$\frac{y_2 y_1}{A \circ o}$ $\frac{y_$

- b) Moorce type machiner can change their output only when there is a change in clock pulse. But mealy type machiner can change their output before the change in clock pulse if the input changes. That's why "mealy type" machines are faster.
- e) whenever me have 'don't care' terims in K-roap me can easily take them 0/1 which will help us to convent our output expressions to simpler forms.

It has to be a mealy type FSM as after. The fourth clock pulse, the machine has to be again in the ruset state.

b) pri	esent	· state	Nont state	24th outp	utus	
	93 42 91		1 27	Y3 Y2 Y,	7	7	
A	0	000	0	W=0 W=	01) 0	W=1	
B	orman	0	1	A (000) C (0	11) 300	0	
C	0	1	1	D (010) A (0	CA	0	
D	0	1	0	A (000) A (0	00) 1	0	
E	1	1	0	A (000) F (1		one o	
F	1	0	0	A (000) 61 (1		0	
O7	1	0	1	A (000) A (0	00) 1	0	

