

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 6: (11) International Publication Number: WO 96/28174 A1 A61K 35/00, 35/30, 35/48 (43) International Publication Date: 19 September 1996 (19.09.96) PCT/US96/03337 (81) Designated States: AL, AM, AU, BB, BG, BR, CA, CN, CZ, (21) International Application Number: EE, FI, GE, HU, IS, JP, KG, KP, KR, LK, LR, LT, LV, (22) International Filing Date: 12 March 1996 (12.03.96) MD, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, (30) Priority Data: RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent 08/402,387 13 March 1995 (13.03.95) US (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). (71) Applicant (for all designated States except US): UNIVERSITY OF SOUTH FLORIDA [US/US]; 4202 E. Fowler Avenue FAO 126, Tampa, FL 33620-7900 (US). Published With international search report. (72) Inventors; and (75) Inventors/Applicants (for US only): SANBERG, Paul, R. [US/US]; 11751 Pilot Country Drive, Spring Hill, FL 34610 (US). CAMERON, Don, F. [US/US]; 18206 Clear Lake Drive, Lutz, FL 33549 (US). BORLONGAN, Cesario, V. [PH/US]; 17802-A Jamestown, Lutz, FL 33549 (US). HELLER, Richard [US/US]; 1102 Pine Ridge Circle West, Brandon, FL 33511 (US). (74) Agent: KOHN, Kenneth, I.; Kohn & Associates, Suite 410. 30500 Northwestern Highway, Farmington Hills, MI 48334

(54) Title: SERTOLI CELLS AS TRANSPLANTATION FACILITATOR FOR CELL TRANSPLANTATION

(57) Abstract

(US).

A method of producing a sustained localized immunosuppressive effect in localized tissues is achieved by transplanting Sertoli cells proximate to the tissue.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
СН	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	S.N	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechosłovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	TJ	Tajikistan
DK	Denmark	МC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Malı	ĽS.	United States of America
FR	France	MN	Mongolia	ĽZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

SERTOLI CELLS AS TRANSPLANTATION FACILITATOR FOR CELL TRANSPLANTATION

TECHNICAL FIELD

The present invention relates to methods of transplanting cells to create a localized immunosuppressive and trophic effect in tissue.

10 BACKGROUND OF THE INVENTION

Transplantation of cells and tissues is being utilized therapeutically in a wide range of disorders including but not limited to from cystic fibrosis (lungs), kidney failure, degenerative heart diseases to neurodegenerative disorders.

As an example, the central nervous system (CNS) (brain and spinal cord) has poor regenerative capacity which is exemplified in a number of neurodegenerative disorders. An example of such a disorder is Parkinson's disease. The preferred pharmacotherapy for Parkinson's disease is L-dopa which helps the symptoms of this disease in humans. However, the neuropathological damage and the debilitating progression is not reversed by this treatment protocol.

Laboratory and clinical studies have shown the transplantation of cells into the CNS is a potentially significant alternative therapeutic modality for neurodegenerative disorders such as 5 Parkinson's disease (Wictorin et al., 1990; Lindvall et al., 1990; Sanberg et al., 1994; Bjorklund and Stenevi, 1985; Freeman et al., 1994). In some cases, transplanted neural tissue can survive and form connections with the CNS of the 10 recipient (i.e. the host) (Wictorin et al., 1990). When successfully accepted by the host, the transplanted tissue (i.e. the graft) has been shown to ameliorate the behavioral deficits associated with the disorder (Sanberg et al., 1994). The 15 obligatory step for the success of this kind of treatment is the prevention of graft rejection (i.e. graft acceptance).

Currently, fetal neural tissue is the primary graft source for neural transplantation

(Lindvall et al., 1990; Bjorklund, 1992; Isacson et al., 1986; Sanberg et al., 1994). Other viable graft sources include adrenal chromaffin cells and various cell types that secrete neural growth factors and trophic factors. The field of neural tissue transplantation as a productive treatment protocol for neurodegenerative disorders has

received much attention resulting in its

progression to clinical trials. Preliminary

results and clinical observations are promising

although the graft rejection phenomenon remains a

5 problem.

Recently, studies have suggested that
Sertoli cells, when simultaneously transplanted
with pancreatic islet cell into the diabetic rat,
act as an effective local immunosuppressant on the
10 host tissue (Selawry and Cameron, 1993). As a
result, the graft is not rejected and the islets
remain viable allowing the transplanted β-cells to
function normally and produce insulin for an
indefinite period of time. As a result, the
15 accepted graft overcomes the primary physiological
dysfunction of hyperglycemia thereby alleviating
the related complications of this endocrine
disorder. This cell transplantation protocol is
accomplished without prolonged systemic
20 immunosuppression, otherwise necessary when islets

In general, systemic immunosuppression is necessary if successful transplantation is to be achieved in humans. Immunosuppression of the entire body (i.e. systemic) can result, eventually, in graft acceptance. It is acquired, however, by

are transplanted without Sertoli cells.

placing the individual at medical risk making the immunosuppressant therapy itself more of a liability than a benefit in some cases. For a lack of a better immunosuppressant treatment, systemic immunosuppressants, with Cyclosporine-A (CsA) as the treatment choice, have been used as adjunctive therapy in neural and other transplantation protocols (Sanberg et al., 1994; Freeman et al., 1994; Borlongan et al., 1995). Arguably, systemic CsA treatment may be contraproductive to successful graft acceptance in the CNS because of its systemic effect and because CsA itself has been shown to cause detrimental side effects and may, in fact, be cytotoxic to neural tissues (Berden et al., 1985;

