Lecture I213E - Class 1

Discrete Signal Processing

Sakriani Sakti

Course Materials

Materials

→ Lecture notes will be uploaded before each lecture

https://jstorage-2018.jaist.ac.jp/s/PGXRrC7iFmN2FWo

Pass: dsp-i213e-2022

(Slide Courtesy of Prof. Nak Young Chong)

References

- → Chi-Tsong Chen: Linear System Theory and Design, 4th Ed., Oxford University Press, 2013.
- → Alan V. Oppenheim and Ronald W. Schafer: Discrete-Time Signal Processing, 3rd Ed., Pearson New International Ed., 2013.

Related Courses & Prerequisite

Related Courses

- → I212 Analysis for Information Science
- → I114 Fundamental Mathematics for Information Science

Prerequisite

→ None

Evaluation

Viewpoint of evaluation

- → Students are able to understand:
 - Basic principles in modeling and analysis of linear time-invariant systems
 - Applications of mathematical methods and tools to different signal processing problems.

Evaluation method

→ Homework, term project, midterm exam, and final exam

Evaluation criteria

→ Homework/labs (30%), term project (30%) midterm exam (15%), and final exam (25%)

Contact

Lecturer

→ Sakriani Sakti

- TA

Tutorial hours & Term project

- → WANG Lijun (s2010026)
- → TANG Bowen (s2110411)

Homework

→ PUTRI Fanda Yuliana (s2110425)

Contact Email

→ dsp-i213e-2022@ml.jaist.ac.jp

Schedule

■ December 8th, 2022 – February 9th, 2023

■ Lecture Course Term 2-2

- \rightarrow Tuesday 9:00 10:40
- \rightarrow Thursday 10:50 12:30

Tutorial Hours

→ Tuesday 13:30-15:10

Schedule

	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Dec					1	2	3
	4	5	6	7	8	9	10
		12	13	14	15	16	17
	18	19	20	21	22	23	24
		26	27	28	29	30	31

	Sun	Mon	Tu	е	Wed	Thu	Fri	Sat
Jan		2	3		4		6	
	8	9	10		11	12	13	14
		16			18	19	20	
	22	23	24		25	26	27	28
		30	31					

	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Feb				1	2	3	4
	5	6	7	8	9	_	11
	12	13	14	15	16	17	18
	19	20	21	22	23	24	25
	26	27	28				

Tuesday 9:00 — 10:40

Thursday 10:50 — 12:30

Tutorial:

Tuesday 13:30 — 15:10

Course review & term project evaluation (on tutorial hours)

Syllabus

Class	Date	Lecture Course Tue 9:00 — 10:40 / Thr 10:50 — 12:30	Tutorial Hours Tue 13:30 — 15:10					
1	12/08	Introduction to Linear Systems with Applications to Signal Processing						
2	12/13	State Space Description	0					
3	12/15	Linear Algebra						
4	12/20	Quantitative Analysis (State Space Solutions) and Qualitative Analysis (Stability)	0					
5	12/22	Discrete-time Signals and Systems						
X	01/05							
6	01/10	Discrete-time Fourier Analysis	X					
7	01/10*	Review of Discrete-time Linear Time-Invariant Signals and Systems (on Tutorial Hours)						
	01/12	Midterm Exam						
8	01/17	Sampling and Reconstruction of Analog Signals	0					
9	01/19	z-Transform						
X	01/24		0					
10	01/26	Discrete Fourier Transform						
11	01/31	FFT Algorithms	0					
12	01/02	Implementation of Digital Filters						
13	02/07	Digital Signal Processors and Design of Digital Filters	A					
14	02/07*	Review of the Course and Term Project Evaluation (on Tutorial Hours)						
	02/09	Final exam						

Class 1 Introduction to Linear Systems with Applications to Signal Processing

Signal Processing

Discrete-time Signal Processing

Signal

- → Carriers of information, both useful and unwanted
- → The distinction between useful and unwanted information is often subjective as well as objective

Discrete-time Signal Processing

Signal Processing

- → An operation designed for extracting, enhancing, storing, and transmitting useful information (from a mix of conflicting information).
- → Signal processing tends to be application dependent

