This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

S4 1 PN="10-260773" ?t 4/5/1

4/5/1

DIALOG(R) File 347: JAPIO

(c) 2002 JPO & JAPIO. All rts. reserv.

05977673 **Image available**

INFORMATION INPUT METHOD AND DEVICE THEREFOR

PUB. NO.: **10-260773** [JP 10260773 A] PUBLISHED: September 29, 1998 (19980929)

INVENTOR(s): TOMINAGA SATOKO

SATO SUNAO

APPLICANT(s): NIPPON TELEGR & TELEPH CORP <NTT> [000422] (A Japanese

Company or Corporation), JP (Japan)

APPL. NO.: 09-066527 [JP 9766527] FILED: March 19, 1997 (19970319)

INTL CLASS: [6] G06F-003/033; G06F-003/16

JAPIO CLASS: 45.3 (INFORMATION PROCESSING -- Input Output Units)
JAPIO KEYWORD:R108 (INFORMATION PROCESSING -- Speech Recognition &

Synthesis)

ABSTRACT

PROBLEM TO BE SOLVED: To provide an information input method for substituting manual input by using the line of sight as an information input means for a computer by detecting and displaying a line-of-sight position on a display and turning information determined corresponding to the line-of-sight position and the movement of the line of the sight, to the input signals to the computer.

SOLUTION: The line-of-sight position on the display is detected, the detected line-of-sight position is displayed on the display and the information determined corresponding to the line-of-sight position and the movement of the line of the sight is turned to the input signals to the computer. For instance, this device is composed of an input processing and display control means 2, an information processing means 3, a display means (display) 4, a line-of-sight information detection means 5 and a voice processing means 6. Then, the line-of-sight information detection means 5 is composed of an optical system device, a video camera and a mirror, reflects infrared rays sent out from the optical system device to the pupil of a computer user by the mirror installed by the display 4 and fetches the reflected light to the optical system device again.

JPA 10-260773

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10260773 A

(43) Date of publication of application: 29 . 09 . 98

(51) Int. CI

G06F 3/033 G06F 3/16

(21) Application number: 09066527

(22) Date of filing: 19 . 03 . 97

(71) Applicant:

NIPPON TELEGR & TELEPH

CORP <NTT>

(72) Inventor:

TOMINAGA SATOKO

SATO SUNAO

(54) INFORMATION INPUT METHOD AND DEVICE THEREFOR

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an information input method for substituting manual input by using the line of sight as an information input means for a computer by detecting and displaying a line-of-sight position on a display and turning information determined corresponding to the line-of-sight position and the movement of the line of the sight, to the input signals to the computer.

SOLUTION: The line-of-sight position on the display is detected, the detected line-of-sight position is displayed on the display and the information determined corresponding to the line-of-sight position and the movement of the line of the sight is turned to the input signals to the computer. For instance, this device is composed of an input processing and display control means 2, an information processing means 3, a display means (display) 4, a line-of-sight information detection means 5 and a voice processing means 6. Then, the line-of-sight information detection means 5 is composed of an optical system device, a video camera and a mirror, reflects infrared rays sent out from the optical

system device to the pupil of a computer user by the mirror installed by the display 4 and fetches the reflected light to the optical system device again.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-260773

(43)公開日 平成10年(1998) 9月29日

(51) Int.Cl. ⁶		識別記号	FΙ		
G06F	3/033	310	G06F	3/033	310A
	3/16	320		3/16	3 2 0 A

審査請求 未請求 請求項の数10 〇L (全 10 頁)

(22)出顧日 平成9年(1997)3月19日 東京都新宿区西新宿三丁目19番2号 (72)発明者 富永 聡子 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 佐藤 直	21)出願番号	特顯平 9-66527	(71)出願人	000004226 日本電信電話株式会社		
東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 佐藤 直 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内	22)出願日	平成9年(1997)3月19日				
電信電話株式会社内 (72)発明者 佐藤 直 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内			(72)発明者	富永 聡子		
(72)発明者 佐藤 直 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内			1	東京都新宿区西新宿三丁目19番2号 日本		
東京都新宿区西新宿三丁目19番2号 日本電信電話株式会社内			Ì	電信電話株式会社内		
電信電話株式会社内			(72)発明者	佐藤直		
				東京都新宿区西新宿三丁目19番2号 日本		
(74)代理人 弁理士 小林 将高				電信電話株式会社内		
1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			(74)代理人	弁理士 小林 将高		

