ĐỀ KIỂM TRA GIỮA HỌC KỲ 172 Môn thi: Giải tích 2

Giờ thi: CA 2

ĐẠI HỌC BÁCH KHOA TP HCM Khoa Khoa học ứng dụng -BM Toán ứng dụng

ĐỀ CHÍNH THỰC

(Đề thi 18 câu / 2 trang)

Ngày thi 29/03/2018. Thời gian làm bài: 45 phút. (Sinh viên không được sử dụng tài liệu)

Đề 3027

	The state of the s	· · · · · · · · · · · · · · · · · · ·	ch của viên thuốc khi bán kính ốc $0.05mm/s$, độ dày giảm với
n=10mm và do vận tốc $0.1mm/s$	•	ii kiiiii cua iio giaiii voi vaii t	oc 0.05mm/s, do day giain voi
	\bigcirc B $\approx 9.42mm^3/s$	\bigcirc $\approx 0.47 mm^3/s$	D Các câu khác sai.
Câu 2. Tính tích phân $I =$	$= \int_0^1 dx \int_1^2 \frac{1}{y^3} e^{\frac{x}{y}} dy$		
4	$ B) I = e + \sqrt{e} - \frac{1}{2} $	4	4
Câu 3. Cho hàm số $f(x,$	$y) = xy^2$ và miền $D = \{(x, y) \in \mathbb{R}^n : x \in \mathbb{R}^n \}$	$(x) \in R^2, x \ge 0, y \ge 0, x^2 + y$	$y^2 \leq 3$ }. Tìm giá trị lớn nhất M
của hàm f trên m	iền D. B $M=-2$	(C) $M = 2$	\bigcirc $M=3$
tại của mỗi người	tiền thưởng cuối năm của mỗi	$\mathop{\mathrm{cong}} olimits_{n}$ nhân là hàm số $T=\int_{0}^{\infty} \mathrm{d}x$ tính thơ	f(x,y), với x là bậc lương hiện eo thứ tự $1,2,3,y$ tính theo tỷ
	(3,20), tăng một bậc lương, tiề $($		
	3, 20), tăng một bậc lương, tiề		
	(3,20), lợi nhuận công ty tăng l $(3,20)$		triệu đồng.
D Các câu khác đều s Câu 5. Khai triển Maclau	sai. urint hàm $f(x,y) = \frac{\sin x}{1 + x - y}$ $-xy + x^3 + xy^2 - 2x^2y + R$	đến bậc 3.	
$ A f(x,y) = x - x^2 $	$-xy + x^3 + xy^2 - 2x^2y + R$	UT-CNCP	
$ B f(x,y) = x - x^2 $	$+xy + \frac{5}{6}x^3 + xy^2 - 2x^2y + $	R_3	
$\bigcirc f(x,y) = x - x^2 - x$	$+xy + x^3 + xy^2 - 2x^2y + R$	$f(x,y) = x - x^2 + x^2 + y^2$	$-xy + \frac{5}{6}x^3 + xy^2 + R_3$
Câu 6. Khi tìm cực trị cử nào dưới đây là đ	ia $f(x,y) = \frac{2}{x} + \frac{1}{y} + xy, (x, $ úng?	$y)$ trên miền $\in D = \{(x,y)$	$(\mathbf{R_2}/x>0,y>0)$, kết luận
$igatebox{$\widehat{A}$} f$ đạt cực tiểu tại $igg($	v = /	$lacksquare$ B f đạt cực đại tại $\left(\sqrt{3}\right)$	$\sqrt[3]{4}, \frac{1}{\sqrt[3]{2}}$
\bigcirc f không có cực trị.		là điểm dừng của f .	
Câu 7. Tính tích phân \int_{0}^{2}	$\mathrm{d}x \int_0^{\sqrt{2x-x^2}} \frac{1}{\sqrt{x^2+y^2}} \mathrm{d}y \ .$		
A 4	B 0	C Các câu khác đều sa	ai D 2
Câu 8. Cho $z(x,y)$ xác đ	ịnh từ phương trình $z \arctan y$	$z - z^2 + x^2 = 2 \text{ và } z(-\sqrt{3}, 0)$	$=-1$. Giá trị của $z_x'(-\sqrt{3},0)$

