

APPROACHES TO CONVERT 220V AC TO 24V DC

- Using a 220V AC → 24V DC (2A) Adapter
 - o Pros:
 - Simple , requires only connecting
 - Stable 24V DC output
 - Compact and space-saving
 - o Cons:
 - Internal settings (protection/limits) cannot be adjusted
 - Expensive
 - Not customizable

- Using a Transformer + Filtering Circuit
 - o Pros:
 - Fully customizable design, adjusted to use with any load
 - Can be lower cost depending on design
 - o Cons:
 - Requires more complex wiring
 - Must include safety margin to ensure output stays near 24V

IDEA BEHIND THE DESIGN

- Following the second approach, I built a fully customizable AC to DC converter, with load control using a 5V signal. The design includes isolation to protect components from common issues such as:
 - Voltage spikes from the AC source
 - Inductive spikes caused by switching
- In the next sections, each part of the circuit will be discussed in detail, including its working principle and relevant calculations.

STEPPING DOWN

[1] A step down transformer

- Designed with a primary/secondary inductance ratio of **148**
- Based on $({^{v_p}/_{v_s}} = \sqrt{\frac{Lp}{L_s}})$
- Steps 220V AC down to ~18.08V AC_25.57Vmax_, accounting for voltage drops

[2] Zener diodes

- Added to suppress voltage spikes
- Limit the input voltage to **220V max**

FILTERING

[3] Full bridge rectifier

- rectifies the signal
- more efficient than HWR in filtering (higher Vdc and frequency)

$$-V_m = v_{sec} - 1.4(loss\ in\ diodes) = 24.17V$$

[4] Capacitor

- The higher the capacity the better the filtering based on

$$v_{ripple} = \frac{v_m}{F*c*R}$$

- 30000 uf would result in maximum ripple of 0.33 without accounting for the load resistance (12 ohm -> 0.0277 ripple)

LOAD CONTROL

[5] MOSFET

- Acts as the high-side
 - Off when V_G = V_S
 - On when V_G is pulled low switch for the motor:

[6] Transistor

- Level-shifts the 5 V logic to drive the MOSFET gate:
 - Q2 only conducts when V_IN > V_BE (~0.7 V), so small noise spikes won't turn it on
 - When 5 V is present, Q2 saturates and pulls the gate to 0 V
 - When 5 V is absent, Q2 is off and R2 (10 kΩ) pulls the gate up to 24 V
- The V_BE threshold provides inherent noise immunity; for even stricter
 "5 V only" switching you can add a diode or small cap on the base to sharpen the turn-on edge

LOAD PROTECTION

[7] Fuse

- Protects the motor against currents above 2A

[8] Diode

 a parallel diode to protect the load against inductive spikes when turning on and off

COMPONENTS LIST

- [1] A step down transformer https://makerselectronics.com/product/transformer-220v-18v-0-18v-2a/
- [2] Zener diodes https://eu.mouser.com/ProductDetail/Vishay-Semiconductors/BZT03C220-TR?qs=ylvl1B2wDi5PnCFRlEdTug%3D%3D
- [3] Bridge Rectifier https://makerselectronics.com/product/kbp310-bridge-rectifier-single-phase-3a-1000v-kbp-3/
- [4] Capacitor https://makerselectronics.com/product/capacitor-10000uf-25v/,

 https://makerselectronics.com/?s=Capacitor+10000uF&post_type=product&type_aws=true_higher voltage reating_">https://makerselectronics.com/?s=Capacitor+10000uF&post_type=product&type_aws=true_higher voltage reating_">https://makerselectronics.com/?s=Capacitor+10000uF&post_type=product&type_aws=true_higher voltage reating_">https://makerselectronics.com/?s=Capacitor+10000uF&post_type=product&type_aws=true_higher voltage reating_higher_h
- [5] MOSFET https://makerselectronics.com/product/irf5305-p-channel-power-mosfet/
- [6] Transistor https://makerselectronics.com/product/2n2222-npn-bipolar-transistor-to-92/?srsltid=AfmBOorky8ROlIQvZzZKDBB-F59rn8hUrCcQOKfq-K9LY0OpdQEr32jk
- [7] FUSE https://makerselectronics.com/?s=FUSE&post_type=product&type_aws=true