Introduction to Bayesian Statistics

Part 6
Linear Mixed Models

This lecture

- Random grouping factors
- Random effects
- Fixed & random effects
 - Random intercepts
 - Random intercepts and slopes
- Multiple random grouping factors
- Continuous correlation structures
- Summary

Assumptions for linear models

- Independent observations.
 Systematic differences in y are because of x!
- 2. Trend of y follows (linear) prediction model $\mu(x) = a + b \cdot x$
- 3. Residuals follow normal distribution $\varepsilon \sim \text{Normal}(0, \sigma)$
- 4. Constant variance (standard deviation σ) across whole range of x

Assumptions for linear models

When are residuals not independent?

Study design: *N* observations have been **sampled in groups**

- \rightarrow There is a categorical predictor with M levels (M < N)
- → Each level / group contains multiple observations, these are no independent replicates!
- → Maybe structural (or random) differences between (unobserved) conditions of these groups
- → Still want to make inference on whole population

Random grouping factors

Examples:

Site: Data collected at multiple locations

Year: Data collected ~same time in different years

Observer: Data collected by different resarchers

Individual: Multiple measurements on the same test object

Unit: Multiple experimental units like chambers / tanks

Species: Data on higher level (e.g. family) contains

multiple species

Word salad !!

Example

- Measured weight of N = 200 viper snakes
- Data collected on M=9 different sites across France
- Also measured length, but we're not using it for now

Q: What is the correct statistical model for species mean weight?

brm(weight ~ 1) ?

→ No, observations not independent

brm(weight ~ site) ?

→ No, does not estimate overall weight (just site-specific means)

(1) Complete pooling

Model:
$$y_i = a + \varepsilon_i$$

$$i = 1 ... N$$

$$\varepsilon_i \sim \text{Normal}(0, \sigma)$$

Priors: $a \sim \text{Normal}(150,10)$

- Ignore categorical predictor *site*
- Information is completely pooled across all levels
- Fit joint intercept *a* only
- a is given a prior

(2) No pooling

Model:
$$y_i = a_{site(i)} + \varepsilon_i$$
 $i = 1 ... N$

$$\varepsilon_i \sim \text{Normal}(0, \sigma)$$

Priors:
$$a_i \sim \text{Normal}(150,10)$$
 $j = 1 ... M$

- Include categorical predictor site (ANOVA)
- No information is shared across levels
- Fit independent intercepts $a_1 \dots a_M$
- Each a_j is given a prior (here they are identical, but could also be different)

(3) Partial pooling

Model:
$$y_i = a_{site(i)} + \varepsilon_i$$
 $i = 1 ... N$

$$\varepsilon_i \sim \text{Normal}(0, \sigma)$$

$$a_j \sim \text{Normal}(\mu_a, \sigma_a) \quad j = 1 ... M$$
Priors: $\mu_a \sim \text{Normal}(150,10)$

$$\sigma_a \sim \text{Exponential}(1/10)$$

- Replace prior distributions by a joint distribution of the site-specific intercepts $a_1 \dots a_M$
- Their mean μ_a and sdev σ_a are parameters and are estimated with all others by MCMC
- These "hyperparameters" μ_a , σ_a are given priors

(3) Partial pooling

Model:
$$y_i = \mu_a + \delta_{site(i)} + \varepsilon_i$$
 $i = 1 ... N$

$$\varepsilon_i \sim \text{Normal}(0, \sigma)$$

$$\delta_j \sim \text{Normal}(0, \sigma_a)$$
 $j = 1 ... M$

Priors: $\mu_a \sim \text{Normal}(150,10)$

$$\sigma_a \sim \text{Exponential}(1/10)$$

- Replaced $a_j = \mu_a + \delta_j$
- Effects $\delta_j = a_j \mu_a$ describe each site's deviation from overall mean μ_a
- Identical model, just rearrangement of coefficients

Comparison

vs. complete pooling mass ~ 1

Uncertainty of μ_a in **mass~1** is smaller. Wrongly assumes N=200 independent obs.

