1.4.1 Computing PageRank

□Key step is matrix-vector multiplication

□Easy if we have enough main memory to hold A, rold, rnew

$$\mathbf{A} = \beta \bullet \mathbf{M} + (1 - \beta) [1/N]_{N \times N}$$

$$A = 0.8 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 0.2 \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

- We need 4 bytes for each entry (say)
- ▶ r^{old}, r^{new}: 2 billion entries for vectors, approx 8GB
- ➤ A: Matrix **A** has N² entries
 - 10¹⁸ is a large number!

$$= \begin{vmatrix} 7/15 & 7/15 & 1/15 \\ 7/15 & 1/15 & 1/15 \\ 1/15 & 7/15 & 13/15 \end{vmatrix}$$

【备注】观察矩阵A和M可知, Matrix A dense matrix! Matrix M sparse matrix

1.4.1 Rearranging the Equation

$$\square r = A \cdot r$$
, where $A_{ji} = \beta M_{ji} + \frac{1-\beta}{N}$

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

$$\Box r_j = \sum_{i=1}^N A_{ji} \cdot r_i$$

Note: Here we assumed **M** has no dead-ends

$$\Box r_j = \sum_{i=1}^N \left[\beta \ M_{ji} + \frac{1-\beta}{N} \right] \cdot r_i$$

$$= \sum_{i=1}^N \beta \ M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^N r_i$$

$$= \sum_{i=1}^N \beta \ M_{ji} \cdot r_i + \frac{1-\beta}{N} \quad \text{since } \sum_{i=1}^N r_i$$

$$\square$$
 So we get: $r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$

 $[x]_N$... a vector of length N with all entries x

1.4.1 Sparse Matrix Formulation

■We just rearranged the PageRank equation

$$r = \beta M \cdot r + \left[\frac{1 - \beta}{N} \right]_{N}$$

where $[(1-\beta)/N]_N$ is a vector with all **N** entries $(1-\beta)/N$

- ■M is a sparse matrix! (with no dead-ends)
 - ➤N nodes, 10 links per node, approx 10N entries

- □So in each iteration, we need to:
 - ightharpoonup Compute $r^{\text{new}} = \beta M \cdot r^{\text{old}}$
 - >Add a constant value (1-β)/N to each entry in r^{new}
 - Note if M contains dead-ends then $\sum_j r_j^{new} < 1$, and we have to renormalize r^{new} so that it sums to 1

\square Input: Graph G and parameter β

$$r = \beta M \cdot r + \left[\frac{1 - \beta}{N} \right]_{N}$$

- ➤ Directed graph *G* (can have spider traps and dead ends)
- \triangleright Parameter β

lacktriangleOutput: PageRank vector r^{new}

- >Set: $r_j^{old} = \frac{1}{N}$
- repeat until convergence: $\sum_{j} |r_{j}^{new} r_{j}^{old}| < \varepsilon$
 - $\forall j$: $r'^{new}_{j} = \sum_{i \to j} \beta \frac{r^{old}_{i}}{d_{i}}$ $r'^{new}_{j} = \mathbf{0}$ if in-degree of j is $\mathbf{0}$
 - Now re-insert the leaked PageRank:

$$\forall j: r_j^{new} = r_j^{new} + \frac{1-s}{N}$$
 where: $s = \sum_j r_j^{new}$

• $r^{old} = r^{new}$

- •If the graph has no dead-ends then the amount of leaked PageRank is $1-\beta$.
- •But since we have **dead-ends**, the amount of leaked PageRank may **be larger**.
- •Hence, we have to explicitly account for it by computing **S**.

1.4.2 Sparse Matrix Encoding

□ Encode sparse matrix *M* using only nonzero entries

node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

- ➤ Space proportional roughly to number of links
- ➤Say 10N(N nodes, 10 links per node), or 4*10*1 billion = 40GB, e.g. N = 1 billion (十亿)
- ➤ M still won't fit in memory, but will fit on disk

2025/3/28 56

1.4.2 Basic Update Algorithm

□Assume enough RAM to fit r^{new} into memory. Store r^{old} and matrix M on disk

■1 step of power-iteration is:

2025/3/28

Initialize all entries of $\mathbf{r}^{\text{new}} = (1-\beta) / \mathbf{N}$ For each page i (of out-degree d_i): Read into memory: i, d_i , $dest_1$, ..., $dest_{d_i}$, $r^{\text{old}}(i)$ For $j = 1...d_i$ $r^{\text{new}}(dest_j) += \beta r^{\text{old}}(i) / d_i$

 	(-)						
r ^{new}	source	degree	destination		rold	0	
	0	3	1, 5, 6			1	
	1	4	17, 64, 113, 1	17	For one iteration	3	Гог
	2	2	13, 23		iteration	4 5	For one iteration
		I .			₩	5	Horation
						6	

1.4.2 Analysis of Basic Update

- □Assume enough RAM to fit *r*^{new} into memory
 - Store *r*^{old} and matrix *M* on disk
- □In each iteration, we have to:
 - ➤ Read **r**old and **M**
 - ➤ Write *r*^{new} back to disk
 - **▶** Cost per iteration of Power method:
 - = 2|r| + |M|

Question:

➤ What if we could not even fit *r*^{new} in memory?

1.4.3 Block-based Update Algorithm

➤ Break r^{new} into k blocks that fit in memory

- Scan **M** and **r**^{old} once for each block
- ➤ In each iteration total **k** blocks, then **k** scans **M** and **r**^{old}

2025/3/28

1.4.3 Analysis of Block Update

□Similar to nested-loop join in databases

- ➤ Break **r**^{new} into **k** blocks that fit in memory
- Scan **M** and **r**old once for each block

□Total cost:

- >k scans of M and rold
- ➤ Write *r*^{new} back to disk (*k* blocks)
- Cost per iteration of Power method: k(|M| + |r|) + |r| = k|M| + (k+1)|r|

□Can we do better?

➤ Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration

1.4.4 Block-Stripe Update Algorithm

SIC	uegree	0, 1		
0	4			
1	3	0		
2	2	1		
<u> </u>		•		

doaroo

doctination

0	4	3
2	2	3

0	4	5
1	3	5
2	2	4

Break *M* **into stripes!** Each stripe contains only destination nodes in the corresponding block of *r*^{new}

1.4.4 Analysis of Block-Stripe Update 是 等中外在大学 计算机科学与技术学院 School Computer Science AT Computer Science AT

- □Break *M* into stripes
 - Each stripe contains only destination nodes in the corresponding block of rnew
- ☐Some additional overhead per stripe
 - ➤ But it is usually worth it
- □Cost per iteration of Power method:

$$=|M|(1+\varepsilon)+(k+1)|r|$$

2025/3/28 62

Some Problems with PageRank

■Measures generic popularity of a page

- ➤ Biased against topic-specific authorities
- ➤ Solution: Topic-Specific PageRank (next)

□Susceptible to Link spam

- ➤ Artificial link topographies created in order to boost page rank
- ➤ Solution: TrustRank (next)

□Uses a single measure of importance

- ➤ Other models of importance
- ➤ Solution: Hubs-and-Authorities (next)

2025/3/28