

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы</u>	управления (ИУ)»	
КАФЕДРА <u>«Программное обеспечен</u>	ие ЭВМ и информационн	ње технологии (ИУ7)»
РАСЧЕТНО-ПОЯС	НИТЕЛЬНАЯ	ЗАПИСКА
К КУРСОН	ВОМУ ПРОЕКТ	T $oldsymbol{y}$
H_{c}	A TEMY:	
«Драйвер для устро	ойств с интерфейс	ом GPIO»
	1 1	
Студент группы ИУ7-72Б		Иванов В.А.
	(Подпись, дата)	(И.О. Фамилия)
Руководитель НИР		Рязанова Н.Ю.

(Подпись, дата)

(И.О. Фамилия)

СОДЕРЖАНИЕ

BI	введение		
1	Аналитическая часть	9	
	1.1 Постановка задачи	9	
	1.2 Актуальность проблемы	9	
	1.3 Метод решения	9	
	1.4 Критерии оптимизации	9	
2	Конструкторская часть	10	
3	Технологическая часть	11	
4	Исследовательская часть	12	
3 <i>A</i>	АКЛЮЧЕНИЕ	13	
Cl	писок использованных источников	14	
П	РИЛОЖЕНИЕ А	15	

ВВЕДЕНИЕ

В данный момент активно ведётся развитие технологий "умного дома" и "интернета вещей". Они направлены на создание общей сети для любого типа домашней техники или механизмов. Целью является их тесная интеграция, создание возможности управления и получения информации об их текущем состоянии для жильца дома.

Разработка подобных "умных" устройств тесно связана с использованием микроконтроллеров или одноплатных компьютеров. Такие устройства имеют небольшой размер и представляют незначительные вычислительные мощности. Поэтому для них зачастую требуется применение низкоуровневого программирования.

Наиболее распространённым физическим интерфейсом подключения является GPIO - контакты общего назначения, позволяющие подключать к себе широкий спектр различных устройств.

Данная работа посвящена разработке драйвера для взаимодействия с устройствами с интерфейсом GPIO.

1 Аналитическая часть

1.1 Постановка задачи

По заданию требуется разработать драйвер в виде загружаемого модуля ядра, позволяющий управлять устройствами, подключенными с помощью интерфейса GPIO.

Необходимо предоставить пользователю возможность ввода/вывода информации с устройств, управления режимами.

Для достижения данной цели необходимо решить следующие задачи:

- 1) ознакомиться с основными принципами работы устройств интерфейса GPIO;
- 2) определить способ управления устройствами;
- 3) выделить набор действий;
- 4) реализовать драйвер.

1.2 Принцип работы устройств GPIO

GPIO - интерфейс для связи между компонентами компьютерной системы, к примеру, микропроцессором и различными периферийными устройствами[1]. Контакты GPIO могут выступать как в роли входа, так и в роли выхода — это, как правило, конфигурируется. Обычно они используются для подключения датчиков, переключателей, дисплеев и т.п.

В данной работе будет использоваться одноплатный компьютер Raspberry Pi 2B ввиду отсутствия в распоряжении других компьютеров. Рассмотрим подробнее организацию GPIO на его примере.

На рисунке 1 описывается назначение каждого из контактов (пинов) для этой модели. Можно отметить, что не все из них используются для ввода/вывода. Помимо этого есть контакты предназначенные для подачи определённого напряжения на внешние устройства (3.3V, 5V) или для заземления (GROUND).

Пин GPIO имеет два режима:

• Вход. Напряжение подаётся внешним устройством. От +0.0В до +1.8В

Рисунок 1 – Назначение пинов Raspberry Pi 2B

считается уровнем логического нуля, +1.8В-3.3В - логическая единица.

• **Выхо**д. Напряжение подаётся самим Raspberry Pi. Уровень логических 0 и 1 аналогичный.

По сути, передача и приём информации осуществляется только считыванием и установлением определённого напряжения. Выходы, отмеченные на схеме зелёным цветом имеют наиболее простой принцип действия: режим ввода/вывода в них устанавливается на всё время подключения устройства, а значение напряжения является относительно постоянным, так как по ним передаётся минимальное количество информации.

В отличие от них, контакты имеющие подпись I2C, SPI или UART используются для последовательный синхронной передачи данных в режиме полного

или полудуплекса. Это означает, что они используются для передачи уже более большого количества данных и могут переключать режим ввода/вывода по несколько тысяч раз за секунду.

Целью данной работы является разработка базового взаимодействия с внешними устройствами, поэтому драйвер будет ориентирован на более простые интерфейсы GPIO.

1.3 Способ управления

Следующей задачей является определение способа чтения и изменения состояния интерфейсов GPIO.

Для работы с пинами используется способ отображения в память (memory maping). Для чтения или изменения состояния устройства требуется взаимодействовать с определённым участком оперативной память, имеющей постоянный физический адрес. Для выполнения подобных действий требуется иметь нулевой уровень привелегий, поэтому программа должна быть реализована в виде загружаемого модуля ядра.

Рассмотрим устройство отображения GPIO в память для Raspberry Pi 2B. В листинге ?? приведены используемые константы.

Листинг 1: struct module

Адрес $BCM2708_PERI_BASE$ memory mapping, GPIO0x200000.

2 Конструкторская часть

3 Технологическая часть

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. GPIO [Электронный ресурс] Режим доступа: http://ru.wikipedia.org/wiki/GPIO (дата обращения 10.12.2021).
- 2. Знакомство с GPIO в Raspberry Pi Режим доступа: https://ph0en1x.net/86-raspberry-pi-znakomstvo-s-gpio-perekluchatel-i-svetodiod.htmlgpio-header-layout-pins (дата обращения 10.12.2021).

ПРИЛОЖЕНИЕ А