

Objectives

- Western juniper woodland expansion
- Western juniper ecology
- Impacts of western juniper on watershed function

Western juniper (Juniperus occidentalis var. occidentalis)

- 1.5 Million acres of Juniper in 1937
- Over 6.5 Million acres of Juniper today

Woody Encroachment into Grasslands

The Invasion Begins

Phase 1:

- Juniper is present
- Small juniper become visible
- Grasses, shrubs and forbs are unaffected
- Little or no change in ground cover

The Invasion Advances

Phase 2:

- Juniper treesthroughout the site
- Some shrub die-off possible
- Loss of ground cover

The Invasion Takes Over

Phase 3:

- Juniper canopy closes
- Shrub die-off up to75%
- Loss of understory vegetation
- Large areas of bare soil
- Overland water flow common

Juniper Encroachment Impacts:

- Loss of native plants
- Loss of wildlife habitat
- Reduced range production
- Reduced watershed function

Juniper Encroachment and watershed function:

Effective Water Availability

Juniper density increases

- up to 50% of precipitation intercepted

- evaporated into the atmosphere

reduced available water and instream flow

Western juniper

- 50 70 percent of precipitation is intercepted by tree canopy
- > .3 inch precipitation event for thru-fall
- 90 percent of precipitation events < .3"
- Maintains photosynthetic material year- round
- 30 50 gallons per day per tree (12 inch dbh)
- 9 35 trees per acre (13 inch precipitation zone)

Camp Creek
Paired Watershed Study

Area Description

Mays – 279 acres

Jensen – 261 acres

4500 - 5000 ft elevation

Sagebrush/bunchgrass

steppe

13 inches precipitation

Project History

- 1994-2003: Analysis and classification of watershed characteristics (calibration)
 - Vegetation
 - -Soil
 - Topography geology
 - -Channel flow
 - -Weather patterns
 - Erosion processes

- 2004:
 - Monitoring of ground water
 - Monitoring of spring flow output
 - Monitoring of soil moisture
- 2005: Treatment of Mays watershed
 - October 2005 April 2006
- 2006: Post treatment monitoring begins

What we know:

- Late season spring flow increased 225%
- Ground water days has increased 41 days
- Late season soil moisture increased
- Increase in ground cover

Healthy Watershed

Captures

Stores

Safely Releases

