Smart Thermostat System Using Arduino Mega and ESP32

Rotaru Cristian

January 16, 2025

Contents

1	Problem Statement	2
2	The Solution 2.1 Arduino Mega Implementation	2 2 4
3	Circuit Diagram/Schematics	6
4	Picture of the Project	6
5	Bibliography	6

1 Problem Statement

The goal of this project is to design and implement a smart thermostat system capable of monitoring and controlling room temperature.system aims to:

- Measure the current temperature using an analog temperature sensor.
- Display the current temperature and desired threshold on an LCD.
- Control a heating element based on the temperature and user-defined threshold.
- Provide remote access via a Wi-Fi connection to view temperature data and modify the temperature threshold using an ESP32 web server.

The problem lies in creating a reliable, low-cost solution for temperature monitoring and heating control both local (LCD) and remote (web interface) access.

2 The Solution

The proposed solution consists of two microcontrollers:

- 1. **Arduino Mega:** Handles temperature measurement, heating control, and local display on an LCD.
- 2. **ESP32:** Acts as a Wi-Fi-enabled web server for remote monitoring and control.

2.1 Arduino Mega Implementation

The Arduino Mega uses an analog temperature sensor to measure the room temperature and updates the LCD display with:

- Current temperature.
- Desired threshold.
- Status of the heating element (ON/OFF).

If the temperature falls below the threshold, the Arduino activates a relay to turn on the heating elementThe Mega communicates with the ESP32 via serial to send current temperature data and receive updated thresholds.

Code Example:

```
void setup ()
1
      lcd . begin (16,
                         2);
2
3
      pinMode (tempPin,
                             INPUT);
4
                               OUTPUT);
      pinMode (relayPin,
5
      digitalWrite (relayPin,
                                      LOW);
6
      Serial1 . begin (9600);
7
8
      lcd . print (" Thermostat _ Init ");
9
      lcd . createChar (0 ,
                               flame);
10
      delay (2000);
   }
12
13
   void
          loop() {
14
          Read sensors
15
                       = readTemperature (10,
      temperature
                                                     tempPin);
16
17
      // Control
                     logic
18
      if (temperature
                            < tempThreshold
                                                   &&!heatingOn)
                                                                       {
19
         digitalWrite (relayPin,
                                         HIGH);
20
         heatingOn = true;
21
      } else if (temperature
                                    >= tempThreshold
                                                              && heatingOn)
22
         digitalWrite (relayPin,
                                         LOW);
23
         heatingOn = false;
24
      }
25
26
      lcd . clear ();
27
      // Display
28
      lcd . setCursor (0 ,
                              0);
29
      lcd . print (" Temp : , ");
30
      lcd . print ( temperature ,
                                      1);
31
      lcd . print ("C, ");
32
      Serial1 . print (" TEMP :");
33
      Serial1 . print ( temperature ,
                                            1);
34
      Serial1 . print (",");
35
36
      if (heatingOn) {
37
         lcd . setCursor (15,0);
38
         lcd . write ( byte (0) );
39
         Serial1 . print (" HEATING :ON ,");
40
      }
41
```

```
else
42
         Serial1 . print (" HEATING : OFF ,");
43
44
45
      lcd . setCursor (0 ,
                             1);
46
      lcd . print (" Desired : .");
47
      lcd . print ( tempThreshold ,
                                        1);
48
      lcd . print ("C, ");
49
      Serial1 . print ("THRESH:");
50
      Serial1. print (tempThreshold,
                                              1);
51
      Serial1 . print ("\n");
52
53
      delay (1000);
54
   }
55
   void serialEvent()
57
      if (Serial1 . available ())
58
                 data = Serial1 . readStringUntil ( '\n ');
59
             ( data . startsWith (" SET_TRESHOLD :"))
60
           tempThreshold = data.substring(14).toFloat();
61
        }
62
      }
63
   }
64
65
           readTemperature (int
   float
                                       count, int
                                                     pin) {
66
              sumTemp = 0;
      float
67
      for (int i = 0; i < count; i++) {
68
             reading = analogRead ( pin );
69
                 voltage = reading * resolutionADC;
         float
70
         float
                 tempCelsius
                                 = (voltage - 0.5) /
71
             resolutionSensor
         sumTemp = sumTemp + tempCelsius;
72
      }
73
               sumTemp / (float) count;
      return
74
   }
75
```

Listing 1: Arduino Mega Implementation

2.2 ESP32 Implementation

The ESP32 creates a Wi-Fi access point and hosts a web servers can connect to the ESP32 network to:

• View the current temperature, heating status, and threshold.

• Modify the threshold using interactive buttons.

Code Example:

```
// HTML Page
   String createHTML() {
2
               html = "<html>< body>";
      String
3
      html += " < meta _ http - equiv = ' refresh '_ content = '5 ' > ";
                                                                           //
4
          Refresh every 5 seconds
      html += "<h1 > Temperature _ Control </ h1 > ";
5
      html += "  Current _ Temperature : _ " + String (
          temperature ) + "_C  ";
      html += "  Heating: " + String (heating) + "  ";
html += "  Threshold: " + String (threshold) + " C 
7
8
      html += " < button _ onclick =\" location . href = '/ increase
9
          '\" > Increase _ Threshold </ button >";
      html += " < button _ onclick =\" location . href = '/ decrease
10
          "\" > Decrease _ Threshold </ button >";
      html += " </ body > </ html > ";
11
      return html;
12
   }
13
14
   void setup ()
15
      Serial . begin (9600);
16
      if (! WiFi . softAP ( ssid ,
                                 password )) {
17
        while (1)
18
           ;
19
20
21
      server . on ("/" ,
                          handleRoot);
22
      server . on ("/ increase " , handleIncrease );
23
      server . on ("/ decrease " , handleDecrease );
24
      server . begin ();
25
   }
26
27
  void loop () {
28
      server . handleClient ();
29
   }
30
```

Listing 2: ESP32 Web Server Implementation

The ESP32 parses data from the Arduino Mega via serial communication and updates the web interface accordingly.

3 Circuit Diagram/Schematics

Figure 1: Circuit Diagram of the Smart Thermostat System

4 Picture of the Project

Figure 2: Smart Thermostat Prototype

5 Bibliography

- Arduino Documentation: https://www.arduino.cc/en/Reference/ HomePage
- ESP32 Documentation:https://docs.espressif.com/projects/esp-idf/en/latest/