第八章 多元函数微分法及其应用

第一节 多元函数的极限与连续

1. 填空

(3) 设
$$z = \sqrt{y} + f(\sqrt{x} - 1)$$
, 若当 $y = 1$ 时 $z = x$, 则函数 $f(x) = \underline{x^2 + 2x}$, $z = \sqrt{y} + x - 1$.

(4) 函数
$$u = \arccos \frac{z^2}{\sqrt{x^2 + y^2}}$$
 的定义域是 $\underbrace{\{(x, y, z) | x^2 + y^2 - z^2 \ge 0, x^2 + y^2 \ne 0\}}$.

(5) 函数
$$z = \frac{\sqrt{4x - y^2}}{\ln(1 - x^2 - y^2)}$$
 的定义域是

$$\{(x,y) | 0 < x^2 + y^2 < 1, x \ge \frac{y^2}{4} \}$$
,此定义域

可用平面图形表示为(图 8.1)

(6) 函数
$$z = \ln(1 - x^2 - y^2)$$
 在 $x^2 + y^2 = 1$ 是间断的.

图 8.1

(2)
$$\Rightarrow y = u, \frac{x+y}{x} = v, \exists m \neq x = \frac{u}{v-1}, y = u, \exists \xi$$

$$f(u,v) = \frac{u}{v-1} + u^2, \quad f(x,y) = x^2 + \frac{x}{y-1}.$$

(3) 于式
$$z = \sqrt{y} + f(\sqrt{x} - 1)$$
 中令 $y = 1$ 得 $x = 1 + f(\sqrt{x} - 1)$.

再令 $\sqrt{x}-1=t$,即 $x=(t+1)^2$,于是

$$f(t) = (t+1)^{2} - 1 = t^{2} + 2t$$

$$f(x) = x^{2} + 2x .$$

$$z = \sqrt{y} + f(\sqrt{x} - 1) = \sqrt{y} + x - 1.$$

故

从而

(4)、(5)的解略去.

- (6) 函数的间断点是函数的定义域的聚点中那些函数不连续的点, 而函数 $u = \ln(1-x^2-y^2)$ 的定义域是开区域 $x^2+y^2 < 1$, 因此其间断点为 $x^2+y^2 = 1$, 而不是 $x^2+y^2 \ge 1$.
 - 2. 求极限

(1)
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{e^{x^2y^2}(x^2+y^2)};$$
 (2)
$$\lim_{(x,y)\to(\infty,a)} (1+\frac{1}{x})^{\frac{x^2}{x+y}}.$$

$$\text{ (1)} \quad \lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{e^{x^2y^2}(x^2+y^2)} = \lim_{(x,y)\to(0,0)} \frac{2\sin^2\frac{x^2+y^2}{2}}{x^2+y^2}$$

$$= \lim_{(x,y)\to(0,0)} \sin\frac{x^2+y^2}{2} \cdot \frac{\sin\frac{x^2+y^2}{2}}{\frac{x^2+y^2}{2}} = 0 \times 1 = 0.$$

(2)
$$\lim_{(x,y)\to(\infty,a)} \left(1 + \frac{1}{x}\right)^{\frac{x^2}{x+y}} = \lim_{(x,y)\to(\infty,a)} \left[\left(1 + \frac{1}{x}\right)^x\right]^{\frac{x}{x+y}}$$

而 $\lim_{(x,y)\to(\infty,a)} \frac{x}{x+y} = 1$,故原极限= e.

3. 证明
$$\lim_{(x,y)\to(\infty,\infty)} \frac{x^2+y^2}{x^4+y^4} = 0$$
.

$$\mathbf{iE} \quad 0 \le \frac{x^2 + y^2}{x^4 + y^4} \le \frac{x^2 + y^2}{2x^2y^2} = \frac{1}{2} \left(\frac{1}{y^2} + \frac{1}{x^2} \right), \ \overrightarrow{\text{III}} \quad \lim_{(x,y) \to (\infty,\infty)} \frac{1}{2} \left(\frac{1}{y^2} + \frac{1}{x^2} \right) = 0,$$

故原极限=0

4. 证明极限
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2y^2+(x-y)^2}$$
 不存在.

证 由于
$$\lim_{\substack{(x,y)\to(0,0)\\y=x}} \frac{x^2y^2}{x^2y^2+(x-y)^2} = \lim_{x\to 0} \frac{x^4}{x^4} = 1,$$

$$\overline{\text{mi}} \quad \lim_{\substack{(x,y)\to(0,0)\\y=2x}} \frac{x^2y^2}{x^2y^2 + (x-y)^2} = \lim_{x\to 0} \frac{4x^4}{4x^4 + x^2} = \lim_{x\to 0} \frac{4x^2}{4x^2 + 1} = 0.$$

故极限 $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2y^2 + (x-y)^2}$ 不存在.

5. 讨论函数
$$z = \begin{cases} \frac{x^2 y}{x^4 + y^2}, & x^4 + y^2 \neq 0 \\ 0, & x^4 + y^2 = 0 \end{cases}$$
 的连续性.

解 因为

$$\lim_{\substack{(x,y)\to(0,0)\\ (x,y)\to (0,0)}} \frac{xy}{x^4+y^2} = \lim_{x\to 0} \frac{kx^4}{x^4+k^2x^4} = \frac{k^2}{1+k^2}.$$

此值随 k 值不同而不同, 故极限 $\lim_{(x,y)\to(0,0)} z$ 不存在, 从而函数 z 在 (0,0) 点不连续.

在除 (0,0) 点外的区域上, 函数 $z = \frac{xy}{x^4 + y^2}$ 是初等函数, 故在其定义区域上连续.

注意 常犯的错误一是只讨论了函数在(0,0)点的连续性,没讨论函数在定义域内其它点处的连续性;二是求(0,0)点的极限时,出现了如下:

$$\lim_{\substack{(x,y)\to(0,0)\\y=kx}} \frac{xy}{x^4+y^2} = \lim_{\substack{(x,y)\to(0,0)\\y=kx}} \frac{xy}{x^4+y^2}$$
 (错误的式子)

事实上, 记号" $\lim_{(x,y)\to(0,0)}$ "表示点(x,y)以任意的方式无限接近(0,0)点, 而记号

" $\lim_{\substack{(x,y)\to(0,0)\\y=kx}}$ "表示点(x,y)只能沿直线 y=kx 无限接近点(0,0)点,这两者意义显然是不同的.

第二节 多元函数的偏导数

1. 填空

(1)
$$z = \ln \tan \frac{x}{y}$$
, $\lim \frac{\partial z}{\partial x} = \frac{2}{y} \csc \frac{2x}{y}$, $\frac{\partial z}{\partial y} = -\frac{2x}{y^2} \csc \frac{2x}{y}$.

(2)
$$z = (1 + xy)^y$$
, $\iiint \frac{\partial z}{\partial x} = \frac{y^2(1 + xy)^{y-1}}{2}$, $\frac{\partial z}{\partial y} = (1 + xy)^y [\ln(1 + xy) + \frac{xy}{1 + xy}]$.

(3)
$$u = \sqrt[z]{\frac{x}{y}}$$
, $\iiint \frac{\partial u}{\partial x} = \frac{1}{yz} \left(\frac{x}{y}\right)^{\frac{1}{z}-1}$, $\frac{\partial u}{\partial y} = -\frac{1}{yz} \left(\frac{x}{y}\right)^{\frac{1}{z}}$, $\frac{\partial u}{\partial z} = -\frac{1}{z^2} \left(\frac{x}{y}\right)^{\frac{1}{z}} \ln \frac{x}{y}$.

(4)
$$u = x^{y^z}$$
, $\iiint \frac{\partial u}{\partial z} = y^z x^{y^z} \ln x \ln y$.

(5)
$$z = (x + e^y)^x$$
, $\mathbb{I} \frac{\partial z}{\partial x}\Big|_{(1,0)} = \underline{2 \ln 2 + 1}$.

(6) 设
$$f(x,t) = \int_{x-at}^{x+at} \varphi(u) du$$
, (φ 是连续函数),则

$$\frac{\partial f}{\partial x} = \varphi(x+at) - \varphi(x-at), \quad \frac{\partial f}{\partial t} = \underline{a[\varphi(x+at) + \varphi(x-at)]}.$$

(7) 设
$$u = \sqrt{\sin^2 x + \sin^2 y + \sin^2 z}$$
,则

$$\frac{\partial u}{\partial y} = \frac{\sin 2y}{2\sqrt{\sin^2 x + \sin^2 y + \sin^2 z}}, \ u_y(0, \frac{\pi}{4}, 0) = \frac{1}{\sqrt{2}}.$$

A (1)
$$\frac{\partial z}{\partial x} = \frac{1}{\tan \frac{x}{y}} \cdot \sec^2 \frac{x}{y} \cdot \frac{1}{y} = \frac{2}{y} \csc \frac{2x}{y},$$

$$\frac{\partial z}{\partial y} = \frac{1}{\tan \frac{x}{y}} \cdot \sec^2 \frac{x}{y} \cdot \left(-\frac{x}{y^2}\right) = -\frac{2x}{y^2} \csc \frac{2x}{y}.$$

(2) 求 $\frac{\partial z}{\partial x}$ 时,应当用幂函数的导数公式,得

$$\frac{\partial z}{\partial x} = y(1+xy)^{y-1} \cdot y = y^2(1+xy)^{y-1}.$$

求 $\frac{\partial z}{\partial y}$ 时, 把 x 暂时看做常数, 这时, z 是关于 y 的幂指函数, 所以

$$\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} \left[e^{y \ln(1+xy)} \right] = e^{y \ln(1+xy)} \left[\ln(1+xy) + \frac{xy}{1+xy} \right]$$
$$= (1+xy)^y \left[\ln(1+xy) + \frac{xy}{1+xy} \right].$$

(3)
$$\frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \left[\left(\frac{x}{y} \right)^{\frac{1}{z}} \right] = \frac{1}{z} \left(\frac{x}{y} \right)^{\frac{1}{z} - 1} \cdot \frac{1}{y} = \frac{1}{yz} \left(\frac{x}{y} \right)^{\frac{1}{z} - 1}.$$

$$\frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left[\left(\frac{x}{y} \right)^{\frac{1}{z}} \right] = \frac{1}{z} \left(\frac{x}{y} \right)^{\frac{1}{z} - 1} \cdot \left(-\frac{x}{y^2} \right) = -\frac{x}{y^2 z} \left(\frac{x}{y} \right)^{\frac{1}{z} - 1} = -\frac{1}{yz} \left(\frac{x}{y} \right)^{\frac{1}{z}}.$$

$$\frac{\partial u}{\partial z} = \frac{\partial}{\partial z} \left[\left(\frac{x}{y} \right)^{\frac{1}{z}} \right] = \left(\frac{x}{y} \right)^{\frac{1}{z}} \ln \frac{x}{y} \cdot \left(-\frac{1}{z^2} \right) = -\frac{1}{z^2} \left(\frac{x}{y} \right)^{\frac{1}{z}} \ln \frac{x}{y}.$$

(4)
$$\frac{\partial u}{\partial z} = \frac{\partial}{\partial z} [x^{y^z}] = x^{y^z} \ln x \cdot y^z \ln y = y^z x^{y^z} \ln x \ln y.$$

注意 常见的错误是遗漏了步骤: $\frac{\partial}{\partial z}(y^z)$, 而得到错误结果: $\frac{\partial u}{\partial z} = x^{y^z} \ln x$.

