VE203 Assignment 6

Name: YIN Guoxin Student ID: 517370910043

Q1.

(i) To prove that \star is a well-defined function, we need to prove that for $a,b,c,d \in G$, if aH=cH and bH=dH, then $(aH)\star(bH)=(cH)\star(dH)$, i.e. $(a\cdot b)H=(c\cdot d)H$.

We first prove that if $H \leq G$, $h \in H$, then hH = H. This comes from if $x \in hH$, then $x = hh_1$ for $h_1 \in H$. Since both $h, h_1 \in H$, $x = hh_1 \in H$, which means $hH \subseteq H$. If $x \in H$, then $x = hh^{-1}x$, since $h^{-1} \in H$ due to $h \in H$ and also $x \in H$, we have $h^{-1}x \in H$. Therefore, $x \in hH$, which means $H \subseteq hH$. Therefore, if $H \leq G$, $h \in H$, then hH = H. This comes from if $x \in hH$, then $x = hh_1$ for $h_1 \in H$.

If H is normal, we must have for $a \in G, H \leq G, h_1, h_2 \in H$, aH = Ha. If $x \in aH$, then $x = ah_1 = ah_1a^{-1}a$. Since $ah_1a^{-1} \in H$, we have $x \in Ha$, which means $aH \subseteq Ha$. Similarly, if $x \in Ha$, then $x = h_2a = aa^{-1}h_2a$. Since $a \in G$, we have $a^{-1} \in G$, then $a^{-1}h_2a \in H$, we have $x \in aH$, which means $Ha \subseteq aH$. Therefore, aH = Ha.

Since aH = cH, we must have $a = ae = ch_1$ for $h_1 \in H$ and $b = be = dh_2$ for $h_2 \in H$. Then $(a \cdot b)H = (c \cdot h_1 \cdot d \cdot h_2)H = (c \cdot h_1 \cdot d)(h_2H) = (c \cdot h_1 \cdot d)H = (c \cdot h_1)Hd = c(h_1H)d = cHd = (c \cdot d)H$, which means it is a well-defined function.

- For $a,b,c \in G$, $((aH) \star (bH)) \star (cH) = ((a \cdot b)H) \star (cH) = ((a \cdot b) \cdot c)H = (a \cdot (b \cdot c))H = (aH) \star ((b \cdot c)H) = (aH) \star ((bH) \star (cH))$.
- (eH) is the identity element in X, where e is the identity element $e \in G$. It is followed from $(aH) \star (eH) = (eH) \star (aH) = (a \cdot e)H = (e \cdot a)H = aH$.
- For $a \in G$, $a^{-1} \in G$, therefore, for $aH \in X$, we can find $a^{-1}H \in X$ such that $(aH) \star (a^{-1}H) = (a^{-1}H) \star (aH) = eH$.
- (ii) $D_4 = \{e, (13), (02), (01)(23), (02)(13), (03)(12), (0123), (0321)\}$ is a subgroup of S_4 but (X, \star) is not a group because the \star here isn't well-defined. For example, we can have $a = e_{S_4}, b = (01), c = (0123), d = (01)$, which means aH = H = cH, bH = dH. However, since $a \cdot b = (01), c \cdot d = (023)$, we have $(a \cdot b)H \neq (c \cdot d)H$, hence the \star here isn't well-defined.

Q2. To begin with, the matrix multiplication is a well-defined function, which send the product of two 2×2 matrices into one 2×2 matrix.