It would be desirable to enhance the productive cell transplantation techniques already utilized for neurodegenerative disorders, such as Parkinson's disease, in ways which would more effectively slow the neurodegenerative disease process, more actively promote the re-establishment of normal neural tissue physiology and better alleviate the functional disabilities associated with the neural tissue dysfunction. Likewise, it would be desirable to avoid systemic immunosuppression with the ability to locally

15 de Groen et al., 1984).

immunosuppress (i.e. at the graft site) by an
immunosuppressant which is biologically tolerated
by the host. Sertoli cells may provide this
desired option since it is clear from the diabetic

5 studies, as summarized above, that cotransplantation with Sertoli cells will deliver
local immunosuppression and promote, therefore,
efficient graft acceptance and functional
restoration of the tissue-related dysfunction.

10

SUMMARY OF THE INVENTION AND ADVANTAGES

In accordance with the present invention, there is provided a method of producing a sustained localized immunosuppressive effect and trophic effect in tissue by transplanting Sertoli cells proximate to the tissue.

BRIEF DESCRIPTION OF THE DRAWINGS

Other advantages of the present invention

will be readily appreciated as the same becomes

better understood by reference to the following

detailed description when considered in connection

with the accompanying drawings wherein:

-6-

Figures 1A-B shows photomicrographs of
two representative brain sections wherein the
sections were stained with Lectin, the left side of
each brain corresponds to the chromaffin cells
transplanted side while the right side of each
brain corresponds to the chromaffin cells with
Sertoli cells the co-transplanted side;

Figures 2A-D show a higher magnification from the photomicrograph of Figure 1 of the

10 transplant sites of brain sections illustrated in Figure 1; panels A and C show the chromaffin cells transplanted side while panels B and D show the side co-transplanted chromaffin cells with Sertoli cells;

illustrating cells from the ventral mesencephalon of fetal rats (VM) isolated and cultured for seven days in control medium (CM) or Sertoli cell preconditioned medium (SCM) and photographed with darkfield, interference contrast optics, wherein (A) depicts VM cells incubated in CM showing no evidence of stimulation or differentiation, (B) depicts VM cells incubated in SCM appearing highly stimulated, and (C) at higher magnification, depicts VM cells incubated in SCM exhibiting neurite outgrowth;

Figure 4A-B are electron micrographs

illustrating the cellular structure and tissue
architecture of the Sertoli cell/chromaffin cell
co-grafts in the striatum of the brain, wherein

5 (A) depicts electron dense chromaffin cells
(arrows) easily identified because of the inclusion
of secretory granules unique to these cells, and
(B) shows the boxed area in (A) at higher
magnification, with higher resolution, Sertoli
cells (arrows) are seen immediately adjacent to the
electron dense chromaffin cells;

Figure 5A-B are electron micrographs illustrating (A) the striatum of the brain shows the penetration tract (arrows) and the site of

15 Sertoli cell transplantation, and (B) shows the boxed area in (A) at higher magnification, with higher resolution, Sertoli cells (arrows) are easily identified because of the 1µ latex bead inclusions which were loaded into the cells prior to transplantation; and

Figure 6A-B are two light micrographs
illustrating grafted Sertoli cells in situ labeled
with a florescent tag (DiI) prior to their
transplantation into the striatum of the brain
wherein (A) depicts viable, florescent Sertoli
cells in a rat host that had not received

-8-

immunosuppression therapy with Cyclosporine A (CsA), and (B) shows viable, florescent Sertoli cells in the rat host that had received cyclosporine A immunosuppression therapy.

5

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method of producing a sustained localized immunosuppressive effect and trophic effect in tissue. This is achieved by the general step of transplanting Sertoli cells proximate to the tissue.

By sustained localized immunosuppressive effect, it is meant that the transplanted Sertoli cells will suppress the immunological response ordinarily mounted by the host tissue to the intrusion of foreign entities such as transplanted cells and that the immunosuppression will occur at the graft site (local) rather than by generalized immunosuppression of the entire body (systemic) which occurs with the ordinary methods of immunosuppression by agents such as CsA.

By tissue, it is meant any form of tissue including, but not limited to, cells, blood,
25 organs, and disassociated cells.

In a preferred embodiment, the transplanted cells (which are intended to replace the dysfunctional cells or in some way alleviate tissue dysfunction) can avoid being rejected and 5 thereby survive and functionally integrate into the host tissue. In the CNS, this will promote reestablishment of normal neural tissue function and thereby ameliorate the behavioral and functional deficits associated with the neurological and/or 10 neurodegenerative disorder being treated. However, the method of the present invention can also be utilized with other transplantable cells or tissues other than neural tissue/cells such as endocrine cells, muscle cells, and other cells by utilizing 15 similar techniques as those described for neural cells. Furthermore, the method of the present invention may be used for enhancing the outcomes of tissue and organ transplant, such as lung transplants, by providing localized

20 immunosuppression. That is, Sertoli cells are used to facilitate transplant survival and graft function of the cells being transplanted.

With local immunosuppression by a Sertoli cell-derived immunosuppressant agent (which is now partially characterized), there would be no successful antibody or cellular immunological

attack waged against the transplanted cells, including the Sertoli cells themselves.