 $\bigcirc -2\sqrt{3}$

Câu 9. Hàm $f(x, y) = 1 - 3$	x+2y đạt cực tiểu thỏa điều	u kiện $\frac{x^2}{4} + \frac{y^2}{9} = 1$ tại :	
		$\bigcirc \left(\sqrt{2}, \frac{3}{\sqrt{2}}\right)$	$\bigcirc \left(-\sqrt{2}, -\frac{3}{\sqrt{2}}\right)$
Câu 10. Viết tích phân kép \iint_D	$\int f(x,y) dx dy$ với $D = \{(x,y)\}$	$ y (x^2 + y^2 \le 2, x \ge 0, y \ge \sqrt{2})$	$\sqrt{x}\}$ thành tích phân lặp
$ \begin{array}{c} A \int_{0}^{\sqrt{2}} dy \int_{\sqrt{x}}^{\sqrt{2-x^2}} f(x,y) dx \\ C \int_{0}^{1} dy \int_{y^2}^{\sqrt{2-y^2}} f(x,y) dx \end{array} $			
$\bigcirc \int_{0}^{1} dy \int_{y^{2}}^{\sqrt{2-y^{2}}} f(x,y) dx$	D Các câu khác đều sai		
Câu 11. Tính tích phân $\iint_D x $	d x d y với $D = \{(x,y) \in \mathbf{R_2}$	$/1 \le x^2 + y^2 \le 4, -y \le x$	$\leq y$.
	(B) $\frac{3(2-\sqrt{2})}{2}$	© 0	D Các câu khác đều sai
Câu 12. Nhận dạng mặt bậc 2	sau $x^2 + 2y^2 + 3z^2 - 6z =$	0	
A Mặt Ellipsoid	B Mặt nón	Mặt Hyperboloid 2 tần	ıg
Mặt Paraboloid Hyperl			
Câu 13. Cho hàm $f(x,y) = (x,y)$			
	0 0 9	C Các câu khác SAI	
Câu 14. Cho $f(x,y) = \arctan$	$\sin\left(\frac{x}{y}+3x\right)-y^2$. Tim d $f(0)$	(0,-1) nếu d $x=0.2$ và d $y=0.2$	0.3.
(A) df(0,-1) = -0.2	B df(0,-1) = 0.6	$\mathbf{C} df(0,-1) = 1$	
Câu 15. Tìm miền xác định D	của hàm $f(x,y) = \ln \frac{x-y}{y^2}$	$ \begin{array}{c} \hline{C} df(0,-1) = 1 \\ - \end{array} $	
	hía bên phải đường parabol :		
	bhía b <mark>ên trái đường parabo</mark> l x		
D là phần mặt phẳng p	phía bên phải đường parabol x	$x = y^2$ JT-GNCP	
_			
Câu 16. Cho $z = e^{\frac{x}{y}} f(x + y)$. Biết $f'(1) = f(1) = 1$, tìm	giá trị đúng của biểu thức z_x^\prime	$z_y(0,1) + z_y'(0,1)$
A 2	B 3	<u>C</u> 1	D 0
Câu 17. Tìm hệ số góc tiếp tư $x = -1$ tại $P(-1, -1)$	uyến k của giao tuyến giữa r $1,-1).$	$\text{mặt cong } z = f(x, y) = e^{x^2}$	$x^{2+y} + x - y^2$ và mặt phẳng
A) k = -1	\bigcirc $k=1$		
Câu 18. Cho $f(x,y) = x^3 - 3$	$3x^2y - y^3 + 5x - 12$ và điển	m $M(-1,2)$ Hướng giảm nh	anh nhất của f khi đi qua ${\cal M}$
là			
(A) $(-4,3)$	(20, -15)	(C) $(-16, 15)$	(D) $(4, -6)$

CHỦ NHIỆM BỘ MÔN

Đề 3027 ĐÁP ÁN

Câu 1. (A)	Câu 4. B	Câu 7. D	Câu 10. B	Câu 13. D	Câu 16. B
Câu 2. D	Câu 5. B	Câu 8. B	Câu 11. A	Câu 14. (C)	Câu 17. D
Câu 3. (C)	Câu 6. (A)	Câu 9. (A)	Câu 12. (A)	Câu 15. (A)	Câu 18. (A)

