Lab 3: Data Preparation

CPE232 Data Models

[1] Reviews on Pandas

- 1.1) Discover
 - methods to explore and understand your DataFrame

```
In [1]: import pandas as pd
          df = pd.read_csv('nss15.csv')
In [2]: # see the shape of the dataframe
          print(df.shape)
         (334839, 12)
In [3]: # seeing the summary of the dataframe
          print(df.info())
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 334839 entries, 0 to 334838
        Data columns (total 12 columns):
         # Column Non-Null Count Dtype
         ___
                                _____
             caseNumber 334839 non-null int64
         1 treatmentDate 334839 non-null object
         2 statWeight 334839 non-null float64
3 stratum 334839 non-null object
4 age 334839 non-null int64
5 sex 334837 non-null object
6 race 205014 non-null object
7 diagnosis 334839 non-null int64
8 bodyPart 334839 non-null int64
         9 disposition 334839 non-null int64
         10 location 334839 non-null int64
11 product 334839 non-null int64
        dtypes: float64(1), int64(7), object(4)
        memory usage: 30.7+ MB
        None
In [4]: # seeing the stats of the column in dataframe
          print(df.describe())
```

caseNumber

```
statWeight
                                                                  diagnosis
                                                         age
       count
               3.348390e+05
                              334839.000000
                                              334839.000000
                                                              334839.000000
               1.510271e+08
                                  39.343028
                                                  31.385451
                                                                  60.154591
       mean
       std
               1.720330e+06
                                  34.142933
                                                  26.105098
                                                                   6.170699
       min
               1.501032e+08
                                   4.965500
                                                   0.000000
                                                                  41.000000
       25%
               1.504405e+08
                                  15.059100
                                                  10.000000
                                                                  57.000000
       50%
               1.507358e+08
                                  15.776200
                                                  23.000000
                                                                  59.000000
       75%
               1.510231e+08
                                  74.881300
                                                  51.000000
                                                                  64.000000
       max
               1.603418e+08
                                  97.923900
                                                 107.000000
                                                                  74.000000
                    bodyPart
                                 disposition
                                                                     product
                                                    location
       count
               334839,000000
                               334839.000000
                                               334839.000000
                                                              334839.000000
                   64.374192
                                                                 2098.900854
       mean
                                    1.307930
                                                    2.485451
       std
                   24.002331
                                    0.977627
                                                    3.217617
                                                                 1332.222670
       min
                    0.000000
                                    1.000000
                                                    0.000000
                                                                  106.000000
       25%
                   35.000000
                                    1.000000
                                                    0.000000
                                                                 1211.000000
       50%
                   75.000000
                                    1.000000
                                                    1.000000
                                                                 1807.000000
       75%
                   82.000000
                                    1.000000
                                                    5.000000
                                                                 3265.000000
                   94.000000
                                    9.000000
                                                    9.000000
                                                                 5555.000000
       max
In [5]: # seeing the first 5 rows of the dataframe
         print(df.head())
           caseNumber treatmentDate statWeight stratum
                                                            age
                                                                    sex
                                                                           race
       0
           150733174
                          7/11/2015
                                          15.7762
                                                        V
                                                             5
                                                                   Male
                                                                            NaN
       1
           150734723
                            7/6/2015
                                          83.2157
                                                         S
                                                             36
                                                                   Male
                                                                         White
       2
           150817487
                            8/2/2015
                                          74.8813
                                                         L
                                                             20
                                                                 Female
                                                                            NaN
       3
            150717776
                           6/26/2015
                                          15.7762
                                                         ٧
                                                             61
                                                                   Male
                                                                            NaN
       4
                           7/4/2015
                                          74.8813
                                                             88
                                                                 Female Other
           150721694
                                                         L
          diagnosis
                      bodyPart
                                 disposition
                                               location
                                                         product
       0
                                                      9
                  57
                             33
                                            1
                                                             1267
       1
                  57
                                            1
                             34
                                                      1
                                                             1439
       2
                  71
                             94
                                            1
                                                      0
                                                             3274
       3
                             35
                  71
                                            1
                                                      0
                                                              611
       4
                             75
                  62
                                            1
                                                      a
                                                             1893
In [6]: # seeing the last 5 rows of the dataframe
         print(df.tail())
                caseNumber treatmentDate
                                           statWeight stratum
                                                                 age
                                                                          sex
                                                                                race
       334834
                 150739278
                                5/31/2015
                                               15.0591
                                                              ٧
                                                                   7
                                                                         Male
                                                                                 NaN
                                                              C
                                                                               Black
       334835
                 150733393
                                7/11/2015
                                                5.6748
                                                                   3
                                                                      Female
       334836
                 150819286
                                7/24/2015
                                               15.7762
                                                              ٧
                                                                  38
                                                                         Male
                                                                                 NaN
                                               97.9239
                                                              Μ
                                                                               White
       334837
                 150823002
                                 8/8/2015
                                                                  38
                                                                      Female
       334838
                 150723074
                                               49.2646
                                                                      Female
                                                                               White
                                6/20/2015
                                      disposition
                            bodyPart
                diagnosis
                                                    location
                                                               product
                       59
                                  76
                                                            1
       334834
                                                 1
                                                                  1864
       334835
                       68
                                  85
                                                 1
                                                            0
                                                                  1931
                                  79
       334836
                       71
                                                 1
                                                            0
                                                                  3250
       334837
                       59
                                  82
                                                 1
                                                            1
                                                                   464
                       57
                                                            9
       334838
                                  34
                                                 1
                                                                  3273
In [7]: # seeing the list of columns in the dataframe
         print(df.columns)
       Index(['caseNumber', 'treatmentDate', 'statWeight', 'stratum', 'age', 'sex',
               'race', 'diagnosis', 'bodyPart', 'disposition', 'location', 'product'],
              dtype='object')
```

