Don't-Care Conditions:

In some digital systems, certain input conditions never occur during normal operation. For those inputs, the corresponding outputs can take any value- '0' or '1'. In K-map these outputs are marked as 'X'. Example:

Α	В	С	D	2	b	-	d	0	f	σ.
				а		С		е		g
0	0	0	0		1	-	1	1	1	0
0	0	0	1	0	1	- 1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	6	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	X	0	1	1	1	1	1
0	1	1	1	1	1	1	0	6	X	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	×	0	1	1
1	0	1	0	X	×	×	×	×	X	×
1	0	1	1	×	×	X	×	X	X	X
1	1	0	0	*						•
1	1	0	1	×						
1	1	1	0	×						,
1	1	1	1	X	X	X	X	X	X	X

Ex. For LED 'a'

\(\Sm(0,2,3,5,\bar{1},\bar{8},9)+\)

Product of Sums Simplification using K-map:

Ex.
$$F(X,Y,Z) = \sum m(0,1,2,3,6,7)$$

 $= \prod M(4,5) = (X+Y+Z)$
 $(X+Y+Z)(X+Y+Z)$
 $= (X+Y+Z)(X+Y+Z)$
 $= (X+Y+Z)(X+Y+Z)$
 $= (X+Y+Z)(X+Y+Z)$
 $= (X+Y+Z)(X+Y+Z)$

OR

Ex. Find minimal SOP and minimal POS for the following Boolean function:

$$F(A, B, C, D) = \sum m(2, 10, 14) + \sum d(6)$$

Ex. Find minimal SOP and minimal POS for the following Boolean function:

$$F(A, B, C, D) = \sum m(2, 10, 14) + \sum d(3, 11)$$

pos

$$F = CD(A+B)$$

Digital Circuits:

1. Combinational Circuits

It consists of logic gates whose outputs at any time are determined by current inputs using logic operations.

Ex.

- a) Arithmetic circuits like binary adder,
 BCD adder etc
- b) Multiplexer and Demultiplexer
- c) Encoder and Decoder

2. Sequential Circuits

It consists of combinational circuits and storage elements. Therefore, its ouputs depends on current inputs and previous outputs or states.

Ex.

- a) Flip-flops
- b) Registers
- c) Counters

Combinational Circuits

Binary Adders:

1. Half Adder

Inp	uts	Outputs		
X	Υ	С	S	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

2. Full Adder

	Inputs	Output		
X	Υ	Cin	Cout	S
0	0	0 0		0
0	0	1	0	1
0	1	0	6	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1