FINAL EXAMINATION January 2018

Duration: 120 minutes

SUBJECT: REAL ANALYSIS	
Deputy Head of Dept. of Mathematics:	Lecturer:
Dr. Tran Vinh Linh	Assoc. Prof. Nguyen Ngoc Hai

INSTRUCTIONS: Each student is allowed a scientific calculator and a maximum of two double-sided sheets of reference material (size A4 or similar), stapled together and marked with their name and ID. All other documents and electronic devices are forbidden.

Question 1 (20 marks) Suppose that f is measurable on E and $a, b \in \mathbb{R}$, a < b. Show that the sets

$$A = \{x \in E : a \le f(x) \le b\}$$
 and $B = \{x \in E : a < f(x) \le b\}$

are measurable.

Question 2 (20 marks) Consider the function $g: \mathbb{R} \to \mathbb{R}$ defined by

$$g(x) = \begin{cases} \sin x & \text{if } x \le 1\\ x^2 + e^x & \text{if } x > 1. \end{cases}$$

Show that $g(x) = (\sin x)\chi_{(-\infty,1]}(x) + (x^2 + e^x)\chi_{(1,\infty)}(x)$ and that g is Borel measurable on \mathbb{R} .

Question 3 (20 marks) Let (X, \mathcal{M}, μ) be a measure space and let $f: X \to \mathbb{R}$ be a nonnegative measurable function that takes countably distinct values a_1, a_2, \ldots

- (a) For each $n \in \mathbb{N}$, set $A_n = \{x \in X : f(x) = a_n\}$. Show that $\{A_n\}$ is a sequence of disjoint measurable sets with $\bigcup_{n=1}^{\infty} A_n = X$.
- (b) Show that

$$\int_X f d\mu = \sum_{n=1}^\infty a_n \mu(A_n).$$

----continued on next page-----

Question 4 (20 marks) Let (X, \mathcal{A}, μ) be a measure space and suppose that f, f_n are nonnegative *integrable* measurable functions on X such that

$$\int_X f_n d\mu = \int_X f d\mu \quad \forall n \in \mathbb{N}.$$

(a) Show that for each n,

$$\int_{X} (f - f_n)^{+} d\mu = \int_{X} (f - f_n)^{-} d\mu$$

and

$$\int_{X} |f - f_n| d\mu = 2 \int_{X} (f - f_n)^{+} d\mu.$$

(b) If $f_n \to f$ a.e., show that

$$\int_X |f_n - f| d\mu \to 0 \quad \text{as } n \to \infty.$$

(Hint: Use the Dominated Convergence Theorem.)

Question 5 (20 marks)

(a) For each Lebesgue measurable set E, set

$$\mu(E) = \int_E (x^2 - 1)dx.$$

Find a negative set for the signed measure μ .

(b) Let (X, \mathcal{A}) be a measurable space. Show that for every signed measure ν we have $\nu \ll |\nu|$.

*** END OF QUESTION PAPER ***

SOLUTIONS

Subject: REAL ANALYSIS

January 2018 Duration: 120 minutes

Question 1 We have

$$A = \{x \in E : a \le f(x)\} \cap \{x \in E : f(x) \le b\}$$
$$B = \{x \in E : a < f(x)\} \cap \{x \in E : f(x) \le b\}.$$

Since f is measurable, four sets to the right are measurable. Hence A and B are measurable.

Question 2 (a) If $x \le 1$, then

$$(\sin x)\chi_{(-\infty,1]}(x) + (x^2 + e^x)\chi_{(1,\infty)}(x) = \sin x \cdot 1 + (x^2 + e^x) \cdot 0 = \sin x = g(x);$$

if $x > 1$, then

$$(\sin x)\chi_{(-\infty,1]}(x) + (x^2 + e^x)\chi_{(1,\infty)}(x) = \sin x \cdot 0 + (x^2 + e^x) \cdot 1 = x^2 + e^x = g(x).$$

Thus
$$g(x) = (\sin x)\chi_{(-\infty,1]}(x) + (x^2 + e^x)\chi_{(1,\infty)}(x)$$
.