(54) 【発明の名称】 情報入力方法及びその装置

(57)【要約】

【課題】 コンピュータに対する情報入力手段として、 視線を用いて手入力を代替することである。

【解決手段】 視線情報検出手段5により表示手段4に注がれた視線の位置および動きを検出し、入力処理および表示制御手段2により検出した視線の位置を表示手段4に表示し、視線の位置で定まる情報をコンピュータの入力信号として用いることを特徴とする。

Pinns

2

【特許請求の範囲】

【請求項1】 コンピュータへの情報入力方法であって、

ŀ

ディスプレイ上の視線位置を検出し、前記ディスプレイ 上に前記検出した視線位置を表示するとともに、前記視 線位置および視線の動きに応じて定まる情報をコンピュ ータへの入力信号とすることを特徴とする情報入力方 法。

【請求項2】 コンピュータへの情報入力方法であって、

ディスプレイ上の視線位置を検出し、前記ディスプレイ 上に前記検出した視線位置を表示するとともに、前記視 線位置および視線の動きに応じて定まる情報をコンピュ ータへの入力信号とし、さらに入力された音声を認識 し、前記音声によって定まる情報を前記コンピュータへ の入力信号とすることを特徴とする情報入力方法。

【請求項3】 請求項1または請求項2記載のコンピュータへの情報入力方法において、

視線位置がアイコン上に停止したときの、まばたきの回数と間隔に応じて、前記アイコンの選択、実行、ドラッ 20 グのための制御信号を対応させておき、前記視線位置がアイコン上に停止し、まばたきがなされたとき、前記まばたきの回数と間隔に対応する制御信号をコンピュータに入力し、アイコンがドラッグされているときの視線位置の動きに追随して、前記ドラッグされたアイコンの位置を移動させることを特徴とする情報入力方法。

【請求項4】 請求項1または請求項2記載の情報入力方法において、

キーボードをディスプレイ上に表示し、

前記ディスプレイ上のキーボードにおいて視線位置にあ 30 る文字を検出し、予め定めた視線の動きを検出したとき に、前記検出されている視線位置にある文字を、コンピュータへの入力情報とすることを特徴とする情報入力方法。

【請求項5】 請求項2記載の情報入力方法において、 有限個の文字またはコマンドに対応する音声を事前に登録しておき、音声入力があった場合、前記入力された音声を、前記予め登録されている有限個の文字またはコマンドに対応する音声と比較し、最も近い文字またはコマンドを、コンピュータへの入力情報とすることを特徴と 40 する情報入力方法。

【請求項6】 ディスプレイに注がれた視線の位置および動きを検出する視線情報検出手段と、

前記視線情報検出手段にて検出された視線の位置を、ディスプレイ上に表示する視線位置表示手段と、

前記検出された視線位置または動きに応じて定まる情報 をコンピュータの入力信号として入力する視線対応情報 入力手段と、を有することを特徴とする情報入力装置。

【請求項7】 音声を認識する音声処理手段と、

前記認識された音声によって定まる情報を前記コンピュ 50 たまま引っ張る(ドラッグ)ことにより、「選択」,

ータへの入力信号として入力する音声対応情報入力手段 と、を有することを特徴とする情報入力装置。

【請求項8】 請求項6記載の情報入力装置において、 視線位置がアイコン上に停止したときの、まばたきの回 数と間隔に応じて、前記アイコンの選択、実行、ドラッ グのための制御信号を対応させ、対応する制御信号をコ ンピュータに入力する制御信号入力手段と、

アイコンがドラッグされているときの視線位置の動きに付随して、前記ドラッグされたアイコンの位置を移動さ 10 せる移動手段と、を有することを特徴とする情報入力装 置。

【請求項9】 請求項6記載の情報入力装置において、 キーボードをディスプレイ上に表示するキーボード表示 手段と、

前記ディスプレイ上のキーボードにおいて視線位置にある文字を検出し、予め定めた視線の動きを検出したときに、前記検出されている視線位置にある文字を、コンピュータへの入力情報とするキーボード対応情報入力手段と、を有することを特徴どする情報入力装置。

【請求項10】 請求項7記載の情報入力装置において、

事前に登録された有限個の文字またはコマンドに対応する音声と、入力された音声とを比較する比較手段と、最も近い文字またはコマンドを、コンピュータへの入力情報とする登録情報入力手段と、を有することを特徴とする情報入力装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、コンピュータへの情報入力方法および装置に関するもので、特に音声を用いた入力と視線を用いた入力を組み合わせた情報入力方法および装置に関するものである。

