4、多机通讯配置

4、多机通讯配置

- 4.1、Login remotely
 - 4.1.1、SSH
 - 4.1.2、jupyter lab
 - 4.1.3, VNC
- 4.2 ROS multi-machine communication
 - 4.2.1、Universal version
 - 4.2.2 Smiple version
- 4.3、Webpage real-time monitoring

Note: You must know the IP of the robot before remote login. You can view the current IP address of the robot through an external display or OLED

4.1. Login remotely

4.1.1、SSH

Note: The system graphical interface cannot be displayed in this way.

PuTTY Login


```
password -
pi@Transbot: ~
                                                                     🗪 user name
  login as: pi
  pi@192.168.2.85's password:
Welcome to Ubuntu 18.04.6 LTS (GNU/Linux 5.4.0-1045-raspi aarch64)
 Documentation: https://help.ubuntu.com
                 https://landscape.canonical.com
* Management:
                 https://ubuntu.com/advantage
 System information as of Wed Nov 17 12:14:20 CST 2021
 System load: 0.62
                                 Processes:
                                                      240
 Usage of /: 51.7% of 28.95GB
                                 Users logged in:
 Memory usage: 45%
                                 IP address for wlan0: 192.168.2.85
 Swap usage: 0%
 => There is 1 zombie process.
* Super-optimized for small spaces - read how we shrank the memory
  footprint of MicroK8s to make it the smallest full K8s around.
  https://ubuntu.com/blog/microk8s-memory-optimisation
97 updates can be applied immediately.
```

For Yahoom image, user name is **pi** password is **yahboom**

ubuntu system

1) Input following command in terminal

```
ssh pi@192.168.2.103
```

- 2) Then, input yes
- 3) Next, input yahboom

4.1.2, jupyter lab

Note: The system graphical interface cannot be displayed in this way.

Input following URL on browser, pree 【Enter】

Then, input password yahboom

Click [Log in]

http://192.168.2.103:8888

After login, you can see following interface.

You can enter these folder, and modify content in file, click 【Terminal】 to enter command terminal.

4.1.3, VNC

Note: The system graphical interface can be displayed in this way.

Login steps, as shown below.

4.2 ROS multi-machine communication

4.2.1 Universal version

All ros masters are under the same network; if multiple devices have similar processes, choose one as the master, and the others are all slaves; the following two devices are taken as an example.

Install the ssh server on two devices; install the chrony package for synchronization:

```
sudo apt-get install chrony openssh-server
```

Input following command to view the IP information and host name of the two devices:

```
Command: ifconfig 和 hostname
```

```
pi@Transbot:~$ ifconfig
eth0: flags=4099<up,bRUAUCAST,MULTICAST> mtu 1500
        ether dc:a6:32:ee:f1:67 txqueuelen 1000 (Ethernet)
        RX packets 0 bytes 0 (0.0 B)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 0 bytes 0 (0.0 B)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
        inet 127.0.0.1 netmask 255.0.0.0
        inet6 :: 1 prefixlen 128 scopeid 0x10<host>
        loop txqueuelen 1000 (Local Loopback)
        RX packets 8631 bytes 2496153 (2.4 MB)
        RX errors 0 dropped 0 overruns 0 frame 0 TX packets 8631 bytes 2496153 (2.4 MB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
        inet 192.168.2.94 netmask 255.255.255.0 broadcast 192.168.2.255
        inet6 fe80::33ef:379:d1a:fc50 prefixlen 64 scopeid 0x20<link>
        ether e4:5f:01:4b:b0:3c txqueuelen 1000 (Ethernet)
RX packets 18040 bytes 1930037 (1.9 MB)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 20639 bytes 28649360 (28.6 MB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
pi@Transbot:~$
```

