### (19) World Intellectual Property Organization International Bureau





(43) International Publication Date 21 May 2004 (21.05.2004)

PCT

# (10) International Publication Number

(51) International Patent Classification<sup>7</sup>: G01N

WO 2004/042346 A2

Road, Austin, TX 78703 (US). MORRIS, MacDonald [US/US]; 34 Lloyden Drive, Atherton, CA 94027 (US).

(21) International Application Number:

PCT/US2003/012946

[US/US]; 34 Lloyden Drive, Atherton, CA 94027 (US). ROSENBERG, Steven [US/US]; 2323 Bywood Drive, Oakland, CA 94682 (US).

(22) International Filing Date: 24 April 2003 (24.04.2003)

(74) Agents: WARD, Michael, R. et al.; Morrison & Foerster LLP, 425 Market Street, San Francisco, CA 94105-2482 (US)

(25) Filing Language:
(26) Publication Language:

English English (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU.

(30) Priority Data:

24 April 2002 (24.04.2002) US

AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FE, GB, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MN, MX, MZ, NH, NO, MZ, CM, PH, PL, PF, RO, NY, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VZ, VY, YY, VU, ZA, ZM, ZM

10/131,831 10/325,899

20 December 2002 (20.12.2002) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US Not furnished (CIP)
Filed on Not furnished

Not furnished (CIP) (84) Designated States (regional): ARIPO patent (GH, GM, Not furnished KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW).

(71) Applicant (for all designated States except US): EXPRES-SION DIAGNOSTICS, INC. [US/US]; 384 Oyster Point Boulevard, Suite 6, South San Francisco, CA 94080 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WOHLGEMUTH, Jay [USUS]: 1165 Monte Rosa Drive, Menlo Park, CA. 94025 (US). FRY, Kirk [US/US]: 2604 Ross Road, Palo Alto, CA 94303 (US). WOODWARD, Robert [US/US]: 1828 Rheem Court, Pleasanton, CA 94558 (US). LX, Ngoe [US/US]: 2000 Crystal Springs Road 15-14, San Bruno, CA 94066 (US). PRENTICE, James [US/US]: 14 Nikes Published:

without international search report and to be republished upon receipt of that report

GA, GN, GO, GW, ML, MR, NE, SN, TD, TG).

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND COMPOSITIONS FOR DIAGNOSING AND MONITORING TRANSPLANT REJECTION

(57) Abstract: Methods of diagnosing or monitoring transplant rejection, particularly cardiac transplant rejection, in a patient by detecting the expression level of one or more genes in a patient, are described. Diagnostic oligonucleotides for diagnost or monitoring transplant rejection, particularly cardiac transplant rejection and kits or systems containing the same are also described.

## METHODS AND COMPOSITIONS FOR DIAGNOSING AND MONITORING TRANSPLANT REJECTION

#### Related Applications

This application claims priority to U.S. Application No. 10/131,831, filed April 24, 2002, and U.S. Application No. 10/325,899, filed December 20, 2002.

## Field of the Invention

This invention is in the field of expression profiling following organ transplantation. Background of the Invention

Many of the current shortcomings in diagnosis, prognosis, risk stratification and treatment of disease can be approached through the identification of the molecular mechanisms underlying a disease and through the discovery of nucleotide sequences (or sets of nucleotide sequences) whose expression patterns predict the occurrence or progression of disease states, or predict a patient's response to a particular therapeutic intervention. In particular, identification of nucleotide sequences and sets of nucleotide sequences with such predictive value from cells and tissues that are readily accessible would be extremely valuable. For example, peripheral blood is attainable from all patients and can easily be obtained at multiple time points at low cost. This is a desirable contrast to most other cell and tissue types, which are less readily accessible, or accessible only through invasive and aversive procedures. In addition, the various cell types present in circulating blood are ideal for expression profiling experiments as the many cell types in the blood specimen can be easily separated if desired prior to analysis of gene expression. While blood provides a very attractive substrate for the study of diseases using expression profiling techniques, and for the development of diagnostic technologies and the identification of therapeutic targets, the value of expression profiling in blood samples rests on the degree to which changes in gene expression in these cell types are associated with a predisposition to, and pathogenesis and progression of a disease.

Hematopoiesis is the development and maturation of all cell types of the blood. These include erythrocytes, platelets and leukocytes. Leukocytes are further subdivided into granulocytes (neutrophils, eosinophils, basophils) and mononuclear cells (monocytes, lymphocytes). These cells develop and mature from precursor cells to replenish the circulating pool and to respond to insults and challenges to the system. This occurs in the bone marrow, spleen, thymus, liver, lymph nodes, mucosal associated lymphoid tissue (MALT) and peripheral blood.

Precursor cells differentiate into immature forms of each lineage and these immature cells develop further into mature cells. This process occurs under the influence and direction of hematopoietic growth factors. When hematopoietis is stimulated, there is an increase in the number of immature cells in the peripheral blood and in some cases, precursor cells are found at increased frequency. For example, CD34+ cells (hematopoietic stem cells) may increase in frequency in the peripheral blood with an insult to the immune system. For neutrophils, "band" forms are increased, for erythrocytes, reticulocytes or nucleated red cells are seen. Lymphocytes are preceeded by lymphoblasts (immature lymphocytes).

It may be an important clinical goal to measure the rate of production of blood cells of a variety of lineages. Hematological disorders involving over or under production of various blood cells

may be treated pharmacologically. For example, anemia (low red blood cells) may be treated with erythropoietin (a hematopoietic growth factor) and response to this therapy can be assessed by measuring RBC production rates. Low neutrophils counts can be treated by administration of G-CSF and this therapy may be monitored by measuring neutrophil production rates. Alternatively, the diagnosis of blood cell disorders is greatly facilitated by determination of lineage specific production rates. For example, anemia (low RBCs) may be caused by decreased cellular production or increased destruction of cells. In the latter case, the rate of cellular production will be increased rather than decreased and the therapeutic implications are very different. Further discussion of the clinical uses of measures of blood cell production rates is given in below.

Assessment of blood cell production rates may be useful for diagnosis and management of non-hematological disorders. In particular, acute allograft rejection diagnosis and monitoring may benefit from such an approach. Current diagnosis and monitoring of acute allograft rejection is achieved through invasive allograft biopsy and assessment of the biopsy histology. This approach is sub-optimal because of expense of the procedure, cost, pain and discomfort of the patient, the need for trained physician operators, the risk of complications of the procedure, the lack of insight into the functioning of the immune system and variability of pathological assessment. In addition, biopsy can diagnose acute allograft rejection only after significant cellular infiltration into the allograft has occurred. At this point, the process has already caused damage to the allograft. For all these reasons, a simple blood test that can diagnose and monitor acute rejection at an earlier stage in the process is needed. Allograft rejection depends on the presence of functioning cells of the immune system. In addition, the process of rejection may cause activation of hematopoiesis. Finally, effective immunossuppressive therapy to treat or prevent acute rejection may suppress hematopoiesis. For these reasons, assessment of hematopoietic cellular production rates may be useful in the diagnosis and monitoring of acute rejection.

Current techniques for measuring cellular development and production rates are inadequate. The most common approach is to measure the number of mature cells of a lineage of interest over time. For example, if a patient is being treated for anemia (low red blood cell counts), then the physician will order a blood cell count to assess the number of red blood cells (RBCs) in circulation. For this to be effective, the physician must measure the cell count over time and may have to wait 2.4 weeks before being able to assess response to therapy. The same limitation is true for assessment of any cell lineage in the blood.

An alternative approach is to count the number of immature cells in the peripheral blood by counting them under the microscope. This may allow a more rapid assessment of cellular production rates, but is limited by the need for assessment by a skilled hematologist, observer variability and the inability to distinguish all precursor cells on the basis of morphology alone.

Bone marrow biopsy is the gold standard for assessment of cellular production rates. In addition to the limitations of the need for skilled physicians, reader variability and the lack of sensitivity of morphology alone, the technique is also limited by the expense, discomfort to the patient and need for a prolonged visit to a medical center. Thus there is a need for a reliable, rapid means for measuring the rate of hematopoeisis in a patient.

In addition to the relationship between hematopoiesis and variety of disease processes, there is an extensive literature supporting the role of leukocytes, e.g., T-and B-lymphocytes, monocytes and granulocytes, including neutrophils, in a wide range of disease processes, including such broad classes as cardiovascular diseases, inflammatory, autoimmune and rheumatic diseases, infectious diseases. transplant rejection, cancer and malignancy, and endocrine diseases. For example, among cardiovascular diseases, such commonly occurring diseases as atherosclerosis, restenosis, transplant vasculopathy and acute coronary syndromes all demonstrate significant T cell involvement (Smith-Norowitz et al. (1999) Clin Immunol 93:168-175; Jude et al. (1994) Circulation 90:1662-8; Belch et al. (1997) Circulation 95:2027-31). These diseases are now recognized as manifestations of chronic inflammatory disorders resulting from an ongoing response to an injury process in the arterial tree (Ross et al. (1999) Ann Thorac Surg 67:1428-33). Differential expression of lymphocyte, monocyte and neutrophil genes and their products has been demonstrated clearly in the literature. Particularly interesting are examples of differential expression in circulating cells of the immune system that demonstrate specificity for a particular disease, such as arteriosclerosis, as opposed to a generalized association with other inflammatory diseases, or for example, with unstable angina rather than quiescent coronary disease.

A number of individual genes, e.g., CD11b/CD18 (Kassirer et al. (1999) Am Heart J 138:555-9); leukocyte elastase (Amaro et al. (1995) Eur Heart J 16:615-22; and CD40L (Aukrust et al. (1999) Circulation 100:614-20) demonstrate some degree of sensitivity and specificity as markers of various vascular diseases. In addition, the identification of differentially expressed target and fingerprint genes isolated from purified populations of monocytes manipulated in various in vitro paradigms has been proposed for the diagnosis and monitoring of a range of cardiovascular diseases, see, e.g., US Patents Numbers 6,048,709; 6,087,477; 6,099,823; and 6,124,433 "COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF CARDIOVASCULAR DISEASE" to Falb (see also, WO 97/30065). Lockhart, in US Patent Number 6,033,860 "EXPRESSION PROFILES IN ADULT AND FETAL ORGANS" proposes the use of expression profiles for a subset of identified genes in the identification of tissue samples, and the monitoring of drug effects.

The accuracy of technologies based on expression profiling for the diagnosis, prognosis, and monitoring of disease would be dramatically increased if numerous differentially expressed nucleotide sequences, each with a measure of specificity for a disease in question, could be identified and assayed in a concerted manner. PCT application WO 02/057414 "LEUKOCYTE EXPRESSION PROFILING" to Wohlgemuth identifies one such set of differentially expressed nucleotides.

In order to achieve this improved accuracy, the sets of nucleotide sequences once identified need to be validated to identify those differentially expressed nucleotides within a given set that are most useful for diagnosis, prognosis, and monitoring of disease. The present invention addresses these and other needs, and applies to transplant rejection and detection of the rate of hematopoeisis for which differential regulation of genes, or other nucleotide sequences, of peripheral blood can be demonstrated

#### Summary of the Invention

In order to meet these needs, the present invention is thus directed to a system for detecting differential gene expression. In one format, method are provided for assessing the immune status of an individual by detecting the expression level of one or more genes expressed at different levels depending upon the rate of hematopoiesis or the distribution of hematopoietic cells along their maturation pathway in the individual. The one or more genes may include a nucleotide selected from a nucleotide sequence selected from SEO ID NO:2, SEO ID NO:3, SEO ID NO:4, SEO ID NO:5, SEO ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEO ID NO:11. SEO ID NO:12. SEO ID NO:13. SEO ID NO:14. SEO ID NO:15. SEO ID NO:16. SEO ID NO:17. SEO ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEO ID NO:25, SEO ID NO:26, SEO ID NO:27, SEO ID NO:28, SEO ID NO:29, SEO ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEO ID NO:37, SEO ID NO:38, SEO ID NO:39, SEO ID NO:40, SEO ID NO:41, SEO ID NO:42. SEO ID NO:43. SEO ID NO:44. SEO ID NO:45. SEO ID NO:46. SEO ID NO:47. SEO ID NO:48, SEO ID NO:49, SEO ID NO:50, SEO ID NO:51, SEO ID NO:52, SEO ID NO:53, SEO ID NO:54. SEO ID NO:55. SEO ID NO:56. SEO ID NO:57. SEO ID NO:58. SEO ID NO:59. SEO ID NO:60, SEO ID NO:61, SEO ID NO:62, SEO ID NO:63, SEO ID NO:64, SEO ID NO:65, SEO ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEO ID NO:73, SEO ID NO:74, SEO ID NO:75, SEO ID NO:76, SEO ID NO:77, SEO ID NO:78. SEO ID NO:79. SEO ID NO:80. SEO ID NO:81. SEO ID NO:82. SEO ID NO:83. SEO ID NO:84, SEO ID NO:85, SEO ID NO:86, SEO ID NO:87, SEO ID NO:88, SEO ID NO:89, SEO ID NO:90. SEO ID NO:91. SEO ID NO:92. SEO ID NO:93. SEO ID NO:94. SEO ID NO:95. SEO ID NO:96, SEO ID NO:97, SEO ID NO:98, SEO ID NO:99, SEO ID NO:100, SEO ID NO:101, SEO ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEO ID NO:109, SEO ID NO:110, SEO ID NO:111, SEO ID NO:112, SEO ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEO ID NO:120, SEO ID NO:121, SEO ID NO:122, SEO ID NO:123, SEO ID NO:124, SEO ID NO:125, SEO ID NO:126, SEO ID NO:127, SEO ID NO:128, SEO ID NO:129, SEO ID NO:130, SEO ID NO:131, SEO ID NO:132, SEO ID NO:133, SEO ID NO:134, SEO ID NO:135, SEO ID NO:136. SEO ID NO:137, SEO ID NO:138, SEO ID NO:139, SEO ID NO:140, SEO ID NO:141, SEO ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEO ID NO:148, SEO ID NO:149, SEO ID NO:150, SEO ID NO:151, SEO ID NO:152, SEO ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEO ID NO:165, SEO ID NO:166, SEO ID NO:167, SEO ID NO:168, SEO ID NO:169, SEO ID NO:170, SEO ID NO:171, SEO ID NO:172, SEO ID NO:173, SEO ID NO:174, SEO ID NO:175, SEO ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEO ID NO:182, SEO ID NO:183, SEO ID NO:184, SEO ID NO:185, SEO ID NO:186, SEO ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEO ID NO:194, SEO ID NO:195, SEO ID NO:196, SEO ID NO:197, SEO ID NO:198,

SEQ ID NO:199, SEQ ID NO:200, SEO ID NO:201, SEO ID NO:202, SEO ID NO:203, SEO ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEO ID NO:212, SEO ID NO:213, SEO ID NO:214, SEO ID NO:215. SEQ ID NO:216, SEO ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEO ID NO:228, SEO ID NO:229, SEO ID NO:230, SEO ID NO:231, SEO ID NO:232 SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEO ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEO ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249. SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEO ID NO:258, SEO ID NO:259, SEO ID NO:260, SEO ID NO:261, SEO ID NO:262, SEO ID NO:263, SEO ID NO:264, SEO ID NO:265, SEO ID NO:266. SEQ ID NO:267, SEQ ID NO:268, SEO ID NO:269, SEO ID NO:270, SEO ID NO:271, SEO ID NO:272, SEO ID NO:273, SEO ID NO:274, SEO ID NO:275, SEO ID NO:276, SEO ID NO:277, SEO ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283. SEQ ID NO:284, SEO ID NO:285, SEO ID NO:286, SEO ID NO:287, SEO ID NO:288, SEO ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEO ID NO:307, SEO ID NO:308, SEO ID NO:309, SEO ID NO:310, SEO ID NO:311, SEO ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317. SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:2697, SEQ ID NO:2645, SEO ID NO:2707, SEQ ID NO:2679, SEQ ID NO:2717, SEQ ID NO:2646, SEO ID NO:2667, SEQ ID NO:2706, SEQ ID NO:2740, SEQ ID NO:2669, SEQ ID NO:2674, SEQ ID NO:2743. SEQ ID NO:2716, SEQ ID NO:2727, SEQ ID NO:2721, SEQ ID NO:2641, SEQ ID NO:2671, SEQ ID NO:2752, SEQ ID NO:2737, SEQ ID NO:2719, SEQ ID NO:2684, SEQ ID NO:2677, SEQ ID NO:2748, SEQ ID NO:2703, SEQ ID NO:2711, SEQ ID NO:2663, SEQ ID NO:2657, SEQ ID NO:2683, SEO ID NO:2686, SEO ID NO:2687, SEO ID NO:2644, SEO ID NO:2664, SEQ ID NO:2747, SEQ ID NO:2744, SEQ ID NO:2678, SEQ ID NO:2731, SEQ ID NO:2713, SEO ID NO:2736, SEO ID NO:2708, SEO ID NO:2670, SEO ID NO:2661, SEO ID NO:2680, SEQ ID NO:2754, SEQ ID NO:2728, SEQ ID NO:2742, SEQ ID NO:2668, SEQ ID NO:2750, SEQ ID NO:2746, SEQ ID NO:2738, SEQ ID NO:2627, SEQ ID NO:2739, SEQ ID NO:2647, SEQ ID NO:2628, SEQ ID NO:2638, SEQ ID NO:2725, SEQ ID NO:2714, SEQ ID NO:2635, SEO ID NO:2751, SEO ID NO:2629, SEO ID NO:2695, SEO ID NO:2741, SEO ID NO:2691, SEQ ID NO:2726, SEQ ID NO:2722, SEQ ID NO:2689, SEQ ID NO:2734, SEQ ID NO:2631, SEQ ID NO:2656, SEQ ID NO:2696, SEQ ID NO:2676, SEQ ID NO:2701, SEQ ID NO:2730, SEQ ID NO:2710, SEQ ID NO:2632, SEQ ID NO:2724, SEQ ID NO:2698, SEQ ID NO:2662, SEQ ID NO:2753, SEQ ID NO:2704, SEQ ID NO:2675, SEQ ID NO:2700, SEQ ID

NO:2640, SEQ ID NO:2723, SEQ ID NO:2658, SEQ ID NO:2688, SEQ ID NO:2735, SEQ ID NO:2702, SEQ ID NO:2681, SEQ ID NO:2755, SEQ ID NO:2755, SEQ ID NO:2752, SEQ ID NO:2753, SEQ ID NO:2652, SEQ ID NO:2651, SEQ ID NO:2753, SEQ ID NO:2753, SEQ ID NO:2652, SEQ ID NO:2651, SEQ ID NO:2651, SEQ ID NO:2651, SEQ ID NO:2659, SEQ ID NO:2669, SEQ I

The present invention is further directed to methods of diagnosing or monitoring transplant rejection in an individual by detecting a rate of hematopoiesis. The detection may be applied directly to the individual, or to a sample isolated from the individual. Detection may be accomplished by RNA profiling assay, immunoassay, fluorescent activated cell sorting, protein assay, peripheral blood cytology assay, MRI imaging, bone marrow aspiration, and/or nuclear imaging. In one variation, the RNA profile assay is a PCR based assay. In another variation, the RNA profile assay is a hybridization based assay. The RNA profile assay may further include detecting the expression level of one or more genes in the individual where the one or more genes include a nucleotide sequence selected from SEQ ID NO:2, SEO ID NO:3, SEO ID NO:4, SEO ID NO:5, SEO ID NO:6, SEO ID NO:7, SEO ID NO:8. SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEO ID NO:16, SEO ID NO:17, SEO ID NO:18, SEO ID NO:19, SEO ID NO:20, SEO ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEO ID NO:28, SEO ID NO:29, SEO ID NO:30, SEO ID NO:31, SEO ID NO:32, SEO ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEO ID NO:40, SEO ID NO:41, SEO ID NO:42, SEO ID NO:43, SEO ID NO:44, SEO ID NO:45. SEO ID NO:46. SEO ID NO:47. SEO ID NO:48. SEO ID NO:49. SEO ID NO:50. SEO ID NO:51, SEO ID NO:52, SEO ID NO:53, SEO ID NO:54, SEO ID NO:55, SEO ID NO:56, SEO ID NO:57, SEO ID NO:58, SEO ID NO:59, SEO ID NO:60, SEO ID NO:61, SEO ID NO:62, SEO ID NO:63, SEO ID NO:64, SEO ID NO:65, SEO ID NO:66, SEO ID NO:67, SEO ID NO:68, SEO ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEO ID NO:76, SEO ID NO:77, SEO ID NO:78, SEO ID NO:79, SEO ID NO:80, SEO ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEO ID NO:88, SEO ID NO:89, SEO ID NO:90, SEO ID NO:91, SEO ID NO:92, SEO ID NO:93, SEO ID NO:94, SEO ID NO:95, SEO ID NO:96, SEO ID NO:97, SEO ID NO:98, SEO ID NO:99, SEO ID NO:100, SEO ID NO:101, SEO ID NO:102, SEO ID NO:103, SEO ID NO:104, SEO ID NO:105, SEO ID NO:106, SEO ID NO:107, SEO ID NO:108, SEO ID NO:109, SEO ID NO:110. SEO ID NO:111, SEO ID NO:112, SEO ID NO:113, SEO ID NO:114, SEO ID NO:115, SEO ID

NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEO ID NO:123, SEO ID NO:124, SEO ID NO:125, SEO ID NO:126, SEO ID NO:127. SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEO ID NO:134, SEO ID NO:135, SEO ID NO:136, SEO ID NO:137, SEO ID NO:138, SEO ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEO ID NO:145, SEO ID NO:146, SEO ID NO:147, SEO ID NO:148, SEO ID NO:149, SEO ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEO ID NO:157, SEO ID NO:158, SEO ID NO:159, SEO ID NO:160, SEO ID NO:161. SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEO ID NO:168, SEO ID NO:169, SEO ID NO:170, SEO ID NO:171, SEO ID NO:172, SEO ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEO ID NO:179, SEO ID NO:180, SEO ID NO:181, SEO ID NO:182, SEO ID NO:183, SEO ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEO ID NO:191, SEO ID NO:192, SEO ID NO:193, SEO ID NO:194, SEO ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEO ID NO:202, SEO ID NO:203, SEO ID NO:204, SEO ID NO:205, SEO ID NO:206, SEO ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEO ID NO:213, SEO ID NO:214, SEO ID NO:215, SEO ID NO:216, SEO ID NO:217, SEO ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEO ID NO:225, SEO ID NO:226, SEO ID NO:227, SEO ID NO:228, SEO ID NO:229, SEO ID NO:230, SEO ID NO:231, SEO ID NO:232, SEO ID NO:233, SEO ID NO:234, SEO ID NO:235, SEO ID NO:236, SEO ID NO:237, SEO ID NO:238, SEO ID NO:239, SEO ID NO:240, SEO ID NO:241, SEO ID NO:242, SEO ID NO:243, SEO ID NO:244, SEO ID NO:245, SEO ID NO:246. SEO ID NO:247, SEO ID NO:248, SEO ID NO:249, SEO ID NO:250, SEO ID NO:251, SEO ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEO ID NO:276, SEO ID NO:277, SEO ID NO:278, SEO ID NO:279, SEO ID NO:280. SEO ID NO:281, SEO ID NO:282, SEO ID NO:283, SEO ID NO:284, SEO ID NO:285, SEO ID NO:286, SEO ID NO:287, SEO ID NO:288, SEO ID NO:289, SEO ID NO:290, SEO ID NO:291, SEO ID NO:292, SEO ID NO:293, SEO ID NO:294, SEO ID NO:295, SEO ID NO:296, SEO ID NO:297, SEO ID NO:298, SEO ID NO:299, SEO ID NO:300, SEO ID NO:301, SEO ID NO:302, SEO ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEO ID NO:315, SEO ID NO:316, SEO ID NO:317, SEO ID NO:318, SEO ID NO:319, SEO ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEO ID NO:327, SEO ID NO:328, SEO ID NO:329, SEO ID NO:330, SEO ID NO:331, SEQ ID NO:332, SEQ ID NO:2697, SEQ ID NO:2645, SEQ ID NO:2707, SEQ ID NO:2679, SEQ ID NO:2717, SEO ID NO:2646, SEO ID NO:2667, SEO ID NO:2706, SEO ID NO:2740, SEO ID

NO:2669, SEQ ID NO:2674, SEQ ID NO:2743, SEQ ID NO:2716, SEQ ID NO:2727. SEO ID NO:2721, SEQ ID NO:2641, SEQ ID NO:2671, SEQ ID NO:2752, SEQ ID NO:2737, SEQ ID NO:2719, SEQ ID NO:2684, SEQ ID NO:2677, SEQ ID NO:2748, SEQ ID NO:2703, SEQ ID NO:2711, SEQ ID NO:2663, SEQ ID NO:2657, SEQ ID NO:2683, SEQ ID NO:2686, SEQ ID NO:2687, SEQ ID NO:2644, SEQ ID NO:2664, SEQ ID NO:2747, SEQ ID NO:2744, SEO ID NO:2678, SEQ ID NO:2731, SEQ ID NO:2713, SEQ ID NO:2736, SEQ ID NO:2708, SEQ ID NO:2670, SEO ID NO:2661, SEQ ID NO:2680, SEQ ID NO:2754, SEQ ID NO:2728. SEO ID NO:2742, SEQ ID NO:2668, SEQ ID NO:2750, SEQ ID NO:2746, SEQ ID NO:2738, SEQ ID NO:2627, SEO ID NO:2739, SEQ ID NO:2647, SEQ ID NO:2628, SEQ ID NO:2638, SEQ ID NO:2725, SEQ ID NO:2714, SEQ ID NO:2635, SEQ ID NO:2751, SEQ ID NO:2629, SEQ ID NO:2695, SEO ID NO:2741, SEQ ID NO:2691, SEQ ID NO:2726, SEQ ID NO:2722. SEO ID NO:2689, SEQ ID NO:2734, SEQ ID NO:2631, SEQ ID NO:2656, SEO ID NO:2696. SEO ID NO:2676, SEO ID NO:2701, SEQ ID NO:2730, SEQ ID NO:2710, SEO ID NO:2632, SEO ID NO:2724, SEO ID NO:2698, SEO ID NO:2662, SEQ ID NO:2753, SEQ ID NO:2704, SEQ ID NO:2675, SEQ ID NO:2700, SEQ ID NO:2640, SEQ ID NO:2723, SEQ ID NO:2658, SEQ ID NO:2688, SEQ ID NO:2735, SEQ ID NO:2702, SEQ ID NO:2681, SEQ ID NO:2755, SEQ ID NO:2715, SEQ ID NO:2732, SEQ ID NO:2652, SEQ ID NO:2651, SEQ ID NO:2718, SEQ ID NO:2673, SEQ ID NO:2733, SEQ ID NO:2712, SEQ ID NO:2659, SEO ID NO:2654, SEO ID NO:2636, SEQ ID NO:2639, SEQ ID NO:2690, SEQ ID NO:2705, SEQ ID NO:2685, SEQ ID NO:2692, SEO ID NO:2693, SEO ID NO:2648, SEQ ID NO:2650, SEQ ID NO:2720, SEQ ID NO:2660, SEQ ID NO:2666, SEQ ID NO:2699, SEQ ID NO:2633, SEQ ID NO:2672, SEQ ID NO:2642, SEQ ID NO:2682, SEQ ID NO:2655, SEQ ID NO:2630, SEQ ID NO:2745, SEQ ID NO:2643, SEQ ID NO:2694, SEQ ID NO:2749, SEQ ID NO:2665, SEQ ID NO:2649, SEQ ID NO:2637, SEO ID NO:2634, SEQ 1D NO:2709, SEQ ID NO:2653, SEQ ID NO:2729. Transplant rejection may include one or more of heart transplant rejection, kidney transplant rejection, liver transplant rejection, pancreas transplant rejection, pancreatic islet transplant rejection, lung transplant rejection, bone marrow transplant rejection, stem cell transplant rejection, xenotransplant rejection, and mechanical organ replacement rejection.

In another aspect, the invention is directed to a method of diagnosing or monitoring transplant rejection in a patient by detecting the expression level of one or more genes in the patient to diagnose of monitor transplant rejection in the patient, wherein the one or more genes include a nucleotide sequence selected from SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:11, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:44, SEQ ID NO:44, SEQ ID NO:44, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:55, SEQ ID N

NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94. SEQ ID NO:95. SEQ ID NO:96. SEQ ID NO:98, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135. SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEO ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ 1D NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEO ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEO ID NO:232. SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249. SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ 1D NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266. SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEO ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300. SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:311, SEQ

ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEO ID NO:318, SEO ID NO:319, SEO ID NO:320, SEO ID NO:321, SEO ID NO:322, SEO ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEO ID NO:330, SEO ID NO:331, SEO ID NO:332, SEO ID NO:2697, SEO ID NO:2645, SEO ID NO:2707, SEO ID NO:2679, SEQ ID NO:2717, SEQ ID NO:2646, SEQ ID NO:2667, SEO ID NO:2706, SEO ID NO:2740, SEO ID NO:2669, SEO ID NO:2674, SEO ID NO:2743, SEO ID NO:2716, SEO ID NO:2727, SEQ ID NO:2721, SEQ ID NO:2641, SEQ ID NO:2671, SEO ID NO:2752, SEO ID NO:2737, SEO ID NO:2719, SEO ID NO:2684, SEO ID NO:2677, SEQ ID NO:2748, SEQ ID NO:2703, SEQ ID NO:2711, SEQ ID NO:2663, SEQ ID NO:2657, SEO ID NO:2683, SEO ID NO:2686, SEO ID NO:2687, SEO ID NO:2644, SEO ID NO:2664, SEQ ID NO:2747, SEQ ID NO:2744, SEQ ID NO:2678, SEQ ID NO:2731, SEQ ID NO:2713, SEO ID NO:2736, SEO ID NO:2708, SEO ID NO:2670, SEO ID NO:2661, SEO ID NO:2680, SEQ ID NO:2754, SEQ ID NO:2728, SEQ ID NO:2742, SEQ ID NO:2668, SEQ ID NO:2750, SEO ID NO:2746, SEO ID NO:2738, SEO ID NO:2627, SEO ID NO:2739, SEO ID NO:2647, SEQ ID NO:2628, SEQ ID NO:2638, SEQ ID NO:2725, SEQ ID NO:2714, SEQ ID NO:2635, SEO ID NO:2751, SEO ID NO:2629, SEO ID NO:2695, SEO ID NO:2741, SEO ID NO:2691, SEO ID NO:2726, SEO ID NO:2722, SEO ID NO:2689, SEO ID NO:2734, SEO ID NO:2631, SEO ID NO:2656, SEO ID NO:2696, SEO ID NO:2676, SEO ID NO:2701, SEO ID NO:2730, SEQ ID NO:2710, SEQ ID NO:2632, SEQ ID NO:2724, SEQ ID NO:2698, SEQ ID NO:2662, SEO ID NO:2753, SEO ID NO:2704, SEO ID NO:2675, SEO ID NO:2700, SEO ID NO:2640, SEQ ID NO:2723, SEQ ID NO:2658, SEQ ID NO:2688, SEQ ID NO:2735, SEQ ID NO:2702, SEO ID NO:2681, SEO ID NO:2755, SEO ID NO:2715, SEO ID NO:2732, SEO ID NO:2652, SEQ ID NO:2651, SEQ ID NO:2718, SEQ ID NO:2673, SEQ ID NO:2733, SEQ ID NO:2712, SEO ID NO:2659, SEO ID NO:2654, SEO ID NO:2636, SEO ID NO:2639, SEO ID NO:2690. SEO ID NO:2705. SEO ID NO:2685. SEO ID NO:2692. SEO ID NO:2693. SEO ID NO:2648, SEO ID NO:2650, SEO ID NO:2720, SEO ID NO:2660, SEO ID NO:2666, SEO ID NO:2699, SEO ID NO:2633, SEO ID NO:2672, SEO ID NO:2642, SEO ID NO:2682, SEO ID NO:2655, SEO ID NO:2630, SEO ID NO:2745, SEO ID NO:2643, SEO ID NO:2694, SEO ID NO:2749, SEQ ID NO:2665, SEQ ID NO:2649, SEQ ID NO:2637, SEQ ID NO:2634, SEQ ID NO:2709, SEO ID NO:2653, SEO ID NO:2729. In one variation, the invention is further directed to detecting the expression level of one or more additional genes in the patient to diagnose or monitor transplant rejection in the patient, wherein the one or more additional genes include a nucleotide sequence selected from SEO ID NO:8, SEO ID NO:75, SEO ID NO:76, SEO ID NO:77, SEO ID NO:78, SEO ID NO:79, SEO ID NO:80, SEO ID NO:81, SEO ID NO:89, SEO ID NO:97, SEO ID NO:99, SEQ ID NO:100, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:140, SEO ID NO:141, SEO ID NO:142, SEO ID NO:143, SEO ID NO:144, SEO ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:15.

In a further variation, the invention is directed to a method of diagnosing or monitoring cardiac transplant rejection in a patient by detecting the expression level of one or more genes in the

patient to diagnose or monitor cardiac transplant rejection in the patient wherein the one or more genes include a nucleotide sequence selected from SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18. SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30. SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54. SEO ID NO:55, SEO ID NO:56, SEO ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66. SEO ID NO:67, SEO ID NO:68, SEO ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEO ID NO:83, SEO ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEO ID NO:95, SEO ID NO:96, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118. SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEO ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEO ID NO:135. SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEO ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEO ID NO:165, SEO ID NO:166, SEQ ID NO:167, SEO ID NO:168, SEQ ID NO:169, SEO ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181. SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEO ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215. SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226. SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ

ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEO ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEO ID NO:256, SEO ID NO:257, SEO ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266. SEO ID NO:267, SEO ID NO:268, SEO ID NO:269, SEO ID NO:270, SEO ID NO:271, SEO ID NO:272, SEO ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEO ID NO:277, SEO ID NO:278. SEO ID NO:279. SEO ID NO:280. SEO ID NO:281, SEO ID NO:282, SEO ID NO:283, SEO ID NO:284, SEO ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEO ID NO:288. SEO ID NO:289. SEO ID NO:290. SEO ID NO:291. SEO ID NO:292. SEO ID NO:293. SEO ID NO:294. SEO ID NO:295, SEO ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEO ID NO:301, SEO ID NO:302, SEO ID NO:303, SEO ID NO:304, SEO ID NO:305, SEO ID NO:306. SEO ID NO:307. SEO ID NO:308. SEO ID NO:309. SEO ID NO:310. SEO ID NO:311. SEO ID NO:312, SEO ID NO:313, SEO ID NO:314, SEO ID NO:315, SEO ID NO:316, SEO ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEO ID NO:324, SEO ID NO:325, SEO ID NO:326, SEO ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEO ID NO:330, SEO ID NO:331, SEO ID NO:332. In one variation, the method includes detecting the expression level of one or more additional genes in the patient to diagnose or monitor cardiac transplant rejection in the patient, wherein the one or more additional genes include a nucleotide sequence selected from SEO ID NO:8, SEO ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:97, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEO ID NO:144, SEO ID NO:145, SEO ID NO:146, SEO ID NO:147, SEO ID NO:148, SEO ID NO:149, SEQ ID NO:150, SEQ ID NO:151.

The invention is also directed to a method of diagnosing or monitoring kidney transplant rejection in a patient by detecting the expression level of one or more genes in the patient to diagnose or monitor kidney transplant rejection in the patient wherein the one or more genes include a nucleotide sequence selected from SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEO ID NO:7, SEO ID NO:8, SEO ID NO:9, SEO ID NO:10, SEO ID NO:11, SEO ID NO:12, SEO ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEO ID NO:20, SEO ID NO:21, SEO ID NO:22, SEO ID NO:23, SEO ID NO:24, SEO ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEO ID NO:32, SEO ID NO:33, SEO ID NO:34, SEO ID NO:35, SEQ ID NO:36, SEQ ID NO:37. SEO ID NO:38. SEO ID NO:39. SEO ID NO:40. SEO ID NO:41. SEO ID NO:42. SEO ID NO:43, SEO ID NO:44, SEO ID NO:45, SEO ID NO:46, SEO ID NO:47, SEO ID NO:48, SEO ID NO:49. SEO ID NO:50. SEO ID NO:51. SEO ID NO:52. SEO ID NO:53. SEO ID NO:54. SEO ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60. SEO ID NO:61. SEO ID NO:62. SEO ID NO:63. SEO ID NO:64. SEO ID NO:65. SEO ID NO:66. SEO ID NO:67, SEO ID NO:68, SEO ID NO:69, SEO ID NO:70, SEO ID NO:71, SEQ ID NO:72, SEQ ID NO:73. SEO ID NO:74. SEO ID NO:78. SEO ID NO:82. SEO ID NO:83. SEO ID NO:84. SEO ID NO:85, SEO ID NO:86, SEO ID NO:87, SEQ ID NO:88, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEO ID NO:93, SEO ID NO:94, SEO ID NO:95, SEO ID NO:96, SEO ID NO:97, SEO ID

NO:98. SEO ID NO:101, SEO ID NO:102, SEO ID NO:103, SEO ID NO:104, SEO ID NO:105, SEO 1D NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:114, SEQ ID NO:115, SEO ID NO:116, SEO ID NO:117, SEO ID NO:118, SEO ID NO:119, SEQ ID NO:120, SEO ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEO ID NO:128, SEO ID NO:129, SEO ID NO:130, SEO ID NO:131, SEO ID NO:132, SEO ID NO:133. SEO ID NO:134. SEO ID NO:135. SEO ID NO:136. SEO ID NO:137. SEO ID NO:138, SEQ ID NO:139, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156 SEO ID NO:157 SEO ID NO:158 SEO ID NO:159 SEO ID NO:160 SEO ID NO:161. SEO ID NO:162, SEO ID NO:163, SEO ID NO:164, SEO ID NO:165, SEQ ID NO:166, SEO ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEO ID NO:174, SEO ID NO:175, SEO ID NO:176, SEO ID NO:177, SEO ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEO ID NO:185, SEO ID NO:186, SEO ID NO:187, SEO ID NO:188, SEO ID NO:189, SEQ ID NO:190, SEO ID NO:191, SEO ID NO:192, SEO ID NO:193, SEO ID NO:194, SEO ID NO:195, SEO ID NO:196, SEO ID NO:197, SEO ID NO:198, SEO ID NO:199, SEO ID NO:200, SEO ID NO:201, SEO ID NO:202, SEO ID NO:203, SEO ID NO:204, SEO ID NO:205, SEO ID NO:206, SEO ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEO ID NO:213, SEO ID NO:214, SEO ID NO:215, SEO ID NO:216, SEO ID NO:217, SEO ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224. SEO ID NO:225. SEO ID NO:226. SEO ID NO:227. SEO ID NO:228. SEO ID NO:229. SEO ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEO ID NO:236, SEO ID NO:237, SEO ID NO:238, SEO ID NO:239, SEO ID NO:240, SEO ID NO:241, SEO ID NO:242, SEO ID NO:243, SEO ID NO:244, SEO ID NO:245, SEO ID NO:246, SEO ID NO:247, SEO ID NO:248, SEO ID NO:249, SEO ID NO:250, SEO ID NO:251, SEO ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEO ID NO:259, SEO ID NO:260, SEO ID NO:261, SEO ID NO:262, SEO ID NO:263, SEO ID NO:264, SEO ID NO:265, SEO ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEO ID NO:270, SEO ID NO:271, SEO ID NO:272, SEO ID NO:273, SEO ID NO:274, SEO ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEO ID NO:281, SEO ID NO:282, SEO ID NO:283, SEO ID NO:284, SEO ID NO:285, SEO ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292. SEO ID NO:293, SEO ID NO:294, SEO ID NO:295, SEO ID NO:296, SEO ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEO ID NO:304, SEO ID NO:305, SEO ID NO:306, SEO ID NO:307, SEO ID NO:308, SEO ID NO:309, SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEO ID NO:315, SEO ID NO:316, SEO ID NO:317, SEO ID NO:318, SEO ID NO:319, SEO ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEO ID NO:327, SEO ID NO:328, SEO ID NO:329, SEO ID NO:330, SEO ID NO:331, SEO ID NO:332, SEQ ID NO:2697, SEQ ID NO:2645, SEQ ID NO:2707, SEQ ID NO:2679, SEQ ID NO:2717, SEO ID NO:2646, SEO ID NO:2667, SEO ID NO:2706, SEO ID NO:2740, SEO ID

NO:2669, SEO ID NO:2674, SEO ID NO:2743, SEO ID NO:2716, SEQ ID NO:2727, SEQ ID NO:2721, SEQ ID NO:2641, SEQ ID NO:2671, SEQ ID NO:2752, SEQ ID NO:2737, SEQ ID NO:2719, SEO ID NO:2684, SEO ID NO:2677, SEO ID NO:2748, SEQ ID NO:2703, SEQ ID NO:2711, SEQ ID NO:2663, SEQ ID NO:2657, SEQ ID NO:2683, SEQ ID NO:2686, SEQ ID NO:2687, SEO ID NO:2644, SEO ID NO:2664, SEO ID NO:2747, SEQ ID NO:2744, SEQ ID NO:2678. SEO ID NO:2731. SEO ID NO:2713. SEO ID NO:2736. SEO ID NO:2708. SEO ID NO:2670, SEO ID NO:2661, SEO ID NO:2680, SEO ID NO:2754, SEO ID NO:2728, SEO ID NO:2742, SEO ID NO:2668, SEO ID NO:2750, SEO ID NO:2746, SEO ID NO:2738, SEO ID NO:2627, SEO ID NO:2739, SEO ID NO:2647, SEQ ID NO:2628, SEQ ID NO:2638, SEQ ID NO:2725, SEO ID NO:2714, SEO ID NO:2635, SEO ID NO:2751, SEO ID NO:2629, SEO ID NO:2695, SEQ ID NO:2741, SEQ ID NO:2691, SEQ ID NO:2726, SEQ ID NO:2722, SEQ ID NO:2689, SEO ID NO:2734, SEO ID NO:2631, SEO ID NO:2656, SEO ID NO:2696, SEO ID NO:2676, SEQ ID NO:2701, SEQ ID NO:2730, SEQ ID NO:2710, SEQ ID NO:2632, SEQ ID NO:2724, SEO ID NO:2698, SEO ID NO:2662, SEO ID NO:2753, SEO ID NO:2704, SEO ID NO:2675, SEQ ID NO:2700, SEQ ID NO:2640, SEQ ID NO:2723, SEQ ID NO:2658. SEO ID NO:2688, SEO ID NO:2735, SEO ID NO:2702, SEO ID NO:2681, SEO ID NO:2755, SEO ID NO:2715, SEQ ID NO:2732, SEQ ID NO:2652, SEQ ID NO:2651, SEQ ID NO:2718, SEQ ID NO:2673, SEO ID NO:2733, SEO ID NO:2712, SEO ID NO:2659, SEO ID NO:2654, SEO ID NO:2636, SEQ ID NO:2639, SEQ ID NO:2690, SEQ ID NO:2705, SEQ ID NO:2685, SEQ ID NO:2692, SEO ID NO:2693, SEO ID NO:2648, SEO ID NO:2650, SEO ID NO:2720, SEO ID NO:2660, SEO ID NO:2666, SEO ID NO:2699, SEO ID NO:2633, SEO ID NO:2672, SEO ID NO:2642, SEO ID NO:2682, SEO ID NO:2655, SEO ID NO:2630, SEO ID NO:2745, SEO ID NO:2643, SEQ ID NO:2694, SEQ ID NO:2749, SEQ ID NO:2665, SEQ ID NO:2649, SEQ ID NO:2637, SEO ID NO:2634, SEO ID NO:2709, SEO ID NO:2653, SEO ID NO:2729. In one variation, the method further includes detecting the expression level of one or more additional genes in the patient to diagnose or monitor kidney transplant rejection in a patient, wherein the one or more additional genes includes a nucleotide sequence selected from SEQ ID NO: 75, SEQ ID NO:76, SEQ ID NO:77, SEO ID NO:79, SEO ID NO:80, SEO ID NO:81, SEO ID NO:89, SEO ID NO:99, SEO ID NO:100. SEO ID NO:110. SEO ID NO:111. SEO ID NO:112. SEO ID NO:113. SEO ID NO:140. SEO ID NO:141, SEO ID NO:142, SEO ID NO:143, SEO ID NO:144, SEO ID NO:145, SEO ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151.

In another aspect, the methods of diagnosing or monitoring transplant rejection include detecting the expression level of at least two of the genes. In another variation, methods of diagnosing or monitoring transplant rejection include detecting the expression level of at least ten of the genes. In a further variation, the methods of diagnosing or monitoring transplant rejection include detecting the expression level of at least one hundred of the genes. In still a further variation, the methods of diagnosing or monitoring transplant rejection include detecting the expression level of all the listed genes.

In another variation, transplant rejection may be selected from heart transplant rejection, kidney transplant rejection, liver transplant rejection, pancreas transplant rejection, pancreatic islet

transplant rejection, lung transplant rejection, bone marrow transplant rejection, stem cell transplant rejection, xenotransplant rejection, and mechanical organ replacement rejection.

In another aspect, the methods of detecting transplant rejection include detecting the expression level by measuring the RNA level expressed by one or more genes. The method may further including isolating RNA from the patient prior to detecting the RNA level expressed by the one or more genes.

In one variation, the RNA level is detected by PCR. In a still further variation, the PCR uses primers consisting of nucleotide sequences selected from the group consisting of SEO ID NO:665. SEO ID NO:666, SEO ID NO:667, SEO ID NO:668, SEO ID NO:669, SEO ID NO:670, SEO ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEO ID NO:678, SEO ID NO:679, SEO ID NO:680, SEQ ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEO ID NO:689, SEO ID NO:690, SEO ID NO:691, SEO ID NO:692, SEO ID NO:693, SEO ID NO:694, SEO ID NO:695, SEO ID NO:696, SEO ID NO:697, SEO ID NO:698, SEO ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEO ID NO:706, SEO ID NO:707, SEO ID NO:708, SEO ID NO:709, SEO ID NO:710, SEO ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEO ID NO:717, SEO ID NO:718, SEO ID NO:719, SEO ID NO:720, SEO ID NO:721, SEO ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728. SEO ID NO:729. SEO ID NO:730. SEO ID NO:731. SEO ID NO:732. SEO ID NO:733. SEO ID NO:734, SEO ID NO:735, SEO ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEO ID NO:740, SEO ID NO:741, SEO ID NO:742, SEO ID NO:743, SEO ID NO:744, SEO ID NO:745, SEO ID NO:746, SEO ID NO:747, SEO ID NO:748, SEO ID NO:749, SEO ID NO:750, SEO ID NO:751, SEO ID NO:752, SEO ID NO:753, SEO ID NO:754, SEO ID NO:755, SEO ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEO ID NO:768, SEO ID NO:769, SEO ID NO:770, SEO ID NO:771, SEO ID NO:772, SEO ID NO:773, SEO ID NO:774, SEO ID NO:775, SEO ID NO:776, SEO ID NO:777, SEO ID NO:778, SEO ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEO ID NO:785, SEO ID NO:786, SEO ID NO:787, SEO ID NO:788, SEO ID NO:789, SEO ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796. SEO ID NO:797. SEO ID NO:798. SEO ID NO:799, SEO ID NO:800, SEO ID NO:801. SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEO ID NO:808, SEO ID NO:809, SEO ID NO:810, SEO ID NO:811, SEO ID NO:812, SEO ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEO ID NO:819, SEO ID NO:820, SEO ID NO:821, SEO ID NO:822, SEO ID NO:823, SEO ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEO ID NO:831, SEO ID NO:832, SEO ID NO:833, SEO ID NO:834, SEO ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEO ID NO:842, SEO ID NO:843, SEO ID NO:844, SEO ID NO:845, SEO ID NO:846, SEQ

ID NO:847, SEO ID NO:848, SEO ID NO:849, SEO ID NO:850, SEO ID NO:851, SEO ID NO:852, SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEO ID NO:859, SEO ID NO:860, SEO ID NO:861, SEO ID NO:862, SEO ID NO:863, SEO ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:867, SEQ ID NO:868, SEQ ID NO:869, SEO ID NO:870, SEO ID NO:871, SEO ID NO:872, SEO ID NO:873, SEO ID NO:874, SEO ID NO:875, SEO ID NO:876, SEO ID NO:877, SEO ID NO:878, SEO ID NO:879, SEO ID NO:880, SEO ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEO ID NO:887, SEO ID NO:888, SEO ID NO:889, SEO ID NO:890, SEO ID NO:891, SEO ID NO:892, SEO ID NO:893, SEO ID NO:894, SEO ID NO:895, SEO ID NO:896, SEO ID NO:897, SEO ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEO ID NO:904, SEO ID NO:905, SEO ID NO:906, SEO ID NO:907, SEO ID NO:908, SEO ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEO ID NO:916, SEO ID NO:917, SEO ID NO:918, SEO ID NO:919, SEO ID NO:920, SEO ID NO:921, SEO ID NO:922, SEO ID NO:923, SEO ID NO:924, SEO ID NO:925, SEO ID NO:926, SEO ID NO:927, SEO ID NO:928, SEO ID NO:929, SEO ID NO:930, SEO ID NO:931, SEO ID NO:932, SEO ID NO:933, SEO ID NO:934, SEO ID NO:935, SEO ID NO:936, SEO ID NO:937, SEO ID NO:938, SEO ID NO:939, SEO ID NO:940, SEO ID NO:941, SEO ID NO:942, SEO ID NO:943, SEO ID NO:944, SEO ID NO:945, SEO ID NO:946, SEO ID NO:947, SEO ID NO:948, SEO ID NO:949, SEQ ID NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEO ID NO:955, SEO ID NO:956, SEO ID NO:957, SEO ID NO:958, SEO ID NO:959, SEO ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEO ID NO:967, SEO ID NO:968, SEO ID NO:969, SEO ID NO:970, SEO ID NO:971, SEO ID NO:972, SEO ID NO:973, SEO ID NO:974, SEO ID NO:975, SEO ID NO:976, SEO ID NO:977, SEO ID NO:978, SEO ID NO:979, SEO ID NO:980, SEO ID NO:981, SEO ID NO:982, SEO ID NO:983, SEO ID NO:984, SEO ID NO:985, SEO ID NO:986, SEO ID NO:987, SEO ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEO ID NO:1001, SEO ID NO:1002, SEO ID NO:1003, SEO ID NO:1004, SEO ID NO:1005, SEQ ID NO:1006, SEQ ID NO:1007, SEQ ID NO:1008, SEQ ID NO:1009, SEQ ID NO:1010, SEO ID NO:1011, SEO ID NO:1012, SEO ID NO:1013, SEO ID NO:1014, SEO ID NO:1015, SEQ ID NO:1016, SEQ ID NO:1017, SEQ ID NO:1018, SEO ID NO:1019. SEO ID NO:1020, SEO ID NO:1021, SEO ID NO:1022, SEO ID NO:1023, SEO ID NO:1024, SEO ID NO:1025, SEQ ID NO:1026, SEQ ID NO:1027, SEQ ID NO:1028, SEO ID NO:1029. SEO ID NO:1030, SEO ID NO:1031, SEO ID NO:1032, SEO ID NO:1033, SEO ID NO:1034, SEO ID NO:1035, SEQ ID NO:1036, SEQ ID NO:1037, SEQ ID NO:1038, SEQ ID NO:1039, SEQ ID NO:1040, SEO ID NO:1041, SEO ID NO:1042, SEO ID NO:1043, SEO ID NO:1044, SEO ID NO:1045, SEQ ID NO:1046, SEQ ID NO:1047, SEQ ID NO:1048, SEQ ID NO:1049, SEQ ID NO:1050, SEO ID NO:1051, SEO ID NO:1052, SEO ID NO:1053, SEO ID NO:1054, SEO ID NO:1055, SEO ID NO:1056, SEQ ID NO:1057, SEQ ID NO:1058, SEQ ID NO:1059, SEQ ID NO:1060, SEO ID NO:1061, SEO ID NO:1062, SEO ID NO:1063, SEO ID NO:1064, SEO ID

NO:1065, SEQ ID NO:1066, SEQ ID NO:1067, SEQ ID NO:1068, SEQ ID NO:1069, SEO ID NO:1070, SEO ID NO:1071, SEO ID NO:1072, SEO ID NO:1073, SEQ ID NO:1074, SEO ID NO:1075, SEQ ID NO:1076, SEQ ID NO:1077, SEQ ID NO:1078, SEQ ID NO:1079, SEQ ID NO:1080, SEO ID NO:1081, SEO ID NO:1082, SEO ID NO:1083, SEO ID NO:1084, SEO ID NO:1085, SEQ ID NO:1086, SEQ ID NO:1087, SEQ ID NO:1088, SEQ ID NO:1089, SEQ ID NO:1090, SEO ID NO:1091, SEO ID NO:1092, SEO ID NO:1093, SEO ID NO:1094, SEO ID NO:1095, SEO ID NO:1096, SEO ID NO:1097, SEO ID NO:1098, SEQ ID NO:1099, SEQ ID NO:1100. SEO ID NO:1101. SEO ID NO:1102. SEO ID NO:1103. SEO ID NO:1104. SEO ID NO:1105, SEO ID NO:1106, SEO ID NO:1107, SEO ID NO:1108, SEO ID NO:1109, SEO ID NO:1110. SEO ID NO:1111. SEO ID NO:1112. SEO ID NO:1113. SEO ID NO:1114. SEO ID NO:1115, SEQ ID NO:1116, SEQ ID NO:1117, SEQ ID NO:1118, SEQ ID NO:1119, SEQ ID NO:1120, SEO ID NO:1121, SEO ID NO:1122, SEO ID NO:1123, SEO ID NO:1124, SEO ID NO:1125, SEQ ID NO:1126, SEQ ID NO:1127, SEQ ID NO:1128, SEQ ID NO:1129, SEQ ID NO:1130, SEO ID NO:1131, SEO ID NO:1132, SEO ID NO:1133, SEO ID NO:1134, SEO ID NO:1135, SEQ ID NO:1136, SEQ ID NO:1137, SEQ ID NO:1138, SEQ ID NO:1139, SEQ ID NO:1140, SEO ID NO:1141, SEO ID NO:1142, SEO ID NO:1143, SEO ID NO:1144, SEO ID NO:1145, SEQ ID NO:1146, SEQ ID NO:1147, SEQ ID NO:1148, SEQ ID NO:1149, SEQ ID NO:1150, SEO ID NO:1151, SEO ID NO:1152, SEO ID NO:1153, SEO ID NO:1154, SEO ID NO:1155, SEQ ID NO:1156, SEQ ID NO:1157, SEQ ID NO:1158, SEQ ID NO:1159, SEQ ID NO:1160, SEO ID NO:1161, SEO ID NO:1162, SEO ID NO:1163, SEO ID NO:1164, SEQ ID NO:1165, SEO ID NO:1166, SEO ID NO:1167, SEO ID NO:1168, SEO ID NO:1169, SEO ID NO:1170, SEO ID NO:1171, SEO ID NO:1172, SEO ID NO:1173, SEO ID NO:1174, SEO ID NO:1175, SEQ ID NO:1176, SEQ ID NO:1177, SEQ ID NO:1178, SEQ ID NO:1179, SEQ ID NO:1180, SEO ID NO:1181, SEO ID NO:1182, SEO ID NO:1183, SEO ID NO:1184, SEO ID NO:1185, SEQ ID NO:1186, SEQ ID NO:1187, SEQ ID NO:1188, SEQ ID NO:1189, SEQ ID NO:1190, SEO ID NO:1191, SEO ID NO:1192, SEO ID NO:1193, SEO ID NO:1194, SEO ID NO:1195, SEQ ID NO:1196, SEQ ID NO:1197, SEQ ID NO:1198, SEQ ID NO:1199, SEQ ID NO:1200, SEO ID NO:1201, SEO ID NO:1202, SEO ID NO:1203, SEO ID NO:1204, SEO ID NO:1205, SEO ID NO:1206, SEO ID NO:1207, SEO ID NO:1208, SEO ID NO:1209, SEO ID NO:1210, SEO ID NO:1211, SEO ID NO:1212, SEO ID NO:1213, SEO ID NO:1214, SEO ID NO:1215, SEO ID NO:1216, SEO ID NO:1217, SEO ID NO:1218, SEO ID NO:1219, SEO ID NO:1220, SEO ID NO:1221, SEO ID NO:1222, SEO ID NO:1223, SEO ID NO:1224, SEO ID NO:1225, SEQ ID NO:1226, SEQ ID NO:1227, SEQ ID NO:1228, SEO ID NO:1229, SEQ ID NO:1230, SEO ID NO:1231, SEO ID NO:1232, SEO ID NO:1233, SEO ID NO:1234, SEO ID NO:1235, SEQ ID NO:1236, SEQ ID NO:1237, SEQ ID NO:1238, SEQ ID NO:1239, SEQ ID NO:1240, SEO ID NO:1241, SEO ID NO:1242, SEO ID NO:1243, SEO ID NO:1244, SEO ID NO:1245, SEQ ID NO:1246, SEQ ID NO:1247, SEQ ID NO:1248, SEQ ID NO:1249, SEQ ID NO:1250, SEO ID NO:1251, SEO ID NO:1252, SEO ID NO:1253, SEO ID NO:1254, SEO ID NO:1255, SEQ ID NO:1256, SEQ ID NO:1257, SEQ ID NO:1258, SEQ ID NO:1259, SEQ ID NO:1260, SEO ID NO:1261, SEO ID NO:1262, SEO ID NO:1263, SEO ID NO:1264, SEQ ID

NO:1265, SEQ ID NO:1266, SEQ ID NO:1267, SEQ ID NO:1268, SEQ ID NO:1269, SEQ ID NO:1270, SEQ ID NO:1271, SEQ ID NO:1272, SEQ ID NO:1273, SEQ ID NO:1274, SEQ ID NO:1275, SEQ ID NO:1276, SEQ ID NO:1277, SEQ ID NO:1278, SEQ ID NO:1279, SEQ ID NO:1280, SEQ ID NO:1281, SEQ ID NO:1282, SEQ ID NO:1283, SEQ ID NO:1284, SEQ ID NO:1285, SEQ ID NO:1286, SEQ ID NO:1287, SEQ ID NO:1288, SEQ ID NO:1289, SEQ ID NO:1290, SEQ ID NO:1291, SEQ ID NO:1292, SEQ ID NO:1293, SEQ ID NO:1294, SEQ ID NO:1295, SEQ ID NO:1296, SEQ ID NO:1297, SEQ ID NO:1298, SEQ ID NO:1299, SEQ ID NO:1300, SEQ ID NO:1301, SEQ ID NO:1302, SEQ ID NO:1303, SEQ ID NO:1304, SEO ID NO:1305, SEQ ID NO:1306, SEQ ID NO:1307, SEQ ID NO:1308, SEQ ID NO:1309, SEQ ID NO:1310, SEQ ID NO:1311, SEQ ID NO:1312, SEQ ID NO:1313, SEQ ID NO:1314, SEQ ID NO:1315, SEQ ID NO:1316, SEQ ID NO:1317, SEQ ID NO:1318, SEQ ID NO:1319, SEQ ID NO:1320, SEQ ID NO:1321, SEQ ID NO:1322, SEQ ID NO:1323, SEQ ID NO:1324, SEQ ID NO:1325, SEQ ID NO:1326, SEQ ID NO:1656, SEQ ID NO:1657, SEQ ID NO:1658, SEQ ID NO:1659, SEQ ID NO:1660, SEQ ID NO:1661, SEQ ID NO:1662, SEQ ID NO:1663, SEQ ID NO:1664, SEQ ID NO:1665, SEQ ID NO:1666, SEQ ID NO:1667, SEQ ID NO:1668, SEQ ID NO:1669, SEQ ID NO:1670, SEQ ID NO:1671, SEQ ID NO:1672, SEQ ID NO:1673, SEQ ID NO:1674, SEQ ID NO:1675, SEQ ID NO:1676, SEQ ID NO:1677, SEQ ID NO:1678, SEQ ID NO:1679, SEQ ID NO:1680, SEQ ID NO:1681, SEQ ID NO:1682, SEQ ID NO:1683, SEQ ID NO:1684, SEQ ID NO:1685, SEQ ID NO:1686, SEQ ID NO:1687, SEQ ID NO:1688. SEQ ID NO:1689, SEQ ID NO:1690, SEO ID NO:1691, SEO ID NO:1692, SEQ ID NO:1693, SEO ID NO:1694, SEQ ID NO:1695, SEQ ID NO:1696, SEQ ID NO:1697, SEQ ID NO:1698, SEQ ID NO:1699, SEQ ID NO:1700, SEO ID NO:1701, SEQ ID NO:1702, SEQ ID NO:1703, SEO ID NO:1704, SEQ ID NO:1705, SEQ ID NO:1706, SEQ ID NO:1707, SEQ ID NO:1708, SEQ ID NO:1709, SEQ ID NO:1710, SEO ID NO:1711, SEO ID NO:1712, SEQ ID NO:1713, SEO ID NO:1714, SEQ ID NO:1715, SEQ ID NO:1716, SEQ ID NO:1717, SEQ ID NO:1718, SEQ ID NO:1719, SEQ ID NO:1720, SEQ ID NO:1721, SEQ ID NO:1722, SEQ ID NO:1723, SEQ ID NO:1724, SEQ ID NO:1725, SEQ ID NO:1726, SEQ ID NO:1727, SEQ ID NO:1728, SEQ ID NO:1729, SEQ ID NO:1730, SEQ ID NO:1731, SEQ ID NO:1732, SEQ ID NO:1733, SEQ ID NO:1734, SEQ ID NO:1735, SEQ ID NO:1736, SEQ ID NO:1737, SEQ ID NO:1738, SEQ ID NO:1739, SEQ ID NO:1740, SEQ ID NO:1741, SEQ ID NO:1742, SEQ ID NO:1743, SEQ ID NO:1744, SEQ ID NO:1745, SEQ ID NO:1746, SEQ ID NO:1747, SEQ ID NO:1748, SEQ ID NO:1749, SEQ ID NO:1750, SEQ ID NO:1751, SEQ ID NO:1752, SEQ ID NO:1753, SEQ ID NO:1754, SEQ ID NO:1755, SEQ ID NO:1756, SEQ ID NO:1757, SEQ ID NO:1758, SEQ ID NO:1759, SEQ ID NO:1760, SEQ ID NO:1761, SEQ ID NO:1762, SEQ ID NO:1763, SEQ ID NO:1764, SEO ID NO:1765, SEO ID NO:1766, SEO ID NO:1767, SEQ ID NO:1768, SEQ ID NO:1769, SEQ ID NO:1770, SEQ ID NO:1771, SEQ ID NO:1772, SEQ ID NO:1773, SEQ ID NO:1774, SEO ID NO:1775, SEO ID NO:1776, SEO ID NO:1777, SEQ ID NO:1778, SEQ ID NO:1779, SEQ ID NO:1780, SEQ ID NO:1781, SEQ ID NO:1782, SEQ ID NO:1783, SEQ ID NO:1784, SEO ID NO:1785, SEO ID NO:1786, SEO ID NO:1787, SEQ ID NO:1788, SEQ ID NO:1789, SEQ ID NO:1790, SEQ ID NO:1791, SEQ ID NO:1792, SEQ ID NO:1793, SEQ ID

NO:1794, SEQ ID NO:1795, SEQ ID NO:1796, SEQ ID NO:1797, SEQ ID NO:1798, SEQ ID NO:1799, SEO ID NO:1800, SEO ID NO:1801, SEO ID NO:1802, SEO ID NO:1803, SEO ID NO:1804, SEQ ID NO:1805, SEQ ID NO:1806, SEQ ID NO:1807, SEQ ID NO:1808, SEQ ID NO:1809. SEO ID NO:1810. SEO ID NO:1811. SEO ID NO:1812, SEO ID NO:1813. SEO ID NO:1814, SEQ ID NO:1815, SEQ ID NO:1816, SEQ ID NO:1817, SEQ ID NO:1818, SEQ ID NO:1819. SEO ID NO:1820. SEO ID NO:1821. SEO ID NO:1822. SEO ID NO:1823. SEO ID NO:1824, SEO ID NO:1825, SEO ID NO:1826, SEQ ID NO:1827, SEQ ID NO:1828, SEQ ID NO:1829, SEO ID NO:1830, SEO ID NO:1831, SEO ID NO:1832, SEO ID NO:1833, SEO ID NO:1834, SEQ ID NO:1835, SEQ ID NO:1836, SEQ ID NO:1837, SEQ ID NO:1838, SEQ ID NO:1839, SEO ID NO:1840, SEO ID NO:1841, SEO ID NO:1842, SEO ID NO:1843, SEO ID NO:1844, SEO ID NO:1845, SEO ID NO:1846, SEQ ID NO:1847, SEQ ID NO:1848, SEQ ID NO:1849, SEO ID NO:1850, SEO ID NO:1851, SEO ID NO:1852, SEO ID NO:1853, SEO ID NO:1854, SEQ ID NO:1855, SEQ ID NO:1856, SEQ ID NO:1857, SEQ ID NO:1858, SEQ ID NO:1859, SEO ID NO:1860, SEO ID NO:1861, SEO ID NO:1862, SEO ID NO:1863, SEO ID NO:1864, SEQ ID NO:1865, SEQ ID NO:1866, SEQ ID NO:1867, SEQ ID NO:1868, SEQ ID NO:1869, SEO ID NO:1870, SEO ID NO:1871, SEO ID NO:1872, SEO ID NO:1873, SEO ID NO:1874, SEQ ID NO:1875, SEQ ID NO:1876, SEQ ID NO:1877, SEQ ID NO:1878, SEQ ID NO:1879, SEO ID NO:1880, SEO ID NO:1881, SEO ID NO:1882, SEO ID NO:1883, SEO ID NO:1884, SEQ ID NO:1885, SEQ ID NO:1886, SEQ ID NO:1887, SEQ ID NO:1888, SEQ ID NO:1889, SEO ID NO:1890, SEO ID NO:1891, SEO ID NO:1892, SEO ID NO:1893, SEO ID NO:1894, SEO ID NO:1895, SEO ID NO:1896, SEO ID NO:1897, SEO ID NO:1898, SEO ID NO:1899, SEO ID NO:1900, SEO ID NO:1901, SEO ID NO:1902, SEO ID NO:1903, SEO ID NO:1904. SEO ID NO:1905. SEO ID NO:1906. SEO ID NO:1907. SEO ID NO:1908. SEO ID NO:1909, SEO ID NO:1910, SEO ID NO:1911, SEO ID NO:1912, SEO ID NO:1913, SEO ID NO:1914. SEO ID NO:1915. SEO ID NO:1916. SEO ID NO:1917. SEO ID NO:1918. SEO ID NO:1919, SEO ID NO:1920, SEO ID NO:1921, SEO ID NO:1922, SEQ ID NO:1923, SEQ ID NO:1924, SEQ ID NO:1925, SEQ ID NO:1926, SEQ ID NO:1927, SEQ ID NO:1928, SEQ ID NO:1929, SEO ID NO:1930, SEO ID NO:1931, SEO ID NO:1932, SEO ID NO:1933, SEO ID NO:1934. SEO ID NO:1935. SEO ID NO:1936. SEO ID NO:1937. SEO ID NO:1938. SEO ID NO:1939, SEO ID NO:1940, SEO ID NO:1941, SEO ID NO:1942, SEO ID NO:1943, SEO ID NO:1944, SEO ID NO:1945, SEO ID NO:1946, SEO ID NO:1947, SEO ID NO:1948, SEO ID NO:1949, SEO ID NO:1950, SEO ID NO:1951, SEO ID NO:1952, SEO ID NO:1953, SEO ID NO:1954, SEO ID NO:1955, SEO ID NO:1956, SEO ID NO:1957, SEO ID NO:1958, SEO ID NO:1959, SEO ID NO:1960, SEO ID NO:1961, SEO ID NO:1962, SEO ID NO:1963, SEO ID NO:1964, SEQ ID NO:1965, SEQ ID NO:1966, SEQ ID NO:1967, SEQ ID NO:1968, SEQ ID NO:1969, SEO ID NO:1970, SEO ID NO:1971, SEO ID NO:1972, SEO ID NO:1973, SEO ID NO:1974, SEO ID NO:1975, SEO ID NO:1976, SEO ID NO:1977, SEO ID NO:1978, SEO ID NO:1979, SEO ID NO:1980, SEO ID NO:1981, SEO ID NO:1982, SEO ID NO:1983, SEO ID NO:1984, SEO ID NO:1985, SEO ID NO:1986, SEO ID NO:1987, SEO ID NO:1988, SEO ID NO:1989, SEO ID NO:1990, SEO ID NO:1991, SEO ID NO:1992, SEO ID NO:1993, SEQ ID

NO:1994, SEO ID NO:1995, SEQ ID NO:1996, SEO ID NO:1997, SEQ ID NO:1998, SEQ ID NO:1999 SEO ID NO:2000, SEO ID NO:2001, SEO ID NO:2002, SEO ID NO:2003, SEO ID NO:2004, SEQ ID NO:2005, SEQ ID NO:2006, SEQ ID NO:2007, SEQ ID NO:2008. SEQ ID NO:2009, SEQ ID NO:2010, SEQ ID NO:2011, SEQ ID NO:2012, SEQ ID NO:2013, SEQ ID NO:2014, SEQ ID NO:2015, SEQ ID NO:2016, SEQ ID NO:2017, SEQ ID NO:2018. SEO ID NO:2019 SEO ID NO:2020, SEO ID NO:2021, SEO ID NO:2022, SEO ID NO:2023, SEO ID NO:2024, SEO ID NO:2025, SEO ID NO:2026, SEO ID NO:2027, SEO ID NO:2028, SEQ ID NO:2029, SEQ ID NO:2030, SEQ ID NO:2031, SEQ ID NO:2032, SEQ ID NO:2033, SEQ ID NO:2034, SEO ID NO:2035, SEO ID NO:2036, SEO ID NO:2037, SEQ ID NO:2038, SEQ ID NO:2039, SEQ ID NO:2040, SEQ ID NO:2041, SEQ ID NO:2042, SEQ ID NO:2043, SEQ ID NO:2044, SEO ID NO:2045, SEO ID NO:2046, SEO ID NO:2047, SEO ID NO:2048, SEO ID NO:2049, SEQ ID NO:2050, SEQ ID NO:2051, SEQ ID NO:2052, SEQ ID NO:2053, SEQ ID NO:2054, SEO ID NO:2055, SEO ID NO:2056, SEQ ID NO:2057, SEO ID NO:2058, SEO ID NO:2059, SEQ ID NO:2060, SEQ ID NO:2061, SEQ ID NO:2062, SEQ ID NO:2063, SEQ ID NO:2064, SEQ ID NO:2065, SEQ ID NO:2066, SEQ ID NO:2067, SEQ ID NO:2068, SEQ ID NO:2069, SEO ID NO:2070, SEO ID NO:2071, SEO ID NO:2072, SEO ID NO:2073, SEQ ID NO:2074, SEO ID NO:2075, SEQ ID NO:2076, SEQ ID NO:2077, SEQ ID NO:2078, SEQ ID NO:2079, SEO ID NO:2080, SEO ID NO:2081, SEO ID NO:2082, SEO ID NO:2083, SEQ ID NO:2084, SEQ ID NO:2085, SEQ ID NO:2086, SEQ ID NO:2087, SEQ ID NO:2088, SEQ ID NO:2089, SEQ ID NO:2090, SEQ ID NO:2091, SEQ ID NO:2092, SEQ ID NO:2093, SEQ ID NO:2094, SEO ID NO:2095, SEQ ID NO:2096, SEQ ID NO:2097, SEQ ID NO:2098, SEQ ID NO:2099, SEQ ID NO:2100, SEQ ID NO:2101, SEQ ID NO:2102, SEQ ID NO:2103. SEO ID NO:2104, SEO ID NO:2105, SEO ID NO:2106, SEO ID NO:2107, SEQ ID NO:2108, SEQ ID NO:2109, SEQ ID NO:2110, SEQ ID NO:2111, SEQ ID NO:2112, SEQ ID NO:2113, SEQ ID NO:2114, SEO ID NO:2115, SEO ID NO:2116, SEQ ID NO:2117, SEQ ID NO:2118, SEQ ID NO:2119, SEO ID NO:2120, SEO ID NO:2121, SEO ID NO:2122, SEO ID NO:2123, SEO ID NO:2124 SEO ID NO:2125, SEO ID NO:2126, SEO ID NO:2127, SEO ID NO:2128, SEO ID NO:2129, SEQ ID NO:2130, SEQ ID NO:2131, SEQ ID NO:2132, SEQ ID NO:2133, SEQ ID NO:2134, SEQ ID NO:2135, SEQ ID NO:2136, SEQ ID NO:2137, SEQ ID NO:2138, SEQ ID NO:2139, SEO ID NO:2140, SEO ID NO:2141, SEO ID NO:2142, SEO ID NO:2143, SEO ID NO:2144, SEO ID NO:2145, SEQ ID NO:2146, SEQ ID NO:2147, SEQ ID NO:2148, SEQ ID NO:2149, SEO ID NO:2150, SEO ID NO:2151. Alternatively, the PCR uses corresponding probes consisting of nucleotide sequences selected from the group consisting of SEQ ID NO:1327, SEQ ID NO:1328, SEO ID NO:1329, SEO ID NO:1330, SEO ID NO:1331, SEO ID NO:1332, SEQ ID NO:1333, SEO ID NO:1334, SEO ID NO:1335, SEQ ID NO:1336, SEQ ID NO:1337, SEQ ID NO:1338, SEO ID NO:1339, SEO ID NO:1340, SEO ID NO:1341, SEO ID NO:1342, SEO ID NO:1343, SEQ ID NO:1344, SEQ ID NO:1345, SEQ ID NO:1346, SEQ ID NO:1347, SEQ ID NO:1348, SEQ ID NO:1349, SEQ ID NO:1350, SEQ ID NO:1351, SEQ ID NO:1352, SEQ ID NO:1353, SEO ID NO:1354, SEO ID NO:1355, SEQ ID NO:1356, SEO ID NO:1357, SEQ ID NO:1358, SEQ ID NO:1359, SEQ ID NO:1360, SEQ ID NO:1361, SEQ ID NO:1362, SEQ ID

NO:1363, SEQ ID NO:1364, SEQ ID NO:1365, SEQ ID NO:1366, SEQ ID NO:1367, SEO ID NO:1368, SEQ ID NO:1369, SEQ ID NO:1370, SEQ ID NO:1371, SEQ ID NO:1372, SEQ ID NO:1373, SEQ ID NO:1374, SEQ ID NO:1375, SEQ ID NO:1376, SEQ ID NO:1377, SEQ ID NO:1378, SEQ ID NO:1379, SEQ ID NO:1380, SEQ ID NO:1381, SEQ ID NO:1382, SEQ ID NO:1383, SEQ ID NO:1384, SEQ ID NO:1385, SEQ ID NO:1386, SEQ ID NO:1387, SEQ ID NO:1388, SEQ ID NO:1389, SEQ ID NO:1390, SEQ ID NO:1391, SEQ ID NO:1392, SEQ ID NO:1393, SEQ ID NO:1394, SEQ ID NO:1395, SEQ ID NO:1396, SEQ ID NO:1397, SEO ID NO:1398. SEQ ID NO:1399, SEQ ID NO:1400, SEQ ID NO:1401, SEQ ID NO:1402, SEQ ID NO:1403, SEQ ID NO:1404, SEQ ID NO:1405, SEQ ID NO:1406, SEQ ID NO:1407, SEQ ID NO:1408. SEQ ID NO:1409, SEQ ID NO:1410, SEQ ID NO:1411, SEQ ID NO:1412, SEQ ID NO:1413, SEQ ID NO:1414, SEQ ID NO:1415, SEQ ID NO:1416, SEQ ID NO:1417, SEQ ID NO:1418, SEQ ID NO:1419, SEQ ID NO:1420, SEQ ID NO:1421, SEQ ID NO:1422, SEQ ID NO:1423, SEO ID NO:1424, SEO ID NO:1425, SEQ ID NO:1426, SEQ ID NO:1427, SEQ ID NO:1428, SEQ ID NO:1429, SEQ ID NO:1430, SEQ ID NO:1431, SEQ ID NO:1432, SEQ ID NO:1433. SEQ ID NO:1434. SEO ID NO:1435. SEO ID NO:1436, SEQ ID NO:1437. SEO ID NO:1438, SEQ ID NO:1439, SEQ ID NO:1440, SEQ ID NO:1441, SEQ ID NO:1442, SEQ ID NO:1443, SEQ ID NO:1444, SEQ ID NO:1445, SEQ ID NO:1446, SEQ ID NO:1447, SEQ ID NO:1448, SEQ ID NO:1449, SEQ ID NO:1450, SEQ ID NO:1451, SEQ ID NO:1452, SEQ ID NO:1454. SEQ ID NO:1455. SEO ID NO:1456. SEO ID NO:1457, SEQ ID NO:1458. SEO ID NO:1459, SEQ ID NO:1460, SEQ ID NO:1461, SEQ ID NO:1462, SEQ ID NO:1463, SEQ ID NO:1464, SEQ ID NO:1465, SEO ID NO:1466, SEQ ID NO:1467, SEQ ID NO:1468, SEQ ID NO:1469, SEQ ID NO:1470, SEQ ID NO:1471, SEQ ID NO:1472, SEQ ID NO:1473, SEQ ID NO:1474, SEQ ID NO:1475, SEQ ID NO:1476, SEQ ID NO:1477, SEQ ID NO:1478, SEO ID NO:1479, SEQ ID NO:1480, SEQ ID NO:1481, SEQ ID NO:1482, SEQ ID NO:1483, SEQ ID NO:1484, SEQ ID NO:1485, SEQ ID NO:1486, SEQ ID NO:1487, SEQ ID NO:1488, SEQ ID NO:1489, SEQ ID NO:1490, SEQ ID NO:1491, SEQ ID NO:1492, SEQ ID NO:1493, SEQ ID NO:1494, SEQ ID NO:1495, SEQ ID NO:1496, SEQ ID NO:1497, SEQ ID NO:1498, SEO ID NO:1499, SEQ ID NO:1500, SEQ ID NO:1501, SEQ ID NO:1502, SEQ ID NO:1503, SEQ ID NO:1504. SEQ ID NO:1505, SEO ID NO:1506, SEQ ID NO:1507, SEQ ID NO:1508, SEQ ID NO:1509, SEQ ID NO:1510, SEQ ID NO:1511, SEQ ID NO:1512, SEO ID NO:1513. SEO ID NO:1514, SEQ ID NO:1515, SEQ ID NO:1516, SEQ ID NO:1517, SEQ ID NO:1518, SEQ ID NO:1519, SEQ ID NO:1520, SEQ ID NO:1521, SEQ ID NO:1522, SEQ ID NO:1523, SEQ ID NO:1524, SEQ ID NO:1525, SEO ID NO:1526, SEQ ID NO:1527, SEQ ID NO:1528, SEQ ID NO:1529, SEQ ID NO:1530, SEQ ID NO:1531, SEQ ID NO:1532, SEQ ID NO:1533, SEQ ID NO:1534. SEQ ID NO:1535, SEO ID NO:1536, SEO ID NO:1537, SEQ ID NO:1538, SEO ID NO:1539, SEQ ID NO:1540, SEQ ID NO:1541, SEQ ID NO:1542, SEQ ID NO:1543, SEQ ID NO:1544, SEQ ID NO:1545, SEQ ID NO:1546, SEQ ID NO:1547, SEQ ID NO:1548, SEQ ID NO:1549, SEQ ID NO:1550, SEQ ID NO:1551, SEQ ID NO:1552, SEQ ID NO:1553, SEQ ID NO:1554, SEQ ID NO:1555, SEQ ID NO:1556, SEQ ID NO:1557, SEQ ID NO:1558, SEQ ID NO:1559, SEQ ID NO:1560, SEQ ID NO:1561, SEQ ID NO:1562, SEQ ID NO:1563, SEQ ID

NO:1564, SEO ID NO:1565, SEO ID NO:1566, SEO ID NO:1567, SEO ID NO:1568, SEO ID NO:1569, SEO ID NO:1570, SEO ID NO:1571, SEO ID NO:1572, SEQ ID NO:1573, SEO ID NO:1574, SEQ ID NO:1575, SEQ ID NO:1576, SEQ ID NO:1577, SEQ ID NO:1578, SEQ ID NO:1579, SEO ID NO:1580, SEO ID NO:1581, SEO ID NO:1582, SEO ID NO:1583, SEO ID NO:1584, SEQ ID NO:1585, SEQ ID NO:1586, SEQ ID NO:1587, SEQ ID NO:1588, SEQ ID NO:1589, SEO ID NO:1590, SEO ID NO:1591, SEO ID NO:1592, SEO ID NO:1593, SEO ID NO:1594, SEQ ID NO:, SEQ ID NO:1595, SEQ ID NO:1596, SEQ ID NO:1597, SEQ ID NO:1598, SEO ID NO:1599, SEO ID NO:1600, SEO ID NO:1601, SEO ID NO:1602, SEO ID NO:1603, SEO ID NO:1604, SEO ID NO:1605, SEO ID NO:1606, SEO ID NO:1607, SEO ID NO:1608, SEO ID NO:1609, SEO ID NO:1610, SEO ID NO:1611, SEO ID NO:1612, SEO ID NO:1613, SEO ID NO:1614, SEQ ID NO:1615, SEQ ID NO:1616, SEQ ID NO:1617, SEQ ID NO:1618, SEQ ID NO:1619, SEO ID NO:1620, SEO ID NO:1621, SEO ID NO:1622, SEO ID NO:1623, SEO ID NO:1624, SEQ ID NO:1625, SEQ ID NO:1626, SEQ ID NO:1627, SEQ ID NO:1628, SEQ ID NO:1629, SEO ID NO:1630, SEO ID NO:1631, SEO ID NO:1632, SEO ID NO:1633, SEO ID NO:1634, SEO ID NO:1635, SEO ID NO:1636, SEO ID NO:1637, SEO ID NO:1638, SEO ID NO:1639, SEO ID NO:1640, SEO ID NO:1641, SEO ID NO:1642, SEO ID NO:1643, SEO ID NO:1644, SEO ID NO:1645, SEO ID NO:1646, SEO ID NO:1647, SEO ID NO:1648, SEO ID NO:1649, SEO ID NO:1650, SEO ID NO:1651, SEO ID NO:1652, SEO ID NO:1653, SEO ID NO:1654, SEQ ID NO:1655, SEQ ID NO:1656, SEQ ID NO:1657, SEQ ID NO:2152, SEQ ID NO:, SEO ID NO: 2153, SEO ID NO:, SEO ID NO: 2154, SEO ID NO: SEO ID NO NO:2145, SEO ID NO:, SEO ID NO:2156, SEO ID NO:2157, SEO ID NO:2158, SEO ID NO:2159. SEO ID NO:, SEO ID NO:2160, SEO ID NO:2161, SEO ID NO:2162, SEO ID NO:2163, SEO ID NO:2164, SEO ID NO:. SEO ID NO:2165, SEO ID NO:. SEO ID NO:2166, SEO ID NO:2167, SEO ID NO:2168, SEO ID NO:2169, SEO ID NO:2170, SEO ID NO:2171, SEO ID NO:2172, SEO ID NO:2173, SEO ID NO:2174, SEO ID NO:2175, SEO ID NO:2176, SEO ID NO:2177, SEO ID NO:2178, SEO ID NO:2179, SEO ID NO:2180, SEO ID NO:2181, SEO ID NO:2182, SEO ID NO:2183, SEQ ID NO:2184, SEQ ID NO:2185, SEQ ID NO:2186, SEQ ID NO:2187, SEQ ID NO:2188, SEQ ID NO:2189, SEQ ID NO:2190, SEQ ID NO:2191, SEQ ID NO:2192, SEQ ID NO:2193, SEO ID NO:2194, SEO ID NO:2195, SEO ID NO:2196, SEO ID NO:2197, SEO ID NO:2198, SEO ID NO:2199, SEO ID NO:2200, SEO ID NO:2201, SEO ID NO:2202, SEO ID NO:2203, SEO ID NO:2204, SEO ID NO:2205, SEO ID NO:2206, SEO ID NO:2207, SEO ID NO:2208, SEO ID NO:2209, SEO ID NO:2210, SEO ID NO:2211, SEO ID NO:2212, SEO ID NO:2213, SEO ID NO:2214, SEO ID NO:2215, SEO ID NO:2216, SEO ID NO:2217, SEO ID NO:2218, SEO ID NO:2219, SEO ID NO:2220, SEO ID NO:2221, SEO ID NO:2222, SEO ID NO:2223, SEQ ID NO:2224, SEQ ID NO:2225, SEQ ID NO:2226, SEQ ID NO:2227, SEQ ID NO:2228, SEO ID NO:2229, SEO ID NO:2230, SEO ID NO:2231, SEO ID NO:2232, SEO ID NO:2233, SEO ID NO:2234, SEO ID NO:2235, SEO ID NO:2236, SEO ID NO:2237, SEO ID NO:2238, SEQ ID NO:2239, SEQ ID NO:2240, SEQ ID NO:2241, SEQ ID NO:2242, SEQ ID NO:2243, SEO ID NO:2244, SEO ID NO:2245, SEO ID NO:2246, SEO ID NO:2247, SEO ID NO:2248, SEO ID NO:2249, SEO ID NO:2250, SEO ID NO:2251, SEO ID NO:2252, SEO ID

NO:2253, SEQ ID NO:2254, SEQ ID NO:2255, SEQ ID NO:2256, SEQ ID NO:2257, SEQ ID NO:2258, SEO ID NO:2259, SEO ID NO:2260, SEO ID NO:2261, SEO ID NO:2262, SEO ID NO:2263, SEQ ID NO:2264, SEQ ID NO:2265, SEQ ID NO:2266, SEQ ID NO:2267, SEQ ID NO:2268, SEQ ID NO:2269, SEQ ID NO:2270, SEQ ID NO:2271, SEQ ID NO:2272, SEQ ID NO:2273, SEQ ID NO:2274, SEQ ID NO:2275, SEQ ID NO:2276, SEQ ID NO:2277, SEQ ID NO:2278, SEQ ID NO:2279, SEQ ID NO:2280, SEQ ID NO:2281, SEQ ID NO:2282, SEQ ID NO:2283, SEQ ID NO:2284, SEQ ID NO:2285, SEQ ID NO:2286, SEQ ID NO:2287, SEQ ID NO:2288, SEQ ID NO:2289, SEQ ID NO:2290, SEQ ID NO:2291, SEQ ID NO:2292, SEQ ID NO:2293. SEQ ID NO:2294, SEQ ID NO:2295, SEQ ID NO:2296, SEQ ID NO:2297, SEQ ID NO:2298, SEQ ID NO:2299, SEQ ID NO:2300, SEQ ID NO:2301, SEQ ID NO:2302, SEO ID NO:2303. SEQ ID NO:2304, SEQ ID NO:2305, SEQ ID NO:2306, SEQ ID NO:2307, SEQ ID NO:2308, SEO ID NO:2309, SEO ID NO:2310, SEO ID NO:2311, SEO ID NO:2312, SEO ID NO:2313. SEQ ID NO:2314, SEQ ID NO:2315, SEQ ID NO:2316, SEQ ID NO:2317, SEQ ID NO:2318, SEQ ID NO:2319, SEQ ID NO:2320, SEQ ID NO:2321, SEQ ID NO:2322, SEO ID NO:2323, SEQ ID NO:2324, SEQ ID NO:2325, SEQ ID NO:2326, SEQ ID NO:2327, SEQ ID NO:2328, SEQ ID NO:2329, SEQ ID NO:2330, SEQ ID NO:2331, SEQ ID NO:2332, SEQ ID NO:2333, SEQ ID NO:2334, SEQ ID NO:2335, SEQ ID NO:2336, SEQ ID NO:2337, SEQ ID NO:2338, SEQ ID NO:2339, SEQ ID NO:2340, SEQ ID NO:2341, SEQ ID NO:2342, SEQ ID NO:2343, SEQ ID NO:2344, SEQ ID NO:2345, SEQ ID NO:2346, SEQ ID NO:2347, SEQ ID NO:2348, SEO ID NO:2349, SEO ID NO:2350, SEO ID NO:2351, SEO ID NO:2352, SEO ID NO:2353, SEQ ID NO:2354, SEQ ID NO:2355, SEQ ID NO:2356, SEQ ID NO:2357, SEQ ID NO:2358, SEQ ID NO:2359, SEQ ID NO:2360, SEQ ID NO:2361, SEQ ID NO:2362, SEQ ID NO:2363, SEQ ID NO:2364, SEQ ID NO:2365, SEQ ID NO:2366, SEQ ID NO:2367, SEQ ID NO:2368, SEQ ID NO:2369, SEQ ID NO:2370, SEQ ID NO:2371, SEQ ID NO:2372, SEQ ID NO:2373. SEQ ID NO:2374, SEQ ID NO:2375, SEQ ID NO:2376, SEQ ID NO:2377, SEQ ID NO:2378. SEQ ID NO:2379. SEO ID NO:2380, SEO ID NO:2381, SEQ ID NO:2382, SEO ID NO:2383, SEO ID NO:2384, SEQ ID NO:2385, SEQ ID NO:2386, SEO ID NO:2387, SEO ID NO:2388. SEO ID NO:2389. SEO ID NO:2390, SEO ID NO:2391, SEQ ID NO:2392, SEO ID NO:2393, SEQ ID NO:2394, SEQ ID NO:2395, SEQ ID NO:2396, SEQ ID NO:2397, SEQ ID NO:2398, SEQ ID NO:2399. The RNA level may be detected by hybridization to the probes. In a further variation, the RNA level is detected by hybridization to an oligonucleotide. Examples of oligonucleotide include oligonucleotides having a nucleotide sequence selected from SEO ID NO:2. SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID

NO:51 SEO ID NO:52, SEO ID NO:53, SEO ID NO:54, SEO ID NO:55, SEO ID NO:56, SEO ID NO:57, SEO ID NO:58, SEO ID NO:59, SEO ID NO:60, SEO ID NO:61, SEO ID NO:62, SEO ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69. SEO ID NO:70. SEO ID NO:71. SEO ID NO:72. SEO ID NO:73. SEO ID NO:74. SEO ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEO ID NO:82, SEO ID NO:83, SEO ID NO:84, SEO ID NO:85, SEO ID NO:86, SEO ID NO:87 SEO ID NO:88 SEO ID NO:89. SEO ID NO:90. SEO ID NO:91. SEO ID NO:92. SEO ID NO:93. SEO ID NO:94. SEO ID NO:95. SEO ID NO:96. SEO ID NO:97. SEO ID NO:98. SEO ID NO:99, SEO ID NO:100, SEO ID NO:101, SEO ID NO:102, SEO ID NO:103, SEO ID NO:104, SEO ID NO:105, SEO ID NO:106, SEO ID NO:107, SEO ID NO:108, SEO ID NO:109, SEO ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116. SEO ID NO:117. SEO ID NO:118. SEO ID NO:119. SEO ID NO:120. SEO ID NO:121. SEO ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEO ID NO:128, SEO ID NO:129, SEO ID NO:130, SEO ID NO:131, SEO ID NO:132, SEO ID NO:133, SEO ID NO:134, SEO ID NO:135, SEO ID NO:136, SEO ID NO:137, SEO ID NO:138, SEO ID NO:139, SEO ID NO:140, SEO ID NO:141, SEO ID NO:142, SEO ID NO:143, SEO ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEO ID NO:151, SEO ID NO:152, SEO ID NO:153, SEO ID NO:154, SEO ID NO:155, SEO ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEO ID NO:162, SEO ID NO:163, SEO ID NO:164, SEO ID NO:165, SEO ID NO:166, SEO ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEO ID NO:174, SEO ID NO:175, SEO ID NO:176, SEO ID NO:177, SEO ID NO:178, SEO ID NO:179, SEO ID NO:180, SEO ID NO:181, SEO ID NO:182, SEO ID NO:183, SEO ID NO:184, SEO ID NO:185, SEO ID NO:186, SEO ID NO:187, SEO ID NO:188, SEO ID NO:189, SEO ID NO:190, SEO ID NO:191, SEO ID NO:192, SEO ID NO:193, SEO ID NO:194, SEO ID NO:195, SEO ID NO:196, SEO ID NO:197, SEO ID NO:198, SEO ID NO:199, SEO ID NO:200, SEO ID NO:201, SEO ID NO:202, SEO ID NO:203, SEO ID NO:204, SEO ID NO:205, SEO ID NO:206, SEO ID NO:207, SEO ID NO:208, SEO ID NO:209, SEO ID NO:210, SEO ID NO:211, SEO ID NO:212, SEO ID NO:213. SEO ID NO:214. SEO ID NO:215. SEO ID NO:216. SEO ID NO:217. SEO ID NO:218, SEO ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224. SEO ID NO:225. SEO ID NO:226. SEO ID NO:227. SEO ID NO:228. SEO ID NO:229. SEO ID NO:230, SEO ID NO:231, SEO ID NO:232, SEO ID NO:233, SEO ID NO:234, SEO ID NO:235, SEO ID NO:236, SEO ID NO:237, SEO ID NO:238, SEO ID NO:239, SEO ID NO:240, SEO ID NO:241, SEO ID NO:242, SEO ID NO:243, SEO ID NO:244, SEO ID NO:245, SEO ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEO ID NO:253, SEO ID NO:254, SEO ID NO:255, SEO ID NO:256, SEO ID NO:257, SEO ID NO:258. SEO ID NO:259. SEO ID NO:260. SEO ID NO:261. SEO ID NO:262. SEO ID NO:263. SEO ID NO:264, SEO ID NO:265, SEO ID NO:266, SEO ID NO:267, SEO ID NO:268, SEO ID NO:269. SEO ID NO:270. SEO ID NO:271. SEO ID NO:272. SEO ID NO:273. SEO ID NO:274. SEO ID NO:275, SEO ID NO:276, SEQ ID NO:277, SEO ID NO:278, SEO ID NO:279, SEQ ID NO:280,

SEO ID NO:281, SEO ID NO:282, SEO ID NO:283, SEO ID NO:284, SEO ID NO:285, SEO ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297. SEO ID NO:298, SEO ID NO:299, SEO ID NO:300, SEO ID NO:301, SEO ID NO:302, SEO ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309, SEO ID NO:310, SEO ID NO:311, SEO ID NO:312, SEO ID NO:313, SEO ID NO:314, SEO ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEO ID NO:319, SEQ ID NO:320, SEO ID NO:321, SEO ID NO:322, SEO ID NO:323, SEO ID NO:324, SEO ID NO:325, SEO ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEO ID NO:332, SEO ID NO:2697, SEO ID NO:2645, SEO ID NO:2707, SEO ID NO:2679, SEO ID NO:2717, SEQ ID NO:2646, SEQ ID NO:2667, SEQ ID NO:2706, SEQ ID NO:2740, SEQ ID NO:2669, SEO ID NO:2674, SEO ID NO:2743, SEO ID NO:2716, SEO ID NO:2727, SEO ID NO:2721, SEQ ID NO:2641, SEQ ID NO:2671, SEQ ID NO:2752, SEQ ID NO:2737, SEQ ID NO:2719, SEO ID NO:2684, SEO ID NO:2677, SEO ID NO:2748, SEO ID NO:2703, SEQ ID NO:2711, SEO ID NO:2663, SEO ID NO:2657, SEO ID NO:2683, SEO ID NO:2686, SEO ID NO:2687, SEO ID NO:2644, SEO ID NO:2664, SEO ID NO:2747, SEO ID NO:2744, SEQ ID NO:2678, SEQ ID NO:2731, SEQ ID NO:2713, SEQ ID NO:2736, SEQ ID NO:2708, SEQ ID NO:2670, SEO ID NO:2661, SEO ID NO:2680, SEO ID NO:2754, SEQ ID NO:2728, SEQ ID NO:2742. SEO ID NO:2668. SEO ID NO:2750. SEO ID NO:2746. SEO ID NO:2738. SEO ID NO:2627, SEO ID NO:2739, SEO ID NO:2647, SEO ID NO:2628, SEO ID NO:2638, SEO ID NO:2725. SEO ID NO:2714. SEO ID NO:2635. SEO ID NO:2751. SEO ID NO:2629. SEO ID NO:2695, SEO ID NO:2741, SEO ID NO:2691, SEO ID NO:2726, SEO ID NO:2722, SEQ ID NO:2689, SEO ID NO:2734, SEO ID NO:2631, SEO ID NO:2656, SEO ID NO:2696, SEO ID NO:2676, SEO ID NO:2701, SEO ID NO:2730, SEQ ID NO:2710, SEO ID NO:2632, SEO ID NO:2724, SEO ID NO:2698, SEO ID NO:2662, SEO ID NO:2753, SEO ID NO:2704, SEO ID NO:2675, SEO ID NO:2700, SEO ID NO:2640, SEO ID NO:2723, SEO ID NO:2658, SEO ID NO:2688, SEO ID NO:2735, SEO ID NO:2702, SEO ID NO:2681, SEO ID NO:2755, SEO ID NO:2715, SEO ID NO:2732, SEO ID NO:2652, SEO ID NO:2651, SEO ID NO:2718, SEQ ID NO:2673, SEO ID NO:2733, SEO ID NO:2712, SEO ID NO:2659, SEO ID NO:2654, SEO ID NO:2636 SEO ID NO:2639 SEO ID NO:2690 SEO ID NO:2705 SEO ID NO:2685 SEO ID NO:2692, SEO ID NO:2693, SEO ID NO:2648, SEO ID NO:2650, SEO ID NO:2720, SEO ID NO:2660, SEO ID NO:2666, SEO ID NO:2699, SEO ID NO:2633, SEQ ID NO:2672, SEQ ID NO:2642, SEO ID NO:2682, SEO ID NO:2655, SEO ID NO:2630, SEO ID NO:2745, SEO ID NO:2643, SEO ID NO:2694, SEO ID NO:2749, SEO ID NO:2665, SEQ ID NO:2649, SEQ ID NO:2637, SEQ ID NO:2634, SEQ ID NO:2709, SEQ ID NO:2653, SEQ ID NO:2729. In a further variation, the oligonucleotide has the nucleotide sequence SEO ID NO: 36. In still a further variation, the oligonucleotide has the nucleotide sequence SEO ID NO: 87. In yet a further variation, the oligonucleotide has the nucleotide sequence SEO ID NO: 94. In an additional variation, the oligonucleotide has a nucleotide sequence consisting of SEQ ID NO: 91. In another variation, the

oligonucleotide has a nucleotide sequence consisting of SEQ ID NO: 107. The oligonucleotide may be DNA, RNA, cDNA, PNA, genomic DNA, or synthetic oligonucleotides.

In another aspect, the methods of detecting transplant rejection include detecting the expression level by measuring one or more proteins expressed by the one or more genes. In one variation, the one or more proteins include an amino acid sequence selected from SEQ ID NO:2400, SEO ID NO:2401, SEO ID NO:2402, SEO ID NO:2403, SEQ ID NO:2404, SEQ ID NO:2405. SEO ID NO:2407, SEQ ID NO:2408, SEQ ID NO:2409, SEQ ID NO:2410, SEQ ID NO:2411, SEQ ID NO:2412, SEO ID NO:2413, SEQ ID NO:2414, SEQ ID NO:2415, SEQ ID NO:2416, SEQ ID NO:2417, SEQ ID NO:2418, SEQ ID NO:2419, SEQ ID NO:2420, SEQ ID NO:2421, SEQ ID NO:2422, SEQ ID NO:2423, SEQ ID NO:2424, SEQ ID NO:2425, SEQ ID NO:2426, SEQ ID NO:2427, SEQ ID NO:2428, SEQ ID NO:2429, SEQ ID NO:2430, SEQ ID NO:2432, SEQ ID NO:2433, SEO ID NO:2434, SEO ID NO:2435, SEO ID NO:2436, SEO ID NO:2437, SEQ ID NO:2438, SEO ID NO:2439, SEO ID NO:2440, SEQ ID NO:2441, SEO ID NO:2442, SEQ ID NO:2443, SEQ ID NO:2444, SEQ ID NO:2445, SEQ ID NO:2446, SEQ ID NO:2447, SEO ID NO:2448, SEQ ID NO:2449, SEQ ID NO:2450, SEQ ID NO:2451, SEQ ID NO:2452, SEQ ID NO:2453, SEQ ID NO:2454, SEQ ID NO:2455, SEQ ID NO:2456, SEQ ID NO:2457, SEQ ID NO:2458, SEO ID NO:2459, SEQ ID NO:2460, SEQ ID NO:2461, SEQ ID NO:2462, SEQ ID NO:2463, SEQ ID NO:2464, SEQ ID NO:2465, SEQ ID NO:2466, SEQ ID NO:2467, SEQ ID NO:2468, SEO ID NO:2469, SEO ID NO:2470, SEQ ID NO:2478, SEO ID NO:2479, SEQ ID NO:2480, SEQ ID NO:2481, SEQ ID NO:2482, SEQ ID NO:2483, SEQ ID NO:2485. SEO ID NO:2486 SEO ID NO:2488, SEO ID NO:2491, SEO ID NO:2492, SEO ID NO:2493, SEO ID NO:2494, SEQ ID NO:2495, SEQ ID NO:2496, SEQ ID NO:2497, SEQ ID NO:2502. SEO ID NO:2503, SEO ID NO:2504, SEQ ID NO:2505, SEQ ID NO:2506, SEQ ID NO:2507, SEQ ID NO:2508, SEQ ID NO:2509, SEQ ID NO:2510, SEQ ID NO:2511, SEQ ID NO:2512, SEQ ID NO:2513, SEO ID NO:2514, SEO ID NO:2515, SEQ ID NO:2516, SEQ ID NO:2517, SEQ ID NO:2518, SEQ ID NO:2519, SEQ ID NO:2520, SEQ ID NO:2521, SEQ ID NO:2528, SEQ ID NO:2529 SEO ID NO:2530, SEO ID NO:2531, SEO ID NO:2532, SEO ID NO:2533, SEO ID NO:2534, SEO ID NO:2535, SEO ID NO:2536, SEO ID NO:2537, SEQ ID NO:2538, SEQ ID NO:2539, SEQ ID NO:2540, SEQ ID NO:2541, SEQ ID NO:2542, SEQ ID NO:2543, SEQ ID NO:2544, SEQ ID NO:2545, SEQ ID NO:2546, SEQ ID NO:2547, SEQ ID NO:2548. SEQ ID NO:2549, SEO ID NO:2550, SEQ ID NO:2551, SEQ ID NO:2552, SEQ ID NO:2553, SEQ ID NO:2554, SEQ ID NO:2555, SEQ ID NO:2556, SEQ ID NO:2557, SEQ ID NO:2558. SEO ID NO:2559, SEQ ID NO:2560, SEQ ID NO:2561, SEQ ID NO:2562, SEQ ID NO:2563, SEQ ID NO:2564, SEO ID NO:2565, SEO ID NO:2566, SEO ID NO:2567, SEQ ID NO:2568, SEQ ID NO:2569, SEO ID NO:2570, SEQ ID NO:2571, SEQ ID NO:2572, SEQ ID NO:2573, SEQ ID NO:2574, SEQ ID NO:2575, SEQ ID NO:2576, SEQ ID NO:2577, SEQ ID NO:2578, SEQ ID NO:2579, SEQ ID NO:2580, SEQ ID NO:2581, SEQ ID NO:2582, SEQ ID NO:2583, SEQ ID NO:2584, SEQ ID NO:2585, SEQ ID NO:2586, SEQ ID NO:2587, SEQ ID NO:2588, SEQ ID NO:2589, SEO ID NO:2590, SEQ ID NO:2591, SEQ ID NO:2592, SEQ ID NO:2593, SEQ ID NO:2594, SEQ ID NO:2595, SEQ ID NO:2596, SEQ ID NO:2597, SEQ ID NO:2598, SEQ ID

NO:2599, SEQ ID NO:2600, SEQ ID NO:2601, SEQ ID NO:2602, SEQ ID NO:2603, SEQ ID NO:2604, SEO ID NO:2605, SEO ID NO:2606, SEO ID NO:2607, SEO ID NO:2608, SEO ID NO:2609, SEQ ID NO:2610, SEQ ID NO:2611, SEQ ID NO:2612, SEQ ID NO:2613, SEQ ID NO:2614, SEO ID NO:2615, SEO ID NO:2616, SEO ID NO:2617, SEO ID NO:2618, SEO ID NO:2619, SEO ID NO:2620, SEO ID NO:2621, SEO ID NO:2622, SEO ID NO:2623, SEO ID NO:2624, SEO ID NO:2625, SEO ID NO:2626, SEO ID NO:2925, SEO ID NO:2926, SEO ID NO:2927, SEQ ID NO:2928, SEQ ID NO:2929, SEQ ID NO:2930, SEQ ID NO:2932, SEQ ID NO:2933, SEO ID NO:2935, SEO ID NO:2936, SEO ID NO:2937, SEO ID NO:2938, SEO ID NO:2939, SEO ID NO:2941, SEO ID NO:2942, SEO ID NO:2943, SEO ID NO:2945, SEQ ID NO:2946. SEO ID NO:2947. SEO ID NO:2948. SEO ID NO:2949. SEO ID NO:2950. SEO ID NO:2951, SEQ ID NO:2952, SEQ ID NO:2953, SEQ ID NO:2954, SEQ ID NO:2955, SEQ ID NO:2956, SEO ID NO:2957, SEO ID NO:2959, SEO ID NO:2960, SEO ID NO:2961, SEO ID NO:2962, SEQ ID NO:2963, SEQ ID NO:2964, SEQ ID NO:2965, SEQ ID NO:2966, SEQ ID NO:2967, SEO ID NO:2968, SEO ID NO:2969, SEO ID NO:2970, SEO ID NO:2971, SEO ID NO:2972, SEQ ID NO:2973, SEQ ID NO:2974, SEQ ID NO:2975, SEQ ID NO:2976, SEQ ID NO:2977, SEO ID NO:2978, SEO ID NO:2979, SEO ID NO:2980, SEO ID NO:2981, SEO ID NO:2982, SEQ ID NO:2983, SEQ ID NO:2984, SEQ ID NO:2985, SEQ ID NO:2986, SEQ ID NO:2987, SEO ID NO:2988, SEO ID NO:2989, SEO ID NO:2990, SEO ID NO:2991, SEO ID NO:2992, SEQ ID NO:2993, SEQ ID NO:2994, SEQ ID NO:2995, SEQ ID NO:2996, SEQ ID NO:2997, SEO ID NO:2998, SEO ID NO:2999, SEO ID NO:3000, SEO ID NO:3001, SEO ID NO:3002, SEO ID NO:3003, SEO ID NO:3004, SEO ID NO:3005, SEO ID NO:3006, SEO ID NO:3007, SEO ID NO:3008, SEO ID NO:3009, SEO ID NO:3010, SEO ID NO:3011, SEO ID NO:3012, SEO ID NO:3013, SEO ID NO:3014, SEO ID NO:3015. In a further variation, the the method includes detecting one or more additional proteins expressed by SEO ID NO:2406, SEO ID NO:2431, SEQ ID NO:2471, SEQ ID NO:2472, SEQ ID NO:2473, SEQ ID NO:2474, SEQ ID NO:2475, SEO ID NO:2476, SEO ID NO:2477, SEO ID NO:2484, SEO ID NO:2487, SEO ID NO:2489, SEQ ID NO:2490, SEQ ID NO:2498, SEQ ID NO:2499, SEQ ID NO:2500, SEQ ID NO:2501, SEO ID NO:2522, SEO ID NO:2523, SEO ID NO:2524, SEO ID NO:2525, SEO ID NO:2526. SEO ID NO:2527. In still another variation, one or more proteins may be selected from SEO ID NO:2400, SEO ID NO:2401, SEO ID NO:2402, SEO ID NO:2403, SEO ID NO:2404, SEO ID NO:2405, SEO ID NO:2407, SEO ID NO:2408, SEO ID NO:2409, SEO ID NO:2410, SEO ID NO:2411, SEO ID NO:2412, SEO ID NO:2413, SEO ID NO:2414, SEO ID NO:2415, SEO ID NO:2416. SEO ID NO:2417. SEO ID NO:2418. SEO ID NO:2419. SEO ID NO:2420. SEO ID NO:2421, SEO ID NO:2422, SEO ID NO:2423, SEO ID NO:2424, SEO ID NO:2425, SEO ID NO:2426, SEQ ID NO:2427, SEQ ID NO:2428, SEQ ID NO:2429, SEQ ID NO:2430, SEQ ID NO:2432, SEO ID NO:2433, SEO ID NO:2434, SEO ID NO:2435, SEO ID NO:2436, SEO ID NO:2437, SEO ID NO:2438, SEO ID NO:2439, SEO ID NO:2440, SEO ID NO:2441, SEO ID NO:2442, SEO ID NO:2443, SEO ID NO:2444, SEO ID NO:2445, SEO ID NO:2446, SEO ID NO:2447, SEQ ID NO:2448, SEQ ID NO:2449, SEQ ID NO:2450, SEQ ID NO:2451, SEQ ID NO:2452, SEO ID NO:2453, SEO ID NO:2454, SEO ID NO:2455, SEO ID NO:2456, SEO ID

NO:2457, SEO ID NO:2458, SEO ID NO:2459, SEO ID NO:2460, SEO ID NO:2461, SEO ID NO:2462, SEO ID NO:2463, SEO ID NO:2464, SEO ID NO:2465, SEO ID NO:2466, SEO ID NO:2467, SEO ID NO:2468, SEO ID NO:2469, SEO ID NO:2470, SEO ID NO:2478, SEO ID NO:2479, SEQ ID NO:2480, SEQ ID NO:2481, SEQ ID NO:2482, SEQ ID NO:2483, SEQ ID NO:2485, SEO ID NO:2486, SEO ID NO:2488, SEO ID NO:2491, SEO ID NO:2492, SEO ID NO:2493, SEO ID NO:2494, SEO ID NO:2495, SEO ID NO:2496, SEO ID NO:2497, SEO ID NO:2502, SEO ID NO:2503, SEO ID NO:2504, SEO ID NO:2505, SEO ID NO:2506, SEO ID NO:2507, SEO ID NO:2508, SEO ID NO:2509, SEO ID NO:2510, SEO ID NO:2511, SEO ID NO:2512, SEO ID NO:2513, SEO ID NO:2514, SEO ID NO:2515, SEO ID NO:2516, SEO ID NO:2517, SEQ ID NO:2518, SEQ ID NO:2519, SEQ ID NO:2520, SEQ ID NO:2521, SEQ ID NO:2528, SEO ID NO:2529, SEO ID NO:2530, SEO ID NO:2531, SEO ID NO:2532, SEO ID NO:2533, SEQ ID NO:2534, SEQ ID NO:2535, SEQ ID NO:2536, SEQ ID NO:2537, SEQ ID NO:2538, SEO ID NO:2539, SEO ID NO:2540, SEO ID NO:2541, SEO ID NO:2542, SEO ID NO:2543, SEO ID NO:2544, SEO ID NO:2545, SEO ID NO:2546, SEO ID NO:2547, SEO ID NO:2548, SEO ID NO:2549, SEO ID NO:2550, SEQ ID NO:2551, SEQ ID NO:2552, SEQ ID NO:2553, SEO ID NO:2554, SEO ID NO:2555, SEO ID NO:2556, SEO ID NO:2557, SEO ID NO:2558, SEO ID NO:2559, SEO ID NO:2560, SEO ID NO:2561, SEQ ID NO:2562, SEQ ID NO:2563, SEO ID NO:2564, SEO ID NO:2565, SEO ID NO:2566, SEO ID NO:2567, SEO ID NO:2568, SEQ ID NO:2569, SEQ ID NO:2570, SEQ ID NO:2571, SEQ ID NO:2572, SEQ ID NO:2573, SEO ID NO:2574, SEO ID NO:2575, SEO ID NO:2576, SEO ID NO:2577, SEO ID NO:2578, SEQ ID NO:2579, SEQ ID NO:2580, SEQ ID NO:2581, SEQ ID NO:2582, SEQ ID NO:2583, SEO ID NO:2584, SEO ID NO:2585, SEO ID NO:2586, SEO ID NO:2587, SEO ID NO:2588, SEQ ID NO:2589, SEQ ID NO:2590, SEQ ID NO:2591, SEQ ID NO:2592. SEO ID NO:2593, SEO ID NO:2594, SEO ID NO:2595, SEO ID NO:2596, SEO ID NO:2597, SEO ID NO:2598, SEO ID NO:2599, SEO ID NO:2600, SEO ID NO:2601, SEO ID NO:2602, SEO ID NO:2603, SEO ID NO:2604, SEO ID NO:2605, SEO ID NO:2606, SEO ID NO:2607, SEO ID NO:2608, SEO ID NO:2609, SEO ID NO:2610, SEQ ID NO:2611, SEQ ID NO:2612, SEQ ID NO:2613, SEO ID NO:2614, SEO ID NO:2615, SEO ID NO:2616, SEO ID NO:2617, SEO ID NO:2618, SEO ID NO:2619, SEO ID NO:2620, SEO ID NO:2621, SEO ID NO:2622, SEO ID NO:2623, SEO ID NO:2624, SEO ID NO:2625, SEO ID NO:2626, SEO ID NO:2925, SEO ID NO:2926, SEQ ID NO:2927, SEQ ID NO:2928, SEQ ID NO:2929, SEO ID NO:2930, SEO ID NO:2932, SEO ID NO:2933, SEO ID NO:2935, SEO ID NO:2936, SEO ID NO:2937, SEO ID NO:2938, SEQ ID NO:2939, SEQ ID NO:2941, SEQ ID NO:2942, SEQ ID NO:2943, SEQ ID NO:2945, SEO ID NO:2946, SEO ID NO:2947, SEO ID NO:2948, SEO ID NO:2949, SEO ID NO:2950, SEQ ID NO:2951, SEQ ID NO:2952, SEQ ID NO:2953, SEQ ID NO:2954, SEQ ID NO:2955, SEO ID NO:2956, SEO ID NO:2957, SEO ID NO:2959, SEO ID NO:2960, SEO ID NO:2961, SEO ID NO:2962, SEO ID NO:2963, SEO ID NO:2964, SEO ID NO:2965, SEO ID NO:2966, SEO ID NO:2967, SEO ID NO:2968, SEO ID NO:2969, SEO ID NO:2970, SEO ID NO:2971, SEQ ID NO:2972, SEQ ID NO:2973, SEQ ID NO:2974, SEQ ID NO:2975, SEQ ID NO:2976, SEO ID NO:2977, SEO ID NO:2978, SEO ID NO:2979, SEO ID NO:2980, SEO ID

NO:2981, SEQ ID NO:2982, SEQ ID NO:2983, SEQ ID NO:2984, SEQ ID NO:2985, SEQ ID NO:2989, SEQ ID NO:2990, SEQ ID NO:2991, SEQ ID NO:2997, SEQ ID NO:3003, SEQ ID NO:3004, SEQ ID NO:3005, SEQ ID NO:3006, SEQ ID NO:3007, SEQ ID NO:3007, SEQ ID NO:3008, SEQ ID NO:3009, SEQ ID NO:3011, SEQ I

In another aspect, the method of diagnosing or monitoring cardiac transplant rejection in a patient includes detecting the expression level of one or more genes in the patient to diagnose or monitor cardiac transplant rejection in the patient by measuring one or more proteins expressed by the one or more genes. The one or more proteins may include an amino acid sequence selected from SEQ ID NO:2400, SEQ ID NO:2401, SEQ ID NO:2402, SEQ ID NO:2403, SEQ ID NO:2404, SEQ ID NO:2405, SEO ID NO:2407, SEO ID NO:2408, SEO ID NO:2409, SEO ID NO:2410, SEQ ID NO:2411, SEO ID NO:2412, SEO ID NO:2413, SEO ID NO:2414, SEO ID NO:2415, SEO ID NO:2416, SEO ID NO:2417, SEO ID NO:2418, SEO ID NO:2419, SEO ID NO:2420, SEO ID NO:2421, SEO ID NO:2422, SEO ID NO:2423, SEO ID NO:2424, SEO ID NO:2425, SEO ID NO:2426, SEO ID NO:2427, SEO ID NO:2428, SEO ID NO:2429, SEO ID NO:2430, SEO ID NO:2432. SEO ID NO:2433. SEO ID NO:2434. SEO ID NO:2435. SEO ID NO:2436. SEO ID NO:2437, SEO ID NO:2438, SEO ID NO:2439, SEO ID NO:2440, SEQ ID NO:2441, SEQ ID NO:2442. SEO ID NO:2443. SEO ID NO:2444. SEO ID NO:2445. SEO ID NO:2446. SEO ID NO:2447 SEO ID NO:2448 SEO ID NO:2449 SEO ID NO:2450 SEO ID NO:2451 SEO ID NO:2452, SEO ID NO:2453, SEO ID NO:2454, SEO ID NO:2455, SEO ID NO:2456, SEO ID NO:2457, SEO ID NO:2458, SEO ID NO:2459, SEO ID NO:2460, SEO ID NO:2461, SEO ID NO:2462, SEO ID NO:2463, SEO ID NO:2464, SEO ID NO:2465, SEO ID NO:2466, SEO ID NO:2467, SEQ ID NO:2468, SEQ ID NO:2469, SEQ ID NO:2470, SEQ ID NO:2471, SEQ ID NO:2476, SEO ID NO:2477, SEO ID NO:2478, SEO ID NO:2479, SEO ID NO:2480, SEO ID NO:2481, SEQ ID NO:2482, SEQ ID NO:2483, SEQ ID NO:2484, SEQ ID NO:2485, SEQ ID NO:2486, SEO ID NO:2488, SEO ID NO:2489, SEO ID NO:2490, SEO ID NO:2491, SEO ID NO:2492, SEO ID NO:2493, SEO ID NO:2494, SEO ID NO:2495, SEO ID NO:2496, SEO ID NO:2497, SEO ID NO:2498, SEO ID NO:2499, SEO ID NO:2500, SEO ID NO:2501, SEO ID NO:2502, SEO ID NO:2503, SEO ID NO:2504, SEO ID NO:2505, SEO ID NO:2506, SEQ ID NO:2507, SEO ID NO:2508, SEO ID NO:2509, SEO ID NO:2510, SEO ID NO:2511, SEO ID NO:2512, SEO ID NO:2513, SEO ID NO:2514, SEO ID NO:2515, SEQ ID NO:2516, SEQ ID NO:2517, SEO ID NO:2518, SEO ID NO:2519, SEO ID NO:2520, SEO ID NO:2521, SEO ID NO:2528, SEO ID NO:2529, SEQ ID NO:2530, SEQ ID NO:2531, SEQ ID NO:2532, SEQ ID

NO:2533, SEQ ID NO:2534, SEQ ID NO:2535, SEQ ID NO:2536, SEQ ID NO:2537, SEQ ID NO:2538, SEQ ID NO:2539, SEO ID NO:2540, SEO ID NO:2541, SEQ ID NO:2542, SEO ID NO:2543, SEO ID NO:2544, SEO ID NO:2545, SEO ID NO:2546, SEO ID NO:2547, SEO ID NO:2548, SEO ID NO:2549, SEO ID NO:2550, SEO ID NO:2551, SEO ID NO:2552, SEO ID NO:2553, SEQ ID NO:2554, SEQ ID NO:2555, SEQ ID NO:2556, SEQ ID NO:2557, SEQ ID NO:2558, SEO ID NO:2559, SEO ID NO:2560, SEO ID NO:2561, SEO ID NO:2562, SEO ID NO:2563, SEO ID NO:2564, SEO ID NO:2565, SEO ID NO:2566, SEO ID NO:2567, SEO ID NO:2568, SEO ID NO:2569, SEO ID NO:2570, SEO ID NO:2571, SEO ID NO:2572, SEO ID NO:2573, SEO ID NO:2574, SEO ID NO:2575, SEO ID NO:2576, SEO ID NO:2577, SEO ID NO:2578, SEO ID NO:2579, SEO ID NO:2580, SEO ID NO:2581, SEO ID NO:2582, SEO ID NO:2583, SEO ID NO:2584, SEO ID NO:2585, SEO ID NO:2586, SEO ID NO:2587, SEO ID NO:2588, SEO ID NO:2589, SEO ID NO:2590, SEO ID NO:2591, SEO ID NO:2592, SEO ID NO:2593, SEO ID NO:2594, SEO ID NO:2595, SEO ID NO:2596, SEO ID NO:2597, SEO ID NO:2598, SEQ ID NO:2599, SEQ ID NO:2600, SEQ ID NO:2601, SEQ ID NO:2602, SEQ ID NO:2603, SEO ID NO:2604, SEO ID NO:2605, SEO ID NO:2606, SEO ID NO:2607, SEO ID NO:2608, SEQ ID NO:2609, SEQ ID NO:2610, SEQ ID NO:2611, SEQ ID NO:2612, SEQ ID NO:2613, SEO ID NO:2614, SEO ID NO:2615, SEO ID NO:2616, SEO ID NO:2617, SEO ID NO:2618, SEQ ID NO:2619, SEQ ID NO:2620, SEQ ID NO:2621, SEQ ID NO:2622, SEQ ID NO:2623, SEO ID NO:2624, SEO ID NO:2625, SEO ID NO:2626. Alternatively, the expression level of the one or more genes may be detected by measuring one or more proteins expressed by one or more genes, and one or more proteins expressed by one or more additional genes. In one variation, the one or more proteins expressed by the one or more genes include an amino acid sequence selected from SEO ID NO:2400, SEO ID NO:2401, SEO ID NO:2402, SEO ID NO:2403, SEO ID NO:2404, SEO ID NO:2405, SEO ID NO:2407, SEO ID NO:2408, SEO ID NO:2409, SEO ID NO:2410, SEO ID NO:2411, SEO ID NO:2412, SEO ID NO:2413, SEO ID NO:2414, SEO ID NO:2415, SEO ID NO:2416, SEQ ID NO:2417, SEQ ID NO:2418, SEQ ID NO:2419, SEQ ID NO:2420, SEQ ID NO:2421, SEO ID NO:2422, SEO ID NO:2423, SEO ID NO:2424, SEO ID NO:2425, SEO ID NO:2426, SEQ ID NO:2427, SEQ ID NO:2428, SEQ ID NO:2429, SEQ ID NO:2430, SEQ ID NO:2432, SEO ID NO:2433, SEO ID NO:2434, SEO ID NO:2435, SEO ID NO:2436, SEO ID NO:2437, SEO ID NO:2438, SEO ID NO:2439, SEO ID NO:2440, SEO ID NO:2441, SEO ID NO:2442, SEO ID NO:2443, SEO ID NO:2444, SEO ID NO:2445, SEO ID NO:2446, SEO ID NO:2447, SEQ ID NO:2448, SEQ ID NO:2449, SEQ ID NO:2450, SEQ ID NO:2451, SEQ ID NO:2452, SEO ID NO:2453, SEO ID NO:2454, SEO ID NO:2455, SEO ID NO:2456, SEO ID NO:2457, SEQ ID NO:2458, SEQ ID NO:2459, SEQ ID NO:2460, SEQ ID NO:2461, SEQ ID NO:2462, SEO ID NO:2463, SEO ID NO:2464, SEO ID NO:2465, SEO ID NO:2466, SEO ID NO:2467, SEQ ID NO:2468, SEQ ID NO:2469, SEQ ID NO:2470, SEQ ID NO:2471, SEQ ID NO:2476, SEO ID NO:2477, SEO ID NO:2478, SEO ID NO:2479, SEO ID NO:2480, SEO ID NO:2481, SEQ ID NO:2482, SEQ ID NO:2483, SEQ ID NO:2484, SEQ ID NO:2485, SEQ ID NO:2486, SEO ID NO:2488, SEO ID NO:2489, SEO ID NO:2490, SEO ID NO:2491, SEO ID NO:2492, SEQ ID NO:2493, SEQ ID NO:2494, SEQ ID NO:2495, SEQ ID NO:2496, SEQ ID

NO:2497, SEQ ID NO:2498, SEQ ID NO:2499, SEQ ID NO:2500, SEQ ID NO:2501, SEQ ID NO:2502, SEO ID NO:2503, SEO ID NO:2504, SEO ID NO:2505, SEQ ID NO:2506, SEQ ID NO:2507, SEQ ID NO:2508, SEQ ID NO:2509, SEQ ID NO:2510, SEQ ID NO:2511, SEQ ID NO:2512, SEO ID NO:2513, SEO ID NO:2514, SEO ID NO:2515, SEQ ID NO:2516, SEQ ID NO:2517, SEQ ID NO:2518, SEQ ID NO:2519, SEQ ID NO:2520, SEQ ID NO:2521, SEQ ID NO:2528, SEO ID NO:2529, SEO ID NO:2530, SEO ID NO:2531, SEQ ID NO:2532, SEQ ID NO:2533, SEO ID NO:2534, SEO ID NO:2535, SEO ID NO:2536, SEO ID NO:2537, SEO ID NO:2538, SEO ID NO:2539, SEO ID NO:2540, SEO ID NO:2541, SEQ ID NO:2542, SEQ ID NO:2543, SEO ID NO:2544, SEO ID NO:2545, SEO ID NO:2546, SEO ID NO:2547, SEO ID NO:2548, SEO ID NO:2549, SEO ID NO:2550, SEO ID NO:2551, SEQ ID NO:2552, SEQ ID NO:2553, SEO ID NO:2554, SEO ID NO:2555, SEO ID NO:2556, SEO ID NO:2557, SEO ID NO:2558, SEO ID NO:2559, SEO ID NO:2560, SEO ID NO:2561, SEQ ID NO:2562, SEQ ID NO:2563, SEO ID NO:2564, SEO ID NO:2565, SEO ID NO:2566, SEO ID NO:2567, SEO ID NO:2568, SEO ID NO:2569, SEO ID NO:2570, SEQ ID NO:2571, SEQ ID NO:2572, SEQ ID NO:2573, SEO ID NO:2574, SEO ID NO:2575, SEO ID NO:2576, SEO ID NO:2577, SEO ID NO:2578, SEQ ID NO:2579, SEQ ID NO:2580, SEQ ID NO:2581, SEQ ID NO:2582, SEQ ID NO:2583, SEO ID NO:2584, SEO ID NO:2585, SEO ID NO:2586, SEO ID NO:2587, SEO ID NO:2588, SEO ID NO:2589, SEO ID NO:2590, SEQ ID NO:2591, SEQ ID NO:2592, SEQ ID NO:2593, SEO ID NO:2594, SEO ID NO:2595, SEO ID NO:2596, SEO ID NO:2597, SEO ID NO:2598, SEO ID NO:2599, SEO ID NO:2600, SEQ ID NO:2601, SEQ ID NO:2602, SEQ ID NO:2603, SEO ID NO:2604, SEO ID NO:2605, SEO ID NO:2606, SEO ID NO:2607, SEO ID NO:2608, SEQ ID NO:2609, SEQ ID NO:2610, SEQ ID NO:2611, SEQ ID NO:2612, SEQ ID NO:2613, SEO ID NO:2614, SEO ID NO:2615, SEO ID NO:2616, SEO ID NO:2617, SEO ID NO:2618, SEO ID NO:2619, SEO ID NO:2620, SEQ ID NO:2621, SEQ ID NO:2622, SEQ ID NO:2623, SEO ID NO:2624, SEO ID NO:2625, SEO ID NO:2626, and the one or more protein expressed by the one or more additional genes include an amino acid sequence selected from the group consisting of SEO ID NO:2406, SEO ID NO:2431, SEO ID NO:2472, SEO ID NO:2473, SEO ID NO:2474, SEQ ID NO:2475, SEQ ID NO:2487, SEQ ID NO:2522, SEQ ID NO:2523, SEQ ID NO:2524, SEO ID NO:2525, SEO ID NO:2526, SEO ID NO:2527.

In another aspect, the method of diagnosing or monitoring kidney transplant rejection in a patient includes detecting the expression level of one or more genes in the patient to diagnose or monitor kidney transplant rejection in the patient by measuring one or more proteins encoded by the one or more genes. In one variation, the one or more proteins include an amino acid sequence selected from SEQ ID NO:2400, SEQ ID NO:2401, SEQ ID NO:2402, SEQ ID NO:2403, SEQ ID NO:2404, SEQ ID NO:2405, SEQ ID NO:2406, SEQ ID NO:2407, SEQ ID NO:2408, SEQ ID NO:2409, SEQ ID NO:2411, SEQ ID NO:2411, SEQ ID NO:24115, SEQ ID NO:24115, SEQ ID NO:24115, SEQ ID NO:2415, SEQ ID NO:2416, SEQ ID NO:2417, SEQ ID NO:2418, SEQ ID NO:2419, SEQ ID NO:2420, SEQ ID NO:2421, SEQ ID NO:2422, SEQ ID NO:2424, SEQ ID NO:2424, SEQ ID NO:2425, SEQ ID NO:2424, SEQ ID NO:2425, SEQ ID NO:2435, SEQ ID NO:2435

NO:2436, SEQ ID NO:2437, SEQ ID NO:2438, SEQ ID NO:2439, SEQ ID NO:2440, SEQ ID NO:2441, SEQ ID NO:2442, SEQ ID NO:2443, SEQ ID NO:2444, SEQ ID NO:2445, SEQ ID NO:2446, SEQ ID NO:2447, SEQ ID NO:2448, SEQ ID NO:2449, SEQ ID NO:2450, SEQ ID NO:2451, SEO ID NO:2452, SEO ID NO:2453, SEQ ID NO:2454, SEQ ID NO:2455, SEQ ID NO:2456, SEQ ID NO:2457, SEQ ID NO:2458, SEQ ID NO:2459, SEQ ID NO:2460, SEO ID NO:2461, SEO ID NO:2462, SEO ID NO:2463, SEQ ID NO:2464, SEQ ID NO:2465, SEQ ID NO:2466, SEQ ID NO:2467, SEQ ID NO:2468, SEQ ID NO:2469, SEQ ID NO:2470, SEQ ID NO:2474, SEO ID NO:2478, SEO ID NO:2479, SEQ ID NO:2480, SEQ ID NO:2481, SEQ ID NO:2482, SEO ID NO:2483, SEO ID NO:2485, SEO ID NO:2486, SEO ID NO:2487, SEQ ID NO:2488, SEQ ID NO:2491, SEQ ID NO:2492, SEQ ID NO:2493, SEQ ID NO:2494, SEQ ID NO:2495, SEQ ID NO:2496, SEQ ID NO:2497, SEQ ID NO:2502, SEQ ID NO:2503, SEQ ID NO:2504, SEO ID NO:2505, SEO ID NO:2506, SEQ ID NO:2507, SEQ ID NO:2508, SEQ ID NO:2509, SEO ID NO:2510, SEO ID NO:2511, SEO ID NO:2512, SEQ ID NO:2513, SEQ ID NO:2514, SEQ ID NO:2515, SEQ ID NO:2516, SEQ ID NO:2517, SEO ID NO:2518, SEO ID NO:2519, SEQ ID NO:2520, SEQ ID NO:2521, SEQ ID NO:2528, SEQ ID NO:2529, SEQ ID NO:2530, SEQ ID NO:2531, SEQ ID NO:2532, SEQ ID NO:2533, SEO ID NO:2534, SEO ID NO:2535, SEO ID NO:2536, SEO ID NO:2537, SEO ID NO:2538, SEO ID NO:2539, SEO ID NO:2540, SEQ ID NO:2541, SEQ ID NO:2542, SEQ ID NO:2543, SEQ ID NO:2544, SEQ ID NO:2545, SEQ ID NO:2546, SEQ ID NO:2547, SEQ ID NO:2548, SEQ ID NO:2549, SEQ ID NO:2550 SEO ID NO:2551, SEO ID NO:2552, SEO ID NO:2553, SEO ID NO:2554, SEO ID NO:2555, SEQ ID NO:2556, SEQ ID NO:2557, SEQ ID NO:2558, SEQ ID NO:2559, SEQ ID NO:2560, SEQ ID NO:2561, SEQ ID NO:2562, SEQ ID NO:2563, SEQ ID NO:2564, SEQ ID NO:2565, SEO ID NO:2566, SEO ID NO:2567, SEQ ID NO:2568, SEO ID NO:2569, SEQ ID NO:2570, SEQ ID NO:2571, SEQ ID NO:2572, SEQ ID NO:2573, SEQ ID NO:2574, SEQ ID NO:2575, SEO ID NO:2576, SEO ID NO:2577, SEQ ID NO:2578, SEO ID NO:2579, SEQ ID NO:2580, SEQ ID NO:2581, SEQ ID NO:2582, SEQ ID NO:2583, SEQ ID NO:2584, SEQ ID NO:2585, SEO ID NO:2586, SEO ID NO:2587, SEQ ID NO:2588, SEQ ID NO:2589, SEQ ID NO:2590, SEQ ID NO:2591, SEQ ID NO:2592, SEQ ID NO:2593, SEQ ID NO:2594, SEQ ID NO:2595, SEO ID NO:2596, SEO ID NO:2597, SEQ ID NO:2598, SEQ ID NO:2599, SEQ ID NO:2600, SEO ID NO:2601, SEO ID NO:2602, SEO ID NO:2603, SEO ID NO:2604, SEQ ID NO:2605, SEO ID NO:2606, SEO ID NO:2607, SEQ ID NO:2608, SEQ ID NO:2609, SEQ ID NO:2610 SEO ID NO:2611, SEO ID NO:2612, SEO ID NO:2613, SEO ID NO:2614, SEQ ID NO:2615, SEQ ID NO:2616, SEQ ID NO:2617, SEQ ID NO:2618, SEQ ID NO:2619, SEQ ID NO:2620, SEQ ID NO:2621, SEQ ID NO:2622, SEQ ID NO:2623, SEQ ID NO:2624, SEQ ID NO:2625, SEQ ID NO:2626, SEQ ID NO:2925, SEQ ID NO:2926, SEQ ID NO:2927, SEQ ID NO:2928, SEQ ID NO:2929, SEQ ID NO:2930, SEQ ID NO:2932, SEQ ID NO:2933, SEQ ID NO:2935, SEQ ID NO:2936, SEQ ID NO:2937, SEQ ID NO:2938, SEQ ID NO:2939, SEQ ID NO:2941, SEQ ID NO:2942, SEQ ID NO:2943, SEQ ID NO:2945, SEQ ID NO:2946, SEQ ID NO:2947, SEQ ID NO:2948, SEQ ID NO:2949, SEQ ID NO:2950, SEQ ID NO:2951, SEQ ID NO:2952, SEQ ID NO:2953, SEQ ID NO:2954, SEQ ID NO:2955. SEQ ID NO:2956. SEQ ID

NO:2957, SEO ID NO:2959, SEO ID NO:2960, SEO ID NO:2961, SEO ID NO:2962, SEO ID NO:2963, SEO ID NO:2964, SEO ID NO:2965, SEO ID NO:2966, SEO ID NO:2967, SEO ID NO:2968, SEO ID NO:2969, SEO ID NO:2970, SEO ID NO:2971, SEO ID NO:2972, SEO ID NO:2973, SEO ID NO:2974, SEO ID NO:2975, SEO ID NO:2976, SEO ID NO:2977, SEO ID NO:2978, SEO ID NO:2979, SEO ID NO:2980, SEO ID NO:2981, SEO ID NO:2982, SEO ID NO:2983, SEO ID NO:2984, SEO ID NO:2985, SEO ID NO:2986, SEO ID NO:2987, SEO ID NO:2988 SEO ID NO:2989 SEO ID NO:2990 SEO ID NO:2991, SEO ID NO:2992, SEO ID NO:2993. SEO ID NO:2994. SEO ID NO:2995. SEO ID NO:2996. SEO ID NO:2997. SEO ID NO:2998, SEO ID NO:2999, SEO ID NO:3000, SEO ID NO:3001, SEO ID NO:3002, SEO ID NO:3003, SEO ID NO:3004, SEO ID NO:3005, SEO ID NO:3006, SEO ID NO:3007, SEO ID NO:3008, SEO ID NO:3009, SEO ID NO:3010, SEQ ID NO:3011, SEQ ID NO:3012, SEQ ID NO:3013, SEO ID NO:3014, SEO ID NO:3015. In another variation, the method includes detecting the expression level of one or more additional genes by measuring one or more proteins expressed by the one or more additional genes. The one or more proteins expressed by the one or more genes comprises an amino acid sequence selected from SEO ID NO:2400, SEO ID NO:2401, SEO ID NO:2402, SEO ID NO:2403, SEO ID NO:2404, SEO ID NO:2405, SEO ID NO:2406, SEO ID NO:2407, SEO ID NO:2408, SEO ID NO:2409, SEQ ID NO:2410, SEQ ID NO:2411, SEQ ID NO:2412, SEO ID NO:2413, SEO ID NO:2414, SEO ID NO:2415, SEO ID NO:2416, SEO ID NO:2417, SEQ ID NO:2418, SEQ ID NO:2419, SEQ ID NO:2420, SEQ ID NO:2421, SEQ ID NO:2422. SEO ID NO:2423. SEO ID NO:2424. SEO ID NO:2425. SEO ID NO:2426. SEO ID NO:2427, SEQ ID NO:2428, SEQ ID NO:2429, SEQ ID NO:2430, SEQ ID NO:2432, SEQ ID NO:2433, SEO ID NO:2434, SEO ID NO:2435, SEO ID NO:2436, SEO ID NO:2437, SEO ID NO:2438, SEO ID NO:2439, SEO ID NO:2440, SEO ID NO:2441, SEO ID NO:2442, SEO ID NO:2443, SEO ID NO:2444, SEO ID NO:2445, SEO ID NO:2446, SEO ID NO:2447, SEO ID NO:2448, SEO ID NO:2449, SEO ID NO:2450, SEO ID NO:2451, SEO ID NO:2452, SEO ID NO:2453, SEO ID NO:2454, SEO ID NO:2455, SEO ID NO:2456, SEO ID NO:2457, SEO ID NO:2458, SEQ 1D NO:2459, SEQ ID NO:2460, SEQ ID NO:2461, SEO ID NO:2462, SEO ID NO:2463, SEO ID NO:2464, SEO ID NO:2465, SEO ID NO:2466, SEO ID NO:2467, SEO ID NO:2468, SEO ID NO:2469, SEO ID NO:2470, SEO ID NO:2474, SEO ID NO:2478, SEO ID NO:2479, SEO ID NO:2480, SEO ID NO:2481, SEO ID NO:2482, SEO ID NO:2483. SEO ID NO:2485, SEO ID NO:2486, SEO ID NO:2487, SEO ID NO:2488, SEO ID NO:2491, SEO ID NO:2492, SEO ID NO:2493, SEO ID NO:2494, SEO ID NO:2495, SEO ID NO:2496, SEO ID NO:2497, SEQ ID NO:2502, SEQ ID NO:2503, SEQ ID NO:2504, SEQ ID NO:2505, SEQ ID NO:2506, SEO ID NO:2507, SEO ID NO:2508, SEO ID NO:2509, SEO ID NO:2510, SEO ID NO:2511, SEQ ID NO:2512, SEQ ID NO:2513, SEQ ID NO:2514, SEQ ID NO:2515, SEQ ID NO:2516. SEO ID NO:2517. SEO ID NO:2518. SEO ID NO:2519. SEO ID NO:2520. SEO ID NO:2521, SEO ID NO:2528, SEO ID NO:2529, SEO ID NO:2530, SEO ID NO:2531, SEO ID NO:2532, SEO ID NO:2533, SEO ID NO:2534, SEO ID NO:2535, SEO ID NO:2536, SEO ID NO:2537. SEO ID NO:2538. SEO ID NO:2539. SEO ID NO:2540. SEO ID NO:2541. SEO ID NO:2542, SEO ID NO:2543, SEO ID NO:2544, SEO ID NO:2545, SEO ID NO:2546, SEO ID

NO:2547, SEO ID NO:2548, SEO ID NO:2549, SEO ID NO:2550, SEO ID NO:2551, SEO ID NO:2552, SEO ID NO:2553, SEO ID NO:2554, SEO ID NO:2555, SEO ID NO:2556, SEO ID NO:2557, SEQ ID NO:2558, SEQ ID NO:2559, SEQ ID NO:2560, SEQ ID NO:2561, SEQ ID NO:2562, SEO ID NO:2563, SEO ID NO:2564, SEO ID NO:2566, SEO ID NO:2566, SEO ID NO:2567, SEQ ID NO:2568, SEQ ID NO:2569, SEQ ID NO:2570, SEQ ID NO:2571, SEQ ID NO:2572, SEO ID NO:2573, SEO ID NO:2574, SEO ID NO:2575, SEO ID NO:2576, SEO ID NO:2577, SEO ID NO:2578, SEO ID NO:2579, SEO ID NO:2580, SEO ID NO:2581, SEO ID NO:2582, SEO ID NO:2583, SEO ID NO:2584, SEO ID NO:2585, SEO ID NO:2586, SEO ID NO:2587, SEO ID NO:2588, SEO ID NO:2589, SEO ID NO:2590, SEO ID NO:2591, SEO ID NO:2592, SEQ ID NO:2593, SEQ ID NO:2594, SEQ ID NO:2595, SEQ ID NO:2596, SEQ ID NO:2597, SEQ ID NO:2598, SEQ ID NO:2599, SEQ ID NO:2600, SEQ ID NO:2601, SEQ ID NO:2602, SEO ID NO:2603, SEO ID NO:2604, SEO ID NO:2605, SEO ID NO:2606, SEO ID NO:2607, SEQ ID NO:2608, SEQ ID NO:2609, SEQ ID NO:2610, SEQ ID NO:2611, SEQ ID NO:2612, SEQ ID NO:2613, SEQ ID NO:2614, SEQ ID NO:2615, SEQ ID NO:2616, SEQ ID NO:2617. SEQ ID NO:2618, SEQ ID NO:2619, SEQ ID NO:2620, SEQ ID NO:2621, SEQ ID NO:2622, SEO ID NO:2623, SEO ID NO:2624, SEO ID NO:2625, SEO ID NO:2626, SEO ID NO:2925, SEO ID NO:2926, SEQ ID NO:2927, SEQ ID NO:2928, SEO ID NO:2929, SEO ID NO:2930, SEO ID NO:2932, SEO ID NO:2933, SEO ID NO:2935, SEO ID NO:2936, SEO ID NO:2937, SEQ ID NO:2938, SEQ ID NO:2939, SEQ ID NO:2941, SEQ ID NO:2942, SEQ ID NO:2943, SEO ID NO:2945, SEO ID NO:2946, SEO ID NO:2947, SEO ID NO:2948, SEO ID NO:2949, SEQ ID NO:2950, SEQ ID NO:2951, SEQ ID NO:2952, SEQ ID NO:2953, SEQ ID NO:2954, SEO ID NO:2955, SEO ID NO:2956, SEO ID NO:2957, SEO ID NO:2959, SEO ID NO:2960, SEQ ID NO:2961, SEQ ID NO:2962, SEQ ID NO:2963, SEQ ID NO:2964, SEQ ID NO:2965, SEQ ID NO:2966, SEQ ID NO:2967, SEQ ID NO:2968, SEQ ID NO:2969, SEQ ID NO:2970, SEO ID NO:2971, SEQ ID NO:2972, SEQ ID NO:2973, SEQ ID NO:2974, SEQ ID NO:2975. SEO ID NO:2976. SEO ID NO:2977, SEQ ID NO:2978, SEQ ID NO:2979, SEQ ID NO:2980, SEQ ID NO:2981, SEQ ID NO:2982, SEQ ID NO:2983, SEQ ID NO:2984, SEQ ID NO:2985, SEO ID NO:2986, SEO ID NO:2987, SEO ID NO:2988, SEO ID NO:2989, SEO ID NO:2990, SEQ ID NO:2991, SEQ ID NO:2992, SEQ ID NO:2993, SEQ ID NO:2994, SEQ ID NO:2995, SEQ ID NO:2996, SEQ ID NO:2997, SEQ ID NO:2998, SEQ ID NO:2999, SEQ ID NO:3000, SEO ID NO:3001, SEO ID NO:3002, SEO ID NO:3003, SEO ID NO:3004, SEO ID NO:3005, SEQ ID NO:3006, SEQ ID NO:3007, SEQ ID NO:3008, SEQ ID NO:3009, SEQ ID NO:3010, SEQ ID NO:3011, SEQ ID NO:3012, SEQ ID NO:3013, SEQ ID NO:3014, SEQ ID NO:3015, and the one or more proteins expressed by the one or more additional genes may include an amino acid sequence selected from SEQ ID NO:2431, SEQ ID NO:2471, SEQ ID NO:2472, SEQ ID NO:2473, SEO ID NO:2475, SEO ID NO:2476, SEO ID NO:2477, SEO ID NO:2484, SEO ID NO:2489, SEQ ID NO:2490, SEQ ID NO:2498, SEQ ID NO:2499, SEQ ID NO:2500, SEQ ID NO:2501, SEO ID NO:2522, SEO ID NO:2523, SEO ID NO:2524, SEO ID NO:2525, SEO ID NO:2526, SEO ID NO:2527.

