ODREDITI GRANICU IZMEĐU DVA RAZREDA

UURU A. 1.1

$$w_1 = p(\vec{x}|w_1) = \frac{1}{2\pi}e^{-\frac{1}{2}(\vec{x}-\vec{m_1})^T(\vec{x}-\vec{m_1})}$$

$$p(w_2) = 2p(w_1)$$
 $p(w_1) = \frac{1}{3} p(w_2)^2 \frac{7}{3}$

PRAVILO:

$$en(p(x|w_1)) + en(p(w_1)) > en(p(x|w_2)) + en(w_2)$$

$$-\ln(2\pi) - \frac{1}{2}(\vec{x} - \vec{m_n})^T(\vec{x} - \vec{m_n}) + \ln(\rho tw_1) = +(x_1 + x_2) + \ln 2 + \ln(\rho tw_1)$$

$$-\ln(2\pi) - \ln 2 - \frac{1}{2} \left[(x_1 - 1)^2 + (x_2 - 4)^2 \right] + x_1 + x_2 = 0$$

SUE MUTE BITI ZADANO GRAFICUI!!

VURU UDALJENOST LEVENSTEINOVU A.2.2 S=acticot i T=cortot => DINAMIKA cost (SCi], -)=1 ast (-, scis) = 1 cost (Sti), TGJ)=1 zon SCJ+TGJ inaée 0 umetanic] - horitantalno => dusa unje znahova 5 3 2 -vertilalno => blisanje znahova 0 C 2 3 3 12/12/1 -dijegonalno => zamjera znahova 4 4 -> najmanje zamjene 2 6 - na stielice di trebalo pisati sams of hud se dasto, bilo bi preglednje wy ili wz ALGORITAM: pripada li babas BCYK CNF! 1. pretvoriti U 0/2 WA A > BC A > alble 5->AB SHAB A-PAaB16 A-> AbBla 5->AB 5-JAB B->aclb B-> bCla A-> EB16 5-> AB 4->ADBIL A> EBla E>AD E-DAD C->alb C->alb B-> DC/b B-DCla D->6 D->a D->a B->0016 $c \rightarrow a | b$ (->a/6 (->alb babaa u pripada li 2. horal (b)(a) $(C,D)+(A,B,C) \Longrightarrow B \rightarrow (D)$ 5 (a)(b) 1A,B,C)+(C,D) => F->AD A,S Ø 16/6 -> B-> CD (C,D) +(AB,C) (a)(a) A,B C,D (A,B,C)+(A,B,C) ->5-) AB 2 of pocinic

$$(b)(ab) \Rightarrow (c,D)+(E) \Rightarrow \emptyset$$

 $(ba)(b) \Rightarrow (B)+(c,D) \Rightarrow \emptyset$

$$(ba)(b) \Rightarrow (B) + (C_1 D) \Rightarrow \emptyset$$

aba

(a)(ba)
$$\Rightarrow$$
 $E + (A,B,C) \rightarrow A \Rightarrow A,S$
(a)(ba) \Rightarrow $(A,B,C)+(B) \Rightarrow S \nearrow$

$$(a)(ba) \Rightarrow (A, b, c) + (B) \Rightarrow 5 \text{ }$$

baa

$$(b)(aa) \Rightarrow (c,0) + s \Rightarrow \emptyset$$

$$(b)(aa) \Rightarrow (c,0) + 5 \Rightarrow 0$$

 $(ba)(a) \Rightarrow B + (A,C,C) \Rightarrow 0$

4. borah

baba

$$(b)(aba) \rightarrow (A,B,C) + (A,S) \rightarrow \emptyset$$

 $(ba)(ba) \rightarrow B+B \rightarrow \emptyset \rightarrow \emptyset$
 $(bab)(a) \rightarrow \emptyset + (A,B,C) \rightarrow \emptyset$

$$(a)(baa) \rightarrow (C, D) + (\emptyset) \rightarrow \emptyset$$

$$(aba)(a)$$
 \Rightarrow $(A,S)+(A,B,C) => 5$

5. bosah

babaa

$$(ba)(baa)$$
 \Rightarrow $B + 0 \rightarrow 0$

babaa ne pripada un

pripade li babac u WZ

GO
9

babaa pripade

GRUPIRANSE

4. MAX -MIN

x1= [0,03]

X2 = [23]

x3 = (5,35T

 $\times_4 = [3,2]^T$

X5=[1,4]T

X6=[4,13T

 $X_{1} = T1, 2JT$

Xg = [3,47]

