Total: 65/100 Midterny Average: 62/100 EAE 298 Aeroacoustics, Fall Quarter 2016 Mid-Term Exam 20/20

(Closed Note)

Halstrom

1. [2 points] What brought the aircraft noise down in 1970s and 80s? Explain the reason.
Introduction of turbofan (high-bypass ratio) engines. Achine thrust with 2. [3 points] Who is the father of aeroacoustics? What is acoustic analogy?
2. [3 points] Who is the father of aeroacoustics? What is acoustic analogy?
James Lighthill. Acoustic analogy is reagangement of Nowice-Steries
James Lighthill. Acoustic analogy is reagrangement of Nowier-Stokes equations to linear acoustic wave equation with Lighthill stress tensor Tij
3. [3 points] In FW-H equation, what are the three main sources?
thickness (monopole) due to displacement of fluid particles by moving a landing (dipole) due to uneasing fluctuating surface prosume on body blume fluid upole) non-linear volume term. 4. [2 points] What is the dominant wind turbine noise source? What is the physical mechanism of the
Islume Audduple) non-linear valume tems
4. [2 points] What is the dominant wind turbine noise source? What is the physical mechanism of the
noise? Trailing Edge unice Holodunamir energy in turbulent boundary laye
Trailing Edge noise. Hydrodynamic energy in turbulent boundary layer is scattered at sharp trailing obje where upper/lowerBLs meet
is statice in the factor of the field of the
5. [2 points] What is the blank in the equation, SPL = $20 \log_{10} (blank/P_{ref})$ where SPL is the sound
pressure level and P _{ref} is the reference pressure, which is 20μPa?
SPL = 20 logio (Pret) blank
6. [3 points] What is the 'retarded time'? Do you remember the equation? Petarded time is time when sound was emitted
Tetarded fine 15 lime when sound we contifed $T = t - \overline{X} - \overline{Y} $ $T = t - \overline{X} - \overline{Y} $
7. [2 points] According to the dimensional analysis of Lighthill's acoustic analogy, how does the acoustic
energy vary with respect to Mach number in <u>subsonic</u> case?
$\mathcal{N}_{\mathbf{g}}$
8. [3 points] What is the difference between Lighthill's equation and Lilley's equation?
Lilley mared the mean flow terms to the wave operator
so that the main flow can be solved as part of the solution,
rather than adjusting the source term to account for
mean flan as in 11 ht hall
mean flow as in Lighthill

EAE 298 Aeroacoustics, Fall Quarter 2016

Mid-Term Exam
(Open Note)

ame: Loogn Holsh

pure tone has a sound pressure level of 60 dB. Determine the sound pressure level of the noise 1. [15 points] A noise is generated by 80 pure tones, of different frequencies but identical power. Each

EAE 298 Aeroacoustics, Fall Quarter 2016

Mid-Term Exam (Open Note)

Name: Logan Holstrom

1. [15 points] A noise is generated by 80 pure tones, of different frequencies but identical power. Each pure tone has a sound pressure level of 60 dB. Determine the sound pressure level of the noise.

 $SPL = 10 \log_{10} \left[\frac{80}{2} \right] SPLi/10$ $= 10 \log_{10} \left[\frac{80}{10} \right] \left[\frac{600\%}{10} \right] = 10 \log_{10} 80$ $SPL = 10 \log_{10} \left(\frac{80}{10} \right)$ $= 10 \log_{10} \left($

- 2. [35 points] Problem about sound intensity and power
- 2. (a) [20 points] Show that the time-averaged intensity radiated for the various harmonic sound fields whose pressure

2. (b) [15 points] Show that the power radiated by the source from 2.(a) is

$$P = \frac{2\pi p_o^2 l^2}{\rho_0 c (2n+1)} \left(\frac{\omega l}{c}\right)^{2n}$$

Show the detailed derivation and do not jump on the final equation without justification. [Hint: the

Surface integration for a sphere can be calculated by
$$2\pi \int_0^{\pi} 2f(\pi^2 \sin \theta) d\theta$$
 $W_{ave} = \int_0^{\pi} 2\pi \sqrt{1} dx = \int_0^{\pi} 2f(\pi^2 \cos^2 \theta) dx$
 $W_{ave} = \frac{2\pi \sqrt{2}}{2h_0} \left(\frac{\omega 2}{c}\right)^{2n} \left(\frac{\pi}{2}\right)^{2n} \left(\frac{\omega 2}{c}\right)^{2n} \left(\frac{\omega 2}{c}\right)^{$

