İşletim Sistemleri

İşletim Sistemi

- Kullanıcılar ile donanım arasında bir arayüz oluşturur: donanımı kullanılabilir kılan yazılım
 - bilgisayar kaynaklarını etkin bir şekilde kullanımını sağlar
- üzerinde program geliştirme ve çalıştırma olanağı sunan bir ortam yaratır
- çekirdek (kernel) => işletim sisteminin donanımla en yakın ilişkide bulunan bölümü

Bilgisayar Sistemi uygulama programları Sistem programları (derleyici, editör,vs) işletim sistemi makina dilinde programlar mikroprogram (ROM'da) Donanım (MiB, RAM,vs)

İşletim Sistemi

- güncel işletim sistemleri doğrudan donanıma erişimi engeller
 - kullanıcı düzeyi / çekirdek düzeyinde çalışma
- donanımın doğrudan erişim ve denetlemenin zorluklarını gizler (donanıma ilişkin bilgi sahibi olmak gerekmez)
- kullanıcı ve donanım arasında arayüz sağlar
 sistem çağrıları ile etkileşim

Sistem Çağrıları

- kullanıcı programları sistem çağrıları aracılığı ile işletim sistemi ile etkileşir/haberleşir
 - işletim sistemine iş istekleri iletir ve sonuçları alır
- her sistem çağrısına karşılık bir kütüphane fonksiyonu bulunur
 - Belirli parametreler alır ve bir yazılım kesmesi ile işletim sistemi uyarır
 - Çağrının ürettiği sonuçlar fonksiyon aracılığı ile kullanıcıya iletilir

Kullanıcı/Çekirdek Düzeyi

- Çekirdek düzeyi (supervisor mode):
 - İşletim sistemine ait kodlar bu düzeyde çalışır
 - Ayrıcalıklı makina komutları (privileged instruction) yürütebilir ve doğrudan donanımı denetler
- Kullanıcı düzeyi (user mode):
 - Kullanıcı programları bu düzeyde çalışır
 - Doğrudan donanıma erişim ve denetime izin veren ayrıcalıklı makina komutları yürütülemez

İşletim Sisteminin Temel Görevleri

- kaynak paylasımı
 - Donanım ve yazılım kaynaklarının kullanıcılar arasında paylaşımı
- · bir görüntü makina yaratılması
 - En iyi hizmeti sunmak için gerçekte var olandan farklı niteliklere sahip bir çalışma ortamının sunulması

Kaynak Paylaşımı

- Sistemin yazılım ve donanım kaynakları kullanıcılar arasında paylaştırılır:
 - Işlemci zamanı
 - Bellek, disk.
 - G / Ç birimleri
 - Veriler, yazılım, vs.

Kaynakların paylaşımı işletim sistemi tarafından gerçeklenir ve kullanıcılar kaynakların paylaştırıldığından habersiz olurlar.

- kullanıcılar arasında paylaşımda önemli olan güvenliktir
 - kullanıcıları birbirinden yalıtılır, birbirlerine ait kaynaklara erişimleri engellenir

Kaynak Paylaşımı

- Kaynak paylaşımında amaç:
 - kaynakların kullanım oranını yükseltmek (utilization)
 - bilgisayar sisteminin kullanılabilirliğini arttırmak (availability)

Kaynak Paylaşımı

- Kaynak paylaşımı nasıl gerçekleşir:
 - Alan paylaşımlı: Bir kaynak bir veya daha fazla bölüme ayrılır, her bir bölüm bir kullanıcıya atanır.
 - Bellek, disk alanı
 - Zaman paylaşımlı:Kaynak bir kullanıcıya belirli bir süre atanır, süre sonunda bir başka kullanıcı kaynağı kullanmaya başlar.
 - · MİB.

Kaynak Paylaşımı

- · verdiği hizmetler:
 - çok kullanıcılı sistemlerde donanımın paylaştırılması ve kullanımın düzenlenmesi
 - · birbirini dışlayan kullanım, erişim denetimi
 - kullanıcıların veri paylaşımını sağlamak (paylaşılan bellek bölgeleri)
 - kaynak paylaşımının sıralanması (scheduling)
 - G/Ç işlemlerinin düzenlenmesi
 - hata durumlarından en az zarar ile geri dönüş

Kaynak Paylaşımı

- örnek:
 - İşlemci zamanının paylaşımı
 - Bellek paylaşımı
 - Ortak bellek alanlarının paylaşımı
 - Dosya paylaşımı
 - G/Ç birimlerinin paylaşımı
 - yazıcı paylaşılamaz! bir kullanıcının işi bitince diğeri kullanabilir