Protein detection may be accomplished by measuring serum. In another variation, the protein is a cell surface protein. In a further variation, the measuring includes using a fluorescent activated cell sorter.

In another aspect, the invention is directed to a substantially purified oligonucleotide having the nucleotide sequence selected from SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEO ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEO ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEO ID NO:25, SEO ID NO:26, SEO ID NO:27, SEO ID NO:28, SEO ID NO:29, SEO ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36. SEO ID NO:37. SEO ID NO:38. SEO ID NO:39, SEO ID NO:40, SEO ID NO:41, SEO ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48. SEO ID NO:49. SEO ID NO:50. SEO ID NO:51, SEO ID NO:52, SEO ID NO:53, SEO ID NO:54, SEO ID NO:55, SEO ID NO:56, SEO ID NO:57, SEO ID NO:58, SEO ID NO:59, SEO ID NO:60, SEO ID NO:61, SEO ID NO:62, SEO ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEO ID NO:67, SEO ID NO:68, SEO ID NO:69, SEO ID NO:70, SEO ID NO:71, SEO ID NO:72, SEO ID NO:73, SEO ID NO:74, SEO ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78. SEO ID NO:79. SEO ID NO:80. SEO ID NO:81, SEO ID NO:82, SEO ID NO:83, SEO ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89. SEO ID NO:90. SEO ID NO:91. SEO ID NO:92. SEO ID NO:93. SEO ID NO:94. SEO ID NO:95. SEO ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101. SEQ ID NO:102, SEO ID NO:103, SEO ID NO:104, SEO ID NO:105, SEO ID NO:106, SEO ID NO:107, SEO ID NO:108, SEO ID NO:109, SEO ID NO:110, SEO ID NO:111, SEQ ID NO:112, SEO ID NO:113. SEO ID NO:114. SEO ID NO:115. SEO ID NO:116. SEO ID NO:117. SEO ID NO:118. SEO ID NO:119, SEO ID NO:120, SEO ID NO:121, SEO ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEO ID NO:126, SEO ID NO:127, SEO ID NO:128, SEO ID NO:129, SEO ID NO:130, SEO ID NO:131, SEO ID NO:132, SEO ID NO:133, SEO ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEO ID NO:137, SEO ID NO:138, SEO ID NO:139, SEO ID NO:140, SEO ID NO:141, SEO ID NO:142, SEO ID NO:143, SEO ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEO ID NO:147, SEO ID NO:148, SEO ID NO:149, SEO ID NO:150, SEO ID NO:151, SEO ID NO:152, SEO ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158. SEQ ID NO:159, SEO ID NO:160, SEO ID NO:161, SEO ID NO:162, SEO ID NO:163, SEO ID NO:164, SEO ID NO:165, SEO ID NO:166, SEO ID NO:167, SEO ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEO ID NO:177, SEO ID NO:178, SEO ID NO:179, SEO ID NO:180, SEO ID NO:181, SEO ID NO:182, SEO ID NO:183, SEO ID NO:184, SEO ID NO:185, SEO ID NO:186, SEO ID NO:187, SEO ID NO:188, SEO ID NO:189, SEO ID NO:190, SEO ID NO:191, SEO ID NO:192, SEO ID NO:193. SEO ID NO:194. SEO ID NO:195. SEO ID NO:196. SEO ID NO:197. SEO ID NO:198. SEO ID NO:199, SEO ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEO ID NO:205, SEO ID NO:206, SEO ID NO:207, SEO ID NO:208, SEQ ID NO:209, SEQ

ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215. SEO ID NO:216, SEO ID NO:217, SEO ID NO:218, SEO ID NO:219, SEO ID NO:220, SEO ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEO ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEO ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEO ID NO:239, SEO ID NO:240, SEO ID NO:241, SEO ID NO:242, SEO ID NO:243, SEO ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249. SEO ID NO:250, SEO ID NO:251, SEO ID NO:252, SEO ID NO:253, SEO ID NO:254, SEO ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEO ID NO:262, SEO ID NO:263, SEO ID NO:264, SEO ID NO:265, SEO ID NO:266. SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEO ID NO:284, SEO ID NO:285, SEO ID NO:286, SEO ID NO:287, SEO ID NO:288, SEO ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEO ID NO:296, SEO ID NO:297, SEO ID NO:298, SEO ID NO:299, SEO ID NO:300. SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEO ID NO:307, SEO ID NO:308, SEO ID NO:309, SEO ID NO:310, SEO ID NO:311, SEO ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEO ID NO:318, SEO ID NO:319, SEO ID NO:320, SEO ID NO:321, SEO ID NO:322, SEO ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEO ID NO:330, SEO ID NO:331, SEO ID NO:332, SEO ID NO:2697, SEO ID NO:2645, SEQ ID NO:2707, SEQ ID NO:2679, SEQ ID NO:2717, SEQ ID NO:2646, SEQ ID NO:2667, SEO ID NO:2706, SEO ID NO:2740, SEO ID NO:2669, SEO ID NO:2674, SEO ID NO:2743, SEQ ID NO:2716, SEQ ID NO:2727, SEQ ID NO:2721, SEQ ID NO:2641, SEQ ID NO:2671, SEO ID NO:2752, SEO ID NO:2737, SEO ID NO:2719, SEO ID NO:2684, SEO ID NO:2677, SEQ ID NO:2748, SEQ ID NO:2703, SEQ ID NO:2711, SEQ ID NO:2663, SEQ ID NO:2657, SEO ID NO:2683, SEO ID NO:2686, SEO ID NO:2687, SEO ID NO:2644, SEO ID NO:2664, SEO ID NO:2747, SEO ID NO:2744, SEO ID NO:2678, SEO ID NO:2731, SEO ID NO:2713, SEO ID NO:2736, SEO ID NO:2708, SEO ID NO:2670, SEO ID NO:2661, SEO ID NO:2680, SEO ID NO:2754, SEO ID NO:2728, SEO ID NO:2742, SEO ID NO:2668, SEO ID NO:2750, SEO ID NO:2746, SEO ID NO:2738, SEO ID NO:2627, SEO ID NO:2739, SEO ID NO:2647, SEQ ID NO:2628, SEQ ID NO:2638, SEQ ID NO:2725, SEQ ID NO:2714, SEQ ID NO:2635, SEO ID NO:2751, SEO ID NO:2629, SEO ID NO:2695, SEO ID NO:2741, SEO ID NO:2691, SEQ ID NO:2726, SEQ ID NO:2722, SEQ ID NO:2689, SEQ ID NO:2734, SEQ ID NO:2631, SEO ID NO:2656, SEO ID NO:2696, SEO ID NO:2676, SEO ID NO:2701, SEO ID NO:2730, SEO ID NO:2710, SEO ID NO:2632, SEO ID NO:2724, SEO ID NO:2698, SEO ID NO:2662, SEO ID NO:2753, SEO ID NO:2704, SEO ID NO:2675, SEO ID NO:2700, SEO ID NO:2640, SEO ID NO:2723, SEO ID NO:2658, SEO ID NO:2688, SEO ID NO:2735, SEO ID NO:2702, SEO ID NO:2681, SEO ID NO:2755, SEO ID NO:2715, SEO ID NO:2732, SEO ID

NO:2652, SEQ ID NO:2651, SEQ ID NO:2718, SEQ ID NO:2673, SEQ ID NO:2733, SEQ ID NO:2712, SEQ ID NO:2659, SEQ ID NO:2654, SEQ ID NO:2636, SEQ ID NO:2639, SEO ID NO:2690, SEQ ID NO:2705, SEQ ID NO:2685, SEQ ID NO:2692, SEQ ID NO:2693, SEQ ID NO:2648, SEQ ID NO:2650, SEO ID NO:2720, SEQ ID NO:2660, SEQ ID NO:2666, SEO ID NO:2699, SEQ ID NO:2633, SEQ ID NO:2672, SEQ ID NO:2642, SEQ ID NO:2682, SEQ ID NO:2655, SEQ ID NO:2630, SEQ ID NO:2745, SEQ ID NO:2643, SEQ ID NO:2694, SEO ID NO:2749, SEQ ID NO:2665, SEQ ID NO:2649, SEQ ID NO:2637, SEQ ID NO:2634, SEQ ID NO:2709, SEQ ID NO:2653, SEQ ID NO:2729, a substantially purified oligonucleotide having the nucleotide sequence selected from SEQ ID NO:333-664, and substantially purified oligonulcleotides having at least 90% sequence identity to an oligonucleotide having the nucleotide sequence selected from SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14. SEO ID NO:15. SEQ ID NO:16. SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38. SEQ ID NO:39. SEQ ID NO:40. SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109. SEO ID NO:110, SEO ID NO:111, SEO ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEO ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177.

SEO ID NO:178, SEO ID NO:179, SEO ID NO:180, SEO ID NO:181, SEO ID NO:182, SEO ID NO:183, SEO ID NO:184, SEO ID NO:185, SEO ID NO:186, SEO ID NO:187, SEO ID NO:188, SEO ID NO:189 SEO ID NO:190, SEO ID NO:191, SEO ID NO:192, SEO ID NO:193, SEO ID NO:194. SEO ID NO:195, SEO ID NO:196, SEO ID NO:197, SEO ID NO:198, SEO ID NO:199, SEO ID NO:200. SEO ID NO:201. SEO ID NO:202. SEO ID NO:203. SEO ID NO:204. SEO ID NO:205. SEO ID NO:206, SEO ID NO:207, SEO ID NO:208, SEO ID NO:209, SEO ID NO:210, SEO ID NO:211, SEO ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEO ID NO:218, SEO ID NO:219, SEO ID NO:220, SEO ID NO:221, SEO ID NO:222, SEO ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEO ID NO:229, SEO ID NO:230, SEO ID NO:231, SEO ID NO:232, SEO ID NO:233, SEO ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEO ID NO:241, SEO ID NO:242, SEO ID NO:243, SEO ID NO:244, SEO ID NO:245, SEO ID NO:246, SEO ID NO:247, SEO ID NO:248, SEO ID NO:249, SEO ID NO:250, SEO ID NO:251, SEO ID NO:252, SEO ID NO:253, SEO ID NO:254, SEO ID NO:255, SEO ID NO:256, SEO ID NO:257, SEO ID NO:258, SEO ID NO:259, SEO ID NO:260, SEO ID NO:261, SEO ID NO:262, SEO ID NO:263, SEO ID NO:264, SEO ID NO:265, SEO ID NO:266, SEO ID NO:267, SEO ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEO ID NO:275, SEO ID NO:276, SEO ID NO:277, SEO ID NO:278, SEO ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEO ID NO:286, SEO ID NO:287, SEO ID NO:288, SEO ID NO:289, SEO ID NO:290, SEO ID NO:291, SEO ID NO:292, SEO ID NO:293, SEO ID NO:294, SEO ID NO:295, SEO ID NO:296. SEO ID NO:297, SEO ID NO:298, SEO ID NO:299, SEO ID NO:300, SEO ID NO:301, SEO ID NO:302, SEO ID NO:303, SEO ID NO:304, SEO ID NO:305, SEO ID NO:306, SEO ID NO:307, SEO ID NO:308, SEO ID NO:309, SEO ID NO:310, SEO ID NO:311, SEO ID NO:312, SEO ID NO:313, SEO ID NO:314, SEO ID NO:315, SEO ID NO:316, SEO ID NO:317, SEO ID NO:318, SEO ID NO:319, SEO ID NO:320, SEO ID NO:321, SEO ID NO:322, SEO ID NO:323, SEO ID NO:324, SEO ID NO:325, SEO ID NO:326, SEO ID NO:327, SEO ID NO:328, SEO ID NO:329, SEO ID NO:330, SEO ID NO:331, SEO ID NO:332, SEO ID NO:2697, SEO ID NO:2645, SEO ID NO:2707, SEO ID NO:2679. SEO ID NO:2717. SEO ID NO:2646. SEO ID NO:2667. SEO ID NO:2706. SEO ID NO:2740, SEQ ID NO:2669, SEQ ID NO:2674, SEQ ID NO:2743, SEQ ID NO:2716, SEQ ID NO:2727, SEO ID NO:2721, SEO ID NO:2641, SEO ID NO:2671, SEO ID NO:2752, SEO ID NO:2737, SEO ID NO:2719, SEO ID NO:2684, SEO ID NO:2677, SEO ID NO:2748, SEO ID NO:2703, SEO ID NO:2711, SEO ID NO:2663, SEO ID NO:2657, SEO ID NO:2683, SEO ID NO:2686, SEO ID NO:2687, SEO ID NO:2644, SEO ID NO:2664, SEO ID NO:2747, SEO ID NO:2744, SEO ID NO:2678, SEO ID NO:2731, SEO ID NO:2713, SEO ID NO:2736, SEO ID NO:2708, SEO ID NO:2670, SEO ID NO:2661, SEO ID NO:2680, SEO ID NO:2754, SEO ID NO:2728, SEO ID NO:2742, SEO ID NO:2668, SEO ID NO:2750, SEO ID NO:2746, SEO ID NO:2738, SEO ID NO:2627, SEO ID NO:2739, SEO ID NO:2647, SEO ID NO:2628, SEO ID NO:2638, SEQ ID NO:2725, SEQ ID NO:2714, SEQ ID NO:2635, SEQ ID NO:2751, SEQ ID NO:2629, SEO ID NO:2695, SEO ID NO:2741, SEO ID NO:2691, SEQ ID NO:2726, SEQ ID

NO:2722, SEQ ID NO:2689, SEQ ID NO:2734, SEQ ID NO:2631, SEQ ID NO:2656, SEQ ID NO:2696, SEQ ID NO:2676, SEQ ID NO:2701, SEQ ID NO:2730, SEQ ID NO:2710. SEO ID NO:2632 SEO ID NO:2724, SEO ID NO:2698, SEO ID NO:2662, SEO ID NO:2753, SEO ID NO:2704, SEQ ID NO:2675, SEQ ID NO:2700, SEQ ID NO:2640, SEQ ID NO:2723. SEO ID NO:2658, SEO ID NO:2688, SEO ID NO:2735, SEO ID NO:2702, SEO ID NO:2681, SEO ID NO 2755, SEO ID NO:2715, SEO ID NO:2732, SEO ID NO:2652, SEQ ID NO:2651, SEQ ID NO:2718, SEO ID NO:2673, SEQ ID NO:2733, SEQ ID NO:2712, SEQ ID NO:2659, SEQ ID NO:2654, SEO ID NO:2636, SEO ID NO:2639, SEO ID NO:2690, SEQ ID NO:2705, SEQ ID NO:2685, SEO ID NO:2692, SEO ID NO:2693, SEQ ID NO:2648, SEQ ID NO:2650, SEQ ID NO:2720, SEO ID NO:2660, SEO ID NO:2666, SEO ID NO:2699, SEQ ID NO:2633, SEQ ID NO:2672, SEQ ID NO:2642, SEQ ID NO:2682, SEQ ID NO:2655, SEQ ID NO:2630, SEQ ID NO:2745, SEO ID NO:2643, SEO ID NO:2694, SEO ID NO:2749, SEQ ID NO:2665, SEQ ID NO:2649, SEQ ID NO:2637, SEQ ID NO:2634, SEQ ID NO:2709, SEQ ID NO:2653, SEQ ID NO:2729 and/or SEO 1D NO:333-664. In a further aspect, the invention is directed to a substantially purified oligonucleotide that hybridizes at high stringency to an oligonucleotide having the nucleotide sequence selected from SEO ID NO:2, SEO ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ 1D NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19 SEO ID NO:20, SEO ID NO:21, SEO ID NO:22, SEO ID NO:23, SEO ID NO:24, SEO ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEO ID NO:31, SEO ID NO:32, SEO ID NO:33, SEO ID NO:34, SEO ID NO:35, SEO ID NO:36, SEO ID NO:37, SEO ID NO:38, SEO ID NO:39, SEO ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEO ID NO:50, SEO ID NO:51, SEO ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEO ID NO:56, SEO ID NO:57, SEO ID NO:58, SEO ID NO:59, SEO ID NO:60, SEQ ID NO:61, SEO ID NO:62, SEO ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEO ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEO ID NO:74, SEO ID NO:75, SEO ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEO ID NO:80, SEO ID NO:81, SEO ID NO:82, SEO ID NO:83, SEO ID NO:84, SEQ ID NO:85, SEO ID NO:86, SEO ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91. SEO ID NO:92. SEO ID NO:93. SEO ID NO:94, SEO ID NO:95, SEO ID NO:96, SEQ ID NO:97, SEO ID NO:98, SEO ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEO ID NO:110, SEO ID NO:111, SEO ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEO ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEO ID NO:127, SEO ID NO:128, SEO ID NO:129, SEO ID NO:130, SEO ID NO:131, SEO ID NO:132, SEO ID NO:133, SEO ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ 1D NO:143, SEO 1D NO:144, SEO ID NO:145, SEO ID NO:146, SEQ 1D NO:147, SEQ ID NO:148,

SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEO ID NO:155, SEO ID NO:156, SEO ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEO ID NO:166, SEO ID NO:167, SEO ID NO:168, SEO ID NO:169, SEQ ID NO:170, SEO ID NO:171, SEO ID NO:172, SEO ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEO ID NO:183, SEO ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216. SEO ID NO:217 SEO ID NO:218. SEO ID NO:219. SEO ID NO:220, SEO ID NO:221, SEO ID NO:222, SEO ID NO:223, SEO ID NO:224, SEO ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEO ID NO:234, SEO ID NO:235, SEO ID NO:236, SEQ ID NO:237, SEO ID NO:238, SEO ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250. SEO ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEO ID NO:257, SEO ID NO:258, SEO ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEO ID NO:268, SEO ID NO:269, SEO ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEO ID NO:274, SEO ID NO:275, SEO ID NO:276, SEO ID NO:277, SEO ID NO:278, SEO ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284. SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEO ID NO:308, SEO ID NO:309, SEO ID NO:310, SEO ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEO ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEO ID NO:319, SEO ID NO:320, SEO ID NO:321, SEO ID NO:322, SEO ID NO:323, SEO ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:2697, SEQ ID NO:2645, SEQ ID NO:2707, SEQ ID NO:2679, SEQ ID NO:2717, SEQ ID NO:2646, SEQ ID NO:2667, SEQ ID NO:2706. SEO ID NO:2740. SEO ID NO:2669. SEO ID NO:2674, SEO ID NO:2743, SEO ID NO:2716, SEQ ID NO:2727, SEQ ID NO:2721, SEQ ID NO:2641, SEQ ID NO:2671. SEQ ID NO:2752, SEQ ID NO:2737, SEQ ID NO:2719, SEQ ID NO:2684, SEQ ID NO:2677, SEQ ID NO:2748, SEO ID NO:2703, SEO ID NO:2711, SEO ID NO:2663, SEQ ID NO:2657, SEQ ID NO:2683, SEQ ID NO:2686, SEQ ID NO:2687, SEQ ID NO:2644, SEQ ID NO:2664. SEQ ID NO:2747, SEO ID NO:2744, SEO ID NO:2678, SEQ ID NO:2731, SEQ ID NO:2713, SEQ ID

NO:2736, SEQ ID NO:2708, SEQ ID NO:2670, SEQ ID NO:2661, SEQ ID NO:2680, SEQ ID NO:2754, SEO ID NO:2728, SEO ID NO:2742, SEO ID NO:2668, SEO ID NO:2750, SEO ID NO:2746, SEQ ID NO:2738, SEQ ID NO:2627, SEQ ID NO:2739, SEQ ID NO:2647, SEQ ID NO:2628. SEO ID NO:2638. SEO ID NO:2725. SEO ID NO:2714, SEO ID NO:2635, SEO ID NO.2751, SEO ID NO.2629, SEO ID NO.2695, SEO ID NO.2741, SEQ ID NO.2691, SEQ ID NO:2726, SEQ ID NO:2722, SEQ ID NO:2689, SEQ ID NO:2734, SEQ ID NO:2631, SEQ ID NO:2656, SEO ID NO:2696, SEO ID NO:2676, SEQ ID NO:2701, SEO ID NO:2730, SEQ ID NO:2710. SEO ID NO:2632. SEO ID NO:2724. SEO ID NO:2698, SEO ID NO:2662, SEO ID NO:2753, SEO ID NO:2704, SEO ID NO:2675, SEQ ID NO:2700, SEQ ID NO:2640, SEQ ID NO:2723. SEO ID NO:2658. SEO ID NO:2688. SEO ID NO:2735. SEO ID NO:2702. SEO ID NO:2681, SEO ID NO:2755, SEO ID NO:2715, SEQ ID NO:2732, SEO ID NO:2652, SEQ ID NO:2651, SEQ ID NO:2718, SEQ ID NO:2673, SEQ ID NO:2733, SEQ ID NO:2712, SEQ ID NO:2659, SEO ID NO:2654, SEQ ID NO:2636, SEQ ID NO:2639, SEO ID NO:2690, SEO ID NO:2705, SEQ ID NO:2685, SEQ ID NO:2692, SEQ ID NO:2693, SEQ ID NO:2648, SEQ ID NO:2650, SEQ ID NO:2720, SEQ ID NO:2660, SEQ ID NO:2666, SEQ ID NO:2699, SEQ ID NO:2633, SEO ID NO:2672, SEO ID NO:2642, SEO ID NO:2682, SEQ ID NO:2655, SEQ ID NO:2630, SEO ID NO:2745, SEQ ID NO:2643, SEQ ID NO:2694, SEQ ID NO:2749, SEQ ID NO:2665, SEO ID NO:2649, SEO ID NO:2637, SEO ID NO:2634, SEQ ID NO:2709, SEQ ID NO:2653, SEO ID NO:2729 or SEO ID NOS:333-664. The sequences may be used as diagnostic oligonucleotides for transplant rejection and/or cardiac transplant rejection. The oligonucleotide may have nucleotide sequence including DNA, cDNA, PNA, genomic DNA, or synthetic oligonucleotides.

In another aspect, the invention is directed to a method of diagnosing or monitoring transplant rejection in a patient wherein the expression level of one or more genes in a patient's bodily fluid is detected. In a further variation, the bodily fluid is peripheral blood.

In another aspect, the invention is directed to a method of diagnosing or monitoring transplant rejection in a patient, comprising detecting the expression level of four or more genes in the patient to diagnose or monitor transplant rejection in the patient wherein the four or more genes include a nucleotide sequence selected from SEO ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6. SEO ID NO:7. SEO ID NO:8. SEO ID NO:9. SEO ID NO:10. SEO ID NO:11. SEO ID NO:12, SEO ID NO:13, SEO ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36. SEO ID NO:37, SEO ID NO:38, SEO ID NO:39, SEO ID NO:40, SEO ID NO:41, SEO ID NO:42 SEO ID NO:43, SEO ID NO:44, SEO ID NO:45, SEO ID NO:46, SEO ID NO:47, SEO ID NO:48. SEO ID NO:49. SEO ID NO:50, SEO ID NO:51, SEO ID NO:52, SEO ID NO:53, SEO ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEO ID NO:61, SEO ID NO:62, SEO ID NO:63, SEO ID NO:64, SEO ID NO:65, SEO ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEO ID NO:73, SEO ID NO:74, SEO ID NO:75, SEO ID NO:76, SEO ID NO:77, SEO ID

NO:78. SEO ID NO:79. SEO ID NO:80. SEO ID NO:81, SEO ID NO:82. SEO ID NO:83. SEO ID NO:84, SEO ID NO:85, SEQ ID NO:86, SEO ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90. SEO ID NO:91. SEO ID NO:92. SEO ID NO:93. SEO ID NO:94. SEO ID NO:95. SEO ID NO:96, SEO ID NO:97, SEO ID NO:98, SEO ID NO:99, SEO ID NO:100, SEO ID NO:101, SEO ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113. SEO ID NO:114, SEO ID NO:115, SEO ID NO:116, SEO ID NO:117, SEO ID NO:118, SEO ID NO:119, SEO ID NO:120, SEO ID NO:121, SEO ID NO:122, SEO ID NO:123, SEO ID NO:124, SEO ID NO:125, SEO ID NO:126, SEO ID NO:127, SEO ID NO:128, SEO ID NO:129, SEO ID NO:130. SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEO ID NO:137, SEO ID NO:138, SEO ID NO:139, SEO ID NO:140, SEO ID NO:141, SEO ID NO:142, SEO ID NO:143, SEO ID NO:144, SEO ID NO:145, SEO ID NO:146, SEO ID NO:147, SEO ID NO:148, SEO ID NO:149, SEO ID NO:150, SEO ID NO:151, SEO ID NO:152, SEO ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEO ID NO:160, SEO ID NO:161, SEO ID NO:162, SEO ID NO:163, SEO ID NO:164. SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEO ID NO:171, SEO ID NO:172, SEO ID NO:173, SEO ID NO:174, SEO ID NO:175, SEO ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEO ID NO:182, SEO ID NO:183, SEO ID NO:184, SEO ID NO:185, SEO ID NO:186, SEO ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEO ID NO:194, SEO ID NO:195, SEO ID NO:196, SEO ID NO:197, SEO ID NO:198. SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEO ID NO:205, SEO ID NO:206, SEO ID NO:207, SEO ID NO:208, SEO ID NO:209, SEO ID NO:210. SEO ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEO ID NO:216, SEO ID NO:217, SEO ID NO:218, SEO ID NO:219, SEO ID NO:220, SEO ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEO ID NO:228, SEO ID NO:229, SEO ID NO:230, SEO ID NO:231, SEO ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEO ID NO:245, SEO ID NO:246, SEO ID NO:247, SEO ID NO:248, SEO ID NO:249. SEO ID NO:250, SEO ID NO:251, SEO ID NO:252, SEO ID NO:253, SEO ID NO:254, SEO ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEO ID NO:262, SEO ID NO:263, SEO ID NO:264, SEO ID NO:265, SEO ID NO:266. SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEO ID NO:273, SEO ID NO:274, SEO ID NO:275, SEO ID NO:276, SEO ID NO:277, SEO ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEO ID NO:284, SEO ID NO:285, SEO ID NO:286, SEO ID NO:287, SEO ID NO:288, SEO ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEO ID NO:296, SEO ID NO:297, SEO ID NO:298, SEO ID NO:299, SEO ID NO:300. SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID

NO:306. SEO ID NO:307, SEO ID NO:308. SEO ID NO:309, SEO ID NO:310, SEO ID NO:311, SEO ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEO ID NO:318, SEO ID NO:319, SEO ID NO:320, SEO ID NO:321, SEO ID NO:322, SEO ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329. SEO ID NO:330. SEO ID NO:331. SEO ID NO:332. SEO ID NO:2697. SEO ID NO:2645, SEQ ID NO:2707, SEQ ID NO:2679, SEQ ID NO:2717, SEQ ID NO:2646, SEQ ID NO:2667, SEQ ID NO:2706, SEQ ID NO:2740, SEQ ID NO:2669, SEQ ID NO:2674, SEQ ID NO:2743, SEO ID NO:2716, SEO ID NO:2727, SEO ID NO:2721, SEO ID NO:2641, SEO ID NO:2671, SEO ID NO:2752, SEO ID NO:2737, SEO ID NO:2719, SEO ID NO:2684, SEO ID NO:2677, SEO ID NO:2748, SEO ID NO:2703, SEO ID NO:2711, SEO ID NO:2663, SEQ ID NO:2657, SEO ID NO:2683, SEO ID NO:2686, SEO ID NO:2687, SEO ID NO:2644, SEO ID NO:2664, SEO ID NO:2747, SEO ID NO:2744, SEQ ID NO:2678, SEQ ID NO:2731, SEQ ID NO:2713. SEO ID NO:2736. SEO ID NO:2708. SEO ID NO:2670. SEO ID NO:2661. SEO ID NO:2680, SEO ID NO:2754, SEO ID NO:2728, SEO ID NO:2742, SEO ID NO:2668, SEO ID NO:2750, SEO ID NO:2746, SEO ID NO:2738, SEO ID NO:2627, SEO ID NO:2739, SEO ID NO:2647, SEQ ID NO:2628, SEQ ID NO:2638, SEQ ID NO:2725, SEQ ID NO:2714, SEQ ID NO:2635, SEO ID NO:2751, SEO ID NO:2629, SEO ID NO:2695, SEO ID NO:2741, SEO ID NO:2691, SEQ ID NO:2726, SEQ ID NO:2722, SEQ ID NO:2689, SEQ ID NO:2734, SEQ ID NO:2631, SEO ID NO:2656, SEO ID NO:2696, SEO ID NO:2676, SEO ID NO:2701, SEO ID NO:2730, SEO ID NO:2710, SEO ID NO:2632, SEO ID NO:2724, SEO ID NO:2698, SEO ID NO:2662, SEO ID NO:2753, SEO ID NO:2704, SEO ID NO:2675, SEO ID NO:2700, SEO ID NO:2640, SEQ ID NO:2723, SEQ ID NO:2658, SEQ ID NO:2688, SEQ ID NO:2735, SEQ ID NO:2702, SEO ID NO:2681, SEO ID NO:2755, SEO ID NO:2715, SEO ID NO:2732, SEO ID NO:2652, SEO ID NO:2651, SEO ID NO:2718, SEO ID NO:2673, SEO ID NO:2733, SEO ID NO:2712, SEO ID NO:2659, SEO ID NO:2654, SEO ID NO:2636, SEO ID NO:2639, SEO ID NO:2690, SEQ ID NO:2705, SEQ ID NO:2685, SEQ ID NO:2692, SEQ ID NO:2693, SEQ ID NO:2648, SEO ID NO:2650, SEO ID NO:2720, SEO ID NO:2660, SEO ID NO:2666, SEO ID NO:2699, SEO ID NO:2633, SEO ID NO:2672, SEO ID NO:2642, SEO ID NO:2682, SEO ID NO:2655, SEO ID NO:2630, SEO ID NO:2745, SEO ID NO:2643, SEO ID NO:2694, SEQ ID NO:2749, SEQ ID NO:2665, SEQ ID NO:2649, SEQ ID NO:2637, SEQ ID NO:2634, SEQ ID NO:2709, SEO ID NO:2653, SEO ID NO:2729.

In another aspect, the invention is directed to a method of diagnosing or monitoring kidney transplant rejection in a patient by detecting one or more proteins in a bodily fluid of the patient to diagnose or monitor transplant rejection in the patient wherein the one or more proteins have a protein sequence selected from SEQ ID NO:76, SEQ ID NO:2663, SEQ ID NO:98, SEQ ID NO:2696, SEQ ID NO:2736, SEQ ID NO:2751, SEQ ID NO:2631, SEQ ID NO:26675, SEQ ID NO:2700, and SEQ ID NO:2668.

In a further aspect, the invention is also directed to a system for detecting gene expression in body fluid including at least two isolated polynucleotides wherein the isolated polynucleotides detect expression of a gene wherein the gene includes a nucleotide sequence selected from SEQ ID NO:2,

SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21. SEO ID NO:22. SEO ID NO:23, SEO ID NO:24, SEO ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO 28 SEO ID NO 29. SEO ID NO 30. SEO ID NO 31, SEO ID NO 32, SEO ID NO 33, SEO ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEO ID NO:41, SEO ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46. SEO ID NO:47. SEO ID NO:48. SEO ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEO ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88. SEO ID NO:90, SEO ID NO:91, SEO ID NO:92, SEO ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:98, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109. SEO ID NO:114. SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEO ID NO:121, SEO ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEO ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEO ID NO:190, SEO ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEO ID NO:212, SEO ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233. SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262,

SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEO ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296. SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEO ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:2697, SEQ ID NO:2645, SEQ ID NO:2707, SEQ ID NO:2679, SEQ ID NO:2717, SEQ ID NO:2646, SEQ ID NO:2667, SEQ ID NO:2706, SEQ ID NO:2740, SEQ ID NO:2669, SEQ ID NO:2674, SEQ ID NO:2743. SEQ ID NO:2716. SEO ID NO:2727, SEO ID NO:2721, SEO ID NO:2641, SEO ID NO:2671, SEO ID NO:2752, SEO ID NO:2737, SEQ ID NO:2719, SEQ ID NO:2684, SEQ ID NO:2677. SEQ ID NO:2748. SEO ID NO:2703. SEO ID NO:2711, SEQ ID NO:2663, SEQ ID NO:2657, SEQ ID NO:2683. SEO ID NO:2686, SEQ ID NO:2687, SEQ ID NO:2644, SEQ ID NO:2664, SEQ ID NO:2747, SEQ ID NO:2744, SEQ ID NO:2678, SEQ ID NO:2731, SEQ ID NO:2713, SEO ID NO:2736, SEO ID NO:2708, SEQ ID NO:2670, SEQ ID NO:2661, SEQ ID NO:2680, SEQ ID NO:2754, SEQ ID NO:2728, SEQ ID NO:2742, SEQ ID NO:2668, SEQ ID NO:2750, SEQ ID NO:2746, SEQ ID NO:2738, SEQ ID NO:2627, SEQ ID NO:2739, SEQ ID NO:2647, SEQ ID NO:2628, SEQ ID NO:2638, SEQ ID NO:2725, SEQ ID NO:2714, SEQ ID NO:2635, SEQ ID NO:2751, SEQ ID NO:2629, SEQ ID NO:2695, SEQ ID NO:2741, SEQ ID NO:2691, SEQ ID NO:2726, SEO ID NO:2722, SEQ ID NO:2689, SEQ ID NO:2734, SEQ ID NO:2631, SEQ ID NO:2656, SEQ ID NO:2696, SEQ ID NO:2676, SEQ ID NO:2701, SEQ ID NO:2730, SEQ ID NO:2710, SEQ ID NO:2632, SEQ ID NO:2724, SEQ ID NO:2698, SEQ ID NO:2662, SEQ ID NO:2753, SEQ ID NO:2704, SEQ ID NO:2675, SEQ ID NO:2700, SEQ ID NO:2640, SEO ID NO:2723, SEO ID NO:2658, SEQ ID NO:2688, SEQ ID NO:2735, SEQ ID NO:2702, SEQ ID NO:2681, SEQ ID NO:2755, SEQ ID NO:2715, SEQ ID NO:2732, SEQ ID NO:2652, SEQ ID NO:2651, SEQ ID NO:2718, SEO ID NO:2673, SEQ ID NO:2733, SEQ ID NO:2712, SEQ ID NO:2659, SEQ ID NO:2654, SEQ ID NO:2636, SEQ ID NO:2639, SEQ ID NO:2690, SEQ ID NO:2705, SEQ ID NO:2685, SEQ ID NO:2692, SEQ ID NO:2693, SEQ ID NO:2648, SEQ ID NO:2650, SEQ ID NO:2720, SEQ ID NO:2660, SEQ ID NO:2666, SEQ ID NO:2699, SEQ ID NO:2633, SEQ ID NO:2672, SEQ ID NO:2642, SEQ ID NO:2682, SEQ ID NO:2655, SEQ ID NO:2630, SEQ ID NO:2745, SEQ ID NO:2643, SEQ ID NO:2694, SEQ ID NO:2749, SEQ ID NO:2665, SEQ ID NO:2649, SEQ ID NO:2637, SEQ ID NO:2634, SEQ ID NO:2709, SEQ ID NO:2653, SEQ ID NO:2729 and the gene is differentially expressed in body fluid in an individual rejecting a transplanted

organ compared to the expression of the gene in leukocytes in an individual not rejecting a transplanted organ.

In another aspect, the invention is directed to a system for detecting gene expression in body fluid including at least two isolated polynucleotides wherein the isolated polynucleotides detect expression of a gene wherein the gene includes a nucleotide sequence selected from SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEO ID NO:10, SEO ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15. SEO ID NO:16. SEO ID NO:17. SEO ID NO:18. SEO ID NO:19. SEO ID NO:20, SEO ID NO:21, SEO ID NO:22, SEO ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEO ID NO:34, SEO ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEO ID NO:38, SEQ ID NO:39. SEO ID NO:40. SEO ID NO:41, SEO ID NO:42, SEO ID NO:43, SEO ID NO:44, SEQ ID NO:45 SEO ID NO:46 SEO ID NO:47. SEO ID NO:48. SEO ID NO:49. SEO ID NO:50. SEO ID NO:51, SEO ID NO:52, SEO ID NO:53, SEO ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEO ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80. SEO ID NO:81 SEO ID NO:82, SEO ID NO:83, SEO ID NO:84, SEO ID NO:85, SEO ID NO:86, SEO ID NO:87, SEO ID NO:88, SEO ID NO:89, SEO ID NO:90, SEO ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEO ID NO:100, SEO ID NO:101, SEO ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEO ID NO:106, SEO ID NO:107, SEO ID NO:108, SEO ID NO:109, SEO ID NO:110, SEO ID NO:111, SEO ID NO:112, SEO ID NO:113, SEO ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEO ID NO:123, SEO ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEO ID NO:134, SEO ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEO ID NO:145, SEO ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEO ID NO:157, SEO ID NO:158, SEO ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEO ID NO:174, SEO ID NO:175, SEO ID NO:176, SEO ID NO:177, SEO ID NO:178, SEO ID NO:179, SEO ID NO:180, SEO ID NO:181, SEO ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEO ID NO:191, SEO ID NO:192, SEO ID NO:193, SEO ID NO:194, SEO ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEO ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ

ID NO:207. SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEO ID NO:213, SEO ID NO:214, SEO ID NO:215, SEO ID NO:216, SEO ID NO:217, SEO ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEO ID NO:221, SEO ID NO:222, SEO ID NO:223, SEO ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229. SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246. SEO ID NO:247, SEO ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEO ID NO:251, SEO ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263. SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEO ID NO:278, SEO ID NO:279, SEO ID NO:280. SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:311, SEO ID NO:312, SEO ID NO:313, SEO ID NO:314. SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEO ID NO:332, SEO ID NO:2697, SEQ ID NO:2645, SEO ID NO:2707, SEO ID NO:2679, SEO ID NO:2717, SEQ ID NO:2646, SEQ ID NO:2667, SEQ ID NO:2706, SEQ ID NO:2740, SEQ ID NO:2669, SEQ ID NO:2674, SEQ ID NO:2743, SEQ ID NO:2716, SEQ ID NO:2727, SEQ ID NO:2721, SEO ID NO:2641, SEO ID NO:2671, SEO ID NO:2752, SEO ID NO:2737, SEO ID NO:2719, SEQ ID NO:2684, SEQ ID NO:2677, SEQ ID NO:2748, SEQ ID NO:2703, SEQ ID NO:2711, SEO ID NO:2663, SEO ID NO:2657, SEO ID NO:2683, SEO ID NO:2686, SEO ID NO:2687, SEQ ID NO:2644, SEQ ID NO:2664, SEQ ID NO:2747, SEQ ID NO:2744, SEQ ID NO:2678, SEQ ID NO:2731, SEQ ID NO:2713, SEQ ID NO:2736, SEQ ID NO:2708, SEQ ID NO:2670, SEQ ID NO:2661, SEQ ID NO:2680, SEQ ID NO:2754, SEQ ID NO:2728, SEQ ID NO:2742, SEO ID NO:2668, SEO ID NO:2750, SEO ID NO:2746, SEO ID NO:2738, SEO ID NO:2627, SEQ ID NO:2739, SEQ ID NO:2647, SEQ ID NO:2628, SEQ ID NO:2638, SEO ID NO:2725, SEQ ID NO:2714, SEQ ID NO:2635, SEQ ID NO:2751, SEQ ID NO:2629, SEQ ID NO:2695, SEQ ID NO:2741, SEQ ID NO:2691, SEQ ID NO:2726, SEQ ID NO:2722, SEQ ID NO:2689, SEQ ID NO:2734, SEQ ID NO:2631, SEQ ID NO:2656, SEQ ID NO:2696, SEQ ID NO:2676, SEQ ID NO:2701, SEQ ID NO:2730, SEO ID NO:2710, SEO ID NO:2632, SEO ID NO:2724, SEQ ID NO:2698, SEQ ID NO:2662, SEQ ID NO:2753, SEQ ID NO:2704, SEQ ID NO:2675, SEQ ID NO:2700, SEQ ID NO:2640, SEQ ID NO:2723, SEQ ID NO:2658, SEQ ID NO:2688, SEQ ID NO:2735, SEQ ID NO:2702, SEQ ID NO:2681, SEQ ID NO:2755, SEQ ID

NO.2715, SEQ ID NO.2732, SEQ ID NO.2652, SEQ ID NO.2651, SEQ ID NO.2718, SEQ ID NO.2673, SEQ ID NO.2733, SEQ ID NO.2712, SEQ ID NO.2659, SEQ ID NO.2654, SEQ ID NO.2636, SEQ ID NO.2639, SEQ ID NO.2669, SEQ I

The invention is also directed to methods of diagnosing or monitoring transplant rejection in a patient by detecting the expression level of one or more genes including a nucleotide sequence selected from SEQ ID NOS: 3016-3117. SEQ ID NOS:3108-3117 are useful in detecting CMV infection.

### Brief Description of the Sequence Listing

SEQ ID's 1-332 are 50mer oligonucleotides corresponding to gene expression markers for diagnosis and monitoring of allograft rejection and other disorders.

SEQ ID's 333-664 are Reference mRNA sequences for genes identified by probes 1-332.

SEQ ID's 665-995 are a first set of Left PCR primers for genes 1-332.

SEQ ID's 996-1326 are a first set of Right PCR primers for genes 1-332.

SEQ ID's 1327-1657 are Tagman probes for the first set PCR primers for genes 1-332.

SEQ ID's 1658-1903 are a second alternative set of left PCR primers for selected genes 1-332

SEQ ID's 1904-2151 are a second alternative set of right PCR primers for selected genes 1-332

SEQ ID's 2152-2399 are Taqman probes for the second alternative set of PCR primers for selected genes 1-332.

SEQ ID's 2400-2626 are Proteins encoded by mRNA's from genes identified in 1-332.

SEQ ID's 2627-2795 are 50mer oligonucleotide array probes used to identify genes in Figure 7 and Tables 6 and 8.

SEQ ID's 2796-2924 are reference mRNA sequences for genes in Table 8 which show altered expression in renal transplantation and rejection.

SEO ID's 2925-3015 are proteins coded by genes which show altered expression in Table 8.

SEQ ID's 3016-3081 are 50mer oligonucleotide array probes and used to identify genes in the Examples.

SEQ ID's 3082-3107 are genes and primers discussed in the Examples.

SEQ ID's 3108-3117 are mRNAs from human genes in which regulation is altered upon CMV infection.

### Brief Description of the Figures

Figure 1: Figure 1 is a schematic flow chart illustrating a schematic instruction set for characterization of the nucleotide sequence and/or the predicted protein sequence of novel nucleotide sequences.

Figure 2: Figure 2 depicts the components of an automated RNA preparation machine.

Figure 3 shows the results of six hybridizations on a mini array graphed (n=6 for each column). The error bars are the SEM. This experiment shows that the average signal from AP prepared RNA is 47% of the average signal from GS prepared RNA for both Cy3 and Cy5.

Figure 4 shows the average background subtracted signal for each of nine leukocyte-specific genes on a mini array. This average is for 3-6 of the above-described hybridizations for each gene. The error bars are the SEM.

Figure 5 shows the ratio of Cy3 to Cy5 signal for a number of genes. After normalization, this ratio corrects for variability among hybridizations and allows comparison between experiments done at different times. The ratio is calculated as the Cy3 background subtracted signal divided by the Cy5 background subtracted signal. Each bar is the average for 3-6 hybridizations. The error bars are SEM. Figure 6 shows data median Cy3 background subtracted signals for control RNAs using mini arrays. Figure 7: Cardiac Allograft rejection diagnostic genes.

- A. Example of rejection and no-rejection samples expression data for 5 marker genes. For each sample, the associated rejection grades are shown as are the expression ratios for 5 differentially expressed genes. The genes are identified by the SEQ ID number for the oligonucleotide. The average fold difference between grade 0 and grade 3A samples is calculated at the bottom.
- B. CART classification model. Decision tree for a 3 gene classification model for diagnosis of cardiac rejection. In the first step, expression of gene 223 is used to divide the patients to 2 branches. The remaining samples in each branch are then further divided by one remaining gene. The samples are classified as either rejection or no rejection. 1 no rejection sample is misclassified as a rejection sample.
- C. Surrogates for the CART classification model. For each of the 3 splitter genes in the CART rejection model described in the example, 5 top surrogate genes are listed that were identified by the CART algorithm.

Figure 8: Validation of differential expression of a gene discovered using microarrays using real-time PCR

Figure 8A. The Ct for each patient sample on multiple assays is shown along with the Ct in the R50 control RNA. Triangles represent -RT (reverse transcriptase) controls.

Figure 8B. The fold difference between the expression of Granzyme B and an Actin reference is shown for 3 samples from patients with and without CMV disease.

Figure 9: Endpoint testing of PCR primers

Electrophoresis and microfluidics are used to assess the product of gene specific PCR primers.

 $\beta$ -GUS gel image. Lane 3 is the image for primers F178 and R242. Lanes 2 and 1 correspond to the no-template control and –RT control, respectively.

The electropherogram of  $\beta$ -GUS primers F178 and R242, a graphical representation of Lane 3 from the gel image.

β-Actin gel image. Lane 3 is the image for primers F75 and R178. Lanes 2 and 1 correspond to the no-template control and -RT control, respectively.

The electropherogram of  $\beta$ -Actin primers F75 and R178, a graphical representation of Lave 3 from the gel image.

Figure 10: PCR Primer efficiency testing. A standard curve of Ct versus log of the starting RNA amount is shown for 2 genes.

Figure 11: Real-time PCR control gene analysis

11 candidate control genes were tested using real-time PCR on 6 whole blood samples (PAX) paired with 6 mononuclear samples (CPT) from the same patient. Each sample was tested twice. For each gene, the variability of the gene across the samples is shown on the vertical axis (top graph). The average Ct value for each gene is also shown (bottom graph). 2ug RNA was used for PAX samples and 0.5 ue total RNA was used for the mononuclear samples (CPT).

Figure 12: Rejection marker discovery by co-expression with established marker

Microarrays were used to measure expression of genes SEQ ID 85 and 302 in samples derived from 240 transplant recipients. For each sample, the expression measurement for 85 is plotted against 302. Figure 13: ROC (receiver operator characteristics) curve for a 3-gene PCR assay for diagnosis of rejection (see example 17). The Sensitivity and False Positive Rate for each test cutoff is shown.

# Brief Description of the Tables

Table 1: Table 1 lists diseases or conditions amenable to study by leukocyte profiling.

Table 2: Transplant Markers

A. Transplant Genes: Genes useful for monitoring of allograft rejection are listed in this here. The gene symbol and name are given. SEQ ID 50mer is the sequence ID of a 50mer oligonucleotide that is specific for the gene. The NCBI Unigene number (HS) from (Build 160, 16 Feb 2003) is given as is an accession number (ACC) from (Genbank Release 135, 15 April 2003) for an RNA or cDNA is Genbank that corresponds to the gene. The sequence identified by the ACC number is in the sequence listing (SEO ID RNA/cDNA).

B. Microarray Data: SEQ ID 50mer, Gene, Gene Name, ACC and SEQ ID RNA/cDNA are given for each gene as in A (above). Each identified gene has a Non-Parametric Score and Median Rank in NR given from the non-parametric analysis of the data. The genes are ranked from highest to lowest scoring. Down Regulated genes are noted with a 1 in this column.

C. PCR Primers: Primers and probes for real-time PCR assays for each gene are given along with their SEQ ID #s. Each gene has 1 or 2 sets of a forward and reverse PCR primer and a hybridization probe for detection in TaqMan or similar assays.

D. PCR Data: Real-time PCR data was generated on a set of transplant samples using sybr green technology as described in the text. For each gene the number of samples (n) used in the analysis is given. An odds ratio and the p-values for a Fisher test and t-test are given for the comparison of acute rejection samples is given (see text).

E. Transplant proteins: For each gene, the corresponding protein in the RefSeq data base (Genbank Release 135, 18 April 2003) is given (RefSeq Peptide Accession #) along the the SEQ ID for that protein for the sequence listing.

Table 3: Viral gene for arrays. Viral genomes were used to design oligonucleotides for the microarrays. The accession numbers for the viral genomes used are given, along with the gene name and location of the region used for oligonucleotide design.

Table 4. Dependent variables for discovery of gene expression markers of cardiac allograft rejection. A stable Grade 0 is a Grade 0 biopsy in a patient who does not experience rejection with the subsequent biopsy. HG or highest grade means that the higher of the biopsy grades from the centralized and local pathologists was used for a definition of the dependent variable.

Table 5: Real-time PCR assay reporter and quencher dyes. Various combinations of reporter and quencher dyes are useful for real-time PCR assays. Reporter and quencher dyes work optimally in specific combinations defined by their spectra. For each reporter, appropriate choices for quencher dyes are given.

Table 6: Rejection marker PCR assay results

Results of real-time PCR assays are listed for the comparison of rejection samples to no rejection samples. The fold change is given for expression of each gene in rejection/no rejection samples. The p-value for the t-test comparing the rejection and no rejection classes is given.

Table 7: Summary results of array rejection significance analysis. Summary results are given for correlation analysis of leukocyte gene expression to acute rejection using significance analysis for microarrays (SAM). Five analyses are described. The ISHLT grades used to define the rejection and no rejection classes are given. In each case the highest grade from three pathology reading was taken for analysis. All samples are used for two analyses. The other analyses reduce redundancy of patients used in the analysis by using only one sample per patient ("Non-redundant") or using only one sample per patient within a given class ("Non-redundant within class"). The number of samples used in the analysis is given and the lowest false detection rate (FDR) achieved is noted.

Table 8: Renal tissue rejection array significance analysis. Genes are listed that were identified as upregulated using microarrays on renal tissue with acute rejection versus controls. Significance analysis for microarrays (SAM) was used to determine the false detection rate for each gene (FDR). Genes with known expression in leukocytes are noted in the table.

Table 9: Rejection marker sequence analysis. For 63 of the allograft rejection markers listed in Table - 2, an analysis of the gene sequence was done. The genes and proteins are identified by accession numbers. The cellular localization of each gene is described as either secreted, nuclear, mitochondrial, cytoplasmic or cellular membrane. The function of the gene is also described.

Table 10: Gene expression markers for immature cells of a variety of lineages are given in Table 10 by way of example

Table 11: Changes in the rate of hematopoiesis have been correlated to a number of disease states and other pathologies. Examples of such conditions are listed in Table 11.

Table 12: This table lists the oligonucleotides and associated genes identified as having value for the diagnosis and monitoring of CMV infection. The first column gives the SEQ ID that corresponds to the oligonuclotide in the sequence listing. The unigene number, genebank accession and GI number are also given for each sequence when known. The name of the gene associated with the accession number is noted. The strand is noted as –1 or 1, meaning that the probe was designed from the complement of the sequence (-1) or directly from the sequence (1). Next, the nucleotide sequence of each probe is also given. For each gene, the false detection rate (FDR) from the significance analysis described in

example 7 is given if applicable. WBC is the white blood cell count. WPT is the number of weeks past transplant.

### Detailed Description of the Invention

Definitions

Unless defined otherwise, all scientific and technical terms are understood to have the same meaning as commonly used in the art to which they pertain. For the purpose of the present invention, the following terms are defined below.

In the context of the invention, the term "gene expression system" refers to any system, device or means to detect gene expression and includes diagnostic agents, candidate libraries, oligonucleotide sets or probe sets.

The term "monitoring" is used herein to describe the use of gene sets to provide useful information about an individual or an individual's health or disease status. "Monitoring" can include, determination of prognosis, risk-stratification, selection of drug therapy, assessment of ongoing drug therapy, prediction of outcomes, determining response to therapy, diagnosis of a disease or disease complication, following progression of a disease or providing any information relating to a patients health status over time, selecting patients most likely to benefit from experimental therapies with known molecular mechanisms of action, selecting patients most likely to benefit from approved drugs with known molecular mechanisms where that mechanism may be important in a small subset of a disease for which the medication may not have a label, screening a patient population to help decide on a more invasive/expensive test, for example a cascade of tests from a non-invasive blood test to a more invasive option such as biopsy, or testing to assess side effects of drugs used to treat another indication.

The term "diagnostic oligonucleotide set" generally refers to a set of two or more oligonucleotides that, when evaluated for differential expression of their products, collectively yields predictive data. Such predictive data typically relates to diagnosis, prognosis, monitoring of therapeutic outcomes, and the like. In general, the components of a diagnostic oligonucleotide set are distinguished from nucleotide sequences that are evaluated by analysis of the DNA to directly determine the genotype of an individual as it correlates with a specified trait or phenotype, such as a disease, in that it is the pattern of expression of the components of the diagnostic nucleotide set, rather than mutation or polymorphism of the DNA sequence that provides predictive value. It will be understood that a particular component (or member) of a diagnostic nucleotide set can, in some cases, also present one or more mutations, or polymorphisms that are amenable to direct genotyping by any of a variety of well known analysis methods, e.g., Southern blotting, RFLP, AFLP, SSCP, SNP, and the like.

A "disease specific target oligonucleotide sequence" is a gene or other oligonucleotide that encodes a polypeptide, most typically a protein, or a subunit of a multi-subunit protein, that is a therapeutic target for a disease, or group of diseases.

A "candidate library" or a "candidate oligonucleotide library" refers to a collection of oligonucleotide sequences (or gene sequences) that by one or more criteria have an increased probability of being associated with a particular disease or group of diseases. The criteria can be, for

example, a differential expression pattern in a disease state or in activated or resting leukocytes in vitro as reported in the scientific or technical literature, tissue specific expression as reported in a sequence database, differential expression in a tissue or cell type of interest, or the like. Typically, a candidate library has at least 2 members or components; more typically, the library has in excess of about 10, or about 100, or about 1000, or even more, members or components.

The term "disease criterion" is used herein to designate an indicator of a disease, such as a diagnostic factor, a prognostic factor, a factor indicated by a medical or family history, a genetic factor, or a symptom, as well as an overt or confirmed diagnosis of a disease associated with several indicators such as those selected from the above list. A disease criterian includes data describing a patient's health status, including retrospective or prospective health data, e.g. in the form of the patient's medical history, laboratory test results, diagnostic test result, clinical events, medications, lists, response(s) to treatment and risk factors, etc.

The terms "molecular signature" or "expression profile" refers to the collection of expression values for a plurality (e.g., at least 2, but frequently about 10, about 100, about 1000, or more) of members of a candidate library. In many cases, the molecular signature represents the expression pattern for all of the nucleotide sequences in a library or array of candidate or diagnostic nucleotide sequences or genes. Alternatively, the molecular signature represents the expression pattern for one or more subsets of the candidate library. The term "oligonucleotide" refers to two or more nucleotides. Nucleotides may be DNA or RNA, naturally occurring or synthetic.

The term "healthy individual," as used herein, is relative to a specified disease or disease criterion. That is, the individual does not exhibit the specified disease criterion or is not diagnosed with the specified disease. It will be understood, that the individual in question, can, of course, exhibit symptoms, or possess various indicator factors for another disease.

Similarly, an "individual diagnosed with a disease" refers to an individual diagnosed with a specified disease (or disease criterion). Such an individual may, or may not, also exhibit a disease criterion associated with, or be diagnosed with another (related or unrelated) disease.

An "array" is a spatially or logically organized collection, e.g., of oligonucleotide sequences or nucleotide sequence products such as RNA or proteins encoded by an oligonucleotide sequence. In some embodiments, an array includes antibodies or other binding reagents specific for products of a candidate library.

When referring to a pattern of expression, a "qualitative" difference in gene expression refers to a difference that is not assigned a relative value. That is, such a difference is designated by an "all or nothing" valuation. Such an all or nothing variation can be, for example, expression above or below a threshold of detection (an on/off pattern of expression). Alternatively, a qualitative difference can refer to expression of different types of expression products, e.g., different alleles (e.g., a mutant or polymorphic allele), variants (including sequence variants as well as post-translationally modified variants), etc.

In contrast, a "quantitative" difference, when referring to a pattern of gene expression, refers to a difference in expression that can be assigned a value on a graduated scale, (e.g., a 0.5 or 1-10 scale, a + - + + + scale, a grade 1- grade 5 scale, or the like; it will be understood that the numbers

selected for illustration are entirely arbitrary and in no-way are meant to be interpreted to limit the invention).

### Gene Expression Systems of the Invention

The invention is directed to a gene expression system having one or more DNA molecules wherein the one or more DNA molecules has a nucleotide sequence which detects expression of a gene corresponding to the oligonucleotides depicted in the Sequence Listing. In one format, the oligonucleotide detects expression of a gene that is differentially expressed in leukocytes. The gene expression system may be a candidate library, a diagnostic agent, a diagnostic oligonucleotide set or a diagnostic probe set. The DNA molecules may be genomic DNA, protein nucleic acid (PNA), cDNA or synthetic oligonucleotides. Following the procedures taught herein, one can identity sequences of interest for analyzing gene expression in leukocytes. Such sequences may be predictive of a disease state.

### Diagnostic oligonucleotides of the invention

The invention relates to diagnostic nucleotide set(s) comprising members of the leukocyte candidate library listed in Table 2, Table 8, and in the Sequence Listing, for which a correlation exists between the health status of an individual; the individual's expression of RNA or protein products occresponding to the nucleotide sequence, and the diagnosis and prognosis of transplant rejection. In some instances, only one oligonucleotide is necessary for such detection. Members of a diagnostic oligonucleotide set may be identified by any means capable of detecting expression of RNA or protein products, including but not limited to differential expression screening, PCR, RT-PCR, SAGE analysis, high-throughput sequencing, microarrays, liquid or other arrays, protein-based methods (e.g., western blotting, proteomics, and other methods described herein), and data mining methods, as further described herein.

In one embodiment, a diagnostic oligonucleotide set comprises at least two oligonucleotide sequences listed in Table 2, Table 8, or the Sequence Listing which are differentially expressed in leukocytes in an individual with at least one disease criterion for at least one leukocyte-implicated disease relative to the expression in individual without the at least one disease criterion, wherein expression of the two or more nucleotide sequences is correlated with at least one disease criterion, as described helow.

In another embodiment, a diagnostic nucleotide set comprises at least one oligonucleotide having an oligonucleotide sequence listed in Table 2, Table 8, or the Sequence Listing which is differentially expressed, and further wherein the differential expression/correlation has not previously been described. In some embodiments, the diagnostic nucleotide set is immobilized on an array.

In another embodiment, diagnostic nucleotides (or nucleotide sets) are related to the members of the leukocyte candidate library listed in Table 2, Table 8, or in the Sequence Listing, for which a correlation exists between the health status, diagnosis and prognosis of transplant rejection (or disease criterion) of an individual. The diagnostic nucleotides are partially or totally contained in (or derived from) full-length gene sequences (or predicted full-length gene sequences) for the members of the candidate library listed in Table 2, Table 8, and the sequence listing. In some cases, oligonucleotide sequences are designed from EST or Chromosomal sequences from a public database. In these cases

the full-length gene sequences may not be known. Full-length sequences in these cases can be predicted using gene prediction algorithms. Alternatively the full-length can be determined by cloning and sequencing the full-length gene or genes that contain the sequence of interest using standard molecular biology approaches described here. The same is true for olignonucleotides designed from our sequencing of cDNA libraries where the cDNA does not match any sequence in the public databases.

The diagnostic nucleotides may also be derived from other genes that are coexpressed with the correlated sequence or full-length gene. Genes may share expression patterns because they are regulated in the same molecular pathway. Because of the similarity of expression behavior genes are identified as surrogates in that they can substitute for a diagnostic gene in a diagnostic gene set. Example 4 demonstrates the discovery of surrogates from the data and the sequence listing identifies and gives the sequence for surrogates for cardiac diagnostic genes.

As used herein the term "gene cluster" or "cluster" refers to a group of genes related by expression pattern. In other words, a cluster of genes is a group of genes with similar regulation across different conditions, such as graft non-rejection verus graft rejection. The expression profile for each gene in a cluster should be correlated with the expression profile of at least one other gene in that cluster. Correlation may be evaluated using a variety of statistical methods. As used herein the term "surrogate" refers to a gene with an expression profile such that it can substitute for a diagnostic gene in a diagnostic assay. Such genes are often members of the same gene cluster as the diagnostic gene. For each member of a diagnostic gene set, a set of potential surrogates can be identified through identification of genes with similar expression patterns as described below.

Many statistical analyses produce a correlation coefficient to describe the relatedness between two gene expression patterns. Patterns may be considered correlated if the correlation coefficient is greater than or equal to 0.8. In preferred embodiments, the correlation coefficient should be greater than 0.85, 0.9 or 0.95. Other statistical methods produce a measure of mutual information to describe the relatedness between two gene expression patterns. Patterns may be considered correlated if the normalized mutual information value is greater than or equal to 0.7. In preferred embodiments, the normalized mutual information value should be greater than 0.8, 0.9 or 0.95. Patterns may also be considered similar if they cluster closely upon hierarchical clustering of gene expression data (Eisen et al. 1998). Similar patterns may be those genes that are among the 1, 2, 5, 10, 20, 50 or 100 nearest neighbors in a hierarchical clustering or have a similarity score (Eisen et al. 1998) of 5 or 0.99. Similar patterns may also be identified as those genes found to be surrogates in a classification tree by CART (Breiman et al. 1994). Often, but not always, members of a gene cluster have similar biological functions in addition to similar gene expression patterns.

Correlated genes, clusters and surrogates are identified for the diagnostic genes of the invention. These surrogates may be used as diagnostic genes in an assay instead of, or in addition to, the diagnostic genes for which they are surrogates.

The invention also provides diagnostic probe sets. It is understood that a probe includes any reagent capable of specifically identifying a nucleotide sequence of the diagnostic nucleotide set, including but not limited to amplified DNA, amplified RNA, cDNA, synthetic oligonucleotide, partial

or full-length nucleic acid sequences. In addition, the probe may identify the protein product of a diagnostic nucleotide sequence, including, for example, antibodies and other affinity reagents.

It is also understood that each probe can correspond to one gene, or multiple probes can correspond to one gene, or both, or one probe can correspond to more than one gene.

Homologs and variants of the disclosed nucleic acid molecules may be used in the present invention. Homologs and variants of these nucleic acid molecules will possess a relatively high degree of sequence identity when aligned using standard methods. The sequences encompassed by the invention have at least 40-50, 50-60, 70-80, 80-85, 85-90, 90-95 or 95-100% sequence identity to the sequences disclosed herein.

It is understood that for expression profiling, variations in the disclosed sequences will still permit detection of gene expression. The degree of sequence identity required to detect gene expression varies depending on the length of the oligomer. For a 60 mer, 6-8 random mutations or 6-8 random deletions in a 60 mer do not affect gene expression detection. Hughes, TR, et al. "Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnology, 19:343-347(2001). As the length of the DNA sequence is increased, the number of mutations or deletions permitted while still allowing gene expression detection is increased.

As will be appreciated by those skilled in the art, the sequences of the present invention may contain sequencing errors. That is, there may be incorrect nucleotides, frameshifts, unknown nucleotides, or other types of sequencing errors in any of the sequences; however, the correct sequences will fall within the homology and stringency definitions herein.

The minimum length of an oligonucleotide probe necessary for specific hybridization in the human genome can be estimated using two approaches. The first method uses a statistical argument that the probe will be unique in the human genome by chance. Briefly, the number of independent perfect matches (Po) expected for an oligonucleotide of length L in a genome of complexity C can be calculated from the equation (Laird CD, Chromosoma 32:378 (1971):

Po=(1/4)\* \* 2C

In the case of mammalian genomes, 2C = ~3.6 X 10°, and an oligonucleotide of 14-15 nucleotides is expected to be represented only once in the genome. However, the distribution of nucleotides in the coding sequence of mammalian genomes is nonrandom (Lathe, R. J. Mol. Biol. 183:1 (1985) and longer oligonucleotides may be preferred in order to in increase the specificity of hybridization. In practical terms, this works out to probes that are 19-40 nucleotides long (Sambrook J et al., infra). The second method for estimating the length of a specific probe is to use a probe long enough to hybridize under the chosen conditions and use a computer to search for that sequence or close matches to the sequence in the human genome and choose a unique match. Probe sequences are chosen based on the desired hybridization properties as described in Chapter 11 of Sambrook et al, infra. The PRIMER3 program is useful for designing these probes (S. Rozen and H. Skaletsky 1996,1997, Primer3 code available at the web site located at genome. wi.mit.edu/genome\_software/other/primer3.html). The sequences of these probes are then compared pair wise against a database of the human genome sequences using a program such as BLAST or MEGABLAST (Madden, T.L et al.(1996) Meth. Enzymol. 266:131-141). Since most of the

human genome is now contained in the database, the number of matches will be determined. Probe sequences are chosen that are unique to the desired target sequence.

In some embodiments, a diagnostic probe set is immobilized on an array. The array is optionally comprises one or more of: a chip array, a plate array, a bead array, a pin array, a membrane array, a solid surface array, a liquid array, an oligonucleotide array, a polynucleotide array or a cDNA array, a membrane or a chip.

In some embodiments, the leukocyte-implicated disease is selected from the diseases listed in Table 1. In other embodiments, In some embodiments, the disease is atherosclerosis or cardiac allograft rejection. In other embodiments, the disease is congestive heart failure, angina, and myocardial infarction.

In some embodiments, diagnostic nucleotides of the invention are used as a diagnostic gene set in combination with genes that are know to be associated with a disease state ("known markers"). The use of the diagnostic nucleotides in combination with the known markers can provide information that is not obtainable through the known markers alone. The known markers include those identified by the prior art listing provided.

### Hematopoeisis

The present invention is also directed to methods of measurement of the rate of hematopoiesis using the diagnostic oligonucleotides of the invention and measurement of the rates of hematopoesis by any technique as a method for the monitoring and diagnosis of transplant rejection. Precursor and immature cells often have cell specific phenotypic markers. These are genes and/or proteins that expressed in a restricted manner in immature or precursor cells. This expression decreases with maturation. Gene expression markers for immature cells of a variety of lineages are given in Table 10 below by way of example.

Table 10:

| Gene              | Cell type                            |  |  |  |
|-------------------|--------------------------------------|--|--|--|
| CD10              | B-lymphoblasts                       |  |  |  |
| RAG1              | B-lymphoblasts                       |  |  |  |
| RAG2              | B-lymphoblasts                       |  |  |  |
| NF-E2             | Platelets/Megakaryocyte/Erythroid    |  |  |  |
| GATA-1            | Platelets/Megakaryocyte              |  |  |  |
| GP IIb            | Platelets                            |  |  |  |
| pf4               | Platelets                            |  |  |  |
| EPO-R             | Erythroblast                         |  |  |  |
| Band 4.1          | Erythrocyte                          |  |  |  |
| ALAS2             | Erythroid specific heme biosynthesis |  |  |  |
| hemoglobin chains | Erythocyte                           |  |  |  |
| 2,3-BPG mutase    | Erythrocyte                          |  |  |  |
| CD16b             | Neutrophil                           |  |  |  |
| LAP               | Neutrophil                           |  |  |  |
| CD16              | NK cells                             |  |  |  |
| CD159a            | NK cells                             |  |  |  |

By measuring the levels of these and other genes in peripheral blood samples, an assessment of the number and proportion of immature or precursor cells can be made. Of particular use is RNA quantification in erythrocytes and platelets. These cells are anucleated in their mature forms. During

development, platelets pinch off of a megakaryocyte and take a compliment of RNA without a nucleus. This RNA is quickly consumed by the platelet. Erythrocytes start as nucleated cells, but the nucleus extrudes toward the end of the maturation process. These cells have RNA which is rapidly consumed within the first 2 days of the cells 120 day life span.

For these anucleated cell types, gene expression markers must be specific only to the cell line (and not the immature form) to be useful as measures of cellular production rates. Genes specific to the lineage vs. other blood cell types will serve as markers of cellular production rates when measured on the RNA level. This is because RNA is specific to immature forms in these cases. For example, hemoglobin is specific to erythrocytes, but hemoglobin RNA is specific to newly produced erythrocytes. Therefore, if the rate of production of erythrocytes increases, so will the level of a lineage specific RNA (e.g., hemoglobin).

Hematopoietic growth factors and cytokines have incomplete lineage specificity. G-CSF is administered to patient with low granulocyte counts and the effect is a stimulation of all lineages (granulocytes, erythrocytes, platelets, etc...). Hemolytic anemia leads to increased production of multiple cell lineages although the only lineage in increased demand is the erythrocyte. Because of this lack of specificity of hematopoietic responses, erythrocyte and platelet production rates may serve as surrogates of increased production of lymphocyte lineages. Using RBCs and platelets production rates as surrogates for lymphocyte lineages may be useful because of the lack of a nucleus in these cells and the case of measuring cellular production rates by simply measuring lineage specific RNA levels.

Hematopoieis rates can be measured using gene expression profiling of peripheral blood. RBC and platelet specific genes provide unique opportunity for this because of their lack of a nucleus and kinetics. New cells = new / much more RNA from these cell types in peripheral blood. Immature tymphocytes may be even more specific for immune activation and rejection. Cell specific markers of lymphocyte precursors were identified (aka lymphoblasts) see below. Granulocyte precursors and markers of megakaryocytes or premature forms of any blood cells may be useful in this regard.

## Applications for measuring the rate of hematopoiesis

Changes in the rate of hematopoiesis have been correlated to a number of disease states and other pathologies. Examples of such conditions are listed in Table 11. One of skill in the art would be aware of other such conditions. In addition, one aspect of the present invention is the identification of the linkage between changes in the rate of hematopoiesis. The methods of the present invention directed to measuring the rates of hematopoiesis can therefore be applied to the diagnosis and monitoring of a number of disease states and other pathologies. In addition, these methods can be beneficial in determining appropriate therapies for patients.

Table: 11

| Disorder / condition               | Cell type   | Cell<br>production | Therapy             |
|------------------------------------|-------------|--------------------|---------------------|
| Anemia – Iron<br>Deficiency        | Erythrocyte | Decreased          | Iron                |
| Anemia – B12, Folate<br>deficiency | Erythrocyte | Decreased          | B12, Folate         |
| Anemia - Aplastic                  | Erythrocyte | Decreased          | Epogen, transfusion |

| Anemia – hemolytic                        | Erythrocyte                  | Increased                              | Immunosuppression,<br>Splenectomy    |
|-------------------------------------------|------------------------------|----------------------------------------|--------------------------------------|
| Anemia - Renal failure                    | Erythrocyte                  | Decreased                              | Erythropoietin                       |
| Anemia – Chronic<br>disease               | Erythrocyte .                | Decreased                              | Treat underlying cause               |
| Polycythemia rubra vera                   | Erythrocyte                  | Increased                              |                                      |
| Idiophic<br>Thrrombocytopenic<br>purpura  | Platelet                     | Increased                              | Immunosuppression,<br>Splenectomy    |
| Thrombotic<br>Thrombocytopenic<br>purpura | Platelet                     | Increased or<br>decreased              | Immunosuppression,<br>plasmapheresis |
| Essential<br>thrombocytosis               | Platelet                     | Increased                              |                                      |
| Leukemia                                  | All lineages,<br>variable    | Increase,<br>decreased or<br>abnomal   | Chemotherapy, BMT                    |
| Cytopenias due to<br>immunosupression     | All lineages,<br>variable    | Decreased                              | Epo, neupogen                        |
| Cytopenias due to<br>Chemotherapy         | All lineages,<br>variable    | Decreased                              | Epo, GCSF, GMCSF                     |
| GVHD                                      | All lineages,<br>variable    | Decreased                              | Immunosuppression                    |
| Myelodysplasia                            | All lineages,<br>variable    | Decreased,<br>increased or<br>abnormal | Chemo?                               |
| Allograft rejection                       | Lymphocytes,<br>All lineages | Increased                              | Immunosuppression                    |
| Autoimmune diseases<br>(many)             | Lymphocytes,<br>All lineages | Increased                              | Immunosuppression                    |

The methods of the present invention are also useful for monitoring treatment regimens of disease or other pathologies which are correlated with changes in the rate of hematopoiesis. Furthermore, the methods may be used to monitor treatment with agents that affect the rate of hematopoiesis. One of skill in the art is aware of many such agents. The following agents are examples of such.

Erythropoietin is a growth factor that is used to treat a variety of anemias that are due to decreased red cell production. Monitoring of red cell production by gene expression or other means may improve dosing and provide a means for earlier assessment of response to therapy for this expensive drug.

Neupogen (G-CSF) is used for the treatment of low neutrophil counts (neutropenia) usually related to immunosuppression or chemotherapy. Monitoring neutrophil production by gene expression testing or another means may improve dosing, patient selection, and shorten duration of therapy.

Prednisone / Immunosuppression — One of most common side effects of immunosuppression is suppression of hematopoiesis. This may occur in any cell lineage. Gene expression monitoring or other measures of hematopoietic rates could be used to monitor regularly for cytopenias in a particular cell line and the information could be used to modify dosing, modify therapy or add a specific hematologic growth factor. Following cell counts themselves is less sensitive and results in the need for prolonged trials of therapies at a given dose before efficacy and toxicity can be assessed.

Monitoring of chemotherapeutic agents -Most chemotherapy agents suppress the bone marrow for some or all lineages. Gene expression testing or other means of assessing hematopoietic rates could be used to monitor regularly for cytopenias in a particular cell line and use information to modify dosing, modify therapy or add a specific hematologic growth factor.

# General Molecular Biology References

In the context of the invention, nucleic acids and/or proteins are manipulated according to well known molecular biology techniques. Detailed protocols for numerous such procedures are described in, e.g., in Ausubel et al. Current Protocols in Molecular Biology (supplemented through 2000) John Wiley & Sons, New York ("Ausubel"); Sambrook et al. Molecular Cloning - A Laboratory Manual (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989 ("Sambrook"), and Berger and Kimmel Guide to Molecular Cloning Techniques, Methods in Enzymology volume 152 Academic Press, Inc., San Diesgo, CA ("Berger").

In addition to the above references, protocols for in vitro amplification techniques, such as the polymerase chain reaction (PCR), the ligase chain reaction (LCR), Q-replicase amplification, and other RNA polymerase mediated techniques (e.g., NASBA), useful e.g., for amplifying cDNA probes of the invention, are found in Mullis et al. (1987) U.S. Patent No. 4,683,202; PCR Protocols A Guide to Methods and Applications (Innis et al. eds) Academic Press Inc. San Diego, CA (1990) ("Innis"); Arnheim and Levinson (1990) CEEN 36; The Journal Of NHR Research (1991) 3:81; Kwoh et al. (1989) Proc Natl Acad Sci USA 86, 1173; Guatelli et al. (1990) Proc Natl Acad Sci USA 87:1874; Lomell et al. (1989) 1Clin Chem 35:1826; Landegren et al. (1988) Science 241:1077; Van Brunt (1990) Biotechnology 8:291; Wu and Wallace (1989) Gene 4: 560; Barringer et al. (1990) Gene 89:117, and Sooknanan and Malek (1995) Biotechnology 13:63. Additional methods, useful for cloning nucleic acids in the context of the present invention, include Wallace et al. U.S. Pat. No. 5,426,039. Improved methods of amplifying large nucleic acids by PCR are summarized in Cheng et al. (1994) Nature 369:684 and the references therein.

Certain polynucleotides of the invention, e.g., oligonucleotides can be synthesized utilizing various solid-phase strategies involving mononucleotide- and/or trinucleotide-based phosphoramidite coupling chemistry. For example, nucleic acid sequences can be synthesized by the sequential addition of activated monomers and/or trimers to an elongating polynucleotide chain. See e.g., Caruthers, M.H. et al. (1992) Meth Enzymoj 211:3.

In lieu of synthesizing the desired sequences, essentially any nucleic acid can be custom ordered from any of a variety of commercial sources, such as The Midland Certified Reagent Company, The Great American Gene Company ExpressGen, Inc., Operon Technologies, Inc. and many others.

Similarly, commercial sources for nucleic acid and protein microarrays are available, and include, e.g., Agilent Technologies, Palo Alto, CA Affymetrix, Santa Clara, CA; and others.

One area of relevance to the present invention is hybridization of oligonucleotides. Those of skill in the art differentiate hybridization conditions based upon the stringency of hybridization. For example, highly stringent conditions could include hybridization to filter-bound DNA in 0.5 M NaHPO<sub>4</sub>, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C, and washing in 0.1XSSC/0.1%

SDS at 68° C. (Ausubel F. M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at p. 2.10.3). Moderate stringency conditions could include, e.g., washing in 0.2XSSC/0.1% SDS at 42°C. (Ausubel et al., 1989, supra).

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the DNA sequences of the present invention. Such hybridization conditions may be highly stringent or less highly stringent, as described above. In instances wherein the nucleic acid molecules are deoxyoligonucleotides ("oligos"), highly stringent conditions may refer, e.g., to washing in 6xSSC/0.05% sodium pyrophosphate at 37°C. (for 14-base oligos), 48°C. (for 17-base oligos), 55°C. (for 20-base oligos), and 60°C. (for 23-base oligos). These nucleic acid molecules may act as target nucleotide sequence antisense molecules, useful, for example, in target nucleotide sequence regulation and/or as antisense primers in amplification reactions of target nucleotide sequence nucleic acid sequences. Further, such sequences may be used as part of ribozyme and/or triple helix sequences, also useful for target nucleotide sequence regulation. Still further, such molecules may be used as components of diagnostic methods whereby the presence of a disease-causing allele, may be detected.

# Identification of diagnostic nucleotide sets

## Candidate library

Libraries of candidates that are differentially expressed in leukocytes are substrates for the identification and evaluation of diagnostic oligonucleotide sets and disease specific target nucleotide sequences.

The term leukocyte is used generically to refer to any nucleated blood cell that is not a nucleated erythrocyte. More specifically, leukocytes can be subdivided into two broad classes. The first class includes granulocytes, including, most prevalently, neutrophils, as well as eosinophils and basophils at low frequency. The second class, the non-granular or mononuclear leukocytes, includes monocytes and lymphocytes (e.g., T cells and B cells). There is an extensive literature in the art implicating leukocytes, e.g., neutrophils, monocytes and lymphocytes in a wide variety of disease processes, including inflammatory and rheumatic diseases, neurodegenerative diseases (such as Alzheimer's dementia), cardiovascular disease, endocrine diseases, transplant rejection, malignancy and infectious diseases, and other diseases listed in Table 1. Mononuclear cells are involved in the chronic immune response, while granulocytes, which make up approximately 60% of the leukocytes, have a non-specific and stereotyped response to acute inflammatory stimuli and often have a life span of only 24 hours.

In addition to their widespread involvement and/or implication in numerous disease related processes, leukocytes are particularly attractive substrates for clinical and experimental evaluation for a variety of reasons. Most importantly, they are readily accessible at low cost from essentially every potential subject. Collection is minimally invasive and associated with little pain, disability or recovery time. Collection can be performed by minimally trained personnel (e.g., phlebotomists, medical technicians, etc.) in a variety of clinical and non-clinical settings without significant

technological expenditure. Additionally, leukocytes are renewable, and thus available at multiple time points for a single subject.

Assembly of an initial candidate library

The initial candidate library was assembled from a combination of "mining" publication and sequence databases and construction of a differential expression library. Candidate oligonucleotide sequences in the library may be represented by a full-length or partial nucleic acid sequence, deoxyribonucleic acid (DNA) sequence, cDNA sequence, RNA sequence, synthetic oligonucleotides, etc. The nucleic acid esquence can be at least 19 nucleotides in length, at least 25 nucleotides, at least 40 nucleotides, at least 100 nucleotides, or larger. Alternatively, the protein product of a candidate nucleotide sequence may be represented in a candidate library using standard methods, as further described below. In selecting and validatating diagnostic oligonucleotides, an initial library of 8,031 candidate oligonucleotide sequences using nucleic acid sequences of 50 nucleotides in length was constructed as described below.

### Candidate nucleotide library of the invention

We identified members of an initial candidate nucleotide library that are differentially expressed in activated leukocytes and resting leukocytes. From that initial candidate nucleotide library, a pool of candidates was selected as listed in Table 2, Table 8, and the seuqnce listing. Accordingly, the invention provides the candidate leukocyte nucleotide library comprising the nucleotide sequences listed in Table 2, Table 8, and in the sequence listing. In another embodiment, the invention provides an candidate library comprising at least one nucleotide sequence listed in Tables 2 and 8 and the sequence listing. In another embodiment, the invention provides an candidate library comprising at least two nucleotide sequences listed in Tables 2 and 8 and the sequence listing. In another embodiment, the at least two nucleotide sequence are at least 19 nucleotides in length, at least 35 nucleotides, at least 40 nucleotides or at least 100 nucleotides. In some embodiments, the nucleotide sequences comprises deoxyribonucleic acid (DNA) sequence, ribonucleic acid (RNA) sequence, synthetic oligonucleotide sequence, or genomic DNA sequence. It is understood that the nucleotide sequences may each correspond to one gene, or that several nucleotide sequences may correspond to one gene, or both.

The invention also provides probes to the candidate nucleotide library. In one embodiment of the invention, the probes comprise at least two nucleotide sequences listed in Table 2, Table 8, or the sequence listing which are differentially expressed in leukocytes in an individual with a least one disease criterion for at least one leukocyte-related disease and in leukocytes in an individual without the at least one disease criterion, wherein expression of the two or more nucleotide sequences is correlated with at least one disease criterion. It is understood that a probe may detect either the RNA expression or protein product expression of the candidate nucleotide library. Alternatively, or in addition, a probe can detect a genotype associated with a candidate nucleotide sequence, as further described below. In another embodiment, the probes for the candidaten ucleotide library are immobilized on an array.

The candidate nucleotide library of the invention is useful in identifying diagnostic nucleotide sets of the invention and is itself a diagnostic nucleotide set of the invention, as described below. The candidate nucleotide sequences may be further characterized, and may be identified as a disease target

nucleotide sequence and/or a novel nucleotide sequence, as described below. The candidate nucleotide sequences may also be suitable for use as imaging reagents, as described below.

## Detection of non-leukocyte expressed genes

When measuring gene expression levels in a blood sample, RNAs may be measured that are not derived from leukocytes. Examples are viral genes, free RNAs that have been released from damaged non-leukocyte cell types or RNA from circulating non-leukocyte cell types. For example, in the process of acute allograft rejection, tissue damage may result in release of allograft cells or RNAs derived from allograft cells into the circulation. In the case of cardiac allograft, such transcripts may be specific to muscle (myoglobin) or to cardiac muscle (Troponin I, Toponin T, CK-MB). Presence of cardiac specific mRNAs in peripheral blood may indicate ongoing or recent cardiac cellular damage (resulting from acute rejection). Therefore, such genes may be excellent diagnostic markers for allograft rejection.

### Generation of Expression Patterns

#### RNA, DNA or protein sample procurement

Following identification or assembly of a library of differentially expressed candidate nucleotide sequences, leukocyte expression profiles corresponding to multiple members of the candidate library are obtained. Leukocyte samples from one or more subjects are obtained by standard methods. Most typically, these methods involve trans-cutaneous venous sampling of peripheral blood. While sampling of circulating leukocytes from whole blood from the peripheral vasculature is generally the simplest, least invasive, and lowest cost alternative, it will be appreciated that numerous alternative sampling procedures exist, and are favorably employed in some circumstances. No pertinent distinction exists, in fact, between leukocytes sampled from the peripheral vasculature, and those obtained, e.g., from a central line, from a central artery, or indeed from a cardiac catheter, or during a surgical procedure which accesses the central vasculature. In addition, other body fluids and tissues that are, at least in part, composed of leukocytes are also desirable leukocyte samples. For example, fluid samples obtained from the lung during bronchoscopy may be rich in leukocytes, and amenable to expression profiling in the context of the invention, e.g., for the diagnosis, prognosis, or monitoring of lung transplant rejection, inflammatory lung diseases or infectious lung disease. Fluid samples from other tissues, e.g., obtained by endoscopy of the colon, sinuses, esophagus, stomach, small bowel, pancreatic duct, biliary tree, bladder, ureter, vagina, cervix or uterus, etc., are also suitable. Samples may also be obtained other sources containing leukocytes, e.g., from urine, bile, cerebrospinal fluid, feces, gastric or intestinal secretions, semen, or solid organ or joint biopsies.

Most frequently, mixed populations of leukocytes, such as are found in whole blood are utilized in the methods of the present invention. A crude separation, e.g., of mixed leukocytes from red blood cells, and/or concentration, e.g., over a sucrose, percoll or ficoll gradient, or by other methods known in the art, can be employed to facilitate the recovery of RNA or protein expression products at sufficient concentrations, and to reduce non-specific background. In some instances, it can be desirable to purify sub-populations of leukocytes, and methods for doing so, such as density or affinity gradients, flow cytometry, fluorescence Activated Cell Sorting (FACS), immuno-magnetic separation, "panning," and the like, are described in the available literature and below.

Obtaining DNA, RNA and protein samples for expression profiling

Expression patterns can be evaluated at the level of DNA, or RNA or protein products. For example, a variety of techniques are available for the isolation of RNA from whole blood. Any technique that allows isolation of mRNA from cells (in the presence or absence of rRNA and tRNA) can be utilized. In brief, one method that allows reliable isolation of total RNA suitable for subsequent gene expression analysis, is described as follows. Pertpheral blood (either venous or arterial) is drawn from a subject, into one or more sterile, endotoxin free, tubes containing an anticoagulant (e.g., EDTA, citrate, heparin, etc.). Typically, the sample is divided into at least two portions. One portion, e.g., of S-8 ml of whole blood is frozen and stored for future analysis, e.g., of DNA or protein. A second portion, e.g., of approximately 8 ml whole blood is processed for isolation of total RNA by any of a variety of techniques as described in, e.g., Sambook, Ausubel, below, as well as U.S. Patent Numbers: 5,728,822 and 4,843,155.

Typically, a subject sample of mononuclear leukocytes obtained from about 8 ml of whole blood, a quantity readily available from an adult human subject under most circumstances, yields 5-20 µg of total RNA. This amount is ample, e.g., for labeling and hybridization to at least two probe arrays. Labeled probes for analysis of expression patterns of nucleotides of the candidate libraries are prepared from the subject's sample of RNA using standard methods. In many cases, cDNA is synthesized from total RNA using a polyT primer and labeled, e.g., radioactive or fluorescent, nucleotides. The resulting labeled cDNA is then hybridized to probes corresponding to members of the candidate nucleotide library, and expression data is obtained for each nucleotide sequence in the library, RNA isolated from subject samples (e.g., peripheral blood leukocytes, or leukocytes obtained from other biological fluids and samples) is next used for analysis of expression patterns of nucleotides of the candidate libraries.

In some cases, however, the amount of RNA that is extracted from the leukocyte sample is limiting, and amplification of the RNA is desirable. Amplification may be accomplished by increasing the efficiency of probe labeling, or by amplifying the RNA sample prior to labeling. It is appreciated that care must be taken to select an amplification procedure that does not introduce any bias (with respect to gene expression levels) during the amplification process.

Several methods are available that increase the signal from limiting amounts of RNA, e.g. use of the Clontech (Class Fluorescent Labeling Kit) or Stratagene (Fairplay Microarray Labeling Kit), or the Micromax kit (New England Nuclear, Inc.). Alternatively, cDNA is synthesized from RNA using a T7- polyT primer, in the absence of label, and DNA dendrimers from Genisphere (3DNA Submicro) are hybridized to the poly T sequence on the primer, or to a different "capture sequence" which is complementary to a fluorescently labeled sequence. Each 3DNA molecule has 250 fluorescent molecules and therefore can strongly label each cDNA.

Alternatively, the RNA sample is amplified prior to labeling. For example, linear amplification may be performed, as described in U.S. Patent No. 6,132,997. A T7-polyT primer is used to generate the cDNA copy of the RNA. A second DNA strand is then made to complete the substrate for amplification. The T7 promoter incorporated into the primer is used by a T7 polymerase to produce numerous antisense copies of the original RNA. Fluorescent dye labeled nucleotides are

directly incorporated into the RNA. Alternatively, amino allyl labeled nucleotides are incorporated into the RNA, and then fluorescent dyes are chemically coupled to the amino allyl groups, as described in Hughes. Other exemplary methods for amplification are described below.

It is appreciated that the RNA isolated must contain RNA derived from leukocytes, but may also contain RNA from other cell types to a variable degree. Additionally, the isolated RNA may come from subsets of leukocytes, e.g. monocytes and/or T-lymphocytes, as described above. Such consideration of cell type used for the derivation of RNA depend on the method of expression profiling used. Subsets of leukocytes can be obtained by fluorescence activated cell sorting (FACS), microfluidies cell septration systems or a variety of other methods. Cell sorting may be necessary for the discovery of diagnostic gene sets, for the implementation of gene sets as products or both. Cell sorting can be achieved with a variety of technologies (See Galbraith et al. 1999, Cantor et al. 1975, see also the technology of Guava Technologies, Hayward, CA).

DNA samples may be obtained for analysis of the presence of DNA mutations, single nucleotide polymorphisms (SNPs), or other polymorphisms. DNA is isolated using standard techniques, e.g. Maniatus, supra.

Expression of products of candidate nucleotides may also be assessed using proteomics. Protein(s) are detected in samples of patient serum or from leukocyte cellular protein. Serum is prepared by centrifugation of whole blood, using standard methods. Proteins present in the serum may have been produced from any of a variety of leukocytes and non-leukocyte cells, and include secreted proteins from leukocytes. Alternatively, leukocytes or a desired sub-population of leukocytes are prepared as described above. Cellular protein is prepared from leukocyte samples using methods well known in the art, e.g., Trizol (Invitrogen Life Technologies, cat # 15596108; Chomezynski, P. and Sacchi, N. (1987) Anal. Biochem. 162, 156; Simms, D., Cizdziel, P.E., and Chomezynski, P. (1993) Focus® 15, 99; Chomezynski, P., Bowers-Finn, R., and Sabatini, L. (1987) J. of NIH Res. 6, 83; Chomezynski, P. (1993) Bio/Techniques 15, 532; Bracete, A.M., Fox, D.K., and Simms, D. (1998) Focus 20, 82; Sewall, A. and McRae, S. (1998) Focus 20, 36; Anal Biochem 1984 Apr;138(1):141-3, A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids; Wessel D, Flugge UI. (1984) Anal Biochem. 1984 Apr;138(1):41-143.

The assay itself may be a cell sorting assay in which cells are sorted and/or counted based on cell surface expression of a protein marker. (See Cantor et al. 1975, Galbraith et al. 1999)

# Obtaining expression patterns

Expression patterns, or profiles, of a plurality of nucleotides corresponding to members of the candidate library are then evaluated in one or more samples of leukocytes. Typically, the leukocytes are derived from patient peripheral blood samples, although, as indicated above, many other sample sources are also suitable. These expression patterns constitute a set of relative or absolute expression values for a some number of RNAs or protein products corresponding to the plurality of nucleotide sequences evaluated, which is referred to herein as the subject's "expression profile" for those nucleotide sequences. While expression patterns for as few as one independent member of the candidate library can be obtained, it is generally preferable to obtain expression patterns corresponding to a larger number of nucleotide sequences, e.g., about 2, about 20, about 20, about 50, abo

100, about 200, about 500, or about 1000, or more. The expression pattern for each differentially expressed component member of the library provides a finite specificity and sensitivity with respect to predictive value, e.g., for diagnosis, prognosis, monitoring, and the like.

### Clinical Studies, Data and Patient Groups

For the purpose of discussion, the term subject, or subject sample of leukocytes, refers to an individual regardless of health and/or disease status. A subject can be a patient, a study participant, a control subject, a screening subject, or any other class of individual from whom a leukocyte sample is obtained and assessed in the context of the invention. Accordingly, a subject can be diagnosed with a disease, can present with one or more symptom of a disease, or a predisposing factor, such as a family (genetic) or medical history (medical) factor, for a disease, or the like. Alternatively, a subject can be healthy with respect to any of the aforementioned factors or criteria. It will be appreciated that the term "healthy" as used herein, is relative to a specified disease, or disease factor, or disease criterion, as the term "healthy" cannot be defined to correspond to any absolute evaluation or status. Thus, an individual defined as healthy with reference to any specified disease or disease criterion, can in fact be diagnosed with any other one or more disease, or exhibit any other one or more disease criterion.

Furthermore, while the discussion of the invention focuses, and is exemplified using human sequences and samples, the invention is equally applicable, through construction or selection of appropriate candidate libraries, to non-human animals, such as laboratory animals, e.g., mice, rats, guinea pigs, rabbits; domesticated livestock, e.g., cows, horses, goats, sheep, chicken, etc.; and companion animals, e.g., dogs, cats, etc.

## Methods for obtaining expression data

Numerous methods for obtaining expression data are known, and any one or more of these techniques, singly or in combination, are suitable for determining expression profiles in the context of the present invention. For example, expression patterns can be evaluated by northern analysis, PCR, RT-PCR, Taq Man analysis, FRET detection, monitoring one or more molecular beacon, hybridization to an oligonucleotide array, hybridization to a cDNA array, hybridization to a polynucleotide array, hybridization to a liquid microarray, hybridization to a microelectric array, molecular beacons, cDNA sequencing, clone hybridization, cDNA fragment fingerprinting, serial analysis of gene expression (SAGE), subtractive hybridization, differential display and/or differential screening (see, e.g., Lockhart and Winzeler (2000) Nature 405:827-836, and references cited therein).

For example, specific PCR primers are designed to a member(s) of an candidate nucleotide library. cDNA is prepared from subject sample RNA by reverse transcription from a poly-dT oligonucleotide primer, and subjected to PCR. Double stranded cDNA may be prepared using primers suitable for reverse transcription of the PCR product, followed by amplification of the cDNA using in vitro transcription. The product of in vitro transcription is a sense-RNA corresponding to the original member(s) of the candidate library. PCR product may be also be evaluated in a number of ways known in the art, including real-time assessment using detection of labeled primers, e.g. TaqMan or molecular beacon probes. Technology platforms suitable for analysis of PCR products include the ABI 7700, 5700, or 7000 Sequence Detection Systems (Applied Biosystems, Foster City, CA), the MJ Research Opticon (MJ Research, Waltham, MA), the Roche Light Cycler (Roche Diagnositics, Indianapolis, N).

the Stratagene MX4000 (Stratagene, La Jolla, CA), and the Bio-Rad iCycler (Bio-Rad Laboratories, Hercules, CA). Alternatively, molecular beacons are used to detect presence of a nucleic acid sequence in an unamplificat RNA or cDNA sample, or following amplification of the sequence using any method, e.g. IVT (In Vitro transcription) or NASBA (nucleic acid sequence based amplification). Molecular beacons are designed with sequences complementary to member(s) of an candidate nucleotide library, and are linked to fluorescent labels. Each probe has a different fluorescent label with non-overlapping emission wavelengths. For example, expression of ten genes may be assessed using ten different sequence-specific molecular beacons.

Alternatively, or in addition, molecular beacons are used to assess expression of multiple nucleotide sequences at once. Molecular beacons with sequence complimentary to the members of a diagnostic nucleotide set are designed and linked to fluorescent labels. Each fluorescent label used must have a non-overlapping emission wavelength. For example, 10 nucleotide sequences can be assessed by hybridizing 10 sequence specific molecular beacons (each labeled with a different fluorescent molecule) to an amplified or un-amplified RNA or cDNA sample. Such an assay bypasses the need for sample labeling procedures.

Alternatively, or in addition bead arrays can be used to assess expression of multiple sequences at once. See, e.g., LabMAP 100, Luminex Corp, Austin, Texas). Alternatively, or in addition electric arrays are used to assess expression of multiple sequences, as exemplified by the e-Sensor technology of Motorola (Chicago, Ill.) or Nanochip technology of Nanogen (San Diego, CA.)

Of course, the particular method elected will be dependent on such factors as quantity of RNA recovered, practitioner preference, available reagents and equipment, detectors, and the like. Typically, however, the elected method(s) will be appropriate for processing the number of samples and probes of interest. Methods for high-throughput expression analysis are discussed below.

Alternatively, expression at the level of protein products of gene expression is performed. For example, protein expression, in a sample of leukocytes, can be evaluated by one or more method selected from among: western analysis, two-dimensional gel analysis, chromatographic separation, mass spectrometric detection, protein-fusion reporter constructs, colorimetric assays, binding to a protein array and characterization of polysomal mRNA. One particularly favorable approach involves binding of labeled protein expression products to an array of antibodies specific for members of the candidate library. Methods for producing and evaluating antibodies are widespread in the art, see, e.g., Coligan, supra; and Harlow and Lane (1989) Antibodies: A Laboratory Manual, Cold Spring Harbor Press, NY ("Harlow and Lane"). Additional details regarding a variety of immunological and immunoassay procedures adaptable to the present invention by selection of antibody reagents specific for the products of candidate nucleotide sequences can be found in, e.g., Stites and Terr (eds.)(1991) Basic and Clinical Immunology, 7th ed., and Paul, supra. Another approach uses systems for performing desorption spectrometry. Commercially available systems, e.g., from Ciphergen Biosystems, Inc. (Fremont, CA) are particularly well suited to quantitative analysis of protein expression. Indeed, Protein Chip® arrays (see, e.g., the web site ciphergen.com) used in desorption spectrometry approaches provide arrays for detection of protein expression. Alternatively, affinity reagents, e.g., antibodies, small molecules, etc.) are developed that recognize epitopes of the protein

product. Affinity assays are used in protein array assays, e.g. to detect the presence or absence of particular proteins. Alternatively, affinity reagents are used to detect expression using the methods described above. In the case of a protein that is expressed on the cell surface of leukocytes, labeled affinity reagents are bound to populations of leukocytes, and leukocytes expressing the protein are identified and counted using fluorescent activated cell sorting (FACS).

It is appreciated that the methods of expression evaluation discussed herein, although discussed in the context of discovery of diagnostic nucleotide sets, are equally applicable for expression evaluation when using diagnostic nucleotide sets for, e.g. diagnosis of diseases, as further discussed below.

## High Throughput Expression Assays

A number of suitable high throughput formats exist for evaluating gene expression. Typically, the term high throughput refers to a format that performs at least about 100 assays, or at least about 100 assays, or at least about 1000 assays, or at least about 1000 assays, or more per day. When enumerating assays, either the number of samples or the number of candidate nucleotide sequences evaluated can be considered. For example, a northern analysis of, e.g., about 100 samples performed in a gridded array, e.g., a dot blot, using a single probe corresponding to an candidate nucleotide sequence can be considered a high throughput assay. More typically, however, such an assay is performed as a series of duplicate blots, each evaluated with a distinct probe corresponding to a different member of the candidate library. Alternatively, methods that simultaneously evaluate expression of about 100 or more candidate nucleotide sequences in one or more samples, or in multiple samples, are considered high throughput.

Numerous technological platforms for performing high throughput expression analysis are known. Generally, such methods involve a logical or physical array of either the subject samples, or the candidate library, or both. Common array formats include both liquid and solid phase arrays. For example, assays employing liquid phase arrays, e.g., for hybridization of nucleic acids, binding of antibodies or other receptors to ligand, etc., can be performed in multiwell, or microtiter, plates. Microtiter plates with 96, 384 or 1536 wells are widely available, and even higher numbers of wells, e.g., 3456 and 9600 can be used. In general, the choice of microtiter plates is determined by the methods and equipment, e.g., robotic handling and loading systems, used for sample preparation and analysis. Exemplary systems include, e.g., the ORCA<sup>TM</sup> system from Beckman-Coulter, Inc. (Fullerton, CA) and the Zymate systems from Zymark Corporation (Hopkinton, MA).

Alternatively, a variety of solid phase arrays can favorably be employed in to determine expression patterns in the context of the invention. Exemplary formats include membrane or filter arrays (e.g., introcellulose, nylon), pin arrays, and bead arrays (e.g., in a liquid "slurry"). Typically, probes corresponding to nucleic acid or protein reagents that specifically interact with (e.g., hybridize to or bind to) an expression product corresponding to a member of the candidate library are immobilized, for example by direct or indirect cross-linking, to the solid support. Essentially any solid support capable of withstanding the reagents and conditions necessary for performing the particular expression assay can be utilized. For example, functionalized glass, silicon, silicon dioxide, modified silicon, any of a variety of polymers, such as (poly)letrafluoroethylene, (poly)vinylidenedifluoride,

polystyrene, polycarbonate, or combinations thereof can all serve as the substrate for a solid phase array.

In a preferred embodiment, the array is a "chip" composed, e.g., of one of the above specified materials. Polynucleotide probes, e.g., RNA or DNA, such as CDNA, synthetic oligonucleotides, and the like, or binding proteins such as antibodies, that specifically interact with expression products of individual components of the candidate library are affixed to the chip in a logically ordered manner, i.e., in an array. In addition, any molecule with a specific affinity for either the sense or anti-sense sequence of the marker nucleotide sequence (depending on the design of the sample labeling), can be fixed to the array surface without loss of specific affinity for the marker and can be obtained and produced for array production, for example, proteins that specifically recognize the specific nucleic acid sequence of the marker, ribozymes, peptide nucleic acids (PNA), or other chemicals or molecules with specific affinity.

Detailed discussion of methods for linking nucleic acids and proteins to a chip substrate, are found in, e.g., US Patent No. 5,143,854 "LARGE SCALE PHOTOLITHOGRAPHIC SOLID PHASE SYNTHESIS OF POLYPEPTIDES AND RECEPTOR BINDING SCREENING THEREOF" to Pirrung et al., issued, September 1, 1992; US Patent No. 5,837,832 "ARRAYS OF NUCLEIC ACID PROBES ON BIOLOGICAL CHIPS" to Chee et al., issued November 17, 1998; US Patent No. 6.087.112 "ARRAYS WITH MODIFIED OLIGONUCLEOTIDE AND POLYNUCLEOTIDE COMPOSITIONS" to Dale, issued July 11, 2000; US Patent No. 5,215,882 "METHOD OF IMMOBILIZING NUCLEIC ACID ON A SOLID SUBSTRATE FOR USE IN NUCLEIC ACID HYBRIDIZATION ASSAYS" to Bahl et al., issued June 1, 1993; US Patent No. 5,707,807 "MOLECULAR INDEXING FOR EXPRESSED GENE ANALYSIS" to Kato, issued January 13. 1998; US Patent No. 5,807,522 "METHODS FOR FABRICATING MICROARRAYS OF BIOLOGICAL SAMPLES" to Brown et al., issued September 15, 1998; US Patent No. 5,958,342 "JET DROPLET DEVICE" to Gamble et al., issued Sept. 28, 1999; US Patent 5,994,076 "METHODS OF ASSAYING DIFFERENTIAL EXPRESSION" to Chenchik et al., issued Nov. 30, 1999; US Patent No. 6,004,755 "QUANTITATIVE MICROARRAY HYBRIDIZATION ASSAYS" to Wang, issued Dec. 21, 1999; US Patent No. 6,048,695 "CHEMICALLY MODIFIED NUCLEIC ACIDS AND METHOD FOR COUPLING NUCLEIC ACIDS TO SOLID SUPPORT" to Bradley et al., issued April 11, 2000; US Patent No. 6,060,240 "METHODS FOR MEASURING RELATIVE AMOUNTS OF NUCLEIC ACIDS IN A COMPLEX MIXTURE AND RETRIEVAL OF SPECIFIC SEQUENCES THEREFROM" to Kamb et al., issued May 9, 2000; US Patent No. 6,090,556 "METHOD FOR QUANTITATIVELY DETERMINING THE EXPRESSION OF A GENE" to Kato, issued July 18, 2000; and US Patent 6,040,138 "EXPRESSION MONITORING BY HYBRIDIZATION TO HIGH DENSITY OLIGONUCLEOTIDE ARRAYS" to Lockhart et al., issued March 21, 2000 each of which are hereby incorporated by reference in their entirety.

For example, cDNA inserts corresponding to candidate nucleotide sequences, in a standard TA cloning vector are amplified by a polymerase chain reaction for approximately 30-40 cycles. The amplified PCR products are then arrayed onto a glass support by any of a variety of well known techniques, e.g., the VSLIPS<sup>TM</sup> technology described in US Patent No. 5,143,854. RNA, or cDNA

corresponding to RNA, isolated from a subject sample of leukocytes is labeled, e.g., with a fluorescent tag, and a solution containing the RNA (or cDNA) is incubated under conditions favorable for hybridization, with the "probe" chip. Following incubation, and washing to eliminate non-specific hybridization, the labeled nucleic acid bound to the chip is detected qualitatively or quantitatively, and the resulting expression profile for the corresponding candidate nucleotide sequences is recorded. It is appreciated that the probe used for diagnostic purposes may be identical to the probe used during diagnostic nucleotide sequence discovery and validation. Alternatively, the probe sequence may be different than the sequence used in diagnostic nucleotide sequence discovery and validation. Multiple cDNAs from a nucleotide sequence that are non-overlapping or partially overlapping may also be used.

In another approach, oligonucleotides corresponding to members of an candidate nucleotide library are synthesized and spotted onto an array. Alternatively, oligonucleotides are synthesized onto the array using methods known in the art, e.g. Hughes, et al. supra. The oligonucleotide is designed to be complementary to any portion of the candidate nucleotide sequence. In addition, in the context of expression analysis for, e.g. diagnostic use of diagnostic nucleotide sets, an oligonucleotide can be designed to exhibit particular hybridization characteristics, or to exhibit a particular specificity and/or sensitivity, as further described below.

Hybridization signal may be amplified using methods known in the art, and as described herein, for example use of the Clontech kit (Glass Fluorescent Labeling Kit), Stratagene kit (Fairplay Microarray Labeling Kit), the Microarray kit (New England Nuclear, Inc.), the Genisphere kit (3DNA Submicro), linear amplification, e.g. as described in U.S. Patent No. 6,132,997 or described in Hughes, TR, et al., Nature Biotechnology, 19:343-347 (2001) and/or Westin et al. Nat Biotech. 18:199-204.

Alternatively, fluorescently labeled cDNA are hybridized directly to the microarray using methods known in the art. For example, labeled cDNA are generated by reverse transcription using Cy3- and Cy5-conjugated deoxynucleotides, and the reaction products purified using standard methods. It is appreciated that the methods for signal amplification of expression data useful for identifying diagnostic nucleotide sets are also useful for amplification of expression data for diagnostic purposes.

Microarray expression may be detected by scanning the microarray with a variety of laser or CCD-based scanners, and extracting features with numerous software packages, for example, Imagene (Biodiscovery), Feature Extraction (Agilent), Scanalyze (Eisen, M. 1999. SCANALYZE User Manual; Stanford Univ., Stanford, CA. Ver 2.32.), GenePix (Axon Instruments).

In another approach, hybridization to microelectric arrays is performed, e.g. as described in Umek et al (2001) IMOl Diagn. 3:74-84. An affinity probe, e.g. DNA, is deposited on a metal surface. The metal surface underlying each probe is connected to a metal wire and electrical signal detection system. Unlabelled RNA or cDNA is hybridized to the array, or alternatively, RNA or cDNA sample is amplified before hybridization, e.g. by PCR. Specific hybridization of sample RNA or cDNA results in generation of an electrical signal, which is transmitted to a detector. See Westin (2000) Nat Biotech. 18:199-204 (describing anchored multiplex amplification of a microelectronic chip array); Edman (1997) NAR 25:4907-14; Vignali (2000) I Immunol Methods 243:243-55.

In another approach, a microfluidics chip is used for RNA sample preparation and analysis.

This approach increases efficiency because sample preparation and analysis are streamlined. Briefly,

microfluidics may be used to sort specific leukocyte sub-populations prior to RNA preparation and analysis. Microfluidics chips are also useful for, e.g., RNA preparation, and reactions involving RNA (reverse transcription, RT-PCR). Briefly, a small volume of whole, anti-coagulated blood is loaded onto a microfluidics chip, for example chips available from Caliper (Mountain View, CA) or Nanogen (San Diego, CA.) A microfluidics chip may contain channels and reservoirs in which cells are moved and reactions are performed. Mechanical, electrical, magnetic, gravitational, centrifugal or other forces are used to move the cells and to expose them to reagents. For example, cells of whole blood are moved into a chamber containing hypotonic saline, which results in selective lysis of red blood cells after a 20-minute incubation. Next, the remaining cells (leukocytes) are moved into a wash chamber and finally, moved into a chamber containing a lysis buffer such as guanidine isothyocyanate. The leukocyte cell lysate is further processed for RNA isolation in the chip, or is then removed for further processing, for example, RNA extraction by standard methods. Alternatively, the microfluidics chip is a circular disk containing ficoll or another density reagent. The blood sample is injected into the center of the disc, the disc is rotated at a speed that generates a centrifugal force appropriate for density gradient separation of mononuclear cells, and the separated mononuclear cells are then harvested for further analysis or processing.

It is understood that the methods of expression evaluation, above, although discussed in the context of discovery of diagnostic nucleotide sets, are also applicable for expression evaluation when using diagnostic nucleotide sets for, e.g. diagnosis of diseases, as further discussed below.

## Evaluation of expression patterns

Expression patterns can be evaluated by qualitative and/or quantitative measures. Certain of the above described techniques for evaluating gene expression (as RNA or protein products) yield data that are predominantly qualitative in nature. That is, the methods detect differences in expression that classify expression into distinct modes without providing significant information regarding quantitative aspects of expression. For example, a technique can be described as a qualitative technique if it detects the presence or absence of expression of an candidate nucleotide sequence, i.e., an on/off pattern of expression. Alternatively, a qualitative technique measures the presence (and/or absence) of different alleles, or variants, of a gene product.

In contrast, some methods provide data that characterizes expression in a quantitative manner. That is, the methods relate expression on a numerical scale, e.g., a scale of 0-5, a scale of 1-10, a scale of +-+++, from grade 1 to grade 5, a grade from a to z, or the like. It will be understood that the numerical, and symbolic examples provided are arbitrary, and that any graduated scale (or any symbolic representation of a graduated scale) can be employed in the context of the present invention to describe quantitative differences in nucleotide sequence expression. Typically, such methods yield information corresponding to a relative increase or decrease in expression.

Any method that yields either quantitative or qualitative expression data is suitable for evaluating expression of candidate micleotide sequence in a subject sample of leukocytes. In some cases, e.g., when multiple methods are employed to determine expression patterns for a plurality of candidate nucleotide sequences, the recovered data, e.g., the expression profile, for the nucleotide sequences is a combination of quantitative and qualitative data.

In some applications, expression of the plurality of candidate nucleotide sequences is evaluated sequentially. This is typically the case for methods that can be characterized as low-to moderate-throughput. In contrast, as the throughput of the elected assay increases, expression for the plurality of candidate nucleotide sequences in a sample or multiple samples of leukocytes, is assayed simultaneously. Again, the methods (and throughput) are largely determined by the individual practitioner, although, typically, it is preferable to employ methods that permit rapid, e.g. automated or partially automated, preparation and detection, on a scale that is time-efficient and cost-effective.

It is understood that the preceding discussion, while directed at the assessment of expression of the members of candidate libraries, is also applies to the assessment of the expression of members of diagnostic nucleotide sets, as further discussed below.

#### Genotyping

In addition to, or in conjunction with the correlation of expression profiles and clinical data, it is often desirable to correlate expression patterns with the subject's genotype at one or more genetic loci. The selected loci can be, for example, chromosomal loci corresponding to one or more member of the candidate library, polymorphic alleles for marker loci, or alternative disease related loci (not contributing to the candidate library) known to be, or putatively associated with, a disease (or disease criterion). Indeed, it will be appreciated, that where a (polymorphic) allele at a locus is linked to a disease (or to a predisposition to a disease), the presence of the allele can itself be a disease criterion.

Numerous well known methods exist for evaluating the genotype of an individual, including southern analysis, restriction fragment length polymorphism (RFLP) analysis, polymerase chain reaction (PCR), amplification length polymorphism (AFLP) analysis, single stranded conformation polymorphism (SSCP) analysis, single nucleotide polymorphism (SNP) analysis (e.g., via PCR, Taqman or molecular beacons), among many other useful methods. Many such procedures are readily adaptable to high throughput and/or automated (or semi-automated) sample preparation and analysis methods. Most, can be performed on nucleic acid samples recovered via simple procedures from the same sample of leukocytes as yielded the material for expression profiling. Exemplary techniques are described in. e.g., Sambrook, and Ausubel, supra.

#### Identification of the diagnostic nucleotide sets of the invention

Identification of diagnostic nucleotide sets and disease specific target nucleotide sequence proceeds by correlating the leukocyte expression profiles with data regarding the subject's health status to produce a data set designated a "molecular signature." Examples of data regarding a patient's health status, also termed "disease criteria(ion)", is described below and in the Section titled "selected diseases," below. Methods useful for correlation analysis are further described elsewhere in the specification.

Generally, relevant data regarding the subject's health status includes retrospective or prospective health data, e.g., in the form of the subject's medical history, as provided by the subject, physician or third party, such as, medical diagnoses, laboratory test results, diagnostic test results, chinical events, or medication lists, as further described below. Surch data may include information regarding a patient's response to treatment and/or a particular medication and data regarding the presence of previously characterized 'risk factors,' For example, cigarette smoking and obesity are

previously identified risk factors for heart disease. Further examples of health status information, including diseases and disease criteria, is described in the section titled Selected diseases, below.

Typically, the data describes prior events and evaluations (i.e., retrospective data). However, it is envisioned that data collected subsequent to the sampling (i.e., prospective data) can also be correlated with the expression profile. The tissue sampled, e.g., peripheral blood, bronchial lavage, etc., can be obtained at one or more multiple time points and subject data is considered retrospective or prospective with respect to the time of sample procurement.

Data collected at multiple time points, called "longitudinal data", is often useful, and thus, the invention encompasses the analysis of patient data collected from the same patient at different time points. Analysis of paired samples, such as samples from a patient at different time, allows identification of differences that are specifically related to the disease state since the genetic variability specific to the patient is controlled for by the comparison. Additionally, other variables that exist between patients may be controlled for in this way, for example, the presence or absence of inflammatory diseases (e.g., rheumatoid arthritis) the use of medications that may effect leukocyte gene expression, the presence or absence of co-morbid conditions, etc. Methods for analysis of paired samples are further described below. Moreover, the analysis of a pattern of expression profiles (generated by collecting multiple expression profiles) provides information relating to changes in expression level over time, and may permit the determination of a rate of change, a trajectory, or an expression curve. Two longitudinal samples may provide information on the change in expression of a gene over time, while three longitudinal samples may be necessary to determine the "trajectory" of expression of a gene. Such information may be relevant to the diagnosis of a disease. For example, the expression of a gene may vary from individual to individual, but a clinical event, for example, a heart attack, may cause the level of expression to double in each patient. In this example, clinically interesting information is gleaned from the change in expression level, as opposed to the absolute level of expression in each individual.

When a single patient sample is obtained, it may still be desirable to compare the expression profile of that sample to some reference expression profile. In this case, one can determine the change of expression between the patient's sample and a reference expression profile that is appropriate for that patient and the medical condition in question. For example, a reference expression profile can be determined for all patients without the disease criterion in question who have similar characteristics, such as age, sex, race, disanoses etc.

Generally, small sample sizes of 20-100 samples are used to identify a diagnostic nucleotide set. Larger sample sizes are generally necessary to validate the diagnostic nucleotide set for use in large and varied patient populations, as further described below. For example, extension of gene expression correlations to varied ethnic groups, demographic groups, nations, peoples or races may require expression correlation experiments on the population of interest.

Expression Reference Standards

Expression profiles derived from a patient (i.e., subjects diagnosed with, or exhibiting symptoms of, or exhibiting a disease criterion, or under a doctor's care for a disease) sample are compared to a control or standard expression RNA to facilitate comparison of expression profiles (e.g.

of a set of candidate nucleotide sequences) from a group of patients relative to each other (i.e., from one patient in the group to other patients in the group, or to patients in another group).

The reference RNA used should have desirable features of low cost and simplicity of production on a large scale. Additionally, the reference RNA should contain measurable amounts of as many of the genes of the candidate library as possible.

For example, in one approach to identifying diagnostic nucleotide sets, expression profiles derived from patient samples are compared to a expression reference "standard." Standard expression reference can be, for example, RNA derived from resting cultured leukocytes or commercially available reference RNA, such as Universal reference RNA from Stratagene. See Nature, V406, 8-17-00, p. 747-752. Use of an expression reference standard is particularly useful when the expression of large numbers of nucleotide sequences is assayed, e.g. in an array, and in certain other applications, e.g. qualitative PCR, RT-PCR, etc., where it is desirable to compare a sample profile to a standard profile, and/or when large numbers of expression profiles, e.g. a patient population, are to be compared. Generally, an expression reference standard should be available in large quantities, should be a good substrate for amplification and labeling reactions, and should be capable of detecting a large percentage of candidate nucleic acids using suitable expression profiling technology.

Alternatively, or in addition, the expression profile derived from a patient sample is compared with the expression of an internal reference control gene, for example,  $\beta$ -actin or CD4. The relative expression of the profiled genes and the internal reference control gene (from the same individual) is obtained. An internal reference control may also be used with a reference RNA. For example, an expression profile for "gene 1" and the gene encoding CD4 can be determined in a patient sample and in a reference RNA. The expression of each gene can be expressed as the "relative" ratio of expression the gene in the patient sample compared with expression of the gene in the reference RNA. The expression ratio (sample/reference) for gene 1 may be divided by the expression ration for CD4 (sample/reference) and thus the relative expression of gene 1 to CD4 is obtained.

The invention also provides a buffy coat control RNA useful for expression profiling, and a method of using control RNA produced from a population of buffy coat cells, the white blood cell layer derived from the centrifugation of whole blood. Buffy coat contains all white blood cells, including granulocytes, mononuclear cells and platelets. The invention also provides a method of preparing control RNA from buffy coat cells for use in expression profile analysis of leukocytes. Buffy coat fractions are obtained, e.g. from a blood bank or directly from individuals, preferably from a large number of individuals such that bias from individual samples is avoided and so that the RNA sample represents an average expression of a healthy population. Buffy coat fractions from about 50 or about 100, or more individuals are preferred. 10 ml buffy coat from each individual is used. Buffy coat samples are treated with an erthythrocyte lysis buffer, so that erthythrocytes are selectively removed. The leukocytes of the buffy coat layer are collected by centrifugation. Alternatively, the buffy cell sample can be further enriched for a particular leukocyte sub-populations, e.g. mononuclear cells, T-lymphocytes, etc. To enrich for mononuclear cells, the buffy cell pellet, above, is diluted in PBs (phosphate buffered saline) and loaded onto a non-polystyrene tube containing a polysucrose and sodium diatrizoate solution adjusted to a density of 1,077+/-0.001 g/ml. To enrich for T-lymphocytes,

45 ml of whole blood is treated with RosetteSep (Stem Cell Technologies), and incubated at room temperature for 20 minutes. The mixture is diluted with an equal volume of PBS plus 2% FBS and mixed by inversion. 30 ml of diluted mixture is layered on top of 15 ml DML medium (Stem Cell Technologies). The tube is centrifuged at 1200 x g, and the enriched cell layer at the plasma: medium interface is removed, washed with PBS + 2% FBS, and cells collected by centrifugation at 1200 x g. The cell pellet is treated with 5 ml of erythrocyte lysis buffer (EL buffer, Qiagen) for 10 minutes on ice, and enriched T-lymphoctes are collected by centrifugation.

In addition or alternatively, the buffy cells (whole buffy coat or sub-population, e.g. mononuclear fraction) can be cultured in vitro and subjected to stimulation with cytokines or activating chemicals such as phorbol esters or innomycin. Such stimuli may increase expression of nucleotide sequences that are expressed in activated immune cells and might be of interest for leukocyte expression profiling experiments.

Following sub-population selection and/or further treatment, e.g. stimulation as described above, RNA is prepared using standard methods. For example, cells are pelleted and lysed with a phenol/guanidinium thiocyanate and RNA is prepared. RNA can also be isolated using a silica gel-based purification column or the column method can be used on RNA isolated by the phenol/guanidinium thiocyanate method. RNA from individual buffy coat samples can be pooled during this process, so that the resulting reference RNA represents the RNA of many individuals and individual bias is minimized or eliminated. In addition, a new batch of buffy coat reference RNA can be directly compared to the last batch to ensure similar expression pattern from one batch to another, using methods of collecting and comparing expression profiles described above/below. One or more expression reference controls are used in an experiment. For example, RNA derived from one or more of the following sources can be used as controls for an experiment: stimulated or unstimulated whole buffy coat, stimulated or unstimulated peripheral mononuclear cells, or stimulated or unstimulated T-lymphocytes.

Alternatively, the expression reference standard can be derived from any subject or class of subjects including healthy subjects or subjects diagnosed with the same or a different disease or disease criterion. Expression profiles from subjects in two distinct classes are compared to determine which subset of nucleotide sequences in the candidate library best distinguish between the two subject classes, as further discussed below. It will be appreciated that in the present context, the term "distinct classes" is relevant to at least one distinguishable criterion relevant to a disease of interest, a "disease criterion." The classes can, of course, demonstrate significant overlap (or identity) with respect to other disease criteria, or with respect to disease diagnoses, prognoses, or the like. The mode of discovery involves, e.g., comparing the molecular signature of different subject classes to each other (such as patient to control, patients with a first diagnosis to patients with a second diagnosis, etc.) or by comparing the molecular signatures of a single individual taken at different time points. The invention can be applied to a broad range of diseases, disease criteria, conditions and other clinical and/or epidemiological questions, as further discussed above/below.

It is appreciated that while the present discussion pertains to the use of expression reference controls while identifying diagnostic nucleotide sets, expression reference controls are also useful

during use of diagnostic nucleotide sets, e.g. use of a diagnostic nucleotide set for diagnosis of a disease, as further described below.

#### Analysis of expression profiles

In order to facilitate ready access, e.g., for comparison, review, recovery, and/or modification, the molecular signatures/expression profiles are typically recorded in a database. Most typically, the database is a relational database accessible by a computational device, although other formats, e.g., manually accessible indexed files of expression profiles as photographs, analogue or digital imaging readouts, spreadsheets, etc. can be used. Further details regarding preferred embodiments are provided below. Regardless of whether the expression patterns initially recorded are analog or digital in nature and/or whether they represent quantitative or qualitative differences in expression, the expression patterns, expression profiles (collective expression patterns), and molecular signatures (correlated expression patterns) are stored digitally and accessed via a database. Typically, the database is compiled and maintained at a central facility, with access being available locally and/or remotely.

As additional samples are obtained, and their expression profiles determined and correlated with relevant subject data, the ensuing molecular signatures are likewise recorded in the database. However, rather than each subsequent addition being added in an essentially passive manner in which the data from one sample has little relation to data from a second (prior or subsequent) sample, the algorithms optionally additionally query additional samples against the existing database to further refine the association between a molecular signature and disease criterion. Furthermore, the data set comprising the one (or more) molecular signatures is optionally queried against an expanding set of additional or other disease criteria. The use of the database in integrated systems and web embodiments is further described below.

# Analysis of expression profile data from arrays

Expression data is analyzed using methods well known in the art, including the software packages Imagene (Biodiscovery, Marina del Rey, CA), Feature Extraction Software (Agilent, Palo Alto, CA), and Scanalyze (Stanford University). In the discussion that follows, a "feature" refers to an individual spot of DNA on an array. Each gene may be represented by more than one feature. For example, hybridized microarrays are scanned and analyzed on an Axon Instruments scanner using GenePix 3.0 software (Axon Instruments, Union City, CA). The data extracted by GenePix is used for all downstream quality control and expression evaluation. The data is derived as follows. The data for all features flagged as "not found" by the software is removed from the dataset for individual hybridizations. The "not found" flag by GenePix indicates that the software was unable to discriminate the feature from the background. Each feature is examined to determine the value of its signal. The median pixel intensity of the background (Bn) is subtracted from the median pixel intensity of the feature (Fn) to produce the background-subtracted signal (hereinafter, "BGSS"). The BGSS is divided by the standard deviation of the background pixels to provide the signal-to-noise ratio (hereinafter, "S/N"). Features with a S/N of three or greater in both the Cy3 channel (corresponding to the sample RNA) and Cy5 channel (corresponding to the reference RNA) are used for further analysis (hereinafter denoted "useable features"). Alternatively, different S/Ns are used for selecting expression data for an analysis. For example, only expression data with signal to noise ratios > 3 might be used in an

analysis. Alternatively, features with S/N values < 3 may be flagged as such and included in the analysis. Such flagged data sets include more values and may allow one to discover expression markers that would be missed otherwise. However, such data sets may have a higher variability than filtered data, which may decrease significance of findings or performance of correlation statistics.

For each usable feature (i), the expression level (e) is expressed as the logarithm of the ratio (R) of the Background Subtracted Signal (hereinafter "BGSS") for the Cy3 (sample RNA) channel divided by the BGSS for the Cy5 channel (reference RNA). This "log ratio" value is used for comparison to other experiments.

$$R_{i} = \frac{BGSS_{sample}}{BGSS_{reference}}$$
 (0.1)

$$e_i = \log r_i \tag{0.2}$$

Variation in signal across hybridizations may be caused by a number of factors affecting hybridization, DNA spotting, wash conditions, and labeling efficiency.

A single reference RNA may be used with all of the experimental RNAs, permitting multiple comparisons in addition to individual comparisons. By comparing sample RNAs to the same reference, the gene expression levels from each sample are compared across arrays, permitting the use of a consistent denominator for our experimental ratios.

Alternative methods of analyzing the data may involve 1) using the sample channel without normalization by the reference channel, 2) using an intensity-dependent normalization based on the reference which provides a greater correction when the signal in the reference channel is large, 3) using the data without background subtraction or subtracting an empirically derived function of the background intensity rather than the background itself.

#### Scaling

The data may be scaled (normalized) to control for labeling and hybridization variability within the experiment, using methods known in the art. Scaling is desirable because it facilitates the comparison of data between different experiments, patients, etc. Generally the BGSS are scaled to a factor such as the median, the mean, the trimmed mean, and percentile. Additional methods of scaling include: to scale between 0 and 1, to subtract the mean, or to subtract the median.

Scaling is also performed by comparison to expression patterns obtained using a common reference RNA, as described in greater detail above. As with other scaling methods, the reference RNA facilitates multiple comparisons of the expression data, e.g., between patients, between samples, etc. Use of a reference RNA provides a consistent denominator for experimental ratios.

In addition to the use of a reference RNA, individual expression levels may be adjusted to correct for differences in labeling efficiency between different hybridization experiments, allowing direct comparison between experiments with different overall signal intensities, for example. A scaling factor (a) may be used to adjust individual expression levels as follows. The median of the scaling

factor (a), for example, BGSS, is determined for the set of all features with a S/N greater than three. Next, the BGSS (the BGSS for each feature "i") is divided by the median for all features (a), generating a scaled ratio. The scaled ration is used to determine the expression value for the feature (e), or the log ratio.

$$S_i = \frac{BGSS_i}{a} \tag{0.3}$$

$$e_i = \log \left( \frac{Cy3S_i}{Cy5S_i} \right) \tag{0.4}$$

In addition, or alternatively, control features are used to normalize the data for labeling and hybridization variability within the experiment. Control feature may be cDNA for genes from the plant, Arabidopsis thaliana, that are included when spotting the mini-array. Equal amounts of RNA complementary to control cDNAs are added to each of the samples before they were labeled. Using the signal from these control genes, a normalization constant (L) is determined according to the following formula:

$$L_{j} = \frac{\sum_{i=1}^{N} BGSS_{j,i}}{\sum_{j=1}^{N} \frac{1}{N}}$$

$$\sum_{j=1}^{N} \frac{BGSS_{j,i}}{N}$$

$$K$$

where BGSS<sub>i</sub> is the signal for a specific feature, N is the number of A. thaliana control features, K is the number of hybridizations, and  $L_i$  is the normalization constant for each individual hybridization.

Using the formula above, the mean for all control features of a particular hybridization and dye (e.g., Cy3) is calculated. The control feature means for all Cy3 hybridizations are averaged, and the control feature mean in one hybridization divided by the average of all hybridizations to generate a normalization constant for that particular Cy3 hybridization ( $L_j$ ), which is used as  $\alpha$  in equation (0.3). The same normalization steps may be performed for Cy3 and Cy5 values.

An alternative scaling method can also be used. The log of the ratio of Green/Red is determined for all features. The median log ratio value for all features is determined. The feature values are then scaled using the following formula: Log\_Scaled\_Feature\_Ratio = Log\_Feature\_Ratio = Median Log\_Ratio.

Many additional methods for normalization exist and can be applied to the data. In one method, the average ratio of Cy3 BGSS / Cy5 BGSS is determined for all features on an array. This ratio is then scaled to some arbitrary number, such as 1 or some other number. The ratio for each probe is then multiplied by the scaling factor required to bring the average ratio to the chosen level. This is

performed for each array in an analysis. Alternatively, the ratios are normalized to the average ratio across all arrays in an analysis. Other methods of normalization include forcing the distribution of signal strengths of the various arrays into greater agreement by transforming them to match certain points (quartiles, or deciles, etc.) in a standard distribution, or in the most extreme case using the rank of the signal of each oligonucleotide relative to the other oligonucleotides on the array.

If multiple features are used per gene sequence or oligonucleotide, these repeats can be used to derive an average expression value for each gene. If some of the replicate features are of poor qualitay and don't meet requirements for analysis, the remaining features can be used to represent the gene or gene sequence.

#### Correlation analysis

Correlation analysis is performed to determine which array probes have expression behavior that best distinguishes or serves as markers for relevant groups of samples representing a particular clinical condition. Correlation analysis, or comparison among samples representing different disease criteria (e.g., clinical conditions), is performed using standard statistical methods. Numerous algorithms are useful for correlation analysis of expression data, and the selection of algorithms depends in part on the data analysis to be performed. For example, algorithms can be used to identify the single most informative gene with expression behavior that reliably classifies samples, or to identify all the genes useful to classify samples. Alternatively, algorithms can be applied that determine which set of 2 or more genes have collective expression behavior that accurately classifies samples. The use of multiple expression markers for diagnostics may overcome the variability in expression of a gene between individuals, or overcome the variability intrinsic to the assay. Multiple expression markers may include redundant markers (surrogates), in that two or more genes or probes may provide the same information with respect to diagnosis. This may occur, for example, when two or more genes or gene probes are coordinately expressed. For diagnostic application, it may be appropriate to utilize a gene and one or more of its surrogates in the assay. This redundancy may overcome failures (technical or biological) of a single marker to distinguish samples. Alternatively, one or more surrogates may have properties that make them more suitable for assay development, such as a higher baseline level of expression, better cell specificity, a higher fold change between sample groups or more specific sequence for the design of PCR primers or complimentary probes. It will be appreciated that while the discussion above pertains to the analysis of RNA expression profiles the discussion is equally applicable to the analysis of profiles of proteins or other molecular markers.

Prior to analysis, expression profile data may be formatted or prepared for analysis using methods known in the art. For example, often the log ratio of scaled expression data for every array probe is calculated using the following formula:

log (Cy 3 BGSS/ Cy5 BGSS), where Cy 3 signal corresponds to the expression of the gene in the clinical sample, and Cy5 signal corresponds to expression of the gene in the reference RNA.

Data may be further filtered depending on the specific analysis to be done as noted below. For example, filtering may be aimed at selecting only samples with expression above a certain level, or probes with variability above a certain level between sample sets.

The following non-limiting discussion consider several statistical methods known in the art. Briefly, the t-test and ANOVA are used to identify single genes with expression differences between or among populations, respectively. Multivariate methods are used to identify a set of two or more genes for which expression discriminates between two disease states more specifically than expression of any single gene.

#### t-test

The simplest measure of a difference between two groups is the Student's t test. See, e.g., Welsh et al. (2001) Proc Natl Acad Sci USA 98:1176-81 (demonstrating the use of an unpaired Student's t-test for the discovery of differential gene expression in ovarian cancer samples and control tissue samples). The t- test assumes equal variance and normally distributed data. This test identifies the probability that there is a difference in expression of a single gene between two groups of samples. The number of samples within each group that is required to achieve statistical significance is dependent upon the variation among the samples within each group. The standard formula for a t-test is:

$$t(e_i) = \frac{\overline{e}_{i,e} - \overline{e}_{i,t}}{\sqrt{(s_{i,e}^2/n_e^2) + (s_{i,t}^2/n_t^2)}},$$
 (0.5)

where  $e_t$  is the difference between the mean expression level of gene i in groups c and t,  $s_{t,c}$  is the variance of gene x in group c and  $s_{t,t}$  is the variance of gene x in group t.  $n_c$  and  $n_t$  are the numbers of samples in groups c and t.

The combination of the t statistic and the degrees of freedom  $[\min(n_n, n_c) \cdot 1]$  provides a p value, the probability of rejecting the null hypothesis. A p-value of  $\leq 0.01$ , signifying a 99 percent probability the mean expression levels are different between the two groups (a 1% chance that the mean expression levels are in fact not different and that the observed difference occurred by statistical chance), is often considered acceptable.

When performing tests on a large scale, for example, on a large dataset of about 8000 genes, a correction factor must be included to adjust for the number of individual tests being performed. The most common and simplest correction is the Bonferroni correction for multiple tests, which divides the p-value by the number of tests run. Using this test on an 8000 member dataset indicates that a p value of \$<.00000125 is required to identify genes that are likely to be truly different between the two test conditions.

# Significance analysis for microarrays (SAM)

Significance analysis for microarrays (SAM) (Tusher 2001) is a method through which genes with a correlation between their expression values and the response vector are statistically discovered and assigned a statistical significance. The ratio of false significant to significant genes is the False Discovery Rate (FDR). This means that for each threshold there are a set of genes which are called significant, and the FDR gives a confidence level for this claim. If a gene is called differentially

expressed between 2 classes by SAM, with a FDR of 5%, there is a 95% chance that the gene is actually differentially expressed between the classes. SAM takes into account the variability and large number of variables of microarrays. SAM will identify genes that are most globally differentially expressed between the classes. Thus, important genes for identifying and classifying outlier samples or patients may not be identified by SAM.

#### Non-Parametric Tests

Wilcoxon's signed ranks method is one example of a non-parametric test and is utilized for paired comparisons. See e.g., Sokal and Rohlf (1987) <u>Introduction to Biostatistics</u> 2<sup>nd</sup> edition, WH Freeman, New York. At least 6 pairs are necessary to apply this statistic. This test is useful for analysis of paired expression data (for example, a set of patients who have cardiac transplant biopsy on 2 occasions and have a grade 0 on one occasion and a grade 3A on another). The Fisher Exact Test with a threshold and the Mann-Whitney Test are other non-parametric tests that may be used.

#### ANOVA

Differences in gene expression across multiple related groups may be assessed using an Analysis of Variance (ANOVA), a method well known in the art (Michelson and Schofield, 1996).

#### Multivariate analysis

Many algorithms suitable for multivariate analysis are known in the art. Generally, a set of two or more genes for which expression discriminates between two disease states more specifically than expression of any single gene is identified by searching through the possible combinations of genes using a criterion for discrimination, for example the expression of gene X must increase from normal 300 percent, while the expression of genes Y and Z must decrease from normal by 75 percent. Ordinarily, the search starts with a single gene, then adds the next best fit at each step of the search. Alternatively, the search starts with all of the genes and genes that do not aid in the discrimination are eliminated step-wise.

#### Paired samples

Paired samples, or samples collected at different time-points from the same patient, are often useful, as described above. For example, use of paired samples permits the reduction of variation due to genetic variation among individuals. In addition, the use of paired samples has a statistical significance, in that data derived from paired samples can be calculated in a different manner that recognizes the reduced variability. For example, the formula for a t-test for paired samples is:

$$t(e_x) = \frac{\overline{D}_{\hat{e}_x}}{\sqrt{\sum D^2 - (\sum D)^2/b}},$$
 (0.5)

where D is the difference between each set of paired samples and b is the number of sample pairs.  $\overline{D}$  is the mean of the differences between the members of the pairs. In this test, only the differences between the paired samples are considered, then grouped together (as opposed to taking all possible differences between groups, as would be the case with an ordinary t-test). Additional statistical tests useful with paired data, e.g., ANOVA and Wilcoxon's signed rank test, are discussed above.

#### Diagnostic classification

Once a discriminating set of genes is identified, the diagnostic classifier (a mathematical function that assigns samples to diagnostic categories based on expression data) is applied to unknown sample expression levels.

Methods that can be used for this analysis include the following non-limiting list:

CLEAVER is an algorithm used for classification of useful expression profile data. See Raychaudhuri et al. (2001) <u>Trends Biotechnol</u> 19:189-193. CLEAVER uses positive training samples (e.g., expression profiles from samples known to be derived from a particular patient or sample diagnostic category, disease or disease criteria), negative training samples (e.g., expression profiles from samples known not to be derived from a particular patient or sample diagnostic category, disease or disease criteria) and test samples (e.g., expression profiles obtained from a patient), and determines whether the test sample correlates with the particular disease or disease criteria, or does not correlate with a particular disease or disease criteria. CLEAVER also generates a list of the 20 most predictive genes for classification.

Artificial neural networks (hereinafter, "ANN") can be used to recognize patterns in complex data sets and can discover expression criteria that classify samples into more than 2 groups. The use of artificial neural networks for discovery of gene expression diagnostics for cancers using expression data generated by oligonucleotide expression microarrays is demonstrated by Khan et al. (2001) Nature Med. 7:673-9. Khan found that 96 genes provided 0% error rate in classification of the tumors. The most important of these genes for classification was then determined by measuring the sensitivity of the classification to a change in expression of each gene. Hierarchical clustering using the 96 genes results in correct grouping of the cancers into diagnostic categories.

Golub uses cDNA microarrays and a distinction calculation to identify genes with expression behavior that distinguishes myeloid and lymphoid leukemias. See Golub et al. (1999) <u>Science</u> 286:531-7. Self organizing maps were used for new class discovery. Cross validation was done with a "leave one out" analysis. 50 genes were identified as useful markers. This was reduced to as few as 10 genes with equivalent diaenostic accuracy.

Hierarchical and non-hierarchical clustering methods are also useful for identifying groups of genes that correlate with a subset of clinical samples such as with transtplant rejection grade. Alizadeh used hierarchical clustering as the primary tool to distinguish different types of diffuse B-cell lymphomas based on gene expression profile data. See Alizadeh et al. (2000) Nature 403:503-11. Alizadeh used hierarchical clustering as the primary tool to distinguish different types of diffuse B-cell lymphomas based on gene expression profile data. A cDNA array carrying 17856 probes was used for these experiments, 96 samples were assessed on 128 arrays, and a set of 380 genes was identified as being useful for sample classification.

Perou demonstrates the use of hierarchical clustering for the molecular classification of breast tumor samples based on expression profile data. See Perou el al. (2000) <u>Nature</u> 406:747-52. In this work, a cDNA array carrying 8102 gene probes was used. 1753 of these genes were found to have high variation between breast tumors and were used for the analysis.

