(1) Veröffentlichungsnummer:

0 333 131 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(2) Anmeldenummer: 89104500.7

(5) Int. Cl.4: A01N 25/32 , C07D 231/14

2 Anmeldetag: 14.03.89

Patentanspruch für folgenden Vertragsstaat:ES

3 Priorität: 17.03.88 DE 3808896

Veröffentlichungstag der Anmeldung: 20.09.89 Patentblatt 89/38

Benannte Vertragsstaaten:
AT BE CH DE ES FR GB GR IT LI NL SE

71 Anmelder: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20 D-6230 Frankfurt am Main 80(DE) ② Erfinder: Sohn, Erich, Dr.

Lange Gasse 4

D-8900 Augsburg(DE)

Erfinder: Mildenberger, Hilmar, Dr.

Fasanenstrasse 24

D-6233 Kelkheim (Taunus)(DE)

Erfinder: Bauer, Klaus Dr. Doorner Strasse 53d

D-6450 Hanau(DE) Erfinder: Bieringer, Hermann, Dr.

Eichenweg 26

D-6239 Eppstein/Taunus(DE)

- Pflanzenschützende Mittel auf Basis von Pyrazolcarbonsäurederivaten.
- G Gegenstand der vorliegenden Erfindung sind Mittel zum Schutz von Kulturpflanzen gegen phytotoxische Nebenwirkungen von Herbiziden, dadurch gekennzeichnet, daß sie eine Verbindung der Formel I

worin

Y C-H oder N,

R₁ unabhängig voneinander Alkyl, Haloalkyl, Alkoxy, Haloalkoxy oder Halogen,

R₂ Alkyl oder Cycloalkyl

X COOR₃, CON(R₄)₂, COSR₃, CN,

P 0 333 131 /

R₃ Alkali- oder Erdalkalimetali, Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Phenylalkyl, wobei Phenyl durch Halogen substituiert sein kann, Trisalkylsilylalkyl, Alkoxyalkyl R₄ unabhängig voneinander H, Alkyl, Cycloalkyl, das substituiert sein kann, oder 2 Reste R₄ bilden

zusammen mit dem sie verknüpfenden N-Atom einen 4- bis 7-gliedrigen heterocyclischen Ring und

n 1 bis 3 bedeuten, in Kombination mit einem Herbizid enthalten.

Pflanzenschützende Mittel auf Basis von Pyrazolcarbonsäurederivaten

Gegenstand der vorliegenden Erfindung sind Mittel zum Schutz von Kulturpflanzen gegen phytotoxische Nebenwirkungen von Herbiziden, dadurch gekennzeichnet, daß sie eine Verbindung der Formel I.

worin

5

10

20

Y C-H oder N,

R₁ unabhängig voneinander (C₁-C₄)-Alkyl, (C₁-C₄)-Haloalkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)-Haloalkoxy oder Haloalkoxy oder Haloalkoxy

R₂ (C₁-C₁₂)-Alkyl oder (C₃-C₇)-Cycloalkyl,

X COOR3, CON(R4)2, COSR3, CN,

25 R₃ Alkali- oder Erdalkalimetall, Wasserstoff, (C₁-C₁₀)-Alkyl, (C₃-C₂₀)-Alkenyl, (C₃-C₁₀)-Alkinyl, (C₃-C₇)-Cycloalkyl, Phenyl-(C₁-C₄)-Alkyl, wobel Phenyl durch Halogen substituiert sein kann, Tris-(C₁-C₄)-Alkyl-Silyl-(C₁-C₄)-Alkyl, (C₁-C₄)-Alkyl

R₄ unabhängig voneinander H, (C₁-C₁₀)-Alkyl, (C₂-C₇)-Cycloalkyl, das substituiert sein kann, oder 2 Reste R₄ bilden zusammen mit dem sie verknüpfenden N-Atom einen 4- bis 7-gliedrigen heterocyclischen Ring und

n 1 bis 3

bedeuten, in Kombination mit einem Herbizid enthalten.

Dabei bedeutet Alkyl geradkettiges oder verzweigtes Alkyl. Im Fall

$$x = \bigcup_{\substack{-C - 0 - C \\ N \\ N}} 0$$

40

35

werden zwei identische Reste einer Verbindung der Formel I miteinander verknüpft. Halogen bedeutet bevorzugt Chlor oder Brom, Alkalimetall bevorzugt Li, Na, K und Erdalkalimetall insbesondere Ca. Bei dem aus den beiden Resten R4 zusammen mit dem N-Atom gebildeten heterocyclischen Ring handelt es sich bevorzugt um Pyrrolidin, Morpholin, 1,2,4-Triazol und Piperidin.

Weiterhin bevorzugt sind die Verbindungen der Formel I, worin Y= CH, R_1 = Halogen, (C_1-C_4) -Haloalkyl, R_2 = (C_1-C_5) -Alkyl, X = COOR₃, R_3 = H oder (C_1-C_5) -Alkyl und n = 1 oder 2 bedeuten.

Insbesondere bevorzugt sind die Verbindungen der Formel I, worin Y = CH, R_1 = CI oder Br, CF_3 , R_2 = (C_1-C_4) -AlkyI, X = COOR₃, R_3 = (C_1-C_4) -AlkyI und n = 2 bedeuten.

Die Verbindungen der Formel I mit Y= CH, R_1 = 2,4-Cl₂, R_2 = Isopropyl, X= COOR₃ und R_3 = (C₁-C₁₀)-Alkyl sind neu und ebenfalls Gegenstand der vorliegenden Erfindung. Dabel ist für R_2 die 5-Stellung und für X die 3-Stellung bevorzugt. Besondere Bedeutung hat die Verbindung mit Y= CH, R_1 = 2,4-Cl₂, R_2 = 5-Isopropyl und X = 3-COOC₂H₅.

Die Verbindungen der Formel I lassen sich nach literaturbekannten Methoden herstellen (HU-PS 153 762 od. Chem. Abstr. 68, 87293 y (1968)). Zur weiteren Derivatisierung wird der Rest -COOR3 in bekannter

Weise in andere für X genannte Reste umgewandelt, z.B. durch Verseifung, Umesterung, Amidierung, Salzbildung etc., wie dies z.B. in den DE-OS 3 444 918 oder 3 442 690 beschrieben ist.

Bei der Anwendung von Pflanzenbehandlungsmitteln, insbesondere von Herbiziden, können unerwünschte, nicht tolerierbare Schäden an Kulturpflanzen auftreten. Besonders bei der Applikation von Herbiziden nach dem Auflaufen der Kulturpflanzen besteht daher oft das Bedürfnis, das Risiko einer möglichen Phytotoxizität zu vermeiden.

Verschiedene Verbindungen wurden für diese Anwendung bereits beschrieben (z.B. EP-A 152 006).

Überraschenderweise wurde gefunden, daß Verbindungen der Formel I die Eigenschaften haben, phytotoxische Nebenwirkungen von Pflanzenschutzmitteln, insbesondere von Herbiziden, beim Einsatz in Nutzpflanzenkulturen zu vermindern oder ganz auszuschalten. Die Verbindungen der Formel I sind in der Lage, schädliche Nebenwirkungen der Herbizide völlig aufzuheben, ohne die Wirksamkeit dieser Herbizide gegen Schadpflanzen zu schmälern.

Solche Verbindungen, die die Eigenschaften besitzen, Kulturpflanzen gegen phytotoxische Schäden durch Herbizide zu schützen, ohne die eigentliche herbizide Wirkung dieser Mittel zu beeinträchtigen, werden "Antidote" oder "Safener" genannt.

Das Einsatzgebiet herkömmlicher Herbizide kann durch Zugabe der Safenerverbindung der Formel I ganz erheblich vergrößert werden.

Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zum Schutz von Kulturpflanzen gegen phytotoxische Nebenwirkungen von Pflanzenschutzmitteln, insbesondere Herbiziden, das dadurch gekennzeichnet ist, daß man die Pflanzen, Pflanzensamen oder Anbauflächen mit einer Verbindung der Formel I vor, nach oder gleichzeitig mit dem Pflanzenschutzmittel behandelt.

Herbizide, deren phytotoxische Nebenwirkungen mittels der Verbindungen der Formel I herabgesetzt werden können, sind z.B. Carbamate, Thiocarbamate, Halogenacetanilide, substituierte Phenoxy-, Naphthoxy- und Phenoxyphenoxy-carbonsäurederivate sowie Heteroaryloxyphenoxycarbonsäurederivate wie Chinolyloxy-, Chinoxalyloxy, Pyridyloxy-, Benzoxazolyloxy-, Benzthiazolyloxy-phenoxy-carbonsäureester und ferner Dimedonoximabkömmlinge. Bevorzugt hiervon sind Phenoxyphenoxy- und Heteroaryloxyphenoxy-carbonsäureester. Als Ester kommen hierbei insbesondere niedere Alkyl-, Alkenyl- und Alkinylester in Frage.

Beispielsweise seien, ohne daß dadurch eine Beschränkung erfolgen soll, folgende Herbizide genannt:

A) Herbizide vom Typ der Phenoxyphenoxy- und Heteroaryloxyphenoxycarbonsäure-(C1-C4)-Alkyl-,

(C₂-C₄)-Alkenyl- oder (C₃-C₄)-Alkinylester wie

30

2-(4-(2,4-Dichlorphenoxy)-phenoxy)-propionsäuremethylester, 2-(4-(4-Brom-2-chlorphenoxy)-phenoxy)-propionsäuremethylester,

2-(4-(4-Trifluormethylphenoxy)-phenoxy)-propionsäuremethylester,

35 2-(4-(2-Chlor-4-trifluormethylphenoxy)-phenoxy)-propionsäuremethylester,

2-(4-(2,4-Dichlorbenzyl)-phenoxy)-propionsäuremethylester,

2-Isopropylideneamino-oxyethyl(R)-2-[4-(6-chloroquinoxalin-2-yloxy)-phenoxy]-propionate (Propaquizafop),

4-(4-(4-Trifluormethylphenoxy)-phenoxy)-pent-2-en-säureethylester,

2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäureethylester,

2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäurepropargylester,

2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-propionsäureethylester,

2-(4-(6-Chlorbenzthiazol-2-yl-oxy)-phenoxy)-propionsäureethylester,

2-(4-(3-Chlor-5-trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäuremethylester,

2-(4-(5-Trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäurebutylester,

45 2-(4-(6-Chlor-2-chinoxalyloxy)-phenoxy)- propionsäureethylester,

2-(4-(6-Fluor-2-chinoxalyloxy)-phenoxy)-propionsäureethylester,

2-(4-(5-Chlor-3-fluor-pyridyl-2-oxy)-phenoxy)-propionsäurepropargylester

2-(4-(6-Chlor-2-chinolyloxy)-phenoxy)-propionsäureethylester,

2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäure-trimethylsilylmethylester,

50 2-(4-(3-Chlor-5-trifluormethoxy-2-pyridyloxy)-phenoxy)-propionsäureethylester,

B) Chloracetanilid-Herbizide wie

N-Methoxymethyl-2,6-diethyl-chloracetanilid,

N-(3'-Methoxyprop-2'-yl)-methyl-6-ethyl-chloracetanilid,

N-(3-Methyl-1,2,4-oxdiazol-5-yl-methyl)-chloressigsäure-2,6-dimethylanilid,

C) Thiocarbamate wie

S-Ethyl-N,N-dipropylthiocarbamat oder

S-Ethyl-N,N-diisobutylthiocarbamat

D) Dimedon-Derivate wie

- 2-(N-Ethoxybutyrimidoyl)-5-(2-ethylthiopropyl)-3-hydroxy-2-cyclohexen-1-on,
- 2-(N-Ethoxybutyrimidoyl)-5-(2-phenylthiopropyl)-3-hydroxy-2-cyclohexen-1-on oder
- 2-(1-Allyloxyiminbutyl)-4-methoxycarbonyl-5,5-dimethyl-3-oxocyclohexenol,
- 2-(N-Ethoxypropionamidoyl)-5-mesityl-3-hydroxy-2-cyclohexen-1-on,
- 2-(N-Ethoxybutyrimidoyl)-3-hydroxy-5-(thian-3-yl)-2-cyclohexen-1-on.
- 2-[1-(Ethoxyimino)-butyl]-3-hydroxy-5-(2H-tetrahydrothiopyran-3-yl)-2-cyclohexen-1-one (BASF 517);
- 2-[1-(Ethoxyimino)-propyl]-3-hydroxy-5-mesitylcyclohex-2-enone (PP 604 von ICI);
- (±)-2-[(E)-3-chloroallyloxyiminopropyl]-5-(2-ethylthiopropyl)-3-hydroxycyclohex-2-enone (Clethodim)

10

Von den Herbiziden, welche erfindungsgemäß mit den Verbindungen der Formel I kombiniert werden können, sind bevorzugt die unter A) aufgeführten Verbindungen zu nennen, insbesondere 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-propionsäureethylester, 2-(4-(6-Chlorbenzthiazol-2-yl-oxy)-phenoxy)-propionsäureethylester und 2-(4-(5-Chlor-3-fluor-pyridyl-2-oxy)-phenoxy)-propionsäurepropargylester. Von den unter D) genannten Substanzen ist insbesondere 2-(N-Ethoxypropionamidoyl)-5-mesityl-3-hydroxy-2-cyclohexen-1-on von Bedeutung.

Das Mengenverhältnis Safener (Verbindung I): Herbizid kann innerhalb weiter Grenzen zwischen 1:10 und 10:1, insbesondere zwischen 2:1 und 1:10 schwanken.

Die jeweils optimalen Mengen an Herbizid und Safener sind abhängig vom Typ des verwendeten Herbizids oder vom verwendeten Safener sowie von der Art des zu behandelnden Pflanzenbestandes und lassen sich von Fall zu Fall durch entsprechende Versuche ermitteln.

Haupteinsatzgebiete für die Anwendung der Safener sind vor allem Getreidekulturen (Weizen, Roggen, Gerste, Hafer), Reis, Mais, Sorghum aber auch Baumwolle, Zuckerrüben, Zuckerrohr und Sojabohne.

Die Safener können je nach ihren Eigenschaften zur Vorbehandlung des Saatgutes der Kulturpflanze (Beizung der Samen) verwendet werden oder vor der Saat in die Saatfurchen eingebracht werden oder zusammen mit dem Herbizid vor oder nach dem Auflaufen der Pflanzen angewendet werden. Vorauflaufbehandlung schließt sowohl die Behandlung der Anbaufläche vor der Aussaat als auch die Behandlung der angesäten, aber noch nicht bewachsenen Anbauflächen ein.

Bevorzugt ist jedoch die gleichzeitige Anwendung des Antidots mit dem Herbizid in Form von Tankmischungen oder Fertigformulierungen.

