Week 3 Assignment (Individual) on CECL Data Merge, Cleaning and Exploration

Rohit Khurana

October 8, 2018

1. Assignment Scope

The objective of this Assignment 3 is to address key topics of

- a. Data Loading, Merge and Cleaning
- b. Data Exploration

2. Data Loading, Merge and Cleaning

2017Q2 data was downloaded as part of the last assignment and saved on the local machine in the .CSV format. This included two files

- Acquisitions Data
- Performance Data

For the purpose of analysis, we are interested in key elements from acquisition data, those are debt-to-income ratio, loan amount, credit score and interest rate, among other elements. From the Performance data, we are interested in loan payment history, delinquency, foreclosure date, etc. that will help us design the model of identifying the defaulting of loan.

Data Loading

Post reading the csv files into a data frames, following the two respective heads of the data frames.

Acquisitions Data Frame

5 rows × 26 columns

Performance Data Frame

	Unnamed: 0	LOAN_ID	Monthly.Rpt.Prd	Servicer.Name	LAST_RT	LAST_UPB	Loan.Age	Months.To.Legal.Mat	Adj.Month.To.Mat	Maturity.Date	 TAX_0
0	1	100001007633	04/01/2007	OTHER	5.875	NaN	1	359	358.0	03/2037	
1	2	100001007633	05/01/2007	NaN	5.875	NaN	2	358	357.0	03/2037	
2	3	100001007633	06/01/2007	NaN	5.875	NaN	3	357	356.0	03/2037	
3	4	100001007633	07/01/2007	NaN	5.875	NaN	4	356	355.0	03/2037	
4	5	100001007633	08/01/2007	NaN	5.875	NaN	5	355	355.0	03/2037	
5 rc	ows × 32 co	lumns									

In the performance data, we are only interested in following columns, hence we can drop the rest:-

- Loan Identifier: LOAN ID

Servicer Name: Servicer.NameCurrent Interest Rate: LAST RT

- Current Account Unpaid Balance: LAST UPB

- Loan Age: Loan.Age

- Months to Maturity: Months.To.Legal.Mat

- Foreclosure Date: FCC DTE

After dropping, revised header for performance as below looks more relevant.

144 100001666223 NaN 6.000 74941.17 56 184 186 100002547982 NaN 6.375 311043.55 41 319 10/01/2		LOAN_ID	Servicer.Name	LAST_RT	LAST_UPB	Loan.Age	Months.To.Legal.Mat	FCC_DTE
186 100002547982 NaN 6.375 311043.55 41 319 10/01/2	88	100001007633	NaN	5.875	164290.87	89	271	NaN
	144	100001666223	NaN	6.000	74941.17	56	184	NaN
271 100006771340 NaN 3.875 216144.24 84 276 05/01/2	186	100002547982	NaN	6.375	311043.55	41	319	10/01/2010
	271	100006771340	NaN	3.875	216144.24	84	276	05/01/2014
376 100007133911 NaN 6.250 124476.89 104 256	376	100007133911	NaN	6.250	124476.89	104	256	NaN

Data Merging

Joining the datasets using the LOAN ID column, and further dropping LOAN ID as it will not be of use for identifying defaults. Moreover we will rename the column FCC DTE to Default, as that will be our target variable.

Data Cleaning

The Default column, 1 is placed next to any borrower that has defaulted and 0 to those who has not defaulted. Also, Final dataframe, a merged one has many columns to dealt before we move further

	Count	Percent
OCLTV	1	0.000348
NUM_BO	4	0.001392
DTI	7046	2.452702
CSCORE_B	526	0.183100
MI_PCT	244280	85.033504
CSCORE_C	159679	55.584022
MI_TYPE	244280	85.033504
Servicer.Name	284784	99.132887
LAST_UPB	10	0.003481

The above table shows the number of null values in each column along with the percentages. Here the DTI columns contains 7046 null values and these null values makes upto 2.45 percentage of the entire column. In summary, dataset has nine columns with at least one null value and in the following case the percentage of nulls is large:-

- Mortgage Interest Percentage: MI PCT

- Credit Scope of Co-Borrower: CSCORE C

- Mortgage Interest Type: MI TYPE

- Service Name: Service.Name

For the above dataset, percentage of nulls is greater than 10 percentage hence we can drop the null rows without much consequence. Also, product type column has only one variable, hence dropping that also.

3. Data Exploration

Here by we are further studying the quality of data and identifying the outliers.

Default Column

The two classes (default = 1, non-default = 0) are extremely imbalanced here; defaulters make up only about 10 percent of all borrowers in this particular dataset. For very imbalanced datasets, it is often the case that machine learning algorithms will have a tendency to always predict the more dominant class when presented with new, unseen test data. To avoid an overabundance of false negatives, we can eventually balance the classes so that the dataframe contains equal numbers of defaulters and non-defaulters. However, lets continue looking at some more of the data first.

Original Interest Rate

The right-hand figure above shows original interest rate boxplots for both the default and non-default classes. It looks like the original loan interest rates for this time period sat around 6 %. The distributions for the two classes is similar, though interest rates for the default class were slightly higher.

Number of Borrowers

Further looking for relation between number of borrowers on a loan with default.

The vast majority of all loans (nearly 100 %) were for one or two individuals. Presumably the 2-borrower loans were usually for couples. Interestingly, more defaults occurred when only a single borrower was involved, perhaps because 2-borrower households had higher joint incomes and could more easily pay off the loan.

Debt to Income Ratio

Relation between debt to income ration vis--vis default has been explored below. As expected, defaulters typically had higher debt-to-income ratios than non-defaulters.

Credit Score

Vast differences can be observed between defaulters and non-defaulters, hence those defaulting had credit score less than 700 and non-defaulters are having more than 700

of credit score, there average around 750 as evident from the attached image:-

Borrowers Location

Further checking for borrowers location (ZIP Code), figure below shows the fraction of people that have defaulted from the ten most common ZIP Codes. Comparing certain locations (for example, ZIP Code 853 vs. 750), there are significant differences in the fraction of borrowers that defaulted.

Correlation Features

Checking if any of the elements of our dataset are highly correlated. Highly correlated features can often lead to unstable models with poor interpretability.

We can see that the correlation between Current Account Unpaid Balance (LAST UPB) and Original Unpaid Balance (LAST UPB) is very high 0.96. Further, the correlation between Original CLTV(COLTV) and Original LTV (OLTV) is high as well 0.95. Let's plot these features against one another and see what we find.

It looks like for any value of OLTV or LAST UPB, OCLTV and ORIG AMT show more variability., hence we can drop these two features from the dataset.