• For all $x, y, z \in G$, suppose $x = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $y = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$, $z = \begin{pmatrix} m & n \\ p & q \end{pmatrix}$, we have

$$x \star (y \star z) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \star \begin{pmatrix} em + fp & en + fq \\ gm + hp & gn + hq \end{pmatrix}$$

$$= \begin{pmatrix} aem + afp + bgm + bhp & aen + afq + bgn + bhq \\ cgm + chp + dgm + dhp & cgn + chq + dgn + dhq \end{pmatrix}$$

$$(x \star y) \star z, = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix} \star \begin{pmatrix} m & n \\ p & q \end{pmatrix}$$

$$= \begin{pmatrix} aem + bgm + afp + bhp & aen + bgn + afq + bhq \\ cgm + dgm + chp + dhp & cgn + dgn + chq + dhq \end{pmatrix}$$

$$= x \star (y \star z).$$

• There exists an identity, which is the identity matrix $e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in G$, such that for all $x = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$, we have

$$x\star e = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\star \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\star \begin{pmatrix} a & b \\ c & d \end{pmatrix} = e\star x = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = x.$$

And for all $x = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$, there exists $a = \begin{pmatrix} \frac{d}{ad-bc} & \frac{b}{bc-ad} \\ \frac{c}{bc-ad} & \frac{a}{ad-bc} \end{pmatrix} \in G$ such that $x \star a = a \star x = e$.

1

 $A = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \ A^2 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} \text{ and } A^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = e, \text{ which means the order of } A \text{ is } 3.$ $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ B^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \ B^3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = e, \text{ and } B^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = e, \text{ which means the order of } B \text{ is } 4.$ $A \cdot B = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \ (A \cdot B)^2 = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}, \ (A \cdot B)^3 = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} = e, \text{ and we guess that } (A \cdot B)^n = \begin{pmatrix} 1 & 0 \\ -n & 1 \end{pmatrix}. \text{ Suppose that for } k \leq 3, k \in \mathbb{N}, \text{ we have } (A \cdot B)^k = \begin{pmatrix} 1 & 0 \\ -k & 1 \end{pmatrix}, \text{ then } (A \cdot B)^{k+1} = \begin{pmatrix} 1 & 0 \\ -k & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -(k+1) & 1 \end{pmatrix}. \text{ which means the order of } A \cdot B \text{ is infinity.}$

Q3. Since
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}^3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
, which means $n = 3$.

Q4. Since p is prime, p > 1. Since $\varphi(p^k)$ is the number of $0 < m < p^k$ such that m and p^k are relatively prime. Since we know that for $a = p \times n$ such that $1 \le n \le p^{k-1} - 1$, we have $0 < a < p^k$ such that the common divisor of p^k and a is at least p, which means they are not relatively prime. And the number of a is simply p^{k-1} since the choice of the natural number n is from 1 to $p^{k-1} - 1$. For those numbers c such that $1 < c < p^k$ but $c \ne p \times n$, the greatest common divisor of c and p^k is 1. This is because the divisor of p^k is 1 and p^b such that $0 \le b \le k - 1$ since p is prime, the latter of which can be interpreted as a but c cannot be one of a. Therefore, c and p^k are relatively prime. Therefore, $\varphi(p^k)$ is the total number of numbers such that $0 < m < p^k$ minus the number of a, which is

$$\varphi\left(p^{k}\right) = p^{k} - p^{k-1}.$$

Q5. Since $n^4 + 3n^2 + 1 = n(n^3 + 2n) + n^2 + 1$, $n^3 + 2n = n(n^2 + 1) + n$ and $n^2 + 1 = n \cdot n + 1$, gcd $(n^4 + 3n^2 + 1, n^3 + 2n) = \gcd(n^3 + 2n, n^2 + 1) = \gcd(n^2 + 1, n) = \gcd(n, 1) = 1$. Therefore, $n^4 + 3n^2 + 1, n^3 + 2n$ and $n^3 + 2n, n^2 + 1$ are relatively prime.

