0.0143(7)	¹⁶⁷ Er	730.6580(10)	11.6(4)	0.210(7)
¹⁶⁵ Ho	457.349(11)	0.213(17)	0.0039(3)	¹⁶⁷ Er	737.664(3)	1.20(6)	0.0217(11)
¹⁶⁵ Ho	463.927(6)	0.245(18)	0.0045(3)	¹⁶⁷ Er	741.3650(20)	6.72(24)	0.122(4)
¹⁶⁵ Ho	467.227(5)	0.162(17)	0.0030(3)	¹⁶⁷ Er	748.280(3)	1.35(7)	0.0245(13)
¹⁶⁵ Ho	481.354(18)	0.45(7)	0.0083(13)	¹⁶⁷ Er	790.0140(20)	0.68(4)	0.0123(7)
¹⁶⁵ Ho	487.538(6)	0.394(24)	0.0072(4)	¹⁶⁷ Er	798.8940(20)	2.18(9)	0.0395(16)
¹⁶⁵ Ho	489.436(4)	1.15(6)	0.0211(11)	¹⁶⁷ Er	808.927(3)	0.81(10)	0.0147(18)
¹⁶⁵ Ho	496.932(6)	0.16(3)	0.0029(6)	¹⁶⁷ Er	811.0500(20)	1.72(22)	0.031(4)
¹⁶⁵ Ho	509.094(24)	0.332(22)	0.0061(4)	¹⁶⁷ Er	812.289(3)	1.4(3)	0.025(5)
¹⁶⁵ Ho	512.770(6)	0.323(22)	0.0059(4)	¹⁶⁷ Er	815.9890(20)	42.5(15)	0.77(3)
¹⁶⁵ Ho	524.250(22)	0.260(17)	0.0048(3)	¹⁶⁷ Er	821.1680(20)	6.2(3)	0.112(5)
¹⁶⁵ Ho	533.644(21)	0.303(20)	0.0056(4)	¹⁶⁷ Er	823.3810(20)	1.34(10)	0.0243(18)
¹⁶⁵ Ho	534.572(11)	0.16(3)	0.0029(6)	¹⁶⁷ Er	825.727(3)	0.89(9)	0.0161(16)
¹⁶⁵ Ho	538.259(8)	0.152(21)	0.0028(4)	¹⁶⁷ Er	829.9480(10)	4.12(19)	0.075(3)
¹⁶⁵ Ho	542.780(4)	1.94(13)	0.0356(24)	¹⁶⁷ Er	853.4810(10)	7.5(3)	0.136(5)
¹⁶⁵ Ho	543.676(5)	1.00(5)	0.0184(9)	¹⁶⁷ Er	862.3500(20)	1.16(6)	0.0210(11)
¹⁶⁵ Ho	554.400(11)	0.32(7)	0.0059(13)	¹⁶⁷ Er	914.9420(10)	6.99(24)	0.127(4)
¹⁶⁵ Ho	576.902(16)	0.203(17)	0.0037(3)	¹⁶⁷ Er	928.9330(20)	1.55(8)	0.0281(14)
¹⁶⁵ Ho	577.141(11)	0.37(6)	0.0068(11)	¹⁶⁷ Er	932.2660(20)	0.83(5)	0.0150(9)
¹⁶⁵ Ho	613.768(6)	0.332(22)	0.0061(4)	¹⁶⁷ Er	965.9330(20)	0.83(5)	0.0150(9)
¹⁶⁵ Ho	624.234(8)	0.212(16)	0.0039(3)	¹⁶⁷ Er	999.8150(20)	0.99(6)	0.0179(11)
¹⁶⁵ Ho	633.641(8)	0.36(3)	0.0066(6)	¹⁶⁷ Er	1012.1810(20)	1.42(7)	0.0257(13)
¹⁶⁵ Ho	689.72(3)	0.44(3)	0.0081(6)	¹⁶⁷ Er	1025.368(4)	0.97(6)	0.0176(11)
¹⁶⁵ Ho	734.258(16)	0.253(18)	0.0046(3)	¹⁶⁷ Er	1144.133(3)	0.58(5)	0.0105(9)
¹⁶⁵ Ho	4855.89(3)	0.146(18)	0.0027(3)	¹⁶⁷ Er	1147.0040(20)	0.92(6)	0.0167(11)
¹⁶⁵ Ho	4945.18(5)	0.214(19)	0.0039(4)	¹⁶⁷ Er	1167.373(4)	1.98(8)	0.0359(14)
¹⁶⁵ Ho	5108.66(7)	0.33(3)	0.0061(6)	¹⁶⁷ Er	1173.577(4)	0.71(5)	0.0129(9)
¹⁶⁵ Ho	5128.946(13)	0.171(17)	0.0031(3)	¹⁶⁷ Er	1196.4640(20)	0.82(5)	0.0149(9)
¹⁶⁵ Ho ¹⁶⁵ Ho	5181.841(20)	0.253(20)	0.0046(4)	¹⁶⁷ Er ¹⁶⁷ Er	1229.045(4)	0.63(5)	0.0114(9)
¹⁶⁵ Ho	5213.240(21)	0.260(24)	0.0048(4)	167 Er	1274.530(6)	0.69(10)	0.0125(18)
¹⁶⁵ Ho	5428.441(9)	0.223(23) 0.192(20)	0.0041(4) 0.0035(4)	167 Er	1276.2680(20) 1277.6150(20)	0.73(11) 2.82(16)	0.0132(20) 0.051(3)
165 Но	5524.219(11) 5813.531(7)	0.192(20)	0.0033(4)	167 Er	1277.0130(20)	0.97(13)	0.031(3)
¹⁶⁵ Ho	5870.477(9)	0.224(20)	0.0041(4)	167 Er	1310.022(3)	1.65(8)	0.0176(24)
¹⁶⁵ Ho	5871.573(6)	0.196(18)	0.0036(3)	167 Er	1323.9270(20)	1.69(8)	0.0306(14)
¹⁶⁵ Ho	6052.654(6)	0.188(19)	0.0035(4)	¹⁶⁷ Er	1331.2870(20)	1.36(7)	0.0246(13)
110	` ′	` ′		¹⁶⁷ Er	1351.656(4)	1.94(9)	0.0351(16)
¹⁶² Er	69.4(6)	0.35(14)	3), σ_{γ}^{z} =156.8(19) 0.0063(25)	¹⁶⁷ Er	1353.805(6)	0.56(5)	0.0101(9)
¹⁶⁷ Er	79.8040(10)	18.2(8)	0.330(14)	¹⁶⁷ Er	1355.1(3)	0.94(12)	0.0170(22)
¹⁶⁷ Er	98.9850(10)	3.73(14)	0.0676(25)	¹⁶⁷ Er	1392.181(4)	1.27(6)	0.0230(11)
¹⁶⁷ Er	99.2910(10)	2.2(3)	0.040(5)	¹⁶⁷ Er	1515.93(4)	0.57(5)	0.0103(9)
¹⁶⁷ Er	184.2850(10)	56(5)	1.01(9)	¹⁶⁷ Er	1515.948(20)	0.72(12)	0.0130(22)
¹⁷⁰ Er	198.0(6)	0.36(9)	0.0065(16)	¹⁶⁷ Er	1581.18(6)	0.57(6)	0.0103(11)
¹⁶⁷ Er	198.2440(10)	29.9(16)	0.54(3)	¹⁶⁷ Er	1649.803(7)	0.58(6)	0.0105(11)
¹⁶⁶ Er	207.801(3)d	2.15(8)	0.0390[100%]	¹⁶⁷ Er	1767.00(3)	0.91(7)	0.0165(13)
¹⁶⁷ Er	217.4220(10)	2.66(10)	0.0482(18)	¹⁶⁷ Er	1834.085(7)	1.45(9)	0.0263(16)
¹⁶⁷ Er	255.9310(10)	0.76(3)	0.0138(5)	¹⁶⁷ Er	1835.690(4)	0.65(6)	0.0118(11)
¹⁶⁷ Er	284.6560(20)	13.7(12)	0.248(22)	¹⁶⁷ Er	1942.513(6)	0.88(7)	0.0159(13)
¹⁶⁶ Er	346.553(10)	0.83(4)	0.0150(7)	¹⁶⁷ Er	2046.97(3)	0.56(6)	0.0101(11)
¹⁶⁷ Er	396.5320(10)	0.69(4)	0.0125(7)	¹⁶⁷ Er	2522.76(6)	0.59(9)	0.0107(16)
¹⁶⁷ Er	422.3180(10)	1.56(6)	0.0283(11)	¹⁶⁷ Er	4628.7(3)	1.02(21)	0.018(4)
¹⁶⁷ Er	447.5170(20)	3.07(11)	0.0556(20)	¹⁶⁷ Er	4643.4(3)	1.7(4)	0.031(7)
¹⁶⁷ Er	457.6660(20)	0.80(4)	0.0145(7)	¹⁶⁷ Er	4647.4(3)	0.87(18)	0.016(3)
¹⁶⁷ Er	527.8840(10)	0.88(5)	0.0159(9)	¹⁶⁷ Er	4653.2(3)	1.18(24)	0.021(4)
¹⁶⁶ Er	531.46(3)	0.92(7)	0.0167(13)	¹⁶⁷ Er	4671.4(3)	0.95(20)	0.017(4)
¹⁶⁷ Er	543.6620(20)	2.01(9)	0.0364(16)	¹⁶⁷ Er	4715.4(3)	0.98(20)	0.018(4)
¹⁶⁷ Er	546.9600(20)	1.02(5)	0.0185(9)	¹⁶⁷ Er ¹⁶⁷ Er	4745.4(3)	1.3(3)	0.024(5)
¹⁶⁷ Er	559.5080(20)	2.36(10)	0.0428(18)	167 Er 167 Er	4752.2(3) 4750.5(3)	0.58(12)	0.0105(22)
¹⁶⁷ Er	568.8260(20)	1.20(6)	0.0217(11)	167 Er	4759.5(3) 4800.76(7)	0.74(15)	0.013(3)
¹⁶⁷ Er	601.6060(20)	0.70(4)	0.0127(7)	168 Er	4800.76(7) 4908.73(17)	1.4(4) 0.41(14)	0.025(7) 0.0074(25)
¹⁶⁷ Er ¹⁶⁷ Er	631.7050(20)	7.9(3)	0.143(5)	167 Er	4908.73(17)	0.41(14)	0.0074(23)
EI	638.711(3)	1.04(6)	0.0188(11)	1.1	.,21.12(22)	0.01(0)	(11)

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barn	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barn	$\mathbf{s} = \mathbf{k}_0$
¹⁶⁷ Er	5001.79(6)	0.88(25)	0.016(5)	¹⁶⁹ Tm	352.9890(20)	0.547(23)	0.0098(4)
¹⁶⁷ Er	5031.73(19)	0.84(24)	0.015(4)	¹⁶⁹ Tm	359.3570(20)	0.14(3)	0.0025(5)
¹⁶⁷ Er	5114.2(3)	1.02(24)	0.018(4)	¹⁶⁹ Tm	360.8270(20)	0.089(24)	0.0016(4)
¹⁶⁷ Er	5169.82(18)	0.56(5)	0.0101(9)	¹⁶⁹ Tm	367.5560(20)	0.185(18)	0.0033(3)
¹⁶⁷ Er	5200.0(3)	0.67(16)	0.012(3)	¹⁶⁹ Tm	370.5220(20)	0.16(3)	0.0029(5)
¹⁶⁷ Er	5213.15(15)	1.4(3)	0.025(5)	¹⁶⁹ Tm	371.1720(20)	0.153(22)	0.0027(4)
¹⁶⁷ Er	5292.80(6)	0.63(7)	0.0114(13)	¹⁶⁹ Tm	384.0790(20)	1.95(5)	0.0350(9)
¹⁶⁷ Er	5297.19(3)	0.6(3)	0.011(5)	¹⁶⁹ Tm	384.2850(20)	0.19(4)	0.0034(7)
¹⁶⁷ Er	5359.62(5)	0.62(7)	0.0112(13)	¹⁶⁹ Tm	388.1810(20)	0.099(16)	0.0018(3)
¹⁶⁷ Er	5372.79(6)	0.9(4)	0.016(7)	¹⁶⁹ Tm	396.758(4)	0.099(10)	0.00178(18)
¹⁶⁷ Er	5378.65(17)	0.8(4)	0.014(7)	¹⁶⁹ Tm	400.1150(20)	0.717(19)	0.0129(3)
¹⁶⁷ Er	5406.02(9)	0.8(4)	0.014(7)	¹⁶⁹ Tm	400.6640(20)	0.20(5)	0.0036(9)
¹⁶⁷ Er	5468.71(3)	0.73(15)	0.013(3)	¹⁶⁹ Tm	408.3570(10)	0.239(13)	0.00429(23)
¹⁶⁷ Er ¹⁶⁷ Er	5508.66(3)	0.66(14)	0.0120(25)	¹⁶⁹ Tm ¹⁶⁹ Tm	411.5060(20)	2.37(5)	0.0425(9)
167 Er	5866.25(3)	0.77(16)	0.014(3)	169 Tm	413.1330(10)	0.162(17)	0.0029(3)
167 Er	5878.24(3)	0.78(7)	0.0141(13)	169 Tm	424.6940(20)	0.556(25)	0.0100(5)
167 Er	5943.28(3) 5950.86(3)	0.95(20)	0.017(4) 0.016(3)	1 m 169 Tm	426.783(3) 429.0390(20)	0.186(18)	0.0033(3)
167 Er		0.87(18)	0.010(3)	169 Tm	440.5100(20)	0.308(24)	0.0055(4)
167 Er	6137.87(3) 6155.99(3)	0.57(6) 1.5(3)	0.0103(11)	¹⁶⁹ Tm	440.3100(20)	0.13(3) 0.51(4)	0.0023(5) 0.0091(7)
167 Er	6201.88(3)	0.73(15)	0.027(3)	¹⁶⁹ Tm	446.328(3)	1.62(4)	0.0091(7)
166 Er	6228.54(18)	1.41(15)	0.015(3)	¹⁶⁹ Tm	454.2720(20)	0.295(20)	0.0053(4)
167 Er	6229.62(3)	1.54(9)	0.0279(16)	169 Tm	456.0460(10)	1.16(4)	0.0033(4)
¹⁶⁷ Er	6360.23(3)	1.3(3)	0.024(5)	¹⁶⁹ Tm	457.4070(10)	0.48(12)	0.0086(22)
167 Er	6677.27(3)	1.02(6)	0.0185(11)	¹⁶⁹ Tm	457.4100(20)	0.48(12)	0.0100(5)
		* *	` /	¹⁶⁹ Tm	468.4740(20)	0.45(4)	0.0100(3)
1 nu ¹⁶⁹ Tm			(2), $\sigma_{\gamma}^{z} = 105.0(20)$	¹⁶⁹ Tm	468.7760(20)	0.41(8)	0.0074(14)
1 m 169 Tm	38.713	0.279(6)	0.00500(11)	¹⁶⁹ Tm	472.6610(10)	0.60(5)	0.0108(9)
1 m 169 Tm	63.9550(20) 66.098	0.17(8)	0.0030(14)	¹⁶⁹ Tm	473.5790(10)	0.15(4)	0.0027(7)
¹⁶⁹ Tm	68.649	0.51(10)	0.0091(18) 0.031(4)	¹⁶⁹ Tm	477.027(4)	0.240(25)	0.0043(5)
1 m 169 Tm	69.9880(10)	1.75(23)		¹⁶⁹ Tm	481.3490(20)	0.109(22)	0.0020(4)
1111 169 Tm	75.83	0.19(7) 0.94(8)	0.0034(13)	¹⁶⁹ Tm	485.210(4)	0.140(22)	0.0025(4)
1 III 169 Tm	87.5210(10)	1.29(3)	0.0169(14) 0.0231(5)	¹⁶⁹ Tm	496.5720(20)	0.80(3)	0.0144(5)
¹⁶⁹ Tm	87.5700(10)	0.29(6)	0.0052(11)	¹⁶⁹ Tm	499.0260(20)	0.40(8)	0.0072(14)
169 Tm	89.905	0.116(21)	0.0032(11)	¹⁶⁹ Tm	499.5560(20)	0.88(3)	0.0158(5)
¹⁶⁹ Tm	105.162	0.780(23)	0.0140(4)	¹⁶⁹ Tm	505.018(7)	0.90(3)	0.0161(5)
¹⁶⁹ Tm	107.9560(10)	0.110(13)	0.00197(23)	¹⁶⁹ Tm	505.341(9)	0.84(3)	0.0151(5)
¹⁶⁹ Tm	111.0050(10)	0.327(16)	0.00197(23)	¹⁶⁹ Tm	512.1370(20)	1.96(5)	0.0352(9)
¹⁶⁹ Tm	114.544	3.19(6)	0.0572(11)	¹⁶⁹ Tm	512.6080(20)	0.108(22)	0.0019(4)
¹⁶⁹ Tm	130.027	0.940(25)	0.0169(5)	¹⁶⁹ Tm	517.053(4)	0.15(3)	0.0027(5)
¹⁶⁹ Tm	144.4790(10)	1.2(4)	0.022(7)	¹⁶⁹ Tm	523.3590(20)	0.48(3)	0.0086(5)
¹⁶⁹ Tm	144.48	5.96(11)	0.1069(20)	¹⁶⁹ Tm	532.4280(20)	0.59(3)	0.0106(5)
¹⁶⁹ Tm	149.7180(10)	7.11(12)	0.1275(22)	¹⁶⁹ Tm	532.858(3)	0.12(3)	0.0022(5)
¹⁶⁹ Tm	153.6680(10)	0.098(15)	0.0018(3)	¹⁶⁹ Tm	535.8280(10)	1.18(4)	0.0212(7)
¹⁶⁹ Tm	156.0030(10)	0.119(17)	0.0021(3)	¹⁶⁹ Tm	537.9910(20)	1.00(4)	0.0179(7)
¹⁶⁹ Tm	161.7200(10)	0.270(17)	0.0048(3)	¹⁶⁹ Tm	551.5140(20)	1.29(25)	0.023(5)
¹⁶⁹ Tm	165.735	3.29(6)	0.0590(11)	¹⁶⁹ Tm	562.4440(20)	0.85(3)	0.0152(5)
¹⁶⁹ Tm	171.8550(10)	0.391(18)	0.0070(3)	¹⁶⁹ Tm	565.2770(20)	1.58(4)	0.0283(7)
¹⁶⁹ Tm	176.5240(10)	0.34(3)	0.0061(5)	¹⁶⁹ Tm	569.1730(20)	1.02(3)	0.0183(5)
¹⁶⁹ Tm	180.993	3.85(14)	0.0691(25)	¹⁶⁹ Tm	569.5440(20)	0.44(9)	0.0079(16)
¹⁶⁹ Tm	198.2340(10)	0.094(21)	0.0017(4)	¹⁶⁹ Tm	573.017(4)	0.39(7)	0.0070(13)
¹⁶⁹ Tm	198.5260(10)	0.96(3)	0.0172(5)	¹⁶⁹ Tm	573.017(4)	0.30(9)	0.0054(16)
¹⁶⁹ Tm	204.448	8.72(19)	0.156(3)	¹⁶⁹ Tm	581.2690(20)	0.32(7)	0.0057(13)
¹⁶⁹ Tm	204.7820(10)	0.25(7)	0.0045(13)	¹⁶⁹ Tm	585.1540(10)	0.60(4)	0.0108(7)
¹⁶⁹ Tm	219.706	3.64(6)	0.0653(11)	¹⁶⁹ Tm	589.0850(10)	0.58(10)	0.0104(18)
¹⁶⁹ Tm	231.8330(10)	0.60(3)	0.0108(5)	¹⁶⁹ Tm	590.2270(20)	1.27(10)	0.0228(18)
¹⁶⁹ Tm	235.1890(10)	1.18(4)	0.0212(7)	¹⁶⁹ Tm	599.1890(20)	0.155(25)	0.0028(5)
¹⁶⁹ Tm	237.2390(10)	5.52(10)	0.0990(18)	¹⁶⁹ Tm	601.9780(20)	0.13(3)	0.0023(5)
¹⁶⁹ Tm	242.6220(10)	1.28(4)	0.0230(7)	¹⁶⁹ Tm	603.9900(20)	1.40(5)	0.0251(9)
¹⁶⁹ Tm	256.4550(10)	0.096(15)	0.0017(3)	¹⁶⁹ Tm	610.0310(20)	0.18(4)	0.0032(7)
¹⁶⁹ Tm	260.3410(10)	0.103(14)	0.00185(25)	¹⁶⁹ Tm	611.6590(10)	0.83(4)	0.0149(7)
¹⁶⁹ Tm	266.8830(10)	0.134(15)	0.0024(3)	¹⁶⁹ Tm	619.423(3)	0.23(4)	0.0041(7)
¹⁶⁹ Tm	268.5510(10)	0.210(17)	0.0038(3)	¹⁶⁹ Tm	621.812(3)	0.12(3)	0.0022(5)
¹⁶⁹ Tm	288.1840(20)	0.172(10)	0.00309(18)	¹⁶⁹ Tm	623.1420(10)	0.27(4)	0.0048(7)
¹⁶⁹ Tm	303.6180(20)	0.137(13)	0.00246(23)	¹⁶⁹ Tm	632.4310(20)	0.74(3)	0.0133(5)
¹⁶⁹ Tm	311.0190(10)	2.50(5)	0.0448(9)	¹⁶⁹ Tm ¹⁶⁹ Tm	637.900(3)	1.25(4)	0.0224(7)
¹⁶⁹ Tm	342.7130(10)	0.14(3)	0.0025(5)	¹⁶⁹ Tm	637.9020(20) 640.7790(20)	1.8(3)	0.032(5)
¹⁶⁹ Tm	343.5520(10)	0.360(16)	0.0065(3)	1 M	040.7790(20)	0.70(3)	0.0126(5)

$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns		$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
¹⁶⁹ Tm	648.7440(20)	0.24(4)	0.0043(7)	¹⁶⁹ Tm	4732.6(4)	0.58(5)	0.0104(9)
¹⁶⁹ Tm	650.3720(10)	1.45(5)	0.0260(9)	¹⁶⁹ Tm	4773.8(8)	0.16(3)	0.0029(5)
¹⁶⁹ Tm	658.913(5)	1.56(5)	0.0280(9)	¹⁶⁹ Tm	4922.1(5)	0.26(3)	0.0047(5)
¹⁶⁹ Tm	664.9160(10)	0.30(4)	0.0054(7)	¹⁶⁹ Tm	4987.0(6)	0.16(3)	0.0029(5)
¹⁶⁹ Tm	669.656(4)	0.31(4)	0.0056(7)	¹⁶⁹ Tm	5061.6(8)	0.103(21)	0.0018(4)
¹⁶⁹ Tm	670.753(7)	0.12(4)	0.0022(7)	¹⁶⁹ Tm	5075.3(5)	0.39(4)	0.0070(7)
¹⁶⁹ Tm	679.5820(20)	0.15(3)	0.0027(5)	¹⁶⁹ Tm	5124.1(5)	0.28(4)	0.0050(7)
¹⁶⁹ Tm	680.5480(20)	0.41(3)	0.0074(5)	¹⁶⁹ Tm	5149.1(6)	0.31(4)	0.0056(7)
¹⁶⁹ Tm	693.2840(10)	0.30(3)	0.0054(5)	¹⁶⁹ Tm	5158.2(6)	0.47(5)	0.0084(9)
¹⁶⁹ Tm	694.085(13)	~0.1	~0.002	¹⁶⁹ Tm	5216.5(9)	0.092(25)	0.0017(5)
¹⁶⁹ Tm	703.6280(10)	1.32(4)	0.0237(7)	¹⁶⁹ Tm	5326.80(11)	0.18(3)	0.0032(5)
¹⁶⁹ Tm	707.8490(10)	0.50(10)	0.0090(18)	¹⁶⁹ Tm	5353.72(11)	0.19(3)	0.0034(5)
¹⁶⁹ Tm ¹⁶⁹ Tm	709.381(3)	0.107(21)	0.0019(4)	¹⁶⁹ Tm	5381.18(11)	0.18(3)	0.0032(5)
169 Tm	710.7670(20)	0.60(3)	0.0108(5)	¹⁶⁹ Tm ¹⁶⁹ Tm	5399.03(11)	0.143(25)	0.0026(5)
1 m 169 Tm	711.1330(20) 714.433(5)	0.33(7)	0.0059(13)	1 m 169 Tm	5412.95(11) 5423.08(11)	0.39(5)	0.0070(9)
169 Tm		0.089(20)	0.0016(4)	1111 169 Tm	5431.26(11)	0.24(3)	0.0043(5) 0.0041(5)
1 m 169 Tm	719.2610(20) 720.8210(20)	1.01(3) 0.57(3)	0.0181(5) 0.0102(5)	1 III 169 Tm	5443.88(11)	0.23(3) 0.150(25)	0.0041(3)
¹⁶⁹ Tm	724.585(3)	0.68(3)	0.0102(5)	169 Tm	5451.91(11)	0.130(23)	0.0027(5)
¹⁶⁹ Tm	739.794(4)	0.108(18)	0.0019(3)	169 Tm	5513.01(11)	0.148(23)	0.0027(3)
¹⁶⁹ Tm	744.765(7)	0.124(19)	0.0019(3)	¹⁶⁹ Tm	5683.40(11)	0.104(21)	0.0029(9)
¹⁶⁹ Tm	748.2310(20)	0.102(20)	0.0018(4)	¹⁶⁹ Tm	5728.48(11)	0.104(21)	0.0019(4)
¹⁶⁹ Tm	781.278(7)	0.20(4)	0.0036(7)	¹⁶⁹ Tm	5731.36(11)	1.17(22)	0.021(4)
¹⁶⁹ Tm	781.279(7)	0.19(4)	0.0034(7)	¹⁶⁹ Tm	5737.51(11)	1.42(7)	0.025(13)
¹⁶⁹ Tm	781.832(4)	0.090(20)	0.0016(4)	¹⁶⁹ Tm	5809.69(11)	0.147(20)	0.0026(4)
¹⁶⁹ Tm	784.900(4)	0.18(4)	0.0032(7)	¹⁶⁹ Tm	5858.03(11)	0.41(4)	0.0020(4)
¹⁶⁹ Tm	790.216(4)	0.17(3)	0.0032(7)	¹⁶⁹ Tm	5898.56(11)	0.35(4)	0.0063(7)
¹⁶⁹ Tm	800.424(6)	0.122(23)	0.0022(4)	¹⁶⁹ Tm	5908.27(11)	0.49(4)	0.0088(7)
¹⁶⁹ Tm	810.7260(20)	0.157(21)	0.0028(4)	¹⁶⁹ Tm	5941.47(11)	1.51(7)	0.0271(13)
¹⁶⁹ Tm	815.624(4)	0.76(3)	0.0136(5)	¹⁶⁹ Tm	5943.09(11)	1.03(20)	0.018(4)
¹⁶⁹ Tm	818.5070(20)	0.233(20)	0.0042(4)	¹⁶⁹ Tm	6001.61(11)	0.99(10)	0.0178(18)
¹⁶⁹ Tm	824.0610(20)	0.318(22)	0.0057(4)	¹⁶⁹ Tm	6354.59(11)	0.42(4)	0.0075(7)
¹⁶⁹ Tm	844.677(9)	0.147(18)	0.0026(3)	¹⁶⁹ Tm	6387.37(11)	1.48(7)	0.0265(13)
¹⁶⁹ Tm	854.337(4)	1.41(4)	0.0253(7)	¹⁶⁹ Tm	6442.10(11)	0.47(3)	0.0084(5)
¹⁶⁹ Tm	866.522(6)	0.353(24)	0.0063(4)	¹⁶⁹ Tm	6553.10(11)	0.65(13)	0.0117(23)
¹⁶⁹ Tm	869.401(4)	0.235(23)	0.0042(4)				$04(3), \sigma_{\gamma}^{z} = 34.9(8)$
¹⁶⁹ Tm	886.5560(20)	0.230(24)	0.0041(4)	¹⁷⁰ Yb	19.3940(20)	0.021(5)	0.00037(9)
¹⁶⁹ Tm	890.047(3)	0.17(4)	0.0030(7)	¹⁷⁴ Yb	41.2180(20)	1.1(3)	0.019(5)
¹⁶⁹ Tm	920.507(9)	0.113(24)	0.0020(4)	¹⁷⁴ Yb	46.7510(20)	0.25(8)	0.0044(14)
¹⁶⁹ Tm	928.265(4)	0.37(3)	0.0066(5)	¹⁶⁸ Yb	62.7190(10)	0.064(12)	0.00112(21)
¹⁶⁹ Tm	943.522(4)	0.24(3)	0.0043(5)	¹⁷⁰ Yb	66.720(10)	0.024(6)	0.00042(11)
¹⁶⁹ Tm	956.145(3)	0.33(6)	0.0059(11)	¹⁶⁸ Yb	75.0400(10)	0.015(3)	0.00026(5)
¹⁶⁹ Tm	959.201(4)	0.28(3)	0.0050(5)	¹⁷³ Yb	76.996	0.40(4)	0.0070(7)
¹⁶⁹ Tm	959.220(9)	0.45(9)	0.0081(16)	¹⁷¹ Yb	78.7430(10)	0.67(10)	0.0117(18)
¹⁶⁹ Tm	973.121(12)	0.10(4)	0.0018(7)	¹⁷³ Yb	86.11(7)	0.164(18)	0.0029(3)
¹⁶⁹ Tm	987.453(3)	0.30(3)	0.0054(5)	¹⁶⁸ Yb	87.3840(10)	0.016(3)	0.00028(5)
¹⁶⁹ Tm	995.714(4)	0.106(23)	0.0019(4)	¹⁷⁴ Yb	87.9690(20)	0.26(6)	0.0046(11)
¹⁶⁹ Tm	998.253(4)	0.200(25)	0.0036(5)	¹⁷³ Yb	88.26(11)	0.044(8)	0.00077(14)
¹⁶⁹ Tm	1000.898(10)	0.23(4)	0.0041(7)	¹⁷⁴ Yb	89.9570(20)	0.066(16)	0.0012(3)
¹⁶⁹ Tm	1018.431(10)	0.28(6)	0.0050(11)	¹⁷³ Yb	93.60(6)	0.109(13)	0.00191(23)
¹⁶⁹ Tm	1027.820(12)	0.26(4)	0.0047(7)	¹⁷⁴ Yb	95.2730(20)	0.20(5)	0.0035(9)
¹⁶⁹ Tm	1040.1330(10)	0.25(7)	0.0045(13)	¹⁷⁴ Yb	100.759(4)	0.019(7)	0.00033(12)
¹⁶⁹ Tm	1043.108(12)	0.19(4)	0.0034(7)	¹⁷³ Yb	102.60(5)	0.44(5)	0.0077(9)
¹⁶⁹ Tm	1045.353(12)	0.18(4)	0.0032(7)	¹⁷⁴ Yb	104.5260(20)	0.43(11)	0.0075(19)
¹⁶⁹ Tm	1061.868(14)	0.49(10)	0.0088(18)	¹⁷⁴ Yb	113.805(4)d	0.417(14)	0.00730[<0.1%]
¹⁶⁹ Tm	1070.969(6)	0.30(6)	0.0054(11)	¹⁷⁶ Yb	125.23(18)	0.007(3)	1.2(5)E-4
¹⁶⁹ Tm	1101.996(3)	0.10(3)	0.0018(5)	¹⁷³ Yb	138.27(6)	0.058(7)	0.00102(12)
¹⁶⁹ Tm	1140.192(4)	0.62(12)	0.0111(22)	¹⁷⁴ Yb	142.0240(20)	0.032(8)	0.00056(14)
¹⁶⁹ Tm	1154.112(12)	0.18(4)	0.0032(7)	174 Yb	142.478(3)	0.021(5)	0.00037(9)
¹⁶⁹ Tm	1171.966(11)	0.14(3)	0.0025(5)	¹⁶⁸ Yb	144.5760(10)	0.016(3)	0.00028(5)
¹⁶⁹ Tm	1178.905(4)	0.56(4)	0.0100(7)	¹⁷³ Yb	148.72(9)	0.031(5)	0.00054(9)
¹⁶⁹ Tm ¹⁶⁹ Tm	1184.563(14)	0.20(3)	0.0036(5)	¹⁶⁸ Yb	156.8980(10)	0.038(7)	0.00067(12)
169 Tm	1210.678(11)	0.36(7)	0.0065(13)	¹⁷⁴ Yb	163.012(5)	0.132(25)	0.0023(4)
169 Tm	1226.345(12)	0.120(22)	0.0022(4)	¹⁷⁴ Yb	172.167(4)	0.118(22)	0.0021(4)
169 Tm	1238.136(10)	0.107(21)	0.0019(4)	¹⁷³ Yb	175.30(5)	0.58(6)	0.0102(11)
169 Tm	1265.057(12)	0.210(24)	0.0038(4)	¹⁷¹ Yb	181.529(3)	0.53(6)	0.0093(11)
169 Tm	1354.71(7)	0.128(23)	0.0023(4)	¹⁶⁸ Yb	191.2140(10)	0.22(4)	0.0039(7)
1111	4641.4(4)	0.32(3)	0.0057(5)	¹⁷³ Yb	198.29(12)	0.023(4)	0.00040(7)

^A Z	Eγ-keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn		$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$
¹⁷³ Yb	223.00(8)	0.029(4)	0.00051(7)	¹⁷⁴ Yb	639.261(9)	1.43(17)	0.025(3)
¹⁷⁴ Yb	231.502(6)	0.060(8)	0.00105(14)	¹⁷⁴ Yb	657.441(11)	0.031(8)	0.00054(14)
¹⁷⁴ Yb	232.435(3)	0.025(4)	0.00044(7)	¹⁶⁸ Yb	660.180(11)	0.016(3)	0.00028(5)
¹⁷³ Yb	243.68(19)	0.018(4)	0.00032(7)	¹⁷³ Yb	661.5(3)	0.024(6)	0.00042(11)
¹⁷⁴ Yb	246.778(14)	0.024(7)	0.00042(12)	¹⁷⁰ Yb	669.95(7)	0.120(15)	0.0021(3)
¹⁷⁴ Yb	255.338(5)	0.033(10)	0.00058(18)	¹⁷⁴ Yb	680.17(4)	0.034(6)	0.00060(11)
¹⁷⁴ Yb	267.538(5)	0.073(10)	0.00128(18)	¹⁷⁴ Yb	680.67(14)	0.031(7)	0.00054(12)
¹⁷³ Yb	274.90(7)	0.044(6)	0.00077(11)	¹⁷³ Yb	684.74(10)	0.052(8)	0.00091(14)
¹⁷⁴ Yb	282.522(14)d	0.666(22)	0.0117[<0.1%]	¹⁷³ Yb	689.8(4)	0.015(5)	0.00026(9)
¹⁷¹ Yb	287.138(3)	0.062(11)	0.00109(19)	¹⁶⁸ Yb	690.968(10)	0.037(6)	0.00065(11)
¹⁷⁴ Yb	288.626(17)	0.016(3)	0.00028(5)	¹⁷⁰ Yb	691.62(13)	0.045(8)	0.00079(14)
¹⁷⁴ Yb	311.276(5)	0.26(4)	0.0046(7)	¹⁷⁴ Yb	697.29(4)	0.034(8)	0.00060(14)
¹⁷³ Yb	341.27(16)	0.026(5)	0.00046(9)	¹⁷⁰ Yb	698.36(11)	0.052(7)	0.00091(12)
¹⁷⁴ Yb	363.938(6)	0.80(12)	0.0140(21)	¹⁷⁴ Yb	707.45(4)	0.121(19)	0.0021(3)
¹⁶⁸ Yb	378.616(3)	0.033(6)	0.00058(11)	¹⁶⁸ Yb	719.969(22)	0.141(15)	0.0025(3)
¹⁷⁴ Yb	389.422(5)	0.032(5)	0.00056(9)	¹⁷⁴ Yb	725.975(21)	0.015(5)	0.00026(9)
¹⁷⁴ Yb	392.114(11)	0.097(12)	0.00170(21)	¹⁶⁸ Yb	726.422(11)	0.049(6)	0.00086(11)
¹⁷⁴ Yb	396.329(20)d	1.42(5)	0.0249[<0.1%]	¹⁷⁴ Yb	729.218(9)	0.128(16)	0.0022(3)
¹⁷² Yb	399.17(4)	0.111(12)	0.00194(21)	¹⁷⁴ Yb	740.17(5)	0.038(11)	0.00067(19)
¹⁷⁴ Yb	400.996(15)	0.015(4)	0.00026(7)	¹⁷⁴ Yb	742.0(4)	0.076(12)	0.00133(21)
¹⁷⁴ Yb	405.156(6)	0.040(6)	0.00070(11)	¹⁶⁸ Yb	761.850(10)	0.039(7)	0.00068(12)
¹⁷⁴ Yb	406.05(14)	0.111(14)	0.00194(25)	¹⁷³ Yb	762.65(8)	0.069(9)	0.00121(16)
¹⁷⁴ Yb	406.548(5)	0.118(18)	0.0021(3)	¹⁷⁴ Yb	767.169(9)	0.151(25)	0.0026(4)
¹⁷³ Yb	409.38(7)	0.031(5)	0.00054(9)	¹⁷⁰ Yb	774.42(9)	0.042(6)	0.00074(11)
¹⁷³ Yb	411.48(11)	0.021(4)	0.00037(7)	¹⁷⁴ Yb	800.409(16)	0.111(16)	0.0019(3)
¹⁷⁴ Yb	423.219(11)	0.045(7)	0.00079(12)	¹⁷⁴ Yb	811.427(9)	0.92(16)	0.016(3)
¹⁷⁴ Yb	428.613(12)	0.61(7)	0.0107(12)	¹⁷⁴ Yb	812.019(11)	0.10(3)	0.0018(5)
¹⁷⁴ Yb	436.173(5)	0.52(6)	0.0091(11)	¹⁷⁴ Yb	816.14(4)	0.132(21)	0.0023(4)
¹⁷⁴ Yb	436.472(16)	0.037(8)	0.00065(14)	¹⁷⁴ Yb	825.22(7)	0.154(24)	0.0027(4)
¹⁷⁴ Yb	452.80(14)	0.019(3)	0.00033(5)	¹⁶⁸ Yb	827.193(11)	0.023(4)	0.00040(7)
¹⁷⁴ Yb	453.299(6)	0.031(6)	0.00054(11)	¹⁷⁴ Yb	841.627(16)	0.138(17)	0.0024(3)
¹⁷⁴ Yb	465.033(11)	0.06(4)	0.0011(7)	¹⁷⁴ Yb	852.951(20)	0.049(13)	0.00086(23)
¹⁷⁴ Yb	468.079(19)	0.022(4)	0.00039(7)	¹⁷¹ Yb	854.504(22)	0.020(4)	0.00035(7)
¹⁷⁴ Yb	476.606(11)	0.015(4)	0.00026(7)	¹⁷¹ Yb	857.621(7)	0.208(25)	0.0036(4)
¹⁷⁴ Yb	476.643(8)	0.015(4)	0.00026(7)	¹⁷⁴ Yb	858.05(5)	0.045(10)	0.00079(18)
¹⁷⁴ Yb	477.391(5)	0.75(8)	0.0131(14)	¹⁷⁴ Yb	866.027(11)	0.017(7)	0.00030(12)
¹⁷⁴ Yb	482.071(11)	0.23(3)	0.0040(5)	¹⁷⁴ Yb	869.60(4)	0.100(18)	0.0018(3)
¹⁷¹ Yb	490.444(8)	0.0172(24)	0.00030(4)	¹⁷⁰ Yb	869.7(15)	0.026(6)	0.00046(11)
¹⁷⁴ Yb	496.414(11)	0.023(7)	0.00040(12)	174 Yb	871.695(9)	0.24(4)	0.0042(7)
¹⁷⁴ Yb	497.717(10)	0.022(5)	0.00039(9)	¹⁷⁴ Yb	894.47(5)	0.066(13)	0.00116(23)
¹⁷⁴ Yb	498.315(9)	0.076(11)	0.00133(19)	174 Yb	905.0(4)	0.045(12)	0.00079(21)
¹⁷⁴ Yb	505.05(5)	0.030(8)	0.00053(14)	170 Yb	906.15(14)	0.040(7)	0.00070(12)
¹⁷⁴ Yb ¹⁷⁴ Yb	511.784(11)	0.34(5)	0.0060(9)	¹⁷¹ Yb ¹⁷⁰ Yb	912.145(9)	0.049(8)	0.00086(14)
174 Yb	514.868(7)d	9.0(9)	0.158[100%]		923.4(3)	0.019(6)	0.00033(11)
171 Yb	518.491(11)	0.037(9)	0.00065(16)	¹⁷⁴ Yb ¹⁷⁴ Yb	941.22(5)	0.082(15)	0.0014(3)
174 Yb	528.289(7)	0.024(3)	0.00042(5)	174 Yb	945.21(4)	0.069(15)	0.0012(3)
174 Yb	534.735(9)	0.50(6)	0.0088(11)	174 Yb	947.01(23) 953.996(11)	0.076(12) 0.095(24)	0.00133(21)
174 Yb	548.841(12) 553.002(11)	0.020(7) 0.091(13)	0.00035(12) 0.00159(23)	174 Yb	953.996(11)	0.093(24)	0.0017(4) 0.00030(12)
174 Yb	556.090(8)	0.066(11)	0.00139(23)	174 Yb	960.34(4)	0.017(7)	0.00030(12)
171 Yb	558.935(8)	0.000(11)	0.00116(19)	171 Yb	960.34(4) 961.489(8)	0.015(7)	0.0026(12)
174 Yb	565.242(11)	0.020(3)	0.00033(3)	170 Yb	963.15(9)	0.120(17)	0.0021(3)
¹⁷³ Yb	570.30(19)	0.039(8)	0.00049(11)	171 Yb	964.197(10)	0.229(25)	0.00203(23)
¹⁷⁴ Yb	571.915(8)	0.047(7)	0.00049(11)	174 Yb	982.44(5)	0.129(23)	0.0023(4)
¹⁶⁸ Yb	572.700(7)	0.047(7)	0.00082(12)	174 Yb	988.22(4)	0.088(19)	0.0025(4)
168 Yb	576.398(10)	0.049(8)	0.00042(7)	170 Yb	990.18(15)	0.051(11)	0.00089(19)
¹⁷¹ Yb	576.4(3)	0.024(4)	0.00042(7)	171 Yb	995.79(4)	0.031(11)	0.00035(5)
174 Yb	577.28(5)	0.020(3)	0.00033(3)	174 Yb	1005.49(23)	0.020(3)	0.00058(18)
168 Yb	590.695(10)	0.040(8)	0.00081(14)	174 Yb	1005.49(25)	0.054(17)	0.00038(18)
¹⁷¹ Yb	602.469(5)	0.030(4)	0.0010(3)	174 Yb	1000.00(23)	0.034(17)	0.0009(3)
174 Yb	602.841(8)	0.072(10)	0.00035(7)	171 Yb	1009.5(4)	0.082(17)	0.00032(4)
¹⁷⁴ Yb	618.09(4)	0.072(10)	0.00120(18)	174 Yb	1022.62(23)	0.0182(23)	0.00061(23)
168 Yb	622.127(11)	0.020(4)	0.00033(7)	171 Yb	1022.02(23)	0.035(13)	0.00026(3)
¹⁶⁸ Yb	623.026(7)	0.035(6)	0.00061(11)	171 Yb	1020.313(17)	0.0131(19)	0.0039(5)
¹⁷⁴ Yb	624.692(9)	0.026(4)	0.00046(7)	173 Yb	1055.83(18)	0.037(7)	0.00065(12)
¹⁷⁴ Yb	635.22(4)	0.078(13)	0.00137(23)	171 Yb	1070.475(15)	0.025(3)	0.00044(5)
¹⁶⁸ Yb	635.348(7)	0.103(17)	0.00137(23)	¹⁷¹ Yb	1076.246(6)	0.52(6)	0.0091(11)
¹⁶⁸ Yb	635.418(7)	0.103(17)	0.0018(3)	¹⁷¹ Yb	1093.674(9)	0.24(3)	0.0042(5)
	` /	` /	* /		()	· /	` /

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
¹⁷⁰ Yb	1099.82(19)	0.040(7)	0.00070(12)	¹⁷¹ Yb	1956.39(3)	0.028(4)	0.00049(7)
¹⁷⁴ Yb	1115.5(3)	0.11(3)	0.0019(5)	¹⁷¹ Yb	1968.29(3)	0.061(14)	0.00107(25)
¹⁷¹ Yb	1117.892(7)	0.086(14)	0.00151(25)	¹⁷¹ Yb	1997.515(21)	0.044(7)	0.00077(12)
¹⁷¹ Yb	1119.780(8)	0.46(6)	0.0081(11)	¹⁷³ Yb	2003.14(25)	0.045(10)	0.00079(18)
¹⁷⁴ Yb	1122.3(10)	0.09(3)	0.0016(5)	¹⁷¹ Yb	2009.50(5)	0.074(12)	0.00130(21)
¹⁷³ Yb	1129.81(17)	0.128(17)	0.0022(3)	¹⁷¹ Yb	2024.16(3)	0.081(12)	0.00142(21)
¹⁷⁰ Yb	1138.9(3)	0.042(13)	0.00074(23)	¹⁷³ Yb	2093.9(3)	0.026(8)	0.00046(14)
¹⁷¹ Yb	1143.017(8)	0.106(13)	0.00186(23)	¹⁷¹ Yb	2102.90(3)	0.040(5)	0.00070(9)
¹⁷¹ Yb	1152.16(5)	0.021(3)	0.00037(5)	¹⁷¹ Yb	2115.56(4)	0.039(7)	0.00068(12)
¹⁷¹ Yb	1154.989(6)	0.099(13)	0.00173(23)	¹⁷¹ Yb	2133.85(7)	0.043(6)	0.00075(11)
¹⁷⁴ Yb	1187.7(3)	0.054(17)	0.0009(3)	¹⁷³ Yb	2171.4(3)	0.059(12)	0.00103(21)
¹⁶⁸ Yb	1207.44(7)	0.018(4)	0.00032(7)	¹⁷¹ Yb	2195.09(5)	0.066(11)	0.00116(19)
¹⁶⁸ Yb	1221.20(3)	0.015(3)	0.00026(5)	¹⁷¹ Yb	2234.17(10)	0.042(11)	0.00074(19)
¹⁶⁸ Yb	1232.902(13)	0.018(3)	0.00032(5)	¹⁷¹ Yb	2238.19(3)	0.052(12)	0.00091(21)
¹⁶⁸ Yb	1263.261(19)	0.024(5)	0.00042(9)	¹⁷¹ Yb	2263.11(3)	0.042(11)	0.00074(19)
¹⁷⁰ Yb	1265.10(22)	0.081(12)	0.00142(21)	¹⁷¹ Yb	2296.47(4)	0.035(7)	0.00061(12)
¹⁷¹ Yb	1288.873(12)	0.019(3)	0.00033(5)	¹⁷¹ Yb	2327.57(8)	0.094(19)	0.0016(3)
¹⁷³ Yb	1292.2(4)	0.036(9)	0.00063(16)	¹⁷³ Yb	2388.7(4)	0.036(10)	0.00063(18)
¹⁶⁸ Yb	1295.620(13)	0.017(3)	0.00030(5)	¹⁷¹ Yb	2401.37(3)	0.20(3)	0.0035(5)
¹⁷⁴ Yb	1296.3(3)	0.046(17)	0.0008(3)	174 Yb	3632.3(10)	0.40(10)	0.0070(18)
¹⁷³ Yb	1308.53(11)	0.168(19)	0.0029(3)	¹⁷⁴ Yb	3661.2(14)	0.043(10)	0.00075(18)
¹⁷¹ Yb	1326.286(7)	0.055(7)	0.00096(12)	¹⁷⁴ Yb	3714.7(5)	0.23(6)	0.0040(11)
¹⁷³ Yb	1353.21(22)	0.041(9)	0.00072(16)	¹⁷⁴ Yb	3740.8(14)	0.043(10)	0.00075(18)
¹⁷⁰ Yb	1371.3(4)	0.023(8)	0.00040(14)	¹⁷⁴ Yb	3776.2(23)	0.040(10)	0.00079(18)
¹⁶⁸ Yb	1374.45(7)	0.023(8)	0.00037(7)	¹⁷⁴ Yb	3782.9(19)	0.057(14)	0.00100(25)
¹⁷⁴ Yb	1378.22(7)	0.42(12)	0.00037(7)	¹⁷⁴ Yb	3823.8(14)	0.026(6)	0.00100(23)
¹⁷⁴ Yb	1378.7(10)	0.046(17)	0.0008(3)	¹⁷⁴ Yb	3842.1(14)	0.074(18)	0.0013(3)
¹⁷³ Yb	1381.48(14)	0.129(16)	0.0023(3)	¹⁷⁴ Yb	3854.4(11)	0.085(16)	0.0015(3)
171 Yb	1387.243(7)	0.142(18)	0.0025(3)	¹⁷³ Yb	3868.0(4)	0.103(14)	0.0013(3)
¹⁷¹ Yb	1398.07(4)	0.142(18)	0.0023(3)	174 Yb	3885.0(4)	0.72(17)	0.013(3)
¹⁶⁸ Yb	1410.40(14)	0.015(8)	0.0023(3)	¹⁷⁴ Yb	3929.3(4)	0.72(17)	0.015(3)
¹⁶⁸ Yb	1432.33(7)	0.015(8)	0.00028(7)	¹⁷⁴ Yb	3978.2(19)	0.020(5)	0.0007(10)
171 Yb	1452.35(7)	0.010(4)	0.00028(7)	¹⁷⁴ Yb	4129.6(19)	0.026(6)	0.00035(9)
173 Yb	1456.65(23)	0.032(3)	* *	174 Yb	4129.6(19)		0.00040(11)
171 Yb		0.085(13)	0.0015(3)	174 Yb	4174.9(13)	0.023(6)	0.00040(11)
170 Yb	1465.985(7) 1469.79(17)		0.00166(19) 0.0017(3)	174 Yb	4174.9(13) 4195.0(4)	0.088(21)	
171 Yb	1470.401(12)	0.096(16) 0.058(7)	0.0017(3)	174 Yb	4454.3(4)	0.058(14)	0.00102(25)
171 Yb	1476.81(12)	` /	` /	174 Yb		0.026(6)	0.00046(11)
173 Yb		0.048(6)	0.00084(11)	173 Yb	4465.9(4)	0.040(10)	0.00070(18)
170 Yb	1480.63(24)	0.050(12)	0.00088(21)	174 Yb	4716.5(7)	0.027(8)	0.00047(14)
168 Yb	1493.3(4)	0.027(10)	0.00047(18)	174 Yb	4830.2(4)	0.25(6)	0.0044(11)
171 Yb	1505.32(6)	0.018(4)	0.00032(7)	174 Yb	5011.0(4)	0.18(4)	0.0032(7)
173 Yb	1521.197(16)	0.193(24)	0.0034(4)	174 Yb	5266.3(4)	1.4(6)	0.025(11)
171 Yb	1529.19(15) 1529.779(9)	0.070(10)	0.00123(18)	171 Yb	5307.5(4)	0.020(5)	0.00035(9)
173 Yb	()	0.095(12)	0.00166(21)	171 Yb	5539.05(5)	0.083(11)	0.00145(19)
173 Yb	1533.99(14)	0.103(13)	0.00180(23)	170 Yb	5691.58(9)	0.020(3)	0.00035(5)
171 Yb	1552.0(3)	0.032(9)	0.00056(16)		5712.5(6)	0.056(9)	0.00098(16)
171 Yb	1553.54(25)	0.026(5)	0.00046(9)	¹⁷¹ Yb ¹⁷¹ Yb	5824.85(6)	0.0172(23)	0.00030(4)
171 Yb	1584.114(12)	0.037(6)	0.00065(11)	168 Yb	6009.65(6)	0.0148(19)	0.00026(3)
171 Yb	1589.06(4)	0.037(5)	0.00065(9)		6779.90(11)	0.058(7)	0.00102(12)
171 Yb	1599.939(16)	0.125(16)	0.0022(3)	175			$7(1), \sigma_{\gamma}^{z} = 76.6(23)$
171 Yb	1608.522(9)	0.081(11)	0.00142(19)	¹⁷⁵ Lu	38.7460(10)	0.38(12)	0.0066(21)
171 Yb	1621.960(12)	0.030(4)	0.00053(7)	¹⁷⁵ Lu	46.4590(10)	0.26(7)	0.0045(12)
173 Yb	1631.792(20)	0.054(7)	0.00095(12)	¹⁷⁵ Lu	66.2400(10)	0.28(4)	0.0048(7)
173 x 72	1638.36(17)	0.22(3)	0.0039(5)	¹⁷⁵ Lu	71.5170(10)	3.96(22)	0.069(4)
¹⁷³ Yb	1679.70(14)	0.161(19)	0.0028(3)	¹⁷⁵ Lu	73.1430(10)	0.160(20)	0.0028(4)
¹⁷¹ Yb	1696.12(3)	0.029(4)	0.00051(7)	¹⁷⁶ Lu	88.36(4)	7.1(4) s ⁻¹ g ⁻¹	Abundant
¹⁷¹ Yb	1715.35(4)	0.090(11)	0.00158(19)	¹⁷⁶ Lu	94.129(8)	0.72(4)	0.0125(7)
¹⁷³ Yb	1730.9(3)	0.030(8)	0.00053(14)	176 Lu	111.705(12)	1.03(5)	0.0178(9)
¹⁷¹ Yb	1742.889(10)	0.024(5)	0.00042(9)	¹⁷⁵ Lu	112.9220(10)	1.15(7)	0.0199(12)
¹⁷¹ Yb	1770.58(4)	0.073(22)	0.0013(4)	¹⁷⁶ Lu	112.9500(10)d	3.47(16)	0.060[<0.1%]
¹⁷³ Yb	1775.1(3)	0.052(11)	0.00091(19)	¹⁷⁶ Lu	115.651(8)	0.144(22)	0.0025(4)
¹⁷¹ Yb	1786.76(3)	0.027(4)	0.00047(7)	¹⁷⁶ Lu	119.836(3)	1.32(22)	0.023(4)
¹⁷¹ Yb	1815.84(3)	0.073(10)	0.00128(18)	¹⁷⁶ Lu	121.620(3)	5.24(17)	0.091(3)
¹⁷¹ Yb	1849.32(4)	0.046(6)	0.00081(11)	¹⁷⁵ Lu	129.7730(10)	0.18(3)	0.0031(5)
¹⁷³ Yb	1859.2(3)	0.051(10)	0.00089(18)	¹⁷⁶ Lu	135.802(19)	0.37(3)	0.0064(5)
¹⁷¹ Yb	1877.64(3)	0.035(5)	0.00061(9)	¹⁷⁶ Lu	138.607(5)	6.79(24)	0.118(4)
¹⁷³ Yb	1920.6(3)	0.040(10)	0.00070(18)	¹⁷⁵ Lu	139.3830(10)	0.25(4)	0.0043(7)
¹⁷¹ Yb	1930.76(5)	0.070(9)	0.00123(16)	¹⁷⁶ Lu	144.745(5)	1.33(8)	0.0230(14)

¹⁷⁶ Lu	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn		^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -bar	
Lu	145.870(4)	1.52(9)	0.0263(16)	176 Lu	606.65(7)	0.182(15)	0.0032(3)
⁷⁶ Lu	147.165(5)	4.96(19)	0.086(3)	¹⁷⁶ Lu	671.908(15)	0.259(21)	0.0045(4)
⁷⁶ Lu	147.167(5)	3.7(7)	0.064(12)	¹⁷⁶ Lu	689.77(6)	0.31(5)	0.0054(9)
¹⁷⁶ Lu	150.392(3)	13.8(4)	0.239(7)	¹⁷⁶ Lu	695.033(16)	0.296(25)	0.0051(4)
¹⁷⁵ Lu	153.4670(10)	0.55(5)	0.0095(9)	¹⁷⁵ Lu	709.553(4)	0.21(7)	0.0036(12)
¹⁷⁶ Lu	162.492(4)	5.32(17)	0.092(3)	¹⁷⁶ Lu	716.470(17)	0.189(16)	0.0033(3)
¹⁷⁶ Lu	168.605(6)	0.97(5)	0.0168(9)	¹⁷⁶ Lu	761.564(20)	2.60(9)	0.0450(16)
176 Lu	171.869(7)	1.74(6)	0.0301(10)	175 Lu	834.810(3)	0.20(11)	0.0035(19)
175 Lu	182.4220(10)	0.46(10)		175 Lu	838.643(3)	0.89(10)	
		` /	0.0080(17)	176 Lu	` /	` /	0.0154(17)
¹⁷⁶ Lu	185.593(8)	3.42(12)	0.0592(21)	176 Lu	864.52(8)	0.191(16)	0.0033(3)
¹⁷⁶ Lu	187.970(23)	1.39(6)	0.0241(10)	176 x	899.12(6)	0.423(25)	0.0073(4)
¹⁷⁵ Lu	188.2870(10)	0.29(4)	0.0050(7)	¹⁷⁶ Lu	907.86(6)	0.42(3)	0.0073(5)
¹⁷⁶ Lu	191.492(9)	0.62(12)	0.0107(21)	¹⁷⁶ Lu	907.961(18)	0.35(5)	0.0061(9)
¹⁷⁵ Lu	192.2120(10)	1.08(14)	0.0187(24)	¹⁷⁶ Lu	916.24(4)	0.439(25)	0.0076(4)
¹⁷⁶ Lu	195.565(8)	0.63(5)	0.0109(9)	¹⁷⁵ Lu	1000.846(18)	0.15(10)	0.0026(17)
¹⁷⁵ Lu	197.550(14)	0.30(14)	0.0052(24)	¹⁷⁶ Lu	1036.39(8)	0.169(16)	0.0029(3)
¹⁷⁵ Lu	201.5680(10)	0.78(12)	0.0135(21)	¹⁷⁶ Lu	1061.97(6)	0.45(4)	0.0078(7)
¹⁷⁶ Lu	201.83(4)	37.9(22)	Abundant	¹⁷⁶ Lu	1080.24(6)	0.68(4)	0.0118(7)
¹⁷⁶ Lu	207.797(8)	1.00(5)	0.0173(9)	176 Lu	1088.11(4)	0.83(4)	0.0144(7)
176 Lu	208.3660(10)d		* *	176 Lu	1215.36(13)	0.139(14)	0.00241(24)
176 Lu		6.0(3)	0.104[<0.1%]	176 Lu			
	209.492(24)	0.298(25)	0.0052(4)		1233.84(6)	0.187(19)	0.0032(3)
¹⁷⁶ Lu	212.841(15)	0.16(3)	0.0028(5)	¹⁷⁶ Lu	1305.18(8)	0.36(3)	0.0062(5)
¹⁷⁶ Lu	213.965(8)	0.34(6)	0.0059(10)	¹⁷⁶ Lu	1381.01(6)	0.30(3)	0.0052(5)
¹⁷⁵ Lu	217.0030(10)	0.35(10)	0.0061(17)	¹⁷⁶ Lu	4866.8(5)	0.25(5)	0.0043(9)
¹⁷⁵ Lu	219.2830(20)	0.20(8)	0.0035(14)	¹⁷⁶ Lu	5016.6(5)	0.215(18)	0.0037(3)
¹⁷⁵ Lu	225.4030(10)	1.73(8)	0.0300(14)	¹⁷⁶ Lu	5023.6(3)	0.176(24)	0.0030(4)
¹⁷⁵ Lu	227.9970(10)	0.57(7)	0.0099(12)	¹⁷⁶ Lu	5319.45(24)	0.167(19)	0.0029(3)
¹⁷⁶ Lu	228.708(10)	0.178(21)	0.0031(4)	¹⁷⁶ Lu	5323.12(13)	0.145(15)	0.0025(3)
¹⁷⁵ Lu	233.7410(20)	0.41(10)	0.0071(17)	175 Lu	5331.80(20)	0.16(4)	0.0028(7)
176 Lu	235.892(15)	0.81(4)	0.0140(7)	175 Lu	5331.94(20)	0.19(4)	0.0033(7)
175 Lu			0.0035(10)	176 Lu			
	238.6710(10)	0.20(6)			5343.91(25)	0.26(3)	0.0045(5)
¹⁷⁶ Lu	244.310(12)	0.45(8)	0.0078(14)	¹⁷⁶ Lu	5465.7(3)	0.218(16)	0.0038(3)
¹⁷⁶ Lu	247.255(15)	0.247(23)	0.0043(4)	¹⁷⁶ Lu	5570.12(10)	0.385(24)	0.0067(4)
¹⁷⁵ Lu	251.1990(20)	0.16(3)	0.0028(5)	¹⁷⁶ Lu	5601.87(25)	0.327(25)	0.0057(4)
¹⁷⁶ Lu	259.401(16)	1.89(8)	0.0327(14)	¹⁷⁶ Lu	5728.00(10)	0.23(3)	0.0040(5)
¹⁷⁵ Lu	263.7290(10)	0.59(10)	0.0102(17)	¹⁷⁶ Lu	5769.72(10)	0.184(18)	0.0032(3)
¹⁷⁶ Lu	264.581(6)	0.76(11)	0.0132(19)	¹⁷⁶ Lu	6803.92(9)	0.38(8)	0.0066(14)
¹⁷⁶ Lu	268.788(5)	3.64(13)	0.0630(23)		* *		$(8.49(2), \sigma_{\gamma}^{z} = 11)$
¹⁷⁵ Lu	277.6830(10)	0.20(6)	0.0035(10)	¹⁷⁸ Hf			
175 Lu	284.6410(10)	0.75(6)	0.0130(10)		45.8570(10)	1.21(7)	0.0205(12)
176 Lu	301.098(6)		0.0136(7)	¹⁷⁷ Hf	62.820(21)	5.26(16)	0.089(3)
		0.73(4)		¹⁷⁷ Hf	93.182(6)	13.3(9)	0.226(15)
¹⁷⁶ Lu	306.84(4)	45.2(24) s ⁻¹ g ⁻¹		¹⁷⁹ Hf	93.3240(20)	0.80(5)	0.0136(9)
175	210 1070(10)	1 40(9)	0.0259(1.4)				
¹⁷⁵ Lu	310.1870(10)	1.49(8)	0.0258(14)	$^{178}\mathrm{Hf}$	105.8940(20)	0.335(10)	0.00569(17)
¹⁷⁶ Lu	313.350(8)	0.40(3)	0.0069(5)	¹⁷⁸ Hf ¹⁷⁷ Hf	105.8940(20) 122.8970(10)		
¹⁷⁶ Lu ¹⁷⁶ Lu			, ,	¹⁷⁷ Hf ¹⁷⁴ Hf	122.8970(10)	0.432(16)	0.0073(3)
¹⁷⁶ Lu ¹⁷⁶ Lu ¹⁷⁶ Lu	313.350(8)	0.40(3)	0.0069(5) 0.0663(23) 0.0054(5)	¹⁷⁷ Hf ¹⁷⁴ Hf	122.8970(10) 125.7(10)	0.432(16) 0.2000(20)	0.0073(3) 0.00340(3)
¹⁷⁶ Lu ¹⁷⁶ Lu ¹⁷⁶ Lu ¹⁷⁶ Lu	313.350(8) 319.036(8)	0.40(3) 3.83(13)	0.0069(5) 0.0663(23) 0.0054(5)	¹⁷⁷ Hf ¹⁷⁴ Hf ¹⁷⁷ Hf	122.8970(10) 125.7(10) 144.530(3)	0.432(16) 0.2000(20) 0.384(13)	0.0073(3) 0.00340(3) 0.00652(22)
¹⁷⁶ Lu ¹⁷⁶ Lu ¹⁷⁶ Lu ¹⁷⁶ Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3)	0.40(3) 3.83(13) 0.31(3) 0.181(21)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4)	¹⁷⁷ Hf ¹⁷⁴ Hf ¹⁷⁷ Hf ¹⁷⁸ Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20)	0.432(16) 0.2000(20) 0.384(13) 0.57(10)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17)
¹⁷⁶ Lu ¹⁷⁶ Lu ¹⁷⁶ Lu ¹⁷⁶ Lu ¹⁷⁶ Lu ¹⁷⁵ Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14)	¹⁷⁷ Hf ¹⁷⁴ Hf ¹⁷⁷ Hf ¹⁷⁸ Hf ¹⁷⁸ Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5)
¹⁷⁶ Lu ¹⁷⁶ Lu ¹⁷⁶ Lu ¹⁷⁶ Lu ¹⁷⁶ Lu ¹⁷⁵ Lu ¹⁷⁵ Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5)	¹⁷⁷ Hf ¹⁷⁴ Hf ¹⁷⁷ Hf ¹⁷⁸ Hf ¹⁷⁸ Hf ¹⁷⁸ Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22)
176 Lu 176 Lu 176 Lu 176 Lu 176 Lu 175 Lu 176 Lu 176 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12)
176 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 177 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22)
176 Lu 176 Lu 176 Lu 176 Lu 176 Lu 176 Lu 175 Lu 176 Lu 176 Lu 176 Lu 176 Lu 176 Lu 176 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 177 Hf 178 Hf 178 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20) 214.3410(20)d	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12)
176 Lu 176 Lu 176 Lu 176 Lu 176 Lu 176 Lu 175 Lu 176 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 177 Hf 178 Hf 178 Hf 179 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10)
176 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4) 367.433(11)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3) 2.23(8)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5) 0.0386(14)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 177 Hf 178 Hf 178 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20) 214.3410(20)d	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%]
176 Lu 176 Lu 176 Lu 176 Lu 177 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 177 Hf 178 Hf 178 Hf 179 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20) 215.426(8)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3) 2.77(17) 0.38(9)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%] 0.047(3) 0.0065(15)
176 Lu 176 Lu 176 Lu 176 Lu 177 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4) 367.433(11)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3) 2.23(8)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5) 0.0386(14)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 179 Hf 179 Hf 179 Hf 179 Hf 178 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20) 215.426(8) 235.020(7) 239.1660(10)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3) 2.77(17) 0.38(9) 0.293(24)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%] 0.047(3) 0.0065(15) 0.0050(4)
176 Lu 176 Lu 176 Lu 176 Lu 176 Lu 177 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4) 367.433(11) 393.389(11) 413.665(13)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3) 2.23(8) 0.54(3) 0.93(4)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5) 0.0386(14) 0.0094(5) 0.0161(7)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 179 Hf 179 Hf 179 Hf 178 Hf 179 Hf 179 Hf 178 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20) 215.426(8) 235.020(7) 239.1660(10) 244.3130(20)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3) 2.77(17) 0.38(9) 0.293(24) 0.58(4)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%] 0.047(3) 0.0065(15) 0.0050(4) 0.0098(7)
176 Lu 176 Lu 176 Lu 176 Lu 176 Lu 177 Lu 177 Lu 177 Lu 178 Lu 179 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4) 367.433(11) 393.389(11) 413.665(13) 430.452(15)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3) 2.23(8) 0.54(3) 0.93(4) 0.147(21)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5) 0.0386(14) 0.0094(5) 0.0161(7) 0.0025(4)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 179 Hf 177 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20) 215.426(8) 235.020(7) 239.1660(10) 244.3130(20) 244.544(13)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3) 2.77(17) 0.38(9) 0.293(24) 0.58(4) 0.97(14)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%] 0.047(3) 0.0065(15) 0.0050(4) 0.0098(7) 0.0165(24)
176 Lu 176 Lu 176 Lu 176 Lu 176 Lu 177 Lu 177 Lu 177 Lu 178 Lu 179 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4) 367.433(11) 393.389(11) 413.665(13) 430.452(15) 436.505(13)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3) 2.23(8) 0.54(3) 0.93(4) 0.147(21) 0.145(20)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5) 0.0386(14) 0.0094(5) 0.0161(7) 0.0025(4) 0.0025(4)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 179 Hf 179 Hf 179 Hf 179 Hf 179 Hf 179 Hf 177 Hf 177 Hf 177 Hf 177 Hf 177 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20) 215.426(8) 235.020(7) 239.1660(10) 244.3130(20) 244.544(13) 245.2950(20)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3) 2.77(17) 0.38(9) 0.293(24) 0.58(4) 0.97(14) 0.58(4)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%] 0.047(3) 0.0065(15) 0.0050(4) 0.0098(7) 0.0165(24) 0.0098(7)
176 Lu 176 Lu 176 Lu 176 Lu 177 Lu 177 Lu 178 Lu 179 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4) 367.433(11) 393.389(11) 413.665(13) 430.452(15) 436.505(13) 457.944(15)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3) 2.23(8) 0.54(3) 0.93(4) 0.147(21) 0.145(20) 8.3(3)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5) 0.0386(14) 0.0094(5) 0.0161(7) 0.0025(4) 0.0025(4) 0.144(5)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 179 Hf 179 Hf 179 Hf 179 Hf 179 Hf 179 Hf 177 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20) 215.426(8) 235.020(7) 239.1660(10) 244.3130(20) 244.544(13) 245.2950(20) 256.6010(20)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3) 2.77(17) 0.38(9) 0.293(24) 0.58(4) 0.97(14) 0.58(4) 0.426(20)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%] 0.047(3) 0.0065(15) 0.0050(4) 0.0098(7) 0.0165(24) 0.0098(7) 0.0072(3)
176 Lu 176 Lu 176 Lu 176 Lu 177 Lu 177 Lu 178 Lu 179 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4) 367.433(11) 393.389(11) 413.665(13) 430.452(15) 436.505(13) 457.944(15) 475.46(3)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3) 2.23(8) 0.54(3) 0.93(4) 0.147(21) 0.145(20) 8.3(3) 0.287(16)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5) 0.0386(14) 0.0094(5) 0.0161(7) 0.0025(4) 0.1044(5) 0.0050(3)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 179 Hf 179 Hf 179 Hf 179 Hf 179 Hf 177 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20) 215.426(8) 235.020(7) 239.1660(10) 244.3130(20) 244.544(13) 245.2950(20) 256.6010(20) 258.6230(20)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3) 2.77(17) 0.38(9) 0.293(24) 0.58(4) 0.97(14) 0.58(4) 0.426(20) 0.44(10)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%] 0.047(3) 0.0065(15) 0.0050(4) 0.0098(7) 0.0165(24) 0.0098(7)
175 Lu 176 Lu 176 Lu 176 Lu 176 Lu 177 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4) 367.433(11) 393.389(11) 413.665(13) 430.452(15) 436.505(13) 457.944(15) 475.46(3) 520.5500(20)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3) 2.23(8) 0.54(3) 0.93(4) 0.147(21) 0.145(20) 8.3(3) 0.287(16) 0.20(4)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5) 0.0386(14) 0.0094(5) 0.0161(7) 0.0025(4) 0.0025(4) 0.144(5) 0.0050(3) 0.0035(7)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 179 Hf 179 Hf 179 Hf 179 Hf 179 Hf 177 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20) 215.426(8) 235.020(7) 239.1660(10) 244.3130(20) 244.544(13) 245.2950(20) 256.6010(20)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3) 2.77(17) 0.38(9) 0.293(24) 0.58(4) 0.97(14) 0.58(4) 0.426(20)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%] 0.047(3) 0.0065(15) 0.0050(4) 0.0098(7) 0.0165(24) 0.0098(7) 0.0072(3) 0.0075(17) 0.0052(3)
176 Lu 176 Lu 176 Lu 176 Lu 176 Lu 177 Lu 177 Lu 177 Lu 178 Lu 179 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4) 367.433(11) 393.389(11) 413.665(13) 430.452(15) 436.505(13) 457.944(15) 475.46(3) 520.5500(20) 527.5090(20)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3) 2.23(8) 0.54(3) 0.93(4) 0.147(21) 0.145(20) 8.3(3) 0.287(16) 0.20(4) 0.32(5)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5) 0.0386(14) 0.0094(5) 0.0161(7) 0.0025(4) 0.0025(4) 0.144(5) 0.0050(3) 0.0035(7) 0.0055(9)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 179 Hf 179 Hf 179 Hf 179 Hf 179 Hf 177 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20) 215.426(8) 235.020(7) 239.1660(10) 244.3130(20) 244.544(13) 245.2950(20) 256.6010(20) 258.6230(20)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3) 2.77(17) 0.38(9) 0.293(24) 0.58(4) 0.97(14) 0.58(4) 0.426(20) 0.44(10)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%] 0.047(3) 0.0065(15) 0.0050(4) 0.0098(7) 0.0165(24) 0.0098(7) 0.0072(3) 0.0075(17) 0.0052(3)
176 Lu 176 Lu 176 Lu 176 Lu 176 Lu 177 Lu 177 Lu 177 Lu 178 Lu 178 Lu 179 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4) 367.433(11) 393.389(11) 413.665(13) 430.452(15) 436.505(13) 457.944(15) 475.46(3) 520.5500(20)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3) 2.23(8) 0.54(3) 0.93(4) 0.147(21) 0.145(20) 8.3(3) 0.287(16) 0.20(4)	0.0069(5) 0.0663(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5) 0.0386(14) 0.0094(5) 0.0161(7) 0.0025(4) 0.0025(4) 0.144(5) 0.0050(3) 0.0035(7)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 179 Hf 179 Hf 179 Hf 179 Hf 177 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20) 215.426(8) 235.020(7) 239.1660(10) 244.3130(20) 244.544(13) 245.2950(20) 256.6010(20) 258.6230(20) 273.166(3) 277.2080(20)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3) 2.77(17) 0.38(9) 0.293(24) 0.58(4) 0.97(14) 0.58(4) 0.426(20) 0.44(10) 0.305(16) 0.47(3)	0.0073(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%] 0.047(3) 0.0065(15) 0.0050(4) 0.0098(7) 0.0165(24) 0.0098(7) 0.0072(3) 0.0075(17) 0.0052(3) 0.0080(5)
176 Lu 176 Lu 176 Lu 176 Lu 176 Lu 177 Lu 177 Lu 178 Lu 179 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4) 367.433(11) 393.389(11) 413.665(13) 430.452(15) 436.505(13) 457.944(15) 475.46(3) 520.5500(20) 527.5090(20) 544.602(18)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3) 2.23(8) 0.54(3) 0.93(4) 0.147(21) 0.145(20) 8.3(3) 0.287(16) 0.20(4) 0.32(5) 0.210(13)	0.0069(5) 0.0063(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5) 0.0386(14) 0.0094(5) 0.0161(7) 0.0025(4) 0.0025(4) 0.144(5) 0.0050(3) 0.0035(7) 0.0055(9) 0.00364(23)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 179 Hf 179 Hf 179 Hf 177 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20) 215.426(8) 235.020(7) 239.1660(10) 244.3130(20) 244.544(13) 245.2950(20) 256.6010(20) 258.6230(20) 273.166(3) 277.2080(20) 289.5570(20)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3) 2.77(17) 0.38(9) 0.293(24) 0.58(4) 0.97(14) 0.58(4) 0.426(20) 0.44(10) 0.305(16) 0.47(3) 0.67(4)	0.0073(3) 0.00340(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%] 0.047(3) 0.0065(15) 0.0050(4) 0.0098(7) 0.0165(24) 0.0098(7) 0.0072(3) 0.0075(17) 0.0052(3) 0.0080(5) 0.0114(7)
176 Lu 176 Lu 176 Lu 176 Lu 176 Lu 176 Lu 177 Lu 177 Lu 177 Lu 177 Lu 178 Lu 179 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4) 367.433(11) 393.389(11) 413.665(13) 430.452(15) 436.505(13) 457.944(15) 475.46(3) 520.5500(20) 527.5090(20) 544.602(18) 547.866(16)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3) 2.23(8) 0.54(3) 0.93(4) 0.147(21) 0.145(20) 8.3(3) 0.287(16) 0.20(4) 0.32(5) 0.210(13) 0.306(17)	0.0069(5) 0.0063(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5) 0.0386(14) 0.0094(5) 0.0161(7) 0.0025(4) 0.0025(4) 0.144(5) 0.0050(3) 0.0035(7) 0.0055(9) 0.00364(23) 0.0053(3)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 179 Hf 179 Hf 179 Hf 179 Hf 177 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20)d 215.426(8) 235.020(7) 239.1660(10) 244.3130(20) 244.544(13) 245.2950(20) 256.6010(20) 258.6230(20) 273.166(3) 277.2080(20) 289.5570(20) 303.9880(20)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3) 2.77(17) 0.38(9) 0.293(24) 0.58(4) 0.97(14) 0.58(4) 0.426(20) 0.44(10) 0.305(16) 0.47(3) 0.67(4) 3.38(9)	0.0073(3) 0.00340(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%] 0.047(3) 0.0065(15) 0.0050(4) 0.0098(7) 0.0165(24) 0.0098(7) 0.0072(3) 0.0072(3) 0.0075(17) 0.0052(3) 0.0080(5) 0.0114(7) 0.0574(15)
176 Lu 176 Lu 176 Lu 176 Lu 177 Lu 177 Lu 178 Lu 179 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4) 367.433(11) 393.389(11) 413.665(13) 430.452(15) 436.505(13) 457.944(15) 475.46(3) 520.5500(20) 527.5090(20) 544.602(18) 547.866(16) 550.288(15)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3) 2.23(8) 0.54(3) 0.93(4) 0.147(21) 0.145(20) 8.3(3) 0.287(16) 0.20(4) 0.32(5) 0.210(13) 0.306(17) 0.490(21)	0.0069(5) 0.0063(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5) 0.0386(14) 0.0094(5) 0.0161(7) 0.0025(4) 0.0025(4) 0.144(5) 0.0050(3) 0.0035(7) 0.0055(9) 0.00364(23) 0.0053(3) 0.0085(4)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 179 Hf 179 Hf 179 Hf 179 Hf 177 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20)d 215.426(8) 235.020(7) 239.1660(10) 244.3130(20) 244.544(13) 245.2950(20) 256.6010(20) 258.6230(20) 273.166(3) 277.2080(20) 289.5570(20) 303.9880(20) 325.559(4)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3) 2.77(17) 0.38(9) 0.293(24) 0.58(4) 0.97(14) 0.58(4) 0.426(20) 0.44(10) 0.305(16) 0.47(3) 0.67(4) 3.38(9) 6.69(17)	0.0073(3) 0.00340(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%] 0.047(3) 0.0065(15) 0.0050(4) 0.0098(7) 0.0165(24) 0.0098(7) 0.0072(3) 0.0075(17) 0.0052(3) 0.0080(5) 0.0114(7) 0.0574(15) 0.114(3)
176 Lu 176 Lu 176 Lu 176 Lu 177 Lu 178 Lu 179 Lu	313.350(8) 319.036(8) 322.865(19) 329.59(3) 335.8480(20) 336.323(15) 346.37(3) 348.084(9) 360.096(10) 364.58(4) 367.433(11) 393.389(11) 413.665(13) 430.452(15) 436.505(13) 457.944(15) 475.46(3) 520.5500(20) 527.5090(20) 544.602(18) 547.866(16)	0.40(3) 3.83(13) 0.31(3) 0.181(21) 1.32(8) 0.19(3) 0.35(6) 0.84(4) 0.29(9) 0.62(3) 2.23(8) 0.54(3) 0.93(4) 0.147(21) 0.145(20) 8.3(3) 0.287(16) 0.20(4) 0.32(5) 0.210(13) 0.306(17)	0.0069(5) 0.0063(23) 0.0054(5) 0.0031(4) 0.0229(14) 0.0033(5) 0.0061(10) 0.0145(7) 0.0050(16) 0.0107(5) 0.0386(14) 0.0094(5) 0.0161(7) 0.0025(4) 0.0025(4) 0.144(5) 0.0050(3) 0.0035(7) 0.0055(9) 0.00364(23) 0.0053(3)	177 Hf 174 Hf 177 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 178 Hf 179 Hf 179 Hf 179 Hf 179 Hf 177 Hf	122.8970(10) 125.7(10) 144.530(3) 161.1890(20) 193.3100(10) 202.2840(20) 213.439(7) 214.3410(20)d 215.426(8) 235.020(7) 239.1660(10) 244.3130(20) 244.544(13) 245.2950(20) 256.6010(20) 258.6230(20) 273.166(3) 277.2080(20) 289.5570(20) 303.9880(20)	0.432(16) 0.2000(20) 0.384(13) 0.57(10) 1.1(3) 0.65(13) 29.3(7) 5.7(6) 16.3(3) 2.77(17) 0.38(9) 0.293(24) 0.58(4) 0.97(14) 0.58(4) 0.426(20) 0.44(10) 0.305(16) 0.47(3) 0.67(4) 3.38(9)	0.0073(3) 0.00340(3) 0.00340(3) 0.00652(22) 0.0097(17) 0.019(5) 0.0110(22) 0.497(12) 0.097(10) 0.277[99%] 0.047(3) 0.0065(15) 0.0050(4) 0.0098(7) 0.0165(24) 0.0098(7) 0.0072(3) 0.0072(3) 0.0075(17) 0.0052(3) 0.0080(5) 0.0114(7) 0.0574(15)

