

ey concept Week 2 L1

Statistical Study

Step 1: population: determine the population and population parameters

Step 2: sampling: use an appropriate sampling technique

Step 3: sample statistics: collect raw data and summarize

Step 4: from sample to population: infer population from sample statistics

Step 5: conclusions

Variables and Data

Data: values of a variable

Coding categorical data with numbers:
although the data values are numbers, the
variable is still categorical

Organizing and Visualizing Data

Type	Describe	Feature
Summary Table	count, percent	
Bar Chart	count, percent	Same gap, same width
Pie Chart	count, percent	mutually exclusive, total 100%
Frequency Distribution	range (lower & upper boundary, frequency	Same interval (width) Steps: sort -> range -> no. of class -> class interval (width) -> class boundaries (limits) -> count
Histogram	frequency, percentage	no gap between bars, same width, made from frequency distribution

Count = frequency

Percent = relative frequency

Bar Chart vs. Histogram?

Organizing and Visualizing Data

Type	Describe	Feature
Bar Chart	count, percent	Same gap, same width
Histogram	Treatiency Dercentage	no gap between bars, same width, made from frequency distribution

Histograms - show **distributions**, bin data nicely Bar charts - used to **compare** between categories

Principles of Excellent Graphs

Summary Definitions I

- o Central tendency: central value
 - Mean
 - population vs. sample
 - the only one affected by extreme values (outliers)
 - Median
 - order first
 - middle
 - Mode
 - most frequent
 - for both numeric & categorial data
 - may be no, or 1, or multiple

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$\mu = \frac{\sum_{i=1}^{N} X_i}{N}$$

Summary Definitions II

- Variation: dispersion or scattering of values
 - Range
 - ignore distribution
 - sensitive to outliers
 - Quartiles
 - Q2=median
 - equal no. of values per segment
 - steps: sort -> find position -> find value (average/round)
 - not affected by outliers
 - interquartile range (i.e. the midspread) = Q3 Q1
 - Variance
 - population vs. sample
 - Standard deviation
 - square foot of variance

spread out => range ↑, variance ↑, standard deviation ↑
concentrated => range ↓, variance ↓, standard deviation ↓

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (X_{i} - \mu)^{2}}{N} \qquad S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

Summary Definitions III

- Shape: distribution
 - Skewness
 - symmetrical level
 - median is preferred in skewed data
 - Five Number Summary and Boxplot
 - what is the "5 numbers"?

Calculator

Casio fx-50F

Casio fx-82ES plus

(Your best friend: google)

Date Set:

163.6 156.2 166.3 179.3 157.8 165.4 159.5 161.7 160.4

1. Change to "Lin" mode

MODE MODE 5 1

2. Clear previous data

SHIFT CLR 1 EXE

3. Input data

163.6 M+ 156.2 M+ 166.3 M+ 179.3 M+ 157.8 M+ 165.4 M+ 159.5 M+ 161.7 M+

160.4 M+

4. Calculate descriptive statistics

Mean: SHIFT 2 1 1 EXE = 163.3555556

Population standard deviation: SHIFT 2 1 2 EXE = 6.459637417

Sample standard deviation: SHIFT 2 1 3 EXE = 6.851480132

No. of Data Input: SHIFT 1 3 EXE = 9

Week 2 T1 Q7-12

