RICOH

RP130 SERIES

LOW NOISE 150mA LDO REGULATOR (Preliminary)

NO.EA-173-071220

OUTLINE

The RP130 Series are CMOS-based positive voltage regulator ICs with high ripple rejection, low dropout voltage, high output voltage accuracy and extremely low supply current. Each of these ICs consists of a voltage reference unit, an error amplifier, a resistor-net for voltage setting, a short current limit circuit and a chip enable circuit.

These ICs has an excellent low supply current performed by CMOS process, moreover they perform with low dropout voltage due to built-in low ON-resistance. A chip enable function prolongs the battery life.

The line transient response, the load transient response and the ripple rejection have been improved in the RP130 series compared with the conventional products. Besides achieving low supply current (TYP.38µA).

The range of the operation voltage is capable from 1.7V to 6.5V for this product, which is wider range as our conventional product R1114 series.

The output voltage of these ICs is fixed with high accuracy. Since the packages for these ICs are DFN(PLP)1010-4, SOT-23-5 and SC-82AB, therefore high density mounting of the ICs on boards is possible.

FEATURES

•	Low Supply Current ·····	· Typ.38µA
•	Small Packages ·····	DFN(PLP)1010-4, SOT23-5, SC-82AB
•	High Output Voltage Accuracy ·····	· ±1.0%
•	High Ripple Rejection ·····	· Typ.80dB (f=1kHz 2.8V Output Type)
•	Supply Current (Standby Mode)	· Typ.0.1µA
•	Low Dropout Voltage·····	· Typ.0.3V (I _{OUT} =50mA,V _{OUT} =2.8V)
•	Low Temperature-Drift Coefficient of Output Voltage·········	· Typ.±20ppm/°C
•	Excellent Line Regulation ·····	· Typ.0.02%/V
•	Output Voltage ·····	Stepwise setting with a step of 0.1V
		in the range of 1.2V to 5.0V is possible
•	Input Voltage ·····	· 1.7V to 6.5V
•	Built-in Fold Back Protection Circuit	· Typ.40mA
•	Ceramic capacitors are recommended to be used this IC	· C _{IN} =C _{OUT} =0.47µF or more

APPLICATIONS

- Power source for battery-powered equipment.
- Power source for portable communication equipment.
- Power source for electrical applications such as cameras, VCRs and camcorders.
- · Power source for high stable reference voltage

RP130 (Preliminary)

BLOCK DIAGRAMS

RP130xxx1A

RP130xxx1B

SELECTION GUIDE

The output voltage, version, and the taping type for the ICs can be selected at the user's request.

The selection can be made with designating the part number as shown below;

$$\begin{array}{ccc} RP130x\underline{xx}1x-\underline{xx} & \leftarrow \text{Part Number} \\ \uparrow \uparrow & \uparrow \uparrow \\ a b & c & d \end{array}$$

Code	Contents
а	Designation of Package Type: K: DFN(PLP)1010-4 N: SOT23-5 Q: SC-82AB
b	Setting Output Voltage (V _{OUT}): Fixed Type: 12 to 50 Stepwise setting with 0.1V increment in the range from 1.2V to 5.0V Exception: 1.85V=RP130x181x5-TR, 2.85V=RP130x281x5-TR
С	Designation of Active Type: A: active low type* B: active high type* D: active high type, with auto-discharge*
d	Designation of Taping Type: Ex.TR (refer to Taping Specifications: TR type is the standard direction)

^{*} When the mode is into standby with CE signal, auto-discharge transistor turns on, and it makes the turn-off speed faster than normal type.

RICOH 3

PIN CONFIGURATION

DFN (PLP)1010-4

SOT-23-5

SC-82AB

PIN DESCRIPTIONS

• RP130K: DFN(PLP)1010-4

Pin No.	Symbol	Description
1	V_{OUT}	Output Pin
2	GND	Ground Pin
3	CE or CE	Chip Enable
4	V_{DD}	Input Pin

Tab is GND level. (They are connected to the reverse side of this IC.)

Do not connected to other wires or land patterns.

• RP130N: SOT-23-5

Pin No.	Symbol	Description
1	V_{DD}	Input Pin
2	GND	Ground Pin
3	CE or CE	Chip Enable
4	NC	No Connection
5	V _{OUT}	Output Pin

● RP130Q: SC-82AB

Pin No.	Symbol	Description
1	CE or CE	Chip Enable
2	GND	Ground Pin
3	V _{OUT}	Output Pin
4	V_{DD}	Input Pin