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barn	$\mathbf{s} = \mathbf{k}_0$
¹⁷⁷ Hf	426.380(5)	0.35(3)	0.0059(5)	¹⁸¹ Ta	72.932(4)	0.054(15)	0.00090(25)
$^{177}{ m Hf}$	497.893(3)	1.11(11)	0.0188(19)	¹⁸¹ Ta	73.519(4)	0.06(3)	0.0010(5)
$^{176}{ m Hf}$	508.29(9)	1.05(6)	0.0178(10)	¹⁸¹ Ta	74.2680(20)	0.077(22)	0.0013(4)
$^{177}{ m Hf}$	547.374(5)	0.40(4)	0.0068(7)	¹⁸¹ Ta	76.549(6)	0.029(13)	0.00049(22)
$^{177}{ m Hf}$	596.894(4)	0.34(13)	0.0058(22)	¹⁸¹ Ta	82.876(4)	0.029(13)	0.00049(22)
$^{178}{ m Hf}$	729.515(4)	0.53(5)	0.0090(9)	¹⁸¹ Ta	92.480(3)	0.065(9)	0.00109(15)
$^{177}{ m Hf}$	921.822(5)	0.84(5)	0.0143(9)	¹⁸¹ Ta	94.1680(20)	0.051(7)	0.00085(12)
$^{177}{ m Hf}$	961.919(5)	0.76(7)	0.0129(12)	¹⁸¹ Ta	95.156(3)	0.081(9)	0.00136(15)
$^{177}{ m Hf}$	970.066(7)	0.32(8)	0.0054(14)	¹⁸¹ Ta	97.467(3)	0.065(9)	0.00109(15)
$^{178}{ m Hf}$	1003.650(4)	0.89(5)	0.0151(9)	¹⁸¹ Ta	97.8320(20)	0.139(7)	0.00233(12)
$^{177}{ m Hf}$	1016.663(6)	0.30(13)	0.0051(22)	¹⁸¹ Ta	99.8310(20)	0.127(7)	0.00213(12)
¹⁷⁹ Hf	1059.66(4)	0.32(3)	0.0054(5)	¹⁸¹ Ta	100.5540(20)	0.060(11)	0.00100(18)
$^{179}{ m Hf}$	1065.45(3)	1.94(5)	0.0329(9)	¹⁸¹ Ta	104.1130(20)	0.037(6)	0.00062(10)
$^{177}{ m Hf}$	1077.844(5)	2.40(6)	0.0407(10)	¹⁸¹ Ta	107.863(3)	0.131(14)	0.00219(23)
$^{177}{ m Hf}$	1081.454(6)	2.82(7)	0.0479(12)	¹⁸¹ Ta	114.3150(10)	0.280(9)	0.00469(15)
¹⁷⁷ Hf	1102.824(5)	2.96(8)	0.0503(14)	¹⁸¹ Ta	114.3760(20)	0.110(20)	0.0018(3)
$^{177}{ m Hf}$	1143.737(7)	1.84(6)	0.0312(10)	¹⁸¹ Ta	114.674(3)	0.193(20)	0.0032(3)
¹⁷⁷ Hf	1167.072(6)	3.95(10)	0.0671(17)	¹⁸¹ Ta	118.8950(20)	0.108(8)	0.00181(13)
¹⁷⁷ Hf	1174.635(5)	4.8(7)	0.081(12)	¹⁸¹ Ta	119.516(3)	0.039(6)	0.00065(10)
$^{177}{ m Hf}$	1175.357(7)	2.6(5)	0.044(9)	¹⁸¹ Ta	119.6980(20)	0.038(6)	0.00064(10)
$^{177}{ m Hf}$	1183.504(8)	1.42(5)	0.0241(9)	¹⁸¹ Ta	121.5340(20)	0.031(3)	0.00052(5)
$^{179}\mathrm{Hf}$	1197.92(8)	0.44(6)	0.0075(10)	¹⁸¹ Ta	122.613(3)	0.037(6)	0.00062(10)
¹⁷⁷ Hf	1205.975(5)	1.26(23)	0.021(4)	¹⁸¹ Ta	122.675(3)	0.092(4)	0.00154(7)
¹⁷⁷ Hf	1207.213(5)	3.9(3)	0.066(5)	¹⁸¹ Ta	122.9730(20)	0.075(9)	0.00126(15)
¹⁷⁷ Hf	1226.532(6)	1.30(5)	0.0221(9)	¹⁸¹ Ta	125.126(3)	0.030(4)	0.00050(7)
¹⁷⁷ Hf	1229.287(8)	4.26(11)	0.0723(19)	¹⁸¹ Ta	133.8770(20)	0.63(7)	0.0106(12)
¹⁷⁷ Hf	1232.172(5)	1.35(6)	0.0229(10)	¹⁸¹ Ta	139.4560(20)	0.094(10)	0.00157(17)
¹⁷⁷ Hf	1247.379(5)	0.49(4)	0.0083(7)	¹⁸¹ Ta	139.6610(20)	0.029(3)	0.00049(5)
$^{177}{ m Hf}$	1254.913(7)	0.40(4)	0.0068(7)	¹⁸¹ Ta	141.2450(20)	0.062(9)	0.00104(15)
$^{177}{ m Hf}$	1269.372(6)	2.26(7)	0.0384(12)	¹⁸¹ Ta	142.261(5)	0.042(13)	0.00070(22)
¹⁷⁷ Hf	1291.282(6)	0.99(5)	0.0168(9)	¹⁸¹ Ta	143.156(7)	0.061(9)	0.00102(15)
¹⁷⁷ Hf	1310.071(5)	1.45(5)	0.0246(9)	¹⁸¹ Ta	146.7740(20)	0.141(4)	0.00236(7)
¹⁷⁷ Hf	1330.109(5)	2.08(8)	0.0353(14)	¹⁸¹ Ta	154.0850(20)	0.082(3)	0.00137(5)
¹⁷⁷ Hf	1333.832(5)	1.71(9)	0.0290(15)	¹⁸¹ Ta	156.0880(20)	0.233(6)	0.00390(10)
¹⁷⁷ Hf	1340.447(6)	2.38(10)	0.0404(17)	¹⁸¹ Ta	156.2300(20)	0.046(3)	0.00077(5)
¹⁷⁷ Hf	1344.841(5)	0.59(5)	0.0100(9)	¹⁸¹ Ta	159.048(3)	0.0449(23)	0.00075(4)
$^{177}\mathrm{Hf}$	1403.267(20)	0.51(4)	0.0087(7)	¹⁸¹ Ta	167.413(3)	0.031(3)	0.00052(5)
¹⁷⁷ Hf	1420.651(6)	1.81(8)	0.0307(14)	¹⁸¹ Ta	168.130(4)	0.033(9)	0.00055(15)
¹⁷⁷ Hf	1496.448(21)	0.44(3)	0.0075(5)	¹⁸¹ Ta	171.580(3)d	0.005400(11)	9.044E-5[65%]
¹⁷⁷ Hf	1542.416(7)	0.55(8)	0.0093(14)	¹⁸¹ Ta	171.580(3)	0.029(4)	0.00049(7)
¹⁷⁷ Hf	1649.794(6)	0.367(22)	0.0062(4)	¹⁸¹ Ta	173.2050(20)	1.210(25)	0.0203(4)
¹⁷⁸ Hf	1649.81(10)	0.46(4)	0.0078(7)	¹⁸¹ Ta	178.6250(20)	0.072(6)	0.00121(10)
¹⁷⁷ Hf	1725.094(10)	0.46(5)	0.0078(9)	¹⁸¹ Ta	190.334(3)	0.183(7)	0.00306(12)
¹⁷⁷ Hf	1848.821(8)	0.46(5)	0.0078(9)	¹⁸¹ Ta	195.1080(20)	0.075(4)	0.00126(7)
¹⁸⁰ Hf	1895.38(16)	0.54(5)	0.0092(9)	¹⁸¹ Ta	210.5460(20)	0.064(4)	0.00107(7)
¹⁷⁷ Hf	1904.272(10)	0.71(6)	0.0121(10)	¹⁸¹ Ta	214.2070(20)	0.0481(23)	0.00081(4)
¹⁷⁷ Hf	1927.998(7)	0.30(5)	0.0051(9)	¹⁸¹ Ta	233.7080(20)	0.065(3)	0.00109(5)
¹⁷⁷ Hf	1957.294(12)	0.31(4)	0.0053(7)	¹⁸¹ Ta	237.2880(20)	0.050(6)	0.00084(10)
¹⁷⁸ Hf	3497.81(25)	0.31(5)	0.0053(9)	¹⁸¹ Ta	244.809(4)	0.032(3)	0.00054(5)
¹⁷⁸ Hf ¹⁷⁸ Hf	4336.18(4)	0.35(4)	0.0059(7)	¹⁸¹ Ta	252.7710(20)	0.034(8)	0.00057(13)
	4343.69(4)	0.44(5)	0.0075(9)	¹⁸¹ Ta	260.094(4)	0.052(17)	0.0009(3)
¹⁷⁹ Hf	4915.2(6)	0.35(5)	0.0059(9)	¹⁸¹ Ta	267.907(3)	0.027(4)	0.00045(7)
¹⁷⁷ Hf ¹⁷⁷ Hf	5068.3(5)	0.32(5)	0.0054(9)	¹⁸¹ Ta	270.4030(20)	2.60(6)	0.0435(10)
177 Hf 177 Hf	5260.9(5)	0.36(6)	0.0061(10)	¹⁸¹ Ta ¹⁸¹ Ta	287.131(3)	0.054(6)	0.00090(10)
177 Hf 177 Hf	5294.9(5)	0.34(5)	0.0058(9)	¹⁸¹ Ta	290.362(3)	0.027(7)	0.00045(12)
179 Hf	5575.22(16)	0.41(4)	0.0070(7)	181 Ta	297.125(3)	0.17(3)	0.0028(5)
180 Hf	5647.71(11)	0.38(4)	0.0065(7)	181 Ta	322.554(4)	0.048(3)	0.00080(5)
180 Hf	5649.60(21) 5605.48(17)	0.33(18)	0.006(3)	181 Ta	346.465(5)	0.110(6)	0.00184(10) 0.00296(12)
178 Hf	5695.48(17)	1.09(9)	0.0185(15)	181 Ta	360.518(3) 373.881(6)	0.177(7)	0.00296(12)
177 Hf	5723.809(22) 5807.42(16)	1.97(10)	0.0334(17) 0.0059(9)	181 Ta	373.881(6) 377.2460(20)	0.052(3)	
177 Hf	5807.42(16) 6111.85(16)	0.35(5) 0.92(6)	0.0059(9) 0.0156(10)	181 Ta	377.2460(20) 382.203(3)	0.127(4) 0.074(3)	0.00213(7) 0.00124(5)
177 Hf	6357.14(16)	0.92(6)	0.0156(10)	181 Ta	401.238(3)	0.074(3)	0.00124(5)
111				181 Ta	401.238(3) 402.623(3)	1.180(23)	0.00074(3) 0.0198(4)
¹⁸¹ Ta			79(1), σ_{γ}^{z} =20.6(5)	181 Ta	402.623(3) 443.6080(20)	0.036(3)	0.00060(5)
181 Ta	47.8120(20)	0.13(3)	0.0022(5)	181 Ta	473.803(6)	0.030(3)	0.00054(5)
181 Ta	54.4710(20) 59.693(3)	0.052(13)	0.00087(22) 0.00070(22)	181 Ta	478.685(5)	0.052(3)	0.00094(5)
181 Ta	71.900(4)	0.042(13) 0.060(15)	0.00070(22)	¹⁸¹ Ta	480.034(3)	0.091(4)	0.00152(7)
ıa	/1.700(4)	0.000(13)	0.00100(23)				(/)

^A Z	E ₇ -keV	σ _γ ^z (E _γ)-barn	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -bar	ns k ₀
¹⁸¹ Ta	489.590(4)	0.027(4)	0.00045(7)	¹⁸² W	291.724(7)	0.0453(19)	0.00075(3)
¹⁸¹ Ta	499.118(6)	0.050(4)	0.00084(7)	$^{186}\mathrm{W}$	294.73(8)	0.0097(16)	1.6(3)E-4
¹⁸¹ Ta	501.068(3)	0.029(3)	0.00049(5)	183 W	294.958(14)	0.0106(11)	1.75(18)E-4
¹⁸¹ Ta	509.967(5)	0.054(13)	0.00090(22)	$^{186}{ m W}$	303.25(4)	0.044(3)	0.00073(5)
¹⁸¹ Ta	512.355(4)	0.165(9)	0.00276(15)	182 W	313.0160(10)	0.054(4)	0.00089(7)
¹⁸¹ Ta	514.110(4)	0.033(4)	0.00055(7)	$^{183}\mathrm{W}$	318.015(12)	0.021(3)	0.00035(5)
¹⁸¹ Ta	530.593(4)	0.0266(23)	0.00045(4)	$^{186} { m W}$	354.78(6)	0.0452(24)	0.00075(4)
¹⁸¹ Ta	603.15(3)	0.035(3)	0.00059(5)	$^{180}\mathrm{W}$	365.44(11)	0.0155(15)	0.000256(25)
¹⁸¹ Ta	3982.2(3)	0.032(7)	0.00054(12)	$^{186}\mathrm{W}$	376.70(5)	0.0453(18)	0.00075(3)
¹⁸¹ Ta	4045.81(23)	0.030(3)	0.00050(5)	$^{186} { m W}$	390.59(11)	0.0126(12)	2.08(20)E-4
¹⁸¹ Ta	4053.82(22)	0.034(3)	0.00057(5)	$^{186}\mathrm{W}$	423.75(7)	0.0497(22)	0.00082(4)
¹⁸¹ Ta	4219.98(25)	0.037(4)	0.00062(7)	$^{186}\mathrm{W}$	473.88(7)	0.055(5)	0.00091(8)
¹⁸¹ Ta	4315.43(19)	0.084(7)	0.00141(12)	¹⁸⁶ W	479.550(22)d	2.59(5)	0.0427[1.4%]
¹⁸¹ Ta	4443.9(3)	0.031(4)	0.00052(7)	¹⁸⁶ W	494.64(7)	0.0123(16)	2.0(3)E-4
¹⁸¹ Ta	4482.95(25)	0.042(6)	0.00070(10)	186 W	500.08(6)	0.0491(23)	0.00081(4)
¹⁸¹ Ta	4536.05(25)	0.032(4)	0.00054(7)	186 W	531.17(7)	0.052(3)	0.00086(5)
¹⁸¹ Ta	4566.6(3)	0.032(4)	0.00054(7)	¹⁸⁶ W	541.09(7)	0.0190(23)	0.00031(4)
¹⁸¹ Ta	4579.5(3)	0.035(4)	0.00059(7)	186 W	547.81(17)	0.022(4)	0.00036(7)
¹⁸¹ Ta	4618.08(22)	0.044(4)	0.00074(7)	¹⁸⁶ W	551.52(4)d	0.603(14)	0.00994[1.4%]
¹⁸¹ Ta	4691.73(25)	0.040(4)	0.00067(7)	186 W	557.16(5)	0.125(5)	0.00206(8)
¹⁸¹ Ta ¹⁸¹ Ta	4781.95(18)	0.105(7)	0.00176(12)	184 W	569.65(22)	0.0166(17)	0.00027(3)
181 Ta	4792.76(25)	0.048(4)	0.00080(7)	¹⁸⁶ W ¹⁸⁴ W	577.30(5)	0.191(5)	0.00315(8)
181 Ta	4802.55(25)	0.037(4)	0.00062(7)	184 W	579.8(3)	0.021(10)	0.00035(16)
181 Ta	4832.97(25)	0.030(3)	0.00050(5)	186 W	580.49(23)	0.021(10)	0.00035(16)
181 Ta	4980.12(22)	0.033(3)	0.00055(5)	183 W	588.34(7) 607.60(5)	0.0216(19)	0.00036(3)
181 Ta	5005.52(21) 5245.79(6)	0.042(3)	0.00070(5)	186 W		0.0112(16)	1.8(3)E-4 0.00109(5)
181 Ta	5343.26(6)	0.051(4) 0.048(4)	0.00085(7) 0.00080(7)	186 W	611.30(5) 616.20(6)	0.066(3) 0.059(3)	0.00109(3)
¹⁸¹ Ta	5792.39(6)	0.034(3)	0.00057(5)	186 W	618.26(4)d	0.039(3)	0.0123[1.4%]
¹⁸¹ Ta	5964.95(6)	0.138(8)	0.00037(3)	186 W	625.519(10)d	0.740(17)	0.00213[1.4%]
¹⁸¹ Ta	6062.78(6)	0.087(4)	0.00146(7)	¹⁸⁶ W	629.19(17)	0.022(3)	0.00036(5)
			(1), $\sigma_{\gamma}^{z} = 18.39(16)$	186 W	635.35(5)	0.036(4)	0.00059(7)
182 W	46.4840(10)	0.192(10)	0.00316(16)	$^{184}\mathrm{W}$	636.4(4)	0.044(20)	0.0007(3)
182 W	52.5290(10)	0.128(11)	0.00211(18)	$^{184}\mathrm{W}$	640.02(24)	0.055(25)	0.0009(4)
186 W	59.03(4)	0.208(7)	0.00343(12)	$^{186}\mathrm{W}$	640.43(7)	0.032(3)	0.00053(5)
¹⁸⁶ W	72.002(4)d	1.32(3)	0.0218[1.4%]	$^{186}\mathrm{W}$	657.54(7)	0.083(5)	0.00137(8)
$^{186}\mathrm{W}$	77.39(3)	0.134(5)	0.00221(8)	$^{186}{ m W}$	661.36(8)	0.032(4)	0.00053(7)
$^{182} { m W}$	84.7130(10)	0.0261(16)	0.00043(3)	$^{184}\mathrm{W}$	663.49(21)	0.029(3)	0.00048(5)
182 W	99.0790(10)	0.155(13)	0.00256(21)	¹⁸⁶ W	670.34(5)	0.0452(25)	0.00075(4)
$^{186}\mathrm{W}$	101.80(5)	0.0129(22)	2.1(4)E-4	¹⁸⁴ W	674.5(3)	0.019(9)	0.00031(15)
182 W	107.9320(10)	0.144(12)	0.00237(20)	186 W	685.73(4)d	3.24(7)	0.0534[1.4%]
$^{182} { m W}$	109.738(7)	0.0201(16)	0.00033(3)	¹⁸⁶ W	694.38(5)	0.073(3)	0.00120(5)
¹⁸³ W	111.216(9)	0.195(6)	0.00321(10)	¹⁸² W ¹⁸² W	694.64(4)	0.0230(19)	0.00038(3)
¹⁸⁶ W	124.05(5)	0.051(11)	0.00084(18)	183 W	696.77(5)	0.022(6)	0.00036(10)
186 W	127.43(4)	0.129(5)	0.00213(8)	183 W	710.28(5)	0.0118(17)	1.9(3)E-4
¹⁸⁶ W	128.92(6)	0.0207(24)	0.00034(4)	183 W	711.59(6)	0.0108(15)	1.78(25)E-4
¹⁸⁶ W	134.247(7)d	1.050(20)	0.0173[1.4%]	186 W	724.39(3) 725.94(6)	0.0179(23) 0.023(4)	0.00030(4) 0.00038(7)
	142.90(8)	0.0206(18)	0.00034(3)	186 W	738.73(5)	0.040(3)	0.00038(7)
¹⁸⁶ W	145.79(3)	0.970(21)	0.0160(4)	184 W	744.86(24)	0.040(3)	0.00049(23)
186 W	149.05(7)	0.0393(22)	0.00065(4)	186 W	745.80(6)	0.053(3)	0.00047(23)
182 W	157.46(4)	0.0319(14)	0.000526(23) 0.000302(20)	184 W	757.2(3)	0.048(22)	0.0008(4)
182 W	160.5280(10) 162.315(8)	0.0183(12)	` /	¹⁸³ W	757.324(23)	0.028(3)	0.00046(5)
186 W	162.315(8) 171.69(7)	0.187(5) 0.0097(10)	0.00308(8) 1.60(16)E-4	¹⁸⁶ W	762.78(5)	0.047(4)	0.00077(7)
184 W	173.680(20)	0.0037(10)	0.00026(3)	¹⁸⁴ W	768.33(22)	0.015(7)	2.5(12)E-4
186 W	197.56(16)	0.0135(10)	0.00020(3)	$^{186}\mathrm{W}$	772.89(5)d	0.490(10)	0.00808[1.4%]
186 W	201.44(5)	0.319(8)	0.00526(13)	$^{186}\mathrm{W}$	782.12(6)	0.22(3)	0.0036(5)
¹⁸⁶ W	204.83(4)	0.148(4)	0.00244(7)	$^{186}{ m W}$	788.79(7)	0.070(5)	0.00115(8)
182 W	208.817(7)	0.0231(25)	0.00244(7)	183 W	792.059(16)	0.119(6)	0.00196(10)
¹⁸² W	209.876(9)	0.014(3)	2.3(5)E-4	$^{186}{ m W}$	803.33(6)	0.034(3)	0.00056(5)
183 W	215.340(13)	0.0107(10)	1.76(16)E-4	$^{186}\mathrm{W}$	814.20(6)	0.0436(25)	0.00072(4)
¹⁸⁶ W	225.86(4)	0.113(17)	0.0019(3)	$^{186}\mathrm{W}$	816.13(5)	0.104(4)	0.00171(7)
¹⁸³ W	226.743(10)	0.067(16)	0.0011(3)	$^{182}{ m W}$	817.557(17)	0.0157(13)	0.000259(21)
$^{186}\mathrm{W}$	227.34(7)	0.024(4)	0.00040(7)	¹⁸⁴ W	822.76(20)	0.0176(24)	0.00029(4)
182 W	246.0600(10)	0.0280(12)	0.000462(20)	¹⁸⁶ W	831.65(10)	0.092(16)	0.0015(3)
183 W	252.854(11)	0.101(3)	0.00166(5)	¹⁸⁴ W	838.5(4)	0.014(6)	2.3(10)E-4
¹⁸⁶ W	273.10(5)	0.272(7)	0.00448(12)	186 W	840.18(5)	0.143(5)	0.00236(8)
$^{186}\mathrm{W}$	289.94(5)	0.0603(22)	0.00099(4)	¹⁸² W	846.33(6)	0.0221(22)	0.00036(4)

$^{\mathbf{A}}\mathbf{Z}$	E _{y⁻keV}	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barr	ıs k ₀
¹⁸⁶ W	866.18(7)	0.068(3)	0.00112(5)	183 W	1995.48(21)	0.0103(20)	1.7(3)E-4
$^{186}\mathrm{W}$	872.64(8)	0.040(3)	0.00066(5)	$^{183} { m W}$	2014.85(5)	0.0104(15)	1.71(25)E-4
$^{186}\mathrm{W}$	877.51(8)	0.030(3)	0.00049(5)	$^{183} { m W}$	2035.64(17)		0.00041(5)
$^{186}\mathrm{W}$	880.89(9)	0.045(3)	0.00074(5)	$^{183} { m W}$	2135.08(21)		2.1(5)E-4
$^{182} { m W}$	888.08(3)	0.076(13)	0.00125(21)	$^{183} { m W}$	2183.29(8)	0.022(3)	0.00036(5)
184 W	888.9(3)	0.026(12)	0.00043(20)	$^{183} { m W}$	2284.32(19)		0.00030(7)
$^{183} { m W}$	891.27(4)	0.063(4)	0.00104(7)	$^{186} { m W}$	2293.1(7)	0.011(3)	1.8(5)E-4
$^{186}\mathrm{W}$	891.59(6)	0.136(5)	0.00224(8)	$^{186} { m W}$	2367.1(4)	0.030(16)	0.0005(3)
$^{183} { m W}$	894.735(16)	0.075(4)	0.00124(7)	$^{183} { m W}$	2369.9(3)	0.018(4)	0.00030(7)
183 W	903.274(17)	0.115(5)	0.00190(8)	$^{186} { m W}$	2481.30(25)		0.00051(7)
$^{186}{ m W}$	909.04(10)	0.092(4)	0.00152(7)	$^{186} { m W}$	2556.0(3)	0.021(4)	0.00035(7)
$^{184}\mathrm{W}$	912.1(3)	0.028(3)	0.00046(5)	$^{186} { m W}$	2584.20(18)		0.00051(7)
$^{186}\mathrm{W}$	913.63(6)	0.030(3)	0.00049(5)	$^{186} { m W}$	2689.5(3)	0.024(4)	0.00040(7)
$^{182} { m W}$	927.294(18)	0.0235(18)	0.00039(3)	$^{186}\mathrm{W}$	2708.4(3)	0.026(4)	0.00043(7)
$^{186}\mathrm{W}$	930.08(8)	0.018(4)	0.00030(7)	$^{186} { m W}$	2727.5(4)	0.021(11)	0.00035(18)
$^{186}\mathrm{W}$	933.46(7)	0.0133(11)	2.19(18)E-4	$^{186} { m W}$	2738.4(3)	0.032(4)	0.00053(7)
$^{186}\mathrm{W}$	936.54(8)	0.0130(11)	2.14(18)E-4	$^{186}{ m W}$	2760.3(3)	0.033(4)	0.00054(7)
$^{182} { m W}$	941.02(5)	0.0117(11)	1.93(18)E-4	$^{186} { m W}$	2831.98(20)	0.023(4)	0.00038(7)
$^{186}\mathrm{W}$	941.04(8)	0.0276(13)	0.000455(21)	$^{186}\mathrm{W}$	2849.3(3)	0.033(4)	0.00054(7)
$^{182} { m W}$	960.29(17)	0.0101(21)	1.7(4)E-4	$^{186} { m W}$	2939.4(4)	0.014(4)	2.3(7)E-4
$^{184}\mathrm{W}$	976.2(3)	0.016(7)	0.00026(12)	$^{186} { m W}$	3055.01(20)	0.0290(25)	0.00048(4)
$^{186}\mathrm{W}$	979.68(16)	0.016(16)	0.0003(3)	$^{186} { m W}$	3097.3(4)	0.015(3)	2.5(5)E-4
182 W	979.871(18)	0.102(10)	0.00168(16)	$^{186} { m W}$	3114.78(20)	0.025(3)	0.00041(5)
$^{186}\mathrm{W}$	989.11(7)	0.036(4)	0.00059(7)	$^{186} { m W}$	3148.2(5)	0.086(19)	0.0014(3)
$^{186}\mathrm{W}$	1004.94(8)	0.015(6)	2.5(10)E-4	$^{186} { m W}$	3153.9(10)	0.061(20)	0.0010(3)
$^{184}\mathrm{W}$	1005.9(4)	0.022(10)	0.00036(16)	¹⁸⁶ W	3191.92(25)		0.00061(5)
$^{183}{ m W}$	1010.177(23)	0.036(3)	0.00059(5)	¹⁸⁶ W	3207.0(3)	0.030(4)	0.00049(7)
$^{186}{ m W}$	1012.05(6)	0.041(5)	0.00068(8)	¹⁸⁶ W	3225.15(17)		0.00069(10)
$^{186}\mathrm{W}$	1018.43(8)	0.036(4)	0.00059(7)	¹⁸⁶ W	3267.1(5)	0.0101(24)	1.7(4)E-4
$^{186}\mathrm{W}$	1025.94(12)	0.033(8)	0.00054(13)	¹⁸⁶ W	3314.4(4)	0.015(3)	2.5(5)E-4
¹⁸² W	1026.373(17)	0.161(15)	0.00265(25)	¹⁸⁶ W	3376.15(18)		0.00068(7)
¹⁸⁴ W	1031.3(3)	0.031(14)	0.00051(23)	¹⁸⁶ W	3423.0(4)	0.030(3)	0.00049(5)
¹⁸⁶ W	1057.51(7)	0.029(3)	0.00048(5)	¹⁸⁶ W	3443.2(4)	0.039(12)	0.00064(20)
¹⁸⁶ W	1071.09(5)	0.053(3)	0.00087(5)	¹⁸⁶ W	3452.8(9)	0.055(10)	0.00091(16)
¹⁸⁶ W	1082.34(8)	0.061(4)	0.00101(7)	¹⁸⁶ W	3469.40(14)	0.103(6)	0.00170(10)
¹⁸⁶ W	1084.97(12)	0.022(3)	0.00036(5)	¹⁸⁶ W	3492.67(17)		0.00084(7)
¹⁸² W	1100.73(13)	0.024(5)	0.00040(8)	¹⁸⁶ W	3510.72(19)		0.00054(7)
¹⁸⁶ W	1103.58(21)	0.050(13)	0.00082(21)	¹⁸⁶ W	3529.69(18)		0.00066(7)
¹⁸⁶ W	1106.96(20)	0.027(3)	0.00045(5)	¹⁸⁶ W	3534.56(17)		0.00104(8)
¹⁸³ W	1121.392(24)	0.0144(15)	2.37(25)E-4	186 W	3561.14(14)		0.00099(7)
¹⁸⁴ W	1125.3(3)	0.046(21)	0.0008(4)	¹⁸⁶ W	3577.2(4)	0.016(4)	0.00026(7)
¹⁸⁶ W	1134.90(7)	0.027(3)	0.00045(5)	¹⁸³ W	3696.2(4)	0.011(3)	1.8(5)E-4
¹⁸⁶ W ¹⁸⁶ W	1139.48(5)	0.031(3)	0.00051(5)	¹⁸⁶ W ¹⁸⁶ W	3710.1(4)	0.034(8)	0.00056(13)
	1153.37(12)	0.014(8)	2.3(13)E-4		3739.05(17)	\ /	0.00114(7)
¹⁸⁴ W	1153.5(3)	0.011(5)	1.8(8)E-4	¹⁸⁶ W ¹⁸⁶ W	3760.9(3)	0.026(3)	0.00043(5)
184 W	1180.8(3)	0.08(4)	0.0013(7)	186 W	3774.59(21)		0.00043(5)
182 W	1195.63(23)	0.031(14)	0.00051(23)	186 W	3804.7(4)	0.020(3)	0.00033(5)
186 W	1262.10(5) 1269.91(9)	0.0179(24)	0.00030(4)	183 W	3847.8(4)	0.051(4)	0.00084(7)
183 W	1209.91(9)	0.031(8) 0.032(6)	0.00051(13) 0.00053(10)	186 W	3864.4(4) 3886.4(3)	0.011(3)	1.8(5)E-4
183 W	1319.77(5)	\ /	` /	186 W	3901.8(3)	0.014(3)	2.3(5)E-4
184 W	1319.77(3)	0.0134(18) 0.015(3)	2.2(3)E-4 2.5(5)E-4	186 W	3920.2(4)	0.024(3) 0.017(3)	0.00040(5) 0.00028(5)
182 W	1347.37(13)	0.013(3)	0.00031(18)	186 W	3920.2(4)		0.00028(3)
184 W	1347.6(8)	0.019(11)	0.00031(18)	182 W	4014.17(5)	0.050(10)	0.00036(13)
183 W	1347.0(8)	0.025(3)	0.00033(13)	186 W	4014.17(3)	0.030(10)	0.00082(10)
184 W	1408.1(3)	0.023(3)	0.00041(3)	182 W	4026.21(10)		0.00048(10)
183 W	1412.03(16)	0.017(5)	0.00028(8)	¹⁸² W	4064.48(9)	0.019(3)	0.00031(5)
182 W	1424.42(5)	0.030(8)	0.00049(13)	¹⁸⁶ W	4082.8(5)	0.013(3)	0.00030(3)
183 W	1424.42(3)	0.030(8)	1.75(25)E-4	186 W	4119.24(10)		0.00084(18)
182 W	1470.92(5)	0.0100(13)	1.6(7)E-4	186 W	4136.61(17)		0.00057(7)
182 W	1504.07(9)	0.0100(11)	1.65(18)E-4	¹⁸⁶ W	4158.13(21)		0.00071(8)
182 W	1509.68(13)	0.022(3)	0.00036(5)	¹⁸² W	4162.33(17)		2.01(25)E-4
¹⁸² W	1556.18(13)	0.014(3)	2.3(5)E-4	184 W	4219.2(8)	0.034(16)	0.0006(3)
¹⁸³ W	1569.9(3)	0.013(3)	2.1(5)E-4	¹⁸² W	4246.61(4)	0.043(4)	0.00071(7)
¹⁸³ W	1765.47(9)	0.0105(22)	1.7(4)E-4	¹⁸⁶ W	4249.66(7)	0.115(6)	0.00190(10)
¹⁸³ W	1919.4(4)	0.019(4)	0.00031(7)	¹⁸² W	4304.65(6)	0.020(3)	0.00033(5)
183 W	1945.14(15)	0.020(3)	0.00033(5)	$^{186}\mathrm{W}$	4331.63(8)	0.040(4)	0.00066(7)
$^{183} { m W}$	1949.69(7)	0.0097(21)	1.6(4)E-4	$^{182}{ m W}$	4367.18(4)	0.026(3)	0.00043(5)
					` ′	* *	

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barı	ns k ₀	^A Z	E ₇ -keV	σ _γ ^z (E _γ)-bar	ns k ₀
¹⁸² W	4379.77(5)	0.017(3)	0.00028(5)	¹⁸⁵ Re	111.679(5)	0.68(12)	0.0111(20)
$^{186}\mathrm{W}$	4384.20(9)	0.057(5)	0.00094(8)	¹⁸⁵ Re	111.814(4)	0.37(7)	0.0060(11)
$^{186}\mathrm{W}$	4448.10(9)	0.048(3)	0.00079(5)	¹⁸⁷ Re	115.155(3)	0.43(5)	0.0070(8)
$^{182} { m W}$	4460.59(9)	0.0124(23)	2.0(4)E-4	¹⁸⁷ Re	115.155(3)	0.28(3)	0.0046(5)
184 W	4469.1(6)	0.022(10)	0.00036(16)	¹⁸⁵ Re	117.94(10)	0.22(4)	0.0036(7)
$^{186}\mathrm{W}$	4491.51(10)	0.036(10)	0.00059(16)	¹⁸⁵ Re	118.196(4)	0.106(20)	0.0017(3)
$^{182} { m W}$	4518.11(5)	0.039(5)	0.00064(8)	¹⁸⁵ Re	122.521(4)	0.74(4)	0.0120(7)
$^{184}\mathrm{W}$	4535.5(3)	0.08(4)	0.0013(7)	¹⁸⁵ Re	123.507(6)	0.16(3)	0.0026(5)
$^{186}\mathrm{W}$	4557.49(11)	0.025(5)	0.00041(8)	¹⁸⁵ Re	127.354(3)	0.43(4)	0.0070(7)
182 W	4562.86(14)	0.026(3)	0.00043(5)	¹⁸⁷ Re	128.553(4)	0.105(12)	0.00171(20)
$^{184}\mathrm{W}$	4573.7(3)	0.104(9)	0.00171(15)	¹⁸⁷ Re	129.973(4)	0.090(15)	0.00146(24)
$^{186}\mathrm{W}$	4574.94(8)	0.152(10)	0.00251(16)	¹⁸⁷ Re	131.080(4)	0.42(5)	0.0068(8)
¹⁸⁶ W	4626.35(7)	0.124(7)	0.00204(12)	¹⁸⁵ Re	137.157(8)d	5.29(3)	0.0861[<0.1%]
¹⁸² W	4634.64(13)	0.015(4)	2.5(7)E-4	¹⁸⁷ Re	138.725(5)	0.19(3)	0.0031(5)
186 W	4650.40(7)	0.052(5)	0.00086(8)	¹⁸⁵ Re	139.417(6)	0.136(19)	0.0022(3)
¹⁸⁶ W	4684.40(8)	0.150(7)	0.00247(12)	¹⁸⁵ Re	140.095(5)	0.27(5)	0.0044(8)
182 W	4719.90(5)	0.0189(25)	0.00031(4)	¹⁸⁵ Re	141.257(5)	0.19(3)	0.0031(5)
¹⁸⁴ W ¹⁸⁴ W	4748.7(4)	0.06(3)	0.0010(5)	¹⁸⁷ Re	141.760(4)	1.46(8)	0.0238(13)
	4931.79(25)	0.0119(23)	2.0(4)E-4	¹⁸⁷ Re	143.124(4)	0.090(15)	0.00146(24)
¹⁸⁴ W ¹⁸⁴ W	4980.5(9)	0.017(8)	0.00028(13)	¹⁸⁵ Re	143.917(4)	0.55(8)	0.0090(13)
183 W	4986.2(3)	0.019(9)	0.00031(15)	¹⁸⁵ Re	144.152(5)	1.8(3)	0.029(5)
184 W	5015.52(20)	0.0162(20)	0.00027(3)	¹⁸⁵ Re ¹⁸⁷ Re	144.157(4)	0.15(15)	0.0024(24)
183 W	5091.05(25)	0.07(3)	0.0012(5)	¹⁸⁷ Re	145.155(5)	0.44(5)	0.0072(8)
182 W	5116.55(10)	0.0114(16)	1.9(3)E-4	185 Re	145.155(5)	0.28(3)	0.0046(5)
182 W	5164.43(3) 5256.22(4)	0.19(3) 0.0122(12)	0.0031(5) 2.01(20)E-4	¹⁸⁵ Re	147.415(5) 147.417(6)	0.60(9) 0.47(5)	0.0098(15) 0.0076(8)
186 W	5261.68(6)	0.86(4)	0.0142(7)	¹⁸⁵ Re	148.989(4)	0.47(3)	0.0070(8)
183 W	5285.00(8)	0.0115(14)	1.90(23)E-4	¹⁸⁵ Re	149.520(5)	0.44(5)	0.0077(11)
¹⁸⁶ W	5320.72(6)	0.605(21)	0.0100(4)	¹⁸⁷ Re	150.970(4)	0.24(3)	0.0039(5)
$^{186}\mathrm{W}$	5466.50(6)	0.023(4)	0.00038(7)	¹⁸⁵ Re	151.688(3)	1.15(7)	0.0187(11)
183 W	5534.37(11)	0.011(4)	1.8(7)E-4	¹⁸⁷ Re	155.041(4)d	7.16(25)	0.117[2.0%]
$^{184}\mathrm{W}$	5754.53(21)	0.0112(18)	1.8(3)E-4	¹⁸⁷ Re	156.424(4)	0.73(8)	0.0119(13)
183 W	5796.19(9)	0.023(9)	0.00038(15)	¹⁸⁷ Re	158.730(20)	0.15(4)	0.0024(7)
183 W	5797.50(9)	0.0161(23)	0.00027(4)	¹⁸⁵ Re	164.466(8)	0.085(21)	0.0014(3)
¹⁸³ W	6024.82(7)	0.036(3)	0.00059(5)	¹⁸⁷ Re	167.327(3)	1.46(6)	0.0238(10)
¹⁸² W	6144.28(3)	0.174(11)	0.00287(18)	¹⁸⁵ Re	167.735(4)	0.20(4)	0.0033(7)
¹⁸³ W	6189.75(7)	0.0264(24)	0.00044(4)	¹⁸⁵ Re	169.434(4)	0.108(23)	0.0018(4)
¹⁸² W ¹⁸³ W	6190.78(3)	0.45(4)	0.0074(7)	¹⁸⁵ Re ¹⁸⁵ Re	174.267(3)	0.382(24)	0.0062(4)
183 W	6289.64(7) 6408.54(8)	0.0235(19)	0.00039(3) 0.00071(7)	¹⁸⁵ Re	176.103(5)	0.18(3)	0.0029(5)
183 W	6507.75(7)	0.043(4) 0.0098(9)	1.62(15)E-4	¹⁸⁷ Re	176.552(8) 178.138(5)	0.31(3) 0.26(3)	0.0050(5) 0.0042(5)
183 W	7299.78(7)	0.0159(17)	0.00026(3)	¹⁸⁷ Re	178.839(6)	0.20(3)	0.0042(5)
¹⁸³ W	7410.99(7)	0.071(4)	0.00117(7)	¹⁸⁵ Re	179.448(6)	0.115(21)	0.0039(3)
• • • • • • • • • • • • • • • • • • • •			$07(1), \sigma_{\gamma}^{z} = 91.5(10)$	¹⁸⁷ Re	181.942(5)	0.388(25)	0.0063(4)
¹⁸⁵ Re	40.3510(20)	0.61(11)	0.0099(18)	¹⁸⁷ Re	188.813(6)	0.98(10)	0.0159(16)
¹⁸⁵ Re	56.408(3)	0.106(20)	0.0017(3)	¹⁸⁷ Re	189.33(11)	0.284(24)	0.0046(4)
¹⁸⁵ Re	59.0100(20)	5.5(8)	0.090(13)	¹⁸⁵ Re	189.346(8)	0.33(5)	0.0054(8)
¹⁸⁵ Re	61.927(4)	0.51(7)	0.0083(11)	¹⁸⁷ Re	193.342(3)	0.43(3)	0.0070(5)
¹⁸⁷ Re	63.5820(20)	8.0(14)	0.130(23)	¹⁸⁵ Re	199.337(16)	0.91(4)	0.0148(7)
¹⁸⁷ Re	72.047(9)	0.41(5)	0.0067(8)	¹⁸⁷ Re	199.513(5)	1.02(10)	0.0166(16)
¹⁸⁵ Re	74.5690(20)	0.64(9)	0.0104(15)	¹⁸⁵ Re	200.997(7)	0.098(16)	0.0016(3)
¹⁸⁷ Re	74.8630(20)	1.29(8)	0.0210(13)	¹⁸⁷ Re	205.342(4)	0.37(8)	0.0060(13)
¹⁸⁷ Re	85.323(7)	0.109(21)	0.0018(3)	¹⁸⁷ Re ¹⁸⁷ Re	207.853(4)	4.44(21)	0.072(3)
¹⁸⁵ Re	86.83(3)	0.102(24)	0.0017(4)	185 Re	208.843(7) 209.785(4)	0.98(10) 0.14(3)	0.0159(16) 0.0023(5)
¹⁸⁵ Re	87.264(3)	0.84(4)	0.0137(7)	¹⁸⁵ Re	210.698(4)	1.50(10)	0.0023(3)
¹⁸⁷ Re ¹⁸⁷ Re	87.4800(20)	0.113(19)	0.0018(3)	¹⁸⁷ Re	211.53(3)	0.27(5)	0.0044(8)
¹⁸⁷ Re	92.356(3)	0.25(4)	0.0041(7)	¹⁸⁵ Re	214.647(4)	2.53(14)	0.0412(23)
185 Re	92.4640(20) 99.3610(20)	1.07(6) 0.230(24)	0.0174(10) 0.0037(4)	¹⁸⁷ Re	216.033(4)	0.30(7)	0.0049(11)
185 Re	99.698(3)	0.230(24)	0.0037(4)	¹⁸⁷ Re	219.445(7)	0.67(9)	0.0109(15)
185 Re	103.310(4)	0.113(24)	0.0070(5)	¹⁸⁵ Re	219.74(5)	0.081(15)	0.00132(24)
¹⁸⁷ Re	105.8620(20)	1.77(8)	0.0288(13)	¹⁸⁵ Re	223.016(5)	0.24(6)	0.0039(10)
¹⁸⁵ Re	106.550(4)	0.27(4)	0.0044(7)	¹⁸⁷ Re	223.544(5)	0.083(9)	0.00135(15)
¹⁸⁷ Re	107.425(3)	0.352(25)	0.0057(4)	¹⁸⁷ Re	227.083(6)	1.78(12)	0.0290(20)
¹⁸⁵ Re	108.336(5)	0.085(19)	0.0014(3)	¹⁸⁵ Re	232.100(16)	0.36(7)	0.0059(11)
¹⁸⁵ Re	110.240(4)	0.089(16)	0.0014(3)	¹⁸⁵ Re	232.111(9)	0.24(4)	0.0039(7)
¹⁸⁵ Re	111.337(4)	0.58(9)	0.0094(15)	¹⁸⁷ Re	236.627(4)	1.45(10)	0.0236(16)
¹⁸⁷ Re	111.590(3)	0.45(5)	0.0073(8)	¹⁸⁷ Re	238.450(5)	0.147(24)	0.0024(4)

$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	s k ₀	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	
¹⁸⁷ Re	246.33(3)	0.091(14)	0.00148(23)	¹⁸⁵ Re	4871.7(8)	0.11(3)	0.0018(5)
¹⁸⁷ Re	251.243(5)	1.80(23)	0.029(4)	¹⁸⁷ Re	4888.6(3)	0.141(25)	0.0023(4)
¹⁸⁵ Re	251.842(15)	0.58(16)	0.009(3)	¹⁸⁷ Re	4893.4(3)	0.081(17)	0.0013(3)
¹⁸⁵ Re	254.998(4)	1.15(5)	0.0187(8)	¹⁸⁷ Re	4916.3(3)	0.102(21)	0.0017(3)
¹⁸⁷ Re	256.924(3)	0.66(23)	0.011(4)	¹⁸⁷ Re	4958.7(5)	0.14(3)	0.0023(5)
¹⁸⁵ Re	257.447(9)	0.87(23)	0.014(4)	¹⁸⁷ Re	4973.1(5)	0.15(3)	0.0024(5)
¹⁸⁵ Re	260.67(7)	0.13(3)	0.0021(5)	¹⁸⁷ Re	4987.9(4)	0.17(4)	0.0028(7)
¹⁸⁵ Re	261.264(15)	0.67(3)	0.0109(5)	¹⁸⁷ Re	5000.8(4)	0.17(4)	0.0028(7)
¹⁸⁵ Re	263.367(5)	0.106(24)	0.0017(4)	¹⁸⁵ Re	5007.0(5)	0.27(4)	0.0044(7)
¹⁸⁷ Re	266.155(20)	0.125(15)	0.00203(24)	¹⁸⁷ Re	5012.60(25)	0.18(3)	0.0029(5)
¹⁸⁷ Re	274.298(5)	0.80(6)	0.0130(10)	¹⁸⁷ Re	5020.6(4)	0.098(23)	0.0016(4)
¹⁸⁷ Re	275.510(9)	0.51(4)	0.0083(7)	¹⁸⁵ Re	5027.9(4)	0.29(5)	0.0047(8)
¹⁸⁷ Re	284.590(17)	0.27(5)	0.0044(8)	¹⁸⁵ Re	5048.8(6)	0.096(23)	0.0016(4)
¹⁸⁵ Re	285.095(23)	0.41(4)	0.0067(7)	¹⁸⁷ Re	5049.3(3)	0.16(3)	0.0026(5)
¹⁸⁵ Re	287.0(3)	0.12(3)	0.0020(5)	¹⁸⁷ Re	5073.28(23)	0.43(5)	0.0070(8)
¹⁸⁷ Re	290.665(6)	3.5(4)	0.057(7)	¹⁸⁷ Re	5080.3(4)	0.098(23)	0.0016(4)
¹⁸⁷ Re	291.492(8)	0.94(7)	0.0153(11)	¹⁸⁵ Re	5080.7(8)	0.094(23)	0.0015(4)
¹⁸⁷ Re	299.130(9)	0.151(14)	0.00246(23)	¹⁸⁷ Re	5134.8(3)	0.25(6)	0.0041(10)
¹⁸⁷ Re	300.210(4)	0.70(5)	0.0114(8)	¹⁸⁵ Re	5137.6(6)	0.39(4)	0.0063(7)
¹⁸⁵ Re	307.673(16)	0.34(3)	0.0055(5)	¹⁸⁷ Re	5167.6(3)	0.14(3)	0.0023(5)
¹⁸⁵ Re	316.457(9)	2.21(10)	0.0360(16)	¹⁸⁵ Re	5176.3(5)	0.18(3)	0.0029(5)
¹⁸⁷ Re	317.38(5)	0.083(17)	0.0014(3)	¹⁸⁷ Re	5224.37(7)	0.081(20)	0.0013(3)
¹⁸⁷ Re ¹⁸⁵ Re	318.37(3)	0.25(3)	0.0041(5)	¹⁸⁵ Re ¹⁸⁷ Re	5276.7(5)	0.14(3)	0.0023(5)
¹⁸⁷ Re	319.374(9)	0.18(3)	0.0029(5)	¹⁸⁷ Re	5314.86(9)	0.083(20)	0.0014(3)
185 Re	352.11(3)	0.116(16)	0.0019(3)	185 Re	5348.62(6)	0.20(3)	0.0033(5)
185 Re	355.646(17) 358.11(10)	0.115(16) 0.236(19)	0.0019(3) 0.0038(3)	187 Re	5353.10(13) 5371.95(6)	0.13(3) 0.090(19)	0.0021(5) 0.0015(3)
185 Re	360.36(7)	0.449(25)	0.0073(4)	¹⁸⁵ Re	5493.19(13)	0.114(18)	0.0013(3)
¹⁸⁷ Re	362.712(9)	0.46(3)	0.0075(4)	¹⁸⁵ Re	5601.53(13)	0.114(18)	0.0019(3)
¹⁸⁵ Re	363.612(8)	0.16(4)	0.0026(7)	¹⁸⁷ Re	5614.74(6)	0.092(17)	0.0015(3)
¹⁸⁷ Re	376.816(10)	0.083(16)	0.0014(3)	¹⁸⁵ Re	5644.95(15)	0.088(16)	0.0014(3)
¹⁸⁵ Re	378.384(9)	0.54(3)	0.0088(5)	¹⁸⁷ Re	5688.91(6)	0.120(17)	0.0020(3)
¹⁸⁵ Re	390.854(23)	1.15(5)	0.0187(8)	¹⁸⁷ Re	5702.21(6)	0.100(16)	0.0016(3)
¹⁸⁷ Re	406.555(9)	0.18(4)	0.0029(7)	¹⁸⁵ Re	5708.74(13)	0.115(17)	0.0019(3)
¹⁸⁵ Re	407.05(16)	0.102(24)	0.0017(4)	¹⁸⁵ Re	5709.49(20)	0.098(24)	0.0016(4)
¹⁸⁵ Re	410.74(15)	0.10(3)	0.0016(5)	¹⁸⁷ Re	5715.61(6)	0.086(16)	0.0014(3)
¹⁸⁵ Re	411.496(10)	0.14(3)	0.0023(5)	¹⁸⁵ Re	5856.86(13)	0.140(15)	0.00228(24)
¹⁸⁵ Re	413.19(5)	0.16(4)	0.0026(7)	¹⁸⁷ Re	5871.65(6)	0.299(23)	0.0049(4)
¹⁸⁷ Re	423.525(21)	0.12(3)	0.0020(5)	¹⁸⁵ Re	5910.44(13)	0.60(4)	0.0098(7)
¹⁸⁷ Re	426.112(9)	0.13(3)	0.0021(5)	¹⁸⁵ Re	6005.30(13)	0.081(11)	0.00132(18)
¹⁸⁵ Re ¹⁸⁵ Re	439.09(23)	0.14(5)	0.0023(8)	¹⁸⁵ Re ¹⁸⁵ Re	6032.96(13)	0.090(12)	0.00146(20)
185 Re	469.79(10)	0.09(3)	0.0015(5)	185 Re	6079.87(13)	0.155(13)	0.00252(21)
¹⁸⁷ Re	479.6(3) 493.23(6)	0.30(13)	0.0049(21) 0.0016(5)	Re	6120.22(13)	0.182(16)	0.0030(3)
185 Re	496.57(14)	0.10(3) 0.15(4)	0.0016(3)	¹⁸⁴ Os			$S(3), \sigma_{\gamma}^{z} = 16.0(11)$
¹⁸⁷ Re	518.575(9)	0.13(4)	0.0039(10)	190 Os	37.18(13)	0.034(6)	0.00054(10)
¹⁸⁵ Re	550.77(23)	0.15(4)	0.0024(7)	190 Os	57.480(10) 57.74(6)	0.10(3) 0.081(6)	0.0016(5) 0.00129(10)
¹⁸⁷ Re	556.81(6)	0.13(4)	0.0021(7)	188 Os	59.079(16)	0.046(5)	0.00129(10)
¹⁸⁵ Re	585.4(3)	0.18(3)	0.0029(5)	¹⁹⁰ Os	67.24(20)	0.021(4)	0.00073(6)
¹⁸⁵ Re	608.25(14)	0.25(3)	0.0041(5)	¹⁹² Os	73.43(4)	0.174(8)	0.00037(13)
¹⁸⁷ Re	609.04(3)	0.25(3)	0.0041(5)	¹⁸⁴ Os	90.95(15)	0.030(15)	0.00048(24)
¹⁸⁵ Re	645.02(14)	0.18(3)	0.0029(5)	¹⁹² Os	131.26(5)	0.0291(17)	0.00046(3)
¹⁸⁵ Re	680.49(10)	0.34(3)	0.0055(5)	¹⁹⁰ Os	138.070(10)	0.0239(16)	0.000381(25)
¹⁸⁵ Re	759.94(14)	0.17(5)	0.0028(8)	¹⁹² Os	138.92(3)d	0.0467(22)	0.00074[1.1%]
¹⁸⁵ Re	761.47(23)	0.17(5)	0.0028(8)	¹⁸⁷ Os	155.10(4)	1.19(3)	0.0190(5)
¹⁸⁵ Re	796.1(3)	0.31(3)	0.0050(5)	¹⁸⁴ Os	158.40(10)	0.025(7)	0.00040(11)
¹⁸⁵ Re	3933.7(8)	0.09(4)	0.0015(7)	¹⁹⁰ Os	172.50(10)	0.025(4)	0.00040(6)
¹⁸⁵ Re	4079.0(8)	0.14(3)	0.0023(5)	¹⁹⁰ Os	175.80(4)	0.189(8)	0.00301(13)
¹⁸⁵ Re ¹⁸⁵ Re	4099.8(10)	0.13(3)	0.0021(5)	186 Os	177.42(20)	0.021(4)	0.00033(6)
¹⁸⁵ Re	4129.4(8)	0.100(24)	0.0016(4)	¹⁸⁹ Os	182.02(10)	0.027(7)	0.00043(11)
¹⁸⁵ Re	4178.1(5) 4455.7(23)	0.088(22)	0.0014(4)	¹⁹⁰ Os	182.30(10)	0.043(5)	0.00069(8)
¹⁸⁵ Re	4455.7(23) 4611.3(5)	0.11(3) 0.081(20)	0.0018(5) 0.0013(3)	¹⁸⁹ Os ¹⁹⁰ Os	186.7180(20)	2.08(5)	0.0331(8)
185 Re	4631.7(23)	0.081(20)	0.0013(3)	189 Os	194.25(8)	0.028(3)	0.00045(5)
¹⁸⁵ Re	4663.7(4)	0.24(3)	0.0039(5)	192 Os	198.084(21) 204.42(4)	0.056(7) 0.081(4)	0.00089(11) 0.00129(6)
¹⁸⁵ Re	4743.5(8)	0.113(21)	0.0018(3)	184 Os	204.42(4) 222.38(14)	0.081(4)	0.00129(6)
¹⁸⁵ Re	4773.7(5)	0.18(3)	0.0029(5)	¹⁸⁹ Os	223.810(7)	0.052(4)	0.00033(11)
¹⁸⁵ Re	4860.7(5)	0.37(4)	0.0060(7)	¹⁹⁰ Os	229.93(4)	0.072(4)	0.00115(6)
					` /	` /	` /

$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn		^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	
¹⁹⁰ Os	235.24(3)	0.184(6)	0.00293(10)	¹⁸⁴ Os	538.8(4)	0.023(7)	0.00037(11)
¹⁹⁰ Os	239.890(10)	0.080(4)	0.00127(6)	$^{184}\mathrm{Os}$	539.40(24)	0.022(4)	0.00035(6)
¹⁹² Os	242.41(4)	0.069(4)	0.00110(6)	$^{190}\mathrm{Os}$	545.29(13)	0.031(4)	0.00049(6)
¹⁹² Os	254.39(5)	0.0368(22)	0.00059(4)	¹⁸⁸ Os	550.17(5)	0.021(4)	0.00033(6)
¹⁹² Os	265.71(3)	0.101(3)	0.00161(5)	¹⁸⁹ Os	557.978(5)	0.84(3)	0.0134(5)
¹⁸⁸ Os	272.82(4)	0.242(6)	0.00386(10)	¹⁸⁹ Os	569.344(20)	0.694(25)	0.0111(4)
¹⁹⁰ Os	275.34(3)	0.173(5)	0.00276(8)	$^{184}\mathrm{Os}$	589.87(19)	0.034(5)	0.00054(8)
¹⁹⁰ Os	291.650(10)	0.047(3)	0.00075(5)	¹⁸⁹ Os	605.26(3)	0.113(4)	0.00180(6)
¹⁹⁰ Os	295.030(10)	0.030(5)	0.00048(8)	¹⁸⁷ Os	623.92(11)	0.036(4)	0.00057(6)
¹⁹² Os	295.41(5)	0.055(4)	0.00088(6)	¹⁸⁹ Os	630.985(23)	0.023(4)	0.00037(6)
¹⁹⁰ Os	304.71(6)	0.073(4)	0.00116(6)	¹⁸⁷ Os	633.14(4)	0.585(16)	0.00932(25)
¹⁹⁰ Os	305.020(10)	0.022(4)	0.00035(6)	¹⁸⁷ Os	635.02(5)	0.405(12)	0.00645(19)
¹⁹² Os	307.080(10)	0.026(3)	0.00041(5)	¹⁹⁰ Os	636.7(3)	0.028(6)	0.00045(10)
¹⁹⁰ Os	307.21(10)	0.026(3)	0.00041(5)	¹⁹² Os	655.61(13)	0.025(3)	0.00040(5)
¹⁹⁰ Os	314.72(10)	0.039(3)	0.00062(5)	¹⁹⁰ Os	664.18(9)	0.036(4)	0.00057(6)
¹⁹⁰ Os	316.45(11)	0.030(4)	0.00048(6)	¹⁸⁷ Os	672.64(11)	0.045(4)	0.00072(6)
¹⁸⁷ Os	322.98(6)	0.242(9)	0.00386(14)	¹⁸⁹ Os	725.11(5)	0.081(5)	0.00129(8)
¹⁹⁰ Os	332.690(10)	0.055(5)	0.00088(8)	¹⁸⁹ Os	768.653(15)	0.037(3)	0.00059(5)
¹⁹⁰ Os	339.61(5)	0.055(3)	0.00088(5)	¹⁹⁰ Os	768.67(10)	0.046(5)	0.00073(8)
¹⁸⁸ Os	343.473(20)	0.051(16)	0.00081(25)	¹⁹² Os	786.64(15)	0.033(4)	0.00053(6)
¹⁹⁰ Os	343.61(6)	0.046(3)	0.00073(5)	¹⁸⁷ Os	810.60(11)	0.035(3)	0.00056(5)
¹⁹⁰ Os	345.92(10)	0.034(4)	0.00054(6)	¹⁸⁷ Os	824.43(11)	0.052(4)	0.00083(6)
¹⁸⁸ Os	346.871(25)	0.025(8)	0.00040(13)	¹⁸⁷ Os	826.79(10)	0.029(3)	0.00046(5)
¹⁸⁷ Os	347.24(17)	0.023(4)	0.00037(6)	¹⁸⁹ Os	829.07(3)	0.056(6)	0.00089(10)
¹⁹⁰ Os	349.25(6)	0.051(4)	0.00081(6)	¹⁸⁷ Os	829.62(12)	0.109(16)	0.00174(25)
¹⁹⁰ Os	352.56(9)	0.041(5)	0.00065(8)	¹⁸⁷ Os	844.68(14)	0.024(4)	0.00038(6)
¹⁸⁹ Os	353.85(5)	0.0213(24)	0.00034(4)	¹⁸⁹ Os	928.06(5)	0.085(5)	0.00135(8)
¹⁹⁰ Os	355.80(10)	0.025(4)	0.00040(6)	¹⁸⁷ Os	931.31(8)	0.073(5)	0.00116(8)
¹⁸⁹ Os	358.71(5)	0.033(4)	0.00053(6)	¹⁹² Os	951.14(5)	0.089(4)	0.00142(6)
¹⁹⁰ Os	359.01(7)	0.047(4)	0.00075(6)	¹⁸⁷ Os	987.33(13)	0.031(4)	0.00049(6)
¹⁸⁹ Os	361.137(6)	0.466(15)	0.00742(24)	¹⁸⁹ Os	987.41(7)	0.071(6)	0.00113(10)
¹⁹⁰ Os	362.36(15)	0.040(9)	0.00064(14)	¹⁸⁹ Os	1011.09(10)	0.031(4)	0.00049(6)
¹⁹⁰ Os	365.04(12)	0.035(5)	0.00056(8)	¹⁸⁷ Os	1017.84(20)	0.043(4)	0.00069(6)
¹⁹⁰ Os	366.33(5)	0.097(6)	0.00155(10)	¹⁸⁹ Os	1103.08(8)	0.047(5)	0.00075(8)
189 Os	371.261(5)	0.574(14)	0.00914(22)	¹⁸⁹ Os	1114.77(5)	0.060(5)	0.00096(8)
¹⁹⁰ Os	397.270(10)	0.038(6)	0.00061(10)	¹⁸⁹ Os	1117.79(8)	0.033(5)	0.00053(8)
¹⁸⁹ Os	397.394(14)	0.115(5)	0.00183(8)	¹⁸⁷ Os	1149.77(8)	0.079(6)	0.00126(10)
¹⁸⁶ Os	400.84(22)	0.022(6)	0.00035(10)	¹⁸⁹ Os	1154.47(16)	0.029(9)	0.00046(14)
¹⁹⁰ Os ¹⁸⁹ Os	403.25(5)	0.065(4)	0.00104(6)	¹⁹⁰ Os ¹⁸⁷ Os	1155.76(15)	0.042(5)	0.00067(8)
	407.175(22)	0.060(7)	0.00096(11)		1174.82(20)	0.038(7)	0.00061(11)
¹⁸⁹ Os ¹⁸⁸ Os	407.517(15)	0.134(5)	0.00213(8)	¹⁸⁹ Os ¹⁸⁷ Os	1174.95(9)	0.080(6)	0.00127(10)
190 Os	410.602(21)	0.028(9) 0.103(5)	0.00045(14)	189 Os	1191.92(17)	0.034(5)	0.00054(8) 0.00123(10)
190 Os	413.23(4) 423.76(7)		0.00164(8) 0.00070(6)	187 Os	1195.95(11) 1209.62(13)	0.077(6)	, ,
186 Os		0.044(4)		189 Os	1209.62(13)	0.063(6)	0.00100(10) 0.00049(10)
184 Os	427.07(17) 431.45(20)	0.022(4) 0.09(3)	0.00035(6) 0.0014(5)	189 Os	1213.91(13)	0.031(6) 0.035(5)	0.00049(10)
189 Os	431.43(20)	0.036(4)	0.00057(6)	189 Os	1254.76(20)	0.041(5)	0.00056(8)
190 Os	434.16(12)	0.030(4)	0.00057(0)	189 Os	1265.85(12)	0.041(3)	0.00046(8)
190 Os	442.18(12)	0.032(4)	0.00031(0)	189 Os	1301.17(8)	0.029(3)	0.00046(8)
¹⁸⁹ Os	447.79(7)	0.022(4)	0.00033(0)	¹⁸⁷ Os	1307.9(3)	0.025(3)	0.00040(5)
¹⁹⁰ Os	453.69(24)	0.0215(1)	0.00034(3)	¹⁸⁹ Os	1311.29(8)	0.031(3)	0.00049(5)
¹⁸⁸ Os	454.794(21)	0.028(9)	0.00045(14)	¹⁸⁷ Os	1322.72(14)	0.037(4)	0.00059(6)
¹⁹² Os	455.47(24)	0.025(5)	0.00040(8)	¹⁸⁷ Os	1332.35(20)	0.05(3)	0.0008(5)
¹⁸⁸ Os	469.682(21)	0.040(5)	0.00064(8)	¹⁸⁷ Os	1332.53(25)	0.040(4)	0.00064(6)
¹⁹² Os	471.60(25)	0.021(5)	0.00033(8)	¹⁸⁹ Os	1382.66(11)	0.026(3)	0.00041(5)
¹⁹⁰ Os	475.33(16)	0.032(6)	0.00051(10)	¹⁸⁹ Os	1383.59(23)	0.026(4)	0.00041(6)
¹⁸⁷ Os	478.04(4)	0.523(14)	0.00833(22)	¹⁸⁹ Os	1384.7(4)	0.023(5)	0.00037(8)
¹⁹⁰ Os	480.85(12)	0.043(7)	0.00069(11)	¹⁸⁹ Os	1412.00(13)	0.0272(22)	0.00043(4)
¹⁹⁰ Os	485.87(20)	0.027(7)	0.00043(11)	¹⁸⁹ Os	1429.31(11)	0.028(5)	0.00045(8)
¹⁸⁷ Os	487.62(12)	0.044(7)	0.00070(11)	¹⁸⁷ Os	1435.74(14)	0.055(10)	0.00088(16)
¹⁹⁰ Os	495.68(9)	0.035(7)	0.00056(11)	¹⁸⁹ Os	1436.94(14)	0.045(6)	0.00072(10)
¹⁹⁰ Os	499.77(8)	0.054(5)	0.00086(8)	¹⁸⁷ Os	1452.88(19)	0.024(4)	0.00038(6)
¹⁸⁸ Os	505.861(20)	0.021(4)	0.00033(6)	¹⁸⁷ Os	1457.56(11)	0.059(5)	0.00094(8)
¹⁸⁴ Os	512.84(5)	0.084(8)	0.00134(13)	¹⁸⁷ Os	1465.36(13)	0.048(5)	0.00076(8)
¹⁸⁷ Os	514.76(9)	0.038(4)	0.00061(6)	¹⁸⁹ Os	1489.05(8)	0.031(6)	0.00049(10)
¹⁸⁴ Os	521.9(3)	0.024(5)	0.00038(8)	¹⁸⁹ Os	1512.11(19)	0.039(7)	0.00062(11)
¹⁹⁰ Os	527.60(3)	0.300(10)	0.00478(16)	¹⁸⁹ Os	1546.20(9)	0.049(7)	0.00078(11)
¹⁹⁰ Os	537.75(4)	0.121(6)	0.00193(10)	¹⁸⁷ Os	1574.48(14)	0.031(6)	0.00049(10)

$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	s k ₀	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
¹⁸⁹ Os	1616.03(11)	0.033(6)	0.00053(10)	¹⁸⁷ Os	5920.60(14)	0.044(6)	0.00070(10)
¹⁸⁹ Os	1672.42(8)	0.035(6)	0.00056(10)	¹⁸⁹ Os	5933.06(13)	0.096(8)	0.00153(13)
¹⁸⁹ Os	1680.73(16)	0.053(6)	0.00084(10)	¹⁸⁴ Os	6155.8(3)	0.044(6)	0.00070(10)
¹⁸⁹ Os	1732.0(3)	0.024(5)	0.00038(8)	¹⁸⁹ Os	6246.81(12)	0.026(3)	0.00041(5)
¹⁸⁹ Os	1770.5(5)	0.026(3)	0.00041(5)	¹⁸⁹ Os	6409.53(14)	0.026(3)	0.00041(5)
¹⁸⁷ Os	1802.35(13)	0.035(5)	0.00056(8)	¹⁸⁴ Os	6587.21(25)	0.093(13)	0.00148(21)
¹⁸⁹ Os	1883.37(19)	0.027(9)	0.00043(14)	¹⁸⁹ Os	7234.19(11)	0.044(4)	0.00070(6)
¹⁸⁷ Os	1957.46(13)	0.027(6)	0.00043(10)	¹⁸⁹ Os	7792.14(11)	0.034(3)	0.00054(5)
¹⁸⁷ Os	2011.29(20)	0.021(5)	0.00043(10)	¹⁸⁷ Os	7834.30(8)	0.0247(23)	0.00034(3)
¹⁸⁷ Os	2022.95(14)	0.053(6)	0.00033(8)	¹⁸⁷ Os	7989.40(7)	0.0208(14)	0.000331(22)
187 Os	2098.77(22)	0.0208(24)	0.00034(10)	Os			
¹⁸⁷ Os	2131.44(14)	0.052(6)	0.00033(10)	191 x	iriaium (Z=/		17(3), $\sigma_{\gamma}^{z} = 425(5)$
187 Os	2193.17(24)	0.032(6)	0.00049(10)	¹⁹¹ Ir ¹⁹¹ Ir	23.9670(20)	0.170(14)	0.00268(22)
187 Os	2214.6(3)	0.031(0)	0.00049(10)		26.2260(20)	0.132(9)	0.00208(14)
187 Os	2261.21(14)	0.039(7)	` /	¹⁹³ Ir	39.2160(10)	0.17(11)	0.0027(17)
187 Os		` /	0.00123(11)	¹⁹³ Ir	43.1190(10)	0.9(3)	0.014(5)
¹⁸⁷ Os	2286.54(14)	0.052(8)	0.00083(13)	¹⁹¹ Ir	48.0570(10)	5.7(4)	0.090(6)
	2306.04(21)	0.0215(18)	0.00034(3)	¹⁹¹ Ir	49.379(4)	0.122(10)	0.00192(16)
¹⁸⁷ Os	2505.13(24)	0.040(5)	0.00064(8)	¹⁹¹ Ir	49.9560(20)	0.115(9)	0.00181(14)
¹⁸⁷ Os	2606.38(21)	0.023(5)	0.00037(8)	¹⁹¹ Ir	50.782(8)	0.132(11)	0.00208(17)
¹⁸⁷ Os	2623.10(21)	0.023(5)	0.00037(8)	¹⁹¹ Ir	54.3210(20)	0.54(20)	0.009(3)
¹⁸⁷ Os	2817.11(25)	0.026(5)	0.00041(8)	¹⁹³ Ir	54.4030(10)	0.12(8)	0.0019(13)
¹⁸⁷ Os	3021.7(3)	0.026(3)	0.00041(5)	¹⁹¹ Ir	58.8440(10)	5.3(3)	0.084(5)
¹⁸⁷ Os	3069.9(3)	0.028(5)	0.00045(8)	¹⁹¹ Ir	66.822(8)	1.31(13)	0.0207(20)
¹⁸⁷ Os	3110.00(18)	0.0273(19)	0.00043(3)	¹⁹¹ Ir	69.252(3)	0.25(7)	0.0039(11)
¹⁸⁷ Os	3176.9(3)	0.025(5)	0.00040(8)	¹⁹³ Ir	69.4740(20)	0.19(14)	0.0030(22)
¹⁹² Os	3980.58(25)	0.035(4)	0.00056(6)	¹⁹¹ Ir	72.0240(20)	0.6(3)	0.009(5)
188 Os	4222.8(5)	0.052(6)	0.00083(10)	¹⁹¹ Ir	72.328(4)	0.28(9)	0.0044(14)
¹⁹² Os	4530.27(22)	0.090(8)	0.00143(13)	¹⁹¹ Ir	77.369(3)	0.38(11)	0.0060(17)
¹⁹⁰ Os	4556.2(3)	0.035(7)	0.00056(11)	¹⁹¹ Ir	77.9470(10)	4.8(4)	0.076(6)
¹⁹⁰ Os	4666.6(3)	0.024(6)	0.00038(10)	¹⁹³ Ir	82.3350(10)	0.5(3)	0.008(5)
¹⁹² Os	4694.4(3)	0.025(5)	0.00040(8)	¹⁹¹ Ir	83.965(8)	0.18(9)	0.0028(14)
¹⁸⁷ Os	4749.98(22)	0.042(6)	0.00067(10)	¹⁹¹ Ir	84.2740(20)	7.7(4)	0.121(6)
¹⁸⁷ Os	4812.6(3)	0.049(7)	0.00078(11)	¹⁹³ Ir	84.2840(10)	1.0(6)	0.016(10)
¹⁸⁷ Os	4919.6(3)	0.037(3)	0.00059(5)	¹⁹¹ Ir	86.8340(20)	0.65(13)	0.010(10)
¹⁸⁷ Os	4959.35(25)	0.021(5)	0.00033(8)	¹⁹¹ Ir	88.7340(20)		* *
¹⁹⁰ Os	5010.7(3)	0.029(6)	0.00046(10)	1r ¹⁹¹ Ir		3.67(24)	0.058(4)
¹⁹⁰ Os	5036.9(3)	0.041(6)	0.00065(10)	1r ¹⁹¹ Ir	90.7030(20)	1.25(15)	0.0197(24)
¹⁸⁷ Os	5096.77(22)	0.037(7)	0.00059(11)	¹⁹³ Ir	90.857(3)	0.20(4)	0.0032(6)
¹⁹⁰ Os	5146.63(14)	0.409(20)	0.0065(3)	¹⁹¹ Ir	93.1630(10)	0.3(3)	0.005(5)
¹⁸⁷ Os	5172.38(25)	0.031(6)	0.00049(10)	¹⁹¹ Ir	95.056(6)	0.24(5)	0.0038(8)
187 Os	5223.66(21)	0.031(0)	0.00049(10)	¹⁹³ Ir	95.470(4)	0.9(3)	0.014(5)
187 Os	5250.4(7)	0.0213(21)	0.00034(3)		95.5690(10)	0.8(5)	0.013(8)
192 Os		0.029(0)	0.00046(10)	¹⁹¹ Ir	97.347(3)	0.25(5)	0.0039(8)
189 Os	5277.11(22)			¹⁹¹ Ir	97.348(4)	0.36(14)	0.0057(22)
190 Os	5315.8(3)	0.024(7)	0.00038(11)	¹⁹¹ Ir	98.524(4)	0.32(5)	0.0050(8)
188 Os	5341.4(3)	0.074(12)	0.00118(19)	¹⁹¹ Ir	99.603(6)	0.24(13)	0.0038(20)
	5364.5(4)	0.028(7)	0.00045(11)	¹⁹³ Ir	100.4030(20)	0.13(8)	0.0020(13)
¹⁸⁷ Os	5366.38(21)	0.028(7)	0.00045(11)	¹⁹¹ Ir	104.043(9)	0.13(4)	0.0020(6)
¹⁸⁸ Os	5371.8(4)	0.023(7)	0.00037(11)	¹⁹¹ Ir	105.159(3)	0.14(6)	0.0022(10)
¹⁸⁸ Os	5416.0(4)	0.053(20)	0.0008(3)	¹⁹¹ Ir	107.015(3)	0.20(7)	0.0032(11)
¹⁸⁸ Os	5483.1(4)	0.049(8)	0.00078(13)	¹⁹¹ Ir	107.132(4)	0.23(6)	0.0036(10)
¹⁸⁷ Os	5484.35(24)	0.049(8)	0.00078(13)	¹⁹¹ Ir	108.0300(20)	2.62(12)	0.0413(19)
¹⁸⁹ Os	5502.8(6)	0.021(6)	0.00033(10)	¹⁹¹ Ir	108.658(4)	0.11(3)	0.0017(5)
¹⁸⁷ Os	5528.34(22)	0.038(7)	0.00061(11)	¹⁹¹ Ir	110.352(3)	0.53(7)	0.0084(11)
¹⁸⁹ Os	5529.1(7)	0.045(8)	0.00072(13)	¹⁹¹ Ir	111.025(3)	0.99(11)	0.0156(17)
¹⁸⁷ Os	5573.17(15)	0.052(6)	0.00083(10)	¹⁹³ Ir	112.2310(10)	1.7(4)	0.027(6)
¹⁹² Os	5583.70(20)	0.076(7)	0.00121(11)	¹⁹³ Ir	115.4730(10)	0.5(3)	0.008(5)
¹⁸⁹ Os	5599.6(7)	0.024(5)	0.00038(8)	¹⁹³ Ir	117.8790(10)	0.4(3)	0.006(5)
$^{187}\mathrm{Os}$	5641.20(23)	0.023(4)	0.00037(6)	¹⁹¹ Ir	118.268(3)	0.15(3)	0.0024(5)
¹⁹⁰ Os	5674.5(4)	0.038(7)	0.00061(11)	¹⁹¹ Ir	118.7820(10)	0.56(7)	0.0088(11)
¹⁸⁹ Os	5680.3(3)	0.045(9)	0.00072(14)	¹⁹¹ Ir	121.139(3)	0.17(7)	0.0027(11)
¹⁹⁰ Os	5683.87(21)	0.167(13)	0.00266(21)	¹⁹¹ Ir	122.596(3)	0.41(7)	0.0027(11)
¹⁸⁷ Os	5702.93(15)	0.050(8)	0.00080(13)	¹⁹³ Ir	123.8450(10)	1.0(6)	0.016(10)
¹⁸⁶ Os	5703.4(7)	0.050(8)	0.00080(13)	¹⁹¹ Ir	126.958(3)	1.86(10)	0.010(10)
¹⁸⁹ Os	5749.8(10)	0.026(6)	0.00041(10)	¹⁹³ Ir	132.8790(20)	0.18(10)	0.0028(16)
¹⁸⁹ Os	5782.7(3)	0.024(6)	0.00038(10)	¹⁹¹ Ir	132.8790(20)	0.18(10)	0.0028(10)
¹⁸⁹ Os	5873.5(3)	0.030(6)	0.00048(10)	¹⁹³ Ir	136.1000(20)	0.17(11)	0.0030(8)
¹⁸⁹ Os	5881.67(19)	0.035(6)	0.00056(10)	¹⁹¹ Ir	136.1000(20)	6.5(9)	0.102(14)
¹⁸⁸ Os	5885.7(4)	0.041(7)	0.00065(11)	1r ¹⁹¹ Ir			
03	2000.7(1)	··········		ır	136.213(3)	4.0(5)	0.063(8)