(5) 法1 因为
$$z = (x + e^y)^x$$
,则 $\ln z = x \ln(x + e^y)$,

所以
$$\frac{\partial z}{\partial x} = \ln(x + e^y) + x \cdot \frac{1}{x + e^y},$$
所以
$$\frac{\partial z}{\partial x} = (x + e^y)^x \left[\ln(x + e^y) + \frac{x}{x + e^y}\right].$$
从而
$$\frac{\partial z}{\partial x}\Big|_{(1,0)} = 2\ln 2 + 1$$

法 2 因为
$$z = (x + e^y)^x$$
, 所以 $z(x,0) = (x + e^0)^x = (x + 1)^x$

$$\frac{\mathrm{d}z}{\mathrm{d}x} = [(x+1)^x]' = [e^{\ln(x+1)^x}]' = [e^{x\ln(x+1)}]' = e^{x\ln(x+1)}[\ln(x+1) + \frac{x}{x+1}]$$
$$= (x+1)^x [\ln(x+1) + \frac{x}{x+1}],$$

从而
$$\frac{\partial z}{\partial x}\Big|_{(1,0)} = \frac{\mathrm{d}z}{\mathrm{d}x}\Big|_{x=1} = 2\ln 2 + 1.$$

(6) 求 $\frac{\partial f}{\partial x}$ 时, 暂时将t看做常量, 因而f是积分上限、下限的函数, 由公式:

可得
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \mathrm{d}t = f(x)$$
可得
$$\frac{\partial f}{\partial x} = \varphi(x+at) - \varphi(x-at)$$
同理
$$\frac{\partial f}{\partial t} = \varphi(x+at) \cdot a - \varphi(x-at) \cdot (-a)$$

$$= a[\varphi(x+at) + \varphi(x-at)].$$

- (7) 求解过程略.
- 2. 证明函数 $f(x,y) = e^{\sqrt{x^2+y^4}}$ 在 (0,0) 处连续, $f_y(0,0) = 0$, 而 $f_x(0,0)$ 不存在.

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} e^{\sqrt{x^2+y^4}} = e^0 = 1,$$

而 $f(0,0) = e^0 = 1$, 故 $f(x,y) = e^{\sqrt{x^2 + y^4}}$ 在 (0,0) 处连续.

$$f_{y}(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{e^{(\Delta y)^{2}} - 1}{\Delta y} = \lim_{\Delta y \to 0} \frac{(\Delta y)^{2}}{\Delta y} = 0.$$

$$f_x(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{e^{\sqrt{(\Delta x)^2}} - 1}{\Delta x} = \lim_{\Delta x \to 0} \frac{e^{|\Delta x|} - 1}{\Delta x},$$

$$\overline{\text{mi}} \qquad \lim_{\Delta x \to 0^+} \frac{e^{|\Delta x|} - 1}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{e^{\Delta x} - 1}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{\Delta x}{\Delta x} = 1.$$

$$\lim_{\Delta x \to 0^{-}} \frac{e^{|\Delta x|} - 1}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{e^{-\Delta x} - 1}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{-\Delta x}{\Delta x} = -1.$$

所以 $f_x(0,0)$ 不存在.

3. 设
$$z = e^{-(\frac{1}{x} + \frac{1}{y})}$$
, 求证: $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = 2z$.

i.E.
$$\frac{\partial z}{\partial x} = e^{-(\frac{1}{x} + \frac{1}{y})} \cdot \frac{1}{x^2} = \frac{z}{x^2}, \ \frac{\partial z}{\partial y} = e^{-(\frac{1}{x} + \frac{1}{y})} \cdot \frac{1}{y^2} = \frac{z}{y^2},$$

$$x^{2} \frac{\partial z}{\partial x} + y^{2} \frac{\partial z}{\partial y} = x^{2} \cdot \frac{z}{x^{2}} + y^{2} \cdot \frac{z}{y^{2}} = 2z.$$

4. 求下列函数的二阶偏导数 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$, $\frac{\partial^2 z}{\partial x \partial y}$.

(1)
$$z = x^4 + y^3 - 4x^2y$$
; (2) $z = \arctan \frac{y}{x}$.

AP (1)
$$\frac{\partial z}{\partial x} = 4x^3 - 8xy$$
, $\frac{\partial^2 z}{\partial x^2} = 12x^2 - 8y$, $\frac{\partial^2 z}{\partial x \partial y} = -8x$, $\frac{\partial z}{\partial y} = 3y^2 - 4x^2$, $\frac{\partial^2 z}{\partial y^2} = 6y$.

(2)
$$\frac{\partial z}{\partial x} = \frac{1}{1 + (\frac{x}{y})^2} \cdot (-\frac{y}{x^2}) = -\frac{y}{x^2 + y^2},$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{y \cdot 2x}{(x^2 + y^2)^2} = \frac{2xy}{(x^2 + y^2)^2},$$

$$\frac{\partial^2 z}{\partial x \partial y} = -\frac{x^2 + y^2 - y \cdot 2y}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2},$$

$$\frac{\partial z}{\partial y} = \frac{1}{1 + (\frac{y}{x})^2} \cdot \frac{1}{x} = \frac{x}{x^2 + y^2},$$

$$\frac{\partial^2 z}{\partial y^2} = \frac{-x \cdot 2y}{(x^2 + y^2)^2} = \frac{-2xy}{(x^2 + y^2)^2}.$$

第三节 多元函数的全微分

1. 填空

(3) 设
$$u = (xy)^z$$
, 则 $du = yz(xy)^{z-1}dx + xz(xy)^{z-1}dy + (xy)^z \ln(xy)dz$.

$$\mathbb{R} \qquad (1) \quad \frac{\partial z}{\partial x} = \frac{-y \cdot \frac{2x}{2\sqrt{x^2 + y^2}}}{(\sqrt{x^2 + y^2})^2} = \frac{-xy}{(x^2 + y^2)^{3/2}},$$

$$\frac{\partial z}{\partial y} = \frac{\sqrt{x^2 + y^2} - y \cdot \frac{2y}{2\sqrt{x^2 + y^2}}}{(\sqrt{x^2 + y^2})^2} = \frac{x^2}{(x^2 + y^2)^{3/2}}.$$

故
$$dz = \frac{-xydx + x^2dy}{(x^2 + y^2)^{3/2}}, dz\Big|_{(1,0)} = dy.$$

$$(2) \quad \frac{\partial u}{\partial s} = \frac{(s-t)-(s+t)}{(s-t)^2} = \frac{-2t}{(s-t)^2},$$

$$\frac{\partial u}{\partial t} = \frac{(s-t)-(s+t)\cdot(-1)}{(s-t)^2} = \frac{2s}{(s-t)^2},$$

故
$$du = \frac{-2tds + 2sdt}{(s-t)^2}.$$

(3)
$$\frac{\partial u}{\partial x} = z(xy)^{z-1} \cdot y = yz(xy)^{z-1},$$

$$\frac{\partial u}{\partial y} = z(xy)^{z-1} \cdot x = xz(xy)^{z-1},$$

$$\frac{\partial u}{\partial z} = (xy)^z \ln(xy),$$

故
$$du = yz(xy)^{z-1}dx + xz(xy)^{z-1}dy + (xy)^{z} \ln(xy)dz$$
.

2. 求函数
$$z = \frac{y}{x}$$
 当 $x = 2$, $y = 1$, $\Delta x = 0.1$, $\Delta y = -0.2$ 时的全增量和全微分.

解 全增量
$$\Delta z = \frac{y + \Delta y}{x + \Delta x} - \frac{y}{x} = \frac{x\Delta y - y\Delta x}{x(x + \Delta x)}$$

全微分
$$dz = \frac{\partial}{\partial x} (\frac{y}{x}) \Delta x + \frac{\partial}{\partial y} (\frac{y}{x}) \Delta y = -\frac{y}{x^2} \Delta x + \frac{1}{x} \Delta y$$
,

当
$$x = 2$$
, $y = 1$, $\Delta x = 0.1$, $\Delta y = -0.2$ 时,

$$\Delta z = \frac{-0.4 - 0.1}{2 \times 2.1} = -\frac{5}{42} \approx -0.119$$
.

$$dz = -\frac{1}{4} \times 0.1 + \frac{1}{2} \times (-0.2) = -0.125$$
.

3. 求 $u(x, y, z) = x^y y^z$ 的全微分.

M
$$\frac{\partial u}{\partial x} = yx^{y-1}y^z$$
, $\frac{\partial u}{\partial y} = y^z x^y \ln x + zx^y y^{z-1}$, $\frac{\partial u}{\partial z} = x^y y^z \ln y$,

故 $du = yx^{y-1}y^z dx + (y^z x^y \ln x + zx^y y^{z-1}) dy + x^y y^z \ln y dz$

$$= x^{y} y^{z} \left[\frac{y}{x} dx + \left(\frac{z}{y} + \ln x \right) dy + \ln y dz \right].$$

4. 设
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{x^2 + y^2}, x^2 + y^2 \neq 0 \\ 0, x^2 + y^2 = 0 \end{cases}$$
, 问在(0,0) 点处:

(1) 偏导数是否存在? (2) 偏导数是否连续? (3) 是否可微? 均说明理由.

$$\mathbf{p}(1) \qquad f_x(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(\Delta x)^2 \sin \frac{1}{(\Delta x)^2} - 0}{\Delta x} = 0$$

$$f_{y}(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{(\Delta y)^{2} \sin \frac{1}{(\Delta y)^{2}} - 0}{\Delta y} = 0$$

故 f(x,y) 在 (0,0) 处偏导数存在.

