Solutions to A Course in Enumeration

Yunwei Ren

Contents

1	Fundamental Coefficients			
	1.1	Elementary Counting Principles	2	

1 Fundamental Coefficients

1.1 Elementary Counting Principles

2.

Solution. We compute $N = \#\{(i, j, k) \in \mathbb{N}^3 \mid i+j+k=151, \max\{i, j, k\} \le 75\}$. For fixed $1 \le i \le 75$, j can be chosen between 76 - i and 75. Thus,

$$N = \sum_{i=1}^{75} \sum_{j=76-i}^{75} 1 = \sum_{i=1}^{75} i = 2850.$$

3.

Proof. The number of subsets of $\{1, \ldots, n+1\}$ is 2^{n+1} . Classify these subsets according the biggest elements in them. The number of subsets whose biggest elements are k equals to the number of subsets of $\{1, \ldots, k\}$ containing k, that is, 2^{k-1} . Thus,

$$2^{n+1} = 1 + \sum_{k=1}^{n+1} 2^{k-1} \quad \Rightarrow \quad 2^{n+1} - 1 = \sum_{k=0}^{n} 2^k.$$

Similarly, we may classify these subsets according to the biggest two elements. Then

$$2^{n+1} - 1 - (n+1) = \sum_{i=1}^{n} \sum_{j=i+1}^{n+1} 2^{i-1} = \sum_{i=1}^{n} 2^{i-1} (n-i+1) = \sum_{i=1}^{n} 2^{i-1} (n-i) + 2^{n} - 1.$$

Thus,
$$\sum_{k=1}^{n} (n-k)2^{k-1} = 2^n - n - 1$$
.

5.

Proof. We count the number N of triples in $\{1, \ldots, n+1\}$. By definition, $N = \binom{n+1}{3}$. Let S_k be the collection of triples the last elements of which are k. Then $|S_k| = \binom{k-1}{2}$. Thus

$$\binom{n+1}{3} = \sum_{k=3}^{n+1} \binom{k-1}{2} = \sum_{k=2}^{n} \binom{k}{2} = \sum_{k=1}^{n} \binom{k}{2}.$$

8.

Proof. Let E be valid k-subset. If $1 \in E$, then we need to choose k-1 numbers from $3, \ldots, n$ so that no pair of consecutive integers exists. The number of possible choices is f(n-2,k-1). If $1 \notin E$, then we need to choose k numbers from $2, \ldots, n$ such that no pair of consecutive integers exists. The number of possible choices is f(n-1,k). Hence, we obtain the recurrence relation

$$f(n,k) = f(n-2, k-1) + f(n-1, k).$$

Now we argue by induction on n. Clear that f(n,0) = 1 for all n, f(2,1) = 2 and f(n,k) = 0 for all n < 2k-1, all satisfying $f(n,k) = \binom{n-k+1}{k}$. Assume that for all m < n, $f(m,k) = \binom{m-k+1}{k}$ holds. Thus,

$$f(n,k) = f(n-2,k-1) + f(n-1,k) = \binom{n-k}{k-1} + \binom{n-k}{k} = \binom{n-k+1}{k}.$$

Let s(n) denote $\sum_{k=0}^{n} f(n,k)$. Then

$$s(n-1) + s(n-2) = f(n-1,0) + \sum_{k=1}^{n-1} f(n-1,k) + \sum_{k=1}^{n-1} f(n-2,k-1)$$

$$= 1 + \sum_{k=1}^{n-1} \{ f(n-1,k) + f(n-2,k-1) \}$$

$$= f(n,0) + \sum_{k=1}^{n-1} f(n,k) = \sum_{k=0}^{n-1} f(n,k) = s(n).$$

This recurrence relation, together with the fact s(1) = 2 and s(2) = 3, imply that $s(n) = F_{n+2}$.

11.

Proof. We argue by contradiction. Let $S_p = \{p + 9k \mid p + 9k \leq 100, p = 0, 1, \dots\}$, $p = 1, \dots, 9$. Clear that $\{S_p\}$ partitions $\{1, \dots, 100\}$; $|S_1| = 12$ and $|S_p| = 11$ for $p = 2, \dots, 9$. If A does not contain two numbers with difference P. Then for each P, no consecutive elements of P can belong to P, which implies that $|S_p \cap A| \leq 6$. Hence, $|A| = \sum_{p=1}^9 |S_p \cap A| \leq 54$. Contradiction. Thus, P must contain two numbers with difference P.

For the case |A| = 54, this is not true. For a counterexample, put

$$A = \bigcup_{p=1}^{9} \{ p + 9k \mid p + 9k \le 100, k = 1, 3, 5, \dots \}.$$