

ANSWER KEYS

1. (4)	2. (1)	3. (1)	4. (1)	5. (4)	6. (1)	7. (4)	8. (1)	
77.								

$$gof(x) = 2e^x - 5 = y$$

As
$$gof$$
 is an invertible function, $x = gof^{-1}(y)$...(1)

$$gof(x) = 2e^x - 5 = y$$
As gof is an invertible function, $x = gof^{-1}(y) \dots (1)$

$$2e^x-5=y\Rightarrow x=\ln\Bigl(rac{y+5}{2}\Bigr).\,..(2)$$

$$2e^x-5=y\Rightarrow x=\ln\left(rac{y+5}{2}
ight)\ldots(2)$$
 From $(1)\ \&\ (2),\ gof^{-1}(y)=\ln\left(rac{y+5}{2}
ight)$ mathongo /// mathongo ///

$$\Rightarrow (gof)^{-1}(\mathbf{x}) = \ln\left(\frac{x+5}{2}\right)$$

$$\Rightarrow (gof)^{-1}(x) = \ln\left(\frac{x+5}{2}\right) \text{ mathongo } \text{ mathon$$

$$y=f(x)=\sqrt{3}\sin x+\cos x+4$$
 and the second mathematical mathe

$$y=2\sin\left(x+rac{\pi}{6}
ight)+4\dots(1)$$
 go /// mathongo // mathongo /// mathongo // mathon

$$+2 \le 2\sin\left(x+\frac{\pi}{6}\right) \le 2$$
 thongo /// mathongo /// mathongo /// mathongo /// mathongo ///

$$-2+4 \le 2\sin\left(x+\frac{\pi}{6}\right)+4 \le 2+4$$

$$y\in [2,6]=B$$

$$y - 4 = 2\sin\left(x + \frac{\pi}{6}\right)$$

$$\sin^{-1}\left(\frac{y-4}{2}\right) - \frac{\pi}{6} \stackrel{\text{\tiny def}}{=} x$$
 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

$$\Rightarrow -\frac{\pi}{2} \le \sin^{-1}\left(\frac{y-4}{2}\right) \le \frac{\pi}{2}$$

$$\Rightarrow -\frac{\pi}{2} - \frac{\pi}{2} < \sin^{-1}\left(\frac{y-4}{2}\right) - \frac{\pi}{2} < \frac{\pi}{2} - \frac{\pi}{2}$$

$$\Rightarrow -\frac{\pi}{2} \leq \sin^{-1}\left(\frac{y-2}{2}\right) \leq \frac{\pi}{2}$$

$$= \frac{\pi}{2} - \frac{\pi}{6} \leq \sin^{-1}\left(\frac{y-4}{2}\right) - \frac{\pi}{6} \leq \frac{\pi}{2} - \frac{\pi}{6}$$
mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo // mathong

$$\Rightarrow -\frac{\pi}{2} - \frac{\pi}{6} \le x \le \frac{\pi}{2} - \frac{\pi}{6}$$

$$\Rightarrow x \in \left[\frac{-2\pi}{3}, \frac{\pi}{3}\right] = A$$
mathongo /// mathongo // mathong

3. (1) Let
$$y = f(t)$$
 : $t = f^{-1}(y)$ mathongo /// mathongo /// mathongo /// mathongo ///

Now,
$$y = f(t) = \frac{1-t}{1+t} \Rightarrow y + ty = 1-t$$
 mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo // mathongo //

$$\Rightarrow t+ty=1-y \Rightarrow t=rac{1-y}{1+y}$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

i.e.,
$$f^{-1}(y) = \frac{1-y}{1+y}$$
 or $f^{-1}(t) = \frac{1-t}{1+t}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Thus, this function is inverse of itself.

4. (1) Given a set containing 10 distinct elements and
$$f: A \to A$$
 Now, every element of a set A can make an image in 10 ways.

