Iı	nhaltsverzeichnis	8 Reihen	5	16.2 Lineare DGL n-ter Ordnung mit	
		8.1 Definitionen	5	konst. Koeffizienten	11
1	Vollständige Induktion 1	8.2 Rechenregeln Reihen	5	16.3 Ansätze für partikuläre Lösung .	12
_		8.3 Konvergenzkriterien	5		
2	Logik 1	8.3.1 Reihen Kriterien	5	3 (3 /	13
	2.1 Aussagenlogik	8.4 Potenzreihe	5		13
	2.2 Logische Symbole 1	8.4.1 Konvergenzradius	5		13
9	Mengen 1	8.5 Konvergenztipps & Beispiele	5	17.3 Parametrisierung von Kurven	13
9	. 6	0.6 Ronvergenzupps & Beispiele	Ü	17.3.1 Beispiel: Kurvenintegral	
		9 Stetigkeit und Limes einer Funkti-		mit zwei Grenzgraphen .	13
	3.2 Rechenregeln	on	6		13
	3.3 Beweise	9.1 (Punktweise) Stetigkeit	6	17.5 Bogenlänge	14
	3.4 bekannte Mengen	9.2 Gleichmässige Stetigkeit	6	18 Differential rechnung in \mathbb{R}^n	14
	3.5 Mächtigkeit 1	9.3 Lipschitz-Stetigkeit	6		
	3.5.1 Abzählbar 1	9.4 Stetigkeit, Differenzierbarkeit,			14
	3.5.2 Gleichmächtigkeit zeigen . 1	Integrierbarkeit	6	18.2 Partielle Differenzierbarkeit	14
	3.5.3 weitere gleichmächtige	9.5 Abhängigkeit der Stetigkeitsbe-		19 Vektoranalysis	14
	Mengen 1	griffe	6	19.1 Bestimmung eines Potentials im	
	3.6 Teilmengen von \mathbb{R}	9.6 Regel von de l'Hospital	6		14
	3.6.1 Intervalle	9.7 Stetig ergänzbar	6	19.2 Bestimmung eines Potentials im	
	3.6.2 Beschränktheit 2	10 Statislasit and Frankisman and			15
	3.6.3 Supremum / Infimum 2	10 Stetigkeit von Funktionen mehrerer Var.	6	19.3 Geometrisches Verständniss	15
	3.6.4 Maximum / Minimum 2	10.1 Typische Fälle	6	19.4 Kritische Punkte im \mathbb{R}^n	15
	3.6.5 Archimedisches Prinzip . 2	10.11 Typisone 1 time	Ü		
	T- 141	11 Funktionsfolgen	7	20 Formeltafel	16
4	Funktionen 2			20.1 Mitternachtsformel	16
	4.1 Injektiv, surjektiv, bijektiv 2	12 Differenzierbarkeit	7	20.2 Binomialkoeffizient	16
	4.1.1 Injektiv 2	12.1 Definition	7	20.3 Argument	16
	4.1.2 Surjektiv 2	12.2 Mittelwertsatz (Satz von Lagrange)	7	20.4 Kreisfunktionen	16
	4.1.3 Bijektiv 2	12.3 Monotonie	7	20.4.1 Einheitskreis	16
	4.2 Absolutbetrag 3	12.4 Extremstellen	7	20.5 Trigonometrische Funktionen &	
	4.3 Monotonie	12.4.1 Beispiel Wendepunkt be-		Additions theorem	16
	4.3.1 Monotonie und Differen-	rechnen	7	20.6 Hyperbelfunktionen	16
	zial (Ableitung) 3	12.5 Zusammenhang zwischen Stetig-		20.7 Ableitungen	16
5	Zwischenwertsatz 3	keit und Differenzierbarkeit	7	20.7.1 Regeln	16
J	5.1 Beispiel (Fixpunkt) 3	12.6 Umkehrsatz	7	20.7.2 Ableitungs-Tafel	16
	5.1 Deispier (Pixpunkt)	12.7 Monotonie, Bijektion, Differen-	-	20.8 Integrale	17
6	Folgen in $\mathbb R$ 3	zierbarkeit	7	20.8.1 Integralregeln	17
	6.1 Definitionen	13 Partialbruchzerlegung	8	20.8.2 typische Integrale	17
	6.2 Cauchy-Folgen 3	10 1 at transf domesting ding	Ü	20.8.3 trionometrische Funktionen	17
	6.3 Rechnen mit Eigenschaften 3	14 Riemannsummen (Riemanninte-		20.8.4 Hyperbelfunktionen	17
	6.4 Rechnen mit Grenzwerten 3	gral)	8	20.8.5 Exponentialfunktion	
	6.5 Hilfsmittel	14.1 Riemansumme	8	20.9 Reihenentwicklung	
	6.6 Konvergenzkriterien 4	14.2 Riemann Integrierbar	8	20.10Grenzwerte	
	6.7 Konvergenztipps & Beispiele 4			20.11Reihen	
	6.7.1 Faktoren klammern und	15 Integral	8	20.12Linienintegral	
	kürzen / Brüche 4	15.1 Integral-Berechnung	9	20.13Kreuzprodukt	
	6.7.2 l'Hospital für Folgen (Fol-	15.1.1 Substitutionsregel	9	20.14Exponent	
	ge als Funktion) 4	15.1.2 Beispiel: Substitution	9	20.15Wurzel	
	6.7.3 Wurzeln 4	15.1.3 Partielle Integration	9	20.16Ungleichungen	
	6.7.4 Laufvariable im Exponent 4	15.1.4 Allgemeine Tips	9		
	6.7.5 Term erweitern 4	15.2 Uneigentliche Integrale	9	20.17Logarithmen	
	6.7.6 Einschliesskriterium 4			20.18Exponentialfunktion	
	6.7.7 Gruppieren 4	16 Differentialgleichung (DGL)	10	20.19Komplexe Zahlen	
	T. C.	16.1 Lineare DGL 1. Ordnung	10	20.20Geometrische Körper	
7	Taylorreihe / -entwicklung 4	16.1.1 Lineare DGL 1. Ordnung	10	-	18
	7.1 Definition 4	mit konst. Koeffizienten .	10		18
•	7.1.1 Taylorreihe 4	16.1.2 Lineare DGL 1. Ordnung mit var. Koeffizienten	10		18
	7.1.2 Restglied 4	16.1.3 Separierbare DGL	10	20.22.1 Kosinussatz	18
	7.2 Rechenregeln 5	16.1.4 genereller Ansatz	10	20.23Ausklammern	18
	7.2.1 Addition 5	16.1.4 genereller Ansatz	10	20.24Aus Serien	18
	7.2.2 Multiplikation 5	Konstanten	11	20.25Polynomdivision	18
	7.2.3 Kettenregel 5	16.1.6 Beispiel genereller Ansatz	11	$20.26\log(x)$	20
	7.2.4 Bemerkungen / Eigen-	16.1.7 Beispiel Direkterer		$20.27\frac{1}{x} \dots \dots \dots \dots \dots$	20
	schaften / Konvergenz 5	Lösungsweg	11	$20.28\sqrt{x}$	20

INHALTSVERZEICHNIS INHALTSVERZEICHNIS

20.31 Pascal
sches Dreieck 21 Reihen Tabellen

20

21

Vollständige Induktion

Grundlegende Struktur um die Aussage A(n) zu beweisen:

1. Verankerung/Induktionsanfang: Die Aussage wird für n = A bewiesen. A ist dabei meistens der erste Wert für die gegebene Eingabemenge. Der Beweis wird meist durch direktes ausrechnen gemacht.

2. Induktionsschritt

- 2.1. Annahme/Induktionsvoraussetzung: Hier schreibt man, dass man davon ausgeht die Aussage sei gültig für ein bestimmtes $n \in \mathbb{N}$ (damit man sie im Beweis einsetzen kann). Man kopiert also im Grunde, was man zu beweisen hat mit einigen Zierwörter.
- 2.2. Induktionsbehauptung: Hier schreibt man, dass die Aussage auch für (n + 1) gilt.
- 2.3. Beweis: Hier beweist man, dass unter der Annahme, dass die Induktionsvoraussetzung gilt, die Induktionsbehauptung folgt. Oder anders gesagt, wir beweisen dass wenn die Aussage für n gilt, dass es dann auch für (n + 1) gelten muss. Dazu wird die Induktionsvoraussetzung verwendet.

Merke: Schritt 2.1 und 2.2 werden oft weggelassen, falls trivial!

Beispiel

Es ist zu beweisen, dass für jedes $n \in \mathbb{N}$ folgendes gilt:

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$

- 1. Verankerung: Für n = 1 gilt: $1 = \frac{1(1+1)}{2} = \frac{2}{2} = 1$ \checkmark
- 2. Induktionsschritt:
 - 2.1. Ind.voraussetzung: $1+2+\ldots+n=\frac{n(n+1)}{2}$, gilt für n
 - 2.2. Induktionsbehauptung: Wenn die Aussage für n gilt, dann gilt sie auch für (n + 1).
 - 2.3. **Beweis:** Für $n \to n+1$ gilt:

$$1 + \ldots + n + (n+1) \stackrel{\text{Ind.vs.}}{=} \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1)}{2} + \frac{2n+2}{2} = \frac{n^2 + n + 2n + 2}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

$\mathbf{2}$ Logik

2.1Aussagenlogik

Seien A und B zwei Aussagen die wahr oder falsch sein können.

• A ist eine **notwendige Bedingung** für B.

Dh: B kann ohne A nicht erfüllbar sein oder anders, wenn B erfüllt ist dann muss A auch zwingend erfüllt sein.

- Also: $B \Rightarrow A$
- A ist eine hinreichende Bedingung für B. Dh: Wenn A erfüllt ist, ist auch sicher B erfüllt. Also: $A \Rightarrow B$
- A ist eine **notw.** und **hinreichende Bedingung** für B. Dh: A ist genau dann erfüllt wenn auch B erfüllt ist(en: iff) Also: $A \Leftrightarrow B \text{ oder } (B \Rightarrow A \land A \Rightarrow B)$

2.2 Logische Symbole

Symbol	Bedeutung	Beweis von solchen Aussagen
$A \Leftrightarrow B$	genau dann, wenn	$A \Rightarrow B \text{ oder } A \Rightarrow B$ $B \Rightarrow A \neg A \Rightarrow \neg B$
$A \Rightarrow B$	impliziert / wenn dann	$A \Rightarrow B \text{ oder } \neg B \Rightarrow \neg A \text{ oder}$

Mengen

3.1Definitionen

Name	Mengensymbol	Definition
Teilmenge:	$A \subseteq B$	$\forall x: x \in A \to x \in B$
Vereinigung:	$A \cup B$	$\{x \mid x \in A \lor x \in B\}$
Durchschnitt:	$A \cap B$	$\{x \mid x \in A \land x \in B\}$
Differenz:	$A \backslash B = A - B$	$\{x \mid x \in A \land x \not\in B\}$
Komplement:	$A^c = \overline{A}$	$\{x \mid x \not\in A\}$

3.2Rechenregeln

$A \cup B = B \cup A$	$A \cap B = B \cap A$
$A \cup (B \cup C) = (A \cup B) \cup C$	$A \cap (B \cap C) = (A \cap B) \cap C$
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
$(A \cup B)^c = A^c \cap B^c$	$(A \cap B)^c = A^c \cup B^c$
$(A \backslash B) \cup C = (A \cup C) \cap (B^c \cup C)$	$(A \backslash B) \cap C = A \backslash (B \cup C^c)$
$(A \backslash B) \backslash C = A \backslash (B \cup C)$	$A \backslash B = A \cap B^c$

3.3Beweise

Mengengleichungen zu beweisen überführt üblicherweise eine Seite in eine Form, die nur noch aus logischen Operatoren besteht $(\land, \lor, \in, \not\in)$ und formt dann so um, dass man zur gewünschten anderen Seite kommt durch Rückführung in eine Form mit Mengenoperatoren. Dazu verwendet man am einfachsten die Definitionen in Sektion 3.1.

Beispiel

Zeige:
$$(A \cup B)^c = A^c \cap B^c$$
 wobei A, B Untermengen von X sind. $(A \cup B)^c = \{x \in X : x \notin (A \cup B)\} = \{x \in X : x \notin A \land x \notin B\}$ $= \{x \in X : x \notin A\} \cap \{x \in X : x \notin B\} = A^c \cap B^c$

3.4 bekannte Mengen

 \mathbb{N} , natürliche Zahlen: $\{1, 2, 3, \ldots\}$

 \mathbb{Z} , ganze Zahlen: $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$

 \mathbb{Q} , rationale Zahlen: $\{\frac{p}{q}|p\in\mathbb{Z},q\in\mathbb{N}\setminus\{0\}\}$

 \mathbb{R} , reelle Zahlen: rationale und irrationalen Zahlen.

Mächtigkeit

Eine Menge A ist gleichmächtig zu einer Menge B, wenn es eine Bijektion $f: A \to B$ gibt. Man schreibt dann |A| = |B|.

Hat man zwischen zwei Mengen eine Funktion $f: A \to B$ gefunden, die bijektiv ist, so gibt es eine Umkehrfunktion, die ebenfalls Bijektiv ist. Diese bildet jedes Element von B auf eines aus A ab.

3.5.1 Abzählbar

Eine Menge A ist abzählbar, wenn sie gleichmächtig zur Menge N (natürliche Zahlen) ist.

Gleichmächtigkeit zeigen

Zeigt man durch angeben einer bijektiven Funktion.

Beispiel: Zeige: $U:=\{2k+1:k\in\mathbb{N}\}$ ist gleichmächtig zu \mathbb{N} .

Beweis: Sei
$$f: \mathbb{N} \to U$$
 gegeben durch
$$f(n) = \left\{ \begin{array}{ll} n & n \text{ ungerade} \\ -n-1 & n \text{ gerade} \end{array} \right.$$

Diese Funktion ist offensichtlich bijektiv (sonst Umkehrfunktion angeben), wodurch U gleichmächtig \mathbb{N} ist.

3.5.3 weitere gleichmächtige Mengen

- N, Z, Q sind gleichmächtig
- \mathbb{R} ,]0,1[sind gleichmächtig
- $\bullet \ \mathbb{R}$ ist mächtiger ("überabzählbar") als \mathbb{N}

Teilmengen von \mathbb{R}

3.6.1 Intervalle

Schreibweise	Definition	Bezeichnung des Intervalls
]a,b[,(a,b)]	$ \{x \in \mathbb{R} a < x < b\} $	offen
[a,b[,[a,b)]	$\{x \in \mathbb{R} a \le x < b\}$	(rechts) halboffen
]a,b],(a,b]	$\{x \in \mathbb{R} a < x \le b\}$	(links) halboffen
[a,b]	$\{x \in \mathbb{R} a \le x \le b\}$	abgeschlossen

Achtung: Ist a oder b "unendlich" $(\pm \infty)$, so muss es auf der entsprechenden Seite offen sein: z.B. $[a,\infty[,]-\infty,b[$. Unendlich ist keine konkrete Zahl und kann somit nicht gleich einer anderen Zahl sein, was nötig wäre für \leq .

Abgeschlossene Menge: Eine Menge ist abgeschlossen, wenn ihr Komplement eine offene Menge ist. Bsp. Alle abgeschlossenen Intervalle (z.B: [0,1] da $(-\infty,0) \cup (1,\infty)$)

Offene Menge: Anschaulich ist eine Menge offen, wenn kein Element der Menge auf ihrem Rand liegt. Bsp. Alle offenen Intervale (z.B: (0,1) da $0,1 \notin (0,1)$)

Kompakte Menge: Eine Menge ist kompakt, wenn sie abgeschlossen und beschränkt ist! Bsp. Alle abgeschlossenen Intervalle (z.B: [0,1] da abgeschlossen und beschränkt)

Merke: Halboffene Mengen sind weder offen noch abgeschlossen.

3.6.2 Beschränktheit

Eine nichtleere Teilmenge $M \subset \mathbb{R}$ heisst <u>beschränkt</u>, falls es ein $C_1, C_2 \in \mathbb{R}$ gibt, sodass $\forall x \in M : C_1 \leq x \leq C_2$ (Alternativ: $\exists C \in \mathbb{R} \ \forall x \in M : |x| \leq C$)

Eine nichtleere Teilmenge $M \subset \mathbb{R}$ heisst <u>nach oben beschränkt</u>, falls $\exists C \in \mathbb{R} \ \forall x \in M : x \leq C$ (jedes derartige C heisst obere Schranke)

Eine nichtleere Teilmenge $M \subset \mathbb{R}$ heisst <u>nach unten beschränkt</u>, falls $\exists C \in \mathbb{R} \ \forall x \in M : C \leq x$ (jedes derartige C heisst untere Schranke)

3.6.3 Supremum / Infimum

Jede nach oben beschränkte Menge $M\subset\mathbb{R}$ besitzt eine kleinste obere Schranke $c=\sup M$ und nennt es Supremum von M.

Jede nach unten beschränkte Menge $M \subset \mathbb{R}$ besitzt eine grösste untere Schranke $\tilde{c} = \inf M$ und nennt es Infimum von M.

Falls die Menge M ein grösstes (bzw. kleinstes) Element besitzt, so nennt man es <u>Maximum</u> (bzw. <u>Minimum</u>). Es gilt:

- \bullet Ist $M\subset \mathbb{R}$ abgeschlossen und beschränkt, so existieren Minimum und Maximum von M
- Wenn $\max M$ existiert, dann ist $\sup M = \max M$
- Ist $\sup M \in M$, so ist $\max M = \sup M$
- Wenn min M existiert, dann ist inf $M = \min M$
- Ist $\inf M \in M$, so ist $\min M = \inf M$

3.6.3.1 mathematische Definition

 $\sup M = a$ gilt genau dann, wenn

- $\forall x \in M : x \leq a, a \text{ ist somit obere Schranke von } M$
- $\forall \varepsilon > 0 \ \exists x \in M : x > a \varepsilon$, d.h. $a \varepsilon$ ist keine obere Schranke mehr, egal wie klein man ε auch wählt $\to a$ ist kleinste obere Schranke.

 $\inf M = a$ gilt genau dann, wenn

- $\forall x \in M : x > a$, a ist somit untere Schranke von M
- $\forall \varepsilon > 0 \ \exists x \in M : x < a + \varepsilon$, d.h. $a + \varepsilon$ ist keine untere Schranke mehr, egal wie klein man ε auch wählt $\to a$ ist grösste untere Schranke.

3.6.4 Maximum / Minimum

Satz 3.1 (Extremwertsatz - Weierstrass). Ist f eine stetige Funktion und ist der Definitionsbereich kompakt (Bsp. abgeschlossenes Intervall), so hat die Funktion ein Max. und Min.

Tip:

- Wenn Max/Min bestummen werden soll, prüfe zuerst ob f ein Max/Min besitzt. Dies ist der Fall, wenn f stetig ist auf ganzem Definitionsberech (beachte Übergang bei Fallunterscheidungen) und wenn der Definitionsbereich kompakt ist!
- Um Max/Min zu bestimmen prüfe Punkte im innern von f $(f'(x) \stackrel{!}{=} 0)$ und zusätzlich auf dem Rand von f (a & b bei [a, b]).

