Levantamento da Curva de Magnetização

Barcelos C. O.¹, Alves, W. F. O.², Batista, H.O.B.³.

Matriculas: 93736¹, 96708², 96704³

Departamento de Engenharia Elétrica,

Universidade Federal de Viçosa, Viçosa - MG.

e-mails: celso.barcelos@ufv.br¹, werikson.alves@ufv.br², hiago.batista@ufv.br³

Resumo—Este relatório tem como objetivo fazer o levantamento da curva de magnetização de um circuito magnético. Para tanto, será analisado como que a variação do nível de tensão na bobina de um transformador influência diretamente na corrente do mesmo. Uma comparação gráfica entre os resultados práticos e simulados será levantada para validação experimental.

I. Introdução

Iniciamos nossa atenção no estudo de um material completamente desmagnetizado. Ou seja, os domínios magnéticos encontram se nesse instante organizados de forma que não exista campo líquido. Para análise da relação B×H nesse corpo, partindo da condição onde B e H são nulos, a medida que começamos a aplicar uma f_{em} , a densidade de campo B também aumenta mas não de forma linear, conforme pode ser visto na Figura 1. Note que após H atingir aproximadamente 100 Ae/m, a densidade de fluxo comeca a aumentar de forma mais lenta. Quando H \approx 300 Ae/m (referente ao ponto x), o gráfico apresenta uma curva acentuada, essa região é denominada como joelho da curva. Para valores de H maiores do que 500 Ae/m, B passa a apresentar um valor praticamente constante, é dito então que o circuito magnético atingiu a região de saturação.

Figura 1: Curva de Magnetização de uma amostra de lâmina de aço-silício (Fonte: extraída de [1]).

Agora sabendo como se comporta a relação de B×H, serão simulados alguns circuitos magnéticos por meio do software computacional Finite Element Method Magnetics

(FEMM) para coleta de dados e interpretação dos gráficos e imagens geradas.

II. Objetivos

Os objetivos desta prática consistem em:

- determinar a curva de magnetização de um circuito magnético utilizando grandezas eficazes;
- introduzir a utilização do software FEMM;
- comparar os efeitos produzidos por um núcleo ferromagnético com e sem entreferro.

III. METODOLOGIA

Para estudo da interferência do entreferro em um núcleo de material ferromagnético, foi montado o circuito apresentado na Figura 2. Para este circuito magnético, foi estabelecido uma corrente de 3 A a qual está circulando pelas espiras, já os parâmetros construtivos e magnéticos adotados foram:

- Material Magnético: M-15 Steel;
- Bobinas: 18 AWG;
- Ar: ar;
- Número de voltas da bobina: 300.

Figura 2: Estrutura Mecânica 1 (Fonte: extraída de [2]).

Em seguida, para estas mesmas características, foi realizada uma nova simulação, entretanto dessa vez com um núcleo sem entreferro. O respectivo circuito pode ser visto na Figura 3.

Figura 3: Estrutura Mecânica 2 (Fonte: próprio autor).

Por fim, foi simulado um novo circuito magnético, mostrado na Figura 4. Para este circuito foi definido uma profundidade de 3 cm, uma corrente de 3 A percorrendo as espiras e as seguintes características construtivas e magnéticas:

• Material Magnético: M-15 Steel;

• Bobinas: 18 AWG;

• Ar: ar;

• Número de voltas da bobina: 300.

Figura 4: Estrutura Mecânica 3 (Fonte: extraída de [2]).

Depois, em laboratório foram montados três circuitos. O primeiro circuito consiste na alimentação de uma das bobinas do transformador com o Varivolt, Figura 5. Com o Varivolt foi possível variar a tensão de 5 em 5 V até que a corrente nominal suportada pelo transformador, de 6 A, fosse atingida.

Figura 5: Circuito magnético 4 (Fonte: extraída de [2]).

O segundo circuito é muito semelhante ao da Figura 5, contudo dessa vez foi alimentado um núcleo de ferro sem entreferro, por meio de uma bobina de 300 espiras. A tensão foi controlada pelo varivolt, novamente, de 5 em 5 V até que a corrente atingisse 3 A.

