

EE140 Introduction to Communication Systems Lecture 6

Instructor: Prof. Lixiang Lian ShanghaiTech University, Fall 2022

Architecture of a (Digital) Communication System

Examples of Analog Modulation

Modulation

- What is modulation?
 - Transform a message into another signal to facilitate transmission over a communication channel
 - Generate a carrier signal at the transmitter
 - Modify some characteristics of the carrier with the information to be transmitted
 - Detect the modifications at the receiver
- Why modulation?
 - Frequency translation
 - Frequency-division multiplexing
 - Noise performance improvement

Modulation

Analog Continuous-Wave Modulation

Characteristics that can be modified in the carrier

$$C(t) = A(t)\cos(2\pi f(t)t + \theta(t))$$

Amplitude

Amplitude modulation

Frequency

Angle modulation

cosa;(t)

PM

AM

Analog Pulse Modulation

Characteristics that can be modified in the carrier

$$C(t) = \sum_{n} \Pi\left(\frac{t - nT_{S} + \frac{1}{2}\tau}{\tau}\right)$$

Outline

Contents

- Analog Modulation
 - Continuous-Wave Amplitude Modulation
 - DSB
 - SSB
 - VSB
 - Pulse Amplitude Modulation
 - Angle Modulation (phase/frequency)

Amplitude Modulation

- Double-sideband suppressed-carrier AM (DSB-SC)
 - Baseband signal (modulating wave):

Carrier wave

$$C(t) = A_c \cos(2\pi f_c t)$$

Modulated wave

$$\mathbf{x}_{c}(t) = m(t)C(t)$$

$$= A_{c}m(t)\cos(2\pi f_{c}t)$$

$$X_{c}(f) = \frac{1}{2}A_{c}M(f + f_{c}) + \frac{1}{2}A_{c}M(f - f_{c})$$

DSB-SC Spectrum

$$X_c(f) = \frac{1}{2} A_c [M(f - f_c) + M(f + f_c)]$$

Demodulation of DSB-SC Signals

Phase-coherent demodulation

$$d(t) = x_c(t) 2 \cos 2\pi f_c t = A_c m(t) 2 \cos^2 2\pi f_c t$$

= $A_c m(t) + A_c m(t) \cos 4\pi f_c t$

Demodulation of DSB-SC Signals

DSB-SC demodulation: graphic interpretation

Comment on DSB-SC

- Good:
 - 100% power efficient
- Bad:
 - High transmission bandwidth: B=2W
 - Demodulation is difficult: Phase Coherent
 - Phase error \rightarrow serious distortion Time-varying $d(t) = x_c(t) 2 \cos(2\pi f_c t + \theta(t))$ phase error $= A_c \cos \theta(t) m(t) + A_c m(t) \cos(4\pi f_c t + \theta(t))$ $y_D(t) = m(t) \cos \theta(t)$ Serious distortion
 - How to generate phase coherent demodulation carrier
 - Sol 1: Costas phase-locked loop: Complicate the receiver design
 - Sol 2: Transmit the carrier component with the DSB signal, simplify the demodulation design→ Doublesideband, Large-carrier (DSB-LC)

Double-sideband, Large-carrier (DSB-LC)

 DSB-LC signal (conventional AM signal) = DSB-SC signal + a carrier term

$$x_c(t) = A_c m(t) \cos 2\pi f_c t + A_c \cos 2\pi f_c t$$
$$x_c(t) = A_c [1 + a m_n(t)] \cos 2\pi f_c t$$

- a: modulation index, $0 < a \le 1$
- $\bullet \quad m_n(t) = \frac{m(t)}{|\min[m(t)]|} \ge -1$
- Envelope of the AM signal $A_c[1 + am_n(t)]$ is nonnegative for all t

Graphic Interpretation

DSB-LC signal

Demodulation of DSB-LC Signals

- Coherent demod: possible, but not easy.
 - Phase and frequency synchronizations are required;
- Noncoherent demod: envelope detection
 - The RC circuit can perform low pass filtering
 - Condition: $1.1 + am_n(t) \ge 0 \iff 0 < a \le 1, m_n(t) \ge -1$ $2.f_c \gg W$

The simplicity of envelop detector has made Conventional AM a practical choice for AM-radio broadcasting

Demodulation of DSB-LC Signals

- Coherent demod: possible, but not easy.
 - Phase and frequency synchronizations are required;
- Noncoherent demod: envelope detection
 - The RC circuit can perform low pass filtering
 - Condition: $0 < a \le 1$, $m_n(t) \ge -1 \& f_c \gg W$

The simplicity of envelop detector has made Conventional AM a practical choice for AM-radio broadcasting

DSB-LC Properties

- The role played by modulation index a
 - a<1: the envelope is always positive.
 - a=1: minimum value of envelope is zero
 - a>1: envelope detection output is badly distorted.

Transmission Efficiency

Transmission (modulation, power) efficiency:

$$\langle x_c^2(t) \rangle = \langle A_c^2[1 + am_n(t)]^2 \cos^2(2\pi f_c t) \rangle$$

$$= \langle \frac{1}{2} A_c^2[1 + am_n(t)]^2(1 + \cos(4\pi f_c t)) \rangle$$

$$= \langle \frac{1}{2} A_c^2[1 + am_n(t)]^2 \rangle$$

$$= \langle \frac{1}{2} A_c^2[1 + am_n(t)]^2 \rangle$$

$$= \frac{1}{2} A_c^2 + \frac{1}{2} A_c^2 a^2 \langle m_n^2(t) \rangle \rangle$$

$$m_n(t) \text{ is slowly varying w.r.t. carrier}$$

$$= \frac{1}{2} A_c^2 + \frac{1}{2} A_c^2 a^2 \langle m_n^2(t) \rangle \rangle \rangle$$

$$m_n(t) \text{ is zero-average}$$

The transmission efficiency

$$\mu = \frac{P_S}{P_t} = \frac{\frac{1}{2} A_c^2 a^2 \langle m_n^2(t) \rangle}{\frac{1}{2} A_c^2 a^2 \langle m_n^2(t) \rangle + \frac{1}{2} A_c^2} = \frac{a^2 \langle m_n^2(t) \rangle}{a^2 \langle m_n^2(t) \rangle + 1}$$

- If $|\min m(t)| = |\max m(t)|$, the maximum efficiency is 50% for a=1.
 - $\langle m_n(t) \rangle^2 \le 1$
 - Square-wave-type message signal

Transmission Efficiency

The transmission efficiency

$$\mu = \frac{P_S}{P_t} = \frac{\frac{1}{2} A_c^2 a^2 \langle m_n^2(t) \rangle}{\frac{1}{2} A_c^2 a^2 \langle m_n^2(t) \rangle + \frac{1}{2} A_c^2} = \frac{a^2 \langle m_n^2(t) \rangle}{a^2 \langle m_n^2(t) \rangle + 1}$$

- If $|\min m(t)| = |\max m(t)|$, the maximum efficiency is 50% for a=1.
- If $m(t) = cos(2\pi t)$, $\langle m^2(t) \rangle = \frac{1}{2} \rightarrow \mu = 33\%$ for a=1.
- For comparison, the transmission efficiency of a DSB-SC system is 100%.

Comment on DSB-LC (AM)

• Good:

Demodulation is simple and inexpensive: envelope detection

Bad:

- Low power efficiency
- High transmission bandwidth: B=2W

Single-sideband (SSB) Modulation

 DSB modulation results in a doubling of the bandwidth of a given signal.

- Each pair of sidebands (i.e. upper or lower) contains the complete information of the original signal.
- The original signal can be recovered again from either the upper or lower pair of sidebands by an appropriate frequency translation. → singlesideband modulation

SSB

 Advantage: SSB modulation is efficient because it requires no more bandwidth than that of the original signal and only half that of the corresponding DSB signal.

Generation of SSB Signals

- Generation of SSB signals
- Method 1: sideband filtering
 - generate a DSB-SC signal;
 - filter out one pair of sidebands (upper or lower).
- Requirement of method 1:
 - does not contain significant low-frequency components;
 - Ideal filter if low-freq is contained in m(t).

26

Generation of SSB Signals (Cont'd)

- Method 2: phase-shift
 - generate the quadrature function $\hat{m}(t)$ by shifting the phase of m(t) by 90 degrees at each frequency component.
 - Upper (SSB+) sideband and lower (SSB-) sideband are given by

$$x_c(t) = x_{SSB\mp}(t) = \frac{1}{2} A_c m(t) \cos 2\pi f_c t \pm \frac{1}{2} A_c \widehat{m}(t) \sin 2\pi f_c t$$

- Requirement:
 - phase shifted by exactly 90 degrees.
 - Ideal widebandphase shifter

Generation of SSB Signals (Cont'd)

Method 2: phase-shift

Generation of SSB Signals (Cont'd)

Method 2: phase-shift

SSB Demodulation

- Synchronous detection
 - Received SSB signal:

$$x_c(t) = \frac{1}{2} A_c m(t) \cos 2\pi f_c t \pm \frac{1}{2} A_c \widehat{m}(t) \sin 2\pi f_c t$$

– Local generated carrier signal:

$$C(t) = 4\cos[2\pi f_c t + \theta(t)]$$

Time-varying phase error

$$\begin{split} x_c(t)C(t) &= [\frac{1}{2}A_c m(t)\cos 2\pi f_c \, t \pm \frac{1}{2}A_c \widehat{m}(t)\sin 2\pi f_c \, t] 4\cos[2\pi f_c t + \theta(t)] \\ &= A_c m(t) \left\{\cos[\theta(t)] + \cos[4\pi f_c t + \theta(t)]\right\} \mp A_c \widehat{m}(t) \left\{\sin[\theta(t)] - \sin[4\pi f_c t + \theta]\right\} \end{split}$$

– Through a low-pass filter (LPF), the output is given by:

$$y_D(t) = m(t) \cos \theta(t) \mp \widehat{m}(t) \sin \theta(t)$$
 Serious distortion

If no error

$$y_D(t) = m(t)$$

SSB Demodulation (Cont'd)

Frequency domain graphic interpretation

SSB Demodulation

- Carrier Reinsertion
 - After carrier reinsertion

$$e(t) = \left[\frac{1}{2}A_c m(t) + K\right] \cos 2\pi f_c t \pm \frac{1}{2}A_c \widehat{m}(t) \sin 2\pi f_c t$$

Envelope detection, not straightforward

$$y_D(t) = \sqrt{\left[\frac{1}{2}A_c m(t) + K\right]^2 + \left[\frac{1}{2}A_c \widehat{m}(t)\right]^2}$$

$$\approx \frac{1}{2}A_c m(t) + K$$

$$\left[\frac{1}{2}A_c m(t) + K\right]^2 \gg \left[\frac{1}{2}A_c \widehat{m}(t)\right]^2$$

- Requirement of envelope detection
 - The carrier is much larger than the SSB envelope
 - Phase coherent with original modulation carrier

Comments on SSB

- Good:
 - Save spectrum
 - Save energy
- Bad:
 - Complex implementation (modulation and demodulation)

Vestigial-sideband (VSB) Modulation

- The generation of SSB signals may be quite difficult when the modulating signal bandwidth is wide or where one cannot disregard the low-frequency components.
- In Vestigial-sideband (VSB) modulation, a portion of one sideband is transmitted.
- VSB is a compromise between SSB and DSB.
- Generation of VSB-SC signals: in frequency domain

$$X_{VSB-SC}(f) = \frac{A_C}{2} [M(f + f_c) + M(f - f_c)] H(f)$$

– Where filter H(f) passes some of the lower (or upper) sideband and most of the upper (or lower) sideband.

Vestigial-sideband (VSB) Modulation

- The requirement on the filter
- Consider coherent detection

$$X_c(f) = \frac{A_c}{2} [M(f + f_c) + M(f - f_c)]H(f)$$

$$d(t) = A'_{c}x_{c}(t)\cos 2\pi f_{c}t$$

$$D(f) = \frac{A'_{c}}{2}[X_{c}(f + f_{c}) + X_{c}(f - f_{c})] =$$

$$= \frac{A_{c}A'_{c}}{4}\{[H(f - f_{c}) + H(f + f_{c})]M(f) + M(f + 2f_{c})H(f + f_{c})$$

$$Y_D(f) = \frac{A_C A_C'}{4} M(f) [H(f - f_C) + H(f + f_C)]$$

EE140: Introduction to Communication Systems

Vestigial-sideband (VSB) Modulation

The requirement on the filter

$$Y_D(f) = \frac{A_C A_C'}{4} M(f) [H(f - f_C) + H(f + f_C)]$$

Recover the m(t) without distortion

$$H(f - f_c) + H(f + f_c) = 2H(f_c), -W \le f \le W$$

Cutoff portion of H(f) is odd symmetric around fc.

Odd symmetry: $H(f_c + \Delta) + H(f_c - \Delta) = 2H(f_c), |\Delta| \le f_v$

VSB Modulation (Cont'd)

Frequency domain graphic interpretation

Comparison of AM Techniques

- DSB-SC:
 - more power efficient. Seldom used
- DSB-LC (AM):
 - simple envelop detector
 - Example: AM radio broadcast
- SSB:
 - requires minimum transmitter power and bandwidth. Suitable for point-topoint and over long distances
- VSB:
 - bandwidth requirement between SSB and DSBSC.
 - Example: TV transmission

Comparison of AM Techniques

- Demodulation
 - Coherent Demodulation
 - All linear modulation

- Envelope Detection
 - DSB-LC(AM)
 - SSB + Carrier reinsertion
 - VSB + Carrier reinsertion

Contents

- Analog Modulation
 - Amplitude modulation
 - Pulse amplitude modulation
 - Angle modulation (phase/frequency)

Analog Pulse Modulation

Analog Pulse Modulation (cont'd)

- PAM: constant-width, uniformly spaced pulses whose amplitude is proportional to the values of the input at the sampling instants.
- PWM: constant-amplitude pulses whose width is proportional to the values of the input at the sampling instants.
- PPM: constant-width, constant-amplitude pulses whose position is proportional to the values of the input at the sampling instants.

Pulse Amplitude Modulation (PAM)

Thanks for your kind attention!

Questions?