PSALTer results panel

 $\int \int \int \int \left(\frac{1}{6} \left(-3 \, \alpha_{0} \, \mathcal{A}_{\alpha}^{\alpha\beta} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{1} \, \mathcal{A}_{\alpha}^{\alpha\beta} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{1} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{1} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{1} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{1} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{1} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{\, \chi} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} + 4 \, \beta_{2} \, \mathcal{A}_{\beta}^{\, \alpha} \, \mathcal{A}_{\beta}^{$ $\partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 6 \, \alpha_{.5} \, \partial_\beta \mathcal{R}^{\ \delta}_{\chi \ \delta} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 6 \, \alpha_{.5} \, \partial_\gamma \mathcal{R}^{\ \delta}_{\alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 6 \, \alpha_{.5} \, \partial_\chi \mathcal{R}^{\ \delta}_{\beta \ \delta} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \delta} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \delta} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \delta} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \delta} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \delta} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \delta} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\beta \ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\ \alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\ \alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\ \alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \, \partial_\alpha \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\ \alpha\beta}_{\ \alpha} \, \partial^\chi \mathcal{R}^{\ \alpha\beta}_{\ \alpha} + 8 \, \beta_{.5} \,$

 $4\beta_{1} \frac{\partial_{\chi} f_{\beta\alpha}}{\partial^{\chi}} \frac{\partial^{\chi} f^{\alpha\beta}}{\partial^{\zeta}} - 4\beta_{3} \frac{\partial_{\chi} f_{\beta\alpha}}{\partial^{\zeta}} \frac{\partial^{\chi} f^{\alpha\beta}}{\partial^{\zeta}} + 4(\beta_{1} + 2\beta_{3}) \beta_{\alpha\beta\chi} (\beta^{\alpha\beta\chi} + 2\beta^{\chi} f^{\alpha\beta}) + \beta_{\alpha\chi\beta} ((-3\alpha_{1} + 4\beta_{1} - 16\beta_{3}) \beta^{\alpha\beta\chi} + 16(\beta_{1} - \beta_{3}) \beta^{\chi} f^{\alpha\beta}) + 6\alpha_{1} \frac{\partial_{\alpha} \mathcal{R}^{\alpha\beta\chi}}{\partial^{\zeta}} \frac{\partial_{\delta} \mathcal{R}^{\delta}}{\partial^{\zeta}} - 6\alpha_{2} \frac{\partial_{\alpha} \mathcal{R}^{\alpha\beta\chi}}{\partial^{\zeta}} \frac{\partial_{\delta} \mathcal{R}^{\delta}}{\partial^{\zeta}} - 12\alpha_{2} \frac{\partial^{\chi} \mathcal{R}^{\alpha\beta}}{\partial^{\zeta}} \frac{\partial_{\delta} \mathcal{R}^{\delta}}{\partial^{\zeta}} - 12\alpha_{2} \frac{\partial^{\chi} \mathcal{R}^{\alpha\beta}}{\partial^{\zeta}} \frac{\partial_{\delta} \mathcal{R}^{\delta}}{\partial^{\zeta}} + 12\alpha_{2} \frac{\partial^{\chi} \mathcal{R}^{\alpha\beta}}{\partial^{\zeta}} \frac{\partial_{\delta} \mathcal{R}^{\delta}}{\partial^{\zeta}} + 12\alpha_{2} \frac{\partial^{\chi} \mathcal{R}^{\alpha\beta\chi}}{\partial^{\zeta}} \frac{\partial_{\delta} \mathcal{R}^{\delta}}{\partial^{\zeta}} \frac{\partial_{\delta} \mathcal{R}^{\delta}}{\partial^{\zeta}} + 12\alpha_{2} \frac{\partial^{\chi} \mathcal{R}^{\alpha\beta\chi}}{\partial^{\zeta}} \frac{\partial_{\delta} \mathcal{R}^{\delta}}{\partial^{\zeta}} \frac{\partial_$ $6\,\alpha_{.