$\mathbf{D}\mathbf{\hat{E}}$ KIỂM TRA GIỮA HỌC KỲ 172 Môn thi: Giải tích 2

Giờ thi: CA 2

ĐẠI HỌC BÁCH KHOA TP HCM Khoa Khoa học ứng dụng -BM Toán ứng dụng

ĐỀ CHÍNH THỨC

(Đề thi 18 câu / 2 trang)

Ngày thi 29/03/2018. Thời gian làm bài: 45 phút. (Sinh viên không được sử dụng tài liệu)

Đề 3028

			20020
Câu 1. Tìm miền xác định D	$f(x,y) = \ln \frac{x-y}{y}$	<i>y</i> ²	
	g		
	phía bên trái đường parabol <i>a</i> phía bên phải đường parabol		
	phía bên trái đường parabol a		
	phía bên phải đường parabol		
Câu 2. Tính tích phân $\int_{0}^{2} dx$	$\int_{0}^{\sqrt{2x-x^2}} \frac{1}{\sqrt{x^2+y^2}} \mathrm{d}y .$		
A 2	B 4 40A	0	D Các câu khác đều sai
vân tốc $0.1mm/s$	trụ hòa tan được trong nước y là $h=1mm$ nếu biết bán $\frac{1}{2}$	c. Tìm vận tốc giảm thể tích k <mark>ính</mark> của nó g <mark>i</mark> ảm với vận tốc	0.05mm/s, độ dày giảm với
(A) Các câu khác sai.	\bigcirc B) $\approx 34.56mm^3/s$	\bigcirc $\approx 9.42mm^3/s$	\bigcirc $\approx 0.47 mm^3/s$
Câu 4. Cho $z = e^{\frac{x}{y}} f(x+y)$			
(A) 0	B 2	C 3	D 1
Câu 5. Tính tích phân $\iint_D x $	$\mathrm{d}x\mathrm{d}y$ với $D=\left\{(x,y)\in\mathbf{R}_2\right\}$	$2/1 \le x^2 + y^2 \le 4, -y \le x$	$\leq y$.
A Các câu khác đều sai	(B) $\frac{7(2-\sqrt{2})}{3}$ (B) $\frac{7}{3}$	$\bigcirc \frac{3(2-\sqrt{2})}{2}$	D 0
Câu 6. Khi tìm cực trị của <i>f</i> nào dưới đây là đúng	$f(x,y) = \frac{2}{x} + \frac{1}{y} + xy, (x,y)$?) trên miền $\in D = \{(x,y) \in$	$\{\mathbf{R_2}/x>0,y>0\}$, kết luận
		B f đạt cực tiểu tại $\left(\sqrt[3]{2}\right)$	$\overline{4}, \frac{1}{\sqrt[3]{2}}$
\bigcirc f đạt cực đại tại $\left(\sqrt[3]{4}\right)$	$(\frac{1}{\sqrt[3]{2}})$	\bigcirc f không có cực trị.	
Câu 7. Nhận dạng mặt bậc 2	$\sin x^2 + 2y^2 + 3z^2 - 6z =$	= 0	
A Mặt Paraboloid Hyper D Mặt Hyperboloid 2 tầr	bolic	B Mặt Ellipsoid	C Mặt nón
Câu 8. Cho $f(x,y) = \arctan$		(0,-1) nếu d $x=0.2$ và d $y=0.2$	0.3.
		\bigcirc d $f(0,-1) = 0.6$	
Câu 9. Cho hàm số $f(x, y)$ = của hàm f trên miền		$\in R^2, x \ge 0, y \ge 0, x^2 + y^2$	$\leq 3\}$. Tìm giá trị lớn nhất M
		\bigcirc $M=-2$	\bigcirc $M=2$
Câu 10. Hàm $f(x, y) = 1 - 3$	3x+2y đạt cực tiểu thỏa điề	u kiện $\frac{x^2}{4} + \frac{y^2}{9} = 1$ tại :	