[0002]

【従来の技術】コンピュータへの情報入力方法に関する 従来技術は、現在市販されているコンピュータでは主 に、キーボードを用いて指で文字や数字などを入力する 方法と、マウスにより入力する方法が用いられている。 図10に従来技術の構成を示す。

【0003】図10において、1はキーボードやマウスなどの入力手段、2は前記入力手段1よりの信号を、その入力信号の最終的な受け取り側である情報処理手段3への受け渡し処理をし、さらに、表示手段4に表示するための制御を行う、入力処理および表示制御手段である。なお、入力処理および表示制御手段2,情報処理手段3および表示手段4はいわゆるコンピュータの構成要素である。キーボード入力は指でキーを叩くことによって、文字や数字などを入力するものであり、マウス入力は画面上の希望する項目をマウスボタンで1回押下(クリック)する、2回押下する(ダブルクリック)、押したまま引っ張る(ドラッグ)ことにより「284円」

「実行」,「ドラッグ」といった制御情報を入力する。また、マウスボタンを押さないで動かす場合は、表示手段4上で指示位置を示しているポインタの単に「移動」となる。これらの方法では、常に画面あるいはキーボードを見ながら、さらにキーボード、マウスといった2種類の入力端末を用いた手による入力を必要とし、手が使えないような状況下では入力することができない。

[0004]

【発明が解決しようとする課題】このように従来技術は、コンピュータへの情報入力方法が限定されている。 すなわち、キーボードやマウスといった手入力による入力手段1を必要とし、音声や視線は使われていなかった。また、マウスとキーボードでは機能が異なるため、それぞれ状況に応じて使い分けが必要であった。

【0005】本発明の目的は、コンピュータに対する情報入力手段に、視線、音声を用いており、また視線と音声を組み合わることにより手入力を代替したコンピュータの情報入力方法および装置を提供することにある。

[0006]

【課題を解決するための手段】請求項1に記載の発明は、ディスプレイ上の視線位置を検出し、前記ディスプレイ上に前記検出した視線位置を表示するとともに、前記視線位置および視線の動きに応じて定まる情報をコンピュータへの入力信号とするものである。

【0007】請求項2に記載の発明は、ディスプレイ上の視線位置を検出し、前記ディスプレイ上に前記検出した視線位置を表示するとともに、前記視線位置および視線の動きに応じて定まる情報をコンピュータへの入力信号とし、さらに入力された音声を認識し、前記音声によって定まる情報を前記コンピュータへの入力信号とするものである。

【0008】請求項3に記載の発明は、視線位置がアイコン上に停止したときの、まばたきの回数と間隔に応じて、前記アイコンの選択、実行、ドラッグのための制御信号を対応させておき、前記視線位置がアイコン上に停止し、まばたきがなされたとき、前記まばたきの回数と間隔に対応する制御信号をコンピュータに入力し、アイコンがドラッグされているときの視線位置の動きに追随して、前記ドラッグされたアイコンの位置を移動させるものである。

【0009】請求項4に記載の発明は、キーボードをディスプレイ上に表示し、前記ディスプレイ上のキーボードにおいて視線位置にある文字を検出し、予め定めた視線の動きを検出したときに、前記検出されている視線位置にある文字を、コンピュータへの入力情報とするものである。

【0010】請求項5に記載の発明は、有限個の文字またはコマンドに対応する音声を事前に登録しておき、音声入力があった場合、前記入力された音声を、前記予め登録されている有限個の文字またはコマンドに対応する 50

音声と比較し、最も近い文字またはコマンドを、コンピュータへの入力情報とするものである。

【0011】請求項6に記載の発明は、ディスプレイに 注がれた視線の位置および動きを検出する視線情報検出 手段(図1に示す視線情報検出手段5)と、前記視線情 報検出手段にて検出された視線の位置を、ディスプレイ (図1に示す表示手段4)上に表示する視線位置表示手 段(図1に示す入力処理および表示制御手段2)と、前 記検出された視線位置または動きに応じて定まる情報を コンピュータの入力信号として入力する視線対応情報入 力手段(図1に示す入力処理および表示制御手段2)と を有するものである。

