Análise Matemática II (2013/2014)

Ficha 6

Derivadas e diferenciais de ordem superior. Extremos locais

- 1. Para cada uma das funções abaixo determine todas as derivadas parciais de segunda ordem nos pontos onde existem, e verifique as condições do teorema de Schwarz das derivadas mistas
 - (a) $f(x,y) = xy^2 + xe^y$; (b) $f(x,y) = x^2 + y^2 \sin(xy)$;
 - (c) $f(x,y) = e^{x^2+y^2}$; (d) $f(x,y,z) = \ln(x^2+y^2+z^2+1)$;
 - (e) $f(x,y) = \arctan(2x)$; (f) $f(x,y) = x^3y^2 2x^2y \cos y$;
 - (g) f(x, y, z) = xyz; (h) $f(x, y, z) = x\sqrt{y} + \sqrt[3]{z};$
 - (i) $f(x,y) = \frac{x-y}{x+y}$; (j) $f(x,y,z) = \begin{cases} e^{x^2+y^2+z^2} & \text{se } (x,y,z) \neq (0,0,0) \\ 0 & \text{se } (x,y,z) = (0,0,0) \end{cases}$.
- 2. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- (a) Calcule, caso exista, a derivada parcial $\frac{\partial^2 f}{\partial x \partial y}$ em qualquer ponto de \mathbb{R}^2 .
- (b) Mostre que f satisfaz as condições do teorema de Schwarz das derivadas mistas no ponto (1,1) e não as satisfaz na origem.
- (c) Verifique se a função f é continuamente diferenciável em \mathbb{R}^2 .
- 3. Determine as derivadas parciais de terceira ordem da função

$$f(x,y) = x + y + x^3 - x^2 - y^2.$$

- 4. Escreva a matriz Hessiana para cada uma das funções abaixo
 - (a) $f(x,y) = xy^2 + xe^y$;
 - (b) f(x, y, z) = xyz;

(c)
$$f(x, y, z) = x^3 - 3x + y^2 - 2y + 2z^2$$
.

- 5. Escreva a fórmula de Taylor de segunda ordem para as funções abaixo nos pontos indicados
 - (a) $f(x,y) = xy^2 \text{ em } (1,2)$;
 - (b) f(x, y, z) = xyz em (1, 2, 3);
 - (c) $f(x,y) = e^{-x^2-y^2}$ em (0,0);
 - (d) $f(x,y) = xe^y \text{ em } (1,0)$;
 - (e) $f(x,y) = \ln(y + e^x)$ em (0,1).
- 6. Desenvolva a função $f(x,y) = x^2 + xy + 1$ em potências de (x-2) e de (y+1).
- 7. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = x^2y + \sin y + e^x$. Escreva a fórmula de Taylor de segunda ordem para f no ponto $(1,\pi)$. Usando a fórmula obtida determine, aproximadamente, $1.1^2\pi + e^{1.1}$.
- 8. Verifique se (0,0) é ponto estacionário das funções seguintes
 - (a) $f(x,y) = x^2 + y^2$; (c) $f(x,y) = \sqrt{2x^2 + y^2}$;
 - (b) $f(x,y) = x^2 y^2$; (d) $f(x,y) =\begin{cases} \frac{2y^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$.
- 9. Verifique que (-2,0) e (0,0) são pontos estacionários da função

$$f(x,y) = \frac{1}{3}x^3 - y^2 + x^2,$$

mas que só o primeiro é ponto de extremo local.

- 10. Determine, caso existam, os extremos locais e os pontos de sela das funções seguintes
 - (a) $f(x,y) = 9 2x + 4y x^2 4y^2$;
 - (b) $f(x,y) = y^4 x^3 + x^2$;
 - (c) $f(x,y) = \frac{1}{3}x^3 + \frac{4}{3}y^3 x^2 3x 4y 3;$
 - (d) $f(x,y) = x^2 + (y-1)^2$;
 - (e) $f(x,y) = x \sin y$;
 - (f) $f(x, y, z) = x^3 3x + y^2 2y + 2z^2$;
 - (g) $f(x,y,z) = x^2 + y^2 + 3z^2 + yz + 2xz xy;$

- (h) $f(x,y) = x^6 + y^6 x^2 y^2$;
- (i) $f(x,y) = x^2 y^2$;
- (j) $f(x, y, z) = x^2 + 2y^2 + 3z^2 xyz$.
- 11. Determine os extremos locais da função $y\left(x\right)$ definida implicitamente pela equação $y^3-3x^2y+x^3-3=0.$
- 12. Usando a regra dos multiplicadores de Lagrange determine os extremos relativos das funções seguintes :
 - (a) $f(x,y) = x^2 + y^2 4$ sujeita a x + y = 3;
 - (b) f(x,y) = x + 2y sujeita a $\frac{x^2}{4} + \frac{y^2}{16} = 1$;
 - (c) $f(x, y, z) = 2x^2 + y + z$ sujeita a x + y + z = 4 e x + 2y = 6;
 - (d) $f(x,y,z) = 2x + y^2 + 2z$ sujeita a x + 2y + z = 10 e x + 2z = 8;
 - (e) $f(x,y) = x^2 + y^2 + x^2y + 4$ sujeita a $|x| \le 1$ e $|y| \le 1$.
- 13. A temperatura T em qualquer ponto (x, y) do plano é dada por $T = 3y^2 + x^2 x$. Qual é a temperatura máxima e mínima num círculo fechado de raio 1 centrado na origem?
- 14. Sejam (1,1),(2,3),(3,-1) os vértices de um triângulo. Determine o ponto (x,y) do triângulo cuja soma dos quadrados das suas distâncias aos vértices seja mínima.
- 15. Encontre o ponto da circunferência $x^2 + y^2 = 16$ mais próximo de (2,1).
- 16. Determine a distância mínima entre (0,0) e a hipérbole $y^2 x^2 + 2x + 3 = 0$.
- 17. Encontre os pontos da superfície $x^2y^2z=1$ que estão mais próximos da origem.
- 18. Determine os pontos da curva de intersecção das superfícies

$$x^{2} - xy + y^{2} - z^{2} = 1$$
 e $x^{2} + y^{2} = 1$

que estão mais próximos da origem.