Die Verbindungen der Formel I oder deren Kombination mit einem oder mehreren der genannten Herbizide bzw. Herbizidgruppen können auf verschiedene Art formuliert werden, je nachdem wie es durch die biologischen und/oder chemisch-physikalischen Parameter vorgegeben ist. Als Formulierungsmöglich-keiten kommen daher infrage: Spritzpulver (WP), emulgierbare Konzentrate (EC), wäßrige Lösungen (SC), Emulsionen, versprühbare Lösungen, Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen (SC), Stäubemittel (DP), Beizmittel, Granulate in Form von Mikro, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), ULV-Formulierungen, Mikrokapseln oder Wachse.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986; van Falkenberg, "Pesticides Formulations", Marcel Dekker N.Y., 2nd Ed. 1972-73; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J.; H.v.Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y.; Marschen, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1950; McCutcheon's, "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs-oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole, Alkyl-oder Alkylphenolsulfonate und Dispergiermittel, z.B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleylmethyltaurinsaures Natrium enthalten. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z.B. Butanof, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulga-

toren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanfettsäureester, Polyoxyethylensorbitan-Fettsäureester oder Polyoxethylensorbitester. Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit feln verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen wie Kaolin, Bentonit, Pyrophillit oder Diatomeenerde. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.

In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 2 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorllegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.

Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Konzentrate gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersion und teilweise und auch bei Mikrogranulaten mittels Wasser. Staubförmige und granulierte Zubereitungen sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids u.a. variiert die erforderliche Aufwandmenge der Verbindungen der Formel I. Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,005 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,01 und 5 kg/ha.

Folgende Beispiele dienen zur Erläuterung der Erfindung:

30

35

45

20

A. Formulierungsbeispiele

- a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile einer Verbindung der Formel I und 90 Gew.-Teile Talkum oder Inertstoff mischt und in einer Schlagmühle zerkleinert.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird enthalten, indem man 25 Gewichtsteile einer Verbindung der Formel I, 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile lignigsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
- c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der Formel I mit 6 Gew.-Teilen Alkylphenolpolyglykolether (®Triton X 207), 3 Gew.-Teilen Isotridecanolpolyglykolether (8AeO) und 71 Gew.-Teilen paraffinischem Mineralöl (Siedebereich z. B. ca. 255 bis über 277°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
- d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew.-Teilen einer Verbindung der Formel I, 75 Gew.-Teilen Cyclohexanon als Lösungsmittel und 10 Gew.-Teilen oxethyliertes Nonylphenol als Emulgator.
- e) Ein in Wasser leicht emulgierbares Konzentrat aus einem Phenoxycarbonsäureester und einem Antidot (10:1) wird erhalten aus:
- 12,00 Gew.-% 2-(4-(6-Chlorbenoxazol-2-yl-oxy)-phenoxy-propionsäureethylester
- 1,20 Gew.-% Verbindung der Formel I
- 69,00 Gew.-% Xylol
- 50 7,80 Gew.-% dodecylbenzolsulfonsaurem Calcium
 - 6.00 Gew.-% ethoxyliertem Nonylphenol (10 EO)
 - 4,00 Gew.-% ethoxyliertem Rizinusöl (40 EO)
 - Die Zubereitung erfolgt wie unter Beispiel a) angegeben.
- f) Ein in Wasser leicht emulgierbares Konzentrat aus einem Phenoxycarbonsäureester und einem 55 Antidot (1:10) wird erhalten aus:
 - 4,0 Gew.-% 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy-propionsäureethylester
 - 40,0 Gew.-% Verbindung der Formel I
 - 30,0 Gew.-% Xylol

20,0 Gew.-% Cyclohexanon 4,0 Gew.-% dodecylbenzolsulfonsaurem Calcium 2,0 Gew.-% ethoxyliertem Rizinusöl (40 EO)

B. Chemische Beispiele

5

10

20

25

30

35

40

45

50

55

1. 1-(4-Chlorphenyl)-5(3)-methyl-pyrazol-3(5)-carbonsäureethylester

Zu 15,8 g Acetylbrenztraubensäureethylester I in 100 ml Toluol gibt man 14,3 g 4-Chlorphenylhydrazin ll und 0,1 g p-Toluolsulfonsäure unter Rühren hinzu und erhitzt am Wasserabscheider. Nachdem kein Wasser mehr übergeht, läßt man abkühlen, verdünnt mit 100 ml Toluol und wäscht mit 100 ml 3 n Salzsäure, 100 ml Wasser, 100 ml gesättigter NaHCO3-Lösung und 100 ml Wasser, engt die organische Phase zur Trockne ein und chromatographiert über Kieselgel (Laufmittel Petrolether → Essigester).

Beisp.Nr.

1 1-(4-Chlorphenyl)-5-methyl-pyrazol-3-carbonsäureethyl ester (Fp. 121-124°C)

62 1-(4-Chlorphenyl)-3-methyl-pyrazoi-5-carbonsäureethylester (ÖI)

Analog werden Pyrazole mit anderem Substitutionsmuster im Aromatenteil und/oder anderem Allylrest hergestellt und gegebenenfalls an der Carbonylfunktion derivatisiert. Die Derivate sind in Table I zusammengestellt.

Tabelle I Alkyl-Aryl-pyrazolcarbonsäurederivate

7

	Y=CH Beisp	Nr.(R)	R;	x FF/rPToir CCT
5				
	2	4-C1	5-CH ₃	3-C00CH;
	3	n	"	3-C0C-n-C ₃ H;
10	4	11	11	3-C00-i-C ₃ H ₇
	5	**		3-C00-n-C,H,
	6	ţı	**	3-C00-n-C_H;;
15	7	**	te .	3-C0G-n-C ₆ H ₁₃
	8	"	11	3-C00-n-C ₈ H ₁₇
	9	††	Ħ	3-C00-n-C10H21
20	10	H	11	3-C00-n-C, oH; (R ₁) n 3-C-c-C (N Y)
	11	11	Ħ	3-C00H R ₂ 157-160
	12	***	Ħ	3-C00Li
25	13	n	Ħ	3-C00Na
	14	11	ţ1	3-C00K
	15	n	70	3-C00Ca ₁ /;
30	16	Ħ	Ħ	3-C00-c-C.H,
	17	17	Ħ	3-C00-c-C,H13
	18	11	11	3-C00CH2-C6H5
35	19	11	17	3-C00CH ₂ -(2,4-Cl ₂ -C ₆ H ₃)
	20	H	н	3-C00CH2CHCH2
40	21	11	11	3-C00C;H,CHCH;
70	22	**	и	3-C00-n-C.H16CHCH:
	23	11	17	3-C00CH;CCH
45	24	11	TT .	3-C00-C2H4-CCH
	25	11	n	3-C00-n-C ₅ H ₁₀ CCH
	26	11	п	3-C00CH2Si(CH2)3
50	27	**	n	3-C00C:H.OCH;
	28	11	n	3-CONH ₂
	29	n	"	3-CN
55	30	**	н	3-CONHCH ₃

Y=CH Beist	oNr. (R ₁) _n	R;	x
31	4-C1	5-CH,	3-CONHC;H;
32	**	17	3-CONH-n-C ₃ H ₇
33	**	".	3-CONH-n-C.H,
34	11	11	3-CONH-n-C ₆ H,;
35	**	p	3-CONH-n-C:6H;1
36	***	11	3-CONH-i-C,H,
37	**	n	3-CON(CH ₁);
38	n	11	3-CON(CH ₃)(nC ₆ H ₁₃)
39		n	3-CON(C ₂ H ₅) ₂
40	**	Ħ	3-00-1
41	**	m	3-CO-N
42	11	17	3-C0-N_0
43	19	11	3-CO-N_O
44	**	10	3-C0-NH-C-C+++,
45	**	u	3-C0-NH-c-C3H;
46	n	11	3-C0-N(CH ₃)(cC ₆ H ₁₁)
47	Ħ	"	3-COSH
48		11	3-COSNa
49	11	#	3-COSCH ₃
50	11	Ħ	3-COSC ₂ H ₅
51	11	17	3-COSCH₂C.H.
5 2	11	17	3-COS-nC ₆ H ₁₇
5 3		**	3-COSC:H.OCH3
5 4		н	3-COSCH:CHCH:
5.5		**	3-COSCH ₂ CCH
5 6		n	3-COS-c-C.H.,
5 7		**	3-COSCH;Si(CH,),
5 8		n	3-COS-n-C.H.CH(CH,);
5 9		,	3-CON 2
6 (17	3-C00C:H.CH(CH:):

	Y=CH				
	∃eisp	Nr.(R ₁) _n	R ₂	X	Fp/Kp _{Torr} <u>[°C</u> 7
5	61	4-Cl	3-CH ₃	5-000	CH ₃
	63	#	1*	5-000	InC ₃ H,
	64	**	tt	5-C00)-i-C ₃ H,
10	65	11	11	5-C00)-n-C.H.
	66	4		5-000)-n-C ₅ H ₁ ,
	67	m	11	5-000)-n-C _e H
15	68	n	**	5-000)-n-C ₈ H ₁₇
	69	17	11	5-000	0-n-C, oH ₂ , (R ₁) _n
	70	11	77	5- C- C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
20	71	"	11	5-C00	DH R ₂
	72	11	n	5-C00	_
25	73	n	11	5-C00	ONa
	74	11	17	5-C00	ЭК
	75	n	11	5-CO	OCa,/2
30	76	n	17	5-CO	0-c-C.H,
	77	H .	11	5-00	0-c-C ₆ H ₁₁
	78	11	11	5-00	OCH;-CeHs
35	79	11	17	5-C0	OCH ₂ -(2,4-Cl ₂ -C ₆ H ₃)
	80	11	п	5-C0	OCH;CHCH;
	81	н	**	5-00	OC zH CHCH z
40	82	н	11	5-CO	0-n-C.H ₁₆ CHCH:
	83	17	11	5-C0	o-cH²ccH
45	8 4	17	**	5-C0	0-C;H,-CCH
40	8 5	19	17	5 - C0	0-n-C ₅ H, ₀ CCH
	86	Ħ	10	5 - C0	OCH;Si(CH;);
50	87	Ħ	n	5-C0	OC2H4OCH3
	88	**	17	5 - C0	NH 2
	89	"	19	5-CN	l
55	90	**	11	5 - CC	NHCH ³

Y=CH Beisp	Nr. (R 1) _n	R;	x Fp/Kp _{Torr} ∠ccc
91	4-C1	3-CH ₃	5-CONHC; H;
92	Ħ	**	5-CONH-n-C;H;
93	**		5-CONH-n-C.H.
94	Ħ	**	5-CONH-n-C _e H ₁₃
95	**	**	5-CONH-n-C10H21
96	ţr	, .	5-CONH-i-C;H,
97	11	If	5-CON(CH;)2
98	tt .	. ***	5-CON(CH,)(nC,H,,)
99	Ħ	11	5-CON(C2H5)2 .
100	**	11	5-CO-N
101	**	17	5-CO-N
102	Ħ	11	5-CO-N_O
103	11	Ħ	5-CO-N
104	**	#	5-CO-NH-C-C 6 H 1 1
105	tr	Ħ	5-CO-NH-c-C ₃ H ₂
106	**	n	5-CO-N(CH3)(CC4H11)
107	11	n	5-COSH
108	11	11	5-COSNa
109	11	11	5-COSCH ₃
110	11	Ħ	5-COSC;Hs
111	lt .	11	5-COSCH ₂ C ₆ H ₅
112	11	11	5-COS-nC ₈ H ₁ ,
113	11	11	5-COSC;H.OCH;
114	n	n	5-COSCH:CHCH:
115	**		5-COSCH:CCH
116	"	11	5-COS-c-C ₆ H ₁ ,
117	11	ją.	5-COSCH ₂ Si(CH ₃) ₃
118	11	n	5-COS-n-C.H.CH(CH.)2
119	n	п	5-CON 3
120	11	n	>> 5-COOC;H。CH(CH₃);

	Y=CH BeispNi	r. (R ₁) _n	R ₂	X Fp/	KPTorr CC
5	121	2,4-01;	5-CH ₃	3-C00CH ₃	87-93
	122	17	tt	3-C00C 2 H 5	78-81
	123	10	••	3-000-n-0 ₃ H,	99-100
10	124	n	tt	3-CGC-i-C ₃ H,	65-7C
	125	•	,	3-000-n-C.H,	75-73
15	126	16	tt	3-C00-n-C5H11	
.0	127	17	11	3-000-n-C∈H ₁₃	81
	128	11	"	3-C00-n-CgH ₁ ,	
20	129	16	W	3-000-n-010H;	1 (R ₁)_
	130	16	"	3-6-0-6-47-Q	114-117
	131	16	п	3-COOH 1-	112-115
25	132	π	Ħ	3-C00Li	>250
	133	n	n	3-C00Na	7250
	134	н	n	3-C00K	
30	135	"	TT .	3-000Ca ₁ / ₂	197-188
	136	"	Ħ.	3-C00-c-C,H,	
	137	Ħ	17	3-C00-c-C ₆ H ₁₁	72-74
35	138	17	11	3-C00CH2-C6H5	Öl
	139	**	11	3-C00CH ₂ -(2,4	-C1 ₂ -C ₆ H ₃)
	140	**	17	3-COOCH2CHCH2	Öl
40	141	**	97	3-C00C2H4CHCH	ı
• ••••	142	27	Ħ	3-000-n-C.H16	CHCH:
	143	**	H	3-C00-CH2CCH	101-102
45	144	90	n	3-C00-C2H4-CC	н
	145	**	17	3-C00-n-C ₅ H ₁₀	ССН
	146	11	r	3-C00CH:S1(CH	,), 67-70
50	147	"	v	3-C00C2H,0CH3	51
	148	If	11	3-CONH;	161
	149	H	ş e	3-CN	
55	150	n	14	3-00NHCH ₃	161-152

	Y=CH Beisp	NI.(R ₁) _n	R;	x	Fp/KpTcrr L°C7
	151	2,4-Cl:	5-CH;	3-CONHC 2H:	87-90
	152	•	п	3-CONH-n-C3H1	89-92
	153	**	н	3-CGNH-n-C.H.	55-60
	154	n	Ħ	3-CONH-n-C (H.)	68-71
	155	60	11	3-CONH-n-C10H;	•
	156	**	н	3-CONH-i-C ₃ H,	
	157	rr	17	3-CGN(CH ₃) ₂	. 99-103
	158	11	11	3-CON(CH ₃)(nC ₆ H	13)
	159	n	n	3-CON(C2H:);	δl
	160	π	11	3-CO-N	Harz
	161	**	17	3-CO-N	
	162	**	11	3-CO-N_0	81
	16;	*	"	3-C0-N_0	Harz
	164	17	11	3-C0-NH-C-C.H.1	120-122
	165	n	77	3-C0-NH-C-C3H6	•
	166	n	Ħ	3-CO-N(CH3)(cCe	н,,) Öl
	167	11	**	3-COSH	
	168	Ħ	**	3-COSNa	
	169	Ħ	11	3-COSCH ₃	
	170	11	11	3-COSC 2Hs	
	171	11	11	3-COSCH,C,H,	70-73
	172	11	n	3-C05-nCaH,,	
	173	••	#	3-COSC2H,OCH3	
	174	n	11	3-COSCH2CHCH2	
	175	Ħ	n	3-COSCH2CCH	
	176	11	n	3-005-c-C ₆ H ₁₁	
	177	11	n	3-COSCH ₂ Si(CH ₃)	3
	178	11	н	3-COS-n-C.HaCH((CH ₃):
	179	r	Ħ	3-CON	
;	180	**	Ħ	3-C00C:H.CH(CH	,);

