CS 310 - Winter 2000 - Midterm Exam (solutions)

SOLUTIONS

1. (Logic)

(a) Prove the following logical equivalence by using truth tables:

$$p \veebar (q \veebar r) \Leftrightarrow (p \veebar q) \veebar r$$
,

where " $\underline{\vee}$ " represents exclusive or.

(b) Find the negation of the following quantified statement, leaving the answer in prenex normal form and the statement inside in disjunctive normal form:

$$\forall x ((x > 0) \land \exists y (y < x)).$$

Solution:

(a) The truth table is the following:

p	q	r	$p \veebar q$	$(p \veebar q) \veebar r$	$q \stackrel{\vee}{\underline{\;\;}} r$	$p \veebar (q \veebar r)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	0	0	0
1	0	0	1	1	0	1
1	0	1	1	0	1	0
1	1	0	0	0	1	0
1	1	1	0	1	0	1

Since $p \vee (q \vee r)$ and $(p \vee q) \vee r$ have the same truth table, they are logically equivalent.

(b)

$$\neg \forall x \left((x > 0) \land \exists y \left(y < x \right) \right) \Leftrightarrow \neg \forall x \exists y \left((x > 0) \land \left(y < x \right) \right) \Leftrightarrow \\ \exists x \forall y \ \neg ((x > 0) \land (y < x)) \Leftrightarrow \exists x \forall y \ (\neg (x > 0) \lor \neg (y < x)) \Leftrightarrow \\ \exists x \forall y \ \left((x \le 0) \lor (y \ge x) \right).$$

- **2.** (Sets) Assume that the universe of discourse is $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Let A, B, C be the following sets: $A = \{2x \mid x \in U\}, B = \{3x \mid x \in U\}, C = \{x \in U \mid \exists y \in U, y = x + 2\}.$
 - 1. List the elements of A, B and C.
 - 2. Find:

$$A \cup B =$$

$$A \cap C =$$

$$B \cap C =$$

$$(A \cap C) \triangle (B \cap C) =$$

$$A \triangle B =$$

$$(A \triangle B) \cap C =$$

Solution:

1. Since U is the universe of discourse, all the sets involved must be subsets of U:

$$A =$$
(elements of U of the form $2x$ for $x \in U$) = $\{2, 4, 6, 8\}$

$$B = \text{(elements of } U \text{ of the form } 3x \text{ for } x \in U) = \{3, 6, 9\}$$

$$C = \{1, 2, 3, 4, 5, 6, 7\}$$

(I will also accept the answers $A = \{2, 4, 6, 8, 10, 12, 14, 16, 18\}$, $B = \{3, 6, 9, 12, 15, 18, 21, 24, 27\}$, and the corresponding ones for the second part of the problem.)

2. $A \cup B = \{2, 3, 4, 6, 8, 9\}$

$$A\cap C=\{2,4,6\}$$

$$B\cap C=\{3,6\}$$

$$(A \cap C) \triangle (B \cap C) = \{2, 3, 4\}$$

$$A \triangle B = \{2, 3, 4, 8, 9\}$$

$$(A \triangle B) \cap C = \{2,3,4\}$$

- **3.** (Relations) Let A be the set $A = \{x \in \mathbb{Z} \mid 2 \le x \le 15\}$. Draw the Hasse diagram and find the largest, least, maximal and minimal elements of the following posets, if they exist:
 - 1. (A, |), where "|" represents the relation of divisibility.
 - 2. (A, \leq) , where " \leq " represents the usual number inequality.

Solution:

	largest	least	maximal	minimal
(A,)	does not exist	does not exist	8, 9, 10, 11, 12, 13, 14, 15	2, 3, 5, 7, 11, 13
(A, \leq)	15	2	15	2

4. (Functions) Let $f, g : \mathbb{R} \to \mathbb{R}$ be the following functions: f(x) = 2x, g(x) = x+1. Find $g \circ f$, $f \circ g$, f^{-1} , g^{-1} , $g^{-1} \circ f^{-1}$, $f^{-1} \circ g^{-1}$, $(g \circ f)^{-1}$ and $(f \circ g)^{-1}$.

Solution:

$$(g \circ f)(x) = g(f(x)) = f(x) + 1 = 2x + 1.$$

$$(f \circ g)(x) = f(g(x)) = 2g(x) = 2(x+1) = 2x + 2.$$

$$(f^{-1})(x) = x/2.$$

$$(g^{-1})(x) = x - 1.$$

$$(g^{-1} \circ f^{-1})(x) = g^{-1}(f^{-1}(x)) = f^{-1}(x) - 1 = \frac{x}{2} - 1.$$

$$(f^{-1} \circ g^{-1})(x) = f^{-1}(g^{-1}(x)) = \frac{g^{-1}(x)}{2} = \frac{x-1}{2}.$$

$$(g \circ f)^{-1}(x) = (f^{-1} \circ g^{-1})(x) = \frac{x-1}{2}.$$

$$(f \circ g)^{-1}(x) = (g^{-1} \circ f^{-1})(x) = \frac{x}{2} - 1.$$

5. (Operations) Find the properties (commutative, associative, existence of identity element, existence of inverse) verified by the following operation on \mathbb{Z} :

$$a * b = a + b + ab$$
.

Justify your answer.

Solution:

1. It is commutative:

$$a * b = a + b + ab,$$

$$b * a = b + a + ba.$$

hence a * b = b * a.

2. It is associative:

$$a*(b*c) = a*(b+c+bc) = a+(b+c+bc) + a(b+c+bc)$$

$$= a+b+c+bc+ab+ac+abc,$$

$$(a*b)*c = (a+b+ab)*c = (a+b+ab)+c+(a+b+ab)c$$

$$= a+b+ab+c+ac+bc+abc,$$

hence a * (b * c) = (a * b) * c.

3. The identity element is 0:

$$a * 0 = 0 * a = a + 0 + 0 \cdot 0 = a$$
.

4. There is no inverse element in general:

$$a * a' = a + a' + aa' = 0 \implies a' = -\frac{a}{1+a},$$

hence the only invertible elements are 0 and -2.

- **6.** (Counting) Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$
 - (a) How many subsets of A contain exactly 2 even numbers and 3 odd numbers?
 - (b) How many permutations of size 5 of the elements of A contain exactly 2 even numbers and 3 odd numbers?

Solution:

- (a) Set A has 4 even numbers, and we can select 2 even numbers from it in $\binom{4}{2} = 6$ ways. On the other hand there are 5 odd numbers in A, and we can select 3 of them in $\binom{5}{3} = 10$ ways. By the product rule we can select 2 even numbers and 3 odd numbers in $6 \times 10 = 60$ ways.
- (b) We can generate the desired permutations by selecting 2 even numbers and 3 odd numbers, which can be done in 60 ways, then permuting those 5 elements in 5! = 120 ways. By the product rule, the answer is $60 \cdot 120 = 7200$.