Problem §1 Choose any three problems from 1.2(a-i) as a warmup. Then complete Exercise 1.3.

- 1.2: Use truth tables to prove:
 - 1.2.a: $P \iff \neg(\neg P)$.
 - $-1.2.c: (P \Rightarrow Q) \iff (\neg Q \Rightarrow \neg P).$
 - $-1.2.d: (P \Rightarrow Q) \iff (\neg P) \lor Q.$
- 1.3: Let P and Q be statements.
 - (a) Prove that

$$P \vee \neg P$$

is true, and explain why this justifies the Law of the Excluded Middle (which states that exactly one of P and $\neg P$ is true).

(b) Prove that

$$(\neg Q \Rightarrow \neg P) \Rightarrow (P \Rightarrow Q)$$

is true, and explain why this justifies the method of Proof by Contradiction (which states that in order to prove that P is true, it suffices to show that $\neg P$ is false).

Solution:

$$\begin{array}{c|c|c} P & \neg P & \neg (\neg P) \\ \hline T & F & T \\ F & T & F \end{array}$$

•

1.2.c

P	Q	$P \Rightarrow Q$	$\neg Q \Rightarrow \neg P$
Т	Т	Т	T
T F	F	F	\mathbf{F}
\mathbf{F}	Т	T	$^{\rm T}$
\mathbf{F}	F	Γ	T

•

1.2.d

P	Q	$\neg P$	$P \Rightarrow Q$	$\neg P \lor Q$
Т	Т	F	Т	Т
\mathbf{T}	F	F	F	F
F	Т	Τ	T	T
\mathbf{F}	F	${ m T}$	T	Γ

•

1.3.a

P	$\neg P$	$P \veebar \neg P$
Т	F	Т
\mathbf{F}	Τ	Т

• Since the statement is true regardless of P, $P \veebar \neg P$ is true. This also justifies the Law of the Excluded Middle, as an XOR statement is true only when one, but not both, of the statements are true; hence only one of P and $\neg P$ may be true at once in order for $P \veebar \neg P$ to be true.

1.3.b

P	Q	$\neg P$	$\neg Q$	$P \Rightarrow Q$	$\neg Q \Rightarrow \neg P$	$ (\neg Q \Rightarrow \neg P) \Rightarrow (P \Rightarrow Q) $
Т	Т	F	F	Τ	T	Т
${ m T}$	F	F	Т	F	\mathbf{F}	m T
F	Т	Τ	F	${ m T}$	${ m T}$	m T
F	F	Τ	T	${ m T}$	${ m T}$	Γ

• Since the statement is true regardless of P or Q, $(\neg Q \Rightarrow \neg P) \Rightarrow (P \Rightarrow Q)$ is true. This also justifies Proof by Contradiction: if $\neg P$ is false, then P is necessarily true in order for the above statement to be true as well (alternatively, from the Law of the Excluded Middle, $\neg P$ being false necessarily implies that P is true).

Problem §2 Complete Exercise 1.7: Prove each of the following formulas:

- (a) $S \cap (T \cup U) = (S \cap T) \cup (S \cap U)$
- (b) $S \cup (T \cap U) = (S \cup T) \cap (S \cup U)$
- (c) Suppose $S, T \subset U$. Then

$$(S \cup T)^c = S^c \cap T^c$$
 and $(S \cap T)^c = S^c \cup T^c$.

(d)
$$S\Delta T = (S \cup T) \setminus (S \cap T) = (S \setminus T) \cup (T \setminus S)$$

Solution:

- (a) Proof. Let $e \in S \cap (T \cup U)$. Then e is in S, and e must also be in T or U. Equivalently, e is in S and T, or e is in S and U. Thus, $e \in (S \cap T) \cup (S \cap U)$, and so $S \cap (T \cup U) \subset (S \cap T) \cup (S \cap U)$. Conversely, let $e \in (S \cap T) \cup (S \cap U)$. Then e is in S and T, or e is in S and T. Equivalently, T must be in T; additionally, T must be in T or T. Thus, T or T and so T or T is in T and so T or T in T or T in T in
- (b) Proof. Let $e \in S \cup (T \cap U)$. Then e is in S, or e is in both T and U. Equivalently, e is in S or T, and e must be in S or U. Thus, $e \in (S \cup T) \cap (S \cup U)$, and so $S \cup (T \cap U) \subset (S \cup T) \cap (S \cup U)$. Conversely, let $e \in (S \cup T) \cap (S \cup U)$. Then e is in S or T, and e is in S or U. If e is not in S, then e must be in S and S are in S are in S and S are in S and S are in S and S are in S are in S and S are in S and S are in S are in S and S are in S are in S and S are in S and S are in S are in S and S are in S and S are in S and S are in S are in S and S are in S and S are in S and S are in S are in S and S are in S and S are in S are in S and S are in S and S are in S and S are in S are in S and S are in S and S are in S and S are in S are in S and S are in S are in S and S are in S and S are in S and S are in S are in S and S are in S and S are in S and S are in S are in S and S are in S and S are in S and S are in S and S are in S and S are in S are in S and S are in S and S are in S are in S and S are in S and S are in S are in S are in S and S are in S and S are in S and S are i
- (c) Proof. Let e ∈ (S∪T)^c. Then e ∈ U, and e ∉ (S∪T). Equivalently, e is not in S and e is not in T. Then e must be in U and not in S, and e must be in U and not in T. Thus, e ∈ S^c ∩ T^c, and so (S∪T)^c ⊂ S^c ∩ T^c.
 Conversely, let e ∈ S^c ∩ T^c. Then e is in U and e is not in S, and e is in U and e is not in T. Equivalently, e is in U, and e is not in either T or S; or, since T and S are subsets of U, e is in the

complement of T or S. Thus, $e \in (S \cup T)^c$, and so $S^c \cap T^c \subset (S \cup T)^c$. Since both subsets are equal, $(S \cup T)^c = S^c \cap T^c$.

Now, let $e \in (S \cap T)^c$. Then $e \in U$, and $e \notin (S \cap T)$. Equivalently, e is in U, and e is not in both S and T (but could be in S, or in T). Then e must be in U and not in S (and thus possibly in T without its overlap with S), or e must be in U and not in T (and thus possibly in S without its overlap with S). Thus, $e \in S^c \cup T^c$, and so $(S \cap T)^c \subset S^c \cup T^c$.

Conversely, let $e \in S^c \cup T^c$. Then e is in U and not in S, or e is in U and not in T. Equivalently, e is in U, and e is not in both S and T (but could be in just S or just T for the same reasons listed above); since S and T are subsets of U, e is in the complement of S and T. Thus, $e \in (S \cap T)^c$, and so $S^c \cup T^c \subset (S \cap T)^c$.

Since both are subsets of each other, $(S \cap T)^c = S^c \cup T^c$.

(d) Proof. Let $e \in (S \cup T) \setminus (S \cap T)$. Then e is in either S or T, but cannot be in both S and T. Equivalently, the set e is in cannot have any "overlap" between sets S and T. So, e is either in $S \setminus T$ (S without any potential overlap with T) or $T \setminus S$ (T without any potential overlap with S). Thus, $e \in (S \setminus T) \cup (T \setminus S)$, and so $(S \cup T) \setminus (S \cap T) \subset (S \setminus T) \cup (T \setminus S)$. Conversely, let $e \in (S \setminus T) \cup (T \setminus S)$. Then e is in S but not T, or e is in T but not S. From the first part of each statement, we get that e must be in S or T; and from the second part of each statement we get that e cannot be in the overlap between S and T. Thus, we get the statement $e \in (S \cup T) \setminus (S \cap T)$, and so $(S \setminus T) \cup (T \setminus S) \subset (S \cup T) \setminus (S \cap T)$. Since both are subsets of each other, $(S \cup T) \setminus (S \cap T) = (S \setminus T) \cup (T \setminus S)$. \square