修改/etc文件夹下的hosts文件:

```
sudo chmod a+w /etc/hosts
sudo vim /etc/hosts
```

将两台设备的IP和主机名分别添加到两台设备的hosts文件下,绑定用户;前面的IP,后面的是名字,尽量对齐;

```
yahboom@VM_Transbot: ~
File Edit View Search Terminal Help
127.0.0.1
               localhost
127.0.0.1
                VM_Transbot
192.168.2.94
               Transbot
192.168.2.116 VM_Transbot
# The following lines are desirable for IPv6 capable hosts
       ip6-localhost ip6-loopback
::1
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
151.101.228.133 raw.github.com
185.199.108.133 raw.githubusercontent.com
185.199.109.133 raw.githubusercontent.com
185.199.110.133 raw.githubusercontent.com
185.199.111.133 raw.githubusercontent.com
                                                                                  ett
```

```
pi@Transbot: ~
<u>File Edit View Search Terminal Help</u>
127 0.0.1 localhost
127.0.0.1
               Transbot
192.168.2.116 VM_Transbot
192.168.2.94
                Transbot
# The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
199.232.28.133 raw.githubusercontent.com
151.101.228.133 raw.github.com
185.199.108.133 raw.githubusercontent.com
185.199.109.133 raw.githubusercontent.com
185.199.110.133 raw.githubusercontent.com
185.199.111.133 raw.githubusercontent.com
```

After the modification, enter the following commands on both devices to restart the following network to realize the communication between the two devices::

```
sudo /etc/init.d/networking restart
```

After installation, input following command confirm whether the server has been started:

```
ps -e|grep ssh

rahboom@VM_Transbot:~$ ps -e|grep ssh

1656 ? 00:00:00 ssh-agent

4534 ? 00:00:00 ssh-agent

Ubuntu Software bot:~$ Host VM Transbot
```

```
pi@Transbot:~$ ps -e|grep ssh
2418 ? 00:00:00 sshd
2660 ? 00:00:00 ssh-agent
pi@Transbot:~$ Slave Transbot
```

Input following command to check if the communication is normal:

```
ping hostname of the device
```

```
yahboom@VM_Transbot:~$ ping Transbot
PING Transbot (192.168.2.94) 56(84) bytes of data.
64 bytes from Transbot (192.168.2.94): icmp_seq=1 ttl=64 time=3.05 ms
64 bytes from Transbot (192.168.2.94): icmp_seq=2 ttl=64 time=2.22 ms
64 bytes from Transbot (192.168.2.94): icmp_seq=3 ttl=64 time=2.74 ms
64 bytes from Transbot (192.168.2.94): icmp_seq=4 ttl=64 time=5.35 ms
64 bytes from Transbot (192.168.2.94): icmp_seq=5 ttl=64 time=5.88 ms
64 bytes from Transbot (192.168.2.94): icmp_seq=6 ttl=64 time=2.04 ms
67 c
--- Transbot ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5009ms
ertt min/avg/max/mdev = 2.044/3.550/5.887/1.508 ms
eyahboom@VM_Transbot:~$ ^C
eyahboom@VM_Transbot:~$ ^C
```

```
PING VM_Transbot (192.168.2.116) 56(84) bytes of data.

64 bytes from VM_Transbot (192.168.2.116): icmp_seq=1 ttl=64 time=1.91 ms

64 bytes from VM_Transbot (192.168.2.116): icmp_seq=2 ttl=64 time=1.93 ms

64 bytes from VM_Transbot (192.168.2.116): icmp_seq=3 ttl=64 time=2.12 ms

64 bytes from VM_Transbot (192.168.2.116): icmp_seq=4 ttl=64 time=3.52 ms

64 bytes from VM_Transbot (192.168.2.116): icmp_seq=5 ttl=64 time=2.16 ms

64 bytes from VM_Transbot (192.168.2.116): icmp_seq=6 ttl=64 time=2.94 ms

64 bytes from VM_Transbot (192.168.2.116): icmp_seq=6 ttl=64 time=2.18 ms

64 bytes from VM_Transbot (192.168.2.116): icmp_seq=8 ttl=64 time=23.7 ms

64 bytes from VM_Transbot (192.168.2.116): icmp_seq=8 ttl=64 time=23.7 ms

67 c

--- VM_Transbot ping statistics ---

8 packets transmitted, 8 received, 0% packet loss, time 7009ms

Transbot
```