}^{\,}\partial_{\alpha}\mathcal{R}^{\alpha\beta\chi}\,\partial_{\delta}\mathcal{R}^{\,\,\delta}_{\chi\,\,\beta}\,-\,6\,\alpha_{.}^{\,}\partial_{\alpha}\mathcal{R}^{\alpha\beta\chi}\,\partial_{\delta}\mathcal{R}^{\,\,\delta}_{\chi\,\,\beta}\,-\,6\,\alpha_{.}^{\,}\partial_{\alpha}\mathcal{R}^{\alpha\beta\chi}\,\partial_{\delta}\mathcal{R}^{\,\,\delta}_{\chi\,\,\beta}\,+\,6\,\alpha_{.}^{\,}\partial_{\alpha}\mathcal{R}^{\alpha\beta\chi}\,\partial_{\delta}\mathcal{R}^{\,\,\delta}_{\chi\,\,\beta}\,+\,12\,\alpha_{.}^{\,}\partial_{\alpha}\mathcal{R}^{\alpha\beta\chi}\,\partial_{\delta}\mathcal{R}^{\,\,\delta}_{\chi\,\,\beta}\,+\,12\,\alpha_{.}^{\,}\partial_{\alpha}\mathcal{R}^{\alpha\beta\chi}\,\partial_{\delta}\mathcal{R}^{\,\,\delta}_{\chi\,\,\beta}\,+\,12\,\alpha_{.}^{\,}\partial_{\alpha}\mathcal{R}^{\alpha\beta\chi}\,\partial_{\delta}\mathcal{R}^{\,\,\delta}_{\chi\,\,\beta}\,+\,12\,\alpha_{.}^{\,}\partial_{\alpha}\mathcal{R}^{\alpha\beta\chi}\,\partial_{\delta}\mathcal{R}^{\,\,\alpha\beta\chi}\,\partial_{\alpha}\mathcal{R}^{\,\,\alpha\gamma\chi}\,\partial_{\alpha}\mathcal{R}^{\,\,\alpha\gamma\chi}\,\partial_{\alpha}\mathcal{R}^{\,\,\alpha\gamma\chi}\,\partial_{\alpha}\mathcal{R}^{\,\,\alpha\gamma\chi}\,\partial_{\alpha}\mathcal{R}^{\,\,\alpha\gamma\chi}\,\partial_{\alpha}\mathcal{R}^{$ $4 \underbrace{\alpha_{.}}_{1} \partial_{\beta} \mathcal{A}_{\alpha \delta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\beta} \mathcal{A}_{\alpha \delta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} + 8 \underbrace{\alpha_{.}}_{1} \partial_{\beta} \mathcal{A}_{\chi \delta \alpha} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 12 \underbrace{\alpha_{.}}_{2} \partial_{\beta} \mathcal{A}_{\chi \delta \alpha} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\beta} \mathcal{A}_{\chi \delta \alpha} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\beta} \mathcal{A}_{\chi \delta \alpha} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\beta} \mathcal{A}_{\chi \delta \alpha} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \delta} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \lambda \chi} - 4 \underbrace{\alpha_{.}}_{3} \partial_{\delta} \mathcal{A}_{\alpha \lambda \chi} \partial^{\delta} \mathcal{A}^{\alpha \lambda \chi} - 4 \underbrace{\alpha_{.$

Wave operator

	[∪] . <i>A</i> "	0. f	$0.f^{\perp}$	⁰ . <i>A</i> ⊓
^{0,+} <i>A</i> [∥] †	$\frac{\alpha}{\frac{0}{2}} + \beta_{\frac{1}{2}} + (\alpha_{\frac{1}{4}} + \alpha_{\frac{1}{6}})k^{2}$	$-\frac{i\left(\alpha_{0}+2\beta_{1}\right)k}{\sqrt{2}}$	0	0
^{0,+} f [∥] †	$\frac{i(\alpha.+2\beta.)k}{\sqrt{2}}$	$2 \beta_{.} k^2$	0	0
0.+f ⁺ †	0	0	0	0
^{0.} ℋ [∥] †	0	0	0	$\frac{\alpha.}{\frac{0}{2}} + 4\beta. + (\alpha. + \alpha.)$

