Luku 1

Pallogeometriaa

1.1 Kuun mitat ja pinnanmuodot

Kuun keskimääräinen säde on 1737.1 kilometriä. Suurimmat pinnanmuodot ovat varhaisia törmäyskraattereita. Kappaleen törmätessä kuun pintaan sula basalttinen laava täytti kraatterin muodostaen tumman tasaisen alangon, joita nykyisin nimitämme kuun meriksi (maria), järviksi (lacus), lahdiksi (sinus) ja soiksi (paludes).

Oletamme, että käytössämme on kuvan 1 mukainen listaus kuun merkittävimmistä pinnanmuodoista tekstitiedostona. Kukin rivi koostuu tabulaattorimerkein erotetuista kentistä. Kentät ovat muodostuman latinankielinen nimi, suomenkielinen nimi, latitudi, longitudi ja halkaisija.

1.2 Funktio splitOn

Kun annamme muuttujan str arvoksi esimerkkirivin tiedostosta, voimme jakaa merkkijonon osiin kirjaston Data.List.Split funktiolla split0n. Funktio saa argumentteinaan katkaisevan ja katkaistavan merkkijonon. Funktio palauttaa listan syntyneistä merkkijonon osista.

> import Data.List.Split

Oceanus Procellarum Mare Frigoris	Myrskyjen valtameri Kylmyyden meri	18.4 N 56.0 N	57.4 W 1.4 E	2568 1596
Mare Imbrium	Sateiden meri	32.8 N	15.6 W	1123
Mare Fecunditatis	Hedelmällisyyden meri	7.8 S	51.3 E	909
Mare Tranquillitatis	Rauhallisuuden meri	8.5 N	31.4 E	873
Mare Nubium	Pilvien meri	21.3 S	16.6 W	715
Mare Serenitatis	Hiljaisuuden meri	28.0 N	17.5 E	707
Mare Australe	Eteläinen meri	38.9 S	93.0 E	603
Mare Insularum	Saarten meri	7.5 N	30.9 W	513
Mare Marginis	Reunameri	13.3 N	86.1 E	420
Mare Crisium	Vaarojen meri	17.0 N	59.1 E	418
Mare Humorum	Kosteuden meri	24.4 S	38.6 W	389
Mare Cognitum	Tunnettu meri	10.0 S	23.1 W	376
Mare Smythii	Smythin meri	1.3 N	87.5 E	373
Mare Nectaris	Nektarinmeri	15.2 S	35.5 E	333
Mare Orientale	Itäinen meri	19.4 S	92.8 W	327
Mare Ingenii	Nerokkuuden meri	33.7 S	163.5 E	318
Mare Moscoviense	Moskovan meri	27.3 N	147.9 E	277
Mare Humboldtianum	Humboldtin meri	56.8 N	81.5 E	273
Mare Vaporum	Höyryjen meri	13.3 N	3.6 E	245
Mare Undarum	Aaltojen meri	6.8 N	68.4 E	243
Mare Anguis	Käärmeitten meri	22.6 N	67.7 E	150
Mare Spumans	Vaahdon meri	1.1 N	65.1 E	139
Lacus Veris	Kevään järvi	16.5 S	86.1 W	396
Lacus Somniorum	Unelmien järvi	38.0 N	29.2 E	384
Lacus Excellentiae	Erinomaisuuden järvi	35.4 S	44.0 W	184
Lacus Autumni	Syksyn järvi	9.9 S 45.0 N	83.9 W 27.2 E	183
Lacus Mortis	Kuoleman järvi		104.3 E	151 139
Lacus Solitudinis Lacus Temporis	Yksinäisyyden järvi	27.8 S 45.9 N	58.4 E	117
Lacus Temporis Lacus Timoris	Ajan järvi Pelon järvi	38.8 S	27.3 W	117
Lacus Gaudii	Ilon järvi	16.2 N	12.6 E	113
Lacus Doloris	Kärsimyksen järvi	17.1 N	9.0 E	110
Lacus Bonitatis	Hyvyyden järvi	23.2 N	43.7 E	92
Lacus Aestatis	Kesän järvi	15.0 S	69.0 W	90
Lacus Felicitatis	Onnellisuuden järvi	19.0 N	5.0 E	90
Lacus Lenitatis	Pehmeyden järvi	14.0 N	12.0 E	80
Lacus Spei	Toivon järvi	43.0 N	65.0 E	80
Lacus Odii	Vihan järvi	19.0 N	7.0 E	70
Lacus Perseverantiae	Sinnikkyyden järvi	8.0 N	62.0 E	70
Lacus Hiemalis	Talven järvi	15.0 N	14.0 E	50
Lacus Luxuriae	Ylellisyyden järvi	19.0 N	176.0 E	50
Lacus Oblivionis	Unohduksen järvi	21.0 S	168.0 W	50
Sinus Medii	Keskilahti	2.4 N	1.7 E	335
Sinus Aestuum	Helteen lahti	10.9 N	8.8 W	290
Palus Epidemiarum	Tautien suo	32.0 S	28.2 W	286
Sinus Iridum	Sateenkaarten lahti	44.1 N	31.5 W	236
Sinus Asperitatis	Kovuuden lahti	3.8 S	27.4 E	206
Sinus Roris	Aamukasteen lahti	54.0 N	56.6 W	202 161
Palus Putredinis Palus Somni	Mätänemisen suo	26.5 N 14.1 N	0.4 E 45.0 E	143
Sinus Concordiae	Unien suo	14.1 N 10.8 N	43.0 E 43.2 E	143
Sinus Concordiae Sinus Successus	Sopusoinnun lahti Menestyksen lahti	0.9 N	59.0 E	132
Sinus Amoris	Rakkauden lahti	18.1 N	39.1 E	130
Sinus Lunicus	Lunan lahti	31.8 N	1.4 W	126
Sinus Honoris	Kunnian lahti	11.7 N	18.1 Ë	109
Sinus Fidei	Luottamuksen lahti	18.0 N	2.0 E	70
		· · · ·	- -	

