OGÓLNE		
Pomoc (w zakresie komendy)	?komenda	
Komentarz	#	
Dodawanie, odejmowanie	+, -	
Mnożenie, dzielenie	*,/	
Nierówność	!=	
Przypisanie zmiennej	= lub <-	
Sinus, cosinus	sin(argument), cos(argument)	
π	pi	
Potęgowanie	٨	
Pierwiastek kwadratowy	sqrt(argument)	
Pierwiastek n-tego stopnia	argument^(1/n)	
е	exp(1)	
Logarytm	log(argument, base=podstawa logarytmu)	
Deklarowanie wektora	c(elementy rozdzielone przecinkami)	
Wektor – sekwencja z ilością klas	seq(od,do,length=liczba klas)	
Wektor – sekwencja z krokiem	seq(od,do,by=wielkość kroku)	
Wektor utworzony z powtórzeń podwektora	rep(podwektor, times=liczba powtórzeń)	
Wektor utworzony z powtórzeń składowych podwektora	rep(podwektor, each=liczba powtórzeń)	
Suma składowych wektora	sum(wektor)	
Liczba składowych wektora	length(wektor)	
Zmiana kolejności składowych wektora	rev(wektor)	
Usuwanie składowych wektora	wektor[-c(indeksy usuwanych elementów)]	
Identyfikacja indeksów składowych mniejszych od "k"	wektor[wektor <k]< td=""></k]<>	
Identyfikacja indeksów najmniejszej i największej	which.min(wektor) which.max(wektor)	
składowej wektora		
Macierz utworzona z wektorów kolumnowych	cbind(x1,x2,,xm)	
Macierz utworzona z wektorów wierszowych	rbind(x1,x2,,xm)	
Identyfikacja elementu (i,j) macierzy	macierz[[i,j]]	
Identyfikacja <i>i-</i> tego wiersza / <i>j-</i> tej kolumny	macierz[i,] macierz[,j]	
Mnożenie macierzy	%*%	
Wyznacznik z macierzy	det(<i>macierz</i>)	
Transponowanie macierzy	t(macierz)	
Przekątna macierzy	diag(<i>macierz</i>)	
Przekształcenie listy w np. wektor (macierz)	matrix(w, ncol=1)	
Wymiar macierzy	dim(<i>macierz</i>)	
Odwrotność macierzy	solve(<i>macierz</i>)	
Liczba wierszy i kolumn macierzy	nrow(macierz), ncol(macierz)	
Zapis procentowy (wymagany pakiet "scales")	percent(<i>liczba</i>)	
Podział okna wykresów	par(mfrow=c(n,m))	
PAKIETY		
Instalowanie pakietu	install.packages("nazwa")	
Ładownie pakietu	library(nazwa)	
PĘTLE I INSTRUKCJE V		
Pętla "for"	for (licznik in od:do){zadanie}	
Instrukcja warunkowa "if"	if (warunek) {zadanie} else {zadanie}	
FUNKCJE		
Definiowanie funkcji/procedur	nazwa = function(argumenty){	
	zadanie	
	return(<i>wynik</i>)}	

STATYSTYKA OPISOWA		
Wczytywanie danych	read.csv("nazwa",sep=";")	
Wczytywanie danych w polskim zapisie z ","	read.csv("nazwa",sep=",",dec=",")	
Wczytywanie danych z etykietami	read.csv("nazwa",sep=";",head=TRUE)	
Zgrupowanie danych w macierz	cbind(x1,x2,,xm), rbind(x1,x2,,xm)	
Zgrupowanie danych w tabelę danych	data.frame(x1,x2,,xm)	
(x1,x2,,xm to etykiety kolumn)		
Typ danych	class(dane)	
Wektor etykiet	names(dane)	
Średnia	mean(dane)	
Minimum i maksimum	min(dane), max(dane)	
Wariancja i odchylenie standardowe	var(dane), sd(dane)	
Kwartyle	quantile(dane)	
Kwantyle (wybrane)	quantile(dane,probs=wektor prawdopodob.)	