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barns	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
¹⁹¹ Ir	136.7910(10)	2.20(21)	0.035(3)	¹⁹³ Ir	224.0830(20)	0.18(11)	0.0028(17)
¹⁹¹ Ir	138.2480(20)	0.53(7)	0.0084(11)	¹⁹³ Ir	225.4180(20)	0.12(7)	0.0019(11)
¹⁹³ Ir	138.6880(10)	0.8(5)	0.013(8)	¹⁹¹ Ir	226.2980(20)	4.0(4)	0.063(6)
¹⁹¹ Ir	139.736(5)	0.27(4)	0.0043(6)	¹⁹³ Ir	226.6390(10)	0.20(12)	0.0032(19)
¹⁹¹ Ir	140.257(6)	0.32(5)	0.0050(8)	¹⁹¹ Ir	226.722(5)	0.19(4)	0.0030(6)
¹⁹¹ Ir	140.814(6)	0.16(5)	0.0025(8)	¹⁹³ Ir	228.0650(20)	0.12(8)	0.0019(13)
¹⁹³ Ir	143.5940(10)	0.6(3)	0.009(5)	¹⁹¹ Ir	229.771(11)	0.48(11)	0.0076(17)
¹⁹¹ Ir	144.849(4)	0.57(9)	0.0090(14)	¹⁹¹ Ir	231.683(3)	0.95(13)	0.0150(20)
¹⁹¹ Ir	144.903(5)	3.1(4)	0.049(6)	¹⁹¹ Ir	232.907(4)	0.20(4)	0.0032(6)
¹⁹³ Ir	145.2220(10)	0.11(7)	0.0017(11)	¹⁹³ Ir	234.8190(20)	0.44(13)	0.0069(20)
¹⁹¹ Ir	148.821(3)	1.08(12)	0.0170(19)	¹⁹¹ Ir	241.867(7)	0.65(13)	0.0102(20)
¹⁹¹ Ir	148.822(3)	1.08(12)	0.0170(19)	¹⁹³ Ir	245.1090(20)	0.14(9)	0.0022(14)
¹⁹³ Ir	148.9340(10)	1.4(9)	0.022(14)	¹⁹³ Ir	245.4920(20)	0.33(22)	0.005(4)
¹⁹¹ Ir	151.450(5)	0.26(5)	0.0041(8)	¹⁹¹ Ir	246.169(3)	0.15(4)	0.0024(6)
¹⁹¹ Ir	151.5640(20)	2.89(20)	0.046(3)	¹⁹¹ Ir	246.800(4)	0.32(9)	0.0050(14)
¹⁹³ Ir	152.4080(10)	0.37(23)	0.006(4)	¹⁹³ Ir	248.6000(20)	0.24(15)	0.0038(24)
¹⁹³ Ir	152.942(11)	0.55(13)	0.0087(20)	¹⁹³ Ir	252.2750(10)	0.11(7)	0.0017(11)
¹⁹³ Ir	153.0550(10)	0.5(3)	0.008(5)	¹⁹¹ Ir	252.499(12)	0.5(3)	0.008(5)
¹⁹¹ Ir ¹⁹¹ Ir	156.0870(20)	1.02(12)	0.0161(19)	¹⁹¹ Ir	254.277(4)	1.08(11)	0.0170(17)
	156.654(3)	2.76(12)	0.0435(19)	¹⁹³ Ir ¹⁹¹ Ir	255.3130(20)	0.36(13)	0.0057(20)
¹⁹¹ Ir ¹⁹³ Ir	158.180(4)	0.15(4)	0.0024(6)	191 Ir	258.320(5)	0.24(5)	0.0038(8)
¹⁹³ Ir	160.8250(20)	0.34(11)	0.0054(17)	¹⁹¹ Ir	261.953(6)	2.02(23)	0.032(4)
¹⁹³ Ir	160.9980(10) 162.7740(20)	0.4(3) 0.24(15)	0.006(5) 0.0038(24)	193 Ir	262.03(10) 262.7290(10)	3.05(18)	0.048(3)
¹⁹¹ Ir	162.7740(20)	0.14(3)	0.0038(24)	¹⁹¹ Ir	263.573(6)	0.14(8) 0.86(10)	0.0022(13) 0.0136(16)
¹⁹³ Ir	165.3800(20)	0.27(23)	0.0022(3)	¹⁹¹ Ir	264.008(7)	0.57(7)	0.0090(11)
¹⁹³ Ir	165.4500(20)	0.35(22)	0.006(4)	¹⁹³ Ir	264.7680(20)	0.8(5)	0.0030(11)
¹⁹¹ Ir	166.089(5)	0.89(10)	0.0140(16)	¹⁹¹ Ir	267.415(4)	0.93(21)	0.015(3)
¹⁹¹ Ir	166.435(4)	0.24(4)	0.0038(6)	¹⁹³ Ir	271.6810(20)	0.6(4)	0.009(6)
¹⁹¹ Ir	169.196(3)	3.05(13)	0.0481(20)	¹⁹¹ Ir	273.235(8)	0.49(8)	0.0077(13)
¹⁹¹ Ir	169.542(5)	0.52(7)	0.0082(11)	¹⁹¹ Ir	273.236(7)	0.72(17)	0.011(3)
¹⁹¹ Ir	169.542(4)	0.52(7)	0.0082(11)	¹⁹¹ Ir	273.568(5)	0.18(6)	0.0028(10)
¹⁹³ Ir	169.5660(10)	0.24(15)	0.0038(24)	¹⁹¹ Ir	275.0380(20)	0.74(16)	0.0117(25)
¹⁹³ Ir	169.8760(10)	0.15(9)	0.0024(14)	¹⁹³ Ir	275.2990(10)	0.6(4)	0.009(6)
¹⁹¹ Ir	172.839(3)	0.53(24)	0.008(4)	¹⁹¹ Ir	276.787(4)	0.55(12)	0.0087(19)
¹⁹¹ Ir	174.139(8)	0.21(4)	0.0033(6)	¹⁹¹ Ir	278.193(8)	0.42(5)	0.0066(8)
¹⁹³ Ir	176.6510(20)	0.15(10)	0.0024(16)	¹⁹³ Ir	278.5040(10)	1.8(11)	0.028(17)
¹⁹¹ Ir ¹⁹¹ Ir	176.812(3)	0.6(4)	0.009(6)	¹⁹¹ Ir	284.074(6)	1.95(15)	0.0307(24)
191 Ir	177.919(7) 179.0380(20)	0.28(6)	0.0044(10)	¹⁹¹ Ir ¹⁹³ Ir	284.947(3) 288.4310(20)	0.52(7)	0.0082(11)
¹⁹¹ Ir	183.626(3)	2.1(5) 1.0(4)	0.033(8) 0.016(6)	191 Ir	292.374(4)	0.12(7) 0.42(12)	0.0019(11) 0.0066(19)
¹⁹³ Ir	184.6870(20)	0.92(22)	0.015(4)	¹⁹³ Ir	293.541(14)d	1.76(6)	0.0277[1.8%]
¹⁹¹ Ir	187.521(3)	0.43(5)	0.0068(8)	¹⁹³ Ir	294.5300(20)	0.41(25)	0.006(4)
¹⁹¹ Ir	188.204(3)	0.52(23)	0.008(4)	¹⁹¹ Ir	296.257(8)	0.65(17)	0.010(3)
¹⁹¹ Ir	189.100(7)	0.47(18)	0.007(3)	¹⁹¹ Ir	299.476(8)	0.13(4)	0.0020(6)
¹⁹¹ Ir	193.718(3)	0.83(11)	0.0131(17)	¹⁹¹ Ir	302.905(8)	1.20(11)	0.0189(17)
¹⁹³ Ir	193.9300(20)	0.21(13)	0.0033(20)	¹⁹¹ Ir	305.448(4)	0.45(10)	0.0071(16)
¹⁹¹ Ir	195.433(4)	0.27(7)	0.0043(11)	¹⁹³ Ir	308.9740(10)	0.6(4)	0.009(6)
¹⁹³ Ir	195.5270(10)	0.21(13)	0.0033(20)	¹⁹¹ Ir	310.010(6)	0.26(8)	0.0041(13)
¹⁹¹ Ir	197.061(7)	0.73(19)	0.012(3)	¹⁹¹ Ir	310.08(10)	0.61(10)	0.0096(16)
¹⁹³ Ir	198.8370(20)	0.15(9)	0.0024(14)	¹⁹³ Ir	311.4960(10)	0.16(10)	0.0025(16)
¹⁹¹ Ir	199.174(7)	1.07(18)	0.017(3)	¹⁹¹ Ir	311.630(6)	0.23(6)	0.0036(10)
¹⁹¹ Ir	199.418(5)	0.14(4)	0.0022(6)	¹⁹³ Ir	314.0520(10)	0.26(17)	0.004(3)
¹⁹¹ Ir	201.111(5)	0.21(6)	0.0033(10)	¹⁹¹ Ir ¹⁹¹ Ir	316.061(7)	2.4(4)	0.038(6)
¹⁹¹ Ir ¹⁹¹ Ir	203.015(3)	0.27(4)	0.0043(6)	193 Ir	322.510(5)	0.51(11)	0.0080(17)
¹⁹¹ Ir	206.220(4) 207.301(5)	3.70(18)	0.058(3) 0.0079(10)	¹⁹¹ Ir	328.448(14)d 333.864(6)	9.1(3)	0.143[1.8%]
191 Ir	207.301(3)	0.50(6) 0.70(9)	0.0079(10)	¹⁹³ Ir	337.5240(20)	1.53(10) 0.62(21)	0.0241(16) 0.010(3)
¹⁹¹ Ir	210.352(5)	0.75(8)	0.0118(13)	¹⁹³ Ir	340.8130(20)	0.8(5)	0.013(8)
¹⁹¹ Ir	210.352(5)	0.75(8)	0.0118(13)	¹⁹¹ Ir	351.689(4)	10.9(4)	0.172(6)
¹⁹¹ Ir	210.354(5)	2.1(4)	0.033(6)	¹⁹³ Ir	353.9610(10)	0.5(3)	0.008(5)
¹⁹³ Ir	212.3460(20)	0.15(10)	0.0024(16)	¹⁹¹ Ir	358.320(8)	0.34(9)	0.0054(14)
¹⁹¹ Ir	215.117(5)	0.23(4)	0.0036(6)	¹⁹¹ Ir	365.440(7)	1.15(10)	0.0181(16)
¹⁹¹ Ir	215.5110(20)	0.24(4)	0.0038(6)	¹⁹³ Ir	371.5020(20)	2.11(12)	0.0333(19)
¹⁹¹ Ir	216.1940(20)	0.65(9)	0.0102(14)	¹⁹¹ Ir	384.659(6)	0.50(12)	0.0079(19)
¹⁹¹ Ir	216.905(4)	5.57(24)	0.088(4)	¹⁹³ Ir	390.9620(10)	0.6(4)	0.009(6)
¹⁹¹ Ir	221.90(10)	0.83(16)	0.0131(25)	¹⁹³ Ir	405.3660(20)	0.11(7)	0.0017(11)
¹⁹¹ Ir	223.176(6)	0.18(3)	0.0028(5)	¹⁹³ Ir	407.3150(20)	0.13(8)	0.0020(13)

^A Z	EγkeV	σ _γ ^z (E _γ)-barns	\mathbf{k}_0	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
¹⁹³ Ir	411.988(10)	0.12(8)	0.0019(13)	¹⁹¹ Ir	4985.93(14)	0.58(3)	0.0091(5)
¹⁹¹ Ir	418.138(6)	3.45(15)	0.0544(24)	¹⁹¹ Ir	4993.32(15)	0.40(4)	0.0063(6)
¹⁹¹ Ir	432.716(6)	1.85(7)	0.0292(11)	¹⁹¹ Ir	5003.4(3)	0.35(4)	0.0055(6)
¹⁹³ Ir	458.3070(20)	0.41(25)	0.006(4)	¹⁹³ Ir	5013.8(5)	0.21(4)	0.0033(6)
¹⁹³ Ir	460.2560(20)	0.8(5)	0.013(8)	¹⁹¹ Ir	5020.51(15)	0.66(6)	0.0104(10)
¹⁹³ Ir	4365.1(3)	0.22(3)	0.0035(5)	¹⁹¹ Ir	5028.52(15)	0.67(6)	0.0106(10)
¹⁹³ Ir	4368.5(4)	0.14(3)	0.0022(5)	¹⁹¹ Ir	5037.5(3)	0.22(4)	0.0035(6)
¹⁹³ Ir	4383.5(4)	0.11(3)	0.0017(5)	¹⁹¹ Ir	5042.35(23)	0.57(6)	0.0090(10)
¹⁹³ Ir	4395.64(18)	0.39(3)	0.0061(5)	¹⁹¹ Ir	5046.4(6)	0.12(3)	0.0019(5)
¹⁹³ Ir	4401.28(18)	0.35(3)	0.0055(5)	¹⁹¹ Ir	5053.15(23)	0.26(3)	0.0041(5)
¹⁹³ Ir	4426.1(3)	0.23(3)	0.0036(5)	¹⁹³ Ir	5058.0(3)	0.20(3)	0.0032(5)
¹⁹³ Ir	4442.1(8)	0.14(3)	0.0022(5)	¹⁹¹ Ir	5066.5(3)	0.15(3)	0.0024(5)
¹⁹³ Ir	4455.3(4)	0.13(3)	0.0020(5)	¹⁹³ Ir	5071.99(21)	0.28(3)	0.0044(5)
¹⁹³ Ir	4460.5(4)	0.18(3)	0.0028(5)	¹⁹¹ Ir	5085.45(20)	0.266(25)	0.0042(4)
¹⁹¹ Ir	4495.88(21)	0.44(4)	0.0069(6)	¹⁹¹ Ir	5091.10(18)	0.37(5)	0.0058(8)
¹⁹¹ Ir	4505.9(4)	0.20(3)	0.0032(5)	¹⁹³ Ir	5091.19(17)	0.52(3)	0.0082(5)
¹⁹¹ Ir	4521.3(4)	0.12(4)	0.0019(6)	¹⁹¹ Ir	5104.6(4)	0.14(3)	0.0022(5)
¹⁹¹ Ir	4531.28(19)	0.61(5)	0.0096(8)	¹⁹³ Ir	5109.0(3)	0.19(3)	0.0030(5)
¹⁹¹ Ir	4556.8(8)	0.18(7)	0.0028(11)	¹⁹¹ Ir	5109.6(6)	0.11(7)	0.0017(11)
¹⁹¹ Ir	4563.5(9)	0.14(11)	0.0022(17)	¹⁹³ Ir	5117.9(4)	0.12(3)	0.0019(5)
¹⁹¹ Ir	4571.8(5)	0.23(4)	0.0036(6)	¹⁹¹ Ir	5123.3(3)	0.20(3)	0.0032(5)
¹⁹³ Ir	4577.9(4)	0.16(3)	0.0025(5)	¹⁹¹ Ir	5129.21(12)	0.90(5)	0.0142(8)
¹⁹³ Ir	4584.4(3)	0.21(4)	0.0033(6)	¹⁹¹ Ir	5138.06(14)	0.39(4)	0.0061(6)
¹⁹¹ Ir	4591.30(17)	0.57(4)	0.0090(6)	¹⁹¹ Ir	5147.51(12)	1.29(6)	0.0203(10)
¹⁹¹ Ir	4601.64(24)	0.22(4)	0.0035(6)	¹⁹¹ Ir	5153.1(3)	0.26(3)	0.0041(5)
¹⁹¹ Ir	4611.6(6)	0.11(7)	0.0017(11)	¹⁹³ Ir	5158.23(22)	0.36(3)	0.0057(5)
¹⁹³ Ir	4612.5(3)	0.19(3)	0.0030(5)	¹⁹¹ Ir	5166.92(13)	0.96(6)	0.0151(10)
¹⁹³ Ir	4618.0(4)	0.13(3)	0.0020(5)	¹⁹³ Ir	5178.4(3)	0.34(4)	0.0054(6)
¹⁹¹ Ir	4640.0(6)	0.15(6)	0.0024(10)	¹⁹¹ Ir	5184.38(25)	0.20(6)	0.0032(10)
¹⁹³ Ir	4643.2(3)	0.33(5)	0.0052(8)	¹⁹³ Ir	5185.2(4)	0.34(4)	0.0054(6)
¹⁹¹ Ir	4646.47(13)	0.26(5)	0.0041(8)	¹⁹¹ Ir	5194.52(24)	0.34(5)	0.0054(8)
¹⁹¹ Ir	4663.36(21)	0.18(3)	0.0028(5)	¹⁹¹ Ir	5198.64(21)	0.38(4)	0.0060(6)
¹⁹¹ Ir	4668.09(17)	0.36(3)	0.0057(5)	¹⁹¹ Ir	5219.92(17)	0.72(5)	0.0114(8)
¹⁹³ Ir	4678.7(3)	0.18(3)	0.0028(5)	¹⁹¹ Ir	5248.02(23)	0.20(3)	0.0032(5)
¹⁹¹ Ir	4711.6(4)	0.17(3)	0.0027(5)	¹⁹¹ Ir	5261.14(17)	0.51(4)	0.0080(6)
¹⁹³ Ir	4712.8(3)	0.28(3)	0.0044(5)	¹⁹¹ Ir	5283.60(13)	0.85(6)	0.0134(10)
¹⁹¹ Ir ¹⁹¹ Ir	4729.1(3)	0.167(25)	0.0026(4)	¹⁹¹ Ir	5304.44(13)	0.73(5)	0.0115(8)
193 Ir	4734.2(3)	0.45(9)	0.0071(14)	¹⁹¹ Ir ¹⁹³ Ir	5313.6(3)	0.15(4)	0.0024(6)
191 Ir	4734.52(23)	0.46(3)	0.0073(5)	191 Ir	5316.6(3)	0.20(4)	0.0032(6)
¹⁹¹ Ir	4750.18(15)	0.38(3)	0.0060(5)	¹⁹¹ Ir	5327.53(19)	0.71(5)	0.0112(8)
11 ¹⁹¹ Ir	4755.28(20) 4765.66(17)	0.39(3)	0.0061(5) 0.0039(4)	191 Ir	5332.49(20) 5347.1(3)	0.54(5)	0.0085(8) 0.0028(5)
¹⁹¹ Ir	4779.82(15)	0.245(24) 0.32(3)	0.0059(4)	¹⁹¹ Ir	5357.09(16)	0.18(3) 1.03(6)	0.0028(3)
¹⁹¹ Ir	4801.4(3)	0.12(3)	0.0030(3)	¹⁹¹ Ir	5376.11(14)	0.288(24)	0.0102(10)
¹⁹¹ Ir	4809.72(23)	0.12(3)	0.0069(6)	¹⁹¹ Ir	5384.82(20)	0.224(22)	0.0045(4)
¹⁹¹ Ir	4817.3(3)	0.28(4)	0.0044(6)	¹⁹¹ Ir	5400.78(16)	0.40(3)	0.0063(5)
¹⁹¹ Ir	4826.1(4)	0.11(3)	0.0017(5)	¹⁹¹ Ir	5420.57(23)	0.201(22)	0.0032(4)
¹⁹³ Ir	4826.9(4)	0.20(4)	0.0032(6)	¹⁹¹ Ir	5431.34(12)	0.78(4)	0.0123(6)
¹⁹¹ Ir	4838.3(4)	0.15(4)	0.0024(6)	¹⁹¹ Ir	5448.60(17)	0.51(4)	0.0080(6)
¹⁹³ Ir	4839.34(20)	0.41(4)	0.0065(6)	¹⁹¹ Ir	5458.91(18)	0.60(5)	0.0095(8)
¹⁹¹ Ir	4849.6(3)	0.15(3)	0.0024(5)	¹⁹¹ Ir	5463.9(4)	0.31(7)	0.0049(11)
¹⁹¹ Ir	4854.8(5)	0.28(5)	0.0044(8)	¹⁹³ Ir	5467.0(3)	0.59(7)	0.0093(11)
¹⁹³ Ir	4855.5(3)	0.48(4)	0.0076(6)	¹⁹¹ Ir	5483.9(4)	0.17(6)	0.0027(10)
¹⁹¹ Ir	4859.30(23)	0.45(4)	0.0071(6)	¹⁹³ Ir	5487.40(21)	0.58(4)	0.0091(6)
¹⁹¹ Ir	4866.97(12)	0.68(4)	0.0107(6)	¹⁹¹ Ir	5490.1(5)	0.19(3)	0.0030(5)
¹⁹¹ Ir	4875.03(18)	0.33(4)	0.0052(6)	¹⁹¹ Ir	5495.27(23)	0.22(3)	0.0035(5)
¹⁹¹ Ir	4893.82(23)	0.35(3)	0.0055(5)	¹⁹¹ Ir	5517.04(17)	0.76(4)	0.0120(6)
¹⁹¹ Ir	4898.53(19)	0.41(4)	0.0065(6)	¹⁹¹ Ir	5534.73(12)	1.39(6)	0.0219(10)
¹⁹¹ Ir	4916.5(3)	0.29(5)	0.0046(8)	¹⁹¹ Ir	5552.18(21)	0.163(22)	0.0026(4)
¹⁹³ Ir	4921.1(4)	0.18(4)	0.0028(6)	¹⁹¹ Ir	5564.54(14)	1.71(8)	0.0270(13)
¹⁹¹ Ir	4932.9(3)	0.11(4)	0.0017(6)	¹⁹¹ Ir	5569.4(3)	0.67(4)	0.0106(6)
¹⁹¹ Ir	4938.9(3)	0.25(9)	0.0039(14)	¹⁹³ Ir	5576.98(7)	0.121(24)	0.0019(4)
¹⁹¹ Ir	4942.92(18)	0.52(4)	0.0082(6)	¹⁹¹ Ir	5595.63(13)	0.72(4)	0.0114(6)
¹⁹¹ Ir	4949.40(24)	0.31(4)	0.0049(6)	¹⁹¹ Ir	5612.55(12)	1.06(5)	0.0167(8)
¹⁹¹ Ir	4955.2(3)	0.15(7)	0.0024(11)	¹⁹³ Ir	5630.33(7)	0.315(24)	0.0050(4)
¹⁹¹ Ir	4966.5(3)	0.20(3)	0.0032(5)	¹⁹³ Ir	5642.90(7)	0.293(25)	0.0046(4)
¹⁹¹ Ir	4972.12(17)	0.35(3)	0.0055(5)	¹⁹¹ Ir	5654.27(14)	0.39(3)	0.0061(5)
¹⁹¹ Ir	4980.57(15)	0.82(4)	0.0129(6)	¹⁹¹ Ir	5661.00(20)	0.38(3)	0.0060(5)

$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	σ _γ ^z (E _γ)-barns	\mathbf{k}_0
¹⁹¹ Ir	5667.81(3)	2.68(10)	0.0423(16)	¹⁹⁶ Pt	5098.1(7)	0.093(6)	0.00144(9)
¹⁹¹ Ir	5681.1(3)	0.165(19)	0.0026(3)	¹⁹⁵ Pt	5098.5(7)	0.10(3)	0.0016(5)
¹⁹¹ Ir	5689.06(3)	1.73(7)	0.0273(11)	¹⁹⁵ Pt	5173.4(3)	0.136(6)	0.00211(9)
¹⁹¹ Ir	5708.62(3)	0.122(17)	0.0019(3)	¹⁹⁵ Pt	5185.3(3)	0.085(5)	0.00132(8)
¹⁹¹ Ir	5727.2(3)	0.27(4)	0.0043(6)	¹⁹⁵ Pt	5254.70(8)	0.41(3)	0.0064(5)
¹⁹³ Ir	5728.97(7)	1.15(5)	0.0181(8)	¹⁹⁵ Pt	5261.0(6)	0.097(14)	0.00151(22)
¹⁹¹ Ir	5746.80(3)	0.190(18)	0.0030(3)	¹⁹⁵ Pt	5306.9(3)	0.118(14)	0.00131(22)
¹⁹¹ Ir	5757.18(3)	` /	0.0030(3)	¹⁹⁵ Pt			
¹⁹³ Ir		0.49(6)		195 Pt	5393.05(16)	0.113(10)	0.00176(16)
	5757.65(7)	0.42(4)	0.0066(6)	195 Pt	5451.93(14)	0.078(7)	0.00121(11)
¹⁹¹ Ir	5783.01(3)	1.34(6)	0.0211(10)	195 Pt	5612.62(11)	0.14(3)	0.0022(5)
¹⁹³ Ir	5788.12(7)	0.43(4)	0.0068(6)	195 Pt	5722.40(9)	0.071(5)	0.00110(8)
¹⁹¹ Ir	5808.33(3)	0.48(3)	0.0076(5)		5759.22(10)	0.084(12)	0.00130(19)
¹⁹¹ Ir	5817.7(4)	0.113(25)	0.0018(4)	¹⁹⁵ Pt	5952.95(7)	0.086(16)	0.00134(25)
¹⁹³ Ir	5821.51(7)	0.48(3)	0.0076(5)	¹⁹⁵ Pt	6003.37(8)	0.073(4)	0.00113(6)
¹⁹¹ Ir	5829.70(3)	0.16(5)	0.0025(8)	¹⁹⁵ Pt	6033.69(7)	0.109(6)	0.00169(9)
¹⁹¹ Ir	5866.29(3)	0.73(6)	0.0115(10)		Gold (Z=79), A	At.Wt.=196.9665	$5(2), \sigma_{\gamma}^{z} = 98.65(9)$
¹⁹¹ Ir	5866.97(3)	0.79(5)	0.0125(8)	¹⁹⁷ Au	35.8240(10)	0.41(5)	0.0063(8)
¹⁹¹ Ir	5905.67(3)	0.45(4)	0.0071(6)	¹⁹⁷ Au	55.1810(10)	2.90(12)	0.0446(18)
¹⁹¹ Ir	5909.64(3)	0.23(3)	0.0036(5)	¹⁹⁷ Au	66.3950(10)	0.42(12)	0.0065(18)
¹⁹³ Ir	5917.68(7)	0.34(3)	0.0054(5)	¹⁹⁷ Au	75.171(6)	0.390(23)	0.0060(4)
¹⁹³ Ir	5927.93(7)	0.33(3)	0.0052(5)	¹⁹⁷ Au	82.3560(10)	2.3(4)	0.035(6)
¹⁹³ Ir	5954.39(7)	0.74(4)	0.0117(6)	197 Au	82.5240(10)	1.4(3)	0.022(5)
¹⁹¹ Ir	5958.28(3)	1.79(8)	0.0282(13)	197 Au	83.144(6)	0.17(7)	0.0026(11)
¹⁹¹ Ir	5962.29(3)	0.75(4)	0.0118(6)	197 Au	91.0050(10)	0.294(15)	0.0020(11)
¹⁹¹ Ir	5972.13(3)	0.254(21)	0.0040(3)	197 Au	` /	, ,	
¹⁹³ Ir	5984.28(7)	0.212(21)	0.0033(3)	197 Au	97.2500(20)	2.1(5)	0.032(8)
¹⁹¹ Ir	6004.53(3)	0.257(21)	0.0041(3)	197 A	101.9390(10)	0.953(17)	0.0147(3)
¹⁹³ Ir	6023.50(7)	0.171(17)	0.0041(3)	¹⁹⁷ Au	103.5610(10)	0.338(15)	0.00520(23)
¹⁹¹ Ir	6079.26(3)		* *	¹⁹⁷ Au	108.9120(20)	0.270(14)	0.00415(22)
117 191 Ir		0.29(9)	0.0046(14)	¹⁹⁷ Au	122.6520(10)	0.81(13)	0.0125(20)
¹⁹¹ Ir	6082.48(3)	2.62(11)	0.0413(17)	¹⁹⁷ Au	123.7860(10)	0.83(13)	0.0128(20)
ır	6093.26(3)	0.56(4)	0.0088(6)	¹⁹⁷ Au	131.9340(20)	0.17(6)	0.0026(9)
			$078(2), \sigma_{\gamma}=10.3(4)$	¹⁹⁷ Au	132.850(4)	0.104(24)	0.0016(4)
¹⁹⁴ Pt	211.4060(20)	0.0293(10)	0.000455(16)	¹⁹⁷ Au	135.612(6)	0.10(3)	0.0015(5)
¹⁹⁵ Pt	326.353(3)	0.511(10)	0.00794(16)	¹⁹⁷ Au	137.448(6)	0.13(5)	0.0020(8)
¹⁹⁵ Pt	332.985(4)	2.580(25)	0.0401(4)	¹⁹⁷ Au	137.7630(10)	0.347(24)	0.0053(4)
¹⁹⁵ Pt	355.6840(20)	6.17(6)	0.0958(9)	¹⁹⁷ Au	137.999(5)	0.17(5)	0.0026(8)
¹⁹⁵ Pt	393.346(5)	0.066(4)	0.00103(6)	¹⁹⁷ Au	142.9270(20)	0.161(16)	0.00248(25)
¹⁹⁵ Pt	446.624(4)	0.0963(21)	0.00150(3)	¹⁹⁷ Au	144.6050(10)	0.18(4)	0.0028(6)
¹⁹⁵ Pt	521.161(5)	0.338(10)	0.00525(16)	¹⁹⁷ Au	145.1540(10)	0.46(13)	0.0071(20)
¹⁹⁸ Pt	542.98(4)d	0.0390(3)	0.000606[45%]	¹⁹⁷ Au	146.3460(20)	0.43(4)	0.0066(6)
¹⁹⁵ Pt	672.894(3)	0.179(4)	0.00278(6)	¹⁹⁷ Au	146.6700(10)	0.28(5)	0.0043(8)
¹⁹⁵ Pt	779.608(5)	0.227(3)	0.00353(5)	¹⁹⁷ Au	154.7940(20)	0.38(6)	0.0058(9)
¹⁹⁵ Pt	1005.878(5)	0.139(3)	0.00216(5)	¹⁹⁷ Au	154.797(5)	0.239(10)	0.00368(15)
¹⁹⁵ Pt	1047.007(11)	0.181(4)	0.00281(6)	¹⁹⁷ Au	158.4360(10)	1.250(18)	0.0192(3)
¹⁹⁵ Pt	1091.334(6)	0.181(4)	0.00281(6)	¹⁹⁷ Au	158.479(11)	0.67(9)	0.0103(14)
¹⁹⁵ Pt	1248.774(10)	0.099(3)	0.00154(5)	¹⁹⁷ Au	164.7130(10)	0.21(3)	0.0032(5)
¹⁹⁵ Pt	1305.57(3)	0.062(3)	0.00096(5)	¹⁹⁷ Au	166.2280(10)	0.279(11)	0.0032(3)
¹⁹⁵ Pt	1303.57(3)	0.081(3)	0.00126(5)	197 Au	168.3340(10)	3.60(22)	0.00429(17)
195 Pt	1358.31(6)	0.081(3)	0.00128(3)	197 Au	169.9550(10)	0.126(25)	0.0019(4)
¹⁹⁵ Pt	1338.31(6)	0.076(4)	0.00118(6)	197 Au			
¹⁹⁵ Pt		` /		197 Au	170.1030(10)	1.66(22)	0.026(3)
195 Pt	1491.625(16)	0.135(4)	0.00210(6)		170.3990(20)	0.38(5)	0.0058(8)
195 Pt	1497.950(11)	0.084(3)	0.00130(5)	¹⁹⁷ Au	175.3070(20)	0.10(8)	0.0015(12)
195 Pt	1510.75(5)	0.083(3)	0.00129(5)	¹⁹⁷ Au	180.8640(10)	0.63(11)	0.0097(17)
	1531.84(3)	0.122(4)	0.00190(6)	¹⁹⁷ Au	188.1670(20)	0.63(15)	0.0097(23)
¹⁹⁵ Pt	1532.435(12)	0.066(18)	0.0010(3)	¹⁹⁷ Au	191.1870(20)	0.18(3)	0.0028(5)
¹⁹⁵ Pt	1562.76(4)	0.083(3)	0.00129(5)	¹⁹⁷ Au	192.3920(10)	3.9(18)	0.06(3)
¹⁹⁵ Pt	1677.223(15)	0.087(4)	0.00135(6)	¹⁹⁷ Au	192.9440(10)	1.70(22)	0.026(3)
195 Pt	1713.67(10)	0.090(4)	0.00140(6)	¹⁹⁷ Au	202.9920(20)	0.229(6)	0.00352(9)
¹⁹⁵ Pt	1737.278(16)	0.087(4)	0.00135(6)	¹⁹⁷ Au	204.1580(10)	0.513(10)	0.00789(15)
¹⁹⁵ Pt	1802.269(10)	0.146(4)	0.00227(6)	¹⁹⁷ Au	204.1620(10)	0.59(10)	0.0091(15)
¹⁹⁵ Pt	1825.685(8)	0.091(4)	0.00141(6)	¹⁹⁷ Au	206.2230(10)	0.199(6)	0.00306(9)
¹⁹⁵ Pt	1888.116(12)	0.080(4)	0.00124(6)	¹⁹⁷ Au	213.0650(10)	0.094(13)	0.00145(20)
¹⁹⁵ Pt	1968.858(13)	0.103(4)	0.00160(6)	¹⁹⁷ Au	214.858(3)	0.19(5)	0.0029(8)
¹⁹⁵ Pt	1978.46(3)	0.163(5)	0.00253(8)	¹⁹⁷ Au	214.9710(10)	9.0(12)	0.138(18)
¹⁹⁵ Pt	2309.20(9)	0.066(14)	0.00103(22)	¹⁹⁷ Au	215.2950(20)	0.19(3)	0.0029(5)
¹⁹⁵ Pt	2311.44(3)	0.134(4)	0.00208(6)	¹⁹⁷ Au	218.8300(10)	0.141(22)	0.0022(3)
¹⁹⁵ Pt	2527.81(3)	0.07(3)	0.0011(5)	¹⁹⁷ Au	219.4190(20)	0.42(4)	0.0065(6)
¹⁹⁵ Pt	4949.0(4)	0.069(20)	0.0011(3)	¹⁹⁷ Au	234.6000(20)	0.091(12)	0.00140(18)
	` '	` /	` /		. (-)	` /	` /

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barn	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-barn	$\mathbf{s} = \mathbf{k}_0$
¹⁹⁷ Au	236.0450(10)	4.1(5)	0.063(8)	¹⁹⁷ Au	529.954(4)	0.39(5)	0.0060(8)
¹⁹⁷ Au	236.1710(20)	0.26(6)	0.0040(9)	¹⁹⁷ Au	540.3010(20)	0.49(23)	0.008(4)
¹⁹⁷ Au	245.314(6)	0.111(18)	0.0017(3)	¹⁹⁷ Au	542.3670(20)	0.104(14)	0.00160(22)
¹⁹⁷ Au	247.5730(10)	5.56(8)	0.0855(12)	¹⁹⁷ Au	544.008(5)	0.52(5)	0.0080(8)
¹⁹⁷ Au	248.739(3)	0.111(16)	0.00171(25)	¹⁹⁷ Au	548.9350(20)	0.67(9)	0.0103(14)
¹⁹⁷ Au	260.8820(10)	0.83(13)	0.0128(20)	¹⁹⁷ Au	552.467(3)	0.104(14)	0.00160(22)
¹⁹⁷ Au	261.4040(10)	5.3(20)	0.08(3)	¹⁹⁷ Au	555.6890(20)	0.126(17)	0.0019(3)
¹⁹⁷ Au	266.6470(10)	0.26(3)	0.0040(5)	¹⁹⁷ Au	565.784(5)	0.38(5)	0.0058(8)
¹⁹⁷ Au	269.0730(20)	0.155(24)	0.0024(4)	¹⁹⁷ Au	565.810(3)	0.43(6)	0.0066(9)
¹⁹⁷ Au	271.1380(20)	0.104(16)	0.00160(25)	¹⁹⁷ Au	571.683(3)	0.50(7)	0.0077(11)
¹⁹⁷ Au	271.2280(20)	0.170(24)	0.0026(4)	¹⁹⁷ Au	573.388(13)	0.126(17)	0.0019(3)
¹⁹⁷ Au	271.8940(10)	0.40(13)	0.0062(20)	¹⁹⁷ Au	573.746(6)	0.096(14)	0.00148(22)
¹⁹⁷ Au	276.072(3)	0.226(5)	0.00348(8)	¹⁹⁷ Au	573.960(4)	0.33(4)	0.0051(6)
¹⁹⁷ Au	277.2460(20)	0.277(6)	0.00426(9)	¹⁹⁷ Au	574.370(5)	0.148(20)	0.0023(3)
¹⁹⁷ Au	284.1090(20)	0.16(3)	0.0025(5)	¹⁹⁷ Au	574.381(3)	0.36(5)	0.0055(8)
¹⁹⁷ Au	291.7240(20)	1.05(17)	0.016(3)	¹⁹⁷ Au	574.733(10)	0.104(14)	0.00160(22)
¹⁹⁷ Au	293.1210(20)	0.101(16)	0.00155(25)	¹⁹⁷ Au	577.3020(20)	0.27(3)	0.0042(5)
¹⁹⁷ Au	307.7180(10)	0.44(6)	0.0068(9)	¹⁹⁷ Au	579.297(3)	0.53(8)	0.0082(12)
¹⁹⁷ Au	311.9040(20)	0.47(6)	0.0072(9)	¹⁹⁷ Au	584.800(10)	0.121(15)	0.00186(23)
¹⁹⁷ Au	314.913(3)	0.27(4)	0.0042(6)	¹⁹⁷ Au	593.184(8)	0.148(21)	0.0023(3)
¹⁹⁷ Au	324.900(5)	0.104(14)	0.00160(22)	¹⁹⁷ Au	609.432(4)	0.111(9)	0.00171(14)
¹⁹⁷ Au	328.4840(20)	1.48(19)	0.023(3)	¹⁹⁷ Au	612.7240(20)	0.104(14)	0.00160(22)
¹⁹⁷ Au	328.740(10)	0.111(14)	0.00171(22)	¹⁹⁷ Au	612.799(6)	0.096(22)	0.0015(3)
¹⁹⁷ Au	333.8380(20)	0.111(14)	0.00171(22)	¹⁹⁷ Au	625.4280(20)	0.44(4)	0.0068(6)
¹⁹⁷ Au	337.5330(10)	0.178(23)	0.0027(4)	¹⁹⁷ Au	631.660(9)	0.144(19)	0.0022(3)
¹⁹⁷ Au	339.2910(20)	0.090(25)	0.0014(4)	¹⁹⁷ Au	632.275(3)	0.170(23)	0.0026(4)
¹⁹⁷ Au	346.9050(20)	0.44(11)	0.0068(17)	¹⁹⁷ Au	635.166(3)	0.24(3)	0.0037(5)
¹⁹⁷ Au	347.8800(20)	0.111(14)	0.00171(22)	¹⁹⁷ Au	640.669(3)	0.59(5)	0.0091(8)
¹⁹⁷ Au	350.8280(10)	1.0(5)	0.015(8)	¹⁹⁷ Au	647.293(5)	0.126(17)	0.0019(3)
¹⁹⁷ Au	355.5300(20)	0.31(4)	0.0048(6)	¹⁹⁷ Au	655.528(4)	0.21(3)	0.0032(5)
¹⁹⁷ Au	364.0240(20)	0.11(3)	0.0017(5)	¹⁹⁷ Au	655.569(3)	0.24(5)	0.0037(8)
¹⁹⁷ Au	364.030(6)	0.104(14)	0.00160(22)	¹⁹⁷ Au	659.2490(20)	0.25(6)	0.0038(9)
¹⁹⁷ Au	368.2510(20)	0.133(21)	0.0020(3)	¹⁹⁷ Au	661.451(10)	0.093(19)	0.0014(3)
¹⁹⁷ Au	371.0790(20)	0.44(6)	0.0068(9)	¹⁹⁷ Au	668.561(7)	0.163(22)	0.0025(3)
¹⁹⁷ Au	373.1450(20)	0.130(19)	0.0020(3)	¹⁹⁷ Au	672.6550(10)	0.55(7)	0.0085(11)
¹⁹⁷ Au	378.2990(20)	0.178(23)	0.0027(4)	¹⁹⁷ Au	673.503(8)	0.126(18)	0.0019(3)
¹⁹⁷ Au	381.1990(10)	3.0(4)	0.046(6)	¹⁹⁷ Au	678.208(10)	0.41(12)	0.0063(18)
¹⁹⁷ Au	383.284(4)	0.24(3)	0.0037(5)	¹⁹⁷ Au	680.391(6)	0.10(3)	0.0015(5)
¹⁹⁷ Au	393.884(5)	0.22(3)	0.0034(5)	¹⁹⁷ Au	682.804(5)	0.111(15)	0.00171(23)
¹⁹⁷ Au	396.104(4)	0.100(8)	0.00154(12)	¹⁹⁷ Au	686.865(5)	0.218(18)	0.0034(3)
¹⁹⁷ Au	398.295(6)	0.096(13)	0.00148(20)	¹⁹⁷ Au	688.968(10)	0.155(24)	0.0024(4)
¹⁹⁷ Au	411.802d	94.29(15)	1.453(23)	¹⁹⁷ Au	690.046(6)	0.388(20)	0.0060(3)
¹⁹⁷ Au	418.8400(20)	0.70(9)	0.0108(14)	¹⁹⁷ Au	692.972(6)	0.094(18)	0.0014(3)
¹⁹⁷ Au	440.3290(20)	0.9(4)	0.014(6)	¹⁹⁷ Au	698.287(4)	0.15(5)	0.0023(8)
¹⁹⁷ Au	441.070(5)	0.7(5)	0.011(8)	¹⁹⁷ Au	702.474(5)	0.51(7)	0.0078(11)
¹⁹⁷ Au	444.3910(20)	0.56(7)	0.0086(11)	¹⁹⁷ Au	724.623(6)	0.115(18)	0.0018(3)
¹⁹⁷ Au	447.527(3)	0.10(4)	0.0015(6)	¹⁹⁷ Au	728.239(6)	0.161(19)	0.0025(3)
¹⁹⁷ Au	448.562(7)	0.118(15)	0.00182(23)	¹⁹⁷ Au	728.997(6)	0.111(20)	0.0017(3)
¹⁹⁷ Au	449.5700(20)	0.50(6)	0.0077(9)	¹⁹⁷ Au	732.221(10)	0.104(14)	0.00160(22)
¹⁹⁷ Au	456.1570(20)	0.141(22)	0.0022(3)	¹⁹⁷ Au	740.0000(20)	0.310(21)	0.0048(3)
¹⁹⁷ Au	456.287(4)	0.47(6)	0.0072(9)	¹⁹⁷ Au	744.8580(20)	0.104(15)	0.00160(23)
¹⁹⁷ Au	458.0540(20)	0.29(4)	0.0045(6)	¹⁹⁷ Au	745.220(4)	0.33(6)	0.0051(9)
¹⁹⁷ Au	458.370(4)	0.16(3)	0.0025(5)	¹⁹⁷ Au	746.073(5)	0.133(18)	0.0020(3)
¹⁹⁷ Au	464.7620(20)	0.17(6)	0.0026(9)	¹⁹⁷ Au	764.011(3)	0.3(3)	0.005(5)
¹⁹⁷ Au	485.638(5)	0.16(3)	0.0025(5)	¹⁹⁷ Au	765.131(6)	0.163(22)	0.0025(3)
¹⁹⁷ Au	502.407(8)	0.16(4)	0.0025(6)	¹⁹⁷ Au	767.886(5)	0.096(14)	0.00148(22)
¹⁹⁷ Au	509.175(4)	0.37(9)	0.0057(14)	¹⁹⁷ Au	767.960(6)	0.096(14)	0.00148(22)
¹⁹⁷ Au	510.427(6)	0.19(7)	0.0029(11)	¹⁹⁷ Au	770.858(5)	0.206(17)	0.0032(3)
¹⁹⁷ Au	511.067(6)	0.111(22)	0.0017(3)	¹⁹⁷ Au	776.632(6)	0.118(19)	0.0018(3)
¹⁹⁷ Au	511.5170(20)	0.68(11)	0.0105(17)	¹⁹⁷ Au	783.230(5)	0.111(23)	0.0017(4)
¹⁹⁷ Au	512.5790(20)	0.16(6)	0.0025(9)	¹⁹⁷ Au	786.793(10)	0.261(15)	0.00402(23)
¹⁹⁷ Au	515.132(6)	0.104(14)	0.00160(22)	¹⁹⁷ Au	788.131(13)	0.104(19)	0.0016(3)
¹⁹⁷ Au	516.0620(10)	0.35(5)	0.0054(8)	¹⁹⁷ Au	794.158(7)	0.178(24)	0.0027(4)
¹⁹⁷ Au	520.746(6)	0.19(8)	0.0029(12)	¹⁹⁷ Au	796.217(5)	0.148(22)	0.0023(3)
¹⁹⁷ Au	522.351(4)	0.096(12)	0.00148(18)	¹⁹⁷ Au	801.7050(20)	0.19(4)	0.0029(6)
¹⁹⁷ Au	524.752(3)	0.27(8)	0.0042(12)	¹⁹⁷ Au	806.248(8)	0.13(3)	0.0020(5)
¹⁹⁷ Au	525.1340(20)	0.35(4)	0.0054(6)	¹⁹⁷ Au	810.100(7)	0.26(3)	0.0040(5)
¹⁹⁷ Au	529.1650(20)	1.9(10)	0.029(15)	¹⁹⁷ Au	815.954(7)	0.104(20)	0.0016(3)

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0	$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
¹⁹⁷ Au	822.572(5)	0.104(17)	0.0016(3)	¹⁹⁷ Au	1195.597(6)	0.148(22)	0.0023(3)
¹⁹⁷ Au	825.483(4)	0.31(5)	0.0048(8)	¹⁹⁷ Au	1200.827(8)	0.104(16)	0.00160(25)
¹⁹⁷ Au	831.470(5)	0.153(19)	0.0024(3)	¹⁹⁷ Au	1210.691(4)	0.20(3)	0.0031(5)
¹⁹⁷ Au	833.906(6)	0.104(16)	0.00160(25)	¹⁹⁷ Au	1216.453(5)	0.21(3)	0.0032(5)
¹⁹⁷ Au	836.432(3)	0.76(3)	0.0117(5)	¹⁹⁷ Au	1225.938(6)	0.27(4)	0.0042(6)
¹⁹⁷ Au	838.156(5)	0.13(3)	0.0020(5)	¹⁹⁷ Au	1239.572(5)	0.49(8)	0.0075(12)
¹⁹⁷ Au	839.516(5)	0.73(20)	0.011(3)	¹⁹⁷ Au	1252.166(9)	0.126(23)	0.0019(4)
¹⁹⁷ Au	846.216(7)	0.104(24)	0.0016(4)	¹⁹⁷ Au	1272.140(5)	0.096(16)	0.00148(25)
¹⁹⁷ Au	854.178(6)	0.093(18)	0.0014(3)	¹⁹⁷ Au	1274.975(5)	0.26(4)	0.0040(6)
¹⁹⁷ Au ¹⁹⁷ Au	854.650(4)	0.148(25)	0.0023(4)	¹⁹⁷ Au ¹⁹⁷ Au	1281.377(7)	0.49(12)	0.0075(18)
197 Au	863.082(6) 868.771(4)	0.148(25) 0.364(15)	0.0023(4) 0.00560(23)	197 Au	1283.442(7) 1297.124(6)	0.35(11) 0.43(10)	0.0054(17) 0.0066(15)
197 Au	872.827(4)	0.096(18)	0.00300(23)	197 Au	1301.041(6)	0.45(10)	0.0000(13)
197 Au	877.308(4)	0.090(18)	0.0013(3)	197 Au	1304.825(5)	0.15(6)	0.0023(9)
¹⁹⁷ Au	885.638(6)	0.17(3)	0.0026(5)	¹⁹⁷ Au	1306.851(5)	0.70(9)	0.0108(14)
¹⁹⁷ Au	891.613(3)	0.096(23)	0.0015(4)	¹⁹⁷ Au	1308.164(4)	0.118(25)	0.0018(4)
¹⁹⁷ Au	898.612(4)	0.15(3)	0.0023(5)	¹⁹⁷ Au	1316.318(5)	0.21(4)	0.0032(6)
¹⁹⁷ Au	902.478(6)	0.38(6)	0.0058(9)	¹⁹⁷ Au	1324.356(14)	0.19(3)	0.0029(5)
¹⁹⁷ Au	913.776(4)	0.30(6)	0.0046(9)	¹⁹⁷ Au	1335.515(12)	0.16(4)	0.0025(6)
¹⁹⁷ Au	916.435(6)	0.25(4)	0.0038(6)	¹⁹⁷ Au	1338.164(5)	0.118(22)	0.0018(3)
¹⁹⁷ Au	927.421(4)	0.31(12)	0.0048(18)	¹⁹⁷ Au	1344.153(6)	0.16(3)	0.0025(5)
¹⁹⁷ Au	928.995(6)	0.126(22)	0.0019(3)	¹⁹⁷ Au	1361.477(5)	0.27(4)	0.0042(6)
¹⁹⁷ Au	933.928(6)	0.47(14)	0.0072(22)	¹⁹⁷ Au	1363.345(4)	0.26(4)	0.0040(6)
¹⁹⁷ Au	946.453(5)	0.096(13)	0.00148(20)	¹⁹⁷ Au	1379.390(6)	0.141(22)	0.0022(3)
¹⁹⁷ Au	947.971(6)	0.32(4)	0.0049(6)	¹⁹⁷ Au	1396.133(6)	0.141(22)	0.0022(3)
¹⁹⁷ Au	952.503(7)	0.19(3)	0.0029(5)	¹⁹⁷ Au	1431.641(6)	0.15(4)	0.0023(6)
¹⁹⁷ Au	971.8180(20)	0.13(4)	0.0020(6)	¹⁹⁷ Au	1431.949(4)	0.23(4)	0.0035(6)
¹⁹⁷ Au	978.936(8)	0.141(20)	0.0022(3)	¹⁹⁷ Au	1445.373(5)	0.14(3)	0.0022(5)
¹⁹⁷ Au	983.082(7)	0.096(14)	0.00148(22)	¹⁹⁷ Au	1487.130(4)	0.20(4)	0.0031(6)
¹⁹⁷ Au	985.002(6)	0.104(25)	0.0016(4)	¹⁹⁷ Au	1487.599(7)	0.20(4)	0.0031(6)
¹⁹⁷ Au	993.654(6)	0.21(5)	0.0032(8)	¹⁹⁷ Au	1530.698(6)	0.30(5)	0.0046(8)
¹⁹⁷ Au	999.682(4)	0.23(3)	0.0035(5)	¹⁹⁷ Au	1554.420(5)	0.25(9)	0.0038(14)
¹⁹⁷ Au	1000.447(4)	0.104(22)	0.0016(3)	¹⁹⁷ Au	4951.85(10)	0.156(16)	0.00240(25)
¹⁹⁷ Au	1005.487(6)	0.133(24)	0.0020(4)	¹⁹⁷ Au	4957.83(10)	0.63(11)	0.0097(17)
¹⁹⁷ Au	1006.100(3)	0.096(15)	0.00148(23)	¹⁹⁷ Au	4975.87(10)	0.161(16)	0.00248(25)
¹⁹⁷ Au	1018.136(6)	0.11(3)	0.0017(5)	¹⁹⁷ Au	4981.55(10)	0.09(3)	0.0014(5)
¹⁹⁷ Au ¹⁹⁷ Au	1018.426(4)	0.18(3)	0.0028(5)	¹⁹⁷ Au	4998.68(10)	0.31(4)	0.0048(6)
197 Au	1028.199(5) 1028.564(6)	0.10(3) 0.46(7)	0.0015(5)	¹⁹⁷ Au ¹⁹⁷ Au	5007.08(10) 5025.11(10)	0.113(15) 0.113(16)	0.00174(23) 0.00174(25)
197 Au	1028.364(6)	0.46(7)	0.0071(11) 0.00283(22)	197 Au	5036.63(10)	0.113(16)	0.00174(23)
197 Au	1038.274(3)	0.111(16)	0.00283(22)	197 Au	5040.15(10)	0.18(7)	0.0028(11)
197 Au	1047.121(6)	0.111(10)	0.001/1(23)	197 Au	5080.60(10)	0.152(15)	0.00234(23)
¹⁹⁷ Au	1047.847(5)	0.096(14)	0.00148(22)	¹⁹⁷ Au	5088.46(10)	0.50(8)	0.00234(23)
197 Au	1049.231(6)	0.104(17)	0.00146(22)	¹⁹⁷ Au	5102.85(10)	0.87(13)	0.0134(20)
¹⁹⁷ Au	1050.701(5)	0.28(5)	0.0043(8)	¹⁹⁷ Au	5110.17(10)	0.156(11)	0.00240(17)
¹⁹⁷ Au	1054.055(5)	0.16(3)	0.0025(5)	¹⁹⁷ Au	5116.11(10)	0.161(13)	0.00248(20)
¹⁹⁷ Au	1060.888(7)	0.19(3)	0.0029(5)	¹⁹⁷ Au	5140.74(10)	0.395(18)	0.0061(3)
¹⁹⁷ Au	1064.436(8)	0.096(13)	0.00148(20)	¹⁹⁷ Au	5148.90(10)	0.46(8)	0.0071(12)
¹⁹⁷ Au	1064.998(7)	0.15(4)	0.0023(6)	¹⁹⁷ Au	5153.21(10)	0.119(14)	0.00183(22)
¹⁹⁷ Au	1076.761(5)	0.111(21)	0.0017(3)	¹⁹⁷ Au	5174.08(10)	0.334(16)	0.00514(25)
¹⁹⁷ Au	1079.197(5)	0.24(4)	0.0037(6)	¹⁹⁷ Au	5205.39(10)	0.16(6)	0.0025(9)
¹⁹⁷ Au	1081.54(4)	0.096(25)	0.0015(4)	¹⁹⁷ Au	5218.35(10)	0.272(20)	0.0042(3)
¹⁹⁷ Au	1085.605(5)	0.19(3)	0.0029(5)	¹⁹⁷ Au	5225.49(10)	0.42(9)	0.0065(14)
¹⁹⁷ Au	1101.942(4)	0.170(23)	0.0026(4)	¹⁹⁷ Au	5246.72(10)	0.51(20)	0.008(3)
¹⁹⁷ Au	1106.951(5)	0.19(4)	0.0029(6)	¹⁹⁷ Au	5271.86(10)	0.38(20)	0.006(3)
¹⁹⁷ Au	1107.562(9)	0.52(10)	0.0080(15)	¹⁹⁷ Au	5279.44(10)	0.524(20)	0.0081(3)
¹⁹⁷ Au	1109.196(4)	0.49(10)	0.0075(15)	¹⁹⁷ Au	5302.86(10)	0.19(10)	0.0029(15)
¹⁹⁷ Au	1111.461(7)	0.37(6)	0.0057(9)	¹⁹⁷ Au	5355.00(10)	0.401(16)	0.00617(25)
¹⁹⁷ Au	1114.585(6)	0.178(24)	0.0027(4)	¹⁹⁷ Au	5473.96(10)	0.21(6)	0.0032(9)
¹⁹⁷ Au	1128.417(6)	0.141(19)	0.0022(3)	¹⁹⁷ Au	5493.81(10)	0.42(10)	0.0065(15)
¹⁹⁷ Au ¹⁹⁷ Au	1132.895(8)	0.25(5)	0.0038(8)	¹⁹⁷ Au	5524.66(10)	0.80(14)	0.0123(22)
¹⁹⁷ Au	1148.562(6)	0.27(4)	0.0042(6)	¹⁹⁷ Au ¹⁹⁷ Au	5540.41(10)	0.17(6)	0.0026(9)
197 Au	1150.671(9) 1157.2330(20)	0.25(4)	0.0038(6)	197 Au	5620.62(10) 5710.52(10)	0.34(9)	0.0052(14)
197 Au	1179.882(7)	0.13(4) 0.12(5)	0.0020(6) 0.0018(8)	197 Au	5710.52(10) 5722.94(10)	1.27(17) 0.55(16)	0.020(3) 0.0085(25)
197 Au	1179.882(7)	0.12(5)	0.0049(8)	197 Au	5767.01(10)	0.09(3)	0.0033(23)
197 Au	1187.936(4)	0.32(3)	0.0049(8)	197 Au	5808.50(10)	0.09(3)	0.0014(3)
197 Au	1189.904(10)	0.10(3)	0.0025(0)	197 Au	5839.57(10)	0.16(8)	0.0037(14)
114	(10)	3.10(3)		114	2027.27(10)	3.10(0)	

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -bar	ns k ₀	$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	σ _γ ^z (E _γ)-bar	ns k ₀
¹⁹⁷ Au	5879.74(10)	0.30(8)	0.0046(12)	²⁰³ Tl	178.78(11)	0.0050(5)	7.4(7)E-5
	Mercury (Z=	80), <i>At.Wt.</i> =20	$0.59(2), \sigma_{\gamma}^{z} = 384(8)$	²⁰³ Tl	198.33(8)	0.0408(10)	0.000605(15)
¹⁹⁶ Hg	133.98(5)d	0.0155(4)	2.34E-4[1.4%]	²⁰⁵ Tl	265.86(9)	0.0210(7)	0.000311(10)
¹⁹⁶ Hg	308.07(11)	0.79(7)	0.0119(11)	²⁰³ Tl	284.81(12)	0.0052(5)	7.7(7)E-5
¹⁹⁹ Hg	367.947(9)	251(5)	3.79(8)	²⁰³ Tl	286.88(11)	0.0058(5)	8.6(7)E-5
²⁰¹ Hg	439.50(8)	0.52(7)	0.0079(11)	²⁰³ Tl ²⁰⁵ Tl	292.26(8)	0.0983(20)	0.00146(3)
¹⁹⁹ Hg	540.927(7)	2.75(9)	0.0415(14)	²⁰³ Tl	304.86(9)	0.0225(12)	0.000334(18)
¹⁹⁹ Hg	579.295(11)	7.64(23)	0.115(4)	²⁰³ Tl	310.31(9) 318.88(8)	0.0245(12) 0.325(6)	0.000363(18) 0.00482(9)
¹⁹⁹ Hg	661.403(11)	22.3(5)	0.337(8)	²⁰³ Tl	325.85(8)	0.0301(10)	0.00442(9)
¹⁹⁹ Hg ¹⁹⁹ Hg	688.953(7) 851.30(5)	2.83(11)	0.0428(17)	²⁰³ Tl	330.09(9)	0.0367(10)	0.000396(15)
нд ¹⁹⁹ Нд	886.153(10)	2.69(9) 13.5(11)	0.0406(14) 0.204(17)	²⁰⁵ Tl	330.09(9)	0.0267(10)	0.000396(15)
¹⁹⁹ Hg	1147.222(11)	7.79(23)	0.204(17)	²⁰³ Tl	331.76(9)	0.0371(10)	0.000550(15)
¹⁹⁹ Hg	1202.328(10)	12.0(3)	0.118(4)	²⁰³ Tl	336.96(10)	0.0080(6)	1.19(9)E-4
¹⁹⁹ Hg	1205.717(11)	13.5(5)	0.204(8)	²⁰³ Tl	347.96(8)	0.361(10)	0.00535(15)
¹⁹⁹ Hg	1225.476(11)	12.3(3)	0.186(5)	²⁰⁵ Tl	369.18(7)	0.016(3)	2.4(4)E-4
¹⁹⁹ Hg	1254.099(12)	7.56(23)	0.114(4)	²⁰³ Tl	369.65(24)	0.0047(12)	7.0(18)E-5
¹⁹⁹ Hg	1262.941(11)	21.5(5)	0.325(8)	²⁰³ Tl	383.99(8)	0.0341(12)	0.000506(18)
¹⁹⁹ Hg	1273.497(10)	10.6(3)	0.160(5)	²⁰³ Tl	389.48(11)	0.0079(7)	1.17(10)E-4
¹⁹⁹ Hg	1350.354(10)	4.10(16)	0.0619(24)	²⁰³ Tl	395.62(8)	0.0862(20)	0.00128(3)
¹⁹⁹ Hg	1362.971(10)	5.93(19)	0.090(3)	²⁰³ Tl	416.91(17)	0.0069(12)	1.02(18)E-4
¹⁹⁹ Hg	1407.942(20)	9.53(23)	0.144(4)	²⁰³ Tl	418.27(11)	0.0141(12)	2.09(18)E-4
¹⁹⁹ Hg	1467.92(5)	3.31(13)	0.0500(20)	²⁰³ Tl ²⁰³ Tl	424.81(8)	0.1200(25)	0.00178(4)
¹⁹⁹ Hg	1488.825(11)	2.92(14)	0.0441(21)	²⁰³ Tl	471.90(8) 483.29(12)	0.116(3)	0.00172(4)
¹⁹⁹ Hg	1514.903(10)	2.68(13)	0.0405(20)	²⁰³ Tl	483.29(12) 488.11(8)	0.0082(10)	1.22(15)E-4 0.00142(6)
¹⁹⁹ Hg	1557.65(9)	2.6(8)	0.039(12)	²⁰³ Tl	489.26(24)	0.096(4) 0.008(3)	1.2(4)E-4
¹⁹⁹ Hg	1557.94(4)	2.87(14)	0.0434(21)	²⁰³ Tl	563.21(8)	0.0356(15)	0.000528(22)
¹⁹⁹ Hg ¹⁹⁹ Hg	1570.273(12)	29.6(7)	0.447(11)	²⁰³ Tl	587.01(10)	0.0109(10)	1.62(15)E-4
¹⁹⁹ Н g	1604.322(11) 1693.296(11)	4.07(17) 56.2(16)	0.061(3) 0.849(24)	²⁰³ Tl	591.13(9)	0.0225(10)	0.000334(15)
¹⁹⁹ Hg	1718.299(12)	8.47(23)	0.128(4)	²⁰³ Tl	624.46(8)	0.0413(10)	0.000612(15)
¹⁹⁹ Hg	1758.97(6)	3.33(14)	0.0503(21)	²⁰³ Tl	626.54(8)	0.0388(10)	0.000575(15)
¹⁹⁹ Hg	2002.083(13)	24.3(9)	0.367(14)	²⁰³ Tl	629.12(8)	0.0388(10)	0.000575(15)
¹⁹⁹ Hg	2271.90(3)	6.05(23)	0.091(4)	²⁰⁵ Tl	649.30(15)	0.0106(10)	1.57(15)E-4
¹⁹⁹ Hg	2296.310(23)	2.89(17)	0.044(3)	²⁰³ Tl	678.01(8)	0.0361(15)	0.000535(22)
¹⁹⁹ Hg	2639.85(3)	11.6(3)	0.175(5)	²⁰³ Tl	714.86(24)	0.0074(12)	1.10(18)E-4
¹⁹⁹ Hg	2818.26(5)	3.42(16)	0.0517(24)	²⁰³ Tl	732.09(9)	0.064(3)	0.00095(4)
¹⁹⁹ Hg	2901.25(5)	4.63(19)	0.070(3)	²⁰³ Tl	737.12(8)	0.118(5)	0.00175(7)
¹⁹⁹ Hg	2920.90(4)	4.99(23)	0.075(4)	²⁰³ Tl ²⁰⁵ Tl	764.13(9)	0.0316(12)	0.000469(18)
¹⁹⁹ Hg	3186.21(5)	11.3(4)	0.171(6)	²⁰³ Tl	803.30(20)d	3.5(6)E-6	5.2E-8[90%]
¹⁹⁹ Hg	3216.63(9)	2.93(17)	0.044(3)	²⁰³ Tl	818.14(8)	0.0279(10)	0.000414(15)
¹⁹⁹ Hg	3269.19(5)	3.96(18)	0.060(3)	²⁰³ Tl	873.16(8) 931.39(8)	0.168(4) 0.0257(12)	0.00249(6) 0.000381(18)
¹⁹⁹ Hg ¹⁹⁹ Hg	3288.85(4)	13.3(4)	0.201(6)	²⁰³ Tl	931.39(8) 949.88(8)	0.0237(12)	0.000381(18)
нд ¹⁹⁹ Нд	4373.37(8) 4575.36(6)	3.70(23)	0.056(4)	²⁰³ Tl	1013.27(9)	0.0475(13)	0.000710(22)
пд ¹⁹⁹ Нд	4675.44(9)	4.23(23) 13.0(4)	0.064(4) 0.196(6)	²⁰³ Tl	1063.00(9)	0.0185(10)	0.000274(15)
199 Hg	4739.43(5)	30.1(8)	0.455(12)	²⁰³ Tl	1093.02(8)	0.0353(12)	0.000523(18)
¹⁹⁹ Hg	4759.09(6)	12.4(4)	0.187(6)	²⁰³ Tl	1110.37(8)	0.0413(12)	0.000612(18)
¹⁹⁹ Hg	4811.64(9)	3.70(23)	0.056(4)	²⁰³ Tl	1121.29(7)	0.0600(17)	0.000890(25)
¹⁹⁹ Hg	4842.07(6)	20.0(6)	0.302(9)	²⁰³ Tl	1134.01(9)	0.0133(7)	1.97(10)E-4
¹⁹⁹ Hg	4954.47(5)	4.01(23)	0.061(4)	²⁰³ Tl	1155.43(7)	0.0605(17)	0.000897(25)
¹⁹⁹ Hg	4974.98(7)	5.22(23)	0.079(4)	²⁰³ Tl	1182.6(4)	0.0052(12)	7.7(18)E-5
¹⁹⁹ Hg	5050.07(5)	20.0(6)	0.302(9)	²⁰³ Tl	1234.69(7)	0.0746(25)	0.00111(4)
¹⁹⁹ Hg	5388.43(5)	17.5(5)	0.264(8)	²⁰³ Tl	1478.77(8)	0.0544(22)	0.00081(3)
¹⁹⁹ Hg	5658.24(4)	27.5(7)	0.415(11)	²⁰³ Tl ²⁰³ Tl	1706.20(16)	0.0091(15)	1.35(22)E-4
¹⁹⁹ Hg	5967.02(4)	62.5(15)	0.944(23)	²⁰³ Tl	1741.01(8)	0.0548(25)	0.00081(4)
¹⁹⁹ Hg	6309.96(4)	4.0(3)	0.060(5)	²⁰³ Tl	1756.27(12)	0.027(3)	0.00040(4)
¹⁹⁹ Hg	6397.37(4)	3.7(3)	0.056(5)	²⁰³ Tl	4076.7(6) 4101.4(4)	0.0072(15) 0.0086(25)	1.07(22)E-4 1.3(4)E-4
¹⁹⁹ Hg	6457.98(4)	23.1(8)	0.349(12)	²⁰³ Tl	4101.4(4) 4115.08(17)	0.0086(23)	0.000329(25)
203			$6833(2), \sigma_{\gamma}^{z} = 3.44(6)$	²⁰³ Tl	4115.08(17)	0.0222(17)	0.000329(23)
²⁰³ Tl	77.07(22)	0.011(5)	1.6(7)E-4	²⁰³ Tl	4225.47(17)	0.0373(22)	0.00067(4)
²⁰³ Tl	132.11(14)	0.0062(10)	9.2(15)E-5	²⁰³ Tl	4286.3(8)	0.0057(15)	8.5(22)E-5
²⁰³ Tl ²⁰³ Tl	139.94(9)	0.400(7)	0.00593(10) 8.0(7)E 5	²⁰³ Tl	4309.00(24)	0.0210(22)	0.00031(3)
²⁰³ Tl	145.88(10) 152.93(11)	0.0054(5) 0.0144(6)	8.0(7)E-5 2.14(9)E-4	²⁰³ Tl	4343.56(12)	0.034(3)	0.00050(4)
²⁰³ Tl	152.93(11) 154.01(9)	0.0144(6) 0.0926(17)	0.001373(25)	²⁰³ Tl	4402.60(15)	0.0208(15)	0.000308(22)
²⁰³ Tl	157.32(10)	0.0920(17)	9.0(7)E-5	²⁰³ Tl	4439.3(3)	0.0094(15)	1.39(22)E-4
²⁰³ Tl	171.88(9)	0.0109(5)	1.62(7)E-4	²⁰³ Tl	4495.74(13)	0.043(4)	0.00064(6)
	` '	V. /	` /				

$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$	$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$
²⁰³ Tl	4540.62(15)	0.0413(25)	0.00061(4)	²⁰⁹ Bi	673.97(5)	0.0026(4)	3.8(6)E-5
²⁰³ Tl	4570.0(3)	0.0180(20)	0.00027(3)	²⁰⁹ Bi	769.21(6)	0.00078(10)	1.13(15)E-5
²⁰³ Tl	4600.95(16)	0.0292(22)	0.00043(3)	²⁰⁹ Bi	774.91(10)	0.00054(21)	8(3)E-6
²⁰³ Tl	4687.58(12)	0.098(4)	0.00145(6)	²⁰⁹ Bi	774.92(7)	0.00141(20)	2.0(3)E-5
²⁰³ Tl	4705.83(14)	0.058(3)	0.00086(4)	²⁰⁹ Bi	808.77(7)	0.00042(16)	6.1(23)E-6
²⁰³ Tl	4715.3(4)	0.0131(20)	1.9(3)E-4	²⁰⁹ Bi	808.79(7)	0.00119(16)	1.73(23)E-5
²⁰³ Tl	4752.24(11)	0.148(5)	0.00219(7)	²⁰⁹ Bi	826.98(13)	2.0(3)E-4	2.9(4)E-6
²⁰³ Tl	4804.4(4)	0.0138(20)	2.0(3)E-4	²⁰⁹ Bi	855.45(14)	1.8(4)E-4	2.6(6)E-6
²⁰³ Tl	4841.40(15)	0.090(4)	0.00133(6)	²⁰⁹ Bi	900.07(7)	0.00035(13)	5.1(19)E-6
²⁰³ Tl	4867.5(6)	0.0074(20)	1.1(3)E-4	²⁰⁹ Bi	900.22(9)	0.00102(14)	1.48(20)E-5
²⁰³ Tl	4913.57(11)	0.164(5)	0.00243(7)	²⁰⁹ Bi	912.77(10)	0.00034(5)	4.9(7)E-6
²⁰³ Tl	4980.97(20)	0.036(3)	0.00053(4)	²⁰⁹ Bi	971.82(7)	0.00026(9)	3.8(13)E-6
²⁰³ Tl	5014.61(15)	0.058(3)	0.00086(4)	²⁰⁹ Bi	971.83(9)	0.00072(9)	1.04(13)E-5
²⁰³ Tl	5130.50(23)	0.058(4)	0.00086(6)	²⁰⁹ Bi	1012.53(7)	0.00064(9)	9.3(13)E-6
²⁰³ Tl	5180.38(12)	0.141(5)	0.00209(7)	²⁰⁹ Bi	1013.03(13)	2.1(8)E-4	3.0(12)E-6
²⁰³ Tl	5238.4(3)	0.0156(20)	2.3(3)E-4	²⁰⁹ Bi	1118.21(19)	2.1(4)E-4	3.0(6)E-6
²⁰³ Tl	5261.48(13)	0.084(4)	0.00125(6)	²⁰⁹ Bi	1156.34(14)	2.0(4)E-4	2.9(6)E-6
²⁰³ Tl	5279.86(12)	0.207(6)	0.00307(9)	²⁰⁹ Bi	1175.48(12)	0.00048(7)	7.0(10)E-6
²⁰³ Tl	5404.41(12)	0.147(5)	0.00218(7)	²⁰⁹ Bi	1203.52(11)	0.00077(12)	1.12(17)E-5
²⁰³ Tl	5451.07(14)	0.079(3)	0.00117(4)	²⁰⁹ Bi	1203.61(8)	2.1(8)E-4	3.0(12)E-6
²⁰³ Tl	5520.3(4)	0.0183(25)	0.00027(4)	²⁰⁹ Bi	1203.61(10)	2.1(8)E-4	3.0(12)E-6
²⁰³ Tl	5533.35(13)	0.131(5)	0.00194(7)	²⁰⁹ Bi	1211.11(15)	0.00031(5)	4.5(7)E-6
²⁰³ Tl	5603.28(13)	0.282(10)	0.00418(15)	²⁰⁹ Bi	1226.30(6)	0.00042(7)	6.1(10)E-6
²⁰³ Tl	5641.57(12)	0.316(7)	0.00469(10)	²⁰⁹ Bi	1337.09(6)	0.00156(21)	2.3(3)E-5
²⁰⁵ Tl	5852.5(5)	0.0072(15)	1.07(22)E-4	²⁰⁹ Bi	1360.16(15)	2.0(4)E-4	2.9(6)E-6
²⁰⁵ Tl	5867.8(4)	0.0091(17)	1.35(25)E-4	²⁰⁹ Bi	1397.83(11)	0.00033(5)	4.8(7)E-6
²⁰³ Tl ²⁰³ Tl	5890.2(4)	0.0067(17)	9.9(25)E-5	²⁰⁹ Bi ²⁰⁹ Bi	1430.29(14)	0.00027(4)	3.9(6)E-6
²⁰³ Tl	5917.48(16)	0.084(4)	0.00125(6)		1465.52(14)	0.00026(4)	3.8(6)E-6
²⁰³ Tl	6025.21(24)	0.0222(25)	0.00033(4)	²⁰⁹ Bi ²⁰⁹ Bi	1484.30(8)	0.00034(5)	4.9(7)E-6
²⁰³ Tl	6118.79(23)	0.0232(20)	0.00034(3)	²⁰⁹ Bi	1596.43(7)	0.00073(10)	1.06(15)E-5
²⁰³ Tl	6166.61(14)	0.166(6)	0.00246(9)	²⁰⁹ Bi	1625.78(17) 1658.34(7)	2.1(4)E-4	3.0(6)E-6
²⁰⁵ Tl	6183.05(15) 6197.8(4)	0.081(4)	0.00120(6)	²⁰⁹ Bi		0.00035(5)	5.1(7)E-6
²⁰³ Tl	6222.57(16)	0.0109(17)	1.62(25)E-4	²⁰⁹ Bi	1708.84(9) 1708.92(10)	0.00071(10) 2.2(8)E-4	1.03(15)E-5 3.2(12)E-6
²⁰³ Tl	6336.11(22)	0.065(4) 0.0245(22)	0.00096(6) 0.00036(3)	²⁰⁹ Bi	1756.35(14)	2.4(4)E-4	3.5(6)E-6
²⁰⁵ Tl	6504.3(6)	0.0243(22)	5.9(15)E-5	²⁰⁹ Bi	1824.97(15)	0.00054(8)	7.8(12)E-6
²⁰³ Tl	6514.57(15)	0.129(5)	0.00191(7)	²⁰⁹ Bi	1839.74(13)	0.00034(8)	6.7(10)E-6
²⁰³ Tl	6654.71(25)	0.0104(12)	1.54(18)E-4	²⁰⁹ Bi	2026.66(15)	0.00037(7)	5.4(10)E-6
	` ,		$2(1), \sigma_{\gamma}^{z} = 0.154(7)$	²⁰⁹ Bi	2496.69(16)	0.00037(7)	4.9(10)E-6
²⁰⁶ Pb	569.702d	0.0014(3)	2.0E-5[100%]	²⁰⁹ Bi	2505.35(7)	0.0021(3)	3.0(4)E-5
²⁰⁴ Pb	6729.38(9)	0.0014(3)	4.68(15)E-5	²⁰⁹ Bi	2570.29(7)	0.00031(5)	4.5(7)E-6
²⁰⁶ Pb	6737.62(10)	0.00691(19)	1.01(3)E-4	²⁰⁹ Bi	2598.33(8)	0.00166(24)	2.4(4)E-5
²⁰⁷ Pb	7367.78(7)	0.137(3)	0.00200(4)	²⁰⁹ Bi	2614.55(12)	0.00027(5)	3.9(7)E-6
	. ,		(2), $\sigma_{\gamma}^{z} = 0.0338(7)$	²⁰⁹ Bi	2624.34(7)	0.00154(21)	2.2(3)E-5
²⁰⁹ Bi	46.58(12)	0.00043(9)	6.2(13)E-6	²⁰⁹ Bi	2828.29(7)	0.00179(24)	2.6(4)E-5
²⁰⁹ Bi	63.59(5)	1.8(4)E-4	2.6(6)E-6	²⁰⁹ Bi	2898.17(8)	0.00080(12)	1.16(17)E-5
²⁰⁹ Bi	64.94(6)	2.1(13)E-4	3.0(19)E-6	²⁰⁹ Bi	3081.27(10)	0.00145(20)	2.1(3)E-5
²⁰⁹ Bi	65.24(20)	1.8(4)E-4	2.6(6)E-6	²⁰⁹ Bi	3141.75(8)	0.00041(7)	5.9(10)E-6
²⁰⁹ Bi	91.29(5)	0.0005(3)	7(4)E-6	²⁰⁹ Bi	3214.64(8)	0.00061(9)	8.8(13)E-6
²⁰⁹ Bi	92.48(13)	2.5(4)E-4	3.6(6)E-6	²⁰⁹ Bi	3230.66(10)	2.1(4)E-4	3.0(6)E-6
²⁰⁹ Bi	116.49(9)	0.00054(21)	8(3)E-6	²⁰⁹ Bi	3268.99(9)	2.2(5)E-4	3.2(7)E-6
²⁰⁹ Bi	154.86(6)	2.5(4)E-4	3.6(6)E-6	²⁰⁹ Bi	3356.60(8)	0.00167(24)	2.4(4)E-5
²⁰⁹ Bi	154.89(5)	0.0013(5)	1.9(7)E-5	²⁰⁹ Bi	3396.16(7)	0.00170(24)	2.5(4)E-5
²⁰⁹ Bi	162.19(11)	0.008(3)	1.2(4)E-4	²⁰⁹ Bi	3407.4(3)	2.5(5)E-4	3.6(7)E-6
²⁰⁹ Bi	162.27(6)	0.00162(21)	2.3(3)E-5	²⁰⁹ Bi	3610.84(6)	2.1(5)E-4	3.0(7)E-6
²⁰⁹ Bi	183.04(6)	1.8(8)E-4	2.6(12)E-6	²⁰⁹ Bi ²⁰⁹ Bi	3632.77(7)	0.00136(20)	2.0(3)E-5
²⁰⁹ Bi	311.23(11)	2.0(4)E-4	2.9(6)E-6	²⁰⁹ Bi	4054.57(6)	0.0137(18)	2.0(3)E-4
²⁰⁹ Bi	319.78(4)	0.0115(14)	1.67(20)E-4	²⁰⁹ Bi	4101.76(6) 4165.36(5)	0.0089(12)	1.29(17)E-4
²⁰⁹ Bi	347.92(9)	2.1(4)E-4	3.0(6)E-6	²⁰⁹ Bi	4165.36(5) 4171.05(9)	0.00173(24) 0.0171(22)	2.5(4)E-5 2.5(3)E-4
²⁰⁹ Bi	347.93(5)	1.8(8)E-4	2.6(12)E-6	²⁰⁹ Bi	4256.65(5)	0.0171(22)	2.5(3)E-4 3.5(4)E-5
²⁰⁹ Bi	392.82(9)	2.4(4)E-4	3.5(6)E-6	²⁰⁹ Bi	4284.80(6)	0.0024(3)	6.1(10)E-6
²⁰⁹ Bi	408.77(7)	0.00043(7)	6.2(10)E-6	Di			
²⁰⁹ Bi	563.06(7)	2.1(8)E-4	3.0(12)E-6	²³² Th), At.Wt.=232.03 0.0029(4)	$881(1), \sigma_{\gamma}^{z} = 7.35(3)$
²⁰⁹ Bi	563.14(7)	0.00051(7)	7.4(10)E-6	²³² Th	39.92(13) 44.36(14)	0.0029(4) 0.0031(4)	3.8(5)E-5 4.0(5)E-5
²⁰⁹ Bi ²⁰⁹ Bi	610.92(11)	1.8(4)E-4	2.6(6)E-6	²³² Th	53.71(12)	0.0031(4) 0.0139(10)	4.0(5)E-5 1.82(13)E-4
²⁰⁹ Bi	644.36(8)	2.5(4)E-4	3.6(6)E-6	²³² Th	57.41(15)	0.0068(9)	8.9(12)E-5
Bl	645.82(6)	0.00047(7)	6.8(10)E-6	²³² Th	63.810(10)	10.7(5) s ⁻¹ g ⁻¹	Abundant
				111	00.010(10)	1011(0) 3 g	. IN UII UAII U

$^{\mathbf{A}}\mathbf{Z}$	E _γ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barn	$\mathbf{s} = \mathbf{k}_0$		^A Z	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0
²³² Th	77.09(15)	0.09(3)	0.0012(4)	23	³² Th	849.4(7)	0.005(3)	7(4)E-5
²³² Th	140.880(10)	0.85(18) s ⁻¹ g ⁻¹	Abundant	23	³² Th	860.61(13)	0.047(5)	0.00061(7)
²³² Th	201.75(12)	0.0079(8)	1.03(10)E-4		³² Th	869.69(14)	0.0138(11)	1.80(14)E-4
²³² Th	211.86(11)	0.0191(17)	2.49(22)E-4		³² Th	872.13(11)	0.0268(15)	0.000350(20)
²³² Th	229.08(11)	0.0163(13)	2.13(17)E-4		³² Th	907.44(14)	0.0081(10)	1.06(13)E-4
²³² Th	256.25(11)	0.093(17)	0.00121(22)		Th	913.74(17)	0.0063(10)	8.2(13)E-5
²³² Th	263.06(14)	0.0073(17)	9.5(22)E-5		Th	918.70(13)	0.0096(10)	1.25(13)E-4
²³² Th	277.48(11)	0.0312(25)	0.00041(3)		Th	941.79(13)	0.0103(11)	1.35(14)E-4
²³² Th ²³² Th	281.40(11)	0.0170(14)	2.22(18)E-4		⁵² Th ⁵² Th	968.78(9)	0.132(6)	0.00172(8)
²³² Th	286.16(25) 311.91(10)	0.0028(7) 0.0187(10)	3.7(9)E-5 2.44(13)E-4		1 n 32 Th	996.7(3)	0.0067(16) 0.037(3)	8.8(21)E-5 0.00048(4)
²³² Th	316.64(10)	0.0187(10)	0.000518(24)		¹ Th	1013.84(11) 1031.1(3)	0.0040(10)	5.2(13)E-5
²³² Th	319.08(10)	0.0397(18)	0.000318(24)		¹¹¹ Th	1034.27(11)	0.0165(14)	2.15(18)E-4
²³² Th	320.98(13)	0.0072(8)	9.4(10)E-5		⁵² Th	1044.58(14)	0.0112(12)	1.46(16)E-4
²³² Th	327.80(10)	0.0269(16)	0.000351(21)		³² Th	1055.60(14)	0.0105(12)	1.37(16)E-4
²³² Th	329.88(11)	0.0221(17)	0.000289(22)	23	³² Th	1096.9(4)	0.0050(13)	6.5(17)É-5
²³² Th	331.37(11)	0.0291(19)	0.000380(25)		³² Th	1100.98(11)	0.0211(16)	0.000276(21)
²³² Th	335.92(10)	0.089(4)	0.00116(5)		³² Th	1116.9(3)	0.0060(12)	7.8(16)E-5
²³² Th	354.27(10)	0.0408(20)	0.00053(3)		³² Th	1125.46(19)	0.0079(13)	1.03(17)E-4
²³² Th	365.28(16)	0.0060(9)	7.8(12)E-5		Th	1145.37(17)	0.0123(15)	1.61(20)E-4
²³² Th	366.79(16)	0.0061(9)	8.0(12)E-5		⁵² Th	1152.1(4)	0.0052(15)	6.8(20)E-5
²³² Th ²³² Th	370.35(15)	0.0044(8)	5.7(10)E-5		⁵² Th	1154.5(4)	0.0056(15)	7.3(20)E-5
²³² Th	384.7(3)	0.0030(8)	3.9(10)E-5		³² Th ³² Th	1164.6(4)	0.0047(13)	6.1(17)E-5
²³² Th	427.24(17) 432.15(13)	0.0040(7) 0.0076(8)	5.2(9)E-5 9.9(10)E-5		1 n ³² Th	1184.9(6) 2485.2(3)	0.0036(13) 0.0090(17)	4.7(17)E-5 1.18(22)E-4
²³² Th	472.30(10)	0.165(8)	0.00215(10)		Th	2503.5(3)	0.0107(18)	1.40(24)E-4
²³² Th	506.22(13)	0.0075(11)	9.8(14)E-5		³² Th	2524.7(4)	0.0087(16)	1.14(21)E-4
²³² Th	522.73(10)	0.102(5)	0.00133(7)		³² Th	2543.3(5)	0.013(3)	1.7(4)E-4
²³² Th	531.58(10)	0.0404(23)	0.00053(3)		³² Th	2546.8(8)	0.0076(23)	1.0(3)E-4
²³² Th	535.08(17)	0.0062(11)	8.1(14)E-5	23	³² Th	2551.9(4)	0.010(4)	1.3(5)E-4
²³² Th	539.66(10)	0.061(3)	0.00080(4)		³² Th	2557.8(5)	0.0069(17)	9.0(22)E-5
²³² Th	548.23(11)	0.042(10)	0.00055(13)		³² Th	2590.0(10)	0.0069(20)	9(3)E-5
²³² Th	553.36(13)	0.011(3)	1.4(4)E-4		³² Th	2596.76(23)	0.0118(18)	1.54(24)E-4
²³² Th	556.93(11)	0.040(10)	0.00052(13)		⁵² Th	2630.1(3)	0.0071(19)	9.3(25)E-5
²³² Th	561.25(11)	0.033(8)	0.00043(10)		⁵² Th	2640.8(4)	0.0110(18)	1.44(24)E-4
²³² Th ²³² Th	566.63(10)	0.19(5)	0.0025(7)		⁵² Th ⁵² Th	2653.2(3)	0.010(4)	1.3(5)E-4
²³² Th	569.15(16) 578.02(9)	0.008(3) 0.105(5)	1.0(4)E-4 0.00137(7)		² Th	2659.39(21) 2671.7(6)	0.013(4) 0.0085(18)	1.7(5)E-4 1.11(24)E-4
²³² Th	580.16(19)	0.105(5)	1.6(3)E-4		¹¹¹ Th	2689.4(8)	0.0083(18)	1.11(24)E-4 1.0(4)E-4
²³² Th	583.27(9)	0.0123(21)	0.00364(14)		³² Th	2703.55(24)	0.008(3)	1.8(7)E-4
²³² Th	586.02(10)	0.045(3)	0.00059(4)		³² Th	2712.56(22)	0.013(4)	1.7(5)E-4
²³² Th	593.23(10)	0.043(3)	0.00056(4)	23	¹² Th	2719.67(18)	0.016(3)	2.1(4)E-4
²³² Th	605.41(10)	0.054(4)	0.00071(5)	23	³² Th	2732.7(5)		1.0(4)E-4
²³² Th	612.45(9)	0.018(3)	2.4(4)E-4		³² Th	2739.8(3)	0.0072(14)	9.4(18)E-5
²³² Th	622.95(11)	0.0125(15)	1.63(20)E-4		³² Th	2744.7(3)	0.0081(15)	1.06(20)E-4
²³² Th	632.09(12)	0.0105(9)	1.37(12)E-4		⁵² Th	2758.3(4)	0.0063(14)	8.2(18)E-5
²³² Th	659.56(16)	0.0173(20)	2.3(3)E-4		⁵² Th	2771.3(4)	0.0030(12)	3.9(16)E-5
²³² Th ²³² Th	662.0(3)	0.0101(18)	1.32(24)E-4		³² Th ³² Th	2784.5(3)	0.0075(15) 0.0110(17)	9.8(20)E-5
²³² Th	665.11(10) 681.81(9)	0.084(4) 0.079(4)	0.00110(5) 0.00103(5)		- 1 n ³² Th	2807.08(18) 2821.9(3)	0.0110(17)	1.44(22)E-4 1.4(3)E-4
²³² Th	684.96(13)	0.079(4)	1.53(21)E-4		¹¹¹ Th	2824.9(3)	0.0110(20)	1.4(3)E-4 1.9(3)E-4
²³² Th	696.57(14)	0.0117(10)	1.82(22)E-4		³² Th	2838.0(3)	0.0059(15)	7.7(20)E-5
²³² Th	703.1(5)	0.0073(18)	9.5(24)E-5		³² Th	2851.0(3)	0.0037(15)	1.01(20)E-4
²³² Th	705.17(11)	0.050(4)	0.00065(5)		32 Th	2880.86(17)	0.0093(14)	1.21(18)E-4
²³² Th	714.23(10)	0.052(3)	0.00068(4)		³² Th	2924.3(3)	0.0082(11)	1.07(14)E-4
²³² Th	721.60(22)	0.0073(15)	9.5(20)E-5		³² Th	2945.0(4)	0.0033(9)	4.3(12)E-5
²³² Th	735.25(14)	0.0123(16)	1.61(21)E-4		Th	2970.49(21)	0.0064(10)	8.4(13)E-5
²³² Th	741.02(15)	0.0122(16)	1.59(21)E-4		¹² Th	2980.69(18)	0.0084(11)	1.10(14)E-4
²³² Th ²³² Th	752.05(16)	0.0142(19)	1.85(25)E-4		¹² Th	2989.93(25)	0.0066(10)	8.6(13)E-5
²³² Th ²³² Th	768.58(23)	0.0091(15)	1.19(20)E-4		³² Th ³² Th	3009.9(3)	0.0051(10)	6.7(13)E-5
²³² Th	777.8(4) 780.8(3)	0.0034(14) 0.0052(15)	4.4(18)E-5 6.8(20)E-5		² Th	3044.7(4) 3056.43(23)	0.0031(12) 0.0084(12)	4.0(16)E-5 1.10(16)E-4
²³² Th	785.86(22)	0.0032(13)	0.8(20)E-3 1.27(24)E-4		¹¹¹ Th	3030.43(23)	0.0039(12)	5.1(16)E-5
²³² Th	797.79(9)	0.0416(20)	0.00054(3)		³² Th	3087.34(17)	0.0039(12)	1.1(3)E-4
²³² Th	808.53(11)	0.0212(14)	0.00037(3)		³² Th	3118.4(9)	0.0040(10)	5.2(13)E-5
²³² Th	814.75(10)	0.0196(13)	0.000256(17)	23	32 Th	3127.73(25)	0.0058(11)	7.6(14)E-5
²³² Th	834.83(14)	0.059(5)	0.00077(7)		³² Th	3132.80(17)	0.0087(10)	1.14(13)E-4
²³² Th	846.0(5)	0.013(3)	1.7(4)E-4	23	³² Th	3148.23(10)	0.0208(14)	0.000272(18)

