Technische Universität Berlin

Fakultät II – Institut für Mathematik Gündel vom Hofe, Lutz WS 02/03 7.4.03

April – Klausur (Rechenteil) Analysis II für Ingenieure

$\ddot{\mathbf{U}}$ bitte ankreuzen	P	
Name: Vorname:		
MatrNr.: Studienga	ng:	
Übungsschein erworben im SS/WS		
Ich wünsche den Aushang des Klausurergebnisses unter Angabe meiner Matr.–Nr. (ohne Namen) am		
Schwarzen Brett und im WWW.	Unterschrift	
Neben einem handbeschriebenen A4 Blatt mit I zugelassen.	Notizen sind keine Hilfsmit	ttel
Es sind keine Taschenrechner und Handys zug	elassen.	
Die Lösungen sind in Reinschrift auf A4 Blätter schriebene Klausuren können nicht gewertet werd	0	ge-
Dieser Teil der Klausur umfasst die Rechenaufg vollständigen Rechenweg an.	gaben. Geben Sie immer o	den
Die Bearbeitungszeit beträgt eine Stunde .		
Die Gesamtklausur ist mit 32 von 80 Punkten beiden Teile der Klausur mindestens 10 von 40 Pu		der

1	2	3	4	5	$\Sigma_{ m R}$	$\Sigma_{ m V}$	$\Sigma_{ m ges}$

1. Aufgabe 7 Punkte

Stellen Sie die 2π -Fourierreihe der folgenden Funktion $f: [-\pi, \pi] \to \mathbb{R}$ auf:

$$f(x) = \begin{cases} 1, & x \in [0, 1], \\ 0, & \text{sonst.} \end{cases}$$

2. Aufgabe 8 Punkte

Gegeben sind die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = 2x^2 + 2xy + y^3 - x + 1$ und der Punkt P(0,1).

- a) Bestimmen Sie die Tangentialebene zur Fläche z = f(x, y) im Punkt P.
- b) Bestimmen Sie die Richtungsableitung von f in Richtung $\vec{a}=(1,1)$ im Punkt P.
- c) Bestimmen Sie $\Delta f(x, y)$.

3. Aufgabe 10 Punkte

- a) Skizzieren Sie die Niveaulinien der Funktion $f(x,y) = (x-3)^2 + y^2$ zu den Werten 0, 1, 2 und den Bereich $D = \{(x,y) : x^2 + y^2 \le 4\}$.
- b) Wo nimmt die Funktion f im Bereich D ihre minimalen und maximalen Werte an? Bestimmen Sie diese Werte.

4. Aufgabe 8 Punkte

Bestimmen Sie den Flächeninhalt des Flächenstücks

$$F := \{(x, y, z) \in \mathbb{R}^3 : z = 2x + 3y, -x^2 \le y \le x, \ 0 \le x \le 1\}.$$

5. Aufgabe 7 Punkte

Die Rotationsfläche F entstehe, indem man die in der xz-Ebene liegende Kurve $x=\sqrt{1-z},\ -1\le z\le 1,$ um die z-Achse rotieren lässt. Bestimmen Sie das Volumen der innerhalb von F eingeschlossenen Menge.