Hastie describes the use of gene shaving for discovery of expression markers. Hastie et al. (2000) Genome Biol 1(2):RESEARCH 0003.1-0003.21. The gene shaving algorithm identifies sets of genes with similar or coherent expression patterns, but large variation across conditions (RNA samples, sample classes, patient classes). In this manner, genes with a tight expression pattern within a transplant rejection grade, but also with high variability across rejection grades are grouped together. The algorithm takes advantage of both characteristics in one grouping step. For example, gene shaving can identify useful marker genes with co-regulated expression. Sets of useful marker genes can be reduced to a smaller set, with each gene providing some non-redundant value in classification. This algorithm was used on the data set described in Alizadeh et al., supra, and the set of 380 informative gene markers was reduced to 234.

Supervised harvesting of expression trees (Hastic 2001) identifies genes or clusters that best distinguish one class from all the others on the data set. The method is used to identify the genes/clusters that can best separate one class versus all the others for datasets that include two or more classes or all classes from each other. This algorithm can be used for discovery or testing of a diagnostic gene set.

CART is a decision tree classification algorithm (Breiman 1984). From gene expression and or other data, CART can develop a decision tree for the classification of samples. Each node on the decision tree involves a query about the expression level of one or more genes or variables. Samples that are above the threshold go down one branch of the decision tree and samples that are not go down the other branch. See example 4 for further description of its use in classification analysis and examples of its usefulness in discovering and implementing a diagnostic gene set. CART identifies surrogates for each splitter (genes that are the next best substitute for a useful gene in classification.

Multiple Additive Regression Trees (Friedman, JH 1999, MART) is similar to CART in that it is a classification algorithm that builds decision trees to distinguish groups. MART builds numerous trees for any classification problem and the resulting model involves a combination of the multiple trees. MART can select variables as it build models and thus can be used on large data sets, such as those derived from an 8000 gene microarray. Because MART uses a combination of many trees and does not take too much information from any one tree, it resists over training. MART identifies a set of genes and an algorithm for their use as a classifier.

A Nearest Shrunken Centroids Classifier can be applied to microarray or other data sets by the methods described by Tüshirani et al. 2002. This algorithms also identified gene sets for classification and determines their 10 fold cross validation error rates for each class of samples. The algorithm determines the error rates for models of any size, from one gene to all genes in the set. The error rates for either or both sample classes can are minimized when a particular number of genes are used. When this gene number is determined, the algorithm associated with the selected genes can be identified and employed as a classifier on prospective sample.

Once a set of genes and expression criteria for those genes have been established for classification, cross validation is done. There are many approaches, including a 10 fold cross validation analysis in which 10% of the training samples are left out of the analysis and the classification algorithm is built with the remaining 90%. The 10% are then used as a test set for the

algorithm. The process is repeated 10 times with 10% of the samples being left out as a test set each time. Through this analysis, one can derive a cross validation error which helps estimate the robustness of the algorithm for use on prospective (test) samples.

Clinical data are gathered for every patient sample used for expression analysis. Clinical variables can be quantitative or non-quantitative. A clinical variable that is quantitative can be used as a variable for significance or classification analysis. Non-quantitative clinical variables, such as the sex of the patient, can also be used in a significance analysis or classification analysis with some statistical tool. It is appreciated that the most useful diagnostic gene set for a condition may be optimal when considered along with one or more predictive clinical variables. Clinical data can also be used as supervising vectors for a correlation analysis. That is to say that the clinical data associated with each sample can be used to divide the samples into meaningful diagnostic categories for analysis. For example, samples can be divided into 2 or more groups based on the presence or absence of some diagnostic criterion (a). In addition, clinical data can be utilized to select patients for a correlation analysis or to exclude them based on some undesirable characteristic, such as an ongoin infection, a medicine or some other issue. Clinical data can also be used to assess the pre-test probability of an outcome. For example, patients who are female are much more likely to be diagnosed as having systemic lupus erythematosis than patients who are male.

Once a set of genes are identified that classify samples with acceptable accuracy. These genes are validated as a set using new samples that were not used to discover the gene set. These samples can be taken from frozen archieves from the discovery clinical study or can be taken from new patients prospectively. Validation using a "test set" of samples can be done using expression profiling of the gene set with microarrays or using real-time PCR for each gene on the test set samples. Alternatively, a different expression profiling technology can be used.

#### Immune Monitoring

Leukocyte gene expression can be used to monitor the immune system. Immune monitoring examines both the level of gene expression for a set of genes in a given cell type and for genes which are expressed in a cell type selective manner gene expression monitoring will also detect the presence or absence of new cell types, progenitor cells, differentiation of cells and the like. Gene expression patterns may be associated with activation or the resting state of cells of the immune system that are responsible for or responsive to a disease state. For example, in the process of transplant rejection, cells of the immune system are activated by the presence of the foreign tissue. Genes and gene sets that monitor and diagnose this process are providing a measure of the level and type of activation of the immune system. Genes and gene sets that are useful in monitoring the immune system may be useful for diagnosis and monitoring of all diseases that involve the immune system. Some examples are transplant rejection, rheumatoid arthritis, lupus, inflammatory bowel diseases, multiple sclerosis, HIV/AIDS, and viral, bacterial and fungal infection. All disorders and diseases disclosed herein are contemplated. Genes and gene sets that monitor immune activation are useful for monitoring response to immunosuppressive drug therapy, which is used to decrease immune activation. Genes are found to correlate with immune activation by correlation of expression patterns to the known presence of immune activation or quiescence in a sample as determined by some other test.

Selected Diseases

In principle, diagnostic nucleotide sets of the invention may be developed and applied to essentially any disease, or disease criterion, as long as at least one subset of nucleotide sequences is differentially expressed in samples derived from one or more individuals with a disease criteria or disease and one or more individuals without the disease criteria or disease, wherein the individual may be the same individual sampled at different points in time, or the individuals may be different individuals (or populations of individuals). For example, the subset of nucleotide sequences may be differentially expressed in the sampled tissues of subjects with the disease or disease criterion (e.g., a patient with a disease or disease criteria) as compared to subjects without the disease or disease criterion (e.g., patients without a disease (control patients)). Alternatively, or in addition, the subset of nucleotide sequence(s) may be differentially expressed in different samples taken from the same patient, e.g. at different points in time, at different disease stages, before and after a treatment, in the presence or absence of a risk factor, etc.

Expression profiles corresponding to sets of nucleotide sequences that correlate not with a diagnosis, but rather with a particular aspect of a disease can also be used to identify the diagnostic nucleotide sets and disease specific target nucleotide sequences of the invention. For example, such an aspect, or disease criterion, can relate to a subject's medical or family history, e.g., childhood illness, cause of death of a parent or other relative, prior surgery or other intervention, medications, symptoms (including onset and/or duration of symptoms), etc. Alternatively, the disease criterion can relate to a diagnosis, e.g., hypertension, diabetes, atherosclerosis, or prognosis (e.g., prediction of future diagnoses, events or complications), e.g., acute myocardial infarction, restenosis following angioplasty, reperfusion injury, allograft rejection, rheumatoid arthritis or systemic lupus erythematosis disease activity or the like. In other cases, the disease criterion corresponds to a therapeutic outcome, e.g., transplant rejection, bypass surgery or response to a medication, restenosis after stent implantation, collateral vessel growth due to therapeutic angiogenesis therapy, decreased angina due to revascularization, resolution of symptoms associated with a myriad of therapies, and the like. Alternatively, the disease criteria corresponds with previously identified or classic risk factors and may correspond to prognosis or future disease diagnosis. As indicated above, a disease criterion can also correspond to genotype for one or more loci. Disease criteria (including patient data) may be collected (and compared) from the same patient at different points in time, from different patients, between patients with a disease (criterion) and patients respresenting a control population, etc. Longitudinal data, i.e., data collected at different time points from an individual (or group of individuals) may be used for comparisons of samples obtained from an individual (group of individuals) at different points in time, to permit identification of differences specifically related to the disease state, and to obtain information relating to the change in expression over time, including a rate of change or trajectory of expression over time. The usefulness of longitudinal data is further discussed in the section titled "Identification of diagnostic nucleotide sets of the invention".

It is further understood that diagnostic nucleotide sets may be developed for use in diagnosing conditions for which there is no present means of diagnosis. For example, in rheumatoid arthritis, joint destruction is often well-under way before a patient experience symptoms of the condition. A

diagnostic nucleotide set may be developed that diagnoses rheumatic joint destruction at an earlier stage than would be possible using present means of diagnosis, which rely in part on the presentation of symptoms by a patient. Diagnostic nucleotide sets may also be developed to replace or augment current diagnostic procedures. For example, the use of a diagnostic nucleotide set to diagnose cardiac allograft rejection may replace the current diagnostic test, a graft biopsy.

It is understood that the following discussion of diseases is exemplary and non-limiting, and further that the general criteria discussed above, e.g. use of family medical history, are generally amplicable to the specific diseases discussed below.

In addition to leukocytes, as described throughout, the general method is applicable to nucleotide sequences that are differentially expressed in any subject tissue or cell type, by the collection and assessment of samples of that tissue or cell type. However, in many cases, collection of such samples presents significant technical or medical problems given the current state of the art.

#### Organ transplant rejection and success

A frequent complication of organ transplantation is recognition of the transplanted organ as foreign by the immune system resulting in rejection. Diagnostic nucleotide sets can be identified and validated for monitoring organ transplant success, rejection and treatment. Medications currently exist that suppress the immune system, and thereby decrease the rate of and severity of rejection. However, these drugs also suppress the physiologic immune responses, leaving the patient susceptible to a wide variety of opportunistic infections and cancers. At present there is no easy, reliable way to diagnose transplant rejection. Organ biopsy is the preferred method, but this is expensive, painful and associated with significant risk and has inadequate sensitivity for focal rejection.

Diagnostic nucleotide sets of the present invention can be developed and validated for use as diagnostic tests for transplant rejection and success. It is appreciated that the methods of identifying diagnostic nucleotide sets are applicable to any organ transplant population. For example, diagnostic nucleotide sets are developed for cardiac allograft rejection and success.

In some cases, disease criterio correspond to acute stage rejection diagnosis based on organ biopsy and graded using the International Society for Heart and Lung Transplantation ("ISHLT") criteria. This grading system classifies endomyocardial biopsies on the histological level as Grade 0, 1A, 1B, 2, 3A, 3B, or 4. Grade 0 biopies have no evidence of rejection, while each successive grade has increased severity of leukocyte infiltration and/or damage to the graft myocardial cells. It is appreciated that there is variability in the Grading systems between medical centers and pathologists and between repeated readings of the same pathologist at different times. When using the biopsy grade as a disease criterion for leukocyte gene expression correlation analysis, it may be desirable to have single pathologist read all biopsy slides or have multiple pathologists read all slides to determine the variability in this disease criterion. It is also appreciated that cardiac biopsy, in part due to variability, is not 100% sensitive or 100% specific for diagnosting acute rejection. When using the cardiac biopsy grade as a disease criterion for the discovery of diagnostic gene sets, it may be desirable to divide patient samples into diagnostic categories based on the grades. Examples of such classes are those patients with: Grade 0 vs. Grades 1A-4, Grade 0 vs. Grades 1B-4, Grade 0 vs. Grades 2-4, Grade 0-1 vs. Grade 2-4. Grade 0-1 vs. Grade 3 A-4. Or Grade 3 A-4. Or Grade 3 A-4.

Other disease criteria correspond to the cardiac biopsy results and other criteria, such as the results of cardiac function testing by echocardiography, hemodynamics assessment by cardiac catheterization, CMV infection, weeks post transplant, medication regimen, demographics and/or results of other diagnostic tests.

Other disease criteria correspond to information from the patient's medical history and information regarding the organ donor. Alternatively, disease criteria include the presence or absence of cytomegalovirus (CMV) infection, Epstein-Barr virus (EBV) infection, allograft dysfunction measured by physiological tests of cardiac function (e.g., hemodynamic measurements from catheterization or echocardiograph data), and symptoms of other infections. Alternatively, disease criteria correspond to therapeutic outcome, e.g. graft failure, re-transplantation, death, hospitalization, need for intravenous immunosuppression, transplant vasculopathy, response to immunosuppressive medications, etc. Disease criteria may further correspond to a rejection episode of at least moderate histologic grade, which results in treatment of the patient with additional corticosteroids, anti-T cell antibodies, or total lymphoid irradiation; a rejection with histologic grade 2 or higher; a rejection with histologic grade <2; the absence of histologic rejection and normal or unchanged allograft function (based on hemodynamic measurements from catheterization or on echocardiographic data); the presence of severe allograft dysfunction or worsening allograft dysfunction during the study period (based on hemodynamic measurements from catheterization or on echocardiographic data).; documented CMV infection by culture, histology, or PCR, and at least one clinical sign or symptom of infection; specific graft biopsy rejection grades; rejection of mild to moderate histologic severity prompting augmentation of the patient's chronic immunosuppressive regimen; rejection of mild to moderate severity with allograft dysfunction prompting plasmaphoresis or a diagnosis of "humoral" rejection; infections other than CMV, especially infection with Epstein Barr virus (EBV); lymphoproliferative disorder (also called post-transplant lymphoma); transplant vasculopathy diagnosed by increased intimal thickness on intravascular ultrasound (IVUS), angiography, or acute myocardial infarction; graft failure or retransplantation; and all cause mortality. Further specific examples of clinical data useful as disease criteria are provided in Example 3.

In another example, diagnostic nucleotide sets are developed and validated for use in diagnosis and monitoring of kidney allograft recipients. Disease criteria correspond to, e.g., results of biopsy analysis for kidney allograft rejection, serum creatine level, creatinine clearance, radiological imaging results for the kidney and urinalysis results. Another disease criterion corresponds to the need for hemodialysis, retransplantation, death or other renal replacement therapy. Diagnostic nucleotide sets are developed and validated for use in diagnosis and treatment of bone marrow transplant and liver transplantation pateints, respectively. Disease criteria for bone marrow transplant correspond to the diagnosis and monitoring of graft rejection and/or graft versus host disease, the recurrence of cancer, complications due to immunosuppression, hematologic abnormalities, infection, hospitalization and/or death. Disease criteria for liver transplant rejection include levels of serum markers for liver damage and liver function such as AST (aspartate aminotransferase), ALT (alanine aminotransferase), Alkaline phosphatase, GGT, (gamma-glutamyl transpeptidase) Bilirubin, Albumin and Prothrombin time.

Further disease criteria correspond to hepatic encephalopathy, medication usage, ascites, graft failure,

retransplantation, hospitalization, complications of immunosuppression, results of diagnostic tests, results of radiological testing, death and histological rejection on graft biopsy. In addition, urine can be utilized for at the target tissue for profiling in renal transplant, while biliary and intestinal secretions and feces may be used favorably for hepatic or intestinal organ allograft rejection. Diagnostic nuclotide sets can also be discovered and developed for the diagnosis and monitoring of chronic renal allograft rejection.

In the case of renal allografts, gene expression markers may be identified that are secreted proteins. These proteins may be detected in the urine of allograft recipients using standard immunoassays. Proteins are more likely to be present in the urine if they are of low molecular weight. Lower molecular weight proteins are more likely to pass through the glomerular membrane and into the urine.

In another example, diagnostic nucleotide sets are developed and validated for use in diagnosis and treatment of xenograft recipients. This can include the transplantation of any organ from a non-human animal to a human or between non-human animals. Considerations for discovery and a poplication of diagnostics and therapeutics and for disease criterion are substantially similar to those for allograft transplantation between humans.

In another example, diagnostic nucleotide sets are developed and validated for use in diagnosis and treatment of artificial organ recipients. This includes, but is not limited to mechanical circulatory support, artificial hearts, left ventricular assist devices, renal replacement therapies, organ prostheses and the like. Disease criteria are thrombosis (blood clots), infection, death, hospitalization, and worsening measures of organ function (e.g., hemodynamics, creatinine, liver function testing, renal function testing, functional capacity).

In another example, diagnostic nucleotide sets are developed and validated for use in matching donor organs to appropriate recipients. Diagnostic gene set can be discovered that correlate with successful matching of donor organ to recipient. Disease criteria include graft failure, acute and chronic rejection, death, hospitalization, immunosuppressive drug use, and complications of immunosuppression. Gene sets may be assayed from the donor or recipient's peripheral blood, organ tissue or some other tissue.

In another example, diagnostic nucleotide sets are developed and validated for use in diagnosis and induction of patient immune tolerance (decrease rejection of an allograft by the host immune system). Disease criteria include rejection, assays of immune activation, need for immunosupression and all disease criteria noted above for transplantation of each organ.

# Viral diseases

Diagnostic leukocyte nucleotide sets may be developed and validated for use in diagnosing viral disease, as well as diagnosing and monitoring transplant rejection. In another aspect, viral nucleotide sequences may be added to a leukocyte nucleotide set for use in diagnosis of viral diseases, as well as diagnosing and monitoring transplant rejection. Alternatively, viral nucleotide sets and leukocyte nucleotides sets may be used sequentially.

# Epstein-Barr virus (EBV)

EBV causes a variety of diseases such as mononucleosis, B-cell lymphoma, and pharyngeal carcinoma. It infects mononuclear cells and circulating atypical lymphocytes are a common manifestation of infection. Peripheral leukocyte gene expression is altered by infection. Transplant recipients and patients who are immunosuppressed are at increased risk for EBV-associated lymphoma.

Diagnostic nucleotide sets may be developed and validated for use in diagnosis and monitoring of EBV, as well as diagnosing and monitoring transplant rejection. In one aspect, the diagnostic nucleotide set is a leukocyte nucleotide set. Alternatively, EBV nucleotide sequences are added to a leukocyte nucleotide set, for use in diagnosing EBV. Disease criteria correspond with diagnosis of EBV, and, in patients who are EBV-sero-positive, presence (or prospective occurrence) of EBV-related illnesses such as mononucleosis, and EBV-associated lymphoma. Diagnostic nucleotide sets are useful for diagnosis of EBV, and prediction of occurrence of EBV-related illnesses.

### Cytomegalovirus (CMV)

Cytomegalovirus cause inflammation and disease in almost any tissue, particularly the colon, lung, bone marrow and retina, and is a very important cause of disease in immunosuppressed patients, e.g. transplant, cancer, AIDS. Many patients are infected with or have been exposed to CMV, but not all patients develop clinical disease from the virus. Also, CMV negative recipients of allografts that come from CMV positive donors are at high risk for CMV infection. As immunosuppressive drugs are developed and used, it is increasingly important to identify patients with current or impending clinical CMV disease, because the potential benefit of immunosuppressive therapy must be balanced with the increased rate of clinical CMV infection and disease that may result from the use of immunosuppression therapy. CMV may also play a role in the occurrence of atherosclerosis or restenosis after angioplasty. CMV expression also correlates to transplant rejection, and is useful in diagnosing and monitoring transplant rejection.

Diagnostic nucleotide sets are developed for use in diagnosis and monitoring of CMV infection or re-activation of CMV infection. In one aspect, the diagnostic nucleotide set is a leukocyte nucleotide set. In another aspect, CMV nucleotide sequences are added to a leukocyte nucleotide set, for use in diagnosing CMV. Disease criteria correspond to diagnosis of CMV (e.g., secr-positive state) and presence of clinically active CMV. Disease criteria may also correspond to prospective data, e.g. the likelihood that CMV will become clinically active or impending clinical CMV infection. Antiviral medications are available and diagnostic nucleotide sets can be used to select patients for early treatment, chronic suppression or prophylaxis of CMV activity.

#### Hepatitis B and C

These chronic viral infections affect about 1.25 and 2.7 million patients in the US, respectively. Many patients are infected, but suffer no clinical manifestations. Some patients with infection go on to suffer from chronic liver failure, cirrhosis and hepatic carcinoma.

Diagnostic nucleotide sets are developed for use in diagnosis and monitoring of HBV or HCV infection. In one aspect, the diagnostic nucleotide set is a leukocyte nucleotide set. In another aspect, viral nucleotide sequences are added to a leukocyte nucleotide set, for use in diagnosing the virus and monitoring progression of liver disease. Disease criteria correspond to diagnosis of the virus (e.g.,

sero-positive state or other disease symptoms). Alternatively, disease criteria correspond to liver damage, e.g., elevated alkaline phosphatase, ALT, AST or evidence of ongoing hepatic damage on liver biopsy. Alternatively, disease criteria correspond to serum liver tests (AST, ALT, Alkaline Phosphatase, GGT, PT, bilirubin), liver biopsy, liver ultrasound, viral load by serum PCR, cirrhosis, hepatic cancer, need for hospitalization or listing for liver transplant. Diagnostic nucleotide sets are used to diagnose HBV and HCV, and to predict likelihood of disease progression. Antiviral therapeutic usage, such as Interferon gamma and Ribavirin, can also be disease criteria.

HIV

HIV infects T cells and certainly causes alterations in leukocyte expression. Diagnostic nucleotide sets are developed for diagnosis and monitoring of HIV. In one aspect, the diagnostic nucleotide set is a leukocyte nucleotide set. In another aspect, viral nucleotide sequences are added to a leukocyte nucleotide set, for use in diagnosing the virus. Disease criteria correspond to diagnosis of the virus (e.g., sero-positive state). In addition, disease criteria correspond to viral load, CD4 T cell counts, opportunistic infection, response to antiretroviral therapy, progression to AIDS, rate of progression and the occurrence of other HIV related outcomes (e.g., malignancy, CNS disturbance). Response to antiretrovirals may also be disease criteria.

#### Pharmacogenomics

Pharmocogenomics is the study of the individual propensity to respond to a particular drug therapy (combination of therapies). In this context, response can mean whether a particular drug will work on a particular patient, e.g. some patients respond to one drug but not to another drug. Response can also refer to the likelihood of successful treatment or the assessment of progress in treatment. Titration of drug therapy to a particular patient is also included in this description, e.g. different patients can respond to different doses of a given medication. This aspect may be important when drugs with side-effects or interactions with other drug therapies are contemplated.

Diagnostic nucleotide sets are developed and validated for use in assessing whether a patient will respond to a particular therapy and/or monitoring response of a patient to drug therapy(therapies). Disease criteria correspond to presence or absence of clinical symptoms or clinical endpoints, presence of side-effects or interaction with other drug(s). The diagnostic nucleotide set may further comprise nucleotide sequences that are targets of drug treatment or markers of active disease.

## Validation and accuracy of diagnostic nucleotide sets

Prior to widespread application of the diagnostic probe sets of the invention the predictive value of the probe set is validated. When the diagnostic probe set is discovered by microarray based expression analysis, the differential expression of the member genes may be validated by a less variable and more quantitive and accurate technology such as real time PCR. In this type of experiment the amplification product is measured during the PCR reaction. This enables the researcher to observe the amplification before any reagent becomes rate limiting for amplification. In kinetic PCR the measurement is of  $C_T$  (threshold cycle) or  $C_T$  (crossing point). This measurement ( $C_T = C_T$ ) is the point at which an amplification curve crosses a threshold fluorescence value. The threshold is set to a point within the area where all of the reactions were in their linear phase of amplification. When measuring

 $C_T$ , a lower  $C_T$  value is indicative of a higher amount of starting material since an earlier cycle number means the threshold was crossed more quickly.

Several fluorescence methodologies are available to measure amplification product in realtime PCR. Taqman (Applied BioSystems, Foster City, CA) uses fluorescence resonance energy
transfer (FRET) to inhibit signal from a probe until the probe is degraded by the sequence specific
binding and Taq 3' exonuclease activity. Molecular Beacons (Stratagene, La Jolla, CA) also use FRET
technology, whereby the fluorescence is measured when a hairpin structure is relaxed by the specific
probe binding to the amplified DNA. The third commonly used chemistry is Sybr Green, a DNAbinding dye (Molecular Probes, Eugene, OR). The more amplified product that is produced, the higher
the signal. The Sybr Green method is sensitive to non-specific amplification products, increasing the
importance of primer design and selection. Other detection chemistries can also been used, such as
ethedium bromide or other DNA-binding dyes and many modifications of the fluorescent dye/quencher
dye Taqman chemistry, for example scorpions.

Real-time PCR validation can be done as described in Example 12.

Typically, the oligonucleotide sequence of each probe is confirmed, e.g. by DNA sequencing using an oligonucleotide-specific primer. Partial sequence obtained is generally sufficient to confirm the identity of the oligonucleotide probe. Alternatively, a complementary polynucleotide is fluorescently labeled and hybridized to the array, or to a different array containing a resynthesized version of the oligo nucleotide probe, and detection of the correct probe is confirmed.

Typically, validation is performed by statistically evaluating the accuracy of the correspondence between the molecular signature for a diagnostic probe set and a selected indicator. For example, the expression differential for a nucleotide sequence between two subject classes can be expressed as a simple ratio of relative expression. The expression of the nucleotide sequence in subjects with selected indicator can be compared to the expression of that nucleotide sequence in subjects without the indicator, as described in the following equations.

 $\Sigma E_s a i N = E_s A$  the average expression of nucleotide sequence x in the members of group A;  $\Sigma E_s b i M = E_s B$  the average expression of nucleotide sequence x in the members of group B;  $E_s N E x B = \Delta E_s A B$  the average differential expression of nucleotide sequence x between groups A and B:

where  $\Sigma$  indicates a sum; Ex is the expression of nucleotide sequence x relative to a standard; ai are the individual members of group A, group A has N members; bi are the individual members of group B, group B has M members.

The expression of at least two nucleotide sequences, e.g., nucleotide sequence X and nucleotide sequence Y are measured relative to a standard in at least one subject of group A (e.g., with a disease) and group B (e.g., without the disease). Ideally, for purposes of validation the indicator is independent from (i.e., not assigned based upon) the expression pattern. Alternatively, a minimum threshold of gene expression for nucleotide sequences X and Y, relative to the standard, are designated for assignment to group A. For nucleotide sequence x, this threshold is designated  $\Delta Ex$ , and for nucleotide sequence y, the threshold is designated  $\Delta Ey$ .

The following formulas are used in the calculations below:

Sensitivity = (true positives/true positives + false negatives)

Specificity = (true negatives/true negatives + false positives)

If, for example, expression of nucleotide sequence x above a threshold:  $x > \Delta E x$ , is observed for 80/100 subjects in group A and for 10/100 subjects in group B, the sensitivity of nucleotide sequence x for the assignment to group A, at the given expression threshold  $\Delta E x$ , is 80%, and the specificity is 90%.

If the expression of nucleotide sequence y is  $> \Delta Ey$  in 80/100 subjects in group A, and in 10/100 subjects in group B, then, similarly the sensitivity of nucleotide sequence y for the assignment to group A at the given threshold  $\Delta Ey$  is 80% and the specificity is 90%. If in addition, 60 of the 80 subjects in group A that meet the expression threshold for nucleotide sequence y also meet the expression threshold  $\Delta Ex$  and that 5 of the 10 subjects in group B that meet the expression threshold for nucleotide sequence y also meet the expression threshold  $\Delta Ex$ , the sensitivity of the test ( $x > \Delta Ex$  and  $y > \Delta Ey$ ) for assignment of subjects to group A is 60% and the specificity is 95%.

Alternatively, if the criteria for assignment to group A are change to: Expression of  $x > \Delta Ex$  or expression of  $y > \Delta Ey$ , the sensitivity approaches 100% and the specificity is 85%.

Clearly, the predictive accuracy of any diagnostic probe set is dependent on the minimum expression threshold selected. The expression of nucleotide sequence X (relative to a standard) is measured in subjects of groups A (with disease) and B (without disease). The minimum threshold of nucleotide sequence expression for x, required for assignment to group A is designated ΔEx 1.

If 90/100 patients in group A have expression of nucleotide sequence  $x > \Delta Ex$  1 and 20/100 patients in group B have expression of nucleotide sequence  $x > \Delta Ex$  1, then the sensitivity of the expression of nucleotide sequence x (using  $\Delta Ex$  1 as a minimum expression threshold) for assignment of patients to group A will be 90% and the specificity will be 80%.

Altering the minimum expression threshold results in an alteration in the specificity and sensitivity of the nucleotide sequences in question. For example, if the minimum expression threshold of nucleotide sequence x for assignment of subjects to group A is lowered to  $\Delta$ Ex 2, such that 100/100 subjects in group A and 40/100 subjects in group B meet the threshold, then the sensitivity of the test for assignment of subjects to group A will be 100%, and the specificity will be 60%.

Thus, for 2 nucleotide sequences X and Y: the expression of nucleotide sequence x and nucleotide sequence y (relative to a standard) are measured in subjects belonging to groups A (with disease) and B (without disease). Minimum thresholds of nucleotide sequence expression for nucleotide sequences X and Y (relative to common standards) are designated for assignment to group A. For nucleotide sequence x, this threshold is designated  $\Delta Ex1$  and for nucleotide sequence y, this threshold is designated  $\Delta Ey1$ .

If in group A, 90/100 patients meet the minimum requirements of expression  $\Delta Ex1$  and  $\Delta Ey1$ , and in group B, 10/100 subjects meet the minimum requirements of expression  $\Delta Ex1$  and  $\Delta Ey1$ , then the sensitivity of the test for assignment of subjects to group A is 90% and the specificity is 90%.

Increasing the minimum expression thresholds for X and Y to  $\Delta$ Ex2 and  $\Delta$ Ey2, such that in group A, 70/100 subjects meet the minimum requirements of expression  $\Delta$ Ex2 and  $\Delta$ Ey2, and in group

B, 3/100 subjects meet the minimum requirements of expression ΔEx2 and ΔEy2. Now the sensitivity of the test for assignment of subjects to group A is 70% and the specificity is 97%.

If the criteria for assignment to group A is that the subject in question meets either threshold,  $\Delta E \times 2$  or  $\Delta E \times 2$ , and it is found that 100/100 subjects in group A meet the criteria and 20/100 subjects in group B meet the criteria, then the sensitivity of the test for assignment to group A is 100% and the specificity is 80%.

Individual components of a diagnostic probe set each have a defined sensitivity and specificity for distinguishing between subject groups. Such individual nucleotide sequences can be employed in concert as a diagnostic probe set to increase the sensitivity and specificity of the evaluation. The database of molecular signatures is queried by algorithms to identify the set of nucleotide sequences (i.e., corresponding to members of the probe set) with the highest average differential expression between subject groups. Typically, as the number of nucleotide sequences in the diagnostic probe set increases, so does the predictive value, that is, the sensitivity and specificity of the probe set. When the probe sets are defined they may be used for diagnosis and patient monitoring as discussed below. The diagnostic sensitivity and specificity of the probe sets for the defined use can be determined for a given probe set with specified expression levels as demonstrated above. By altering the expression threshold required for the use of each nucleotide sequence as a diagnostic, the sensitivity and specificity of the probe set can be altered by the practitioner. For example, by lowering the magnitude of the expression differential threshold for each nucleotide sequence in the set, the sensitivity of the test will increase, but the specificity will decrease. As is apparent from the foregoing discussion, sensitivity and specificity are inversely related and the predictive accuracy of the probe set is continuous and dependent on the expression threshold set for each nucleotide sequence. Although sensitivity and specificity tend to have an inverse relationship when expression thresholds are altered, both parameters can be increased as nucleotide sequences with predictive value are added to the diagnostic nucleotide set. In addition a single or a few markers may not be reliable expression markers across a population of patients. This is because of the variability in expression and measurement of expression that exists between measurements, individuals and individuals over time. Inclusion of a large number of candidate nucleotide sequences or large numbers of nucleotide sequences in a diagnostic nucleotide set allows for this variability as not all nucleotide sequences need to meet a threshold for diagnosis. Generally, more markers are better than a single marker. If many markers are used to make a diagnosis, the likelihood that all expression markers will not meet some thresholds based upon random variability is low and thus the test will give fewer false negatives.

It is appreciated that the desired diagnostic sensitivity and specificity of the diagnostic nucleotide set may vary depending on the intended use of the set. For example, in certain uses, high specificity and high sensitivity are desired. For example, a diagnostic nucleotide set for predicting which patient population may experience side effects may require high sensitivity so as to avoid treating such patients. In other settings, high sensitivity is desired, while reduced specificity may be tolerated. For example, in the case of a beneficial treatment with few side effects, it may be important to identify as many patients as possible (high sensitivity) who will respond to the drug, and treatment of some patients who will not respond is tolerated. In other settings, high specificity is desired and

reduced sensitivity may be tolerated. For example, when identifying patients for an early-phase clinical trial, it is important to identify patients who may respond to the particular treatment. Lower sensitivity is tolerated in this setting as it merely results in reduced patients who enroll in the study or requires that more patients are screened for enrollment.

Methods of using diagnostic nucleotide sets.

The invention also provide methods of using the diagnostic nucleotide sets to: diagnose disease; assess severity of disease; predict future occurrence of disease; predict future complications of disease; determine disease prognosis; evaluate the patient's risk, or "stratify" a group of patients; assess response to current drug therapy; assess response to current non-pharmacological therapy; determine the most appropriate medication or treatment for the patient; predict whether a patient is likely to respond to a particular drug; and determine most appropriate additional diagnostic testing for the patient, among other clinically and epidemiologically relevant applications.

The nucleotide sets of the invention can be utilized for a variety of purposes by physicians, healthcare workers, hospitals, laboratories, patients, companies and other institutions. As indicated previously, essentially any disease, condition, or status for which at least one nucleotide sequence is differentially expressed in leukocyte populations (or sub-populations) can be evaluated, e.g., diagnosed, monitored, etc. using the diagnostic nucleotide sets and methods of the invention. In addition to assessing health status at an individual level, the diagnostic nucleotide sets of the present invention are suitable for evaluating subjects at a "population level," e.g., for epidemiological studies, or for population screening for a condition or disease.

#### Collection and preparation of sample

RNA, protein and/or DNA is prepared using methods well-known in the art, as further described herein. It is appreciated that subject samples collected for use in the methods of the invention are generally collected in a clinical setting, where delays may be introduced before RNA samples are prepared from the subject samples of whole blood, e.g. the blood sample may not be promptly delivered to the clinical lab for further processing. Further delay may be introduced in the clinical lab setting where multiple samples are generally being processed at any given time. For this reason, methods which feature lengthy incubations of intact leukocytes at room temperature are not preferred, because the expression profile of the leukocytes may change during this extended time period. For example, RNA can be isolated from whole blood using a phenol/guanidine isothiocyanate reagent or another direct whole-blood lysis method, as described in, e.g., U.S. Patent Nos. 5,346,994 and 4,843,155. This method may be less preferred under certain circumstances because the large majority of the RNA recovered from whole blood RNA extraction comes from erythrocytes since these cells outnumber leukocytes 1000:1. Care must be taken to ensure that the presence of erythrocyte RNA and protein does not introduce bias in the RNA expression profile data or lead to inadequate sensitivity or specificity of probes.

Alternatively, intact leukocytes may be collected from whole blood using a lysis buffer that selectively lyses erythrocytes, but not leukocytes, as described, e.g., in (U.S. Patent Nos. 5,973,137, and 6,020,186). Intact leukocytes are then collected by centrifugation, and leukocyte RNA is isolated using standard protocols, as described herein. However, this method does not allow isolation of sub-

populations of leukocytes, e.g. mononuclear cells, which may be desired. In addition, the expression profile may change during the lengthy incubation in lysis buffer, especially in a busy clinical lab where large numbers of samples are being prepared at any given time.

Alternatively, specific leukocyte cell types can be separated using density gradient reagents (Boyum, A, 1968). For example, mononuclear cells may be separated from whole blood using density gradient centrifugation, as described, e.g., in U.S. Patents Nos. 4190535, 4350593, 4751001, 4818418, and 5053134. Blood is drawn directly into a tube containing an anticoagulant and a density reagent (such as Ficoll or Percoll). Centrifugation of this tube results in separation of blood into an erythrocyte and granulocyte layer, a mononuclear cell suspension, and a plasma layer. The mononuclear cell layer is easily removed and the cells can be collected by centrifugation, lysed, and frozen. Frozen samples are stable until RNA can be isolated. Density centrifugation, however, must be conducted at room temperature, and if processing is unduly lengthy, such as in a busy clinical lab, the expression profile may change.

Alternatively, cells can be separated using fluorescence activated cell sorting (FACS) or some other technique, which divides cells into subsets based on gene or protein expression. This may be desirable to enrich the sample for cells of interest, but it may also introduce cell manipulations and time delays, which result in alteration of gene expression profiles (Cantor et al. 1975; Galbraith et al. 1999).

The quality and quantity of each clinical RNA sample is desirably checked before amplification and labeling for array hybridization, using methods known in the art. For example, one microliter of each sample may be analyzed on a Bioanalyzer (Agilent 2100 Palo Alto, CA. USA) using an RNA 6000 nano LabChip (Caliper, Mountain View, CA. USA). Degraded RNA is identified by the reduction of the 28S to 18S ribosomal RNA ratio and/or the presence of large quantities of RNA in the 25-100 nucleotide range.

It is appreciated that the RNA sample for use with a diagnostic nucleotide set may be produced from the same or a different cell population, sub-population and/or cell type as used to identify the diagnostic nucleotide set. For example, a diagnostic nucleotide set identified using RNA extracted from mononuclear cells may be suitable for analysis of RNA extracted from whole blood or mononuclear cells, depending on the particular characteristics of the members of the diagnostic nucleotide set. Generally, diagnostic nucleotide sets must be tested and validated when used with RNA derived from a different cell population, sub-population or cell type than that used when obtaining the diagnostic gene set. Factors such as the cell-specific gene expression of diagnostic nucleotide set members, redundancy of the information provided by members of the diagnostic nucleotide set, expression level of the member of the diagnostic nucleotide set, and cell-specific alteration of expression of a member of the diagnostic nucleotide set will contribute to the usefullness of using a different RNA source than that used when identifying the members of the diagnostic nucleotide set. It is appreciated that it may be desirable to assay RNA derived from whole blood, obviating the need to isolate particular cell types from the blood.

Rapid method of RNA extraction suitable for production in a clinical setting of high quality RNA for expression profiling

In a clinical setting, obtaining high quality RNA preparations suitable for expression profiling, from a desired population of leukocytes poses certain technical challenges, including: the lack of capacity for rapid, high-throughput sample processing in the clinical setting, and the possibility that delay in processing (in a busy lab or in the clinical setting) may adversely affect RNA quality, e.g. by a permitting the expression profile of certain nucleotide sequences to shift. Also, use of toxic and expensive reagents, such as phenol, may be disfavored in the clinical setting due to the added expense associated with shipping and handling such reagents.

A useful method for RNA isolation for leukocyte expression profiling would allow the isolation of monocyte and lymphocyte RNA in a timely manner, while preserving the expression profiles of the cells, and allowing inexpensive production of reproducible high-quality RNA samples. Accordingly, the invention provides a method of adding inhibitor(s) of RNA transcription and/or inhibitor(s) of protein synthesis, such that the expression profile is "frozen" and RNA degradation is reduced. A desired leukocyte population or sub-population is then isolated, and the sample may be frozen or lysed before further processing to extract the RNA. Blood is drawn from subject population and exposed to ActinomycinD (to a final concentration of 10 ug/ml) to inhibit transcription, and exposed to ActinomycinD (to a final concentration of 10 ug/ml) to inhibit transcription, and be injected into the blood collection tube in liquid form as soon as the blood is drawn, or the tube can be manufactured to contain either lyophilized inhibitors or inhibitors that are in solution with the anticoagulant. At this point, the blood sample can be stored at room temperature until the desired leukocyte population or sub-population is isolated, as described elsewhere. RNA is isolated using standard methods, e.g., as described above, or a cell pellet or extract can be frozen until further processing of RNA is convenient.

The invention also provides a method of using a low-temperature density gradient for separation of a desired leukocyte sample. In another embodiment, the invention provides the combination of use of a low-temperature density gradient and the use of transcriptional and/or protein synthesis inhibitor(s). A desired leukocyte population is separated using a density gradient solution for cell separation that maintains the required density and viscosity for cell separation at 0-4°C. Blood is drawn into a tube containing this solution and may be refrigerated before and during processing as the low temperatures slow cellular processes and minimize expression profile changes. Leukocytes are separated, and RNA is isolated using standard methods. Alternately, a cell pellet or extract is frozen until further processing of RNA is convenient. Care must be taken to avoid rewarming the sample during further processing stens.

Alternatively, the invention provides a method of using low-temperature density gradient separation, combined with the use of actinomycin A and cyclohexamide, as described above.

# Assessing expression for diagnostics

Expression profiles for the set of diagnostic nucleotide sequences in a subject sample can be evaluated by any technique that determines the expression of each component nucleotide sequence. Methods suitable for expression analysis are known in the art, and numerous examples are discussed in

the Sections titled "Methods of obtaining expression data" and "high throughput expression Assays", above

In many cases, evaluation of expression profiles is most efficiently, and cost effectively, performed by analyzing RNA expression. Alternatively, the proteins encoded by each component of the diagnostic nucleotide set are detected for diagnostic purposes by any technique capable of determining protein expression, e.g., as described above. Expression profiles can be assessed in subject leukocyte sample using the same or different techniques as those used to identify and validate the diagnostic nucleotide set. For example, a diagnostic nucleotide set identified as a subset of sequences on a cDNA microarray can be utilized for diagnostic (or prognostic, or monitoring, etc.) purposes on the same array from which they were identified. Alternatively, the diagnostic nucleotide sets for a given disease or condition can be organized onto a dedicated sub-array for the indicated purpose. It is important to note that if diagnostic nucleotide sets are discovered using one technology, e.g. RNA expression profiling, but applied as a diagnostic using another technology, e.g. protein expression profiling, the nucleotide sets must generally be validated for diagnostic purposes with the new technology. In addition, it is appreciated that diagnostic nucleotide sets that are developed for one use, e.g. to diagnose a particular disease, may later be found to be useful for a different application, e.g. to predict the likelihood that the particular disease will occur. Generally, the diagnostic nucleotide set will need to be validated for use in the second circumstance. As discussed herein, the sequence of diagnostic nucleotide set members may be amplified from RNA or cDNA using methods known in the art providing specific amplification of the nucleotide sequences.

#### General Protein Methods

Protein products of the nucleotide sequences of the invention may include proteins that represent functionally equivalent gene products. Such an equivalent gene product may contain deletions, additions or substitutions of amino acid residues within the amino acid sequence encoded by the nucleotide sequences described, above, but which result in a silent change, thus producing a functionally equivalent nucleotide sequence product. Amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved.

For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartia eacid and glutamic acid. "Functionally equivalent", as utilized herein, refers to a protein capable of exhibiting a substantially similar in vivo activity as the endogenous gene products encoded by the nucleotide described, above.

The gene products (protein products of the nucleotide sequences) may be produced by recombinant DNA technology using techniques well known in the art. Thus, methods for preparing the gene polypeptides and peptides of the invention by expressing nucleic acid encoding nucleotide sequences are described herein. Methods which are well known to those skilled in the art can be used to construct expression vectors containing nucleotide sequence protein coding sequences and

appropriate transcriptional/translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination. See, for example, the techniques described in Sambrook et al., 1989, supra, and Ausubel et al., 1989, supra. Alternatively, RNA capable of encoding nucleotide sequence protein sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in "Oligonucleotide Synthesis", 1984, Gait, M. J. ed., IRL Press, Oxford, which is incorporated by reference herein in its entirety

A variety of host-expression vector systems may be utilized to express the nucleotide sequence coding sequences of the invention. Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, exhibit the protein encoded by the nucleotide sequence of the invention in situ. These include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing nucleotide sequence protein coding sequences; yeast (e.g. Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing the nucleotide sequence protein coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the nucleotide sequence protein coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing nucleotide sequence protein coding sequences; or mammalian cell systems (e.g. COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5 K promoter).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the nucleotide sequence protein being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of antibodies or to screen peptide libraries, for example, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which the nucleotide sequence protein coding sequence may be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503-5509); and the likes of pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione Stransferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target nucleotide sequence protein can be released from the GST moiety. Other systems useful in the invention include use of the FLAG epitope or the 6-HIS systems.

In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign nucleotide sequences. The virus grows in Spodoptera frugiperda cells. The nucleotide sequence coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of nucleotide sequence coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted nucleotide sequence is expressed. (E.g., see Smith et al., 1983, J. Virol. 46: 584; Smith, U.S. Pat. No. 4,215,051).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the nucleotide sequence coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric nucleotide sequence may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing nucleotide sequence encoded protein in infected hosts. (E.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of inserted nucleotide sequence coding sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where an entire nucleotide sequence, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of the nucleotide sequence coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., 1987, Methods in Enzymol. 153:516-544).

In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the product of the nucleotide sequence in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include but are not limited to CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, W138, etc.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the nucleotide sequence encoded protein may be

engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express nucleotide sequence encoded protein. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the nucleotide sequence encoded protein.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes can be employed in tk., hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147) genes.

An alternative fusion protein system allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88: 8972-8976). In this system, the nucleotide sequence of interest is subcloned into a vaccinia recombination plasmid such that the nucleotide sequence's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni.sup.2 +-nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.

Where recombinant DNA technology is used to produce the protein encoded by the nucleotide sequence for such assay systems, it may be advantageous to engineer fusion proteins that can facilitate labeling, immobilization and/or detection.

# Antibodies

Indirect labeling involves the use of a protein, such as a labeled antibody, which specifically binds to the protein encoded by the nucleotide sequence. Such antibodies include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments and fragments produced by an Fab expression library.

The invention also provides for antibodies to the protein encoded by the nucleotide sequences. Described herein are methods for the production of antibodies capable of specifically recognizing one or more nucleotide sequence epitopes. Such antibodies may include, but are not limited to polyelonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab)2 (fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-

Id) antibodies, and epitope-binding fragments of any of the above. Such antibodies may be used, for example, in the detection of a nucleotide sequence in a biological sample, or, alternatively, as a method for the inhibition of abnormal gene activity, for example, the inhibition of a disease target nucleotide sequence, as further described below. Thus, such antibodies may be utilized as part of cardiovascular or other disease treatment method, and/or may be used as part of diagnostic techniques whereby patients may be tested for abnormal levels of nucleotide sequence encoded proteins, or for the presence of abnormal forms of the such proteins.

For the production of antibodies to a nucleotide sequence, various host animals may be immunized by injection with a protein encoded by the nucleotide sequence, or a portion thereof. Such host animals may include but are not limited to rabbits, mice, and rats, to name but a few. Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum.

Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of animals immunized with an antigen, such as gene product, or an antigenic functional derivative thereof. For the production of polyclonal antibodies, host animals such as those described above, may be immunized by injection with gene product supplemented with adjuvants as also described above.

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, may be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Pat. No. 4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated in vitro or in vivo.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region.

Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778; Bird, 1988, Science 242;423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Ward et al., 1989, Nature 334:544-546) can be adapted to produce nucleotide sequence-single chain antibodies. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments which recognize specific epitopes may be generated by known techniques For example, such fragments include but are not limited to: the F(ab')2 fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

# Disease specific target nucleotide sequences

The invention also provides disease specific target nucleotide sequences, and sets of disease specific target nucleotide sequences. The diagnostic nucleotide sets, subsets thereof, novel nucleotide sequences, and individual members of the diagnostic nucleotide sets identified as described above are also disease specific target nucleotide sequences. In particular, individual nucleotide sequences that are differentially regulated or have predictive value that is strongly correlated with a disease or disease criterion are especially favorable as disease specific target nucleotide sequences. Sets of genes that are co-regulated may also be identified as disease specific target nucleotide sets. Such nucleotide sequences and/or nucleotide sequence products are targets for modulation by a variety of agents and techniques. For example, disease specific target nucleotide sequences (or the products of such nucleotide sequences, or sets of disease specific target nucleotide sequences) can be inhibited or activated by, e.g., target specific monoclonal antibodies or small molecule inhibitors, or delivery of the nucleotide sequence or gene product of the nucleotide sequence to patients. Also, sets of genes can be inhibited or activated by a variety of agents and techniques. The specific usefulness of the target nucleotide sequence (s) depends on the subject groups from which they were discovered, and the disease or disease criterion with which they correlate.

#### Imaging

The invention also provides for imaging reagents. The differentially expressed leukocyte nucleotide sequences, diagnostic nucleotide sets, or portions thereof, and novel nucleotide sequences of the invention are nucleotide sequences of the invention are nucleotide sequences of the invention are nucleotide sequence(s) that is differentially expressed in a disease condition may localize within the body to sites that are of interest for imaging purposes. For example, a leukocyte expressing a nucleotide sequence(s) that are differentially expressed in an individual having atherosclerosis may localize or accumulate at the site of an atherosclerotic placque. Such leukocytes, when labeled, may provide a detection reagent for use in imaging regions of the body where labeled leukocyte accumulate or localize, for example, at the atherosclerotic plaque in the case of atherosclerosis. For example, leukocytes are collected from a subject, labeled in vitro, and reintroduced into a subject. Alternatively, the labeled reagent is introduced into the subject individual, and leukocyte labeling occurs within the patient.

Imaging agents that detect the imaging targets of the invention are produced by well-known molecular and immunological methods (for exemplary protocols, see, e.g., Ausubel, Berger, and Sambrook, as well as Harlow and Lane, supra).

For example, a full-length nucleic acid sequence, or alternatively, a gene fragment encoding an immunogenic peptide or polypeptide fragments, is cloned into a convenient expression vector, for

example, a vector including an in-frame epitope or substrate binding tag to facilitate subsequent purification. Protein is then expressed from the cloned cDNA sequence and used to generate antibodies, or other specific binding molecules, to one or more antigens of the imaging target protein. Alternatively, a natural or synthetic polypeptide (or peptide) or small molecule that specifically binds (or is specifically bound to) the expressed imaging target can be identified through well established techniques (see, e.g., Mendel et al. (2000) Anticancer Drug Des 15:29-41; Wilson (2000) Curr Med Chem 7:73-98; Hamby and Showwalter (1999) Pharmacol Ther 82:169-93; and Shimazawa et al. (1998) Curr Opin Struct Biol 8:451-8). The binding molecule, e.g., antibody, small molecule ligand, etc., is labeled with a contrast agent or other detectable label, e.g., gadolinium, iodine, or a gamma-emitting source. For in-vivo imaging of a disease process that involved leukocytes, the labeled antibody is infused into a subject, e.g., a human patient or animal subject, and a sufficient period of time is passed to permit binding of the antibody to target cells. The subject is then imaged with appropriate technology such as MRI (when the label is a gamma emitter).

# Identification of nucleotide sequence involved in leukocyte adhesion

The invention also encompasses a method of identifying nucleotide sequences involved in leukocyte adhesion. The interaction between the endothelial cell and leukocyte is a fundamental mechanism of all inflammatory disorders, including the diagnosis and prognosis of allograft rejection the diseases listed in Table 1. For example, the first visible abnormality in atherosclerosis is the adhesion to the endothelium and diapedesis of mononuclear cells (e.g., T-cell and monocyte). Insults to the endothelium (for example, cytokines, tobacco, diabetes, hypertension and many more) lead to endothelial cell activation. The endothelium then expresses adhesion molecules, which have counter receptors on mononuclear cells. Once the leukocyte receptors have bound the endothelial adhesion molecules, they stick to the endothelium, roll a short distance, stop and transmigrate across the endothelium. A similar set of events occurs in both acute and chronic inflammation. When the leukocyte binds the endothelial adhesion molecule, or to soluble cytokines secreted by endothelial or other cells, a program of gene expression is activated in the leukocyte. This program of expression leads to leukocyte rolling, firm adhesion and transmigration into the vessel wall or tissue parenchyma. Inhibition of this process is highly desirable goal in anti-inflammatory drug development. In addition, leukocyte nucleotide sequences and epithelial cell nucleotide sequences, that are differentially expressed during this process may be disease-specific target nucleotide sequences.

Human endothelial cells, e.g. derived from human coronary arteries, human aorta, human pulmonary artery, human umbilical vein or microvascular endothelial cells, are cultured as a confluent monolayer, using standard methods. Some of the endothelial cells are then exposed to cytokines or another activating stimuli such as oxidized LDL, hyperglycemia, shear stress, or hypoxia (Moser et al. 1992). Some endothelial cells are not exposed to such stimuli and serve as controls. For example, the endothelial cell monolayer is incubated with culture medium containing 5 U/ml of human recombinant IL-lalpha or 10 ng/ml TNF (tumor necrosis factor), for a period of minutes to overnight. The culture medium composition is changed or the flask is sealed to induce hypoxia. In addition, tissue culture plate is rotated to induce sheer stress.

Human T-cells and/or monocytes are cultured in tissue culture flasks or plates, with LGM-3 media from Cloneties. Cells are incubated at 37 degree C, 5% CO2 and 95% humidity. These leukocytes are exposed to the activated or control endothelial layer by adding a suspension of leukocytes on to the endothelial cell monolayer. The endothelial cell monolayer is cultured on a tissue culture treated plate/ flask or on a microporous membrane. After a variable duration of exposures, the endothelial cells and leukocytes are harvested separately by treating all cells with trypsin and then sorting the endothelial cells from the leukocytes by magnetic affinity reagents to an endothelial cell specific marker such as PECAM-1 (Stem Cell Technologies). RNA is extracted from the isolated cells by standard techniques. Leukocyte RNA is labeled as described above, and hybridized to leukocyte candidate nucleotide library. Epithelial cell RNA is also labeled and hybridized to the leukocyte candidate nucleotide library. Alternatively, the epithelial cell RNA is hybridized to a epithelial cell candidate nucleotide library, prepared according to the methods described for leukocyte candidate libraries, above.

Hybridization to candidate nucleotide libraries will reveal nucleotide sequences that are upregulated or down-regulated in leukocyte and/or epithelial cells undergoing adhesion. The
differentially regulated nucleotide sequences are further characterized, e.g. by isolating and sequencing
the full-length sequence, analysis of the DNA and predicted protein sequence, and functional
characterization of the protein product of the nucleotide sequence, as described above. Further
characterization may result in the identification of leukocyte adhesion specific target nucleotide
sequences, which may be candidate targets for regulation of the inflammatory process. Small molecule
or antibody inhibitors can be developed to inhibit the target nucleotide sequence function. Such
inhibitors are tested for their ability to inhibit leukocyte adhesion in the in vitro test described above.

### Integrated systems

Integrated systems for the collection and analysis of expression profiles, and molecular signatures, as well as for the compilation, storage and access of the databases of the invention, typically include a digital computer with software including an instruction set for sequence searching and analysis, and, optionally, high-throughput liquid control software, image analysis software, data interpretation software, a robotic control armature for transferring solutions from a source to a destination (such as a detection device) operably linked to the digital computer, an input device (e.g., a computer keyboard) for entering subject data to the digital computer, or to control analysis operations or high throughput sample transfer by the robotic control armature. Optionally, the integrated system further comprises an image scanner for digitizing label signals from labeled assay components, e.g., labeled nucleic acid hybridized to a candidate library microarray. The image scanner can interface with image analysis software to provide a measurement of the presence or intensity of the hybridized label, i.e., indicative of an on/off expression pattern or an increase or decrease in expression.

Readily available computational hardware resources using standard operating systems are fully adequate, e.g., a PC (Intel x86 or Pentium chip- compatible DOS, M OS2,TM WINDOWS,TM WINDOWS 95,TM WINDOWS 95,TM WINDOWS 95,TM LINUX, or even Macintosh, Sun or PCs will suffice) for use in the integrated systems of the invention. Current art in software technology is similarly adequate (i.e., there are a multitude of mature programming languages and source code

suppliers) for design, e.g., of an upgradeable open-architecture object-oriented heuristic algorithm, or instruction set for expression analysis, as described herein. For example, software for aligning or otherwise manipulating, molecular signatures can be constructed by one of skill using a standard programming language such as Visual basic, Fortran, Basic, Java, or the like, according to the methods herein

Various methods and algorithms, including genetic algorithms and neural networks, can be used to perform the data collection, correlation, and storage functions, as well as other desirable functions, as described herein. In addition, digital or analog systems such as digital or analog computer systems can control a variety of other functions such as the display and/or control of input and output files

For example, standard desktop applications such as word processing software (e.g., Corel WordPerfect™ or Microsoft WordP™) and database software (e.g., spreadsheet software such as Corel Quattro Pro™, Microsoft Excel™, or database programs such as Microsoft Access™ or Paradox™) can be adapted to the present invention by inputting one or more character string corresponding, e.g., to an expression pattern or profile, subject medical or historical data, molecular signature, or the like, into the software which is loaded into the memory of a digital system, and carrying out the operations indicated in an instruction set, e.g., as exemplified in Figure 2. For example, systems can include the foregoing software having the appropriate character string information, e.g., used in conjunction with a user interface in conjunction with a observable of the string information, e.g., used in conjunction with a user interface in conjunction with a standard operating system such as a Windows, Macintosh or LINUX system. For example, an instruction set for manipulating strings of characters, either by programming the required operations into the applications or with the required operations performed manually by a user (or both). For example, specialized sequence alignment programs such as PILEUP or BLAST can also be incorporated into the systems of the invention, e.g., for alignment of nucleic acids or proteins for corresponding character strings).

Software for performing the statistical methods required for the invention, e.g., to determine correlations between expression profiles and subsets of members of the diagnostic nucleotide libraries, such as programmed embodiments of the statistical methods described above, are also included in the computer systems of the invention. Alternatively, programming elements for performing such methods as principle component analysis (PCA) or least squares analysis can also be included in the digital system to identify relationships between data. Exemplary software for such methods is provided by Partek, Inc., St. Peter, Mo; at the web site partek.com.

Any controller or computer optionally includes a monitor which can include, e.g., a flat panel display (e.g., active matrix liquid crystal display, liquid crystal display), a cathode ray tube ("CRT") display, or another display system which serves as a user interface, e.g., to output predictive data. Computer circuitry, including numerous integrated circuit chips, such as a microprocessor, memory, interface circuits, and the like, is often placed in a casing or box which optionally also includes a hard disk drive, a floppy disk drive, a high capacity removable drive such as a writeable CD-ROM, and other common peripheral elements.

Inputting devices such as a keyboard, mouse, or touch sensitive screen, optionally provide for input from a user and for user selection, e.g., of sequences or data sets to be compared or otherwise

manipulated in the relevant computer system. The computer typically includes appropriate software for receiving user instructions, either in the form of user input into a set parameter or data fields (e.g., to input relevant subject data), or in the form of preprogrammed instructions, e.g., preprogrammed for a variety of different specific operations. The software then converts these instructions to appropriate laneuace for instructing the system to carry out any desired operation.

The integrated system may also be embodied within the circuitry of an application specific integrated circuit (ASIC) or programmable logic device (PLD). In such a case, the invention is embodied in a computer readable descriptor language that can be used to create an ASIC or PLD. The integrated system can also be embodied within the circuitry or logic processors of a variety of other dividual annaratus, such as PDAs, lanton computer systems, displays, image editing equipment, etc.

The digital system can comprise a learning component where expression profiles, and relevant subject data are compiled and monitored in conjunction with physical assays, and where correlations, e.g., molecular signatures with predictive value for a disease, are established or refined. Successful and unsuccessful combinations are optionally documented in a database to provide justification/preferences for user-base or digital system based selection of diagnostic nucleotide sets with high predictive accuracy for a specified disease or condition.

The integrated systems can also include an automated workstation. For example, such a workstation can prepare and analyze leukcoyte RNA samples by performing a sequence of events including: preparing RNA from a human blood sample; labeling the RNA with an isotopic or non-isotopic label; hybridizing the labeled RNA to at least one array comprising all or part of the candidate library; and detecting the hybridization pattern. The hybridization pattern is digitized and recorded in the appropriate database.

### Automated RNA preparation tool

The invention also includes an automated RNA preparation tool for the preparation of mononuclear cells from whole blood samples, and preparation of RNA from the mononuclear cells. In a preferred embodiment, the use of the RNA preparation tool is fully automated, so that the cell separation and RNA isolation would require no human manipulations. Full automation is advantageous because it minimizes delay, and standardizes sample preparation across different laboratories. This standardization increases the reproducibility of the results.

Figure 2 depicts the processes performed by the RNA preparation tool of the invention. A primary component of the device is a centrifuge (A). Tubes of whole blood containing a density gradient solution, transcription/translation inhibitors, and a gel barrier that separates cythrocytes from mononuclear cells and serum after centrifugation are placed in the centrifuge (B). The barrier is permeable to erythrocytes and granulocytes during centrifugation, but does not allow mononuclear cells to pass through (or the barrier substance has a density such that mononuclear cells remain above the level of the barrier during the centrifugation). After centrifugation, the crythrocytes and granulocytes are trapped beneath the barrier, facilitating isolation of the mononuclear cell and serum layers. A mechanical arm removes the tube and inverts it to mix the mononuclear cell layer and the serum (C). The arm next pours the supernatant into a fresh tube (D), while the crythrocytes and granulocytes remained below the barrier. Alternatively, a needle is used to aspirate the supernatant and

transfer it to a fresh tube. The mechanical arms of the device opens and closes lids, dispenses PBS to aid in the collection of the mononuclear cells by centrifugation, and moves the tubes in and out of the centrifuge. Following centrifugation, the supernatant is poured off or removed by a vacuum device (E), leaving an isolated mononuclear cell pellet. Purification of the RNA from the cells is performed automatically, with lysis buffer and other purification solutions (F) automatically dispensed and removed before and after centrifugation steps. The result is a purified RNA solution. In another embodiment, RNA isolation is performed using a column or filter method. In yet another embodiment, the invention includes an on-board homogenizer for use in cell lysis.

### Other automated systems

Automated and/or semi-automated methods for solid and liquid phase high-throughput sample preparation and evaluation are available, and supported by commercially available devices. For example, robotic devices for preparation of nucleic acids from bacterial colonies, e.g., to facilitate production and characterization of the candidate library include, for example, an automated colony production and characterization of the candidate library include, for example, an automated colony picker (e.g., the Q-bot, Genetix, U.K.) capable of identifying, sampling, and inoculating up to 10,000/4 hrs different clones into 96 well microtiter dishes. Alternatively, or in addition, robotic systems for liquid handling are available from a variety of sources, e.g., automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Beckman Coulter, Inc. (Fullerton, CA)) which mimic the manual operations performed by a scientist. Any of the above devices are suitable for use with the present invention, e.g., for high-throughput analysis of library components or subject leukocyte samples. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art.

High throughput screening systems that automate entire procedures, e.g., sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the relevant assay are commercially available. (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. Similarly, arrays and array readers are available, e.g., from Affymetrix, PE Biosystems, and others.

The manufacturers of such systems provide detailed protocols the various high throughput.

Thus, for example, Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

A variety of commercially available peripheral equipment, including, e.g., optical and fluorescent detectors, optical and fluorescent microscopes, plate readers, CCD arrays, phosphorimagers, scintillation counters, phototubes, photodiodes, and the like, and software is available for digitizing, storing and analyzing a digitized video or digitized optical or other assay results, e.g., using PC (Intel x86 or pentium chip- compatible DOSTM, OS2TM WINDOWSTM, WINDOWS NTTM or WINDOWS95TM based machines), MACINTOSHTM, or UNIX based (e.g., SUNTM work station) computers.

#### Embodiment in a web site.

The methods described above can be implemented in a localized or distributed computing environment. For example, if a localized computing environment is used, an array comprising a candidate nucleotide library, or diagnostic nucleotide set, is configured in proximity to a detector, which is, in turn, linked to a computational device equipped with user input and output features.

In a distributed environment, the methods can be implemented on a single computer with multiple processors or, alternatively, on multiple computers. The computers can be linked, e.g. through a shared bus, but more commonly, the computer(s) are nodes on a network. The network can be generalized or dedicated, at a local level or distributed over a wide geographic area. In certain embodiments, the computers are components of an intra-net or an internet.

The predictive data corresponding to subject molecular signatures (e.g., expression profiles, and related diagnostic, prognostic, or monitoring results) can be shared by a variety of parties. In particular, such information can be utilized by the subject, the subject's health care practitioner or provider, a company or other institution, or a scientist. An individual subject's data, a subset of the database or the entire database recorded in a computer readable medium can be accessed directly by a user by any method of communication, including, but not limited to, the internet. With appropriate computational devices, integrated systems, communications networks, users at remote locations, as well as users located in proximity to, e.g., at the same physical facility, the database can access the recorded information. Optionally, access to the database can be controlled using unique alphanumeric passwords that provide access to a subset of the data. Such provisions can be used, e.g., to ensure privacy, anonymity, etc.

Typically, a client (e.g., a patient, practitioner, provider, scientist, or the like) executes a Web browser and is linked to a server computer executing a Web server. The Web browser is, for example, a program such as IBM's Web Explorer, Internet explorer, NetScape or Mosaic, or the like. The Web server is typically, but not necessarily, a program such as IBM's HTTP Daemon or other WWW daemon (e.g., LINUX-based forms of the program). The client computer is bi-directionally coupled with the server computer over a line or via a wireless system. In turn, the server computer is bi-directionally coupled with a website (server hosting the website) providing access to software implementing the methods of this invention.

A user of a client connected to the Intranet or Internet may cause the client to request resources that are part of the web site(s) hosting the application(s) providing an implementation of the methods described herein. Server program(s) then process the request to return the specified resources (assuming they are currently available). A standard naming convention has been adopted, known as a Uniform Resource Locator ("URL"). This convention encompasses several types of location names, presently including subclasses such as Hypertext Transport Protocol ("http"), File Transport Protocol ("ftp"), gopher, and Wide Area Information Service ("WAIS"). When a resource is downloaded, it may include the URLs of additional resources. Thus, the user of the client can easily learn of the existence of new resources that he or she had not specifically requested.

Methods of implementing Intranet and/or Intranet embodiments of computational and/or data access processes are well known to those of skill in the art and are documented, e.g., in ACM Press, pp.

383-392; ISO-ANSI, Working Draft, "Information Technology-Database Language SQL", Jim Melton, Editor, International Organization for Standardization and American National Standards Institute, Jul. 1992; ISO Working Draft, "Database Language SQL-Part 2:Foundation (SQL/Foundation)", CD9075-2:199.chi.SQL, Sep. 11, 1997; and Cluer et al. (1992) A General Framework for the Optimization of Object-Oriented Queries, Proc SIGMOD International Conference on Management of Data, San Diego, California, Jun. 2-5, 1992, SIGMOD Record, vol. 21, Issue 2, Jun., 1992; Stonebraker, M., Editor,. Other resources are available, e.g., from Microsoft, IBM, Sun and other software development companies.

Using the tools described above, users of the reagents, methods and database as discovery or diagnostic tools can query a centrally located database with expression and subject data. Each submission of data adds to the sum of expression and subject information in the database. As data is added, a new correlation statistical analysis is automatically run that incorporates the added clinical and expression data. Accordingly, the predictive accuracy and the types of correlations of the recorded molecular signatures increases as the database grows.

For example, subjects, such as patients, can access the results of the expression analysis of their leukocyte samples and any accrued knowledge regarding the likelihood of the patient's belonging to any specified diagnostic (or prognostic, or monitoring, or risk group), i.e., their expression profiles, and/or molecular signatures. Optionally, subjects can add to the predictive accuracy of the database by providing additional information to the database regarding diagnoses, test results, clinical or other related events that have occurred since the time of the expression profiling. Such information can be provided to the database via any form of communication, including, but not limited to, the internet, Such data can be used to continually define (and redefine) diagnostic groups. For example, if 1000 patients submit data regarding the occurrence of myocardial infarction over the 5 years since their expression profiling, and 300 of these patients report that they have experienced a myocardial infarction and 700 report that they have not, then the 300 patients define a new "group A." As the algorithm is used to continually query and revise the database, a new diagnostic nucleotide set that differentiates groups A and B (i.e., with and without myocardial infarction within a five year period) is identified. This newly defined nucleotide set is then be used (in the manner described above) as a test that predicts the occurrence of myocardial infarction over a five-year period. While submission directly by the patient is exemplified above, any individual with access and authority to submit the relevant data e.g., the patient's physician, a laboratory technician, a health care or study administrator, or the like, can do so.

As will be apparent from the above examples, transmission of information via the internet (or via an intranet) is optionally bi-directional. That is, for example, data regarding expression profiles, subject data, and the like are transmitted via a communication system to the database, while information regarding molecular signatures, predictive analysis, and the like, are transmitted from the database to the user. For example, using appropriate configurations of an integrated system including a microarray comprising a diagnostic nucleotide set, a detector linked to a computational device can directly transmit (locally or from a remote workstation at great distance, e.g., hundreds or thousands of miles distant from the database) expression profiles and a corresponding individual identifier to a

central database for analysis according to the methods of the invention. According to, e.g., the algorithms described above, the individual identifier is assigned to one or more diagnostic (or prognostic, or monitoring, etc.) categories. The results of this classification are then relayed back, via, e.g., the same mode of communication, to a recipient at the same or different internet (or intranet) address.

Kits

The present invention is optionally provided to a user as a kit. Typically, a kit contains one or more diagnostic nucleotide sets of the invention. Alternatively, the kit contains the candidate nucleotide library of the invention. Most often, the kit contains a diagnostic nucleotide probe set, or other subset of a candidate library, e.g., as a cDNA or antibody microarray packaged in a suitable container. The kit may further comprise, one or more additional reagents, e.g., substrates, labels, primers, for labeling expression products, tubes and/or other accessories, reagents for collecting blood samples, buffers, e.g., erythrocyte lysis buffer, leukocyte lysis buffer, hybridization chambers, cover slips, etc., as well as a software package, e.g., including the statistical methods of the invention, e.g., as described above, and a password and/or account number for accessing the compiled database. The kit optionally further comprises an instruction set or user manual detailing preferred methods of using the diagnostic nucleotide sets in the methods of the invention. In one embodiment, the kit may include contents useful for the discovery of diagnostic nucleotide sets using microarrays. The kit may include sterile, endotoxin and RNAse free blood collection tubes. The kit may also include alcohol swabs, tourniquet, blood collection set, and/or PBS (phosphate buffer saline; needed when method of example 2 is used to derived mononuclear RNA). The kit may also include cell lysis buffer. The kit may include RNA isolation kit, substrates for labeling of RNA (may vary for various expression profiling techniques). The kit may also include materials for fluorescence microarray expression profiling, including one or more of the following: reverse transcriptase and 10x RT buffer, T7(dT)24 primer (primer with T7 promoter at 5' end), DTT, deoxynucleotides, optionally 100mM each, RNAse inhibitor, second strand cDNA buffer, DNA polymerase, Rnase H, T7 RNA polymerase ribonucleotides, in vitro transcription buffer, and/or Cy3 and Cy5 labeled ribonucleotides. The kit may also include microarrays containing candidate gene libraries, cover slips for slides, and/or hybridization chambers. The kit may further include software package for identification of diagnostic gene set from data, that contains statistical methods, and/or allows alteration in desired sensitivity and specificity of gene set. The software may further facilitate access to and data analysis by centrally a located database server. The software may further include a password and account number to access central database server. In addition, the kit may include a kit user manual.

In another embodiment, the kit may include contents useful for the application of diagnostic nucleotide sets using microarrays. The kit may include sterile, endotoxin and/or RNAse free blood collection tubes. The kit may also include, alcohol swabs, tourniquet, and/or a blood collection set. The kit may further include PBS (phosphate buffer saline; needed when method of example 2 is used to derived mononuclear RNA), cell lysis buffer, and/or an RNA isolation kit. In addition, the kit may include substrates for labeling of RNA (may vary for various expression profiling techniques). For fluorescence microarray expression profiling, components may include reverse transcriptase and 10x

RT buffer, T7(dT)24 primer (primer with T7 promoter at 5' end), DTT, deoxynucleotides (optionally 100mM each), RNAse inhibitor, second strand cDNA buffer, DNA polymerase, Rnase H, T7 RNA polymerase, ribonucleotides, in vitro transcription buffer, and/or C/3 and C/5 labeled ribonucleotides. The kit may further include microarrays containing candidate gene libraries. The kit may also include cover slips for slides, and/or hybridization chambers. The kit may include a software package for identification of diagnostic gene set from data. The software package may contain statistical methods, allow alteration in desired sensitivity and specificity of gene set, and/or facilitate access to and data analysis by centrally located database server. The software package may include a password and account number to access central database server. In addition, the kit may include a kit user manual,

In another embodiment, the kit may include contents useful for the application of diagnostic nucleotide sets using real-time PCR. This kit may include terile, endotoxin and/or RNAse free blood collection tubes. The kit may further include alcohol swabs, tourniquet, and/or a blood collection set. The kit may also include PBS (phosphate buffer saline; needed when method of example 2 is used to derived mononuclear RNA). In addition, the kit may include cell lysis buffer and/or an RNA isolation kit. The kit may laso include substrates for real time RT-PCR, which may vary for various real-time PCR techniques, including poly dT primers, random hexamer primers, reverse Transcriptase and RT buffer, DTT, deoxynucleotides 100 mM, RNase H, primer pairs for diagnostic and control gene set. 10x PCR reaction buffer, and/or Taq DNA polymerase. The kit may also include fluorescent probes for diagnostic and control gene set (alternatively, fluorescent dye that binds to only double stranded DNA). The kit may further include reaction tubes with or without barcode for sample tracking, 96-well plates with barcode for sample identification, one barcode for entire set, or individual barcode per reaction tube in plate. The kit may also include a software package for identification of diagnostic gene set from data, and /or statistical methods. The software package may allow alteration in desired sensitivity and specificity of gene set, and/or facilitate access to and data analysis by centrally located database server. The kit may include a password and account number to access central database server. Finally, the kit may include a kit user manual.

This invention will be better understood by reference to the following non-limiting Examples: LIST OF EXAMPLE TITLES

Example 1: Preparation of a leukocyte cDNA array comprising a candidate gene library Example 2: Preparation of RNA from mononuclear cells for expression profiling

Example 3: Preparation of Universal Control RNA for use in leukocyte expression profiling

Example 4. RNA Labeling and hybridization to a leukocyte cDNA array of candidate nucleotide sequences.

Example 5: Clinical study for the Identification of diagnostic gene sets useful in diagnosis and treatment of Cardiac allograft rejection

Example 6: Identification of diagnostic nucleotide sets for kidney and liver allograft rejection

Example 7: Identification of diagnostic nucleotide sets for diagnosis of cytomegalovirus

Example 8: Design of oligonucleotide probes

Example 9: Production of an array of 8,000 spotted 50 mer oligonucleotides.

Example 10: Identification of diagnostic nucleotide sets for diagnosis of Cardiac Allograft Rejection using microarrays

Example 11: Amplification, labeling, and hybridization of total RNA to an oligonucleotide microarray Example 12: Real-time PCR validation of array expression results

Example 13: Real-time PCR expression markers of acute allograft rejection

Example 14: Identification of diagnostic nucleotide sets for diagnosis of Cardiac Allograft Rejection using microarrays

Example 15: Correlation and Classification Analysis

Example 16: Acute allograft rejection: biopsy tissue gene expression profiling

Example 17: Microarray and PCR gene expression panels for diagnosis and monitoring of acute allograft rejection

Example 18: Assav sample preparation

Example 19: Allograft rejection diagnostic gene sequence analysis

Example 20: Detection of proteins expressed by diagnostic gene sequences

Example 21: Detecting changes in the rate of hematopoiesis

#### Examples

# Example 1: Preparation of a leukocyte cDNA array comprising a candidate gene library

Candidate genes and gene sequences for leukocyte expression profiling are identified through methods described elsewhere in this document. Candidate genes are used to obtain or design probes for peripheral leukocyte expression profiling in a variety of ways.

A cDNA microarray carrying 384 probes was constructed using sequences selected from the initial candidate library. cDNAs is selected from T-cell libraries, PBMC libraries and buffy coat libraries. 96-Well PCR

Plasmids are isolated in 96-well format and PCR was performed in 96-well format. A master mix is made that contain the reaction buffer, dNTPs, forward and reverse primer and DNA polymerase was made. 99 ul of the master mix was aliquoted into 96-well plate. 1 ul of plasmid (1-2 ng/ul) of plasmid was added to the plate. The final reaction concentration was 10 mM Tris pH 8.3, 3.5 mM MgCl2, 25 mM KCl, 0.4 mM dNTPs, 0.4 uM M13 forward primer, 0.4 M13 reverse primer, and 10 U of Taq Gold (Applied Biosyystems). The PCR conditions were:

Step 1 95C for 10 min

Step 2 95C for 15 sec

Step 3 56C for 30 sec

Step 4 72C for 2 min 15 seconds

Step 5 go to Step 2 39 times

Step 6 72C for 10 minutes

Step 7 4C for ever.

PCR Purification

PCR purification is done in a 96-well format. The Arraylt (Telechem International, Inc.) PCR purification kit is used and the provided protocol was followed without modification. Before the

sample is evaporated to dryness, the concentration of PCR products was determined using a spectrophotometer. After evaporation, the samples are re-suspended in 1x Micro Spotting Solution (Arraylt) so that the majority of the samples were between 0.2-1.0 ug/ul.

#### Array Fabrication

Spotted cDNA microarrays are then made from these PCR products by Arraylt using their protocols, which may be found at the Arraylt website. Each fragment was spotted 3 times onto each array. Candidate genes and gene sequences for leukocyte expression profiling are identified through methods described elsewhere in this document. Those candidate genes are used for peripheral leukocyte expression profiling. The candidate libraries can used to obtain or design probes for expression profiling in a variety of ways.

Oligonucleotide probes are prepared using the gene sequences of Table 2, Table 8, and the sequence listing. Oligo probes are designed on a contract basis by various companies (for example, Compugen, Mergen, Affymetrix, Telechem), or designed from the candidate sequences using a variety of parameters and algorithms as indicated at located at the MIT web site. Briefly, the length of the oligonucleotide to be synthesized is determined, preferably greater than 18 nucleotides, generally 18-24 nucleotides, 24-70 nucleotides and, in some circumstances, more than 70 nucleotides. The sequence analysis algorithms and tools described above are applied to the sequences to mask repetitive elements, vector sequences and low complexity sequences. Oligonucleotides are selected that are specific to the candidate nucleotide sequence (based on a Blast in search of the oligonucleotide sequence in question against gene sequences databases, such as the Human Genome Sequence, UniGene, dbEST or the non-redundant database at NCBI), and have <50% G content and 25-70% G+C content. Desired oligonucleotides are synthesized using well-known methods and apparatus, or ordered from a company (for example Sigma). Oligonucleotides are synthesized using wall-known methods and apparatus, or ordered from a company (for example Sigma). Oligonucleotides are synthesized using wall-known methods and sparatus, or ordered from a company (for example Sigma). Oligonucleotides are synthesized using wall-known methods and sparatus, or ordered from a company (for example Sigma). Oligonucleotides are synthesized using wall-known methods and sparatus, or ordered from a company (for example Sigma). Oligonucleotides are synthesized using wall-known methods and sparatus, or ordered from a company (for example Sigma). Oligonucleotides are synthesized using wall-known methods and apparatus, or ordered from a company (for example Sigma).

Example 2: Preparation of RNA from mononuclear cells for expression profiling

Blood was isolated from the subject for leukocyte expression profiling using the following methods: Two tubes were drawn per patient. Blood was drawn from either a standard peripheral venous blood draw or directly from a large-bore intra-arterial or intravenous catheter inserted in the femoral artery, femoral vein, subclavian vein or internal jugular vein. Care was taken to avoid sample contamination with heparin from the intravascular catheters, as heparin can interfere with subsequent RNA reactions. For each tube, 8 ml of whole blood was drawn into a tube (CPT, Becton-Dickinson order #362753) containing the anticoagulant Citrate, 25°C density gradient solution (e.g. Ficoll, Percoll) and a polyester gel barrier that upon centrifugation was permeable to RBCs and granulocytes but not to mononuclear cells. The tube was inverted several times to mix the blood with the anticoagulant. The tubes were centrifuged at 1750xg in a swing-out rotor at room temperature for 20 minutes. The tubes were removed from the centrifuge and inverted 5-10 times to mix the plasma with the mononuclear cells, while trapping the RBCs and the granulocytes beneath the gel barrier. The plasma/mononuclear cell mix was decanted into a 15ml tube and 5ml of phosphate-buffered saline (PBS) is added. The 15ml tubes were spun for 5 minutes at 1750xg to pellet the cells. The supermatant was discarded and

1.8 ml of RLT lysis buffer is added to the mononuclear cell pellet. The buffer and cells were pipetted up and down to ensure complete lysis of the pellet. The cell lysate was frozen and stored until it is convenient to proceed with isolation of total RNA.

Total RNA was purified from the lysed mononuclear cells using the Qiagen Rneasy Miniprep kii, as directed by the manufacturer (10/99 version) for total RNA isolation, including homogenization (Qiashredder columns) and on-column DNase treatment. The purified RNA was etuted in 50ul of water. The further use of RNA prepared by this method is described in Examples 10 and 11. Some samples were prepared by a different protocol, as follows:

Two 8 ml blood samples were drawn from a peripheral vein into a tube (CPT, Becton-Dickinson order #362753) containing anticoagulant (Citrate), 25°C density gradient solution (Ficoll) and a polyester gel barrier that upon centrifugation is permeable to RBCs and granulocytes but not to mononuclear cells. The mononuclear cells and plasma remained above the barrier while the RBCs and granulocytes were trapped below. The tube was inverted several times to mix the blood with the anticoagulant, and the tubes were subjected to centrifugation at 1750xg in a swing-out rotor at room temperature for 20 min. The tubes were removed from the centrifuge, and the clear plasma layer above the cloudy mononuclear cell layer was aspirated and discarded. The cloudy mononuclear cell layer was aspirated, with care taken to rinse all of the mononuclear cells from the surface of the gel barrier with PBS (phosphate buffered saline). Approximately 2 mls of mononuclear cell suspension was transferred to a 2ml microcentrifuge tube, and centrifuged for 3min. at 16,000 rpm in a microcentrifuge to pellet the cells. The supermatant was discarded and 1.8 ml of RLT lysis buffer (Qiagen) were added to the mononuclear cell pellet, which lysed the cells and inactivated Rnases. The cells and lysis buffer were pipetted up and down to ensure complete lysis of the pellet. Cell lysate was frozen and stored until it was convenient to proceed with isolation of total RNA.

RNA samples were isolated from 8 mL of whole blood. Yields ranged from 2 ug to 20ug total RNA for 8mL blood. A260/A280 spectrophotometric ratios were between 1.6 and 2.0, indicating purity of sample. 2ul of each sample were run on an agarose gel in the presence of ethidium bromide. No degradation of the RNA sample and no DNA contamination was visible.

In some cases, specific subsets of mononuclear cells were isolated from peripheral blood of human subjects. When this was done, the StemSep cell separation kits (manual version 6.0.0) were used from StemCell Technologies (Vancouver, Canada). This same protocol can be applied to the isolation of T cells, CD4 T cells, CD8 T cells, B cells, monocytes, NK cells and other cells. Isolation of cell types using negative selection with antibodies may be desirable to avoid activation of target cells by antibodies.

Example 3: Preparation of Universal Control RNA for use in leukocyte expression profiling

Control RNA was prepared using total RNA from Buffy coats and/or total RNA from enriched mononuclear cells isolated from Buffy coats, both with and without stimulation with ionomycin and PMA. The following control RNAs were prepared:

Control 1: Buffy Coat Total RNA

Control 2: Mononuclear cell Total RNA

Control 3: Stimulated buffy coat Total RNA

Control 4: Stimulated mononuclear Total RNA

Control 5: 50% Buffy coat Total RNA / 50% Stimulated buffy coat Total RNA

Control 6: 50% Mononuclear cell Total RNA / 50% Stimulated Mononuclear Total RNA

Some samples were prepared using the following protocol. Buffy coats from 38 individuals were obtained from Stanford Blood Center. Each buffy coat is derived from ~350 mL whole blood from one individual. 10 ml buffy coat was removed from the bag, and placed into a 50 ml tube. 40 ml of Buffer EL (Qiagen) was added, the tube was mixed and placed on ice for 15 minutes, then cells were pelleted by centrifugation at 2000xg for 10 minutes at 4°C. The supernatant was decanted and the cell pellet was re-suspended in 10 ml of Qiagen Buffer EL. The tube was then centrifuged at 2000xg for 10 minutes at 4°C. The cell pellet was then re-suspended in 20 ml TRIZOL (GibcoBRL) per Buffy coat sample, the mixture was shredded using a rotary homogenizer, and the lysate was then frozen at -80°C prior to proceeding to RNA isolation.

Other control RNAs were prepared from enriched mononuclear cells prepared from Buffy coats. Buffy coats from Stanford Blood Center were obtained, as described above. 10 ml buffy coat was added to a 50 ml polypropylene tube, and 10 ml of phosphate buffer saline (PBS) was added to each tube. A polysucrose (5.7 g/dL) and sodium diatrizoate (9.0 g/dL) solution at a 1.077 +/-0.0001 g/ml density solution of equal volume to diluted sample was prepared (Histopaque 1077, Sigma cat, no 1077-1). This and all subsequent steps were performed at room temperature. 15 ml of diluted buffy coat/PBS was layered on top of 15 ml of the histopague solution in a 50 ml tube. The tube was centrifuged at 400xg for 30 minutes at room temperature. After centrifugation, the upper layer of the solution to within 0.5 cm of the opaque interface containing the mononuclear cells was discarded. The opaque interface was transferred into a clean centrifuge tube. An equal volume of PBS was added to each tube and centrifuged at 350xg for 10 minutes at room temperature. The supernatant was discarded. 5 ml of Buffer EL (Qiagen) was used to resuspend the remaining cell pellet and the tube was centrifuged at 2000xg for 10 minutes at room temperature. The supernatant was discarded. The pellet was resuspended in 20 ml of TRIZOL (GibcoBRL) for each individual buffy coat that was processed. The sample was homogenized using a rotary homogenizer and frozen at -80C until RNA was isolated. RNA was isolated from frozen lysed Buffy coat samples as follows: frozen samples were thawed, and 4 ml of chloroform was added to each buffy coat sample. The sample was mixed by vortexing and centrifuged at 2000xg for 5 minutes. The aqueous layer was moved to new tube and then repurified by using the RNeasy Maxi RNA clean up kit, according to the manufacturer's instruction (Qiagen, PN 75162). The yield, purity and integrity were assessed by spectrophotometer and gel electrophoresis. Some samples were prepared by a different protocol, as follows. The further use of RNA prepared using this protocol is described in Example 11.

50 whole blood samples were randomly selected from consented blood donors at the Stanford Medical School Blood Center. Each buffy coat sample was produced from ~350 mL of an individual's donated blood. The whole blood sample was centrifuged at ~4,400 x g for 8 minutes at room temperature, resulting in three distinct layers: a top layer of plasma, a second layer of buffy coat, and a third layer of red blood cells. 25 ml of the buffy coat fraction was obtained and diluted with an equal volume of PBS (phosphate buffered saline). 30 ml of diluted buffy coat was layered onto 15 ml of sodium diatrizoate

solution adjusted to a density of 1.077+/-0.001 g/ml (Histopaque 1077, Sigma) in a 50mL plastic tube. The tube was spun at 800 g for 10 minutes at room temperature. The plasma layer was removed to the 30 ml mark on the tube, and the mononuclear cell layer removed into a new tube and washed with an equal volume of PBS, and collected by centrifugation at 2000 g for 10 minutes at room temperature. The cell pellet was resuspended in 10 ml of Buffer EL (Qiagen) by vortexing and incubated on ice for 10 minutes to remove any remaining erthythrocytes. The mononuclear cells were spun at 2000 g for 10 minutes at 4 degrees Celsius. The cell pellet was lysed in 25 ml of a phenol/guanidinium thiocyanate solution (TRIZOL Reagent, Invitrogen). The sample was homogenized using a PowerGene 5 rotary homogenizer (Fisher Scientific) and Omini disposable generator probes (Fisher Scientific). The Trizol Ivsate was frozen at -80 degrees C until the next step.

The samples were thawed out and incubated at room temperature for 5 minutes. 5 ml chloroform was added to each sample, mixed by vortexing, and incubated at room temperature for 3 minutes. The aqueous layers were transferred to new 50 ml tubes. The aqueous layer containing total RNA was further purified using the Qiagen RNeasy Maxi kit (PN 75162), per the manufacturer's protocol (October 1999). The columns were eluted twice with 1 ml Rnase-free water, with a minute incubation before each spin. Quantity and quality of RNA was assessed using standard methods. Generally, RNA was isolated from batches of 10 buffy coats at a time, with an average yield per buffy coat of 870 µg, and an estimated total yield of 43.5 mg total RNA with a 260/280 ratio of 1.56 and a 285/18S ratio of 1.78.

Quality of the RNA was tested using the Agilent 2100 Bioanalyzer using RNA 6000 microfluidics chips. Analysis of the electrophorgrams from the Bioanalyzer for five different batches demonstrated the reproducibility in quality between the batches.

Total RNA from all five batches were combined and mixed in a 50 ml tube, then aliquoted as follows: 2 x 10 ml aliquots in 15 ml tubes, and the rest in 100 µl aliquots in 1.5 ml microcentrifuge tubes. The aliquots gave highly reproducible results with respect to RNA purity, size and integrity. The RNA was stored at -80°C.

## Test hybridization of Reference RNA.

When compared with BC38 and Stimulated mononuclear reference samples, the R50 performed as well, if not better than the other reference samples as shown in Figure 3. In an analysis of hybridizations, where the R50 targets were fluorescently labeled with Cy-5 using methods described herein and the amplified and labeled aRNA was hybridized (as in example 11) to the olignoucleotide array described in example 9. The R50 detected 97.3% of probes with a Signal to Noise ratio (S/N) of greater than three and 99.9 % of probes with S/N greater than one.

Example 4. RNA Labeling and hybridization to a leukocyte cDNA array of candidate nucleotide sequences.

#### Comparison of Guanine-Silica to Acid-Phenol RNA Purification (GSvsAP)

These data are from a set of 12 hybridizations designed to identify differences between the signal strength from two different RNA purification methods. The two RNA methods used were guanidine silica (GS, Qiagen) and acid-phenol (AP, Trizol, Gibco BRL). Ten tubes of blood were drawn from each of four people. Two were used for the AP prep, the other eight were used for the GS prep. The

protocols for the leukocyte RNA preps using the AP and GS techniques were completed as described here:

#### Guanidine-silica (GS) method:

For each tube, 8ml blood was drawn into a tube containing the anticoagulant Citrate, 25°C density gradient solution and a polyester gel barrier that upon centrifugation is permeable to RBCs and granulocytes but not to mononuclear cells. The mononuclear cells and plasma remained above the barrier while the RBCs and granulocytes were trapped below. CPT tubes from Becton-Dickinson (#362753) were used for this purpose. The tube was inverted several times to mix the blood with the anticoagulant. The tubes were immediately centrifuged @1750xg in a swinging bucket rotor at room temperature for 20 min. The tubes were removed from the centrifuge and inverted 5-10 times. This mixed the plasma with the mononuclear cells, while the RBCs and the granulocytes remained trapped beneath the gel barrier. The plasma/mononuclear cell mix was decanted into a 15ml tube and 5ml of phosphate-buffered saline (PBS) was added. The 15ml tubes are spun for 5 minutes at 1750xg to pellet the cells. The supernatant was discarded and 1.8 ml of RLT lysis buffer (guanidine isothyocyanate) was added to the mononuclear cell pellet. The buffer and cells were pipetted up and down to ensure complete lysis of the pellet. The cell lysate was then processed exactly as described in the Qiagen Rneasy Miniprep kit protocol (10/99 version) for total RNA isolation (including steps for homogenization (Qiashredder columns) and on-column DNase treatment. The purified RNA was eluted in 50ul of water.

#### Acid-phenol (AP) method:

For each tube, 8ml blood was drawn into a tube containing the anticoagulant Citrate, 25°C density gradient solution and a polyester gel barrier that upon centrifugation is permeable to RBCs and granulocytes but not to mononuclear cells. The mononuclear cells and plasma remained above the barrier while the RBCs and granulocytes were trapped below. CPT tubes from Becton-Dickinson (#362753) were used for this purpose. The tube was inverted several times to mix the blood with the anticoagulant. The tubes were immediately centrifuged @1750xg in a swinging bucket rotor at room temperature for 20 min. The tubes were removed from the centrifuge and inverted 5-10 times. This mixed the plasma with the mononuclear cells, while the RBCs and the granulocytes remained trapped beneath the gel barrier. The plasma/mononuclear cell mix was decanted into a 15ml tube and 5ml of phosphate-buffered saline (PBS) was added. The 15ml tubes are spun for 5 minutes @1750xg to pellet the cells. The supermatant was discarded and the cell pellet was lysed using 0.6 mL Phenol/guanidine isothyocynate (e.g. Trizol reagent, GibcoBRL). Subsequent total RNA isolation proceeded using the manufacturers protocol.

RNA from each person was labeled with either Cy3 or Cy5, and then hybridized in pairs to the miniarray. For instance, the first array was hybridized with GS RNA from one person (Cy3) and GS RNA from a second person (Cy5).

Techniques for labeling and hybridization for all experiments discussed here were completed as detailed above. Arrays were prepared as described in example 1.

RNA isolated from subject samples, or control Buffy coat RNA, were labeled for hybridization to a cDNA array. Total RNA (up to 100 µg) was combined with 2 µl of 100 µM solution of an Oligo

(dT)12-18 (GibcoBRL) and heated to 70°C for 10 minutes and place on ice. Reaction buffer was added to the tube, to a final concentration of IxRT buffer (GibcoBRL), 10 mM DTT (GibcoBRL), 0.1 mM unlabeled dATP, dTTP, and dGTP, and 0.025 mM unlabeled dCTP, 200 pg of CAB (A. thaliana photosystem I chlorophyll a/b binding protein), 200 pg of RCA (A. thaliana RUBISCO activase), 0.25 mM of Cy-3 or Cy-5 dCTP, and 400 U Superscript II RT (GibcoBRL).

The volumes of each component of the labeling reaction were as follows: 20 µl of 5xRT buffer; 10 µl of 100 mM DTT; 1 µl of 10 mM dNTPs without dCTP; 0.5 µl of 5 mM CTP; 13 µl of H20; 0.02 µl of 10 ng/µl CAB and RCA; 1 µl of 40 Units/µl RNAseOUT Recombinatnt Ribonuclease Inhibitor (GibcoBRL); 2.5 μl of 1.0 mM Cy-3 or Cy-5 dCTP; and 2.0 μl of 200 Units/μl of Superscript II RT. The sample was vortexed and centrifuged. The sample was incubated at 4°C for 1 hour for first strand cDNA synthesis, then heated at 70°C for 10 minutes to quench enzymatic activity. 1 μl of 10 mg/ml of Rnase A was added to degrade the RNA strand, and the sample was incubated at 37°C for 30 minutes. Next, the Cy-3 and Cy-5 cDNA samples were combined into one tube. Unincorporated nucleotides were removed using QIAquick RCR purification protocol (Qiagen), as directed by the manufacturer. The sample was evaporated to dryness and resuspended in 5 µl of water. The sample was mixed with hybridization buffer containing 5xSSC, 0.2% SDS, 2 mg/ml Cot-1 DNA (GibcoBRL), 1 mg/ml yeast tRNA (GibcoBRL), and 1.6 ng/µl poly dA40-60 (Pharmacia). This mixture was placed on the microarray surface and a glass cover slip was placed on the array (Corning). The microarray glass slide was placed into a hybridization chamber (Arrraylt). The chamber was then submerged in a water bath overnight at 62° C. The microarray was removed from the cassette and the cover slip was removed by repeatedly submerging it to a wash buffer containing 1xSSC, and 0.1% SDS. The microarray slide was washed in 1xSSC/0.1% SDS for 5 minutes. The slide was then washed in 0.1%SSC/0.1% SDS for 5 minutes. The slide was finally washed in 0.1xSSC for 2 minutes. The slide was spun at 1000 rpm for 2 minutes to dry out the slide, then scanned on a microarray scanner (Axon Instruments, Union City, CA.).

Six hybridizations with 20 µg of RNA were performed for each type of RNA preparation (GS or AP). Since both the Cy3 and the Cy5 labeled RNA are from test preparations, there are six data points for each GS prepped, Cy3-labeled RNA and six for each GS-prepped, Cy5-labeled RNA. The mini array hybridizations were scanned on and Axon Instruments scanner using GenPix 3.0 software. The data presented were derived as follows. First, all features flagged as "not found" by the software were removed from the dataset for individual hybridizations. These features are usually due to high local background or other processing artifacts. Second, the median fluorescence intensity minus the background fluorescence intensity was used to calculate the mean background subtracted signal for each dye for each hybridization. In Figure 3, the mean of these means across all six hybridizations is graphed (n=6 for each column). The error bars are the SEM. This experiment shows that the average signal from AP prepared RNA is 47% of the average signal from GS prepared RNA for both Cy3 and Cy5.

Generation of expression data for leukocyte genes from peripheral leukocyte samples

Six hybridizations were performed with RNA purified from human blood leukocytes using the
protocols given above. Four of the six were prepared using the GS method and 2 were prepared using

the AP method. Each preparation of leukocyte RNA was labeled with Cy3 and 10 µg hybridized to the mini-array. A control RNA was batch labeled with Cy5 and 10 µg hybridized to each mini-array together with the Cy3-labeled experimental RNA.

The control RNA used for these experiments was Control 1: Buffy Coat RNA, as described above.

The protocol for the preparation of that RNA is reproduced here:

Buffy Coat RNA Isolation:

Buffy coats were obtained from Stanford Blood Center (in total 38 individual buffy coats were used. Each buffy coat is derived from -350 mL whole blood from one individual. 10 ml buffy coat was taken and placed into a 50 ml tube and 40 ml of a hypoclorous acid (HOCI) solution (Buffer EL from Qiagen) was added. The tube was mixed and placed on ice for 15 minutes. The tube was then centrifuged at 2000xg for 10 minutes at 4°C. The supernatant was decanted and the cell pellet was resuspended in 10 ml of hypochlorous acid solution (Qiagen Buffer EL). The tube was then centrifuged at 2000xg for 10 minutes at 4°C. The cell pellet was then re-suspended in 20 ml phenol/guanidine thiocyanate solution (TRIZOL from GibcoBRL) for each individual buffy coat that was processed. The mixture was then shredded using a rotary homogenizer. The lysate was then frozen at -80°C prior to proceeding to RNA isolation.

The arrays were then scanned and analyzed on an Axon Instruments scanner using GenePix 3.0 software. The data presented were derived as follows. First, all features flagged as "not found" by the software were removed from the dataset for individual hybridizations. Second, control features were used to normalize the data for labeling and hybridization variability within the experiment. The control features are cDNA for genes from the plant, Arabidopsis thaliana, that were included when spotting the mini-array. Equal amounts of RNA complementary to two of these cDNAs were added to each of the samples before they were labeled. A third was pre-labeled and equal amounts were added to each hybridization solution before hybridization. Using the signal from these genes, we derived a normalization constant (L) according to the following formula:

$$L_{j} = \frac{\sum_{i=1}^{N} BGSS_{j,i}}{N}$$

$$\frac{\sum_{j=1}^{K} \sum_{i=1}^{M} BGSS_{j,i}}{N}$$

$$K$$

where BGSS<sub>i</sub> is the signal for a specific feature as identified in the GenePix software as the median background subtracted signal for that feature, N is the number of A. thallana control features, K is the number of hybridizations, and L is the normalization constant for each individual hybridization. Using the formula above, the mean over all control features of a particular hybridization and dye (eg Cy3) was calculated. Then these control feature means for all Cy3 hybridizations were averaged. The

control feature mean in one hybridization divided by the average of all hybridizations gives a normalization constant for that particular Cy3 hybridization.

The same normalization steps were performed for Cy3 and Cy5 values, both fluorescence and background. Once normalized, the background Cy3 fluorescence was subtracted from the Cy3 fluorescence for each feature. Values less than 100 were eliminated from further calculations since low values caused sourious results.

Figure 4 shows the average background subtracted signal for each of nine leukocyte-specific genes on the mini array. This average is for 3-6 of the above-described hybridizations for each gene. The error bars are the SEM.

The ratio of Cy3 to Cy5 signal is shown for a number of genes. This ratio corrects for variability among hybridizations and allows comparison between experiments done at different times. The ratio is calculated as the Cy3 background subtracted signal divided by the Cy5 background subtracted signal. Each bar is the average for 3-6 hybridizations. The error bars are SEM.

Together, these results show that we can measure expression levels for genes that are expressed specifically in sub-populations of leukocytes. These expression measurements were made with only  $10 \mu g$  of leukocyte total RNA that was labeled directly by reverse transcription. The signal strength can be increased by improved labeling techniques that amplify either the starting RNA or the signal fluorescence. In addition, scanning techniques with higher sensitivity can be used. Genes in Figures 4 and 5:

| Gene Name/Description                               | GenBank Accession<br>Number | Gene Name<br>Abbreviation |
|-----------------------------------------------------|-----------------------------|---------------------------|
| T cell-specific tyrosine kinase Mma                 | L10717                      | TKTCS                     |
| Interleukin 1 alpha (IL 1) mRNA, complete cds       | NM_000575                   | IL1A                      |
| T-cell surface antigen CD2 (T11) mRNA, complete cds | M14362                      | CD2                       |
| Interleukin-13 (IL-13) precursor gene, complete cds | U31120                      | IL-13                     |
| Thymocyte antigen CD1a mRNA, complete cds           | M28825                      | CD1a                      |
| CD6 mRNA for T cell glycoprotein CDS                | NM_006725                   | CD6                       |
| MHC class II HLA-DQA1 mRNA, complete cds            | U77589                      | HLA-DQA1                  |
| Granulocyte colony-stimulating factor               | M28170                      | CD19                      |
| Homo sapiens CD69 antigen                           | NM_001781                   | CD69                      |

Example 5: Clinical study to identify diagnostic gene sets useful in diagnosis and treatment of cardiac allograft recipients

An observational study was conducted in which a prospective cohort of cardiac transplant recipients were analyzed for associations between clinical events or rejection grades and expression of a leukocyte candidate nucle

centers while on the transplant waiting list or during their routing post-transplant care. All adult cardiac transplant recipients (new or re-transplants) who received an organ at the study center during the study period or within 3 months of the start of the study period were eligible. The first year after transplantation is the time when most acute rejection occurs and it is thus important to study patients during this period. Patients provided informed consent prior to study procedures.

Peripheral blood leukocyte samples were obtained from all patients at the following time points: prior to transplant surgery (when able), the same day as routinely scheduled screening biopsies, upon evaluation for suspected acute rejection (urgent biopsies), on hospitalization for an acute complication of transplantation or immunosuppression, and when Cytomegalovirus (CMV) infection was suspected or confirmed. Samples were obtained through a standard peripheral vein blood draw or through a catheter placed for patient care (for example, a central venous catheter placed for endocardial biopsy). When blood was drawn from a intravenous line, care was taken to avoid obtaining heparin with the sample as it can interfere with downstream reactions involving the RNA. Mononuclear cells were prepared from whole blood samples as described in Example 2. Samples were processed within 2 hours of the blood draw and DNA and serum were saved in addition to RNA. Samples were stored at -80° C or on dry ice and sent to the site of RNA preparation in a sealed container with ample dry ice. RNA was isolated from subject samples as described in Example 2 and hybridized to a candidate library of differentially expressed leukocyte nucleotide sequences, as further described in Examples 9-10. Methods used for amplification, labeling, hybridization and scanning are described in Example 11. Analysis of human transplant patient mononuclear cell RNA hybridized to a microarray and identification of diagnostic gene sets is shown in Example 10.

From each patient, clinical information was obtained at the following time points: prior to transplant surgery (when available), the same day as routinely scheduled screening biopsies, upon evaluation for suspected acute rejection (e.g., urgent biopsies), on hospitalization for an acute complication of transplantation or immunosuppression, and when Cytomegalovirus (CMV) infection was suspected or confirmed. Data was collected directly from the patient, from the patient's medical record, from diagnostic test reports or from computerized hospital databases. It was important to collect all information pertaining to the study clinical correlates (diagnoses and patient events and states to which expression data is correlated) and confounding variables (diagnoses and patient events and states that may result in altered leukocyte gene expression. Examples of clinical data collected are: patient sex, date of birth, date of transplant, race, requirement for prospective cross match, occurrence of pretransplant diagnoses and complications, indication for transplantation, severity and type of heart disease, history of left ventricular assist devices, all known medical diagnoses, blood type, HLA type, viral serologies (including CMV, Hepatitis B and C, HIV and others), serum chemistries, white and red blood cell counts and differentials, CMV infections (clinical manifestations and methods of diagnosis), occurrence of new cancer, hemodynamic parameters measured by catheterization of the right or left heart (measures of graft function), results of echocardiography, results of coronary angiograms, results of intravascular ultrasound studies (diagnosis of transplant vasculopathy), medications, changes in medications, treatments for rejection, and medication levels. Information was also collected regarding the organ donor, including demographics, blood type, HLA type, results of screening cultures, results

of viral serologies, primary cause of brain death, the need for inotropic support, and the organ cold ischemia time.

Of great importance was the collection of the results of endocardial biopsy for each of the patients at each visit. Biopsy results were all interpreted and recorded using the international society for heart and lung transplantation (ISHLT) criteria, described below. Biopsy pathological grades were determined by experienced pathologists at each center.

ISHLT Criteria

| Grade | Finding                                                                                                     | Rejection               |
|-------|-------------------------------------------------------------------------------------------------------------|-------------------------|
|       |                                                                                                             | Severity                |
| 0     | No lymphocytic infiltrates                                                                                  | None                    |
| 1A    | Focal (perivascular or interstitial lymphocytic infiltrates without necrosis)                               | Borderline<br>mild      |
| 1B    | Diffuse but sparse lymphocytic infiltrates without necrosis                                                 | Mild                    |
| 2     | One focus only with aggressive lymphocytic infiltrate and/or myocyte damage                                 | Mild, focal<br>moderate |
| 3A    | Multifocal aggressive lymphocytic infiltrates and/or myocardial damage                                      | Moderate                |
| 3B    | Diffuse inflammatory lymphocytic infiltrates with necrosis                                                  | Borderline<br>Severe    |
| 4     | Diffuse aggressive polymorphous lymphocytic infiltrates with edema hemorrhage and vasculitis, with necrosis | Severe                  |

Because variability exists in the assignment of ISHLT grades, it was important to have a centralized and blinded reading of the biopsy slides by a single pathologist. This was arranged for all biopsy slides associated with samples in the analysis. Slides were obtained and assigned an encoded number. A single pathologist then read all slides from all centers and assigned an ISHLT grade. Grades from the single pathologist were then compared to the original grades derived from the pathologists at the study centers. For the purposes of correlation analysis of leukocyte gene expression to biopsy grades, the centralized reading information was used in a variety of ways (see Example 10 for more detail). In some analyses, only the original reading was used as an outcome. In other analyses, the result from the centralized reader was used as an outcome. In other analyses, the highest of the 2 grades was used. For example, if the original assigned grade was 0 and the centralized reader assigned a 1A, then 1A was the grade used as an outcome. In some analyses, the highest grade was used and then samples associated with a Grade 1A reading were excluded from the analysis. In some analyses, only grades with no disagreement between the 2 readings were used as outcomes for correlation analysis. Clinical data was entered and stored in a database. The database was queried to identify all patients and patient visits that meet desired criteria (for example, patients with > grade II biopsy results, no CMV infection and time since transplant < 12 weeks).

The collected clinical data (disease criteria) is used to define patient or sample groups for correlation of expression data. Patient groups are identified for comparison, for example, a patient group that possesses a useful or interesting clinical distinction, versus a patient group that does not possess the distinction. Examples of useful and interesting patient distinctions that can be made on the basis of collected clinical data are listed here:

- Rejection episode of at least moderate histologic grade, which results in treatment of
  the patient with additional corticosteroids, anti-T cell antibodies, or total lymphoid irradiation.
- Rejection with histologic grade 2 or higher.
- Rejection with histologic grade <2.</li>
- 4. The absence of histologic rejection <u>and</u> normal or unchanged allograft function (based on hemodynamic measurements from catheterization or on echocardiographic data).
- The presence of severe allograft dysfunction or worsening allograft dysfunction during the study period (based on hemodynamic measurements from catheterization or on echocardiographic data).
- Documented CMV infection by culture, histology, or PCR, and at least one clinical sign or symptom of infection.
- Specific graft biopsy rejection grades
- Rejection of mild to moderate histologic severity prompting augmentation of the patient's chronic immunosuppressive regimen
- 9. Rejection of mild to moderate severity with allograft dysfunction prompting plasmaphoresis or a diagnosis of "humoral" rejection
- Infections other than CMV, esp. Epstein Barr virus (EBV)
- 11. Lymphoproliferative disorder (also called, post-transplant lymphoma)
- Transplant vasculopathy diagnosed by increased intimal thickness on intravascular ultrasound (IVUS), angiography, or acute myocardial infarction.
- 13. Graft Failure or Retransplantation
- All cause mortality
- Grade 1A or higher rejection as defined by the initial biopsy reading.
- Grade 1B or higher rejection as defined by the initial biopsy reading.
- Grade 1A or higher rejection as defined by the centralized biopsy reading.
- 18. Grade 1B or higher rejection as defined by the centralized biopsy reading.
- 19. Grade 1A or higher rejection as defined by the highest of the initial and centralized bionsy reading.
- 20. Grade 1B or higher rejection as defined by the highest of the initial and centralized biopsy reading.
- 21. Any rejection > Grade 2 occurring in patient at any time in the post-transplant course. Expression profiles of subject samples are examined to discover sets of nucleotide sequences with differential expression between patient groups, for example, by methods describes above and below. Non-limiting examples of patient leukocyte samples to obtain for discovery of various diagnostic nucleotide sets are as follows:

Leukocyte set to avoid biopsy or select for biopsy: Samples: Grade 0 vs. Grades 1-4

Leukocyte set to monitor therapeutic response: Examine successful vs. unsuccessful drug treatment.

Samples:

Successful: Time 1: rejection, Time 2: drug therapy Time 3: no rejection
Unsuccessful: Time 1: rejection, Time 2: drug therapy; Time 3: rejection

Leukocyte set to predict subsequent acute rejection.

Biopsy may show no rejection, but the patient may develop rejection shortly thereafter. Look at profiles of patients who subsequently do and do not develop rejection.

Samples:

Group 1 (Subsequent rejection): Time 1: Grade 0; Time 2: Grade>0
Group 2 (No subsequent rejection): Time 1: Grade 0; Time 2: Grade 0

Focal rejection may be missed by biopsy. When this occurs the patient may have a Grade 0, but actually has rejection. These patients may go on to have damage to the graft etc.

Samples

Non-rejectors: no rejection over some period of time Rejectors: an episode of rejection over same period

Leukocyte set to diagnose subsequent or current graft failure:

Samples:

Echocardiographic or catheterization data to define worsening function over time and correlate to profiles.

Leukocyte set to diagnose impending active CMV:

Samples:

Look at patients who are CMV IgG positive. Compare patients with subsequent (to a sample) clinical CMV infection verses no subsequent clinical CMV infection.

Leukocyte set to diagnose current active CMV:

Samples:

Analyze patients who are CMV IgG positive. Compare patients with active current clinical CMV infection vs. no active current CMV infection.

Upon identification of a nucleotide sequence or set of nucleotide sequences that distinguish patient groups with a high degree of accuracy, that nucleotide sequence or set of nucleotide sequences is validated, and implemented as a diagnostic test. The use of the test depends on the patient groups that are used to discover the nucleotide set. For example, if a set of nucleotide sequences is discovered that have collective expression behavior that reliably distinguishes patients with no histological rejection or graft dysfunction from all others, a diagnostic is developed that is used to screen patients for the need for biopsy. Patients identified as having no rejection do not need biopsy, while others are subjected to a biopsy to further define the extent of disease. In another example, a diagnostic nucleotide set determines continuing graft rejection associated with myocyte necrosis (> grade I) is used to determine that a patient is not receiving adequate treatment under the current treatment regimen. After increased

or altered immunosuppressive therapy, diagnostic profiling is conducted to determine whether continuing graft rejection is progressing. In yet another example, a diagnostic nucleotide set(s) that determine a patient's rejection status and diagnose cytomegalovirus infection is used to balance immunosuppressive and anti-viral therapy.

The methods of this example are also applicable to cardiac xenograft monitoring.

Example 6: Identification of diagnostic nucleotide sets for kidney and liver allograft rejection.

Diagnostic tests for rejection are identified using patient leukocyte expression profiles to identify a molecular signature correlated with rejection of a transplanted kidney or liver. Blood, or other leukocyte source, samples are obtained from patients undergoing kidney or liver biopsy following liver or kidney transplantation, respectively. Such results reveal the histological grade, i.e., the state and severity of allograft rejection. Expression profiles are obtained from the samples as described above, and the expression profile is correlated with biopsy results. In the case of kidney rejection, clinical data is collected corresponding to urine output, level of creatine clearance, and level of serum creatine (and other markers of renal function). Clinical data collected for monitoring liver transplant rejection includes, biochemical characterization of serum markers of liver damage and function such as SGOT, SGPT, Alkaline phosphatase, GGT, Bilirubin, Albumin and Prothrombin time.

Leukocyte nucleotide sequence expression profiles are collected and correlated with important clinical states and outcomes in renal or henalic transplantation. Examples of useful clinical correlates are given.

Leukocyte nucleotuse sequence expression promes are concated and contented with important clinical states and outcomes in renal or hepatic transplantation. Examples of useful clinical correlates are given here:

- Rejection episode of at least moderate histologic grade, which results in treatment of the
  patient with additional corticosteriods, anti-T cell antibodies, or total lymphoid irradiation.
- The absence of histologic rejection and normal or unchanged allograft function (based on tests of renal or liver function listed above).
- The presence of severe allograft dysfunction or worsening allograft dysfunction during the study period (based on tests of renal and hepatic function listed above).
- Documented CMV infection by culture, histology, or PCR, and at least one clinical sign or symptom of infection.
- Specific graft biopsy rejection grades
- Rejection of mild to moderate histologic severity prompting augmentation of the patient's chronic immunosuppressive regimen
- Infections other than CMV, esp. Epstein Barr virus (EBV)
- 8. Lymphoproliferative disorder (also called, post-transplant lymphoma)
- Graft Failure or Retransplantation
- Need for hemodialysis or other renal replacement therapy for renal transplant patients.
- Hepatic encephalopathy for liver transplant recipients.
- All cause mortality

Subsets of the candidate library (or of a previously identified diagnostic nucleotide set), are identified, according to the above procedures, that have predictive and/or diagnostic value for kidney or liver allograft rejection.

Example 7: Identification of a diagnostic nucleotide set for diagnosis of cytomegalovirus

Cytonnegalovirus is a very important cause of disease in immunocompromised patients, for example, transplant patients, cancer patients, and AIDS patients. The virus can cause inflammation and disease in almost any tissue (particularly the colon, lung, bone marrow and retina). It is increasingly important to identify patients with current or impending clinical CMV disease, particularly when immunosuppressive drugs are to be used in a patient, e.g. for preventing transplant rejection.

Leukocytes are profiled in patients with active CMV, impending CMV, or no CMV. Expression profiles correlating with diagnosis of active or impending CMV are identified. Subsets of the candidate library (or a previously identified diagnosit nucleotide set) are identified, according to the above procedures that have predictive value for the diagnosis of active or impending CMV. Diagnostic nucleotide set(s) identified with predictive value for the diagnosis of active or impending CMV may be combined, or used in conjunction with, cardiac, liver and/or kidney allograft-related diagnostic gene set(s) (described in Examples 6 and 10).

In addition, or alternatively, CMV nucleotide sequences are obtained, and a diagnostic nucleotide set is designed using CMV nucleotide sequence. The entire sequence of the organism is known and all CMV nucleotide sequences are isolated and added to the library using the sequence information and the approach described below. Known expressed genes are preferred. Alternatively, nucleotide sequences are selected to represent groups of CMV genes that are coordinately expressed (immediate early genes, early genes, and late genes) (Spector et al. 1990, Stamminger et al. 1990).

Oligonucleotides were designed for CMV genes using the oligo design procedures of Example 8. Probes were designed using the 14 gene sequences shown here and were included on the array described in example 9:

|                                         | HCMVTRL2 (IRL2)                 | 18932240                 |
|-----------------------------------------|---------------------------------|--------------------------|
|                                         | HCMVTRL7 (IRL7)                 | complement(65956843)     |
|                                         | HCMVUL21                        | complement(2649727024)   |
|                                         | HCMVUL27                        | complement(3283134657)   |
| İ                                       | HCMVUL33                        | 4325144423               |
| Cytomegalovirus<br>(CMV)                | HCMVUL54                        | complement(7690380631)   |
|                                         | HCMVUL75                        | complement(107901110132) |
| Accession #X17403                       | HCMVUL83                        | complement(119352121037) |
| 1 1000000000000000000000000000000000000 | HCMVUL106                       | complement(154947155324) |
|                                         | HCMVUL109                       | complement(157514157810) |
|                                         | HCMVUL113                       | 161503162800             |
|                                         | HCMVUL122                       | complement(169364170599) |
|                                         | HCMVUL123 (last exon at 3'-end) | complement(171006172225) |
|                                         | HCMVUS28                        | 219200220171             |

Diagnostic nucleotide set(s) for expression of CMV genes is used in combination with diagnostic leukocyte nucleotide sets for diagnosis of other conditions, e.g. organ allograft rejection.

Using the techniques described in example 2 mononuclear samples from 180 cardiac transplant recipients (enrolled in the study described in Example 5) were used for expression profiling with the leukocyte arrays. Of these samples 15 were associated with patients who had a diagnosis of primary or reactivation CMV made by culture, PCR or any specific diagnostic test.

After preparation of RNA, amplification, labeling, hybridization, scanning, feature extraction and data processing were done as described in Example 11 using the oligonucleotide microarrays described in Example 9.

The resulting log ratio of expression of Cy3 (patient sample)/ Cy5 (R50 reference RNA) was used for analysis. Significance analysis for microarrays (SAM, Tusher 2001, see Example 15) was applied to determine which genes were most significantly differentially expressed between these 15 CMV patients and the 165 non-CMV patients (Table 12). 12 genes were identified with a 0% FDR and 6 with a 0.1% FDR and are listed in Table 2. Some genes are represented by more than one oligonucleotide on the array and for 2 genes, multiple oligonucleotides from the same gene are called significant (SEQ IDs: 3061, 3064: eomesodermin and 3031, 3040, 104, 2736: small inducible cytokine A4).

Clinical variables were also included in the significance analysis. For example, the white blood cell count and the number of weeks post transplant (for the patient at the time the sample was obtained) were available for most of the 180 samples. The log of these variables was taken and the variables were then used in the significance analysis described above with the gene expression data. Both the white blood cell count (0.1% FDR) and the weeks post transplant (0% FDR) appeared to correlate with CMV status. CMV patients were more likely to have samples associated with later post transplant data and the lower white blood cell counts.

These genes and variables can be used alone or in association with other genes or variables or with other genes to build a diagnostic gene set or a classification algorithm using the approaches described herein.

Primers for real-time PCR validation were designed for some of these genes as described in Example 13 and listed in Table 2C and the sequence listing. Using the methods described in example 13, primers for Granzyme B were designed and used to validate expression findings from the arrays. 6 samples were tested (3 from patients with CMV and 3 from patients without CMV). The gene was found to be differentially expressed between the patients with and without CMV (see example 13 for full description). This same approach can be used to validate other diagnostic genes by real-time PCR. Diagnostic nucleotide sets can also be identified for a variety of other viral diseases (Table 1) using this same approach.

eDNA microarrays may be used to monitor viral expression. In addition, these methods may be used to monitor other viruses, such as Epstein-Barr virus, Herpes Simplex 1 and vesicular stomatitis virus.

#### Example 8- Design of oligonucleotide probes

By way of example, this section describes the design of four oligonucleotide probes using Array Designer Ver 1.1 (Premier Biosoft International, Palo Alto, CA). The major steps in the process are given first.

Obtain best possible sequence of mRNA from GenBank. If a full-length sequence reference sequence is not available, a partial sequence is used, with preference for the 3' end over the 5' end. When the

sequence is known to represent the antisense strand, the reverse complement of the sequence is used for probe design. For sequences represented in the subtracted leukocyte expression library that have no significant match in GenBank at the time of probe design, our sequence is used.

Mask low complexity regions and repetitive elements in the sequence using an algorithm such as RepeatMasker.

Use probe design software, such as Array Designer, version 1.1, to select a sequence of 50 residues with specified physical and chemical properties. The 50 residues nearest the 3' end constitute a search frame. The residues it contains are tested for suitability. If they don't meet the specified criteria, the search frame is moved one residue closer to the 5' end, and the 50 residues it now contains are tested. The process is repeated until a suitable 50-mer is found.

If no such 50-mer occurs in the sequence, the physical and chemical criteria are adjusted until a suitable 50-mer is found.

Compare the probe to dbEST, the UniGene cluster set, and the assembled human genome using the BLASTn search tool at NCBI to obtain the pertinent identifying information and to verify that the probe does not have significant similarity to more than one known gene.

#### Clone 40H12

Clone 40H12 was sequenced and compared to the nr, dbEST, and UniGene databases at NCBI using the BLAST search tool. The sequence matched accession number NM\_002310, a 'curated RerSeq project' sequence, see Pruitt et al. (2000) Trends Genet, 16:44-47, encoding leukemia inhibitory factor receptor (LIFR) mRNA with a reported E value of zero. An E value of zero indicates there is, for all practical purposes, no chance that the similarity was random based on the length of the sequence and the composition and size of the database. This sequence, cataloged by accession number NM\_002310, is much longer than the sequence of clone 40H12 and has a poly-A tail. This indicated that the sequence cataloged by accession number NM\_002310 is the sense strand and a more complete representation of the mRNA than the sequence of clone 40H12, especially at the 3' end. Accession number "NM\_002310" was included in a text file of accession numbers representing sense strand mRNAs, and sequences for the sense strand mRNAs were obtained by uploading a text file containing desired accession numbers as an Entrez search query using the Batch Entrez web interface and saving the results locally as a FASTA file. The following sequence was obtained, and the region of alignment of clone 40H12 is outlined:

AGTGTTATCAGCACTGATTGGCCATACAAACTGCCCCTTGATCCATCTTGATGGGGAAAATGTTGCAATC AAGATTCGTAATATTTCTGTTTCTGCAAGTAGTGGAACAAATGTAGTTTTTACAACCGAAGATAACATAT TTGGAACCGTTATTTTTGCTGGATATCCACCAGATACTCCTCAACAACTGAATTGTGAGACACATGATTT AAAAGAAATTATATGTAGTTGGAATCCAGGAAGGGTGACAGCGTTGGTGGGCCCACGTGCTACAAGCTAC ACTTTAGTTGAAAGTTTTTCAGGAAAATATGTTAGACTTAAAAGAGCTGAAGCACCTACAAACGAAAGCT AAAGTGAAGGATATTAATTCAACAGCTGTTAAACTTTCTTGGCATTTACCAGGCAACTTTGCAAAGATTA ATTTTTTATGTGAAATTGAAATTAAGAAATCTAATTCAGTACAAGAGCAGCGGAATGTCACAATCAAAGG AGTAGAAAATTCAAGTTATCTTGTTGCTCTGGACAAGTTAAATCCATACACTCTATATACTTTTCGGATT CGTTGTTCTACTGAAACTTTCTGGAAATGGAGCAAATGGAGCAATAAAAAACAACATTTAACAACAGAAG CCAGTCCTTCAAAGGGGCCTGATACTTGGAGAGAGTGGAGTTCTGATGGAAAAAATTTAATAATCTATTG GAAGCCTTTACCCATTAATGAAGCTAATGGAAAAATACTTTCCTACAATGTATCGTGTTCATCAGATGAG GAAACACAGTCCCTTTCTGAAATCCCTGATCCTCAGCACAAAGCAGAGATACGACTTGATAAGAATGACT ACATCATCAGCGTAGTGGCTAAAAATTCTGTGGGCTCATCACCACCTTCCAAAATAGCGAGTATGGAAAT TCCAAATGATGATCTCAAAATAGAACAAGTTGTTGGGATGGGAAAGGGGGATTCTCCTCACCTGGCATTAC ACTGGAGAAAAGTTCCCTCAAACAGCACTGAAACTGTAATAGAATCTGATGAGTTTCGACCAGGTATAAG ATATAATTTTTTCCTGTATGGATGCAGAAATCAAGGATATCAATTATTACGCTCCATGATTGGATATATA GAAGAATTGGCTCCCATTGTTGCACCAAATTTTACTGTTGAGGATACTTCTGCAGATTCGATATTAGTAA AATGGGAAGACATTCCTGTGGAAGAACTTAGAGGCTTTTTAAGAGGATATTTGTTTTACTTTGGAAAAGG AGAA AGAGACA CATCTAAGATGAGGGTTTTAGAAT CAGGTCGTTCTGACATAAAAGTTAAGAATATTACT GACATATCCCAGAAGACACTGAGAATTGCTGATCTTCAAGGTAAAACAAGTTACCACCTGGTCTTGCGAG AATTATTGCCATTCTCATCCCAGTGGCAGTGGCTGTCATTGTTGGAGTGGTGACAAGTATCCTTTGCTAT CGGAAACGAGAATGGATTAAAGAAACCTTCTACCCTGATATTCCAAATCCAGAAAACTGTAAAGCATTAC AGTTTCAAAAGAGTGTCTGTGAGGGAAGCAGTGCTCTTAAAACATTGGAAATGAATCCTTGTACCCCAAA TAATGTTGAGGTTCTGGAAACTCGATCAGCATTTCCTAAAATAGAAGATACAGAAATAATTTCCCCAGTA GCTGAGCGTCCTGAAGATCGCTCTGATGCAGAGCCTGAAAACCATGTGGTTGTGTCCTATTGTCCACCCA TCATTGAGGAAGAAATACCAAACCCAGCCGCAGATGAAGCTGGAGGGACTGCACAGGTTATTTACATTGA TGTTCAGTCGATGTATCAGCCTCAAGCAAAACCAGAAGAAGAACAAGAAAATGACCCTGTAGGAGGGGCA GGCTATAAGCCACAGATGCACCTCCCCATTAATTCTACTGTGGAAGATATAGCTGCAGAAGAGGACTTAG ATA A A A CTGCGGGTTA CAGA CCTCAGGCCA ATGTA A A TA CATGGA ATTTAGTGTCTCCAGA CTCTCCTAG ATCCATAGACAGCAACAGTGAGATTGTCTCATTTGGAAGTCCATGCTCCATTAATTCCCGACAATTTTTG ATTCCTCCTAAAGATGAAGACTCTCCTAAATCTAATGGAGGAGGGTGGTCCTTTACAAACTTTTTCAGA GTTGCTACATCAGCACTGGGCATTCTTGGAGGGATCCTGTGAAGTATTGTTAGGAGGTGAACTTCACTAC ATGTTAAGTTACACTGAAAGTTCATGTGCTTTTAATGTAGTCTAAAAGCCAAAGTATAGTGACTCAGAAT CCTCAATCCACAAAACTCAAGATTGGGAGCTCTTTGTGATCAAGCCAAAGAATTCTCATGTACTCTACCT TCAAGAAGCATTTCAAGGCTAATACCTACTTGTACGTACATGTAAAACAAATCCCGCCGCAACTGTTTTC TGTTCTGTTGTTGTGGTTTTCTCATATGTATACTTGGTGGAATTGTAAGTGGATTTGCAGGCCAGGGAG AAAATGTCCAAGTAACAGGTGAAGTTTATTTGCCTGACGTTTACTCCTTTCTAGATGAAAACCAAGCACA GATTTTAAAACTTCTAAGATTATTCTCCTCTATCCACAGCATTCACAAAAATTAATATTTTTAATGT AGTGACAGCGATTTAGTGTTTTGTTTGATAAAGTATGCTTATTTCTGTGCCTACTGTATAATGGTTATCA AACAGTTGTCTCAGGGGTACAAACTTTGAAAACAAGTGTGACACTGACCAGCCCAAATCATAATCATGTT GTTGGTTGCCCTAATATTTAAAATTTACACTTCTAAGACTAGAGACCCACATTTTTTAAAAATCATTTTA TTTTGTGATACAGTGACAGCTTTATATGAGCAAATTCAATATTATTCATAAGCATGTAATTCCAGTGACT TACTATGTGAGATGACTACTAAGCAATATCTAGCAGCGTTAGTTCCATATAGTTCTGATTGGATTTCGTT CCTCCTGAGGAGACCATGCCGTTGAGCTTGGCTACCCAGGCAGTGGTGATCTTTGACACCTTCTGGTGGA TGTTCCTCCCACTCATGAGTCTTTTCATCATGCCACATTATCTGATCCAGTCCTCACATTTTTAAATATA AAACTAAAGAGAGAATGCTTCTTACAGGAACAGTTACCCAAGGGCTGTTTCTTAGTAACTGTCATAAACT CCTTCAGCACAGCATCCTCTGCCCACCCTTGTTTCTCATAAGCGATGTCTGGAGTGATTGTGGTTCTTGG AAAAGCAGAAGGAAAAACTAAAAAGTGTATCTTGTATTTTCCCTGCCCTCAGGTTGCCTATGTATTTTAC TTTTTTTGGTTGGTTGTTTTTTTTTTTTTTCATCTGAGATTCTGTAATGTATTTTGCAAATAATGGATCAATT AATTTTTTTTGAAGCTCATATTGTATCTTTTTAAAAACCATGTTGTGGAAAAAAGCCAGAGTGACAAGTG ACAAAATCTATTTAGGAACTCTGTGTATGAATCCTGATTTTAACTGCTAGGATTCAGCTAAATTTCTGAG 

The FASTA file, including the sequence of NM\_002310, was masked using the RepeatMasker web interface (Smit, AFA & Green, P RepeatMasker at

http://ftp.genome.washington.edw/RM/RepeatMasker.html, Smit and Green). Specifically, during masking, the following types of sequences were replaced with "N's": SINE/MIR & LINE/L2, LINE/L1, LINE/L1, LITR/Matroviral, Alu, and other low informational content sequences such as simple repeats. Below is the sequence following masking:

CTCTCTCCCAGAACGTGTCTCTGCTGCAAGGCACCGGGCCCTTTCGCTCTGCAGAACTGCACTTGCAAG GACTGCATTGCACAGATGATAGATATTTACGTATGTTTGAAACGACCATCCTGGATGGTGGACAATAAA AGAATGAGGACTGCTTCAAATTTCCAGTGGCTGTTATCAACATTTATTCTTCTATATCTAATGAATCAA TGTTCTTGGAAAGCACCCTCTGGAACAGGCCGTGGTACTGATTATGAAGTTTGCATTGAAAACAGGTCC CGTTCTTGTTATCAGTTGGAGAAAACCAGTATTAAAATTCCAGCTCTTTCACATGGTGATTATGAAATA ACAATAAATTCTCTACATGATTTTGGAAGTTCTACAAGTAAATTCACACTAAATGAACAAAACGTTTCC TTAATTCCAGATACTCCAGAGATCTTGAATTTGTCTGCTGATTTCTCAACCTCTACATTATACCTAAAG TGGAACGACAGGGTTCAGTTTTTCCACACCGCTCAAATGTTATCTGGGAAATTAAAGTTCTACGTAAA GAGAGTATGGAGCTCGTAAAATTAGTGACCCACAACACACTCTGAATGGCAAAGATACACTTCATCAC AATCTTCATTTTTCTGGTCTCGAAGAGTGGAGTGACTGGAGCCCTGTGAAGAACATTTCTTGGATACCT GATTCTCAGACTAAGGTTTTTCCTCAAGATAAAGTGATACTTGTAGGCTCAGACATAACATTTTGTTGT GTGAGTCAAGAAAAGTGTTATCAGCACTGATTGGCCATACAAACTGCCCCTTGATCCATCTTGATGGG GAAAATGTTGCAATCAAGATTCGTAATATTTCTGTTTCTGCAAGTAGTGGAACAAATGTAGTTTTTACA ACCGAAGATAACATATTTGGAACCGTTATTTTTGCTGGATATCCACCAGATACTCCTCAACAACTGAAT TGTGAGACACATGATTTAAAAGAAATTATATGTAGTTGGAATCCAGGAAGGGTGACAGCGTTGGTGGGC CCACGTGCTACAAGCTACACTTTAGTTGAAAGTTTTTCAGGAAAATATGTTAGACTTAAAAGAGCTGAA TTGAATGCTCACAATCCGCTGGGTCGATCACAATCAACAATTTTAGTTAATATAACTGAAAAAGTTTAT CCCCATACTCCTACTTCATTCAAAGTGAAGGATATTAATTCAACAGCTGTTAAACTTTCTTGGCATTTA CCAGGCAACTTTGCAAAGATTAATTTTTTATGTGAAATTGAAATTAAGAAATCTAATTCAGTACAAGAG CAGCGGAATGTCACAATCAAAGGAGTAGAAAATTCAAGTTATCTTGTTGCTCTGGACAAGTTAAATCCA TACACTCTATATACTTTTCGGATTCGTTGTTCTACTGAAACTTTCTGGAAATGGAGCAAATGGAGCAAT AAAAAACAACATTTAACAACAGAAGCCAGTCCTTCAAAGGGGCCTGATACTTGGAGAGAGTGGAGTTCT GATGGAAAAATTTAATAATCTATTGGAAGCCTTTACCCATTAATGAAGCTAATGGAAAAATACTTTCC TACAATGTATCGTGTTCATCAGATGAGGAAACACGTCCCTTTCTGAAATCCCTGATCCTCAGCACAAA GCAGAGATACGACTTGATAAGAATGACTACATCATCAGCGTAGTGGCTAAAAATTCTGTGGGCTCATCA CCACCTTCCAAAATAGCGAGTATGGAAATTCCAAATGATGATCTCAAAATAGAACAAGTTGTTGGGATG GGAAAGGGGATTCTCCTCACCTGGCATTACGACCCCAACATGACTTGCGACTACGTCATTAAGTGGTGT AACTCGTCTCGGTCGGAACCATGCCTTATGGACTGGAGAAAGTTCCCTCAAACAGCACTGAAACTGTA

ATAGAATCTGATGAGTTTCGACCAGGTATAAGATATAATTTTTTCCTGTATGGATGCAGAAATCAAGGA TATCAATTATTACGCTCCATGATTGGATATATAGAAGAATTTGGCTCCCATTGTTGCACCAAATTTTACT  ${\tt GTTGAGGATACTTCTGCAGATTCGATATTAGTAAAATGGGAAGACATTCCTGTGGAAGAACTTAGAGGC}$ TTTTTAAGAGGATATTTGTTTTACTTTGGAAAAGGAGAAAGAGACACATCTAAGATGAGGGTTTTAGAA TCAGGTCGTTCTGACATAAAAGTTAAGAATATTACTGACATATCCCAGAAGACACTGAGAATTGCTGAT CTTCAAGGTAAAACAAGTTACCACCTGGTCTTGCGAGCCTATACAGATGGTGGAGTGGGCCCGGAGAAG  ${\tt GCTGTCATTGTTGGAGTGGTGACAAGTATCCTTTGCTATCGGAAACGAGAATGGATTAAAGAAACCTTC}$ TACCCTGATATTCCAAATCCAGAAAACTGTAAAGCATTACAGTTTCAAAAGAGTGTCTGTGAGGGAAGC AGTGCTCTTAAAACATTGGAAATGAATCCTTGTACCCCAAATAATGTTGAGGTTCTGGAAACTCGATCA GCAGAGCCTGAAAACCCATGTGGTTGTGTCCTATTGTCCACCCATCATTGAGGAAGAAATACCAAACCCA  ${\tt GCCGCAGATGAAGCTGGAGGGACTGCACAGGTTATTTACATTGATGTTCAGTCGATGTATCAGCCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCAACCTCAACCTCAACCTCAACCTC$ GCAAAACCAGAAGAAGAACAAGAAAATGACCCTGTAGGAGGGGCAGGCTATAAGCCACAGATGCACCTC  $\tt CCCATTAATTCTACTGTGGAAGATATAGCTGCAGAAGAGGACTTAGATAAAACTGCGGGTTACAGACCT$ CAGGCCAATGTAAATACATGGAATTTAGTGTCTCCAGACTCTCCTAGATCCATAGACAGCAACAGTGAG ATTGTCTCATTTGGAAGTCCATGCTCCATTAATTCCCGACAATTTTTGATTCCTCCTAAAGATGAAGAC TCTCCTAAATCTAATGGAGGGGGGGGTCCTTTACAAACTTTTTTCAGAACAAACCAAACGATTAACAG  ${\tt TGTCACCGTGTCACTTCAGTCAGCCATCTCAATAAGCTCTTACTGCTAGTGTTGCTACATCAGCACTGG}$ GCATTCTTGGAGGGATCCTGTGAAGTATTGTTAGGAGGTGAACTTCACTACATGTTAAGTTACACTGAA AGTTCATGTGCTTTTAATGTAGTCTAAAAGCCAAAGTATAGTGACTCAGAATCCTCAATCCACAAAACT CAAGATTGGGAGCTCTTTGTGATCAAGCCAAAGAATTCTCATGTACTCTACCTTCAAGAAGCATTTCAA GGCTAATACCTACTTGTACGTACATGTAAAACAAATCCCGCCGCAACTGTTTTCTGTTCTGTTGTTGT GGTTTTCTCATATGTATACTTGGTGGAATTGTAAGTGGATTTGCAGGCCAGGGAGAAAATGTCCAAGTA ACAGGTGAAGTTTATTTGCCTGACGTTTACTCCTTTCTAGATGAAAACCAAGCACAGATTTTAAAACTT TTAGTGTTTTGTTTGATAAAGTATGCTTATTTCTGTGCCTACTGTATAATGGTTATCAAACAGTTGTCT CAGGGGTACAAACTTTGAAAACAAGTGTGACACTGACCAGCCCAAATCATAATCATGTTTTCTTGCTGT CCTAATATTTAAAATTTACACTTCTAAGACTAGAGACCCACATTTTTTAAAAAATCATTTTATTTTGTGA TACAGTGACAGCTTTATATGAGCAAATTCAATATTATTCATAAGCATGTAATTCCAGTGACTTACTATG TGAGATGACTACTAAGCAATATCTAGCAGCGTTAGTTCCATATAGTTCTGATTGGATTTCGTTCCTCCT GAGGAGACCATGCCGTTGAGCTTGGCTACCCAGGCAGTGGTGATCTTTGACACCTTCTGGTGGATGTTC CTCCCACTCATGAGTCTTTTCATCATGCCACATTATCTGATCCAGTCCTCACATTTTTAAATATAAAAG TAAAGAGAGAATGCTTCTTACAGGAACAGTTACCCAAGGGCTGTTTCTTAGTAACTGTCATAAACTGATI TTCAGCACAGCATCCTCTGCCCACCCTTGTTTCTCATAAGCGATGTCTGGAGTGATTGTGGTTCTTGGA AAAGCAGAAGGAAAAACTAAAAAGTGTATCTTGTATTTTCCCTGCCCTCAGGTTGCCTATGTATTTTAC TTTTTTTTGGTTGGTTGTTTTTTTTTTTCATCTGAGATTCTGTAATGTATTTGCAAATAATGGATCAA

The length of this sequence was determined using batch, automated computational methods and the sequence, as sense strand, its length, and the desired location of the probe sequence near the 3' end of the mRNA was submitted to Array Designer Ver 1.1 (Premier Biosoft International, Palo Alto, CA). Search quality was set at 100%, number of best probes set at 1, length range set at 50 base pairs, Target Tm set at 75 C. degrees plus or minus 5 degrees, Hairpin max deltaG at 6.0 -kcal/mol., Self dimmer max deltaG at 6.0 -kcal/mol, Run/repeat (dinucleotide) max length set at 5, and Probe site minimum overlap set at 1. When none of the 49 possible probes met the criteria, the probe site would be moved 50 base pairs closer to the 5' end of the sequence and resubmitted to Array Designer for analysis. When no possible probes met the criteria, the variation on melting temperature was raised to plus and minus 8 degrees and the number of identical basepairs in a run increased to 6 so that a probe sequence was produced.

In the sequence above, using the criteria noted above, Array Designer Ver 1.1 designed a probe corresponding to oligonucleotide number 3037 and is indicated by underlining in the sequence above. It has a melting temperature of 68.4 degrees Celsius and a max run of 6 nucleotides and represents one of the cases where the criteria for probe design in Array Designer Ver 1.1 were relaxed in order to obtain an oligonucleotide near the 3' end of the mRNA (Low melting temperature was allowed). Clone 463D12

Clone 463D12 was sequenced and compared to the nr, dbEST, and UniGene databases at NCBI using the BLAST search tool. The sequence matched accession number AI184553, an EST sequence with the definition line "qd60a05.x1 Soares\_testis\_NHT Homo sapiens cDNA clone IMAGE:1733840 3' similar to gb:M29550 PROTEIN PHOSPHATASE 2B CATALYTIC SUBUNIT 1 (HUMAN);, mRNA sequence." The E value of the alignment was 1.00 × 10<sup>-118</sup>. The GenBank sequence begins with a poly-T region, suggesting that it is the antisense strand, read 5' to 3'. The beginning of this sequence is complementary to the 3' end of the mRNA sense strand. The accession number for this sequence was included in a text file of accession numbers representing antisense sequences. Sequences for antisense strand mRNAs were obtained by uploading a text file containing desired accession numbers as an Entrez search query using the Batch Entrez web interface and saving the results locally as a FASTA file. The following sequence was obtained, and the region of alignment of clone 463D12 is outlined:

The FASTA file, including the sequence of AA184553, was then masked using the RepeatMasker web interface, as shown below. The region of alignment of clone 463D12 is outlined.