Additionally, since the immunosuppression is local and by a biologically tolerable agent, the side effects associated with both systemic immunosuppression and cytotoxicity of agents such as CsA would be avoided. Hence, the method of Sertoli cell transplantation provides a significant improvement over the use of systemic

10 immunosuppression with CsA as the necessary adjunctive therapy to transplantation as shown in the example below.

The localized immunosuppression by a

Sertoli cell-derived immunosuppressant agent can

facilitate the survival of both xenografts and allografts. With allografts, co-transplantation with Sertoli cells should provide localized immunosuppression as to eliminate the need for systemic immunosuppression. With xenografts, co
transplantation with Sertoli cells may provide sufficient local immunosupression so as to eliminate the need for systemic immunosupression or the Sertoli cells may be used in combination with a systemic immunosuppressant to prevent rejection thereby reducing the dosage of systemic immunosuppressant required. When co-transplanted,

-11-

the Sertoli cells not only provide
immunosuppression, but provide regulatory,
nutritional, and other factors designated as
trophic support to the co-transplanted tissue.

5 Therefore, the Sertoli cells will not only provide inhibition of the immune response, but will allow enhanced growth and viability of allografts and xenografts by concommitant trophic support.

The source of Sertoli cells is by primary

10 cell isolation from the mammalian testis. The

protocol for harvesting the cells is well-defined

(Cameron and Muffly, 1991; Griswold, 1992) and

considered a routine methodology. In most of the

published reports of Sertoli cell co-

15 transplantation, cells are derived from the rat
(Selawry and Cameron, 1993). Although rat Sertoli
cells are utilized in the following examples, it is
contemplated that the method of the present
invention can be used with Sertoli cells from any
20 suitable mammalian source. A preferred source of
Sertoli cells for use with mammals, such as humans,
are porcine Sertoli cells. However, if available
and suitable, human Sertoli cells may be utilized.

-12-

In one embodiment, the Sertoli cells are co-transplanted with the selected neural tissue or other appropriate tissue into the CNS by intracranial infusion (Sanberg et al., 1995).

5 By proximate to the tissue, it is meant that the Sertoli cells are placed in general proximity to the selected tissue such as the neural tissue. Generally, this means that the Sertoli cells can be infused or transplanted into any 10 mammal so as to become located in proximity to the selected tissue. For example, the location can be any site where there is neural tissue such as the CNS, PNS, or fluids which bathe neural tissue such as cerebral spinal fluid and blood, blood vessels, 15 or other tissues which are enervated such as endothelial tissue, muscle tissues, end organs, etc. The proximity of the Sertoli cells to the neural tissue is determined by the specific neural cells and function sought to be restored in a given 20 transplantation. Additionally, in transplants involving non-neural tissue, the proximity of the Sertoli cells is determined by the specific tissue being transplanted.

The source of neural cells for transplantation depends on the neurological disorder being treated. For example, Parkinson's disease is treated with ventral mesencephalic 5 tissue (Lindvall et al., 1990) or chromaffin cells (Lindvall et al., 1987), Huntington's disease is treated with striatal lateral eminence cells (Isacson et al., 1986) and neurological pain is treated with adrenal chromaffin cells (Sagen et 10 al., 1993). Other tissue types experimentally transplanted into specific animal models of human neurodegenerative disorders are summarized elsewhere (Dunnett and Bjorklund, 1994) and provide detailed descriptions of cell isolation and 15 transplantation methods. Other non-neural tissues that have been transplanted are generally reviewed elsewhere (Sanberg, 1992) and provide detailed descriptions of cell isolation and transplantation methods.

The present invention also teaches a method of producing a sustained localized immunosuppressive effect in a target tissue by transplanting porcine Sertoli cells into the tissue. For example, transplanting porcine Sertoli cells into the cells into the central nervous system (CNS) of a subject, the cells secreting trophic factors in

situ, for treating neurological disorders including
epilepsy, stroke, Huntington's disease, head
injury, spinal injury, pain, Parkinson's disease,
myelin deficiencies, muscular dystrophy and other
neuromuscular disorders, neurological pain,
amyotrophic lateral sclerosis, Alzheimer's disease,
and affective disorders of the brain.

The following examples demonstrate the methods of use of the present invention as well as efficacy for producing a sustained localized immunosuppressive effect.

EXAMPLE 1

Materials and Methods

Sprague-Dawley male rats, six weeks old,
which were obtained from Harlan Sprague-Dawley,
Inc. (Indianapolis, IN), were used. The animals
were housed in individual Plexiglas cages in a room
with controlled humidity and temperature and under
a 12 hour light-dark cycle. Food and water were
freely available ad lib.

Cell Culture

Bovine chromaffin cells were obtained from the laboratory of Dr. Jaqueline Sagen at the University of Chicago at Illinois. Upon arrival, cells were plated using DMEM-F12 media with serum.

-15-

Cell counts using the tryphan blue method revealed a total of 8X 10⁻⁶ per ml of surviving cells. A 95% viability of chromaffin cells were measured at the day of arrival and during the day of transplantation. Half of the chromaffin cells solution was co-cultured overnight with Sertoli cells.