1.2) Selecting variables

• select specific columns from the DataFrame to create a new DataFrame with only those columns

```
In [8]: df['age']
Out[8]: 0
                     5
                    36
                    20
          2
          3
                    61
          4
                    88
                    . .
          334834
                   7
          334835
                   3
          334836
                   38
                    38
          334837
          334838
          Name: age, Length: 334839, dtype: int64
 In [9]: df['age'].head()
 Out[9]: 0
               5
          1
               36
          2
              20
          3
              61
               88
          Name: age, dtype: int64
In [10]: df[['caseNumber', 'age']]
Out[10]:
                  caseNumber age
               0
                    150733174
                                 5
                    150734723
                                36
               2
                    150817487
                                20
               3
                    150717776
                                61
               4
                    150721694
                                88
          334834
                    150739278
                                 7
          334835
                    150733393
                                 3
          334836
                    150819286
                                38
          334837
                    150823002
                                38
          334838
                   150723074
                                 5
         334839 rows × 2 columns
In [11]: # select columns based on the data type
         df.select_dtypes(include=['number'])
```

2 PM				La	b 3 - Data Prep	aration			
Out[11]:		caseNumber	statWeight	age	diagnosis	bodyPart	disposition	location	proc
	0	150733174	15.7762	5	57	33	1	9	1
	1	150734723	83.2157	36	57	34	1	1	1
	2	150817487	74.8813	20	71	94	1	0	3
	3	150717776	15.7762	61	71	35	1	0	
	4	150721694	74.8813	88	62	75	1	0	1
	•••				···				
	334834	150739278	15.0591	7	59	76	1	1	1
	334835	150733393	5.6748	3	68	85	1	0	1
	334836	150819286	15.7762	38	71	79	1	0	3
	334837	150823002	97.9239	38	59	82	1	1	
	334838	150723074	49.2646	5	57	34	1	9	3
	334839 rd	ows × 8 colum	ns						
	4								•
Tn [12]:	# select	t row by .loc							

```
In [12]: # select row by .loc
         df.loc[0]
Out[12]: caseNumber
                          150733174
         treatmentDate
                         7/11/2015
                          15.7762
         statWeight
         stratum
                                 ٧
                                 5
         age
                              Male
         sex
         race
                              NaN
                                57
         diagnosis
         bodyPart
                                33
         disposition
                                 1
         location
                                 9
         product
                              1267
         Name: 0, dtype: object
In [13]: # select column by .loc
         df.loc[:6,'treatmentDate':'diagnosis']
```

Out[13]:		treatmentDate	statWeight	stratum	age	sex	race	diagnosis
	0	7/11/2015	15.7762	V	5	Male	NaN	57
	1	7/6/2015	83.2157	S	36	Male	White	57
	2	8/2/2015	74.8813	L	20	Female	NaN	71
	3	6/26/2015	15.7762	V	61	Male	NaN	71
	4	7/4/2015	74.8813	L	88	Female	Other	62
	5	7/2/2015	5.6748	С	1	Female	White	71
	6	6/8/2015	15.7762	V	25	Male	Black	51

In [14]: df.loc[df['age']>80, ['treatmentDate', 'age']]

\cap		+	Γ	1	Λ	٦	
U	и	L	L	-	+	J	-

	treatmentDate	age
4	7/4/2015	88
8	7/16/2015	98
39	5/3/2015	88
46	4/15/2015	91
63	1/12/2015	97
•••		
334701	4/27/2015	86
334784	7/7/2015	82
334785	7/11/2015	86
334815	10/28/2015	85
334819	1/13/2015	85

20422 rows × 2 columns

In [15]: # select row by .iloc df.iloc[0:5]

Out[15]:

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	b
0	150733174	7/11/2015	15.7762	V	5	Male	NaN	57	
1	150734723	7/6/2015	83.2157	S	36	Male	White	57	
2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	
4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	

In [16]: # select column by .iloc
df.iloc[:,[0,1,2,3,4]]

Out[16]:

	caseNumber	treatmentDate	statWeight	stratum	age
0	150733174	7/11/2015	15.7762	V	5
1	150734723	7/6/2015	83.2157	S	36
2	150817487	8/2/2015	74.8813	L	20
3	150717776	6/26/2015	15.7762	V	61
4	150721694	7/4/2015	74.8813	L	88
•••					
334834	150739278	5/31/2015	15.0591	V	7
334835	150733393	7/11/2015	5.6748	С	3
334836	150819286	7/24/2015	15.7762	V	38
334837	150823002	8/8/2015	97.9239	М	38
334838	150723074	6/20/2015	49.2646	М	5

334839 rows × 5 columns

1.3) Filtering the data

In [17]: # filter rows based on the condition
df[df['age'] > 50]

