Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/007888

International filing date: 26 April 2005 (26.04.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-139994

Filing date: 10 May 2004 (10.05.2004)

Date of receipt at the International Bureau: 22 July 2005 (22.07.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 5月10日

出 願 番 号

Application Number: 特願2004—139994

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2004-139994

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人 松下電器産業株式会社

Applicant(s):

2005年 7月 6日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願 【整理番号】 2370060021 【提出日】 平成16年 5月10日 【あて先】 特許庁長官殿 【国際特許分類】 H05B 6/64【発明者】 【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【氏名】 末永 治雄 【発明者】 【住所又は居所】 松下電器産業株式会社内 大阪府門真市大字門真1006番地 【氏名】 守屋 英明 【発明者】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】 【氏名】 酒井 伸一 【発明者】 大阪府門真市大字門真1006番地 【住所又は居所】 松下電器產業株式会社內 【氏名】 森川 久 【発明者】 大阪府門真市大字門真1006番地 【住所又は居所】 松下電器産業株式会社内 【氏名】 木下 学 【発明者】 大阪府門真市大字門真1006番地 【住所又は居所】 松下電器産業株式会社内 【氏名】 城川 信夫 【特許出願人】 【識別番号】 0 0 0 0 0 5 8 2 1 【氏名又は名称】 松下電器産業株式会社 【代理人】 【識別番号】 100105647 【弁理士】 【氏名又は名称】 小栗 昌平 【電話番号】 03-5561-3990 【選任した代理人】 【識別番号】 100105474 【弁理士】 【氏名又は名称】 本多 弘徳 【電話番号】 03-5561-3990 【選任した代理人】 【識別番号】 100108589 【弁理士】 【氏名又は名称】 市川 利光 【電話番号】 03-5561-3990 【選任した代理人】 【識別番号】 100115107 【弁理士】

【氏名又は名称】

【電話番号】

高松 猛

03-5561-3990

【選任した代理人】 【識別番号】 1 0 0 0 9 0 3 4 3 【弁理士】 【氏名又は名称】 濱田 百合子 【電話番号】 03-5561-3990 【手数料の表示】 【予納台帳番号】 0 9 2 7 4 0 【納付金額】 16,000円 【提出物件の目録】 【物件名】 特許請求の範囲 【物件名】 明細書 図面 【物件名】 【物件名】 要約書]

【包括委任状番号】 0002926

【書類名】特許請求の範囲

【請求項1】

直流電源と、2個の半導体スイッチング素子からなる直列回路と、リーケージトランスの1次巻線とコンデンサが接続された共振回路とを有し、前記直列回路は前記直流電源に並列に接続し、かつ交流等価回路において前記共振回路の一端は前記直列回路の中点に、他端は前記直流電源の一端に接続されると共に、それぞれの前記半導体スイッチング素子を駆動する駆動手段と、前記リーケージトランスの2次巻線に接続される整流手段と、前記整流手段に接続されるマグネトロンとから成るマグネトロン駆動用の高周波加熱装置であって、それぞれの半導体スイッチング素子が同時にオフしているデッドタイムをスイッチング周波数に応じて可変にする可変デッドタイム作成回路を備え、かつ、前記スイッチング周波数が高くなったとき前記デッドタイムがそれ以上広がらない限界を設けたことを特徴とする高周波加熱装置。

【請求項2】

直流電源と、2個の半導体スイッチング素子からなる直列回路の2組と、リーケージトランスの1次巻線とコンデンサが接続された共振回路とを有し、前記2組の直列回路はそれぞれ前記直流電源に並列に接続し、前記共振回路の一端は前記一方の直列回路の中点に接続されると共に、それぞれの前記半導体スイッチング素子を駆動する駆動手段と、前記リーケージトランスの2次巻線に接続される整流手段と、前記整流手段に接続されるマグネトロンとから成るマグネトロン駆動用の高周波加熱装置であって、それぞれの半導体スイッチング素子が同時にオフしているデッドタイムをスイッチング周波数に応じて可変にする可変デッドタイム作成回路を備え、かつ、前記スイッチング周波数が高くなったとき前記デッドタイムがそれ以上広がらない限界を設けたことを特徴とする高周波加熱装置。

【請求項3】

直流電源と、2個の半導体スイッチング素子からなる直列回路と、リーケージトランスの1次巻線とコンデンサが接続された共振回路とを有し、前記直列回路は前記直流電源に並列に接続し、前記共振回路は前記半導体スイッチング素子の一方に並列接続されると共に、それぞれの前記半導体スイッチング素子を駆動する駆動手段と、前記リーケージトランスの2次巻線に接続される整流手段と、前記整流手段に接続されるマグネトロンとから成るマグネトロン駆動用の高周波加熱装置であって、それぞれの半導体スイッチング素子が同時にオフしているデッドタイムをスイッチング周波数に応じて可変にする可変デッドタイム作成回路を備え、かつ、前記スイッチング周波数が高くなったとき前記デッドタイムがそれ以上広がらない限界を設けたことを特徴とする高周波加熱装置。

【請求項4】

前記可変デッドタイム作成回路はスイッチング周波数が高くなるにしたがってデッドタイムを増加させることを特徴とする請求項1~3のいずれか1項記載の高周波加熱装置。

【請求項5】

前記可変デッドタイム作成回路は、所定のスイッチング周波数以下でデッドタイムを一定または微増させることを特徴とする請求項4記載の高周波加熱装置。

【請求項6】

前記可変デッドタイム作成回路は、所定のスイッチング周波数以上でデッドタイムを急増させることを特徴とする請求項5記載の高周波加熱装置。

【請求項7】

所定のスイッチング周波数以下での前記デッドタイムの一定値または微増値が可変であることを特徴とする請求項5記載の高周波加熱装置。

【請求項8】

所定のスイッチング周波数以上での前記デッドタイムの急増値が可変であることを特徴とする請求項6記載の高周波加熱装置。

【請求項9】

所定のスイッチング周波数の値が可変であることを特徴とする請求項5又は6記載の高

周波加熱装置。

【請求項10】

前記可変デッドタイム作成回路はスイッチング周波数が高くなるにしたがってデッドタイムを階段状に増加させるものであることを特徴とする請求項1~3のいずれか1項記載の高周波加熱装置。

【請求項11】

前記可変デッドタイム作成回路は、スイッチング周波数の増加に比例して第一の傾きで変化し、かつ所定のスイッチング周波数からは第二の傾きで変化するプラスおよびマイナスのそれぞれのオフセット電圧を基にデッドタイムを作成するものであることを特徴とする請求項1~10のいずれか1項記載の高周波加熱装置。

【請求項12】

前記可変デッドタイム作成回路は、VCC電源と、デューティ制御電源と、スイッチング周波数に比例して変化する第一の電流と、所定の周波数から流れ出しかつスイッチング周波数に比例して変化する第二の電流と、前記二つの電流を合成してかつ所定の係数をかけた第三の電流と、前記デューティ制御電源に前記第三の電流に比例したプラスおよびマイナスのそれぞれのオフセット電圧を付加して成る二つの上位・下位電位を作成する上位・下位電位作成手段とを有し、前記二つの上位・下位電位を基にデッドタイムを作成することを特徴とする請求項1~11のいずれか1項記載の高周波加熱装置。

【請求項13】

前記デューティ制御電源の電圧および前記スイッチング周波数の少なくとも一方を変化させて入力電力または入力電流制御を行うようにしたことを特徴とする請求項12記載の高周波加熱装置。

【請求項14】

半導体スイッチング素子を含むアームを少なくとも1つ有する周波数制御型共振インバータ回路から構成されるマグネトロン駆動用の高周波加熱装置であって、それぞれの半導体スイッチング素子が同時にオフしているデッドタイムをスイッチング周波数に応じて可変にする可変デッドタイム作成回路を備えたものにおいて、

前記可変デッドタイム作成回路は、スイッチング周波数の増加に比例して第一の傾きで変化し、かつ所定のスイッチング周波数からは第二の傾きで変化するプラスおよびマイナスのそれぞれのオフセット電圧を基にデッドタイムを作成するものであることを特徴とする高周波加熱装置。

【書類名】明細書

【発明の名称】高周波加熱装置

【技術分野】

本発明は、電子レンジなどのようにマグネトロンを用いた高周波加熱に関するものであり、特にそのインバータ回路に関するものである。

【背景技術】

 $[0\ 0\ 0\ 2]$

高周波加熱装置に搭載されている従来の電源は重たくて、かつ大きいものであったので、その小型、軽量化が望まれてきた。このため、電源のスイッチング化による小型、軽量、低コスト化が現在の様々な分野で積極的に進められてきた。マグネトロンで発生されるマイクロ波により食品を調理する高周波加熱装置では、マグネトロンを駆動するための電源の小型化、軽量化が要求され、スイッチング化されたインバータ回路により実現された