【0012】請求項7に記載の発明は、音声を認識する音声処理手段(図1に示す音声処理手段6)と、前記認識された音声によって定まる情報を前記コンピュータへの入力信号として入力する音声対応情報入力手段(図1に示す入力処理および表示制御手段2)とを有するものである。

【0013】請求項8に記載の発明は、視線位置がアイ20 コン上に停止したときの、まばたきの回数と間隔に応じて、前記アイコンの選択,実行,ドラッグのための制御信号を対応させ、対応する制御信号をコンピュータに入力する制御信号入力手段(図1に示す入力処理および表示制御手段2)と、アイコンがドラッグされているときの視線位置の動きに付随して、前記ドラッグされたアイコンの位置を移動させる移動手段(図1に示す入力処理および表示制御手段2)とを有するものである。

【0014】請求項9に記載の発明は、キーボードをディスプレイ上に表示するキーボード表示手段(図1に示す入力処理および表示制御手段2)と、前記ディスプレイ上のキーボードにおいて視線位置にある文字を検出し、予め定めた視線の動きを検出したときに、前記検出されている視線位置にある文字を、コンピュータへの入力情報とするキーボード対応情報入力手段(図1に示す入力処理および表示制御手段2)とを有するものである。

【0015】請求項10に記載の発明は、事前に登録された有限個の文字またはコマンドに対応する音声と、入力された音声とを比較する比較手段(図1に示す情報処理手段3)と、最も近い文字またはコマンドを、コンピュータへの入力情報とする登録情報入力手段(図1に示す情報処理手段3)とを有するものである。

[0016]

【発明の実施の形態】本発明の特徴は、視線、および音声と視線により従来、コンピュータの入力となっていたマウスやキーボードの入力を代替するものであり、具体的には、音声入力については、音声を認識し処理する音声処理手段を持ち、発生した音声をコンピュータ(情報処理手段)の入力信号に変換する。

【0017】また、ディスプレイに注がれた視線位置を

検出し、移動距離、移動速度、注視時間、瞳孔径、まばたきの回数及びまばたきの間隔を収集する視線検出手段と、収集結果を処理してコンピュータの入力にするとともに、ディスプレイ上(表示手段)での表示を制御する制御処理手段からなり、視線の位置を検出してディスプレイ上の位置の指示に利用し、さらに、まばたきをする間の時間長(まばたき間隔)およびまばたきの回数を測定することにより、前記指示位置における入力がコマンドの選択なのか実行あるいはドラッグなのかに対応させるものであり、視線を用いたコンピュータへの情報入力 10 方法および装置を提供する。

【0018】本発明は、従来コンピュータ使用者がマウスやキーボードで行っている入力手段に代わり、使用者の視線および音声でコンピュータの入力を可能としていることが従来技術と異なる。

【0019】図1に、本発明を利用した情報入力装置の構成例を示す。2は入力処理および表示制御手段、3は情報処理手段、4はコンピュータの表示手段(以下、ディスプレイという)、5は視線情報検出手段、6は情報入力の対象となるところの音声処理手段である。

【0020】視線は、従来のコンピュータの情報入力方 法であるキーボード入力やマウス入力に対する作業では 入力手段として全く使用されていない。また、音声も、 従来のコンピュータの情報入力手段としてほとんど利用 されていない。視線情報検出手段5では、視線情報とし て視線位置,移動距離,移動速度,注視時間,瞳孔径, まばたきの回数及びまばたきの間隔の測定を行ってい る。また、入力処理および表示制御手段2は、視線位 置、移動距離、移動速度、注視時間、瞳孔径、まばたき -の回数及びまばたきの間隔を利用してポインタの位置や 30 移動状態かどうか、あるいはコンピュータの入力である 選択、実行及びドラッグのうちいずれであるかを判断す る。音声を入力とする音声処理手段6では、音声を認識 し、認識された音声を入力信号に変換することで、コン ピュータへの音声入力を可能とする。これにより、手が 使えない状態でもコンピュータへの入力を可能とする。 また、視線入力だけでなく音声入力も用いることによ り、視線入力のみによる疲労を軽減することができる。 [0021]

【実施例】

〔実施例1〕本発明における第1の実施例について説明する。本実施例は、上述した図1に示す構成によって視線情報入力で、通常のマウスによる入力を代替させるものである。また、音声による入力で、通常のキーボードによる入力を代替させるものである。