Out[17]:

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagno
	3 150717776	6/26/2015	15.7762	V	61	Male	NaN	
	4 150721694	7/4/2015	74.8813	L	88	Female	Other	
	7 150704114	6/14/2015	83.2157	S	53	Male	White	
:	3 150736558	7/16/2015	83.2157	S	98	Male	Black	
10	6 150901411	8/27/2015	83.2157	S	65	Female	White	
•								
33481	1 150702215	6/27/2015	15.7762	V	51	Female	NaN	
33481	5 151100368	10/28/2015	83.2157	S	85	Female	NaN	
33481	9 150528367	1/13/2015	49.2646	М	85	Female	NaN	
33482	6 150648619	6/17/2015	15.7762	V	52	Female	White	
33482	9 150633526	4/4/2015	49.2646	М	51	Female	NaN	

85235 rows × 12 columns


```
In [18]: # filter coloum based on column name
    df.filter(like='age')
```

Out[18]:		age
	0	5
	1	36
	2	20
	3	61
	4	88
	•••	
	334834	7
	334835	3
	334836	38
	334837	38
	334838	5

334839 rows × 1 columns

- 1.4) Sorting
 - Sort the DataFrame by its index based on column

```
In [19]: # sort the dataframe based on column name and ascending order
df.sort_values(by='statWeight', ascending=False)
```

\cap	urt	٠г	1	a	7	
\cup	uч	٠L	_	J	J	۰

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagno
67072	150533084	5/15/2015	97.9239	М	89	Male	NaN	
313846	150521217	4/18/2015	97.9239	М	36	Female	NaN	
230135	150857760	8/25/2015	97.9239	М	14	Male	White	
141323	151039262	10/11/2015	97.9239	М	39	Female	White	
230141	150662453	6/5/2015	97.9239	М	11	Female	White	
•••								
122009	151146792	11/15/2015	4.9655	С	2	Female	White	
211090	151253201	12/15/2015	4.9655	С	2	Male	White	
317625	160106638	12/25/2015	4.9655	С	1	Male	White	
33679	151256307	12/20/2015	4.9655	С	9	Female	Black	
229596	160148171	12/4/2015	4.9655	С	16	Female	Other	

334839 rows × 12 columns

In [20]: # sort the index of the dataframe
df.sort_index()

Out[20]:

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagno
0	150733174	7/11/2015	15.7762	V	5	Male	NaN	
1	150734723	7/6/2015	83.2157	S	36	Male	White	
2	150817487	8/2/2015	74.8813	L	20	Female	NaN	
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	
4	150721694	7/4/2015	74.8813	L	88	Female	Other	
334834	150739278	5/31/2015	15.0591	V	7	Male	NaN	
334835	150733393	7/11/2015	5.6748	С	3	Female	Black	
334836	150819286	7/24/2015	15.7762	V	38	Male	NaN	
334837	150823002	8/8/2015	97.9239	М	38	Female	White	
334838	150723074	6/20/2015	49.2646	М	5	Female	White	

334839 rows × 12 columns

1.5) Add/Remove

• This section shows how to manipulate the DataFrame's structure

In [20]: # Dropping the column
df.drop(columns=['disposition'])

Out[20]:		caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagno
	0	150733174	7/11/2015	15.7762	V	5	Male	NaN	
	1	150734723	7/6/2015	83.2157	S	36	Male	White	
	2	150817487	8/2/2015	74.8813	L	20	Female	NaN	
	3	150717776	6/26/2015	15.7762	V	61	Male	NaN	
	4	150721694	7/4/2015	74.8813	L	88	Female	Other	
	•••								
	334834	150739278	5/31/2015	15.0591	V	7	Male	NaN	
	334835	150733393	7/11/2015	5.6748	С	3	Female	Black	
	334836	150819286	7/24/2015	15.7762	V	38	Male	NaN	
	334837	150823002	8/8/2015	97.9239	М	38	Female	White	

6/20/2015

334839 rows × 11 columns

334838 150723074

49.2646

M 5 Female White

In [22]: # Adding column and create into a new column
df.assign(new_column=df['diagnosis'] + df['bodyPart'])

Out[22]:		caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagno
	0	150733174	7/11/2015	15.7762	V	5	Male	NaN	
	1	150734723	7/6/2015	83.2157	S	36	Male	White	
	2	150817487	8/2/2015	74.8813	L	20	Female	NaN	
	3	150717776	6/26/2015	15.7762	V	61	Male	NaN	
	4	150721694	7/4/2015	74.8813	L	88	Female	Other	
	•••								
	334834	150739278	5/31/2015	15.0591	V	7	Male	NaN	
	334835	150733393	7/11/2015	5.6748	С	3	Female	Black	
	334836	150819286	7/24/2015	15.7762	V	38	Male	NaN	
	334837	150823002	8/8/2015	97.9239	М	38	Female	White	
	334838	150723074	6/20/2015	49.2646	М	5	Female	White	

334839 rows × 13 columns

In [21]: # Removing the column and assigning it to a new variable
ages = df.pop('age')

- 1.6) Clean missing
 - to remove rows with missing values or replace missing values with a specified value
- In [22]: # replaceing the missing values with a specified value
 df.fillna(value=0)