TTTTTTTTTTTTTTTAAATAGCATTTATTTTCTCTCAAAAAGCCTATTATGTACTAACAAGTGTTCC TCTD A TTDGG A DGGC TC DGCT TTDGG TTDGGG TTDGGGTACAATCTGAATTTCTCTTTATGATTTCTCTTAAAGTATAGAACAGCTATTAAAATGACTAATATTGCT AAAATGAAGGCTACTAAATTTCCCCAAGAATTTCGGTGGAATGCCCAAAAATGGTGTTAAGATATGCAG AAGAAGAAATCCAACAGCTGAAGACATTGGGCTATTTATAAATCTTCTCCCAGTCCCCCAGACAGCCT CACATGGGGGCTGTAAACAGCTAACTAAAATATCTTTGAGACTCTTATGTCCACACCCACTGACACAAG GAGAGCTGTAACCACAGTGAAACTAGACTTTGCTTTCCTTTAGCAAGTATGTGCCTATGATAGTAAACT CGGTAAAGACCACGTGAAGACATCCATAAAATTAGGCAACCAGTAAAGATGTGGAGAACCAGTAAACTG TCGAAATTCATCACATTATTTTCATACTTTAATACAGCAGCTTTAATTATTGGAGAACATCAAAGTAAT TAGGTGCCGAAAAACATTGTTATTAATGAAGGGAACCCCTGACGTTTGACCTTTTCTGTACCATCTATA GCCCTGGACTTGA Masked version of 463D12 sequence. (SEQ ID NO:3104) The sequence was submitted to Array Designer as described above, however, the desired location of the probe was indicated at base pair 50 and if no probe met the criteria, moved in the 3' direction. The complementary sequence from Array Designer was used, because the original sequence was antisense. The oligonucleotide designed by Array Designer corresponds to oligonucleotide number 3054 and is complementary to the underlined sequence above. The probe has a melting temperature of 72.7 degrees centigrade and a max run of 4 nucleotides.

#### Clone 72D4

Clone 72D4 was sequenced and compared to the nr, dbEST, and UniGene databases at NCBI using the BLAST search tool. No significant matches were found in any of these databases. When compared to the human genome draft, significant alignments were found to three consecutive regions of the reference sequence NT\_008060, as depicted below, suggesting that the insert contains three spliced exons of an unidentified gene.

 Residue numbers on
 Matching residue

 clone 72D4 sequence
 numbers on NT 008060

 1 – 198
 478646 – 478843

| 197 – 489 | 479876 - 480168 |  |
|-----------|-----------------|--|
| 491 - 585 | 489271 - 489365 |  |

Because the reference sequence contains introns and may represent either the coding or noncoding strand for this gene, BioCardia's own sequence file was used to design the oligonucleotide. Two complementary probes were designed to ensure that the sense strand was represented. The sequence of the insert in clone 72D4 is shown below, with the three putative exons outlined.

The sequence was submitted to RepeatMasker, but no repetitive sequences were found. The sequence shown above was used to design the two 50-mer probes using Array Designer as described above. The probes are shown in bold typeface in the sequence depicted below. The probe in the sequence is oligonucleotide number 3020 (SEQ ID NO: 3020) and the complementary probe is oligonucleotide number 318 (SEO ID NO:318). A portion of the target sequence is listed below (SEO ID: 3106).

←---GTCAAGGGTCTACACG

GTGTTGTGGTCCCCAAGTATCACCTTCCAATTTCTGGGAG--→
CACAACACCAGGGGTTCATAGTGGAAGGTTAAAG-5'

CAGTGCTCTGGCCGGATCCTTGCCGCGCGGATAAAAACT---→

#### Confirmation of probe sequence

Following probe design, each probe sequence was confirmed by comparing the sequence against dbEST, the UniGene cluster set, and the assembled human genome using BLASTn at NCBL. Alignments, accession numbers, gi numbers, UniGene cluster numbers and names were examined and the most common sequence used for the probe.

# Example 9 - Production of an array of 8000 spotted 50mer oligonucleotides

We produced an array of 8000 spotted initial candidate 50mer oligonucleotides. Example 8 exemplifies the design and selection of probes for this array.

Sigma-Genosys (The Woodlands, TX) synthesized un-modified 50-mer oligonucleotides using standard phosphoramidite chemistry, with a starting scale of synthesis of 0.05 µmole (see, e.g., R. Meyers, ed. (1995) Molecular Biology and Biotechnology: A Comprehensive Desk Reference). Briefly, to begin synthesis, a 3' hydroxyl nucleoside with a dimethoxytrityl (DMT) group at the 5' end was attached to a solid support. The DMT group was removed with trichloroacetic acid (TCA) in order to free the 5'-hydroxyl for the coupling reaction. Next, tetrazole and a phosphoramidite derivative of the next nucleotide were added. The tetrazole protonates the nitrogen of the phosphoramidite, making it susceptible to nucleophilic attack. The DMT group at the 5'-end of the hydroxyl group blocks further addition of nucleotides in excess. Next, the inter-nucleotide linkage was converted to a phosphotriester bond in an oxidation step using an oxidizing agent and water as the oxygen donor. Excess nucleotides were filtered out and the cycle for the next nucleotide was started by the removal of the DMT protecting group. Following the synthesis, the oligo was cleaved from the solid support. The oligonucleotides were desalted, resuspended in water at a concentration of 100 or 200 µM, and placed in 96-deep well format. The oligonucleotides were re-arrayed into Whatman Uniplate 384-well polyproylene V bottom plates. The oligonucleotides were diluted to a final concentration 30 μM in 1X Micro Spotting Solution Plus (Telechem/arrayit.com, Sunnyvale, CA) in a total volume of 15 µl. In total, 8,031 oligonucleotides were arrayed into twenty-one 384-well plates.

Arrays were produced on Telechen/arrayit.com Super amine glass substrates (Telechen/arrayit.com), which were manufactured in 0.1 mm filtered clean room with exact dimensions of 25x76x0.96 mm. The arrays were printed using the Virtek Chipwriter with a Telechem 48 pin Micro Spotting Printhead. The Printhead was loaded with 48 Stealth SMP3B TeleChem Micro Spotting Prins, which were used to print oligonucleotides onto the slide with the spot size being 110-115 microns in diameter.

# Example 10: Identification of diagnostic nucleotide sets for diagnosis of Cardiac Allograft Rejection

Genes were identified which have expression patterns useful for the diagnosis and monitoring of cardiac allograft rejection. Further, sets of genes that work together in a diagnostic algorithm for

allograft rejection were identified. Patients, patient clinical data and patient samples used in the discovery of markers below were derived from a clinical study described in example 5.

The collected clinical data is used to define patient or sample groups for correlation of expression data. Patient groups are identified for comparison, for example, a patient group that possesses a useful or interesting clinical distinction, verses a patient group that does not possess the distinction. Measures of cardiac allograft rejection are derived from the clinical data described above to divide patients (and patient samples) into groups with higher and lower rejection activity over some period of time or at any one point in time. Such data are rejection grade as determined from pathologist reading of the cardiac biopsies and data measuring progression of end-organ damage, including depressed left ventricular dysfunction (decreased cardiac output, decreased ejection fraction, clinical signs of low cardiac output) and usage of inotropic agents (Kobashiegawa 1998).

Expression profiles correlating with occurrence of allograft rejection are identified, including expression profiles corresponding to end-organ damage and progression of end-organ damage. Expression profiles are identified predicting allograft rejection, and response to treatment or likelihood of response to treatment. Subsets of the candidate library (or a previously identified diagnostic nucleotide set) are identified, that have predictive value for the presence of allograft rejection or prediction of allograft rejection or end organ damage.

Mononuclear RNA samples were collected from patients who had recently undergone a cardiac allograft transplantation using the protocol described in example 2. The allograft rejection status at the time of sample collection was determined by examination of cardiac biopsies as described in example 5.

180 samples were included in the analysis. Each patient sample was associated with a biopsy and clinical data collected at the time of the sample. The cardiac biopsies were graded by a pathologist at the local center and by a centralized pathologist who read the biopsy slides from all four local centers in a blinded manner. Biopsy grades included 0, 1A, 1B, 2, 3A, and 3B. No grade 4 rejection was identified. Dependent variables were developed based on these grades using either the local center pathology reading or the higher of the two readings, local or centralized. The dependent variables used for correlation of gene expression profiles with cardiac allograft rejection are shown in Table 4. Dependent variables are used to create classes of samples corresponding to the presence or absence of rejection.

Clinical data were also used to determine criteria for including samples in the analysis. The strictest inclusion criteria required that samples be from patients who did not have a bacterial or viral infection, were at least two weeks post cardiac transplant and were not currently admitted to the hospital. A second inclusion criteria (inclusion 2) reduced the post-transplant criteria to 1 week and eliminated the hospital admission criteria.

After preparation of RNA (example 2), amplification, labeling, hybridization, scanning, feature extraction and data processing were done as described in Example 11, using the oligonucleotide microarrays described in Example 9. The resulting log ratio of expression of Cy3 (patient sample)/
Cy5 (R50 reference RNA) was used for analysis. This dataset is called the "static" data. A second

type of dataset, referenced, was derived from the first. These datasets compared the gene expression log ratio in each sample to a baseline sample from the same patient using the formula:

Two referenced datasets were used, named "0 HG" and "Best 0". The baseline for 0 HG was a Grade 0 sample from the same patient as the sample, using the highest grade between the centralized and local pathologists. The baseline for Best 0 was a Grade 0 sample from the same patient as the sample, using both the local and centralized reader biopsy grade data. When possible a Grade 0 prior to the sample was used as the baseline in both referenced datasets.

The datasets were also divided into subsets to compare analysis between two subsets of roughly half of the data. The types of subsets constructed were as follows. First half/second half subsets were the first half of the samples and the second half of the samples from a dataset ordered by sample number. Odd/even subsets used the same source, a dataset ordered by sample number, but the odd subset consisted of every 2<sup>nd</sup> sample starting with the first and the even subset consisted of every 2<sup>nd</sup> sample starting with the second sample, Center 14/other subsets were the same datasets, divided by transplant hospital. The center 14 subset consisted of all samples from patients at center 14, while the other subset consisted of all samples from the other three centers (12,13, and 15).

Initially, significance analysis for microarrays (SAM, Tusher 2001, Example 15) was used to discover genes that were differentially expressed between the rejection and no-rejection groups. Ninety-six

genes that were differentially expressed between the rejection and no-rejection groups. Ninety-six different combinations of dependent variables, inclusion criteria, static/referenced, and data subsets were used in SAM analysis to develop the primary lists of genes significantly differentially expressed between rejection and no-rejection. The most significant of these genes were chosen based on the following criteria. Tier 1 genes were those which appeared with an FDR of less than 20% in identical analyses in two independent subsets. Tier 2 genes were those which appeared in the top 20 genes on the list with an FDR less than 20% more than 50% of the time over all dependent variables with the inclusion criteria, and static/referenced constant. Tier 3 genes were those that appeared more than 50% of the time with an FDR less than 20% more than 50% of the time over all dependent variables with the inclusion criteria, and static/referenced constant. The genes that were identified by the analysis as statistically differentially expressed between rejection and no rejection are shown in Table 2.

SAM chooses genes as significantly different based on the magnitude of the difference between the groups and the variation among the samples within each group. An example of the difference between

Additionally, many of these same combinations were used in the Supervised Harvesting of Expression Trees (SHET, Hastie et al. 2001) algorithm (see example 15) to identify markers that the algorithm chose as the best to distinguish between the rejection and no rejection classes using a bias factor of 0.01. The top 20 or 30 terms were taken from the SHET output and among all comparisons in either the static or referenced data the results were grouped. Any gene found in the top 5 terms in more than 50% of the analyses was selected to be in group B1 (Table 2). The occurrences of each gene were tabulated over all SHET analysis (for either static or referenced data) and the 10 genes that occurred the most were selected to be in group B2 (Table 2).

some Grade 0 and some Grade 3A samples for 9 genes is shown in Figure 7A.

An additional classification method used was CART (Salford Systems, San Diego, example 15). Either the static or referenced dataset was reduced to only the genes for which expression values (log ratios) were present in at least 80% of the samples. These data were used in CART with the default settings, using the Symmetric Gini algorithm. Each of the dependent variables was used with both the full sample set and the strict inclusion criteria. Two groups of genes were identified. Group C1 were those genes that were a primary splitter (1<sup>st</sup> decision node). Group C2 genes were the 10 genes that occurred as splitters the most often over all these analyses.

Two other classification models were developed and their best genes identified as markers of cardiac allograft rejection. Group D genes were identified from a set of 59 samples, referenced data, local biopsy reading grade, using logistic regression. Group E genes were identified from the primary static dataset using a K-nearest neighbor classification algorithm.

Both hierarchical clustering (Eisen et al. 1998) and CART were used to identify surrogates for each identified marker. Hierarchical clustering surrogates are genes co-expressed in these and were chosen from the nearest branches of the dendrogram. CART surrogates were identified by CART as the surrogates for those genes chosen as primary splitters at decision nodes.

Primers for real-time PCR validation were designed for each of the marker genes as described in Example 13.

CART was used to build a decision tree for classification of samples as rejection or no-rejection using the gene expression data from the arrays. The analysis identified sets of genes that can be used together to accurately identify samples derived from cardiac allograft transplant patients. The set of genes and the identified threshold expression levels for the decision tree are referred to as a "models". This model can be used to predict the rejection state of an unknown sample. The input data were the static expression data (log ratio) and the referenced expression data (log ratio referenced to the best available grade 0 from either the centralized reader or the local reader) for 139 of our top marker genes. These two types of expression data were entered into the CART software as independent variables. The dependent variable was rejection state, defined for this model as no rejection = grade 0 and rejection = grade 3A. Samples were eliminated from consideration in the training set if they were from patients with either bacterial or viral infection or were from patients who were less than two weeks post-transplant. The method used was Symmetric Gini, allowing linear combinations of independent variables. The costs were set to 1 for both false negatives and false positives and the priors were set equal for the two states. No penalties were assessed for missing data, however the marker genes selected have strong representation across the dataset. 10-fold cross validation was used to test the model. Settings not specified remained at the default values.

The model shown in Figure 7B is based on decisions about expression values at three nodes, each a different marker gene. The cost assigned to this model is 0.292, based on the priors being equal, the costs set to 1 for each type of error, and the results from the 10-fold cross validation.

In the training set, no rejection samples were misclassified (sensitivity = 100%) and only 1 no-rejection sample was misclassified (specificity = 94.4%). Following 10-fold cross validation, 2 rejection samples were misclassified (sensitivity = 87.5%) and 3 no-rejection samples were misclassified (specificity = 83.3%). The CART software assigns surrogate markers for each decision node.

These genes can be used alone or in association with other genes or variables to build a diagnostic gene set or a classification algorithm. These genes can be used in association with known gene markers for rejection (such as those identified in the prior art) to provide a diagnostic algorithm.

# Example 11- Amplification, labeling, and hybridization of total RNA to an oligonucleotide microarray Amplification, labeling, hybridization and scanning

Samples consisting of at least 0.5 to 2 µg of intact total RNA were further processed for array hybridization. When available, 2 µg of intact total RNA is used for amplification. Amplification and labeling of total RNA samples was performed in three successive enzymatic reactions. First, a single-stranded DNA copy of the RNA was made (hereinafter, "ss-cDNA"). Second, the ss-cDNA was used as a template for the complementary DNA strand, producing double-stranded cDNA (hereinafter, "ds-cDNA, or cDNA"). Third, linear amplification was performed by in vitro transcription from a bacterial T<sub>2</sub> promoter. During this step, fluorescent-conjugated nucleotides were incorporated into the amplified RNA (hereinafter, "aRNA").

The first strand cDNA was produced using the Invitrogen kit (Superscript II). The first strand cDNA

was produced in a reaction composed of 50 mM Tris-HCl (pH 8.3), 75 mM KCl, and 3 mM MgCl<sub>2</sub> (1x First Strand Buffer, Invitrogen), 0.5 mM dGTP, 0.5 mM dATP, 0.5 mM dTTP, 0.5 mM dCTP, 10 mM DTT, 200 U reverse transcriptase (Superscript II, Invitrogen, #18064014), 15 U RNase inhibitor (RNAGuard, Amersham Pharmacia, #27-0815-01), 5 µM T7T24 primer TTT-3'), (SEO ID NO:3105) and 0.5 to 2 ug of selected sample total RNA. Several purified, recombinant control mRNAs from the plant Arabidopsis thaliana were added to the reaction mixture: 2-20 pg of the following genes CAB, RCA, LTP4, NAC1, RCP1, XCP2, RBCL, LTP6, TIM, and PRKase (Stratagene, #252201, #252202, #252204, #252208, #252207, #252206, #252203, #252205, #252209, #252210 respectively). The control RNAs allow the estimate of copy numbers for individual mRNAs in the clinical sample because corresponding sense oligonucleotide probes for each of these plant genes are present on the microarray. The final reaction volume of 20 µl was incubated at 42°C for 90 min. For synthesis of the second cDNA strand, DNA polymerase and RNase were added to the previous reaction, bringing the final volume to 150 µl. The previous contents were diluted and new substrates were added to a final concentration of 20 mM Tris-HCl (pH 7.0) (Fisher Scientific, Pittsburgh, PA #BP1756-100), 90 mMKCl (Teknova, Half Moon Bay, CA, #0313-500), 4.6 mM MgCl<sub>2</sub> (Teknova, Half Moon Bay, CA, #0304-500), 10 mM(NH<sub>4</sub>) sO<sub>4</sub> (Fisher Scientific #A702-500)(1x Second Strand buffer, Invitrogen), 0.266 mM dGTP, 0.266 mM dATP, 0.266 mM dTTP, 0.266 mM dCTP, 40 U E. coli DNA polymerase (Invitrogen, #18010-025), and 2 U RNaseH (Invitrogen, #18021-014). The second strand synthesis took place at 16°C for 150 minutes.

Following second-strand synthesis, the ds-cDNA was purified from the enzymes, dNTPs, and buffers before proceeding to amplification, using phenol-chloroform extraction followed by ethanol precipitation of the cDNA in the presence of glycogen.

Alternatively, a silica-gel column is used to purify the cDNA (e.g. Qiaquick PCR cleanup from Qiagen, #28104). The volume of the column purified cDNA was reduced by ethanol precipitation in the

presence of glycogen in which the cDNA was collected by centrifugation at >10,000 ×g for 30 minutes, the supernatant is aspirated, and 150 μl of 70% ethanol, 30% water was added to wash the DNA pellet. Following centrifugation, the supernatant was removed, and residual ethanol was evaporated at room temperature. Alternatively, the volume of the column purified cDNA is reduce in a vacuum evaporator where the supernatant is reduce to a final volume of 7.4 μl.

Linear amplification of the cDNA was performed by in vitro transcription of the cDNA. The cDNA pellet from the step described above was resuspended in 7.4 μl of water, and in vitro transcription reaction buffer was added to a final volume of 20 μl containing 7.5 mM GTP, 7.5 mM ATP, 7.5 mM

TTP, 2.25 mM CTP, 1.025 mM Cy3-conjugated CTP (Perkin Elmer; Boston, MA, #NEL-580), 1x reaction buffer (Ambion, Megascript Kit, Austin, TX and #1334) and 1 % Ty polymerase enzyme mix (Ambion, Megascript Kit, Austin, TX and #1334). This reaction was incubated at 37°C overnight. Following in vitro transcription, the RNA was purified from the enzyme, buffers, and excess NTPs using the RNeasy kit from Qiagen (Valencia, CA; # 74106) as described in the vendor's protocol. A second elution step was performed and the two eluates were combined for a final volume of 60 μl. RNA is quantified using an Agilent 2100 bioanalyzer with the RNA 6000 nano LabChip.

Reference RNA was prepared as described above, except Cy5-CTP was incorporated instead of Cy3CTP. Reference RNA from five reactions, each reaction started with 2 ug total RNA, was pooled

## Hybridization to an array

together and quantitated as described above.

RNA was prepared for hybridization as follows: for an 18mm×55mm array, 20 µg of amplified RNA (aRNA) was combined with 20 µg of reference aRNA. The combined sample and reference aRNA was concentrated by evaporating the water to 10 µl in a vacuum evaporator. The sample was fragmented by heating the sample at 95°C for 30 minutes to fragment the RNA into 50-200 bp pieces. Alternatively, the combined sample and reference aRNA was concentrated by evaporating the water to 5 µl in a vacuum evaporator. Five µl of 20 mM zinc acetate was added to the aRNA and the mix incubated at 60°C for 10 minutes. Following fragmentation, 40 µl of hybridization buffer was added to achieve final concentrations of 5×SSC and 0.20 %SDS with 0.1 µg/ul of Cot-1 DNA (Invitrogen) as a competitor DNA. The final hybridization mix was heated to 98°C, and then reduced to 50°C at 0.1°C per second.

Alternatively, formamide is included in the hybridization mixture to lower the hybridization temperature.

The hybridization mixture was applied to a pre-heated 65°C microarray, surface, covered with a glass coverslip (Corning, #2935-246), and placed on a pre-heated 65°C hybridization chamber (Telechem, AHC-10). 15 ul of 5xSSC was placed in each of the reservoir in the hybridization chamber and the chamber was sealed and placed in a water bath at 62°C for overnight (16-20 hrs). Following incubation, the slides were washed in 2×SSC, 0.1% SDS for five minutes at 30°C, then in 2×SSC for five minutes at 30°C, then in 0.2×SSC for two minutes.

at room temperature. The arrays were spun at 1000×g for 2 minutes to dry them. The dry microarrays are then scanned by methods described above.

The microarrays were imaged on the Agilent (Palo Alto, CA) scanner G2565AA. The scan settings using the Agilent software were as follows: for the PMT Sensitivity (100% Red and 100% Green); Scan Resolution (10 microns); red and green dye channels; used the default scan region for all slides in the carousel; using the largest scan region; scan date for Instrument ID; and barcode for Slide ID. The full image produced by the Agilent scanner was flipped, rotated, and split into two images (one for each signal channel) using TIFFSplitter (Agilent, Palo Alto, CA). The two channels are the output at 532 nm (Cy3-labeled sample) and 633 nm (Cy5-labeled R50). The individual images were loaded into GenePix 3.0 (Axon Instruments, Union City, CA) for feature extraction, each image was assigned an excitation wavelength corresponding the file opened; Red equals 633 nm and Green equals 532 nm. The setting file (gal) was opened and the grid was laid not the image so that each spot in the grid overlaped with >50% of the feature. Then the GenePix software was used to find the features without setting minimum threshold value for a feature. For features with low signal intensity, GenePix reports "not found". For all features, the diameter setting was adjusted to include only the feature if necessary.

The GenePix software determined the median pixel intensity for each feature  $(F_i)$  and the median pixel intensity of the local background for each feature  $(B_i)$  in both channels. The standard deviation  $(SDF_i)$  and  $SDB_i$  for each is also determined. Features for which GenePix could not discriminate the feature from the background were "flagged" as described below.

Following feature extraction into a ".gpr" file, the header information of the .gpr file was changed to carry accurate information into the database. An Excel macro was written to include the following information: Name of the original .tif image file, SlideID, Version of the feature extraction software, GenePix Array List file, GenePix Settings file, ScanID, Name of person who scanned the slide, Green PMT setting, Red PMT setting, ExtractID (date .gpr file was created, formatted as yyyy.mm.dd-hh.mm.ss), Results file name (same as the .gpr file name), StorageCD, and Extraction comments.

## Pre-processing with Excel Templates

Following analysis of the image and extraction of the data, the data from each hybridization was preprocessed to extract data that was entered into the database and subsequently used for analysis. The
complete GPR file produced by the feature extraction in GenePix was imported into an excel file preprocessing template or processed using a AWK script. Both programs used the same processing logic
and produce identical results. The same excel template or AWK script was used to process each GPR
file. The template performs a series of calculations on the data to differentiate poor features from
others and to combine duplicate or triplicate feature data into a single data point for each probe.

The data columns used in the pre-processing were: Oligo ID, F633 Median (median value from all the pixels in the feature for the Cy5 dye), B633 Median (the median value of all the pixels in the local background of the selected feature for Cy5), B633 SD (the standard deviation of the values for the pixels in the local background of the selected feature for Cy5), F532 Median (median value from all the pixels in the feature for the Cy3 dye), B532 Median (the median value of all the pixels in the local background of the selected feature for Cy3), B532 SD (the standard deviation of the values for the pixels in the local background of the selected feature for Cy3), and Flags. The GenePix Flags column contains the flags set during feature extraction. "-75" indicates there were no features printed on the array in that position, "-50" indicates that GenePix could not differentiate the feature signal from the local background, and "-100" indicates that the user marked the feature as bad.

Once imported, the data associated with features with -75 flags was not used. Then the median of B633 SD and B532 SD were calculated over all features with a flag value of "0". The minimum values of B633 Median and B532 Median were identified, considering only those values associated with a flag value of "0". For each feature, the signal to noise ratio (S/N) was calculated for both dyes by taking the fluorescence signal minus the local background (BGSS) and dividing it by the standard deviation of the local background:

$$S/N = \frac{F_i - B_i}{SDB_i}$$

If the S/N was less than 3, then an adjusted background-subtracted signal was calculated as the fluorescence minus the minimum local background on the slide. An adjusted S/N was then calculated as the adjusted background subtracted signal divided by the median noise over all features for that channel. If the adjusted S/N was greater than three and the original S/N were less than three, a flag of 25 was set for the Cy5 channel, a flag of 23 was set for the Cy3 channel, and if both met these criteria, then a flag of 28 was set. If both the adjusted S/N and the original S/N were less than three, then a flag of 65 was set for Cy5, 63 set for Cy3, and 68 set if both dye channels had an adjusted S/N less than three. All signal to noise calculations, adjusted background-subtracted signal, and adjusted S/N were calculated for each dye channel. If the BGSS value was greater than or equal to 64000, a flag was set to indicate saturation; 55 for Cy5, 33 for Cy5, 38 for both.

The BGSS used for further calculations was the original BGSS if the original S/N was greater than or equal to three. If the original S/N ratio was less than three and the adjusted S/N ratio was greater than or equal to three, then the adjusted BGSS was used. If the adjusted S/N ratio was less than three, then the adjusted BGSS was used, but with knowledge of the flag status.

To facilitate comparison among arrays, the Cy3 and Cy5 data were scaled. The log of the ratio of Green/Red was determined for all features. The median log ratio value for good features (Flags 0, 23, 25, 28, 63) was determined. The feature values were scaled using the following formula:

Log Scaled Feature Ratio = Log Feature Ratio - Median Log Ratio.

The flag setting for each feature was used to determine the expression ratio for each probe, a choice of one, two or three features. If all features had flag settings in the same category (categories=negatives,

0 to 28, 53-58, and 63-68), then the average of the three scaled, anti log feature ratios was calculated. If the three features did not have flags in the same category, then the feature or features with the best quality flags were used (0>25>23>28>55>53>58>65-63>68). Features with negative flags were never used. When the best flags were two or three features in the same category, the anti log average was used. If a single feature had a better flag category than the other two then the anti log of that feature ratio was used.

Once the probe expression ratios were calculated from the one, two, or three features, the log of the scaled, averaged ratios was taken as described below and stored for use in analyzing the data. Whichever features were used to calculate the probe value, the flag from those features was carried forward and stored as the flag value for that probe. 2 different data sets can be used for analysis. Flagged data uses all values, including those with flags. Filtered data sets are created by removing flagged data from the set before analysis.

## Example 12: Real-time PCR validation of array expression results

Leukocyte microarray gene expression was used to discover expression markers and diagnostic gene sets for clinical outcomes. It is desirable to validate the gene expression results for each gene using a more sensitive and quantitative technology such as real-time PCR. Further, it is possible for the diagnostic nucleotide sets to be implemented as a diagnostic test as a real-time PCR panel. Alternatively, the quantitative information provided by real-time PCR validation can be used to design a diagnostic test using any alternative quantitative or semi-quantitative gene expression technology. To validate the results of the microarray experiments we used real-time, or kinetic, PCR. In this type of experiment the amplification product is measured during the PCR reaction. This enables the researcher to observe the amplification before any reagent becomes rate limiting for amplification. In kinetic PCR the measurement is of C<sub>T</sub> (threshold cycle) or C<sub>P</sub> (crossing point). This measurement (C<sub>T</sub>=C<sub>P</sub>) is the point at which an amplification curve crosses a threshold fluorescence value. The threshold is set to a point within the area where all of the reactions were in their linear phase of amplification. When measuring C<sub>T</sub>, a lower C<sub>T</sub> value is indicative of a higher amount of starting material since an earlier cycle number means the threshold was crossed more quickly. Several fluorescence methodologies are available to measure amplification product in real-time PCR. Taqman (Applied BioSystems, Foster City, CA) uses fluorescence resonance energy transfer (FRET) to inhibit signal from a probe until the probe is degraded by the sequence specific binding and Taq 3' exonuclease activity. Molecular Beacons (Stratagene, La Jolla, CA) also use FRET technology, whereby the fluorescence is measured when a hairpin structure is relaxed by the specific probe binding to the amplified DNA. The third commonly used chemistry is Sybr Green, a DNA-binding dye (Molecular Probes, Eugene, OR). The more amplified product that is produced, the higher the signal. The Sybr Green method is sensitive to non-specific amplification products, increasing the importance of primer design and selection. Other detection chemistries can also been used, such as ethedium bromide or other DNA-binding dyes and many modifications of the fluorescent dye/quencher dye Taoman chemistry.

### Sample prep and cDNA synthesis

The inputs for real time PCR reaction are gene-specific primers, cDNA from specific patient samples, and standard reagents. The cDNA was produced from monouclear RNA (prepared as in example 2) or whole blood RNA by reverse transcription using Oligo dT primers (Invitrogen, 18418-012) and random hexamers (Invitrogen, 48190-011) at a final concentration of 0.5ng/µl and 3ng/µl respectively. For the first strand reaction mix, 0.5  $\mu$ g of mononuclear total RNA or 2  $\mu$ g of whole blood RNA and 1  $\mu$ l of the Oligo dT/ Random Hexamer Mix, were added to water to a final volume of 11.5  $\mu$ l. The sample mix was then placed at 70°C for 10 minutes. Following the 70°C incubation, the samples were chilled on ice, spun down, and 88.5  $\mu$ l of first strand buffer mix dispensed into the reaction tube. The final first strand buffer mix produced final concentrations of 1X first strand buffer (Invitrogen, Y00146, Carlsbad, CA), 10 mM DTT (Invitrogen, Y00147), 0.5 mM dATP (NEB, N0440S, Beverly, MA), 0.5 mM dGTP (NEB, N0442S), 0.5mM dTTP (NEB, N0443S), 0.5 mM dCTP (NEB, N0441S), 200U of reverse transcriptase (Superscript II, Invitrogen, 18064-014), and 18U of RNase inhibitor (RNAGaurd Amersham Pharmacia, 27-0815-01, Piscataway, NJ). The reaction was incubated at 42°C for 90 minutes. After incubation the enzyme was heat inactivated at 70°C for 15 minutes, 2 U of RNAse H added to the reaction tube, and incubated at 37°C for 20 minutes.

## PRIMER DESIGN

Two methods were used to design primers. The first was to use the software, Primer Express<sup>an</sup> and recommendations for primer design that are provided with the GeneAmp® 7700 Sequence Detection System supplied by Applied BioSystems (Foster City, CA). The second method used to design primers was the PRIMER3 ver 0.9 program that is available from the Whitehead Research Institute, Cambridge, Massachusetts at the Whitehead Research web site. The program can also be accessed on the World Wide Web at the web site at the Massechusetts Institute of Technology website. Primers and Taqman/hybridization probes were designed as described below using both programs. The Primer Express literature explains that primers should be designed with a melting temperature between 58 and 60 degrees C. while the Taqman probes should have a melting temperature of 68 to 70 under the salt conditions of the supplied reagents. The salt concentration is fixed in the software. Primers should be between 15 and 30 basepairs long. The primers should produce and amplicon in size between 50 and 150 base pairs, have a C-G content between 20% and 80%, have no more than 4 identical base pairs next to one another, and no more than 2 C's and G's in the last 5 bases of the 3' end. The probe cannot have a G on the 5' end and the strand with the fewest G's should be used for the probe.

Primer3 has a large number of parameters. The defaults were used for all except for melting temperature and the optimal size of the amplicon was set at 100 bases. One of the most critical is salt concentration as it affects the melting temperature of the probes and primers. In order to produce, primers and probes with melting temperatures equivalent to Primer Express, a number of primers and probes designed by Primer Express were examined using PRIMER3. Using a salt concentration of 50 mM these primers had an average melting temperature of 3.7 degrees higher than predicted by Primer

Express. In order to design primers and probes with equivalent melting temperatures as Primer Express using PRIMER3, a melting temperature of 62.7 plus/minus 1.0 degree was used in PRIMER3 for primers and 72.7 plus/minus 1.0 degrees for probes with a salt concentration of 50 mM.

The C source code for Primer3 was downloaded and complied on a Sun Enterprise 250 server using the

The Countries of the program was then used from the command line using a input file that contained the sequence for which we wanted to design primers and probes along with the input parameters as described by help files that accompany the software. Using scripting it was possible to input a number of sequences and automatically generate a number of possible probes and primers.

Primers for β-Actin (Beta Actin, Genbank Locus: NM\_001101) and β-GUS: glucuronidase, beta, (GUSB, Genbank Locus: NM\_000181), two reference genes, were designed using both methods and are shown here as examples:

The first step was to mask out repetitive sequences found in the mRNA sequences using RepeatMasker program that can be accessed at: the web site University of Washington Genome Repeatmasker website. (Smit. A.F.A. & Green. P.).

The last 500 basepairs on the last 3' end of masked sequence was then submitted to PRIMER3 using the following exemplary input sequences:

PRIMER\_SEQUENCE\_ID=>GUSB (SEQID 3084)
SEQUENCE=CARAGAGATACCAGAAAAACCCTAGAGATCAAAAACCCAGA
AAATATGTGGTTCGAGAGAGATCCTCCTTGGACAGTTCATCACTGGTCTGGATCAAAAACCGAGA
AAATATGTGGTTCGAGAGCTCATTTGGAATTTTCCCGATTTCATCACTGACAGTCACCAGCGAGAGTG
CTGGGGAATAAAAAGGGGATCTTCACTCGGCAGGAGACACCAAAAAGTGCAGCGTTTCCTTTTGCGAGAG
AGATACTGGAAGATTGCCAATGAAACCAGGTATCCCCTCCCCCCAGTACCAAGTTTTGGAAAA
AGCCCGTTTACTTCAGCAAGAACATGATCACCACCTGCGTGTCCCTTCCTCCCCCGAGTCAGGGCGACTTCCA
AGGAGACGAAACAAGTGCTCCTCGGACTGTTCACGCCAGACCCAGAAGGTTTCTGGCCTGTTTTGTG
TCATCTATTCTAGCAGGAACACTAAAGGTTGGAAATAAAAGATTTTCTATTATGGAAATAAAAGGTTGG
CATGAAAGTCTGCTACTG

After running PRIMER3, 100 sets of primers and probes were generated for ACTB and GUSB. From this set, nested primers were chosen based on whether both left primers could be paired with both right primers and a single Taqman probe could be used on an insert of the correct size. With more experience we have decided not use the mix and match approach to primer selection and just use several of the too pairs of predicted primers.

For ACTB this turned out to be: Forward 75 CACAATGTGGCCGAGGACTT(SEQID 3085), Forward 80 TGTGGCCGAGGACTTTGATT(SEQID 3086), Reverse 178 TGGCTTTTAGGATGGCAAGG(SEQID 3087), and Reverse 168 GGGGCCTTAGTTTGCTTCT(SEQID 3088).

Upon testing, the F75 and R178 pair worked best.

For GUSB the following primers were chosen: Forward 59 AAGTGCAGCGTTCCTTTTGC(SEQID 3089), Forward 65 AGCGTTCCTTTTGCGAGAGA (SEQID 3090), Reverse 158 CGGGCTGTTTTCCAAACATT (SEQID 3091), and Reverse 197 GAAGGGACACGAGTGGTA (SEQID 3092).

No combination of these GUSB pairs worked well.

In addition to the primer pairs above, Primer Express predicted the following primers for GUSB:
Forward 178 TACCACCTGCGTGTCCCTTC (SEQID 3093) and Reverse 242

CACCACCTCTTCTCCCCTCCTC (SEQID 2004). This pair of primary worked to applify the GUS

GAGGCACTTGTTCTGCTGCTG (SEQID 3094). This pair of primers worked to amplify the GUSB mRNA.

The parameters used to predict these primers in Primer Express were: Primer Tm: min 58, Max=60, opt 59, max difference=2 degrees Primer GC: min=20% Max =80% no 3° G/C clamp Primer: Length: min=9 max=40 opt=20 Amplicon: min Tm=0 max Tm=85 min = 50 bp max = 150 bp Probe: Tm 10 degrees > primers, do not begin with a G on 5° end Other: max base nair reveat = 3

max number of ambiguous residues = 0 secondary structure: max consecutive bp = 4, max total bp = 8

Uniqueness: max consecutive match = 9

max % match = 75

max 3' consecutive match = 7

Granzyme B is a marker of transplant rejection.

For Granzyme B the following sequence (NM 004131) (SEOID 3096) was used as input for Primer3:

For Granzyme B the following primers were chosen for testing: Forward 81 ACGAGCCTGCACCAAAGTCT (SEQID 3098) Forward 63 AAACAATGGCATGCCTCCAC (SEQID 3098) Reverse 178 TCATTACAGCGGGGGCTTAG (SEQID 3099) Reverse 168 GGGGCCTTAGTTTGCTTCCT (SEQID 3109)

Testing demonstrated that F81 and R178 worked well.

Using this approach, primers were designed for all the genes that were shown to have expression patterns that correlated with allograft rejection. These primer pairs are shown in Table 2, Table 8, and are added to the sequence listing. Primers can be designed from any region of a target gene using this approach.

PRIMER ENDPOINT TESTING

Primers were first tested to examine whether they would produce the correct size product without nonspecific amplification. The standard real-time PCR protocol was used without the Rox and Sybr green dyes. Each primer pair was tested on cDNA made from universal mononuclear leukocyte reference RNA that was produced from 50 individuals as described in Example 3 (R50).

The PCR reaction consisted of LX RealTime PCR Buffer (Ambion, Austin, TX), 2mM MgCl2 (Applied BioSystems, B02953), 0.2mM dATP (NEB), 0.2mM dTTP (NEB), 0.2mM dCTP (NEB), 0.2mM dGTP (NEB), 6.25U AmpliTaq Gold (Applied BioSystems, Foster City, CA), 0.3µM of each primer to be used (Sigma Genosys, The Woodlands, TX), 5µl of the R50 reverse-transcription reaction and water to a final volume of 19µl.

Following 40 cycles of PCR, 10 microliters of each product was combined with Sybr green at a final dilution of 1:72,000. Melt curves for each PCR product were determined on an ABI 7900 (Applied BioSystems, Foster City, CA), and primer pairs yielding a product with one clean peak were chosen for further analysis. One microliter of the product from these primer pairs was examined by agarose gel electrophoresis on an Agilent Bioanalyzer, DNA1000 chip (Palo Alto, CA). Results for 2 genes are shown in Figure 9. From the primer design and the sequence of the target gene, one can calculate the expected size of the amplified DNA product. Only primer pairs with amplification of the desired product and minimal amplification of contaminants were used for real-time PCR. Primers that produced multiple products of different sizes are likely not specific for the gene of interest and may amplify multiple genes or chromosomal loci.

### PRIMER OPTIMIZATION/EFFICIENCY

Once primers passed the end-point PCR, the primers were tested to determine the efficiency of the reaction in a real-time PCR reaction. cDNA was synthesized from starting total RNA as described above. A set of 5 serial dilutions of the R50 reverse-transcribed cDNA (as described above) were made in water: 1:10, 1:20, 1:40, 1:80, and 1:160.

The Sybr Green real-time PCR reaction was performed using the Taqman PCR Reagent kit (Applied BioSystems, Foster City, CA, N808-0228). A master mix was made that consisted of all reagents except the primes and template. The final concentration of all ingredients in the reaction was 1X Taqman Buffer A (Applied BioSystems), 200μM dGTP (Applied BioSystems), 200μM dATP (Applied BioSystems), 200μM dGTP (Applied BioSystems), 200μM dGTP (Applied BioSystems), 1:400,000 diluted Sybr Green dye (Molecular Probes), 1.25U AmpliTaq Gold (Applied BioSystems). The PCR master mix was dispensed into two, light-tight tubes. Each β-Actin primer F75 and R178 (Sigma-Genosys, The Woodlands, TX), was added to one tube of PCR master mix and Each β-GUS primer F178 and R242 (Sigma-Genosys), was added to the other tube of PCR master mix to a final primer concentration of 300nM. 45μl of the β-Actin or β-GUS master mix was dispensed into twells, in a 96-well plate (Applied BioSystems). 5μl of the template dilution series was dispensed into triplicate wells for each primer. The reaction was run on an ABI 7900 Sequence Detection System (Applied BioSystems) with the following conditions: 10 min. at 95°C; 40 cycles of

95°C for 15 sec, 60°C for 1 min; followed by a disassociation curve starting at 50°C and ending at 95°C.

The Sequence Detection System v2.0 software was used to analyze the fluorescent signal from each well. The high end of the baseline was adjusted to between 8 and 20 cycles to reduce the impact on any data curves, yet be as high as possible to reduce baseline drift. A threshold value was selected that allowed the majority of the amplification curves to cross the threshold during the linear phase of amplification. The disassociation curve for each well was compared to other wells for that marker. This comparison allowed identification of "bad" wells, those that did not amplify, that amplified the wrong size product, or that amplification during the linear phase of the words in the products. The cycle number at which each amplification curve crossed the threshold ( $C_T$ ) was recorded and the file transferred to MS Excel for further analysis. The  $C_T$  values for triplicate wells were averaged. The data were plotted as a function of the  $\log_{10}$  of the calculated starting concentration of RNA. The starting RNA concentration for each cDNA dilution was determined based on the original amount of RNA used in the RT reaction, the dilution of the RT reaction, and the amount used ( $S_T$  µl) in the real-time PCR reaction. For each gene, a linear regression line was plotted through all of the dilutions series points. The slope of the line was used to calculate the efficiency of the reaction for each primer set usine the equation:

$$E = 10^{\left(-\frac{1}{2}\text{slope}\right)} - 1$$

Using this equation (Pfaffl 2001, Applied Biosystems User Bulletin #2), the efficiency for these β-actin primers is 1.28 and the efficiency for these β-GUS primers is 1.14 (Figure 10). This efficiency was used when comparing the expression levels among multiple genes and multiple samples. This same method was used to calculate reaction efficiency for primer pairs for each gene studied. A primer pair was considered successful if the efficiency was reproducibly determined to be between 0.7 and 2.4. SYBR-GREEN ASSAYS

Once markers passed the Primer Efficiency QPCR (as stated above), they were used in real-time PCR assays. Patient RNA samples were reverse-transcribed to cDNA (as described above) and 1:10 dilutions made in water. In addition to the patient samples, a no template control (NTC) and a pooled reference RNA (see example 3) described in were included on every plate.

The Sybr Green real-time PCR reaction was performed using the Taqman Core PCR Reagent kit (Applied BioSystems, Foster City, CA, N808-0228). A master mix was made that consisted of all reagents except the primers and template. The final concentration of all ingredients in the reaction was 1X Taqman Buffer A (Applied BioSystems), 2mM MgCl2 (Applied BioSystems), 200µM dATP (Applied BioSystems), 200µM dCTP (Applied BioSystems), 200µM dGTP (Applied BioSystems), 400µM dUTP (Applied BioSystems), 1:400,000 diluted Sybr Green dye (Molecular Probes), 1:25U AmpliTaq Gold (Applied BioSystems). The PCR master mix was aliquotted into eight light-tight tubes, one for each marker to be examined across a set of samples. The optimized primer pair for each marker was then added to the PCR master mix to a final primer concentration of 300nM. 18µl of the each marker master mix was dispensed into wells in a 384well plate (Applied BioSystems). 2µl of the

1:10 diluted control or patient cDNA sample was dispensed into triplicate wells for each primer pair. The reaction was run on an ABI 7900 Sequence Detection System (Applied BioSystems) using the cycling conditions described above.

The Sequence Detection System v2.0 software (Applied BioSystems) was used to analyze the fluorescent signal from each well. The high end of the baseline was adjusted to between 8 and 20 cycles to reduce the impact on any data curves, yet be as high as possible to reduce baseline drift. A threshold value was selected that allowed the majority of the amplification curves to cross the threshold during the linear phase of amplification. The disassociation curve for each well was compared to other wells for that marker. This comparison allowed identification of "bad" wells, those that did not amplify, that amplified the wrong size product, or that amplified multiple products. The cycle number at which each amplification curve crossed the threshold (C<sub>T</sub>) was recorded and the file transferred to MS Excel for further analysis. The C<sub>T</sub> value representing any well identified as bad by analysis of disassociation curves was deleted. The C<sub>T</sub> values for triplicate wells were averaged. A standard deviation (Stdev) and a coefficient of variation (CV) were calculated for the triplicate wells. If the CV was greater than 2, an outlier among the three wells was identified and deleted. Then the average was re-calculated. In each plate, ΔC<sub>T</sub> was calculated for each marker-control combination by subtracting the average C<sub>T</sub> of the target marker from the average C<sub>T</sub> of the control (β-Actin or β-GUS). The expression relative to the control marker was calculated by taking two to the power of the  $\Delta C_T$  of the target marker. For example, expression relative to  $\beta$ -Actin was calculated by the equation:  $ErA = 2^{(C_{T,Actin} - C_{T,I} ussel)}$ 

$$ErA = 2^{(C_{T,Aelin}-C_{T,I}uger)}$$

All plates were run in duplicate and analyzed in the same manner. The percent variation was determined for each sample-marker combination (relative expression) by taking the absolute value of the value of the RE for the second plate from the RE for the first plate, and dividing that by the average. If more than 25% of the variation calculations on a plate are greater than 50%, then a third plate was run.

#### TAOMAN PROTOCOL

Real-time PCR assays were also done using Taqman PCR chemistry.

The Tagman real-time PCR reaction was performed using the Tagman Universal PCR Master Mix (Applied BioSystems, Foster City, CA, #4324018). The master mix was aliquoted into eight, lighttight tubes, one for each marker. The optimized primer pair for each marker was then added to the correctly labeled tube of PCR master mix. A FAM/TAMRA dual-labeled Tagman probe (Bioscarch Technologies, Navoto, CA, DLO-FT-2) was then added to the correctly labeled tube of PCR master mix. Alternatively, different combinations of fluorescent reporter dyes and quenchers can be used such that the absorption wavelength for the quencher matches the emission wavelength for the reporter, as shown in Table 5. 18µl of the each marker master mix was dispensed into a 384well plate (Applied BioSystems). 2µl of the template sample was dispensed into triplicate wells for each primer pair. The final concentration of each reagent was: 1X TagMan Universal PCR Master Mix, 300nM each primer, 0.25nM probe, 2ul 1:10 diluted template. The reaction was run on an ABI 7900 Sequence Detection

System (Applied Biosystems) using standard conditions (95°C for 10 min., 40 cycles of 95°C for 15 sec, 60°C for 1 min.).

The Sequence Detector v2.0 software (Applied BioSystems) was used to analyze the fluorescent signal from each well. The high end of the baseline was adjusted to between 8 and 20 cycles to reduce the impact on any data curves, yet be as high as possible to reduce baseline drift. A threshold value was selected that allowed most of the amplification curves to cross the threshold during the linear phase of amplification. The cycle number at which each amplification curve crossed the threshold (C<sub>T</sub>) was recorded and the file transferred to MS Excel for further analysis. The C<sub>T</sub> values for triplicate wells were averaged. The C<sub>T</sub> values for triplicate wells were averaged. A standard deviation (Stdev) and a coefficient of variation (CV) were calculated for the triplicate wells. If the CV was greater than 2, an outlier among the three wells was identified and deleted. Then the average was re-calculated. In each plate,  $\Delta C_T$  was calculated for each marker-control combination by subtracting the average  $C_T$  of the target marker from the average  $C_T$  of the control ( $\beta$ -Actin or  $\beta$ -GUS). The expression relative to the control marker was calculated by taking two to the power of the  $\Delta C_T$  of the target marker. All plates were run in duplicate and analyzed in the same manner. The percent variation was determined for each sample-marker combination (relative expression) by taking the absolute value of the value of the RE for the second plate from the RE for the first plate, and dividing that by the average. If more than 25% of the variation calculations on a plate are greater than 50%, then a third plate was run.

### BI-PLEXING

Variation of real-time PCR assays can arise from unequal amounts of RNA starting material between reactions. In some assays, to reduce variation, the control gene amplification was included in the same reaction well as the target gene. To differentiate the signal from the two genes, different fluorescent dyes were used for the control gene. β-Actin was used as the control gene and the TaqMan probe used was labeled with the fluorescent dye VIC and the quencher TAMRA (Biosearch Technologies, Navoto, CA, DLO-FT-2). Alternatively, other combinations of fluorescent reporter dyes and quenchers (Table 5) can be used as long as the emission wavelength of the reporter for the control gene is sufficiently different from the wavelength of the reporter dye used for the target. The control gene primers and probe were used at limiting concentrations in the reaction (150 nM primers and 0.125 nM probe) to ensure that there were enough reagents to amplify the target marker. The plates were run under the same protocol and the data are analyzed in the same way, but with a separate baseline and threshold for the VIC signal. Outliers were removed as above from both the FAM and VIC signal channels. The expression relative to control was calculated as above, using the VIC signal from the control gene.

## ABSOLUTE QUANTITATION

Instead of calculating the expression relative to a reference marker, an absolute quantitation can be performed using real-time PCR. To determine the absolute quantity of each marker, a standard curve is constructed using serial dilutions from a known amount of template for each marker on the plate. The standard curve may be made using cloned genes purified from bacteria or using synthetic

complimentary oligonucleotides. In either case, a dilution series that covers the expected range of expression is used as template in a series of wells in the plate. From the average  $C_T$  values for these known amounts of template a standard curve can be plotted. From this curve the  $C_T$  values for the unknowns are used to identify the starting concentration of cDNA. These absolute quantities can be compared between disease classes (i.e. rejection vs. no-rejection) or can be taken as expression relative to a control gene to correct for variation among samples in sample collection, RNA purification and quantification, cDNA synthesis, and the PCR amplification.

### CELL TYPE SPECIFIC EXPRESSION

Some markers are expressed only in specific types of cells. These markers may be useful markers for differentiation of rejection samples from no-rejection samples or may be used to identify differential expression of other markers in a single cell type. A specific marker for cytotoxic T-lymphocytes (such as CD8) can be used to identify differences in cell proportions in the sample. Other markers that are known to be expressed in this cell type can be compared to the level of CD8 to indicate differential gene expression within CD8 T-cells.

### Control genes for PCR

As discussed above, PCR expression measurements can be made as either absolute quantification of gene expression using a standard curve or relative expression of a gene of interest compared to a control gene. In the latter case, the gene of interest and the control gene are measured in the same sample. This can be done in separate reactions or in the same reaction (biplex format, see above). In either case, the final measurement for expression of a gene is expressed as a ratio of gene expression to control gene expression. It is important for a control gene to be constitutively expressed in the target tissue of interest and have minimal variation in expression on a per cell basis between individuals or between samples derived from an individual. If the gene has this type of expression behavior, the relative expression ratio will help correct for variability in the amount of sample RNA used in an assay. In addition, an ideal control gene has a high level of expression in the sample of interest compared to the genes being assayed. This is important if the gene of interest and control gene are used in a biplex format. The assay is set up so that the control gene reaches its threshold Ct value early and its amplification is limited by primers so that it does not compete for limiting reagents with the gene of

To identify an ideal control gene for an assay, a number of genes were tested for variability between samples and expression in both mononuclear RNA samples and whole blood RNA samples using the RNA procurement and preparation methods and real-time PCR assays described above. 6 whole-blood and 6 mononuclear RNA samples from transplant recipients were tested. The intensity levels and variability of each gene in duplicate experiments on both sample types are shown in Figure 11.

Based on criteria of low variability and high expression across samples, β-actin, 18s, GAPDH, b2microglobulin were found to be good examples of control genes for the PAX samples. A single control gene may be incorporated as an internal biplex control is assays.

### Controlling for variation in real time PCR

Due to differences in reagents, experimenters, and preparation methods, and the variability of pipetting steps, there is significant plate-to-plate variation in real-time PCR experiments. This variation can be reduced by automation (to reduce variability and error), reagent lot quality control, and optimal data handling. However, the results on replicate plates are still likely to be different since they are run in the machine at different times.

Variation can also enter in data extraction and analysis. Real-time PCR results are measured as the time (measured in PCR cycles) at which the fluorescence intensity ( $\Box$ Rn in Applied Biosystems SDS v2.1 software) crosses a user-determined threshold (CT). When performing relative quantification, the CT value for the target gene is subtracted from the CT value for a control gene. This difference, called  $\Delta$ CT, is the value compared among experiments to determine whether there is a difference between samples. Variation in setting the threshold can introduce additional error. This is especially true in the duplexed experimental format, where both the target gene and the control gene are measured in the same reaction tube. Duplexing is performed using dyes specific to each of the two genes. Since two different fluorescent dyes are used on the plate, two different thresholds are set. Both of these thresholds contribute to each  $\Delta$ CT. Slight differences in the each dye's threshold settings (relative to the other dye) from one plate to the next can have significant effects on the  $\Delta$ CT. There are several methods for setting the threshold for a PCR plate. Older versions of SDS software

(Applied Biosystems) determine the average baseline fluorescence for the plate and the standard deviation of the baseline. The threshold is set to 10x the standard deviation of the baseline. In SDS 2.0 the users must set the baseline by themselves. Software from other machine manufacturers either requires the user to set the threshold themselves or uses different algorithms. The latest version of the SDS software (SDS 2.1) contains Automatic baseline and threshold setting. The software sets the baseline separately for each well on the plate using the \( \text{AR} \) at cycles preceding detectable levels. Variability among plates is dependent on reproducible threshold setting. This requires a mathematical or experimental data driven threshold setting protocol. Reproducibly setting the threshold according to a standard formula will minimize variation that might be introduced in the threshold setting process. Additionally, there may be experimental variation among plates that can be reduced by setting the threshold to a component of the data. We have developed a system that uses a set of reactions on each plate that are called the threshold calibrator (TCb). The TCb wells are used to set the threshold on all plates.

- 1. The TCb wells contain a template, primers, and probes that are common among all plates within an experiment
- 2. The threshold is set within the minimum threshold and maximum threshold determined above.
- 3. The threshold is set to a value in this range that results in the average CT value for the TCb wells to be the same on all plates.

These methods were used to derive the primers depicted in Table 2C.

## Example 13: Real-time PCR expression markers of acute allograft rejection

In examples 14 and 16, genes were identified as useful markers of cardiac and renal allograft rejection using microarrays. Some genes identified through these studies are listed in Table 2. In order to validate these findings, obtain a more precise measurement of expression levels and develop PCR reagents for diagnostic testing, real-time PCR assays were performed on samples from allograft recipients using primers to the identified genes. Some gene specific PCR primers were developed and tested for all genes in Table 2A as described in example 12. Some primers are listed in Table 2C and the sequence listing. These primers were used to measure expression of the genes relative to  $\beta$ -actin or  $\beta$ -gus in 69 mononuclear RNA samples obtained from cardiac allograft recipients using Sybr green real-time PCR assays as described in example 12. Each sample was associated with an ISHLT cardiac rejection biopsy grade. The samples were tested in 2 phases. In phase I, 14 Grade 0, I Grade 1A, 3 Grade 2 and 9 Grade 3A samples were tested. In phase II, 19 Grade 2, 4 Grade 1B, 4 Grade 2 and 15 Grade 3A samples were tested. Data was analyzed for each phase individually and for the combined phase I + II sample set. These data are summarized in Table 6.

The average fold change in expression between rejection (3A) and no rejection (0) samples was calculated. A t-test was done to determine the significance with which each gene was differentially expressed between rejection and no rejection and a p-value was calculated. Genes with high average fold changes and low p-values are considered best candidates for further development as rejection markers. However, it is important to note that a gene with a low average fold change and a high p-value may still be a useful marker for rejection in some patients and may work as part of a gene expression panel to diagnose rejection. These same PCR data were used to create PCR gene expression panels for diagnosis of acute rejection as discussed in example 17.

Non-parametric tests such as the Fisher Exact Test and Mann-Whitney U test are useful for choosing useful markers. They assess the ability of markers to discrininate between different classes as well as their significance. For example, one could use the median of all samples (including both non-rejector and rejector samples) as a threshold and apply the Fisher Exact test to the numbers of rejectors and non-rejectors above and below the threshold.

These methods were used to generate the data in Table 2D.

# Example 14: Identification of diagnostic nucleotide sets for diagnosis of Cardiac Allograft Rejection using microarrays

Genes were identified which have expression patterns useful for the diagnosis and monitoring of acute cardiac allograft rejection. Further, sets of genes that work together in a diagnostic algorithm for allograft rejection were identified. Acute allograft rejection is a process that occurs in all solid organ transplantation including, heart, lung, liver, kidney, pancreas, pancreatic islet cell, intestine and others. Gene expression markers of acute cardiac rejection may be useful for diagnosis and monitoring of all

allograft recipients. Patients, patient clinical data and patient samples used in the discovery of markers below were derived from a clinical study described in example 5.

The collected clinical data was used to define patient or sample groups for correlation of expression data. Patient groups were identified for comparison. For example, a patient group that possesses a useful or interesting clinical distinction, verses a patient group that does not possess the distinction. Measures of cardiac allograft rejection were derived from the clinical data to divide patients (and patient samples) into groups with higher and lower rejection activity over some period of time or at any one point in time. Such data were rejection grades as determined from histological reading of the cardiac biopsy specimens by a pathologist and data measuring progression of end-organ damage, including depressed left ventricular dysfunction (decreased cardiac output, decreased ejection fraction, clinical signs of low cardiac output) and usage of inotropic agents (Kobashigawa 1998).

Mononuclear RNA samples were collected and prepared from patients who had recently undergone a cardiac allograft transplantation using the protocol described in example 2. The allograft rejection status at the time of sample collection was determined by examination of cardiac biopsies as described in example 5 and as summarized here.

300 patient samples were included in the analysis. Each patient sample was associated with a biopsy and other clinical data collected at the time of the sample. The cardiac biopsics were graded by a pathologist at the local center and by three centralized pathologists who read the biopsy slides from all four local centers in a blinded manner. Biopsy grades included 0, 1A, 1B, 2, 3A, and 3B. No grade 4 rejection was identified. Dependent variables were developed based on these grades using the local center pathology reading, the reading of a centralized and blinded pathologist, the highest of the readings, local or centralized and a consensus grade derived from all pathological readings. Samples were classified as no rejection or rejection in the following ways: Grade 0 vs. Grades 1-4, Grades 0 and 1A vs. Grades 1B-4, Grade 0 vs. Grades 3A, Grade 0 vs. Grades 1B-4, and Grade 0 vs. Grades 1B and 3A-4. Grade 0 samples were selected such that they were not immediately followed by an episode of acute rejection in the same patient. Comparing Grade 0 samples to Grade 3A samples gives the greatest difference between the rejection and no rejection groups on average.

Taking the highest of all pathologist readings has the effect of removing any sample from the no rejection class that was not a unanimous Grade 0. It also results in an increase in the number of rejection samples used in an analysis with the assumption that if a pathologist saw features of rejection, the call was likely correct and the other pathologists may have missed the finding. Many leading cardiac pathologists and clinicians believe that ISHLT grade 2 rejection does not represent significant acute rejection. Thus, for correlation analysis, exclusion of Grade 2 samples may be warranted. Clinical data were also used to determine criteria for including samples in the analysis. For example, a patient with an active infection or in the early post-transplant period (ongoing surgical inflammation) might have immune activation unrelated to rejection and thus be difficult to identify as patients without rejection. The strictest inclusion criteria required that samples be from patients who did not have a bacterial or viral infection, were at least two weeks post cardiac transplant, were asymptomatic and were not currently admitted to the hospital.

After preparation of RNA (example 2), amplification, labeling, hybridization, scanning, feature extraction and data processing were done as described in Example 11, using the oligonucleotide microarrays described in Example 9. The resulting log ratio of expression of Cy3 (patient sample)/ Cy5 (R50 reference RNA) was used for analysis.

Significance analysis for microarrays (SAM, Tusher 2001, Example 15) was used to discover genes that were differentially expressed between the rejection and no-rejection groups. Many different combinations of dependent variables, inclusion criteria, static/referenced, and data subsets were used in SAM analysis to develop the primary lists of genes significantly differentially expressed between rejection and no-rejection. As described in example 15, SAM assigns a false detection rate to each gene identified as differentially expressed. The most significant of these genes were identified. An exemplary analysis was the comparison of Grade 0 samples to Grade 3A-4 samples using SAM. Data from the all the pathological readings was used to identify consensus Grade 0 samples and samples with at least one reading of Grade 3A or above. Using this definition of rejection and no rejection, expression profiles from rejection samples were compared to no rejection samples using SAM. The analysis identified 7 genes with a FDR of 1%, 15 genes @ 1.4%, 35 genes @ 3.9%. Many more genes were identified at higher FDR levels.

In Table 7, a number of SAM analyses are summarized. In each case the highest grade from the 3 pathologists was taken for analysis. No rejection and rejection classes are defined. Samples are either used regardless of redundancy with respect to patients or a requirement is made that only one sample is used per patient or per patient per class. The number of samples used in the analysis is given and the lowest FDR achieved is noted.

Some of the genes identified by SAM as candidate rejection markers are noted in Table 2A and B. SAM chooses genes as significantly different based on the magnitude of the difference between the groups and the variation among the samples within each group. It is important to note that a gene which is not identified by SAM as differentially expressed between rejection and no rejection may still be a useful rejection marker because: 1. The microarray technology is not adequately sensitive to detect all genes expressed at low levels. 2. A gene might be a useful member of a gene expression panel in that it is a useful rejection marker only in a subset of patients. This gene may not be significantly differentially expressed between all rejection and no rejection samples.

For the purposes of cross-validation of the results, the datasets were also divided into subsets to compare analysis between two subsets of roughly half of the data. The types of subsets constructed were as follows. First half subsets were the first half of the samples and the second half of the samples from a dataset ordered by sample number. Odd/even subsets used the same source, a dataset ordered by sample number, but the odd subset consisted of every 2<sup>nd</sup> sample starting with the first and the even subset consisted of every 2<sup>nd</sup> sample starting with the subsets were the same datasets, divided by transplant hospital. The center 14 subset consisted of all samples from patients at center 14, while the other subset consisted of all samples from the other three centers (12,13, and 15). When a gene was found to be significantly differentially expressed in both sets of data, a higher priority was put on that gene for development of a diagnostic test. This was reflected

in a "Array Score" value (Table 2B) that also considered the false detection rate for the gene and the importance of the gene in classification models (see example 17).

Alternatively one can divide samples into 10 equal parts and do 10-fold cross validation of the results of SAM.

Microarray data was also used to generate classification models for diagnosis of rejection as described in example 17. Genes identified through classification models as useful in the diagnosis of rejection are noted in in Table 2B in the column "models".

As genes were identified as useful rejection markers by microarray significance analysis, classification models, PCR analysis, or through searching the prior art, a variety of approaches were employed to discover genes that had similar expression behavior (coexpression) to the gene of interest. If a gene is a useful rejection marker, then a gene that is identified as having similar expression behavior is also likely to be a useful rejection marker. Hierarchical clustering (Eisen et al. 1998, see example 15) was used to identify co-expressed genes for established rejection markers. Genes were identified from the nearest branches of the clustering dendrogram. Gene expression profiles generated from 240 samples derived from transplant recipients were generated as described above. Hierarchical clustering was performed and co-expressed genes of rejection markers were identified. An example is shown in Figure 12. SEQ ID NO:85 was shown to be significantly differentially expressed between rejection and no rejection using both microarrays and PCR. Gene SEQ ID NO:3020 was identified by hierarchical clustering as closely co-expressed with SEQ ID NO:85. In table 2B, genes identified as co-expressed with established markers are identified as such by listing the SEQ ID that they are co-expressed with in the column labeled "clusters".

Some of the primers for real-time PCR validation were designed for each of the marker genes as described in Example 12 and are listed in Table 2C and the sequence listing. PCR expression measurements using these primers were used to validate array findings, more accurately measure differential gene expression and create PCR gene expression panels for diagnosis of rejection as described in example 17.

Alternative methods of analyzing the data may involve 1) using the sample channel without normalization by the reference channel, 2) using an intensity-dependent normalization based on the reference which provides a greater correction when the signal in the reference channel is large, 3) using the data without background subtraction or subtracting an empirically derived function of the background intensity rather than the background itself.

These methods were used to identify genes listed in Table 2B.

Example 15: Correlation and Classification Analysis

After generation and processing of expression data sets from microarrays as described in Example 11, a log ratio value is used for most subsequent analysis. This is the logarithm of the expression ratio for each gene between sample and universal reference. The processing algorithm assigns a number of flags to data that are of low signal to noise, saturated signal or are in some other way of low or uncertain quality. Correlation analysis can proceed with all the data (including the flagged data) or can be done on filtered data sets where the flagged data is removed from the set. Filtered data should have

less variability and noise and may result in more significant or predictive results. Flagged data contains all information available and may allow discovery of genes that are missed with the filtered data set. After filtering the data for quality as described above and in example 11, missing data are common in microarray data sets. Some algorithms don't require complete data sets and can thus tolerate missing values. Other algorithms are optimal with or require imputed values for missing data. Analysis of data sets with missing values can proceed by filtering all genes from the analysis that have more than 5%. 10%, 20%, 40%, 50%, 60% or other % of values missing across all samples in the analysis. Imputation of data for missing values can be done by a variety of methods such as using the row mean, the column mean, the nearest neighbor or some other calculated number. Except when noted, default settings for filtering and imputation were used to prepare the data for all analytical software packages. In addition to expression data, clinical data are included in the analysis. Continuous variables, such as the ejection fraction of the heart measured by echocardiography or the white blood cell count can be used for correlation analysis. Any piece of clinical data collected on study subjects can be used in a correlation or classification analysis. In some cases, it may be desirable to take the logarithm of the values before analysis. These variables can be included in an analysis along with gene expression values, in which case they are treated as another "gene". Sets of markers can be discovered that work to diagnose a patient condition and these can include both genes and clinical parameters. Categorical variables such as male or female can also be used as variables for correlation analysis. For example, the sex of a patient may be an important splitter for a classification tree.

Clinical data are used as supervising vectors (dependent variables) for the significance or classification analysis of expression data. In this case, clinical data associated with the samples are used to divide samples in to clinically meaningful diagnostic categories for correlation or classification analysis. For example, pathologic specimens from kidney biopsies can be used to divide lupus patients into groups with and without kidney disease. A third or more categories can also be included (for example "unknown" or "not reported"). After generation of expression data and definition of supervising vectors, correlation, significance and classification analysis are used to determine which set of genes and set of genes are most appropriate for diagnosis and classification of patients and patient samples. Two main types of expression data analyses are commonly performed on the expression data with differing results and purposes. The first is significance analyses or analyses of difference. In this case, the goal of the analysis is to identify genes that are differentially expressed between sample groups and to assign a statistical confidence to those genes that are identified. These genes may be markers of the disease process in question and are further studied and developed as diagnostic tools for the indication. The second major type of analysis is classification analysis. While significance analysis identifies individual genes that are differentially expressed between sample groups, classification analysis identifies gene sets and an algorithm for their gene expression values that best distinguish sample (patient) groups. The resulting gene expression panel and algorithm can be used to create and implement a diagnostic test. The set of genes and the algorithm for their use as a diagnostic tool are often referred to herein as a "model". Individual markers can also be used to create a gene expression diagnostic model. However, multiple genes (or gene sets) are often more useful and accurate diagnostic tools.

## Significance analysis for microarrays (SAM)

Significance analysis for microarrays (SAM) (Lusher 2001) is a method through which genes with a correlation between their expression values and the response vector are statistically discovered and assigned a statistical significance. The ratio of false significant to significant genes is the False Discovery Rate (FDR). This means that for each threshold there are some number of genes that are called significant, and the FDR gives a confidence level for this claim. If a gene is called differentially expressed between two classes by SAM, with a FDR of 5%, there is a 95% chance that the gene is actually differentially expressed between the classes. SAM will identify genes that are differentially expressed between the classes. The algorithm selects genes with low variance within a class and large variance between classes. The algorithm may not identify genes that are useful in classification, but are not differentially expressed in many of the samples. For example, a gene that is a useful marker for disease in women and not men, may not be a highly significant marker in a SAM analysis, but may be useful as part of a gene set for diagnosis of a multi-gene algorithm.

After generation of data from patient samples and definition of categories using clinical data as supervising vectors, SAM is used to detect genes that are likely to be differentially expressed between the groupings. Those genes with the highest significance can be validated by real-time PCR (Example 13) or can be used to build a classification algorithm as described here.

### Classification

Classification algorithms are used to identify sets of genes and formulas for the expression levels of those genes that can be applied as diagnostic and disease monitoring tests. The same classification algorithms can be applied to all types of expression and proteomic data, including microarray and PCR based expression data. Examples of classification models are given in example 17. The discussion below describes the algorithms that were used and how they were used.

Classification and Regression Trees (CART) is a decision tree classification algorithm (Breiman 1984). From gene expression and or other data, CART can develop a decision tree for the classification of samples. Each node on the decision tree involves a query about the expression level of one or more genes or variables. Samples that are above the threshold go down one branch of the decision tree and samples that are not go down the other branch. Genes from expression data sets can be selected for classification building with CART by significant differential expression in SAM analysis (or other significance test), identification by supervised tree-harvesting analysis, high fold change between sample groups, or known relevance to classification of the target diseases. In addition, clinical data can be used as independent variables for CART that are of known importance to the clinical question or are found to be significant predictors by multivariate analysis or some other technique. CART identifies predictive variables and their associated decision rules for classification (diagnosis). CART also identifies surrogates for each splitter (genes that are the next best substitute for a useful gene in classification). Analysis is performed in CART by weighting misclassification costs to optimize desired performance of the assay. For example, it may be most important that the sensitivity of a test

for a given diagnosis be > 90%. CART models can be built and tested using 10 fold cross-validation or v-fold cross validation (see below). CART works best with a smaller number of variables (5-50). Multiple Additive Regression Trees (Friedman, JH 1999, MART) is similar to CART in that it is a classification algorithm that builds decision trees to distinguish groups. MART builds numerous trees for any classification problem and the resulting model involves a combination of the multiple trees. MART can select variables as it build models and thus can be used on large data sets, such as those derived from an 8000 gene microarray. Because MART uses a combination of many trees and does not take too much information from any one tree, it resists over training. MART identifies a set of genes and an algorithm for their use as a classifier.

A Nearest Shrunken Centroids Classifier can be applied to microarray or other data sets by the methods described by Tibshirani et al. 2002. This algorithms also identified gene sets for classification and determines their 10 fold cross validation error rates for each class of samples. The algorithm determines the error rates for models of any size, from one gene to all genes in the set. The error rates for either or both sample classes can are minimized when a particular number of genes are used. When this gene number is determined, the algorithm associated with the selected genes can be identified and employed as a classifier on prospective sample.

For each classification algorithm and for significance analysis, gene sets and diagnostic algorithms that are built are tested by cross validation and prospective validation. Validation of the algorithm by these means yields an estimate of the predictive value of the algorithm on the target population. There are many approaches, including a 10 fold cross validation analysis in which 10% of the training samples are left out of the analysis and the classification algorithm is built with the remaining 90%. The 10% are then used as a test set for the algorithm. The process is repeated 10 times with 10% of the samples being left out as a test set each time. Through this analysis, one can derive a cross validation error which helps estimate the robustness of the algorithm for use on prospective (test) samples. Any % of the samples can be left out for cross validation (v-fold cross validation, LOOCV). When a gene set is established for a diagnosis with an acceptable cross validation error, this set of genes is tested using samples that were not included in the initial analysis (test samples). These samples may be taken from archives generated during the clinical study. Alternatively, a new prospective clinical study can be initiated, where samples are obtained and the gene set is used to predict patient diagnoses.

## Example 16: Acute allograft rejection: biopsy tissue gene expression profiling

Acute allograft rejection involves activation of recipient leukocytes and infiltration into the rejecting organ. For example, CD8 T-cells are activated by CD4 T-cells and enter the allograft where they destroy graft tissue. These activated, graft-associated leukocytes may reside in the graft, die or exit the graft. Upon exiting, the cells can find their way into the urine or blood (in the case of renal allografts), bile or blood (liver allografts) or blood (cardiac allografts). These activated cells have specific gene expression patterns that can be measured using microarrays, PCR or other methods. These gene expression patterns can be measured in the graft tissue (graft associated leukocytes), blood leukocytes, urine leukocytes or stool/biliary leukocytes. Thus graft associated leukocyte gene expression patterns are used to discover markers of activated leukocytes that can be measured outside the graft for diaenostic testine.

Renal biopsy and cardiac biopsy tissue specimens were obtained for gene expression profiling. The specimens were obtained at the time of allograft biopsy and were preserved by flash freezing in liquid nitrogen using standard approaches or immersion in an RNA stablization reagent as per the manufacturers recommendation (RNAlater, Qiagen, Valencia, CA). Biopsy allograft pathological evaluation was also obtained and samples were classified as having a particular ISHLT rejection grade (for cardiac) or acute rejection, chronic rejection, acute tubular necrosis or no disease (for renal).

28 renal biopsy tissue samples were transferred to RLT buffer, homogenized and RNA was prepared using RNeasy preparation kits (Qiagen, Valencia, CA). Average total RNA yield was 1.3 ug. Samples were subjected to on column DNAse digestion. 18 samples were derived from patients with ongoing acute allograft rejection and 10 were from controls with chronic rejection or acute renal failure.

RNA from the samples was used for amplification, labeling and hybridization to leukocyte arrays (example 11). Significance analysis for microarrays (SAM, Tusher 2001, Example 15) was used to identify genes that were differentially expressed between the acute rejection samples and controls. Leukocyte markers of acute rejection that are associated with the graft should be genes that are expressed at some level in activated leukocytes. Since leukocytes appear in graft tissue with some frequency with acute rejection, leukocyte genes associate with rejection are identified by SAM as upregulated in acute rejection in this experiment. 35 genes were identified as upregulated in acute rejection by SAM with less than a 5% false detection rate and 139 were detected with < 10.0% FDR. Results of this analysis are shown in Table 8.

For each of these genes, to 50mer oligonucleotide sequence was used to search NCBI databases including Unigene and OMIM. Genes were identified by sequence analysis to be either known leukocyte specific markers, known leukocyte expressed markers, known not to be leukocyte expressed or expression unknown. This information helped selected candidate leukocyte markers from all upregulated genes. This is necessary because some of the upregulated genes may have been expressed by renal tissue. Those genes that are leukocyte specific or leukocyte expressed were selected for evaluation by PCR in urine and blood samples from patients with and without acute allograft rejection (cardiac and renal). These genes are useful expression markers of acute rejection in allograft tissue specimens and may also be useful gene expression markers for the process in circulating leukocytes, or urine leukocytes. Genes with known leukocyte expression are noted in Table 8. In addition, some of the leukocyte expressed genes from this analysis were selected for PCR validation and development for diagnosis of acute cardiac rejection and are noted in Table 2.

Five cardiac rejection markers in the peripheral blood were assayed using real-time PCR in renal biopsy specimens. The average fold change for these genes between acute rejection (n = 6) and controls (n = 6) is given below. Work is ongoing to increase the number of samples tested and the significance of the results.

PCR assays of cardiac rejection peripheral blood markers in renal allograft tissue. R = rejection, NR = No rejection.

| Gene             | Fold change (R/NR) |
|------------------|--------------------|
| Granzyme B       | 2.16               |
| CD20             | 1.42               |
| NK cell receptor | 1.72               |
| T-box 21         | 1.74               |
| IL4              | 1.3                |

Markers of renal rejection that are secreted from cells may be measured in the urine or serum of patients as a diagnostic or screening assay for rejection. Genes with lower molecular weight are most likely to be filtered into the urine to be measured in this way. Standard immunoassays may be used to measure these proteins. In table 8, genes that are known to be secreted are noted.

Example 17: Microarray and PCR gene expression panels for diagnosis and monitoring of acute allografi rejection

### Array panels / classification models

Using the methods of the invention, gene expression panels were discovered for screening and diagnosis of acute allograft rejection. Gene expression panels can be implemented for diagnostic testing using any one of a variety of technologies, including, but not limited to, microarrays and real-time PCR.

Using peripheral blood mononuclear cell RNA that was collected and prepared from cardiac allograft recipients as described in examples 2 and 5, leukocyte gene expression profiles were generated and analyzed using microarrays as described in examples 11, 13, and 15. 300 samples were analyzed. ISHLT rejection grades were used to divide patients into classes of rejection and no rejection. Multiple Additive Regression Trees (MART, Friedman, JH 1999, example 15) was used to build a gene expression panel and algorithm for the diagnosis of rejection with high sensitivity. Default settings for the implementation of MART called TreeNet 1.0 (Salford Systems, San Diego, CA) were used except where noted.

82 Grade 0 (rejection) samples and 76 Grade 1B-4 (no rejection) samples were divided into training (80% of each class) and testing (20% of each class) sets. A MART algorithm was then developed on the training set to distinguish rejection from no rejection samples using a cost of 1.02:1 for misclassification of rejection as no rejection. The resulting algorithm was then used to classify the test samples. The algorithm correctly classified 51 of 66 (77%) no rejection samples in the training set and 9 of 16 (56%) no rejection samples in the test set. For rejection samples 64 of 64 (100%) were correctly classified in the training set and 12 of 12 were correctly classified in the test set. The algorithm used 37 genes. MART ranks genes by order of importance to the model. In order, the 37 genes were: SEQ IDs: 3058, 3030, 3034, 3069, 3081, 3072, 3041, 3052, 3048, 3045, 3059, 3075, 3024, 279, 3023, 3053, 3022, 3067, 3020, 3047, 3033, 3068, 3060, 3063, 3028, 3032, 3025, 3046, 3065, 3080, 3039, 3055, 49, 3080, 3038, 3071.

Another MART model was built by excluding samples derived from patients in the first month post transplant and from patients with known CMV infection. 20 Grade 0 (rejection) samples and 25 Grade 1B-4 (no rejection) samples were divided into training (80% of each class) and testing (20% of each class) sets. A MART algorithm was then developed on the training set to distinguish rejection from no rejection samples using default settings. The resulting algorithm was then used to classify the test samples. The algorithm correctly classified 100% of samples of both classes in the training and testing sets. However, this model required 169 genes. The sample analysis was done a second time with the only difference being requirement that all decision trees in the algorithm be composed of two nodes (single decision, "stump model"). In this case 15/16 no rejection samples were correctly identified in the training set and 4/4 no rejection samples were correctly identified in the test set. For the rejection samples, 17/19 were correctly identified in the training set and 5/6 were correctly classified in the test set. This model required 23 genes. In order of importance, they were: SEQ 1Ds: 3042, 2783, 3076, 3029, 3026, 2751, 3036, 3073, 3035, 3050, 3051, 3027, 3074, 3062, 3044, 3077, 2772, 3049, 3043, 3079, 3070, 3057, 3078.

## Real-time PCR panels / classification models

PCR primers were developed for top rejection markers and used in real-time PCR assays on transplant patient samples as described in examples 12 and 13. This data was used to build PCR gene expression panels for diagnosis of rejection. Using MART (example 15) a 10-fold cross validated model was created to diagnose rejection using 12 no rejection samples (grade 0) and 10 rejection samples (grade 3A). Default settings were used with the exception of assigning a 1.02:1 cost for misclassification of rejection as no rejection and requirement that all decision trees be limited to 2 nodes ("stump model"). 20 genes were used in the model, including: SEQ IDs:101, 3021, 102, 2781, 78, 87, 86, 36, 77, 2766, 3018, 80, 3019, 2752, 79, 99, 3016, 2790, 3020, 3056, 88. The 10-fold cross-validated sensitivity for rejection was 100% and the specificity was 85%. Some PCR primers for the genes are listed in Table 2C and the sequence listing.

A different analysis of the PCR data was performed using the nearest shrunken centroids classifier (Tibshirani et al. 2002; PAM version 1.01, see example 15). A 10-fold cross validated model was created to diagnose rejection using 13 no rejection samples (grade 0) and 10 rejection samples (grade 3A). Default settings were used with the exception of using a prior probability setting of (0.5, 0.5). The algorithm derives algorithms using any number of the genes. A 3-gene model was highly accurate with a 10 fold cross-validated sensitivity for rejection of 90%, and a specificity of 85%.

The 3 genes used in this model were: SEQ IDs 2784, 79, and 2794. Some of the PCR primers used are given in Table 2C and the sequence listing. An ROC curve was plotted for the 3-gene model and is shown in Figure 13.

## Example 18: Assay sample preparation

In order to show that XDx's leukocyte-specific markers can be detected in whole blood, we collected whole blood RNA using the PAXgene whole blood collection, stabilization, and RNA isolation kit (PreAnalytix). Varying amounts of the whole blood RNA were used in the initial RT reaction (1, 2, 4, and Sug), and varying dilutions of the different RT reactions were tested (1:5, 1:10,

1:20, 1:40, 1:80, 1:160). We did real-time PCR assays with primers specific to XDx's markers and showed that we can reliably detect these markers in whole blood.

Total RNA was prepared from 14 mononuclear samples (CPT, BD) paired with 14 whole blood samples (PAXgene, PreAnalytix) from transplant recipients. cDNA was prepared from each sample using 2ug total RNA as starting material. Resulting cDNA was diluted 1:10 and Sybr green real-time PCR assays were performed.

For real-time PCR assays, Ct values of 15-30 are desired for each gene. If a gene's Ct value is much above 30, the result may be variable and non-linear. For PAX sample, target RNA will be more dilute than in CPT samples. cDNA dilutions must be appropriate to bring Ct values to less than 30. Ct values for the first 5 genes tested in this way are shown in the table below for both whole blood RNA (PAX) and mononuclear RNA (CPT).

| Gene      | Ct PAX   | Ct CPT   |
|-----------|----------|----------|
| CD20      | 27.41512 | 26.70474 |
| 4761      | 28.45656 | 26.52635 |
| 3096      | 29.09821 | 27.83281 |
| GranzymeB | 31.18779 | 30.56954 |
| IL4       | 33.11774 | 34.8002  |
| Actin     | 19.17622 | 18.32966 |
| B-GUS     | 26.89142 | 26,92735 |

,

With one exception, the genes have higher Ct values in whole blood. Using this protocol, all genes can be detected with Cts <35. For genes found to have Ct values above 30 in target samples, less diluted cDNA may be needed.

### Example 19: Allograft rejection diagnostic gene sequence analysis

Gene products that are secreted from cells or expressed as surface proteins have special diagnostic utility in that an assay may be developed to detect relative quantities of proteins in blood plasma or serum. Secreted proteins may also be detectable in utrine, which may be a useful sample for the detection of rejection in renal allograft recipients. Cell surface markers may be detected using antigen specific antibodies in ELISA assays or using flow string techniques such as FACS.

Each gene that is found to be differentially regulated in one population of patients has several potential applications. It may be a target for new pharmaceuticals, a diagnostic marker for a condition, a benchmark for titrating drug delivery and clearance, or used in screening small molecules for new therapeutics. Any of these applications may be improved by an understanding of the physiologic function and localization of the gene product in vivo and by relating those functions to known diseases and disorders. Identifying the basic function of each candidate gene helps identify the signaling or metabolic pathways the gene is a part of, leading us to investigate other members of those pathways as potential diagnostic markers or targets of interest to drug developers.

For each of the markers in table 2, we attempted to identify the basic function and subcellular localization of the gene. These results are summarized in Table 9. In addition to initial DNA sequencing and processing, sequence analysis, and analysis of novel clones, information was obtained from the following public resources: Online Mendelian Inheritance in Man at the NCBI, LocusLink at the NCBI, the SWISS-PROT database, and Protein Reviews on the Web. For each marker represented by a curated reference mRNA from the RefSeq project, the corresponding reference protein accession number is listed. Curated sequences are those that have been manually processed by NCBI staff to represent the best estimate of the mRNA sequence as it is transcribed, based on alignments of draft DNA sequence, predicted initiation, termination and splice sites, and submissions of EST and full-length mRNA sequences from the scientific community.

These methods were used to derive the data in Table 2E.

### Example 20: Detection of proteins expressed by diagnostic gene sequences

One of ordinary skill in the art is aware of many possible methods of protein detection. The following example illustrates one possible method.

The designated coding region of the sequence is amplified by PCR with adapter sequences at either end for subcloning. An epitope or other affinity "tag" such as a "His-tag" may be added to facilitate purification and/or detection of the protein. The amplified sequence is inserted into an appropriate expression vector, most typically a shuttle vector which can replicate in either bacteria, most typically E. coli, and the organism/cell of choice for expression such as a yeast or mammalian cell. Such shuttle vectors typically contain origins of replication for bacteria and an antibiotic resistance marker for selection in bacteria, as well as the relevant replication and selection sequences for transformation/transfection into the ultimate expression cell type. In addition, the sequence of interest is inserted into the vector so that the signals necessary for transcription (a promoter) and translation operably linked to the coding region. Said expression could be accomplished in bacteria, fungi, or mammalian cells, or by in vitro translation.

The expression vector would then typically be used to transform bacteria and clones analyzed to ensure that the proper sequence had been inserted into the expression vector in the productive orientation for expression. Said verified expression vector is then transfected into a host cell and transformants selected by a variety of methods including antibiotic resistance or nutritional complementation of an auxotrophic marker. Said transformed cells are then grown under conditions conducive to expression of the protein of interest, the cells and conditioned media harvested, and the protein of interest isolated from the most enriched source, either the cell pellet or media.

The protein is then be isolated by standard of chromatographic or other methods, including immunoaffinity chromatography using the affinity "tag" sequence or other methods, including cell fractionation, ion exchange, size exclusion chromatography, or selective precipitation. The isolated and purified protein is then be used as an antigen to generate specific antibodies. This is accomplished by standard methods including injection into heterologous species with an adjuvant, isolation of monoclonal antibodies from mice, or in vitro selection of antibodies from bacteriophage display antibody libraries. These antibodies are then used to detect the presence of the indicated protein of interest in a complex bodily fluid using standard methods such as ELISA or RIA.

Example 21: Detecting changes in the rate of hematopoiesis

Gene expression profiling of blood cells from cardiac allograft recipients was done using microarrays and real-time PCR as described in other examples herein.

Two of the genes in that were most correlated with cardiac transplant acute rejection with both microarrays and PCR were hemoglobin Beta and 2,3 DPGM. These genes are well know to be specific markers of erythrocyte lineages. This correlation was found using both purified peripheral mononuclear cells and whole blood RNA preparations.

Analysis of the five genes from the PCR data most strongly correlated with rejection showed that their expression levels were extremely highly correlated within each other (R2 > 0.85).

| Gene                               | Hs        | Acc       | SEQ ID No |
|------------------------------------|-----------|-----------|-----------|
| hemoglobin, beta (HBB)             | Hs.155376 | NM_000518 | 86        |
| 2,3-bisphosphoglycerate mutase (BP | Hs.198365 | X04327    | 87        |
| cDNA FLJ20347                      | Hs.102669 | AK000354  | 94        |
| 602620663F1cDNA                    | Hs.34549  | AI123826  | 107       |
| HA 1247 cDNA                       | Hs.33757  | AI114652  | 91        |

This suggested that they were all elevated as part of a single response or process. When the microarray data was used to cluster these genes with each other and the other genes on the microarray, we found that these five genes clustered reasonably near each and of the other array genes which clustered tightly with them, four of the top 40 or so were platelet related genes. In addition, these a number of these genes clustered closely with CD34. CD34 is a marker of hematopoietic stem cells and is seen in the peripheral blood with increased hematopoisis.

CD34, platelet RNA and erythrocyte RNA all mark immature or progenitor blood cells and it is clear that theses marker of acute rejection are part of a coordinated hematopoietic response. A small increase in the rate of production of RBCs and platelets may result in large fold changes in RNA levels. Immune activation from acute rejection may lead to increased hamatopoiesis in the bone marrow and non-marrow sites. This leads to an increase in many lineages because of the lack of complete specificity of the marrow response. Alternatively, increased hematopoiesis may occur in a transplant recipient due to an infection (viral or other), allergy or other stimulus to the system. This results in production of cells or a critical mass of immune cells that can cause rejection. In this scenario, monitoring for markers of immune activation would provide an opportunity for early diagnosis.

| Table 1                 |                                                          |
|-------------------------|----------------------------------------------------------|
| Disease Classification  | Disease/Patient Group                                    |
| Cardiovascular Disease  | Atherosclerosis                                          |
|                         | Unstable angina                                          |
|                         | Myocardial Infarction                                    |
| l                       | Restenosis after angioplasty                             |
|                         | Congestive Heart Failure                                 |
| - 33                    | Myocarditis                                              |
|                         | Endocarditis                                             |
|                         | Endothelial Dysfunction                                  |
| 1                       | Cardiomyopathy                                           |
|                         | Cardiovascular drug use                                  |
| Infectious Disease      | Hepatitis A. B. C. D. E. G                               |
| infectious Disease      | Malaria                                                  |
|                         |                                                          |
|                         | Tuberculosis                                             |
|                         | HIV                                                      |
|                         | Pneumocystis Carinii                                     |
|                         | Giardia                                                  |
|                         | Toxoplasmosis                                            |
|                         | Lyme Disease                                             |
| l                       | Rocky Mountain Spotted Fever                             |
| l                       | Cytomegalovirus                                          |
|                         | Epstein Barr Virus                                       |
|                         | Herpes Simplex Virus                                     |
| 1                       | Clostridium Dificile Colitis                             |
|                         | Meningitis (all organisms)                               |
|                         | Pneumonia (all organisms)                                |
|                         | Urinary Tract Infection (all organisms)                  |
|                         | Infectious Diarrhea (all organisms)                      |
|                         | Anti-infectious drug use                                 |
|                         | Pathologic angiogenesis                                  |
| Angiogenesis            |                                                          |
|                         | Physiologic angiogenesis                                 |
|                         | Treatment induced angiogenesis                           |
|                         | Pro or anti-angiogenic drug use                          |
| Transplant Rejection    | Heart                                                    |
|                         | Lung                                                     |
|                         | Liver                                                    |
|                         | Pancreas                                                 |
|                         | Bowel                                                    |
|                         | Bone Marrow                                              |
|                         | Stem Cell                                                |
| 1                       | Graft versus host disease                                |
| 1                       | Transplant vasculopathy                                  |
| 1                       | Skin                                                     |
| 1                       | Cornea                                                   |
| 1                       | Islet Cells                                              |
|                         | Kidney                                                   |
| l                       | Xenotransplants                                          |
|                         | Mechanical Organ                                         |
|                         | Immunosupressive drug use                                |
| Hematological Disorders | Anemia – Iron Deficiency                                 |
| nematological Disorders | Anemia – Iron Deliciency Anemia – B12, Folate deficiency |
|                         | Anemia – B12, Folate deliciency  Anemia – Aplastic       |
| 1                       | Anemia – Apiasic Anemia – hemolytic                      |
| I                       | Anemia – Renal failure                                   |
| I                       | Anemia – Chronic disease                                 |
|                         | Polycythemia rubra vera                                  |
|                         | Pemicious anemia                                         |
|                         | Idiophic Thrrombocytopenic purpura                       |
|                         | Thrombotic Thrombocytopenic purpura                      |
| I                       | Essential thrombocytosis                                 |
|                         | Leukemia                                                 |
| 1                       | Cytopenias due to immunosupression                       |
| I                       | Cytopenias due to Chemotherapy                           |
|                         | Myelodysplasia                                           |

## WO 2004/042346 PCT/US2003/012946 Table 2A.

|               |                                                                         | SEQ ID |                       |                        | SEQ ID   |
|---------------|-------------------------------------------------------------------------|--------|-----------------------|------------------------|----------|
| Gene          | Gene Name                                                               | 50mer  | HS                    | ACC                    | RNA/cDNA |
| HSRRN18S      | 18S ribosomal RNA                                                       | 1      | NA                    | X03205                 | 333      |
| ACTB          | Actin, beta                                                             | 2      | Hs.288061             | NM 001101              | 334      |
| GUSB          | Glucuronidase, beta                                                     | 3      | Hs.183868             | NM 000181              | 335      |
| B2M           | beta 2 microglobulin                                                    | 4      | Hs.75415              | NM 004048              | 336      |
| TSN           | Translin                                                                | 5      | Hs.75066              | NM 004622              | 337      |
| CCR7          | 1707                                                                    | 6      | Hs.1652               | NM 001838              | 338      |
| IL1R2         | 4685-IL1R                                                               | 7      | Hs.25333              | NM 004633              | 339      |
| AIF-1         | Allograft inflammatory factor 1, all variants                           | 8      | Hs.76364              | NM_004847              | 340      |
| ALAS2         | ALAS2                                                                   | 9      | Hs.323383             | NM 000032.1            | 341      |
| APELIN        | APELIN                                                                  | 10     | Hs.303084             | NM 017413              | 342      |
| CD80          | B7-1, CD80                                                              | 111    | Hs.838                | NM 005191              | 343      |
| EPB41         | Band 4.1                                                                | 12     | Hs.37427              | NM 004437              | 344      |
| CBLB          | c-cbl-B                                                                 | 13     | Hs.3144               | NM 004351              | 345      |
| CCR5          | CCR5                                                                    | 14     | Hs.54443              | NM 000579              | 346      |
| MME           | CD10                                                                    | 15     | Hs.1298               | NM 000902              | 347      |
| KLRC1         | CD159a                                                                  | 16     | Hs.74082              | NM 000302              | 348      |
| FCGR3A        | CD16                                                                    | 17     | Hs.176663             | NM 000569              | 349      |
| FCGR3B        | CD16b                                                                   | 18     | Hs.372679             | NM 000570              | 350      |
| LAG3          | CD223                                                                   | 19     | Hs.74011              | NM 000370              | 351      |
| PECAM1        | CD31                                                                    | 20     | Hs.78146              | NM 000442              | 352      |
| CD34          | CD31                                                                    | 21     | Hs.374990             | NM 001773              | 353      |
| FCGR1A        | CD64                                                                    | 22     | Hs.77424              | NM 001773              | 354      |
|               |                                                                         | 23     | Hs.77356              | NM 000306              | 355      |
| TFRC          | CD71 = T9, transferrin receptor                                         | 24     |                       | NM 003234<br>NM 001836 | 356      |
| CMA1<br>KIT   | c-Kit                                                                   | 25     | Hs.135626<br>Hs.81665 | NM 001836              | 357      |
| MPL           |                                                                         | 26     | Hs.84171              | NM 005373              | 358      |
|               | c-mpl<br>EphB6                                                          | 27     | Hs.3796               | NM 004445              | 359      |
| EphB6<br>EPOR | EPO-R                                                                   | 28     | Hs.127826             | NM 000121.2            | 360      |
|               |                                                                         | 29     | Hs.247700             | NM 014009              | 361      |
| Foxp3         | Foxp3                                                                   | 30     |                       | NM 014009<br>NM 002049 | 362      |
| GATA1         | GATA1                                                                   | 31     | Hs.765<br>NM 000419.2 |                        | 363      |
| ITGA2B        | GP IIb                                                                  |        |                       |                        | 364      |
| GNLY          | granulysin                                                              | 32     | Hs.105806             | NM_006433              |          |
| GZMA          | GZMA                                                                    | 33     | Hs.90708              | NM 006144              | 365      |
| HBA           | hemoglobin, alpha 1                                                     | 34     | Hs.398636             | NM 000558.3            | 366      |
| HBZ           | hemoglobin, zeta                                                        |        | Hs.272003             | NM_005332.2            | 367      |
| HBB           | hemoglobin, beta                                                        | 36     | Hs.155376             | NM 000518.4            | 368      |
| HBD           | hemoglobin, delta                                                       | 37     | Hs.36977              | NM_000519.2            | 369      |
| HBE           | hemoglobin, epsilon 1                                                   | 38     | Hs.117848             | NM 005330              | 370      |
| HBG           | hemoglobin, gamma A                                                     | 39     | Hs.283108             | NM_000559.2            | 371      |
| HBQ           | hemoglobin, theta 1                                                     | 40     | Hs.247921             | NM 005331              | 372      |
| HLA-DP        | MH/c, class II, DP alpha 1                                              | 41     | Hs.198253             | NM 033554              | 373      |
| HLA-DQ        | MHC, class II, DQ alpha 1                                               | 42     | Hs.198253             | NM 002122              | 374      |
| HLA-DRB       | MHC, class II, DR beta 1                                                | 43     | Hs.375570             | NM 002124.1            | 375      |
| ICOS          | ICOS                                                                    | 44     | Hs.56247              | NM 012092              | 376      |
| IL18          | IL18                                                                    | 45     | Hs.83077              | NM 001562              | 377      |
| IL3           | interleukin 3 (colony-stimulating factor, multiple)                     | 46     | Hs.694                | NM_000588              | 378      |
| ITGA4         | Integrin, alpha 4 (antigen CD49D,<br>alpha 4 subunit of VLA-4 receptor) | 47     | Hs.40034              | NM_000885              | 379      |

| Gene     | Gene Name                             | SEQ ID<br>50mer | HS           | ACC          | SEQ ID<br>RNA/cDNA |
|----------|---------------------------------------|-----------------|--------------|--------------|--------------------|
| ITGAM    | integrin, alpha M (complement         | 48              | Hs.172631    | NM 000632    | 380                |
| HGAM     | component receptor 3, alpha; also     | 40              | 113.172031   | 14141_000032 | 380                |
|          | known as CD11b (p170),                | İ               |              | 1            |                    |
|          | macrophage antigen alpha              |                 |              |              |                    |
|          | polypeptide)                          |                 |              |              |                    |
| TGB7     | integrin, beta 7                      | 49              | Hs.1741      | NM 000889    | 381                |
| CEBPB    | LAP, CCAAT/enhancer binding           | 50              | Hs.99029     | NM 005194    | 382                |
| CEDED    | protein (C/EBP), beta                 | 100             | 113.55025    | 1111_003154  | 1502               |
| NF-E2    | NF-E2                                 | 51              | Hs.75643     | NM 006163    | 383                |
| PDCD1    | programmed cell death 1, PD-1         | 52              | Hs. 158297   | NM 005018    | 384                |
| PF4      | platelet factor 4 (chemokine (C-X-C   | 53              | Hs.81564     | NM 002619    | 385                |
|          | motif) ligand 4)                      | -               | 110.0101     | 1            |                    |
| PRKCQ    | protein kinase C, theta               | 54              | Hs.211593    | NM 006257.1  | 386                |
| PPARGC1  | PPARgamma                             | 55              | Hs.198468    | NM 013261    | 387                |
| RAG1     | recombination activating gene 1       | 56              | Hs.73958     | NM 000448    | 388                |
| RAG2     | recombination activating gene 2       | 57              | Na.          | NM 000536    | 389                |
| CXCL12   | chemokine (C-X-C motif) ligand 12     | 58              | Hs.237356    | NM 000609    | 390                |
| CACLIZ   | (stromal cell-derived factor 1) (SDF- | -               | 110120700    |              |                    |
|          | (Stronar cen-derived factor 1) (SDI-  |                 |              | 1            | 1                  |
| TNFRSF4  | tumor necrosis factor receptor        | 59              | Hs.129780    | NM 003327    | 391                |
| INIKOIT  | superfamily, member 4                 | -               | 110.1123700  |              |                    |
| TNFSF4   | tumor necrosis factor (ligand)        | 60              | Hs.181097    | NM 003326    | 392                |
| 1141514  | superfamily, member 4 (tax-           | 100             |              |              |                    |
|          | transcriptionally activated           | l               |              |              |                    |
|          | glycoprotein 1, 34kDa)                |                 |              |              |                    |
| TPS1     | tryptase, alpha                       | 61              | Hs.334455    | NM 003293    | 393                |
| ADA      | ADA adenosine deaminase               | 62              | Hs.1217      | NM 000022    | 394                |
| CPM      | Carboxypeptidase M                    | 63              | Hs.334873    | NM 001874.1  | 395                |
| CSF2     | colony stimulating factor, GM-CSF     | 64              | Hs.1349      | NM 000758.2  | 396                |
| CSF3     | colony stimulating factor 3, G-CSF    | 65              | Hs.2233      | NM 172219    | 397                |
| CRP      | C-reactive protein, pentraxin-related | 66              | Hs.76452     | NM 000567.1  | 398                |
| Ciu      | (CRP),                                | 100             | 113.70.02    | 1            |                    |
| FLT3     | FMS-Related Tyrosine Kinase 3         | 67              | Hs.385       | NM 004119    | 399                |
| GATA3    | GATA binding protein 3                | 68              | Hs.169946    | NM 002051.1  | 400                |
| IL7R     | Interleukin 7 receptor                | 69              | Hs.362807    | NM 002185.1  | 401                |
| KLF1     | Kruppel-like factor 1 (erythroid),    | 70              | Hs.37860     | NM 006563.1  | 402                |
| 1221 1   | EKI.F                                 | 1.              | 1 -20.07.000 | 1            | 1                  |
| LCK      | lymphocyte-specific protein tyrosine  | 71              | Hs.1765      | NM 005356.2  | 403                |
| LON      | kinase                                | Γ.              | 1-31,705     |              | 1                  |
| LEF1     | lymphoid enhancer-binding factor 1    | 72              | Hs.44865     | NM 016269.2  | 404                |
|          | mphoto chimicor-omanig factor i       | l'~             | 1            | 1            | 1                  |
| PLAUR    | Urokinase-type Plasminogen            | 73              | Hs.179657    | NM 002659.1  | 405                |
| Liter    | Activator Receptor, CD87, uPAR        | 1               |              |              | 1                  |
| TNFSF13B | Tumor necrosis factor (ligand)        | 74              | Hs.270737    | NM 006573.3  | 406                |
| INFSFI3B | superfamily, member 13b,              | i .             | 1            |              |                    |
|          | BlvS/TALL-1/BAFF                      | 1               |              |              |                    |
| IL8      | Interleukin 8                         | 75              | Hs.624       | NM 000584    | 407                |
| GZMB     | Granzyme B (granzyme 2, cytotoxic     | 76              | Hs.1051      | NM 004131    | 408                |
| JEME     | T-lymphocyte-associated serine        | Γ.              | 1.051        | 1            | 1                  |
|          | esterase 1)                           | 1               |              |              |                    |
| TNFSF6   | Tumor necrosis factor (ligand)        | 77              | Hs.2007      | NM 000639    | 409                |
|          |                                       |                 |              |              |                    |

|          |                                                                                                             | cro m       | Γ           | 1           | CEO ID             |
|----------|-------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|--------------------|
| -        | C No.                                                                                                       | SEQ ID      | HS          | ACC         | SEQ ID<br>RNA/cDNA |
| Gene     | Gene Name                                                                                                   | 50mer<br>78 | Hs.46465    | NM 006019   | 410                |
| TCIRG1   | T-cell, immune regulator 1, ATPase,<br>H+ transporting, lysosomal V0                                        | 78          | HS.40405    | NM_006019   | 410                |
|          | protein a isoform 3                                                                                         |             |             |             |                    |
| PRF1     | Perforin 1 (pore forming protein)                                                                           | 79          | Hs.2200     | NM 005041   | 411                |
| IL4      | Interleukin 4                                                                                               | 80          | Hs.73917    | NM 000589   | 412                |
| IL13     | Interleukin 13                                                                                              | 81          | Hs.845      | NM 002188   | 413                |
| CTLA4    | Cytotoxic T-lymphocyte-associated                                                                           | 82          | Hs.247824   | NM 005214   | 414                |
| CILA     | protein 4                                                                                                   | 02          | 113.2 17021 | 1411_005214 | 111                |
| CD8A     | CD8 antigen, alpha polypeptide (p32)                                                                        | 83          | Hs.85258    | NM_001768   | 415                |
|          |                                                                                                             | 84          | Hs.81743    | NM 007053   | 416                |
| BY55     | Natural killer cell receptor,<br>immunoglobulin superfamily member                                          | 84          | HS.61743    | NM_007033   | 410                |
| OID 4460 | EST                                                                                                         | 85          | Hs.205159   | AF150295    | 417                |
| HBB      | Hemoglobin, beta                                                                                            | 86          | Hs.155376   | NM 000518   | 418                |
| BPGM     | 2,3-bisphosphoglycerate mutase                                                                              | 87          | Hs.198365   | NM 001724   | 419                |
| MTHFD2   | Methylene tetrahydrofolate<br>dehydrogenase (NAD+ dependent),<br>methenyltetrahydrofolate<br>cyclohydrolase | 88          | Hs.154672   | NM_006636   | 420                |
| TAP1     | Transporter 1, ATP-binding cassette, sub-family B (MDR1/TAP)                                                | 89          | Hs.352018   | NM_000593   | 421                |
| KPNA6    | Karyopherin alpha 6 (importin alpha 7)                                                                      | 90          | Hs.301553   | AW021037    | 422                |
| OID 4365 | Mitochondrial solute carrier                                                                                | 91          | Hs.300496   | AI114652    | 423                |
| IGHM     | Immunoglobulin heavy constant mu                                                                            | 92          | Hs.300697   | BC032249    | 424                |
| OID 573  | KIAA1486 protein                                                                                            | 93          | Hs.210958   | AB040919    | 425                |
| OID 873  | KIAA1892 protein                                                                                            | 94          | Hs.102669   | AK000354    | 426                |
| OID 3    | EST                                                                                                         | 95          | Hs.104157   | AW968823    | 427                |
| CXCR4    | Chemokine (C-X-C motif) receptor 4                                                                          | 96          | Hs.89414    | NM 003467   | 428                |
| CD69     | CD69 antigen (p60, early T-cell activation antigen)                                                         | 97          | Hs.82401    | NM_001781   | 429                |
| CCL5     | Chemokine (C-C motif) ligand 5<br>(RANTES, SCYA5)                                                           | 98          | Hs.241392   | NM_002985   | 430                |
| IL6      | Interleukin 6                                                                                               | 99          | Hs.93913    | NM 000600   | 431                |
| IL2      | Interleukin 2                                                                                               | 100         | Hs.89679    | NM 000586   | 432                |
| KLRF1    | Killer cell lectin-like receptor<br>subfamily F, member 1                                                   | 101         | Hs.183125   | NM_016523   | 433                |
| LYN      | v-yes-1 Yamaguchi sarcoma viral<br>related oncogene homolog                                                 | 102         | Hs.80887    | NM_002350   | 434                |
| IL2RA    | Interleukin 2 receptor, alpha                                                                               | 103         | Hs.1724     | NM 000417   | 435                |
| CCL4     | Chemokine (C-C motif) ligand 4,<br>SCYA4                                                                    | 104         | Hs.75703    | NM_002984   | 436                |
| OID 6207 | EST EST                                                                                                     | 105         | Hs.92440    | D20522      | 437                |
| ChGn     | Chondroitin beta 1,4 N-<br>acetylgalactosaminyltransferase                                                  | 106         | Hs.11260    | NM_018371   | 438                |
| OID 4281 | EST EST                                                                                                     | 107         | Hs.34549    | AA053887    | 439                |
| CXCL9    | Chemokine (C-X-C motif) ligand 9 (MIG)                                                                      | 108         | Hs.77367    | NM_002416   | 440                |
| CXCL10   | Chemokine (C-X-C motif) ligand 10,                                                                          | 109         | Hs.2248     | NM_001565   | 441                |

| Γ          |                                        | SEQ ID |            |             | SEO ID   |
|------------|----------------------------------------|--------|------------|-------------|----------|
| Gene       | Gene Name                              | 50mer  | нs         | ACC         | RNA/cDNA |
| IL17       | Interleukin 17 (cytotoxic T-           | 110    | Hs 41724   | NM 002190   | 442      |
| ILI7       | lymphocyte-associated serine esterase  | 110    | 113.41724  | 1411_002190 | 442      |
|            | 8)                                     |        |            |             |          |
| IL15       | Interleukin 15                         | 111    | Hs.168132  | NM 000585   | 443      |
| IL10       | Interleukin 10                         | 112    | Hs.193717  | NM 000572   | 444      |
| IFNG       | Interferon, gamma                      | 113    | Hs.856     | NM 000619   | 445      |
| HLA-DRB1   | Major histocompatibility complex,      | 114    | Hs.308026  | NM 002124   | 446      |
| IILA-DIGI  | class 11, DR beta 1                    | 1      | 1151500020 |             | 1        |
| CD8B1      | CD8 antigen, beta polypeptide 1        | 115    | Hs.2299    | NM 004931   | 447      |
| CDODI      | (p37)                                  | 1      |            |             |          |
| CD4        | CD4 antigen (p55)                      | 116    | Hs.17483   | NM 000616   | 448      |
| CXCR3      | Chemokine (C-X-C motif) receptor 3,    |        | Hs.198252  | NM 001504   | 449      |
| one.c      | GPR9                                   |        |            |             |          |
| OID 7094   | XDx EST 479G12                         | 118    | NA         | NA          | 450      |
| OID 7605   | EST                                    | 119    | Hs.109302  | AA808018    | 451      |
| CXCL1      | Chemokine (C-X-C motif) ligand 1       | 120    | Hs.789     | NM 001511   | 452      |
|            | (melanoma growth stimulating           |        |            | _           |          |
|            | activity, alpha)                       |        |            | 1           |          |
| OID 253    | EST                                    | 121    | Hs.83086   | AK091125    | 453      |
| GPI        | Glucose phosphate isomerase            | 122    | Hs.409162  | NM 000175   | 454      |
| CD47       | CD47 antigen (Rh-related antigen,      | 123    | Hs.82685   | NM 001777   | 455      |
|            | integrin-associated signal transducer) |        |            | _           |          |
|            |                                        |        |            |             |          |
| HLA-F      | Major histocompatibility complex,      | 124    | Hs.377850  | NM 018950   | 456      |
|            | class I. F                             |        |            | _           |          |
| OID 5350   | EST                                    | 125    | Hs.4283    | AK055687    | 457      |
| TCRGC2     | T cell receptor gamma constant 2       | 126    | Hs.112259  | M17323      | 458      |
| OID 7016   | EST                                    | 127    | NA         | BI018696    | 459      |
| PTGS2      | Prostaglandin-endoperoxide synthase    | 128    | Hs.196384  | NM_000963   | 460      |
| 1          | 2 (prostaglandin G/H synthase and      | 1      | 1          |             |          |
|            | cyclooxygenase)                        |        |            |             |          |
| OID 5847   | Hypothetical protein FLJ32919          | 129    | Hs.293224  | NM_144588   | 461      |
| PRDM1      | PR domain containing 1, with ZNF       | 130    | Hs.388346  | NM_001198   | 462      |
|            | domain                                 |        |            |             |          |
| CKB        | Creatine kinase, Brain                 | 131    | Hs.173724  | NM 001823   | 463      |
| TNNI3      | Troponin I, cardiac                    | 132    | Hs.351382  | NM_000363   | 464      |
| TNNT2      | Troponin T2, cardiac                   | 133    | Hs.296865  | NM_000364   | 465      |
| MB         | Myoglobin                              | 134    | Hs.118836  | NM 005368   | 466      |
| SLC7A11    | Solute carrier family 7, (cationic     | 135    | Hs.6682    | NM_014331   | 467      |
|            | amino acid transporter, y+ system)     |        |            |             |          |
|            | member 11                              |        |            |             |          |
| TNFRSF5    | tumor necrosis factor receptor         | 136    | Hs.25648   | NM_001250   | 468      |
|            | superfamily, member 5; CD40            |        |            |             |          |
| TNFRSF7    | tumor necrosis factor receptor         | 137    | Hs.355307  | NM_001242   | 469      |
|            | superfamily, member 7; CD27            |        |            |             |          |
| CD86       | CD86 antigen (CD28 antigen ligand      | 138    | Hs.27954   | NM_175862   | 470      |
|            | 2, B7-2 antigen)                       |        |            |             |          |
| A1F1v2     | Allograft inflammatory factor 1,       | 139    | Hs.76364   | NM_004847   | 471      |
|            | splice variant 2                       |        |            |             |          |
| EBV BCLF-1 | BCLF-1 major capsid                    | 140    | NA         | AJ507799    | 472      |
| EBV EBV    | EBNA repetitive sequence               | 141    | NA         | AJ507799    | 473      |
| CMV p67    | pp67                                   | 142    | NA         | X17403      | 474      |
| CMV TRL7   | c6843-6595                             | 143    | NA         | X17403      | 475      |
| CMV IE1e3  | IE1 exon 3                             | 144    | NA         | X17403      | 476      |

| Gene        | Gene Name                                                            | SEQ ID<br>50mer | HS        | ACC       | SEQ ID<br>RNA/cDNA |
|-------------|----------------------------------------------------------------------|-----------------|-----------|-----------|--------------------|
| CMV IE1e4   | IE1 exon 4 (40 variants)                                             | 145             | NA        | X17403    | 477                |
| EBV EBNA-1  | EBNA-1 coding region                                                 | 146             | NA        | AJ507799  | 478                |
| EBV BZLF-1  | Zebra gene                                                           | 147             | NA        | AJ507799  | 479                |
| EBV EBN     | EBNA repetitive sequence                                             | 148             | NA        | AJ507799  | 480                |
| EBV EBNA-LP | Short EBNA leader peptide exon                                       | 149             | NA        | AJ507799  | 481                |
| CMV IE1     | IE1S                                                                 | 150             | NA        | X17403    | 482 .              |
| CMV IE1     | IE1-MC (exon 3)                                                      | 151             | NA        | X17403    | 483                |
| CLC         | Charot-Leyden crystal protein                                        | 152             | Hs.889    | NM 001828 | 484                |
| TERF2IP     | telomeric repeat binding factor 2,<br>interacting protein            | 153             | Hs.274428 | NM_018975 | 485                |
| HLA-A       | Major histocompatibility complex,<br>class I, A                      | 154             | Hs.181244 | NM_002116 | 486                |
| OID_5891    | EST 3' end                                                           | 155             | None      | AW297949  | 487                |
| MSCP        | mitochondrial solute carrier protein                                 | 156             | Hs.283716 | NM 018579 | 488                |
| DUSP5       | dual specificity phosphatase 5                                       | 157             | Hs.2128   | NM 004419 | 489                |
| PRO1853     | Hypothetical protein PRO1853                                         | 158             | Hs.433466 | NM 018607 | 490                |
| OID 6420    | 73A7, FLJ00290 protein                                               | 159             | Hs.98531  | AK090404  | 491                |
| CDSN        | Corneodesmosin                                                       | 160             | Hs.507    | NM 001264 | 492                |
| OID 4269    | EST                                                                  | 161             | Hs.44628  | BM727677  | 493                |
| RPS25       | Ribosomal protein S25                                                | 162             | Hs.409158 | NM 001028 | 494                |
| GAPD        | Glyceraldehyde-3-phosphate<br>dehydrogenase                          | 163             | Hs.169476 | NM_002046 | 495                |
| RPLP1       | Ribosomal protein, large, P1                                         | 164             | Hs.424299 | NM 001003 | 496                |
| OID_5115    | qz23b07.x1 cDNA, 3' end<br>/clone=IMAGE:2027701                      | 165             | NA        | AI364926  | 497                |
| SLC9A8      | Solute carrier family 9<br>(sodium/hydrogen exchanger),<br>isoform 8 | 166             | Hs.380978 | AB023156  | 498                |
| OID 1512    | IMAGE:3865861 5 clone 5'                                             | 167             | Hs.381302 | BE618004  | 499                |
| POLR2D      | Polymerase (RNA) II (DNA directed)<br>polypeptide D                  | 168             | Hs.194638 | NM_004805 | 500                |
| ARPC3       | Actin related protein 2/3 complex,<br>subunit 3, 21kDa               | 169             | Hs.293750 | NM_005719 | 501                |
| OID_6282    | EST 3' end                                                           | 170             | Hs.17132  | BC041913  | 502                |
| PRO1073     | PRO1073 protein                                                      | 171             | Hs.356442 | AF001542  | 503                |
| OID_7222    | EST, weakly similar to A43932<br>mucin 2 precursor, intestinal       | 172             | Hs.28310  | BG260891  | 504                |
| FPRL1       | Formyl peptide receptor-like 1                                       | 173             | Hs.99855  | NM 001462 | 505                |
| FKBPL       | FK506 binding protein like                                           | 174             | Hs.99134  | NM 022110 | 506                |
| PREB        | Prolactin regulatory element binding                                 | 175             | Hs.279784 | NM_013388 | 507                |
| OID_1551    | Hypothetical protein LOC200227                                       | 176             | Hs.250824 | BE887646  | 508                |
| OID 7595    | DKFZP566F0546 protein                                                | 177             | Hs.144505 | NM 015653 | 509                |
| RNF19       | Ring finger protein 19                                               | 178             | Hs.48320  | NM 015435 | 510                |
| SMCY        | SMC (mouse) homolog, Y<br>chromosome (SMCY)                          | 179             | Hs.80358  | NM_004653 | 511                |
| OID 4184    | CMV HCMVUL109                                                        | 180             | NA        | X17403    | 512                |
| OID 7504    | Hypothetical protein FLJ35207                                        | 181             | Hs.86543  | NM 152312 | 513                |
| DNAJC3      | DnaJ (Hsp40) homolog, subfamily C,<br>member 3                       | 182             | Hs.9683   | NM_006260 | 514                |
| ARHU        | Ras homolog gene family, member U                                    | 183             | Hs.20252  | NM_021205 | 515                |
| OID 7200    | Hypothetical protein FLJ22059                                        | 184             | Hs.13323  | NM 022752 | 516                |

| Gene     | Gene Name                                             | SEQ ID<br>50mer | HS        | ACC         | SEQ ID<br>RNA/cDNA |
|----------|-------------------------------------------------------|-----------------|-----------|-------------|--------------------|
| SERPINB2 | Serine (or cysteine) proteinase                       | 185             | Hs.75716  | NM 002575   | 517                |
|          | inhibitor, clade B (ovalbumin),                       |                 |           | _           |                    |
|          | member 2                                              |                 |           |             |                    |
| ENO1     | Enolase 1, alpha                                      | 186             | Hs.254105 | NM 001428   | 518                |
| OID 7696 | EST 3' end                                            | 187             | Hs.438092 | AW297325    | 519                |
| OID 4173 | CMV HCMVTRL2 (IRL2)                                   | 188             | NA        | X17403      | 520                |
| CSF2RB   | Upstream variant mRNA of colony                       | 189             | Hs.285401 | AL540399    | 521                |
|          | stimulating factor 2 receptor, beta,                  |                 |           |             |                    |
|          | low-affinity (granulocyte-                            |                 |           |             |                    |
|          | macrophage)                                           |                 |           |             |                    |
| OID 7410 | CM2-LT0042-281299-062-e11                             | 190             | Hs.375145 | AW837717    | 522                |
| _        | LT0042 cDNA, mRNA sequence                            | 1               |           |             |                    |
| OID 4180 | CMV HCMVUS28                                          | 191             | NA        | X17403      | 523                |
| OID 5101 | EST                                                   | 192             | Hs.144814 | BG461987    | 524                |
| MOP3     | MOP-3                                                 | 193             | Hs.380419 | NM 018183   | 525                |
| RPL18A   | Ribosomal protein L18a                                | 194             | Hs.337766 | NM 000980   | 526                |
| INPP5A   | Inositol polyphosphate-5-                             | 195             | Hs.124029 | NM_005539   | 527                |
|          | phosphatase, 40kDa                                    |                 |           |             |                    |
| hIAN7    | Immune associated nucleotide                          | 196             | Hs.124675 | BG772661    | 528                |
| RPS29    | Ribosomal protein S29                                 | 197             | Hs.539    | NM_001032   | 529                |
| OID_6008 | EST 3' end                                            | 198             | Hs.352323 | AW592876    | 530                |
| OID_4186 | CMV HCMVUL122                                         | 199             | NA        | X17403      | 531                |
| VNN2     | vanin 2                                               | 200             | Hs.121102 | NM 004665   | 532                |
| OID_7703 | KIAA0907 protein                                      | 201             | Hs.24656  | NM_014949   | 533                |
| OID_7057 | 480F8                                                 | 202             | NA        | 480F8       | 534                |
| OID_4291 | EST                                                   | 203             | Hs.355841 | BC038439    | 535                |
| OID_1366 | EST                                                   | 204             | Hs.165695 | AW850041    | 536                |
| EEF1A1   | Eukaryotic translation elongation<br>factor 1 alpha 1 | 205             | Hs.422118 | NM_001402   | 537                |
| PA2G4    | Proliferation-associated 2G4, 38kDa                   | 206             | Hs.374491 | NM 006191   | 538                |
| GAPD     | Glyceraldehyde-3-phosphate                            | 207             | Hs.169476 | NM_002046   | 539                |
|          | dehydrogenase                                         |                 | İ         |             | <u> </u>           |
| CHD4     | Chromodomain helicase DNA<br>binding protein 4        | 208             | Hs.74441  | NM_001273   | 540                |
| OID 7951 | E2F-like protein (LOC51270)                           | 209             | Hs.142908 | NM 016521   | 541                |
| DAB1     | Disabled homolog 1 (Drosophila)                       | 210             | Hs.344127 | NM 021080   | 542                |
| OID 3406 | Hypothetical protein FLJ20356                         | 211             | Hs.61053  | NM 018986   | 543                |
| OID 6986 | 462H9 EST                                             | 212             | Hs.434526 | AK093608    | 544                |
| OID 5962 | EST 3' end                                            | 213             | Hs.372917 | AW452467    | 545                |
| OID 5152 | EST 3' end                                            | 214             | Hs.368921 | AI392805    | 546                |
| S100A8   | S100 calcium-binding protein A8                       | 215             | Hs.416073 | NM 002964   | 547                |
|          | (calgranulin A)                                       |                 |           | _           |                    |
| HNRPU    | HNRPU Heterogeneous nuclear                           | 216             | Hs.103804 | BM467823    | 548                |
|          | ribonucleoprotein U (scaffold                         |                 |           |             |                    |
|          | attachment factor A)                                  |                 |           |             | 1                  |
| ERCC5    | Excision repair cross-complementing                   | 217             | Hs.48576  | NM_000123   | 549                |
| 1        | rodent repair deficiency,                             | 1               |           |             | 1                  |
|          | complementation group 5 (xeroderma                    | l               | 1         |             | 1                  |
| l        | pigmentosum, complementation                          | 1               | 1         |             |                    |
|          | group G (Cockayne syndrome))                          |                 |           |             |                    |
| RPS27    | Ribosomal protein S27                                 | 218             | Hs.195453 | NM_001030   | 550                |
| L GD G   | (metallopanstimulin 1)                                | 240             | ** *****  | 27.6 052057 | 100                |
| ACRC     | acidic repeat containing (ACRC),                      | 219             | Hs.135167 | NM 052957   | 551                |

| Gene   Gene Name   Somer   HS   ACC   RNA/cDNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | T                               | ono ID | T          | 1           | one in |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------|--------|------------|-------------|--------|
| PSMD11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _         | G 31                            | SEQ ID | 176        |             | SEQ ID |
| 268 subunit, non-ATPase, 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                 |        |            |             |        |
| OID 1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PSMD11    |                                 | 220    | Hs.90/44   | A1684022    | 552    |
| OID   1309   AV706481 cDNA   222   None   AV706481   554     OID   7582   Weakly similar to ZINC FINGER   223   Hs.16493   AK027866   555     OID   7582   Weakly similar to ZINC FINGER   223   Hs.16493   AK027866   555     OID   4317   ta73c09x1 3' end   224   Hs.387179   AI318342   556     OID   4317   ta73c09x1 3' end   224   Hs.387179   AI318342   556     OID   5889   3' end /clone=IMAGE:3083913   225   Hs.255698   AW297843   557     OID   5889   3' end /clone=IMAGE:3083913   225   Hs.255698   AW297843   557     OID   5889   S' end /clone=IMAGE:3083913   225   Hs.255698   AW297843   557     OID   5367   EST   227   None   W03955   559     OID   3791   EST 5'   228   Hs.290874   BE730505   560     OID   7391   EST 5'   228   Hs.290874   BE730505   560     SEMA7A   Sema domain, immunoglobulin   230   Hs.24640   NM_0031286   561     of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of |           |                                 | 201    | TT 200024  | 177024456   | 552    |
| OID_7582   Weakly similar to ZINC FINGER   223   Hs.16493   AK027866   555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                                 |        |            |             |        |
| PROTEIN 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                 |        |            |             |        |
| OID _ 4317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OID_7582  |                                 | 223    | HS.10493   | AK02/800    | 333    |
| Colone=IMAGE:2049712 Ribosomal   Protein S15   Size   Colone=IMAGE:2049712 Ribosomal   Protein S15   Size   Colone=IMAGE:3083913   225   Hs.255698   AW297843   557   AW297843   557   AW297843   Size   Colone=IMAGE:3083913   225   Hs.255698   AW297843   557   AW297843   Size   Colone=IMAGE:3083913   225   Hs.81424   NM 003352   558   AW297843   Size   Size   Colone=IMAGE:3083913   225   Hs.81424   NM 003352   558   AW297843   Size   Size   Colone=IMAGE:3083913   225   Hs.81424   AW303525   Size   Size   Size   Colone=IMAGE:30855   Size   AW297843   Size   Size   Size   Size   Size   Colone=IMAGE:30855   Size   Colone=IMAGE:30856   Size   Size   Colone=IMAGE:30856   Size    OVD 4245  |                                 | 224    | 11- 207170 | 17210242    | 556    |
| Proteins S15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OID_4317  |                                 | 224    | IDS.36/1/9 | A1316342    | 330    |
| OID 5889   3' end /clone=IMAGE:3083913   225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ĺ         |                                 |        |            |             |        |
| UBL1         Ubiquitin-like I (sentrin)         226         Hs.81424         NM 003352         558           OID 3687         EST         227         None         W03955         559           OID 7371         EST 5'         228         Hs.209874         BE730505         560           SH3BGRL3         SH3 domain binding glutamic acidrich protein like 3         229         Hs.109051         NM_031286         561           SEMA7A         Sema domain, immunoglobulin domain (lg), and GPI membrane anchor, (semaphorin) 7A         230         Hs.246494         AW081540         562           OID 5708         EST 3' end         231         Hs.246494         AW081540         563           OID 5902         EST 3' end         232         Hs.257709         AW467992         564           IL21         Interleukin 21         233         Hs.38041         NM 014606         565           OID 7596         EST 3' end         232         Hs.237709         AW467992         564           IL21         Interleukin 21         233         Hs.38041         NM 014606         566           ID 7596         EST 3' end         237         Hs.437931         NW294711         567           P11         26 serine protease         236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OTD COOR  |                                 | 225    | 11. 255600 | A31/207942  | 557    |
| OID 3687   EST   227   None   W03955   559   OID 7371   EST 5' 228   Hs.290874   BE730505   560   STSH3BGRL 3   SH3 domain binding glutamic acidifich protein like 3   229   Hs.190951   NM_031286   561   SEMA7A   Sema domain, immunoglobulin   domain (Ig.), and GPI membrane   230   Hs.24640   NM_003612   562   OID 5708   EST 3' end   231   Hs.246494   AW081540   563   OID 5708   EST 3' end   232   Hs.257709   AW467992   564   IL21   Interleukin 21   233   Hs.320214   NM_021803   565   HERC3   Heet domain and RLD 3 (HERC3)   234   Hs.38044   NM_014606   566   OID 7799   AluJoFLAM SINE/Ah   235   AW337717   567   P11   26 serine protease   236   Hs.997   NM_006025   568   OID 7766   EST 3' end   237   Hs.437931   AW394711   569   TIMM10   translocase of inner mitochondrial membrane 10 (yeast) homolog (TIMM10)   EGLN1   Egl nine homolog 1 (C. elegans)   239   Hs.6523   AW3310543   571   TRCC   Tubulin-specific chaperone c   240   Hs.75064   NM_001319   572   TRNF3   Ring finger protein 3   241   Hs.8884   NM_006315   573   OID 6451   170F9, hypothetical protein   242   Hs.288872   AL834168   574   FL21439   CCNDBP1   cyclin D-type binding-protein 1   243   Hs.36794   NM_0012142   575   OID 8063   MUC18 gene exons 1&2   244   NA   X68264   S76   SUV39H1   Suppressor of variegation 3-9   445   Hs.279941   NM_003173   577   NMARS   Tryptophanyl-RNA synthetase   248   Hs.2800   NM_001484   580   OID 5625   EST 3' end from T cells   247   Hs.279121   AW063780   579   MGC26766   Hypothetical protein as   254   Hs.836022   Al625119   583   OID 463   HSPC048   protein   245   Hs.836022   Al625119   583   OID 6426   Hypothetical protein   245   Hs.83002   NM_004184   580   OID 5627   EST 3' end from T cells   247   Hs.279121   AW063780   579   MGC26766   Hypothetical protein mGC26766   253   Hs.350958   NM_008475   586                                                                                                                                                                                                                |           |                                 |        |            |             |        |
| OID 7371   EST 5'   SH3BGRL3   SH3 domain binding glutamic acidrich protein like 3   SEMA7A   Sema domain, immunoglobulin   domain (Ig), and GPI membrane   anchor, (semaphorin) 7A   OID 5708   EST 3' end   231   Hs.246494   AW081540   563   OID 5798   EST 3' end   232   Hs.257709   AW467992   564   AW081540   563   OID 5790   EST 3' end   232   Hs.257709   AW467992   564   OID 5790   EST 3' end   232   Hs.257709   AW467992   564   OID 5790   AW467992   564   OID 5790   AW467992   564   OID 7679   AluJo/FLAM SINE/Alu   233   Hs.35804   NM 014606   566   OID 7779   AluJo/FLAM SINE/Alu   235   AW837717   567   OID 766   EST 3' end   237   Hs.437931   AW294711   569   OID 7766   EST 3' end   237   Hs.437931   AW294711   569   OID 7766   EST 3' end   237   Hs.437931   AW294711   569   OID 766   EST 3' end   OID 766   |           |                                 |        |            |             |        |
| SH3 domain binding glutamic acid-rich protein like   Sem adomain, immunoglobulin domain (Ig), and GPI membrane anchor, (semaphorin) 7A   Sem adomain, immunoglobulin domain (Ig), and GPI membrane anchor, (semaphorin) 7A   Sem adomain, immunoglobulin domain (Ig), and GPI membrane anchor, (semaphorin) 7A   Sem adomain, immunoglobulin domain (Ig), and GPI membrane anchor, (semaphorin) 7A   Sem adomain, immunoglobulin domain (Ig), and GPI membrane anchor, (semaphorin) 7A   Sem adomain (Ig), and GPI membrane anchor, (semaphorin) 7A   Sem adomain anchor, (semaphorin) 7A   Sem adomain anchor, (Ig), and Ig)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                 |        |            |             |        |
| Tich protein like 3   230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                 |        |            |             |        |
| Sema domain, immunoglobulin   domain (Ig), and GPI membrane anchor, (semaphorin) 7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SH3BGKL3  |                                 | 229    | Ins.109031 | NM_031280   | 301    |
| domain (Ig.), and GPI membrane anchor, (semaphorin) 7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CENA 7A   |                                 | 220    | He 24640   | NM 003612   | 562    |
| anchor_(semaphorin) 7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SEMA/A    |                                 | 230    | 115.24040  | 14M_003012  | 302    |
| DID 5708   EST 3' end   231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1         |                                 |        |            |             |        |
| OID 5992   EST 3' end   232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OID 5700  |                                 | 221    | Ue 246404  | A W081540   | 563    |
| III.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                 |        |            |             |        |
| HERC3   Hect domain and RLD 3 (HERC3)   234   Hs.35804   NM 014606   566     OID 7799   AluJo/FLAM SINE/Alu   235   AW837717   567     P11   26 serine protease   236   Hs.997   NM 006025   568     OID 7766   EST 3' end   237   Hs.437931   AW294711   569     TIMM10   translocase of inner mitochondrial membrane 10 (yeast) homolog (TIMM10)   Hs.235750   NM_012456   570     EGLIN1   Egl nine homolog 1 (C. elegans)   239   Hs.6523   AJ310543   571     TBCC   Tubulin-specific chaperone c   240   Hs.75064   NM 003192   572     RNF3   Ring finger protein 3   241   Hs.8834   NM 006315   573     OID 6451   1709F, hypothetical protein   242   Hs.288872   AL834168   574     FLJ21439   CCNDBP1   Cyclin D-type binding-protein 1 (CCNDBP1)   (CCNDBP1)   (CCNDBP1)   (CCNDBP1)   (CCNDBP1)   (CCNDBP1)   (CCNDBP1)   (CCNDBP1)   (CCNDBP1)   (CCNDBP1)   (CSNDBP1)   |           |                                 |        |            |             |        |
| OID 7799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                 |        |            |             |        |
| P11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                                 |        | 113.55604  |             |        |
| DID 7766   EST 3' end   237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                 |        | He 907     |             |        |
| TIMM10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                 |        |            |             |        |
| membrane 10 (yeast) homolog (TTMM10)   membrane 10 (yeast) homolog (TTMM10)   EGLN1   Egl nine homolog 1 (C. elegans)   239   Hs.6523   AJ310543   571   TBCC   Tubulin-specific chapreone c   240   Hs.75064   NM 003192   572   NM 753   Ring finger protein 3   241   Hs.8834   NM 006315   573   NM 006315   170F9, hypothetical protein   242   Hs.28872   AL834168   574   NM 006315   170F9, hypothetical protein 1   243   Hs.36794   NM_012142   575   NM 006378   NM 0012142   575   NM 0063   NM 0018 gene exons 1&2   244   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                                 |        |            |             |        |
| CTIMM10  Eg1 nine homolog 1 (C. elegans) 239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THAIN TO  |                                 | 250    | 113.233730 | 1111_012150 | 1570   |
| EGINI         Egt nine homolog 1 (C. elegans)         239         Hs.6523         A1310543         571           TBCC         Tubulin-specific chaperone c         240         Hs.75064         NM 003192         572           RNF3         Ring finger protein 3         241         Hs.8834         NM 006315         573           OID 6451         170F9, hypothetical protein         242         Hs.288872         AL834168         574           FLJ21439         CCNDBP1         cyclin D-type binding-protein 1         243         Hs.36794         NM_012142         575           OID 8063         MUC18 gene exons 1&2         244         NA         X68264         576           SUV39H1         Suppressor of variegation 3-9 homolog 1 (Drosophila)         Hs.37936         NM_003173         577           HSPC048         HSPC048 protein         246         Hs.278944         NM 014148         578           OID 5625         EST 3' end from T cells         247         Hs.299121         AW063780         579           WARS         Tryptophanyl-iRNA synthetuse         248         Hs.82030         NM 04184         580           OID 6823         107H8         249         Hs.169610         AL832642         581           OID 5339         EST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         |                                 | İ      |            |             |        |
| TBCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EGI NI    |                                 | 239    | Hs 6523    | A1310543    | 571    |
| RNF3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                 |        |            |             |        |
| OID 6451   170F9, hypothetical protein   242   Hs.288872   AL834168   574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                 |        |            |             |        |
| CCNDBP1   cyclin D-type binding-protein 1   243   Hs.36794   NM_012142   575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                 |        |            |             |        |
| CCNDBP1   cyclin D-type binding-protein 1   243   Hs.36794   NM_012142   575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 015_0.51  |                                 |        |            |             | ļ.,,   |
| CCDDBP1   CDDBP1   | CCNDBPI   |                                 | 243    | Hs 36794   | NM 012142   | 575    |
| OID 8063   MUC18 gene exons I&2   244   NA   X68264   576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                 |        |            |             |        |
| Suppressor of variegation 3-9   245   Hs.37936   NM_003173   577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OID 8063  |                                 | 244    | NA         | X68264      | 576    |
| homolog 1 (Drosophila)   HSPC048   HSPC048 protein   246   Hs.278944   NM 014148   578     OID 5625   EST 3" end from T cells   247   Hs.279121   AW063780   579     WARS   Tryptophanyl-IRNA synthetase   248   Hs.82030   NM 004184   580     OID 6823   107H8   249   Hs.169610   Al.832642   S81     OID 7073   119F12   250   Hs.13264   Al.705961   582     OID 5339   EST 3" end   251   Hs.436022   Al625119   583     OID 4263   fetal retina 937202 cDNA clone   252   Hs.70877   AA136584   584     MGC26766   Hypothetical protein MGC26766   253   Hs.288156   AK025472   585     SERPINBII   Serine (or cysteine) proteimase   254   Hs.350958   NM_080475   586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                 |        | Hs.37936   |             |        |
| HSPC048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                                 |        |            | _           | 1      |
| WARS         Tryptophanyl-tRNA synthetase         248         Hs.82030         NM. 004184         580           OID 6823         107H8         249         Hs.169610         AL832642         581           OID 7073         119F12         250         Hs.13264         AL705961         582           OID 5339         EST 3' end         251         Hs.436022         Al625119         583           OID 4263         feal retina 937202 cDNA clone         252         Hs.70877         AA136584         584           MGC26766         Hypothetical protein MGC26766         253         Hs.28156         AK025472         585           SERPINBIT         Serine (or cysteine) proteinase         254         Hs.350958         NM_080475         586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HSPC048   |                                 | 246    | Hs.278944  | NM 014148   | 578    |
| OID 6823         107H8         249         Hs.169610         AL832642         581           OID 7073         119F12         250         Hs.13264         AL705961         582           OID 5339         EST 3' end         251         Hs.436022         Al625119         583           OID 4263         fetal retina 937202 cDNA clone         252         Hs.70877         AA136584         584           MGC267666         Hypothetical protein MGC26766         253         Hs.288156         AK025472         585           SERPINB11         Serine (or cysteine) proteimase         254         Hs.350958         NM_080475         586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OID 5625  | EST 3' end from T cells         | 247    | Hs.279121  | AW063780    | 579    |
| OID 7073         119F12         250         Hs.13264         AL705961         582           OID 5339         EST 3' end         251         Hs.436022         AI625119         583           OID 4263         fetal retina 937202 cDNA clone         252         Hs.70877         AA136584         584           MGC26766         Hypothetical protein MGC26766         253         Hs.28156         AK025472         585           SERPINB11         Serine (or cysteine) proteinase         254         Hs.350958         NM_080475         586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WARS      | Tryptophanyl-tRNA synthetase    | 248    | Hs.82030   | NM 004184   | 580    |
| OID 5339         EST 3' end         251         Hs.436022         AI625119         583           OID 4263         fetal retina 937202 cDNA clone         252         Hs.70877         AA136584         584           MGC26766         Hypothetical protein MGC26766         253         Hs.288156         AK025472         585           SERPINB11         Serine (or cysteine) proteinase         254         Hs.350958         NM_080475         586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OID 6823  | 107H8                           | 249    | Hs.169610  | AL832642    | 581    |
| OID 4263         fetal retina 937202 cDNA clone         252         Hs.70877         AA136584         584           MGC26766         Hypothetical protein MGC26766         253         Hs.288156         AK025472         585           SERPINB11         Serine (or cysteine) proteinase         254         Hs.350958         NM_080475         586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OID 7073  | 119F12                          | 250    | Hs.13264   | AL705961    | 582    |
| - IMAGE:565899  MGC26766 Hypothetical protein MGC26766 253 Hs.288156 AK025472 585  SERPINB11 Serine (or cysteine) proteinase 254 Hs.350958 NM_080475 586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OID 5339  | EST 3' end                      | 251    | Hs.436022  | AI625119    | 583    |
| IMAGE:565899   Hypothetical protein MGC26766   253   Hs.288156   AK025472   585   SERPINB11   Serine (or cysteine) proteinase   254   Hs.350958   NM_080475   586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OID 4263  | fetal retina 937202 cDNA clone  | 252    | Hs.70877   | AA136584    | 584    |
| SERPINB11 Serine (or cysteine) proteinase 254 Hs.350958 NM_080475 586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l         | IMAGE:565899                    |        |            |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MGC26766  | Hypothetical protein MGC26766   | 253    | Hs.288156  | AK025472    | 585    |
| inhibitor clade B (avalhumin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SERPINB11 | Serine (or cysteine) proteinase | 254    | Hs.350958  | NM_080475   | 586    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | inhibitor, clade B (ovalbumin), |        |            |             | 1      |
| member 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                 | L      | 1          |             |        |
| OID_6711 58G4, IMAGE:4359351 5' 255 none BF968628 587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OID_6711  | 58G4, IMAGE:4359351 5'          | 255    | none       | BF968628    | 587    |
| RNF10 Ring finger protein 10 256 Hs.5094 NM 014868 588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RNF10     |                                 |        | Hs.5094    |             |        |
| MKRN1 Makorin, ring finger protein, 1 257 Hs.7838 NM 013446 589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MKRN1     |                                 | 257    | Hs.7838    | NM 013446   | 589    |
| RPS16 ribosomal protein S16 258 Hs.397609 NM 001020 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RPS16     | ribosomal protein S16           | 258    | Hs.397609  | NM 001020   | 590    |

