Deep Learning Timeline

Deep Learning Timeline

Recurrent Neural Networks

A recurrent neural network (RNN) is a class of artificial neural network where connections between nodes form a directed graph along a sequence

An unrolled recurrent neural network.

Recurrent Neural Networks

```
import torch.nn as nn
class RNN(nn.Module):
    def init (self, input size, hidden size, output size):
        super(RNN, self). init ()
        self.hidden_size = hidden_size
        self.i2h = nn.Linear(input size + hidden size, hidden size
        self.i2o = nn.Linear(input_size + hidden_size, output_size
        self.softmax = nn.LogSoftmax(dim=1)
    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
       output = self.i2o(combined)
        output = self.softmax(output)
       return output, hidden
   def initHidden(self):
        return torch.zeros(1, self.hidden_size)
n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)
```


An unrolled recurrent neural network.

CLASS torch.nn.Linear(in_features, out_features, bias=True)

Applies a linear transformation to the incoming data: $y = xA^T + b$

Parameters

- in_features size of each input sample
- out_features size of each output sample
- . bias If set to False, the layer will not learn an additive bias. Default: True

$$Y_{n \times o} = X_{n \times i} W_{i \times o} + b$$

Recurrent Neural Networks

The Problem of Long-Term Dependencies

Long Short Term Memory networks

The repeating module in an LSTM contains four interacting layers.

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Image caption framework

A large bus sitting next to a very tall building.

Case Study: LSTM for medical image

- 0) a man riding a wave on top of a surfboard. (p=0.036508)
- 1) a person riding a surf board on a wave. (p=0.021727)
- 2) a man riding a wave on a surfboard in the ocean. (p=0.004277)

- 0) a ct showing a acute subdural hemorrhage with midline shift. (p=0.001608)
- 1) a ct showing a acute hemorrhage with left to right midline shift. (p=0.004277)
- 2) a ct showing a subdural hemorrhage with ventricular effacement. (p=0.021727)

- 0) a man riding a skateboard up the side of a ramp . (p=0.008467)
- 1) a man riding a skateboard on a ramp . (p=0.001182)
- 2) a man riding a skateboard up the side of a cement ramp . (p=0.000948)

- 0) a frontotemporal infarction with mild ventricular effacement. (p0.001608)
- 1) a left frontotemporal infarction with mild left ventricular effacement. (p=0.004112)
- 2) a left fronto temporal infarction with ventricular effacement. (p=0.012928)

Feng, Rui, et al. "Deep learning guided stroke management: a review of clinical applications." *Journal of neurointerventional surgery* 10.4 (2018): 358-362.

Deep Learning Timeline

Review: Auto-encoder

Review: Auto-encoder

Problems of VAE

It does not really try to simulate real images

Generative Adversarial Nets

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} V(D,G) = E_{z \sim p_z(z)}[log(1 - D(G(z)))]$$

$$p_g(x) = p_{data}(x)$$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(x^{(i)}\right) + \log\left(1 - D\left(G\left(z^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_q(z)$.
- · Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(z^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

GANs (Goodfellow et al. [2014])

- Given p(x), learn $p_g(x) \approx p(x)$
- A two-player game

The global optima is $p_g(x) = p(x)$.

The Two-player Formulation is Restricted

 G and C may not be optimal at the same time. Here is an example of good C with poor G (Salimans et al. [2016]).

G cannot control the semantics of the generated samples.

Generative Adversarial Nets

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

Conditional Generative Adversarial Nets

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x}|\boldsymbol{y})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z}|\boldsymbol{y})))].$

Figure 2: Generated MNIST digits, each row conditioned on one label

User tags + annotations	Generated tags
montanha, trem, inverno, frio, people, male, plant life, tree, structures, trans- port, car	taxi, passenger, line, transportation, railway station, passengers, railways, signals, rail, rails
food, raspberry, delicious, homemade	chicken, fattening, cooked, peanut, cream, cookie, house made, bread, biscuit, bakes
water, river	creek, lake, along, near, river, rocky, treeline, val- ley, woods, waters
people, portrait, female, baby, indoor	love, people, posing, girl, young, strangers, pretty, women, happy, life

Table 2: Samples of generated tags

Figure: Same y for each row. Same z for each column.

Home work: python + numpy

https://cs231n.github.io/python-numpy-tutorial/