n-dimensionale Polarkoordinaten

Proseminar Mathematik - Themen zur Analysis

Wintersemester 2012/2013

Simon Bischof; 29.11.2012

Inhaltsverzeichnis

1	Motivation	1
2	Grundlegendes	2
	1 Vorgehensweise	2
	2 einige Definitionen	
3	P_n : Definition und Eigenschaften	•
	1 Definition	•
	$2 \qquad P_n(r,\varphi_1,\cdots,\varphi_{n-1}) \qquad \ldots \qquad \ldots \qquad \ldots \qquad \ldots$	
	3 Funktionalmatrix und -determinante	
4	Integralberechnungen	4
	1 Inhalt der <i>n</i> -dimensionalen Kugel	2
	2 Sonstiges	
5	Verallgemeinerungen	ļ
	1 "Ellipsoidkoordinaten"	ļ
	2 verallgemeinerte Zylinderkoordinaten	

Motivation

Wenn mehrdimensionale Integrale in der Vorlesung eingeführt werden, d.h.

$$\int_{M} f(x)dx \qquad (x \in \mathbb{R}^{n}, M \subseteq \mathbb{R}^{n}, f : \mathbb{R}^{n} \to \mathbb{R}),$$

ist eine der ersten Funktionen, die integriert wird, $f \equiv 1$. Damit wird der Inhalt (je nach Dimension Fläche, Volumen, \cdots) berechnet.

Für einfache Flächen wie den n-dimensionalen Würfel ist mithilfe des Satzes von Fubini noch leicht machbar (man bekommt den Inhalt 1). Für eine weitere regelmäßige Fläche, die n-dimensionale Kugel $D^n := \{(x_1, \cdots, x_n) \in \mathbb{R}^n | x_1^2 + \cdots + x_n^2 \leq 1\}$, ist das ganze ungleich komplizierter. Fubini liefert

Nach Einführung der Polarkoordinaten lässt sich das Integral mithilfe der Substitutionsregel

viel einfacher berechnen.

Grundlegendes

1 Vorgehensweise

Die Polarkoordinaten werden als Funktion P_n vom "Polarkoordinatenraum" in den kartesischen Raum induktiv definiert. Dabei dienen die bekannten Polarkoordinaten im Fall n=2 als Induktionsanfang. Außerdem werde ich immer noch den Fall n=3 explizit angeben, bei dem sich die bekannten Kugelkoordinaten ergeben.

Darauf werden einige Eigenschaften der Funktion P_n bewiesen, insbesondere wird auch die Funktionaldeterminante berechnet, die für die Substitutionsregel wichtig ist.

2 einige Definitionen

- Es sei im Folgenden stets $n \in \mathbb{N} \setminus \{1\}$.
- e_n bezeichne den n-ten kanonischen Einheitsvektor. Soweit nichts anderes gesagt ist, sei $e_n \in \mathbb{R}^n$, also $e_n = (0, \dots, 0, 1)^T$.
- Mit || || werde im Folgenden die euklidische Norm bezeichnet.

P_n : Definition und Eigenschaften

1 Definition

$$2 \quad ||P_n(r, \varphi_1, \cdots, \varphi_{n-1})||$$

Im Falle
$$n=2$$
 ergibt sich durch direktes Ausrechnen:
$$||P_2(r,\varphi_1)||^2 = ||\binom{r\cos\varphi_1}{r\sin\varphi_1}||^2 = r^2\cos^2\varphi_1 + r^2\sin^2\varphi_1 = r^2\cdot(\cos^2\varphi_1 + \sin^2\varphi_1) = r^2.$$

Wegen $r \ge 0$ gilt also $||P_2(r, \varphi_1)|| = r$.

Ebenso ist
$$(n = 3)$$
: $||P_3(r, \varphi_1, \varphi_2)||^2 = ||\begin{pmatrix} r\cos\varphi_1\cos\varphi_2 \\ r\sin\varphi_1\cos\varphi_2 \end{pmatrix}||^2 = r^2\cos^2\varphi_1\cos^2\varphi_2 + r^2\sin^2\varphi_1\cos^2\varphi_2 + r^2\sin^2\varphi_1\cos^2\varphi_2 + r^2\sin^2\varphi_2 = r^2\cos^2\varphi_2 + r^2\sin^2\varphi_2 = r^2$, also wieder $||P_3(r, \varphi_1, \varphi_2)|| = r$.

Der Beweis, dass tatsächlich $||P_n(r, \varphi_1, \dots, \varphi_{n-1})|| = r$ für alle n gilt, erfolgt mit vollständiger Induktion:

Induktionsanfang: Für n=2 wurde dies oben schon gezeigt. \checkmark

Induktionsvoraussetzung: Es sei $||P_n(r, \varphi_1, \dots, \varphi_{n-1})|| = r$.

Induktionsschritt: Es ist Also gilt mit dem Satz des Pythagoras:

||
$$P_{n+1}(r, \varphi_1, \dots, \varphi_n)$$
|| $P_n(r, \varphi_1, \dots, \varphi_{n-1})$ || $P_n(r, \varphi_1, \dots, \varphi_{n-1})$ || $P_n(r, \varphi_1, \dots, \varphi_n)$ || $P_n(r,$

3 Funktionalmatrix und -determinante

Es gilt
$$|\det(J_{P_n}(r, \varphi_1, \dots, \varphi_{n-1}))| = r^{n-1} \prod_{i=2}^{n-1} \cos^{n-1} \varphi_i.$$

Integralberechnungen

- ${\bf 1} \quad {\bf Inhalt \ der} \ {\it n}\text{-}{\bf dimensionalen \ Kugel}$
- 2 Sonstiges

Verallgemeinerungen

1 "Ellipsoidkoordinaten"

Seien $a_1,\ldots,a_n>0$ fest. Die Menge $M^n:=\{x\in\mathbb{R}^n|\frac{x_1^2}{a_1^2}+\ldots\frac{x_n^2}{a_n^2}=1\}$ ist ein n-dimensionales Ellipsoid mit den Halbachsen a_1,\ldots,a_n . Im Spezialfall $a_1=\ldots=a_n:=r$ wird M^n zu einer n-dimensionalen Kugel mit Radius r. Mithilfe einer modifizierten Form von P_n , nämlich $Q_n(r,\varphi_1,\ldots,\varphi_{n-1})=$, lässt sich der Inhalt von M^n leicht berechnen. Mit der Multilinearität der Determinante ergibt sich: $|\det(J_{Q_n}(r,\varphi_1,\ldots,\varphi_{n-1}))|=a_1\cdot a_2\cdot\ldots\cdot a_n\cdot|\det(J_{P_n}(r,\varphi_1,\ldots,\varphi_{n-1}))|.$

2 verallgemeinerte Zylinderkoordinaten