[0003]

このうち、特に、本発明が対象としている高周波インバータ回路は、2石でブリッジのアームを構成したスイッチング素子を用いた共振型回路方式のものである(例えば、特許文献 1 参照)。

【特許文献1】特開2000-58252号公報

 $[0\ 0\ 0\ 4\]$

 $[0\ 0\ 0\ 5]$

図1は本発明に係るインバータ共振回路に一定電圧を印加した場合の電流対使用周波数特性を示す線図である。

周波数f0がインバータ回路のLC共振回路の共振周波数で、この周波数f0より上の周波数範囲f1~f3の電流一周波数特性曲線I1を使用している。

共振周波数 f 0 の時が電流 I 1 は最大で、周波数範囲が f 1 から f 3 へ高くなってゆくにしたがって電流 I 1 は減少する。周波数範囲 f 1 ~ f 3 の うち、低周波になるほど共振周波数に近づくので電流 I 1 は増加し、したがって、リーケージトランスの 2 次側に流れる電流は大きくなる。逆に、周波数が高くなるほど共振周波数から遠ざかるので、リーケージトランスの 2 次側に流れる電流は小さくなる。非線形負荷である電子レンジを動作させるインバータ回路にあっては、この周波数を変えることにより出力を変えている。

マグネトロンの非線形負荷を使用する電子レンジは、後述するように入力される電源が 酉用電源のような交流の場合、スイッチング周波数を変化させている。

それぞれの高周波出力においても90度および270度付近が最も高い周波数になるが、例えば電子レンジを200Wで使用する場合はf3近傍に、500Wの場合はそれより低く、1000Wの場合はさらに低い周波数になる。当然であるが、入力電力または入力電流制御を行っているので、商用電源電圧、マグネトロン温度等の変化により、この周波数は変化している。

また、前記電源位相の0度および180度付近は、高電圧を印加しないと高周波発振しないマグネトロンの特性に合わせて、共振電流が大きくなる共振周波数 f 0 近傍の f 1 近傍に設定することで商用電源電圧に対するマグネトロン印加電圧の昇圧比を高め、マグネトロンから電波が発せられる商用電源の位相幅を広くする設定にしている。

 $[0\ 0\ 0\ 6]$

図2は特許文献1に記載の2石ブリッジのスイッチング素子で駆動する共振型高周波加熱装置の1例を示している。図2において、高周波加熱装置は、直流電源1、リーケージトランス2、第1の半導体スイッチング素子6、第1のコンデンサ4、第2のコンデンサ5、第3のコンデンサ(平滑コンデンサ)13、第2の半導体スイッチング素子7、駆動部8、全波倍電圧整流回路10、およびマグネトロン11とから構成されている。

直流電源1は商用電源を全波整流して直流電圧VDCを、第2のコンデンサ5とリーケージトランス2の1次巻線3との直列回路に印加する。第1の半導体スイッチング素子6と第2の半導体スイッチング7とは直列に接続され、リーケージトランス2の1次巻線3と第2のコンデンサ5との直列回路は第2の半導体スイッチング素子7に並列に接続されている。

$[0\ 0\ 0\ 7\]$

第1のコンデンサ4は第2の半導体スイッチング7に並列に接続されている。リーケージトランス2の2次巻線9で発生した高電圧出力は、全波倍電圧整流回路10で直流の高電圧に変換されてマグネトロン11のアノードーカソード間に印加されている。リーケージトランス2の3次巻線12は、マグネトロン11のカソードに電流を供給する。

[0008]

第1の半導体スイッチング素子6は、IGBTと、それに並列に接続されるフライホイールダイオードとから構成されている。第2の半導体スイッチング素子7も同様にIGBTとダイオードとから構成されている。

当然であるが、前記第1、第2の半導体スイッチング素子6,7はこの種類に限定されるものではなく、サイリスタ、GTOスイッチング素子等を用いることもできる。

[0009]

駆動部8は、その内部に第1の半導体スイッチング素子6と第2の半導体スイッチング素子7の駆動信号をつくるための発振部を有し、この発振部で所定周波数とデューティの信号が発生され、第1の半導体スイッチング素子6に駆動信号を与えている。

第1および第2の半導体スイッチング素子6,7は交互に、また後述するデッドタイム作成手段により、第1および第2の半導体スイッチング素子6,7が共にオフしている期間、すなわちデッドタイムを設けて駆動される。

このデッドタイムの詳細は後述するが、第1あるいは第2の半導体スイッチング素子6,7の一方がターンオフした直後は、他方の半導体スイッチング素子の両端電圧は高いので、この時点でターンオンさせるとスパイク状の過大電流が流れ、不要な損失、ノイズが発生する。デッドタイムにより、この両端電圧が約0Vに減少するまでターンオンが遅れるので、前記損失、ノイズが防止される。当然、逆の切り換わり時も同様の働きをする。

$[0 \ 0 \ 1 \ 0]$

図3は、図2の回路が動作する各モードを示している。

また、図4は回路中の半導体スイッチング素子等の部品の電圧電流波形図を示している

図において、(a)モード1は第1の半導体スイツチング素子6に駆動信号が与えられる。このとき電流は直流電源1からリーケージトランス2の1次巻線3と第2のコンデンサ5を通って流れる。

$[0\ 0\ 1\ 1]$

(b)モード2では第1の半導体スイッチング素子6がオフし、1次巻線3と第2のコンデンサ5を通って流れていた電流は第1のコンデンサ4に向かって流れ始めると同時に第1の半導体スイッチング素子6の電圧が上昇する。

$[0\ 0\ 1\ 2]$

(c)モード3では第1のコンデンサ4の電圧がVDCから0Vに向かう。モード3では第1のコンデンサ4の両端電圧が0Vに達して、第2のスイッチング素子7を構成するダイオードがオンする。

$[0\ 0\ 1\ 3]$

(d) モード4では共振により1次巻線3と第2のコンデンサ5を通って流れていた電

流の向きが反転するようになるので、この時点で第2の半導体スイッチング素子7がオンしている必要がある。モード2, 3, 4の期間は第1の半導体スイッチング素子6の電圧は直流電源電圧VDCと同等となる。欧州のように商用電源電圧が実効値230Vの地域は電圧ピークが $\sqrt{2}$ 倍になるので直流電源電圧VDCはおよそ325Vとなる。

$[0\ 0\ 1\ 4]$

(e)モード5では第2の半導体スイッチング素子7がオフし、第2のコンデンサ5と 1次巻線3に流れていた電流は第1のコンデンサ4に向かって流れ始め、第1のコンデン サ4の電圧がVDCまで上昇する。

[0015]

(f)モード6では第1のコンデンサ4の電圧がVDCに達して、第1の半導体スイッチング素子6を構成するダイオードがオンする。共振により1次巻線3と第2のコンデンサ5を通って流れていた電流の向きが反転するようになり、この時点で第1の半導体スイッチング素子5をオンしておく必要あり、これがモード1となる。モード6、1の期間は第2の半導体スイッチング素子7の電圧は直流電源電圧VDCと同等となる。

この回路構成によれば第1の半導体スイッチング素子6と第2の半導体スイッチング素子7に印加する電圧の最大値を直流電源電圧VDCとすることができる。

$[0\ 0\ 1\ 6\]$

モード 2 とモード 5 は 1 次巻線 3 からの電流が第 1 のコンデンサ 4 と第 2 のコンデンサ 5 に電流が流れる共振期間である。第 1 のコンデンサ 4 の容量値は第 2 のコンデンサ 5 の容量値の 1 1 0 以下に設定しているので、合成容量は、ほぼ第 1 のコンデンサ 4 の容量値に近くなる。この合成容量とリーケージトランス 3 のインピーダンスとで決まる時定数で第 1 の半導体スイッチング素子 6 と第 2 の半導体スイッチング素子 7 に印加するモード 3 、5 における電圧が変化する。この電圧変化が前記した時定数できまる傾きを持つことにより、第 1 の半導体スイッチング素子のモード 3 におけるオフ時のスイッチング損失が軽減される。

[0017]

さらに、モード5では電圧がゼロになるので第1の半導体スイッチング素子のモード1におけるオン時は、第1の半導体スイッチング素子の印加電圧はゼロであるためオン時のスイッチング損失が低減される。これをゼロ電圧スイッチングと呼び、これらが共振回路方式の特徴であり、本方式はこの特徴を活かし、かつ、半導体スイッチング素子の電圧は直流電源電圧VDC以上にはならないという利点がある。第2のコンデンサ5は図4に示すように、その電圧がリップルの少ないものになるように十分大きな容量値に設定している

