Lecture 9 ()

1 Iterative Deepening A* (IDA*)

Limit value of f and perform A^* interatively increasing the value of f.

2 Weighted A*

A* but $f'(n) = g(n) + w \times h(n)$, this might lead to $w \times h(n)$ not being admissible.

3 Anytime Search

Weighted A^* but decrease w in each iteration of the algo finding better solutions with time.

4 Admissible Heuristics

Problem relaxation - ignore rules, increase possibilities and assumes a super-graph of actual state space.

5 Effective Branching Factor

- 1. Let A^* generate N nodes before finding solution at depth d
- 2. Then, effective branching factor is $b^* = \sqrt[d]{N}$
- 3. This is used to determine the efficiency of the heuristic

6 Combining Heuristic

- 1. h_2 dominates h_1 if both are admissible and $h_2 > h_1$ for all nodes
- 2. Dominating heuristics perform better or same as non-dominating heuristics
- 3. Thus, we can take max of a set of heuristics to get a better performing algorithm
- 4. Heuristic functions form a lattice