EP 0 333 131 A1

	Y=CH Beisp.	-Nr. (R.) _n	R;	X Fp/1	KPTorr [G7
5	181	2,4-01;	3-CH ₃	5-COOCH,	
	182	n	11	5-C00C;H;	Öl
	183	**	11	5-C00-n-C3H7	
10	184	11	17	5-C00-i-C ₃ H ₇	
	185	10	•	5-C00-n-C.H,	
	186	11	**	5-C00-n-C:H11	
15	187	Ħ		5-000-n-C ₆ H ₁₃	
	188	11	n	5-C00-n-C8H,,	
	189	n	11	5-C00-n-C10H21	(R ₁) _n .
20	190	π	m	5-c-o-c-4"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	191	н	Ħ	5-COOH R2	195-205
	192	*	n	5-C00Li	
25	193	ŧΨ	r	5-C00Na	
	194	89	Ħ	5-C00K	
	195	11	**	5-C00Ca ₁ / ₂	
30	196	11	11	5-C00-c-C.H,	
	197	11	11	5-C00-c-C ₆ H ₁₁	
25	198	11	**	5-C00CHz-C6H:	
35	199	н	11	5-COOCH ₂ -(2,4-Cl	z-C ₆ H ₃)
	200	10	**	5-COOCH 2 CHCH 2	
40	201	**	11	5-C00C;H,CHCH;	
40	202	11	11	5-C00-n-C.H16 CHC	4,
	203	н	Ħ	5-C00-CH, CCH	
45	204	Ħ	11	5-C00-C2H4-CCH	
	205	tt	**	5-C00-n-C ₅ H ₁₀ CCH	
	206	17	π	5-C00CH ₂ Si(CH ₃),	
50	207	Ħ	11	5~C00C2H,OCH3	
	208	11	11	5-CONH:	
	209	17	17	5-CN	
55	210	H	11	5-CONHCH ₃	

	Y=CH Beisc	NI.(R) _n	R ₂	х .	Fp/Kp _{Torr} 2°C)
5	211	2,4-C1:	3-CH ₃	5-CONHC 2H.	
	212	11	**	5-CONH-n-C 3H,	81
	213	n	"	5-CONH-n-C.H,	
10	214	p)	n	5-CONH-n-C.H. 3	
	215	11	n	5-CONH-n-C10H:1	
	216	11	*	5-CONH-i-C ₃ H ₇	
15	217	n	н .	5-CON(CH ₃) ₂	
	218	•	n	5-CON(CH3)(nC6)	1,,)
	219	1"	**	5-CON(C;H;);	
20	220	n	11	5-CO-N	
	221	Ħ	**	5-CO-N	
25	222	n	11	5-C0-N_0	
25	223	н	11 -	5-CO-N_O	•
	224	Ħ	**	5-CO-NH-C-C.H.	1
30	225	Ħ	Ħ	5-CO-NH-C-C 3H 5	
	226	n	Ħ	5-CO-N(CH;)(cC	_E H ₁₁)
	227	Ħ	н	5-COSH	
35	228	IT	**	5-COSNa	
	229	11	Ħ	5-COSCH ₃	
	230	11	11	5-COSC 2 H 5	
40	231	H	11	5-COSCH2C6Hs	
	232	m	11	5-COS-nC ₈ H ₁ ,	
	233	14	11	5-COSC2H,OCH3	
45	234	99	Ħ	5-COSCH2CHCH2	
	235	11	n	5-COSCH:CCH	
	236	n	Ħ	5-COS-c-C.H.1	
50	237	17	11	5-COSCH ₂ Si(CH ₃) 3
	238	n	10	5-C05-n-C.H.CH	(CH ₃);
	239	11	н	5-CON N	
55	240	11	11	5-000;H,CH(CH	3);

				÷
5	Y=CH BeispNr	. (R 1) _n	R 2	x Fp/Kp _{Torr} [°C]
	241	2,4-C1,	5-C2H5	3-C00CH ₃
	242	n	11	3-C00C; H, 48-49
10	243	**	11	3-C00-n-C;H,
	244	•	17	3-000-i-C ₃ H ₇
	245	n	**	3-C0G-n-C.H.
15	246	Ħ		3-000-n-C:H:,
	247	**	H	3-C00-n-C ₆ H ₁₃
	248	n	11	3-C00-n-C8H17
20	249	H	11	3-COO-n-C, oH21
	250	11	11	3-C-0-C-1 (R ₁) n
	25 1	ii	11	3-COOH R ₂ 193-195
25	252	π	11	3-C00Li
	25 3	n	11	3-C00Na
	25 4	**	11	3-C00K
30	25 5	11	n	3-C00Ca,/2
	25 6	н	**	3-C00-c-C ₆ H ₇
	25 7	n	**	3-C00-c-C6H _{1 1}
35	258 ,	19	17	3-C00CH2-C4H5
	25 9	11	17	3-C00CH ₂ -(2,4-Cl ₂ -C _e H ₃)
	26 0	Ħ	11	3-C00CH;CHCH;
40	26 1	11	W	3-COOC ₂ H ₆ CHCH ₂
	26 2	Ħ	11	3-000-n-0 6H ₁₆ CHCH2
	26 3	ti.	17	3-C00-CH;CCH
45	26 4	tt .	Ħ	3-C00-C ₂ H ₄ -CCH
	26 5	17	17	3-000-n-0,H1,000H
	26 6	Ħ	n	3-C00CH ₂ Si(CH ₃) ₃
50	26 7	Ħ	p	3-C00C;H&CCH
	26 8	Ħ	n	3-CONH;
	26 9	п	11	3-CN
55	27 G	н	11	3-CONHCH:

Y=CI Bei	i spNr.(R _{i)} n	R;	x Fp/Kplorr CO
27	2,4-Cl:	5-C;H;	3-CONHC;H:
27	2 "	11	3-CONH-n-C ₃ H,
27	3 "	u	3-CONH-n-C.H,
27	۳ "	H	3-CONH-n-C;H,3
27	5 "	Ħ	3-CONH-n-C ₁₀ H; 1
27	6 "	p	3-CONH-1-C3H,
27	7 "	pt.	3-CON(CH ₃);
27	6 "	Ħ	3-CON(CH ₃)(nC ₆ H ₁₃)
27	9 "	n	3-CON(C2H5)2
28	0 "	n	3-CO-N
28	1 "	11	3-CO-N
28	2 "	"	3-CO-N_O
28	3 "	"	3-CO-N ○ O
28	4 "	•	3-CO-NH-C-C + H 1 1
28	5 "	n	3-CO-NH-c-C ₃ H ₅
28	6 "	11	3-CO-N(CH,)(cC,H,,)
28	7 "	n	3-COSH
28	8 "	11	3-COSNa
28	9 "	ii .	3-COSCH ₃
29	0	Ħ	3-COSC 2Hs
29	1 "	"	3-COSCH,C,H,
29	2 "	11	3-COS-nC ₆ H ₁ ,
29	13 "	11	3-COSC:H.OCH;
25	4 "	Ħ	3-COSCH;CHCH;
29	5 "	**	3-COSCH,CCH
29	¹ 6 "	u	3-COS-c-C ₆ H,,
29	77 "	11	3-COSCH ₂ Si(CH ₃),
29	98 "	tf.	3-COS-n-C,H ₈ CH(CH ₃);
29	99 "	19	3-CON N
	oe "	11	3-COCC:H_CH(CH;):

EP 0 333 131 A1

5	Y=CH Beisp	NI. (R.)	R,	X Fp/	KPTorr [C]
J	301	2,4-Cl;	5-CH(CH ₃);		144
	302	11	**	3-C00C 2 H 5	79-77
10	303	11	n	3-000-n-C ₃ H,	Ö1
	304	31	ti.	3-C00-i-C ₃ H,	Öl
	305	11	n .	3-000-n-0_H ₉	
15	306	11	n	3-000-n-0,H,,	
	307	11	11	3-000-n-C ₆ H ₁₃	
	308	11	117	3-C00-n-C ₂ H ₁₇	
20	309	17	*	3-000-n-010H21	(n)
	310	**	Ħ	3-C-0-C-P-((R ₁) _n
	311	11	**	3-COOH R2 N	Y∕ 195-196
25	312	11	ti	3-C00Li	
	313		н	3-C00Na	>250
	314	**		3-C00K	
30	315	ir	**	3-C00Ca ₁ / ₂	
	316	11	10	3-C00-c-C.H,	
	317	**	n	3-C00-c-C ₆ H ₁₁	
35	318	11	**	3-COOCH:-C.H.	
	319	er .	n	3-COOCH2-(2,4-	·Cl ₂ -C ₆ H ₃)
	320	19	n	3-C00CH; CHCH;	
40	321	17	tt .	3-C00C2H_CHCH;	r
	322		17	3-C00-n-C.H 16	нсн,
	323	17	tr	3-C00-CH2CCH	
45	324	11	n	3-C00-C:HCCF	1
	325	19	11	3-000-n-0;H100	сн
	326		11	3-COOCH, Si(CH;	,) <u>,</u>
50	327	#	n	3-C00C2H40CH3	
	328	17	17	3-CONH;	
	329	п	π	3-CN	
55	330	n	ıı	3-CONHCH ₃	

331 2,4-Cl; 5-Ch(Ch ₃); 3-CONHC; H ₃ 332 " " 3-CONH-O-C ₃ H ₇ 333 " " 3-CONH-O-C ₄ H ₉ 334 " " 3-CONH-O-C ₄ H ₁₃ 335 " " 3-CONH-O-C ₄ H ₁₃ 336 " " 3-CONH-O-C ₁ OH ₂ 337 " " 3-CON(Ch ₃); 338 " " 3-CON(Ch ₃); 340 " " 3-CON(C ₂ H ₂); 340 " " 3-CON(C ₂ H ₂); 341 " " 3-CO-N 341 " " 3-CO-N 342 " " 3-CO-N 343 " " 3-CO-N 344 " " 3-CO-N 346 " " 3-CO-N(Ch ₃)(CC 347 " " 3-COSH 348 " " 3-COSH 349 " " 3-COSCH 350 " " 3-COSCC 350 " " 3-COSCC 351 " 3-COSCC 351 " 3-COSCC 351 " 3-COSCC 352 " " 3-COSCC 353 " " 3-COSCC 353 " " 3-COSCC 355 " " 3-COSCC 357 " " " " 3-COSCC 357 " " " " 3-COSCC 357 " " " " " " " " " " " " " " " " " " "	H,;) 98-100 140-142
333 " " 3-CONH-n-C,H, 334 " " 3-CONH-n-C,H, 335 " " 3-CONH-n-C,OH; 336 " " 3-CONH-i-C,H, 337 " " 3-CON(CH,); 338 " " 3-CON(CH,); 340 " " 3-CON(C,H,;); 340 " " 3-CO-N 341 " " 3-CO-N 342 " " 3-CO-N 343 " " 3-CO-N 344 " " 3-CO-N+C-C,H, 345 " " 3-CO-N+C-C,H, 346 " " 3-CO-N(CH,)(CC 347 " " 3-COSCH 348 " " 3-COSCH 349 " " 3-COSCH 350 " " " " 3-COSCH 350 " " " " " 3-COSCH 350 " " " " " " " " " " " " " " " " " " "	140-142
334 " " 3-CONH-n-C _E H ₁₃ 335 " " 3-CONH-n-C ₁ OH ₂ 336 " " 3-CONH-i-C ₃ H ₇ 337 " " 3-CON(CH ₃) ₂ 338 " " 3-CON(CH ₃) ₂ 340 " " 3-CON(C ₂ H ₂) ₂ 340 " " 3-CO-N 341 " " 3-CO-N 342 " " 3-CO-N 342 " " 3-CO-N 344 " " 3-CO-N 346 " " 3-CO-N+c-C ₆ H ₁ 346 " " 3-CO-N(CH ₃)(cC 347 " " 3-COSH 348 " " 3-COSCH ₃ 350 " " 3-COSCH ₃	H,;) 98-100 140-142
335 "	H,;) 98-100 140-142
336 " " 3-CONH-i-C,H, 337 " " 3-CON(CH ₃); 338 " " 3-CON(CH ₃)(nC ₆) 339 " " 3-CON(C ₂ H ₅); 340 " " 3-CO-N 341 " " 3-CO-N 342 " " 3-CO-N 343 " " 3-CO-N 344 " " 3-CO-N 345 " " 3-CO-N+-C-C ₆ H ₁ 346 " " 3-CO-N(CH ₃)(cC 347 " " 3-COSH 348 " " 3-COSH 349 " " 3-COSCH 3 -COSCH 4	H,;) 98-100 140-142
337 " " 3-CON(CH ₃) ₂ 338 " " 3-CON(CH ₃)(nC ₆) 339 " " 3-CON(C ₂ H ₂) ₂ 340 " " 3-CO-N 341 " " 3-CO-N 342 " " 3-CO-N 343 " " 3-CO-N 344 " " 3-CO-N 345 " " 3-CO-NH-C-C ₂ H ₁ 346 " " 3-CO-NH-C-C ₃ H ₂ 347 " " 3-COSH 348 " " 3-COSH 349 " " 3-COSCH ₃ 350 " " 3-COSCH ₃ 3-CO	98-100 140-142
338 " " 3-CON(CH ₃)(nC ₆) 339 " " 3-CON(C ₂ H ₂) ₂ 340 " " 3-CO-N 341 " " 3-CO-N 342 " " 3-CO-N 343 " " 3-CO-N 344 " " 3-CO-NH-c-C ₆ H ₁ 345 " " 3-CO-NH-c-C ₃ H ₂ 346 " " 3-CO-N(CH ₃)(cC 347 " " 3-COSH 348 " " 3-COSCH ₃ 350 " " 3-COSCH ₃	98-100 140-142
339 " " 3-CON(C ₂ H ₂) ₂ 340 " " 3-CO-N 341 " " 3-CO-N 342 " " 3-CO-N 343 " " 3-CO-N 344 " " 3-CO-N+-c-C ₆ H ₁ 345 " " 3-CO-NH-c-C ₃ H ₂ 346 " " 3-CO-N(CH ₃)(cC 347 " " 3-COSH 348 " " 3-COSCH ₃ 350 " " 3-COSCH ₃	98-100 140-142
340 " " 3-C0-N 341 " 3-C0-N 342 " " 3-C0-N 343 " " 3-C0-N 6 344 " " 3-C0-N 6 345 " " 3-C0-N 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	140-142
341 " " 3-C0-N 3 342 " " 3-C0-N 6 343 " " 3-C0-N 6 344 " " 3-C0-N+-c-C ₆ H ₁ 345 " " 3-C0-N+-c-C ₃ H ₆ 346 " " 3-C0-N(CH ₃)(cC 347 " " 3-C0SH 348 " " 3-C0SCH ₃ 350 " " 3-C0SCH ₃	
342 " " 3-C0-N 0 343 " " 3-C0-N 0 344 " " 3-C0-NH-c-C ₆ H ₁ 345 " " 3-C0-NH-c-C ₃ H ₆ 346 " " 3-C0-N(CH ₃)(cC 347 " " 3-C0SH 348 " " 3-C0SCH ₃ 350 " " 3-C0SCH ₃	
343 " " 3-C0-NC 344 " " 3-C0-NH-c-C ₆ H ₁ 345 " " 3-C0-NH-c-C ₃ H ₂ 346 " " 3-C0-N(CH ₃)(cC 347 " " 3-C0SH 348 " " 3-C0SCH ₃ 350 " " 3-C0SCH ₃	
344 " " 3-C0-NH-C-C ₆ H ₁ 345 " " 3-C0-NH-C-C ₃ H ₂ 346 " " 3-C0-N(CH ₃)(cC 347 " " 3-C0SH 348 " " 3-C0SCH ₃ 349 " " 3-C0SCH ₃ 350 " " 3-C0SCH ₃	
345 " " 3-C0-NH-c-C ₃ H ₅ 346 " " 3-C0-N(CH ₃)(cC 347 " " 3-C0SH 348 " " 3-C0SNa 349 " " 3-C0SCH ₃ 350 " " 3-C0SCH ₃	
346 " " 3-CO-N(CH ₂)(cC 347 " " 3-COSH 348 " " 3-COSNa 349 " " 3-COSCH ₃ 350 " " 3-COSC ₂ H ₃	1
347 " " 3-COSH 348 " " 3-COSNa 349 " " 3-COSCH ₃ 350 " " 3-COSC ₂ H ₃	
348 " " 3-COSNA 349 " " 3-COSCH ₃ 350 " " 3-COSC ₂ H ₃	_E H ₁₁)
349 " " 3-COSCH ₃ 350 " " 3-COSC ₂ H ₃	
350 " " 3-COSC ₂ H ₅	
, 2 COCCH C H	
351 " " 3-COSCH ₂ C ₆ H ₅	
352 " " 3-COS-nCaH ₁₇	
353 " " 3-COSC ₂ H ₄ OCH ₃	
354 " " 3-COSCH2CHCH2	
355 " " 3-COSCH,CCH	•
356 " " 3-COS-c-C ₆ H ₁₁	
357 " " 3-COSCH₂Si(CH₃	3)3
358 " " 3-COS-n-C.HaCH	H(CH ₃):
.359 " " - 3-CON	
36C " " 3-COOC;H,CH(C)	