$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0	$^{\mathbf{A}}\mathbf{Z}$	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	$\mathbf{s} = \mathbf{k}_0$
²³² Th	3173.87(19)	0.0089(10)	1.16(13)E-4	²³⁵ U	143.760(20)	63.0(7) s ⁻¹ g ⁻¹	Abundant
²³² Th	3184.94(17)	0.0079(10)	1.03(13)E-4	²³⁵ U	150.930(20)	0.46(6) s ⁻¹ g ⁻¹	Abundant
²³² Th	3196.66(12)	0.0171(13)	2.23(17)E-4	²³⁵ U	163.330(20)	29.2(3) s ⁻¹ g ⁻¹	Abundant
²³² Th	3230.47(23)	0.0123(12)	1.61(16)E-4	²³⁸ U	169.089(10)	0.012(4)	1.5(5)E-4
²³² Th	3245.2(5)	0.0030(8)	3.9(10)E-5	²³⁵ U	182.61(5)	1.96(12) s ⁻¹ g ⁻¹	Abundant
²³² Th	3260.9(3)	0.0056(9)	7.3(12)E-5	²³⁵ U	185.715(5)	329(4) s ⁻¹ g ⁻¹	Abundant
²³² Th	3276.3(4)	0.0063(10)	8.2(13)E-5	²³⁸ U	193.956(15)	0.0039(20)	5.0(25)E-5
²³² Th	3287.94(14)	0.0165(14)	2.15(18)E-4	²³⁵ U	194.940(10)	3.62(7) s ⁻¹ g ⁻¹	Abundant
²³² Th	3294.9(3)	0.0051(9)	6.7(12)E-5	²³⁵ U	198.900(20)	$0.24(4) \text{ s}^{-1}\text{g}^{-1}$	Abundant
²³² Th	3326.21(17)	0.0102(10)	1.33(13)E-4	²³⁵ U	202.110(20)	$6.21(13) \text{ s}^{-1}\text{g}^{-1}$	Abundant
²³² Th	3341.90(13)	0.0168(13)	2.19(17)E-4	²³⁵ U	205.311(10)	28.8(4) s ⁻¹ g ⁻¹	Abundant
²³² Th	3363.3(3)	0.0051(8)	6.7(10)E-5	²³⁸ Np ^d	209.7530(20)d	0.0909(13)	0.001157[<0.
²³² Th	3377.84(13)	0.0135(12)	1.76(16)E-4	²³⁵ U	215.28(3)	$0.167(17) \text{ s}^{-1}\text{g}^{-1}$	Abundant
²³² Th	3391.3(3)	0.0044(8)	5.7(10)E-5	²³⁵ U	221.380(20)	$0.69(6) \text{ s}^{-1}\text{g}^{-1}$	Abundant
²³² Th	3398.09(13)	0.0191(14)	2.49(18)E-4	²³⁸ Np ^d	228.1830(10)d	0.286(5)	0.00364[<0.1
²³² Th	3436.17(12)	0.0211(15)	0.000276(20)	²³⁵ U	228.78(5)	$0.0400(3) \text{ s}^{-1}\text{g}^{-1}$	Abundant
²³² Th	3448.42(10)	0.0233(16)	0.000304(21)	²³⁵ U	233.50(3)	$0.17(3) \text{ s}^{-1}\text{g}^{-1}$	Abundant
²³² Th	3461.45(24)	0.0069(10)	9.0(13)E-5	²³⁵ U	240.87(3)	$0.43(4) \text{ s}^{-1}\text{g}^{-1}$	Abundant
²³² Th	3473.00(8)	0.057(3)	0.00074(4)	²³⁵ U	243.60(20)	0.43(4) s g 0.023(3)	0.00029(4)
²³² Th				²³⁵ U		0.023(3)	
²³² Th	3502.4(3)	0.0049(9)	6.4(12)E-5	²³⁸ U	246.84(4)	$0.305(17) \text{ s}^{-1}\text{g}^{-1}$	Abundant
	3509.43(14)	0.0170(14)	2.22(18)E-4		250.062(7)	0.034(12)	0.00043(15)
²³² Th	3524.9(5)	0.0120(12)	1.57(16)E-4	²³⁵ U	275.129	$0.30(3) \text{ s}^{-1}\text{g}^{-1}$	Abundant
²³² Th	3530.96(13)	0.0397(24)	0.00052(3)	²³⁵ U	275.43(10)	$0.040(12) \text{ s}^{-1}\text{g}^{-1}$	Abundant
²³² Th	3548.5(3)	0.0038(8)	5.0(10)E-5	²³⁸ Np ^d	277.5990(10)d	0.382(6)	0.00486[<0.1
²³² Th	3602.66(19)	0.0119(10)	1.55(13)E-4	²³⁵ U	289.56(4)	0.0400(3) s ⁻¹ g ⁻¹	Abundant
²³² Th	3614.88(23)	0.0057(7)	7.4(9)E-5	²³⁵ U	291.65(3)	$0.23(3) \text{ s}^{-1}\text{g}^{-1}$	Abundant
²³² Th	3635.17(20)	0.0073(8)	9.5(10)E-5	²³⁸ U	292.5870(20)	0.016(6)	2.0(8)E-4
²³² Th	3653.0(4)	0.0034(6)	4.4(8)E-5	²³⁵ U ^f	297.00(10)	0.220(20)	0.00280(25)
²³² Th	3712.29(24)	0.0049(6)	6.4(8)E-5	²³⁵ U	300.00(10)	0.016(3)	2.0(4)E-4
²³² Th	3724.86(16)	0.0086(8)	1.12(10)E-4	²³⁸ Np ^d	315.880(3)d	0.0425(8)	0.000541[<0.
²³² Th	3735.59(12)	0.0115(9)	1.50(12)E-4	238 Np d	334.3100(20)d	0.0550(8)	0.000700[<0.
²³² Th	3746.40(16)	0.0072(7)	9.4(9)E-5	²³⁵ U	345.90(3)	$0.23(3) \text{ s}^{-1}\text{g}^{-1}$	Abundant
²³² Th	3755.05(13)	0.0098(9)	1.28(12)E-4	²³⁵ U	387.82(3)	$0.23(3) \text{ s}^{-1}\text{g}^{-1}$	Abundant
²³² Th	3802.96(17)	0.0071(7)	9.3(9)E-5	²³⁸ U	451.213(23)	0.010(4)	1.3(5)E-4
²³² Th	3861.50(22)	0.0057(7)	7.4(9)E-5	²³⁸ U	478.79(8)	0.012(4)	1.5(5)E-4
²³² Th	3946.42(10)	0.0268(15)	0.000350(20)	²³⁸ U	496.753(11)	0.034(8)	0.00043(10)
²³² Th	3971.83(22)	0.0041(5)	5.4(7)E-5	²³⁸ U	521.849(7)	0.073(3)	0.00093(4)
²³² Th	4016.6(3)	0.0037(6)	4.8(8)E-5	²³⁸ U	535.45(5)	0.028(6)	0.00036(8)
²³² Th	4045.00(13)	0.0118(9)	1.54(12)E-4	²³⁸ U	537.26(3)	0.0079(20)	1.01(25)E-4
²³² Th	4073.33(19)	0.0060(7)	7.8(9)E-5	139 Ba ^d	537.261(9)d	0.066(3)	0.00084[<0.1
²³² Th	4201.85(16)	0.0110(9)	1.44(12)E-4	²³⁸ U	539.278(12)	0.099(20)	0.00126(25)
²³² Th	4215.0(4)	0.0033(5)	4.3(7)E-5	²³⁸ U	542.085(12)	0.024(6)	0.00031(8)
²³² Th	4246.78(15)	0.0093(7)	1.21(9)E-4	²³⁸ U	552.069(5)	0.207(5)	0.00031(6)
²³² Th	4450.54(21)	0.0043(5)	5.6(7)E-5	²³⁸ U	554.054(8)	0.085(20)	0.00204(0)
²³² Th	, ,	` '	6.1(9)E-5	²³⁸ U			` ′
²³² Th	4769.66(25) 4787.0(6)	0.0047(7)		²³⁸ U	554.10(8)	0.028(6)	0.00036(8)
		0.0037(7)	4.8(9)E-5	²³⁸ U	562.027(22)	0.032(10)	0.00041(13)
Ura			3), $\sigma_{\gamma}^{z} = 3.374(20)$	238 U	563.17(3)	0.014(4)	1.8(5)E-4
139 Bad	29.9660(10)d	0.0381(11)	0.000485[<0.1%]	²³⁸ U	580.340(13)	0.043(10)	0.00055(13)
²³⁵ U	31.60(5)	0.10(3) s ⁻¹ g ⁻¹	Abundant		582.034(9)	0.016(4)	2.0(5)E-4
²³⁵ U	34.70(10)	0.2100(15) s ⁻¹ g ⁻¹	Abundant	²³⁸ U	588.88(3)	0.024(6)	0.00031(8)
²³⁵ U	41.4(3)	$0.17(12) \text{ s}^{-1}\text{g}^{-1}$	Abundant	²³⁸ U	590.39(3)	0.034(12)	0.00043(15)
²³⁵ U	41.96(15)	$0.35(6) \text{ s}^{-1}\text{g}^{-1}$	Abundant	²³⁸ U	592.309(13)	0.045(12)	0.00057(15)
²³⁸ U	43.5330(10)d	0.110(3)	0.00140[53%]	²³⁸ U	593.612(5)	0.108(24)	0.0014(3)
²³⁵ U	51.22(10)	$0.20(4) \text{ s}^{-1}\text{g}^{-1}$	Abundant	²³⁸ U	600.284(10)	0.030(8)	0.00038(10)
²³⁵ U	54.25(5)	$0.1700(12) \text{ s}^{-1}\text{g}^{-1}$	Abundant	²³⁸ U	605.581(9)	0.053(12)	0.00067(15)
²³⁵ U	72.70(20)	$0.630(5) \text{ s}^{-1}\text{g}^{-1}$	Abundant	238 U	611.38(3)	0.014(4)	1.8(5)E-4
²³⁸ U	74.6640(10)d	1.300(3)	0.01655[53%]	²³⁸ U	612.253(5)	0.23(5)	0.0029(6)
²³⁵ U	75.02(5)	$0.35(6) \text{ s}^{-1}\text{g}^{-1}$	Abundant	²³⁸ U	629.722(9)	0.073(20)	0.00093(25)
²³⁵ U	76.198(4)	0.046(6) s ⁻¹ g ⁻¹	Abundant	²³⁸ U	638.505(12)	0.041(12)	0.00052(15)
²³⁵ U	96.090(20)	$0.52(7) \text{ s}^{-1}\text{g}^{-1}$	Abundant	²³⁸ U	669.385(13)	0.0039(20)	5.0(25)E-5
238 Np ^d				²³⁸ U	673.307(12)	0.010(4)	1.3(5)E-4
	106.1230(20)d	0.723(11)	0.00920[<0.1%]	²³⁸ U	681.355(9)	0.010(4)	1.5(5)E-4 1.5(5)E-4
235 TT	109.160(20)	8.9(3) s ⁻¹ g ⁻¹	Abundant	²³⁸ U	687.853(8)	0.012(4)	0.00036(10)
²³⁵ U	115.45(5)	0.17(6) s ⁻¹ g ⁻¹	Abundant	²³⁸ U			, ,
²³⁵ U			Abundant	U	689.907(11)	0.043(10)	0.00055(13)
²³⁵ U ²³⁵ U	120.35(5)	0.1500(11) s ⁻¹ g ⁻¹	Abundant	238 y y	715 022(0)	0.022(0)	0.00020(0)
²³⁵ U ²³⁵ U ²³⁸ U	120.35(5) 127.301(5)	0.0099(20)	1.26(25)E-4	²³⁸ U	715.832(9)	0.022(6)	0.00028(8)
²³⁵ U ²³⁵ U ²³⁸ U ²³⁸ U	120.35(5) 127.301(5) 133.7990(10)	0.0099(20) 0.38(8)	1.26(25)E-4 0.0048(10)	$^{238}{ m U}$	767.86(21)	0.020(6)	0.00025(8)
235 U 235 U 235 U 238 U 238 U 238 U 235 U	120.35(5) 127.301(5)	0.0099(20)	1.26(25)E-4				

$^{\mathbf{A}}\mathbf{Z}$	E ₇ -keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -bar	ns k ₀
²³⁸ U	799.12(7)	0.0079(20)	1.01(25)E-4
238 U	819.868(21)	0.010(4)	1.3(5)E-4
238 U	828.04(21)	0.024(6)	0.00031(8)
$^{238}{ m U}$	831.837(19)	0.053(12)	0.00067(15)
238 U	842.42(8)	0.024(6)	0.00031(8)
$^{238}{ m U}$	853.23(4)	0.055(12)	0.00070(15)
238 U	893.30(10)	0.016(4)	2.0(5)E-4
235 U	909.06(6)	0.026(4)	0.00033(5)
235 U	943.14(7)	0.082(10)	0.00104(13)
238 U	961.06(4)	0.0039(20)	5.0(25)E-5
238 U	990.49(3)	0.010(4)	1.3(5)E-4
238 U	1007.03(6)	0.0079(20)	1.01(25)E-4
238 U	1007.03(6)	0.0079(20)	1.01(25)E-4
235 U	1014.1(10)	0.026(4)	0.00033(5)
$^{238}{ m U}$	1021.25(4)	0.0079(20)	1.01(25)E-4
238 U	1021.25(4)	0.0079(20)	1.01(25)E-4
238 U	1029.32(5)	0.037(8)	0.00047(10)
238 U	1048.85(8)	0.012(4)	1.5(5)E-4
$^{238}{ m U}$	1060.82(8)	0.016(4)	2.0(5)E-4
238 U	1062.48(6)	0.0079(20)	1.01(25)E-4
238 U	1066.82(12)	0.030(6)	0.00038(8)
238 U	1089.50(5)	0.014(4)	1.8(5)E-4
238 U	1110.27(6)	0.010(4)	1.3(5)E-4
238 U	1149.8(3)	0.010(4)	1.3(5)E-4
238 U	1152.80(6)	0.010(4)	1.3(5)E-4
238 U	1155.05(4)	0.010(4)	1.3(5)E-4
238 U	1167.01(4)	0.020(6)	0.00025(8)
$^{235}{ m U^f}$	1279.01(10)	0.200(10)	0.00255(13)
²³⁸ U	2998.5(5)	0.012(4)	1.5(5)E-4
$^{238}{ m U}$	3089.4(5)	0.0071(24)	9(3)E-5

^A Z	EγkeV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -bar	ns k ₀
²³⁸ U	3114.2(5)	0.007(3)	9(4)E-5
238 U	3121.7(5)	0.008(3)	1.0(4)E-4
238 U	3175.2(5)	0.0067(22)	9(3)E-5
$^{238}{ m U}$	3191.7(5)	0.0047(16)	6.0(20)E-5
$^{238}{ m U}$	3197.2(5)	0.016(6)	2.0(8)E-4
238 U	3220.1(5)	0.012(4)	1.5(5)E-4
238 U	3233.2(5)	0.010(3)	1.3(4)E-4
238 U	3286.12(20)	0.0040(3)	5.1(4)E-5
238 U	3296.5(3)	0.0070(5)	8.9(6)E-5
238 U	3312.8(5)	0.0040(10)	5.1(13)E-5
238 U	3445.44(6)	0.0045(3)	5.7(4)E-5
238 U	3564.45(9)	0.0042(4)	5.3(5)E-5
238 U	3583.10(7)	0.042(3)	0.00053(4)
238 U	3611.78(9)	0.0146(10)	1.86(13)E-4
238 U	3639.39(6)	0.0122(8)	1.55(10)E-4
$^{238}{ m U}$	3651.36(6)	0.0069(5)	8.8(6)E-5
238 U	3739.59(13)	0.0038(3)	4.8(4)E-5
238 U	3844.56(21)	0.0068(5)	8.7(6)E-5
238 U	3982.69(5)	0.0259(14)	0.000330(18)
238 U	3991.25(5)	0.0241(12)	0.000307(15)
$^{238}{ m U}$	4060.35(5)	0.186(3)	0.00237(4)
²³⁸ U	4067.02(5)	0.0073(4)	9.3(5)E-5

^dFission or decay product ^fPrompt fission to ¹³⁴Te "**Abundant**": See explanation on page 78 in the text

Table 7.4 Energy-Ordered Table of Most Intense Thermal Neutron Capture Gamma Rays.

^A Z	E γ -keV	$\sigma_{\!\gamma}^{z}(E_{\!\gamma}\!)$ -barns	\mathbf{k}_0	Ey, $\sigma_{\!\gamma}^{\;z}(E_{\!\gamma})$ for associated intense gamma rays
⁵⁶ Fe	14.411(14)	0.149(3)	0.00809(16)	7631.136(0.653), 7645.5450(0.549), 352.347(0.273)
⁷¹ Ga	16.43(3)	0.078(5)	0.00339(22)	834.08(1.65), 2201.91(0.52), 629.96(0.490)
51 V	17.152(6)	0.260(20)	0.0155(12)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
⁹³ Nb	17.810(7)	0.0579(14)	0.00189(5)	99.4070(0.196), 255.9290(0.176), 253.115(0.1320)
115 In	22.796(7)	7(3)	0.18(8)	1293.54(131), 1097.30(87.3), 416.86(43.0)
55 Mn	26.560(20)	3.42(4)	0.1887(22)	846.754(13.10), 1810.72(3.62), 83.884(3.11)
¹²⁷ I	27.3620(10)	0.43(4)	0.0103(10)	133.6110(1.42), 442.901(0.600), 58.1100(0.28)
159 Tb	29.0170(20)	0.21(4)	0.0040(8)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
81 Br	29.1130(10)	0.1680(20)	0.00637(8)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
³⁹ K	29.8300(10)	1.380(20)	0.1070(16)	770.3050(0.903), 1158.887(0.1600), 5380.018(0.146)
139 La	29.9640(10)	0.169(8)	0.00369(17)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
¹³⁹ Ba ²⁷ Al	29.9660(10)d	0.0381(11)	0.000485[0.1%]	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
159 Tb	30.6380(10) 32.652(3)	0.0798(20) 0.19(3)	0.00896(22) 0.0036(6)	1778.92(0.232), 7724.027(0.0493), 3033.896(0.0179)
159 Tb	33.1590(10)	0.19(3)	` '	75.0500(1.78), 63.6860(1.46), 64.1100(1.2) 75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
⁷⁹ Br	37.0520(20)d	0.428(12)	0.0042(8) 0.0162[7.4%]	776.517(0.990), 554.3480(0.838), 245.203(0.80)
⁷⁹ Br	37.0520(20)d 37.054(3)	0.160(10)	0.0102[7.470]	776.517(0.990), 554.3480(0.838), 245.203(0.80)
123 Sb	40.8040(10)	0.100(10)	0.0001(4)	564.24(2.700), 61.4130(0.75), 78.0910(0.48)
174 Yb	41.2180(20)	1.1(3)	0.0025(8)	514.868(9.0), 639.261(1.43), 396.329(1.42)
159 Tb	41.8900(10)	0.64(10)	0.0122(19)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
²³⁸ U	43.5330(10)d	0.110(3)	0.00140[53%]	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
⁷⁵ As	44.4250(10)	0.560(20)	0.0227(8)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
⁷⁵ As	46.0980(10)	0.337(15)	0.0136(6)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
$^{182} { m W}$	46.4840(10)	0.192(10)	0.00316(16)	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹⁷⁴ Yb	46.7510(20)	0.25(8)	0.0044(14)	514.868(9.0), 639.261(1.43), 396.329(1.42)
¹⁹¹ Ir	48.0570(10)	5.7(4)	0.090(6)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁵¹ Eu	48.31(17)	181(70)	3.6(14)	89.847(1430), 77.23(187)
¹³³ Cs	48.790(20)	0.345(10)	0.00787(23)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
¹⁶⁴ Dy	50.4310(20)	33.9(15)	0.63(3)	184.257(146), 538.609(69.2), 496.931(44.9)
¹⁵⁹ Tb	50.8690(10)	0.60(15)	0.011(3)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
¹⁰³ Rh	51.50(3)	16.0(4)	0.471(12)	180.87(22.6), 97.14(19.5), 217.82(7.38)
¹⁰³ Rh	51.50(3)d	5.2(3)	0.153[90%]	180.87(22.6), 97.14(19.5), 51.50(16.0)
⁴⁵ Sc	52.0110(10)	0.87(3)	0.0586(20)	227.773(7.13), 147.011(6.08), 142.528(4.88)
¹²⁷ I	52.385(3)	0.167(19)	0.0040(5)	133.6110(1.42), 442.901(0.600), 27.3620(0.43)
¹⁸² W ¹⁵⁹ Tb	52.5290(10)	0.128(11)	0.00211(18)	685.73(3.24), 479.550(2.59), 72.002(1.32)
139 La	54.1290(10) 54.9440(10)	0.60(15)	0.011(3) 0.00312(15)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2) 1596.21(5.84), 487.021(2.79), 815.772(1.430)
197 Au	55.1810(10)	0.143(7) 2.90(12)	0.00312(13)	410.(94.), 214.9710(9.0), 247.5730(5.56)
127 I	58.1100(20)	0.28(4)	0.0440(18)	133.6110(1.42), 442.901(0.600), 27.3620(0.43)
¹⁹¹ Ir	58.8440(10)	5.3(3)	0.084(5)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁸⁵ Re	59.0100(20)	5.5(8)	0.090(13)	63.5820(8.0), 155.041(7.16), 137.157(5.29)
186 W	59.03(4)	0.208(7)	0.00343(12)	685.73(3.24), 479.550(2.59), 72.002(1.32)
⁷⁹ Br	59.471(4)	0.202(5)	0.00766(19)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
159 Tb	59.6430(10)	0.48(6)	0.0092(11)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
85 Rb	59.75(6)	0.010(4)	0.00035(14)	556.82(0.0913), 487.89(0.0494), 555.61(0.0407)
¹³³ Cs	60.0300(10)	0.443(14)	0.0101(3)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
¹⁴¹ Pr	60.0630(20)	0.134(14)	0.0029(3)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
¹¹⁵ In	60.9160(10)	15.8(11)	0.42(3)	1293.54(131), 1097.30(87.3), 416.86(43.0)
¹²¹ Sb	61.4130(10)	0.75(18)	0.019(5)	564.24(2.700), 78.0910(0.48), 121.4970(0.40)
¹⁷⁷ Hf	62.820(21)	5.26(16)	0.089(3)	213.439(29.3), 214.3410(16.3), 93.182(13.3)
¹³⁹ La	63.1790(10)	0.208(8)	0.00454(17)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
¹⁸⁷ Re	63.5820(20)	8.0(14)	0.130(23)	155.041(7.16), 59.0100(5.5), 137.157(5.29)
159 Tb	63.6860(10)	1.46(16)	0.028(3)	75.0500(1.78), 64.1100(1.2), 41.8900(0.64)
¹⁵⁹ Tb	64.1100(20)	1.2(3)	0.023(6)	75.0500(1.78), 63.6860(1.46), 41.8900(0.64)
¹⁴¹ Pr	64.5050(20)	0.137(6)	0.00295(13)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
¹⁹¹ Ir ¹⁴¹ Pr	66.822(8)	1.31(13)	0.0207(20)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
169 Tm	68.6110(20) 68.649	0.116(6) 1.75(23)	0.00249(13) 0.031(4)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426) 200.(8.72), 149.7180(7.11), 140.(5.96)
121 Sb	68.649 71.4670(10)	1.75(23) 0.095(22)	0.031(4) 0.0024(6)	200.(8.72), 149.7180(7.11), 140.(5.96) 564.24(2.700), 61.4130(0.75), 78.0910(0.48)
175 Lu	71.5170(10)	3.96(22)	0.069(4)	150.392(13.8), 457.944(8.3), 138.607(6.79)
186 W	72.002(4)d	1.32(3)	0.009(4)	685.73(3.24), 479.550(2.59), 134.247(1.050)
109 Ag	72.67(5)	0.9(15)	0.0218[1.478]	198.72(7.75), 235.62(4.62), 78.91(3.90)
238 U	74.6640(10)d	1.30000(14)	0.0165511[53%]	106.1230(0.723), 277.5990(0.382), 133.7990(0.38)
¹⁸⁷ Re	74.8630(20)	1.29(8)	0.0210(13)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
⁷⁵ As	74.8720(10)	0.12(3)	0.0049(12)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
¹⁵⁹ Tb	75.0500(10)	1.78(18)	0.034(3)	63.6860(1.46), 64.1100(1.2), 41.8900(0.64)
			•	

$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\!\gamma}^{z}(E_{\!\gamma}\!)\text{-barns}$	\mathbf{k}_0	Εγ, $\sigma_{\gamma}^{\ z}(E_{\gamma})$ for associated intense gamma rays
¹⁶⁹ Tm	75.83	0.94(8)	0.0169(14)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹⁷³ Yb	76.996	0.40(4)	0.0070(7)	514.868(9.0), 639.261(1.43), 396.329(1.42)
²³² Th	77.09(15)	0.09(3)	0.0012(4)	583.27(0.279), 566.63(0.19), 472.30(0.165)
¹⁵¹ Eu	77.23(4)	187(13)	3.7(3)	89.847(1430), 48.31(181)
¹⁸⁶ W	77.39(3)	0.134(5)	0.00221(8)	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹⁹¹ Ir	77.9470(10)	4.8(4)	0.076(6)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
31 P	78.083(20)	0.059(3)	0.0058(3)	512.646(0.079), 636.663(0.0311), 3899.89(0.0294)
¹²¹ Sb ¹⁷¹ Yb	78.0910(10) 78.7430(10)	0.48(11)	0.012(3)	564.24(2.700), 61.4130(0.75), 121.4970(0.40) 514.868(9.0), 639.261(1.43), 396.329(1.42)
159 Tb	78.8670(10)	0.67(10) 0.19(4)	0.0117(18) 0.0036(8)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
¹⁰⁷ Ag	78.91(4)	3.90(12)	0.110(3)	198.72(7.75), 235.62(4.62), 117.45(3.85)
159 Tb	79.099(6)	0.43(6)	0.0082(11)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
¹⁵⁷ Gd	79.5100(10)	4010(100)	77.3(19)	181.931(7200), 944.174(3090), 962.104(2050)
¹⁶⁷ Er	79.8040(10)	18.2(8)	0.330(14)	184.2850(56), 815.9890(42.5), 198.2440(29.9)
109 Ag	79.91(6)	1.0(16)	0.03(5)	198.72(7.75), 235.62(4.62), 78.91(3.90)
¹⁶⁵ Ho	80.574(8)d	3.87(5)	0.0711[1.3%]	136.6650(14.5), 116.8360(8.1), 426.012(2.88)
¹⁶¹ Dy	80.64(7)	16.5(5)	0.308(9)	184.257(146), 538.609(69.2), 496.931(44.9)
¹⁹⁷ Au	82.3560(10)	2.3(4)	0.035(6)	410.(94.), 214.9710(9.0), 247.5730(5.56)
¹⁹⁷ Au	82.5240(10)	1.4(3)	0.022(5)	410.(94.), 214.9710(9.0), 247.5730(5.56)
⁵⁵ Mn ¹⁹¹ Ir	83.884(23)	3.11(5)	0.172(3)	846.754(13.10), 1810.72(3.62), 26.560(3.42)
1r ¹⁴¹ Pr	84.2740(20) 84.998(3)	7.7(4) 0.207(11)	0.121(6) 0.00445(24)	351.689(10.9), 328.448(9.1), 136.1250(6.5) 176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
103 Rh	85.19(3)	3.2(3)	0.00443(24)	180.87(22.6), 97.14(19.5), 51.50(16.0)
115 In	85.5690(20)	22.1(16)	0.58(4)	1293.54(131), 1097.30(87.3), 416.86(43.0)
¹⁷³ Yb	86.11(7)	0.164(18)	0.0029(3)	514.868(9.0), 639.261(1.43), 396.329(1.42)
⁷⁵ As	86.7880(10)	0.579(11)	0.0234(4)	559.10(2.00), 165.0490(0.996), 44.4250(0.560)
¹⁸⁵ Re	87.264(3)	0.84(4)	0.0137(7)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
¹⁶⁹ Tm	87.5210(10)	1.29(3)	0.0231(5)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹²³ Sb	87.601	0.212(8)	0.00528(20)	564.24(2.700), 61.4130(0.75), 78.0910(0.48)
¹⁷⁴ Yb	87.9690(20)	0.26(6)	0.0046(11)	514.868(9.0), 639.261(1.43), 396.329(1.42)
121 Sb	88.2690(10)	0.083(19)	0.0021(5)	564.24(2.700), 61.4130(0.75), 78.0910(0.48)
¹⁹¹ Ir	88.7340(10)	3.67(24)	0.058(4)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁵⁵ Gd ⁶⁵ Cu	88.9670(10) 89.08(4)	1380(40) 0.0970(17)	26.6(8) 0.00463(8)	181.931(7200), 79.5100(4010), 944.174(3090) 278.250(0.893), 7915.62(0.869), 159.281(0.648)
159 Tb	89.4080(20)	0.0970(17)	0.00403(8)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
151 Eu	89.847(6)	1430(30)	28.5(6)	77.23(187), 48.31(181)
¹⁹¹ Ir	90.7030(20)	1.25(15)	0.0197(24)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
²³ Na	90.9920(10)	0.235(3)	0.0310(4)	1368.66(0.530), 2754.13(0.530), 472.202(0.478)
¹⁸⁷ Re	92.4640(20)	1.07(6)	0.0174(10)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
¹⁷⁷ Hf	93.182(6)	13.3(9)	0.226(15)	213.439(29.3), 214.3410(16.3), 325.559(6.69)
¹⁵⁹ Tb	93.3060(20)	0.218(25)	0.0042(5)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
174 Yb	95.2730(20)	0.20(5)	0.0035(9)	514.868(9.0), 639.261(1.43), 396.329(1.42)
115 In	96.036(5)	11.4(14)	0.30(4)	1293.54(131), 1097.30(87.3), 416.86(43.0)
¹¹⁵ In ¹⁰³ Rh	96.062(3) 97.14(3)	24.6(18) 19.5(4)	0.65(5) 0.574(12)	1293.54(131), 1097.30(87.3), 416.86(43.0) 180.87(22.6), 51.50(16.0), 217.82(7.38)
197 Au	97.14(3) 97.2500(20)	2.1(5)	0.374(12)	410.(94.), 214.9710(9.0), 247.5730(5.56)
159 Tb	97.503(3)	0.50(6)	0.0095(11)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
¹⁸² W	99.0790(10)	0.155(13)	0.00256(21)	685.73(3.24), 479.550(2.59), 72.002(1.32)
⁹³ Nb	99.4070(10)	0.196(9)	0.0064(3)	255.9290(0.176), 253.115(0.1320), 113.4010(0.117)
¹⁰³ Rh	100.74(4)	4.96(10)	0.146(3)	180.87(22.6), 97.14(19.5), 51.50(16.0)
¹⁹⁷ Au	101.9390(10)	0.953(17)	0.0147(3)	410.(94.), 214.9710(9.0), 247.5730(5.56)
¹⁷³ Yb	102.60(5)	0.44(5)	0.0077(9)	514.868(9.0), 639.261(1.43), 396.329(1.42)
⁷¹ Ga	103.25(3)d	0.0526(11)	0.00229[100%]	834.08(1.65), 2201.91(0.52), 629.96(0.490)
¹⁷⁴ Yb	104.5260(20)	0.43(11)	0.0075(19)	514.868(9.0), 639.261(1.43), 396.329(1.42)
⁵⁵ Mn ¹²¹ Sb	104.611(23) 105.8160(10)	1.74(3) 0.21(5)	0.0960(17) 0.0052(12)	846.754(13.10), 1810.72(3.62), 26.560(3.42) 564.24(2.700), 61.4130(0.75), 78.0910(0.48)
¹⁸⁷ Re	105.8620(20)	1.77(8)	0.0032(12)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
109 Ag	105.8626(26)	0.87(13)	0.024(4)	198.72(7.75), 235.62(4.62), 78.91(3.90)
²³⁸ Np	106.1230(20)d	0.723(11)	0.00920[0.6%]	74.6640(1.30000), 277.5990(0.382), 133.7990(0.38)
¹⁸² W	107.9320(10)	0.144(12)	0.00237(20)	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹⁹¹ Ir	108.0300(20)	2.62(12)	0.0413(19)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁸³ W	111.216(9)	0.195(6)	0.00321(10)	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹⁹³ Ir	112.2310(10)	1.7(4)	0.027(6)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
⁷¹ Ga	112.36(3)	0.155(3)	0.00674(13)	834.08(1.65), 2201.91(0.52), 629.96(0.490)
¹⁷⁶ Lu	112.9500(10)d	3.47(16)	0.060[0.2%]	150.392(13.8), 457.944(8.3), 138.607(6.79)
⁹³ Nb ¹³³ Cs	113.4010(10) 113.7650(20)	0.117(3) 0.777(15)	0.00382(10) 0.0177(3)	99.4070(0.196), 255.9290(0.176), 253.115(0.1320) 176.4040(2.47), 205.615(1.560), 510.795(1.54)
174 Yb	113.7650(20) 113.805(4)d	0.777(13)	0.0177(3) 0.00730[0.3%]	514.868(9.0), 639.261(1.43), 396.329(1.42)
¹⁸¹ Ta	114.3150(10)	0.280(9)	0.00730[0.376]	270.4030(2.60), 173.2050(1.210), 402.623(1.180)
14	100(10)	(-)		

$^{\mathbf{A}}\mathbf{Z}$	E γ- keV	$\sigma_{\!\gamma}^{\;z}(E_{\!\gamma}\!)$ -barns	\mathbf{k}_0	Εγ, $\sigma_{\gamma}^{\ z}(E_{\gamma})$ for associated intense gamma rays
¹⁶⁹ Tm	114.544	3.19(6)	0.0572(11)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹²¹ Sb	114.8680(10)	0.31(7)	0.0077(17)	564.24(2.700), 61.4130(0.75), 78.0910(0.48)
64 Zn	115.225(18)	0.167(3)	0.00774(14)	1077.335(0.356), 7863.55(0.1410), 1883.12(0.0718)
133 Cs	116.3740(20)	1.39(12)	0.032(3)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
¹³³ Cs	116.612(4)	1.44(12)	0.033(3)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
⁷⁵ As	116.7550(10)	0.107(18)	0.0043(7)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
¹⁶⁵ Ho	116.8360(10)	8.1(4)	0.149(7)	136.6650(14.5), 80.574(3.87), 426.012(2.88)
109 Ag	117.45(8)	3.85(7)	0.1082(20)	198.72(7.75), 235.62(4.62), 78.91(3.90)
⁷⁵ As	120.2580(10)	0.402(8)	0.0163(3)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
¹³³ Cs ¹²¹ Sb	120.588(3) 121.4970(10)	0.414(10)	0.00944(23)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
176 Lu	121.4970(10)	0.40(9) 5.24(17)	0.0100(22) 0.091(3)	564.24(2.700), 61.4130(0.75), 78.0910(0.48) 150.392(13.8), 457.944(8.3), 138.607(6.79)
⁵⁶ Fe	121.020(3)	0.096(3)	0.00521(16)	7631.136(0.653), 7645.5450(0.549), 352.347(0.273)
⁷⁵ As	122.2470(10)	0.227(5)	0.00321(10)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
¹²⁷ I	124.2810(20)	0.180(13)	0.0043(3)	133.6110(1.42), 442.901(0.600), 27.3620(0.43)
51 V	124.453(4)	0.23(5)	0.014(3)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
⁵¹ V	125.082(3)	1.61(4)	0.0958(24)	1434.10(4.81), 6517.282(0.78), 645.703(0.769)
¹¹⁵ In	126.3720(20)	4.0(3)	0.106(8)	1293.54(131), 1097.30(87.3), 416.86(43.0)
¹⁴¹ Pr	126.8460(20)	0.307(15)	0.0066(3)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
¹⁹¹ Ir	126.958(3)	1.86(10)	0.0293(16)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁰³ Rh	127.20(3)	5.27(21)	0.155(6)	180.87(22.6), 97.14(19.5), 51.50(16.0)
$^{186}\mathrm{W}$	127.43(4)	0.129(5)	0.00213(8)	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹³³ Cs	127.5000(20)d	0.310(11)	7.1E-03[11%]	176.4040(2.47), 205.615(1.560), 510.795(1.54)
¹⁶⁹ Tm	130.027	0.940(25)	0.0169(5)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹³³ Cs	130.2320(20)	1.410(21)	0.0322(5)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
¹²⁷ I	133.6110(10)	1.42(10)	0.0339(24)	442.901(0.600), 27.3620(0.43), 58.1100(0.28)
²³⁸ U	133.7990(10)	0.38(8)	0.0048(10)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
¹⁸¹ Ta	133.8770(20)	0.63(7)	0.0106(12)	270.4030(2.60), 173.2050(1.210), 402.623(1.180)
186 W	134.247(7)d	1.050(20)	0.0173[1.4%]	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹⁰³ Rh ⁷⁵ As	134.54(3)	6.8(4)	0.200(12)	180.87(22.6), 97.14(19.5), 51.50(16.0)
159 Tb	135.4110(10) 135.5970(20)	0.156(4) 0.39(4)	0.00631(16)	559.10(2.00), 165.0490(0.996), 86.7880(0.579) 75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
191 Ir	135.3970(20)	0.39(4) 6.5(9)	0.0074(8) 0.102(14)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁹¹ Ir	136.213(3)	4.0(5)	0.102(14)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁶⁵ Ho	136.6650(20)	14.5(7)	0.266(13)	116.8360(8.1), 80.574(3.87), 426.012(2.88)
¹⁹¹ Ir	136.7910(10)	2.20(21)	0.035(3)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁸⁵ Re	137.157(8)d	5.29(3)	0.0861[0.4%]	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
¹¹⁵ In	138.326(8)d	5.11(18)	0.135[30%]	1293.54(131), 1097.30(87.3), 416.86(43.0)
¹⁷⁶ Lu	138.607(5)	6.79(24)	0.118(4)	150.392(13.8), 457.944(8.3), 208.3660(6.0)
⁷⁶ Se	139.2270(10)	0.543(9)	0.0208(4)	613.724(2.14), 238.9980(2.06), 520.6370(1.260)
²⁰³ Tl	139.94(9)	0.400(7)	0.00593(10)	347.96(0.361), 318.88(0.325), 5641.57(0.316)
¹⁴¹ Pr	140.9050(20)	0.479(10)	0.01030(22)	176.8630(1.06), 1575.6(0.426), 5666.170(0.379)
¹⁸⁷ Re	141.760(4)	1.46(8)	0.0238(13)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
⁴⁵ Sc	142.528(8)d	4.88(7)	0.329[99%]	227.773(7.13), 147.011(6.08), 295.243(3.97)
¹⁸⁵ Re	144.152(5)	1.8(3)	0.029(5)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
¹⁶⁹ Tm	144.4790(10)	1.2(4)	0.022(7)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹⁶⁹ Tm	144.48	5.96(11)	0.1069(20)	200.(8.72), 149.7180(7.11), 237.2390(5.52)
⁷⁵ As	144.5480(10)	0.1000(22)	0.00404(9)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
¹⁹¹ Ir	144.903(5)	3.1(4)	0.049(6)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
⁷¹ Ga	145.14(3)	0.466(7)	0.0203(3)	834.08(1.65), 2201.91(0.52), 629.96(0.490)
186 W 176 T	145.79(3)	0.970(21)	0.0160(4)	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹⁷⁶ Lu ⁴⁵ Sc	145.870(4) 147.011(10)	1.52(9) 6.08(9)	0.0263(16) 0.410(6)	150.392(13.8), 457.944(8.3), 138.607(6.79)
176 Lu	147.165(5)	6.08(9) 4.96(19)	0.410(6)	227.773(7.13), 142.528(4.88), 295.243(3.97) 150.392(13.8), 457.944(8.3), 138.607(6.79)
176 Lu	147.163(5)	3.7(7)	0.064(12)	150.392(13.8), 457.944(8.3), 138.607(6.79)
51 V	147.167(3)	0.253(6)	0.004(12)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
¹²¹ Sb	148.238	0.26(6)	0.0065(15)	564.24(2.700), 61.4130(0.75), 78.0910(0.48)
¹⁹³ Ir	148.9340(10)	1.4(9)	0.022(14)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁶⁵ Ho	149.309(3)	2.25(12)	0.0413(22)	136.6650(14.5), 116.8360(8.1), 80.574(3.87)
¹⁶⁹ Tm	149.7180(10)	7.11(12)	0.1275(22)	200.(8.72), 140.(5.96), 237.2390(5.52)
¹⁷⁶ Lu	150.392(3)	13.8(4)	0.239(7)	457.944(8.3), 138.607(6.79), 208.3660(6.0)
¹⁹¹ Ir	151.5640(20)	2.89(20)	0.046(3)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁸⁵ Re	151.688(3)	1.15(7)	0.0187(11)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
¹²⁷ I	153.011(3)	0.209(14)	0.0050(3)	133.6110(1.42), 442.901(0.600), 27.3620(0.43)
¹⁵⁹ Tb	153.6870(20)	0.44(5)	0.0084(10)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
²⁰³ T1	154.01(9)	0.0926(17)	0.001373(25)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹⁸⁷ Re	155.041(4)d	7.16(25)	0.117[2.0%]	63.5820(8.0), 59.0100(5.5), 137.157(5.29)
¹⁸⁷ Os	155.10(4)	1.19(3)	0.0190(5)	186.7180(2.08), 557.978(0.84), 569.344(0.694)
¹²³ Sb	155.1780(10)	0.081(9)	0.00202(22)	564.24(2.700), 61.4130(0.75), 78.0910(0.48)

$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0	Ey, $\sigma_{\!\gamma}^{z}(E_{\!\gamma})$ for associated intense gamma rays
139 La	155.560(5)	0.192(7)	0.00419(15)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
¹⁹¹ Ir ⁷⁵ As	156.654(3) 157.7450(10)	2.76(12) 0.117(24)	0.0435(19) 0.0047(10)	351.689(10.9), 328.448(9.1), 84.2740(7.7) 559.10(2.00), 165.0490(0.996), 86.7880(0.579)
197 Au	157.7450(10)	1.250(18)	0.0047(10)	410.(94.), 214.9710(9.0), 247.5730(5.56)
⁵⁹ Co	158.517(17)	1.200(15)	0.0617(8)	229.879(7.18), 277.161(6.77), 555.972(5.76)
116 Sn	158.65(6)	0.0145(3)	0.000370(8)	1293.591(0.1340), 1171.28(0.0879), 1229.64(0.0673)
63 Cu	159.281(5)	0.648(10)	0.0309(5)	278.250(0.893), 7915.62(0.869), 7637.40(0.54)
¹²⁷ I ⁷⁶ Se	160.7570(10) 161.9220(10)d	0.187(16) 0.855(23)	0.0045(4) 0.0328[99%]	133.6110(1.42), 442.901(0.600), 27.3620(0.43) 613.724(2.14), 238.9980(2.06), 520.6370(1.260)
²⁰⁹ Bi	162.19(11)	0.008(3)	1.2E-04(4)	4171.05(0.0171), 4054.57(0.0137), 319.78(0.0115)
¹⁸² W	162.315(8)	0.187(5)	0.00308(8)	685.73(3.24), 479.550(2.59), 72.002(1.32)
115 In	162.393(3)d	15.8(8)	0.417[100%]	1293.54(131), 1097.30(87.3), 416.86(43.0)
¹⁷⁶ Lu ¹³⁹ La	162.492(4)	5.32(17)	0.092(3)	150.392(13.8), 457.944(8.3), 138.607(6.79)
75 As	162.659(3) 165.0490(10)	0.489(18) 0.996(16)	0.0107(4) 0.0403(7)	1596.21(5.84), 487.021(2.79), 815.772(1.430) 559.10(2.00), 86.7880(0.579), 44.4250(0.560)
¹⁶⁹ Tm	165.735	3.29(6)	0.0590(11)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹³⁸ Ba	165.8570(10)d	0.074(8)	0.00163[21%]	1435.77(0.308), 627.29(0.294), 818.514(0.212)
¹⁹ F	166.700(20)	0.000413(18)	6.6E-05(3)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
⁴⁰ Ar ¹⁸⁷ Re	167.30(20) 167.327(3)	0.53(5) 1.46(6)	0.040(4) 0.0238(10)	4745.3(0.36), 1186.8(0.34), 516.0(0.167) 63.5820(8.0), 155.041(7.16), 59.0100(5.5)
¹⁹⁷ Au	168.3340(10)	3.60(22)	0.055(3)	410.(94.), 214.9710(9.0), 247.5730(5.56)
103 Rh	169.16(5)	2.88(19)	0.085(6)	180.87(22.6), 97.14(19.5), 51.50(16.0)
¹⁹¹ Ir	169.196(3)	3.05(13)	0.0481(20)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁹⁷ Au ¹¹⁵ In	170.1030(10) 171.059(5)	1.66(22) 3.44(25)	0.026(3) 0.091(7)	410.(94.), 214.9710(9.0), 247.5730(5.56) 1293.54(131), 1097.30(87.3), 416.86(43.0)
176 Lu	171.869(7)	1.74(6)	0.0301(10)	150.392(13.8), 457.944(8.3), 138.607(6.79)
¹⁸¹ Ta	173.2050(20)	1.210(25)	0.0203(4)	270.4030(2.60), 402.623(1.180), 133.8770(0.63)
115 In	173.886(6)	4.1(3)	0.108(8)	1293.54(131), 1097.30(87.3), 416.86(43.0)
¹³³ Cs ⁷⁰ Ge	174.3040(20)	0.420(11)	0.00958(25)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
173 Yb	175.05(3) 175.30(5)	0.164(4) 0.58(6)	0.00684(17) 0.0102(11)	595.851(1.100), 867.899(0.553), 608.353(0.250) 514.868(9.0), 639.261(1.43), 396.329(1.42)
¹³³ Cs	176.4040(20)	2.47(4)	0.0563(9)	205.615(1.560), 510.795(1.54), 307.015(1.45)
¹⁴¹ Pr	176.8630(20)	1.06(4)	0.0228(9)	140.9050(0.479), 1575.6(0.426), 5666.170(0.379)
103 Rh	178.66(4)	3.27(14)	0.096(4)	180.87(22.6), 97.14(19.5), 51.50(16.0)
¹⁵⁹ Tb ¹⁹¹ Ir	178.881(3) 179.0380(20)	0.42(8) 2.1(5)	0.0080(15) 0.033(8)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2) 351.689(10.9), 328.448(9.1), 84.2740(7.7)
103 Rh	180.87(3)	22.6(15)	0.67(4)	97.14(19.5), 51.50(16.0), 217.82(7.38)
¹⁶⁹ Tm	180.993	3.85(14)	0.0691(25)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹⁷¹ Yb	181.529(3)	0.53(6)	0.0093(11)	514.868(9.0), 639.261(1.43), 396.329(1.42)
¹⁵⁷ Gd ¹⁴¹ Pr	181.931(4) 182.786(4)	7200(300) 0.377(14)	139(6) 0.0081(3)	79.5100(4010), 944.174(3090), 962.104(2050) 176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
⁷¹ Ga	184.09(3)	0.1040(21)	0.00452(9)	834.08(1.65), 2201.91(0.52), 629.96(0.490)
¹⁶⁴ Dy	184.257(4)	146(15)	2.7(3)	538.609(69.2), 496.931(44.9), 185.19(39.1)
¹⁶⁷ Er	184.2850(10)	56(5)	1.01(9)	815.9890(42.5), 198.2440(29.9), 79.8040(18.2)
¹⁶¹ Dy ¹⁷⁶ Lu	185.19(9) 185.593(8)	39.1(12) 3.42(12)	0.729(22) 0.0592(21)	184.257(146), 538.609(69.2), 496.931(44.9) 150.392(13.8), 457.944(8.3), 138.607(6.79)
65 Cu	185.96(4)	0.244(3)	0.0392(21)	278.250(0.893), 7915.62(0.869), 159.281(0.648)
¹¹⁵ In	186.2100(20)	26.6(18)	0.70(5)	1293.54(131), 1097.30(87.3), 416.86(43.0)
189 Os	186.7180(20)	2.08(5)	0.0331(8)	155.10(1.19), 557.978(0.84), 569.344(0.694)
¹³³ Cs ⁶⁹ Ga	186.8400(20) 187.84(3)	0.282(9) 0.1080(21)	0.00643(21) 0.00469(9)	176.4040(2.47), 205.615(1.560), 510.795(1.54) 834.08(1.65), 2201.91(0.52), 629.96(0.490)
176 Lu	187.970(23)	1.39(6)	0.00409(9)	150.392(13.8), 457.944(8.3), 138.607(6.79)
¹⁸⁷ Re	188.813(6)	0.98(10)	0.0159(16)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
¹⁶⁸ Yb	191.2140(10)	0.22(4)	0.0039(7)	514.868(9.0), 639.261(1.43), 396.329(1.42)
¹⁰⁷ Ag ⁷¹ Ga	191.39(3) 192.11(3)	1.81(5)	0.0509(14)	198.72(7.75), 235.62(4.62), 78.91(3.90)
197 Au	192.11(3)	0.194(3) 3.9(18)	0.00843(13) 0.06(3)	834.08(1.65), 2201.91(0.52), 629.96(0.490) 410.(94.), 214.9710(9.0), 247.5730(5.56)
107 Ag	192.90(3)	2.20(6)	0.0618(17)	198.72(7.75), 235.62(4.62), 78.91(3.90)
¹⁹⁷ Au	192.9440(10)	1.70(22)	0.026(3)	410.(94.), 214.9710(9.0), 247.5730(5.56)
¹⁵⁹ Tb	193.431(4)	0.37(4)	0.0071(8)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
⁷¹ Ga ⁷⁹ Br	194.66(4) 195.602(4)	0.1070(21) 0.434(14)	0.00465(9) 0.0165(5)	834.08(1.65), 2201.91(0.52), 629.96(0.490) 776.517(0.990), 554.3480(0.838), 245.203(0.80)
87 Rb	196.34(3)	0.00964(19)	0.0103(3)	556.82(0.0913), 487.89(0.0494), 555.61(0.0407)
⁷¹ Ga	197.94(5)	0.1330(24)	0.00578(10)	834.08(1.65), 2201.91(0.52), 629.96(0.490)
¹⁶⁷ Er	198.2440(10)	29.9(16)	0.54(3)	184.2850(56), 815.9890(42.5), 79.8040(18.2)
¹³³ Cs ²⁰³ Tl	198.3010(20) 198.33(8)	1.100(19) 0.0408(10)	0.0251(4) 0.000605(15)	176.4040(2.47), 205.615(1.560), 510.795(1.54) 139.94(0.400), 347.96(0.361), 318.88(0.325)
¹⁶⁹ Tm	198.5260(10)	0.96(3)	0.0172(5)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹⁰⁹ Ag	198.72(4)	7.75(13)	0.218(4)	235.62(4.62), 78.91(3.90), 117.45(3.85)

$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0	Εγ, $\sigma_{\gamma}^{z}(E_{\gamma})$ for associated intense gamma rays
155 Gd	199.2130(10)	2020(60)	38.9(12)	181.931(7200), 79.5100(4010), 944.174(3090)
¹⁸⁵ Re	199.337(16)	0.91(4)	0.0148(7)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
¹⁸⁷ Re ⁷⁶ Se	199.513(5) 200.4530(20)	1.02(10) 0.233(9)	0.0166(16) 0.0089(4)	63.5820(8.0), 155.041(7.16), 59.0100(5.5) 613.724(2.14), 238.9980(2.06), 520.6370(1.260)
186 W	200.4330(20)	0.233(9)	0.00526(13)	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹²¹ Sb	201.5950(10)	0.091(3)	0.00226(8)	564.24(2.700), 61.4130(0.75), 78.0910(0.48)
89 Y	202.53(3)	0.289(7)	0.00985(24)	6080.171(0.76), 776.613(0.659), 574.106(0.174)
63 Cu	202.950(8)	0.193(3)	0.00920(14)	278.250(0.893), 7915.62(0.869), 159.281(0.648)
¹⁶⁹ Tm	204.448 204.83(4)	8.72(19) 0.148(4)	0.156(3) 0.00244(7)	149.7180(7.11), 140.(5.96), 237.2390(5.52) 685.73(3.24), 479.550(2.59), 72.002(1.32)
133 Cs	204.83(4)	1.560(25)	0.00244(7)	176.4040(2.47), 510.795(1.54), 307.015(1.45)
¹⁹¹ Ir	206.220(4)	3.70(18)	0.058(3)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁰⁷ Ag	206.46(3)	3.58(7)	0.1006(20)	198.72(7.75), 235.62(4.62), 78.91(3.90)
¹⁸⁷ Re	207.853(4)	4.44(21)	0.072(3)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
¹⁷⁶ Lu ¹⁸⁷ Re	208.3660(10)d 208.843(7)	6.0(3) 0.98(10)	0.104[0.2%] 0.0159(16)	150.392(13.8), 457.944(8.3), 138.607(6.79) 63.5820(8.0), 155.041(7.16), 59.0100(5.5)
238 Np	208.843(7) 209.7530(20)d	0.0909(13)	0.00139(10)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
¹⁹¹ Ir	210.354(5)	2.1(4)	0.033(6)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁸⁵ Re	210.698(4)	1.50(10)	0.0244(16)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
⁷⁵ As	211.1470(10)	0.113(3)	0.00457(12)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
⁵⁵ Mn ⁷¹ Ga	212.039(21) 212.58(4)	2.13(3) 0.0583(12)	0.1175(17) 0.00253(5)	846.754(13.10), 1810.72(3.62), 26.560(3.42) 834.08(1.65), 2201.91(0.52), 629.96(0.490)
177 Hf	212.38(4) 213.439(7)	29.3(7)	0.497(12)	214.3410(16.3), 93.182(13.3), 325.559(6.69)
¹⁷⁸ Hf	214.3410(20)	5.7(6)	0.097(10)	213.439(29.3), 214.3410(16.3), 93.182(13.3)
$^{178}\mathrm{Hf}$	214.3410(20)d	16.3(3)	0.277[99%]	213.439(29.3), 93.182(13.3), 325.559(6.69)
¹⁸⁵ Re	214.647(4)	2.53(14)	0.0412(23)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
¹⁹⁷ Au ¹⁰⁷ Ag	214.9710(10) 215.15(4)	9.0(12)	0.138(18)	410.(94.), 247.5730(5.56), 261.4040(5.3)
103 Rh	215.15(4) 215.340(22)	1.55(3) 5.20(12)	0.0435(8) 0.153(4)	198.72(7.75), 235.62(4.62), 78.91(3.90) 180.87(22.6), 97.14(19.5), 51.50(16.0)
⁴⁵ Sc	216.44(4)	2.49(4)	0.168(3)	227.773(7.13), 147.011(6.08), 142.528(4.88)
103 Rh	216.54(8)	5.0(10)	0.15(3)	180.87(22.6), 97.14(19.5), 51.50(16.0)
¹⁹¹ Ir	216.905(4)	5.57(24)	0.088(4)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
103 Rh	217.82(3)	7.38(13)	0.217(4)	180.87(22.6), 97.14(19.5), 51.50(16.0)
¹³⁹ La ¹³³ Cs	218.225(22) 218.341(3)	0.78(3) 0.309(9)	0.0170(7) 0.00705(21)	1596.21(5.84), 487.021(2.79), 815.772(1.430) 176.4040(2.47), 205.615(1.560), 510.795(1.54)
⁷⁹ Br	219.377(3)	0.399(14)	0.00703(21)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
$^{169}\mathrm{Tm}$	219.706	3.64(6)	0.0653(11)	200.(8.72), 149.7180(7.11), 140.(5.96)
133 Cs	219.7530(20)	0.344(9)	0.00784(21)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
¹⁶⁵ Ho	221.186(4)	2.05(11)	0.0377(20)	136.6650(14.5), 116.8360(8.1), 80.574(3.87)
⁷⁹ Br ¹⁷⁵ Lu	223.627(3) 225.4030(10)	0.153(5) 1.73(8)	0.00580(19) 0.0300(14)	776.517(0.990), 554.3480(0.838), 245.203(0.80) 150.392(13.8), 457.944(8.3), 138.607(6.79)
186 W	225.86(4)	0.113(17)	0.0019(3)	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹⁹¹ Ir	226.2980(20)	4.0(4)	0.063(6)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁸⁷ Re	227.083(6)	1.78(12)	0.0290(20)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
⁴⁵ Sc	227.773(12)	7.13(11)	0.481(7)	147.011(6.08), 142.528(4.88), 295.243(3.97)
²³⁸ Np ⁴⁵ Sc	228.1830(10)d 228.716(12)	0.286(5) 3.31(5)	0.00364[0.6%] 0.223(3)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382) 227.773(7.13), 147.011(6.08), 142.528(4.88)
⁵⁹ Co	229.879(17)	7.18(8)	0.369(4)	277.161(6.77), 555.972(5.76), 447.711(3.41)
¹²¹ Sb	233.1690(10)	0.0996(24)	0.00248(6)	564.24(2.700), 61.4130(0.75), 78.0910(0.48)
⁷⁹ Br	234.320(3)	0.205(10)	0.0078(4)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
133 Cs	234.3340(20)	1.070(23)	0.0244(5)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
¹⁶⁹ Tm ¹¹⁵ In	235.1890(10) 235.275(4)	1.18(4) 4.9(3)	0.0212(7) 0.129(8)	200.(8.72), 149.7180(7.11), 140.(5.96) 1293.54(131), 1097.30(87.3), 416.86(43.0)
109 Ag	235.62(4)	4.62(7)	0.129(8)	198.72(7.75), 78.91(3.90), 117.45(3.85)
¹³⁹ La	235.771(8)	0.111(4)	0.00242(9)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
⁷⁵ As	235.8770(10)	0.181(4)	0.00732(16)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
¹⁹⁷ Au	236.0450(10)	4.1(5)	0.063(8)	410.(94.), 214.9710(9.0), 247.5730(5.56)
¹⁸⁷ Re ¹⁰⁷ Ag	236.627(4)	1.45(10) 1.95(3)	0.0236(16)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
109 Ag	236.85(4) 236.89(7)	1.95(3)	0.0548(8) 0.037(25)	198.72(7.75), 235.62(4.62), 78.91(3.90) 198.72(7.75), 235.62(4.62), 78.91(3.90)
169 Tm	237.2390(10)	5.52(10)	0.0990(18)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹³⁹ La	237.660(4)	0.320(12)	0.0070(3)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
⁷⁶ Se	238.9980(10)	2.06(3)	0.0791(12)	613.724(2.14), 520.6370(1.260), 161.9220(0.855)
¹⁶⁵ Ho	239.132(4)	2.25(12)	0.0413(22)	136.6650(14.5), 116.8360(8.1), 80.574(3.87)
¹⁶⁹ Tm ¹⁵⁹ Tb	242.6220(10) 242.973(12)	1.28(4) 0.219(24)	0.0230(7) 0.0042(5)	200.(8.72), 149.7180(7.11), 140.(5.96) 75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
⁷⁹ Br	244.237(3)	0.45(3)	0.0042(3)	75.0500(1.78), 05.0800(1.40), 04.1100(1.2) 776.517(0.990), 554.3480(0.838), 245.203(0.80)
⁸¹ Br	244.8310(10)	0.15(5)	0.0057(19)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
⁷⁹ Br	245.203(4)	0.80(3)	0.0303(11)	776.517(0.990), 554.3480(0.838), 619.106(0.515)

$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\!\gamma}^{z}(E_{\!\gamma}\!)\text{-barns}$	$\mathbf{k_0}$	Εγ, $\sigma_{\gamma}^{\ z}(E_{\gamma})$ for associated intense gamma rays
110 Cd	245.3(3)	274(25)	7.4(7)	558.32(1860), 651.19(358)
133 Cs	245.8620(20)	0.740(15)	0.0169(3)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
¹⁹⁷ Au	247.5730(10)	5.56(8)	0.0855(12)	410.(94.), 214.9710(9.0), 261.4040(5.3)
159 Tb	248.062(5)	0.30(3)	0.0057(6)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
⁷¹ Ga	248.89(4)	0.136(8)	0.0059(4)	834.08(1.65), 2201.91(0.52), 629.96(0.490)
⁷⁶ Se ¹⁸⁷ Re	249.7880(10)	0.538(9)	0.0206(4) 0.029(4)	613.724(2.14), 238.9980(2.06), 520.6370(1.260)
183 W	251.243(5) 252.854(11)	1.80(23) 0.101(3)	0.029(4)	63.5820(8.0), 155.041(7.16), 59.0100(5.5) 685.73(3.24), 479.550(2.59), 72.002(1.32)
93 Nb	253.115(5)	0.1320(19)	0.00100(3)	99.4070(0.196), 255.9290(0.176), 113.4010(0.117)
⁵⁹ Co	254.379(17)	1.290(16)	0.0663(8)	229.879(7.18), 277.161(6.77), 555.972(5.76)
¹⁸⁵ Re	254.998(4)	1.15(5)	0.0187(8)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
⁹³ Nb	255.9290(20)	0.176(3)	0.00574(10)	99.4070(0.196), 253.115(0.1320), 113.4010(0.117)
²³² Th	256.25(11)	0.093(17)	0.00121(22)	583.27(0.279), 566.63(0.19), 472.30(0.165)
¹⁸⁵ Re	257.447(9)	0.87(23)	0.014(4)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
¹⁰⁷ Ag ¹⁷⁶ Lu	259.17(3)	1.560(25)	0.0438(7)	198.72(7.75), 235.62(4.62), 78.91(3.90)
133 Cs	259.401(16) 261.1640(20)	1.89(8) 0.401(11)	0.0327(14) 0.00914(25)	150.392(13.8), 457.944(8.3), 138.607(6.79) 176.4040(2.47), 205.615(1.560), 510.795(1.54)
¹⁹⁷ Au	261.4040(10)	5.3(20)	0.00914(23)	410.(94.), 214.9710(9.0), 247.5730(5.56)
¹⁹¹ Ir	261.953(6)	2.02(23)	0.032(4)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁹¹ Ir	262.03(10)	3.05(18)	0.048(3)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
⁷⁵ As	263.8940(10)	0.18(4)	0.0073(16)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
¹⁰³ Rh	266.84(3)	2.66(17)	0.078(5)	180.87(22.6), 97.14(19.5), 51.50(16.0)
¹⁰⁹ Ag	267.08(3)	2.73(6)	0.0767(17)	198.72(7.75), 235.62(4.62), 78.91(3.90)
176 Lu	268.788(5)	3.64(13)	0.0630(23)	150.392(13.8), 457.944(8.3), 138.607(6.79)
¹⁸¹ Ta ⁵⁵ Mn	270.4030(20) 271.198(22)	2.60(6)	0.0435(10)	173.2050(1.210), 402.623(1.180), 133.8770(0.63)
⁷⁹ Br	271.198(22)	0.94(6) 0.462(7)	0.052(3) 0.0175(3)	846.754(13.10), 1810.72(3.62), 26.560(3.42) 776.517(0.990), 554.3480(0.838), 245.203(0.80)
139 La	272.306(4)	0.502(19)	0.0173(3)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
188 Os	272.82(4)	0.242(6)	0.00386(10)	186.7180(2.08), 155.10(1.19), 557.978(0.84)
¹¹⁵ In	272.9660(20)	33.1(24)	0.87(6)	1293.54(131), 1097.30(87.3), 416.86(43.0)
$^{186}\mathrm{W}$	273.10(5)	0.272(7)	0.00448(12)	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹⁸⁷ Re	274.298(5)	0.80(6)	0.0130(10)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
⁷⁹ Br	274.532(5)	0.158(3)	0.00599(11)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
⁵⁹ Co ²³² Th	277.161(17)	6.77(8)	0.348(4)	229.879(7.18), 555.972(5.76), 447.711(3.41)
²³⁸ Np	277.48(11) 277.5990(10)d	0.0312(25) 0.382(6)	0.00041(3) 0.00486[0.6%]	583.27(0.279), 566.63(0.19), 472.30(0.165) 74.6640(1.30000), 106.1230(0.723), 133.7990(0.38)
⁶³ Cu	278.250(14)	0.893(15)	0.0426(7)	7915.62(0.869), 159.281(0.648), 7637.40(0.54)
¹⁹³ Ir	278.5040(10)	1.8(11)	0.028(17)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁷⁴ Yb	282.522(14)d	0.666(22)	0.0117[0.3%]	514.868(9.0), 639.261(1.43), 396.329(1.42)
¹²¹ Sb	282.6500(10)	0.274(7)	0.00682(17)	564.24(2.700), 61.4130(0.75), 78.0910(0.48)
⁶⁰ Ni	282.917(18)	0.211(3)	0.01089(15)	8998.414(1.49), 464.978(0.843), 8533.509(0.721)
136 Ba	283.58(6)	0.0404(12)	0.00089(3)	1435.77(0.308), 627.29(0.294), 818.514(0.212)
¹⁹¹ Ir ¹⁶⁷ Er	284.074(6)	1.95(15)	0.0307(24)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
115 In	284.6560(20) 284.914(4)	13.7(12) 4.5(3)	0.248(22) 0.119(8)	184.2850(56), 815.9890(42.5), 198.2440(29.9) 1293.54(131), 1097.30(87.3), 416.86(43.0)
⁷⁴ Se	286.5710(20)	0.280(6)	0.01075(23)	613.724(2.14), 238.9980(2.06), 520.6370(1.260)
81 Br	287.7390(20)	0.253(4)	0.00960(15)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
¹³⁹ La	288.255(5)	0.73(3)	0.0159(7)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
¹⁸⁷ Re	290.665(6)	3.5(4)	0.057(7)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
¹⁸⁷ Re	291.492(8)	0.94(7)	0.0153(11)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
¹⁹⁷ Au	291.7240(20)	1.05(17)	0.016(3)	410.(94.), 214.9710(9.0), 247.5730(5.56)
²⁰³ Tl ⁹³ Nb	292.26(8)	0.0983(20)	0.00146(3)	139.94(0.400), 347.96(0.361), 318.88(0.325)
193 Ir	293.206(4) 293.541(14)d	0.0651(16) 1.76(6)	0.00212(5) 0.0277[1.8%]	99.4070(0.196), 255.9290(0.176), 253.115(0.1320) 351.689(10.9), 328.448(9.1), 84.2740(7.7)
⁷⁹ Br	294.349(3)	0.1160(22)	0.00440(8)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
¹⁰⁷ Ag	294.39(3)	2.05(12)	0.058(3)	198.72(7.75), 235.62(4.62), 78.91(3.90)
51 V	295.023(14)	0.164(4)	0.00976(24)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
⁴⁵ Sc	295.243(10)	3.97(11)	0.268(7)	227.773(7.13), 147.011(6.08), 142.528(4.88)
²³⁵ U	297.00(10)	0.220(20)	0.00280(25)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
⁷⁶ Se	297.2160(20)	0.337(7)	0.0129(3)	613.724(2.14), 238.9980(2.06), 520.6370(1.260)
¹¹⁵ In ¹⁰⁷ Ag	298.664(3) 299.95(3)	9.4(7)	0.248(18)	1293.54(131), 1097.30(87.3), 416.86(43.0) 198.72(7.75), 235.62(4.62), 78.91(3.90)
127 I	299.95(3) 301.906(5)	1.15(5) 0.17(6)	0.0323(14) 0.0041(14)	198.72(7.75), 235.62(4.62), 78.91(3.90) 133.6110(1.42), 442.901(0.600), 27.3620(0.43)
¹⁹¹ Ir	302.905(8)	1.20(11)	0.0189(17)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
$^{178}\mathrm{Hf}$	303.9880(20)	3.38(9)	0.0574(15)	213.439(29.3), 214.3410(16.3), 93.182(13.3)
¹³³ Cs	307.015(4)	1.45(3)	0.0331(7)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
93 Nb	309.915(8)	0.0690(17)	0.00225(6)	99.4070(0.196), 255.9290(0.176), 253.115(0.1320)
¹⁷⁵ Lu	310.1870(10)	1.49(8)	0.0258(14)	150.392(13.8), 457.944(8.3), 138.607(6.79)
¹⁶⁹ Tm	311.0190(10)	2.50(5)	0.0448(9)	200.(8.72), 149.7180(7.11), 140.(5.96)

$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\!\gamma}^{\;z}(E_{\!\gamma})$ -barns	\mathbf{k}_0	$E\gamma, \sigma_{\gamma}^{\;z}(E_{\gamma})$ for associated intense gamma rays
¹⁷⁴ Yb	311.276(5)	0.26(4)	0.0046(7)	514.868(9.0), 639.261(1.43), 396.329(1.42)
⁵⁵ Mn	314.398(20)	1.460(20)	0.0805(11)	846.754(13.10), 1810.72(3.62), 26.560(3.42)
⁷⁹ Br	314.982(3)	0.460(9)	0.0174(3)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
²³⁸ Np	315.880(3)d	0.0425(8)	0.000541[0.6%]	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
¹⁹¹ Ir ¹⁸⁵ Re	316.061(7) 316.457(9)	2.4(4) 2.21(10)	0.038(6) 0.0360(16)	351.689(10.9), 328.448(9.1), 84.2740(7.7) 63.5820(8.0), 155.041(7.16), 59.0100(5.5)
²³² Th	316.64(10)	0.0397(18)	0.000518(24)	583.27(0.279), 566.63(0.19), 472.30(0.165)
⁶⁹ Ga	318.87(3)	0.0592(14)	0.00257(6)	834.08(1.65), 2201.91(0.52), 629.96(0.490)
²⁰³ Tl	318.88(8)	0.325(6)	0.00482(9)	139.94(0.400), 347.96(0.361), 5641.57(0.316)
¹⁷⁶ Lu	319.036(8)	3.83(13)	0.0663(23)	150.392(13.8), 457.944(8.3), 138.607(6.79)
²³² Th	319.08(10)	0.082(3)	0.00107(4)	583.27(0.279), 566.63(0.19), 472.30(0.165)
²⁰⁹ Bi	319.78(4)	0.0115(14)	1.67E-04(20)	4171.05(0.0171), 4054.57(0.0137), 4101.76(0.0089)
¹⁸⁷ Os	322.98(6)	0.242(9)	0.00386(14)	186.7180(2.08), 155.10(1.19), 557.978(0.84)
¹⁷⁷ Hf ¹⁹³ Ir	325.559(4) 328.448(14)d	6.69(17) 9.1(3)	0.114(3) 0.143[1.8%]	213.439(29.3), 214.3410(16.3), 93.182(13.3) 351.689(10.9), 84.2740(7.7), 136.1250(6.5)
¹⁹⁷ Au	328.4840(20)	1.48(19)	0.023(3)	410.(94.), 214.9710(9.0), 247.5730(5.56)
139 La	328.762(8)d	1.250(18)	0.0273[0.9%]	1596.21(5.84), 487.021(2.79), 815.772(1.430)
¹⁰⁷ Ag	328.99(3)	0.795(12)	0.0223(3)	198.72(7.75), 235.62(4.62), 78.91(3.90)
²³² Th	331.37(11)	0.0291(19)	0.000380(25)	583.27(0.279), 566.63(0.19), 472.30(0.165)
¹²¹ Sb	332.2860(10)	0.101(3)	0.00251(8)	564.24(2.700), 61.4130(0.75), 78.0910(0.48)
¹⁹⁵ Pt	332.985(4)	2.580(25)	0.0401(4)	355.6840(6.17)
¹⁰³ Rh ¹⁹¹ Ir	333.44(3)	3.27(8)	0.0963(24)	180.87(22.6), 97.14(19.5), 51.50(16.0)
149 Sm	333.864(6) 333.97(4)	1.53(10) 4790(60)	0.0241(16) 96.5(12)	351.689(10.9), 328.448(9.1), 84.2740(7.7) 439.40(2860), 737.44(597), 505.51(528)
²³⁸ Np	334.3100(20)d	0.0550(8)	0.000700[0.6%]	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
115 In	335.450(10)	9.1(7)	0.240(18)	1293.54(131), 1097.30(87.3), 416.86(43.0)
²³² Th	335.92(10)	0.089(4)	0.00116(5)	583.27(0.279), 566.63(0.19), 472.30(0.165)
⁹³ Nb	337.527(7)	0.054(6)	0.00176(20)	99.4070(0.196), 255.9290(0.176), 253.115(0.1320)
⁵⁸ Ni	339.420(11)	0.1670(21)	0.00862(11)	8998.414(1.49), 464.978(0.843), 8533.509(0.721)
159 Tb	339.487(5)	0.35(4)	0.0067(8)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
⁴⁸ Ti ⁷⁹ Br	341.706(5) 343.405(3)	1.840(21)	0.1165(13) 0.00448(15)	1381.745(5.18), 6760.084(2.97), 6418.426(1.96) 776.517(0.990), 554.3480(0.838), 245.203(0.80)
63 Cu	343.898(14)	0.118(4) 0.215(4)	0.01025(19)	278.250(0.893), 7915.62(0.869), 159.281(0.648)
81 Br	345.0060(10)	0.154(4)	0.00584(15)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
²⁰³ Tl	347.96(8)	0.361(10)	0.00535(15)	139.94(0.400), 318.88(0.325), 5641.57(0.316)
¹⁶⁴ Dy	349.248(10)	14.7(6)	0.274(11)	184.257(146), 538.609(69.2), 496.931(44.9)
²⁰ Ne	350.72(6)	0.0198(4)	0.00297(6)	2035.67(0.0245), 4374.13(0.01910), 2793.94(0.00900)
¹⁹⁷ Au ¹⁹¹ Ir	350.8280(10)	1.0(5)	0.015(8)	410.(94.), 214.9710(9.0), 247.5730(5.56)
⁵⁶ Fe	351.689(4) 352.347(12)	10.9(4) 0.273(3)	0.172(6) 0.01481(16)	328.448(9.1), 84.2740(7.7), 136.1250(6.5) 7631.136(0.653), 7645.5450(0.549), 6018.532(0.227)
²³² Th	354.27(10)	0.0408(20)	0.00053(3)	583.27(0.279), 566.63(0.19), 472.30(0.165)
¹⁹⁵ Pt	355.6840(20)	6.17(6)	0.0958(9)	332.985(2.580)
¹³³ Cs	356.157(4)	0.445(12)	0.0101(3)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
159 Tb	357.748(5)	0.26(3)	0.0050(6)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
109 Ag	360.41(3)	1.55(3)	0.0435(8)	198.72(7.75), 235.62(4.62), 78.91(3.90)
189 Os 174 Yb	361.137(6)	0.466(15)	0.00742(24)	186.7180(2.08), 155.10(1.19), 557.978(0.84) 514.868(9.0), 639.261(1.43), 396.329(1.42)
191 Ir	363.938(6) 365.440(7)	0.80(12) 1.15(10)	0.0140(21) 0.0181(16)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
⁷⁹ Br	366.604(4)	0.233(6)	0.00884(23)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
¹⁷⁶ Lu	367.433(11)	2.23(8)	0.0386(14)	150.392(13.8), 457.944(8.3), 138.607(6.79)
¹⁹⁹ Hg	367.947(9)	251(5)	3.79(8)	5967.02(62.5), 1693.296(56.2), 4739.43(30.1)
¹⁸⁹ Os	371.261(5)	0.574(14)	0.00914(22)	186.7180(2.08), 155.10(1.19), 557.978(0.84)
¹⁹³ Ir	371.5020(20)	2.11(12)	0.0333(19)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁶⁵ Ho ¹³³ Cs	371.772(5) 377.311(5)	1.56(8) 0.310(9)	0.0287(15) 0.00707(21)	136.6650(14.5), 116.8360(8.1), 80.574(3.87) 176.4040(2.47), 205.615(1.560), 510.795(1.54)
¹⁰⁷ Ag	380.90(3)	1.59(3)	0.00707(21)	198.72(7.75), 235.62(4.62), 78.91(3.90)
¹⁹⁷ Au	381.1990(10)	3.0(4)	0.046(6)	410.(94.), 214.9710(9.0), 247.5730(5.56)
¹⁶⁹ Tm	384.0790(20)	1.95(5)	0.0350(9)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹¹⁵ In	385.111(8)	12.1(9)	0.319(24)	1293.54(131), 1097.30(87.3), 416.86(43.0)
65 Cu	385.77(3)	0.1310(18)	0.00625(9)	278.250(0.893), 7915.62(0.869), 159.281(0.648)
¹⁶⁴ Dy	385.9840(20)	34.8(10)	0.649(19)	184.257(146), 538.609(69.2), 496.931(44.9)
²⁴ Mg ⁷¹ Ga	389.670(21) 390.66(4)	0.00586(24) 0.0476(12)	0.00073(3) 0.00207(5)	3916.84(0.0320), 585.00(0.0314), 2828.172(0.0240) 834.08(1.65), 2201.91(0.52), 629.96(0.490)
185 Re	390.854(23)	1.15(5)	0.00207(3)	63.5820(8.0), 155.041(7.16), 59.0100(5.5)
⁵⁹ Co	391.218(15)	1.080(14)	0.0555(7)	229.879(7.18), 277.161(6.77), 555.972(5.76)
⁷¹ Ga	393.28(3)	0.1340(23)	0.00582(10)	834.08(1.65), 2201.91(0.52), 629.96(0.490)
²⁰³ Tl	395.62(8)	0.0862(20)	0.00128(3)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹⁷⁴ Yb	396.329(20)d	1.42(5)	0.0249[0.3%]	514.868(9.0), 639.261(1.43), 5266.3(1.4)
¹⁸¹ Ta	402.623(3)	1.180(23)	0.0198(4)	270.4030(2.60), 173.2050(1.210), 133.8770(0.63)