.52 FIVI				Lab 3 - Dala Fie	Daration				
Out[22]:		caseNumber	treatmentDate	statWeight	stratum	sex	race	diagnosis	b
	0	150733174	7/11/2015	15.7762	V	Male	0	57	
	1	150734723	7/6/2015	83.2157	S	Male	White	57	
	2	150817487	8/2/2015	74.8813	L	Female	0	71	
	3	150717776	6/26/2015	15.7762	V	Male	0	71	
	4	150721694	7/4/2015	74.8813	L	Female	Other	62	
	•••								
	334834	150739278	5/31/2015	15.0591	V	Male	0	59	
	334835	150733393	7/11/2015	5.6748	С	Female	Black	68	
	334836	150819286	7/24/2015	15.7762	V	Male	0	71	
	334837	150823002	8/8/2015	97.9239	М	Female	White	59	
	334838	150723074	6/20/2015	49.2646	М	Female	White	57	
	334839 rd	ows × 11 colun	nns						
	4							•	•

Out[23]:		caseNumber	treatmentDate	statWeight	stratum	sex	race	diagnosis	b
	1	150734723	7/6/2015	83.2157	S	Male	White	57	
	4	150721694	7/4/2015	74.8813	L	Female	Other	62	
	5	150721815	7/2/2015	5.6748	С	Female	White	71	
	6	150713483	6/8/2015	15.7762	V	Male	Black	51	
	7	150704114	6/14/2015	83.2157	S	Male	White	57	
	•••								
	334830	150628863	6/8/2015	15.7762	V	Female	White	64	
	334831	150607637	5/22/2015	5.6748	С	Female	Black	59	
	334835	150733393	7/11/2015	5.6748	С	Female	Black	68	
	334837	150823002	8/8/2015	97.9239	М	Female	White	59	
	334838	150723074	6/20/2015	49.2646	М	Female	White	57	

205014 rows × 11 columns

[2] Data Cleaning and Preparation

.isnull, .dropna, .fillna

2.1) checking

```
In [24]:
        df.columns
Out[24]: Index(['caseNumber', 'treatmentDate', 'statWeight', 'stratum', 'sex', 'race',
                 'diagnosis', 'bodyPart', 'disposition', 'location', 'product'],
               dtype='object')
In [25]: # isnull checking
         df.isnull().sum()
Out[25]: caseNumber
                               0
         treatmentDate
                               0
         statWeight
         stratum
         sex
                         129825
         race
         diagnosis
                               0
         bodyPart
                               0
         disposition
                               0
         location
                               0
         product
         dtype: int64
In [26]: # percentage of missing values for the race
         df.race.isnull().sum()/df.shape[0]*100
Out[26]: 38.772365226272925
In [27]:
         df.shape[0]
Out[27]: 334839
         2.2) Drop column
In [28]: # remove column by using
         df = df.drop(columns=['race'])
In [29]: df.head()
```

Out[29]:		caseNumber	treatmentDate	statWeight	stratum	sex	diagnosis	bodyPart	disp
	0	150733174	7/11/2015	15.7762	V	Male	57	33	
	1	150734723	7/6/2015	83.2157	S	Male	57	34	
	2	150817487	8/2/2015	74.8813	L	Female	71	94	
	3	150717776	6/26/2015	15.7762	V	Male	71	35	
	4	150721694	7/4/2015	74.8813	L	Female	62	75	
	4								•

2.3) Data imputation

```
In [30]: # fillna
df['age'] = df['age'].fillna(df['age'].median())
```

```
KeyError
                                          Traceback (most recent call last)
File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0
\LocalCache\local-packages\Python311\site-packages\pandas\core\indexes\base.py:38
05, in Index.get_loc(self, key)
  3804 try:
-> 3805
            return self._engine.get_loc(casted_key)
   3806 except KeyError as err:
File index.pyx:167, in pandas._libs.index.IndexEngine.get_loc()
File index.pyx:196, in pandas._libs.index.IndexEngine.get_loc()
File pandas\\_libs\\hashtable_class_helper.pxi:7081, in pandas._libs.hashtable.Py
ObjectHashTable.get_item()
File pandas\\_libs\\hashtable_class_helper.pxi:7089, in pandas._libs.hashtable.Py
ObjectHashTable.get_item()
KeyError: 'age'
The above exception was the direct cause of the following exception:
                                          Traceback (most recent call last)
KeyError
Cell In[30], line 2
      1 # fillna
----> 2 df['age'] = df['age'].fillna(df['age'].median())
File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0
\LocalCache\local-packages\Python311\site-packages\pandas\core\frame.py:4102, in
DataFrame.__getitem__(self, key)
  4100 if self.columns.nlevels > 1:
            return self._getitem_multilevel(key)
-> 4102 indexer = self.columns.get_loc(key)
  4103 if is integer(indexer):
            indexer = [indexer]
   4104
File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0
\LocalCache\local-packages\Python311\site-packages\pandas\core\indexes\base.py:38
12, in Index.get loc(self, key)
           if isinstance(casted_key, slice) or (
   3807
   3808
                isinstance(casted key, abc.Iterable)
                and any(isinstance(x, slice) for x in casted_key)
   3809
   3810
          ):
  3811
                raise InvalidIndexError(key)
-> 3812
           raise KeyError(key) from err
  3813 except TypeError:
   3814
          # If we have a listlike key, _check_indexing_error will raise
  3815
            # InvalidIndexError. Otherwise we fall through and re-raise
          # the TypeError.
  3816
   3817
           self. check indexing error(key)
KeyError: 'age'
```

[Q1] From the above cell, Why it showing an error?

