1. พิจารณาสถานะของระบบดังต่อไปนี้

		Allo	cati	on		Ma	ЭX		1	Available			
	Α	В	C	D	Α	В	C	D	Α	В	C	D	
P_0	0	0	1	2	0	0	1	2	1	5	2	0	
P_1	1	0	0	0	1	7	5	0					
P_2	1	3	5	4	2	3	5	6					
P_3	0	6	3	2	0	6	5	2					
P_4	0	0	1	4	0	6	5	6					

ตอบคำถามต่อไปนี้ โดยใช้ banker's algorithm

1.1. จงแสดงค่าของ Request matrix

คำตอบ:

1.2. อยากทราบว่าขณะนี้ระบบอยู่ใน safe state หรือไม่

คำตอบ:

ขณะนี้ระบบอยู่ใน safe state เนื่องจากมีลำดับในการประมวลผล process ที่เป็นไปได้ ดังนี้ <P₀, P₂, (P₁, P₃, P₄> หรือ <P₀, P₃, (P₁, P₂, P₄)>

หมายเหตุ ตอบเพียง 1 sequence ก็เพียงพอ และในเครื่องหมาย () หมายความว่าอาจสลับลำดับกันได้

<u>กรณี 1</u> sequence $\langle P_0, P_2, (P_1, P_3, P_4 \rangle$

	F	Req	uest	t			Available				
	A	В	C	D		A	В	C	D		
					_	1	5	2	0		
P_0	0	0	0	0		1	5	3	2		
P_2	1	0	0	2	_	2	8	8	6		
P_1	0	7	5	0	_	3	8	8	6		
P_3	0	0	2	0	_	3	14	11	8		
P_4	0	6	4	2		3	14	12	12		

<u>กรณี 2</u> sequence <P₀, P₃, (P₁, P₂, P₄)>>

	F	Requ	uest	t			Ava	ailal	ble
	Α	В	C	D		Α	В	C	D
					_	1	5	2	0
P_0	0	0	0	0		1	5	3	2
P_3	0	0	2	0	_	1	11	6	4
P_1	0	7	5	0		2	11	6	4
P_2	1	0	0	2	_	3	14	11	8
P_4	0	6	4	2		3	14	12	12

<u>กรณี 3</u> sequence $\langle P_3, (P_0, P_1, P_2, P_4) \rangle$

	F	Req	uest	t			Ava	ailal	ble
	A	В	C	D		Α	В	C	D
					7	1	5	2	0
P_3	0	0	2	0		1	11	5	2
P_0	0	0	0	0	—	1	11	6	4
P_1	0	7	5	0		2	11	6	4
P_2	1	0	0	2	—	3	14	11	8
P_4	0	6	4	2		3	14	12	12

1.3. สมมติให้ P_1 มี request เป็น (0, 4, 2, 0) อยากทราบว่าระบบจะจัดสรร request นี้ได้ในทันทีหรือไม่ คำตอบ:

<u>สมมติ</u>ให้ระบบจัดสรร request ดังกล่าว ซึ่งจะทำให้ Allocation และ Request ของ P_1 มีค่าเป็นดังนี้

	Allocation					Request				Available			
	Α	В	C	D	Α	В	C	D					
P_0	0	0	1	2	0	0	0	0	1	1	0	0	
P_1	1	4	2	0	0	3	3	0					
P_2	1	3	5	4	1	0	0	2					
P_3	0	6	3	2	0	0	2	0					
P_4	0	0	1	4	0	6	4	2					

จะเห็นได้ว่าในสถานะนี้ระบบอยู่ใน safe state นั่นคือมีลำดับในการประมวลผล process เป็น <P $_0$, P $_2$, (P $_1$, P $_3$), P $_4$ >

	F	Req	uest	t			Ava	ailal	ble
	Α	В	C	D		A	В	C	D
					A	1	1	0	0
P_0	0	0	0	0	7	1	1	1	2
P_2	1	0	0	2	X	2	4	6	6
P_1	0	3	3	0	X	3	8	8	6
P_3	0	0	2	0	/	3	14	11	8
P_4	0	6	4	2		3	14	12	12

ดังนั้นจึงสรุปได้ว่า ระบบสามารถจัดสรร request ให้กับ P_1 ได้ในทันที

2. พิจารณาสถานะของระบบดังต่อไปนี้

		Allo	cati	on		Re	eque	est		Available			
	Α	В	C	D	Α	В	C	D	Α	В	C	D	
P_0	3	0	1	1	1	1	0	0	1	0	2	0	
P_1	0	1	0	0	0	1	1	2					
P_2	1	1	1	0	3	1	0	0					
P_3	1	1	0	1	0	0	1	0					
P_4	0	0	0	0	2	1	1	0					

ตอบคำถามต่อไปนี้ โดยใช้ banker's algorithm

2.1. อยากทราบว่าขณะนี้ระบบอยู่ใน safe state หรือไม่

คำตอบ:

ขณะนี้ระบบอยู่ใน safe state เนื่องจากมีลำดับในการประมวลผล process ที่เป็นไปได้ คือ <P $_3$, (P $_0$, P_4), (P $_1$, P_2)>

2.2. สมมติให้ P_1 ขอจัดสรร resource C จำนวน 1 ชุด อยากทราบว่าระบบจะจัดสรร request นี้ได้ในทันทีหรือไม่ คำตอบ:

<u>สมมติ</u>ให้ระบบจัดสรร resource C ให้กับ P_1 ซึ่งจะทำให้ระบบมีสถานะเป็นดังนี้

		Allo	cati	on		Re	que	est	Available				
	Α	В	C	D	Α	В	C	D	Α	В	C	D	
P_0	3	0	1	1	1	1	0	0	1	0	1	0	
P_1	0	1	1	0	0	1	0	2					
P_2	1	1	1	0	3	1	0	0					
P_3	1	1	0	1	0	0	1	0					
P_4	0	0	0	0	2	1	1	0					

จะเห็นได้ว่า ในสถานะนี้ระบบอยู่ใน safe state เนื่องจากมีลำดับในการประมวลผลเป็น <P $_3$, (P_0 , P_4), (P_1 , P_2)>

	Allocation					Re	que	est	į.	Available			
	Α	В	C	D	Α	В	C	D	A	В	C	D	
								د	_ 1	0	1	0	
P_3	1	1	0	1	0	0	1	0/	2			1	
P_0	3	0	1	1	1	1	0	0/	5	1	2	2	
P_4	0	0	0	0	2	1	1	0	5	1	2	2	
P_1	0	1	1	0	0	1	0	2/	5	2	3	2	
P_2	1	1	1	0	3	1	0	0	6	3	4	2	

ดังนั้นจึงสรุปได้ว่า ระบบสามารถจัดสรร request ให้กับ P_1 ได้ในทันที

2.3. สมมติให้ P_1 และ P_4 ขอจัดสรร resource C process ละ 1 ชุด อยากทราบว่าระบบจะจัดสรร resource ดังกล่าวได้ในทันทีหรือไม่

คำตอบ:

<u>สมมติ</u>ให้ระบบจัดสรร resource C ให้กับ P_1 และ P_4 ซึ่งจะทำให้ระบบมีสถานะเป็นดังนี้

		Allo	catio	on		Re	eque	est		Available				
	Α	В	C	D	Α	В	C	D	Α	В	C	D		
P_0	3	0	1	1	1	1	0	0	1	0	0	0		
P_1	0	1	1	0	0	1	0	2						
P_2	1	1	1	0	3	1	0	0						
P_3	1	1	0	1	0	0	1	0						
P_4	0	0	1	0	2	1	0	0						

จะเห็นได้ว่า ในสถานะนี้ระบบอยู่ใน unsafe state เนื่องจาก Available ที่มีอยู่ไม่เพียงพอที่จะนำมาจัดสรรให้กับ process ใดได้เลย ดังนั้นจึงสรุปได้ว่า ระบบไม่ควรจัดสรร resource ดังกล่าวให้กับ P_1 และ P_4

2.4. สมมติให้ P_0 ขอจัดสรร resource A ที่เหลือยู่เป็นชุดสุดท้าย อยากทราบว่าการกระทำดังกล่าวจะมีโอกาสทำให้เกิด deadlock ได้หรือไม่

คำตอบ:

<u>สมมติ</u>ให้ระบบจัดสรร resource A ให้กับ P_0 ซึ่งจะทำให้ระบบมีสถานะเป็นดังนี้

	-	Allo	cati	on		Re	eque	est		\va i	labl	e
	Α	В	C	D	Α	В	C	D	A	В	C	D
P_0	4	0	1	1	0	1	0	0	0	0	2	0
P_1	0	1	0	0	0	1	1	2				
P_2	1	1	1	0	3	1	0	0				
P_3	1	1	0	1	0	0	1	0				
P_4	0	0	0	0	2	1	1	0				

จะเห็นได้ว่า ในสถานะนี้ระบบอยู่ใน safe state เนื่องจากมีลำดับในการประมวลผลเป็น <P $_3$, P $_0$, (P $_1$, P $_2$, P $_4$)>

	Allocation					Re	que	est	Available			
	Α	В	C	D	Α	В	C	D	A	В	C	D
								_	, 0	0	2	0
P_3	1	1	0	1	0	0	1	0	, 1	1	2	1
P_0	4	0	1	1	0	1	0	0	. 5	1	3	2
P_1	0	1	0	0	0	1	1	2	. 5	2	3	2
P_2	1	1	1	0	3	1	0	0	. 6	3	4	2
P_4	0	0	0	0	2	1	1	0	6	3	4	2

ดังนั้นจึงสรุปได้ว่า ระบบสามารถจัดสรร request ให้กับ P_{0} ได้ในทันที