(2)
$$\frac{\partial f}{\partial x} = \begin{cases} 2x \sin \frac{1}{x^2 + y^2} - \frac{2x}{x^2 + y^2} \cos \frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$

$$\frac{\partial f}{\partial y} = \begin{cases} 2y\sin\frac{1}{x^2 + y^2} - \frac{2y}{x^2 + y^2}\cos\frac{1}{x^2 + y^2}, x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0 \end{cases}$$

因为 $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial x}$ 与 $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial y}$ 不存在, 故偏导数在 (0,0) 处不连续.

(3)
$$\Delta z = [(\Delta x)^2 + (\Delta y)^2] \sin \frac{1}{(\Delta x)^2 + (\Delta y)^2}, \ f_x(0,0) = f_y(0,0) = 0,$$

从而
$$\lim_{\rho \to 0} \frac{\Delta z - [f_x(0,0)\Delta x + f_y(0,0)\Delta y]}{\rho} = \lim_{\rho \to 0} \frac{\rho^2 \sin \frac{1}{\rho^2}}{\rho} = 0,$$

其中 $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$,所以f(x, y)在(0, 0)处可微,且dz = 0.

此题说明二元函数的偏导数在一点不连续时,函数在该点仍可能可微,偏导数连续是可微的充分条件,而非充分必要条件.

第四节 多元复合函数的求导法则

1.
$$z = f(x^y, y^x)$$
, $\stackrel{\partial}{x} \frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

$$\mathbf{A} = \frac{\partial z}{\partial x} = yx^{y-1}f_1' + y^x \ln yf_2', \ \frac{\partial z}{\partial y} = x^y \ln xf_1' + xy^{x-1}f_2'.$$

M
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} = 2u \cdot 2 + 2v \cdot 3 = 4u + 6v = 26x - 8y,$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} = 2u \cdot 1 + 2v \cdot (-2) = 2u - 4v = 10y - 8x.$$

3. 设
$$z = \frac{y}{f(x^2 - y^2)}$$
, 其中 $f(u)$ 为可导函数, 验证: $\frac{1}{x} \frac{\partial z}{\partial x} + \frac{1}{y} \frac{\partial z}{\partial y} = \frac{z}{y^2}$.

i.e.
$$\frac{\partial z}{\partial x} = \frac{-yf'(x^2 - y^2) \cdot 2x}{f^2(x^2 - y^2)} = -\frac{2xyf'}{f^2},$$

$$\frac{\partial z}{\partial y} = \frac{f(x^2 - y^2) - yf'(x^2 - y^2) \cdot (-2y)}{f^2(x^2 - y^2)} = \frac{f + 2y^2f'}{f^2},$$

故

$$\frac{1}{x}\frac{\partial z}{\partial x} + \frac{1}{y}\frac{\partial z}{\partial y} = -\frac{2yf'}{f^2} + \frac{f + 2y^2f'}{yf^2} = \frac{-2y^2f' + f + 2y^2f'}{yf^2} = \frac{1}{yf}$$
$$= \frac{1}{y^2} \cdot \frac{y}{f} = \frac{z}{y^2}.$$

注意 求偏导数 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial z}{\partial y}$ 时,常常会丢掉因子 $f'(x^2-y^2)$,而得到错误结果:

$$\frac{\partial z}{\partial x} = -\frac{2xy}{f^2}, \frac{\partial z}{\partial y} = \frac{f + 2y^2}{f^2}.$$

4. 设 $u = x^y$, 而 $x = \varphi(t)$, $y = \psi(t)$ 都是可微函数, 求 $\frac{du}{dt}$.

$$\mathbf{\mathcal{H}} \quad \frac{\mathrm{d}u}{\mathrm{d}t} = \frac{\partial u}{\partial x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial u}{\partial y} \cdot \frac{\mathrm{d}y}{\mathrm{d}t} = yx^{y-1} \cdot \varphi'(t) + x^y \ln x \cdot \psi'(t)$$

$$= \psi(t)\varphi(t)^{\psi(t)-1}\varphi'(t) + \varphi(t)^{\psi'(t)} \ln \varphi(t)\psi'(t)$$

$$= \varphi'(t)\psi(t)\varphi(t)^{\psi(t)-1} + \psi'(t)\varphi(t)^{\psi(t)} \ln \varphi(t).$$

注意 常见错误是遗漏了复合步骤,因而丢失了 $\frac{\mathrm{d}x}{\mathrm{d}t} = \varphi'(t)$ 与 $\frac{\mathrm{d}y}{\mathrm{d}t} = \psi'(t)$,得到 $\frac{\mathrm{d}u}{\mathrm{d}t} = \psi(t)\varphi(t)^{\psi(t)-1} + \varphi(t)^{\psi(t)}\ln\varphi(t).$

5. 设
$$z = xy + xF(u)$$
,而 $u = \frac{y}{x}$, $F(u)$ 为可导函数,证明 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z + xy$.

$$\mathbf{iE} \qquad \frac{\partial z}{\partial x} = y + F(u) + xF'(u) \cdot \left(-\frac{y}{x^2}\right) = y + F(u) - \frac{y}{x}F'(u).$$

$$\frac{\partial z}{\partial y} = x + xF'(u) \cdot \frac{1}{x} = x + F'(u).$$

于是

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = xy + xF(u) - yF'(u) + xy + yF'(u)$$
$$= xy + xF(u) + xy = z + xy.$$

6. 设 $z = f(\sin x, \cos y, e^{x+y})$, 其中 f 具有二阶连续偏导数, 求 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$.

$$\frac{\partial z}{\partial x} = f_1' \cos x + f_3' e^{x+y},$$

$$\frac{\partial^2 z}{\partial x^2} = (f_{11}'' \cos x + f_{13}'' e^{x+y}) \cos x - f_1' \sin x + (f_{31}'' \cos x + f_{33}'' e^{x+y}) e^{x+y} + f_3' e^{x+y}$$

$$= e^{x+y} f_3' - f_1' \sin x + f_{11}'' \cos^2 x + 2e^{x+y} f_{13}'' \cos x + e^{2(x+y)} f_{33}'',$$

$$\frac{\partial^2 z}{\partial x \partial y} = \cos x (f_{12}''(-\sin y) + f_{13}'' e^{x+y}) + e^{x+y} (f_{32}''(-\sin y) + f_{33}'' e^{x+y}) + f_3' e^{x+y}$$

$$= e^{x+y} f_3' - f_{12}'' \cos x \sin y + f_{13}'' e^{x+y} \cos x - e^{x+y} f_{32}'' \sin y + e^{2(x+y)} f_{33}''.$$

- 7. 设 $z = f(xy, \frac{x}{y}) + g(\frac{y}{x})$, 其中 f 具有二阶连续偏导数, g 具有二阶连续导数, 求 $\frac{\partial^2 z}{\partial x \partial y}.$
- **解** $g(\frac{y}{x})$ 为由一个中间变量构成的二元复合函数,对中间变量所求的应是导数,而不是偏导数.

$$\frac{\partial z}{\partial x} = yf_1' + \frac{1}{y}f_2' - \frac{y}{x^2}g',$$

$$\frac{\partial^2 z}{\partial x \partial y} = f_1' + y(xf_{11}'' - \frac{x}{y^2}f_{12}'') - \frac{1}{y^2}f_2' + \frac{1}{y}(xf_{21}'' - \frac{x}{y^2}f_{22}'') - \frac{1}{x^2}g' - \frac{y}{x^2}g'' \frac{1}{x}$$

$$= f_1' - \frac{1}{y^2}f_2' + xyf_{11}'' - \frac{1}{x^2}g' - \frac{y}{x^3}g'' - \frac{x}{y^3}f_{22}''.$$

8. 设 $u = f(\frac{x}{y}, \frac{y}{z})$, 其中 f 具有一阶连续偏导数, 求 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$.

$$\mathbf{A}\mathbf{Z} = f_1' \cdot \frac{1}{y},$$

$$\frac{\partial u}{\partial y} = f_1' \cdot (-\frac{x}{y^2}) + f_2' \cdot \frac{1}{z} = -\frac{x}{y^2} f_1' + \frac{1}{z} f_2'.$$

$$\frac{\partial u}{\partial z} = f_2' \cdot (-\frac{y}{z^2}) = -\frac{y}{z^2} f_2'.$$

9. 如果 $F(x, y) = y \int_{y}^{x} e^{-t^{2}} dt$, 求 F_{xy} , F_{yy} .

$$F_x = ye^{-x^2}, F_{xy} = e^{-x^2}.$$

$$F_y = \int_0^x e^{-t^2} dt - y \cdot e^{-y^2}, F_{yy} = -e^{-y^2} - e^{-y^2} - ye^{-y^2} \cdot (-2y) = 2(y^2 - 1)e^{-y^2}$$

1.
$$\text{if } \frac{x}{z} = \ln \frac{z}{y}, \text{ if } \frac{\partial z}{\partial x} \not \text{ if } \frac{\partial z}{\partial y}.$$

解 方程两端同时关于x求偏导数,

$$\frac{1}{z} - \frac{x}{z^2} \frac{\partial z}{\partial x} = \frac{y}{z} \cdot \frac{1}{y} \cdot \frac{\partial z}{\partial x},$$

解得 $\frac{\partial z}{\partial x} = \frac{z}{x+z}$. 方程两端同时关于 y 求偏导数得

$$-\frac{x}{z^2} \cdot \frac{\partial z}{\partial y} = \frac{y}{z} \left(-\frac{z}{y^2} + \frac{1}{y} \frac{\partial z}{\partial y} \right),$$

解得
$$\frac{\partial z}{\partial y} = \frac{z^2}{y(x+z)}$$
.