$+(\alpha_{2}+\alpha_{3})k^{2}$	$\overset{1^{+}}{\cdot}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$^{1^{+}_{\boldsymbol{\cdot}}\mathcal{H}^{\perp}{}_{\alpha\beta}}$	$\overset{1^{+}}{\cdot}f^{\parallel}{}_{\alpha\beta}$	$^{1\cdot }\mathcal{A}^{\Vert }_{\ \alpha }$	$^{1}\mathcal{H}_{\ lpha}^{\perp}$	$1^{-}f^{\parallel}_{\alpha}$	$1 f^{\perp}_{\alpha}$
$^{1.}^{+}\mathcal{A}^{\parallel}$ † lphaeta	$\frac{\alpha_{\cdot}}{4} + \frac{1}{3} (\beta_{\cdot} + 8 \beta_{\cdot}) + (\alpha_{\cdot} + \alpha_{\cdot}) k^{2}$	$\frac{3 \alpha4 \beta. +16 \beta.}{6 \sqrt{2}}$	$\frac{i(3\alpha4\beta.+16\beta.)k}{6\sqrt{2}}$	0	0	0	0
$^{1\overset{+}{.}}\mathcal{A}^{\scriptscriptstyle\perp}\dagger^{^{lphaeta}}$	2 10 16 0		$\frac{2}{3}i(\beta_{1}+2\beta_{1})k$	0	0	0	0
$\overset{1^+}{\cdot}f^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{i(3\alpha.4\beta.+16\beta.)k}{6\sqrt{2}}$	$-\frac{2}{3}i(\beta_{1}+2\beta_{1})k$	$\frac{2}{3} (\beta_{1} + 2 \beta_{1}) k^{2}$	0	0	0	0
$^{1}\mathcal{A}^{\parallel}$ † lpha	0	0	0	$\frac{\alpha_0}{4} + \frac{1}{3} (\beta_1 + 2\beta_2) + (\alpha_4 + \alpha_5) k^2$	$-\frac{3\alpha4\beta.+4\beta.}{6\sqrt{2}}$	0	$-\frac{1}{6}i(3\alpha_{0}-4\beta_{1}+4\beta_{2})$
$^{1}\mathcal{H}^{\perp}\dagger^{\alpha}$	0	0	0	$-\frac{\frac{3\alpha4\beta.+4\beta.}{0}\frac{4\beta.}{1}}{6\sqrt{2}}$	$\frac{1}{3} (2 \beta_{1} + \beta_{2})$	0	$\frac{1}{3} i \sqrt{2} (2 \beta_1 + \beta_2) k$
$\frac{1}{2}f^{\parallel}\uparrow^{\alpha}$	0	0	0	0	0	0	0
1-α, α	0	0	0	$\frac{1}{2}i(3\alpha - 18 \pm 18)\nu$	$\frac{1}{2}i\sqrt{2}(2R + R)V$	_	$\frac{2}{2}$ (2 B \pm B) ν^2

$\frac{3. + \beta.}{1} \frac{k^{-1}}{2}$	$^{2\overset{+}{.}}\mathcal{A}^{\parallel}{}_{lphaeta}$	$2^+f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{H}_{\alpha\beta\chi}^{\parallel}$
$^{2^{+}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$-\frac{\alpha}{4} + \beta_1 + (\alpha_1 + \alpha_2) k^2$	$\frac{i(\alpha4\beta.)k}{2\sqrt{2}}$	0
$2.^{+}f^{\parallel}$ † $^{\alpha\beta}$	$-\frac{i\left(\alpha4\beta.\right)k}{2\sqrt{2}}$	$2 \beta_{\stackrel{\cdot}{1}} k^2$	0
$2^{-}\mathcal{A}^{\parallel} + ^{\alpha\beta\chi}$	0	0	$-\frac{\alpha}{4} + \beta_1 + (\alpha_1 + \alpha_2) k^2$

