# Exploring the Emergent Abilities of SwinIA for Object Segmentation

Dzvenymyra Yarish Yuliia Siur Yaroslav Prytula

Institute of Computer Science, University of Tartu

## Introduction

In this work, we explore the emergent abilities of the transformer-based model SwinIA [1]. We focus on the semantic segmentation task. We show that the model primarily developed for the denoising task exhibits a promising performance on the image segmentation use case on several cell datasets. We compare the original model with other models, such as Noise2Same on 3 popular cell microscopy datasets.





Example images from FMD Two-photon mice denoising dataset

# <u>Methodology</u>

To perform segmentation, we extract multi-dimensional feature maps before the final projection layer.

Then, we use K-Means clustering algorithm for pixel categorization into two groups: object and background. Clustering is performed on extracted feature maps of shape DxHxW with k=2 for binary segmentation. K-Means is insensitive to class labels, so clusters' correspondence to object or background is determined based on scoring in the evaluation phase.

# **Experiments**

1. Out-of-domain evaluation

We assess adaptability of Noise2Same and SwinIA models (originally trained for denoising on Two-Photon mice dataset [3]) to unseen data.

2. Domain specific evaluation

Models undergo self-supervised training on SevenCellLines dataset. Segmentation capabilities are evaluated on the same dataset, offering insights into performance within a familiar domain.

#### Results 1. Out-of-domain Model Precision Recall F1IoU0.4870.344 0.887 0.834 Otsu Noise2Same 0.39 0.914 0.4970.361 0.386 0.987 0.512 0.382 **SwinIA** Precision IoU Method Recall F10.578 0.713 0.568 0.979 Otsu 0.441Noise2Same 0.992 0.443 0.6010.9880.467 0.629SwinIA 0.464 Precision Model Recall F1 IoU Dataset 0.338 0.989 0.503 0.339 Otsu

|     | Oisu       | 0.707 | 0.557 | 0.505 | 0.550 |
|-----|------------|-------|-------|-------|-------|
| PC  | Noise2Same | 0.993 | 0.395 | 0.563 | 0.394 |
|     | SwinIA     | 0.931 | 0.806 | 0.863 | 0.761 |
|     | Otsu       | 0.511 | 0.595 | 0.544 | 0.375 |
| BF  | Noise2Same | 0.542 | 0.628 | 0.566 | 0.405 |
|     | SwinIA     | 0.553 | 0.648 | 0.592 | 0.424 |
| 0 5 |            |       |       |       |       |

### 2. Domain specific

| Model      | Precision | Recall | F1    | IoU   |
|------------|-----------|--------|-------|-------|
| Noise2Same | 0.99      | 0.32   | 0.48  | 0.319 |
| SwinIA     | 0.976     | 0.588  | 0.733 | 0.58  |



Binary masks produced from models' final features on different cell modalities from LIVECell, MoNuSeg, and SevenCellLines

## **Conclusion**

In this work, we evaluated the zero-shot segmentation abilities of SwinIA model. We showed that it exhibits superior performance across 3 datasets in comparison to another popular denoising model, Noise2Same. This confirms that SwinIA learns meaningful features, equally good in global and local contexts. Model's capacity as a universal self-supervised feature extractor and a possible replacement for the existing backbones will be studied in future works.

## References

[1] Mikhail Papkov and Pavel Chizhov. Swinia: Self-supervised blind-spot image denoising with zero convolutions. ArXiv, abs/2305.05651, 2023.

[2] Yaochen Xie, Zhengyang Wang, and Shuiwang Ji. Noise2same: Optimizing a self-supervised bound for image denoising. ArXiv, abs/2010.11971, 2020.

[3] Yide Zhang, Yinhao Zhu, Evan L. Nichols, Qingfei Wang, Siyuan Zhang, Cody J. Smith, and Scott S. Howard. A poisson-gaussian denoising dataset with real fluorescence microscopy images. CVPR, 2018.