2. 设 $\mathbf{e}^z - xyz = \mathbf{0}$. (1) 用隐函数求导公式求 $\frac{\partial z}{\partial x}$; (2) 用复合函数求偏导数的方法求 $\frac{\partial z}{\partial x}$

(3) 利用全微分形式不变性求出 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial z}{\partial y}$.

解 (1)
$$\diamondsuit F(x, y, z) = e^z - xyz$$
.

$$F_x = -yz$$
, $F_z = e^z - xy$,

故

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{yz}{e^z - xy}.$$

(2) 方程 $e^z - xyz = 0$ 两端同时关于 x 求偏导数,此时,将 z 看做 x,y 的函数: z = z(x,y),于是

$$e^z \cdot \frac{\partial z}{\partial x} - yz - xy \cdot \frac{\partial z}{\partial x} = 0,$$

解得

$$\frac{\partial z}{\partial x} = \frac{yz}{e^z - xy}.$$

(3) 先将x, y, z均看作自变量,方程 $e^z - xyz = 0$ 两端同时取全微分得

$$d(e^x - xyz) = 0$$
, $\mathbb{H} de^z - d(xyz) = 0$,

$$e^z dz - yz dx - xz dy - xy dz = 0.$$

这时, 再将z看作x, y的函数, 解出z的全微分dz:

$$dz = \frac{yz}{e^z - xy} dx + \frac{xz}{e^z - xy} dy,$$

于是

$$\frac{\partial z}{\partial x} = \frac{yz}{e^z - xy}, \frac{\partial z}{\partial y} = \frac{xz}{e^z - xy}.$$

3. 设 $\Phi(u,v)$ 具有连续偏导数,证明由方程 $\Phi(cx-az,cy-bz)=0$ 所确定的函数 z=f(x,y) 满足 $a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial y}=c$.

证
$$\Phi_x = \Phi_u \cdot c = c\Phi_u$$
, $\Phi_y = c\Phi_y$,

$$\Phi_z = \Phi_u \cdot (-a) + \Phi_v \cdot (-b) = -a\Phi_u - b\Phi_v,$$

于是
$$\frac{\partial z}{\partial x} = -\frac{\Phi_x}{\Phi_z} = \frac{c\Phi_u}{a\Phi_u + b\Phi_v}, \frac{\partial z}{\partial y} = -\frac{\Phi_y}{\Phi_z} = \frac{c\Phi_v}{a\Phi_u + b\Phi_v},$$

从而

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = \frac{ac\Phi_u + bc\Phi_v}{a\Phi_u + b\Phi_v} = c.$$

4.
$$\sqrt[3]{x}$$
 $\begin{cases} x + y + z = 0, \\ x^2 + y^2 + z^2 = 1, \end{cases}$ $\frac{dx}{dz}$, $\frac{dy}{dz}$.

解 对每一个方程的两端分别对z 求导,注意变量x 与y 均为z 的函数,移项后得

$$\begin{cases} \frac{dx}{dz} + \frac{dy}{dz} = -1, \\ x\frac{dx}{dz} + y\frac{dy}{dz} = -z, \end{cases}$$

用克莱姆法则解得 $D = \begin{vmatrix} 1 & 1 \\ x & y \end{vmatrix} = y - x \neq 0$

$$\frac{\mathrm{d}x}{\mathrm{d}z} = \frac{\begin{vmatrix} -1 & 1 \\ -z & y \end{vmatrix}}{y - x} = \frac{-y + z}{y - x} = \frac{z - y}{y - x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\begin{vmatrix} 1 & -1 \\ x & -z \end{vmatrix}}{y - x} = \frac{-z + x}{y - x} = \frac{x - z}{y - x}$$

解 这里变量 x 与 y 是自变量, 而变量 u 与 v 均为 x 与 y 的函数, 对每一个方程的两端分别对 x 求偏导数, 移项得:

$$\begin{cases} (e^{u} + \sin v) \frac{\partial u}{\partial x} + u \cos v \frac{\partial v}{\partial x} = 1, \\ (e^{u} - \cos v) \frac{\partial u}{\partial x} + u \sin v \frac{\partial v}{\partial x} = 0, \end{cases}$$

$$D = \begin{vmatrix} e^{u} + \sin v & u \cos v \\ e^{u} - \cos v & u \sin v \end{vmatrix} = u[e^{u}(\sin v - \cos v) + 1],$$

$$\frac{\partial u}{\partial x} = \frac{\begin{vmatrix} 1 & u\cos v \\ 0 & u\sin v \end{vmatrix}}{u[e^{u}(\sin v - \cos v) + 1]} = \frac{\sin v}{e^{u}(\sin v - \cos v) + 1},$$

$$\frac{\partial v}{\partial x} = \frac{\begin{vmatrix} e^u + \sin v & 1 \\ e^u - \cos v & 0 \end{vmatrix}}{u[e^u(\sin v - \cos v) + 1]} = \frac{\cos v - e^u}{u[e^u(\sin v - \cos v) + 1]}.$$

解 用全微分形式不变性求dz,方程两端同时取全微分,得

$$F_1' \cdot d(\frac{x}{z}) + F_2' \cdot d(\frac{y}{z}) = 0,$$

$$F_1' \cdot (\frac{1}{z} dx - \frac{x}{z^2} dz) + F_2' (\frac{1}{z} dy - \frac{y}{z^2} dz) = 0$$
,

从而解出dz,即得

$$dz = z \frac{F_1'dx + F_2'dy}{xF_1' + yF_2'}.$$

第六节 多元函数微分学的应用

1. 求螺旋线 $x = a \cos \theta$, $y = a \sin \theta$, $z = b\theta$ 在点 (a, 0, 0) 处的切线及法平面方程.

解
$$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -a\sin\theta$$
, $\frac{\mathrm{d}y}{\mathrm{d}\theta} = a\cos\theta$, $\frac{\mathrm{d}z}{\mathrm{d}\theta} = b$, 与点 $(a,0,0)$ 对应的参数 $\theta = 0$, 故曲线上

(a,0,0) 点的切向量为

$$T = \{0, a, b\}.$$

于是, 切线方程为

$$\frac{x-a}{0} = \frac{y}{a} = \frac{z}{b}, \text{ } \exists I \begin{cases} x = a, \\ by - az = 0. \end{cases}$$

法平面方程为

$$ay + bz = 0$$
.

2. 求曲线 $y^2 = 2mx$, $z^2 = m - x$ 在点 (1, -2, 1) 处的切线及法平面方程.

解 因为 (1,-2,1) 是曲线上的点,将 x=1,y=-2 代入方程 $y^2=2mx$ 可得 m=2,所给曲线为 $y^2=4x,z^2=2-x$.求点 (1,-2,1) 处的切向量有两种方法:

 $\mathbf{k1}$ 每一个方程两端均关于x 求导数,得

$$\begin{cases} 2y\frac{dy}{dx} = 4, \\ 2z\frac{dz}{dx} = -1. \end{cases}$$

在点 (1,-2,1) 处, $\frac{dy}{dx} = -1$, $\frac{dz}{dx} = -\frac{1}{2}$,故切向量为

$$T = \{1, -1, -\frac{1}{2}\},$$

法 2 曲面 $y^2 = 4x$, 即 $4x - y^2 = 0$ 上点 (1, -2, 1) 处的法向量为

$$n_1 = \{4, -2y, 0\} \Big|_{(1,-2,1)} = \{4, 4, 0\},$$

同理, 曲面 $z^2 = 2 - x$ 上点 (1,-2,1) 处的法向量为 $\mathbf{n}_2 = (1,0,2)$. 于是曲线上点 (1,-2,1) 处的切向量

$$T = n_1 \times n_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 4 & 0 \\ 1 & 0 & 2 \end{vmatrix} = 8\mathbf{i} - 8\mathbf{j} - 4\mathbf{k} = 8\{1, -1, -\frac{1}{2}\}$$

于是所求切线方程为

$$\frac{x-1}{1} = \frac{y+2}{-1} = \frac{z-1}{-\frac{1}{2}}, \quad \text{II} \quad \frac{x-1}{2} = \frac{y+2}{-2} = \frac{z-1}{-1},$$

法平面方程为 $(x-1)-(y+2)-\frac{1}{2}(z-1)=0$,即 2x-2y-z-5=0.

注意 常见错误是没有利用已知条件将 m 的值确定出来.

3. 求曲线
$$\begin{cases} x^2 + y^2 + z^2 - 3x = 0 \\ 2x - 3y + 5z - 4 = 0 \end{cases}$$
 在 (1,1,1) 处的切线及法平面方程.

解 法 1 把 x 看作参数,则 y 和 z 是由方程组 $\begin{cases} x^2 + y^2 + z^2 - 3x = 0\\ 2x - 3y + 5z - 4 = 0 \end{cases}$ 所确定的 x 的函数, 曲线的切向量为 $T = \{1, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\mathrm{d}z}{\mathrm{d}x}\}$.

方程组对x求导得

$$\begin{cases} 2x + 2y \frac{dy}{dx} + 2z \frac{dz}{dx} - 3 = 0 \\ 2 - 3 \frac{dy}{dx} + 5 \frac{dz}{dx} = 0 \end{cases}$$

将点(1,1,1)代入得

$$\begin{cases} 2 + 2\frac{dy}{dx} + 2\frac{dz}{dx} - 3 = 0 \\ 2 - 3\frac{dy}{dx} + 5\frac{dz}{dx} = 0 \end{cases}$$

解得 $\frac{dy}{dx} = \frac{9}{16}$, $\frac{dz}{dx} = -\frac{1}{16}$, 于是曲线在点 (1,1,1) 处的切向量为

$$T = \{1, \frac{9}{16}, -\frac{1}{16}\} = \frac{1}{16}\{16, 9, -1\},$$

所求切线与法平面分别为

$$\frac{x-1}{16} = \frac{y-1}{9} = \frac{z-1}{-1}$$
,

$$16(x-1)+9(y-1)-(z-1)=0$$
, 即 $16x+9y-z-24=0$.

法 2 构成曲线的曲面 $x^2 + y^2 + z^2 - 3x = 0$ 与 2x - 3y + 5z - 4 = 0 上点 (1,1,1) 处的法向量分别为

$$\mathbf{n}_1 = \{2x - 3, 2y, 2z\}\Big|_{(1,1,1)} = (-1, 2, 2)$$

 $\mathbf{n}_2 = \{2, -3, 5\},$

曲线上点(1,1,1)处的切向量为 $T = n_1 \times n_2 = \{16,9,-1\}$. 下面解法同法 1.

