1 1.7: Intro to Proofs

Technique	Assume	Show
direct proof	p	q
proof by contraposition	$\neg q$	eg p
vacuous proof	(nothing)	$\neg p$ (p is always false)
trivial proof	(nothing)	q(q is always true)
proof by contradiction	$p \wedge \neg q$?

Prove $p \rightarrow q$.

- 1) Assume p is true.
- 2) Work in definitions. Do math, do logic.
- 3) q is then also true.

Definition. An integer n is even if there exists an integer k where n=2k

Definition. An integer n is odd if there exists an integer k where n = 2k + 1

Direct proof: The sum of two even integers is even.

 $p \to q$ a, b $\in \mathbb{Z}$

p: a and b are even

q: a + b is even.

a and b are even (assume p)

 $a = 2k, k \in \mathbb{Z}$ (by definition even)

 $b = 2k', k' \in \mathbb{Z}$ (by definition even)

a+b = 2k + 2k' (add LHS, RHS)

a+b = 2(k+k') (factor)

Note: by definition of even, a+b is even, having form a+b = 2k' where k'' = k + k', $k'' \in \mathbb{Z}$ Integers are closed with respect to addition.

Conclusion: I've shown that assuming p leads to q being true, hence $p \to q$.

Direct proof: If n is odd, then n^2 is odd.

Proof by contraposition: If n is an integer and 3n + 2 is odd, then n is odd.

 $p \rightarrow q$

p: 3n+2 is odd

 $q: n \text{ is odd } (n \in \mathbb{Z})$

 \neg (n is odd) (assume $\neg q$)

n is even (by definition of even and odd)

 $n = 2k, k \in \mathbb{Z}$ (by definition of even)

3n + 2 Let's examine this.

3(2k) + 2 Substitute for n.

2(3k+1) Factor

Notice this is $\neg p$, the fact than 3n + 2 is even.

Matching the format of 2k', where $k' = 3k + 1, k' \in \mathbb{Z}$

Conclusion: since $\neg q$ leads to $\neg p$, I've shown $p \rightarrow q$.