jest $f(x) = x^4 - 2x^2$ oraz $f'(x) = 4x^3 - 4x$, więc równanie stycznej przyjmie postać

$$y - (x_0^4 - 2x_0^2) = (4x_0^3 - 4x_0)(x - x_0). (16)$$

Punkt P(1,-1) leży na tej stycznej, więc niewiadoma x_0 spełnia równanie $-1+2x_0^2-x_0^4=4x_0(x_0^2-1)(1-x_0)$. Po wyłączeniu wspólnych czynników i uporządkowaniu dostajemy $(x_0^2-1)(x_0-1)(3x_0-1)=0$. Równanie (16) ma więc trzy pierwiastki -1, 1 oraz $\frac{1}{3}$.

Po podstawieniu do równania (16) pierwiastków $x_0 = -1$ i $x_0 = 1$ otrzymujemy tę samą prostą p: y+1=0. Prosta ta jest więc styczna do wykresu f równocześnie w punktach P(-1,1) oraz Q(-1,-1). Ponieważ $f(x) = x^4 - 2x^2 \ge -1$ (inaczej $(x^2 - 1)^2 \ge 0$) dla wszystkich x i równość ma miejsce jedynie dla x = -1 i x = 1, więc styczna p ma dwa punkty wspólne z wykresem f.

Dla $x_0=\frac{1}{3}$ równanie (16) przyjmuje postać l:32x+27y-5=0. W celu określenia liczby punktów wspólnych stycznej l z wykresem f należy określić liczbę różnych pierwiastków równania $x^4-2x^2=\frac{5-32x}{27}$, tj. równania $27x^4-54x^2+32x-5=0$. Ze względu na styczność w punkcie $x_0=\frac{1}{3}$ równanie to ma podwójny pierwiastek $\frac{1}{3}$ oraz pierwiastek 1 (punkt P leży na wykresie f), zatem, jako równanie czwartego stopnia, ma także czwarty pierwiastek rzeczywisty, który obliczamy z równości $x_1x_2x_3x_4=\frac{-5}{27}$, czyli w naszym przypadku $\frac{1}{9}x_4=\frac{-5}{27}$, skąd $x_4=\frac{-5}{3}$. Styczna l ma zatem trzy punkty wspólne z wykresem f: P, $S\left(\frac{1}{3},-\frac{17}{81}\right)$ oraz $A\left(-\frac{5}{3},\frac{175}{81}\right)$. W punkcie A styczna l przecina wykres f. Dla sporządzenia rysunku zauważmy, że f(x) jest funkcją parzystą. Liczba x=0 jest pierwiastkiem podwójnym równania $x^4-2x^2=0$, co oznacza, że wykres f jest styczny do osi odciętych w początku układu. Pozostałe miejsca zerowe funkcji to $-\sqrt{2}$ i $\sqrt{2}$. Kreśląc styczne y=0, l oraz p i zaznaczając punkty styczności oraz punkty $(\sqrt{2},0)$, $B\left(\frac{5}{3},\frac{175}{81}\right)$, możemy narysować wykres funkcji na $(0,\infty)$, a przez odbicie symetryczne także w $(-\infty,0)$. Wykres przedstawiono na rysunku 33.