More Examples of Signals

voltage, light intensity, sound pressure

Domain: time, frequency, spatial

A Grayscale Image

- Image: Signals with special characteristics
 - → Measure a parameter over space (distance), while most signals are measured over time

Two-dimensional signals:

Represents the intensity of the image at each pixel location

Noisy Signals

Noisy Signals:

- → Most real-world signals are contaminated by noise
- → Signal-to-noise ratio (SNR or S/N)

$$SNR = \frac{P_{Signal}}{P_{Noise}}$$

SNR [dB] $= 10 \log_{10} \frac{P_{Signal}}{P_{Noise}}$ $= 20 \log_{10} \frac{V_{Signal}}{V_{Noise}}$

where $P=rac{V^2}{R}$

Analog versus Digital Signals

Continuous-time Continuous-valued

Continuous-time Discrete-valued

Discrete-time Continuous-valued

Discrete-time Discrete-valued

Discrete-time versus Digital Signals

Continuous-time Continuous-valued

Continuous-time Discrete-valued

Discrete-time Continuous-valued

→ Discrete-time signals

Discrete-time Discrete-valued

Allied Areas of DSP

A Block Diagram of a DSP System

DSP is the mathematics, algorithms, and techniques used to manipulate signals after they have been converted into a digital form

Advantages & Disadvantages of DSP over ASP

Advantages of DSP

- → The physical size of analog systems is quite large while digital processors are more compact and light in weight (reduces the costs of memories, gates, microprocessors, and so forth)
- → Digital components are less sensitive to environmental changes, noise, and disturbances
- → Digital system is most flexible as software programs & control programs can be easily modified
- → Based solely on additions and multiplications, leading to extremely stable processing capability

Disadvantages of DSP (Due to conversion from Analog Signals)

- → Distortion sampling the signal and quantizing the samples
- → Finite precision effects

Discrete-time versus Digital Signals

Continuous-time Discrete-valued

Discrete-time Continuous-valued

Discrete-time Discrete-valued

Difference between Discrete-time & Digital Signal

Two Important Categories of DSP

Signal Analysis

Signal Analysis

Deals with the measurement of signal properties Generally, a frequency-domain operation

Examples

→ Spectrum (frequency and/or phase) analysis

Signal Filtering

Signal Filtering

"Signal in-signal out" situation, generally called *filters*Usually (but not always) a time-domain operation

Examples

- → Removal of unwanted background noise
- → Removal of interference
- → Separation of frequency bands
- → Shaping of the signal spectrum

Speech synthesis:

a signal is first analyzed to study its characteristics, which are then used in digital filtering to generate a synthetic voice.

Linear Systems

Physical System

Physical System

- → An interconnection of physical components that perform a specific function.
- → These components may be electrical, mechanical, hydraulic, thermal, etc.

Signals in Physical System

Signals in System

→ Associated with every system is a variety of physical quantities such as electrical voltages and currents, mechanical forces and displacements, flow rates, and temperatures

Input/Output Signals

>> Inputs or excitations

Some of the signals can be directly changed with time in order to effect indirectly desired changes in some other signals of the system that happens to be of particular interest.

Outputs or responses

The system receives inputs and transforms them into outputs!

Linear System

Linear System

- → Systems that satisfy both <u>homogeneity</u> and <u>additivity</u> are considered to be *linear systems*
- → These two rules, taken together, are often referred to as the *principle of superposition*

Linear System Applications

- → Automatic control theory
- → Signal processing
- → Telecommunications

Why Linear Systems Theory?

Linear System Theory

- → Characterizing the complete input-output properties of a system by exhaust measurement is usually impossible
- → When a system qualifies as a <u>linear system</u>, it is possible to use the responses to a small set of inputs to predict the response to any possible input
- → This can save the scientist enormous amounts of work and makes it possible to characterize the system completely

Property of Linear System: Homogeneity

THEN

Property of Linear System: Additivity

Special Properties:

Shift-Invariant Linear System (SILS)

→ It is not a strict requirement for linearity, but it is a mandatory property for most DSP

THEN

Example: $s = -2 \rightarrow \text{shifted right [delayed]}$; $s = 2 \rightarrow \text{shifted left [advanced]}$;