[0018]

ところで、図2のように、半導体スイッチング素子6と7の直列接続回路が直流電源1に並列に接続されているような2石でアームを構成するインバータ回路においては、半導体スイッチング素子6と7が交互にオン・オフを繰り返えすことで、リーケージトランス2の1次巻線3に高周波交流を発生させ、その2次巻線9に高圧高周波を誘導しているのであるが、半導体スイッチング素子6と7が同時にオンしている期間が一瞬たりともあってはならない。直流電源1の短絡が生じるからである。

$[0\ 0\ 1\ 9]$

そこで、従来から、半導体スイッチング素子6と7の一方の半導体スイッチング素子がターンオフしてから他方の半導体スイッチング素子がターンオンするまでに、半導体スイッチング素子6と7のどちらもオンとならない期間(デッドタイム(略してDT))を必ず設けていた。

[0020]

そこで、デッドタイムについて図4を用いて説明する。図4は上記各モード1~6における第1および第2の半導体スイッチング素子6、7(図2)と第1および第2のコンデンサ4、5の電圧、電流波形を示している。

(a)は上記各モード 1~6における第1の半導体スイッチング素子6の電流波形で、

t 0 時点から導通していた(したがって、(b)で半導体スイッチング素子6のエミッタ・コレクタ間電圧はゼロ)半導体スイッチング素子6がモード1の終了時点t1でターンオフ(電流ゼロになる)している。

一方、(d)は第2の半導体スイッチング素子7の電圧波形で、t0時点からオフであった半導体スイッチング素子7は、オン信号が加えられるモード3の開始時点t2までオフが続く。

したがって、t1時点からt2時点までの期間DT1は、第1の半導体スイッチング素子6および第2の半導体スイッチング素子7が共にオフとなっている。

この期間 D T 1 がデッドタイムに要求される最小値であり、最大値は t 1 時点から t 3 時点までの期間であり、この範囲内においてデッドタイムが許容される。

同じく、(c)のように、第2の半導体スイッチング素子7が t 4 時点でターンオフ(電流ゼロとなる)してから、(a)のように第1 の半導体スイッチング素子6 にオン信号が加えられるモード6 の開始時点 t 5 までの期間 DT 2 がデッドタイムに要求される最小値であり、最大値は t 4 時点から t 6 時点までの期間であり、この範囲内においてデッドタイムが許容される。

$[0\ 0\ 2\ 1\]$

従来の2石インバータ回路においては、このデッドタイムDTは半導体スイッチング素子6、7のそれぞれのターンオン、ターンオフに重なりが生じない範囲を計算で求めて期間DT1,DT2としており、この値は固定であった。

【発明の開示】

【発明が解決しようとする課題】

[0022]

ところが電子レンジのインバータ回路の場合、周波数が高い領域で駆動しているときは後述するように、一方の半導体スイッチング素子がターンオフした後、他方の半導体スイッチング素子のエミッターコレクタ間電圧Vceが0に落ちるまでの時間が長くなる。したがって、上記一方の半導体スイッチング素子がターンオフした後、固定のデッドタイム経過後に上記他方の半導体スイッチング素子にターンオン信号を印加すると、上記他方の半導体スイッチング素子にターンオン信号を印加すると、上記他方の半導体スイッチング素子にターンオンに落ちない間にターンオンすることになりスイッチング周波数が高い場合、半導体スイッチング素子に熱損失が発生しうることが判った。すなわち、半導体スイッチング素子がターンオフ中であっても、周波数が高い領域で駆動しているときは時定数が長くなって、半導体スイッチング素子のエミッターコレクタ間電圧Vceが0に落ちない間に、ターンオン信号が入るから、熱損失が発生し、しかもスパイク電流が発生するのでノイズの発生源となった。

[0023]

この熱損失が発生しノイズの発生する理由を同じく図4を用いて説明する。

(a)において、半導体スイッチング素子6がt1時点でターンオフ(電流ゼロになる)しても、(d)で他方の半導体スイッチング素子7の両端の電圧(実線)が0に下がるのに時間t1-t2を必要としている。したがって、t2時点で他方の半導体スイッチング素子7にターンオン信号が加えられると、半導体スイッチング素子7のエミッターコレクタ間の電圧が0に下がっているので、半導体スイッチング素子7は電圧からオン(導通)することとなり(これを「ゼロボルトスイッチング」と言う。)、熱損失やノイズの問題は生じない。

$[0\ 0\ 2\ 4]$

ところが、v dcの台形の傾きは共振の強さによって変わる。共振が強い(周波数が低い)と傾きが急で半導体スイッチング素子7の両端の電圧が早くゼロとなるが、共振が弱い(周波数が高くなる)と傾きが緩くなるので、ゼロボルトまで下がるのに時間がかかる。このように周波数が高い領域で駆動しているときは、共振周波数から離れているので、時定数が長くなって、(d)において、他方の半導体スイッチング素子7の両端の電圧(点線で示す)が0に下がるまでの時間が長くなり、時間 t 1 - t 2 の間に下がりきらず、時刻 t 2 を過ぎてもまだ所定の電圧(点線F のV t 2 を参照)が加わっている。

したがって、通常通り、時点t2で半導体スイッチング素子7にオン信号が加えられると、半導体スイッチング素子7のエミッターコレクタ間に所定の電圧Vt2が加わったままでオンするので熱損失が発生した。また、大きなdv/dtの発生による急峻なスパイク電流が流れ、ノイズ源となった。

[0025]

このようなハードスイッチング(電圧又は電流がゼロでなくても強制的に行うスイッチング)が行われても、デッドタイムは確保されているので、電源短絡といったような事故に繋がるものではなく、単にIGBTに熱損失が余分に発生するだけであり、しかしこれらの熱損失はヒートシンクで冷却されるので、これが生じてもインバータ動作は正常に続けられた。

また、スパイク電流によるノイズは、大きな問題として取り上げられる値ではなかった。

このため、従来のインバータ回路においては、ハードスイッチングの弊害については全 く問題とされなかった。

[0026]

本発明は従来問題とされなかったこの問題に着目した点が特徴である。

半導体スイッチング素子に熱損失が余分に発生することは、無駄なエネルギーがそこで費やされることであり、省エネルギーの面から好ましくなく、さらに半導体スイッチング素子の寿命に影響すること、また最近のIC、CPUの駆動は微小信号化しているので、ノイズの発生は今後問題となる可能性があることから、そこで本発明はこれらの欠点を解決するためになされたものである。

したがって、本発明の目的は、半導体スイッチング素子に熱損失の発生し難い、したがって無駄なエネルギーが費やされることのない、半導体スイッチング素子の寿命に悪影響を及ぼさない、かつノイズの発生し難いインバータ回路を提供することにある。

[0027]

さらに、上記の半導体スイッチング素子の寿命に悪影響を及ぼさない、かつノイズの発生し難いDT付きのインバータ回路が得られた場合において、周波数が大きく上がると、IGBTをONさせる信号が全く出ないことが起きる可能性があった。また、デュテイ制御をしたときにもIGBTをONさせる信号が全く出ないことが起き、IGBTが破壊する可能性があった。

そこで、本発明の第2の目的は、ノイズの発生し難いDT付きのインバータ回路が得られた場合において、周波数が大きく上がってもまたデュテイ制御をしたときにもIGBTを限界において必ずIGBTをONさせるようにして、IGBTの破壊防止ができる高周波加熱装置を提供することにある。

【課題を解決するための手段】

[0028]

上記課題を解決するため、請求項1記載の高周波加熱装置の発明は、直流電源と、2個の半導体スイッチング素子からなる直列回路と、リーケージトランスの1次巻線とコンデンサが接続された共振回路とを有し、前記直列回路は前記直流電源に並列に接続し、かつ交流等価回路において前記共振回路の一端は前記直列回路の中点に、他端は前記直流電源の一端に接続されると共に、それぞれの前記半導体スイッチング素子を駆動する駆動手段と、前記リーケージトランスの2次巻線に接続される整流手段と、前記整流手段に接続されるマグネトロンとから成るマグネトロン駆動用の高周波加熱装置であって、それぞれの半導体スイッチング素子が同時にオフしているデッドタイムをスイッチング周波数に応じて可変にする可変デッドタイム作成回路を備え、かつ、前記スイッチング周波数が高くなったとき前記デッドタイムがそれ以上広がらない限界を設けたことを特徴とする。

[0029]

請求項2記載の高周波加熱装置の発明は、直流電源と、2個の半導体スイッチング素子からなる直列回路の2組と、リーケージトランスの1次巻線とコンデンサが接続された共振回路とを有し、前記2組の直列回路はそれぞれ前記直流電源に並列に接続し、前記共振