Saturated propagator

	0. ⁺ σ	0 ⁺ τ [∥]	0.+ τ [⊥]	0. σ∥
σ †	$-\frac{4 \beta.}{\alpha.^{2}+2 \alpha. \beta4 (\alpha.+\alpha.) \beta. k^{2}}_{0 \ 0 \ 2}$	$\frac{i \sqrt{2} (\alpha. + 2 \beta.)}{-\alpha. (\alpha. + 2 \beta.) k + 4 (\alpha. + \alpha.) \beta. k^{3}}$	0	0
τ †	$\frac{i\sqrt{2}(\alpha.+2\beta.)}{\alpha.(\alpha.+2\beta.)k-4(\alpha.+\alpha.)\beta.k^{3}}$	$\frac{\alpha. + 2 \left(\beta. + \left(\alpha. + \alpha.\right) k^2\right)}{-\alpha. \left(\alpha. + 2 \beta.\right) k^2 + 4 \left(\alpha. + \alpha.\right) \beta. k^4}$	0	0
τ⁺ †	0	0	0	0
σ †	0	0	0	$\frac{2}{\alpha.+8\beta.+2(\alpha.+\alpha.)\kappa}$

0							
$\frac{2}{8\beta.+2(\alpha.+\alpha.)k^2}$	${}^{1^+}\sigma^{\parallel}{}_{\alpha\beta}$	$\overset{1^+}{\cdot}\sigma^{\!\scriptscriptstyle\perp}{}_{\alpha\beta}$	1^+_{τ} $ _{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}_{\alpha}$	$\frac{1}{2}\sigma^{\perp}_{\alpha}$	$1^{-}\tau^{\parallel}_{\alpha}$	1. _{T' \(\alpha\)}
$1.^+\sigma^{\parallel}$ †	$-\frac{1}{-\frac{3(\alpha_{0}-4\beta_{1})(\alpha_{1}+8\beta_{3})}{16(\beta_{1}+2\beta_{3})}}+(\alpha_{1}+\alpha_{2})k^{2}}$	$-\frac{2\sqrt{2}(3\alpha4\beta.+16\beta.)}{(1+k^2)(-3(\alpha4\beta.)(\alpha.+8\beta.)+16(\alpha.+\alpha.)(\beta.+2\beta.)k^2)}$	$-\frac{2 i \sqrt{2} (3 \alpha_{0}-4 \beta_{1}+16 \beta_{3}) k}{(1+k^{2}) (-3 (\alpha_{0}-4 \beta_{1}) (\alpha_{0}+8 \beta_{3})+16 (\alpha_{2}+\alpha_{5}) (\beta_{1}+2 \beta_{3}) k^{2})}$	0	0	0	0
$\overset{1^+}{\cdot}\sigma^{\scriptscriptstyle \perp}\dagger^{lphaeta}$	$-\frac{2\sqrt{2}(3\alpha4\beta.+16\beta.)}{(1+k^2)(-3(\alpha4\beta.)(\alpha.+8\beta.)+16(\alpha.+\alpha.5)(\beta.+2\beta.)k^2)}$	$\frac{6\alpha.+8(\beta.+8\beta.+3(\alpha.+\alpha.)k^2)}{(1+k^2)^2(-3(\alpha4\beta.)(\alpha.+8\beta.)+16(\alpha.+\alpha.)(\beta.+2\beta.)k^2)}$	$\frac{6 i \alpha. k + 8 i k (\beta_{1} + 8 \beta. + 3 (\alpha_{2} + \alpha_{5}) k^{2})}{(1 + k^{2})^{2} (-3 (\alpha4 \beta_{1}) (\alpha. +8 \beta.) + 16 (\alpha. +\alpha.) (\beta_{1} + 2 \beta.) k^{2})}$	0	0	0	0