The total number of ways in which each element make images
$$=10^{10}$$
. In mathon 2007, and the mathon 2007 mathon

Answer Kevs and Solutions

- 5.' (4) athongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
 - If a function is defined $f: A \rightarrow B$ such that
 - $n(A) = m, \ n(B) = n_{\text{1}}$ at hongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// If $m \leq n$ then the total number of one-one functions $= {}^{n}P_{m} = \frac{n!}{(n-m)!}$
 - Total number of one-one onto function $= {}^3P_3 = 3! = 6$ mathongo mathon
- 6. (1)
- Given, $f:(-\infty,\ 1]\to (-\infty,\ 1]$ and mathongo mathongo mathongo mathongo mathongo mathongo mathongo
- Let, y = x(2-x) mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo // mathong
- $\Rightarrow x^2 2x + y = 0$
- mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo $\Rightarrow x = rac{2\pm 2\sqrt{1-y}}{2}$
- $\Rightarrow x = 1 \pm 1 \sqrt{1-y}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- $\Rightarrow x = 1 \sqrt{1 y}$ [:: 1 + $\sqrt{1 y}$ > 1 , y < 1] o /// mathongo /// mathongo /// mathongo ///
- Now replace 'x' by 'y' and 'y' by 'x' mathongo m
- mathongo ///. mathongo ///.
- 7. (4) athongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///
- Given: $\log_{10} x + |x| = 0$
 - $\Rightarrow \log_{10} x = -|x|$ mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. We know that the graph of $\log_a x$ is monotonically increasing if a > 1 and graph of -|x| can be drawn by taking image of |x| in

the x-axis as plane mirror. 100g0 /// mothongo /// mothongo /// mothongo /// mothongo /// mothongo /// mothongo

- By the graph of y=-|x| and $y=\log_{10}x$, we have
- mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.
- $y = \log_{10} x$ ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. matho
- lithongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- go ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. matho
- Both graphs intersect at one point only. So, required number of solution is 1. // mathongo // mathongo // mathongo //

Answer Kevs and Solutions

8	(1) athongo								
	Given cot m —	π	m $m \in \begin{bmatrix} -\pi & \frac{3}{2} \end{bmatrix}$	π					

Given
$$\cot x = \frac{\kappa}{2} + x, \;\; x \in \left[-\pi, \; \frac{5\kappa}{2}\right]$$
 (i) $y = \cot x$ /// mathongo // mathon

(i)
$$y=\cot x$$
 Mothonso Mothonso

Range=
$$(-\infty, \infty)$$
 mathongo /// mathongo // mat

It is an equation of a line.

Slope
$$=$$
 1, we should be mathong $=$ mathon $=$ matho

at
$$y=0,\;x=-\frac{\pi}{2}$$
 mathongo w mathongo w

So, there are 3 intersection points for
$$x \in \left[-\pi, \frac{3\pi}{2}\right]$$
, which are at $x = -\frac{\pi}{2}$, $2^{\mathrm{nd}} \in \left(0, \frac{\pi}{2}\right)$, $3^{\mathrm{rd}} \in \left(\pi, \frac{3\pi}{2}\right)$

Hence, the number of solutions $= 3$

Since,
$$\log\left(x+\sqrt{1+x^2}\right)$$
 is an odd function, mathon matho

If
$$f(x+y)=f(x)+f(y) \forall x,y \in R$$
, then

Put
$$x=y=0 \Rightarrow f(0)=0$$

Now, put $y=-x \Rightarrow f(x)+f(-x)=0$

$$f(x)$$
 is an odd function mathongo mat

10. (0) athongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathon with matho (0,2) ngo (0,2) mathongo (0,2) ma //. mathongo //. mathongo //. mathongo //. mathongo //. matho $\frac{1}{3\pi} \xrightarrow{3\pi} \text{mathongo} \text{ ///. mathongo} \text$ we know, $0 \le |\cos x| \le 1$ and minimum value of $x^2 + x + 2$ is $\frac{-\left(1^2 - 4.1.2\right)}{4.1} = \frac{7}{4}$ mathongo /// mathongo /// : Minimum value of $x^2 + x + 2$ is greater than the maximum value of $|\cos x|$. \therefore No common value of x exist for which $|\cos x| = x^2 + x + 2$ nothing y mathons y mathons y mathons y mathons y