Analytical solutions for the propagation of heat pulses with temperature gradient length-dependent diffusion coefficient

Analytical solutions for the propagation of heat pulses with temperature gradient length dependent diffusion coefficient

F. Imbeaux, X. Garbet

Association EURATOM-CEA, CEA/DSM/DRFC CEA-Cadarache, 13108 Saint-Paul-lez-Durance (France)

Published in : Plasma Phys. Contr. Fusion 44 (2002) 1425

e-mails: imbeaux@drfc.cad.cea.fr, garbet@drfc.cad.cea.fr

Is it possible to identify unambiguously the $\chi(T, T)$ dependence from modulated heating experiments?

Analytical solutions for the heat pulse propagation allow:

- faster comparison with experiment than numerical simulation (transport code)
- highlight characteristic features of the solutions (parametric dependences, ...)
- identify the relevant transport model formulation (best fit of experimental results)

Solving the time-averaged and linearised heat transport equation for models of the type $\chi = \chi_0 T^{\mu} G - \frac{T}{T}$

- Assumptions: flat density profile, negligible electron-ion coupling, no source/sink term in the region of integration.
- Small temperature modulation $\ \ \, \Box$ linearisation of the problem $T = \overline{T} + \widetilde{T}$

time-averaged modulated

- Time Fourier transform of the linearised transport equation \Box amplitude and phase of T
- Reformulation of the heat transport equation as a function of temperature and temperature gradient length related variables

$$F = -(\mu + 1) \ln \frac{T}{T_0}$$
 $P = F = -(\mu + 1) \frac{T}{T}$

(usual configuration space variables not convenient for temperature gradient length dependent models)

Results

$$\chi = \chi_0 T^{\mu} G \frac{T}{T}$$

Slab geometry

- Reformulation can be carried out without specifying the function G
- Exact solutions are found in the case $G = \frac{-\partial_x T}{T}^{\alpha}$
- Approximate solutions are found in the case $G = \frac{-\partial_x T}{T} \alpha \frac{-\partial_x T}{T} \kappa$ (to the first order in $\partial_x T / T \kappa$), valid for strongly stiff profiles

Cylindrical geometry

- Reformulation can be carried out in the case $G = \frac{-\partial_{\rho} T}{T}^{\alpha}$
- Werner-Kramers-Brillouin solutions are found in this case

Detailed results in slab geometry $\chi = \chi_0 T^{\mu} \frac{-\partial_x T}{T}$

- Heat transport equation $\frac{3}{2}n\partial_t T \partial_x (n\chi\partial_x T)' = 0$
- Reformulation (change of variables)

$$F = -(\mu + 1)\ln \frac{T}{T_0} \qquad P = -(\mu + 1)\frac{\partial_x T}{T}$$

Time-averaged profile (exact solution)

$$\overline{T} = \frac{1}{\alpha + 1} \frac{\alpha + 1}{\varphi^{\mu + 1}} \overline{\varphi^{\mu + 1}} (D - x)^{\frac{\alpha + 1}{\mu + 1}} \qquad \overline{\varphi} = \frac{\overline{T}}{T_0} e^{\mu + 1} = cst$$

$$\overline{P} = \frac{\alpha + 1}{D - x}$$

Modulated profile (exact solution)

$$\tilde{F}(\overline{P}) = A_1 \overline{P}^{\frac{1}{2}} C_{\nu} (\lambda \overline{P}^{\frac{1}{2\nu}}) + A_2 \overline{P}^{\frac{1}{2}} D_{\nu} (\lambda \overline{P}^{\frac{1}{2\nu}})$$

$$\lambda = \pm 2\nu e^{i\frac{\pi}{4}} \sqrt{(\alpha + 1) \overline{\phi}^{\frac{1}{2(\mu + 1)}}}$$

$$= \frac{\frac{3}{2}\omega (\mu + 1)^{\alpha}}{\chi_0 T_0^{\mu} \overline{\phi}}$$

$$v = -\frac{\mu + 1}{\mu + \alpha + 2}$$

 $C_{\rm v}$ and $D_{\rm v}$ are two Bessel functions

Detailed results in slab geometry $\chi = \chi_0 T^{\mu} \frac{-\partial_x T}{T}^{\alpha} \frac{-\partial_x T}{T} - \kappa$