Görüntü Makina Sağlanması

- kullanıcıya sistemin tek sahibi izlenimini verme,
- kaynak paylaşımı kullanıcıya şeffaf
- görüntü makinanın özellikleri fiziksel makinadan farklı olabilir:
- Sağladığı yararlar:
 - G/Ç
 - bellek
 - dosya sistemi
 - koruma ve hata kotarma
 - program etkileşimi
 - program denetimi

Görüntü Makina Sağlanması

- G/Ç
 - G/Ç işlemleri donanıma yakın programlama gerektirir
 - işletim sistemi kullanımı kolaylaştırır
 - aygıt sürücüler
 - örnek: diskten / disketten okuma, yazıcıya yazma

Görüntü Makina Sağlanması

- Bellek
 - Var olan fiziksel bellekten farklı kapasitede belleğe sahip bir görüntü makina yaratılır
 - disk de kullanılarak daha büyük bir bellek görüntüsü
 - kullanıcılar arasında paylaştırılarak daha küçük
 - her kullanıcı kendine ayrılan bellek alanını görür

Görüntü Makina Sağlanması

- · Dosya sistemi
 - program ve verilerin uzun vadeli saklanması için
 - disk üzerinde
 - bilgilere erişimde fiziksel adresler yerine simgeler kullanımı
 - · İsimlendirme
 - Kayıtlara farklı erişim türleri

Görüntü Makina Sağlanması

- · Koruma ve hata kotarma
 - çok kullanıcılı sistemlerde kullanıcıların yalıtılması ve birbirlerinin hatalarından etkilenmemesi

Görüntü Makina Sağlanması

- · Program etkileşimi
 - çalışma anında programların etkileşmesi
 - Elde edilen sonuçların birbirlerine aktarılması: uygun bir haberleşme mekanizması var olmalıdır (ortak değişkenler veya mesaj aktarımı)
 - Senkronizasyon: bir program tarafından yürütülen işlemlerden bir bölümünün gerçekleştirilmesi, bir başka program denetimindeki bazı koşullara bağlı olabilir. Senkronizasyonu sağlayan yapılar var olmalıdır.

Görüntü Makina Sağlanması

- · Program denetimi
 - kullanıcıya yüksek düzeyli bir komut kümesi
 - · kabuk (shell) komutları
 - kabuk: komut yorumlayıcı
 - kabuk işletim sisteminin bir bileşeni değildir
 - Ancak, sistem çağrılarını yorumlar ve işletim sistemine iletir

İşletim Sistemi Türleri

- Anaçatı işletim sistemleri (mainframe)
- Sunucu (server) işletim sistemleri
- Çok işlemcili işletim sistemleri
- Kişisel bilgisayar işletim sistemleri
- Gerçek zamanlı (real-time) işletim sistemleri
- Gömülü (embedded) işletim sistemleri
- Akıllı-kart (smart card) işletim sistemleri

Anaçatı İşletim Sistemleri

- yoğun G/Ç işlemi gerektiren çok sayıda görev çalıştırmaya yönelik ortamlar için
- üç temel hizmet:
 - batch modda çalışma
 - etkileşimsiz, rutin işler
 - örneğin bir sigorta şirketindeki sigorta tazminatı isteklerinin işlenmesi
 - birim-iş (transaction) işleme
 - çok sayıda küçük birimler halinde gelen isteklere yanıt
 - örneğin havayollarında rezervasyon sistemi
 - zaman paylaşımlı çalışma
 - birden fazla uzaktan bağlı kullanıcının sistemde iş çalıştırması
 örnek: veri tabanı sorgulaması
 - Örnek: OS/390

Sunucu İşletim Sistemleri

- sunucular üzerinde çalışır
 - büyük kaynak kapasiteli kişisel bilgisayarlar
 - iş istasyonları
 - anaçatı sistemler
- bilgisayar ağı üzerinden çok sayıda kullanıcıya hizmet
 - donanım ve yazılım paylaştırma
 - örneğin: yazıcı hizmeti, dosya paylaştırma, web erişimi
- örnek: UNIX, Windows 2000

Çok İşlemcili İşletim Sistemleri

- birden fazla işlemcili bilgisayar sistemleri
- işlem gücünü arttırma
- işlemcilerin bağlantı türüne göre:
 - paralel sistemler
 - birbirine bağlı, birden fazla bilgisayardan oluşan sistemler
 - çok işlemcili sistemler
- özel işletim sistemi gerek
 - temelde sunucu işletim sistemlerine benzer tasarım hedefleri
 - işlemciler arası bağlaşım ve iletişim için ek özellikler

Kişisel Bilgisayar İşletim Sistemleri

- kullanıcıya etkin ve kolay kullanılır bir arayüz sunma amaçlı
- genellikle ofis uygulamalarına yönelik
- örnek:
 - Windows
 - Macintosh
 - Linux

