

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A Aula 24

Operadores Lineares: Autovalores, Autovetores Operadores Diagonalizáveis, Forma de Jordan

Professora: Isamara C. Alves

Data: 03/05/2021

Autovalores e Autovetores

TEOREMA:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K},$

Autovalores e Autovetores

TEOREMA:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K}$, ${\mathcal F}\in {\mathcal L}({\mathcal V})$;

Autovalores e Autovetores

TEOREMA:

Autovalores e Autovetores

TEOREMA:

Autovalores e Autovetores

TEOREMA:

• (i)
$$det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) =$$

Autovalores e Autovetores

TEOREMA:

• (i)
$$det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) = \lambda_1 \lambda_2 \dots \lambda_n =$$

Autovalores e Autovetores

TEOREMA:

• (i)
$$det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) = \lambda_1 \lambda_2 \dots \lambda_n = \prod_{i=1}^n \lambda_i$$
; e

Autovalores e Autovetores

TEOREMA:

- (i) $det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) = \lambda_1 \lambda_2 \dots \lambda_n = \prod_{i=1}^n \lambda_i$; e
- (ii) $tr([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) =$

Autovalores e Autovetores

TEOREMA:

- (i) $det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) = \lambda_1 \lambda_2 \dots \lambda_n = \prod_{i=1}^n \lambda_i$; e
- (ii) $tr([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) = \lambda_1 + \lambda_2 + \ldots + \lambda_n =$

Autovalores e Autovetores

TEOREMA:

- (i) $det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) = \lambda_1 \lambda_2 \dots \lambda_n = \prod_{i=1}^n \lambda_i$; e
- (ii) $tr([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) = \lambda_1 + \lambda_2 + \ldots + \lambda_n = \sum_{i=1}^n \lambda_i$.

Autovalores e Autovetores

TEOREMA:

- (i) $det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) = \lambda_1 \lambda_2 \dots \lambda_n = \prod_{i=1}^n \lambda_i$; e
- (ii) $tr([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) = \lambda_1 + \lambda_2 + \ldots + \lambda_n = \sum_{i=1}^n \lambda_i$.

Autovalores e Autovetores

TEOREMA:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K}$ e

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$;

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$

Autovalores e Autovetores

TEOREMA:

Autovalores e Autovetores

TEOREMA:

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz ortogonal**. Então,

(i) os autovalores reais de \mathcal{F}

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz ortogonal**. Então,

(i) os autovalores reais de ${\mathcal F}$ são iguais a ± 1 ,

Autovalores e Autovetores

TEOREMA:

- (i) os autovalores reais de $\mathcal F$ são iguais a ± 1 ,
- (ii) os autovalores complexos de \mathcal{F}

Autovalores e Autovetores

TEOREMA:

- (i) os **autovalores reais** de \mathcal{F} são iguais a ± 1 ,
- (ii) os **autovalores complexos** de ${\mathcal F}$ possuem módulo igual a 1 e

Autovalores e Autovetores

TEOREMA:

- (i) os **autovalores reais** de \mathcal{F} são iguais a ± 1 ,
- (ii) os **autovalores complexos** de ${\mathcal F}$ possuem módulo igual a 1 e
- (iii) os respectivos **autovetores** de ${\mathcal F}$

Autovalores e Autovetores

TEOREMA:

- (i) os **autovalores reais** de \mathcal{F} são iguais a ± 1 ,
- (ii) os **autovalores complexos** de ${\mathcal F}$ possuem módulo igual a 1 e
- (iii) os respectivos autovetores de \mathcal{F} são ortonormais.

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz ortogonal**. Então,

- (i) os **autovalores reais** de \mathcal{F} são iguais a ± 1 ,
- (ii) os **autovalores complexos** de ${\mathcal F}$ possuem módulo igual a 1 e
- (iii) os respectivos autovetores de \mathcal{F} são ortonormais.

Observe que se, $[\mathcal{F}]_{\beta\nu}^{\beta\nu}$ é uma **matriz ortogonal** então

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz ortogonal**. Então,

- (i) os autovalores reais de \mathcal{F} são iguais a ± 1 ,
- (ii) os **autovalores complexos** de ${\mathcal F}$ possuem módulo igual a 1 e
- (iii) os respectivos autovetores de \mathcal{F} são ortonormais.

Observe que se, $[\mathcal{F}]_{\beta\nu}^{\beta\nu}$ é uma **matriz ortogonal** então $[\mathcal{F}]_{\beta\nu}^{\beta\nu}([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t = \mathcal{I}_n$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz ortogonal**. Então,

- (i) os **autovalores reais** de \mathcal{F} são iguais a ± 1 ,
- (ii) os **autovalores complexos** de ${\mathcal F}$ possuem módulo igual a 1 e
- (iii) os respectivos autovetores de \mathcal{F} são ortonormais.

Observe que se, $[\mathcal{F}]_{\beta\nu}^{\beta\nu}$ é uma **matriz ortogonal** então $[\mathcal{F}]_{\beta\nu}^{\beta\nu}([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t = \mathcal{I}_n$ $det([\mathcal{F}]_{\beta\nu}^{\beta\nu}([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t) = det(\mathcal{I}_n) \Rightarrow$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz ortogonal**. Então,

- (i) os **autovalores reais** de \mathcal{F} são iguais a ± 1 ,
- (ii) os **autovalores complexos** de ${\mathcal F}$ possuem módulo igual a 1 e
- (iii) os respectivos autovetores de \mathcal{F} são ortonormais.

Observe que se, $[\mathcal{F}]_{\beta\nu}^{\beta\nu}$ é uma **matriz ortogonal** então $[\mathcal{F}]_{\beta\nu}^{\beta\nu}([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t = \mathcal{I}_n$ $det([\mathcal{F}]_{\beta\nu}^{\beta\nu}([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t) = det(\mathcal{I}_n) \Rightarrow det([\mathcal{F}]_{\beta\nu}^{\beta\nu})det(([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t) = det(\mathcal{I}_n)$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz ortogonal**. Então,

- (i) os **autovalores reais** de \mathcal{F} são iguais a ± 1 ,
- (ii) os **autovalores complexos** de ${\mathcal F}$ possuem módulo igual a 1 e
- (iii) os respectivos autovetores de \mathcal{F} são ortonormais.

Observe que se, $[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}$ é uma **matriz ortogonal** então $[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})^t = \mathcal{I}_n$ $det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})^t) = det(\mathcal{I}_n) \Rightarrow det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})det(([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})^t) = det(\mathcal{I}_n)$ $det^2([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) = 1 \Rightarrow$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz ortogonal**. Então,

- (i) os **autovalores reais** de \mathcal{F} são iguais a ± 1 ,
- (ii) os **autovalores complexos** de ${\mathcal F}$ possuem módulo igual a 1 e
- (iii) os respectivos autovetores de \mathcal{F} são ortonormais.

Observe que se, $[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}$ é uma **matriz ortogonal** então $[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})^t = \mathcal{I}_n$ $det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})^t) = det(\mathcal{I}_n) \Rightarrow det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})det(([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})^t) = det(\mathcal{I}_n)$ $det^2([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) = 1 \Rightarrow det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}) = \pm 1$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz ortogonal**. Então,

- (i) os **autovalores reais** de \mathcal{F} são iguais a ± 1 ,
- (ii) os **autovalores complexos** de ${\mathcal F}$ possuem módulo igual a 1 e
- (iii) os respectivos autovetores de \mathcal{F} são ortonormais.

Observe que se, $[\mathcal{F}]_{\beta\nu}^{\beta\nu}$ é uma **matriz ortogonal** então $[\mathcal{F}]_{\beta\nu}^{\beta\nu}([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t = \mathcal{I}_n$ $det([\mathcal{F}]_{\beta\nu}^{\beta\nu}([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t) = det(\mathcal{I}_n) \Rightarrow det([\mathcal{F}]_{\beta\nu}^{\beta\nu})det(([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t) = det(\mathcal{I}_n)$ $det^2([\mathcal{F}]_{\beta\nu}^{\beta\nu}) = 1 \Rightarrow det([\mathcal{F}]_{\beta\nu}^{\beta\nu}) = \pm 1$ Pelo teorema anterior: $det([\mathcal{F}]_{\beta\nu}^{\beta\nu}) = \frac{1}{2}$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz ortogonal**. Então,

- (i) os **autovalores reais** de \mathcal{F} são iguais a ± 1 ,
- (ii) os **autovalores complexos** de ${\mathcal F}$ possuem módulo igual a 1 e
- (iii) os respectivos autovetores de \mathcal{F} são ortonormais.

Observe que se, $[\mathcal{F}]_{\beta\nu}^{\beta\nu}$ é uma **matriz ortogonal** então $[\mathcal{F}]_{\beta\nu}^{\beta\nu}([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t = \mathcal{I}_n$ $det([\mathcal{F}]_{\beta\nu}^{\beta\nu}([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t) = det(\mathcal{I}_n) \Rightarrow det([\mathcal{F}]_{\beta\nu}^{\beta\nu})det(([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t) = det(\mathcal{I}_n)$ $det^2([\mathcal{F}]_{\beta\nu}^{\beta\nu}) = 1 \Rightarrow det([\mathcal{F}]_{\beta\nu}^{\beta\nu}) = \pm 1$ Pelo teorema anterior: $det([\mathcal{F}]_{\beta\nu}^{\beta\nu}) = \lambda_1 \lambda_2 \dots \lambda_n =$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz ortogonal**. Então,

- (i) os **autovalores reais** de \mathcal{F} são iguais a ± 1 ,
- (ii) os autovalores complexos de ${\mathcal F}$ possuem módulo igual a 1 e
- (iii) os respectivos autovetores de \mathcal{F} são ortonormais.

Observe que se, $[\mathcal{F}]_{\beta\nu}^{\beta\nu}$ é uma **matriz ortogonal** então $[\mathcal{F}]_{\beta\nu}^{\beta\nu}([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t = \mathcal{I}_n$ $det([\mathcal{F}]_{\beta\nu}^{\beta\nu}([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t) = det(\mathcal{I}_n) \Rightarrow det([\mathcal{F}]_{\beta\nu}^{\beta\nu})det(([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t) = det(\mathcal{I}_n)$ $det^2([\mathcal{F}]_{\beta\nu}^{\beta\nu}) = 1 \Rightarrow det([\mathcal{F}]_{\beta\nu}^{\beta\nu}) = \pm 1$ Pelo teorema anterior: $det([\mathcal{F}]_{\beta\nu}^{\beta\nu}) = \lambda_1 \lambda_2 \dots \lambda_n = \prod_{i=1}^n \lambda_i$.

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada de $\mathcal V$ e $[\mathcal F]_{\beta_{\mathcal V}}^{\beta_{\mathcal V}}$ uma **matriz ortogonal**. Então,

- (i) os **autovalores reais** de \mathcal{F} são iguais a ± 1 ,
- (ii) os autovalores complexos de ${\mathcal F}$ possuem módulo igual a 1 e
- (iii) os respectivos autovetores de \mathcal{F} são ortonormais.

Observe que se, $[\mathcal{F}]_{\beta\nu}^{\beta\nu}$ é uma **matriz ortogonal** então $[\mathcal{F}]_{\beta\nu}^{\beta\nu}([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t = \mathcal{I}_n$ $det([\mathcal{F}]_{\beta\nu}^{\beta\nu}([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t) = det(\mathcal{I}_n) \Rightarrow det([\mathcal{F}]_{\beta\nu}^{\beta\nu})det(([\mathcal{F}]_{\beta\nu}^{\beta\nu})^t) = det(\mathcal{I}_n)$ $det^2([\mathcal{F}]_{\beta\nu}^{\beta\nu}) = 1 \Rightarrow det([\mathcal{F}]_{\beta\nu}^{\beta\nu}) = \pm 1$ Pelo teorema anterior: $det([\mathcal{F}]_{\beta\nu}^{\beta\nu}) = \lambda_1 \lambda_2 \dots \lambda_n = \prod_{i=1}^n \lambda_i$.

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Operadores Lineares

Aplicação: ROTAÇÃO

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada

Operadores Lineares

Aplicação: ROTAÇÃO

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada Rotação em torno do eixo x positivo por um ângulo θ no sentido anti-horário.

Operadores Lineares

Aplicação: ROTAÇÃO

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada Rotação em torno do eixo x positivo por um ângulo θ no sentido anti-horário.

$$\mathcal{F}\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) =$$

Aplicação: Rotação

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada Rotação em torno do eixo x positivo por um ângulo θ no sentido anti-horário.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y\cos\theta - z sen\theta \\ y sen\theta + z cos\theta \end{bmatrix} =$$

Aplicação: Rotação

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada Rotação em torno do eixo x positivo por um ângulo θ no sentido anti-horário.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y\cos\theta - z sen\theta \\ y sen\theta + z cos\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix};$$

Aplicação: Rotação

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada Rotação em torno do eixo x positivo por um ângulo θ no sentido anti-horário.

$$\mathcal{F}\left(\begin{bmatrix} x\\y\\z\end{bmatrix}\right) = \begin{bmatrix} x\\y\cos\theta-z sen\theta\\y sen\theta+z cos\theta\end{bmatrix} = \begin{bmatrix} 1&0&0\\0&cos\theta&-sen\theta\\0&sen\theta&cos\theta\end{bmatrix} \begin{bmatrix} x\\y\\z\end{bmatrix};$$

cuja MATRIZ CANÔNICA:

$$[\mathcal{F}] = egin{bmatrix} 1 & 0 & 0 \ 0 & cos heta & -sen heta \ 0 & sen heta & cos heta \end{bmatrix}$$

Aplicação: Rotação

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada Rotação em torno do eixo x positivo por um ângulo θ no sentido anti-horário.

$$\mathcal{F}\left(\begin{bmatrix} x\\y\\z\end{bmatrix}\right) = \begin{bmatrix} x\\y\cos\theta-z sen\theta\\y sen\theta+z cos\theta\end{bmatrix} = \begin{bmatrix} 1&0&0\\0&cos\theta&-sen\theta\\0&sen\theta&cos\theta\end{bmatrix} \begin{bmatrix} x\\y\\z\end{bmatrix};$$

cuja MATRIZ CANÔNICA:

$$[\mathcal{F}] = egin{bmatrix} 1 & 0 & 0 \ 0 & cos heta & -sen heta \ 0 & sen heta & cos heta \end{bmatrix}$$

Autovalores e Autovetores

Considerando o operador $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$

Autovalores e Autovetores

Autovalores e Autovetores

Assim,
$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix})$$

Autovalores e Autovetores

Assim,
$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1 + cos\theta + cos\theta$$

Autovalores e Autovetores

Assim,
$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1 + cos\theta + cos\theta = 1 + 2cos\theta$$
. (1)

Autovalores e Autovetores

Assim,
$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1 + cos\theta + cos\theta = 1 + 2cos\theta$$
. (1) e
$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1.cos\theta.cos\theta$$

Autovalores e Autovetores

Assim,
$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1 + cos\theta + cos\theta = 1 + 2cos\theta$$
. (1) e
$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1.cos\theta.cos\theta = cos^2\theta$$
. (2)

Assim,
$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1 + cos\theta + cos\theta = 1 + 2cos\theta$$
. (1) e
$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1.cos\theta.cos\theta = cos^2\theta$$
. (2) Por (1) e (2):

Assim,
$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1 + cos\theta + cos\theta = 1 + 2cos\theta$$
. (1) e
$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1.cos\theta.cos\theta = cos^2\theta$$
. (2) Por (1) e (2):
$$(\lambda_1 + \lambda_2 + \lambda_3) = (\lambda_1 + \lambda_2 + \lambda_3)$$

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = \end{cases}$$

Assim,
$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1 + cos\theta + cos\theta = 1 + 2cos\theta$$
. (1) e
$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1.cos\theta.cos\theta = cos^2\theta$$
. (2) Por (1) e (2):
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) \end{cases}$$

Considerando o operador $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ Rotação em torno do eixo x positivo por um ÂNGULO θ NO SENTIDO ANTI-HORÁRIO.