$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\!\gamma}^{z}(E_{\!\gamma}\!)\text{-barns}$	\mathbf{k}_0	Εγ, $\sigma_{\gamma}^{z}(E_{\gamma})$ for associated intense gamma rays
¹⁶⁹ Tm	411.5060(20)	2.37(5)	0.0425(9)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹⁶⁴ Dy	411.651(5)	35.1(10)	0.655(19)	184.257(146), 538.609(69.2), 496.931(44.9)
¹⁹⁷ Au	411.802d	94.29(15)	1.453[0.5%]	214.9710(9.0), 247.5730(5.56), 261.4040(5.3)
¹⁶⁴ Dy	414.985(7)	31(5)	0.58(9)	184.257(146), 538.609(69.2), 496.931(44.9)
115 In	416.86(3)d	43.0(18)	1.13[30%]	1293.54(131), 1097.30(87.3), 272.9660(33.1)
¹⁹¹ Ir	418.138(6)	3.45(15)	0.0544(24)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
⁵¹ V	419.475(13)	0.249(6)	0.0148(4)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
⁸⁵ Rb ¹³⁹ La	421.50(3)	0.0259(5)	0.000918(18)	556.82(0.0913), 487.89(0.0494), 555.61(0.0407)
²⁰³ Tl	422.66(4)	0.370(14)	0.0081(3) 0.00178(4)	1596.21(5.84), 487.021(2.79), 815.772(1.430) 139.94(0.400), 347.96(0.361), 318.88(0.325)
83 Kr	424.81(8) 425.30(11)	0.1200(25) 2.960(19)	0.1070(7)	881.74(20.8), 1213.42(8.28), 1463.86(7.10)
¹⁶⁵ Ho	426.012(5)	2.88(15)	0.053(3)	136.6650(14.5), 116.8360(8.1), 80.574(3.87)
75 As	426.5750(10)	0.100(3)	0.00404(12)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
¹⁷⁴ Yb	428.613(12)	0.61(7)	0.0107(12)	514.868(9.0), 639.261(1.43), 396.329(1.42)
¹³⁹ La	432.493(12)d	0.1780(18)	0.00388[0.9%]	1596.21(5.84), 487.021(2.79), 815.772(1.430)
¹⁹¹ Ir	432.716(6)	1.85(7)	0.0292(11)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹¹⁵ In	433.723(8)	6.0(4)	0.158(11)	1293.54(131), 1097.30(87.3), 416.86(43.0)
⁵⁹ Co	435.677(17)	0.789(10)	0.0406(5)	229.879(7.18), 277.161(6.77), 555.972(5.76)
¹⁷⁴ Yb	436.173(5)	0.52(6)	0.0091(11)	514.868(9.0), 639.261(1.43), 396.329(1.42)
51 V	436.627(13)	0.397(9)	0.0236(5)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
¹⁴⁹ Sm	439.40(4)	2860(150)	58(3)	333.97(4790), 737.44(597), 505.51(528)
⁷⁶ Se	439.4510(20)	0.319(8)	0.0122(3)	613.724(2.14), 238.9980(2.06), 520.6370(1.260)
¹³³ Cs ¹²⁷ I	442.8430(20)	0.316(12)	0.0072(3)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
169 Tm	442.901(10)d 446.328(3)	0.595(4)	0.0142[51%]	133.6110(1.42), 27.3620(0.43), 58.1100(0.28) 200.(8.72), 149.7180(7.11), 140.(5.96)
⁵⁹ Co	440.328(3) 447.711(19)	1.62(4) 3.41(4)	0.0291(7) 0.1754(21)	200.(8.72), 149.7180(7.11), 140.(5.96) 229.879(7.18), 277.161(6.77), 555.972(5.76)
164 Dy	447.893(7)	17.4(5)	0.324(9)	184.257(146), 538.609(69.2), 496.931(44.9)
133 Cs	450.345(3)	0.99(5)	0.0226(11)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
¹⁵⁹ Tb	451.617(10)	0.21(3)	0.0040(6)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
55 Mn	454.378(21)	0.388(7)	0.0214(4)	846.754(13.10), 1810.72(3.62), 26.560(3.42)
¹³⁸ Ba	454.73(5)	0.0853(22)	0.00188(5)	1435.77(0.308), 627.29(0.294), 818.514(0.212)
¹⁶⁹ Tm	456.0460(10)	1.16(4)	0.0208(7)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹⁷⁶ Lu	457.944(15)	8.3(3)	0.144(5)	150.392(13.8), 138.607(6.79), 208.3660(6.0)
⁹³ Nb	458.467(10)	0.0240(5)	0.000783(16)	99.4070(0.196), 255.9290(0.176), 253.115(0.1320)
¹³⁷ Ba	462.78(4)	0.0660(16)	0.00146(4)	1435.77(0.308), 627.29(0.294), 818.514(0.212)
159 Tb	464.264(17)	0.192(21)	0.0037(4)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
⁵⁸ Ni	464.978(12)	0.843(10)	0.0435(5)	8998.414(1.49), 8533.509(0.721), 6837.50(0.458)
⁶⁵ Cu ¹⁶⁴ Dy	465.14(3) 465.416(6)	0.1350(21) 38.0(10)	0.00644(10) 0.709(19)	278.250(0.893), 7915.62(0.869), 159.281(0.648) 184.257(146), 538.609(69.2), 496.931(44.9)
79 Br	468.980(3)	0.29(3)	0.709(19)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
¹⁰³ Rh	470.40(3)	2.61(7)	0.0769(21)	180.87(22.6), 97.14(19.5), 51.50(16.0)
⁷⁵ As	471.0000(10)	0.203(5)	0.00821(20)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
¹¹⁵ In	471.349(11)	4.3(3)	0.113(8)	1293.54(131), 1097.30(87.3), 416.86(43.0)
²⁰³ Tl	471.90(8)	0.116(3)	0.00172(4)	139.94(0.400), 347.96(0.361), 318.88(0.325)
²³ Na	472.202(9)d	0.478(4)	0.0630[100%]	1368.66(0.530), 2754.13(0.530), 90.9920(0.235)
²³² Th	472.30(10)	0.165(8)	0.00215(10)	583.27(0.279), 566.63(0.19), 968.78(0.132)
⁷⁵ As	473.1540(10)	0.176(5)	0.00712(20)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
¹⁴⁰ Ce	475.04(4)	0.082(7)	0.00177(15)	661.99(0.241), 4766.10(0.113), 4291.08(0.053)
¹⁰¹ Ru	475.0950(20)	0.98(9)	0.029(3)	539.538(1.53), 686.907(0.52), 631.22(0.30)
¹⁶⁴ Dy	477.061(6)	22(7)	0.41(13)	184.257(146), 538.609(69.2), 496.931(44.9)
¹⁶⁴ Dy ¹⁷⁴ Yb	477.08(4) 477.391(5)	15.8(5) 0.75(8)	0.295(9) 0.0131(14)	184.257(146), 538.609(69.2), 496.931(44.9) 514.868(9.0), 639.261(1.43), 396.329(1.42)
$^{10}{ m B}$	477.591(3)	716(25)	201(7)	314.808(9.0), 039.201(1.43), 390.329(1.42)
¹⁸⁷ Os	478.04(4)	0.523(14)	0.00833(22)	186.7180(2.08), 155.10(1.19), 557.978(0.84)
¹⁸⁶ W	479.550(22)d	2.59(5)	0.0427[1.4%]	685.73(3.24), 72.002(1.32), 134.247(1.050)
¹⁷⁴ Yb	482.071(11)	0.23(3)	0.0040(5)	514.868(9.0), 639.261(1.43), 396.329(1.42)
⁵⁹ Co	484.257(16)	0.804(11)	0.0413(6)	229.879(7.18), 277.161(6.77), 555.972(5.76)
¹³⁹ La	487.021(12)d	2.79(4)	0.0609[0.9%]	1596.21(5.84), 815.772(1.430), 328.762(1.250)
85 Rb	487.89(4)	0.0494(12)	0.00175(4)	556.82(0.0913), 555.61(0.0407), 872.94(0.0321)
²⁰³ Tl	488.11(8)	0.096(4)	0.00142(6)	139.94(0.400), 347.96(0.361), 318.88(0.325)
115 In	492.532(11)	3.31(24)	0.087(6)	1293.54(131), 1097.30(87.3), 416.86(43.0)
⁷³ Ge	492.933(5)	0.133(3)	0.00555(13)	595.851(1.100), 867.899(0.553), 608.353(0.250)
139 La	495.620(13)	0.081(3)	0.00177(7)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
109 Ag	495.71(3)	1.080(18)	0.0303(5)	198.72(7.75), 235.62(4.62), 78.91(3.90)
¹⁶⁴ Dy	496.931(5)	44.9(11)	0.837(21)	184.257(146), 538.609(69.2), 185.19(39.1)
⁵⁹ Co ⁹³ Nb	497.269(16) 499.426(8)	2.16(4) 0.0648(18)	0.1111(21) 0.00211(6)	229.879(7.18), 277.161(6.77), 555.972(5.76) 99.4070(0.196), 255.9290(0.176), 253.115(0.1320)
169 Tm	499.426(8)	0.88(3)	0.00211(6)	200.(8.72), 149.7180(7.11), 140.(5.96)
⁷⁰ Ge	499.87(3)	0.162(6)	0.00676(25)	595.851(1.100), 867.899(0.553), 608.353(0.250)
30	.,,,	(0)	2.000,0(20)	2.2.2.2.(1.200), 007.000/(0.000), 000.333(0.200)

$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0	Εγ, $\sigma_{\!\gamma}^{\;z}(E_{\!\gamma})$ for associated intense gamma rays
133 Cs	502.840(3)	0.256(13)	0.0058(3)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
¹⁶⁹ Tm	505.018(7)	0.90(3)	0.0161(5)	200.(8.72), 149.7180(7.11), 140.(5.96)
149 Sm	505.51(3)	528(80)	10.6(16)	333.97(4790), 439.40(2860), 737.44(597)
⁶⁹ Ga ¹³³ Cs	508.19(3) 510.795(3)	0.349(6)	0.0152(3) 0.0351(7)	834.08(1.65), 2201.91(0.52), 629.96(0.490) 176.4040(2.47), 205.615(1.560), 307.015(1.45)
174 Yb	511.784(11)	1.54(3) 0.34(5)	0.0060(9)	514.868(9.0), 639.261(1.43), 396.329(1.42)
105 Pd	511.843(20)	4.00(4)	0.1139(11)	717.356(0.777), 616.192(0.629)
¹⁶⁹ Tm	512.1370(20)	1.96(5)	0.0352(9)	200.(8.72), 149.7180(7.11), 140.(5.96)
⁸¹ Br	512.488(20)	0.21(3)	0.0080(11)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
³¹ P	512.646(19)	0.079(4)	0.0077(4)	78.083(0.059), 636.663(0.0311), 3899.89(0.0294)
¹⁷⁴ Yb	514.868(7)d	9.0(9)	0.158[100%]	639.261(1.43), 396.329(1.42), 5266.3(1.4)
⁴⁰ Ar ³⁵ Cl	516.0(3)	0.167(17)	0.0127(13)	167.30(0.53), 4745.3(0.36), 1186.8(0.34)
93 Nb	517.0730(10) 518.113(12)	7.58(5) 0.0579(13)	0.648(4) 0.00189(4)	1164.8650(8.91), 6110.842(6.59), 1951.1400(6.33) 99.4070(0.196), 255.9290(0.176), 253.115(0.1320)
⁷⁶ Se	518.1810(20)	0.0375(13)	0.00105(3)	613.724(2.14), 238.9980(2.06), 520.6370(1.260)
133 Cs	519.101(4)	0.349(18)	0.0080(4)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
⁴⁰ Ca	519.66(5)	0.0503(13)	0.00380(10)	1942.67(0.352), 6419.59(0.176), 4418.52(0.0708)
⁷⁶ Se	520.6370(20)	1.260(18)	0.0484(7)	613.724(2.14), 238.9980(2.06), 161.9220(0.855)
²³⁸ U	521.849(7)	0.073(3)	0.00093(4)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
²³² Th	522.73(10)	0.102(5)	0.00133(7)	583.27(0.279), 566.63(0.19), 472.30(0.165)
¹⁰⁹ Ag ¹³³ Cs	524.47(3) 525.356(4)	0.804(11)	0.0226(3)	198.72(7.75), 235.62(4.62), 78.91(3.90) 176.4040(2.47), 205.615(1.560), 510.795(1.54)
159 Tb	525.933(17)	0.39(3) 0.22(3)	0.0089(7) 0.0042(6)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
¹⁹⁰ Os	527.60(3)	0.300(10)	0.00478(16)	186.7180(2.08), 155.10(1.19), 557.978(0.84)
¹⁹⁷ Au	529.1650(20)	1.9(10)	0.029(15)	410.(94.), 214.9710(9.0), 247.5730(5.56)
¹³³ Cs	529.504(6)	0.519(23)	0.0118(5)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
²³² Th	531.58(10)	0.0404(23)	0.00053(3)	583.27(0.279), 566.63(0.19), 472.30(0.165)
¹⁷⁴ Yb	534.735(9)	0.50(6)	0.0088(11)	514.868(9.0), 639.261(1.43), 396.329(1.42)
¹⁶⁹ Tm	535.8280(10)	1.18(4)	0.0212(7)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹⁰⁹ Ag ¹²⁹ Xe	536.13(3) 536.17(9)	1.090(16) 1.71(24)	0.0306(5) 0.039(6)	198.72(7.75), 235.62(4.62), 78.91(3.90) 667.79(6.7), 772.72(1.78), 630.29(1.41)
85 Rb	536.48(4)	0.0167(5)	0.000592(18)	556.82(0.0913), 487.89(0.0494), 555.61(0.0407)
139 Ba	537.261(9)d	0.066(3)	0.00084[0.1%]	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
¹⁶⁹ Tm	537.9910(20)	1.00(4)	0.0179(7)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹⁰³ Rh	538.04(3)	2.43(7)	0.0716(21)	180.87(22.6), 97.14(19.5), 51.50(16.0)
164 Dy	538.609(8)	69.2(19)	1.29(4)	184.257(146), 496.931(44.9), 185.19(39.1)
⁸⁵ Rb ¹³³ Cs	538.66(4)	0.0169(5)	0.000599(18)	556.82(0.0913), 487.89(0.0494), 555.61(0.0407)
²³⁸ U	539.180(4) 539.278(12)	0.360(11) 0.099(20)	0.00821(25) 0.00126(25)	176.4040(2.47), 205.615(1.560), 510.795(1.54) 74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
45 Sc	539.437(20)	0.738(19)	0.0497(13)	227.773(7.13), 147.011(6.08), 142.528(4.88)
99 Ru	539.538(15)	1.53(13)	0.046(4)	475.0950(0.98), 686.907(0.52), 631.22(0.30)
²³² Th	539.66(10)	0.061(3)	0.00080(4)	583.27(0.279), 566.63(0.19), 472.30(0.165)
⁷⁹ Br	542.515(6)	0.114(5)	0.00432(19)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
¹⁶⁵ Ho	542.780(4)	1.94(13)	0.0356(24)	136.6650(14.5), 116.8360(8.1), 80.574(3.87)
¹⁴¹ Pr	546.448(15)	0.148(4)	0.00318(9)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
²³² Th ¹³⁹ La	548.23(11) 549.01(3)	0.042(10) 0.098(4)	0.00055(13) 0.00214(9)	583.27(0.279), 566.63(0.19), 472.30(0.165) 1596.21(5.84), 487.021(2.79), 815.772(1.430)
109 Ag	549.56(3)	1.540(24)	0.00214(9)	198.72(7.75), 235.62(4.62), 78.91(3.90)
169 Tm	551.5140(20)	1.29(25)	0.023(5)	200.(8.72), 149.7180(7.11), 140.(5.96)
$^{186}\mathrm{W}$	551.52(4)d	0.603(14)	0.00994[1.4%]	685.73(3.24), 479.550(2.59), 72.002(1.32)
²³⁸ U	552.069(5)	0.207(5)	0.00264(6)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
²³⁸ U	554.054(8)	0.085(20)	0.00108(25)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
⁸¹ Br ⁴⁵ Sc	554.3480(20)d	0.838(8)	0.0318[1.0%]	776.517(0.990), 245.203(0.80), 619.106(0.515)
85 Rb	554.44(4) 555.61(3)d	1.82(4) 0.0407(10)	0.123(3) 0.00144[98%]	227.773(7.13), 147.011(6.08), 142.528(4.88) 556.82(0.0913), 487.89(0.0494), 872.94(0.0321)
103 Rh	555.81(4)d	3.14(9)	0.092[98%]	180.87(22.6), 97.14(19.5), 51.50(16.0)
⁵⁹ Co	555.972(13)	5.76(6)	0.296(3)	229.879(7.18), 277.161(6.77), 447.711(3.41)
85 Rb	556.82(3)	0.0913(24)	0.00324(9)	487.89(0.0494), 555.61(0.0407), 872.94(0.0321)
¹¹⁵ In	556.845(21)	4.7(3)	0.124(8)	1293.54(131), 1097.30(87.3), 416.86(43.0)
²³² Th	556.93(11)	0.040(10)	0.00052(13)	583.27(0.279), 566.63(0.19), 472.30(0.165)
186 W	557.16(5)	0.125(5)	0.00206(8)	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹⁴¹ Pr ¹⁸⁹ Os	557.75(3) 557.078(5)	0.15(4)	0.0032(9)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
113 Cd	557.978(5) 558.32(3)	0.84(3) 1860(30)	0.0134(5) 50.1(8)	186.7180(2.08), 155.10(1.19), 569.344(0.694) 651.19(358), 245.3(274)
75 As	559.10(5)d	2.00(10)	0.081[1.3%]	165.0490(0.996), 86.7880(0.579), 44.4250(0.560)
¹⁴¹ Pr	560.495(23)	0.150(7)	0.00323(15)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
91 Zr	560.958(3)	0.0285(5)	0.000947(17)	934.4640(0.125), 1465.7(0.063), 1205.6(0.042)
²³² Th	561.25(11)	0.033(8)	0.00043(10)	583.27(0.279), 566.63(0.19), 472.30(0.165)
⁹³ Nb	562.328(9)	0.0293(11)	0.00096(4)	99.4070(0.196), 255.9290(0.176), 253.115(0.1320)

$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\!\gamma}^{z}\!(E_{\!\gamma}\!)\text{-barns}$	\mathbf{k}_0	Εγ, $\sigma_{\gamma}^{z}(E_{\gamma})$ for associated intense gamma rays
121 Sb	564.24(4)d	2.700(4)	0.06720[0.5%]	61.4130(0.75), 78.0910(0.48), 121.4970(0.40)
¹⁶⁹ Tm	565.2770(20)	1.58(4)	0.0283(7)	200.(8.72), 149.7180(7.11), 140.(5.96)
²³² Th	566.63(10)	0.19(5)	0.0025(7)	583.27(0.279), 472.30(0.165), 968.78(0.132)
139 La	567.386(12)	0.335(13)	0.0073(3)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
¹⁶⁹ Tm	569.1730(20)	1.02(3)	0.0183(5)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹⁸⁹ Os	569.344(20)	0.694(25)	0.0111(4)	186.7180(2.08), 155.10(1.19), 557.978(0.84)
¹⁴¹ Pr ¹⁴¹ Pr	570.111(14)	0.112(5)	0.00241(11)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
Pr 89 Y	573.28(4) 574.106(20)	0.12(3) 0.174(7)	0.0026(7) 0.00593(24)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426) 6080.171(0.76), 776.613(0.659), 202.53(0.289)
186 W	577.30(5)	0.174(7)	0.00393(24)	685.73(3.24), 479.550(2.59), 72.002(1.32)
²³² Th	578.02(9)	0.105(5)	0.00137(7)	583.27(0.279), 566.63(0.19), 472.30(0.165)
⁷⁶ Se	578.8550(20)	0.243(5)	0.00933(19)	613.724(2.14), 238.9980(2.06), 520.6370(1.260)
⁶³ Cu	579.75(3)	0.0898(15)	0.00428(7)	278.250(0.893), 7915.62(0.869), 159.281(0.648)
$^{238}{ m U}$	580.340(13)	0.043(10)	0.00055(13)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
²³² Th	583.27(9)	0.279(11)	0.00364(14)	566.63(0.19), 472.30(0.165), 968.78(0.132)
¹⁹ F	583.561(16)	0.00356(12)	0.000568(19)	1633.53(0.0096), 656.006(0.00197), 665.207(0.00149)
¹⁶⁴ Dy	583.982(5)	24(7)	0.45(13)	184.257(146), 538.609(69.2), 496.931(44.9)
¹⁴⁹ Sm	584.27(3)	480(70)	9.7(14)	333.97(4790), 439.40(2860), 737.44(597)
⁴⁵ Sc ²⁴ Mg	584.785(13) 585.00(3)	1.77(3)	0.1193(20) 0.00392(14)	227.773(7.13), 147.011(6.08), 142.528(4.88)
²³² Th	586.02(10)	0.0314(11) 0.045(3)	0.00392(14)	3916.84(0.0320), 2828.172(0.0240), 1808.668(0.0180) 583.27(0.279), 566.63(0.19), 472.30(0.165)
¹⁶⁹ Tm	590.2270(20)	1.27(10)	0.0228(18)	200.(8.72), 149.7180(7.11), 140.(5.96)
²³⁸ U	592.309(13)	0.045(12)	0.00057(15)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
²³² Th	593.23(10)	0.043(3)	0.00056(4)	583.27(0.279), 566.63(0.19), 472.30(0.165)
$^{238}{ m U}$	593.612(5)	0.108(24)	0.0014(3)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
¹³⁹ La	595.099(12)	0.103(4)	0.00225(9)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
⁷³ Ge	595.851(5)	1.100(24)	0.0459(10)	867.899(0.553), 608.353(0.250), 175.05(0.164)
⁷¹ Ga	601.21(6)d	0.471(22)	0.0205[2.4%]	834.08(1.65), 2201.91(0.52), 629.96(0.490)
¹²³ Te	602.729(17)	2.46(16)	0.058(4)	722.772(0.52), 645.819(0.263)
¹⁶⁹ Tm ²³² Th	603.9900(20) 605.41(10)	1.40(5) 0.054(4)	0.0251(9) 0.00071(5)	200.(8.72), 149.7180(7.11), 140.(5.96) 583.27(0.279), 566.63(0.19), 472.30(0.165)
²³⁸ U	605.581(9)	0.053(12)	0.00071(3)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
⁷³ Ge	608.353(4)	0.250(6)	0.01043(25)	595.851(1.100), 867.899(0.553), 175.05(0.164)
¹¹⁵ In	608.422(11)	3.51(25)	0.093(7)	1293.54(131), 1097.30(87.3), 416.86(43.0)
⁶³ Cu	608.766(23)	0.270(6)	0.0129(3)	278.250(0.893), 7915.62(0.869), 159.281(0.648)
238 U	612.253(5)	0.23(5)	0.0029(6)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
⁷⁷ Se	613.724(3)	2.14(5)	0.0821(19)	238.9980(2.06), 520.6370(1.260), 161.9220(0.855)
¹⁰⁵ Pd	616.192(20)	0.629(9)	0.0179(3)	511.843(4.00), 717.356(0.777)
⁷⁹ Br	616.3(5)d	0.39(4)	0.0148[62%]	776.517(0.990), 554.3480(0.838), 245.203(0.80)
¹⁴³ Nd ¹⁸⁶ W	618.062(19) 618.26(4)d	13.4(3) 0.746(17)	0.282(6) 0.0123[1.4%]	696.499(33.3), 814.12(4.98), 864.301(4.27) 685.73(3.24), 479.550(2.59), 72.002(1.32)
81 Br	619.106(4)d	0.746(17)	0.0125[1.4%]	776.517(0.990), 554.3480(0.838), 245.203(0.80)
¹⁴¹ Pr	619.29(4)	0.152(4)	0.00327(9)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
²⁰³ Tl	624.46(8)	0.0413(10)	0.000612(15)	139.94(0.400), 347.96(0.361), 318.88(0.325)
$^{186} { m W}$	625.519(10)d	0.129(3)	0.00213[1.4%]	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹³⁸ Ba	627.29(5)	0.294(6)	0.00649(13)	1435.77(0.308), 818.514(0.212), 4095.84(0.155)
45 Sc	627.462(18)	2.23(5)	0.150(3)	227.773(7.13), 147.011(6.08), 142.528(4.88)
¹⁰¹ Ru	627.970(22)	0.176(16)	0.0053(5)	539.538(1.53), 475.0950(0.98), 686.907(0.52)
²³⁸ U ⁷¹ Ga	629.722(9) 629.96(5)d	0.073(20)	0.00093(25)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
141 Pr	630.04(3)	0.490(22) 0.16(6)	0.0213[2.4%] 0.0034(13)	834.08(1.65), 2201.91(0.52), 601.21(0.471) 176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
131 Xe	630.29(4)	1.41(11)	0.0034(13)	667.79(6.7), 772.72(1.78), 536.17(1.71)
¹⁰¹ Ru	631.22(4)	0.30(3)	0.0090(9)	539.538(1.53), 475.0950(0.98), 686.907(0.52)
¹⁶⁷ Er	631.7050(20)	7.9(3)	0.143(5)	184.2850(56), 815.9890(42.5), 198.2440(29.9)
¹⁸⁷ Os	633.14(4)	0.585(16)	0.00932(25)	186.7180(2.08), 155.10(1.19), 557.978(0.84)
¹⁴¹ Pr	633.34(4)	0.113(4)	0.00243(9)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
¹⁸⁷ Os	635.02(5)	0.405(12)	0.00645(19)	186.7180(2.08), 155.10(1.19), 557.978(0.84)
³¹ P	636.663(21)	0.0311(14)	0.00304(14)	512.646(0.079), 78.083(0.059), 3899.89(0.0294)
¹⁶⁹ Tm ¹⁶⁹ Tm	637.900(3)	1.25(4)	0.0224(7)	200.(8.72), 149.7180(7.11), 140.(5.96)
²³⁸ U	637.9020(20) 638.505(12)	1.8(3) 0.041(12)	0.032(5) 0.00052(15)	200.(8.72), 149.7180(7.11), 140.(5.96) 74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
85 Rb	638.93(5)	0.041(12)	0.00032(13)	556.82(0.0913), 487.89(0.0494), 555.61(0.0407)
174 Yb	639.261(9)	1.43(17)	0.025(3)	514.868(9.0), 396.329(1.42), 5266.3(1.4)
¹³³ Cs	645.453(5)	0.248(13)	0.0057(3)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
51 V	645.703(13)	0.769(17)	0.0457(10)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
¹⁴¹ Pr	645.720(24)	0.311(7)	0.00669(15)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
¹²³ Te	645.819(20)	0.263(22)	0.0062(5)	602.729(2.46), 722.772(0.52)
⁶³ Cu	648.80(3)	0.102(3)	0.00486(14)	278.250(0.893), 7915.62(0.869), 159.281(0.648)
¹⁶⁹ Tm	650.3720(10)	1.45(5)	0.0260(9)	200.(8.72), 149.7180(7.11), 140.(5.96)

$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\!\gamma}^{\;z}(E_{\!\gamma}\!)$ -barns	\mathbf{k}_0	Εγ, $\sigma_{\gamma}^{ z}(E_{\gamma})$ for associated intense gamma rays
⁶⁹ Ga	651.09(3)	0.1030(22)	0.00448(10)	834.08(1.65), 2201.91(0.52), 629.96(0.490)
113 Cd	651.19(3)	358(5)	9.65(13)	558.32(1860), 245.3(274)
¹⁹ F	656.006(18)	0.00197(7)	0.000314(11)	1633.53(0.0096), 583.561(0.00356), 665.207(0.00149)
⁷⁵ As ¹⁰⁹ Ag	657.05(5)d 657.50(10)d	0.279(14) 1.86(5)	0.0113[1.3%] 0.0523[99%]	559.10(2.00), 165.0490(0.996), 86.7880(0.579) 198.72(7.75), 235.62(4.62), 78.91(3.90)
139 La	658.278(12)	0.103(4)	0.00225(9)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
169 Tm	658.913(5)	1.56(5)	0.0280(9)	200.(8.72), 149.7180(7.11), 140.(5.96)
⁷⁹ Br	660.561(4)	0.082(3)	0.00311(11)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
¹⁴⁰ Ce	661.99(5)	0.241(15)	0.0052(3)	4766.10(0.113), 475.04(0.082), 4291.08(0.053)
²³² Th	665.11(10)	0.084(4)	0.00110(5)	583.27(0.279), 566.63(0.19), 472.30(0.165)
¹⁹ F	665.207(18)	0.00149(6)	2.38E-04(10)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
¹³¹ Xe ²⁰⁹ Bi	667.79(6) 673.97(5)	6.7(5) 0.0026(4)	0.155(12) 3.8E-05(6)	772.72(1.78), 536.17(1.71), 630.29(1.41) 4171.05(0.0171), 4054.57(0.0137), 319.78(0.0115)
²³² Th	681.81(9)	0.0020(4)	0.00103(5)	583.27(0.279), 566.63(0.19), 472.30(0.165)
186 W	685.73(4)d	3.24(7)	0.0534[1.4%]	479.550(2.59), 72.002(1.32), 134.247(1.050)
⁹⁹ Ru	686.907(17)	0.52(5)	0.0156(15)	539.538(1.53), 475.0950(0.98), 631.22(0.30)
²³⁸ U	689.907(11)	0.043(10)	0.00055(13)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
⁷⁹ Br	689.994(16)	0.083(4)	0.00315(15)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
⁶⁹ Ga ⁵⁶ Fe	690.943(24) 691.960(19)	0.305(4)	0.01326(17)	834.08(1.65), 2201.91(0.52), 629.96(0.490)
121 Sb	692.65(4)d	0.1370(18) 0.146(5)	0.00743(10) 0.00363[0.5%]	7631.136(0.653), 7645.5450(0.549), 352.347(0.273) 564.24(2.700), 61.4130(0.75), 78.0910(0.48)
⁷⁷ Se	694.914(4)	0.443(10)	0.0170(4)	613.724(2.14), 238.9980(2.06), 520.6370(1.260)
¹⁴³ Nd	696.499(10)	33.3(23)	0.70(5)	618.062(13.4), 814.12(4.98), 864.301(4.27)
⁸¹ Br	698.374(5)d	0.337(3)	0.01278[1.0%]	776.517(0.990), 554.3480(0.838), 245.203(0.80)
¹⁴¹ Pr	698.65(3)	0.22(6)	0.0047(13)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
¹⁶⁹ Tm ²³² Th	703.6280(10)	1.32(4)	0.0237(7)	200.(8.72), 149.7180(7.11), 140.(5.96)
139 La	705.17(11) 708.244(14)	0.050(4) 0.134(5)	0.00065(5) 0.00292(11)	583.27(0.279), 566.63(0.19), 472.30(0.165) 1596.21(5.84), 487.021(2.79), 815.772(1.430)
²³² Th	714.23(10)	0.052(3)	0.00292(11)	583.27(0.279), 566.63(0.19), 472.30(0.165)
⁵⁹ Co	717.310(18)	0.845(14)	0.0435(7)	229.879(7.18), 277.161(6.77), 555.972(5.76)
¹⁰⁵ Pd	717.356(22)	0.777(9)	0.0221(3)	511.843(4.00), 616.192(0.629)
¹⁶⁹ Tm	719.2610(20)	1.01(3)	0.0181(5)	200.(8.72), 149.7180(7.11), 140.(5.96)
⁹⁵ Mo	719.528(14)	0.310(10)	0.0098(3)	778.221(2.02), 849.85(0.43), 847.603(0.324)
¹³⁹ La ¹²³ Te	722.538(14) 722.772(25)	0.212(8) 0.52(4)	0.00463(17) 0.0123(10)	1596.21(5.84), 487.021(2.79), 815.772(1.430) 602.729(2.46), 645.819(0.263)
¹⁶⁷ Er	730.6580(10)	11.6(4)	0.0123(10)	184.2850(56), 815.9890(42.5), 198.2440(29.9)
²⁰³ Tl	732.09(9)	0.064(3)	0.00095(4)	139.94(0.400), 347.96(0.361), 318.88(0.325)
²⁰³ T1	737.12(8)	0.118(5)	0.00175(7)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹⁴² Ce	737.43(7)	0.026(3)	0.00056(7)	661.99(0.241), 4766.10(0.113), 475.04(0.082)
149 Sm	737.44(4)	597(8)	12.03(16)	333.97(4790), 439.40(2860), 505.51(528)
¹⁶⁷ Er ¹⁴² Nd	741.3650(20) 742.106(22)	6.72(24) 3.8(4)	0.122(4) 0.080(8)	184.2850(56), 815.9890(42.5), 198.2440(29.9) 696.499(33.3), 618.062(13.4), 814.12(4.98)
141 Pr	742.100(22)	0.146(4)	0.00314(9)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
⁵⁰ Cr	749.09(3)	0.569(9)	0.0332(5)	834.849(1.38), 8884.36(0.78), 7938.46(0.424)
¹³⁹ La	751.637(18)d	0.2650(23)	0.00578[0.9%]	1596.21(5.84), 487.021(2.79), 815.772(1.430)
¹⁷⁶ Lu	761.564(20)	2.60(9)	0.0450(16)	150.392(13.8), 457.944(8.3), 138.607(6.79)
¹⁷⁴ Yb	767.169(9)	0.151(25)	0.0026(4)	514.868(9.0), 639.261(1.43), 396.329(1.42)
³⁹ K ¹³¹ Xe	770.3050(20) 772.72(4)	0.903(12) 1.78(14)	0.0700(9) 0.041(3)	29.8300(1.380), 1158.887(0.1600), 5380.018(0.146) 667.79(6.7), 536.17(1.71), 630.29(1.41)
186 W	772.89(5)d	0.490(10)	0.00808[1.4%]	685.73(3.24), 479.550(2.59), 72.002(1.32)
⁸¹ Br	776.517(3)d	0.990(10)	0.0375[1.0%]	554.3480(0.838), 245.203(0.80), 619.106(0.515)
⁸⁹ Y	776.613(18)	0.659(9)	0.0225(3)	6080.171(0.76), 202.53(0.289), 574.106(0.174)
95 Mo	778.221(10)	2.02(6)	0.0638(19)	849.85(0.43), 847.603(0.324), 719.528(0.310)
157 Gd	780.174(10)	1010(22)	19.5(4)	181.931(7200), 79.5100(4010), 944.174(3090)
¹⁸⁶ W ⁵⁹ Co	782.12(6) 785.628(21)	0.22(3) 2.41(7)	0.0036(5) 0.124(4)	685.73(3.24), 479.550(2.59), 72.002(1.32) 229.879(7.18), 277.161(6.77), 555.972(5.76)
⁷¹ Ga	786.17(16)d	0.160(22)	0.0070[2.4%]	834.08(1.65), 2201.91(0.77), 535.972(3.76)
35 Cl	786.3020(10)	3.420(3)	0.2923(3)	1164.8650(8.91), 517.0730(7.58), 6110.842(6.59)
³⁵ Cl	788.4280(10)	5.42(5)	0.463(4)	1164.8650(8.91), 517.0730(7.58), 6110.842(6.59)
¹⁸³ W	792.059(16)	0.119(6)	0.00196(10)	685.73(3.24), 479.550(2.59), 72.002(1.32)
⁵¹ V	793.546(13)	0.199(5)	0.0118(3)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
²³² Th	797.79(9) 805.79(3)	0.0416(20)	0.00054(3)	583.27(0.279), 566.63(0.19), 472.30(0.165)
⁶⁷ Zn ¹⁷⁴ Yb	805.79(3) 811.427(9)	0.045(3) 0.92(16)	0.00209(14) 0.016(3)	1077.335(0.356), 115.225(0.167), 7863.55(0.1410) 514.868(9.0), 639.261(1.43), 396.329(1.42)
¹⁴³ Nd	814.12(3)	4.98(12)	0.1046(25)	696.499(33.3), 618.062(13.4), 864.301(4.27)
¹³⁹ La	815.772(19)d	1.430(12)	0.0312[0.9%]	1596.21(5.84), 487.021(2.79), 328.762(1.250)
¹⁶⁷ Er	815.9890(20)	42.5(15)	0.77(3)	184.2850(56), 198.2440(29.9), 79.8040(18.2)
186 W	816.13(5)	0.104(4)	0.00171(7)	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹³⁵ Ba	818.514(12)	0.212(4)	0.00468(9)	1435.77(0.308), 627.29(0.294), 4095.84(0.155)

^A Z	Eγ-keV	$\sigma_{\!\gamma}^{\;z}\!(E_{\!\gamma}\!)\text{-barns}$	\mathbf{k}_0	$E\gamma, \sigma_{\gamma}^{z}(E_{\gamma})$ for associated intense gamma rays
115 In	818.70(20)d	17.8(7)	0.470[30%]	1293.54(131), 1097.30(87.3), 416.86(43.0)
¹⁶⁷ Er	821.1680(20)	6.2(3)	0.112(5)	184.2850(56), 815.9890(42.5), 198.2440(29.9)
51 V	823.184(13)	0.320(8)	0.0190(5)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
¹⁷⁴ Yb	825.22(7)	0.154(24)	0.0027(4)	514.868(9.0), 639.261(1.43), 396.329(1.42)
81 Br	827.828(6)d	0.285(3)	0.01081[1.0%]	776.517(0.990), 554.3480(0.838), 245.203(0.80)
²³⁸ U	831.837(19)	0.053(12)	0.00067(15)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
⁷¹ Ga	834.08(3)d	1.65(5)	0.0717[2.4%]	2201.91(0.52), 629.96(0.490), 601.21(0.471)
⁶⁸ Zn	834.77(3)	0.037(5)	0.00171(23)	1077.335(0.356), 115.225(0.167), 7863.55(0.1410)
²³² Th ⁵³ Cr	834.83(14)	0.059(5)	0.00077(7)	583.27(0.279), 566.63(0.19), 472.30(0.165)
93 Nb	834.849(22) 835.72(3)	1.38(3) 0.0376(8)	0.0804(17) 0.00123(3)	8884.36(0.78), 749.09(0.569), 7938.46(0.424) 99.4070(0.196), 255.9290(0.176), 253.115(0.1320)
40 Ar	837.7(3)	0.063(7)	0.00123(3)	167.30(0.53), 4745.3(0.36), 1186.8(0.34)
186 W	840.18(5)	0.143(5)	0.0043(3)	685.73(3.24), 479.550(2.59), 72.002(1.32)
³² S	840.993(13)	0.347(6)	0.0328(6)	5420.574(0.308), 2379.661(0.208), 3220.588(0.117)
51 V	845.948(13)	0.252(7)	0.0150(4)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
55 Mn	846.754(20)d	13.10(4)	0.7226[12%]	1810.72(3.62), 26.560(3.42), 83.884(3.11)
95 Mo	847.603(11)	0.324(9)	0.0102(3)	778.221(2.02), 849.85(0.43), 719.528(0.310)
95 Mo	849.85(3)	0.43(3)	0.0136(10)	778.221(2.02), 847.603(0.324), 719.528(0.310)
⁸⁷ Sr	850.657(12)	0.275(4)	0.00951(14)	1836.067(1.030), 898.055(0.702)
238 U	853.23(4)	0.055(12)	0.00070(15)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
¹⁶⁷ Er	853.4810(10)	7.5(3)	0.136(5)	184.2850(56), 815.9890(42.5), 198.2440(29.9)
⁹ Be	853.630(12)	0.00208(24)	0.00070(8)	6809.61(0.0058), 3367.448(0.00285), 2590.014(0.00191)
¹⁶⁹ Tm	854.337(4)	1.41(4)	0.0253(7)	200.(8.72), 149.7180(7.11), 140.(5.96)
⁶⁴ Zn	855.69(3)	0.066(6)	0.0031(3)	1077.335(0.356), 115.225(0.167), 7863.55(0.1410)
¹⁷¹ Yb	857.621(7)	0.208(25)	0.0036(4)	514.868(9.0), 639.261(1.43), 396.329(1.42)
²³² Th	860.61(13)	0.047(5)	0.00061(7)	583.27(0.279), 566.63(0.19), 472.30(0.165)
¹⁴³ Nd ¹⁴¹ Pr	864.301(10) 864.98(3)	4.27(11) 0.14(3)	0.0897(23) 0.0030(7)	696.499(33.3), 618.062(13.4), 814.12(4.98) 176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
139 La	867.846(20)d	0.14(3)	0.0030(7)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
⁷³ Ge	867.899(5)	0.553(12)	0.0231(5)	595.851(1.100), 608.353(0.250), 175.05(0.164)
²³ Na	869.210(9)	0.1080(13)	0.01424(17)	1368.66(0.530), 2754.13(0.530), 472.202(0.478)
¹⁶ O	870.68(6)	1.77E-04(11)	3.35E-05(21)	2184.42(1.64E-04), 1087.75(1.58E-04), 3272.02(3.53E-05)
¹⁷⁴ Yb	871.695(9)	0.24(4)	0.0042(7)	514.868(9.0), 639.261(1.43), 396.329(1.42)
85 Rb	872.94(4)	0.0321(5)	0.001138(18)	556.82(0.0913), 487.89(0.0494), 555.61(0.0407)
²⁰³ Tl	873.16(8)	0.168(4)	0.00249(6)	139.94(0.400), 347.96(0.361), 318.88(0.325)
²³ Na	874.389(6)	0.0760(11)	0.01002(15)	1368.66(0.530), 2754.13(0.530), 472.202(0.478)
⁵⁸ Ni ⁸³ Kr	877.977(11)	0.236(3)	0.01219(15)	8998.414(1.49), 464.978(0.843), 8533.509(0.721)
¹⁶¹ Dy	881.74(11) 882.27(6)	20.8(3) 18.3(6)	0.752(11) 0.341(11)	1213.42(8.28), 1463.86(7.10), 425.30(2.960) 184.257(146), 538.609(69.2), 496.931(44.9)
⁷⁶ Se	885.8270(20)	0.262(7)	0.0101(3)	613.724(2.14), 238.9980(2.06), 520.6370(1.260)
¹⁸⁶ W	891.59(6)	0.136(5)	0.00224(8)	685.73(3.24), 479.550(2.59), 72.002(1.32)
⁷¹ Ga	894.91(11)d	0.35(3)	0.0152[2.4%]	834.08(1.65), 2201.91(0.52), 629.96(0.490)
¹⁵⁷ Gd	897.502(10)	1200(50)	23.1(10)	181.931(7200), 79.5100(4010), 944.174(3090)
¹⁵⁷ Gd	897.611(10)	1090(50)	21.0(10)	181.931(7200), 79.5100(4010), 944.174(3090)
⁸⁷ Sr	898.055(11)	0.702(10)	0.0243(4)	1836.067(1.030), 850.657(0.275)
¹⁸³ W	903.274(17)	0.115(5)	0.00190(8)	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹⁶⁷ Er	914.9420(10)	6.99(24)	0.127(4)	184.2850(56), 815.9890(42.5), 198.2440(29.9)
139 La	919.550(23)d	0.1630(18)	0.00356[0.9%]	1596.21(5.84), 487.021(2.79), 815.772(1.430)
¹²¹ Sb ¹³⁹ La	921.00(7) 925.189(21)d	0.075(4)	0.00187(10)	564.24(2.700), 61.4130(0.75), 78.0910(0.48) 1506 21(5.84), 487.021(2.70), 815.772(1.420)
91 Zr	934.4640(10)	0.422(4) 0.125(5)	0.00921[0.9%] 0.00415(17)	1596.21(5.84), 487.021(2.79), 815.772(1.430) 1465.7(0.063), 1205.6(0.042), 2042.2(0.032)
²³⁵ U	943.14(7)	0.123(3)	0.00413(17)	74.6640(1.30000), 1263.10(0.042), 2042.2(0.032)
157 Gd	944.174(10)	3090(70)	59.5(13)	181.931(7200), 79.5100(4010), 962.104(2050)
⁵⁹ Co	945.314(17)	0.98(4)	0.0504(21)	229.879(7.18), 277.161(6.77), 555.972(5.76)
²⁰³ Tl	949.88(8)	0.0479(15)	0.000710(22)	139.94(0.400), 347.96(0.361), 318.88(0.325)
⁹³ Nb	957.28(5)	0.0248(7)	0.000809(23)	99.4070(0.196), 255.9290(0.176), 253.115(0.1320)
⁷³ Ge	961.055(7)	0.129(4)	0.00538(17)	595.851(1.100), 867.899(0.553), 608.353(0.250)
157 Gd	962.104(10)	2050(130)	39.5(25)	181.931(7200), 79.5100(4010), 944.174(3090)
¹⁷¹ Yb	964.197(10)	0.229(25)	0.0040(4)	514.868(9.0), 639.261(1.43), 396.329(1.42)
²³² Th ¹¹⁵ Sn	968.78(9) 972.619(17)	0.132(6) 0.0158(5)	0.00172(8) 0.000403(13)	583.27(0.279), 566.63(0.19), 472.30(0.165) 1293.591(0.1340), 1171.28(0.0879), 1229.64(0.0673)
24 Mg	974.66(3)	0.0158(5)	0.000403(13)	3916.84(0.0320), 585.00(0.0314), 2828.172(0.0240)
157 Gd	977.121(10)	1440(21)	27.8(4)	181.931(7200), 79.5100(4010), 944.174(3090)
¹⁸² W	979.871(18)	0.102(10)	0.00168(16)	685.73(3.24), 479.550(2.59), 72.002(1.32)
⁷ Li	980.53(7)	0.00415(13)	0.00181(6)	2032.30(0.0381), 1051.90(0.00414)
²⁷ Al	982.951(10)	0.00902(14)	0.001013(16)	1778.92(0.232), 30.6380(0.0798), 7724.027(0.0493)
¹⁹ F	983.538(20)	0.00116(4)	1.85E-04(6)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
¹⁴¹ Pr ¹⁴¹ Pr	992.00(4)	0.138(10)	0.00297(22)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
Pr	1006.361(22)	0.153(8)	0.00329(17)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)

$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\!\gamma}^{z}(E_{\!\gamma})$ -barns	\mathbf{k}_0	$E\gamma, \sigma_{\gamma}^{~z}(E_{\gamma})$ for associated intense gamma rays				
⁶⁸ Zn	1007.809(25)	0.056(7)	0.0026(3)	1077.335(0.356), 115.225(0.167), 7863.55(0.1410)				
²³² Th	1013.84(11)	0.037(3)	0.00048(4)	583.27(0.279), 566.63(0.19), 472.30(0.165)				
²² Ne ¹⁸² W	1017.00(20) 1026.373(17)	0.0030(5) 0.161(15)	0.00045(8) 0.00265(25)	2035.67(0.0245), 350.72(0.0198), 4374.13(0.01910) 685.73(3.24), 479.550(2.59), 72.002(1.32)				
85 Rb	1026.573(17)	0.101(13)	0.00203(23)	556.82(0.0913), 487.89(0.0494), 555.61(0.0407)				
85 Rb	1032.32(5)	0.0227(4)	0.000805(14)	556.82(0.0913), 487.89(0.0494), 555.61(0.0407)				
¹⁷¹ Yb	1039.150(7)	0.22(3)	0.0039(5)	514.868(9.0), 639.261(1.43), 396.329(1.42)				
81 Br	1044.002(5)d	0.323(3)	0.01225[1.0%]	776.517(0.990), 554.3480(0.838), 245.203(0.80)				
¹³⁸ Ba ⁷¹ Ga	1047.73(6) 1050.69(5)d	0.0319(10) 0.119(13)	0.000704(22)	1435.77(0.308), 627.29(0.294), 818.514(0.212) 834.08(1.65), 2201.91(0.52), 629.96(0.490)				
7 Li	1050.69(5)d	0.00414(12)	0.0052[2.4%] 0.00181(5)	2032.30(0.0381), 980.53(0.00415)				
¹⁹ F	1056.776(17)	0.00095(3)	1.52E-04(5)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)				
³¹ P	1071.217(23)	0.0249(12)	0.00244(12)	512.646(0.079), 78.083(0.059), 636.663(0.0311)				
²⁰ Ne	1071.34(7)	0.0054(4)	0.00081(6)	2035.67(0.0245), 350.72(0.0198), 4374.13(0.01910)				
¹⁷¹ Yb ⁸⁵ Rb	1076.246(6)	0.52(6)	0.0091(11)	514.868(9.0), 639.261(1.43), 396.329(1.42)				
⁶⁷ Zn	1076.64(20)d 1077.335(16)	0.0301(5) 0.356(5)	0.001067[0.08%] 0.01650(23)	556.82(0.0913), 487.89(0.0494), 555.61(0.0407) 115.225(0.167), 7863.55(0.1410), 1883.12(0.0718)				
¹⁶ O	1087.75(6)	1.58E-04(7)	2.99E-05(13)	870.68(1.77E-04), 2184.42(1.64E-04), 3272.02(3.53E-05)				
¹⁷¹ Yb	1093.674(9)	0.24(3)	0.0042(5)	514.868(9.0), 639.261(1.43), 396.329(1.42)				
115 In	1097.30(20)d	87.3(17)	2.30[30%]	1293.54(131), 416.86(43.0), 272.9660(33.1)				
⁷³ Ge	1101.282(6)	0.134(3)	0.00559(13)	595.851(1.100), 867.899(0.553), 608.353(0.250)				
⁹⁶ Zr ¹⁷⁷ Hf	1102.67(6) 1102.824(5)	0.0235(8) 2.96(8)	0.00078(3) 0.0503(14)	934.4640(0.125), 1465.7(0.063), 1205.6(0.042) 213.439(29.3), 214.3410(16.3), 93.182(13.3)				
85 Rb	1102.824(3)	0.0151(3)	0.000535(11)	556.82(0.0913), 487.89(0.0494), 555.61(0.0407)				
157 Gd	1107.612(9)	1830(40)	35.3(8)	181.931(7200), 79.5100(4010), 944.174(3090)				
¹⁴² Ce	1107.66(5)	0.040(3)	0.00087(7)	661.99(0.241), 4766.10(0.113), 475.04(0.082)				
²⁰³ T1	1110.37(8)	0.0413(12)	0.000612(18)	139.94(0.400), 347.96(0.361), 318.88(0.325)				
93 Nb 157 Gd	1118.54(3)	0.022(7)	0.00072(23)	99.4070(0.196), 255.9290(0.176), 253.115(0.1320)				
171 Yb	1119.163(10) 1119.780(8)	1180(30) 0.46(6)	22.7(6) 0.0081(11)	181.931(7200), 79.5100(4010), 944.174(3090) 514.868(9.0), 639.261(1.43), 396.329(1.42)				
²⁰³ Tl	1121.29(7)	0.0600(17)	0.000890(25)	139.94(0.400), 347.96(0.361), 318.88(0.325)				
²⁵ Mg	1129.575(23)	0.00891(25)	0.00111(3)	3916.84(0.0320), 585.00(0.0314), 2828.172(0.0240)				
¹⁴¹ Pr	1150.946(21)	0.141(5)	0.00303(11)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)				
²⁰³ Tl	1155.43(7)	0.0605(17)	0.000897(25)	139.94(0.400), 347.96(0.361), 318.88(0.325)				
³⁹ K ³⁵ Cl	1158.887(10) 1164.8650(10)	0.1600(25) 8.91(4)	0.01240(19) 0.762(3)	29.8300(1.380), 770.3050(0.903), 5380.018(0.146) 517.0730(7.58), 6110.842(6.59), 1951.1400(6.33)				
¹⁷⁷ Hf	1167.072(6)	3.95(10)	0.0671(17)	213.439(29.3), 214.3410(16.3), 93.182(13.3)				
119 Sn	1171.28(6)	0.0879(13)	0.00224(3)	1293.591(0.1340), 1229.64(0.0673), 972.619(0.0158)				
¹⁷⁷ Hf	1174.635(5)	4.8(7)	0.081(12)	213.439(29.3), 214.3410(16.3), 93.182(13.3)				
157 Gd	1183.968(10)	958(60)	18.5(12)	181.931(7200), 79.5100(4010), 944.174(3090)				
¹⁵⁷ Gd ⁴⁰ Ar	1185.988(9) 1186.8(3)	1600(90) 0.34(3)	30.8(17) 0.0258(23)	181.931(7200), 79.5100(4010), 944.174(3090) 167.30(0.53), 4745.3(0.36), 516.0(0.167)				
157 Gd	1187.122(9)	1420(90)	27.4(17)	181.931(7200), 79.5100(4010), 944.174(3090)				
⁷³ Ge	1204.199(6)	0.141(4)	0.00588(17)	595.851(1.100), 867.899(0.553), 608.353(0.250)				
⁹⁰ Zr	1205.6(7)	0.042(5)	0.00140(17)	934.4640(0.125), 1465.7(0.063), 2042.2(0.032)				
93 Nb	1206.26(5)	0.0284(10)	0.00093(3)	99.4070(0.196), 255.9290(0.176), 253.115(0.1320)				
¹⁷⁷ Hf ⁸³ Kr	1207.213(5) 1213.42(12)	3.9(3) 8.28(17)	0.066(5) 0.299(6)	213.439(29.3), 214.3410(16.3), 93.182(13.3) 881.74(20.8), 1463.86(7.10), 425.30(2.960)				
75 As	1215.42(12) 1216.08(5)d	0.155(8)	0.299(0)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)				
¹⁷⁷ Hf	1229.287(8)	4.26(11)	0.0723(19)	213.439(29.3), 214.3410(16.3), 93.182(13.3)				
117 Sn	1229.64(6)	0.0673(13)	0.00172(3)	1293.591(0.1340), 1171.28(0.0879), 972.619(0.0158)				
²⁰³ Tl	1234.69(7)	0.0746(25)	0.00111(4)	139.94(0.400), 347.96(0.361), 318.88(0.325)				
⁵⁶ Fe ⁶⁷ Zn	1260.448(19)	0.0684(11)	0.00371(6)	7631.136(0.653), 7645.5450(0.549), 352.347(0.273) 1077.335(0.356), 115.225(0.167), 7863.55(0.1410)				
135 Ba	1261.15(3) 1261.52(7)	0.0431(10) 0.095(5)	0.00200(5) 0.00210(11)	1435.77(0.308), 627.29(0.294), 818.514(0.212)				
12 C	1261.765(9)	0.00124(3)	0.000313(8)	4945.301(0.00261), 3683.920(0.00122)				
²⁸ Si	1273.349(17)	0.0289(6)	0.00312(7)	3538.966(0.1190), 4933.889(0.1120), 2092.902(0.0331)				
²³⁵ U	1279.01(10)	0.200(10)	0.00255(13)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)				
¹¹⁵ In ¹¹⁵ Sn	1293.54(15)d	131(3)	3.46[30%]	1097.30(87.3), 416.86(43.0), 272.9660(33.1)				
⁷⁶ Se	1293.591(15) 1296.986(7)	0.1340(21) 0.240(7)	0.00342(5) 0.0092(3)	1171.28(0.0879), 1229.64(0.0673), 972.619(0.0158) 613.724(2.14), 238.9980(2.06), 520.6370(1.260)				
85 Rb	1304.48(4)	0.0204(5)	0.0092(3)	556.82(0.0913), 487.89(0.0494), 555.61(0.0407)				
¹⁷³ Yb	1308.53(11)	0.168(19)	0.0029(3)	514.868(9.0), 639.261(1.43), 396.329(1.42)				
⁷⁷ Se	1308.632(5)	0.317(8)	0.0122(3)	613.724(2.14), 238.9980(2.06), 520.6370(1.260)				
¹⁹ F	1309.126(17)	0.00076(3)	1.21E-04(5)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)				
⁸¹ Br ¹³¹ Xe	1317.473(10)d 1317.93(8)	0.314(3) 0.89(7)	0.01191[1.0%] 0.0205(16)	776.517(0.990), 554.3480(0.838), 245.203(0.80) 667.79(6.7), 772.72(1.78), 536.17(1.71)				
⁶⁷ Zn	1340.14(3)	0.89(7)	0.0203(16)	1077.335(0.356), 115.225(0.167), 7863.55(0.1410)				
²³ Na	1368.66(3)d	0.530(8)	0.0699[2.3%]	2754.13(0.530), 472.202(0.478), 90.9920(0.235)				

^A Z	Eγ-keV	$\sigma_{\!\gamma}^{z}(E_{\!\gamma}\!)$ -barns	\mathbf{k}_0	Εγ, $\sigma_{\gamma}^{\ z}(E_{\gamma})$ for associated intense gamma rays
174 Yb	1378.22(7)	0.42(12)	0.0074(21)	514.868(9.0), 639.261(1.43), 396.329(1.42)
⁴⁸ Ti	1381.745(5)	5.18(12)	0.328(8)	6760.084(2.97), 6418.426(1.96), 341.706(1.840)
¹⁹ F ⁹¹ Zr	1387.901(20)	0.00082(3)	1.31E-04(5)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
51 V	1405.159(3) 1434.10(3)d	0.0301(10) 4.81(10)	0.00100(3) 0.286[91%]	934.4640(0.125), 1465.7(0.063), 1205.6(0.042) 125.082(1.61), 6517.282(0.78), 645.703(0.769)
137 Ba	1434.10(3)d 1435.77(4)	0.308(7)	0.00680(15)	627.29(0.294), 818.514(0.212), 4095.84(0.155)
¹³⁷ Ba	1444.91(5)	0.0801(20)	0.00177(4)	1435.77(0.308), 627.29(0.294), 818.514(0.212)
83 Kr	1463.86(6)	7.10(8)	0.257(3)	881.74(20.8), 1213.42(8.28), 425.30(2.960)
⁷¹ Ga	1464.00(7)d	0.0609(19)	0.00265[2.4%]	834.08(1.65), 2201.91(0.52), 629.96(0.490)
⁹⁰ Zr	1465.7(7)	0.063(15)	0.0021(5)	934.4640(0.125), 1205.6(0.042), 2042.2(0.032)
81 Br	1474.880(10)d	0.1930(20)	0.00732[1.0%]	776.517(0.990), 554.3480(0.838), 245.203(0.80)
²⁰³ Tl	1478.77(8)	0.0544(22)	0.00081(3)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹¹⁵ In ⁵⁹ Co	1507.40(20)d 1515.720(25)	15.5(5) 1.740(25)	0.409[30%] 0.0895(13)	1293.54(131), 1097.30(87.3), 416.86(43.0) 229.879(7.18), 277.161(6.77), 555.972(5.76)
171 Yb	1513.720(23)	0.193(24)	0.0034(4)	514.868(9.0), 639.261(1.43), 396.329(1.42)
51 V	1558.843(18)	0.323(8)	0.0192(5)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
¹⁹⁹ Hg	1570.273(12)	29.6(7)	0.447(11)	367.947(251), 5967.02(62.5), 1693.296(56.2)
¹⁴¹ Pr	1575.6(5)d	0.426(12)	0.0092[1.8%]	176.8630(1.06), 140.9050(0.479), 5666.170(0.379)
⁴⁸ Ti	1585.941(5)	0.624(8)	0.0395(5)	1381.745(5.18), 6760.084(2.97), 6418.426(1.96)
139 La	1596.21(4)d	5.84(9)	0.1274[0.9%]	487.021(2.79), 815.772(1.430), 328.762(1.250)
⁷¹ Ga	1596.68(8)d	0.0732(16)	0.00318[2.4%]	834.08(1.65), 2201.91(0.52), 629.96(0.490)
³⁵ Cl ⁵⁶ Fe	1601.072(4) 1612.786(18)	1.210(7) 0.1530(22)	0.1034(6) 0.00830(12)	1164.8650(8.91), 517.0730(7.58), 6110.842(6.59) 7631.136(0.653), 7645.5450(0.549), 352.347(0.273)
27 Al	1622.877(18)	0.00989(15)	0.00830(12)	1778.92(0.232), 30.6380(0.0798), 7724.027(0.0493)
¹⁹ F	1633.53(3)d	0.0096(4)	0.00153[100%]	583.561(0.00356), 656.006(0.00197), 665.207(0.00149)
²³ Na	1636.293(21)	0.0250(7)	0.00330(9)	1368.66(0.530), 2754.13(0.530), 472.202(0.478)
¹⁷³ Yb	1638.36(17)	0.22(3)	0.0039(5)	514.868(9.0), 639.261(1.43), 396.329(1.42)
¹⁴ N	1678.281(14)	0.0063(3)	0.00136(7)	5269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155)
¹⁷³ Yb	1679.70(14)	0.161(19)	0.0028(3)	514.868(9.0), 639.261(1.43), 396.329(1.42)
¹⁹⁹ Hg ⁵⁶ Fe	1693.296(11) 1725.288(21)	56.2(16)	0.849(24)	367.947(251), 5967.02(62.5), 4739.43(30.1)
²⁰³ Tl	1741.01(8)	0.181(3) 0.0548(25)	0.00982(16) 0.00081(4)	7631.136(0.653), 7645.5450(0.549), 352.347(0.273) 139.94(0.400), 347.96(0.361), 318.88(0.325)
115 In	1753.8(6)d	3.82(12)	0.101[30%]	1293.54(131), 1097.30(87.3), 416.86(43.0)
⁵¹ V	1777.961(19)	0.169(13)	0.0101(8)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
²⁷ Al	1778.92(3)d	0.232(4)	0.0261[95%]	30.6380(0.0798), 7724.027(0.0493), 3033.896(0.0179)
⁵³ Cr	1784.70(4)	0.1760(20)	0.01026(12)	834.849(1.38), 8884.36(0.78), 749.09(0.569)
²⁵ Mg	1808.668(22)	0.0180(5)	0.00224(6)	3916.84(0.0320), 585.00(0.0314), 2828.172(0.0240)
⁵⁵ Mn ⁵⁹ Co	1810.72(4)d 1830.800(25)	3.62(11) 1.700(23)	0.200[12%] 0.0874(12)	846.754(13.10), 26.560(3.42), 83.884(3.11) 229.879(7.18), 277.161(6.77), 555.972(5.76)
87 Sr	1836.067(21)	1.030(18)	0.0356(6)	898.055(0.702), 850.657(0.275)
¹⁹ F	1843.688(20)	0.000600(23)	9.6E-05(4)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
⁷¹ Ga	1861.09(6)d	0.0904(19)	0.00393[2.4%]	834.08(1.65), 2201.91(0.52), 629.96(0.490)
⁹⁰ Zr	1880.4(4)	0.016(4)	0.00053(13)	934.4640(0.125), 1465.7(0.063), 1205.6(0.042)
⁶⁷ Zn	1883.12(3)	0.0718(18)	0.00333(8)	1077.335(0.356), 115.225(0.167), 7863.55(0.1410)
¹⁴ N ⁸⁵ Rb	1884.821(16) 1890.7(4)	0.01470(18) 0.017(4)	0.00318(4) 0.00060(14)	5269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155)
83 Kr	1890.7(4)	2.24(3)	0.0810(11)	556.82(0.0913), 487.89(0.0494), 555.61(0.0407) 881.74(20.8), 1213.42(8.28), 1463.86(7.10)
²⁰ Ne	1931.08(6)	0.00591(22)	0.00089(3)	2035.67(0.0245), 350.72(0.0198), 4374.13(0.01910)
⁴⁰ Ca	1942.67(3)	0.352(7)	0.0266(5)	6419.59(0.176), 4418.52(0.0708), 2001.31(0.0659)
35 Cl	1951.1400(20)	6.33(4)	0.541(3)	1164.8650(8.91), 517.0730(7.58), 6110.842(6.59)
¹⁰² Ru	1959.30(7)	0.210(19)	0.0063(6)	539.538(1.53), 475.0950(0.98), 686.907(0.52)
35 Cl	1959.346(4)	4.10(3)	0.350(3)	1164.8650(8.91), 517.0730(7.58), 6110.842(6.59)
²² Ne ¹⁴ N	1979.89(6) 1999.690(16)	0.00306(17) 0.00323(4)	0.00046(3) 0.000699(9)	2035.67(0.0245), 350.72(0.0198), 4374.13(0.01910) 5269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155)
⁴⁰ Ca	2001.31(3)	0.0659(15)	0.00498(11)	1942.67(0.352), 6419.59(0.176), 4418.52(0.0708)
⁴⁰ Ca	2009.84(3)	0.0409(10)	0.00309(8)	1942.67(0.352), 6419.59(0.176), 4418.52(0.0708)
²³ Na	2025.139(22)	0.0341(8)	0.00450(11)	1368.66(0.530), 2754.13(0.530), 472.202(0.478)
⁷ Li	2032.30(4)	0.0381(8)	0.0166(4)	980.53(0.00415), 1051.90(0.00414)
²⁰ Ne	2035.67(20)	0.0245(25)	0.0037(4)	350.72(0.0198), 4374.13(0.01910), 2793.94(0.00900)
⁹⁰ Zr	2042.2(4)	0.032(8)	0.0011(3)	934.4640(0.125), 1465.7(0.063), 1205.6(0.042)
²⁸ Si ¹¹⁵ In	2092.902(18) 2112.1(4)d	0.0331(6) 24.1(7)	0.00357(7) 0.636[30%]	3538.966(0.1190), 4933.889(0.1120), 1273.349(0.0289) 1293.54(131), 1097.30(87.3), 416.86(43.0)
115 Sn	2112.1(4)0 2112.302(16)	0.0152(5)	0.000388(13)	1293.54(131), 1097.30(87.3), 416.80(43.0) 1293.591(0.1340), 1171.28(0.0879), 1229.64(0.0673)
55 Mn	2112.302(10) 2113.05(4)d	1.91(5)	0.105[12%]	846.754(13.10), 1810.72(3.62), 26.560(3.42)
³¹ P	2114.47(3)	0.0115(5)	0.00113(5)	512.646(0.079), 78.083(0.059), 636.663(0.0311)
³¹ P	2151.52(4)	0.0100(5)	0.00098(5)	512.646(0.079), 78.083(0.059), 636.663(0.0311)
³¹ P	2156.90(4)	0.0128(6)	0.00125(6)	512.646(0.079), 78.083(0.059), 636.663(0.0311)
¹⁶ O ⁷¹ Ga	2184.42(7)	1.64E-04(7)	3.11E-05(13)	870.68(1.77E-04), 1087.75(1.58E-04), 3272.02(3.53E-05)
Ga	2201.91(13)d	0.52(4)	0.0226[2.4%]	834.08(1.65), 629.96(0.490), 601.21(0.471)

$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\gamma}^{z}(E_{\gamma})$ -barns	\mathbf{k}_0	Εγ, $\sigma_{\!\gamma}^{z}(E_{\!\gamma})$ for associated intense gamma rays
²³ Na	2208.40(3)	0.0259(9)	0.00341(12)	1368.66(0.530), 2754.13(0.530), 472.202(0.478)
¹³⁷ Ba	2217.84(8)	0.044(5)	0.00097(11)	1435.77(0.308), 627.29(0.294), 818.514(0.212)
¹ H	2223.24835(9)	0.3326(7)	1.0000(21)	024 040/1 20\ 0004 27/0 70\ 740 00/0 570\
⁵³ Cr ²⁷ Al	2239.04(8) 2282.794(9)	0.186(3) 0.00890(17)	0.01084(17) 0.001000(19)	834.849(1.38), 8884.36(0.78), 749.09(0.569) 1778.92(0.232), 30.6380(0.0798), 7724.027(0.0493)
32 S	2379.661(14)	0.00890(17)	0.001000(19)	840.993(0.347), 5420.574(0.308), 3220.588(0.117)
¹⁷¹ Yb	2401.37(3)	0.20(3)	0.0035(5)	514.868(9.0), 639.261(1.43), 396.329(1.42)
²³ Na	2414.457(21)	0.0237(5)	0.00312(7)	1368.66(0.530), 2754.13(0.530), 472.202(0.478)
¹⁹ F	2431.084(10)	0.000392(24)	6.3E-05(4)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
²⁴ Mg	2438.54(3)	0.00473(19)	0.000590(24)	3916.84(0.0320), 585.00(0.0314), 2828.172(0.0240)
⁷¹ Ga ²⁰⁹ Bi	2491.6(3)d 2505.35(7)	0.17(4) 0.0021(3)	0.0074[2.4%] 3.0E-05(4)	834.08(1.65), 2201.91(0.52), 629.96(0.490) 4171.05(0.0171), 4054.57(0.0137), 319.78(0.0115)
71 Ga	2507.40(12)d	0.0021(3)	0.0122[2.4%]	834.08(1.65), 2201.91(0.52), 629.96(0.490)
²³ Na	2517.81(3)	0.0699(15)	0.00921(20)	1368.66(0.530), 2754.13(0.530), 472.202(0.478)
¹⁴ N	2520.457(17)	0.00441(24)	0.00095(5)	5269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155)
139 La	2521.40(5)d	0.2120(23)	0.00463[0.9%]	1596.21(5.84), 487.021(2.79), 815.772(1.430)
¹⁹ F	2529.212(18)	0.00061(3)	9.7E-05(5)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
⁹⁰ Zr ⁹⁰ Zr	2557.8(8) 2577.3(14)	0.016(4) 0.016(4)	0.00053(13) 0.00053(13)	934.4640(0.125), 1465.7(0.063), 1205.6(0.042) 934.4640(0.125), 1465.7(0.063), 1205.6(0.042)
31 P	2586.00(4)	0.0189(4)	0.00033(13)	512.646(0.079), 78.083(0.059), 636.663(0.0311)
⁹ Be	2590.014(19)	0.00191(15)	0.00064(5)	6809.61(0.0058), 3367.448(0.00285), 853.630(0.00208)
²⁷ Al	2590.193(9)	0.00807(16)	0.000906(18)	1778.92(0.232), 30.6380(0.0798), 7724.027(0.0493)
²³ Na	2752.271(23)	0.0654(12)	0.00862(16)	1368.66(0.530), 2754.13(0.530), 472.202(0.478)
²³ Na	2754.13(6)d	0.530(8)	0.0699[2.3%]	1368.66(0.530), 472.202(0.478), 90.9920(0.235)
⁴⁰ Ar ²⁰ Ne	2771.9(8) 2793.94(5)	0.057(9) 0.00900(11)	0.0043(7) 0.001352(17)	167.30(0.53), 4745.3(0.36), 1186.8(0.34) 2035.67(0.0245), 350.72(0.0198), 4374.13(0.01910)
24 Mg	2828.172(25)	0.00900(11)	0.001332(17)	3916.84(0.0320), 585.00(0.0314), 1808.668(0.0180)
²⁰⁹ Bi	2828.29(7)	0.00179(24)	2.6E-05(4)	4171.05(0.0171), 4054.57(0.0137), 319.78(0.0115)
35 Cl	2863.819(12)	1.820(10)	0.1556(9)	1164.8650(8.91), 517.0730(7.58), 6110.842(6.59)
²⁰ Ne	2895.32(10)	0.00252(7)	0.000378(11)	2035.67(0.0245), 350.72(0.0198), 4374.13(0.01910)
³² S ¹⁹ F	2930.67(3)	0.0832(13)	0.00786(12)	840.993(0.347), 5420.574(0.308), 2379.661(0.208)
²⁷ Al	3014.568(10) 3033.896(6)	0.000405(15) 0.0179(3)	6.46E-05(24) 0.00201(3)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197) 1778.92(0.232), 30.6380(0.0798), 7724.027(0.0493)
71 Ga	3034.6(4)d	0.0179(3)	0.00201(3)	834.08(1.65), 2201.91(0.52), 629.96(0.490)
²⁴ Mg	3054.00(3)	0.0083(3)	0.00103(4)	3916.84(0.0320), 585.00(0.0314), 2828.172(0.0240)
³¹ P	3058.17(4)	0.0110(4)	0.00108(4)	512.646(0.079), 78.083(0.059), 636.663(0.0311)
35 Cl	3061.82(4)	1.130(7)	0.0966(6)	1164.8650(8.91), 517.0730(7.58), 6110.842(6.59)
¹³⁹ La ³² S	3082.979(24) 3220.588(17)	0.140(5)	0.00305(11)	1596.21(5.84), 487.021(2.79), 815.772(1.430) 840.993(0.347), 5420.574(0.308), 2379.661(0.208)
16 O	3272.02(8)	0.117(5) 3.53E-05(23)	0.0111(5) 6.7E-06(4)	870.68(1.77E-04), 2184.42(1.64E-04), 1087.75(1.58E-04)
³¹ P	3273.98(4)	0.0083(3)	0.00081(3)	512.646(0.079), 78.083(0.059), 636.663(0.0311)
$^{24}\mathrm{Mg}$	3301.41(3)	0.00620(24)	0.00077(3)	3916.84(0.0320), 585.00(0.0314), 2828.172(0.0240)
⁹ Be	3367.448(25)	0.00285(22)	0.00096(7)	6809.61(0.0058), 853.630(0.00208), 2590.014(0.00191)
²⁴ Mg ⁹ Be	3413.10(3)	0.00401(16)	0.000500(20)	3916.84(0.0320), 585.00(0.0314), 2828.172(0.0240)
²⁷ Al	3443.406(20) 3465.058(7)	0.00098(7) 0.0146(3)	0.000330(24) 0.00164(3)	6809.61(0.0058), 3367.448(0.00285), 853.630(0.00208) 1778.92(0.232), 30.6380(0.0798), 7724.027(0.0493)
186 W	3469.40(14)	0.103(6)	0.00170(10)	685.73(3.24), 479.550(2.59), 72.002(1.32)
²³² Th	3473.00(8)	0.057(3)	0.00074(4)	583.27(0.279), 566.63(0.19), 472.30(0.165)
⁹⁰ Zr	3475.8(15)	0.019(5)	0.00063(17)	934.4640(0.125), 1465.7(0.063), 1205.6(0.042)
¹⁹ F	3488.064(18)	0.00073(3)	1.16E-04(5)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
³¹ P ²³² Th	3522.59(3) 3530.96(13)	0.0219(8) 0.0397(24)	0.00214(8) 0.00052(3)	512.646(0.079), 78.083(0.059), 636.663(0.0311) 583.27(0.279), 566.63(0.19), 472.30(0.165)
¹⁴ N	3531.981(15)	0.0071(4)	0.00032(3)	5269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155)
²⁸ Si	3538.966(22)	0.1190(20)	0.01284(22)	4933.889(0.1120), 2092.902(0.0331), 1273.349(0.0289)
238 U	3583.10(7)	0.042(3)	0.00053(4)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
²³ Na	3587.460(25)	0.0596(11)	0.00786(15)	1368.66(0.530), 2754.13(0.530), 472.202(0.478)
²⁷ Al ¹⁷⁴ Yb	3591.189(8)	0.01000(21)	0.001123(24)	1778.92(0.232), 30.6380(0.0798), 7724.027(0.0493)
138 Ba	3632.3(10) 3641.12(9)	0.40(10) 0.0562(16)	0.0070(18) 0.00124(4)	514.868(9.0), 639.261(1.43), 396.329(1.42) 1435.77(0.308), 627.29(0.294), 818.514(0.212)
139 La	3665.631(24)	0.0302(10)	0.00124(4)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
¹⁴ N	3677.732(13)	0.0115(6)	0.00249(13)	5269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155)
139 La	3679.641(24)	0.139(5)	0.00303(11)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
¹² C	3683.920(9)	0.00122(3)	0.000308(8)	4945.301(0.00261), 1261.765(0.00124)
⁴⁰ Ar ¹⁷⁴ Yb	3700.6(8) 3714.7(5)	0.065(7) 0.23(6)	0.0049(5) 0.0040(11)	167.30(0.53), 4745.3(0.36), 1186.8(0.34) 514.868(9.0), 639.261(1.43), 396.329(1.42)
¹⁴¹ Pr	3790.37(3)	0.140(6)	0.00301(13)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
²⁵ Mg	3831.480(24)	0.00418(14)	0.000521(17)	3916.84(0.0320), 585.00(0.0314), 2828.172(0.0240)
¹⁷⁴ Yb	3885.0(4)	0.72(17)	0.013(3)	514.868(9.0), 639.261(1.43), 396.329(1.42)
³¹ P	3899.89(3)	0.0294(10)	0.00288(10)	512.646(0.079), 78.083(0.059), 636.663(0.0311)

^A Z	Eγ-keV	$\sigma_{\!\gamma}^{\mathrm{z}}(E_{\!\gamma}\!)$ -barns	\mathbf{k}_0	Ey, $\sigma_{\!\gamma}^{z}(E_{\!\gamma})$ for associated intense gamma rays
²⁴ Mg	3916.84(3)	0.0320(11)	0.00399(14)	585.00(0.0314), 2828.172(0.0240), 1808.668(0.0180)
¹⁷⁴ Yb	3929.3(4)	0.38(9)	0.0067(16)	514.868(9.0), 639.261(1.43), 396.329(1.42)
¹⁹ F	3964.872(20)	0.000435(18)	6.9E-05(3)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
²³ Na	3981.450(25)	0.0677(11)	0.00892(15)	1368.66(0.530), 2754.13(0.530), 472.202(0.478)
90 Zr	3982.3(15)	0.015(4)	0.00050(13)	934.4640(0.125), 1465.7(0.063), 1205.6(0.042)
²⁰⁹ Bi	4054.57(6)	0.0137(18)	2.0E-04(3)	4171.05(0.0171), 319.78(0.0115), 4101.76(0.0089)
²³⁸ U	4060.35(5)	0.186(3)	0.00237(4)	74.6640(1.30000), 106.1230(0.723), 277.5990(0.382)
¹³⁸ Ba ²⁰⁹ Bi	4095.84(9)	0.155(4)	0.00342(9)	1435.77(0.308), 627.29(0.294), 818.514(0.212)
²⁷ Al	4101.76(6)	0.0089(12)	1.29E-04(17)	4171.05(0.0171), 4054.57(0.0137), 319.78(0.0115)
209 Bi	4133.407(7) 4165.36(5)	0.0149(3) 0.00173(24)	0.00167(3) 2.5E-05(4)	1778.92(0.232), 30.6380(0.0798), 7724.027(0.0493) 4171.05(0.0171), 4054.57(0.0137), 319.78(0.0115)
²⁰⁹ Bi	4171.05(9)	0.00173(24)	2.5E-04(3)	4054.57(0.0137), 319.78(0.0115), 4101.76(0.0089)
⁵⁶ Fe	4218.27(5)	0.0171(22)	0.00537(16)	7631.136(0.653), 7645.5450(0.549), 352.347(0.273)
²⁰³ Tl	4225.47(17)	0.045(3)	0.00067(4)	139.94(0.400), 347.96(0.361), 318.88(0.325)
$^{186}\mathrm{W}$	4249.66(7)	0.115(6)	0.00190(10)	685.73(3.24), 479.550(2.59), 72.002(1.32)
²⁰⁹ Bi	4256.65(5)	0.0024(3)	3.5E-05(4)	4171.05(0.0171), 4054.57(0.0137), 319.78(0.0115)
²⁷ Al	4259.534(7)	0.0153(3)	0.00172(3)	1778.92(0.232), 30.6380(0.0798), 7724.027(0.0493)
¹⁴⁰ Ce	4291.08(4)	0.053(4)	0.00115(9)	661.99(0.241), 4766.10(0.113), 475.04(0.082)
¹⁴² Ce	4336.46(8)	0.0251(20)	0.00054(4)	661.99(0.241), 4766.10(0.113), 475.04(0.082)
²⁰ Ne	4374.13(6)	0.01910(22)	0.00287(3)	2035.67(0.0245), 350.72(0.0198), 2793.94(0.00900)
139 La	4389.505(14)	0.255(10)	0.00556(22)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
¹³⁹ La ⁴⁰ Ca	4416.22(3)	0.247(9)	0.00539(20)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
203 Tl	4418.52(5) 4495.74(13)	0.0708(18) 0.043(4)	0.00535(14) 0.00064(6)	1942.67(0.352), 6419.59(0.176), 2001.31(0.0659) 139.94(0.400), 347.96(0.361), 318.88(0.325)
139 La	4502.647(13)	0.164(6)	0.0004(0)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
14 N	4508.731(12)	0.0132(7)	0.00336(15)	5269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155)
²⁰³ Tl	4540.62(15)	0.0413(25)	0.00061(4)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹⁹ F	4556.817(20)	0.000517(23)	8.2E-05(4)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
$^{184}\mathrm{W}$	4573.7(3)	0.104(9)	0.00171(15)	685.73(3.24), 479.550(2.59), 72.002(1.32)
$^{186}\mathrm{W}$	4574.94(8)	0.152(10)	0.00251(16)	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹⁸⁶ W	4626.35(7)	0.124(7)	0.00204(12)	685.73(3.24), 479.550(2.59), 72.002(1.32)
³¹ P	4671.37(3)	0.0194(7)	0.00190(7)	512.646(0.079), 78.083(0.059), 636.663(0.0311)
186 W	4684.40(8)	0.150(7)	0.00247(12)	685.73(3.24), 479.550(2.59), 72.002(1.32)
²⁰³ Tl	4687.58(12)	0.098(4)	0.00145(6)	139.94(0.400), 347.96(0.361), 318.88(0.325)
²⁷ Al ¹⁴¹ Pr	4690.676(5)	0.01090(24)	0.00122(3)	1778.92(0.232), 30.6380(0.0798), 7724.027(0.0493)
²⁰³ Tl	4692.120(22) 4705.83(14)	0.291(10) 0.058(3)	0.00626(22) 0.00086(4)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426) 139.94(0.400), 347.96(0.361), 318.88(0.325)
²⁷ Al	4733.844(11)	0.038(3)	0.00142(3)	1778.92(0.232), 30.6380(0.0798), 7724.027(0.0493)
¹⁹⁹ Hg	4739.43(5)	30.1(8)	0.455(12)	367.947(251), 5967.02(62.5), 1693.296(56.2)
⁴⁰ Ar	4745.3(8)	0.36(4)	0.027(3)	167.30(0.53), 1186.8(0.34), 516.0(0.167)
²⁰³ Tl	4752.24(11)	0.148(5)	0.00219(7)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹⁴⁰ Ce	4766.10(5)	0.113(8)	0.00244(17)	661.99(0.241), 475.04(0.082), 4291.08(0.053)
¹⁴¹ Pr	4801.22(3)	0.140(8)	0.00301(17)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
¹⁷⁴ Yb	4830.2(4)	0.25(6)	0.0044(11)	514.868(9.0), 639.261(1.43), 396.329(1.42)
²⁰³ Tl	4841.40(15)	0.090(4)	0.00133(6)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹³⁹ La	4842.695(7)	0.661(25)	0.0144(6)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
³² S ¹³⁹ La	4869.61(3)	0.0650(13)	0.00614(12)	840.993(0.347), 5420.574(0.308), 2379.661(0.208)
203 Tl	4888.606(7) 4913.57(11)	0.150(6) 0.164(5)	0.00327(13) 0.00243(7)	1596.21(5.84), 487.021(2.79), 815.772(1.430) 139.94(0.400), 347.96(0.361), 318.88(0.325)
²⁸ Si	4933.889(24)	0.1120(23)	0.00243(7)	3538.966(0.1190), 2092.902(0.0331), 1273.349(0.0289)
¹² C	4945.301(3)	0.00261(5)	0.000659(13)	1261.765(0.00124), 3683.920(0.00122)
³⁵ Cl	4979.759(20)	1.230(10)	0.1051(9)	1164.8650(8.91), 517.0730(7.58), 6110.842(6.59)
¹⁷⁴ Yb	5011.0(4)	0.18(4)	0.0032(7)	514.868(9.0), 639.261(1.43), 396.329(1.42)
⁵⁵ Mn	5014.37(7)	0.737(20)	0.0407(11)	846.754(13.10), 1810.72(3.62), 26.560(3.42)
²⁰³ Tl	5014.61(15)	0.058(3)	0.00086(4)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹⁹ F	5033.530(23)	0.00063(3)	1.00E-04(5)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
¹⁴¹ Pr	5096.081(15)	0.208(8)	0.00447(17)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
139 La	5097.726(6)	0.68(3)	0.0148(7)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
93 Nb 139 La	5103.34(7)	0.0232(12)	0.00076(4)	99.4070(0.196), 255.9290(0.176), 253.115(0.1320)
²⁰³ Tl	5126.257(6) 5130.50(23)	0.114(4) 0.058(4)	0.00249(9) 0.00086(6)	1596.21(5.84), 487.021(2.79), 815.772(1.430) 139.94(0.400), 347.96(0.361), 318.88(0.325)
11 141 Pr	5140.72(3)	0.038(4)	0.00579(24)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
164 Dy	5142.29(3)	15.7(10)	0.293(19)	184.257(146), 538.609(69.2), 496.931(44.9)
51 V	5142.363(23)	0.200(6)	0.0119(4)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
¹⁹⁰ Os	5146.63(14)	0.409(20)	0.0065(3)	186.7180(2.08), 155.10(1.19), 557.978(0.84)
¹⁹¹ Ir	5147.51(12)	1.29(6)	0.0203(10)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹³⁹ La	5160.902(6)	0.089(5)	0.00194(11)	1596.21(5.84), 487.021(2.79), 815.772(1.430)
182 W	5164.43(3)	0.19(3)	0.0031(5)	685.73(3.24), 479.550(2.59), 72.002(1.32)
²⁰³ Tl	5180.38(12)	0.141(5)	0.00209(7)	139.94(0.400), 347.96(0.361), 318.88(0.325)