Uncertainty of μ_a in **mass~1+(1|site)** correct. Informed by M=9 sites.

vs. no pooling mass ~ site

Site-specific means a_j of mass~1+(1|site) closer to overall mean μ_a than in mass~site

"Shrinkage" of parameters

Random effects

Random effects $\delta_j = a_j - \mu_a$ describe each site's deviation from overall mean μ_a with sdev σ_a

Assumption: normally distributed (Bayesian 3d printer: could also be other distribution, e.g. positive lognormal distribution for a_i)

Hyperparameters μ_a , σ_a informed by all 9 sites

- → Some information is shared / pooled
- → Borrowing strength
- → For unbalanced designs this improves prediction in levels with few observations.

Random effects

Random effects $\delta_j=a_j-\mu_a$ describe each site's deviation from overall mean μ_a with sdev σ_a

This part of the likelihood $\delta_j \sim \mathrm{Normal}(0, \sigma_a)$ would be maximized for $\sigma_a \to 0$ and all $\delta_i \to 0$

But the residuals' likelihood $y_i \sim \mathrm{Normal} \big(a_{site(i)}, \sigma \big)$ would decrease if all δ_j were close to 0

→ Partial pooling model is a compromise between small random effects (on site-level) and good model fit (on observation level)

Variance partitioning

Overall variance of the data is estimated on different levels

$$s_{\text{total}}^2 = s_{\text{among}}^2 + s_{\text{within}}^2$$

Site-level (among) σ_a

Explains site-specific deviation from overall mean $\,\mu_a\,$

Observation-level (within) σ

Explains each data point's deviation from site-mean a_j (All the randomness in the data which is not caused by site-level differences)

> brm(mass ~ 1 + (1|site), ...)

```
Family: gaussian
         Links: mu = identity; sigma = identity
       Formula: mass \sim 1 + (1 \mid site)
          Data: df (Number of observations: 200)
         Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
                total post-warmup draws = 4000
       Multilevel Hyperparameters:
       ~site (Number of levels: 9)
                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
\sigma_a \rightarrow \text{sd(Intercept)}
                         11.64
                                              6.99
                                     3.26
                                                       19.70 1.01
                                                                        814
                                                                                1353
       Regression Coefficients:
                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
       Intercept 149.01
                                 3.91 141.05
                                                156.81 1.00
                                                                            1038
       Further Distributional Parameters:
             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
 \sigma \rightarrow \text{sigma}
                11.02
                            0.57
                                      9.97
                                              12.20 1.00
                                                              2527
                                                                        2566
```

Fixed and random effects

Fixed & random effects

In previous example, we were interested in a correct statistical model for the overall intercept

$$\rightarrow$$
 "Fixed effect" μ_a

Variation among sites was not our focus, but we wanted to account for non-independence of observations

→ "Random effect"
$$\delta_i$$
 $(j = 1 ... M)$

Fitted an intercept-only model with random intercepts (site)

Example

- Measured weight of N = 200 viper snakes
- Data collected on M=9 different sites across France
- Also measured length (continuous predictor)

Q: Correct statistical regression model for weight vs. length?

brm(weight ~ length) ?

→ No, observations not independent

brm(weight ~ length*site) ?

→ No, does not estimate overall slope (just site-specific regressions)

(1) Complete pooling

Model:
$$y_i = a + b \cdot length_i + \varepsilon_i$$
 $i = 1 ... N$

 $\varepsilon_i \sim \text{Normal}(0, \sigma)$

Priors: $a \sim \text{Normal}(150,10)$

 $b \sim \text{Normal}(10,5)$

- Ignore categorical predictor *site*
- Information is completely pooled across all levels
- Fit joint intercept a & slope b only
- a, b are given a prior

(2) No pooling

Model:
$$y_i = a_{site(i)} + b_{site(i)} \cdot length_i + \varepsilon_i$$

 $\varepsilon_i \sim \text{Normal}(0, \sigma)$

Priors:
$$a_i \sim \text{Normal}(150,10)$$
 $j = 1 \dots M$

 $b_i \sim \text{Normal}(10,5)$

- Include categorical predictor site (ANCOVA)
- No information is shared across levels
- Fit independent intercepts $a_1 \dots a_M$ & slopes $b_1 \dots b_M$
- Each $a_j \& b_j$ is given a prior (here they are identical, but could also be different)

(2) No pooling

$$\begin{array}{ll} \text{Model:} & y_i = a_{site(i)} + b_{site(i)} \cdot length_i + \varepsilon_i \\ & \varepsilon_i \sim \text{Normal}(0, \sigma) \\ \\ \text{Priors:} & a_j \sim \text{Normal}(150, 10) \qquad j = 1 \dots M \\ & b_j \sim \text{Normal}(10, 5) \end{array}$$

