ViLT Survey

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision

ABSTRACT

From now

VLP(Vision-and-Language Pre-trained) has improved performance on various joint vision-and-language downstream tasks.

Current VLP models rely heavily on the image feature extraction process, and most include Region Supervision (ex. object detection) and Convolutional Architecture.

ViLT replace this process to Patch Projection.

ViLT is up to tens of times faster than previous VLP Models, and show similar or better downstream task performance.

INTRODUCTION

What has changed?

Convolution networks have become a essential for visual embedding step by AlexNet.

Lot of research to efficiently use visual embedder, but it still have structurally slow extraction process.

ViLT replace this process to linear embedding in a single unifed manner. (Region Feature, Grid Feature [X] \rightarrow Patch Projection [O])

For the first time in VLP Models, apply whole-word masking and image augmentation to improve downstream performance.

Region Feature

Visualization each Model

CNN Backbone, Region Operations(object detection required)

Extract features from specific regions of an image.

Grid Feature

Visualization each Model

CNN Backbone

Divide the image into grids and extract features from each grid cell.

Patch Projection

Visualization each Model

Linear Embedding

Divide the image into patches \rightarrow Flatten \rightarrow generate low-dimensional linear embeddings.

Written by Kim EunHo

Running Time

Visualization each Model

Region Operation process occupies almost Running Time.

ViLT-B/32 (Linear Embedding) is fastest.

VLPs ARCHITECTURE

4 Architectures

4 VLP Architectures

Equivalent expressiveness level of parameters and/or calculations Interact in the deep network

VE: visual embedder, TE: textual embedder, MI: modality interaction

VILT ARCHITECTURE

In detail

Image and text with modal type embedding and position embedding.

Multi Head Self Attention, Feed Forward Network and Residual calculation is proceed.

VISUAL AND LANGUAGE TRANSFORMER

ViLT is similar with ViT-B/32

Minimalize visual embedding process(Patch Projection).

Follows single-stream approach.

ViLT initializes with the weights of ViT.

Commonality

- Weights
- Hyperparameter
- Configuration

ViT Architecture

ViLT Architecture

VISUAL AND LANGUAGE TRANSFORMER

ViLT / ViT Transformer Code

```
class VisionTransformer(nn.Module):
    def init (
       self.
        embed dim=768,
        depth=12,
        num heads=12,
       mlp ratio=4.0,
        attn drop rate=0.0, ...):
class Block(nn.Module):
   def init (
       self,
        dim.
        num heads,
        mlp ratio=4.0,
       attn drop=0.0, ...):
        self.attn = Attention(
            dim.
           num heads=num heads,
           attn drop=attn_drop, ...)
        mlp hidden dim = int(dim * mlp ratio)
        self.mlp = Mlp(
            in features=dim,
           hidden features=mlp hidden dim, ...
```

ViLT Architecture

```
def get_b16_config():
  """Returns the ViT-B/16 configuration."""
 config.model name = 'ViT-B 16'
  config.transformer.num heads = 12
  config.transformer.num layers = 12
  config.hidden size = 768
  config.transformer.mlp dim = 3072
  config.transformer.attention dropout rate = 0.0
 return config
def get_b32_config():
  """Returns the ViT-B/32 configuration."""
 config = get b16 config()
 config.model name = 'ViT-B 32'
 config.patches.size = (32, 32)
 return config
```

ViT Architecture

MODALITY INTERACTION SCHEMA

Two approaches

Single-stream approach

- Use single encoder
- Simple and low cost
- Have limitation.

Dual-stream approach

- Use dual encoder
- Good performance
- Complex and high cost.

Dual-stream needs additional parameters(dual encoder), so ViLT follows single-stream approach.

MODEL OVERVIEW

ViLT Formula

$$\bar{t} = [t_{\text{class}}; t_1 T; \dots; t_L T] + T^{\text{pos}}$$
(1)

$$\bar{v} = [v_{\text{class}}; v_1 V; \dots; v_N V] + V^{\text{pos}}$$
(2)

$$z^{0} = [\bar{t} + t^{\text{type}}; \bar{v} + v^{\text{type}}] \tag{3}$$

$$\hat{z}^d = MSA(LN(z^{d-1})) + z^{d-1}, \qquad d = 1...D$$
 (4)

$$z^{d} = \text{MLP}(\text{LN}(\hat{z}^{d})) + \hat{z}^{d}, \qquad d = 1 \dots D \quad (5)$$

$$p = \tanh(z_0^D W_{\text{pool}}) \tag{6}$$

ViLT Formula

- (1): Word Embedding and Position Embedding for input text.
- (2): Patch Projection and Position Embedding for input image.
- (3): Sum with their corresponding modal-type embedding vectors and concatenate.

