Hardness HW 1

TAMREF

tamref.yun@snu.ac.kr

Due: September 29, 2022

♥ _ Rules

- You can just link your former post instead of the solution. Otherwise, it is recommended to write the proof in your language.
- Subproblems are separated for explanatory convenience. You can elaborate the answer for each subproblem, or just provide the whole solution if possible.
- You are qualified if you **read** all the problems, and answered **at least 3** of them. Most easy problems belong to the first page.

Homework 1 Project-Hardness

Question 1. Integer Program

(a) For $A \in \mathbb{Z}^{N \times M}$ and $b \in \mathbb{Z}^N$, **Zero-One Integer Program** decideds if there is an $x \in \{0,1\}^M$ such that $Ax \geq b$. Prove **SAT** \leq_p **Zero-One Integer Program** to show that it is \mathbb{NP} -complete.

(b) (Optional) If the candidate of x is relaxed into $\mathbb{Z}_{\geq 0}^M$, the problem is called **Integer Program (IP)**. What differs in \mathbb{NP} -completeness of **IP**? Fill the gap to prove it.

Question 2. Pratt's theorem

PRIMES is to test the primality of given integer, the only input.

- (a) Show that n is prime if and only if there is an integer g such that n-1 is the smallest exponent that $g^{n-1} \equiv 1 \pmod{n}$.
- (b) From (a), deduce that n is prime if and only if $g^{(n-1)/q} \not\equiv 1 \pmod{n}$, for every prime divisor q of n.
- (c) From (b), provide the polynomial size witness for **PRIMES**.

Question 3. $\mathbb{ZPP} = \mathbb{RP} \cap \text{co-}\mathbb{RP}$

Following the definitions in the slide, prove that $\mathbb{ZPP} = \mathbb{RP} \cap \text{co} - \mathbb{RP}$.

Question 4. Lousy \mathbb{RP} and \mathbb{BPP}

For the original definition of \mathbb{RP} and \mathbb{BPP} , refer the slide.

- (a) Let \mathbb{RP}_{α} denote the complexity class, where $\Pr[M(x) = \text{yes} \mid x \in A] \geq \alpha$. For all constant $0 < \alpha < 1$, Show that $\mathbb{RP}_{\alpha} = \mathbb{RP}$.
- (b) For \mathbb{RP}_{1/n^2} and $\mathbb{RP}_{1/2^n}$ defined similarly, where n is size of the input, determine whether or not it is equal to \mathbb{RP} .
- (c) Similarly define \mathbb{BPP}_{α} . For which α we can insist that $\mathbb{BPP}_{\alpha} = \mathbb{BPP}$?

Question 5. Classic inclusions

Show that $\mathbb{NP} \subseteq \mathbb{PSPACE} \subseteq \mathbb{EXPTIME}$.

Homework 1 Project-Hardness

Question 6. Diagonal Argument

Assume the following facts.

• Given a TM M, deciding(computing) whether M terminates in polynomial time is **undecidable**.

- Given a TM M and input x, there is a **Universal TM** \mathcal{U} taking the pair (M, x) as input, and simulate M(x) for T discrete steps in $T \log T$ time.
- The set of TMs terminating in $\mathcal{O}(f(n))$ time is **countable** so we may give them an enumeration.
- (a) For f(n) and g(n) such that $f(n)\log f(n)=o(g(n))$, there is a problem could be solved in $\mathcal{O}(g(n))$ time, but never in $\mathcal{O}(f(n))$ time. To show that, Design a TM D terminates in $\mathcal{O}(g(n))$ time, which never could produce identical output with another TM M, terminating in $\mathcal{O}(f(n))$ time. The result is called the **Time Hierarchy Theorem.**
- (b) From (a), prove that $\mathbb{P} \neq \mathbb{EXPTIME}$.

Question 7. $\mathbb{BPP} \subseteq \mathbb{PSPACE}$

There's an alternative definition for BPP.

Definition. $A \in \mathbb{BPP}$ if there's a polynomial algorithm M and another polynomial p, takes the original input x attached with the random string $r \in \{0,1\}^{p(|x|)}$, having $\Pr[M(x,r) = \text{yes} \mid x \in A] \geq \frac{3}{4}$ and $\Pr[M(x,r) = \text{no} \mid x \notin A] \geq \frac{3}{4}$.

Relying on the definition, prove that $\mathbb{BPP} \subseteq \mathbb{PSPACE}$. You may try to prove the equivalence of the definition given above, to the definition given in the slide.

Homework 1 Project-Hardness

Question 8. Equivalence of PH

Recall the oracle definition of PH classes, corrected from the lecture.

- $\Sigma_{i+1} := \mathbb{NP}^{\Sigma_i}$
- $\Pi_{i+1} := \operatorname{co}-\mathbb{NP}^{\Pi_i}$
- (a) Prove by induction, that the definition above is equivalent to the definition with alternating quantifiers.
- (b) Show that if $\mathbb{P} = \mathbb{NP}$, $P = \Sigma_i$ for all $i \geq 1$.
- (c) Show that if $\mathbb{NP} = \text{co} \mathbb{NP}$, $\mathbb{NP}^{\mathbb{NP}} \subseteq \mathbb{NP}$. (Heavy!)
- (d) Assuming (c), show that if $\mathbb{NP} = \text{co-}\mathbb{NP}$, $\Sigma_i = \Pi_i = \mathbb{NP}$ for all $i \geq 1$. This is a tremendous subcase of Polynomial Hierarchy Collapse.

Question 9. Hardness Results from Directed Graph Modeling

These are the class of problems could be solved in similar way. Give a survey to these problems:

- (a) Show that the problem **QBF** is \mathbb{PSPACE} -complete.
- (b) Show that NPSPACE = PSPACE. (Savitch's theorem)
- (c) \mathbb{NL} is the class of problems could be solved non-deterministically, with $\mathcal{O}(\log n)$ extra r/w memory. Be careful that the 'witness' is bounded in the read-only memory along the input, and it does not really restricted to be logarithmic size. (But bounded by polynomial) Show that the problem "Given a directed graph G and $s,t\in V(G)$, is there a path from s to t?" (So called **REACHIBILITY**) is \mathbb{NL} —complete.
- (d) From (c), deduce that **2-SAT** is \mathbb{NL} -complete.

Question 10. 2-QBF

Given a 2-CNF ϕ , the problem $\exists x_1 \forall x_2 \cdots Q_k x_k \text{ s.t. } \phi(x_1, \cdots, x_k)$ is called **2-QBF**. Find the linear-time algorithm for **2-QBF**, and solve NERC 2018 Harder Satisfiability. (BOJ 16667)