3.6.5 Archimedisches Prinzip

Satz 3.2 (Archimedisches Prinzip). Zu den zwei Zahlen $x, y \in \mathbb{R}, \ y > x > 0$ existiert eine Zahl $n \in \mathbb{N}$, sd gilt: nx > y

4 Funktionen

Eine Funktion $f:D\to W$ ist eine Abbildung, in der jedes Element aus D einem Element aus W zugeordnet wird. D ist der <u>Definitionsbereich</u> (Bereich der gültigen Eingaben) und W der <u>Wertebereich</u> (Bereich der gültigen Ausgaben).

Bild von D: $f(D) = \{f(x) \mid x \in D\}$ (Muss nicht gleich W sein!) Urbild von $V \subset W$: $f^{-1}(V) = \{x \in D \mid f(x) \in V\}$

4.1 Injektiv, surjektiv, bijektiv

4.1.1 Injektiv

Sei $f: M \to N$, f ist injektiv, wenn folgendes gilt:

- $\forall x_1, x_2 \in M : x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$
- $\forall x_1, x_2 \in M : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
- $\forall y \in N : \exists ! x \in M : f(x) = y \lor \neg (\exists x \in M : f(x) = y)$: wenn zu jedem $y \in N$ höchstens (genau eins oder keins) ein $x \in M$ existiert mit f(x) = y

4.1.1.1 Injektivität zeigen

Injektiv wird meist direkt über die zweite Eigenschaft gemacht oder per Wiederspruchsbeweis (indirekter Beweis) mittels der ersten Eigenschaft bewiesen.

4.1.1.2 Eigenschaften

- \bullet Die Gleichung $f(x)=y,\ f$ ist injektiv und y gegeben, verfügt über eine oder keine Lösung für x
- Eine stetige reelwertige Funktion auf einem reelen Intervall ist genau dann <u>injektiv</u>, wenn sie in ihrem gesamten Definitionsbereich streng monoton steigend oder fallend ist.
- \bullet Sind die beiden Funktionen g,finjektiv, so ist die Komposition $g\circ f$ ebenfalls injektiv
- Ist $g \circ f$ injektiv, so ist f injektiv
- $f: M \to N$ ist injektiv, wenn es die <u>links inverse</u> Funktion $g: N \to M$ gibt, so dass $g \circ f = \mathrm{id}_M$

4.1.2 Surjektiv

Sei $f: M \to N$, f ist surjektiv, wenn folgendes gilt:

$$\forall y \in N : \exists x \in M : f(x) = y$$

Wenn also für jedes Element aus N mindestens ein (können auch mehr sein) Element in M gibt, dass auf das Element aus N zeigt.

4.1.2.1 Eigenschaften

- Die Gleichung f(x) = y, f ist surjektiv und y gegeben, verfügt über eine oder mehrere Lösungen für x.
- Sind die Funktionen $f:A\to B$ und $g:B\to C$ surjektiv, so ist die Komposition $g\circ f:A\to C$ auch surjektiv
- Ist $g \circ f$ surjektiv, so folgt, dass g surjektiv ist
- $f:A\to B$ ist genau dann surjektiv, wenn f ein rechtes Inverse hat, also $g:B\to A$ mit $f\circ g=\mathrm{id}_B$

4.1.3 Bijektiv

Eine Funktion ist bijektiv, wenn sie injektiv und surjektiv ist.

4.1.3.1 Eigenschaften

- Es gelten die Eigenschaften von Injektivi. und Surjektivi.
- \bullet Die Gleichung $f(x)=y,\ f$ ist bijektiv und y gegeben, verfügt über genau eine Lösung für x
- Sind die Funktionen $f: A \to B$ und $g: B \to C$ bijektiv, dann ist auch die Komposition $g \circ f: A \to C$ bijektiv.
- Ist $g \circ f$ bijektiv, dann ist f injektiv und g surjektiv

4.2 Absolutbetrag

- $|x| = \max(x, -x)$ oder $\begin{cases} x \ge 0 \Rightarrow |x| = x \\ x < 0 \Rightarrow |x| = -x \end{cases}$
- $\bullet ||x \cdot y| = |x| \cdot |y|$
- $\bullet ||x+y| \le |x| + |y|$
- $|x-a| < \varepsilon \Leftrightarrow -\varepsilon < x-a < \varepsilon \Leftrightarrow a-\varepsilon < x < a+\varepsilon$
- $\bullet |x-a| \Leftrightarrow |a-x|$

4.3 Monotonie

Die Funktion f ist...

monoton steigend, falls: $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$ streng monoton steigend, falls: $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ monoton fallend, falls: $x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$ streng monoton fallend, falls: $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$

4.3.1 Monotonie und Differenzial (Ableitung)

Ist f auf dem Intervall I differenzierbar, so gilt

- $f'(x) > 0 \ \forall x \in I \Rightarrow f$ streng monoton steigend
- $f'(x) \ge 0 \ \forall x \in I \Leftrightarrow f \text{ monoton steigend}$
- $f'(x) < 0 \ \forall x \in I \Rightarrow f$ streng monoton fallend
- $f'(x) \leq 0 \ \forall x \in I \Leftrightarrow f \text{ monoton fallend}$

5 Zwischenwertsatz

Sei $f:[a,b] \to \mathbb{R}$ eine stetige reele Funktion, die auf einem Intervall definiert ist mit o.B.d.A $f(a) \le f(b)$. Dann gilt: $\forall u \in [f(a), f(b)] \exists c \in [a,b]$ so dass f(c) = u

5.1 Beispiel (Fixpunkt)

Sei $f:[0,1]\to [0,1]$. Zeige: f hat einen Fixpunkt, d.h. bes gibt ein $x\in [0,1]$ derart, dass f(x)=x.

Man erzeugt die Funktion $g:[0,1]\to\mathbb{R}, g(x):=f(x)-x$. Es gilt: $f(x)=x\Leftrightarrow g(x)=0$, d.h. ein Punkt x ist genau dann ein Fixpunkt von f wenn er eine Nullstelle von g ist. Es ist zu zeigen, dass g immer eine Nullstelle auf [0,1] hat. Als Differenz von zwei stetigen Funktionen ist g stetig. Weil ausserdem $f(x)\in[0,1]$ $\forall x\in[0,1]$ gilt, ist $g(0)\geq 0\geq g(1)$. Da g stetig ist, gibt es daher nach dem Zwischenwertsatz ein $x\in[0,1]$ mit g(x)=0 und somit gibt es f(x)=x.

6 Folgen in \mathbb{R}

Eine Folge a_n ist eine Funktion von $\mathbb{N}\setminus\{0\} \to \mathbb{R}$. Man nennt $(a_1, a_2, ...)$ Folgenglieder. Bsp. $a_n = 1/n \Rightarrow a_1 = 1, a_2 = 1/2, ...$

6.1 Definitionen

konvergent $\lim_{x\to\infty} a_n$ existiert

divergent $\lim_{x\to\infty} a_n$ existiert nicht

Nullfolge $\lim_{x\to\infty} a_n = 0$ gilt

beschränkt $\exists C_1, C_2 \in \mathbb{R}$, sodass gilt: $C_1 \leq a_n \leq C_2$ oder $\exists C \text{ sodass gilt: } |a_n| \leq C$

unbeschränkt falls (a_n) nicht beschränkt ist. Unbeschränkte folgen sind stets divergent

monoton wachsend $a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$

streng monoton wachsend $a_n < a_{n+1} \quad \forall n \in \mathbb{N}$

monoton fallend $a_n \geq a_{n+1} \quad \forall n \in \mathbb{N}$

streng monoton fallend $a_n > a_{n+1} \quad \forall n \in \mathbb{N}$

alternierend die Vorzeichen der Folgenglieder wechseln sich ab

bestimmt divergent / uneigentlich konvergent es gilt

 $\lim_{n\to\infty} a_n = \pm \infty$

Definition 6.1 (Konvergenz / Grenzwert). Die Folge a_n konvergiert gegen a falls gilt:

$$\forall \varepsilon > 0 \ \exists \ n_0 \in \mathbb{N} \ \forall n \ge n_0 : |a_n - a| < \varepsilon$$

Wir nennen a den Grenzwert/Limes und schreiben dann:

$$\lim_{n \to \infty} a_n = a$$

Definition 6.2 (Teilfolge). Werden von einer Folge beliebig viele Glieder weggelassen, aber nur so viele, dass noch unendlich viele übrigbleiben, so erhält man eine Teilfolge. Konvergiert eine Folge a_n gegen a, so konvergiert auch jede Teilfolge gegen a!

Definition 6.3 (Häufungspunkt). Ein Häufungspunkt ist ein Grenzwert einer Teilfolge (Bsp. H-Punkte von $(-1)^n = \{1, -1\}$). Anderst ausgedrückt: a ist Häufungspunkt der Folge (a_n) , wenn in jeder Umgebung von a unendlich viele Folgeglieder liegen.

Definition 6.4 (Limes superior / Limes inferior). Ist a_n eine beschränkte Folge so heisst der grösste Häufungspunkt Limes superior ($\limsup_{n\to\infty} a_n$ / $\overline{\lim}_{n\to\infty} a_n$) und der kleinste Häufungspunkt Limes inferior ($\liminf_{n\to\infty} a_n$ / $\underline{\lim}_{n\to\infty} a_n$)

6.2 Cauchy-Folgen

Definition 6.5. Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} . $(a_n)_{n\in\mathbb{N}}$ heisst Cauchy-Folge, falls gilt

$$\forall \varepsilon > 0 \ \exists \ n_0 \in \mathbb{N} \ \forall n, l \ge n_0 : |a_n - a_l| < \varepsilon$$

Die Definition sagt grundsätzlich aus, dass ab einem n_0 (also einem Anfang n_0 , der nur abhängig von ε ist) die Folgeglieder nur noch ε Abstand zu einander haben. Also der Abstand beliebig klein wird zwischen Folgegliedern.

Satz 6.1 (Cauchy-Kriterium). Für $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ gilt: (a_n) ist konvergent $\Leftrightarrow (a_n)$ ist eine Cauchy-Folge

6.3 Rechnen mit Eigenschaften

Addition:

- $(a_n), (b_n)$ konvergiert $\Rightarrow (a_n + b_n)$ konvergiert
- (a_n) konvergiert, (b_n) divergent $\Rightarrow (a_n + b_n)$ divergent
- (a_n) beschränkt, (b_n) beschränkt $\Rightarrow (a_n + b_n)$ beschränkt
- (a_n) beschränkt, (b_n) unbeschränkt $\Rightarrow (a_n + b_n)$ unbeschränkt
- (a_n) beschränkt, $(b_n) \to \pm \infty \Rightarrow (a_n + b_n) \to \pm \infty$
- $(a_n) \to \infty$, $(b_n) \to \infty \Rightarrow (a_n + b_n) \to \infty$
- $(a_n) \to -\infty$, $(b_n) \to -\infty \Rightarrow (a_n + b_n) \to -\infty$

Produkt:

- (a_n) Nullfolge, (b_n) beschränkt $\Rightarrow (a_n b_n)$ Nullfolge
- (a_n) konvergent, (b_n) beschränkt $\Rightarrow (a_n b_n)$ beschränkt
- (a_n) konvergent, (b_n) konvergent $\Rightarrow (a_n b_n)$ konvergent
- (a_n) konvergent gegen $a \neq 0, (b_n)$ divergent $\Rightarrow (a_n b_n)$ divergent

6.4 Rechnen mit Grenzwerten

 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$ <u>Achtung!</u> Untenstehendes gilt <u>nur</u> wenn die Grenzwerte von a_n <u>und b_n existieren</u>. (Nicht 0 oder ∞ sind.)

- $\lim_{n\to\infty} (a_n \pm b_n) = a \pm b$
- $\lim_{n\to\infty} (c \cdot a_n) = c \cdot a$
- $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$
- $\lim_{n\to\infty} (a_n)^c = (\lim_{n\to\infty} a_n)^c$, nur wenn $c\neq n$
- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$, nur wenn (b_n) keine Nullfolge

6.5 Hilfsmittel

Bernoullische Ungleichung: Für $x \ge -1$ und $n \in \mathbb{N}$ $(1+x)^n \ge 1 + nx$

Vergleich von Folgen: weiter rechts stehende Werte gehen schneller nach ∞

1,
$$\ln n$$
, n^{α} ($\alpha > 0$), q^{n} ($q > 1$), $n!$, n^{n}

Stirlingformel:

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \Rightarrow \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \le n! \le \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \cdot e^{\frac{12}{n}}$$

6.6 Konvergenzkriterien

$$a_n \to a \Leftrightarrow a_n - a \to 0 \Leftrightarrow |a_n - a| \to 0$$

• Ist $\lim_{n\to\infty} a_n = a$, so ist der Limes a einziger Häufungspunkt der Folge (a_n) und jede Teilfolge konvergiert auch gegen a.

Beispiel: Wegen $\left(1+\frac{1}{n}\right)^n\to e$, so gilt auch $\left(1+\frac{1}{2n}\right)^{2n}\to e$ • **Divergenzkriterium:** Hat die Folge zwei verschiedene

- Häufungspunkte, so ist die Folge sicher divergent.
 Monotone konvergenz: Ist die Folge monoton steigend (fallend) und nach oben (unten) beschränkt, dann konvergiert
- $\lim_{n\to\infty} a_n$ zu sup a_n (inf a_n)
 Wenn $\sum_{n=0}^{\infty} a_n$ konvergiert, so ist $\lim_{n\to\infty} a_n = 0$ Damit kann man die Grenzwertregeln für Reihen verwenden.
- Gibt es eine Funktion f mit $f(n) = a_n$ und $\lim_{x\to\infty} f(x) = a$, so gilt auch $\lim_{n\to\infty} a_n = a$. Damit kann man zum Beispiel die Regel von <u>l'Hospital</u> und die restlichen Methoden anwenden. Siehe Grenzwerte von
- die restlichen Methoden anwenden. Siehe Grenzwerte von Funktionen. Achtung: Es kann sein, dass f keinen Grenzwert besitzt, aber $\overline{(a_n)}$ schon.
- Einschliessungskriterium: Sind $(a_n), (b_n), (c_n)$ Folgen mit $a_n \leq b_n \leq c_n$ und haben $(a_n), (c_n)$ den gleichen Grenzwert a, so konvergiert auch (b_n) nach a.
- Cauchy-Kriterium:

Die Folge a_n ist konvergent $\Leftrightarrow a_n$ ist eine Cauchy-Folge

6.7 Konvergenztipps & Beispiele

6.7.1 Faktoren klammern und kürzen / Brüche

Bei Brüchen und auch sonst empfiehlt es sich oft den am stärksten wachsenden Teil (das am schnellsten wachsende n) zu kürzen. In diesem Fall ist es das n^4 in der Wurzel, also n^2 .

$$\begin{split} \lim_{n \to \infty} \frac{n^2 + \ln n}{\sqrt{n^4 - n^3}} &= \lim_{n \to \infty} \frac{n^2 + \ln n}{\sqrt{n^4 - n^3}} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2 + \ln n}{n^2 \sqrt{1 - \frac{1}{n}}} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} \\ &= \lim_{n \to \infty} \frac{1 + \frac{\ln n}{n^2}}{\sqrt{1 - \frac{1}{n}}} = \frac{1 + 0}{\sqrt{1 - 0}} = 1 \end{split}$$

6.7.2 l'Hospital für Folgen (Folge als Funktion)

 $\lim_{n\to\infty}\frac{\ln n}{n^2}$

Die Funktion $f(x) = \frac{\ln x}{x^2}$ entspricht unseren Folgegliedern $(f(n) = a_n = \frac{\ln n}{n^2})$. Für $n \to \infty$ hat der Nenner und der Zähler den Grenzwert ∞ , also wenden wir die Regel von l'Hospital an.

$$\dots = \lim_{x \to \infty} \frac{(\ln x)'}{(x^2)'} = \lim_{x \to \infty} \frac{\frac{1}{x}}{2x} = \lim_{x \to \infty} \frac{1}{2x^2} = 0$$

Somit geht auch die Folge gegen 0

6.7.3 Wurzeln

$$\lim_{n\to\infty}(\sqrt{n^2+an+1}-\sqrt{n^2+1})$$

Die einzelnen Terme streben jeweils gegen unendlich und $(\infty - \infty)$ kann nicht direkt berechnet werden. Deshalb macht man hier eine Brucherweiterung mit geändertem Vorzeichen in der Mitte!

$$= \lim_{n \to \infty} (\sqrt{n^2 + an + 1} - \sqrt{n^2 + 1}) \cdot \left(\frac{\sqrt{n^2 + an + 1} + \sqrt{n^2 + 1}}{\sqrt{n^2 + an + 1} + \sqrt{n^2 + 1}} \right)$$

$$= \lim_{n \to \infty} \frac{(n^2 + an + 1) - (n^2 + 1)}{\sqrt{n^2 + an + 1} + \sqrt{n^2 + 1}}$$

$$= \lim_{n \to \infty} \frac{an}{\sqrt{n^2 + an + 1} + \sqrt{n^2 + 1}}$$

nun verwenden wir den Tipp für Brüche und kürzen das n heraus

$$\dots = \lim_{n \to \infty} \frac{a}{\sqrt{1 + \frac{a}{n} + \frac{1}{n^2}} + \sqrt{1 + \frac{1}{n^2}}} = \frac{a}{1+1} = \frac{a}{2}$$

6.7.4 Laufvariable im Exponent

$$\begin{split} &\lim_{x\to 0}(3-|x|)^{\frac{\sin(x)}{x}}\\ &\text{Verwende }(x=e^{\ln x})\text{ Also: }(3-|x|)^{\frac{\sin(x)}{x}}=e^{\frac{\sin(x)}{x}\cdot\ln(3-|x|)}\\ &\Rightarrow \lim_{x\to 0}(3-|x|)^{\frac{\sin(x)}{x}}=\lim_{x\to 0}e^{\frac{\sin(x)}{x}\cdot\ln(3-|x|)}\\ &\Rightarrow \lim_{x\to 0}\frac{\sin(x)}{x}\cdot\ln(3-|x|)=\ln(3)\\ &\Rightarrow \lim_{x\to 0}(3-|x|)^{\frac{\sin(x)}{x}}=e^{\ln(3)}=3 \end{split}$$

6.7.5 Term erweitern

Oft steht ein Term da, der annähernd so aussieht wie etwas das wir bereits kennen. Durch Term/Bruch - Erweiterung lässt er sich oft auf eine bekannte Form bringen, welches separat gelöst werden kann lösen.

$$\lim_{x \to 0} \frac{\sin|x|}{\sqrt{|x|}} = \lim_{x \to 0+} \frac{\sqrt{x} \cdot \sin x}{\sqrt{x} \cdot \sqrt{x}} = \lim_{x \to 0+} \sqrt{x} \cdot \frac{\sin x}{x} = 0 \cdot 1 = 0$$

6.7.6 Einschliesskriterium

Vereinfache a_n zu b_n und c_n so dass gilt: $b_n \le a_n \le c_n$. Die Grenzwerte von b_n und c_n sollten einfach auszurechnen sein! Wenn b_n und c_n gegen a strebt, dann macht dies auch a_n .