^A Z	E γ -keV	$\sigma_{\!\gamma}^{\;z}(E_{\!\gamma})$ -barns	\mathbf{k}_0	Εγ, $\sigma_{\!\gamma}^{z}(E_{\!\gamma})$ for associated intense gamma rays
55 Mn	5180.89(8)	0.412(13)	0.0227(7)	846.754(13.10), 1810.72(3.62), 26.560(3.42)
⁵⁹ Co	5181.77(7)	0.912(23)	0.0469(12)	229.879(7.18), 277.161(6.77), 555.972(5.76)
⁵¹ V	5210.143(19)	0.244(20)	0.0145(12)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
²⁰³ Tl	5261.48(13)	0.084(4)	0.00125(6)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹⁸⁶ W	5261.68(6)	0.86(4)	0.0142(7)	685.73(3.24), 479.550(2.59), 72.002(1.32)
¹⁷⁴ Yb	5266.3(4)	1.4(6)	0.025(11)	514.868(9.0), 639.261(1.43), 396.329(1.42)
¹⁴ N	5269.159(13)	0.0236(3)	0.00511(7)	5297.821(0.01680), 5533.395(0.0155), 1884.821(0.01470)
¹⁹ F	5279.360(20)	0.000421(20)	6.7E-05(3)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
²⁰³ Tl	5279.86(12)	0.207(6)	0.00307(9)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹⁴ N	5297.821(15)	0.01680(23)	0.00363(5)	5269.159(0.0236), 5533.395(0.0155), 1884.821(0.01470)
¹⁸⁶ W	5320.72(6)	0.605(21)	0.0100(4)	685.73(3.24), 479.550(2.59), 72.002(1.32)
³⁹ K ²⁰³ Tl	5380.018(16)	0.146(4)	0.0113(3)	29.8300(1.380), 770.3050(0.903), 1158.887(0.1600)
³² S	5404.41(12) 5420.574(24)	0.147(5)	0.00218(7)	139.94(0.400), 347.96(0.361), 318.88(0.325) 840.993(0.347), 2379.661(0.208), 3220.588(0.117)
²⁰³ Tl	5451.07(14)	0.308(7) 0.079(3)	0.0291(7) 0.00117(4)	139.94(0.400), 347.96(0.361), 318.88(0.325)
68 Zn	5474.02(10)	0.079(3)	0.00117(4)	1077.335(0.356), 115.225(0.167), 7863.55(0.1410)
93 Nb	5496.24(10)	0.042(3)	0.00193(23)	99.4070(0.196), 255.9290(0.176), 253.115(0.1320)
133 Cs	5505.46(20)	0.333(22)	0.0076(5)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
51 V	5515.813(23)	0.39(4)	0.0232(24)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
⁵⁵ Mn	5527.08(8)	0.788(22)	0.0435(12)	846.754(13.10), 1810.72(3.62), 26.560(3.42)
²⁰³ Tl	5533.35(13)	0.131(5)	0.00194(7)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹⁴ N	5533.395(14)	0.0155(8)	0.00335(17)	5269.159(0.0236), 5297.821(0.01680), 1884.821(0.01470)
⁷⁵ As	5533.94(3)	0.151(7)	0.0061(3)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
¹⁹¹ Ir	5534.73(12)	1.39(6)	0.0219(10)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁹ F	5543.713(10)	0.000407(17)	6.5E-05(3)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
¹⁶⁴ Dy	5557.26(3)	28.7(14)	0.54(3)	184.257(146), 538.609(69.2), 496.931(44.9)
¹⁴ N	5562.057(13)	0.0084(5)	0.00182(11)	5269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155)
¹⁹¹ Ir	5564.54(14)	1.71(8)	0.0270(13)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
133 Cs	5572.00(25)	0.249(20)	0.0057(5)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
⁴⁰ Ar ⁷⁶ Se	5582.4(8)	0.077(8)	0.0058(6)	167.30(0.53), 4745.3(0.36), 1186.8(0.34)
71 Ga	5600.995(21) 5601.75(25)	0.301(14) 0.063(4)	0.0116(5) 0.00274(17)	613.724(2.14), 238.9980(2.06), 520.6370(1.260) 834.08(1.65), 2201.91(0.52), 629.96(0.490)
²⁰³ Tl	5603.28(13)	0.282(10)	0.00274(17)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹⁶⁴ Dy	5607.69(3)	35.9(16)	0.67(3)	184.257(146), 538.609(69.2), 496.931(44.9)
133 Cs	5637.056(17)	0.277(21)	0.0063(5)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
²⁰³ Tl	5641.57(12)	0.316(7)	0.00469(10)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹⁹⁹ Hg	5658.24(4)	27.5(7)	0.415(11)	367.947(251), 5967.02(62.5), 1693.296(56.2)
⁵⁹ Co	5660.93(4)	1.89(6)	0.097(3)	229.879(7.18), 277.161(6.77), 555.972(5.76)
¹⁴¹ Pr	5666.170(6)	0.379(15)	0.0082(3)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
¹⁹¹ Ir	5667.81(3)	2.68(10)	0.0423(16)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁹¹ Ir	5689.06(3)	1.73(7)	0.0273(11)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁹⁷ Au ³⁵ Cl	5710.52(10)	1.27(17)	0.020(3)	410.(94.), 214.9710(9.0), 247.5730(5.56)
193 Ir	5715.244(21) 5728.97(7)	1.820(16)	0.1556(14)	1164.8650(8.91), 517.0730(7.58), 6110.842(6.59)
137 Ba	5730.81(6)	1.15(5) 0.0617(20)	0.0181(8) 0.00136(4)	351.689(10.9), 328.448(9.1), 84.2740(7.7) 1435.77(0.308), 627.29(0.294), 818.514(0.212)
¹⁶⁹ Tm	5731.36(11)	1.17(22)	0.00130(4)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹⁶⁹ Tm	5737.51(11)	1.42(7)	0.0255(13)	200.(8.72), 149.7180(7.11), 140.(5.96)
⁵⁹ Co	5742.53(4)	0.766(23)	0.0394(12)	229.879(7.18), 277.161(6.77), 555.972(5.76)
51 V	5752.064(22)	0.366(24)	0.0218(14)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
¹⁹¹ Ir	5783.01(3)	1.34(6)	0.0211(10)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
¹⁴¹ Pr	5843.026(5)	0.147(6)	0.00316(13)	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)
²⁰³ Tl	5917.48(16)	0.084(4)	0.00125(6)	139.94(0.400), 347.96(0.361), 318.88(0.325)
55 Mn	5920.39(8)	1.06(3)	0.0585(17)	846.754(13.10), 1810.72(3.62), 26.560(3.42)
⁵⁶ Fe	5920.449(21)	0.225(5)	0.0122(3)	7631.136(0.653), 7645.5450(0.549), 352.347(0.273)
¹⁶⁹ Tm ¹⁶⁹ Tm	5941.47(11)	1.51(7)	0.0271(13)	200.(8.72), 149.7180(7.11), 140.(5.96)
¹⁹¹ Ir	5943.09(11) 5958.28(3)	1.03(20) 1.79(8)	0.018(4) 0.0282(13)	200.(8.72), 149.7180(7.11), 140.(5.96) 351.689(10.9), 328.448(9.1), 84.2740(7.7)
199 Hg	5967.02(4)	62.5(15)	0.944(23)	367.947(251), 1693.296(56.2), 4739.43(30.1)
⁵⁹ Co	5975.98(4)	2.9(4)	0.149(21)	229.879(7.18), 277.161(6.77), 555.972(5.76)
¹⁶⁹ Tm	6001.61(11)	0.99(10)	0.0178(18)	200.(8.72), 149.7180(7.11), 140.(5.96)
⁷⁶ Se	6006.973(21)	0.289(20)	0.0111(8)	613.724(2.14), 238.9980(2.06), 520.6370(1.260)
⁷¹ Ga	6007.25(14)	0.069(5)	0.00300(22)	834.08(1.65), 2201.91(0.52), 629.96(0.490)
¹⁹ F	6016.802(16)	0.00094(4)	1.50E-04(6)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
⁵⁶ Fe	6018.532(20)	0.227(5)	0.0123(3)	7631.136(0.653), 7645.5450(0.549), 352.347(0.273)
89 Y	6080.171(22)	0.76(4)	0.0259(14)	776.613(0.659), 202.53(0.289), 574.106(0.174)
¹⁹¹ Ir	6082.48(3)	2.62(11)	0.0413(17)	351.689(10.9), 328.448(9.1), 84.2740(7.7)
³⁵ Cl ⁷¹ Ga	6110.842(18)	6.59(6)	0.563(5)	1164.8650(8.91), 517.0730(7.58), 1951.1400(6.33)
¹⁸² W	6111.72(24) 6144.28(3)	0.055(4) 0.174(11)	0.00239(17) 0.00287(18)	834.08(1.65), 2201.91(0.52), 629.96(0.490) 685.73(3.24), 479.550(2.59), 72.002(1.32)
**	0111.20(3)	··· / (11)	0.0020/(10)	000.75(0.21), 177.000(2.07), 72.002(1.02)

^A Z	Eγ-keV	$\sigma_{\!\gamma}^{z}(E_{\!\gamma}\!)$ -barns	\mathbf{k}_0	Εγ, $\sigma_{\!\gamma}^{ z}(E_{\!\gamma})$ for associated intense gamma rays
²⁰³ Tl	6166.61(14)	0.166(6)	0.00246(9)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹³³ Cs	6175.412(17)	0.252(16)	0.0057(4)	176.4040(2.47), 205.615(1.560), 510.795(1.54)
²⁰³ T1	6183.05(15)	0.081(4)	0.00120(6)	139.94(0.400), 347.96(0.361), 318.88(0.325)
¹⁸² W	6190.78(3)	0.45(4)	0.0074(7)	685.73(3.24), 479.550(2.59), 72.002(1.32)
159 Tb	6218.56(7)	0.190(22)	0.0036(4)	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)
²⁰³ Tl	6222.57(16)	0.065(4)	0.00096(6)	139.94(0.400), 347.96(0.361), 318.88(0.325)
⁹¹ Zr	6295.13(16)	0.0279(20)	0.00093(7)	934.4640(0.125), 1465.7(0.063), 1205.6(0.042)
¹⁴ N	6322.428(12)	0.01450(22)	0.00314(5)	5269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155)
⁷¹ Ga ²⁸ Si	6358.61(14)	0.138(5) 0.0207(6)	0.00600(22)	834.08(1.65), 2201.91(0.52), 629.96(0.490)
169 Tm	6379.801(21) 6387.37(11)	1.48(7)	0.00223(7) 0.0265(13)	3538.966(0.1190), 4933.889(0.1120), 2092.902(0.0331) 200.(8.72), 149.7180(7.11), 140.(5.96)
²³ Na	6395.478(15)	0.1000(20)	0.0203(13)	1368.66(0.530), 2754.13(0.530), 472.202(0.478)
⁴⁸ Ti	6418.426(14)	1.96(6)	0.0132(3)	1381.745(5.18), 6760.084(2.97), 341.706(1.840)
⁴⁰ Ca	6419.59(5)	0.176(5)	0.0133(4)	1942.67(0.352), 4418.52(0.0708), 2001.31(0.0659)
51 V	6464.887(18)	0.43(4)	0.0256(24)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
¹³¹ Xe	6467.09(12)	1.33(19)	0.031(4)	667.79(6.7), 772.72(1.78), 536.17(1.71)
⁵⁹ Co	6485.99(3)	2.32(5)	0.119(3)	229.879(7.18), 277.161(6.77), 555.972(5.76)
²⁰³ Tl	6514.57(15)	0.129(5)	0.00191(7)	139.94(0.400), 347.96(0.361), 318.88(0.325)
⁵¹ V	6517.282(19)	0.78(4)	0.0464(24)	1434.10(4.81), 125.082(1.61), 645.703(0.769)
¹²¹ Sb	6523.52(7)	0.075(3)	0.00187(8)	564.24(2.700), 61.4130(0.75), 78.0910(0.48)
¹⁹ F	6600.175(16)	0.00096(3)	1.53E-04(5)	1633.53(0.0096), 583.561(0.00356), 656.006(0.00197)
⁷⁶ Se	6600.690(21)	0.623(20)	0.0239(8)	613.724(2.14), 238.9980(2.06), 520.6370(1.260)
35 Cl	6619.615(19)	2.530(23)	0.2163(20)	1164.8650(8.91), 517.0730(7.58), 6110.842(6.59)
35 Cl	6627.821(18)	1.470(16)	0.1257(14)	1164.8650(8.91), 517.0730(7.58), 6110.842(6.59)
⁵³ Cr	6645.61(8)	0.183(13)	0.0107(8)	834.849(1.38), 8884.36(0.78), 749.09(0.569)
⁵⁹ Co ¹⁵⁷ Gd	6706.01(3)	3.02(6)	0.155(3)	229.879(7.18), 277.161(6.77), 555.972(5.76)
⁴⁸ Ti	6750.11(5) 6760.084(14)	965(30) 2.97(9)	18.6(6) 0.188(6)	181.931(7200), 79.5100(4010), 944.174(3090) 1381.745(5.18), 6418.426(1.96), 341.706(1.840)
55 Mn	6783.74(12)	0.378(17)	0.0209(9)	846.754(13.10), 1810.72(3.62), 26.560(3.42)
31 P	6785.504(24)	0.0267(15)	0.00261(15)	512.646(0.079), 78.083(0.059), 636.663(0.0311)
⁷⁵ As	6808.872(8)	0.160(8)	0.0065(3)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
⁹ Be	6809.61(3)	0.0058(5)	0.00195(17)	3367.448(0.00285), 853.630(0.00208), 2590.014(0.00191)
⁷⁵ As	6810.898(8)	0.56(3)	0.0227(12)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
⁶² Ni	6837.50(3)	0.458(8)	0.0236(4)	8998.414(1.49), 464.978(0.843), 8533.509(0.721)
45 Sc	6839.09(4)	0.95(4)	0.064(3)	227.773(7.13), 147.011(6.08), 142.528(4.88)
⁴⁵ Sc	6840.34(4)	0.76(11)	0.051(7)	227.773(7.13), 147.011(6.08), 142.528(4.88)
⁵¹ V ⁵⁹ Co	6874.157(19)	0.49(6)	0.029(4)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
66 Zn	6877.16(3) 6958.8(3)	3.02(6) 0.043(3)	0.155(3) 0.00199(14)	229.879(7.18), 277.161(6.77), 555.972(5.76) 1077.335(0.356), 115.225(0.167), 7863.55(0.1410)
⁵⁹ Co	6985.41(3)	1.05(13)	0.054(7)	229.879(7.18), 277.161(6.77), 555.972(5.76)
⁶³ Cu	6988.68(5)	0.126(6)	0.0060(3)	278.250(0.893), 7915.62(0.869), 159.281(0.648)
⁷⁵ As	7020.139(8)	0.104(7)	0.0042(3)	559.10(2.00), 165.0490(0.996), 86.7880(0.579)
⁵⁵ Mn	7057.89(9)	1.22(3)	0.0673(17)	846.754(13.10), 1810.72(3.62), 26.560(3.42)
⁵³ Cr	7099.91(6)	0.146(9)	0.0085(5)	834.849(1.38), 8884.36(0.78), 749.09(0.569)
⁵⁵ Mn	7159.63(10)	0.643(24)	0.0355(13)	846.754(13.10), 1810.72(3.62), 26.560(3.42)
51 V	7162.898(15)	0.59(4)	0.0351(24)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
⁶³ Cu	7176.68(5)	0.0925(17)	0.00441(8)	278.250(0.893), 7915.62(0.869), 159.281(0.648)
⁷⁶ Se ²⁸ Si	7179.492(21)	0.261(25)	0.0100(10)	613.724(2.14), 238.9980(2.06), 520.6370(1.260)
⁵⁹ Co	7199.199(23) 7214.42(3)	0.0125(4) 1.38(3)	0.00135(4) 0.0710(15)	3538.966(0.1190), 4933.889(0.1120), 2092.902(0.0331) 229.879(7.18), 277.161(6.77), 555.972(5.76)
55 Mn	7243.52(9)	1.36(3)	0.0710(13)	846.754(13.10), 1810.72(3.62), 26.560(3.42)
⁶³ Cu	7253.01(5)	0.1500(23)	0.00715(11)	278.250(0.893), 7915.62(0.869), 159.281(0.648)
⁵⁵ Mn	7270.14(12)	0.362(15)	0.0200(8)	846.754(13.10), 1810.72(3.62), 26.560(3.42)
⁵⁶ Fe	7278.838(10)	0.137(4)	0.00743(22)	7631.136(0.653), 7645.5450(0.549), 352.347(0.273)
¹⁴ N	7298.983(17)	0.00746(12)	0.00161(3)	5269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155)
⁶³ Cu	7306.93(4)	0.321(17)	0.0153(8)	278.250(0.893), 7915.62(0.869), 159.281(0.648)
51 V	7310.721(15)	0.227(9)	0.0135(5)	1434.10(4.81), 125.082(1.61), 6517.282(0.78)
²⁰⁷ Pb	7367.78(7)	0.137(3)	0.00200(4)	11(4.0(50(0.01), 517.0730(7.50), (110.040(6.50)
³⁵ Cl ⁷⁶ Se	7413.968(18) 7418.467(21)	3.29(5)	0.281(4)	1164.8650(8.91), 517.0730(7.58), 6110.842(6.59) 613.724(2.14), 238.9980(2.06), 520.6370(1.260)
31 P	7418.467(21)	0.350(13) 0.0082(3)	0.0134(5) 0.00080(3)	512.646(0.079), 78.083(0.059), 636.663(0.0311)
⁵⁹ Co	7422.022(23)	1.16(3)	0.0596(15)	229.879(7.18), 277.161(6.77), 555.972(5.76)
⁶⁰ Ni	7536.637(25)	0.190(4)	0.00981(21)	8998.414(1.49), 464.978(0.843), 8533.509(0.721)
⁷⁹ Br	7577.04(8)	0.108(3)	0.00410(11)	776.517(0.990), 554.3480(0.838), 245.203(0.80)
⁸⁵ Rb	7624.07(11)	0.0114(5)	0.000404(18)	556.82(0.0913), 487.89(0.0494), 555.61(0.0407)
⁵⁶ Fe	7631.136(14)	0.653(13)	0.0354(7)	7645.5450(0.549), 352.347(0.273), 6018.532(0.227)
⁶³ Cu	7637.40(4)	0.54(7)	0.026(3)	278.250(0.893), 7915.62(0.869), 159.281(0.648)
⁵⁶ Fe	7645.5450(10)	0.549(11)	0.0298(6)	7631.136(0.653), 352.347(0.273), 6018.532(0.227)
²⁷ Al	7693.397(4)	0.0081(3)	0.00091(3)	1778.92(0.232), 30.6380(0.0798), 7724.027(0.0493)

$^{\mathbf{A}}\mathbf{Z}$	Eγ-keV	$\sigma_{\!\gamma}^{\;z}(E_{\!\gamma}\!)$ -barns	\mathbf{k}_0	$E\gamma, \sigma_{\gamma}^{ z}(E_{\gamma})$ for associated intense gamma rays
²⁷ Al	7724.027(4)	0.0493(15)	0.00554(17)	1778.92(0.232), 30.6380(0.0798), 3033.896(0.0179)
35 Cl	7790.330(18)	2.66(3)	0.227(3)	1164.8650(8.91), 517.0730(7.58), 6110.842(6.59)
⁶⁰ Ni	7819.517(21)	0.336(6)	0.0173(3)	8998.414(1.49), 464.978(0.843), 8533.509(0.721)
64 Zn	7863.55(7)	0.1410(19)	0.00653(9)	1077.335(0.356), 115.225(0.167), 1883.12(0.0718)
⁶³ Cu	7915.62(4)	0.869(20)	0.0414(10)	278.250(0.893), 159.281(0.648), 7637.40(0.54)
⁵² Cr	7938.46(23)	0.424(11)	0.0247(6)	834.849(1.38), 8884.36(0.78), 749.09(0.569)
⁴⁵ Sc	8175.176(21)	1.80(6)	0.121(4)	227.773(7.13), 147.011(6.08), 142.528(4.88)
¹⁴ N	8310.161(19)	0.00330(6)	0.000714(13)	5269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155)
⁵⁰ Cr	8482.80(9)	0.169(7)	0.0098(4)	834.849(1.38), 8884.36(0.78), 749.09(0.569)
⁵⁰ Cr	8510.77(8)	0.233(8)	0.0136(5)	834.849(1.38), 8884.36(0.78), 749.09(0.569)
⁴⁵ Sc	8532.122(20)	0.89(4)	0.060(3)	227.773(7.13), 147.011(6.08), 142.528(4.88)
⁵⁸ Ni	8533.509(17)	0.721(13)	0.0372(7)	8998.414(1.49), 464.978(0.843), 6837.50(0.458)
⁵³ Cr	8884.36(5)	0.78(5)	0.045(3)	834.849(1.38), 749.09(0.569), 7938.46(0.424)
⁵⁸ Ni	8998.414(15)	1.49(3)	0.0769(15)	464.978(0.843), 8533.509(0.721), 6837.50(0.458)
⁵⁴ Fe	9297.68(19)	0.0747(25)	0.00405(14)	7631.136(0.653), 7645.5450(0.549), 352.347(0.273)
⁵³ Cr	9719.06(5)	0.260(18)	0.0152(10)	834.849(1.38), 8884.36(0.78), 749.09(0.569)
⁷⁷ Se	9883.35(3)	0.220(22)	0.0084(8)	613.724(2.14), 238.9980(2.06), 520.6370(1.260)
¹⁴ N	10829.120(12)	0.0113(8)	0.00244(17)	5269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155)
³ He	20520.46	4.2E-11(12)	3.2E-11(9)	

8. PGAA-IAEA Database: CD-ROM

R.B. Firestone, V. Zerkin

Both the database of prompt gamma-rays from slow neutron capture for elemental analysis and the results of this Co-ordinated Research Project are available on the accompanying CD-ROM. The file *index.html* is the Home Page for the CD-ROM, and provides links to the following information.

- a. **CRP** general information, papers and reports relevant to this Coordinated Research Project.
- b. **PGAA-IAEA Database Viewer** interactive program to display and search the PGAA database by isotope, energy, or capture cross section.
- c. Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis this report.
- d. **PGAA Database Files -** Adopted PGAA database and associated files in EXCEL, PDF and TEXT formats. The archival databases by Lone *et al.* [8.1] and by Reedy and Frankle (LANL) [8.2, 8.3] are also available.
- e. **Evaluated Gamma-ray Activation File (EGAF)** Adopted PGAA database in ENSDF format. Data can be viewed with Isotope Explorer 2.2 ENSDF Viewer (see below).
- f. **PGAA Database Evaluation** ENSDF-format versions of the adopted PGAA database, and the Budapest and ENSDF isotopic input files. Decay scheme balance and statistical analysis summaries are provided.
- g. **Isotope Explorer 2.2 ENSDF Viewer -** Windows software for viewing the level scheme drawings and tables provided in ENSDF format. The complete ENSDF database is included, as of December 2002.

The databases and viewers are discussed in greater detail in the following sections.

8.1. PGAA-IAEA Database Viewer

PGAA: Elements and Isotopes																		
Selected Element	1																	2
17-Chlorine (457)	H																	<u>He</u>
Cl-35 (386)	3	4											5	6	7	8	9	10
Cl-37 (71)	<u>Li</u>	<u>Be</u>											<u>B</u>	<u>C</u>	N	<u>O</u>	<u>F</u>	<u>Ne</u>
	11	12											13	14	15	16	17	18
	Na	Mg											<u>Al</u>	<u>Si</u>	<u>P</u>	<u>S</u>	<u>C1</u>	<u>Ar</u>
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	<u>K</u>	<u>Ca</u>	<u>Sc</u>	<u>Ti</u>	<u>V</u>	<u>Cr</u>	<u>Mn</u>	<u>Fe</u>	<u>Co</u>	<u>Ni</u>	<u>Cu</u>	<u>Zn</u>	<u>Ga</u>	<u>Ge</u>	<u>As</u>	<u>Se</u>	<u>Br</u>	<u>Kr</u>
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	<u>Sr</u>	<u>Y</u>	<u>Zr</u>	<u>Nb</u>	<u>Mo</u>	Тс	<u>Ru</u>	<u>Rh</u>	<u>Pd</u>	<u>Ag</u>	<u>Cd</u>	<u>In</u>	<u>Sn</u>	<u>Sb</u>	<u>Te</u>	<u>I</u>	<u>Xe</u>
	55	56	57*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	<u>Cs</u>	<u>Ba</u>	<u>La</u>	<u>Hf</u>	<u>Ta</u>	<u>W</u>	<u>Re</u>	<u>Os</u>	<u>Ir</u>	<u>Pt</u>	<u>Au</u>	<u>Hg</u>	<u>T1</u>	<u>Pb</u>	<u>Bi</u>	Po	At	Rn
	87	88	89**	104	105	106	107	108	109	110	111	112						
	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	*	*	*						
					58	59	60	61	62	63	64	65	66	67	68	69	70	71
		* La	nthani	ides	<u>Ce</u>	<u>Pr</u>	<u>Nd</u>	Pm	<u>Sm</u>	<u>Eu</u>	<u>Gd</u>	<u>Tb</u>	<u>Dy</u>	<u>Ho</u>	<u>Er</u>	<u>Tm</u>	Yb	<u>Lu</u>
					90	91	92	93	94	95	96	97	98	99	100	101	102	103
		**	Actini	ides	<u>Th</u>	Pa	<u>U</u>	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
										_	_						_	

FIG. 8.1 Periodic table of elements and isotopes displayed by the PGAA-IAEA Viewer.

The PGAA-IAEA Database Viewer is provided on this CD-ROM, and was developed by Zerkin (IAEA, NDS). This Viewer is also available on the Internet from the Nuclear Data Service of the International Atomic Energy Agency: http://www-nds.iaea.org, and contains html-pages with large portions of JavaScript and GIF-plots for the gamma emissions of each isotope. Such a design enables the Viewer to be used on many platforms with standard Web-browsers. The Viewer also includes interactive plotting provided with the ZVView program, which can be used as a helper-application. ZVView for Windows and Linux are included in the CD-ROM.

Target: 17-Chlorine
Atomic weight (amu) = 35.4527(9)
Elemental Cross Section (barns) = 33.1(3)

Isotope	Abundance (%)	Isotopic Cross Section (barns)	g-factor	N gammas
C1-35	75.78(4)	43.6(4)	1	386
Cl-37	24.22(4)	0.433(6)	1	71

FIG. 8.2 Isotopic and elemental data, and histograms of gamma-ray energies and intensities displayed with the PGAA-IAEA Viewer.

The Viewer can be opened in standard mode to view the database, or in advanced mode to search the database. Fig. 8.1 shows a periodic table of the PGAA elements, as obtained when the Viewer is opened.

Clicking with the mouse on an element in the periodic table displays the isotopes of that element and the number of prompt gamma rays in the database for each isotope. A new window is also opened, as shown in Fig. 8.2, that displays the isotopic and elemental data and histograms of the gamma-ray energies and intensities.

Clicking on an isotope in the selected element box (square on the left) opens a table of gamma-ray energies, cross sections, prompt or decay type, and k₀ values as shown in Fig. 8.3.

Target: 17-Chlorine-35
Isotopic Abundance(%): 75.78(4)
Isotopic Capture Cross Section (barns): 43.6(4)
Number of Gammas: 386
Westcott g-factor:1
Sigma(b): Partial gamma ray production cross section (barns)
p - Prompt, d - Delayed, S - Stable

#	E(keV)	Sigma(b)	Туре	Half-life	k0
1	85.747(9)	2.3e-3(5)	p	Stable	6.9e-3(15)
2	204.380(8)	3.7e-3(8)	p	Stable	0.0111(24)
3	225.49(7)	1.58e-3(6)	p	Stable	4.74e-3(18)
4	225.89(5)	1.1e-3(5)	p	Stable	3.3e-3(15)
5	236.775(13)	1.8e-3(6)	p	Stable	5.4e-3(18)
6	292.177(8)	0.0893(10)	p	Stable	0.268(3)
7	302.64(4)	2.1e-3(11)	p	Stable	6e-3(3)
8	337.620(11)	0.018(6)	р	Stable	0.054(18)
9	342.314(7)	5.4e-3(9)	p	Stable	0.016(3)
10	358.291(6)	0.0736(20)	p	Stable	0.221(6)
11	369(4)	0.019(5)	р	Stable	0.057(15)
12	371.3(25)	1.4e-3(3)	p	Stable	4.2e-3(9)
13	376.4460(20)	1.3e-3(3)	p	Stable	3.9e-3(9)
14	427.89(10)	9.9e-3(16)	p	Stable	3e-2(5)
15	428.060(8)	3.9e-3(7)	p	Stable	0.0117(21)
16	435.964(13)	0.051(8)	p	Stable	0.153(24)
17	436.222(4)	0.309(20)	p	Stable	0.928(6)
18	455.58(11)	4.3e-3(21)	p	Stable	0.013(6)
19	459.46(8)	9e-3(3)	p	Stable	0.027(9)
20	463.72(4)	2e-3(16)	p	Stable	6e-3(5)
21	464.8(5)	4e-3(3)	р	Stable	0.012(9)
22	465.9(11)	5e-3(15)	p	Stable	0.015(5)
23	466.63(15)	1e-2(5)	p	Stable	3e-2(15)
24	468.359(7)	0.0274(20)	р	Stable	0.082(6)
25	478.4(25)	0.027(15)	p	Stable	8e-2(5)

FIG. 8.3 Display of partial table of gamma-ray energies, cross sections, prompt or decay type, and k_0 value (complete table contains 386 gamma rays).

As advanced retrieval mode is available in which the Viewer displays a gamma-ray search window as shown in Fig. 8.4. There are two options in this mode: retrieve the whole database (about 35 000 lines) or a reduced version (about 1300 gamma lines). The reduced version contains lines that are up to 10% of the most intense gamma-ray emission for each element, but at least one gamma-ray emission for each isotope independent of the intensity.

The result of the search shown in Fig. 8.4 for gamma rays between 3000 and 3002 keV is displayed in a new window as shown in Fig. 8.5. PGAA databases can also be downloaded in text format from the PGAA-IAEA Viewer.

Gamma-Ray Search

Energy (keV) Z A CS From 3000 20 43 1e-4 To 3002 30 144 1e-3 Type: All Prompt Delayed Sort by: Energy Cross Section

Fig. 8.4 Gamma-ray search window: data can be selected from the entire database by energy, atomic number, mass number, delayed or prompt type, and/or cross section, and the results can be sorted by energy or cross section.

PGAA-

n	Energy, keV	Isotope	Sigma,b	Туре	Half-life	k ₀
1	3001.07(5)	C1-35	0.216(7)	р	S	0.649(21)
2	3001.17(13)	La-139	2.2e-3(23)	р	S	6.6e-3(7)
3	3001.55(5)	K-40 1	1.3e-5(3)	р	S	3.9e-5(9)
4	3001.89(15)	Ca-40	7.3e-4(19)	р	S	2.2e-3(6)
5	3001.97(13)	Sc-45	0.043(12)	р	S	0.13(4)

p - prompt, d - delayed, S - stable

FIG.8.5 Display of results of a search for gamma rays with E = 3000 - 3002 keV.

8.2. PGAA data files

The PGAA database and associated files are provided in various formats. Microsoft EXCEL format files include elemental data (atomic weights and elemental cross sections), isotopic data (abundances, cross sections and g-factors), and gamma-ray data (energies, cross sections and k_0 values). Tables of isotopic data, decay parent data, gamma-ray lists, g-factors and references from this document are provided in Adobe Portable Document Format and PostScript. Energies and cross sections for adopted prompt and decay gamma rays, and input ENSDF and Budapest gamma rays are available in text format.

8.3. Evaluated Gamma-ray Activation File (EGAF)

The Evaluated Gamma-ray Activation File (EGAF) contains the recommended PGAA database in ENSDF format. The nuclear structure information associated with these data is also preserved, along with three neutron-capture gamma-ray datasets: adopted PGAA, Budapest PGAA and LANL data [8.2, 8.3]. EGAF can be viewed by means of the Isotope Explorer 2.2 ENSDF Viewer (see below).

8.4. PGAA database evaluation

Selecting an element in the HTML periodic table provides a detailed summary of the evaluation. The atomic abundances and Mughabghab *et al.* cross sections are given for each isotope [8.4-8.6]. All Budapest and ENSDF input databases and the final adopted data are provided in ENSDF format. A summary of the initial matching of the Budapest data to the ENSDF data is given as a text file for determining isotopic assignments. This file contains all of the gamma rays measured at Budapest, and was subsequently edited to select only those gamma rays that could be reliably placed in a know level scheme. Additional text files show the least-squares energy and intensity fits, and decay-scheme intensity balance for all relevant datasets. Summary HTML tables are provided that compare the adopted, ENSDF, Budapest, Reedy and Frankle [8.2, 8.3], and Lone *et al.* [8.1].

The total cross section is presented, as deduced from the total measured gamma-ray intensity feeding the ground state and/or de-exciting the capture state. This parameter can also be deduced in some cases from the gamma-ray intensity of short-lived radioisotopes. If the decay scheme is dominated by continuum or unobserved gamma rays that populate the ground state, this cross section should be considered to be a lower limit. The agreement between Mughabghab [8.4] and the current measurements was excellent in a good many cases. Data that exceed the Mughabghab values may indicate that the adopted values are too low, particularly when the overall intensity balances are correct. The new cross section results should be taken as a guide to the overall quality of the data; we do not recommend that these values be quoted until further analysis can be performed.

8.5. Isotope Explorer 2.2, ENSDF Viewer

Isotope Explorer 2.2 by Firestone and Chu (Lawrence Berkeley National Laboratory, USA) and Ekström (Lund University, Sweden) can be installed on Windows PC computers to display level scheme drawings and tables from the data provided in ENSDF format. A "tour" of Isotope Explorer's capabilities is provided, as shown in Fig. 8.6. Links are available to download and install the program, and a detailed user manual is included. The program is installed by going to the download link, clicking on the self-extracting program archive IE223.EXE (50 MB), choosing "OPEN", and extracting the program and files to the selected directory. The application can be run from this directory or a short cut can be created on the extension .ENS is used for the PGAA ENSDF data. Associating this extension with Isotope Explorer in the PC will allow direct runs when opening the file. The ENSDF format files can also be read with a text editor, and the ENSDF format manual is provided.

When running Isotope Explorer directly from the executable, the user is prompted to select an isotope. The program can be configured to select data from a local or Internet database. A copy of the complete ENSDF file is included on the CD-ROM, which can be downloaded from the installation menu and used as the local database.

Isotope Explorer

"Nuclear data a mouse-click away"

S Y F Chu*, L P Ekström[#] and R B Firestone*

* Isotopes Project, LBNL, Berkeley

** Department of Physics, Lund University

Isotope Explorer is a Windows application to interactively access and display nuclear data and to search for literature references. Isotope Explorer can retrieve data via the Internet or it can use data stored locally.

The program can display level drawings, coincidences, tables, band plots, nuclear charts, chart data and literature references - see figures on the left.

Isotope Explorer supports a **nuclear chart interface**, it can display systematics of nuclear properties by color coding a nuclear chart, and it can perform complex searches and calculations with the built-in **script language**.

FIG. 8.6 Tour of Isotope Explorer 2.2.

The user can open an ENSDF file directly from the Isotope Explorer file menu. Fig. 8.7 shows an example of a level scheme display for the 24 Mg(n, γ) reaction. Only the lowest tier of gamma rays is shown, and the user must scroll through the display to see gamma rays from the capture state. Different displays can be chosen with the Addview menu. A tabular display is shown in Fig. 8.8. Other features including plots and chart generation are described in the Isotope Explorer manual.

FIG. 8.7 Level scheme displayed with Isotope Explorer: gamma rays are displayed in tiers that can be scrolled through.

Gammas for 25Mg; 24Mg(n,) E=thermal

General Comments

SIGMAN=0.051 5 (1981MUZQ)

I Normalization: NORMALIZATION FROM 1992WA06.

E	E _{level}	$J\pi_{i}$	$J\pi_{\vec{t}}$	Mult‡	δ‡	I,†	$T_{1/2}$
389.670 21	974.68 3	3/2+	1/2+	M1+E2	+0.133		11.3 ps 3
585.00 3	585.01 3	1/2 +	5/2+	E2(+M3)	≂0	0.0314 11	3.38 ns 5
611.819	3413.35 3	3/2-	3/2+			1.2×10 ⁻⁵ 12	11 fs 4
836.83 6	2801.549	3/2+	5/2+	M1(+E2)	-0.033	1.58×10 ⁻⁴ 15	28 fs 7
849.99 4	3413.35 3	3/2-	1/2 +			6.6×10 ⁻⁵ 11	11 fs 4
862.963	4276.33 4	1/2-	3/2-	[M1]		0.000410 <i>21</i>	<7 fs
974.663	974.68 3	3/2+	5/2+	M1+E2	+0.362	0.00663 24	11.3 ps 3
989.9910	$1964.69I\theta$	5/2+	3/2+	M1+E2	-0.252	3.9×10 ⁻⁵ 8	0.7 ps 3
1379.649	$1964.69I\theta$	5/2+	1/2 +	E2(+M3)	≂0	8.4×10 ⁻⁵ 11	0.7 ps 3
1448.62 <i>10</i>	3413.35 3	3/2-	5/2+			1.2×10 ⁻⁵ 12	11 fs 4
1474.75 10	4276.33 4	1/2-	3/2+			1.2×10 ⁻⁵ 12	<7 fs
1588.61 4	2563.35 4	1/2 +	3/2+			0.000250 23	10 fs 3
1702.95 15	5116.37 15	1/2-	3/2-	M1+E2	+0.09 7	3.2×10 ⁻⁵ 10	<7 fs
1712.924	4276.33 4	1/2-	1/2 +	E1		0.001187	<7 fs
1964.61 <i>10</i>	$1964.69I\theta$	5/2+	5/2+	M1+E2	-0.601θ	8.1×10 ⁻⁵ 18	0.7 ps 3
1978.25 3	2563.35 4	1/2 +	1/2 +	Ml		0.001115	10 fs 3
2214.06 15	7330.53 4	1/2 +	1/2-	[E1]		0.000303	
2216.429	2801.549	3/2+	1/2 +			1.9×10 ⁻⁴ 3	28 fs 7
2438.54 3	3413.35 3	3/2-	3/2+	E1(+M2)	≂0	0.0047319	11 fs 4
2552.88 15	5116.37 <i>15</i>	1/2-	1/2+	M1(+E2)	-0.199	2.4×10 ⁻⁵ 9	<7 fs
2563.21 4	2563.35 4	1/2 +	5/2+	[E2]		5.5×10 ⁻⁵ 16	10 fs 3
2801.379	2801.549	3/2+	5/2+	M1+E2	-0.648	1.31×10 ⁻⁴ 1€	28 fs 7
2828.172 25	3413.35 3	3/2-	1/2 +	E1(+M2)	≂0	0.0240 8	11 fs 4

FIG. 8.8 Display of gamma-ray data as listed by Isotope Explorer.

REFERENCES

- [8.1] LONE, M.A., LEAVITT, R.A., HARRISON, D.A., Prompt Gamma Rays from Thermal-neutron Capture, At. Data Nucl. Data Tables **26** (1981) 511.
- [8.2] REEDY, R.C., FRANKLE, S.C., Prompt Gamma Rays from Radiative Capture of Thermal Neutrons by Elements from Hydrogen through Zinc, At. Data Nucl. Data Tables **80** (2002) 1.
- [8.3] REEDY, R.C., FRANKLE, S.C., Evaluated Database for Prompt Gamma Rays from Radiative Capture of Thermal Neutrons by Elements from Hydrogen to Zinc, IAEA(NDS)-209, January 2003.
- [8.4] MUGHABGHAB, S.F., Thermal Neutron Capture Cross Sections, Resonance Integrals, and g-factors, INDC(NDS)-440 (2003).
- [8.5] MUGHABGHAB, S.F., DIVADEENAM, M., HOLDEN, N., Neutron Cross Sections, Vol. 1, Part A, Z = 1 60, Academic Press, New York, 1981.
- [8.6] MUGHABGHAB, S.F., Neutron Cross Sections, Vol. 1, Part B, Z = 61 100, Academic Press, New York, 1984.

BUDAPEST REACTOR GAMMA-RAY CROSS-SECTION DATA

Zs. Révay, G.L. Molnár

The following table contains isotopic gamma-ray energy and thermal neutron radiative cross sections measured with the thermal neutron beam at the Budapest Reactor. Only transitions with $\sigma_{\gamma}^{z}(E_{\gamma})$ larger than 5% of the highest cross section for gamma rays \geq 100 keV are listed for each element. The complete set of data is available on the CD-ROM accompanying this document. These data are discussed in greater detail in Chapter 6.

Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns
Hydrogen		870.68(3)	1.75(11)E-4	472.222(13)	0.478(4)
2223.2590(10)	0.3326(7)	1087.71(3)	1.51(9)E-4	869.221(17)	0.1080(13)
Deuterium		2184.38(4)	1.75(11)E-4	874.399(18)	0.0759(11)
6250.2(1)	0.000492(25)	3272.11(7)	3.53(25)E-5	1636.23(4)	0.0250(7)
Lithium		Fluorine		2025.15(5)	0.0338(9)
980.48(4)	0.00410(14)	166.61(3)	0.000405(20)	2208.27(5)	0.0254(7)
1051.81(5)	0.00410(12)	556.29(3)	2.01(10)E-4	2517.59(5)	0.0695(11)
2032.300(20)	0.0387(12)	583.493(22)	0.00352(15)	2752.27(7)	0.0654(12)
7246.7(3)	0.0024(3)	655.942(22)	0.00196(9)	3587.31(7)	0.0596(12)
Beryllium		661.71(4)	2.25(14)E-4	3981.15(8)	0.0678(12)
853.631(11)	0.00165(15)	665.137(23)	0.00150(7)	6395.05(13)	0.1010(20)
2590.014(25)	0.00188(17)	822.64(3)	2.21(12)E-4	Magnesium	
3367.48(4)	0.0029(3)	983.467(25)	0.00117(5)	389.64(3)	0.0058(3)
3443.42(4)	0.00099(9)	1045.96(4)	1.84(12)E-4	584.936(24)	0.0316(15)
6809.58(10)	0.0062(6)	1056.70(3)	0.00096(4)	974.61(3)	0.0067(3)
Boron		1148.02(5)	0.000252(16)	1003.05(3)	0.00165(8)
480(3)	713.0(23)	1309.12(3)	0.00076(4)	1129.42(3)	0.0090(4)
Carbon		1387.82(3)	0.00079(4)	1808.62(6)	0.0181(8)
1261.71(6)	0.00123(3)	1542.47(5)	0.000265(17)	2438.42(9)	0.00459(22)
3684.02(7)	0.00117(4)	1843.68(4)	0.00059(3)	2828.12(10)	0.0239(11)
4945.30(7)	0.00270(8)	2143.20(7)	1.94(14)E-4	2881.52(11)	0.00279(15)
Nitrogen		2427.83(11)	1.87(18)E-4	3053.85(12)	0.0083(4)
1678.24(3)	0.00625(9)	2431.04(7)	0.00041(3)	3301.29(13)	0.0063(3)
1681.17(4)	0.00130(4)	2529.21(6)	0.00065(4)	3413.04(14)	0.00400(20)
1884.85(3)	0.01450(18)	3014.61(7)	0.000407(25)	3561.14(14)	0.00252(13)
1999.69(3)	0.00321(5)	3051.56(10)	0.000301(23)	3831.25(16)	0.00408(20)
2520.45(4)	0.00425(8)	3112.88(9)	2.17(16)E-4	3916.65(16)	0.0314(15)
2830.80(5)	0.00133(4)	3488.15(8)	0.00077(5)	5451.79(23)	0.00205(12)
3531.98(5)	0.00686(12)	3586.23(14)	0.00026(3)	8153.4(4)	0.00271(19)
3677.80(5)	0.01140(15)	3589.42(15)	2.0(3)E-4	Aluminum	
4508.69(6)	0.01290(21)	3964.85(10)	0.00039(3)	831.41(5)	0.00269(7)
5268.98(7)	0.0237(4)	4556.90(11)	0.00044(3)	982.94(4)	0.00902(14)
5297.66(15)	0.0167(3)	5033.53(11)	0.00070(4)	1013.57(4)	0.00555(10)
5533.25(8)	0.01570(25)	5279.42(13)	0.00042(4)	1408.27(4)	0.00640(13)
5561.95(8)	0.00863(15)	5291.46(15)	2.3(3)E-4	1526.12(4)	0.00339(9)
6322.30(9)	0.0149(3)	5543.70(13)	0.00039(4)	1589.59(4)	0.00247(7)
7298.90(10)	0.00772(16)	5616.88(16)	1.76(15)E-4	1622.90(3)	0.00989(15)
8310.17(13)	0.00336(9)	6017.04(11)	0.00094(6)	1927.44(4)	0.00262(7)
9149.24(17)	0.00133(6)	6600.39(11)	0.00099(5)	2108.19(4)	0.00549(11)
10829.10(21)	0.0107(4)	Sodium		2138.82(4)	0.00424(9)
Oxygen		90.979(16)	0.235(3)	2271.77(4)	0.00396(10)

Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns
2282.71(4)	0.00890(17)	5265.46(11)	0.0060(3)	4135.58(9)	0.0563(17)
2577.53(5)	0.00412(10)	5705.41(13)	0.00447(25)	4360.22(9)	0.0776(21)
2590.10(5)	0.00807(16)	6785.30(14)	0.0276(14)	5379.96(12)	0.146(4)
2625.67(5)	0.00264(6)	7422.08(17)	0.0086(5)	5695.45(13)	0.114(3)
2821.31(6)	0.00752(15)	Sulfur	******(*)	5751.76(13)	0.108(3)
3033.75(6)	0.0179(3)	841.013(14)	0.348(6)	Calcium	(2)
3464.87(8)	0.0146(3)	2379.50(4)	0.208(3)	519.56(8)	0.0503(13)
3590.93(9)	0.01000(21)	2753.09(5)	0.0277(5)	1942.68(3)	0.352(7)
3848.95(10)	0.00699(17)	2930.59(5)	0.0832(13)	2001.31(3)	0.0659(15)
3875.35(10)	0.00618(14)	3220.36(6)	0.1240(20)	2009.84(3)	0.0409(10)
4133.20(10)	0.0149(3)	3369.48(6)	0.0272(5)	3609.84(9)	0.0284(9)
4259.35(11)	0.0153(3)	4430.28(9)	0.0263(6)	4418.50(12)	0.0708(18)
4659.81(13)	0.00605(16)	4869.19(9)	0.0652(13)	5899.99(20)	0.0258(12)
4690.48(13)	0.01090(24)	5420.24(10)	0.309(7)	6419.69(21)	0.176(5)
4733.63(14)	0.0126(3)	Chlorine	0.507(1)	Scandium	0.170(3)
4902.89(14)	0.00716(18)	517.077(8)	7.43(7)	52.049(21)	0.87(3)
5133.99(15)	0.00722(23)	786.18(15)	3.6(17)	142.627(16)	4.88(7)
5410.79(16)	0.00481(19)	788.37(21)	4.9(23)	147.114(16)	6.08(9)
5585.38(19)	0.00279(12)	1131.180(15)	0.634(10)	216.475(17)	2.49(4)
6101.54(19)	0.00570(21)	1162.56(5)	0.71(3)	227.860(16)	7.13(11)
6315.91(20)	0.00570(21)	1164.831(12)	8.92(7)	228.806(16)	3.31(5)
7693.1(3)	0.00300(20)	1601.055(14)	1.230(15)	295.343(19)	3.97(11)
7723.78(25)	0.0493(15)	1951.150(15)	6.49(5)	486.054(21)	0.593(14)
Silicon	0.0493(13)	1959.359(16)	4.18(4)	539.466(25)	0.393(14)
	0.0289(6)	2676.11(3)	* *	547.14(3)	0.738(19)
1273.38(3)	0.0289(6)	` '	0.524(10) 1.830(25)	` '	1.82(4)
2092.91(3) 3538.98(5)	* *	2863.76(3) 3061.76(3)		554.555(23)	* *
3660.73(6)	0.1180(20) 0.00705(21)	4979.75(5)	1.110(19) 1.260(24)	584.80(3) 627.477(22)	1.77(3) 2.23(5)
4933.83(7)	0.00703(21)	5517.13(8)	0.578(17)	721.78(3)	0.487(15)
5106.60(10)	0.0065(3)	5715.16(7)	1.86(4)	773.834(22)	0.487(13)
6379.75(11)	0.0003(3)	6110.71(7)	7.37(11)	807.74(3)	0.572(13)
	0.0270(0)	6619.58(8)	2.75(4)	` '	
7199.02(13)	0.0127(4)	6627.87(8)	1.56(3)	860.66(3) 1123.41(5)	0.396(13) 0.380(14)
Phosphorus	0.050(2)			* *	
77.992(23)	0.059(3)	6977.75(10)	0.794(21) 3.57(6)	1166.60(4)	0.386(14)
512.650(18)	0.079(4)	7413.92(10)	` '	1285.31(9)	0.373(19)
636.570(17)	0.0310(14)	7790.28(11)	2.89(6)	1335.04(3)	0.640(22)
1071.154(20)	0.0248(12)	8578.58(15)	0.93(3)	1618.16(7)	0.362(19)
1322.639(25)	0.00526(25)	Potassium 770.325(23)	0.002(12)	1693.35(5) 1857.62(6)	0.465(19) 0.393(17)
1676.81(3)	0.00402(20)	* *	0.903(12) 0.1600(25)		
1941.01(4)	0.00411(20)	1158.880(24)	` ′	4974.54(10)	0.498(24)
2114.32(4)	0.0114(5)	1247.20(3)	0.0784(13)	5267.04(10)	0.38(3)
2151.42(4)	0.0099(5)	1303.42(3)	0.0550(12)	5896.90(17)	0.42(3)
2156.74(4)	0.0127(6)	1613.76(3)	0.1190(20)	6170.24(16)	0.47(5)
2585.82(5)	0.0088(4)	1618.98(3)	0.1300(21)	6317.64(25)	0.58(4)
2885.89(5)	0.0064(3)	2007.71(4)	0.0513(12)	6349.4(3)	0.53(4)
3057.94(6)	0.0109(5)	2017.49(4)	0.0540(12)	6556.82(14)	0.384(24)
3273.87(7)	0.0084(4)	2039.94(4)	0.0519(13)	6839.73(11)	0.95(4)
3522.49(7)	0.0224(11)	2047.33(4)	0.0537(13)	7117.01(18)	0.39(3)
3899.65(8)	0.0301(14)	2073.67(4)	0.1370(24)	7635.42(20)	0.40(3)
4199.70(9)	0.0057(3)	2290.64(5)	0.0582(13)	8132.37(18)	0.48(3)
4364.24(9)	0.0074(4)	2545.92(6)	0.0536(12)	8175.07(10)	1.80(6)
4660.97(10)	0.0057(3)	3055.30(7)	0.0464(12)	8315.75(16)	0.41(3)
4671.21(9)	0.0199(10)	3545.64(9)	0.0746(18)	8532.07(12)	0.89(4)

Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns
Titanium		104.611(23)	1.74(3)	4405.90(7)	0.0453(13)
341.69(3)	1.840(21)	188.521(22)	0.330(6)	4809.70(8)	0.0416(13)
1381.74(3)	5.18(12)	212.039(21)	2.13(3)	5920.25(8)	0.225(5)
1498.65(3)	0.297(5)	215.150(22)	0.168(3)	6018.29(8)	0.227(5)
1585.95(3)	0.624(8)	230.096(24)	0.193(4)	7278.83(10)	0.137(4)
1762.02(3)	0.311(4)	271.198(22)	0.94(6)	7631.05(9)	0.653(13)
4881.24(6)	0.308(7)	314.398(20)	1.460(20)	7645.48(9)	0.549(11)
6418.35(8)	1.96(6)	335.502(24)	0.147(3)	9297.90(21)	0.0747(25)
6555.87(9)	0.334(8)	375.192(22)	0.124(3)	, , , ,	
6760.01(9)	2.97(9)	454.378(21)	0.388(7)	Cobalt	
Vanadium	2 13 ((3))	459.754(23)	0.210(5)	58.90(22)	0.392(4)
125.23(3)	1.61(4)	2043.99(5)	0.243(5)	158.519(12)	1.200(15)
148.09(3)	0.253(6)	2062.81(4)	0.179(5)	229.811(12)	7.18(8)
295.196(25)	0.164(4)	2175.91(5)	0.111(4)	254.371(12)	1.290(16)
419.624(24)	0.104(4)	2294.42(7)	0.111(4)	277.199(11)	6.77(8)
	0.397(9)	* *	0.112(0)	* *	* *
436.765(23)	` '	2330.55(7)	` /	391.221(12)	1.080(14)
645.789(22)	0.769(17)	3267.17(7)	0.188(6)	435.671(12)	0.789(10)
793.614(23)	0.199(5)	3408.61(5)	0.303(10)	447.717(11)	3.41(4)
823.26(3)	0.320(8)	4566.56(10)	0.197(9)	461.064(15)	0.519(9)
846.046(24)	0.252(7)	4689.14(11)	0.120(9)	484.284(11)	0.804(11)
1358.52(3)	0.151(5)	4724.84(8)	0.281(10)	497.264(13)	2.16(4)
1558.89(3)	0.323(8)	4949.21(8)	0.274(10)	555.941(10)	5.76(6)
1778.02(13)	0.169(13)	5014.37(7)	0.737(20)	710.493(16)	0.660(12)
2145.88(7)	0.140(4)	5034.60(15)	0.108(8)	717.302(14)	0.845(14)
4117.10(21)	0.094(4)	5067.87(9)	0.265(12)	726.616(21)	0.448(10)
5142.40(14)	0.200(6)	5180.89(8)	0.412(13)	785.614(17)	2.41(7)
5210.18(16)	0.244(20)	5253.98(12)	0.132(13)	901.148(18)	0.418(9)
5515.90(17)	0.39(4)	5527.08(8)	0.788(22)	930.47(5)	0.408(22)
5752.27(14)	0.366(24)	5761.23(11)	0.200(12)	1215.965(20)	0.520(9)
5892.46(15)	0.126(7)	5920.39(8)	1.06(3)	1507.28(3)	0.463(9)
6465.09(18)	0.43(4)	6104.29(12)	0.213(10)	1515.695(25)	1.740(25)
6517.62(15)	0.78(4)	6783.74(12)	0.378(17)	1830.77(3)	1.700(23)
6874.48(20)	0.49(6)	6929.22(13)	0.248(12)	1852.70(3)	0.456(10)
7163.17(18)	0.59(4)	7057.89(9)	1.22(3)	2032.74(4)	0.393(11)
7294.13(23)	0.089(5)	7159.63(10)	0.643(24)	3748.76(7)	0.415(13)
7310.98(21)	0.227(9)	7243.52(9)	1.36(3)	4906.06(17)	0.43(3)
Chromium	· /	7270.14(12)	0.362(15)	5181.14(12)	0.912(23)
564.14(3)	0.1130(20)	Iron	()	5269.92(12)	0.404(11)
749.10(3)	0.569(9)	122.078(22)	0.096(3)	5602.39(10)	0.434(16)
834.80(3)	1.38(3)	352.332(16)	0.273(3)	5614.04(10)	0.399(15)
1784.41(4)	0.177(3)	366.737(16)	0.0497(7)	5638.55(10)	0.379(15)
1898.90(4)	0.0851(21)	691.914(16)	0.1370(18)	5660.68(16)	1.89(6)
2238.78(4)	0.185(3)	898.14(3)	0.0540(10)	5742.16(9)	0.766(23)
2320.80(4)	0.136(3)	1018.860(21)	0.0507(11)	5925.39(10)	0.643(18)
5617.37(10)	0.132(5)	1260.353(21)	0.0684(11)	5975.60(22)	2.9(4)
6134.19(12)	0.132(3)	1612.77(3)	0.0084(11)	6486.17(13)	2.32(5)
* *	` '	* *	` /	* *	* *
7361.09(14)	0.091(4)	1725.255(24)	0.181(3)	6705.52(10)	3.02(6)
7373.85(15)	0.080(4)	2721.18(5)	0.0384(13)	6876.76(11)	3.02(6)
7937.86(12)	0.424(11)	3267.30(6)	0.0367(13)	6984.9(4)	1.05(13)
8482.84(14)	0.168(7)	3413.14(6)	0.0449(14)	7055.43(12)	0.666(19)
8510.68(14)	0.231(8)	3436.57(13)	0.045(4)	7203.02(13)	0.369(16)
Manganese		3854.17(7)	0.0333(12)	7214.09(12)	1.38(3)
83.884(23)	3.11(5)	4217.93(6)	0.099(3)	7491.29(12)	1.16(3)

Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns
Nickel		1007.806(25)	0.0557(15)	6111.19(16)	0.056(4)
282.940(18)	0.211(3)	1077.336(17)	0.356(5)	6128.73(23)	0.024(3)
339.370(18)	0.1660(21)	1126.10(3)	0.0224(7)	6360.02(13)	0.138(5)
464.972(18)	0.843(10)	1261.17(3)	0.0433(11)	6513.06(18)	0.0325(20)
877.984(19)	0.236(3)	1340.15(3)	0.0431(13)	Germanium	
5817.17(6)	0.1090(24)	1673.46(5)	0.0255(11)	175.05(3)	0.164(4)
6583.78(7)	0.0837(21)	1883.11(4)	0.0726(22)	253.22(3)	0.0609(16)
6837.44(6)	0.458(8)	2210.12(9)	0.0270(13)	325.74(3)	0.0649(18)
7536.56(8)	0.191(4)	4137.28(12)	0.0196(23)	492.989(22)	0.133(3)
7819.55(8)	0.337(6)	5473.74(12)	0.040(4)	499.966(22)	0.158(4)
8120.60(9)	0.133(3)	6867.51(17)	0.0243(17)	595.879(20)	1.100(24)
8533.45(8)	0.721(13)	6910.92(16)	0.0192(14)	608.375(21)	0.250(6)
8998.31(9)	1.49(3)	6958.45(12)	0.042(3)	701.490(24)	0.0642(19)
Copper	,	7069.17(17)	0.0217(14)	708.14(3)	0.0821(23)
88.86(3)	0.0970(17)	7863.54(11)	0.141(5)	867.940(23)	0.553(12)
159.02(3)	0.649(8)	Gallium		961.04(4)	0.129(4)
185.66(3)	0.244(3)	88.97(3)	0.0306(9)	999.78(3)	0.0581(19)
202.69(3)	0.1940(25)	103.25(3)	0.0525(11)	1101.22(3)	0.134(3)
277.993(25)	0.893(12)	112.46(3)	0.155(3)	1105.56(3)	0.0708(20)
343.651(25)	0.215(3)	145.24(3)	0.465(7)	1204.14(4)	0.141(4)
384.27(3)	0.0701(11)	153.90(3)	0.0319(8)	1471.75(5)	0.083(3)
385.37(3)	0.1310(18)	181.60(7)	0.037(4)	Arsenic	31335(2)
464.857(25)	0.1350(21)	184.13(3)	0.1040(21)	74.88(8)	0.12(3)
467.74(3)	0.0673(13)	187.84(3)	0.1080(21)	86.83(3)	0.579(11)
503.45(3)	0.0596(10)	192.09(3)	0.194(3)	116.91(7)	0.107(18)
579.48(3)	0.0899(14)	194.67(3)	0.1060(21)	117.58(10)	0.071(18)
608.52(3)	0.266(5)	198.00(3)	0.1330(24)	120.28(3)	0.402(8)
648.53(3)	0.101(3)	211.08(3)	0.0343(8)	122.26(3)	0.227(5)
662.67(5)	0.067(5)	212.58(3)	0.0582(12)	127.55(3)	0.096(3)
5417.60(9)	0.0564(23)	229.06(3)	0.0377(10)	135.48(3)	0.156(4)
6009.96(18)	0.0453(25)	248.95(4)	0.140(10)	141.24(4)	0.0625(21)
6600.08(13)	0.078(5)	264.02(4)	0.0238(9)	144.60(3)	0.1000(22)
6674.12(13)	0.0534(24)	266.09(4)	0.0361(11)	157.79(8)	0.117(24)
6679.64(11)	0.067(3)	315.95(4)	0.0275(9)	165.09(3)	0.996(16)
6987.99(9)	0.092(3)	318.87(3)	0.0592(14)	178.16(3)	0.0979(23)
7175.93(12)	0.070(4)	374.37(4)	0.0303(10)	187.94(4)	0.090(3)
7252.10(11)	0.114(5)	390.64(3)	0.0477(12)	198.70(3)	0.089(3)
7306.25(9)	0.245(6)	393.26(3)	0.1340(23)	211.18(3)	0.113(3)
7571.23(14)	0.047(3)	411.11(3)	0.0384(11)	221.60(4)	0.0534(25)
7636.75(9)	0.428(9)	508.19(3)	0.349(6)	225.76(3)	0.0803(24)
7915.00(9)	0.869(16)	651.09(3)	0.1030(22)	235.84(3)	0.181(4)
Zinc	0.005(10)	690.943(24)	0.305(4)	263.88(5)	0.18(4)
53.97(3)	0.0225(20)	1140.37(4)	0.0422(16)	281.56(6)	0.085(20)
61.2530(20)	0.055(5)	1203.40(6)	0.0286(14)	297.55(4)	0.055(3)
93.386(22)	0.0343(8)	1311.89(6)	0.0259(12)	300.44(5)	0.051(3)
115.256(23)	0.167(3)	4839.99(13)	0.040(3)	352.41(4)	0.071(3)
153.124(22)	0.0322(6)	5194.5(3)	0.033(3)	357.36(4)	0.074(3)
184.665(20)	0.0321(4)	5233.47(14)	0.0341(20)	363.94(4)	0.059(3)
300.317(25)	0.0202(6)	5334.13(18)	0.0271(18)	402.64(4)	0.061(3)
751.68(3)	0.0307(10)	5340.59(14)	0.0409(22)	426.62(3)	0.100(3)
834.78(3)	0.0372(12)	5488.31(17)	0.0296(19)	471.05(3)	0.203(5)
855.66(8)	0.066(6)	5601.79(15)	0.063(4)	473.21(3)	0.176(5)
000.00(0)	0.000(0)	5001.77(15)	0.005(1)	1,3.21(3)	3.170(3)
909.65(4)	0.0186(8)	6008.11(14)	0.070(5)	550.48(4)	0.071(3)

Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns
6295.2(4)	0.064(6)	244.31(4)	0.45(3)	1105.51(4)	0.0151(3)
6810.11(21)	0.160(8)	245.23(3)	0.80(3)	1304.45(4)	0.0204(5)
6926.22(22)	0.061(4)	271.39(3)	0.462(7)	1389.31(5)	0.00809(21)
7020.0(3)	0.104(7)	274.54(3)	0.158(3)	1666.78(6)	0.00774(23)
Selenium		287.76(3)	0.253(4)	6065.00(25)	0.0047(3)
87.87(3)	0.210(4)	294.32(3)	0.1160(22)	6471.30(25)	0.0049(3)
139.28(3)	0.542(9)	299.95(16)	0.08(8)	6520.7(3)	0.0064(4)
161.99(3)	0.855(22)	315.05(3)	0.460(9)	6832.2(3)	0.0064(4)
200.50(4)	0.240(10)	343.42(4)	0.118(4)	7346.0(3)	0.0059(3)
239.06(3)	2.06(3)	345.09(4)	0.154(4)	7624.1(3)	0.0114(5)
249.85(3)	0.539(9)	366.58(4)	0.233(6)	Strontium	
281.68(3)	0.125(4)	389.10(4)	0.0486(13)	388.526(22)	0.0517(9)
286.62(3)	0.280(6)	432.20(3)	0.0783(14)	585.610(20)	0.0704(14)
297.26(3)	0.338(7)	452.69(6)	0.0679(24)	850.671(17)	0.275(4)
439.52(3)	0.320(8)	459.76(6)	0.0455(19)	898.063(16)	0.703(10)
467.77(4)	0.128(4)	468.91(4)	0.29(3)	1218.548(24)	0.0597(13)
484.45(4)	0.125(4)	512.22(5)	0.21(3)	1717.81(3)	0.0672(15)
518.21(4)	0.274(7)	542.39(4)	0.114(5)	1836.05(3)	1.030(18)
520.68(3)	1.270(19)	549.45(3)	0.0593(14)	3009.34(7)	0.0579(16)
578.85(3)	0.244(5)	565.98(4)	0.0551(12)	6266.82(17)	0.075(3)
613.72(3)	2.14(5)	608.70(4)	0.0438(13)	6660.38(18)	0.064(3)
694.88(3)	0.444(10)	660.38(6)	0.082(3)	7527.58(20)	0.067(3)
755.34(3)	0.186(4)	684.84(5)	0.050(3)	Yttrium	
817.86(4)	0.175(5)	689.87(4)	0.083(4)	202.58(4)	0.291(4)
885.40(4)	0.262(7)	701.97(4)	0.0648(14)	574.13(4)	0.172(4)
888.84(4)	0.180(5)	715.93(4)	0.0420(23)	776.64(3)	0.659(9)
1005.01(4)	0.118(5)	765.75(5)	0.0537(16)	1211.56(4)	0.0447(12)
1240.06(5)	0.109(5)	830.72(4)	0.0413(12)	1371.09(6)	0.0400(12)
1296.92(4)	0.241(7)	860.41(7)	0.0450(19)	4107.52(6)	0.0518(17)
1308.60(4)	0.317(9)	914.25(4)	0.0508(14)	6080.12(7)	0.754(13)
1411.51(9)	0.117(6)	976.41(4)	0.0459(13)	Zirconium	0.70 .(10)
1713.48(6)	0.159(7)	1248.78(12)	0.0527(22)	160.94(10)	0.0111(7)
1995.83(6)	0.123(6)	7030.72(15)	0.0447(22)	266.78(7)	0.0091(5)
4526.6(3)	0.118(8)	7077.34(14)	0.0566(24)	448.13(7)	0.0067(3)
4565.5(3)	0.163(12)	7422.40(14)	0.0495(18)	560.91(6)	0.0285(5)
5025.57(12)	0.141(12)	7576.27(14)	0.108(3)	844.08(7)	0.0095(4)
5600.89(13)	0.287(14)	Rubidium	0.100(3)	912.71(7)	0.0117(5)
5795.65(17)	0.112(15)	113.75(3)	0.00535(14)	934.47(6)	0.125(5)
6006.85(13)	0.269(16)	196.34(3)	0.00964(19)	1102.67(6)	0.0235(8)
6232.01(17)	0.177(17)	421.494(23)	0.0259(5)	1132.10(7)	0.0100(7)
6413.36(15)	0.184(15)	487.89(3)	0.0494(12)	1206.89(8)	0.0417(25)
6600.67(12)	0.613(20)	514.55(3)	0.00653(20)	1405.02(6)	0.0301(10)
7179.51(15)	0.237(19)	536.50(3)	0.0167(5)	1847.78(15)	0.0084(8)
7418.52(14)	0.342(13)	538.66(3)	0.0169(5)	5262.7(4)	0.0064(8)
9188.42(21)	0.128(8)	555.61(3)	0.0407(10)	6294.86(18)	0.0279(20)
9883.30(22)	0.180(10)	556.81(3)	0.0913(24)	Niobium	0.0277(20)
Bromine	0.100(10)	638.82(6)	0.0101(13)	78.63(3)	0.0169(3)
59.57(3)	0.202(5)	691.57(3)	0.00725(18)	99.41(3)	0.196(9)
195.64(3)	0.434(14)	872.93(3)	0.0321(5)	113.39(3)	0.117(3)
211.62(4)	0.0454(21)	881.53(4)	0.00480(17)	161.24(3)	0.0190(5)
211.02(4) 219.37(3)	0.399(14)	913.12(4)	0.00480(17)	253.135(23)	0.0190(3)
219.57(3) 223.64(3)	0.153(5)	1026.35(3)	0.00497(13)	255.153(23)	0.1320(19)
445.0 4 (3)	0.133(3)	1020.33(3)	0.0210(4)	233.331(23)	0.170(3)
234.32(3)	0.205(10)	1032.32(3)	0.0227(4)	293.223(25)	0.0651(16)

	700) 1		7/5		7(5) 1
Eγ-keV	$\sigma_{\gamma}^{z}(E\gamma)$ -barns	Eγ-keV	$\sigma_{\gamma}^{z}(E\gamma)$ -barns	Eγ-keV	σ _γ ^z (Εγ)-barns
309.926(25)	0.0690(17)	686.890(13)	0.52(5)	192.90(3)	2.20(6)
329.19(3)	0.0108(4)	822.610(19)	0.137(12)	195.34(4)	0.50(3)
337.48(4)	0.054(6)	1046.4980(20)	0.103(9)	198.52(3)	7.75(13)
458.47(3)	0.0240(5)	1103.03(3)	0.100(9)	201.31(6)	0.45(3)
499.48(3)	0.0648(18)	1341.52(3)	0.137(12)	206.46(3)	3.58(7)
518.16(3)	0.0579(13)	1362.02(7)	0.111(13)	215.15(4)	1.55(3)
527.64(5)	0.0127(7)	1627.24(3)	0.129(12)	235.62(3)	4.62(7)
562.29(5)	0.0293(11)	1959.33(3)	0.210(19)	236.85(4)	1.95(3)
689.78(4)	0.0164(6)	6627.84(14)	0.093(9)	259.17(3)	1.560(25)
751.69(5)	0.0143(6)	7790.53(16)	0.132(13)	267.08(3)	2.73(6)
755.30(5)	0.0123(6)	Rhodium		270.00(4)	0.565(25)
775.75(4)	0.0158(6)	51.34(4)	14.6(16)	286.91(4)	0.400(25)
835.75(4)	0.0376(8)	85.19(3)	3.2(3)	294.39(3)	2.05(12)
878.99(8)	0.0191(17)	96.99(3)	20.1(4)	299.95(3)	1.15(5)
883.74(5)	0.0192(7)	100.68(3)	4.96(10)	328.99(3)	0.795(12)
894.27(5)	0.0185(7)	127.21(3)	5.27(21)	338.742(25)	0.595(10)
896.96(6)	0.0144(7)	134.54(3)	6.8(4)	349.95(3)	0.70(4)
911.61(5)	0.0176(7)	169.26(7)	2.88(19)	357.77(5)	0.561(22)
957.27(4)	0.0248(7)	177.64(4)	1.85(12)	360.39(3)	1.55(3)
1121.9(3)	0.0106(13)	180.73(3)	22.6(12)	378.12(5)	0.744(20)
1129.01(10)	0.0175(15)	185.93(3)	1.50(5)	380.90(3)	1.59(3)
1192.10(7)	0.0137(7)	202.69(5)	1.6(3)	408.61(3)	0.459(9)
1206.48(8)	0.0284(10)	212.92(3)	1.27(3)	465.37(6)	0.46(3)
1223.01(10)	0.0121(7)	215.35(3)	6.74(12)	495.714(25)	1.080(18)
1228.40(11)	0.0114(7)	217.75(3)	7.38(13)	524.473(25)	0.804(11)
1239.54(10)	0.0096(7)	266.60(3)	2.66(14)	536.125(24)	1.090(16)
1291.47(8)	0.0097(7)	269.17(3)	1.42(11)	549.560(23)	1.540(24)
1392.82(9)	0.0105(8)	323.79(10)	1.54(19)	586.81(3)	0.459(8)
1459.99(10)	0.0095(6)	333.44(3)	3.27(8)	593.88(3)	0.484(11)
4739.39(23)	0.0153(9)	374.79(3)	1.300(25)	620.08(4)	0.40(5)
5070.5(3)	0.0102(8)	420.61(3)	2.06(4)	626.41(4)	0.39(6)
5103.62(24)	0.0232(12)	440.52(3)	2.23(10)	632.95(3)	0.42(12)
5193.8(3)	0.0114(8)	470.41(3)	2.61(7)	657.741(22)	2.36(3)
5496.46(25)	0.0205(14)	482.24(3)	1.78(6)	724.75(4)	0.393(14)
5895.3(3)	0.0183(8)	786.94(4)	1.16(3)	750.77(3)	0.529(11)
6831.7(3)	0.0175(8)	5917.04(14)	1.31(4)	1013.11(3)	0.698(13)
7186.6(3)	0.0089(6)	Palladium	1.31(4)	5701.49(20)	0.716(18)
Molybdenum	* *	113.47(3)	0.335(5)	5795.02(24)	0.710(18)
608.753(18)	0.121(4)	245.128(24)	0.250(4)	6058.03(22)	0.663(19)
719.523(17)	0.310(10)	325.310(23)	0.208(3)	Cadmium	0.003(19)
736.814(16)	0.119(4)	511.847(13)	4.00(4)	558.32(3)	1860(30)
778.221(10)	2.02(6)	616.219(15)	0.628(9)	` '	107.0(17)
787.398(15)		717.349(14)		576.04(3)	358(5)
* *	0.168(5)	` '	0.777(9)	651.19(3)	` '
847.605(12)	0.324(9)	1045.77(3)	0.321(7)	725.19(3)	107.0(13)
1091.298(25)	0.201(6)	1050.30(3)	0.360(8)	805.85(3)	134.0(18)
1200.13(4)	0.124(4)	1127.99(3)	0.323(6)	1209.65(4)	122.0(19)
1497.65(5)	0.122(4)	1572.57(9)	0.22(3)	1364.30(4)	123.0(21)
6918.7(4)	0.106(6)	Silver	2.00(12)	1399.54(4)	97.7(15)
Ruthenium	0.00(0)	78.91(4)	3.90(12)	Indium	0.6(5)
475.0950(10)	0.98(9)	105.61(5)	0.76(4)	60.97(4)	8.6(5)
539.522(11)	1.53(13)	113.51(6)	0.52(3)	85.66(4)	11.1(6)
627.974(16)	0.176(16)	117.45(3)	3.84(7)	96.11(4)	13.8(7)
631.24(3)	0.30(3)	191.39(3)	1.81(5)	126.49(4)	2.05(11)

Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns
141.17(7)	1.61(24)	87.83(4)	0.212(6)	775.58(9)	0.020(3)
155.40(5)	1.38(9)	88.96(9)	0.0220(25)	824.31(9)	0.040(3)
162.50(4)	15.8(8)	101.69(5)	0.0215(11)	921.04(4)	0.076(4)
171.16(4)	1.92(10)	103.79(5)	0.0578(18)	5563.4(3)	0.0200(24)
173.87(4)	2.30(14)	105.95(4)	0.161(4)	5868.89(22)	0.035(3)
186.32(4)	14.9(8)	115.04(4)	0.271(9)	5885.08(20)	0.055(4)
202.58(5)	1.50(9)	121.64(4)	0.360(8)	6009.1(3)	0.020(3)
235.21(4)	2.75(15)	124.17(5)	0.0310(14)	6048.81(25)	0.0184(25)
273.05(4)	18.3(9)	133.95(4)	0.0608(19)	6082.94(22)	0.0182(23)
285.00(4)	2.54(14)	138.12(5)	0.0286(12)	6363.5(3)	0.024(3)
291.00(4)	1.42(8)	141.54(5)	0.0577(18)	6379.82(22)	0.043(4)
295.58(4)	1.55(9)	143.35(5)	0.0331(14)	6467.8(4)	0.022(3)
298.72(4)	4.78(25)	148.39(4)	0.257(6)	6523.87(18)	0.075(3)
321.24(5)	1.28(8)	155.27(5)	0.091(3)	6728.38(23)	0.045(4)
335.47(4)	4.59(24)	166.56(5)	0.0699(23)	Tellurium	0.0.0(.)
337.84(5)	1.39(8)	167.73(6)	0.0512(20)	602.723(12)	2.37(24)
375.89(4)	1.47(9)	173.91(6)	0.0192(11)	645.823(14)	0.26(3)
385.06(4)	6.8(4)	194.20(4)	0.0534(18)	722.729(15)	0.52(5)
422.23(5)	0.97(6)	201.70(4)	0.091(3)	1488.89(3)	0.120(12)
433.80(4)	3.62(20)	204.68(5)	0.0355(15)	2746.94(5)	0.128(12)
471.92(4)	2.43(14)	232.23(4)	0.0356(12)	Iodine	0.130(14)
476.13(8)	1.05(7)	233.28(4)	0.0996(24)	124.27(4)	0.183(8)
492.52(5)	1.87(11)	246.42(4)	0.0589(16)	133.59(4)	1.42(6)
518.06(5)	1.74(11)	252.89(4)	0.0474(14)	142.12(4)	0.156(7)
521.62(7)	1.11(8)	255.54(7)	0.0474(14)	147.10(4)	0.130(7)
548.70(5)	1.14(8)	256.37(8)	0.027(3)	152.99(4)	0.109(3)
* *	* *	* *	0.021(3)	156.49(4)	* *
556.67(4)	2.61(15)	265.51(6)	` '	` '	0.118(5)
577.45(8)	1.10(10)	272.36(7) 274.22(8)	0.0225(14)	160.71(4)	0.192(8)
602.36(4)	1.60(9)	` '	0.0388(18)	193.54(4)	0.127(5)
608.34(4)	1.97(11)	275.72(8) 282.73(4)	0.0306(16) 0.274(7)	224.15(4)	0.095(4) 0.149(6)
634.03(9)	0.94(7)	` '	0.274(7) 0.0375(17)	248.73(4)	` /
693.24(5)	1.02(7)	286.60(5)	\ /	268.32(4)	0.082(4)
819.00(6)	1.43(10)	288.21(7)	0.0267(18)	301.89(4)	0.229(9)
847.50(6)	1.21(8)	313.97(5)	0.0318(18)	344.76(4)	0.102(5)
5892.38(15)	1.17(9)	322.19(5)	0.0390(20)	374.27(5)	0.091(5)
Tin	0.0145(2)	330.91(6)	0.058(3)	385.46(4)	0.087(4)
158.65(6)	0.0145(3)	332.15(5)	0.101(3)	420.85(5)	0.144(11)
463.31(6)	0.0128(3)	335.09(5)	0.0284(14)	Xenon	0.51(7)
703.87(7)	0.0078(3)	351.57(5)	0.0345(15)	483.77(9)	0.51(7)
733.91(6)	0.00925(21)	378.14(5)	0.0500(18)	536.29(9)	1.71(24)
813.26(7)	0.0071(3)	384.55(4)	0.0702(22)	586.23(10)	0.48(7)
818.71(6)	0.0127(4)	419.95(7)	0.071(8)	600.22(9)	0.54(8)
925.90(6)	0.0097(3)	485.34(6)	0.0218(15)	630.40(9)	1.38(19)
925.90(6)	0.0097(3)	491.21(5)	0.0354(16)	667.87(9)	6.9(10)
931.81(6)	0.0111(3)	513.88(8)	0.0359(21)	772.76(9)	1.9(3)
972.59(6)	0.0158(5)	542.35(8)	0.0270(20)	1028.88(8)	0.40(6)
1171.28(6)	0.0879(13)	546.01(6)	0.0315(20)	1318.00(8)	1.03(14)
1229.64(6)	0.0673(13)	555.18(12)	0.024(4)	6467.02(13)	1.33(19)
1293.53(6)	0.1340(21)	564.26(5)	0.0532(25)	Cesium	
1356.70(7)	0.0075(3)	598.66(5)	0.058(3)	59.85(7)	0.443(14)
2112.17(7)	0.0152(5)	603.49(12)	0.020(3)	113.60(7)	0.777(15)
2225.15(18)	0.0082(5)	631.81(4)	0.0581(16)	116.21(7)	2.83(4)
Antimony		746.85(9)	0.034(3)	118.04(8)	0.230(7)

Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns
120.42(7)	0.414(10)	283.67(5)	0.0403(10)	2862.97(9)	0.066(4)
130.05(7)	1.410(21)	454.78(5)	0.0858(22)	2924.52(12)	0.040(3)
174.06(7)	0.420(11)	462.80(5)	0.0656(17)	2988.29(19)	0.045(4)
176.21(7)	2.47(4)	627.30(5)	0.293(6)	3016.74(9)	0.065(3)
186.67(7)	0.282(9)	732.32(5)	0.0239(7)	3035.23(11)	0.046(3)
198.11(7)	1.100(19)	818.47(5)	0.212(4)	3082.71(7)	0.135(5)
205.43(7)	1.560(25)	1009.61(5)	0.0167(5)	3188.94(15)	0.045(4)
211.15(7)	0.223(10)	1047.74(5)	0.0319(10)	3265.07(13)	0.049(5)
218.18(7)	0.309(9)	1435.65(6)	0.308(8)	3281.12(14)	0.048(5)
219.57(7)	0.344(9)	1444.71(6)	0.0799(21)	3424.65(11)	0.070(4)
234.15(7)	1.070(23)	1550.86(7)	0.0228(8)	3442.03(16)	0.040(3)
245.66(7)	0.740(15)	1898.47(8)	0.0285(11)	3476.53(16)	0.048(4)
256.44(7)	0.235(8)	2594.00(10)	0.0185(8)	3606.05(14)	0.054(4)
260.99(7)	0.401(11)	2639.09(11)	0.0170(8)	3609.85(16)	0.047(3)
268.82(7)	0.199(6)	3641.22(13)	0.0560(16)	3665.23(8)	0.132(6)
293.15(8)	0.185(9)	4095.77(15)	0.154(4)	3679.24(8)	0.137(6)
295.24(8)	0.231(10)	4723.12(18)	0.0262(11)	3727.27(11)	0.069(4)
307.07(7)	1.45(3)	5730.58(22)	0.0612(20)	3737.46(25)	0.042(4)
309.52(7)	0.237(9)	Lanthanum	()	3900.56(14)	0.053(4)
316.87(8)	0.149(10)	63.26(3)	0.176(6)	4389.17(9)	0.256(9)
356.06(7)	0.445(12)	155.65(3)	0.192(5)	4415.77(10)	0.240(9)
367.54(8)	0.173(8)	162.74(3)	0.490(13)	4502.26(11)	0.159(7)
377.05(7)	0.310(9)	209.29(4)	0.0434(19)	4558.45(14)	0.047(3)
386.73(7)	0.163(9)	218.30(3)	0.781(21)	4842.33(9)	0.656(17)
442.66(8)	0.316(12)	235.82(3)	0.111(3)	4888.37(12)	0.146(7)
450.27(8)	0.99(5)	237.747(24)	0.320(6)	5097.40(10)	0.680(18)
502.86(8)	0.256(13)	255.49(3)	0.0409(15)	5125.96(15)	0.110(7)
510.81(9)	1.54(3)	272.420(22)	0.502(8)	Cerium	0.110(7)
518.91(7)	0.349(18)	280.01(3)	0.0644(25)	475.09(6)	0.082(7)
523.47(17)	0.151(23)	283.69(4)	0.0411(25)	662.03(5)	0.233(18)
525.08(9)	0.39(3)	288.333(23)	0.729(12)	737.43(7)	0.026(3)
529.15(7)	0.519(23)	422.742(23)	0.371(7)	765.97(5)	0.0145(12)
539.16(7)	0.360(11)	426.51(5)	0.044(3)	1107.66(5)	0.040(3)
554.51(7)	0.206(9)	478.11(5)	0.0408(22)	1153.97(5)	0.0146(12)
557.57(11)	0.142(12)	495.66(3)	0.0403(22)	4290.99(8)	0.053(4)
570.42(7)	0.142(12)	538.93(5)	0.0455(25)	4336.46(8)	0.035(4)
645.53(9)	0.248(13)	549.02(3)	0.0433(23)	4765.96(9)	0.109(9)
648.33(9)	0.233(13)	553.19(6)	0.061(4)	Praseodymiu	* *
662.98(9)	0.255(15)	567.413(23)	0.335(7)	60.18(5)	0.134(14)
708.20(7)	0.133(9)	595.07(3)	0.333(7)	64.56(5)	0.134(14)
	0.177(14)	* *	0.103(3)	68.67(5)	0.137(6)
911.24(12)	* *	602.02(4)	* *	85.16(5)	* /
966.47(10)	0.168(13)	623.60(4)	0.0518(23) 0.054(3)		0.207(11)
1077.67(9)	0.209(12)	640.62(6)	` /	126.92(4)	0.307(15)
5493.52(23)	0.230(19)	658.30(3)	0.103(3)	140.98(3)	0.479(10)
5505.46(20)	0.333(22)	667.67(4)	0.058(3)	176.95(3)	1.06(4)
5572.00(25)	0.249(20)	708.22(4)	0.134(4)	182.87(3)	0.377(14)
5637.41(23)	0.277(21)	710.07(8)	0.067(3)	460.24(5)	0.057(3)
5748.9(3)	0.146(15)	722.52(3)	0.212(5)	508.89(6)	0.104(10)
6052.3(3)	0.240(20)	782.86(8)	0.040(3)	528.23(3)	0.0579(19)
6175.64(22)	0.252(16)	868.11(6)	0.056(3)	546.47(3)	0.148(4)
6189.11(24)	0.191(14)	991.83(7)	0.049(3)	560.48(4)	0.150(7)
6697.91(24)	0.224(17)	1020.36(7)	0.054(3)	570.15(4)	0.112(5)
Barium		2757.44(9)	0.050(5)	573.88(5)	0.084(5)

Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns
619.35(3)	0.152(4)	89.97(8)	1430(30)	253.52(10)	11(3)
633.19(4)	0.113(4)	91.20(10)	20(10)	256.20(9)	12.0(25)
645.651(25)	0.311(7)	95.25(11)	8(3)	260.66(9)	15.9(18)
729.24(3)	0.0712(23)	100.86(23)	24(5)	265.0(5)	3.8(5)
746.94(3)	0.146(4)	103.34(13)	48(5)	266.96(14)	8.0(11)
893.36(5)	0.053(3)	106.57(14)	42(6)	270.84(10)	6.5(11)
956.89(7)	0.091(7)	109.63(13)	22(9)	273.65(8)	17.3(12)
991.87(6)	0.138(10)	111.0(3)	22(6)	276.14(9)	10.9(11)
1006.30(5)	0.153(8)	113.1(3)	15(5)	279.91(14)	6.9(5)
1102.83(7)	0.056(3)	117.54(10)	14.7(22)	281.78(9)	20.4(8)
1150.98(4)	0.141(5)	119.71(13)	11.9(25)	283.53(24)	5.9(4)
3602.56(16)	0.054(3)	121.71(11)	17.7(25)	285.10(9)	23.2(18)
3650.12(16)	0.061(3)	124.01(16)	25(3)	287.29(10)	11.5(8)
3653.98(14)	0.060(4)	125.19(16)	25(3)	288.82(11)	9.3(6)
3790.15(11)	0.140(6)	129.06(12)	14.7(16)	293.68(14)	6.0(4)
4496.29(16)	0.098(6)	130.93(15)	15.0(16)	295.41(10)	13.4(5)
4691.91(14)	0.291(10)	132.71(10)	20.7(13)	297.40(12)	7.0(4)
4722.39(22)	0.083(4)	135.42(9)	27.8(14)	299.83(8)	24.0(6)
4800.96(16)	0.140(8)	137.89(20)	7(3)	304.22(9)	7.3(6)
5095.9(4)	0.208(8)	140.19(9)	21(4)	309.71(8)	11.5(9)
5137.43(22)	0.098(4)	143.54(8)	43(3)	313.97(24)	4.5(10)
5140.60(17)	0.269(11)	148.80(22)	13(4)	316.18(12)	10.8(9)
5665.98(18)	0.379(15)	150.59(19)	7(3)	318.95(11)	11.7(9)
5842.92(18)	0.147(6)	154.14(9)	22(3)	321.61(12)	9.8(8)
Neodymium	****	157.22(7)	7.5(22)	326.15(21)	12(4)
453.920(20)	3.00(9)	158.31(21)	9.3(16)	330.82(11)	9.0(8)
618.044(16)	13.4(3)	160.29(16)	9.3(17)	334.45(10)	11.1(10)
696.487(20)	33.2(17)	163.89(14)	13.1(24)	337.58(23)	4.1(9)
742.088(18)	3.07(8)	167.01(13)	18.9(19)	340.01(17)	5.5(9)
814.128(20)	5.05(13)	169.28(9)	54.8(22)	344.53(10)	7.1(14)
864.356(22)	5.08(13)	171.95(9)	40(3)	348.73(12)	7.5(13)
1413.16(3)	1.85(6)	176.6(3)	6(3)	353.10(18)	4.4(4)
6502.32(14)	3.18(11)	179.83(13)	20(3)	354.81(12)	8.7(14)
Samarium	3.10(11)	182.38(11)	23(3)	358.27(11)	7.6(15)
334.02(5)	4790(60)	187.37(8)	31.2(14)	360.06(17)	5.1(4)
712.25(5)	268(4)	190.96(11)	19.7(14)	364.82(10)	7.8(5)
737.48(5)	598(8)	193.11(13)	28.3(20)	366.57(9)	8.8(7)
Europium	370(0)	194.73(25)	11.7(20)	369.39(15)	5.9(8)
52.39(9)	55(3)	197.10(16)	14.1(14)	370.82(12)	8.3(5)
56.73(16)	16(6)	199.12(10)	25.5(15)	376.75(9)	8.4(5)
59.79(14)	10(3)	203.63(10)	18.4(14)	378.98(10)	6.5(4)
63.43(23)	12(5)	206.53(8)	58.7(20)	381.56(10)	5.3(5)
65.1(3)	16(8)	208.51(18)	16.1(21)	388.00(16)	4.3(6)
68.23(9)	69(20)	209.93(25)	8.5(24)	390.61(12)	8.7(7)
71.24(12)	45(14)	214.57(17)	13(3)	392.96(12)	7.5(6)
73.21(9)	106(22)	221.30(8)	73(3)	396.92(11)	7.5(6)
74.86(12)	43(12)	225.11(21)	11.2(23)	400.52(11)	4.2(6)
77.40(8)	187(13)	228.7(4)	5.6(22)	404.34(14)	9.6(9)
79.78(22)	12(6)	233.22(14)	15.9(23)	411.61(17)	5.3(7)
82.51(13)	7(5)	239.25(23)	12.4(25)	414.24(11)	9.1(8)
85.28(13)	9(5)	243.1(3)	12.4(23)	423.32(10)	13.1(10)
87.13(11)	29(3)	243.1(3)	26.3(22)	427.02(13)	8.0(9)
07.13(11)	27(3)	277.00(2 4)	20.3(22)	727.02(13)	0.0()
88.31(12)	42(5)	246.5(3)	15(3)	433.04(10)	10.3(11)

Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns
438.1(3)	5.3(9)	93.06(8)	0.218(25)	350.99(10)	0.176(22)
440.83(24)	6.2(9)	94.55(12)	0.071(11)	352.37(10)	0.160(21)
444.6(3)	4.7(10)	97.36(8)	0.50(6)	356.22(11)	0.117(17)
449.85(20)	5.4(11)	101.16(15)	0.023(5)	357.64(8)	0.26(3)
472.38(12)	5.3(9)	103.80(9)	0.089(10)	359.90(16)	0.048(9)
526.49(11)	4.3(4)	108.69(14)	0.026(5)	361.61(10)	0.095(12)
5379.7(4)	9.2(19)	112.26(9)	0.089(10)	363.69(9)	0.120(15)
5500.68(18)	7.0(4)	117.76(12)	0.028(5)	369.90(8)	0.057(7)
5595.20(20)	5.3(4)	131.00(9)	0.064(8)	372.86(9)	0.070(8)
5816.5(8)	3.7(12)	135.44(8)	0.39(4)	374.51(8)	0.099(11)
6069.29(18)	8.2(7)	139.03(15)	0.052(6)	376.11(7)	0.154(16)
6229.7(7)	4.1(8)	141.06(11)	0.107(12)	378.60(8)	0.161(19)
Gadolinium	. (-)	150.45(7)	0.144(15)	379.8(3)	0.024(8)
79.71(6)	4040(110)	153.52(7)	0.44(5)	399.42(11)	0.074(11)
89.17(6)	1380(40)	158.85(7)	0.111(12)	404.69(10)	0.127(17)
182.12(6)	7300(400)	163.02(7)	0.105(11)	414.66(16)	0.092(22)
199.42(6)	2000(600)	176.79(10)	0.070(9)	420.55(8)	0.092(12)
255.80(6)	373(30)	184.37(13)	0.11(3)	426.89(7)	0.147(17)
277.73(6)	495(12)	193.32(7)	0.37(4)	437.21(11)	0.077(16)
780.15(6)	1020(23)	209.61(8)	0.055(6)	441.73(13)	0.077(12)
870.85(6)	434(11)	212.38(12)	0.033(0)	447.20(17)	0.10(3)
897.66(5)	1080(50)	214.61(11)	0.032(4)	451.44(15)	0.21(3)
897.66(5)	1200(50)	220.96(12)	0.022(4)	453.14(22)	0.033(12)
915.11(6)	392(11)	228.09(9)	0.032(4)	455.4(3)	0.039(12)
944.70(10)	3080(70)	234.38(18)	0.032(4)	459.70(9)	0.029(12)
962.18(5)	1980(50)	235.88(14)	0.020(3)	464.28(7)	0.083(12)
902.18(3)	1420(30)	238.81(18)	0.032(6)	491.51(23)	0.192(21)
* *	* *		* /		* *
1003.97(7) 1097.03(5)	391(30)	241.64(20) 243.03(8)	0.035(8) 0.219(24)	497.07(15) 519.73(19)	0.041(9)
1107.51(6)	660(16)		0.219(24)		0.059(13) 0.046(12)
1107.31(6)	1840(40) 418(10)	247.98(7)	0.30(3)	521.32(23) 525.65(8)	0.046(12)
1110.32(3)	1180(30)	255.39(12) 257.81(14)	* *	* *	0.22(8)
1119.23(3)	474(30)	262.32(22)	0.045(7) 0.022(6)	529.24(6) 532.71(8)	0.022(8) 0.129(16)
	` '				
1184.32(7)	1160(120)	264.75(14)	0.031(7)	541.57(8)	0.121(15)
1186.75(5)	1550(190)	270.57(8)	0.102(12)	545.14(11)	0.064(10)
1186.75(5)	1600(190)	275.49(8)	0.124(14)	585.69(13)	0.054(8)
1259.91(5)	420(11)	277.64(9)	0.093(11)	600.02(7)	0.155(18)
1263.73(5)	644(16)	278.75(7)	0.083(11)	611.47(18)	0.034(9)
1323.48(5)	641(17)	282.86(12)	0.049(8)	625.64(16)	0.027(7)
5903.39(13)	453(14)	284.10(9)	0.087(11)	634.67(11)	0.037(7)
6750.05(14)	963(30)	288.07(7)	0.126(14)	5184.6(6)	0.023(9)
Terbium	0.40(6)	290.41(9)	0.052(7)	5228.0(5)	0.052(12)
59.48(8)	0.48(6)	295.87(9)	0.062(8)	5238.6(7)	0.026(10)
61.59(25)	0.052(15)	302.75(8)	0.086(10)	5245.4(6)	0.061(13)
63.74(8)	1.46(16)	308.04(9)	0.056(8)	5288.8(5)	0.027(7)
65.94(15)	0.090(17)	310.46(8)	0.177(21)	5460.9(5)	0.029(7)
68.25(24)	0.035(14)	315.81(8)	0.118(14)	5524.3(4)	0.051(13)
74.89(8)	1.78(18)	317.42(8)	0.121(15)	5608.1(6)	0.042(9)
76.77(12)	0.089(12)	319.75(8)	0.132(15)	5661.3(5)	0.037(7)
79.28(8)	0.43(6)	339.35(7)	0.35(4)	5684.4(6)	0.027(7)
84.21(14)	0.050(10)	341.01(9)	0.069(9)	5754.6(4)	0.031(8)
87.46(9)	0.160(19)	345.29(8)	0.128(16)	5776.2(3)	0.120(17)
89.04(9)	0.21(3)	348.61(13)	0.053(10)	5784.1(4)	0.041(9)

Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns
5842.1(11)	0.054(10)	5557.15(17)	28.7(14)	235.12(5)	1.18(4)
5860.8(10)	0.036(8)	5607.73(18)	35.9(16)	237.19(5)	5.52(10)
5891.2(3)	0.137(19)	Holmium	20.5(10)	242.58(5)	1.28(4)
5896.0(6)	0.023(7)	69.79(4)	1.09(6)	310.97(5)	2.50(5)
5953.5(3)	0.103(13)	116.84(4)	8.1(4)	352.91(6)	0.547(23)
5993.8(3)	0.114(15)	136.67(4)	14.5(7)	384.04(5)	1.95(5)
6138.4(3)	0.110(15)	149.32(4)	2.25(12)	400.21(5)	0.717(19)
6218.5(3)	0.190(22)	180.96(5)	0.94(5)	411.46(5)	2.37(5)
6240.8(3)	0.072(10)	221.18(4)	2.05(11)	424.61(5)	0.556(25)
6268.7(4)	0.029(6)	239.13(4)	2.25(12)	442.06(8)	0.536(23)
6311.9(7)	0.028(6)	289.04(4)	1.16(6)	446.31(5)	1.62(4)
Dysprosium	0.020(0)	290.61(4)	0.96(5)	455.96(6)	1.16(4)
50.44(7)	33.9(15)	304.63(4)	1.34(7)	457.23(11)	0.557(25)
80.64(7)	12.0(4)	333.61(4)	1.04(6)	468.62(7)	0.337(23)
108.23(7)	15.6(5)	371.74(4)	1.56(8)	472.94(8)	0.43(4)
184.34(7)	146(15)	401.57(4)	1.07(9)	496.52(5)	0.80(3)
` '		` '	1.23(7)	* *	` '
185.19(9)	33.8(9)	410.45(4)	` /	499.32(5) 505.00(6)	0.88(3)
260.11(7)	8.3(3)	425.90(4)	2.88(15)	` '	0.90(3)
282.89(7)	7.8(3)	455.53(4)	0.78(4)	506.61(6)	0.84(3)
349.14(8)	14.7(6)	489.45(4)	1.15(6)	510.43(11)	0.61(3)
351.20(8)	10.9(5)	542.74(4)	1.94(13)	512.01(5)	1.96(5)
386.08(7)	34.8(10)	543.69(4)	1.00(5)	523.32(7)	0.48(3)
389.83(8)	7.3(4)	Erbium	2 =2 (1 1)	532.39(6)	0.59(3)
392.66(7)	11.3(5)	99.07(3)	3.73(14)	535.78(5)	1.18(4)
411.71(7)	35.1(10)	184.301(25)	56(5)	537.97(6)	1.00(4)
415.03(7)	30.8(9)	198.267(24)	29.9(16)	562.39(5)	0.85(3)
421.10(10)	11.8(11)	284.71(3)	13.7(12)	565.22(5)	1.58(4)
447.96(7)	17.4(5)	447.556(24)	3.07(11)	569.25(5)	1.02(3)
465.46(7)	38.0(10)	631.709(19)	7.9(3)	585.09(6)	0.60(4)
470.25(8)	9.3(6)	730.649(19)	11.6(4)	589.13(10)	0.58(10)
477.10(7)	15.8(5)	741.372(20)	6.72(24)	590.18(7)	1.27(10)
496.96(7)	44.9(11)	816.003(23)	42.5(15)	603.91(5)	1.40(5)
499.43(9)	13.0(10)	821.20(3)	6.2(3)	611.80(8)	0.83(4)
500.62(9)	10.3(5)	830.01(4)	4.12(19)	632.37(6)	0.74(3)
509.06(9)	9.5(6)	853.505(20)	7.5(3)	637.75(4)	1.25(4)
510.81(14)	8.5(7)	914.952(20)	6.99(24)	640.56(8)	0.70(3)
515.33(7)	9.7(5)	1277.57(8)	2.82(16)	650.21(6)	1.45(5)
538.65(7)	69.2(19)	Thulium		658.85(5)	1.56(5)
570.05(9)	9.7(5)	66.06(10)	0.51(10)	703.71(5)	1.32(4)
584.00(7)	25.7(7)	68.54(6)	1.75(23)	710.70(7)	0.60(3)
807.46(7)	12.1(5)	75.23(9)	0.94(8)	719.12(8)	1.01(3)
882.27(6)	18.3(6)	87.44(5)	1.29(3)	720.61(8)	0.57(3)
888.13(7)	10.4(5)	105.11(6)	0.780(23)	724.48(5)	0.68(3)
911.99(7)	16.0(7)	114.50(5)	3.19(6)	815.56(5)	0.76(3)
979.98(9)	8.5(4)	129.99(5)	0.940(25)	854.23(5)	1.41(4)
994.64(7)	9.2(4)	144.43(5)	5.96(11)	1178.65(9)	0.56(4)
2947.66(19)	10.8(7)	149.66(5)	7.11(12)	4732.63(22)	0.58(5)
3012.35(13)	7.8(5)	165.69(5)	3.29(6)	5158.2(4)	0.47(5)
3035.56(12)	10.9(6)	180.92(5)	3.85(14)	5737.50(20)	1.42(7)
3114.14(15)	7.4(6)	198.46(5)	0.96(3)	5908.3(3)	0.49(4)
3443.43(14)	10.6(16)	204.41(5)	8.72(19)	5943.14(20)	1.51(7)
4123.88(15)	13.1(9)	219.65(5)	3.64(6)	6001.51(22)	0.99(10)
5144.00(22)	15.7(10)	231.71(6)	0.60(3)	6387.49(22)	1.48(7)

Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns
6442.19(23)	0.47(3)	214.38(7)	20.6(4)	616.14(9)	0.059(3)
Ytterbium		215.37(8)	2.82(16)	657.42(13)	0.083(5)
180.23(5)	0.52(5)	303.98(6)	4.29(9)	694.27(9)	0.073(3)
363.33(3)	0.89(9)	325.55(6)	6.89(15)	745.76(10)	0.053(3)
428.28(3)	0.59(6)	1066.04(6)	1.96(5)	782.13(9)	0.143(6)
435.88(3)	0.53(5)	1077.71(6)	2.40(6)	788.69(11)	0.070(5)
477.23(3)	0.71(7)	1081.35(6)	2.82(7)	791.86(9)	0.113(6)
514.87(3)	9.0(9)	1102.72(6)	2.96(8)	816.24(9)	0.104(4)
534.83(3)	0.49(5)	1143.66(6)	1.84(6)	840.03(8)	0.143(5)
639.73(3)	1.45(15)	1167.02(6)	3.95(10)	866.24(9)	0.068(3)
5284.9(5)	1.49(15)	1174.77(8)	4.8(7)	888.17(9)	0.079(4)
Lutetium		1175.65(11)	2.6(5)	891.42(9)	0.136(5)
71.46(7)	3.96(16)	1205.93(13)	1.47(23)	894.52(9)	0.078(4)
93.97(8)	0.71(4)	1207.11(7)	3.9(3)	903.16(9)	0.113(4)
111.65(7)	1.02(5)	1229.19(6)	4.26(11)	908.82(9)	0.092(4)
112.83(7)	1.16(5)	1269.27(6)	2.26(7)	979.58(9)	0.104(4)
119.70(7)	1.12(5)	1329.72(6)	2.09(7)	1026.17(8)	0.164(6)
121.54(7)	5.20(17)	1333.66(6)	1.73(7)	1070.98(10)	0.053(3)
138.57(6)	6.76(25)	1340.41(6)	2.40(8)	1082.03(10)	0.061(4)
144.65(7)	1.34(8)	1420.57(7)	1.83(7)	1274.51(9)	0.130(5)
145.84(9)	1.51(9)	5723.90(15)	2.52(11)	3469.42(13)	0.103(6)
147.15(6)	4.96(19)	Tantalum	, ,	3492.76(17)	0.051(4)
150.34(6)	13.7(4)	97.77(7)	12.6(6)	3534.66(16)	0.063(5)
162.44(6)	5.29(17)	133.89(6)	57(6)	3561.02(14)	0.060(4)
168.61(7)	0.95(5)	146.80(6)	12.7(4)	3739.00(16)	0.069(4)
171.80(6)	1.73(6)	156.12(6)	21.1(5)	3847.35(17)	0.051(4)
185.49(6)	3.40(12)	173.22(6)	109.0(23)	4014.64(16)	0.055(4)
188.01(6)	1.40(6)	190.34(6)	16.5(6)	4118.85(16)	0.059(4)
192.00(6)	2.09(8)	270.48(6)	235(5)	4249.36(18)	0.115(6)
201.58(7)	0.79(6)	297.19(6)	56.4(15)	4384.34(21)	0.057(5)
207.77(7)	1.02(5)	360.60(6)	16.0(6)	4574.19(18)	0.104(9)
225.34(6)	1.73(6)	402.70(5)	106.0(21)	4626.40(15)	0.124(7)
235.83(6)	0.82(4)	511.85(9)	14.9(8)	4650.6(3)	0.052(5)
259.35(6)	1.89(8)	5964.90(14)	12.5(7)	4684.37(14)	0.150(7)
263.29(9)	0.72(9)	Tungsten	. ,	5164.24(14)	0.226(9)
264.28(9)	0.77(9)	111.11(9)	0.162(4)	6144.21(18)	0.186(12)
268.75(5)	3.64(13)	127.46(9)	0.129(5)	6190.60(17)	0.513(18)
284.54(6)	0.75(4)	145.74(9)	0.970(21)	7412.02(24)	0.072(4)
301.10(6)	0.74(4)	162.21(9)	0.187(5)	Rhenium	()
310.13(5)	1.49(6)	201.42(9)	0.319(8)	74.76(5)	1.29(8)
318.98(5)	3.83(13)	204.80(9)	0.148(4)	87.20(4)	0.84(4)
335.81(5)	1.32(6)	226.13(10)	0.113(17)	92.33(5)	1.14(6)
347.96(6)	0.85(4)	252.93(9)	0.101(3)	99.36(7)	0.230(24)
367.38(5)	2.22(8)	273.02(9)	0.272(7)	103.16(5)	0.43(3)
413.66(5)	0.94(4)	289.93(9)	0.0603(22)	105.82(4)	1.91(8)
457.94(4)	8.3(3)	313.14(9)	0.054(4)	107.40(7)	0.352(25)
761.64(4)	2.63(10)	423.92(9)	0.0497(22)	111.50(4)	1.80(7)
838.99(7)	0.90(5)	473.85(10)	0.055(5)	114.85(6)	0.43(5)
1080.25(6)	0.69(4)	499.96(9)	0.0491(23)	122.53(5)	0.74(4)
1088.06(5)	0.84(4)	531.19(9)	0.052(3)	127.67(7)	0.43(4)
Hafnium	(7)	557.11(9)	0.125(5)	130.83(7)	0.43(3)
63.16(6)	5.26(14)	577.25(8)	0.191(5)	139.32(12)	0.43(5)
213.43(6)	29.4(6)	611.23(9)	0.066(3)	141.52(5)	1.46(8)

Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns
144.03(6)	1.85(9)	5073.41(24)	0.43(5)	151.51(6)	2.89(20)
145.45(16)	0.44(5)	5137.4(4)	0.39(4)	156.38(6)	2.76(12)
147.36(11)	0.47(5)	5871.62(21)	0.299(23)	162.52(13)	0.63(13)
149.28(11)	0.44(5)	5910.21(21)	0.60(4)	165.41(18)	1.7(7)
151.38(6)	1.15(7)	Osmium		169.25(5)	3.05(13)
156.59(10)	0.73(8)	73.43(4)	0.174(8)	177.00(18)	0.6(4)
167.30(4)	1.46(6)	155.18(3)	1.19(3)	178.91(8)	2.1(5)
174.21(5)	0.382(24)	175.80(4)	0.189(8)	183.35(14)	1.0(4)
176.34(8)	0.31(3)	186.85(3)	2.08(5)	184.67(16)	0.92(22)
177.70(13)	0.26(3)	235.24(3)	0.184(6)	193.59(8)	1.31(24)
181.92(5)	0.388(25)	272.87(3)	0.242(6)	197.12(21)	0.73(19)
188.82(5)	1.11(5)	275.34(3)	0.173(5)	199.02(10)	1.07(18)
190.05(12)	0.284(24)	323.02(4)	0.242(9)	201.48(9)	1.36(17)
193.29(5)	0.43(3)	361.19(3)	0.466(15)	203.83(8)	1.67(12)
199.44(5)	0.91(4)	371.35(3)	0.574(14)	206.19(6)	3.70(18)
205.18(13)	0.37(8)	397.50(5)	0.115(5)	208.07(16)	0.70(9)
207.92(4)	4.44(21)	407.45(3)	0.134(5)	210.74(10)	2.1(4)
210.59(7)	1.50(10)	478.11(3)	0.523(14)	211.49(5)	0.6(3)
214.62(5)	2.53(14)	527.60(3)	0.300(10)	215.37(15)	0.74(9)
216.76(22)	0.30(7)	537.75(4)	0.121(6)	216.75(5)	5.57(24)
219.34(8)	0.67(9)	558.02(3)	0.84(3)	222.36(10)	0.83(16)
223.09(17)	0.24(6)	569.38(3)	0.694(25)	226.23(14)	4.0(4)
227.04(5)	1.78(12)	605.34(3)	0.113(4)	231.64(8)	0.95(13)
232.07(13)	0.36(7)	633.12(3)	0.585(16)	241.70(15)	0.65(13)
236.59(5)	1.45(10)	634.99(4)	0.405(12)	245.60(8)	1.05(10)
251.45(6)	1.80(23)	829.34(4)	0.167(6)	248.07(18)	0.9(3)
252.12(11)	0.58(16)	5146.63(14)	0.409(20)	250.63(8)	0.87(10)
254.94(4)	1.15(5)	5277.11(22)	0.116(15)	254.29(9)	1.08(11)
257.15(6)	1.52(22)	5683.87(21)	0.167(13)	259.11(8)	1.29(18)
261.13(4)	0.67(3)	Iridium	*****(-*)	262.01(6)	3.05(18)
262.71(6)	0.267(17)	58.83(6)	5.3(3)	263.90(11)	1.39(13)
274.30(8)	0.80(6)	63.19(5)	70(3)	267.35(9)	0.93(21)
275.51(11)	0.51(4)	64.81(5)	121(4)	270.79(12)	0.86(20)
284.88(8)	0.41(4)	66.62(9)	3.22(23)	273.23(17)	0.72(17)
290.66(6)	3.5(4)	71.54(20)	0.6(3)	274.88(16)	0.74(16)
300.03(6)	0.70(5)	73.35(5)	42.7(15)	278.33(7)	1.95(16)
307.60(9)	0.34(3)	77.79(5)	4.8(4)	284.29(7)	1.95(15)
316.43(4)	2.21(10)	84.21(5)	7.7(4)	294.16(13)	1.12(17)
318.82(16)	0.25(3)	86.75(7)	0.65(13)	297.51(23)	0.65(17)
358.19(8)	0.236(19)	88.64(5)	3.67(24)	300.05(7)	1.07(12)
360.24(5)	0.449(25)	90.65(5)	1.25(15)	302.91(7)	1.20(11)
362.82(5)	0.46(3)	95.37(6)	0.9(3)	308.23(9)	1.45(11)
378.35(4)	0.54(3)	107.94(5)	2.62(12)	310.04(19)	0.61(10)
390.80(4)	1.15(5)	110.65(7)	1.18(8)	315.94(9)	2.4(4)
518.34(19)	0.24(6)	112.12(6)	1.69(10)	333.79(6)	1.53(10)
607.24(18)	0.25(3)	118.38(8)	0.89(13)	337.48(7)	0.96(9)
608.72(17)	0.25(3)	124.41(8)	1.12(13)	340.48(12)	0.72(9)
680.49(10)	0.23(3)	126.88(5)	1.86(10)	351.59(5)	10.9(4)
795.02(12)	0.34(3)	136.20(5)	11.5(4)	365.02(13)	1.15(10)
4663.71(23)	0.24(3)	138.43(10)	1.29(10)	371.34(6)	2.11(12)
4860.7(3)	0.24(3)	140.01(10)	0.95(9)	417.99(5)	3.45(15)
5007.0(3)	0.37(4)	144.79(6)	3.95(19)	432.55(5)	1.85(7)
5007.0(3)	0.27(4)	144./9(0)	5.75(17)	432.33(3)	1.03(1)
5027.89(23)	0.29(5)	148.85(6)	2.33(14)	459.46(7)	1.44(9)

Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns
461.97(10)	0.78(7)	204.15(4)	0.513(8)	1202.25(7)	15.9(4)
486.87(10)	0.93(13)	215.01(3)	7.77(8)	1205.67(7)	17.8(6)
4531.38(22)	0.61(5)	219.42(5)	0.42(3)	1225.51(4)	16.3(4)
4867.01(17)	0.68(4)	247.63(3)	5.56(6)	1262.96(4)	28.5(6)
4980.43(17)	0.82(4)	261.36(3)	6.3(3)	1273.52(4)	14.0(4)
4985.92(18)	0.58(3)	271.35(9)	0.42(6)	1407.94(4)	12.6(3)
5020.66(19)	0.66(6)	291.77(4)	1.48(3)	1570.32(4)	39.1(9)
5028.44(18)	0.67(6)	307.73(4)	0.607(21)	1693.31(4)	74.4(21)
5129.20(16)	0.90(5)	311.95(4)	0.627(25)	2002.03(5)	32.2(12)
5147.51(15)	1.29(6)	328.49(3)	2.09(4)	2639.67(5)	15.3(4)
5166.97(16)	0.96(6)	343.62(3)	1.080(20)	3185.77(6)	15.0(5)
5219.77(21)	0.72(5)	346.86(5)	0.58(5)	3288.75(6)	17.6(5)
5283.60(17)	0.85(6)	350.79(4)	1.30(7)	4675.64(9)	17.2(5)
5304.48(18)	0.73(5)	355.53(4)	0.460(21)	4739.44(8)	39.8(10)
5327.56(21)	0.71(5)	371.05(4)	0.572(18)	4759.06(9)	16.4(5)
5357.49(17)	1.03(6)	381.22(3)	4.22(6)	4842.44(9)	26.5(8)
5431.36(17)	0.78(4)	418.90(3)	1.060(21)	5050.06(9)	26.5(8)
5458.96(22)	0.60(5)	439.77(8)	1.49(23)	5388.48(10)	23.1(6)
5467.0(3)	0.59(7)	440.66(13)	0.69(15)	5658.17(10)	36.4(9)
5487.39(22)	0.58(4)	444.35(4)	0.83(3)	5967.00(10)	82.7(20)
5517.18(19)	0.76(4)	449.54(4)	0.646(24)	6457.78(12)	30.5(10)
5534.73(17)	1.39(6)	456.23(5)	0.57(3)	Thallium	
5564.68(17)	1.71(8)	458.15(5)	0.59(3)	139.94(9)	0.400(7)
5570.03(22)	0.67(4)	498.53(5)	0.457(25)	154.01(9)	0.0926(17)
5595.77(17)	0.72(4)	511.50(8)	1.26(9)	198.33(8)	0.0408(10)
5612.60(17)	1.06(5)	515.92(5)	0.57(3)	265.86(9)	0.0210(7)
5667.81(16)	2.68(10)	529.30(4)	2.80(17)	292.26(8)	0.0983(20)
5689.23(16)	1.73(7)	540.27(4)	0.60(4)	304.86(9)	0.0225(12)
5728.93(17)	1.15(5)	543.97(4)	0.54(3)	310.31(9)	0.0245(12)
5782.85(18)	1.34(6)	548.91(4)	0.85(5)	318.88(8)	0.325(6)
5866.76(19)	0.79(5)	565.72(6)	0.43(5)	325.85(8)	0.0301(10)
5954.4(3)	0.74(4)	571.62(5)	0.61(7)	330.09(9)	0.0267(10)
5958.09(23)	1.79(8)	625.35(5)	0.45(3)	330.09(9)	0.0267(10)
5962.25(23)	0.75(4)	640.55(5)	0.59(4)	331.76(9)	0.0371(10)
6082.02(18)	2.62(11)	672.72(3)	0.635(17)	347.96(8)	0.361(10)
Platinum		702.22(3)	0.565(7)	383.99(8)	0.0341(12)
326.20(4)	0.511(10)	835.81(5)	0.758(23)	395.62(8)	0.0862(20)
332.84(4)	2.580(25)	4799.83(5)	0.996(23)	424.81(8)	0.1200(25)
355.54(4)	6.17(6)	4852.60(9)	0.406(18)	471.90(8)	0.116(3)
521.02(4)	0.336(10)	4898.11(9)	0.411(17)	488.11(8)	0.096(4)
5254.41(19)	0.397(11)	4905.79(9)	0.423(17)	563.21(8)	0.0356(15)
Gold		4957.67(6)	0.95(3)	591.13(9)	0.0225(10)
55.11(3)	2.90(12)	4998.64(8)	0.530(20)	624.46(8)	0.0413(10)
74.94(4)	0.390(18)	5086.25(7)	0.607(16)	626.54(8)	0.0388(10)
97.24(3)	4.51(6)	5102.64(5)	1.110(23)	629.12(8)	0.0388(10)
101.93(3)	0.953(17)	5140.69(8)	0.395(14)	678.01(8)	0.0361(15)
146.44(4)	0.43(3)	5148.64(9)	0.500(15)	732.09(9)	0.064(3)
158.44(3)	1.250(14)	5226.41(8)	0.450(18)	737.12(8)	0.118(5)
168.36(3)	3.53(4)	5279.40(7)	0.524(16)	764.13(9)	0.0316(12)
170.17(3)	1.510(17)	5354.86(7)	0.401(13)	818.14(8)	0.0279(10)
180.83(5)	0.53(4)	Mercury	A = 4 (=)	873.16(8)	0.168(4)
188.17(5)	0.51(4)	367.96(3)	251(5)	931.39(8)	0.0257(12)
192.55(4)	4.6(3)	661.39(3)	29.5(6)	949.88(8)	0.0479(15)

Ey-keV Cy(Ey-barns Ey-keV Cy(Ey-barns Ey-keV Cy(Ey-barns 1013.27(9) 0.0217(12) 2505.31(8) 0.0021(3) 872.13(11) 0.0268(15) 1003.02(8) 0.0353(12) 2508.28(9) 0.00166(24) 968.78(9) 0.132(6) 1110.37(8) 0.0414(12) 2624.22(8) 0.00154(21) 1013.84(11) 0.0137(3) 1121.29(7) 0.0600(17) 2828.27(8) 0.0019(24) 1013.84(11) 0.0157(14) 1155.43(7) 0.0605(17) 3080.67(10) 0.00145(20) 1100.98(11) 0.0161(14) 1154.77(8) 0.054(422) 3396.18(11) 0.00170(24) 2703.55(24) 0.014(5) 1234.69(7) 0.0746(25) 3336.33(11) 0.00167(24) 2703.55(24) 0.014(5) 1741.01(8) 0.0548(25) 3632.83(12) 0.00136(20) 2824.9(3) 0.0144(22) 1756.27(12) 0.027(3) 4054.32(10) 0.0137(18) 3148.23(10) 0.0208(14) 4115.89(17) 0.0373(22) 4165.44(14) 0.0089(12) 3196.66(12) 0.017(13) 4195.98(14) 0.0373(22) 4165.44(14) 0.00173(24) 3287.94(14) 0.0165(14) 4309.00(24) 0.0210(2) 4256.42(13) 0.0024(3) 3398.09(13) 0.0168(13) 4402.60(15) 0.028(15) 77.09(15) 0.09(3) 3448.42(10) 0.0233(16) 4402.60(15) 0.028(15) 77.09(15) 0.09(3) 3448.42(10) 0.0233(16) 4402.60(15) 0.029(22) 256.25(11) 0.091(17) 3473.00(8) 0.057(3) 4752.24(11) 0.148(5) 0.099(4) 277.48(11) 0.013(12) 350.94(14) 0.0170(14) 4708.83(14) 0.088(3) 281.40(11) 0.0170(14) 4708.83(14) 0.088(3) 281.40(11) 0.0170(14) 4708.83(14) 0.088(3) 281.40(11) 0.0170(14) 4708.83(14) 0.088(3) 327.80(10) 0.069(16) 0.029(15) 541.45(15) 0.090(4) 316.64(10) 0.037(18) 518.08(22) 0.027(5) 5180.38(12) 0.141(5) 335.92(10) 0.069(16) 0.026(4) 493.57(11) 0.018(15) 0.058(3) 329.80(10) 0.069(16) 0.058(3) 90.906(6) 0.026(4) 493.57(11) 0.045(10) 0.068(1) 0.0						
1093.02(8)	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns	Eγ-keV	σ _γ ^z (Εγ)-barns
1101.37(8) 0.0413(12) 2624.22(8) 0.00179(24) 1013.84(11) 0.037(3) 1121.29(7) 0.0600(17) 2828.27(8) 0.00179(24) 1034.27(11) 0.0165(14) 1155.43(7) 0.0605(17) 3080.67(10) 0.00145(20) 1100.98(11) 0.0211(16) 1234.69(7) 0.0746(25) 3356.53(11) 0.00167(24) 2703.55(24) 0.014(5) 1748.77(8) 0.0544(22) 3396.18(11) 0.00170(24) 2719.67(18) 0.016(3) 1741.01(8) 0.0548(25) 3632.83(12) 0.00136(20) 2824.9(3) 0.0144(22) 1756.27(12) 0.027(3) 4054.32(10) 0.0137(18) 3148.23(10) 0.0208(14) 4115.08(17) 0.0222(17) 4101.62(11) 0.0098(12) 3196.66(12) 0.0171(14) 4195.98(14) 0.0373(22) 4165.44(14) 0.00173(24) 3387.94(14) 0.0165(14) 4225.47(17) 0.045(3) 4170.96(11) 0.0171(22) 3341.90(13) 0.0168(13) 4309.00(24) 0.0210(22) 4256.42(13) 0.0024(3) 3398.09(13) 0.0191(14) 4343.56(12) 0.034(3) Thorium 3436.17(12) 0.0211(15) 4492.60(15) 0.0208(15) 77.99(15) 0.09(3) 3448.82(10) 0.0238(16) 4495.74(13) 0.043(4) 211.86(11) 0.0191(17) 3473.00(8) 0.057(3) 4540.62(15) 0.0413(25) 229.08(11) 0.0163(13) 3509.43(14) 0.0170(14) 4687.58(12) 0.098(4) 277.48(11) 0.0187(10) 521.89(5) 0.072(3) 4841.40(15) 0.058(3) 281.40(11) 0.0187(10) 521.89(5) 0.072(3) 4841.40(15) 0.058(3) 329.88(11) 0.012(17) 351.99(61) 0.026(6) 4980.97(20) 0.036(3) 327.80(10) 0.082(10) 0.082(10) 5140.44(12) 0.147(5) 512.89(6) 0.0226(16) 943.14(7) 0.082(10) 521.89(12) 0.058(3) 329.88(11) 0.021(17) 0.082(10) 541.87(14) 0.147(5) 532.73(10) 0.068(3) 0.099(14) 0.066(6) 0.022(17) 0.036(8) 0.058(3) 0.084(4) 0.0187(10) 0.165(8) 0.014(10) 0.065(4) 0.0065(4)	1013.27(9)	0.0217(12)	2505.31(8)	0.0021(3)	872.13(11)	0.0268(15)
1212/9(7)	1093.02(8)	0.0353(12)	2598.28(9)	0.00166(24)	968.78(9)	0.132(6)
1155.43(7)	1110.37(8)	0.0413(12)	2624.22(8)	0.00154(21)	1013.84(11)	0.037(3)
1234.69(7)	1121.29(7)	0.0600(17)	2828.27(8)	0.00179(24)	1034.27(11)	0.0165(14)
1478,77(8) 0.0544(22) 3396.18(11) 0.00170(24) 2719.67(18) 0.016(3) 1741.01(8) 0.0548(25) 3632.83(12) 0.00136(20) 2824.9(3) 0.0144(22) 1756.27(12) 0.027(3) 4054.32(10) 0.0137(18) 3148.23(10) 0.0208(14) 4115.08(17) 0.0222(17) 4101.62(11) 0.0089(12) 3196.66(12) 0.0171(13) 4195.98(14) 0.0373(22) 4165.44(14) 0.00173(24) 3287.94(14) 0.0165(14) 4225.47(17) 0.045(3) 4170.96(11) 0.0171(22) 3341.90(13) 0.0168(13) 4309.00(24) 0.0210(22) 4256.42(13) 0.0024(3) 3398.09(13) 0.0191(14) 4402.60(15) 0.034(3) Thorium 3436.17(12) 0.0211(15) 4402.60(15) 0.0208(15) 77.09(15) 0.09(3) 3448.42(10) 0.0233(16) 4495.74(13) 0.043(4) 211.86(11) 0.0191(17) 3473.00(8) 0.057(3) 4540.62(15) 0.0413(25) 22908(11) 0.0163(13) 3509.43(14) 0.0170(14) 4600.95(16) 0.0292(22) 256.25(11) 0.093(17) 3530.96(13) 0.0397(24) 4687.58(12) 0.098(4) 277.48(11) 0.0170(14) Uranium 4705.83(14) 0.058(3) 281.40(11) 0.0187(10) 521.89(5) 0.022(3) 4841.40(15) 0.090(4) 316.64(10) 0.0397(18) 551.808(22) 0.207(5) 4913.57(11) 0.164(5) 319.08(10) 0.026(16) 943.14(7) 0.082(10) 5180.38(12) 0.141(5) 335.92(10) 0.029(19) 5180.38(12) 0.141(5) 0.058(3) 327.80(10) 0.029(19) 5180.38(12) 0.141(5) 0.058(3) 329.88(11) 0.0221(17) 0.058(1)	1155.43(7)	0.0605(17)	3080.67(10)	0.00145(20)	1100.98(11)	0.0211(16)
1741.01(8)	1234.69(7)	0.0746(25)	3356.53(11)	0.00167(24)	2703.55(24)	0.014(5)
1756.27(12) 0.027(3) 4054.32(10) 0.0137(18) 3148.23(10) 0.0208(14) 4115.08(17) 0.0222(17) 4101.62(11) 0.0089(12) 3196.66(12) 0.017(13) 4195.98(14) 0.0373(22) 4165.44(14) 0.00173(24) 3287.94(14) 0.0165(14) 4225.47(17) 0.045(3) 4170.96(11) 0.0171(22) 3341.90(13) 0.0168(13) 4309.00(24) 0.0210(22) 4256.42(13) 0.0024(3) 3398.09(13) 0.0191(14) 4402.60(15) 0.0238(15) 77.09(15) 0.09(3) 3448.42(10) 0.0233(16) 4495.74(13) 0.043(4) 211.86(11) 0.0191(17) 3473.00(8) 0.057(3) 4495.74(13) 0.043(4) 211.86(11) 0.0191(17) 3473.00(8) 0.057(3) 4540.62(15) 0.0413(25) 229.08(11) 0.0163(13) 3509.43(14) 0.0170(14) 4600.95(16) 0.0292(22) 256.25(11) 0.093(17) 3530.96(13) 0.0397(24) 4687.58(12) 0.098(4) 277.48(11) 0.0132(25) 3946.42(10) 0.0268(15) 4705.83(14) 0.058(3) 281.40(11) 0.0197(14) Uranium 4752.24(11) 0.148(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 4841.40(15) 0.090(4) 316.64(10) 0.0397(18) 551.808(22) 0.207(5) 4913.57(11) 0.164(5) 319.08(10) 0.082(3) 909.06(6) 0.026(4) 4980.97(20) 0.036(3) 327.80(10) 0.0269(16) 943.14(7) 0.082(10) 510.46(15) 0.058(3) 329.88(11) 0.0221(17) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 518.03(22) 0.076(6) 472.30(10) 0.165(8) 5404.41(12) 0.147(5) 522.73(10) 0.102(5) 5404.41(12) 0.147(5) 522.73(10) 0.102(5) 541.87(12) 0.316(7) 556.93(11) 0.0404(23) 533.35(13) 0.381(13) 0.381(1) 539.66(10) 0.016(3) 541.87(12) 0.016(6) 583.27(9) 0.279(11) 618.30(15) 0.084(4) 561.25(11) 0.033(8) 602.21(14) 0.056(4) 593.23(10) 0.043(3) 6336.11(2) 0.026(4) 797.79(9) 0.046(20) 774.95(5) 0.0016(21) 714.23(10) 0.050(4) 605.14(10) 0.056(4) 605.14(10) 0.056(4) 605.14(10) 0.056(4) 605.14(10) 0.056(4) 605.14(10) 0.056(4) 605.14(10) 0.056(4) 605.14(10) 0.056(4) 605.14(10) 0.056(4) 605.14(10) 0.056(4) 605.14(10	1478.77(8)		3396.18(11)	0.00170(24)	2719.67(18)	0.016(3)
4115.08(17) 0.0222(17) 4101.62(11) 0.0089(12) 3196.66(12) 0.0171(13) 4195.98(14) 0.0373(22) 4165.44(14) 0.00173(24) 3287.94(14) 0.0165(14) 4225.47(17) 0.045(3) 4170.96(11) 0.0171(22) 3341.90(13) 0.0168(13) 4309.00(24) 0.0210(22) 4256.42(13) 0.0024(3) 3398.09(13) 0.0191(14) 4343.56(12) 0.0304(3) Thorium 3436.17(12) 0.0211(15) 0.0208(15) 77.90(15) 0.09(3) 3448.42(10) 0.02331(6) 4495.74(13) 0.043(4) 211.86(11) 0.0191(17) 3473.00(8) 0.057(3) 4540.62(15) 0.0413(25) 229.08(11) 0.0163(13) 3509.43(14) 0.0170(14) 4600.95(16) 0.0292(22) 256.25(11) 0.093(17) 3530.96(13) 0.0397(24) 4687.58(12) 0.098(4) 277.48(11) 0.0170(14) Uranium 4752.24(11) 0.148(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 4841.40(15) 0.090(4) 316.64(10) 0.0397(18) 551.808(22) 0.207(5) 4913.57(11) 0.164(5) 319.08(10) 0.082(3) 909.06(6) 0.026(4) 4980.97(20) 0.036(3) 327.80(10) 0.0269(16) 5014.61(15) 0.058(3) 3329.88(11) 0.0221(17) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5180.38(12) 0.141(5) 335.92(10) 0.0408(20) 5279.86(12) 0.076(6) 472.30(10) 0.165(8) 5441.40(12) 0.147(5) 522.73(10) 0.040(10) 5441.01(12) 0.147(5) 522.73(10) 0.040(10) 5441.01(12) 0.147(5) 522.73(10) 0.040(10) 5441.01(12) 0.147(5) 520.33(10) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.042(10) 5641.57(12) 0.045(22) 566.63(10) 0.043(3) 6611.79(2) 0.022(25) 566.63(10) 0.043(3) 6611.62(14) 0.066(6) 583.27(9) 0.079(11) 665.11(10) 0.044(4) 661.57(12) 0.045(22) 605.41(10) 0.054(4) 661.57(12) 0.056(4) 797.79(9) 0.0416(20) 774.95(5) 0.0014(20) 808.53(11) 0.019(13) 0.019(13) 0.019(14) 0.019(16) 814.75(10) 0.019(13) 0.019(13) 0.019(16) 814.75(10) 0.019(13) 0.019(13) 0.0012(14) 0.0019(14) 0.0019(14) 0.0019(14) 0.019(13) 0.019(13) 0.0012(1	1741.01(8)	0.0548(25)	3632.83(12)	0.00136(20)	2824.9(3)	0.0144(22)
4195.98(14) 0.0373(22) 4165.44(14) 0.00173(24) 3287.94(14) 0.0165(14) 4225.47(17) 0.045(3) 4170.96(11) 0.0171(22) 3341.90(13) 0.0168(13) 4309.00(24) 0.0210(22) 4256.42(13) 0.0024(3) 3398.09(13) 0.0191(14) 4343.56(12) 0.034(3) Thorium 3436.17(12) 0.0211(15) 4402.60(15) 0.0028(15) 77.09(15) 0.09(3) 3448.24(10) 0.0233(16) 4402.60(15) 0.0413(25) 229.08(11) 0.0191(17) 3473.00(8) 0.057(3) 4540.62(15) 0.0413(25) 229.08(11) 0.0163(13) 3509.43(14) 0.0170(14) 4600.95(16) 0.0292(22) 256.25(11) 0.093(17) 3530.96(13) 0.0397(24) 4600.95(16) 0.0292(22) 256.25(11) 0.093(17) 3530.96(13) 0.0397(24) 4705.83(14) 0.058(3) 281.40(11) 0.0170(14) Uranium 4752.24(11) 0.148(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 4841.40(15) 0.090(4) 31.664(10) 0.0397(18) 551.808(22) 0.207(5) 4913.57(11) 0.164(5) 319.08(10) 0.082(3) 909.06(6) 0.026(4) 4980.97(20) 0.036(3) 327.80(10) 0.0269(16) 943.14(7) 0.082(10) 5113.050(23) 0.058(4) 331.37(11) 0.0221(17) 5130.50(23) 0.058(4) 331.37(11) 0.0221(17) 5130.50(23) 0.058(4) 331.37(11) 0.0221(17) 5130.50(23) 0.058(4) 331.37(11) 0.0221(17) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5130.50(23) 0.058(4) 331.37(11) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.0404(23) 5533.35(13) 0.034(4) 561.25(11) 0.034(4) 602.521(24) 0.022(25) 566.63(10) 0.19(5) 616.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 580.22(10) 540.44(10) 0.066(4) 593.23(10) 0.044(21) 560.22(24) 0.045(22) 605.41(10) 0.054(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4) 613.36(12) 0.045(4)	1756.27(12)	0.027(3)	4054.32(10)	0.0137(18)	3148.23(10)	0.0208(14)
4225.47(17) 0.045(3) 4170.96(11) 0.0171(22) 3341.90(13) 0.0168(13) 4309.00(24) 0.0210(22) 4256.42(13) 0.0024(3) 3398.09(13) 0.0191(15) 4343.56(12) 0.024(3) Thorium 3436.17(12) 0.0211(15) 4402.60(15) 0.043(4) 211.86(11) 0.0191(17) 3473.00(8) 0.057(3) 4490.62(15) 0.0413(25) 229.08(11) 0.0191(17) 3473.00(8) 0.057(3) 4540.62(15) 0.0413(25) 229.08(11) 0.016(31) 3509.43(14) 0.0170(14) 4687.58(12) 0.098(4) 277.48(11) 0.031(25) 3946.42(10) 0.0397(24) 4687.58(12) 0.098(4) 277.48(11) 0.0170(14) Uranium 4705.83(14) 0.058(3) 281.40(11) 0.0170(14) Uranium 4752.24(11) 0.148(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 3484.40(15) 0.090(4) 316.64(10) 0.0397(18) 551.808(22) 0.075(5) 3493.14(7) 0.026(6) 493.14(7) 0.026(6) 493.14(7) 0.026(6) </td <td>4115.08(17)</td> <td>0.0222(17)</td> <td>4101.62(11)</td> <td>0.0089(12)</td> <td>3196.66(12)</td> <td>0.0171(13)</td>	4115.08(17)	0.0222(17)	4101.62(11)	0.0089(12)	3196.66(12)	0.0171(13)
4225.47(17) 0.045(3) 4170.96(11) 0.0171(22) 3341.90(13) 0.0168(13) 4309.00(24) 0.0210(22) 4256.42(13) 0.0024(3) 3398.09(13) 0.0191(15) 4343.56(12) 0.024(3) Thorium 3436.17(12) 0.0211(15) 4402.60(15) 0.043(4) 211.86(11) 0.0191(17) 3473.00(8) 0.057(3) 4490.62(15) 0.0413(25) 229.08(11) 0.0191(17) 3473.00(8) 0.057(3) 4540.62(15) 0.0413(25) 229.08(11) 0.016(31) 3509.43(14) 0.0170(14) 4687.58(12) 0.098(4) 277.48(11) 0.031(25) 3946.42(10) 0.0397(24) 4687.58(12) 0.098(4) 277.48(11) 0.0170(14) Uranium 4705.83(14) 0.058(3) 281.40(11) 0.0170(14) Uranium 4752.24(11) 0.148(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 3484.40(15) 0.090(4) 316.64(10) 0.0397(18) 551.808(22) 0.075(5) 3493.14(7) 0.026(6) 493.14(7) 0.026(6) 493.14(7) 0.026(6) </td <td>4195.98(14)</td> <td>0.0373(22)</td> <td>4165.44(14)</td> <td>0.00173(24)</td> <td>3287.94(14)</td> <td>0.0165(14)</td>	4195.98(14)	0.0373(22)	4165.44(14)	0.00173(24)	3287.94(14)	0.0165(14)
4309.00(24) 0.0210(22) 4256.42(13) 0.0024(3) 3398.09(13) 0.0191(14) 4343.56(12) 0.034(3) Thorium 3436.17(12) 0.0211(15) 4402.60(15) 0.0208(15) 77.09(15) 0.09(3) 3448.42(10) 0.0233(16) 4495.74(13) 0.043(4) 211.86(11) 0.0191(17) 3473.00(8) 0.057(3) 4540.62(15) 0.0413(25) 229.08(11) 0.0193(17) 353.09(41) 0.0170(14) 4600.95(16) 0.0292(22) 256.25(11) 0.093(17) 353.09.6(13) 0.0397(24) 487.58(12) 0.098(4) 277.48(11) 0.0312(25) 3946.42(10) 0.0397(24) 487.58(12) 0.098(4) 277.48(11) 0.0312(25) 3946.42(10) 0.0397(24) 487.58,24(1) 0.0148(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 4841.40(15) 0.048(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 498.97(20) 0.036(3) 327.80(10) 0.026(1) 943.14(7) 0.082(10) 513.05(23) 0.058(4) 331.37(11) 0.022(16) 943.14(7) 0.082(1	4225.47(17)			0.0171(22)	3341.90(13)	0.0168(13)
4343.56(12) 0.034(3) Thorium 3436.17(12) 0.0211(15) 4402.60(15) 0.0208(15) 77.09(15) 0.09(3) 3448.42(10) 0.0233(16) 4495.74(13) 0.043(4) 211.86(11) 0.0191(17) 3473.00(8) 0.057(3) 4540.62(15) 0.0413(25) 229.08(11) 0.0163(13) 3509.43(14) 0.0170(14) 4600.95(16) 0.0292(22) 256.25(11) 0.093(17) 3530.96(13) 0.0397(24) 4687.58(12) 0.098(4) 277.48(11) 0.0312(25) 3946.42(10) 0.0268(15) 4705.83(14) 0.058(3) 281.40(11) 0.0170(14) Uranium 4752.24(11) 0.148(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 4841.40(15) 0.090(4) 316.64(10) 0.0397(18) 551.808(22) 0.207(5) 4841.40(15) 0.096(4) 319.08(10) 0.082(3) 909.06(6) 0.026(4) 4980.97(20) 0.036(3) 327.80(10) 0.022(3) 909.06(6) 0.026(4) 4980.97(20) 0.036(3) 327.80(10) 0.022(17) 5180.38(12) 0.141(5) 335.92(10) 0.028(16) 943.14(7) 0.082(10) 5180.38(12) 0.141(5) 335.92(10) 0.089(4) 5261.48(13) 0.084(4) 354.27(10) 0.0408(20) 5279.86(12) 0.207(6) 472.30(10) 0.165(8) 5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.0404(23) 5533.35(13) 0.282(10) 548.23(11) 0.042(10) 5601.25(14) 0.023(20) 578.02(9) 0.105(5) 6118.79(23) 0.023(20) 578.02(9) 0.105(5) 6118.79(23) 0.0245(22) 605.41(10) 0.044(1) 6651.457(12) 0.044(22) 580.23(10) 0.044(1) 6651.457(12) 0.0245(22) 605.41(10) 0.044(1) 6651.457(12) 0.0245(22) 605.41(10) 0.044(1) 6651.457(15) 0.0245(22) 605.41(10) 0.044(1) 6651.457(15) 0.0245(22) 605.41(10) 0.044(1) 6651.457(15) 0.0245(22) 605.41(10) 0.044(1) 6651.457(15) 0.0245(22) 605.41(10) 0.044(1) 6651.457(15) 0.0245(22) 605.41(10) 0.044(1) 6651.457(15) 0.0245(22) 605.41(10) 0.054(4) 6651.457(15) 0.0245(22) 605.41(10) 0.054(4) 6651.457(15) 0.0245(22) 605.41(10) 0.054(4) 6651.457(15) 0.0245(22) 605.41(10) 0.054(4) 6651.457(15) 0.0245(22) 605.41(10)		* *	* *	` '	* *	` '
4405.74(13) 0.0208(15) 77.09(15) 0.09(3) 3448.42(10) 0.0233(16) 4495.74(13) 0.043(4) 211.86(11) 0.0191(17) 3473.00(8) 0.057(3) 4495.74(13) 0.043(4) 211.86(11) 0.0191(17) 3473.00(8) 0.057(3) 4540.62(15) 0.0413(25) 229.08(11) 0.0163(13) 3509.43(14) 0.0170(14) 4600.95(16) 0.0292(22) 256.25(11) 0.093(17) 3530.96(13) 0.0397(24) 4687.58(12) 0.098(4) 277.48(11) 0.0312(25) 3946.42(10) 0.0268(15) 4705.83(14) 0.058(3) 281.40(11) 0.0170(14) Uranium 4752.24(11) 0.148(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 4841.40(15) 0.090(4) 316.64(10) 0.0397(18) 551.808(22) 0.207(5) 4913.57(11) 0.164(5) 319.08(10) 0.082(3) 909.06(6) 0.026(4) 4948.97(20) 0.036(3) 327.80(10) 0.0259(16) 943.14(7) 0.082(10) 5014.61(15) 0.058(3) 329.88(11) 0.0221(17) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5180.38(12) 0.141(5) 335.92(10) 0.089(4) 5279.86(12) 0.207(6) 472.30(10) 0.165(8) 5404.41(12) 0.147(5) 522.73(10) 0.102(5) 5444.41(12) 0.147(5) 522.73(10) 0.102(5) 5454.51(14) 0.079(3) 531.58(10) 0.044(10) 5591.748(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 5187.80(10) 0.044(10) 5591.748(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.023(20) 578.02(9) 0.105(5) 6118.79(23) 0.024(12) 665.14.57(15) 0.129(5) 612.45(9) 0.018(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) 663.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) 663.11(22) 0.0245(22) 605.41(10) 0.054(4) 66514.57(15) 0.129(5) 612.45(9) 0.018(3) 663.11(22) 0.0245(22) 605.41(10) 0.059(4) 665.11(10) 0.054(4) 673.75(14) 0.0069(19) 665.11(10) 0.084(4) 6659.56(16) 0.0173(20) 673.75(14) 0.0069(19) 665.11(10) 0.054(4) 673.75(14) 0.015(21) 714.23(10) 0.055(3) 710.15(11) 0.050(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) 7367.83(12) 0.015(4) 750.51(11) 0.050(4) 740.505(4) 740.505(4) 740.505(4) 740.505(4) 740.505(4) 740.505(4) 740.505(4) 740.505(4)		, ,	, ,	` '		
4495.74(13) 0.043(4) 211.86(11) 0.0191(17) 3473.00(8) 0.057(3) 4540.62(15) 0.0413(25) 229.08(11) 0.0163(13) 3509.43(14) 0.0170(14) 4600.95(16) 0.0292(22) 256.25(11) 0.093(17) 3530.96(13) 0.0397(24) 4687.58(12) 0.098(4) 277.48(11) 0.0312(25) 3946.42(10) 0.0268(15) 4705.83(14) 0.058(3) 281.40(11) 0.0170(14) Uranium 4752.24(11) 0.148(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 4841.40(15) 0.090(4) 316.64(10) 0.0397(18) 551.808(22) 0.207(5) 4913.57(11) 0.164(5) 319.08(10) 0.082(3) 909.06(6) 0.026(4) 4980.97(20) 0.036(3) 327.80(10) 0.0269(16) 943.14(7) 0.082(10) 5130.50(23) 0.058(4) 331.37(11) 0.0291(17) 5130.50(23) 0.058(4) 331.37(11) 0.0291(17) 5130.50(23) 0.058(4) 331.57(10) 0.0408(20) 527.73(10) 0.102(5) 5261.48(13) 0.084(4) 354.27(10) 0.0408(20)<		* *	77.09(15)	0.09(3)	* *	
4\$40.62(15) 0.0413(25) 229.08(11) 0.0163(13) 3509.43(14) 0.0170(14) 4600.95(16) 0.0292(22) 256.25(11) 0.093(17) 3530.96(13) 0.0397(24) 4687.58(12) 0.098(4) 277.48(11) 0.0312(25) 3946.42(10) 0.0268(15) 4705.83(14) 0.058(3) 281.40(11) 0.0170(14) Uranium 4752.24(11) 0.148(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 4841.40(15) 0.090(4) 316.64(10) 0.0397(18) 551.808(22) 0.207(5) 4913.57(11) 0.164(5) 319.08(10) 0.082(3) 909.06(6) 0.026(4) 4980.97(20) 0.036(3) 327.80(10) 0.0269(16) 943.14(7) 0.082(10) 5014.61(15) 0.058(3) 329.88(11) 0.0221(17) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5180.38(12) 0.141(5) 335.92(10) 0.089(4) 5261.48(13) 0.084(4) 354.27(10) 0.0408(20) 527.86(12) 0.207(6) 472.30(10) 0.165(8) 5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(31) 0.131(5) 539.66(10) 0.061(3) 5603.28(13) 0.282(10) 548.23(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) 622.57(16) 0.055(4) 651.15(1) 0.050(4) 653.31(1) 0.0069(19) 665.11(10) 0.084(4) 665.11(10) 0.084(4) 665.11(10) 0.084(4) 6737.53(14) 0.0069(19) 665.11(10) 0.050(4) 665.11(10) 0.050(4) 665.11(10) 0.054(4) 665.14.57(15) 0.129(5) 612.45(9) 0.018(3) 6612.45(9) 0.018(3) 663.34(4) 0.0115(14) 752.05(16) 0.0145(21) 673.73(4) 0.0066(4) 797.79(9) 0.0416(20) 774.95(5) 0.00112(14) 834.83(14) 0.059(5)		` /	\ /	` /		, ,
4600.95(16) 0.0292(22) 256.25(11) 0.093(17) 3530.96(13) 0.0397(24) 4687.58(12) 0.098(4) 277.48(11) 0.0312(25) 3946.42(10) 0.0268(15) 4705.83(14) 0.058(3) 281.40(11) 0.0170(14) Uranium 4752.24(11) 0.148(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 4841.40(15) 0.090(4) 316.64(10) 0.0397(18) 551.808(22) 0.207(5) 4913.57(11) 0.164(5) 319.08(10) 0.082(3) 909.06(6) 0.026(4) 4980.97(20) 0.036(3) 327.80(10) 0.0269(16) 943.14(7) 0.082(10) 5180.38(12) 0.058(3) 329.88(11) 0.0221(17) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5180.38(12) 0.141(5) 335.92(10) 0.089(4) 5279.86(12) 0.207(6) 472.30(10) 0.102(5) 5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.0404(23) 5533.35(13) 0.282(10) 548.23(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.042(10) 56118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6118.79(23) 0.023(20) 578.02(9) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 66118.79(23) 0.0245(22) 605.41(10) 0.054(4) 6631.457(12) 0.137(3) 681.81(9) 0.079(4) 888.11(10) 0.054(4) 6631.457(15) 0.129(5) 612.45(9) 0.018(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6631.457(15) 0.129(5) 612.45(9) 0.018(3) 612.34(4) 0.00162(21) 714.23(10) 0.059(4) 6631.457(15) 0.129(5) 612.45(9) 0.018(3) 612.45(9) 0.018(3) 613.83(4) 0.0115(14) 752.05(16) 0.005(4) 774.95(5) 0.00115(14) 775.99(9) 0.0416(20) 774.95(5) 0.00115(14) 834.83(11) 0.0212(14) 808.79(4) 0.0010(14) 834.83(11) 0.0212(14) 808.79(4) 0.0010(14) 834.83(11) 0.0212(14) 808.79(4) 0.0010(14) 834.83(11) 0.0212(14) 808.79(4) 0.0010(14) 834.83(11) 0.0212(14) 808.79(4) 0.0010(14) 834.83(11) 0.0212(14) 808.79(4) 0.0010(14) 834.83(11) 0.059(5)					` '	
4687.58(12) 0.098(4) 277.48(11) 0.0312(25) 3946.42(10) 0.0268(15) 4705.83(14) 0.058(3) 281.40(11) 0.0170(14) Uranium 4752.24(11) 0.148(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 4841.40(15) 0.090(4) 316.64(10) 0.0397(18) 551.808(22) 0.207(5) 4913.57(11) 0.164(5) 319.08(10) 0.082(3) 909.06(6) 0.026(4) 4980.97(20) 0.036(3) 327.80(10) 0.0269(16) 943.14(7) 0.082(10) 5014.61(15) 0.058(3) 329.88(11) 0.0221(17) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5180.38(12) 0.141(5) 335.92(10) 0.089(4) 526.148(13) 0.084(4) 334.27(10) 0.0408(20) 5279.86(12) 0.207(6) 472.30(10) 0.105(5) 5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.040(10) 5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6625.21(24) <td>, ,</td> <td>* *</td> <td></td> <td>` '</td> <td>* *</td> <td>, ,</td>	, ,	* *		` '	* *	, ,
4705.83(14) 0.058(3) 281.40(11) 0.0170(14) Uranium 4752.24(11) 0.148(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 4841.40(15) 0.090(4) 316.64(10) 0.0397(18) 551.808(22) 0.207(5) 4913.57(11) 0.164(5) 319.08(10) 0.082(3) 909.06(6) 0.026(4) 4980.97(20) 0.036(3) 327.80(10) 0.0269(16) 943.14(7) 0.082(10) 5014.61(15) 0.058(3) 329.88(11) 0.0221(17) 0.021(17) 0.021(17) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 0.038(12) 0.141(5) 335.92(10) 0.089(4) 0.089						
4752.24(11) 0.148(5) 311.91(10) 0.0187(10) 521.89(5) 0.072(3) 4841.40(15) 0.090(4) 316.64(10) 0.0397(18) 551.808(22) 0.207(5) 4913.57(11) 0.164(5) 319.08(10) 0.082(3) 909.06(6) 0.026(4) 4980.97(20) 0.036(3) 327.80(10) 0.0259(16) 943.14(7) 0.082(10) 5014.61(15) 0.058(3) 329.88(11) 0.0221(17) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5180.38(12) 0.141(5) 335.92(10) 0.089(4) 5261.48(13) 0.084(4) 354.27(10) 0.0408(20) 5279.86(12) 0.207(6) 472.30(10) 0.165(8) 5404.41(12) 0.147(5) 522.73(10) 0.102(5) 5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(13) 0.282(10) 548.23(11) 0.042(10) 5603.28(13) 0.282(10) 548.23(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) 6423.73(14) 0.00691(19) 665.11(10) 0.084(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) 643.83(12) 0.137(3) 681.81(9) 0.079(4) 8bimuth 705.17(11) 0.050(4) 673.93(4) 0.0015(14) 75.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00119(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)				` '	` /	,
4841.40(15) 0.090(4) 316.64(10) 0.0397(18) 551.808(22) 0.207(5) 4913.57(11) 0.164(5) 319.08(10) 0.082(3) 909.06(6) 0.026(4) 4980.97(20) 0.036(3) 327.80(10) 0.0269(16) 943.14(7) 0.082(10) 5014.61(15) 0.058(3) 329.88(11) 0.0221(17) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5180.38(12) 0.141(5) 335.92(10) 0.089(4) 5261.48(13) 0.084(4) 354.27(10) 0.0408(20) 5279.86(12) 0.207(6) 472.30(10) 0.165(8) 5404.41(12) 0.147(5) 522.73(10) 0.102(5) 5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.061(3) 5603.28(13) 0.282(10) 548.23(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6168.305(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) 64225.51(4) 0.00691(19) 665.11(10) 0.084(4) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 673.93(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00119(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)	* *					0.072(3)
4913.57(11) 0.164(5) 319.08(10) 0.082(3) 909.06(6) 0.026(4) 4980.97(20) 0.036(3) 327.80(10) 0.0269(16) 943.14(7) 0.082(10) 5014.61(15) 0.058(3) 329.88(11) 0.0221(17) 5180.38(12) 0.141(5) 335.92(10) 0.089(4) 5180.38(12) 0.141(5) 335.92(10) 0.089(4) 5261.48(13) 0.084(4) 354.27(10) 0.0408(20) 5279.86(12) 0.207(6) 472.30(10) 0.165(8) 5404.41(12) 0.147(5) 522.73(10) 0.102(5) 5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.061(3) 5603.28(13) 0.282(10) 548.23(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 66025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 622.57(16) <td>* *</td> <td>` /</td> <td>` /</td> <td>` '</td> <td>* *</td> <td></td>	* *	` /	` /	` '	* *	
4980.97(20) 0.036(3) 327.80(10) 0.026(916) 943.14(7) 0.082(10) 5014.61(15) 0.058(3) 329.88(11) 0.0221(17) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5180.38(12) 0.141(5) 335.92(10) 0.089(4) 5261.48(13) 0.084(4) 354.27(10) 0.0408(20) 5279.86(12) 0.207(6) 472.30(10) 0.165(8) 5404.41(12) 0.147(5) 522.73(10) 0.102(5) 5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.061(3) 5603.28(13) 0.282(10) 548.23(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0		* *		` '	* *	* *
5014.61(15) 0.058(3) 329.88(11) 0.0221(17) 5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5180.38(12) 0.141(5) 335.92(10) 0.089(4) 5261.48(13) 0.084(4) 354.27(10) 0.0408(20) 5279.86(12) 0.207(6) 472.30(10) 0.165(8) 5404.41(12) 0.147(5) 522.73(10) 0.102(5) 5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.061(3) 5603.28(13) 0.282(10) 548.23(11) 0.042(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(* *	* *		* *	* *	
5130.50(23) 0.058(4) 331.37(11) 0.0291(19) 5180.38(12) 0.141(5) 335.92(10) 0.089(4) 5261.48(13) 0.084(4) 354.27(10) 0.0408(20) 5279.86(12) 0.207(6) 472.30(10) 0.165(8) 5404.41(12) 0.147(5) 522.73(10) 0.102(5) 5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.061(3) 5603.28(13) 0.282(10) 548.23(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(, ,			` '	(.)	()
5180.38(12) 0.141(5) 335.92(10) 0.089(4) 5261.48(13) 0.084(4) 354.27(10) 0.0408(20) 5279.86(12) 0.207(6) 472.30(10) 0.165(8) 5404.41(12) 0.147(5) 522.73(10) 0.102(5) 5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.061(3) 5603.28(13) 0.282(10) 548.23(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.2.1(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4)				` '		
5261.48(13) 0.084(4) 354.27(10) 0.0408(20) 5279.86(12) 0.207(6) 472.30(10) 0.165(8) 5404.41(12) 0.147(5) 522.73(10) 0.102(5) 5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.061(3) 5603.28(13) 0.282(10) 548.23(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4)		* *		* *		
5279.86(12) 0.207(6) 472.30(10) 0.165(8) 5404.41(12) 0.147(5) 522.73(10) 0.102(5) 5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.061(3) 5603.28(13) 0.282(10) 548.23(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4)	, ,	* *		* *		
5404.41(12) 0.147(5) 522.73(10) 0.102(5) 5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.061(3) 5603.28(13) 0.282(10) 548.23(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 673.99(4) <		* *		` '		
5451.07(14) 0.079(3) 531.58(10) 0.0404(23) 5533.35(13) 0.131(5) 539.66(10) 0.061(3) 5603.28(13) 0.282(10) 548.23(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4)						
5533.35(13) 0.131(5) 539.66(10) 0.061(3) 5603.28(13) 0.282(10) 548.23(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) <		* *		* *		
5603.28(13) 0.282(10) 548.23(11) 0.042(10) 5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5)			` '			
5641.57(12) 0.316(7) 556.93(11) 0.040(10) 5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4)				` /		
5917.48(16) 0.084(4) 561.25(11) 0.033(8) 6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00102(14) 834.83(14) 0.059(5)			` /	` /		
6025.21(24) 0.0222(25) 566.63(10) 0.19(5) 6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00102(14) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)				* *		
6118.79(23) 0.0232(20) 578.02(9) 0.105(5) 6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00102(14) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)						
6166.61(14) 0.166(6) 583.27(9) 0.279(11) 6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.0019(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)	` /			* *		
6183.05(15) 0.081(4) 586.02(10) 0.045(3) 6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00119(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)	, ,	` '	` '	` /		
6222.57(16) 0.065(4) 593.23(10) 0.043(3) 6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00119(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)		* *		* *		
6336.11(22) 0.0245(22) 605.41(10) 0.054(4) 6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00102(14) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)	* *		` '	* *		
6514.57(15) 0.129(5) 612.45(9) 0.018(3) Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00119(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)				* *		
Lead 659.56(16) 0.0173(20) 6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00119(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)	* *	` '	` /	* *		
6737.53(14) 0.00691(19) 665.11(10) 0.084(4) 7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00119(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)	* *	()	` '	* *		
7367.83(12) 0.137(3) 681.81(9) 0.079(4) Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00119(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)		0.00691(19)		` '		
Bismuth 705.17(11) 0.050(4) 162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00119(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)		` ′		* *		
162.34(4) 0.00162(21) 714.23(10) 0.052(3) 319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00119(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)	* *	()	` '	* *		
319.83(4) 0.0115(14) 752.05(16) 0.0142(19) 673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00119(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)		0.00162(21)		* *		
673.99(4) 0.0026(4) 797.79(9) 0.0416(20) 774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00119(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)						
774.95(5) 0.00141(20) 808.53(11) 0.0212(14) 808.79(4) 0.00119(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)	* *	` '		` '		
808.79(4) 0.00119(16) 814.75(10) 0.0196(13) 900.21(6) 0.00102(14) 834.83(14) 0.059(5)	` '	` '	` '	` '		
900.21(6) 0.00102(14) 834.83(14) 0.059(5)	* *	` '		` '		
1337.07(5) 0.00156(21) 860.61(13) 0.047(5)						
	1337.07(5)	0.00156(21)	860.61(13)	0.047(5)		

ENSDF THERMAL NEUTRON CAPTURE GAMMA-RAY REFERENCES

The ENSDF database contains one to three primary references for each thermal neutron capture dataset that indicate the main literature sources. Additional references are included in the dataset and can be found in the original ENSDF-formatted files on the accompanying CD-ROM. Each reference is assigned an 8-digit keynumber specifying the publication year, first two initials of the first author's last name, and an arbitrary sequence code. Reference keynumbers for all of the primary ENSDF references used in this report are summarized in the following table. The complete citations for each reference follow the keynumber table

Isotope	NSR Reference Keynumber(s)	Isotope	NSR Reference Keynumber(s)
¹ H	1994Ki27,1982Va13,1980Is02	⁴⁶ Ca	1970Cr04
2 H	1982Ju01,1980Al31	⁴⁸ Ca	1970Cr04,1969ArZT
⁶ Li	1985Ko47	⁴⁵ Sc	1982Ti02
$^7\mathrm{Li}$	1991Ly01	⁴⁶ Ti	1972Kn07
⁹ Be	1983Ke11,1974JuZW	⁴⁷ Ti	1989Co01,1984Ru06
10 B	1986Ko19	⁴⁸ Ti	1992Ku17,1983Ru08
¹² C	1982Mu14	⁴⁹ Ti	1984Ru06,1971Te01
¹³ C	1982Mu14	⁵⁰ Ti	1971Ar39
¹⁴ N	1997Ju02,1994Ra17,1990Is05	$^{50}\mathrm{V}$	1991Mi08,1978Ro03,1973HaWJ
¹⁶ O	1977Mc05	$^{51}\mathrm{V}$	1991Mi08
17 O	1978LoZW,1978LoZT	⁵⁰ Cr	1974KoYY,1972Ko15,1972Lo26
¹⁹ F	1996Ra04	⁵² Cr	1980Ko01,1972Ko15
²⁰ Ne	1986Pr05	⁵³ Cr	1989Ho15,1988Li30,1994Co09
²¹ Ne	1986Pr05	⁵⁴ Cr	1972Wh05
²² Ne	1986Pr05		1980De20,1975Co05,1974Bo19
²³ Na	1983Hu11,1983Ti02	⁵⁴ Fe	1972Ko15,1967Ar14,1990Ku26
²⁴ Mg	1992Wa06,1991MiZQ	⁵⁶ Fe	1980Ve05,1978Ve06,1969Ko05
25 Mg	1992Wa06,1991Ki04	⁵⁷ Fe	1969Fa05,1973Ko27
26 Mg	1992Wa06	⁵⁸ Fe	1983VeZZ,1980Ve05,1978Ve06
²⁷ Al	1982Sc14	⁵⁹ Co	1984Ko29
²⁸ Si	1992Ra19,1990Is02	⁵⁸ Ni	1993Ha05,1977Is01,1972St06
²⁹ Si	1992Ra19,1990Is02	⁶⁰ Ni	1993Ha05
³⁰ Si	1992Ra19,1990Is02	⁶¹ Ni	1970Fa06,1975Wi06
³¹ P	1989Mi16,1985Ke11	⁶² Ni	1977Is01,1970GaZQ,1972Ko15
32 S	1985Ra15	⁶⁴ Ni	1977Is01
33 S	1985Ra15	⁶³ Cu	1983De28
^{34}S	1985Ra15	⁶⁵ Cu	1983De29
36 S	1984Ra09,1997Be42	⁶⁴ Z n	1972Bo75
³⁵ Cl	1982Kr12,1985Ke04,1996Co16	⁶⁶ Z n	1971Kn06,1975DeYM,1970Ba21
³⁷ Cl	1973Sp06	⁶⁷ Z n	1971Ot01
³⁶ Ar	1970Ha56	⁶⁸ Zn	1972Bo75
⁴⁰ Ar	1970На56	⁶⁹ Ga	1967Ba79,1970Li04,1971Ve03
³⁹ K	1984Vo01	⁷¹ Ga	1970Li04,1971Ve03
40 K	1984Kr05	⁷⁰ Ge	1991Is01,1972Gr34,1972We10
⁴¹ K	1985Kr06	⁷² Ge	1972Gr34,1972Ha74,1972We10
⁴⁰ Ca	1967Gr16,1970Cr04	⁷³ Ge	1985HoZQ,1991Is01
⁴² Ca	1969Gr08	⁷⁴ Ge	1972Gr34,1972Ha74,1991Is01
⁴³ Ca	1972Wh02	⁷⁶ Ge	1972Gr34,1972Ha74
⁴⁴ Ca	1968Gr11	⁷⁵ As	1990Но10