回路の一端は前記一方の直列回路の中点に、他端は他方の直列回路の中点に接続されると共に、それぞれの前記半導体スイッチング素子を駆動する駆動手段と、前記リーケージトランスの2次巻線に接続される整流手段と、前記整流手段に接続されるマグネトロンとから成るマグネトロン駆動用の高周波加熱装置であって、それぞれの半導体スイッチング素子が同時にオフしているデッドタイムをスイッチング周波数に応じて可変にする可変デッドタイム作成回路を備え、かつ、前記スイッチング周波数が高くなったとき前記デッドタイムがそれ以上広がらない限界を設けたことを特徴とする。

請求項3記載の高周波加熱装置の発明は、直流電源と、2個の半導体スイッチング素子からなる直列回路と、リーケージトランスの1次巻線とコンデンサが接続された共振回路とを有し、前記直列回路は前記直流電源に並列に接続し、前記共振回路は前記半導体スイッチング素子の一方に並列接続されると共に、それぞれの前記半導体スイッチング素子を駆動する駆動手段と、前記リーケージトランスの2次巻線に接続される整流手段と、前記サーケージトランスの2次巻線に接続される整流手段と、前記整流手段に接続されるマグネトロンとから成るマグネトロン駆動用の高周波加熱装置であって、それぞれの半導体スイッチング素子が同時にオフしているデッドタイムをスイッチング周波数に応じて可変にする可変デッドタイム作成回路を備え、かつ、前記スイッチング周波数が高くなったとき前記デッドタイムがそれ以上広がらない限界を設けたことを特徴とする。

請求項4記載の発明は、請求項1~3のいずれか1項記載の高周波加熱装置において、前記可変デッドタイム作成回路はスイッチング周波数が高くなるにしたがってデッドタイムを増加させることを特徴とする。

請求項5記載の発明は、請求項4記載の高周波加熱装置において、前記可変デッドタイム作成回路は、所定のスイッチング周波数以下でデッドタイムを一定または微増させることを特徴とする。

請求項6記載の発明は、請求項5記載の高周波加熱装置において、前記可変デッドタイム作成回路は、所定のスイッチング周波数以上でデッドタイムを急増させることを特徴とする。

請求項7記載の発明は、請求項5記載の高周波加熱装置において、所定のスイッチング 周波数以下での前記デッドタイムの一定値または微増値が可変であることを特徴とする。

請求項8記載の発明は、請求項6記載の高周波加熱装置において、所定のスイッチング周波数以上での前記デッドタイムの急増値が可変であることを特徴とする。

請求項9記載の発明は、請求項5又は6記載の高周波加熱装置において、所定のスイッチング周波数の値が可変であることを特徴とする。

請求項10記載の発明は、請求項1~3のいずれか1項記載の高周波加熱装置において、前記可変デッドタイム作成回路はスイッチング周波数が高くなるにしたがってデッドタイムを階段状に増加させるものであることを特徴とする。

請求項11記載の発明は、請求項1~10のいずれか1項記載の高周波加熱装置において、前記可変デッドタイム作成回路は、スイッチング周波数の増加に比例して第一の傾きで変化し、かつ所定のスイッチング周波数からは第二の傾きで変化するプラスおよびマイナスのそれぞれのオフセット電圧を基にデッドタイムを作成するものであることを特徴とする。

請求項12記載の発明は、請求項1~11のいずれか1項記載の高周波加熱装置において、前記可変デッドタイム作成回路は、VCC電源と、デューティ制御電源と、スイッチング周波数に比例して変化する第一の電流と、所定の周波数から流れ出しかつスイッチング周波数に比例して変化する第二の電流と、前記二つの電流を合成してかつ所定の係数をかけた第三の電流と、前記デューティ制御電源に前記第三の電流に比例したプラスおよびマイナスのそれぞれのオフセット電圧を付加して成る二つの上位・下位電位を作成する上位・下位電位作成手段とを有し、前記二つの上位・下位電位を基にデッドタイムを作成することを特徴とする。

請求項13記載の発明は、請求項12記載の高周波加熱装置において、前記デューティ制御電源の電圧および前記スイッチング周波数の少なくとも一方を変化させて入力電力ま

たは入力電流制御を行うようにしたことを特徴とする。

請求項14記載の高周波加熱装置の発明は、半導体スイッチング素子を含むアームを少なくとも1つ有する周波数制御型共振インバータ回路から構成されるマグネトロン駆動用の高周波加熱装置であって、それぞれの半導体スイッチング素子が同時にオフしているデッドタイムをスイッチング周波数に応じて可変にする可変デッドタイム作成回路を備えたものにおいて、前記可変デッドタイム作成回路は、スイッチング周波数の増加に比例して第一の傾きで変化し、かつ所定のスイッチング周波数からは第二の傾きで変化するプラスおよびマイナスのそれぞれのオフセット電圧を基にデッドタイムを作成するものであることを特徴とする。

【発明の効果】

[0030]

以上のような構成を採ることにより、IGBTに熱損失の発生し難い、したがって無駄なエネルギーが費やされることのない、またノイズの発生し難いインバータ回路を得ることが可能となる。

【発明を実施するための最良の形態】

$[0\ 0\ 3\ 1\]$

図5は本発明に係る2石ブリッジの駆動する高周波加熱装置を示している。

図において、この高周波加熱装置は、直流電源1、リーケージトランス2、第1の半導体スイッチング素子6、第1のコンデンサ4、第2のコンデンサ5、第3のコンデンサ(平滑コンデンサ)13、第2の半導体スイッチング素子7、駆動部8、全波倍電圧整流回路10、およびマグネトロン11とで主回路が構成されている。主回路の構成は図2と同じであるので、重複説明は省略する。

そして、半導体スイッチング素子6、7を制御する制御回路は、入力電流 I i n と基準電流 R e f とからその差を求める制御信号作成回路21と、制御信号作成回路21と交流全波信号とから周波数変調信号を作成する周波数変調信号作成回路22と、周波数変調信号作成回路22から三角波搬送波を作成する発振回路23と、デッドタイムをスイッチング周波数の大きさによって変化させる本発明によって設けられた可変デッドタイム作成回路24と、発振回路23の三角波出力と可変デッドタイム作成回路24のVQ7CとVQ8Cの各出力から各矩形波を形成する矩形波形成回路25と、矩形波形成回路25の出力によってスイッチング素子をオン/オフさせるバルスを発生するスイッチング素子駆動回路26から構成され、スイッチング素子駆動回路26の各出力がスイッチング素子(IGBT)6、7のゲートに与えられる。

[0032]

なお、制御信号作成回路21では、図示のように入力電流 Iinと基準電流Refを入力してその差を用いているが、その他、図示しないけれどもマグネトロンが非発振状態、すなわち入力電流が非常に少ない状態におけるマグネトロンへの過大電圧印加を防止するために、マグネトロンに印加する電圧と基準電圧とを制御信号作成回路21に入力してその差を用いて印加電圧を制御する機能を制御信号作成回路21に併設することも推奨される。

[0033]

このようなトランジスタQ8、Q7のコレクタ電圧は、可変デッドタイム作成回路24からそれぞれ矩形波形成回路25に送られる(図5)。また、発振回路23の三角波出力も矩形波形成回路25に送られる。

矩形波形成回路 2 5 はコンパレータ 2 5 1, 2 5 2 の 2 個を有し、コンパレータ 2 5 1 の反転入力端子(一)にトランジスタQ8のコレクタ電圧 V Q8C が、コンパレータ 2 5 2 の非反転入力端子(+)にトランジスタQ7のコレクタ電圧 V Q7C が与えられ、コンパレータ 2 5 1 の非反転入力端子(+)とコンパレータ 2 5 2 の反転入力端子(一)に発振回路 2 3 の三角波出力が与えられる。

各コンパレータ251,252は、非反転入力端子(+)の電位が反転入力端子(-)の電位よりも低いときは出力はなく(電位ゼロ)、非反転入力端子(+)の電位が反転入

力端子(一)の電位を超えている間は出力を出す(電位ハイ)ようになっている。

[0034]

図6はデッドタイムの作成原理を説明する図で、(a)は発振回路23と可変デッドタイム作成回路24の各出力と矩形波形成回路25の出力の関係を説明する図、(b)は周波数が低い範囲では周波数が変わってもデッドタイムDTが変わらない原理を説明する図である。

図6において、t1時点より前では、コンパレータ252(図5参照)は非反転入力端子(+)の電位V0.70が反転入力端子(-)の三角波の電位を超えているので半導体スイッチング素子がオンしている(出力1)。同じ時、コンパレータ251は非反転入力端子(+)の三角波の電位が反転入力端子(-)の電位V0.80よりも低いので半導体スイッチング素子はオフである(出力0)。