The preparation of Sertoli cells is according to the method described by Selawry & 10 Cameron (Selawry and Cameron, 1993), which is incorporated herein by reference. Specifically, the testes were removed, chopped into several pieces, and placed in a 50 ml conical tube containing 50 ml of Ham's F12/DMEM media. The 15 pieces were washed once by centrifugation at 800 X g for two minutes. The supernatant was aspirated, and the tissue resuspended in 40 ml of media containing 40 mg trypsin and 0.8 mg DNase in a sterile 250 ml Erlenmeyer flask. The flask was 20 placed in an 37°C oscillating incubator at 60-90 osc/minutes for 30 minutes. This step removed Leydig cells.

The tubules were then transferred to a 50 ml conical tube, and centrifuged at 800 X g for two minutes. The supernatant fraction was aspirated, and the pellet resuspended in 40 ml of 1 M glycine, 2 mM EDTA containing 0.01% soybean trypsin inhibitor and 0.8 mg DNase, and incubated at room temperature for ten minutes. This step lysed any residual Leydig cells. The cells were washed by centrifugation for two minutes, and the step repeated twice, or until the media was no longer cloudy. The pellet was resuspended by gentle homogenization with a glass Pasteur pipet in 40 ml of media containing 20 mg collagenase in an Erlenmeyer flask, and incubated at 37°C for five

The cell suspension was centrifuged at 800 X g for two minutes, and the pellet was resuspended by gentle homogenization with a Pasteur pipet in 40 ml media containing 40 mg collagenase 20 and 0.2 mg DNase, and incubated in an Erlenmeyer flask at 37°C for 30 minutes with 60-90 osc/minutes. The cells were then washed by centrifugation for two minutes, and the process repeated at least three times to eliminate peritubular cells. The cells were resuspended by gentle homogenization with a Pasteur pipet in 40 ml

media containing 40 mg hyaluronidase and 0.2 mg of DNase, and incubated at 37°C for 30 minutes with 60-90 osc/min. The cells were pelleted by soft centrifugation for two minutes, and washed at least 5 five times to eliminate germ cells.

The resultant Sertoli cell-enriched fraction was resuspended into 0.25 ml of media with the chromaffin cells for at least 24 hours before transplantation. During the day of

10 transplantation, the solution containing the Sertoli cell-enriched fraction and the chromaffin cells were resuspended using a Pasteur pipet then suctioned by a Hamilton syringe with a spinal needle of gauge 20.

15

Surgery

The surgical procedures were carried out in sterile conditions, as is well known in the art (Pakzaban et al., 1993). All animals were

- initially anesthetized with 0.60 ml/kg of sodium
 pentobarbital, then placed in Kopf stereotaxic
 instrument. Bilateral striatal transplants were
 performed with coordinates set at: anterioposterior
 = +1.2, medialateral = +/-2.8; dorsoventral 6.0,
- 25 5.9 & 5.8 (based on the atlas of Paxinos and Watson, 1984). The right hemisphere of the brain

was transplanted with bovine chromaffin cells while
the left hemisphere received chromaffin cells plus
Sertoli cells. Each side received a total volume
of 3 µl of the cell cocktail solution (1 µl per DV

5 site). After surgery, the animals were placed on
heating pads until recovery. Animals received a
short course of immunosuppression using
Cyclosporine-A (20 mg/kg/d,i.p.) immediately after
surgery and on the day following the transplant.

10 All animals were sacrificed at one month post
transplant.

Histology

Animals were anesthetized with 0.70 ml/kg

of sodium pentobarbitol, then perfused with 500 ml

of 0.9% isotonic saline and 500 ml

paraformaldehyde. The animals were then

decapitated, and the brain removed and post-fixed

overnight in 40% paraformaldehyde with 30% sucrose

in PBS. The following day, brain sections were cut

at 30 microns using the Vibroslice (Campden

Instrument, UK). Host tissue immunologic response

was analyzed using the Lectin method (see below).

Three experimenters conducted independent

qualitative comparisons of the left and right side

of the brain in a blind-randomized manner.

Lectin Method

Following vibrotome sectioning, brain sections were placed in 0.1% Triton X-100 for 15-30 minutes. The sections were then washed in 0.1M 5 cationic PBS(pH 7.2), containing 0.1mM CaCl₂, 0.1mM $MgCl_2$. Incubation of sections was carried out in 20.0 $\mu g/ml$ lectin made in cationic PBS at 4°C for two hours. Rinsing, three times in PBS was done prior to incubation with DAB. The DAB stock 10 solution was made by dissolving 10mg DAB in 20 ml phosphate buffer (0.1 M, pH 7.2) and adding 0.5 ml of 1% $CoCl_2$ to DAB solution while stirring. Sections were first preincubated in DAB solution for 15 minutes. Upon adding 0.6 ml 3% $\rm H_2O_2$ to 20.5 15 ml DAB solution, incubation lasted for five to ten minutes or until appropriate reaction was reached. Sections were again rinsed three times in PBS. Finally, sections were mounted from distilled water to wash out salts.

20 RESULTS

Histological analyses of both transplant sites revealed that the transplanted side with chromaffin cells alone had greater glial infiltration and higher number of macrophages than the transplanted side with chromaffin cells plus Sertoli cells (Figures 1 & 2). No significant

-20-

difference in glial response was observed between animals treated with or without cyclosporine.

Two conclusions are made from the data:

1) a localized effect of the Sertoli cells which

5 appeared to suppress the immune response of the
host tissue to the transplanted cells, and 2) a
sustained immunosuppression, with or without a
short course of CsA administration, can be achieved
with simultaneous transplantation of chromaffin

10 cells with Sertoli cells (Figure 4).

