LECTURE 9 – FATE AND TRANSPORT MODELING USING WASP/EUTRO (Case Studies)

The Liaohe River in China

BOD/DO Modeling of Liaohe River Using WASP/EUTRO

Model Segmentation of Tidal Anacostia River - Paranga kong <u>Corcillulari Allenia</u> intependence Alense Ohliney Young Ben orbit intige Source Bridge Diek Neiterwarbt Ericige Political Rose

Anacostia Basin Subwaters

Anacostia River, Washington, DC

Sediment Oxygen
Demand and

Nutrient Flux Rates
Data

Sediment Diagenesis Kinetics for SOD and Ammonia Flux Calculations

Source: HydroQual, 1992.

Model Calibration Results

Results of SOD and Nutrient Fluxes from an Enhanced WASP/EUTRO5 Kinetics

Model Calibration Results

Model Calibration Results

Santa Fe River Diurnal DO and pH Modeling

Background

- Located close to the City of Baltimore
- Important drinking water source
- Threats from eutrophication (DO)
- TMDL requirements

Geometry:

Length: 11 km

Width: 410 m in average

Depth range: 21m maximum

Longitudinal-Vertical 2-D Configuration

Modeling Framework

Hydrodynamics Segmentation:

Longitudinal 17 segments, variable grid lengths, one meter thick

1	5	11	21	33	45	59	73	89	105	121	139	159	179	199	218	238
2	6	12	22	34	46	60	74	90	106	122	140	160	180	200	219	239
3	7	13	23	35	47	61	75	91	107	123	141	161	181	201	220	240
4	8	14	24	36	48	62	76	92	108	124	142	162	182	202	221	241
	9	15	25	37	49	63	77	93	109	125	143	163	183	203	222	242
	10	16	26	38	50	64	78	94	110	126	144	164	184	204	223	243
		17	27	39	51	65	79	95	111	127	145	165	185	205	224	244
		18	28	40	52	66	80	96	112	128	146	166	186	206	225	245
		19	29	41	53	67	81	97	113	129	147	167	187	207	226	246
		20	30	42	54	68	82	98	114	130	148	168	188	208	227	247
	_		31	43	55	69	83	99	115	131	149	169	189	209	228	248
			32	44	56	70	84	100	116	132	150	170	190	210	229	249
		_			57	71	85	101	117	133	151	171	191	211	230	250
					58	72	86	102	118	134	152	172	192	212	231	251
				_			87	103	119	135	153	173	193	213	232	252
							88	104	120	136	154	174	194	214	233	253
										137	155	175	195	215	234	254
										138	156	176	196	216	235	255
									-		157	177	197	217	236	256
											158	178	198	218	237	257

WASP Grid:

Indirect mapping

First layer: 4 meters

Other layers: 2 meters

Spatial scale difference

Layer subtraction

Numerical stability

Extra diffusions by averaging

DO vs. Temp in Loch Raven Station GUN0142 near Dam (1990-

Model Results (Original and Improved) vs. 1992 Data

Loch Raven Reservoir Station GUN0142 - 1992

LEGEND: ₹ Observed Data

---- Improved Model Calibration
----- Original Model Calibration

Quantitative Assessment of Water Quality Model Results

Year	СВО	OD ₅	Amn	nonia	DO		
	Mean absolute errors (mg/L)	RMS errors (mg/L)	Mean absolute errors (mg/L)	RMS errors (mg/L)	Mean absolute errors (mg/L)	RMS errors (mg/L)	
October 27-28, 2005	-: DO no field da 13.61	16.69	4.62	5.79	_	_	
November 3-4, 2005	17.19	25.91	5.18	6.83	0.42	0.51	

Santa Fe River Diurnal pH and DO Modeling for TMDL