Assim,
$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1 + cos\theta + cos\theta = 1 + 2cos\theta$$
. (1) e
$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1.cos\theta.cos\theta = cos^2\theta$$
. (2) Por (1) e (2):
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = 1 + 2cos\theta \end{cases}$$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Assim,
$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1 + cos\theta + cos\theta = 1 + 2cos\theta$$
. (1) e
$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1.cos\theta.cos\theta = cos^2\theta$$
. (2) Por (1) e (2):

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = 1 + 2\cos\theta \\ \lambda_1 \lambda_2 \lambda_3 = \end{cases}$$

Assim,
$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1 + cos\theta + cos\theta = 1 + 2cos\theta$$
. (1) e
$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1.cos\theta.cos\theta = cos^2\theta$$
. (2) Por (1) e (2):
$$(\lambda_1 + \lambda_2 + \lambda_3 = tr([F]) = 1 + 2cos\theta$$

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = 1 + 2cos\theta \\ \lambda_1 \lambda_2 \lambda_3 = det([\mathcal{F}]) \end{cases}$$

Assim,
$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1 + cos\theta + cos\theta = 1 + 2cos\theta$$
. (1) e
$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1.cos\theta.cos\theta = cos^2\theta$$
. (2) Por (1) e (2):

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = 1 + 2\cos\theta \\ \lambda_1 \lambda_2 \lambda_3 = det([\mathcal{F}]) = \cos^2\theta \end{cases}$$

Assim,
$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1 + cos\theta + cos\theta = 1 + 2cos\theta$$
. (1) e
$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sen\theta \\ 0 & sen\theta & cos\theta \end{bmatrix}) = 1.cos\theta.cos\theta = cos^2\theta$$
. (2) Por (1) e (2):

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = 1 + 2\cos\theta \\ \lambda_1 \lambda_2 \lambda_3 = det([\mathcal{F}]) = \cos^2\theta \end{cases}$$

Autovalores e Autovetores

Assim, para $\theta=\pi$

Autovalores e Autovetores

Assim, para
$$\theta=\pi$$

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1$$
 (1)

Autovalores e Autovetores

Assim, para $\theta=\pi$

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1 (1)$$

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix})$$

Autovalores e Autovetores

Assim, para
$$\theta=\pi$$

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1$$
 (1)

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = 1. (2)$$

Autovalores e Autovetores

Assim, para $\theta=\pi$

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1 (1)$$

е

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = 1. (2)$$

Por (1) e (2):

Assim, para
$$\theta=\pi$$

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1 \ (1)$$

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = 1. (2)$$

Por (1) e (2):
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 1 \end{cases}$$

Assim, para
$$\theta=\pi$$

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1 \ (1)$$

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = 1. (2)$$

Por (1) e (2):
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) \end{cases}$$

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1 (1)$$

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = 1. (2)$$

Por (1) e (2):
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = -1 \end{cases}$$

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1 (1)$$

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = 1. (2)$$

Por (1) e (2):
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = -1 \\ \lambda_1 \lambda_2 \lambda_3 = \end{cases}$$

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1 (1)$$

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = 1. (2)$$

Por (1) e (2):
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = -1 \\ \lambda_1 \lambda_2 \lambda_3 = det([\mathcal{F}]) \end{cases}$$

Autovalores e Autovetores

Assim, para $\theta=\pi$

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1 (1)$$

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = 1. (2)$$

Por (1) e (2):
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = -1 \\ \lambda_1 \lambda_2 \lambda_3 = det([\mathcal{F}]) = 1 \end{cases}$$

Autovalores e Autovetores

Assim, para $\theta = \pi$

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1 (1)$$

е

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = 1. (2)$$

Por (1) e (2):
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = -1 \\ \lambda_1 \lambda_2 \lambda_3 = det([\mathcal{F}]) = 1 \end{cases}$$
$$\lambda_1 = 1 \text{ e } \lambda_2 = \lambda_3 = -1.$$

e a base ortonormal;

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1 \ (1)$$

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = 1. (2)$$

Por (1) e (2):
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = -1 \\ \lambda_1 \lambda_2 \lambda_3 = det([\mathcal{F}]) = 1 \end{cases}$$
$$\lambda_1 = 1 \text{ e } \lambda_2 = \lambda_3 = -1.$$
e a base **ortonormal**; $\beta_{\mathbb{P}^3} = \{e_1, e_2, e_3\}$

Autovalores e Autovetores

Assim, para $\theta = \pi$

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1 \ (1)$$

е

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = 1. (2)$$

Por (1) e (2):
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = -1 \\ \lambda_1 \lambda_2 \lambda_3 = det([\mathcal{F}]) = 1 \end{cases}$$
$$\lambda_1 = 1 \text{ e } \lambda_2 = \lambda_3 = -1.$$

e a base **ortonormal**; $eta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$ é formada por autovetores de $\mathcal F$

Autovalores e Autovetores

Assim, para $\theta = \pi$

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1 \ (1)$$

е

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = 1. (2)$$

Por (1) e (2):
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = -1 \\ \lambda_1 \lambda_2 \lambda_3 = det([\mathcal{F}]) = 1 \end{cases}$$
$$\lambda_1 = 1 \text{ e } \lambda_2 = \lambda_3 = -1.$$

e a base **ortonormal**; $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$ é formada por autovetores de \mathcal{F} associados aos respectivos autovalores:

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1 \ (1)$$

е

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = 1. (2)$$

Por (1) e (2):
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = -1 \\ \lambda_1 \lambda_2 \lambda_3 = det([\mathcal{F}]) = 1 \end{cases}$$
$$\lambda_1 = 1 \text{ e } \lambda_2 = \lambda_3 = -1.$$

e a base **ortonormal**; $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$ é formada por autovetores de \mathcal{F} associados aos respectivos autovalores: $\lambda_1 = 1$ e $\lambda_2 = \lambda_3 = -1$.

$$tr(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = -1 \ (1)$$

е

$$det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}) = 1. (2)$$

Por (1) e (2):
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = tr([\mathcal{F}]) = -1 \\ \lambda_1 \lambda_2 \lambda_3 = det([\mathcal{F}]) = 1 \end{cases}$$
$$\lambda_1 = 1 \text{ e } \lambda_2 = \lambda_3 = -1.$$

e a base **ortonormal**; $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$ é formada por autovetores de \mathcal{F} associados aos respectivos autovalores: $\lambda_1 = 1$ e $\lambda_2 = \lambda_3 = -1$.

Autovalores e Autovetores

TEOREMA:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K}$ e

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$;

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$

Autovalores e Autovetores

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$; e sejam $\lambda \in \mathbb{K}$ um autovalor de \mathcal{F} e $v \in \mathcal{V}$ um **autovetor** de \mathcal{F} associado ao autovalor λ .

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então,

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um autovetor de $\mathcal F$ associado ao autovalor λ . Então, $\forall \alpha\in\mathbb K$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um **autovetor** de $\mathcal F$ associado ao autovalor λ .

Então, $\forall \alpha \in \mathbb{K} \Rightarrow \alpha \lambda$

Autovalores e Autovetores

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$; e sejam $\lambda \in \mathbb{K}$ um autovalor de \mathcal{F} e $v \in \mathcal{V}$ um autovetor de \mathcal{F} associado ao autovalor λ .

Então, $\forall \alpha \in \mathbb{K} \Rightarrow \alpha \lambda$ é um autovalor do operador linear $\alpha \mathcal{F}$

Autovalores e Autovetores

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$; e sejam $\lambda \in \mathbb{K}$ um autovalor de \mathcal{F} e $v \in \mathcal{V}$ um **autovetor** de \mathcal{F} associado ao autovalor λ .

Então, $\forall \alpha \in \mathbb{K} \Rightarrow \alpha \lambda$ é um autovalor do operador linear $\alpha \mathcal{F}$ correspondente ao **autovetor** v.

Autovalores e Autovetores

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$; e sejam $\lambda \in \mathbb{K}$ um autovalor de \mathcal{F} e $v \in \mathcal{V}$ um autovetor de \mathcal{F} associado ao autovalor λ . Então, $\forall \alpha \in \mathbb{K} \Rightarrow \alpha \lambda$ é um autovalor do operador linear $\alpha \mathcal{F}$ correspondente ao autovetor v.

Isto é,

Autovalores e Autovetores

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$; e sejam $\lambda \in \mathbb{K}$ um autovalor de \mathcal{F} e $v \in \mathcal{V}$ um autovalor de \mathcal{F} associado ao autovalor λ . Então, $\forall \alpha \in \mathbb{K} \Rightarrow \alpha \lambda$ é um autovalor do operador linear $\alpha \mathcal{F}$ correspondente ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F}

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um **autovetor** de $\mathcal F$ associado ao autovalor λ . Então, $\forall \alpha\in\mathbb K\Rightarrow \alpha\lambda$ é um autovalor do operador linear $\alpha\mathcal F$ correspondente ao **autovetor** v.

Isto é, considerando λ um autovalor de \mathcal{F} e γ um autovalor de $\alpha \mathcal{F}$ temos,

Autovalores e Autovetores

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$; e sejam $\lambda \in \mathbb{K}$ um autovalor de \mathcal{F} e $v \in \mathcal{V}$ um autovetor de \mathcal{F} associado ao autovalor λ . Então, $\forall \alpha \in \mathbb{K} \Rightarrow \alpha \lambda$ é um autovalor do operador linear $\alpha \mathcal{F}$ correspondente ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} e γ um autovalor de $\alpha \mathcal{F}$ temos, $\mathcal{F}(v) = \lambda v$ e $(\alpha \mathcal{F})(v) = \gamma v \Rightarrow$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um **autovetor** de $\mathcal F$ associado ao autovalor λ . Então, $\forall \alpha\in\mathbb K\Rightarrow \alpha\lambda$ é um autovalor do operador linear $\alpha\mathcal F$ correspondente ao **autovetor** v.

Isto é, considerando λ um autovalor de \mathcal{F} e γ um autovalor de $\alpha \mathcal{F}$ temos, $\mathcal{F}(v) = \lambda v$ e $(\alpha \mathcal{F})(v) = \gamma v \Rightarrow \alpha(\mathcal{F}(v)) = \gamma v \Rightarrow$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um **autovetor** de $\mathcal F$ associado ao autovalor λ . Então, $\forall \alpha\in\mathbb K\Rightarrow \alpha\lambda$ é um autovalor do operador linear $\alpha\mathcal F$ correspondente ao **autovetor** v.

Isto é, considerando λ um autovalor de \mathcal{F} e γ um autovalor de $\alpha \mathcal{F}$ temos, $\mathcal{F}(v) = \lambda v$ e $(\alpha \mathcal{F})(v) = \gamma v \Rightarrow \alpha(\mathcal{F}(v)) = \gamma v \Rightarrow \alpha(\lambda v) = \gamma v \Rightarrow$

Autovalores e Autovetores

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$; e sejam $\lambda\in\mathbb K$ um autovalor de $\mathcal F$ e $v\in\mathcal V$ um **autovetor** de $\mathcal F$ associado ao autovalor λ . Então, $\forall \alpha\in\mathbb K\Rightarrow \alpha\lambda$ é um autovalor do operador linear $\alpha\mathcal F$ correspondente ao **autovetor** v.

Isto é, considerando λ um autovalor de \mathcal{F} e γ um autovalor de $\alpha \mathcal{F}$ temos, $\mathcal{F}(v) = \lambda v$ e $(\alpha \mathcal{F})(v) = \gamma v \Rightarrow \alpha(\mathcal{F}(v)) = \gamma v \Rightarrow \alpha(\lambda v) = \gamma v \Rightarrow \alpha \lambda = \gamma \Rightarrow$

Autovalores e Autovetores

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$; e sejam $\lambda \in \mathbb{K}$ um autovalor de \mathcal{F} e $v \in \mathcal{V}$ um autovalor de \mathcal{F} associado ao autovalor λ . Então, $\forall \alpha \in \mathbb{K} \Rightarrow \alpha \lambda$ é um autovalor do operador linear $\alpha \mathcal{F}$ correspondente ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} e γ um autovalor de $\alpha \mathcal{F}$ temos, $\mathcal{F}(v) = \lambda v \text{ e } (\alpha \mathcal{F})(v) = \gamma v \Rightarrow \alpha(\mathcal{F}(v)) = \gamma v \Rightarrow \alpha(\lambda v) = \gamma v \Rightarrow \alpha\lambda = \gamma \Rightarrow (\alpha \mathcal{F})(v) = \alpha\lambda v.$

Autovalores e Autovetores

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$; e sejam $\lambda \in \mathbb{K}$ um autovalor de \mathcal{F} e $v \in \mathcal{V}$ um autovalor de \mathcal{F} associado ao autovalor λ . Então, $\forall \alpha \in \mathbb{K} \Rightarrow \alpha \lambda$ é um autovalor do operador linear $\alpha \mathcal{F}$ correspondente ao autovetor v.

