AAEpytorchの準備

ER17076 安井 理

AAEの実装のために

- 前回までのミーティングの問題
 - ◦トレーニングモデルを鈴木さんの方法で用意したい(OpenGLを使用しない)
 - ・ 解決法として考えた2パターン
 - 1:論文元のコード内のOpenGLで作成される部分を自作で用意した画像のimportするように書き換え
 - 2: Autencoderを用いて自分で既存手法に近づけたものを1から作成

- 前半週で主に1を調査したがコードが複雑で読み取ることができなかった
- 金曜日に三輪さんの作成中のAAEpytorchを共有
- 後半週にAAEpytorchの動作確認を行う準備

論文AAEのコードチェック

。目的

OpenGLを使用してトレーニング画像生成・import部分のコード書き換え 自分で作成したトレーニング画像を使用できるように変更

。調査方法

- モデルのimporエラーを起こしている場所から調べる→imporエラーを起こすモデルを用いてmodelがimporされている部分でエラーを起こさせる
- メインプログラムのae_train.pyをたどり、トレーニング画像がimporしているファイルを探す

• 結果として

- モデルの撮影はmeshrenderファイルの複数のコードで作成されている
- モデル画像をimporしているコードを見つけられなかった.
- 自作でAutencoderを実装する方が良いと考えた

AAEをPytorchでの実装

- AAEpytorchは三輪さんが作成済み
 → cu-milab/pro-depth-image-interpolation-using-ae
- ・自分で行う事
 - ⋄トレーニングデータ(モデル画像)の作成
 - ・ 距離画像をオートエンコーダにかけるコードのため →カラー画像を入力とするものに変更(チャンネル数など)
 - 加えるノイズも違うためノイズ部分の作成(コード内でノイズを加える) →背景画像・カラーノイズ・光・遮断物などのノイズのランダム配置
 - 姿勢推定部分が未作成のため作成

トレーニング画像の作成

- Blenderで作成した円柱モデルを使用
- 作成方法:鈴木さんの使用していたgazeboを用いたモデル画像の作成
 →Git-hub cu-milab/pro-detection-of-deformed-AR-markers
- 鈴木さんのコードにバグがあったため三輪さんの作成したものを使用→Git-hub cu-milab/pro-3D-database

距離画像を生成するものになっているためカラー画像を作成するよう変更

トレーニング画像の作成

- ・モデル撮影方法
 - 。 gazebo内のkinectで撮影
 - モデルの座標(xyz)は画像中央に来るよう固定
 - モデルの回転範囲をARマーカが移る範囲内でランダムに回転させる
 - 出てきた画像を convertコマンドを使用し、モデルのある座標を指定し 128×128ピクセルの画像に変更する

現在

- 行ったこと
 - 円柱モデルで鈴木さんの行っていたgazeboを用いた方法で画像を用意
 - 画像作成後画像をまとめて128×128ピクセルにトリミングを行う

- ・行う事
 - 三輪さんのコードを書き換え → トレーニングモデルができ次第動作確認
 - ▶レーニングモデルを現在は円柱だがより最適なものを考える
 - 姿勢推定部分が未作成

次週までにやる事

- ・用意した画像でAAEPytorchの動作確認・精度の確認→昨日の時点でgazeboを用いたトレーニング画像を生成まで終了
- ノイズを加えるプログラムの追加
 - →Domain Randomizationを参考に作成
- 姿勢推定部分の再調査
 - →姿勢推定部分については未実装のため論文を読み返しながら 実装方法を考える