Module 2: Number Systems

Priyanshu Mahato

March 3, 2022

Email: pm21ms002@iiserkol.ac.in. These are my personal notes on Number Systems. We will consider N (Natural Numbers), \mathbb{Z} (Integers), and \mathbb{Q} (rational Numbers), but not \mathbb{R} (Real Numbers).

§1 Natural Numbers

The natural numbers are $1, 2, 3, 4, \ldots$ The set of all natural numbers is denoted by \mathbb{N} .

Definition 1.1. We assume familiarity with the algebraic operations of addition and multiplication on the set \mathbb{N} and also with the linear order relation < on \mathbb{N} defined by "a < b if $a, b \in \mathbb{N}$ and a is less than b".

We discuss the following fundamental properties of the set \mathbb{N} .

- 1. Well Ordering Property
- 2. Principle of Induction

§1.1 Well Ordering Property

Definition 1.2. Every non-empty subset of \mathbb{N} has a least element.

This means that if S is a non-empty subset of N, then there is an element m in S such that $m \leq s$ for all $s \in S$.

In particular, \mathbb{N} itself has the least element 1.

Proof. Let S be a non-empty subset of \mathbb{N} . Let k be an element of S. Then k is a natural number.

We define a subset T by $T = \{x \in S : x \le k\}$. The T is a non-empty subset of $\{1, 2, 3, \ldots, k\}$.

Clearly, T is a finite subset of \mathbb{N} and therefore it has a least element, say m. Then $1 \leq m \leq k$.

We now show that m is the least element of S. Let s be any element of S.

If s > k, then the inequality $m \le k$ implies m < s.

If $s \leq k$, the $s \in T$; and m being the least element of T, we have $m \leq s$.

Thus m is the least element of S.

§1.2 Principle of Induction

Definition 1.3. Let S be a subset of \mathbb{N} such that,

- i) $1 \in S$ and,
- ii) if $k \in S$, then $k + 1 \in S$.

Then $S = \mathbb{N}$

Proof. Let $T = \mathbb{N} - S$. We prove that $T = \phi$.

Let T be non-empty. then by the Well Ordering Property of \mathbb{N} , the non-empty subset T has a least element, say m.

Since $1 \in S$ and 1 is the least element of \mathbb{N} , m > 1.

Hence, m-1 is a natural number and $m-1 \notin T$. So, $m-1 \in S$.

But by ii) $m-1 \in S \Rightarrow (m-1)+1 \in S$, i.e., $m \in S$.

This contradicts that m is the least element in T. Therefore, our assumption is wrong and $T = \phi$.

Therefore, $S = \mathbb{N}$.

Theorem 1.4

Let P(n) be a statement involving a natural number n. If,

- i) P(1) is true, and
- ii) P(k+1) is true whenever P(k) is true,

then P(n) is true for all $n \in \mathbb{N}$.

Proof. Let S be the set of those natural numbers for which the statement P(n) is true. Then S has the properties,

- (a) $1 \in S$, by (i)
- (b) $k \in S \Rightarrow k+1 \in S$ by (ii).

By the Principle of Induction, $S = \mathbb{N}$.

Therefore, P(n) is true for all $n \in \mathbb{N}$.

Remark 1.5. Let a statement P(n) satisfies the conditions,

- (i) for some $m \in \mathbb{N}$, P(m) is true (m being the least possible); and
- (ii) P(k) is true $\Rightarrow P(k+1)$ is true for all $k \ge m$.

Then P(n) is true for all natural numbers $\geq m$.

Worked Examples

Example 1.6

Prove that for each $n \in \mathbb{N}$, $1 + 2 + 3 + 4 + \cdots + n = \frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

The statement is true for n=1, because $1=\frac{1(1+1)}{2}$. Let the statement be true for some natural number k. Then $1+2+3+4+\cdots+k=\frac{(k+1)}{2}$ and therefore,

Then
$$1+2+3+4+\cdots+k = \frac{1}{2}$$
 and then
$$(1+2+\cdots+k)+(k+1) = \frac{k(k+1)}{2}+(k+1)$$
or, $1+2+3+\cdots+(k+1) = \frac{(k+1)(k+2)}{2}$.

or,
$$1+2+3+\cdots+(k+1)=\frac{(k+1)(k+2)}{2}$$
.

This shows that the statement is true for the natural number k+1 if it is true for k. By the principle of induction, the statement is true for all natural numbers.

Example 1.7

Prove that for each $n \ge 2$, $(n+1)! > 2^n$.

The equality holds for n = 2 since $(2 + 1)! > 2^2$.

Let the inequality hold for some natural number $k \geq 2$.

Then, $(k+1)! > 2^k$

and
$$(k+2)! = (k+2)(k+1)!$$

> $2 \cdot 2^k$, since $k+2 > 2$
or, $(k+2)! > 2^{k+1}$

This shows that if the inequality holds for $k \geq 2$ then it also holds for k + 1. By the principle of induction, the inequality holds for all natural numbers ≥ 2 . [Note that the inequality does not hold for n = 1.]

§1.3 Second Principle of Induction (or, Principle of Strong Induction)

Definition 1.8. Let S be a subset of \mathbb{N} such that

- (i) $1 \in S$, and
- (ii) if $\{1, 2, 3, 4, \dots\} \subset S$, then $k + 1 \in S$.

Then $S = \mathbb{N}$

Proof. Let $T = \mathbb{N} - S$. We prove that $T = \phi$.

Let T be non-empty. Then T will have a least element, say m, by the WOP of N. Since, $1 \in S$, $1 \notin T$.

As m is the least element in T and $1 \notin T$, m > 1.

By choice of m, all natural numbers less than m belong to S. That is $1, 2, \ldots, m-1$ all belong to S.

Then by (ii) $m \in S$ and consequently, $m \notin T$, a contradiction. It follows that $T = \phi$ and therefore, $S = \mathbb{N}$.

Worked Examples (continued)

Example 1.9

Prove that for all $n \in \mathbb{N}$, $(3 + \sqrt{5})^n + (3 - \sqrt{5})^n$ is an even integer.

Let P(n) be the statement " $(3+\sqrt{5})^n+(3-\sqrt{5})^n$ is an even integer". P(1) is true since $(3+\sqrt{5})^1+(3-\sqrt{5})^1=6$, an even integer. Let us assume that P(n) is true for $n=1,2,\ldots,k$.

$$(3+\sqrt{5})^{(k+1)} + (3-\sqrt{5})^{(k+1)}$$

$$= a^{(k+1)} + b^{(k+1)} \text{ where } a = 3+\sqrt{5}, \ b = 3-\sqrt{5}$$

$$= (a^k + b^k)(a+b) - (a^{k-1} + b^{k-1})ab$$

$$= 6(a^k + b^k) - 4(a^{k-1} + b^{k-1}).$$

It is an even integer, since $a^k + b^k$ and $a^{k-1} + b^{k-1}$ are even integers. Hence, P(k+1) is true whenever P(n) is true for all $n=1,2,\ldots,k$. By the second principle of induction, P(n) is true for all natural numbers.

§2 Integers