LABORATORIUM 5. INSTRUKCJE WARUNKOWE IF, IF...ELSE. OPERATOR WARUNKOWY. INSTRUKCJA WYBORU SWITCH. INSTRUKCJA BREAK.

Cel laboratorium:

Zaznajomienie z realizacją algorytmów z rozgałęzieniami z wykorzystaniem instrukcji warunkowej lub z wykorzystaniem operatora ternarnego (warunkowego) oraz z wykorzystaniem instrukcji wyboru. Nabycie praktycznych umiejętności programowania algorytmów z rozgałęzieniami.

Zakres tematyczny zajęć:

- instrukcje warunkowe,
- operator warunkowy,
- instrukcja złożona (grupująca, blokowa),
- instrukcja wyboru,
- instrukcja przerwania BREAK.

Kompendium wiedzy:

Instrukcje warunkowe służą do sterowania przebiegiem programu w zależności od spełnienia lub nie spełnienia określonego warunku. Umożliwiają programową realizację algorytmów z rozgałęzieniami. Instrukcje warunkowe mogą występować w następujących postaciach:

Jeżeli w zależności od wartości wyrażenia ma być wykonywanych wiele instrukcji należy użyć instrukcji złożonej (grupującej) {}:

```
np. if(a>b) {max=a; printf("Max z 2 liczb =%d\n", max);}
    else{max=b; printf("Max z 2 liczb =%d\n", max);}
```



```
Instrukcje warunkowe mogą być zagnieżdżone (jedna w drugiej), przy czym obowiązuje
zasada, że else związane jest z najbliższym if:
            if(a>b) printf("Liczba a jest większa\n");
      np.
                else if(a<b) printf("Liczba b jest większa\n");</pre>
                         else printf("Liczby a i b są równe\n);
      Wyrażenie po słowie if może zawierać następujące operatory porównania:
      ==,
            !=
      Wyrażenie może również zawierać operatory logiczne: &&
   Alternatywą dla instrukcji warunkowej jest wykorzystanie operatora warunkowego.
Operator ternarny (trójoperandowy operator warunkowy) wykorzystuje trzy operandy,
z których każdy jest wyrażeniem:
   wyrażenie1 ? wyrażenie2 : wyrażenie3;
   //Jeżeli wyrażenie 1 jest prawdziwe (\neq 0) to całe wyrażenie przyjmuje wartość
//wyrażenia2, w przeciwnym wypadku wyrażenia3
   np. max=(a>b)? a: b;
   Instrukcja wyboru może występować w następujących postaciach:
   • warianty wyboru zakończone instrukcja BREAK:
   switch (wyrażenie typu int, char lub enum)
{
      case stała1: ciąg instrukcji 1; break;
      case stała2: ciąg instrukcji 2; break;
      default://opcjonalnie
            ciąg instrukcji D;
// Jeżeli wyrażenie przyjmuje wartość stałej l wykonuj ciąg instrukcji 1 i wyjdź ze switch
//Jeżeli wyrażenie przyjmuje wartość stałej2 wykonuj ciąg instrukcji 2 i wyjdź ze switch
//... w przeciwnym wypadku wykonuj ciąg instrukcji D.
   np. switch (ocena) {
   case 2: printf("ndst");break;
   case 3: printf("dst"); break;
   case 4: printf("db"); break;
   case 5: printf("bdb");break;
  default: printf("zla ocena");
   • warianty wyboru z opuszczoną instrukcją BREAK:
   switch (wyrażenie typu int, char lub enum)
{
      case stała1:
      case stała2: ciąg instrukcji 2; break;
      default://opcjonalnie
            ciąg instrukcji D;
// Jeżeli wyrażenie przyjmuje wartość stałej lub stałej wykonuj ciąg instrukcji 2 i wyjdź
//...w przeciwnym wypadku wykonuj ciąg instrukcji D.
```



```
np. switch (ocena) {
  case 2: printf("negatywna ocena");break;
  case 3:
  case 4:
  case 5: printf("pozytywna ocena");break;
  default: printf("zla ocena");
}
Zwiększenie czytelności programu można uzyskać stosując typy wyliczeniowe
w instrukcjach sterujących - zbiór czytelnych nazw o wartościach stałych całkowitych np.:
  enum kolory {czerwony, pomaranczowy, zolty, zielony,
  niebieski, blekitny, fioletowy};
  //typ wyliczeniowy o wartościach: 0, 1, 2, ...6
  enum kolory kol; //zmienna wyliczeniowego typu
```

Pytania kontrolne:

- 1. Podaj dwie alternatywne składnie instrukcji warunkowej.
- 2. Podaj dowolne przykłady instrukcji warunkowej z jednym warunkiem oraz z kilkoma warunkami.
- 3. Jak interpretowana jest wartość logiczna PRAWDA w warunku instrukcji warunkowej, a jak wartość FAŁSZ?
- 4. Podaj postać i zastosowanie operatora warunkowego.
- 5. Podaj postać i zastosowanie instrukcji złożonej (grupujacej, blokowej).
- 6. Podaj składnię i zastosowanie instrukcji wyboru.
- 7. Podaj zastosowanie instrukcji BREAK w instrukcji wyboru.
- 8. Wymień ograniczenia instrukcji SWITCH w stosunku do instrukcji IF.