4. 在椭球面 $x^2 + \frac{y^2}{4} + \frac{z^2}{4} = 1$ 上求一点, 使该点处的法线与三条坐标轴正方向成等角.

解 依题意法线发现与三条坐标轴正向成等角,故有所求点处法向量的三个坐标应相等,又点在椭球面上,应满足椭球面方程,上述条件联立,即可得所求点,令

$$F(x, y, z) = x^2 + \frac{y^2}{4} + \frac{z^2}{4} - 1$$

设所求点为 $M(x_0, y_0, z_0)$,则在点M的法向量为

$$\mathbf{n} = \left\{ F_x, F_y, F_z \right\}_M = \left\{ 2x_0, \frac{y_0}{2}, \frac{z_0}{2} \right\}$$

因为法线与三条坐标轴正向成等角,故有

$$2x_0 = \frac{y_0}{2} = \frac{z_0}{2} \tag{1}$$

又点M 在椭球面上,满足

$$x_0^2 + \frac{y_0^2}{4} + \frac{z_0^2}{4} = 1 \tag{2}$$

将方程 (1), (2) 联立, 得两组解为: $(\frac{1}{3}, \frac{4}{3}, \frac{4}{3})$ 及 $(-\frac{1}{3}, -\frac{4}{3}, -\frac{4}{3})$

上述两点处的法线与三条坐标轴正向成等角.

5. 在曲面 z = xy 上求一点, 使该点处的法线垂直于平面 x + 3y + z + 9 = 0, 并写出该法线方程.

解 设点 (x, y, z) 为曲面 z = xy 上任一点,该点处的法向量为 $n = \{y, x, -1\}$. 平面

x+3y+z+9=0 的法向量 $n_1=\{1,3,1\}$. 欲使法线垂直于平面, 应有 n/n_1 ,

故 $\frac{y}{1} = \frac{x}{3} = \frac{-1}{1}$,

由此可得 x=-3, y=-1, 将 x=-3, y=-1代入曲面方程 z=xy, 可得 z=3, 故所求点为 (-3,-1,3).

6. 证明: 曲面 $z = xe^{\frac{y}{x}}$ 上任一点处的切平面均过坐标原点.

证 欲证一平面过原点, 只须证该平面的一般式方程 Ax + By + Cz + D = 0 中的 D = 0 即可. 令 $F(x, y, z) = xe^{\frac{y}{x}} - z$, 则

$$F_x = e^{\frac{y}{x}} - \frac{y}{x}e^{\frac{y}{x}}, F_y = e^{\frac{y}{x}}, F_z = -1,$$

曲面上任一点 $M(x_0, y_0, z_0)$ 处的切平面方程为

$$\left(e^{\frac{y_0}{x_0}} - \frac{y_0}{x_0}e^{\frac{y_0}{x_0}}\right)(x - x_0) + e^{\frac{y_0}{x_0}}(y - y_0) - (z - z_0) = 0 ,$$

化为一般式为

$$(e^{\frac{y_0}{x_0}} - \frac{y_0}{x_0}e^{\frac{y_0}{x_0}})x + e^{\frac{y_0}{x_0}}y - z + [-x_0e^{\frac{y_0}{x_0}} + y_0e^{\frac{y_0}{x_0}} - y_0e^{\frac{y_0}{x_0}} + z_0] = 0 ,$$

 $(e^{\frac{y_0}{x_0}} - \frac{y_0}{x_0}e^{\frac{y_0}{x_0}})x + e^{\frac{y_0}{x_0}}y - z = 0.$

所以曲面上任一点处的切平面均过坐标原点.

7. 证明曲面 $x^{\frac{2}{3}} + y^{\frac{2}{3}} + z^{\frac{2}{3}} = 4$ 上任一点处的切平面在各坐标轴上的截距的平方和为一常数.

证 设点 $M(x_0, y_0, z_0)$ 为曲面上任一点,则 $x_0^{\frac{2}{3}} + y_0^{\frac{2}{3}} + z_0^{\frac{2}{3}} = 4$

该点处的法向量为 $n = \left\{ x_0^{-\frac{1}{3}}, y_0^{-\frac{1}{3}}, z_0^{-\frac{1}{3}} \right\},$

该点处的切平面方程为

$$x_0^{-\frac{1}{3}}(x-x_0) + y_0^{-\frac{1}{3}}(y-y_0) + z_0^{-\frac{1}{3}}(z-z_0) = 0$$

$$x_0^{-\frac{1}{3}}x + y_0^{-\frac{1}{3}}y + z_0^{-\frac{1}{3}}z = x_0^{\frac{2}{3}} + y_0^{\frac{2}{3}} + z_0^{\frac{2}{3}} = 4$$

截距式方程为

$$\frac{x}{4\sqrt[3]{x_0}} + \frac{y}{4\sqrt[3]{y_0}} + \frac{z}{4\sqrt[3]{z_0}} = 1$$

截距的平方和为

$$16x_0^{\frac{2}{3}} + 16y_0^{\frac{2}{3}} + 16z_0^{\frac{2}{3}} = 16(x_0^{\frac{2}{3}} + y_0^{\frac{2}{3}} + z_0^{\frac{2}{3}}) = 64.$$

第七节 方向导数与梯度

1. 求函数 u = xyz 在点 (5,1,2) 处沿从点 (5,1,2) 到点 (9,4,14) 的方向导数.

解 函数 u = xyz 在平面上处处可微, 故

$$\frac{\partial u}{\partial l} = \frac{\partial u}{\partial x} \cos a + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma.$$

$$\frac{\partial u}{\partial x} = yz$$
, $\frac{\partial u}{\partial y} = xz$, $\frac{\partial u}{\partial z} = xy$,

在点 (5,1,2) 处, $\frac{\partial u}{\partial x}$ = 2, $\frac{\partial u}{\partial y}$ = 10, $\frac{\partial u}{\partial z}$ = 5.

$$\mathbb{Z} \mathbf{l} = \{9-5, 4-1, 14-2\} = \{4, 3, 12\}, \quad |\mathbf{l}| = \sqrt{4^2 + 3^2 + 12^2} = 13,$$

故

$$\cos \alpha = \frac{4}{13}$$
, $\cos \beta = \frac{3}{13}$, $\cos \gamma = \frac{12}{13}$,

$$\frac{\partial u}{\partial l} = 2 \times \frac{4}{13} + 10 \times \frac{3}{13} + 5 \times \frac{12}{13} = \frac{98}{13}$$
.

2. 求函数 u = x + y + z 在球面 $x^2 + y^2 + z^2 = 3$ 上点 $M_0(1,1,1)$ 处沿球面在这点的外法线方向的方向导数.

解 令 $F(x, y, z) = x^2 + y^2 + z^2 - 3$,则 $F_x = 2x$, $F_y = 2y$, $F_z = 2z$.在点 (1, 1, 1) 处,法线方向为

$$n = \{2, 2, 2\}$$
.

对于封闭曲面来讲,其法线方向有内外之分,由里指向外的方向叫外法线方向。点 M_0 为

第一卦限的点, 由图 8.2 可知, 该点处的外法 线方向n与三个坐标轴的夹角均为锐角, 故n的三个方向数均应为正数: $n = \{2,2,2\}$. 于是

$$\cos\alpha = \cos\beta = \cos\gamma = \frac{1}{\sqrt{3}}$$

$$\mathcal{L} \qquad \frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial u}{\partial z} = 1,$$

故
$$\frac{\partial u}{\partial n} = 1 \times \frac{1}{\sqrt{3}} + 1 \times \frac{1}{\sqrt{3}} + 1 \times \frac{1}{\sqrt{3}} = \sqrt{3}.$$

3. 设 x 轴正向到方向 L 的转角为 φ , 求函数 $f(x,y) = x^2 - xy + y^2$ 在点 (1,1) 沿方向 L 的方向导数, 并分别确定转角 φ , 使该导数有: (1) 最大值; (2) 最小值; (3) 等于 0.

解
$$\frac{\partial f}{\partial x} = 2x - y$$
, $\frac{\partial f}{\partial y} = 2y - x$, 在点 (1,1) 处, $\frac{\partial f}{\partial x} = 1$, $\frac{\partial f}{\partial y} = 1$. 又函数

 $f(x,y) = x^2 - xy + y^2$ 在点(1,1)处可微,

$$\frac{\partial f}{\partial L} = 1 \times \cos \varphi + 1 \times \sin \varphi = \sqrt{2} \sin(\varphi + \frac{\pi}{4}) ,$$

于是,当 $\varphi = \frac{\pi}{4}$ 时,方向导数有最大值 $\sqrt{2}$;当 $\varphi = \frac{5\pi}{4}$ 时,方向导数有最小值 $-\sqrt{2}$;当 $\varphi = \frac{3\pi}{4}$ 或 $\varphi = \frac{7\pi}{4}$ 时,方向导数等于 0.

4. 求函数 $u = x^2 + y^2 + z^2$ 在曲线 x = t, $y = t^2$, $z = t^2$ 上点(1, 1, 1)处, 沿曲线在该点的 切线正方向(对应于 t 增大的方向)的方向导数.

解
$$\frac{\partial u}{\partial x} = 2x$$
, $\frac{\partial u}{\partial y} = 2y$, $\frac{\partial u}{\partial z} = 2z$, 在点(1, 1, 1)处, $\frac{\partial u}{\partial x} = 2$, $\frac{\partial u}{\partial y} = 2$, $\frac{\partial u}{\partial z} = 2$.

曲线上点(1,1,1)对应的参数值为t=1,该点的切线正方向为

$$l = \{1, 2t, 3t^2\} \Big|_{t=1} = \{1, 2, 3\},$$

于是
$$\cos \alpha = \frac{1}{\sqrt{14}}$$
, $\cos \beta = \frac{2}{\sqrt{14}}$, $\cos \gamma = \frac{3}{\sqrt{14}}$, 所求方向导数为

$$\frac{\partial u}{\partial l} = 2 \times \frac{1}{\sqrt{14}} + 2 \times \frac{2}{\sqrt{14}} + 2 \times \frac{3}{\sqrt{14}} = \frac{12}{\sqrt{14}} = \frac{6}{7}\sqrt{14}$$
.