6.7.7 Gruppieren

Hat man zum Beispiel die Folge $s_n=1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2n-1}$ so kann man die einzelnen Therme gruppieren und abschätzen in diesem Fall z.B. mit $\frac{1}{4}$ (zweiter Therm, dritter und vierter Therm, fünfter bis achter Therm, nächste 8 Therme, etc.). Wir erhalten dann $s_{2^k} \geq 1+\frac{k}{4}$ und sehen somit das die Reihe nicht beschränkt ist und somit auch nicht konvergiert.

7 Taylorreihe / -entwicklung

Mit Hilfe der Taylorreihe können Funktionen an der Stelle x approximiert werden. Dazu muss zuerst ein x_0 gewählt werden, welches nahe bei x liegt und auch möglichst leicht zu berechnen ist. Dieses x_0 nennt man den Entwicklungspunkt. Dann können n-glieder der Taylorreihe berechnet werden.

7.1 Definition

7.1.1 Taylorreihe

Die Taylorreihe der Funktion f um den Entwicklungspunkt x_0 : $T_f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$

Das n-te Taylorpolynom:

$$T_n(x;x_0) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$

7.1.2 Restglied

Das Restglied entspricht dem Fehler der Approximation. Das n-te Restglied:

$$R_n(x; x_0) = f(x) - T_n(x; x_0)$$

Restglied nach Lagrange kann lediglich abgeschätzt werden da ξ unbekannt ist:

bekannt ist:
$$R_n(x;x_0) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} \text{ für ein } \xi \in (x_0,x)$$
$$|R_n(x;x_0)| \leq \frac{|f^{(n+1)}(\xi)|}{(n+1)!} |x - x_0|^{n+1} \text{ für ein } \xi \in (x_0,x) \text{ sd } f^{(n+1)}(\xi)$$
maximal wird. Dh: Wähle ξ dementsprechend das dies der Fall ist!

Tip: Wenn sich f als Potenzreihe darstellen lässt oder selbst eine ist, dann ist diese Potenzreihe auch die Taylor-Reihe! Das n-te Taylor Polynom kann also auch durch ausrechnen der ersten Summenglieder (bis x^n erreicht wird) berechnet werden, was oft einfacher ist, als n Mal abzuleiten!

Bsp. 4. Polynom um $x_0=0$ von e^{x^2} : $1+x^2+\frac{x^4}{2!}$ (da $e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$) Merke: Wenn beim ausrechnen der Summenglieder höhere Polynome als Ordnung n (hier = 4) resultieren, können diese weggelassen werden, wir sind ja nur am 4. Taylor Polynom interessiert!

7.2 Rechenregeln

7.2.1 Addition

f, g sind m-mal differenzierbar:

$$T_m(f+g)(x;x_0) = T_m f(x;x_0) + T_m g(x;x_0)$$

7.2.2 Multiplikation

f, g sind m-mal differenzierbar:

$$T_m(f \cdot g)(x; x_0) = T_m(T_m f(x; x_0) \cdot T_m g(x; x_0))$$

Achtung: Anschaulich bedeutet es folgendes: Man multipliziert die beiden Taylorreihen von f und g miteinander $(T_m f(x; x_0) \cdot T_m g(x; x_0))$. Danach entfernt man alle Terme der Ordnung > m.

7.2.3 Kettenregel

 $f:A\to B,g:B\to\mathbb{R}$ zwei m-mal differenzierbare Funktionen. Entwickelt wird um den Punkt $x_0\in A$ mit $g(x_0)=q$ (q muss man berechnen). Dann gilt:

$$T_m(g \circ f)(x; x_0) = T_m(f(g))(x; x_0)$$

= $T_m(T_m g(x; x_0) \circ T_m f(x; q))$
= $T_m(T_m f(T_m g(x; x_0))(x; q))$

7.2.4 Bemerkungen / Eigenschaften / Konvergenz

- Der Konvergenzradius kann 0 sein
- Falls Taylor-Reihe konvergiert, dann ist sie nicht notwendig gleich der Funktion, die sie beschreibt. Gegenbeispiel:

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & x > 0\\ 0 & x \le 0 \end{cases}$$

8 Reihen

8.1 Definitionen

Eine Reihe $\sum_{n=1}^{\infty} a_n$ ist konvergent mit Grenzwert s, wenn die Folge der Partialsummen $(S_m), S_m := \sum_{n=1}^m a_n$ gegen s konvergiert. Also wenn gilt: $S_m \to s$.

Definition 8.1 (ε -Kriterium). Die Reihe konvergiert genau dann wenn gilt: $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m \geq n_0 : |\sum_{n=1}^m a_n - s| < \varepsilon$

Definition 8.2 (Absolute Konvergenz). Eine Reihe $\sum_{n=1}^{\infty} a_n$ heisst absolut konvergent falls $\sum_{n=1}^{\infty} |a_n| < \infty$. Merke: absolute Konvergenz \Rightarrow Konvergenz.

8.2 Rechenregeln Reihen

Für absolut konvergente Reihen gilt:

$$\sum_{n=1}^{\infty} a_n = A, \sum_{n=1}^{\infty} b_n = B \Rightarrow \sum_{n=1}^{\infty} (\alpha a_n + \beta b_n) = \alpha A + \beta B$$

8.3 Konvergenzkriterien

Konvergiert $\sum_{n=1}^{\infty} a_n$, so ist $\lim_{n\to\infty} a_n = 0$. Wenn also $\lim_{n\to\infty} a_n \neq 0$, so konvergiert die Reihe <u>nicht</u>

8.3.1 Reihen Kriterien

Achtung. Die nachfolgenden Kriterien sagen nur aus, ob die Reihen konvergiert oder nicht. Sie sagen <u>nicht</u> aus, gegen was sie konvergieren!

8.3.1.1 Quotientenkriterium

$$\left|\frac{a_{n+1}}{a_n}\right| \to q. \quad \text{Dann gilt} \begin{cases} q < 1 & \Rightarrow \sum_{n=1}^{\infty} a_n \text{ konvergiert absolut} \\ q = 1 & \Rightarrow \text{keine Aussage} \\ q > 1 & \Rightarrow \sum_{n=1}^{\infty} a_n \text{ divergiert} \end{cases}$$

8.3.1.2 Wurzelkriterium

$$\sqrt[n]{|a_n|} \to q$$
. Dann gilt $\begin{cases} q < 1 & \Rightarrow \sum_{n=1}^{\infty} a_n \text{ konvergiert absolut} \\ q = 1 & \Rightarrow \text{keine Aussage} \\ q > 1 & \Rightarrow \sum_{n=1}^{\infty} a_n \text{ divergiert} \end{cases}$

8.3.1.3 Leibnizkriterium

Wenn gilt:

- \bullet (a_n) ist alternierende Folge, d.h Vorzeichen wechseln jedes Mal
- $a_n \to 0$ oder $|a_n| \to 0$
- $(|a_n|)$ ist monoton fallend

...dann konvergiert $\sum_{n=1}^{\infty} a_n$

8.3.1.4 Majorantenkriterium / Konvergenzkriterium

Ist $|a_n| \leq b_n$ und $\sum_{n=1}^{\infty} b_n$ konvergent, so konvergiert $\sum_{n=1}^{\infty} a_n$ absolut.

8.3.1.5 Minorantenkriterium / Divergenzkriterium

Ist $a_n \geq b_n \geq 0$ und $\sum_{n=1}^{\infty} b_n$ divergent, so divergiert $\sum_{n=1}^{\infty} a_n$

$\bf 8.3.1.6 \quad Keine~Nullfolge~/~Divergenzkriterium$

Wenn a_n keine Nullfolge ist, divergiert die Reihe! Also wenn gilt: $\lim_{n\to\infty}a_n\neq 0$ oder $\lim_{n\to\infty}|a_n|\neq 0$ Beachte: Aussage gilt nur in diese Richtung! Auch wenn a_n eine Nullfolge ist, kann die Reihe immer noch divergieren!

8.4 Potenzreihe

Die Potenzreihe hat die allgemeine Form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

 x_0 ist der Entwicklungspunkt der Potenzreihe und $(a_n)_{n\in\mathbb{N}}$ eine beliebige Folge.

8.4.1 Konvergenzradius

Die Berechnung des Konvergenzradius ist für Potenzreihen einfacher, da der Faktor $(x-x_0)$ nicht analysiert werden muss. Entsprechend gilt für den Konvergenzradius r nach Wurzelbzw. Quotientenkriterium:

$$r = \frac{1}{\lim\sup_{n \to \infty} \sqrt[n]{\|a_n\|}} \text{ bzw. } r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
 Dann gilt:
$$\begin{cases} |x - x_0| < r & \Rightarrow \text{ Potenzreihe konvergiert} \\ |x - x_0| = r & \Rightarrow \text{ keine Aussage} \\ |x - x_0| > r & \Rightarrow \text{ Potenzreihe divergiert} \end{cases}$$

8.5 Konvergenztipps & Beispiele

8.5.0.1 Brüche

Um zu prüfen ob die Reihe konvergiert, ist es bei Brüchen oft sinvoll das Quotientenkriterium anzuwenden. Vorallem wenn Zähler und Nenner nur aus Produkten bestehen, oft lassen sich dann diese Faktoren wieder wegkürzen!

$$\sum_{n=1}^{\infty} \frac{n!}{n^n} := \frac{(n+1)! \cdot n^n}{(n+1)^{(n+1)} \cdot n!} = \frac{(n+1) \cdot n^n}{(n+1)^{(n+1)}} = \left(\frac{n}{n+1}\right)^n = \frac{1}{e}$$

8.5.0.2 Punkte einsetzen

Manchmal lässt sich die Reihe nicht direkt ausrechnen, dann kann es nützlich sein, ein paar Summenglieder auszurechnen um zu schauen wie sich die Reihe entwickelt. Im besten Fall lässt sich dann die Summe durch den Grenzwert ersetzen oder man muss noch den Grenzwert der neuen Folge berechnen.

$$\sum_{n=2}^{\infty} \frac{1}{n-1} - \frac{1}{n} = \left(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n}\right) = 1 - \frac{1}{n}$$

$$\lim_{n \to \infty} 1 - \frac{1}{n} = 1$$

8.5.0.3 Umformen

Um eine Reihe auszurechnen kann sie oft umgeformt werden (Bsp. Konstante vor Summe) auf eine Reihe von der eine geschlossene Formel bereits bekannt ist. Siehe Formeltafel!

9 Stetigkeit und Limes einer Funktion

 $\lim_{x\to a} f(x) = b$ bedeutet, dass die Funktion f für $x\to a$ den Grenzwert b hat. Der Funktionswert nähert sich also immer näher an b heran, wenn x sich a annähert (Epsilon-Delta-Kriterium).

$$\forall \varepsilon > 0 \; \exists \delta > 0 : ||x - a|| < \delta \Rightarrow ||f(x) - f(a)|| < \varepsilon$$

Funktionsfolgen verhalten sich desweiteren wie Folgen. Es gelten also die gleichen Eigenschaften.

Existiert der Grenzwert, so konvergiert die Funktion, andernfalls divergiert sie. Der Grenzwert existiert nicht wenn die Funktion eine Division durch 0 enhält oder wenn er gegen ∞ , resp. $-\infty$ divergiert.

9.1 (Punktweise) Stetigkeit

Definition 9.1 ((Punktweise) Stetig). Die Funktion f heisst an der Stelle $a \in \Omega$ (punktweise) stetig, falls $\lim_{x\to a} f(x) = f(a)$. Dh: wenn der Grenzwert an der a existiert und er gleich dem Funktionswert an der Stelle a ist!

Charakterisierungen der Stetigkeit von f im Punkt a:

- Man kann $\lim_{x\to a} f(x)$ auch als $f(\lim_{x\to a} x)$ schreiben. Also die Reihenfolge zwischen Bildung des Grenzwertes und der Anwendung der Funktion vertauschen. Beispiel: $\lim_{x\to\infty} \sin\frac{1}{x} = \sin(\lim_{x\to\infty} \frac{1}{x}) = \sin(0) = 0$
- Es gilt linker Grenzwert = Funktionswert = rechter Grenzwert: $\lim_{x \nearrow a} f(x) = f(a) = \lim_{x \searrow a} f(x)$
- Für eine beliebige (jede) Folge (x_n) mit $x_n \to a$ hat $f(x_n) \to f(a)$ zu gelten. Dies ist praktisch um zu zeigen, dass eine Funktion an einer Stelle nicht stetig ist.

Eine Funktion f ist stetig, wenn sie in allen Punkten stetig ist ("punktweise Stetigkeit").

Es gelten folgenden Eigenschaften:

• Ist f und g stetig in einem gemeinsamen Definitionsbereich, so sind $f+g, f-g, f\cdot g, \frac{f}{g}, f\circ g$ ebenfalls stetig.

9.2 Gleichmässige Stetigkeit

Sei $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$, dann ist f genau dann stetig wenn gilt: $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, x_0 \in D: |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$

Der Unterschied zur punktweisen Stetigkeit liegt darin, dass δ und ε nicht auch noch von x_0 abhängig sind. So ist $f(x) = x^2$ zwar (punktweise) stetig, aber nicht gleichmässig stetig. Begründung: Je weiter rechts man zwei Punkte mit einem Abstand kleiner als δ wählt, desto grösser wird der Abstand der beiden Funktionswerte. Dieser Abstand der Funktionswerte müsste aber kleiner als das vorgegebene ε bleiben.

9.3 Lipschitz-Stetigkeit

Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ ist Lipschitz-stetig, wenn eine Konstante L existiert, so dass gilt:

$$\forall x_1, x_2 \in \mathbb{R} : ||f(x_1) - f(x_2)|| \le L \cdot ||x_1 - x_2||$$

Beispiel

Zeigen sie das die alternierende harmonische Reihe

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$$

konvergiert. Man zeige, dass der Grenzwert L die Ungleichung $\frac{1}{2} < L < \frac{1}{5}$ erfüllt.

Die Reihe konvergiert. Sei $L_N = \sum_{n=1}^N (-1)^{n-1} \frac{1}{n}$ die Nte Partialsumme. Es gilt

$$L_2 < L_4 < L_6 < \ldots < L_5 < L_3 < L_1$$
 und daraus folgt $L_2 = \frac{1}{2} < L < \frac{1}{5} = L_3$.

9.4 Stetigkeit, Differenzierbarkeit, Integrierbarkeit

Sei f eine Funktion, so gilt:

- f differenzierbar $\Rightarrow f$ stetig $\Rightarrow f$ integrierbar
- f nicht integrierbar $\Rightarrow f$ nicht stetig $\Rightarrow f$ nicht diffbar

9.5 Abhängigkeit der Stetigkeitsbegriffe

Sei f eine reelle Funktion, so gilt:

f Lipschitz-stetig $\Rightarrow f$ absolut stetig $\Rightarrow f$ gleichmässig stetig $\Rightarrow f$ (punktweise) stetig.

9.6 Regel von de l'Hospital

Sei $a \in \mathbb{R} \cup \{\infty, -\infty\}$. Es hat zu gelten:

- $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ oder $\pm \infty$
- In der Nähe von a ist $g'(x) \neq 0$

Dann ist

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Diese Regel kann man mehrfach anwenden hintereinander.

9.7 Stetig ergänzbar

Die Funktion f heisst an der Stelle $a \notin \Omega$ stetig ergänzbar, falls $\lim_{x\to a} f(x) = b$ existiert. Also genau dann wenn die Grenzwerte von allen Seiten (Bsp. links/rechts in \mathbb{R}^1) gegen den gleichen Wert streben!

Tip:

- \bullet Um zu prüfen ob f an einem Punkt stetig ergänzbar ist, kann bei Brüchen oft Bernoulli angewendet werden!
- Um zu zeigen das eine Funktion mit mehreren Parameter in einem Punkt *nicht* stetig ergänzbar ist hilft es häufig die Parameter gleich zu setzen. (Häufig geht dann der Limes nicht gegen den gesuchten Punkt \Rightarrow die Funktion ist *nicht* stetig ergänzbar.)

10 Stetigkeit von Funktionen mehrerer Var.

Definition 10.1 (Grenzwert). Eine Funktion $f(\vec{x})$ hat einen Grenzwert b an der Stelle \vec{a} , wenn für jede vektorwertige Folge (\vec{x}_n) , mit $\vec{x}_n \neq \vec{a}$, $\lim_{n \to \infty} f(\vec{x}_n) = b$ erfüllt ist

Definition 10.2 (Stetigkeit). Die Funktion $f(\vec{x})$ ist stetig im Punkt \vec{a} , wenn für beliebige Folgen (\vec{x}_n) mit $(\vec{x}_n) \to \vec{a}$ gilt: $\lim_{\vec{x}_n \to \vec{a}} f(\vec{x}_n) = f(\vec{a})$ für alle n gilt.

10.1 Typische Fälle

- x-Achse entlang: y = 0
- y-Achse entlang: x = 0
- Winkelhalbierende: x = y

Beispiel

$$f(x,y) = \begin{cases} \frac{4xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Die Funktion ist überall wo $(x, y) \neq (0, 0)$ ist, garantiert stetig, weil f dort nur aus stetigen Funktionen zusammengesetzt ist. Es bleibt zu untersuchen, ob f auch in (0, 0) stetig ist.

Längs der x-Achse (y = 0) erhalten wir:

$$f(x,0) = \frac{4x \cdot 0}{x^2 + 0^2} = 0$$

$$\lim_{x \to 0} f(x,0) = \lim_{x \to 0} 0 = 0 \checkmark$$

Als nächstes untersuchen wir die Winkelhalbierende (x = y):

tersuction will the Wilkematore
$$f(x,x) = \frac{4x^2}{x^2 + x^2} = \frac{4x^2}{2x^2} = 2$$

$$\lim_{x \to 0} f(x,x) = \lim_{x \to 0} 2 = \underline{2} \times$$

Die Funktion ist somit in (0,0) nicht stetig, da $\lim_{x\to 0} f(x,0) \neq \lim_{x\to 0} f(x,x)$ ist.

11 Funktionsfolgen

Wenn $f_n:\Omega\to\mathbb{R}$ eine Funktion ist (für jedes $n\in\mathbb{N}$) dann nennt man f_n eine Funktionenfolge. Dh: Eine Folge von Funktionen.

Definition 11.1 (punktweise konvergent). Die Funktionenfolge f_n konvergiert punktweise gegen f, falls gilt:

$$\overline{\lim_{n \to \infty} f_n(x)} = f(x) \qquad \text{für } \forall x \in \Omega$$

Formal: $\forall \varepsilon > 0 \ \forall x \in \Omega$ $\exists n_0 \in \mathbb{N} : n \geq n_0 \Rightarrow |f(x) - f_n(x)| < \varepsilon$

Definition 11.2 (gleichmässig konvergent). Die Funktionenfolge f_n konvergiert gleichmässig gegen f, falls gilt:

$$\lim_{n \to \infty} \sup_{x \in \Omega} |f_n(x) - f(x)| = 0$$

Formal: $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall x \in \Omega : n \ge n_0 \Rightarrow |f(x) - f_n(x)| < \varepsilon$ Das bedeutet, dass die obere Definition für alle x dasselbe n_0 verwendet und nicht jeweils verschiedene!

Merke:

gleichmässige Konvergenz \Rightarrow punktweise Konvergenz. f(x) nicht stetig $\Rightarrow f_n$ konvergiert nicht gleichmässig gegen f(x)

Beispiel: Zeige dass $f_n(x) = 1 + x^n(1-x)^n$ auf dem Intervall [0, 1] gleichmässig konvergiert.