Ans: ก่อนหน้านี้ใช้ ages = df.pop('age') ทำให้ตอนนี้ไม่มี column age แล้ว ดังนั้นเรียกใช้ column age ไม่ได้

[Q2] Fix the error from Q1 problem.

```
In [31]: # [Q2]

# hint: see the cell that run `df.pop()

# Ans :
df["age"] = ages

# fillna again
df['age'] = df['age'].fillna(df['age'].median())

df.head()
```

Out[31]: caseNumber treatmentDate statWeight stratum sex diagnosis bodyPart disp 0 150733174 ٧ 57 33 7/11/2015 15.7762 Male 1 150734723 7/6/2015 83.2157 S Male 57 34 2 71 150817487 94 8/2/2015 74.8813 L Female 3 150717776 6/26/2015 Male 71 35 15.7762 75 62 4 150721694 7/4/2015 74.8813 L Female

2.4) Drop row that have missing value

```
In [32]: # remove column by using .dropna()
         df = df.dropna()
In [33]:
         df.isnull().sum()
Out[33]: caseNumber
                           0
          treatmentDate
                           0
          statWeight
                           0
          stratum
                           0
          sex
          diagnosis
          bodyPart
                           0
          disposition
          location
                           0
          product
                           0
          age
          dtype: int64
```

Datetime

2.5) Working with the datetime format

```
In [34]: df["treatmentDate"] = pd.to_datetime(df["treatmentDate"], format="%m/%d/%Y")
```

```
C:\Users\punch\AppData\Local\Temp\ipykernel_15332\3208943844.py:1: SettingWithCop
        yWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
        e/user_guide/indexing.html#returning-a-view-versus-a-copy
          df["treatmentDate"] = pd.to_datetime(df["treatmentDate"], format="%m/%d/%Y")
In [35]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        Index: 334837 entries, 0 to 334838
        Data columns (total 11 columns):
                     Non-Null Count Dtype
         # Column
        --- -----
                            -----
         0 caseNumber
                           334837 non-null int64
             treatmentDate 334837 non-null datetime64[ns]
         1
         2 statWeight 334837 non-null float64
3 stratum 334837 non-null object
4 sex 334837 non-null object
5 diagnosis 334837 non-null int64
6 bodyPart 334837 non-null int64
         7 disposition 334837 non-null int64
         8 location
                           334837 non-null int64
         9
             product
                            334837 non-null int64
         10 age
                            334837 non-null int64
        dtypes: datetime64[ns](1), float64(1), int64(7), object(2)
        memory usage: 30.7+ MB
In [36]: df['Year'] = df['treatmentDate'].dt.year
        C:\Users\punch\AppData\Local\Temp\ipykernel_15332\1686165144.py:1: SettingWithCop
        yWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
        e/user guide/indexing.html#returning-a-view-versus-a-copy
          df['Year'] = df['treatmentDate'].dt.year
In [37]: df['Month'] = df['treatmentDate'].dt.month
        C:\Users\punch\AppData\Local\Temp\ipykernel 15332\404848564.py:1: SettingWithCopy
        Warning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
        e/user guide/indexing.html#returning-a-view-versus-a-copy
         df['Month'] = df['treatmentDate'].dt.month
In [38]: df.head()
```

Out[38]:		caseNumber	treatmentDate	statWeight	stratum	sex	diagnosis	bodyPart	disp
	0	150733174	2015-07-11	15.7762	V	Male	57	33	
	1	150734723	2015-07-06	83.2157	S	Male	57	34	
	2	150817487	2015-08-02	74.8813	L	Female	71	94	
	3	150717776	2015-06-26	15.7762	V	Male	71	35	
	4	150721694	2015-07-04	74.8813	L	Female	62	75	
									•

[Q3] Can you change the format to DD/MM/YYYY? Show your work.

```
In [39]: # write your code here
         df["treatmentDate"] = df["treatmentDate"].dt.strftime("%d/%m/%Y")
         df.head()
        C:\Users\punch\AppData\Local\Temp\ipykernel_15332\366907535.py:2: SettingWithCopy
        Warning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
        e/user_guide/indexing.html#returning-a-view-versus-a-copy
          df["treatmentDate"] = df["treatmentDate"].dt.strftime("%d/%m/%Y")
Out[39]:
             caseNumber treatmentDate statWeight stratum
                                                                sex diagnosis
                                                                               bodyPart disp
               150733174
                                            15.7762
          0
                             11/07/2015
                                                               Male
                                                                           57
                                                                                     33
          1
               150734723
                             06/07/2015
                                            83.2157
                                                               Male
                                                                           57
                                                                                     34
          2
               150817487
                             02/08/2015
                                            74.8813
                                                          L Female
                                                                           71
                                                                                     94
          3
                                                                                     35
               150717776
                             26/06/2015
                                            15.7762
                                                               Male
                                                                           71
               150721694
                             04/07/2015
                                                                                     75
                                            74.8813
                                                          L Female
                                                                           62
```

Combine Dataframe by .merge and .concat

2.6 Merge

Out[41]:		Customer ID	Returned
	0	ZD-21925	Yes
	3	TB-21055	Yes
	10	JS-15685	Yes
	13	LC-16885	Yes
	20	BS-11755	Yes
	•••		
	688	ED-13885	Yes
	689	TS-21205	Yes
	696	MF-17665	Yes
	702	SH-19975	Yes
	705	RB-19435	Yes

222 rows × 2 columns

[Q4] What does the argument how="inner" do?