Isto é, considerando λ um autovalor de \mathcal{F} e γ um autovalor de $\alpha \mathcal{F}$ temos, $\mathcal{F}(v) = \lambda v \text{ e } (\alpha \mathcal{F})(v) = \gamma v \Rightarrow \alpha(\mathcal{F}(v)) = \gamma v \Rightarrow \alpha(\lambda v) = \gamma v \Rightarrow \alpha\lambda = \gamma \Rightarrow (\alpha \mathcal{F})(v) = \alpha\lambda v.$

Polinômio Minimal

DEFINIÇÃO:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita, $(\mathit{dim}(\mathcal V) = \mathit{n})$,

Polinômio Minimal

DEFINIÇÃO:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita, $(\mathit{dim}({\mathcal V}) = \mathit{n})$, sobre o corpo ${\mathbb K}$,

Polinômio Minimal

DEFINIÇÃO:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita, $(dim(\mathcal V)=n)$, sobre o corpo $\mathbb K$, $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada, e

Polinômio Minimal

DEFINIÇÃO:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita, $(dim(\mathcal V)=n)$, sobre o corpo $\mathbb K$, $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada, e $\mathcal F\in\mathcal L(\mathcal V)$.

Polinômio Minimal

DEFINIÇÃO:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita, $(dim(\mathcal V)=n)$, sobre o corpo $\mathbb K$, $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada, e $\mathcal F\in\mathcal L(\mathcal V)$. Denominamos,

Polinômio Minimal

DEFINIÇÃO:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita, $(dim(\mathcal V)=n)$, sobre o corpo $\mathbb K$, $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada, e $\mathcal F\in\mathcal L(\mathcal V)$. Denominamos, POLINÔMIO MINIMAL de $\mathcal F$

Polinômio Minimal

DEFINIÇÃO:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita, $(dim(\mathcal V)=n)$, sobre o corpo $\mathbb K$, $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada, e $\mathcal F\in\mathcal L(\mathcal V)$. Denominamos, Polinômio Minimal de $\mathcal F$ e denotamos por,

Polinômio Minimal

DEFINIÇÃO:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} , $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada, e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Denominamos, Polinômio Minimal de \mathcal{F} e denotamos por, $m_{\mathcal{F}}(\lambda)$,

Polinômio Minimal

DEFINIÇÃO:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} , $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada, e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Denominamos, Polinômio Minimal de \mathcal{F} e denotamos por, $m_{\mathcal{F}}(\lambda)$, o polinômio de **menor grau** tal que

Polinômio Minimal

DEFINIÇÃO:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} , $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada, e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Denominamos, Polinômio Minimal de \mathcal{F} e denotamos por, $m_{\mathcal{F}}(\lambda)$, o polinômio de **menor grau** tal que

$$m_{\mathcal{F}}([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})=0.$$

Polinômio Minimal

DEFINIÇÃO:

Sejam \mathcal{V} um espaço vetorial de dimensão finita, $(dim(\mathcal{V}) = n)$, sobre o corpo \mathbb{K} , $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada, e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Denominamos, Polinômio Minimal de \mathcal{F} e denotamos por, $m_{\mathcal{F}}(\lambda)$, o polinômio de **menor grau** tal que

$$m_{\mathcal{F}}([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})=0.$$

Polinômio Minimal

TEOREMA:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K},$

Polinômio Minimal

TEOREMA:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K}$, ${\mathcal F}\in {\mathcal L}({\mathcal V})$, e

Polinômio Minimal

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, $\mathcal F\in\mathcal L(\mathcal V)$, e $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada.

Polinômio Minimal

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, $\mathcal F\in\mathcal L(\mathcal V)$, e $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada. Então, $\mathcal F$ é <code>DIAGONALIZÁVEL</code>

Polinômio Minimal

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, $\mathcal F\in\mathcal L(\mathcal V)$, e $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada.

Então, ${\mathcal F}$ é diagonalizável se, e somente se, o polinômio minimal de ${\mathcal F}$

Polinômio Minimal

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, $\mathcal F\in\mathcal L(\mathcal V)$, e $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada.

Então, ${\mathcal F}$ é ${\tt DIAGONALIZÁVEL}$ se, e somente se, o ${\tt POLINÔMIO}$ ${\tt MINIMAL}$ de ${\mathcal F}$ é da forma

$$m_{\mathcal{F}}(\lambda) =$$

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, $\mathcal F\in\mathcal L(\mathcal V)$, e $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada.

Então, ${\mathcal F}$ é DIAGONALIZÁVEL se, e somente se, o POLINÔMIO MINIMAL de ${\mathcal F}$ é da forma

$$m_{\mathcal{F}}(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_r);$$

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, $\mathcal F\in\mathcal L(\mathcal V)$, e $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada.

Então, ${\mathcal F}$ é DIAGONALIZÁVEL se, e somente se, o POLINÔMIO MINIMAL de ${\mathcal F}$ é da forma

$$m_{\mathcal{F}}(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_r);$$

onde, $\lambda_i \neq \lambda_j$, se $i \neq j$.

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, $\mathcal F\in\mathcal L(\mathcal V)$, e $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada.

Então, ${\mathcal F}$ é DIAGONALIZÁVEL se, e somente se, o POLINÔMIO MINIMAL de ${\mathcal F}$ é da forma

$$m_{\mathcal{F}}(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_r);$$

onde, $\lambda_i \neq \lambda_j$, se $i \neq j$.

Polinômio Minimal

TEOREMA(Cayley-Hamilton):

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} ,

Polinômio Minimal

TEOREMA(Cayley-Hamilton):

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} , $\mathcal{F} \in \mathcal{L}(\mathcal{V})$, e

Polinômio Minimal

TEOREMA(Cayley-Hamilton):

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, $\mathcal F\in\mathcal L(\mathcal V)$, e $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada.

Polinômio Minimal

TEOREMA(Cayley-Hamilton):

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, $\mathcal F\in\mathcal L(\mathcal V)$, e $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada. Então,

Polinômio Minimal

TEOREMA(Cayley-Hamilton):

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} , $\mathcal{F} \in \mathcal{L}(\mathcal{V})$, e $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada.

Então, o operador linear \mathcal{F} é um ZERO

Polinômio Minimal

TEOREMA(Cayley-Hamilton):

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} , $\mathcal{F} \in \mathcal{L}(\mathcal{V})$, e $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada.

Então, o operador linear \mathcal{F} é um ZERO de seu polinômio característico, $\mathcal{P}_{\mathcal{F}}(\lambda)$,

Polinômio Minimal

TEOREMA(Cayley-Hamilton):

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} , $\mathcal{F} \in \mathcal{L}(\mathcal{V})$, e $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada.

Então, o operador linear \mathcal{F} é um ZERO de seu polinômio característico, $\mathcal{P}_{\mathcal{F}}(\lambda)$, ou seja,

TEOREMA(Cayley-Hamilton):

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} , $\mathcal{F} \in \mathcal{L}(\mathcal{V})$, e $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada.

Então, o operador linear \mathcal{F} é um ZERO de seu polinômio característico, $\mathcal{P}_{\mathcal{F}}(\lambda)$, ou seja,

$$\mathcal{P}_{\mathcal{F}}([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})=0.$$

TEOREMA(Cayley-Hamilton):

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} , $\mathcal{F} \in \mathcal{L}(\mathcal{V})$, e $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada.

Então, o operador linear \mathcal{F} é um ZERO de seu polinômio característico, $\mathcal{P}_{\mathcal{F}}(\lambda)$, ou seja,

$$\mathcal{P}_{\mathcal{F}}([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})=0.$$

Polinômio Minimal

TEOREMA:

Sejam ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K}$ e

Polinômio Minimal

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$.

Polinômio Minimal

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então,

Polinômio Minimal

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, os polinômios característico, $\mathcal{P}_{\mathcal{F}}(\lambda)$,

Polinômio Minimal

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, os polinômios característico, $\mathcal{P}_{\mathcal{F}}(\lambda)$, e minimal, $m_{\mathcal{F}}(\lambda)$,

Polinômio Minimal

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, os polinômios característico, $\mathcal{P}_{\mathcal{F}}(\lambda)$, e minimal, $m_{\mathcal{F}}(\lambda)$, possuem as mesmas raízes,

Polinômio Minimal

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Então, os polinômios característico, $\mathcal{P}_{\mathcal{F}}(\lambda)$, e minimal, $m_{\mathcal{F}}(\lambda)$, possuem as mesmas raízes, a menos da multiplicidade de cada raiz.

Polinômio Minimal

TEOREMA:

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Então, os polinômios característico, $\mathcal{P}_{\mathcal{F}}(\lambda)$, e minimal, $m_{\mathcal{F}}(\lambda)$, possuem as mesmas raízes, a menos da multiplicidade de cada raiz.

Note que,

$$m_{\mathcal{F}}([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})=0.$$

Polinômio Minimal

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, os polinômios característico, $\mathcal{P}_{\mathcal{F}}(\lambda)$, e minimal, $m_{\mathcal{F}}(\lambda)$, possuem as mesmas raízes, a menos da multiplicidade de cada raiz.

Note que,

$$m_{\mathcal{F}}([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})=0.$$

е

$$\mathcal{P}_{\mathcal{F}}([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})=0.$$

Polinômio Minimal

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Então, os polinômios característico, $\mathcal{P}_{\mathcal{F}}(\lambda)$, e minimal, $m_{\mathcal{F}}(\lambda)$, possuem as mesmas raízes, a menos da multiplicidade de cada raiz.

Note que,

$$m_{\mathcal{F}}([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})=0.$$

е

$$\mathcal{P}_{\mathcal{F}}([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}})=0.$$

Operador Linear Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e

Operador Linear Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$

Operador Linear Operador Diagonalizável

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0$$

Operador Diagonalizável

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0$$

Operador Diagonalizável

$$|\mathcal{P}_{\mathcal{F}}(\lambda) = 0| \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow$$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$|\mathcal{P}_{\mathcal{F}}(\lambda) = 0| \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0$$

Operador Diagonalizável

$$\underline{\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^3}\ \mathsf{e}\ \mathsf{seja}\ \mathcal{F} \in \mathcal{L}(\mathbb{R}^3)\ \mathsf{tal}\ \mathsf{que};\ \mathcal{F}(x,y,z) = (3x,3y,3z).$$

$$|\mathcal{P}_{\mathcal{F}}(\lambda) = 0| \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3$$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$|\mathcal{P}_{\mathcal{F}}(\lambda) = 0| \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow$$

Operador Diagonalizável

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 0$$

Operador Diagonalizável

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

Operador Diagonalizável

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$
então.

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

então.

$$\mathcal{P}_1(\lambda) = (3 - \lambda)$$

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0$$
 \Rightarrow $(3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$

então.

$$\mathcal{P}_1(\lambda) = (3 - \lambda)$$

$$\mathcal{P}_2(\lambda) = (3 - \lambda)^2$$

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

então.

$$\mathcal{P}_1(\lambda) = (3 - \lambda)$$

$$\mathcal{P}_2(\lambda) = (3 - \lambda)^2$$

$$\mathcal{P}_3(\lambda) = (3 - \lambda)^3$$

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

então.

$$\mathcal{P}_1(\lambda) = (3 - \lambda)$$

$$\mathcal{P}_2(\lambda) = (3 - \lambda)^2$$

$$\mathcal{P}_3(\lambda) = (3 - \lambda)^3$$

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

então.

$$\mathcal{P}_1(\lambda) = (3 - \lambda)$$

$$\mathcal{P}_2(\lambda) = (3 - \lambda)^2$$

$$\mathcal{P}_3(\lambda) = (3 - \lambda)^3$$

$$\mathcal{P}_1([\mathcal{F}]) =$$

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

então.

$$\mathcal{P}_1(\lambda) = (3 - \lambda)$$

$$\mathcal{P}_2(\lambda) = (3 - \lambda)^2$$

$$\mathcal{P}_3(\lambda) = (3 - \lambda)^3$$

$$\mathcal{P}_1([\mathcal{F}]) = (3\mathcal{I}_3 - [\mathcal{F}])$$

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

então.

$$\mathcal{P}_1(\lambda) = (3 - \lambda)$$

$$\mathcal{P}_2(\lambda) = (3 - \lambda)^2$$

$$\mathcal{P}_3(\lambda) = (3 - \lambda)^3$$

$$\mathcal{P}_1([\mathcal{F}]) = (3\mathcal{I}_3 - [\mathcal{F}]) = 0$$

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

então.

$$\mathcal{P}_1(\lambda) = (3 - \lambda)$$

$$\mathcal{P}_2(\lambda) = (3 - \lambda)^2$$

$$\mathcal{P}_3(\lambda) = (3 - \lambda)^3$$

$$\mathcal{P}_1([\mathcal{F}]) = (3\mathcal{I}_3 - [\mathcal{F}]) = 0$$

$$\Rightarrow m_{\mathcal{F}}(\lambda) = \mathcal{P}_1([\mathcal{F}])$$

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

então.

$$\mathcal{P}_1(\lambda) = (3 - \lambda)$$

$$\mathcal{P}_2(\lambda) = (3 - \lambda)^2$$

$$\mathcal{P}_3(\lambda) = (3 - \lambda)^3$$

$$\mathcal{P}_1([\mathcal{F}]) = (3\mathcal{I}_3 - [\mathcal{F}]) = 0$$

$$\Rightarrow m_{\mathcal{F}}(\lambda) = \mathcal{P}_1([\mathcal{F}]) \Rightarrow \mathcal{F}$$
 é um operador Diagonalizável

Operador Diagonalizável

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

então.

$$\mathcal{P}_1(\lambda) = (3 - \lambda)$$

$$\mathcal{P}_2(\lambda) = (3 - \lambda)^2$$

$$\mathcal{P}_3(\lambda) = (3 - \lambda)^3$$

$$\mathcal{P}_1([\mathcal{F}]) = (3\mathcal{I}_3 - [\mathcal{F}]) = 0$$

$$\Rightarrow m_{\mathcal{F}}(\lambda) = \mathcal{P}_1([\mathcal{F}]) \Rightarrow \mathcal{F}$$
 é um operador Diagonalizável

Polinômio Minimal

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e

Polinômio Minimal

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$

Polinômio Minimal

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$.

Polinômio Minimal

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Polinômio Minimal

EXEMPLO:

Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL. Determinamos.