RICOH

5

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Ratin	gs	Unit
V_{IN}	Input Voltage	7.0		V
V_{CE}	Input Voltage (CE Pin)	- 0.3 ~	7.0	V
V_{OUT}	Output Voltage	- 0.3 ~ V _{II}	_N + 0.3	V
I _{OUT}	Output Current	200)	mA
		DFN(PLP)1010-4	400	
P_D	Power Dissipation*	SOT-23-5	420	mW
		SC-82AB	380	
Та	Ambience Temperature Range	- 40 ~ -	+ 85	°C
Tstg	Storage Temperature Range	- 55 ~ +	125	°C

^{*} For Power Dissipation, please refer to PACKAGE INFORMATION (p.12~) to be described

ELECTRICAL CHARACTERISTICS

$$\begin{split} &V_{\text{IN}}\text{=Set }V_{\text{OUT}}\text{+1V for }V_{\text{OUT}}\text{ options greater than 1.5V. }V_{\text{IN}}\text{=}2.5\text{V for }V_{\text{OUT}} \leq 1.5\text{V.}\\ &I_{\text{OUT}}\text{=}1\text{mA, }C_{\text{IN}}\text{=}C_{\text{OUT}}\text{=}0.47\mu\text{F, unless otherwise noted.}\\ &\boxed{\qquad} \text{values indicate -40°C} \leq \text{Ta} \leq 85^{\circ}\text{C, unless otherwise noted.} \end{split}$$

RP130xxx1A (Ta=25°C)

Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
		Ta=25°C	V _{OUT} > 2.0V	x 0.99		x 1.01	V
V	Output Voltage	1a-25 C	$V_{OUT} \le 2.0V$ -2	-20		+20	mV
V_{OUT}	Output Voltage	 -40°C ≦ Ta ≦ 85°C	V _{OUT} > 2.0V	x 0.985		x 1.015	V
		-40 C ≥ 1a ≥ 65 C	$V_{OUT} \le 2.0V$	-30		+30	mV
I _{OUT}	Output Current			150			mA
ΔV _{OUT} /ΔI _{OUT}	Load Regulation	1mA ≤ I _{OUT} ≤ 150mA	1		10	30	mV
V_{DIF}	Dropout Voltage	Plea	se see the data	on next p	page (p.8	3)	
I _{SS}	Supply Current	I _{OUT} =0mA			38	58	μΑ
Istandby	Supply Current (Standby)	V _{CE} =V _{IN}			0.1	1.0	μΑ
ΔV _{OUT} /ΔV _{IN}	Line Regulation	Set $V_{OUT}0.5V \le V_{IN} \le 5.0V$			0.02	0.10	%/V
RR	Ripple Rejection	f=1kHz, Ripple 0.2Vp-p V_{IN} =Set V_{OUT} +1V, I_{OUT} =30mA (In case that $V_{\text{OUT}} \le 2.0$ V, V_{IN} =3.0V)			75		dB
V _{IN}	Input Voltage*			1.7		6.5	V
ΔV _{OUT} /ΔTa	Output Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 85°C			±20		ppm /°C
llim	Short Current Limit	V _{OUT} =0V			40		mA
V _{CEH}	CE Input Voltage "H"			1.0			μΑ
V _{CEL}	CE Input Voltage "L"					0.4	
en	Output Noise	BW=10Hz to 100kHz I _{OUT} =30mA			30		μVrms

The specification in ____ is checked and guaranteed by design engineering.

All of unit are tested and specified under load conditions such that Tj \approx Ta=25°C except for Output Noise, Ripple Rejection and Output Voltage Temperature Coefficient items.

CONFIDENTIAL

RICOH 7

RP130 (Preliminary)

RP130xxx1B/D (Ta=25°C)

Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
		Ta=25°C	V _{OUT} > 2.0V	x 0.99		x 1.01	V
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Output Voltage	1a-25 C	$V_{OUT} \le 2.0V$	-20		+20	mV
V _{OUT}	Output Voltage	-40°C ≤ Ta ≤ 85°C	V _{OUT} > 2.0V	x 0.985		x 1.015	V
		-40 C ≥ 1a ≥ 03 C	$V_{\text{OUT}} \le 2.0 V$	-30		+30	mV
I _{OUT}	Output Current			150			mA
ΔV_{OUT} $/\Delta I_{OUT}$	Load Regulation	1mA ≤ I _{OUT} ≤ 150mA	4		10	30	mV
V_{DIF}	Dropout Voltage		Please see the	e data be	low		
I _{SS}	Supply Current	I _{OUT} =0mA			38	58	μA
Istandby	Supply Current (Standby)	V _{CE} =0V			0.1	1.0	μA
ΔV _{OUT} /ΔV _{IN}	Line Regulation	Set V _{OU,T} 0.5V ≤ V _{IN} ≤	≤ 5.0V		0.02	0.10	%/V
RR	Ripple Rejection	f=1kHz, Ripple 0.2Vp-p V_{IN} =Set V_{OUT} +1V, I_{OUT} =30mA (In case that $V_{OUT} \le 2.0$ V, V_{IN} =3.0V)			75		dB
V _{IN}	Input Voltage*			1.7		6.5	V
ΔV _{OUT} /ΔTa	Output Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 85°C			±20		ppm /°C
Ilim	Short Current Limit	V _{OUT} =0V			40		mA
I _{PD}	CE Pull-down Current				0.4		μA
V _{CEH}	CE Input Voltage "H"			1.0			V
V _{CEL}	CE Input Voltage "L"					0.4	V
en	Output Noise	BW=10Hz to 100kHz I _{OUT} =30mA			30		μVrms
R _{LOW}	Low Output Nch Tr. ON Resistance (D version Only)	V _{IN} =4.0V V _{CE} =0V			30		Ω

