MLOps Virtual Event: Building Machine Learning Platforms

Matei Zaharia

Chief Technologist, Databricks

@matei_zaharia

A Common Story

ginablaber @ginablaber

The story of enterprise Machine Learning: "It took me 3 weeks to develop the model. It's been >11 months, and it's still not deployed." @DineshNirmalIBM #StrataData #strataconf

10:19 AM · Mar 7, 2018 · TweetDeck

Even After Deploying, Operating ML is Complex!

- Monitoring performance of the model
- Data drift
- Governance and security

Many ML teams spend >50% of their time maintaining existing models

Why is ML Hard to Operationalize?

Dependence on data

- Multiple, application-specific ways to evaluate performance
- Many teams and systems involved

Response: ML Platforms

 Software platforms to manage ML applications, from development to production

Most companies that use ML at scale are building one

Tech examples: Facebook FBLearner, Google TFX, Uber Michelangelo

Common Components in an ML Platform

- Data management, in development and at scoring time
 - Data transformation, quality monitoring, data versioning
 - Feature stores

- Model management
 - Packaging, review, quality assurance, versioning

- Code and deployment management
 - Reproducibility, deployment, monitoring, experimentation

Our Approach at Databricks

 Every team's requirements will be different, and will change over time

Provide a general platform that is easy to integrate with diverse

In This Webinar

 How we and other organizations handle the different components of a machine learning platform

Demos and experience from 4 different companies

End-to-End Data Science and Machine Learning on Databricks

Clemens Mewald

Director of Product Management, Databricks

End-to-End Data Science and ML on a databricks

End-to-End Data Science and ML on a databricks

Packaging format for reproducible runs on any compute platform

Packaging format for reproducible runs on any compute platform

General model format that standardizes deployment options

Packaging format for reproducible runs on any compute platform

General model format that standardizes deployment options

Record and query experiments: code, metrics, parameters, artifacts, models

Packaging format for reproducible runs on any compute platform

General model format that standardizes deployment options

Record and query experiments: code, metrics, parameters, artifacts, models

Centralized and collaborative model lifecycle management

mlflow Auto-Logging

Auto-logging for ML Frameworks: A single line of code logs parameters, metrics, and artifacts.

mlflow.keras.autolog() # or: mlflow.tensorflow.autolog()

Parameters and (a time series of) metrics

Artifacts (including model)

End-to-End Data Science and ML on a databricks

Open, pluggable architecture

Databricks Notebooks

Provide a collaborative environment for Unified Data Analytics

Multi-Language

Scala, SQL, Python, R: All in one notebook

Visualizations

Built-in visualizations and support for the most popular visualization libraries (e.g. matplotlib, ggplot)

Experiment Tracking

Built-in tracking of Data Science and ML experiments, with metrics, parameters, artifacts, and more

Reproducible

Auto-logged revision history and Git integration for version control

Collaborative

Realtime co-editing and commenting

Enterprise Ready

Enterprise grade access controls, identity pass-through, and auditability

Databricks Notebooks for Collaborative Data Science

Data Engineers, Data Scientists, ML Engineers, and Data Analysts can all collaborate in one shared environment using modern collaboration patterns.

Co-Presence / Co-Editing

Versioning

Commenting

mlflow Integration with Databricks Notebooks

- Runs Sidebar integrated with MLflow Tracking
- Track runs, sort by metrics and parameters
- Linked to revision history of the notebook

End-to-End Data Science and ML on a databricks

Open, plu archite

- Schema enforced high quality data
- Optimized performance

- Full data lineage / governance
- Reproducibility through time travel

Ingest data and visualize data distribution

Data versioning and time travel

Data versioning and time travel

mlflow Integration with Delta

Auto-Logging for any Spark Datasource

End-to-End Data Science and ML on a databricks

Packages and optimizes most common ML **Frameworks**

XGBoost

Built-in Optimization for Distributed Deep Learning

Distribute and Scale any Single-Machine ML Code to 1,000's of machines

Packages and optimizes most common ML

<u>Frameworks</u> XGBoost

Built-in Optimization for Distributed Deep

Learning

Distribute and Scale any Single-Machine ML Code to 1,000's of machines

Built-In AutoML and Experiment Tracking

AutoML and Tracking / Visualizations with MLflow

Packages and optimizes most common ML

Built-in Optimization for Distributed Deep

Learning

Distribute and Scale any Single-Machine ML Code to 1,000's of machines

Built-In AutoML and Experiment

Tracking

AutoML and Tracking / Visualizations with MLflow

mlflow Integration with ML Runtime

Hyperopt autlogging to MLflow

End-to-End Data Science and ML on a databricks

mlflow Model Deployment

mlflow Model Deployment

In-Line Code

Containers

Batch & Stream Scoring

Cloud Inference Services

OSS Serving Solutions

```
model udf =
     mlflow.pyfunc.spark_udf(
          spark,
          model_uri='models:/forecast/production')
```


In summary, 📦 databricks accelerates the full ML Lifecycle