- 1. Wir zeigen dass f_n Punktweise stetig ist. $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} 1 + x^n (1-x)^n = 1 = f(x) \text{ weil } x \in [0,1]$ 2. Wir zeigen dass f_n auch gleichmässig stetig ist.
- * Abschätzen: $x(1-x) \le 0.5(1-0.5) = \frac{1}{4}$ für $\forall x \in [0,1]$

$$|f_n(x) - f(x)| = |1 + x^n (1 - x)^n - 1| = |(x(1 - x))^n| \stackrel{*}{\leq} \left(\frac{1}{4}\right)^n$$

Somit gilt: $\lim_{n \to \infty} \sup_{x \in [0, 1]} |f_n(x) - f(x)| \le \lim_{n \to \infty} \left(\frac{1}{4}\right)^n = 0$

Somit gilt:
$$\lim_{n \to \infty} \sup_{x \in [0,1]} |f_n(x) - f(x)| \le \lim_{n \to \infty} \left(\frac{1}{4}\right)^n = 0$$

12 Differenzierbarkeit

Definition

f ist in $a \in I$ differenzierbar mit der Ableitung f'(a), wenn

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} =: f'(a) = \frac{d}{dx} f(a)$$
 existiert.

Ist f' stetig im Definitionsbereich, so heisst f stetig differenzierbar. Wenn man also f differenziert bekommt man mit f'eine stetige Funktion. Es gilt auch $f \in C^1(I)$. $C^n(I)$ ist die Menge der n-mal stetig differenzierbaren Funktionen über dem Intervall I.

Mittelwertsatz (Satz von Lagrange)

Ist f auf [a,b] stetig und in [a,b] differenzierbar, so gibt es ein $c \in]a, b[$ mit

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

Beispiel: Zeige mit dem Mittelwertsatz dass die Gleichung: $x^2 = x \sin(x) + \cos(x)$ nicht mehr als 2 reelle Lösungen besitzt.

Die Lösungen der Gleichung sind die Nullstellen von: $f(x) = x^2 - x\sin(x) - \cos(x)$. f ist stetig differenzierbar, somit ist: $f'(x) = 2x - x\cos(x) = x(2 - \cos(x))$ achte: $2 - \cos(x) > 0 \ \forall x$ Somit hat f'(x) nur eine Nullstelle (x = 0). Also kann f maximal 2 Nullstellen haben. Denn wenn f mehr als 2 Nullstellen hätte, dann gäbe es nach dem Mittelwertsatz in f' auch mehr als eine Nullstelle. Widerspruch, wir wissen dass es nur eine gibt! Wieso? Weil wenn a < b < d Nullstellen von f sind, dann nach dem Mittelwertsatz folgt, dass $\exists c_1, c_2$ mit $\frac{f(b)-f(a)}{b-a} = f'(c_1)$ und $\frac{f(d)-f(b)}{d-b} = f'(c_2)$ wobei also c_1, c_2 Nullstellen von f' sind!

12.3 Monotonie

- $f' > 0 \Rightarrow f$ streng monoton steigend
- $f' \ge 0 \Leftrightarrow f$ monoton steigend
- $f' < 0 \Rightarrow f$ streng monoton fallend
- $f' \leq 0 \Leftrightarrow f$ monoton fallend

12.4 Extremstellen

Extrema sind lokale und globale Maxima und Minima. x_0 ist ein kritischer Punkt von f, falls x_0 ein Randpunkt von I ist (Bsp. a von [a, b], oder $f'(x_0) = 0$ oder $f' \text{ in } x_0 \text{ nicht definiert ist.}$

- Extrema bei $x_0 \Rightarrow f'(x_0) = 0$
- $f'(x_0) = 0, f''(x_0) > 0 \Rightarrow \text{Minimum bei } x_0$
- $f'(x_0) = 0, f''(x_0) < 0 \Rightarrow \text{Maximum bei } x_0$
- $f'(x_0) = 0, f''(x_0) = 0, f'''(x_0) \neq 0 \Rightarrow \text{Sattelpunkt in } x_0$
- $f''(x_0) = 0, f'''(x_0) \neq 0 \Rightarrow \text{Wendepunkt in } x_0$

Tip:

- Jeder Sattelpunkt ist auch ein Wendepunkt!
- Wenn f streng monoton wachsend/fallend ist, besitzt f weder kritische Punkte, noch lokale oder globale Extrema.
- Um die maximale Anzahl Nullstellen von f herauszufinden, kann der Mittelwertsatz verwendet werden. Siehe Beispiel.

Beispiel Wendepunkt berechnen

Die hinreichende Bedingung für einen Wendepunkt lautet: $f''(x_0) = 0$ und $f'''(x_0) \neq 0$

Praktische Vorgehensweise für $f(x) = \frac{1}{3}x^3 - 2x^2 + 3x$: Um eine Funktion auf Wendepunkte hin zu untersuchen, führen wir die folgenden Schritte durch:

- Wir leiten die Funktion f(x) dreimal ab. $f'(x) = x^2 4x + 3$, f''(x) = 2x - 4 und f'''(x) = 2
- Wir setzen die zweite Ableitung Null und berechnen den X-Wert, sofern möglich $f''(x) = 2x - 4 \stackrel{!}{=} 0 \Rightarrow x = 2$
- Sofern möglich, setzen wir diesen X-Wert in die dritte Ableitung ein f'''(x) = 2
- Ist dieses Ergebnis ungleich Null, liegt ein Wendepunkt vor $f'''(x) = 2 \neq 0 \Rightarrow \text{Wendepunkt}$
- Der X-Wert wird in f(x) eingesetzt, um den zugehörigen Y-Wert zu bestimmen. x = 2 in f(x) einsetzen: f(2) = $\frac{1}{3}2^3 - 2 \cdot 2^2 + 3 \cdot 2 = \frac{2}{3}$

Zusammenhang zwischen Stetigkeit und Diffe-12.5renzierbarkeit

- differenzierbar \Rightarrow stetig
- differenzierbar ≠ stetig

12.6 Umkehrsatz

Ist $f: I \to \mathbb{R}$ auf I differenzierbar mit $f'(x) \neq 0$ für jedes $x \in I$, so ist f streng monoton wachsend oder streng monoton fallend und damit injektiv. Die Umkehrfunktion $f^{-1}: f(I) \to I$ existiert und ist ebenfalls streng monoton wachsend oder streng monoton fallend. Die Ableitung $(f^{-1})'(y)$ existiert für alle $y \in$ f(I) mit $f'(f^{-1}(y)) \neq 0$, und zwar gilt dann

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

Monotonie, Bijektion, Differenzierbarkeit

Satz 12.1. (Folgendes gilt auch für streng monoton fallende Funktionen)

Sei $f:[a,b]\to\mathbb{R}$ stetig und streng monoton wachsend. Es sei dann A = f(a), B = f(b), dann gilt: $f : [a, b] \rightarrow [A, B]$ ist bijektiv.

f hat also eine Umkehrfunktion $f^{-1}:[A,B]\to[a,b]$ und diese ist stetig und streng monoton wachsend.

13 Partialbruchzerlegung

Mit dieser Methode wird ein schwieriger Bruch R in eine Summe von einfacheren Brüchen zerlegt. Oft wird dies verwendet um anschliessend den Bruch einfacher integrieren zu können.

- 1. Den Grad des Zählers und des Nenners vergleichen von ${\cal R}$
 - i) Ist der Grad des Zählers > der Grad des Nenners, so macht man eine Polynomdivision. Man erhält daraus das Polynom P und möglicherweise einen Rest R^* , sodass gilt: $R = P + R^*$.
 - i. Ist $R^* \equiv 0$, so ist dieses Verfahren abgeschlossen.
 - ii. Sonst arbeitet man nun mit R^* als Bruch weiter.
 - ii) Ist der Grad des Zählers < der Grad des Nenners, so arbeitet man mit R als Bruch weiter.
- 2. Man berechnet die Nullstellen vom Nenner des Bruches (Mitternachtsformel/Raten). Eine Nullstelle x_0 ist r-fach, wenn f selbst und die ersten r-1 Ableitungen von f an der Stelle x_0 den Wert 0 annehmen und $f^{(r)}(x_0) \neq 0$.
- 3. Nun setzt man den Bruch aus Schritt 2. gleich der Summe der Partialbrüche. Wie die Partialbrüche aussehen ist abhängig von den Nullstellen.
 - i) Für jede einfache reelle Nullstelle x_i ist der Summand $\frac{a_{i1}}{x-x_i}$ zu nehmen
 - ii) Für jede r_i -fache Nullstelle x_i erhält man r_i Summanden: $\frac{a_{i1}}{x-x_i} + \frac{a_{i2}}{(x-x_i)^2} + \ldots + \frac{a_{ir_i}}{(x-x_i)^{r_i}}$
- 4. Nun berechnet man die unbekannten a_{ij} indem man die Partialbrüche gleichnamig macht und dann die Koeffizienten des ursprünglichen Zählers mit denen des gleichnamigen Bruchs vergleicht. Alternativ: (falls nur einfache Nullstellen, diese direkt in gleichnamige Gl einsetzen für x)

$$R(x) = \frac{x^2}{x^2 - 2x + 1}.$$

Der Zählergrad ist gleich dem Nennergrad, weswegen wir eine Polynomdivision durchführen: $\Rightarrow R(x) = 1 + \frac{2x-1}{(x-1)^2}$.

Aus $(x-1)^2$ folgt, das wir nur eine Nullstelle haben $x_0 = 1$. Es handelt sich dabei um eine doppelte Nullstelle. Somit gilt: $\frac{2x-1}{(x-1)^2}=\frac{a_1}{x-1}+\frac{a_2}{(x-1)^2}$

$$\frac{2x-1}{(x-1)^2} = \frac{a_1}{x-1} + \frac{a_2}{(x-1)^2}$$

$$2x-1 = a_1(x-1) + a_2$$

$$2x-1 = \underbrace{a_1x}_{=2x} \underbrace{-a_1 + a_2}_{=-1}$$
Daraus folgt, dass $a_1 = 2$ und $a_2 = 1$ (lin. Gleichungssystem).

Somit gilt:
$$R(x) = \frac{x^2}{x^2 - 2x + 1} = 1 + \frac{2}{x - 1} + \frac{1}{(x - 1)^2}$$

Riemannsummen (Riemannintegral) 14

14.1 Riemansumme

Wir betrachten die folgende Einteilung des Intervals [a, b]:

Wir betrachten die folgende Einteilung des Intervals
$$[a, b] = \bigcup_{k=1}^{N} [x_{k-1}, x_k] \text{ mit } x_k = a + k \cdot \frac{b-a}{N}.$$

$$\xi_k \in [x_{k-1}, x_k]$$
 Die Feinheit der Zerlegung ist:
$$\Delta x = \frac{b-a}{N} \xrightarrow{N \to \infty} 0$$

$$\Delta x = \frac{b-a}{N} \xrightarrow{N \to \infty} = 0$$

Somit können wir die Riemannsumme konkret berechnen:

$$\int_{a}^{b} f(x) dx = \sum_{N \to \infty} (f, E, \xi)$$

$$= \lim_{N \to \infty} \sum_{k=1}^{N} \underbrace{f(\xi_{k})}_{\text{"H\"{o}he"}} \cdot \underbrace{\Delta x}_{\text{"L\"{a}nge"}}$$

$$= \lim_{N \to \infty} \sum_{k=0}^{N} f(a + k \frac{b - a}{N}) \cdot \frac{b - a}{N}$$

Abbildung 1: Darstellung Riemannintegral mit $\xi_i = t_i$ und unsymetrischer Intervaleinteilung E.

Riemann Integrierbar

Definition 14.1 (Riemann integrierbar). Die Funktion f heisst auf [a, b] Riemann integrierbar, falls der Grenzwert $(I \in \mathbb{R})$ existiert.

$$\lim_{N \to \infty} = \sum_{k=1}^{N} f(\xi_k) \cdot \Delta x = I \quad \text{mit } \xi_k \in [x_{k-1}, x_k]$$

Definition 14.2 (Riemann integrierbar v.2). Die Funktion fheisst auf [a, b] Riemann integrierbar falls es ein $I \in \mathbb{R}$ gibt sodass $\forall \varepsilon > 0$ gilt:

$$\lim_{N \to \infty} \left| \sum_{k=1}^{N} f(\xi_k) \cdot \Delta x \right| - I < \varepsilon \quad \text{mit } \xi_k \in [x_{k-1}, x_k]$$

Merke:

f monoton + Definitionsbereich kompakt $\Rightarrow f$ ist R integrierbar f stetig + Definitionsbereich kompakt $\Rightarrow f$ ist R integrierbar

Integral 15

Theorem 15.1 (Hauptsatz der Integralrechnung). Angenom-

men
$$f:[a,b] \to \mathbb{R}$$
 ist stetig, dann definieren wir
$$F(x) = \int_a^x f(t) dt$$
$$F'(x) = f(x) \qquad \forall x \in [a,b]$$

Korollar 15.1 (Stammfunktion). Jede stetige Funktion auf einem kompakten Intervall [a, b] hat eine Stammfunktion.

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

Korollar 15.2 (Linearität). Es gilt:

$$\int \alpha f(x) + \beta g(x) \, dx = \alpha \int f(x) \, dx + \beta \int g(x) \, dx$$

Definition 15.1. Falls a < b ist und f auf [a, b] integrierbar ist, dann definieren wir:

$$\int_{b}^{a} f(x) \ dx = -\int_{a}^{b} f(x) \ dx$$

Integral-Berechnung

15.1.1 Substitutionsregel

Unbestimmt: $\int f(g(x)) g'(x) dx = \int f(u) du$ mit u = g(x)Bestimmt: $\int_a^b f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du \text{ mit } u = g(x)$

- 1. Aufstellen der Substitutionsgleichungen: u=g(x) und $\frac{du}{dx}=g'(x) \Leftrightarrow du=g'(x)\, dx \Leftrightarrow dx=\frac{du}{g'(x)}$
- 2. Durchführen der Substitution: Man ersetzt also u = g(x) und du = g'(x) dx oder dx = $\frac{du}{a'(x)}$, wobei um dx zu ersetzen die erste Variante besser ist, da so auch noch g'(x) aus dem Integral entfernt wird. Wenn noch x übrig sind im Integral, ist ein Zwischenschritt nötig: Löse u = g(x) nach x auf, somit resultiert eine neue Formel mit x = h(u), substituiere nun x durch h(x).
- 3. Berechnen des neuen Integrals nach u: Bei bestimmten Integralen: Sei $\int_a^b \dots dx$. Dann sind die neuen Grenzen für das neue Integral g(a) und g(b)
- 4. Rücksubstitution:

Ersetze im Ergebnis u wieder mit g(x).

Merke: Bei einem bestimmten Integral, kann auf die Rücksubstitution verzichtet werden, wenn man die Integrationsgrenzen mitsubstituiert hat!

Substitutionstips:

- $\int f(ax+b) dx$ verwende u = ax+b
- $\int f(x) \cdot f'(x) dx$ verwende u = f(x)Falls die Ableitung von f ganz oder fast im Term steht!
- $\int f(x)^n \cdot f'(x) dx$ verwende u = f(x)
- $\int \frac{f'(x)}{f(x)} dx$ verwende u = f(x)Falls die Ableitung von f ganz oder fast im Zähler steht!
- $\int f(q(x)) \cdot q'(x) dx$ verwende u = q(x)
- Integrale die $\sqrt{a^2-x^2}$ enthalten: $u=a^2-x^2$ oder $x=a\cdot\sin(u)$ und $dx=a\cdot\cos(u)\,du$ und $\sqrt{a^2-x^2}=a\cdot\cos(u)$
- Integrale die $\sqrt{a^2 + x^2}$ enthalten: $u = a^2 + x^2$ oder $x = a \cdot \sinh(u)$ und $dx = a \cdot \cosh(u) du$ und $\sqrt{a^2 + x^2} = a \cdot \cosh(u)$
- Integrale die $\sqrt{x^2 a^2}$ enthalten: $x = a \cdot \cosh(u)$ und $dx = a \cdot \sinh(u) du$ und $\sqrt{x^2 - a^2} = a \cdot \sinh(u)$

Bsp: $\int \sqrt{1+x^2} dx$

Wir verwenden die Substitution: $x = \sinh(u)$ mit a = 1. Daraus folgt aus $\frac{dx}{du}$: $dx = \cosh(u)$. Nun vollziehen wir die Substitution und erhalten: $\int \sqrt{1+\sinh(u)^2} \cdot \cosh(u) \ du$ Aus der Formelsammlung entnehmen wir $\sqrt{a^2 + x^2} = \cosh(x)$ und ersetzen also diesen Term zu: $\int \cosh(u)^2 du$. Für diesen Typ haben wir nun in der Formelsammlung eine konkrete Lösung und es lässt sich nun leicht integrieren. Merke: Diese Ersetzungen können alle aus den Tips entnommen werden!

15.1.2 Beispiel: Substitution

$$\int_0^2 x \sqrt{x+1}^3 \, dx$$

Die Wurzel wird substituiert: $u = q(x) = \sqrt{x+1}$.

- 1. $\frac{du}{dx}=g'(x)=\frac{1}{2\sqrt{x+1}}=\frac{1}{2u}$. Somit wird $\sqrt{x+1}^3$ durch u^3 ersetzt und dx durch $2u\,du$. Im Integral wären somit die Wurzel und das dx ersetzt. Es bleibt noch das x übrig vor der Wurzel. Lösen wird $\sqrt{x+1} = u$ nach x auf, so erhalten wir $x = u^2 - 1$.
- 2. Neue Grenzen: g(0) = 1 und $g(2) = \sqrt{3}$
- 3. $\int_0^2 x\sqrt{x+1}^3 dx = \int_1^{\sqrt{3}} (u^2 1)u^3 2u du = 2 \int (u^6 u^4) du =$ $\left[\frac{2}{7}u^7 - \frac{2}{5}u^5\right]_1^{\sqrt{3}}$
- 4. Rücksubstitution: $\int_0^2 x \sqrt{x+1}^3 dx = \left[\frac{2}{7} \sqrt{x+1}^7 \frac{2}{5} \sqrt{x+1}^5\right]_0^2 = \dots = \frac{144}{35} \sqrt{3} + \frac{4}{35}$

15.1.3 Partielle Integration

Die Formel für die Partielle Integration lautet:

$$\int u(x) \cdot v'(x) \, dx = u(x) \cdot v(x) - \int u'(x) \cdot v(x) \, dx$$

In vielen Fällen lässt sich das Integral $\int f(x) dx$ wie folgt lösen.

- 1. Man zerlegt f(x) in geeigneter Weise in ein Produkt so dass $f(x) = u(x) \cdot v'(x)$ gilt. Man legt also einfach fest welcher Teil von f dem u und welcher Teil dem v' entspricht (ohne dabei f zu verändern!). Wähle u so, dass die Ableitung möglichst simpel ist (Bsp. u = ein Polynom) damit das Integral einfacher wird.
- 2. Berechne u' und v um es in obige Formel einzusetzen und dann das Integral zu bilden.

