NAMA : AGUNG AKSA

NIM : 09010182327007

KELAS : MI 3A

MK : PRAKTIKUM JARKOM

Routing RIP

1. Buatlah IP Address di PC

No	Nama Device	Alamat	Netmask	Gateway
1	PC1	192.168.1.10	255.255.255.0	192.168.1.1
2	PC2	192.168.2.10	255.255.255.0	192.168.2.1
3	PC3	192.168.3.10	255.255.255.0	192.168.3.1

ROUTER R1

ROUTER R2

```
Router_09010182327007>enable
Router_09010182327007#show ip route rip
R     192.168.1.0/24 [120/1] via 192.168.100.1, 00:00:24, FastEthernet0/1
          192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
R     192.168.3.0/24 [120/1] via 192.168.200.2, 00:00:07, FastEthernet1/0
Router 09010182327007#
```

ROUTER R3

2. Lakukan PING dan Traceroute dari PC1 ke PC2 dan PC3, PC2 ke PC1 dan PC3, serta PC3 ke PC1 dan PC2.

No	Sumber	Tujuan	Tujuan	
NO	Cumber	rajuan	Ya	Tidak
	504	PC2	Ya	
1	PC1	PC3	Ya	

	D 00	PC1	Ya	
2	PC2	PC3	Ya	

	500	PC1	Ya	
3	PC3	PC2	Ya	

Routing EIGRP

1. Buat Pengalamat di PC

No	Nama Device	Alamat	Netmask	Gateway
1	PCA	192.168.1.10	255.255.255.0	192.168.1.1
2	PCB	192.168.2.10	255.255.255.0	192.168.2.1
3	PCC	192.168.3.10	255.255.255.0	192.168.3.1

ROUTER A

ROUTER B

ROUTER C

2. Lakukan PING dan Traceroute dari PCA ke PCB dan PCC, PCB ke PCA dan PCC, serta PCC ke PCA dan PCB.

No	Sumber	Tujuan	Hasil	
			Ya	Tidak
1	PCA	PCB	Ya	
1		PCC	Ya	

2	РСВ	PCA	Ya	
2	РОВ	PCC	Ya	

2	PCC	PCA	Ya	
3	PCC	PCB	Ya	

- Tabel hasil Ping.

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.10
Pinging 192.168.1.10 with 32 bytes of data:
Reply from 192.168.1.10: bytes=32 time=23ms TTL=128
Reply from 192.168.1.10: bytes=32 time=36ms TTL=128
Reply from 192.168.1.10: bytes=32 time=19ms TTL=128
Reply from 192.168.1.10: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.1.10:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 36ms, Average = 19ms
C:\>ping 192.168.2.10
Pinging 192.168.2.10 with 32 bytes of data:
Request timed out.
Reply from 192.168.2.10: bytes=32 time=2ms TTL=126
Reply from 192.168.2.10: bytes=32 time=11ms TTL=126
Reply from 192.168.2.10: bytes=32 time<1ms TTL=126
Ping statistics for 192.168.2.10:
   Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 11ms, Average = 4ms
```

```
C:\>ping 192.168.3.10
Pinging 192.168.3.10 with 32 bytes of data:
Request timed out.
Reply from 192.168.3.10: bytes=32 time=13ms TTL=125
Reply from 192.168.3.10: bytes=32 time<1ms TTL=125
Reply from 192.168.3.10: bytes=32 time=1ms TTL=125
Ping statistics for 192.168.3.10:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 13ms, Average = 4ms
C:\>ping 192.168.4.10
Pinging 192.168.4.10 with 32 bytes of data:
Request timed out.
Reply from 192.168.4.10: bytes=32 time=1ms TTL=126
Reply from 192.168.4.10: bytes=32 time=11ms TTL=126
Reply from 192.168.4.10: bytes=32 time=11ms TTL=126
Ping statistics for 192.168.4.10:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
   Minimum = 1ms, Maximum = 11ms, Average = 7ms
```

- Menurut penjelasan saya: Laporan ini secara keseluruhan menampilkan hasil konfigurasi dan pengujian konektivitas jaringan menggunakan protokol RIP dan EIGRP, serta verifikasi koneksi antar perangkat dalam jaringan tersebut.
- Analisa yang saya dapatkan dari Laporan tersebut:

 Keberhasilan Routing: Kedua protokol routing (RIP dan EIGRP) berhasil membentuk tabel routing yang memungkinkan konektivitas antar perangkat dalam jaringan.

 Keunggulan EIGRP dibanding RIP: Walaupun RIP berhasil dalam jaringan ini, EIGRP memiliki keunggulan dalam hal efisiensi dan skalabilitas untuk jaringan yang lebih besar.

 Penggunaan di Masa Depan: Untuk jaringan yang dinamis dan kompleks, EIGRP atau protokol routing yang lebih canggih akan lebih efisien daripada RIP.
- **Kesimpulannya**, laporan ini menunjukkan bahwa EIGRP menawarkan performa yang lebih baik dalam skenario jaringan yang memerlukan efisiensi dan keandalan yang lebih tinggi.