 ${\bf Kuva~1.~}$ Kuun merkittävimmät pinnanmuodot tekstitiedostona. Kentät on erotettu tabulaattorimerkein.

```
> str = "Mare Smythii\tSmythin meri\t1.3 N\t87.5 E\t373"
> splitOn "\t" str
["Mare Smythii", "Smythin meri", "1.3 N", "87.5 E", "373"]
```

1.3 Pallokoordinaatisto

Voimme muuntaa koordinaatteja pallokoordinaatistosta karteesiseen koordinaatistoon kaavalla (http://mathworld.wolfram.com/SphericalCoordinates.html)

```
x = r \cos \theta \sin \phiy = r \sin \theta \sin \phiz = r \cos \phi
```

Tässä r on säde eli etäisyys origosta, θ kulma x-akselista xy-tasossa ja ϕ kulma ylöspäin osoittavasta z-akselista.

Maantieteellisessä koordinaatistossa merkitsemme leveysastetta (*latitudi*) symbolilla δ , jolloin $\phi = 90^{\circ} - \delta$ sekä pituusastetta (*longitudi*) symbolilla λ ($\lambda = \theta$).

Koordinaattilyhenteissä kirjain N(north)merkitsee pohjoista leveyttä, S(south)eteläistä leveyttä, E(east)itäistä pituutta ja W(west)läntistä pituutta. Maapallolla leveysaste δ kasvaa päiväntasaajalta pohjoiseen kuljettaessa ja pituusaste λ Greenwichin nollameridiaanilta itään kuljettaessa. Nimitykset leveys ja pituus juontuvat Välimeren alueen kulttuureista: Välimeri on "pitkä" itä-länsi-suunnassa ja "leveä" pohjois-etelä-suunnassa. Pituuspiirejä sanotaan myös meridiaaneiksi. Termi meridiaani johtuu latinan puolipäivää tai etelää merkitsevästä sanasta meridies.