$^{1^+}\tau^{\parallel}$ † lphaeta	$\frac{2 i \sqrt{2} (3 \alpha. 4 \beta. + 16 \beta.) k}{(1+k^2) (-3 (\alpha. 4 \beta.) (\alpha. + 8 \beta.) + 16 (\alpha. + \alpha.) (\beta. + 2 \beta.) k^2)}$	$\frac{-6i\alpha_{.}k - 8ik(\beta_{.} + 8\beta_{.} + 3(\alpha_{.} + \alpha_{.})k^{2})}{(1 + k^{2})^{2}(-3(\alpha_{.} - 4\beta_{.})(\alpha_{.} + 8\beta_{.}) + 16(\alpha_{.} + \alpha_{.})(\beta_{.} + 2\beta_{.})k^{2})}$	$\frac{2 k^2 (3 \alpha.+4 (\beta.+8 \beta.+3 (\alpha.+\alpha.) k^2))}{(1+k^2)^2 (-3 (\alpha4 \beta.) (\alpha.+8 \beta.)+16 (\alpha.+\alpha.) (\beta.+2 \beta.) k^2)}$	0	0	0	0
$^{1}\sigma^{\parallel}\dagger^{lpha}$	0	0	0	$-\frac{1}{-\frac{3(\alpha_{\cdot}-4\beta_{\cdot})(\alpha_{\cdot}+2\beta_{\cdot})}{8(2\beta_{\cdot}+\beta_{\cdot})}} + (\alpha_{\cdot}+\alpha_{\cdot})k^{2}$	$\frac{2\sqrt{2}(3\alpha4\beta_1+4\beta.)}{(1+2k^2)(-3(\alpha4\beta_1)(\alpha.+2\beta.)+8(\alpha.+\alpha.)(2\beta.+\beta.)k^2)}$	0	$\frac{4 i (3 \alpha4 \beta.+4 \beta.) k}{(1+2 k^2) (-3 (\alpha4 \beta.) (\alpha.+2 \beta.) +8 (\alpha.+\alpha.) (2 \beta.+\beta.) k}$
$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{2\sqrt{2}(3\alpha4\beta_1+4\beta_2)}{(1+2k^2)(-3(\alpha4\beta_1)(\alpha.+2\beta_2)+8(\alpha.+\alpha.)(2\beta.+\beta.)k^2)}$	$\frac{6\alpha.+8(\beta.+2\beta.+3(\alpha.+\alpha.)k^2)}{(1+2k^2)^2(-3(\alpha4\beta.)(\alpha.+2\beta.)+8(\alpha.+\alpha.)(2\beta.+\beta.)k^2)}$	0	$\frac{2 i \sqrt{2} k (3 \alpha. +4 (\beta. +2 \beta. +3 (\alpha. +\alpha.) k^2))}{(1+2 k^2)^2 (-3 (\alpha4 \beta.) (\alpha. +2 \beta.) +8 (\alpha. +\alpha.) (2 \beta. +\beta.)}$
$1 \tau^{\parallel} + \alpha$	0	0	0	0	0	0	0
$\frac{1}{2}\tau^{\perp} + \frac{1}{2}$	0	0	0	$-\frac{4 i (3 \alpha4 \beta .+4 \beta .) k}{(1+2 k^2) (-3 (\alpha4 \beta .) (\alpha .+2 \beta .)+8 (\alpha .+\alpha .) (2 \beta .+\beta .) k^2)}$	$-\frac{2 i \sqrt{2} k (3 \alpha +4 (\beta +2 \beta +3 (\alpha +\alpha) k^{2}))}{(1+2 k^{2})^{2} (-3 (\alpha -4 \beta) (\alpha +2 \beta)+8 (\alpha +\alpha) (2 \beta +\beta) k^{2})}{(1+2 k^{2})^{2} (-3 (\alpha -4 \beta) (\alpha +2 \beta)+8 (\alpha +\alpha) (2 \beta +\beta) k^{2})}$	0	$\frac{4 k^2 (3 \alpha. + 4 (\beta. + 2 \beta. + 3 (\alpha. + \alpha.) k^2))}{(1 + 2 k^2)^2 (-3 (\alpha 4 \beta_1) (\alpha. + 2 \beta.) + 8 (\alpha. + \alpha.) (2 \beta. + \beta.)}{(1 + 2 k^2)^2 (-3 (\alpha 4 \beta_1) (\alpha. + 2 \beta.) + 8 (\alpha. + \alpha.) (2 \beta. + \beta.)}$

