Présentation des protocoles RSAES-OAEP et RSASSA-PSS

M2 MIC - Cryptographie asymétrique

Jérémie Nekam et Daniel Resende

PARIS

DIDEROT

Mardi 24 octobre 2017

Introduction

- Introduction
- 2 RSAES-OAEP
 - OAEP
 - Génération des clés RAES-OAEP
 - Utilisation d'OAFP avec RSA
 - Chiffrement/déchiffrement de RAES-OAEP
 - Sécurité du protocole

- Introduction
- 2 RSAES-OAEP
 - OAEP
 - Génération des clés RAFS-OAFP
 - Utilisation d'OAFP avec RSA
 - Chiffrement/déchiffrement de RAES-OAEP
 - Sécurité du protocole
- RSASSA-PSS
 - PSS
 - Utilisation de PSS avec RSA
 - Sécurité du protocole

- Introduction
- 2 RSAES-OAEP
 - OAEP
 - Génération des clés RAES-OAEP
 - Utilisation d'OAEP avec RSA
 - Chiffrement/déchiffrement de RAES-OAEP
 - Sécurité du protocole
- RSASSA-PSS
 - PSS
 - Utilisation de PSS avec RSA
 - Sécurité du protocole
- 4 Conclusion/Recommandation

- Introduction
- 2 RSAES-OAEP
- RSASSA-PSS
- 4 Conclusion/Recommandation

Introduction

Deux protocoles pour deux utilisations différentes :

Introduction

Deux protocoles pour deux utilisations différentes :

RSAES-OAEP Protocole de chiffrement/déchiffrement

Introduction

Deux protocoles pour deux utilisations différentes : RSAES-OAEP Protocole de chiffrement/déchiffrement RSASSA-PSS Protocole de signature

- Introduction
- 2 RSAES-OAEP
 - OAEP
 - Génération des clés RAES-OAEP
 - Utilisation d'OAEP avec RSA
 - Chiffrement/déchiffrement de RAES-OAEP
 - Sécurité du protocole
- 3 RSASSA-PSS
- 4 Conclusion/Recommandation

Le protocole RSAES-OAEP se décompose en deux parties :

- EM-OAEP
- RSAEP (resp. RSADP) pour le chiffrement (resp. déchiffrement)

Pourquoi utiliser OAEP?

D. Bleichembacher a trouvé une attaque CCA-2 sur le protocole suivant :

Definition (PKCS 1 v1)

Soit M le message à chiffrer. On note $EB = 00 \parallel 02 \parallel Padding \parallel 00 \parallel M$

Le schéma OAEP standard

Algorithme 1 Schéma OAEP

Require: Un message m, un aléa r et deux oracles G et H.

Ensure: Un message m' tel que $m' = s \parallel t$.

Figure - OAEP

Génération des clés RAES-OAEP

Clés publiques

On garde les mêmes clés (n,e) avec les mêmes propriétés que le RSA classique.

Clés privées

- soit (p, q, d) tel que $e \cdot d = 1 \mod (ppcm(p-1, q-1))$,
- soit (p,q,dP,dQ,qInv) où $q\cdot qInv=1$ mod p, $e\cdot dP=1$ mod q et $e\cdot dP=1$ mod q.

Le schéma EM-OAEP

Algorithme 2 Schéma EM-OAEP

Require: Un message m, un aléa seed et Hash des données spécifiant la fonction

de hachage à utiliser **Ensure:** Un message EM.

Figure - EM-OAEP

Chiffrement/déchiffrement de RAES-OAEP

RSAEP - Chiffrement

On garde les mêmes paramètres et propriétés que le RSA classique.

Algorithme 3 RSADP - Déchiffrement

```
Require: Un message chiffré c et une clé privé K = (n, p, q, d) ou
  (p, q, dP, dQ, qInv).
Ensure: Un message clair m
  if c n'est pas une entrée valide then
    return ERREUR
  end if
  if K = (n, p, q, d) then
    return m = c^d \mod n
  end if
  m_1 = c^{dP} \mod p
  m_2 = c^{dQ} \mod q
  h = (m_1 - m_2) \cdot qInv \ modp
  return m = m_2 + q \cdot h
```

Sécurité du protocole

Definition (Sécurité sémantique)

Soit m_0, m_1 deux messages choisies par l'attaquant. Soit c un challenge qui est le chiffré de m_0 ou m_1 . On dit qu'un protocole est sémantiquement sûr si l'attaquant ne peut pas distinguer m_0 ou m_1 .

Attaque de Shoup

Proposition

Le protocole f-OAEP n'est pas totalement sémantiquement sûr.

Idées de preuve pour l'attaque de Shoup

Definition (Xor-malléable)

Soit f une permutation à sens unique avec trappe. On dit que f est xor-malléable, si on a une probabilité non-négligeable de pouvoir calculer $f(t\oplus a)$ en connaissant f(t) et a.

Soient c un chalenge, H un oracle aléatoire et f telle que $f(s \parallel t) = s \parallel f(t)$ une fonction xor-maléable.

- **1** On pose $c = f(s \parallel t) = s \parallel f(t)$.
- f 2 On choisi aléatoirement s' et on calcul $a=H(s)\oplus H(s')$

- Introduction
- 2 RSAES-OAEP
- RSASSA-PSS
 - PSS
 - Utilisation de PSS avec RSA
 - Sécurité du protocole
- 4 Conclusion/Recommandation

Mardi 24 octobre 2017

Mardi 24 octobre 2017

- Introduction
- 2 RSAES-OAEP
- RSASSA-PSS
- 4 Conclusion/Recommandation

OAEP II est préférable de plus utiliser OAEP, et plutôt REACT. PSS

Bibliographie