Circuite electronice fundamentale 2 – Proiect Stabilizator de tensiune cu Element de Reglaj Serie (ERS)

Student: Guta Andrei-Petrisor

Grupa: 434D

CUPRINS

- 1. Date initiale de proiectare
- 2. Schema bloc a montajului electric
- 3. Schema electrică a montajului
- 4. Simulări efectuate pentru a demonsta funcționarea schemei în parametrii impuși

1. Date initiale de proiectare

Tema proiectului: Se proiectează un stabilizator de tensiune cu element de reglaj serie cu următoarele caracteristici: N=13

- Tensiunea de ieșire reglabilă în intervalul: 6,5 13 [V]
- Element de reglaj serie;
- Sarcina la ieşire 520[Ω];
- Deriva termică < 2mV/°C;
- Protecție la suprasarcină prin limitarea temperaturii tranzistorului regulator serie la 120°C, si a curentului maxim la 0,5A;
- Tensiune de intrare în intervalul: 23,4 26 [V]
- Amplificarea în tensiune minimă (în buclă deschisă) a amplificatorului de eroare: minim 100;
- Domeniul temperaturilor de funcționare: 0°-60°C (verificabil prin testare în temperatură);
- Semnalizarea prezenței tensiunilor de intrare/ieșire cu diodă de tip LED.

2. Schema bloc a montajului electric

Ref. - Referința de tensiune

AE - Amplificatorul de eroare

REG. - Element reglaj serie

Prot. – Protecțiile la suprasarcină și termică

RRN- Reacția negativă

Rs- Impedanța de sarcină

- Referința de tensiune: Utilizeaza o diodă Zener pentru a stabiliza tensiunea de intrare, indiferent de diferiți parametri, cum ar fi sarcina, variațiile tensiunii de alimentare sau temperatura etc.
- Amplificatorul de eroare: Amplificatorul diferențial utilizează un amplificator neinversor cuplat la o oglinda de curent, care primește tensiunea de referință generate de dioda zenner pe intrarea neinversoare și o parte din tensiunea stabilizată pe intrarea inversoare prin intermediul retelei de reactie negativa.
- Reacția negativă: Reteaua de rezctie negative are rol in reglajul si mentinerea tensiunii de iesire. Primeste o parte din tensiunea de iesire pe care o redirectioneaza inapoi in amplificator pe intrarea inversoare. Pentru reglajul tensiunii de iesire este necesara utilizarea unui potentiometru.

- Element reglaj serie: Elementul reglaj serie este reprezentat de o punte Darlington formata din doua tranzistoare de putere care furnizează curent cu un anumit câștig către ieșire.
- Protectia termică și la suprasarcină: Asigură limitarea curentului și a temperaturii în intervalul de funcționare specificat

3. Schema electrică a montajului electric

3.1. Conținut tehnic(calcul psf)

a. Referința de tensiune

b. Amplificatorul de eroare

Amplificatorul de eroare are in componenta sa un generator de curent constant format din Q_8 , R_{62} , R_{63} si D_{14} (dioda led) vrea să tragă din amplificator un current de aproximativ 1 mA, astfel incat tranzistorul Q_8 să funcționeze în RAN. $I_{C2} + I_{C3} = I_{C8}$, dar $V_{BE8} + R_{11} * I = V_D$ Rezultă $R_{11} = 2.2 k\Omega$. Se aleg tranzistoarele Q_8 , Q_2 si Q_3 de tip BC846B. Pentru echilibrul curenților din colectori I_{C2} și I_{C3} , folosim oglinda de curent formată din Q_4 și Q_5 de tipul BC856B. Rezistorii R_7 si R_8 au rolul de a egaliza tensiunile baza-emitor a tranzistorilor din oglinda de curent realizată cu Q_4 si Q_5 , de aceea $R_7 = R_8 = 510\Omega$.

c. Protecția la suprasarcină

Brotectia la suprasarcina

Jmax = 0,5 A

Vout

TK2: Jmax · R = VBE ->

JNBE -> [R = \frac{VBE}{Jmax} = \frac{0,6}{0,5} = 1,2 \text{ } 2.

d. Reacția negative

Release de reactive regativa

Vout

Alegem
$$R_p = 5 \times \Omega$$

Vout = $[6,6;13]$
 $| V_{ref} = \frac{R_y}{R_x + R_y + R_p} \cdot V_{outmax}$
 $| V_{ref} = \frac{R_y + R_p}{R_x + R_y + R_p} \cdot V_{outmin}$
 $| V_{ref} = \frac{R_y + R_p}{R_x + R_y + R_p} \cdot V_{outmin}$
 $| R_y = (R_y + R_p)(\frac{V_{omin}}{V_{ref}} - 1)$
 $| R_x = (R_y + R_p)(\frac{V_{omin}}{V_{ref}} - 1)$

e. Element de reglaj serie

Utilizeaza doua tranzistoare de putere MJD31CG conectate in configuratie de punte Darlington.

3.2. Simulari PSF

Pentru a simula punctul static de funcționare se va ține cont de valorile tensiunilor de intrare 23.4-26V și de ieșire 6.5-13V, dar și de poziția potențiometrului (SET=0 sau SET=1). Astfel o să avem câte 4 tipuri de simulări pentru următoarele valori:

PSF-Tensiune

1. Vin=23.4 SET=0 Vout=13.00V

2. Vin=23.4V SET=1 Vout=6.5V

3. Vin=26V SET=0 Vout=13.00V

4. Vin=26V SET=1 Vout=6.503V

PSF-Curenți

1. Vin=23.4 SET=0 Vout=13.00V

2. Vin=23.4V SET=1 Vout=6.5V

3. Vin=26V SET=0 Vout=13.00V

4. Vin=26V SET=1 Vout=6.503V

PSF-Putere

1. Vin=23.4 SET=0 Vout=13.00V

2. Vin=23.4V SET=1 Vout=6.5V

3. Vin=26V SET=0 Vout=13.00V

4. Vin=26V SET=1 Vout=6.503V

4. Simulări efectuate pentru a demonsta funcționarea schemei în parametrii impuși

1. Variația tensiunii de ieșire în funcție de variația tensiunii de intrare

Vout maxim

Vout minim

2. Protectia la suprasarcina

Pentru această simulare am conenctat o sursă de current notata cu I1 între tensiunea de ieșire și punctul de potențial zero, iar analiza în DC s-a făcut în funcție de această sursă.

3. Protectia termica

4. Amplificarea in bucla deschisa

Pe intrarea inversoare a amplificatorului se intrduce o sursa de AC si se izoleaza reteaua de reactie negativa. Vac=1V si se pune un pin de tensiune pe iesirea amplificatorului, rezultand graficul:

Bibliografie

Curs Circuite electronice fundamentale

Curs Circuite Integrate Analogice

Th. Danila, N. Reus, V. Boiciu, Dispozitive si circuite electronice, Editura didactica si pedagogica, Bucuresti – 1982

CODREANU N., PANTAZICĂ M., IONESCU C., MARCU A., "Tehnici CAD de realizarea modulelor electronice", București, Editura CAVALLIOTI, 2017

Sursa curent continuu - https://www.nexperia.com/applications/sub-systems/constant-current-source

Amplificator diferential cu oglinda de current si sursa de cc - https://www.youtube.com/watch?v=pM3NTLv3xV4