Model-Based and Model-Free Learning

Model-Based Learning vs. Model-Free Learning

Comparison Metric	Model-Based Learning	Model-Free Learning
Description	 Builds a model of the env based on interactions Agent can "plan" further actions based on predictions from the model 	 Directly learns the value function/policies without building a model of the env Agent has to carry out action multiple times in order to estimate rewards
Focus	 Understanding and or simulating underlying environment 	 Being more flexible on a task with flexible environment
Advantages	Is able to plan future actions before executing themNeeds less interactions	- Flexible on non-static environments
Disadvantages	 Environment has to be accurately modelled If environment is not captured properly, generalization will suffer 	 Requires more experiences Learns slower due to trial-and-error strategy Can have worse generalization
Example Applications	- Chess	- Autonomous Driving
Principle	- Predictive model on static environments	 Learning on outcomes of actions based on existing model

Artur Ganzha ADRL, 15.04.2024

Dreamer V3

- Dreamer-V3 is the first algorithm that could learn to mine diamonds in Minecraft from scratch
- Learns a world model without human data
- Could outperform model-free and model-based approaches
- Generally learns tasks from diverse domains with fixed parameters
- Training process encodes sensory inputs into discrete values
- Only achieves to mine diamonds sometimes and not in every episode (24 times in across 40 seeds)
 - Previously the SOTA was a success rate of 2.5%
- Consists of 3 neural networks
 - World-model: predicts future outcomes based on possible actions
 - The critic: judges the value of each situation
 - The actor: learns to reach valuable situations

[Hafner et al.2023]

Artur Ganzha ADRL, 15.04.2024