【0022】図1において、2は入力処理および表示制御手段、3は情報処理手段、4は表示手段(ディスプレイ)、5は視線情報検出手段、6は音声処理手段であり、2~4は図10に示すものと対応する。視線情報検出手段5は、図示はしていないが、光学系装置、ビデオ50

カメラ及びミラーからなり、光学系装置からコンピュータ使用者の瞳孔に送出された赤外線を、ディスプレイ4の横に設置しているミラーで反射し、その反射光を再度光学系装置に取り込む。また、ビデオカメラは被験者 (コンピュータの操作者) の見ているディスプレイ4を映すものであり、視線の位置と画面の位置を一致させるためのものである。

【0023】視線位置の検出技術は既にあり、文献としては、坂口、中野、山本:"自動車運転中のドライバの視線検出"、信学技報PRU95-28、pp57-64、1995などがある。また、製品化された視線検出装置の例としては、ASL(Applied Science Laboratories)社製の、「アイトラッキングシステム4250Rリモート式光学系装置」などがある。本発明において、これらの技術を用いることが可能である。

【0024】視線位置の検出精度は、真正眼球位置付近における、真の視線位置と測定視線位置の誤差は1度以下、また、視野の周辺部における同誤差は2度以下である。したがって、ディスプレイまでの距離を30cmとすると、視野の周辺部では、

[0025]

20

40

【数1】30cm×tan2度=1.047cm すなわち、プラスマイナス約1cmの誤差である。したがって2cm程度の大きさのアイコンであれば、視線位置を検出することによって操作者がそのアイコンを注視しているかどうか検出できる。また、後述するように検出した視線位置を視線ポインタでディスプレイ4に表示させるようにすると、操作者からのフィードバックが可能となるので、さらに小さなアイコンでも指示可能となる。

【0026】図2は、音声および視線入力を行うための起動アイコンおよび終了アイコンのイメージである。音声入力起動アイコンをクリックすると、音声入力が可能になり、同時に音声入力終了アイコンが表示される。音声入力終了アイコンをクリックすると音声入力を終了する。同様に、視線入力起動アイコンをクリックすると視線入力が可能となり、ポインタがディスプレイ4上の視線の位置となり、同時に視線入力終了アイコンが表示される。視線入力終了アイコンをクリックすると、視線入力を終了する。音声入力起動アイコンおよび視線入力起動アイコンは、コンピュータの起動時に画面上に現れるものとする。これらのアイコンを用意することにより、音声や視線による入力を必要とするときだけ利用することができる。

【0027】音声を入力に変換するためには、コンピュータのマイク入力から入力された音声を音声処理手段6を通して入力処理および表示制御手段2に送り、音声を入力情報に変換する。マイクは、コンピュータに付属しているマイク入力に接続できるものを用い、音声入力用の特別なマイクは必要としない。

【0028】音声の入力情報は、主としてキーボードの 機能を代替するものであり、アルファベット入力やかな 入力による文章や、キーパッド入力による数値などであ

【0029】音声入力用にあらかじめ用意されているコ マンドとしては、ファイル管理に必要な「複製」、「削 除」,「名前変更」といったコマンドや、ファイル内容 の編集に必要な「入力」,「変換」,「コピー」,「ペ ースト」, 「消去」, 「置換・検索」といったコマンド がある。これらのコマンドについては、音声で発声する 10 とコマンドを実行できる。

【0030】音声入力による文字や数字の入力には、

「入力」コマンドを用いる。「入力」コマンドが実行さ れると、続いて発声されるものが数字あるいは文字入力 とみなされ、最も近い文字や数字に変換される。また、 ユーザがよく使う文字やコマンドについては、ユーザに より単語登録やコマンド登録ができるものとする。

10 ° Y

【0031】さらに、ファイル操作や編集操作などの基 本的な操作については、音声コマンドとしてあらかじめ 登録されている言葉を用いることにより、これらの操作 20 行(通常のマウスでは2回クリックで実行される)、 も音声入力により可能となる音声認識の技術も既にある ので、その詳細は省略する。

【0032】視線の入力情報は、主としてマウス機能の 代替をするものであり、ポインタの移動や、選択、実 行, ドラッグといった機能を可能にするものである。

【0033】視線を入力に変換するためには、視線情報 検出手段5を通して得られる視線情報を入力処理および 表示制御手段2に送り、視線位置,移動距離,移動速 度、注視時間、瞳孔径、またばきの回数及びまたばきの 間隔から、ポインタの位置や移動状態かどうか、さらに 「選択」、「実行」、および「ドラッグ」のうち、どの 入力制御を行うかを判別する。その結果を表示手段4に 出力し、情報処理手段3に引き渡す。