From these problems, we observe that sets and logical statements are quite similar. A set is analogous to a logical statement, and the operators union and intersection resemble the logical "or" and "and" respectively (specifically, given sets $S,T,\ e\in S\cup T$ is equivalent to $e\in S\land e\in T$). Given a well defined complement of S, the complement S^c is analogous to the logical "not" (just as only one of P and P may be true, only one of P and P may be true, only one of P and P may be true, only one of P and P may be true, only one of P and P may be true, only one of P and P may be true, only one of P and P may be true, only one of P and P may be true, only one of P and P may be true, only one of P and P may be true, only one of P and P may be true, only one of P may be true, P meaning P is in P or P

Problem §3 Complete Exercise 1.16:

- Let S,T be finite sets with |S|=|T|, and let $f:S\to T$ be a function from S to T. Prove the following are equivalent:
 - f is injective.
 - f is surjective.
 - f is bijective.

and Exercise 1.17:

- Give an example of a function $f: \mathbb{N} \to \mathbb{N}$ that is injective, but not surjective.
- Give an example of a function $f: \mathbb{N} \to \mathbb{N}$ that is surjective, but not injective.

Solution:

• (1.16)

Proof. Let n = |S| = |T|. We start by showing f injective implies f surjective. Let f be an injective function, and suppose that f is not surjective. Then $\exists t \in T$ such that $\forall s \in S, f(s) \neq t$; and so $|\operatorname{im} S| < n$. By the definition of a function, every $s \in S$ is mapped to some element $f(s) \in T$; and since |S| = n and $|\operatorname{im} S| < n$, at least one $e \in \operatorname{im} S$ is mapped to by at least two distinct elements $s, s' \in S$ (analogously, imagine each $e \in \operatorname{im} S$ represents a "hole", and each $s \in S$ a pigeon; since there are at most n-1 holes, and n pigeons, by the PHP, at least one hole must have at least two distinct pigeons).

But this implies that $e = f(s) = f(s'), s \neq s'$, a contradiction to injectivity. Thus, if f is injective, then f is surjective as well.

Now, we show that f surjective implies f injective. Let f be a surjective function, and suppose that f is not injective. Then $\exists s, s' \in S$ such that $f(s) = f(s'), s \neq s'$. By definition of a function, each $s \in S$ is mapped to one and only one $f(s) \in \operatorname{im} S$. But since f is not injective, at least one $f(s) \in \operatorname{im} S$ is mapped to by at least two distinct $s, s' \in S$, which implies that $|\operatorname{im} S| < n$ (equivalently, at least one $f(s) \in T$ is not mapped to by any $f(s) \in T$ in the notion of the noti

Since f injective implies f surjective, and f surjective implies f injective, if f is either injective or surjective, it is bijective as well; and trivially, f bijective implies both injective and surjective. Thus the three statements are equivalent. \Box

- (1.17)
 - Let

$$f: \mathbb{N} \longrightarrow \mathbb{N}$$

$$n \longmapsto f(n) = n+1.$$

f is injective, as no two $n_1, n_2 \in \mathbb{N}$ share a succ(n) unless $n_1 = n_2$ (equivalently, $n_1 + 1 = n_2 + 1$ implies $n_1 = n_2$). f is also not surjective, as $1 \notin \text{im } f$.

- Let

$$\begin{split} f: \mathbb{N} &\longrightarrow \mathbb{N} \\ n &\longmapsto f(n) = \left\lceil \frac{n}{2} \right\rceil. \end{split}$$

f is surjective, as for any $k \in \mathbb{N}$, take $n = 2k \in \mathbb{N}$; then we get $f(n) = \lceil \frac{2k}{2} \rceil = k$. On the other hand, f is not injective. Let $n_1, n_2 \in \mathbb{N}, n_1 = 1, n_2 = 2$. Then $f(n_1) = f(n_2) = 1$, but $n_1 \neq n_2$.