$(2\beta.+\beta.)k^2$	$^{2.^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$ \frac{16 \beta.}{\frac{-\alpha.^2 + 4 \alpha. \beta. + 16 (\alpha. + \alpha.) \beta. k^2}{0 1 + 16 (\alpha. + \alpha.) \beta. k^2}} $	$\frac{2i\sqrt{2}(\alpha4\beta.)}{\alpha.(\alpha4\beta.)k-16(\alpha.+\alpha.)\beta.k^{3}}$	0
$2^+_{\cdot} \tau^{\parallel} + ^{\alpha\beta}$	$\frac{2 i \sqrt{2} (\alpha4 \beta.)}{-\alpha. (\alpha4 \beta.) k+16 (\alpha.+\alpha.) \beta. k^{3}}$	$\frac{2 \left(\alpha - 4 \beta - 4 \left(\alpha + \alpha \right) k^{2}\right)}{\alpha \cdot \left(\alpha - 4 \beta - 1 k^{2} + 16 \left(\alpha + \alpha - 1 \beta - 1 k^{2} + 16 \alpha + \alpha - 1 \beta - 1 k^{2} + 16 \alpha + \alpha - 1 \beta - 1 k^{2} + 16 \alpha + \alpha - 1 \alpha - 1 \alpha - 1 \alpha + 1 \alpha - 1 $	0
$2^{-}\sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	$\frac{1}{-\frac{\alpha}{4}+\beta}+\beta+\alpha+\alpha$

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
0. ⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$\frac{2ik 1 \sigma^{\perp}^{\alpha} + 1 \tau^{\perp}^{\alpha} == 0}{$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1 τ α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$\overline{i} k 1^+_{\cdot} \sigma^{\perp}{}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} = \partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\alpha}\sigma^{\chi\alpha\delta} = \partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\lambda} + \partial_$	3
Total expected gauge	generators:	11

Massive spectrum

Mass	ive particle	
le residue:	$\frac{1}{\frac{\alpha}{0}} + \frac{\frac{\alpha. + \alpha. + 2\beta.}{\frac{4}{6} + \frac{2}{6} + \frac{2}{2}}}{\frac{2\alpha. \beta. + 2\alpha. \beta.}{\frac{4}{2} + \frac{2}{6} + \frac{2}{6}}} >$	- (

Pole residue:	$\frac{1}{\alpha_0} + \frac{1}{2} \frac{1}{\alpha_0} \frac{1}{\alpha_0} + \frac{1}{2} \frac{1}{\alpha_0} \frac{1}{\alpha_0} > 0$
Square mass:	$\frac{\frac{0.(\alpha.+2\beta.)}{0.00}}{\frac{0.000}{4(\alpha.+\alpha.)\beta.}} > 0$
Spin:	0
Parity:	Even

Massive	Jarticle
Pole residue:	$-\frac{1}{\alpha + \alpha \choose 2 3} > 0$
Square mass:	$-\frac{\alpha.+8\beta.}{\frac{0}{2}(\alpha.+\alpha.)} > 0$
Spin:	0
Parity:	Odd