| Gene      | Gene Name                                                                                      | SEQ ID<br>50mer | HS        | ACC           | SEQ ID<br>RNA/cDNA |
|-----------|------------------------------------------------------------------------------------------------|-----------------|-----------|---------------|--------------------|
| BAZ1A     | Bromodomain adjacent to zinc finger                                                            | 259             | Hs.8858   | NM_013448     | 591                |
|           | domain, 1A                                                                                     |                 | ** 220252 | 1,111,160,150 | 100                |
| OID 5998  | EST 3' end                                                                                     | 260             | Hs.330268 | AW468459      | 592                |
| ATP5L     | ATP synthase, H+ transporting,<br>mitochondrial F0 complex, subunit g                          | 261             | Hs.107476 | NM_006476     | 593                |
| OID 6393  | 52B9                                                                                           | 262             | NA        | 52B9          | 594                |
| RoXaN     | Ubiquitous tetratricopeptide<br>containing protein RoXaN                                       | 263             | Hs.25347  | BC004857      | 595                |
| NCBP2     | Nuclear cap binding protein subunit<br>2, 20kDa                                                | 264             | Hs.240770 | NM_007362     | 596                |
| OID 6273  | EST 3' end                                                                                     | 265             | Hs.158976 | AW294774      | 597                |
| HZF12     | zinc finger protein 12                                                                         | 266             | Hs.164284 | NM 033204     | 598                |
| CCL3      | Chemokine (C-C motif) ligand 3                                                                 | 267             | Hs.73817  | D90144        | 599                |
| OID 4323  | IMAGE:1283731 3'                                                                               | 268             | Hs.370770 | AA744774      | 600                |
| OID_5181  | tg93h12.x1 NCI_CGAP_CLL1<br>cDNA clone IMAGE:2116391 3'<br>similar to contains TAR1.t1 MER22   | 269             | NA        | AI400725      | 601                |
| PRDX4     | Peroxiredoxin 4                                                                                | 270             | Hs.83383  | NM 006406     | 602                |
| BTK       | Bruton agammaglobulinemia tyrosine<br>kinase                                                   |                 | Hs.159494 | NM_000061     | 603                |
| OID 6298  | Importin beta subunit mRNA                                                                     | 272             | Hs.180446 | AI948513      | 604                |
| PGK1      | Phosphoglycerate kinase 1                                                                      | 273             | Hs.78771  | NM 000291     | 605                |
| TNFRSF10A | Tumor necrosis factor receptor<br>superfamily, member 10a                                      | 274             | Hs.249190 | NM_003844     | 606                |
| ADM       | adrenomedullin                                                                                 | 275             | Hs.394    | NM 001124     | 607                |
| OID 357   | 138G5                                                                                          | 276             | NA        | 138G5         | 608                |
| C20orf6   | 461A4 chromosome 20 open reading frame 6                                                       | 277             | Hs.88820  | NM_016649     | 609                |
| OID 3226  | DKFZP564O0823 protein                                                                          | 278             | Hs.105460 | NM 015393     | 610                |
| ASAH1     | N-acylsphingosine amidohydrolase<br>(acid ceramidase) 1                                        | 279             | Hs.75811  | NM_004315     | 611                |
| ATF5      | Activating transcription factor 5                                                              | 280             | Hs.9754   | NM 012068     | 612                |
| OID 4887  | hypothetical protein MGC14376                                                                  | 281             | Hs.417157 | NM 032895     | 613                |
| OID 4887  | EST                                                                                            | 282             | Hs.177376 | BO022840      | 614                |
| MDM2      | Mouse double minute 2, homolog of;<br>p53-binding protein (MDM2),<br>transcript variant MDM2.  | 283             | Hs.170027 | NM_002392     | 615                |
| XRN2      | 5'-3' exoribonuclease 2                                                                        | 284             | Hs.268555 | AF064257      | 616                |
| OID_6039  | Endothelial differentiation,<br>lysophosphatidic acid G-protein-<br>coupled receptor, 4 (EDG4) | 285             | Hs.122575 | BE502246      | 617                |
| OID 4210  | IMAGE:4540096                                                                                  | 286             | Hs.374836 | AI300700      | 618                |
| OID 7698  | EST 3' end                                                                                     | 287             | Hs.118899 | AA243283      | 619                |
| PRKRA     | Protein kinase, interferon-inducible<br>double stranded RNA dependent<br>activator             | 288             | Hs.18571  | NM_003690     | 620                |
| OID 4288  | IMAGE:2091815                                                                                  | 289             | Hs.309108 | AI378046      | 621                |
| OID 5620  | EST 3' end from T cells                                                                        | 290             | Hs.279116 | AW063678      | 622                |
| OID 7384  | EST 5'                                                                                         | 291             | Hs.445429 | BF475239      | 623                |
| OID_1209  | EST Weakly similar to hypothetical<br>protein FLJ20378                                         | 292             | Hs.439346 | C14379        | 624                |
| CDKN1B    | Cyclin-dependent kinase inhibitor 1B<br>(p27, Kip1)                                            | 293             | Hs.238990 | NM_004064     | 625                |

|               |                                                                      | SEQ ID     |                        |                        | SEQ ID     |
|---------------|----------------------------------------------------------------------|------------|------------------------|------------------------|------------|
| Gene          | Gene Name                                                            | 50mer      | HS                     | ACC                    | RNA/cDNA   |
| PLOD          | Procollagen-lysine, 2-oxoglutarate 5-                                | 294        | Hs.75093               | NM_000302              | 626        |
|               | dioxygenase (lysine hydroxylase,                                     | İ          | i                      | Ì                      |            |
|               | Ehlers-Danlos syndrome type VI)                                      | 205        | TT. 202420             | 175007045              | (07        |
| OID 5128      | EST                                                                  | 295<br>296 | Hs.283438<br>Hs.438118 | AK097845<br>AW297664   | 627<br>628 |
| OID 5877      | EST 3' end<br>Frizzled (Drosophila) homolog 4                        | 296        | Hs.19545               | NM 012193              | 629        |
| FZD4<br>HLA-B | Major histocompatibility complex,                                    | 298        | Hs.77961               | NM 005514              | 630        |
| nla-B         | class I. B                                                           | 290        | 115.77901              | 14141_003314           | 030        |
| OID 5624      | EST 3' end from T cells                                              | 299        | Hs.279120              | AW063921               | 631        |
| FPR1          | Formyl peptide receptor 1                                            | 300        | Hs.753                 | NM_002029              | 632        |
| ODF2          | Outer dense fiber of sperm tails 2                                   | 301        | Hs.129055              | NM 153437              | 633        |
| OID_5150      | tg04g01.x1 cDNA, 3' end<br>/clone=IMAGE:2107824                      | 302        | Hs.160981              | AI392793               | 634        |
| OID 5639      | EST 3' end from T cells                                              | 303        | Hs.279139              | AW064243               | 635        |
| OID 6619      | 469A10                                                               | 304        | NA                     | 469A10                 | 636        |
| OID 6933      | 463C7, 4 EST hits. Aligned                                           | 305        | Hs.86650               | AI089520               | 637        |
| OID 7049      | 480E2                                                                | 306        | NA                     | 480E2                  | 638        |
| IL17C         | Interleukin 17C                                                      | 307        | Hs.278911              | NM 013278              | 639        |
| OID 5866      | EST 3' end                                                           | 308        | Hs.255649              | BM684739               | 640        |
| CD44          | CD44                                                                 | 309        | Hs.169610              | AA916990               | 641        |
| VPS45A        | Vacuolar protein sorting 45A (yeast)                                 | 310        | Hs.6650                | NM_007259              | 642        |
| OID_4932      | aa92c03.r1 Stratagene fetal retina<br>937202 cDNA clone IMAGE:838756 | 311        | NA                     | AA457757               | 643        |
| OID 7821      | EST                                                                  | 312        | NA                     | AA743221               | 644        |
| OID_4916      | zr76a03.r1 Soares_NhHMPu_S1<br>cDNA clone IMAGE:669292               | 313        | NA                     | AA252909               | 645        |
| OID 4891      | Hypothetical protein LOC255488                                       | 314        | Hs.294092              | AL832329               | 646        |
| HADHB         | Hydroxyacyl-Coenzyme A                                               | 315        | Hs.146812              | NM_000183              | 647        |
|               | dehydrogenase/3-ketoacyl-Coenzyme                                    | 1          | ĺ                      | _                      | 1          |
|               | A thiolase/enoyl-Coenzyme A                                          | ł          | ł                      | l l                    | 1          |
|               | hydratase (trifunctional protein), beta                              | Į.         | 1                      | 1                      | 1          |
|               | subunit                                                              |            | L                      |                        | <u> </u>   |
| FLJ22757      | Hypothetical protein FLJ22757                                        | 316        | Hs.236449              | NM 024898              | 648        |
| RAC1          | Ras-related C3 botulinum toxin                                       | 317        | Hs.173737              | AK054993               | 649        |
|               | substrate 1 (rho family, small GTP                                   | l          | 1                      | 1                      | 1          |
|               | binding protein Rac1)                                                | 240        | 12 00504               | 0. 107201              | 640        |
| OID 6415      | 72D4, FLJ00290 protein                                               | 318        | Hs.112242              | CA407201               | 650        |
| NMES1         | Normal mucosa of esophagus specific                                  | 319        | Hs.112242              | NM_032413              | 651        |
| DMBT1         | Deleted in malignant brain tumors 1,                                 | 320        | Hs.279611              | NM_007329              | 652        |
| n ncaa        | transcript variant 2                                                 | 321        | H- 2462                | NM 001025              | 653        |
| RPS23<br>ZF   | ribosomal protein S23 HCF-binding transcription factor               | 321        | Hs.3463<br>Hs.29417    | NM 001025<br>NM 021212 | 653        |
|               | Zhangfei                                                             |            | <u> </u>               |                        |            |
| NFE2L3        | Nuclear factor (erythroid-derived 2)-<br>like 3                      | 323        | Hs.22900               | NM_004289              | 655        |
| RAD9          | RAD9 homolog (S. pombe)                                              | 324        | Hs.240457              | NM 004584              | 656        |
| OID 6295      | EST 3' end                                                           | 325        | Hs.389327              | AI880607               | 657        |
| DEFCAP        | Death effector filament-forming Ced-                                 | 326        | Hs.104305              | NM_014922              | 658        |
|               | 4-like apoptosis protein, transcript<br>variant B                    |            | 1                      |                        |            |
| RPL27A        | Ribosomal protein L27a                                               | 327        | Hs.76064               | BF214146               | 659        |
| IL22          | Interleukin 22 (IL22)                                                | 328        | Hs.287369              | NM 020525              | 660        |

| Gene  | Gene Name                                                          | SEQ ID<br>50mer | HS        | ACC       | SEQ ID<br>RNA/cDNA |
|-------|--------------------------------------------------------------------|-----------------|-----------|-----------|--------------------|
| PSMA4 | Proteasome (prosome, macropain)<br>subunit, alpha type, 4, (PSMA4) | 329             | Hs.251531 | NM_002789 | 661                |
| CCNI  | cyclin I (CCNI)                                                    | 330             | Hs.79933  | NM 006835 | 662                |
| THBD  | Thrombomodulin                                                     | 331             | Hs.2030   | NM 000361 | 663                |
| CGR19 | Cell growth regulatory with ring<br>finger domain                  | 332             | Hs.59106  | NM_006568 | 664                |

| Γ      |            |                                             |                |          | Non-  | Median  | T                                                |
|--------|------------|---------------------------------------------|----------------|----------|-------|---------|--------------------------------------------------|
| SEQ ID |            |                                             | 1              | SEQ ID   | Para  | Rank in | Down                                             |
| 50mer  | Gene       | Gene Name                                   | ACC            | RNA/cDNA | Score | NR      | Regulated                                        |
| 152    | CLC        | Charcot-Leyden crystal protein              | NM 001828      | 484      | 779   | 4342    | Regulated                                        |
| 153    | TERF2IP    | telomeric repeat binding factor 2,          |                | 485      | 744   | 1775    |                                                  |
| 153    | LEKTZIP    |                                             | NM_010973      | 403      | /44   | 1773    |                                                  |
| 154    | HLA-A      | interacting protein                         | NM 002116      | 486      | 735   | 125     | ļ                                                |
| 154    | HLA-A      | Major histocompatibility                    | NM_002116      | 400      | /33   | 123     | ١.                                               |
|        |            | complex, class I, A                         | 1777007040     | 40.7     | 770   | 70445   | 1                                                |
| 155    | OID 5891   | EST 3' end                                  | AW297949       | 487      | 730   | 7044.5  | 1                                                |
| 156    | MSCP       | mitochondrial solute carrier                | NM_018579      | 488      | 730   | 3465.5  | 1                                                |
|        |            | protein                                     | 27.6.004440    | 100      | 726   | 2400.5  |                                                  |
| 157    | DUSP5      | dual specificity phosphatase 5              | NM 004419      | 489      | 726   | 3122.5  | -                                                |
| 158    | PRO1853    | Hypothetical protein PRO1853                | NM_018607      | 490      | 725   | 4153    |                                                  |
| 159    | OID 6420   | 73A7, FLJ00290 protein                      | AK090404       | 491      | 725   | 7000.5  |                                                  |
| 160    | CDSN       | Corneodesmosin                              | NM_001264      | 492      | 722   | 2732    |                                                  |
| 161    | OID_4269   | EST                                         | BM727677       | 493      | 715   | 5598.5  |                                                  |
| 162    | RPS25      | Ribosomal protein S25                       | NM_001028      | 494      | 710   | 164.5   | ļ                                                |
| 163    | GAPD       | Glyceraldehyde-3-phosphate<br>dehydrogenase | NM_002046      | 495      | 707   | 215.5   |                                                  |
| 164    | RPLP1      | Ribosomal protein, large, P1                | NM 001003      | 496      | 703   | 157     |                                                  |
| 165    | OID 5115   | qz23b07.x1 cDNA, 3' end                     | AI364926       | 497      | 703   | 6629    |                                                  |
|        | -          | /clone=IMAGE:2027701                        |                | l        |       |         | 1                                                |
| 166    | SLC9A8     | Solute carrier family 9                     | AB023156       | 498      | 702   | 2538.5  |                                                  |
|        |            | (sodium/hydrogen exchanger),                |                |          |       |         | 1                                                |
|        |            | isoform 8                                   | ł              | 1        |       |         | 1                                                |
| 167    | OID 1512   | IMAGE:3865861 5 clone 5'                    | BE618004       | 499      | 700   | 4008    | 1                                                |
| 168    | POLR2D     | Polymerase (RNA) II (DNA                    | NM 004805      | 500      | 700   | 4190.5  |                                                  |
| 1.00   |            | directed) polypeptide D                     |                |          |       |         |                                                  |
| 169    | ARPC3      | Actin related protein 2/3                   | NM 005719      | 501      | 698   | 470.5   |                                                  |
| 1      |            | complex, subunit 3, 21kDa                   |                |          |       |         |                                                  |
| 170    | OID 6282   | EST 3' end                                  | BC041913       | 502      | 697   | 4371.5  |                                                  |
| 171    | PRO1073    | PRO1073 protein                             | AF001542       | 503      | 697   | 6754    | <b></b>                                          |
| 172    | OID 7222   | EST, weakly similar to A43932               | BG260891       | 504      | 695   | 6759    |                                                  |
| 1      | 012222     | mucin 2 precursor, intestinal               |                |          | 1     |         |                                                  |
| 173    | FPRL1      | Formyl peptide receptor-like 1              | NM 001462      | 505      | 692   | 4084.5  |                                                  |
| 174    | FKBPL      | FK506 binding protein like                  | NM 022110      |          | 691   | 1780.5  |                                                  |
| 175    | PREB       | Prolactin regulatory element                | NM 013388      |          | 690   | 3568    | l                                                |
| 1//    | T KLLD     | binding                                     | 10.5500        |          | 1     | 1       |                                                  |
| 176    | OID 1551   | Hypothetical protein LOC200227              | BE887646       | 508      | 689   | 6423    |                                                  |
|        |            | ,F                                          |                |          |       | 1       | 1                                                |
| 177    | OID 7595   | DKFZP566F0546 protein                       | NM 015653      | 509      | 689   | 3882.5  | 1                                                |
| 178    | RNF19      | Ring finger protein 19                      | NM 015435      |          | 689   | 7700.5  |                                                  |
| 179    | SMCY       | SMC (mouse) homolog, Y                      | NM 004653      |          | 687   | 6074.5  |                                                  |
| 1.,,   | 001        | chromosome (SMCY)                           | 1111_001000    |          |       | 007.110 | ļ.                                               |
| 180    | OID 4184   | CMV HCMVUL109                               | X17403         | 512      | 687   | 6810.5  | 1                                                |
| 181    | OID 7504   | Hypothetical protein FLJ35207               | NM 152312      | 513      | 686   | 6939    | 1                                                |
| 182    | DNAJC3     | DnaJ (Hsp40) homolog,                       | NM 006260      | 514      | 686   | 3932.5  | <b> </b>                                         |
| 1.32   | 2.77503    | subfamily C, member 3                       |                | [ · · ·  | 1     | 1       |                                                  |
| 183    | ARHU       | Ras homolog gene family,                    | NM 021205      | 515      | 686   | 7584    | <del>                                     </del> |
| 1.03   | ARTIO      | member U                                    | 1111-021203    | J.,      | 1     | , 504   |                                                  |
| 184    | OID 7200   | Hypothetical protein FLJ22059               | NM 022752      | 516      | 685   | 2804.5  | <del>                                     </del> |
| 185    | SERPINB2   | Serine (or cysteine) proteinase             | NM 002575      | 517      | 684   | 4690.5  | <del> </del>                                     |
| 1.33   | DEKI IIABZ | inhibitor, clade B (ovalbumin),             |                | l        | 1     | 1.000.5 |                                                  |
|        |            | member 2                                    |                |          | 1     | 1       |                                                  |
| 186    | ENO1       | Enolase 1, alpha                            | NM 001428      | 518      | 684   | 327     | <del>                                     </del> |
| 187    | OID 7696   | EST 3' end                                  | AW297325       | 519      | 683   | 4875.5  |                                                  |
| 10/    | 10th 1030  | LOI 2 CHG                                   | IV 44 73 13 73 | 717      | 1002  | 17013.3 |                                                  |

|        | Γ        | T                                                     |             |          | Non-  | Median  | Τ            |
|--------|----------|-------------------------------------------------------|-------------|----------|-------|---------|--------------|
| SEQ ID |          |                                                       |             | SEO ID   | Para  | Rank in | Down         |
| 50mer  | Gene     | Gene Name                                             | ACC         | RNA/cDNA | Score | NR      | Regulated    |
| 188    | OID 4173 | CMV HCMVTRL2 (IRL2)                                   | X17403      | 520      | 683   | 4010.5  | Regulated    |
| 189    | CSF2RB   | Upstream variant mRNA of                              | AL540399    | 521      | 683   | 3753    |              |
| 189    | CSFZRB   | colony stimulating factor 2                           | AL340399    | 321      | 1003  | 3733    |              |
|        |          | receptor, beta, low-affinity                          | 1           |          | l     |         |              |
|        |          | (granulocyte-macrophage)                              | 1           | 1        | l     |         |              |
| 190    | OID_7410 | (granulocyte-macrophage)<br>CM2-LT0042-281299-062-e11 | AW837717    | 522      | 682   | 7445    |              |
| 190    | 010_7410 | LT0042 cDNA, mRNA sequence                            | AW63//1/    | 1322     | 002   | 7443    |              |
|        |          | L10042 cDINA, mRNA sequence                           |             |          |       |         |              |
| 191    | OID 4180 | CMV HCMVUS28                                          | X17403      | 523      | 681   | 4359    | <del> </del> |
| 192    | OID 5101 | EST EST                                               | BG461987    | 524      | 681   | 7272    |              |
| 193    | MOP3     | MOP-3                                                 | NM 018183   |          | 681   | 4085.5  | 1            |
| 194    | RPL18A   | Ribosomal protein L18a                                | NM 000980   |          | 680   | 238     | i            |
| 195    | INPP5A   | Inositol polyphosphate-5-                             |             | 527      | 680   | 4838.5  |              |
| 133    | INTESA   | phosphatase, 40kDa                                    | 14M_003333  | J**      | 080   | 7030.3  | 1            |
| 196    | hIAN7    | Immune associated nucleotide                          | BG772661    | 528      | 680   | 4718    | i            |
| 197    | RPS29    | Ribosomal protein S29                                 | NM 001032   |          | 680   | 107.5   | 1            |
| 198    | OID 6008 | EST 3' end                                            | AW592876    | 530      | 679   | 6560.5  | l            |
| 199    | OID 4186 | CMV HCMVUL122                                         | X17403      | 531      | 677   | 4788.5  | 1            |
| 200    | VNN2     | vanin 2                                               | NM 004665   | 532      | 677   | 2620.5  |              |
| 201    | OID 7703 | KIAA0907 protein                                      | NM 014949   | 533      | 676   | 6104.5  |              |
| 202    | OID 7057 | 480F8                                                 | 480F8       | 534      | 675   | 6862    | <b></b>      |
| 203    | OID 4291 | EST                                                   | BC038439    | 535      | 674   | 5618.5  | <b>i</b>     |
| 204    | OID 1366 | EST                                                   | AW850041    | 536      | 674   | 5590.5  | 1            |
| 205    | EEF1A1   | Eukaryotic translation elongation                     | NM 001402   | 537      | 672   | 232     | <del> </del> |
| 203    | LLITAI   | factor 1 alpha 1                                      | 1411_001402 | 337      | 0,2   |         |              |
| 206    | PA2G4    | Proliferation-associated 2G4.                         | NM 006191   | 538      | 672   | 4402    | <b></b>      |
| -00    |          | 38kDa                                                 |             | 1550     |       |         |              |
| 207    | GAPD     | Glyceraldehyde-3-phosphate                            | NM_002046   | 539      | 671   | 194.5   |              |
| [-07   | G. II D  | dehydrogenase                                         |             | 000      | 0,1   |         |              |
| 208    | CHD4     | Chromodomain helicase DNA                             | NM 001273   | 540      | 671   | 2578.5  | <b>†</b>     |
|        |          | binding protein 4                                     |             |          |       |         |              |
| 209    | OID 7951 | E2F-like protein (LOC51270)                           | NM 016521   | 541      | 671   | 4467    |              |
| 210    | DAB1     | Disabled homolog 1 (Drosophila)                       |             | 542      | 670   | 6357.5  |              |
|        | 2        | Sisterior memoring i (Excession)                      |             |          | 1     |         |              |
| 211    | OID 3406 | Hypothetical protein FLJ20356                         | NM 018986   | 543      | 669   | 2087    | 1            |
| 212    | OID 6986 | 462H9 EST                                             | AK093608    | 544      | 669   | 4454    | 1            |
| 213    | OID 5962 | EST 3' end                                            | AW452467    | 545      | 668   | 5870.5  | 1            |
| 214    | OID 5152 | EST 3' end                                            | AI392805    | 546      | 668   | 6354.5  | 1            |
| 215    | S100A8   | S100 calcium-binding protein A8                       | NM 002964   | 547      | 668   | 134     |              |
|        |          | (calgranulin A)                                       | _           |          |       |         | l            |
| 216    | HNRPU    | HNRPU Heterogeneous nuclear                           | BM467823    | 548      | 668   | 4108    |              |
|        |          | ribonucleoprotein U (scaffold                         | 1           |          | 1     |         | i            |
|        |          | attachment factor A)                                  | 1           |          |       |         |              |
| 217    | ERCC5    | Excision repair cross-                                | NM 000123   | 549      | 668   | 6430.5  |              |
|        |          | complementing rodent repair                           | _           |          | 1     |         |              |
| ĺ      |          | deficiency, complementation                           | l           |          | 1     |         |              |
|        |          | group 5 (xeroderma                                    | I           |          | 1     |         | 1            |
| l      |          | pigmentosum, complementation                          | l           |          | 1     |         |              |
| l      |          | group G (Cockayne syndrome))                          | l           |          | 1     |         | 1            |
| L      |          |                                                       | L           |          |       |         |              |
| 218    | RPS27    | Ribosomal protein S27                                 | NM_001030   | 550      | 668   | 160     |              |
|        |          | (metallopanstimulin 1)                                |             |          |       |         |              |

| SEQ ID<br>50mer | Gene      | Comp Name                                  |                      | SEQ ID   | Non-<br>Para | Rank in          | Down      |
|-----------------|-----------|--------------------------------------------|----------------------|----------|--------------|------------------|-----------|
| 219             | ACRC      | Gene Name                                  | ACC                  | RNA/cDNA |              | NR               | Regulated |
| 219             | ACRC      | acidic repeat containing (ACRO             | C), NM_05295         | 7 551    | 668          | 4871.5           |           |
| 220             | PSMD11    | Proteasome (prosome.                       | 17604000             |          | _            |                  | 1         |
| 220             | I SIVIDII |                                            | AI684022             | 552      | 668          | 4138             |           |
|                 | 7         | macropain) 26S subunit, non-<br>ATPase, 11 | i                    | ł        | 1            |                  | 1         |
| 221             | OID 1016  | FLJ00048 protein                           | 17700110             |          |              |                  |           |
| 222             | OID 1010  | AV706481 cDNA                              | AK024456             | 553      | 667          | 5199             |           |
| 223             | OID 7582  |                                            | AV706481<br>AK027866 | 554      | 667          | 7279.5           |           |
|                 | 015_7302  | FINGER PROTEIN 142                         | AK02/866             | 555      | 667          | 5003.5           | 1         |
| 224             | OID 4317  | ta73c09.x1 3' end                          | AI318342             | 556      | 1            | 1                | 1         |
|                 | -1017     | /clone=IMAGE:2049712                       | A1318342             | 336      | 667          | 6499             | i         |
|                 |           | Ribosomal Protein S15                      | 1                    | 1        | 1            |                  |           |
| 225             | OID 5889  | 3' end /clone=IMAGE:3083913                | AW297843             | 550      | -            |                  | -         |
|                 | UBL1      | Ubiquitin-like 1 (sentrin)                 | NM 003352            | 557      | 666          | 6837             | 1         |
| 227             | OID 3687  | EST (Sentin)                               | W03955               |          | 666          | 1978.5           |           |
| 228             | OID 7371  | EST 5'                                     | BE730505             | 559      | 666          | 5519.5           |           |
|                 |           | SH3 domain binding glutamic                | NM 031286            | 560      | 665          | 7751.5           |           |
|                 |           | acid-rich protein like 3                   | INM_031280           | 561      | 665          | 310              |           |
| 230             | SEMA7A    | Sema domain, immunoglobulin                | NM 003612            | 562      | -            | -                | 4         |
|                 |           | domain (Ig), and GPI membrane              |                      | 362      | 665          | 3505.5           | ł         |
|                 |           | anchor, (semaphorin) 7A                    | İ                    | 1        | 1            |                  | 1         |
| 231             | OID 5708  | EST 3' end                                 | AW081540             | 563      | 668          |                  |           |
|                 | OID 5992  | EST 3' end                                 | AW467992             | 564      | 665          | 6224.5           |           |
|                 | IL21      | Interleukin 21                             | NM 021803            |          | 665          | 5648             |           |
|                 | HERC3     | Hect domain and RLD 3                      | NM 014606            |          | 664          | 5036.5           |           |
|                 |           | (HERC3)                                    | INM_014000           | 300      | 004          | 3056.5           | ĺ.        |
| 35              | OID 7799  | AluJo/FLAM SINE/Alu                        | AW837717             | 567      | 664          | 2544             | 1         |
| 36              | P11       | 26 serine protease                         | NM_006025            |          | 664          | 3544<br>7173     |           |
| 37              | OID 7766  | EST 3' end                                 | AW294711             | 569      | 663          |                  |           |
|                 | TIMM10    | translocase of inner                       | NM 012456            |          | 663          | 7270.5<br>4779.5 |           |
| ł               |           | mitochondrial membrane 10                  | 1111_012450          | 1570     | 1003         | 4779.5           | 1         |
|                 |           | (yeast) homolog (TIMM10)                   | 1                    | ł        | İ            | i                |           |
| 39 1            | EGLNI     | Egl nine homolog 1 (C. elegans)            | AJ310543             | 571      | 662          | 7172.5           |           |
| 40 7            | TBCC      | Tubulin-specific chaperone c               | NM 003192            |          | 662          | 3384             |           |
| 41 I            | RNF3      | Ring finger protein 3                      | NM 006315            |          | 661          | 4062             | <u> </u>  |
| 42 (            | OID 6451  | 170F9, hypothetical protein                | AL834168             | 574      | 661          | 7126             |           |
|                 |           | FLJ21439                                   | 12034100             | 374      | 001          | /120             | ,         |
| 43              | CCNDBP1   | cyclin D-type binding-protein 1            | NM 012142            | 575      | 661          | 1919             | <u>'</u>  |
|                 |           | (CCNDBP1)                                  |                      | 3.5      | 001          | 1919             |           |
|                 | OID 8063  | MUC18 gene exons 1&2                       | X68264               | 576      | 661          | 4692.5           |           |
| 45 S            | UV39H1    | Suppressor of variegation 3-9              |                      |          | 661          | 5103             |           |
|                 |           | homolog 1 (Drosophila)                     |                      |          | 001          | 5105             | 1         |
|                 | ISPC048   | HSPC048 protein                            | NM 014148            | 578      | 660          | 5981.5           | 1         |
|                 | OID 5625  | EST 3' end from T cells                    | AW063780             |          |              | 4437             | 1         |
| 18 V            | VARS      | Tryptophanyl-tRNA synthetase               | NM 004184            |          |              | 905.5            | 1         |
|                 |           |                                            |                      | ]        | · [          | ,05.5            |           |
|                 | DID 6823  | 107H8                                      | AL832642             | 581      | 659          | 2619             |           |
|                 | DID 7073  | 119F12                                     |                      |          |              | 6837.5           |           |
|                 |           | EST 3' end                                 |                      |          |              |                  | 1         |
| 52 O            | ID_4263   | fetal retina 937202 cDNA clone             |                      |          |              | 5870             |           |
|                 |           | IMAGE:565899                               |                      | [        |              | -570             | ı         |
| 3 N             | IGC26766  | Hypothetical protein MGC26766              | AK025472             | 585      | 558          | 1892.5           |           |
|                 |           |                                            |                      | 1        |              | .072.5           | - 1       |

| SEQ ID |                    |                                         | Į.           | SEO ID   | Non-       |                  |              |
|--------|--------------------|-----------------------------------------|--------------|----------|------------|------------------|--------------|
| 50mer  | Gene               | Gene Name                               | ACC          | SEQ ID   | Para       | Rank in          | Down         |
| 254    | SERPINB            |                                         | NM 08047:    | RNA/cDNA |            |                  | Regulate     |
|        | 1                  | inhibitor, clade B (ovalbumin),         | INM_080473   | 1286     | 658        | 7535.5           | 1            |
|        | 1                  | member 11                               |              |          | 1          |                  |              |
| 255    | OID 6711           | 58G4, IMAGE:4359351 5'                  | BF968628     | 587      | 658        | 7064             | 1            |
| 256    | RNF10              | Ring finger protein 10                  | NM 014868    |          |            | 7264             | <del> </del> |
| 257    | MKRN1              | Makorin, ring finger protein, 1         | NM 013446    |          | 658<br>658 | 3127.5<br>2228.5 | <del></del>  |
| 258    | RPS16              | ribosomal protein S16                   | NM 001020    |          | 657        | 165.5            |              |
| 259    | BAZ1A              | Bromodomain adjacent to zinc            | NM 013448    |          | 657        | 2533             | +            |
|        |                    | finger domain, 1A                       | 015110       | 1551     | 1037       | 2333             | 1            |
| 260    | OID 5998           | EST 3' end                              | AW468459     | 592      | 657        | 6339.5           |              |
| 261    | ATP5L              | ATP synthase, H+ transporting,          | NM 006476    |          | 657        | 1155             |              |
|        |                    | mitochondrial F0 complex.               |              |          | 05,        | 1133             | 1            |
|        |                    | subunit g                               | i            |          | ł          | i                |              |
| 262    | OID 6393           | 52B9                                    | 52B9         | 594      | 657        | 7420.5           | +            |
| 263    | RoXaN              | Ubiquitous tetratricopeptide            | BC004857     | 595      | 656        | 7378             | <del> </del> |
|        |                    | containing protein RoXaN                |              |          | 1000       | ,,,,,            | 1            |
| 264    | NCBP2              | Nuclear cap binding protein             | NM 007362    | 596      | 656        | 4666.5           |              |
|        |                    | subunit 2, 20kDa                        | i -          |          | 1000       | 1.000.5          | l            |
|        | OID 6273           | EST 3' end                              | AW294774     | 597      | 656        | 5498.5           |              |
|        | HZF12              | zinc finger protein 12                  | NM 033204    | 598      | 656        | 4715.5           |              |
|        | CCL3               | Chemokine (C-C motif) ligand 3          | D90144       | 599      | 656        | 4910             | 1            |
|        | OID 4323           | IMAGE:1283731 3'                        | AA744774     | 600      | 655        | 6406.5           | fi           |
| 69     | OID_5181           | tg93h12.x1 NCI_CGAP_CLL1                | AI400725     | 601      | 655        | 4838             |              |
| - 1    |                    | cDNA clone IMAGE:2116391 3'             | i            |          | i          | 1                |              |
| I      |                    | similar to contains TAR1.t1             | ł            | 1        | ł          | ł                | ļ            |
|        |                    | MER22                                   |              |          | 1          | }                | 1            |
|        | PRDX4              | Peroxiredoxin 4                         | NM_006406    | 602      | 655        | 3397.5           |              |
| 71     | BTK                | Bruton agammaglobulinemia               | NM_000061    | 603      | 655        | 2358             |              |
|        |                    | tyrosine kinase                         |              |          | 1          |                  | ł            |
|        | OID 6298           | Importin beta subunit mRNA              | AI948513     | 604      | 655        | 2433.5           |              |
|        | PGK1               | Phosphoglycerate kinase I               | NM_000291    | 605      | 655        | 2059.5           |              |
|        | INFRSF10           | Tumor necrosis factor receptor          | NM_003844    | 606      | 654        | 4897.5           |              |
|        | A DV               | superfamily, member 10a                 |              |          |            |                  | 1            |
|        | ADM                | adrenomedullin                          | NM_001124    | 607      | 654        | 4235             |              |
|        | OID 357<br>C20orf6 | 138G5                                   | 138G5        | 608      | 654        | 5427.5           | 1            |
| ′′ '   | J200110            | 461A4 chromosome 20 open                | NM_016649    | 609      | 654        | 6343             |              |
| 78     | OID 3226           | reading frame 6                         |              |          |            |                  | 1            |
|        | ASAH1              | DKFZP564O0823 protein N-acylsphingosine | NM 015393    |          | 653        | 6187.5           |              |
| ' 1    | ASAITI             | amidohydrolase (acid                    | NM_004315    | 611      | 653        | 1003             |              |
| - 1    |                    | ceramidase) 1                           |              |          |            |                  |              |
| 80     | ATF5               | Activating transcription factor 5       | VD 4 040040  |          |            |                  |              |
| ,      | 1113               | Activating transcription factor 5       | NM_012068    | 612      | 653        | 4545.5           |              |
| 31 (   | OID 4887           | hypothetical protein MGC14376           | ND 4 02000#  |          |            |                  |              |
| "      | JID_4007           | nypomencai protein MGC14376             | NM_032895    | 613      | 653        | 2310             |              |
| 32 (   | DID 4239           | EST                                     | BQ022840     | 614      |            |                  | 1            |
|        | 4DM2               | Mouse double minute 2, homolog          | ND4 002202   |          |            | 2774.5           |              |
| 1      |                    | of; p53-binding protein (MDM2),         | 141W1_002392 | 615      | 652        | 4342             |              |
|        |                    | transcript variant MDM2,                | ı            | ı        | 1          |                  |              |
|        |                    |                                         | - 1          | l        | Į          | 1                |              |
| 4 X    | RN2                | 5'-3' exoribonuclease 2                 | AF064257     | 616      | 652        | 6896.5           |              |

| CEO ID | l        | 1                                       |           |          | Non-  | Median  |              |
|--------|----------|-----------------------------------------|-----------|----------|-------|---------|--------------|
| SEQ ID |          |                                         | i         | SEQ ID   | Para  | Rank in | Down         |
| 50mer  | Gene     | Gene Name                               | ACC       | RNA/cDNA | Score | NR      | Regulated    |
| 285    | OID_6039 | Endothelial differentiation,            | BE502246  | 617      | 652   | 5147    | T            |
|        |          | lysophosphatidic acid G-protein-        |           |          | 1     |         | Í            |
|        |          | coupled receptor, 4 (EDG4)              | 1         |          | 1     | i       |              |
| 286    | OID 4210 | IMAGE:4540096                           | AI300700  | 618      | 652   | 1330.5  | <del> </del> |
| 287    | OID 7698 | EST 3' end                              | AA243283  | 619      | 652   | 7432.5  | 1            |
| 288    | PRKRA    | Protein kinase, interferon-             | NM 003690 | 620      | 652   | 3512.5  | · -          |
|        |          | inducible double stranded RNA           | _         |          |       |         |              |
|        |          | dependent activator                     | İ         |          | 1     |         | 1            |
| 289    | OID 4288 | IMAGE:2091815                           | AI378046  | 621      | 651   | 6401.5  |              |
| 290    | OID 5620 | EST 3' end from T cells                 | AW063678  | 622      | 651   | 6400    |              |
| 291    | OID 7384 | EST 5'                                  | BF475239  | 623      | 651   | 6875    |              |
| 292    | OID_1209 | EST Weakly similar to                   | C14379    | 624      | 651   | 1356.5  |              |
|        |          | hypothetical protein FLJ20378           |           |          |       |         | 1            |
| 293    | CDKN1B   | Cyclin-dependent kinase inhibitor       | NM_004064 | 625      | 650   | 4272.5  |              |
|        |          | 1B (p27, Kip1)                          |           |          |       |         | ļ            |
| 294    | PLOD     | Procollagen-lysine, 2-                  | NM_000302 | 626      | 650   | 3101    |              |
|        |          | oxoglutarate 5-dioxygenase              |           |          | 1     |         |              |
|        |          | (lysine hydroxylase, Ehlers-            | i         | f        | l     | 1       |              |
|        |          | Danlos syndrome type VI)                |           |          |       |         |              |
|        | OID 5128 | EST                                     | AK097845  | 627      | 650   | 6476    |              |
|        | OID 5877 | EST 3' end                              | AW297664  | 628      | 650   | 6864.5  | 1            |
|        | FZD4     | Frizzled (Drosophila) homolog 4         | NM_012193 | 629      | 650   | 5816    |              |
| 298    | HLA-B    | Major histocompatibility                | NM_005514 | 630      | 650   | 229     |              |
|        |          | complex, class I, B                     |           |          | l     |         |              |
|        | OID_5624 | EST 3' end from T cells                 | AW063921  | 631      | 649   | 7812.5  |              |
|        | FPR1     | Formyl peptide receptor 1               | NM_002029 | 632      | 649   | 1156.5  |              |
| 301    | ODF2     | Outer dense fiber of sperm tails 2      | NM_153437 | 633      | 649   | 4982.5  |              |
| 302    | OID_5150 | tg04g01.x1 cDNA, 3' end                 | AI392793  | 634      | 649   | 7638    |              |
|        |          | /clone=IMAGE:2107824                    |           |          | "     | 350     |              |
|        | OID 5639 | EST 3' end from T cells                 | AW064243  | 635      | 648   | 6805    | 1            |
|        | OID_6619 | 469A10                                  | 469A10    | 636      | 647   |         | <del>i</del> |
|        | OID_6933 | 463C7, 4 EST hits. Aligned              | AI089520  | 637      | 647   |         | <u> </u>     |
|        | OID 7049 | 480E2                                   | 480E2     | 638      | 647   | 7128.5  |              |
|        | L17C     |                                         | NM 013278 | 639      | 647   | 6411.5  |              |
|        | OID 5866 | EST 3' end                              | BM684739  | 640      | 647   |         | 1            |
|        | CD44     | CD44                                    | AA916990  | 641      | 646   | 4758    |              |
| 10     | VPS45A   | Vacuolar protein sorting 45A<br>(yeast) | NM_007259 | 642      | 646   | 3371    |              |
| 11 (   | OID_4932 | aa92c03.rl Stratagene fetal             | AA457757  | 643      | 646   | 6057    |              |
|        |          | retina 937202 cDNA clone                |           |          |       | ]       |              |
|        |          | IMAGE:838756                            |           |          |       |         | 1            |
|        | OID_7821 | EST                                     | AA743221  | 644      | 645   | 7507    |              |
| 13     | OID_4916 | zr76a03.rl Soares_NhHMPu_S1             |           |          | 645   | 6962.5  |              |
| - 1    |          | cDNA clone IMAGE:669292                 |           |          |       |         |              |
|        |          |                                         |           |          |       |         | 1            |
| 14     | DID_4891 | Hypothetical protein LOC255488          | AL832329  | 646      | 645   | 6148.5  |              |
| - 1    |          |                                         |           | ĺ        |       |         |              |

| SEQ ID<br>50mer | Gene     | Gene Name                                                                                                                                             | ACC       | SEQ ID<br>RNA/cDNA | Non-<br>Para<br>Score | Median<br>Rank in<br>NR | Down<br>Regulated |
|-----------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|-----------------------|-------------------------|-------------------|
| 315             | HADHB    | Hydroxyacyl-Coenzyme A<br>dehydrogenase/3-ketoacyl-<br>Coenzyme A thiolase/enoyl-<br>Coenzyme A hydratase<br>(trifunctional protein), beta<br>subunit | NM_000183 | 647                | 645                   | 3212.5                  |                   |
| 316<br>317      | FLJ22757 | Hypothetical protein FLJ22757                                                                                                                         | NM_024898 | 648                | 644                   | 1965.5                  | 1                 |
| 317             | RAC1     | Ras-related C3 botulinum toxin<br>substrate 1 (rho family, small<br>GTP binding protein Rac1)                                                         | AK054993  | 649                | 644                   | 1533                    |                   |
| 318             | OID 6415 | 72D4, FLJ00290 protein                                                                                                                                | CA407201  | 650                | 644                   | 4881                    |                   |
| 319             | NMES1    | Normal mucosa of esophagus<br>specific 1                                                                                                              | NM_032413 | 651                | 644                   | 6217                    | 1                 |
| 320             | DMBT1    | Deleted in malignant brain<br>tumors 1, transcript variant 2                                                                                          | NM_007329 | 652                | 644                   | 7284                    |                   |
| 321             | RPS23    | ribosomal protein S23                                                                                                                                 | NM 001025 |                    | 643                   | 219.5                   |                   |
| 322             | ZF       | HCF-binding transcription factor<br>Zhangfei                                                                                                          | NM_021212 | 654                | 643                   | 4069                    |                   |
| 323             | NFE2L3   | Nuclear factor (erythroid-derived<br>2)-like 3                                                                                                        | NM_004289 | 655                | 643                   | 3378                    |                   |
| 324             | RAD9     | RAD9 homolog (S. pombe)                                                                                                                               | NM 004584 | 656                | 643                   | 6453                    |                   |
| 325             | OID 6295 | EST 3' end                                                                                                                                            | A1880607  | 657                | 643                   | 7493.5                  |                   |
| 326             | DEFCAP   | Death effector filament-forming<br>Ced-4-like apoptosis protein,<br>transcript variant B                                                              | NM_014922 | 658                | 643                   | 3059                    |                   |
| 327             | RPL27A   | Ribosomal protein L27a                                                                                                                                | BF214146  | 659                | 642                   | 6571                    | 1                 |
| 328             | IL22     | Interleukin 22 (IL22)                                                                                                                                 | NM_020525 |                    | 642                   | 3891                    | 1                 |
| 329             | PSMA4    | Proteasome (prosome,<br>macropain) subunit, alpha type,<br>4, (PSMA4)                                                                                 | NM_002789 |                    | 641                   | 1934.5                  |                   |
| 330             | CCNI     | cyclin I (CCNI)                                                                                                                                       | NM_006835 |                    | 641                   | 980.5                   |                   |
| 331             | THBD .   | Thrombomodulin                                                                                                                                        | NM_000361 | 663                | 640                   | 4732.5                  | 1                 |
| 332             | CGR19    | Cell growth regulatory with ring<br>finger domain                                                                                                     | NM_006568 | 664                | 640                   | 5510                    |                   |

|                 | 1      |            | PCR        | PCR      |              | PCR          | PCR      | 1       |
|-----------------|--------|------------|------------|----------|--------------|--------------|----------|---------|
|                 |        | }          | Forward    | Reverse  | PCR          | Forward      | Reverse  | PCR     |
|                 | SEQ ID | SEQ ID     | Primer 1   | Primer 1 | Probe 1      | Primer 2     | Primer 2 | Probe 2 |
| Gene            | 50mer  | RNA/cDNA   | SEQ ID     | SEQ ID   | SEQ ID       | SEQ ID       | SEQ ID   | SEQ ID  |
| HSRRN18S        | 1      | 333        | 665        | 996      | 1327         | +            |          | 102412  |
| ACTB            | 2      | 334        | 666        | 997      | 1328         |              | +        |         |
| GUSB            | 3      | 335        | 667        | 998      | 1329         | 1656         | 1904     | 2152    |
| B2M             | 4      | 336        | 668        | 999      | 1330         | 1            | 1201     | 12132   |
| TSN             | 5      | 337        | 669        | 1000     | 1331         | 1657         | 1905     | 2153    |
| CCR7            | 6      | 338        | 670        | 1001     | 1332         |              |          |         |
| IL1R2           | 7      | 339        | 671        | 1002     | 1333         | 1658         | 1906     | 2154    |
| AIF-1           | 8      | 340        | 672        | 1003     | 1334         |              | 1        |         |
| ALAS2           | 9      | 341        | 673        | 1004     | 1335         |              |          |         |
| APELIN          | 10     | 342        | 674        | 1005     | 1336         | 1            |          |         |
| CD80            | 11     | 343        | 675        | 1006     | 1337         | 1659         | 1907     | 2145    |
| EPB41           | 12     | 344        | 676        | 1007     | 1338         |              |          |         |
| CBLB            | 13     | 345        | 677        | 1008     | 1339         | 1660         | 1908     | 2156    |
| CCR5            | 14     | 346        | 678        | 1009     | 1340         | 1661         | 1909     | 2157    |
| MME             | 15     | 347        | 679        | 1010     | 1341         | 1662         | 1910     | 2158    |
| KLRC1           | 16     | 348        | 680        | 1011     | 1342         | 1663         | 1911     | 2159    |
| FCGR3A          | 17     | 349        | 681        | 1012     | 1343         |              |          |         |
| FCGR3B          | 18     | 350        | 682        | 1013     | 1344         | 1664         | 1912     | 2160    |
| LAG3            | 19     | 351        | 683        | 1014     | 1345         | 1665         | 1913     | 2161    |
| PECAM1          | 20     | 352        | 684        | 1015     | 1346         | 1666         | 1914     | 2162    |
| CD34            | 21     | 353        | 685        | 1016     | 1347         | 1667         | 1915     | 2163    |
| FCGR1A          | 22     | 354        | 686        | 1017     | 1348         | 1668         | 1916     | 2164    |
| TFRC            | 23     | 355        | 687        | 1018     | 1349         |              |          |         |
| CMA1            | 24     | 356        | 688        | 1019     | 1350         | 1669         | 1917     | 2165    |
| KIT             | 25     | 357        | 689        | 1020     | 1351         |              |          |         |
| MPL             | 26     | 358        | 690        | 1021     | 1352         | 1670         | 1918     | 2166    |
| EphB6<br>EPO-R  | 27     | 359        | 691        | 1022     | 1353         |              |          |         |
|                 | 28     | 360        | 692        | 1023     | 1354         |              |          |         |
| Foxp3<br>GATA-1 | 30     | 361        | 693        | 1024     | 1355         | 1671         | 1919     | 2167    |
| ITGA2B          | 31     | 362        | 694        | 1025     | 1356         |              |          |         |
| GNLY            | 32     | 363<br>364 | 695        | 1026     | 1357         | 1672         | 1920     | 2168    |
| GZMA            | 33     | 365        | 696        | 1027     | 1358         | 1673         | 1921     | 2169    |
| HBA             | 34     | 366        | 697        | 1028     | 1359         | 1674         | 1922     | 2170    |
| HBZ             | 35     | 367        | 698        | 1029     | 1360         | 1675         | 1923     | 2171    |
| HBB             | 36     | 368        | 699<br>700 | 1030     | 1361         | 1676         | 1924     | 2172    |
| HBD             | 37     | 369        | 701        | 1031     | 1362         | 1677         | 1925     | 2173    |
| HBE             | 38     | 370        | 702        | 1032     | 1363         | 1678         | 1926     | 2174    |
| HBG             | 39     | 371        | 703        | 1033     | 1364         | 1679         | 1927     | 2175    |
| HBO             | 40     | 372        | 704        | 1034     | 1365<br>1366 | 1680         | 1928     | 2176    |
| HLA-DP          | 41     | 373        | 705        | 1036     | 1367         | 1681         | 1929     | 2177    |
| ILA-DI          | 42     | 374        | 706        | 1036     | 1367         | 1682         | 1930     | 2178    |
| ILA-DRB         | 43     | 375        | 707        | 1037     |              | 1683         | 1931     | 2179    |
| COS             | 44     | 376        | 708        | 1038     | 1369<br>1370 | 1684         | 1932     | 2180    |
| L18             | 45     | 377        | 709        | 1040     | 1370         | 1685         | 1933     | 2181    |
| L3              | 46     | 378        | 710        | 1040     | 1371         | 1686<br>1687 | 1934     | 2182    |
| TGA4            | 47     | 379        | 711        | 1041     | 1372         | 1687         | 1935     | 2183    |
| TGAM            | 48     | 380        | 712        | 1042     | 1374         | 1688         | 1000     | 10104   |
|                 | 49     | 381        | 713        | 1043     | 1374         | 1088         | 1936     | 2184    |
| EBPB            | 50     | 382        | 714        | 1044     | 1376         | 1689         | 1027     | 2106    |
|                 | 51     | 383        | 715        | 1045     | 1376         | 1089         | 1937     | 2185    |
|                 | 52     | 384        | 716        | 1046     | 1378         | 1690         | 1938     | 2106    |
|                 |        | 385        | 717        | 1047     | 1378         | 1690         | 1938     | 2186    |
|                 |        | 386        | 718        | 1048     | 1380         | 1691         | 1939     | 2187    |
|                 |        | 387        | 719        | 1050     | 1381         | 1092         | 1940     | 2188    |

|             |          |          | PCR        | PCR      |         | PCR          | PCR          | 1           |
|-------------|----------|----------|------------|----------|---------|--------------|--------------|-------------|
|             |          |          | Forward    | Reverse  | PCR     | Forward      | Reverse      | PCR         |
|             | SEQ ID   | SEQ ID   | Primer 1   | Primer 1 | Probe 1 | Primer 2     | Primer 2     | Probe 2     |
| Gene        | 50mer    | RNA/cDNA | SEQ ID     | SEQ ID   | SEQ ID  | SEQ ID       | SEQ ID       | SEQ ID      |
| RAG1        | 56       | 388      | 720        | 1051     | 1382    | 1693         | 1941         | 2189        |
| RAG2        | 57       | 389      | 721        | 1052     | 1383    | 1694         | 1942         | 2190        |
| CXCL12      | 58       | 390      | 722        | 1053     | 1384    | 1695         | 1943         | 2191        |
| TNFRSF4     | 59       | 391      | 723        | 1054     | 1385    | 1696         | 1944         | 2192        |
| TNFSF4      | 60       | 392      | 724        | 1055     | 1386    | 1697         | 1945         | 2193        |
| TPS1        | 61       | 393      | 725        | 1056     | 1387    | 1698         | 1946         | 2194        |
| ADA         | 62       | 394      | 726        | 1057     | 1388    | 1699         | 1947         | 2195        |
| CPM         | 63       | 395      | 727        | 1058     | 1389    | 1700         | 1948         | 2196        |
| CSF2        | 64       | 396      | 728        | 1059     | 1390    | 1701         | 1949         | 2197        |
| CSF3        | 65       | 397      | 729        | 1060     | 1391    | 1702         | 1950         | 2198        |
| CRP         | 66       | 398      | 730        | 1061     | 1392    | 1703         | 1951         | 2199        |
| FLT3        | 67       | 399      | 731        | 1062     | 1393    | 1704         | 1952         | 2200        |
| GATA3       | 68       | 400      | 732        | 1063     | 1394    | 1705         | 1953         | 2201        |
| IL7R        | 69       | 401      | 733        | 1064     | 1395    | 1706         | 1954         | 2202        |
| KLF1        | 70       | 402      | 734        | 1065     | 1396    | 1707         | 1955         | 2203        |
| LCK         | 71       | 403      | 735        | 1066     | 1397    | 1708         | 1956         | 2204        |
| LEF1        | 72       | 404      | 736        | 1067     | 1398    | 1709         | 1957         | 2205        |
| PLAUR       | 73       | 405      | 737        | 1068     | 1399    | 1710         | 1958         | 2206        |
| TNFSF13B    | 74       | 406      | 738        | 1069     | 1400    | 1711         | 1959         | 2207        |
| IL8         | 75       | 407      | 739        | 1070     | 1401    |              |              |             |
| GZMB        | 76       | 408      | 740        | 1071     | 1402    | <u> </u>     |              |             |
| TNFSF6      | 77       | 409      | 741        | 1072     | 1403    |              |              |             |
| TCIRG1      | 78       | 410      | 742        | 1073     | 1404    | 1            |              | <u> </u>    |
| PRF1        | 79       | 411      | 743        | 1074     | 1405    |              |              |             |
| IL4         | 80       | 412      | 744        | 1075     | 1406    | <b></b>      |              |             |
| IL13        | 81       | 413      | 745        | 1076     | 1407    |              |              | <u> </u>    |
| CTLA4       | 82       | 414      | 746        | 1077     | 1408    | -            |              |             |
| CD8A        | 83       | 415      | 747        | 1078     | 1409    | 1            | <del>-</del> | -           |
| BY55        | 84       | 416      | 748        | 1079     | 1410    |              |              |             |
| OID 4460    | 85<br>86 | 417      | 749<br>750 | 1080     | 1411    |              | _            |             |
| HBB<br>BPGM | 87       | 419      | 751        | 1081     | 1413    |              | <del> </del> | <del></del> |
| MTHFD2      | 88       | 420      | 752        | 1082     | 1414    |              | +            |             |
| TAP1        | 89       | 421      | 753        | 1083     | 1415    | +            | <del> </del> | +           |
| KPNA6       | 90       | 422      | 754        | 1085     | 1416    | +            | <del></del>  | +           |
| OID 4365    | 91       | 423      | 755        | 1086     | 1417    | +            | +            | +           |
| IGHM        | 92       | 424      | 756        | 1087     | 1418    | <del> </del> | <del></del>  |             |
| OID 573     | 93       | 425      | 757        | 1088     | 1419    | 1712         | 1960         | 2208        |
| OID 873     | 94       | 426      | 758        | 1089     | 1420    | 12.12        | 1            | 1           |
| OID 3       | 95       | 427      | 759        | 1090     | 1421    | ·            | 1            |             |
| CXCR4       | 96       | 428      | 760        | 1091     | 1422    | †            |              | 1           |
| CD69        | 97       | 429      | 761        | 1092     | 1423    | 1            |              | 1           |
| CCL5        | 98       | 430      | 762        | 1093     | 1424    |              |              |             |
| IL6         | 99       | 431      | 763        | 1094     | 1425    | 1            |              |             |
| IL2         | 100      | 432      | 764        | 1095     | 1426    | 1            |              |             |
| KLRF1       | 101      | 433      | 765        | 1096     | 1427    | 1            |              |             |
| LYN         | 102      | 434      | 766        | 1097     | 1428    |              |              |             |
| IL2RA       | 103      | 435      | 767        | 1098     | 1429    |              |              |             |
| CCL4        | 104      | 436      | 768        | 1099     | 1430    |              |              |             |
| OID_6207    | 105      | 437      | 769        | 1100     | 1431    |              |              |             |
| ChGn        | 106      | 438      | 770        | 1101     | 1432    |              |              |             |
| OID_4281    | 107      | 439      | 771        | 1102     | 1433    |              |              |             |
| CXCL9       | 108      | 440      | 772        | 1103     | 1434    |              |              |             |
| CXCL10      | 109      | 441      | 773        | 1104     | 1435    |              |              |             |
| IL17        | 110      | 442      | 774        | 1105     | 1436    |              | <u></u>      |             |

|          |            |            | PCR        | PCR      |              | PCR          | PCR          | T       |
|----------|------------|------------|------------|----------|--------------|--------------|--------------|---------|
|          |            |            | Forward    | Reverse  | PCR          | Forward      | Reverse      | PCR     |
|          | SEQ ID     | SEQ ID     | Primer 1   | Primer 1 | Probe 1      | Primer 2     | Primer 2     | Probe 2 |
| Gene     | 50mer      | RNA/cDNA   | SEQ ID     | SEQ ID   | SEQ ID       | SEQ ID       | SEQ ID       | SEQ ID  |
| IL15     | 111        | 443        | 775        | 1106     | 1437         |              | SEQ ID       | SEQID   |
| IL10     | 112        | 444        | 776        | 1107     | 1438         | _            |              |         |
| IFNG     | 113        | 445        | 777        | 1108     | 1439         | 1713         | 1961         | 2209    |
| HLA-DRB1 | 114        | 446        | 778        | 1109     | 1440         | 1714         | 1962         | 2210    |
| CD8B1    | 115        | 447        | 779        | 1110     | 1441         | 12.2.        | 1702         | 2210    |
| CD4      | 116        | 448        | 780        | 1111     | 1442         |              |              | +       |
| CXCR3    | 117        | 449        | 781        | 1112     | 1443         | +            |              |         |
| OID_7094 | 118        | 450        | 782        | 1113     | 1444         | 1            |              |         |
| OID_7605 | 119        | 451        | 783        | 1114     | 1445         | 1            |              | T       |
| CXCL1    | 120        | 452        | 784        | 1115     | 1446         |              |              |         |
| OID_253  | 121        | 453        | 785        | 1116     | 1447         | 1            |              |         |
| GPI      | 122        | 454        | 786        | 1117     | 1448         |              | T            |         |
| CD47     | 123        | 455        | 787        | 1118     | 1449         |              |              |         |
| HLA-F    | 124        | 456        | 788        | 1119     | 1450         | 1            |              |         |
| OID_5350 | 125        | 457        | 789        | 1120     | 1451         |              |              |         |
| TCRGC2   | 126        | 458        | 790        | 1121     | 1452         |              |              |         |
| OID_7016 | 127        | 459        | 791        | 1122     |              |              |              |         |
| PTGS2    | 128        | 460        | 792        | 1123     | 1454         |              |              |         |
| OID_5847 | 129        | 461        | 793        | 1124     | 1455         |              |              |         |
| PRDM1    | 130        | 462        | 794        | 1125     | 1456         |              |              |         |
| CKB      | 131        | 463        | 795        | 1126     | 1457         |              |              |         |
| TNNI3    | 132        | 464        | 796        | 1127     | 1458         |              |              |         |
| TNNT2    | 133        | 465        | 797        | 1128     | 1459         |              |              |         |
| MB       | 134        | 466        | 798        | 1129     | 1460         |              |              |         |
| SLC7A11  | 135        | 467        | 799        | 1130     | 1461         |              |              |         |
| TNFRSF5  | 136        | 468        | 800        | 1131     | 1462         | 1715         | 1963         | 2211    |
| TNFRSF7  | 137        | 469        | 801        | 1132     | 1463         |              |              |         |
| CD86     | 138        | 470        | 802        | 1133     | 1464         |              |              |         |
|          | 139        | 471        | 803        | 1134     | 1465         |              |              |         |
|          | 140        | 472        | 804        | 1135     | 1466         | 1716         | 1964         | 2212    |
| EV EBV   | 141        | 473        | 805        | 1136     | 1467         | 1717         | 1965         | 2213    |
| CMV p67  | 142        | 474        | 806        | 1137     | 1468         | 1718         | 1966         | 2214    |
|          | 143<br>144 | 475<br>476 | 807        | 1138     | 1469         | 1719         | 1967         | 2215    |
|          | 144        | 477        | 808        | 1139     | 1470         | 1720         | 1968         | 2216    |
|          | 146        | 477        | 809        | 1140     | 1471         | 1721         | 1969         | 2217    |
|          | 147        | 479        | 810        | 1141     | 1472         | 1722         | 1970         | 2218    |
|          | 148        | 480        | 811<br>812 | 1142     | 1473         | 1723         | 1971         | 2219    |
|          |            | 481        | 813        | 1143     | 1474         | 1724         | 1972         | 2220    |
|          | 150        | 482        | 814        | 1144     | 1475         | 1705         | 1000         | 4       |
|          |            | 483        | 815        |          | 1476         | 1725         | 1973         | 2221    |
|          |            | 484        | 816        | 1146     | 1477         | 1706         | 1001         |         |
|          |            | 485        | 817        | 1147     | 1478<br>1479 | 1726         | 1974         | 2222    |
|          |            | 486        | 818        | 1149     | 1480         | 1727         | 1975         | 2223    |
|          |            | 487        | 819        | 1150     | 1480         | 1728<br>1729 | 1976         | 2224    |
|          |            | 488        | 820        | 1151     | 1482         |              | 1977         | 2225    |
|          |            | 489        | 821        | 1152     | 1482         | 1730         | 1978         | 2226    |
|          |            | 490        | 822        | 1153     | 1484         | 1731<br>1732 | 1979<br>1980 | 2227    |
|          |            | 491        | 823        | 1154     | 1484         | 1732         | 1980         | 2228    |
|          |            | 492        | 824        | 1155     | 1486         | 1734         | 1981         | 2229    |
|          |            | 493        | 825        | 1156     | 1486         | 1735         | 1982         | 2230    |
|          |            | 494        | 826        | 1157     | 1488         | 1736         |              | 2231    |
|          |            | 495        | 827        | 1157     | 1488         |              | 1984         | 2232    |
|          |            | 496        | 828        | 1159     | 1490         | 1737<br>1738 | 1985         | 2233    |
|          |            | 497        | 829        | 1160     | 1490         | 1738         | 1986<br>1987 | 2234    |

|          |        | T        | PCR      | PCR      | T       | PCR      | PCR      | T       |
|----------|--------|----------|----------|----------|---------|----------|----------|---------|
| 1        | 1      | 1        | Forward  | Reverse  | PCR     | Forward  | Reverse  | PCR     |
|          | SEQ ID | SEQ ID   | Primer 1 | Primer 1 | Probe 1 | Primer 2 | Primer 2 | Probe 2 |
| Gene     | 50mer  | RNA/cDNA | SEQ ID   | SEQ ID   | SEQ ID  | SEQ ID   | SEQ ID   | SEQ ID  |
| SLC9A8   | 166    | 498      | 830      | 1161     | 1492    | 1740     | 1988     | 2236    |
| OID 1512 | 167    | 499      | 831      | 1162     | 1493    | 1741     | 1989     | 2237    |
| POLR2D   | 168    | 500      | 832      | 1163     | 1494    | 1742     | 1990     | 2238    |
| ARPC3    | 169    | 501      | 833      | 1164     | 1495    | 1743     | 1991     | 2239    |
| OID 6282 | 170    | 502      | 834      | 1165     | 1496    | 1744     | 1992     | 2240    |
| PRO1073  | 171    | 503      | 835      | 1166     | 1497    | 1745     | 1993     | 2241    |
| OID 7222 | 172    | 504      | 836      | 1167     | 1498    | 1746     | 1994     | 2242    |
| FPRL1    | 173    | 505      | 837      | 1168     | 1499    | 1747     | 1995     | 2243    |
| FKBPL    | 174    | 506      | 838      | 1169     | 1500    | 1748     | 1996     | 2244    |
| PREB     | 175    | 507      | 839      | 1170     | 1501    | 1749     | 1997     | 2245    |
| OID 1551 | 176    | 508      | 840      | 1171     | 1502    | 1750     | 1998     | 2246    |
| OID 7595 | 177    | 509      | 841      | 1172     | 1503    | 1751     | 1999     | 2247    |
| RNF19    | 178    | 510      | 842      | 1173     | 1504    | 1752     | 2000     | 2248    |
| SMCY     | 179    | 511      | 843      | 1174     | 1505    | 1753     | 2001     | 2249    |
| OID 4184 | 180    | 512      | 844      | 1175     | 1506    | 1754     | 2002     | 2250    |
| OID 7504 | 181    | 513      | 845      | 1176     | 1507    | 1755     | 2003     | 2251    |
| DNAJC3   | 182    | 514      | 846      | 1177     | 1508    | 1756     | 2004     | 2252    |
| ARHU     | 183    | 515      | 847      | 1178     | 1509    | 1757     | 2005     | 2253    |
| OID 7200 | 184    | 516      | 848      | 1179     | 1510    | 1758     | 2006     | 2254    |
| SERPINB2 | 185    | 517      | 849      | 1180     | 1511    | 1        |          |         |
| ENO1     | 186    | 518      | 850      | 1181     | 1512    | 1759     | 2007     | 2255    |
| OID 7696 | 187    | 519      | 851      | 1182     | 1513    | 1760     | 2008     | 2256    |
| OID 4173 | 188    | 520      | 852      | 1183     | 1514    | 1761     | 2009     | 2257    |
| CSF2RB   | 189    | 521      | 853      | 1184     | 1515    | 1762     | 2010     | 2258    |
| OID 7410 | 190    | 522      | 854      | 1185     | 1516    | 1763     | 2011     | 2259    |
| OID 4180 | 191    | 523      | 855      | 1186     | 1517    | 1764     | 2012     | 2260    |
| OID 5101 | 192    | 524      | 856      | 1187     | 1518    | 1765     | 2013     | 2261    |
| MOP3     | 193    | 525      | 857      | 1188     | 1519    | 1766     | 2014     | 2262    |
| RPL18A   | 194    | 526      | 858      | 1189     | 1520    | 1767     | 2015     | 2263    |
| INPP5A   | 195    | 527      | 859      | 1190     | 1521    | 1768     | 2016     | 2264    |
| hIAN7    | 196    | 528      | 860      | 1191     | 1522    | 1769     | 2017     | 2265    |
| RPS29    | 197    | 529      | 861      | 1192     | 1523    | 1770     | 2018     | 2266    |
| OID 6008 | 198    | 530      | 862      | 1193     | 1524    | 1771     | 2019     | 2267    |
| OID 4186 | 199    | 531      | 863      | 1194     | 1525    | 1772     | 2020     | 2268    |
| VNN2     | 200    | 532      | 864      | 1195     | 1526    | 1773     | 2021     | 2269    |
| OID 7703 | 201    | 533      | 865      | 1196     | 1527    | 1774     | 2022     | 2270    |
| OID 7057 | 202    | 534      | 866      | 1197     | 1528    | 1775     | 2023     | 2271    |
| OID 4291 | 203    | 535      | 867      | 1198     | 1529    | 1776     | 2024     | 2272    |
| OID 1366 | 204    | 536      | 868      | 1199     | 1530    | 1777     | 2025     | 2273    |
| EEF1A1   | 205    | 537      | 869      | 1200     | 1531    | 1778     | 2026     | 2274    |
| PA2G4    | 206    | 538      | 870      | 1201     | 1532    | 1779     | 2027     | 2275    |
| GAPD     | 207    | 539      | 871      | 1202     | 1533    | 1780     | 2028     | 2276    |
| CHD4     | 208    | 540      | 872      | 1203     | 1534    | 1781     | 2029     | 2277    |
| OID 7951 | 209    | 541      | 873      | 1204     | 1535    | 1782     | 2030     | 2278    |
| DAB1     | 210    | 542      | 874      | 1205     | 1536    | 1783     | 2031     | 2279    |
| OID 3406 | 211    | 543      | 875      | 1206     | 1537    | 1784     | 2032     | 2280    |
| OID 6986 | 212    | 544      | 876      | 1207     | 1538    | 1785     | 2033     | 2281    |
| OID 5962 | 213    | 545      | 877      | 1208     | 1539    | 1786     | 2034     | 2282    |
| OID 5152 | 214    | 546      | 878      | 1209     | 1540    | 1787     | 2035     | 2283    |
| S100A8   | 215    | 547      | 879      | 1210     | 1541    | 1788     | 2036     | 2284    |
| HNRPU    | 216    | 548      | 880      | 1211     | 1542    | 1789     | 2037     | 2285    |
| ERCC5    | 217    | 549      | 881      | 1212     | 1543    | 1790     | 2038     | 2286    |
| RPS27    |        |          |          | 1213     | 1544    | 1791     | 2039     | 2287    |
|          | 218    | 550      | 882      | 11213    | 1344    |          |          |         |
| ACRC     | 218    | 550      | 883      | 1213     | 1545    | 1792     | 2040     | 2288    |

|                      |            | 1        | PCR      | PCR          | Γ            | PCR      | PCR      | 1       |
|----------------------|------------|----------|----------|--------------|--------------|----------|----------|---------|
|                      |            |          | Forward  | Reverse      | PCR          | Forward  | Reverse  | PCR     |
| 1                    | SEQ ID     | SEQ ID   | Primer 1 | Primer 1     | Probe 1      | Primer 2 | Primer 2 | Probe 2 |
| Gene                 | 50mer      | RNA/cDNA | SEQ ID   | SEQ ID       | SEQ ID       | SEQ ID   | SEQ ID   | SEQ ID  |
|                      | 221        | 553      | 885      | 1216         | 1547         | 1794     | 2042     | 2290    |
| OID_1016<br>OID_1309 | 222        | 554      | 886      | 1217         | 1548         | 1794     | 2042     | 2291    |
|                      | 223        | 555      | 887      | 1218         | 1549         | 1796     | 2043     | 2292    |
| OID 7582<br>OID 4317 | 224        | 556      | 888      | 1219         | 1550         | 1797     | 2044     | 2292    |
| OID 5889             | 225        | 557      | 889      | 1220         | 1551         | 1798     | 2045     | 2294    |
| UBL1                 | 226        | 558      | 890      | 1221         | 1552         | 1799     | 2047     | 2295    |
|                      | 227        | 559      | 891      | 1222         | 1553         | 1800     | 2047     | 2296    |
| OID_3687<br>OID_7371 |            | 560      | 892      | 1223         | 1554         | 1801     | 2048     | 2297    |
| OID_7371<br>SH3BGRL3 | 228        | 561      | 892      | 1223         | 1555         | 1802     | 2049     | 2297    |
| SEMA7A               | 230        | 562      | 894      | 1225         | 1556         | 1803     | 2051     | 2299    |
| OID 5708             | 231        | 563      | 895      | 1226         | 1557         | 1804     | 2052     | 2300    |
| OID 5992             | 232        | 564      | 896      | 1227         | 1558         | 1805     | 2052     | 2301    |
| IL21                 | 232        | 565      | 897      | 1228         | 1559         | 1806     | 2054     | 2302    |
| HERC3                | 234        | 566      | 898      | 1229         | 1560         | 1807     | 2055     | 2302    |
|                      | 235        |          | 899      | 1230         | 1561         | 1807     | 2056     | 2303    |
|                      |            | 567      |          |              |              |          |          | 2305    |
| P11                  | 236<br>237 | 568      | 900      | 1231<br>1232 | 1562<br>1563 | 1809     | 2057     | 2305    |
| OID_7766             |            |          | 901      | 1232         | 1564         | 1811     | 2059     | 2307    |
| TIMM10               | 238        | 570      | 902      | 1233         | 1565         | 1812     | 2060     | 2307    |
| EGLN1                |            | 572      |          | 1234         |              |          |          | 2308    |
| TBCC                 | 240        |          | 904      |              | 1566         | 1813     | 2061     |         |
| RNF3                 | 241        | 573      | 905      | 1236         | 1567         | 1814     | 2062     | 2310    |
| OID_6451             | 242        | 574      | 906      | 1237         | 1568         | 1815     | 2063     | 2311    |
| CCNDBP1              | 243        | 575      | 907      | 1238         | 1569         | 1816     | 2064     |         |
| OID_8063             | 244        | 576      | 908      | 1239         | 1570         | 1817     | 2065     | 2313    |
| SUV39H1              | 245        | 577      | 909      | 1240         | 1571         | 1818     | 2066     | 2314    |
| HSPC048              | 246        | 578      | 910      | 1241         | 1572         | 1819     | 2067     | 2315    |
| OID_5625             | 247        | 579      | 911      | 1242         | 1573         | 1820     | 2068     | 2316    |
| WARS                 | 248        | 580      | 912      | 1243         | 1574         | 1821     | 2069     | 2317    |
| OID_6823             | 249        | 581      | 913      | 1244         | 1575         | 1822     | 2070     | 2318    |
| OID_7073             | 250        | 582      | 914      | 1245         | 1576         | 1823     | 2071     | 2319    |
| OID_5339             | 251        | 583      | 915      | 1246         | 1577         | 1824     | 2072     | 2320    |
| OID 4263             | 252        | 584      | 916      | 1247         | 1578         | 1825     | 2073     | 2321    |
| MGC26766             | 253        | 585      | 917      | 1248         | 1579         | 1826     | 2074     | 2322    |
| SERPINB11            |            | 586      | 918      | 1249         | 1580         | 1827     | 2075     | 2323    |
| OID_6711             | 255        | 587      | 919      | 1250         | 1581         | 1828     | 2076     | 2324    |
| RNF10                | 256        | 588      | 920      | 1251         | 1582         | 1829     | 2077     | 2325    |
| MKRN1                | 257        | 589      | 921      | 1252         | 1583         | 1830     | 2078     | 2326    |
| RPS16                | 258        | 590      | 922      | 1253         | 1584         | 1831     | 2079     | 2327    |
| BAZ1A                | 259        | 591      | 923      | 1254         | 1585         | 1832     | 2080     | 2328    |
| OID_5998             | 260        | 592      | 924      | 1255         | 1586         | 1833     | 2081     | 2329    |
| ATP5L                | 261        | 593      | 925      | 1256         | 1587         | 1834     | 2082     | 2330    |
| OID_6393             | 262        | 594      | 926      | 1257         | 1588         | <u> </u> |          |         |
| RoXaN                | 263        | 595      | 927      | 1258         | 1589         | 1835     | 2083     | 2331    |
| NCBP2                | 264        | 596      | 928      | 1259         | 1590         | 1836     | 2084     | 2332    |
| OID_6273             | 265        | 597      | 929      | 1260         | 1591         | 1837     | 2085     | 2333    |
| HZF12                | 266        | 598      | 930      | 1261         | 1592         | 1838     | 2086     | 2334    |
| CCL3                 | 267        | 599      | 931      | 1262         | 1593         | 1839     | 2087     | 2335    |
| OID_4323             | 268        | 600      | 932      | 1263         | 1594         | 1840     | 2088     | 2336    |
| OID_5181             | 269        | 601      |          |              | L            |          | -        |         |
| PRDX4                | 270        | 602      | 933      | 1264         | 1595         | 1841     | 2089     | 2337    |
| BTK                  | 271        | 603      | 934      | 1265         | 1596         | 1842     | 2090     | 2338    |
| OID_6298             | 272        | 604      | 935      | 1266         | 1597         | 1843     | 2091     | 2339    |
| PGK1                 | 273        | 605      | 936      | 1267         | 1598         | 1844     | 2092     | 2340    |
| TNFRSF10A            |            | 606      | 937      | 1268         | 1599         | 1845     | 2093     | 2341    |
| ADM                  | 275        | 607      | 938      | 1269         | 1600         | 1846     | 2094     | 2342    |

|                      |            |            | PCR        | PCR          |              | PCR          | PCR      | T            |
|----------------------|------------|------------|------------|--------------|--------------|--------------|----------|--------------|
|                      |            |            | Forward    | Reverse      | PCR          | Forward      | Reverse  | PCR          |
|                      | SEQ ID     | SEQ ID     | Primer 1   | Primer 1     | Probe 1      | Primer 2     | Primer 2 | Probe 2      |
| Gene                 | 50mer      | RNA/cDNA   | SEQ ID     | SEQ ID       | SEQ ID       | SEQ ID       | SEQ ID   | SEQ ID       |
| OID 357              | 276        | 608        | 939        | 1270         | 1601         | 1847         | 2095     | 2343         |
| C20orf6              | 277        | 609        | 940        | 1271         | 1602         | 1848         | 2096     | 2344         |
| OID 3226             | 278        | 610        | 941        | 1272         | 1603         | 1849         | 2097     | 2345         |
| ASAH1                | 279        | 611        | 942        | 1273         | 1604         | 1850         | 2098     | 2346         |
| ATF5                 | 280        | 612        | 943        | 1274         | 1605         | 1851         | 2099     | 2347         |
| OID_4887             | 281        | 613        | 944        | 1275         | 1606         | 1852         | 2100     | 2348         |
| OID_4239             | 282        | 614        | 945        | 1276         | 1607         | 1853         | 2101     | 2349         |
| MDM2                 | 283        | 615        | 946        | 1277         | 1608         | 1854         | 2102     | 2350         |
| XRN2                 | 284        | 616        | 947        | 1278         | 1609         | 1855         | 2103     | 2351         |
| OID_6039             | 285        | 617        | 948        | 1279         | 1610         | 1856         | 2104     | 2352         |
| OID_4210             | 286        | 618        | 949        | 1280         | 1611         | 1857         | 2105     | 2353         |
| OID_7698             | 287        | 619        | 950        | 1281         | 1612         | 1858         | 2106     | 2354         |
| PRKRA                | 288        | 620        | 951        | 1282         | 1613         | 1859         | 2107     | 2355         |
| OID_4288             | 289        | 621        | 952        | 1283         | 1614         | 1860         | 2108     | 2356         |
| OID_5620             | 290        | 622        | 953        | 1284         | 1615         | 1861         | 2109     | 2357         |
| OID_7384<br>OID_1209 | 291<br>292 | 623        | 954        | 1285         | 1616         | 1862         | 2110     | 2358<br>2359 |
|                      | 292        | 624        | 955        | 1286         | 1617         | 1863         | 2111     |              |
| CDKN1B<br>PLOD       | 293        | 625<br>626 | 956<br>957 | 1287<br>1288 | 1618<br>1619 | 1864         | 2112     | 2360         |
| OID 5128             | 295        | 627        | 958        | 1289         | 1620         | 1865<br>1866 | 2113     | 2362         |
| OID 5877             | 296        | 628        | 959        | 1290         | 1621         | 1867         | 2114     | 2363         |
| FZD4                 | 297        | 629        | 960        | 1290         | 1622         | 1868         | 2116     | 2364         |
| HLA-B                | 298        | 630        | 961        | 1292         | 1623         | 1869         | 2117     | 2365         |
| OID 5624             | 299        | 631        | 962        | 1293         | 1624         | 1870         | 2118     | 2366         |
| FPR1                 | 300        | 632        | 963        | 1294         | 1625         | 1871         | 2119     | 2367         |
| ODF2                 | 301        | 633        | 964        | 1295         | 1626         | 1872         | 2120     | 2368         |
| OID 5150             | 302        | 634        | 965        | 1296         | 1627         | 1873         | 2121     | 2369         |
| OID 5639             | 303 ′      | 635        | 966        | 1297         | 1628         | 1874         | 2122     | 2370         |
| OID 6619             | 304        | 636        | 967        | 1298         | 1629         | 1875         | 2123     | 2371         |
| OID 6933             | 305        | 637        | 968        | 1299         | 1630         | 1876         | 2124     | 2372         |
| OID 7049             | 306        | 638        | 969        | 1300         | 1631         | 1877         | 2125     | 2373         |
| IL17C                | 307        | 639        | 970        | 1301         | 1632         | 1878         | 2126     | 2374         |
| OID_5866             | 308        | 640        | 971        | 1302         | 1633         | 1879         | 2127     | 2375         |
| CD44                 | 309        | 641        | 972        | 1303         | 1634         | 1880         | 2128     | 2376         |
| VPS45A               | 310        | 642        | 973        | 1304         | 1635         | 1881         | 2129     | 2377         |
| OID_4932             | 311        | 643        | 974        | 1305         | 1636         | 1882         | 2130     | 2378 .       |
| OID_7821             | 312        | 644        | 975        | 1306         | 1637         | 1883         | 2131     | 2379         |
| OID 4916             | 313        | 645        | 976        | 1307         | 1638         | 1884         | 2132     | 2380         |
| OID_4891             | 314        | 646        | 977        | 1308         | 1639         | 1885         | 2133     | 2381         |
| HADHB                | 315        | 647        | 978        | 1309         | 1640         | 1886         | 2134     | 2382         |
| FLJ22757             | 316        | 648        | 979        | 1310         | 1641         | 1887         | 2135     | 2383         |
| RAC1                 | 317        | 649        | 980        | 1311         | 1642         | 1888         | 2136     | 2384         |
| OID_6415             | 318        | 650        | 981        | 1312         | 1643         | 1889         | 2137     | 2385         |
| NMES1                | 319        | 651        | 982        | 1313         | 1644         | 1890         | 2138     | 2386         |
| DMBT1<br>RPS23       | 320<br>321 | 652        | 983<br>984 | 1314         | 1645<br>1646 | 1891         | 2139     | 2387         |
| ZF                   | 322        | 654        | 985        | 1316         | 1647         | 1893         | 2140     | 2389         |
| NFE2L3               | 323        | 655        | 986        | 1317         | 1648         | 1894         | 2141     | 2390         |
| RAD9                 | 324        | 656        | 987        | 1318         | 1649         | 1895         | 2142     | 2390         |
| OID 6295             | 325        | 657        | 988        | 1319         | 1650         | 1896         | 2144     | 2392         |
| DEFCAP               | 326        | 658        | 989        | 1320         | 1651         | 1897         | 2145     | 2393         |
| RPL27A               | 327        | 659        | 990        | 1321         | 1652         | 1898         | 2146     | 2394         |
| IL22                 | 328        | 660        | 991        | 1322         | 1653         | 1899         | 2147     | 2395         |
|                      |            |            |            |              |              |              |          |              |
| PSMA4                | 1329       | 661        | 992        | 1323         | 1654         | 1900         | 2148     | 2396         |

| Gene  | SEQ ID<br>50mer | SEQ ID<br>RNA/cDNA | PCR<br>Forward<br>Primer 1<br>SEQ ID | PCR<br>Reverse<br>Primer 1<br>SEQ ID | PCR<br>Probe 1<br>SEQ ID | PCR<br>Forward<br>Primer 2<br>SEQ ID | PCR<br>Reverse<br>Primer 2<br>SEQ ID | PCR<br>Probe 2<br>SEQ ID |
|-------|-----------------|--------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------------------|--------------------------------------|--------------------------|
| THBD  | 331             | 663                | 994                                  | 1325                                 | 1656                     | 1902                                 | 2150                                 | 2398                     |
| CGR19 | 332             | 664                | 995                                  | 1326                                 | 1657                     | 1903                                 | 2151                                 | 2399                     |

|          |                                                                                                                   |        |          |    | ls.        |       | 1         |
|----------|-------------------------------------------------------------------------------------------------------------------|--------|----------|----|------------|-------|-----------|
|          |                                                                                                                   |        |          | 1  | Non-       |       |           |
| _        | la .v                                                                                                             | SEQ ID | SEQ ID   | l  | parametric |       | t-test p- |
| Gene     | Gene Name                                                                                                         | 50mer  | RNA/cDNA | n  | Odds ratio | value | value     |
| HBB      | Hemoglobin, beta                                                                                                  | 86     | 418      | 55 | 8.33       | 0.00  | 0.00      |
| OID_4365 | Mitochondrial solute<br>carrier                                                                                   | 91     | 423      | 53 | 6.16       | 0.00  | 0.00      |
| OID 873  | KIAA1892 protein                                                                                                  | 94     | 426      | 55 | 5.09       | 0.01  | 0.01      |
| IL4      | Interleukin 4                                                                                                     | 80     | 412      | 46 | 4.90       | 0.02  | 0.01      |
| OID 4281 | EST                                                                                                               | 107    | 439      | 56 | 5.19       | 0.01  | 0.01      |
| IGHM     | Immunoglobulin heavy<br>constant mu                                                                               | 92     | 424      | 52 | 2.89       | 0.09  | 0.01      |
| BPGM     | 2,3-bisphosphoglycerate<br>mutase                                                                                 | 87     | 419      | 43 | 7.31       | 0.01  | 0.01      |
| CTLA4    | Cytotoxic T-lymphocyte-<br>associated protein 4                                                                   | 82     | 414      | 52 | 1.84       |       | 0.02      |
| SLC7A11  | Solute carrier family 7,<br>(cationic amino acid<br>transporter, y+ system)<br>member 11                          | 135    | 467      | 48 | 2.50       | 0.15  | 0.03      |
| IL13     | Interleukin 13                                                                                                    | 81     | 413      | 29 | 4.95       | 0.07  | 0.04      |
| OID 6207 | EST                                                                                                               | 105    | 437      | 37 | 3.58       | 0.10  | 0.04      |
| PRDM1    | PR domain containing 1,<br>with ZNF domain                                                                        | 130    | 462      | 57 | 1.44       |       | 0.07      |
| LYN      | v-yes-1 Yamaguchi<br>sarcoma viral related<br>oncogene homolog                                                    | 102    | 434      | 55 | 1.08       |       | 0.08      |
| KPNA6    | Karyopherin alpha 6<br>(importin alpha 7)                                                                         | 90     | 422      | 51 | 1.50       |       | 0.09      |
| OID_7094 | XDx EST 479G12                                                                                                    | 118    | 450      | 35 | 1.13       |       | 0.09      |
| IL15     | Interleukin 15                                                                                                    | 111    | 443      | 51 | 3.78       | 0.05  | 0.09      |
| OID 4460 | EST                                                                                                               | 85     | 417      | 47 | 2.73       | 0.14  | 0.10      |
| OID 7016 | EST                                                                                                               | 127    | 459      | 53 | 2.14       | 0.27  | 0.10      |
| MTHFD2   | Methylene<br>tetrahydrofolate<br>dehydrogenase (NAD+<br>dependent),<br>methenyltetrahydrofolate<br>cyclohydrolase | l      | 420      | 43 | 3.50       | 0.07  | 0.11      |
| TCIRG1   | T-cell, immune regulator<br>1, ATPase, H+<br>transporting, lysosomal<br>V0 protein a isoform 3                    | 78     | 410      | 57 | 1.08       |       | 0.11      |
| OID_5847 | Hypothetical protein<br>FLJ32919                                                                                  | 129    | 461      | 45 | 1.08       |       | 0.12      |
| CXCR4    | Chemokine (C-X-C motif                                                                                            |        | 428      | 56 | 1.29       |       | 0.12      |
| CXCR3    | Chemokine (C-X-C motif                                                                                            |        | 449_     | 54 | 2.10       | 0.27  | 0.12      |
| GPI      | Glucose phosphate isome                                                                                           |        | 454      | 57 | 1.44       | 0.60  | 0.12      |
| KLRF1    | Killer cell lectin-like rece                                                                                      |        | 433      | 50 | 1.68       |       | 0.13      |
| CCL5     | Chemokine (C-C motif) I                                                                                           |        | 430      | 34 | 1.96       |       | 0.13      |
| CD47     | CD47 antigen (Rh-related                                                                                          | 123    | 455      | 55 | 1.45_      |       | 0.13      |
| IL10     | Interleukin 10                                                                                                    | 112    | 444      | 33 | 1.43       |       | 0.13      |
| OID_253  | EST                                                                                                               | 121    | 453      | 26 | 1.93       |       | 0.15      |
| CXCL10   | Chemokine (C-X-C motif                                                                                            | 109    | 441      | 53 | 1.75       |       | 0.16      |

|          | T                                                                                      |          | Ι        | Γ        | Non-       |             | 1         |
|----------|----------------------------------------------------------------------------------------|----------|----------|----------|------------|-------------|-----------|
|          |                                                                                        | SEQ ID   | SEQ ID   |          |            | Fisher p-   | t-test p- |
|          | Gene Name                                                                              | 50mer    | RNA/cDNA | n        | Odds ratio | value       | value     |
| Gene     |                                                                                        |          |          | 41       | 1.33       | value       |           |
| IFNG     | Interferon, gamma                                                                      | 113      | 445      |          | 1.20       |             | 0.16      |
| PRF1     | Perforin 1 (pore forming                                                               | 79       | 411      | 48       |            |             | 0.17      |
| IL2      | Interleukin 2                                                                          | 100      | 432      | 33       | 2.00       | <del></del> | 0.17      |
| HLA-DRB1 | Major histocompatibility                                                               |          | 446      | 42       | 1.50       |             | 0.18      |
| IL6      | Interleukin 6                                                                          | 99       | 431      | 49       | 1.33       |             | 0.18      |
| IL2RA    | Interleukin 2 receptor,<br>alpha                                                       | 103      | 435      | 39       | 2.03       | 0.34        | 0.19      |
| OID 573  | KIAA1486 protein                                                                       | 93       | 425      | 8        | 3.00       |             | 0.19      |
| CXCL9    | Chemokine (C-X-C<br>motif) ligand 9 (MIG)                                              | 108      | 440      | 46       | 1.71       |             | 0.20      |
| OID 3    | EST                                                                                    | 95       | 427      | 49       | 2.19       |             | 0.20      |
| CD8B1    | CD8 antigen, beta                                                                      | 115      | 447      | 55       | 1.21       | i           | 0.22      |
| CDOD     | polypeptide 1 (p37)                                                                    | 113      | 1        | 1        | 1          |             | 0.22      |
| CD69     | CD69 antigen (p60,                                                                     | 97       | 429      | 30       | 1.71       |             | 0.23      |
| CDO      | early T-cell activation                                                                | <u> </u> | 1.23     | 50       |            |             | 0.23      |
| OVD 7405 | antigen)                                                                               | 110      | 461      | 47       | 2.11       | 0.00        | 0.24      |
| OID 7605 | EST                                                                                    | 77       | 451      | 47<br>54 | 3.11       | 0.08        | 0.24      |
| TNFSF6   | Tumor necrosis factor<br>(ligand) superfamily,<br>member 6                             | //       | 409      | 54       | 1.36       |             | 0.25      |
| CXCL1    | Chemokine (C-X-C                                                                       | 120      | 452      | 20       | 2.00       |             | 0.26      |
|          | motif) ligand 1                                                                        |          |          |          |            |             |           |
|          | (melanoma growth                                                                       |          |          |          | 1          |             |           |
|          | stimulating activity.                                                                  |          |          |          | 1          | l           |           |
|          | alpha)                                                                                 |          |          | i        |            |             |           |
| OID 5350 | EST                                                                                    | 125      | 457      | 49       | 2.08       | 0.26        | 0.28      |
| CD8A     | CD8 antigen, alpha                                                                     | 83       | 415      | 57       | 1.39       | -           | 0.28      |
| CDOIL    | polypeptide (p32)                                                                      | 000      |          | 1        | 1,         | ļ           | 0.20      |
| CD4      | CD4 antigen (p55)                                                                      | 116      | 448      | 55       | 1.64       |             | 0.28      |
| PTGS2    | Prostaglandin-                                                                         | 128      | 460      | 46       | 2.05       | 0.37        | 0.29      |
| 11002    | endoperoxide synthase 2<br>(prostaglandin G/H<br>synthase and<br>cyclooxygenase)       | 120      |          |          | 2.03       | 0.57        | 0.23      |
| GZMB     | Granzyme B (granzyme<br>2, cytotoxic T-<br>lymphocyte-associated<br>serine esterase 1) | 76       | 408      | 40       | 1.81       |             | 0.33      |
| CCL4     | Chemokine (C-C motif)<br>ligand 4, SCYA4                                               | 104      | 436      | 53       | 2.25       |             | 0.35      |
| ChGn     | Chondroitin beta 1,4 N-<br>acetylgalactosaminyltran<br>sferase                         | 106      | 438      | 31       | 2.57       |             | 0.36      |
| TCRGC2   | T cell receptor gamma<br>constant 2                                                    | 126      | 458      | .52      | 1.33       |             | 0.39      |
| HLA-F    | Major histocompatibility<br>complex, class I, F                                        | 124      | 456      | 54       | 2.36       | 0.17        | 0.40      |
| TAP1     | Transporter 1, ATP-<br>binding cassette, sub-<br>family B (MDR1/TAP)                   | 89       | 421      | 36       | 1.93       |             | 0.45      |

| Gene | Gene Name                                                                |    | SEQ ID<br>RNA/cDNA | n  | Non-<br>parametric<br>Odds ratio |      | t-test p-<br>value |
|------|--------------------------------------------------------------------------|----|--------------------|----|----------------------------------|------|--------------------|
| BY55 | Natural killer cell<br>receptor,<br>immunoglobulin<br>superfamily member | 84 | 416                | 52 | 2.49                             | 0.16 | 0.48               |
| II 8 | Interleukin 8                                                            | 75 | 407                | 49 | 2.10                             | 0.26 | 0.49               |

|         |                        | SEQ ID | SEQ ID   | RefSeq Peptide         |                |  |
|---------|------------------------|--------|----------|------------------------|----------------|--|
| Gene    | ACC                    | 50mer  | RNA/cDNA | Accession #            | SEQ ID Protein |  |
| ACTB    | NM_001101              | 2      | 334      | NP_001092              | 2400           |  |
| GUSB    | NM_000181              | 3      | 335      | NP_000172              | 2401           |  |
| B2M     | NM_004048              | 4      | 336      | NP_004039              | 2402           |  |
| TSN     | NM_004622              | 5      | 337      | NP_004613              | 2403           |  |
| CCR7    | NM_001838              | 6      | 338      | NP_001829              | 2404           |  |
| IL1R2   | NM_004633              | 7      | 339      | NP_004624              | 2405           |  |
| AIF-1   | NM 004847              | 8      | 340      | NP_004838              | 2406           |  |
| ALAS2   | NM_000032.1            | 9      | 341      | NP_000023              | 2407           |  |
| APELIN  | NM_017413              | 10     | 342      | NP_059109              | 2408           |  |
| CD80    | NM 005191              | 11     | 343      | NP_005182              | 2409           |  |
| EPB41   | NM 004437              | 12     | 344      | NP_004428              | 2410           |  |
| CBLB    | NM 004351              | 13     | 345      | NP 733762              | 2411           |  |
| CCR5    | NM 000579              | 14     | 346      | NP 000570              | 2412           |  |
| MME     | NM 000902              | 15     | 347      | NP 000893              | 2413           |  |
| KLRC1   | NM 002259              | 16     | 348      | NP 002250              | 2414           |  |
| FCGR3A  | NM 000569              | 17     | 349      | NP 000560              | 2415           |  |
| FCGR3B  | NM 000570              | 18     | 350      | NP 000561              | 2416           |  |
| LAG3    | NM 002286              | 19     | 351      | NP 002277              | 2417           |  |
| PECAM1  | NM 000442              | 20     | 352      | NP 000433              | 2418           |  |
| CD34    | NM 001773              | 21     | 353      | NP 001764              | 2419           |  |
| FCGR1A  | NM 000566              | 22     | 354      | NP 000557              | 2420           |  |
| TFRC    | NM 003234              | 23     | 355      | NP 003225              | 2421           |  |
| CMA1    | NM 001836              | 24     | 356      | NP 001827              | 2422           |  |
| KIT     |                        | 25     | 357      | NP 000213              | 2423           |  |
|         | NM_000222              |        |          |                        | 2423           |  |
| MPL     | NM_005373              | 26     | 358      | NP_005364              | 2424           |  |
| EphB6   | NM_004445              | 27     | 359      | NP_004436              |                |  |
| EPO-R   | NM_000121.2            | 28     | 360      | NP_000112              | 2426           |  |
| Foxp3   | NM_014009              | 29     | 361      | NP_054728              | 2427           |  |
| GATA-1  | NM_002049              | 30     | 362      | NP_002040              | 2428           |  |
| ITGA2B  | NM_000419              | 31     | 363      | NP_000410              | 2429           |  |
| GNLY    | NM_006433              | 32     | 364      | NP_006424              | 2430           |  |
| GZMA    | NM_006144              | 33     | 365      | NP_006135              | 2431           |  |
| HBA     | NM_000558.3            | 34     | 366      | NP_000549              | 2432           |  |
| HBZ     | NM_005332.2            | 35     | 367      | NP_005323              | 2433           |  |
| HBD     | NM_000519.2            | 37     | 369      | NP_000510              | 2434           |  |
| HBE     | NM_005330              | 38     | 370      | NP_005321              | 2435           |  |
| HBG     | NM_000559.2            | 39     | 371      | NP_000550              | 2436           |  |
| HBQ     | NM 005331              | 40     | 372      | NP_005322              | 2437           |  |
| HLA-DP  | NM 033554              | 41     | 373      | NP 291032              | 2438           |  |
| HLA-DQ  | NM 002122              | 42     | 374      | NP 002113              | 2439           |  |
| ICOS    | NM 012092              | 44     | 376      | NP 036224              | 2440           |  |
| IL18    | NM 001562              | 45     | 377      | NP 001553              | 2441           |  |
| IL3     | NM 000588              | 46     | 378      | NP 000579              | 2442           |  |
| ITGA4   | NM 000885              | 47     | 379      | NP 000876              | 2443           |  |
| ITGAM   | NM 000632              | 48     | 380      | NP 000623              | 2444           |  |
| ITGB7   | NM 000889              | 49     | 381      | NP 000880              | 2445           |  |
| CEBPB   | NM 005194              | 50     | 382      | NP 005185              | 2446           |  |
| NF-E2   | NM 006163              | 51     | 383      | NP 006154              | 2447           |  |
| PDCD1   | NM 005018              | 52     | 384      | NP 005009              | 2448           |  |
| PF4     | NM 002619              | 53     | 385      | NP 002610              | 2449           |  |
| PRKCO   | NM 006257.1            | 54     | 386      | NP 006248              | 2450           |  |
| PPARGC1 | NM 013261              | 55     | 387      | NP 037393              | 2451           |  |
|         |                        | 56     | 388      | NP 000439              | 2452           |  |
| RAG1    | NM_000448<br>NM_000536 | 57     |          | NP 000439<br>NP 000527 | 2452           |  |
| RAG2    |                        |        | 389      |                        |                |  |
| CXCL12  | NM_000609              | 58     | 390      | NP_000600              | 2454           |  |
| TNFRSF4 | NM_003327              | 59     | 391      | NP_003318              | 2455           |  |

|              |             | T      | I        |                | T              |  |
|--------------|-------------|--------|----------|----------------|----------------|--|
| _            | 1           | SEQ ID | SEQ ID   | RefSeq Peptide | SEQ ID Protein |  |
| Gene         | ACC         | 50mer  | RNA/cDNA | Accession #    |                |  |
| TNFSF4       | NM_003326   | 60     | 392      | NP_003317      | 2456           |  |
| TPS1         | NM_003293   | 61     | 393      | NP_003284      | 2457           |  |
| ADA          | NM_000022   | 62     | 394      | NP_000013      | 2458           |  |
| CPM          | NM_001874.1 | 63     | 395      | NP_001865      | 2459           |  |
| CSF2         | NM_000758.2 | 64     | 396      | NP_000749      | 2460           |  |
| CSF3         | NM_172219   | 65     | 397      | NP_757373      | 2461           |  |
| CRP          | NM_000567.1 | 66     | 398      | NP_000558      | 2462           |  |
| FLT3         | NM_004119   | 67     | 399      | NP_004110      | 2463           |  |
| GATA3        | NM_002051.1 | 68     | 400      | NP_002042      | 2464           |  |
| IL7R         | NM_002185.1 | 69     | 401      | NP_002176      | 2465           |  |
| KLF1         | NM_006563.1 | 70     | 402      | NP 006554      | 2466           |  |
| LCK          | NM_005356.2 | 71     | 403      | NP_005347      | 2467           |  |
| LEF1         | NM_016269.2 | 72     | 404      | NP 057353      | 2468           |  |
| PLAUR        | NM 002659.1 | 73     | 405      | NP 002650      | 2469           |  |
| TNFSF13B     | NM_006573.3 | 74     | 406      | NP 006564      | 2470           |  |
| IL8          | NM 000584   | 75     | 407      | NP 000575      | 2471           |  |
| GZMB         | NM 004131   | 76     | 408      | NP 004122      | 2472           |  |
| TNFSF6       | NM 000639   | 77     | 409      | NP 000630      | 2473           |  |
| TCIRG1       | NM 006019   | 78     | 410      | NP 006010      | 2474           |  |
| PRF1         | NM 005041   | 79     | 411      | NP 005032      | 2475           |  |
| IL4          | NM 000589   | 80     | 412      | NP 000580      | 2476           |  |
| IL13         | NM_002188   | 81     | 413      | NP 002179      | 2477           |  |
| CTLA4        | NM 005214   | 82     | 414      | NP 005205      | 2478           |  |
| CD8A         | NM 001768   | 83     | 415      | NP 001759      | 2479           |  |
| BY55         | NM 007053   | 84     | 416      | NP 008984      | 2480           |  |
| HBB          | NM 000518   | 86     | 418      | NP 000509      | 2481           |  |
| BPGM         | NM 001724   | 87     | 419      | NP 001715      | 2482           |  |
| MTHFD2       | NM 006636   | 88     | 420      | NP 006627      | 2483           |  |
| TAP1         | NM 000593   | 89     | 421      | NP 000584      | 2484           |  |
| OID 873      | AK000354    | 94     | 426      | NP 056212      | 2485           |  |
| CXCR4        | NM 003467   | 96     | 428      | NP 003458      | 2486           |  |
| CD69         | NM 001781   | 97     | 429      | NP 001772      | 2487           |  |
| CCL5         | NM 002985   | 98     | 430      | NP 002976      | 2488           |  |
| IL6          | NM 000600   | 99     | 431      | NP 000591      | 2489           |  |
| IL2          | NM 000586   | 100    | 432      | NP 000577      | 2490           |  |
| KLRF1        | NM 016523   | 101    | 433      | NP 057607      | 2490           |  |
| LYN          | NM 002350   | 102    | 434      | NP 002341      | 2492           |  |
| IL2RA        | NM 000417   | 103    | 435      | NP 000408      | 2492           |  |
| CCL4         | NM 002984   | 103    | 436      | NP 002975      | 2493           |  |
| ChGn         | NM 018371   | 106    | 438      | NP 060841      | 2494           |  |
| CXCL9        | NM 002416   | 108    | 440      |                | 2495           |  |
| CXCL10       |             |        | 441      |                |                |  |
|              | NM 001565   | 109    |          | NP 001556      | 2497           |  |
| IL17         | NM_002190   | 110    | 442      | NP_002181      | 2498           |  |
| IL15         | NM_000585   | 111    | 443      | NP_000576      | 2499           |  |
| IL10<br>IFNG | NM_000572   | 112    | 444      | NP_000563      | 2500           |  |
|              | NM_000619   | 113    | 445      | NP_000610      | 2501           |  |
| HLA-DRB1     | NM_002124   | 114    | 446      | NP_002115      | 2502           |  |
| CD8B1        | NM_004931   | 115    | 447      | NP_004922      | 2503           |  |
| CD4          | NM_000616   | 116    | 448      | NP_000607      | 2504           |  |
| CXCR3        | NM 001504   | 117    | 449      | NP_001495      | 2505           |  |
| CXCLI        | NM_001511   | 120    | 452      | NP_001502      | 2506           |  |
| GPI          | NM_000175   | 122    | 454      | NP_000166      | 2507           |  |
| CD47         | NM_001777   | 123    | 455      | NP_001768      | 2508           |  |
| HLA-F        | NM_018950   | 124    | 456      | NP_061823      | 2509           |  |
| PTGS2        | NM_000963   | 128    | 460      | NP_000954      | 2510           |  |
| OID_5847     | NM_144588   | 129    | 461      | NP_653189      | 2511           |  |

|           |                        | SEQ ID | SEQ ID   | RefSeq Peptide | T              |  |
|-----------|------------------------|--------|----------|----------------|----------------|--|
| Gene      | ACC                    | 50mer  | RNA/cDNA | Accession #    | SEQ ID Protein |  |
| PRDM1     | NM 001198              | 130    | 462      | NP 001189      | 2512           |  |
| CKB       | NM 001823              | 131    | 463      | NP 001814      | 2513           |  |
| TNNI3     | NM 000363              | 132    | 464      | NP 000354      | 2514           |  |
| TNNT2     | NM 000364              | 133    | 465      | NP 000355      | 2515           |  |
| MB        | NM 005368              | 134    | 466      | NP 005359      | 2516           |  |
| SLC7A11   | NM 014331              | 135    | 467      | NP 055146      | 2517           |  |
| TNFRSF5   | NM 001250              | 136    | 468      | NP 001241      | 2518           |  |
| TNFRSF7   | NM 001242              | 137    | 469      | NP 001233      | 2519           |  |
| CD86      | NM 175862              | 138    | 470      | NP 787058      | 2520           |  |
| AlF1v2    | NM 004847              | 139    | 471      | NP 004838      | 2521           |  |
| CMV IE1e3 | NC 001347, compl       | 144    | 476      | NP 040060      | 2522           |  |
| CMV IE1e4 | NC 001347, compl       |        | 477 .    | NP 040060      | 2523           |  |
| EV EBNA-1 | NC 001345, 10795       |        | 478      | NP 039875      | 2524           |  |
| EV BZLF-1 | NC 001345, compl       |        | 479      | NP 039871      | 2525           |  |
| CMV IE1   | NC 001347, compl       |        | 482      | NP 040060      | 2526           |  |
| CMV IE1   | NC 001347, compl       |        | 483      | NP 040060      | 2527           |  |
| CLC       | NM 001828              | 152    | 484      | NP 001819      | 2528           |  |
| TERF2IP   | NM 018975              | 153    | 485      | NP 061848      | 2529           |  |
| HLA-A     | NM 002116              | 154    | 486      | NP 002107      | 2530           |  |
| MSCP      | NM 018579              | 156    | 488      | NP 061049      | 2531           |  |
| DUSP5     | NM 004419              | 157    | 489      | NP 004410      | 2532           |  |
| PRO1853   | NM 018607              | 158    | 490      | NP 061077      | 2533           |  |
| CDSN      | NM 001264              | 160    | 492      | NP 001255      | 2534           |  |
| RPS25     | NM 001028              | 162    | 494      | NP 001019      | 2535           |  |
| GAPD      | NM 002046              | 163    | 495      | NP 002037      | 2536           |  |
| RPLP1     | NM 001003              | 164    | 496      | NP 000994      | 2537           |  |
| POLR2D    | NM 004805              | 168    | 500      | NP 004796      | 2538           |  |
| ARPC3     | NM 005719              | 169    | 501      | NP 005710      | 2539           |  |
| FPRL1     | NM 001462              | 173    | 505      | NP 001453      | 2540           |  |
| FKBPL     | NM 022110              | 174    | 506      | NP 071393      | 2541           |  |
| PREB      | NM 013388              | 175    | 507      | NP 037520      | 2542           |  |
| OID 7595  | NM 015653              | 177    | 509      | NP 056468      | 2543           |  |
| RNF19     | NM 015435              | 178    | 510      | NP 056250      | 2544           |  |
| SMCY      | NM 004653              | 179    | 511      | NP 004644      | 2545           |  |
| OID 7504  | NM 152312              | 181    | 513      | NP 689525      | 2546           |  |
| DNAJC3    | NM 006260              | 182    | 514      | NP 006251      | 2547           |  |
| ARHU      | NM 021205              | 183    | 515      | NP 067028      | 2548           |  |
| OID 7200  | NM 021752              | 184    | 516      | NP 073589      | 2549           |  |
| SERPINB2  | NM 002575              | 185    | 517      | NP 002566      | 2550           |  |
| ENO1      | NM 001428              | 186    | 518      | NP 001419      | 2551           |  |
| MOP3      | NM 018183              | 193    | 525      | NP 060653      | 2552           |  |
| RPL18A    | NM 000980              | 194    | 526      | NP 000971      | 2553           |  |
| INPP5A    | NM 005539              | 195    | 527      | NP 005530      | 2554           |  |
| RPS29     | NM 001032              | 197    | 529      | NP 001023      | 2555           |  |
| VNN2      | NM 004665              | 200    | 532      | NP 004656      | 2556           |  |
| OID 7703  | NM 014949              | 201    | 533      | NP 055764      | 2557           |  |
| EEF1A1    | NM 001402              | 205    | 537      | NP 001393      | 2558           |  |
| PA2G4     | NM 006191              | 206    | 538      | NP 006182      | 2559           |  |
| GAPD      | NM 002046              | 206    | 539      | NP 002037      | 2560           |  |
| CHD4      | NM 002046<br>NM 001273 | 207    | 540      | NP 001264      | 2561           |  |
| OID 7951  | NM 016521              | 208    | 541      | NP 057605      | 2562           |  |
| DAB1      | NM 021080              | 210    | 542      | NP 066566      | 2563           |  |
| OID 3406  | NM 018986              | 211    | 543      | NP 061859      | 2564           |  |
| S100A8    | NM 002964              | 215    | 547      | NP 002955      | 2565           |  |
| ERCC5     | NM 002964<br>NM 000123 | 217    | 549      | NP 000114      | 2566           |  |
|           |                        |        |          | NP 001021      | 2567           |  |
| RPS27     | NM_001030              | 218    | 550      | INP_UUIUZI     | 12307          |  |

|           |           | SEQ ID | SEQ ID   | RefSeq Peptide |                |  |
|-----------|-----------|--------|----------|----------------|----------------|--|
| Gene      | ACC       | 50mer  | RNA/cDNA | Accession #    | SEQ ID Protein |  |
| ACRC      | NM 052957 | 219    | 551      | NP 443189      | 2568           |  |
| UBLI      | NM 003352 | 226    | 558      | NP 003343      | 2569           |  |
| SH3BGRL3  | NM 031286 | 229    | 561      | NP 112576      | 2570           |  |
| SEMA7A    | NM 003612 | 230    | 562      | NP 003603      | 2571           |  |
| IL21      | NM 021803 | 233    | 565      | NP 068575      | 2572           |  |
| HERC3     | NM 014606 | 234    | 566      | NP 055421      | 2573           |  |
| P11       | NM 006025 | 236    | 568      | NP 006016      | 2574           |  |
| TIMM10    | NM 012456 | 238    | 570      | NP 036588      | 2575           |  |
| EGLN1     | AJ310543  | 239    | 571      | NP 071334      | 2576           |  |
| TBCC      | NM 003192 | 240    | 572      | NP 003183      | 2577           |  |
| RNF3      | NM 006315 | 241    | 573      | NP 006306      | 2578           |  |
| CCNDBP1   | NM 012142 | 243    | 575      | NP 036274      | 2579           |  |
| SUV39H1   | NM 003173 | 245    | 577      | NP 003164      | 2580           |  |
| HSPC048   | NM 014148 | 246    | 578      | NP 054867      | 2581           |  |
| WARS      | NM 004184 | 248    | 580      | NP 004175      | 2582           |  |
| SERPINB11 | NM 080475 | 254    | 586      | NP 536723      | 2583           |  |
| RNF10     | NM 014868 | 256    | 588      | NP 055683      | 2584           |  |
| MKRN1     | NM 013446 | 257    | 589      | NP 038474      | 2585           |  |
| RPS16     | NM 001020 | 258    | 590      | NP 001011      | 2586           |  |
| BAZ1A     | NM 013448 | 259    | 591      | NP 038476      | 2587           |  |
| ATP5L     | NM 006476 | 261    | 593      | NP 006467      | 2588           |  |
| NCBP2     | NM 007362 | 264    | 596      | NP 031388      | 2589           |  |
| HZF12     | NM 033204 | 266    | 598      | NP 149981      | 2590           |  |
|           | D90144    |        | 599      | NP 002974      | 2591           |  |
| CCL3      |           | 267    |          |                |                |  |
| PRDX4     | NM_006406 | 270    | 602      | NP_006397      | 2592           |  |
| BTK       | NM_000061 | 271    | 603      | NP_000052      | 2593           |  |
| PGK1      | NM_000291 | 273    | 605      | NP_000282      | 2594           |  |
| TNFRSF10A | NM_003844 | 274    | 606      | NP_003835      | 2595           |  |
| ADM       | NM_001124 | 275    | 607      | NP_001115      | 2596           |  |
| C20orf6   | NM_016649 | 277    | 609      | NP_057733      | 2597           |  |
| OID_3226  | NM_015393 | 278    | 610      | NP_056208      | 2598           |  |
| ASAH1     | NM_004315 | 279    | 611      | NP_004306      | 2599           |  |
| ATF5      | NM_012068 | 280    | 612      | NP_036200      | 2600           |  |
| OID_4887  | NM_032895 | 281    | 613      | NP_116284      | 2601           |  |
| MDM2      | NM_002392 | 283    | 615      | NP_002383      | 2602           |  |
| XRN2      | AF064257  | 284    | 616      | NP_036387      | 2603           |  |
| PRKRA     | NM_003690 | 288    | 620      | NP_003681      | 2604           |  |
| CDKN1B    | NM_004064 | 293    | 625      | NP_004055      | 2605           |  |
| PLOD      | NM_000302 | 294    | 626      | NP_000293      | 2606           |  |
| FZD4      | NM_012193 | 297    | 629      | NP_036325      | 2607           |  |
| HLA-B     | NM_005514 | 298    | 630      | NP_005505      | 2608           |  |
| FPR1      | NM_002029 | 300    | 632      | NP_002020      | 2609           |  |
| ODF2      | NM_153437 | 301    | 633      | NP_702915      | 2610           |  |
| IL17C     | NM_013278 | 307    | 639      | NP_037410      | 2611           |  |
| VPS45A    | NM 007259 | 310    | 642      | NP_009190      | 2612           |  |
| HADHB     | NM_000183 | 315    | 647      | NP_000174      | 2613           |  |
| FLJ22757  | NM_024898 | 316    | 648      | NP_079174      | 2614           |  |
| NMES1     | NM_032413 | 319    | 651      | NP_115789      | 2615           |  |
| DMBTI     | NM_007329 | 320    | 652      | NP_015568      | 2616           |  |
| RPS23     | NM_001025 | 321    | 653      | NP_001016      | 2617           |  |
| ZF        | NM_021212 | 322    | 654      | NP_067035      | 2618           |  |
| NFE2L3    | NM_004289 | 323    | 655      | NP 004280      | 2619           |  |
| RAD9      | NM 004584 | 324    | 656      | NP 004575      | 2620           |  |
| DEFCAP    | NM_014922 | 326    | 658      | NP 055737      | 2621           |  |
| IL22      | NM 020525 | 328    | 660      | NP 065386      | 2622           |  |
|           |           |        |          |                |                |  |

| Gene                 | ACC                  | SEQ ID<br>50mer | SEQ ID<br>RNA/cDNA | RefSeq Peptide<br>Accession #                     | SEQ ID Protein |
|----------------------|----------------------|-----------------|--------------------|---------------------------------------------------|----------------|
| CCNI                 | NM 006835            | 330             | 662                | NP 006826                                         | 2624           |
| THBD                 | NM 000361            | 331             | 663                | NP 000352                                         | 2625           |
| CGR19                | NM 006568            | 332             | 664                | NP 006559                                         | 2626           |
| HSRRN18S             | X03205               | 1               | 333                | 141_000555                                        | 12020          |
| HBB                  | NG 000007            | 36              | 368                |                                                   | <del></del>    |
| HLA-DRB              | 140_00007            | 43              | 375                | <del> </del>                                      |                |
| OID 4460             | AF150295             | 85              | 417                |                                                   | <del></del>    |
| KPNA6                | AW021037             | 90              | 422                |                                                   |                |
| OID 4365             | AI114652             | 91              | 423                |                                                   |                |
| IGHM                 | BC032249             | 92              | 424                | +                                                 |                |
| OID 573              | AB040919             | 93              | 425                |                                                   |                |
| OID 3                | AW968823             | 95              | 427                | <del> </del>                                      |                |
| OID 6207             | D20522               | 105             | 437                |                                                   |                |
| OID 4281             | AA053887             | 107             | 439                |                                                   |                |
| OID 7094             | AA033667             | 118             | 450                | <del> </del>                                      |                |
| OID 7605             | AA808018             | 119             | 451                |                                                   |                |
| OID 253              | AK091125             | 121             | 453                | <del></del>                                       |                |
| OID 5350             | AK055687             | 125             | 457                | <del> </del>                                      |                |
| TCRGC2               | M17323               | 126             | 458                | +                                                 |                |
| OID 7016             | BI018696             | 127             | 459                |                                                   |                |
| EV EBV               | D1018090             | 141             | 473                | <del> </del>                                      |                |
| CMV p67              | NC 001347            | 142             | 474                | <del> </del>                                      |                |
| CMV TRL7             | 110_001347           | 143             | 475                | <del> </del>                                      |                |
| EV EBN               |                      | 148             | 480                | +                                                 | -              |
| EV EBNA-LP           |                      | 149             | 481                | <del> </del>                                      | <del></del>    |
| OID 5891             | AW297949             | 155             | 487                | <del> </del>                                      |                |
| OID 6420             | AK090404             | 159             | 491                | · <del> </del>                                    |                |
| OID 4269             | BM727677             | 161             | 493                | <del> </del>                                      |                |
| OID 5115             | A1364926             | 165             | 497                | +                                                 |                |
| SLC9A8               | AB023156             | 166             | 498                | <del> </del>                                      |                |
| OID 1512             | BE618004             | 167             | 499                |                                                   |                |
| OID 6282             | BC041913             | 170             | 502                |                                                   |                |
|                      |                      | 171             | 503                |                                                   | <del></del>    |
| PRO1073<br>OID 7222  | AF001542<br>BG260891 | 172             | 504                |                                                   |                |
|                      |                      | 176             | 508                | +                                                 | -              |
| OID_1551<br>OID_4184 | BE887646<br>X17403   | 180             | 512                |                                                   |                |
|                      |                      | 187             | 519                |                                                   |                |
| OID_7696<br>OID_4173 | AW297325             | 188             | 520                | <del></del>                                       | +              |
| CSF2RB               | X17403               | 189             | 521                |                                                   |                |
| OID 7410             | AL540399             | 190             | 522                | -                                                 |                |
|                      | AW837717<br>X17403   | 191             | 523                |                                                   |                |
| OID_4180<br>OID_5101 |                      | 192             | 524                | <del>                                      </del> |                |
|                      | BG461987             | 192             | 528                |                                                   |                |
| HIAN7<br>OID 6008    | BG772661             | 198             | 530                |                                                   |                |
|                      | AW592876             | 198             | 531                | -                                                 |                |
| OID_4186             | X17403               | 202             | 534                | <u> </u>                                          | +              |
| OID_7057             | 480F8                |                 |                    | <del></del>                                       |                |
| OID_4291             | BC038439             | 203             | 535                | <u> </u>                                          | _              |
| OID_1366             | AW850041             | 204             | 536                |                                                   |                |
| OID_6986             | AK093608             | 212             | 544                | +                                                 |                |
| OID_5962             | AW452467             | 213             | 545                |                                                   |                |
| OID_5152             | AI392805             | 214             | 546                | ļ                                                 | _              |
| HNRPU                | BM467823             | 216             | 548                |                                                   |                |
| PSMD11               | AI684022             | 220             | 552                |                                                   |                |
| OID_1016             | AK024456             | 221             | 553                | <b> </b>                                          | <del> </del>   |
| OID_1309             | AV706481             | 222             | 554                | <del> </del>                                      | +              |
| OID_7582             | AK027866             | 223             | 555                |                                                   |                |

|          |          |        | T        | L              |                |
|----------|----------|--------|----------|----------------|----------------|
|          |          | SEQ ID | SEQ ID   | RefSeq Peptide |                |
| Gene     | ACC      | 50mer  | RNA/cDNA | Accession #    | SEQ ID Protein |
| OID_4317 | AI318342 | 224    | 556      |                |                |
| OID_5889 | AW297843 | 225    | 557      |                |                |
| OID_3687 | W03955   | 227    | 559      |                |                |
| OID_7371 | BE730505 | 228    | 560      |                |                |
| OID_5708 | AW081540 | 231    | 563      |                |                |
| OID_5992 | AW467992 | 232    | 564      |                |                |
| OID_7799 | AW837717 | 235    | 567      |                |                |
| OID_7766 | AW294711 | 237    | 569      |                |                |
| OID_6451 | AL834168 | 242    | 574      |                |                |
| OID_8063 | X68264   | 244    | 576      |                |                |
| OID_5625 | AW063780 | 247    | 579      |                |                |
| OID_6823 | AL832642 | 249    | 581      |                |                |
| OID_7073 | AL705961 | 250    | 582      |                |                |
| OID_5339 | AI625119 | 251    | 583      |                |                |
| OID_4263 | AA136584 | 252    | 584      |                |                |
| MGC26766 | AK025472 | 253    | 585      |                |                |
| OID_6711 | BF968628 | 255    | 587      |                |                |
| OID_5998 | AW468459 | 260    | 592      |                |                |
| OID_6393 | 52B9     | 262    | 594      |                |                |
| RoXaN    | BC004857 | 263    | 595      |                |                |
| OID_6273 | AW294774 | 265    | 597      |                |                |
| OID_4323 | AA744774 | 268    | 600      |                |                |
| OID_5181 | AI400725 | 269    | 601      |                |                |
| OID 6298 | AI948513 | 272    | 604      |                |                |
| OID_357  | 138G5    | 276    | 608      |                |                |
| OID_4239 | BQ022840 | 282    | 614      |                |                |
| OID_6039 | BE502246 | 285    | 617      |                |                |
| OID_4210 | AI300700 | 286    | 618      |                |                |
| OID_7698 | AA243283 | 287    | 619      |                |                |
| OID_4288 | AI378046 | 289    | 621      |                |                |
| OID_5620 | AW063678 | 290    | 622      |                |                |
| OID_7384 | BF475239 | 291    | 623      |                |                |
| OID_1209 | C14379   | 292    | 624      |                |                |
| OID_5128 | AK097845 | 295    | 627      |                |                |
| OID_5877 | AW297664 | 296    | 628      |                |                |
| OID_5624 | AW063921 | 299    | 631      |                |                |
| OID_5150 | AI392793 | 302    | 634      |                |                |
| OID_5639 | AW064243 | 303    | 635      |                |                |
| OID_6619 | 469A10   | 304    | 636      |                |                |
| OID_6933 | AI089520 | 305    | 637      |                |                |
| OID_7049 | 480E2    | 306    | 638      |                |                |
| OID_5866 | BM684739 | 308    | 640      |                |                |
| CD44     | AA916990 | 309    | 641      |                |                |
| OID 4932 | AA457757 | 311    | 643      |                |                |
| OID 7821 | AA743221 | 312    | 644      |                | 1              |
| OID_4916 | AA252909 | 313    | 645      |                |                |
| OID 4891 | AL832329 | 314    | 646      |                |                |
| RAC1     | AK054993 | 317    | 649      |                |                |
| OID 6415 | CA407201 | 318    | 650      |                |                |
| OID 6295 | AI880607 | 325    | 657      |                |                |
| RPL27A   | BF214146 | 327    | 659      |                |                |
|          |          |        |          |                |                |

Table 3: Viral genomes were used to design oligonucleotides for the microarrays. The accession numbers for the viral genomes used are given, along with the gene name and location of the region used for oligonucleotide design.

| Virus                          | Gene Name                       | Genome Location          |
|--------------------------------|---------------------------------|--------------------------|
|                                | Ela                             | 12261542                 |
|                                | EIb_1                           | 32703503                 |
| į                              | E2a_2                           | complement(2408925885)   |
| Adenovirus, type 2             | E3-1                            | 2760929792               |
| Accession #J01917              | E4 (last exon at 3'-end)        | complement(3319332802)   |
|                                | ıx                              | 35764034                 |
|                                | lva2                            | complement(40815417)     |
|                                | DNA Polymerase                  | complement(51875418)     |
|                                | HCMVTRL2 (IRL2)                 | 18932240                 |
|                                | HCMVTRL7 (IRL7)                 | complement(65956843)     |
|                                | HCMVUL21                        | complement(2649727024)   |
|                                | HCMVUL27                        | complement(3283134657)   |
|                                | HCMVUL33                        | 4325144423               |
|                                | HCMVUL54                        | complement(7690380631)   |
| Cytomegalovirus                | HCMVUL75                        | complement(107901110132) |
| (CMV)                          | HCMVUL83                        | complement(119352121037) |
| Accession #X17403              | HCMVUL106                       | complement(154947155324) |
|                                | HCMVUL109                       | complement(157514157810) |
|                                | HCMVUL113                       | 161503162800             |
|                                | HCMVUL122                       | complement(169364170599) |
|                                | HCMVUL123 (last exon at 3'-end) | complement(171006172225) |
|                                | HCMVUS28                        | 219200220171             |
|                                | Exon in EBNA-1 RNA              | 6747767649               |
| P P                            | Exon in EBNA-1 RNA              | 9836498730               |
| Epstein-Barr virus (EBV)       | BRLF1                           | complement(103366105183) |
| Accession # NC 001345          | BZLF1 (first of 3 exons)        | complement(102655103155) |
| Accession # NC_001343          | BMLF1                           | complement(8274384059)   |
|                                | BALF2                           | complement(161384164770) |
|                                | U16/U17                         | complement(2625927349)   |
|                                | U89                             | complement(133091135610) |
|                                | U90                             | complement(135664135948) |
|                                | U86                             | complement(125989128136) |
| i                              | U83                             | 123528123821             |
| n                              | U22                             | complement(3373934347)   |
| Human Herpesvirus 6            | DR2 (DR2L)                      | 7912653                  |
| (HHV6)<br>Accession #NC 001664 | DR7 (DR7L)                      | 56296720                 |
| Accession #INC_001004          | U95                             | 142941146306             |
|                                | U94                             | complement(141394142866) |
|                                | U39                             | complement(5958862080)   |
|                                | U42                             | complement(6905470598)   |
|                                | U81                             | complement(121810122577) |
| l                              | U91                             | 136485136829             |

Table 4: Dependent variables for discovery of gene expression markers of cardiac allograft rejection.

| Dependent       |                                                                                 | Number of<br>Rejection | Number of<br>No-Rejection |
|-----------------|---------------------------------------------------------------------------------|------------------------|---------------------------|
| Variable        | Description                                                                     | Samples                | Samples                   |
| 0 vs 1-4 Bx     | Grade 0 vs. Grades 1-4, local biopsy reading                                    | 65                     | 114                       |
| s0 vs 1B-4 HG   | Stable Grade 0 vs Grades 1B-4, highest grade, Grade 1A not included             | 41                     | 57                        |
| 0-1A vs 1B-4 HG | Grades 0 and 1A vs Grades 1B-4, highest grade.                                  | 121                    | 58                        |
| 0 vs 3A HG      | Grade 0 vs Grade 3A, highest grade. Grades 1A-2 and Grade 3B were not included. | 56                     | 29                        |
| 0 vs 1B-4       | Grade 0 vs Grades 1B-4, highest grade. Grade 1A was not included.               | 57                     | 57                        |
| 0 vs 1A-4       | Grade 0 vs. Grades 1-4, highest grade                                           | 56                     | 123                       |

Table 5: Real-time PCR assay chemistries. Various combinations of reporter and quencher dyes are useful for real-time PCR assays.

| Reporter | Quencher |
|----------|----------|
| FAM      | TAMRA    |
| PAIN     | BHQ1     |
| TET      | TAMRA    |
| 121      | BHQ1     |
| JOE      | TAMRA    |
| JOL      | BHQ1     |
| HEX      | TAMRA    |
| IIDA     | BHQ1     |
| VIC      | TAMRA    |
| 110      | BHQ1     |
| ROX      | BHQ2     |
| TAMRA    | BHQ2     |

Table 6: Real-time PCR results for rejection markers

| Gene<br>Array |       |         |    |     |       |         |    |     |       |          |    |    |
|---------------|-------|---------|----|-----|-------|---------|----|-----|-------|----------|----|----|
| Probe<br>SEQ  |       | Phase   | 1  |     |       | Phase 2 | 2  |     |       | All Data | а  |    |
| ID            | Fold  | t-Test  | NR | R   | Fold  | t-Test  | NR | R   | Fold  | t-Test   | NR | R  |
| 95            | 1.093 | 0.36084 | 10 | 8   |       |         |    |     | 0.935 | 0.31648  | 21 | 13 |
| 111           | 1.415 | 0.0095  | 12 | 10  |       |         |    |     | 1.415 | 0.0095   | 12 | 10 |
| 79            | 1.822 | 0.01146 | 6  | 7   | 0.63  | 0.04185 | 19 | 15  | 0.72  | 0.05632  | 35 | 26 |
| 3016          | 1.045 | 0.41017 | 12 | 10  |       |         |    |     | 1.001 | 0.49647  | 16 | 15 |
| 75            | 0.84  | 0.36674 | 11 | 8   | 0.595 | 0.15788 | 16 | 13  | 0.628 | 0.08402  | 34 | 26 |
| 2765          | 1.653 | 0.01508 | 10 | 10  | 0.776 | 0.11082 | 19 | 14  | 0.956 | 0.37421  | 38 | 29 |
| 97            |       |         |    |     | 0.75  | 0.26201 | 8  | 8   | 0.543 | 0.11489  | 17 | 12 |
| 2635          | 1.553 | 0.00533 | 13 | 10  | 0.834 | 0.16853 | 18 | _15 | 0.988 | 0.46191  | 36 | 27 |
| 96            | 1.495 | 0.06288 | 13 | 9   | 1.157 | 0.27601 | 18 | 15  | 1.155 | 0.21096  | 33 | 25 |
| 100           | 1.43  | 0.166   | 10 | 5   |       |         |    |     | 1.408 | 0.14418  | 12 | 8  |
| 2766          | 0.956 | 0.43918 | 12 | 10  | 0.989 | 0.48275 | 19 | 14  | 0.978 | 0.45101  | 31 | 24 |
| 2726          | 1.037 | 0.38205 | 11 | 9   |       |         |    |     | 1.037 | 0.38205  | 11 | 9  |
| 2768          | 1.211 | 0.02386 | 9  | 9   |       |         |    |     | 1.211 | 0.02386  | 9  | 9  |
| 94            | 1.601 | 0.02418 | 11 | 10  |       |         |    |     | 1.831 | 0.00094  | 17 | 15 |
| 2769          | 1.133 | 0.23094 | 12 | 9   | 1.081 | 0.19632 | 19 | 15  | 1.101 | 0.15032  | 31 | 24 |
| 2770          | 1.734 | 0.00017 | 13 | 10  |       |         |    |     | 1.381 | 0.01323  | 20 | 15 |
| 2647          | 1.557 | 0.04502 | 10 | 8   |       |         |    |     | 1.557 | 0.04502  | 10 | 8  |
| 2771          | 1.99  | 0.05574 | 13 | _ 9 |       |         |    |     | 1.52  | 0.11108  | 17 | 13 |
| 82            | 2.029 | 0.00022 | 8  | 5   | 1.287 | 0.13022 | 18 | 14  | 1.256 | 0.05356  | 33 | 23 |
| 83            | 1.546 | 0.05865 | 13 | 10  | 0.577 | 0.03934 | 18 | 14  | 0.795 | 0.11993  | 39 | 26 |
| 98            |       |         |    |     | 0.716 | 0.13    | 19 | 15  | 0.577 | 0.03352  | 19 | 14 |
| 36            | 1.605 | 0.09781 | 12 | 8   | 2.618 | 0.01227 | 18 | 11  | 2.808 | 0.00015  | 38 | 23 |
| 80            | 5.395 | 0.00049 | 9  | 6   | 4.404 | 0.05464 | 10 | 10  | 2.33  | 0.02369  | 29 | 18 |
| 89            |       |         |    |     |       |         |    |     | 0.295 | 0.02856  | 6  | 6  |
| 77            | 1.894 | 0.01602 | 10 | 10  | 0.537 | 0.01516 | 19 | 15  | 0.863 | 0.21987  | 35 | 29 |
| 2772          | 1.583 | 0.06276 | 10 | 6   | 0.714 | 0.13019 | 13 | 10  | 1.136 | 0.28841  | 28 | 17 |
| 2773          | 1.391 | 0.09236 | 11 | 6   |       |         |    |     | 1.391 | 0.09236  | 11 | 6  |
| 2774          | 1.59  | 0.00022 | 13 | 10  |       |         |    |     | 1.59  | 0.00022  | 13 | 10 |
| 102           | 1.245 | 0.05079 | 11 | 10  | 1.018 | 0.42702 | 17 | 15  | 1.117 | 0.08232  | 32 | 28 |
| 2775          | 0.719 | 0.16243 | 11 | 9   |       |         |    |     | 0.719 | 0.16243  | 11 | 9  |
| 2776          | 1.257 | 0.0516  | 12 | 9   |       |         |    |     | 1.257 | 0.0516   | 12 | 9  |
| 2667          | 1.343 | 0.03806 | 13 | 9   |       |         |    |     | 1.13  | 0.15962  | 20 | 12 |
| 115           | 1.199 | 0.26299 | 11 | 9   |       |         |    |     | 1.199 | 0.26299  | 11 | 9  |
| 2669          | 2.146 | 0.00813 | 12 | 10  |       |         |    |     | 1.296 | 0.14285  | 18 | 12 |
| 2777          | 1.142 | 0.20245 | 13 | 10  |       |         |    |     | 1.142 | 0.20245  | 13 | 10 |
| 78            | 1.324 | 0.01985 | 12 | 9   | 0.967 | 0.33851 | 18 | 14  | 1.007 | 0.46864  | 38 | 24 |
| 2670          | 1.388 | 0.11209 | 13 | 9   |       |         |    |     | 1.388 | 0.11209  | 13 | 9  |
| 88            | 1.282 | 0.14267 | 7  | 7   | 0.995 | 0.48504 | 17 | 14  | 1.008 | 0.47383  | 30 | 23 |
| 2778          | 1.128 | 0.19528 | 13 | 9   |       |         |    |     | 1.128 | 0.19528  | 13 | 9  |
| 2779          | 1.991 | 0.02513 | 9  | 5   | 0.642 | 0.05002 | 18 | 14  | 0.868 | 0.26275  | 32 | 21 |
| 2780          | 1.597 | 0.00355 | 13 | 10  | 0.802 | 0.11649 | 17 | 14  | 1.013 | 0.45521  | 38 | 26 |
| 2781          |       |         |    |     | 0.492 | 0.01344 | 12 | 12  | 0.819 | 0.25555  | 17 | 15 |

Table 6: Real-time PCR results for rejection markers

| Gene<br>Array |       |         |     |     |          |         |    |     |          |         |    |            |
|---------------|-------|---------|-----|-----|----------|---------|----|-----|----------|---------|----|------------|
| Probe         |       | Phase ' |     |     | Phase 2  |         |    |     | All Data |         |    |            |
| SEQ           | Fold  | t-Test  | NR  | R   |          |         |    |     |          | NR      | R  |            |
| 101           | 10.0  |         |     |     | 0.652    | 0.04317 | 19 | 15  | 0.773    | 0.09274 | 29 | 22         |
| 106           | 1.234 | 0.19141 | 13  | 8   | 5.002    | 0.0     |    |     | 1.234    | 0.19141 | 13 | 8          |
| 2683          | 1.598 | 0.03723 | 8   | 8   | 0.633    | 0.03893 | 14 | 10  | 0.86     | 0.18731 | 28 | 22         |
| 2782          | 1.213 | 0.03305 | 12  | 10  | 0.912    | 0.07465 | 19 | 15  | 0.969    | 0.31955 | 39 | 27         |
| 87            |       |         |     |     | 4.947    | 0.02192 | 18 | 15  | 3.857    | 0.00389 | 30 | 23         |
| 99            | 0.639 | 0.06613 | 7   | 5   | 0.839    | 0.30304 | 16 | 8   | 0.694    | 0.04347 | 27 | 15         |
| 2692          | 0.801 | 0.21236 | 12  | 8   | 0.893    | 0.33801 | 18 | 15  | 0.782    | 0.06938 | 38 | 25         |
| 104           | 2.292 | 0.0024  | 11  | 8   | 0.621    | 0.05152 | 19 | 15  | 0.913    | 0.34506 | 30 | 23         |
| 76            | 1.809 | 0.00893 | 9   | 8   | 0.693    | 0.13027 | 13 | 8   | 1.274    | 0.11887 | 28 | 19         |
| 91            | 1.969 | 0.07789 | 11  | 8   | 4.047    | 0.00812 | 19 | 13  | 3.535    | 0.00033 | 37 | 23         |
| 92            | 2.859 | 0.05985 | 11  | 8   | 9.783    | 0.03047 | 18 | 14  | 8.588    | 0.00192 | 37 | 24         |
| 85            | 0.95  | 0.43363 | 12  | 8   | 0.699    | 0.0787  | 13 | 13  | 0.633    | 0.01486 | 33 | 24         |
| 126           | 1.76  | 0.02199 | _11 | 10  |          |         |    |     | 1.76     | 0.02199 | 11 | 10         |
| 2783          | 0.945 | 0.46023 | 10  | 5   | 0.852    | 0.26701 | 17 | 10  | 0.986    | 0.48609 | 29 | _ 17       |
| 2707          | 1.055 | 0.31435 | 13  | 10  |          |         |    |     | 1.055    | 0.31435 | 13 | 10         |
| 123           | 1.154 | 0.11677 | 11  | 10  |          |         |    |     | 1.154    | 0.11677 | 11 | 10         |
| 84            | 1.786 | 0.00255 | 9   | 6   | 0.523    | 0.04965 | 18 | 14  | 0.785    | 0.14976 | 34 | 22         |
| 2784          | 2.12  | 0.00022 | 12  | 10  | 0.498    | 0.01324 | 18 | 13  | 0.935    | 0.37356 | 37 | 25         |
| 2785          | 1.181 | 0.1377  | 10  | 10  |          |         |    |     | 1.181    | 0.1377  | 10 | 10         |
| 124           | 1.353 | 0.08122 | 11  | 9   |          |         |    |     | 1.353    | 0.08122 | 11 | 9          |
| 90            | 1.355 | 0.02288 | 13  | 10  | 0.973    | 0.39248 | 15 | 13  | 1.125    | 0.08671 | 28 | <b>2</b> 3 |
| 2786          | 1.306 | 0.0773  | 12  | 10  |          |         |    |     | 1.306    | 0.0773  | 12 | 10         |
| 2787          | 1.086 | 0.32378 | 12  | 10  |          |         |    |     | 1.086    | 0.32378 | 12 | 10         |
| 3018          | 1.523 | 0.1487  | 12  | 10  | 0.84     | 0.27108 | 18 | 13  | 1.101    | 0.33276 | 36 | 26         |
| 125           | 1.252 | 0.05782 | 11  | 10  |          |         |    |     | 1.252    | 0.05782 | 11 | 10         |
| 2788          | 1.255 | 0.1221  | 11  | 10  |          |         |    |     | 1.255    | 0.1221  | 11 | 10         |
| 2789          | 1.152 | 0.31252 | 9   | 6   | <u> </u> |         |    |     | 1.152    | 0.31252 | 9  | 6          |
| 3019          | 1.268 | 0.21268 | 6   | 7   | 0.981    | 0.45897 | 16 | 10  | 1.012    | 0.46612 | 29 | 19         |
| 2790          | 0.881 | 0.17766 | 11  | 8   | 1.22     | 0.04253 | 18 | 10  | 0.966    | 0.33826 | 40 | 23         |
| 2791          | 1.837 | 0.00553 | 13  | 10  |          |         |    |     | 1.837    | 0.00553 | 13 | 10         |
| 3020          | 1.271 | 0.10162 | 12  | 10  | 0.853    | 0.10567 | 19 | 13  | 0.965    | 0.36499 | 36 | 25         |
| 2792          | 1.504 | 0.05096 | 12  | 10  | 0.713    | 0.02979 | 19 | 15  | 0.846    | 0.16914 | 31 | 25         |
| 2793          | 1.335 | 0.03133 | 12  | 10  | 0.883    | 0.18577 | 19 | 15  | 0.916    | 0.23865 | 36 | 27         |
| 2794          | 1.936 | 0.00176 | 13  | _ 9 | 0.717    | 0.09799 | 19 | _14 | 0.877    | 0.22295 | 40 | 25         |
| 2752          | 1.499 | 0.03077 | 12  | 8   | 0.808    | 0.15363 | 17 | 13  | 1.004    | 0.48903 | 36 | 23         |
| 2795          | 0.815 | 0.24734 | 8   | 5   | 0.965    | 0.41772 | 19 | 15  | 0.938    | 0.3265  | 32 | 22         |
| 119           | 1.272 | 0.20279 | 10  | 10  |          |         | L  | L   | 1.272    | 0.20279 | 10 | 10         |

Table 7: Significance analysis for microarrays for identification of markers of acute rejection. In each case the highest grade from the 3 pathologists was taken for analysis. No rejection and rejection classes are defined. Samples are either used regardless of redundancy with respect to patients or a requirement is made that only one sample is used per patient or per patient per class. The number of samples used in the analysis is given and the lowest FDR achieved is noted.

| No Rejection    | Rejection                        | # Samples | Low FDR |  |  |  |  |  |  |  |
|-----------------|----------------------------------|-----------|---------|--|--|--|--|--|--|--|
| All Samples     |                                  |           |         |  |  |  |  |  |  |  |
| Grade 0         | Grade 3A-4                       | 148       | 1       |  |  |  |  |  |  |  |
| Grade 0         | Grade 1B, 3A-4                   | 158       | 1.5     |  |  |  |  |  |  |  |
| Non-redundant v | vithin class                     |           |         |  |  |  |  |  |  |  |
| Grade 0         | Grade 3A-4                       | 86        | 7       |  |  |  |  |  |  |  |
| Grade 0         | Grade 1B, 3A-4                   | 93        | 16      |  |  |  |  |  |  |  |
| Non-redundant ( | Non-redundant (1 sample/patient) |           |         |  |  |  |  |  |  |  |
| Grade 0         | Grade 3A-4                       | 73        | 11      |  |  |  |  |  |  |  |