It can therefore be concluded that

Sertoli cells can provide an immunologically
privileged site in the CNS by direct intracranial
infusion. Furthermore, with significant

immunosuppression obtained following xenografts in
the present study, Sertoli cells can provide
greater beneficial effects on creating
immunologically privileged sites following
allografts, and enhance survival and integration of
the transplant through immunological and trophic
support.

EXAMPLE 2

Specific Protocol: The protocol involves three basic steps, Sertoli cell isolation, co-culture with neural specific cells or other appropriate
5 cells and transplantation of the co-culture into the CNS (for details regarding the cell isolation see Selawry and Cameron (1993) and for details regarding cell transplantation see (Pakzaban et al., 1993).

10

1A. <u>Sertoli cell isolation</u>

defined method as described in reference (Selawry and Cameron, 1993). The cell culture medium used in all isolation steps and in which the cells were incubated was DMEM: Hams F12 supplemented with retinol, ITS and gentamicin sulfate (Cameron and Muffly, 1991). Testes were surgically collected from sixteen day old male Sprague-Dawley rats. The testes were decapsulated and prepared for enzymatic digestion to separate other testicular cell types from the Sertoli cells. The enzymatic procedure using collagenase (0.1%), hyaluronidase (0.1%) and trypsin (0.25%) is routinely used in many cell isolation protocols. After sequential enzymatic digestion, the Sertoli cell isolate was washed with

culture medium, transferred to sterile cell culture vessels and placed in a humidified, 5% Co₂-95% air tissue culture incubator. Following forty-eight hours of pre-incubation in a 39°C incubator, the Sertoli cells were washed to remove any contaminating debris. The resultant Sertoli cellenriched fraction was resuspended into 0.25 ml of DMEM/F12 medium, and incubated at 37°C for at least 24 hours.

- The Sertoli cells were liberated from the vessel floor with 0.01% trypsin, transferred to a sterile conical test tube and repeatedly washed by centrifugation and then treated with trypsin inhibitor to cease the enzymatic action of trypsin.
- During the day of transplantation, the Sertoli cell-enriched fractions are resuspended and suctioned by a Hamilton syringe with a twenty gauge spinal needle.
- 20 1B. <u>Isolation and Pretreatment of Sertoli Cells</u>

As previously described (Cameron and Muffly, 1991) decapsulated rat testes were subjected to sequential enzymatic treatment at 37°C using 0.25% trypsin (Sigma) and 0.1% collagenase

25 (Sigma, type V) (Cameron and Muffly, 1991). The

resulting Sertoli cell aggregates were equally

distributed in a volume of 20ml incubation medium into 75cm² tissue culture flasks (Costar). Plated Sertoli aggregates were incubated at 39°C in 5% CO₂-95% air for 48 hours after which cells were subjected to hypotonic treatment with sterile 0.5mM Tris-HCl buffer for one minute (Galdieri et al. 1981) to expedite the removal of contaminating germ cells. Following two washes with incubation medium, flasks were replenished with 20ml incubation medium and returned to the CO₂-injected incubator at 37°C in 5% CO₂-95% air. The resulting pre-treated Sertoli-enriched monocultures contained greater than 95% Sertoli cells. Plating density (<

2.0 X 10⁶ Sertoli cells/cm²) did not result in a

2. Co-culture with neural specific cells

15 confluent monolayer of cells.

Sertoli cells and neural cell specific for transplantation for the neurodegenerative model were suspended by trypsin (0.01%), washed three times with medium and placed into a sterile cell culture vessel twenty-four hours prior to transplantation. The resulting co-culture was placed in a 5% CO₂-95% air incubator at 37°C until utilized for transplantation.

3. Transplantation of co-culture into the CNS

The transplantation protocol follows the procedure as previously described by Pakzaban et al., (1993). The animal surgery was carried out in 5 sterile conditions. All animals were initially anesthetized with 0.60 ml/kg sodium pentobarbital, then placed in a Kopf stereotaxic instrument. For the Parkinson's disease model, unilateral striatal transplants are performed with coordinates set at: 10 anterioposterior - +1.2, mediolateral - +/-2.9, dorsoventral - 6.0, 5.9 and 5.8 (based on the atlas of Paxinos and Watson) (1984). Different coordinates are used for different neurodegenerative animal models also based on 15 Paxinos and Watson (1984). The striatum ipsilateral to the lesioned substantia nigra is transplanted with Sertoli cells or with the Sertoli cell co-culture. Each striatum receives a total volume of 3µl of Sertoli cell or co-culture 20 suspension. One microliter of the cell suspension was infused over one minute per dorsoventral site. Another five minutes was then allowed upon reaching the last dorsoventral site before retracting the needle. After surgery, the animals were placed on 25 heating pads until they recovered. The animals

received a short course of immunosuppression

-25-

therapy using Cyclosporine-A (20 mg/kg/d, i.p.) immediately after surgery and on the day following the transplant.

Sertoli cells and/or co-culture

5 suspensions are transplanted into animal models of various neurodegenerative disorders by stereotaxic coordinates defined for the specific disorder, as illustrated in the Parkinson's disease example.

All experimental animals are systematically assayed for functional recovery by techniques specific to that animal model.