5. 设 $f(x, y, z) = x^2 + 2y^2 + 3z^2 + xy + 3x - 2y - 6z$, 求 **grad**f(0,0,0) 及 **grad**f(1,1,1), 并求函数在 (0,0,0) 点处的方向导数的最大值.

解
$$\frac{\partial f}{\partial x} = 2x + y + 3$$
, $\frac{\partial f}{\partial y} = 4y + x - 2$, $\frac{\partial f}{\partial z} = 6z - 6$, 在点 $(0,0,0)$ 处, $\frac{\partial f}{\partial x} = 3$, $\frac{\partial f}{\partial y} = -2$, $\frac{\partial f}{\partial z} = -6$,

故 **grad** $f(0,0,0) = \{3,-2,-6\}$, 在点(1,1,1)处

$$\frac{\partial f}{\partial x} = 6$$
, $\frac{\partial f}{\partial y} = 3$, $\frac{\partial f}{\partial z} = 0$,

故 **grad** f (1,1,1) = {6,3,0}

又函数在某点的方向导数的最大值,等于函数在该点的梯度的模,故函数在(0,0,0)点 处的方向导数的最大值为

$$\sqrt{3^2 + (-2)^2 + (-6)^2} = 7.$$

第八节 多元函数的极值与最优化问题

- 1. 设函数 z = f(x, y) 的全微分为 dz = xdx + ydy, 证明:
- (1) 点(0,0) 是 f(x,y) 的连续点; (2) 点(0,0) 是 f(x,y) 的极小值点.

证 (1) 先复习一个结论: "如果函数 z = f(x, y) 在点 (x, y) 可微分, 则这函数在该点必定连续." 本题中已知 z = f(x, y) 的全微分为 dz = xdx + ydy,它说明 z = f(x, y) 在点 (x, y) 可微分, 从而在点 (0, 0) 也可微分, 所以 z = f(x, y) 在 (0, 0) 必连续, 也就是点 (0, 0) 是 f(x, y) 的连续点.

(2) 因为
$$dz = xdx + ydy$$
, 则 $\frac{\partial z}{\partial x} = x$, $\frac{\partial z}{\partial y} = y$,

从丽
$$\frac{\partial^2 z}{\partial x^2} = 1$$
, $\frac{\partial^2 z}{\partial x \partial y} = 0$, $\frac{\partial^2 z}{\partial y^2} = 1$

在点(0,0)处: $A=1,B=0,C=1,\Box=AC-B^2=1>0$,又A>0,所以点(0,0)是 z=f(x,y)的一个极小值点.

2. 求函数 $f(x, y) = e^{2x}(x + y^2 + 2y)$ 的极值.

$$\begin{cases} f_x(x,y) = e^{2x}(2x+2y^2+4y+1) = 0\\ f_y(x,y) = 2e^{2x}(y+1) = 0 \end{cases},$$

可得驻点 $(\frac{1}{2},-1)$.

$$f_{xx}(x, y) = 4e^{2x}(x + y^2 + 2y + 1)$$
. $f_{xy}(x, y) = 4e^{2x}(y + 1)$.
 $f_{yy}(x, y) = 2e^{2x}$.

在点 $(\frac{1}{2},-1)$ 处, $AC-B^2=2e\cdot 2e-0=4e^2>0$,又 A=2e>0,故函数在点 $(\frac{1}{2},-1)$ 处取得极小值

$$f(\frac{1}{2},-1) = -\frac{e}{2}$$
.

3. 求平面 $\frac{x}{3} + \frac{y}{4} + \frac{z}{5} = 1$ 和柱面 $x^2 + y^2 = 1$ 的交线上与xOy平面距离最短的点.

解1 设 (x,y,z) 为交线上任意一点,则它到 xOy 平面的距离为 d=|z|. 为运算简单起见,我们转化为求 $D=d^2=z^2$ 的最小值.显然,约束条件有两个: $\frac{x}{3}+\frac{y}{4}+\frac{z}{5}=1$ 和 $x^2+y^2=1$. 故令

$$F(x, y, z) = z^{2} + \lambda \left(\frac{x}{3} + \frac{y}{4} + \frac{z}{5} - 1\right) + \mu(x^{2} + y^{2} - 1).$$

令

$$\begin{cases} \frac{\lambda}{3} + 2\mu x = 0\\ \frac{\lambda}{4} + 2\mu y = 0\\ \frac{\lambda}{5} + 2z = 0\\ \frac{x}{3} + \frac{y}{4} + \frac{z}{5} = 1\\ x^2 + y^2 = 1 \end{cases}$$

由前两式推得 $y = \frac{3}{4}x$,代入 $x^2 + y^2 = 1$ 得 $x = \pm \frac{4}{5}$.

因平面 $\frac{x}{3} + \frac{y}{4} + \frac{z}{5} = 1$ 在三坐标轴上的截距分别为 3, 4, 5, 所以在第一卦限内的点 P 到 xOy 平面的距离较短, 故取 $x = \frac{4}{5}$, 于是 $y = \frac{3}{4}x = \frac{3}{5}$, 再代入第三个式子可得 $z = \frac{35}{12}$, 所以

交线上与 xOy 面距离最短的点为 $(\frac{4}{5}, \frac{3}{5}, \frac{35}{12})$.

解 2 设 (x, y, z) 为交线上任意一点,则它到 xOy 平面的距离为 d = |z|. 由于点在平面上 $\frac{x}{3} + \frac{y}{4} + \frac{z}{5} = 1$,故 $z = 5(1 - \frac{x}{3} - \frac{y}{4})$,于是 $d = 5 \left| 1 - \frac{x}{3} - \frac{y}{4} \right|$,为运算简单起见,我们转化为 求 $D = (1 - \frac{x}{3} - \frac{y}{4})^2$ 在约束条件 $x^2 + y^2 = 1$ 下的极值问题,令

$$F(x, y) = (1 - \frac{x}{3} - \frac{y}{4})^2 + \lambda(x^2 + y^2 - 1)$$

$$\begin{cases} -\frac{2}{3}(1 - \frac{x}{3} - \frac{y}{4}) + 2\lambda x = 0\\ -\frac{1}{2}(1 - \frac{x}{3} - \frac{y}{4}) + 2\lambda y = 0\\ x^2 + y^2 = 1 \end{cases}$$

由前两式得 $y = \frac{3}{4}x$,代入最后一式得到 $x = \frac{4}{5}$, $y = \frac{3}{5}$,于是 $z = \frac{35}{12}$,交线上到 xOy 面

距离最短的点为 $(\frac{4}{5}, \frac{3}{5}, \frac{35}{12})$.

4. 在球面 $x^2 + y^2 + z^2 = \mathbb{R}^2$ 位于第一卦限的部分求一点 P, 使该点处的切平面在三个坐标轴上的截距的平方和最小.

解 设 P(x, y, z) (x > 0, y > 0, z > 0) 为球面上第一卦限内的一点,则该点处的法向量为 $n = 2\{x, y, z\}$,该点处的切平面为

$$2x(X - x) + 2y(Y - y) + 2z(Z - z) = 0$$

$$\mathbb{H} \qquad xX + yY + zZ = x^2 + y^2 + z^2$$

由点 P(x, y, z) 为球面上的点,故 $x^2 + y^2 + z^2 = R^2$,切平面方程可化间为

$$xX + yY + zZ = R^2$$
, \mathbb{R}
$$\frac{X}{R^2} + \frac{Y}{R^2} + \frac{Z}{R^2} = 1.$$

切平面在三个坐标轴上截距的平方和为

$$D = R^4 \left(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} \right).$$

问题是求函数 $D = R^4 \left(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} \right)$ 在约束条件 $x^2 + y^2 + z^2 = R^2$ 下的最小值, 作拉格朗日函数

$$F(x, y, z) = \frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} + \lambda(x^2 + y^2 + z^2 - R^2) \quad (x > 0, y > 0, z > 0)$$

$$\begin{cases}
-\frac{2}{x^3} + 2\lambda x = 0 \\
-\frac{2}{y^3} + 2\lambda y = 0 \\
-\frac{2}{z^3} + 2\lambda z = 0 \\
x^2 + y^2 + z^2 = R^2
\end{cases}$$

由前三式可推得 $x^2=y^2=z^2$,代入最后一式可得 $x=\frac{R}{\sqrt{3}}$, $y=\frac{R}{\sqrt{3}}$, $z=\frac{R}{\sqrt{3}}$. 由问题的实际意义知点 $P(\frac{R}{\sqrt{3}},\frac{R}{\sqrt{3}},\frac{R}{\sqrt{3}})$ 即为所求.

注意 常出现的问题是有的同学没有利用 *P* 点在球面上这一条件将切平面方程化简,再写出截距的平方和,从而导致目标函数表达式过于复杂,给后边的计算带来困难.

5. 在上半椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ $(a > 0, b > 0, c > 0, z \ge 0)$ 及 z = 0 所围成的封闭曲面内作一底面平行于 xOy 面的体积最大的内接长方体,问这长方体的长、宽、高的尺寸怎样?

解 显然长方体的底面应当在 xOy 面上,设它的一个位于第一卦限的顶点为 P(x,y,z) (x>0,y>0,z>0),于是长方体的体积为

$$V = 2x \cdot 2y \cdot z = 4xyz$$

所求问题为求函数V=4xyz(x>0,y>0,z>0) 在约束条件 $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ 下的最大值. 作拉格朗日函数

$$F(x, y, z) = xyz + \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1\right) (x > 0, y > 0, z > 0).$$

$$\begin{cases} yz + \frac{2\lambda}{a^2}x = 0 \\ xz + \frac{2\lambda}{b^2}y = 0 \end{cases}$$
$$xy + \frac{2\lambda}{c^2}z = 0$$
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

进一步可得到

$$\begin{cases} xyz + 2\lambda \cdot \frac{x^2}{a^2} = 0\\ xyz + 2\lambda \cdot \frac{y^2}{b^2} = 0\\ xyz + 2\lambda \cdot \frac{z^2}{c^2} = 0 \end{cases}$$

由此可得
$$\frac{x^2}{a^2} = \frac{y^2}{b^2} = \frac{z^2}{c^2}$$
,代入椭球面方程可得 $x = \frac{a}{\sqrt{3}}$, $y = \frac{b}{\sqrt{3}}$, $z = \frac{c}{\sqrt{3}}$.

