MULTIMEDIA	5	UNIVERSITY
------------	---	------------

STUDENT ID NO								

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2023/2024

PMT0301 – MATHEMATICS III

(for Foundation students only)

26 FEBRUARY 2024 9.00 a.m. – 11.00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENT.

- 1. This question paper consists of 3 printed pages excluding cover page, formula list and statistical table.
- 2. Answer ALL THREE questions.
- 3. All necessary working steps must be shown in the Answer Booklet provided.

QUESTION 1 [15 Marks]

- a) Given the difference between the 5th term and 2nd term of an arithmetic sequence is -12. If the sum of the first 5 terms is 90, find the 1st term and common difference.
- b) Find the sum of the geometric series $1 + 3 + 9 + \cdots + 729$. You need to show the working steps by using the geometric sequence formula. (2.5 marks)
- c) Given $A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & -2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ -2 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 6 & -1 \\ 4 & 3 \end{bmatrix}$. Find $C^T + AB$.

 (3 marks)
- d) Solve the system of linear equations with Gaussian elimination with back-substitution method. (6.5 marks)

$$x + y + z = 15$$

 $2x - y + 2z = 33$
 $2x - 3z = -18$

QUESTION 2 [15 Marks]

- a) Find the vector and parametric equation for a line passing through (4,1,-4) and orthogonal to both 2i j and i + 3j + 2k. (4 marks)
- b) Find an equation of the plane that contains the line x = 2 t, y = 1 + 2t, z = -3 + 3t and is parallel to the plane x 2y + 8z = 22. (3 marks)
- c) Below is the polygon for the time spent gaming (in minutes) during the night time by a random sample of 40 students in MMU hostel.

Calculate the mean and standard deviation. Correct your answer to 2 decimal places.
(5.5 marks)

Continued...

MSM 1/3

d) Refer to the frequency distribution table given below:

Class Limit	Frequency
20 – 29	13
30 – 39	10
40 – 49	18
50 – 59	15
60 – 69	9

Calculate the mode using formula. Correct your answer to 2 decimal places.

(2.5 marks)

QUESTION 3

[20 Marks]

- a) Suppose a department contains 15 men and 10 women. How many ways are there to form a committee with six members if it must have more men than women (the committee must consist of both gender)? (2 marks)
- b) The Venn diagram below shows the number of student enrollment in one of the Tuition Centre in Cyberjaya. Given that

Set $M = \{\text{students who enroll in Mathematics class}\}\$

Set $S = \{\text{students who enroll in Science class}\}\$

Set $E = \{\text{students who enroll in English class}\}\$

There are 110 students enroll this year. If the number of students who enroll in Science class are 53 students,

i. Find x.

(1.5 marks)

ii. calculate $n(\overline{M \cup S \cup E})$.

(1.5 marks)

iii. find $n((S \cup E) \cap M)$.

(1 mark)

Continued...

c) A faculty has three departments, each department consist of foundation, diploma and degree students as shown in the table below:

Education	Data science (DS)	Game Development (GD)	Information System (IS)		
Foundation	22	33	20		
Diploma	30	22	45		
Degree	52	38	38		

If a student is selected at random from this group, find the probability that

i. the student is from GD department and is a diploma student.

(1 mark)

ii. the student is from IS department, given that the student takes degree program.

(2 marks)

- iii. the student takes foundation program, given that the student is in DS department.

 (2 marks)
- d) A survey reveals that 20% of students at one of the private university in Selangor have part-time jobs. A random sample of 25 students are selected.
 - i. Find the probability that at most 2 students have part-time jobs.

(2 marks)

- ii. What is the mean and standard deviation of the number of students who have parttime jobs? (2 marks)
- e) On average, there are 3.5 fraud cases filed at a particular police station in a week. Given a certain week at these particular police station, compute the probability that there are more than one fraud cases filed in a week. (2 marks)
- f) The intelligence quotient (IQ) test results of foundation students in a college are normally distributed with mean of 112 and a standard deviation of 8. What is the probability that a randomly selected students will have an IQ test results between 105 and 120?