[0035]

- (1) t 1 時点で、コンバレータ252は非反転入力端子(+)の電位 V Q70 が反転入力端子(-)の三角波の電位より低くなるので出力0となる。
 - (2) t 1 ~ t 4、コンパレータ252は出力0が続く。
- - (4) t2~t3、コンパレータ251は出力1が続く。
- (5) t 3 時点で、コンパレータ 2 5 1 は非反転入力端子(+)の三角波の電位が反転入力端子(-)の電位 V Q80よりも低くなるので出力は 0 となる。
- (6) t 4 時点で、コンパレータ252は非反転入力端子(+)の電位 V Q 7 C が反転入力端子(-)の三角波の電位より高くなるので出力1となる。
 - (7) t 4~t 5で、コンパレータ252は出力1が続く。
- (8) t 5 時点で、コンパレータ252は非反転入力端子(+)の電位 V Q 7 C が反転入力端子(-)の三角波の電位より低くなるので出力0となる。
 - (9) t3~t6、コンパレータ251は出力0が続く。

以下、同様に繰り返す。

[0036]

コンパレータ251,252の出力はスイッチング素子(IGBT)駆動回路26に与えられて、同じタイミングでスイッチング素子6、7がオン、オフされる。

このようにして、スイッチング素子6、7が同時にオフとなっている期間t1~t2、 t3~t4、t5~t6がデッドタイムDTとして得られる。

[0037]

従来はデッドタイムDTの期間は周波数如何にかかわらず一定(固定)であったが、本発明においては、このデッドタイムDTをスイッチング周波数に応じて、所定のスイッチング周波数 f l より小さいときはデッドタイムDTは所定の不変値(または微増値)とし、所定のスイッチング周波数 f l より大きいときはデッドタイムDTは増加させることを特徴としている。

[0038]

そこで、図6(b)を用いて、所定のスイッチング周波数flより小さいときはデッドタイムDTは所定の不変値となる原理を説明する。

図で周波数が高い(実線)ときは、図6(a)で先に実線のV Q80とV Q70と三角波を用いて説明したように、V Q80とV Q70と三角波との間で、電位V Q70が三角波の電位より低くなる t 1 時点で出力 0 となり、三角波の電位が電位V Q80より高くなり出力 1 となる t 2 時点までの間がデッドタイム D T として確保される。

そこで周波数が低くなると点線で示す三角波となり、その傾きは緩くなる。そこで本発明では、同じデッドタイムDTが得られるようにするため、t1時点とt2時点からそれぞれ点線で示す三角波に向けて引いた垂線との交点C1、C2を通る電位VQ7C1とVQ8C1となるように、各オフセット電圧を決めている。抵抗R8、R7は一定であるので、このようなオフセット電圧となるような電流I8、I7を各抵抗R8、R7に流すようにして

いる。

このようにすることにより、周波数が変化して三角波が実線から点線のように変わったとしても、点線で示す三角波が2つの電位 V Q701と V Q801を横切る時点 t 1、 t 2 は同じ時点となるので、デッドタイム D T は同じになる。

[0039]

図7は本発明に係る可変デッドタイム作成回路の具体例である。

図において、Q01、Q02、Q1 ~ Q8 はトランジスタ、R1 ~ R10 は抵抗である。トランジスタQ1、Q3、Q4、Q5、Q6、Q7、Q8 に流れる電流をそれぞれ I1、I3、I4、I5、I6、I7、I8とし、トランジスタQ5、Q6、Q7のエミッタ電位をそれぞれ、VQ5 E、VQ6 E、VQ7 Eとし、トランジスタQ7、Q8 のコレクタ電位をそれぞれ VQ7 C、VQ8 Cとする。トランジスタQ1とQ2とでカレントミラー回路を構成している。同じくトランジスタQ1とQ04とで、トランジスタQ3とQ4とで、トランジスタQ05とQ8とで、それぞれカレントミラー回路を構成している。トランジスタQ04の出力は発振回路23(図12) ~ 与えられる。

また、トランジスタQ1とQ3とはそれぞれエミッタ側をVccに、コレクク側をそれぞれトランジスタQ01とQ03のコレクタ側に接続され、トランジスタQ01とQ03のエミッタ側はそれぞれ端子MOD、端子DTADDに接続され、端子MODと端子DTADDはそれぞれ分圧抵抗を介して接地されている。トランジスタQ01とQ03のベースはトランジスタQ02のエミッタ側に接続され、トランジスタQ02のコレクタ側は接地されている。トランジスタQ02のベースには周波数変調信号作成回路22(図5)の出力である発振周波数の制御電圧が加えられる。

[0040]

トランジスタQ8のベースにはカレントミラー回路を構成するトランジスタQ05のベース電圧が加えられる。トランジスタQ05、Q8の特性が等しく、各抵抗値も等しければ、I6=I7=I8、I3=I4、となる。

ただし、I 1 = I 2、I 3 = I 4、I 6 = (I 7 = I 8)

に限定されるものではなく、比例関係にあればよい。

なお、 I 7 = I 8 は必要である。

$[0 \ 0 \ 4 \ 1]$

次に、可変デッドタイム作成回路の動作(すなわち、所定にスイッチング周波数以下のときはデッドタイムDTを不変(または微増)とし、所定のスイッチング周波数以上のときはデッドタイムDTを増加させる)について説明する。

[0042]

1) I3が流れていない範囲(すなわち、発振周波数が低い範囲)ではデッドタイムDTが不変(または微増)となる理由:

I3が流れていない範囲では、

I 1 = I 2 = I 5 、 E 5 E 5 、 E 5

 $I 5 \times R 5 = I 6 \times R 6 = I 7 \times R 9 = I 1 \times R 5$ \ \text{\text{L}}

トランジスタQ8、Q7に流れる電流I8、I7はそれぞれ次のようになる。

 $I 8 = I 6 = I 1 \times (R 5 / R 6)$

 $I 7 = I 1 \times (R 5 / R 9)$

オフセット電圧VR8、VR7はそれぞれ次のようになる。

 $VR8 = I8 \times R8 = \{I11 \times (R5/R6)\} \times R8$

 $= I 1 \times R 5 \times (R 8 / R 6)$

 $V R 7 = I 1 \times R 5 \times (R 7 / R 9)$

VQ8CとVQ7Cは、6Vに上記オフセット電圧を加減したものであるから、

 $V \otimes S = 6 V + V R S = 6 V + I 1 \times R 5 \times (R S / R 6)$

 $V = 6 V - V R 7 = 6 V - I 1 \times R 5 \times (R 7 / R 9) \cdot \cdot \cdot (1)$

[0043]

このように、周波数が低い(デッドタイムが一定でよい)範囲での電流 I 8 , I 7 は三角波の充放電電流 I 1 と比例関係にあるので、三角波の充放電電流 I 1 を何倍かした値で用いることができる。これは図 7 のようなミラー回路で実現できる。電流 I 5 に対して電流 I 6 と I 8 をある一定の関係に置き、電流 I 6 と I 8 を同じにし、電流 I 5 に対して電流 I 7 をある一定の関係に置いて、電流 I 7 と電流 I 8 は同じにしている。

 $[0 \ 0 \ 4 \ 4]$

すなわち、DTを一定としたとき、周波数が上がれば各オフセット電圧VQ70とVQ80V はそれぞれ6Vに対して開く方向に降下・上昇させる必要がある。これを図6で説明する と、周波数が上がれば図6(b)において、「f小」なる特性線図(点線)から「f大」 なる特性線図(実線)に移動し、特性線図が次第に立ち上がっていくので、DTを一定に 保つには、オフセット電圧 V Q 7 C は 6 V に対してより降下させ、逆にオフセット電圧 V Q 8 C は6Vに対してより上昇させることとなる。そして周波数が大きく上がると、オフセット VQ70は0V以下となってしまい、これではIGBTをONさせる信号が全く出ないこと になってしまう。また、デッドタイムの制御のためにオフセット電圧VQ70とVQ80を連動 させて上下させるには中心電圧6Vを変えればよく、この中心電圧6Vを変えることによ って、2個のトランジスタQ8、Q7のオン・オフの比を変える(デュテイ制御)ことが できる。よってこの回路はデュテイ制御の場合にもデッドタイムの可変に有効なのである が、この中心電圧6Vを可変とし、中心電圧6Vを下げていったときにオフセット電圧V Q70とVQ80も連動して下がるので、オフセット電圧VQ70が0V以下となってしまい、こ れではIGBTをONさせる信号が全く出ないことになってしまう。そこで、周波数が上 がっても、また、デュテイ制御がなされても、所定の限界においてIGBTをONさせる ようにするためIGBTの破壊防止ができるデッドタイムリミット回路240を設けたの が特徴である。

