2.13 Theorem. If a and b are natural numbers and $a^2|b^2$, then a|b.

Proof. Let a and b be given natural numbers such that $a^2|b^2$. Let $p_1^{r_1}p_2^{r_2}...p_m^{r_m}$ be the unique prime factorization of a and let $q_1^{t_1}q_2^{t_2}...q_s^{t_s}$ be the unique prime factorization of b. By definition, $b^2=a^2k$ for some $k\in\mathbb{Z}$ such that

$$(q_1^{t_1}q_2^{t_2}...q_s^{t_s})^2 = (p_1^{r_1}p_2^{r_2}...p_m^{r_m})^2 k,$$

$$q_1^{2t_1}q_2^{2t_2}...q_s^{2t_s} = p_1^{2r_1}p_2^{2r_2}...p_m^{2r_m}k.$$

By Theorem 2.12, since $a^2|b^2$, $p_i=q_j$ and $2r_i \leq 2t_j$. Thus, we can simplify the exponents to $r_i \leq t_j$. Notice we are left with

$$\begin{aligned} q_1^{t_1}q_2^{t_2}...q_s^{t_s} &= p_1^{r_1}p_2^{r_2}...p_m^{r_m}k, \\ b &= ak. \end{aligned}$$

Thus, a|b.