Polinômio Minimal

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - 2)$$

Polinômio Minimal

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - 2)(\lambda - 2)$$

Polinômio Minimal

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - 2)(\lambda - 2)(\lambda - 4)$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - 2)(\lambda - 2)(\lambda - 4)$$

$$\lambda_1 = \lambda_2 = 2;$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - 2)(\lambda - 2)(\lambda - 4)$$

$$\lambda_1 = \lambda_2 = 2; \lambda_3 = 4$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - 2)(\lambda - 2)(\lambda - 4)$$

$$\lambda_1 = \lambda_2 = 2$$
; $\lambda_3 = 4$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - 2)(\lambda - 2)(\lambda - 4)$$

$$\lambda_1 = \lambda_2 = 2$$
; $\lambda_3 = 4$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - 2)(\lambda - 2)(\lambda - 4)$$

$$\lambda_1 = \lambda_2 = 2; \lambda_3 = 4$$
 $m_2(\lambda_1 = \lambda_2) =$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - 2)(\lambda - 2)(\lambda - 4)$$

$$\lambda_1 = \lambda_2 = 2; \lambda_3 = 4$$

$$m_a(\lambda_1 = \lambda_2) = 2; \quad m_a(\lambda_3) =$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - 2)(\lambda - 2)(\lambda - 4)$$

$$\lambda_1 = \lambda_2 = 2; \lambda_3 = 4$$

$$m_a(\lambda_1 = \lambda_2) = 2; \ m_a(\lambda_3) = 1.$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - 2)(\lambda - 2)(\lambda - 4)$$

OS AUTOVALORES de F.

$$\lambda_1 = \lambda_2 = 2$$
; $\lambda_3 = 4$

$$m_a(\lambda_1 = \lambda_2) = 2; \ m_a(\lambda_3) = 1.$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - 2)(\lambda - 2)(\lambda - 4)$$

OS AUTOVALORES de F.

$$\lambda_1 = \lambda_2 = 2$$
; $\lambda_3 = 4$

$$m_a(\lambda_1 = \lambda_2) = 2; \quad m_a(\lambda_3) = 1.$$

$$\mathcal{P}_1(\lambda) = (\lambda - 2)(\lambda - 4)$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - 2)(\lambda - 2)(\lambda - 4)$$

os AUTOVALORES de \mathcal{F} :

$$\lambda_1 = \lambda_2 = 2$$
; $\lambda_3 = 4$

$$m_a(\lambda_1 = \lambda_2) = 2; \ m_a(\lambda_3) = 1.$$

$$\mathcal{P}_1(\lambda) = (\lambda - 2)(\lambda - 4)$$

$$\mathcal{P}_2(\lambda) = (\lambda - 2)^2(\lambda - 4)$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - 2)(\lambda - 2)(\lambda - 4)$$

os AUTOVALORES de \mathcal{F} :

$$\lambda_1 = \lambda_2 = 2$$
; $\lambda_3 = 4$

$$m_a(\lambda_1 = \lambda_2) = 2; \ m_a(\lambda_3) = 1.$$

$$\mathcal{P}_1(\lambda) = (\lambda - 2)(\lambda - 4)$$

$$\mathcal{P}_2(\lambda) = (\lambda - 2)^2(\lambda - 4)$$

Polinômio Minimal

EXEMPLO:

Polinômio Minimal

EXEMPLO:

$$\mathcal{P}_1([\mathcal{F}]) =$$

Polinômio Minimal

EXEMPLO:

$$\mathcal{P}_1([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_3)([\mathcal{F}] - 4\mathcal{I}_3)$$

Polinômio Minimal

EXEMPLO:

$$\mathcal{P}_{1}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})([\mathcal{F}] - 4\mathcal{I}_{3})$$

$$\begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Polinômio Minimal

EXEMPLO:

$$\mathcal{P}_{1}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})([\mathcal{F}] - 4\mathcal{I}_{3}) \\
\begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix}$$

$$\begin{split} &\mathcal{P}_{1}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})([\mathcal{F}] - 4\mathcal{I}_{3}) \\ & \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{pmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \\ & = \begin{pmatrix} \begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} -2 & -1 & 1 \\ 0 & -1 & -1 \\ 2 & 1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2 & 2 & 0 \\ -2 & -2 & 0 \\ -2 & -2 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \end{split}$$

$$\begin{split} &\mathcal{P}_{1}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})([\mathcal{F}] - 4\mathcal{I}_{3}) \\ & \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \\ & = \begin{pmatrix} \begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} -2 & -1 & 1 \\ 0 & -1 & -1 \\ 2 & 1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2 & 2 & 0 \\ -2 & -2 & 0 \\ -2 & -2 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \end{split}$$

$$\mathcal{P}_2([\mathcal{F}]) =$$

$$\mathcal{P}_{1}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})([\mathcal{F}] - 4\mathcal{I}_{3})$$

$$\begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} \begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} -2 & -1 & 1 \\ 0 & -1 & -1 \\ 2 & 1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2 & 2 & 0 \\ -2 & -2 & 0 \\ -2 & -2 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathcal{P}_{2}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})^{2}([\mathcal{F}] - 4\mathcal{I}_{3})$$

$$\mathcal{P}_2([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_3)^2([\mathcal{F}] - 4\mathcal{I}_3$$

$$\begin{split} &\mathcal{P}_{1}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})([\mathcal{F}] - 4\mathcal{I}_{3}) \\ & \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{pmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \\ & = \begin{pmatrix} \begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} -2 & -1 & 1 \\ 0 & -1 & -1 \\ 2 & 1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2 & 2 & 0 \\ -2 & -2 & 0 \\ -2 & -2 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ & \mathcal{P}_{2}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})^{2}([\mathcal{F}] - 4\mathcal{I}_{3}) \\ \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix}^{2} \\ & \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix}^{2} \end{split}$$

$$\begin{split} &\mathcal{P}_{1}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})([\mathcal{F}] - 4\mathcal{I}_{3}) \\ & \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{pmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \\ & = \begin{pmatrix} \begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} -2 & -1 & 1 \\ 0 & -1 & -1 \\ 2 & 1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2 & 2 & 0 \\ -2 & -2 & 0 \\ -2 & -2 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ & \mathcal{P}_{2}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})^{2}([\mathcal{F}] - 4\mathcal{I}_{3}) \\ \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix}^{2} \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \end{split}$$

Verificando se os polinômios anulam a matriz canônica:

$$\begin{aligned} &\mathcal{P}_{1}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})([\mathcal{F}] - 4\mathcal{I}_{3}) \\ & \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{pmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \\ & = \begin{pmatrix} \begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} -2 & -1 & 1 \\ 0 & -1 & -1 \\ 2 & 1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2 & 2 & 0 \\ -2 & -2 & 0 \\ -2 & -2 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ & \mathcal{P}_{2}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})^{2}([\mathcal{F}] - 4\mathcal{I}_{3}) \\ & \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix}^{2} \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Verificando se os polinômios anulam a matriz canônica:

$$\mathcal{P}_{1}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})([\mathcal{F}] - 4\mathcal{I}_{3})$$

$$\begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} \begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} -2 & -1 & 1 \\ 0 & -1 & -1 \\ 2 & 1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2 & 2 & 0 \\ -2 & -2 & 0 \\ -2 & -2 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathcal{P}_{2}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})^{2}([\mathcal{F}] - 4\mathcal{I}_{3})$$

$$\begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix}^{2} \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \mathcal{P}_{2}([\mathcal{F}]) \text{ \'e o polinômio minimal}$$

14 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Verificando se os polinômios anulam a matriz canônica:

$$\begin{split} &\mathcal{P}_{1}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})([\mathcal{F}] - 4\mathcal{I}_{3}) \\ &\left(\begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 2\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\right) \left(\begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\right) \\ &= \left(\begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix}\right) \left(\begin{bmatrix} -2 & -1 & 1 \\ 0 & -1 & -1 \\ 2 & 1 & -1 \end{bmatrix}\right) = \begin{bmatrix} 2 & 2 & 0 \\ -2 & -2 & 0 \\ -2 & -2 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ &\mathcal{P}_{2}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})^{2}([\mathcal{F}] - 4\mathcal{I}_{3}) \\ &\left(\begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 2\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\right)^{2} \left(\begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ &\Rightarrow \mathcal{P}_{2}([\mathcal{F}]) \text{ \'e o polinômio minimal} \Rightarrow \mathcal{F} \text{ n\~ao} \text{ \'e um operador Diagonaliz\'avel !} \end{split}$$

Verificando se os polinômios anulam a matriz canônica:

$$\begin{split} &\mathcal{P}_{1}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})([\mathcal{F}] - 4\mathcal{I}_{3}) \\ &\left(\begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 2\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\right) \left(\begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\right) \\ &= \left(\begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix}\right) \left(\begin{bmatrix} -2 & -1 & 1 \\ 0 & -1 & -1 \\ 2 & 1 & -1 \end{bmatrix}\right) = \begin{bmatrix} 2 & 2 & 0 \\ -2 & -2 & 0 \\ -2 & -2 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ &\mathcal{P}_{2}([\mathcal{F}]) = ([\mathcal{F}] - 2\mathcal{I}_{3})^{2}([\mathcal{F}] - 4\mathcal{I}_{3}) \\ &\left(\begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 2\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\right)^{2} \left(\begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ &\Rightarrow \mathcal{P}_{2}([\mathcal{F}]) \text{ \'e o polinômio minimal} \Rightarrow \mathcal{F} \text{ n\~ao} \text{ \'e um operador Diagonaliz\'avel !} \end{split}$$

Forma de Jordan

DEFINIÇÃO:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e

Forma de Jordan

DEFINIÇÃO:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$.

Forma de Jordan

DEFINICÃO:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Denominamos de Bloco de Jordan $r \times r$ em λ .

Forma de Jordan

DEFINICÃO:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Denominamos de BLOCO DE JORDAN $r \times r$ em λ , a matriz denotada por $J_r(\lambda) \in \mathcal{M}_r(\mathbb{K})$

Forma de Jordan

Definicão:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Denominamos de BLOCO DE JORDAN $r \times r$ em λ , a matriz denotada por $J_r(\lambda) \in \mathcal{M}_r(\mathbb{K})$ que tem λ na DIAGONAL PRINCIPAL

Forma de Jordan

DEFINICÃO:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Denominamos de BLOCO DE JORDAN $r \times r$ em λ , a matriz denotada por $J_r(\lambda) \in \mathcal{M}_r(\mathbb{K})$ que tem λ na DIAGONAL PRINCIPAL e 1 em toda diagonal acima da principal:

Forma de Jordan

DEFINICÃO:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$. Denominamos de BLOCO DE JORDAN $r \times r$ em λ , a matriz denotada por $J_r(\lambda) \in \mathcal{M}_r(\mathbb{K})$ que tem λ na DIAGONAL PRINCIPAL e 1 em toda diagonal acima da principal:

$$J_r(\lambda) =$$

DEFINICÃO:

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Denominamos de BLOCO DE JORDAN $r \times r$ em λ , a matriz denotada por $J_r(\lambda) \in \mathcal{M}_r(\mathbb{K})$ que tem λ na DIAGONAL PRINCIPAL e 1 em toda diagonal acima da principal;

$$J_r(\lambda) = egin{pmatrix} \lambda & 1 & \dots & 0 \ 0 & \lambda & \dots & 0 \ dots & dots & \ddots & dots \ 0 & \dots & \lambda & 1 \ 0 & \dots & 0 & \lambda \end{pmatrix}.$$

DEFINICÃO:

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Denominamos de BLOCO DE JORDAN $r \times r$ em λ , a matriz denotada por $J_r(\lambda) \in \mathcal{M}_r(\mathbb{K})$ que tem λ na DIAGONAL PRINCIPAL e 1 em toda diagonal acima da principal;

$$J_r(\lambda) = egin{pmatrix} \lambda & 1 & \dots & 0 \ 0 & \lambda & \dots & 0 \ dots & dots & \ddots & dots \ 0 & \dots & \lambda & 1 \ 0 & \dots & 0 & \lambda \end{pmatrix}.$$

Forma de Jordan

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e

Forma de Jordan

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$

Forma de Jordan

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$ tal que $\mathcal{P}_{\mathcal{F}}(\lambda) =$

Forma de Jordan

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$ tal que $\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_r)^{m_r}$;

Forma de Jordan

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$ tal que $\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_r)^{m_r}; m_i > 1 \text{ e } \lambda_i \neq \lambda_i, \text{ se } i \neq j.$

Forma de Jordan

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$ tal que $\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_r)^{m_r}; m_i > 1 \text{ e } \lambda_i \neq \lambda_i, \text{ se } i \neq j.$ Então,

Forma de Jordan

TEOREMA:

Sejam $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e $\mathcal F\in\mathcal L(\mathcal V)$ tal que $\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_r)^{m_r}; m_i > 1 \text{ e } \lambda_i \neq \lambda_i, \text{ se } i \neq j.$ Então,

$$\mathcal{V} = \mathcal{V}_{\lambda_1} \oplus \mathcal{V}_{\lambda_2} \oplus \ldots \oplus \mathcal{V}_{\lambda_r};$$

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ tal que $\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_r)^{m_r}; m_i > 1 \text{ e } \lambda_i \neq \lambda_i, \text{ se } i \neq j.$ Então,

$$\mathcal{V} = \mathcal{V}_{\lambda_1} \oplus \mathcal{V}_{\lambda_2} \oplus \ldots \oplus \mathcal{V}_{\lambda_r};$$

$$dim(\mathcal{V}) = dim(\mathcal{V}_{\lambda_1}) + dim(\mathcal{V}_{\lambda_2}) + \ldots + dim(\mathcal{V}_{\lambda_r}).$$

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ tal que $\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_r)^{m_r}; m_i > 1 \text{ e } \lambda_i \neq \lambda_i, \text{ se } i \neq j.$ Então.

$$\mathcal{V} = \mathcal{V}_{\lambda_1} \oplus \mathcal{V}_{\lambda_2} \oplus \ldots \oplus \mathcal{V}_{\lambda_r};$$

$$dim(\mathcal{V}) = dim(\mathcal{V}_{\lambda_1}) + dim(\mathcal{V}_{\lambda_2}) + \ldots + dim(\mathcal{V}_{\lambda_r}).$$

onde,
$$dim(\mathcal{V}_{\lambda_i}) = m_i$$
; $i = 1, \ldots, r$;

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ tal que $\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_r)^{m_r}; m_i > 1 \text{ e } \lambda_i \neq \lambda_i, \text{ se } i \neq j.$ Então.

$$\mathcal{V} = \mathcal{V}_{\lambda_1} \oplus \mathcal{V}_{\lambda_2} \oplus \ldots \oplus \mathcal{V}_{\lambda_r};$$

$$dim(\mathcal{V}) = dim(\mathcal{V}_{\lambda_1}) + dim(\mathcal{V}_{\lambda_2}) + \ldots + dim(\mathcal{V}_{\lambda_r}).$$

onde,
$$dim(\mathcal{V}_{\lambda_i}) = m_i$$
; $i = 1, \ldots, r$;

$$n=m_1+m_2+\ldots+m_r.$$

Sejam \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ tal que $\mathcal{P}_{\mathcal{F}}(\lambda) = (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_r)^{m_r}; m_i > 1 \text{ e } \lambda_i \neq \lambda_i, \text{ se } i \neq j.$ Então.

$$\mathcal{V} = \mathcal{V}_{\lambda_1} \oplus \mathcal{V}_{\lambda_2} \oplus \ldots \oplus \mathcal{V}_{\lambda_r};$$

$$dim(\mathcal{V}) = dim(\mathcal{V}_{\lambda_1}) + dim(\mathcal{V}_{\lambda_2}) + \ldots + dim(\mathcal{V}_{\lambda_r}).$$

onde,
$$dim(\mathcal{V}_{\lambda_i}) = m_i$$
; $i = 1, \ldots, r$;

$$n=m_1+m_2+\ldots+m_r.$$

Forma de Jordan

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e

Forma de Jordan

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$

Forma de Jordan

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0$$

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0$$

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow$$

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0$$
 \Rightarrow $(3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0$

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3$$

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow$$

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) =$$

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0$$
 \Rightarrow $(3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$
e;

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

$$V_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \}$$

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0$$
 \Rightarrow $(3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$

$$V_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3$$

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$$

Forma de Jordan

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$$

então:

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3-\lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3$; e; $\mathcal{V}_{(\lambda=3)} = \{v \in \mathbb{R}^3 \mid v = (x,y,z)\} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}}$, então; $m_g(\lambda)$

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3-\lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3$; e; $\mathcal{V}_{(\lambda=3)} = \{v \in \mathbb{R}^3 \mid v = (x,y,z)\} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$ então; $m_g(\lambda) = \dim(\mathcal{V}_{\lambda}) =$

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3-\lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3$; e; $\mathcal{V}_{(\lambda=3)} = \{v \in \mathbb{R}^3 \mid v = (x,y,z)\} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$ então; $m_g(\lambda) = \dim(\mathcal{V}_{\lambda}) = 3$.

