HW2

BURAK BAHAR

2380137

1

1.1
$$L_1 = \{ V_1, \Sigma_1, R_1, S_1, \}$$

 $V_1 = \{ S, a, b \}$
 $\Sigma_1 = \{ a, b \}$
 $R_1 = \{ S \rightarrow SbSbSaS|SbSaSbS|SaSbSbS|e \}$
 $S_1 = \{ S \}$

1.2
$$L_2 = \{ V_2, \Sigma_2, R_2, S_2, \}$$

 $V_2 = \{ T, a, b \}$
 $\Sigma_2 = \{ a, b \}$
 $R_2 = \{ T \rightarrow aTb|aaTb|e \}$
 $S_2 = \{ T \}$

1.3
$$M = \{ K, \Sigma, \Gamma, \Delta, s, F \}$$

 $K = \{ p, q \}$
 $\Sigma = \{ S, a, b \}$
 $\Gamma = \{ S, a, b \}$
 $\Delta = \{ (p, e, e)(q, S),$
 $(p, e, S)(q, SbSbSaS),$
 $(q, e, S)(q, SbSaSbS),$
 $(q, e, S)(q, SaSbSbS),$
 $(q, e, S)(q, e),$
 $(q, e, a)(q, e),$
 $(q, e, b)(q, e) \}$
 $S = \{ p \}$
 $S = \{ q \}$

1.4 L_1 and L_2 are both context free grammars, with disjoint sets of non terminals. Let K be a new symbol and

$$L_3 = \{(V_1 \cup V_2 \cup K), (\Sigma_1 \cup \Sigma_2), (R_1 \cup R_2 \cup (K \to S, K \to T)), K\}$$

$$V_3 = \{ K, S, T, a, b \}$$

$$\Sigma_3 = \{ a, b \}$$

$$R_3 = \{ K \to S | T, T \to aTb | aaTb | e, S \to SbSbSaS | SbSaSbS | SaSbSbS | e \}$$

$$S_3 = \{ K \}$$

2.1 If a word w has more than one parse tree that represents it then language is ambiguous. And as showed below we can draw 2 different parse trees for word "00111" with given CFL.

- **2.2** $\{S \rightarrow AS | e, A \rightarrow 0C1, C \rightarrow 0C1 \mid B, B \rightarrow B1 \mid e\}$
- $\textbf{2.3} \quad S \rightarrow AS, \ A \rightarrow 0C1, \ C \rightarrow 0C1, \ C \rightarrow B, \ B \rightarrow B1, \ B \rightarrow e, \ S \rightarrow e$