MODEL OVERVIEW

ViLT Formula

$$\begin{split} & \bar{t} = [t_{\text{class}}; t_1 T; \cdots; t_L T] + T^{\text{pos}} & (1) \\ & \bar{v} = [v_{\text{class}}; v_1 V; \cdots; v_N V] + V^{\text{pos}} & (2) \\ & z^0 = [\bar{t} + t^{\text{type}}; \bar{v} + v^{\text{type}}] & (3) \\ & \hat{z}^d = \text{MSA}(\text{LN}(z^{d-1})) + z^{d-1}, & d = 1 \dots D & (4) \\ & z^d = \text{MLP}(\text{LN}(\hat{z}^d)) + \hat{z}^d, & d = 1 \dots D & (5) \\ & p = \tanh(z_0^D W_{\text{pool}}) & (6) \end{split}$$

ViLT Formula

- (4) : Apply Layer Normalization, MSA, and Residual calculation to z^{d-1} .
- (5) : Apply Layer Normalization, MLP and Residual calucation to \hat{z}^d .
- (6): Multiply final output and weight matrix, then pass through activation function.

Image-Text Matching(ITM)

ViLT Architecture

Model predicts \rightarrow image-text pair is a "match(1)" or "mismatch(0)"(Binary classification).

Before predict, randomly replace the image with a different image with the 0.5 probability. (If image has changed \rightarrow "mismatch(0)", otherwise "match(1)")

Calculate the negative log-likelihood loss with logit p as the ITM Loss.

Image-Text Matching(ITM) Code

```
def compute_itm_wpa(pl_module, batch):
    pos_len = len(batch["text"]) // 2
    neg_len = len(batch["text"]) - pos_len

itm_labels = torch.cat([torch.ones(pos_len), torch.zeros(neg_len)]).to(
        pl_module.device
)
    itm_labels = itm_labels[torch.randperm(itm_labels.size(0))]
    infer = pl_module.infer(batch, mask_text=False, mask_image=False)

itm_logits = pl_module.itm_score(infer["cls_feats"])
    itm_loss = F.cross_entropy(itm_logits, itm_labels.long())

ret = {
    "itm_loss": itm_loss, ...}
    return ret
```

Define the number of pos_len, neg_len.

Add 1 to positive samples and 0 to negative samples, mix, and inference.

Apply cross_entropy to the inference result to obtain ITM Loss and return it.

ITM Loss Code

Word Patch Alignment(WPA)

ViLT Architecture

WPA learn alignment between image patches and text tokens with IPOT.

IPOT? - Techniques used to optimize the relationship between text and images.

Word Patch Alignment(WPA) Code

```
def compute_itm_wpa(pl_module, batch):
   with torch.cuda.amp.autocast(enabled=False):
        cost = cost_matrix_cosine(txt_emb.float(), img_emb.float())
       joint_pad = txt_pad.unsqueeze(-1) | img_pad.unsqueeze(-2)
        cost.masked_fill_(joint_pad, 0)
        txt_len = (txt_pad.size(1) - txt_pad.sum(dim=1, keepdim=False)).to(
           dtype=cost.dtype
       img_len = (img_pad.size(1) - img_pad.sum(dim=1, keepdim=False)).to(
           dtype=cost.dtype
       T = ipot(
           cost.detach(), txt_len, txt_pad, img_len, img_pad, joint_pad, 0.5, 50, 1
        distance = trace(cost.matmul(T.detach()))
   dist_pos = distance.masked_select(itm_labels == 1)
   dist_neg = distance.masked_select(itm_labels == 0)
   ot_loss = (dist_pos.sum() - dist_neg.sum()) / (dist_pos.size(0) + dist_neg.size(0))
    ret = {
       "itm wpa loss": 0.1 * ot loss, ... }
    return ret
```

Calcuate cost and obtain joint padding mask.

Find the length of the sequence and calculate the IPOT.

Compute a WAP Loss function based on the distance difference between positive and negative samples and return it.

WPA Loss Code

Masked Language Modeling(MLM)

ViLT Architecture

Mask a text token(0.15) and predict the Ground Truth label of the masked text token.

The MLM loss is computed as the negative log-likelihood loss for the masked tokens.

