EECS 127/227AT Optimization Models in Engineering Spring 2020

Homework 2

This homework is due Friday, February 7, 2020 at 23:00 (11pm). Self grades are due Friday, February 14, 2020 at 23:00 (11pm).

This version was compiled on 2020-01-31 17:14.

Questions marked practice will not be graded.

Submission Format: Your homework submission should consist of a single PDF file that contains all of your answers (any handwritten answers should be scanned) as well as your IPython notebook with solutions saved as a PDF.

1. Proof of the Fundamental Theorem of Linear Algebra

In this question, we will prove the fundamental theorem of linear algebra. For any $A \in \mathbb{R}^{m \times n}$, let $\mathcal{N}(A)$, $\mathcal{R}(A)$ and rank(A) denote the null space, range and rank of A respectively.

For any subspace, S with dimension, $\dim(S)$, let S^{\perp} denote its the subspace orthogonal to S.

The fundamental theorem of linear algebra states that,

$$\mathcal{N}(A) \oplus \mathcal{R}(A^{\top}) = \mathbb{R}^n.$$

The proof technique we employ will first show that,

$$\mathcal{N}(A) = (\mathcal{R}(A^{\top}))^{\perp}.$$

Then we will prove that we can find orthonormal vectors $\vec{e}_1, \vec{e}_2, \dots \vec{e}_n$ such that $\mathcal{N}(A) = \operatorname{span}(\vec{e}_1, \vec{e}_2, \dots, \vec{e}_l)$ and $\mathcal{R}(A^{\top}) = \operatorname{span}(\vec{e}_{l+1}, \vec{e}_{l+2}, \dots, \vec{e}_n)$. As a corollary we get the rank-nullity theorem:

$$\dim(\mathcal{N}(A)) + \operatorname{rank}(A) = n.$$

- (a) First, show that $\mathcal{N}(A) \subseteq (\mathcal{R}(A^{\top}))^{\perp}$. Hint: Consider \vec{u} in $\mathcal{N}(A), \vec{v} \in \mathcal{R}(A^{\top})$ and show that $\vec{u}^{\top}\vec{v} = 0$.
- (b) Now show that: $(\mathcal{R}(A^{\top}))^{\perp} \subseteq \mathcal{N}(A)$

Hint 1: Sometimes moving from symbols to words makes things clearer. Another way of stating what you want to prove is that any vector \vec{v} that is orthogonal to all vectors in the range of A^{\top} , must satisfy $A\vec{v} = 0$.

Hint 2: Consider $\vec{v} \in (\mathcal{R}(A^{\top}))^{\perp}$. What can you say about $\vec{v}^{\top}A^{\top}$?

- (c) Let $\dim(\mathcal{N}(A)) = l$ and let $\vec{e}_1, \ldots, \vec{e}_l$ be an orthonormal basis for $\mathcal{N}(A)$. Consider an extension of the basis to an orthonormal basis, $\vec{e}_1, \ldots, \vec{e}_n$ for \mathbb{R}^n . We will prove that $\vec{e}_{l+1}, \ldots, \vec{e}_n$ form a basis for $\mathcal{R}(A^{\top})$ and as a consequence, the dimension of $\mathcal{R}(A^{\top})$ is n-l.
 - i. Show that $\mathcal{R}(A^{\top})$ lies in the span of $\vec{e}_{l+1}, \ldots, \vec{e}_n$. To do this, first express any vector $\vec{u} \in \mathcal{R}(A^{\top})$ in terms of the basis vectors e_i and use $\mathcal{N}(A) = (\mathcal{R}(A^{\top}))^{\perp}$, which you proved in parts (a) and (b).

Hint: If a vector \vec{u} in a vector space is orthogonal to one of the basis vectors $\vec{e_i}$, what is the value of the coefficient α_i when writing $\vec{u} = \alpha_1 \vec{e_1} + \alpha_2 \vec{e_2} + \dots$?

- ii. From part (i) we know that $\mathcal{R}(A^{\top}) \subseteq \operatorname{span}(\vec{e}_{l+1}, \dots, \vec{e}_n)$, but we want something stronger. Show that in fact $\mathcal{R}(A^{\top}) = \operatorname{span}(\vec{e}_{l+1}, \dots, \vec{e}_n)$.
 - Hint 1: First show that the dimension of $\mathcal{R}(A^{\top})$ is the same as the dimension of the space spanned by the basis vectors $\vec{e}_{l+1}, \ldots, \vec{e}_n$, i.e., show $\dim(\mathcal{R}(A^{\top})) = n l$. You can show this via a contradiction: assume that $\dim(\mathcal{R}(A^{\top})) = k < n l$, and show that a vector $u \notin \mathcal{R}(A^{\top})$ and $u \in Span\{\vec{e}_{l+1}, \ldots, \vec{e}_n\}$ cannot exist.
 - Hint 2: Think of this in easily visualizable dimensions. Take n-l=3 and k=2.
 - Hint 3: You may use a fact that for two subspaces, S_1 and S_2 , if $S_1 \subseteq S_2$ and $\dim(S_1) = \dim(S_2)$ then $S_1 = S_2$.
- (d) Using part (c) argue why $\mathcal{N}(A) \oplus \mathcal{R}(A^{\top}) = \mathbb{R}^n$ and why the rank nullity theorem holds.

