Матан третья домашка.

Шахматов Андрей, Б02-304

18 апреля 2024 г.

Содержание

1	m T.25	1
2	T.29	1
3	8.3	2
4	8.4	2
5	T.36	2
6	4.18	2
7	4.19	2

1 T.25

Такое множество является объединением двух множеств $X = X_1 \cup X_2$:

$$X_1 = \{(x, y) \mid x \in \mathbb{Q}\}\$$

$$X_2 = \{(x, y) \mid x \in \mathbb{Q}\}\$$

В свою очередь X_1 :

$$X_1 = \bigcup_{x \in \mathbb{Q}}^{\infty} \{ (x, y) \mid y \in \mathbb{R} \}$$

Так как $\{(x,y)\mid y\in\mathbb{R}\}$ по существу является прямой, то оно измеримо с мерой 0. Тогда X_1 в силу счётной аддитивности тоже измеримо с мерой 0. Аналогично измеримо и X_2 . Тогда X измеримо так как является объединением измеримых.

2 T.29

Я не уверен, но

$$\mu(X \setminus (X+t)) = \mu(X) - \mu$$

3 8.3

$$f^{-1}(\{+\infty\}) = \bigcap_{i=1}^{\infty} f^{-1}((i, +\infty])$$
$$f^{-1}(\{-\infty\}) = A \setminus \bigcup_{i=1}^{\infty} f^{-1}((-i, +\infty])$$
$$f^{-1}(\mathbb{R}) = A \setminus (f^{-1}(\{-\infty\}) \cup f^{-1}(\{+\infty\}))$$

4 8.4

$$f^{-1}((a,b)) = f^{-1}((a,+\infty]) \setminus \left(\bigcap_{i=1}^{\infty} f^{-1}((b-\frac{1}{i},+\infty])\right)$$

5 T.36

Нужно доказать измеримость множества:

$$X = \{x \in X \mid f'(x) < c\} = \left\{x \in X \mid \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} < c\right\} = \left\{x \in X \mid \exists n \, f\left(x + \frac{1}{n}\right) - f(x) < \frac{c}{n}\right\}$$

Представим ввиде объёдинения:

$$= \bigcup_{n=1}^{\infty} \left\{ x \in X \mid f\left(x + \frac{1}{n}\right) - f(x) < \frac{c}{n} \right\}$$

Теперь, так как f(x) - измерима, то и $f(x+\frac{1}{n})$ - измерима. Также так как сумма измеримых измерима, то $f(x+\frac{1}{n})-f(x)$ - измерима. Тогда получим, что множество X - измеримо как счётное объединение измеримых.

6 - 4.18

Так как функция монотонна, то у неё могут быть разрывы только первого рода, тогда пусть функция разрывна в точке x, из монотонности следует, что $f(+x) < f(t), t \in [a,x)$. И также $f(t) \le f(x-), t \in (x,b]$. Тогда $f([a,b]) \cap (f(x-),f(+x)) \subset \{f(x)\}$ - противоречие с всюду плотнотью.

7 - 4.19

Рассмотрим множество A - множество Кантора, вспомним, что множество Кантора является множеством всех чисел, троичная запись которых не содержит единицу, тогда для $\forall x \in A$:

$$x = \sum_{n=1}^{\infty} \frac{2a_n}{3^n}, a_n \in \{0, 1\}$$

Тогда рассмотрим функцию, определённую как

$$c(x) = \begin{cases} \sum_{n=1}^{\infty} \frac{a_n}{2^n}, x \in A \\ \sup \{c(y) \mid y \in A \land y \le x\}, x \notin A \end{cases}$$

сужение такой функции на множество множество Кантора очевидно монотонно, тогда так как c(0) = 0 и c(1) = 1 то построенная функция обязана быть монотонной на всём [0,1] по построению.