	Y=CH Beisp.	-NI. (R ₁) _n	R;	x	Fp/KpTorr /°C7
5	361	2,4-Cl:	5-C(CH;);	3-C00CH ₃	Harz
	362	**	**	3-C00C2H5	118-121
	363	n	"	3-C00 -n-C ₃	н,
10	364	tr (**	3-C00-i-C ₃ F	١,
	365	**	n	3-C00-n-C.H	1,
	36 <i>6</i>	**		3-000-n-0 ₄ 1	1,,
15	367	n	"	3-000-n-0 ₆ H	113
	368	17	11	3-000-n-081	1,,
	369	**	"	3-000-n-01	H ₂ ,
20	376	17	n	3-C-0-C-	$(R_1)_n$
	371	IT	"	3-COOH R2	(Y=7
	372	Ħ	17	3-C00Li	
25	373	n	17	3-C00Na	
	374 -	Ħ	**	3-C00K	
	375	n	11	3-C00Ca ₁ / ₂	
30	376	п	п	3-C00-c-C.H	1,
	377	n	**	3-C00-c-C ₆ H	1,,
35	378	n	п	3-C00CH2-C	;Н,
33	379	п	**	3-C00CH ₂ -(2	2,4-Cl ₂ -C ₆ H ₃)
	380	•	"	3-C00CH2CH0	CH ₂
40	38 1	n	"	3-C00C2H4CH	ich₂
40	38 2	n	•	3-000-n-0 ₆ H	1 ₁₆ CHCH₂
	38 3	Ħ	n	3-C00-CH2C0	Э
45	38 4	•	**	3-C00-C2H4-	-ссн
	38 5	*	n	3-000-n-0 ₅ H	f1 oCCH
	38 6	H	**	3-C00CH:Si((CH ₃) ₃
50	38 7	rr	11	3-C00C2H,00	:н,
	38 8	17	tt	3-CONH ₂	
	38 9	ţı	11	3-CN	
55	39 0	Ħ	11	3-CONHCH ₃	

	Y=CH Beisp.	-Nr. (R _{1)n}	R ₂	x	Fp/Kp _{Torr} /°c7
5	391	2,4-01,	5-C(CH;);	3-CONHC 2H;	161-162
	392	"	**	3-CONH-n-C3H7	102-103
	393	19	Ħ	3-CONH-n-C.H.	
10	394	11	H	3-CONH-n-C.H.;	
	395	31	" .	3-CONH-n-C10H21	
	396	n	ri	3-CONH-1-C3H,	
15	397	n	н .	3-CON(CH ₃) _z	
	398	11	n	3-CON(CH ₃)(nC ₆ H	13)
	399	Ħ	**	3-CON(C2H5)2	•
20	400	11	tt.	3-CO-N	
	401	n	11	3-CO-N	
	402	Ħ	**	3-C0-N_C	
25	403	11	11	3-CO-N_C	
	404	n	11	3-C0-NH-C-C.H.1	
	405	п	• **	3-C0-NH-C-C3H5	
30	406	**	17	3-CO-N(CH ₃)(cC ₆	н,,)
	407	11	n	3-COSH	
35	408	n	n	3-COSNa	
	409	'n	11	3-COSCH ₃	
	410	n	n	3-COSC ₂ H ₅	
40	411	Ħ	n	3-COSCH ₂ C ₆ H ₅	
•	412	11	IT	3-COS-nC ₈ H ₁ ,	
	413	11	tr	3-C05C2H60CH3	
45	414	**	11	3-COSCH2CHCH2	
	415	11	11	3-COSCH:CCH	
	416	11	17	3-005-c-CeH11	
50	417	11	17	3-COSCH ₂ Si(CH ₃)	3
	<i>t</i> 1 8	19	m	3-COS-n-C.H.CH(CH ₃):
	419	п	#1	3-CON 25	
55	42 0	17	n	3-COCC;H,CH(CH;) ;

	Y=CH BeispN	r. (R.)	R į	x Fp/KpTorr C°C7
5	421	2,4-01:	5-CH;-CH(CH;);	3-C00CH ₃
	422	11	"	3-C00C;H: 01
	423	**	**	3-C00-n-C,H,
10	424	**	"	3-C00-i-C ₃ H ₇
	425	17	**	3-C00-n-C ₄ H ₉
	426	**		3-C00-n-C ₅ H ₁₁
15	427	**	"	3-C00-n-C6H13
	428	11	17	3-C00-n-Cg H1,
	429	tt	"	3-C00-n-C10H21 0 0 (R1)n
20	430	**	"	3-C-0-C-N-Y-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
	431	**	u .	3-COOH R2
	432	n	11	3-C00Li
25	433	t+	11	3-C00Na
	43 4	11	11	3-C00K
	435	n	11	3-C00Ca ₁ / ₂
30	43 6	**	n	3-C00-c-C.H,
	437	Ħ	11	3-C00-c-C6H11
25	43 8	tt	17	3-C00CH;-C6H5
35	43 9	Ħ	**	3-C00CH ₂ -(2,4-Cl ₂ -C ₆ H ₅)
	44 0	ţ1	**	3-COOCH; CHCH;
40	44 1	**	11	3-C00C;H,CHCH;
40	44 2	11	tr	3-C00-n-C ₈ H ₁₆ CHCH ₂
	44 3	**	17	3-C00-CH2CCH
45	44 4	**	п	3-C00-C2H4-CCH
	44 5	**	**	3-C00-n-C ₅ H ₁₀ CCH
	44 6	n	11	3-C00CH ₂ Si(CH ₃) ₃
50	44 7	п	11	3-C00C2H60CH3
	44 8	Ħ	11	3-CONH ₂
	44 9	II	**	3-CN
55	45 C	tf	11	3-CONHCH;

	Y=CH BeispN	Ir. (R ₁)	R:	x	Fp/Kp _{Tott} /ºC/
5	451	2,4-Cl;	5-CH,CH	(CH;), 3-CONHC;H,	
	452	н	11	3-CONH-n-C31	٠,
	453	**	r	3-CONH-n-C.	H ₉
10	454	tt.	n	3-CONH-n-Ce	H ₁₃
	455	17	17	3-C0NH-n-C,	0 H 2 1
	456	••	17	3-CONH-i-C ₃	н,
15	457	10	ęr	3-CON(CH ₃) ₂	
	458	r	**	3-CON(CH ₃)(nC ₆ H ₁₃)
	459	11	n	3-CON(C2H5)	2
20	460	17	Ħ	3-CO-N	
	461	**	ti	3-CO-N	
	462	**	11	3-CO-N_C	
25	463	Ħ	tr	3-CO-NJE	
	464	н	**	3-C0-NH-c-C	еH ₁₋₁
20	465	ţı	н	3-C0-NH-c-C	3 H 5
30	466	11	**	3-CO-N(CH ₃)	(cC∈H ₁₁)
	467	"	**	3-COSH	
35	468	н	n	3-COSNa	
	469	II	*	3-COSCH ₃	
	470	n	n	3-C05C2H5	
40	471	11	Ħ	3-C05CH2C6H	15
	472	"	17	3-COS-nC 6H) T
	473	n	Ħ	3-COSC:H.OC	CH ₃
45	474	n	11	3-COSCH;CHC	CH ₂
	475	11	11	3-C05CH; CCH	+
	476	17	n	3-COS-c-C ₆ 1	4,,
50	477	**	17	3-C05CH,Si	(CH ₃) ₃
	478	n	Ħ	3-COS-n-C.1	H ₈ CH(CH ₃):
	479	11	Ħ	3-CON 27	
55	480	11	17	3-C00C;H,C	H(CH;):

	Y=CH Beisp	-NI. (R1)	R ₂	x Fp/KpTorr (°C7
5	481	2,4-Cl;	5-c-C ₆ H ₁ ,	3-C00CH ₃
	482	tr	n	3-C00C ₂ H ₅ 106-108
10	483	**	11	3-C00-n-C ₃ H ₇
10	484	Ħ	n	3-C00-i-C,H,
	485	Ħ	n	3-C00-n-C ₆ H ₉
15	486	+*	"	3-C00-n-C ₅ H ₁ ,
,,	487	Ħ	n	3-C00-n-C ₆ H ₁₃
	488	11	11	3-C00-n-C ₈ H ₁₇
20	489	Ħ	*	3-CCC-n-C ₁₀ H ₂₁ (R ₁) n
	490	Ħ	n	3-C-0-C-4-N-(())
	491	n	97	3-C00H R ₂ 201-202
25	492	**	11	3-C00Li
	493	11	99	3-C00Na
	494	"	41	3-C00K
30	495	н	11	3-C00Ca,/2
	496	"	π	3-C00-c-C.H,
	497	Ħ	n	3-C00-c-C ₆ H ₁₁
35	498	н	77	3-C00CH2-C6H5
	499	11	π	3-C00CH ₂ -(2,4-Cl ₂ -C ₆ H ₃)
	500	n	n	3-COOCH;CHCH;
40	501	n	17	3-C00C;H,CHCH;
	502	n	11	3-C00-n-C.H ₁₅ CHCH:
	503	11	77	3-C00-CH2CCH
45	504	11	π	3-C00-C2H6-CCH
	505	11	11	3-000-n-0;H10CCH
	506	#	**	3-C00CH2Si(CH3)3
50	507	11	11	3-C00C;HL0CH3
	508	11	Ħ	3-CONH;
	509	11	11	3-CN
55	510	11	Ħ	3-CONHCH;

Y=CH Beis	pNr. (R ₁)	R,	х	Fp/Kp _{Torr} ∠ ⁵ C̄/
511	2,4-01;	5-c-C ₆ H ₁ ,	3-CONHC;H,	131-132
512	tt	tt	3-CONH-n-C;H;	
513	11	**	3-CONH-n-C.H.	
514	11	n	3-CONH-n-C (H;)	
515	**	n	3-CONH-n-C10Hz	1
51 <i>6</i>			3-CONH-i-C;H,	
517		**	3-CON(CH ₃);	
518	, "	11	3-CON(CH ₃)(nC ₆	Н,,)
519) 11	11	3-CON(C2H5)2	
520) "	п	3-CO-N	
52		11	3-CO-N	
523		н	3-CO-N-C	
52	5 "	Ħ	3-CO-N_E	
52	#	Ħ	3-CO-NH-C-C6H1	1
52	5 "	FT	3-CO-NH-C-C3H5	
52		19	3-CO-N(CH ₃)(cC	(₆ H ₁₁)
52		Ħ	3-COSH	
52	8 "	n	3-COSNa	
52	9 "	rr .	3-COSCH ₃	
53		17	3-COSC2H5	
53		17	3-COSCH2C6H5	
53		17	3-C05-nCaH17	
53		#	3-COSC;H,OCH;	
53		n	3-COSCH2CHCH2	
53		H	3-COSCH2CCH	
53		11	3-COS-c-C6H11	
53		n	3-COSCH₂Si(CH	,) ,
53		11	3-005-n-C.H.C	H(CH ₃);
53		11	3-CON N	
54		н	3-000C:H:CH(C	н,);
-				

	Y=CH Beisp	Nr.(R.) _n	R ₂	х	Fp/Kp _{Torr} /°C/
5	541	2,4-Br;	5-CH ₃	3-COCCH;	
	542	"	n	3-C00C:H5	91-100
	543	**	Ħ	3-C0C-n-C3H	7
10	544	· n	ti	3-C00-i-C ₃ H	1
	545	17	11	3-000-n-C.H	9
	546	n	n .	3-C00-n-C ₅ H	11
15	547	19	11	3-C00-n-C∈H	13
	548	. 19	19	3-000-n-0 ₈ H	1 7
	549	76	ŧı	3-C∞-n-C₁0	
20	550	ts	H	3-C-0-C-V-N 3-C00H R2	- (3)
	551	79	n	3-C00H R2	Ϋ́
	552	11	11	3-C00Li	•
25	553	11	Ħ	3-C00Na	
	554	11	" /	3-C00K	
30	555	II .	Ħ	3-C00Ca ₁ / ₂	
30	556	11	ti	3-000-c-C.H	
	557	**	н	3-C00-c-C ₆ H	1,,
35	558	11	11	3-C00CH2-C6	H ₅
	559	19	17	3-C00CH ₂ -(2	2,4-Cl ₂ -C ₆ H ₃)
	560	11	Ħ	3-C00CH2CHC	tH ₂
40	561	17	Ħ	3-000C2H.CF	ICH₂
-	562	17	11	3-000-n-0 ₈	116 ^{CHCH} 2
	563	**	11	3-C00-CH2C0	СН
45	564	н	n	3-C00-C;H	-CCH
	565	**	n	3-C00-n-C ₅ h	H ₁₀ CCH
	566	п	n	3-C00CH ₂ Si((CH ₃) ₃
50	567	11	† †	3-C00C2H.00	CH ₃
	568	11	77	3-CONH ₂	
	56 9	**	17	3-CN	
55	57 C	11	tf	3-CONHCH ₃	