- Heat transport equation $\frac{3}{2}n\partial_t T \partial_x (n\chi\partial_x T)' = 0$
- Reformulation (change of variables)

$$F = -(\mu + 1)\ln \frac{T}{T_0} \qquad P = -(\mu + 1)\frac{\partial_x T}{T}$$

• Time-averaged profile (exact implicit solution)

$$-(\alpha + 1) \frac{1}{\overline{P}} + \frac{\beta}{\kappa} \ln \frac{\overline{P} - \kappa}{\overline{P}} = x + cste$$

• Modulated profile (solution to first order in \overline{P} - κ)

$$\tilde{F}(\overline{P}) = A_{1}(\overline{P} - \kappa)^{\frac{1}{2}}C_{V}(\lambda(\overline{P} - \kappa)^{\frac{1}{2\nu}}) + A_{2}(\overline{P} - \kappa)^{\frac{1}{2}}D_{V}(\lambda(\overline{P} - \kappa)^{\frac{1}{2\nu}}) \qquad \bar{\phi} = \frac{\overline{T}}{T_{0}}^{\mu+1}\overline{P}^{\alpha+1} = cst$$

$$\lambda = \pm 2\nu e^{i\frac{\pi}{4}}\sqrt{\beta\kappa}^{-\frac{2\mu+\alpha+3}{2(\mu+1)}}\bar{\phi}^{\frac{1}{2(\mu+1)}}$$

$$= \frac{\frac{3}{2}\omega(\mu+1)^{\alpha}}{\gamma \sigma^{\frac{1}{2}(\mu+1)}}$$

$$v = \frac{\mu + 1}{\mu - \beta + 1}$$

 $C_{\rm v}$ and $D_{\rm v}$ are two Bessel functions

Detailed results in cylindrical geometry $\chi = \chi_0 T^{\mu} \frac{-\partial_{\rho} T}{T}$

- Results can be used for circular shaped plasmas (e.g. Tore Supra tokamak)
- Heat transport equation $\frac{3}{2}n\rho\partial_t T \partial_\rho (n\rho\chi\partial_\rho T) = 0$
- Reformulation (change of variables)

$$F = -(\mu + 1)\ln \frac{T}{T_0} \qquad P = -(\mu + 1)\frac{\partial_x T}{T} \qquad x = \frac{\alpha + 1}{\alpha}\rho^{\frac{\alpha}{\alpha + 1}}$$

Time-averaged profile (exact solution)

$$\overline{T} = \frac{1}{\alpha + 1} \frac{\alpha + 1}{\varphi^{+1}} \frac{1}{\varphi^{-1}} (D - x)^{\frac{\alpha + 1}{\mu + 1}} \qquad \overline{\varphi} = \frac{P_H}{4\pi^2 R_0 n} \frac{1}{T_0^{\mu + 1}} \frac{(\mu + 1)^{\alpha + 1}}{\chi_0}$$

$$\overline{P} = \frac{\alpha + 1}{D_0 - x}$$

Modulated profile (WKB solution)

$$\tilde{T} = -\frac{1}{\mu + 1} \overline{T} (D \overline{P} - 1)^{-\frac{\alpha + 2}{4\alpha}} \overline{P}^{\frac{\gamma}{2}} \left(A_{1} e^{iS} + A_{2} e^{-iS} \right) \qquad \gamma = \frac{4\mu\alpha + \alpha^{2} + 5\alpha + 2\mu + 2}{2\alpha(\mu + 1)} = \frac{\frac{3}{2}\omega(\mu + 1)^{\alpha}}{\chi_{0} T_{0}^{\mu} \overline{\phi}}$$

$$S = \frac{1 + i}{\sqrt{2}} \sqrt{(\alpha + 1)} (-\alpha)^{\frac{\alpha + 2}{2\alpha}} \overline{\phi}^{\frac{1}{2}(\mu + 1)} \overline{P}^{1 - \gamma} \times_{2} F_{1} \quad 1 - \gamma, -\frac{\alpha + 2}{2\alpha}; 2 - \gamma; D \overline{P}$$

