Dérivabilité (fonctions de classe C^1)

www.eleves.ens.fr/home/yhuang

17.1Vrai ou faux

- 1) Il existe fonction $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^1 telle que $f' = f \circ f$. (IMC 2002)

- 2) Si $f:[0,1] \to [0,1]$ dérivable telle que $f \circ f = f$, alors f est constante ou $f = Id_{[0,1]}$. 3) Si $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^1 telle que $f^2 + (1+f')^2 \leq 1$, alors f = 0. (X 2006) 4) Si $f: \mathbb{R} \to \mathbb{R}$ dérivable telle que $\lim_{x \to \infty} f'(x) = l$, alors $\lim_{x \to \infty} \frac{f(x)}{x} = l$. A-t-on la réciproque?

17.2 Théorème de Rolle

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . Montrer que s'il existe un couple $(a,b) \in \mathbb{R}^2$ tel que $\ln(\frac{f(a)}{f(b)}) = b - a$, alors il existe $c \in]a, b[$ tel que f'(c) = f(c).

Généraliser cette question au cas d'une fonction de classe C^{n+1} .

Fonctions usuelles revisitées (IMC 1994)

Soit $f \in \mathcal{C}^1$] a,b[telle que $\lim_{x \to a+} = -\infty$, $\lim_{x \to b-} = +\infty$ et $f' + f^2 \ge -1$. Montrer que $b - a \ge \pi$. Trouver un exemple de $b - a = \pi$.

On pourra commencer par calculer la dérivée de la fonction $x \mapsto \arctan(f(x)) + x$.

17.4 Un bon exo (IMC 2002)

On va montrer qu'il n'existe pas de fonction $f:[0,1] \to [0,1]$ de classe \mathcal{C}^1 telle que pour tout $y \in [0,1]$ l'équation f(x) = y admet une infinité de solutions.

- 1) On fixe un $y_0 \in [0,1]$. Montrer que l'ensemble des solutions de $f(x) = y_0$ admet un point d'accumulation x_0 .
- 2) Montrer que la dérivée de f en ce point est nulle.
- 3) Montrer que pour tout $\epsilon > 0$, il existe un intervalle ouvert I_{x_0} contenant x_0 tel que $\forall x \in I_{x_0}$,
- 4) Montrer que la longueur de l'intervalle $f(I_{x_0})$ est plus petite que ϵI_{x_0} .
- 5) Montrer que $[0,1] \subset \bigcup I_x$.
- 6*) Montrer qu'on peut recouvrir [0,1] par une sous-famille de $(I_x)_{x\in[0,1]}$ d'intervalles deux à deux disjoints. Conclure.

17.5 Courbe de Peano

Il existe une fonction $f:[0,1]\to[0,1]$ de classe \mathcal{C}^0 telle que pour tout $y\in[0,1]$ l'équation f(x)=yadmet une infinité de solutions. cf. par exemple Wikipédia.

17.6 Théorème de Liouville

Soit α une racine réelle d'un polynôme P à coefficients entiers de degré d>1 <u>irréductible</u>. Le théorème de Liouville affirme qu'on peut trouver une constante réelle c>0 telle que pour tout nombre rationnel $\frac{p}{q}$ $((p,q) \in \mathbb{Z} \times \mathbb{N}^*)$, on a $|\alpha - \frac{p}{q}| \ge \frac{c}{q^d}$.

- I) Soit $d \in \mathbb{Z}$ non carré. Alors \sqrt{d} est racine de $P(X) = X^2 d$ et ce dernier est irréductible et P'(X) = 2X. Soit $\frac{p}{q} \in \mathbb{Z} \times \mathbb{N}^*$.
- 1) Montrer que si $|\sqrt{d} \frac{p}{q}| > 1$ alors tout c > 1 convient. 2) Supposons que $|\sqrt{d} \frac{p}{q}| \le 1$. Montrer que $|\sqrt{d} \frac{p}{q}| \ge \frac{1}{\max(|2(\alpha 1)|, |2(\alpha + 1)|)} |P(\alpha) P(\frac{p}{q})|$.
- 3) Conclure.
- II) On revient au cas général. Adopter la preuve précédente (en remarquant que $q^d P(\frac{p}{q})$ est un entier non nul) pour démontrer le théorème de Liouville.