Table 8: Renal rejection tissue gene expression SAM analysis

| Array    | Gene                                                   | FDR    | Protein     | Leukocyte   | Secreted     |
|----------|--------------------------------------------------------|--------|-------------|-------------|--------------|
| probe ID | Gene                                                   | ·      | SEQ ID      | expression  | Secreteu     |
|          | CD69 antigen (p60, early T-cell activat                | 1.5625 | 2925        |             |              |
|          | Ras association (RalGDS/AF-6)                          | 1.5625 | 2926        |             |              |
|          | CD33 antigen (gp67) (CD33), mRNA 1.                    |        | 2927        | +           |              |
|          |                                                        |        | 2928        |             |              |
|          | Ras association (RalGDS/AF-6) domain fa 1 EST, 5 end 1 |        | 2020        |             |              |
|          | mRNA for KIAA0209 gene, partial cds /cd                | 1.5625 | 2929        |             |              |
|          | leupaxin (LPXN), mRNA /cds=(93,1253)                   | 1.5625 | 2930        | +           |              |
|          | c- EST 3 end /clone=IMAGE:                             | 2.1111 | 2330        |             |              |
|          | c- insulin induced gene 1 (INSIG1), mRNA               | 2.2    |             |             |              |
|          | chemokine (C-X-C motif) receptor 3                     | 2.8125 | 2931        |             |              |
|          | IL2-inducible T-cell kinase (ITK), mRNA                | 2.8125 | 2932        | +           |              |
|          | glioma pathogenesis-related protein (RT                | 2.8125 | 2933        | <del></del> |              |
|          | c- nuclear receptor subfamily 1, group I               | 2.8125 | 2000        |             |              |
|          | death effector filament-forming Ced-4-I                | 2.8125 | 2934        |             |              |
|          | EST cDNA, 3 end                                        | 2.8125 | 2001        |             |              |
|          | c- chemokine (C-X-C motif), receptor 4                 | 3.1316 | 2935        | +           |              |
|          | c- EST 3 end /clone=IMAGE:                             | 3.1316 | 2000        | ·           |              |
|          | hypothetical protein FLJ20647 (FLJ20647                | 3.1316 | 2936        |             |              |
|          | tumor necrosis factor, alpha-induced pr                | 3.525  | 2937        |             |              |
|          | protein tyrosine phosphatase, receptor                 | 3.8077 | 2938        | _           |              |
|          | 7f37q03.x1 cDNA, 3 end /clone=IMAGE:                   | 3.8077 | 2550        | ļ           | <b></b>      |
|          | c- EST372075 cDNA                                      | 3.8077 | <del></del> |             | <b></b>      |
|          | molecule possessing ankyrin repeats ind                | 3.8077 | 2939        |             | <del> </del> |
|          | granzyme B (granzyme 2, cytotoxic T-lym                | 3.8077 | 2940        |             | +            |
|          | lectin-like NK cell receptor (LLT1), mR                | 3.8077 | 2941        |             | -            |
|          | c-107G11                                               | 3.9    | 2341        |             |              |
|          | c- EST, 5 end /clone=IMAGE                             | 3.9    | -           |             |              |
|          | SAM domain, SH3 domain and nuclear                     | 3.9    | 2942        |             |              |
|          | phosphodiesterase 4B, cAMP-specific                    | 3.9    | 2943        |             | +            |
|          | small inducible cytokine A5 (RANTES)                   | 4.5645 | 2944        | +           | +            |
|          | tumor necrosis factor receptor superfam                | 4.8286 | 2945        |             | · .          |
|          | B-cell lymphoma/leukaemia 11B (BCL11B)                 | 4.8286 | 2946        | _           |              |
|          | phospholipase A2, group VII (platelet-a                | 4.8286 | 2947        |             | +            |
|          | phosphatidylinositol 3-kinase catalytic                | 4.8286 | 2948        |             | <del></del>  |
|          | AV659177 cDNA, 3 end                                   | 4.9028 | 2540        |             |              |
|          | regulator of G-protein signalling 10 (R                | 5.0238 | 2949        |             |              |
|          | c- integral membrane protein 2A (ITM2A),               | 5.0238 | 2950        |             |              |
|          | c- interferon consensus sequence binding               | 5.0238 | 2330        |             |              |
|          | HSPC022 protein (HSPC022), mRNA                        | 5.0238 | 2951        |             |              |
|          | c- xj98c03.x1 NCI CGAP Co18 cDNA                       | 5.0238 | 2001        |             |              |
|          | caspase recruitment domain protein 9 (L                | 5.0238 | 2952        |             |              |
|          | c- small inducible cytokine A4 (homologo               | 5.1395 | 2953        | +           | +            |
|          | major histocompatibility complex, class                | 5.15   | 2954        |             |              |
|          | c-107H8                                                | 5.15   | 2304        |             |              |
|          | CD72 antigen (CD72), mRNA                              | 5.15   | 2955        | +           |              |
|          | heat shock 70kD protein 6 (HSP70B)                     | 5.15   | 2956        |             |              |
|          | bridging integrator 2 (BIN2), mRNA /cds                | 5.15   | 2957        |             |              |
|          | UI-H-BW0-aiy-b-10-0-UI.s1 cDNA, 3 end                  | 5.15   | 2001        |             | <b> </b>     |
|          | c- EST380762 cDNA                                      | 5.15   |             |             |              |
|          | FKBPL                                                  | 5.15   | 2958        |             |              |
|          | c- chromobox homolog 3 (DM)                            | 5.15   | 2000        |             | -            |
|          | basement membrane-induced gene(ICB-1)                  | 5.15   | 2959        |             | -            |
|          | Lysosomal-assoc. multispanning memb                    | 5.15   | 2960        |             |              |
| 2/50     | Lyavavinarassuc. muluspanning memb                     | 0.10   | 1 2500      |             |              |

Table 8: Renal rejection tissue gene expression SAM analysis

|          |                                             | lenn.  |              |              |              |
|----------|---------------------------------------------|--------|--------------|--------------|--------------|
| Array    | Gene                                        | FDR    | Protein      |              | Secreted     |
| probe ID |                                             |        | SEQ ID       | expression   |              |
|          | 174D1                                       | 5.15   |              |              |              |
|          | c- AV716627 cDNA, 5 end                     | 5.15   |              |              |              |
|          | solute carrier family 17 (sodium phosph     | 5.15   | 2961         |              |              |
|          | 9 c- asparaginyl-tRNA synthetase (NARS) 5   |        |              |              |              |
|          | major histocompatibility complex, class     | 5.15   | 2962         |              |              |
|          | mRNA for T-cell specific protein /cds       | 5.15   | 2963         | +            |              |
|          | c-EST, 3 end                                | 5.2295 |              |              |              |
|          | Express cDNA library cDNA 5                 | 5.2903 |              |              |              |
|          | c- 601571679F1 cDNA, 5 end                  | 5.3385 | 2964         |              |              |
|          | qg78c05.x1 cDNA, 3 end /clone               | 5.3385 | 2965         |              |              |
|          | interleukin 2 receptor gamma chain          | 5.3385 | 2966         | +            |              |
| 2751     | 7264, lectin, galactoside-binding, soluble  | 5.4167 | 2967         |              | +            |
| 2629     | 8, cDNA: FLJ21559 fis, clone COL06406       | 5.5299 | 2968         |              |              |
|          | mRNA; cDNA DKFZp434E0516                    | 5.5588 | 2969         |              |              |
| 2741     | c- hexokinase 2 (HK2), mRNA                 | 5.5986 |              |              |              |
| 41       | Similar to major histocompatibility antigen | 5.5986 | 2970         |              |              |
| 2691     | CD5 antigen (p56-62) (CD5)                  | 5.5986 | 2971         |              |              |
| 2726     | c- 602650370T1 cDNA, 3                      | 5.6014 |              |              |              |
| 2722     | c- EST cDNA clone                           | 5.6014 |              |              |              |
| 2689     | interleukin-2 receptor                      | 5.6014 | 2972         |              |              |
| 2734     | c- nuclear receptor subfamily 1, group I    | 5.6667 |              |              |              |
|          | pre-B-cell colony-enhancing factor          | 5.7566 | 2973         |              | +            |
|          | postmeiotic segregation increased           | 5.7756 | 2974         |              |              |
|          | protein tyrosine phosphatase, receptor      | 5.7756 | 2975         |              |              |
|          | butyrophilin, subfamily 3, member A2        | 5.8165 | 2976         |              |              |
|          | c- EST 3 end                                | 5.9048 |              |              |              |
| 2730     | EST 3 end /clone=IMAGE                      | 5.9048 |              |              |              |
|          | high affin. immunoglobulin epsilon recept.  | 5.9048 | 2977         |              |              |
|          | encoding major histocompatibility comple    | 5.9048 | 2978         |              |              |
|          | c- EST 3 end                                | 5.9048 |              |              |              |
| 2698     |                                             | 6.0353 |              |              |              |
|          | interferon regulatory factor 1 (IRF1),      | 6.0988 | 2979         |              |              |
|          | allograft inflammatory factor 1 (AIF1),     | 6.1379 | 2980         |              |              |
|          | platelet activating receptor homolog (H     | 6.3182 | 2981         | <del></del>  |              |
| 2704     | c- EST 3 end /clone=IMAGE:                  | 7.0337 | 2001         |              |              |
|          | pim-2 oncogene (PIM2), mRNA                 | 7.1222 | 2982         |              | +            |
|          | proteoglycan 1, secretory granule (PRG1     | 7.375  | 2983         |              | +            |
|          | mRNA for KIAA0870 protein, partial cds      | 7.375  | 2984         |              |              |
|          | c- EST, 5 end /clone=IMAGE                  | 7.375  | 2304         |              |              |
|          | FYN-binding protein (FYB-120/130) (FYB)     | 7.375  | 2985         | <del> </del> |              |
|          | major histocompatibility complex, class     | 7.375  | 2986         |              | -            |
|          | c- EST, 3 end /clone=IMAGE:                 | 7.375  | 2300         |              | <del> </del> |
| 2702     | c- hypothetical protein MGC4707             | 7.634  |              |              | <del> </del> |
|          | hypothetical protein MGC4707                | 8.1117 | 2987         |              |              |
|          |                                             | 8.1117 | 2907         |              |              |
|          | EST, 3 end                                  | 8.1117 | <del></del>  |              |              |
| 2/15     | hypothetical protein FLJ10842               |        | <del> </del> |              |              |
|          | c- EST cDNA, 3 end                          | 8.1117 | <b></b> -    | <del></del>  |              |
|          | hexokinase 2 (HK2), mRNA                    | 8.1117 | 0000         |              |              |
|          | colony stimulating factor 3 receptor        | 8.1117 | 2988         |              |              |
|          | RNA binding motif protein, X chrom          | 8.2788 |              |              |              |
|          | Src-like-adapter (SLA), mRNA                | 8.3048 | 2989         |              |              |
|          | c- major histocompatibility complex         | 8.467  |              |              |              |
| 2712     | histamine receptor H2 (HRH2)                | 8.8583 | 2990         |              |              |

Table 8: Renal rejection tissue gene expression SAM analysis

| Array    | Gene                                     | FDR    |      | Leukocyte  | Secreted |
|----------|------------------------------------------|--------|------|------------|----------|
| probe ID |                                          |        |      | expression |          |
| 2659     | hemopoietic cell kinase (HCK)            | 8.8583 | 2991 |            |          |
| 2654     | xanthene dehydrogenase (XDH)             | 8.8583 | 2992 |            |          |
| 2636     | Arabidopsis root cap 1                   | 8.8583 | 2993 |            |          |
| 2639     | fatty acid binding protein 1, liver      | 8.8583 |      |            |          |
| 2690     | adenosine deaminase (ADA)                | 8.8583 | 2994 |            |          |
| 2705     | c- EST, 3 end                            | 8.8583 | 2995 |            |          |
| 2685     | hypothetical protein MGC10823            | 8.8583 | 2996 |            |          |
|          | membrane-spanning 4-domains,             | 8.8583 | 2997 |            |          |
|          | rearranged immunoglobulin mRNA for mu    | 8.8583 |      |            | +        |
| 2648     | protein tyrosine kinase related mRNA     | 8.8583 |      |            |          |
| 2650     | major histocompatibility complex, class  | 8.8583 | 2998 |            |          |
| 2720     | c- EST 3 end /clone=IMAGE:               | 8.8583 |      |            |          |
| 2660     | major histocompatibility complex, class  | 8.8583 | 2999 |            |          |
| 2666     | BCL2-related protein A1 (BCL2A1), mRNA   | 9.1446 | 3000 |            |          |
| 2699     | c-EST                                    | 9.4767 |      |            | r.       |
| 2633     | interleukin 4 receptor                   | 9.4767 | 3001 |            |          |
| 74       | tumor necrosis factor (ligand) superfam  | 9.4767 | 3002 |            |          |
| 2672     | interferon-induced, hepatitis C-assoc.   | 9.4767 | 3003 |            |          |
| 2642     | cDNA FLJ20673 fis, clone KAIA4464        | 9.4767 | 3004 |            |          |
| 2682     | VNN3 protein (HSA238982), mRNA           | 9.4767 | 3005 |            | -        |
| 2655     | cathepsin K (pycnodysostosis) (CTSK)     | 9.4767 | 3006 |            |          |
| 2630     | Integrin, alpha L (CD11A (p180), lymphoc | 9.4767 | 3007 |            |          |
| 2745     | EST, 5 end                               | 9.4885 | 3008 |            |          |
| 2643     | nuclear receptor subfamily 1, group I,   | 9.625  |      |            |          |
| 2694     | CDW52 antigen (CAMPATH-1)                | 9.625  | 3009 |            |          |
| 2749     | 6977, c-178F5                            | 9.6903 | 3010 |            |          |
| 2665     | small inducible cytokine subfamily A     | 9.6903 | 3011 |            |          |
| 2649     | signal transducer and activator          | 9.7878 | 3012 |            |          |
| 2637     | 324.                                     | 9.7878 |      |            |          |
| 2634     | 70 activation (Act-2) mRNA               | 9.7878 | 3013 |            |          |
|          | coagulation factor VII                   | 9.7878 | 3014 |            |          |
|          | integrin, beta 2 (antigen CD18 (p95)     | 9.7878 | 3015 |            |          |
|          | EST 3' end                               | 9.8321 |      |            |          |
|          |                                          | -      |      |            |          |
|          |                                          |        |      |            |          |

Table 9

| Array<br>Probe<br>SEQ<br>ID | Gene  | Gene Name                                                                                   | mRNA<br>Accession # | RefSeq<br>Peptide<br>Accession # | Current<br>UniGene<br>Cluster<br>(Build 156) | Localization | Function                                                                                                                                                                                                                                                |
|-----------------------------|-------|---------------------------------------------------------------------------------------------|---------------------|----------------------------------|----------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 111                         | 1L15  | Interleukin 15                                                                              | NM_000585           | NP_000576                        | Hs.168132                                    | Secreted     | T-cell activation and proliferation                                                                                                                                                                                                                     |
| 79                          | PRFI  | Perforin 1 (porc<br>forming protein)                                                        | NM_005041           | NP_005032                        | Hs.2200                                      | Sccreted     | CD8, CTL effector;<br>channel-forming protein<br>capable of lysing non-<br>specifically a variety of<br>target cells; clearance of<br>virally infected host cells<br>and tumor cells;                                                                   |
| 110                         | IL17  | Interleukin 17<br>(cytotoxic T-<br>lymphocyte-<br>associated serine<br>esterase 8)          | NM_002190           | -                                | Hs.41724                                     | Secreted     | Induces stromal cells to produce proinflammatory and hematopoietic cytokines; enhances ILG, ILB and ICAM-1 expression in fibroblasts; osteoclastic bone resorption in RA; expressed in only in activated CD4+T cells                                    |
| 75                          | IL8   | Interleukin 8                                                                               | NM_000584           | NP_000575                        | Hs.624                                       | Secreted     | Proinflammatory cytokine                                                                                                                                                                                                                                |
| 120                         | CXCLI | Chemokine (C-X-<br>C motif) ligand 1<br>(melanoma growth<br>stimulating<br>activity, alpha) | NM_001511           |                                  | Hs.789                                       | Secreted     | Neurogenesis, immune<br>system development,<br>signaling                                                                                                                                                                                                |
| 113                         | IFNG  | Interferon, gamma                                                                           | NM_000619           | NP_000610                        | Hs.856                                       | Secreted     | Antiviral defense and<br>immune activation                                                                                                                                                                                                              |
| 100                         | IL2   | Interleukin 2                                                                               | NM_000586           | NP_000577                        | Hs.89679                                     | Secreted     | Promotes growth of B<br>and T cells                                                                                                                                                                                                                     |
| 4                           | B2M   | beta 2<br>microglobulin                                                                     | NM_004048           | NP_004039                        | Hs.75415                                     | Secreted     |                                                                                                                                                                                                                                                         |
| 98                          | CCL5  | Chemokine (C-C<br>motif) ligand 5<br>(RANTES,<br>SCYA5)                                     | NM_002985           | NP_002976                        |                                              | Secreted     | Chemoattractant for<br>monocytes, memory T<br>helper cells and<br>eosinophils; causes<br>release of histamine<br>from basophils and<br>activates eosinophils;<br>One of the major HIV-<br>suppressive factors<br>produced by CD8+ cells                 |
| 112                         | IL10  | Interleukin 10                                                                              | NM_000572           | NP_000563                        | Hs. 193717                                   | Secreted     | Chemotactic factor for CD8+T cells; down-regulates expression of Th1 cytokines, MHC class Il Ags, and costimulatory molecules on macrophages; enhances B cell survival, proliferation, and antibody production; blocks NF kappa B, JAK-STAT regulation; |
| 80                          | IL4   | Interleukin 4                                                                               | NM_000589           | NP_000580                        | Hs.73917                                     | Secreted     | TH2, cytokine,<br>stimulates CTL                                                                                                                                                                                                                        |
| 2773                        | 1L7   | Interleukin 7                                                                               | NM_000880           | NP_000871                        | Hs.72927                                     | Secreted     | Proliferation of<br>lymphoid progenitors                                                                                                                                                                                                                |

Table 9

| Array<br>Probe<br>SEQ<br>ID | Gene     | Gene Name                                                                                                                | mRNA<br>Accession# | RefSeq<br>Peptide<br>Accession # | Current<br>UniGene<br>Cluster<br>(Build 156) | Localization                            | Function                                                                                                                    |
|-----------------------------|----------|--------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 109                         | CXCL10   | Chemokine (C-X-<br>C motif) ligand 10,<br>SCYB10                                                                         | NM_001565          | NP_001556                        | Hs.2248                                      | Secreted                                | Stimulation of<br>monocytes; NK and T<br>cell migration,<br>modulation of adhesion<br>molecule expression                   |
| 2665                        | CCL17    | Chemokine (C-C<br>motif) ligand 17                                                                                       | NM_002987          |                                  | Hs.66742                                     | Secreted                                | T cell development,<br>trafficking and activation                                                                           |
| 101                         | KLRF1    | Killer cell lectin-<br>like receptor<br>subfamily F,<br>member I                                                         | NM_016523          | NP_057607                        | Hs.183125                                    | Secreted                                | Induction of IgE, IgG4,<br>CD23, CD72, surface<br>IgM, and class II MHC<br>antigen in B cells                               |
| 99                          | IL6      | Interleukin 6                                                                                                            | NM_000600          | NP_000591                        | Hs.93913                                     | Secreted                                | B cell maturation                                                                                                           |
| 104                         | CCL4     | Chemokine (C-C<br>motif) ligand 4                                                                                        | NM_002984          | NP_002975                        | Hs.75703                                     | Secreted                                | Inflammatory and<br>chemokinetic properties;<br>one of the major HIV-<br>suppressive factors<br>produced by CD8+ T<br>cells |
| 76                          | GZMB     | Granzyme B<br>(granzyme 2,<br>cytotoxic T-<br>lymphocyte-<br>associated serine<br>esterase I)                            | NM_004131          | NP_004122                        |                                              | Secreted                                | Apoptosis; CD8, CTL effector                                                                                                |
| 2785                        | OID_4789 | KIAA0963 protein                                                                                                         | NM_014963          | NP_055778                        | Hs.7724                                      | Secreted                                | Proinflammatory;<br>chemoattraction and<br>activation of neutrophils                                                        |
| 2791                        | XCLI     | Chemokine (C<br>motif) ligand 1<br>(SCYC2)                                                                               | NM_002995          | NP_002986                        | Hs.3195                                      | Secreted                                | Chemotactic factor for<br>lymphocytes but not<br>monocytes or neutrophils                                                   |
| 130                         | PRDM1    | PR domain<br>containing 1, with<br>ZNF domain                                                                            | NM_001198          | NP_001189                        | Hs.388346                                    | Nuclear                                 | Transcription factor;<br>promotes B cell<br>maturation, represses<br>human beta-IFN gene<br>expression                      |
| 2781                        | TBX21    | T-box 21                                                                                                                 | NM_013351          | NP_037483                        | Hs.272409                                    | Nuclear                                 | TH1 differentiation,<br>transcription factor                                                                                |
| 88                          | MTHFD2   | Methylene<br>tetrahydrofolate<br>dehydrogenase<br>(NAD+<br>dependent),<br>methenyltetrahydr<br>ofolate<br>cyclohydrolase | NM_006636          | NP_006627                        | Hs.   54672                                  | Mitochondrial                           | Folate metabolism                                                                                                           |
| 103                         | IL2RA    | Interleukin 2<br>receptor, alpha                                                                                         | NM_000417          | NP_000408                        | Hs.1724                                      | Membrane-<br>bound and<br>soluble forms | T cell mediated immune response                                                                                             |
| 77                          | TNFSF6   | Tumor necrosis<br>factor (ligand)<br>superfamily,<br>member 6                                                            | NM_000639          | NP_000630                        | Hs.2007                                      | Membrane-<br>bound and<br>soluble forms | CD8, CTL effector;<br>proapoptotic                                                                                          |
| 115                         | CD8B1    | CD8 antigen, beta<br>polypeptide 1<br>(p37)                                                                              | NM_004931          | NP_004922                        | Hs.2299                                      | Membrane-<br>bound and<br>soluble forms | CTL mediated killing                                                                                                        |
| 128                         | PTGS2    | Prostaglandin-<br>endoperoxide<br>synthase 2<br>(prostaglandin<br>G/H synthase and<br>cyclooxygenase)                    | NM_000963          | NP_000954                        | Hs.196384                                    | Membrane-<br>associated                 | Angiogenesis, cell<br>migration, synthesis of<br>inflammatory<br>prostaglandins                                             |

Table 9

| Array<br>Probe<br>SEQ<br>ID | Gene   | Gene Name                                                                                                  | mRNA<br>Accession # | RefSeq<br>Peptide<br>Accession # | Current<br>UniGene<br>Cluster<br>(Build 156) | Localization                         | Function                                                                                                             |
|-----------------------------|--------|------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 89                          | TAPI   | Transporter 1,<br>ATP-binding<br>cassette, sub-<br>family B<br>(MDR1/TAP)                                  | NM_000593           | NP_000584                        | Hs.352018                                    | ER membrane                          | Transports antigens into<br>ER for association with<br>MHC class I molecules                                         |
| 92                          | IGHM   | Immunoglobulin<br>heavy constant mu                                                                        | BC032249            |                                  | Hs.300697                                    | Cytoplasmic<br>and secreted<br>forms | Antibody subunit                                                                                                     |
| 122                         | GPI    | Glucose phosphate isomerase                                                                                | -                   | NP_000166                        |                                              | Cytoplasmic<br>and secreted<br>forms | Glycolysis and<br>gluconeogenesis<br>(cytoplasmic);<br>neurotrophic factor<br>(secreted)                             |
| 2783                        | GSN    | Gelsolin<br>(amyloidosis,<br>Finnish type)                                                                 | NM_000177           | NP_000168                        | Hs.290070                                    | Cytoplasmic<br>and secreted<br>forms | Controls actin filament<br>assembly/disassembly                                                                      |
| 2780                        | STK39  | Serine threonine<br>kinase 39<br>(STE20/SPS1<br>homolog, yeast)                                            | NM_013233           | NP_037365                        | Hs 199263                                    | Cytoplasmic<br>and nuclear           | Mediator of stress-<br>activated signals;<br>Serine/Thr Kinase,<br>activated p38                                     |
| 2770                        | PSMB8  | Proteasome<br>(prosome,<br>macropain)<br>subunit, beta type,<br>8 (large<br>multifunctional<br>protease 7) | AK092738            |                                  | Hs.180062                                    | Cytoplasmic                          | Processing of MHC class<br>I antigens                                                                                |
| 2667                        | LPXN   | Leupaxin                                                                                                   | NM 004811           | NP 004802                        | Hs.49587                                     | Cytoplasmic                          | Signal transduction                                                                                                  |
| 2669                        | ITK    | IL2-inducible T-<br>cell kinase                                                                            | L10717              |                                  | Hs.211576                                    | Cytoplasmic                          | Intracellular kinase, T-<br>cell proliferation and<br>differentiation                                                |
| 90                          | KPNA6  | Karyopherin alpha<br>6 (importin alpha<br>7)                                                               | AW021037            |                                  | Hs.301553                                    | Cytoplasmic                          | Nucleocytoplasmic transport                                                                                          |
| 2794                        | SH2D2A | SH2 domain<br>protein 2A                                                                                   | NM_003975           | NP_003966                        | 1                                            | Cytoplasmic                          | CD8 T activation, signal transduction                                                                                |
| 2765                        | TNFSF5 | Tumor necrosis<br>factor (ligand)<br>superfamily,<br>member 5 (hyper-<br>IgM syndrome)                     | NM_000074           | NP_000065                        | Hs.652                                       | Cellular<br>membrane                 | B-cell proliferation, IgE<br>production,<br>immunoglobulin class<br>switching; expressed on<br>CD4+ and CD8+ T cells |
| 97                          | CD69   | CD69 antigen<br>(p60, early T-cell<br>activation antigen)                                                  | NM_001781           | NP_001772                        | Hs.82401                                     | Cellular<br>membrane                 | Activation of<br>lymphocytes,<br>monocytes, and platelets                                                            |
| 2635                        | IL2RG  | Interleukin 2<br>receptor, gamma<br>(severe combined<br>immunodeficiency                                   | NM_000206           | NP_000197                        |                                              | Cellular<br>membrane                 | Signalling component of<br>many interleukin<br>receptors<br>(IL2,IL4,IL7,IL9, and<br>IL15),                          |
| 96                          | CXCR4  | Chemokine (C-X-<br>C motif) receptor<br>4                                                                  | NM_003467           | NP_003458                        | Hs.89414                                     | Cellular<br>mcmbrane                 | B-cell lymphopoiesis,<br>leukocyte migration,<br>angiogenesis; mediates<br>intracellular calcium flux                |
| 2766                        | CD19   | CD19 antigen                                                                                               | NM_001770           | NP_001761                        | Hs.96023                                     | Cellular<br>membrane                 | Signal transduction; B<br>lymphocyte<br>development, activation,<br>and differentiation                              |

### Table 9

| Array<br>Probe<br>SEQ<br>ID | Gene      | Gene Name                                                                                                                   | mRNA<br>Accession # | RefSeq<br>Peptide<br>Accession # | Current<br>UniGene<br>Cluster<br>(Build 156) | Localization         | Function                                                                                                     |
|-----------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|----------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------|
| 2769                        | ITGBI     | Integrin, beta I<br>(fibronectin<br>receptor, beta<br>polypeptide,<br>antigen CD29<br>includes MDF2,<br>MSK12)              | NM_002211           | NP_002202                        |                                              | Cellular<br>membrane | Cell-cell and cell-matrix interactions                                                                       |
| 2647                        | TRB       | T cell receptor<br>beta, constant<br>region                                                                                 | K02885              |                                  | Hs.300697                                    | Cellular<br>membrane | Antigen recognition                                                                                          |
| 82                          | CTLA4     | Cytotoxic T-<br>lymphocyte-<br>associated protein<br>4                                                                      | NM_005214           | NP_005205                        | Hs.247824                                    | Cellular<br>membranc | Negative regulation of T<br>cell activation, expressed<br>by activated T cells                               |
| 83                          | CD8A      | CD8 antigen,<br>alpha polypeptide<br>(p32)                                                                                  | NM_001768           | NP_001759                        | Hs.85258                                     | Cellular<br>membrane | CD8 T-cell specific<br>marker and class I MHC<br>receptor                                                    |
| 114                         | HLA-DRBI  | Major<br>histocompatibility<br>complex, class II,<br>DR beta I                                                              | NM_002124           | NP_002115                        |                                              | Cellular<br>membrane | Antigen presentation                                                                                         |
| 2772                        | CD3Z      | CD3Z antigen,<br>zeta polypeptide<br>(TiT3 complex)                                                                         | NM_000734           | NP_000725                        | Hs.97087                                     | Cellular<br>membrane | T-cell marker; couples<br>antigen recognition to<br>several intracellular<br>signal-transduction<br>pathways |
| 2                           | ACTB      | Actin, beta                                                                                                                 | NM_001101           | NP_001092                        | Hs.288061                                    | Cellular<br>membrane | Cell adhesion and recognition                                                                                |
|                             | ITGAL     | Integrin, alpha L<br>(antigen CD11A<br>(p180),<br>lymphocyte<br>function-<br>associated antigen<br>1; alpha<br>polypeptide) | NM_002209           | NP_002200                        |                                              | Cellular<br>membrane | All leukocytes; cell-cell<br>adhesion, signaling                                                             |
| 78                          | TCIRGI    | T-cell, immune<br>regulator 1,<br>ATPase, H+<br>transporting,<br>lysosomal V0<br>protein a isoform 3                        | NM_006019           | NP_006010                        | Hs.46465                                     | Cellular<br>membrane | T cell activation                                                                                            |
| 2670                        | CD72      | CD72 antigen                                                                                                                | NM_001782           | NP_001773                        | Hs.116481                                    | Cellular<br>membrane | B cell proliferation                                                                                         |
| 2779                        | D12S2489E | DNA segment on<br>chromosome 12<br>(unique) 2489<br>expressed<br>sequence                                                   | NM_007360           | NP_031386                        | Hs.74085                                     | Cellular<br>membrane | NK cells marker                                                                                              |
| 2692                        | MS4A1     | Membrane-<br>spanning 4-<br>domains,<br>subfamily A,<br>member 1, CD20                                                      | NM_152866           | NP_690605                        | Hs.89751                                     | Cellular<br>membrane | B-cell activation, plasma<br>cell development                                                                |
| 126                         | TCRGC2    | T cell receptor<br>gamma constant 2                                                                                         | M17323              |                                  | Hs.112259                                    | Cellular<br>membrane |                                                                                                              |
| 116                         | CD4       | CD4 antigen (p55)                                                                                                           | NM_000616           | NP_000607                        | Hs.17483                                     | Cellular<br>mcmbrane | T cell activation, signal<br>transduction, T-B cell<br>adhesion                                              |

### Table 9

| Array<br>Probe<br>SEQ<br>ID | Gene    | Gene Name                                                                          | mRNA<br>Accession # | RefSeq<br>Peptide<br>Accession# | Current<br>UniGene<br>Cluster<br>(Build 156) | Localization         | Function                                                                                                 |
|-----------------------------|---------|------------------------------------------------------------------------------------|---------------------|---------------------------------|----------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------|
| 117                         | CXCR3   | Chemokine (C-X-<br>C motif) receptor<br>3, GPR9                                    | NM_001504           | NP_001495                       | Hs.198252                                    | Cellular<br>membrane | Integrin activation,<br>cytoskeletal changes and<br>chemotactic migration of<br>leukocytes               |
| 2707                        | CD33    | CD33 antigen<br>(gp67)                                                             | NM_001772           | NP_001763                       | Hs.83731                                     | Cellular<br>membrane | Cell adhesion; receptor<br>that inhibits the<br>proliferation of normal<br>and leukemic myeloid<br>cells |
| 123                         | CD47    | CD47 antigen (Rh-<br>related antigen,<br>integrin-associated<br>signal transducer) | NM_001777           | NP_001768                       | Hs.82685                                     | Cellular<br>membrane | Cell adhesion,<br>membrane transport,<br>signaling transduction,<br>permeability                         |
| 84                          | BY55    | Natural killer cell<br>receptor,<br>immunoglobulin<br>superfamily<br>member        | NM_007053           | NP_008984                       | Hs.81743                                     | Cellular<br>membrane | NK cells and CTLs,<br>costim with MHC 1                                                                  |
| 2784                        | KLRDI   | Killer cell lectin-<br>like receptor<br>subfamily D,<br>member 1                   | NM_002262           | NP_002253                       | Hs.41682                                     | Cellular<br>membrane | NK cell regulation                                                                                       |
| 124                         | HLA-F   | Major<br>histocompatibility<br>complex, class I, F                                 | NM_018950           | NP_061823                       | Hs.377850                                    | Cellular<br>membrane | Antigen presentation                                                                                     |
| 2752                        | PTPRCAP | Protein tyrosine<br>phosphatase,<br>receptor type, C-<br>associated protein        | NM_005608           | NP_005599                       | Hs.155975                                    | Cellular<br>membrane | T cell activation                                                                                        |

### Table 12: Markers for CMV Infection

| New<br>SEQID | Source       | Unigene   | Acc       | GI       | Name                                      | Strand | Probe Sequence                                             | SAM<br>FDR |
|--------------|--------------|-----------|-----------|----------|-------------------------------------------|--------|------------------------------------------------------------|------------|
| 408          | cDNA         | Hs.1051   | NM_004131 | 7262379  | granzyme B                                | 1      | GGAGCCAAGTCCAGATT<br>TACACTGGGAGAGGTGC<br>CAGCAACTGAATAAAT | 0%         |
| 3108         | db<br>mining | Hs.169824 | NM_002258 | 4504878  | killer cell lectin-<br>like receptor      | 1      | TGGATCTGCCAAAAAGA<br>ACTAACACCTGTGAGAA<br>ATAAAGTGTATCCTGA | 0%         |
| 3109         | cDNA         | Hs.170019 | NM_004350 | 4757917  | runt-related<br>transcription<br>factor 3 | 1      | GCTGGGTGGAAACTGCT<br>TTGCACTATCGTTTGCT<br>TGGTGTTTGTTTTTAA | 0%         |
| 433          | cDNA         | Hs.183125 | NM_016523 | 7705573  | killer cell lectin-<br>like receptor F    | 1      | TTCCAGGCTTTTGCTAC<br>TCTTCACTCAGCTACAA<br>TAAACATCCTGAATGT | 0%         |
| 3110         | db<br>mining | Hs.2014   | X06557    | 37003    | T-cell receptor-<br>delta                 | 1      | GGGGTTTATGTCCTAAC<br>TGCTTTGTATGCTGTTT<br>TATAAAGGGATAGAAG | 0.10%      |
| 3111         | cDNA         | Hs.211535 | Al823649  | 5444320  | EST<br>IMAGE:240014<br>8                  | -1     | GAAGCCTTTTCTTTCT<br>GTTCACCCTCACCAAGA<br>GCACAACTTAAATAGG  | 0.10%      |
| 3112         | cDNA         | Hs.301704 | AW002985  | 5849991  | eomesodermin<br>(Xenopus<br>laevis)       | -1     | AACAAGCCATGTTTGCC<br>CTAGTCCAGGATTGCCT<br>CACTTGAGACTTGCTA | 0%         |
| 3112         | Table 3B     | Hs.301704 | AW002985  | 5849991  | eomesodermin<br>(Xenopus<br>laevis)       | -1     | AACAAGCCATGTTTGCC<br>CTAGTCCAGGATTGCCT<br>CACTTGAGACTTGCTA | 0%         |
| 3113         | cDNA         | Hs.318885 | NM_000636 | 10835186 | superoxide<br>dismutase 2                 | 1      | TACTTTGGGGACTTGTA<br>GGGATGCCTTTCTAGTC<br>CTATTCTATT       | 0.10%      |
| 3114         | literature   | Hs.41682  | NM_007334 | 7669498  | killer cell lectin-<br>like receptor D    | 1      | GGGCAGAGAAGGTGGAG<br>AGTAAAGACCCAACATT<br>ACTAACAATGATACAG | 0%         |
| 3115         | cDNA         | Hs.71245  | Al954499  | 5746809  | EST<br>IMAGE:502221                       | -1     | TGGTAATAGTGTTTGAC<br>TCCAGGGAAGAACAGAT<br>GGGTGCCAGAGTGAAA | 0%         |
| 3116         | cDNA         | Hs.75596  | NM_000878 | 4504664  | interleukin 2<br>receptor, beta           | 1      | ATGGAAATTGTATTTGC<br>CTTCTCCACTTTGGGAG<br>GCTCCCACTTCTTGGG | 0%         |
| 436          | cDNA         | Hs.75703  | NM_002984 | 4506844  | small inducible<br>cytokine A4            | 1      | CCACTGTCACTGTTTCT<br>CTGCTGTTGCAAATACA<br>TGGATAACACATTTGA | 0%         |
| 436          | cDNA         | Hs.75703  | NM_002984 | 4506844  | small inducible<br>cytokine A4            | 1      | CCACTGTCACTGTTTCT<br>CTGCTGTTGCAAATACA<br>TGGATAACACATTTGA | 0.10%      |
| 436          | cDNA         | Hs.75703  | NM_002984 | 4506844  | small inducible<br>cytokine A4            | 1      | GTCCACTGTCACTGTTT<br>CTCTGCTGTTGCAAATA<br>CATGGATAACACATTT | 0%         |
| 436          | cDNA         | Hs.75703  | NM_002984 | 4506844  | small inducible<br>cytokine A4            | -1     | TGGTCCACTGTCACTGT<br>TTCTCTGCTGTTGCAAA<br>TACATGGATAACACAT | 0.10%      |
| 415          | cDNA         | Hs.85258  | BC025715  | 19344021 | CD8 antigen                               | 1      | CTGAGAGCCCAAACTGC<br>TGTCCCAAACATGCACT<br>TCCTTGCTTAAGGTAT | 0.10%      |
| 3117         | cDNA         | Hs.111554 | AA806222  | 2874972  | cDNA 196D7                                | -1     | TGATTTCTGTAATGTTT<br>GACCTAATAATAGCCCT<br>TTTCGTCTCTGACCCA | 0%         |
| WBC          | N/A          | N/A       | N/A       | N/A      |                                           | N/A    | N/A                                                        | 0.10%      |
| WPT          | N/A          | N/A       | N/A       | N/A      |                                           | N/A    | N/A                                                        | 0%         |

## UNITED STATES PATENT AND TRADEMARK OFFICE DOCUMENT CLASSIFICATION BARCODE SHEET



# New International Application

Claim(s)



Index 1.1.5.2 Version 1.0 Rev 12/06/01

Section

#### We claim:

 A method of assessing the immune status of an individual comprising detecting the expression level of one or more genes expressed at different levels depending upon the rate of hematopoiesis or the distribution of hematopoietic cells along their maturation pathway in said individual.

2. The method of claim I, wherein said one or more genes comprise a nucleotide selected from a nucleotide sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEO ID NO:9, SEO ID NO:10, SEO ID NO:11, SEO ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEO ID NO:16. SEO ID NO:17. SEO ID NO:18, SEO ID NO:19, SEO ID NO:20, SEO ID NO:21, SEO ID NO:22, SEO ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEO ID NO:27, SEO ID NO:28, SEO ID NO:29, SEO ID NO:30, SEO ID NO:31, SEO ID NO:32, SEO ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEO ID NO:38, SEO ID NO:39, SEO ID NO:40, SEO ID NO:41, SEO ID NO:42, SEO ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEO ID NO:49, SEO ID NO:50, SEO ID NO:51, SEO ID NO:52, SEO ID NO:53, SEO ID NO:54 SEO ID NO:55, SEO ID NO:56, SEO ID NO:57, SEO ID NO:58, SEO ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEO ID NO:64. SEO ID NO:65. SEO ID NO:66. SEO ID NO:67. SEO ID NO:68. SEO ID NO:69. SEO ID NO:70. SEO ID NO:71, SEO ID NO:72, SEO ID NO:73, SEO ID NO:74, SEO ID NO:75, SEO ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEO ID NO:82, SEO ID NO:83, SEO ID NO:84, SEO ID NO:85, SEO ID NO:86, SEO ID NO:87. SEO ID NO:88. SEO ID NO:89. SEO ID NO:90. SEO ID NO:91. SEO ID NO:92. SEO ID NO:93, SEO ID NO:94, SEO ID NO:95, SEO ID NO:96, SEO ID NO:97, SEO ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103. SEO ID NO:104. SEO ID NO:105. SEO ID NO:106. SEO ID NO:107. SEO ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEO ID NO:114, SEO ID NO:115, SEO ID NO:116, SEO ID NO:117, SEO ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEO ID NO:124, SEO ID NO:125, SEO ID NO:126, SEO ID NO:127, SEO ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEO ID NO:132. SEO ID NO:133, SEO ID NO:134, SEO ID NO:135, SEO ID NO:136, SEO ID NO:137, SEO ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEO ID NO:144, SEO ID NO:145, SEO ID NO:146, SEO ID NO:147, SEO ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEO ID NO:154, SEO ID NO:155, SEO ID NO:156, SEO ID NO:157, SEO ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEO ID NO:164, SEO ID NO:165, SEO ID NO:166, SEO ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEO ID NO:174, SEO ID NO:175, SEO ID NO:176, SEO ID NO:177, SEQ ID

NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEO ID NO:184, SEO ID NO:185, SEO ID NO:186, SEO ID NO:187, SEO ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEO ID NO:194, SEO ID NO:195, SEO ID NO:196, SEO ID NO:197, SEO ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEO ID NO:204, SEO ID NO:205, SEO ID NO:206, SEO ID NO:207, SEO ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEO ID NO:214, SEO ID NO:215, SEO ID NO:216, SEO ID NO:217, SEO ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEO ID NO:224, SEO ID NO:225, SEO ID NO:226, SEO ID NO:227, SEO ID NO:228. SEO ID NO:229. SEO ID NO:230. SEO ID NO:231. SEO ID NO:232. SEO ID NO:233, SEO ID NO:234, SEO ID NO:235, SEO ID NO:236, SEO ID NO:237, SEO ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEO ID NO:244, SEO ID NO:245, SEO ID NO:246, SEO ID NO:247, SEO ID NO:248, SEO ID NO:249, SEO ID NO:250, SEO ID NO:251, SEO ID NO:252, SEO ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEO ID NO:259, SEO ID NO:260, SEO ID NO:261, SEO ID NO:262, SEO ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEO ID NO:274, SEO ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEO ID NO:279, SEO ID NO:280, SEO ID NO:281, SEO ID NO:282, SEO ID NO:283, SEO ID NO:284, SEO ID NO:285, SEO ID NO:286, SEO ID NO:287, SEO ID NO:288. SEO ID NO:289. SEO ID NO:290. SEO ID NO:291. SEO ID NO:292. SEO ID NO:293, SEO ID NO:294, SEO ID NO:295, SEO ID NO:296, SEO ID NO:297, SEO ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEO ID NO:304, SEO ID NO:305, SEO ID NO:306, SEO ID NO:307, SEO ID NO:308, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318. SEO ID NO:319. SEO ID NO:320. SEO ID NO:321. SEO ID NO:322. SEO ID NO:323, SEO ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328. SEO ID NO:329. SEO ID NO:330. SEO ID NO:331. SEO ID NO:332. SEO ID NO:2697, SEQ ID NO:2645, SEQ ID NO:2707, SEQ ID NO:2679, SEQ ID NO:2717, SEQ ID NO:2646, SEO ID NO:2667, SEO ID NO:2706, SEO ID NO:2740, SEO ID NO:2669, SEO ID NO:2674, SEO ID NO:2743, SEO ID NO:2716, SEQ ID NO:2727, SEQ ID NO:2721, SEO ID NO:2641, SEO ID NO:2671, SEO ID NO:2752, SEO ID NO:2737, SEO ID NO:2719, SEQ ID NO:2684, SEQ ID NO:2677, SEQ ID NO:2748, SEQ ID NO:2703, SEO ID NO:2711, SEO ID NO:2663, SEO ID NO:2657, SEO ID NO:2683, SEO ID NO:2686, SEQ ID NO:2687, SEQ ID NO:2644, SEQ ID NO:2664, SEQ ID NO:2747, SEQ ID NO:2744, SEO ID NO:2678, SEO ID NO:2731, SEO ID NO:2713, SEO ID NO:2736, SEQ ID NO:2708, SEQ ID NO:2670, SEQ ID NO:2661, SEQ ID NO:2680, SEQ ID

NO:2754, SEQ ID NO:2728, SEQ ID NO:2742, SEQ ID NO:2668, SEQ ID NO:2750, SEQ ID NO:2746, SEQ ID NO:2738, SEQ ID NO:2627, SEQ ID NO:2739, SEQ ID NO:2647, SEQ ID NO:2628, SEQ ID NO:2638, SEQ ID NO:2725, SEQ ID NO:2714, SEQ ID NO:2635, SEQ ID NO:2751, SEQ ID NO:2629, SEQ ID NO:2695, SEQ ID NO:2741, SEQ ID NO:2691, SEQ ID NO:2726, SEQ ID NO:2722, SEQ ID NO:2689, SEQ ID NO:2734. SEQ ID NO:2631, SEQ ID NO:2656, SEQ ID NO:2696, SEQ ID NO:2676, SEO ID NO:2701, SEQ ID NO:2730, SEQ ID NO:2710, SEQ ID NO:2632, SEQ ID NO:2724, SEQ ID NO:2698, SEQ ID NO:2662, SEQ ID NO:2753, SEQ ID NO:2704, SEO ID NO:2675. SEQ ID NO:2700, SEQ ID NO:2640, SEQ ID NO:2723, SEQ ID NO:2658, SEQ ID NO:2688, SEQ ID NO:2735, SEO ID NO:2702, SEO ID NO:2681, SEO ID NO:2755, SEO ID NO:2715, SEQ ID NO:2732, SEQ ID NO:2652, SEQ ID NO:2651, SEQ ID NO:2718, SEQ ID NO:2673, SEQ ID NO:2733, SEQ ID NO:2712, SEQ ID NO:2659, SEQ ID NO:2654, SEQ ID NO:2636, SEQ ID NO:2639, SEQ ID NO:2690, SEQ ID NO:2705, SEQ ID NO:2685, SEQ ID NO:2692, SEQ ID NO:2693, SEQ ID NO:2648, SEQ ID NO:2650. SEQ ID NO:2720, SEQ ID NO:2660, SEQ ID NO:2666, SEQ ID NO:2699, SEO ID NO:2633, SEQ ID NO:2672, SEQ ID NO:2642, SEQ ID NO:2682, SEQ ID NO:2655, SEQ ID NO:2630, SEO ID NO:2745, SEO ID NO:2643, SEQ ID NO:2694, SEQ ID NO:2749, SEQ ID NO:2665, SEQ ID NO:2649, SEQ ID NO:2637, SEQ ID NO:2634, SEQ ID NO:2709, SEQ ID NO:2653, SEQ ID NO:2729.

- The method of claim 2, wherein said expression level is detected by measuring the RNA level
  expressed by said one or more genes.
- The method of claim 3, wherein said RNA level is detected by PCR.
- The method of claim 3, wherein said RNA level is detected by hybridization.
- The method of claim 1, wherein said expression level is detected by measuring one or more
  proteins expressed by said one or more genes.
- A method of diagnosing or monitoring transplant rejection in an individual comprising detecting a rate of hematopoiesis.
- 8. The method of claim 7, wherein said detecting is applied directly to the individual.
- The method of claim 7, wherein said detecting is applied to a sample isolated from the individual.
- 10. The method of claim 7, wherein said detecting is selected from the group consisting of: RNA profiling assay, immunoassay, fluorescent activated cell sorting, protein assay, MRI imaging, bone marrow aspiration, and nuclear imaging.
- 11. The method of claim 10, wherein said RNA profile assay is a PCR based assay.
- The method of claim 10, wherein said RNA profile assay is a hybridization based assay.
- 13. The method of claim 10, wherein said RNA profile assay further comprises detecting the expression level of one or more genes in said individual where said one or more genes comprise a nucleotide sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ

ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEO ID NO:20. SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEO ID NO:32, SEO ID NO:33, SEO ID NO:34, SEQ ID NO:35, SEO ID NO:36, SEO ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEO ID NO:43, SEO ID NO:44, SEO ID NO:45, SEQ ID NO:46, SEO ID NO:47, SEQ ID NO:48. SEO ID NO:49. SEO ID NO:50. SEO ID NO:51. SEO ID NO:52. SEO ID NO:53. SEO ID NO:54, SEO ID NO:55, SEO ID NO:56, SEO ID NO:57, SEO ID NO:58, SEO ID NO:59. SEO ID NO:60. SEO ID NO:61. SEO ID NO:62, SEO ID NO:63. SEO ID NO:64. SEO ID NO:65, SEO ID NO:66, SEO ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70. SEO ID NO:71. SEO ID NO:72. SEO ID NO:73. SEO ID NO:74. SEO ID NO:75. SEO ID NO:76, SEO ID NO:77, SEO ID NO:78, SEO ID NO:79, SEO ID NO:80, SEO ID NO:81, SEO ID NO:82, SEO ID NO:83, SEO ID NO:84, SEO ID NO:85, SEO ID NO:86, SEO ID NO:87, SEO ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEO ID NO:93, SEO ID NO:94, SEO ID NO:95, SEO ID NO:96, SEO ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEO ID NO:104, SEO ID NO:105, SEO ID NO:106, SEO ID NO:107, SEO ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113. SEO ID NO:114. SEO ID NO:115. SEO ID NO:116. SEO ID NO:117. SEO ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEO ID NO:124, SEO ID NO:125, SEO ID NO:126, SEO ID NO:127, SEO ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEO ID NO:134, SEO ID NO:135, SEO ID NO:136, SEO ID NO:137, SEO ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEO ID NO:144, SEO ID NO:145, SEO ID NO:146, SEO ID NO:147, SEO ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEO ID NO:154, SEO ID NO:155, SEO ID NO:156, SEO ID NO:157, SEO ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEO ID NO:164, SEO ID NO:165, SEO ID NO:166, SEO ID NO:167, SEO ID NO:168. SEO ID NO:169. SEO ID NO:170. SEO ID NO:171. SEO ID NO:172. SEO ID NO:173, SEO ID NO:174, SEO ID NO:175, SEO ID NO:176, SEO ID NO:177, SEO ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182. SEO ID NO:183, SEO ID NO:184, SEO ID NO:185, SEO ID NO:186, SEO ID NO:187, SEO ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEO ID NO:194, SEO ID NO:195, SEO ID NO:196, SEO ID NO:197, SEO ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEO ID NO:204, SEO ID NO:205, SEO ID NO:206, SEO ID NO:207, SEO ID NO:208. SEO ID NO:209. SEO ID NO:210. SEO ID NO:211. SEO ID NO:212. SEO ID NO:213, SEO ID NO:214, SEO ID NO:215, SEQ ID NO:216, SEO ID NO:217, SEO ID NO:218. SEO ID NO:219. SEO ID NO:220. SEO ID NO:221. SEO ID NO:222. SEO ID

NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEO ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258. SEQ ID NO:259, SEO ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEO ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEO ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEO ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:2697, SEO ID NO:2645, SEO ID NO:2707, SEO ID NO:2679, SEQ ID NO:2717, SEQ ID NO:2646, SEQ ID NO:2667, SEQ ID NO:2706, SEQ ID NO:2740, SEQ ID NO:2669, SEQ ID NO:2674, SEQ ID NO:2743, SEQ ID NO:2716, SEQ ID NO:2727, SEO ID NO:2721, SEQ ID NO:2641, SEQ ID NO:2671, SEQ ID NO:2752, SEQ ID NO:2737, SEQ ID NO:2719, SEQ ID NO:2684, SEQ ID NO:2677, SEQ ID NO:2748, SEQ ID NO:2703. SEQ ID NO:2711, SEQ ID NO:2663, SEQ ID NO:2657, SEQ ID NO:2683, SEQ ID NO:2686. SEO ID NO:2687. SEO ID NO:2644. SEO ID NO:2664, SEO ID NO:2747. SEO ID NO:2744, SEQ ID NO:2678, SEQ ID NO:2731, SEQ ID NO:2713, SEQ ID NO:2736, SEQ ID NO:2708, SEQ ID NO:2670, SEQ ID NO:2661, SEQ ID NO:2680, SEO ID NO:2754, SEQ ID NO:2728, SEQ ID NO:2742, SEQ ID NO:2668, SEQ ID NO:2750, SEQ ID NO:2746, SEQ ID NO:2738, SEQ ID NO:2627, SEQ ID NO:2739, SEQ ID NO:2647, SEQ ID NO:2628, SEQ ID NO:2638, SEQ ID NO:2725, SEQ ID NO:2714, SEQ ID NO:2635, SEQ ID NO:2751, SEQ ID NO:2629, SEQ ID NO:2695, SEQ ID NO:2741, SEQ ID NO:2691, SEQ ID NO:2726, SEQ ID NO:2722, SEQ ID NO:2689, SEQ ID NO:2734, SEO ID NO:2631, SEO ID NO:2656, SEO ID NO:2696, SEQ ID NO:2676, SEO ID NO:2701, SEQ ID NO:2730, SEQ ID NO:2710, SEQ ID NO:2632, SEQ ID NO:2724, SEQ ID NO:2698, SEQ ID NO:2662, SEQ ID NO:2753, SEQ ID NO:2704, SEQ ID NO:2675, SEQ ID NO:2700, SEQ ID NO:2640, SEQ ID NO:2723, SEQ ID NO:2658, SEQ ID

NO.2688, SEQ ID NO.2735, SEQ ID NO.2702, SEQ ID NO.2681, SEQ ID NO.2755, SEQ ID NO.2715, SEQ ID NO.2732, SEQ ID NO.2652, SEQ ID NO.2651, SEQ ID NO.2718, SEQ ID NO.2673, SEQ ID NO.2673, SEQ ID NO.2673, SEQ ID NO.2673, SEQ ID NO.2673, SEQ ID NO.2659, SEQ ID NO.2654, SEQ ID NO.2656, SEQ ID NO.2656, SEQ ID NO.2663, SEQ ID NO.2663, SEQ ID NO.2664, SEQ ID NO.2665, SEQ ID NO.2665, SEQ ID NO.2665, SEQ ID NO.2666, SEQ ID NO.2663, SEQ ID NO.2663, SEQ ID NO.2665, SEQ ID NO.2665, SEQ ID NO.2665, SEQ ID NO.26672, SEQ ID NO.2665, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673, SEQ ID NO.26673

- 14. The method of claim 7, wherein said transplant rejection is selected from the group consisting of: heart transplant rejection, kidney transplant rejection, liver transplant rejection, pancreas transplant rejection, pancreatic islet transplant rejection, lung transplant rejection, bone marrow transplant rejection, seem cell transplant rejection, xenotransplant rejection, and mechanical organ replacement rejection.
- 15. The method of claim 7, wherein said transplant rejection is heart transplant.
- 16. The method of claim 7, wherein said transplant rejection is liver transplant.
- 17. The method of claim 7, wherein said transplant rejection is kidney transplant.
- 18. The method of claim 7, wherein said transplant rejection is bone marrow transplant.
- 19. The method of claim 7, wherein said transplant rejection is pancreatic islet transplant.
- The method of claim 7, wherein said transplant rejection is stem cell transplant.
- 21. A method of diagnosing or monitoring transplant rejection in an individual comprising detecting a rate of hematopoiesis or the distribution of hematopoietic cells along their maturation pathway, wherein said detecting is selected from the group consisting of: RNA profiling assay, immunoassay, fluorescent activated cell sorting, protein assay, MRI imaging, bone marrow aspiration, and nuclear imaging.
- 22. The method of claim 21, wherein said RNA profile assay is a PCR based assay.
- 23. The method of claim 21, wherein said RNA profile assay is a hybridization based assay.
- 24. The method of claim 21, wherein said RNA profile assay further comprises detecting the expression level of one or more genes in said individual where said one or more genes comprise a nucleotide sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39, SEQ ID NO:39,

SEO ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEO ID NO:60, SEO ID NO:61, SEO ID NO:62, SEO ID NO:63, SEO ID NO:64, SEO ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70. SEO ID NO:71. SEO ID NO:72. SEO ID NO:73, SEO ID NO:74. SEO ID NO:75. SEO ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEO ID NO:82, SEO ID NO:83, SEO ID NO:84, SEO ID NO:85, SEO ID NO:86, SEO ID NO:87, SEO ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92. SEO ID NO:93. SEO ID NO:94. SEO ID NO:95. SEO ID NO:96. SEO ID NO:97. SEO ID NO:98, SEO ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103. SEO ID NO:104. SEO ID NO:105. SEO ID NO:106. SEO ID NO:107. SEO ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEO ID NO:114, SEO ID NO:115, SEO ID NO:116, SEO ID NO:117, SEO ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEO ID NO:124, SEO ID NO:125, SEO ID NO:126, SEO ID NO:127, SEO ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEO ID NO:134, SEO ID NO:135, SEO ID NO:136, SEO ID NO:137, SEO ID NO:138, SEO ID NO:139, SEO ID NO:140, SEO ID NO:141, SEO ID NO:142, SEO ID NO:143, SEO ID NO:144, SEO ID NO:145, SEO ID NO:146, SEO ID NO:147, SEO ID NO:148, SEO ID NO:149, SEO ID NO:150, SEO ID NO:151, SEO ID NO:152, SEO ID NO:153, SEO ID NO:154, SEO ID NO:155, SEO ID NO:156, SEO ID NO:157, SEO ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEO ID NO:164, SEO ID NO:165, SEO ID NO:166, SEO ID NO:167, SEO ID NO:168, SEO ID NO:169, SEO ID NO:170, SEO ID NO:171, SEO ID NO:172, SEO ID NO:173, SEO ID NO:174, SEO ID NO:175, SEO ID NO:176, SEO ID NO:177, SEO ID NO:178, SEO ID NO:179, SEO ID NO:180, SEO ID NO:181, SEO ID NO:182, SEO ID NO:183, SEO ID NO:184, SEO ID NO:185, SEO ID NO:186, SEO ID NO:187, SEO ID NO:188, SEO ID NO:189, SEO ID NO:190, SEO ID NO:191, SEO ID NO:192, SEO ID NO:193, SEO ID NO:194, SEO ID NO:195, SEO ID NO:196, SEO ID NO:197, SEO ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEO ID NO:204, SEO ID NO:205, SEO ID NO:206, SEO ID NO:207, SEO ID NO:208. SEO ID NO:209. SEO ID NO:210. SEO ID NO:211. SEO ID NO:212. SEO ID NO:213, SEO ID NO:214, SEO ID NO:215, SEO ID NO:216, SEO ID NO:217, SEO ID NO:218. SEO ID NO:219. SEO ID NO:220. SEO ID NO:221. SEO ID NO:222. SEO ID NO:223, SEO ID NO:224, SEO ID NO:225, SEO ID NO:226, SEO ID NO:227, SEO ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEO ID NO:234, SEO ID NO:235, SEO ID NO:236, SEO ID NO:237, SEO ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEO ID NO:249, SEO ID NO:250, SEO ID NO:251, SEO ID NO:252, SEO ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID

NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEO ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEO ID NO:294, SEO ID NO:295, SEO ID NO:296, SEO ID NO:297, SEO ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEO ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEO ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:2697, SEQ ID NO:2645, SEQ ID NO:2707, SEQ ID NO:2679, SEQ ID NO:2717, SEQ ID NO:2646, SEQ ID NO:2667, SEQ ID NO:2706, SEQ ID NO:2740, SEQ ID NO:2669. SEQ ID NO:2674, SEQ ID NO:2743, SEQ ID NO:2716, SEQ ID NO:2727, SEQ ID NO:2721, SEQ ID NO:2641, SEQ ID NO:2671, SEQ ID NO:2752, SEQ ID NO:2737, SEQ ID NO:2719, SEQ ID NO:2684, SEQ ID NO:2677, SEO ID NO:2748, SEO ID NO:2703. SEQ ID NO:2711, SEQ ID NO:2663, SEQ ID NO:2657, SEQ ID NO:2683, SEQ ID NO:2686, SEQ ID NO:2687, SEQ ID NO:2644, SEQ ID NO:2664, SEQ ID NO:2747, SEQ ID NO:2744, SEQ ID NO:2678, SEQ ID NO:2731, SEQ ID NO:2713, SEQ ID NO:2736. SEQ ID NO:2708, SEQ ID NO:2670, SEQ ID NO:2661, SEQ ID NO:2680, SEQ ID NO:2754, SEQ ID NO:2728, SEQ ID NO:2742, SEQ ID NO:2668, SEQ ID NO:2750, SEQ ID NO:2746, SEQ ID NO:2738, SEQ ID NO:2627, SEO ID NO:2739, SEO ID NO:2647. SEQ ID NO:2628, SEQ ID NO:2638, SEQ ID NO:2725, SEQ ID NO:2714, SEQ ID NO:2635, SEQ ID NO:2751, SEQ ID NO:2629, SEQ ID NO:2695, SEQ ID NO:2741, SEQ ID NO:2691, SEO ID NO:2726, SEO ID NO:2722, SEQ ID NO:2689, SEQ ID NO:2734, SEQ ID NO:2631, SEQ ID NO:2656, SEQ ID NO:2696, SEQ ID NO:2676, SEQ ID NO:2701, SEO ID NO:2730, SEO ID NO:2710, SEO ID NO:2632, SEQ ID NO:2724, SEO ID NO:2698, SEQ ID NO:2662, SEQ ID NO:2753, SEQ ID NO:2704, SEQ ID NO:2675. SEQ ID NO:2700, SEQ ID NO:2640, SEQ ID NO:2723, SEQ ID NO:2658, SEQ ID NO:2688, SEQ ID NO:2735, SEO ID NO:2702, SEO ID NO:2681, SEO ID NO:2755, SEO ID NO:2715, SEQ ID NO:2732, SEQ ID NO:2652, SEQ ID NO:2651, SEQ ID NO:2718. SEQ ID NO:2673, SEQ ID NO:2733, SEQ ID NO:2712, SEQ ID NO:2659, SEQ ID NO:2654, SEQ ID NO:2636, SEQ ID NO:2639, SEQ ID NO:2690, SEQ ID NO:2705, SEQ ID NO:2685, SEQ ID NO:2692, SEQ ID NO:2693, SEQ ID NO:2648, SEQ ID NO:2650. SEQ ID NO:2720, SEQ ID NO:2660, SEQ ID NO:2666, SEQ ID NO:2699, SEQ ID NO:2633, SEQ ID NO:2672, SEO ID NO:2642, SEO ID NO:2682, SEQ ID NO:2655, SEO

ID NO:2630, SEQ ID NO:2745, SEQ ID NO:2643, SEQ ID NO:2694, SEQ ID NO:2749, SEQ ID NO:2665, SEQ ID NO:2649, SEQ ID NO:2637, SEQ ID NO:2634, SEQ ID NO:2709, SEQ ID NO:2653, SEQ ID NO:27729.

- 25. The method of claim 21, wherein said transplant rejection is selected from the group consisting of, heart transplant rejection, kidney transplant rejection, liver transplant rejection, pancreas transplant rejection, pancreatic islet transplant rejection, lung transplant rejection, bone marrow transplant rejection, stem cell transplant rejection, xenotransplant rejection, and mechanical organ replacement rejection.
- 26. The method of claim 21, wherein said transplant rejection is heart transplant,
- The method of claim 21, wherein said transplant rejection is liver transplant.
- The method of claim 21, wherein said transplant rejection is kidney transplant.
- 29. The method of claim 21, wherein said transplant rejection is bone marrow transplant.
- The method of claim 21, wherein said transplant rejection is pancreatic islet transplant.
- 31. The method of claim 21, wherein said transplant rejection is stem cell transplant.

32.

A method of diagnosing or monitoring transplant rejection in a patient, comprising detecting the expression level of one or more genes in said patient to diagnose or monitor transplant rejection in said patient wherein said one or more genes comprise a nucleotide sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEO ID NO:18, SEO ID NO:19, SEO ID NO:20, SEO ID NO:21, SEO ID NO:22, SEO ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEO ID NO:29, SEO ID NO:30, SEO ID NO:31, SEO ID NO:32, SEO ID NO:33, SEO ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEO ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEO ID NO:56, SEO ID NO:57, SEO ID NO:58, SEO ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEO ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:90, SEQ ID NO:91, SEO ID NO:92, SEO ID NO:93, SEO ID NO:94, SEO ID NO:95, SEO ID NO:96, SEO ID NO:98, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEO ID NO:122, SEQ ID NO:123, SEO ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID

NO:139, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEO ID NO:156, SEO ID NO:157, SEO ID NO:158, SEO ID NO:159, SEO ID NO:160, SEO ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEO ID NO:166, SEO ID NO:167, SEO ID NO:168, SEO ID NO:169, SEO ID NO:170, SEO ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEO ID NO:177, SEO ID NO:178, SEO ID NO:179, SEO ID NO:180, SEO ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEO ID NO:187, SEO ID NO:188, SEO ID NO:189, SEO ID NO:190, SEO ID NO:191. SEO ID NO:192. SEO ID NO:193. SEO ID NO:194. SEO ID NO:195. SEO ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEO ID NO:202, SEO ID NO:203, SEO ID NO:204, SEO ID NO:205, SEO ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211. SEO ID NO:212. SEO ID NO:213. SEO ID NO:214. SEO ID NO:215. SEO ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEO ID NO:222, SEO ID NO:223, SEO ID NO:224, SEO ID NO:225, SEO ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEO ID NO:232, SEO ID NO:233, SEO ID NO:234, SEO ID NO:235, SEO ID NO:236, SEO ID NO:237, SEO ID NO:238, SEO ID NO:239, SEO ID NO:240, SEO ID NO:241, SEO ID NO:242, SEO ID NO:243, SEO ID NO:244, SEO ID NO:245, SEO ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEO ID NO:252, SEO ID NO:253, SEO ID NO:254, SEO ID NO:255, SEO ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEO ID NO:262, SEO ID NO:263, SEO ID NO:264, SEO ID NO:265, SEO ID NO:266, SEO ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEO ID NO:272, SEO ID NO:273, SEO ID NO:274, SEO ID NO:275, SEO ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEO ID NO:282, SEO ID NO:283, SEO ID NO:284, SEO ID NO:285, SEO ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEO ID NO:292, SEO ID NO:293, SEO ID NO:294, SEO ID NO:295, SEO ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEO ID NO:302, SEO ID NO:303, SEO ID NO:304, SEO ID NO:305, SEO ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:311, SEO ID NO:312, SEO ID NO:313, SEO ID NO:314, SEO ID NO:315, SEO ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEO ID NO:322, SEO ID NO:323, SEO ID NO:324, SEO ID NO:325, SEO ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEO ID NO:332, SEO ID NO:2697, SEO ID NO:2645, SEO ID NO:2707, SEO ID NO:2679, SEQ ID NO:2717, SEQ ID NO:2646, SEQ ID NO:2667, SEQ ID NO:2706, SEQ ID NO:2740, SEO ID NO:2669, SEO ID NO:2674, SEO ID NO:2743, SEO ID NO:2716. SEO ID NO:2727, SEO ID NO:2721, SEO ID NO:2641, SEO ID NO:2671, SEO ID

NO:2752, SEQ ID NO:2737, SEQ ID NO:2719, SEQ ID NO:2684, SEQ ID NO:2677. SEO ID NO:2748, SEO ID NO:2703, SEO ID NO:2711, SEQ ID NO:2663, SEO ID NO:2657. SEO ID NO:2683, SEQ ID NO:2686, SEQ ID NO:2687, SEQ ID NO:2644, SEQ ID NO:2664. SEO ID NO:2747. SEO ID NO:2744. SEO ID NO:2678, SEO ID NO:2731. SEO ID NO:2713, SEQ ID NO:2736, SEQ ID NO:2708, SEQ ID NO:2670, SEQ ID NO:2661, SEO ID NO:2680, SEO ID NO:2754, SEO ID NO:2728, SEO ID NO:2742, SEO ID NO:2668, SEQ ID NO:2750, SEQ ID NO:2746, SEQ ID NO:2738, SEO ID NO:2627. SEO ID NO:2739. SEO ID NO:2647. SEO ID NO:2628. SEO ID NO:2638. SEO ID NO:2725. SEQ ID NO:2714, SEQ ID NO:2635, SEQ ID NO:2751, SEQ ID NO:2629. SEO ID NO:2695, SEO ID NO:2741, SEO ID NO:2691, SEO ID NO:2726, SEO ID NO:2722, SEO ID NO:2689, SEQ ID NO:2734, SEQ ID NO:2631, SEQ ID NO:2656, SEQ ID NO:2696, SEO ID NO:2676, SEO ID NO:2701, SEO ID NO:2730, SEO ID NO:2710, SEO ID NO:2632, SEQ ID NO:2724, SEQ ID NO:2698, SEQ ID NO:2662, SEQ ID NO:2753, SEQ ID NO:2704, SEO ID NO:2675, SEO ID NO:2700, SEO ID NO:2640, SEO ID NO:2723, SEQ ID NO:2658, SEQ ID NO:2688, SEQ ID NO:2735, SEQ ID NO:2702, SEQ ID NO:2681, SEO ID NO:2755, SEO ID NO:2715, SEO ID NO:2732, SEQ ID NO:2652, SEQ ID NO:2651, SEO ID NO:2718, SEO ID NO:2673, SEO ID NO:2733, SEO ID NO:2712, SEO ID NO:2659, SEO ID NO:2654, SEO ID NO:2636, SEO ID NO:2639, SEO ID NO:2690, SEO ID NO:2705, SEO ID NO:2685, SEO ID NO:2692, SEO ID NO:2693, SEO ID NO:2648, SEO ID NO:2650, SEO ID NO:2720, SEO ID NO:2660, SEO ID NO:2666, SEQ ID NO:2699, SEQ ID NO:2633, SEQ ID NO:2672, SEQ ID NO:2642, SEQ ID NO:2682, SEO ID NO:2655, SEO ID NO:2630, SEO ID NO:2745, SEO ID NO:2643, SEO ID NO:2694. SEO ID NO:2749. SEO ID NO:2665. SEO ID NO:2649. SEO ID NO:2637. SEO ID NO:2634, SEO ID NO:2709, SEO ID NO:2653, SEO ID NO:2729.

- 33. The method of claim 32, further comprising detecting the expression level of one or more additional genes in said patient to diagnose or monitor transplant rejection in a patient, wherein said one or more additional genes comprise a nucleotide sequence selected from the group consisting of: SEQ ID NO:8, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:99, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:89, SEQ ID NO:112, SEQ ID NO:100, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:141, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:151.
- 34. A method of diagnosing or monitoring transplant rejection in a patient, comprising detecting the expression level of one or more genes in said patient to diagnose or monitor transplant rejection in said patient wherein said one or more genes comprise a nucleotide sequence selected from the group consisting of SEO ID No. 36, 87, 94, 107, and 91.
- 35. The method of claim 34 wherein said nucleotide sequence is SEQ ID NO: 36.
- 36. The method of claim 34 wherein said nucleotide sequence is SEQ ID NO: 87.
- The method of claim 34 wherein said nucleotide sequence is SEQ ID NO: 94.

- The method of claim 34 wherein said nucleotide sequence is SEQ ID NO: 107.
- The method of claim 34 wherein said nucleotide sequence is SEO ID NO: 91.

40

A method of diagnosing or monitoring cardiac transplant rejection in a patient, comprising detecting the expression level of one or more genes in said patient to diagnose or monitor cardiac transplant rejection in said patient wherein said one or more genes comprise a nucleotide sequence selected from the group consisting of SEO ID NO:2, SEO ID NO:3, SEO ID NO:4, SEO ID NO:5, SEO ID NO:6, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEO ID NO:12, SEO ID NO:13, SEO ID NO:14, SEO ID NO:15, SEO ID NO:16. SEO ID NO:17, SEO ID NO:18, SEO ID NO:19, SEO ID NO:20, SEO ID NO:21, SEO ID NO:22. SEO ID NO:23. SEO ID NO:24. SEO ID NO:25, SEO ID NO:26, SEO ID NO:27. SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEO ID NO:34, SEO ID NO:35, SEO ID NO:36, SEO ID NO:37, SEO ID NO:38, SEO ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEO ID NO:45, SEO ID NO:46, SEO ID NO:47, SEO ID NO:48, SEO ID NO:49, SEO ID NO:50, SEO ID NO:51, SEO ID NO:52, SEO ID NO:53, SEO ID NO:54, SEO ID NO:55, SEO ID NO:56, SEO ID NO:57, SEO ID NO:58, SEO ID NO:59, SEO ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEO ID NO:67, SEO ID NO:68, SEO ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:80, SEQ ID NO:81, SEO ID NO:82, SEO ID NO:83, SEO ID NO:84, SEO ID NO:85, SEO ID NO:86, SEO ID NO:87, SEO ID NO:88, SEO ID NO:89, SEO ID NO:90, SEO ID NO:91, SEO ID NO:92, SEO ID NO:93, SEO ID NO:94, SEO ID NO:95, SEO ID NO:96, SEO ID NO:98, SEO ID NO:99. SEO ID NO:100. SEO ID NO:101. SEO ID NO:102. SEO ID NO:103. SEO ID NO:104, SEO ID NO:105, SEO ID NO:106, SEO ID NO:107, SEO ID NO:108, SEO ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEO ID NO:115, SEO ID NO:116, SEO ID NO:117, SEO ID NO:118, SEO ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEO ID NO:125, SEO ID NO:126, SEO ID NO:127, SEO ID NO:128, SEO ID NO:129. SEO ID NO:130. SEO ID NO:131. SEO ID NO:132. SEO ID NO:133. SEO ID NO:134, SEO ID NO:135, SEO ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139. SEO ID NO:152. SEO ID NO:153. SEO ID NO:154. SEO ID NO:155. SEO ID NO:156, SEO ID NO:157, SEO ID NO:158, SEO ID NO:159, SEO ID NO:160, SEO ID NO:161, SEO ID NO:162, SEO ID NO:163, SEO ID NO:164, SEO ID NO:165, SEO ID NO:166, SEO ID NO:167, SEO ID NO:168, SEO ID NO:169, SEO ID NO:170, SEO ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEO ID NO:177, SEO ID NO:178, SEO ID NO:179, SEO ID NO:180, SEO ID NO:181, SEO ID NO:182, SEO ID NO:183, SEO ID NO:184, SEO ID NO:185, SEO ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEO ID NO:192, SEO ID NO:193, SEO ID NO:194, SEO ID NO:195, SEO ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID

NO:201, SEO ID NO:202, SEO ID NO:203, SEO ID NO:204, SEO ID NO:205, SEO ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211. SEO ID NO:212. SEO ID NO:213. SEO ID NO:214. SEO ID NO:215. SEO ID NO:216, SEO ID NO:217, SEO ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEO ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225. SEO ID NO:226, SEO ID NO:227, SEO ID NO:228, SEQ ID NO:229, SEO ID NO:230, SEO ID NO:231. SEO ID NO:232. SEO ID NO:233. SEO ID NO:234. SEO ID NO:235. SEO ID NO:236, SEO ID NO:237, SEO ID NO:238, SEO ID NO:239, SEO ID NO:240, SEO ID NO:241, SEO ID NO:242, SEO ID NO:243, SEO ID NO:244, SEO ID NO:245, SEO ID NO:246, SEO ID NO:247, SEO ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEO ID NO:252, SEO ID NO:253, SEO ID NO:254, SEO ID NO:255, SEO ID NO:256, SEO ID NO:257, SEO ID NO:258, SEO ID NO:259, SEO ID NO:260, SEO ID NO:261, SEO ID NO:262, SEO ID NO:263, SEO ID NO:264, SEO ID NO:265, SEO ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEO ID NO:272, SEO ID NO:273, SEO ID NO:274, SEO ID NO:275, SEO ID NO:276, SEO ID NO:277, SEO ID NO:278, SEO ID NO:279, SEO ID NO:280, SEO ID NO:281, SEO ID NO:282, SEO ID NO:283, SEO ID NO:284, SEO ID NO:285, SEO ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEO ID NO:292, SEO ID NO:293, SEO ID NO:294, SEO ID NO:295, SEO ID NO:296, SEO ID NO:297, SEO ID NO:298, SEO ID NO:299, SEO ID NO:300, SEO ID NO:301, SEO ID NO:302, SEO ID NO:303, SEO ID NO:304, SEO ID NO:305, SEO ID NO:306. SEO ID NO:307. SEO ID NO:308. SEO ID NO:309. SEO ID NO:310. SEO ID NO:311, SEO ID NO:312, SEO ID NO:313, SEO ID NO:314, SEO ID NO:315, SEO ID NO:316, SEO ID NO:317, SEO ID NO:318, SEO ID NO:319, SEO ID NO:320, SEQ ID NO:321, SEO ID NO:322, SEO ID NO:323, SEO ID NO:324, SEO ID NO:325, SEO ID NO:326, SEO ID NO:327, SEO ID NO:328, SEO ID NO:329, SEO ID NO:330, SEO ID NO:331, SEO ID NO:332.

- 41. The method of claim 40, further comprising detecting the expression level of one or more additional genes in said patient to diagnose or monitor cardiac transplant rejection in a patient, wherein said one or more additional genes comprise a nucleotide sequence selected from the group consisting of: SEQ ID NO:8, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:97, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:151.
- 42. A method of diagnosing or monitoring kidney transplant rejection in a patient, comprising detecting the expression level of one or more genes in said patient to diagnose or monitor kidney transplant rejection in said patient wherein said one or more genes comprise a nucleotide sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:18, SEQ ID NO:18, SEQ ID NO:18, SEQ ID NO:18, SEQ ID NO:18, SEQ ID NO:18, SEQ ID NO:18, SEQ ID NO:18, SEQ ID NO:18, SEQ ID NO:18, SEQ ID NO:18, SEQ ID NO:18, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19, SEQ ID NO:19,

SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26. SEO ID NO:27, SEO ID NO:28, SEO ID NO:29, SEO ID NO:30, SEO ID NO:31, SEO ID NO:32, SEO ID NO:33, SEO ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEO ID NO:38. SEO ID NO:39. SEO ID NO:40. SEO ID NO:41, SEO ID NO:42. SEO ID NO:43, SEO ID NO:44, SEO ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEO ID NO:49. SEO ID NO:50. SEO ID NO:51. SEO ID NO:52, SEO ID NO:53. SEO ID NO:54, SEO ID NO:55, SEO ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEO ID NO:60, SEO ID NO:61, SEO ID NO:62, SEO ID NO:63, SEO ID NO:64, SEO ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEO ID NO:71, SEO ID NO:72, SEO ID NO:73, SEO ID NO:74, SEO ID NO:78, SEO ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEO ID NO:88, SEO ID NO:90, SEO ID NO:91, SEO ID NO:92, SEO ID NO:93, SEO ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:101, SEO ID NO:102, SEO ID NO:103, SEO ID NO:104, SEO ID NO:105, SEO ID NO:106, SEQ ID NO:107. SEO ID NO:108. SEO ID NO:109. SEO ID NO:114. SEO ID NO:115. SEO ID NO:116. SEO ID NO:117, SEO ID NO:118, SEO ID NO:119, SEO ID NO:120, SEO ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEO ID NO:127, SEO ID NO:128, SEO ID NO:129, SEO ID NO:130, SEO ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEO ID NO:137, SEO ID NO:138, SEO ID NO:139, SEO ID NO:152, SEO ID NO:153. SEO ID NO:154. SEO ID NO:155. SEO ID NO:156. SEO ID NO:157. SEO ID NO:158, SEO ID NO:159, SEO ID NO:160, SEO ID NO:161, SEO ID NO:162, SEO ID NO:163, SEO ID NO:164, SEO ID NO:165, SEO ID NO:166, SEO ID NO:167, SEO ID NO:168, SEO ID NO:169, SEO ID NO:170, SEO ID NO:171, SEO ID NO:172, SEO ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEO ID NO:179, SEO ID NO:180, SEO ID NO:181, SEO ID NO:182, SEO ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEO ID NO:189, SEO ID NO:190, SEO ID NO:191, SEO ID NO:192, SEO ID NO:193. SEO ID NO:194. SEO ID NO:195. SEO ID NO:196. SEO ID NO:197. SEO ID NO:198, SEO ID NO:199, SEO ID NO:200, SEO ID NO:201, SEO ID NO:202, SEO ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEO ID NO:207, SEO ID NO:208, SEO ID NO:209, SEO ID NO:210, SEO ID NO:211, SEO ID NO:212, SEO ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEO ID NO:219, SEO ID NO:220, SEO ID NO:221, SEO ID NO:222, SEO ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEO ID NO:229, SEO ID NO:230, SEO ID NO:231, SEO ID NO:232, SEO ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID

NO:248, SEO ID NO:249, SEO ID NO:250, SEO ID NO:251, SEO ID NO:252, SEO ID NO:253, SEO ID NO:254, SEO ID NO:255, SEO ID NO:256, SEO ID NO:257, SEO ID NO:258, SEO ID NO:259, SEO ID NO:260, SEO ID NO:261, SEO ID NO:262, SEO ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268. SEO ID NO:269. SEO ID NO:270. SEO ID NO:271. SEO ID NO:272. SEO ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278. SEO ID NO:279. SEO ID NO:280. SEO ID NO:281. SEO ID NO:282. SEO ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288. SEO ID NO:289. SEO ID NO:290, SEO ID NO:291, SEO ID NO:292, SEO ID NO:293. SEO ID NO:294. SEO ID NO:295. SEO ID NO:296. SEO ID NO:297. SEO ID NO:298. SEO ID NO:299. SEO ID NO:300, SEO ID NO:301, SEO ID NO:302, SEO ID NO:303, SEO ID NO:304, SEO ID NO:305, SEO ID NO:306, SEO ID NO:307, SEO ID NO:308, SEO ID NO:309, SEO ID NO:310, SEO ID NO:311, SEO ID NO:312, SEO ID NO:313. SEO ID NO:314. SEO ID NO:315. SEO ID NO:316. SEO ID NO:317. SEO ID NO:318, SEO ID NO:319, SEO ID NO:320, SEO ID NO:321, SEO ID NO:322, SEO ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEO ID NO:329, SEO ID NO:330, SEO ID NO:331, SEO ID NO:332, SEO ID NO:2697, SEO ID NO:2645, SEO ID NO:2707, SEO ID NO:2679, SEO ID NO:2717, SEO ID NO:2646, SEO ID NO:2667, SEO ID NO:2706, SEO ID NO:2740, SEO ID NO:2669, SEO ID NO:2674, SEO ID NO:2743, SEO ID NO:2716, SEO ID NO:2727, SEO ID NO:2721, SEO ID NO:2641, SEO ID NO:2671, SEO ID NO:2752, SEO ID NO:2737, SEO ID NO:2719, SEQ ID NO:2684, SEQ ID NO:2677, SEQ ID NO:2748, SEQ ID NO:2703, SEO ID NO:2711, SEO ID NO:2663, SEO ID NO:2657, SEO ID NO:2683, SEO ID NO:2686, SEO ID NO:2687, SEO ID NO:2644, SEO ID NO:2664, SEO ID NO:2747, SEO ID NO:2744, SEO ID NO:2678, SEO ID NO:2731, SEO ID NO:2713, SEO ID NO:2736, SEO ID NO:2708, SEO ID NO:2670, SEO ID NO:2661, SEO ID NO:2680, SEO ID NO:2754, SEO ID NO:2728, SEO ID NO:2742, SEO ID NO:2668, SEO ID NO:2750, SEO ID NO:2746, SEQ ID NO:2738, SEQ ID NO:2627, SEQ ID NO:2739, SEQ ID NO:2647, SEO ID NO:2628, SEO ID NO:2638, SEO ID NO:2725, SEO ID NO:2714, SEO ID NO:2635, SEQ ID NO:2751, SEQ ID NO:2629, SEQ ID NO:2695, SEQ ID NO:2741, SEQ ID NO:2691, SEO ID NO:2726, SEO ID NO:2722, SEO ID NO:2689, SEO ID NO:2734, SEO ID NO:2631, SEO ID NO:2656, SEO ID NO:2696, SEO ID NO:2676, SEO ID NO:2701, SEQ ID NO:2730, SEQ ID NO:2710, SEQ ID NO:2632, SEQ ID NO:2724, SEQ ID NO:2698, SEO ID NO:2662, SEO ID NO:2753, SEO ID NO:2704, SEO ID NO:2675, SEO ID NO:2700, SEO ID NO:2640, SEO ID NO:2723, SEO ID NO:2658, SEO ID NO:2688, SEO ID NO:2735, SEO ID NO:2702, SEO ID NO:2681, SEO ID NO:2755, SEO ID NO:2715, SEQ ID NO:2732, SEQ ID NO:2652, SEQ ID NO:2651, SEQ ID NO:2718, SEO ID NO:2673, SEO ID NO:2733, SEO ID NO:2712, SEO ID NO:2659, SEO ID NO:2654, SEQ ID NO:2636, SEQ ID NO:2639, SEQ ID NO:2690, SEQ ID NO:2705, SEQ ID NO:2685, SEO ID NO:2692, SEO ID NO:2693, SEO ID NO:2648, SEO ID NO:2650.

SEQ ID NO:2720, SEQ ID NO:2660, SEQ ID NO:2666, SEQ ID NO:2669, SEQ ID NO:2633, SEQ ID NO:2672, SEQ ID NO:2642, SEQ ID NO:2682, SEQ ID NO:2655, SEQ ID NO:2630, SEQ ID NO:2745, SEQ ID NO:2643, SEQ ID NO:2694, SEQ ID NO:2749, SEQ ID NO:2665, SEQ ID NO:2649, SEQ ID NO:2637, SEQ ID NO:2634, SEQ ID NO:2637, SEQ ID NO:2634, SEQ ID NO:2749, SEQ ID NO:2633, SEQ ID NO:2749, SEQ ID NO:2634, SEQ ID NO:2634, SEQ ID NO:2634, SEQ ID NO:2634, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749, SEQ ID NO:2749

- 43. The method of claim 42, further comprising detecting the expression level of one or more additional genes in said patient to diagnose or monitor kidney transplant rejection in a patient, wherein said one or more additional genes comprise a nucleotide sequence selected from the group consisting of: SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:89, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:144, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151.
- The method of claim 32 comprising detecting the expression level of at least two of said genes
- The method of claim 32 comprising detecting the expression level of at least ten of said genes.
- 46. The method of claim 32 comprising detecting the expression level of at least one hundred of said genes.
- The method of claim 32 comprising detecting the expression level of all said genes.
- 48. The method of claim 32, wherein said transplant rejection is selected from the group consisting of: heart transplant rejection, kidney transplant rejection, liver transplant rejection, pancreas transplant rejection, pancreatic islet transplant rejection, lung transplant rejection, bone marrow transplant rejection, stem cell transplant rejection, xenotransplant rejection, and mechanical organ replacement rejection.
- The method of claim 32 wherein said transplant rejection is cardiac transplant rejection.
- 50. The method of claim 32 wherein said transplant rejection is liver transplant rejection.
- The method of claim 32 wherein said transplant rejection is kidney transplant rejection.
- 52. The method of claim 32 wherein said transplant rejection is bone marrow transplant rejection.
- The method of claim 32 wherein said transplant rejection is pancreatic islet transplant rejection.
- 54. The method of claim 32 wherein said transplant rejection is stem cell transplant rejection.
- 55. The method of claim 32 wherein said expression level is detected by measuring the RNA level expressed by said one or more genes.
- 56. The method of claim 55, further including isolating RNA from said patient prior to detecting said RNA level expressed by said one or more genes.
- 57. The method of claim 55 wherein said RNA level is detected by PCR.
- The method of claim 57 wherein said PCR uses primers consisting of nucleotide sequences selected from the group consisting of SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ

ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEO ID NO:679, SEO ID NO:680, SEO ID NO:681, SEO ID NO:682, SEO ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688. SEO ID NO:689. SEO ID NO:690, SEO ID NO:691, SEO ID NO:692. SEO ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEO ID NO:699, SEO ID NO:700, SEO ID NO:701, SEO ID NO:702, SEO ID NO:703, SEO ID NO:704, SEO ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEO ID NO:709, SEO ID NO:710, SEO ID NO:711, SEO ID NO:712, SEO ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEO ID NO:719, SEO ID NO:720, SEO ID NO:721, SEO ID NO:722, SEO ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEO ID NO:729, SEO ID NO:730, SEO ID NO:731, SEO ID NO:732, SEO ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEO ID NO:739, SEO ID NO:740, SEO ID NO:741, SEO ID NO:742, SEO ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEO ID NO:749, SEO ID NO:750, SEO ID NO:751, SEO ID NO:752, SEO ID NO:753. SEO ID NO:754. SEO ID NO:755. SEO ID NO:756. SEO ID NO:757. SEO ID NO:758, SEO ID NO:759, SEO ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEO ID NO:764, SEO ID NO:765, SEO ID NO:766, SEO ID NO:767, SEO ID NO:768, SEO ID NO:769, SEO ID NO:770, SEO ID NO:771, SEO ID NO:772, SEO ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEO ID NO:779, SEO ID NO:780, SEO ID NO:781, SEO ID NO:782, SEO ID NO:783. SEO ID NO:784. SEO ID NO:785. SEO ID NO:786. SEO ID NO:787. SEO ID NO:788, SEO ID NO:789, SEO ID NO:790, SEO ID NO:791, SEO ID NO:792, SEO ID NO:793. SEO ID NO:794. SEO ID NO:795. SEO ID NO:796. SEO ID NO:797. SEO ID NO:798, SEO ID NO:799, SEO ID NO:800, SEO ID NO:801, SEO ID NO:802, SEO ID NO:803, SEO ID NO:804, SEO ID NO:805, SEO ID NO:806, SEO ID NO:807, SEO ID NO:808, SEO ID NO:809, SEO ID NO:810, SEO ID NO:811, SEO ID NO:812, SEO ID NO:813. SEO ID NO:814. SEO ID NO:815. SEO ID NO:816. SEO ID NO:817. SEO ID NO:818, SEO ID NO:819, SEO ID NO:820, SEO ID NO:821, SEQ ID NO:822, SEQ ID NO:823. SEO ID NO:824. SEO ID NO:825. SEO ID NO:826. SEO ID NO:827. SEO ID NO:828, SEO ID NO:829, SEO ID NO:830, SEO ID NO:831, SEO ID NO:832, SEO ID NO:833, SEO ID NO:834, SEO ID NO:835, SEO ID NO:836, SEO ID NO:837, SEO ID NO:838, SEO ID NO:839, SEO ID NO:840, SEO ID NO:841, SEO ID NO:842, SEO ID NO:843, SEO ID NO:844, SEO ID NO:845, SEO ID NO:846, SEO ID NO:847, SEO ID NO:848, SEO ID NO:849, SEO ID NO:850, SEO ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEO ID NO:864, SEO ID NO:865, SEO ID NO:866, SEO ID NO:867, SEO ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ID NO:872, SEQ ID

NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878. SEO ID NO:879. SEO ID NO:880, SEO ID NO:881, SEO ID NO:882. SEO ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888. SEO ID NO:889. SEO ID NO:890, SEO ID NO:891, SEO ID NO:892. SEO ID NO:893, SEO ID NO:894, SEO ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEO ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEO ID NO:904, SEO ID NO:905, SEO ID NO:906, SEO ID NO:907, SEO ID NO:908. SEO ID NO:909. SEO ID NO:910. SEO ID NO:911. SEO ID NO:912. SEO ID NO:913, SEO ID NO:914, SEO ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918. SEO ID NO:919. SEO ID NO:920. SEO ID NO:921. SEO ID NO:922. SEO ID NO:923, SEO ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928. SEO ID NO:929. SEO ID NO:930. SEO ID NO:931. SEO ID NO:932. SEO ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEO ID NO:939, SEO ID NO:940, SEO ID NO:941, SEO ID NO:942, SEO ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEO ID NO:949, SEO ID NO:950, SEO ID NO:951, SEO ID NO:952, SEO ID NO:953, SEO ID NO:954, SEO ID NO:955, SEO ID NO:956, SEO ID NO:957, SEO ID NO:958, SEO ID NO:959, SEO ID NO:960, SEO ID NO:961, SEO ID NO:962, SEO ID NO:963, SEO ID NO:964, SEO ID NO:965, SEO ID NO:966, SEO ID NO:967, SEO ID NO:968, SEO ID NO:969, SEO ID NO:970, SEO ID NO:971, SEO ID NO:972, SEO ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEO ID NO:979, SEO ID NO:980, SEO ID NO:981, SEO ID NO:982, SEO ID NO:983, SEO ID NO:984, SEO ID NO:985, SEO ID NO:986, SEO ID NO:987, SEO ID NO:988, SEO ID NO:989, SEO ID NO:990, SEO ID NO:991, SEO ID NO:992, SEO ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEO ID NO:999, SEO ID NO:1000, SEO ID NO:1001, SEO ID NO:1002, SEO ID NO:1003, SEQ ID NO:1004, SEQ ID NO:1005, SEQ ID NO:1006, SEQ ID NO:1007, SEQ ID NO:1008, SEO ID NO:1009, SEO ID NO:1010, SEO ID NO:1011, SEO ID NO:1012, SEQ ID NO:1013, SEQ ID NO:1014, SEQ ID NO:1015, SEQ ID NO:1016, SEQ ID NO:1017, SEO ID NO:1018, SEO ID NO:1019, SEO ID NO:1020, SEO ID NO:1021, SEO ID NO:1022, SEO ID NO:1023, SEO ID NO:1024, SEO ID NO:1025, SEO ID NO:1026. SEO ID NO:1027, SEO ID NO:1028, SEO ID NO:1029, SEO ID NO:1030, SEO ID NO:1031, SEQ ID NO:1032, SEQ ID NO:1033, SEQ ID NO:1034, SEQ ID NO:1035, SEQ ID NO:1036, SEO ID NO:1037, SEO ID NO:1038, SEO ID NO:1039, SEO ID NO:1040. SEQ ID NO:1041, SEQ ID NO:1042, SEQ ID NO:1043, SEQ ID NO:1044, SEQ ID NO:1045, SEO ID NO:1046, SEO ID NO:1047, SEO ID NO:1048, SEO ID NO:1049, SEO ID NO: 1050, SEQ ID NO:1051, SEQ ID NO:1052, SEQ ID NO:1053, SEQ ID NO:1054, SEO ID NO:1055, SEO ID NO:1056, SEO ID NO:1057, SEO ID NO:1058, SEO ID NO:1059, SEQ ID NO:1060, SEQ ID NO:1061, SEQ ID NO:1062, SEQ ID NO:1063, SEQ ID NO:1064, SEO ID NO:1065, SEO ID NO:1066, SEO ID NO:1067, SEO ID NO:1068,

SEQ 1D NO:1069, SEQ 1D NO:1070, SEQ ID NO:1071, SEQ ID NO:1072, SEQ ID NO:1073, SEQ ID NO:1074, SEQ ID NO:1075, SEQ ID NO:1076, SEQ ID NO:1077, SEQ 1D NO:1078, SEO 1D NO:1079, SEO 1D NO:1080, SEQ ID NO:1081, SEO 1D NO:1082. SEQ 1D NO:1083, SEQ ID NO:1084, SEQ 1D NO:1085, SEQ 1D NO:1086, SEQ 1D NO:1087, SEO ID NO:1088, SEO ID NO:1089, SEO ID NO:1090, SEO ID NO:1091, SEO 1D NO:1092, SEQ ID NO:1093, SEQ ID NO:1094, SEQ 1D NO:1095, SEQ 1D NO:1096, SEO ID NO:1097, SEO ID NO:1098, SEO ID NO:1099, SEO ID NO:1100, SEO ID NO:1101, SEO ID NO:1102, SEO ID NO:1103, SEO ID NO:1104, SEO ID NO:1105, SEO 1D NO:1106, SEO ID NO:1107, SEO ID NO:1108, SEO ID NO:1109, SEO ID NO:1110. SEQ ID NO:1111, SEQ ID NO:1112, SEQ ID NO:1113, SEQ ID NO:1114, SEQ ID NO:1115, SEO ID NO:1116, SEO ID NO:1117, SEO ID NO:1118, SEO ID NO:1119, SEO ID NO:1120, SEQ ID NO:1121, SEQ ID NO:1122, SEQ ID NO:1123, SEQ ID NO:1124, SEO ID NO:1125, SEO ID NO:1126, SEO ID NO:1127, SEO ID NO:1128, SEO ID NO:1129, SEQ ID NO:1130, SEQ ID NO:1131, SEQ ID NO:1132, SEQ ID NO:1133, SEQ ID NO:1134, SEO ID NO:1135, SEO ID NO:1136, SEO ID NO:1137, SEO ID NO:1138, SEO ID NO:1139, SEO ID NO:1140, SEO ID NO:1141, SEO ID NO:1142, SEO ID NO:1143, SEO ID NO:1144, SEO ID NO:1145, SEO ID NO:1146, SEO ID NO:1147, SEO ID NO:1148, SEO ID NO:1149, SEO ID NO:1150, SEO ID NO:1151, SEO ID NO:1152, SEO ID NO:1153, SEO ID NO:1154, SEO ID NO:1155, SEO ID NO:1156, SEO ID NO:1157, SEQ ID NO:1158, SEQ ID NO:1159, SEQ ID NO:1160, SEQ ID NO:1161, SEQ ID NO:1162, SEO ID NO:1163, SEO ID NO:1164, SEO ID NO:1165, SEO ID NO:1166, SEO ID NO:1167, SEO ID NO:1168, SEO ID NO:1169, SEO ID NO:1170, SEO ID NO:1171, SEO ID NO:1172, SEO ID NO:1173, SEO ID NO:1174, SEO ID NO:1175, SEO ID NO:1176. SEO ID NO:1177. SEO ID NO:1178. SEO ID NO:1179. SEO ID NO:1180. SEQ ID NO:1181, SEQ ID NO:1182, SEQ ID NO:1183, SEQ ID NO:1184, SEQ ID NO:1185. SEO ID NO:1186. SEO ID NO:1187. SEO ID NO:1188. SEO ID NO:1189. SEO ID NO:1190, SEO ID NO:1191, SEO ID NO:1192, SEO ID NO:1193, SEO ID NO:1194, SEO ID NO:1195, SEO ID NO:1196, SEO ID NO:1197, SEO ID NO:1198, SEO ID NO:1199, SEO ID NO:1200, SEO ID NO:1201, SEO ID NO:1202, SEO ID NO:1203, SEO ID NO:1204. SEO ID NO:1205. SEO ID NO:1206. SEO ID NO:1207. SEO ID NO:1208. SEO ID NO:1209, SEO ID NO:1210, SEO ID NO:1211, SEO ID NO:1212, SEO ID NO:1213. SEO ID NO:1214. SEO ID NO:1215. SEO ID NO:1216. SEO ID NO:1217. SEO 1D NO:1218, SEQ ID NO:1219, SEQ ID NO:1220, SEQ ID NO:1221, SEQ ID NO:1222, SEQ ID NO:1223, SEQ ID NO:1224, SEQ ID NO:1225, SEQ ID NO:1226, SEQ ID NO:1227, SEO ID NO:1228, SEO ID NO:1229, SEO ID NO:1230, SEO ID NO:1231, SEO ID NO:1232, SEQ ID NO:1233, SEQ ID NO:1234, SEQ ID NO:1235, SEQ ID NO:1236, SEO ID NO:1237, SEO ID NO:1238, SEO ID NO:1239, SEO ID NO:1240, SEO ID NO:1241, SEO ID NO:1242, SEO ID NO:1243, SEO ID NO:1244, SEO ID NO:1245, SEO ID NO:1246, SEQ ID NO:1247, SEQ ID NO:1248, SEQ ID NO:1249, SEQ ID NO:1250, SEQ ID NO:1251, SEQ ID NO:1252, SEQ ID NO:1253, SEQ ID NO:1254, SEQ ID

NO:1255, SEQ ID NO:1256, SEO ID NO:1257, SEQ ID NO:1258, SEQ ID NO:1259, SEQ ID NO:1260, SEQ ID NO:1261, SEQ ID NO:1262, SEQ ID NO:1263, SEQ ID NO:1264, SEO ID NO:1265, SEQ ID NO:1266, SEQ ID NO:1267, SEQ ID NO:1268, SEO ID NO:1269, SEO ID NO:1270, SEO ID NO:1271, SEQ ID NO:1272, SEQ ID NO:1273, SEQ ID NO:1274, SEQ ID NO:1275, SEQ ID NO:1276, SEQ ID NO:1277, SEQ ID NO:1278. SEQ ID NO:1279, SEQ ID NO:1280, SEQ ID NO:1281, SEQ ID NO:1282, SEQ ID NO:1283, SEQ ID NO:1284, SEQ ID NO:1285, SEQ ID NO:1286, SEQ ID NO:1287, SEQ ID NO:1288. SEQ ID NO:1289, SEQ ID NO:1290, SEQ ID NO:1291, SEQ ID NO:1292, SEQ ID NO:1293, SEQ ID NO:1294, SEQ ID NO:1295, SEQ ID NO:1296, SEQ ID NO:1297, SEQ ID NO:1298, SEQ ID NO:1299, SEQ ID NO:1300, SEQ ID NO:1301, SEQ ID NO:1302, SEQ ID NO:1303, SEQ ID NO:1304, SEQ ID NO:1305, SEQ ID NO:1306, SEO ID NO:1307, SEO ID NO:1308, SEO ID NO:1309, SEO ID NO:1310, SEO ID NO:1311, SEQ ID NO:1312, SEQ ID NO:1313, SEQ ID NO:1314, SEQ ID NO:1315, SEQ ID NO:1316, SEQ ID NO:1317, SEQ ID NO:1318, SEQ ID NO:1319, SEQ ID NO:1320, SEQ ID NO:1321, SEQ ID NO:1322, SEQ ID NO:1323, SEQ ID NO:1324, SEQ ID NO:1325, SEQ ID NO:1326, SEQ ID NO:1656, SEQ ID NO:1657, SEQ ID NO:1658, SEQ ID NO:1659, SEQ ID NO:1660, SEQ ID NO:1661, SEQ ID NO:1662, SEQ ID NO:1663, SEQ ID NO:1664, SEQ ID NO:1665, SEQ ID NO:1666, SEQ ID NO:1667, SEQ ID NO:1668, SEQ ID NO:1669, SEQ ID NO:1670, SEQ ID NO:1671, SEQ ID NO:1672, SEQ ID NO:1673, SEQ ID NO:1674, SEQ ID NO:1675, SEQ ID NO:1676, SEQ ID NO:1677. SEQ ID NO:1678, SEQ ID NO:1679, SEQ ID NO:1680, SEQ ID NO:1681, SEQ ID NO:1682, SEQ ID NO:1683, SEQ ID NO:1684, SEQ ID NO:1685, SEQ ID NO:1686, SEQ ID NO:1687, SEQ ID NO:1688, SEQ ID NO:1689, SEQ ID NO:1690, SEQ ID NO:1691, SEQ ID NO:1692, SEQ ID NO:1693, SEQ ID NO:1694, SEQ ID NO:1695, SEO ID NO:1696, SEQ ID NO:1697, SEQ ID NO:1698, SEQ ID NO:1699, SEQ ID NO:1700, SEQ ID NO:1701, SEQ ID NO:1702, SEQ ID NO:1703, SEQ ID NO:1704, SEQ ID NO:1705, SEQ ID NO:1706, SEQ ID NO:1707, SEQ ID NO:1708, SEQ ID NO:1709, SEQ ID NO:1710, SEQ ID NO:1711, SEQ ID NO:1712, SEQ ID NO:1713, SEQ ID NO:1714, SEQ ID NO:1715, SEQ ID NO:1716, SEQ ID NO:1717, SEQ ID NO:1718, SEQ ID NO:1719, SEQ ID NO:1720, SEQ ID NO:1721, SEQ ID NO:1722, SEQ ID NO:1723, SEQ ID NO:1724, SEQ ID NO:1725, SEQ ID NO:1726, SEQ ID NO:1727, SEQ ID NO:1728, SEQ ID NO:1729, SEQ ID NO:1730, SEO ID NO:1731, SEQ ID NO:1732, SEQ ID NO:1733. SEQ ID NO:1734, SEQ ID NO:1735, SEQ ID NO:1736, SEQ ID NO:1737, SEQ ID NO:1738, SEQ ID NO:1739, SEQ ID NO:1740, SEQ ID NO:1741, SEQ ID NO:1742, SEQ ID NO:1743, SEQ ID NO:1744, SEQ ID NO:1745, SEQ ID NO:1746, SEQ ID NO:1747, SEQ ID NO:1748, SEQ ID NO:1749, SEQ ID NO:1750, SEQ ID NO:1751, SEQ ID NO:1752, SEQ ID NO:1753, SEQ ID NO:1754, SEQ ID NO:1755, SEQ ID NO:1756, SEQ ID NO:1757, SEQ ID NO:1758, SEQ ID NO:1759, SEQ ID NO:1760, SEQ ID NO:1761, SEQ ID NO:1762, SEQ ID NO:1763, SEQ ID NO:1764, SEQ ID NO:1765, SEQ ID NO:1766, SEQ ID NO:1767, SEQ ID NO:1768, SEQ ID NO:1769, SEQ ID NO:1770, SEQ

1D NO:1771, SEQ ID NO:1772, SEQ ID NO:1773, SEQ ID NO:1774, SEQ ID NO:1775. SEQ ID NO:1776, SEQ ID NO:1777, SEQ ID NO:1778, SEQ ID NO:1779, SEQ ID NO:1780, SEQ ID NO:1781, SEQ ID NO:1782, SEQ ID NO:1783, SEQ ID NO:1784, SEQ ID NO:1785, SEQ ID NO:1786, SEQ ID NO:1787, SEQ ID NO:1788, SEQ ID NO:1789, SEQ ID NO:1790, SEQ ID NO:1791, SEQ ID NO:1792, SEQ ID NO:1793, SEQ ID NO:1794, SEQ ID NO:1795, SEQ ID NO:1796, SEQ ID NO:1797, SEQ ID NO:1798, SEQ ID NO:1799, SEQ ID NO:1800, SEQ ID NO:1801, SEQ ID NO:1802, SEQ ID NO:1803, SEQ ID NO:1804, SEQ ID NO:1805, SEQ ID NO:1806, SEQ ID NO:1807, SEO ID NO:1808, SEQ ID NO:1809, SEQ ID NO:1810, SEQ ID NO:1811, SEQ ID NO:1812, SEQ ID NO:1813, SEQ ID NO:1814, SEQ ID NO:1815, SEQ ID NO:1816, SEQ ID NO:1817. SEQ ID NO:1818, SEQ ID NO:1819, SEQ ID NO:1820, SEQ ID NO:1821, SEQ ID NO:1822, SEQ ID NO:1823, SEQ ID NO:1824, SEQ ID NO:1825, SEQ ID NO:1826, SEQ ID NO:1827, SEQ ID NO:1828, SEQ ID NO:1829, SEQ ID NO:1830, SEQ ID NO:1831, SEO ID NO:1832, SEQ ID NO:1833, SEQ ID NO:1834, SEQ ID NO:1835, SEQ ID NO:1836, SEQ ID NO:1837, SEO ID NO:1838, SEO ID NO:1839, SEO ID NO:1840, SEO ID NO:1841, SEO ID NO:1842, SEO ID NO:1843, SEQ ID NO:1844, SEQ ID NO:1845, SEQ ID NO:1846, SEQ ID NO:1847, SEQ ID NO:1848, SEQ ID NO:1849, SEO ID NO:1850, SEQ ID NO:1851, SEQ ID NO:1852, SEQ ID NO:1853, SEQ ID NO:1854, SEQ ID NO:1855, SEQ ID NO:1856, SEQ ID NO:1857, SEQ ID NO:1858, SEQ ID NO:1859, SEO ID NO:1860, SEQ ID NO:1861, SEQ ID NO:1862, SEQ ID NO:1863, SEQ ID NO:1864, SEQ ID NO:1865, SEO ID NO:1866, SEO ID NO:1867, SEO ID NO:1868, SEO ID NO:1869, SEO ID NO:1870, SEO ID NO:1871, SEQ ID NO:1872, SEQ ID NO:1873, SEQ ID NO:1874, SEQ ID NO:1875, SEQ ID NO:1876, SEQ ID NO:1877, SEQ ID NO:1878, SEO ID NO:1879, SEO ID NO:1880, SEO ID NO:1881, SEQ ID NO:1882, SEO ID NO:1883, SEQ ID NO:1884, SEQ ID NO:1885, SEQ ID NO:1886, SEQ ID NO:1887, SEO ID NO:1888, SEQ ID NO:1889, SEQ ID NO:1890, SEQ ID NO:1891, SEQ ID NO:1892, SEQ ID NO:1893, SEQ ID NO:1894, SEQ ID NO:1895, SEQ ID NO:1896, SEQ ID NO:1897, SEO ID NO:1898, SEO ID NO:1899, SEQ ID NO:1900, SEQ ID NO:1901, SEQ ID NO:1902, SEQ ID NO:1903, SEQ ID NO:1904, SEQ ID NO:1905, SEO ID NO:1906, SEQ ID NO:1907, SEQ ID NO:1908, SEQ ID NO:1909, SEQ ID NO:1910, SEQ ID NO:1911, SEQ ID NO:1912, SEQ ID NO:1913, SEQ ID NO:1914, SEQ ID NO:1915, SEO ID NO:1916, SEQ ID NO:1917, SEQ ID NO:1918, SEQ ID NO:1919, SEQ ID NO:1920, SEQ ID NO:1921, SEQ ID NO:1922, SEQ ID NO:1923, SEQ ID NO:1924, SEQ ID NO:1925, SEQ ID NO:1926, SEQ ID NO:1927, SEQ ID NO:1928, SEQ ID NO:1929, SEQ ID NO:1930, SEQ ID NO:1931, SEQ ID NO:1932, SEQ ID NO:1933, SEO ID NO:1934, SEQ ID NO:1935, SEQ ID NO:1936, SEQ ID NO:1937, SEQ ID NO:1938, SEQ ID NO:1939, SEQ ID NO:1940, SEQ ID NO:1941, SEQ ID NO:1942, SEQ ID NO:1943, SEQ ID NO:1944, SEQ ID NO:1945, SEQ ID NO:1946, SEQ ID NO:1947, SEQ ID NO:1948, SEQ ID NO:1949, SEQ ID NO:1950, SEQ ID NO:1951, SEQ ID NO:1952, SEQ ID NO:1953, SEQ ID NO:1954, SEQ ID NO:1955, SEQ ID NO:1956, SEQ ID NO:1957,

SEO ID NO:1958, SEO ID NO:1959, SEQ ID NO:1960, SEQ ID NO:1961, SEO ID NO:1962, SEQ ID NO:1963, SEQ ID NO:1964, SEQ ID NO:1965, SEQ ID NO:1966, SEQ ID NO:1967, SEQ ID NO:1968, SEO ID NO:1969, SEQ ID NO:1970, SEQ ID NO:1971. SEQ ID NO:1972, SEQ ID NO:1973, SEQ ID NO:1974, SEQ ID NO:1975, SEQ ID NO:1976, SEQ ID NO:1977, SEO ID NO:1978, SEO ID NO:1979, SEQ ID NO:1980, SEO 1D NO:1981, SEQ ID NO:1982, SEQ ID NO:1983, SEQ ID NO:1984, SEQ ID NO:1985, SEO ID NO:1986, SEQ ID NO:1987, SEQ ID NO:1988, SEQ ID NO:1989, SEO ID NO:1990, SEQ ID NO:1991, SEQ ID NO:1992, SEQ ID NO:1993, SEQ ID NO:1994, SEQ 1D NO:1995, SEQ ID NO:1996, SEQ ID NO:1997, SEQ ID NO:1998, SEQ ID NO:1999. SEQ ID NO:2000, SEQ ID NO:2001, SEQ ID NO:2002, SEQ ID NO:2003, SEQ ID NO:2004, SEQ ID NO:2005, SEQ ID NO:2006, SEQ ID NO:2007, SEQ ID NO:2008, SEQ ID NO:2009, SEQ ID NO:2010, SEQ ID NO:2011, SEO ID NO:2012, SEO ID NO:2013. SEQ ID NO:2014, SEQ ID NO:2015, SEQ ID NO:2016, SEQ ID NO:2017, SEQ ID NO:2018, SEO ID NO:2019, SEQ ID NO:2020, SEQ ID NO:2021, SEQ ID NO:2022, SEQ ID NO:2023, SEQ ID NO:2024, SEQ ID NO:2025, SEQ ID NO:2026, SEQ ID NO:2027, SEQ ID NO:2028, SEQ ID NO:2029, SEQ ID NO:2030, SEQ ID NO:2031, SEQ ID NO:2032, SEQ ID NO:2033, SEQ ID NO:2034, SEQ ID NO:2035, SEQ ID NO:2036, SEQ ID NO:2037, SEO ID NO:2038, SEO ID NO:2039, SEO ID NO:2040, SEO ID NO:2041, SEQ ID NO:2042, SEQ ID NO:2043, SEQ ID NO:2044, SEQ ID NO:2045, SEQ ID NO:2046, SEQ ID NO:2047, SEQ ID NO:2048, SEQ ID NO:2049, SEQ ID NO:2050, SEQ ID NO:2051, SEQ ID NO:2052, SEQ ID NO:2053, SEQ ID NO:2054, SEQ ID NO:2055, SEQ ID NO:2056, SEQ ID NO:2057, SEQ ID NO:2058, SEQ ID NO:2059, SEQ ID NO:2060, SEQ ID NO:2061, SEQ ID NO:2062, SEQ ID NO:2063, SEQ ID NO:2064, SEQ ID NO:2065, SEQ ID NO:2066, SEQ ID NO:2067, SEO ID NO:2068, SEO ID NO:2069. SEQ ID NO:2070, SEQ ID NO:2071, SEQ ID NO:2072, SEQ ID NO:2073, SEQ ID NO:2074, SEQ ID NO:2075, SEQ ID NO:2076, SEQ ID NO:2077, SEQ ID NO:2078, SEQ ID NO:2079, SEQ ID NO:2080, SEQ ID NO:2081, SEQ ID NO:2082, SEQ ID NO:2083, SEO ID NO:2084, SEO ID NO:2085, SEQ ID NO:2086, SEQ ID NO:2087, SEQ ID NO:2088, SEQ ID NO:2089, SEQ ID NO:2090, SEQ ID NO:2091, SEQ ID NO:2092, SEQ ID NO:2093, SEQ ID NO:2094, SEQ ID NO:2095, SEQ ID NO:2096, SEQ ID NO:2097, SEQ ID NO:2098, SEQ ID NO:2099, SEQ ID NO:2100, SEQ ID NO:2101, SEQ ID NO:2102, SEO ID NO:2103, SEQ ID NO:2104, SEQ ID NO:2105, SEQ ID NO:2106, SEQ ID NO:2107, SEQ ID NO:2108, SEQ ID NO:2109, SEQ ID NO:2110, SEQ ID NO:2111, SEO ID NO:2112, SEQ ID NO:2113, SEQ ID NO:2114, SEQ ID NO:2115, SEQ ID NO:2116, SEQ ID NO:2117, SEQ ID NO:2118, SEQ ID NO:2119, SEQ ID NO:2120, SEQ ID NO:2121, SEQ ID NO:2122, SEQ ID NO:2123, SEQ ID NO:2124, SEQ ID NO:2125, SEQ ID NO:2126, SEQ ID NO:2127, SEQ ID NO:2128, SEQ ID NO:2129, SEQ ID NO:2130, SEQ ID NO:2131, SEQ ID NO:2132, SEQ ID NO:2133, SEQ ID NO:2134, SEQ ID NO:2135, SEQ ID NO:2136, SEQ ID NO:2137, SEQ ID NO:2138, SEQ ID NO:2139, SEQ ID NO:2140, SEQ ID NO:2141, SEQ ID NO:2142, SEQ ID NO:2143, SEQ ID

NO:2144, SEQ ID NO:2145, SEQ ID NO:2146, SEQ ID NO:2147, SEQ ID NO:2148, SEQ ID NO:2149, SEO ID NO:2150, SEQ ID NO:2151.

59. The method of claim 58 wherein said PCR uses corresponding probes consisting of nucleotide sequences selected from the group consisting of SEQ ID NO:1327, SEO ID NO:1328. SEO ID NO:1329, SEO ID NO:1330, SEO ID NO:1331, SEO ID NO:1332, SEO ID NO:1333, SEO ID NO:1334, SEQ ID NO:1335, SEQ ID NO:1336, SEQ ID NO:1337, SEQ ID NO:1338, SEO ID NO:1339, SEO ID NO:1340, SEO ID NO:1341, SEO ID NO:1342, SEO ID NO:1343, SEO ID NO:1344, SEQ ID NO:1345, SEQ ID NO:1346, SEQ ID NO:1347, SEQ ID NO:1348, SEO ID NO:1349, SEO ID NO:1350, SEO ID NO:1351, SEO ID NO:1352, SEO ID NO:1353, SEO ID NO:1354, SEO ID NO:1355, SEO ID NO:1356, SEO ID NO:1357, SEO ID NO:1358, SEO ID NO:1359, SEO ID NO:1360, SEO ID NO:1361, SEO ID NO:1362, SEO ID NO:1363, SEO ID NO:1364, SEO ID NO:1365, SEO ID NO:1366. SEO ID NO:1367, SEO ID NO:1368, SEO ID NO:1369, SEO ID NO:1370, SEO ID NO:1371, SEO ID NO:1372, SEO ID NO:1373, SEO ID NO:1374, SEO ID NO:1375, SEO ID NO:1376, SEO ID NO:1377, SEO ID NO:1378, SEO ID NO:1379, SEO ID NO:1380, SEO ID NO:1381, SEO ID NO:1382, SEO ID NO:1383, SEO ID NO:1384, SEO ID NO:1385, SEQ ID NO:1386, SEQ ID NO:1387, SEQ ID NO:1388, SEQ ID NO:1389, SEQ ID NO: 1390, SEO ID NO: 1391, SEO ID NO: 1392, SEO ID NO: 1393, SEO ID NO: 1394, SEO ID NO:1395, SEO ID NO:1396, SEO ID NO:1397, SEO ID NO:1398, SEO ID NO:1399, SEO ID NO:1400, SEO ID NO:1401, SEO ID NO:1402, SEO ID NO:1403, SEO ID NO:1404, SEQ ID NO:1405, SEQ ID NO:1406, SEQ ID NO:1407, SEQ ID NO:1408, SEO ID NO:1409, SEO ID NO:1410, SEO ID NO:1411, SEO ID NO:1412, SEO ID NO:1413, SEO ID NO:1414, SEO ID NO:1415, SEO ID NO:1416, SEO ID NO:1417, SEO ID NO: 1418, SEO ID NO: 1419, SEO ID NO: 1420, SEO ID NO: 1421, SEO ID NO: 1422, SEO ID NO:1423, SEQ ID NO:1424, SEQ ID NO:1425, SEQ ID NO:1426, SEQ ID NO:1427, SEO ID NO:1428, SEO ID NO:1429, SEO ID NO:1430, SEO ID NO:1431, SEO ID NO:1432, SEQ ID NO:1433, SEQ ID NO:1434, SEQ ID NO:1435, SEQ ID NO:1436, SEO ID NO:1437, SEO ID NO:1438, SEO ID NO:1439, SEO ID NO:1440, SEO ID NO:1441, SEQ ID NO:1442, SEQ ID NO:1443, SEQ ID NO:1444, SEQ ID NO:1445, SEQ ID NO:1446, SEQ ID NO:1447, SEQ ID NO:1448, SEQ ID NO:1449, SEQ ID NO:1450, SEO ID NO:1451, SEO ID NO:1452, SEO ID NO:1454, SEO ID NO:1455, SEO ID NO:1456, SEO ID NO:1457, SEO ID NO:1458, SEO ID NO:1459, SEO ID NO:1460, SEO ID NO:1461, SEQ ID NO:1462, SEQ ID NO:1463, SEQ ID NO:1464, SEQ ID NO:1465, SEO ID NO:1466, SEO ID NO:1467, SEO ID NO:1468, SEO ID NO:1469, SEO ID NO:1470, SEQ ID NO:1471, SEQ ID NO:1472, SEQ ID NO:1473, SEQ ID NO:1474, SEQ ID NO:1475, SEO ID NO:1476, SEO ID NO:1477, SEO ID NO:1478, SEO ID NO:1479, SEQ ID NO:1480, SEQ ID NO:1481, SEQ ID NO:1482, SEQ ID NO:1483, SEQ ID NO:1484, SEQ ID NO:1485, SEQ ID NO:1486, SEQ ID NO:1487, SEQ ID NO:1488, SEQ ID NO:1489, SEQ ID NO:1490, SEQ ID NO:1491, SEQ ID NO:1492, SEQ ID NO:1493, SEO ID NO:1494, SEO ID NO:1495, SEO ID NO:1496, SEO ID NO:1497, SEO ID

NO:1498, SEO ID NO:1499, SEO ID NO:1500, SEO ID NO:1501, SEO ID NO:1502, SEO ID NO:1503, SEQ ID NO:1504, SEQ ID NO:1505, SEQ ID NO:1506, SEQ ID NO:1507, SEO ID NO:1508, SEO ID NO:1509, SEO ID NO:1510, SEO ID NO:1511, SEO ID NO:1512, SEQ ID NO:1513, SEQ ID NO:1514, SEQ ID NO:1515, SEQ ID NO:1516, SEQ ID NO:1517. SEO ID NO:1518. SEO ID NO:1519. SEO ID NO:1520. SEO ID NO:1521. SEO ID NO:1522, SEO ID NO:1523, SEO ID NO:1524, SEQ ID NO:1525, SEQ ID NO:1526. SEO ID NO:1527. SEO ID NO:1528. SEO ID NO:1529. SEO ID NO:1530. SEO ID NO:1531, SEO ID NO:1532, SEO ID NO:1533, SEQ ID NO:1534, SEQ ID NO:1535, SEO ID NO:1536, SEO ID NO:1537, SEO ID NO:1538, SEO ID NO:1539, SEO ID NO:1540, SEQ ID NO:1541, SEQ ID NO:1542, SEQ ID NO:1543, SEQ ID NO:1544, SEQ ID NO:1545, SEO ID NO:1546, SEO ID NO:1547, SEO ID NO:1548, SEO ID NO:1549, SEQ ID NO:1550, SEQ ID NO:1551, SEQ ID NO:1552, SEQ ID NO:1553, SEQ ID NO:1554, SEO ID NO:1555, SEO ID NO:1556, SEO ID NO:1557, SEO ID NO:1558, SEQ ID NO:1559, SEQ ID NO:1560, SEQ ID NO:1561, SEQ ID NO:1562, SEQ ID NO:1563, SEO ID NO:1564, SEO ID NO:1565, SEO ID NO:1566, SEQ ID NO:1567, SEQ ID NO:1568, SEQ ID NO:1569, SEQ ID NO:1570, SEQ ID NO:1571, SEQ ID NO:1572, SEQ ID NO:1573, SEO ID NO:1574, SEO ID NO:1575, SEQ ID NO:1576, SEQ ID NO:1577, SEO ID NO:1578, SEO ID NO:1579, SEO ID NO:1580, SEO ID NO:1581, SEO ID NO:1582, SEQ ID NO:1583, SEQ ID NO:1584, SEQ ID NO:1585, SEQ ID NO:1586, SEQ ID NO:1587, SEO ID NO:1588, SEO ID NO:1589, SEO ID NO:1590, SEO ID NO:1591, SEO ID NO:1592, SEO ID NO:1593, SEO ID NO:1594, SEO ID NO:, SEO ID NO:1595, SEO ID NO:1596, SEO ID NO:1597, SEO ID NO:1598, SEO ID NO:1599, SEO ID NO:1600, SEO ID NO:1601, SEO ID NO:1602, SEO ID NO:1603, SEO ID NO:1604, SEO ID NO:1605, SEQ ID NO:1606, SEQ ID NO:1607, SEQ ID NO:1608, SEQ ID NO:1609, SEO ID NO:1610, SEO ID NO:1611, SEO ID NO:1612, SEO ID NO:1613, SEO ID NO:1614, SEO ID NO:1615, SEO ID NO:1616, SEO ID NO:1617, SEO ID NO:1618, SEO ID NO:1619, SEO ID NO:1620, SEO ID NO:1621, SEO ID NO:1622, SEQ ID NO:1623, SEQ ID NO:1624, SEQ ID NO:1625, SEQ ID NO:1626, SEQ ID NO:1627, SEQ ID NO:1628, SEO ID NO:1629, SEO ID NO:1630, SEO ID NO:1631, SEQ ID NO:1632, SEQ ID NO:1633. SEO ID NO:1634. SEO ID NO:1635. SEO ID NO:1636. SEO ID NO:1637. SEO ID NO:1638, SEO ID NO:1639, SEO ID NO:1640, SEQ ID NO:1641, SEQ ID NO:1642, SEQ ID NO:1643, SEQ ID NO:1644, SEQ ID NO:1645, SEQ ID NO:1646, SEQ ID NO:1647, SEQ ID NO:1648, SEQ ID NO:1649, SEQ ID NO:1650, SEQ ID NO:1651, SEO ID NO:1652, SEO ID NO:1653, SEO ID NO:1654, SEO ID NO:1655, SEO ID NO:1656, SEO ID NO:1657, SEO ID NO:2152, SEO ID NO:, SEO ID NO:2153, SEO ID NO:, SEQ ID NO:2154, SEQ ID NO:, SEQ ID NO:, SEQ ID NO:, SEQ ID NO:2145, SEQ ID NO:, SEO ID NO:2156, SEO ID NO:2157, SEO ID NO:2158, SEO ID NO:2159, SEO ID NO:, SEQ ID NO:2160, SEQ ID NO:2161, SEQ ID NO:2162, SEQ ID NO:2163, SEQ ID NO:2164, SEQ ID NO:, SEQ ID NO:2165, SEQ ID NO:, SEQ ID NO:2166, SEQ ID NO:2167, SEO ID NO:2168, SEO ID NO:2169, SEO ID NO:2170, SEO ID NO:2171, SEO

1D NO:2172, SEO ID NO:2173, SEO ID NO:2174, SEO ID NO:2175, SEO ID NO:2176. SEQ ID NO:2177, SEQ ID NO:2178, SEQ ID NO:2179, SEQ ID NO:2180, SEQ ID NO:2181, SEO ID NO:2182, SEO ID NO:2183, SEO ID NO:2184, SEO ID NO:2185, SEO ID NO:2186, SEQ ID NO:2187, SEQ ID NO:2188, SEQ ID NO:2189, SEQ ID NO:2190, SEO ID NO:2191, SEO ID NO:2192, SEO ID NO:2193, SEO ID NO:2194, SEO ID NO:2195, SEO ID NO:2196, SEO ID NO:2197, SEQ ID NO:2198, SEO ID NO:2199, SEQ ID NO:2200. SEO ID NO:2201. SEO ID NO:2202. SEO ID NO:2203. SEO ID NO:2204. SEO ID NO:2205, SEO ID NO:2206, SEO ID NO:2207, SEQ ID NO:2208, SEO ID NO:2209. SEO ID NO:2210. SEO ID NO:2211. SEO ID NO:2212. SEO ID NO:2213. SEO ID NO:2214, SEQ ID NO:2215, SEQ ID NO:2216, SEQ ID NO:2217, SEQ ID NO:2218, SEO ID NO:2219, SEO ID NO:2220, SEO ID NO:2221, SEO ID NO:2222, SEO ID NO:2223, SEQ ID NO:2224, SEQ ID NO:2225, SEQ ID NO:2226, SEQ ID NO:2227, SEQ ID NO:2228, SEO ID NO:2229, SEO ID NO:2230, SEO ID NO:2231, SEO ID NO:2232, SEQ ID NO:2233, SEQ ID NO:2234, SEQ ID NO:2235, SEQ ID NO:2236, SEQ ID NO:2237, SEO ID NO:2238, SEO ID NO:2239, SEO ID NO:2240, SEO ID NO:2241, SEO ID NO:2242, SEQ ID NO:2243, SEQ ID NO:2244, SEQ ID NO:2245, SEQ ID NO:2246, SEO ID NO:2247, SEO ID NO:2248, SEO ID NO:2249, SEO ID NO:2250, SEO ID NO:2251, SEO ID NO:2252, SEO ID NO:2253, SEO ID NO:2254, SEO ID NO:2255, SEO ID NO:2256, SEO ID NO:2257, SEO ID NO:2258, SEO ID NO:2259, SEO ID NO:2260, SEO ID NO:2261, SEO ID NO:2262, SEO ID NO:2263, SEO ID NO:2264, SEO ID NO:2265, SEO ID NO:2266, SEO ID NO:2267, SEO ID NO:2268, SEO ID NO:2269, SEO ID NO:2270, SEQ ID NO:2271, SEQ ID NO:2272, SEQ ID NO:2273, SEO ID NO:2274. SEO ID NO:2275, SEO ID NO:2276, SEO ID NO:2277, SEO ID NO:2278, SEO ID NO:2279, SEQ ID NO:2280, SEQ ID NO:2281, SEQ ID NO:2282, SEQ ID NO:2283, SEQ ID NO:2284, SEO ID NO:2285, SEO ID NO:2286, SEO ID NO:2287, SEO ID NO:2288, SEO ID NO:2289, SEO ID NO:2290, SEO ID NO:2291, SEO ID NO:2292, SEO ID NO:2293, SEO ID NO:2294, SEO ID NO:2295, SEO ID NO:2296, SEO ID NO:2297, SEO ID NO:2298, SEO ID NO:2299, SEO ID NO:2300, SEO ID NO:2301, SEO ID NO:2302, SEO ID NO:2303, SEO ID NO:2304, SEO ID NO:2305, SEO ID NO:2306, SEO ID NO:2307, SEQ ID NO:2308, SEQ ID NO:2309, SEQ ID NO:2310, SEQ ID NO:2311, SEQ ID NO:2312, SEO ID NO:2313, SEO ID NO:2314, SEO ID NO:2315, SEO ID NO:2316, SEQ ID NO:2317, SEQ ID NO:2318, SEQ ID NO:2319, SEQ ID NO:2320, SEQ ID NO:2321, SEO ID NO:2322, SEO ID NO:2323, SEO ID NO:2324, SEO ID NO:2325, SEO 1D NO:2326, SEQ ID NO:2327, SEQ ID NO:2328, SEQ ID NO:2329, SEQ ID NO:2330, SEO ID NO:2331, SEO ID NO:2332, SEO ID NO:2333, SEO ID NO:2334, SEO ID NO:2335, SEQ ID NO:2336, SEQ ID NO:2337, SEQ ID NO:2338, SEQ ID NO:2339, SEQ 1D NO:2340, SEO ID NO:2341, SEO ID NO:2342, SEO ID NO:2343, SEO ID NO:2344, SEQ ID NO:2345, SEQ ID NO:2346, SEQ ID NO:2347, SEQ ID NO:2348, SEQ ID NO:2349, SEQ ID NO:2350, SEQ ID NO:2351, SEQ ID NO:2352, SEQ ID NO:2353, SEQ ID NO:2354, SEQ ID NO:2355, SEQ ID NO:2356, SEQ ID NO:2357, SEQ ID NO:2358,

SEQ ID NO:2359, SEQ ID NO:2360, SEQ ID NO:2361, SEQ ID NO:2362, SEQ ID NO:2363, SEQ ID NO:2364, SEQ ID NO:2364, SEQ ID NO:2365, SEQ ID NO:2366, SEQ ID NO:2367, SEQ ID NO:2368, SEQ ID NO:2369, SEQ ID NO:2370, SEQ ID NO:2371, SEQ ID NO:2373, SEQ ID NO:2373, SEQ ID NO:2373, SEQ ID NO:2373, SEQ ID NO:2373, SEQ ID NO:2374, SEQ ID NO:2375, SEQ ID NO:2376, SEQ ID NO:2376, SEQ ID NO:2376, SEQ ID NO:2376, SEQ ID NO:2376, SEQ ID NO:2380, SEQ ID NO:2386, SEQ ID NO:2382, SEQ ID NO:2383, SEQ ID NO:2386, SEQ ID NO:2387, SEQ ID NO:2388, SEQ ID NO:2387, SEQ ID NO:2388, SEQ ID NO:2389, SEQ ID NO:2391, SEQ ID NO:2391, SEQ ID NO:2395, SEQ ID NO:2396, SEQ ID NO:2396, SEQ ID NO:2396, SEQ ID NO:2396, SEQ ID NO:2397, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2390, SEQ ID NO:2399, SEQ ID NO:2399, SEQ ID NO:2390, SEQ ID NO:2390

- The method of claim 55 wherein said RNA level is detected by hybridization.
- The method of claim 55 wherein said RNA level is detected by hybridization to an oligonucleotide.

62.

The method of claim 61 wherein said oligonucleotide consists of a nucleotide sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22. SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEO ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEO ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEO ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEO ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID

NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEO ID NO:150, SEO ID NO:151, SEO ID NO:152, SEO ID NO:153, SEO ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEO ID NO:160, SEO ID NO:161, SEO ID NO:162, SEO ID NO:163, SEO ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEO ID NO:170, SEO ID NO:171, SEO ID NO:172, SEO ID NO:173, SEO ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEO ID NO:180, SEO ID NO:181, SEO ID NO:182, SEO ID NO:183, SEO ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEO ID NO:190, SEO ID NO:191, SEO ID NO:192, SEO ID NO:193, SEO ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEO ID NO:200, SEO ID NO:201, SEO ID NO:202, SEO ID NO:203, SEO ID NO:204, SEO ID NO:205, SEO ID NO:206, SEO ID NO:207, SEO ID NO:208, SEO ID NO:209, SEO ID NO:210, SEO ID NO:211, SEO ID NO:212, SEO ID NO:213, SEO ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEO ID NO:220, SEO ID NO:221, SEO ID NO:222, SEO ID NO:223, SEO ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEO ID NO:230, SEO ID NO:231, SEO ID NO:232, SEO ID NO:233, SEO ID NO:234, SEO ID NO:235, SEO ID NO:236, SEO ID NO:237, SEO ID NO:238, SEO ID NO:239, SEO ID NO:240, SEO ID NO:241, SEO ID NO:242, SEO ID NO:243, SEO ID NO:244. SEO ID NO:245. SEO ID NO:246. SEO ID NO:247. SEO ID NO:248. SEO ID NO:249, SEO ID NO:250, SEO ID NO:251, SEO ID NO:252, SEO ID NO:253, SEO ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEO ID NO:260, SEO ID NO:261, SEO ID NO:262, SEO ID NO:263, SEO ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEO ID NO:270, SEO ID NO:271, SEO ID NO:272, SEO ID NO:273, SEO ID NO:274, SEO ID NO:275, SEO ID NO:276, SEO ID NO:277, SEO ID NO:278, SEO ID NO:279, SEO ID NO:280, SEO ID NO:281, SEO ID NO:282, SEO ID NO:283, SEO ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEO ID NO:290, SEO ID NO:291, SEO ID NO:292, SEO ID NO:293, SEO ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEO ID NO:300, SEO ID NO:301, SEO ID NO:302, SEO ID NO:303, SEO ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309, SEO ID NO:310, SEO ID NO:311, SEO ID NO:312, SEO ID NO:313, SEO ID NO:314, SEO ID NO:315, SEO ID NO:316, SEO ID NO:317, SEO ID NO:318, SEO ID NO:319, SEO ID NO:320, SEO ID NO:321, SEO ID NO:322, SEO ID NO:323, SEO ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:2697, SEQ ID NO:2645, SEQ ID NO:2707, SEQ ID NO:2679, SEQ ID NO:2717, SEQ ID NO:2646, SEQ ID NO:2667, SEQ ID NO:2706, SEQ ID NO:2740, SEQ ID NO:2669, SEQ ID NO:2674,

SEQ 1D NO:2743, SEQ ID NO:2716, SEQ ID NO:2727, SEQ ID NO:2721, SEQ ID NO:2641, SEQ ID NO:2671, SEQ ID NO:2752, SEQ ID NO:2737, SEQ ID NO:2719, SEQ ID NO:2684, SEQ ID NO:2677, SEQ ID NO:2748, SEQ ID NO:2703, SEQ ID NO:2711. SEQ ID NO:2663, SEQ ID NO:2657, SEQ ID NO:2683, SEQ ID NO:2686, SEO ID NO:2687, SEQ ID NO:2644, SEQ ID NO:2664, SEQ ID NO:2747, SEQ ID NO:2744, SEQ ID NO:2678, SEQ ID NO:2731, SEQ ID NO:2713, SEQ ID NO:2736, SEQ ID NO:2708. SEQ ID NO:2670, SEQ ID NO:2661, SEQ ID NO:2680, SEQ ID NO:2754, SEQ ID NO:2728, SEQ ID NO:2742, SEQ ID NO:2668, SEQ ID NO:2750, SEQ ID NO:2746, SEQ ID NO:2738, SEQ ID NO:2627, SEQ ID NO:2739, SEQ ID NO:2647, SEQ ID NO:2628. SEQ ID NO:2638, SEQ ID NO:2725, SEQ ID NO:2714, SEQ ID NO:2635, SEQ ID NO:2751, SEQ ID NO:2629, SEQ ID NO:2695, SEQ ID NO:2741, SEQ ID NO:2691, SEQ ID NO:2726, SEQ ID NO:2722, SEQ ID NO:2689, SEQ ID NO:2734, SEQ ID NO:2631, SEQ ID NO:2656, SEQ ID NO:2696, SEQ ID NO:2676, SEQ ID NO:2701, SEQ ID NO:2730, SEQ ID NO:2710, SEQ ID NO:2632, SEQ ID NO:2724, SEQ ID NO:2698, SEQ ID NO:2662, SEQ ID NO:2753, SEQ ID NO:2704, SEQ ID NO:2675, SEQ ID NO:2700, SEQ ID NO:2640, SEQ ID NO:2723, SEQ ID NO:2658, SEQ ID NO:2688, SEQ ID NO:2735, SEQ ID NO:2702, SEQ ID NO:2681, SEQ ID NO:2755, SEQ ID NO:2715, SEQ ID NO:2732, SEQ ID NO:2652, SEQ ID NO:2651, SEQ ID NO:2718, SEQ ID NO:2673. SEQ ID NO:2733, SEQ ID NO:2712, SEQ ID NO:2659, SEQ ID NO:2654, SEQ ID NO:2636, SEQ ID NO:2639, SEO ID NO:2690, SEO ID NO:2705, SEO ID NO:2685, SEO ID NO:2692, SEQ ID NO:2693, SEQ ID NO:2648, SEQ ID NO:2650, SEQ ID NO:2720, SEQ ID NO:2660, SEQ ID NO:2666, SEQ ID NO:2699, SEQ ID NO:2633, SEO ID NO:2672, SEQ ID NO:2642, SEQ ID NO:2682, SEQ ID NO:2655, SEQ ID NO:2630, SEQ ID NO:2745, SEQ ID NO:2643, SEQ ID NO:2694, SEQ ID NO:2749, SEQ ID NO:2665, SEQ ID NO:2649, SEQ ID NO:2637, SEQ ID NO:2634, SEQ ID NO:2709, SEQ ID NO:2653, SEO ID NO:2729.