Special Properties: Commutative

Multiple Inputs and/or Outputs

A system with multiple inputs and/or outputs will be linear If it is composed of linear systems and signal addition

Multiplication Signals

The Foundation of DSP: Superposition

Superposition Property of Linear Systems

→ The response of a linear system to a sum of signals is the sum of the responses to each individual input signal

Objectives of DSP

- → Replace a complicated problem with several easy ones
- → Decomposition & Synthesis:

Decomposition

A single signal is broken into two or more additive components

Synthesis

Combining signals through scaling and addition

Example:

Common Decomposition

Various Decomposition

- → Impulse Decomposition
- → Step Decomposition
- → Even/Odd Decomposition
- → Interlaced Decomposition
- → Fourier Decomposition

The main ways:

<u>Impulse decomposition</u> and <u>Fourier decomposition</u>

(Others are only occasionally used)

Impulse: a single non-zero point in a string of zeros

Step Decomposition

- \rightarrow zeros for points 0 through k-1,
- → non-zero for remaining points with value x[k] - x[k-1]

Even/Odd Decomposition

Interlaced Decomposition

Even samples: odd samples set to zero Odd samples: even samples set to zero

Decompose an arbitrary signal Into sine and cosine waves

Commonly Used Decomposition

Various Decomposition

- → Impulse Decomposition
- → Step Decomposition
- → Even/Odd Decomposition
- → Interlaced Decomposition
- → Fourier Decomposition

The main ways:

Impulse decomposition and Fourier decomposition (Others are only occasionally used)

- Why impulses are special?
 - → The system's measurement of an impulse can be the key measurement to make
 - → The trick is to conceive of the complex stimuli as a combination of impulses
 - → We can approximate any complex stimulus as if it were simply the sum of a number of impulses that are scaled copies of one another and shifted in time

- For Shift-Invariant Linear Systems (SILS)
 - → We can measure the system's response to an impulse and we will know how to predict the response to any stimulus (combinations of impulses) through the principle of superposition.
 - → To characterize shift-invariant linear systems, we need to measure only one thing: the way the system responds to an impulse of a particular intensity: the <u>impulse response function</u> of the system

Impulse Response Analysis

Commonly Used Decomposition

Various Decomposition

- → Impulse Decomposition
- → Step Decomposition
- → Even/Odd Decomposition
- → Interlaced Decomposition
- → Fourier Decomposition

The main ways:

<u>Impulse decomposition</u> and <u>Fourier decomposition</u> (Others are only occasionally used)

Function Transformation

Why Sinusoids are Special?

→ Most periodic signals are composed of an infinite sum of sinusoids

Why Sinusoids are Special?

→ Most periodic signals are composed of an infinite sum of sinusoids

- Why Sinusoids are Special?
 - → Most periodic signals are composed of an infinite sum of sinusoids

Į

Why Sinusoids are Special?

- → When we use a sinusoidal stimulus as input to a SILS, the system's response is always <u>a (shifted and scaled) copy</u> of the input, <u>at the same frequency as the input</u>.
- → Sinusoids are the only waveform that has this property: sinusoidal fidelity

$$\sin(2\pi ft) \rightarrow \frac{A_{mount of scaling}}{A} + \frac{A_{mount of shift}}{\phi}$$

Measuring the response to a sinusoid for a SILS entails measuring only two numbers: the shift and the scale. Quite practical!

Why Sinusoids are Special?

integral convolution $y(t) = \int_{\tau=0}^{t} g(t-\tau)u(\tau)d\tau$ $= \int_{\overline{\tau}-t}^{0} g(\overline{\tau}) u(t-\overline{\tau})(-d\overline{\tau}), \quad \overline{\tau} := t-\tau$ $= \int_{\overline{\tau}=0}^{t} g(\overline{\tau}) u(t-\overline{\tau}) (d\overline{\tau})$ $= \int_{-\infty}^{\tau} g(\tau)u(t-\tau)d\tau, \quad \tau \to \overline{\tau}$ $= \int_{\tau-0}^{t} g(\tau) e^{j\omega(t-\tau)} d\tau$