Q6. Suppose a cyclic group $(\langle a \rangle, \cdot)$, where $\langle a \rangle = \{a^m | m \in \mathbb{Z}\}$, and $H \leq \langle a \rangle$. If $H = \{e\}$, it is obvious that it is a cyclic group C_1 . If $H \neq \{e\}$, since $H \subseteq \langle a \rangle$, all the elements in H can be written in the form of a^p . And we denote the \leq -least exponential number p as k. Therefore, for any element a^n in H, by the Division Algorithm, we can write n = mk + r, where $0 \leq r < k$. Therefore, $a^r = a^{n-mk} = a^n \cdot a^{-mk} = a^n \cdot (a^{-m})^k$. Since $a^m \in H$, since the inverse a^{-m} of the element $a^m \in H$ must also be in H. Besides, because the group is enclosed by the group operation \cdot , the product of a^{-m} to the power of k also exists in H. Due to the same reason, the product of a^n and $(a^{-m})^k$ also exists in H, i.e. $a^r \in H$. But our assumption is that m is the \leq -least exponential number p since r < m. Therefore, r must be zero to make $a^r = e$. Therefore, we have n = mk and $a^n = (a^k)^m$, which means all the elements in H can be written in the form of power of a^k , which means $H = \langle a^k \rangle$.

Q7. To prove the statement, we only need to show that for $a, b, c \in \mathbb{N}$, if $3 \not| ab$, then $a^2 + b^2 \neq c^2$.

If 3 $\not ab$, it means that 3 $\not a$ and 3 $\not b$, which means that $a \equiv \pm 1 \pmod{3}$ and $b \equiv \pm 1 \pmod{3}$. Therefore, $a^2 \equiv 1 \pmod{3}$ and $b \equiv \pm 1 \pmod{3}$, which means $a^2 + b^2 = c^2 \equiv 2 \pmod{3}$, i.e. $c^2 = 3k + 2$ for $k \in \mathbb{N}$. However, this leads to contradiction since 3k + 2 cannot be a perfect square.

To prove it, suppose $3k + 2 = m^2$ for $m \in \mathbb{N}$. Therefore, we have $2 = m^2 - 3k = (m + \sqrt{3k})(m - \sqrt{3k})$. Hence, $m + \sqrt{3k} = 2$ and $m - \sqrt{3k} = 1$, which means $m = \frac{3}{2}$, which is not a natural number. Therefore, we won't have $a^2 + b^2 = c^2$ for $a, b, c \in \mathbb{N}$ if $3 \not | ab$.

Q8.

Since $((\mathbb{Z}/11\mathbb{Z})^*, \otimes_{11})$ has order of 10, by Lagrange's Theorem, the only possible orders for its elements are 1,2,5 and 10.

Start with 2, $[2]_{11}^2 = [4]_{11}$, $[2]_{11}^5 = [10]_{11}$, $[2]_{11}^{10} = [1]_{11}$, therefore, $\langle [2]_{11} \rangle = ((\mathbb{Z}/11\mathbb{Z})^*, \otimes_{11})$, 2 is a generator of $((\mathbb{Z}/11\mathbb{Z})^*, \otimes_{11})$.

Q9. Suppose the inverse of $[12]_{89}$ is $[m]_{89}$. Therefore, we must have $12m \equiv 1 \pmod{89}$, which means

12m = 89k + 1, for $k \in \mathbb{N}$.

$$89 = 7 \cdot 12 + 5$$

$$12 = 2 \cdot 5 + 2$$

$$5 = 2 \cdot 2 + 1$$

$$1 = 5 - 2 \cdot 2 = 5 - 2 \cdot (12 - 2 \cdot 5) = 5 \cdot 5 - 2 \cdot 12$$

$$= 5 \cdot (89 - 7 \cdot 12) - 2 \cdot 12$$

$$= 5 \cdot 89 - 37 \cdot 12$$

$$[1]_{89} = [-37]_{89} \otimes [12]_{89}$$

$$[1]_{89} = [52]_{89} \otimes [12]_{89}$$

Through calculation, I find that when m=52, we have $12 \times 52 = 624 = 89 \times 7 + 1$. Therefore, the inverse of $[12]_{89}$ is $[52]_{89}$.

Q10. Since 2|56, 7|56,

$$\varphi(56) = 56 \cdot (1 - \frac{1}{2})(1 - \frac{1}{7}) = 24$$

Therefore the order of $((\mathbb{Z}/56\mathbb{Z})^*, \otimes 56)$ is 24. By Lagrange Theorem, the order of $[27]_{56}$ is 1,2,3,4,6,8,12,24. Now, $27^2 = 729$, since $729 \equiv 1 \pmod{56}$, therefore, the order of it is 2.

