

智能机器人视觉感知: 挑战和解决方案

——从数据角度出发

胡君杰 深圳市人工智能与机器人研究院

本报告涉及以下几个问题

△ 人工智能模型设计-解决方案

↑ 机器人视觉感知的挑战

↑ 机器人视觉感知的解决范式

↑ 机器人视觉感知未来趋势

人工智能研究前沿

△ 大模型的数据闭环和解决方案

Tesla纯视觉方案的无人驾驶Autopilot

● OpenAI的网络机器人ChatGPT4

什么情况下, 1+1=3?

- 1. 生物学上的繁殖: 当两个生物(如人类)结合,产生一个新的生命时,可以用1(父亲)+1(母亲)=3(父母和孩子)来表示这个过程。
- 合作:在团队合作中,两个人或两个团队共同努力,创造出比他们各自所能 达到的更大的价值。这种情况下,"1+1=3"表示团队合作所带来的"协同效 应"。
- 3. 某些特殊的数学或编程背景下,可能会有1+1=3这种表达。例如,在一个错误的计算过程或程序中,这种情况可能会出现。

总的来说,"1+1=3"通常用于象征性地表示某种特定情境下的增值效果,而不是 真正的数学运算。

人工智能研究前沿

↑ 大模型的数据闭环和解决方案

- Tesla纯视觉方案的无人驾驶Autopilot
- OpenAI的网络机器人ChatGPT4

人工智能研究前沿

↑ 大模型的数据闭环和解决方案

- 模型实现与数据成本的关系:随着数据量的上升,模型提升速度放缓
- 大公司依据数据闭环,通过不断提升数据量和数据质量,可以实现模型效果的持续提升,即量变产生质变

智能机器人-视觉感知

- △ 感知的目的在于机器人认识和建模真实三维世界
- △ 感知是机器人决策和控制的前提
- ↑ 视觉是感知最为重要和有效的途径

智能机器人-视觉感知

- ↑ 感知的目的在于使机器人认识和建模真实三维世界
- △ 感知是机器人决策和控制的前提
- ^ 视觉是感知最为重要的组成部分

- ↑ 然而,以上数据闭环及模型实现方式,难以应用于实体机器人
 - 机器人类型差异

- ↑ 然而,以上数据闭环及模型实现方式,难以应用于实体机器人
 - 交互环境各式各样

城市

森林

海洋

- ↑ 由于机器人类型和交互环境各样。数据闭环的方式由于成本原因,只能由大公司主导。当下的研究范式仍是
 - 基于特定机器人在特定交互环境下的算法设计。

数据	模型	问题
人工收集	有监督学习	需人工标注, 难以大量收集
在线交互	强化学习	机器人功能(如电池)限制,难以大规模收集, 只适用于部分任务

- ↑ 由于机器人类型和交互环境各样。数据闭环的方式由于成本原因,只能由大公司主导。当下的研究范式仍是
 - 基于特定机器人在特定交互环境下的算法设计。
 - 数据难以大量获取,以无人机在城市环境下环境语义感知为例:

智能机器人感知: 从数据角度的解决方案

- △ 人类先验: 手动设计规则/特征, 只适用于部分任务。
- Λ 无监督学习: 无需人工数据标注,适用于low-level vision,如图像去噪、光照增强等。
- ↑ 半监督学习: 仅需部分数据部分标注,适用于high-level perception,如语义分割、深度估计。
- △ 小样本学习: 仅通过少量部分数据标注, 进行深度模型学习。
- ↑ 知识蒸馏(模型迁移):将大模型的感知能力赋予小模型,仅需图像输入。
- ↑ 终身学习: 让模型持续学习, 当有新数据时, 仅需利用新数据进行模型训练并保留其原始感知能力。

智能机器人感知: 从数据角度的解决方案

∧ 视觉SLAM

- 主动感知SLAM-人类先验
- 黑暗条件下SLAM-无监督学习
- 实时SLAM-知识蒸馏

↑ 机器人环境深度估计

- 无监督学习
- 知识蒸馏
- 终身学习

↑ 无人机、多机器人环境语义识别

- 半监督学习
- 小样本学习
- 多机器人语义SLAM

机器人主动SLAM-人类先验

- ↑ 手工设计各种规则,进行路径规划
- ↑ 门检测并构建拓扑地图以解决机器人路径震荡

Bao, Hu et al. 2023

黑暗光照下SLAM-无监督光照增强

∧ 低光照环境下视觉SLAM

● 提出无监督对抗学习的低光照图像增强算法,

实现在黑暗/低光照环境下的SLAM。

Hu et al. "A Two-stage Unsupervised Approach for Low light Image Enhancement." RAL 2021.

Efficient SLAM-基于知识蒸馏的描述子提取

△ 从训练好的大模型 (已有描述子抽取功能) 进行迁移

Guo, Hu et al. "Descriptor Distillation for Efficient Multi-Robot SLAM." ICRA 2023.