- **Câu 11.** Cho $f(x,y)=x^3-3x^2y-y^3+5x-12$ và điểm M(-1,2) Hướng giảm nhanh nhất của f khi đi qua M $\bigcirc{B} (-4,3)$ (4,-6)(D) (-16, 15)Câu 12. Cho hàm $f(x,y) = (x-y)\ln(1+x+y)$. Tìm câu trả lời đúng. Câu 13. Cho z(x,y) xác định từ phương trình $z \arctan y - z^2 + x^2 = 2$ và $z(-\sqrt{3},0) = -1$. Giá trị của $z_x'(-\sqrt{3},0)$ $\bigcirc B \frac{\sqrt{3}}{2}$ Câu 14. Tính tích phân $I = \int_0^1 dx \int_1^2 \frac{1}{a^3} e^{\frac{x}{y}} dy$ (A) $I = e - \sqrt{e} - \frac{1}{2}$ (B) $I = e - \frac{1}{2}$ (C) $I = e + \sqrt{e} - \frac{1}{2}$ (D) $I = e - \sqrt{e} + \frac{1}{2}$ Câu 15. Viết tích phân kép $\iint\limits_D f(x,y) \mathrm{d}x \mathrm{d}y$ với $D=\{(x,y)|x^2+y^2\leq 2, x\geq 0, y\geq \sqrt{x}\}$ thành tích phân lặp (A) Các câu khác đều sai (B) $\int_{0}^{\sqrt{2}} dy \int_{-\sqrt{x}}^{\sqrt{2-x^2}} f(x,y) dx$ $\bigcap_{0}^{1} dx \int_{-\pi}^{\sqrt{2-x^2}} f(x,y) dy$ Câu 17. Tìm hệ số góc tiếp tuyến k của giao tuyến giữa mặt cong $z=f(x,y)=e^{x^2+y}+x-y^2$ và mặt phẳng x=-1 tại P(-1,-1,-1).

 (A) k=3(B) k=-1(C) k=1(D) k=0**Câu 18.** Tại một công ty, tiền thưởng cuối năm của mỗi công nhân là hàm số T = f(x, y), với x là bậc lương hiện tại của mỗi người và y là lợi nhuận của công ty trong năm đó. Nếu x tính theo thứ tự 1, 2, 3..., y tính theo tỷ đồng, T tính theo triệu đồng, thì $f_x^\prime(3,20)=0.5$ có nghĩa là A Các câu khác đều sai. B Từ mốc (x,y)=(3,20), tăng một bậc lương, tiền thưởng tăng thêm một nửa.
 - Từ mốc (x,y)=(3,20), tăng một bậc lương, tiền thưởng tăng 0.5 triệu đồng.
 - $\stackrel{\frown}{\mathbb{D}}$ Từ mốc (x,y)=(3,20), lợi nhuận công ty tăng một tỷ, tiền thưởng tăng 0.5 triệu đồng.

CHỦ NHIỆM BỘ MÔN

Đề 3028 ĐÁP ÁN

Câu 1. B	Câu 4. C	Câu 7. B	Câu 10. B	Câu 13. (C)	Câu 16. (C)
Câu 2. A	Câu 5. B	Câu 8. D	Câu 11. B	Câu 14. (A)	Câu 17. (A)
Câu 3. (B)	Câu 6. B	Câu 9. (D)	Câu 12. (A)	Câu 15. (C)	Câu 18. (C)

ĐỂ KIẾM TRA GIỮA HOC KỲ 172 Môn thi: Giải tích 2

Giờ thi: CA 2

ĐAI HOC BÁCH KHOA TP HCM Khoa Khoa học ứng dụng -BM Toán ứng dụng

ĐỀ CHÍNH THỰC

(Đề thi 18 câu / 2 trang)

Ngày thi 29/03/2018. Thời gian làm bài: 45 phút. (Sinh viên không được sử dụng tài liệu)

Đề 3029

Câu 1. Cho
$$f(x,y) = \arctan\left(\frac{x}{y} + 3x\right) - y^2$$
. Tìm d $f(0,-1)$ nếu d $x = 0.2$ và d $y = 0.3$.

(A) df(0,-1) = -0.2 (B) df(0,-1) = 4

(C) df(0,-1) = 0.6 (D) df(0,-1) = 1

Câu 2. Khai triển Maclaurint hàm $f(x,y) = \frac{\sin x}{1+x-y}$ đến bậc 3.

