Security of the Internet of Things (IoT), Hardware Security: Part 1

Gaurav S. Kasbekar

Dept. of Electrical Engineering

IIT Bombay

NPTEL

References

- W. Stallings, "Cryptography and Network Security", 8th edition, Pearson Education, 2023
- P. Lea, "IoT and Edge Computing for Architects", Packt Publishing Ltd., 2020
- D. Hanes, G. Salgueiro, P. Grossetete, R. Barton, and J. Henry, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", Cisco Press, 2017

Introduction

- IoT is an emerging and promising technology with a variety of applications
- Different aspects of IoT being extensively researched upon
- IoT is extension of Internet connectivity to resourceconstrained devices (e.g., sensors, actuators) and everyday objects
- Allows remote monitoring and control of such devices
 - □often called "IoT nodes"
- IoT nodes also communicate among themselves with minimal or no human intervention
 - □called "Machine-to-Machine" (M2M) communications

Applications of IoT

- Precision Agriculture
 - ☐sensors deployed at multiple points in a farm
 - □ they monitor soil moisture/ composition, temperature, humidity, etc.
 - Imeasurements from sensors can be monitored remotely; used to control irrigation/ fertilizing

- Agricultural and Environmental IoT Use Cases:
 - ☐ Smart irrigation and fertilization techniques to improve yield
 - ☐ Livestock health and asset tracking
 - ☐ Preventative maintenance on remote farming equipment
 - ☐ Drone-based land surveys
 - ☐ Robotic farming
 - ☐ Sensors floated at various altitudes in atmosphere to sense temperature, air quality, etc.
 - □ Volcanic and fault line monitoring

Smart	Hea	lthcar	e.

- ☐ Sensor devices are attached to patient's body
- ☐ They collect medical data and vital signs (e.g., blood pressure, body temperature, cholesterol level, heart rate, etc.) from patient
- ☐ Enables automatic diagnosis of conditions, tracking of progress
- ☐ Anomalies can be indicated directly to healthcare provider, without significant human involvement

Smart Healthcare Use Cases:

- ☐ In-home patient care
- ☐ Dementia and elderly care and tracking
- ☐ Patient fall indicators

Smart Home

- □ Automatic lighting system senses presence of human beings and switches on the lights only in specific areas of house accordingly
- □Automatic control of heating and air conditioning, e.g., to avoid heating or cooling an empty home
- ☐Smart appliances can be remotely switched ON or OFF over Internet
- □Security: e.g., motion sensors to sense intrusion by burglars, transmission of alerts to home owner's smartphone
- ☐ Home automation for elderly and disabled: making it easier for the elderly and disabled to remain at home, safely and comfortably (instead of being moved to a healthcare facility)

- Infrastructure/ Machine Monitoring and Preventive Maintenance
 - □sensors fixed to machines in factory, walls of buildings, bridges, etc., which sense vibration patterns/ acoustics
 - ☐ send alerts when maintenance needed
- Industrial Automation
 - □Safety systems such as thermal sensing, pressure sensing, and gas leaks

- Wildfire Control
 - ☐ sensors equipped with thermometers and GPS dropped from airplane into forest
 - □collectively produce "temperature map" of forest to assist firefighters

Consumer IoT

- □Smart home gadgetry: Smart irrigation, smart garage doors, smart locks, smart lights, smart thermostats, smart security, Alexa assistants, smart set-top boxes ☐ Wearables: Health and movement trackers, smart clothing/ wearables □ Pets: Pet location systems, smart kennel doors Retail, finance, and marketing IoT use cases ☐ Targeted advertising, such as locating known or potential customers by proximity and providing sales information ☐ Asset tracking, such as inventory control, loss control, and supply chain optimizations □Cold storage monitoring, such as analysis of cold storage of perishable inventory
 - Beaconing systems within entertainment venues, conferences, concerts, amusement parks, and museums

- Intelligent Transportation and Logistics Systems
 - ☐Fleet tracking and location awareness
 - ☐ Municipal vehicle planning, routing and monitoring (snow removal, waste disposal)
 - ☐ Railcar identification and tracking
 - ☐ Asset and package tracking within fleets
 - ☐ Preventative maintenance of vehicles on the road

Smart Cities

Siliar Cicles			
☐ Pollution control and regulatory analysis through environmental sensing			
☐ Microclimate weather predictions using citywide sensor network			
Efficiency gains and improved costs through waste management service on demand			
☐ Improved traffic flow and fuel economy through smart traffic light control and patterning			
☐ Energy efficiency of city lighting by switching lights on demand			
☐ Smart snow plowing based on real-time road demand, weather conditions, and nearby plows			
☐ Smart irrigation of parks and public spaces, depending on weather and current usage			
☐Smart cameras to watch for crime			
☐ Smart parking lots to automatically find best parking spaces on demand			
☐ Bridge, street, and infrastructure wear and usage monitors to improve longevity and service			

- Government and Military IoT Use Cases
 - ☐ Terror threat analysis through IoT device pattern analysis and beacons
 - ☐Swarm sensors through drones
 - ☐ Sensor networks deployed on the battlefield to monitor threats
 - ☐Government asset tracking systems
 - ☐ Real-time military personnel tracking and location services
 - ☐ Sensors to monitor hostile environments
 - ☐ Water level monitoring to measure dam and flood containment

Components of IoT-Enabled Things

Fig. shows key components of an IoT-enabled device

Sensor:

- ☐ Measures some parameter of a physical, chemical, or biological entity and delivers an electrical signal proportional to the observed characteristic
- ☐ Sensor output is typically input to a microcontroller or other management element

Actuator:

Receives an electronic signal from a controller and responds by interacting with its environment to produce an effect on some parameter of a physical, chemical, or biological entity

Microcontroller

• Transceiver:

- ☐ Contains the electronics needed to transmit and receive data
- ☐ Most IoT devices contain a wireless transceiver, which communicates using Wi-Fi, ZigBee, etc.

Power Supply:

☐ Typically, this is a battery