Forma de Jordan

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda)=0}\Rightarrow (3-\lambda)^3=0\Rightarrow \lambda_1=\lambda_2=\lambda_3=3\Rightarrow m_a(\lambda)=3;$ e; $\mathcal{V}_{(\lambda=3)}=\{v\in\mathbb{R}^3\mid v=(x,y,z)\}=\mathbb{R}^3\Rightarrow \beta_{\mathbb{R}^3}=\beta_{\mathcal{V}_{(\lambda=3)}},$ então; $m_g(\lambda)=dim(\mathcal{V}_\lambda)=3.$ Note que, $m_a(\lambda)=$

Forma de Jordan

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda)=0}\Rightarrow (3-\lambda)^3=0\Rightarrow \lambda_1=\lambda_2=\lambda_3=3\Rightarrow m_a(\lambda)=3;$ e; $\mathcal{V}_{(\lambda=3)}=\{v\in\mathbb{R}^3\mid v=(x,y,z)\}=\mathbb{R}^3\Rightarrow \beta_{\mathbb{R}^3}=\beta_{\mathcal{V}_{(\lambda=3)}},$ então; $m_g(\lambda)=dim(\mathcal{V}_\lambda)=3.$ Note que, $m_a(\lambda)=m_g(\lambda)\Rightarrow \mathcal{F}$ é um operador Diagonalizável

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3-\lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3$; e; $\mathcal{V}_{(\lambda=3)} = \{v \in \mathbb{R}^3 \mid v = (x,y,z)\} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$ então; $m_g(\lambda) = \dim(\mathcal{V}_{\lambda}) = 3$. Note que, $m_a(\lambda) = m_g(\lambda) \Rightarrow \mathcal{F}$ é um operador Diagonalizável portanto.

Forma de Jordan

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.
$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3-\lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = \mathbf{3};$$
 e;
$$\mathcal{V}_{(\lambda=3)} = \{v \in \mathbb{R}^3 \mid v = (x,y,z)\} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$$
 então;
$$m_g(\lambda) = \dim(\mathcal{V}_{\lambda}) = \mathbf{3}.$$
 Note que,
$$m_g(\lambda) = m_g(\lambda) \Rightarrow \mathcal{F} \text{ é um operador Diagonalizável portanto, } \beta_{\mathbb{R}^3} = \{v_1, v_2, v_3\}$$

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3-\lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3$; e; $\mathcal{V}_{(\lambda=3)} = \{v \in \mathbb{R}^3 \mid v = (x,y,z)\} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}}$, então:

$$m_g(\lambda) = dim(\mathcal{V}_{\lambda}) = 3.$$

Note que.

 $m_a(\lambda) = m_g(\lambda) \Rightarrow \mathcal{F}$ é um operador Diagonalizável portanto, $\beta_{\mathbb{R}^3} = \{v_1, v_2, v_3\}$ é uma base de \mathcal{V} formada por autovetores de \mathcal{F} .

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(3x,3y,3z)$.
$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda)=0}\Rightarrow (3-\lambda)^3=0\Rightarrow \lambda_1=\lambda_2=\lambda_3=3\Rightarrow m_a(\lambda)=3;$$
 e;
$$\mathcal{V}_{(\lambda=3)}=\{v\in\mathbb{R}^3\mid v=(x,y,z)\}=\mathbb{R}^3\Rightarrow \beta_{\mathbb{R}^3}=\beta_{\mathcal{V}_{(\lambda=3)}},$$
 então;
$$m_g(\lambda)=\dim(\mathcal{V}_\lambda)=3.$$
 Note que,
$$m_a(\lambda)=m_g(\lambda)\Rightarrow \mathcal{F} \text{ é um operador Diagonalizável portanto, } \beta_{\mathbb{R}^3}=\{v_1,v_2,v_3\} \text{ é uma base de } \mathcal{V} \text{ formada por autovetores de } \mathcal{F}.$$
 E. neste caso.

Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$$

então:

$$m_g(\lambda) = dim(\mathcal{V}_{\lambda}) = 3.$$

Note que.

$$m_a(\lambda) = m_g(\lambda) \Rightarrow \mathcal{F}$$
 é um operador Diagonalizável portanto, $\beta_{\mathbb{R}^3} = \{v_1, v_2, v_3\}$ é uma base de

 \mathcal{V} formada por autovetores de \mathcal{F} .

$$[\mathcal{F}] = [\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} =$$

Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$$

então:

$$m_g(\lambda) = dim(\mathcal{V}_{\lambda}) = 3.$$

 $m_a(\lambda) = m_g(\lambda) \Rightarrow \mathcal{F}$ é um operador Diagonalizável portanto, $\beta_{\mathbb{R}^3} = \{v_1, v_2, v_3\}$ é uma base de \mathcal{V} formada por autovetores de \mathcal{F} .

$$[\mathcal{F}] = [\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} = J_3;$$

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

$$V_{(\lambda=3)}$$

$$\mathcal{V}_{(\lambda=3)}=\{v\in\mathbb{R}^3\mid v=(x,y,z)\}=\mathbb{R}^3\Rightarrow\beta_{\mathbb{R}^3}=\beta_{\mathcal{V}_{(\lambda=3)}},$$
 então:

$$m_g(\lambda) = dim(\mathcal{V}_{\lambda}) = 3.$$

 $m_a(\lambda) = m_g(\lambda) \Rightarrow \mathcal{F}$ é um operador Diagonalizável portanto, $\beta_{\mathbb{R}^3} = \{v_1, v_2, v_3\}$ é uma base de \mathcal{V} formada por autovetores de \mathcal{F} .

$$[\mathcal{F}] = [\mathcal{F}]_{\beta \nu}^{\beta \nu} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} = J_3; P = \mathcal{I}_3 \text{ para } \beta_{\mathbb{R}^3} \text{ sendo a base canônica.}$$

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

$$V_{(\lambda=3)}$$

$$\mathcal{V}_{(\lambda=3)}=\{v\in\mathbb{R}^3\mid v=(x,y,z)\}=\mathbb{R}^3\Rightarrow\beta_{\mathbb{R}^3}=\beta_{\mathcal{V}_{(\lambda=3)}},$$
 então:

$$m_g(\lambda) = dim(\mathcal{V}_{\lambda}) = 3.$$

 $m_a(\lambda) = m_g(\lambda) \Rightarrow \mathcal{F}$ é um operador Diagonalizável portanto, $\beta_{\mathbb{R}^3} = \{v_1, v_2, v_3\}$ é uma base de \mathcal{V} formada por autovetores de \mathcal{F} .

$$[\mathcal{F}] = [\mathcal{F}]_{\beta \nu}^{\beta \nu} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} = J_3; P = \mathcal{I}_3 \text{ para } \beta_{\mathbb{R}^3} \text{ sendo a base canônica.}$$

Forma de Jordan

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e

Forma de Jordan

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$

Forma de Jordan

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$.

Forma de Jordan

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Forma de Jordan

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL. Determinamos,

Forma de Jordan

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos, $\lambda_1 = \lambda_2 = 2$:

Forma de Jordan

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos, $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$

Forma de Jordan

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos, $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$

Forma de Jordan

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z)$.

Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Forma de Jordan

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) =$$

Forma de Jordan

EXEMPLO:

Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos, $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$ os AUTOVALORES de \mathcal{F} .

 $m_2(\lambda_1 = \lambda_2) = 2$; com AUTO-ESPACO:

Forma de Jordan

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\}$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda = 2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, -1, -1)\}$

$$\beta_{\mathcal{V}_{(\boldsymbol{\lambda_1})}} = \{(1, -1, -1)\}$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com AUTO-ESPAÇO: $\mathcal{V}_{(\lambda = 2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 1$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com AUTO-ESPAÇO: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$

$$\beta_{\mathcal{V}_{(\boldsymbol{\lambda_1})}} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\boldsymbol{\lambda_1})}) = 1 \Rightarrow m_g(\boldsymbol{\lambda_1}) = 1.$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com AUTO-ESPAÇO: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda, \cdot)}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

$$m_{\partial}(\lambda_1 = \lambda_2) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$
 $\Rightarrow m_{\partial}(\lambda_1) \neq m_g(\lambda = 2).$

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
```

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_2(\lambda_3) =
```

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_2(\lambda_3) = 1.
```

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos. $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$ os AUTOVALORES de \mathcal{F} .

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda = 2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{ (1, -1, -1) \} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$

 $\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).$

e $m_3(\lambda_3) = 1$. com AUTO-ESPACO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos. $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$ os AUTOVALORES de \mathcal{F} .

$$m_a(\lambda_1 = \lambda_2) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda = 2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{ (1, -1, -1) \} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$

$$\Rightarrow m_a(\lambda_1) \neq m_g(\lambda=2).$$

e
$$m_a(\lambda_3) = 1$$
. com Auto-Espaço: $\mathcal{V}_{(\lambda_3)} = \{ v \in \mathbb{R}^3 \mid y = -x \text{ e } z = x \}$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que: $\mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$. Verifique se \mathcal{F} é DIAGONALIZÁVEL.

Determinamos. $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$ os AUTOVALORES de \mathcal{F} .

$$m_{\partial}(\lambda_1 = \lambda_2) = 2$$
; com Auto-Espaço: $\mathcal{V}_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$
 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$

$$\Rightarrow m_a(\lambda_1) \neq m_g(\lambda=2).$$

e
$$m_a(\lambda_3) = 1$$
. com Auto-Espaço: $\mathcal{V}_{(\lambda_3)} = \{ v \in \mathbb{R}^3 \mid y = -x \text{ e } z = x \} = [(1, -1, 1)].$

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: \mathcal{V}_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(X_n)} = \{(1, -1, 1)\}
```

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_3(\lambda_3) = 1. com AUTO-ESPAÇO: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \ e \ z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}(\lambda_2)) = 1
```

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
```

18 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

 $\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_{\mathfrak{g}}(\lambda = 4) = 1.$

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_2)}) = 1 \Rightarrow m_{\sigma}(\lambda = 4) = 1.
\Rightarrow
```

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_g(\lambda = 4) = 1.
\Rightarrow m_{\alpha}(\lambda_3) = m_{\alpha}(\lambda = 4).
```

```
Seia \mathcal{V} = \mathbb{R}^3 e seia \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_{\sigma}(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_{\alpha})} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_{\alpha})}) = 1 \Rightarrow m_{\sigma}(\lambda = 4) = 1.
\Rightarrow m_{\alpha}(\lambda_3) = m_{\alpha}(\lambda = 4).
logo; \beta_{\mathcal{V}_{(\lambda_1)}} \cup \beta_{\mathcal{V}_{(\lambda_2)}}
```

```
Seia \mathcal{V} = \mathbb{R}^3 e seia \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_{\sigma}(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_{\alpha})} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_{\alpha})}) = 1 \Rightarrow m_{\sigma}(\lambda = 4) = 1.
\Rightarrow m_{\alpha}(\lambda_3) = m_{\alpha}(\lambda = 4).
logo; \beta_{\mathcal{V}(X_1)} \cup \beta_{\mathcal{V}(X_2)} = \{(1, -1, -1), (1, -1, 1)\}
```

```
Seia \mathcal{V} = \mathbb{R}^3 e seia \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_{\sigma}(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_{\mathfrak{g}}(\lambda = 4) = 1.
\Rightarrow m_{\alpha}(\lambda_3) = m_{\alpha}(\lambda = 4).
logo; \beta_{\mathcal{V}(X_1)} \cup \beta_{\mathcal{V}(X_2)} = \{(1, -1, -1), (1, -1, 1)\} \neq \beta_{\mathbb{R}^3}
```

```
Seia \mathcal{V} = \mathbb{R}^3 e seia \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x,y,z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_{\sigma}(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_{\mathfrak{g}}(\lambda = 4) = 1.
\Rightarrow m_{\alpha}(\lambda_3) = m_{\alpha}(\lambda = 4).
logo; \beta_{\mathcal{V}_{(1,2)}} \cup \beta_{\mathcal{V}_{(1,2)}} = \{(1,-1,-1),(1,-1,1)\} \neq \beta_{\mathbb{R}^3} \Rightarrow
```

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_{\sigma}(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_{\mathfrak{g}}(\lambda = 4) = 1.
\Rightarrow m_{\alpha}(\lambda_3) = m_{\alpha}(\lambda = 4).
\log_{\mathcal{C}}; \beta_{\mathcal{V}_{(\lambda,\lambda)}} \cup \beta_{\mathcal{V}_{(\lambda,\lambda)}} = \{(1,-1,-1),(1,-1,1)\} \neq \beta_{\mathbb{R}^3} \Rightarrow \mathcal{F} não é um operador Diagonalizável!
```