Q11. The Cayley Table of $((\mathbb{Z}/9\mathbb{Z})^*, \otimes_9)$ is

\otimes_9	$ [1]_9$	$[2]_9$	$[4]_9$	$ [5]_9$	$[7]_9$	$ [8]_9 $
$[1]_9$	$[1]_9$	$[2]_9$	$[4]_9$	$[5]_9$	$[7]_9$	$[8]_{9}$
$[2]_9$	$[2]_9$	$[4]_9$	$[8]_{9}$	$[1]_9$	$[5]_9$	$[7]_9$
$[4]_9$	$[4]_9$	$[8]_{9}$	$[7]_9$	$[2]_9$	$[1]_9$	$[5]_9$
$[5]_9$	$[5]_9$	$[1]_9$	$[2]_{9}$	$[7]_9$	$[8]_{9}$	$[4]_9$
$[7]_9$	$[7]_9$	$[5]_9$	$[1]_9$	$[8]_{9}$	$[4]_9$	$[2]_9$
$[8]_9$	$[8]_{9}$	$[7]_9$	$[5]_9$	$[4]_9$	$[2]_{9}$	$[1]_9$

Yes, it is cyclic. Since it is a group with order 6, the possible order of its elements are 1,2,3,6. For the element $[2]_9$ in it, we can see that $([2]_9)^2 = [4]_9, ([2]_9)^3 = [8]_9$, which means the order of it must be greater than 3. Therefore, the only choice of this element is 6, which means the group is cyclic.

Q12.

(i) Denote the gcd(s, n) = g, then s = cg and n = mg for $c \in \mathbb{N}$ and gcd(c, m) = 1, then we have,

$$a^{sm} = a^{s \frac{n}{\gcd(s,n)}} = a^{cn} = (a^n)^b = e^c = e.$$

Suppose $0 such that <math>a^{sp} = e$ and p is the \le -least such thing, i.e. the order of b is p. Then p|n=p|(mg) by Lagrange Theorem and n|sp since the order of a is n. Rewrite n|sp into $mg|(cg \cdot p)$. Factor out g and we have m|cp. Since $\gcd(c,m)=1$, we have m|p, which means $m \le p$. Since p is the \le -least such thing, we must have m=p.

- (ii) Denote $\langle a^t \rangle_G$ as C_x and $\langle b \rangle_G$ as C_m .
 - If $\langle a^t \rangle_G = \langle b \rangle_G$, the order of these two groups must be the same, which means

$$m = \frac{n}{\gcd(s, n)} = x = \frac{n}{\gcd(t, n)},$$

which means gcd(s, n) = gcd(t, n).

• If gcd(s,n) = gcd(t,n), then x = m, i.e. the order of this two groups are the same. We will prove that $\langle a^t \rangle_G = \langle a^g \rangle_G = \langle a^s \rangle_G$, where g = gcd(s,n) = gcd(t,n).

For every element a^{us} in $\langle a^s \rangle_G$, since s = cg, we know that $a^{us} = a^{ucg} = (a^g)^{uc}$, which means it must be an element in $\langle a^g \rangle_G$. For each element $a^w g$ in $\langle a^g \rangle_G$, by BéZout's Lemma, g = xs + yn, then $a^w g = a^{w(xs+yn)} = a^{wxs} a^{wyn} = (a^s)^{wy} (a^n)^{wy} = (a^s)^{wy}$, which means it must be an element in $\langle a^g \rangle_G$. Therefore, $\langle a^g \rangle_G = \langle a^s \rangle_G$. Similarly, we can prove that $\langle a^g \rangle_G = \langle a^t \rangle_G$. Therefore, $\langle a^t \rangle_G = \langle a^t \rangle_G$, i.e. $\langle a^t \rangle_G = \langle b \rangle_G$.