Määrittelemme tietotyypin Point3D pisteelle kolmiulotteisessa karteesisessa xyz-koordinaatistossa. Pallokoordinaatistossa määrittelemme pisteen Spheric3D kulmien θ ja ϕ avulla.

```
-- | Point3D x y z, RH cartesian coordinates
data Point3D = Point3D Double Double
```

-- | Spheric3D theta phi, where phi =

```
-- polar angle measured from a fixed zenith direction
data Spheric3D = Spheric3D Angle Angle
```

Asetamme kuun säteeksi r=1737.1 km. Yksinkertaisimman muunnoksen kolmiulotteisesta koordinaatistosta kaksiulotteiseen koordinaatistoon saamme pudottamalla x-koordinaatin pois.

```
r = 1737.1
dropX (Point3D x y z) = Point y z
perspective = dropX

cartesian (Spheric3D lambda delta) = Point3D x y z
  where
    x = r * cos1 theta * sin1 phi
    y = r * sin1 theta * sin1 phi
    z = r * cos1 phi
    theta = lambda
    phi = (DEG 90) `subAngles` delta
```

Saamme hahmotelman leveyspiireistä pallon etupuoliskolla algoritmilla

```
latitudes = [PolyLine [(perspective . cartesian)
  (Spheric3D (DEG 1) (DEG d))
  | 1 <- lambda]
  | d <- delta]
  where
   delta = [-90,-75..90]
  lambda = [-90,-70..90]</pre>
```

Etupuoliskon pituuspiirit eli meridiaanit saamme algoritmilla

```
meridians = [PolyLine [(perspective . cartesian)
   (Spheric3D (DEG 1) (DEG d))
   | d <- delta]
   | 1 <- lambda]
   where
    delta = [-90,-80..90]
   lambda = [-90,-75..90]</pre>
```

Olemme esittäneet leveys- ja pituuspiirien muodostaman kuvion kuvassa 2.

Kuva 2. Karttapallon puolisko, jossa kuvattuna leveyspiirit ja pituuspiirit eli meridiaanit 15 asteen välein.

1.4 Vinoprojektion perspektiivimatriisi

Niin sanotussa *vinoprojektiossa* kuvaamme kaksi akselia suoraan kulmaan toistensa kanssa ja kolmannen akselin tiettyyn kulmaan näiden välillä.

Kuvassa 3 esiintyvät vakiot $a,\,b,\,c$ ja d olemme määritelleet seuraavasti kulman α avulla:

$$a = \frac{1}{2} \cdot \cos \alpha$$

$$b = \frac{1}{2} \cdot \sin \alpha$$

$$c = -a$$

$$d = -b$$

Matriiseista järjestysluvultaan parittomat antavat kuvauskoordinaatistoksi vasenkätisen ja parilliset oikeakätisen koordinaatiston. Haskell-kielelle muunnettuna voimme esittää perspektiivimatriisit $M_{1..12}$ case-lauseen avulla.

matrix1 m alpha = case m of 1 -> [[1,0,a], [0,1,b], z] 2 -> [[1,a,0], [0,b,1], z] 3 -> [[a,1,0], [b,0,1], z] 4 -> [[0,1,a], [1,0,b], z]

Kuva 3. Vinoprojektioiden perspektiivimatriiseja.

Asetamme nyt muunnosmatriiseiksi matriisit M_2 ja M_8 (kuva 4).

$$M_2 = \begin{pmatrix} 1 & 1/2 \cdot \cos 30^{\circ} & 0 \\ 0 & 1/2 \cdot \sin 30^{\circ} & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad M_8 = \begin{pmatrix} 1 & 0 & -1/2 \cdot \cos 35^{\circ} \\ 0 & 1 & -1/2 \cdot \sin 35^{\circ} \\ 0 & 0 & 0 \end{pmatrix}$$

Kuva 4. Karttapallon puoliskot muunnosmatriiseja M_2 ja M_8 käyttäen.

matr1 pv pAlpha (Point3D x1 y1 z1) = Point x y
where

```
[x,y,z] = matrixTimes3 (matrix1 pv alpha) [x1,y1,z1]
alpha = DEG pAlpha

r = 1737.1

dropX (Point3D x y z) = Point y z

perspective = matr1 pv pAlpha
  where
    pv = 8
    pAlpha = 35
```

1.5 Mare Serenitatis

Haluamme seuraavaksi kuvata Hiljaisuuden meren karttapallolle. Kraatterin läpimitta on d=707 km, ja säde näin ollen r=d/2=353.5 km. Hiljaisuuden meren keskipisteen koordinaatit ovat $(28.0^{\circ} \text{ N}, 17.5^{\circ} \text{ E})$.