Frequency dependence (cylindrical geometry $\chi = \chi_0 T^{\mu} \frac{-\partial_{\rho} T}{T}^{\alpha}$)

- The slope of the temperature phase profile is proportionnal to the square root of the frequency, for any model parameters.
- The temperature amplitude profile verifies :

$$\frac{\log\left(\left|\tilde{T}(\rho_{2},\omega_{2})\right|\tilde{T}(\rho_{1},\omega_{1})\right)/\left(\left|\tilde{T}(\rho_{2},\omega_{1})\right|\tilde{T}(\rho_{1},\omega_{2})\right)}{\log\left(\left|\tilde{T}(\rho_{2},\omega_{3})\right|\tilde{T}(\rho_{1},\omega_{1})\right)/\left(\left|\tilde{T}(\rho_{2},\omega_{1})\right|\tilde{T}(\rho_{1},\omega_{3})\right)} = \frac{\sqrt{\omega_{2}} - \sqrt{\omega_{1}}}{\sqrt{\omega_{3}} - \sqrt{\omega_{1}}}$$

Can these relations help in determining the transport model?

- They do not involve α nor μ \Longrightarrow cannot be used to determine them
- Numerical simulations show that a model of the class $\chi = \chi_0 T^{\mu} \frac{-\partial_{\rho} T}{T} \kappa$ deviates by only 4 % from the amplitude criterion, which is likely within the experimental errorbars.
- Significant deviation from the above properties may indicate dominant convective transport.

Dependence on and μ (cylindrical geometry $\chi = \chi_0 T^{\mu} \frac{-\partial_{\rho} T}{T}$)

Power modulated at $\rho = 0$

- Almost no difference on the absolute temperature amplitude profile (renormalised)
- Significant variations on the other profiles, but no spectacular change

and μ from a modulation experiment (cylindrical geometry $\chi = \chi_0 T^{\mu} \frac{-\partial_{\rho} T}{T}$) Identification of

- Analytical solution used to best fit an experimental data set (here provided by an Astra simulation of central ECRH heating, 10 % of the power modulated)
- Distance to the experimental data must involve both modulated and timeaveraged profiles:

$$N = ||\overline{P} - \overline{P}_{\exp}| + |\log|\widetilde{T}| - \log|\widetilde{T}_{\exp}|| + |\varphi_{\widetilde{T}} - \varphi_{\widetilde{T}\exp}||$$

Bi-parametric best fit on α and μ (Nelder-Mead algorithm). The value of χ_0 is constrained by the relation (global power balance + heat flux conservation):

$$\chi_0 = \frac{P_H}{4\pi^2 R_0 n} \frac{1}{\bar{T}^{\mu+1}} \frac{\mu+1}{\bar{P}}^{\alpha+1}$$

- The uniformity of χ_0 evaluated using this relation has to be verified a posteriori.
- Fitting procedure yielding bad accuracy and/or non constant χ_0 \Longrightarrow dataset not consistent with a model of the type $\chi = \chi_0 T^{\mu} \frac{-\partial_{\rho} T}{T}$

Identification of and μ from a modulation experiment (cylindrical geometry $\chi = 0.2T^2 \ \frac{-\partial_\rho T}{T}$)

Identification results as function of the initial guess

Initial guess [µ]	Solution	Solution µ	Solution o
			$(m^{2+\alpha}keV^{-\mu}s^{-1})$
[1 2] (exact values in	0.97	2.03	0.20
the simulation)			
[1.5 1.5]	0.93	2.00	0.21
[2 1]	1.10	2.10	0.17
[0.5 2.5]	1.14	2.12	0.17

Table 1: First column: initial value of the couple $[\alpha, \mu]$. Second to fourth columns: solution of the identification procedure (using norm N).

