Error-Correcting Codes against Chosen-Codeword Attacks

Kenji Yasunaga Kanazawa University, Japan

ICITS 2016 @ Tacoma, Washington, USA

Error-Correcting Codes

- Goal: Construct a code (Enc, Dec) that
 - corrects many errors (high error-rate p)
 - sends messages efficiently (high rate R = k/n)
- → Limitations depend on "Channel Models"

Channel Models

- Binary Symmetric Channel (BSC)
 - Each bit is independently flipped w.p. $p \in [0,1/2)$
 - Rate $R = 1 h(p) \varepsilon$ is achievable and optimal
 - = efficient decoders [Forney'66][Arikan'09]

$$h(p) = -p \log(p) - (1 - p) \log (1 - p)$$

- Adversarial Channel (ADVC)
 - Worst-case error e is introduced s.t. $w_H(e) \le pn$
 - Random codes achieve rate R = 1 h(2p)
 - Optimality/efficient-decoders are open problems

Lipton's Reduction [Lipton'94]

Code for BSC is sufficient for ADVC in Secret-Key Setting

Lipton's scheme using BSC code (E, D), SK = (π, μ)

- Worst-case error "e" \rightarrow random error " π (e)"
- μ is used to conceal π from Channel

On Lipton's Scheme

- Achieves only one-time security
 - Sending t messages needs t secret keys
 - Similar to One-Time Pad Encryption

- Modern cryptography requires schemes that are
 - many-time secure with single secret-key
 - secure in more powerful attack scenarios
 - Chosen-Ciphertext Attack (CCA) security

This Work

- Introduce Chosen-Codeword Attack (CCA) security for error-correcting codes
 - Enc/Dec oracles are available to channels

- Construct optimal-rate CCA-secure code
 - Based on Guruswami-Smith code [GS'10] for computationally bounded channels
 - Assuming OWF
 - Secret-key setting

Chosen-Codeword Attack (CCA) Security

In error-correcting game, Adversarial channel can adaptively access to Enc/Dec oracles

Impossibility

■ In CCA game, W can obtain polynomially-many valid codewords c₁, c₂, ...

■ [Plotkin bound] \forall strings $x_1, ..., x_{2n+1} \in \{0,1\}^n$,

 \exists i, j s.t. dist_H(x_i , x_j) < n/2

- Given valid c*, c₁, c₂, ..., W can find c_i (w.p. $1/n^2$) s.t. dist_H(c*, c_i) < n/2
- \rightarrow W can find y* s.t. dist_H(c*, y*) \leq n/4, dist_H(y*, c_i) \leq n/4
- → W can win by submitting y^* if $p \ge 1/4$

Unique decoding is impossible for $p \ge 1/4$

Chosen-Codeword Attack (CCA) Security

■ Unique decoding → List decoding

CCA secure
$$\Leftrightarrow$$
 Pr[W wins] ≈ 0
 \Leftrightarrow Pr[m* $\not\in$ L | L \leftarrow Dec_{SK}(y*)] ≈ 0

Code Construction

- Guruswami-Smith code [GS'10]
 - Optimal-rate list-decodable code for n^c-time channels for any c > 0
 - No setting (secret key or public key) is needed
 - Assuming pseudorandom codes (PRC)
 - PRC C ⇔ (1) list decodable (2) C(m) is pseudorandom
 - Probabilistic construction [GS'10]
 - → Explicit construction in "secret-key" setting
- Our approach:
 - Modify explicit GS code in SK setting to have CCA security

Ideas of the Construction

■ Need to simulate Enc/Dec oracles w/o secret key

How to simulate Enc oracle

- If Enc_{SK}(m) is pseudorandom, Enc is simulatable
 - For query m_i, reply with randomly chosen c_i

GS codewords are pseudorandom. Done!

 $\{0,1\}^n$

- On query y, need to reply with $L(y) = \{ m : dist_H(y, Enc_{SK}(m)) \le pn \}$
 - How to deal with exponentially-many Enc_{SK}({0,1}^k)?

Fact: $\forall y \in \{0,1\}^n$, given M=2^k random $c_1, ..., c_M \in \{0,1\}^n$

Every c_i lies outside Ball(y, pn) with high probability

Pr[
$$\forall$$
 c_i, dist_H(y, c_i) > pn] = (1 - |Ball(y, pn)| / 2ⁿ)^M \approx 1 - 2^{-\varepsilon}

where $R = 1 - h(p) - \epsilon$

How to simulate Dec oracle

On query y, sufficient to reply with $L^*(y) = \{ m_i : dist_H(y, c_i) \le pn \land (m_i, c_i) \in L_Q \}$

- W may generate codewords w/o querying Enc
 - → Prevented by adding MAC tag to messages

Other Contribution

Simplify GS code construction by using cryptographic tools

randomness-efficient sampler t-wise ind. perm. generator t-wise ind. string generator t-wise-error correcting code

Main Theorem

Assuming OWF,

```
\forall p \in (0,1/2), \varepsilon > 0, c > 0,
```

- \exists explicit CCA-secure code with R = 1 h(p) ϵ that corrects p-fraction errors introduced by n^c-time channels in SK setting
 - Encoder/Decoder run in poly(n)-time

Future Work

- CCA security for unbounded poly-time channels
 - Need PRC secure for unbounded poly-time

- Construction in other settings, PK/CRS
 - Need PRC in PK/CRS setting

Thank you

Pseudorandom Codes (PRC)

- PRC: $\{0,1\}^{Rb} \times \{0,1\}^{b} \rightarrow \{0,1\}^{b}$
 - 1. $(1/2 \varepsilon, L)$ -list decodable for any $\varepsilon > 0$: $\Leftrightarrow \forall y \in \{0,1\}^b, \exists d \le L \text{ codewords } c_1, ..., c_d$ s.t. dist(y, c_i) $\le (1/2 - \varepsilon)b$
 - 2. PRC(m; U_b) is pseudorandom

- Probabilistic construction of [GS'10]
 - PRC(m; r) = C(m) ⊕ G(r),
 C is (1/2 ε, L)-list decodable code, G is PRG
 - If G: $\{0,1\}^{O(\log n)} \rightarrow \{0,1\}^{O(\log n)}$ is randomly chosen, G is secure for n^c-time adversaries w.h.p.

Ingredients of the Construction (1/2)

- p-error correcting code REC: $\{0,1\}^{R'n'} \rightarrow \{0,1\}^{n'}$
 - correcting p-fraction random errors
 - n' = $k + \lambda$, $\lambda = k^{1/2}$
 - \exists explicit codes with R' = 1 h(p) ϵ
- Reed-Solomon code RS: $\{0,1\}^{3\lambda} \rightarrow F^{\kappa}q$
 - list-recovering property
 - erasure decoding property
- Pseudorandom code PRC : $\{0,1\}^{R_2b} \times \{0,1\}^b \rightarrow \{0,1\}^b$
 - in the secret-key setting

Ingredients of the Construction (2/2)

■ MAC (Tag, Vrfy) with Tag_{SK}: $\{0,1\}^k \rightarrow \{0,1\}^{\lambda}$

- PRG G: $\{0,1\}^n \rightarrow \{0,1\}^{p(n)}$ for any poly p(n)
 - To generate
 - (1) a random bit-permutation π over [n']
 - (2) a pseudrandom mask µ
 - (3) a set of random samples $V \subseteq [t]$ each with $\lambda = k^{1/2}$ -bit seed
- PRF F = $\{F_s : \{0,1\}^n \rightarrow \{0,1\}^n \}_s$
 - To make Enc deterministic
 by using F_s(m) as random coins for GS code