Masked Language Modeling(MLM) Code

```
def compute_mlm(pl_module, batch):
    infer = pl_module.infer(batch, mask_text=True, mask_image=False)

mlm_logits = pl_module.mlm_score(infer["text_feats"])
    mlm_labels = infer["text_labels"]

mlm_loss = F.cross_entropy(
        mlm_logits.view(-1, pl_module.hparams.config["vocab_size"]),
        mlm_labels.view(-1),
        ignore_index=-100,
)

ret = {
    "mlm_loss": mlm_loss, ...}

return ret
```

Only mask text data.

Find logit and labels based on masked text data.

Reshape the logit and label, and apply cross entropy to obtain the MLM Loss.

MLM Loss Code

ANOTHER TECHNIQUES

Whole-word Masking

Masks all consecutive subword tokens by BERT tokenizer(0.15). (ex. "giraffe" \rightarrow ["gi"], ["##raf"], ["##fe"] \rightarrow [MASK], [MASK], [MASK])

Applied to original and Chinese BERT.

If you do not mask all tokens, only use language token and don't use image information.

ANOTHER TECHNIQUES

Image Augmentation

Increase the generalization power of a vision model.

RandAugment was applied, but "Color inversion" and "Cutout" were not applied.

Because they may damage or eliminate information included in the textual information.

EXPERIMENTS

Comparison of VLP Models and ViLT

Visual Embed	Model	#Params (M)	#FLOPs (G)	Time (ms)
Region	Vilbert 36+36 Visualbert 36+128 LXMERT 36+20 UNITER-Base 36+60 OSCAR-Base 50+35 VinVL-Base 50+35 Unicoder-VL 100+? Image BERT 100+44	274.3 170.3 239.8 154.7 154.7 157.3 170.3	958.1 425.0 952.0 949.9 956.4 1023.3 419.7 420.6	~900 ~925 ~900 ~900 ~650 ~925 ~925
Grid	Pixel-BERT-X152 ^{146+?} Pixel-BERT-R50 ^{260+?}	144.3 94.9	185.8 136.8	~160 ~60
Linear	ViLT-B/32 ²⁰⁰⁺⁴⁰	87.4	55.9	~15

Visual Embed	Model	CNN Backbone	RoI Head	NMS	Trans. Layers
Region	Vilbert Visualbert LXMERT UNITER-Base OSCAR-Base VinVL-Base Unicoder-VL ImageBERT	R101 X152 R101 R101 R101 X152 X152 X152	C4 FPN C4 C4 C4 C4 FPN FPN	PC PC PC PC CA PC PC	~15 12 ~12 12 12 12 12 12
Grid	Pixel-BERT-X152 Pixel-BERT-R50	X152 R50	-	-	12 12
Linear	ViLT-B/32	-	-	-	12

Params, FLOPs, Time of VLP Models

Component of VLP Models

C4 : Conv4 PC : Per-class method

FPN: Feature Pyramid Network CA: Class-agnostic method

EXPERIMENTS

Performance comparison by Visual Embed method

Visual	Model	Time	VQAv2	NL	VR2
Embed	Model	(ms)	test-dev	dev	test-P
	w/o VLP SOTA	~900	70.63	54.80	53.50
	ViLBERT	~920	70.55	-	-
	VisualBERT	~925	70.80	67.40	67.00
Region	LXMERT	~900	72.42	74.90	74.50
	UNITER-Base	~900	72.70	75.85	75.80
	OSCAR-Base†	~900	73.16	78.07	78.36
	VinVL-Base†‡	~650	75.95	82.05	83.08
Caid	Pixel-BERT-X152	~160	74.45	76.50	77.20
Grid	Pixel-BERT-R50	~60	71.35	71.70	72.40
	ViLT-B/32	~15	70.33	74.41	74.57
Linear	ViLT-B/32 [®]	~15	70.85	74.91	75.57
	ViLT-B/32@+	~15	71.26	75.70	76.13

ViLT is fastest but performance is similar with other VLP Models.

Performance comparison

EXPERIMENTS

Performance measurment

Visual	Model	Time	Zero-Shot Text Retrieval Flickr30k (1K) MSCOCO (5K)					Zero-Shot Image Retrieval Flickr30k (1K) MSCOCO (5K)						
Embed		(ms)	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
Region	ViLBERT Unicoder-VL UNITER-Base ImageBERT†	~900 ~925 ~900 ~925	64.3 80.7 70.7	85.8 95.7 90.2	92.3 98.0 94.0	- - - 44.0	- - 71.2	- - 80.4	31.9 48.4 66.2 54.3	61.1 76.0 88.4 79.6	72.8 85.2 92.9 87.5	32.3	- - 59.0	70.2
Linear	ViLT-B/32 ViLT-B/32⊕	~15 ~15	69.7 73.2	91.0 93.6	96.0 96.5	53.4 56.5	80.7 82.6	88.8 89.6	51.3 55.0	79.9 82.5	87.9 89.8	37.3 40.4	67.4 70.0	79.0 81.1

