Московский государственный технический университет имени Н. Э. Баумана

Факультет: Информатика и системы управления

Кафедра: Программное обеспечение ЭВМ и информационные технологии

Дисциплина: Математическая статистика

Домашнее задание №2

Выполнила: Щербатюк Дарья

Группа: ИУ7-64 Вариант: 12

1 Задача №1. Проверка параметрических гипотез

Условие. Для исследования стабильности температуры в термостате с кварцевым генератором были проведены две серии замеров температуры (в C°) с интервалов в 15 часов:

$$\vec{X} = (17.85, 17.98, 18.01, 18.2, 17.9, 18.0),$$

 $\vec{Y} = (18.01, 17.98, 18.05, 17.9, 18.0).$

Считая распределение контролируемого признака нормальным со среднеквадратичным отклонением $\sigma=0.1~C^{\circ}$, при уровне значимости $\alpha=0.05$ проверить гипотезу о неизменности температуры в термостате.

Решение.

Согласно условию,

$$X \sim N(m_1, \sigma_1^2),$$

$$Y \sim N(m_2, \sigma_2^2),$$

причем $\sigma_1 = \sigma_2 = 0.1$ и $m_1 = \mathsf{M} X, \, m_2 = \mathsf{M} Y$ неизвестны.

Введём основную гипотезу:

$$H_0 = \{\text{температура в термостате не изменилась}\} = \{m_1 = m_2\}.$$

С учётом выборочных средних $\bar{X}=17.99$ и $\bar{Y}=17.988$ естественно ввести такую конкурирующую гипотезу:

$$H_1 = \{\text{температура в термостате уменьшилась}\} = \{m_1 > m_2\}.$$

Используя статистику

$$T(\vec{X}, \vec{Y}) = \frac{\vec{X} - \vec{Y}}{\sqrt{(\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})}},$$

где n_1, n_2 - размеры выборок и $T(\vec{X}, \vec{Y}) \sim N(0, 1)$ при истинности гинотезы H_0 , построим критическое множество:

$$W = \{ (\vec{x}, \vec{y}) : T(\vec{x}, \vec{y}) \ge u_{1-\alpha} \},\$$

где $u_{1-\alpha}$ - квантиль нормального распределения уровня $1-\alpha=0.95$. Вычислим статистику $T(\vec{x},\vec{y})$:

$$T(\vec{x}, \vec{y}) = \frac{17.99 - 17.988}{\sqrt{(\frac{0.01}{6} + \frac{0.01}{5})}} = \frac{0.002}{0.06} \approx 0.04.$$

При $u_0.95 = 1.645$

$$0.04 \ngeq 1.645 \Rightarrow (\vec{x},\vec{y}) \notin W \Rightarrow$$
 \Rightarrow принимаем H_0 , отклоняем H_1 .

Ответ. Температура в термостате не изменилась.