【0034】視線をマウス機能の代替入力とするための 情報の流れを図3~図5のフローチャートに示す。な お、(1)~(21)は各ステップを示す。

【0035】図3において、視線入力起動アイコンを起 動すると(1)、ポインタ上の視線情報の収集を開始す る。まず、初期設定として視線の位置と画面の位置を一 致させるために校正を行う(2)。校正は、画面上に中 40 央および四隅を中心とした数カ所(5カ所もしくは9カ 所)の位置を画面上の表示に従い、使用者が凝視し、視 線の特性を登録する。これにより、使用者の視覚特性を コンピュータに認識させる。ただし、校正はコンピュー タを起動する度に要求されるが、同じ利用者が続けて使 用する場合は校正を省略できるものとする。

【0036】次に、実際のコンピュータ入力に対する視 線情報の収集を開始する(3)。処理の開始時におい て、コンピュータへの入力状態は図中の「中立状態」で ある(4)。

【0037】視線による入力の可能な期間中は、視線位 置の検出を常に行っておく。ただし、人間の視線の特性 として、以下に示す固視微動があり、これへの対処を以 下のように行う。

【0038】固視微動とは、人間の目は絶えず動いてお り、一点を凝視したときでも自覚はされないが小さな微 動を続けており、この小さな微動のことである。したが って、本発明では、視線位置の停止とは、視線の移動速 度が予め決められた一定値(しきい値a)より小さいと きに、視線が停止しているとみなす。しきい値aの具体 値を参考までに挙げると、5度/秒である。この値は使 用者により設定できるものとする。

【0039】以上は、本発明における視線位置検出処理 の基本であって、常にこの処理を行っている。以上を前 提として、図3~図5に基づいて、通常のマウスからの 入力を代替する手順について説明する。

【0040】本発明では、ディスプレイ4上における、

(イ) アイコン等の選択(通常のマウスでは1回クリッ クで実現される)、(ロ)アイコンに対応する処理の実

(ハ) アイコン等をドラッグしての移動を以下のように 実現する。

【0041】(イ)アイコン等の選択 視線があるアイコンの上にきて(5)、まばたき1回し たら(6)、そのアイコンを選択したものとする

(9)。このとき、視線の移動速度が上記のしきい値 a より小さいこと、すなわち停止しているとみなされるこ とが前提である。また、まばたきが真に1回だけなの か、2回のまばたきの内の最初のまばたきなのかを検出 する必要があるが、それは上記のまばたきの後、一定時 間bまばたきがなければ真に1回だけのまばたきである と見なすことで(7)、解決できる。一定時間もの具体 的な値は、たとえば0.5秒であり、利用者により設定 できるものとする(10)。この操作で選択されたアイ コン等は、選択されたまま保持されるものとし、次に、 視線位置が前記アイコン以外の場所でまばたきを検出し たときに選択情報が解除されるものとする(13)~

【0042】(ロ)アイコンに対応する処理の実行

(イ) と同様にして、視線があるアイコンの上にきて停 止したとみなされ、まばたきを一定時間 b 内に 2 回した ら、そのアイコンに対応する処理またはソフトウエアの 実行とする(7), (8)。

【0043】 (ハ) アイコン等のドラッグ ドラッグしようとするアイコンの上に視線を停止させ、 1回まばたきをして選択状態にさせ(上記ステップ

(1) の処理と同じ)、さらに視線位置を一定時間以上 動かすことなく次のまばたきをしたときに、当該アイコ ンがドラッグされたものとする(11), (12)。ド 50 ラッグされたアイコンの移動は、そのアイコン上に視線

10

位置をもって来て(17)、視線を動かすことで(1 8)、その動きに追随させて移動させる(19)。ただ し、視線の動きが一定の速度のしきい値c以上のとき は、視線位置に追随させてのアイコンの動きを行わない ことにする。しきい値 c の具体値を参考までに挙げる と、一度ドラッグされたアイコンは、視線位置が前記ア イコン以外の場所で、まばたきを検出したときにドラッ グ状態が解除されるものとし(20),(21)、それ までは、たとえ視線位置が前記アイコン以外の位置に来 ても解除されないものとする。

