Characteristic Problems

Number of operations

- Eigen Problems
- Eigen Vectors
- Eigenvalues

Power Method

Iterative Solutions

Inverse Method
Shifting Method

QR Method

- Iterative Solution
- General method
- Solving for all eigenvalues

Power Method

For $Ax = \lambda x$

And matrix A diagonizable *n* distinct eigenvalues orthonormal

Then

$$|\lambda_1| > |\lambda_2| > |\lambda_3| > \cdots |\lambda_n|$$

Power method determines the largest eigenvalue λ_1

1. Set
$$x^o = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

2. Calculate $Ax^{(o)} = y^{(1)}$

- Divide $y^{(1)}$ components by its largest element λ^1 $v^{(1)} = \lambda^1 x^1$
- 4. λ^1 and χ^1 are first estimate of largest λ and χ^1 the corresponding to eigen vector
- 5. Continue the iteration: $Ax^{(k)} = y^{(k+1)}$ and determine $\lambda^{(k+1)}$ and $x^{(k+1)}$ $\lambda^{(k+1)}$ converges to λ_1

Convergence issues

Note that iterations go with the λ_1^k

- Power method convergence according to $\frac{|\lambda_1|}{|\lambda_2|}$. Convergence slow when $|\lambda_1|$ and $|\lambda_2|$ are close and the ratio is close to unity.
- 2. If $|\lambda_1| < 1$ when $k \to \infty$ $\lambda_1^k \to 0$
- 3. If $|\lambda_1| > 1$ when $k \to \infty$ $\lambda_1^k \to \infty$
- 4. If λ_1 is complex, no convergence

Inverse Power method

For $Ax = \lambda x$

multiply both sides by A^{-1}

$$A^{-1}x = \frac{1}{\lambda} x$$

Use power method to solve for $\frac{1}{\lambda}$

 $\frac{1}{\lambda}$ should be maximum eigenvalue, so λ is the minimum eignevalue

Shifted Power method

With s as a constant, deduct sI form both sides of the $Ax = \lambda x$

$$(A - sI)x = (\lambda - s)x$$
$$A_s x = \lambda_s x$$

or

With inverse method, the closest eigenvalue to s

With shifting s, iteration converges to λ_3

Use power inverse method to determine eigenvalues for matrix

$$A = [2,1;1,2]$$

Use power shifted method with s=1.5 to determine eigenvalues for matrix

$$A = [2,1;1,2]$$

QR Method

Iteratively solves for all eigenvalues for $Ax = \lambda x$ A is $n \times n$ and when symmetric, all eigenvalues are real

$$\mathsf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \dots \dots a_{1n} \\ a_{21} & a_{22} & a_{23} & a_{24} \dots a_{2n} \\ a_{31} & a_{32} & a_{33} & a_{34} \dots a_{3n} \\ \dots \dots \dots \dots \dots \dots \dots \dots \\ a_{n1} & a_{n2} & a_{n3} & a_{n4} \dots a_{nn} \end{bmatrix} \text{ and } a_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{n1} \end{bmatrix}, \ a_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \\ \vdots \\ \vdots \\ a_{n2} \end{bmatrix} \dots \text{ and } a_n = \begin{bmatrix} a_{1n} \\ a_{2n} \\ a_{3n} \\ \vdots \\ \vdots \\ a_{nn} \end{bmatrix}$$

$$A = (a_1, a_2, a_3,, a_n)$$

Introduce Matrix Q

$$\mathbf{Q} = \begin{bmatrix} q_{11} & q_{12} & q_{13} & q_{14} & \dots & q_{1n} \\ q_{21} & q_{22} & q_{23} & q_{24} & \dots & q_{2n} \\ q_{31} & q_{32} & q_{33} & q_{34} & \dots & q_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ q_{n1} & q_{n2} & q_{n3} & q_{n4} & \dots & q_{nn} \end{bmatrix} \text{ and } q_1 = \begin{bmatrix} q_{11} \\ q_{21} \\ q_{31} \\ \vdots \\ q_{n1} \end{bmatrix}, \ q_2 = \begin{bmatrix} q_{12} \\ q_{22} \\ q_{32} \\ \vdots \\ \vdots \\ q_{n2} \end{bmatrix} \quad \text{and } q_n = \begin{bmatrix} q_{1n} \\ q_{2n} \\ q_{3n} \\ \vdots \\ \vdots \\ q_{nn} \end{bmatrix}$$

$$Q = (q_1, q_2, q_3,, q_n)$$

Vector q's are orthonormal: $|q_i|=1$ and $q_i\cdot q_j=0$ Normal vectors have no projection on other vectors.

Matrix R

It is an upper triangular matrix

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} & r_{14} & \dots & r_{1n} \\ 0 & r_{22} & r_{23} & r_{24} & \dots & r_{2n} \\ 0 & 0 & r_{33} & r_{34} & \dots & r_{3n} \\ 0 & 0 & 0 & r_{44} & r_{45} & r_{4n} \\ & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & \dots & r_{nn} \end{bmatrix}$$

If Q is orthonormal, from matrix A, can be transformed to matrix A' such that

$$A = QA'Q^T$$

A and A' are similar or equivalent with identical eigenvalues.

QR Procedure

1. Determine the matrix Q

$$q_{1} = \frac{a_{1}}{|a_{1}|}$$

$$a'_{2} = a_{2} - q_{1}^{T} a_{2} q_{1} \text{ (projection)}$$

$$q_{2} = \frac{a'_{2}}{|a'_{2}|}$$

$$a'_{3} = a_{3} - q_{1}^{T} a_{3} q_{1} - q_{2}^{T} a_{3} q_{2}$$

Recurrence

$$\mathbf{a'_k} = a_k - \sum_{i=1}^{k-1} q_i^T a_k q_i$$
$$q_k = \frac{a'_k}{|a'_k|}$$

2. Construct upper triangular matrix R

$$r_{ii} = |a'_i|$$
 and $r_{ij} = q_i^T a_j$

Reconstruct A: $A^{(1)} = QR$

With new $A^{(1)}$, determine new $Q^{(1)}$ and $R^{(1)}$

With convergence

Eigenvalues $\lambda_i = r_{ii}$

Use QR method to determine eigenvalues for matrix

$$A = [2,1;1,2]$$