Critical Design Review

By: Tamara McCaskill, Joseph Earnest, Steven Harrington, Bryson Potts, Manning Owens

Our Team

Our Goal

Demonstrate skills acquired through FSU-PC's Mechanical Engineering program by constructing a boat capable of meeting the 2021 RoboBoat competition standards.

Updated Project Plan

RoboBoat 2021 Completed! What next?

- Possible plans to assemble hull at Gulf Coast State College
- Integrate the electrical components
- Begin Testing

RoboBoat Has Passed

Technical Design Report

- ME and EE worked on separate
- ME handles hull design and design process
- EE handled electronic components
- Explained future of project

RoboBoat Has Passed

Skills Video

- Focused on hull design and design process
- Capability to highlight aspects visually
- Used prototype for reference

RoboBoat Has Passed

Website Link

- Updated existing SPEAR website
- New page for this year's team
- Plan to add more as the project progresses

Initial Requirements

- Design boat hull
- Fabricate boat hull
- Integrate electronic components
- Write code facilitating autonomous obstacle avoidance
- Have an autonomous boat capable of competing in the RoboBoat competition

Revised Requirements

- Put finishing touch on hull design
- Fabricate hull
- Integrate electronic components
- Have an RC capable boat by end of semester

Meet B.O.A.T

(Best of All Time)

B.O.A.T

- Length is 1.2 meters
- Height is ~ .85 meters
- Material of construction is Carbon Fiber (contingent on Gulf Coast partnership)
- Weight estimate of Hull + Lid is 13.26 Kg or 29 lbs. (SolidWorks material estimate)

Prototypes

Hull

- Finalize a model to construct
- 3D print said model
- Observe how it sits in water

Lid

- Determine LiDAR tower size
- Finalize hatch size

LiDAR Tilt Mechanism

Create test mechanism

Propulsor Hot-Swap

Test making more propulsor hot-swaps

RoboBoat 2021

Scale Factor 1/92.85	Original Weight (g)	Scaled Weight (g)
Hull	6,500	70
Hull Lid	1,000	10.76923077
LiDar	447	4.813846154
Camera	72	0.775384615
GPS	250	2.692307692
Thruster (x4)	624	6.72
Computer	200	2.153846154
Battery (x2)	1450	15.61538461
Total Weight	10,543	113.54
Total Weight (lbs)	23.24335526	0.250313057

The Hull

- 3D modeled in Fusion 360 for FDM 3D printing (1/16 volume scale)
- Printed in Hatchbox PLA filament
- Lead fishing weights used as the scaled components

The Lid

- 3D modeled in Fusion 360 for FDM 3D printing (1/16 volume scale)
- Printed in Hatchbox PLA filament
- Spacious hatch for easy access to electrical components

The Tilt Mechanism

• Designed to adjust the angle at which the LiDAR will sit on the boat

The Propulsion Hot Swap

- Allows for quickly interchanging the propulsors
- Also allows the boat to sit on the ground without being supported by the propulsors
- Recreate the model on hand to be 3D printed

Questions?

B.O.A.T

(Best of All Time)