

Problem F Fix the Sequence

Time limit: 2 seconds Memory limit: 512 megabytes

Problem Description

Frank loves numbers and music! The best way to show his love is to compose music using numbers. One day, he received a "music sequence" from the fourth dimension. The music sequence is a sequence $[a_1, a_2, \ldots, a_n]$ of n integers where each value is between 0 and m (inclusive). He also received n positive integers b_1, b_2, \ldots, b_n .

Frank can apply a series of operations to the sequence. There are three types of them:

- inc(i): He changes the value of a_i to a_i+b_i . This operation is applicable only if $a_i+b_i \leq m$.
- dec(i): He changes the value of a_i to $a_i b_i$. This operation is applicable only if $a_i b_i \ge 0$.
- nop(i): He does nothing to a_i .

We define a sequence $[a_1, a_2, \ldots, a_n]$ to be beautiful if and only if there is an index j such that:

- 1 < j < n,
- $a_1 < a_2 < \cdots < a_j$, and
- $a_i > a_{i+1} \cdots > a_n$.

For example, the sequences [1, 2, 3, 0] and [2, 222, 22] are beautiful, while [1, 3, 3, 1] and [2, 22, 222] are not. Frank's goal is to change the sequence he received into a beautiful one. For every minute, he chooses and performs one of the operations inc(i), dec(i), or nop(i) for each $i \in [1, n]$, and stops as soon as the goal is reached.

Help Frank find out the minimum time required to make the sequence beautiful, or tell if it's impossible.

Input Format

The first line contains two integers n and m separated by a space.

The second line contains n space-separated integers a_1, a_2, \ldots, a_n .

The third line contains n space-separated integers b_1, b_2, \ldots, b_n .

Output Format

Print one integer indicating the minimum number of minutes required to make the sequence beautiful. If it is impossible to do so, print -1 instead.

Technical Specification

- $3 \le n \le 3 \times 10^5$
- $2 \le m \le 10^9$
- $0 \le a_i \le m \text{ for } i \in [1, n].$
- $1 \le b_i \le m \text{ for } i \in [1, n].$

Sample Input 1

Sample Output 1

5 10	2
1 2 1 2 4	
1 2 3 2 1	

Sample Input 2

Sample Output 2

3 222	-1
2 22 222	
200 201 200	

Hint

In the first sample test case, the original sequence is [1, 2, 1, 2, 4]. Frank can make it beautiful in 2 minutes:

- In the first minute, he applies nop(1), nop(2), inc(3), inc(4), and dec(5). The sequence becomes [1, 2, 4, 4, 3].
- In the second minute, he applies nop(1), nop(2), inc(3), nop(4), and nop(5). The sequence becomes [1, 2, 7, 4, 3] which is beautiful.

In the second sample test case, it is not possible to make the sequence beautiful using the operations.