Y=CH Beis	oNr.(R ₁)	R:	X	Fp/vplorr C°C7
571	2,4-Br;	5-CH ₃	3-CONHC ; H:	
572	ч	н	3-CONH-n-C3H7	
573	n	17	3-CONH-n-C.H,	
574	"	11	3-CONH-n-C (H13	
575	**	11	3-CONH-n-C; 0H;	
576	**	11	3-CONH-i-C ₃ H ₇	
577	10		3-CON(CH ₃) ₂	
578	**	n	3-CON(CH ₃)(nC ₆ F	1,3)
579	π	†1	3-CON(C2H5)2	
580	H	n	3-CO-N	
581	"	11	3-CO-N	
582	ti	ŧi	3-CO-N-C	
583	**	11	3-00-100	
584	tt	Ħ	3-C0-NH-C-C (H)	ı
585	**	11	3-C0-NH-c-C ₃ H ₁	
586	11	n	3-CO-N(CH ₃)(cC	:H ₁₁)
587	Ħ	**	3-COSH	
588	17	**	3-COSNa	
589	**	n	3-COSCH ₃	
590	"	**	3-COSC ₂ H ₅	
59	. "	11	3-COSCH2C6H5	
592	? "	11	3-C05-nC ₈ H ₁₇	
593	3 **	n	3-COSC;H,OCH3	
59	÷ **	11	3-COSCH2CHCH2	
59	5 "	**	3-COSCH2CCH	
59	5 "	11	3-COS-c-C6H11	
59	7 "	17	3+COSCH ₂ Si(CH ₃),
59	3 *	17	3-COS-n-C.H.CH	(CH ₃) ₂
. 59	9 "	IT	3-CON (%)	
60	0 "	11	3-6006'H'CH(CH	;);

	Y=CH BeispNr	. (R ₁) _n	R ₂	χ F	P/KpTorr /°C7
5	601	3-CF ₃	5-CH;	3-COCCH3	
	602	**	to	3-C00C;H5	7375
	603	11	10	3-C00-n-C ₃ H	7
70	604	н	11	3-C00-i-C ₃ H	7
	605	"	"	3-000-n-0.H	, 81
	606	"	11	3-C00-n-C;H	11
15	607	11	11	3-000-n-C ₆ H	13
	608	н	17	3-C00-n-CgH	17
	609	tt	ii.	3-000-n-010	H _{2.1}
20	610		11	3-6-0-6-4-N	(R ₁) n
	611	11	'n	3-COOH R ₂	190-191
25	612	11	Ħ	3-C00Li	
23	613	11	tt.	3-C00Na	
	614	ĮŦ	II	3-C00K	
30	615	**	Ħ	3-C00Ca ₁ / ₂	
	616	H	14	3-C00-c-C.H	7
	617	n	н	3-C00-c-C _e H	11
35	618	10	11	3-C00CH;-C6	Н ₃
	619	н	n	3-C00CH ₂ -(2	,4-Cl ₂ -C ₆ H ₃)
	62&	11	"	3-COOCH2CHC	H ₂
40	621	"	11	3-C00C2H4CH	CH ₂
	622	† 9	u	3-C00-n-C ₄ H	15 CHCH2
	623	11	11	3-C00-CH2CC	н
45	62 4	11	11	3-C00-C2H	ССН
	62 5	19	11	3-C00-n-C ₅ H	1 o C C H
	626	11	11	3-C00CH;5i(CH ₃) ₃
50	62 7	**	11	3-C00C2H60C	Н ₃
	628	Ħ	"	3-CONH ₂	
	629	n	11	3-CN	
55	630	n	Ħ	3-CONHCH ₃	

5	Y=CH Beisp	Nr.(R ₁) _n	R,	x	Fp/KpTorr CC
J	631	3-CF 3	5-CH ₃	3-CONHC, H.	
	632	Ħ	11	3-CONH-n-C;H;	66 72
10	633	11	**	3-C0NH-n-C.H.	
	634	**	"	3-CONH-n-C:H13	
	635	**	11	3-CONH-n-C; 0H;	1
15	636	н	n .	3-CONH-i-C;H,	
	637	11	**	3-CON(CH ₃) ₂	
	638	11	n	3-CON(CH ₃)(nC ₆)	١,,)
20	639	**	n	3-CON(C2H5)2	
	640	Ħ	n	3-CO-N	
	641	**	m	3-CO-N	
25	642	. 11	n	3-CO-N_0	
	643	11	11	3-00-10	
	644	11	Ħ	3-C0-NH-C-C 6H1	1
30	645	11	11	3-C0-NH-C-C3H5	
	646	Ħ	н	3-CO-N(CH ₃)(cC	_E H ₁₁)
	647	11	m	3-COSH -	
35	648	tt	11	3-COSNa	
	649	Ħ	п	3+C05CH ₃	
	650	Ħ	H	3-COSC ₂ H ₅	
40	651	Ħ	n	3-COSCH ₂ C ₆ H ₅	
	652	"	п	3-C05-nC ₆ H ₁ ,	
	653	18	Ħ	3-COSC 2H 6 OCH 3	
45	654	11	11	3-COSCH2CHCH:	
	655	11	n	3-COSCH₂CCH	
	656	11	Ħ	3-C05-c-C6H11	
50	657	Ħ	**	3-COSCH ₂ Si(CH ₃)),
	658	"	99	3-005-n-C.H.CH	(CH ₃) ₂
	659	Ħ	17 -	3-CON_H	
55	660	11	u	3-COOC;H,CH(CH	,):

Y=CH Beisp	Nr.(R) _n	R ₂	×	Fp/Kp _{Torr} [°c]
661	2,4-C1CF;	5-CH;	3-CONHC, H.	
662	11	11	3-CONH-n-C3H7	109-113
663	**	**	3-CONH-n-C.H,	
664	"	11	3-C0NH-n-C ₆ H ₁₃	
665	11		3-CONH-n-C10H21	
666	n	17	3-CONH-i-C3H7	
667	"	Ħ	3-CON(CH ₃) ₂	
668	**	17	3-CON(CH ₃)(nC ₆ H	1,,)
669	11	"	3-CON(C2H5);	
670	**	**	3-C0-N	
671	**	11	3-C0-N	
672	11	Ħ	3-C0-NC	
673	n	11	3-C0-N_C	
674	**	19	3-C0-NH-C-C ₆ H _{1 1}	
675	Ħ	••	3-C0-NH-C-C3H5	
676	Ħ	**	3-C0-N(CH ₃)(cC ₆	н,,)
677	**	m	3-COSH	
678	**	† 4	3-COSNa	
679	**	Ħ	3-COSCH;	
680	n	п	3-COSC ₂ H ₅	
681	n	11	3-COSCH2CeH5	
682	Ħ	17	3-COS-nC ₈ H ₁₇	
683	n	11	3-COSC₂H,OCH,	
684	"	11	3-COSCH, CHCH,	
685	n	11	3-COSCH₂CCH	
686	tt	n	3-COS-c-C ₆ H ₁ ,	
687	**	Ħ	3-COSCH;Si(CH;)	3
688	11	**	3-COS-n-C.H.CH(CH ₃):
689	n	n	3-CON "	
690	rτ	11	3-C00C;H,CH(CH;):

	Y=CH Beisp.	-NI.(R)	R:	x Fp/Kp _{Torr /°C/}
5	691	2,4-C1CF ₃	5-CH ₃	3-C00CH;
	692	n	11	3-C00C ₂ H ₅
	693	**	19	3-C00-n-C ₃ H ₇
10	694	11	H	3-C00-i-C ₃ H ₇
	695	**	н	3-C00-n-C.H.
	696	**	H .	3-C00-n-C ₅ H ₁₁
15	697	**	tt.	3-000-n-C ₆ H ₁₃
	698	17	**	3-C00-n-C ₈ H ₁₇
	699	11	11	3-000-n-0H.,
20	70 0	11	11	3-C-0-C-N-Y-N-Y-N-Y-N-Y-N-Y-N-Y-N-Y-N-Y-N-Y-N
	701	11	н	3-COOH R2
	702	ta.	11	3-C00Li
25	703	11	n	3-C00Na
	704	10	H	3-C00K
	705	rr .	**	3-C00Ca ₁ / ₂
30	706	•	**	3-C00-c-C.H,
	707	#	**	3-C00-c-C ₆ H ₁ ,
35	708	Ħ	11	3-C00CH2-C6H5
00	709	"	11	3-C00CH ₂ -(2,4-Cl ₂ -C ₆ H ₃)
	7 4 0	11	n	3-COOCH2CHCH2
40	711	11	n	3-COOC 2 H& CHCH2
•	712	,,	n	3-000-n-C 4H16CHCH;
	713	11	11	3-C00-CH; CCH
45	714	n	11	3-C00-C2H6-CCH
	715.	. "	11	3-C00-n-C 5H10CCH
	716	tt .	11	3-COOCH,Si(CH,),
50	717	11	Ħ	3-C00C2H40CH3
	718	er e	ŧŧ	3-CONH ₂
	719	19	77	3-CN
55	720	n	17	3-CONHCH ₃

EP 0 333 131 A1

	Y=CH BeispNr.(R ₁)		R,	x Fp/Kp _{Torr /º} c/	
5	721	4,2-C1CF ₃	5-CH ₃	3-C00CH ₃	
	722	**	ii .	3-C00C2H3 49-51	
	723	"	11	3-C00-n-C3H7	
10	724	17	н	3-C00-i-C ₃ H,	
	725	11	n	3-C00-n-C ₆ H,	
	726	n		3-C00-n-C ₃ H ₁₁	
15	727	**	11	3-C00-n-C ₆ H ₁₃	
	728	n	н	3-C00-n-C ₈ H;,	
20	729	10	h	3-C00-n-C ₁₀ H ₂₁ (R ₁) _n	
	73G	n	ff	3-C-0-C-N-Y-N-Y-N-Y-N-Y-N-Y-N-Y-N-Y-N-Y-N-Y-N	
	731		n	3-COOH R2	
25	732	Ħ	Ħ	3-C00Li	
	733	n	11	3-C0GN3	
	734	n .	11	3-C00K	
30	735	17	*	3-C00Ca ₁ / ₂	
	736	U	tt .	3-C00-c-C.H,	
	737	11	"	3-C00-c-C6H11	
35	738	Ħ	11	3-C00CH ₂ -C ₆ H ₅	
	739	Ħ	Ħ	3-COOCH ₂ -(2,4-Cl ₂ -C ₆ H ₃)	
	740	17	Ħ	3-COOCH2CHCH2	
40	741	n	n	3-C00C;H,CHCH;	
	742	it .	Ħ	3-000-n-C ₄ H ₁₆ CHCH ₂	
	743	n	H	3-C00-CH2CCH	
45	744	n	n	3-C00-C2H4-CCH	
	745	17	#	3-C00-n-C 5 H 1 0 CCH	
50	746	17	11	3-COOCH2Si(CH3),	
	747	17	"	3-COOC;H.OCH3	
	748	n	**	3-CONH,	
•	749	**	**	3-CN	
55	750	19	11	3-CONHCH ₃	

Y=CH BeispNr.(R ₁) _n) _n	R,	x	Fp/Kp _{Tor:} L°CJ
75	4,2-	C1CF;	5-CH ₃	3-CONHC 2H 5	
75	2 "	ı	п	3-CONH-n-C3H1	
75	3 *	,	**	3-CONH-n-C.H,	
75	4	•	**	3-CONH-n-C ₆ H ₁₃	
75 5	5 '	•	v	3-CONH-n-C, oH;	
75 6	6 '	•		3-CONH-i-C ₃ H,	
75	7 '	•	10	3-CON(CH ₃) ₂	
75	8 '	•	Ħ	3-CON(CH3)(nCeH1	₃)
75	9 '	•	11	3-CON(C:H;);	
76	0 '	•	n	3-C0-N	
76	1 '	•	"	3-C0-N	
76	2 '	••	11	3-CO-N)C	
76	3 '	17	11	3-CG-NJ	
76	4	•	**	3-CO-NH-C-C EH 1 1	
76	5	н	н	3-CO-NH-C-C ₃ H ₅	
76	6	jr	n	3-C0-N(CH3)(cCeH	11)
76	7	•	н	3-COSH	
76		п	11	3-COSNa	
76		11	п	3-COSCH ₃	
77	0	"	11	3-COSC ₂ H ₅	
77	1	Ħ	п	3-COSCH2C6H5	
7 7	2	***	tı	3-COS-nC ₈ H ₁₇	
77	3	11	11	3-COSC2H.OCH3	
7 7	4	n	н	3-COSCH; CHCH;	
77	5	m	**	3-COSCH:CCH	
77	6	17	11	3-COS-c-CeH11	
77	7	17	11	3-COSCH, Si(CH,),	
77		**	Ħ	3-005-n-C.H.CH(0	:H₃);
77		**	11	3-CON.	
78		11	11	3-C00C;H.CH(CH ₃)) <u>z</u>

	Y=CH BeispNr.(R ₁) _n		R:	X Fp/Kp _{Torr / EC/}	
5	781	2,6,4-Cl;CF;	5-CH ₃	3-C00CH ₃	
	782	11	U	3-COOC; Hs 138-140	
10	783	**	11	3-C00-n-C ₃ H,	
	784	11	11	3-C00-i-C ₃ H,	
	785	,,		3-C00-n-C.H,	
15	786	11	Ħ	3-C00-n-C ₅ H ₁₁	
	787	11	11	3-C00-n-C ₆ H ₁₃	
	788	11	Ħ	3-C00-n-C3H17	
20	789	11	**	3-COO-n-C, oHz, (R ₁) n	
	790	**	**	3-C-0-C-1 (N-1/n	
	791	н	н	3-COOH R ₂	
25	79 2	Ħ	tt	3-C00Li	
	793	Ħ	**	3-C00Na	
	79 4	n	Ħ	3-C00K	
30	79 5	n	11	3-C00Ca ₁ / ₂ .	
	79 6	Ħ	19	3-C00-c-C ₄ H ₇	
	79 7	**	η	3-C00-c-C ₆ H ₁ ,	
35	79 8	H	11	3-C00CH ₂ -C ₆ H ₅	
	79 9	•	H	3-C00CH ₂ -(2,4-C1 ₂ -C ₆ H ₃)	
	80 0	"	Ħ	3-C00CH;CHCH;	
40	80 1	п	n	3-C00C2H2CHCH2	
	80 2	11	н	3-C00-n-C.H ₁₆ CHCH:	
	80 3	t7	11	3-C00-CH:CCH	
45	80 4	u	Ħ	3-C00-C2H6-CCH	
	80 5	11	Ħ	3-C00-n-CsH10CCH	
50	80 6	11	11	3-C00CH ₂ Si(CH ₃) ₃	
	80 7	11	11	3-C00C2H.OCH3	
	80 8	**	17	3-CONH:	
	86 9	**	17	3-CN	
55	81 0	19	n	3-CONHCH,	

Y=CH Beisp	0Nr.(R ₁)	R,	x	Fp/KpTorr CC/
811	2,6,4-Cl;CF;	5-CH₃	3-CONHC 2H:	
812	n	**	3-CONH-n-C ₃ H,	
813	84	11	3-CONH-n-C.H.	
814	21	o	3-C0NH-n-C,H,,	
815	**	*	3-CONH-n-C: 0H;	1
816	**	н .	3-CONH-1-C3H7	
817	**	11	3-CON(CH ₃);	
818	H	"	3-CON(CH ₃)(nC ₆	H ₁₃)
819	***	Ħ	3-CON(C2H5);	
820	11	n	3-C0-N	
821	11	11	3-CO-N	
822	Ħ	11	3-CO-N_C	
823	**	11	3-C0-N	
824	11	11	3-CO-NH-C-C 6 H 1	1
825	Ħ	H	3-CO-NH-c-C;H;	
826		tt	3-CO-N(CH ₃)(cC	eH11)
8 27	n	11	3-COSH	
8 28	n	**	3-COSNa	
8 29	t†	#	3-COSCH ₃	
830	n	n	3-COSC ₂ H ₅	
831	11	n	3-COSCH2C6H5	
8 32	TF.	11	3-C0S-nC 8H17	
8 33	**	π	3-COSC ₂ H ₄ OCH ₃	
8 34	11	11	3-COSCH2CHCH2	
8 35	n	24	3-COSCH2CCH	
836	n	Ħ	3-COS-c-C.H.,	
8 <i>3</i> 7	п	**	3-COSCH,Si(CH;	,),
8.38	tt	0	3-C05-n-C.H.C	H(CH ₃);
839	11	•	3-CON J	
840	17	17	3-C00C;H,CH(C	H ₃),