 $=e^{j\omega t}\int_{0}^{t}g(\tau)e^{-j\omega\tau}d\tau$

$$u(t) = e^{j\omega t}$$

$$y(t) = \int_{\tau=0}^{t} g(t-\tau)e^{j\omega\tau}d\tau$$

 $\tau = [0..t]$

 $\bar{\tau} = [t ... 0]$

Why Sinusoids are Special?

$$e^{at} \Rightarrow \frac{de^{at}}{dt} = ae^{at}$$

$$\sin at \Rightarrow \frac{d^2 \sin at}{dt^2} = -a^2 \sin at$$

Response of SILSs to Sine Waves

Fourier Series

Express any periodic stimulus as the sum of a series of (shifted and scaled) sinusoids at different frequencies: <u>Fourier Series</u> expansion of the stimulus

$$s(t) = A_0 + A_1 \sin(2\pi f_1 t + \phi_1) + A_2 \sin(2\pi f_2 t + \phi_2) + A_3 \sin(2\pi f_3 t + \phi_3) + \cdots$$

Fourier Transform

If you know the stimulus s(t), you can compute the coefficients by the method called the <u>Fourier Transform</u> (a way of decomposing complex stimuli into their component sinusoids).

Response of SILSs to Sine Waves

Frequency Response Analysis

- → Measure the system's response to sinusoids of all different frequencies
- → Take the input stimulus and use the <u>Fourier Transform</u> to compute the values of the coefficients in the <u>Fourier Series</u> expansion (the stimulus has been broken down as the sum of its component sinusoids)
- → Predict the system's response to the (complex) stimulus simply by adding the responses for all the component sinusoids

Analytical Methods of Linear Systems

Linear Systems Logic

Measure the Response

Empirical Method

- → Apply various signals to a physical system and measure its responses.
- → Trial-and-error
- → May become unworkable if physical systems are complex or too expensive or too dangerous to be experimented on

Analytical Method

- → Modeling
- → Development of mathematical descriptions: Kirchhoff's voltage and current laws, Newton's law
- \rightarrow Analysis
- → Design

Analytical Method: Mathematical Equations

Analytical Method: Analysis & Design

Analysis

- → **Quantitative** responses of systems excited by certain inputs
- → **Qualitative** stability, controllability, observability

Design

- → If the response of a system is unsatisfactory:
 - 1. adjust the system parameters
 - 2. introduce compensators

Selecting a model that is close enough to a physical system and yet simple enough to be studied analytically is the most difficult and important problem in system design.

Mathematical Descriptions of Systems

System

External Description

External Description: Input-Output Description

- → View the system as a "black box" description: no information on the internal details of the system
- → Characterize by the relation of input, output, and system response (impulse response)

Mathematical Descriptions of Systems

System

Internal Description

- Internal Description: State-Space Description
 - → State-space representation:
 - a mathematical model of a physical system as a set of input, output, and state variables related by first-order differential equations or difference equations
 - → If the linear system is lumped (the number of state variables is finite)

$$x'(t) = A(t)x(t) + B(t)u(t) \quad \text{1st order DE}$$

$$y(t) = C(t)x(t) + D(t)u(t) \quad \text{AE}$$

$$output \quad input$$

→ If a linear system has, in addition, the property of time invariance (SILS)

$$y(t) = \int_0^t G(t - \tau)u(\tau)d\tau$$
$$x'(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Mathematical Descriptions of Systems

Type of Systems

- → SISO (Single Input Single Output) system
- → MIMO (Multi Input Multi Output) system
- → SIMO (Single Input Multi Output) system

Type of Inputs/Outputs

→ Continuous-time system

→ Discrete-time system

$$u[k]:=u(kT), y[k]:=y(kT)$$

State Observer (Deterministic System)

$$x_k = Ax_{k-1} + Bu_k$$
$$y_k = Cx_k$$

$$\hat{x}_k = A\hat{x}_{k-1} + Bu_k$$
$$\hat{y}_k = C\hat{x}_k$$

$$\hat{x}_{k+1} = A\hat{x}_k + Bu_k + K(y_k - \hat{y}_k)$$

= $A\hat{x}_k + Bu_k + K(y_k - C\hat{x}_k)$

State Estimator (Stochastic System)