Identification results as function of the noise to signal ratio

Noise relative amplitude	Maximum deviation observed on α or μ
± 5 %	± 10 %
± 10 %	± 20 %
± 15 %	± 25 %
± 20 %	± 66 %

Table 2: Maximum deviation observed on α or μ , as a function of the noise relative amplitude, using norm N and [1.5 1.5] as initial guess for $[\alpha \mu]$.

Identification of and μ from a modulation experiment (cylindrical geometry $\chi = 0.2T^2 \ \frac{-\partial_\rho T}{T}$)

Identification results with non-uniform density profile

	Low density			High density				
Region of	<u>n</u>	α	μ	χ_o	<u>n</u>	α	μ	χ_o
analysis	n			$(m^{2+\alpha}keV^{-\mu}s^{-1})$	n			$(m^{2+\alpha}keV^{-\mu}s^{-1})$
$0.2 < \rho < 0.6$	37 %	1.31	2.94	0.08	26 %	0.98	2.48	0.15
$0.2 < \rho < 0.5$	23 %	1.23	2.85	0.09	14 %	0.97	2.40	0.16
$0.2 < \rho < 0.4$	13 %	1.00	2.73	0.11	5 %	0.91	2.36	0.17

Table 3: Results of the identification procedure for the low and high density cases (see fig. 5). The identification has been carried out by minimising the norm N over various radial domain (first column). The relative variation of the density $\frac{n}{n}$ inside each domain is indicated for

each case (low and high density).

The presence of a density gradient leads to an overestimation of μ

Identification of and μ from a modulation experiment (cylindrical geometry $\chi = 0.2T^2 \ \frac{-\partial_\rho T}{T}$)

(cylindrical geometry
$$\chi = 0.2T^2 \frac{-\partial_{\rho}T}{T}$$
)

Identification results with non-zero coupling between electrons and ions

Steady heating power (MW)	P_{e-i} (MW)	Solution	Solution µ	Solution 0 (m ^{2+α} keV ^{-μ} s ⁻¹)
0.4	0.37	0.46	0.32	0.71
1	0.98	0.90	0.47	0.49
1.5	1.48	0.98	0.74	0.51
2	1.82	1.20	1.25	0.34
3	1.81	1.13	1.62	0.31
4	1.77	1.18	1.80	0.24
6	1.71	1.12	1.86	0.24
8	1.66	1.10	1.87	0.24

Table 4: First column: steady heating power. Second column: total electron-ion power exchange. Third to fifth columns: solution of the identification procedure (using norm N).

The identification method can still be used if the steady heating power is at least twice larger than the electron-ion exchanged power

Identification procedure applied in a case with critical gradient length (cylindrical geometry $\chi = 0.1T^{3/2} \frac{\partial_{\rho} T}{T} - 2$)

The identification procedure yields the following result:

$$\chi = 6.2 \times 10^{-3} T^{88} \qquad \frac{-\partial_{\rho} T}{T}^{2.05}$$

with rather good accuracy, except concerning the \overline{P} profile.

Identification procedure applied in a case with critical gradient length (cylindrical geometry $\chi = 0.1T^{3/2} \frac{\partial_{\rho} T}{T} - 2$)

Nevertheless, the solution

$$\chi = 6.2 \times 10^{-3} T^{88} \frac{-\partial_{\rho} T}{T}^{2.05}$$

is not consistent with respect to the order of magnitude of χ and to the uniformity of the normalised heat flux.

the fitting procedure allows to detect that the model without threshold is not relevant to the dataset

Conclusions and perspectives

- Linearised transport equation reformulated and solved in slab geometry for models without and with critical gradient length, in cylindrical geometry without critical gradient length.
- The method may be generalised to obtain semi-analytical solutions for arbitrary geometries and density profiles.
- **Procedure developped to identify the exponents of models** without threshold, which best fit an experimental dataset, in cylindrical geometry.
- Can be used to assess wether a specific formulation of the diffusion coefficient is compatible with an experimental dataset.
- Next step: apply these solutions and methods to a real modulated heating experiment. Modulated ECRH + steady ICRH in the Fast Wave Electron Heating scheme is a promising scenario (central power deposition, weak electron-ion coupling).