Critical Chain Scheduling

PMI-SVC Scheduling Forum - 2 February 2010

Dohn Kissinger PMP, PMI-SP, MCTS, MCITP Profit Solutions

Critical Path Method (CPM)

- A network analysis technique used to predict the project duration by determining the longest sequence of tasks.
- The longest sequence of tasks is called the Critical Path.
- Tasks on the Critical Path are called Critical Tasks (not necessarily the most important tasks).

Critical Path Method (CPM) example

Critical Path Method (CPM) example

Critical Chain scheduling

- A technique that allows variability in the task durations.
- Tasks are usually estimated as optimistic, most likely, and pessimistic durations.
- The difference between the pessimistic and most likely durations is used to calculate a project buffer.
- The longest sequence of most likely task durations plus the project buffer gives the project duration.

Critical Chain scheduling example

<u>Phase</u>	<u>Opt</u>	Most <u>Likely</u> (weeks)	Pess
Project definition	3	5	10
System analysis	3	5	10
System design	3	5	10
System construction	3	5	10
System installation	<u>3</u>	<u>5</u>	<u>10</u>
	15	25	50

How should we schedule this project?

Critical Chain scheduling - buffer calculation

 In the Critical Chain technique, the most likely durations are used for the project schedule, plus a project buffer which can be approximated as:

Project buffer = $\frac{1}{2}$ (Σ Pessimistic – Σ Most Likely)

Critical Chain scheduling - buffer calculation

```
Project buffer = \frac{1}{2} (\Sigma Pessimistic – \Sigma Most Likely)
= \frac{1}{2} (50 – 25) = 12.5 weeks
Project length = \Sigma Most Likely + Project buffer
```

= 25 + 12.5 = 37.5 weeks

Project buffers

- The project buffer (contingency) is always placed at the end of the project schedule to provide maximum protection for the project end date.
- The best way to determine the project buffer is to calculate it using the task table with 3 durations.
 However, an approximate value of the project buffer for many projects is 50% of the Critical Path length.

Critical Chain scheduling example

<u>Phase</u>

Actuals (weeks)

Project definition

System analysis

System design

System construction

System installation

Critical Chain scheduling example (con't)

≤ 25 weeks

> 25 and < 37.5 wks

> 37.5 weeks

Project schedule with project buffer

Problem: Resource contention may extend the project duration.

Solution:

1. We should focus on the Critical Chain rather than the Critical Path.

Definitions:

Critical Path: Generally, but not always, the sequence of schedule activities that determines the duration of the project (PMBOK Guide, Fourth Edition, 2008).

Critical Chain: The sequence of activities and resources that determines the duration of the project.

Why do we have problems with multiple projects?

Task A
Project 1
3 days

A resource has three tasks to do -Task A in Project 1, Task B in Project 2, and Task C in Project 3.

Task B Project 2 3 days

Task C Project 3 3 days

Single tasking takes less time

Task A
Project 1
3 days

Task B Project 2 3 days

Task C Project 3 3 days If a resource does Task A, then Task B, then Task C - Task A will take 3 days to complete, Task B 6 days, and Task C 9 days, for an average of 6 days.

Task A Project 1 3 days

Task B
Project 2
3 days

Task C Project 3 3 days

Multitasking takes longer

Task A
Project 1
3 days

Task B Project 2 3 days

Task C Project 3 3 days However, if the resource multitasks by doing one day of each task at a time, then Task A takes 7 days, Task B 8 days, and Task C 9 days, for an average of 8 days, 33% longer time!

Usually it is even worse

Task A
Project 1
3 days

Usually, there is setup time associated with re-starting a task, so the average time with multitasking is even longer!

Task B Project 2 3 days

Task C Project 3 3 days

Multitasking increases duration of all projects

Sequencing projects reduces total duration

Scheduling projects with Critical Chain

- 1. We should have the resources do a three point estimate for their tasks.
- 2. We should schedule tasks by using the most likely times.
- 3. We should add a project buffer to protect the project end date from uncertainties in the project tasks.
- 4. We should focus on the Critical Chain rather than the Critical Path.
- 5. We should minimize multitasking by sequencing our projects.
- 6. We should protect the pacing/drum resource from interruptions to maximize the number of projects performed in our organization.

For further information, contact Dohn Kissinger

rdkissinger@att.net (916) 939-3801 (800) 9-PROFIT