Gerçek Zamanlı İşletim Sistemleri

- zaman kısıtları önem kazanır
- · endüstriyel kontrol sistemleri
 - toplanan verilerin sisteme verilerek bir yanıt üretilmesi (geri-besleme)
- iki tip:
 - katı-gerçek-zamanlı (hard real-time)
 - zaman kısıtlarına uyulması zorunlu
 - örneğin: araba üretim bandındaki üretim robotları
 - gevşek-gerçek-zamanlı (soft-real-time)
 - bazı zaman kısıtlarına uyulmaması mümkün
 - örneğin: çoğulortam sistemleri
- · örnek: VxWorks ve QNX

Gömülü İşletim Sistemleri

- avuç-içi bilgisayarlar ve gömülü sistemler
- · kısıtlı işlevler
- · özel amaçlı
- örneğin: TV, mikrodalga fırın, cep telefonları,

...

- bazı sistemlerde boyut, bellek ve güç harcama kısıtları var
- örnek: PalmOS, Windows CE

Akıllı-Kart İşletim Sistemleri

- en küçük işletim sistemi türü
- kredi kartı boyutlarında, üzerinde işlemci olan kartlar üzerinde
- · çok sıkı işlemci ve bellek kısıtları var
- bazıları tek işleve yönelik (örneğin elektronik ödemeler)
- bazıları birden fazla işlev içerebilir
- · çoğunlukla özel firmalar trafından geliştirilen özel sistemler
- bazıları JAVA tabanlı (JVM var)
 - küçük JAVA programları (applet) yüklenip çalıştırılır
 - bazı kartlar birden fazla program (applet) çalıştırabilir
 - çoklu-programlama, iş sıralama ve kaynak yönetimi ve koruması

Temel İşletim Sistemi Yapıları

- Monolitik
- Katmanlı
- Sanal Makinalar
- Dış-çekirdek (exo-kernel)
- Sunucu-İstemci Modeli
- Modüler

Monolitik İşletim Sistemleri

- Katmanlı veya hiyerarşik bir yapıya sahip değildir
- işlevlerin tümü çekirdek içinde yer alır
- işlevleri gerçekleyen tüm prosedürler
 aynı seviyede-hızlı, etkileşimli çalışma
- Büyük ve hatalara açık

Modüler Çekirdekli İşletim Sistemleri

- çekirdek minimal-sadece donanıma doğrudan erişen bileşenleri içerir
- servisler gerektikçe çalışma anında modül olarak çekirdeğe eklenir
 - örneğin aygıt sürücüler
- küçük çekirdek yapısı
- daha yavaş
- örnek: LINUX

Katmanlı Yapılı İşletim Sistemleri

- · işletim sistemi katmanlı
 - hiyerarşik
- örnek: THE işletim sistemi

 katman 0 işlemciyi prosesler arası paylaştrır (iş sıralama)
 katman 1 bellek yönetimini yapar (bellek ve disk arası)

Her katman altındakinin yaptıklarıyla ilgilenmez Örnek: 2. katmandaki işlemler için prosesin bellek veya tamburda olması önemli değil.

Dış-Çekirdek (Exo-Kernel)

- · MIT'de geliştirilmiştir
- sanal makina benzeri bir yapıya sahiptir
 - sistemin bir kopyasını sunar
 - fark: her sanal makinaya kaynakların birer alt kümesini tahsis eder
 dönüşüm gerekmez; her makinaya ayrılan kaynakların sınırları bellidir
- · dış çekirdek mevcuttur
 - görevi: sanal makinaların kendilerine ayrılan kaynak sınırlarının dışına çıkmamasını denetler
- her sanal makinada farklı bir işletim sistemi yer alabilir

Sunucu-İstemci Modeli

- · çekirdek minimal (mikro-çekirdek)
- işletim sisteminin önemli bir bölümü kullanıcı modunda
- sunucular ve istemci prosesler yer alır
 - Örneğin, dosya okuma işlemi
 - istemci proses sunucudan istekte bulunur
 - · sunucu işlemi yürütür
 - · yanıtı istemciye iletir
- Çekirdek, sunucu ve istemciler arası iletişimi yönetir

Sunucu-İstemci Modeli

- sunucular kullanıcı modunda
 - dosya sunucusu
 - proses sunucusu
 - terminal sunucusu
 - bellek sunucusu
- işletim sisemi alt birimlerden oluştuğundan:
 - yönetimi kolaydır
 - bir birimdeki hata tüm sistemi çökertmez (birimler donanıma doğrudan ulaşamaz)
 - gerçeklemede sorunlar: özellikle G/Ç aygıtlarının yönetiminin tamamen kullanıcı düzeyinde yapılması mümkün değildir
- dağıtık sistemlerde kullanılmaya çok elverişli yapı

