Subjectul A. MECANICĂ

Nr. item	Soluţie/Rezolvare
III.a.	
	$P = F_{t}v$
	$F_{t} = T$
	Rezultat final: P = 12 kW
b.	
	$\vec{v} = \text{const.} \rightarrow \vec{a} = 0$
	\vec{R} = \vec{ma}
	$\vec{R} = \vec{F}_{t} + \vec{F}_{f pl. orizontal}$ $R_{x} = 0 \qquad R_{y} = 0$ $R_{x} = T - F_{f}^{si} R_{y} = N - G$
	$R_x = 0$ $R_y = 0$
	$R_x = T - F_f^{\S I} R_y = N - G$
	$L = -F_r d$
	Rezultat final: $L = -8 \text{ kJ}$
C.	
	$\vec{R}_1 = m\vec{a}$
	$\vec{R}_1 = \vec{T}_1 + \vec{F}_{f pl. inclinat} + \vec{N} + \vec{G}$
	$R_{1x} = 0$ $R_{1y} = 0$
	$\vec{R}_{1} = \vec{T}_{1} + \vec{F}_{f pl. inclinat} + \vec{N} + \vec{G}$ $R_{1x} = 0 \qquad \qquad R_{1y} = 0$ $R_{1x} = T_{1} - G_{t} - F_{f.pl. inclinat} \stackrel{\text{Si}}{=} R_{1y} = N_{1} - G_{n}$
	$G_{n} = mg \cos \alpha$, $\cos \alpha = \sqrt{1 - \sin^{2} \alpha} \cong 1 \implies G_{n} \cong G$
	$F_{\text{f pl. inclinat}} \approx F_{\text{f pl. orizontal}} = T$
	$P_1 = T_1 v$
	Rezultat final: $P_1 = 27 kW$
d.	
	$E_{\rm p} = mgh$, cu $h = \Delta x \sin \alpha$
	$\Delta x = v \Delta t$
	Rezultat final: $\Delta t = 100 \text{ s}$