CSC165 Mathematical Expression and Reasoning for Computer Science

Module 14

Proofs About Functions

© Abdallah Farraj, University of Toronto

Functions

- A function F from a set X to a set Y is a relation (correspondence) from X to Y
- Notation:
 - $F: X \to Y$ (note: \to does not mean "imply" here)
 - X is called the domain
 - *Y* is called the image (or co-domain)
- $F: X \to Y$ needs to satisfy:
 - Every element in X is related to some element in Y
 - No element in X is related to more than one element in Y

© Abdallah Farraj, University of Toronto

.

Functions

- Range of F is the image of X under F: $\{y \in Y : y = F(x)\}$ for $x \in X$
- Inverse image of $y \in Y$: $\{x \in X : F(x) = y\}$

© Abdallah Farraj, University of Toronto

Function Equality

- Let $F: X \to Y$ and $G: X \to Y$ be functions
- $F = G \leftrightarrow \forall x \in X$: [F(x) = G(x)]
- Example:
 - $F: \mathbb{R} \to \mathbb{R}$ and $G: \mathbb{R} \to \mathbb{R}$
 - Define $F + G: \mathbb{R} \to \mathbb{R}$ as $\forall x \in \mathbb{R}: [(F + G)(x) = F(x) + G(x)]$
 - Define $G + F: \mathbb{R} \to \mathbb{R}$ as $\forall x \in \mathbb{R}: [(G + F)(x) = G(x) + F(x)]$
 - (F+G)(x) = F(x) + G(x) = G(x) + F(x) = (G+F)(x)
 - Consequently, F + G = G + F

© Abdallah Farraj, University of Toronto

Not Well-Defined "Functions"

- $F: X \to Y$ is called well defined function if:
 - Every element in X is related to some element in Y
 - No element in X is related to more than one element in Y
- If not, F is not well-defined... actually F is not a function
- Example:
 - Define $F: \mathbb{R} \to \mathbb{R}$ as $\forall x \in \mathbb{R}$: F(x) is the real number y such that $x^2 + y^2 = 1$
 - For x = 2, there is no real number y such that $2^2 + y^2 = 1$
 - Also, for x=0, both y=1 and y=-1 satisfy $0^2+y^2=1$

© Abdallah Farraj, University of Toronto

One-to-One Functions

© Abdallah Farraj, University of Toronto

.

One-to-One Functions

- $F: X \to Y$ is called one-to-one function if and only if:
 - For all elements x_1 and x_2 in X: if $F(x_1) = F(x_2)$, then $x_1 = x_2$, or
 - For all elements x_1 and x_2 in X: if $x_1 \neq x_2$ then $F(x_1) \neq F(x_2)$
- $F: X \to Y$ is one-to-one function \leftrightarrow

$$\forall x_1, x_2 \in X: [(F(x_1) = F(x_2)) \to (x_1 = x_2)]$$

- A one-to-one function is also called an injective function
- $F: X \to Y$ is NOT one-to-one function \leftrightarrow

$$\exists x_1, x_2 \in X : [(F(x_1) = F(x_2)) \land (x_1 \neq x_2)]$$

© Abdallah Farraj, University of Toronto

One-to-One Functions

- One-to-one function: distinct elements in the domain are mapped to distinct elements in the co-domain
- Not one-to-one function: at least two elements in the domain are mapped to the same element in the co-domain

© Abdallah Farraj, University of Toronto

Example

- Let function $f: \mathbb{R} \to \mathbb{R}$ be defined as $\forall x \in \mathbb{R}$: f(x) = 2x 1
- Prove that f is one-to-one
- Thoughts:
 - One-to-one function: distinct elements in the domain are mapped to distinct elements in the co-domain
 - Domain: $\mathbb R$
 - Co-domain: $\mathbb R$
 - Need to prove $\forall x_1, x_2 \in \mathbb{R}$: $[f(x_1) = f(x_2)] \rightarrow (x_1 = x_2)$
 - $f(x_1) = 2x_1 1$
 - $f(x_2) = 2x_2 1$
 - If $f(x_1) = 2x_1 1 = f(x_2) = 2x_2 1$, can we prove that $x_1 = x_2$?

