Programme de colle - Semaine 4

Notation

On adoptera les principes suivants pour noter les étudiants :

- \times si l'étudiant sait répondre à la question de cours, il aura une note > 8.
- \times si l'étudiant ne sait pas répondre à la question de cours ou s'il y a trop d'hésitations, il aura une note ≤ 8 .

Questions de cours

• Intersection de sev

Soit E un espace vectoriel et soient F et G deux sous-espaces vectoriels de E. Alors $F \cap G$ est un sous-espace vectoriel.

Preuve.

- On a $F \cap G \subset F \subset E$.
- $0_E \in F \cap G$. En effet : $0_E \in F$ et $0_E \in G$.
- Soit $(\lambda, \mu) \in \mathbb{R}^2$. Soit $(u, v) \in (F \cap G)^2$.
 - × Comme $(u, v) \in (F \cap G)^2$, alors $(u, v) \in F^2$.

Or F est un sous-espace vectoriel de E, on a alors : $u + \lambda v \in F$.

× Comme $(u, v) \in (F \cap G)^2$, alors $(u, v) \in G^2$.

Or G est un sous-espace vectoriel de E, on a alors : $u + \lambda v \in G$.

On en déduit que $u + \lambda v \in F \cap G$.

• Stabilité d'un sev engendré

Soit E un \mathbb{R} -ev. Soit $(u_1, \ldots, u_m) \in E^m$. On a :

$$u_{m+1} \in \operatorname{Vect}(u_1, \dots, u_m) \Rightarrow \operatorname{Vect}(u_1, \dots, u_m, u_{m+1}) = \operatorname{Vect}(u_1, \dots, u_m)$$

Preune

Supposons $u_{m+1} \in \text{Vect}(u_1, \dots, u_m)$.

Démontrons que Vect $(u_1, \ldots, u_m, u_{m+1}) = \text{Vect } (u_1, \ldots, u_m).$

- \times (\supset) Évident.
- \times (\subset) Comme $u \in \text{Vect}(u_1, \dots, u_m, u_{m+1})$, alors le vecteur u s'écrit $u = \sum_{i=1}^{m+1} \lambda_i \cdot u_i$.

Or $u_{m+1} \in \text{Vect}(u_1, \dots, u_m)$, donc $u_{m+1} = \sum_{i=1}^m \mu_i \cdot u_i$. Ainsi:

$$u = \left(\sum_{i=1}^{m} \lambda_i \cdot u_i\right) + \lambda_{m+1} \cdot u_{m+1}$$

$$= \left(\sum_{i=1}^{m} \lambda_i \cdot u_i\right) + \lambda_{m+1} \cdot \left(\sum_{i=1}^{m} \mu_i \cdot u_i\right)$$

$$= \sum_{i=1}^{m} (\lambda_i + \lambda_{m+1} \times \mu_i) \cdot u_i$$

et donc $u \in \text{Vect}(u_1, \dots, u_m)$.

• Techniques de base

On choisira de demander au choix à l'étudiant de :

- × montrer qu'un espace F est un sous-espace vectoriel d'un espace vectoriel E, sur un exemple dans \mathbb{R}^n , $\mathscr{M}_{n,p}(\mathbb{R})$, $\mathbb{R}[X]$, $\mathbb{R}_n[X]$, $\mathbb{R}^\mathbb{N}$, $\mathbb{R}^\mathbb{R}$, etc.
- \times montrer qu'une famille de vecteurs est génératrice d'un espace vectoriel donné, sur un exemple.
- × montrer qu'une famille de vecteurs est libre dans un espace vectoriel donné, sur un exemple.

Connaissances exigibles

- convergence de suites numériques (théorème de convergence monotone, théorème d'encadrement, etc.)
- suites adjacentes
- étude de suites récurrentes (les élèves doivent être guidés dans le cheminement de ces études)
- équivalents
- négligeabilité
- séries numériques, à termes positifs, séries usuelles, comparaison série / intégrale, comparaisons de séries par négligeabilité et équivalence.
- les séries alternées sont hors programme mais les étudiants ont vu en exercice comment démontrer le critère de convergence des séries alternées.
- toutes les techniques sont à connaître (sommation télescopique, calcul direct des sommes partielles séries usuelles, comparaison séries / intégrales, critères sur les SATP...)
- on insistera particulièrement en colle sur les rédactions classiques (notamment pour tous les critères sur les SATP).
- espaces vectoriels, sous-espaces vectoriels
- famille génératrice, famille libre, base
- bases canoniques de \mathbb{R}^n , $\mathcal{M}_{n,p}(\mathbb{R})$ et $\mathbb{R}_n[X]$.
- la notion de dimension a été introduite en cours mais aucune des propriétés y faisant référence.
- La notion de rang n'est pas au programme de cette semaine de colle.