	Y=N BeispNr.(R ₁) _D		R,	χ Fp/Kp _{Torr} ζ [®] ¢Ϳ	
5	841	3,5-Cl -CF,	5-CH;	3-C00CH;	
	842	н	Ħ	3-C00C ₂ H ₅ 55-53	
	843	**	н	3-C00-n+C3H7	
10	844	**	rt	3-C00-i-C ₃ H ₇	
	845	rı .	Ħ	3-C00-n-C.H.	
15	846	11	н	3-C00-n-C;H;;	
	847	11	n	3-C00-n-C ₆ H ₁₃	
	848	**	**	3-C00-n-C ₈ H17	
20	84 9	tr	11	3-C00-n-C10H21 (R1)n	
	85 C	11	11	3-c-o-c+\(\frac{1}{2}\)	
	85 1	11	**	3-COOH X=N Y=	
25	85 2	*	n	3-C00Li ²	
	85 3	Ħ	**	3-C00Na	
	85 4	**	,,	3-C00K	
30	85 5	н	**	3-C00Ca ₁ / ₂	
	85 6	Ħ	**	3-C00-c-C.H,	
	85 7	Ħ	**	3-C00-c-C ₆ H ₁₁	
35	85 8	**	**	3-C00CH2-CeH5	
	859	"	**	3-C00CH ₂ -(2,4-Cl ₂ -C _e H ₃)	
	860	**	"	3-COOCH2CHCH2	
40	861	tt	11	3-COOC;H.CHCH2	
	862	Π	11	3-000-n-0.H ₁₅ CHCH:	
	863	17	**	3-C00+CH2CCH	
45.	86 4	17	11	3-C00-C2HCCH	
	86 5	π	н	3-000-n-C 5H 1 0CCH	
50	86 6	47	н	3-C00CH;Si(CH;);	
	86 7	Ħ	"	3-C00C; H, OCH;	
	86 8	n	**	3-CONH ₂	
	86 9	n	**	3-CN	
55	87 O	11	н	3-CONHCH ₃	

	Y=N BeispNi	(R ,)	R:	x	F¢/KDTor: /°C/
5	871 3,5	-ClCF;	5-CH ₃	3-CONHC;H;	
	87 2	11	H	3-CONH-n-C3H7	
	87 3	n	11	3-CGNH-n-C _k H ₉	
10	87 4	n	11	3-CONH-n-C ₆ H ₁₂	
	87 5	**	Ħ	3-CONH-n-C10+;	1
	87 6	•		3-CONH-I-C3H,	
15	87 7	n	11	3-CON(CH ₃);	
	878	n	11	3-CON(CH ₃)(nC ₆)	H ₁₃)
	879	ņ	11	3-CON(C2H5)2	
20	880	н	11	3-CO-N	
	88 1	H	11	3-CO-N	
	88 2	11	H	3-CO-N_C	
25	883	11	17	3-C0-N_c	
	88 4	**	11	3-CO-NH-C-C ₆ H ₁	1
00	88 5	Ħ	11	3-C0-NH-C-C3H:	
30	886	*	11	3-CO-N(CH ₃)(cC	_ε Η _{1,1})
	887	Ħ	11	3-COSH	
35	888	H	11	3-COSNa	
	889	Ħ	79	3-COSCH ₃	
	89C	11	17	3-COSC2H5	
40	891	11	п	3-COSCH;C6H:	
	892	**	11	3-005-nC ₈ H ₁₇	
	893	Ħ	ti	3-COSC:H.OCH;	
45	894	n	11	3-COSCH2CHCH2	
	895	Ħ	11	3-COSCH2CCH	
	896	11	11	3-COS-c-C 6H11	
50	897	**	11	3-COSCH ₂ Si(CH ₃),
	898	n	Ħ	3-COS-n-C⊾HaCH	(CH,):
	899	11	11	3-CON N	
55	900	**	je	3-C00C:H°CH(CH	;);

	Y=N BeispNr.(R) _n		R,	x Fp/Kp _{Torr} / <u>-</u> c/
5	901	3,5-C1CF ₃	3-CH,	5-C00CH;
	902	**	**	5-C00C ₂ H ₅ Öl
	903	н	н	5-C00 -n-C3H7
10	904	11	п	5-C00-i-C ₁ H ₁
	905	n	11	5-000-n-0.H ₀
	906	**	и .	5-C00-n-C;H,,
15	907	tr .	ŧτ	5-000-n-C ₆ H ₁₃
	908	**	11	5-C00-n-CgH,,
22	909	**	tt	5-C00-n-C ₁ oH ₂ , (R ₁) _n
20	910	N	11	5-C-0-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
	911	**	11	5-COOH R2
25	912	tr	"	5-C00Li
25	913	tr	n	5-C00Na
	914	**	11	5-COGK
30	915	17	tr .	5-C00Ca,/;
	916	17	ji	5-C00-c-C.H.
	917	n	Ħ	5-C00-c-C ₆ H ₁₁
35	918	n	11	5-C00CH; -C .H .
	919	n	11	5-COOCH ₂ -(2,4-Cl ₂ -C ₆ H ₃)
	920	**	n	5-COOCH 2 CHCH 2
40	921	**	n	5-COOC 2H CHCH2
	922	tt	ii.	5-000-n-C.H. 6 CHCH.
	923	Ħ	11	5-C00-CH₂CCH
45	924	**	n	5-C00-C2H4-CCH
	925	11	11	5-C00-n-C,H, oCCH
	926	**	Ħ	5-C00CH ₂ Si(CH ₃) ₃
50	927	11	n	5-C00C;H.OCH,
	928	π	Ħ	5-CONH ₂
	929	11	**	5-CN
55	93C	н	tt	5-CONHCH ₃

	Y=N Beisp.	-Nr.(R ₁) _n	· R 2	х	Fp/kpTor:/°C/
5	931	3,5-Cl-CF;	3-CH ₃	5-CONHC,H;	
	932	**	tt	5-CONH-n-C,H,	
	933	11	r	5-CONH-n-C.H.	
10	934	"	11	5-CONH-n-C (H13	
	935	n	n n	5-CONH-n-C; oH;	1
	936	**		5-CONH-1-C3H7	
15	937	11	**	5-CON(CH ₃) ₂	
	938	(*	11	5-CON(CH ₃)(nC ₆	н,,)
	939	Ħ	11	5-CON(C2H5)2	
20	940	n	н	5-C0-N	
	941	n	h	5-CO-N	
25	942	n	Ħ	5-CO-N_0	
25	94 3	Ħ	11	5-CO-N_O	
	944	f1	- n	5-CO-NH-C-C.H.	1
30	94 5	tt	**	5-C0-NH-c-C3H5	
	946	**	11	5-CO-N(CH ₃)(cC	εH ₁ ,)
	94 7	11	n	5-COSH	
35	948	n	Ħ	5-COSNa	
	949	#	11	5-COSCH ₃	
	95 0	11	47	5-COSC 2 H 5	
40	95 1	11	11	5-COSCH,C.H.	
	95 2	n	17	5-COS-nC 8H11	
	95 3	n	11	5-COSC 2H 4 OCH 3	
45	95 4	11	n	5-COSCH:CHCH:	
	95 5	n	n	5-COSCH:CCH	
	95 6	11	11	5-COS-c-C6H11	
50	95 7	11	17	5-COSCH;Si(CH;) 3
	95 8	Ħ	**	5-COS-n-C.H.C	1(CH ₃);
	, 95 9	17	11	5-CON N	
55	96 0	19	11	5-C00C 2 h L CH (CH	13):

	Y=CH BeispNr.(R,)		R;	x Fp/Kp _{Torr} <u>C</u> 7
5	961	2,3-Cl;	5-CH;	3-C00CH ₃
	962	"	"	3-C00C2H5 77-79
10	963	Ħ	**	3-C00-n-C ₃ H ₇
	964	11	**	3-C00-i-C ₃ H,
	965	•	IF.	3-C00-n-C,H,
15	966	**	n .	3-C00-n-C;H,,
	967	n	11	3-C00-n-C ₆ H ₁₃
	968	**	n	3-C00-n-C ₈ H ₁ ,
20	969	11	11	3-C00-n-C10H21 (R ₁)n
	970	17	#	3-C-0-CX N-
	971		11	3-COOH R ₂
25	972	"	**	3-C00Li
	973	и	**	3-C00Na
	974	11	tt	3-C00K
30	975	n	**	3-C00Ca ₁ / ₂
	976	"	tt	3-C00-c-C.H,
	977	n	II	3-C00-c-C ₆ H ₁₁
35	978	Ħ	11	3-C00CH ₂ -C ₆ H ₅
	979	**	n	3-C00CH ₂ -(2,4-Cl ₂ -C ₆ H ₃)
	980	п	11	3-COOCH2CHCH2
40	981	**	**	.3-COOC ₂ H ₄ CHCH ₂
	982	**	n	3-C00-n-C ₈ H ₁₅ CHCH;
	983	11	11	3-C00-CH; CCH
45	984	**	Ħ	3-C00-C2H4-CCH
	985	11	Ħ	3-C00-n-C5H10CCH
	986	**	11	3-COOCH; Si(CH;);
50	987	**	Ħ	3-C00C;H,OCH;
	988	11	**	3-CONH ₂
ce	989	11	"	3-CN
55	990	11	11	3-CONHCH;

5	Y=CH BeispNr.(R,)		R;	X	Fp/Kp _{Tcrr} ∠° <u>c</u> 7
	991	2,3-01;	5-CH ₃	3-CONHC;H:	
	992	Ħ	n	3-CONH-n-C ₃ H,	
10	993	Ħ	Ħ	3-CONH-n-C.H.	
	994	**	**	3-CONH-n-C.H.;	
	995	**		3-CONH-n-C; 6H; 1	
15	996	11	11	3-CONH-1-C;H,	
	997	11	"	3-CON(CH ₃);	
	998	tt	H	3-CON(CH;)(nC6H	13)
20	999	11	**	3-CON(C2H5);	•
	1000	**	n	3-C0-N	
	1001	"	10	3-C0-N	
25	1002	Ħ	11	3-C0-N_C	
	1003	н	11	3-CO-N_C	
	1004	Ħ	ti.	3-CO-NH-C-C.H.,	
30	1005	н	**	3-C0-NH-c-C3H5	
	1006	11	11	3-CO-N(CH ₃)(cC ₆	н,,)
	1007	11	11	3-COSH	
35	1008	. 11	**	3-COSNa	
	1009	Ħ	n	3-COSCH ₃	
	1010	Ħ	lT .	3-0050 2 H.s	
40	1011	'n	11	3-COSCH2CeHs	
	1012	11	n	3-COS-nC 8H17	
	1013	tt	н	3+COSC2HLOCH3	
45	1014	11	Ħ	3-COSCH:CHCH;	
	1015	11	и	3-COSCH2CCH	
	1016	11	n	3-COS-c-C.H, 1	
50	1017	11	н	3-COSCH,Si(CH,)	3
	1018	ty	11	3-COS-n-C.H.CH(CH ₃);
	1.01 9	11	11	3-CON N	
55	1020	n	11	3-C00C;H,CH(CH;);

	Y=CH Beisp	Nr.(R,)	R z	x Fp/Kp _{Torr} <u>Cc7</u>
5	1021	2,4,5-Cl:OCH ₃	5CH ₃	3-C00CH ₃
	1022	**	n	3-C00C ₂ H ₅ 155-159
	1023	n	н	3-000 -n-0 3H7
10	1024	n	"	3-C0G-i-C ₃ H ₇
	1025	н	n .	3-C00-n-C.H.
15	1026	19	n	3-C00-n-C:H:;
73	1027	17	•	3-C00-n-C ₆ H ₁₃
	1028	te	π	3-C00-n-C ₈ H,,
20	1029	ee .	Ħ	3-000-n-C ₁₀ H ₂₁ (R ₁) n
20	1030	11	n	3-C-0-CAN (O)
	1031	ts.	11	3-COOH R ₂
25	103 2	Ħ	11	3-C00Li
	103 3	rs	π	3-C00Na
	103 4	Ħ	27	3-C00K
30	103 5	11	91	3-C00Ca ₁ / ₂
	103 6	Ħ	Ħ	3-C00-c-C.H,
	103 7	H .	Ħ	3-C00-c-C ₆ H _{1,1}
35	103 8	tr.	Ħ	3-C00CH ₂ -C ₆ H ₅
	103 9	tt .	п	3-C00CH ₂ -(2,4-Cl ₂ -C ₆ H ₃)
	104 0	11	Ħ	3-COOCH 2 CHCH 2
40	104 1	π	11	3-C00C:H.CHCH:
	104 2	н	11	3-000-n-C ₈ H ₁₆ CHCH ₂
	104 3	Ħ	n	3-C00-CH; CCH
45	104 4	n	11	3-C00-C2H4-CCH
	104 5	,	n	3-000-n-C ₅ H ₁₀ CCH
	104 6	t*	n	3-C00CH;Si(CH;);
50	104 7	tr	17	3-C00C,H,OCH,
	104 8		п	3-CONH;
	104 9	11	Ħ	3-CN
55	105 0	17	11	3-CONHCH;

				•
	Y≖CH Beisp.	NI.(R ₁) ₀	R ₂	x Fp/KpTorr ZecZ
5	1051	2,4,5-Cl;OCH;	5-CH ₃	3-CONHC; H,
	1052	11	TT .	3-CONH-n-C ₃ H,
	1053	10	17	3-CONH-n-C.H,
10	1054	11	i,	3-CONH-n-C 6H13
	1055	n	TT .	3-CONH-n-C, oH; 1
	1056	, n	н .	3-CONH-i-C ₃ H,
15	1057	**	n	3-CON(CH ₃) ₂
	1058	н	Ħ	3-CON(CH ₃)(nC ₄ H ₁₃)
20	1059	н	tt .	3-CON(C,H,),
20	1060	**	n	3-00-1
	106 1	**	11	3-00-1
25	106 2	Ħ	11	3-00-100
	106 3	#	11	3-00-100
	106 4	11	11	3-C0-NH-c-C ₆ H,,
30	106 5	п	11	3-CO-NH-c-C ₃ H ₅
	106 6	n	**	3-C0-N(CH ₃)(cC ₆ H ₁₁)
	106 7	•	71	3-COSH
35	106 8	11	11	3-COSNa
	106 9	ti .	11	3-COSCH,
	107 0	11	ti.	3-COSC:H,
40	107 1	Ħ	H	3-COSCH ₂ C ₆ H ₅
	107 2	11	Ħ	3-COS-nC ₆ H ₁ ,
	107 3	tt	н	3-COSC;H.OCH;
45	107 4	11	tt	3-COSCH,CHCH;
	107 5	. #	Ħ	3-COSCH ₂ CCH
	107 6	n	tt	3-COS-c-C ₆ H ₁ ,
50	107 7	fi .	tt	3-COSCH ₂ Si(CH ₃),
	107 8	n	11	3-COS-n-C4H8CH(CH3)2
•	107 9	11	11	3-CON N
55	108 0	**	**	3-C00C:H,CH(CH ₃);

