$\frac{2}{2} f(x_i)$ = 2

(x, y)(44,44) ,

5 5 Z $\frac{1}{\chi}$

 $\sqrt{-} (\times)$ $x = \Psi(u)$ $u = \sqrt{x}$ $d\bar{\psi}(x) = \psi(x) dx$ $l \cdot du = \psi(x) dx$ 1.du

$$\frac{1}{\sqrt{(x)}}$$

 \times $\times (y)$

 $(x_i)'i'$ x = (

$$f = \delta \cdot A$$

$$= \sum_{A} \frac{S \cdot A}{A} = \sum_{B} \frac{S \cdot A}{B}$$

$$= \sum_{A} \frac{S \cdot A}{B}$$

$$= \sum_{A} \frac{S \cdot A}{B}$$

$$= \sum_{A} \frac{S \cdot A}{B}$$

$$u^* = \Psi(z^*) = \int_{z^*} (u_i)$$

$$E[f] = u^* \cdot o + (1-u^*) \cdot E[f] = 2 \cdot z^{\alpha}$$

$$u_i^* = u^* + (1-u^*) \cdot u_i^*$$

$$u_i^* = u^* + (1-u^*) \cdot u_i^*$$