MTH 101 - Symmetry

Assignment 2

- 1. If $A = \begin{pmatrix} 3 & -1 & -2 \\ 2 & 1 & 1 \\ 1 & -3 & a \end{pmatrix}$. Find all the solutions of AX=0 by row-reducing A.
- 2. **Definition**: Two matrices A, B are said to be row equivalent if B can be obtained from A by a finite sequence of elementary row operations or equivalently, every row vector of one matrix is a linear combination of the row vectors of the other matrix.

Prove that the following two matrices are not row-equivalent:

$$\left(\begin{array}{ccc}
2 & 0 & 0 \\
a & -1 & 0 \\
b & c & 3
\end{array}\right) \quad \left(\begin{array}{ccc}
1 & 1 & 2 \\
-2 & 0 & -1 \\
1 & 3 & 5
\end{array}\right)$$

- 3. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be 2×2 matrices with real entries. Suppose that A is row-reduced and a+b+c+d=0. Prove that there are exactly three such matrices.
- 4. Prove that the interchange of two rows of a matrix can be accomplished by a finite sequence of elementary row operations of the other two types.
- 5. Describe explicitly all 3×3 and 2×3 row-reduced echelon matrices.
- 6. Show that the elementary matrices are invertible and explicitly write down the inverses of the elementary matrices corresponding to the operations $E_{c\mathbf{r}}^{\mathbf{r}}$, $E_{\mathbf{s}}^{\mathbf{r}}$ and $E_{\mathbf{k}+c\mathbf{r}}^{\mathbf{k}}$ (refer to class notes or assignment 1 for the definition of the elementary row operations.)
- 7. Let P be the right inverse of a matrix A and Q be the left inverse of the matrix A. Then prove that P = Q.
- 8. If A and B are invertible matrices with inverses A^{-1} and B^{-1} respectively, show that their product AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
- 9. Show that if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a 2 × 2 matrix with real entries such that $ad bc \neq 0$, then A can be written as product of 4 elementary matrices.
- 10. Let *R* be an $n \times n$ row-reduced matrix in which the i^{th} row vector is a zero vector. Then prove that *R* is not invertible.
- 11. Let C be a row-reduced echelon matrix in which the first pivot element is in coloumn j for j > 1. Prove that C cannot be invertible.
 - * If A and B are row equivalent $m \times n$ matrices, prove that AX = 0 and BX = 0 have exactly the same solution.
 - * Every $m \times n$ matrix is row-equivalent to a row reduced echelon matrix.
 - * **Definition**: A system of linear equations AX = b is said to be homogeneous if b = 0. Prove that if two homogeneous systems of linear equations in two unknowns have the same solutions, then they are equivalent.