Funkcja liczona po wierszach macierzy	apply(<i>macierz</i> ,1, <i>funkcja</i>)	
Funkcja liczona po kolumnach macierzy	apply(<i>macierz</i> ,2, <i>funkcja</i>)	
Miary położenia – wszystkie	summary(dane)	
Automatyczna deklaracja tytułu np. w pętli (ze spacją	paste("tekst",odwołanie)	
lub bez spacji)	paste0("tekst",odwołanie)	
Wyliczenie np. średniej z danych o różnej długości	mean(na.omit(dane))	
Grupowanie danych w szereg rozdzielczy punktowy	table(dane)	
Grupowanie danych w szereg przedziałowy	table(cut(dane, liczba przedziałów))	
Histogram (dane dyskretne) / wykres odcinkowy	discrete.histogram(dane)	
(wymagany pakiet "arm")	allow order more grain (dame)	
Histogram (szereg przedziałowy)	hist(dane,main=tytuł,xlab=etykieta x)	
Wykres kołowy	pie(table(dane))	
Wykres pudełkowy	boxplot(dane)	
,,,	1 - 1 - 1 - 1	
ROZKŁADY ZMIENNYO	CH LOSOWYCH	
Prawdopodobieństwo/funkcja gęstości (d – density)	drozkład	
Dystrybuanta (p – probability)	prozkład	
Kwantyl (q – quantile)	grozkład	
Generowanie losowe (r – random)	rrozkład	
Rozkłady		
dwumianowy	binom	
Poissona	pois	
wykładniczy	exp	
normalny	norm	
t-Studenta	t	
chi-kwadrat	chisq	
F Snedecora	f	
Dynamania hist adainkawasa saskladu dyaksata asa	plat(v drazklad)v paramatiri)	
Rysowanie hist. odcinkowego rozkładu dyskretnego	plot(x,drozklad(x, parametry))	
Rysowanie funkcji gęstości	curve(drozklad(x, parametry))	

PRZEDZIAŁ Y I	PRZEDZIAŁY UFNOŚCI I TESTOWANIE HIPOTEZ		
Przedział ufności dla μ - normalność i	z.test($dane$, sigma.x= σ , conf.level=1- α)		
znane σ (wymagany pakiet "BSDA")			
Przedział ufności dla μ – duża próba	zsum.test(średnia z próby, odchylenie stand. z próby,		
·	liczebność próby, conf.level=1- α)		
(wymagany pakiet "BSDA") Przedział ufności dla μ - normalność i	t.test($dane$, conf.level=1- α)		
, , , , , , , , , , , , , , , , , , ,	i.lesi($uarie$, conf.level=1- α)		
nieznane σ	element to attache a confile and Alexandra		
Przedział ufności dla wariancji	sigma.test($dane$, conf.level=1- α)		
(wymagany pakiet "TeachingDemos")	binom.test(<i>liczba sukcesów, liczebność próby</i> , conf.level=1-α)		
Przedział ufności dla proporcji: dokładny i przybliżony	prop.test(<i>liczba sukcesów, liczebność próby</i> , conf.level=1- α)		
Wywołanie np. tylko przedziału ufności	nazwa testu\$conf.int		
wywołanie np. tyrko przedziału diności	nazwa testupcom.int		
Test hipotezy o μ - normalność i	z.test($dane$, sigma.x= σ , alternative="two.sided",		
	mu=testowana średnia)		
znane σ (wymagany pakiet "BSDA")	,		
Test hipotezy o μ – duża próba	zsum.test(średnia z próby, odchylenie stand., liczebność próby, mu=testowana średnia, alternative="greater")		
(wymagany pakiet "BSDA")			
Test hipotezy o μ - normalność i	t.test(dane, mu= testowana średnia, alternative="less")		
nieznane σ			
Test hipotezy o wariancji (wymagany	sigma.test(dane, alternative="two.sided", sigmasq=testowana		