智能机器人感知: 从数据角度的解决方案

∧ 视觉SLAM

- 主动感知SLAM-人类先验
- 黑暗条件下SLAM-无监督学习
- 实时SLAM-知识蒸馏

∧ 机器人环境深度估计

- 无监督学习
- 知识蒸馏
- 终身学习

↑ 无人机、多机器人环境语义识别

- 半监督学习
- 小样本学习
- 多机器人语义SLAM

深度估计-无监督学习

↑ 根据多视角结合, 计算相对深度, 仅需图像视频仅需训练

深度估计-无数据知识蒸馏

△ 解放对大规模训练数据的需求,无需原始真实世界训练数据,仅利用仿真数据进行模型迁移。

Teacher (Backbone) → Student (Backbone) Parameter Reduction		ResNet-34 [18] → ResNet-34 None		ResNet-34 [18] \rightarrow MobileNet-v2 21.9 M \rightarrow 1.7 M		ResNet-50 [25] → ResNet-18 63.6 M → 13.7 M	
Method	Data	REL ↓	$\delta_1\uparrow$	REL ↓	$\delta_1\uparrow$	REL ↓	$\delta_1\uparrow$
Teacher	NYU-v2	0.133	0.829	0.133	0.829	0.134	0.824
Student		0.133	0.829	0.145	0.802	0.145	0.805
Random noises	None	0.426	0.193	0.431	0.194	0.517	0.102
DFAD [12]		0.285	0.402	0.306	0.329	0.300	0.382
KD-OOD [16]	SceneNet \mathcal{X}_1'	0.164	0.753	0.175	0.712	0.188	0.660
Ours		0.155	0.774	0.168	0.742	0.173	0.701
KD-OOD [16]	SceneNet \mathcal{X}_2'	0.158	0.761	0.165	0.742	0.180	0.676
Ours		0.151	0.789	0.157	0.778	0.165	0.726

Hu et al. " Data-free Dense Depth Distillation." Arxiv 2022. submitted to TNNLS 2023.

深度估计-终身学习

小 实现了在单目深度估计任务上的终身学习算法,模型可持续的利用新数据进行更新,无需重新训练

Hu et al. "Lifelong-MonoDepth: Lifelong Learning for Multi-Domain Monocular Metric Depth Estimation." Arxiv 2023. submitted to TNNLS 2023.

智能机器人感知: 从数据角度的解决方案

∧ 视觉SLAM

- 主动感知SLAM-人类先验
- 黑暗条件下SLAM-无监督学习
- 实时SLAM-知识蒸馏

↑ 机器人环境深度估计

- 无监督学习
- 知识蒸馏
- 终身学习

↑ 无人机、多机器人环境语义识别

- 半监督学习
- 小样本学习
- 多机器人语义SLAM

无人机语义感知-半监督学习

↑ 提出仅利用地面标注数据和空中无标注数据的无人机感知实现算法

Hu et al. " Progressive Self-Distillation for Ground-to-Aerial Perception Knowledge Transfer." Arxiv 2022. submitted to TRO 2023.

多机器人协同感知-小样本学习

↑ 多机器人协同感知

- 查询机器人发生目标,支持机器人返回搜寻结果
- 小样本学习方式攻克真实世界数据缺乏挑战

Fan, Hu et al. " Few-Shot Multi-Agent Perception." ACM MM 2021.

多机器人语义SLAM-融合语义识别、深度估计、多机器人系统和SLAM

↑ 多机器人语义SLAM

● 提出基于语义的图匹配算法,实现多机器人地图配准与融合

(a) The trajectories of KITTI 08 (b) The successful multi-robots dataset map fusion

 ${\it TABLE~III} \\ {\it The~translation~error~of~global~localization~on~the~KITTI~dataset~(in~meters)}$

	Sequence 02	Sequence 08A	Sequence 08B	Sequence 19
Neighbor Vector	14.42±20.02	4.59 ± 0.63	18.42 ± 4.00	15.18±11.45
Random Walk	76.61 ± 36.42	4.83 ± 0.68	25.55 ± 8.72	14.63 ± 13.35
BoW	55.20 ± 42.01	74.12 ± 51.14	32.16 ± 20.79	108.83 ± 54.05
NetVLAD [17]	28.21 ± 19.35	35.02 ± 21.04	24.52 ± 14.41	55.11 ± 20.96
Ours	8.77±11.39	4.42 ± 0.35	7.48 ± 3.67	8.10±6.63

Guo, Hu et al. "Semantic Histogram Based Graph Matching for Real-Time Multi-Robot Global Localization in Large Scale Environment." RAL 2021.

机器人感知未来趋势

- ↑ 数据闭环的解决方案往往由工业界主导,随着不断的进行数据采集、矫正、模型迭代,最终能够达到满意的效果。一般针对商业价值大的应用,如
 - 无人机:美团送餐
 - 扫地机器人
- ↑ 未来的较长时间内,基于无监督学习、半监督学习、小样本学习、强化学习等的技术方案,仍是机器人感知的重要实现方式。
- △ 学术界难以获取大量数据, 且私有数据较为分散, 难以共享。
 - 可能出现基于仿真的大数据、多任务数据集
 - 可通过知识蒸馏、迁移学习等技术方案,充分利用工业界的预训练人工智能大模型,实现在本地机器人感知任务上的小模型。

机器人感知未来趋势

- ↑ 利用大模型如ChatGPT-4收集训练数据并本地化训练。
 - 文本、视觉、3D大模型互通
 - 精心设计交互prompt,利用大模型生成目标域的图片、语言等并给出标注
 - 利用收集到的数据进行本地化训练, 实现机器人部署

机器人感知未来趋势

↑ 基于视觉、文本提示的机器人导航将进一步发展