The specification in is checked and guaranteed by design engineering.

Dropout Voltage

V 00		Dropout Voltage (V)	
V _{OUT} (V)	Condition	TYP.	MAX.
$1.2V \le V_{OUT} < 1.5V$		0.67	1.00
$1.5V \le V_{OUT} < 1.7V$		0.54	0.81
$1.7V \le V_{OUT} < 2.0V$		0.46	0.68
$2.0V \le V_{OUT} < 2.5V$	- I _{оит} =150mA	0.41	0.60
$2.5V \le V_{OUT} < 4.0V$		0.32	0.51
$4.0V \le V_{OUT}$		0.24	0.37

The specification in is checked and guaranteed by design engineering.

All of unit are tested and specified under load conditions such that Tj ≈ Ta=25°C except for Output Noise, Ripple Rejection and Output Voltage Temperature Coefficient items.

9

TEST CIRCUITS

Basic Test Circuit

Test Circuit for Supply Current

Test Circuit for Ripple Rejection

Test Circuit for Load Transient Response

11

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C_{OUT} with good frequency characteristics and ESR (Equivalent Series Resistance). (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor with a capacitance value as much as $0.47\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor, as close as possible to the ICs, and make wiring as short as possible.

TYPICAL APPLICATION

(External Components)

C2 0.47µF MURATA: GRM155B30J474KE18B

POWER DISSIPATION (DFN(PLP)1010-4)

This specification is at mounted on board. Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

	Standard Test Land Pattern		
Environment	Mounting on Board (Wind velocity=0m/s)		
Board Material	Glass cloth epoxy plastic (Double sided)		
Board Dimensions	40mm * 40mm * 1.6mm		
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%		
Through-holes	φ 0.54mm * 24pcs		

Measurement Result

(Ta=25°C)

	Standard Test Land Pattern
Dower Discinction	400mW(Tjmax=125°C)
Power Dissipation	500mW(Tjmax=150°C)
The arread Decistors	θja = (125-25°C)/0.4W= 250°C/W
Thermal Resistance	θjc = 67°C/W

Measurent Board Pattern

::::IC Mount Area (Unit:mm)

- Use in the oblique-line-area might be influence the product-life cycle, please suppress by 13,000 hours about use. 13,000 hours will correspond in nine years when using it for four hours a day.

POWER DISSIPATION (SOT-23-5)

This specification is at mounted on board. Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: (Power Dissipation (SOT-23-5) is substitution of SOT-23-6.)

Measurement Conditions

	Standard Test Land Pattern
Environment	Mounting on Board (Wind velocity=0m/s)
Board Material	Glass cloth epoxy plastic (Double sided)
Board Dimensions	40mm * 40mm * 1.6mm
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%
Through-holes	φ 0.5mm * 44pcs

Measurement Result (Ta=25°C)

	Standard Test Land Pattern	Free Air	
Power Dissipation	420mW(Tjmax=125°C)	250mW(Tjmax=125°C)	
	525mW(Tjmax=150°C)		
Thermal Resistance	θja = (125-25°C)/0.42W= 263°C/W	400°C/W	

Measurement Board Pattern

() IC Mount Area (Unit: mm)

- Use in the oblique-line-area might be influence the product-life cycle, please suppress by 9,000 hours about use. 9,000 hours will correspond in six years when using it for four hours a day.

POWER DISSIPATION (SC-82AB)

This specification is at mounted on board. Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

	Standard Land Pattern		
Environment	Mounting on Board (Wind velocity=0m/s)		
Board Material	Glass cloth epoxy plactic (Double sided)		
Board Dimensions	40mm * 40mm * 1.6mm		
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%		
Through-hole	φ 0.5mm*44pcs		

Measurement Result

(Topt=25°C,Tjmax=125°C)

	Standard Land Pattern	Free Air
Power Dissipation	380mW	150mW
Thermal Resistance	θja=(125-25°C)/0.38W=263°C/W	667°C/W

40

Measurement Board Pattern

C Mount Area (Unit: mm)