Kuun säteen ollessa $r=1737.1\ \mathrm{km},$ saamme kuvan 5 merkinnöillä keskuskulmaksi

$$\theta = 2\pi \cdot \frac{353.5}{2\pi \cdot 1737.1} = 0.2035 \text{ rad} = 11.65^{\circ}$$

Kuva 5. Kraatterin säteen r = 353.5 km muodostama keskuskulma.

Aiemmin esitellyn perusteella osaamme jo sijoittaa pohjoisnavalle ympyrän, jonka säde on annettu. Käytämme tällöin Hiljaisuuden merelle laske-

maamme keskuskulmaa ylimääräisenä leveyspiirinä, jonka piirrämme täytettynä monikulmiona (kuva 6).

Kuva 6. Hiljaisuuden meri pohjoisnavalle sijoitettuna.

```
serenitatis = [ Filled $ Polygon [
  (perspective . cartesian) (Spheric3D (DEG 1) t)
  | 1 <- lambda]]
  where
   t = RAD (halfpi - 0.2035)
  lambda = [-180,-160..160]</pre>
```

1.6 Kiertomatriisit kolmessa ulottuvuudessa

Kiertomatriisit kolmessa ulottuvuudessa kulman θ verran akselien x, y ja z suhteen ovat (https://en.wikipedia.org/wiki/Rotation_matrix)

$$R_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \qquad R_y = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}$$
$$R_z = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Haskell-kielelle muunnettuna nämä ovat

```
rotationX t = [
 [1, 0,
              07.
 [0, cos1 t, -sin1 t],
 [0, sin1 t, cos1 t]
 1
rotationY t = [
 [cos1 t, 0, sin1 t],
      1, 0],
 [0,
 [-sin1 t, 0, cos1 t]
 ٦
rotationZ t = [
 [cos1 t, -sin1 t, 0],
 [sin1 t, cos1 t, 0],
 Γ
       0, 0, 1]
 ٦
```

Latitudin δ komplementtikulma $\phi=90^\circ-\delta$ määrittää kierron y-akselin suhteen ja longitudi λ kierron z-akselin suhteen.

```
rotYZ delta lambda (Point3D x1 y1 z1) = Point3D x y z where  [x,y,z] = \text{foldr matrixTimes3 } [x1,y1,z1] \text{ rts}   \text{rts} = [\text{rotationZ lambda,rotationY phi}]   \text{phi} = \text{DEG 90 `subAngles` delta}   \text{Valitsemme perspektiivimatriisin } M_{10}.
```

```
perspective = matr1 pv pAlpha
  where
    pv = 10
    pAlpha = 35
```

Yleisessä muodossaan määrittelemme kuun meren piirtoalgoritmin funktiossa mare, joka saa parametrinaan d meren halkaisijan ja parametrinaan pos maantieteellisen pohjois-itä-koordinaatin tyyppiä GeographicNE.

data GeographicNE = GeographicNE Angle Angle

```
mare d pos = [ Filled $ Polygon [
  (perspective . rotYZ delta lambda . cartesian)
      (Spheric3D (DEG 1) phi)
  | 1 <- lambdaRim]]
  where
      GeographicNE delta lambda = pos
      phi = DEG 90 `subAngles` (RAD theta)
      theta = (d/2) / r
      lambdaRim = [-180,-160..160]

Hiljaisuuden meri saa nyt muodon

serenitatis = mare d pos
  where
      d = 707
      pos = GeographicNE (DEG 28) (DEG 17.5)</pre>
```

Piirrämme kuvaan 7 myös Myrskyjen valtameren, jonka halkaisija on d = 2568 km, ja jonka keskipiste sijaitsee pisteessä (18.4° N, 57.4° W).

Kuva 7. Hiljaisuuden meri ja Myrskyjen valtameri.

```
procellarum = mare d pos
  where
    d = 2568
    pos = GeographicNE (DEG 18.4) (DEG (-57.4))
```

Merkitsemme myös koordinaatiston nollapisteen funktiolla proto0.

```
proto0 = mare 160 (GeographicNE (DEG 0) (DEG 0))
```

1.7 Monikulmion paloittelu

Olemme koordinaattimuunnoksissa huomioineet ainoastaan täytetyn monikulmion reunapisteet, joten esimerkiksi Myrskyjen valtameren keskiosat piirtyivät väärin kuvassa 7.

