Additional Problems

Joshua Maglione

October 17, 2024

Solution 1

(i) Let $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$, so that

$$H = \{ v \in \mathbb{R}^n \mid a^\top v = b \}$$

define a hyperplane in \mathbb{R}^n . Let $u, v \in H$. Then for all $t \in [0, 1]$,

$$a^{\top}(tv + (1-t)u) = ta^{\top}v + (1-t)a^{\top}u$$

= $tb + (1-t)b = b$.

Hence, $tv + (1 - t)u \in H$, and therefore the whole line segment between u and v is in H.

- (ii) Apply the same argument as (i) except some equalities will be weak inequalities. \Box
- (iii) We'll prove it for infinitely many. Let I be an indexing set and suppose $S_i \subseteq \mathbb{R}^n$ is convex for all $i \in I$. Set $S = \bigcap_{i \in I} S_i \subseteq \mathbb{R}^n$. Let $u, v \in S$. Then $u, v \in S_i$ for all $i \in I$. Since S_i is convex, the line segment connecting u and v is in S_i . Since this holds for all $i \in I$, the line segment connecting u and v is in S. Hence, S is convex.
- (iv) Write

$$f(S) = \{ f(v) \mid v \in S \} \subseteq \mathbb{R}^b.$$

Let $u, v \in f(S)$. Then there exist $x, y \in S$ such that u = f(x) and v = f(y). Since S is convex, we have that $ty + (1 - t)x \in S$ for all $t \in [0, 1]$. Thus, $f(ty + (1 - t)x) \in f(S)$. Since f is a linear transformation,

$$f(ty + (1-t)x) = tf(y) + (1-t)f(x) = tv + (1-t)u$$

is contained in f(S). Hence, f(S) is convex.

(i) The LP in CF is

Maximize

$$z = 3x + 2y$$

z = 3xsubject to $x, y, s_1, s_2 \ge 0$ and $2x - y + \frac{1}{2} (x - y)$

$$2x - y + s_1 = 6,$$

$$2x + y + s_2 = 10.$$

(ii) From a theorem from class, the extreme points are the basic feasible solutions. From another theorem, the basic solutions are obtained by taking all pairs of columns of

$$A = \begin{bmatrix} 2 & -1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix}$$

that form a basis. Every 2-element subset yields a basis, so we have:

$$\begin{bmatrix} 4 \\ 2 \\ 0 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 5 \\ 0 \\ -4 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 3 \\ 0 \\ 0 \\ 4 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 10 \\ 16 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ -6 \\ 0 \\ 16 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 0 \\ 6 \\ 10 \end{bmatrix}.$$

We have exactly four of these points that are feasible:

$$\begin{bmatrix} 4 \\ 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 0 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 10 \\ 16 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 6 \\ 10 \end{bmatrix}.$$

(iii) The optimal point occurs at $(0,10)^{\top}$.

Solution 3

	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	<i>x</i> ₇	
x_4	0	0	2	1	5/2	0	0	6/7
x_1	1	0	5	0	-3	0	-2	2/7
x_6	0	0	3	0	4	1	-4	5/7
x_2	0	1	0	0	5/2 -3 4 3/2	0	0	1/7

(i) If x_5 is the entering variable, then θ -ratios are 12/35, -2/21, 5/28, and 2/21 for x_4 , x_1 , x_6 , and x_2 respectively. Therefore, x_6 is the departing variable.

2

- (*ii*) If x_3 is the entering variable, then θ -ratios are 3/7, 2/35, 5/21, and DNE for x_4 , x_1 , x_6 , and x_2 respectively. Therefore, x_1 is the departing variable.
- (iii) If x_7 is the entering variable, then there is no departing variable since the pivotal column is non-positive.

Suppose $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$. Consider the following LP.

The point

$$w = \frac{1}{3}u + \frac{2}{3}v$$

is on the line segment between u and v, namely, $w = L_{u,v}(2/3)$. We know that a finite intersection of closed half-spaces is convex, and we know that the set of feasible solutions is a finite intersection of close half-spaces. Therefore, w is a feasible solution.

Solution 5

Original:

	x_1	x_2	x_3	x_4	x_5	
x_3	, ,	0	1	3/5	0	3/2
$ x_2 $	3/2	1	0	1	0	5/2 2/3
x_5	5	0	0	2/9	1	2/3
	4	0	0	-5	0	7/3

Next:

	x_1	x_2	x_3	x_4	x_5	
x_3	-7/30	-3/5	1	0	0	0
x_4	3/2	1	0	1	0	5/2
x_5	14/3	-2/9	0	0	1	1/9
	23/2	5	0	0	0	89/6

Let

$$A = \begin{bmatrix} 2 & 3 & 1 & 0 & 0 \\ -1 & 1 & 0 & 2 & 1 \\ 0 & 6 & 1 & 0 & 3 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$$

And set

$$x = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \qquad y = \begin{bmatrix} 0 \\ 2 \\ -5 \\ 0 \\ -1 \end{bmatrix}, \qquad z = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}.$$

Since only 2 entries of *z* are nonzero, *z* is not basic. Since

$$Ax = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix},$$

the vector x cannot be basic. Since Ay = b, it follows that y is a basic solution. \square

Solution 7

x_1	x_2	<i>x</i> ₃	s_1	s_2	<i>S</i> ₃	
1	5	2	0	0	3	20
0	2	4	1	0	-4	6 12
0	2	-1	0	1	3	12
0	-5	-3	0	0	3	12

- (*i*) The basic variables are given by where the pivots are located: x_1 , s_1 , and s_2 . Therefore, the corresponding basic feasible solution is $(20,0,0,6,12,0)^{\top}$.
- (ii) The next table is

	x_1	x_2	<i>x</i> ₃	s_1	<i>s</i> ₂	<i>S</i> ₃	
x_1	1	0	-8	-5/2	0	13	5
x_2	0	1	2	1/2	0	-2	3
s_2	0	0	-5	1/2 -1	1	7	6
	0					-7	27

(*iii*) The corresponding basic feasible solution is $(5,3,0,0,6,0)^{\top}$ with basic variables x_1, x_2 , and s_2 .

4

Maximize

$$z = x_1 + 2x_2 + x_3$$

subject to $x \ge 0$ and

$$3x_1 + x_2 - x_3 = 15,$$

$$8x_1 + 4x_2 - x_3 = 50,$$

$$2x_1 + 2x_2 + x_3 = 20.$$

We need to add in three artificial variables. For the first phase, we need to solve

Maximize

$$z = -85 - 13x_1 - 7x_2 + x_3$$

subject to $x \ge 0$, $y \ge 0$, and

$$3x_1 + x_2 - x_3 + y_1 = 15,$$

$$8x_1 + 4x_2 - x_3 + y_2 = 50,$$

$$2x_1 + 2x_2 + x_3 + y_3 = 20.$$

The corresponding tableau is

	x_1	x_2	x_3	y_1	y_2	<i>y</i> ₃	
y_1	3	1	-1	1	0	0	15
<i>y</i> ₂	8	4	$-1 \\ -1$	0	1	0	15 50 20
<i>y</i> ₃	2	2	1	0	0	1	20
	13	7	-1	0	0	0	-85

The next tableau is

	x_1	x_2	x_3	y_1	y_2	<i>y</i> ₃	
y_1	5	3	0	1	0	1	35
y_2	10	6	0	0	1	1	70
x_3	$ \begin{array}{c c} x_1 \\ \hline 5 \\ 10 \\ 2 \\ \end{array} $	2	1	0	0	1	35 70 20
	15	9	0	0	0	0	-85

Therefore, there is no feasible solution.