TESTE N.º 5 - Proposta de resolução

1.

1.1. Opção (C)

raio =
$$h\left(\frac{\pi}{2}\right) - h(0) =$$

= $40 + 11 \operatorname{sen}\left(\frac{\pi}{2}\right) - 40 =$
= $40 + 11 - 40 =$
= 11

Logo, diâmetro = 22 cm.

1.2. t. v. m.
$$\left[\frac{\pi}{4}, \frac{\pi}{3}\right] = \frac{h\left(\frac{\pi}{3}\right) - h\left(\frac{\pi}{4}\right)}{\frac{\pi}{3} - \frac{\pi}{4}} =$$

$$= \frac{40 + 11 \operatorname{sen}\left(\frac{\pi}{3}\right) - \left(40 + 11 \operatorname{sen}\left(\frac{\pi}{4}\right)\right)}{\frac{\pi}{12}} =$$

$$= \frac{40 + 11 \times \frac{\sqrt{3}}{2} - 40 - 11 \times \frac{\sqrt{2}}{2}}{\frac{\pi}{12}} =$$

$$= \frac{\frac{11}{2}(\sqrt{3} - \sqrt{2})}{\frac{\pi}{12}} =$$

$$= \frac{66(\sqrt{3} - \sqrt{2})}{\pi} \approx 6,7$$

A taxa de variação média é 6,7 cm/rad, o que significa que, quando a amplitude do ângulo α varia de $\frac{\pi}{4}$ rad para $\frac{\pi}{3}$ rad, a altura da extremidade da pá ao solo aumenta, em média, 6,7 cm por radiano.

1.3. Seja $h(\theta) = 40 + 11 \text{sen } \theta$.

Sabe-se que $h(\theta + 0.5) = h(\theta) + 2$.

Pretende-se, então, determinar o valor de θ tal que 40+11sen ($\theta+0.5$) = 40+11sen $\theta+2$.

Recorrendo às capacidades gráficas da calculadora, tem-se:

$$x\in [0,\pi]$$

$$y_1 = 40 + 11 \operatorname{sen}(x + 0.5)$$

$$y_2 = 42 + 11 \text{sen } x$$

Seja $\it I$ o ponto de interseção.

As coordenadas de *I* são (0,94; 50,91).

Assim, $\theta \approx 0.94$.

2. Opção (B)

$$A\hat{B}C = 180^{\circ} - 2 \times 67,5^{\circ} = 45^{\circ}$$

$$\overrightarrow{BA} \cdot \overrightarrow{CB} = \overrightarrow{BA} \cdot (-\overrightarrow{BC}) = -\|\overrightarrow{BA}\| \times \|\overrightarrow{BC}\| \times \cos(A\widehat{B}C) =$$
$$= -\sqrt{3} \times \sqrt{3} \times \cos(45^{\circ}) =$$
$$= -3 \times \frac{\sqrt{2}}{2}$$

3.

3.1. Opção (D)

Sendo a esfera tangente ao plano x0y e de centro em E, o seu raio é a cota do ponto E, isto é, 2. Assim, uma condição que define a esfera é:

$$(x+2)^2 + (y-5)^2 + (z-2)^2 \le 2^2$$

3.2. Seja α o plano mediador do segmento de reta [*BE*].

O vetor \overrightarrow{BE} , de coordenadas (-1,5,2), é um vetor normal ao plano α , logo uma equação do plano α é da forma -x + 5y + 2z + d = 0, $d \in IR$.

$$B = E + \overrightarrow{EB} = (-2,5,2) + (1,-5,-2) = (-1,0,0)$$

Seja M o ponto médio de [BE]:

$$M = \left(\frac{-1 + (-2)}{2}, \frac{0 + 5}{2}, \frac{0 + 2}{2}\right) = \left(-\frac{3}{2}, \frac{5}{2}, 1\right)$$

Como $M \in \alpha$, vem que:

$$-\left(-\frac{3}{2}\right) + 5 \times \frac{5}{2} + 2 \times 1 + d = 0 \Leftrightarrow \frac{3}{2} + \frac{25}{2} + 2 + d = 0$$
$$\Leftrightarrow d = -16$$

Assim, uma equação de α é -x + 5y + 2z - 16 = 0.

3.3. Seja a o lado do quadrado [ABCD], base da pirâmide.

Sabemos que o volume da pirâmide é 30 e que a sua altura é a ordenada do ponto *E*, isto é, 5. Assim:

$$30 = \frac{1}{3} \times a^2 \times 5 \Leftrightarrow a^2 = \frac{90}{5} \Leftrightarrow a^2 = 18$$

Logo, $a = \sqrt{18}$, pois a > 0.

Como A pertence ao semieixo positivo Oz, as coordenadas de A são da forma $(0,0,z), z \in IR^+$. Da alínea anterior, tem-se que as coordenadas de B são (-1,0,0).

$$z^2 + 1^2 = \left(\sqrt{18}\right)^2 \Leftrightarrow z^2 = 17$$

Logo, $z = \sqrt{17}$ e, assim, $A(0,0,\sqrt{17})$.