EXAMPLE 3

Figure 4A illustrates that electron dense

15 chromaffin cells (arrows) were easily identified

because of the inclusion of secretory granules

unique to the cells. Figure 4B shows the boxed

area in Figure 4A at a higher magnification,

wherein at a higher resolution, Sertoli cells

20 (arrows) were detected immediately adjacent to the

electron dense chromaffin cells. This demonstrates

the survival of co-grafted adrenal chromaffin cells

with Sertoli cells in the brain.

(1) Growth of neural cells Incubation Medium and Sertoli Cell PreConditioned Medium:

The incubation medium used for Sertoli

5 cell culture and co-culture was Dulbecco's Minimum
Essential Medium: Hams F12 Nutrient Medium

(Whittaker Bioproducts) mixed 1:1 and supplemented
with 3mg/ml L-glutamine (Sigma, grade III),

0.01cc/ml insulin-transferrin-selenium (ITS,

10 Collaborative Research, Inc.), 50 ng/ml retinol

(Sigma), 19µl/ml lactic acid (Sigma) and 0.01cc/ml
gentamicin sulfate (Gibco).

period of isolated Sertoli cells, media was

collected and centrifuged at 1500rpm for five
minutes. The supernatent was collected and
immediately frozen in sterile test tubes. This
medium was identified as Sertoli pre-conditioned
medium (SCM).

20 Isolation and Incubation of Fetal Brain Cells:

Fetal brain cells (FBC) were collected from the ventral mesencephalon of fetal rats (15-17 days gestation). The fetal brain tissue was suspended in medium and initially dispersed by passing it through a series of sequentially

decreasing sized hypodermic needles (18-26 gauge).

The resulting suspension was treated with 0.1%

trypsin for five minutes and followed by 0.1%

trypsin inhibitor for two minutes. The suspended

5 FBC were washed (three times), resuspended in incubation medium and plated in poly-L-lysine-coated culture vessels.

Cells from the ventral mesencephalon of fetal rats (VM) were isolated and cultured for seven days in control medium (CM) or Sertoli cell pre-conditioned medium (SCM) as shown in Figure 3A, VM cells incubated in CM showed no evidence of cellular stimulation or differentiation. Referring to Figure 3B, VM cells incubated in SCM were highly stimulated. Figure 3C illustrates that at higher magnification, VM cells incubated in SCM show neurite outgrowth.

EXAMPLE 4

Incorporation of latex beads: Sertoli cells were isolated and prepared for incubation as described. Prior to transplantation (approximately 12 hours), sterile 1µm latex beads (10µl/ml medium; Pelco, Tustin, CA) were added to the incubation medium. Sertoli cells rapidly phagocytosed the beads. Immediately prior to transplantation, the

-28-

beaded Sertoli cells were washed (three times) and resuspended in 1ml of incubation medium.

Referring to Figure 5A, Sertoli cells were transplanted into the striatum of the brain 5 wherein the penetration tract (arrows) and the site of Sertoli cell transplantation are shown. At higher magnification as shown in Figure 5B, Sertoli cells (arrows) were easily identified because of the inclusion of 1µ latex beads which were loaded 10 into the Sertoli cells prior to transplantation.

EXAMPLE 5

15

Effects of Cyclosporine A (CsA) on the survival of transplanted Sertoli cells

Fluorescent cell labeling: Immediately prior to transplantation (approximately two hours), Sertoli cell monocultures were treated with CM-DiI fluorescent dye for cell tracking (100µl stock/ml medium; Molecular Probes, Inc., Eugene, OR) for 7 20 minutes at 37°C and then placed in the refrigerator (4°C) for an additional 15 minutes. Fluorescent "tagged" Sertoli cells were washed (three times) and resuspended in 1ml of incubation medium.

The effect of cyclosporine A on the 25 survival of grafted Sertoli cells in situ was examined. Grafted Sertoli cells were labeled with a fluorescent tag (DiI) prior to transplantation into the striatum of the brain. The tissue was collected one month post-transplantation.

Referring to Figure 6A, viable fluorescent Sertoli cells were seen in a rat host that had not received immunosuppression therapy with cyclosporine A. Referring to Figure 6B, viable fluorescent Sertoli cells are shown in a rat host that had not received cyclosporine A immunosuppression therapy. This example demonstrates that cyclosporine A is not necessary for the survival of Sertoli cells transplanted into the brain.

Throughout this application various publications are referenced by citation. Full

15 citations for the publication are listed below. The disclosure of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this

20 invention pertains.

The invention has been described in an illustrative manner, and it is to be understood the terminology used is intended to be in the nature of description rather than of limitation.

Obviously, many modifications and variations of the present invention are possible in light of the above teachings. Therefore, it is to

-30-

be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

REFERENCES CITED

Berden et al., "Severe central nervous system toxicity associated with cyclosporine" <u>Lance</u> 26:219-220 (1985).

Bjorklund and Stenevi, "Intracerebral neural grafting: a historical perspective" in Bjorklund, A. and U. Stenevi, eds. <u>Neural grafting in the mammalian</u> CNS, Amsterdam: Elsevier, 3-11 (1985).

Bjorklund, "Dopaminergic transplants in experimental Parkinsonism: Cellular mechanisms of graft-induced functional recovery" <u>Current Biology</u>, 2:683-689 (1992).

Borlongan et al., "Cyclosporine-A increases spontaneous and dopamine agonist-induced locomotor behavior in normal rats" Cell Transplant., 4:65-73 (1995).