(A) $f(x,y) = x - x^2 - xy + x^3 + xy^2 - 2x^2y + R_3$ (B) $f(x,y) = x - x^2 + xy + \frac{5}{6}x^3 + xy^2 + R_3$

C $f(x,y) = x - x^2 + xy + \frac{5}{6}x^3 + xy^2 - 2x^2y + R_3$

(A) $\left(\sqrt{2}, -\frac{3}{\sqrt{2}}\right)$ (B) $\left(-\sqrt{2}, -\frac{3}{\sqrt{2}}\right)$ (C) $\left(-\sqrt{2}, \frac{3}{\sqrt{2}}\right)$

Câu 4. Nhận dạng mặt bậc 2 sau $x^2 + 2y^2 + 3z^2 - 6z$

(A) Mặt Ellipsoid

B) Mặt Paraboloid Hyperbolic

(C) Mặt nón

(D) Mặt Hyperboloid 2 tầng

Tính tích phân $\int_{0}^{2} dx \int_{0}^{\sqrt{2x-x^2}} \frac{1}{\sqrt{x^2+y^2}} dy$.

D Các câu khác đều sai

Câu 6. Viết tích phân kép $\iint\limits_D f(x,y) \mathrm{d}x \mathrm{d}y \text{ với } D = \{(x,y) | x^2 + y^2 \le 2, x \ge 0, y \ge \sqrt{x}\} \text{ thành tích phân lặp}$ $\text{A} \int\limits_0^{\sqrt{2}} \mathrm{d}y \int\limits_{-\infty}^{\sqrt{2-x^2}} f(x,y) \mathrm{d}x$ $\text{B} \text{ Các câu khác đều sai} \quad \text{C} \int\limits_0^1 \mathrm{d}x \int\limits_{\sqrt{x}}^{\sqrt{2-x^2}} f(x,y) \mathrm{d}y$

Câu 7. Khi tìm cực trị của $f(x,y)=\frac{2}{x}+\frac{1}{y}+xy, (x,y)$ trên miền $\in D=\{(x,y)\in \mathbf{R_2}/x>0, y>0\}$, kết luận nào dưới đây là đúng?

(A) f đạt cực tiểu tại $\left(\sqrt[3]{4}, \frac{1}{\sqrt[3]{5}}\right)$

 \bigcirc B $\left(\sqrt[3]{4}, \frac{1}{\sqrt[3]{2}}\right)$ không là điểm dừng của f.

 \bigcirc f đạt cực đại tại $\left(\sqrt[3]{4}, \frac{1}{\sqrt[3]{2}}\right)$

(D) f không có cực trị.

Câu 8. Tìm hệ số góc tiếp tuyến k của giao tuyến giữa mặt cong $z = f(x,y) = e^{x^2+y} + x - y^2$ và mặt phẳng x = -1 tại P(-1, -1, -1).

(A) k = -1

(C) k=1

(D) k=0

Câu 9. Một viên thuốc hình trụ hòa tan được trong nước. Tìm vận tốc giảm thể tích của viên thuốc khi bán kính R=10mm và độ dày là h=1mm nếu biết bán kính của nó giảm với vận tốc 0.05mm/s, độ dày giảm với vận tốc 0.1mm/s

 $(A) \approx 34.56 mm^3/s$

(B) Các câu khác sai.