- Include categorical predictor site (ANCOVA)
- · No information is shared across levels
- Fit independent intercepts $a_1 \dots a_M$ & slopes $b_1 \dots b_M$
- Each a_j & b_j is given a prior (here they are identical, but could also be different)

Model:
$$y_i = a_{site(i)} + b \cdot length_i + \varepsilon_i$$

 $\varepsilon_i \sim \text{Normal}(0, \sigma)$

$$a_j \sim \text{Normal}(\mu_a, \sigma_a)$$
 $j = 1 ... M$

Priors: $b_i \sim \text{Normal}(10,5)$

 $\mu_a \sim \text{Normal}(150,10)$

 $\sigma_a \sim \text{Exponential}(1/10)$

Random effects: $a_1 \dots a_M$ site-specific intercepts

Fixed effects: μ_a joint intercept

Marginal predictions: $\mu_a + b \cdot length$

Model:
$$y_i = (\mu_a + \delta_{site(i)}) + b \cdot length_i + \varepsilon_i$$

 $\varepsilon_i \sim \text{Normal}(0, \sigma)$

$$\delta_i \sim \text{Normal}(\mathbf{0}, \sigma_a)$$
 $j = 1 ... M$

Priors: $b_i \sim \text{Normal}(10,5)$

 $\mu_a \sim \text{Normal}(150,10)$

 $\sigma_a \sim \text{Exponential}(1/10)$

Random effects: $\delta_1 \dots \delta_M$ intercepts deviation

Fixed effects: μ_a joint intercept

Marginal predictions: $\mu_a + b \cdot length$

Model:
$$y_i = (\mu_a + \delta_{site(i)}) + b \cdot length_i + \varepsilon_i$$

 $\varepsilon_i \sim \text{Normal}(0, \sigma)$

$$\delta_i \sim \text{Normal}(\mathbf{0}, \sigma_a)$$
 $j = 1 ... M$

Priors: $b_i \sim \text{Normal}(10,5)$

 $\mu_a \sim \text{Normal}(150,10)$

 $\sigma_a \sim \text{Exponential}(1/10)$

Random effects: $\delta_1 \dots \delta_M$ intercepts deviation

Fixed effects: μ_a joint intercept

Conditional predictions: $a_i + b \cdot length$

Model:
$$y_i = (\mu_a + \delta_{site(i)}) + b \cdot length_i + \varepsilon_i$$

 $\varepsilon_i \sim \text{Normal}(0, \sigma)$

$$\delta_i \sim \text{Normal}(\mathbf{0}, \sigma_a)$$
 $j = 1 ... M$

Priors: $b_i \sim \text{Normal}(10,5)$

 $\mu_a \sim \text{Normal}(150,10)$

 $\sigma_a \sim \text{Exponential}(1/10)$

Random effects: $\delta_1 ... \delta_M$ intercepts deviation

Fixed effects: μ_a joint intercept

Conditional predictions: $a_i + b \cdot length$

Model:
$$y_i = a_{site(i)} + b_{site(i)} \cdot length_i + \varepsilon_i$$
 $\varepsilon_i \sim \text{Normal}(0, \sigma)$
 $a_j \sim \text{Normal}(\mu_a, \sigma_a)$ $j = 1 \dots M$
 $b_j \sim \text{Normal}(\mu_b, \sigma_b)$

Priors $\mu_a \sim \text{Normal}(150,10)$
 $\mu_b \sim \text{Normal}(10,5)$
 $\sigma_a \sim \text{Exponential}(1/10)$
 $\sigma_b \sim \text{Exponential}(1/5)$

Random effects: $a_1 \dots a_M$, $b_1 \dots b_M$

Marginal predictions: $\mu_a + \mu_b \cdot length$

Model:
$$y_i = (\mu_a + \delta_{site(i)}) + (\mu_b + \gamma_{site(i)}) \cdot length_i + \varepsilon_i$$
 $\varepsilon_i \sim \text{Normal}(0, \sigma)$
 $\delta_j \sim \text{Normal}(0, \sigma_a)$ $j = 1 \dots M$
 $\gamma_j \sim \text{Normal}(0, \sigma_b)$