- The method of claim 61 wherein said oligonucleotide comprises DNA, RNA, cDNA, PNA, genomic DNA, or synthetic oligonucleotides.
- 64. The method of claim 32 wherein said expression level is detected by measuring one or more proteins expressed by said one or more genes.
- 65. The method of claim 64 wherein said one or more proteins comprise an amino acid sequence selected from the group consisting of SEQ ID NO:2400, SEQ ID NO:2401, SEQ ID NO:2402, SEQ ID NO:2403, SEQ ID NO:24040, SEQ ID NO:2405, SEQ ID NO:2407, SEQ ID NO:2403, SEQ ID NO:2409, SEQ ID NO:2410, SEQ ID NO:2411, SEQ ID NO:2412, SEQ ID NO:2413, SEQ ID NO:2414, SEQ ID NO:2415, SEQ ID NO:2416, SEQ ID NO:2417, SEQ ID NO:2418, SEQ ID NO:2419, SEQ ID NO:2416, SEQ ID NO:2417, SEQ ID NO:2422, SEQ ID NO:2423, SEQ ID NO:2423, SEQ ID NO:2423, SEQ ID NO:2423, SEQ ID NO:2423, SEQ ID NO:2423, SEQ ID NO:2423, SEQ ID NO:2433, SEQ ID NO:2433, SEQ ID NO:2433, SEQ ID NO:2433, SEQ ID NO:2433, SEQ ID NO:2433, SEQ ID NO:2434, SEQ ID NO:2434, SEQ ID NO:2434, SEQ ID NO:2434, SEQ ID NO:2434, SEQ ID NO:2434, SEQ ID NO:2434, SEQ ID NO:2434, SEQ ID NO:2434, SEQ ID NO:2434, SEQ ID NO:2434, SEQ ID NO:2441, SEQ ID NO:2434, SEQ ID NO:2433, SEQ ID NO:2434, SEQ ID NO:2441, SEQ ID NO:24341, SEQ ID NO:2438, SEQ ID NO:2439, SEQ ID NO:2440, SEQ ID NO:2441, SEQ ID NO:24341, SEQ ID NO:2438, SEQ ID NO:2439, SEQ ID NO:2440, SEQ ID NO:2441, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID NO:2431, SEQ ID N

ID NO:2442, SEQ ID NO:2443, SEQ ID NO:2444, SEQ ID NO:2445, SEQ ID NO:2446, SEO ID NO:2447, SEO ID NO:2448, SEO ID NO:2449, SEQ ID NO:2450, SEO ID NO:2451, SEQ ID NO:2452, SEQ ID NO:2453, SEQ ID NO:2454, SEQ ID NO:2455, SEQ ID NO:2456, SEO ID NO:2457, SEO ID NO:2458, SEQ ID NO:2459, SEQ ID NO:2460. SEQ ID NO:2461, SEQ ID NO:2462, SEQ ID NO:2463, SEQ ID NO:2464, SEQ ID NO:2465, SEO ID NO:2466, SEO ID NO:2467, SEO ID NO:2468, SEO ID NO:2469, SEO ID NO:2470, SEQ ID NO:2478, SEQ ID NO:2479, SEQ ID NO:2480, SEQ ID NO:2481, SEO ID NO:2482, SEO ID NO:2483, SEO ID NO:2485, SEO ID NO:2486, SEO ID NO:2488, SEQ ID NO:2491, SEQ ID NO:2492, SEQ ID NO:2493, SEQ ID NO:2494, SEQ ID NO:2495, SEQ ID NO:2496, SEQ ID NO:2497, SEQ ID NO:2502, SEQ ID NO:2503, SEQ ID NO:2504, SEQ ID NO:2505, SEQ ID NO:2506, SEQ ID NO:2507, SEQ ID NO:2508, SEO ID NO:2509, SEO ID NO:2510, SEO ID NO:2511, SEO ID NO:2512, SEO ID NO:2513. SEO ID NO:2514. SEO ID NO:2515. SEO ID NO:2516. SEO ID NO:2517. SEQ ID NO:2518, SEQ ID NO:2519, SEQ ID NO:2520, SEQ ID NO:2521, SEQ ID NO:2528, SEO ID NO:2529, SEO ID NO:2530, SEO ID NO:2531, SEO ID NO:2532, SEO ID NO:2533, SEQ ID NO:2534, SEQ ID NO:2535, SEQ ID NO:2536, SEQ ID NO:2537, SEO ID NO:2538, SEO ID NO:2539, SEO ID NO:2540, SEO ID NO:2541, SEO ID NO:2542, SEQ ID NO:2543, SEQ ID NO:2544, SEQ ID NO:2545, SEQ ID NO:2546, SEQ ID NO:2547, SEO ID NO:2548, SEO ID NO:2549, SEO ID NO:2550, SEO ID NO:2551. SEQ ID NO:2552, SEQ ID NO:2553, SEQ ID NO:2554, SEQ ID NO:2555, SEQ ID NO:2556, SEO ID NO:2557, SEO ID NO:2558, SEO ID NO:2559, SEO ID NO:2560, SEO ID NO:2561, SEQ ID NO:2562, SEQ ID NO:2563, SEQ ID NO:2564, SEQ ID NO:2565, SEO ID NO:2566, SEO ID NO:2567, SEO ID NO:2568, SEO ID NO:2569, SEO ID NO:2570, SEQ ID NO:2571, SEQ ID NO:2572, SEQ ID NO:2573, SEQ ID NO:2574, SEQ ID NO:2575, SEO ID NO:2576, SEO ID NO:2577, SEO ID NO:2578, SEO ID NO:2579. SEQ ID NO:2580, SEQ ID NO:2581, SEQ ID NO:2582, SEQ ID NO:2583, SEQ ID NO:2584, SEO ID NO:2585, SEO ID NO:2586, SEO ID NO:2587, SEO ID NO:2588, SEO ID NO:2589, SEQ ID NO:2590, SEQ ID NO:2591, SEQ ID NO:2592, SEQ ID NO:2593, SEO ID NO:2594, SEO ID NO:2595, SEO ID NO:2596, SEO ID NO:2597, SEO ID NO:2598, SEQ ID NO:2599, SEQ ID NO:2600, SEQ ID NO:2601, SEQ ID NO:2602, SEQ ID NO:2603, SEO ID NO:2604, SEO ID NO:2605, SEO ID NO:2606, SEO ID NO:2607. SEQ ID NO:2608, SEQ ID NO:2609, SEQ ID NO:2610, SEQ ID NO:2611, SEQ ID NO:2612, SEQ ID NO:2613, SEQ ID NO:2614, SEQ ID NO:2615, SEQ ID NO:2616, SEQ ID NO:2617, SEQ ID NO:2618, SEQ ID NO:2619, SEQ ID NO:2620, SEQ ID NO:2621, SEO ID NO:2622, SEO ID NO:2623, SEO ID NO:2624, SEO ID NO:2625, SEO ID NO:2626, SEQ ID NO:2925, SEQ ID NO:2926, SEQ ID NO:2927, SEQ ID NO:2928, SEQ ID NO:2929, SEO ID NO:2930, SEO ID NO:2932, SEO ID NO:2933, SEO ID NO:2935. SEQ ID NO:2936, SEQ ID NO:2937, SEQ ID NO:2938, SEQ ID NO:2939, SEQ ID NO:2941, SEQ ID NO:2942, SEO ID NO:2943, SEO ID NO:2945, SEO ID NO:2946, SEO ID NO:2947, SEQ ID NO:2948, SEQ ID NO:2949, SEQ ID NO:2950, SEQ ID NO:2951,

SEQ ID NO:2952, SEQ ID NO:2953, SEQ ID NO:2954, SEQ ID NO:2955, SEQ ID NO:2956, SEQ ID NO:2957, SEQ ID NO:2959, SEQ ID NO:2966, SEQ ID NO:2961, SEQ ID NO:2965, SEQ ID NO:2961, SEQ ID NO:2965, SEQ ID NO:2966, SEQ ID NO:2966, SEQ ID NO:2966, SEQ ID NO:2966, SEQ ID NO:2967, SEQ ID NO:2968, SEQ ID NO:2969, SEQ ID NO:2975, SEQ ID NO:2971, SEQ ID NO:2977, SEQ ID NO:2977, SEQ ID NO:2976, SEQ ID NO:2976, SEQ ID NO:2976, SEQ ID NO:2976, SEQ ID NO:2976, SEQ ID NO:2976, SEQ ID NO:2976, SEQ ID NO:2976, SEQ ID NO:2976, SEQ ID NO:2976, SEQ ID NO:2980, SEQ ID NO:2981, SEQ ID NO:2984, SEQ ID NO:2985, SEQ ID NO:2986, SEQ ID NO:2986, SEQ ID NO:2987, SEQ ID NO:2988, SEQ ID NO:2989, SEQ ID NO:2990, SEQ ID NO:2991, SEQ ID NO:2991, SEQ ID NO:2993, SEQ ID NO:2994, SEQ ID NO:2995, SEQ ID NO:2995, SEQ ID NO:2995, SEQ ID NO:2995, SEQ ID NO:2995, SEQ ID NO:2995, SEQ ID NO:2995, SEQ ID NO:3000, SEQ ID NO:3000, SEQ ID NO:3000, SEQ ID NO:3000, SEQ ID NO:3000, SEQ ID NO:3000, SEQ ID NO:3000, SEQ ID NO:3001, SEQ ID NO:3007, SEQ ID NO:3008, SEQ ID NO:3009, SEQ ID NO:3011, SEQ ID NO:3011, SEQ ID NO:3012, SEQ ID NO:3012, SEQ ID NO:3013, SEQ ID NO:3014, SEQ ID NO:3015, SEQ ID NO:3011, SEQ ID NO:3012, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3014, SEQ ID NO:3015, SEQ ID NO:3015, SEQ ID NO:3016, SEQ ID NO:3016, SEQ ID NO:3017, SEQ ID NO:3017, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3014, SEQ ID NO:3015, SEQ ID NO:3015, SEQ ID NO:3016, SEQ ID NO:3016, SEQ ID NO:3016, SEQ ID NO:3016, SEQ ID NO:3016, SEQ ID NO:3016, SEQ ID NO:3017, SEQ ID NO:3017, SEQ ID NO:3017, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3016, SEQ ID NO:3016, SEQ ID NO:3017, SEQ ID NO:3017, SEQ ID NO:3018, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013, SEQ ID NO:3013

- 66. The method of claim 33 wherein said expression level of said one or more genes is detected by measuring one or more proteins expressed by said one or more genes, and said expression level of said one or more additional genes is detected by measuring one or more proteins expressed by said one or more additional genes.
- 67. The method of claim 66, wherein said one or more proteins expressed by said one or more genes comprise an amino acid sequence selected from the group consisting of SEO ID NO:2400, SEO ID NO:2401, SEO ID NO:2402, SEO ID NO:2403, SEO ID NO:2404, SEO ID NO:2405, SEQ ID NO:2407, SEQ ID NO:2408, SEQ ID NO:2409, SEQ ID NO:2410, SEO ID NO:2411, SEO ID NO:2412, SEO ID NO:2413, SEO ID NO:2414, SEO ID NO:2415, SEQ ID NO:2416, SEQ ID NO:2417, SEQ ID NO:2418, SEQ ID NO:2419, SEQ ID NO:2420, SEO ID NO:2421, SEO ID NO:2422, SEO ID NO:2423, SEO ID NO:2424. SEO ID NO:2425, SEO ID NO:2426, SEO ID NO:2427, SEO ID NO:2428, SEO ID NO:2429, SEO ID NO:2430, SEO ID NO:2432, SEO ID NO:2433, SEO ID NO:2434, SEO ID NO:2435, SEO ID NO:2436, SEO ID NO:2437, SEO ID NO:2438, SEO ID NO:2439. SEO ID NO:2440, SEO ID NO:2441, SEO ID NO:2442, SEO ID NO:2443, SEO ID NO:2444, SEQ ID NO:2445, SEQ ID NO:2446, SEQ ID NO:2447, SEQ ID NO:2448, SEQ ID NO:2449, SEO ID NO:2450, SEO ID NO:2451, SEO ID NO:2452, SEO ID NO:2453. SEQ ID NO:2454, SEQ ID NO:2455, SEQ ID NO:2456, SEQ ID NO:2457, SEQ ID NO:2458, SEQ ID NO:2459, SEQ ID NO:2460, SEQ ID NO:2461, SEQ ID NO:2462, SEQ ID NO:2463, SEQ ID NO:2464, SEQ ID NO:2465, SEQ ID NO:2466, SEQ ID NO:2467, SEO ID NO:2468, SEO ID NO:2469, SEO ID NO:2470, SEO ID NO:2478, SEO ID NO:2479, SEQ ID NO:2480, SEQ ID NO:2481, SEQ ID NO:2482, SEQ ID NO:2483, SEQ ID NO:2485, SEQ ID NO:2486, SEQ ID NO:2488, SEQ ID NO:2491, SEQ ID NO:2492. SEQ ID NO:2493, SEQ ID NO:2494, SEQ ID NO:2495, SEQ ID NO:2496, SEQ ID NO:2497, SEQ ID NO:2502, SEQ ID NO:2503, SEQ ID NO:2504, SEQ ID NO:2505, SEQ ID NO:2506, SEO ID NO:2507, SEO ID NO:2508, SEO ID NO:2509, SEO ID NO:2510.

SEO ID NO:2511, SEO ID NO:2512, SEO ID NO:2513, SEO ID NO:2514, SEO ID NO:2515, SEQ ID NO:2516, SEQ ID NO:2517, SEQ ID NO:2518, SEQ ID NO:2519, SEQ ID NO:2520, SEO ID NO:2521, SEO ID NO:2528, SEO ID NO:2529, SEO ID NO:2530. SEQ ID NO:2531, SEQ ID NO:2532, SEQ ID NO:2533, SEQ ID NO:2534, SEQ ID NO:2535, SEO ID NO:2536, SEO ID NO:2537, SEO ID NO:2538, SEO ID NO:2539, SEO ID NO:2540, SEQ ID NO:2541, SEQ ID NO:2542, SEQ ID NO:2543, SEQ ID NO:2544, SEO ID NO:2545, SEO ID NO:2546, SEO ID NO:2547, SEO ID NO:2548, SEO ID NO:2549, SEQ ID NO:2550, SEQ ID NO:2551, SEQ ID NO:2552, SEQ ID NO:2553, SEQ ID NO:2554, SEO ID NO:2555, SEO ID NO:2556, SEO ID NO:2557, SEO ID NO:2558. SEQ ID NO:2559, SEQ ID NO:2560, SEQ ID NO:2561, SEQ ID NO:2562, SEQ ID NO:2563, SEO ID NO:2564, SEO ID NO:2565, SEO ID NO:2566, SEO ID NO:2567, SEO ID NO:2568, SEO ID NO:2569, SEO ID NO:2570, SEO ID NO:2571, SEO ID NO:2572. SEO ID NO:2573, SEO ID NO:2574, SEO ID NO:2575, SEO ID NO:2576, SEO ID NO:2577, SEO ID NO:2578, SEO ID NO:2579, SEO ID NO:2580, SEO ID NO:2581, SEO ID NO:2582, SEQ ID NO:2583, SEQ ID NO:2584, SEQ ID NO:2585, SEQ ID NO:2586, SEO ID NO:2587, SEO ID NO:2588, SEO ID NO:2589, SEO ID NO:2590, SEO ID NO:2591, SEQ ID NO:2592, SEQ ID NO:2593, SEQ ID NO:2594, SEQ ID NO:2595, SEQ ID NO:2596, SEO ID NO:2597, SEO ID NO:2598, SEO ID NO:2599, SEO ID NO:2600. SEQ ID NO:2601, SEQ ID NO:2602, SEQ ID NO:2603, SEQ ID NO:2604, SEQ ID NO:2605, SEO ID NO:2606, SEO ID NO:2607, SEO ID NO:2608, SEO ID NO:2609, SEO ID NO:2610, SEQ ID NO:2611, SEQ ID NO:2612, SEQ ID NO:2613, SEQ ID NO:2614, SEO ID NO:2615, SEO ID NO:2616, SEO ID NO:2617, SEO ID NO:2618, SEO ID NO:2619, SEQ ID NO:2620, SEQ ID NO:2621, SEQ ID NO:2622, SEQ ID NO:2623, SEQ ID NO:2624, SEQ ID NO:2625, SEQ ID NO:2626, SEQ ID NO:2925, SEQ ID NO:2926, SEO ID NO:2927, SEO ID NO:2928, SEO ID NO:2929, SEO ID NO:2930, SEO ID NO:2932, SEO ID NO:2933, SEO ID NO:2935, SEO ID NO:2936, SEO ID NO:2937, SEO ID NO:2938, SEO ID NO:2939, SEO ID NO:2941, SEO ID NO:2942, SEO ID NO:2943, SEO ID NO:2945, SEO ID NO:2946, SEO ID NO:2947, SEO ID NO:2948, SEO ID NO:2949, SEQ ID NO:2950, SEQ ID NO:2951, SEQ ID NO:2952, SEQ ID NO:2953, SEQ ID NO:2954, SEO ID NO:2955, SEO ID NO:2956, SEO ID NO:2957, SEO ID NO:2959. SEQ ID NO:2960, SEQ ID NO:2961, SEQ ID NO:2962, SEQ ID NO:2963, SEQ ID NO:2964, SEQ ID NO:2965, SEQ ID NO:2966, SEQ ID NO:2967, SEQ ID NO:2968, SEQ ID NO:2969, SEQ ID NO:2970, SEQ ID NO:2971, SEQ ID NO:2972, SEQ ID NO:2973, SEO ID NO:2974, SEO ID NO:2975, SEO ID NO:2976, SEO ID NO:2977, SEO ID NO:2978, SEQ ID NO:2979, SEQ ID NO:2980, SEQ ID NO:2981, SEQ ID NO:2982, SEQ ID NO:2983, SEO ID NO:2984, SEQ ID NO:2985, SEQ ID NO:2986, SEQ ID NO:2987, SEQ ID NO:2988, SEQ ID NO:2989, SEQ ID NO:2990, SEQ ID NO:2991, SEQ ID NO:2992, SEQ ID NO:2993, SEQ ID NO:2994, SEQ ID NO:2995, SEQ ID NO:2996, SEQ ID NO:2997, SEQ ID NO:2998, SEQ ID NO:2999, SEQ ID NO:3000, SEQ ID NO:3001, SEO ID NO:3002, SEO ID NO:3003, SEO ID NO:3004, SEO ID NO:3005, SEO ID

NO:3006, SEQ ID NO:3007, SEQ ID NO:3008, SEQ ID NO:3009, SEQ ID NO:3010, SEQ ID NO:3011, SEQ ID NO:3011, SEQ ID NO:3012, SEQ ID NO:3013, SEQ ID NO:3014, SEQ ID NO:3015, and said one or more proteins expressed by said one or more additional genes comprise an amino acid sequence selected from the group consisting of SEQ ID NO:2406, SEQ ID NO:2431, SEQ ID NO:2471, SEQ ID NO:2471, SEQ ID NO:2471, SEQ ID NO:2471, SEQ ID NO:2475, SEQ ID NO:2475, SEQ ID NO:2476, SEQ ID NO:2477, SEQ ID NO:2484, SEQ ID NO:2489, SEQ ID NO:2499, SEQ ID NO:2500, SEQ ID NO:2501, SEQ ID NO:2522, SEQ ID NO:2523, SEQ ID NO:2524, SEQ ID NO:2525, SEQ ID NO:25256, SEO ID NO:25256, SEO ID NO:25257.

- The method of claim 40 wherein said expression level is detected by measuring one or more proteins expressed by said one or more genes.
- 69. The method of claim 68 wherein said one or more proteins comprise an amino acid sequence selected from the group consisting of SEQ ID NO:2400, SEQ ID NO:2401, SEQ ID NO:2402. SEQ ID NO:2403, SEQ ID NO:2404, SEQ ID NO:2405, SEQ ID NO:2407, SEQ ID NO:2408, SEQ ID NO:2409, SEQ ID NO:2410, SEQ ID NO:2411, SEQ ID NO:2412, SEQ ID NO:2413, SEQ ID NO:2414, SEQ ID NO:2415, SEQ ID NO:2416, SEQ ID NO:2417, SEQ ID NO:2418, SEQ ID NO:2419, SEQ ID NO:2420, SEQ ID NO:2421, SEQ ID NO:2422, SEQ ID NO:2423, SEQ ID NO:2424, SEQ ID NO:2425, SEQ ID NO:2426, SEQ ID NO:2427, SEQ ID NO:2428, SEQ ID NO:2429, SEQ ID NO:2430, SEQ ID NO:2432, SEQ ID NO:2433, SEQ ID NO:2434, SEQ ID NO:2435, SEQ ID NO:2436, SEQ ID NO:2437, SEQ ID NO:2438, SEQ ID NO:2439, SEQ ID NO:2440, SEQ ID NO:2441, SEQ ID NO:2442, SEQ ID NO:2443, SEQ ID NO:2444, SEQ ID NO:2445, SEQ ID NO:2446, SEQ ID NO:2447, SEQ ID NO:2448, SEQ ID NO:2449, SEQ ID NO:2450, SEQ ID NO:2451, SEQ ID NO:2452, SEQ ID NO:2453, SEQ ID NO:2454, SEQ ID NO:2455, SEQ ID NO:2456, SEQ ID NO:2457, SEQ ID NO:2458, SEQ ID NO:2459, SEQ ID NO:2460. SEO ID NO:2461, SEQ ID NO:2462, SEQ ID NO:2463, SEQ ID NO:2464, SEQ ID NO:2465, SEQ ID NO:2466, SEQ ID NO:2467, SEQ ID NO:2468, SEQ ID NO:2469, SEQ ID NO:2470, SEQ ID NO:2478, SEQ ID NO:2479, SEQ ID NO:2480, SEQ ID NO:2481, SEQ ID NO:2482, SEQ ID NO:2483, SEQ ID NO:2485, SEQ ID NO:2486, SEQ ID NO:2488, SEQ ID NO:2491, SEQ ID NO:2492, SEQ ID NO:2493, SEQ ID NO:2494, SEQ ID NO:2495, SEQ ID NO:2496, SEQ ID NO:2497, SEQ ID NO:2502, SEQ ID NO:2503. SEO ID NO:2504, SEQ ID NO:2505, SEQ ID NO:2506, SEQ ID NO:2507, SEQ ID NO:2508, SEQ ID NO:2509, SEQ ID NO:2510, SEQ ID NO:2511, SEQ ID NO:2512, SEQ ID NO:2513, SEQ ID NO:2514, SEQ ID NO:2515, SEQ ID NO:2516, SEQ ID NO:2517, SEQ ID NO:2518, SEQ ID NO:2519, SEQ ID NO:2520, SEQ ID NO:2521, SEQ ID NO:2528, SEQ ID NO:2529, SEQ ID NO:2530, SEQ ID NO:2531, SEQ ID NO:2532, SEQ ID NO:2533, SEQ ID NO:2534, SEQ ID NO:2535, SEQ ID NO:2536, SEQ ID NO:2537, SEQ ID NO:2538, SEQ ID NO:2539, SEQ ID NO:2540, SEQ ID NO:2541, SEQ ID NO:2542, SEQ ID NO:2543, SEQ ID NO:2544, SEQ ID NO:2545, SEQ ID NO:2546, SEQ ID NO:2547, SEQ ID NO:2548, SEQ ID NO:2549, SEQ ID NO:2550, SEQ ID NO:2551,

SEO ID NO:2552, SEO ID NO:2553, SEO ID NO:2554, SEQ ID NO:2555, SEO ID NO:2556, SEQ ID NO:2557, SEQ ID NO:2558, SEQ ID NO:2559, SEQ ID NO:2560, SEQ ID NO:2561, SEO ID NO:2562, SEO ID NO:2563, SEQ ID NO:2564, SEQ ID NO:2565, SEO ID NO:2566, SEO ID NO:2567, SEO ID NO:2568, SEQ ID NO:2569, SEO ID NO:2570, SEO ID NO:2571, SEO ID NO:2572, SEO ID NO:2573, SEO ID NO:2574, SEO ID NO:2575, SEQ ID NO:2576, SEQ ID NO:2577, SEQ ID NO:2578, SEQ ID NO:2579. SEO ID NO:2580, SEO ID NO:2581, SEO ID NO:2582, SEQ ID NO:2583, SEO ID NO:2584, SEQ ID NO:2585, SEQ ID NO:2586, SEQ ID NO:2587, SEQ ID NO:2588, SEQ ID NO:2589, SEO ID NO:2590, SEO ID NO:2591, SEQ ID NO:2592, SEQ ID NO:2593, SEQ ID NO:2594, SEQ ID NO:2595, SEQ ID NO:2596, SEQ ID NO:2597, SEQ ID NO:2598, SEO ID NO:2599, SEO ID NO:2600, SEO ID NO:2601, SEO ID NO:2602, SEQ ID NO:2603. SEO ID NO:2604. SEO ID NO:2605. SEO ID NO:2606. SEO ID NO:2607. SEO ID NO:2608, SEO ID NO:2609, SEO ID NO:2610, SEQ ID NO:2611, SEQ ID NO:2612, SEO ID NO:2613, SEO ID NO:2614, SEO ID NO:2615, SEO ID NO:2616, SEO ID NO:2617, SEO ID NO:2618, SEO ID NO:2619, SEQ ID NO:2620, SEQ ID NO:2621, SEO ID NO:2622, SEO ID NO:2623, SEO ID NO:2624, SEO ID NO:2625, SEO ID NO:2626, SEO ID NO:2925, SEO ID NO:2926, SEQ ID NO:2927, SEQ ID NO:2928, SEQ ID NO:2929, SEQ ID NO:2930, SEQ ID NO:2932, SEQ ID NO:2933, SEQ ID NO:2935, SEO ID NO:2936, SEO ID NO:2937, SEO ID NO:2938, SEQ ID NO:2939, SEQ ID NO:2941, SEO ID NO:2942, SEO ID NO:2943, SEO ID NO:2945, SEO ID NO:2946, SEO ID NO:2947, SEO ID NO:2948, SEO ID NO:2949, SEQ ID NO:2950, SEQ ID NO:2951, SEO ID NO:2952, SEO ID NO:2953, SEO ID NO:2954, SEO ID NO:2955, SEO ID NO:2956, SEO ID NO:2957, SEO ID NO:2959, SEO ID NO:2960, SEO ID NO:2961, SEO ID NO:2962, SEO ID NO:2963, SEO ID NO:2964, SEO ID NO:2965, SEO ID NO:2966, SEO ID NO:2967, SEO ID NO:2968, SEO ID NO:2969, SEQ ID NO:2970, SEQ ID NO:2971, SEO ID NO:2972, SEO ID NO:2973, SEO ID NO:2974, SEO ID NO:2975, SEO ID NO:2976, SEO ID NO:2977, SEO ID NO:2978, SEO ID NO:2979, SEO ID NO:2980, SEO ID NO:2981, SEO ID NO:2982, SEO ID NO:2983, SEO ID NO:2984, SEO ID NO:2985, SEQ ID NO:2986, SEQ ID NO:2987, SEQ ID NO:2988, SEQ ID NO:2989, SEQ ID NO:2990. SEO ID NO:2991. SEO ID NO:2992. SEO ID NO:2993. SEO ID NO:2994. SEO ID NO:2995, SEO ID NO:2996, SEO ID NO:2997, SEO ID NO:2998, SEO ID NO:2999. SEO ID NO:3000. SEO ID NO:3001. SEO ID NO:3002. SEO ID NO:3003. SEO ID NO:3004, SEQ ID NO:3005, SEQ ID NO:3006, SEQ ID NO:3007, SEQ ID NO:3008. SEO ID NO:3009, SEO ID NO:3010, SEO ID NO:3011, SEO ID NO:3012, SEO ID NO:3013, SEO ID NO:3014, SEO ID NO:3015.

70. The method of claim 41 wherein said expression level of said one or more genes is detected by measuring one or more proteins expressed by said one or more genes, and said expression level of said one or more additional genes is detected by measuring one or more proteins expressed by said one or more additional genes.

71.

The method of claim 70, wherein said one or more proteins expressed by said one or more genes comprise an amino acid sequence selected from the group consisting of SEO ID NO:2400, SEQ ID NO:2401, SEQ ID NO:2402, SEQ ID NO:2403, SEQ ID NO:2404, SEQ ID NO:2405, SEO ID NO:2407, SEO ID NO:2408, SEO ID NO:2409, SEO ID NO:2410. SEO ID NO:2411, SEO ID NO:2412, SEO ID NO:2413, SEO ID NO:2414, SEO ID NO:2415, SEO ID NO:2416, SEO ID NO:2417, SEO ID NO:2418, SEO ID NO:2419, SEO ID NO:2420, SEO ID NO:2421, SEQ ID NO:2422, SEQ ID NO:2423, SEQ ID NO:2424, SEO ID NO:2425, SEO ID NO:2426, SEO ID NO:2427, SEO ID NO:2428, SEO ID NO:2429, SEQ ID NO:2430, SEQ ID NO:2432, SEQ ID NO:2433, SEQ ID NO:2434, SEQ ID NO:2435, SEO ID NO:2436, SEO ID NO:2437, SEO ID NO:2438, SEO ID NO:2439. SEO ID NO:2440, SEQ ID NO:2441, SEQ ID NO:2442, SEQ ID NO:2443, SEQ ID NO:2444, SEO ID NO:2445, SEO ID NO:2446, SEO ID NO:2447, SEO ID NO:2448, SEO ID NO:2449, SEQ ID NO:2450, SEQ ID NO:2451, SEQ ID NO:2452, SEQ ID NO:2453, SEO ID NO:2454, SEO ID NO:2455, SEO ID NO:2456, SEO ID NO:2457, SEO ID NO:2458, SEQ ID NO:2459, SEQ ID NO:2460, SEQ ID NO:2461, SEO ID NO:2462, SEO ID NO:2463, SEO ID NO:2464, SEO ID NO:2465, SEO ID NO:2466, SEO ID NO:2467, SEQ ID NO:2468, SEQ ID NO:2469, SEQ ID NO:2470, SEQ ID NO:2471, SEQ ID NO:2476, SEO ID NO:2477, SEO ID NO:2478, SEO ID NO:2479, SEO ID NO:2480, SEO ID NO:2481, SEQ ID NO:2482, SEQ ID NO:2483, SEQ ID NO:2484, SEQ ID NO:2485, SEO ID NO:2486, SEO ID NO:2488, SEO ID NO:2489, SEO ID NO:2490, SEO ID NO:2491, SEO ID NO:2492, SEO ID NO:2493, SEO ID NO:2494, SEO ID NO:2495, SEO ID NO:2496, SEO ID NO:2497, SEO ID NO:2498, SEO ID NO:2499, SEO ID NO:2500, SEO ID NO:2501, SEO ID NO:2502, SEO ID NO:2503, SEO ID NO:2504, SEO ID NO:2505, SEO ID NO:2506, SEO ID NO:2507, SEO ID NO:2508, SEO ID NO:2509, SEO ID NO:2510, SEQ ID NO:2511, SEQ ID NO:2512, SEQ ID NO:2513, SEQ ID NO:2514, SEO ID NO:2515, SEO ID NO:2516, SEO ID NO:2517, SEO ID NO:2518, SEO ID NO:2519, SEQ ID NO:2520, SEQ ID NO:2521, SEQ ID NO:2528, SEQ ID NO:2529, SEQ ID NO:2530, SEO ID NO:2531, SEO ID NO:2532, SEO ID NO:2533, SEO ID NO:2534, SEO ID NO:2535, SEO ID NO:2536, SEO ID NO:2537, SEO ID NO:2538, SEO ID NO:2539, SEO ID NO:2540, SEO ID NO:2541, SEO ID NO:2542, SEO ID NO:2543, SEO ID NO:2544, SEO ID NO:2545, SEO ID NO:2546, SEO ID NO:2547, SEO ID NO:2548. SEO ID NO:2549, SEO ID NO:2550, SEO ID NO:2551, SEO ID NO:2552, SEO ID NO:2553, SEQ ID NO:2554, SEQ ID NO:2555, SEQ ID NO:2556, SEQ ID NO:2557, SEQ ID NO:2558, SEO ID NO:2559, SEO ID NO:2560, SEO ID NO:2561, SEO ID NO:2562, SEQ ID NO:2563, SEQ ID NO:2564, SEQ ID NO:2565, SEQ ID NO:2566, SEQ ID NO:2567, SEO ID NO:2568, SEO ID NO:2569, SEO ID NO:2570, SEO ID NO:2571, SEO ID NO:2572, SEO ID NO:2573, SEO ID NO:2574, SEO ID NO:2575, SEO ID NO:2576. SEO ID NO:2577, SEO ID NO:2578, SEO ID NO:2579, SEO ID NO:2580, SEO ID NO:2581, SEO ID NO:2582, SEO ID NO:2583, SEO ID NO:2584, SEO ID NO:2585, SEO ID NO:2586, SEQ ID NO:2587, SEQ ID NO:2588, SEQ ID NO:2589, SEQ ID NO:2590,

SEQ ID NO:2591, SEQ ID NO:2592, SEQ ID NO:2593, SEQ ID NO:2594, SEQ ID NO:2595, SEQ ID NO:2596, SEQ ID NO:2596, SEQ ID NO:2596, SEQ ID NO:2599, SEQ ID NO:2599, SEQ ID NO:2600, SEQ ID NO:2601, SEQ ID NO:2602, SEQ ID NO:2603, SEQ ID NO:2604, SEQ ID NO:2605, SEQ ID NO:2604, SEQ ID NO:2605, SEQ ID NO:2606, SEQ ID NO:2606, SEQ ID NO:2606, SEQ ID NO:2606, SEQ ID NO:2616, SEQ ID NO:2616, SEQ ID NO:2616, SEQ ID NO:2616, SEQ ID NO:2617, SEQ ID NO:2613, SEQ ID NO:2614, SEQ ID NO:2615, SEQ ID NO:2616, SEQ ID NO:2617, SEQ ID NO:2618, SEQ ID NO:2619, SEQ ID NO:2624, SEQ ID NO:2625, SEQ ID NO:2625, SEQ ID NO:2626, SEQ ID NO:2626, SEQ ID NO:2626, SEQ ID NO:2627, SEQ ID NO:2627, SEQ ID NO:2627, SEQ ID NO:2627, SEQ ID NO:2628, SEQ ID NO:2628, SEQ ID NO:2628, SEQ ID NO:2628, SEQ ID NO:2628, SEQ ID NO:2628, SEQ ID NO:2628, SEQ ID NO:2474, SEQ ID NO:2475, SEQ ID NO:2475, SEQ ID NO:2475, SEQ ID NO:2523, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525, SEQ ID NO:2525

- 72. The method of claim 42 wherein said expression level is detecting by measuring one or more proteins encoded by said one or more genes.
- 73. The method of claim 72 wherein said one or more proteins comprise an amino acid sequence selected from the group consisting of [SEQ ID NO:2400, SEQ ID NO:2401, SEQ ID NO:2402, SEO ID NO:2403, SEO ID NO:2404, SEO ID NO:2405, SEO ID NO:2406, SEO ID NO:2407, SEQ ID NO:2408, SEQ ID NO:2409, SEQ ID NO:2410, SEQ ID NO:2411, SEO ID NO:2412, SEO ID NO:2413, SEO ID NO:2414, SEO ID NO:2415, SEO ID NO:2416. SEO ID NO:2417. SEO ID NO:2418. SEO ID NO:2419. SEO ID NO:2420. SEO ID NO:2421, SEO ID NO:2422, SEO ID NO:2423, SEO ID NO:2424, SEO ID NO:2425, SEO ID NO:2426. SEO ID NO:2427. SEO ID NO:2428. SEO ID NO:2429. SEO ID NO:2430, SEO ID NO:2432, SEO ID NO:2433, SEO ID NO:2434, SEO ID NO:2435, SEO ID NO:2436. SEO ID NO:2437. SEO ID NO:2438. SEO ID NO:2439. SEO ID NO:2440. SEO ID NO:2441, SEO ID NO:2442, SEO ID NO:2443, SEO ID NO:2444, SEO ID NO:2445. SEO ID NO:2446. SEO ID NO:2447. SEO ID NO:2448. SEO ID NO:2449. SEO ID NO:2450, SEO ID NO:2451, SEO ID NO:2452, SEO ID NO:2453, SEO ID NO:2454, SEO ID NO:2455, SEO ID NO:2456, SEO ID NO:2457, SEO ID NO:2458, SEO ID NO:2459, SEO ID NO:2460, SEO ID NO:2461, SEO ID NO:2462, SEO ID NO:2463, SEO ID NO:2464, SEO ID NO:2465, SEO ID NO:2466, SEO ID NO:2467, SEO ID NO:2468, SEO ID NO:2469, SEO ID NO:2470, SEO ID NO:2474, SEO ID NO:2478, SEO ID NO:2479, SEO ID NO:2480, SEO ID NO:2481, SEO ID NO:2482, SEO ID NO:2483, SEO ID NO:2485, SEQ ID NO:2486, SEQ ID NO:2487, SEQ ID NO:2488, SEQ ID NO:2491, SEO ID NO:2492, SEO ID NO:2493, SEO ID NO:2494, SEO ID NO:2495, SEO ID NO:2496, SEQ ID NO:2497, SEQ ID NO:2502, SEQ ID NO:2503, SEQ ID NO:2504, SEQ ID NO:2505, SEO ID NO:2506, SEO ID NO:2507, SEO ID NO:2508, SEO ID NO:2509, SEQ ID NO:2510, SEQ ID NO:2511, SEQ ID NO:2512, SEQ ID NO:2513, SEQ ID NO:2514, SEO ID NO:2515, SEO ID NO:2516, SEO ID NO:2517, SEO ID NO:2518, SEO ID NO:2519, SEQ ID NO:2520, SEQ ID NO:2521, SEQ ID NO:2528, SEQ ID NO:2529,

SEQ ID NO:2530, SEQ ID NO:2531, SEQ ID NO:2532, SEQ ID NO:2533, SEQ ID NO:2534, SEQ ID NO:2535, SEO ID NO:2536, SEQ ID NO:2537, SEQ ID NO:2538, SEO ID NO:2539, SEQ ID NO:2540, SEQ ID NO:2541, SEQ ID NO:2542, SEQ ID NO:2543 SEO ID NO:2544, SEO ID NO:2545, SEO ID NO:2546, SEQ ID NO:2547, SEO ID NO:2548, SEQ ID NO:2549, SEQ ID NO:2550, SEQ ID NO:2551, SEQ ID NO:2552, SEQ ID NO:2553, SEQ ID NO:2554. SEQ ID NO:2555, SEQ ID NO:2556, SEQ ID NO:2557. SEQ ID NO:2558, SEQ ID NO:2559, SEQ ID NO:2560, SEQ ID NO:2561, SEQ ID NO:2562, SEQ ID NO:2563, SEO ID NO:2564, SEQ ID NO:2565, SEQ ID NO:2566, SEQ ID NO:2567, SEQ ID NO:2568, SEQ ID NO:2569, SEQ ID NO:2570, SEQ ID NO:2571, SEQ ID NO:2572, SEQ ID NO:2573, SEQ ID NO:2574, SEQ ID NO:2575, SEQ ID NO:2576, SEO ID NO:2577, SEO ID NO:2578, SEO ID NO:2579, SEQ ID NO:2580, SEO ID NO:2581, SEQ ID NO:2582, SEQ ID NO:2583, SEQ ID NO:2584, SEQ ID NO:2585. SEO ID NO:2586, SEQ ID NO:2587, SEQ ID NO:2588, SEQ ID NO:2589, SEQ ID NO:2590, SEQ ID NO:2591, SEQ ID NO:2592, SEQ ID NO:2593, SEQ ID NO:2594, SEQ ID NO:2595, SEQ ID NO:2596, SEQ ID NO:2597, SEQ ID NO:2598, SEQ ID NO:2599, SEQ ID NO:2600, SEQ ID NO:2601, SEQ ID NO:2602, SEQ ID NO:2603, SEQ ID NO:2604, SEQ ID NO:2605, SEQ ID NO:2606, SEQ ID NO:2607, SEQ ID NO:2608, SEQ ID NO:2609, SEQ ID NO:2610, SEQ ID NO:2611, SEQ ID NO:2612, SEQ ID NO:2613. SEQ ID NO:2614, SEQ ID NO:2615, SEQ ID NO:2616, SEQ ID NO:2617, SEO ID NO:2618, SEQ ID NO:2619, SEQ ID NO:2620, SEQ ID NO:2621, SEQ ID NO:2622, SEQ ID NO:2623, SEQ ID NO:2624, SEQ ID NO:2625, SEQ ID NO:2626, SEQ ID NO:2925. SEQ ID NO:2926, SEQ ID NO:2927, SEQ ID NO:2928, SEQ ID NO:2929, SEQ ID NO:2930, SEQ ID NO:2932, SEQ ID NO:2933, SEQ ID NO:2935, SEQ ID NO:2936, SEQ ID NO:2937, SEQ ID NO:2938, SEQ ID NO:2939, SEO ID NO:2941, SEO ID NO:2942. SEO ID NO:2943, SEQ ID NO:2945, SEQ ID NO:2946, SEQ ID NO:2947, SEQ ID NO:2948, SEQ ID NO:2949, SEQ ID NO:2950, SEQ ID NO:2951, SEQ ID NO:2952, SEQ ID NO:2953, SEQ ID NO:2954, SEQ ID NO:2955, SEQ ID NO:2956, SEQ ID NO:2957, SEQ ID NO:2959, SEQ ID NO:2960, SEQ ID NO:2961, SEQ ID NO:2962, SEQ ID NO:2963, SEQ ID NO:2964, SEQ ID NO:2965, SEQ ID NO:2966, SEQ ID NO:2967, SEQ ID NO:2968, SEQ ID NO:2969, SEQ ID NO:2970, SEQ ID NO:2971, SEQ ID NO:2972, SEO ID NO:2973, SEQ ID NO:2974, SEQ ID NO:2975, SEQ ID NO:2976, SEQ ID NO:2977, SEQ ID NO:2978, SEQ ID NO:2979, SEQ ID NO:2980, SEQ ID NO:2981, SEQ ID NO:2982, SEQ ID NO:2983, SEQ ID NO:2984, SEQ ID NO:2985, SEQ ID NO:2986, SEQ ID NO:2987, SEQ ID NO:2988, SEQ ID NO:2989, SEQ ID NO:2990, SEQ ID NO:2991, SEQ ID NO:2992, SEQ ID NO:2993, SEQ ID NO:2994, SEQ ID NO:2995, SEQ ID NO:2996, SEQ ID NO:2997, SEQ ID NO:2998, SEQ ID NO:2999, SEQ ID NO:3000. SEQ ID NO:3001, SEQ ID NO:3002, SEQ ID NO:3003, SEQ ID NO:3004, SEO ID NO:3005, SEQ ID NO:3006, SEQ ID NO:3007, SEQ ID NO:3008, SEQ ID NO:3009, SEQ ID NO:3010, SEQ ID NO:3011, SEQ ID NO:3012, SEQ ID NO:3013, SEQ ID NO:3014, SEQ ID NO:3015.

74. The method of claim 43 wherein said expression level of said one or more genes is detected by measuring one or more proteins expressed by said one or more genes, and said expression level of said one or more additional genes is detected by measuring one or more proteins expressed by said one or more additional genes.

75.

The method of claim 74, wherein said one or more proteins expressed by said one or more genes comprises an amino acid sequence selected from the group consisting of SEO ID NO:2400, SEQ ID NO:2401, SEQ ID NO:2402, SEQ ID NO:2403, SEO ID NO:2404. SEO ID NO:2405, SEQ ID NO:2406, SEQ ID NO:2407, SEQ ID NO:2408, SEQ ID NO:2409. SEQ ID NO:2410, SEQ ID NO:2411, SEQ ID NO:2412, SEQ ID NO:2413, SEO ID NO:2414, SEQ ID NO:2415, SEQ ID NO:2416, SEQ ID NO:2417, SEQ ID NO:2418, SEQ ID NO:2419, SEQ ID NO:2420, SEQ ID NO:2421, SEQ ID NO:2422, SEQ ID NO:2423. SEQ ID NO:2424, SEQ ID NO:2425, SEQ ID NO:2426, SEQ ID NO:2427, SEQ ID NO:2428. SEQ ID NO:2429. SEO ID NO:2430. SEO ID NO:2432, SEO ID NO:2433. SEO ID NO:2434, SEQ ID NO:2435, SEQ ID NO:2436, SEQ ID NO:2437, SEQ ID NO:2438, SEO ID NO:2439, SEO ID NO:2440, SEO ID NO:2441, SEO ID NO:2442, SEO ID NO:2443, SEQ ID NO:2444, SEQ ID NO:2445, SEQ ID NO:2446, SEQ ID NO:2447, SEQ ID NO:2448, SEQ ID NO:2449, SEQ ID NO:2450, SEQ ID NO:2451, SEQ ID NO:2452, SEQ ID NO:2453, SEQ ID NO:2454, SEQ ID NO:2455, SEQ ID NO:2456, SEQ ID NO:2457, SEQ ID NO:2458, SEO ID NO:2459, SEO ID NO:2460, SEQ ID NO:2461, SEO ID NO:2462, SEO ID NO:2463, SEO ID NO:2464, SEQ ID NO:2465, SEQ ID NO:2466, SEQ ID NO:2467, SEQ ID NO:2468, SEQ ID NO:2469, SEQ ID NO:2470, SEQ ID NO:2474, SEQ ID NO:2478, SEQ ID NO:2479, SEQ ID NO:2480, SEQ ID NO:2481, SEQ ID NO:2482, SEQ ID NO:2483, SEQ ID NO:2485, SEO ID NO:2486, SEO ID NO:2487, SEQ ID NO:2488, SEQ ID NO:2491, SEQ ID NO:2492, SEQ ID NO:2493, SEQ ID NO:2494, SEQ ID NO:2495, SEO ID NO:2496, SEO ID NO:2497, SEO ID NO:2502, SEO ID NO:2503, SEQ ID NO:2504, SEQ ID NO:2505, SEQ ID NO:2506, SEQ ID NO:2507, SEO ID NO:2508, SEO ID NO:2509, SEO ID NO:2510, SEO ID NO:2511, SEO ID NO:2512, SEQ ID NO:2513, SEQ ID NO:2514, SEQ ID NO:2515, SEQ ID NO:2516, SEQ ID NO:2517, SEQ ID NO:2518, SEQ ID NO:2519, SEO ID NO:2520, SEO ID NO:2521. SEQ ID NO:2528, SEQ ID NO:2529, SEQ ID NO:2530, SEQ ID NO:2531, SEQ ID NO:2532, SEQ ID NO:2533, SEQ ID NO:2534, SEQ ID NO:2535, SEQ ID NO:2536, SEQ ID NO:2537, SEO ID NO:2538, SEO ID NO:2539, SEQ ID NO:2540, SEQ ID NO:2541, SEQ ID NO:2542, SEQ ID NO:2543, SEQ ID NO:2544, SEQ ID NO:2545, SEQ ID NO:2546, SEQ ID NO:2547, SEQ ID NO:2548, SEQ ID NO:2549, SEQ ID NO:2550, SEQ ID NO:2551, SEQ ID NO:2552, SEQ ID NO:2553, SEO ID NO:2554, SEQ ID NO:2555. SEQ ID NO:2556, SEQ ID NO:2557, SEQ ID NO:2558, SEQ ID NO:2559, SEQ ID NO:2560, SEQ ID NO:2561, SEO ID NO:2562, SEQ ID NO:2563, SEQ ID NO:2564, SEO ID NO:2565, SEQ ID NO:2566, SEQ ID NO:2567, SEQ ID NO:2568, SEQ ID NO:2569, SEQ ID NO:2570, SEQ ID NO:2571, SEQ ID NO:2572, SEQ ID NO:2573, SEQ ID NO:2574, SEQ ID NO:2575, SEQ ID NO:2576, SEQ ID NO:2577, SEQ ID NO:2578, SEQ

ID NO:2579, SEQ ID NO:2580, SEQ ID NO:2581, SEQ ID NO:2582, SEO ID NO:2583. SEQ ID NO:2584, SEQ ID NO:2585, SEQ ID NO:2586, SEQ ID NO:2587, SEQ ID NO:2588, SEQ ID NO:2589, SEQ ID NO:2590, SEQ ID NO:2591, SEQ ID NO:2592. SEO ID NO:2593, SEO ID NO:2594, SEO ID NO:2595, SEQ ID NO:2596, SEO ID NO:2597, SEO ID NO:2598, SEO ID NO:2599, SEO ID NO:2600, SEO ID NO:2601, SEO ID NO:2602, SEO ID NO:2603, SEO ID NO:2604, SEO ID NO:2605, SEO ID NO:2606, SEO ID NO:2607, SEO ID NO:2608, SEO ID NO:2609, SEO ID NO:2610, SEO ID NO:2611. SEO ID NO:2612, SEO ID NO:2613, SEO ID NO:2614, SEO ID NO:2615, SEO ID NO:2616. SEO ID NO:2617. SEO ID NO:2618. SEO ID NO:2619. SEO ID NO:2620. SEO ID NO:2621, SEQ ID NO:2622, SEQ ID NO:2623, SEQ ID NO:2624, SEQ ID NO:2625, SEO ID NO:2626. SEO ID NO:2925. SEO ID NO:2926. SEO ID NO:2927. SEO ID NO:2928. SEO ID NO:2929. SEO ID NO:2930. SEO ID NO:2932. SEO ID NO:2933. SEO ID NO:2935, SEO ID NO:2936, SEO ID NO:2937, SEO ID NO:2938, SEO ID NO:2939, SEO ID NO:2941, SEO ID NO:2942, SEO ID NO:2943, SEO ID NO:2945, SEO ID NO:2946, SEO ID NO:2947, SEO ID NO:2948, SEO ID NO:2949, SEO ID NO:2950, SEO ID NO:2951, SEQ ID NO:2952, SEQ ID NO:2953, SEQ ID NO:2954, SEQ ID NO:2955, SEO ID NO:2956, SEO ID NO:2957, SEO ID NO:2959, SEO ID NO:2960, SEO ID NO:2961, SEQ ID NO:2962, SEQ ID NO:2963, SEQ ID NO:2964, SEQ ID NO:2965, SEQ ID NO:2966, SEO ID NO:2967, SEO ID NO:2968, SEO ID NO:2969, SEO ID NO:2970, SEQ ID NO:2971, SEQ ID NO:2972, SEQ ID NO:2973, SEQ ID NO:2974, SEO ID NO:2975, SEO ID NO:2976, SEO ID NO:2977, SEO ID NO:2978, SEO ID NO:2979, SEO ID NO:2980, SEQ ID NO:2981, SEQ ID NO:2982, SEQ ID NO:2983, SEQ ID NO:2984, SEO ID NO:2985, SEO ID NO:2986, SEO ID NO:2987, SEO ID NO:2988, SEO ID NO:2989, SEQ ID NO:2990, SEQ ID NO:2991, SEQ ID NO:2992, SEQ ID NO:2993, SEQ ID NO:2994, SEO ID NO:2995, SEO ID NO:2996, SEO ID NO:2997, SEO ID NO:2998, SEQ ID NO:2999, SEQ ID NO:3000, SEQ ID NO:3001, SEQ ID NO:3002, SEQ ID NO:3003, SEO ID NO:3004, SEO ID NO:3005, SEO ID NO:3006, SEO ID NO:3007, SEO ID NO:3008, SEQ ID NO:3009, SEQ ID NO:3010, SEQ ID NO:3011, SEQ ID NO:3012, SEO ID NO:3013, SEO ID NO:3014, SEO ID NO:3015, and said one or more proteins expressed by said one or more additional genes comprises an amino acid sequence selected from the group consisting of SEO ID NO:2431, SEO ID NO:2471, SEO ID NO:2472, SEO ID NO:2473, SEQ ID NO:2475, SEQ ID NO:2476, SEQ ID NO:2477, SEQ ID NO:2484, SEQ ID NO:2489, SEO ID NO:2490, SEO ID NO:2498, SEO ID NO:2499, SEO ID NO:2500, SEQ ID NO:2501, SEQ ID NO:2522, SEQ ID NO:2523, SEQ ID NO:2524, SEQ ID NO:2525, SEO ID NO:2526, SEO ID NO:2527.

- The method of claim 64, wherein said measuring comprises measuring serum.
- 77. The method of claim 64, wherein said protein is a cell surface protein.
- The method of claim 64, wherein said measuring comprises using a fluorescent activated cell sorter

 A substantially purified oligonucleotide having the nucleotide sequence selected from the group consisting of [SEQ ID NO: X + Y - novel gene sequences + literature sequences].

80 A substantially purified oligonucleotide having the nucleotide sequence selected from the group consisting of ICHECK TO BE SURE THESE ARE THE CORRECT SEQUENCES| SEQ ID NO:333, SEQ ID NO:334, SEQ ID NO:335, SEQ ID NO:336, SEQ 1D NO:337, SEQ ID NO:338, SEQ ID NO:339, SEQ ID NO:340, SEQ ID NO:341, SEQ ID NO:342, SEQ ID NO:343, SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID NO:347, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:350, SEQ ID NO:351, SEQ ID NO:352, SEQ ID NO:353, SEQ ID NO:354, SEQ ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID NO:361, SEQ ID NO:362, SEQ ID NO:363, SEQ ID NO:364, SEQ ID NO:365, SEQ ID NO:366, SEQ ID NO:367, SEQ ID NO:368, SEQ ID NO:369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:375, SEQ ID NO:376, SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEQ ID NO:380, SEQ ID NO:381, SEQ ID NO:382, SEQ ID NO:383, SEQ ID NO:384, SEQ ID NO:385, SEQ ID NO:386, SEO ID NO:387, SEO ID NO:388, SEQ ID NO:389, SEO ID NO:390, SEO ID NO:391, SEO ID NO:392, SEO ID NO:393, SEO ID NO:394, SEO ID NO:395, SEO ID NO:396, SEO ID NO:397, SEQ ID NO:398, SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID NO:402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405, SEQ ID NO:406, SEO ID NO:407, SEQ ID NO:408, SEQ ID NO:409, SEQ ID NO:410, SEQ ID NO:411, SEQ ID NO:412, SEQ ID NO:413, SEQ ID NO:414, SEQ ID NO:415, SEQ ID NO:416, SEO ID NO:417, SEQ ID NO:418, SEQ ID NO:419, SEQ ID NO:420, SEQ ID NO:421, SEQ ID NO:422, SEO ID NO:423, SEO ID NO:424, SEO ID NO:425, SEO ID NO:426, SEO ID NO:427. SEQ ID NO:428, SEQ ID NO:429, SEQ ID NO:430, SEQ ID NO:431, SEQ ID NO:432, SEQ ID NO:433, SEQ ID NO:434, SEQ ID NO:435, SEQ ID NO:436, SEO ID NO:437, SEQ ID NO:438, SEQ ID NO:439, SEQ ID NO:440, SEQ ID NO:441, SEQ ID NO:442, SEQ ID NO:443, SEQ ID NO:444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID NO:447, SEQ ID NO:448, SEQ ID NO:449, SEQ ID NO:450, SEQ ID NO:451, SEQ ID NO:452, SEQ ID NO:453, SEQ ID NO:454, SEQ ID NO:455, SEQ ID NO:456, SEO ID NO:457, SEQ ID NO:458, SEQ ID NO:459, SEQ ID NO:460, SEQ ID NO:461, SEQ ID NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:465, SEQ ID NO:466, SEQ ID NO:467, SEQ ID NO:468, SEQ ID NO:469, SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472, SEQ ID NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:476, SEQ ID NO:477, SEQ ID NO:478, SEQ ID NO:479, SEQ ID NO:480, SEQ ID NO:481, SEQ ID NO:482, SEO ID NO:483, SEO ID NO:484, SEQ ID NO:485, SEQ ID NO:486, SEQ ID NO:487, SEQ ID NO:488, SEQ ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID NO:492, SEQ ID NO:493, SEQ ID NO:494, SEQ ID NO:495, SEQ ID NO:496, SEO ID NO:497, SEQ ID NO:498, SEQ ID NO:499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:502, SEQ ID NO:503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID

NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEO ID NO:528, SEO ID NO:529, SEO ID NO:530, SEO ID NO:531, SEO ID NO:532, SEO ID NO:533, SEO ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEO ID NO:538, SEO ID NO:539, SEO ID NO:540, SEO ID NO:541, SEO ID NO:542, SEO ID NO:543, SEO ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEO ID NO:553, SEO ID NO:554, SEO ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEO ID NO:563, SEO ID NO:564, SEO ID NO:565, SEO ID NO:566, SEO ID NO:567, SEO ID NO:568, SEO ID NO:569, SEO ID NO:570, SEO ID NO:571, SEO ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEO 1D NO:578, SEO ID NO:579, SEO ID NO:580, SEO ID NO:581, SEO ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEO ID NO:588, SEO ID NO:589, SEO ID NO:590, SEO ID NO:591, SEO ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEO ID NO:598, SEO ID NO:599, SEO ID NO:600, SEO ID NO:601, SEO ID NO:602, SEO ID NO:603, SEO ID NO:604, SEO ID NO:605, SEO ID NO:606, SEO ID NO:607, SEO ID NO:608, SEO ID NO:609, SEO ID NO:610, SEO ID NO:611, SEO ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEO ID NO:618, SEO ID NO:619, SEO ID NO:620, SEO ID NO:621, SEO ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEO ID NO:628, SEO ID NO:629, SEO ID NO:630, SEO ID NO:631, SEO ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEO ID NO:638, SEO ID NO:639, SEO ID NO:640, SEO ID NO:641, SEO ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEO ID NO:648, SEO ID NO:649, SEO ID NO:650, SEO ID NO:651, SEO ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEO ID NO:658, SEO ID NO:659, SEO ID NO:660, SEO ID NO:661, SEO ID NO:662, SEQ ID NO:663, SEQ ID NO:664.

- An oligonucleotide comprising a nucleotide sequence having at least 90% sequence identity to said oligonucleotide of claim 79.
- An oligonucleotide comprising a nucleotide sequence having at least 90% sequence identity to said oligonucleotide of claim 80.
- An oligonucleotide comprising a nucleotide sequence that hybridizes at high stringency to said oligonucleotide of claim 79.
- 84. An oligonucleotide comprising a nucleotide sequence that hybridizes at high stringency to said oligonucleotide of claim 80.

 The diagnostic oligonucleotide of claim 79, wherein said nucleotide sequence comprises DNA, cDNA, PNA, genomic DNA, or synthetic oligonucleotides.

- 86. The method of claim 32, wherein the expression level detected is expression level in the patient's bodily fluid.
- 87. The method of claim 86, wherein said bodily fluid is peripheral blood.

88

A method of diagnosing or monitoring transplant rejection in a patient, comprising detecting the expression level of four or more genes in said patient to diagnose or monitor transplant rejection in said patient wherein said four or more genes comprise a nucleotide sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEO ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16. SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEO ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27. SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38. SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEO ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEO ID NO:86, SEQ ID NO:87, SEO ID NO:88, SEO ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEO ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEO ID NO:161, SEO ID NO:162, SEQ ID NO:163, SEO ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID

NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO: 174, SEO ID NO: 175, SEO ID NO: 176, SEO ID NO: 177, SEO ID NO: 178, SEO ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEO ID NO:185, SEO ID NO:186, SEO ID NO:187, SEO ID NO:188, SEO ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEO ID NO:195, SEO ID NO:196, SEO ID NO:197, SEO ID NO:198, SEO ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204. SEO ID NO:205. SEO ID NO:206. SEO ID NO:207. SEO ID NO:208. SEO ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEO ID NO:215, SEO ID NO:216, SEO ID NO:217, SEO ID NO:218, SEO ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEO ID NO:225, SEO ID NO:226, SEO ID NO:227, SEO ID NO:228, SEO ID NO:229. SEO ID NO:230. SEO ID NO:231. SEO ID NO:232. SEO ID NO:233. SEO ID NO:234, SEO ID NO:235, SEO ID NO:236, SEO ID NO:237, SEO ID NO:238, SEO ID NO:239. SEO ID NO:240. SEO ID NO:241. SEO ID NO:242. SEO ID NO:243. SEO ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249. SEO ID NO:250. SEO ID NO:251. SEO ID NO:252. SEO ID NO:253. SEO ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259. SEO ID NO:260. SEO ID NO:261. SEO ID NO:262, SEO ID NO:263, SEO ID NO:264, SEO ID NO:265, SEO ID NO:266, SEO ID NO:267, SEO ID NO:268, SEO ID NO:269. SEO ID NO:270. SEO ID NO:271. SEO ID NO:272. SEO ID NO:273. SEO ID NO:274, SEO ID NO:275, SEO ID NO:276, SEO ID NO:277, SEO ID NO:278, SEO ID NO:279. SEO ID NO:280. SEO ID NO:281. SEO ID NO:282. SEO ID NO:283. SEO ID NO:284, SEO ID NO:285, SEO ID NO:286, SEO ID NO:287, SEO ID NO:288, SEO ID NO:289. SEO ID NO:290. SEO ID NO:291. SEO ID NO:292. SEO ID NO:293. SEO ID NO:294, SEO ID NO:295, SEO ID NO:296, SEO ID NO:297, SEO ID NO:298, SEO ID NO:299, SEO ID NO:300, SEO ID NO:301, SEO ID NO:302, SEO ID NO:303, SEO ID NO:304, SEO ID NO:305, SEO ID NO:306, SEO ID NO:307, SEO ID NO:308, SEO ID NO:309, SEO ID NO:310, SEO ID NO:311, SEO ID NO:312, SEO ID NO:313, SEO ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEO ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEO ID NO:330, SEO ID NO:331, SEO ID NO:332, SEO ID NO:2697, SEO ID NO:2645, SEQ ID NO:2707, SEQ ID NO:2679, SEQ ID NO:2717, SEQ ID NO:2646, SEQ ID NO:2667, SEO ID NO:2706, SEO ID NO:2740, SEO ID NO:2669, SEO ID NO:2674. SEO ID NO:2743, SEO ID NO:2716, SEO ID NO:2727, SEO ID NO:2721, SEO ID NO:2641, SEO ID NO:2671, SEO ID NO:2752, SEO ID NO:2737, SEO ID NO:2719, SEO ID NO:2684, SEQ ID NO:2677, SEQ ID NO:2748, SEQ ID NO:2703, SEQ ID NO:2711, SEO ID NO:2663, SEO ID NO:2657, SEO ID NO:2683, SEO ID NO:2686, SEO ID NO:2687, SEQ ID NO:2644, SEQ ID NO:2664, SEQ ID NO:2747, SEQ ID NO:2744, SEQ

ID NO:2678, SEO ID NO:2731, SEO ID NO:2713, SEO ID NO:2736, SEO ID NO:2708. SEQ ID NO:2670, SEQ ID NO:2661, SEQ ID NO:2680, SEQ ID NO:2754, SEQ ID NO:2728, SEO ID NO:2742, SEO ID NO:2668, SEQ ID NO:2750, SEQ ID NO:2746, SEQ ID NO:2738, SEQ ID NO:2627, SEQ ID NO:2739, SEQ ID NO:2647, SEQ ID NO:2628, SEO ID NO:2638, SEO ID NO:2725, SEO ID NO:2714, SEO ID NO:2635, SEO ID NO:2751, SEO ID NO:2629, SEO ID NO:2695, SEO ID NO:2741, SEO ID NO:2691, SEO ID NO:2726, SEQ ID NO:2722, SEQ ID NO:2689, SEQ ID NO:2734, SEQ ID NO:2631, SEO ID NO:2656, SEO ID NO:2696, SEO ID NO:2676, SEO ID NO:2701, SEO ID NO:2730, SEO ID NO:2710, SEO ID NO:2632, SEO ID NO:2724, SEO ID NO:2698, SEO ID NO:2662, SEQ ID NO:2753, SEQ ID NO:2704, SEQ ID NO:2675, SEQ ID NO:2700, SEO ID NO:2640, SEO ID NO:2723, SEO ID NO:2658, SEO ID NO:2688, SEO ID NO:2735, SEQ ID NO:2702, SEQ ID NO:2681, SEQ ID NO:2755, SEQ ID NO:2715, SEQ ID NO:2732, SEO ID NO:2652, SEO ID NO:2651, SEO ID NO:2718, SEO ID NO:2673. SEO ID NO:2733, SEO ID NO:2712, SEO ID NO:2659, SEO ID NO:2654, SEO ID NO:2636, SEO ID NO:2639, SEO ID NO:2690, SEO ID NO:2705, SEO ID NO:2685, SEO ID NO:2692, SEO ID NO:2693, SEO ID NO:2648, SEO ID NO:2650, SEO ID NO:2720, SEO ID NO:2660, SEO ID NO:2666, SEO ID NO:2699, SEO ID NO:2633, SEO ID NO:2672, SEQ ID NO:2642, SEQ ID NO:2682, SEQ ID NO:2655, SEQ ID NO:2630, SEQ ID NO:2745, SEO ID NO:2643, SEO ID NO:2694, SEO ID NO:2749, SEO ID NO:2665, SEO ID NO:2649, SEO ID NO:2637, SEO ID NO:2634, SEO ID NO:2709, SEO ID NO:2653, SEO ID NO:2729.

- 89. A method of diagnosing or monitoring kidney transplant rejection in a patient, comprising detecting one or more proteins in a bodily fluid of said patient to diagnose or monitor transplant rejection in said patient wherein said one or more proteins comprise a protein sequence selected from the group consisting of SEQ ID NO:76, SEQ ID NO:2663, SEQ ID NO:98, SEQ ID NO:2696, SEQ ID NO:2736, SEQ ID NO:2751, SEQ ID NO:2675, SEQ ID NO:2700, and SEQ ID NO:2693.
- 90. A system for detecting gene expression in body fluid comprising at least two isolated polynucleotides wherein the isolated polynucleotides detect expression of a gene wherein the gene comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:45, SEQ ID NO:45, SEQ ID NO:45, SEQ ID NO:45, SEQ ID NO:45, SEQ ID NO:53, SEQ ID NO:53, SEQ ID NO:53, SEQ ID NO:53, SEQ ID NO:53, SEQ ID NO:53, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:55, SEQ ID NO:55, SEQ ID NO:55, SEQ ID NO:55, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59, SEQ ID NO:59,

NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64. SEO ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:82, SEO ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEO ID NO:90, SEO ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEO ID NO:94, SEO ID NO:95. SEO ID NO:96. SEO ID NO:98. SEO ID NO:101. SEO ID NO:102. SEO ID NO:103, SEO ID NO:104, SEO ID NO:105, SEQ ID NO:106, SEO ID NO:107, SEO ID NO:108. SEO ID NO:109. SEO ID NO:114. SEO ID NO:115. SEO ID NO:116. SEO ID NO:117. SEO ID NO:118, SEO ID NO:119, SEO ID NO:120, SEO ID NO:121, SEO ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEO ID NO:128, SEO ID NO:129, SEO ID NO:130, SEO ID NO:131, SEO ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEO ID NO:138, SEO ID NO:139, SEO ID NO:152, SEO ID NO:153, SEO ID NO:154. SEO ID NO:155. SEO ID NO:156. SEO ID NO:157. SEO ID NO:158. SEO ID NO:159, SEO ID NO:160, SEO ID NO:161, SEO ID NO:162, SEO ID NO:163, SEO ID NO:164, SEO ID NO:165, SEO ID NO:166, SEO ID NO:167, SEO ID NO:168, SEO ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEO ID NO:180, SEO ID NO:181, SEO ID NO:182, SEO ID NO:183, SEO ID NO:184, SEO ID NO:185, SEO ID NO:186, SEO ID NO:187, SEO ID NO:188, SEO ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEO ID NO:195, SEO ID NO:196, SEO ID NO:197, SEO ID NO:198, SEO ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204. SEO ID NO:205. SEO ID NO:206. SEO ID NO:207. SEO ID NO:208. SEO ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214. SEO ID NO:215. SEO ID NO:216. SEO ID NO:217. SEO ID NO:218. SEO ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEO ID NO:225, SEO ID NO:226, SEO ID NO:227, SEO ID NO:228, SEO ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEO ID NO:235, SEO ID NO:236, SEO ID NO:237, SEO ID NO:238, SEO ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEO ID NO:245, SEO ID NO:246, SEO ID NO:247, SEO ID NO:248, SEO ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEO ID NO:260, SEO ID NO:261, SEO ID NO:262, SEO ID NO:263, SEO ID NO:264, SEO ID NO:265, SEO ID NO:266, SEO ID NO:267, SEO ID NO:268, SEO ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEO ID NO:275, SEO ID NO:276, SEO ID NO:277, SEO ID NO:278, SEO ID NO:279, SEQ 1D NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID

NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEO ID NO:295, SEO ID NO:296, SEO ID NO:297, SEO ID NO:298, SEO ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEO ID NO:305, SEO ID NO:306, SEO ID NO:307, SEO ID NO:308, SEO ID NO:309, SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEO ID NO:315, SEO ID NO:316, SEO ID NO:317, SEO ID NO:318, SEO ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEO ID NO:325, SEO ID NO:326, SEO ID NO:327, SEO ID NO:328, SEO ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:2697, SEQ ID NO:2645, SEO ID NO:2707, SEO ID NO:2679, SEO ID NO:2717, SEO ID NO:2646, SEO ID NO:2667, SEQ ID NO:2706, SEQ ID NO:2740, SEQ ID NO:2669, SEQ ID NO:2674, SEO ID NO:2743, SEO ID NO:2716, SEO ID NO:2727, SEO ID NO:2721, SEO ID NO:2641, SEO ID NO:2671, SEO ID NO:2752, SEO ID NO:2737, SEO ID NO:2719, SEO ID NO:2684, SEO ID NO:2677, SEO ID NO:2748, SEO ID NO:2703, SEO ID NO:2711, SEO ID NO:2663, SEO ID NO:2657, SEO ID NO:2683, SEO ID NO:2686, SEO ID NO:2687, SEO ID NO:2644, SEO ID NO:2664, SEO ID NO:2747, SEO ID NO:2744, SEO 1D NO:2678, SEO ID NO:2731, SEO ID NO:2713, SEO ID NO:2736, SEO ID NO:2708. SEO ID NO:2670, SEO ID NO:2661, SEO ID NO:2680, SEO ID NO:2754, SEO ID NO:2728, SEO ID NO:2742, SEO ID NO:2668, SEO ID NO:2750, SEO ID NO:2746, SEO 1D NO:2738, SEO ID NO:2627, SEO ID NO:2739, SEO ID NO:2647, SEO ID NO:2628, SEO ID NO:2638, SEO ID NO:2725, SEO ID NO:2714, SEO ID NO:2635, SEO ID NO:2751, SEO ID NO:2629, SEO ID NO:2695, SEO ID NO:2741, SEO ID NO:2691, SEO 1D NO:2726, SEQ ID NO:2722, SEQ ID NO:2689, SEQ ID NO:2734, SEQ ID NO:2631, SEO ID NO:2656, SEO ID NO:2696, SEO ID NO:2676, SEO ID NO:2701, SEO ID NO:2730, SEQ ID NO:2710, SEQ ID NO:2632, SEQ ID NO:2724, SEQ ID NO:2698, SEQ 1D NO:2662, SEO ID NO:2753, SEO ID NO:2704, SEO ID NO:2675, SEO ID NO:2700. SEO ID NO:2640, SEO ID NO:2723, SEO ID NO:2658, SEO ID NO:2688, SEO ID NO:2735, SEO ID NO:2702, SEO ID NO:2681, SEO ID NO:2755, SEO ID NO:2715, SEO ID NO:2732, SEQ ID NO:2652, SEQ ID NO:2651, SEQ ID NO:2718, SEQ ID NO:2673, SEO ID NO:2733, SEO ID NO:2712, SEO ID NO:2659, SEO ID NO:2654, SEO ID NO:2636, SEQ ID NO:2639, SEQ ID NO:2690, SEQ ID NO:2705, SEQ ID NO:2685, SEQ 1D NO:2692, SEO ID NO:2693, SEO ID NO:2648, SEO ID NO:2650, SEO ID NO:2720. SEQ ID NO:2660, SEQ ID NO:2666, SEQ ID NO:2699, SEQ ID NO:2633, SEQ ID NO:2672, SEQ ID NO:2642, SEQ ID NO:2682, SEQ ID NO:2655, SEQ ID NO:2630, SEQ ID NO:2745, SEQ ID NO:2643, SEQ ID NO:2694, SEQ ID NO:2749, SEQ ID NO:2665, SEO ID NO:2649, SEO ID NO:2637, SEO ID NO:2634, SEO ID NO:2709, SEO ID NO:2653, SEQ ID NO:2729 and the gene is differentially expressed in body fluid in an individual rejecting a transplanted organ compared to the expression of the gene in leukocytes in an individual not rejecting a transplanted organ.

91.

A system for detecting gene expression in body fluid comprising at least two isolated polynucleotides wherein the isolated polynucleotides detect expression of a gene wherein the gene comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:2, SEO 1D NO:3, SEO ID NO:4, SEO ID NO:5, SEO ID NO:6, SEO ID NO:7, SEO 1D NO:8. SEO ID NO:9. SEO ID NO:10. SEO ID NO:11. SEO ID NO:12. SEO ID NO:13. SEO ID NO:14, SEO ID NO:15, SEO ID NO:16, SEO ID NO:17, SEO ID NO:18, SEO ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEO ID NO:26, SEO ID NO:27, SEO ID NO:28, SEO ID NO:29, SEO ID NO:30. SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEO ID NO:37, SEO ID NO:38, SEO ID NO:39, SEO ID NO:40, SEO ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEO ID NO:48, SEO ID NO:49, SEO ID NO:50, SEO ID NO:51, SEO ID NO:52, SEO ID NO:53, SEO ID NO:54, SEO ID NO:55, SEO ID NO:56, SEO ID NO:57, SEO ID NO:58, SEO ID NO:59, SEO ID NO:60, SEO ID NO:61, SEO ID NO:62, SEO ID NO:63, SEO ID NO:64, SEO ID NO:65, SEO ID NO:66, SEO ID NO:67, SEO ID NO:68, SEO ID NO:69, SEO ID NO:70, SEO ID NO:71, SEO ID NO:72, SEO ID NO:73, SEO ID NO:74, SEO ID NO:75, SEO ID NO:76, SEO ID NO:77, SEO ID NO:78, SEO ID NO:79, SEO ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEO ID NO:86, SEO ID NO:87, SEO ID NO:88, SEO ID NO:89, SEO ID NO:90, SEO ID NO:91, SEO ID NO:92, SEO ID NO:93, SEO ID NO:94, SEO ID NO:95, SEO ID NO:96, SEO ID NO:97, SEO ID NO:98, SEO ID NO:99, SEO ID NO:100, SEO ID NO:101, SEO ID NO:102, SEO ID NO:103, SEO ID NO:104, SEO ID NO:105, SEO ID NO:106, SEO ID NO:107, SEO ID NO:108, SEO ID NO:109, SEO ID NO:110, SEO ID NO:111, SEO ID NO:112, SEO ID NO:113, SEO ID NO:114, SEO ID NO:115, SEO ID NO:116, SEO ID NO:117, SEO ID NO:118, SEO ID NO:119, SEO ID NO:120, SEO ID NO:121, SEO ID NO:122, SEO ID NO:123, SEO ID NO:124, SEO ID NO:125, SEO ID NO:126, SEO ID NO:127, SEO ID NO:128, SEO ID NO:129, SEO ID NO:130, SEO ID NO:131, SEO ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEO ID NO:138, SEO ID NO:139, SEO ID NO:140, SEO ID NO:141, SEO ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEO ID NO:153, SEO ID NO:154, SEO ID NO:155, SEO ID NO:156, SEO ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEO ID NO:163, SEO ID NO:164, SEO ID NO:165, SEO ID NO:166, SEO ID NO:167, SEO ID NO:168, SEO ID NO:169, SEO ID NO:170, SEO ID NO:171, SEO ID NO:172, SEO ID NO:173, SEO ID NO:174, SEO ID NO:175, SEO ID NO:176, SEO ID NO:177, SEO ID NO:178, SEO ID NO:179, SEO ID NO:180, SEO ID NO:181, SEO ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID

NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211. SEO ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEO ID NO:223, SEO ID NO:224, SEO ID NO:225, SEO ID NO:226, SEO ID NO:227. SEO ID NO:228. SEO ID NO:229. SEO ID NO:230. SEO ID NO:231. SEO ID NO:232, SEO ID NO:233, SEO ID NO:234, SEO ID NO:235, SEO ID NO:236, SEO ID NO:237. SEO ID NO:238. SEO ID NO:239. SEO ID NO:240. SEO ID NO:241. SEO ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEO ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEO ID NO:278, SEO ID NO:279, SEO ID NO:280, SEO ID NO:281, SEO ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEO ID NO:288, SEO ID NO:289, SEO ID NO:290, SEO ID NO:291, SEO ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEO ID NO:298, SEO ID NO:299, SEO ID NO:300, SEO ID NO:301, SEO ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEO ID NO:308, SEO ID NO:309, SEO ID NO:310, SEO ID NO:311, SEO ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEO ID NO:318, SEO ID NO:319, SEO ID NO:320, SEO ID NO:321, SEO ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEO ID NO:328, SEO ID NO:329, SEO ID NO:330, SEO ID NO:331, SEO ID NO:332, SEQ ID NO:2697, SEQ ID NO:2645, SEQ ID NO:2707, SEQ ID NO:2679, SEQ ID NO:2717, SEO ID NO:2646, SEO ID NO:2667, SEO ID NO:2706, SEO ID NO:2740, SEO ID NO:2669, SEO ID NO:2674, SEO ID NO:2743, SEO ID NO:2716, SEO ID NO:2727. SEO ID NO:2721, SEO ID NO:2641, SEO ID NO:2671, SEO ID NO:2752, SEO ID NO:2737, SEQ ID NO:2719, SEQ ID NO:2684, SEQ ID NO:2677, SEQ ID NO:2748, SEQ ID NO:2703, SEO ID NO:2711, SEO ID NO:2663, SEO ID NO:2657, SEO ID NO:2683. SEQ ID NO:2686, SEQ ID NO:2687, SEQ ID NO:2644, SEQ ID NO:2664, SEQ ID NO:2747, SEQ ID NO:2744, SEQ ID NO:2678, SEQ ID NO:2731, SEQ ID NO:2713, SEQ ID NO:2736. SEO ID NO:2708, SEO ID NO:2670, SEO ID NO:2661, SEO ID NO:2680, SEO ID NO:2754, SEO ID NO:2728, SEO ID NO:2742, SEO ID NO:2668, SEO ID NO:2750, SEQ ID NO:2746, SEQ ID NO:2738, SEQ ID NO:2627, SEQ ID NO:2739, SEQ ID NO:2647, SEO ID NO:2628, SEO ID NO:2638, SEO ID NO:2725, SEO ID NO:2714. SEQ ID NO:2635, SEQ ID NO:2751, SEQ ID NO:2629, SEQ ID NO:2695, SEQ ID

NO:2741, SEQ ID NO:2691, SEO ID NO:2726, SEQ ID NO:2722, SEQ ID NO:2689, SEQ ID NO:2734, SEQ ID NO:2631, SEQ ID NO:2656, SEQ ID NO:2696, SEQ ID NO:2676, SEQ ID NO:2701, SEQ ID NO:2730, SEQ ID NO:2710, SEQ ID NO:2632, SEQ ID NO:2724, SEQ ID NO:2698, SEQ ID NO:2662, SEQ ID NO:2753, SEQ ID NO:2704, SEQ ID NO:2675, SEO ID NO:2700, SEO ID NO:2640, SEO ID NO:2723, SEO ID NO:2658. SEO ID NO:2688, SEO ID NO:2735, SEO ID NO:2702, SEO ID NO:2681, SEO ID NO:2755, SEO ID NO:2715, SEO ID NO:2732, SEO ID NO:2652, SEO ID NO:2651, SEO ID NO:2718, SEQ ID NO:2673, SEQ ID NO:2733, SEQ ID NO:2712, SEQ ID NO:2659, SEQ ID NO:2654, SEO ID NO:2636, SEO ID NO:2639, SEO ID NO:2690, SEO ID NO:2705, SEQ ID NO:2685, SEQ ID NO:2692, SEQ ID NO:2693, SEQ ID NO:2648, SEQ ID NO:2650, SEO ID NO:2720, SEO ID NO:2660, SEO ID NO:2666, SEO ID NO:2699, SEQ ID NO:2633, SEQ ID NO:2672, SEQ ID NO:2642, SEQ ID NO:2682, SEQ ID NO:2655, SEQ ID NO:2630, SEQ ID NO:2745, SEQ ID NO:2643, SEQ ID NO:2694, SEQ ID NO:2749, SEO ID NO:2665, SEO ID NO:2649, SEO ID NO:2637, SEO ID NO:2634. SEQ ID NO:2709, SEQ ID NO:2653, SEQ ID NO:2729 and the gene expression is related to the rate of hematopoiesis or the distribution of hematopoeitic cells along their maturation pathway.





Figure 2. Automated Mononuclear Cell RNA Isolation Device



FIGURE 3



4/15

FIGURE 4





5/15

FIGURE 5











800



Figure 7: Cardiac Allograft rejection diagnostic genes.

A.

|            |             | Ma   | rker Gene | Expressi | ion Ratios |      |
|------------|-------------|------|-----------|----------|------------|------|
| Sample     | Grade       | 3020 | 3019      | 2760     | 3018       | 85   |
| 12-0025-02 | 0           | 3.90 | 3.69      | 5.49     | 3.24       | 3.34 |
| 12-0024-04 | 0           | 3.66 | 4.05      | 5.89     | 3.75       | 3.03 |
| 15-0024-01 | 0           | 3.55 | 4.01      | 5.61     | 2.90       | 3.23 |
| 12-0029-03 | 0           | 3.44 | 3.12      | 4.25     | 3.55       | 3.07 |
| 12-0024-03 | 0           | 2.88 | 2.54      | 2.56     | 2.20       | 2.38 |
| 14-0021-05 | 0           | 1.31 | 1.03      | 1.07     | 0.91       | 0.99 |
| 14-0005-06 | 3A          | 0.42 | 0.27      | 0.51     | 0.22       | 0.26 |
| 14-0012-07 | 3A          | 0.60 | 0.62      | 0.70     | 0.42       | 0.61 |
| 14-0001-06 | 3A          | 0.93 | 0.71      | 0.58     | 0.37       | 0.44 |
| 14-0009-01 | 3A          | 0.71 | 0.63      | 0.68     | 0.61       | 0.66 |
| 12-0012-02 | 3A          | 0.86 | 0.85      | 0.73     | 0.41       | 0.72 |
| 12-0001-01 | 3A          | 1.08 | 0.97      | 1.01     | 0.40       | 1.06 |
| Avera      | ge Grade 0: | 3.13 | 3.07      | 4.14     | 2.76       | 2.67 |
| Average    | Grade 3A:   | 0.77 | 0.68      | 0.70     | 0.40       | 0.62 |
| Fold       | Difference: | 4.08 | 4.55      | 5.91     | 6.82       | 4.28 |

## B. CART classification model.



## C. Surrogates for the CART classification model.

| Primary Splitter | static 223 | ref 3017  | ref 4    |
|------------------|------------|-----------|----------|
| Surrogate 1      | ref 167    | ref 102   | ref 2761 |
| Surrogate 2      | ref 3016   | static 36 | ref 2762 |
| Surrogate 3      | ref 1760   | ref 2764  | ref 3016 |
| Surrogate 4      | ref 85     | ref 2759  | ref 2757 |
| Surrogate 5      | ref 2763   | ref 2761  | ref 2758 |

Figure 8A: Validation of differential expression of Granzyme B in CMV patients using Real-time PCR  $\,$ 



Figure 8B.





Figure 9



Figure 10



Figure 11





## Intensity of Control Genes from PAX RNA (2ug) and CPT RNA (0.5 ug)



Figure 12



Figure 13



## SEQUENCE LISTING

| <110>                            | EXPRESSION DIAGNOSTICS, INC. Wohlgemuth, Jay Fry, Kirk Woodward, Robert Ly, Ngoc Prentice, James Morris, MacDonald Rosenberg, Steven |    |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----|
| <120>                            | METHODS AND COMPOSITIONS FOR DIAGNOSING AND MONITORING TRANSPLANT REJECTION                                                          |    |
| <130>                            | 506612000150                                                                                                                         |    |
|                                  | US 10/131,827<br>2002-04-24                                                                                                          |    |
|                                  | US 10/325,899<br>2002-12-20                                                                                                          |    |
| <160>                            | 3117                                                                                                                                 |    |
| <170>                            | PatentIn version 3.2                                                                                                                 |    |
| <210><br><211><br><212><br><213> | 50                                                                                                                                   |    |
| <400><br>taaagt                  | 1<br>cacc gggcgctgga aatagageet ggceteette accaaagate                                                                                | 50 |
| <210><br><211><br><212><br><213> | 50                                                                                                                                   |    |
| <400>                            | 2<br>agcc agggettace tgtacaetga ettgagaeca gttgaataaa                                                                                | 50 |
| 224236                           |                                                                                                                                      |    |
| <210><br><211><br><212><br><213> | 50                                                                                                                                   |    |
| <400>                            | 3                                                                                                                                    | 50 |
| etgggt                           | tttg tggtcatcta ttctagcagg gaacactaaa ggtggaaata                                                                                     | 50 |
| <210><211><211><212><213>        | 50                                                                                                                                   |    |
| <400>                            |                                                                                                                                      |    |
| asanta                           | agge atgetteten ttaatetent ttattttat tecacaagtt                                                                                      | 50 |

1

| <210><br><211> |                                                   |    |
|----------------|---------------------------------------------------|----|
| <211>          |                                                   |    |
|                |                                                   |    |
| <213>          | Homo sapiens                                      |    |
| 400            |                                                   |    |
| <400>          |                                                   |    |
| agtttc         | cataa ttgtgtactc ggaaattaaa gtttgcttgt ttcttggtct | 50 |
|                |                                                   |    |
| . 22.0.        |                                                   |    |
| <210>          |                                                   |    |
| <211>          |                                                   |    |
| <212>          |                                                   |    |
| <213>          | Homo sapiens                                      |    |
| <400>          | 6                                                 |    |
|                |                                                   |    |
| tegtta         | aagag agcaacattt tacccacaca cagataaagt tttcccttga | 50 |
|                |                                                   |    |
| <210>          | 7                                                 |    |
| <211>          |                                                   |    |
| <212>          |                                                   |    |
|                |                                                   |    |
| <213>          | Homo sapiens                                      |    |
| <400>          | 7                                                 |    |
|                | gact gtgctatggc ctcatcatca agactttcaa tcctatccca  |    |
| cggccc         | gact gegetatgge etcateatea agacttteaa teetateeea  | 50 |
|                |                                                   |    |
| <210>          | 8                                                 |    |
| <211>          |                                                   |    |
| <212>          |                                                   |    |
|                | Homo sapiens                                      |    |
|                | nomo Bapiens                                      |    |
| <400>          | 8                                                 |    |
|                | agat atggaaacag aagacaaaat tgtaagccag agtcaacaaa  | 50 |
| - 3            |                                                   | 30 |
|                |                                                   |    |
| <210>          | 9                                                 |    |
| <211>          | 50                                                |    |
| <212>          | DNA                                               |    |
|                | Homo sapiens                                      |    |
|                | ,                                                 |    |
| <400>          | 9                                                 |    |
| gcttca         | cttg ggtccaggcc tactcctgtc ttctgctttg ttgtgtgcct  | 50 |
|                |                                                   |    |
|                |                                                   |    |
| <210>          |                                                   |    |
| <211>          | 50                                                |    |
| <212>          |                                                   |    |
| <213>          | Homo sapiens                                      |    |
|                |                                                   |    |
| <400>          | 10                                                |    |
| tattaa         | ggcc ctgttcatta agaaattgtt cccttcccct gtgttcaatg  | 50 |
|                | <b>-</b>                                          |    |
|                |                                                   |    |
| <210>          |                                                   |    |
| <211>          |                                                   |    |
| <212>          | DNA                                               |    |
| <213>          | Homo sapiens                                      |    |
|                |                                                   |    |
| <400>          | 11                                                |    |

| cttctt | tgc catgtttcca  | ttctgccatc | ttgaattgtc | ttgtcagcca | 50 |
|--------|-----------------|------------|------------|------------|----|
|        |                 |            |            |            |    |
| <210>  | 12              |            |            |            |    |
| <211>  |                 |            |            |            |    |
| <212>  |                 |            |            |            |    |
|        | Homo sapiens    |            |            |            |    |
|        | -               |            |            |            |    |
|        | 12              |            |            |            |    |
| ttttga | agag ctttttctat | attaggatat | cagaattgtt | caacttttca | 50 |
|        |                 |            |            |            |    |
| <210>  | 13              |            |            |            |    |
| <211>  | 50              |            |            |            |    |
| <212>  | DNA             |            |            |            |    |
| <213>  | Homo sapiens    |            |            |            |    |
|        |                 |            |            |            |    |
| <400>  | 13              |            |            |            | 50 |
| acgcta | atta aattatgcaa | aattaaatag | ttgtatgtag | agaactgata | 50 |
|        |                 |            |            |            |    |
| <210>  | 14              |            |            |            |    |
| <211>  | 50              |            |            |            |    |
| <212>  | DNA             |            |            |            |    |
| <213>  | Homo sapiens    |            |            |            |    |
|        |                 |            |            |            |    |
| <400>  |                 | ~~~~~~     | aataaaaaa  | taggeteten | 50 |
| getett | aagt tgtggagagt | gcaacagrag | Cacaggaccc | caccecety  | 50 |
|        |                 |            |            |            |    |
| <210>  | 15              |            |            |            |    |
| <211>  |                 |            |            |            |    |
| <212>  |                 |            |            |            |    |
| <213>  | Homo sapiens    |            |            |            |    |
|        |                 |            |            |            |    |
| <400>  | 15              |            |            |            |    |
| ttcatt | aatt cctcaaccca | atactgtctg | gettecacca | acaggagcgg | 50 |
|        |                 |            |            |            |    |
| <210>  | 16              |            |            |            |    |
| <211>  | 50              |            |            |            |    |
| <212>  | DNA             |            |            |            |    |
| <213>  | Homo sapiens    |            |            |            |    |
| <400>  | 16              |            |            |            |    |
|        | agaa aattotaaat | caattattga | aacaggatac | acacaattac | 50 |
| Ctaata | agaa dacceeddac | caaccaccga | aucuggacac | acacaaccac | 50 |
|        |                 |            |            |            |    |
| <210>  | 17              |            |            |            |    |
| <211>  |                 |            |            |            |    |
| <212>  |                 |            |            |            |    |
| <213>  | Homo sapiens    |            |            |            |    |
| <400>  | 17              |            |            |            |    |
|        | gtaa taagagcagt | agcagcagca | tctctgaaca | tttctctgga | 50 |
|        |                 |            |            |            |    |
| <210>  | 18              |            |            |            |    |
| <211>  | 50              |            |            |            |    |
| <212>  |                 |            |            |            |    |
|        | Homo sapiens    |            |            |            |    |

WO 2004/042346

PCT/US2003/012946

, 3

| <400><br>atggga                  | 18<br>gtaa taagagcagt           | ggcagcagca | tctctgaaca | tttctctgga | 50 |
|----------------------------------|---------------------------------|------------|------------|------------|----|
| <210><211><211><212><213>        | DNA                             |            |            |            |    |
| <400><br>gagaag                  | 19<br>acag tggcgaccaa           | gacgattttc | tgccttagag | caagggattc | 50 |
| <210><br><211><br><212><br><213> | 20<br>50<br>DNA<br>Homo sapiens |            |            |            |    |
| <400><br>gcaatt                  | 20<br>cctc aggctaagct           | gccggttctt | aaatccatcc | tgctaagtta | 50 |
| <210><211><211>                  | 21<br>50<br>DNA                 |            |            |            |    |
|                                  | Homo sapiens                    |            |            |            |    |
| <400>                            | 21                              |            |            |            |    |
| caagac                           | actg tggacttggt                 | caccagctcc | tecettgtte | tctaagttcc | 50 |
| <210><br><211><br><212><br><213> | 22<br>50<br>DNA<br>Homo sapiens |            |            |            |    |
| <400>                            | 22                              |            |            |            |    |
| ctcccc                           | gtga gcactgcgta                 | caaacatcca | aaagttcaac | aacaccagaa | 50 |
| <210><211><212><212><213>        |                                 |            |            |            |    |
| <400>                            | 23<br>atca gactagtgac           | aagctcctgg | tcttgagatg | tettetegtt | 50 |
| <210><211><211><212>             | 24<br>50<br>DNA                 |            |            |            |    |
| <213>                            | Homo sapiens                    |            |            |            |    |
| <400>                            | 24                              |            |            |            |    |
| ctgctgi                          | ctt caccegaate                  | tcccattacc | ggccctggat | caaccagatc | 50 |
| <210><br><211>                   | 25<br>50                        |            |            |            |    |

4

| <212>          | DNA                   |            |            |            |    |
|----------------|-----------------------|------------|------------|------------|----|
| <213>          | Homo sapiens          |            |            |            |    |
|                |                       |            |            |            |    |
| <400>          | 25                    |            |            | h-hh       |    |
| tgtgtaa        | ata cataagcggc        | gtaagtttaa | aggatgttgg | tgttccacgt | 50 |
|                |                       |            |            |            |    |
| <210>          | 26                    |            |            |            |    |
| <211>          | 50                    |            |            |            |    |
| <212>          | DNA                   |            |            |            |    |
| <213>          | Homo sapiens          |            |            |            |    |
|                |                       |            |            |            |    |
| <400>          |                       | atasastsss | 200200000  | tttataaaa  | 50 |
| ctgate         | tac tetactgetg        | Cigacataaa | accaggaccc | ttteteeaca | 50 |
|                |                       |            |            |            |    |
| <210>          | 27                    |            |            |            |    |
| <211>          | 50                    |            |            |            |    |
| <212>          |                       |            |            |            |    |
| <213>          | Homo sapiens          |            |            |            |    |
|                |                       |            |            |            |    |
| <400>          | 27<br>agat gececacace |            | ataaaaataa | ataasttaaa | 50 |
| cgcgage        | igat geceeacace       | aaacccaacc | ccccgacgg  | cegcacecec | -  |
|                |                       |            |            |            |    |
| <210>          | 28                    |            |            |            |    |
| <211>          | 50                    |            |            |            |    |
| <212>          |                       |            |            |            |    |
| <213>          | Homo sapiens          |            |            |            |    |
| <400>          | 28                    |            |            |            |    |
|                | agga gcaggggcat       | tactaatttt | gtctgcccaa | tccatcctgc | 50 |
|                | .554 5445555          | -55        | gg         |            |    |
|                |                       |            |            |            |    |
| <210>          |                       |            |            |            |    |
| <211>          |                       |            |            |            |    |
| <212>          |                       |            |            |            |    |
| <213>          | Homo sapiens          |            |            |            |    |
| <400>          | 29                    |            |            |            |    |
|                | gag ctggagttcc        | gcaagaaacg | qaqccaqagg | cccaqcaggt | 50 |
| 5 55           |                       |            |            |            |    |
|                |                       |            |            |            |    |
| <210>          |                       |            |            |            |    |
| <211><br><212> |                       |            |            |            |    |
| <212>          |                       |            |            |            |    |
| (213)          | nomo saprens          |            |            |            |    |
| <400>          | 30                    |            |            |            |    |
| atgagg         | gcac agagcatggc       | ctccagagga | ggggtggtgt | ccttctcctc | 50 |
|                |                       |            |            |            |    |
|                |                       |            |            |            |    |
| <210>          |                       |            |            |            |    |
| <211><br><212> | 50<br>DNA             |            |            |            |    |
| <213>          |                       |            |            |            |    |
|                |                       |            |            |            |    |
|                | 31                    |            |            |            |    |
| <400>          | 31                    |            |            |            |    |
|                | gttg gagetgttee       | attgggtcct | cttggtgtcg | tttccctccc | 50 |

| <210><br><211><br><212><br><213> |                       |            |             |            |      |
|----------------------------------|-----------------------|------------|-------------|------------|------|
| <400><br>gatcca                  | 32<br>gaat ccactctcca | gtetecetee | cctgactccc  | tctgctgtcc | . 50 |
|                                  |                       |            |             |            |      |
| <210>                            | 33                    |            |             |            |      |
| <211>                            | 50                    |            |             |            |      |
| <212>                            |                       |            |             |            |      |
| <213>                            | Homo sapiens          |            |             |            |      |
| <400>                            | 33                    |            |             |            |      |
| attatg                           | acta tcaagggagc       | agtttaaata | accgtttcct  | ttcatttact | 50   |
|                                  |                       |            |             |            |      |
| <210>                            | 34                    |            |             |            |      |
| <211>                            | 50                    |            |             |            |      |
| <212>                            |                       |            |             |            |      |
| <213>                            | Homo sapiens          |            |             |            |      |
| <400>                            | 34                    |            |             |            |      |
| ctccaaa                          | atac cgttaagctg       | gagcctcggt | ggccatgctt  | cttgcccctt | 50   |
|                                  |                       |            |             |            |      |
| <210>                            | 35                    |            |             |            |      |
| <211>                            | 50                    |            |             |            |      |
| <212>                            | DNA                   |            |             |            |      |
| <213>                            | Homo sapiens          |            |             |            |      |
| <400>                            | 35                    |            |             |            |      |
| cgtatco                          | ctct gtcctgaccg       | agaagtaccg | ctgagcgccg  | cctccgggac | 50   |
| -                                |                       |            | 3 3 3 3 4 3 |            |      |
| <210>                            | 36                    |            |             |            |      |
| <211>                            | 50                    |            |             |            |      |
| <212>                            |                       |            |             |            |      |
| <213>                            | Homo sapiens          |            |             |            |      |
| <400>                            | 36                    |            |             |            |      |
| aagtcca                          | act actaaactgg        | gggatattat | gaagggcctt  | gagcatctgg | 50   |
|                                  |                       |            |             |            |      |
| <210>                            | 37                    |            |             |            |      |
| <211>                            | 50                    |            |             |            |      |
| <212>                            |                       |            |             |            |      |
| <213>                            | Homo sapiens          |            |             |            |      |
| <400>                            | 37                    |            |             |            |      |
| ttctgaa                          | ectt gggaacacaa       | tgcctacttc | aagggtatgg  | cttctgccta | 50   |
|                                  |                       |            |             | -          |      |
| <210>                            | 38                    |            |             |            |      |
| <211>                            |                       |            |             |            |      |
| <212>                            | DNA                   |            |             |            |      |
|                                  | Homo sapiens          |            |             |            |      |
| <400>                            | 38                    |            |             |            |      |
| atgggga                          | ctg ggcttggcct        | tgagagaaag | ccttctgttt  | aataaagtac | 50   |

| <210>   | 39             |            |            |            |    |
|---------|----------------|------------|------------|------------|----|
| <211>   |                |            |            |            |    |
| <212>   |                |            |            |            |    |
|         | Homo sapiens   |            |            |            |    |
|         | neme bapicno   |            |            |            |    |
| <400>   | 39             |            |            |            |    |
|         | cat gattcagage | tttcaaggat | aggetttatt | ctccaaccaa | 50 |
| 5       | Jacobagago     | cccaaggac  | aggetttatt | cegeuugeuu | 50 |
|         |                |            |            |            |    |
| <210>   | 40             |            |            |            |    |
| <211>   | 50             |            |            |            |    |
| <212>   | DNA            |            |            |            |    |
| <213>   | Homo sapiens   |            |            |            |    |
|         | -              |            |            |            |    |
| <400>   | 40             |            |            |            |    |
| ggatcc  | cag gcgaccttcc | ccgtgtttga | gtaaagcctc | tcccaggage | 50 |
|         |                |            | •          |            | -  |
|         |                |            |            |            |    |
| <210>   |                |            |            |            |    |
| <211>   | 50             |            |            |            |    |
| <212>   | DNA            |            |            |            |    |
| <213>   | Homo sapiens   |            |            |            |    |
|         |                |            |            |            |    |
| <400>   | 41             |            |            |            |    |
| ccctcad | tgt caccttcccg | agaataccct | aagaccaata | aatacttcag | 50 |
|         |                |            | -          | •          |    |
|         |                |            |            |            |    |
| <210>   |                |            |            |            |    |
| <211>   | 50             |            |            |            |    |
| <212>   | DNA            |            |            |            |    |
| <213>   | Homo sapiens   |            |            |            |    |
|         |                |            |            |            |    |
|         | 42             |            |            |            |    |
| agccgc  | cag ctacctaatt | cctcagtaac | atcgatctaa | aatctccatg | 50 |
|         |                |            |            |            |    |
|         |                |            |            |            |    |
| <210>   |                |            |            |            |    |
| <211>   |                |            |            |            |    |
| <212>   |                |            |            |            |    |
| <213>   | Homo sapiens   |            |            |            |    |
|         |                |            |            |            |    |
|         | 43             |            |            |            |    |
| cagacco | tgg tgatgctgga | aacagttcct | cggagtggag | aggtttacac | 50 |
|         |                |            |            |            |    |
| <210>   | 44             |            |            |            |    |
|         |                |            |            |            |    |
| <211>   |                |            |            |            |    |
| <212>   |                |            |            |            |    |
| <213>   | Homo sapiens   |            |            |            |    |
| <400>   | 44             |            |            |            |    |
|         |                |            |            |            |    |
| guuuga  | cac atcctcatcc | ccagcatggg | acacctcaag | argaataata | 50 |
|         |                |            |            |            |    |
| <210>   | 45             |            |            |            |    |
|         | 50             |            |            |            |    |
|         | DNA            |            |            |            |    |
|         | Homo sapiens   |            |            |            |    |
| ~~13>   | nomo sabrens   |            |            |            |    |

| <400><br>tgaca            | 45<br>tcata ttctttcaga           | gaagtgteee | aggacatgat | aataagatgc | 50 |
|---------------------------|----------------------------------|------------|------------|------------|----|
| <210><211><211><212><213> | 50                               |            |            |            |    |
| <400><br>agtgg            | 46<br>ggtgg ggagcatgtt           | catttgtacc | tcgagtttta | aactggttcc | 50 |
| <210><211><211><212><213> | 50                               |            |            |            |    |
| <400><br>agctg            | 47<br>ctccc aaattttcta           | acgagtggac | cattatcact | ttaaagccct | 50 |
| <210><211><211><212><213> | 50                               |            |            |            |    |
| <400><br>ctccg            | 48<br>ggaga ggggacggtc           | aatcctgtgg | gtgaagacag | agggaaacac | 50 |
| <210><211><211><212>      | 50<br>DNA                        |            |            |            |    |
| <400>                     | Homo sapiens 49 ettgc atccatctgg | gctaccccac | ccaagtatac | aataaaqtot | 50 |
| <210><br><211>            | 50                               |            | J          | 3          |    |
| <211><br><212><br><213>   | DNA                              |            |            |            |    |
| <400><br>gactga           | 50<br>acgca acccacgtgt           | aactgtcagc | cgggccctga | gtaatcgctt | 50 |
| <210><br><211><br><212>   | 50                               |            |            |            |    |
| <213><br><400>            | Homo sapiens                     |            |            |            |    |
|                           | tage ctccaccttg                  | tctaagcttt | ggtctataaa | gtgcgctaca | 50 |
| <210>                     | 52                               |            |            |            |    |
| <211><br><212>            | 50<br>DNA                        |            |            |            |    |
|                           |                                  |            |            |            |    |

8

| <213>          | Homo sapiens                                           |    |
|----------------|--------------------------------------------------------|----|
| <400>          | 52<br>cato caggoggoca goaggoacot gagtggotgg gacaagggat |    |
| unoung         | onto cuageageed genggeneer gagaggerag garaagggar       | 50 |
| <210><br><211> | 53<br>50                                               |    |
| <212>          | DNA                                                    |    |
| <213>          | Homo sapiens                                           |    |
| <400>          | 53                                                     |    |
| caactg         | atag ccacgctgaa gaatggaagg aaaatttgct tggacctgca       | 50 |
|                | 54                                                     |    |
| <211>          |                                                        |    |
| <212>          | DNA<br>Homo sapiens                                    |    |
|                | -                                                      |    |
| <400>          |                                                        |    |
| cageee         | tgga taggttttta tgggaattet ttacaataaa catagettgt       | 50 |
| <210>          | 55                                                     |    |
| <211>          |                                                        |    |
| <212>          |                                                        |    |
| <213>          | Homo sapiens                                           |    |
| <400>          |                                                        |    |
| ttctac         | atgt attgttgtgg ttttattcat tgtatgaaaa ttcctgtgat       | 50 |
|                |                                                        |    |
| <210>          | 56                                                     |    |
| <211>          | 50                                                     |    |
| <212>          |                                                        |    |
| <213>          | Homo sapiens                                           |    |
| <400>          |                                                        |    |
| accagg         | atgc aatggattta tttgattcag gggacctgta tttccatgtc       | 50 |
| .210.          | co.                                                    |    |
| <210><br><211> | 57<br>50                                               |    |
| <212>          |                                                        |    |
| <213>          | Homo sapiens                                           |    |
|                | -                                                      |    |
| <400>          | 57                                                     |    |
| cerara         | ggg actgagatgc aggatttett cacacetete etttgtgaet        | 50 |
| <210>          | 58                                                     |    |
| <211>          | 50                                                     |    |
| <212>          | DNA                                                    |    |
| <213>          | Homo sapiens                                           |    |
| <400>          | 58                                                     |    |
| cccagat        | aat gtgaaaatgg tccaggagaa ggccaattcc tatacgcagc        | 50 |
|                |                                                        |    |
| <210>          | 59                                                     |    |

| <211> 50<br><212> DNA                                                                                                                                                                                                                                                                                                                  |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                     |    |
| <400> 59                                                                                                                                                                                                                                                                                                                               |    |
| ctgcaccgtt ctaggtgccg atggctgcct ccggctctct gcttacgtat                                                                                                                                                                                                                                                                                 | 50 |
|                                                                                                                                                                                                                                                                                                                                        |    |
| <210> 60<br><211> 50                                                                                                                                                                                                                                                                                                                   |    |
| <212> DNA                                                                                                                                                                                                                                                                                                                              |    |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                     |    |
| <400> 60                                                                                                                                                                                                                                                                                                                               |    |
| ccaatcccga tccaaatcat aatttgttct taagtatact gggcaggtcc                                                                                                                                                                                                                                                                                 | 50 |
|                                                                                                                                                                                                                                                                                                                                        |    |
| <210> 61                                                                                                                                                                                                                                                                                                                               |    |
| <211> 50<br><212> DNA                                                                                                                                                                                                                                                                                                                  |    |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                     |    |
| •                                                                                                                                                                                                                                                                                                                                      |    |
| <400> 61                                                                                                                                                                                                                                                                                                                               | 50 |
| gtcactggag gaccaacccc tgctgtccaa aacaccactg cttcctaccc                                                                                                                                                                                                                                                                                 | 50 |
| <210> 62                                                                                                                                                                                                                                                                                                                               |    |
| <211> 62<br><211> 50                                                                                                                                                                                                                                                                                                                   |    |
| <212> DNA                                                                                                                                                                                                                                                                                                                              |    |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                     |    |
|                                                                                                                                                                                                                                                                                                                                        |    |
| <400> 62                                                                                                                                                                                                                                                                                                                               |    |
| <400> 62<br>tgggcatggt tgaatctgaa accetectte tgtggcaact tgtactgaaa                                                                                                                                                                                                                                                                     | 50 |
|                                                                                                                                                                                                                                                                                                                                        | 50 |
|                                                                                                                                                                                                                                                                                                                                        | 50 |
| tgggcatggt tgaatctgaa accetectte tgtggcaact tgtactgaaa  <210> 63 <211> 50                                                                                                                                                                                                                                                              | 50 |
| tgggcatggt tgaatctgaa accetectte tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA                                                                                                                                                                                                                                                    | 50 |
| tgggcatggt tgaatctgaa accetectte tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens                                                                                                                                                                                                                                 | 50 |
| tgggcatggt tgaatctgaa accetectte tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens <400> 63                                                                                                                                                                                                                        |    |
| tgggcatggt tgaatctgaa accetectte tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens                                                                                                                                                                                                                                 | 50 |
| tgggcatggt tgaatctgaa accetectte tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens <400> 63 tgaatataag caatgaagat gaacatttat tgatetteta catacaagae                                                                                                                                                                 |    |
| tgggcatggt tgaatctgaa accetectte tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens  <400> 63 tgaatataag caatgaagat gaacatttat tgatetteta catacaagae  <210> 64                                                                                                                                                      |    |
| tgggcatggt tgaatctgaa accetectte tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens <400> 63 tgaatataag caatgaagat gaacatttat tgatetteta catacaagae                                                                                                                                                                 |    |
| tgggcatggt tgaatctgaa accetcette tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens  <400> 63 tgaatataag caatgaagat gaacatttat tgatetteta catacaagae  <210> 64 <211> 50                                                                                                                                             |    |
| tgggcatggt tgaatctgaa accetectte tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens  <400> 63 tgaatataag caatgaagat gaacatttat tgatetteta catacaagae  <210> 64 <211> 50 <212> DNA                                                                                                                                   |    |
| tgggcatggt tgaatctgaa accetectte tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens  <400> 63 tgaatataag caatgaagat gaacatttat tgatetteta catacaagae  <210> 64 <211> 50 <212> DNA <213> Homo sapiens                                                                                                                |    |
| tgggcatggt tgaatctgaa accetcette tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens  <400> 63 tgaatataag caatgaagat gaacatttat tgatetteta catacaagae  <210> 64 <211> 50 <212> DNA <212> DNA <213> Homo sapiens <400> 64                                                                                             | 50 |
| tgggcatggt tgaatctgaa accetcette tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens  <400> 63 tgaatataag caatgaagat gaacatttat tgatetteta catacaagac  <210> 64 <211> 50 <212> DNA <213> Homo sapiens  <400> 64 cetcaacce cggaaactte ctgtgcaace cagactatca cetttgaaag  <210> 64 <211> 50 <213> Homo sapiens          | 50 |
| tgggcatggt tgaatctgaa accetcette tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens <440> 63 tgaatataag caatgaagat gaacatttat tgatetteta catacaagae  <210> 64 <211> 50 <212> DNA <212> DNA <213> Homo sapiens <400> 64 cetccaacce eggaaactte etgtgcaace cagactatea cetttgaaag  <210> 65 <211> 50                    | 50 |
| tgggcatggt tgaatctgaa accetectte tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens <400> 63 tgaatctaag caatgaagat gaacatttat tgatcttcta catacaagac  <210> 64 <211> 50 <212> DNA <213> Homo sapiens <400> 64 cetecaacce cggaaactte ctgtgcaace cagactatca cctttgaaag  <210> 64 <211> 50 <211> DNA <213> Homo sapiens | 50 |
| tgggcatggt tgaatctgaa accetcette tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens <440> 63 tgaatataag caatgaagat gaacatttat tgatetteta catacaagae  <210> 64 <211> 50 <212> DNA <212> DNA <213> Homo sapiens <400> 64 cetccaacce eggaaactte etgtgcaace cagactatea cetttgaaag  <210> 65 <211> 50                    | 50 |
| tgggcatggt tgaatctgaa accetectte tgtggcaact tgtactgaaa  <210> 63 <211> 50 <212> DNA <213> Homo sapiens <400> 63 tgaatctaag caatgaagat gaacatttat tgatcttcta catacaagac  <210> 64 <211> 50 <212> DNA <213> Homo sapiens <400> 64 cetecaacce cggaaactte ctgtgcaace cagactatca cctttgaaag  <210> 64 <211> 50 <211> DNA <213> Homo sapiens | 50 |

| <210>   | 66                                                 |    |
|---------|----------------------------------------------------|----|
| <211>   |                                                    |    |
| <212>   |                                                    |    |
|         | Homo sapiens                                       |    |
|         |                                                    |    |
| <400>   | 66                                                 |    |
|         | gctgt gaattettte tteateceeg catteceaat atacceagge  |    |
| 5 555.  | 55- 5 seedateeccy carrectaar aracecage             | 50 |
|         |                                                    |    |
| <210>   | 67                                                 |    |
| <211>   | 50                                                 |    |
| <212>   | DNA                                                |    |
| <213>   | Homo sapiens                                       |    |
|         |                                                    |    |
| <400>   |                                                    |    |
| gtttta  | aaaat aatatgtaaa tiitticagot atitagtgat atatittatg | 50 |
|         |                                                    | -  |
|         |                                                    |    |
| <210>   | 68                                                 |    |
| <211>   |                                                    |    |
| <212>   |                                                    |    |
| <213>   | Homo sapiens                                       |    |
|         |                                                    |    |
| <400>   |                                                    |    |
| tttcct  | toto totoaatttt oggttgaata aactagatta cattoagttg   | 50 |
|         |                                                    |    |
| <210>   | 69                                                 |    |
| <211>   |                                                    |    |
| <211>   |                                                    |    |
|         |                                                    |    |
| <213>   | Homo sapiens                                       |    |
| <400>   | 69                                                 |    |
|         |                                                    |    |
| 00000   | caca gcacagagaa gacaaaatta gcaaaacccc actacacagt   | 50 |
|         |                                                    |    |
| <210>   | 70                                                 |    |
| <211>   |                                                    |    |
| <212>   |                                                    |    |
|         | Homo sapiens                                       |    |
|         |                                                    |    |
| <400>   | 70                                                 |    |
| tgcttt  | tteg egetetgace acctggeett geacatgaag egecacettt   | 50 |
|         | John James and Odeodocccc                          | 50 |
|         |                                                    |    |
| <210>   | 71                                                 |    |
| <211>   | 50                                                 |    |
| <212>   | DNA                                                |    |
| <213>   | Homo sapiens                                       |    |
|         |                                                    |    |
| <400>   | 71                                                 |    |
| catttc  | ctga gaccaccaga gagagggag aagcctggga ttgacagaag    | 50 |
|         |                                                    |    |
|         |                                                    |    |
| <210>   | 72                                                 |    |
| <211>   |                                                    |    |
| <212>   |                                                    |    |
| <213>   | Homo sapiens                                       |    |
| . 4 0 0 | TO.                                                |    |
| <400>   | 14                                                 |    |

| wo     | 2004/042346     |            |            |            | PCT/US2003/012946 |
|--------|-----------------|------------|------------|------------|-------------------|
| agtggg | attt tatgccagtt | gttaaaatga | gcattgatgt | acccattttt | 50                |
| <210>  | 73              |            |            |            |                   |
| <211>  | 50              |            |            |            |                   |
| <212>  | DNA             |            |            |            |                   |
| <213>  | Homo sapiens    |            |            |            |                   |
| <400>  |                 |            |            |            |                   |
| ctgccc | atct cagcctcacc | atcaccctgc | taatgactgc | cagactgtgg | 50                |
| <210>  |                 |            |            |            |                   |
|        | 50              |            |            |            |                   |
| <212>  |                 |            |            |            |                   |
| <213>  | Homo sapiens    |            |            |            |                   |
| <400>  | 74              |            |            |            |                   |
| gcaata | ccaa gagaaaatgc | acaaatatca | ctggatggag | atgtcacatt | 50                |
| <210>  | 75              |            |            |            |                   |
| <211>  |                 |            |            |            |                   |
| <212>  |                 |            |            |            |                   |
| <213>  | Homo sapiens    |            |            |            |                   |
| <400>  | 75              |            |            |            |                   |
| agctgt | gttg gtagtgctgt | gttgaattac | ggaataatga | gttagaacta | 50                |
|        |                 |            |            |            |                   |
|        | 76              |            |            |            |                   |
|        | 50              |            |            |            |                   |
| <212>  |                 |            |            |            |                   |
| <213>  | Homo sapiens    |            |            |            |                   |
|        | 76              |            |            |            |                   |
| ggagcc | aagt ccagatttac | actgggagag | gtgccagcaa | ctgaataaat | 50                |
| <210>  | 77              |            |            |            |                   |
| <211>  | 50              |            |            |            |                   |
| <212>  |                 |            |            |            |                   |
| <213>  | Homo sapiens    |            |            |            |                   |
| <400>  | 77              |            |            |            |                   |
| ccatcg | gtga aactaacaga | taagcaagag | agatgttttg | gggactcatt | 50                |
| <210>  | 78              |            |            |            |                   |
|        | 50              |            |            |            |                   |
| <212>  |                 |            |            |            |                   |
|        | Homo sapiens    |            |            |            |                   |
| <400>  | 78              |            |            |            |                   |
| tgccag | acct ccttcctgac | ctctgaggca | ggagaggaat | aaagacggtc | 50                |
| <210>  | 7.0             |            |            |            |                   |
|        | 79<br>50        |            |            |            |                   |
| <211>  |                 |            |            |            |                   |
|        | Homo sapiens    |            |            |            |                   |
|        | suproms         |            |            |            |                   |

|                 | tetaatteee                                                                                                                                                                                                                                                  | atgaggtgag                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atgcaacctg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| acca ggcccccaag | cccggccooo                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                        |
| 90              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| nomo sapiens    |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| 80              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| gtac gttggaaaac | ttcttggaaa                                                                                                                                                                                                                                                  | ggctaaagac                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gatcatgaga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                        |
| 01              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| Homo sapiens    |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| ggga cattgaacaa | gttgtttcat                                                                                                                                                                                                                                                  | tgactatcaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                | actgaagcca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                        |
|                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| 82              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| DNA             |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| Homo sapiens    |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| 82              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| atgt gaaaatgccc | ccaacagagc                                                                                                                                                                                                                                                  | cagaatgtga                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aaagcaattt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                        |
|                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| 83              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| 50              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| DNA             |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| Homo sapiens    |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| 83              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| gccc aaactgctgt | cccaaacatg                                                                                                                                                                                                                                                  | cacttccttg                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cttaaggtat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                        |
|                 | _                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| 84              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| 50              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| DNA             |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| 84              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| aaga gcaccacaga | ctacaactgc                                                                                                                                                                                                                                                  | ccagcttcat                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ctaaatactt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                        |
| -               | _                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| 85              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| 50              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| DNA             |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| Homo sapiens    |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| 85              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|                 | 22*******                                                                                                                                                                                                                                                   | aatotatost                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ettesteste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                        |
| agee caayageetg | aatttayacc                                                                                                                                                                                                                                                  | aatttattat                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50                                                                                                                                                                                                                                                                                                                                                                        |
| 86              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| 50              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|                 | 80 50 DNA Homo sapiens 80 gtac gttggaaaac 81 50 DNA Homo sapiens 81 ggga cattgaacaa 82 50 DNA Homo sapiens 82 atgt gaaaatgccc 83 50 DNA Homo sapiens 83 gccc aaactgctgt 84 50 DNA Homo sapiens 84 aaga gcaccacaga 85 50 DNA Homo sapiens 84 aaga gcaccacaga | atca ggeteccaag tetggttecc  80 50 DNA Homo sapiens 80 gtac gttggaaaac ttettggaaa  81 50 DNA Romo sapiens 81 ggga cattgaacaa gttgttteat  82 50 DNA Homo sapiens 82 atgt gaaaatgeec ccaacagage  83 50 DNA Romo sapiens 83 geec aaactgetgt cccaaacatg  84 50 DNA Homo sapiens 84 aaga gcaccacaga ctacaactge  85 50 DNA Homo sapiens 84 aaga gcaccacaga ctacaactge  85 50 DNA Homo sapiens 84 aaga gcaccacaga ctacaactge  85 50 DNA Homo sapiens 84 aaga caccacaga ctacaactge | atca ggctccaag tctggttcc atgaggtgag  80 50 DNA Homo sapiens 80 gtac gttggaaaac ttcttggaaa ggctaaagac  81 50 DNA Romo sapiens 81 ggga cattgaacaa gttgtttcat tgactatcaa  82 50 DNA Homo sapiens 82 atgt gaaaatgccc ccaacagagc cagaatgtga  83 50 DNA Homo sapiens 83 gccc aaactgctgt cccaaacatg cacttccttg  84 50 DNA Homo sapiens 84 aaaga gcaccacaga ctacaactgc ccagcttcat  85 50 DNA Homo sapiens 84 aaaga gcaccacaga ctacaactgc ccagcttcat  85 50 DNA Homo sapiens 84 aaaga gcaccacaga ctacaactgc ccagcttcat  85 50 DNA Homo sapiens 84 aaaga gcaccacaga ctacaactgc aatctatcat | 80 50 DNA Homo sapiens 81 90gac gttggaaaac ttcttggaaa ggctaaagac gatcatgaga 81 50 DNA Romo sapiens 81 90gga cattgaacaa gttgtttcat tgactatcaa actgaagcca 82 50 DNA Homo sapiens 83 50 DNA Homo sapiens 83 83 50 DNA Homo sapiens 84 50 DNA Homo sapiens 85 50 DNA Homo sapiens 84 50 DNA Homo sapiens 85 50 DNA Homo sapiens 84 50 DNA Homo sapiens 85 50 DNA Homo sapiens |

| <212>   | DNA                                              |    |
|---------|--------------------------------------------------|----|
| <213>   |                                                  |    |
| (213)   | nomo saprens                                     |    |
|         |                                                  |    |
| <400>   | 86                                               |    |
| aagtco  | aact actaaactgg gggatattat gaagggcctt gagcatctgg | 50 |
|         |                                                  |    |
|         |                                                  |    |
| <210>   | 87                                               |    |
| <211>   | 50                                               |    |
| <212>   |                                                  |    |
|         |                                                  |    |
| <213>   | Homo sapiens                                     |    |
|         |                                                  |    |
| <400>   | 87                                               |    |
| ttcctc  | tttg gccacaagaa taagcagcaa ataaacaact atggctgttg | 50 |
|         |                                                  |    |
|         |                                                  |    |
| <210>   | 88                                               |    |
| <211>   |                                                  |    |
| <212>   |                                                  |    |
|         |                                                  |    |
| <213>   | Homo sapiens                                     |    |
|         |                                                  |    |
| <400>   |                                                  |    |
| tgggca  | gett gggtaagtae geaacttaet tttecaceaa agaactgtea | 50 |
|         | , <b>.</b>                                       | -  |
|         |                                                  |    |
| <210>   | 89                                               |    |
| <211>   |                                                  |    |
| <212>   |                                                  |    |
|         |                                                  |    |
| <213>   | Homo sapiens                                     |    |
|         |                                                  |    |
| <400>   |                                                  |    |
| gctggc  | ccat aaacaccctg taggttcttg atatttataa taaaattggt | 50 |
|         |                                                  |    |
|         |                                                  |    |
| <210>   | 90                                               |    |
| <211>   | 50                                               |    |
| <212>   |                                                  |    |
| <213>   |                                                  |    |
| <213>   | Homo sapiens                                     |    |
|         |                                                  |    |
|         | 90                                               |    |
| acatag  | gcga agaaaacatg gcattgagtg tgctgagtcc agacaaatgt | 50 |
|         |                                                  |    |
|         |                                                  |    |
| <210>   | 91                                               |    |
| <211>   | 50                                               |    |
| <212>   |                                                  |    |
|         |                                                  |    |
| <213>   | Homo sapiens                                     |    |
|         |                                                  |    |
| <400>   | 91                                               |    |
| ccggca  | getg tgtttagece etceagatgg aagttteact tgaatgtaaa | 50 |
|         |                                                  |    |
|         |                                                  |    |
| <210>   | 92                                               |    |
| <211>   | 50                                               |    |
| <212>   | DNA                                              |    |
|         |                                                  |    |
| <213>   | Homo sapiens                                     |    |
|         |                                                  |    |
| <400>   | 92                                               |    |
| gtcaate | gtgt ctgttgtcat ggcggaggtg gacggcacct gctactgagc | 50 |
|         |                                                  |    |

| <210>   | 93              |            |            |            |    |
|---------|-----------------|------------|------------|------------|----|
| <211>   | 50              |            |            |            |    |
| <212>   | DNA             |            |            |            |    |
|         | Homo sapiens    |            |            |            |    |
| (213)   | nomo sapiens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   | 93              |            |            |            |    |
| agctcat | atg aacactgctc  | tgaactcctc | tgacttagca | ttcaacttaa | 50 |
|         |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <210>   | 94              |            |            |            |    |
| <211>   |                 |            |            |            |    |
| <212>   |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   | 94              |            |            |            |    |
| tttgtad | ctat tgctagaccc | tcttctgtaa | tgggtaatgc | gtttgattgt | 50 |
|         |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <210>   | 95              |            |            |            |    |
| <211>   |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <212>   |                 |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   | 95              |            |            |            |    |
| aggactt | ctc tggggacttt  | cgaatgttgc | catqtaaatc | tttgagacca | 50 |
| 55      | 5555            | -3         |            |            |    |
|         | ,               |            |            |            |    |
| <210>   | 96              |            |            |            |    |
|         |                 |            |            |            |    |
|         | 50              |            |            |            |    |
| <212>   |                 |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   | 96              |            |            |            |    |
|         | tca ggagtgggtt  | gatttcagca | cctacagtgt | acagtettgt | 50 |
|         | 33.3.333        | 5          |            |            |    |
|         |                 |            |            |            |    |
| <210>   | 0.7             |            |            |            |    |
|         |                 |            |            |            |    |
| <211>   |                 |            |            |            |    |
| <212>   |                 |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   | 97              |            |            |            |    |
| gcaaga  | cata gaatagtgtt | ggaaaatgtg | caatatotoa | totoocaaat | 50 |
| 3       |                 | 33         |            | -3-33      |    |
|         |                 |            |            |            |    |
| <210>   | 98              |            |            |            |    |
|         |                 |            |            |            |    |
| <211>   |                 |            |            |            |    |
| <212>   | DNA             |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   | 98              |            |            |            |    |
|         | cgcc gtctcaaccc | ctcacaggag | cttactggca | aacatgaaaa | 50 |
|         | -g g            | 0          |            |            |    |
|         |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <210>   | 99              |            |            |            |    |
| <211>   |                 |            |            |            |    |
| <212>   |                 |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   | 99              |            |            |            |    |
| gcagtt  | tgaa tatcctttgt | ttcagagcca | gatcatttct | tggaaagtgt | 50 |
|         |                 |            |            |            |    |

| <210><br><211><br><212><br><213> | 50                                                |    |
|----------------------------------|---------------------------------------------------|----|
| <400>                            | 100                                               |    |
| gettet                           | ggaac taaagggatc tgaaacaaca ttcatgtgtg aatatgcaga | 50 |
| <210>                            | 101                                               |    |
| <211>                            |                                                   |    |
| <212>                            |                                                   |    |
|                                  | Homo sapiens                                      |    |
| <400>                            | 101                                               |    |
| ttccag                           | gott ttgctactct tcactcagot acaataaaca tootgaatgt  | 50 |
|                                  |                                                   |    |
|                                  | 102                                               |    |
| <211>                            |                                                   |    |
| <212>                            |                                                   |    |
| <213>                            | Homo sapiens                                      |    |
| <400>                            | 102                                               |    |
| aaccgg                           | atat atacatagca tgacatttet ttgtgetttg gettaettgt  | 50 |
|                                  |                                                   |    |
|                                  | 103                                               |    |
| <211>                            |                                                   |    |
| <212>                            |                                                   |    |
| <213>                            | Homo sapiens                                      |    |
| <400>                            | 103                                               |    |
| actaat                           | ttga tgtttacagg tggacacaca aggtgcaaat caatgcgtac  | 50 |
|                                  |                                                   |    |
| <210>                            | 104                                               |    |
| <211>                            |                                                   |    |
| <212>                            |                                                   |    |
| <213>                            | Homo sapiens                                      |    |
| <400>                            | 104                                               |    |
| gtccaci                          | cgtc actgtttctc tgctgttgca aatacatgga taacacattt  | 50 |
|                                  |                                                   |    |
| <210>                            | 105                                               |    |
| <211>                            | 50                                                |    |
|                                  | DNA                                               |    |
| <213>                            | Homo sapiens                                      |    |
| <400>                            | 105                                               |    |
| aaattca                          | aaat caccettgat acceaettet tteteceaee caaatetgat  | 50 |
|                                  |                                                   |    |
| <210>                            | 106                                               |    |
|                                  | 50                                                |    |
| :212>                            | DNA                                               |    |
| :213>                            | Homo sapiens                                      |    |
|                                  |                                                   |    |

| WO 2004/042346                                                      | PCT/US2003/012946 |
|---------------------------------------------------------------------|-------------------|
| <400> 106                                                           |                   |
| agctaattat ctctttgagt ccttgcttct gtttgctcac agtaagctca              | 50                |
| <210> 107                                                           |                   |
| <211> 50                                                            |                   |
| <212> DNA<br><213> Homo sapiens                                     |                   |
| -                                                                   |                   |
| <400> 107<br>tgctgctaca gttgcaaaac actggagcta gagaaaataa agtactgatc | 50                |
| tgetgetata getgeaaaa aotggageta gagaaataa agaaagate                 | 30                |
| <210> 108                                                           |                   |
| <211> 50                                                            |                   |
| <212> DNA<br><213> Homo sapiens                                     |                   |
| •                                                                   |                   |
| <400> 108 tgacccactt accttgcatc tcacaggtag acagtatata actaacaacc    | 50                |
| tyaccoact accitycate teatagytay acageatata actaacaace               | 30                |
| <210> 109                                                           |                   |
| <211> 50                                                            |                   |
| <212> DNA                                                           |                   |
| <213> Homo sapiens                                                  |                   |
| <400> 109                                                           |                   |
| cccaaattet tteagtgget acetacatae aatteeaaae acatacagga              | 50                |
|                                                                     |                   |
| <210> 110<br><211> 50                                               |                   |
| <211> 50<br><212> DNA                                               |                   |
| <213> Homo sapiens                                                  |                   |
|                                                                     |                   |
| <400> 110 atcaacaqac caacattttt ctcttcctca agcaacactc ctagggcctg    | 50                |
| accaucagae caacacccc coccocca ageacacacc coaggggood                 | -                 |
| <210> 111                                                           |                   |
| <211> 50                                                            |                   |
| <212> DNA                                                           |                   |
| <213> Homo sapiens                                                  |                   |
| <400> 111                                                           |                   |
| atgtgctgtc aaaacaagtt tttctgtcaa gaagatgatc agaccttgga              | 50                |
| <210> 112                                                           |                   |
| <210> 112<br><211> 50                                               |                   |
| <212> DNA                                                           |                   |
| <213> Homo sapiens                                                  |                   |
| <400> 112                                                           |                   |
| teaatteete tgggaatgtt acattgtttg tetgtettea tageagattt              | 50                |
|                                                                     |                   |
| <210> 113                                                           |                   |
| <211> 50<br><212> DNA                                               |                   |
| TALAF PART                                                          |                   |

<210> 120

| <211>  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <212>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <213>  | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <400>  | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 |
| tgttta | atgg tagttttaca gtgtttctgg cttagaacaa aggggcttaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210>  | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <211>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <212>  | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <213>  | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| <400>  | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| atcaga | aacc gaagattaac tacacagete cagaagaete agaeeteaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 210    | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <210>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <211>  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <212>  | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| -213>  | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|        | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <400>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| tqttca | cgtt gttcacatcc catgtagaaa aacaaagatg ccacggagga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210>  | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <211>  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <212>  | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|        | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| <213>  | Hollo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <400>  | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| aaaqta | actg gttgtcacct atgagaccct tacgtgattg ttagttaagt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210>  | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <211>  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <212>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <213>  | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <400>  | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|        | agaa gcaagatatc aatgtagcag aattgcactt gtgcctcacg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 |
| ggactg | agaa gcaagatate aatgtagcag aattgcaett gtgcetcaeg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210>  | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <211>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <212>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <213>  | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <400>  | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 |
| acayct | actt tggagetget agaetggttt tetgtgttgg taaattgcct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210>  | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <211>  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <212>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <213>  | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <400>  | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| tttaca | cgcc ctgaagcagt cttctttgct agttgaatta tgtggtgtgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

| <210>   | 127                                              |    |
|---------|--------------------------------------------------|----|
|         |                                                  |    |
| <211>   |                                                  |    |
| <212>   | DNA                                              |    |
| <213>   | Homo sapiens                                     |    |
|         |                                                  |    |
| <400>   | 127                                              |    |
|         |                                                  |    |
| gtccag  | aget agaagaacca agtetteett tetteattea ttgtteaggt | 50 |
|         |                                                  |    |
|         |                                                  |    |
| <210>   | 128                                              |    |
| <211>   | 50                                               |    |
| <212>   |                                                  |    |
|         |                                                  |    |
| <213>   | Homo sapiens                                     |    |
|         |                                                  |    |
| <400>   |                                                  |    |
| gctgac  | aaaa cetgggaatt tgggttgtgt atgegaatgt tteagtgeet | 50 |
|         |                                                  |    |
|         |                                                  |    |
| <210>   | 129                                              |    |
| <211>   |                                                  |    |
|         |                                                  |    |
| <212>   |                                                  |    |
| <213>   | Homo sapiens                                     |    |
|         |                                                  |    |
| <400>   | 129                                              |    |
|         | aggg ttgttcggaa gtcgcaggtc cgaaaatctc ctccgcatac | 50 |
| cougue  | aggg regreeggaa geegeaggee egaaaatete eteegeatae | 50 |
|         |                                                  |    |
|         |                                                  |    |
| <210>   |                                                  |    |
| <211>   | 50                                               |    |
| <212>   | DNA                                              |    |
| <213>   | Homo sapiens                                     |    |
|         | Tomo Baptons                                     |    |
| <400>   | 130                                              |    |
|         |                                                  |    |
| cctccc  | agca acccactacc tctggtacct gtaaaggtca aacaagaaac | 50 |
|         |                                                  |    |
|         |                                                  |    |
| <210>   | 131                                              |    |
| <211>   | 50                                               |    |
| <212>   |                                                  |    |
|         |                                                  |    |
| <213>   | Homo sapiens                                     |    |
|         |                                                  |    |
| <400>   |                                                  |    |
| cctcaa  | tttt attctaatca ttcccactca gtacccgcca cccccacccc | 50 |
|         | 3 - 3 - 1 - 1 - 1 - 1                            |    |
|         |                                                  |    |
| -210-   | 122                                              |    |
| <210>   |                                                  |    |
| <211>   |                                                  |    |
| <212>   |                                                  |    |
| <213>   | Homo sapiens                                     |    |
|         |                                                  |    |
| <400>   | 132                                              |    |
|         |                                                  |    |
| cyaccc  | ttag cettgetgta gagaetteeg teaceettgg tagagtttat | 50 |
|         |                                                  |    |
|         |                                                  |    |
| <210>   | 133                                              |    |
| <211>   | 50                                               |    |
| <212>   | DNA                                              |    |
|         | Homo sapiens                                     |    |
| -2137   | nome ouplane                                     |    |
| . 4 6 0 | 100                                              |    |
| <400>   | 133                                              |    |

| wo     | 2004/042346     |            |            |            | PCT/US2003/0 | 1294 |
|--------|-----------------|------------|------------|------------|--------------|------|
| 303003 | aaac tgctgctcaa | agacagto   | tcacctttqc | acctatttct |              | 50   |
| ayayya | aaac tyctyctcaa | aaagacagcc | codocces   | ascegeeeee |              | 50   |
| <210>  | 134             |            |            |            |              |      |
|        | 50              |            |            |            |              |      |
| <212>  |                 |            |            |            |              |      |
| <213>  | Homo sapiens    |            |            |            |              |      |
| <400>  | 134             |            |            |            |              |      |
| gcttca | ettg ggtccaggcc | tactcctgtc | ttctgctttg | ttgtgtgcct |              | 50   |
|        |                 |            |            |            |              |      |
| <210>  | 135             |            |            |            |              |      |
| <211>  |                 |            |            |            |              |      |
| <212>  |                 |            |            |            |              |      |
| <213>  | Homo sapiens    |            |            |            |              |      |
| <400>  |                 |            |            |            |              |      |
| acctgt | cacg cttctagttg | cttcaaccat | tttataacca | tttttgtaca |              | 50   |
|        |                 |            |            |            |              |      |
| <210>  | 136             |            |            |            |              |      |
|        | 50              |            |            |            |              |      |
| <211>  |                 |            |            |            |              |      |
|        | Homo sapiens    |            |            |            |              |      |
| (213)  | nomo sapiens    |            |            |            |              |      |
| <400>  | 136             |            |            |            |              |      |
| caggag | gatg gcaaagagag | tcgcatctca | gtgcaggaga | gacagtgagg |              | 50   |
|        |                 |            |            |            |              |      |
|        |                 |            |            |            |              |      |
|        | 137             |            |            |            |              |      |
|        | 50              |            |            |            |              |      |
| <212>  |                 |            |            |            |              |      |
| <213>  | Homo sapiens    |            |            |            |              |      |
| <400>  | 137             |            |            |            |              |      |
|        | aaag acccacatgc | tacaagacgg | gcaaaataaa | gtgacagatg |              | 50   |
|        |                 |            |            |            |              |      |
|        |                 |            |            |            |              |      |
| <210>  | 138             |            |            |            |              |      |
| <211>  |                 |            |            |            |              |      |
| <212>  | Homo sapiens    |            |            |            |              |      |
| (213)  | HOMO Sapiens    |            |            |            |              |      |
| <400>  | 138             |            |            |            |              |      |
| ggccaa | gccc agcttaatgg | ctcatgacct | ggaaataaaa | tttaggacca |              | 50   |
|        |                 |            |            |            |              |      |
|        |                 |            |            |            |              |      |
|        | 139             |            |            |            |              |      |
| <211>  | 50              |            |            |            |              |      |
| <212>  |                 |            |            |            |              |      |
| <213>  | Homo sapiens    |            |            |            |              |      |
| <400>  | 139             |            |            |            |              |      |
| tgaccc | agat atggaaacag | aagacaaaat | tgtaagccag | agtcaacaaa |              | 50   |
|        |                 |            |            |            |              |      |
| <210>  | 140             |            |            |            |              |      |
| <211>  | 50              |            |            |            |              |      |
| <212>  | DNA             |            |            |            |              |      |
| <213>  | Homo sapiens    |            |            |            |              |      |
|        |                 |            |            |            |              |      |

| <400><br>ttggga                  | 140<br>ttgg gcataaacag                 | gcccactggg | aaatagtagc | tgtactgcat | 50 |
|----------------------------------|----------------------------------------|------------|------------|------------|----|
| <210> <211> <212> <213>          | 141<br>50<br>DNA<br>Homo sapiens       |            |            |            |    |
|                                  | 141<br>ggac tcgtctgggt                 | tcttggcccc | ctctggtagg | actgggcgac | 50 |
| <211><br><212>                   | DNA                                    |            |            |            |    |
| <400>                            | Homo sapiens<br>142<br>atat caggtcatca | ttgtgtatca | aaagatgatt | tgtacaacag | 50 |
| <210><br><211>                   | 143<br>50                              |            |            |            |    |
| <212>                            |                                        |            |            |            |    |
| <400><br>aggaac                  | 143<br>cagc aagtcaacaa                 | aagactaaca | aagaaaaacc | atcttggaat | 50 |
| <210><br><211><br><212>          | 144<br>50<br>DNA                       |            |            |            |    |
| <213>                            | Homo sapiens                           |            |            |            |    |
|                                  | ctgc caggacatct                        | ttctcggggt | tctcgttgca | atcctcggtc | 50 |
| <210><br><211><br><212><br><213> | 145<br>50<br>DNA<br>Homo sapiens       |            |            |            |    |
| <400>                            | 145<br>catg cagctcctta                 | atacaagcca | tccacatctc | cegettatee | 50 |
| <210><br><211>                   | 146<br>50                              |            |            |            |    |
| <212><br><213>                   | •                                      |            |            |            |    |
| <400><br>gcctcc                  | 146<br>acac gacatcacac                 | catataccgc | aaggaatatc | agggatgctg | 50 |
| <210><br><211>                   | 147<br>50                              |            |            |            |    |

| <212>           | DNA                                               |    |
|-----------------|---------------------------------------------------|----|
| <213>           | Homo sapiens                                      |    |
|                 |                                                   |    |
| <400>           |                                                   |    |
| gagaa           | gcacc tcaacctgga gacaattcta ctgttcaaac agcagcagca | 50 |
|                 |                                                   |    |
| <210>           | 148                                               |    |
| <211>           |                                                   |    |
| <212>           |                                                   |    |
|                 | Homo sapiens                                      |    |
|                 | nomo bapacho                                      |    |
| <400>           | 148                                               |    |
| ttcta           | eggac tegtetgggt tettggeece etetggtagg aetgggegae | 50 |
|                 |                                                   | 50 |
|                 |                                                   |    |
| <210>           |                                                   |    |
| <211>           |                                                   |    |
| <212>           |                                                   |    |
| <213>           | Homo sapiens                                      |    |
| <400>           | 149                                               |    |
|                 | ggccc tggaccaacc cggcccgggc cccccggtat cgggccagag |    |
| 505445          | sava aggaccade aggaccagage accedagatat aggaccagag | 50 |
|                 |                                                   |    |
| <210>           | 150                                               |    |
| <211>           | 50                                                |    |
| <212>           |                                                   |    |
| <213>           | Homo sapiens                                      |    |
|                 |                                                   |    |
| <400>           |                                                   |    |
| tggcgc          | ettt aatatgatgg gaggatgttt geagaatgee ttagatatet  | 50 |
|                 |                                                   |    |
| <210>           | 151                                               |    |
| <211>           |                                                   |    |
| <212>           |                                                   |    |
|                 | Homo sapiens                                      |    |
|                 |                                                   |    |
| <400>           |                                                   |    |
| cgagtt          | ctgc caggacatet tteteggggt tetegttgea atecteggte  | 50 |
|                 |                                                   |    |
|                 |                                                   |    |
| <210>           |                                                   |    |
| <211>           |                                                   |    |
| <212><br><213>  |                                                   |    |
| <b>\413&gt;</b> | Homo sapiens                                      |    |
| <400>           | 152                                               |    |
|                 | atag aatcaagcct gaggctgtga agatggtgca agtgtggaga  |    |
|                 | and ancompose gaggergega agarggrada agraragaga    | 50 |
|                 |                                                   |    |
| <210>           | 153                                               |    |
| <211>           | 50                                                |    |
| <212>           |                                                   |    |
| <213>           | Homo sapiens                                      |    |
|                 |                                                   |    |
| <400>           | 153                                               |    |
| aaaatt          | agtg gattgactcc actttgttgt gttgttttca ttgttgaaaa  | 50 |
|                 |                                                   |    |

| <210>   | 154             |            |            |            |    |
|---------|-----------------|------------|------------|------------|----|
|         |                 |            |            |            |    |
| <211>   |                 |            |            |            |    |
| <212>   | DNA             |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         | -               |            |            |            |    |
| <400>   | 154             |            |            |            |    |
|         |                 |            |            |            |    |
| gaggtgt | ctc catctctgcc  | teaactteat | ggtgcactga | gergradere | 50 |
|         |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <210>   | 155             |            |            |            |    |
| <211>   |                 |            |            |            |    |
| <212>   |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   | 155             |            |            |            |    |
| caacctt | ctt gttgaattga  | tttactactc | atcagggtca | tgcacaagca | 50 |
|         |                 |            |            |            |    |
|         |                 |            |            |            |    |
| -210-   | 156             |            |            |            |    |
|         |                 |            |            |            |    |
| <211>   |                 |            |            |            |    |
| <212>   | DNA             |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         | -               |            |            |            |    |
| <400>   | 156             |            |            |            |    |
|         |                 | ******     |            | testatasaa | 50 |
| caggica | acc cccaccggac  | Ctacaacccg | cagicccaca | ccatctcagg | 50 |
|         |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <210>   | 157             |            |            |            |    |
| <211>   | 50              |            |            |            |    |
| <212>   | DNA             |            |            |            |    |
|         | Homo sapiens    |            |            |            |    |
| 12137   | nome saprens    |            |            |            |    |
|         |                 |            |            |            |    |
|         | 157             |            |            |            |    |
| acccgt  | gtga atgtgaagaa | aagcagtatg | ttactggttg | ttgttgttgt | 50 |
|         |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <210>   | 158             |            |            |            |    |
| <211>   |                 |            |            |            |    |
| <212>   |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   | 158             |            |            |            |    |
| tttagg  | gttg tgactggctt | tqqtqcaaat | gtgtgctcaa | gctaataagt | 50 |
| 33.     | , , , ,         | 55 5       |            |            |    |
|         |                 |            |            |            |    |
| <210>   | 159             |            |            |            |    |
|         |                 |            |            |            |    |
| <211>   |                 |            |            |            |    |
| <212>   | DNA             |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   | 159             |            |            |            |    |
|         | gaga ctacatttct | atataaaaaa | gatgtgtgag | ttccatcctt | 50 |
| -geuge; | ,               | 5-20uuugaa | 29-5-949   |            |    |
|         |                 |            |            |            |    |
|         |                 |            |            |            |    |
|         | 160             |            |            |            |    |
| <211>   | 50              |            |            |            |    |
| <212>   | DNA             |            |            |            |    |
|         | Homo sapiens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   | 160             |            |            |            |    |
|         | ggag aaggccagtg | cccagggata | agattagete | agtttccctc | 50 |
|         |                 |            |            |            |    |

| <212>          |                                                          |    |
|----------------|----------------------------------------------------------|----|
| <213>          | Homo sapiens                                             |    |
|                | 161<br>tgta ggtactgctg ggtcactgtt gctataaatg gtcactggag  | 50 |
| <210>          | 162                                                      |    |
| <211>          | 50                                                       |    |
| <212>          |                                                          |    |
| <213>          | Homo sapiens                                             |    |
| <400>          | 162                                                      |    |
| tggtcc         | aaag gcaaagttcg ggacaagctc aataacttag tettgtttga         | 50 |
|                |                                                          |    |
| <210><br><211> | 163<br>50                                                |    |
| <212>          |                                                          |    |
| <213>          | Homo sapiens                                             |    |
| <400>          | 163                                                      |    |
| ctaggg         | agcc gcaccttatc atgtaccatc aataaagtac cctgtgctca         | 50 |
|                |                                                          |    |
| <210>          | 164                                                      |    |
| <211>          |                                                          |    |
| <212><br><213> | Homo sapiens                                             |    |
|                |                                                          |    |
| <400>          | 164<br>yaaag aagaatcega ggagtetgat gatgacatgg getttggtet | 50 |
| geaaag         | adag dagaareega ggageetgat gatgaedtgg getttggeet         | 50 |
| <210>          | 165                                                      |    |
| <211>          |                                                          |    |
| <212>          | DNA                                                      |    |
| <213>          | Homo sapiens                                             |    |
| <400>          | 165                                                      |    |
| ttttgg         | gaacc cttagccctg tgcaaatcaa aggatgtgag gggaaaaagg        | 50 |
|                |                                                          |    |
| <210>          | 166                                                      |    |
| <211>          |                                                          |    |
| <212>          | DNA<br>Homo sapiens                                      |    |
| (213)          |                                                          |    |
| <400>          |                                                          |    |
| tttaag         | ggag tcaggaatag atgtatgaac agtcgtgtca ctggatgcct         | 50 |
| 210            | 168                                                      |    |
| <210><br><211> | 167<br>50                                                |    |
| <211>          |                                                          |    |
|                | Homo sapiens                                             |    |

| WO 2004/042346                                                                       | PCT/US2003/012946 |
|--------------------------------------------------------------------------------------|-------------------|
| <400> 167<br>tcctaatttc ttctgtgaac cttctcaaat cccccagcat gcgtgtagtg                  | 50                |
| <210> 168<br><2211> 50<br><212> DNA<br><213> Homo sapiens                            |                   |
| <400> 168<br>tgacctccac caaagcccat ataaggagcg gagttgttaa ggactgaaga                  | 50                |
| <210> 169<br><211> 50<br><212> DNA<br><213> Homo sapiens                             |                   |
| <400> 169<br>tcaagaattt gggtgggaga aaagaaagtg ggttatcaag ggtgatttga                  | 50                |
| <210> 170<br><211> 51<br><212> DNA<br><213> Homo sapiens                             |                   |
| <400> 170<br>gcaactgttt tctaggacat gtttactaga actactttaa gtatgctgtg c                | 51                |
| <210> 171<br><211> 50<br><212> DNA<br><213> Homo sapiens                             |                   |
| <400> 171<br>ttctctgcat ctaggccatc atactgccag gctggttatg actcagaaga                  | 50                |
| <210> 172<br><211> 50<br><212> DNA<br><213> Homo sapiens                             |                   |
| <400> 172<br>ctcaacgaaa ggctcacact aacaggggag gattacagca ccacaatact                  | 50                |
| <210> 173<br><211> 50<br><212> DNA                                                   |                   |
| <213> Homo sapiens  <400> 173 tggggtaagt ggagttggga aatacaagaa gagaaagacc agtggggatt | 50                |
| <210> 174<br><211> 50<br><212> DNA                                                   |                   |

| <213>          | Homo sapiens                                     |    |
|----------------|--------------------------------------------------|----|
| <400>          | 174                                              |    |
|                | aact ggggaaggtg gtcattcagg ggaagaacca ggatgcaggg | 50 |
|                | 35 0 333                                         |    |
| <210>          | 175                                              |    |
| <211>          |                                                  |    |
| <212>          |                                                  |    |
| <213>          | Homo sapiens                                     |    |
| <400>          | 175                                              |    |
| tgaacc         | tcag cccattaggc aggaaaagtt gatatttaat aaacaaggaa | 50 |
|                |                                                  |    |
| <210>          | 176                                              |    |
| <211>          |                                                  |    |
| <212>          | DNA                                              |    |
| <213>          | Homo sapiens                                     |    |
| <400>          | 176                                              |    |
|                | aaac aaattcacag cacagacacc gcgcaacaac gcaacttctc |    |
| 3-3            | anadousus susugususe gegennenae genneteete       | 50 |
|                |                                                  |    |
| <210><br><211> |                                                  |    |
| <211>          | 50<br>DNA                                        |    |
|                | Homo sapiens                                     |    |
| 12.25          | 1000 Supreme                                     |    |
|                | 177                                              |    |
| cccacg         | ggag actatttcac acaatttaat acaggaagtc gataatgagg | 50 |
|                |                                                  |    |
| <210>          | 178                                              |    |
| <211>          |                                                  |    |
| <212>          |                                                  |    |
| <213>          | Homo sapiens                                     |    |
| <400>          | 178                                              |    |
| tgactga        | aagg caageteaca gatgaageag aggaetgaag atetegatet | 50 |
|                |                                                  |    |
| <210>          | 179                                              |    |
| <211>          |                                                  |    |
| <212>          |                                                  |    |
| <213>          | Homo sapiens                                     |    |
| <400>          | 179                                              |    |
|                | aaca agaatttcat gactctacct gtggtctatc tttaatttca | 50 |
|                | - <del></del>                                    |    |
| <210>          | 180                                              |    |
|                | 50                                               |    |
|                | DNA                                              |    |
| <213>          | Homo sapiens                                     |    |
| <400>          | 180                                              |    |
|                | raac aaaaccacca cgacgatgaa acaaaacgct caaccaaaca |    |
| 55             |                                                  | 50 |
|                |                                                  |    |