Bsp:
$$\int \underbrace{x}_{u} \underbrace{\cos(x)}_{x'} = x \sin(x) - \int 1 \cdot \sin(x) = x \sin(x) + \cos(x) + C$$

Tip: Wenn f(x) aus einem Produkt mit Polynomen besteht, muss man meist das Polynom ableiten (Also u = Polynom). Eventuell mehrmals partiell integrieren. Bei jeder partiellen Integration wird so das Polynom um 1 verringert!

15.1.4 Allgemeine Tips

- \bullet Hat man einen Bruch und Grad im Zähler \geq Grad im Nenner. Führe immer eine Polynomdivision durch. Nun kann meist direkt ein einfacheres Resultat integriert werden. Falls immer noch zu kompliziert, siehe nächster Punkt.
- Hat man ein Bruch und Grad im Zähler < Grad im Nenner und sieht trotzdem kompliziert aus, dann mache eine Partialbruchzerlegung.
- Die Integralgrenzen können aufschluss über die zu verwendende Substitution geben.
- Oft ist besser Wurzel als Polynome aufzufassen, $\sqrt{x} = x^{1/2}$

Uneigentliche Integrale

Definition 15.2 (Uneigentliches Integral). Sei $f: [a, b] \to \mathbb{R}$ eine Funktion. So ist das uneigentliche Integral, im Falle der Konvergenz, definiert durch (Analog für $(g: a, b] \to \mathbb{R}$):

$$\int_{a}^{b} f(x) dx = \lim_{\beta \to b^{-}} \int_{a}^{\beta} f(x) dx$$
$$\int_{a}^{b} g(x) dx = \lim_{\alpha \to a^{+}} \int_{a}^{b} g(x) dx$$

Vorgehen:

- 1. Kritische Stelle (Bsp. ∞) durch eine Variable ersetzen und Grenzwert gegen den vorherigen Wert streben lassen.
- 2. Betrachte es wie ein bestimmtes Integral und berechne das Integral für die neuen Grenzen aus.
- 3. Anschliessend den Grenzwert berechnen um zu sehen, gegen welchen Wert das Resultat strebt. Wenn der Grenzwert existiert ($\neq \pm \infty$), konvergiert also das Integral und man hat das uneigentliche Integral ausgerechnet. Ansonsten divergiert der Grenzwert und somit auch das Integral

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx = \lim_{b \to \infty} \left[F(x) \right]_{a}^{b} = \lim_{b \to \infty} \left[F(b) - F(a) \right] = \dots$$

Wenn das unbestimmte Integral innerhalb der Integralsgrenzen an einer Stelle nicht definiert oder nicht stetig ist, muss das Integral in zwei separate uneigentliche Integrale aufgeteilt werden mit dieser Stelle als Intervallsgrenze!

16 Differentialgleichung (DGL)

Lineare DGL haben die allgemeine Form:

$$y^{(n)} + p_{n-1}(x) \cdot y^{(n-1)} + \dots + p_1(x) \cdot y' + p_0(x) \cdot y = q(x)$$

y steht für y(x) eine noch unbekannte Funktion von x. $y^{(i)}$ ist einfach die i-te Ableitung davon.

 $p_i(x)$ steht für irgendeine Funktion mit der y (oder $y^{(i)}$) multipliziert wird. Kann auch eine Konstante sein (z.B. 1).

q(x)nennt man Störfunktion. Ist q(x)=0nennt man die DGL Homogen, sonst Inhomogen.

Die allgemeine Lösung einer DGL ist gegeben durch:

$$y(x) = y_h(x) + y_p(x)$$

 $y_h(x)$ ist die allgemeine Lösung der Homogenen DGL und $y_p(x)$ ist die partikuläre Lösung der Inhomogenen DGL.

16.1 Lineare DGL 1. Ordnung

Diese DGL haben die allgemeine Form: $y' + p(x) \cdot y = q(x)$

16.1.1 Lineare DGL 1. Ordnung mit konst. Koeffizienten

Diese DGL hat die Form: $y' + a \cdot y = q(x)$ mit $a \in \mathbb{R}$

Vorgehen: Gleich wie im Fall von n, einfach mit n = 1.

16.1.2 Lineare DGL 1. Ordnung mit var. Koeffizienten

Diese DGL hat die Form: $y' + p(x) \cdot y = q(x)$ Sei:

$$F(x) = \int f(t)dt.$$

Dann ist $\{y_{Hom}(x) = c_1 e^{F(x)} | c_1 \in \mathbb{R}\}$ die Menge aller Lösungen der homogenen Differnentialgleichung $(y' + f(x) \cdot y = 0)$. Als Ansatz für die Lösung des inhomogenen Problems setze man $y_p(x) = u(x)e^{F(x)}$, d.h. man lässt die Konstante c_1 variieren. Dies ergibt eine eindeutige Zuordnung zwischen den Funktion y und u. Denn $e^{F(x)}$ ist eine stets positive, stetig differnezierbare Funktion. Die Ableitung dieser Ansatzfunktion ist

 $y_p'(x) = u(x)f(x)e^{F(x)} + u'(x)e^{F(x)} = y(x)f(x) + u'(x)e^{F(x)}$

Also löst y die inhomogene Differntialgleichung

$$y_p'(x) = y(x)f(x) + g(x)$$

genau dann, wenn

$$u'(x) = y(x)f(x) + g(x)$$

gilt. Also folgt

$$u(x) = \int g(t)e^{-F(t)}dt$$

Somit ist die Lösungsmenge von y_p

$$\{y_p'(x) = e^{F(x)}(u(x) + c_2) | c_2 \in \mathbb{R}\}$$

Die Lösungsmenge der generellen Lösung der allgemeinen Lösung ist somit y:

$$\{y\} = \{y = y_{Hom} + y_p\}$$

= $\{y(x) = c_1 e^{F(x)} + e^{F(x)} (u(x) + c_2) | c_1, c_2 \in \mathbb{R}\}$

Gibt es nun einen Ansatz, kann diese menge durch Einsetzen des Funktionswert und Gleichsetzen mit dem Resultat genau bestummen werde in dem die Konstanten c aufgelöst werden.

Konkret reicht es also aus. F und u zu berechnen.

16.1.3 Separierbare DGL

Ist ein Spezialfall woq(x)=0 ist. Eine Differentialgleichung für die Funktion y heisst separierbar, wenn sie auf diese Form gebracht werden kann.

$$y' = p(x) \cdot y$$
 Merke: $y' = \frac{dy}{dx}$

Vorgehen:

- 1. DGL auf obige Form bringen.
- 2. y' mit $\frac{dy}{dx}$ ersetzen und Variabeln trennen: $\frac{1}{y} dy = p(x) dx$

- 3. Beidseitig integrieren: $\int \frac{1}{y} dy = \int p(x) dx$
- 4. Nach y auflösen
- 5. Lösung: $y = C \cdot e^{\int p(x) dx}$ $(C \in \mathbb{R})$

Merke: Weitere Lösungen kann die Gleichung y=0 liefern, muss es aber nicht. Diese Lösungen sind konstanten (also $\in \mathbb{R}$).

epiel:
$$y' = \cos(x) \cdot y$$

$$\frac{dy}{dx} = \cos(x) \cdot y \Leftrightarrow \frac{1}{y} dy = \cos(x) dx$$

$$\int \frac{1}{y} dy = \int \cos(x) dx$$

$$\ln(y) = \sin(x) + \ln(C)$$

$$y = e^{\sin(x) + \ln(C)}$$

$$= C \cdot e^{\sin(x)} \qquad (C \in \mathbb{R})$$

Allgemeiner Hinweis:

Bei logarithmischer Terme, wird Integrationskonstante zweckgemäss $\ln(C)$ gewählt (sonst müsste man später neue Konstante $C'=e^C$ einführen). Beachte das y=0 auch eine Lösung ist!

16.1.4 genereller Ansatz

Wenn g(x) = 0 ist, dann ist die DGL homogen. Falls $g(x) \neq 0$, so handelt es sich um eine inhomogene DGL.

Der erste Schritt für homogene und inhomogene DGL ist die Lösung der homogenen DGL: $y' + f(x) \cdot y = 0$:

$$y' + f(x) \cdot y = 0 \quad |-(f(x) \cdot y)|$$

$$y' = -f(x) \cdot y \quad y' \text{ ist das gleiche wie } \frac{dy}{dx}$$

$$\frac{dy}{dx} = -f(x) \cdot y \quad | \div y|$$

$$\frac{dy}{dxy} = -f(x) \quad \left| \int \frac{dy}{dxy} dx = \int -f(x) dx \quad \frac{dy}{dxy} \cdot dx = \frac{dx}{dxy} dy = \frac{1}{y} dy \right|$$

$$\int \frac{1}{y} dy = \int -f(x) dx \quad \frac{dy}{dxy} \cdot dx = \frac{dx}{dxy} dy = \frac{1}{y} dy$$

$$\ln(y) = -F(x) \quad |e^{\alpha}|$$

$$e^{\ln(y)} = e^{-F(x)}$$

$$y = e^{-F(x)}$$

Damit erhalten wir die allgemeine Lösung: $y = A \cdot e^{-F(x)}$. Hat man eine homogene DGL und einen Punkt, an dem die ursprüngliche Funktion ausgewertet wurde, so kann man die explizite Lösung berechnen (also A berechnen), in dem man die hier allgemein erhaltene Lösung für den gegebenen Punkt auswertet und so die Unbekannte bekommt.

Für ein inhomogenes DGL setzt sich die allgemeine Lösung aus der homogenen Lösung y_h und der partikulären (speziellen) Lösung y_p der inhomogenen DGL zusammen. Die homogene Lösung haben wir bereits berechnet: $y_h = A \cdot e^{-F(x)}$. Nun folgt die partikuläre Lösung:

Dazu wird die Konstante (A) der homogenen Lösung als Funktion dargestellt (u(x)). Wir erhalten somit: $y_p = u(x) \cdot e^{-F(x)}$. Dieses y_p setzten wir nun als y in die inhomogene Gleichung ein:

$$y' + f(x) \cdot y = g(x) \Rightarrow \underbrace{(u(x) \cdot e^{-F(x)})'}_{=y_p = y} + f(x) \cdot \underbrace{(u(x) \cdot e^{-F(x)})}_{=y_p = y} = g(x)$$

Die neue Gleichung wird nun nach $u'(x)=\ldots$ aufgelöst, was zu $u'(x)=\frac{g(x)}{e^{-F(x)}}$ führt. Nun wird u(x) bestimmt durch integrieren beider Seiten: $u(x)=\int \frac{g(x)}{e^{-F(x)}}\,dx$. Hat man dies ausgerechnet, setzt man u(x) in $y_p=u(x)\cdot e^{-F(x)}$ ein und bekommt so die partikuläre Lösung der DGL.

Als letzter Schritt für inhomogene DGL summiert man y_h und y_p und erhält nach dem Umformen und Kürzen die allgemeine

Lösung der DGL:

$$y = y_h + y_p = \underbrace{A \cdot e^{-F(x)}}_{=y_h} + \underbrace{\int \frac{g(x)}{e^{-F(x)}} dx}_{=u(x)} \cdot e^{-F(x)}$$

Hat man für die inhomogene DGL ebenfalls Punkte an denen die Funktion ausgewertet wurde, so kann man dies in die allgemeine Lösung eintragen und so die Unbekannten (A) berechnen.

16.1.5 Beispiel mit Variation der Konstanten

Gegeben: $y' + x^2 \cdot y = 2x^2$

Somit: $y' = f(x) \cdot y + g(x)$ mit $g(x) := 2x^2$ und $f(x) := -x^2$

Es gilt somit:

$$F(x) = \int f(t)dt. = \int -x^2 dt. = -\frac{x^3}{3}$$

Dann ist

$$\{y_{Hom}(x) = c_1 e^{-\frac{x^3}{3}} | c_1 \in \mathbb{R}\}$$

die Menge aller Lösungen der homogenen Differnentialgleichung $(y' + x^2 \cdot y = 0).$

Dieser Teil muss nicht berechnet werden (Herleitung).

Als Ansatz für die Lösung des inhomogenen Problems setze man $y_p(x) = u(x)e^{F(x)}.$

Ansatzfunktion ist

$$y_p'(x) = u(x)f(x)e^{F(x)} + u'(x)e^{F(x)} = y(x)f(x) + u'(x)e^{F(x)}$$

Also löst y die inhomogene Differntialgleichung

$$y_p'(x) = y(x)f(x) + g(x)$$

genau dann, wenn

$$u'(x) = y(x)f(x) + g(x)$$

gilt.

Also folgt

$$u(x) = \int g(x)e^{-F(x)}dx. = 2\int x^2 e^{\frac{x^3}{3}}dx. = 2e^{\frac{x^3}{3}}$$

Somit ist die Lösungsmenge von y_p

 $\{y_p'(x)=e^{-\frac{x^3}{3}}(2e^{\frac{x^3}{3}}+c_2)|c_2\in\mathbb{R}\}=\{y_p'(x)=2+c_3)|c_3\in\mathbb{R}\}$ Die Lösungsmenge der generellen Lösung der allgemeinen Lösung ist somit y

$$\{y(x) = c_1 e^{-\frac{x^3}{3}} + 2|c_1 \in \mathbb{R}\}$$

16.1.6 Beispiel genereller Ansatz

Gegeben: $y' + x^2 \cdot y = 2x^2$

Homogene DGL lösen:
$$y' + x^2 \cdot y = 0$$

$$y' + x^2 \cdot y = 0$$

$$\frac{dy}{dx} + x^2 \cdot y = 0 \quad |-(x^2 \cdot y)|$$

$$\frac{1}{dx} dy = -x^2 \cdot y \quad | \div y|$$

$$\frac{1}{dx} \frac{1}{y} dy = -x^2 \quad |\int$$

$$\int \frac{1}{dx} \frac{1}{y} dy dx = \int -x^2 dx$$

$$\int \frac{1}{y} dy = \int -x^2 dx$$

$$\ln(y) = -\frac{1}{3}x^3 \quad |e^{\alpha}|$$

$$y = e^{-\frac{1}{3}x^3}$$

Somit ist die allgemeine homogene Lösung: $y_h = A \cdot e^{-\frac{1}{3}x^3}$.

Als nächstes gehen wir die praktikuläre Lösung an: $y_p = u(x)$

$$e^{-\frac{1}{3}x^{3}}$$

$$\Rightarrow (u(x) \cdot e^{-\frac{1}{3}x^{3}})' + x^{2}(u(x)e^{-\frac{1}{3}x^{3}}) = 2x^{2}$$

$$u'(x) \cdot e^{-\frac{1}{3}x^{3}} - u(x) \cdot x^{2}e^{-\frac{1}{3}x^{3}} + u(x)x^{2}e^{-\frac{1}{3}x^{3}} = 2x^{2}$$

$$u'(x) \cdot e^{-\frac{1}{3}x^{3}} = 2x^{2} \quad | \div e^{-\frac{1}{3}x^{3}}$$

$$u'(x) = 2x^{2}e^{\frac{1}{3}x^{3}} \quad | \int$$

$$u(x) = 2e^{\frac{1}{3}x^{3}}$$

Wir erhalten somit: $\underline{y_p}=2e^{\frac{1}{3}x^3}\cdot e^{-\frac{1}{3}x^3}=\underline{2}$. Die allgemeine Lösung des inhomogenen DGL ist somit: $\underline{y}=y_h+y_p=0$

$$A \cdot e^{-\frac{1}{3}x^3} + 2$$

16.1.7 Beispiel Direkterer Lösungsweg

Gegeben: $y' + x^2 \cdot y = 2x^2$. Direkt lösen:

regeben:
$$y' + x^2 \cdot y = 2x^2$$
. Direct losen: $y' + x^2 \cdot y = 2x^2$ $y' + x^2 \cdot y = x^2$ $y' + x^2 \cdot y = x^$

16.2 Lineare DGL n-ter Ordnung mit konst. Koeffizienten

Diese DGL haben genau n Nullstellen und die Form:

$$y^{(n)} + a_{n-1} \cdot y^{(n-1)} + \dots + a_1 \cdot y' + a_0 \cdot y = g(x)$$

wobei $g(x) = 0$ oder $g(x) \neq 0$

Vorgehen im homogenen Fall:

1. Homogene DGL aufstellen und dazu das charakteristische Polynom $p(\lambda)$ notieren mit Ansatz $y(x) = e^{\lambda x}$ mit $\lambda \in \mathbb{C}$: $y^{(n)} + a_{n-1} \cdot y^{(n-1)} + \ldots + a_1 \cdot y' + a_0 \cdot y = 0$ $p(\lambda) = (\lambda^n + a_{n-1} \cdot \lambda^{n-1} + \dots + a_1 \cdot \lambda + a_0) \cdot e^{\lambda x} \stackrel{!}{=} 0$ $= \lambda^n + a_{n-1} \cdot \lambda^{n-1} + \ldots + a_1 \cdot \lambda + a_0$

Merke: $e^{\lambda x}$ kann nie 0 sein, deshalb muss (...) = 0 sein!

2. Nun müssen die $(\lambda_1, \ldots, \lambda_n)$ Nullstellen von $p(\lambda)$ berechnet werden. Wenn n > 2 muss zuerst $p(\lambda)$ in lineare und quadratische Faktoren (durch raten/xausfaktorisieren/Polynomdivision/binomische zerlegt werden. Dh: Jeder Faktor ist dann von 1. oder 2. Ordnung und davon können nun die Nullstellen berechnet werden (ablesen/Mitternachtsformel). Wir beachten, dass es sowohl reelle als auch komplexe Nullstellen gibt und merken für jede Nullstelle die Vielfachheit dieser Nullstelle. Bsp. einer linearer und quadratischen Zerlegung:

$$p_1(\lambda) = \lambda^2 + \lambda - 6 = (\lambda + 3)(\lambda - 2)$$
 oder
 $p_2(\lambda) = \lambda^4 - 4 = (\lambda^2 + 2)(\lambda^2 - 2) = (\lambda^2 + 2)(\lambda + \sqrt{2})(\lambda - \sqrt{2})$

3. i) Ist λ_i eine k-fache reelle Nullstelle, so gibt es k linear unabhängige Lösungen zur Nullstelle λ_i , nämlich:

$$e^{\lambda_i x}$$
, $x e^{\lambda_i x}$, $x^2 e^{\lambda_i x}$, ..., $x^{k-1} e^{\lambda_i x}$

ii) Sind $\lambda_i = a \pm ib$ k-fache komplexe Nullstellen, so gibt es 2k linear unabhängige Lösungen zu diesen 2 Nullstellen,

$$e^{\lambda_i x}, x e^{\lambda_i x}, \dots, x^{k-1} e^{\lambda_i x} = e^{x(a+ib)}, x e^{x(a+ib)}, \dots, x^{k-1} e^{x(a+ib)}, e^{x(a-ib)}, x e^{x(a-ib)} \dots, x^{k-1} e^{x(a-ib)}$$

Merke: Durch anwenden der Eulersche Identität lässt sich obige komplexe Lösung auch reell schreiben als:

$$e^{ax}\cos(bx)$$
, $xe^{ax}\cos(bx)$,..., $x^{k-1}e^{ax}\cos(bx)$ und $e^{ax}\sin(bx)$, $xe^{ax}\sin(bx)$,..., $x^{k-1}e^{ax}\sin(bx)$

4. Die allgemeine Lösung dieser homogenen DGL ist nun eine linearkombination all dieser gefundenen Lösungen.

Bsp:
$$\lambda_1 = \text{einfache}, \ \lambda_2 = 2\text{-fache reelle Nullstelle:}$$

$$y_h(x) = C_1 e^{\lambda_1 x} + \underbrace{C_2 e^{\lambda_2 x} + C_3 x e^{\lambda_2 x}}_{\lambda_2:2\text{-fache Nullstelle}}$$

Die Unbekannten C_i können gefunden werden, wenn genügend Punkte gegeben sind, an denen der Funktionswert bekannt ist. Einfach y an den gegebenen Punkte auswerten und Gleichung mit dem bekannten Resultat aufstellen.