Error difference between y_{k} and predicted \hat{y}_{k}

Properties of Linear Systems

Properties of the System

Properties

- → Linearity
- → Time invariance
- → Causality

Properties of the System: Linearity

$$\begin{split} y[k] &= \frac{1}{2}u[k] + \frac{1}{2}u[k-1] \\ y_1[k] &= \frac{1}{2}u_1[k] + \frac{1}{2}u_1[k-1]; \quad y_2[k] = \frac{1}{2}u_2[k] + \frac{1}{2}u_2[k-1] \\ y[k] &= G\left\{\alpha_1u_1[k] + \alpha_2u_2[k]\right\} \text{ input} \\ &= \frac{1}{2}\left(\alpha_1u_1[k] + \alpha_2u_2[k]\right) + \frac{1}{2}\left(\alpha_1u_1[k-1] + \alpha_2u_2[k-1]\right) \\ &= \alpha_1\left(\frac{1}{2}u_1[k] + \frac{1}{2}u_1[k-1]\right) + \alpha_2\left(\frac{1}{2}u_2[k] + \frac{1}{2}u_2[k-1]\right) \\ &= \alpha_1y_1[k] + \alpha_2y_2[k] \end{split}$$

linear

$$y[k] = \cos(u[k])$$
$$\cos(\alpha_1 u_1[k] + \alpha_2 u_2[k]) \neq \alpha_1 \cos(u_1[k]) + \alpha_2 \cos(u_2[k])$$

nonlinear

Properties of the System: Time Invariance

$$w[k] = G\{u[k]\}$$

$$y_a[k] = w[k - k_0] = G\{u[k - k_0]\}$$

$$y_b[k] = G\{z[k]\} = G\{u[k - k_0]\}$$

$$y_a[k] = y_b[k]$$
 for any k_0 Time invariant

Properties of the System: Time Invariance

$$w[k] = (-1)^{k} u[k]$$
$$y_{a}[k] = w[k - k_{0}] = (-1)^{k - k_{0}} u[k - k_{0}]$$

$$z[k] = u[k - k_0],$$

$$y_b[k] = (-1)^k z[k] = (-1)^k u[k - k_0]$$

$$y_a[k] = (-1)^{k-k_0} u[k-k_0] = (-1)^{-k_0} (-1)^k u[k-k_0]$$
$$= (-1)^{-k_0} y_b[k] \quad not \ time \ invariant$$

Properties of the System: Causality

Lumpedness

→ A system is called lumpedness system: if the system has a finite number of state variables

Memoryless

- \rightarrow A system is called a memoryless system: if its output $y(t_0)$ depends only on the input applied at t_0 ; it is independent of the input applied before or after t_0
- \rightarrow Most systems have memory The output at t_0 depends on u(t) for $t < t_0$, $t = t_0$, and $t > t_0$

Causality

→ A system is called a causal or nonanticipatory system: if its current output depends on past and current inputs but not on future input

Every physical system is causal!

Properties of the System: Causality

Current output of a causal system is affected by past input. The input from $-\infty$ to time t has an effect on y(t).

Definition: The state $x(t_0)$ of a system at time t_0 is the information at t_0 that, together with the input u(t), for $t \ge t_0$, determines uniquely the output y(t) for all $t \ge t_0$.

By definition, if we know the state at t_0 , there is no more need to know the input u(t) applied before t_0 in determining the output y(t) after t_0 . Thus in some sense, the state summarizes the effect of past input on future output.

Homework #1.1 Causality (1 pt.): Due Dec. 15

Causality

→ Determine whether the following linear systems are causal or not and explain why

$$1) \quad y(t) = u(t + \mathbf{A})$$

2)
$$y(t) = u(t^{2+B})$$

3)
$$y[k] = 0.5u[k] + 0.5u[k - \mathbb{C}]$$
; for $n \ge 0$

4)
$$y[k] = 0.25u[k-1] + 0.25u[k+2D]$$
; for $n \ge 0$

Causal system:

The present output does not depend on future inputs

Use Your ID: sGFEDCBA

Homework #1.2 Memoryless (1 pt.): Due Dec. 15

Memoryless

Output
$$v(t) = \frac{R_2}{R_1 + R_2} u(t)$$

Memoryless system:

The present output only
depend on present inputs

- → When a linear system is memoryless?
- → Determine whether the above linear system is memoryless or not and explain why