 \bigcirc $\approx 9.42mm^3/s$

 $(D) \approx 0.47 mm^3/s$

T				
Câu 10. Cho $z = e^{\frac{z}{y}}$	f(x+y). Biết $f'(1) = f(1)$	0=1, tìm giá trị đúng của b	iểu thức $z_x^\prime(0,1)+z_y^\prime(0,1)$	
A 2	B 0	© 3	D 1	
	aân $I=\int_0^1 dx \int_1^2 \frac{1}{y^3} e^{\frac{x}{y}} dy$			
2		4	$-\frac{1}{2} \qquad \boxed{\mathbf{D}} \ I = e - \sqrt{e} + \frac{1}{2}$	
tại của mỗi	ng ty, tiền thưởng cuối năm c người và y là lợi nhuận của c n theo triệu đồng, thì $f_x'(3,20)$	công ty trong năm đó. Nếu \boldsymbol{x}	$\delta T = f(x,y)$, với x là bậc lương tính theo thứ tự $1,2,3,y$ tính th	g hiện neo tỷ
)=(3,20), tăng một bậc lượ		nột nửa. B Các câu khác đều	u sai.
)=(3,20), tăng một bậc lượ			
)=(3,20), lợi nhuận công t		ng 0.5 triệu đồng.	
Câu 13. Tìm miền x	ác định D của hàm $f(x,y)=$	$= \ln \frac{x - y^2}{y^2}.$		
	ặt phẳng phía bên phải đường			
<u> </u>	ặt phẳng phía bên trái đường			
	ặt phẳng phía bên trái đường ặt phẳng phía bên phải đườn <mark>g</mark>	T A T		
	$(x,y) = (x-y)\ln(1+x+$	1		
)=-3 D Các câu khác SA	I
Câu 15. Tính tích ph	nân $\iint x \mathrm{d}x \mathrm{d}y$ với $D = \{(x)\}$	$(x,y) \in \mathbf{R_2}/1 \le x^2 + y^2 \le 4$	$\{-y \le x \le y\}.$	
$\bigcirc A \frac{7(2-\sqrt{2})}{3}$	B Các câu khác	c đều sai \bigcirc $\frac{3(2-\sqrt{2})}{2}$	D 0	
		12 và điểm $M(-1,2)$ Hướn	g giảm nhanh nhất của f khi đi ${f q}$	ua M
	(4,-6)	EU SC (20, -15)	(D) (-16,15)	
là	xác định từ phương trình z a	$ rctan y - z^2 + x^2 = 2 và z($	$-\sqrt{3},0)=-1$. Giá trị của $z_x'(-\sqrt{3},0)$	$\sqrt{3}, 0)$
		\bigcirc $\sqrt{3}$	(D) $-2\sqrt{3}$	
Câu 18. Cho hàm số của hàm f t		_	$0, x^2 + y^2 \le 3 \}$. Tìm giá trị lớn nh	ıất M
	\bigcirc B $M=3$	$\bigcirc M = -2$	\bigcirc $M=2$	
		<u>C</u>	HỦ NHIỆM BỘ MÔN	

 $\mathbf{\hat{D}}$ ê 3029 $\mathbf{\hat{D}}$ **AP** $\mathbf{\hat{A}}$ N

Câu 1. D	Câu 4. (A)	Câu 7. (A)	Câu 10. (C)	Câu 13. (A)	Câu 16. (A)
Câu 2. C	Câu 5. B	Câu 8. B	Câu 11. B	Câu 14. B	Câu 17. (C)
Câu 3. (A)	Câu 6. (C)	Câu 9. (A)	Câu 12. (C)	Câu 15. (A)	Câu 18. (D)

$\mathbf{D}\mathbf{\hat{E}}$ KIỂM TRA GIỮA HỌC KỲ 172 Môn thi: Giải tích 2

Giờ thi: CA 2

ĐẠI HỌC BÁCH KHOA TP HCM Khoa Khoa học ứng dụng -BM Toán ứng dụng

ĐỀ CHÍNH THỨC

 $(\dot{\mathcal{D}}\dot{\hat{e}})$ thi 18 câu / 2 trang)

Ngày thi 29/03/2018. Thời gian làm bài: 45 phút. (Sinh viên không được sử dụng tài liệu)

			Đ ề 3030
Câu 1. Tìm hệ số góc tiếp to $x = -1$ tại $P(-1) = 0$		mặt cong $z = f(x, y) = e^x$	$^{2+y}+x-y^{2}$ và mặt phẳng
x = -1 tại P(-1, -1) $ A k = -1$		$\bigcirc k = 1$	
Câu 2. Cho $z(x,y)$ xác định là	từ phương trình $z \arctan y$ —	$z^2 + x^2 = 2 \text{ và } z(-\sqrt{3}, 0) =$	= -1 . Giá trị của $z_x'(-\sqrt{3},0)$
	(B) $-2\sqrt{3}$	\bigcirc $\sqrt{3}$	$\bigcirc -\frac{\sqrt{3}}{2}$
Câu 3. Tính tích phân $\int_{0}^{2} dx$	$\int_{0}^{\sqrt{2x-x^2}} \frac{1}{\sqrt{x^2+y^2}} \mathrm{d}y.$	C. N.	
A 4	$\int_{0}^{\infty} \frac{1}{\sqrt{x^2 + y^2}} dy.$ B) Các câu khác đều sai	© 0	D 2
Câu 4. Cho hàm số $f(x, y)$ = của hàm f trên miền	\mathcal{D}	*^	
			\bigcirc $M=3$
Câu 5. Cho hàm $f(x,y) = ($			03.4
	B Các câu khác SAI		
Câu 6. Một viên thuốc hình $R=10mm$ và độ dà vận tốc $0.1mm/s$		·	của viên thuốc khi bán kính $0.05mm/s$, độ dày giảm với
\bigcirc $\Rightarrow 34.56mm^3/s$	$\bigcirc B \approx 0.47 mm^3/s^{HCMU}$	\bigcirc $\approx 9.42 mm^3/s$	D Các câu khác sai.
	t hàm $f(x,y) = \frac{\sin x}{1+x-y}$ o		
	$y + x^3 + xy^2 - 2x^2y + R_3$ $y + \frac{5}{6}x^3 + xy^2 - 2x^2y + R_3$		$y + x^3 + xy^2 - 2x^2y + R_3$
	9		
đồng, T tính theo triệ (A) Từ mốc $(x,y)=(3,20)$ (B) Từ mốc $(x,y)=(3,20)$		ong năm đó. Nếu x tính theo theo giáng là hưởng tăng thêm một nửa. Sốt tỷ, tiền thưởng tăng 0.5 triệ	thứ tự $1, 2, 3, y$ tính theo tỷ
Câu 9. Khi tìm cực trị của <i>f</i> nào dưới đây là đúng	?	trên miền $\in D = \{(x,y) \in$	${\bf R_2}/x>0, y>0\},$ kết luận
A f đạt cực tiểu tại $\sqrt[3]{4}$ C f đạt cực đại tại $\sqrt[3]{4}$	$\left(\overline{1}, \frac{1}{\sqrt[3]{2}}\right)$	B f không có cực trị.	
\bigcirc f đạt cực đại tại $\left(\sqrt[3]{4}\right)$	$,\frac{1}{\sqrt[3]{2}}$		điểm dừng của f .