【0044】このような処理をすることで、ドラッグし たアイコンの移動を視線の動きで行う際に、過度の集中 を要することもなくなる。

【0045】なお、ドラッグの解除については前述した とおりである。また、まばたきの検出は、まばたきで瞳 孔が閉じるときに視線情報として瞳孔径のデータが取れ ないことを利用し、瞳孔径データが取れない時間が20 0 m s 以下である場合を、まばたきしたと判断する。

【0046】このような構造になっているので、コンピ ュータの入力装置であるマウスの代わりに視線が使用で 20 きるので、指を使わなくても入力ができるようになる。 その効果としては、コンピュータの入力端末が特に必要 ない、使用者のユーザインタフェースの負担が少ない、 指の動きが不自由なユーザが使用しやすいことが挙げら れる。

【0047】〔実施例2〕図6は、本発明の第2の実施 例を説明する図であって、実施例1の場合に比べ、視線 による入力を実施例1のような従来のマウス入力の代替 としてのみ使うものではなく、キーボード入力の代替品 としても使うことであり、この場合は音声入力は行わな 30 い。構成は図1と同様であるが、音声入力を行わないの でマイク入力は使わない。視線入力起動アイコンを起動 すると、ポインタ上に視線情報の収集を開始する。ま ず、初期設定として視線の位置と両面の位置を一致させ るために校正を行う。校正は、画面上に中央および四隅 を中心とした数カ所(5カ所もしくは9カ所)の位置を 画面上の表示に従い、使用者が凝視し、視線の特性を登 録する。これにより、使用者の視覚特性をコンピュータ に認識させる。ただし、校正はコンピュータを起動する 度に要求されるが、同じ利用者が続けて使用する場合は 40 校正を省略できるものとする。

【0048】次に、実際のコンピュータ入力に対する視 線の収集を開始する。画面上には、キーボード入力を可 能とするアイコンがあり、これを起動すると、図6の

(a) の状態から(b) のようにキーボードが画面上に 現れる。この画面キーボード上のキーを視線によって選 択することで、キーボード入力を可能にする。この場合 は、従来の使い方であるキーボード端末の上に指を置い て入力する代わりに、視線を画面上のキーボードのキー の上に置くことで機能を代替する。視線によるキーボー 50 なっているから、従来のコンピュータ作業におけるキー

ド入力注視するときは、画面上に表示されているキーボ ードの最上段左にある終了ボタンを選択することによ り、終了できる。

【0049】図7に視線をキーボード機能の代替入力と するための情報の流れをフローチャートで示す。なお、 (31)~(37)は各ステップを示す。コンピュータ が起動すると、画面中央にポインタおよび視線入力起動 アイコンが表示される。視線入力起動アイコンをクリッ クすると(31)、ポインタ上の視線の収集を開始す る。まず、校正を行う(32)。校正が終了すると入力 情報の分析に入る。まず、視線が静止しているか移動し ているかを測定する(33)。移動速度(単位時間あた りの移動角度) v 1 がしきい値 a より小さいと (3 4)、その位置に視線が静止状態であるものと判定し、 しきい値aより大きいと移動状態であると判定する(3 7)。移動状態(Noの方向)では、測定時間単位で、 移動角度および移動距離を測定することにより位置検出 を行う。一方、静止状態(Yesの方向)では、次にま ばたきをしたかどうかを検出する。まばたきをした状態 (Yesの方向)は、その位置にあるコマンドを実行す る(35), (36)。一方、まばたきをしなかった場 合(Noの方向)は、再度、視線位置、注視時間、瞳孔 径、移動速度および移動距離を測定する。マウス機能と キーボード機能の両者を視線で代替する場合は、使用者 の校正は1回のみとする。

【0050】このような構造になっているから、指を使 わず、実施例1の場合より直接文字や数字が入力できる という点で、コンピュータでできる作業内容が拡大す。 る。その効果としては、指を触れずに現在のコンピュー 夕操作と同等の作業が行え、使用者のユーザインタフェ ースの負担が少ないことが挙げられる。

【0051】 (実施例3) 図8は本発明の第3の実施例 を説明する図であって、1Aは入力手段のうちのキーボ ード、2は入力処理および表示制御手段、3は情報処理 手段、4は表示手段、5は視線情報検出手段である。キ ーポード1Aは従来の使い方と同様で、指による入力と し、マウスの機能のみ視線により代替する。このような 構造になっているから、従来のコンピュータ作業におけ るマウス機能を視線で代替することにより、キーボード とマウスという従来使われていた2種類の入力装置から 指先からはキーボード入力のみ、あとの入力は視線によ り入力というように、指先を用いた入力装置を1種類に できる。その効果としては、入力端末の簡素化、ユーザ の入力端末使用に関する煩雑さからの開放がある。