Borlongan et al. "PR: Systemic 3-nitropropionic acid: Behavioral deficits and striatal damage in rats", Brain Research Bulletin, 36:549-556 (1995).

Cameron et al., "Successful islet/abdominal testis transplantation does not require Leydig cells" Transplantation, 50:649-653 (1990).

Cameron and Muffly, "Hormonal regulation of spermated binding to Sertoli cells in vitro" J.Cell Sci., 100:532-533 (1991).

de Groen et al., "Central nervous system toxicity after liver transplantation" <u>N. Engl. J. Med.</u> 14:861-866 (1984).

Dunnett and Bjorklund, <u>Functional Neural</u>
<u>Transplantation</u>, <u>Advances in Neuroscience</u>, Volume 2,
Raven Press, New York.

Freeman et al., "The USF protocol for fetal nigral transplantation in Parkinson's disease" <u>Experimental Neurology</u>, 129:6-7 (1994).

Griswold, "Protein secretion by Sertoli cells: general considerations" in Russel, L.D. and M.D. Griswold, eds. <u>The Sertoli Cell</u>, Cache River Press, Clearwater, FL., 195-200.

Isacson et al., "Graft-induced behavioral recovery in an animal model of Huntington's disease" Proc. Natl.Acad. Sci., 83:2728-2732 (1986).

Koutouzis et al., "PR: Systemic 3-nitropropionic acid: Long term effects on locomotor behavior" Brain Research, 646:242-246 (1994).

Lindvall et al., "Transplantation in Parkinson's disease: two cases of adrenal medullary grafts to the putamen" Ann. Neurol., 22:457-468 (1987).

Lindvall et al., "Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease" Science, 247:574-577 (1990).

Pakzaban et al., "Increased proportion of Ache-rich zones and improved morphological integration in host striatum of fetal grafts derived from the lateral but not the medial ganglionic eminence" Exp. Brain Res., 97:13-22 (1993).

Paxinos and Watson, "The rat brain in stereotaxic coordinates" Sydney, Academic Press (1984).

Sagen et al., "Transplants of immunologically isolated xenogeneic chromaffin cells provide a long-term source of pain-reducing neuroactive substances" J. Neurosci. 13:2415-2423 (1993).

Sanberg, PR. (Editor-in-chief) "Cell Transplantation", Elservie Science Publishers, New York, 1992-Present

Sanberg et al., "Cell transplantation for Huntington's disease" R.G. Landes Co., Boca Raton, FL, pp. 19-21 (1994).

Sanberg et al., "Sertoli cells induce immunoreactivity and functional recovery following transplantation into the striatum of 6-OHDA lesioned rats (in preparation) (1995).

Selawry and Cameron, "Sertoli cell-enriched fraction in successful islet cell transplantation" <u>Cell Transplant</u>., 2:123-129 (1993).

Wictorin et al., "Reformation of long axon pathways in adult rat CNS by human forebrain neuroblasts" Nature, 347:556-558 (1990).

CLAIMS

What is claimed is:

- 1. A method of producing a sustained localized immunosuppressive effect and trophic effect in target tissue by transplanting Sertoli cells proximate to the target tissue.
- 2. A method as set forth in claim 1 wherein said transplanting step is further defined as cotransplanting the Sertoli cells and transplant tissue of the same type as the target tissue into the target tissue.
- 3. A method as set forth in claim 2 wherein the Sertoli cells are co-transplanted with neural cells into a mammal's central nervous system.
- 4. A method as set forth in claim 3 wherein the neural cells co-transplanted with the Sertoli cells are first co-cultured with the Sertoli cells and the co-cultured cells are co-transplanted together.
- 5. A method as set forth in claim 1 wherein transplantation is further defined as direct infusing the Sertoli cells into the central nervous system.

-34-

- 6. A method as set forth in claim 1 wherein the Sertoli cells are porcine Sertoli cells.
- 7. A method as set forth in claim 12, wherein the mammal suffers from neurological disorder or neural degeneration disorder including epilepsy, stroke,
 Huntington's disease, head injury, spinal injury, pain,
 Parkinson's disease, myelin deficiencies, neuromuscular disorders, neurological pain, amyotrophic lateral sclerosis, Alzheimer's disease, and affective disorders of the brain.
- 8. A method of producing a sustained localized immunosuppressive effect and trophic effect in a target tissue by transplanting porcine Sertoli cells into the central nervous system of a subject, the cells also secreting trophic factors in situ, for treating neurological disorders including epilepsy, stroke, Huntington's disease, head injury, spinal injury, pain, Parkinson's disease, myelin deficiencies, muscular dystrophy, neurological pain, amyotrophic lateral sclerosis, Alzheimer's disease, and affective disorders of the brain.
- 9. A method as set forth in claim 8, wherein the subject is human.

WO 96/28174 PCT/US96/03337

- 10. Use of Sertoli cells to produce a sustained localized immunosuppressive effect and trophic effect in target tissue by transplanting Sertoli cells proximate to the target tissue.
- 11. A use as set forth in claim 10 wherein said transplanting is further defined as co-transplanting the Sertoli cells and transplant tissue of the same type as the target tissue into the target tissue.
- 12. A use as set forth in claim 11 wherein the Sertoli cells are co-transplanted with neural cells into a mammal's central nervous system.
- 13. A use as set forth in claim 12 wherein the neural cells co-transplanted with the Sertoli cells are first co-cultured with the Sertoli cells and the co-cultured cells are co-transplanted together.
- 14. A use as set forth in claim 10 wherein transplantation is further defined as direct infusing the Sertoli cells into the central nervous system.
- 15. A use as set forth in claim 10 wherein the Sertoli cells are porcine Sertoli cells.

