Visual Prediction of Projectile Motion via Kalman Filtering

Simulating Neurobiological Systems

Project Description

Sam Newhook

20507509

Neurobiological Kalman Filtering

- Visual System → Estimate a hidden state given an image
- Predict the next state
- Filter noise due to encoding or visual distortion
- Interpolate lost information

Approach

- Image encoding:
 - $I(r,t) = \sum_{n} x_n(t) \Phi_n(r)$
 - Hidden state encoded using optimal encoders (SVD analysis)
- State Behaviour Assumption
 - The state $x_n(t)$ evolves given a governing physical equation
 - Projectile motion equations
 - Noise is known and accountable for using a model of physical noise

Testing

- Input:
 - 1 'ball'
 - Many 'balls'
- Change calculation of P and A matrices
- Develop a method of center detection
 - NEF implementation?
- Learn and update covariance matrix

External References

• R. P. N. Rao, "An optimal estimation approach to visual perception and learning," *Vision Research*, vol. 39, no. 11, pp. 1963–1989, Jun. 1999.