Performance measurement in Zero-Shot Text Retrieval

Visual		Time	Time Text Retrieva									Image Retrieval			
Embed	Model		Flickr30k (1K)		1K)	MSCOCO (5K)			Flickr30k (1K)			MSCOCO (5K)			
Ellibed		(ms)	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	
	w/o VLP SOTA	~900	67.4	90.3	95.8	50.4	82.2	90.0	48.6	77.7	85.2	38.6	69.3	80.4	
	ViLBERT-Base	~920	-	-	-	-	-	-	58.2	84.9	91.5	-	-	-	
Region	Unicoder-VL	~925	86.2	96.3	99.0	62.3	87.1	92.8	71.5	91.2	95.2	48.4	76.7	85.9	
Region	UNITER-Base	~900	85.9	97.1	98.8	64.4	87.4	93.1	72.5	92.4	96.1	50.3	78.5	87.2	
	OSCAR-Base†	~900	-	-	-	70.0	91.1	95.5	-	-	-	54.0	80.8	88.5	
	VinVL-Base†‡	~650	-	-	-	74.6	92.6	96.3	-	-	-	58.1	83.2	90.1	
Grid	Pixel-BERT-X152	~160	87.0	98.9	99.5	63.6	87.5	93.6	71.5	92.1	95.8	50.1	77.6	86.2	
Ona	Pixel-BERT-R50	~60	75.7	94.7	97.1	59.8	85.5	91.6	53.4	80.4	88.5	41.1	69.7	80.5	
	ViLT-B/32	~15	81.4	95.6	97.6	61.8	86.2	92.6	61.9	86.8	92.8	41.3	72.0	82.5	
Linear	ViLT-B/32@	~15	83.7	97.2	98.1	62.9	87.1	92.7	62.2	87.6	93.2	42.6	72.8	83.4	
	ViLT-B/32®⊕	~15	83.5	96.7	98.6	61.5	86.3	92.7	64.4	88.7	93.8	42.7	72.9	83.1	

Performance measurement in Text Retrieval

ViLT is also have similar performance in downstream task.

ABLATION STUDY

VILT-B/32

Training	A	Ablatio	n	VQAv2	VQAv2 NLVR2			R@1 (1K)	MSCOCO R@1 (5K)		
Steps	W	<u>m</u>	<u>a</u>	test-dev	dev	test-P	TR (ZS)	IR (ZS)	TR (ZS)	IR (ZS)	
25K	X	X	X	68.96 ± 0.07	70.83 ± 0.19	70.83 ± 0.23	75.39 (45.12)	52.52 (31.80)	53.72 (31.55)	34.88 (21.58)	
50K	X	X	\mathbf{X}	69.80 ± 0.01	71.93 ± 0.27	72.92 ± 0.82	78.13 (55.57)	57.36 (40.94)	57.00 (39.56)	37.47 (27.51)	
100K	\mathbf{X}	\mathbf{X}	\mathbf{X}	70.16 ± 0.01	73.54 ± 0.02	74.15 ± 0.27	79.39 (66.99)	60.50 (47.62)	60.15 (51.25)	40.45 (34.59)	
100K	O	\mathbf{X}	\mathbf{X}	70.33 ± 0.01	74.41 ± 0.21	74.57 ± 0.09	81.35 (69.73)	61.86 (51.28)	61.79 (53.40)	41.25 (37.26)	
100K	O	O	X	70.21 ± 0.05	72.76 ± 0.50	73.54 ± 0.47	78.91 (63.67)	58.76 (46.96)	59.53 (47.75)	40.08 (32.28)	
100K 200K	0	X X	0	70.85 ± 0.13 71.26 ± 0.06	74.91 ± 0.29 75.70 ± 0.32	75.57 ± 0.61 76.13 ± 0.39	83.69 (69.73) 83.50 (73.24)	62.22 (51.28) 64.36 (54.96)	62.88 (53.40) 61.49 (56.51)	42.62 (37.26) 42.70 (40.42)	

Ablation Study of ViLT-B/32 Model

Whole-Word Masking

Masked Patch Prediction as objective

More Training Steps, Whole-Word Masking and Image Augmentation are benefical, but Masked Patch Prediction is not.

Image Augmentation

Q&A