```
Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que: \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).
Verifique se \mathcal{F} é DIAGONALIZÁVEL.
Determinamos. \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 os AUTOVALORES de \mathcal{F}.
m_a(\lambda_1 = \lambda_2) = 2; com AUTO-ESPAÇO: \mathcal{V}_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]
\beta_{\mathcal{V}(\lambda_1)} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_{\sigma}(\lambda_1) = 1.
\Rightarrow m_{\sigma}(\lambda_1) \neq m_{\sigma}(\lambda=2).
e m_a(\lambda_3) = 1. com Auto-Espaço: V_{(\lambda_2)} = \{ v \in \mathbb{R}^3 \mid v = -x \text{ e } z = x \} = [(1, -1, 1)].
\beta_{\mathcal{V}(\lambda_2)} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_{\mathfrak{g}}(\lambda = 4) = 1.
\Rightarrow m_{\alpha}(\lambda_3) = m_{\alpha}(\lambda = 4).
\log_{\mathcal{C}}; \beta_{\mathcal{V}_{(\lambda,\lambda)}} \cup \beta_{\mathcal{V}_{(\lambda,\lambda)}} = \{(1,-1,-1),(1,-1,1)\} \neq \beta_{\mathbb{R}^3} \Rightarrow \mathcal{F} não é um operador Diagonalizável!
```

Forma de Jordan

EXEMPLO:

 $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$$
 tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$.

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3) \text{ tal que; } \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).$$
$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$$
 tal que; $\mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$.
 $[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$ AUTOVALORES: : $\lambda_1 = \lambda_2 = 2$;

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$$
 tal que; $\mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$.
 $[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$ AUTOVALORES: : $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$$
 tal que; $\mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$.
 $[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$ AUTOVALORES: : $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$.

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$$
 tal que; $\mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$.
 $[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$ AUTOVALORES: : $\lambda_1 = \lambda_2 = 2$; $\lambda_3 = 4$.
 $m_a(\lambda_1 = \lambda_2) =$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^{3}) \text{ tal que; } \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).$$

$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_{1} = \lambda_{2} = 2; \lambda_{3} = 4.$$

$$m_{a}(\lambda_{1} = \lambda_{2}) = 2;$$

$$\beta_{\mathcal{V}_{(\lambda_{1})}} = \{(1, -1, -1)\}$$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^{3}) \text{ tal que; } \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).$$

$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_{1} = \lambda_{2} = 2; \lambda_{3} = 4.$$

$$m_{a}(\lambda_{1} = \lambda_{2}) = 2;$$

$$\beta_{\mathcal{V}_{(\lambda_{1})}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_{1})}) = 1$$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^{3}) \text{ tal que; } \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).$$

$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_{1} = \lambda_{2} = 2; \lambda_{3} = 4.$$

$$m_{a}(\lambda_{1} = \lambda_{2}) = 2;$$

$$\beta_{\mathcal{V}_{(\lambda_{1})}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_{1})}) = 1 \Rightarrow m_{g}(\lambda_{1}) = 1.$$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^{3}) \text{ tal que; } \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).$$

$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_{1} = \lambda_{2} = 2; \lambda_{3} = 4.$$

$$m_{a}(\lambda_{1} = \lambda_{2}) = 2;$$

$$\beta_{\mathcal{V}_{(\lambda_{1})}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_{1})}) = 1 \Rightarrow m_{g}(\lambda_{1}) = 1.$$

$$m_{a}(\lambda_{3}) =$$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^{3}) \text{ tal que; } \mathcal{F}(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).$$

$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_{1} = \lambda_{2} = 2; \lambda_{3} = 4.$$

$$m_{a}(\lambda_{1} = \lambda_{2}) = 2;$$

$$\beta_{\mathcal{V}_{(\lambda_{1})}} = \{(1, -1, -1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_{1})}) = 1 \Rightarrow m_{g}(\lambda_{1}) = 1.$$

$$m_{a}(\lambda_{3}) = 1.$$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3) \text{ tal que; } \mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z).$$

$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = 2; \lambda_3 = 4.$$

$$m_a(\lambda_1 = \lambda_2) = 2;$$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$$

$$m_a(\lambda_3) = 1.$$

$$\beta_{\mathcal{V}_{(\lambda_3)}} = \{(1,-1,1)\}$$

Forma de Jordan

$$\begin{split} \mathcal{F} &\in \mathcal{L}(\mathbb{R}^3) \text{ tal que; } \mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z). \\ [\mathcal{F}] &= \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = 2; \lambda_3 = 4. \\ m_a(\lambda_1 = \lambda_2) &= 2; \\ \beta \nu_{(\lambda_1)} &= \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1. \\ m_a(\lambda_3) &= 1. \\ \beta \nu_{(\lambda_3)} &= \{(1,-1,1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \end{split}$$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3) \text{ tal que; } \mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z).$$

$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = 2; \lambda_3 = 4.$$

$$m_a(\lambda_1 = \lambda_2) = 2;$$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$$

$$m_a(\lambda_3) = 1.$$

$$\beta_{\mathcal{V}_{(\lambda_3)}} = \{(1,-1,1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_g(\lambda = 4) = 1.$$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3) \text{ tal que; } \mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z).$$

$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = 2; \lambda_3 = 4.$$

$$m_a(\lambda_1 = \lambda_2) = 2;$$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$$

$$m_a(\lambda_3) = 1.$$

$$\beta_{\mathcal{V}_{(\lambda_3)}} = \{(1,-1,1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_g(\lambda = 4) = 1.$$
Para obtermos a **matriz diagonal** na FORMA DE JORDAN temos que;
$$m_g(\lambda_1) = 1 \Rightarrow$$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3) \text{ tal que; } \mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z).$$

$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = 2; \lambda_3 = 4.$$

$$m_a(\lambda_1 = \lambda_2) = 2;$$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$$

$$m_a(\lambda_3) = 1.$$

$$\beta_{\mathcal{V}_{(\lambda_3)}} = \{(1,-1,1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_g(\lambda = 4) = 1.$$
Para obtermos a **matriz diagonal** na FORMA DE JORDAN temos que;
$$m_g(\lambda_1) = 1 \Rightarrow \text{ um bloco com o autovalor } \lambda_1 = 2$$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3) \text{ tal que; } \mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z).$$

$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = 2; \lambda_3 = 4.$$

$$m_a(\lambda_1 = \lambda_2) = 2;$$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$$

$$m_a(\lambda_3) = 1.$$

$$\beta_{\mathcal{V}_{(\lambda_3)}} = \{(1,-1,1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_g(\lambda = 4) = 1.$$
Para obtermos a **matriz diagonal** na FORMA DE JORDAN temos que;
$$m_g(\lambda_1) = 1 \Rightarrow \text{ um bloco com o autovalor } \lambda_1 = 2 \text{ na diagonal principal; e}$$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3) \text{ tal que; } \mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z).$$

$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = 2; \lambda_3 = 4.$$

$$m_a(\lambda_1 = \lambda_2) = 2;$$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$$

$$m_a(\lambda_3) = 1.$$

$$\beta_{\mathcal{V}_{(\lambda_3)}} = \{(1,-1,1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_g(\lambda = 4) = 1.$$
 Para obtermos a **matriz diagonal** na FORMA DE JORDAN temos que;
$$m_g(\lambda_1) = 1 \Rightarrow \text{ um bloco com o autovalor } \lambda_1 = 2 \text{ na diagonal principal; e}$$

$$m_g(\lambda_3) = 1 \Rightarrow$$

Forma de Jordan

```
EXEMPLO:
```

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3) \text{ tal que; } \mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z).$$

$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = 2; \lambda_3 = 4.$$

$$m_a(\lambda_1 = \lambda_2) = 2;$$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$$

$$m_a(\lambda_3) = 1.$$

$$\beta_{\mathcal{V}_{(\lambda_3)}} = \{(1,-1,1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_g(\lambda = 4) = 1.$$
 Para obtermos a **matriz diagonal** na FORMA DE JORDAN temos que;
$$m_g(\lambda_1) = 1 \Rightarrow \text{ um bloco com o autovalor } \lambda_1 = 2 \text{ na diagonal principal; e}$$

$$m_g(\lambda_3) = 1 \Rightarrow \text{ um bloco com o autovalor } \lambda_3 = 4$$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3) \text{ tal que; } \mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z).$$

$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = 2; \lambda_3 = 4.$$

$$m_a(\lambda_1 = \lambda_2) = 2;$$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$$

$$m_a(\lambda_3) = 1.$$

$$\beta_{\mathcal{V}_{(\lambda_3)}} = \{(1,-1,1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_g(\lambda = 4) = 1.$$
 Para obtermos a **matriz diagonal** na FORMA DE JORDAN temos que;
$$m_g(\lambda_1) = 1 \Rightarrow \text{ um bloco com o autovalor } \lambda_1 = 2 \text{ na diagonal principal; e}$$

$$m_g(\lambda_3) = 1 \Rightarrow \text{ um bloco com o autovalor } \lambda_3 = 4 \text{ na diagonal principal.}$$

Forma de Jordan

```
EXEMPLO:
\mathcal{F} \in \mathcal{L}(\mathbb{R}^3) tal que; \mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z).
[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} AUTOVALORES: : \lambda_1 = \lambda_2 = 2; \lambda_3 = 4.
 m_a(\lambda_1 = \lambda_2) = 2:
\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, -1, -1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.
 m_{a}(\lambda_{a})=1
\beta_{\mathcal{V}_{(\lambda_2)}} = \{(1, -1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_{\mathfrak{g}}(\lambda = 4) = 1.
 Para obtermos a matriz diagonal na FORMA DE JORDAN temos que:
 m_g(\lambda_1) = 1 \Rightarrow um bloco com o autovalor \lambda_1 = 2 na diagonal principal; e
 m_g(\lambda_3) = 1 \Rightarrow um bloco com o autovalor \lambda_3 = 4 na diagonal principal.
 Portanto, temos as seguintes possibilidades para r = 2:
```

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3) \text{ tal que; } \mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z).$$

$$[\mathcal{F}] = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = 2; \lambda_3 = 4.$$

$$m_a(\lambda_1 = \lambda_2) = 2;$$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1 \Rightarrow m_g(\lambda_1) = 1.$$

$$m_a(\lambda_3) = 1.$$

$$\beta_{\mathcal{V}_{(\lambda_3)}} = \{(1,-1,1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_3)}) = 1 \Rightarrow m_g(\lambda = 4) = 1.$$
Para obtermos a **matriz diagonal** na FORMA DE JORDAN temos que;
$$m_g(\lambda_1) = 1 \Rightarrow \text{ um bloco com o autovalor } \lambda_1 = 2 \text{ na diagonal principal; e}$$

$$m_g(\lambda_3) = 1 \Rightarrow \text{ um bloco com o autovalor } \lambda_3 = 4 \text{ na diagonal principal.}$$
Portanto, temos as seguintes possibilidades para $r = 2$:
$$J_2(\lambda) = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix} \text{ ou } J_2(\lambda) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 4 & 1 \\ 0 & 4 & 1 \end{bmatrix}$$

Forma de Jordan

Verificando a primeira forma de Jordan:
$$J_2(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & 4 \end{bmatrix}$$
 e assim, $\beta_{\mathbb{R}^3} = \{(1, -1, -1), (x, y, z), (1, -1, 1)\};$

Forma de Jordan