由实际问题的性质可知, 最大的内接长方体的长为 $\frac{2a}{\sqrt{3}}$, 宽为 $\frac{2b}{\sqrt{3}}$, 高为 $\frac{c}{\sqrt{3}}$.

第八章 多元函数微分法及其应用(总习题)

1. 设
$$\omega = f(x - y, y - z, t - z)$$
, 求 $\frac{\partial \omega}{\partial x} + \frac{\partial \omega}{\partial y} + \frac{\partial \omega}{\partial z} + \frac{\partial \omega}{\partial t}$, 其中 f 具有一阶连续偏导数.

2. 设
$$u = \ln(x^x y^y z^z)$$
, 求 $du|_{(1,1,1)}$.

故

 \mathbf{m} 本题可利用对数性质先将函数u 化简, 否则会很烦

$$u = \ln(x^x y^y z^z) = x \ln x + y \ln y + z \ln z,$$

$$\frac{\partial u}{\partial x} = 1 + \ln x$$
, $\frac{\partial u}{\partial y} = 1 + \ln y$, $\frac{\partial u}{\partial z} = 1 + \ln z$

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz = (1 + \ln x) dx + (1 + \ln y) dy + (1 + \ln z) dz,$$

从而 $du \Big|_{(1,1,1)} = dx + dy + dz.$

3. 设
$$z = u(x, y)e^{ax+y}$$
, 又 $\frac{\partial^2 z}{\partial x \partial y} = 0$, 求常数 a , 使 $\frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} + z = 0$.

$$\mathbf{R} \qquad \frac{\partial z}{\partial x} = \frac{\partial u}{\partial x} e^{ax+y} + u \cdot e^{ax+y} \cdot a = e^{ax+y} \left(\frac{\partial u}{\partial x} + au \right)$$
$$\frac{\partial z}{\partial y} = \frac{\partial u}{\partial y} e^{ax+y} + u \cdot e^{ax+y} = e^{ax+y} \left(\frac{\partial u}{\partial y} + u \right),$$

$$\frac{\partial^2 z}{\partial x \partial y} = e^{ax+y} \left(\frac{\partial u}{\partial x} + au \right) + e^{ax+y} \left(\frac{\partial^2 u}{\partial x \partial y} + a \frac{\partial u}{\partial y} \right)$$

由
$$\frac{\partial^2 u}{\partial x \partial y} = 0$$
, 得

$$\frac{\partial^2 z}{\partial x \partial y} = e^{ax+y} \left(\frac{\partial u}{\partial x} + au + a \frac{\partial u}{\partial y} \right)$$

将
$$\frac{\partial^2 z}{\partial x \partial y}$$
, $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, z 的表达式代入式 $\frac{\partial^2 z}{\partial x \partial y}$ — $\frac{\partial z}{\partial x}$ — $\frac{\partial z}{\partial y}$ + $z = 0$ 可得

$$e^{ax+y} \left[\frac{\partial u}{\partial x} + au + a \frac{\partial u}{\partial y} - \frac{\partial u}{\partial x} - au - \frac{\partial u}{\partial y} - u + u \right] = 0$$

由 $e^{ax+y} > 0$, 可得

$$(a-1)\frac{\partial u}{\partial y} = 0$$

故当a=1时,等式成立.

解 当
$$x^2 + y^2 \neq 0$$
 时

$$f_x(x,y) = \frac{2xy(x^2+y^2) - x^2y \cdot 2x}{(x^2+y^2)^2} = \frac{2xy^3}{(x^2+y^2)^2},$$

$$f_y(x,y) = \frac{x^2(x^2+y^2) - x^2y \cdot 2y}{(x^2+y^2)^2} = \frac{x^4 - x^2y^2}{(x^2+y^2)^2}.$$

当 $x^2 + y^2 = 0$ 时,

$$f_x(0,0) = \lim_{x\to 0} \frac{f(x,0) - f(0,0)}{x} = 0,$$

$$f_y(0,0) = \lim_{x\to 0} \frac{f(0,y) - f(0,0)}{y} = 0.$$

故 $f_x(x,y) = \begin{cases} \frac{2xy^3}{(x^2 + y^2)^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$

$$f_{y}(x,y) = \begin{cases} \frac{x^{4} - x^{2}y^{2}}{(x^{2} + y^{2})^{2}}, & x^{2} + y^{2} \neq 0, \\ 0, & x^{2} + y^{2} = 0, \end{cases}$$

注意 常见的错误是没用偏导数的定义求函数 f(x,y) 在分段点(0,0) 的偏导数.

5. 设 $f(x,y) = \sqrt{|xy|}$, 问: (1) f(x,y) 在点 (0,0) 是否连续, 为什么? (2) f(x,y) 在点 (0,0) 的偏导数 $f_x(0,0)$, $f_y(0,0)$ 是否存在? (3) f(x,y) 在点 (0,0) 是否可微, 为什么?

A (1)
$$0 \le \sqrt{|xy|} \le \sqrt{\frac{x^2 + y^2}{2}} = \frac{1}{\sqrt{2}} \cdot \sqrt{x^2 + y^2}$$
,

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{1}{\sqrt{2}} \sqrt{x^2 + y^2} = 0, \text{ if } \lim_{\substack{x \to 0 \\ y \to 0}} \frac{1}{\sqrt{2}} \sqrt{x^2 + y^2} = \lim_{\substack{x \to 0 \\ y \to 0}} \sqrt{|xy|} = 0 = f(0,0)$$

函数在点(0,0)连续.

(2) 考虑极限

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{f(x, y) - f(0, 0) - [f_x(0, 0)x + f_y(0, 0)y]}{\sqrt{x^2 + y^2}} = \lim_{\substack{x \to 0 \\ y \to 0}} \sqrt{\frac{|xy|}{x^2 + y^2}}, \quad (8.24)$$

由于沿直线 y = x,

$$\lim_{\substack{x \to 0 \\ y = x \to 0}} \sqrt{\frac{|xy|}{x^2 + y^2}} = \frac{1}{\sqrt{2}} \neq 0$$

故前式极限不等于 0, 从而函数在 (0,0) 点不可微.

注意 常见错误之一是:

因为, 故
$$\lim_{\substack{x\to 0\\y=kx\to 0}} f(x,y) = \lim_{x\to 0} \sqrt{|kx^2|} = 0$$
, 故 $\lim_{\substack{x\to 0\\y\to 0}} f(x,y) = 0$.

关于这种错误, 前边已讲过, 记号" $\lim_{\substack{x\to 0\\y\to 0}}$ "表示点(x,y)以任意的方式趋于(0,0). 而记号

" $\lim_{\substack{x\to 0\\y=kx\to 0}}$ "表示点 (x,y) 以一种特殊的方式: 沿直线 y=kx 趋于 (0,0) . 显然若 $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ 存

在为a,则 $\lim_{\substack{x\to 0\\y=kx\to 0}} f(x,y)$ 存在也为a;但反之未必成立.

常见错误之二是有人将讨论函数在点(0,0)是否可微的式子写成

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{f(x, y) - f(0, 0) - dz(0, 0)}{\sqrt{x^2 + y^2}}$$

式中出现了 dz(0,0) 是不对的, 因为我们正在讨论函数在 (0,0) 点是否可微, 即 dz(0,0) 是否存在.

6. 设
$$u = \varphi(e^x, xy) + xf(\frac{y}{x})$$
, 其中 φ 有二阶偏导数, f 二阶可导, 求 $\frac{\partial^2 u}{\partial x^2}$

$$\mathbf{A}\mathbf{Z} = \phi_1' \cdot \mathbf{e}^x + \phi_2' \cdot y + f(\frac{y}{x}) + xf'(\frac{y}{x}) \cdot (-\frac{y}{x^2})$$
$$= \mathbf{e}^x \phi_1' + y\phi_2' + f(\frac{y}{x}) \cdot (-\frac{y}{x^2})$$

$$\frac{\partial^2 u}{\partial x^2} = e^x \varphi_1' + e^x [\varphi_{11}'' \cdot e^x + \varphi_{12}'' \cdot y] + y[\varphi_{21}'' \cdot e^x + \varphi_{22}'' \cdot y] + f'(-\frac{y}{x^2}) + \frac{y}{x^2} f' - \frac{y}{x} f'' \cdot (-\frac{y}{x^2})$$

$$= e^x \varphi_1' + e^{2x} \varphi_{11}'' + y e^x (\varphi_{12}'' + \varphi_{21}'') + y^2 \varphi_{22}'' + \frac{y^2}{x^3} f''.$$

注意 易发生的错误是将结果中 $ye^x(\phi_{12}''+\phi_{21}'')$ 合并为 $2ye^x\phi_{12}''$.

由于题目中仅告知 ϕ 有二阶偏导数,并未告知 ϕ 的二阶偏导数连续,故未必有 $\phi_{12}'' = \phi_{21}'',$ 因此不能将 $\phi_{12}'' + \phi_{21}''$ 合并为 $2\phi_{12}''$.

$$\mathbf{R} \qquad \ln z = \frac{x}{y} \ln \frac{y}{x} = \frac{x}{y} (\ln y - \ln x)$$

$$\frac{\frac{\partial z}{\partial x}}{z} = \frac{1}{y} \ln \frac{y}{x} + \frac{x}{y} \left(-\frac{1}{x}\right) = \frac{1}{y} \ln \frac{y}{x} - \frac{1}{y},$$

$$\frac{\partial z}{\partial x} = \frac{z}{y} \ln \frac{y}{x} - \frac{z}{y},$$

当 x = 1, y = 2 时, $z = (2)^{\frac{1}{2}} = \sqrt{2}$, 从而

$$\frac{\partial z}{\partial x}\Big|_{(1,2)} = \frac{\sqrt{2}}{2} \ln 2 - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} (\ln 2 - 1).$$

8. 设
$$z = x^3 f(xy, \frac{y}{x})$$
, f 具有二阶连续偏导数, 求 $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial y^2}$, $\frac{\partial^2 z}{\partial x \partial y}$.

