Cryptography and Security 2017

Solution Sheet 4

Solution 1 Capitain's Age

1.

$$x \equiv 1 \mod 3$$
 $x \equiv 1 \mod 3$ $x \equiv -2 \mod 5$ $\Rightarrow x \equiv 3 \mod 5$ $x \equiv -4 \mod 7$ $x \equiv 3 \mod 7$

$$\begin{split} M &= 105 \\ M_1 &= 35 \to M_1' = 35^{-1} \text{ mod } 3 = 2 \\ M_2 &= 21 \to M_2' = 21^{-1} \text{ mod } 5 = 1 \\ M_3 &= 15 \to M_3' = 15^{-1} \text{ mod } 7 = 1 \end{split}$$

so,

$$x \equiv 1 * 35 * 2 + 3 * 21 * 1 + 3 * 15 * 1 \mod 105 \rightarrow x \equiv 73 \mod 105$$

As a result, x = 73.

2.

$$3x \equiv 4 \mod 7$$
 $x \equiv 6 \mod 7$
 $2x \equiv 10 \mod 26$ \Rightarrow $x \equiv 5 \mod 13$
 $4x \equiv 12 \mod 20$ $x \equiv 3 \mod 5$

so, we have

$$\begin{split} M &= 455 \\ M_1 &= 65 \to M_1' = 65^{-1} \mod 7 = 4 \\ M_2 &= 35 \to M_2' = 35^{-1} \mod 13 = 3 \\ M_3 &= 91 \to M_3' = 91^{-1} \mod 5 = 1 \end{split}$$

As a result,

$$x \equiv 6*65*4+5*35*3+3*91*1 \mod 455 \rightarrow x \equiv 83 \mod 455$$

Solution 2 Ambiguous Power

- 1. Since p and q are different prime numbers, they are coprime. So, we can use the Chinese remainder theorem. Let $\alpha = q(q^{-1} \bmod p)$ and $\beta = p(p^{-1} \bmod q)$. The number $z = 3\alpha + 5\beta$ is such that $z \bmod p = 3$ and $z \bmod q = 5$.
- 2. Since $\frac{p-1}{2}$ and $\frac{q-1}{2}$ are odd and coprime, 2, $\frac{p-1}{2}$, and $\frac{q-1}{2}$ are coprime. So, we can use the Chinese remainder theorem and find e such that $e \mod 2 = 1$, $e \mod \frac{p-1}{2} = 3$ and $e \mod \frac{q-1}{2} = 5$. Clearly, e and 3 are equal modulo 2 and modulo $\frac{p-1}{2}$, so they are equal modulo p-1. Similarly, e and 5 are equal modulo 2 and modulo $\frac{q-1}{2}$, so they are equal modulo q-1. So, $x^e \equiv x^{e \mod (p-1)} \equiv x^3 \pmod{p}$ and $x^e \equiv x^{e \mod (q-1)} \equiv x^5 \pmod{q}$.
- 3. Let $\alpha=15$, $\beta=10$, and $\gamma=6$. We take $e=\alpha+0\beta+0\gamma=15$ and obtain $e \bmod 2=1$, $e \bmod 3=3 \bmod 3$, and $e \bmod 5=5 \bmod 5$. We can check that $e \bmod 6=3$ and $e \bmod 10=5$.

4. For such e to exist, it is necessary that $e \equiv e_p \pmod{p-1}$ and $e \equiv e_q \pmod{q-1}$. Since both p-1 and q-1 are even, it is necessary that $e \equiv e_p \pmod{2}$ and $e \equiv e_q \pmod{2}$. So, it is necessary that $e_p \equiv e_q \pmod{2}$.

This condition is also sufficient: if $e_p \equiv e_q \pmod 2$, we construct using the Chinese remainder theorem e such that $e \equiv e_p \pmod 2$ (so, we also have $e \equiv e_q \pmod 2$), $e \equiv e_p \pmod \frac{p-1}{2}$, and $e \equiv e_q \pmod \frac{q-1}{2}$. Since $e \equiv e_p \pmod 2$ and $e \equiv e_p \pmod \frac{p-1}{2}$, we deduce $e \equiv e_p \pmod p-1$. So, $x^e \equiv x^{e_p} \pmod p$. Similarly, we have $e \equiv e_q \pmod {q-1}$. So, $x^e \equiv x^{e_q} \pmod q$.

Solution 3 RSA with exponent 3

- 1. p, q are prime numbers more than 3, so it is clear than can not be multiple of 3.
- 2. $gcd(e, \phi(n)) = 1$.
- 3. $gcd(e, \phi(n)) = 1$, so gcd(e, (p-1)(q-1)) = 1, if p-1 or q-1 is a multiple of 3, then gcd(e, (p-1)(q-1)) = 3, which is a contradiction.
- 4. $3 \nmid p$ and $3 \nmid p-1$, so $3 \mid p-2$, the same applies to q.
- 5. p = 3k + 2 and q = 3k' + 2, so $n \mod 3 = pq \mod 3 = 1$.
- 6. Simply as a result of $10 \mod 3 = 1$.
- 7. $n \mod 3$ should be 1, while for the given n, we have $n \mod 3 = 2$.