E no terceiro circuito, foi um utilizado um núcleo de ferro com entreferro, Figura 6, com comprimento de 1 cm, alimentado por uma bobina de 300 espiras. Nesta simulação o varivolt foi variado de 2 em 2 V até que que a corrente alcance 3,5 A.

Figura 6: Núcleo com entreferro usado (Fonte: extraída de [2]).

Por meio dos resultados obtidos de tensão e corrente, pode-se estabelecer uma analogia com a densidade de fluxo magnético e o campo magnético, como pode ser observado nas Equações a seguir:

i

 ≪ H

$$Hl = Ni_{RMS}$$

$$H_{max} = \frac{N\sqrt{2}}{l} \cdot i_{RMS} = K_1 \cdot i_{RMS}$$
 (1)

• $V \propto B$

$$V = N \frac{d\Phi}{dt} = N \frac{d(ABsin(\omega t))}{dt}$$

$$B_{max} = \frac{\sqrt{2}}{NA2\pi f} \cdot V_{RMS} = K_2 \cdot V_{RMS}$$
 (2)

Portanto, por meio das equações 1 e 2 pode-se perceber uma certa relação de proporcionalidade, sendo estas $H \propto i$, com um fator de multiplicação K_1 , e $B \propto \nu$, com um fator de multiplicação K_2 .

IV. RESULTADOS E DISCUSSÕES

Após simulação do circuito da Figura 2, foi possível visualizar as linhas de fluxo percorrendo o interior do núcleo. Vide Figura 7.

Figura 7: Linhas de fluxo no estrutura magnética com entreferro (Fonte: próprio autor).

Veja que é possível visualizar o efeito do espraiamento no entreferro. Vale comentar que esta tipologia de circuito apresenta perdas, pois o fluxo total gerado pela bobina é perdido ao longo percurso do núcleo.

A Figura 8 apresenta as linhas de fluxo para o núcleo sem entreferro. Por meio desta, pode se observar que todo o fluxo concatenado não é dissipado ao percorrer o caminho ao longo do núcleo. Além disso, observe que a mudança de coloração nas bordas do núcleo informam que essas regiões geram uma resistência maior quanto à passagem do fluxo, logo esse é o efeito que explica o porque as bordas são os pontos propícios a estarem mais aquecidos em núcleos com cantos quadrados.

Figura 8: Linhas de fluxo na estrutura magnética sem entreferro (Fonte: próprio autor).

Para o modelo sem entreferro da Figura 4, foi obtido a curva de magnetização, que pode ser observada na Figura 9. Veja que as três regiões da curva de magnetização estão bem definidas. Região linear: de 0 até $100 \ A/m$, joelho da curva: de $100 \ A/m$ até $300 \ A/m$ e região de saturação: a partir de $300 \ A/m$.

Figura 9: Curva $B \times H$ desconsiderando efeito do entreferro. (Fonte: próprio autor).

Para o primeiro ensaio realizado em laboratório, foram obtidos os seguintes valores de corrente e tensão:

Tabela I: Tensão e Corrente - Ensaio 01.

V_1 [V]	I_1 [A]
0	0
5	0,007
10	0,015
15	0,021
20	0,027
25	0,035
30	0,042
35	0,050
40	0,058
45	0,067
50	0,078

V_1 [V]	I_1 [A]
55	0,091
60	0,106
65	0,125
70	0,145
75	0,176
80	0,231
85	0,311
90	0,450
95	0,640
100	0,900
105	1,190

I_1 [A]
1,512
1,853
2,300
2,700
3,230
3,710
4,230
4,880
5,430
-
-

Dado os resultados apresentados na Tabela 1, plotou se o gráfico V \times I que segue ilustrado na Figura 10.

Figura 10: Relação entre tensão e corrente no transformador (Fonte: próprio autor).

Através das equações 1 e 2, converteu se os parâmetros V×I para ficarem em função de B e H, resultando na construção da curva de magnetização. O resultado dessa conversão é apresentado na Figura 11.