```
Verificando a primeira forma de Jordan: J_2(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 4 \end{bmatrix} \end{bmatrix} e assim, \beta_{\mathbb{R}^3} = \{(1,-1,-1),(x,y,z),(1,-1,1)\}; sendo cada coluna da matriz invertível P formada pelas coordenadas dos autovetores de \beta_{\mathbb{R}^3}. Então, [\mathcal{F}]P =
```

Forma de Jordan

Verificando a primeira forma de Jordan:
$$J_2(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 4 \end{bmatrix} \end{bmatrix}$$
 e assim, $\beta_{\mathbb{R}^3} = \{(1,-1,-1),(x,y,z),(1,-1,1)\}$; sendo cada coluna da matriz invertível P formada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^3}$. Então,

$$[\mathcal{F}]P = PJ_2 \Rightarrow$$

Forma de Jordan

EXEMPLO:

Verificando a primeira forma de Jordan:
$$J_2(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & 4 \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^3}=\{(1,-1,-1),(x,y,z),(1,-1,1)\}$; sendo cada coluna da matriz invertível P formada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^3}$. Então.

$$\begin{bmatrix}
\mathcal{F} \middle P = PJ_2 \Rightarrow \\
 \begin{bmatrix}
 2 & -1 & 1 \\
 0 & 3 & -1 \\
 2 & 1 & 3
\end{bmatrix}$$

Verificando a primeira forma de Jordan:
$$J_2(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & 4 \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^3}=\{(1,-1,-1),(x,y,z),(1,-1,1)\};$ sendo cada coluna da matriz invertível P formada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^3}$. Então.

$$\begin{bmatrix} \mathcal{F} | P = PJ_2 \Rightarrow \\ \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & x & 1 \\ -1 & y & -1 \\ -1 & z & 1 \end{bmatrix}$$

Verificando a primeira forma de Jordan:
$$J_2(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & 4 \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^3} = \{(1, -1, -1), (x, y, z), (1, -1, 1)\}$; sendo cada coluna da matriz invertível Pformada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^3}$. Então.

$$\begin{bmatrix} \mathcal{F} | P = PJ_2 \Rightarrow \\ \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & x & 1 \\ -1 & y & -1 \\ -1 & z & 1 \end{bmatrix} = \begin{bmatrix} 1 & x & 1 \\ -1 & y & -1 \\ -1 & z & 1 \end{bmatrix}$$

Verificando a primeira forma de Jordan:
$$J_2(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & 4 \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^3}=\{(1,-1,-1),(x,y,z),(1,-1,1)\}$; sendo cada coluna da matriz invertível P formada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^3}$.

$$\begin{bmatrix}
\mathcal{F} \middle] P = P J_2 \Rightarrow \\
\begin{bmatrix}
2 & -1 & 1 \\
0 & 3 & -1 \\
2 & 1 & 3
\end{bmatrix}
\begin{bmatrix}
1 & x & 1 \\
-1 & y & -1 \\
-1 & z & 1
\end{bmatrix} = \begin{bmatrix}
1 & x & 1 \\
-1 & y & -1 \\
-1 & z & 1
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
2 & 1 \\
0 & 2
\end{bmatrix}
\begin{bmatrix}
0 \\
4
\end{bmatrix}$$

Verificando a primeira forma de Jordan:
$$J_2(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & [4] \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^3} = \{(1, -1, -1), (x, y, z), (1, -1, 1)\}$; sendo cada coluna da matriz invertível Pformada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^3}$.

Então.

$$\begin{bmatrix}
\mathcal{F} \middle P = P J_2 \Rightarrow \\
\begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3
\end{bmatrix}
\begin{bmatrix} 1 & x & 1 \\ -1 & y & -1 \\ -1 & z & 1
\end{bmatrix} = \begin{bmatrix} 1 & x & 1 \\ -1 & y & -1 \\ -1 & z & 1
\end{bmatrix}
\begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 4 \end{bmatrix}
\end{bmatrix}$$

Resolvendo o SISTEMA LINEAR acima. obtemos:

$$x = z = 0$$
 e $y = -1$

Verificando a primeira forma de Jordan:
$$J_2(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & 4 \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^3} = \{(1, -1, -1), (x, y, z), (1, -1, 1)\}$; sendo cada coluna da matriz invertível Pformada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^3}$.

Então.

$$\begin{bmatrix}
\mathcal{F} \middle] P = P J_2 \Rightarrow \\
\begin{bmatrix}
2 & -1 & 1 \\
0 & 3 & -1 \\
2 & 1 & 3
\end{bmatrix}
\begin{bmatrix}
1 & x & 1 \\
-1 & y & -1 \\
-1 & z & 1
\end{bmatrix} = \begin{bmatrix}
1 & x & 1 \\
-1 & y & -1 \\
-1 & z & 1
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
2 & 1 \\
0 & 2
\end{bmatrix}
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\begin{bmatrix}
4
\end{bmatrix}$$

Resolvendo o SISTEMA LINEAR acima. obtemos:

$$x = z = 0$$
 e $y = -1 \Rightarrow v = (0, -1, 0)$.

Verificando a primeira forma de Jordan:
$$J_2(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & 4 \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^3} = \{(1, -1, -1), (x, y, z), (1, -1, 1)\}$; sendo cada coluna da matriz invertível Pformada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^3}$.

$$\begin{bmatrix}
\mathcal{F} \middle] P = P J_2 \Rightarrow \\
\begin{bmatrix}
2 & -1 & 1 \\
0 & 3 & -1 \\
2 & 1 & 3
\end{bmatrix}
\begin{bmatrix}
1 & x & 1 \\
-1 & y & -1 \\
-1 & z & 1
\end{bmatrix} = \begin{bmatrix}
1 & x & 1 \\
-1 & y & -1 \\
-1 & z & 1
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
2 & 1 \\
0 & 2
\end{bmatrix}
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\begin{bmatrix}
4
\end{bmatrix}$$

Resolvendo o SISTEMA LINEAR acima. obtemos:

$$x = z = 0$$
 e $y = -1 \Rightarrow v = (0, -1, 0)$.
Assim, $\beta_{\mathbb{R}^3} = \{(1, -1, -1), (0, -1, 0), (1, -1, 1)\}.$

Verificando a primeira forma de Jordan:
$$J_2(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^3} = \{(1, -1, -1), (x, y, z), (1, -1, 1)\}$; sendo cada coluna da matriz invertível Pformada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^3}$.

Então.

$$\begin{bmatrix}
\mathcal{F} \middle] P = P J_2 \Rightarrow \\
\begin{bmatrix}
2 & -1 & 1 \\
0 & 3 & -1 \\
2 & 1 & 3
\end{bmatrix}
\begin{bmatrix}
1 & x & 1 \\
-1 & y & -1 \\
-1 & z & 1
\end{bmatrix} = \begin{bmatrix}
1 & x & 1 \\
-1 & y & -1 \\
-1 & z & 1
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
2 & 1 \\
0 & 2
\end{bmatrix}
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\begin{bmatrix}
4
\end{bmatrix}$$

Resolvendo o SISTEMA LINEAR acima. obtemos:

$$x = z = 0$$
 e $y = -1 \Rightarrow v = (0, -1, 0)$.

Assim,
$$\beta_{\mathbb{R}^3} = \{(1, -1, -1), (0, -1, 0), (1, -1, 1)\}.$$

Note que o SISTEMA LINEAR foi compatível

Verificando a primeira forma de Jordan:
$$J_2(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & [4] \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^3} = \{(1, -1, -1), (x, y, z), (1, -1, 1)\}$; sendo cada coluna da matriz invertível Pformada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^3}$.

Então.

$$\begin{bmatrix}
\mathcal{F} \middle] P = P J_2 \Rightarrow \\
\begin{bmatrix}
2 & -1 & 1 \\
0 & 3 & -1 \\
2 & 1 & 3
\end{bmatrix}
\begin{bmatrix}
1 & x & 1 \\
-1 & y & -1 \\
-1 & z & 1
\end{bmatrix} = \begin{bmatrix}
1 & x & 1 \\
-1 & y & -1 \\
-1 & z & 1
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
2 & 1 \\
0 & 2
\end{bmatrix}
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\begin{bmatrix}
4
\end{bmatrix}$$

Resolvendo o SISTEMA LINEAR acima. obtemos:

$$x = z = 0$$
 e $y = -1 \Rightarrow v = (0, -1, 0)$.

Assim,
$$\beta_{\mathbb{R}^3} = \{(1, -1, -1), (0, -1, 0), (1, -1, 1)\}.$$

Note que o SISTEMA LINEAR foi compatível e por isso, concluímos que a outra possibilidade

Verificando a primeira forma de Jordan:
$$J_2(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & 4 \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^3} = \{(1, -1, -1), (x, y, z), (1, -1, 1)\}$; sendo cada coluna da matriz invertível Pformada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^3}$.

Então.

$$\begin{bmatrix}
\mathcal{F} \middle] P = P J_2 \Rightarrow \\
\begin{bmatrix}
2 & -1 & 1 \\
0 & 3 & -1 \\
2 & 1 & 3
\end{bmatrix}
\begin{bmatrix}
1 & x & 1 \\
-1 & y & -1 \\
-1 & z & 1
\end{bmatrix} = \begin{bmatrix}
1 & x & 1 \\
-1 & y & -1 \\
-1 & z & 1
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
2 & 1 \\
0 & 2
\end{bmatrix}
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\begin{bmatrix}
4
\end{bmatrix}$$

Resolvendo o SISTEMA LINEAR acima. obtemos:

$$x = z = 0$$
 e $y = -1 \Rightarrow v = (0, -1, 0)$.

Assim, $\beta_{\mathbb{R}^3} = \{(1, -1, -1), (0, -1, 0), (1, -1, 1)\}.$

Note que o SISTEMA LINEAR foi compatível e por isso, concluímos que a outra possibilidade da forma de Jordan resultaria em um sistema não compatível.

Verificando a primeira forma de Jordan:
$$J_2(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & 4 \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^3} = \{(1, -1, -1), (x, y, z), (1, -1, 1)\}$; sendo cada coluna da matriz invertível Pformada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^3}$.

Então.

$$\begin{bmatrix}
\mathcal{F} \middle] P = P J_2 \Rightarrow \\
\begin{bmatrix}
2 & -1 & 1 \\
0 & 3 & -1 \\
2 & 1 & 3
\end{bmatrix}
\begin{bmatrix}
1 & x & 1 \\
-1 & y & -1 \\
-1 & z & 1
\end{bmatrix} = \begin{bmatrix}
1 & x & 1 \\
-1 & y & -1 \\
-1 & z & 1
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
2 & 1 \\
0 & 2
\end{bmatrix}
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\begin{bmatrix}
4
\end{bmatrix}$$

Resolvendo o SISTEMA LINEAR acima. obtemos:

$$x = z = 0$$
 e $y = -1 \Rightarrow v = (0, -1, 0)$.

Assim, $\beta_{\mathbb{R}^3} = \{(1, -1, -1), (0, -1, 0), (1, -1, 1)\}.$

Note que o SISTEMA LINEAR foi compatível e por isso, concluímos que a outra possibilidade da forma de Jordan resultaria em um sistema não compatível.

Forma de Jordan

$$\mathcal{F}\in\mathcal{L}(\mathbb{R}^4)$$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
 tal que;

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = egin{bmatrix} 2 & 1 & 0 & 0 \ 0 & 2 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 0 & 4 & -2 \end{bmatrix}$$

Forma de Jordan

EXEMPLO:

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
 tal que; $[\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix}$ AUTOVALORES: : $\lambda_1 = \lambda_2 = \lambda_3 = 2$;

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3$$

AUTOVALORES: :
$$\lambda_1 = \lambda_2 = \lambda_3 = 2$$
; $\lambda_4 = -3$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4)$$
 tal que; $[\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix}$ AUTOVALORES: : $\lambda_1 = \lambda_2 = \lambda_3 = 2$; $\lambda_4 = -3$.

AUTOVALORES: :
$$\lambda_1 = \lambda_2 = \lambda_3 = 2$$
; $\lambda_4 = -3$.

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_a(\lambda_1) = 3;$$

$$\beta_{\mathcal{V}(\lambda_1)} = \{(1, 0, 0, 0), (0, 0, 1, 1)\}$$

autovalores: :
$$\lambda_1 = \lambda_2 = \lambda_3 = 2$$
; $\lambda_4 = -3$.

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_a(\lambda_1) = 3;$$

 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 2$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

AUTOVALORES: :
$$\lambda_1 = \lambda_2 = \lambda_3 = 2$$
; $\lambda_4 = -3$.

$$m_a(\lambda_1) = 3;$$

 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2.$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_3(\lambda_1) = 3;$$

$$m_a(\lambda_1) = 3;$$

 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2.$
 $m_a(\lambda_4) =$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_a(\lambda_1) = 3;$$

 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2.$
 $m_a(\lambda_4) = 1.$

Forma de Jordan

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_3(\lambda_1) = 3;$$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1,0,0,0), (0,0,1,1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2.$$

$$m_a(\lambda_4) = 1.$$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(0,0,1,-4)\}$$

$$\beta_{\mathcal{V}_{(\lambda_4)}} = \{(0,0,1,-4)\}$$

Forma de Jordan

EXEMPLO:

 $m_{2}(\lambda_{1})=3$:

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2.$$

$$m_g(\lambda_4) = 1.$$

$$\beta_{\mathcal{V}_{(\lambda_1)}} = \{(0, 0, 1, -4)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 1$$

$$\beta_{\mathcal{V}_{(\pmb{\lambda_4})}} = \{(0,0,1,-4)\} \Rightarrow \textit{dim}(\mathcal{V}_{(\pmb{\lambda_4})}) = 1$$

Forma de Jordan

EXEMPLO:

 $m_{2}(\lambda_{1})=3$:

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$\begin{split} \beta_{\mathcal{V}_{(\lambda_1)}} &= \{ (1,0,0,0), (0,0,1,1) \} \Rightarrow \dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2. \\ m_a(\lambda_4) &= 1. \\ \beta_{\mathcal{V}_{(\lambda_4)}} &= \{ (0,0,1,-4) \} \Rightarrow \dim(\mathcal{V}_{(\lambda_4)}) = 1 \Rightarrow m_g(\lambda = -3) = 1. \end{split}$$

Forma de Jordan

EXEMPLO:

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_a(\lambda_1) = 3;$$

 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2.$
 $m_a(\lambda_4) = 1.$

 $\beta_{\mathcal{V}_{(\lambda_4)}} = \{(0,0,1,-4)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_4)}) = 1 \Rightarrow m_g(\lambda = -3) = 1.$ Para obtermos a **matriz diagonal** na FORMA DE JORDAN temos que;

$$m_g(\lambda_1) = 2 \Rightarrow$$

Forma de Jordan

EXEMPLO:

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_a(\lambda_1) = 3;$$

 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2.$
 $m_a(\lambda_4) = 1.$

$$\beta_{\mathcal{V}_{(\boldsymbol{\lambda_4})}} = \{(0,0,1,-4)\} \Rightarrow \dim(\mathcal{V}_{(\boldsymbol{\lambda_4})}) = 1 \Rightarrow m_g(\lambda = -3) = 1.$$

Para obtermos a matriz diagonal na FORMA DE JORDAN temos que; $m_g(\lambda_1) = 2 \Rightarrow$ dois blocos com o autovalor $\lambda_1 = 2$

Forma de Jordan

EXEMPLO:

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_a(\lambda_1) = 3;$$

 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2.$
 $m_a(\lambda_4) = 1.$

$$\beta_{\mathcal{V}_{(\boldsymbol{\lambda_4})}} = \{(0,0,1,-4)\} \Rightarrow \dim(\mathcal{V}_{(\boldsymbol{\lambda_4})}) = 1 \Rightarrow m_g(\lambda = -3) = 1.$$

Para obtermos a matriz diagonal na FORMA DE JORDAN temos que; $m_g(\lambda_1) = 2 \Rightarrow$ dois blocos com o autovalor $\lambda_1 = 2$ na diagonal principal; e

Forma de Jordan

EXEMPLO:

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_a(\lambda_1) = 3;$$

 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2.$
 $m_a(\lambda_4) = 1.$

$$\beta_{\mathcal{V}_{(\boldsymbol{\lambda_4})}} = \{(0,0,1,-4)\} \Rightarrow \dim(\mathcal{V}_{(\boldsymbol{\lambda_4})}) = 1 \Rightarrow m_g(\lambda = -3) = 1.$$

Para obtermos a matriz diagonal na FORMA DE JORDAN temos que; $m_g(\lambda_1)=2\Rightarrow$ dois blocos com o autovalor $\lambda_1=2$ na diagonal principal; e $m_g(\lambda_4)=1\Rightarrow$

Forma de Jordan

EXEMPLO:

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_a(\lambda_1) = 3;$$

 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2.$
 $m_a(\lambda_4) = 1.$

$$\beta_{\mathcal{V}_{(\lambda_{\mathbf{A}})}} = \{(0,0,1,-4)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_{\mathbf{A}})}) = 1 \Rightarrow m_{g}(\lambda = -3) = 1.$$

Para obtermos a matriz diagonal na FORMA DE JORDAN temos que: $m_g(\lambda_1) = 2 \Rightarrow$ dois blocos com o autovalor $\lambda_1 = 2$ na diagonal principal; e $m_{\rm g}(\lambda_4)=1 \Rightarrow \text{um bloco com o autovalor } \lambda_4=-3$

Forma de Jordan

EXEMPLO:

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_a(\lambda_1) = 3;$$

 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2.$
 $m_a(\lambda_4) = 1.$

$$\beta_{\mathcal{V}_{(\lambda_{\mathbf{A}})}} = \{(0,0,1,-4)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_{\mathbf{A}})}) = 1 \Rightarrow m_{g}(\lambda = -3) = 1.$$

Para obtermos a matriz diagonal na FORMA DE JORDAN temos que; $m_g(\lambda_1) = 2 \Rightarrow$ dois blocos com o autovalor $\lambda_1 = 2$ na diagonal principal; e $m_g(\lambda_4) = 1 \Rightarrow$ um bloco com o autovalor $\lambda_4 = -3$ na diagonal principal.

Forma de Jordan

EXEMPLO:

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_a(\lambda_1) = 3;$$

 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2.$
 $m_a(\lambda_4) = 1.$

$$\beta_{\mathcal{V}_{(\boldsymbol{\lambda_4})}} = \{(0,0,1,-4)\} \Rightarrow \dim(\mathcal{V}_{(\boldsymbol{\lambda_4})}) = 1 \Rightarrow m_g(\lambda = -3) = 1.$$

Para obtermos a matriz diagonal na FORMA DE JORDAN temos que; $m_g(\lambda_1) = 2 \Rightarrow$ dois blocos com o autovalor $\lambda_1 = 2$ na diagonal principal; e $m_g(\lambda_4) = 1 \Rightarrow$ um bloco com o autovalor $\lambda_4 = -3$ na diagonal principal.

Forma de Jordan

EXEMPLO:

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_{a}(\lambda_{1}) = 3;$$

 $\beta_{\mathcal{V}_{(\lambda_{1})}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_{1})}) = 2 \Rightarrow m_{g}(\lambda_{1}) = 2.$
 $m_{a}(\lambda_{4}) = 1.$
 $\beta_{\mathcal{V}_{(\lambda_{1})}} = \{(0, 0, 1, -4)\} \Rightarrow dim(\mathcal{V}_{(\lambda_{4})}) = 1 \Rightarrow m_{g}(\lambda = -3) = 1.$

Para obtermos a matriz diagonal na FORMA DE JORDAN temos que; $m_g(\lambda_1)=2\Rightarrow$ dois blocos com o autovalor $\lambda_1=2$ na diagonal principal; e $m_g(\lambda_4)=1\Rightarrow$ um bloco com o autovalor $\lambda_4=-3$ na diagonal principal.

$$J_3(\lambda) =$$

Forma de Jordan

EXEMPLO:

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_a(\lambda_1) = 3;$$

 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2.$
 $m_a(\lambda_1) = 1.$

$$\beta_{\mathcal{V}_{(\lambda_4)}} = \{(0,0,1,-4)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_4)}) = 1 \Rightarrow m_g(\lambda = -3) = 1.$$

Para obtermos a matriz diagonal na FORMA DE JORDAN temos que; $m_g(\lambda_1)=2\Rightarrow$ dois blocos com o autovalor $\lambda_1=2$ na diagonal principal; e $m_g(\lambda_4)=1\Rightarrow$ um bloco com o autovalor $\lambda_4=-3$ na diagonal principal.

$$J_{3}(\lambda) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & -3 & 0 \end{bmatrix} \text{ ou } J_{3}(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

Forma de Jordan

EXEMPLO:

$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4) \text{ tal que; } [\mathcal{F}] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \text{ AUTOVALORES: } : \lambda_1 = \lambda_2 = \lambda_3 = 2; \lambda_4 = -3.$$

$$m_a(\lambda_1) = 3;$$

 $\beta_{\mathcal{V}_{(\lambda_1)}} = \{(1, 0, 0, 0), (0, 0, 1, 1)\} \Rightarrow dim(\mathcal{V}_{(\lambda_1)}) = 2 \Rightarrow m_g(\lambda_1) = 2.$
 $m_a(\lambda_1) = 1.$

$$\beta_{\mathcal{V}_{(\lambda_4)}} = \{(0,0,1,-4)\} \Rightarrow \dim(\mathcal{V}_{(\lambda_4)}) = 1 \Rightarrow m_g(\lambda = -3) = 1.$$

Para obtermos a matriz diagonal na FORMA DE JORDAN temos que; $m_g(\lambda_1)=2\Rightarrow$ dois blocos com o autovalor $\lambda_1=2$ na diagonal principal; e $m_g(\lambda_4)=1\Rightarrow$ um bloco com o autovalor $\lambda_4=-3$ na diagonal principal.

$$J_{3}(\lambda) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & -3 & 0 \end{bmatrix} \text{ ou } J_{3}(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

Forma de Jordan

EXEMPLO:

Verificando a primeira forma de Jordan: $J_3(\lambda) =$

Forma de Jordan

EXEMPLO: Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 & 0 \\ 0 & \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 \\ 0 & 0 \end{bmatrix}$$

Forma de Jordan

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$
 e assim, $\beta_{\mathbb{R}^4} = \{(1,0,0,0)(0,0,1,1), (0,0,1,-4), (x,y,z,w)\};$