Priors $\mu_a \sim \text{Normal}(150, 10)$
 $\mu_b \sim \text{Normal}(10, 5)$
 $\sigma_a \sim \text{Exponential}(1/10)$
 $\sigma_b \sim \text{Exponential}(1/5)$

Random effects: $\delta_1 \dots \delta_M$, $\gamma_1 \dots \gamma_M$

Marginal predictions: $\mu_a + \mu_b \cdot length$

Model:
$$y_i = (\mu_a + \delta_{site(i)}) + (\mu_b + \gamma_{site(i)}) \cdot length_i + \varepsilon_i$$
 $\varepsilon_i \sim \text{Normal}(0, \sigma)$
 $\delta_j \sim \text{Normal}(0, \sigma_a)$ $j = 1 \dots M$
 $\gamma_j \sim \text{Normal}(0, \sigma_b)$

Priors $\mu_a \sim \text{Normal}(150, 10)$
 $\mu_b \sim \text{Normal}(10, 5)$
 $\sigma_a \sim \text{Exponential}(1/10)$
 $\sigma_b \sim \text{Exponential}(1/5)$

Random effects: $\delta_1 \dots \delta_M$, $\gamma_1 \dots \gamma_M$

Conditional predictions: $a_i + b_i \cdot length$

Model:
$$y_i = (\mu_a + \delta_{site(i)}) + (\mu_b + \gamma_{site(i)}) \cdot length_i + \varepsilon_i$$
 $\varepsilon_i \sim \text{Normal}(0, \sigma)$
 $\delta_j \sim \text{Normal}(0, \sigma_a)$ $j = 1 \dots M$
 $\gamma_j \sim \text{Normal}(0, \sigma_b)$

Priors $\mu_a \sim \text{Normal}(150, 10)$
 $\mu_b \sim \text{Normal}(10, 5)$
 $\sigma_a \sim \text{Exponential}(1/10)$
 $\sigma_b \sim \text{Exponential}(1/5)$

Random effects: $\delta_1 \dots \delta_M$, $\gamma_1 \dots \gamma_M$

Conditional predictions: $a_i + b_i \cdot length$

Model:
$$y_i = (\mu_a + \delta_{site(i)}) + (\mu_b + \gamma_{site(i)}) \cdot length_i + \varepsilon_i$$

$$\varepsilon_i \sim \text{Normal}(0, \sigma)$$

$$\begin{pmatrix} \delta_j \\ \gamma_j \end{pmatrix} \sim \text{MVNormal}\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{bmatrix} \sigma_a^2 & \rho \sigma_a \sigma_b \\ \rho \sigma_a \sigma_b & \sigma_b^2 \end{bmatrix} \end{pmatrix}$$

$$j = 1 \dots M$$
Priors $\mu_a \sim \text{Normal}(150,10)$

$$\mu_b \sim \text{Normal}(10,5)$$

$$\sigma_a \sim \text{Exponential}(1/10)$$

$$\sigma_b \sim \text{Exponential}(1/5)$$

$$\rho \sim \text{Uniform}(0,1)$$

← Random intercepts & slopes not independent:

Multivariate normal distributions with zero mean and 2x2 covariance matrix $\boldsymbol{\Sigma}$

 \leftarrow Correlation coefficient ρ

Comparison

Uncertainty of a, b is smaller (overly confident). Wrongly assumes N = 200 independent obs.

Uncertainty of μ_a , μ_b is correct.

Comparison

Here, difference is very weak

mass ~ length + (length|site)

Regressions for each site independent.

Intercepts & slopes draws to joint means "Shrinkage"

Regressions for each site independent.

Intercepts & slopes draws to joint means "Shrinkage"

Comparison: unbalanced design

High uncertainty in sites with few data.

Borrowing strength from other sites. → Better predictions!


```
> brm(mass ~ length + (length|site), ...)
       Family: gaussian
        Links: mu = identity; sigma = identity
      Formula: mass ~ length + (length | site)
         Data: df (Number of observations: 200)
        Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
                total post-warmup draws = 4000
      Multilevel Hyperparameters:
      ~site (Number of levels: 9)
                              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS
\sigma_a \rightarrow \text{sd(Intercept)}
                                 12.36
                                             3.45
                                                      7.39
                                                               20.97 1.00
                                                                               1269
\sigma_h \rightarrow \text{sd(length)}
                                 4.65
                                            1.57 2.52
                                                                8.72 1.00
                                                                              1154
   → cor(Intercept,length)
                                 0.05
                                            0.33
                                                     -0.58
                                                                0.64 1.00
                                                                               1937
      Regression Coefficients:
                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
\mu_a \rightarrow Intercept
                   148.95
                                3.88
                                       141.48
                                                 156.81 1.00
                                                                  1265
                                                                            2055
\mu_h \rightarrow length
                    10.43
                                1.69
                                      7.11
                                                  13.81 1.00
                                                                  1318
                                                                           1461
      Further Distributional Parameters:
             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
\sigma \rightarrow | sigma
                 5.28
                           0.27
                                     4.79
                                               5.86 1.00
                                                              3411
                                                                       2993
```