	Y=CH BeispNr.(R ₁)		R:	x Fp/Kp _{Torr} / C?
5	1081	2,4,5-C1:0CH;	3-CH ₃	5-C00CH ₃
	108 2	**	†Ŧ	5-C00C2H2 81
	1083	12	11	5-C00-n-C ₃ H ₇
10	108.4	19	11	5-C00-i-C ₃ H ₇
	1065	"	19	5-C00-n-C,H,
	1086	19	tr .	5-C00-n-C;H,,
15	1087	19	19	5-C00-n-C ₆ H ₁₃
	1088	19	17	5-C00-n-C ₈ H ₁₇
20	1089	19	н	5-C00-n-C10H21 (R1)n
20	1090	Ħ	n	5-E-0-E W Y
	1091	71	н	5-COOH X-N 1
25	109 2	н	#	5-COOLi
23	109 3	1)	"	5-C00Na
	109 4	11	11	5-C00K
30	109 5	11	**	5-C00Ca ₁ / ₂
	109 6	Ħ	n	5-C00-c-C.H,
	109 7	11	11	5-C00-c-C6H11
35	109 8	Ħ	11	5-C00CH ₂ -C ₆ H ₅
	1099	n	11	5-COOCH ₂ -(2,4-Cl ₂ -C ₆ H ₃)
	1100	n	**	5-COOCH2CHCH2
40	1101	17	†1	5-COOC 2H&CHCH2
	1102	11	Ħ	5-000-n-0.8416 CHCH2
	1103	н	ţŧ	5-COO-CH ₂ CCH
45	110 4	11	11	5-C00-C2H6-CCH
	110 5	11	11	5-C00-n-C ₅ H, oCCH
	110 6	tr .	" /	5-COOCH ₂ Si(CH ₃) ₃
50	110 7	11	11	5-C00C2H2OCH3
	110 8	Ħ	**	5-CONH ₂
	110 9	Ħ	11	5-CN
55	111 G	u	Ħ	5-CONHCH ₃

5	Y=CH BeispNr. (R ₁) _O		R,	x	Fp/Kptorr /ºC/
· ·	1111 2,4,5	5-C1:OCH;	3-CH ₃	5-CONHC;Hs	
	111 2	11	17	5-CONH-n-C3H7	
10	1113	11	TI .	5-CONH-n-C.H.	
	1114	"	11	5-CONH-n-C _E H ₁₃	
	1115		" .	5-CONH-n-C:0H:1	
15	1116	n	"	5-CONH-i-C ₁ H,	
	1117	п	n	5-CON(CH ₁);	
	111 8	п	n	5-CON(CH ₃)(nC ₆ H	1,,)
20	111 9	n	11	5-CON(C2H5),	
	1120	n	n	5-CO-N	
	112 1	Ħ	n	5-CO-N.	
25	112 2	n	n	5-CO-N_0	
	112 3	11	. 11	5-CO-N_0	
	112 4	ji.	n	5-CO-NH-c-C,H,,	
30	112 5	π	n	5-CO-NH-c-C ₃ H ₅	
	112 6	tt	Ħ	5-CO-N(CH ₃)(cC ₆	H ₁₁)
	112 7	n	n	5-COSH	
35 .	1128	n	r	5-COSNa	
	112 9	H	u	5-COSCH,	
	113 0	H	Ħ	5-COSC,H,	
40	113 1	m	**	5-COSCH2C6H5	
	113 2	11	н	5-COS-nC ₆ H ₁₇	
	113 3	**	11	5-COSC,H,OCH,	
45	113 4	11	Ħ	5-COSCH ₂ CHCH ₂	
	113 5	"	*	5-COSCH2CCH	
	113 6	11	Ħ	5-COS-c-C ₆ H ₁₁	
50	113 7	11	Ħ	5-COSCH ₂ Si(CH ₃)	3
	113 8	Ħ	Ħ	5-COS-n-C.H.CH(CH ₃);
	113 9	tt	n	5-CON AL	
55	114 0	**	12	5-COOC;HLCH(CH ₃) 2

	Y=CH BeispNr.(R,)		R;	x Fp/Kp _{Torr} [°c]/
5	1141	2,6,3-(C;H;);Cl	5-CH;	3-C00CH,
	1142	n	**	3-C00C,H: 81
	1143	п	17	3-C00-0-C3H,
10	1144	11	11	3-C0G-i-C ₃ H,
	1145	40	11	3-C00-n-C.H,
	1146	**	и .	3-C00-n-C:H,,
15	1147	19	11	3-C00-n-C ₆ H ₁ 3
	1148	17	Ħ	3-C00-n-C8 H ₁₇
	1149	n	п	3-CCC-n-C, oH2, (R1) n
20	1150	Ħ	Ħ	3- 6-0 8 X Y
	1151	10	TT .	3-COOH R2
25	1152	70	75	3-C00Li
20	1153	11	**	3-C00Na
	1154	79	**	3-C00K
30	1155	11	77	3-C00Ca ₁ / ₂
	1156	**	**	3-C00-c-C.H,
	1157	"	11	3-C00-c-C ₆ H ₁₁
35	1158	n	Ħ	3-C00CH ₂ -C ₆ H ₅
	1159	n	17	3-C00CH ₂ -(2,4-Cl ₂ -C ₆ H ₃)
	1160	11	11	3-COOCH;CHCH;
40	1161	v	11	3-C00C;H,CHCH;
•	1162	**	Ħ	3-000-n-C ₈ H ₁₆ CHCH:
	1163	11	11	3-000-CH; CCH
45	1164	n	11	3-000-0:HCCH
	1165	Ħ	79	3-000-n-C ₅ H ₁₀ CCH
	1166	tt	17	3-C00CH;Si(CH;);
50	1167	11	17	3-C00C;H_0CH;
	1168	Ħ	11	3-CONH:
	1169	11	11	3-CN
55	1170	PP .	11	3-CCNHCH ₃

	Y=CH Beisp	Y=CH BeispNr.(R,)		x	Fp/rpTor: Z®G7
5	1171	2,6,3-(C;H;);Cl	5-CH ₃	3-CONHC,H,	
	1172	n	"	3-CONH-n-C3H7	
10	1173	79	r	3-CONH-n-C.H,	
70	1174	29	**	3-C0NH-n-C + H13	
	1175	**	n	3-CONH-n-C10H21	
15	1176	**	н .	3-CONH-1-C;H;	
75	1177	10	**	3-CON(CH ₃) ₂	
	1178	**	11	. 3-CON(CH3)(UCFH	13)
00	1179	11	Ħ	3-CON(C2H5)2	
	1180	11	11	3-C0-N	
	1181	11	er .	3-CO-N	
26	1182	n	11	3-CO-N_C	
25	1183	n	11	3-C0-N_€	
	1184	11	11	3-C0-NH-C-C+H11	
30	1185	u	11	3-C0-NH-c-C;H:	
30	1186	If	tr .	3-C0-N(CH ₃)(cC ₆	Н,,)
	1187	11	11	3-COSH	
<i>3</i> 5	1188	17	11	3-COSNa	
00	1189	11	Ħ	3-COSCH ₃	
	1190	**	11	3-COSC ₂ H ₅	
40	119 l	11	11	3-COSCH2C6H5	
40	1192	11	**	3-C05-nC ₈ H ₁ ,	
	1193	••	Ħ	3-COSC:H40CH3	
45	1194	11	n	3-COSCH2CHCH2	
	1195	11	11	3-COSCH:CCH	
	1196	11	"	3-C05-c-C6H11	
50	1197	11	11	3-COSCH ₂ Si(CH ₃)	1
00	1198	**	ø	3-C05-n-C.HaCH(CH,);
	1199	n	ıı .	3-CON N	
55	120 ⁰	19	"	3-C00C:H.CH(CH;);

Y=CH BeispNr.	(R) _n	Rz	x Fp/Kp _T	orr [°c]
1201	3-CF,	3-CH ₃	5-COOH	164-170
1202	3,2,6-Cl(C ₂ H ₅), "	5-COOC ₂ H ₅	Oel
1203	4,2-C1-CF ₃ -Pho	e 3-CH ₆	5-COOC 2H5	Oel
1204	3-CF ₃	5-C(CH ₃);	3-C00C ₂ H ₅	Oel
1205	2,4-Br ₂	5-C(CH ₃) ₃	3-C00C2H5	130-132
1206	2,3-Cl;	5-C(CH ₃);	3-C00C ₂ H ₅	101-102
1207	2,6,4-Cl ₂ -CF ₃	3-CH ₂ CH(CH ₃) ₂	5-cooc ₂ H ₅	Oel
1208	•	5-CH2CH(CH3) 2	3-00002Hs	82-84
1209	2,4-Cl ₂	3-CH ₂ CH(CH ₃) ₂	5-C00C ₂ H ₅	Oel
1210	2,4-Br ₂	3i-C ₃ H ₇	5-C00C ₂ H ₅	
1211	3-CF ₃	5-CH2CH(CH3)2	3-C00C ₂ H ₅	Oel '
1212	2,6,4-Cl ₂ -CF ₃	5-CH ₂ CH(CH ₃) ₂	3-соон	191-193
1213	2,3-Cl ₂ -Phe	5-CH	3-C00C ₂ H ₅	76-78
1214	*	5-CH2CH(CH3)	3-C00C ₂ H ₅	91-92
1215	2,4-Br ₂	5-CH2CH(CH3)	3-C00Et	Oel
1216 1217	2,4-Cl ₂ 3-CF ₃	5-CH ₃	3-COOCH2CH(CH3)C 3-COOC2H5	H ₂ CH ₃ 39-45 Oel
1218	2,4-Br ₂	5-CH(CH ₃) ₂	3-0000 2H5	72-79
1219	2,4-C1-CF;	3-CH(CH ₃) ₂	5-C00C2H5	Oel
1220	Ħ	5-CH(CH ₃) ₂	3-C00C2H5	58-70
1221	2,4-Br ₂	5-CH2CH(CH3)2	3-C00C2H5	184-187
1222	2,4-C1-CF,		3-C00C2H's	106-107
1223	2,6,4-Cl ₂ -CF,	5-CH ₂ CH(CH ₃) ₂	3-C00_L1_	>250
1224	2,3-Cl;	5-CH2CH(CH3)2	3-COOH	209-211
1225	2,4-Cl-CF;	5-CH1CH(CH1)2	3-C00C2H5	54-58

	8eispN	r. (R) _n	R ₁	X	Fp/Kp[°c]
5	1226	2,4,5-Cl, F-CH ₃ -Phe	5-CH ₃	3-C00C ₁ H ₅	109-110
	1227	3,4-C1,-CH3-Phe	5-CH ₃	3-C00C 2H5	77-80
	1228	2,4-C1 ₂ -Phe	5-CH3	3-COO HN(C2H2CH)3	135-138
10	1229	2,4-Cl ₂ -Phe	5-CH ₃	3-CONHC(CH ₃)(CH(CH ₃) ₂)- CONH ₂	65-69
	1230	2,4-Cl:-Phe	5-CH ₃	3-C(NH ₂)NGH	205
15	1231	2,6-(CH ₃) ₂	5-CH ₃	3-C00C 2H 5	Oel
73	1232	4-F-Phe	5-CH ₃	3-C00C 2H5	Harz
	1233	4-0CH ₃ -Phe	5-CH ₃	3-C00C 2 H 5	Oel
	1234	2,4-C1, CF;-Phe	3-CH ₃	5-C00C 2H 5	Oel
20	1235	2,4-Cl;	5-c-C ₃ H ₅	3-C00C2H5	80
	1236	2,6,4-Cl ₂ , CF ₃ -Phe	5-c-C3H5	3-C00C2H5	105-110

Ábkürzungen: n: geradkettig

i: iso (verzweigt)

c: cyclo

30

C. Biologische Beispiele

35

Beispiel 1

Weizen und Gerste wurden im Gewächshaus in Plastiktöpfen bis zum 3 bis 4 Blattstadium herangezogen und dann nacheinander mit den Safener-Verbindungen und den getesteten Herbiziden im Nachauflaufverfahren behandelt. Die Herbizide und die Verbindungen der Formel I wurden dabei in Form wäßriger Suspensionen bzw. Emulsionen mit einer Wasseraufwandmenge von umgerechnet 800 I/ha ausgebracht. 3 bis 4 Wochen nach der Behandlung wurden die Pflanzen visuell auf jede Art von Schädigung durch die ausgebrachten Herbizide bonitiert, wobei insbesondere das Ausmaß der anhaltenden Wachstumshemmung berücksichtigt wurde. Der Grad der Schädigung bzw. die Safenerwirkung von I wurde in % Schädigung bestimmt

Die Ergebnisse aus Tabelle I veranschaulichen, daß die erfindungsgemäßen Verbindungen starke Herbizidschäden an den Kulturpflanzen effektiv reduzieren können.

Selbst bei starken Überdosierungen des Herbizids werden bei den Kulturpflanzen auftretende schwere Schädigungen deutlich reduziert, geringere Schäden völlig aufgehoben. Mischungen aus Herbiziden und erfindungsgemäßen Verbindungen eignen sich deshalb in vorteilhafter Weise zur selektiven Unkrautbekämpfung in Getreidekulturen.