Ans: how="inner" จะรวมเฉพาะข้อมูลที่มีค่าตรงกันในคอลัมน์ที่ใช้เชื่อมจากทั้งสอง DataFrame เท่านั้น

[Q5] In your opinion, what information that the result above conveys?

Ans: ได้ข้อมูลการคืนสินค้าจาก Customer ID ที่คืนแล้วโดยไม่มีข้อมูลซ้ำ

More merging...

```
In [42]: superstore_order.merge(superstore_return,
    on="Order ID" ,
    how="inner")
```

Out[42]:		Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment
	0	19	CA- 2014- 143336	27/08/2014	01/09/2014	Second Class	ZD-21925	Zuschuss Donatelli	Consumer
	1	20	CA- 2014- 143336	27/08/2014	01/09/2014	Second Class	ZD-21925	Zuschuss Donatelli	Consumer
	2	21	CA- 2014- 143336	27/08/2014	01/09/2014	Second Class	ZD-21925	Zuschuss Donatelli	Consumer
	3	56	CA- 2016- 111682	17/06/2016	18/06/2016	First Class	TB-21055	Ted Butterfield	Consumer
	4	57	CA- 2016- 111682	17/06/2016	18/06/2016	First Class	TB-21055	Ted Butterfield	Consumer
	•••								
	702	8870	CA- 2017- 101805	01/12/2017	06/12/2017	Standard Class	SH-19975	Sally Hughsby	Corporate
	703	8871	CA- 2017- 101805	01/12/2017	06/12/2017	Standard Class	SH-19975	Sally Hughsby	Corporate
	704	8872	CA- 2017- 101805	01/12/2017	06/12/2017	Standard Class	SH-19975	Sally Hughsby	Corporate
	705	8873	US- 2014- 105137	10/10/2014	10/10/2014	Same Day	RB-19435	Richard Bierner	Consumer
	706	8874	US- 2014- 105137	10/10/2014	10/10/2014	Same Day	RB-19435	Richard Bierner	Consumer
	707 rd	ows × 2	22 columi	ns					
	4								•

2.7) Concatenate

In [43]:	pd	· conca	<pre>concat([superstore_order, superstore_people], axis=1, join='inner')</pre>									
Out[43]:		Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Co		
	0	1	CA- 2016- 152156	08/11/2016	11/11/2016	Second Class	CG-12520	Claire Gute	Consumer	ر :		
	1	2	CA- 2016- 152156	08/11/2016	11/11/2016	Second Class	CG-12520	Claire Gute	Consumer	L :		
	2	3	CA- 2016- 138688	12/06/2016	16/06/2016	Second Class	DV-13045	Darrin Van Huff	Corporate	L !		
	3	4	US- 2015- 108966	11/10/2015	18/10/2015	Standard Class	SO-20335	Sean ODonnell	Consumer	L :		

4 rows × 23 columns

[Q6] What is the difference between inner and outer on parameter join in pd.concat ?

ANS: inner : จะเก็บเฉพาะคอลัมน์หรือแถวที่มีอยู่ในทั้ง DataFrame ที่ทำการเชื่อมต่อ ถ้า DataFrame ใด ขาดคอลัมน์หรือแถวที่ต้องการ จะไม่ถูกนำมารวมในผลลัพธ์ outer : จะเก็บทุกคอลัมน์หรือแถวจาก DataFrame ทั้งหมด และจะเติมค่า NaN ให้ในกรณีที่มีคอลัมน์หรือแถวใดขาดหายไป ทำการรวมคอลัมน์ หรือแถวที่มีจากทุก DataFrame

Groupby

In [44]: superstore_order.groupby(['Segment','Ship Mode'])[['Sales','Quantity','Discount'

Out[44]:

		Sales	Quantity	Discount	Profit
Segment	Ship Mode				
Consumer	First Class	138594.9328	2455	110.29	18953.7264
	Same Day	53660.6340	1001	43.85	8555.7193
	Second Class	203605.6822	3489	127.29	24701.9148
	Standard Class	627061.3262	10430	443.05	68864.9892
Corporate	First Class	97720.1209	1670	73.07	12660.2526
	Same Day	41716.5550	366	14.50	1120.9222
	Second Class	130759.9288	2027	71.47	15582.1762
	Standard Class	359359.2109	6203	262.82	49832.6780
Home Office	First Class	76743.8674	924	39.82	11829.8821
	Same Day	20968.5170	343	12.50	3909.3442
	Second Class	77175.1080	1148	37.80	12785.8953

[Q7] Describe an information that the result above conveys?

