V21: Optisches Pumpen

Simon Schulte simon.schulte@udo.edu

Tim Sedlaczek tim.sedlaczek@udo.edu

Durchführung: 09.05.2018 Abgabe: 16.05.2018

TU Dortmund – Fakultät Physik

1 Theorie

Ziel des Versuchs ist die Untersuchung von Übergängen bestimmter Energieniveaus in Rubidium-Isotopen. Daraus lassen sich die Lande-Faktoren, der Kernspin der Isotope und die Größe der Zeeman-Aufspaltung berechnen.

In allen Atomen befinden sich Elektronen auf sogenannten Schalen um den Atomkern. Auf diesen Schalen besitzen sie feste Energien, zwischen welchen allerdings Übergänge stattfinden können. Dazu muss Energie, die exakt der Differenz der Niveaus entspricht von den Elektronen abgegeben oder aufgenommen werden. Dies geschieht über die Aufnahme oder Abgabe von Photonen der passenden Frequenz. Die äußeren Niveaus, also jene mit den größten Energien, sind dabei je nach Temperatur unterschiedlich besetzt. Die Besetzungszahl eines Niveaus folgt dabei einer Boltzmann Verteilung, sodass für das Verhältnis der Besetzungszahlen zweier Niveaus gilt:

$$\frac{N_2}{N_1} = \frac{g_2}{g_1} \frac{\exp\left(-W_2/k_B T\right)}{\exp(-W_1/k_B T)} \tag{1}$$

Hierbei beschreiben die W_i die Energien der Zustände, die g_i die Lande-Faktoren, welche beschreiben, wie viele Zustände zu der entsprechenden Energie gehören, sowie k_B die Boltzmann-Konstante und T die Temperatur.

Mit Hilfe des optischen Pumpens kann eine Abweichung von dieser Verteilung erzeugt werden. Diese kann soweit gehen, dass eine Besetzungsinversion entsteht. Eine so entstehende nicht-thermische Verteilung ermöglicht es, einzelne Übergänge zu induzieren, sodass Photonen dieser Energie überwiegend das Spektrum prägen. Über die Vermessung dieses Lichtes lässt sich der Energieabstand h $\nu=W_2-W_1$ der Niveaus messen.

1.1 Energieniveaus der Elektronen eines Atomes

Die Verteilung der Elektronen auf verschiedene Energieniveaus innerhalb des Atomes folgt aus Auswahlregeln verschiedener Quantenzahlen. Aus dem Gesamtdrehimpuls \vec{J} der Elektronenhülle folgt ein magnetisches Moment $\vec{\mu}_J = -g_J \mu_B \vec{J}$. Der Faktor g_J berücksichtigt dabei, dass das Gesamtmoment aus Spin S und Drehimpuls L folgt. Es gilt

$$\begin{split} |\vec{\mu}_\mathrm{J}| = & g_\mathrm{J} \mu_\mathrm{B} \sqrt{\mathrm{J}(\mathrm{J}+1)}, \text{ wobei} \\ |\vec{\mu}_\mathrm{L}| = & -\mu_\mathrm{B} \sqrt{\mathrm{L}(\mathrm{L}+1)} \text{ und} \\ |\vec{\mu}_\mathrm{S}| = & -g_\mathrm{S} \mu_\mathrm{B} \sqrt{\mathrm{S}(\mathrm{S}+1)} \;. \end{split}$$

Das Gesamtdrehmoment $\vec{\mu}_J$ der Elektronenhülle präzediert dabei um den Gesamtdrehimpuls \vec{J} . Daher trägt stets nur der parallele Anteil dieses Drehimpulses zum magnetischen Moment bei. g_J ist also abhängig von J, S und L. Es ergibt sich

$$g_{\rm J} = \frac{3,0023 J(J+1) + 1,0023 (S(S+1) - L(L+1))}{2J(J+1)}$$
 (2)

Wird ein äußeres Magnetfeld angelegt, so spaltet sich das Spektrum weiter auf. Es gilt

$$U_{\text{mag}} = -\vec{\mu}_{\text{J}\cdot\vec{B}} \tag{3}$$

Hieraus folgt eine Richtungsquantelung der Energie:

$$U_{\text{mag}} = g_{\text{J}} \mu_{\text{B}} B \cdot M_{\text{J}}, \quad M_{\text{J} \in [-\text{J}, \text{J}]}$$

$$\tag{4}$$

Bei Anlegen eines äußeren Magnetfeldes wird also über den Zeeman-Effekt jedes Energieniveau in 2J+1 Unterniveaus aufgespalten. Die Anzahl der so entstehenden Niveaus ist abhängig von dem sich aus Gesamtdrehimpuls der Elektronenhülle J und dem Kernspin I ergebenden Gesamtdrehimpuls F des Atomes.