Multiple grouping factors

- Measured weight of N = 200 viper snakes
- Data collected on M=9 different sites across France
- Collection was done in L=5 sampling campaigns

Can be fully crossed (each campaign visited all sites) or partially crossed (not all campaigns visited all sites).

→ Specify **additive (independent)** random effects for grouping factor site and grouping factor campaign

Crossed random effects

Model:
$$y_i = \mu_a + \delta_{site(i)} + \gamma_{campaign(i)} + \varepsilon_i$$
 $\varepsilon_i \sim \text{Normal}(0, \sigma)$
 $\delta_j \sim \text{Normal}(0, \sigma_\delta)$ $j = 1 \dots M$
 $\gamma_k \sim \text{Normal}(0, \sigma_\gamma)$ $k = 1 \dots L$

Priors: $\mu_a \sim \text{Normal}(150,10)$
 $\sigma_\delta \sim \text{Exponential}(1/10)$
 $\sigma_\gamma \sim \text{Exponential}(1/10)$

mass
$$\sim$$
 1 + (1|site) + (1|campaign)

- ← Site-effect
- ← Campaign-effect
- ← Overall mean is the only fixed effect in this basic example

Variance partitioning

Overall variance of the data is estimated on different levels

$$s_{\text{total}}^2 = s_{\text{among}}^2 + s_{\text{within}}^2$$

Site-campaign-level (among) $\sigma_\delta + \sigma_\gamma$

Explains additive deviations from overall mean $\,\mu_a\,$ caused by site (σ_δ) and campaign (σ_γ)

Observation-level (within) σ

Explains each data point's deviation from

site-campaign-mean $\mu_a + \delta_j + \gamma_k$

(All the randomness in the data which is not caused by site-level differences)


```
> brm(mass \sim 1 + (1|site) + (1|campaign), ...)
       Family: gaussian
        Links: mu = identity; sigma = identity
      Formula: mass \sim 1 + (1 \mid site) + (1 \mid campaign)
         Data: df (Number of observations: 200)
        Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
                total post-warmup draws = 4000
      Multilevel Hyperparameters:
      ~campaign (Number of levels: 5)
                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
\sigma_v \rightarrow \text{sd(Intercept)} 1.39 1.33 0.05
                                                      4.94 1.00
                                                                     1983
                                                                               2233
      ~site (Number of levels: 9)
                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
\sigma_{\delta} \rightarrow \text{sd(Intercept)} 11.38 3.22 6.89 19.27 1.01
                                                                     1085
                                                                               2004
      Regression Coefficients:
                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
\mu_a \rightarrow Intercept 149.14
                               3.86 141.37 156.68 1.00
                                                                  828
                                                                          1274
      Further Distributional Parameters:
             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
               11.04
                           0.58
                                    9.99
                                             12.20 1.00
                                                             3320
\sigma \rightarrow sigma
                                                                      2678
```

- Measured weight of N = 200 viper snakes
- Data collected on M=9 different sites across France
- Sites belong to L=3 distinct mountain regions

Every site uniquely belongs to one region.

At least one region has 2 or more sites.