Standard Class 218325.9795

Ans: แสดงข้อมูลการผลรวมของ Sales, Quantity, Discount, Profit ตาม Segment และ Ship Mode

3595

142.14 27298.5786

```
In [45]: superstore_order["Profit Ratio"] = superstore_order["Profit"]/superstore_order["
In [62]: superstore_order.groupby(["Category", "Sub-Category"]).agg(mean_profit_ratio = (
```

Out[62]:

mean_profit_ratio

Category	Sub-Category	
Furniture	Bookcases	-0.127756
	Chairs	0.045028
	Furnishings	0.140782
	Tables	-0.147916
Office Supplies	Appliances	-0.145513
	Art	0.251678
	Binders	-0.191641
	Envelopes	0.421913
	Fasteners	0.301157
	Labels	0.429984
	Paper	0.425586
	Storage	0.092382
	Supplies	0.104970
Technology	Accessories	0.219012
	Copiers	0.317826
	Machines	-0.059535
	Phones	0.118926

[Q8] Describe an information that the result above conveys?

Ans: แสดงค่าค่าเฉลี่ย Profit Ratio ในแต่ละ Category และ Sub-Category

Pivot and Melt

Pivot

In [46]: superstore_order.pivot_table(index="State", columns="Ship Mode", values="Order I

Out[46]:	Ship Mode	First Class	Same Day	Second Class	Standard Class
	State				
	Alabama	9.0	1.0	18.0	30.0
	Arizona	42.0	15.0	22.0	123.0
	Arkansas	10.0	2.0	8.0	35.0
	California	302.0	106.0	346.0	1000.0
	Colorado	43.0	5.0	32.0	95.0
	Connecticut	19.0	8.0	11.0	39.0
	Delaware	16.0	2.0	13.0	55.0
	District of Columbia	0.0	0.0	3.0	7.0
	Florida	47.0	25.0	57.0	210.0
	Georgia	19.0	15.0	31.0	108.0

In [47]: pivot_table_result = superstore_order.pivot_table(index="State", columns="Ship M
 print(pivot_table_result)

Ship Mode	First Class	Same Day	Second Class	Standard Class
State				
Alabama	9.0	1.0	18.0	30.0
Arizona	42.0	15.0	22.0	123.0
Arkansas	10.0	2.0	8.0	35.0
California	302.0	106.0	346.0	1000.0
Colorado	43.0	5.0	32.0	95.0
Connecticut	19.0	8.0	11.0	39.0
Delaware	16.0	2.0	13.0	55.0
District of Columbia	0.0	0.0	3.0	7.0
Florida	47.0	25.0	57.0	210.0
Georgia	19.0	15.0	31.0	108.0
Idaho	3.0	0.0	2.0	13.0
Illinois	58.0	24.0	96.0	249.0
Indiana	13.0	3.0	30.0	79.0
Iowa	1.0	1.0	4.0	17.0
Kansas	6.0	1.0	2.0	15.0
Kentucky	12.0	5.0	49.0	62.0
Louisiana	7.0	2.0	14.0	15.0
Maine	0.0	0.0	0.0	5.0
Maryland	18.0	7.0	12.0	63.0
Massachusetts	14.0	4.0	35.0	71.0
Michigan	20.0	16.0	43.0	151.0
Minnesota	9.0	4.0	13.0	59.0
Mississippi	3.0	4.0	7.0	36.0
Missouri	7.0	2.0	20.0	24.0
Montana	1.0	1.0	0.0	13.0
Nebraska	6.0	3.0	6.0	20.0
Nevada	4.0	1.0	12.0	17.0
New Hampshire	2.0	0.0	10.0	13.0
New Jersey	5.0	1.0	20.0	87.0
New Mexico	1.0	0.0	9.0	22.0
New York	155.0	57.0	183.0	606.0
North Carolina	36.0	14.0	40.0	139.0
North Dakota	0.0	0.0	5.0	2.0
Ohio	66.0	47.0	84.0	199.0
Oklahoma	5.0	6.0	7.0	44.0
Oregon	20.0	0.0	15.0	81.0
Pennsylvania	103.0	9.0	78.0	341.0
Rhode Island	16.0	0.0	21.0	16.0
South Carolina	3.0	5.0	18.0	16.0
South Dakota	2.0	0.0	0.0	9.0
Tennessee	21.0	2.0	24.0	118.0
Texas	125.0	37.0	161.0	537.0
Utah	4.0	2.0	19.0	28.0
Vermont	0.0	0.0	1.0	2.0
Virginia	39.0	4.0	33.0	115.0
Washington	56.0	34.0	97.0	265.0
West Virginia	0.0	0.0	0.0	3.0
Wisconsin	12.0	3.0	10.0	66.0
Wyoming	0.0	0.0	0.0	1.0

Melt

In [48]: melted_result = pd.melt(pivot_table_result.reset_index(), id_vars=["State"], var
print(melted_result)

	State	Ship Mode	Order Count
0	Alabama	First Class	9.0
1	Arizona	First Class	42.0
2	Arkansas	First Class	10.0
3	California	First Class	302.0
4	Colorado	First Class	43.0
• •	• • •		
191	Virginia	Standard Class	115.0
192	Washington	Standard Class	265.0
193	West Virginia	Standard Class	3.0
194	Wisconsin	Standard Class	66.0
195	Wyoming	Standard Class	1.0

[196 rows x 3 columns]

[Q9] What is the advantage of using melt?