© Abdallah Farraj, University of Toronto

Proof: *f* is One-to-One

```
Let x_1, x_2 \in \mathbb{R}.

Assume f(x_1) = f(x_2).

Then 2x_1 - 1 = 2x_2 - 1.

Then 2x_1 = 2x_2.

Then x_1 = x_2.

Then f(x_1) = f(x_2) \to (x_1 = x_2).

Then, f(x_1) = f(x_2) \to (x_1 = x_2).

Then, f(x_1) = f(x_2) \to (x_1 = x_2).

Therefore, f(x_1) = f(x_2) \to (x_1 = x_2).
```

© Abdallah Farraj, University of Toronto

11

Example

- Let function $g: \mathbb{Z} \to \mathbb{Z}$ be defined as $\forall n \in \mathbb{Z}: g(n) = n^2$
- ullet Prove that g is not one-to-one
- Thoughts:
 - Not one-to-one function: at least two elements in the domain are mapped to the same element in the co-domain
 - Domain: ℤ
 - Co-domain: Z
 - Need to prove $\exists n_1, n_2 \in \mathbb{Z}$: $\left[\left(g(n_1) = g(n_2) \right) \land (n_1 \neq n_2) \right]$
 - $g(n_1) = n_1^2$
 - $g(n_2) = n_2^2$
 - Can we find $n_1, n_2 \in \mathbb{Z}$ such that $g(n_1) = n_1^2 = g(n_2) = n_2^2$ and $n_1 \neq n_2$?

© Abdallah Farraj, University of Toronto

Proof: *g* is NOT One-to-One

```
Let n_{1'}=3. Then n_{1'}\in\mathbb{Z}. Let n_{2'}=-3. Then n_{2'}\in\mathbb{Z}. Then n_{1'}\neq n_{2'}. Then g(n_{1'})=3^2=9. Then g(n_{2'})=(-3)^2=9. Then g(n_{1'})=g(n_{2'}). Then g(n_{1'})=g(n_{2'}). Then g(n_{1'})=g(n_{2'}) \land (n_{1'}\neq n_{2'}). Then, \exists n_1,n_2\in\mathbb{Z}: \left[\left(g(n_1)=g(n_2)\right)\land (n_1\neq n_2)\right]. Therefore, g:\mathbb{Z}\to\mathbb{Z} defined as \forall n\in\mathbb{Z} g(n)=n^2 is not one-to-one.
```

© Abdallah Farraj, University of Toronto

13

Onto Functions

© Abdallah Farraj, University of Toronto

Onto Functions

- $F: X \to Y$ is called onto function if and only if:
 - For every element y in Y, it is possible to find an element x in X with the property y = F(x)
- Every element in the co-domain is an image of some element in the domain
- $F: X \to Y$ is onto function \leftrightarrow

$$\forall y \in Y : [\exists x \in X : F(x) = y]$$

- An onto function is also called an surjective function
- $F: X \to Y$ is NOT onto function \leftrightarrow

$$\exists y \in Y : [\forall x \in X : F(x) \neq y]$$

© Abdallah Farraj, University of Toronto

10

Onto Functions

- Onto function: each element in the co-domain is mapped to from (an) element(s) in the domain
- Not onto function: at least one element in the co-domain is not mapped to from elements in the domain

© Abdallah Farraj, University of Toronto

Example

- Let function $f: \mathbb{R} \to \mathbb{R}$ be defined as $\forall x \in \mathbb{R}: f(x) = 2x 1$
- Prove that f is onto
- Thoughts:
 - Onto function: each element in the co-domain is mapped to from (an) element(s) in the domain
 - Domain: ℝ
 - Co-domain: $\mathbb R$
 - Need to prove $\forall y \in \mathbb{R}$: $[\exists x \in \mathbb{R}: f(x) = y]$
 - y = 2x 1
 - y + 1 = 2x
 - $x = \frac{y+1}{2}$

© Abdallah Farraj, University of Toronto

17

Proof: *f* is Onto

Let
$$y \in \mathbb{R}$$
.
Let $x_0 = \frac{y+1}{2}$.
Then $x_0 \in \mathbb{R}$.
Then $f(x_0) = f\left(\frac{y+1}{2}\right)$

$$= 2\frac{y+1}{2} - 1$$

$$= (y+1) - 1$$

Then $\exists x \in \mathbb{R}: f(x) = y$.