【0052】〔実施例4〕図9は、本発明の第4の実施 例を説明する図であって、1 Bは入力手段のうちのマウ ス、2~4、6は図1の実施例と同じである。マウス1 Bは従来の使い方と同様で、指による入力とし、キーボ ードの機能のみ音声により代替する。このような構造に ボード機能を音声で代替することにより、キーボードと マウスという従来使われていた2種類の入力装置から指 先からはマウス入力のみ、あとの入力は音声による入力 というように、指先を用いた入力装置を1種類にでき る。その効果としては、入力端末の簡素化、ユーザの入 力端末使用に関する煩雑さからの開放などがある。

11

【0053】音声入力用にあらかじめ用意されているコ マンドとしては、ファイル管理に必要な「複製」、「削 除」、「名前変更」といったコマンドや、ファイル内容 の編集に必要な「入力」、「変換」、「コピー」、「ペ 10 を示すブロック図である。 ースト」, 「消去」, 「置換・検索」といったコマンド がある。これらのコマンドについては、音声で発声する とコマンドを実行できる。

【0054】音声入力による文字や数字の入力には、

「入力」コマンドを用いる。「入力」コマンドが実行さ れると、続いて発声されるものが数字あるいは文字入力 とみなされ、最も近い文字や数字に変換される。また、 ユーザがよく使う文字やコマンドについては、ユーザに より単語登録やコマンド登録ができるものとする。

[0055]

【発明の効果】以上説明したように、本発明による情報 入力方法および装置により音声および視線でコンピュー タへの入力が可能であるから、コンピュータのユーザイ ンタフェースがより容易になり、入力端末の簡易化が図 られ、例えば指に障害を持つ人や病気等で寝たきりの人 でもキーボードやマウスの操作なしにコンピュータの操 作が可能になるという利点がある。

【0056】また、本発明では、視線情報と音声情報の 両方を併用しているので、視線情報だけによる入力で は、あちこち移動して場所を示すのは有効であるが、文 30 字、数字などの連続入力の際には、疲労がたまるという 欠点と、音声情報だけによる入力では、文字や数字の連 続入力には有効であるが、場所を細かく示すのに不便、 というそれぞれの欠点を相補うことができる。

【0057】また、音声による入力だけでは場所を細か く示すのには不便であるため、任意の図形の描画は難し

かったが、視線入力を併用することにより、容易に図形 描画ができる。

【0058】さらに、視線入力だけでは、文字や数字を 画面上のキーボードから入力する際に細かい場所の移動 を繰返すことによる疲労が考えられるが、文字や数字の 入力の際に音声入力を併用することによって疲労を軽減 できるという効果を奏する。

【図面の簡単な説明】

【図1】本発明にかかる情報入力装置の一実施例の構成

【図2】図1の実施例で用いる画面上に表示される音声 および視線入力用の起動アイコンおよび終了アイコンの 一例を示すイメージ図である。

【図3】本発明にかかる情報入力方法の一実施例を説明 するためのフローチャートである。

【図4】本発明にかかる情報入力方法の一実施例を説明 するためのフローチャートである。

【図5】本発明にかかる情報入力方法の一実施例を説明 するためのフローチャートである。

20 【図6】本発明において画面上からキーボード入力を行 う際のキーボード表示のイメージ図である。

【図7】本発明にかかる情報入力方法の他の実施例を説 明するためのフローチャートである

【図8】本発明にかかる情報入力装置の他の実施例の構 成を示すブロック図である。

【図9】本発明にかかる情報入力装置のさらに他の実施 例の構成を示すブロック図である。

【図10】従来のコンピュータの構成例を示したブロッ ク図である。

【符号の説明】

- 入力手段
- 2 入力処理および表示制御手段
- 3 情報処理手段
- 4 表示手段
- 5 視線情報検出手段
- 情報処理手段

【図1】

[図2]

音声入力起動アイコン 古古 视纹 യ

[図3]

("")

| (図5) | B | (17) | (20) | (21) | 中立状態 | (21) | (

[図6]

(a) キーボード入力未使用時の状態

(b) キーボード入力使用時の状態 (キーボード上に視線があることをボインタが表示)

Same

【図7】