2. Eigenvectors of a symmetric matrix

Let $\vec{p}, \vec{q} \in \mathbb{R}^n$ be two linearly independent vectors, with unit norm $(\|\vec{p}\|_2 = \|\vec{q}\|_2 = 1)$. Define the symmetric matrix $A \doteq \vec{p}\vec{q}^{\top} + \vec{q}\vec{p}^{\top}$. In your derivations, it may be useful to use the notation $c \doteq \vec{p}^{\top}\vec{q}$.

- (a) Show that $\vec{p} + \vec{q}$ and $\vec{p} \vec{q}$ are eigenvectors of A, and determine the corresponding eigenvalues.
- (b) Determine the nullspace and rank of A.
- (c) Find an eigenvalue decomposition of A, in terms of \vec{p}, \vec{q} . Hint: use the previous two parts.
- (d) (Practice) Now consider general \vec{p}, \vec{q} that are not necessarily norm 1. Write A as a function \vec{p}, \vec{q} and their norms and the new eigenvalues as a function of \vec{p}, \vec{q} and their norms.

3. Norms

(a) Show that the following inequalities hold for any vector $\vec{x} \in \mathbb{R}^n$:

$$\frac{1}{\sqrt{n}} \|\vec{x}\|_{2} \le \|\vec{x}\|_{\infty} \le \|\vec{x}\|_{2} \le \|\vec{x}\|_{1} \le \sqrt{n} \|\vec{x}\|_{2} \le n \|\vec{x}\|_{\infty}.$$

As an aside: note that we can interpret different norms as different ways of computing distance between two points $\vec{x}, \vec{y} \in \mathbb{R}^2$. The ℓ_2 norm is the distance as the crow flies (i.e. point-to-point distance), the ℓ_1 norm, also known as the Manhattan distance is the distance you would have to cover if you were to navigate from \vec{x} to \vec{y} via a rectangular street grid, and the ℓ_{∞} norm is the maximum distance that you have to travel in either the north-south or the east-west direction.

(b) Show that for any non-zero vector x,

$$\operatorname{card}(\vec{x}) \ge \frac{\|\vec{x}\|_1^2}{\|\vec{x}\|_2^2},$$

where $\operatorname{card}(\vec{x})$ is the *cardinality* of the vector \vec{x} , defined as the number of non-zero elements in \vec{x} . Find all vectors \vec{x} for which the lower bound is attained.

4. Distinct Eigenvalues, Orthogonal Eigenspaces

Let $A \in \mathbb{S}^n$ (i.e. the set of $n \times n$ symmetric matrices) and $(\lambda_1, \vec{u}_1), (\lambda_2, \vec{u}_2), \lambda_1 \neq \lambda_2$ be distinct eigen-pairs of A. Show that $\langle \vec{u}_1, \vec{u}_2 \rangle = 0$, i.e eigenspaces corresponding to distinct eigenvalues are mutually orthogonal.

- **5. PSD Matrices** In this problem, we will analyze properties of PSD matrices. Assume $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix.
 - (a) Show that $\forall \vec{x} \in \mathbb{R}^n, \vec{x}^\top A \vec{x} \geq 0 \iff$ all eigenvalues of A are non-negative.
 - (b) Show that A having non-negative eigenvalues allows us to decompose $A = P^{\top}P$ where $P \in \mathbb{S}^n_+$ (i.e. the set of $n \times n$ positive semidefinite matrices).
 - (c) (Practice) Show that any matrix of the form $B = C^{\top}C \succeq 0$.
 - (d) If $A \succeq 0$, all diagonal entries of A are non-negative, $A_{ii} \geq 0$.

6. SVD Transformation

In this problem we will interpret the linear map corresponding to a matrix $A \in \mathbb{R}^{n \times n}$ by looking at its singular value decomposition, $A = UDV^{\top}$. Recall that here $U, D, V \in \mathbb{R}^{n \times n}$ and U, V are orthonormal(orthogonal) matrices while D is a diagonal matrix. We will first look at how V^{\top}, D and U each separately transform the unit circle $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ and then look at their effect as a whole. This problem has an associated jupyter notebook, "svd_transformation.ipynb" that contains several parts (b,c,d,e) of the problem. These sub-parts can be answered in the notebook itself in the space provided and can be submitted as a pdf using the 'Download as pdf' feature that jupyter notebook supports.

(a) Show that $V^{\top}\vec{x}$ represents \vec{x} in the basis defined by the columns of V. Recall: $V^{\top}V = I$.

For rest of the problem we restrict ourselves to the case where $A \in \mathbb{R}^{2 \times 2}$ and move to the Jupyter notebook.

7. Homework process

Whom did you work with on this homework? List the names and SIDs of your group members.