Then, $\forall y \in \mathbb{R}: [\exists x \in \mathbb{R}: f(x) = y].$

Therefore, $f: \mathbb{R} \to \mathbb{R}$ defined as $\forall x \in \mathbb{R}$: f(x) = 2x - 1 is onto.

© Abdallah Farraj, University of Toronto

Example

- Let function $h: \mathbb{Z} \to \mathbb{Z}$ be defined as $\forall n \in \mathbb{Z}: h(n) = 2n + 3$
- Prove that h is not onto
- Thoughts:
 - Not onto function: at least one element in the co-domain is not mapped to from elements in the domain
 - Domain: Z
 - Co-domain: Z
 - Need to prove $\exists m \in \mathbb{Z}$: $[\forall n \in \mathbb{Z}: h(n) \neq m]$
 - Try m = 0
 - We cannot find any $n \in \mathbb{Z}$ where h(n) = m = 0
 - This works for all even integers *m*

© Abdallah Farraj, University of Toronto

19

Proof: *h* is NOT Onto

```
Let m_0 = 0.
```

Then $m_0 \in \mathbb{Z}$.

Let $n \in \mathbb{Z}$.

If
$$0 = 2n + 3$$
, then $n = -\frac{3}{2} \notin \mathbb{Z}$.

Then $h(n) \neq 0$.

Then $\forall n \in \mathbb{Z}: h(n) \neq m_0$.

Then, $\exists m \in \mathbb{Z}$: $[\forall n \in \mathbb{Z}$: $h(n) \neq m]$.

Therefore, $h: \mathbb{Z} \to \mathbb{Z}$ defined as $\forall n \in \mathbb{Z}$: h(n) = 2n + 3 is not onto.

© Abdallah Farraj, University of Toronto

One-to-One Correspondences

© Abdallah Farraj, University of Toronto

21

One-to-One Correspondences

- $F: X \to Y$ is called one-to-one correspondence if and only if:
 - F is one-to-one
 - F is onto
- Any element y in Y has a corresponding element x in X such that y = F(x)
- ullet Any element x in X has a unique corresponding element in Y such that

y = F(x)

• F is called bijection

Inverse Functions

- Let $F: X \to Y$ be a one-to-one correspondence
- Let $F^{-1}: Y \to X$ be defined as:
 - Given any element y in Y: $F^{-1}(y)$ is the unique element x in X such that F(x) = y
 - $F^{-1}(y) = x \leftrightarrow y = F(x)$
- F^{-1} is called the inverse function of F
- If $F: X \to Y$ is one-to-one correspondence, then F^{-1} is also one-to-one correspondence
- Can you prove that?

© Abdallah Farraj, University of Toronto

23

Example

- Let function $f: \mathbb{R} \to \mathbb{R}$ be defined as $\forall x \in \mathbb{R}$: f(x) = 2x 1
- \bullet Find f^{-1}
 - Given any element y in \mathbb{R} : $f^{-1}(y)$ is the unique element x in \mathbb{R} such that f(x) = y
 - $y = f(x) \leftrightarrow f^{-1}(y) = x$
 - y = 2x 1
 - y + 1 = 2x
 - $\bullet \ \frac{y+1}{2} = x$
 - $\bullet \ f^{-1}(y) = \frac{y+1}{2}$
- f^{-1} : $\mathbb{R} \to \mathbb{R}$ is defined as $\forall y \in \mathbb{R}$: $f^{-1}(y) = \frac{y+1}{2}$

© Abdallah Farraj, University of Toronto