- (b) The sets $(-\infty, 1]$ and $(1, \infty)$ are Borel measurable, hence their characteristic functions $\chi_{(-\infty,1]}$ and $\chi_{(1,\infty)}$ are Borel measurable. The functions $\sin x$ and $x^2 + e^x$ are continuous on \mathbb{R} , so they are Borel measurable. Therefore $(\sin x)\chi_{(-\infty,1]}(x)$ and $(x^2 + e^x)\chi_{(1,\infty)}(x)$ are Borel measurable and so is g.
- **Question 3** (a) Since f is measurable, each set $A_n = \{x \in X : f(x) = a_n\}$ is measurable. If there were $x \in A_m \cap A_n$ for some $m \neq n$, then we would have $f(x) = a_m = a_n$, a contradiction. Thus $A_m \cap A_n = \emptyset$ for all $m \neq n$.
- If $x \in X$ then $f(x) = a_n$ for some n, so that $X \subset \bigcup_{n=1}^{\infty} A_n$. The in inverse inclusion is obvious. Thus $X = \bigcup_{n=1}^{\infty} A_n$.
- (b) By part (a), X is the disjoint union of A_n 's so we can apply σ -additivity to obtain

$$\int_{X} f d\mu = \sum_{n=1}^{\infty} \int_{A_n} f d\mu = \sum_{n=1}^{\infty} \int_{A_n} a_n d\mu = \sum_{n=1}^{\infty} a_n \mu(A_n).$$

Alternative solution. For each $x \in X$, there is i (depending on x) such that $f(x) = a_i$. Since $x \in A_i$ and $\{A_n\}$ is a disjoint sequence we have $a_i \chi_{A_i}(x) = a_i$ and $a_n \chi_{A_n}(x) = 0$ for $n \neq i$. Thus $f(x) = \sum_{n=1}^{\infty} a_n \chi_{A_n}(x)$ and hence $f = \sum_{n=1}^{\infty} a_n \chi_{A_n}$. As $a_n \chi_{A_n} \geq 0$ for all n,

$$\int_X f d\mu = \int_X \left(\sum_{n=1}^\infty a_n \chi_{A_n}\right) d\mu = \sum_{n=1}^\infty \int_X a_n \chi_{A_n} d\mu = \sum_{n=1}^\infty a_n \mu(A_n).$$

Question 4 (a) Since f, f_n are integrable, they are finite a.e., so $g_n := f - f_n$ is defined a.e. for all n. By assumption,

$$\int_{X} g_{n} d\mu = \int_{X} f d\mu - \int_{X} f_{n} d\mu = 0 = \int_{X} g_{n}^{+} d\mu - \int_{X} g_{n}^{-} d\mu.$$

Hence $\int_X g_n^+ d\mu = \int_X g_n^- d\mu$. It follows that

$$\int_{X} |g_{n}| d\mu = \int_{X} g_{n}^{+} d\mu + \int_{X} g_{n}^{-} d\mu = 2 \int_{X} g_{n}^{+} d\mu.$$

- (b) Since $f_n \to f$ a.e., $g_n^+ \to 0$ a.e. Further, as $f_n \ge 0$, $g_n = f f_n \le f$, implying $0 \le g_n^+ \le f$. By hypothesis f is integrable. Thus, we can apply the DCT to deduce that $\int_X g_n^+ d\mu \to 0$. By part (a), $\int_X |g_n| d\mu = 2 \int_X g_n^+ d\mu \to 0$.
- **Question 5** (a) We have $x^2 1 \le 0$ if and only if $-1 \le x \le 1$. Let A be a (nonempty) Lebesgue measurable subset of [-1,1]. If E is a Lebesgue measurable subset of A, then $f \le 0$ on E, implying $\mu(E) = \int_E (x^2 1) dx \le 0$. Thus A is a negative set for μ .
- (b) Let $\nu = \nu^+ \nu^-$ be the Jordan decomposition of ν . Assume that $|\nu|(E) = 0$. Since ν^+ and ν^- are measures and $|\nu|(E) = \nu^+(E) + \nu^-(E) = 0$, $\nu^+(E) = \nu^-(E) = 0$. Hence $\nu(E) = \nu^+(E) \nu^-(E) = 0$. Therefore $\nu \ll \nu$.