Vorgehen im inhomogenen Fall:

- 1. Zuerst die homogene Lösung finden (siehe oben)!
- 2. Zuerst wähl man einen geeigneten Ansatz für das y_p siehe 16.3)
- 3. Hat man einen allgmeinen Ansatz für y_p mit noch unbekannten konstanten bestummen, so werden jetzt die nächsten n Ableitung davon berechnet. (n = Ordnung derDGL).
- 4. Nun setzt man die berechneten Ableitungen in die ursprüngliche inhomogene DGL ein. Dh. ersetze y mit y_n , y' mit der 1. Ableitung von y_p etc. Wenn möglich Terme vereinfachen.
- 5. Jetzt die unbekannten Konstanten bestimmen indem man einen Koeffizientenvergleich macht. Dh: Gleichungen aufstellen, so das linke Seite der DGL der rechten Seite ent-
- 6. Gefundene Konstanten können jetzt in die partikuläre Lösunge eingesetzt werden.

Die allgemeine Form der DGL ist $y(t) = y_h(t) + y_p(t)$

Hat man ursprünglich eine inhomogene DGL vorliegen, so muss man für die allgemeine Lösung noch die partikuläre Lösung des inhomogenen DGL berechnen. Dazu werden die Unbekannten C_i durch Funktionen $u_i(x)$ ersetzt. So wird aus $y_h =$ $C_2xe^{\lambda_1x}+C_1e^{\lambda_1x} \Rightarrow y_p=u_2(x)xe^{\lambda_1x}+u_1(x)e^{\lambda_1x}$ (eine doppelte Nullstelle).

Jetzt geht es darum die Funktionen $u_i(x)$ zu bestimmen, um sie in die vorherige y_p -Gleichung einsetzen zu können. Dazu stellen wir i Gleichungen auf. Also so viele, wie wir unbekannte Funktionen $u_i(x)$ haben: $u_2(x)'(xe^{\lambda_1 x}) + u_1(x)'(e^{\lambda_1 x}) = 0$

$$u_2(x)'(xe^{\lambda_1 x}) + u_1(x)'(e^{\lambda_1 x}) = 0$$

$$u_2(x)'(xe^{\lambda_1 x})' + u_1(x)'(e^{\lambda_1 x})' = g(x)$$

Das Prinzip ist folgendes: Bis auf die letzte Gleichung, wird gleich 0 gesetzt. Die letzte Gleichung wird gleich g(x) gesetzt. Unsere unbekannten Funktionen werden jeweils einmal abgeleitet, egal in welcher Gleichung wir sind. Pro Zeile, die man weiter runter geht, wird der Term mit $e^{\lambda_i x}$ jeweils einmal mehr abgeleitet. In der ersten Zeile wird zum Beispiel $e^{\lambda_1 x}$ nicht abgeleitet, in der nächsten Gleichung wird es einmal abgeleitet. Hätten wir mehr Unbekannte Funktionen, so würde in der folgenden Zeile zwei mal abgeleitet werden. Im Allgemeinen gilt also:

$$u_1(x)'y_{h1}(x) + u_2(x)'y_{h2}(x) + \dots + u_n(x)'y_{hn}(x) = 0$$

$$u_1(x)'y_{h1}(x)' + u_2(x)'y_{h2}(x)' + \dots + u_n(x)'y_{hn}(x)' = 0$$

$$u_1(x)'y_{h1}(x)'' + u_2(x)'y_{h2}(x)'' + \dots + u_n(x)'y_{hn}(x)'' = 0$$

$$u_1(x)'y_{h1}(x)^{(n-1)} + u_2(x)'y_{h2}(x)^{(n-1)} + \dots + u_n(x)'y_{hn}(x)^{(n-1)} = g(x)$$

Diese Gleichungen werden nun jeweils aufgelöst, bis man $u_i(x)$ erhält. Um zu $u_i(x)$ zu gelangen, muss auf dem Weg einmal die Gleichung auf beiden Seiten integriert werden. Hat man alle $u_i(x)$, so setzt man diese in unsere ursprüngliche y_p Gleichung Nun kann die allgemeine Lösung des inhomogenen DGL berechnet werden. Dazu summiert man y_h und y_p : $y = y_h + y_p$. Dies ist die allgemeine Lösung. Hat man konkrete Punkte, an denen die Funktion ausgewertet wurde, so kann man die Unbekannten C_i berechnen.

Beispiel

Es soll $y'' + y = \frac{2}{\cos(x)}$ ausgerechnet werden.

Zuerst sehen wir uns das homogene DGL an:

$$y'' + y = 0$$

$$\Rightarrow \lambda^2 e^{\lambda x} + e^{\lambda x} = 0$$

$$\Leftrightarrow e^{\lambda x} (\lambda^2 + 1) = 0$$

$$\Rightarrow \lambda^2 + 1 = 0$$

$$\Leftrightarrow \lambda^2 = -1 \quad \Rightarrow \underline{\lambda}_1 = i, \ \underline{\lambda}_2 = -i$$

Somit ist die allgemeine Lösung des homogenen DGL:

$$y_h = C_1 \cdot e^{ix} + C_2 \cdot e^{-ix}$$

$$= C_1(\cos(x) + i\sin(x)) + C_2(\cos(x) - i\sin(x))$$

$$= \sin(x) \underbrace{(iC_1 + iC_2)}_{=D_1} + \cos(x) \underbrace{(C_1 + C_2)}_{=D_2}$$

$$= \underline{D_1 \sin(x) + D_2 \cos(x) = y_h}$$

Da es sich um ein inhomogenes DGL handelt, berechnen wir als nächstes die partikuläre Lösung:

$$y_{p} = \underbrace{u_{1}(x)}_{D_{1} \text{ in } y_{h}} \sin(x) + \underbrace{u_{2}(x)}_{D_{2} \text{ in } y_{h}} \cos(x)$$

$$\Rightarrow \begin{vmatrix} u_{1}(x)' \sin(x) + u_{2}(x)' \cos(x) = 0 \\ u_{1}(x)' \sin(x)' + u_{2}(x)' \cos(x)' = \frac{2}{\cos(x)} \end{vmatrix}$$

$$= \dots$$

$$\Rightarrow u_{1}(x)' = -2\tan(x), u_{2}(x)' = 2$$

$$\Leftrightarrow u_{1}(x) = 2\ln(\cos(x)), u_{2}(x) = 2x$$

$$\Rightarrow y_{p} = 2\ln(\cos(x))\sin(x) + 2x\cos(x)$$

Da wir nun auch die partikuläre Lösung haben, können wir die allgemeine Lösung des inhomogenen DGL berechnen: $y = y_h +$ $y_p = D_1 \sin(x) + D_2 \cos(x) + 2\ln(\cos(x))\sin(x) + 2x\cos(x)$

Ansätze für partikuläre Lösung

Hinweis:

- Ansätze nur brauchbar für lineare DGL mit konstanten Koeffizienten.
- Die gesuchte Funktion y ist immer vom gleichen Grad wie die Störfunktion q(x).
- Wenn q(x) eine Linearkombination von Funktionen ist, so muss man auch einen entsprechenden Ansatz wählen! Dh: Für jeden Summanden von q(x) einzeln eine partikuläre Lösung finden und am Ende addieren!

Bezeichnungen:

charakt. Polynom der DGL P(x)polynomielle Störfunktion, Grad k $S_k(x)$ unbekannte Konstanten

 $R_k(x) = a_k x^k + . + a_1 x + a_0$ mit unbekannten Koeffizienten

()	A
q(x)	Ansatz
$S_k(x)$	$R_k(x)$, falls $P(0) \neq 0$
$S_1(x): ax+b$	$x^q R_k(x)$, falls 0 q-fache NST von P
$S_2(x): ax^2 + bx + c$	
ce^{mx}	Ae^{mx} , falls $P(m) \neq 0$
	$Ax^q e^{mx}$, falls m q -fache NST von P
$S_k(x)e^{mx}$	$R_k(x)e^{mx}$, falls $P(m) \neq 0$
	$x^q R_k(x) e^{mx}$, falls m q -fache NST von P
$\sin wx, \cos wx$	$A\cos wx + B\sin wx$, falls $P(\pm iw) \neq 0$
	$x^{q}(A\cos wx + B\sin wx)$, falls $\pm iw$
	q-fache NST von P
$\sinh wx, \cosh wx$	$A \cosh wx + B \sinh wx$, falls $P(w) \neq 0$
	$x^{q}(A\cosh wx + B\sinh wx)$, falls w
	q-fache NST von P

17 Kurvenintegral (Linienintegral)

In den Übungen sind nur immer Integrale der zweiten Art vorgekommen.

17.1 2. Art

Das Wegintegral über ein stetiges Vektorfeld $\vec{f}: \mathbb{R}^n \to \mathbb{R}^n$ entlang eines stetig differenzierbaren Weges $\gamma: [a,b] \to \mathbb{R}^n$ ist definiert durch:

$$\int_{\gamma} \vec{f}(\vec{x}) d\vec{x} := \int_{a}^{b} \left\langle \vec{f}(\gamma(t)), \gamma(t)' \right\rangle dt$$

 $\underline{\text{Skalarprodukt}}: \left\langle \vec{a}, \vec{b} \right\rangle = a_x b_x + a_y b_y + \dots$

Beispiel

Berechne des Linienintegral $\int_{\gamma} \vec{K} d\vec{x}$ für $\vec{K}(x,y) = (x^2 + y, 2xy)$ und γ als Einheitskreis mit positivem Umlaufsinn. Gegeben:

$$\vec{K}(x,y) = (x^2 + y, 2xy)$$

$$\gamma : [0, 2\pi] \to \mathbb{R}^2$$

$$\gamma : t \mapsto (\cos(t), \sin(t))$$

Zu berechnen:

$$\gamma(t)' = (-\sin(t), \cos(t))$$

$$\vec{K}(\gamma(t)) = (\cos^2(t) + \sin(t), 2\cos(t)\sin(t))$$

$$\left\langle \vec{K}(\gamma(t)), \gamma(t)' \right\rangle = -\cos^2(t)\sin(t) - \sin^2(t) + 2\cos^2(t)\sin(t)$$

$$= \cos^2(t)\sin(t) - \sin^2(t)$$

$$\int_{\gamma} \vec{K} d\vec{x} = \int_{0}^{2\pi} \left\langle \vec{K}(\gamma(t)), \gamma(t)' \right\rangle dt$$

$$= \int_{0}^{2\pi} \cos^2(t)\sin(t) - \sin^2(t)dt$$

$$= -\frac{1}{3}\cos^3(t) - \frac{1}{2}t + \sin(t)\cos(t) \Big|_{0}^{2\pi} = \underline{-\pi}$$

17.2 1. Art

Das Wegintegral einer stetigen Funktion $f:\mathbb{R}^n\to\mathbb{R}$ entlang eines stetig differenzierbaren Weges $\gamma:[a,b]\to\mathbb{R}^n$ ist definiert durch:

$$\int_{\gamma}fds:=\int_{a}^{b}f(\gamma(t))\|\gamma(t)'\|_{2}dt$$

<u>Euklidische Norm</u>: $\|\vec{a}\|_2 = \sqrt{a_x^2 + a_y^2 + \dots}$ Achtung: Beim Integral muss man zuerst $\gamma(t)$ nach t ableiten und erst dann die Norm davon berechnen!

Beispiel

Es sei die Schraubenlinie (Spirale in 3D)

$$\gamma: [0, 2\pi] \to \mathbb{R}^3, \gamma: t \mapsto (\cos(t), \sin(t), t)$$

und $f(x,y,z):=x^2+y^2+z^2$ gegeben. Wir berechnen $\int_{\gamma}fds$. Zunächst bestimmen wir

$$\|\gamma(t)'\|_2 = \sqrt{\left[\frac{d(\cos t)}{dt}\right]^2 + \left[\frac{d(\sin t)}{dt}\right]^2 + \left[\frac{dt}{dt}\right]^2}$$
$$= \sqrt{\sin^2(t) + \cos^2(t) + 1} = \sqrt{2}$$

Dann substituieren wir x,y und z und erhalten

$$f(x,y,z) = f(\gamma(t)) = \sin^2(t) + \cos^2(t) + t^2 = 1 + t^2$$
auf γ . Das führt zu

$$\int_{\gamma} f(x, y, z) ds = \int_{0}^{2\pi} (1 + t^{2}) \sqrt{2} dt = \sqrt{2} (t + \frac{t^{3}}{3}) \Big|_{0}^{2\pi}$$
$$= \frac{2\sqrt{2}\pi}{3} (3 + 4\pi^{2})$$

17.3 Parametrisierung von Kurven

Grundlegender Tipp: Skizze machen, um Grenzen und Kurve besser zu verstehen und schneller auf die Parametrisierung zu kommen.

• Wenn die Kurve in der Form

$$C = \{ \vec{r} \in \mathbb{R}^n | \vec{r} = \gamma(t), a \le t \le b \}$$

bereits gegeben, so ist klar, dass $\gamma(t)$ der Weg ist und das Integral von a nach b verläuft.

- Die Paramtrisierung einer Strecke von \vec{a} nach \vec{b} : $\gamma(t) = \vec{a} + t(\vec{b} \vec{a}), \quad 0 \le t \le 1$
- Die Parametrisierung eines Kreises mit Mittelpunkt (x_0, y_0) und Radius r ist: $\gamma(t) = \begin{pmatrix} x_0 + r\cos(t) \\ y_0 + r\sin(t) \end{pmatrix}$. Für einen vollen Kreis gilt $0 \le t \le 2\pi$, für Kreisteile schränkt man diesen Intervall entsprechend ein.
- Parametrisierung eines <u>Graphen</u> der Funktion f(x) für x zwischen a und b: $\gamma(t) = \frac{t}{f(t)}$, $a \le t \le b$. <u>Achtung:</u> Hat man zwei Graphen, die als Grenzen für das Kurvenintegral fungieren, so schliessen diese gemeinsam eine Fläche ein. Die Umlaufrichtung ist so zu wählen, dass diese Fläche jeweils links liegt.

17.3.1 Beispiel: Kurvenintegral mit zwei Grenzgraphen

Es soll das Kurvenintegral $\int_{\gamma} K(x,y) dt = \int_{\gamma} \binom{x^2 - y^2}{2y - x} dt$ berechnet werden. γ ist der Rand des beschränkten Gebietes im ersten Quadranten, welches durch die Graphen $y = x^2$ und $y = x^3$ begrenzt wird.

Lösung: Man macht eine Skizze der Grenzen ($y=x^2$ und $y=x^3$) und sieht, dass diese eine Fläche einschliessen. Die Schnittpunkte sind x=0 und x=1. Der Rand dieses Gebiets besteht also aus den beiden parametrisierten Kurven (Parametrisierung für Graphen verwenden)

$$\gamma_1(t) = \begin{pmatrix} t \\ t^3 \end{pmatrix} \qquad t \in [0, 1]$$

$$\gamma_2(t) = \begin{pmatrix} t \\ t^2 \end{pmatrix} \qquad t \in [0, 1]$$

Wir sehen, dass die eingeschlossene Fläche in Durchlaufrichtung von γ_1 links liegt, was soweit gut ist. Bei γ_2 liegt die Fläche aber auf der rechten Seite, weshalb wir die Durchlaufrichtung drehen müssen, was zu $\gamma = \gamma_1 - \gamma_2$ führt (man beachte das Minus statt einem Plus).

Jetzt muss nur noch ganz normal das Wegintegral berechnet werden: $\int_{\gamma} K \ dx = \int_{\gamma_1} K \ dx + \int_{-\gamma_2} K \ dx = \int_{\gamma_1} K \ dx - \int_{\gamma_2} K \ dx = \dots$

17.4 Berechnung

Die Berechnung findet in drei Schritten statt:

1. Parametrisierung der Kurve C als $C = \{\vec{r} \in \mathbb{R}^n | \vec{r} = \gamma(t), a \leq$

 $t \leq b$

- 2. Einsetzen ins Integral: $\int_C f(\vec{r}) ds = \int_a^b f(\gamma(t)) \|\gamma(t)'\| dt$. Man setzt also für die Variabeln von f die Komponenten von γ ein und multipliziert dies dann mit dem Betrag der Ableitung nach t von γ .
- 3. Integral ausrechnen.

17.5 Bogenlänge

Definition 17.1 (Bogenlänge in kartesischen Koordinaten). Die Bogenlänge des Graphen einer stetig differenzierbaren Funktion $f:[a,b]\to\mathbb{R}$ ist definiert durch:

$$L = \int_{a}^{b} \sqrt{1 + (f'(x)^{2})}$$

Definition 17.2 (Bogenlänge in Parameterform). Für die Bogenlänge L, auf dem Weg beschrieben durch x(t) und y(t), ergibt sich:

$$L = \int ds = \int_a^b \sqrt{\dot{x}^2 + \dot{y}^2} dt$$

18 Differential rechnung in \mathbb{R}^n

Hier geht es um Funktionen $f: \mathbb{R}^n \to \mathbb{R}^m$, wobei m=1 gelten kann $(f: \mathbb{R}^n \to \mathbb{R})$. Solche Funktionen haben die allgemeine

Form:
$$f(x) = f(x_1, x_2, x_3, \dots, x_n) = \begin{pmatrix} f_1(x_1, x_2, x_3, \dots, x_n) \\ f_2(x_1, x_2, x_3, \dots, x_n) \\ \dots \\ f_m(x_1, x_2, x_3, \dots, x_n) \end{pmatrix}$$

Für nahezu alle Eigenschaften gilt: Die Vektorfunktion $f: \mathbb{R}^n \to \mathbb{R}^m$ hat eine bestimmte Eigenschaft, wenn jede einzelne ihrer Komponenten (f_1, f_2, \dots, f_m) die besagte Eigenschaft besitzen. Das Problem liegt neu also nicht im Wertebereich, sondern vor allem in Definitionsbereich.

18.1 Norm

Eine Norm auf \mathbb{R}^n ist die Funktion $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ mit den folgenden Eigenschaften:

- $\bullet \ \forall x \in \mathbb{R}^n : \|x\| \ge 0$
- $\forall x \in \mathbb{R}^n : ||x|| = 0 \Leftrightarrow x = \vec{0}$
- $\forall x \in \mathbb{R}^n, \alpha \in \mathbb{R} : ||\alpha x|| = |\alpha|||x||$
- $\forall x, y \in \mathbb{R}^n : ||x + y|| \le ||x|| + ||y||$

18.2 Partielle Differenzierbarkeit

 $f: \mathbb{R}^n \to \mathbb{R}^m$ ist in $a=(a_1,\ldots,a_n)$ partiell differenzierbar nach der *i*-ten Variable x_i , wenn die Funktion $f: x_i \to f(x_1,\ldots,x_i,\ldots,x_n)$ differnzierbar ist. Man berechnet die partielle Ableitung also folgendermassen: Eine Funktion f wird nach einer Variable partiell differenziert, indem man alle anderen Variablen als Konstanten behandelt und die Rechenregeln für Funktionen mit einer Variable anwendet.