→ Specify **nested** random effects for factor site in factor region

Nested random effects

Model:
$$y_i = \mu_a + \gamma_{region(i)} + \delta_{region:site(i)} + \varepsilon_i$$
 $\varepsilon_i \sim \text{Normal}(0, \sigma)$
 $\gamma_k \sim \text{Normal}(0, \sigma_k)$
 $k = 1 \dots L$
 $\delta_j \sim \text{Normal}(0, \sigma_\delta)$
 $j = 1 \dots M$

Priors: $\mu_a \sim \text{Normal}(150,10)$
 $\sigma_\gamma \sim \text{Exponential}(1/10)$
 $\sigma_\delta \sim \text{Exponential}(1/10)$

```
mass ~ 1 + (1|region/site)
mass ~ 1 + (1|region) + (1|region:site)
```

- ← Regional-effect
- ← Site-effect in region

Automatically uses unique region:site combinations with *M* levels

Variance partitioning

Overall variance of the data is estimated on different levels

$$s_{\text{total}}^2 = s_{\text{among } regions}^2 + s_{\text{among } sites}^2 + s_{\text{within}}^2$$

Regional-level σ_{γ}

Explains deviations from overall mean μ_a

Site-level σ_{δ}

Explains deviations from regional mean $\mu_a + \gamma_k$

Observation-level (within) σ

Data point deviations from site-mean $\mu_a + \gamma_k + \delta_j$


```
> brm(mass ~ 1 + (1|region/site), ...)
     > brm(mass \sim 1 + (1|region) + (1|region:site), ...)
       Family: gaussian
        Links: mu = identity; sigma = identity
      Formula: mass \sim 1 + (1 \mid region/site)
         Data: df (Number of observations: 200)
        Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
                total post-warmup draws = 4000
      Multilevel Hyperparameters:
      ~region (Number of levels: 3)
                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
\sigma_{\nu} \rightarrow \text{sd(Intercept)} 12.21 6.76 2.81
                                                     30.38 1.00
                                                                    1155
                                                                              1073
      ~region:site (Number of levels: 9)
                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
\sigma_{\delta} \rightarrow \text{sd(Intercept)} 6.01 2.60 2.57 12.65 1.00
                                                                     1003
                                                                              1395
      Regression Coefficients:
                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
\mu_a \rightarrow \text{Intercept} 148.99
                               6.45 135.11 161.86 1.00
                                                                1594
                                                                          1365
      Further Distributional Parameters:
            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                           0.57 10.01
                                                            3750
               11.05
                                            12.21 1.00
                                                                      2543
\sigma \rightarrow sigma
```

Nested or crossed?

Nested designs

$$(1|F1/F2)$$
 just short for $(1|F1)+(1|F1:F2)$

If nested factor F2 is uniquely labelled

(levels of F2 and F1:F2 identical)

this is same as crossed (1|F1)+(1|F2)

Crossed designs

No need to be fully crossed for additive model.

(1|F1)+(1|F2) works for partially crossed, too.

Table 1. Schematic illustration of crossed and nested designs

Nested design	(1	L F1/F2)		
	Factor 2			
Factor 1	a	b	с	d
A	X	X		
В			X	X
Partially crossed	design (1	F1)+(1	F2)	
	Factor 2	Factor 2		
Factor 1	a	b	С	d
A	X	X		
В	X	X		
C			X	X
D			X	Х
Fully crossed des	ign (1	L F1)+(1	F2)	
	Factor 2			
Factor 1	a	b	с	d
A	X	X	X	Х
В	X	X	X	X
C	X	X	X	X
D	X	X	X	X

Continuous correlation structures

- Measured weight of N = 200 viper snakes
- Data collected on M=9 different sites in the same region

Instead of using site as categorical grouping predictor, we could use location (longitude & latitude) as continuous "grouping" predictor.

"Everything is related to everything else, but near things are more related than distant things." (Tobler)

→ Specify spatial autocorrelation model.

- Measured weight of N = 200 viper snakes
- Data collected on M=9 different sites in the same region

Instead of using site as categorical grouping predictor, we could use location (longitude & latitude) as continuous "grouping" predictor.

"Everything is related to everything else, but near things are more related than distant things." (Tobler)

→ Specify spatial autocorrelation model.

Spatial autocorrelation model

Model:
$$y_i = \mu_a + \varepsilon_i$$

$$\varepsilon \sim \text{MVNormal}(0, \sigma^2 R)$$

Correlation:
$$R_{ij} = \exp(-\operatorname{dist}(i,j)/\theta)$$

Priors:
$$\mu_a \sim \text{Normal}(150,10)$$

$$\sigma \sim \text{Exponential}(1/10)$$

$$\theta \sim \text{Exponential}(1/100)$$

N-dimensional vector of residuals $m{\varepsilon}$: multivariate normal distribution

- \leftarrow with $N \times N$ correlation matrix **R** & variance σ^2
- ← Correlation decreases with spatial distance of datapoints *i, j*

- ← Range parameter of spatial autocorrelation
- Model for spatial autocorrelation of residuals.
- Unfortunately not (yet?) implemented in brms.
- → Code in **Stan**, or use alternative models.