Example: Lumped vs Distributed System

Lumped System

Example #1: Network with 3 state variables

$$x(t_0) = \begin{bmatrix} x_1(t_0) \\ x_2(t_0) \\ x_3(t_0) \end{bmatrix}$$
the initial state

Distributed System

Example #2: unit time delay system y(t) = u(t-1) distributed

To determine $\{y(t), t \ge t_0\}$, we need $\{u(t), t_0 - 1 \le t < t_0\}$.

the initial state: infinitely many points

Example: Lumped vs Distributed System

A state input-output pair

initial state
$$x(t_0)$$

input $u(t), t \ge t_0$ $\to y(t), t \ge t_0$

A system is said to be lumped if its number of state variables is finite or its state is a finite vector.

A system is called a distributed system if its state has infinitely many state variables.

Additivity, Homogeneity, Superposition

A system is called a linear system if for every t_0 and any two state-input-output pairs

$$\begin{vmatrix} x_i(t_0) \\ u_i(t), & t \ge t_0 \end{vmatrix} \rightarrow y_i(t), \quad t \ge t_0$$

for i = 1, 2, we have

$$\frac{x_1(t_0) + x_2(t_0)}{u_1(t) + u_2(t), \ t \ge t_0} \rightarrow y_1(t) + y_2(t), \ t \ge t_0 \ \text{(additivity)}$$

and

$$\begin{array}{l}
\alpha x_1(t_0) \\
\alpha u_1(t), \quad t \ge t_0
\end{array} \longrightarrow \alpha y_1(t), \quad t \ge t_0 \quad \text{(homogeneity)}$$

for any real constant α .

Additivity, Homogeneity, Superposition

These two properties can be combined as

$$\frac{\alpha_1 x_1(t_0) + \alpha_2 x_2(t_0)}{\alpha_1 u_1(t) + \alpha_2 u_2(t), \quad t \ge t_0} \rightarrow \alpha_1 y_1(t) + \alpha_2 y_2(t), \quad t \ge t_0$$

for any real constants α_1 and α_2 , and is called the superposition property. A system is called a nonlinear system if the superposition property does not hold.

Zero Input Response & Zero State Response

The zero-input response:

if the input u(t) is identically zero for $t \ge t_0$, then the output will be excited exclusively by the initial state $x(t_0)$.

$$\begin{cases} x(t_0) \\ u(t) \equiv 0, \quad t \ge t_0 \end{cases} \rightarrow y_{zi}(t), \quad t \ge t_0$$

The zero-state response:

if the initial state $x(t_0)$ is zero, then the output will be excited exclusively by the input.

$$\begin{vmatrix} x(t_0) = 0 \\ u(t), & t \ge t_0 \end{vmatrix} \rightarrow y_{zs}(t), \quad t \ge t_0$$

Zero Input Response & Zero State Response

The additivity property implies

Output due to
$$\begin{cases} x(t_0) \\ u(t), & t \ge t_0 \end{cases} =$$
output due to
$$\begin{cases} x(t_0) \\ u(t) \equiv 0, & t \ge t_0 \end{cases}$$
+ output due to
$$\begin{cases} x(t_0) = 0 \\ u(t), & t \ge t_0 \end{cases}$$

Response = zero-input response + zero-state response

Zero Input Response & Zero State Response

For nonlinear systems, the complete response can be very different from the sum of the zero-input response and zero-state response. Therefore, we cannot separate the zero-input and zero-state responses in studying nonlinear systems.

If a system is linear, then the additivity and homogeneity properties apply zero-state responses.

$$\{u_i \to y_i\}$$

 $\{u_1 + u_2 \to y_1 + y_2\}$ and $\{\alpha u_i \to \alpha y_i\}$ for all α and all u_i

A similar remark applies to zero-input responses of any linear system.

$$\begin{aligned} & \left\{ x_i(t_0) \to y_i \right\} \\ & \left\{ x_1(t_0) + x_2(t_0) \to y_1 + y_2 \right\}, \left\{ \alpha x_i(t_0) \to \alpha y_i \right\} \text{ for all } \alpha \text{ and all } x_i \end{aligned}$$

Thank you