Xg = [4,5]T

×10 = [4,2]T

C=0,5 => da ibi algoritan stas

malisimalna udaljenost najbližeg uzorha do

srediste svih grupa mora biti manja od

C·d(\vec{21},\vec{22}), općenito oudje može biti bilo logi

prag T

1) random otorah (obično prvi)

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

2) ($D_{2,1}$ $\sqrt{13}$	35 +	diva	20	Po	cetnos		1	0, 1	
	D2,1	D31	Dun	D _{5,1}	D6,1	Dryn	081	Dga	5/19/1	
2	V13	134	13	117	117	15	125	141)	120	
	[sT]							L) m	ax ad	min

$$\frac{2}{2} = \frac{2}{3} = \frac{2}$$

3)	uda li	enssti	00	= == == == == == == == == == == == == =	, =2		0	N 1
/	Dan	D3,1	Dyn	D5,7	96,1	Dy.1	18,1	D10,1
Z.	173	134	113	TIT	114	150	(15)	(50)
Zz	(18)	(15)	(VIO)	(11)	(116)	1/18	(10)	

minimely

VURU

d= 16=4 > c.d(21,2) = nastaval

'/	3	6					
	D2,1	D31	D4,1	D _{5,1}	D4,1	Dg,1	D10,1
21	V13				(P5)		
7	(VE)	(TS)	10	(VI)	V18	(VZ)	19
3	18	12.	(12)	1/18	110	110	(17)

biram bilo beji

d= (10=3,16 < c. d(21, +2) =) hraj

GRUPES

S1 = { X1, X4}

52 = { x3, x2, x3, x8, x3}

 $\vec{S}_{3} = \{\vec{X}_{6}, \vec{X}_{4}, \vec{X}_{10}\}$

5 K-MEANS ALGORITHM

A.2.5

$$\vec{X}_1 = [0,0)^{\dagger}$$

adalir početnih sredista (random)

A Servero A		enasti (horah	1)			
	7	124 1	75/26	Xn	70	Xa	2
Z(1) (D)	V73 8		34 120	V45	V41	V52	V74
23(1) 173	(6) \square	V53 V	29 (1)	V34	170		(125)
=3(1) Ve	138 0	V2 (V	10) [40		(13)	(20)	V34

$$S_{1}(1) = \{\vec{x}_{1}, \vec{x}_{4}\}$$

 $S_{2}(1) = \{\vec{x}_{1}, \vec{x}_{6}, \vec{x}_{10}\}$

$$\frac{2}{2}(2) = \frac{1}{2} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$

$$\frac{2}{2}(2) = \frac{1}{3} \left(\begin{bmatrix} 3 \\ 8 \end{bmatrix} + \begin{bmatrix} 4 \\ 8 \end{bmatrix} + \begin{bmatrix} 7 \\ 5 \end{bmatrix} \right) = \begin{bmatrix} 14/3 \\ 7 \\ 4 \end{bmatrix}$$

$$\frac{2}{3}(2) = \frac{1}{5} \left(\begin{bmatrix} 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 5 \\ 3 \end{bmatrix} + \begin{bmatrix} 8 \\ 4 \end{bmatrix} + \begin{bmatrix} 5 \\ 4 \end{bmatrix} + \begin{bmatrix} 6 \\ 4 \end{bmatrix} \right) = \begin{bmatrix} 4.2 \\ 4.8 \end{bmatrix}$$

2. lessals

	\times_{Λ}	×L	×3	×4	×5	X6	27	×g	×9	×10
7	(O,7	17,9	(2,1)	(0,14)5,15	8,3	NB	N5,5	N6,5	2
2	8.4	19	5.65	To	4,05	(N)	N5	~3	N3	3,1
2	6.4	3,4	3,6	5,0	2,0	N2	(NY)	N	~2	2,8

- nigdje ne treba toine
udaljenost, može se samo
na grafu uzet: priblizne
vrijednost, tele alo su vrijednosti
jele slične ande je potrebno
tinije određivanje

$$\frac{7}{2}$$
₁(3) = $\frac{1}{3}$ $\left[\frac{0}{2} + \frac{7}{2} + \frac{1}{1}\right] = \left[\frac{1}{1}\right]$

$$\frac{2}{2}(3) = \frac{1}{2}(3) + [4] = [3,5]$$

$$=\frac{1}{5}(3) = \frac{1}{5}(5) + \frac{1}{3}(5) + \frac{1}{4}(5) + \frac{1}{4}(5) = \frac{1}{3}(6,2)$$

• itd, :)