Fixed residual correlation

Model: $y_i = \mu_a + \varepsilon_i$

 $\varepsilon \sim \text{MVNormal}(0, \sigma^2 R)$

Correlation: R_{ij} provided by user

Priors: $\mu_a \sim \text{Normal}(150,10)$

 $\sigma \sim \text{Exponential}(1/10)$

- Not ideal, since correlation range θ is not estimated jointly with the other parameters.
- But it's a fast and efficient solution.

```
brm( y ~ 1 + fcor(R),
    data = ... ,
    data2 = list(R=R) )
```

 \leftarrow Choose range θ yourself and compute, e.g., $R_{ij} = \exp(-\operatorname{dist}(i,j)/\theta)$ from data. Obtain θ from variogram.

More "adventures in covariance" (McElreath)

brms has a couple of options:

- Fixed correlation model
- Gaussian process regression
- Generalized additive models (GAM)
 - → but see mgcv package
- Adjacency matrix $R_{ij} = \begin{cases} 1 & i, j \text{ neighbours} \\ 0 & \text{otherwise} \end{cases}$
- ...

You can model autocorrelations

- spatial
- temporal
- spatio-temporal
- phylogenetic

Many of these models can get **very slow** even for moderate N.

→ **INLA** is designed for that. Very efficient!

Summary

Random or fixed effects?

Classical / oldschool interpretation

You are interested in overall means / overall effects, but must account for non-independence in data?

→ site as a random grouping factor

```
~ 1 + (1|site) random intercepts
```

You are interested in differences in means / differences in effects between sites?

→ site as fixed effect

```
~ site ANOVA
```

~ x + site ANCOVA (diff. in intercepts)

~ x * site ANCOVA (diff. in intercepts & slopes)

Modern / relaxed interpretation

Can use random factor models for both to overcome difficulties like unbalanced / heterogeneous data

What's Bayesian about it?

- Sometimes Ime4 just does not converge!
- Correct quantification of uncertainties on all levels.
- Works for all numbers of groups or numbers of obs.
 Already 2-level grouping factor is OK.
- Interpretation "easy" through levels of priors
- Frequentist assumption: Random effects drawn from a larger population of other, unmeasured groups
- Bayes: no such limitation
- Non-normal distribution of random effects?
 - → Bayes (Stan) can handle that!

Summary

- Bayesian stats does not free you from model assumptions!
- If residuals are not independent, you must account for it.
- Otherwise: Fixed effects wrongly confident, CIs too narrow
- Thinking hard about your data will reveal random effects structure.
- Formula notation just as in Ime4.
- Combine any kind of (generalized) linear (or nonlinear) model with discrete (random) grouping factors and/or continuous correlation structure ...
- ... in one R-package!!

The Bayesian 3D printer

Further reading

Bolker, B. M. (2015). Linear and generalized linear mixed models. In Fox, G. A., Negrete-Yankelevich, S. and Sosa, V. J. (eds). Ecological Statistics: Contemporary theory and application. *Oxford Academic*. https://doi.org/10.1093/acprof:oso/9780199672547.003.0014

Fieberg, J. (2024). Statistics 4 Ecologists. https://statistics4ecologists-v2.netlify.app/ [Chapter 18]

Gelman, A., Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press http://www.stat.columbia.edu/~gelman/arm/

Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E. D., Robinson, B. S., Hodgson, D. J., & Inger, R. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. *PeerJ*, 6, e4794. https://doi.org/10.7717/peerj.4794

Marshall, D. J. (2024). Principles of experimental design for ecology and evolution. *Ecology Letters*, 27(4), e14400. https://doi.org/10.1111/ele.14400

McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R and STAN (2nd ed.). *Chapman and Hall/CRC*. https://doi.org/10.1201/9780429029608 [Chapter 13]

Silk, M. J., Harrison, X. A., & Hodgson, D. J. (2020). Perils and pitfalls of mixed-effects regression models in biology. *PeerJ*, 8, e9522. https://doi.org/10.7717/peerj.9522

Warton, D. (2022). Eco-Stats: Data Analysis in Ecology. Springer (Methods in Statistical Ecology) [Chapter 6]