Суммирование рядов 2 Признаки сходимости рядов

Задача 1. а) (Признак сравнения Вейерштрасса) Пусть $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ — ряды с неотрицательными членами.

Пусть найдётся такой номер k, что при всех $n>k,\,n\in\mathbb{N}$ будет выполнено неравенство $b_n\geqslant a_n$. Тогда если $\sum_{n=1}^\infty b_n$ сходится, то $\sum_{n=1}^{\infty} a_n$ сходится; если $\sum_{n=1}^{\infty} a_n$ расходится, то $\sum_{n=1}^{\infty} b_n$ расходится.

- **б)** (Признак д'Аламбера) Пусть члены ряда $\sum\limits_{n=1}^{\infty}a_n$ положительны, и существует $\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}=q$. Если q<1, то ряд сходится, а если q>1, то ряд расходится. Что можно сказать о сходимости, если q=1?
- в) (Признак Коши) Пусть члены ряда $\sum_{n=1}^{\infty} a_n$ неотрицательны, и существует $\lim_{n\to\infty} \sqrt[n]{a_n} = q$. Если q < 1, то ряд сходится, а если q > 1, то ряд расходится. Что можно сказать о сходимости ряда, если q = 1?
- г) Приведите пример сходящегося ряда с положительными членами, к которому применим признак Коши, но не применим признак д'Аламбера. Бывает ли наоборот?

Задача 2. Исследуйте ряды на сходин

$$\mathbf{a)} \ \sum_{n=1}^{\infty} \frac{1}{n^p}; \ \mathbf{6)} \ \sum_{n=2}^{\infty} \frac{1}{n \ln n}; \ \mathbf{B)} \ \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2n}; \ \mathbf{r)} \ \sum_{n=1}^{\infty} \frac{n^k}{a^n}.$$

Задача 3. а) (*Теорема Лейбница*) Пусть $a_n>0$ при всех $n\in\mathbb{N}$, и кроме того, $a_1\geqslant a_2\geqslant a_3\geqslant\ldots, \lim_{n\to\infty}a_n=0.$ Тогда знакочередующийся ряд $a_1 - a_2 + a_3 - a_4 + a_5 - \dots$ сходится.

б) Верно ли утверждение теоремы без условия монотонности (a_n) ?

Абсолютно и условно сходящиеся ряды

Определение 1. Ряд $\sum_{n=1}^{\infty} a_n$ называется *абсолютно сходящимся*, если сходится ряд $\sum_{n=1}^{\infty} |a_n|$.

Задача 4. Докажите, что абсолютно сходящийся ряд сходится.

Задача 5. Пусть ряд $\sum_{n=1}^{\infty} a_n$ абсолютно сходится. Тогда абсолютно сходится произвольный ряд $\sum_{n=1}^{\infty} b_n$, полученный

из него перестановкой слагаемых, причём $\sum\limits_{n=1}^{\infty}b_n=\sum\limits_{n=1}^{\infty}a_n.$ Определение 2. Ряд $\sum\limits_{n=1}^{\infty}a_n$ называется условно сходящимся, если он сходится, но ряд $\sum\limits_{n=1}^{\infty}|a_n|$ расходится.

Задача 6. Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходится условно.

- а) Докажите, что ряд, составленный из его положительных (или отрицательных) членов, расходится.
- **б)** (*Теорема Римана*.) Докажите, что ряд $\sum_{n=1}^{\infty} a_n$ можно превратить перестановкой слагаемых как в расходящийся ряд, так и в сходящийся с произвольной наперёд заданной суммой.
- в) Докажите, что можно так сгруппировать члены ряда $\sum_{n=1}^{\infty} a_n$ (не переставляя их), что ряд станет абсолютно
- ${f r}$)* Пусть $\sum_{n=0}^{\infty}a_n$ ряд, составленный из комплексных чисел, S множество всех перестановок σ натурального ряда, для которых ряд $\sum_{n=1}^{\infty} a_{\sigma(n)}$ сходится. Каким может быть множество $\{\sum_{n=1}^{\infty} a_{\sigma(n)} \mid \sigma \in S\}$?

- Задача 7. Пусть s сумма ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Найдите суммы а) $1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\ldots$; б) $1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\frac{1}{10}-\frac{1}{12}+\ldots$. в) Переставьте члены ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ так, чтобы он стал расходящимся.

Задача 8. Существует ли такая последовательность $(a_n), a_n \neq 0$ при $n \in \mathbb{N}$, что ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} \frac{1}{n^2 a_n}$ сходятся? Можно ли выбрать такую последовательность из положительных чисел?

Задача 9*. Существует ли такая последовательность (a_n) , что ряд $\sum_{n=1}^{\infty} a_n$ сходится, а ряд $\sum_{n=1}^{\infty} a_n^3$ расходится?

Задача 10*. Пусть функция $f: \mathbb{R} \to \mathbb{R}$ такова, что для любого сходящегося ряда $\sum a_n$ ряд $\sum f(a_n)$ сходится. Докажите, что тогда найдётся такое число $C \in \mathbb{R}$, что f(x) = Cx в некоторой окрестности нуля.

$\begin{bmatrix} 1 \\ a \end{bmatrix}$	1 6	1 в	1 г	2 a	2 6	2 B	2 Г	3 a	3 6	4	5	6 a	6 б	6 в	6 г	7 a	7 б	7 B	8	9	10