Tabelle 1: Safenerwirkung der erfindungsgemäßen Verbindungen

Kombinati	on	Dosierung		Schädigung fenerwirk	
		(kg a.i./		н۷	
Н1		2.0	80		
		0.2	-		
H1 + 122		2.0 + 2.5		-	
		0.2 + 2.5			
H1 + 148		2.0 + 2.5	50	-	
		0.2 + 2.5	•	40	
H1 + 182		2.0 + 2.5	40	-	
		0.2 + 2.5	-	35	
H1 + 542	•	2.0 + 2.5	30	-	
		0.2 + 2.5	-	35	
H1 + 131		2.0 + 2.5	20	-	
		0.2 + 2.5	•	40	
H1 + 191		2.0 + 2.5	20	-	
		0.2 + 2.5	-	45	
H1 + 1		2.0 + 2.5	15	· -	
		0.2 + 2.5	, <u> </u>	45	
H1 + 782		2.0 + 2.5	20) -	
		0.2 + 2.5	5 . –	40	
H1 + 602		2.0 + 2.5	5 20) -	
		0.2 + 2.5	; -	50	
H1 + 1201		2.0 + 2.5		; -	
		0.2 + 2.5		50	
H1 + 611		2.0 + 2.5			
		0.2 + 2.5		50	
H1 + 1202		2.0 + 2.5			
111 4 1202		0.2 + 2.5			
H1 + 1142)	2.0 + 2.5			
ni + 1142		0.2 + 2.5			
H1 + 842		2.0 + 2.5			
n1 + 042		0.2 + 2.5			
ur . 000		2.0 + 2.5			
H1 + 902		0.2 + 2.5			
		U.Z + Z.	-	22	

EP 0 333 131 A1

	Kombination Herbizid/Safener	Dosierung (kg a.i./ha)	Safenerwirku TA	ng HV
5	H1 + 71	2.0 + 2.5	50	-
3		0.2 + 2.5	-	65
	H1 + 632	2.0 + 2.5	30	-
		0.2 + 2.5	-	85
10	H1 + 605	2.0 + 2.5	70	-
		0.2 + 2.5	-	40
	H1 + 722	2.0 + 2.5	20	-
15		0.2 + 2.5	-	50
	H1 + 152	2.0 + 2.5	40	-
		0.2 + 2.5	-	85
20	H1 + 212	2.0 + 2.5	40	-
		0.2 + 2.5	-	70
	H1 + 302	2.0 + 2.5	60	-
		0.2 + 2.5	-	30
25	H1 + 362	2.0 + 2.5	20	-
		0.2 + 2.5	-	20
	H1 + 1204	2.0 + 2.5	60	-
30		0.2 + 2.5	-	50
	H1 + 1205	2.0 + 2.5	60	-
		0.2 + 2.5	-	50
35	H1 + 1206	2.0 + 2.5	60	- '
	•	0.2 + 2.5	-	50
	H1 + 1207	2.0 + 2.5	55	-
		0.2 + 2.5	-	45
40	H1 + 1208	2.0 + 2.5	60	-
		0.2 + 2.5	-	45
	H1 + 1209	2.0 + 2.5	70	-
45		0.2 + 2.5	•	45
	H1 + 422	2.0 + 2.5	70	-
		0.2 + 2.5	-	50
50	H1 + 1210	2.0 + 2.5	70	-
		0.2 + 2.5	•	55
	H1 + 1211	2.0 + 2.5	60	-
55		0.2 + 2.5		50

EP 0 333 131 A1

5		nation zid/Safener	Dosierung (kg a.i./ha)	Safene: TA	rwirkung HV
	H1 +	1212	2.0 + 2.5	70	•
			0.2 + 2.5	•	40
10	H1 +	1213	2.0 + 2.5	40	-
			0.2 + 2.5	•	30
	H1 +	1214	2.0 + 2.5	60	-
15 -	_		0.2 + 2.5	-	10
15	H ₁	+ 121	2,0 + 2,5 0,2 + 2,5	25 -	- 40
	H ₁	+ 123	11 14	60 -	- 40
20	r ^H	+ 124	2,0 + 1,25 0,2 + 1,25	20 -	- 30
	Н	+ 125	2,0 + 2,5 0,2 + 2,5	60 -	- 40
25	н	+ 127	H D	`40 -	- 30
30	н ₁	+ 128	2,0 + 1,25 0,2 + 1,25	20	40
30	H	+ 132	2,0 + 2,5 0,2 + 2,5	30 -	- 30
35	н ₁	+ 133	2,0 + 1,25 0,2 + 1,25	20 -	- 30
-	H	+ 135	2,0 + 2,5 0,2 + 2,5	30 -	- 30
40	н	+ 137	2,0 + 1,25 0,2 + 1,25	40 -	- 50
	Н	+ 138	19 15	10	- 20
45	Н	+ 140	11 1 1	20	- 40
-J	н	+ 143	11 11	15	- 60

EP 0 333 131 A1

	(Herb		dukt /Safener)	Dosierung (kg a.i./ha)	Safenerv TA	eirkung HV
5	Н	+	146	2,0 + 1,25 0,2 + 1,25	40 -	70
	н ₁	+	147	(1 (1	20 -	- 20
10	н	+	149	13 14	35 -	- 40
	н	+	150	n B	30 -	- 80
15	н	+	153	0 11	16	- 30
	н	+	157	() 	50 -	- 75
20	н	+	159	H H	20 -	- 20
	н	+	160	 11 66	50 -	- 60
25	н	+	162	n 11	30 -	- 80
	н	+	164	 11	10	- 70
30	н	+	171		20 -	- 75
	н	+	242	 	20 -	- 30
35	н	+	251	11 10	20 -	- 20
	н	+	301	11	20	- 30
40	Н	+	303	a n	10	- 20
	н	+	311	0 0 0	30 -	30

EP 0 333 131 A1

	Produkt (Herbizid/Safener)	Dosierung (kg a.i./ha)	Safenerv TA	irkung HV
5	H ₁ + 361	2,0 + 1,25 0,2 + 1,25	15 -	- 20
	H ₁ + 391	n 0	25 -	- 50
19	H ₁ + 392	H H	20	- 70
	H ₁ + 482	11 11	20	- 40
15	H ₁ + 491	0 11	20 -	- 40
	H ₁ + 511	H 11	30	- 85
20	H ₁ + 692	n n	30 -	- 40
	H ₁ + 1022	 11	30 -	- 70
25	H ₁ + 1218	2,0 + 2,5 0,2 + 2,5	30 -	- 20
	H ₁ + 1219	u u	35 -	- 50
30	H ₁ + 1220	1) 1)	30	- 20
	H ₁ + 1221	ti 11	30 -	20
35	H ₁ + 1222	t) 11	15 -	- 30
	н ₁ + 1223	0 13	20 -	- 60
40	H ₁ + 1224	tt 11	20 -	- 60
	H ₁ + 1225	81 14	50 -	- 30

EP 0 333 131 A1

	(Her	Produkt bizid/Safener)	Dosierung (kg a.i./ha)	Safener TA	wirkung HV
5	н ₁	+ 1226	2,0 + 1,25 0,2 + 1,25	30 -	- 70
	Н	+ 1227	(I ()	50 -	- 80
10	Н ₁ -	+ 1228	u u	40 -	<u>-</u> . 70
	Н	+ 1229	n n	30 -	- 60
15	Н	+ 1230	11 10	50 -	- 80
	Н	+ 1231	11 10	40 -	- 75
20	н ₁	+ 1233	и и ,	40 -	- 75
	н ₁	+ 1235	11 11	20 -	40
25	Н	+ 1236	41 16	20 -	- 60

Abkürzungen: TA = Triticum aestivum (Weizen)

HV = Hordeum vulgare (Gerste)

a.i. = Aktivsubstanz

HI = Fenoxaprop-ethyl

40 Ansprüche

30

35

45

50

1. Mittel zum Schutz von Kulturpflanzen gegen phytotoxische Nebenwirkungen von Herbiziden, dadurch gekennzeichnet, daß sie eine Verbindung der Formel I

worin
Y C-H-oder N,

R₁ unabhängig voneinander (C₁-C₄)-Alkyl, (C₁-C₄)-Haloalkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)-Haloalkoxy oder Halogen.

¹⁵ R_2 (C₁-C₁₂)-Alkyl oder (C₃-C₇)-Cycloalkyl, X COOR₃, CON(R₄)₂, COSR₃, CN,

R₃ Alkali- oder Erdalkalimetall, Wasserstoff, (C₁-C₁₀)-Alkyl, (C₃-C₂₀)-Alkenyl, (C₃-C₁₀)-Alkinyl, (C₃-C₇)
Cycloalkyl, Phenyl-(C₁-C₄)-Alkyl, wobei Phenyl durch Halogen substituiert sein kann, Tris-(C₁-C₄)-Alkyl
Silyl-(C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy-(C₁-C₄)-Alkyl

R₄ unabhängig voneinander H, (C₁-C₁₀)-Alkyl, (C₃-C₇)-Cycloalkyl, das substituiert sein kann, oder 2 Reste R₄ bilden zusammen mit dem sie verknüpfenden N-Atom einen 4- bis 7-gliedrigen heterocyclischen Ring und

15 n 1 bis 3

20

5

bedeuten, in Kombination mit einem Herbizid enthalten.

2. Mittel gemäß Anspruch 1, dadurch gekennzeichnet, daß in Formel I

Y = CH, $R_1 = Halogen$, $(C_1-C_4)Haloalkyl$, $R_2 = (C_1-C_6)-Alkyl$, $X = COOR_3$, $R_3 = H$ oder $(C_1-C_6)-Alkyl$ und n = 1 oder 2 bedeuten.

- 3. Mittel gemäß Anspruch 1, dadurch gekennzeichnet, daß Y = CH, R_1 = Cl, Br oder CF₃, R_2 = (C₁-C₄)-Alkyl, X = COOR₃, R_3 = (C₁-C₄)-Alkyl und n = 2 bedeuten.
- 4. Mittel gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Herbizid eine Verbindung vom Typ der Phenoxyphenoxy- oder Heteroaryloxyphenoxycarbonsäure-(C₁-C₄)-Alkyl-, (C₂-C₄)-Alkenyl- oder (C₃-C₄)-Alkinylester eingesetzt wird.
- 5. Mittel gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Herbizid 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-propionsäureethylester oder 2-(4-(6-Chlorbenzthiazol-2-yl-oxy)-phenoxy)-propionsäureethylester eingesetzt wird.
- 6. Mittel gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Verhältnis Safener zu Herbizid 1:10 bis 10:1 beträgt.
- 7. Mittel gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Verhältnis Safener zu Herbizid 2:1 bis 1:10 beträgt.
- 8. Verfahren zur Minderung der Phytotoxizität von Herbiziden gegenüber Kulturpflanzen, dadurch gekennzeichnet, daß man die Pflanzen, Pflanzensamen oder Anbauflächen mit einer wirksamen Menge einer Verbindung der Formel I vor, nach oder gleichzeitig mit dem Herbizid behandelt.
- 9. Verwendung, von Verbindungen der Formel I zur Minderung der Phytotoxizität von Herbiziden gegenüber Kulturpflanzen.
- 10. Mittel gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Herbizid die Verbindung 2-(4-(5-Chlor-3-fluor-pyridyl-2-oxy)-phenoxy)-propionsäurepropargylester eingesetzt wird.
- 11. Mittel gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Herbizid die Verbindung 2-(N-Ethoxypropionamidoyl)-5-mesityl-3-hydroxy-2-cyclohexen-1-on eingesetzt wird
- 12. Verbindungen der Formel I gemäß Anspruch 1, worin Y= CH, R_1 = 2,4-Cl₂, R_2 = Isopropyl, X= COOR₃ und R_3 = (C₁-C₁₀)-Alkyl bedeuten.
- 13. Verbindung der Formel I gemäß Anspruch 1, worin Y = CH, R_1 = 2,4-Cl₂, R_2 = 5-Isopropyl und X = 3-COOC₂H₅ bedeuten.

Patentansprüche für folgenden Vertragsstaat: ES

1. Verfahren zur Minderung der Phytotoxizität von Herbiziden gegenüber Kulturpflanzen, dadurch gekennzeichnet, daß man die Pflanzen, Pflanzensamen oder Anbauflächen mit einer wirksamen Menge einer Verbindung der Formel I

55

40

45

worin

5

Y C-H oder N.

 R_1 unabhängig voneinander (C_1 - C_4)-Alkyl, (C_1 - C_4)-Haloalkyl, (C_1 - C_4)-Alkoxy, (C_1 - C_4)-Haloalkoxy oder Halogen,

 R_2 (C₁-C₁₂)-Alkyl oder (C₃-C₇)-Cycloalkyl, X COOR₃, CON(R₄)₂, COSR₃, CN,

20

15

 R_3 Alkali- oder Erdalkalimetall, Wasserstoff, (C_1-C_{10}) -Alkyl, (C_3-C_{20}) -Alkenyl, (C_3-C_{10}) -Alkinyl, (C_3-C_7) -Cycloalkyl, Phenyl- (C_1-C_4) -Alkyl, wobei Phenyl durch Halogen substituiert sein kann, Tris- (C_1-C_4) -Alkyl-Silyl- (C_1-C_4) -Alkyl, (C_1-C_4) -Alkyl

R4 unabhängig voneinander H, (C1-C10)-Alkyl, (C3-C7)-Cycloalkyl, das substituiert sein kann, oder 2 Reste R4 bilden zusammen mit dem sie verknüpfenden N-Atomen einen 4- bis 7-gliedrigen heterocyclischen Ring und

n 1 bis 3

bedeuten, vor, nach oder gleichzeitig mit einem Herbizid behandelt.

- 2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß in Formel I Y= CH, R₁ = Halogen, (C₁-C₄)-Haloalkyl, R₂ = (C₁-C₆)-Alkyl, X = COOR₃, R₃ = H oder (C₁-C₆)-Alkyl und
- Y= CH, R_1 = Halogen, (C_1 - C_4)-Haloalkyl, R_2 = (C_1 - C_6)-Alkyl, X = COOR₃, R_3 = H oder (C_1 - C_6)-Alkyl und n = 1 oder 2 bedeuten.
- 3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß Y = CH, R_1 = CI, R_2 = (R_3)-Alkyl, X = COOR₃, R_3 = (R_3)-Alkyl und R_3 = 2 bedeuten.
- 4. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Herbizid eine Verbindung vom Typ der Phenoxyphenoxy- oder Heteroaryloxyphenoxycarbonsäure-(C₁-C₄)-Alkyl-, (C₂-C₄)-Alkenyl- oder (C₃-C₄)-Alkinylester eingesetzt wird.
- 5. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Herbizid 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-propionsäureethylester oder 2-(4-(6-Chlorbenzthiazol-2-yl-oxy)-phenoxy)-propionsäureethylester eingesetzt wird.
- 6. Verfahren gemäß einem oder mehreren oder Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Verhältnis Safener zu Herbizid 1:10 bis 10:1 beträgt.
- 7. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Verhältnis Safener zu Herbizid 2:1 bis 1:10 beträgt.
- 8. Verwendung von Verbindungen der Formel I gemäß Anspruch 1 zur Minderung der Phytotoxizität von Herbiziden gegenüber Kulturpflanzen.
- 9. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Herbizid die Verbindung 2-(4-(5-Chlor-3-fluor-pyridyl-2-oxy)-phenoxy)propionsäurepropargylester eingesetzt wird
- 10. Verfahren gemäß einem oder mehreren der Ansprüche 1 bls 3, dadurch gekennzeichnet, daß als Herbizid die Verbindung 2-(N-Ethoxypropionamidoyl)-5-mesityl-3-hydroxy-2-cyclohexen-1-on eingesetzt wird.

EUROPÄISCHER RECHERCHENBERICHT

EP 89 10 4500

	EINSCHLÄGIG	E DOKUMENTE		
Kategorie	Kennzeichnung des Dokume der maßgeblie	nts mit Angabe, soweit erforderlich, chen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
D,A	CHEMICAL ABSTRACTS, Mai 1968, Seiten 84 Columbus, Ohio, US; (GYOGYSZERKUTATO IN		1-13	A 01 N 25/32 C 07 D 231/14
A	EP-A-0 234 119 (MA * Ansprüche 1,5 *	Y & BAKER LTD)	1-13	
A	EP-A-0 151 866 (EL * Anspruch 1 *	I LILLY & CO.)	1-13	
A	AU-A- 508 225 (CC SCIENTIFIC AND INDU ORGANIZATION) * Anspruch 1 *	MMONWEALTH STRIAL RESEARCH	1-13	
				RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
				A 01 N C 07 D
	-			
Der v	orliegende Recherchenbericht wur	de für alle Patentansprüche erstellt		
	Recherchenort	Abschlussdatum der Recherche		Prüfer
D!	EN HAAG	21-06-1989	RAVA	ANEL C.M.

KATEGORIE DER GENANNTEN DOKUMENTE

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument