```
In [1]:
           import pandas as pd
           import numpy as np
 In [2]:
           df = pd.read_csv('heart-disease.csv')
In [49]:
           df.head()
Out[49]:
                           trestbps
                                    chol fbs restecg thalach exang
                                                                      oldpeak slope
                                                                                      ca thal target
                  sex
                        3
              63
                    1
                               145
                                     233
                                            1
                                                          150
                                                                   0
                                                                           2.3
                                                                                      0
                                                                                                   1
          1
              37
                    1
                        2
                               130
                                     250
                                            0
                                                          187
                                                                   0
                                                                           3.5
                                                                                      0
                                                                                            2
                                                                                                   1
              41
                    0
                               130
                                     204
                                                    0
                                                          172
                                                                   0
                                                                           1.4
                                                                                      0
                                                                                            2
                                                                                                   1
          3
                                                                                            2
              56
                    1
                               120
                                     236
                                                    1
                                                          178
                                                                   0
                                                                           8.0
                                                                                   2
                                                                                      0
                                                                                                   1
                                                                                            2
              57
                        0
                                                    1
                                                                                   2
                                                                                                   1
                    0
                               120
                                     354
                                            0
                                                          163
                                                                   1
                                                                           0.6
                                                                                      0
 In [3]:
           df.shape
          (303, 14)
 Out[3]:
 In [4]:
           df.isna().sum()
                       0
          age
 Out[4]:
                       0
          sex
                       0
          ср
          trestbps
                       0
          chol
          fbs
                       0
          restecg
                       0
          thalach
                       0
          exang
                       0
          oldpeak
          slope
                       0
          ca
          thal
                       0
          target
          dtype: int64
 In [5]:
           df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 303 entries, 0 to 302
          Data columns (total 14 columns):
                Column
                          Non-Null Count Dtype
           0
                           303 non-null
                                            int64
               age
           1
                sex
                           303 non-null
                                            int64
           2
                ср
                           303 non-null
                                            int64
           3
               trestbps 303 non-null
                                            int64
```

```
4
   chol
              303 non-null
                               int64
5
   fbs
              303 non-null
                               int64
6
   restecg
              303 non-null
                               int64
7
   thalach
              303 non-null
                               int64
8
              303 non-null
                               int64
   exang
9
   oldpeak
              303 non-null
                               float64
                               int64
10
   slope
              303 non-null
11
   ca
              303 non-null
                               int64
              303 non-null
                               int64
12
   thal
13 target
              303 non-null
                               int64
```

dtypes: float64(1), int64(13)

memory usage: 33.3 KB

In [23]:

df.head()

Out[23]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
	4	57	0	٥	120	354	0	1	163	1	0.6	2	٥	2	1

In [77]:

df.tail()

Out[77]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

In [24]:

df.describe()

Out[24]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000

```
fbs
                                                                                                 thalach
                       age
                                                    trestbps
                                                                   chol
                                                                                      restecg
                                  sex
                                              ср
                  77.000000
                              1.000000
                                         3.000000
                                                  200.000000
                                                             564.000000
                                                                          1.000000
                                                                                     2.000000
                                                                                              202.000000
            max
 In [7]:
           X = df.drop(columns='target',axis=1)
           y = df['target']
 In [8]:
           X.shape
          (303, 13)
 Out[8]:
 In [9]:
           y.shape
          (303,)
 Out[9]:
In [10]:
           df['target'].value_counts()
               165
Out[10]:
               138
          Name: target, dtype: int64
In [11]:
           from sklearn.model_selection import train_test_split
In [12]:
           X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=2)
In [13]:
           X_train.shape
          (242, 13)
Out[13]:
In [14]:
           X_test.shape
          (61, 13)
Out[14]:
In [15]:
           y_train.shape
          (242,)
Out[15]:
In [16]:
           y_test.shape
          (61,)
Out[16]:
```

Create a model

```
from sklearn.linear model import LogisticRegression
In [50]:
          from sklearn.linear model import LinearRegression
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.svm import SVC
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.ensemble import AdaBoostClassifier
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.metrics import accuracy_score
In [51]:
          models = {'Logistic Reg':LogisticRegression(),
                     'Linear Reg':LogisticRegression(),
                    'KNN': KNeighborsClassifier(n neighbors=5,algorithm='auto',leaf size=30,metri
                    'SVM': SVC(kernel='rbf',random state=15,C=1.0),
                    'RF': RandomForestClassifier(n_estimators=150,max_depth = 9,min_samples_leaf
                    'Ada': AdaBoostClassifier(base estimator=LogisticRegression(),n estimators=100
In [52]:
          for name, model in models.items():
              model.fit(X train,y train)
              print(name, model.score(X test,y test))
         C:\Users\Life Computer\anaconda\lib\site-packages\sklearn\linear model\ logistic.py:763:
         ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
           n iter i = check optimize result(
         C:\Users\Life Computer\anaconda\lib\site-packages\sklearn\linear model\ logistic.py:763:
         ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
           n iter i = check optimize result(
         Logistic Reg 0.9016393442622951
         Linear Reg 0.9016393442622951
         KNN 0.819672131147541
         SVM 0.6721311475409836
         RF 0.9016393442622951
         C:\Users\Life Computer\anaconda\lib\site-packages\sklearn\linear model\ logistic.py:763:
         ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
           n_iter_i = _check_optimize_result(
         C:\Users\Life Computer\anaconda\lib\site-packages\sklearn\linear model\ logistic.py:763:
         ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
```

```
Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
           n iter i = check optimize result(
         C:\Users\Life Computer\anaconda\lib\site-packages\sklearn\linear_model\_logistic.py:763:
         ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
           n_iter_i = _check_optimize_result(
         C:\Users\Life Computer\anaconda\lib\site-packages\sklearn\linear model\ logistic.py:763:
         ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
           n iter i = check optimize result(
         Ada 0.8852459016393442
In [65]:
          rf model = RandomForestClassifier(random state=2)
          rf_model.fit(X_train,y_train)
          rf model.score(X train,y train), model.score(X test,y test)
         (1.0, 0.8688524590163934)
Out[65]:
In [61]:
          lo model = LogisticRegression(random state=2)
          model.fit(X train,y train)
          model.score(X_train,y_train), model.score(X_test,y_test)
         (1.0, 0.9016393442622951)
Out[61]:
In [62]:
          ada_model = AdaBoostClassifier(random_state=2)
          model.fit(X_train,y_train)
          model.score(X train,y train), model.score(X test,y test)
         (1.0, 0.8852459016393442)
Out[62]:
In [63]:
          KNN model = KNeighborsClassifier(n neighbors=5,algorithm='auto',leaf size=30,metric='mi
          model.fit(X train,y train)
          model.score(X_train,y_train), model.score(X_test,y_test)
         (1.0, 0.8688524590163934)
Out[63]:
```

Final model select as Random Forest

```
In [66]: rf_model = RandomForestClassifier()
```

```
rf_model.fit(X_train,y_train)
          rf_model.score(X_train,y_train), rf_model.score(X_test,y_test)
         (1.0, 0.9016393442622951)
Out[66]:
In [71]:
          X train pred =rf model.predict(X train)
          traing_data_accuracy = accuracy_score(X_train_pred,y_train)
In [72]:
          traing data accuracy
Out[72]:
In [73]:
          X test pred =rf model.predict(X test)
          testing data accuracy = accuracy score(X test pred,y test)
In [74]:
          testing_data_accuracy
         0.9016393442622951
Out[74]:
In [75]:
          input_data = (70,1,2,160,269,0,1,112,1,2.9,1,1,3)
          num_array = np.asarray(input_data)
          num_array_reshape = num_array.reshape(1,-1)
          prediction = model.predict(num array reshape)
          print(prediction)
          [0]
In [76]:
          import pickle
          pickle.dump(rf model , open('model1.pkl','wb'))
          heart_disease_predict_model = pickle.load(open('model1.pkl','rb'))
 In [ ]:
```