 (3 marks)

APPENDIX - KEY FORMULA

Arithmetic Sequence	Geometric Sequence
$a_n = a_1 + (n-1)d$	$a_n = a_1 r^{n-1}, S_n = \frac{a_1 (1 - r^n)}{1 - r}$
$S_n = \frac{n}{2} (a_1 + a_n)$	$S_{\infty} = \frac{a_1}{1-r}, r < 1$

Angle between vector

If θ is the angle between the vector a and b, then $a \cdot b = |a||b| \cos \theta$

Equation of lines

Vector equation: $\mathbf{r} = r_0 + t\mathbf{v}$

Equation of planes

Vector equations: $n \cdot (r - r_0) = 0$

Mean for grouped data	Variance for grouped data
$\bar{x} = \frac{\sum mf}{n}$	$s^2 = \frac{\sum m^2 f - \frac{(\sum mf)^2}{n}}{n-1}$
Median for grouped data	Mode for grouped data
$L + \left[\frac{\sum f}{2} - F_L \over f_m \right] c$	$L + \left[\frac{(f_m - f_B)}{(f_m - f_B) + (f_m - f_A)} \right] c$

Addition rule

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Conditional probability

$$P(B|A) = \frac{\hat{P(B \cap A)}}{P(A)}$$

Binomial probability formula

$$P(X = x) = \binom{n}{x} p^x q^{n-x}$$

Poisson probability formula

$$P(X=x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

Continued...

THE NORMAL DISTRIBUTION FUNCTION

The function tabulated is $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$. $\Phi(x)$ is

the probability that a random variable, normally distributed with zero mean and unit variance, will be less than or equal to x. When x < 0 use $\Phi(x) = 1 - \Phi(-x)$, as the normal distribution with zero mean and unit variance is symmetric about zero.

æ ·	$\Phi(x)$	×	Φ(x)	x	Φ(x)	x	Φ(x)	æ	$\Phi(x)$	æ	$\Phi(x)$
0.00	0.2000	0.40	0.6554	o·8a	0.7881	1.20	0.8849	x·60	0.0452	2.00	0.97725
or or	*5040	'4I	6591	·81	7910	·2I	·886g	·61	9452	200	97778
.02	-2080	42	·6628	182	7939	-22	-8888	-62	19474	.02	·97770
.03	-5120	43	-6664	-83	7939	.23	·8907	·6 ₃	9484	'03	·97882
·04	5160	43	.6700	-84	7995	24	8925	.64	9495	'04	197932
04	3100	44	-0700	04	7995	-4	0925	. 4	9495	04	97932
0.02	0.2199	0 45	0.6736	0.85	0.8023	1 25	0.8944	1.65	0.9502	2 05	0.97982
.06	5239	46	6772	-86	-8021	•26	·8962	-66	9515	.0€	-98030
.07	5279	47	·68o8	·8 7	·8o78	. *27	.898a	-67	9525	'07	-98077
.08	15319	·48	-6844	-88	-8106	•28	-8997	•68	19535	-08	98124
.09	·535 9	· 4 9	6879	-89	-8133	.53	.9012	· 6 9	9545	09	-98169
0.10	0.5398	0.20	0.6912	0.90	o-81 <u>5</u> 9	1.30	0.9032	1.70	0.9554	2.10	0.08214
.II	5438	-51	.6950	.9r	·8186	.31	9049	·71	9564	·II	198257
·12	5478	.52	6985	.92	-8212	'32	·9066	'72	9573	12	198300
.13	.2212	. 53	.2019	.93	·8238	.33	·9082	'73	19582	,13	·98341
·14	'5557	54	.7054	·94	·8264	34	.0099	·74	.0201	·14	·98382
0.15	0.5596	0.55	0.7088	0-95	0.8289	1.35	0.0112	I.75	0.9599	2.12	0.98422
•16	5636	56	.7123	∙96	8315	36	.0131	•76	9608	·16	·98461
·17	-5675	`57	7157	.97	·8340	'37	·9147	.77	·9616	.17	-98500
·18	·5714	-58	.7190	.98	•8365	-38	.9162	·78	9625	18	·98537
.19	.5753	.59	.7224	.99	·8389	-39	9177	.79	.9633	.10	·9857 4
0.20	0.5793	0.60	0.7257	x-00	0.8413	1.40	0.0102	1.80	0.9641	2.20	0.08610
.21	5832	•6л	·7291	·ox	·8438	·4 x	9207	·81	9649	'21	98645
.22	·5871	·62	'7324	.02	·8461	-42	.9222	·82	9656	'22	98679
-23	.5910	·63	'7357	.03	8485	'43	·9236	∙83	.9664	23	.98713
*24	5948	-64	.7389	.04	8508	· 44	.9251	-84	9671	-24	.98745
0.25	0.5987	0.65	0-7422	1.02	0.8531	I 45	0.9265	1.85	0.9678	2.25	0.98778
-26	6026	·66	7454	-06	8554	46	9279	-86	9686	.26	-98809
-27	-6064	-67	-7486	.07	·8577	47	9292	-87	9693	-27	98840
-28	-6103	-68	.7517	-08	8599	48	9306	-88	9699	-28	98870
•29	6141	-69	.7549	.09	8621	49	.6316	-89	9706	-29	·98899
0.30	0.6179	0-70	0.7580	1-10	0.8643	1.20	0.9332	1.90	0.9713	2:30	0.98928
-3T	6217	·71	.7611	·II	-8665	·51	9345	-91	9719	.31	-98956
'32	·6255	72	.7642	·12	-8686	-52	9357	-92	9726	32	-98983
'33	·629 3	73	-7673	·13	-8708	.23	19370	·93	9732	33	.000010
34	·6331	'74	7704	·14	·8729	54	-9382	·94	9738	'34	-99036
0.32	o·6368	0.75	0.7734	1.12	0.8749	1'55	0.9394	1.02	0.9744	2.35	0.99061
-36	6406	76	7764	.16	8770	56	-9406	-96	9750	·36	.99086
37	6443	77	7794	.17	8790	.57	.9418	.97	9756	·37	11166.
-38	6480	78	7823	-18	8810	58	9429	.98	9761	.38	99134
.39	6517	79	7852	.19	8830	. 59	'944I	.99	9767	.39	99158