Parempaan tulokseen päädymme paloittelemalla monikulmiot asteverkon mukaisesti. Käytämme aluksi tasavälistä lieriöprojektiota (equirectangular projection), jossa pituus- ja leveysasteet kuvautuvat sellaisenaan koordinaattipisteiksi.

```
equirectangular (Spheric3D lambda delta) = Point 1 d
  where
    DEG 1 = degrees lambda
    DEG d = degrees delta
```

Mittakaavakertoimena on seuraavassa $\frac{2\pi \cdot r}{360}$, missä r=1737.1 km on kuun säde.

```
mare d pos = [Polygon [ pt0 `addCoords`
  pointFromPolar (DEG 1) r2 | 1 <- lambdaRim]]
  where
    r2 = (d/2) / (twopi * r / 360)
    pt0 = equirectangular (Spheric3D lambda delta)
    GeographicNE delta lambda = pos
    lambdaRim = [-180,-140..140]</pre>
```

 $Muunnamme\ polaarikoordinaatit\ pisteeksi\ funktiolla\ \verb"pointFromPolar".$

```
pointFromPolar t s = Point x y
  where
    x = s * cos1 t
    y = s * sin1 t
```

Olemme kuvassa 8 esittäneet suorakulmaisessa koordinaatistossa Hedelmällisyyden meren, jonka halkaisija on d=909 km, ja jonka keskipiste sijaitsee pisteessä (7.8° S, 51.3° E).

```
fecunditatis = mare d pos
  where
```


Kuva 8. Hedelmällisyyden meri suorakulmaisessa koordinaatistossa.

```
d = 909
pos = GeographicNE (DEG (-7.8)) (DEG 51.3)
```

1.8 Pisteet monikulmion sisä- ja ulkopuolella

Käytämme monikulmion paloitteluun Sutherland-Hodgmanin algoritmia (https://en.wikipedia.org/wiki/Sutherland-Hodgman_algorithm). Paloittelussa muokkaamme monikulmion kärkipistejoukkoa vertaamalla sitä leikkaavan monikulmion sivuihin sivu kerrallaan. Leikkauksen lähtöjoukkona toimii aina edellisessä vaiheessa saatu kärkipistejoukko. Kukin sivu leikkaa osan kärkipisteistä pois sekä muodostaa uusia kärkipisteitä paloiteltavan ja leikkaavan monikulmion sivujen leikkauspisteisiin. Paloittelualgoritmia varten tarvitsemme tiedon siitä, kummalla puolella annettua sivua tietty kärkipiste sijaitsee.

Saamme selville kummalla puolella sivua piste sijaitsee muodostamalla kolmion, jonka kärkipisteet ovat sivun alkupiste, sivun loppupiste ja vertailtava piste. Kun piste sijaitsee sivun oikealla puolella, muodostuneen kolmion kiertosuunta on myötäpäivään, jolloin sen ala determinanttisäännön mukaan on negatiivinen. Kun piste sijaitsee sivun vasemmalla puolella, kiertosuunta on vastapäivään ja muodostuneen kolmion ala positiivinen.

```
data InOut = In | Out
  deriving Show
```

```
sign x = if x < 0 then (-1) else 1
around xs = zip xs ((tail . cycle) xs)
inOut1 p1 p2 pg = [
  (inOut . sign . area . Polygon) [p1,p2,p3] | p3 <- pts]
  where
    Polygon pts = pg
    inOut 1 = In
    inOut (-1) = Out
inOut2 ct pg = [ inOut1 p1 p2 pg
   | (p1,p2) <- zip ct (tail ct)]
insideOutside pg =
  inOut2 (head gridGreatCircles) pg
gridGreatCircles = concat [[[
  xpt 11 d1, xpt 12 d1, xpt 12 d2, xpt 11 d2]
  | (d1,d2) <- zip vb3 (tail vb3)]
    | (11,12) \leftarrow zip vb2 (tail vb2) |
  where
    xpt l d = equirectangular (Spheric3D (DEG 1) (DEG d))
    vb3 = visible3 delta
    vb2 = visible2 lambda
    delta = [-90, -75...90]
    lambda = [-90, -75...90]
visible2 = filter (\1 -> 1 > 29 && 1 < 76)
visible3 = filter (d \rightarrow d > -31 \&\& d < 16)
```

