Analyse Numérique Exercices – Série 17

12 mars 2020 **Questions marquées de** \star à rendre le 19 mars 2020

- 1. (Résolution itérative d'un système linéaire avec la méthode du point fixe) Considérer le système linéaire Ax = b, $A \in \mathbb{R}^{n \times n}$, $x, b \in \mathbb{R}^{n}$.
 - (a) Considérer la méthode du point fixe dont les itérées sont données par

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \theta(A\boldsymbol{x}_k - \boldsymbol{b}),\tag{1}$$

avec $\theta \neq 0$. En supposant que cette suite converge, montrer que le point fixe x^* équivaut à une solution du système linéaire Ax = b.

- (b) Soit $e_k = x^* x_k$. Montrer que $e_k = T^k e_0$ où T est à déterminer.
- (c) Donner une condition suffisante sur la norme de T pour que la méthode converge.
- (d) Supposons maintenant que A soit une matrice symétrique, définie positive, avec valeurs propres $0 < \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$. Montrer que $||T||_2 = \max_i |1 \theta \lambda_i|$.
- (e) On définit la fonction $f_{\lambda_i}(\theta) = |1 \theta \lambda_i|$. Trouver les valeurs de θ pour lesquelles (1) converge pour tout \boldsymbol{x}_0 , c.-à-d., trouver les θ pour lesquelles $||T||_2 = \max_i f_{\lambda_i}(\theta) < 1$. Aidez-vous en traçant les graphiques de $f_{\lambda_i}(\theta)$ pour les valeurs propres extrémales λ_1 et λ_n .
- (f) Toujours à l'aide des graphiques de $f_{\lambda_1}(\theta)$ et $f_{\lambda_n}(\theta)$, trouver la valeur optimale θ_{opt} qui minimise $||T||_2$.
- 2. (*, tout l'exercice) (Norme d'opérateur et rayon spectral) Dans cet exercice, on veut prouver le théorème suivant.

Théorème 1. Pour toute matrice $A \in \mathbb{R}^{n \times n}$ et $\varepsilon > 0$, il existe une norme d'opérateur $\|.\|_{\varepsilon,A}$ satisfaisant

$$||A||_{\varepsilon,A} \le \rho(A) + \varepsilon.$$

On rappelle que le rayon spectral est défini par $\rho(A) = \max\{|\lambda|, \lambda \in \operatorname{Sp}(A)\}.$

- (a) On se propose d'abord de redémontrer quelques propriétés élémentaires sur les matrices et leurs normes.
 - i. (0.25 points) Soit $A \in \mathbb{R}^{n \times n}$, montrer par récurrence qu'il existe $P \in \mathbb{C}^{n \times n}$ inversible telle que $P^{-1}AP$ est triangulaire supérieure.

 $Indication: \mbox{On rappelle que toute matrice a au moins un vecteur propre dans } \mathbb{C}.$

ii. (0.5 points) Montrer que

$$||A||_2 = \sqrt{\rho(A^T A)}$$
 et $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|$.

iii. (0.25 points) Montrer que toute norme d'opérateur ||.|| vérifie

$$\rho(A) \le ||A||, \qquad A \in \mathbb{R}^{n \times n}$$

Le rayon spectral ρ est-il une norme sur $\mathbb{R}^{n\times n}$ en général?

- (b) Démontrons à présent le théorème 1.
 - i. (0.5 points) On suppose que A est triangulaire supérieure, c'est-à-dire A = D + T avec D diagonale et T triangulaire supérieure stricte. À l'aide d'une norme d'opérateur bien choisie, construire explicitement une norme d'opérateur $\|.\|_{\varepsilon,A}$ vérifiant $\|A\|_{\varepsilon,A} \leq \rho(A) + \varepsilon$.

Indication : On pourra considérer la matrice $D_{\delta}^{-1}AD_{\delta}$ où $D_{\delta}=\mathrm{Diag}(1,\delta,\ldots,\delta^{n-1})$ et δ est choisi assez petit de telle manière que $\sum_{j=i+1}^{n}\left|\delta^{j-1}t_{ij}\right|\leq\varepsilon$ pour tout $1\leq i\leq n$.

- ii. (0.25 points) Démontrer le theorème 1 dans le cas général.
- iii. (0.25 points) En déduire que la suite définie par $x_{k+1} = Ax_k$ converge vers 0 pour tout $x_0 \in \mathbb{R}^n$ si et seulement si $\rho(A) < 1$.