ANS : เปลี่ยนรูปแบบข้อมูลจาก wide format เป็น long format ซึ่งช่วยให้การจัดการและการวิเคราะห์ ข้อมูลทำได้ง่ายขึ้น

[Q10] From the superstore_order, display the ascending order considering values in the 'Profit' column to group the 'Category'.

[Q11] Create a new column that calculates the total price (sale*quantity) before discount then group by 'product id' and 'category', then show the mean of the total price

```
In [52]: #enter your code here
    superstore_order['Total Price'] = superstore_order['Sales'] * superstore_order['
    result = superstore_order.groupby(['Product ID', 'Category'])['Total Price'].mea
    result
```

```
Out[52]: Product ID
                       Category
         FUR-BO-10000112 Furniture
                                      7426.566000
         FUR-BO-10000330 Furniture
                                    1258.192000
                                    1726.898000
         FUR-BO-10000362 Furniture
         FUR-BO-10000468 Furniture
                                     426.532400
         FUR-BO-10000711 Furniture
                                    3194.100000
                                        . . .
         TEC-PH-10004912 Technology
                                     747.320000
         TEC-PH-10004922 Technology
                                     673.249500
         TEC-PH-10004924 Technology
                                      57.149333
         TEC-PH-10004959 Technology
                                      412.009000
         TEC-PH-10004977 Technology
                                      2441.475429
         Name: Total Price, Length: 1846, dtype: float64
```

[Q12] Complete the function to apply ratio column that calculates from First Class and Standard Class columns on pivot_table_result

```
In [54]: # [Q12] Complete the function to apply `ratio` column that calculates from `Firs

# function to transform the ratio
def get_class_ratio(row):

# get the first class column
first_class = row['First Class']

# get the standard class column
standard_class = row['Standard Class']

# calculate the ratio
ratio = first_class/standard_class

return ratio

pivot_table_result["ratio"] = pivot_table_result.apply(get_class_ratio, axis=1)
pivot_table_result.head()
```

Out [54]: Ship Mode First Class Same Day Second Class Standard Class ratio

-	Alabama	9.0	1.0	18.0	30.0	0.300000
	Arizona	42.0	15.0	22.0	123.0	0.341463
A	Arkansas	10.0	2.0	8.0	35.0	0.285714
Ca	alifornia	302.0	106.0	346.0	1000.0	0.302000
C	olorado	43.0	5.0	32.0	95.0	0.452632

[Q13] After complete Q12, What does the apply function do?

ANS : พึงก์ชัน apply ใช้ get_class_ratio ไปยังแต่ละแถวของ DataFrame

[Q14] Create a new column(short_ratio) that works the same as Q12 but with lambda function

```
In [56]: # [Q13] Create a new column(`short_ratio`) that works the same as Q11 but with `
    pivot_table_result["short_ratio"] = pivot_table_result.apply(lambda row: row['Fi
    pivot_table_result.head()
```

Out[56]:	Ship Mode	First Class	Same Day	Second Class	Standard Class	ratio	short_ratio
	State						
	Alabama	9.0	1.0	18.0	30.0	0.300000	0.300000
	Arizona	42.0	15.0	22.0	123.0	0.341463	0.341463
	Arkansas	10.0	2.0	8.0	35.0	0.285714	0.285714
	California	302.0	106.0	346.0	1000.0	0.302000	0.302000
	Colorado	43.0	5.0	32.0	95.0	0.452632	0.452632

[Q15] What is the difference between using function in apply and lambda function? give 2 examples use case.

ANS:

Regular Function: ใช้พึงก์ชันมีตรรกะที่ซับซ้อนหรือมีหลายขั้นตอน และต้องการให้พึงก์ชันนั้นสามารถนำ ไปใช้ซ้ำในหลายๆครั้ง

Lambda Function: ใช้พึงก์ชันมีความง่ายและรวดเร็วในการคำนวณเพียงแค่หนึ่งบรรทัด โดยไม่ต้องการการ อธิบายหรือการใช้งานซ้ำ

Out[61]:		caseNumber	treatmentDate	statWeight	stratum	sex	diagnosis	bodyPart	disp
	0	150733174	11/07/2015	15.7762	V	Male	57	33	
	1	150734723	06/07/2015	83.2157	S	Male	57	34	
	2	150817487	02/08/2015	74.8813	L	Female	71	94	
	3	150717776	26/06/2015	15.7762	V	Male	71	35	
	4	150721694	04/07/2015	74.8813	L	Female	62	75	
	4								•
In [64]:	_	'Discount'] head()	= df.apply(lam	bda row: ro	w['statWe	eight']	* 0.2 if r	ow['sex']	== '
Out[64]:		caseNumber	treatmentDate	statWeight	stratum	sex	diagnosis	bodyPart	disp
	0	150733174	11/07/2015	15.7762	V	Male	57	33	
	1	150734723	06/07/2015	83.2157	S	Male	57	34	
	2	150817487	02/08/2015	74.8813	L	Female	71	94	
	3	150717776	26/06/2015	15.7762	V	Male	71	35	
	4	150721694	04/07/2015	74.8813	L	Female	62	75	
	4								•

Punchaya Chancharoen 65070507236