Câu 10. Tính tích phân $I = \int_0^1 dx \int_1^2 \frac{1}{y^3} e^{\frac{x}{y}} dy$ $\frac{3(2-\sqrt{2})}{2}$ (A) $\frac{7(2-\sqrt{2})}{2}$ D Các câu khác đều sai Câu 12. Cho $z=e^{\frac{x}{y}}f(x+y)$. Biết f'(1)=f(1)=1, tìm giá trị đúng của biểu thức $z_x'(0,1)+z_y'(0,1)$ Câu 13. Cho $f(x,y) = \arctan\left(\frac{x}{y} + 3x\right) - y^2$. Tìm df(0,-1) nếu dx = 0.2 và dy = 0.3. (A) $\mathrm{d}f(0,-1) = -0.2$ (B) $\mathrm{d}f(0,-1) = 1$ (C) $\mathrm{d}f(0,-1) = 0.6$ (D) $\mathrm{d}f(0,-1) = 4$ (Câu 14. Viết tích phân kép $\iint\limits_D f(x,y)\mathrm{d}x\mathrm{d}y$ với $D = \{(x,y)|x^2+y^2 \leq 2, x \geq 0, y \geq \sqrt{x}\}$ thành tích phân lặp

$$\left(-\sqrt{2}, \frac{3}{\sqrt{2}}\right)$$

Câu 17. Nhận dạng mặt bậc 2 sau $x^2 + 2y^2 + 3z^2 - 6z = 0$

- (C) Măt nón
- A Mặt Ellipsoid B Mặt Hyperboloid 2 tầng D Mặt Paraboloid Hyperbolic

Tìm miền xác định D của hàm $f(x,y) = \ln \frac{x-y^2}{u^2}$.

- $ig(ar{\mathbf{A}} ig) D$ là phần mặt phẳng phía bên phải đường parabol $x=y^2$ bỏ trục $\mathbf{O}\mathbf{x}$
- $\bigcirc \hspace{0.1cm} D$ là phần mặt phẳng phía bên phải đường parabol $x=y^2$
- \bigcirc D là phần mặt phẳng phía bên trái đường parabol $x=y^2$ bỏ trục Ox
- \bigcirc D là phần mặt phẳng phía bên trái đường parabol $x=y^2$

CHỦ NHIÊM BÔ MÔN

Đề 3030 ĐÁP ÁN

Câu 1. D	Câu 4. B	Câu 7. C	Câu 10. D	Câu 13. B	Câu 16. (A)
Câu 2. C	Câu 5. D	Câu 8. C	Câu 11. A	Câu 14. (C)	Câu 17. A
Câu 3. (D)	Câu 6. (A)	Câu 9. (A)	Câu 12. (C)	Câu 15. (A)	Câu 18. (A)