Modify ~ /.bashrc file

```
sudo vim ~/.bashrc
```

Add following content to ~/.bashrc file of master

```
export ROS_MASTER_URI=http://Host username:11311
```

Add following content to ~/.bashrc file of slave

```
export ROS_MASTER_URI=http://Host username:11311
```

For example, jetson nano as a master

```
export ROS_MASTER_URI=http://VM_Transbot:11311
#export ROS_MASTER_URI=http://$ROS_IP:11311
echo "-----"
echo -e "MY_IP: \033[32m$ROS_IP\033[0m"
echo -e "ROS_MASTER_URI: "
echo -e "\033[32m$ROS_MASTER_URI\033[0m"
echo "------"

Host
VM_Transbot
```

After setting the IP, we need to refresh it, and then we can communicate.

```
source ~/.bashrc
```

• Phenomenon show

Note: we need to start up ROS Master on ROS Master

ubuntu(virtual machine VM_Transbot)

```
roscore
rosrun turtlesim turtle_teleop_key
```

Raspberry Pi (Transbot)

```
rosrun turtlesim turtlesim_node
```

4.2.2 Smiple version

If jetson nano is the host and the IP address is known, you only need to modify the .bashrc file of the slave.

```
sudo vim ~/.bashrc
```

Add following content file at the bottom.

```
export ROS_MASTER_URI=http://主机IP:11311
```

The effect is the same as [4.2.1]

4.3. Webpage real-time monitoring

Environment setup

```
sudo apt-get install ros-melodic-async-web-server-cpp ros-melodic-web-video-server ros-melodic-usb-cam
```

Ensure that the USB camera be insert correctly, input following command to check if the USB device exists (it is video0)

```
11 /dev
```

```
2 root
                    root
                                  60 Jan
           1 root
                             10, 137 Jul 26 23:31 vhci
                    root
  xrwxrwx+ 1 root  video  81,  0 Aug 30 11:48 <mark>video</mark>0
                             10, 130 Aug 30 11:48 watchdog
           1 root
                    root
                            244,
                                  0 Aug 30 11:48 watchd
                    root
                                  5 Aug 30 11:48 zero
   w-rw- 1 root
                    root
                    disk
           1 root
                                  0 Aug 30 11:48 zram0
                                  1 Aug 30 11:48 zram1
           1 root
                    disk
                                  2 Aug 30 11:48 zram2
                    disk
           1 root
                            252,
           1 root
                    disk
                            252,
                                   3 Aug 30 11:48 zram3
etson@jetson-yahboom:~$
```

If the system prompts that the execution authority is not enough, you need to input the following command to add the execution authority.

```
sudo chmod 777 /dev/video*
```

Modify usb_cam-test.launch file

```
sudo vim /opt/ros/melodic/share/usb_cam/launch/usb_cam-test.launch
```

change

```
<1aunch>
    <arg name="open_view" default="false"/>
    <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen">
        <param name="video_device" value="/dev/video0"/>
        <param name="image_width" value="640"/>
        <param name="image_height" value="480"/>
        <param name="pixel_format" value="yuyv"/>
        <param name="camera_frame_id" value="usb_cam"/>
        <param name="io_method" value="mmap"/>
    </node>
    <!-- 启动web_video_server -->
    <node pkg="web_video_server" type="web_video_server" name="web_video_server"</pre>
output="screen"/>
    <!-- 是否启动image_view -->
    <group if="$(arg open_view)">
        <node name="image_view" pkg="image_view" type="image_view"</pre>
respawn="false" output="screen">
```

Open terminal, input following command to start it.

```
roslaunch usb_cam usb_cam-test.launch
```

View pictures

```
View on local web browser
http://localhost:8080/
If you want to view by other devices, you must ensure they at the same local area network
http://192.168.2.103:8080/
(192.168.2.103 is the IP address of the master)
Note: It is recommended to use Google browser, other browsers may not be able to open the image
```