Parâmetros considerados:

• $l_n = 45 \text{ cm};$

• N = 300 espiras;

• f = 60 Hz;

• Profundidade: 3 cm

• Largura: 3cm.

A partir destes parâmetros e por meio das Equações 1 e 2, obtemos $K_1 = 942,81$ e $K_2 = 13,89 \times 10^{-3}$. Observe que apesar da mudança de escala, o comportamento gráfico entre ambos é idêntico.

Figura 11: Curva de Magnetização $B \times H$ (Fonte: próprio autor).

Para o ensaio 2, foi obtidos os valores de corrente e tensão da Tabela II e III, em que a primeira é desconsiderando o entreferro, e a outra é com entreferro.

Tabela II: Tensão e corrente do Ensaio 02 - Sem entreferro.

V_1 [V]	I_1 [A]
5	0,058
10	0,107
15	0,158
20	0,199
25	0,261
30	0,305
35	0,362
40	0,417
45	0,471
50	0,532
55	0,595

V_1 [V]	I_1 [A]
60	0,659
65	0,723
70	0,801
75	0,863
80	0,936
85	1,013
90	1,091
95	1,170
100	1,250
105	1,342
110	1,431

V_1 [V]	I_1 [A]
115	1,520
120	1,635
125	1,773
130	1,960
135	2,260
140	2,910
143	3,500
-	-
-	-
-	-
_	_

Tabela III: Tensão e corrente Do Ensaio 02 - Com entreferro

V_1	I_1
2	0,307
4	0,640
6	0,947
8	1,270
10	1,550
12	1,790
14	2,10
16	2,240
18	2,77
20	3,08
22	3,37
24	3,70

A partir dos dados coletados na Tabela II foi plotado a curva V-I, como pode ser observado na Figura 12. Veja

que, para uma corrente de 3,5 A, ou seja, aplicando uma força magnetomotriz igual a 1050 A·esp, foi obtido uma tensão $V=150\ V$.

Figura 12: Curva $V \times I$ desconsiderando o efeito do entreferro. (Fonte: próprio autor).

Figura 13: Curva $V \times I$ considerando efeito do entreferro. (Fonte: próprio autor).

Figura 14: Curva B× H. (Fonte: próprio autor).

Analisando o gráfico das Figuras 13 e 14, ressalta se que o comportamento é aparentemente linear devido ao fato do circuito magnético não ter atingido o joelho da curva e consequentemente nem a região de saturação. Ou seja, o circuito opera e não saiu da região linear.

Além disso, é importante ressaltar que a $f_{mm}=1050$ A·esp produz uma tensão de aproximadamente V=25~V. Portanto, perceba que a estrutura com entreferro, é necessário uma f_{mm} muito maior, para ter o mesmo resultado de uma estrutura sem entreferro.

	Com Entreferro	Sem Entreferro
f_{mm} [A-e]	1050	1050
Tensão [V]	25	150

V. Conclusões

Ao fim da realização dos ensaios descritos, verificou-se o efeito do espraiamento devido a presença do entreferro. Também foi possível determinar que existe uma relação proporcional entre os resultados gráficos de tensão \times corrente (V \times I) e densidade de campo magnético \times campo magnético (B \times H), que apesar da diferença em escala, o comportamento entre ambos é análogo.

Dessarte, vale destacar que o efeito de aquecimento observado anteriormente é algo que se deve levar em consideração durante a realização de um projeto de um transformador, pois como mencionado, tal fenômeno acarreta perdas consideráveis por Efeito Joule. Logo se deve aplicar a técnica de laminação do núcleo de forma a amenizar tal efeito.

Referências

- William H Hayt Jr and John A Buck. Eletromagnetismo. Bookman Editora, 2013.
- [2] PRATES M. O. AULA PRÁTICA 01: Roteiro da aula prática de Elt 340 - Conversão. Universidade Federal de Viçosa - MG. 2021
- [3] STUART M. Wentworth. Eletromagnetismo aplicado: abordagem antecipada das linhas de transmissão. Bookman Editora, 2009.