Zadania do analizy

Zadanie 5.1. Instrukcje warunkowe i operator warunkowy

- Przeanalizuj przykład programu wykorzystującego instrukcje warunkowe i operator warunkowy.
- Podaj tekst w komentarzach.

```
#include <stdio.h> //???
2
  #include <stdlib.h>
3
  float f(float x,float y);
  void punkt(float x, float y); //???
6
  char parzysta(int a); //???
8
  int main(int argc, char *argv[])
9
  {float xx,yy; int liczba;
10 printf("Podaj x=");
11 scanf("%f",&xx);
12 printf("Podaj y=");
13 scanf("%f",&yy);
```



```
printf("wynik funkcji=%0.2f\n", f(xx,yy)); //???
15
   punkt(xx,yy); //???
16
   printf("Podaj liczbe calkowita");
17
   scanf("%d", &liczba);
18
   printf("Liczba %d parzysta: %c\n",liczba,
           parzysta(liczba));
19
20
   system("PAUSE");
21
   return 0;
22 }
23
24 float f(float x,float y)
25 \{if(x<0 \&\& y<0) return (x*x + y*y);
26
       else if (x*y \le 0) return 0;
27
              else return sqrt(x+y);
28 }
29
30 void punkt(float x, float y) \frac{}{//???}
\beta1 {if (x*y ==0) printf("punkt na osi\n");
32
    else if(x>0)
33
                 if (y>0) printf("punkt w I cw.\n");
34
                 else printf("punkt w IV cw.\n");
35
      else if(y>0) printf("punkt w II cw.\n");
36
                 else printf("punkt w III cw.\n");
37 }
38
39 char parzysta(int a)
                             //???
40 { return (a%2==0)?'T':'N'; //???
41 // if(a%2==0) return 'T'; else return 'N'; //???
42 }
```

Zadanie 5.2. Instrukcja wyboru i instrukcja BREAK

- Przeanalizuj przykład programu wykorzystującego instrukcje SWITCH i BREAK.
- Podaj tekst w komentarzach.

```
#include <stdio.h>
2
  #include <stdlib.h>
3
  enum kolory{czerwony, pomaranczowy, zolty,
5
6
  zielony, niebieski, blekitny, fioletowy}; //???
  void kalkulator(double x, double y, char znak); //???
  void samogloska(char litera); //???
8
  void tecza(enum kolory kol); //???
  10
  int main(int argc, char *argv[]) //???
11
   { double a,b;
12
  char zn,1; //???
```



```
int k, wybor;
13
   printf("MENU PROGRAMU:\n");
14
15
   printf("1. Kalkulator\n");
16
   printf("2. Samogloska\n");
17
   printf("3. Kolory teczy\n");
18
   printf("Wybierz pozycje\n");
19
   scanf("%d", &wybor);
20
   switch(wybor) //???
21
   { case 1: //???
22
      printf("podaj 2 liczby i znak dzialania\n
23
      scanf("%lf %lf %c", &a,&b, &zn);
24
      kalkulator(a,b,zn); break; //???
25
    case 2:
26
      printf("podaj litere\n");
27
      getche(); //scanf("%c", &1);
28
      printf("\n");
29
      samogloska(1); break; //???
30
    case 3:
31
      printf("Wybierz pozycje koloru w teczy od
              0 do 6\n'');
32
      scanf("%d", &k);
33
      tecza(k); break; //???
34
    default:
      printf("zly wybor\n"); //???
35
36
37
   system("PAUSE");
38
   return 0;
39 }
40//============
41 void kalkulator(double x, double y,char znak) //???
42 {
   switch (znak) {<mark>//???</mark>
43
    case '+': printf("suma= %0.21f\n",x+y);
44
                                          break;
   case '-': printf("roznica= %0.21f\n",
45
                                     x-y);break;
46
    case '*': printf("iloczyn= %0.21f\n",x*y);break;
    case '/': if (y) {printf("iloraz=
47
                                %0.21f\n'', x/y);
48
                else printf("y=0\n");break;
49 default: printf("zły znak\n\n");
50 }
51 }
53 void samogloska(char litera) //???
54 { //nie uwzgledniono polskich liter ą, ę ó
55 switch(litera) //???
56 { case 'a':
```



```
57
    case 'A':
58
    case 'e':
59
    case 'E':
60
  case 'i':
61
  case 'I':
62
   case 'o':
63
  case '0':
64 case 'u':
65
  case 'U':
66
  case 'y':
67
    case 'Y': printf("samogloska\n"); break;
68
    default: printf("nie samogoska\n");
69 }}
71 void tecza(enum kolory kol) \frac{1}{22}
72 {
73 switch (kol) {
74 case czerwony: printf("czerwony ");break; //???
75 case pomaranczowy: printf("pomaranczowy ");break;
76 case zolty: printf("zolty "); break;
77 case zielony: printf("zielony ");break;
78 case niebieski: printf("niebieski ");break;
79 case blekitny: printf("blekitny ");break;
80 case fioletowy: printf("fioletowy"); break;
81
  default: printf("brak takiego koloru\n");
82 }
83 switch (kol) { //???
84 case czerwony:
85 case pomaranczowy:
86 case zolty: printf(" - wybrano cieply
                     kolor\n"); break;
87 case zielony:
88 case niebieski:
89 case blekitny:
90 case fioletowy: printf(" - wybrano chlodny
                         kolor\n");
91 break;
92 }
93 }//============
```