解 $z \to x^3$ 与 f 的乘积, 而 f 为由两个中间变量构成的二元复合函数,

$$\frac{\partial z}{\partial y} = x^{3} (f_{1}'x + f_{2}' \frac{1}{x}) = x^{4} f_{1}' + x^{2} f_{2}'$$

$$\frac{\partial^{2} z}{\partial y^{2}} = x^{4} (f_{11}''x + f_{12}'' \frac{1}{x}) + x^{2} (f_{21}''x + f_{22}'' \frac{1}{x}) = x^{5} f_{11}'' + 2x^{3} f_{12}'' + x f_{22}''$$

$$\frac{\partial^{2} z}{\partial x \partial y} = \frac{\partial^{2} z}{\partial y \partial x} = \frac{\partial}{\partial x} (x^{4} f_{1}' + x^{2} f_{2}')$$

$$= 4x^{3} f_{1}' + x^{4} (y f_{11}'' - \frac{y}{x^{2}} f_{12}'') + 2x f_{2}' + x^{2} (y f_{21}'' - \frac{y}{x^{2}} f_{22}'')$$

$$= 4x^{3} f_{1}' + 2x f_{2}' + x^{4} y f_{11}'' - y f_{22}''$$

应注意充分利用条件 $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$, 在求出 $\frac{\partial z}{\partial y}$ 的基础上进而求 $\frac{\partial^2 z}{\partial y \partial x}$, 即得 $\frac{\partial^2 z}{\partial x \partial y}$, 不必

先求 $\frac{\partial z}{\partial x}$,再求 $\frac{\partial^2 z}{\partial x \partial y}$,这就增加了工作量.

9. 设z = f(xz, z - y),其中f具有一阶连续偏导数,利用全微分形式不变性求隐函数

z = z(x, y)的全微分 dz, 并由此求出 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

解 方程 z = f(xz, z - y) 两端同时求全微分得

$$dz = f_1'd(xz) + f_2'd(z - y),$$

 $dz = f_1'(zdx + xdz) + f_2'(dz - dy).$

从中解出dz,得

$$dz = \frac{zf_1'dx - f_2'dy}{1 - xf_1' - f_2'},$$

由此得

$$\frac{\partial z}{\partial x} = \frac{zf_1'}{1 - xf_1' - f_2'}, \quad \frac{\partial z}{\partial y} = \frac{-f_2'}{1 - xf_1' - f_2'}.$$

10. 求曲线
$$\begin{cases} x^2 - z = 0 \\ 3x + 2y + 1 = 0 \end{cases}$$
 上点 $M_0(1, -2, 1)$ 处的法平面与直线
$$\begin{cases} 9x - 7y - 21z = 0 \\ x - y - z = 0 \end{cases}$$

间的夹角.

 \mathbf{m} 只须求出曲线上 \mathbf{M}_0 点的切向量,即可求出法平面与已知直线的夹角.

由一般式给出的曲线求切向量有两种方法.

法 1 将
$$x$$
 看做参数, 由方程组
$$\begin{cases} x^2 - z = 0 \\ 3x + 2y + 1 = 0 \end{cases}$$
 求出 y', z' , 则切向量 $T = \{1, y', z'\}$,
$$\begin{cases} 2x - z' = 0 \\ 3 + 2y' = 0 \end{cases}$$

在点
$$M_0(1,-2,1)$$
处,
$$\begin{cases} 2-z'=0\\ 3+2y'=0 \end{cases}$$
解得, $y'=-\frac{3}{2}, z'=2.$

故切向量 $T = \{1, -\frac{3}{2}, 2\} = \frac{1}{2}\{2, -3, 4\}$.

法 2 求出构成曲线的两个曲面 $x^2-z=0$ 和 3x+2y+1=0 在点 M_0 的法向量 n_1 及 n_2 ,曲线在点 M_0 的切向量 $T=n_1\times n_2$.

$$\boldsymbol{n}_1 \Big|_{\boldsymbol{M}_0} = \{2x, 0, -1\} \Big|_{\boldsymbol{M}_0} = \{2, 0, -1\}, \quad \boldsymbol{n}_2 \Big|_{\boldsymbol{M}_0} = \{3, 2, 0\}.$$

$$T = \mathbf{n}_1 \times \mathbf{n}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & -1 \\ 3 & 2 & 0 \end{vmatrix} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$$

而直线的方向向量

$$s = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 9 & -7 & -21 \\ 1 & -1 & -1 \end{vmatrix} = -14\mathbf{i} - 12\mathbf{j} - 2\mathbf{k} ,$$

故法平面与直线的夹角

$$\theta = \arcsin \frac{|T \cdot s|}{|T||s|} = \arcsin 0 = 0.$$

11. 过直线 $\begin{cases} 10x + 2y - 2z = 27 \\ x + y - z = 0 \end{cases}$ 作曲面 $3x^2 + y^2 - z^2 = 27$ 的切平面, 求此切平面方程.

分析 要写切平面方程,一要求切点,二要求法向量.首先,切点应在曲面上,在切平面上 其次,曲面上切点处的法向量应当与切平面的法向量平行.

解 设切点为 $M_0(x_0, y_0, z_0)$,则曲面上点 M_0 处的法向量为 $n = \{6x_0, 2y_0, -2z_0\}$.

设过直线的平面束方程为

$$10x + 2y - 2z - 27 + \lambda(x + y - z) = 0$$
,

其法向量为 n_1 =(10+ λ ,2+ λ ,-(2+ λ)). 由n // n_1 可得

$$\frac{10+\lambda}{6x_0} = \frac{2+\lambda}{2y_0} = \frac{-(2+\lambda)}{-2z_0},$$

又由切点 M_0 既在曲面上,又在切平面上可得

$$3x_0^2 + y_0^2 - z_0^2 = 27$$
, $(10 + \lambda)x_0 + (2 + \lambda)y_0 - (2 + \lambda)z_0 - 27 = 0$.

解此关于 x_0, y_0, z_0, λ 的方程组可得切点(3,1,1)及(-3,-17,-17),于是法向量为 $\{18,2,-2\}$

及 {-18,-34,34}, 所求切平面为

及

$$18(x-3) + 2(y-1) - 2(z-1) = 0, \quad 9x + y - z - 27 = 0$$
$$-18(x+3) - 34(y+17) + 34(z+17) = 0, \quad 9x + 17y - 17z + 27 = 0,$$

易知平面 x + y - z = 0 不满足条件.

12. 求函数 $f(x, y) = \arctan \frac{x}{y}$ 在点 (0,1) 处的梯度.

解 因为
$$f(x, y) = \arctan \frac{x}{y}$$
 所以

$$f_x = \frac{\frac{1}{y}}{1 + (\frac{x}{y})^2} = \frac{y}{x^2 + y^2}, \quad f_y = \frac{-\frac{x}{y^2}}{1 + (\frac{x}{y})^2} = \frac{-x}{x^2 + y^2}$$

从而 $\mathbf{grad} f(0,1) = \{f_x, f_y\}_{\substack{x=0 \\ y=1}} = \{\frac{y}{x^2 + y^2}, \frac{-x}{x^2 + y^2}\}_{\substack{x=0 \\ y=1}} = \{1, 0\}.$

13. 在球面 $2x^2 + 2y^2 + 2z^2 = 1$ 上求一点 C 使得函数 $f(x, y, z) = x^2 + y^2 + z^2$ 在点 C 沿着点 A(1,1,1) 到点 B(2,0,1) 的方向的方向导数具有最大值.

解 方向
$$\boldsymbol{l} = \overrightarrow{AB} = (1, -1, 0)$$
, 故 $\cos \alpha = \frac{1}{\sqrt{2}}$, $\cos \beta = -\frac{1}{\sqrt{2}}$, $\cos \gamma = 0$

设点M(x,y,z)为球面上任意一点,在该点

$$\frac{\partial f}{\partial x} = 2x$$
, $\frac{\partial f}{\partial y} = 2y$, $\frac{\partial f}{\partial z} = 2z$

又函数 f(x, y, z) 处处可微, 故 M 点的方向导数为

$$\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x}\cos\alpha + \frac{\partial f}{\partial y}\cos\beta + \frac{\partial f}{\partial z}\cos\gamma = \sqrt{2}(x - y)$$

问题实质是求函数 $\sqrt{2}(x-y)$ 在约束条件 $2x^2+2y^2+2z^2=1$ 下的最大值问题, 作函数

$$F(x, y, z) = x - y + \lambda(2x^2 + 2y^2 + 2z^2 - 1)$$

求解

$$\begin{cases}
1+4\lambda x = 0 \\
-1+4\lambda y = 0 \\
4\lambda z = 0 \\
2x^2 + 2y^2 + 2z^2 = 1
\end{cases}$$

得到 $x = \pm \frac{1}{2}$, $y = \mp \frac{1}{2}$, z = 0, 在点 $(\frac{1}{2}, -\frac{1}{2}, 0)$ 处, $\frac{\partial f}{\partial l} = \sqrt{2}$, 在点 $(-\frac{1}{2}, \frac{1}{2}, 0)$, $\frac{\partial f}{\partial l} = -\sqrt{2}$, 故点 $(\frac{1}{2}, -\frac{1}{2}, 0)$ 即为所求.

14. 已知曲线 L: $\begin{cases} x^2 + y^2 - 2z^2 = 0 \\ x + y + 3z = 5 \end{cases}$, 求曲线 L 距离 xoy 面最远的点和最近的点.

解 令(x, y, z)为曲线 L 上任一点, 它在xoy 面上的投影点为(x, y, 0)则 $d^2 = z^2$,令

$$F(x, y, z) = z^{2} + \lambda_{1}(x^{2} + y^{2} - 2z^{2}) + \lambda_{2}(x + y + 3z - 5)$$

$$\begin{cases}
F_{x} = 2\lambda_{1}x + \lambda_{2} = 0 \\
F_{y} = 2\lambda_{1}y + \lambda_{2} = 0 \\
F_{z} = 2z - 4\lambda_{1}z + 3\lambda_{2} = 0, \\
x^{2} + y^{2} = 2z^{2} \\
x + y + 3z = 5
\end{cases}$$

由前两式得x = y,代入第四个式子推出 $x = \pm z$,代入第五个式子推出2x + 3z = 5.

当 x = z 时, 解得 x = 1; 当 x = -z 时, 解得 x = -5.

点(1,1,1)时, d_1 =1;点(-5,-5,5)时, d_2 =5,从而(1,1,1)为最近点, (-5,-5,5)为最远点.