[0045]

図8は図7の可変デッドタイム作成回路に設けるデッドタイムリミット回路240の具体例である。

図において、240は本発明に係るデッドタイムリミット回路である。デッドタイムリミット回路はVQ70電位側およびVQ80電位側の2カ所に設けられた回路から成る。

まず、図のV Q70電位側において、トランジスタ246がVcc電源と抵抗R7のV Q70電位側との間に接続され、このトランジスタ246のベースとアースの間にトランジスタ247が挿入され、このトランジスタ247のベースーアース間に第1のリミット電圧V 101を出すバッテリー249が挿入されている。

ところが、オフセット電圧 V Q 7 C がリミット電圧 V 101以下になろうとすると、トランジスタ246はON状態になり、V c c から電流を補充し始め、リミット電圧 V 101以下に

なろうとするのを阻止する。

[0046]

一方、図8のVQ&C電位側において、トランジスタ242が抵抗R8のVQ&C電位側とアースの間に接続され、このトランジスタ242のベースとVcc間にトランジスタ241が挿入され、このトランジスタ241のベースーアース間に第2のリミット電圧V100を出すバッテリー244が挿入されている。

オフセット電圧 V Q80がリミット電圧 V L00より低いときは、トランジスタ242はOFF 状態にあり、オフセット電圧 V Q80はリミット電圧 V L00より低い範囲で自由に動きうる

[0047]

図8において、トランジスタ241および247の負荷は、それぞれ抵抗243および248で構成しているが、抵抗の代わりに定電流負荷を用いる構成であっても、同様の効果が得られる。また、当然であるが、図示の回路構成および使用部品に限定されるものではない。

[0048]

なお、図6で明らかなように、VQ7CおよびVQ8Cの電位にリミッタを設けることで、周波数が高くなってもIGBTのONを確保できる。ただし、リミット時のON時間幅は、1/周波数に比例するため、周波数が高くなるとリミット時のON幅が短くなり、共振エネルギーを得るために必要なON時間幅が確保できなくなるという課題がある。

そこで、周波数変調信号作成回路22に周波数の上限値を制限する機能を設けることで、マグネトロン温度等の変動により周波数が高くなっても、それ以上周波数は高くならないようにできる。

したがって、周波数が高くなっても、IGBTのONを確保するためには、最高周波数を制限し、かつ、その最高周波数時において必要なON時間幅が得られるようにリミット電位を適切に設定する必要がある。

[0049]

図9は、本発明に係る可変デッドクイム作成回路が有する電流一周波数特性を示している。

図において、I1、I3、I5はそれぞれ図7のトランジスタQ1、Q3、Q5に流れる電流である。I5はI1+I3である。

周波数が低いf1以下においては、電流I1(15)は一定(151)ないし微増(I52)となっているが、周波数がf1以上の高い範囲においては、周波数f1を変曲点としてI3が急峻に流れ始めるので、これとI1との合計であるI5は急激に増加する。

$[0\ 0\ 5\ 0]$

以上のV Q8CとV Q7Cの式(1)と図9とから判ることは、発振周波数が低い範囲ではV Q8CとV Q7Cは共に発振回路のコンデンサの充放電電流I 1 に比例したオフセット電圧が得られるので、図9のように充放電電流I 1 が一定であればデッドタイムは一定になり、また充放電電流I 1 が微増となればデッドタイムも微増となるということである。

$[0\ 0\ 5\ 1]$

2) これに対して、I3が流れている範囲((すなわち、発振周波数が高い範囲)ではデッドタイムDTが変わる。その理由を次に述べる。

図7において、発振周波数が低い範囲では電流 I3=0だったが、発振周波数が高い範囲では電流 I3を次のようにして流すようにしている。すなわち、発振周波数制御電圧のトランジスタQ02のエミッタ電位が接点 DTADD点の電位よりも低いときは、端子DTADDに接続されているトランジスタQ03はオンしない(したがって、電流 I3は流れなかった)が、発振周波数制御電圧のトランジスタQ02のエミッタ電位が端子DTADD点の電位よりも高くなると、端子DTADDに接続されているトランジスタQ03は

オンするので、電流 I 3 が流れ出す。図9において、発振周波数が f 1 より低い領域では電流 I 5 1 は一定又は電流 I 5 2 は微増であったが、発振周波数が f 1 より高い領域では、それまで0であった I 3 が急激に流れ始めるので、I 5 = I 1 + I 3 となる。

I3が流れている範囲では、

I 5 = I 2 + I 4 = I 1 + I 3

 $I 5 \times R 5 = I 6 \times R 6 = I 7 \times R 9 = (I1+I3) \times R 5$ 、となる。

したがって、トランジスタQ8、Q7のコレクタ電圧はそれぞれ式(2)のようになる

 $V @ 8C = 6 V + V R 8 = 6 V + (I 1 + I 3) \times R 5 \times (R 8 / R 6)$ $V @ 7C = 6 V - V R 7 = 6 V - (I 1 + I 3) \times R 5 \times (R 7 / R 9)$

 $\cdots \cdots (2)$

(a)の回路において、第1のコンデンサ41,第2のコンデンサ42,の容量設定により、第3のコンデンサ5を省略した回路においても同様の効果が得られる。

[0052]

以上のV Q8CとV Q7Cの式(2)と図9とから判ることは、V Q8CとV Q7Cは共に電流 I 3 に比例したオフセット電圧が得られ、図9のように電流 I 3 が急増すると、トランジスタQ8とQ7のコレクタ電位V Q8CとV Q7Cは電流 I 5 (= I 1 + I 3)の関数となっているので、電流 I 5 が増加し、これにつれてトランジスタQ8とQ7のコレクタ電位V Q8CとV Q7Cは増加する。そして各コレクタ電位V Q8CとV Q7Cが増加すると、図6においてコレクタ電位V Q8Cは図示の位置よりも上昇し、V Q7Cは図示の位置よりも降下するので、デッドタイム D T の開始点である三角波とV Q7Cの交点は早くなり、デッドタイム D T の終了点である三角波とV Q8Cの交点は遅くなるため、デッドタイム D T は図示の幅よりも増加する。

[0053]

このように、本発明によれば、図10(a)のように、所定のスイッチング周波数 f 1 以下でデッドタイム D T を一定(または微増、線図L1)させ、所定のスイッチング周波数 f 1 以上でデッドタイム D T を急増させている(線図L2)のが特徴である。そして更に、リミット周波数 f Lにおいてデッドタイム D T をリミットしているので、これにより I G B T の限界における O N を確保し、 I G B T の破壊防止ができる。

$[0\ 0\ 5\ 4]$

図10(b)は図10(a)の変形例である。

図10(b)の(イ)は図10(a)の所定のスイッチング周波数 f 1以下での前記デッドタイムの一定値または微増値L1をL11、L12、L13のように可変とし、および所定のスイッチング周波数 f 1以上でのデッドタイム D T の急増値L2を、L21、L22、L23のように可変としている。

これは図7の端子DTMULTIの抵抗R5と抵抗R6の比率を変えることで行える。 すなわち、I5 \times R5=I6 \times R6

であるから、R5とR6の比を変えればI5とI6の比も変わる。I6はI7,I8の値を決めているので、I5とI6の比が変われば、I5に対するI7,I8の値も変わるので、6Vからのオフセット電圧も変わる。よってデッドタイムDTも変わる。このようにすれば、デッドタイムDTは同じ周波数であっても変わることができる。

そして更に、リミット周波数 f Lにおいて各線図L21、L22、L23でそのデッドタイムDTをリミットしているので、これによりIGBTの限界におけるONを確保し、IGBTの破壊防止ができる。

[0055]

図10(b)の(ロ)は図10(a)の所定のスイッチング周波数f1においてデッドタイム勾配をL24、L25、L26のように可変としている。

この匀配は接点DTADDの上下の抵抗R31,R32の合成抵抗値で決まる。合成抵抗値が大きいとVccから流れる電流は余り流れないので、傾きは小さくなり(L26)、逆に合成抵抗値が小さいとVccから流れる電流は多くなり、傾きは大きくなる(L2

4)。すなわち、電流 I 3 が多く流れると、電流 I 7, I 8 も多く増えるので、抵抗 R 7, R 8 の電圧降下が多くなり、6 V からのオフセット電圧が増える。したがって、トランジスタQ8、Q7のコレクタ電圧は前記式(2)によって、増加する。

なお、発振周波数が高くなるとデッドタイムDTが狭まる方向に作用するが、オフセット電圧の増加はそれ以上にデッドタイムDTが長くなる方向に働く。

そして更に、リミット周波数 f Lにおいて各線図L24、L25、L26でそのデッドタイムDTをリミットしているので、これによりIGBTの限界におけるONを確保し、IGBTの破壊防止ができる。