Abbildung 1: Aufspaltung der Energieniveaus innerhalb eines Atomes. Dargestellt sind die Feinstrukturaufspaltung durch den Elektronenspin, die Hyperfeinstrukturaufspaltung durch den Kernspin, sowie die Zeeman-Aufspaltung durch ein äußeres Magnetfeld. [anleitung]

1.2 Optisches Pumpen

Die beiden in diesem Versuch betrachteten Rubidium-Isotope haben beide einen Kernspin $I \neq 0$. Das Verfahren des optischen Pumpens wird anhand eines Beispiel-Systems betrachtet. Es handelt sich dabei zunächst vereinfacht um ein Alkali-Atom ohne Kernspin \vec{I} . Der Grundzustand ist der Zustand $^2S_{1/2}$. Angeregte Zustände sind $^2P_{1/2}$, sowie $^2P_{3/2}$. Die

Abbildung 2: Aufspaltung der S- und P-Niveaus eines Beispiel-Atomes. Rechts: Zeeman-Aufspaltung des $^2P_{1/2}$ - sowie des $^2S_{1/2}$ -Niveaus. [anleitung]

Energieniveaus, sowie deren Aufspaltung im Magnetfeld sind in Abbildung 2 skizziert. Das bei den rechts skizzierten Übergängen emittierte Licht besitzt spezielle Polarisationseigenschaften. Das σ^+ -Licht ist rechtszirkular polarisiert (also $\vec{s} \parallel \vec{k}$), während das σ^- -Licht linkszirkular polarisiert ist (also $\vec{s} \parallel \vec{k}$). Beide Linien erscheinen nur parallel zum Magnetfeld in dieser Polarisation und sonst linear polarisiert. Die π -Linien hingegen sind linear polarisiert und werden nicht parallel zum Magnetfeld abgestrahlt, da es sich hierbei um Dipolstrahlung handelt. Abbildung 3 zeigt den schematischen Aufbau der

Abbildung 3: Schematische Darstellung des Versuchsaufbaus [anleitung].

verwendeten Apparatur. Eine Spektrallampe strahlt Licht in die Apparatur ein. Aus diesem Licht wird mit Hilfe eines D_1 -Filters und eines Polarisationsfilters rechtszirkular

polarisiertes D₁-Licht. Der einzige mögliche Energieübergang innerhalb der Atome in der Dampfzelle ist derjenige von $^2S_{1/2}$ (mit $M_{\rm J}=-^1/2$) zu $^2P_{1/2}$ (mit $M_{\rm J}=+^1/2$), sowie rückwärts durch spontane Emission. Beim rückwärtigen Prozess werden allerdings beide Zeeman-Niveaus des $^2S_{1/2}$ -Niveaus besetzt, sodass im Laufe der Zeit das Niveau $^2S_{1/2}$ (mit $M_{\rm J}=+^1/2$) angereichert und das $^2S_{1/2}$ -Niveau (mit $M_{\rm J}=-^1/2$) "leergepumpt" wird. Dies hat eine Umkehr der Besetzung im S-Niveau zur Folge. Experimentell beobachten lässt sich diese Entwicklung über die Transparenz des Dampfes für Licht. Wird Licht

Abbildung 4: Verlauf der Transparenz der Dampfzelle in Abhängigkeit der Zeit. Das $M_{\rm J}=-1/2$ -Niveau wird "leergepumpt"[anleitung].

(einer bestimmten Energie) von dem Dampf absorbiert, so heißt dies, dass Elektronen im Gas angeregt werden und dabei die Photonen absorbieren. Dies ist natürlich nur möglich, wenn sich Elektronen in dem unteren Energieniveau dieser Anregungen befinden. Je weniger Elektronen sich in diesem Niveau befinden, desto unwahrscheinlicher ist eine Absorbtion des Photons und desto transparenter erscheint das Gas, Abbildung ??.

Es treten zwei Prozesse zur Abregung, also zur Emission von Photonen aus den Gasatomen, auf. Bei der spontanen Emission begibt sich ein Elektron auf ein niedrigeres Energieniveau und gibt dabei ein Photon der Energiedifferenz ab. Bei der induzierten Emission verursacht ein eingestrahltes Photon den beschriebenen Prozess, sodass hierbei zwei Photonen emittiert werden. Diese gleichen sich in Energie, Polarisation und Impulsvektor. Welcher dieser beiden Prozesse überwiegt, hängt von der Energie der Photonen ab. Die Übergangswahrscheinlichkeit für spontane Emission ist proportional zu ν^3 , und damit bei großen Frequenzen ausschlaggebend. Bei kleineren Energien, wie etwa denen bei Zeeman-Übergängen kommt es quasi nur zu induzierter Emission. Dies kann also sehr gut zur Vermessung dieser Übergänge verwendet werden.

Die Energiedifferenzen zwischen den Zeeman-Niveaus ist abhängig von der Stärke des angelegten Magnetfeldes:

$$h\nu = g_{\rm J}\mu_{\rm B}B\Delta M_{\rm J} \tag{5}$$

Durch Einschalten des Magnetfeldes und Entstehen der Zeeman-Aufspaltung beginnt das oben beschriebene Pumpen durch spontane Emission bis eine Besetzungsumkehrung