ii

Continued...

MSM

x	$\Phi(x)$	æ	$\Phi(x)$	æ	$\Phi(x)$	æ	$\Phi(x)$	×	$\Phi(x)$	æ	$\Phi(x)$
2.46	0.99180	2.55	0.99461	2.70	0.99653	2.85	0.99781	3.00	0.99865	3.15	0.99918
·41	99202	-56	'99477	·7I	199664	-86	.99788	·oi	·99869	·16	99921
•42	.99224	157	.99492	.72	99674	-87	.99795	-02	99874	127	99924
'43	99245	.58	99506	.73	-99683	-88	10801	.03	-99878	418	99926
44	99266	·59	99520	-74	99693	-89	99807	-04	99882	.19	99929
2.45	0.99286	2.60	0.99534	2.75	0.99702	2.90	0.99813	3.02	0.99886	3.20	0.99931
-46	.99305	·61	199547	.76	99711	.9z	.99819	.06	99889	-21	99934
.47	99324	62	·99560	.77	99720	-92	99825	-07	-99893	.22	199936
.48	199343	63	.99573	-78	99728	.03	•99831	-08	.99896	.23	-99938
·49	·99361	64	99585	-79	99736	94	•99836	.09	•99900	.24	*99940
2.20.	0.99379	2.65	0-99598	2.80	0.99744	2.95	0.99841	3.10	0.00003	3'25	0.99942
·5x	-99396	-66	•99609	·81	99752	-96	99846	-11	199906	-26	199944
.52	99413	-67	·99621	·82	199760	97	•99851	-12	-99910	-27	99946
·53	99430	-68	·99632	.83	99767	.98	.99856	.13	199913	-28	99948
'54	99446	∙69	-99643	-84	99774	.99	19860	114	99916	-29	99950
2.22	o·99461	2.70	0-99653	2.85	0.99781	3.00	0.99865	3-15	0.99918	3.30	0.99952

The critical table below gives on the left the range of values of x for which $\Phi(x)$ takes the value on the right, correct to the last figure given; in critical cases, take the upper of the two values of $\Phi(x)$ indicated.

3·075 3·105 3·138 0·9991 3·174 0·9992	3·263 0·9994 3·320 0·9995 3·389 0·9996 3·480 0·9997	3'759 0'99992 3'79x 0'99992	3·916 0·99995 3·976 0·99996 4·055 0·99998
3·174 0·9993 3·215 0·9994	3.480 0.9998 3.6x5 0.9999	3.826 0.99993 3.867 0.99994 0.99995	4.055 0.99998 4.173 0.99999 4.417 1.00000

When x > 3.3 the formula $1 - \Phi(x) = \frac{e^{-1x^2}}{x\sqrt{2\pi}} \left[1 - \frac{1}{x^2} + \frac{3}{x^4} - \frac{15}{x^6} + \frac{105}{x^6} \right]$ is very accurate, with relative error less than $945/x^{10}$.

End of Page.