[0056]

図10(b)の(ハ)は図10(a)の変曲点となる所定のスイッチング周波数f1を、f0、f2のように可変としている。

この変曲点は端子DTADD点の上下の抵抗R31,R32の抵抗比によって変えられる。すなわち、トランジスタ \mathbf{q} 02のベースに加えられる発振周波数制御電圧がその抵抗比で決まる電圧を超えたら電流 \mathbf{I} 3が流れ始めるので、この抵抗R31,R32の抵抗比が変曲点となる。抵抗R31>R32であれば抵抗比で決まる電圧は低いので早く電流 \mathbf{I} 3が流れ始める。電流 \mathbf{I} 3が流れると、電流 \mathbf{I} 7、 \mathbf{I} 8も流れるので、抵抗R7,R8の電圧降下が生じ、6 \mathbf{V} からのオフセット電圧が増え、したがって、トランジスタQ8、Q7のコレクタ電圧は前記式(2)によって増加し、デッドタイム \mathbf{D} 7 は早く増加を始める(\mathbf{f} 0)。逆に、抵抗R31<R32であれば抵抗比で決まる電圧は高いので電流 \mathbf{I} 3が流れ始めるまでに時間がかかり、デッドタイム \mathbf{D} 7の増加は遅く始まる(\mathbf{f} 2)。

そして更に、リミット周波数 f Lにおいて各線図L27、L28、L29でそのデッドタイムDTをリミットしているので、これによりIGBTの限界におけるONを確保し、IGBTの破壊防止ができる。

$[0\ 0\ 5\ 7]$

図11はデッドタイムDTの可変の第2の実施例である。

図10(a)では変曲点となる所定のスイッチング周波数 f 1 を境にデッドタイム D T は、スイッチング周波数 f 1 以下ではL 1 のように一定または微増であり、スイッチング周波数 f 1 以上ではL 2 のように急増させるものであったが、図11では、スイッチング周波数が f 0、f 1、f 2、f 3 と高くなるにしたがってデッドタイム D T をそれぞれ L 3、L 4、L 5、L 6 と階段状に増加させるものである。

このような階段状の構成は、図10(b)の(イ)で説明したデッドタイムL11、L12、L13を作成する手法を採用すればよい。すなわち、図7の端子DTMULTIの抵抗R5と抵抗R6をトランジスタ等の可変抵抗素子で構成し、所定の周波数でその比率を変えるようにすればよい。

[0058]

図 1 2 は図 5 の発振回路 2 3 の 1 例を示している。

発振回路 23 はコンパレータ 231, 232 の 2 個を有し、コンバレータ 231 の反転入力端子 a (一)に分圧抵抗 235 の電圧 V1 が、コンパレータ 232 の非反転入力端子 b (十)に分圧抵抗 236 の電圧 V2 (ただし、V1>V2)が、コンパレータ 231 の非反転入力端子 b (十)とコンパレータ 232 の反転入力端子 a (一)にコンデンサ 234 の電圧が与えられる。

各コンパレータ231,232は、非反転入力端子b(+)の電位が反転入力端子a(-)の電位よりも低いときは出力はゼロ、非反転入力端子b(+)の電位が反転入力端子a(-)の電位を超えている間は出力1を出すようになっている。

[0059]

各オペア7プ231,232の出力は、SRフリップフロップ233のS端子とR端子に入れられる。SRフリップフロップ233の非Q端子の出力でコンデンサ234の充放電回路が形成される。

そこで、今、図12に示すように、コンデンサ234の充電回路が形成されていると、 コンデンサ234の電位が上昇する。このコンデンサ234の電位が出力される。これに 伴ってコンパレータ231の非反転入力端子b(十)の電位が上昇し、反転入力端子a(一)の電位V1を超えたとき出力1がS端子に加えられ、非Q端子の出力でコンデンサ234の旅電回路が形成される。以後、コンデンサ234の電位が降下し、このコンデンサ234の電位が出力される。これに伴ってコンパレータ232の非反転入力端子b(十)の電位が降下し、反転入力端子a(一)の電位V2以下になったとき出力1がR端子に加えられ、非Q端子の出力でコンデンサ234の充電回路が形成される。

以上のようにして、コンデンサ234の充放電電位が出力され、三角波発振回路23が得られる。また、充電電流Irの大きさで、三角波の匀配が決まる。

[0060]

なお、本発明に係る2石ブリッジの駆動する高周波加熱装置のインバータ回路としては、図5で示した高周波加熱装置に限られるものではなく、この他2石でブリッジのアームを構成したスイッチング素子を用いた共振型回路方式のインバータ回路であればすべてに適用可能である。

図13はこれらのインバータ回路の3種を示すものである。

図13(a)において、直流電源1は商用電源を全波整流して直流電圧VDCを第1のコンデンサ41と第2のコンデンサ42との直列接続回路に、および第1の半導体スイッチング素子6と第2の半導体スイッチング素子7との直列接続回路に印加する。第1のコンデンサ41と第2のコンデンサ42の接続点と第1の半導体スイッチング素子6と第2の半導体スイッチング素子7の接続点との間にリーケージトランス2の1次巻線3と第3のコンデンサ5の直列接続回路が接続されている。第1の半導体スイッチング素子6と第2の半導体スイッチング素子7の各ベースには、駆動部8とからの制御信号が与えられる。そして駆動部8の中に、本発明に係る可変デッドタイム作成回路24が組み込まれている。なお、リーケージトランス2の2次側およびマグネトロンは図示省略している。

可変デッドタイム作成回路24により、所定のスイッチング周波数以下でデッドタイムを一定または微増させ、所定のスイッチング周波数以上でデッドタイムを急増させることを行っているので、半導体スイッチング素子に熱損失の発生し難い、かつノイズの発生し難いインバータ回路が得られる。

$[0\ 0\ 6\ 1]$

図13(b)において、直流電源1は商用電源を全波整流して直流電圧VDCをリーケージトランス2の1次巻線3と第1のコンデンサ5と第2のコンデンサ43との直列接続回路に、および第1の半導体スイッチング素子6と第2の半導体スイッチング素子7との直列接続回路に印加する。第1のコンデンサ5と第2のコンデンサ43の接続点と第1の半導体スイッチング素子6と第2の半導体スイッチング素子7の接続点との間を短絡している。第1の半導体スイッチング素子6と第2の半導体スイッチング素子7の各ベースには、駆動部8とからの制御信号が与えられる。そして駆動部8の中に、本発明に係る可変デッドタイム作成回路24が組み込まれている。なお、リーケージトランス2の2次側およびマグネトロンは図示省略している。

可変デッドタイム作成回路24により、所定のスイッチング周波数以下でデッドタイムを一定または微増させ、所定のスイッチング周波数以上でデッドタイムを急増させることを行っているので、半導体スイッチング素子に熱損失の発生し難い、かつノイズの発生し難いインバータ回路が得られる。

$[0\ 0\ 6\ 2]$

図13(c)はフルブリッジ回路を示す回路である。

図において、直流電源1は商用電源を全波整流して直流電圧VDCを第1の半導体スイッチング素子61と第2の半導体スイッチング素子71との直列接続回路におよび第3の半導体スイッチング素子62と第4の半導体スイッチング素子72との直列接続回路にそれぞれ印加する。第1の半導体スイッチング素子61と第2の半導体スイッチング素子71の接続点と第3の半導体スイッチング素子62と第4の半導体スイッチング素子72の接続点との間にリーケージトランス2の1次巻線3と第3のコンデンサ5の直列接続回路が接続されている。第3のコンデンサ5は省略することができる。第1の半導体スイッチン

グ素子61、第2の半導体スイッチング素子71、第3の半導体スイッチング素子62、そして第4の半導体スイッチング素子72の各ベースには、駆動部8とからの制御信号が与えられる。そして駆動部8の中に、本発明に係る可変デッドタイム作成回路24が組み込まれている。なお、リーケージトランス2の2次側およびマグネトロンは図示省略している。

可変デッドタイム作成回路24により、所定のスイッチング周波数以下でデッドタイムを一定または微増させ、所定のスイッチング周波数以上でデッドタイムを急増させることを行っているので、半導体スイッチング素子に熱損失の発生し難い、かつノイズの発生し難いインバータ回路が得られる。

[0063]

図14は本発明に係るインバータ回路の周波数対位相特性を示す線図である。図14において、電圧の低い位相0や180度近傍では周波数を小さくし、位相90度や180度近傍では周波数を大きくするようにしている。このことにより、電圧の低い位相0や180度近傍では周波数を小さくしているので、図1の電流対使用周波数特性から出力電流(電圧)は大きくなり、逆に位相90度や270度近傍では電圧は十分に高いので、周波数を最大にして図1の電流対使用周波数特性から出力電流(電圧)を絞っている。その結果、図15に示すように、位相0度~180度(180度~360度)に亘って出力電圧は均一に近いものとなる。

