

DeepSTLD: Deep Neural Network and Focal Regression Loss for Small Traffic Lights Detector

한국정보과학회 KCC 2018

박경민,김대진 포항공과대학교 컴퓨터공학과

Abstract

Main Objection

Vision based traffic light detection

Problem

- Traffic lights are too small
 - A traffic light occupies only 12×4 px in 1280×720 image
- (When using one-stage detector such as YOLO and SSD) Too large amount of background dominate training process

Our Approaches

- DeepSTLD
 - Deep neural network for small traffic light detector
 - YOLOv2 based, encoder-decoder hourglass structure
- Focal Regression Loss
 - Focal loss based loss function for regression
 - We substitute L2 in original YOLOv2 loss with focal regression loss

DeepSTLD

Overview

Encoder Network

- Encode an input image to feature maps
- We used ResNet-101 as the encoder network

Decoder Network

Decoder network

Deconvolutional block

- Decode feature maps from the proceeding encoder network
 - Upsample late feature maps of the encoder network by deconvolutional process
 - Combine upsampled feature maps with early feature maps of the encoder network
- The <u>result feature map</u> has <u>detailed</u> information in the early feature maps as well as <u>contextually strong</u> information in the late feature maps

Detector Network

 Predict <u>bounding boxes</u>, <u>confidences</u>, <u>class probabilities</u> from the result of the proceeding decoder network

Focal Regression Loss

Focal Regression Loss

- Reduce loss of easy examples
- Most of backgrounds are easy example
- By reducing loss of easy examples, backgrounds do not dominate training process
- $\mathcal{L}^{FR}(p,q) = -|p-q|^{\gamma} \log(1-|p-q|)$
 - $p \in [0, 1]$: regressed value
 - $q \in [0, 1]$: regression target
 - $\gamma \geq 0$: focusing parameter
 - $|p-q|^{\gamma}$: modulating factor

Training DeepSTLD with focal regression loss

- We <u>substitute L2 loss for confidence regression</u> in YOLOv2 with focal regression loss.
- Loss of DeepSTLD for confidence regression \mathcal{L}_{obi}

$$\mathcal{L}_{obj} = \lambda_{obj} \sum_{i} \sum_{j} I_{ij} \mathcal{L}^{FR} \left(\sigma \left(p_{ij}^{conf} \right), t_{ij}^{conf} \right)$$

$$+ \lambda_{noobj} \sum_{i} \sum_{j} \left(1 - I_{ij} \right) \mathcal{L}^{FR} \left(\sigma \left(p_{ij}^{conf} \right), 0 \right)$$

- λ_{obj} , λ_{noobj} : weights for foreground and background respectively
- p_{ij}^{conf} : confidence of the bounding box which is predicted by the j-th anchor box at the i-th grid cell
- $t_{ij}^{conf} = IOU(predicted\ bbox, target\ bbox)$:
 regression target when foreground
- I_{ii} : indication function for foreground

Experimental Results

Dataset

- Bosch Small Traffic Lights Dataset
 - 5093 training images, 8334 test images
 - Median width of traffic lights: 8.5px

Experimental model

- deconv : 3 deconvolutional blocks, original YOLOv2 loss (L2)
- deconv + frl: 3 deconvolutional blocks, focal regression loss

Result

• mAP

model	$IOU \geq 0.5$	$IOU \geq 0.3$
deconv	0.5021	0.6850
deconv + frl	0.5641	0.7871

Recall