Satz 18.1 (Satz von Schwarz). Ist f nach x und y zweimal partiell differenzierbar und sind die gemischten partiellen Ableitungen f_{xy} und f_{yx} stetig, so gilt: $f_{xy} = f_{yx}$.

19 Vektoranalysis

Definition 19.1 (Vektorfeld). Die Abbildung $\vec{v}(\vec{r}) : \mathbb{R}^n \to \mathbb{R}^n$ ist ein Vektorfeld. Es weist jedem Vektor \vec{r} einen Vektor $\vec{v}(\vec{r})$ zu.

Definition 19.2 (Skalarfeld). Ist eine Abbildung der Form $f: \mathbb{R}^n \to \mathbb{R}$. Es existiert wenn das Vektorfeld wirbelfrei/konservativ ist. Ergibt ein geschlossener Weg im Vektorfeld nicht null so existiert kein skalares Feld (jedoch nicht umbedingt umgekehrt).

Ebenes Skalarfeld: $f: \mathbb{R}^2 \to \mathbb{R}$ (Pro Flächenpunkt ein Skalar) Räumliches Skalarfeld: $f: \mathbb{R}^3 \to \mathbb{R}$ (Pro Raumpunkt ein Skalar) **Definition 19.3** (Gradient). Ist $f: \mathbb{R}^n \to \mathbb{R}$ (Skalarfeld), so ist der Gradient von f der Vektor $\vec{v} = \operatorname{grad} f = \nabla f$. (Im Fall $f: \mathbb{R}^3 \to \mathbb{R}$: $\operatorname{grad} f = (f_x, f_y, f_z) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$).) Der Gradient ∇f von einer Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ beschreibt die Richtung und den Betrag des steilsten Anstiegs des Graphen von f.

Definition 19.4 (Richtungsableitung). Ist eine reelle Zahl, sie gibt die Änderung des Funktionswertes von f an, wenn man von einem Punkt P aus in eine bestimmte Richtung \vec{a} um eine Längeneinheit fortschreitet. Die Richtungsableitung von f in Richtung \vec{a} ist definiert als: $\frac{\partial f}{\partial \vec{a}} = \nabla f \cdot \vec{e_a} = \nabla f \cdot \frac{\vec{a}}{|\vec{a}|} = \frac{1}{|\vec{a}|} \cdot \nabla f \cdot \vec{a}$ Merke: Die Richtungsableitung ist maximal, wenn \vec{a} in gleiche Richtung wie Gradient zeigt!

Definition 19.5 (Potential). Ist $\vec{v} = \nabla f$, so ist f das Potential oder Stammfunktion zu \vec{v} . Existiert wenn rot $\vec{f} = \vec{0}$ und der Definitionsbereich zusamenhängend ist.

Definition 19.6 (Gradientenfeld / Potentialfeld). Ist $\vec{v} = \nabla f$, so ist das Vektorfeld \vec{v} ein Gradientenfeld / Potentialfeld. Es besitzt dabei die folgenden Eigenschaften:

- Der Wert des Kurvenintegrals entlang eines beliebigen Weges innerhalb des Feldes ist unabhängig vom Weg selbst, sondern nur vom Anfangs- und Endpunkt
- Ein Kurvenintegral mit einem Weg bei dem Anfangs- und Endpunkt der gleiche Punkt sind, hat den Wert 0.
- Ist immer wirbelfrei: rot $\vec{v} = \text{rot}(\text{grad } f) = \vec{0}$

Definition 19.7 (Rotor / Rotation). Gibt die Tendenz eines Vektorfeldes an, um Punkte zu rotieren. Es ist ein Vektorfeld, welches aus einem anderen Vektorfeld hergeleitet wird. Die Rotation des Vektorfelds $\vec{F}(x, y, z)$ ist das Vektorfeld rot \vec{F} . Also:

$$\vec{F}(x,y,z) = \begin{pmatrix} F_x(x,y,z) \\ F_y(x,y,z) \\ F_z(x,y,z) \end{pmatrix} \Rightarrow \text{rot}\vec{F} = \begin{pmatrix} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \\ \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \\ \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{pmatrix}$$

Das Vektorfeld rot \vec{F} wird häufig auch als Wirbelfeld zu \vec{F} bezeichnet. \vec{F} heisst in einem Bereich Wirbelfrei / Konservativ, wenn dort überall rot $\vec{F}=0$ gilt.

Definition 19.8 (Wirbelfrei / konservativ). Ein Vektorfeld \vec{v} ist wirbelfrei/konservativ wenn gilt: rot $\vec{v} = 0$

Definition 19.9 (Vektorpotential). Ein Vektorfeld \vec{v} heisst Vektorpotential zu \vec{w} , falls $\vec{w} = \operatorname{rot} \vec{v}$.

Definition 19.10 (Divergenz). Die Divergenz eines Vektorfelds div $\vec{K}(x,y,z)$ ist definiert durch: div $\vec{K}(x,y,z) := \frac{\partial K_1}{\partial x} + \frac{\partial K_2}{\partial y} + \frac{\partial K_3}{\partial z}$

Lemma 19.1 (Geschlossener Weg). Wenn $F = grad\varphi$, respektive rot $\vec{F} = \vec{0}$ und der Definitionsbereich zusammenhängend ist, sowie γ geschlossen ist, so folgt $\int_{\gamma} F = 0$.

19.1 Bestimmung eines Potentials im \mathbb{R}^2

Sei
$$\vec{v} = \begin{pmatrix} P(x,y) \\ Q(x,y) \end{pmatrix}$$
.

Um schnell zu prüfen, ob man überhaupt den folgenden Algorithmus anwenden muss, kann man prüfen ob gilt: $P_y = Q_x$, wenn nicht, so hat \vec{v} kein Potential f.

- 1. $f(x,y) = \int P(x,y) dx + C(y)$ berechnen (Integral berechnen)
- 2. Die berechnete Gleichung f(x,y) nun nach y ableiten: $\frac{\partial}{\partial y} f(x,y) = \frac{\partial}{\partial y} \int P(x,y) \ dx + C'(y)$ (berechnetes Integral nach y ableiten)

- 3. $\frac{\partial}{\partial y} f(x,y) = Q(x,y)$ setzen und C'(y) berechnen durch umformen und integrieren
- 4. Berechnetes C(y) in die Gleichung im 1. Punkt einsetzen. Fertig. Achtung: Im Grunde hat C(y) durch integrieren (aufleiten) noch einen konstanten Wert, der beliebigen Wert haben kann. Dieser taucht im Grunde auch in der fertigen f(x,y) Funktion auf.

19.2 Bestimmung eines Potentials im \mathbb{R}^3

Sei
$$\vec{v} = \begin{pmatrix} P(x, y, z) \\ Q(x, y, z) \\ R(x, y, z) \end{pmatrix}$$
.

Um zu prüfen, ob man überhaupt ein Potential finden kann für \vec{v} hat rot $\vec{v}=0$ zu sein, also wirbelfrei zu sein. Dazu muss gelten (zu zeigen mit rot $\vec{v}=0$): $P_y=Q_x, P_z=R_x, Q_z=R_y$.

- 1. $f(x, y, z) = \int P(x, y, z) dx + C(y, z)$ lösen (Integral berechnen)
- 2. Nun die berechnete Gleichung f(x, y, z) nach y ableiten \Rightarrow $f_y(x, y, z)$.
- 3. Die abgeleitete Gleichung f_y mit Q(x,y,z) gleichsetzen: $f_y(x,y,z)=Q(x,y,z)$ und damit $C_y(y,z)$ bestimmen.
- 4. Durch Integration von $C_y(y,z)$ nach y ($\int C_y(y,z) dy$) wird C(y,z) bestimmt bis auf eine Konstante D(z), die von z abhängt. C(y,z) hat also die Form: $C(y,z) = \int C_y(y,z) dy + D(z)$.
- 5. Dieses C(y,z) setzt man nun in die Gleichung f(x,y,z) ein, die im 1. Punkt steht.
- 6. Nun wird die daraus erzeugte $f(x,y,z) = \int P(x,y,z) dx + C(y,z) = \int P(x,y,z) dx + \int C_y(y,z) dy + D(z)$ Gleichung nach z abgeleitet.
- 7. Durch Gleichsetzen von $f_z(x,y,z) = R(x,y,z)$ lässt sich $D_z(z)$ bestimmen.
- 8. $D_z(z)$ wird wiederrum durch Integration zu $D(z)=\int D_z(z)\ dz+c,\quad c\in\mathbb{R}$
- 9. Das berechnete D(z) in die f(x, y, z) Gleichung aus Punkt 6 einsetzen, fertig.

19.3 Geometrisches Verständniss

Sei B ein drei dimensionaler Körper (beschrieben durch Punkte in \mathbb{R}^3 mit der Funktion f) so sei ∇f senkrecht dazu.

Beispiel

Gib einen Vektoren der ein nach aussen gerichteter Normalenvektor (nicht notwendigerweise normiert) auf dem Rand des Ellipsoids ist

$$B := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \middle| f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right\}$$

Der Vektor $\begin{pmatrix} 2x/a^2 \\ 2y/b^2 \\ 2z/c^2 \end{pmatrix}$ ist gleich ∇f und steht somit senkrecht

auf der Niveaufläche f = 1. Da er vom Ursprung weg orientiert ist, liefert er die richtige Antwort.

Der Vektor $\begin{pmatrix} yz(1/b^2 - 1/c^2) \\ xz(1/c^2 - 1/a^2) \\ xy(1/a^2 - 1/b^2) \end{pmatrix}$ ist tangential zum Rand ∂B

19.4 Kritische Punkte im \mathbb{R}^n

Sei $f:\Omega\to\mathbb{R}$ mit $\Omega\subseteq\mathbb{R}^n$ und F= Nebenbedingung ((Un)gleichung). Um kritische Punkte(Minima,Maxima,Sattelpunkte) zu bestimmen geht man wie folgt vor.

- Wenn Ω offen und kein F existiert:
 - 1. Berechne alle Punkte, die die Gleichung $\nabla f = 0$ erfüllen. Jeder dieser Punkte ist ein kritischer Punkt.
 - 2. TODO Prüfe mit Determinantenkriterium ob es sich um ein Min/Max/Sattelp handelt. Ausführlicher...

• Sonst:

- 1. Untersuche alle kritischen Punkte im inneren: $\nabla f = 0$. Analog zu oben.
- 2. Untersuche alle kritischen Punkte am Rand (mit Lagrange Multiplikator): $\nabla f = \lambda \nabla F$. Beachte dass nun eine Variable λ dazugekommen ist. Um also auch λ aufzulösen verwendet man F als zusätzliche Gleichung!
- 3. Untersuche alle Ecken (= Ränder vom Rand): Meistens einfach Ecken in Funktion einsetzen und berechnen
- 4. Von allen berechneten Punkte nehme das Min/Max. Prüfe auch immer ob die Punkte den Nebenbedingungen genügen! Falls nicht, verwerfe sie!

20 **Formeltafel**

Mitternachtsformel

$$ax^2 + bx + c = 0$$
 \Longrightarrow $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

20.2 Binomialkoeffizient

$$\binom{n}{k} = \frac{n!}{k! \, (n-k)!} \quad \text{für } \ 0 \leq k \leq n$$

20.3 Argument

$$\arg(x,y) := \begin{cases} \arctan(\frac{y}{x}) & x \ge 0 \\ -\arctan(\frac{y}{x}) & x < 0 \end{cases}$$

$$\frac{\pi}{2} & x = 0, y < 0$$

$$\frac{3\pi}{2} & x = 0, y > 0$$

Kreisfunktionen

α	0°	30°	$45^{\frac{\pi}{4}}$	60°	$90^{\frac{\pi}{2}}$	$\begin{array}{c} \frac{2\pi}{3} \\ 120^{\circ} \end{array}$	π 180°	Periode	Wertebereich
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	0	$\sin(\alpha + k \cdot 2\pi)$	[-1, 1]
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	-1	$\cos(\alpha + k \cdot \frac{2\pi}{2\pi})$	[-1, 1]
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm \infty$	$-\sqrt{3}$	0	$\tan(\alpha + k \cdot \pi)$	$]-\infty,\infty[$

20.4.1 Einheitskreis

 $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{y}{x}$

Trigonometrische Funktionen & Additionstheo-20.5

- $\bullet \sin^2(x) + \cos^2(x) = 1$
- $\sin(90^{\circ} \pm \alpha) = \cos(\alpha)$
- $\sin(180^\circ \pm \alpha) = \mp \sin(\alpha)$

- $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$
- $\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$
- $\sin(\alpha)^2 = \frac{1}{2}(1 \cos(2\alpha))$
- $\cos(90^{\circ} \pm \alpha) = \mp \sin(\alpha)$
- $\cos(180^{\circ} \pm \alpha) = -\cos(\alpha)$
- $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$ $\cos(2\alpha) = \cos^2(\alpha) \sin^2(\alpha) = 2\cos^2(\alpha) 1 = 1 2\sin^2(\alpha)$
- $\cos(\alpha)^2 = \frac{1}{2}(1 + \cos(2\alpha))$ $\frac{1}{\cos^2(\alpha)} = 1 + \tan^2(\alpha)$
- $\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$
- $\tan(2\alpha) = \frac{2\tan(\alpha)}{1-\tan^2(\alpha)}$
- $\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$

20.6 Hyperbelfunktionen

- $1 + \sinh(x)^2 = \cosh(x)^2 \Leftrightarrow \sqrt{1 + \sinh(x)^2} = \cosh(x)$
- $1 + \sinh(x)^2 = \cosh(x)^2 \Leftrightarrow \cosh(x)^2 \sinh(x)^2 = 1$
- $\sinh(x) = \frac{1}{2}(e^x e^{-x})$

- $\operatorname{sinh}(x) = \frac{1}{2}(e e)$ $\operatorname{sinh}(x)^2 = \frac{1}{2}(\cosh(2x) 1)$ $\operatorname{cosh}(x) = \frac{1}{2}(e^x + e^{-x})$ $\operatorname{cosh}(x)^2 = \frac{1}{2}(\cosh(2x) + 1)$ $\operatorname{tanh}(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} 1}{e^{2x} + 1} = 1 \frac{2}{e^{2x} + 1}$
- $\operatorname{arcsinh}(x) = \ln(x + \sqrt{x^2 + 1})$
- $\operatorname{arcosh}(x) = \ln(x + \sqrt{x^2 1})$
- $\operatorname{arctanh}(x) = \frac{1}{2} \ln(\frac{1+x}{1-x})$
- Umformung: $\tanh(x) + 1 = \frac{e^{2x} 1}{e^{2x} + 1} + 1 = \frac{2x 1 + e^{2x} + 1}{e^{2x} + 1} = \frac{2e^{2x} 1}{e^{2x} + 1}$

20.7 Ableitungen

20.7.1 Regeln

- (Summerregel) (f+g)'(x) = f'(x) + g'(x)
- (Produktregel) $(fg)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ (Quotientenregel) $(\frac{f}{g})'(x) = \frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{g^2(x)}$ (Kettenregel) $(g \circ f)'(x) = (g(f(x)))' = g'(f(x)) \cdot f'(x)$

20.7.2 Ableitungs-Tafel

- d. 1.2 Ableitings-Tatel $\frac{d}{dx} x^n = nx^{n-1}$ $\frac{d}{dx} \frac{1}{x^n} = -n \frac{1}{x^{n+1}}$ $\frac{d}{dx} \sqrt[n]{x} = \frac{1}{n \sqrt[n]{x^{n-1}}}$ $\frac{d}{dx} e^{\alpha x + \beta} = \alpha e^{\alpha x + \beta}$ $\frac{d}{dx} e^{x^{\alpha}} = \alpha x^{\alpha 1} e^{x^{\alpha}}$ $\frac{d}{dx} \ln(x) = \frac{1}{x}$ $\frac{d}{dx} \alpha^x = \alpha^x \ln(\alpha)$ $\frac{d}{dx} x^x = x^x (1 + \ln(x))$ $\frac{d}{dx} x^x^{\alpha} = x^{x^{\alpha} + \alpha 1} (\alpha \log(x) + 1)$
- $\frac{d}{dx}\sin(x) = \cos(x)$; $\frac{d}{dx}\sin(\alpha x + \beta) = \alpha\cos(\alpha x + \beta)$ $\frac{d}{dx}\cos(x) = -\sin(x)$; $\frac{d}{dx}\cos(\alpha x + \beta) = -\alpha\sin(\alpha x + \beta)$ $\frac{d}{dx}\tan(x) = \frac{1}{\cos^2(x)}$; $\frac{d}{dx}\tan(\alpha x + \beta) = \alpha\frac{1}{\cos^2(\alpha x + \beta)}$

- $\frac{d}{dx} \tan(x) = \cos^2(x)$, $\frac{d}{dx} \tan(x) = \cos^2(\alpha x + \beta)$ $\frac{d}{dx} \tan(x) = 1 + \tan(x)^2$ $\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1 x^2}}$; $\frac{d}{dx} \arcsin(\alpha x + \beta) = \frac{\alpha}{\sqrt{1 (\alpha x + \beta)^2}}$ $\frac{d}{dx} \arccos(x) = -\frac{1}{\sqrt{1 x^2}}$; $\frac{d}{dx} \arccos(\alpha x + \beta) = -\frac{\alpha}{\sqrt{1 (\alpha x + \beta)^2}}$
- $\frac{d}{dx} \arctan(x) = \frac{1}{x^2+1}$; $\frac{d}{dx} \arctan(\alpha x + \beta) = \frac{\alpha}{(\alpha x + \beta)^2+1}$

- $\frac{d}{dx} \sinh(x) = \cosh(x); \frac{d}{dx} \sinh(\alpha x + \beta) = \alpha \cosh(\alpha x + \beta)$ $\frac{d}{dx} \cosh(x) = \sinh(x); \frac{d}{dx} \cosh(\alpha x + \beta) = \alpha \sinh(\alpha x + \beta)$ $\frac{d}{dx} \tanh(x) = \frac{1}{\cosh^2(x)}; \frac{d}{dx} \tanh(\alpha x + \beta) = \alpha \frac{1}{\cosh^2(\alpha x + \beta)}$ $\frac{d}{dx} \operatorname{arcsinh}(x) = \frac{1}{\sqrt{x^2 + 1}}; \frac{d}{dx} \operatorname{arcsinh}(\alpha x + \beta) = \frac{\alpha}{\sqrt{(\alpha x + \beta)^2 + 1}}$
- $\frac{d}{dx}$ $\operatorname{arcosh}(x) = \frac{1}{\sqrt{x-1}\sqrt{x+1}}; \frac{d}{dx} \operatorname{arcosh}(\alpha x + \beta) =$
- $\frac{\alpha}{\sqrt{\alpha x + \beta 1}\sqrt{\alpha x + \beta + 1}}$ $\frac{d}{dx} \operatorname{arctanh}(x) = \frac{1}{1 x^2}; \frac{d}{dx} \operatorname{arctanh}(\alpha x + \beta) = \frac{\alpha}{1 (\alpha x + \beta)^2}$