	Massive particle
Pole residue:	$ (3 (\alpha_{.}^{2} (3 \alpha_{.} + 3 \alpha_{.} + 2 \beta_{.} + 4 \beta_{.}) - 8 \alpha_{.} (\beta_{.}^{2} + \alpha_{.} (\beta_{.} - 4 \beta_{.}) + \alpha_{.} (\beta_{.} - 4 \beta_{.}) + \alpha_{.} (\beta_{.} - 4 \beta_{.}) - 4 \beta_{.}^{2}) + 16 (-4 \beta_{.}^{2} \beta_{.} (\beta_{.} + 2 \beta_{.}) + \alpha_{.} (\beta_{.}^{2} + 8 \beta_{.}^{2}) + \alpha_{.} (\beta_{.}^{2} + 8 \beta_{.}^{2})))) / $
	$(2(\alpha_{.}+\alpha_{.})(\beta_{.}+2\beta_{.})(3\alpha_{.}^{.2}-12\alpha_{.}(\beta_{.}-2\beta_{.})+16(\alpha_{.}\beta_{.}+2\alpha_{.}\beta_{.}-6\beta_{.}\beta_{.}+\alpha_{.}(\beta_{.}+2\beta_{.}))))>0$
Square mass:	$\frac{\frac{3(\alpha.4\beta.)(\alpha.+8\beta.)}{0.100000000000000000000000000000000000$
Snin:	

	Massive particle
Pole residue:	$ -((3(\alpha_{0}^{2}(3\alpha_{0}^{2}+3\alpha_{0}^{2}+4\beta_{0}^{2}+2\beta_{0}^{2})+4\alpha_{0}^{2}(-2\alpha_{0}^{2}\beta_{0}^{2}-2\alpha_{0}^{2}\beta_{0}^{2}-4\beta_{0}^{2}^{2}+2\alpha_{0}^{2}\beta_{0}^{2}+2\alpha_{0}^{2}\beta_{0}^{2}+\beta_{0}^{2})+8(-2\beta_{0}^{2}\beta_{0}^{2}+\beta_{0}^{2})+8(-2\beta_{0}^{2}\beta_{0}^{2}+\beta_{0}^{2})+\alpha_{0}^{2}(2\beta_{0}^{2}+\beta_{0}^{2}+\beta_{0}^{2})+\alpha_{0}^{2}(2\beta_{0}^{2}+\beta_{0}^{2})+\alpha_{0}^{2}(2\beta_{0}^{2}+\beta_{0}^$
Square mass:	$\frac{\frac{3(\alpha4\beta.)(\alpha.+2\beta.)}{0}(\alpha.+2\beta.)}{\frac{8(\alpha.+\alpha.)(2\beta.+\beta.)}{4}(2\beta.+\beta.)} > 0$
Spin:	1
Parity:	Odd

?
/
$J^P = 2^-$
?
$k^{\mu} = (\mathcal{E}, 0, 0, p)$
0

Massive particle		
Pole residue:	$-\frac{2}{\frac{\alpha}{0}} + \frac{\frac{\alpha}{1} + \frac{\alpha}{4} + \frac{2\beta}{1}}{\frac{2\alpha}{1} + \frac{\beta}{1} + \frac{2\alpha}{4} + \frac{\beta}{1}}$	
Square mass:	$\frac{\frac{\alpha.(\alpha4\beta.)}{\frac{0}{0}\frac{0}{0}\frac{1}{1}}{16(\alpha.+\alpha.)\beta.}}{\frac{1}{1}+\alpha.\beta.} > 0$	
Spin:	2	

Massive particle		
ole residue:	$-\frac{1}{\alpha_{\cdot}+\alpha_{\cdot}}>0$	
quare mass:	$\frac{\alpha \cdot 4\beta \cdot \frac{\alpha}{1}}{4(\alpha \cdot +\alpha \cdot \frac{\alpha}{1})} > 0$	
oin:	2	
arity:	Odd	

Massless par	ticle
Pole residue:	$\frac{p^2}{\alpha}$ >

Pole residue:	$\frac{p^2}{\alpha.}$
Polarisations:	2

Unitarity conditions

(Demonstrably impossible)