Determinanttisääntöä käytämme, kun määrittelemme funktion area monikulmiolle Polygon. Determinantin saamme matematiikasta tutulla kaavalla

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \cdot d - b \cdot c$$

- -- | http://mathworld.wolfram.com/PolygonArea.html
- -- Polygon area: vertices counterclockwise

half =
$$(0.5 *)$$

det $[[a,b],[c,d]] = a * d - b * c$

Aloitamme kuvion paloittelun neliöstä alueen vasemmassa alanurkassa (kuva 9).

Kuva 9. Ensimmäinen tarkasteltava ruutu.

Ensimmäinen rajaava suora on neliön alareuna s_1s_2 . Alareuna säilyttää kaikki monikulmion pisteet.

```
> insideOutside !! 0
[In,In,In,In,In,In,In,In,In]
```

Toinen rajaava suora on neliön oikea reuna s_2s_3 . Nyt rajaavan suoran vasemmalle puolelle eli alueen sisäpuolelle jäävät monikulmion pisteet (p_1, p_2, p_9) . Alueen ulkopuolelle jäävät monikulmion pisteet $(p_{3..8})$.

```
> insideOutside !! 1
[In,In,Out,Out,Out,Out,Out,In]
```

Paloiteltavan monikulmion sivut jakautuvat neljään ryhmään:

(In,In): sivu alkaa sisäpuolelta ja päättyy sisäpuolelle. (In,Out): sivu alkaa sisäpuolelta ja päättyy ulkopuolelle. (Out,Out): sivu alkaa ulkopuolelta ja päättyy ulkopuolelle. (Out,In): sivu alkaa ulkopuolelta ja päättyy sisäpuolelle.

Monikulmion kaikki sivut suhteessa rajaavan neliön oikeaan reunaan s_2s_3 muodostavat listan

```
> around (insideOutside !! 1)
[ (In,In),(In,Out),(Out,Out),(Out,Out),(Out,Out),(Out,Out),(Out,In),(In,In) ]
```

Sutherland-Hodgmanin algoritmin mukaiset toimenpiteet sivutyypeille ovat

(In, In): säilytämme kärkipisteet.

(In,Out): säilytämme lähtöpisteen ja siirrämme loppupisteen.

(Out,Out): poistamme kärkipisteet.

(Out, In): siirrämme alkupisteen ja säilytämme loppupisteen.

Kuvan 10 merkinnöillä suoran s_2s_3 suhteen leikattu toinen monikulmio koostuu kärkipisteistä $(p_1, p_2, i_1, i_2, p_9)$.

Kuva 10. Toinen leikkaus antaa monikulmion kärkipisteet $(p_1, p_2, i_1, i_2, p_9)$.

fecunditatis3 = Polygon fc3

```
fc3 = concat [new io1 io2 p1 p2
  | ((io1,io2),(p1,p2)) <- zip io ia]
  where
     (s1,s2) = zip g1 (tail g1) !! 1
     g1 = gridGreatCircles !! 0
     io = around (insideOutside !! 1)
     ia = around pg
     Polygon pg = fecunditatis
     new In In p1 p2 = [p1]</pre>
```

```
new In Out p1 p2 = [p1,
  fromJust (intersection s1 s2 p1 p2)]
new Out Out p1 p2 = []
new Out In p1 p2 = [
  fromJust (intersection s1 s2 p1 p2)]
```

Kolmas leikkaus tapahtuu suoran s_3s_4 suhteen edellä saadulle kärkipistejoukolle $(i_1, p_2, p_3, p_4, i_2)$. Leikattu monikulmio koostuu kärkipisteistä (i_3, p_2, i_1, i_4) (kuva 11).

Kuva 11. Kolmas leikkaus antaa monikulmion kärkipisteet (i_3, p_2, i_1, i_4) .

Viimeinen leikkaus tapahtuu suoran s_4s_1 suhteen. Leikkaus säilyttää kärkipistejoukon (i_3, p_2, i_1, i_4) sellaisenaan.