2.6 (a)

The data are quite skewed because 28 faculty have no publications.

(b)
$$\bar{y} = 1.78$$
; $s = 2.682$;

$$SE[\bar{y}] = \frac{2.682}{\sqrt{50}} \sqrt{1 - \frac{50}{807}} = 0.367.$$

(c) No; a sample of size 50 is probably not large enough for \bar{y} to be normally distributed, because of the skewness of the original data.

The sample skewness of the data is (from SAS) 1.593. This can be calculated by hand, finding

$$\frac{1}{n} \sum_{i \in \mathcal{S}} (y_i - \bar{y})^3 = 28.9247040$$

so that the skewness is $28.9247040/(2.682^3) = 1.499314$. Note this estimate differs from SAS PROC UNIVARIATE since SAS adjusts for df using the formula skewness $=\frac{n}{(n-1)(n-2)}\sum_{i\in\mathcal{S}}(y_i-\bar{y})^3/s^3$. Whichever estimate is used, however, formula

(2.23) says we need a minimum of

$$28 + 25(1.5)^2 = 84$$

observations to use the central limit theorem.

(d)
$$\hat{p} = 28/50 = 0.56$$
.

$$SE(\hat{p}) = \sqrt{\frac{(0.56)(0.44)}{49} \left(1 - \frac{50}{807}\right)} = 0.0687.$$

A 95% confidence interval is

$$0.56 \pm 1.96(0.0687) = [0.425, 0.695].$$

2.20 Sixty of the 70 samples yield confidence intervals, using this procedure, that include the true value t = 40. The exact confidence level is 60/70 = 0.857.

2.22 (a) From (2.13),

$$CV(\bar{y}) = \frac{\sqrt{V(\bar{y})}}{E(\bar{y})} = \sqrt{1 - \frac{n}{N}} \frac{S}{\sqrt{n}\bar{y}_U}.$$

Substituting \hat{p} for \bar{y} , and $\frac{N}{N-1}p(1-p)$ for S^2 , we have

$$\mathrm{CV}(\hat{p}) == \sqrt{\left(1-\frac{n}{N}\right)\frac{Np(1-p)}{(N-1)np^2}} = \sqrt{\frac{N-n}{N-1}\frac{1-p}{np}}.$$

The CV for a sample of size 1 is $\sqrt{(1-p)/p}$. The sample size in (2.26) will be $z_{\alpha/2}^2 \text{CV}^2/r^2$.

(b) I used Excel to calculate these values.

p	0.001	0.005	0.01	0.05	0.1	0.3	0.5
Fixed	4.3	21.2	42.3	202.8	384.2	896.4	1067.1
Relative	4264176	849420	422576	81100	38416	9959.7	4268.4
$oldsymbol{p}$	0.7	0.9	0.95	0.99	0.995	0.999	
Fixed	896.4	384.2	202.8	42.3	21.2	4.3	
Relative	1829.3	474.3	224.7	43.1	21.4	4.3	

2.28 (a) We can think of drawing a simple random sample with replacement as performing an experiment n independent times; on each trial, outcome i (for $i \in \{1, ..., N\}$) occurs with probability $p_i = 1/N$. This describes a multinomial experiment

We may then use properties of the multinomial distribution to answer parts (b) and (c):

$$\begin{split} E[Q_i] &= np_i = \frac{n}{N}, \\ V[Q_i] &= np_i(1-p_i) = \frac{n}{N}\bigg(1-\frac{1}{N}\bigg), \end{split}$$

and

$$\operatorname{Cov}[Q_i, Q_j] = -np_i p_j = -\frac{n}{N} \frac{1}{N} \quad \text{for} \quad i \neq j.$$

(b)
$$E[\hat{t}] = \frac{N}{n} E\left[\sum_{i=1}^{N} Q_i y_i\right] = \frac{N}{n} \sum_{i=1}^{N} \frac{n}{N} y_i = t.$$

(c)
$$V[\hat{t}] = \left(\frac{N}{n}\right)^{2} V \left[\sum_{i=1}^{N} Q_{i} y_{i}\right]$$

$$= \left(\frac{N}{n}\right)^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \operatorname{Cov}\left[Q_{ij} \ Q_{j}\right]$$

$$= \left(\frac{N}{n}\right)^{2} \left\{\sum_{i=1}^{N} y_{i}^{2} n p_{i} (1 - p_{i}) + \sum_{i=1}^{N} \sum_{j \neq i} y_{i} y_{j} (-n p_{i} p_{j})\right\}$$

$$= \left(\frac{N}{n}\right)^{2} \left\{\frac{n}{N} \left(1 - \frac{1}{N}\right) \sum_{i=1}^{N} y_{i}^{2} - \frac{n}{N} \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq i}^{N} y_{i} y_{j}\right\}$$

$$= \frac{N}{n} \left\{\sum_{i=1}^{N} y_{i}^{2} - N \bar{y}_{U}^{2}\right\}$$

$$= \frac{N^{2} \sum_{i=1}^{N} (y_{i} - \bar{y}_{U})^{2}}{N}.$$