```
Verificando a primeira forma de Jordan: J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 & 0 \\ 0 & \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 \\ 0 & 0 \end{bmatrix}
```

e assim, $\beta_{\mathbb{R}^4}=\{(1,0,0,0)(0,0,1,1),(0,0,1,-4),(x,y,z,w)\}$; sendo cada coluna da matriz invertível P formada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^4}$.

Então, $[\mathcal{F}]P =$

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 & 0 \\ 0 & \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 \\ 0 & 0 \end{bmatrix}$$

```
Então, [\mathcal{F}]P = PJ_3 \Rightarrow
```

```
Verificando a primeira forma de Jordan: J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 & 0 \\ 0 & \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -3 & 1 \\ 0 & -3 \end{bmatrix}
```

Então,
$$[\mathcal{F}]P = PJ_3 \Rightarrow$$

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix}$$

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 & 0 \\ 0 & \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 \\ 0 & 0 & \begin{bmatrix} -3 & 1 \\ 0 & -3 \end{bmatrix} \end{bmatrix}$$

Então,
$$[\mathcal{F}]P = PJ_3 \Rightarrow$$

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 0 & 0 & y \\ 0 & 1 & 1 & z \\ 0 & 1 & -4 & w \end{bmatrix}$$

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 & 0 \\ 0 & \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 \\ 0 & 0 \end{bmatrix}$$

Então,
$$[\mathcal{F}]P = PJ_3 \Rightarrow$$

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 0 & 0 & y \\ 0 & 1 & 1 & z \\ 0 & 1 & -4 & w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 0 & 0 & y \\ 0 & 1 & 1 & z \\ 0 & 1 & -4 & w \end{bmatrix}$$

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 & 0 \\ 0 & \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 \\ 0 & 0 & \begin{bmatrix} -3 & 1 \\ 0 & -3 \end{bmatrix} \end{bmatrix}$$

Então,
$$[\mathcal{F}]P = PJ_3 \Rightarrow$$

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 0 & 0 & y \\ 0 & 1 & 1 & z \\ 0 & 1 & -4 & w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 0 & 0 & y \\ 0 & 1 & 1 & z \\ 0 & 1 & -4 & w \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 2 \\ \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 \\ \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} -3 & 1 \\ 0 & -3 \end{bmatrix} \end{bmatrix}$$

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 & 0 \\ 0 & \begin{bmatrix} 2 \\ 0 \end{bmatrix} & 0 \\ 0 & 0 & \begin{bmatrix} -3 & 1 \\ 0 & -3 \end{bmatrix} \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^4} = \{(1,0,0,0)(0,0,1,1),(0,0,1,-4),(x,y,z,w)\}$; sendo cada coluna da matriz invertível P formada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^4}$.

Então,
$$[\mathcal{F}]P = PJ_3 \Rightarrow$$

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 0 & 0 & y \\ 0 & 1 & 1 & z \\ 0 & 1 & -4 & w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 0 & 0 & y \\ 0 & 1 & 1 & z \\ 0 & 1 & -4 & w \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 2 \\ \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 \\ \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} -3 & 1 \\ 0 & -3 \end{bmatrix} \end{bmatrix}$$

Resolvendo o SISTEMA LINEAR acima encontramos que o sistema é incompatível! Por isso, devemos verificar a outra possibilidade

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^4} = \{(1,0,0,0)(0,0,1,1), (0,0,1,-4), (x,y,z,w)\};$ sendo cada coluna da matriz invertível P formada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^4}$.

Então,
$$[\mathcal{F}]P = PJ_3 \Rightarrow$$

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 0 & 0 & y \\ 0 & 1 & 1 & z \\ 0 & 1 & -4 & w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 0 & 0 & y \\ 0 & 1 & 1 & z \\ 0 & 1 & -4 & w \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 2 \\ \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 \\ \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 3 \\ \end{bmatrix} \end{bmatrix}$$

Resolvendo o SISTEMA LINEAR acima encontramos que o sistema é incompatível! Por isso, devemos verificar a outra possibilidade da forma de Jordan.

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^4} = \{(1,0,0,0)(0,0,1,1), (0,0,1,-4), (x,y,z,w)\};$ sendo cada coluna da matriz invertível P formada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^4}$.

Então,
$$[\mathcal{F}]P = PJ_3 \Rightarrow$$

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 0 & 0 & y \\ 0 & 1 & 1 & z \\ 0 & 1 & -4 & w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 0 & 0 & y \\ 0 & 1 & 1 & z \\ 0 & 1 & -4 & w \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 2 \\ \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 \\ \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 3 \\ \end{bmatrix} \end{bmatrix}$$

Resolvendo o SISTEMA LINEAR acima encontramos que o sistema é incompatível! Por isso, devemos verificar a outra possibilidade da forma de Jordan.

Forma de Jordan

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \end{bmatrix}$$

Forma de Jordan

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \end{bmatrix}$$

Forma de Jordan

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ & \mathbf{0} & \mathbf{$$

Forma de Jordan

```
Verificando a primeira forma de Jordan: J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} \end{bmatrix} e assim, \beta_{\mathbb{R}^4} = \{(1,0,0,0), (x,y,z,w), (0,0,1,1), (0,0,1,-4)\}; \text{ sendo cada coluna da matriz invertível } P \text{ formada pelas coordenadas dos autovetores de } \beta_{\mathbb{R}^4}. Então, [\mathcal{F}]P = \mathbf{0}
```

Forma de Jordan

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} \end{bmatrix}$$
 e assim,
$$\beta_{\mathbb{R}^4} = \{(1,0,0,0), (x,y,z,w), (0,0,1,1), (0,0,1,-4)\}; \text{ sendo cada coluna da matriz invertível } P \text{ formada pelas coordenadas dos autovetores de } \beta_{\mathbb{R}^4}.$$
 Então,
$$[\mathcal{F}]P = PJ_3 \Rightarrow$$

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{$$

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 &] & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 &] & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} -3 &] \end{bmatrix} \end{bmatrix}$$

Então,
$$[\mathcal{F}]P = PJ_3 \Rightarrow$$

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & z & 1 & 1 \\ 0 & w & 1 & -4 \end{bmatrix}$$

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 &] & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 &] & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} -3 &] \end{bmatrix} \end{bmatrix}$$

Então,
$$[\mathcal{F}]P = PJ_3 \Rightarrow$$

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & z & 1 & 1 \\ 0 & w & 1 & -4 \end{bmatrix} = \begin{bmatrix} 1 & x & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & z & 1 & 1 \\ 0 & w & 1 & -4 \end{bmatrix}$$

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 &] & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \begin{bmatrix} -3 &] \end{bmatrix} \end{bmatrix}$$

Então,
$$[\mathcal{F}]P = PJ_3 \Rightarrow$$

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & z & 1 & 1 \\ 0 & w & 1 & -4 \end{bmatrix} = \begin{bmatrix} 1 & x & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & z & 1 & 1 \\ 0 & w & 1 & -4 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 \end{bmatrix} & \mathbf{0} \end{bmatrix}$$

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 &] & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} -3 &] \end{bmatrix} \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^4} = \{(1,0,0,0),(x,y,z,w),(0,0,1,1),(0,0,1,-4)\}$; sendo cada coluna da matriz invertível P formada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^4}$.

Então,
$$[\mathcal{F}]P = PJ_3 \Rightarrow$$

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & z & 1 & 1 \\ 0 & w & 1 & -4 \end{bmatrix} = \begin{bmatrix} 1 & x & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & z & 1 & 1 \\ 0 & w & 1 & -4 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 \end{bmatrix} & \mathbf{0} \end{bmatrix}$$

Resolvendo o SISTEMA LINEAR acima encontramos que o sistema é compatível:

$$x = z = w = 0$$
 e $y = 1$

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 &] & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} -3 &] \end{bmatrix} \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^4} = \{(1,0,0,0),(x,y,z,w),(0,0,1,1),(0,0,1,-4)\}$; sendo cada coluna da matriz invertível P formada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^4}$.

Então,
$$[\mathcal{F}]P = PJ_3 \Rightarrow$$

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & z & 1 & 1 \\ 0 & w & 1 & -4 \end{bmatrix} = \begin{bmatrix} 1 & x & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & z & 1 & 1 \\ 0 & w & 1 & -4 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 \end{bmatrix} & \mathbf{0} \end{bmatrix}$$

Resolvendo o SISTEMA LINEAR acima encontramos que o sistema é compatível:

$$x = z = w = 0$$
 e $y = 1$
 $\beta_{\mathbb{R}^4} = \{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 1), (0, 0, 1, -4)\}.$

Verificando a primeira forma de Jordan:
$$J_3(\lambda) = \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} 2 &] & \mathbf{0} \\ & \mathbf{0} & \begin{bmatrix} -3 &] \end{bmatrix} \end{bmatrix}$$

e assim, $\beta_{\mathbb{R}^4} = \{(1,0,0,0),(x,y,z,w),(0,0,1,1),(0,0,1,-4)\}$; sendo cada coluna da matriz invertível P formada pelas coordenadas dos autovetores de $\beta_{\mathbb{R}^4}$.

Então,
$$[\mathcal{F}]P = PJ_3 \Rightarrow$$

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & z & 1 & 1 \\ 0 & w & 1 & -4 \end{bmatrix} = \begin{bmatrix} 1 & x & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & z & 1 & 1 \\ 0 & w & 1 & -4 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} 2 \end{bmatrix} & \mathbf{0} \end{bmatrix}$$

Resolvendo o SISTEMA LINEAR acima encontramos que o sistema é compatível:

$$x = z = w = 0$$
 e $y = 1$
 $\beta_{\mathbb{R}^4} = \{(1,0,0,0), (0,1,0,0), (0,0,1,1), (0,0,1,-4)\}.$