$[0\ 0\ 6\ 4]$

これに対して、図14の周波数対位相特性を点線F0で示す線図のように位相に対して何も変化させない場合は、電圧の低い位相0や180度近傍でも周波数は大きいので、図1の電流対使用周波数特性から出力電流(電圧)は小さいままであり、その結果、図15に点線V1で示すように、位相0度や180度近傍で十分な電圧が得られないものとなってしまう。

$[0\ 0\ 6\ 5]$

また、実線F1は直流電源をつくるときの交流電流をCTで転出した入力電流Ri(図5)が基準電流Refと等しくて誤差ゼロの場合の周波数一位相線図であり、実線F2は入力電流Riが基準電流Refよりも大きい場合の周波数一位相線図であり、図1の使用範囲内で周波数を高くして電流を下げるようにし、実線F3は入力電流Riが基準電流Refよりも小さい場合の周波数一位相線図であり、図1の使用範囲内で周波数を低くして電流を増加させている。

$[0\ 0\ 6\ 6]$

図15において、Vinは商用電源の電圧波形であり、その上の点線V1は全位相に亘ってある一定の周波数でスイッチングした場合の電圧波形で、V0はさらにこれに図14のような周波数変調を加えるた電圧(昇圧トランスの2次側電圧)である。Vin、V1、V0はそれぞれ比率は大きく異なるが見易いように同一図上に表している。図14の点線F0のように変調をかけない一定の周波数のときの昇圧トランスの2次側電圧は点線V1であり、この波形は非線形であるマグネトロンの負荷には整合していない。これに対して、図14の線図F1のように、電圧の低い位相0や180度近傍では周波数を小さくし、位相90度や180度近傍では周波数を大きくすることにより、電圧の低い位相0や180度近傍では出力電流(電圧)は大きくなり、逆に位相90度や270度近傍では出力電流(電圧)に示すように、位相0度~180度(180度~360度)に亘ってどの位相においても一定の電圧が昇圧トランスの2次側に発生するようにしている。この波形は非線形であるマグネトロンの負荷には整合している。

$[0\ 0\ 6\ 7]$

なお、図5のスイッチング素子(IGBT)6、7をデュテイ制御した場合も、この可変デッドタイム作成回路はデッドタイムの制御に有効である。なぜなら、デッドタイムの制御のためにコレクク電圧VQ7(とVQ8)を連動させて上下させるには、中心電圧6Vを変えればよく、この6Vを変えることによって、2個のトランジスタQ8、Q7のオン・オフの比を変える(デュテイ制御)ことができるからである。すなわち、2っのトランジス

タのデューティ比が50対50のとき(12 V電源で動作させているので、6 Vで動作させているとき)が出力が最も高く、6 V以下または以上にしてゆくと、2 つのトランジスタのコレクタ電圧 V(8Cと V(97Cを連動させて同時に上下させることになり、2 つのトランジスタのオン・オフ比が変わってゆき、したがって出力が減ってゆく。しかしながら、この場合でも、抵抗 R 8 と R 7 に発生するオフセット電圧は変わらないので、一定のまま推移する。よってこの回路はデュティ制御の場合にもデッドタイムの可変に有効となることが判る。

[0068]

以上のように、本発明によれば、直流電源と、前記直流電源に並列に接続された2個の 半導体スイッチング素子(IGBT)から成る直列接続回路と、前記2個の半導体スイッ チング素子の一方の半導体スイッチング素子の両端に接続されるリーケージトランスの1 次巻線とコンデンサから成る直列接続回路と、前記一方の半導体スイッチング素子または 前記他方の半導体スイッチング素子の両端に接続される別のコンデンサと、前記2個の半 導体スイッチング素子のそれぞれを駆動する駆動手段と、前記リーケージトランスの2次 巻線に接続される整流手段と、前記整流手段に接続されるマグネトロンと、から構成され る高周波加熱装置であって、前記2個の半導体スイッチング素子が同時にオフしているデ ッドタイムをスイッチング周波数に応じて可変にする可変デッドタイム作成回路を前記駆 動手段内に備えたことを特徴とするものであり、具体的には、スイッチング周波数が高く なるにしたがってデッドタイムを増加させたり、所定のスイッチング周波数以下でデッド タイムを一定または微増させたり、所定のスイッチング周波数以上でデッドタイムを急増 させることにより、また、これらのデッドタイムの一定値または微増値や、変曲点となる スイッチング周波数値や、デッドタイムの急増値を可変とすることで、半導体スイッチン グ素子に熱損失の発生し難い、したがって無駄なエネルギーが費やされることのない、ま たノイズの発生し難いインバータ回路を得ることができる。更に、リミット周波数におい てそのデッドタイムDTをリミットにしているので、これによりIGBTの限界における ONを確保し、IGBTの破壊防止ができる。

【図面の簡単な説明】

 $[0\ 0\ 6\ 9\]$

【図1】本発明に係るインバータ共振回路に一定電圧を印加した場合の電流対使用周波数特性を示す線図である。

【図2】特許文献1記載の2石ブリッジのスイッチング素子で駆動する共振型高周波加熱装置の1例である。

【図3】図2の回路が動作する各モードを示している。

【図4】回路中の半導体スイッチング素子等の電圧電流波形図を示している。

【図5】本発明に係る2石ブリッジの駆動する高周波加熱装置を示している。

【図6】デッドタイムの作成原理を説明する図で、(a)は発振回路と可変デッドタイム作成回路の各出力と矩形波形成回路の出力の関係を説明する図であり、(b)は周波数が低い範囲では周波数が変わってもデッドタイムDTが変わらない原理を説明する図である。

【図7】本発明に係る可変デッドタイム作成回路の具体例である。

【図8】図7の可変デッドタイム作成回路に設けたリミッタ回路の具体例である。

【図9】可変デッドタイム作成回路が有する電流一周波数特性を示している。

【図10】本発明に係るデッドタイムー周波数特性図で、(a)は周波数 f 1 以下でデッドタイム D T を一定または微増させ、所定のスイッチング周波数 f 1 以上でデッドタイム D T を急増させる例、(b)は変形例で、(f)デッドタイムの一定値および急増値を上下可変する例、(f)は周波数 f 1 での幻配を可変する例、(f)は変曲点周波数を左右に移動可変する例をそれぞれ示している。

【図11】デッドタイムDTを可変にする第2の実施例である。

【図12】図5の発振回路の1例を示している。

【図13】2石ブリッジのスイッチング素子で駆動する共振型高周波加熱装置の他の

- 3例である。
- 【図14】本発明に係るインバータ回路の周波数対位相特性を示す線図である。
- 【図15】インバータ回路の出力電圧対位相特性を示す線図である。

【符号の説明】

- [0070]
- 1 直流電源
- 2 リーケージトランス
- 3 1次巻線
- 4 第1のコンデンサ
- 5 第2のコンデンサ
- 6 第1の半導体スイッチング素子
- 7 第2の半導体スイッチング素子
- 8 駆動部
- 9 2次巻線
- 10 全波倍電圧整流回路
- 11 マグネトロン
- 12 3次巻線
- 13 第3のコンデンサ
- 2 1 制御信号作成回路
- 22 周波数変調信号作成回路
- 23 三角波搬送波発振回路
- 24 可変デッドタイム作成回路
 - 240 デッドタイムリミット回路
- 25 矩形波形成回路
- 26 スイッチング素子駆動回路

【書類名】図面【図1】

23

【図15】

【書類名】要約書

【要約】

【課題】 半導体スイッチング素子に熱損失とノイズの発生し難い、しかも限界において IGBTが確実にONすることのできるインバータ回路でを提供する。

【解決手段】 直流電源と、これに並列に接続された2個の半導体スイッチング素子から成る直列接続回路と、前記2個の半導体スイッチング素子の一方の半導体スイッチング素子の両端に接続されるリーケージトランスの1次巻線とコンデンサを有する直列接続回路と、前記2個の半導体スイッチング素子のそれぞれを駆動する駆動手段とから構成される共振型高周波加熱装置であって、所定周波数以下でデッドタイムを一定、所定周波数以上でデッドタイムを急増させる可変デッドタイム作成回路を前記駆動手段内に備え、かつ、スイッチング周波数が高くなったときそのデッドタイムがそれ以上広がらないように限界を設けた。

【選択図】 図7

 0 0 0 0 0 5 8 2 1

 19900828

 新規登録

大阪府門真市大字門真 1 0 0 6 番地 松下電器産業株式会社