<u>Isotope</u>	NSR Reference Keynumber(s)	Isotope	NSR Reference Keynumber(s)
⁷⁴ Se	1984To11,1982ToZS,1981En07	¹³⁰ Te	1980Ho29,1977RuZR
⁷⁶ Se	1982ToZS,1985To10	^{127}I	1991Sa07
⁷⁷ Se	1987Su05,1981En07,1979BrZE	¹²⁹ Xe	1988Ha28,1971Gr28
⁷⁸ Se	1979BrZE,1970Ba54,1981En07	¹³¹ Xe	1988Ha28,1971Gr28
80 Se	1971Ra07	¹³⁶ Xe	1977Pr07
⁷⁹ Br	1978Do06,1977DoZP	¹³³ Cs	1987Bo24
⁸¹ Br	1978Do06	¹³⁴ Ba	1993Bo01
⁸³ Kr	1987Ha21,1972Ma42	¹³⁵ Ba	1990Is07,1983BrZK,1969Ge07
⁸⁶ Kr	1977Je03	¹³⁶ Ba	1995Bo03
⁸⁵ Rb	1969Da15,1969Ra10,1968Ir02	¹³⁷ Ba	1995Bo05
⁸⁶ Sr	1986Wi16	¹³⁸ Ba	1969Mo13
⁸⁷ Sr	1987Wi15	¹³⁹ La	1970Ju04,1988BoZH,1990Is09
⁸⁸ Sr	1989Wi05	¹³⁶ Ce	1981KoZW
89 Y	1993Mi04	¹³⁸ Ce	1969Gr31
90 Zr	1978LoZX	¹⁴⁰ Ce	1970Ge03
⁹¹ Z r	1979HeZT,1972FaZW	¹⁴² Ce	1976Ge02
⁹² Zr	1977Ba33	¹⁴¹ Pr	1985AlZN,1981Ke11,1968Ke08
⁹⁴ Zr	1977Ba33,1976BaYM	¹⁴² Nd	1976Mi19,1993Bo29
⁹³ Nb	1985Bo48,1968Ju01	¹⁴³ Nd	1983Sn04
¹⁰⁰ Mo	1990Se17	¹⁴⁴ Nd	1975Hi03
⁹² Mo	1991Is05	¹⁴⁵ Nd	1983Sn01,1976Bu14
⁹⁴ Mo	1973Ba57	¹⁴⁶ Nd	1975Ro16,1976Ro03
⁹⁵ Mo	1970He27	¹⁴⁸ Nd	1976Pi04
	1973De39	$^{150}\mathrm{Nd}$	1975SmZT,1976Pi13,1985BuZU
⁹⁷ Mo	1971He10		1978WaZM
⁹⁸ Mo	1973De39		1971Gr37,1993Ju01
⁹⁹ Tc	1979Pi08		1982Ba15
99 Ru	1988Co18,1988CoZU,1991Is05	¹⁴⁹ Sm	1966Sm03,1963Gr18,1969Re11
¹⁰⁰ Ru	1982Ba69	¹⁵⁰ Sm	1986Va08
¹⁰¹ Ru	1991Is05	¹⁵² Sm	1963Gr18,1969Sm04,1971Be41
¹⁰² Ru	1979SeZT	¹⁵⁴ Sm	1982Sc03
¹⁰⁴ Ru	1978Gu14,1974Hr01	¹⁵¹ Eu	1978Vo05
¹⁰³ Rh	1981Ke03	¹⁵³ Eu	1987Ba52,1978PrZY,1984Ro06
¹⁰² Pd	1970Bo29	¹⁵² Gd	1996SpZZ
¹⁰⁴ Pd	1970Bo29	¹⁵⁴ Gd	1986Sc25
¹⁰⁵ Pd	1987Co03,1970Or05	¹⁵⁵ Gd	1982Ba28
¹⁰⁸ Pd	1980Ca02	¹⁵⁶ Gd	1993Ko01,1986GrZR,1971Gr42
107 Ag	1985Ma54	¹⁵⁷ Gd	1978Gr14,1970Bo29,1994GrZZ
¹⁰⁹ Ag	1979Bo41	¹⁵⁸ Gd	1971Gr42
110 Cd	1987BaYW,1991NeZX	¹⁶⁰ Gd	1971Gr42
111 Cd	1993De01	¹⁵⁹ Tb	1974Ke01,1989Du03
¹¹³ Cd	1984Mh01,1979Br25,1968Gr32	¹⁶⁰ Dy	1977Be03
¹¹³ In	1975Ra07	¹⁶¹ Dy	1995Be02,1967Ba34
¹¹⁵ In	1976Al06,1972Ra39,1973Sc23	162 Dy	1989Sc31,1967Sc05,1986Bo43
115 Sn	1991Ra01	¹⁶³ Dy	1964Sc25
¹²¹ Sb	1972Sh02,1978Al09,1977Va11	¹⁶⁴ Dy	1965Sc09,1983Is04
¹²³ Sb	1973ShZZ,1980Al22	¹⁶⁵ Ho	1967Mo05,1984Ke15
¹²² Te	192000Bo24	¹⁶⁶ Er	1965Ko13,1970Mi01
¹²³ Te	1995Ge06,1983Ro13,1969Bu05	¹⁶⁷ Er	1991Da12,1991DaZT,1996Gi09
¹²⁴ Te	1999Ho01,1998Ho16,1997BoZW	¹⁶⁸ Er	1970Mu15
¹²⁸ Te	1981Ho12,1999Bo31	¹⁷⁰ Er	1971Al01,1984MuZY

Isotope NSR Reference Keynumber(s) ¹⁶⁹Tm 1994HoZZ,1989Du03,1968Lo09 ¹⁶⁸**Yb** 1969Bo16,1972Wi12,1973GrZV ¹⁷⁰**Yb** 1972Wa10 ¹⁷¹**Yb** 1985Ge02,1975Gr32,1988Su01 ¹⁷²**Yb** 1971Al01 ¹⁷³**Yb** 1987Ge01,1981Gr01 ¹⁷⁴**Yb** 1971Al27,1971Br17 ¹⁷⁶**Yb** 1972Al19,1973PrZI,1990Bo49 ¹⁷⁵Lu 1991Kl02 ¹⁷⁶**Lu** 1965Ma18,1975Ge11,1971Ma45 ¹⁷⁴**Hf** 1971Al01 ¹⁷⁶**Hf** 1967Pr08,1967Na07 ¹⁷⁷**Hf** 1986Ha22,1987Bo52 ¹⁷⁸**Hf** 1989Ri03,1976Be23 ¹⁷⁹**Hf** 1974Bu22,1990Bo52,1986RoZM 180 Hf 1971Al22,1967Pr08 ¹⁸⁰ Ta 1973LaZY ¹⁸¹ Ta 1979Va10,1971He13,1974An12 $^{182}\,\mathrm{W}$ 1997Pr02 $^{183}\,\mathrm{W}$ 1974Gr11,1975Bu01 $^{184}\,\mathrm{W}$ 1973PrYV 186 W 1973PrZI,1969BoZN,1989BoYT ¹⁸⁵**Re** 1969La11,1973Gl06 ¹⁸⁷**Re** 1972Sh13,1968Su01,1978Sc10 ¹⁸⁴**Os** 1974PrZY,1974Pr15 ¹⁸⁶Os 1974Pr15,1974NeZY ¹⁸⁷ Os 1983Fe06 ¹⁸⁸Os 1992Br17,1976Be50 ¹⁸⁹Os 1979Ca02 ¹⁹⁰Os 1991Bo35 ¹⁹²Os 1978Be22,1979Wa04 ¹⁹¹ Ir 1991Ke10 1998Ba85,1998Ba42,1987CoZW ¹⁹⁴ Pt 1987Ca03,1982Wa20 ¹⁹⁵ Pt 1979Ci04 ¹⁹⁶ Pt 1978Ya07 ¹⁹⁷ Au 1996Ma70,1996Ma75,1993Pe04 ¹⁹⁹**Hg** 1970Or05,1971Ma10,1974Br02 ²⁰¹**Hg** 1975Br02 ²⁰³ Tl 1974Co21,1975RaYX

203 Tl 1974Co21,1975RaYX
 204 Pb 1967Ju02,1983Hu13
 206 Pb 1983Hu13
 207 Pb 1998Be19,1983Ma55
 209 Bi 1989Sh20,1983Ts01
 232 Th 1974Ke13,1979Je01
 234 U 1972Ri08,1979Al03
 235 U 1975OtZX,1973Gr20,1970Ka22
 238 U 1978Bo12,1972Bo46,1984Ch05

Complete Reference Citations

- 1963Gr18 L.V.Groshev, A.M.Demidov, V.A.Ivanov, V.N.Lutsenko, V.I.Pelekhov, Nucl. Phys. 43, 669 (1963)
- **1964Sc25** O.W.B.Schult, U.Gruber, B.P.Maier, F.W.Stanek, Z. Phys. 180, 298 (1964)
- **1965Ko13** H.R.Koch, Z. Phys. 187, 450 (1965)
- **1965Ma18** B.P.K.Maier, Z. Phys. 184, 153 (1965)
- **1965Sc09** O.W.B.Schult, B.P.Maier, U.Gruber, Z. Phys. 182, 171 (1965)
- **1966Sm03** R.K.Smither, Phys. Rev. 150, 964 (1966)
- **1967Ar14** S.E.Arnell, R.Hardell, A.Hasselgren, L.Jonsson, O.Skeppstedt, Nucl. Instrum. Meth. 54, 165 (1967)
- 1967Ba34 A.Backlin, A.Suarez, O.W.B.Schult, B.P.K.Maier, U.Gruber, E.B.Shera, D.W.Hafemeister, W.N.Shelton, R.K.Sheline, Phys. Rev. 160, 1011 (1967)
- 1967Ba79 G.A.Bartholomew, A.Doveika, K.M.Eastwood, S.Monaro, L.V.Groshev, A.M.Demidov, V.I.Pelekhov, L.L.Sokolovskii, Nuclear Data A3, 367 (1967)
- **1967Gr16** H.Gruppelaar, P.Spilling, Nucl. Phys. A102, 226 (1967)
- **1967Ju02** E.T.Jurney, H.T.Motz, S.H.Vegors, Jr., Nucl. Phys. A94, 351 (1967)
- 1967Mo05 H.T.Motz, E.T.Jurney, O.W.B.Schult, H.R.Koch, U.Gruber, B.P.Maier, H.Baader, G.L.Struble, J.Kern, R.K.Sheline, T.Von Egidy, T.Elze, E.Bieber, A.Backlin, Phys. Rev. 155, 1265 (1967)
- **1967Na07** A.I.Namenson, H.H.Bolotin, Phys. Rev. 158, 1206 (1967)
- P.T.Prokofev, M.K.Balodis, Y.Y.Berzin, V.A.Bondarenko, N.K.Kramer, E.Y.Lure, G.L.Rezvaya, L.I.Simonova, Atlas Spectra of Conversion Electron From Thermal Neutron Capture in Nuclei with A = 143 197 and Schemes of Radiative Transitions, 'Zinatne', Riga (1967)
- 1967Sc05 O.W.B.Schult, M.E.Bunker, D.W.Hafemeister, E.B.Shera, E.T.Jurney, J.W.Starner, A.Backlin, B.Fogelberg, U.Gruber, B.P.K.Maier, H.R.Koch, W.N.Shelton, M.Minor, R.K.Sheline, Phys. Rev. 154, 1146 (1967)
- **1968Gr11** H.Gruppelaar, P.Spilling, A.M.J.Spits, Nucl. Phys. A114, 463 (1968)
- 1968Gr32 L.V.Groshev, A.M.Demidov, V.I.Pelekhov, L.L.Sokolovskii, G.A.Bartholomew, A.Doveika, K.M.Eastwood, S.Monaro, Nucl. Data Tables A5, 1 (1968)
- **1968Ir02** J.-L.Irigaray, G.-Y.Petit, R.Samama, P.Carlos, J.Girard, G.Perrin, Compt. Rend. 267B, 1358 (1968)
- **1968Ju01** E.T.Jurney, H.T.Motz, R.K.Sheline, E.B.Shera, J.Vervier, Nucl. Phys. A111, 105 (1968)
- 1968Ke08 J.Kern, G.L.Struble, R.K.Sheline, E.T.Jurney, H.R.Koch, B.P.K.Maier, U.Gruber, O.W.B.Schult, Phys. Rev. 173, 1133 (1968)
- **1968Lo09** M.A.Lone, R.E.Chrien, O.A.Wasson, M.Beer, M.R.Bhat, H.R.Muether, Phys. Rev. 174, 1512 (1968)
- 1968Su01 A.A.Suarez, T.v.Egidy, W.Kaiser, H.F.Mahlein, A.Jones, Nucl. Phys. A107, 417 (1968)
- 1969ArZT S.E.Arnell, R.Hardell, O.Skeppstedt, E.Wallander, Proc. Int. Symp.
 Neutron Capture Gamma-Ray Spectroscopy, Studsvik, Intern. At. En. Agency,
 Vienna, p. 231 (1969)
- 1969Bo16 V.Bondarenko, P.Prokofev, P.Manfrass, A.Andreeff, Latvijas PSR Zinatnu Akad. Vestis, Fiz. Teh. Zinatnu Ser., No. 1, 3 (1969)
- **1969BoZN** H.H.Bolotin, D.A.McClure, Proc. Intern. Symp. Neutron Capture Gamma-Ray Spectroscopy, Studsvik, Int. At. En. Agency, Vienna, p. 389 (1969)
- **1969Bu05** D.L.Bushnell, R.P.Chaturvedi, R.K.Smither, Phys. Rev. 179, 1113 (1969)
- **1969Da15** J.W.Dawson, R.K.Sheline, E.T.Jurney, Phys. Rev. 181, 1618 (1969)
- **1969Fa05** U.Fanger, W.Michaelis, H.Schmidt, H.Ottmar, Nucl. Phys. A128, 641 (1969)
- **1969Ge07** W.Gelletly, J.A.Moragues, M.A.J.Mariscotti, W.R.Kane, Phys. Rev. 181, 1682 (1969)
- **1969Gr08** H.Gruppelaar, A.M.F.Op Den Kamp, A.M.J.Spits, Nucl. Phys. A131, 180 (1969)
- 1969Gr31 L.V.Groshev, V.N.Dvoretskii, A.M.Demidov, M.S.Alvash, Yadern. Fiz. 10, 681

```
(1969); Soviet J. Nucl. Phys. 10, 392 (1970)
```

- **1969Ko05** J.Kopecky, E.Warming, Nucl. Phys. A127, 385 (1969)
- 1969La11 R.G.Lanier, R.K.Sheline, H.F.Mahlein, T.v.Egidy, W.Kaiser, H.R.Koch, U.Gruber, B.P.K.Maier, O.W.B.Schult, D.W.Hafemeister, E.B.Shera, Phys. Rev. 178, 1919 (1969)
- 1969Mo13 J.A.Moragues, M.A.J.Mariscotti, W.Gelletly, W.R.Kane, Phys. Rev. 180, 1105 (1969)
 1969Ra10 N.C.Rasmussen, Y.Hukai, T.Inouye, V.J.Orphan, AFCRL-69-0071 (MITNE-85) (1969)
- **1969Re11** E.R.Reddingius, H.Postma, Nucl. Phys. A137, 389 (1969)
- **1969Sm04** R.K.Smither, E.Bieber, T.von Egidy, W.Kaiser, K.Wien, Phys. Rev. 187, 1632 (1969)
- 1970Ba21 I.F.Barchuk, D.A.Bazavov, G.V.Belykh, V.I.Golyshkin, A.V.Murzin, A.F.Ogorodnik, Yad. Fiz. 11, 934 (1970); Sov. J. Nucl. Phys. 11, 519 (1970)
- 1970Ba54 I.F.Barchuk, D.A.Bazavov, G.V.Belykh, V.I.Golyshkin, A.V.Murzin, A.F.Ogorodnik, Izv. Akad. Nauk SSSR, Ser. Fiz. 34, 1775 (1970); Bull. Acad. Sci. USSR, Phys. Ser. 34, 1579 (1971)
- **1970Bo29** L.M.Bollinger, G.E.Thomas, Phys. Rev. C2, 1951 (1970)
- **1970Cr04** F.P.Cranston, R.E.Birkett, D.H.White, J.A.Hughes, Nucl. Phys. A153, 413 (1970)
- 1970Fa06 U.Fanger, D.Heck, W.Michaelis, H.Ottmar, H.Schmidt, R.Gaeta, Nucl. Phys. A146, 549 (1970)
- **1970GaZQ** J.-J.Gardien, Thesis, Univ. Paris (1970); FRNC-TH-37 (1970)
- 1970Ge03 W.Gelletly, J.A.Moragues, M.A.J.Mariscotti, W.R.Kane, Phys. Rev. C1, 1052 (1970)
- **1970Ha56** R.Hardell, C.Beer, Phys. Scr. 1, 85 (1970)
- **1970He27** D.Heck, N.Ahmed, U.Fanger, W.Michaelis, H.Ottmar, H.Schmidt, Nucl. Phys. A159, 49 (1970)
- 1970Ju04 E.T.Jurney, R.K.Sheline, E.B.Shera, H.R.Koch, B.P.K.Maier, U.Gruber, H.Baader, D.Breitig, O.W.B.Schult, J.Kern, G.L.Struble, Phys. Rev. C2, 2323 (1970)
- **1970Ka22** W.R.Kane, Phys. Rev. Lett. 25, 953 (1970)
- **1970Li04** H.Linusson, R.Hardell, S.E.Arnell, Ark. Fys. 40, 197 (1970)
- **1970Mi01** W.Michaelis, F.Weller, U.Fanger, R.Gaeta, G.Markus, H.Ottmar, H.Schmidt, Nucl. Phys. A143, 225 (1970)
- 1970Mu15 T.J.Mulligan, R.K.Sheline, M.E.Bunker, E.T.Jurney, Phys. Rev. C2, 655 (1970)
- **1970Or05** V.J.Orphan, N.C.Rasmussen, T.L.Harper, GA-10248 (1970)
- **1971Al01** G.Alenius, S.E.Arnell, C.Schale, E.Wallander, Nucl. Phys. A161, 209 (1971)
- **1971Al22** G.Alenius, S.E.Arnell, C.Schale, E.Wallander, Phys. Scr. 3, 105 (1971)
- 1971Al27 G.Alenius, S.E.Arnell, C.Schale, E.Wallander, Phys. Scr. 4, 35 (1971)
- **1971Ar39** S.E.Arnell, R.Hardell, A.Hasselgren, C.-G.Mattsson, O.Skeppstedt, Phys. Scr. 4, 89 (1971)
- **1971Be41** M.J.Bennett, R.K.Sheline, Y.Shida, Nucl. Phys. A171, 113 (1971)
- **1971Br17** D.Breitig, Z. Naturforsch. 26a, 371 (1971)
- 1971Gr28 L.V.Groshev, L.I.Govor, A.M.Demidov, A.S.Rakhimov, Yad. Fiz. 13, 1129 (1971); Sov. J. Nucl. Phys. 13, 647 (1971)
- 1971Gr37 L.V.Groshev, A.M.Demidov, V.F.Leonov, L.L.Sokolovskii, Yad. Fiz. 14, 473 (1971); Sov. J. Nucl. Phys. 14, 265 (1972)
- 1971Gr42 L.V.Groshev, A.M.Demidov, L.L.Sokolovskii, Izv. Akad. Nauk SSSR, Ser. Fiz. 35, 1644 (1971); Bull. Acad. Sci. USSR, Phys. Ser. 35, 1497 (1972)
- 1971He10 D.Heck, U.Fanger, W.Michaelis, H.Ottmar, H.Schmidt, Nucl. Phys. A165, 327 (1971)
- **1971He13** R.G.Helmer, R.C.Greenwood, C.W.Reich, Nucl. Phys. A168, 449 (1971)
- **1971Kn06** R.Knerr, H.Vonach, Z. Phys. 246, 151 (1971)
- **1971Ma10** W.Mampe, T.von Egidy, W.Kaiser, K.Schreckenbach, Z. Naturforsch. 26a, 405 (1971)
- 1971Ma45 P.Manfrass, H.Prade, M.R.Beitins, W.A.Bondarenko, N.D.Kramer, P.T.Prokofev, Nucl. Phys. A172, 298 (1971)
- 1971Ot01 H.Ottmar, N.M.Ahmed, U.Fanger, D.Heck, W.Michaelis, H.Schmidt, Nucl. Phys. A164, 69 (1971)

- **1971Ra07** D.Rabenstein, H.Vonach, Z. Naturforsch. 26a, 458 (1971)
- **1971Te01** J.Tenenbaum, R.Moreh, Y.Wand, G.Ben-David, Phys. Rev. C3, 663 (1971)
- **1971Ve03** J. Vervier, H.H.Bolotin, Phys. Rev. C3, 1570 (1971)
- **1972Al19** G.Alenius, S.E.Arnell, C.Schale, E.Wallander, Nucl. Phys. A186, 209 (1972)
- **1972Bo46** L.M.Bollinger, G.E.Thomas, Phys. Rev. C6, 1322 (1972)
- 1972Bo75 A.P.Bogdanov, A.V.Soroka, Vestsi Akad. Navuk BSSR, Ser. Fiz. -Mat. Navuk No. 6, 96 (1972)
- **1972FaZW** U.Fanger, D.Heck, R.Pepelnik, H.Schmidt, J.Wood, Contrib. Conf. Nuclear Structure Study with Neutrons, Budapest, p. 72 (1972)
- 1972Gr34 L.V.Groshev, L.I.Govor, A.M.Demidov, Izv. Akad. Nauk SSSR, Ser. Fiz. 36, 833 (1972); Bull. Acad. Sci. USSR, Phys. Ser. 36, 753 (1973)
- **1972Ha74** A.Hasselgren, Nucl. Phys. A198, 353 (1972)
- 1972Kn07 U.A.Knatsko, S.A.Nyagrei, E.A.Rudak, A.M.Khilmanovich, Vestsi Akad. Navuk BSSR, Ser. Fiz. -Mat. Navuk No. 3, 79 (1972)
- 1972Ko15 J.Kopecky, K.Abrahams, F.Stecher-Rasmussen, Nucl. Phys. A188, 535 (1972)
- **1972Lo26** G.D.Loper, G.E.Thomas, Nucl. Instrum. Meth. 105, 453 (1972)
- **1972Ma42** C.G.Mattsson, S.E.Arnell, L.Jonsson, Phys. Scr. 5, 58 (1972)
- 1972Ra39 D.Rabenstein, D.Harrach, H.Vonach, G.G.Dussel, R.P.I.Perazzo, Nucl. Phys. A197, 129 (1972)
- **1972Ri08** F.A.Rickey, E.T.Jurney, H.C.Britt, Phys. Rev. C5, 2072 (1972)
- **1972Sh02** E.B.Shera, Priv. Comm. (February 1972)
- 1972Sh13 E.B.Shera, U.Gruber, B.P.K.Maier, H.R.Koch, O.W.B.Schult, R.G.Lanier,, Phys. Rev. C6, 537 (1972)
- **1972St06** F.Stecher-Rasmussen, J.Kopecky, K.Abrahams, W.Ratynski, Nucl. Phys. A181, 250 (1972)
- **1972Wa10** E. Wallander, E. Selin, Nucl. Phys. A188, 129 (1972)
- **1972We10** R.Weishaupt, D.Rabenstein, Z. Phys. 251, 105 (1972)
- **1972Wh02** D.H.White, R.E.Birkett, Phys. Rev. C5, 513 (1972)
- **1972Wh05** D.H.White, R.E.Howe, Nucl. Phys. A187, 12 (1972)
- **1972Wi12** L.Wimmer, Priv. Comm. (May 1972)
- 1973Ba57 I.F.Barchuk, G.V.Belykh, V.I.Golyshkin, A.V.Murzin, A.F.Ogorodnik, Izv. Akad. Nauk SSSR, Ser. Fiz. 37, 1080 (1973); Bull. Acad. Sci. USSR, Phys. Ser. 37, No. 5, 146 (1974)
- 1973De39 A.M.Demidov, M.R.Akhmed, M.A.Khalil, S.Al-Nazar, Izv. Akad. Nauk SSSR, Ser. Fiz. 37, 998 (1973); Bull. Acad. Sci. USSR, Phys. Ser. 37, No. 5, 74 (1974)
- **1973Gl06** J.Glatz, Z. Phys. 265, 335 (1973)
- 1973Gr20 R.G.Graves, R.E.Chrien, D.I.Garber, G.W.Cole, O.A.Wasson, Phys. Rev. C8, 781 (1973)
- **1973GrZV** R.C.Greenwood, Priv. Comm. (1973)
- **1973HaWJ** D.Harrach, Proc. Int. Conf. Nuc. Phys., Munich, J. de Boer, H. J. Mang, Eds., North-Holland Publ. Co., Amsterdam, Vol. 1, p. 175 (1973)
- 1973Ko27 J.Kopecky, K.Abrahams, F.Stecher-Rasmussen, Nucl. Phys. A215, 45 (1973)
- **1973LaZY** J.T.Larsen, R.G.Lanier, Priv. Comm. (March 1973)
- **1973PrYV** H.Prade, W.Andrejtscheff, P.Manfrass, M.Mohsen, W.Seidel, M.R.Beitins, L.I.Simonova, ZfK-260 (1973)
- 1973PrZI P.Prokofev, M.Balodis, M.Beitins, Y.Berzin, V.Bondarenko, N.Kramer, A.Krumina, G.Rezvaya, L.Simonova, Spectra of Electromagnetic Transitions and Level Schemes Following Thermal Neutron Capture by Nuclides with A

```
143-193, P. Prokofev, J. Berzins, G. Rezvaya, Eds., Publishing House 'Zinatne', Riga (1973)
```

1973Sc23 K.Schreckenbach, A.A.Suarez, T.von Egidy, Z. Naturforsch. 28a, 1308 (1973)

1973ShZZ E.B.Shera, Priv. Comm. (Jan. 1973)

1973Sp06 A.M.J.Spits, J.A.Akkermans, Nucl. Phys. A215, 260 (1973)

1974An12 W.Andrejtscheff, P.Manfrass, W.Seidel, Nucl. Phys. A226, 142 (1974)

1974Bo19 H.Borner, O.W.B.Schult, Z. Naturforsch. 29a, 385 (1974)

1974Br02 D.Breitig, R.F.Casten, G.W.Cole, Phys. Rev. C9, 366 (1974); Erratum Phys. Rev. C9, 2088 (1974)

1974Bu22 D.L.Bushnell, D.J.Buss, R.K.Smither, Phys. Rev. C10, 2483 (1974)

1974Co21 A.H.Colenbrander, T.J.Kennett, Can. J. Phys. 52, 1215 (1974)

1974Gr11 R.C.Greenwood, C.W.Reich, Nucl. Phys. A223, 66 (1974)

1974Hr01 B.Hrastnik, H.Seyfarth, A.M.Hassan, W.Delang, P.Gottel, Nucl. Phys. A219, 381 (1974)

1974JuZW E.T.Jurney, USNDC-11, p. 149 (1974)

1974Ke01 J.Kern, G.Mauron, B.Michaud, K.Schreckenbach, T.Von Egidy, W.Mampe, H.R.Koch, H.A.Baader, D.Breitig, U.Gruber, B.P.K.Maier, O.W.B.Schult, J.T.Larsen, Nucl. Phys. A221, 333 (1974)

1974Ke13 J.Kern, D.Duc, Phys. Rev. C10, 1554 (1974)

1974KoYY J.Kopecky, Contrib. Int. Symp. Neutron Capture Gamma Ray Spectrosc. and Related Topics, 2nd, Petten, p. 325 (1974)

1974NeZY L.A.Neiburg, L.I.Simonova, Program and Theses, Proc. 24th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 151 (1974)

1974Pr15 P.T.Prokofev, L.I.Simonova, Izv. Akad. Nauk SSSR, Ser. Fiz. 38, 2135 (1974); Bull. Acad. Sci. USSR, Phys. Ser. 38, No. 10, 104 (1974)

1974PrZY P.T.Prokofev, L.A.Neiburg, L.I.Simonova, Program and Theses, Proc. 24th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 149 (1974)

1975Br02 D.Breitig, R.F.Casten, W.R.Kane, G.W.Cole, J.A.Cizewski, Phys. Rev. C11, 546 (1975)

1975Bu01 D.L.Bushnell, J.Hawkins, R.Goebbert, R.K.Smither, Phys. Rev. C11, 1401 (1975)

1975Co05 A.H.Colenbrander, T.J.Kennett, Can. J. Phys. 53, 236 (1975)

1975DeYM J.de Boer, Proc. Int. Symp. Neutron Capture Gamma-Ray Spectroscopy and Related Topics, 2nd, Petten, p. 609 (1975)

1975Ge11 D.Geinoz, J.Kern, R.Piepenbring, Nucl. Phys. A251, 305 (1975)

1975Gr32 R.C.Greenwood, C.W.Reich, S.H.Vegors, Jr., Nucl. Phys. A252, 260 (1975)

1975Hi03 D.L.Hillis, C.R.Bingham, D.A.McClure, N.S.Kendrick, Jr., J.C.Hill, S.Raman, J.B.Ball, J.A.Harvey, Phys. Rev. C12, 260 (1975)

H.Ottmar, P.Matussek, I.Piper, Proc. Int. Symp. Neutron Capture Gamma Ray Spectroscopy and Related Topics, 2nd, Petten, The Netherlands (1974), K. Abrahams, F. Stecher-Rasmussen, P. Van Assche, Eds., Reactor Centrum Nederland, p. 658 (1975)

1975Ra07 D.Rabenstein, D.Harrach, Nucl. Phys. A242, 189 (1975)

1975RaYX D.Rabenstein, Proc. Int. Symp. Neutron Capture Gamma-Ray Spectrosc. and Related Topics, 2nd, Petten, p. 584 (1974)

1975Ro16 R.Roussille, J.A.Pinston, H.Borner, H.R.Koch, D.Heck, Nucl. Phys. A246, 380 (1975)

1975SmZT H.A.Smith Jr., M.E.Bunker, J.W.Starner, Priv. Comm. (October 1975)

1975Wi06 W.M.Wilson, G.E.Thomas, H.E.Jackson, Phys. Rev. C11, 1477 (1975)

1976Al06 V.L.Alexeev, B.A.Emelianov, D.M.Kaminker, Y.L.Khazov, I.A.Kondurov,

- Y.E.Loginov, V.L.Rumiantsev, S.L.Sakharov, A.I.Smirnov, Nucl. Phys. A262, 19 (1976)
- 1976BaYM I.F.Barchuk, G.V.Belykh, V.I.Golyshkin, A.F.Ogorodnik, M.M.Tuchinsky, Program and Theses, Proc. 26th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Baku, p. 67 (1976)
- M.R.Beitins, N.D.Kramer, P.T.Prokofjev, J.J.Tambergs, L.Jacobs,
 G.Vandenput, J.M.van den Cruyce, P.H.M.van Assche, D.Breitig, H.A.Baader,
 H.R.Koch, Nucl. Phys. A262, 273 (1976)
- 1976Be50 D.Benson, Jr., P.Kleinheinz, R.K.Sheline, E.B.Shera, Phys. Rev. C14, 2095 (1976)
- **1976Bu14** D.L.Bushnell, G.R.Tassotto, R.K.Smither, Phys. Rev. C14, 75 (1976)
- **1976Ge02** W.Gelletly, W.R.Kane, R.F.Casten, Phys. Rev. C13, 1434 (1976)
- 1976Mi19 J.A.Mirza, A.M.Khan, M.Irshad, H.A.Schmidt, A.F.M.Ishaq, M.Anwar-Ul-Islam, Nucl. Phys. A272, 133 (1976)
- **1976Pi04** J.A.Pinston, R.Roussille, H.Borner, H.R.Koch, Nucl. Phys. A264, 1 (1976)
- 1976Pi13 J.A.Pinston, R.Roussille, H.Borner, W.F.Davidson, P.Jeuch, H.R.Koch, K.Schreckenbach, D.Heck, Nucl. Phys. A270, 61 (1976)
- 1976Ro03 R.Roussille, J.A.Pinston, F.Braumandl, P.Jeuch, J.Larysz, W.Mampe, K.Schreckenbach, Nucl. Phys. A258, 257 (1976)
- 1977Ba33 I.F.Barchuk, G.V.Belykh, V.I.Golyshkin, A.F.Ogorodnik, M.M.Tuchinskii, Izv. Akad. Nauk SSSR, Ser. Fiz. 41, 101 (1977); Bull. Acad. Sci. USSR, Phys. Ser. 41, No. 1, 82 (1977)
- **1977Be03** M.J.Bennett, R.K.Sheline, Phys. Rev. C15, 146 (1977)
- **1977DoZP** H.-P.Do, Thesis, Univ. Claude Bernard, Lyon (1977); LYCEN-7736 (1977)
- **1977Is01** A.F.M.Ishaq, A.Robertson, W.V.Prestwich, T.J.Kennett, Z. Phys. A281, 365 (1977)
- 1977Je03 C.M.Jensen, R.G.Lanier, G.L.Struble, L.G.Mann, S.G.Prussin, Phys. Rev. C15, 1972 (1977)
- **1977Mc05** A.B.McDonald, E.D.Earle, M.A.Lone, F.C.Khanna, H.C.Lee, Nucl. Phys. A281, 325 (1977)
- 1977Pr07 S.G.Prussin, R.G.Lanier, G.L.Struble, L.G.Mann, S.M.Schoenung, Phys. Rev. C16, 1001 (1977)
- 1977RuZR E.A.Rudak, A.V.Soroka, V.N.Tadeush, Program and Theses, Proc. 27th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, p. 60 (1977)
- **1977Va11** W.F.van Gunsteren, D.Rabenstein, Z. Phys. A282, 55 (1977)
- 1978Al09 V.L.Alexeev, B.A.Emelianov, A.I.Egorov, L.P.Kabina, D.M.Kaminker, Y.L.Khazov, I.A.Kondurov, E.K.Leushkin, Y.E.Loginov, V.V.Martynov, V.L.Rumiantsev, S.L.Sakharov, P.A.Sushkov, H.G.Borner, W.F.Davidson, J.A.Pinston, K.Schreckenbach, Nucl. Phys. A297, 373 (1978)
- **1978Be22** D.Benson, Jr., P.Kleinheinz, R.K.Sheline, E.B.Shera, Z. Phys. A285, 405 (1978)
- 1978Bo12 H.G.Borner, H.R.Koch, H.Seyfarth, T.von Egidy, W.Mampe, J.A.Pinston, K.Schreckenbach, D.Heck, Z. Phys. A286, 31 (1978)
- 1978Do06 Do Huu Phuoc, R.Chery, H.G.Borner, W.F.Davidson, J.A.Pinston, R.Roussille, K.Schreckenbach, H.R.Koch, H.Seyfarth, D.Heck, Z. Phys. A286, 107 (1978)
- 1978Gr14 R.C.Greenwood, C.W.Reich, H.A.Baader, H.R.Koch, D.Breitig, O.W.B.Schult, B.Fogelberg, A.Backlin, W.Mampe, T.von Egidy, E.Schreckenbach, Nucl. Phys. A304, 327 (1978)
- **1978Gu14** H.H.Guven, B.Kardon, H.Seyfarth, Z. Phys. A287, 271 (1978)
- 1978LoZT CONF BNL (Neutron Capt γ-Ray Spectr), Contrib, No48, Lone
- **1978LoZW** CONF Brookhaven (Neutron Capt γ-Ray Spectr), Proc, P678, Lone
- **1978LoZX** M.A.Lone, G.A.Bartholomew, Proc. Intern. Symp. Neutron Capture Gamma Ray

- Spectroscopy and Related Topics, 3rd, BNL, Upton (1978), R. E. Chrien, W. R. Kane, eds., Plenum Press, New York, p. 675 (1978)
- 1978PrZY P.T.Prokofev, M.Balodis, N.Kramer, L.Lokshina, L.Simonova, K.Schreckenbach, W.Davidson, J.Pinston, D.Warner, P.Van Assche, LAFI-006 (1978)
- **1978Ro03** A.Robertson, T.J.Kennett, W.V.Prestwich, Z. Phys. A284, 407 (1978)
- **1978Sc10** K.D.Schilling, L.Kaubler, W.Andrejtscheff, T.M.Muminov, V.G.Kalinnikov, N.Z.Marupov, F.R.May, W.Seidel, Nucl. Phys. A299, 189 (1978)
- **1978Ve06** R. Vennink, W. Ratynski, J. Kopecky, Nucl. Phys. A299, 429 (1978)
- 1978Vo05 T.von Egidy, W.Kaiser, W.Mampe, C.Hillenbrand, W.Stoffl, R.G.Lanier, K.Muhlbauer, O.W.B.Schult, H.R.Koch, H.A.Baader, R.L.Mlekodaj, R.K.Sheline, E.B.Shera, J.Ungrin, P.T.Prokofjev, L.I.Simonova, M.K.Balodis, H.Seyfarth, B.Kardon, Z. Phys. A286, 341 (1978)
- **1978WaZM** D.D.Warner, W.F.Davidson, W.Gelletly, Contrib. Int. Symp. Neutron Capture Gamma-Ray Spectrosc. and Related Topics, 3rd, Upton, N. Y., No. 84 (1978)
- **1978Ya07** Y.Yamazaki, R.K.Sheline, E.B.Shera, Phys. Rev. C17, 2061 (1978); Erratum Phys. Rev. C18, 2450 (1978)
- 1979Al03 J.Almeida, T.von Egidy, P.H.M.van Assche, H.G.Borner, W.F.Davidson, K.Schreckenbach, A.I.Namenson, Nucl. Phys. A315, 71 (1979)
- 1979Bo41 M.Bogdanovic, S.Koicki, J.Simic, B.Lalovic, D.Breitig, R.Koch, H.A.Baader, O.V.B.Schult, W.R.Kane, R.F.Casten, Fizika (Zagreb) 11, 157 (1979)
- 1979Br25 F.Braumandl, K.Schreckenbach, T.von Egidy, Nucl. Instrum. Meth. 166, 243 (1979)
- **1979BrZE** P.M.Brewster, Thesis, McMaster Univ. (1979)
- 1979Ca02 R.F.Casten, M.R.Macphail, W.R.Kane, D.Breitig, K.Schreckenbach, J.A.Cizewski, Nucl. Phys. A316, 61 (1979)
- 1979Ci04 J.A.Cizewski, R.F.Casten, G.J.Smith, M.R.Macphail, M.L.Stelts, W.R.Kane, H.G.Borner, W.F.Davidson, Nucl. Phys. A323, 349 (1979)
- **1979HeZT** D.Heck, Priv. Comm. (December 1979)
- 1979Je01 P.Jeuch, T.von Egidy, K.Schreckenbach, W.Mampe, H.G.Borner, W.F.Davidson, J.A.Pinston, R.Roussille, R.C.Greenwood, R.E.Chrien, Nucl. Phys. A317, 363 (1979)
- **1979Pi08** J.A.Pinston, W.Mampe, R.Roussille, K.Schreckenbach, D.Heck, H.G.Borner, H.R.Koch, S.Andre, D.Barneoud, Nucl. Phys. A321, 25 (1979)
- **1979SeZT** H.Seyfarth, H.H.Guven, B.Viardon, Priv. Comm. (1979)
- 1979Va10 J.M.Van den Cruyce, G.Vandenput, L.Jacobs, P.H.M.Van Assche, H.A.Baader, D.Breitig, H.R.Koch, J.K.Alksnis, J.J.Tambergs, M.K.Balodis, P.T.Prokofjev, W.Delang, P.Gottel, H.Seyfarth, Phys. Rev. C20, 504 (1979)
- 1979Wa04 D.D.Warner, W.F.Davidson, H.G.Borner, R.F.Casten, A.I.Namenson, Nucl. Phys. A316, 13 (1979)
- 1980Al22 V.L.Alexeev, I.A.Kondurov, Yu. E. Loginov, V.V.Martynov, S.L.Sakharov, H.G.Borner, W.F.Davidson, J.A.Pinston, K.Schreckenbach, Nucl. Phys. A345, 93 (1980)
- 1980Al31 V.P.Alfimenkov, S.B.Borzakov, E.V.Vasilyeva, Wo Wang Thuang, B.P.Osipenko, L.B.Pikelner, V.G.Tishin, E.I.Sharapov, Yad. Fiz. 32, 1491 (1980)
- **1980Ca02** R.F.Casten, G.J.Smith, M.R.Macphail, D.Breitig, W.R.Kane, M.L.Stelts, Phys. Rev. C21, 65 (1980)
- 1980De20 P.P.J.Delheij, K.Abrahams, W.J.Huiskamp, H.Postma, Nucl. Phys. A341, 45 (1980)
- **1980Ho29** J.Honzatko, K.Konecny, F.Becvar, E.A.Eissa, Czech. J. Phys. 30, 763 (1980)
- **1980Is02** M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich, Can. J. Phys. 58, 168 (1980)
- **1980Ko01** J.Kopecky, R.E.Chrien, H.I.Liou, Nucl. Phys. A334, 35 (1980)
- 1980Ve05 R. Vennink, J.Kopecky, P.M.Endt, P.W.M.Glaudemans, Nucl. Phys. A344, 421 (1980)
- **1981En07** G.Engler, R.E.Chrien, H.I.Liou, Nucl. Phys. A372, 125 (1981)
- **1981Gr01** R.C.Greenwood, C.W.Reich, Phys. Rev. C23, 153 (1981)

- **1981Ho12** J.Honzatko, K.Konecny, F.Becvar, E.A.Eissa, M.Kralik, Z. Phys. A299, 183 (1981)
- **1981Ke03** T.J.Kennett, W.V.Prestwich, M.A.Islam, Z. Phys. A299, 323 (1981)
- **1981Ke11** T.J.Kennett, W.V.Prestwich, M.A.Islam, Can. J. Phys. 59, 1212 (1981)
- **1981KoZW** B.K.Koene, R.E.Chrien, M.L.Stelts, L.K.Peker, Priv. Comm. (October 1981)
- 1982Ba15 I.F.Barchuk, V.I.Golyshkin, E.N.Gorban, Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 63 (1982)
- 1982Ba28 A.Backlin, G.Hedin, B.Fogelberg, M.Saraceno, R.C.Greenwood, C.W.Reich, H.R.Koch, H.A.Baader, H.D.Breitig, O.W.B.Schult, K.Schreckenbach, T.Von Egidy, Nucl. Phys. A380, 189 (1982)
- 1982Ba69 I.F.Barchuk, V.I.Golyshkin, E.N.Gorban, Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 2077 (1982)
- **1982Ju01** E.T.Jurney, P.J.Bendt, J.C.Browne, Phys. Rev. C25, 2810 (1982)
- 1982Kr12 B.Krusche, K.P.Lieb, H.Daniel, T.von Egidy, G.Bareau, H.G.Borner, R.Brissot, C.Hofmeyer, R.Rascher, Nucl. Phys. A386, 245 (1982)
- **1982Mu14** S.F.Mughabghab, M.A.Lone, B.C.Robertson, Phys. Rev. C26, 2698 (1982)
- **1982Sc03** K.Schreckenbach, A.I.Namenson, W.F.Davidson, T.Von Egidy, H.G.Borner,, Nucl. Phys. A376, 149 (1982)
- 1982Sc14 H.H.Schmidt, P.Hungerford, H.Daniel, T.von Egidy, S.A.Kerr, R.Brissot, G.Barreau, H.G.Borner, C.Hofmeyr, K.P.Lieb, Phys. Rev. C25, 2888 (1982)
- 1982Ti02 T.A.A.Tielens, J.Kopecky, F.Stecher-Rasmussen, W.Ratynski, K.Abrahams, P.M.Endt, Nucl. Phys. A376, 421 (1982)
- **1982ToZS** Y.Tokunaga, H.G.Borner, JUL-Spez-145 (1982); Erratum (March 1983)
- **1982Va13** C. Van Der Leun, C. Alderliesten, Nucl. Phys. A380, 261 (1982)
- 1982Wa20 D.D.Warner, R.F.Casten, M.L.Stelts, H.G.Borner, G.Barreau, Phys. Rev. C26, 1921 (1982)
- 1983BrZK A.M.Bruce, W.Gelletly, R.F.Casten, D.D.Warner, G.Colvin, K.Schreckenbach, M.Snelling, B.Moore, S.Kerr, W.F.Davidson, Univ. Manchester, Ann. Rept., p. 77 (1983)
- 1983De28 M.G.Delfini, J.Kopecky, J.B.M.De Haas, H.I.Liou, R.E.Chrien, P.M.Endt, Nucl. Phys. A404, 225 (1983); Erratum Nucl. Phys. A410, 513 (1983)
- 1983De29 M.G.Delfini, J.Kopecky, R.E.Chrien, H.I.Liou, P.M.Endt, Nucl. Phys. A404, 250 (1983)
- **1983Fe06** P.Fettweis, J.C.Dehaes, Z. Phys. A314, 159 (1983)
- **1983Hu11** P.Hungerford, T.von Egidy, H.H.Schmidt, S.A.Kerr, H.G.Borner, E.Monnand, Z. Phys. A313, 325 (1983)
- 1983Hu13 P.Hungerford, T.von Egidy, H.H.Schmidt, S.A.Kerr, H.G.Borner, E.Monnand, Z. Phys. A313, 349 (1983)
- 1983Ii02 H.Iimura, T.Seo, S.Yamada, S.-I.Uehara, T.Hayashi, Ann. Rep. Res. Reactor Inst., Kyoto Univ. 16, 128 (1983)
- **1983Is04** M.A.Islam, W.V.Prestwich, T.J.Kennett, Phys. Rev. C27, 2401 (1983)
- **1983Ke11** T.J.Kennett, W.V.Prestwich, R.J.Tervo, J.S.Tsai, Nucl. Instrum. Methods 215, 159 (1983)
- 1983Ma55 M.A.J.Mariscotti, D.R.Bes, S.L.Reich, H.M.Sofia, P.Hungerford, S.A.Kerr, K.Schreckenbach, D.D.Warner, W.F.Davidson, W.Gelletly, Nucl. Phys. A407, 98 (1983)
- **1983Ro13** S.J.Robinson, W.D.Hamilton, D.M.Snelling, J. Phys. (London) G9, 961 (1983)
- **1983Ru08** J.F.A.G.Ruyl, P.M.Endt, Nucl. Phys. A407, 60 (1983)
- **1983Sn01** D.M.Snelling, W.D.Hamilton, J. Phys. (London) G9, 111 (1983)
- **1983Sn04** D.M.Snelling, W.D.Hamilton, J. Phys. (London) G9, 763 (1983)
- **1983Ts01** J.S.Tsai, T.J.Kennett, W.V.Prestwich, Phys. Rev. C27, 2397 (1983)

- **1983VeZZ** R.Vennink, Priv. Comm. (July 1983)
- **1984Ch05** R.E.Chrien, J.Kopecky, Nucl. Phys. A414, 281 (1984)
- **1984Ke15** T.J.Kennett, M.A.Islam, W.V.Prestwich, Phys. Rev. C30, 1840 (1984)
- **1984Ko29** J.Kopecky, M.G.Delfini, R.E.Chrien, Nucl. Phys. A427, 413 (1984)
- 1984Kr05 B.Krusche, K.P.Lieb, L.Ziegeler, H.Daniel, T.Von Egidy, R.Rascher, G.Barreau, H.G.Borner, D.D.Warner, Nucl. Phys. A417, 231 (1984)
- 1984Mh01 A.Mheemeed, K.Schreckenbach, G.Barreau, H.R.Faust, H.G.Borner, R.Brissot, P.Hungerford, H.H.Schmidt, H.J.Scheerer, T.Von Egidy, K.Heyde, J.L.Wood, P.Van Isacker, M.Waroquier, G.Wenes, M.L.Stelts, Nucl. Phys. A412, 113 (1984)
- 1984MuZY S.F.Mughabghab, Neutron Cross Sections, Vol. 1, Neutron Resonance Parameters and Thermal Cross Sections, Part B, Z=61-100, Academic Press, New York (1984)
- 1984Ra09 S.Raman, W.Ratynski, E.T.Jurney, M.E.Bunker, J.W.Starner, Phys. Rev. C30, 26 (1984)
- **1984Ro06** H.Rotter, C.Heiser, K.D.Schilling, W.Andrejtscheff, L.K.Kostov, M.K.Balodis, Nucl. Phys. A417, 1 (1984)
- **1984Ru06** J.F.A.G.Ruyl, J.B.M.De Haas, P.M.Endt, L.Zybert, Nucl. Phys. A419, 439 (1984)
- 1984To11 Y.Tokunaga, H.Seyfarth, O.W.B.Schult, S.Brant, V.Paar, D.Vretenar, H.G.Borner, G.Barreau, H.Faust, Ch.Hofmeyr, K.Schreckenbach, R.A.Meyer, Nucl. Phys. A430, 269 (1984)
- 1984Vo01 T.von Egidy, H.Daniel, P.Hungerford, H.H.Schmidt, K.P.Lieb, B.Krusche, S.A.Kerr, G.Barreau, H.G.Borner, R.Brissot, C.Hofmeyr, R.Rascher, J. Phys. (London) G10, 221 (1984)
- 1985AIZN V.L.Alekseev, A.I.Egorov, L.P.Kabina, I.A.Kondurov, E.K.Leushkin, Yu.E.Loginov, V.V.Martynov, V.L.Rumyantsev, S.L.Sakharov, P.A.Sushkov, Yu.L.Khazov, Program and Theses, Proc. 35th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Leningrad, p. 85 (1985)
- 1985Bo48 M.Bogdanovic, H.Seyfarth, O.W.B.Schult, H.R.Borner, S.Kerr, F.Hoyler,, Fizika(Zagreb) 17, 219 (1985)
- 1985BuZU M.E.Bunker, H.A.Smith, Jr., J.W.Starner, D.G.Burke, Priv. Comm. (February 1985)
- **1985Ge02** W.Gelletly, J.R.Larysz, H.G.Borner, R.F.Casten, W.F.Davidson, W.Mampe, K.Schreckenbach, D.D.Warner, J. Phys. (London) G11, 1055 (1985)
- **1985HoZQ** C.Hofmeyr, C.Franklyn, G.Barreau, H.Borner, R.Brissot, H.Faust, K.Schreckenbach, Priv. Comm. (1985)
- 1985Ke04 E.G.Kessler, Jr., G.L.Greene, R.D.Deslattes, H.G.Borner, Phys. Rev. C32, 374 (1985)
- **1985Ke11** T.J.Kennett, W.V.Prestwich, J.S.Tsai, Phys. Rev. C32, 2148 (1985)
- 1985Ko47 P.J.J.Kok, K.Abrahams, H.Postma, W.J.Huiskamp, Nucl. Instrum. Methods Phys. Res., B12, 325 (1985)
- 1985Kr06 B.Krusche, Ch.Winter, K.P.Lieb, P.Hungerford, H.H.Schmidt, T.Von Egidy, H.J.Scheerer, S.A.Kerr, H.G.Borner, Nucl. Phys. A439, 219 (1985)
- T.D.MacMahon, G.R.Massoumi, T.Mitsunari, M.Thein, O.Chalhoub, D.Breitig,
 H.A.Baader, U.Heim, H.R.Koch, L.Wimmer, H.Seyfarth, K.Schreckenbach,
 G.B.Orr, G.J.Smith, W.R.Kane, I.A.Kondurov, P.A.Sushkov, Yu.E.Loginov,
 D.Rabenstein, M.Bogdanovic, J. Phys. (London) G11, 1231 (1985)
- **1985Ra15** S.Raman, R.F.Carlton, J.C.Wells, E.T.Jurney, J.E.Lynn, Phys. Rev. C32, 18 (1985)
- 1985To10 Y.Tokunaga, H.Seyfarth, R.A.Meyer, O.W.B.Schult, H.G.Borner, G.Barreau, H.R.Faust, K.Schreckenbach, S.Brant, V.Paar, M.Vouk, D.Vretenar, Nucl. Phys. A439, 427 (1985)
- 1986Bo43 S.T.Boneva, E.V.Vasileva, Yu.P.Popov, A.M.Sukhovoi, V.A.Khitrov, Yu.S.Yazvitsky, Izv. Akad. Nauk SSSR, Ser. Fiz. 50, 1831 (1986); Bull.

- Acad. Sci. USSR, Phys. Ser. 550, No. 9, 162 (1986)
- **1986GrZR** R.C.Greenwood, Priv. Comm. (1986)
- 1986Ha22 A.M.I.Haque, R.F.Casten, I.Forster, A.Gelberg, R.Rascher, R.Richter, P.von Brentano, G.Barreau, H.G.Borner, S.A.Kerr, K.Schreckenbach, D.D.Warner, Nucl. Phys. A455, 231 (1986)
- **1986Ko19** P.J.J.Kok, J.B.M.de Haas, K.Abrahams, H.Postma, W.J.Huiskamp, Z. Phys. A324, 271 (1986)
- **1986Pr05** W.V.Prestwich, T.J.Kennett, J.-S.Tsai, Z. Phys. A325, 321 (1986)
- **1986RoZM** A.A.Rodionov, S.L.Sakharov, Yu.L.Khazov, Program and Theses, Proc. 36th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 129 (1986)
- H.H.Schmidt, W.Stoffl, T.von Egidy, P.Hungerford, H.J.Scheerer,
 K.Schreckenbach, H.G.Borner, D.D.Warner, R.E.Chrien, R.C.Greenwood,
 C.W.Reich, J. Phys. (London) G12, 411 (1986)
- 1986Va08 G.Vandenput, P.H.M.Van Assche, L.Jacobs, J.M.Van den Cruyce, R.K.Smither, K.Schreckenbach, T.von Egidy, D.Breitig, H.A.Baader, H.R.Koch, Phys. Rev. C33, 1144 (1986)
- 1986Wi16 Ch.Winter, B.Krusche, K.P.Lieb, H.H.Schmidt, T.Von Egidy, P.Hungerford, F.Hoyler, H.G.Borner, Nucl. Phys. A460, 501 (1986)
- 1987Ba52 M.K.Balodis, P.T.Prokofjev, N.D.Kramer, L.I.Simonova, K.Schreckenbach, W.F.Davidson, J.A.Pinston, P.Hungerford, H.H.Schmidt, H.J.Scheerer, T.von Egidy, P.H.M.van Assche, A.M.J.Spits, R.F.Casten, W.R.Kane, D.D.Warner, J.Kern, Nucl. Phys. A472, 445 (1987)
- **1987BaYW** K.A.Baskova, A.B.Vovk, T.M.Gerus, L.I.Gorov, A.M.Demidov, V.A.Kurkin, IAE-4544/2 (1987)
- M.Bogdanovic, R.Brissot, G.Barreau, K.Schreckenbach, S.Kerr, H.G.Borner, I.A.Kondurov, Yu.E.Loginov, V.V.Martynov, P.A.Sushkov, H.Seyfarth, T.von Egidy, P.Hungerford, H.H.Schmidt, H.J.Scheerer, A.Chalupka, W.Kane, G.Alaga, Nucl. Phys. A470, 13 (1987)
- 1987Bo52 A.A.Bogdzel, S.T.Boneva, E.V.Vasileva, O.I.Elizarov, Yu.P.Popov,
 A.M.Sukhovoi, V.A.Khitrov, Yu.S.Yazvitsky, Izv. Akad. Nauk SSSR, Ser. Fiz.
 51, 1882 (1987); Bull. Acad. Sci. USSR, Phys. Ser. 51, No. 11, 8 (1987)
- 1987Ca03 R.F.Casten, G.G.Colvin, K.Schreckenbach, J. Phys. (London) G13, 221 (1987)
- **1987Co03** G.G.Colvin, F.Hoyler, S.J.Robinson, J. Phys. (London) G13, 191 (1987)
- **1987CoZW** G.G.Colvin, J.A.Cizewski, H.G.Borner, P.Geltenbort, F.Hoyler, S.A.Kerr, K.Schreckenbach, Pric. Comm. (1987)
- 1987Ge01 W.Gelletly, J.R.Larysz, H.G.Borner, R.F.Casten, W.F.Davidson, W.Mampe, K.Schreckenbach, D.D.Warner, J. Phys. (London) G13, 69 (1987)
- **1987Ha21** S.A.Hamada, W.D.Hamilton, F.Hoyler, J. Phys. (London) G13, 1143 (1987)
- 1987Su05 A.R.H.Subber, S.J.Robinson, P.Hungerford, W.D.Hamilton, P.Van Isacker, K.Kumar, P.Park, K.Schreckenbach, G.Colvin, J. Phys. (London) G13, 807 (1987)
- 1987Wi15 Ch.Winter, B.Krusche, K.P.Lieb, T.Weber, G.Hlawatsch, T.von Egidy, F.Hoyler, Nucl. Phys. A473, 129 (1987)
- M.Bogdanovic, J.Simic, M.P.Stojanovic, R.Vukanovic, M.Zupancic, H.G.Borner,
 G.Colvin, F.Hoyler, K.Schreckenbach, H.Seyfarth, S.Brant, V.Paar, Proc.
 Int. Conf. Capture Gamma-Ray Spectroscopy 1987, Leuven, Belgium, K.
 Abrahams, P. van Assche, Eds, p. S553 (1988)
- **1988Co18** G.G.Colvin, S.J.Robinson, F.Hoyler, J. Phys. (London) G14, 1411 (1988)
- **1988CoZU** G.Colvin, Priv. Comm. (1988)
- **1988Ha28** S.A.Hamada, W.D.Hamilton, B.More, J. Phys. (London) G14, 1237 (1988)

- 1988Li30 K.P.Lieb, H.G.Borner, M.S.Dewey, J.Jolie, S.J.Robinson, S.Ulbig, Ch.Winter, Phys. Lett. 215B, 50 (1988)
- **1988Su01** A.R.H.Subber, W.D.Hamilton, P.Van Isacker, K.Schreckenbach, G.Colvin, J. Phys. (London) G14, 87 (1988)
- 1989BoYT V.A.Bondarenko, S.T.Boneva, E.V.Vasileva, I.L.Kuvaga, Yu.P.Popov, P.T.Prokofev, G.L.Rezvaya, A.M.Sukhovoi, V.A.Khitrov, JINR-P6-89-10 (1989)
- 1989Co01 S.P.Collins, S.A.Eid, S.A.Hamada, W.D.Hamilton, F.Hoyler, J. Phys. (London) G15, 321 (1989)
- **1989Du03** P.Durner, T.von Egidy, F.J.Hartmann, Nucl. Instrum. Meth. Phys. Res. A278, 484 (1989)
- **1989Ho15** C.Hofmeyr, Nucl. Phys. A500, 111 (1989)
- 1989Mi16 S.Michaelsen, Ch.Winter, K.P.Lieb, B.Krusche, S.Robinson, T.von Egidy, Nucl. Phys. A501, 437 (1989)
- 1989Ri03 R.Richter, I.Forster, A.Gelberg, A.M.I.Haque, P.von Brentano, R.F.Casten, H.G.Borner, G.G.Colvin, K.Schreckenbach, G.Barreau, S.A.Kerr, H.H.Schmidt, P.Hungerford, H.J.Scheerer, T.von Egidy, R.Rascher, Nucl. Phys. A499, 221 (1989)
- 1989Sc31 H.H.Schmidt, P.Hungerford, T.von Egidy, H.J.Scheerer, H.G.Borner, S.A.Kerr, K.Schreckenbach, F.Hoyler, G.G.Colvin, A.M.Bruce, R.F.Casten, D.D.Warner,, Nucl. Phys. A504, 1 (1989)
- 1989Sh20 R.K.Sheline, R.L.Ponting, A.K.Jain, J.Kvasil, B.bu Nianga, L.Nkwambiaya, Czech. J. Phys. B39, 22 (1989)
- 1989Wi05 Ch.Winter, B.Krusche, K.P.Lieb, S.Michaelsen, G.Hlawatsch, H.Linder, T.von Egidy, F.Hoyler, R.F.Casten, Nucl. Phys. A491, 395 (1989)
- 1990Bo49 S.T.Boneva, E.V.Vasileva, V.D.Kulik, H.H.Le, Yu.P.Popov, A.M.Sukhovoi, V.A.Khitrov, Yu.V.Kholnov, Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 822 (1990); Bull. Acad. Sci. Ussr, Phys. Ser. 54, No. 5, 5 (1990)
- 1990Bo52 S.T.Boneva, E.V.Vasileva, V.D.Kulik, L.K.Kkhem, Yu.P.Popov, A.M.Sukhovoi, V.A.Khitrov, Yu.V.Kholnov, Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 1787 (1990); Bull. Acad. Sci. USSR, Phys. Ser. 54, No. 9, 118 (1990)
- 1990Ho10 F.Hoyler, J.Jolie, G.G.Colvin, H.G.Borner, K.Schreckenbach, P.Van Isacker, P.Fettweis, H.Gokturk, J.C.Dehaes, R.F.Casten, D.D.Warner, A.M.Bruce, Nucl. Phys. A512, 189 (1990)
- **1990Is02** M.A.Islam, T.J.Kennett, W.V.Prestwich, Phys. Rev. C41, 1272 (1990)
- **1990Is05** M.A.Islam, T.J.Kennett, W.V.Prestwich, Nucl. Instrum. Meth. Phys. Res. A287, 460 (1990)
- **1990Is07** M.A.Islam, T.J.Kennett, W.V.Prestwich, Phys. Rev. C42, 207 (1990)
- **1990Is09** M.A.Islam, T.J.Kennett, W.V.Prestwich, Can. J. Phys. 68, 1237 (1990)
- 1990Ku26 V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova, Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 2145 (1990); Bull. Acad. Sci. USSR, Phys. Ser. 54, No. 11, 60 (1990)
- 1990Se17 H.Seyfarth, H.H.Guven, B.Kardon, G.Lhersonneau, K.Sistemich, S.Brant,, Fizika (Zagreb) 22, 183 (1990)
- H.G.Borner, R.F.Casten, I.Forster, D.Lieberz, P.von Brentano, S.J.Robinson,
 T.von Egidy, G.Hlawatsch, H.Lindner, P.Geltenbort, F.Hoyler, H.Faust,
 G.Colvin, W.R.Kane, M.MacPhail, Nucl. Phys. A534, 255 (1991)
- **1991Da12** W.F.Davidson, W.R.Dixon, J. Phys. (London) G17, 1683 (1991)
- **1991DaZT** W.F.Davidson, W.R.Dixon, PIRS-0288/NRC (1991)
- **1991Is01** M.A.Islam, T.J.Kennett, W.V.Prestwich, Phys. Rev. C43, 1086 (1991)
- **1991Is05** M.A.Islam, T.J.Kennett, W.V.Prestwich, Can. J. Phys. 69, 658 (1991)
- 1991Ke10 J.Kern, A.Raemy, W.Beer, J.-Cl.Dousse, W.Schwitz, M.K.Balodis,

P.T.Prokofjev, N.D.Kramer, L.I.Simonova, R.W.Hoff, D.G.Gardner, M.A.Gardner, R.F.Casten, R.L.Gill, R.Eder, T.von Egidy, E.Hagn, P.Hungerford, H.J.Scheerer, H.H.Schmidt, E.Zech, A.Chalupka, A.V.Murzin, V.A.Libman, I.V.Kononenko, C.Coceva, P.Giacobbe, I.A.Kondurov,

Yu.E.Loginov, P.A.Sushkov, S.Brant, V.Paar, Nucl. Phys. A534, 77 (1991)

1991Ki04 S.W.Kikstra, Z.Guo, C.van der Leun, P.M.Endt, S.Raman, T.A.Walkiewicz, J.W.Starner, E.T.Jurney, I.S.Towner, Nucl. Phys. A529, 39 (1991)

1991Kl02 N.Klay, F.Kappeler, H.Beer, G.Schatz, H.Borner, F.Hoyler, S.J.Robinson, K.Schreckenbach, B.Krusche, U.Mayerhofer, G.Hlawatsch, H.Lindner, T.von Egidy, W.Andreitscheff, P.Petkov, Phys. Rev. C44, 2801 (1991)

1991Ly01 J.E.Lynn, E.T.Jurney, S.Raman, Phys. Rev. C44, 764 (1991)

1991Mi08 S.Michaelsen, K.P.Lieb, S.J.Robinson, Z. Phys. A338, 371 (1991)

1991MiZQ S.Michaelsen, K.P.Lieb, L.Ziegeler, T.von Egidy, Proc. Int. Conf. Capture Gamma-Ray Spectroscopy, Pacific Grove, Calif., R. W. Hoff, Ed., p. 393 (1990); AIP Conf. Proc. 238 (1991)

1991NeZX Zs.Nemeth, KFK 4888 (1991)

1991Ra01 S.Raman, T.A.Walkiewicz, S.Kahane, E.T.Jurney, J.Sa, Z.Gacsi, J.L.Weil, K.Allaart, G.Bonsignori, J.F.Shriner, Jr., Phys. Rev. C43, 521 (1991)

1991Sa07 S.L.Sakharov, V.L.Alexeev, I.A.Kondurov, E.K.Leushkin, Yu.E.Loginov, V.V.Martynov, V.L.Rumiantsev, P.A.Sushkov, Yu.L.Khazov, A.I.Egorov, H.Lindner, H.Hiller, T.von Egidy, G.Hlawatsch, J.Klora, U.Mayerhofer, H.Trieb, A.Walter, Nucl. Phys. A528, 317 (1991)

1992Br17 A.M.Bruce, W.Gelletly, G.G.Colvin, P.Van Isacker, D.D.Warner, Nucl. Phys. A542, 1 (1992)

1992Ku17 A.Kuronen, J.Keinonen, H.G.Borner, J.Jolie, S.Ulbig, Nucl. Phys. A549, 59 (1992)

1992Ra19 S.Raman, E.T.Jurney, J.W.Starner, J.E.Lynn, Phys. Rev. C46, 972 (1992)

1992Wa06 T.A.Walkiewicz, S.Raman, E.T.Jurney, J.W.Starner, J.E.Lynn, Phys. Rev. C45, 1597 (1992)

1993Bo01 V.A.Bondarenko, I.L.Kuvaga, P.T.Prokofjev, V.A.Khitrov, Yu.V.Kholnov, Nucl. Phys. A551, 54 (1993)

1993Bo29 V.A.Bondarenko, I.L.Kuvaga, L.K.Khiem, Yu.P.Popov, P.T.Prokofev, A.M.Sukhovoy, P.D.Khang, V.A.Khitrov, Yu.V.Kholnov, Bull. Rus. Acad. Sci. Phys. 57, 42 (1993)

1993De01 M.Deleze, S.Drissi, J.Kern, P.A.Tercier, J.P.Vorlet, J.Rikovska, T.Otsuka, S.Judge, A.Williams, Nucl. Phys. A551, 269 (1993)

1993Ha05 A.Harder, S.Michaelsen, K.P.Lieb, A.P.Williams, Z. Phys. A345, 143 (1993)
1993Ju01 A.Jungelaus, H.G.Borner, J.Jolie, S.Ulbig, R.F.Casten, N.V.Zamfir, P.von Brentano, K.P.Lieb, Phys. Rev. C47, 1020 (1993)

1993Ko01 J.Kopecky, M.Uhl, R.E.Chrien, Phys. Rev. C47, 312 (1993)

1993Mi04 S.Michaelsen, A.Harder, K.P.Lieb, G.Graw, R.Hertenberger, D.Hofer, P.Schiemenz, E.Zanotti, H.Lenske, A.Weigel, H.H.Wolter, S.J.Robinson, A.P.Williams, Nucl. Phys. A552, 232 (1993)

1993Pe04 P.Petkov, W.Andrejtscheff, S.J.Robinson, U.Mayerhofer, T.von Egidy, S.Brant, V.Paar, V.Lopac, Nucl. Phys. A554, 189 (1993)

1994Co09 C.Coceva, Nuovo Cim. 107A, 85 (1994)

1994GrZZ R.C.Greenwood, Priv. Comm. (1994)

1994HoZZ R.W.Hoff, H.G.Borner, K.Schreckenbach, G.G.Colvin, F.Hoyler, T.von Egidy, R.Georgii, J.Ott, W.Schauer, S.Schrunder, R.F.Casten, R.Gill, M.Balodis, P.Prokofjevs, L.Simonova, J.Kern, O.Bersillon, S.Joly, Priv. Comm. (1994)

1994Ki27 T.Kishikawa, K.Nishimura, S.Noguchi, Nucl. Instrum. Methods Phys. Res.

- A353, 285 (1994)
- 1994Ra17 S.Raman, E.T.Jurney, J.W.Starner, A.Kuronen, J.Keinonen, K.Nordlund, D.J.Millener, Phys. Rev. C50, 682 (1994)
- 1995Be02 J.Berzins, P.Prokofev, R.Georgii, R.Hucke, T.von Egidy, G.Hlawatsch, J.Klora, H.Lindner, U.Mayerhofer, H.H.Schmidt, A.Walter, V.G.Soloviev, N.Yu.Shirikova, A.V.Sushkov, Nucl. Phys. A584, 413 (1995)
- 1995Bo03 V.A.Bondarenko, I.L.Kuvaga, P.T.Prokofjev, A.M.Sukhovoj, V.A.Khitrov,, Nucl. Phys. A582, 1 (1995)
- 1995Bo05 V.A.Bondarenko, I.L.Kuvaga, P.T.Prokofjev, A.M.Sukhovoj, V.A.Khitrov,, Nucl. Phys. A584, 279 (1995)
- R.Georgii, T.von Egidy, J.Klora, H.Lindner, U.Mayerhofer, J.Ott, W.Schauer,
 P.von Neumann-Cosel, A.Richter, C.Schlegel, R.Schulz, V.A.Khitrov,
 A.M.Sukhovoj, A.V.Vojnov, J.Berzins, V.Bondarenko, P.Prokofjevs,
 L.J.Simonova, M.Grinberg, Ch.Stoyanov, Nucl. Phys. A592, 307 (1995)
- **1996Co16** C.Coceva, A.Brusegan, C.van der Vorst, Nucl. Instrum. Meth. Phys. Res. A378, 511 (1996)
- **1996Gi09** R.L.Gill, R.F.Casten, W.R.Phillips, B.J.Varley, C.J.Lister, J.L.Durell, J.A.Shannon, D.D.Warner, Phys. Rev. C54, 2276 (1996)
- 1996Ma70 U.Mayerhofer, T.von Egidy, J.Klora, H.Lindner, H.G.Borner, S.Judge, B.Krusche, S.Robinson, K.Schreckenbach, A.M.Sukhovoj, V.A.Khitrov, S.T.Boneva, V.Paar, S.Brant, R.Pezer, Fizika (Zagreb) B5, 167 (1996)
- 1996Ma75 U.Mayerhofer, T.von Egidy, J.Klora, H.Lindner, H.G.Borner, S.Judge,
 B.Krusche, S.Robinson, K.Schreckenbach, A.M.Sukhovoj, V.A.Khitrov,
 S.T.Boneva, V.Paar, S.Brant, R.Pezer, Fizika (Zagreb) B5, 229 (1996)
- 1996Ra04 S.Raman, E.K.Warburton, J.W.Starner, E.T.Jurney, J.E.Lynn, P.Tikkanen, J.Keinonen, Phys. Rev. C53, 616 (1996)
- 1996SpZZ A.Spits, P.H.M.Van Assche, H.G.Borner, W.F.Davidson, K.Schreckenbach, BLG 703 (1996), edited by A. Spits and P. H. M. Van Assche
- 1997Be42 H.Beer, C.Coceva, R.Hofinger, P.Mohr, H.Oberhummer, P.V.Sedyshev, Yu.P.Popov, Nucl. Phys. A621, 235c (1997)
- V.Bondarenko, T.von Egidy, J.Ott, W.Schauer, C.Doll, H.-F.Wirth,
 J.Honzatko, I.Tomandl, D.Bucurescu, A.Gollwitzer, G.Graw, R.Hertenberger,
 B.Valnion, Proc. 9th Intern. Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, October 1996, G. L. Molnar, T.
 Belgya, Zs. Revay, Eds., Vol. 1, p. 363 (1997)
- **1997Ju02** E.T.Jurney, J.W.Starner, J.E.Lynn, S.Raman, Phys. Rev. C56, 118 (1997)
- P.Prokofjevs, L.Simonova, J.Berzins, V.Bondarenko, M.Balodis,
 A.V.Afanasjev, M.Beitins, M.Kessler, T.von Egidy, T.Koerbitz, R.Georgii,
 J.Ott, W.Schauer, V.O.Nesterenko, N.A.Bonch-Osmolovskaya, Nucl. Phys. A614,
 183 (1997)
- M.Balodis, P.Prokofjevs, N.Kramere, L.Simonova, J.Berzins, T.Krasta, R.Georgii, T.von Egidy, J.Klora, H.Lindner, U.Mayerhofer, A.Walter, J.A.Cizewski, G.G.Colvin, H.G.Borner, P.Geltenbort, F.Hoyler, S.A.Kerr, K.Schreckenbach, A.Raemy, J.C.Dousse, J.Kern, W.Schwitz, I.A.Kondurov, Yu.E.Loginov, P.A.Sushkov, S.Brant, V.Paar, V.Lopac, Fizika(Zagreb) B7, 15 (1998)
- 1998Ba85 M.Balodis, P.Prokofjevs, N.Kramere, L.Simonova, J.Berzins, T.Krasta, J.Kern, A.Raemy, J.C.Dousse, W.Schwitz, J.A.Cizewski, G.G.Colvin, H.G.Borner, P.Geltenbort, F.Hoyler, S.A.Kerr, K.Schreckenbach, R.Georgii,

T.von Egidy, J.Klora, H.Lindner, U.Mayerhofer, A.Walter, A.V.Murzin, V.A.Libman, I.A.Kondurov, Yu.E.Loginov, P.A.Sushkov, S.Brant, V.Paar, V.Lopac, Nucl. Phys. A641, 133 (1998)

1998Be19 T.Belgya, B.Fazekas, Zs.Kasztovszky, Zs.Revay, G.Molnar, M.Yeh, P.E.Garrett, S.W.Yates, Phys. Rev. C57, 2740 (1998)

1998Ho16 J.Honzatko, I.Tomandl, V.Bondarenko, J.Ott, T.von Egidy, W.Schauer, C.Doll, H.-F.Wirth, A.Gollwitzer, G.Graw, R.Hertenberger, B.Valnion, Fizika(Zagreb) B7, 87 (1998)

1999Bo31 V.Bondarenko, J.Honzatko, I.Tomandl, D.Bucurescu, T.von Egidy, J.Ott,, Phys. Rev. C60, 027302 (1999)

1999Ho01 J.Honzatko, I.Tomandl, V.Bondarenko, D.Bucurescu, T.von Egidy, J.Ott,, Nucl. Phys. A645, 331 (1999)

2000Bo24 V.Bondarenko, T.von Egidy, J.Honzatko, I.Tomandl, D.Bucurescu, N.Marginean, J.Ott, W.Schauer, H.-F.Wirth, C.Doll, Nucl. Phys. A673, 85 (2000)

DEFINITIONS

 E_{γ} : energy of gamma ray emitted in the decay process from neutron capture.

 θ : natural abundance of the capturing isotope involved in the subsequent emission of the prompt gamma ray of interest.

v: speed of neutron.

v₀: neutron speed of 2200 m s⁻¹.

 $\sigma_{\gamma}(v)$: nuclear capture cross section for neutron of speed v.

 σ_0 or $\sigma_\gamma \equiv \sigma_\gamma(v_0)$: thermal neutron capture cross section or the nuclear capture cross section for neutron of speed v_0 .

 σ_{γ}^{Z} or σ_{0}^{Z} : thermal neutron capture cross section for the element $(Z) = \sum_{i}^{\text{all isotopes}} \left(\theta \sigma_{\gamma}\right)_{i}$

 $P(E_{\gamma})$: absolute emission probability of a gamma ray of energy E_{γ} (gammas per capture).

 $\sigma_{\gamma}(E_{\gamma})$: nuclear partial capture cross section = $P(E_{\gamma})\sigma_0$.

 $\sigma_{\gamma}^{Z}(E_{\gamma})$: elemental partial capture cross section = $\theta P(E_{\gamma})\sigma_{0} = \theta \sigma_{\gamma}(E_{\gamma})$; Equation (2) of Chapter 2.

 $\hat{\sigma}$: effective capture cross section; definition is given by Equation (3) of Chapter 2.

 $<\sigma>$: effective capture cross section; definition is given by Equation (5) of Chapter 2.

g_w: Westcott g-factor; definition is given by Equation (12) of Chapter 2.

ĝ: effective g-factor; definition is given by Equation (20) of Chapter 2.

 k_0 : prompt k_0 factor; definition is given by Equation (1) of Chapter 2.

 $k_0(x)$ or $k_0(E_\gamma)$: prompt k_0 factor of the specific gamma ray (of energy E_γ) from element x relative to the hydrogen 2223-keV gamma ray.

At. Wt.: Atomic Weight.

 N_{γ} : Number of gamma rays.

ACRONYMS FOR PROMPT-GAMMA ACTIVATION ANALYSIS

No single abbreviation has been universally agreed in the analytical use of gamma rays from the capture of slow neutrons. The technique has most often been called PGAA or PGNAA during the course of this CRP. The following list has been collected from the literature:

CGA <u>Capture Gamma-ray Analysis</u>

NCGA <u>Neutron Capture Gamma-ray Analysis</u>

PCGRA Prompt Capture Gamma-ray Analysis

PGA Prompt Gamma Analysis

PGAA Prompt Gamma Activation Analysis

PGNA <u>Prompt Gamma Neutron Analysis</u>

PGNAA Prompt Gamma-ray Neutron Activation Analysis

PNAA <u>Prompt Neutron Activation Analysis</u>

PNCAA <u>Prompt Neutron Capture Activation Analysis</u>

RNC Radiative Neutron Capture

TCGS <u>Thermal-neutron Capture Gamma-ray Spectroscopy</u>

Additional terms have been used when cold neutrons are employed:

CPGAA Cold Prompt Gamma Activation Analysis

CNPGAA Cold Neutron Prompt Gamma Activation Analysis

PGCNAA Prompt Gamma Cold Neutron Activation Analysis

TNPGAA Thermal Neutron Prompt Gamma Activation Analysis

Other acronym of note:

INAA Delayed Instrumental Neutron Activation Analysis

LIST OF PARTICIPANTS

Choi, H.D. Department of Nuclear Engineering, Seoul National

University, Shinrim-dong, Gwanak-ku, Seoul 151-742,

Republic of Korea

Firestone, R.B. Isotopes Project, MS 88R0192, Lawrence Berkeley

National Laboratory, University of California, 1 Cyclotron

Road, Berkeley, CA 94720, USA

Frankle, S.C. MS F663, P.O. Box 1663, Los Alamos National Laboratory

Los Alamos, NM 87545, USA

Goswami, A. Nuclear Chemistry Section, Radiochemistry Division,

Bhabha Atomic Research Centre, Trombay,

Mumbai 400 085, India

Lindstrom, R.M. Analytical Chemistry Division, Stop 8395, National Institute

for Standards and Technology, 100 Bureau Drive,

Gaithersburg, MD 20899-8395, USA

Lone, M.A. Office of the Chief Engineer, Station E4, AECL, Chalk River

Laboratories, Ontario, K0J 1J0, Canada

Molnár, G.L. Nuclear Research Department, Chemical Research Centre,

Institute of Isotope and Surface Chemistry, P.O. Box 77,

H-1525 Budapest, Hungary

Mughabghab, S.F. Building 197D, Energy Technology Division,

Brookhaven National Laboratory, P.O. Box 5000, Upton,

NY 11973-5000, USA

Nguyen Canh Hai Department of Nuclear Physics and Techniques,

Nuclear Research Institute, 1 Nguyen Tu Luc, Dalat,

Vietnam

Reddy, A.V.R. Nuclear Chemistry Section, Radiochemistry Division,

Bhabha Atomic Research Centre, Trombay,

Mumbai 400 085, India

Révay, Zs. Nuclear Research Department, Chemical Research Centre,

Institute of Isotope and Surface Chemistry, P.O. Box 77

H-1525 Budapest, Hungary

Zhou, Chunmei China Nuclear Data Centre, China Institute of Atomic

Energy, P.O. Box 275 (41), 102413-Beijing, China