TD4 : Théorèmes de convergence et calcul d'intégrales

Exercice 1. [Début en douceur] Soit (E, \mathcal{E}, μ) un espace mesuré.

- 1. Grâce au théorème de convergence monotone, montrer que si (f_n) est une suite de fonctions mesurables positives, on a $\sum_{n\in\mathbb{N}} \int f_n d\mu = \int_E \sum_{n\in\mathbb{N}} f_n d\mu$.
- 2. Grâce au théorème de convergence dominé, montrer que si (f_n) est une suite de fonctions mesurables, on a

$$\sum_{n\in\mathbb{N}}\int |f_n|\mathrm{d}\mu < \infty \quad \Rightarrow \quad \sum_{n\in\mathbb{N}}\int f_n\mathrm{d}\mu = \int_E \sum_{n\in\mathbb{N}} f_n\mathrm{d}\mu.$$

3. Calculer les intégrales $\int_0^1 \frac{\ln x}{1-x^2} dx$ et $\int_0^\infty \frac{\sin(ax)}{e^x-1} dx$.

Exercice 2. Soit (E, \mathcal{A}, μ) un espace mesuré. Soit $(f_n)_{n\geq 1}$ une suite de fonctions mesurables telle que $f_n \to f$ μ -p.p. On suppose que $\sup_{n\geq 1} \int_E |f_n| \mathrm{d}\mu < \infty$. Montrer que f est intégrable.

Exercice 3. [Théorème d'Egoroff] Soit (E, \mathcal{A}, μ) un espace mesuré tel que $\mu(E) < \infty$. Soit $(f_n)_n$ une suite de fonctions de (E, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ telles que $f_n \to f$ μ -p.p. quand $n \to \infty$.

1. Montrer que pour tout $k \ge 1$ et tout $\eta > 0$ il existe $n \ge 1$ tel que

$$\mu\Big(\bigcup_{j\geq n} \{x \in E : |f_j(x) - f(x)| > \frac{1}{k}\}\Big) \leq \eta.$$

- 2. En déduire que pour tout $\epsilon > 0$, il existe $A \in \mathcal{A}$ tel que $\mu(A) \leq \epsilon$ et $f_n \to f$ uniformément sur $E \setminus A$.
- 3. Que se passe-t-il lorsque $\mu(E) = \infty$?

Exercice 4. [Fonction Γ] Soit Γ la fonction définie par $t \in (0, +\infty) \mapsto \int_0^\infty x^{t-1} e^{-x} dx$. Grâces aux fonctions définies par $f_n : x \in (0, +\infty) \mapsto \mathbb{1}_{\{(0,n)\}}(x) \left(1 - \frac{x}{n}\right)^n x^{t-1}$, montrer la formule d'Euler : pour tout t > 0, $\Gamma(t) = \lim_{n \to \infty} \frac{n^t n!}{t(t+1)\cdots(t+n)}$.

Exercice 5. [Ensemble de Cantor] Soit $(d_n, n \ge 0)$ une suite d'éléments de]0,1[et soit $K_0 := [0,1]$. On définit une suite $(K_n, n \ge 0)$ de la façon suivante : connaissant K_n , qui est une réunion d'intervalles fermés disjoints, on définit K_{n+1} en retirant de chacun des intervalles de K_n un intervalle ouvert centré au centre de l'intervalle en question et de longueur d_n fois celle de l'intervalle. On pose $K := \bigcap_{n \ge 0} K_n$.

- 1. Montrer que K est un compact non dénombrable d'intérieur vide dont tous les points sont d'accumulation.
- 2. Calculer la mesure de Lebesgue de K.

Exercice 6. [Mesure atomique] Soit (X, \mathcal{F}, μ) un espace mesuré. Un ensemble $A \in \mathcal{F}$ est un atome pour μ si $0 < \mu(A) < \infty$ et pour tout $B \subset A$ mesurable, on a $\mu(B) = 0$ ou $\mu(B) = \mu(A)$.

- 1. Donner un exemple de mesure possédant des atomes.
- 2. Montrer que la mesure de Lebesgue n'a pas d'atomes.
- 3. Donner un exemple de mesure possédant des atomes qui ne sont pas des singletons.

Une mesure est appelée purement atomique s'il existe une collection \mathcal{C} d'atomes de μ telle que pour tout $A \in \mathcal{F}$, on a $\mu(A) = \sum_{C \in \mathcal{C}} \mu(A \cap C)$.

4. Montrer qu'une mesure sur un ensemble dénombrable muni de la tribu des parties est purement atomique.

Une mesure est appelée diffuse si elle n'a pas d'atome.

- 5. (*) Montrer que si μ est diffuse et que $\mu(X) = 1$, alors l'image de \mathcal{F} par μ est [0,1]. On pourra commencer par montrer que si $\mu(A) > 0$, il existe $B \subset A$ mesurable tel que $\mu(A)/3 \le \mu(B) \le 2\mu(A)/3$.
- 6. Nous allons maintenant montrer que toute mesure finie se décompose en une mesure atomique et une mesure diffuse. On suppose $\mu(X) < \infty$.
 - (a) Si A et B sont deux atomes de μ , on pose $A \equiv B$ si $\mu(A \cap B) = \mu(A)$. Montrer que \equiv est une relation d'équivalence sur l'ensemble des atomes de μ .
 - (b) Montrer que si A et B sont deux atomes dans des classes d'équivalences différentes, alors $\mu(A \cap B) = 0$.
 - (c) Soit $(C_i)_{i \in I}$ une collection d'atomes contenant exactement un représentant de chaque classe d'équivalence pour \equiv . Montrer que la mesure définie par

$$\nu(A) = \sum_{i \in I} \mu(A \cap C_i),$$

est une mesure purement atomique, et que $\mu = \nu + \rho$ avec ρ une mesure sans atomes.

Exercice 7. [Escalier du diable] On considère $(F_n)_{n\geq 0}$ la suite de fonctions continues de [0,1] dans [0,1] définie par :

- Pour $x \in [0,1], F_0(x) = x$;
- La fonction F_1 est la fonction qui envoie $0, \frac{1}{3}, \frac{2}{3}, 1$ sur $0, \frac{1}{2}, \frac{1}{2}, 1$ respectivement, et qui est affine entre chacun de ces points;
- De même on passe de F_n à F_{n+1} en remplaçant F_n sur chacun des intervalles maximaux [a,b] où elle est affine par la fonction qui envoie a, (2a+b)/3, (a+2b)/3, b sur F(a), (F(a)+F(b))/2, (F(a)+F(b))/2, F(b) respectivement et qui est affine entre chacun de ces points.
- 1. Montrer que la suite de fonctions $(F_n)_{n\geq 0}$ converge uniformément sur [0,1]. On appelle F la limite. Montrer que F est continue sur [0,1] et croît de 0 à 1.
- 2. Montrer que F est dérivable presque partout (par rapport à la mesure de Lebesgue) et que sa dérivée est identiquement nulle.
- 3. Soit μ la mesure de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ dont F est la fonction de répartition. Montrer que μ est à la fois diffuse et portée par un ensemble négligeable pour la mesure de Lebesgue.

Exercice 8. Trouver $A, B \in \mathcal{B}(\mathbb{R})$ tels que $\lambda(A) = \lambda(B) = 0$ mais $A + B = \mathbb{R}$.