

Free Variables in a FO formula Del? (By induction on Formula Construction) • F v (R (t,... tn)) = Variables among t,... tn FV (Φ₁ ∩ Φ₂) = FV (Φ₁ ∪ Φ₂) = FV (Φ₁) U FV (Φ₂) FV(∃, Φ) = FV(∀, Φ) = FV(Φ) - (2). Examples ∃x \$VY ← ∃x(\$VY) 3x \$ 1 Y ← 3x (\$ 1 Y) × € FV(~) $\forall x \ \phi \land \psi \ \Longleftrightarrow \ \forall x \ (\phi \land \psi)$ + x φ ν γ ← + x (φ ν γ) (YA \$) xE + Y A x E: snow ot i) -> Ax Φ[y/x] H Φ[y/x] ΥΗΥ φ[4/x],Υ H Φ[4/2]ΛΥ Эċ Ax Φ[Y/2], Y - 32[ΦΛΥ] 320 H 320 (Y [y/2] 36 Exp,y - 32 Cony)

YNDXE - YNDXE FROMFET YND SE OxE - Trypx E Dx E - 1 VM DxE Use he and cut will twice to convert; on the left into the 'n' on the right. ji) ← 32 (pry) H DAY DAY Ne DAY - DAY Ne - მ; Y - YAQ (YAQ)xE-(YAQ)xE DxE + YAΦ (ΨΛΦ)xf + (YΛΦ)xE φxE H (ΥΛΦ) xE Jx (ONY) HY Conpri YA OXE - (YAQ)XE Condition that & is a FV, is used at several places.

Formal Semantics of FOL Structure (A): Consists of. > Domain: |A| = non empty set > Ci... Cm (Constant Symbols) > R.A. Rm (Relations) or Predicate Symbols for each , a wull set of n tuples over [A] RiA S A aic arity ai Ci A C A Structure A = (A, R. ... Rm, C, A... Cm) Valuation (I) for each f \in I, a concrete fi2 $f_i^A: A^{ai} \rightarrow A$ Set of whiples (A,I) - MODEL.

eg: A model for language of arithmetric

> IAI, but of elements

> OA, as an int² of O

> A, a one placefu² IAI -> (AI)

> +A, *A, two placefu² from IAI² -> IAI

and

> <A a two place rel²

Definition 2.18 Given a model \mathcal{M} for a pair $(\mathcal{F}, \mathcal{P})$ and given an environment l, we define the satisfaction relation $\mathcal{M} \vDash_l \phi$ for each logical formula ϕ over the pair $(\mathcal{F}, \mathcal{P})$ and look-up table l by structural induction on ϕ . If $\mathcal{M} \vDash_l \phi$ holds, we say that ϕ computes to T in the model \mathcal{M} with respect to the environment l.

P: If ϕ is of the form $P(t_1, t_2, \dots, t_n)$, then we interpret the terms t_1, t_2, \dots, t_n in our set A by replacing all variables with their values according to l. In this way we compute concrete values a_1, a_2, \dots, a_n of A for each of these terms, where we interpret any function symbol $f \in \mathcal{F}$ by $f^{\mathcal{M}}$. Now $\mathcal{M} \models_l P(t_1, t_2, \dots, t_n)$ holds iff (a_1, a_2, \dots, a_n) is in the set $P^{\mathcal{M}}$.

 $\forall x$: The relation $\mathcal{M} \vDash_l \forall x \, \psi$ holds iff $\mathcal{M} \vDash_{l[x \mapsto a]} \psi$ holds for all $a \in A$.

 $\exists x$: Dually, $\mathcal{M} \vDash_l \exists x \, \psi$ holds iff $\mathcal{M} \vDash_{l[x \mapsto a]} \psi$ holds for some $a \in A$.

 \neg : The relation $\mathcal{M} \vDash_l \neg \psi$ holds iff it is not the case that $\mathcal{M} \vDash_l \psi$ holds. \forall : The relation $\mathcal{M} \vDash_l \psi_1 \lor \psi_2$ holds iff $\mathcal{M} \vDash_l \psi_1$ or $\mathcal{M} \vDash_l \psi_2$ holds.

 \wedge : The relation $\mathcal{M} \vDash_{l} \psi_{1} \wedge \psi_{2}$ holds iff $\mathcal{M} \vDash_{l} \psi_{1}$ and $\mathcal{M} \vDash_{l} \psi_{2}$ hold.

 \rightarrow : The relation $\mathcal{M} \vDash_l \psi_1 \to \psi_2$ holds iff $\mathcal{M} \vDash_l \psi_2$ holds whenever $\mathcal{M} \vDash_l \psi_1$ holds.

Suppose, we have a formula $(A, T) = \phi, \Lambda \phi_2$ with cde_{τ}^2 , two element BA.
if $(A, T) = \phi_1$ and $(A, T) = \phi_2$. similarly, 2V, -> 5 can be handled similarly for A $(A, I) = \forall x \phi$ if for all $a \in A$, (A F [a/n]) = p is known as the Perturbation Valuation $\mathbb{E}\left[a/n\right](y) = \begin{cases} \mathbb{I}(y) & \text{if } y \neq \infty \\ a & \text{if } y = \infty \end{cases}$ for 3, $(A,I) \vdash \exists z \phi$ iff there is an acA, st $(A_J \pm [a/n]) \neq \emptyset$ So, this is the classical defi of quantificers.

Constructive Def? et Quantifices done by entending BHK interpretation $C: \forall x \cdot \phi$ st for all $a \in A$. Ca! p[a/n] $f: A \rightarrow B$ Crange depends on the enfut arguments!) $\begin{array}{c}
\boxed{\prod} B(a) \\
a \in A
\end{array}$ $\equiv A \rightarrow B, \text{ if } B(a) \text{ is indep}^2$ of a. cnotation of a dependent fu²-share)