Zadania do wykonania

Zadanie 5.3. Obliczanie wartości funkcji

Napisz funkcję 1 obliczającą wartość *z* wykorzystując instrukcję warunkową. Napisz funkcję 2 obliczającą wartość *z* wykorzystując instrukcję wyboru. Wywołaj te funkcje.

Zintegrowany Program Rozwoju Politechniki Lubelskiej – część druga

$$z = \begin{cases} 1 - \sin \alpha & t = 8 \\ \frac{1}{2} (1 + \cos \alpha) & t = 0,1,2,3 \\ \sqrt{\alpha^2 + 1} & t = 4,6,7 \end{cases}$$

Zadanie 5.4. Przynależność punktu do wskazanego obszaru

Napisz funkcję sprawdzającą, czy punkt o współrzędnych x, y należy do zamalowanego obszaru. Wywołaj tę funkcję.

Zadanie 5.5. Równanie kwadratowe

Napisz funkcję obliczającą pierwiastki równania kwadratowego ax²+bx+c=0 uwzględniającą wszelkie możliwe warianty danych a, b, c. Wywołaj tę funkcję.

Zadanie 5.6. Pole trójkąta

Napisz i wywołaj funkcję, która na podstawie 3 liczb - boków trójkąta obliczy jego pole. Zweryfikuj czy podane liczby utworzą trójkąt.

Zadanie 5.7. Miesiące

Napisz funkcję, która na podstawie numeru miesiąca określi, do jakiego kwartału roku on należy i ile dni zawiera. Wywołaj ta funkcję.

Zadania dodatkowe

Zadanie 5.8. Szczęśliwy bilet

Bilet tramwajowy posiada sześciocyfrowy numer. Napisz funkcję sprawdzającą, czy jest to bilet "szczęśliwy". Bilet uznawany jest za "szczęśliwy", jeżeli suma 3 pierwszych i 3 ostatnich cyfr jest taka sama. Wywołaj tę funkcję.

Zadanie 5.9. Wypłata pracownika

Napisz funkcję, która na podstawie pensji i stażu pracownika obliczy jego wypłatę w następujący sposób: jeżeli staż pracownika jest mniejszy niż 5 lat, dodatek stażowy się nie należy, jeżeli pracownik przepracował w firmie od 5 do 10 lat, dodatek stażowy wynosi tyle procent ile lat ma staż pracownika, jeżeli staż pracownika jest powyżej 10 lat, dodatek stażowy wynosi 15%. Wywołaj tę funkcję.

Zadanie 5.10. Stypendium studenta

Napisz funkcję, która na podstawie 3 ocen z egzaminów wyświetli informację o przyznanym (lub nie) stypendium. Student otrzyma stypendium, jeśli zdał wszystkie egzaminy. Jeśli średnia ocen jest większa od 4 otrzyma stypendium 500 zł; jeśli 3 < średnia <= 4 to stypendium wynosi 300 zł. Wywołaj tą funkcję.

Zadanie 5.11. Liczby

Dane są trzy dodatnie liczby całkowite a, b, c. Jeżeli wszystkie są parzyste oblicz ich sumę, jeżeli dowolna z nich to 1 oblicz ich iloczyn, w pozostałych przypadkach zwróć -1. Zdefiniuj i wywołaj odpowiednią funkcję.

Zadanie 5.12. Znaki

Napisz i wywołaj funkcję, która sprawdzi, czy podany z klawiatury znak jest:

- znakiem dolara,
- małą literą angielskiego alfabetu,
- dużą literą angielskiego alfabetu,
- cyfrą,
- znakiem działania podstawowych operacji arytmetycznych.

Zintegrowany Program Rozwoju Politechniki Lubelskiej – część druga