- the mammal suffers from neurological disorder or neural degeneration disorder including epilepsy, stroke, Huntington's disease, head injury, spinal injury, pain, Parkinson's disease, myelin deficiencies, neuromuscular disorders, neurological pain, amyotrophic lateral sclerosis, Alzheimer's disease, and affective disorders of the brain.
- sustained localized immunosuppressive effect and trophic effect in a target tissue by transplanting porcine Sertoli cells into the central nervous system of a subject, the cells also secreting trophic factors in situ, for treating neurological disorders including epilepsy, stroke, Huntington's disease, head injury, spinal injury, pain, Parkinson's disease, myelin deficiencies, muscular dystrophy, neurological pain, amyotrophic lateral sclerosis, Alzheimer's disease, and affective disorders of the brain.
- 18. A use as set forth in claim 17, wherein the subject is human.

Fig - IA

lFig - IB

SUBSTITUTE SHEET (RULE 26)

IFig - 2A

Fig - 2B

IFig - 2C

Fig-2D

4/7

Fig - 3A

IFig -3B

Fig-3C

SUBSTITUTE SHEET (RULE 26)

lFig - 4A

Fig - 4B

Fig - 5A

IFig - 5B

IFig - 6A

Fig-6B

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/03337

	SIFICATION OF SUBJECT MATTER A61K 35/00, 35/30, 35/48			
US CL :4	124/93.1, 93.7, 559			
	International Patent Classification (IPC) or to bot	h national classification and IPC		
	DS SEARCHED			
	cumentation searched (classification system follow	red by classification symbols)		
U.S. : 42	24/93.1, 93.7, 559			
Documentation	on searched other than minimum documentation to t	he extent that such documents are included	in the fields searched	
Electronic dat	ta base consulted during the international search (name of data base and when americable	A	
	e Extra Sheet.	anne or data case and, where practicable	, scaren terms usea)	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.	
	Cell Transplantation, Volume 2, is		1	
	"Sertoli Cell-Enriched Fractions			
Υ .	Transplantation", pages 123-129	, see entire document.	2-18	
	The Journal of Neuroscience, Vol June 1993, Sagen et al, "Trans	2-18		
	Isolated Xenogeneic Chromaffin (
	Source of Pain-reducing Neuroa			
	2415-2423, see entire document			
İ				
		İ		
-				
V Sumbar	documents are listed in the continuation of Box C			
	d categories of cited documents:			
A* docum	sent defining the general state of the art which is not considered	"T" later document published after the inter date and not in conflict with the applica principle or theory underlying the inve	tion but cited to understand the	
	of particular relevance r document published on or after the international filing date	'X' document of particular relevance; the		
L' docum	nent which may throw doubts on priority claim(s) or which is	considered novel or cannot be consider when the document is taken alone	ed to involve an inventive step	
specia	to establish the publication date of another citation or other I reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive	step when the document is	
(Death	nent referring to an oral disclosure, use, exhibition or other nent published prior to the international filing date but later than	combined with one or more other such being obvious to a person skilled in the "&" document member of the same retent if	: ert	
the pri	ority date claumed			
Date of the actual completion of the international search		Date of mailing of the international search report		
11 MAY 199		1 9 JUR 1930		
Commissioner Box PCT	ling address of the ISA/US of Patents and Trademarks	PATRICIA A. DUFFY	Frien 10	
Washington, D acsimile No.	0.C. 20231 (703) 305-3230	Telephone No. (703) 308-0196	/	
acsimine 140.	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Telephone 140. (703) 308-0196		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/03337

		PC 170396/0333	,,
C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevan	nt passages	Relevant to claim No.
Y, P	Society For Neuroscience Abstracts, Volume 21, Part 1, issued November 1995, Sanberg et al, "Functional Recovery In Hemiparkinsonian Rats Following Neural Transplantation of Testis-Derived Sertoli Cells", page 317, see abstract 133.12.		2-18
Y	EOS-Rivista Di Immunologia ed Immunofarmacologia, 12, Number 2, issued 1992, DeCesaris et al, "Inhibition ofLymphocyte Activation By Sertoli Cell Immunosuppre Factor(s)", page 86, see entire abstract.	2-18	
Y, P	Nature, Volume 377, issued 19 October 1995, Bellgrau role for CD95 Ligand in preventing graft rejection", pag 632.		2-18
A	Critical Reviews in Neurobiology, Volume 8, Number 3 1994, Koutouzis et al, "Cell Transplantation for Central System Disorders", pages 125-161, see entire document.	Nervous	1-18

INTERNATIONAL SEARCH REPORT

	INTERNATIONAL	SEARCH REPORT	International application No. PCT/US96/03337	
B. FIELDS S Electronic da	SEARCHED ta bases consulted (Name of da	ta base and where practicable terms used	n.	
MEDLINE, CONFEREN	CAB ABSTRACTS, APS, EME		OTECHNOLOGY ARSTRACTS	
			·	

Form PCT/ISA/210 (extra sheet)(July 1992)*