2. (b) [15 points] Show that the power radiated by the source from 2.(a) is

$$P = \frac{2\pi p_o^2 l^2}{\rho_0 c (2n+1)} \left(\frac{\omega l}{c}\right)^{2n}$$

Show the detailed derivation and do not jump on the final equation without justification. [Hint: the surface integration for a sphere can be calculated by $2\pi \int_0^{\pi} A(r,\theta) r^2 \sin\theta \ d\theta$.]

surface integration for a sphere can be calculated by
$$2\pi \int_{0}^{\pi} A(r,\theta)r^{2} \sin \theta d\theta$$
.

$$W_{ave} = \int_{c}^{2} I_{av} \int_{c}^{2} ds = \int_{c}^{2} \frac{P^{2} I_{av}^{2} I_{av}^{2}}{2RC r^{2}} \int_{c}^{2} \frac{P^{2} I_{av}^{2}}{2RC r^{2}} \int_{c}^{2} \frac{P^{$$

- 3. [30 points] Problem about a moving source
- 3. (a) [10 points] Show that the retarded time τ^* for a moving source with the constant velocity of U in the x_1 direction and the source location $x_2=l$ and $x_3=0$ is

$$\tau^* = \left(t - \frac{|\vec{x}|}{c} + \frac{x_2 l}{|\vec{x}| c}\right) \frac{1}{1 - M\cos\theta} \; for \; |\vec{x}| \gg l, |U\tau^*|$$

Show the detailed derivation and do not jump on the final equation without justification.

$$C(t-t^*) = |\vec{x} - \vec{x}_0|t^*\rangle = \{(x_1 - U - t^*)^{\frac{1}{4}} \cdot (x_2 - U + x_3)^{\frac{1}{4}} - 2x_2 I + I^2\}^{\frac{1}{4}} \}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1}{|\vec{x}|^2} u + u^2 + u^2 - \frac{2x_2}{|\vec{x}|^2} - \frac{2x_2}{|\vec{x}|^2} + \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{2x_2 I}{|\vec{x}|^2} + \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 - \frac{2x_1 u + u^2 - 2x_2}{|\vec{x}|^2} - \frac{1}{|\vec{x}|^2})\}$$

$$= \{(x_1)^{\frac{1}{4}} \cdot (1 -$$

3. (b) [20 points] Show that the distant sound field produced by a source of strength

$$q(\vec{x},t) = \delta(x_1 - Ut)H(l^2 - x_2^2)\delta(x_3)Qe^{i\omega t}$$

is

$$p'(\vec{x},t) = \frac{cQ}{2\pi\omega x_2} \exp\left[\frac{i\omega\left(t - \frac{|\vec{x}|}{c}\right)}{1 - Mcos\theta}\right] \sin\left(\frac{\omega x_2 l}{|\vec{x}|c(1 - Mcos\theta)}\right)$$

when $|\vec{x}|$ is large in comparison with l and $|U\tau^*|$ and where $\cos\theta=x_1/|\vec{x}|$. Comment on the form when the source is compact, i.e. $\omega l\ll c(1-M\cos\theta)$. Show the detailed derivations and do not jump on the final equation without justification. [Hint: H is the Heaviside function where H(x)=1 when $x\geq 0$, H(x)=0 when x<0 and $H(l^2-x_2^2)=H\{(l-x_2)(l+x_2)\}$.]

$$P(\vec{x},t) = \frac{Q(r^{4})}{U_{TT}r} = \frac{\int S(x_{1}-Ut)H(U^{2}-x_{2}^{2})}{U_{TT}r} \frac{\int S(x_{1}-Ut)H(U^{2}-x_{2}^{2})}{\int S(x_{2}-Ut)H(U^{2}-x_{2}^{2})} \frac{\int S(x_{3})Qe^{i\omega t}J^{3}y}{U_{TT}r}$$

$$= \int S(x_{1}-Ut)H(U^{2}-x_{2}^{2}) \frac{\int S(x_{3})Qe^{i\omega t}J^{3}y}{U_{TT}r}$$

$$= \int \frac{Qe^{i\omega t}J^{3}}{U_{TT}r} \frac{\partial Qe^{i\omega t}J^{3}y}{\partial Qe^{i\omega t}J^{3}y}$$

$$= \int \frac{Qe^{i\omega t}J^{3}}{U_{TT}r} \frac{\partial Qe^{i\omega t}J^{3}y}{\partial Qe^{i\omega t}J^{3}y}$$

$$= \int \frac{Qe^{i\omega t}J^{3}}{U_{TT}r} \frac{\partial Qe^{i\omega t}J^{3}y}{\partial Qe^{i\omega t}J^{3}y}$$