MAT 150A Homework 1

Hardy Jones 999397426 Professor Schilling Fall 2014

1.

$$X = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}, Y = \begin{bmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{bmatrix}$$

(1)

$$XY = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a+d & b+e+af \\ 0 & 1 & c+f \\ 0 & 0 & 1 \end{bmatrix}$$

Since \mathbb{F} is a field, it is closed under addition and multiplication.

So, $a+d, b+e+af, c+f \in \mathbb{F}$.

Thus, $XY \in H(F)$.

(2) Given some matrix

$$A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & a & b & 1 & 0 & 0 \\ 0 & 1 & c & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a & b & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & -c \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & a & 0 & 1 & 0 & -b \\ 0 & 1 & 0 & 0 & 1 & -c \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 & 1 & -a & ac - b \\ 0 & 1 & 0 & 0 & 1 & -c \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

So, we assume our inverse is

$$A^{-1} = \begin{bmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix}$$

.

Since \mathbb{F} is a field, it has additive inverses, is closed under addition and multiplication.

So, $-a, ac - b, -c \in \mathbb{F}$, and $A^{-1} \in H(F)$.

We need to check that A^{-1} is the inverse by showing that $AA^{-1} = I = A^{-1}A$

$$AA^{-1} = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$A^{-1}A = \begin{bmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

So, the closed form of the inverse is given by

$$A^{-1} = \begin{bmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix}$$

.

(3) Given

$$A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & g & h \\ 0 & 1 & i \\ 0 & 0 & 1 \end{bmatrix} \in H(F)$$

.

We want to show that A(BC) = (AB)C.

$$A(BC) = A \begin{pmatrix} \begin{bmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & g & h \\ 0 & 1 & i \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix}$$

$$= A \begin{pmatrix} \begin{bmatrix} 1 & d+g & e+h+id \\ 0 & 1 & f+i \\ 0 & 0 & 1 \end{bmatrix} \\$$

$$= \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & d+g & e+h+id \\ 0 & 1 & f+i \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & a+d+g & af+ai+b+e+h+id \\ 0 & 1 & c+f+i \\ 0 & 0 & 1 \end{bmatrix}$$

$$(AB)C = \begin{pmatrix} \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} C$$

$$= \begin{pmatrix} \begin{bmatrix} 1 & a+d & af+b+e \\ 0 & 1 & c+f \\ 0 & 0 & 1 \end{bmatrix} \end{bmatrix} C$$

$$= \begin{bmatrix} 1 & a+d & af+b+e \\ 0 & 1 & c+f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & g & h \\ 0 & 1 & i \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & a+d+g & af+ai+b+e+h+id \\ 0 & 1 & c+f+i \\ 0 & 0 & 1 \end{bmatrix}$$

So, A(BC) = (AB)C.

Thus, H(F) is associative under matrix multiplication.

(4) The elements of \mathbb{F}_2 are $\{0,1\}$, with + and \cdot defined:

The elements of $\overline{H(\mathbb{F}_2)}$ are:

$$H(\mathbb{F}_{2}) = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \right\}$$

For simplicity we enumerate these as $\{H_0, H_1, \dots, H_7\}$

We see that H_0 has order 1.

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ so } H_1 \text{ has order 2.}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ so } H_2 \text{ has order 2.}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ so } H_3 \text{ has order 2.}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ so } H_4 \text{ has order 2.}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ so } H_5 \text{ has order } 2.$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ so } H_6 \text{ has order } 2.$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ so } H_7 \text{ has order } 3.$$