4. Opção (B)

$$\lim u_n = \lim \frac{n^2 + 2}{-n^3 + 3} = \lim \frac{n^2 \left(1 + \frac{2}{n^2}\right)}{n^3 \left(-1 + \frac{3}{n^3}\right)} = \lim \frac{1 + \frac{2}{n^2}}{n \left(-1 + \frac{3}{n^3}\right)} =$$

$$= \frac{1 + 0}{+\infty \times (-1 + 0)} =$$

$$= \frac{1}{-\infty} =$$

$$= 0^-$$

Assim, $\lim f(u_n) = \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \sqrt{x^2 + 1} = 1.$

5. Como a+4, a+1 e $-a+\frac{7}{2}$ são três termos de uma progressão geométrica, então:

$$\frac{a+1}{a+4} = \frac{-a+\frac{7}{2}}{a+1} \Leftrightarrow (a+1)^2 = (a+4) \times \left(-a+\frac{7}{2}\right)$$

$$\Leftrightarrow a^2 + 2a + 1 = -a^2 + \frac{7}{2}a - 4a + 14$$

$$\Leftrightarrow 2a^2 + \frac{5}{2}a - 13 = 0$$

$$\Leftrightarrow 4a^2 + 5a - 26 = 0$$

$$\Leftrightarrow a = \frac{-5 \pm \sqrt{5^2 - 4 \times 4 \times (-26)}}{2 \times 4}$$

$$\Leftrightarrow a = \frac{-5 \pm \sqrt{441}}{8}$$

$$\Leftrightarrow a = 2 \quad \forall \quad a = -\frac{13}{4}$$

Se a=2, os três termos são 2+4, 2+1 e $-2+\frac{7}{2}$, ou seja, 6, 3 e $\frac{3}{2}$, o que é possível, pois (v_n) é monótona decrescente.

Se $a=-\frac{13}{4}$, os três termos são $-\frac{13}{4}+4$, $-\frac{13}{4}+1$ e $\frac{13}{4}+\frac{7}{2}$, ou seja, $\frac{3}{4}$, $-\frac{9}{4}$ e $\frac{27}{4}$, o que não é possível, pois assim (v_n) não seria monótona.

Assim, a=2 e a razão de (v_n) é $\frac{u_{n+1}}{u_n}$, ou seja, $\frac{1}{2}$.

6.

6.1. Pretende-se determinar os valores de x para os quais se verifica f(x) > x:

$$\frac{2x-5}{x-4} - x > 0 \Leftrightarrow \frac{2x-5-x^2+4x}{x-4} > 0$$
$$\Leftrightarrow \frac{-x^2+6x-5}{x-4} > 0$$

х	-∞	1		4		5	+∞
$-x^2 + 6x - 5$	_	0	+	+	+	0	_
x-4	_	_	_	0	+	+	+
$\frac{-x^2+6x-5}{x-4}$	+	0	_	n.d.	+	0	_

Cálculos auxiliares

•
$$-x^2 + 6x - 5 = 0 \Leftrightarrow x = \frac{-6 \pm \sqrt{36 - 4 \times (-1) \times (-5)}}{2 \times (-1)}$$

$$\Leftrightarrow x = \frac{-6 \pm \sqrt{16}}{-2}$$

$$\Leftrightarrow x = 1 \ \forall \ x = 5$$

•
$$x-4=0 \Leftrightarrow x=4$$

Assim, verifica-se que f(x) > x para os valores de $x \in]-\infty, 1[\ \cup\]4, 5[$.

6.2.
$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{\frac{2x - 5}{x - 4} - \frac{2 - 5}{1 - 4}}{x - 1} = \lim_{x \to 1} \frac{\frac{2x - 5}{x - 4} - 1}{x - 1} = \lim_{x \to 1} \frac{\frac{2x - 5}{x - 4} - 1}{x - 1} = \lim_{x \to 1} \frac{\frac{2x - 5 - x + 4}{x - 1}}{x - 1} = \lim_{x \to 1} \frac{\frac{x - 1}{x - 4}}{x - 1} = \lim_{x \to 1} \frac{1}{(x - 4)(x - 1)} = \lim_{x \to 1} \frac{1}{x - 4} = \lim_{x \to$$

6.3.
$$f(x) = \frac{2x-5}{x-4} = 2 + \frac{3}{x-4}$$

Sabemos que a equação da assíntota horizontal ao gráfico de f é y=2 e que a equação da assíntota vertical ao gráfico de f é x=4.

Assim, as coordenadas do ponto B são (4, 2), já que B é o ponto de interseção das duas assíntotas.

As coordenadas do ponto A são $(\frac{5}{2}, 0)$, pois A é o ponto de interseção do gráfico de f com o eixo Ox:

$$f(x) = 0 \Leftrightarrow \frac{2x - 5}{x - 4} = 0 \Leftrightarrow 2x - 5 = 0 \land x - 4 \neq 0$$
$$\Leftrightarrow x = \frac{5}{2} \land x \neq 4$$

Assim, a área do triângulo [*OAB*] pode ser dada por $\frac{\frac{5}{2} \times 2}{2} = \frac{5}{2}$.

7. Opção (A)

Seja m o declive da reta tangente ao gráfico de g no ponto de abcissa 2.

Tem-se que g'(2) = m e $m = \operatorname{tg} 45^{\circ}$, ou seja, m = 1.

$$\lim_{x \to 2} \frac{g(x) - g(2)}{4 - x^2} = \lim_{x \to 2} \frac{g(x) - g(2)}{(2 - x)(2 + x)} = \lim_{x \to 2} \left(\frac{g(x) - g(2)}{-(x - 2)} \times \frac{1}{2 + x} \right) =$$

$$= -\lim_{x \to 2} \frac{g(x) - g(2)}{x - 2} \times \lim_{x \to 2} \frac{1}{2 + x} =$$

$$= -g'(2) \times \frac{1}{2 + 2} =$$

$$= -1 \times \frac{1}{4} =$$

$$= -\frac{1}{4}$$