Physics 11 EXTRA Formula Sheet

Indices of Refraction:

Medium	n
Vacuum	1.0000
Air	1.0003
Water	1.33
Ethanol	1.36

Medium	n
Crown glass	1.52
Quartz	1.54
Flint glass	1.61
Diamond	2.42

Kinematics

$$v_{average} = \frac{\Delta d}{\Delta t}$$
 $a = \frac{\Delta v}{\Delta t}$ $d = \frac{1}{2}(v_f + v_o)t$ at $v_f = v_f - v_o$

Forces

$$F_e = kx$$
 $F_f = \mu F_N$ $F_g = mg$ $a = \frac{Fnet}{m}$

Energy, Work and Power

$$E_h = mc\Delta t$$
 $E = mc^2$ $E_e = \frac{1}{2}kx^2$ eff $= \frac{useful output}{total input} (100\%)$

Waves

$$T = \frac{1}{f}$$
 $f = \frac{1}{T}$ $v = \lambda f$ $v = \frac{\lambda}{T}$

Light

$$n_i \sin \theta_i = n_r \sin \theta$$
 $n = \frac{c}{v}$ $\frac{1}{f} = \frac{1}{d_i} + \frac{1}{d_o}$ $M = -\frac{d_i}{d_o} = \frac{h_i}{h_o}$

Relativity

$$t = \frac{t_o}{\sqrt{1 - \frac{v^2}{c^2}}} \qquad L = L_o \sqrt{1 - \frac{v^2}{c^2}} \qquad m = \frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Nuclear

$$E = mc^2$$
 %remaining = $100(\frac{1}{2})^n$

Constants

$$1kWh = 3.6 \times 10^6 J$$

STUDENT REFERENCE

FUNDAMENTAL CONSTANTS AND PHYSICAL DATA

Gravitational constant	G	$= 6.67 \times 10^{-11} \mathrm{N} \cdot \mathrm{m}^2 / \mathrm{kg}^2$
Constant in Coulomb's Law	k	$= 9.00 \times 10^9 \mathrm{N} \cdot \mathrm{m}^2 / \mathrm{C}^2$
Elementary charge	e	$= 1.60 \times 10^{-19} \mathrm{C}$
Mass of electron	m_e	$= 9.11 \times 10^{-31} \text{kg}$
Mass of proton	m_p	$= 1.67 \times 10^{-27} \mathrm{kg}$
Permeability of free space	$\mu_{\rm o}$	$= 4\pi \times 10^{-7} \mathrm{T\cdot m/A}$
Speed of light	c	$= 3.00 \times 10^8 \mathrm{m/s}$
Earth		
radius		$=6.38\times10^{6}$ m
mass		$=5.98\times10^{24}$ kg
acceleration due to gravity at the surface of Earth (for the purposes of this examination)	g	$= 9.80 \text{ m/s}^2$
period of rotation		$=8.61\times10^{4}$ s
radius of orbit around Sun		$=1.50\times10^{11}$ m
period of orbit around Sun		$=3.16\times10^{7}$ s
Moon		
radius		$=1.74 \times 10^6 \mathrm{m}$
mass		$=7.35\times10^{22}$ kg
period of rotation		$=2.36\times10^{6}$ s
radius of orbit around Earth		$= 3.84 \times 10^8 \mathrm{m}$
period of orbit around Earth		$= 2.36 \times 10^6 $ s
Sun		
mass		$=1.98\times10^{30}\mathrm{kg}$

MATHEMATICAL FORMULAE

METRIC PREFIXES				
Prefix	Symbol	Numerical	Exponential	
mega kilo hecto deca deci centi milli	M k h da d c	1 000 000 1 000 100 10 1 0.1 0.01 0.001	10 ⁶ 10 ³ 10 ² 10 ¹ 10 ⁰ 10 ⁻¹ 10 ⁻² 10 ⁻³	
micro	μ	0.000001	10 ⁻⁶	

For Right-angled Triangles:

$$a^2 + b^2 = c^2$$

$$\sin \theta = \frac{b}{c} \quad \cos \theta = \frac{a}{c} \quad \tan \theta = \frac{b}{a}$$

area =
$$\frac{1}{2}ab$$

For All Triangles:

area =
$$\frac{1}{2}$$
base × height

Sine Law:
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Cosine Law: $c^2 = a^2 + b^2 - 2ab \cos C$

Circle:

Circumference = $2\pi r$

Area =
$$\pi r^2$$

Quadratic Equation:

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Vector Kinematics in Two Dimensions:

$$v = v_0 + at$$
 $\overline{v} = \frac{v + v_0}{2}$
 $v^2 = {v_0}^2 + 2ad$ $d = v_0 t + \frac{1}{2}at^2$

Vector Dynamics:

$$F_{\text{net}} = ma$$
 $F_{\text{g}} = mg$ $F_{\text{fr}} = \mu F_{\text{N}}$

Work, Energy, and Power:

$$W = Fd$$
 $E_{p} = mgh$
$$E_{k} = \frac{1}{2}mv^{2}$$
 $P = \frac{W}{\Delta t}$

Momentum:

$$p = mv$$
 $\Delta p = F\Delta t$

Equilibrium:

$$\tau = Fd$$

Circular Motion:

$$T = \frac{1}{f}$$

$$a_{c} = \frac{v^{2}}{r} = \frac{4\pi^{2}r}{T^{2}}$$

Gravitation:

$$F = G \frac{m_1 m_2}{r^2}$$
 $E_p = -G \frac{m_1 m_2}{r}$

Electrostatics:

$$F = k \frac{Q_1 Q_2}{r^2} \qquad E = \frac{F}{Q} \qquad E = \frac{kQ}{r^2}$$

$$\Delta V = \frac{\Delta E_p}{Q} \qquad E = \frac{\Delta V}{d}$$

$$E_p = k \frac{Q_1 Q_2}{r} \qquad V = \frac{kQ}{r}$$

Electric Circuits:

$$I = \frac{Q}{\Delta t}$$
 $V = IR$ $V_{\text{terminal}} = \mathbf{E} \pm Ir$ $P = VI$

Electromagnetism:

$$F = BIl$$

$$F = QvB$$

$$B = \mu_0 nI = \mu_0 \frac{N}{l}I$$

$$E = Blv$$

$$\Phi = BA$$

$$E = -N \frac{\Delta \Phi}{\Delta t}$$

$$V_{\text{back}} = E - Ir$$

$$\frac{V_s}{V_p} = \frac{N_s}{N_p} = \frac{I_p}{I_s}$$