

EPICT, Inc FCC ID: 2AJKJ-EPUS100

RF Exposure Requirement

1.Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

11111 0 1 0 1 1 111 1 2 1 1 1 1 1 1 1 1						
Frequency	Electric Field	Magnetic Field	Power Density	Average Time		
Range (MHz)	Strength(V/m)	Strength (A/m)	(mW/cm2)	(Minutes)		
(A) Limits for Occupational/ Control Exposures						
300-1500	-	-	F/300	6		
1500-100,000	-	-	5	6		
(B) Limits for General Population/ Uncontrolled Exposures						
300-1500	-	-	F/1500	6		
1500-100,000	-	-	1	30		

F= Frequency in MHz

Formula

Transmission formula: Pd = (Pout*G)/(4*pi*r2)

Where

Pd = power density in mW/ cm²
Pout = output power to antenna in mW
G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/ cm^2 . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

2.Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 23°Cand 42% RH.

3.Test Result of RF Exposure Evaluation

Operating mode	Frequency (MHz)	Output Power (dBm)	Output Power (mW)
	2412	12.91	19.54
IEEE 802.11b	2437	12.64	18.37
	2462	12.23	16.71
	2412	10.48	11.17
IEEE 802.11g	2437	9.45	8.81
	2462	9.42	8.75
	2412	7.69	5.88
IEEE 802.11n(HT40)	2437	7.48	5.60
	2462	7.44	5.55

4. MPE Calculation

The Max Conducted Peak Output Power is 19.54mW in lowest channel The Antenna Gain is 3dBi.

For FCC:

According to the formula Pd = (Pout*G)/(4*pi*r2)

(19.54*3)/(4*3.14*400)=0.01167

Frequency Band(MHz)	Maximum RF Power(mW)	Power Density at R = $20 \text{cm}(\text{mW}/\text{cm}^2)$
2412 - 2462	19.54	0.01167

Note

The power density Pd (4th column) at a distance of 20 cm calculated from the transmission formula is far below the limit of 1 mW/ cm^2 .