Graph Neural Networks in TensorFlow and Keras with

graphneural.network

Built for TensorFlow

- Training loop.
- Distributed training.
- GPU/TPU.
- Industry standard.

Message passing layers

GraphConv

Kipf & Welling

ECConv Simonovsky & Komodakis

> **GINConv** Xu et al.

TAGConv Du et al.

ChebConv

Defferrard et al

GraphAttention Velickovic et al.

DiffusionConv

Li et al.

CrystalConv

Xie & Grossman

GraphSageConv Hamilton et al

GraphConvSkip

Bianchi et al.

GatedGraphConv Li et al.

EdgeConv

Wang et al.

ARMAConv

Bianchi et al

APPNP

Klicpera et al.

AGNNConv

Thekumparampil et al.

MessagePassing

Gilmer et al.

Pooling layers

DiffPool

Ying et al.

MinCutPool

Bianchi et al.

TopKPool

Gao & Ji

SAGPool

Lee et al.

Plus 6 global pooling / readout layers.

Other features

- Benchmark datasets (citation nets, TUD, QM9, OGB, ...).
- Utils to create new layers.
- Transparent support for data modes.

Data Modes

Execution times

Model	Dataset	PyG	Spektral	Change
GCN	Cora	0.332s ±0.002	$0.183s~\pm 0.002$	- 44.9%
	Citeseer	$0.488s\ \pm {\scriptstyle 0.009}$	$0.396 s ~\pm \scriptstyle 0.011$	- 18.8%
	Pubmed	$0.834s~\pm 0.004$	$\textbf{0.683s} ~\pm \textbf{0.001}$	- 18.1%
ChebNet	Cora	4.690s ±0.007	2.059s ±0.008	- 56.0%
	Citeseer	$11.441 \text{s} \pm \text{0.165}$	$5.470s~\pm 0.006$	- 52.2%
	Pubmed	$12.517 \text{s}_{~\pm \text{0.148}}$	$\textbf{6.221s} \pm \textbf{0.004}$	- 50.2%
GAT	Cora	$1.527 s \pm 0.002$	2.042s ±0.074	+ 33.7%
	Citeseer	$2.032s~\pm 0.003$	$3.427 s~\pm \scriptstyle 0.085$	+ 68.6%
	Pubmed	7.427s ±0.014	$10.63s~\pm \scriptstyle 0.132$	+ 43.1%

Code example

Declarative API

```
X_in = Input(shape=(F_in, ))
A_in = Input((N, ), sparse=True)

X_1 = GraphConv(16, 'relu')([X_in, A_in])
X_1 = Dropout(0.5)(X_1)
X_2 = GraphConv(F_out, 'softmax')([X_1, A_in])
net = Model(inputs=[X_in, A_in], outputs=X_2)
```

Imperative API

```
class Net(Model):
    def __init__(self, F_out, **kwargs):
        super().__init__(**kwargs)
        self.conv1 = GraphConv(16, 'relu')
        self.conv2 = GraphConv(F_out, 'softmax')
        self.dropout = Dropout(0.5)

def call(self, inputs):
        X, A = inputs
        X_1 = self.conv1([X, A])
        X_1 = self.dropout(X_1)
        X_2 = self.conv2([X_1, A])
        return X_2
```

Training: net.fit(x, y)

Conclusion

- TensorFlow + Keras.
- Lots of features.
- Data modes.
- Fast.
- Easy.

Docs: graphneural.network

Code: github.com/danielegrattarola/spektral

Paper: arxiv.org/abs/2006.12138