pakiet "TeachingDemos")	wariancja)		
Test hipotezy o proporcji:	binom.test(<i>liczba sukcesów, liczebność próby</i> , p=testowane		
dokładny / przybliżony	prawdopodobieństwo, alternative="less")		
	prop.test(<i>liczba sukcesów, liczebność próby</i> , p= <i>testowane prawdopodobieństwo</i> , alternative="less")		
Wywołanie np. tylko p-value	nazwa testu\$p.value		
vvywołanie np. tyrko p-value	παείνα testaφρ.value		
PORÓW	NANIE DWÓCH POPULACJI		
Przedział ufności dla różnicy średnich	t.test(dane1, dane2, var.equal=TRUE, conf.level=1- α)		
(normalność i równe wariancje)			
Przedział ufności dla różnicy średnich	t.test(dane1, dane2, var.equal=FALSE, conf.level=1-α)		
(normalność i różne wariancje)			
Przedział ufności dla różnicy średnich	zsum.test(średnia z próby1, odchylenie stand.1, liczebność		
(duże próby) - wymagany pakiet "BSDA"	próby1, średnia z próby2, odchylenie stand.2, liczebność		
	<i>próby</i> 2, conf.level=1- α)		
Przedział ufności dla ilorazu wariancji	var.test($dane1$, $dane2$, conf.level=1- α)		
(wymagany pakiet "PairedData")			
Przedział ufności dla różnicy proporcji	prop.test(c($T1,T2$), c($n1,n2$), conf.level=1- α)		
Test różnicy średnich (normalność i	t.test(dane1, dane2, var.equal=TRUE, mu=różnica		
równe wariancje)	średnich, alternative="two.sided")		
Test różnicy średnich (normalność i różne			
wariancje)	średnich, alternative="two.sided")		
Test różnicy średnich (duże próby) -	zsum.test(średnia z próby1, odchylenie stand.1, liczebność		
wymagany pakiet "BSDA"	próby1, średnia z próby2, odchylenie stand.2, liczebność próby2, mu=różnica średnich, alternative="two.sided")		
Test ilorazu wariancji (wymagany pakiet	var.test(dane1, dane2, ratio=testowany iloraz,		
"PairedData")	alternative="two.sided")		
Test równości proporcji	prop.test(c($T1,T2$), c($n1,n2$), alternative="less")		
1 33t 10 Wildoor proporting	propriest(o(11,12), o(111,112), alternative= 1666)		
<u> </u>			

Analiza wariancji (ANOVA)		
UWAGA! Aby wykonać analizę wariancji trzeba odpowiednio przygotować dane!		
data.frame(wyniki, obiekty)		
Test Bartletta jednorodności wariancji	bartlett.test(wyniki~obiekty)	
Analiza wariancji	anova(lm(<i>wyniki~obiekty</i>))	
Test HSD Tukey'a wyznaczania obiektów	TukeyHSD(aov(wyniki~obiekty),ordered=TRUE)	
jednorodnych		
Narysowanie jednoczesnych przedziałów	plot(TukeyHSD(aov(wyniki~obiekty),ordered=TRUE))	
ufności		
Analiza regresji		
Kowariancja	cov(dane1, dane2)	
Korelacja	cor(dane1, dane2)	
Wykres punktowy	plot(x, y)	
Prosta regresji	Im(<i>y</i> ~ <i>x</i>)	
Test istotności regresji (F lub t)	anova($lm(y\sim x)$) lub summary($lm(y\sim x)$)	
Współczynnik determinacji	summary(lm(y~x))	
Wykres punktowy i prosta regresji	plot(x, y); abline(prosta regresji)	
Szacowanie brakujących wartości	predict(prosta regresji, data.frame(c(x1,,xk)))	