Homework Assignment 5

Matthew Tiger

October 4, 2015

Problem 1. Find the 1, 2, ∞ norms of the matrices

$$m{T} := egin{bmatrix} 2 & -1 \ -1 & 2 \end{bmatrix}, \qquad & m{I} := egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, & m{J} := egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}.$$

Then find their p-condition numbers $\operatorname{cond}_p(\mathbf{T})$ for $p=1,2,\infty$. Solution.

• 1-Norm Note that if X is a 2×2 matrix then $||X||_1 = \max_{1 \le j \le 2} \sum_{i=1}^2 |x_{ij}|$ where x_{ij} is the entry in the i-th row and the j-th column of X. So,

$$||\boldsymbol{X}||_1 = \max_{1 \le j \le 2} \{|x_{1j}| + |x_{2j}|\} = \max\{|x_{11}| + |x_{21}|, |x_{12}| + |x_{22}|\}$$

If
$$T = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
, then $T^{-1} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$. So,
$$||T||_1 = \max\{|2|+|-1|, |-1|+|2|\} = \max\{3, 3\} = 3$$

and

$$||T^{-1}||_1 = \max\{|2/3| + |1/3|, |1/3| + |2/3|\} = \max\{1, 1\} = 1.$$

Thus, $||T||_1 = 3$ and $\operatorname{cond}_p(T) = ||T||_1 ||T^{-1}||_1 = 3 \cdot 1 = 3$.

If
$$\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, then $\mathbf{I}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}$. So,

$$||\boldsymbol{I}||_1 = \max\{|1|+|0|, |0|+|1|\} = \max\{1, 1\} = 1.$$

Thus, $||\boldsymbol{I}||_1 = 1$ and $\operatorname{cond}_p(\boldsymbol{I}) = ||\boldsymbol{I}||_1 ||\boldsymbol{I}^{-1}||_1 = 1 \cdot 1 = 1$.

If
$$J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, then $J^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$. So,

$$||\boldsymbol{J}||_1 = \max\{|1|+|0|, |1|+|1|\} = \max\{1, 2\} = 2$$

and

$$||\boldsymbol{J}^{-1}||_1 = \max\{|1|+|0|, |-1|+|1|\} = \max\{1, 2\} = 2.$$

Thus, $||\boldsymbol{J}||_1 = 2$ and $\operatorname{cond}_p(\boldsymbol{J}) = ||\boldsymbol{J}||_1 ||\boldsymbol{J}^{-1}||_1 = 2 \cdot 2 = 4$.

• 2-Norm Note that if X is a 2×2 matrix then $||X||_2 = \sqrt{\lambda_{\max}(X^*X)}$ where $\lambda_{\max}(X^*X)$ is the largest eigenvalue of the matrix product X^*X . Since all of our matrices our real, we can use the following Matlab code to find the 2-norm of each matrix:

where we define the matrix X beforehand.

If
$$T = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
, then $T^{-1} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$. Using the code above, $||T||_2 = 3$ and $||T^{-1}||_2 = 1$. Thus, $||T||_2 = 3$ and $||T||_2 = 1$. Thus, $||T||_2 = 3$ and $||T||_2 = 3 \cdot 1 = 3$.

If
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, then $I^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$. Using the code above, $||I||_2 = 1$. Thus, $||I||_2 = 1$ and $\operatorname{cond}_p(I) = ||I||_2 ||I^{-1}||_2 = 1 \cdot 1 = 1$.

If
$$J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, then $J^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$. Using the code above, $||J||_2 = 1.61803$ and $||J^{-1}||_2 = 1.61803$. Thus, $||J||_2 = 1.61803$ and $\operatorname{cond}_p(J) = ||J||_2 ||J^{-1}||_2 = 1.61803 \cdot 1.61803 = 2.61802$.

• ∞ -norm Note that if X is a 2×2 matrix then $||X||_{\infty} = \max_{1 \le i \le 2} \sum_{j=1}^{2} |x_{ij}|$ where x_{ij} is the entry in the i-th row and the j-th column of X. So,

$$||X||_{\infty} = \max_{1 \le i \le 2} \{|x_{i1}| + |x_{i2}|\} = \max\{|x_{11}| + |x_{12}|, |x_{21}| + |x_{22}|\}$$

If
$$T = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
, then $T^{-1} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$. So,
$$||T||_{\infty} = \max\{|2|+|-1|, |-1|+|2|\} = \max\{3, 3\} = 3$$

and

$$||\mathbf{T}^{-1}||_{\infty} = \max\{|2/3| + |1/3|, |1/3| + |2/3|\} = \max\{1, 1\} = 1.$$

Thus, $||T||_{\infty} = 3$ and $\text{cond}_p(T) = ||T||_{\infty} ||T^{-1}||_{\infty} = 3 \cdot 1 = 3$.

If
$$\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, then $\mathbf{I}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}$. So,

$$||\boldsymbol{I}||_{\infty} = \max\{|1|+|0|, |0|+|1|\} = \max\{1, 1\} = 1.$$

Thus, $||I||_{\infty} = 1$ and $\text{cond}_p(I) = ||I||_{\infty} ||I^{-1}||_{\infty} = 1 \cdot 1 = 1$.

If
$$J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, then $J^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$. So,

$$||\boldsymbol{J}||_{\infty} = \max\{|1|+|1|,|0|+|1|\} = \max\{2,1\} = 2$$

and

$$||\boldsymbol{J}^{-1}||_{\infty} = \max\{|1|+|-1|, |0|+|1|\} = \max\{2, 1\} = 2.$$

Thus,
$$||J||_{\infty} = 2$$
 and $\text{cond}_p(J) = ||J||_{\infty} ||J^{-1}||_{\infty} = 2 \cdot 2 = 4$.