20.8 Integrale

20.8.1 Integralregeln

Es gelte: $\int f(x) dx = F(x)$

- $\int u' \cdot v dx = uv \int u \cdot v' dx$
- $\int f(x)dx = \int f(g(t)) \cdot g'(t)dt$, x = g(t), dx = g'(t)dt
- $\int f(a+x) dx = F(a+x)$
- $\int f(a-x) dx = -F(a-x)$
- $\bullet \int f(-x) \, dx = -F(-x)$
- $\int f(\alpha x) dx = \frac{1}{\alpha} F(\alpha x)$
- $\int \frac{g'(x)}{g(x)} dx = \ln|g(x)|$
- $|\int f(x)| \le \int |f(x)|$ (wenn f, Riemann-Integrable ist)

20.8.2 typische Integrale

- $\bullet \int x^n \, dx = \frac{x^{n+1}}{n+1}$ für $n \neq -1$
- für $n \neq -1$
- $\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{(n+1)a}$ für $n \neq -1$ $\int x(ax+b)^n dx = \frac{(ax+b)^{n+2}}{(n+2)a^2} \frac{b(ax+b)^{n+1}}{(n+1)a^2}$

- $\int \frac{1}{x} dx = \ln|x|$ $\int \frac{1}{x^2} dx = -\frac{1}{x}$ $\int \frac{1}{a+x} dx = \ln|a+x|$ $\int \frac{1}{(a+x)^2} dx = -\frac{1}{a+x}$ $\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b|$
- $\int \frac{x}{1+x^2} dx = \frac{1}{2} \ln|1+x^2|$ $\int \frac{1}{1+x^2} dx = \arctan(x)$
- $\int_{C} \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan(\frac{x}{a})$
- $\int \frac{1}{a^2 x^2} dx = \frac{1}{a} \operatorname{arctanh}(\frac{x}{a})$
- $\int \frac{1}{1 + (a+x)^2} dx = \arctan(a+x)$
- $\int \ln(x) \, dx = x(\ln(x) 1)$
- $\int \ln(ax+b) \, dx = \frac{(ax+b) \ln(ax+b) ax}{a}$
- $\bullet \int \sqrt{x} \, dx = \frac{2}{3} \sqrt{x^3}$
- $\bullet \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x}$
- $\int \sqrt{1-x^2} \, dx = \frac{1}{2} \left(x \sqrt{1-x^2} + \arcsin(x) \right)$
- $\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin(x)$
- $\int \frac{1}{\sqrt{1+x^2}} dx = \operatorname{arcsinh}(x)$
- $\int a^{xb+c} dx = \frac{a^{bx+c}}{b \log(a)}$ $\int \frac{ax+b}{px+q} dx = \frac{ax}{p} + \frac{bp-aq}{p^2} \ln|pq+q|$

20.8.3 trionometrische Funktionen

- $\int \sin(x) dx = -\cos(x)$; $\int \sin(ax) \, dx = -\frac{1}{a} \cos(ax)$
- $\int \cos(ax) \, dx = \frac{1}{a} \sin(ax)$ • $\int \cos(x) dx = \sin(x)$;
- $\oint \sin(ax)^2 dx = \frac{x}{2} \frac{\sin(2ax)}{4a}$
- $\bullet \int \frac{1}{\sin^2 x} dx = -\cot x$
- $\int x \sin(ax) \, dx = \frac{\sin(ax)}{a^2} \frac{x \cos(ax)}{a}$
- $\bullet \int_{a} \cos^2(ax) \, dx = \frac{x}{2} + \frac{\sin(2ax)}{4a}$
- $\bullet \int \frac{1}{\cos^2(x)} dx = \tan x$
- $\int \cos(ax) \, dx = \frac{\cos(ax)}{a^2} + \frac{x \sin(ax)}{a}$
- $\int_{C} \sin(ax)\cos(ax) dx = -\frac{\cos^{2}(ax)}{2a}$
- $\int \tan(ax) dx = -\frac{1}{a} \ln|\cos(ax)|$
- $\int \arcsin(x) dx = x \arcsin(x) + \sqrt{1 x^2}$
- $\int \arccos(x) dx = x \arccos(x) \sqrt{1 x^2}$ $\int \arctan(x) dx = x \arctan(x) \frac{1}{2} \ln(1 + x^2)$

20.8.4 Hyperbelfunktionen

- $\int \sinh(x) dx = \cosh(x)$; $\int \sinh(ax+b) dx = \frac{\cosh(ax+b)}{c}$
- $\int \cosh(x) dx = \sinh(x)$; $\int \cosh(ax+b) dx = \frac{\sinh(ax+b)}{2}$
- $\int \tan(x) dx = \log(\cosh(x))$; $\int \tan(ax+b) dx = \frac{\log(\cosh(ax+b))}{c}$

20.8.5 Exponentialfunktion

- $\bullet \int e^{ax} dx = \frac{1}{a} e^{ax}$
- $\bullet \int xe^{ax} dx = e^{ax} \cdot \left(\frac{ax-1}{a^2}\right)$
- $\int x \ln(x) dx = \frac{1}{2}x^2(\ln(x) \frac{1}{2})$
- $\bullet \int_{-\infty}^{\infty} e^{-\frac{1}{a}x^2} dx = \sqrt{a\pi}$

20.9 Reihenentwicklung

- $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$ $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$ $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \cdots + \cdots$ $\sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$

- $\cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$
- $\ln x = \sum_{n=0}^{\infty} \frac{2}{2n+1} \cdot \left(\frac{x-1}{x+1}\right)^{2n}$

20.10 Grenzwerte

- Bernoullische Ungleichung: $x > -1, n \in \mathbb{N}$: $(1+x)^n >$
- Vergleich von Folgen: weiter rechts stehende Folgen streben schneller gegen ∞ als die links davon stehenden: 1, $\ln n$, $n^{\alpha}(\alpha > 0)$, $q^{n}(q > 1)$, n!, $n^{n} \Rightarrow$ $\lim_{x \to \infty} \frac{\ln n}{n^{\alpha}} = 0$

$\lim_{n\to\infty}$

- $\lim_{n\to\infty} \sqrt[n]{a} \to 1$
- $\lim_{n\to\infty} \sqrt[n]{n} \to 1$
- $\lim_{n\to\infty} \sqrt[n]{n!} \to \infty$
- $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} \to e$
- $\lim_{n\to\infty} \frac{1}{n} \sqrt[n]{n!} \to \frac{1}{e}$
- $\lim_{n\to\infty} \left(\frac{n+1}{n}\right)^n \to e$
- $\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n \to e$
- $\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n \to \frac{1}{e}$
- $\lim_{n\to\infty} \left(\frac{n}{1+n}\right)^n \to \frac{1}{e}$
- $\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n \to e^x$
- $\lim_{n\to\infty} \left(1 \frac{x}{n}\right)^n \to \frac{1}{e^x}$
- $\lim_{n\to\infty} {a \choose n} \to 0, \ a > -1$
- $\lim_{n\to\infty} \frac{a^n}{n!} \to 0$
- $\lim_{n\to\infty} \frac{n^n}{n!} \to \infty$
- $\lim_{n\to\infty} \frac{a^n}{n^k} \to \infty, a > 1, k$ fest
- $\lim_{n\to\infty} a^n n^k \to 0, |a| < 1, k \text{ fest}$
- $\lim_{n\to\infty} n(\sqrt[n]{a} 1) \to \ln a, a > 0$
- $\bullet \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x$
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$
- $\bullet \ \lim_{n\to\infty} n^p q^n = 0$ $p \in \mathbb{N} \text{ und } 0 < q < 1$
- $\lim_{x\to\infty} \sqrt{x^2 x} x = \frac{1}{2}$ (Lösungsansatz mit Taylorreihe ($\sqrt{1-x} = 1 + \frac{x}{2} + O(x^2)$): $\sqrt{x^2 - x} - x = x(\sqrt{1 - \frac{1}{x}} - 1) = x((1 + \frac{1}{2x} + O(\frac{1}{x^2})) - 1) =$ $\frac{1}{2} + O(\frac{1}{x}) \xrightarrow{n \to \infty} \frac{1}{2}$

$\lim_{x\to 0}$

- $\bullet \lim_{x \to 0} \frac{a^x 1}{x} = \ln a$
- $\lim_{x\to 0} \frac{\sin x}{x} = 1$
- $\lim_{x\to 0} \left| \frac{\cos x}{x} \right| = +\infty$ $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$
- $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$
- $\bullet \ \lim_{x \to 0} \frac{\lim_{x \to 0} \frac{x^2}{x}}{1} = 1$
- $\bullet \lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$ $\bullet \lim_{x \to 0} x^a \ln x = 0, \ a > 0$

20.11 Reihen

• $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert ("harmonische Reihe")

- $\sum_{n=1}^{\infty} \frac{(-1)^n}{1^n} = \ln \frac{1}{2}$ $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ konvergiert für $\alpha > 1$, divergiert für $\alpha \le 1$ $\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$ für |q| < 1 ("geometrische Reihe") $\sum_{n=0}^{\infty} (-1)^n q^n = \frac{1}{1-q}$ für |q| < 1 ("geometrische Reihe")
- $\bullet \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

20.12 Linienintegral

• 2. Art: $\int_{\gamma} \vec{f}(\vec{x}) d\vec{x} := \int_{a}^{b} \left\langle \vec{f}(\gamma(t)), \gamma(t)' \right\rangle dt$

• 1. Art: $\int_{\gamma} f ds := \int_{a}^{b} f(\gamma(t)) \| \gamma(t)' \|_{2} dt$

20.13 Kreuzprodukt

$$\vec{a}\times\vec{b}=\left(\begin{array}{c}a_1\\a_2\\a_3\end{array}\right)\times\left(\begin{array}{c}b_1\\b_2\\b_3\end{array}\right)=\left(\begin{array}{c}a_2b_3-a_3b_2\\a_3b_1-a_1b_3\\a_1b_2-a_2b_1\end{array}\right)$$

20.14 Exponent

- $\bullet \ a^n a^m = a^{n+m}$
- $\bullet \ (a^n)^m = a^{nm}$

- $(ab)^n = a^n b^n$ $(\frac{a}{b})^n = \frac{a^n}{b^n}$ $a^{-n} = \frac{1}{a^n}$
- $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$
- $a^{\frac{n}{m}} = (a^{\frac{1}{m}})^n = (a^n)^{\frac{1}{m}}$

20.15 Wurzel

- $\sqrt[n]{a} = a^{\frac{1}{n}}$
- $\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$ $\sqrt[m]{ab} = \sqrt[n]{a} \sqrt[n]{b}$ $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

20.16 Ungleichungen

- $a < b \Rightarrow a + c < b + c \text{ und } a c < b c$
- a < b und $c > 0 \Rightarrow \frac{a}{c} < \frac{b}{c}$ a < b und $c < 0 \Rightarrow \frac{a}{c} > \frac{b}{c}$
- Dreiecksungleichung für reelle Zahlen: $|a + b| \le |a| + |b|$
- Cauchy-Schwarz Ungleichung: $|x \cdot y| \leq ||x|| \cdot ||y||, \ x, y \in \mathbb{R}^n$

20.17 Logarithmen

- $y = \log_a x \Leftrightarrow x = a^y$
- $\log_a 1 = 0$
- $\log_a a^x = x$
- $a^{\log_a x} = x$
- $\bullet \ \log_a xy = \log_a x + \log_a y$
- $\log_a \frac{1}{x} = -\log_a x$ $\log_a x^r = r \log_a x$
- $\bullet \ \log_a x = \frac{\log_b x}{\log_b a}$
- $\bullet \ \log_a x = \frac{\ln x}{\ln a}$
- $\log_a(x+y) = \log_a x + \log_a(1+\frac{y}{x})$ $\log_a(x-y) = \log_a x + \log_a(1-\frac{y}{x})$

20.18 Exponentialfunktion

- $\bullet \ e^{-\inf} = 0$
- $e^0 = 1$
- $e^1 = e = 2.718281828$
- $e^{\inf} = \inf$
- $e^{a+bi} = e^a(\cos(b) + i\sin(b))$ (Euler Identität)
- $\bullet \ e^{b\ln(a)} = a^b$
- $e^{-\ln(b)} = \frac{1}{b}$

20.19 Komplexe Zahlen

- $z \in \mathbb{C} : z = a + b \cdot i$
- $\bar{z} = a b \cdot i$
- $|z|^2 = z \cdot \bar{z} = (a + b \cdot i) \cdot (a b \cdot i) = a^2 + b^2$

- (a+bi) + (c+di) = (a+c) + (b+d)i
- $\bullet (a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i$
- $\frac{a+bi}{c+di} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2} \cdot i$

20.20 Geometrische Körper

20.20.1 Ellipsoid

Hat die Form eines Rugbyballs. In kartesischen Koordinaten definert durch $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{a^2} - 1 = 0$.

20.21 Geometrie in 3D

Masse von speziellen Gebieten

$$\begin{array}{c|ccccc} \text{Zylinder} & V = \pi r^2 h & \text{Torus} & V = 2\pi^2 R r^2 \\ \text{Pyramide} & V = \frac{1}{3}Gh & S = 4\pi^2 R r \\ \text{Ellipsoid} & V = \frac{4\pi}{3}abc & \text{Kugel} & V = \frac{4\pi}{3}r^3 \\ \text{Kegel} & V = \frac{\pi}{3}(r_1^2 + r_2^2 + r_1 r_2) & S = 4\pi r^2 \end{array}$$

Rotationskörper (Volumen / Mantelfläche)

Rotation um die x Achse $V = \pi \int_a^b f(x)^2 dx$.

Rotation um die x Achse $M = 2\pi \int_a^b f(x) \sqrt{1 + f'(x)^2} dx$

Achtung: Für ganze Fläche muss Deckel dazu berechnet werden!

20.22 Trigonometrie

20.22.1 Kosinussatz

$$a^{2} = b^{2} + c^{2} - 2bc \cdot \cos(\alpha)$$

$$b^{2} = a^{2} + c^{2} - 2ac \cdot \cos(\beta)$$

$$c^{2} = a^{2} + b^{2} - 2ab \cdot \cos(\gamma)$$

$$b^2 = a^2 + c^2 - 2ac \cdot \cos(\beta)$$

20.23 Ausklammern

- $x^n y^n = (x y)(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \dots + xy^{n-2} + y^{n-1})$
- $x^n 1 = (x 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$

20.24 Aus Serien

- Ableitung von x^x kann man berechnen, indem man $x = e^{\log(x)}$ setzt. Also in diesem Fall $e^{\log(x^x)} = e^{x \log(x)}$ ableitet, was $e^{x \log(x)} (1 + \log(x))$ (Serie 10)
- Cauchy-Schwarz Ungleichung: $|x \cdot y| \leq ||x|| \cdot ||y||, \ x, y \in \mathbb{R}^n$
- Euler Identität (komplexe Zahlen): $e^{ix} = \cos(x) + i\sin(x)$
- arctan Identität: $\arctan(\frac{1}{x}) + \arctan(x) = \operatorname{sgn}(x) \frac{\pi}{2}, \quad x \neq 0$
- $\operatorname{sgn}(x) := \begin{cases} +1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$

20.25 Polynomdivision

Zu jedem Zeitpunkt gilt: Zähler: Nenner = Ergebnis, wobei der Zähler und das Ergebnis sich nach einem Schritt jeweils ändern.

- 1. Prüfe ob Grad des Zählers \geq Grad des Nenners ist.
 - i) Falls Ja:
 - i. Dividiere höchsten Grad vom Zähler durch höchsten Grad vom Nenner und addiere das Resultat zum Ergebnis.
 - ii. Multipliziere den neu hinzugefügten Summanden mit dem Nenner und notiere dieses Zwischenresultat. Danach berechne Zähler - Zwischenresultat und betrachte das als neuen Zähler. Starte wieder bei 1.

ii) Falls Nein:

Wir sind fertig. Wenn noch ein Rest übrig bleibt, muss dies dem Ergebnis noch hinzugefügt werden. Also Rest / Nenner noch dem Erebnis addieren werden.

Beispiel

$$(x^{3} + x - 43) : (x - 6) = x^{2} + 6x + 37$$

$$x^{3} - 6x^{2}$$

$$6x^{2} + x - 43$$

$$6x^{2} - 36x$$

$$37x - 43$$

$$37x - 222$$

$$179$$
Rest: 179

$$\frac{x^3 + x - 43}{x - 6} = x^2 + 6x + 37 + \frac{179}{x - 6}$$

21 Reihen Tabellen

	schnelles Fallen				langsames Fallen
wie schnell gehen die a_n gegen 0	exponentiell wie $q^n, q < 1$	polynominal wie $n^{-\alpha}, \alpha > 1$	höchstens	s wie $1/n$	gar nicht
Beispiele	$a_n = \frac{n^8}{2^n},$ $a_n = (\sqrt[n]{n} - 1)^n,$ $a_n = \frac{1}{n!},$ $a_n = \left(\frac{-1}{4}\right)^n$	$a_n = \frac{1}{n^2},$ $a_n = \frac{1}{n^{100}},$ $a_n = \frac{1}{(n + \ln n)^2},$ $a_n = \frac{20}{n^2 - 33}$	$a_n = \frac{(-1)^n}{\ln n},$ $a_n = \frac{(-1)^n}{n}$	$a_n = \frac{1}{\ln n},$ $a_n = \frac{1}{n + \ln n},$ $a_n = \frac{1}{n}$	$a_n = (-1)^n,$ $a_n = \sin n,$ $a_n = n^2$
passende Konvergenzkriterien	Wurzel- und Quotientenkriteri- um	Integral- und Verdich- tungskriterium	Leibniz-Kriterium		$a_n \not\to 0$
Vergleichs-, Majoranten-, Minorantenkriterium	Vergleichen mit q^n	Vergleichen mit $n^{-\alpha}$	kein Vergleich möglich	Vergleichen mit $\frac{1}{n}$	
Konvergenz-verhalten	absolute Kon	vergenz	keine absolute Konvergenz (einfach Konvergenz)	Dive	rgenz

direkte Kriterien					
Quotientenkriterium Gut für Reihen, die Fakultäten oder Glieder der Form a^n enthalten. Nicht auf Reihen anwend					
	in denen die Glieder nur wie eine Potenz von n fallen.				
Wurzelkriterium	Gut in Reihen, deren Glieder n-te Potenzen sind, zusammen mit der Stirlingformel oft auch bei				
	Fakultäten anwendbar.				
Leibnizkriterium	Nur für alternierende Reihen.				
Integralkriterium Anwendbar auf monotone Reihen.					
	direkte Kriterien				
Vergleichskriterium Ermöglicht es "Störterme" wegzulassen und so einfachere Reihen zu untersuchen					
Verdichtungskriterium Bei monotonen Reihen anwendbar. Für Reihen mit langsam fallenden Gliedern					
Majoranten- und Mi- Ähnlich wie Vergleichskriterium. Wird mit einer Reihe verglichen, deren Glieder stets klei					
norantenkriterium	grösser sind.				