<210> 181

| <211><br><212><br><213> |                        |            |            |            |    |
|-------------------------|------------------------|------------|------------|------------|----|
| <400><br>gtggag         | 181<br>ctgt tggccttgct | ggatgcgggc | actctctaca | ccttcaggta | 50 |
| <210><br><211>          |                        |            |            |            |    |
| <212><br><213>          | Homo sapiens           |            |            |            |    |
| <400>                   |                        |            |            |            |    |
| gggttc                  | aatc ccttcagctc        | aggcggacca | tttagattta | aattccactt | 50 |
| <210>                   | 183                    |            |            |            |    |
| <211><br><212>          |                        |            |            |            |    |
| <213>                   | Homo sapiens           |            |            |            |    |
| <400>                   | 183<br>agat aggtaagcca | aacaaaaaaa | astasasata | tattcactta | 50 |
| ccccac                  | agat aggtaageca        | ggcgcggcaa | gacgagaccg | cacccageca | 30 |
| <210>                   | 184                    |            |            |            |    |
| <211><br><212>          | 50<br>DNA              |            |            |            |    |
|                         | Homo sapiens           |            |            |            |    |
| <400>                   | 184                    |            |            |            |    |
| cccacc                  | ttcc acctcttagc        | actggtgace | ccaaaaatga | aaccatcaat | 50 |
| <210>                   |                        |            |            |            |    |
| <211><br><212>          |                        |            |            |            |    |
|                         | Homo sapiens           |            |            |            |    |
| <400>                   |                        |            |            |            |    |
| tgeett                  | taat tgttctcata        | atgaagaata | agraggrace | ctccatgccc | 50 |
| <210>                   |                        |            |            |            |    |
| <211><br><212>          |                        |            |            |            |    |
|                         | Homo sapiens           |            |            |            |    |
| <400>                   |                        |            |            |            |    |
| gctaga                  | tccc cggtggtttt        | gtgctcaaaa | caaaaagcct | cagugaccca | 50 |
| <210>                   |                        |            |            |            |    |
| <211>                   | 50                     |            |            |            |    |
| <212><br><213>          |                        |            |            |            |    |
| <400>                   |                        |            |            |            |    |
| acccaa                  | agga tggtgtctcc        | tgtcccagtt | gaaaaggttt | ctacctagct | 50 |

| 0.7.0  | 188                                              |    |
|--------|--------------------------------------------------|----|
| <210>  |                                                  |    |
| <211>  | 50                                               |    |
| <212>  | DNA                                              |    |
|        |                                                  |    |
| <213>  | Homo sapiens                                     |    |
|        |                                                  |    |
| <400>  | 188                                              |    |
|        |                                                  | 50 |
| aataat | agat tagcagaagg aataatccgt gcgaccgagc ttgtgcttct | 50 |
|        |                                                  |    |
|        |                                                  |    |
| <210>  | 189                                              |    |
|        |                                                  |    |
| <211>  |                                                  |    |
| <212>  | DNA                                              |    |
| <213>  | Homo sapiens                                     |    |
| 12137  | nome baptens                                     |    |
|        |                                                  |    |
| <400>  |                                                  |    |
| qaacat | cagg agaggagtcc agagcccacg tctactgcgg aaaagtcagg | 50 |
| -      |                                                  |    |
|        |                                                  |    |
|        |                                                  |    |
| <210>  | 190                                              |    |
| <211>  | 50                                               |    |
| <212>  | DNA                                              |    |
|        |                                                  |    |
| <213>  | Homo sapiens                                     |    |
|        |                                                  |    |
| <400>  | 190                                              |    |
|        | ttca agttaagcac caaagcaatc actaattctg gagcacagga | 50 |
| LUCCAU | ttea agttaageae caaageaate actaattetg gagtatagga | 50 |
|        |                                                  |    |
|        |                                                  |    |
| <210>  | 191                                              |    |
|        |                                                  |    |
| <211>  |                                                  |    |
| <212>  | DNA                                              |    |
| <213>  | Homo sapiens                                     |    |
|        |                                                  |    |
|        |                                                  |    |
| <400>  |                                                  |    |
| ttcgtg | ggca ccaagtttcg caagaactac actgtctgct ggccgagttt | 50 |
|        |                                                  |    |
|        |                                                  |    |
|        |                                                  |    |
| <210>  | 192                                              |    |
| <211>  | 50                                               |    |
| <212>  |                                                  |    |
|        |                                                  |    |
| <213>  | Homo sapiens                                     |    |
|        |                                                  |    |
| <400>  | 192                                              |    |
|        | gaat totaagoago agtttoacaa totgtaattg caogtttotg | 50 |
| ageetg | gaat tetaageage agtiteacaa tetgiaatig tacgittetg | 50 |
|        |                                                  |    |
|        |                                                  |    |
| <210>  | 193                                              |    |
| <211>  |                                                  |    |
|        |                                                  |    |
| <212>  |                                                  |    |
| <213>  | Homo sapiens                                     |    |
|        | •                                                |    |
|        | 102                                              |    |
| <400>  |                                                  |    |
| aacaga | aaca gctatggcaa cagcatcacc ctcagagcat caccaacttg | 50 |
| _      |                                                  |    |
|        |                                                  |    |
| <210>  | 194                                              |    |
|        |                                                  |    |
| <211>  | 50                                               |    |
| <212>  | DNA                                              |    |
|        | Homo sapiens                                     |    |
| -2132  | nomo supremo                                     |    |
|        |                                                  |    |
| <400>  |                                                  |    |

| agcacaa        | agec aegetteace acca | gagge ccaacac  | ctt cttctaggtg  | 50 |
|----------------|----------------------|----------------|-----------------|----|
|                |                      |                |                 |    |
| <210>          | 195                  |                |                 |    |
| <211>          | 50                   |                |                 |    |
| <212>          |                      |                |                 |    |
| <213>          | Homo sapiens         |                |                 |    |
| <400>          | 195                  |                |                 |    |
|                | tee ggageageee caca  | acctc actqtct  | cgt ctgtctatgt  | 50 |
| 33             |                      |                | 3 0 0           |    |
|                |                      |                |                 |    |
|                | 196                  |                |                 |    |
| <211><br><212> |                      |                |                 |    |
|                | Homo sapiens         |                |                 |    |
|                | nome suprem          |                |                 |    |
| <400>          |                      |                |                 |    |
| cagagaa        | acga aagtcaagtg cagc | gagttg ggtggaa | agct gatagagcaa | 50 |
|                |                      |                |                 |    |
| <210>          | 197                  |                |                 |    |
|                | 50                   |                |                 |    |
| <212>          | DNA                  |                |                 |    |
| <213>          | Homo sapiens         |                |                 |    |
| <400>          | 197                  |                |                 |    |
|                | acta aatgetette ette | agagga ttatcc  | gggg catctactca | 50 |
| -555           |                      |                | 3333            |    |
|                |                      |                |                 |    |
|                | 198                  |                |                 |    |
| <211>          | 50                   |                |                 |    |
| <212>          |                      |                |                 |    |
| <213>          | Homo sapiens         |                |                 |    |
| <400>          | 198                  |                |                 |    |
| ctggca         | catc caggttttag agca | ggcagc ctgaga  | tttc aaaaatgagg | 50 |
|                |                      |                |                 |    |
| <210>          | 199                  |                |                 |    |
|                | 50                   |                |                 |    |
| <212>          |                      |                |                 |    |
| <213>          | Homo sapiens         |                |                 |    |
|                | 199                  |                |                 |    |
| <400>          | tcc accaaccagg gtgg  | attest actacc  | tato tacqaqacqq | 50 |
| Cacce          | cree accaaccagg gagg | gecout googee  | cace caegagaegg |    |
|                |                      |                |                 |    |
|                | 200                  |                |                 |    |
| <211>          |                      |                |                 |    |
| <212>          |                      |                |                 |    |
| <213>          | Homo sapiens         |                |                 |    |
| <400>          | 200                  |                |                 |    |
| gctgtg         | ccct tgaagagaat agta | atgatg ggaatt  | taga ggtttatgac | 50 |
|                |                      |                |                 |    |
| <210>          | 201                  |                |                 |    |
| <211>          | 50                   |                |                 |    |
| <212>          | DNA                  |                |                 |    |
| <213>          | Homo sapiens         |                |                 |    |
|                |                      |                |                 |    |

| <400><br>actaati                 | 201<br>ccc gtgtctggcc            | ctgaacatga          | agatataatg | gacgatecet | 5 | 50 |
|----------------------------------|----------------------------------|---------------------|------------|------------|---|----|
| <210><211><211><212><212><213>   | 202<br>50<br>DNA<br>Homo sapiens |                     |            |            |   |    |
|                                  | 202<br>atgc cctaatttaa           | aggggggaaa          | gtcccacaac | aagccacaga |   | 50 |
| LaaaaL                           | acge cetaatetaa                  | a <b>gg</b> gegeagg | gcccacaac  | aageeacaga | • |    |
| <210><br><211><br><212><br><213> | 203<br>50<br>DNA<br>Homo sapiens |                     |            |            |   |    |
| <400>                            |                                  |                     |            |            |   |    |
| cagaac                           | teca tagacageet                  | cactttgtgc          | tcgggggcct | gtcccaaggc | 5 | 50 |
| <210><211><211><212><213>        | 204<br>50<br>DNA<br>Homo sapiens |                     |            |            |   |    |
| <400>                            |                                  |                     |            |            |   |    |
|                                  | gata ctgccacttt                  | ctctacacaa          | agacccaccc | aaacaccagc | 5 | 50 |
| <210>                            | 205                              |                     |            |            |   |    |
| <211>                            | 50                               |                     |            |            |   |    |
| <212>                            | DNA                              |                     |            |            |   |    |
| <213>                            | Homo sapiens                     |                     |            |            |   |    |
| <400>                            | 205                              |                     |            |            |   |    |
| tgcatc                           | gtaa aaccttcaga                  | aggaaaggag          | aatgttttgt | ggaccacttt | 5 | 50 |
| <210>                            | 206                              |                     |            |            |   |    |
| <211>                            | 50                               |                     |            |            |   |    |
| <212>                            | DNA                              |                     |            |            |   |    |
| <213>                            | Homo sapiens                     |                     |            |            |   |    |
| <400>                            | 206                              |                     |            |            |   |    |
| ctgaat                           | ttgg ttttgggagg                  | tgaggcttcc          | caaccacgga | agactacttt |   | 50 |
| <210>                            | 207                              |                     |            | ,          |   |    |
| <211>                            | 50                               |                     |            |            |   |    |
| <212>                            | DNA                              |                     |            |            |   |    |
| <213>                            | Homo sapiens                     |                     |            |            |   |    |
| <400>                            |                                  |                     |            |            |   |    |
| taggga                           | gccg caccttgtca                  | tgtaccatca          | ataaagtacc | ctgtgctcaa | ! | 50 |
| <210>                            | 208                              |                     |            |            |   |    |
| <211>                            | 50                               |                     |            |            |   |    |

|                                                                                                                                                                              | DNA<br>Homo sapiens                                                                                                                                                             |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                                              |                                                                                                                                                                                 |    |
|                                                                                                                                                                              | 208                                                                                                                                                                             |    |
| ttaata                                                                                                                                                                       | ccag gaacccagcg gctctagcca ctgagcggct aaatgaaata                                                                                                                                | 50 |
| <210>                                                                                                                                                                        | 209                                                                                                                                                                             |    |
| <211>                                                                                                                                                                        |                                                                                                                                                                                 |    |
| <212>                                                                                                                                                                        |                                                                                                                                                                                 |    |
|                                                                                                                                                                              | Homo sapiens                                                                                                                                                                    |    |
| <400>                                                                                                                                                                        | 209                                                                                                                                                                             |    |
| gcagagt                                                                                                                                                                      | ttca ttgttgcccc ttaacagttt ttcctgagtt tactgaagaa                                                                                                                                | 50 |
|                                                                                                                                                                              |                                                                                                                                                                                 |    |
| <210>                                                                                                                                                                        | 210                                                                                                                                                                             |    |
| <211>                                                                                                                                                                        |                                                                                                                                                                                 |    |
| <212>                                                                                                                                                                        | Homo sapiens                                                                                                                                                                    |    |
|                                                                                                                                                                              |                                                                                                                                                                                 |    |
| <400>                                                                                                                                                                        |                                                                                                                                                                                 |    |
| actcgc                                                                                                                                                                       | tcag aagagggaac taagcatttt tggcaaccaa tgggcagata                                                                                                                                | 50 |
|                                                                                                                                                                              |                                                                                                                                                                                 |    |
| <210><br><211>                                                                                                                                                               | 211<br>50                                                                                                                                                                       |    |
| <211>                                                                                                                                                                        |                                                                                                                                                                                 |    |
|                                                                                                                                                                              | Homo sapiens                                                                                                                                                                    |    |
| (213)                                                                                                                                                                        | nomo saprens                                                                                                                                                                    |    |
|                                                                                                                                                                              | 211                                                                                                                                                                             |    |
| aatgga                                                                                                                                                                       | ggca cgaacgcagg ggccaaatag caataaatgg gttttgtttt                                                                                                                                | 50 |
|                                                                                                                                                                              |                                                                                                                                                                                 | 50 |
|                                                                                                                                                                              |                                                                                                                                                                                 | 50 |
| <210>                                                                                                                                                                        | 212                                                                                                                                                                             | 30 |
| <210><br><211>                                                                                                                                                               |                                                                                                                                                                                 | 30 |
| <211><br><212>                                                                                                                                                               | 50<br>DNA                                                                                                                                                                       | 30 |
| <211><br><212>                                                                                                                                                               | 50                                                                                                                                                                              | 30 |
| <211><br><212><br><213>                                                                                                                                                      | 50<br>DNA<br>Homo sapiens<br>212                                                                                                                                                |    |
| <211><br><212><br><213>                                                                                                                                                      | 50<br>DNA<br>Homo sapiens                                                                                                                                                       | 50 |
| <211><br><212><br><213><br><400><br>tctcga                                                                                                                                   | 50 DNA Homo sapiens 212 ctga cacccactat aaattccctg ggttgaaaaa cttttcttt                                                                                                         |    |
| <211><br><212><br><213><br><400><br>tctcgae                                                                                                                                  | 50 DNA Homo sapiens 212 ctga cacccactat aaattccctg ggttgaaaaa cttttctttt                                                                                                        |    |
| <211> <212> <213> <400> tctcgac <210> <211>                                                                                                                                  | 50 DNA Homo sapiens 212 ctga cacccactat aaattccctg ggttgaaaaa cttttctttt                                                                                                        |    |
| <211> <212> <213> <400> tctcgac  <210> <211> <212>                                                                                                                           | 50 DNA Homo sapiens 212 ctga caccactat aaattccctg ggttgaaaaa cttttcttt 213 50 DNA                                                                                               |    |
| <211> <212> <213> <400> tctcgae  <210> <211> <212> <213>                                                                                                                     | 50 DNA Homo sapiens  212 ctga cacccactat aaattccctg ggttgaaaaa cttttctttt                                                                                                       |    |
| <211><212><213><400><br>tctcgade<br><210><211><211><410><410><br><410>                                                                                                       | 50 DNA Econo sapiens 212 ctga cacccactat aaattccctg ggttgaaaaa cttttctttt                                                                                                       | 50 |
| <211><212><213><400><br>tctcgade<br><210><211><211><410><410><br><410>                                                                                                       | 50 DNA Homo sapiens  212 ctga cacccactat aaattccctg ggttgaaaaa cttttctttt                                                                                                       |    |
| <211><212><213> 400 tctcgade <210><211><213> 400 gaaatg                                                                                                                      | 50 DNA Homo sapiens 212 ctga cacccactat aaattccctg ggttgaaaaa cttttctttt                                                                                                        | 50 |
| <211><212><213><400>tctcgade <210><211><211><211><212><213><400>gaaatg <210><210><213>                                                                                       | 50 DNA Romo sapiens 212 ctga cacccactat aaattccctg ggttgaaaaa cttttctttt                                                                                                        | 50 |
| <211><212><212><213><br><210> <tctcgar< td="">&lt;210&gt;&lt;2211&gt;<br/>&lt;211&gt;<br/>&lt;213&gt;&lt;400&gt;<br/>gaaatg&lt;210&gt;&lt;211&gt;<br/>&lt;213&gt;</tctcgar<> | 50 DNA Homo sapiens 212 ctga cacccactat aaattccctg ggttgaaaaa cttttctttt                                                                                                        | 50 |
| <211><212><213> 400<br>tctcgar<210><211><211><212><213><400><br>gaaatg<210><br><211><br><212>                                                                                | 50 DNA Homo sapiens 212 ctga cacccactat aaattccctg ggttgaaaaa cttttctttt                                                                                                        | 50 |
| <211> <212> <213> <400> tctcga <211> <211> <211> <211> <211> <211> <211> <212> <213> <400> gaaatg <210> <211> <211> <211> <213>                                              | 50 DNA Homo sapiens 212 ctga cacccactat aaattccctg ggttgaaaaa cttttcttt  213 50 DNA Homo sapiens 213 agett ggtgtcttca cagaatgagg atccccagag ccatcttgcc  214 50 DNA Homo sapiens | 50 |
| <211> <212> <213> <400> tctcgac  <210> <211> <211> <211> <212> <213>  <400> gaaatg  <210> <211> <212> <213  <400>                                                            | 50 DNA Homo sapiens 212 ctga cacccactat aaattccctg ggttgaaaaa cttttcttt  213 50 DNA Homo sapiens 213 agtt ggtgtcttca cagaatgagg atccccagag ccatcttgcc  214 50 DNA               | 50 |

| <210>   | 215                       |                          |    |
|---------|---------------------------|--------------------------|----|
| <211>   | 50                        |                          |    |
| <212>   |                           |                          |    |
|         | Homo sapiens              |                          |    |
| (213)   | nome suprems              |                          |    |
| <400>   | 215                       |                          |    |
|         |                           |                          | 50 |
| gttaaci | ttcc aggagttcct cattctggt | tg ataaagatgg getggeagee | 50 |
|         |                           |                          |    |
|         |                           |                          |    |
| <210>   | 216                       |                          |    |
| <211>   |                           |                          |    |
| <212>   | DNA                       |                          |    |
| <213>   | Homo sapiens              |                          |    |
|         |                           |                          |    |
| <400>   | 216                       |                          |    |
| tctqqct | tctg accggttgat ggccttgag | gc gaatgaaatc atgaaattga | 50 |
|         |                           |                          |    |
|         |                           |                          |    |
| <210>   | 217                       |                          |    |
| <211>   |                           |                          |    |
| <212>   |                           |                          |    |
|         |                           |                          |    |
| <213>   | Homo sapiens              |                          |    |
|         |                           |                          |    |
| <400>   |                           |                          |    |
| tgtaat  | gaat ttgtcgcaaa gacgtaata | aa aattaactgg tggcacggtc | 50 |
|         |                           |                          |    |
|         |                           |                          |    |
| <210>   | 218                       |                          |    |
| <211>   | 50                        |                          |    |
| <212>   | DNA                       |                          |    |
| <213>   | Homo sapiens              |                          |    |
|         | •                         |                          |    |
| <400>   | 218                       |                          |    |
| aaggat  | gttc cttcaggagg aagcagca  | ct aaaagcactc tgagtcaaga | 50 |
|         | 3 33 33 3 3               |                          |    |
|         |                           |                          |    |
| <210>   | 219                       |                          |    |
| <211>   |                           |                          |    |
| <212>   |                           |                          |    |
|         |                           |                          |    |
| <213>   | Homo sapiens              |                          |    |
|         |                           |                          |    |
|         | 219                       |                          | 50 |
| tgccac  | agta gecetagtgt ttaagtgt  | tg cctctcaaac ttgtcctctt | 50 |
|         |                           |                          |    |
|         |                           |                          |    |
| <210>   |                           |                          |    |
| <211>   |                           |                          |    |
| <212>   | DNA                       |                          |    |
| <213>   | Homo sapiens              |                          |    |
|         |                           |                          |    |
| <400>   | 220                       |                          |    |
| ttctga  | cacg attacacaac gaggettt  | aa tgccatttgg gtaggtgagc | 50 |
| _       |                           |                          |    |
|         |                           |                          |    |
| <210>   | 221                       |                          |    |
| <211>   |                           |                          |    |
| <212>   |                           |                          |    |
|         | Homo sapiens              |                          |    |
|         |                           |                          |    |
| <400>   | 221                       |                          |    |
|         | cctg gttttcaatc gctgctga  | ac aaacctatca aaaatgtagc | 50 |
|         |                           |                          |    |

| <210>   | 222              |            |            |            |     |
|---------|------------------|------------|------------|------------|-----|
| <211>   | 50               |            |            |            |     |
| <212>   | DNA              |            |            |            |     |
| <213>   | Homo sapiens     |            |            |            |     |
|         |                  |            |            |            |     |
| <400>   |                  |            |            |            |     |
| aacagtt | ggg caccetgaat q | ggcaaatggc | aaatttggag | cgctaataat | 50  |
|         |                  |            |            |            |     |
|         |                  |            |            |            |     |
|         | 223              |            |            |            |     |
| <211>   |                  |            |            |            |     |
| <212>   | Homo sapiens     |            |            |            |     |
| (213)   | nomo saprens     |            |            |            |     |
| <400>   | 223              |            |            |            |     |
|         | ata ccttaagctt   | tttcaagacc | taactgcagc | cgctttggga | 50  |
| agecee  | aca ooccaagoco   | 0000000    | cuncegonge | 0300003330 | • • |
|         |                  |            |            |            |     |
| <210>   | 224              |            |            |            |     |
| <211>   | 50               |            |            |            |     |
| <212>   | DNA              |            |            |            |     |
| <213>   | Homo sapiens     |            |            |            |     |
|         |                  |            |            |            |     |
| <400>   |                  |            |            |            |     |
| catctca | atgc gtagcactga  | tcaatgtgcc | ccagggtgtg | tattcgccac | 50  |
|         |                  |            |            |            |     |
|         |                  |            |            |            |     |
|         | 225              |            |            |            |     |
| <211>   |                  |            |            |            |     |
| <212>   |                  |            |            |            |     |
| <213>   | Homo sapiens     |            |            |            |     |
| <400>   | 225              |            |            |            |     |
|         | gttg ctcaatgtag  | cantnatntt | cttagaatta | ccaccacacc | 50  |
| cggaca  | gerg ecouatgong  | ougeguegee | occagaacca | coageagage | 50  |
|         |                  |            |            |            |     |
| <210>   | 226              |            |            |            |     |
| <211>   | 50               |            |            |            |     |
| <212>   | DNA              |            |            | •          |     |
| <213>   | Homo sapiens     |            |            |            |     |
|         |                  |            |            |            |     |
| <400>   | 226              |            |            |            |     |
| tcaggt  | tgaa gtcaagatga  | cagataaggt | gagagtaatg | actactccaa | 50  |
|         |                  |            |            |            |     |
|         |                  |            |            |            |     |
| <210>   |                  |            |            |            |     |
| <211>   |                  |            |            |            |     |
| <212>   |                  |            |            |            |     |
| <213>   | Homo sapiens     |            |            |            |     |
| <400>   | 227              |            |            |            |     |
|         | tgag ggcttgtcct  | oottataaat | atctagatag | agatagacec | 50  |
| uuc     | 222 222229       | 550000000  | 3399-99    | 2225233546 | 30  |
|         |                  |            |            |            |     |
| <210>   | 228              |            |            |            |     |
| <211>   | 50               |            |            |            |     |
| <212>   |                  |            |            |            |     |
|         | Homo sapiens     |            |            |            |     |

| <400><br>aaagga           | 228<br>agaa gcacgatgca           | aacagaaaca | agacgagaca | gagtgagcga | 5 | 0  |
|---------------------------|----------------------------------|------------|------------|------------|---|----|
| <210><211><212><212><213> | 229<br>50<br>DNA<br>Homo sapiens |            |            |            |   |    |
| <400><br>cagtcc           | 229<br>ctct cccaggagga           | ccctagaggc | aattaaatga | tgtcctgttc | 5 | 0  |
| <210><br><211><br><212>   | 230<br>50<br>DNA                 |            |            |            |   |    |
| <213>                     | Homo sapiens                     |            |            |            |   |    |
| <400><br>cggacg           | 230<br>gaag gacggaaaaa           | gctctatttt | tatgttaggc | ttatttcatg | 5 | 0  |
| <210>                     | 231                              |            |            |            |   |    |
|                           | 50                               |            |            |            |   |    |
| <212>                     |                                  |            |            |            |   |    |
| <213>                     | Homo sapiens                     |            |            |            |   |    |
| <400>                     | 231                              |            |            |            |   |    |
| gctttg                    | cctc tcggaggagt                  | caaaggggca | gtaactgtat | ggggtgagag | 5 | 0  |
|                           |                                  |            |            |            |   |    |
| <210><br><211>            | 232<br>50                        |            |            |            |   |    |
| <211>                     |                                  |            |            |            |   |    |
|                           | Homo sapiens                     |            |            |            |   |    |
|                           |                                  |            |            |            |   |    |
| <400>                     |                                  |            |            |            |   | 50 |
| gctcaa                    | gttc ccagcacctg                  | gggaattcta | agcctgagga | agacaaggtg | • | ,0 |
|                           |                                  |            |            |            |   |    |
| <210>                     |                                  |            |            |            |   |    |
| <211><br><212>            | 50<br>DNA                        |            |            |            |   |    |
|                           | Homo sapiens                     |            |            |            |   |    |
|                           |                                  |            |            |            |   |    |
| <400>                     |                                  | anaantatan | attaasatta | gagagtatgt |   | 50 |
| acacgg                    | aagt gaagattcct                  | gaggacccaa | cttgcagttg | gacactatgt | • | ,, |
| <210>                     | 234                              |            |            |            |   |    |
| <211>                     |                                  |            |            |            |   |    |
| <212>                     |                                  |            |            |            |   |    |
|                           | Homo sapiens                     |            |            |            |   |    |
| <400>                     | 234                              |            |            |            |   |    |
|                           | cacc tcttgcactc                  | tcgcttttgg | agcaagttgc | attaactatt | 5 | 50 |
|                           | _                                |            |            |            |   |    |
| <210>                     | 235                              |            |            |            |   |    |
| <211>                     | 50                               |            |            |            |   |    |
| <212×                     | DNA                              |            |            |            |   |    |

WO 2004/042346 PCT/US2003/012946 <213> Homo sapiens <400> 235 ggatcacttg aagccagcag tttgagacca gcctgggcaa taaaatgaga 50 <210> 236 <211> 50 <212> DNA <213> Homo sapiens <400> 236 ccactgagaa ctaaatgctg taccacagag ccgggtgtga actatggttt 50 <210> 237 <211> 50 <212> DNA <213> Homo sapiens <400> 237 agaaagttag gagtcggcaa ccttaaggag gagtttccta tcatctctcc 50 <210> 238 <211> 50 <212> DNA <213> Homo sapiens <400> 238 ctgtagagag tcttcaagat cccggagtgg tagcgctgtc tcctggtgaa 50 <210> 239 <211> 50 <212> DNA <213> Homo sapiens <400> 239 cggccaaccc aggagggcag gtgttttggg catctggttt atagtacctc 50 <210> 240 <211> 50 <212> DNA <213> Homo sapiens <400> 240 ggggaaggag ggtgattata ttgctttgta atggtttgtg atacttgaaa 50 <210> 241 <211> 50 <212> DNA <213> Homo sapiens <400> 241 cgcttaagaa cattgcctct gggtgtcatg tggaccagac ttctqaataq 50

<210> 242

| <211><br><212><br><213> | 50<br>DNA<br>Homo sapiens           |            |            |    |
|-------------------------|-------------------------------------|------------|------------|----|
| <400><br>agtgct         | 242<br>gtat tgactttgct cggcagtaga t | tgaagctatt | ctgaacccaa | 50 |
| <210><br><211>          |                                     |            |            |    |
| <212><br><213>          | DNA<br>Homo sapiens                 |            |            |    |
| <400><br>aaagati        | 243<br>tgtt ggttaggcca gattgacacc t | tatttataaa | ccatatgcgt | 50 |
| <210><br><211>          |                                     |            |            |    |
| <212>                   |                                     |            |            |    |
| <400>                   | _                                   |            |            |    |
|                         | etca atetetgett ggetecaagg a        | acctgggatc | tcctggtacg | 50 |
| <210>                   | 245                                 |            |            |    |
| <211>                   |                                     |            |            |    |
| <212>                   |                                     |            |            |    |
| <213>                   | Homo sapiens                        |            |            |    |
| <400>                   |                                     |            |            | 50 |
| gtacac                  | ccct caaccctatg cagcctggag          | tgggcatcaa | taaaatgaac | 50 |
| <210>                   | 246                                 |            |            |    |
| <211>                   |                                     |            |            |    |
| <212>                   |                                     |            |            |    |
| <213>                   | Homo sapiens                        |            |            |    |
| <400>                   |                                     |            |            |    |
| tgcgaa                  | attg tggactgttg gactgtgatt          | ctaagtgggg | gaaataggct | 50 |
| <210>                   | 247                                 |            |            |    |
| <211>                   |                                     |            |            |    |
| <212>                   | DNA                                 |            |            |    |
| <213>                   | Homo sapiens                        |            |            |    |
| <400>                   |                                     |            |            |    |
| catatg                  | gegge tgtgecatag eeggatgtte         | ttcgtgcgtg | cctacccccg | 50 |
| <210>                   | 248                                 |            |            |    |
| <211>                   |                                     |            |            |    |
| <212>                   |                                     |            |            |    |
| <213>                   | Homo sapiens                        |            |            |    |
|                         |                                     |            |            |    |
| ctctgc                  | eccte ctgtcaccca gtagagtaaa         | taaacttcct | tggctcctaa | 50 |

| <210>  | 249                                              |    |
|--------|--------------------------------------------------|----|
|        |                                                  |    |
| <211>  |                                                  |    |
| <212>  | DNA                                              |    |
| <213>  | Homo sapiens                                     |    |
|        |                                                  |    |
| <400>  | 24.9                                             |    |
|        |                                                  | 50 |
| egeece | cacg atagaaataa ggaaggtcta gagcttctat tctttggcca | 50 |
|        |                                                  |    |
|        |                                                  |    |
| <210>  | 250                                              |    |
| <211>  |                                                  |    |
| <212>  |                                                  |    |
|        |                                                  |    |
| <213>  | Homo sapiens                                     |    |
|        |                                                  |    |
| <400>  | 250                                              |    |
| tacaga | agag cagagaccaa ccttctcaaa gttggtgagt attaacccag | 50 |
| _      | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3          |    |
|        |                                                  |    |
|        |                                                  |    |
| <210>  |                                                  |    |
| <211>  | 50                                               |    |
| <212>  | DNA                                              |    |
|        | Homo sapiens                                     |    |
| 12137  | nome suprems                                     |    |
|        | 0.51                                             |    |
| <400>  |                                                  |    |
| tcagtg | taaa cataattagg ccgtgagttt ttgctcttac tcccaggttt | 50 |
|        |                                                  |    |
|        |                                                  |    |
| <210>  | 252                                              |    |
| <211>  |                                                  |    |
|        |                                                  |    |
| <212>  |                                                  |    |
| <213>  | Homo sapiens                                     |    |
|        |                                                  |    |
| <400>  | 252                                              |    |
|        | tcca gggaggacaa actctgggct ggacaatgta tccacaaggg | 50 |
| aacaca | teea gggaggacaa accetggger ggacaatgta teeacaaggg | 50 |
|        |                                                  |    |
|        |                                                  |    |
| <210>  | 253                                              |    |
| <211>  | 50                                               |    |
| <212>  |                                                  |    |
|        |                                                  |    |
| <213>  | Homo sapiens                                     |    |
|        |                                                  |    |
| <400>  | 253                                              |    |
| ggggtt | tgtg ctatacactg ggatgtctaa ttgcagcaat aaagcctttc | 50 |
| 5555   |                                                  |    |
|        |                                                  |    |
| 0.0    |                                                  |    |
| <210>  |                                                  |    |
| <211>  | 50                                               |    |
| <212>  | DNA                                              |    |
| <213>  | Homo sapiens                                     |    |
|        | *                                                |    |
| <400>  | 254                                              |    |
|        |                                                  |    |
| ttgagt | aagg ctcagagttg cagatgaggt gcagagaaca tcctgtgact | 50 |
|        |                                                  |    |
|        |                                                  |    |
| <210>  | 255                                              |    |
| <211>  |                                                  |    |
|        |                                                  |    |
| <212>  |                                                  |    |
| <213>  | Homo sapiens                                     |    |
|        |                                                  |    |
|        |                                                  |    |

| WO 2004/042540                  |            |            |            | 1 € 1/032003/012340 |
|---------------------------------|------------|------------|------------|---------------------|
| ttcatgctca ttaggacatt           | gaacaaatgg | cagagtaaga | aagtttggcc | 50                  |
|                                 |            |            |            |                     |
| <210> 256                       |            |            |            |                     |
| <211> 50                        |            |            |            |                     |
| <212> DNA                       |            |            |            |                     |
| <213> Homo sapiens              |            |            |            |                     |
| <400> 256                       |            |            |            |                     |
| gggggtttcc acaatgtgag           | ggggaaccaa | qaaaatttta | aatacaqtqt | 50                  |
| 33333                           | 2333       | 3          | 3 9        |                     |
| <210> 257                       |            |            |            |                     |
| <211> 50                        |            |            |            |                     |
| <212> DNA                       |            |            |            |                     |
| <213> Homo sapiens              |            |            |            |                     |
| (215) Homo Bapteris             |            |            |            |                     |
| <400> 257                       |            |            |            |                     |
| actttaagaa aaaacaaata           | attgttgcag | aggtctctgt | attttgcagc | 50                  |
|                                 |            |            |            |                     |
| <210> 258                       |            |            |            |                     |
| <211> 50                        |            |            |            |                     |
| <212> DNA                       |            |            |            |                     |
| <213> Homo sapiens              |            |            |            |                     |
| <400> 258                       |            |            |            |                     |
| gctcgctacc agaaatccta           | ccgataagcc | catcotoact | caaaactcac | 50                  |
| J                               |            |            |            | •                   |
| <210> 259                       |            |            |            |                     |
|                                 |            |            |            |                     |
| <211> 50                        |            |            |            |                     |
| <212> DNA<br><213> Homo sapiens |            |            |            |                     |
| <213> Homo sapiens              |            |            |            |                     |
| <400> 259                       |            |            |            |                     |
| ctgtaccagt gctggctgca           | ggtattaagt | ccaagtttat | taactagata | 50                  |
|                                 |            |            |            |                     |
| <210> 260                       |            |            |            |                     |
| <211> 50                        |            |            |            |                     |
| <212> DNA                       |            |            |            |                     |
| <213> Homo sapiens              |            |            |            |                     |
| <400> 260                       |            |            |            |                     |
| tctgtgaaaa tctttctgca           | aatgtctttg | cttgcttgta | ctcacgtttt | 50                  |
|                                 |            |            |            |                     |
| <210> 261                       |            |            |            |                     |
| <211> 50                        |            |            |            |                     |
| <212> DNA                       |            |            |            |                     |
| <213> Homo sapiens              |            |            |            |                     |
| <400> 261                       |            |            |            |                     |
|                                 | tatatast   | anataat:   | tanatanaat | 50                  |
| atttgagtgt tgttggacca           | rgrgrgatca | gactgetate | Lydaladat  | 50                  |
|                                 |            |            |            |                     |
| <210> 262                       |            |            |            |                     |
| <211> 50                        |            |            |            |                     |
| <212> DNA                       |            |            |            |                     |
| <213> Homo sapiens              |            |            |            |                     |
|                                 |            |            |            |                     |

WO 2004/042346

PCT/US2003/012946

| <400><br>tggttta | 262<br>aatg gaaaatgctc t | tggaaaattc | ttttgcaaca | gttcateget                             | 50 |
|------------------|--------------------------|------------|------------|----------------------------------------|----|
| <210>            | 263                      |            |            |                                        |    |
| <211>            | 50                       |            |            |                                        |    |
| <212>            |                          |            |            |                                        |    |
|                  | Homo sapiens             |            |            |                                        |    |
|                  | •                        |            |            |                                        |    |
| <400>            | 263                      |            |            |                                        |    |
| ctatca           | gece caagtggage a        | agaacagagg | gatttgggag | gaatgtcctc                             | 50 |
|                  |                          |            |            |                                        |    |
| <210>            | 264                      |            |            |                                        |    |
| <211>            | 50                       |            |            |                                        |    |
| <212>            | DNA                      |            |            |                                        |    |
| <213>            | Homo sapiens             |            |            |                                        |    |
|                  |                          |            |            |                                        |    |
|                  | 264                      |            |            |                                        |    |
| tgagtc           | agtg tctttactga g        | gctggaagcc | tctgaaagtt | attaaaggca                             | 50 |
|                  |                          |            |            |                                        |    |
| <210>            | 265                      |            |            |                                        |    |
| <211>            | 50                       |            |            |                                        |    |
| <212>            |                          |            |            |                                        |    |
|                  | Homo sapiens             |            |            |                                        |    |
|                  |                          |            |            |                                        |    |
|                  | 265                      |            |            |                                        |    |
| gtcctt           | tgat agcagaacaa 🤉        | gaggctctgt | gatectetgg | acctcagatt                             | 50 |
|                  |                          |            |            |                                        |    |
| <210>            | 266                      |            |            |                                        |    |
| <211>            | 50                       |            |            |                                        |    |
|                  | DNA                      |            |            |                                        |    |
| <213>            | Homo sapiens             |            |            |                                        |    |
|                  |                          |            |            |                                        |    |
| <400>            |                          |            |            |                                        |    |
| ctttag           | atgt cccacgtccc 1        | ttcaagcaca | tgaaagaget | cacactggag                             | 50 |
|                  |                          |            |            |                                        |    |
| <210>            | 267                      |            |            |                                        |    |
| <211>            | 50                       |            |            |                                        |    |
| <212>            | DNA                      |            |            |                                        |    |
| <213>            | Homo sapiens             |            |            |                                        |    |
|                  | 260                      |            |            |                                        |    |
| <400>            | 267                      | -azattataa | 201112     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 50 |
| gagatg           | ggga gggctaccac a        | agagetatee | accccacaac | ggagacacag                             | 30 |
|                  |                          |            |            |                                        |    |
| <210>            | 268                      |            |            |                                        |    |
| <211>            | 50                       |            |            |                                        |    |
| <212>            | DNA                      |            |            |                                        |    |
| <213>            | Homo sapiens             |            |            |                                        |    |
| <400>            | 268                      |            |            |                                        |    |
|                  | agac gatgtcaggc :        | aaacactcct | taccetgeca | tttctagtta                             | 50 |
|                  |                          |            |            | 3                                      |    |
|                  |                          |            |            |                                        |    |
| <210>            | 269                      |            |            |                                        |    |
| <211>            | 50                       |            |            |                                        |    |

| <212>   | DNA             |            |            |                                       |    |
|---------|-----------------|------------|------------|---------------------------------------|----|
| <213>   | Homo sapiens    |            |            |                                       |    |
|         |                 |            |            |                                       |    |
| <400>   | 269             |            |            |                                       |    |
| cccaaa  | gcct ggggggtttg | gcccaaacct | tcccctggt  | ttttataaaa                            | 50 |
|         |                 |            |            |                                       |    |
|         |                 |            |            |                                       |    |
| <210>   | 270             |            |            |                                       |    |
| <211>   | 50              |            |            |                                       |    |
|         | DNA             |            |            |                                       |    |
| <213>   | Homo sapiens    |            |            |                                       |    |
| <400>   | 270             |            |            |                                       |    |
|         | cctg ctggctggaa | acctootagt | gaaacaataa | teccagatee                            | 50 |
| J J-    | 33535           | 333-       | J          | <b>3</b>                              |    |
|         |                 |            |            |                                       |    |
| <210>   | 271             |            |            |                                       |    |
| <211>   |                 |            |            |                                       |    |
| <212>   |                 |            |            |                                       |    |
| <213>   | Homo sapiens    |            |            |                                       |    |
|         | 0.7.5           |            |            |                                       |    |
| <400>   |                 |            |            | a a a a a a a a a a a a a a a a a a a | 50 |
| accgaa  | tttg gcaagaatga | aatggtgtca | Ladayatygy | aggggagggt                            | 50 |
|         |                 |            |            |                                       |    |
| <210>   | 272             |            |            |                                       |    |
| <211>   | 50              |            |            |                                       |    |
| <212>   | DNA             |            |            |                                       |    |
| <213>   | Homo sapiens    |            |            |                                       |    |
|         |                 |            |            |                                       |    |
| <400>   |                 |            |            |                                       | 50 |
| cayyyu  | atca gatattgtgc | etttiggtge | Cagguidada | gccaagcgcc                            | 50 |
|         |                 |            |            |                                       |    |
| <210>   | 273             |            |            |                                       |    |
| <211>   | 50              |            |            |                                       |    |
| <212>   | DNA             |            |            |                                       |    |
| <213>   | Homo sapiens    |            |            |                                       |    |
|         |                 |            |            |                                       |    |
| <400>   |                 |            |            |                                       | 50 |
| rgergg. | acaa agacaatgag | atgattattg | grggrgggar | ggetgttaee                            | 50 |
|         |                 |            |            |                                       |    |
| <210>   | 274             |            |            |                                       |    |
| <211>   |                 |            |            |                                       |    |
| <212>   |                 |            |            |                                       |    |
| <213>   | Homo sapiens    |            |            |                                       |    |
|         |                 |            |            |                                       |    |
| <400>   |                 |            |            |                                       |    |
| gagaag  | attc aggacctctt | ggtggactct | ggaaagttca | tctacttaga                            | 50 |
|         |                 |            |            |                                       |    |
| <210>   | 275             |            |            |                                       |    |
| <211>   |                 |            |            |                                       |    |
| <212>   |                 |            |            |                                       |    |
|         | Homo sapiens    |            |            |                                       |    |
|         |                 |            |            |                                       |    |
| <400>   |                 |            |            |                                       |    |
| tgaaag  | agaa agactgatta | cctcctgtgt | ggaagaagga | aacaccgagt                            | 50 |
|         |                 |            |            |                                       |    |

| <210>   | 276             |            |            |             |    |
|---------|-----------------|------------|------------|-------------|----|
| <211>   | 50              |            |            |             |    |
| <212>   |                 |            |            |             |    |
|         | Homo sapiens    |            |            |             |    |
|         | nome barrene    |            |            |             |    |
| <400>   | 276             |            |            |             |    |
|         | ctc aacatcttgt  | ccaacttatt | caccotatoo | aaatcaatat  | 50 |
| CCCCCC  | ccc aacaccccgc  | ccagcccacc | caccycaccc | addicadacac | 50 |
|         |                 |            |            |             |    |
| <210>   | 022             |            |            |             |    |
|         |                 |            |            |             |    |
| <211>   |                 |            |            |             |    |
| <212>   |                 |            |            |             |    |
| <213>   | Homo sapiens    |            |            |             |    |
|         |                 |            |            |             |    |
| <400>   |                 |            |            |             |    |
| acatcg  | cta aaaccgtgca  | tcgtaaacat | ttacctcaaa | gtcatcctct  | 50 |
|         |                 |            |            |             |    |
|         |                 |            |            |             |    |
| <210>   |                 |            |            |             |    |
| <211>   | 50              |            |            |             |    |
| <212>   | DNA             |            |            |             |    |
| <213>   | Homo sapiens    |            |            |             |    |
|         |                 |            |            |             |    |
| <400>   | 278             |            |            |             |    |
| ataccca | cac agcaactggt  | ccactgcttt | actgtctgtt | ggataatggc  | 50 |
|         |                 |            |            |             |    |
|         |                 |            |            |             |    |
| <210>   | 279             |            |            |             |    |
| <211>   | 50              |            |            |             |    |
| <212>   |                 |            |            |             |    |
|         | Homo sapiens    |            |            |             |    |
|         |                 |            |            |             |    |
| <400>   | 279             |            |            |             |    |
|         | cag ttgtgttcct  | nacactcaat | aaacantcac | tagaaagagt  | 50 |
|         |                 | Jacassaaas |            | -555-       |    |
|         |                 |            |            |             |    |
| <210>   | 280             |            |            |             |    |
| <211>   |                 |            |            |             |    |
| <211>   |                 |            |            |             |    |
|         |                 |            |            |             |    |
| <213>   | Homo sapiens    |            |            |             |    |
| <400>   | 200             |            |            |             |    |
|         |                 |            |            |             | 50 |
| gratta  | gaga ggggctgtgt | ctgggtgagg | gatggcgggg | tactgattet  | 50 |
|         |                 |            |            |             |    |
| <210>   | 201             |            |            |             |    |
|         |                 |            |            |             |    |
| <211>   |                 |            |            |             |    |
| <212>   |                 |            |            |             |    |
| <213>   | Homo sapiens    |            |            |             |    |
|         |                 |            |            |             |    |
| <400>   |                 |            |            |             |    |
| cttcac  | gcc ctacttccac  | ctccgcccag | cctgtaatgt | ttatataagc  | 50 |
|         |                 |            |            |             |    |
|         |                 |            |            |             |    |
| <210>   |                 |            |            |             |    |
| <211>   |                 |            |            |             |    |
| <212>   |                 |            |            |             |    |
| <213>   | Homo sapiens    |            |            |             |    |
|         |                 |            |            |             |    |
| <400>   | 282             |            |            |             |    |
| ctqaat  | gcca agagetteaa | gagtgtgtgt | aaataaaqcc | acacctttat  | 50 |

| <210><br><211> | 283<br>50       |            |             |            |    |
|----------------|-----------------|------------|-------------|------------|----|
| <212>          | DNA             |            |             |            |    |
| <213>          | Homo sapiens    |            |             |            |    |
|                |                 |            |             |            |    |
|                | 283             |            |             |            |    |
| gacaaco        | caat tcaaatgatt | gtgctaactt | atttccccta  | gttgacctgt | 50 |
|                |                 |            |             |            |    |
|                |                 |            |             |            |    |
| <210>          |                 |            |             |            |    |
| <211>          | 50              |            |             |            |    |
| <212>          |                 |            |             |            |    |
| <213>          | Homo sapiens    |            |             |            |    |
|                |                 |            |             |            |    |
|                | 284             |            |             |            |    |
| gcttata        | aaac acatttgagg | aataggaggt | ccgggttttc  | cataatgggt | 50 |
|                |                 |            |             |            |    |
| <210>          | 285             |            |             |            |    |
| <211>          |                 |            |             |            |    |
| <212>          |                 |            |             |            |    |
|                | Homo sapiens    |            |             |            |    |
| 12137          | nomo supichs    |            |             |            |    |
| <400>          | 285             |            |             |            |    |
|                | aatt gaagcagtcc | асаааааааа | gatgatacaa  | ggagtaaacc | 50 |
| 09             | 333             |            | 33          | 33-3       |    |
|                |                 |            |             |            |    |
| <210>          | 286             |            |             |            |    |
| <211>          | 50              |            |             |            |    |
| <212>          |                 |            |             |            |    |
|                | Homo sapiens    |            |             |            |    |
|                | _               |            |             |            |    |
| <400>          | 286             |            |             |            |    |
| acaagc         | attt agatcataac | atggtaaagc | ctattaccag  | ccaatgttgt | 50 |
|                |                 |            |             |            |    |
|                |                 |            |             |            |    |
| <210>          | 287             |            |             |            |    |
| <211>          |                 |            |             |            |    |
| <212>          |                 |            |             |            |    |
| <213>          | Homo sapiens    |            |             |            |    |
|                | 0.07            |            |             |            |    |
| <400>          |                 | ~~+~+~+~+  | oboostteet. | tastaasaat | 50 |
| LLaggg         | cagt ggagaatcag | ggtgtateta | ataaatteet  | teatggaget | 50 |
|                |                 |            |             |            |    |
| <210>          | 288             |            |             |            |    |
| <211>          |                 |            |             |            |    |
| <212>          |                 |            |             |            |    |
|                | Homo sapiens    |            |             |            |    |
|                | premo           |            |             |            |    |
| <400>          | 288             |            |             |            |    |
|                | tgac ttgactgtca | tcctgttctt | gttagccatt  | gtgaataaga | 50 |
|                |                 | -          | -           |            |    |
|                |                 |            |             |            |    |
| <210>          | 289             |            |             |            |    |
| <211>          | 50              |            |             |            |    |
| <212>          |                 |            |             |            |    |
| <213>          | Homo sapiens    |            |             |            |    |

| <400><br>gtccca                  | 289<br>aggg tcagtatatt           | ggaggaaagt | aaaggagtga | atcagactgc | į | 50 |
|----------------------------------|----------------------------------|------------|------------|------------|---|----|
|                                  | 290<br>50<br>DNA<br>Homo sapiens |            |            |            |   |    |
| <400><br>gttcat                  | 290<br>cgtc tcgcgtcgca           | agaagtaagg | gctaggccat | gactcgttcg | 5 | 50 |
| <210><211><211><212><212><213>   | 291<br>50<br>DNA<br>Homo sapiens |            |            |            |   |    |
| <400><br>agcact                  | 291<br>tact gtcaggcatt           | cagaatgtga | gcaatgacaa | taatttacct | : | 50 |
| <212>                            | 292<br>50<br>DNA<br>Homo sapiens |            |            |            |   |    |
| <400>                            | _                                |            | ctccccaatc | tggacattga |   | 50 |
| <210><br><211><br><212>          | 293<br>50<br>DNA<br>Homo sapiens |            |            |            |   |    |
| <400>                            | _                                | tgtttcagac | ggttccccaa | atgccggttc | ! | 50 |
| <210><211><211>                  | 294<br>50<br>DNA                 |            |            |            |   |    |
|                                  | Homo sapiens                     |            |            |            |   |    |
|                                  | atgc ctctgaagag                  | agggacagac | cgtcagaaac | tggagagttt | ! | 50 |
| <210><br><211><br><212><br><213> |                                  |            |            |            |   |    |
| <400>                            | 295<br>caga cgagagaggc           | ggaggtetca | cagtgaacca | caggatctgg | ! | 50 |
| <210><211><211><212>             | 296<br>51<br>DNA                 |            |            |            |   |    |

| <213>          | Homo sapiens                                       |    |
|----------------|----------------------------------------------------|----|
| <400>          |                                                    |    |
| gtttct         | aacc cataagtgcc tcatacatac attgctagtc taaagagctt t | 51 |
|                |                                                    |    |
| <210><br><211> |                                                    |    |
| <211>          |                                                    |    |
| <213>          |                                                    |    |
|                |                                                    |    |
| <400>          | 297                                                |    |
| acacac         | gccc tgaatgaatt gctaaatttc aaaggaaatg gaccctgctt   | 50 |
|                |                                                    |    |
| <210>          | 298                                                |    |
| <211><br><212> |                                                    |    |
|                | Homo sapiens                                       |    |
| 10207          | none suprems                                       |    |
| <400>          |                                                    |    |
| atgtgt         | agga ggaagagttc aggtggaaaa ggagggagct actctcaggc   | 50 |
|                |                                                    |    |
| <210>          | 299                                                |    |
| <211>          |                                                    |    |
| <212>          |                                                    |    |
| 12132          | Homo sapiens                                       |    |
| <400>          | 299                                                |    |
| cacccgt        | ttgt aggegaegag egtgaaegaa aaegtgtegg aeggettgta   | 50 |
|                |                                                    |    |
| <210>          | 300                                                |    |
| <211>          |                                                    |    |
| <212>          |                                                    |    |
| <213>          | Homo sapiens                                       |    |
| <400>          | 300                                                |    |
| gacactt        | tog ageteceage tecagetteg teteacettg agttaggetg    | 50 |
|                | · · · ·                                            |    |
| <210>          | 301                                                |    |
| <211>          |                                                    |    |
| <212>          |                                                    |    |
| <213>          | Homo sapiens                                       |    |
| <400>          | 301                                                |    |
|                | gtg agctatcatc agtgctgtga aataaaagtc tggtgtgcca    | 50 |
|                |                                                    |    |
| <210>          | 302                                                |    |
| <211>          |                                                    |    |
| <212>          |                                                    |    |
| <213>          | Homo sapiens                                       |    |
| <400>          | 302                                                |    |
|                | mak bestebeness by                                 | 50 |
|                | 2 20 5                                             |    |
|                |                                                    |    |

<210> 303

| <211><br><212><br><213>                                                                                                                                                                                                                                          |                                                                                                                                  |            |            |            |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|----|
| <400><br>gtgacc                                                                                                                                                                                                                                                  | 303<br>tegg ggteceeett                                                                                                           | ggtgagggtg | ccggtcttgt | cgaagacgac | 50 |
| <210><br><211>                                                                                                                                                                                                                                                   |                                                                                                                                  |            |            |            |    |
| <212><br><213>                                                                                                                                                                                                                                                   |                                                                                                                                  |            |            |            |    |
| <400><br>tgtgca                                                                                                                                                                                                                                                  | 304<br>aata cggcgagaag                                                                                                           | aagtgcatga | gaaagtgctt | tataagctgt | 50 |
| <210>                                                                                                                                                                                                                                                            | 305<br>50                                                                                                                        |            |            |            |    |
| <212>                                                                                                                                                                                                                                                            | DNA                                                                                                                              |            |            |            |    |
| <213>                                                                                                                                                                                                                                                            | Homo sapiens                                                                                                                     |            |            |            |    |
| <400>                                                                                                                                                                                                                                                            | 305<br>taat ttaaaccctc                                                                                                           | ataacaggac | ataagettge | gcccgcatct | 50 |
| codaco                                                                                                                                                                                                                                                           | caab coadacococ                                                                                                                  | acaacaggac | aoaagooogo | 3000300000 |    |
| <210>                                                                                                                                                                                                                                                            |                                                                                                                                  |            |            |            |    |
| <211><br><212>                                                                                                                                                                                                                                                   | 50<br>DNA                                                                                                                        |            |            |            |    |
|                                                                                                                                                                                                                                                                  | Homo sapiens                                                                                                                     |            |            |            |    |
|                                                                                                                                                                                                                                                                  |                                                                                                                                  |            |            |            |    |
| <400>                                                                                                                                                                                                                                                            | 306                                                                                                                              |            |            |            |    |
|                                                                                                                                                                                                                                                                  | 306<br>taca ataatgaaac                                                                                                           | tgtcgtggag | taaagaggga | aacatgacca | 50 |
| cctggt                                                                                                                                                                                                                                                           | taca ataatgaaac                                                                                                                  | tgtcgtggag | taaagaggga | aacatgacca | 50 |
|                                                                                                                                                                                                                                                                  | taca ataatgaaac                                                                                                                  | tgtcgtggag | taaagaggga | aacatgacca | 50 |
| <210><211><212>                                                                                                                                                                                                                                                  | taca ataatgaaac<br>307<br>50<br>DNA                                                                                              | tgtcgtggag | taaagaggga | aacatgacca | 50 |
| <210><211><212>                                                                                                                                                                                                                                                  | taca ataatgaaac<br>307<br>50                                                                                                     | tgtcgtggag | taaagaggga | aacatgacca | 50 |
| <210> <211> <212> <213> <400>                                                                                                                                                                                                                                    | taca ataatgaaac 307 50 DNA Homo sapiens 307                                                                                      |            |            |            |    |
| <210> <211> <212> <213> <400>                                                                                                                                                                                                                                    | taca ataatgaaac<br>307<br>50<br>DNA<br>Homo sapiens                                                                              |            |            |            | 50 |
| <210> <211> <212> <213> <400>                                                                                                                                                                                                                                    | 307 50 DNA Homo sapiens 307 acag aagctggcct                                                                                      |            |            |            |    |
| <210> <211> <212> <213> <400> ctatco                                                                                                                                                                                                                             | taca ataatgaaac  307 50 DNA Homo sapiens 307 acag aagctggcct                                                                     |            |            |            |    |
| <pre>&lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400&gt; ctatcc &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;100&gt; &lt;211&gt; &lt;211&gt; &lt;211&gt; &lt;211&gt; &lt;211&gt; &lt;211&gt; &lt;211&gt; &lt;211&gt; &lt;211&gt; &lt;211&gt;&lt;212&gt;</pre> | taca ataatgaaac  307 50 DNA Homo sapiens 307 acag aagctggcct 308 50 DNA                                                          |            |            |            |    |
| <pre>&lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400&gt; ctatcc &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt;</pre>                                                                                                                                    | taca ataatgaaac  307 50 DNA Homo sapiens 307 acag aagctggcct 308 50 DNA Homo sapiens                                             |            |            |            |    |
| <pre>&lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400&gt; ctatco &lt;211&gt; &lt;212&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; </pre>                                                           | 307 50 DNA Homo sapiens 307 acag aagctggcct 308 50 DNA Homo sapiens                                                              | tegeegagtg | cctgtgcaga | ggctgtatcg | 50 |
| <pre>&lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400&gt; ctatco &lt;211&gt; &lt;212&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; </pre>                                                           | taca ataatgaaac  307 50 DNA Homo sapiens 307 acag aagctggcct 308 50 DNA Homo sapiens                                             | tegeegagtg | cctgtgcaga | ggctgtatcg |    |
| <pre>&lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400&gt; ctatco &lt;211&gt; &lt;212&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; &lt;400&gt; </pre>                                                           | 307 50 DNA Homo sapiens 307 acag aagctggcct 308 50 DNA Homo sapiens                                                              | tegeegagtg | cctgtgcaga | ggctgtatcg | 50 |
| <pre>&lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;212&gt; &lt;213&gt; &lt;400&gt; ctatco &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400 cggtta </pre>                                                                                                                    | taca ataatgaaac  307 50 DNA Homo sapiens 307 acag aagctggcct 308 50 DNA Homo sapiens 308 cctc actttctagg                         | tegeegagtg | cctgtgcaga | ggctgtatcg | 50 |
| <pre>&lt;210&gt; &lt;211&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400&gt; ctatcc  &lt;210&gt; &lt;212&gt; &lt;213&gt; &lt;400- gggtta  &lt;210- &lt;211&gt; &lt;212- &lt;213- &lt;400- gggtta</pre>                                                           | taca ataatgaaac  307 50 DNA Homo sapiens 307 acag aagctggcct 308 50 DNA Homo sapiens 308 cctc actttctagg                         | tegeegagtg | cctgtgcaga | ggctgtatcg | 50 |
| <pre>&lt;210&gt; &lt;211&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400&gt; ctatco &lt;210&gt; &lt;212&gt; &lt;213&gt; &lt;400&gt; gggtta &lt;210- &lt;211&gt; &lt;212&gt; &lt;213&gt;</pre>                                                                    | taca ataatgaaac  307 50 DNA Homo sapiens 307 acag aagctggcct 308 50 DNA Homo sapiens 308 cctc actttctagg 309 50 DNA Homo sapiens | tegeegagtg | cctgtgcaga | ggctgtatcg | 50 |

| <210><br><211><br><212> | 50<br>DNA                                               |    |
|-------------------------|---------------------------------------------------------|----|
| <400>                   |                                                         |    |
| tgecct                  | acat agcaattttc tgtggcactg agaaaccatg tatgaccaca        | 50 |
| <210><br><211>          |                                                         |    |
| <212><br><213>          | DNA<br>Homo sapiens                                     |    |
| <400>                   |                                                         |    |
| agctgt                  | ttaa ttgaattgga atcgttccac ttggaaccca agtttggaaa        | 50 |
| <210>                   | 312                                                     |    |
| <211><br><212>          |                                                         |    |
| <213>                   | Homo sapiens                                            |    |
| <400>                   | 312<br>ttgc aatggtttac tgatgagaca gcaaaaatga gacaggacca | 50 |
| 090990                  | ·                                                       | 50 |
| <210><br><211>          | 313<br>50                                               |    |
| <212>                   |                                                         |    |
| <213>                   | Homo sapiens                                            |    |
| <400>                   | 313                                                     |    |
| agatgt                  | ctgt ataaacaacc tttgggtagc aggtggtcag ttaggcagga        | 50 |
| <210><br><211>          | 314<br>50                                               |    |
| <211>                   |                                                         |    |
| <213>                   | Homo sapiens                                            |    |
| <400>                   |                                                         |    |
| ccagaaa                 | agaa aagtetttta ttagtaetgt gtagggaagg etaaagaaat        | 50 |
| <210>                   |                                                         |    |
| <211>                   |                                                         |    |
| <212>                   | DNA<br>Homo sapiens                                     |    |
| <400>                   |                                                         |    |
|                         | cct aaagatgtgt tototataaa atacaaacca acgtgootaa         | 50 |
|                         |                                                         |    |
| <210>                   | 316                                                     |    |
| <211><br><212>          | 50<br>DNA                                               |    |
|                         | Homo sapiens                                            |    |
| <400>                   | 316                                                     |    |
| - 100/                  | 320                                                     |    |

| W      | 2004/042346                                       | PCT/US2003/012946 |
|--------|---------------------------------------------------|-------------------|
| atcct  | ggcaa cettacaatt ceteteggca tttgtcaett ceateteage | 50                |
| <210>  | 317                                               |                   |
| <211>  | 50                                                |                   |
| <212>  |                                                   |                   |
| <213>  | Homo sapiens                                      |                   |
| <400>  |                                                   |                   |
| aactta | actc actggcgaga atacagcgtg ggaccettca gccactacaa  | 50                |
| <210>  | 318                                               |                   |
| <211>  |                                                   |                   |
| <212>  |                                                   |                   |
| <213>  | Homo sapiens                                      |                   |
| <400>  |                                                   |                   |
| cagtto | ccag atgtgcgtgt tgtggtcccc aagtatcacc ttccaatttc  | 50                |
|        |                                                   |                   |
| <210>  |                                                   |                   |
| <211>  |                                                   |                   |
| <212>  |                                                   |                   |
| <213>  | Homo sapiens                                      |                   |
| <400>  |                                                   |                   |
| cacaaa | ctag attctggaca ccagtgtgcg gaaatgcttc tgctacattt  | 50                |
|        |                                                   |                   |
| <210>  | 320                                               |                   |
| <211>  | 50                                                |                   |
| <212>  | DNA                                               |                   |
| <213>  | Homo sapiens                                      |                   |
| <400>  | 320                                               |                   |
| gttgca | gggc gaggtcaaga gagttctgac ctggatggcc catagacctg  | 50                |
|        | 35 35                                             | 30                |
| <210>  | 321                                               |                   |
| <211>  |                                                   |                   |
| <212>  |                                                   |                   |
| <213>  | Homo sapiens                                      |                   |
| <400>  | 321                                               |                   |
| ccaatg | tttc tcttttggcc ctatacaaag gcaagaagga aagaccaaga  | 50                |
|        | 5 5 5 5 5 5 5                                     | 30                |
| <210>  |                                                   |                   |
| <211>  |                                                   |                   |
| <212>  |                                                   |                   |
| <213>  | Homo sapiens                                      |                   |
| <400>  | 322                                               |                   |
| aatgga | agga ttagtatggc ctatttttaa agctgctttg ttaggttcct  | 50                |
|        |                                                   |                   |
| <210>  | 323                                               |                   |
| <211>  |                                                   |                   |
| <212>  |                                                   |                   |
| <213>  | Homo sapiens                                      |                   |

| <400>          | 323             |            |            |            |    |
|----------------|-----------------|------------|------------|------------|----|
| tcttgg         | age cateetttt   | aagagtaagt | tggttacttc | aaaaagagca | 50 |
|                |                 |            |            |            |    |
|                |                 |            |            |            |    |
| <210>          | 324             |            |            |            |    |
| <211><br><212> | 50<br>DNA       |            |            |            |    |
|                | Homo sapiens    |            |            |            |    |
| (213)          | Homo saprens    |            |            | /          |    |
| <400>          | 324             |            |            |            |    |
|                | agaa gagetgeeag | gcagtgtctt | agatgtgaga | cggaggccat | 50 |
|                |                 |            |            |            |    |
|                |                 |            |            |            |    |
| <210>          | 325             |            |            |            |    |
| <211>          | 50              |            |            |            |    |
| <212>          |                 |            |            |            |    |
| <213>          | Homo sapiens    |            |            |            |    |
| <400>          | 325             |            |            |            |    |
|                | actt tgaaaacttc | acaggcccac | tactacttac | tgaaataaaa | 50 |
| -5555-         | acco eguadaceee |            | 0500500050 | -5         |    |
|                |                 |            |            |            |    |
| <210>          | 326             |            |            |            |    |
| <211>          | 50              |            |            |            |    |
| <212>          | DNA             |            |            |            |    |
| <213>          | Homo sapiens    |            |            |            |    |
|                |                 |            |            |            |    |
| <400>          | 326             |            |            |            |    |
| gaatag         | gagg gacatggaac | catttgcctc | tggctgtgtc | acagggtgag | 50 |
|                |                 |            |            |            |    |
|                |                 |            |            |            |    |
| <210>          | 327             |            |            |            |    |
| <211><br><212> |                 |            |            |            |    |
|                |                 |            |            |            |    |
| (213)          | Homo sapiens    |            |            |            |    |
| <400>          | 327             |            |            |            |    |
|                | gcga gagtccagga | acaggcagac | aagcgagaaa | gaggagaagc | 50 |
| J              | J-J JJJJ        |            |            | 5555       |    |
|                |                 |            |            |            |    |
| <210>          | 328             |            |            |            |    |
| <211>          | 50              |            |            |            |    |
| <212>          | DNA             |            |            |            |    |
| <213>          | Homo sapiens    |            |            |            |    |
|                |                 |            |            |            |    |
| <400>          | 328             |            |            |            |    |
| aactaa         | cccc ctttccctgc | tagaaataac | aattagatge | cccaaagcga | 50 |
|                |                 |            |            |            |    |
| <210>          | 329             |            |            |            |    |
| <211>          | 50              |            |            |            |    |
| <212>          | DNA             |            |            |            |    |
| <213>          |                 |            |            |            |    |
|                |                 |            |            |            |    |
| <400>          | 329             |            |            |            |    |
| acgatg         | atgg ttacccttca | tggacgtctt | aatcttccac | acacateccc | 50 |
|                |                 |            |            |            |    |
|                |                 |            |            |            |    |
| <210>          | 330             |            |            |            |    |
| <2115          | 50              |            |            |            |    |

| <212><br><21 <b>3</b> >          | DNA<br>Homo                | sapiens      |            |            |            |            |     |
|----------------------------------|----------------------------|--------------|------------|------------|------------|------------|-----|
| <400><br>aggctgt                 | 330<br>aga                 | aggaaatata   | ccttaacagg | ctgatttgga | gtgacccaga |            | 50  |
| <210><br><211><br><212>          | 331<br>50<br>DNA           |              |            |            |            |            |     |
| <213>                            | Homo                       | sapiens      |            |            |            |            |     |
| <400><br>tggagat                 | 331<br>aat                 | ctagaacaca   | ggcaaaatcc | ttgcttatga | catcacttgt |            | 50  |
| <210><br><211><br><212><br><213> | 332<br>50<br>DNA<br>Homo   | o sapiens    |            |            |            |            |     |
|                                  | 332                        |              |            |            |            |            |     |
| <400><br>tcctttc                 |                            | ttagtgaatg   | aatactggaa | tccatctgtg | ttgatacaat |            | 50  |
| <210><br><211><br><212><br><213> | 333<br>1869<br>DNA<br>Homo | e<br>sapiens |            |            |            |            |     |
| <400>                            | 333                        |              |            |            |            |            |     |
| tacctg                           | gttg                       | atcctgccag   | tagcatatgc | ttgtctcaaa | gattaagcca | tgcatgtcta | 60  |
| agtacgo                          | cacg                       | gccggtacag   | tgaaactgcg | aatggctcat | taaatcagtt | atggttcctt | 120 |
| tggtcg                           | ctcg                       | ctcctctccc   | acttggataa | ctgtggtaat | tctagagcta | atacatgccg | 180 |
| acgggc                           | gctg                       | accccttcg    | cgggggggat | gcgtgcattt | atcagatcaa | aaccaacccg | 240 |
| gtcagco                          | ccct                       | cteeggcccc   | ggccgggggg | cgggcgccgg | cggctttggt | gactctagat | 300 |
| aacctc                           | gggc                       | cgatcgcacg   | cccccgtgg  | cggcgacgac | ccattcgaac | gtctgcccta | 360 |
| tcaact                           | ttcg                       | atggtagtcg   | ccgtgcctac | catggtgacc | acgggtgacg | gggaatcagg | 420 |
| gttcgat                          | ttcc                       | ggagagggag   | cctgagaaac | ggctaccaca | tccaaggaag | gcagcaggcg | 480 |
| cgcaaat                          | ttac                       | ccactcccga   | cccggggagg | tagtgacgaa | aaataacaat | acaggactct | 540 |
| ttcgag                           | gece                       | tgtaattgga   | atgagtccac | tttaaatcct | ttaacgagga | tccattggag | 600 |
| ggcaagt                          | tctg                       | gtgccagcag   | ccgcggtaat | tccagctcca | atagcgtata | ttaaagttgc | 660 |
| tgcagt                           | taaa                       | aagctcgtag   | ttggatcttg | ggagcgggcg | ggcggtccgc | cgcgaggcga | 720 |
| gccacco                          | gece                       | gtccccgccc   | cttgcctctc | ggcgccccct | cgatgctctt | agctgagtgt | 780 |
| cccgcgg                          | gggc                       | ccgaagcgtt   | tactttgaaa | aaattagagt | gttcaaagca | ggcccgagcc | 840 |
| gcctgg                           | atac                       | cgcagctagg   | aataatggaa | taggaccgcg | gttctatttt | gttggttttc | 900 |

| ggaactgagg | ccatgattaa | gagggacggc | cgggggcatt | cgtattgcgc | cgctagaggt | 960  |
|------------|------------|------------|------------|------------|------------|------|
| gaaattcttg | gaccggcgca | agacggacca | gagcgaaagc | atttgccaag | aatgttttca | 1020 |
| ttaatcaaga | acgaaagtcg | gaggttcgaa | gacgatcaga | taccgtcgta | gttccgacca | 1080 |
| taaacgatgc | cgaccggcga | tgcggcggcg | ttattcccat | gacccgccgg | gcagetteeg | 1140 |
| ggaaaccaaa | gtctttgggt | tccgggggga | gtatggttgc | aaagctgaaa | cttaaaggaa | 1200 |
| ttgacggaag | ggcaccacca | ggagtggagc | ctgcggctta | atttgactca | acacgggaaa | 1260 |
| cctcacccgg | cccggacacg | gacaggattg | acagattgat | agctctttct | cgattccgtg | 1320 |
| ggtggtggtg | catggccgtt | cttagttggt | ggagcgattt | gtctggttaa | ttccgataac | 1380 |
| gaacgagact | ctggcatgct | aactagttac | gegaeeeeeg | agcggtcggc | gtcccccaac | 1440 |
| ttcttagagg | gacaagtggc | gttcagccac | ccgagattga | gcaataacag | gtctgtgatg | 1500 |
| cccttagatg | tccggggctg | cacgcgcgct | acactgactg | gctcagcgtg | tgcctaccct | 1560 |
| acgccggcag | gcgcgggtaa | cccgttgaac | cccattcgtg | atggggatcg | gggattgcaa | 1620 |
| ttattcccca | tgaacgagga | attcccagta | agtgcgggtc | ataagcttgc | gttgattaag | 1680 |
| tecetgeeet | ttgtacacac | cgcccgtcgc | tactaccgat | tggatggttt | agtgaggccc | 1740 |
| teggategge | cccgccgggg | tcggcccacg | gccctggcgg | agcgctgaga | agacggtcga | 1800 |
| acttgactat | ctagaggaag | taaaagtcgt | aacaaggttt | ccgtaggtga | acctgcggaa | 1860 |
| ggatcatta  |            |            |            |            |            | 1869 |

<210> 334 <211> 1793

<212> DNA

<213> Homo sapiens

<400> 334
cqcqtccqcc ccqcqaqcac aqaqcctcqc ctttqccqat ccqccqcccq tccacacccq

cegccagete accategate atgatatege egegetegte gtegacaacg geteeggeat 120
gtgcaaggce ggettegegg gegacgatge ecceegggee gtetteceet ceategtggg 180
gegecceagg caccagggeg tgatggtggg catgggteag aaggateet atgtgggega 240
egaggeccag agcaagagag geatecteae ectgaagtae eccategage aeggeategt 300
eaccaactgg gacgacatgg agaaaatetg geaccacace ttetacaatg agetgegtgt 360
ggetteegag gagcacceeg tgetgetgae egaggeece etgaaccea aggecaaceg 420
egagaagatg accagatea tgtttgagae etteaacac ecagcatgt aegtgetat 480
ecaggetgtg etatecetgt aegeetetgg eegtaccact ggeategtga tggaeteegg 540
tgaeggggte accacactg tgeceateta egaggggtat geeeteece atgeateet

51

| gegtete | ggac | ctggctggcc | gggacctgac | tgactacctc | atgaagatco | tcaccgagcg | 660  |
|---------|------|------------|------------|------------|------------|------------|------|
| cggctac | cage | ttcaccacca | cggccgagcg | ggaaatcgtg | cgtgacatta | aggagaagct | 720  |
| gtgctad | gtc  | gccctggact | tcgagcaaga | gatggccacg | gctgcttcca | gctcctccct | 780  |
| ggagaag | jagc | tacgagetge | ctgacggcca | ggtcatcacc | attggcaatg | agcggttccg | 840  |
| ctgccct | gag  | gcactcttcc | agccttcctt | cctgggcatg | gagtcctgtg | gcatccacga | 900  |
| aactaco | ttc  | aactccatca | tgaagtgtga | cgtggacatc | cgcaaagacc | tgtacgccaa | 960  |
| cacagto | ctg  | tctggcggca | ccaccatgta | ccctggcatt | gccgacagga | tgcagaagga | 1020 |
| gatcact | gcc  | ctggcaccca | gcacaatgaa | gatcaagatc | attgctcctc | ctgagcgcaa | 1080 |
| gtactco | gtg  | tggatcggcg | gctccatcct | ggcctcgctg | tccaccttcc | agcagatgtg | 1140 |
| gatcago | aag  | caggagtatg | acgagtccgg | cccctccatc | gtccaccgca | aatgcttcta | 1200 |
| ggcggac | tat  | gacttagttg | cgttacaccc | tttcttgaca | aaacctaact | tgcgcagaaa | 1260 |
| acaagat | gag  | attggcatgg | ctttatttgt | tttttttgtt | ttgttttggt | tttttttt   | 1320 |
| tttttgg | ctt  | gactcaggat | ttaaaaactg | gaacggtgaa | ggtgacagca | gtcggttgga | 1380 |
| gcgagca | tcc  | cccaaagttc | acaatgtggc | cgaggacttt | gattgcacat | tgttgttttt | 1440 |
| ttaatag | tca  | ttccaaatat | gagatgcatt | gttacaggaa | gtcccttgcc | atcctaaaag | 1500 |
| ccacccc | act  | tctctctaag | gagaatggcc | cagtcctctc | ccaagtccac | acaggggagg | 1560 |
| tgatagc | att  | gctttcgtgt | aaattatgta | atgcaaaatt | ttttaatct  | tcgccttaat | 1620 |
| acttttt | tat  | tttgttttat | tttgaatgat | gagccttcgt | gcccccctt  | cccctttt   | 1680 |
| gtccccc | aac  | ttgagatgta | tgaaggcttt | tggtctccct | gggagtgggt | ggaggcagcc | 1740 |
| agggett | acc  | tgtacactga | cttgagacca | gttgaataaa | agtgcacacc | tta        | 1793 |

<sup>&</sup>lt;210> 335 <211> 2191

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 335

<sup>9</sup>g19gccgag cgggggaccg ggaagcatgg cccgggggtc ggcggttgc tgggcggcg 60
tcgggccgtt gttgggggc tgcgcgctgg ggctgcaggg cgggatgct taccccagg 120
agagcccgtc gcgggatgc aaggacctgg acggctctt gagcttccg gccgacttct 180
ctgacaaccg acgccggggc ttcgaggagc agtgtaccg gcggccgctg tgggagtcag 240
gccccaccgt ggacatgcca gttccctcca gcttcaatga catcagccag gactggcgtc 300
tgcggcattt tgtcggctgg gtgtggtacg aacgggagg gatcctgccg gagcgatgga 360
cccaggacct ggcacaaga gtggtgctga ggattggcag tgcccattcc tatgccatcg 420

tgtgggtgaa tggggtcgac acgctagagc atgagggggg ctacctccc ttcgaggccg 480 acatcagcaa cctggtccag gtggggcccc tgccctcccg gctccgaatc actatcgcca 540 tcaacaacac actcacccc accaccctgc caccagggac catccaatac ctgactgaca 600 cctccaagta tcccaagggt tactttgtcc agaacacata ttttgacttt ttcaactacg 660 ctqqactqca qcqqtctqta cttctqtaca cgacacccac cacctacatc gatqacatca 720 ccgtcaccac cagcgtggag caagacagtg ggctggtgaa ttaccagatc tctqtcaaqq 780 qcaqtaacct qttcaaqttq qaaqtqcqtc ttttqgatgc agaaaacaaa gtcgtggcga 840 atgggactgg gacccagggc caacttaagg tgccaggtgt cagcctctgg tggccqtacc 900 tgatgcacga acgccctgcc tatctgtatt cattggaggt gcagctgact gcacaqacqt 960 cactggggcc tgtgtctgac ttctacacac tccctgtggg gatccgcact gtggctgtca 1020 ccaaqaqcca qttcctcatc aatqqqaaac ctttctattt ccacqgtgtc aacaagcatg 1080 aggatgegga cateegaggg aagggetteg aetggeeget getggtgaag gaetteaace 1140 tgettegetg gettggtgee aacqetttee gtaccageca ctaccectat geagaggaag 1200 tgatgcagat gtgtgaccgc tatgggattg tggtcatcga tgagtgtccc ggcgtgggcc 1260 tggcgctgcc gcagttcttc aacaacgttt ctctgcatca ccacatgcag gtgatggaag 1320 aagtggtgcg tagggacaag aaccaccccg cggtcgtgat gtggtctgtg gccaacgagc 1380 1440 ctgcgtccca cctagaatct gctggctact acttgaagat ggtgatcgct cacaccaaat 1500 cettgqacce etceeggeet gtgacetttg tgagcaacte taactatgca gcagacaagg gggctccgta tgtggatgtg atctgtttga acagctacta ctcttggtat cacqactacg 1560 ggcacctgga gttgattcag ctgcagctgg ccacccagtt tgagaactgg tataagaagt 1620 atcaqaaqcc cattattcaq aqcqaqtatq gaqcagaaac gattgcaggg tttcaccagg 1680 atccacctct gatgttcact gaagagtacc agaaaagtct gctagagcag taccatctgg 1740 gtctggatca aaaacgcaga aaatatgtgg ttggagagct catttggaat tttgccgatt 1800 tcatgactga acagtcaccg acgagagtgc tggggaataa aaaggggatc ttcactcggc 1860 agagacaacc aaaaagtgca gcgttccttt tgcgagagag atactggaag attgccaatg 1920 aaaccaqqta tccccactca qtaqccaaqt cacaatqttt qqaaaacagc ccqtttactt 1980 gagcaagact gataccacct gcgtgtccct tcctccccga gtcagggcga cttccacagc 2040 agcagaacaa gtgcctcctg gactgttcac ggcagaccag aacgtttctg gcctgggttt 2100 tqtggtcatc tattctagca gggaacacta aaggtggaaa taaaagattt tctattatgg 2160 aaataaagag ttggcatgaa agtcgctact g 2191

| <210> 33                |              |            |            |            |            |     |
|-------------------------|--------------|------------|------------|------------|------------|-----|
| <211> 92                |              |            |            |            |            |     |
| <212> DN                | A            |            |            |            |            |     |
| <213> Ho                | mo sapiens   |            |            |            |            |     |
|                         | _            |            |            |            |            |     |
| <400> 33                |              |            |            |            |            |     |
| ggcacgage               | c gagatgtctc | gctccgtggc | cttagctgtg | ctcgcgctac | tctctcttc  | 6   |
| tggcctgga               | g gctatccago | gtactccaaa | gattcaggtt | tactcacgtc | atccagcaga | 120 |
| gaatggaaa               | g tcaaatttco | tgaattgcta | tgtgtctggg | tttcatccat | ccgacattga | 180 |
| agttgactt               | a ctgaagaatg | gagagagaat | tgaaaaagtg | gagcattcag | acttgtcttt | 240 |
|                         | c tggtctttct |            |            |            |            | 300 |
| tgagtatgc               | c tgccgtgtga | accatgtgac | tttgtcacag | cccaagatag | ttaagtggga | 360 |
|                         | g taagcagcat |            |            |            |            | 420 |
|                         | g cttgcttgct |            |            |            |            | 480 |
| aaaatgtag               | g gttataataa | tgttaacatg | gacatgatct | tctttataat | tctactttga | 540 |
| gtgctgtct               | c catgtttgat | gtatctgagc | aggttgctcc | acaggtagct | ctaggagggc | 600 |
| tggcaactt               | a gaggtgggga | gcagagaatt | ctcttatcca | acatcaacat | cttggtcaga | 660 |
|                         | t tcaatctctt |            |            |            |            | 720 |
|                         | ttacatactc   |            |            |            |            | 780 |
| ggattattg               | g aaatttgtta | taatgaatga | aacattttgt | catataagat | tcatatttac | 840 |
| ttcttatac               | a tttgataaag | taaggcatgg | ttgtggttaa | tctggtttat | ttttgttcca | 900 |
| caagttaaai              | aaatcataaa   | acttg      |            |            |            | 925 |
| <210> 33                |              |            |            |            |            |     |
| <211> 340               |              |            |            |            |            |     |
| <212> DN                |              |            |            |            |            |     |
| <213> Hor               | no sapiens   |            |            |            |            |     |
| .400                    | •            |            |            |            |            |     |
| <400> 331<br>cctttggacq | cgcgcctcgg   | ttccgaacgc | agcggacggc | gcctcaggca | gcgcggcgga | 60  |
| cagcccgtc               | teeggegege   | cgcgagcctc | ggaggaccct | agcgacggtc | gtggcgtaag | 120 |
| accgggggg               | cgcggcggta   | gcggcggccg | ttgcgattga | ttgcgctggt | tgcctgcggc | 180 |
| gtccacttcc              | ttggccgccc   | ttgctacact | ggctgattgt | tgtgcagccg | gcgccatgtc | 240 |
| tgtgagcgag              | atcttcgtgg   | agctgcaggg | ctttttggct | gccgagcagg | acatccgaga | 300 |
| ggaaatcaga              | aaagttgtac   | agagtttaga | acaaacagct | cgagagattt | taactctact | 360 |
| gcaaggggto              | catcagggtg   | ctgggtttca | ggacattcca | aagaggtgtt | tgaaagctcg | 420 |

agaacatttt ggtacagtaa aaacacatct aacatctttg aagaccaaat ttcctgctga 480

| aoageaeeae | - agactcate | agcactggag | geeegeeg   | Cagegettge | tettettgge | 540  |
|------------|-------------|------------|------------|------------|------------|------|
| agcatttgtt | gtgtatttgg  | aaacagaaac | actagtgact | cgagaagcag | ttacagaaat | 600  |
| tcttggcatt | gagccagato  | gggagaaagg | atttcatctg | gatgtagaag | attatctctc | 660  |
| aggagttcta | attcttgcca  | gtgaactgto | gaggctgtct | gtcaacagcg | tgactgctgg | 720  |
| agactactco | cgacccctcc  | acatetecae | cttcatcaat | gagctggatt | ccggttttcg | 780  |
| ccttctcaac | ctgaaaaatg  | actccctgag | gaagcgctac | gacggattga | aatatgacgt | 840  |
| gaagaaagta | gaggaagtgg  | tctatgatct | ctccatccgg | ggctttaata | aggagacggc | 900  |
| agcagcttgt | gttgaaaaat  | aggaggctct | ccttgctcct | ggccttgctg | acctcagcgg | 960  |
| ttgccaggaa | ggggtgagca  | cagagtgcct | cttacggtag | ttaggatgct | cagttgctaa | 1020 |
| acactgcgct | ttattttctt  | aaccagttgt | ggtgtgagta | tcagaattga | aacacttttt | 1080 |
| tgggggtaaa | aaatatagcc  | tttacatgga | cagaatttt  | tttgttgttt | cagtgaatat | 1140 |
| gcctgtaatt | cagtgtattt  | cagttccgtc | agaaagtgta | aatgttagtt | tcttggtaaa | 1200 |
| gtccttttct | tgcttacctt  | gactgttgat | gtactgattg | agaagttcat | tgtctcgttt | 1260 |
| gtgattcttc | cagatgtgat  | gcttgatatt | ttctatatgc | gagttagcca | tccacaccca | 1320 |
| ggcatagcct | ggatacagta  | taaaaataga | taattaaaaa | gatggttgcc | aagcaaggaa | 1380 |
| aacttattt  | atattttccc  | ttccttattt | taagcattgt | gagtaaatca | gatgttgaat | 1440 |
| tettttgeca | agggaattat  | agctgcaggt | tctctctcac | tgccatcaaa | ctgtaaaaga | 1500 |
| ttaaactgcg | aagtcaagct  | caacagatta | ttttggaaag | tttttgtatt | aagggattta | 1560 |
| gtaacatcat | tttgttttcc  | accaggcagg | gagtagggct | tagtgtttta | aaacacctct | 1620 |
| getttetgat | gttgccttaa  | tattctgcta | ttgcagcaat | taaaaattgt | cttcatgtac | 1680 |
| atttggaact | aacacgtgat  | gtgatatatt | cctaaactat | gaaacctttt | tcctagtagt | 1740 |
| cagctagatc | atttgttctg  | ggagtataaa | gccacccacg | taagttaata | agcaaaatcc | 1800 |
| tgactattat | gttgttagag  | aaaaatgctt | tgctttgtct | ggaagaaaga | taaaatagtg | 1860 |
| aattataaat | aagtcaggcc  | gggcgtggtg | gctcacacct | gtaatcccag | cacactggga | 1920 |
| ggccgaggca | gggggactgc  | ttgagctcag | gagttcgaga | ccagcctggg | caacaaagtg | 1980 |
| agactccatc | tctatataaa  | aacaaaaacc | acgaaagcac | acacaaaata | aatcagtggg | 2040 |
| atttggtaat | gtgttttaga  | gtaagaaatt | tcaggttgtt | ggtgactatc | ccaacagtca | 2100 |
| tgttttaaat | gtacagtttg  | gggcaagtca | tgtaaatact | gttggtggtc | ttccccacac | 2160 |
| gccccaattt | tcaggtagta  | ctaagagtat | gtgccaggaa | actcttgcta | ttgaattgag | 2220 |
| atgattaaaa | tggtgactta  | atccgtagtt | attttgcacc | cactgaaagg | aaagtgcttt | 2280 |
| ccagaataat | atgaagtatc  | taaaagtgtc | accttttctt | gcctgatcaa | caatttqqqc | 2340 |

ttcctqtttq tacaaggqqc catttqqcat acctttcaca gcttttatca ggccaaqtta 2400

| aaggctgact                                         | acatttttc      | atcatgagga | aagcagttga | aatgaggcat                   | gagttactgt | 2460 |
|----------------------------------------------------|----------------|------------|------------|------------------------------|------------|------|
| gcattgggat                                         | tttagaacaa     | ttttcttgtg | acagctcttt | ttgtgaagtt                   | aggttcttaa | 2520 |
| aagtgcccat                                         | gatggtcact     | taaaatgtgc | agtaatagca | ctgccaggat                   | caagcatgaa | 2580 |
| aggcttttaa                                         | attagatcat     | cccacagaca | atacgtttga | taatagtttt                   | ttcttttaac | 2640 |
| ctctttaagt                                         | attgattctg     | cttgagaata | ttgaagtact | tgccagaagt                   | tgtggatttc | 2700 |
| agttttaaca                                         | aatgctatta     | aagtggagaa | gcacactctg | gtcttggaat                   | tccatttgag | 2760 |
| gatttagaag                                         | tgtcatgttt     | ataactattc | agttgtgttt | gttgctggct                   | tgttgtaaag | 2820 |
| caataaaatt                                         | tttttggtct     | ttttgtaagt | gagtgtgctg | ctgtaagaaa                   | tctcccatgt | 2880 |
| gcataacaaa                                         | ttctgaatat     | tttttgaggc | taaagaagac | cggggtgaca                   | agcagatact | 2940 |
| gctgtgtaat                                         | ggttacacta     | accaaaagac | accagccact | cagagttcta                   | tactgtaaag | 3000 |
| cgcagataac                                         | atttgtgtgt     | tataccttga | ttggggaatt | a <b>a</b> aag <b>t</b> catt | taactgaaga | 3060 |
| tgttgagaaa                                         | cctgggctct     | ggttttagta | taccggaatt | actttttcc                    | aattttagaa | 3120 |
| aatcaagcag                                         | gttagagaaa     | atagagatga | attaggggac | actgtcttat                   | ggattcattt | 3180 |
| ataagaagag                                         | aaccagccat     | atacacttgg | ggagatttgc | cacatcttaa                   | acttgaataa | 3240 |
| tagtatgagt                                         | aatgcttaag     | ggagtttaat | agagaaggaa | agctttggca                   | gtgttttgag | 3300 |
| aacttaagtg                                         | gctaaagaga     | tgagacaaac | atgcaggtcg | ctactggcat                   | agtttcataa | 3360 |
| ttgtgtactc                                         | ggaaattaaa     | gtttgcttgt | ttcttggtct | ggattaaa                     |            | 3408 |
| <210> 338<br><211> 213:<br><212> DNA<br><213> Home | 9<br>o sapiens |            |            |                              |            |      |
| <400> 338<br>gtgagacagg                            | ggtagtgcga     | ggccgggcac | agccttcctg | tgtggtttta                   | ccgcccagag | 60   |
| agcgtcatgg                                         | acctggggaa     | accaatgaaa | agcgtgctgg | tggtggctct                   | ccttgtcatt | 120  |
| ttccaggtat                                         | gcctgtgtca     | agatgaggtc | acggacgatt | acatcggaga                   | caacaccaca | 180  |
|                                                    |                |            |            |                              |            |      |

56

gtggactaca ctttgttcga gtctttgtgc tccaagaagg acgtgcggaa ctttaaagcc 240 tggttcctcc ctatcatgta ctccatcatt tgtttcgtgg gcctactggg caatgggctg

gtcgtgttga cctatatcta tttcaagagg ctcaagacca tgaccgatac ctacctgctc

aacctggcgg tggcagacat cetetteete etgaceette eettetggge etacagegeg

gccaaqtcct gggtcttcgg tgtccacttt tgcaagctca tctttgccat ctacaagatg

agettettea gtggcatget cetaettett tgcateagea ttgacegeta egtggccate

300

360

420

540

PCT/US2003/012946 WO 2004/042346

| gtccaggctg | tctcagctca | ccgccaccgt | gcccgcgtcc | ttctcatcag | caagctgtcc | 600  |
|------------|------------|------------|------------|------------|------------|------|
| tgtgtgggca | tctggatact | agccacagtg | ctctccatcc | cagageteet | gtacagtgac | 660  |
| ctccagagga | gcagcagtga | gcaagcgatg | cgatgctctc | tcatcacaga | gcatgtggag | 720  |
| gcctttatca | ccatccaggt | ggcccagatg | gtgatcggct | ttctggtccc | cctgctggcc | 780  |
| atgagcttct | gttaccttgt | catcatccgc | accetgetee | aggcacgcaa | ctttgagcgc | 840  |
| aacaaggcca | tcaaggtgat | catcgctgtg | gtcgtggtct | tcatagtctt | ccagetgeec | 900  |
| tacaatgggg | tggtcctggc | ccagacggtg | gccaacttca | acatcaccag | tagcacctgt | 960  |
| gagctcagta | agcaactcaa | catcgcctac | gacgtcacct | acagcctggc | ctgcgtccgc | 1020 |
| tgctgcgtca | accetttett | gtacgccttc | atcggcgtca | agttccgcaa | cgatctcttc | 1080 |
| aagctcttca | aggacctggg | ctgcctcagc | caggagcagc | tccggcagtg | gtcttcctgt | 1140 |
| cggcacatcc | ggcgctcctc | catgagtgtg | gaggccgaga | ccaccaccac | cttctcccca | 1200 |
| taggcgactc | ttctgcctgg | actagaggga | cctctcccag | ggtccctggg | gtggggatag | 1260 |
| ggagcagatg | caatgactca | ggacatecce | ccgccaaaag | ctgctcaggg | aaaagcagct | 1320 |
| ctcccctcag | agtgcaagcc | ctgctccaga | agttagcttc | accccaatcc | cagctacctc | 1380 |
| aaccaatgcc | gaaaaagaca | gggctgataa | gctaacacca | gacagacaac | actgggaaac | 1440 |
| agaggctatt | gtcccctaaa | ccaaaaactg | aaagtgaaag | tccagaaact | gttcccacct | 1500 |
| gctggagtga | aggggccaag | gagggtgagt | gcaaggggcg | tgggagtggc | ctgaagagtc | 1560 |
| ctctgaatga | accttctggc | ctcccacaga | ctcaaatgct | cagaccagct | cttccgaaaa | 1620 |
| ccaggcctta | tctccaagac | cagagatagt | ggggagactt | cttggcttgg | tgaggaaaag | 1680 |
| cggacatcag | ctggtcaaac | aaactctctg | aacccctccc | tccatcgttt | tcttcactgt | 1740 |
| cctccaagcc | agcgggaatg | gcagctgcca | cgccgcccta | aaagcacact | catcccctca | 1800 |
| cttgccgcgt | cgccctccca | ggctctcaac | aggggagagt | gtggtgttc  | ctgcaggcca | 1860 |
| ggccagctgc | ctccgcgtga | tcaaagccac | actctgggct | ccagagtggg | gatgacatgc | 1920 |
| actcagctct | tggctccact | gggatgggag | gagaggacaa | gggaaatgtc | aggggcgggg | 1980 |
| agggtgacag | tggccgccca | aggccacgag | cttgttcttt | gttctttgtc | acagggactg | 2040 |
| aaaacctctc | ctcatgttct | gctttcgatt | cgttaagaga | gcaacatttt | acccacacac | 2100 |
| agataaagtt | ttcccttgag | gaaacaacag | ctttaaaag  |            |            | 2139 |

<sup>&</sup>lt;210> 339 <211> 1484 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

| <400> 339  |            |            |            |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| cccgtgagga | ggaaaaggtg | tgtccgctgc | cacccagtgt | gagcgggtga | caccacccgg | 60   |
| ttaggaaatc | ccagctccca | agagggtata | aatccctgct | ttactgctga | gctcctgctg | 120  |
| gaggtgaaag | tctggcctgg | cagcetteee | caggtgagca | gcaacaaggc | cacgtgctgc | 180  |
| tgggtctcag | tcctccactt | cccgtgtcct | ctggaagttg | tcaggagcaa | tgttgcgctt | 240  |
| gtacgtgttg | gtaatgggag | tttctgcctt | caccettcag | cctgcggcac | acacaggggc | 300  |
| tgccagaagc | tgccggtttc | gtgggaggca | ttacaagcgg | gagttcaggc | tggaagggga | 360  |
| gcctgtagcc | ctgaggtgcc | cccaggtgcc | ctactggttg | tgggcctctg | tcagcccccg | 420  |
| catcaacctg | acatggcata | aaaatgactc | tgctaggacg | gtcccaggag | aagaagagac | 480  |
| acggatgtgg | gcccaggacg | gtgctctgtg | gcttctgcca | gccttgcagg | aggactctgg | 540  |
| cacctacgtc | tgcactacta | gaaatgcttc | ttactgtgac | aaaatgtcca | ttgagctcag | 600  |
| agtttttgag | aatacagatg | ctttcctgcc | gttcatctca | tacccgcaaa | tttaacctt  | 660  |
| gtcaacctct | ggggtattag | tatgccctga | cctgagtgaa | ttcacccgtg | acaaaactga | 720  |
| cgtgaagatt | caatggtaca | aggattetet | tettttggat | aaagacaatg | agaaatttct | 780  |
| aagtgtgagg | gggaccactc | acttactcgt | acacgatgtg | gccctggaag | atgctggcta | 840  |
| ttaccgctgt | gtcctgacat | ttgcccatga | aggccagcaa | tacaacatca | ctaggagtat | 900  |
| tgagctacgc | atcaagaaaa | aaaaagaaga | gaccattcct | gtgatcattt | ccccctcaa  | 960  |
| gaccatatca | gcttctctgg | ggtcaagact | gacaatcccg | tgtaaggtgt | ttctgggaac | 1020 |
| cggcacaccc | ttaaccacca | tgctgtggtg | gacggccaat | gacacccaca | tagagagcgc | 1080 |
| ctacccggga | ggccgcgtga | ccgaggggcc | acgccaggaa | tattcagaaa | ataatgagaa | 1140 |
| ctacattgaa | gtgccattga | tttttgatcc | tgtcacaaga | gaggatttgc | acatggattt | 1200 |
| taaatgtgtt | gtccataata | ccctgagttt | tcagacacta | cgcaccacag | tcaaggaagc | 1260 |
| ctcctccacg | ttctcctggg | gcattgtgct | ggccccactt | tcactggcct | tcttggtttt | 1320 |
| ggggggaata | tggatgcaca | gacggtgcaa | acacagaact | ggaaaagcag | atggtctgac | 1380 |
| tgtgctatgg | cctcatcatc | aagactttca | atcctatccc | aagtgaaata | aatggaatga | 1440 |
| aataattcaa | acacaaaaaa | aaaaaaaaa  | aaaaaaaaa  | aaaa       |            | 1484 |

<sup>&</sup>lt;210> 340 <211> 1363 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 340

gaggaaaagc tttcggactg ctgaaggccc agcaggaaga gaggctggat gagatcaaca agcaatteet agaegateee aaatatagea gtgatgagga tetgeeetee aaaetggaag 120

| gcttcaaag          | g tgaggggaa  | actgtaggcg | gtggagacag | ggctgggggt | aggagggtta | 180  |
|--------------------|--------------|------------|------------|------------|------------|------|
| ggatttcca          | c aagaacaagg | caggaacagc | agagataaaa | agtttacttt | tgtggtagca | 240  |
| aaaggggaa          | c ctgcctttat | tgccctcctg | ccacactgcg | gtccctttcc | cgggcctgcc | 300  |
| tctctcagc          | a tcccctctag | ctccttacac | cctagcgggg | cccctcaact | ccccaacccc | 360  |
| acttcctct          | g cctgccctc  | ctcctccttc | cacgttgtct | cctccaccta | gcagttggtt | 420  |
| ggcaacccc          | t tcctcactca | cccagagaaa | tacatggagt | ttgaccttaa | tggaaatggc | 480  |
| gatattggt          | g agaaacgggt | gatttgcggg | ggcagggtgg | tgtgcaggcc | taagaagaca | 540  |
| gaggtctct          | c ctacatgctc | cattcctcat | gatttgggag | ggggcccacc | taccacagtg | 600  |
| gg <b>ag</b> gaagg | a gaatggggat | gcggaagtgg | gagaggagag | agagggtctc | cccaccttct | 660  |
| ccccatccc          | c atcctctgcc | cccagatatc | atgtccctga | aacgaatgct | ggagaaactt | 720  |
| ggagtcccc          | a agactcacct | agagctaaag | aaattaattg | gagaggtgtc | cagtggctcc | 780  |
| ggggagacg          | t tcagctaccc | tgactttctc | aggatgatgc | tgggcaagag | atctgccatc | 840  |
| ctaaaaatg          | t gagtgtcaat | ttccaacctc | ccctgtactt | acctgttttc | tcctcccca  | 900  |
| tccctaccc          | t tgtccacagg | ctcaacattt | ctacacgttg | cccatcatcc | cttcttccat | 960  |
| ccttagagg          | g accettecaa | ggtcccgacc | ccatccctat | ccatagtcct | ggtccccaga | 1020 |
| aactccaac          | c cctgcccttc | ctcttccccc | ttccaccctc | acatccccat | ccccttctag | 1080 |
| cctttccta          | g caccctatga | tttattccct | tgagaggagt | gttccctgat | ccctgtgcct | 1140 |
| cttcccatc          | t caaccaggat | cctgatgtat | gaggaaaaag | cgagagaaaa | ggaaaagcca | 1200 |
| acaggccc           | c cagccaagaa | agctatctct | gagttgccct | gatttgaagg | gaaaagggat | 1260 |
| gatgggatt          | g aaggggcttc | taatgaccca | gatatggaaa | cagaagacaa | aattgtaagc | 1320 |
| cagagtcaa          | c aaattaaata | aattaccccc | tcctccagat | caa        |            | 1363 |

<400> 341
cacctytical tegitegice teagigeagg geaacaggae titaggitea agatggigae
60
tgcagecatg etgetacagt getgeecagt gettgeeegg ggeeceacaa geeteetagg
120
caaggitggit aagacteace agtteetgit tiggitatigga egetgiteeca teetggetae
180
ceaaggaeca aactgitee aaateeacet taaggeaaca aaggetggag gagatetee
240
atetigggeg aagggeeact geecetteat getgiteggaa etceaggatg ggaagagaa
300
gatigtigeag aaggeegeee cagaagteea ggaagatgig aaggettiea agacagatet
360

<sup>&</sup>lt;210> 341 <211> 1937

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

| gcctagctcc | ctggtctcag | tcagcctaag | gaagccattt | teeggteece | aggagcagga | 420  |
|------------|------------|------------|------------|------------|------------|------|
| gcagatctct | gggaaggtca | cacacctgat | tcagaacaat | atgcctggaa | actatgtctt | 480  |
| cagttatgac | cagtttttca | gggacaagat | catggagaag | aaacaggatc | acacctaccg | 540  |
| tgtgttcaag | actgtgaacc | gctgggctga | tgcatatccc | tttgcccaac | atttctttga | 600  |
| ggcatctgtg | gcctcaaagg | atgtgtccgt | ctggtgtagt | aatgattacc | tgggcatgag | 660  |
| ccgacaccct | caggtcttgc | aagccacaca | ggagaccctg | cagcgtcatg | gtgctggagc | 720  |
| tggtggcacc | cgcaacatct | caggcaccag | taagtttcat | gtggagcttg | agcaggagct | 780  |
| ggctgagctg | caccagaagg | actcagccct | gctcttctcc | tcctgctttg | ttgccaatga | 840  |
| ctctactctc | ttcaccttgg | ccaagatcct | gccagggtgc | gagatttact | cagacgcagg | 900  |
| caaccatgct | tccatgatcc | aaggtatccg | taacagtgga | gcagccaagt | ttgtcttcag | 960  |
| gcacaatgac | cctgaccacc | taaagaaact | tctagagaag | tctaacccta | agatacccaa | 1020 |
| aattgtggcc | tttgagactg | tccactccat | ggatggtgcc | atctgtcccc | tcgaggagtt | 1080 |
| gtgtgatgtg | tcccaccagt | atggggccct | gaccttcgtg | gatgaggtcc | atgctgtagg | 1140 |
| actgtatggg | tcccggggcg | ctgggattgg | ggagcgtgat | ggaattatgc | ataagattga | 1200 |
| catcatctct | ggaactcttg | gcaaggcctt | tggctgtgtg | ggcggctaca | ttgccagcac | 1260 |
| ccgtgacttg | gtggacatgg | tgcgctccta | tgctgcaggc | ttcatcttta | ccacttctct | 1320 |
| gccccccatg | gtgctctctg | gagctctaga | atctgtgcgg | ctgctcaagg | gagaggaggg | 1380 |
| ccaagccctg | aggcgagccc | accagcgcaa | tgtcaagcac | atgcgccagc | tactcatgga | 1440 |
| caggggcctt | cctgtcatcc | cctgccccag | ccacatcatc | cccatccggg | tgggcaatgc | 1500 |
| agcactcaac | agcaagctct | gtgatctcct | gctctccaag | catggcatct | atgtgcaggc | 1560 |
| catcaactac | ccaactgtcc | cccggggtga | agageteetg | cgcttggcac | cctccccca  | 1620 |
| ccacagccct | cagatgatgg | aagattttgt | ggagaagctg | ctgctggctt | ggactgcggt | 1680 |
| ggggctgccc | ctccaggatg | tgtctgtggc | tgcctgcaat | ttctgtcgcc | gtcctgtaca | 1740 |
| ctttgagctc | atgagtgagt | gggaacgttc | ctacttcggg | aacatggggc | cccagtatgt | 1800 |
| caccacctat | gcctgagaag | ccagctgcct | aggattcaca | ccccacctgc | gcttcacttg | 1860 |
| ggtccaggcc | tactcctgtc | ttctgctttg | ttgtgtgcct | ctagctgaat | tgagcctaaa | 1920 |
| aataaagcac | aaaccac    |            |            |            |            | 1937 |

<sup>&</sup>lt;210> 342 <211> 2673

<sup>&</sup>lt;212> DNA <213> Homo sapiens

| <400> 342<br>cggggtcacg |            | geegeggee  | g agcagccag | c cgctaagaaa | a gagetegeeg | 60   |
|-------------------------|------------|------------|-------------|--------------|--------------|------|
| ctgccgctcc              | cggagccgcc | gaggccagct | tegeggege   | t gccccgcgg  | gggagaggag   | 120  |
| gctgcagaag              | ageggaggeg | gccagcggga | a gcggcgggg | tcagegegea   | a cactcagcgg | 180  |
| ccggggagcc              | tcccgagctc | tgcgcccgca | cgcgccagc   | geggetege    | cctttcttgg   | 240  |
| cctccgggcg              | cccgacctct | cctcccccg  | gccggctcg   | cggggccgcg   | gcggcccaag   | 300  |
| gagcagcatg              | aatctgcggc | tctgcgtgca | ggcgctcctg  | g ctgctctggc | tctccttgac   | 360  |
| cgcggtgtgt              | ggagggtccc | tgatgccgct | tcccgatggg  | aatgggctgg   | aagacggcaa   | 420  |
| tgtccgccac              | ctggtgcagc | ccagagggtc | aaggaatggg  | ccagggccct   | ggcagggagg   | 480  |
| tcggaggaaa              | ttccgccgcc | agcggccccg | cctctcccat  | aagggaccca   | tgcctttctg   | 540  |
| aagcaggact              | gaaggggccc | ccaagtgccc | acccccggcg  | gttatgtctc   | ctccatagat   | 600  |
| tggtctgctt              | ctctggaggc | ctcacgtcca | ttcagctctc  | acctegeace   | tgctgtagcc   | 660  |
| accagtgggc              | ccagetette | tcacctgcct | gcttccccca  | gtggcgtgct   | cctggctgta   | 720  |
| gtttggatga              | ttcccgttct | ctcacaagaa | tccgtccagt  | ccatcttcct   | ggcccctccc   | 780  |
| tggactgact              | ttggagacct | agccccagaa | agcctccctt  | cttctccagg   | tecceteege   | 840  |
| cctagtccct              | gcctgtctca | tctaacgccc | caaaccttca  | tttgggcctt   | ccttcctcat   | 900  |
| gtctgccctg              | agcgcggggt | ggaagtgctc | ccttctgtgg  | gctccagcag   | atcccttgtt   | 960  |
|                         |            |            |             | atgcagagaa   |              | 1020 |
| agactctagt              | taagaggtgc | tggctgccgg | gatccagaca  | gggcacattg   | ggggcatgga   | 1080 |
|                         |            |            |             | gagcatcagc   |              | 1140 |
|                         |            |            |             | acttctcttg   |              | 1200 |
|                         |            |            |             | ccagctagcc   |              | 1260 |
|                         |            |            |             | cctcccagga   |              | 1320 |
|                         |            |            |             | gctgacagga   |              | 1380 |
|                         |            |            |             | ctggagaggg   |              | 1440 |
|                         |            |            |             | catctcctac   |              | 1500 |
|                         |            |            |             | tgccttttcc   |              | 1560 |
| gctgggggtg              |            |            |             |              |              | 1620 |
| tgtggggctg              |            |            |             |              |              | 1680 |
| gggctggaag              |            |            |             |              |              | 1740 |
| gggtactcta              | ataggggcgg | ctcaggcact | gagactaccg  | ctcaacccca   | gggtggtttt   | 1800 |

caqqaqtccq aqqtaqcctt caatcactqq actccatggc cttcccttcg tgttgaccgg 1860 accttccttc caqqqctttt cctttqqqqq aqqcggagag gggagaagaa ggaagggaag 1920 1980 gaggaagtgc agcaggaata gcaccetete eeegggagge eetagettee gtgagggee 2040 atcaccagcc attecttgga gggggctttc teceettttg cttgagcagg gtteccagga 2100 qqqaqaaaqa qaaqacaaqa qcctqatqcc caactttqtq tqtqtqqqqa cqgggqaqtc 2160 agggececc aagteecaca atageeccaa tgtttgeeta tecaceteec ecaageecet 2220 ttacctatgc tgctgctaac gctgctgctg ctgctgctgc tgcttaaagg ctcatgcttg 2280 2340 qaqtqqqqac tqqtcqqtqc ccaqaaaqtc tcttctqcca ctqacqcccc catcaqqqat 2400 tgggccttct ttcccccttc ctttctgtgt ctcctgcctc atcggcctgc catgacctgc agccaagcc agcccqtqq qqaaqqqqaq aaaqtqqqqq atqqctaaqa aaqctqqqaq 2460 2520 atagggaaca gaagaggta gtgggtggc tagggggct gccttattta aagtggttgt ttatgattct tatactaatt tatacaaaga tattaaggcc ctgttcatta agaaattgtt 2580 cccttcccct gtgttcaatg tttgtaaaga ttgttctgtg taaatatgtc tttataataa 2640 2673 acagttaaaa gctgaaaaaa aaaaaaaaaa aaa <210> 343 <211> 1549 <212> DNA <213> Homo sapiens

<400> 343 aaaccctctg taaagtaaca gaagttagaa ggggaaatgt cgcctctctg aagattaccc 60 aaagaaaaag tgatttgtca ttgctttata gactgtaaga agagaacatc tcagaagtgg 120 aqtcttaccc tgaaatcaaa gqatttaaag aaaaagtgga atttttcttc agcaagctgt 180 gaaactaaat ccacaacctt tggagaccca ggaacaccct ccaatctctg tgtqttttqt 240 aaacatcact ggagggtett ctacgtgage aattggattg teatcageee tgeetqtttt 300 qcacctqqqa aqtqccctqq tcttacttqq qtccaaattq ttggctttca cttttgaccc 360 taaqcatctq aaqccatqqq ccacacacqq aqqcaqqqaa catcaccatc caaqtqtcca 420 480 tacctcaatt tetttcaget ettggtgetg getggtettt etcacttetg ttcaggtgtt 540 atccacqtqa ccaaqqaaqt qaaaqaaqtq qcaacqctqt cctqtqqtca caatqtttct gttgaagagc tggcacaaac tcgcatctac tggcaaaaagg agaagaaaat ggtgctgact 600 660 atgatgtctg gggacatgaa tatatggccc gagtacaaga accggaccat ctttgatatc actaataacc tetecattgt gateetgget etgegeecat etgaegaggg cacataegag 720

tgtgttgttc tgaagtatga aaaagacgct ttcaagcggg aacacctggc tgaagtgacg 780 ttatcagtca aagctgactt ccctacacct agtatatctg actttgaaat tccaacttct 840 aatattagaa ggataatttg ctcaacctct ggaggttttc cagagcctca cctctcctgg 900 ttggaaaatg gagaagaatt aaatgccatc aacacaacag tttcccaaga tcctgaaact 960 qaqctctatq ctqttaqcaq caaactqqat ttcaatatga caaccaacca caqcttcatq 1020 tqtctcatca aqtatqqaca tttaaqaqtg aatcagacct tcaactqqaa tacaaccaaq 1080 1140 caagagcatt ttcctgataa cctgctccca tcctgggcca ttaccttaat ctcagtaaat qqaatttttq tqatatqctq cctqacctac tqctttgccc caaqatqcaq aqaqaqaaqq 1200 aggaatgaga gattgagaag ggaaagtgta cgccctgtat aacagtgtcc gcagaagcaa 1260 qqqqctqaaa aqatctqaaq qtaqcctccq tcatctcttc tqqqatacat qqatcqtqqq 1320 gatcatgagg cattetteec ttaacaaatt taagetgttt tacccactac ctcacettet 1380 taaaaacctc tttcaqatta aqctqaacaq ttacaaqatq qctqqcatcc ctctcctttc 1440 tececataty caattigett aatgtaacet ettettige catgtiteca tietgecate 1500 1549 ttqaattqtc ttqtcaqcca attcattatc tattaaacac taatttqaq <210> 344

<211> 2867

<212> DNA <213> Homo sapiens

<400> 344

60 tcccqtqqaq caqaqqqca aaqtqqcaqq aacctcttaa aqqqcqaqac qqqcqqcqac cqaqaacqcq qtcqqcccqq tccccqccqc acccaqccca qaqaaqaqtt taqtqactqa 120 qqccqaaaat tcacaqcacc aacaqaaqqa aqaqqqtqaq qaaqccataa actcaqqcca 180 acaagaacct cagcaggagg aatcttgtca aacagcagct gaaggagata attggtgta 240 acacaaggtg aaagcttcta atggagacac tcctacacat gaagacttga ccaagaacaa 300 ggagcggaca tcagaaagca gaggactttc acgactattc tcctcgtttc tcaaaaggcc 360 caaatctcag gtgtccgagg aagaaggcaa agaagtagag tcagataaag aaaaaggtga 420 aggaggtcag aaagagatag aatttggaac cagtcttgat gaagagatca ttttaaaggc 480 cccaattqca gctcctqaac cqqaactcaa aacaqaccca tctttqqatc ttcattcatt 540 aaqcaqtqca qaaacacaqc ctcaccatta caattaaqaa ttatttttaq aqtcttctta 600 tttctgaaqc atqtqaatat tatctcqatc qttaaaaqtc ctqctcagga agaactcaga 660 720 qaaqatccaq attctqaaat taaqqaaqqa qaaqqacttq aaqaqtqctc caaaataqaa qtaaaaqaaq aaaqccctca atcaaaaqca qaaacaqaat taaaaqcttc ccaaaaacca 780

| accagaaaac | acayyaacat | gcactgcaag | gettettigt | tggatgacac | agtttatgaa | 840  |
|------------|------------|------------|------------|------------|------------|------|
| tgtgttgtgg | agaaacatgo | taagggacaa | gatttgctta | aacgagtatg | tgagcatctc | 900  |
| aatcttttgg | aagaagacta | ttttggtcta | gccatttggg | ataacgcaac | ctctaagaca | 960  |
| tggctggatt | ccgccaaaga | aataaaaaag | caggttcgtg | gtgtcccttg | gaattttaca | 1020 |
| tttaatgtaa | agttttatcc | acctgaccca | gcacagttaa | cagaagacat | aacaagatat | 1080 |
| tatttatgtc | ttcagcttcg | gcaggacata | gttgcaggac | gtctgccctg | ttcctttgca | 1140 |
| accttagcat | tattaggttc | ttacaccatc | cagtctgaac | tgggagacta | cgacccagaa | 1200 |
| ctccatggcg | tggattatgt | tagtgatttt | aaactggccc | cgaatcagac | caaggaactt | 1260 |
| gaagagaagg | tcatggaact | gcataagtca | tacaggtcca | tgactccagc | tcaggctgac | 1320 |
| ttggagtttc | ttgagaatgc | caaaaagttg | tctatgtatg | gagttgatct | tcataaagca | 1380 |
| aaggacttgg | aaggagtaga | tatcatccta | ggtgtctgct | ctagtggcct | tctggtttac | 1440 |
| aaagataagc | tgagaattaa | ccgcttccct | tggcccaaag | tgctgaagat | ttcttataaa | 1500 |
| cgtagtagct | ttttcatcaa | gattcggcct | ggagagcaag | agcagtatga | aagtaccatc | 1560 |
| ggattcaaac | ttcccagtta | ccgagcagct | aagaaattat | ggaaagtctg | tgtagaacat | 1620 |
| cacacgtttt | tcagattgac | atctacagac | accattccca | aaagcaaatt | tcttgcgcta | 1680 |
| ggatccaaat | ttcgatacag | tggccggact | caagctcaga | ccaggcaagc | tagtgctcta | 1740 |
| attgacaggc | ctgccccaca | cttcgagcgt | acagcaagta | aacgggcgtc | ccggagcctc | 1800 |
| gatggagcag | cagctgtcga | ttcggcagac | cgaagtcctc | ggcccacttc | tgcacctgcc | 1860 |
| attactcagg | gtcaggttgc | agaaggtggc | gtcctagatg | cctctgctaa | aaaaacagtg | 1920 |
| gtccctaaag | cacagaagga | aacagtgaag | gctgaagtga | aaaaggaaga | cgagccacct | 1980 |
| gagcaagctg | agccagagcc | cacagaagca | tggaagaaaa | agagagaaag | actagatggt | 2040 |
| gaaaacattt | atatcagaca | tagcaattta | atgttggagg | atttagacaa | gagtcaagag | 2100 |
| gagatcaaaa | aacatcatgc | cagcatcagt | gagctgaaaa | agaacttcat | ggagtctgta | 2160 |
| ccagaaccac | ggcctagtga | atgggataaa | cgcttatcca | ctcactcacc | cttccgaact | 2220 |
| cttaacatca | atgggcaaat | ccccacagga | gaaggacctc | ccctggtgaa | gacacaaact | 2280 |
| gtcaccatct | cagataatgc | caatgctgtg | aaaagtgaaa | tcccaaccaa | agacgtccct | 2340 |
| attgtccaca | ctgagaccaa | gaccatcact | tatgaggctg | cccagactgt | aaaaggtggg | 2400 |
| atttcagaga | cacgtattga | aaagagaatt | gtgatcacag | gagatgctga | tattgaccat | 2460 |
| gatcaggtcc | ttgtacaagc | catcaaggag | gcaaaggagc | agcacccaga | catgtcagtg | 2520 |
|            |            |            | attgctgatg |            |            | 2580 |
| taccccaact | ctgcccttct | cccatccaag | agaaaccacg | aaaatgataa | agaagctaac | 2640 |

| ctgccatagt cagacttcag actttcaaga ttattctaaa tcaccagaaa attaatttca | a 2700 |
|-------------------------------------------------------------------|--------|
| gtttctattg ggagtttata ccaagagatt cttctagatc tcattgatcc ttttgaagag | g 2760 |
| ctttttctat attaggatat cagaattgtt caacttttca ctctatagac tgttttaaga | 2820   |
| gttttggggg gtttttaatt gggtggtttg taacceette ageetag               | 2867   |
| <210> 345<br><211> 3354<br><212> DNA<br><213> Homo sapiens        |        |
| <400> 345                                                         |        |
| ctgggtcctg tgtgtgccac aggggtgggg tgtccagcga gcggtctcct cctcctgcta |        |
| gtgctgctgc ggcgtcccgc ggcctccccg agtcgggcgg gaggggagag cgggtgtgga |        |
| tttgtcttga cggtaattgt tgcgtttcca cgtctcggag gcctgcgcgc tgggttgctc |        |
| cttcttcggg agcgagctgt tctcagcgat cccactccca gccggggctc cccacacaca |        |
| ctgggctgcg tgcgtgtgga gtgggacccg cgcacacgcg tgtctctgga cagctacggc |        |
| gccgaaagaa ctaaaattcc agatggcaaa ctcaatgaat ggcagaaacc ctggtggtcg | 360    |
| aggaggaaat ccccgaaaag gtcgaatttt gggtattatt gatgctattc aggatgcagt | 420    |
| tggaccccct aagcaagctg ccgcagatcg caggaccgtg gagaagactt ggaagctcat | 480    |
| ggacaaagtg gtaagactgt gccaaaatcc caaacttcag ttgaaaaata gcccaccata | 540    |
| tatacttgat attttgcctg atacatatca gcatttacga cttatattga gtaaatatga | 600    |
| tgacaaccag aaacttgccc aactcagtga gaatgagtac tttaaaatct acattgatag | 660    |
| ccttatgaaa aagtcaaaac gggcaataag actctttaaa gaaggcaagg agagaatgta | 720    |
| tgaagaacag tcacaggaca gacgaaatct cacaaaactg tcccttatct tcagtcacat | 780    |
| gctggcagaa atcaaagcaa tctttcccaa tggtcaattc cagggagata actttcgtat | 840    |
| cacaaaagca gatgctgctg aattctggag aaagtttttt ggagacaaaa ctatcgtacc | 900    |
| atggaaagta ttcagacagt gccttcatga ggtccaccag attagctcta gcctggaagc | 960    |
| aatggctcta aaatcaacaa ttgatttaac ttgcaatgat tacatttcag tttttgaatt | 1020   |
| tgatattttt accaggetgt ttcagcettg gggetetatt ttgeggaatt ggaatttett | 1080   |
| agctgtgaca catccaggtt acatggcatt tctcacatat gatgaagtta aagcacgact | 1140   |
| acagaaatat agcaccaaac ccggaagcta tattttccgg ttaagttgca ctcgattggg | 1200   |
| acagtgggcc attggctatg tgactgggga tgggaatatc ttacagacca tacctcataa | 1260   |
| caagccctta tttcaagccc tgattgatgg cagcagggaa ggattttatc tttatcctga | 1320   |
| tgggaggagt tataatcctg atttaactgg attatgtgaa cctacacctc atgaccatat | 1380   |
|                                                                   |        |

aaaagttaca caggaacaat atgaattata ttgtgaaatg ggctccactt ttcagctctg 1440 taagatttgt gcagagaatg acaaagatgt caagattgag ccttgtgggc atttgatgtg 1500 cacctettgc ettacggcat ggcaggagtc ggatggtcag ggctgccctt tetgtcgttg 1560 tgaaataaaa ggaactgagc ccataatcgt ggaccccttt gatccaagag atgaaggctc 1620 caggigting ageatcating accounting catherent ctagacting accarding 1680 tgatcgtgag gagtccttga tgatgaatcg gttggcaaac gtccgaaagt gcactgacag 1740 gcagaactca ccagtcacat caccaggatc ctctcccctt gcccagagaa gaaagccaca 1800 geetgaceca etecagatee cacatetaag cetgecacee gtgeeteete geetggatet 1860 aattcagaaa ggcatagtta gatctccctg tggcagccca acaggttcac caaagtcttc 1920 teettgeatg gtgagaaaac aagataaacc acteecagca ccaceteete cettaagaga 1980 tectecteca eegecacetg aaagacetee accaateeca eeagacaata gaetgagtag 2040 acacatccat catgtggaaa gcgtgccttc cagagacccg ccaatgcctc ttgaagcatg 2100 gtgccctcgg gatgtgtttg ggactaatca gcttgtggga tgtcgactcc taggggaggg 2160 ctctccaaaa cctggaatca cagcgagttc aaatgtcaat ggaaggcaca gtagagtggg 2220 ctctgaccca gtgcttatgc ggaaacacag acgccatgat ttgcctttag aaggagctaa 2280 ggtcttttcc aatggtcacc ttggaagtga agaatatgat gttcctcccc ggctttctcc 2340 tectecteca gttaccacce tectecetag cataaagtgt actggteegt tagcaaatte 2400 tctttcagag aaaacaagag acccagtaga ggaagatgat gatgaataca agattccttc 2460 atcccaccct gtttccctga attcacaacc atctcattgt cataatgtaa aacctcctgt 2520 toggtoctgt gataatggto actgtatgot gaatggaaca catggtocat ottoagagaa 2580 gaaatcaaac atccctgact taagcatata tttaaagggt acgtatagaa tataatttcc 2640 tttgtgatgt acatcttaat ggtcagaatt taaaggcaaa atttcatgcc attgtactga 2700 aaatacatta aggttttgtg ttatcctcta ggagatgttt ttgattcagc ctctgatccc 2760 gtgccattac cacctgccag gcctccaact cgggacaatc caaagcatgg ttcttcactc 2820 aacaggacgc cctctgatta tgatcttctc atccctccat taggttgaaa cctttaaaaa 2880 agttttgaac aacccacccc teettettt aattteagaa tttteagaat teagagttea 2940 gtataacaca gactcactgg gttgtgaatt tgcctgaaat ttgaatgggt tctccaggtg 3000 ccggtgactc ccaagttcac gagaccatta ctccatgtag atgattaagg tagtagtgta 3060 gtagttgggc atcagtcagg ttttaagcaa gttgttttgt ccatactaaa tgtagtctaa 3120 aaacacatga gagetttgtg etetagtagt tttgaagtga tgaettgaag tgttgagatt 3180

| .ggageace 3210     |            | oguacossos | CCAGCAGGG  | acaacaaccc | coccaage                                           |
|--------------------|------------|------------|------------|------------|----------------------------------------------------|
| g agaactgata 3300  | ttgtatgtag | aattaaatag | aattatgcaa | acgctaatta | agttccactt                                         |
| aa aaaa 3354       | ttcaaaaaaa | ctgtaacaca | atcattacaa | ttttattcta | ataaattctg                                         |
|                    |            |            |            | sapiens    | <210> 346<br><211> 3655<br><212> DNA<br><213> Homo |
| g gcatagtatt 60    | tacqtatctg | tectqccacc | qaqtqaaqqa | attatatctq | <400> 346                                          |
| aa agcccgtaaa 120  |            |            |            |            |                                                    |
| t aaaaagaaga 180   |            |            |            |            |                                                    |
| ca ccctccttca 240  | tttaactcca | cacttaatga | gccttcaata | gattcttttc | actgttctct                                         |
| ac agctcatctg 300  | tgatttgcac | tctatatgat | ttttatactg | catttcctac | aaagaaacag                                         |
| g gaacaagatg 360   | tccccgggtg | caagaaactc | cgttccccta | ctgagacatc | gccagaagag                                         |
| ga gccctgccaa 420  | atacatcgga | atcaattatt | aatctatgac | tgtcaagtcc | gattatcaag                                         |
| c actggtgttc 480   | cgctctactc | ctcctgcctc | cgcagcccgc | tgaagcaaat | aaaatcaatg                                         |
| g caaaaggctg 540   | tgataaactg | atcctcatcc | catgctggtc | ttgtgggcaa | atctttggtt                                         |
| t tttccttctt 600   | ctgacctgtt | ctggccatct | cctgctcaac | ctgacatcta | aagagcatga                                         |
| aa tacaatgtgt 660  | actttggaaa | gcccagtggg | ctatgctgcc | tctgggctca | actgtcccct                                         |
| t catcatecte 720   | gaatcttctt | ttcttctctg | ttttataggc | cagggctcta | caactcttga                                         |
| aa agccaggacg 780  | ttgctttaaa | catgctgtgt | ggctgtcgtc | ataggtacct | ctgacaatcg                                         |
| t tgcgtctctc 840   | tggctgtgtt | acttgggtgg | aagtgtgatc | gggtggtgac | gtcacctttg                                         |
| g cageteteat 900   | attacacctg | gaaggtette | atctcaaaaa | tctttaccag | ccaggaatca                                         |
| at agtcatcttg 960  | cattaaagat | aatttccaga | attctggaag | gtcagtatca | tttccataca                                         |
| ct aaaaactctg 1020 | cgggaatcct | atctgctact | tgtcatggtc | tgccgctgct | gggctggtcc                                         |
| t caccatcatg 1080  | ggcttatctt | agggctgtga | gaagaggcac | gaaatgagaa | cttcggtgtc                                         |
| aa caccttccag 1140 | ttctcctgaa | aacattgtcc | ggctccctac | ttctcttctg | attgtttatt                                         |
| gc tatgcaggtg 1200 | tggaccaagc | tctaacaggt | ttgcagtagc | gcctgaataa | gaattctttg                                         |
| gc ctttgtcggg 1260 | tcatctatgc | atcaacccca | gcactgctgc | ttgggatgac | acagagactc                                         |
| aa acgcttctgc 1320 | acattgccaa | ttccaaaagc | cttagtcttc | gaaactacct | gagaagttca                                         |
| gt ttacacccga 1380 | caagctcagt | cccgagcgag | gcaagaggct | ctattttcca | aaatgctgtt                                         |
| tg ggctggtgac 1440 | gactcaagtg | ttgtgacacg | atctgtgggc | agcaggaaat | tccactgggg                                         |

| ccagtcagag  | ttgtgcacat | ggcttagttt | tcatacacag | cctgggctgg | gggtggggtg | 1500 |
|-------------|------------|------------|------------|------------|------------|------|
| ggagaggtct  | tttttaaaag | gaagttactg | ttatagaggg | tctaagattc | atccatttat | 1560 |
| ttggcatctg  | tttaaagtag | attagatctt | ttaagcccat | caattataga | aagccaaatc | 1620 |
| aaaatatgtt  | gatgaaaaat | agcaaccttt | ttatctcccc | ttcacatgca | tcaagttatt | 1680 |
| gacaaactct  | cccttcactc | cgaaagttcc | ttatgtatat | ttaaaagaaa | gcctcagaga | 1740 |
| attgctgatt  | cttgagttta | gtgatctgaa | cagaaatacc | aaaattattt | cagaaatgta | 1800 |
| caactttta   | cctagtacaa | ggcaacatat | aggttgtaaa | tgtgtttaaa | acaggtcttt | 1860 |
| gtcttgctat  | ggggagaaaa | gacatgaata | tgattagtaa | agaaatgaca | cttttcatgt | 1920 |
| gtgatttccc  | ctccaaggta | tggttaataa | gtttcactga | cttagaacca | ggcgagagac | 1980 |
| ttgtggcctg  | ggagagctgg | ggaagcttct | taaatgagaa | ggaatttgag | ttggatcatc | 2040 |
| tattgctggc  | aaagacagaa | gcctcactgc | aagcactgca | tgggcaagct | tggctgtaga | 2100 |
| aggagacaga  | gctggttggg | aagacatggg | gaggaaggac | aaggctagat | catgaagaac | 2160 |
| cttgacggca  | ttgctccgtc | taagtcatga | gctgagcagg | gagatcctgg | ttggtgttgc | 2220 |
| agaaggttta  | ctctgtggcc | aaaggagggt | caggaaggat | gagcatttag | ggcaaggaga | 2280 |
| ccaccaacag  | ccctcaggtc | agggtgagga | tggcctctgc | taagctcaag | gcgtgaggat | 2340 |
| gggaaggagg  | gaggtattcg | taaggatggg | aaggagggag | gtattcgtgc | agcatatgag | 2400 |
| gatgcagagt  | cagcagaact | ggggtggatt | tggtttggaa | gtgagggtca | gagaggagtc | 2460 |
| agagagaatc  | cctagtcttc | aagcagattg | gagaaaccct | tgaaaagaca | tcaagcacag | 2520 |
| aaggaggagg  | aggaggttta | ggtcaagaag | aagatggatt | ggtgtaaaag | gatgggtctg | 2580 |
| gtttgcagag  | cttgaacaca | gtctcaccca | gactccaggc | tgtctttcac | tgaatgcttc | 2640 |
| tgacttcata  | gatttccttc | ccatcccagc | tgaaatactg | aggggtctcc | aggaggagac | 2700 |
| tagatttatg  | aatacacgag | gtatgaggtc | taggaacata | cttcagctca | cacatgagat | 2760 |
| ctaggtgagg  | attgattacc | tagtagtcat | ttcatgggtt | gttgggagga | ttctatgagg | 2820 |
| caaccacagg  | cagcatttag | cacatactac | acattcaata | agcatcaaac | tcttagttac | 2880 |
| tcattcaggg  | atagcactga | gcaaagcatt | gagcaaaggg | gtcccatata | ggtgagggaa | 2940 |
| gcctgaaaaa  | ctaagatgct | gcctgcccag | tgcacacaag | tgtaggtatc | attttctgca | 3000 |
| tttaaccgtc  | aataggcaaa | ggggggaagg | gacatattca | tttggaaata | agctgccttg | 3060 |
| agccttaaaa  | cccacaaaag | tacaatttac | cagcctccgt | atttcagact | gaatgggggt | 3120 |
| gggggggggcg | ccttaggtac | ttattccaga | tgccttctcc | agacaaacca | gaagcaacag | 3180 |
| aaaaaatcgt  | ctctccctcc | ctttgaaatg | aatatacccc | ttagtgtttg | ggtatattca | 3240 |
| tttcaaaggg  | agagagagag | qtttttttct | attetttete | atatoattot | gcacatactt | 3300 |

| gagactgttt                                        | tgaatttggg | ggatggctaa | aaccatcata | gtacaggtaa | ggtgagggaa | 3360 |
|---------------------------------------------------|------------|------------|------------|------------|------------|------|
| tagtaagtgg                                        | tgagaactac | tcagggaatg | aaggtgtcag | aataataaga | ggtgctactg | 3420 |
| actttctcag                                        | cctctgaata | tgaacggtga | gcattgtggc | tgtcagcagg | aagcaacgaa | 3480 |
| gggaaatgtc                                        | tttccttttg | ctcttaagtt | gtggagagtg | caacagtagc | ataggaccct | 3540 |
| accctctggg                                        | ccaagtcaaa | gacattctga | catcttagta | tttgcatatt | cttatgtatg | 3600 |
| tgaaagttac                                        | aaattgcttg | aaagaaaata | tgcatctaat | aaaaaacacc | ttcta      | 3655 |
| <210> 347 <211> 559 <212> DNA <213> Hom <400> 347 | 5          |            |            |            |            |      |
|                                                   | gcaagtggcg | aagcttgacc | gagagcaggc | tggagcagcc | gcccaactcc | 60   |
| tggcgcggga                                        | tctgctgagg | ggtcacggat | tttaggtgat | gggcaagtca | gaaagtcaga | 120  |
| tggatataac                                        | tgatatcaac | actccaaagc | caaagaagaa | acagcgatgg | actcgactgg | 180  |
| agatcagcct                                        | ctcggtcctt | gtectgetee | tcaccatcat | agctgtgaga | atgatcgcac | 240  |
| tctatgcaac                                        | ctacgatgat | ggtatttgca | agtcatcaga | ctgcataaaa | tcagctgctc | 300  |
| gactgatcca                                        | aaacatggat | gccaccactg | agccttgtag | agacttttc  | aaatatgctt | 360  |
| geggaggetg                                        | gttgaaacgt | aatgtcattc | ccgagaccag | ctcccgttac | ggcaactttg | 420  |
| acattttaag                                        | agatgaacta | gaagtcgttt | tgaaagatgt | ccttcaagaa | cccaaaactg | 480  |
| aagatatagt                                        | agcagtgcag | aaagcaaaag | cattgtacag | gtcttgtata | aatgaatctg | 540  |
| ctattgatag                                        | cagaggtgga | gaacctctac | tcaaactgtt | accagacata | tatgggtggc | 600  |
| cagtagcaac                                        | agaaaactgg | gagcaaaaat | atggtgette | ttggacagct | gaaaaagcta | 660  |
| ttgcacaact                                        | gaattctaaa | tatgggaaaa | aagtccttat | taatttgttt | gttggcactg | 720  |
| atgataagaa                                        | ttctgtgaat | catgtaattc | atattgacca | acctcgactt | ggcctccctt | 780  |
| ctagagatta                                        | ctatgaatgc | actggaatct | ataaagaggc | ttgtacagca | tatgtggatt | 840  |
| ttatgatttc                                        | tgtggccaga | ttgattcgtc | aggaagaaag | attgcccatc | gatgaaaacc | 900  |
| agcttgcttt                                        | ggaaatgaat | aaagttatgg | aattggaaaa | agaaattgcc | aatgctacgg | 960  |
| ctaaacctga                                        | agatcgaaat | gatccaatgc | ttctgtataa | caagatgaga | ttggcccaga | 1020 |
| tccaaaataa                                        | cttttcacta | gagatcaatg | ggaagccatt | cagctggttg | aatttcacaa | 1080 |
| atgaaatcat                                        | gtcaactgtg | aatattagta | ttacaaatga | ggaagatgtg | gttgtttatg | 1140 |
| ctccagaata                                        | tttaaccaaa | cttaagccca | ttcttaccaa | atattctgcc | agagatette | 1200 |
| aaaatttaat                                        | gtcctggaga | ttcataatgg | atcttgtaag | cagectcage | cqaacctaca | 1260 |

aggagtccag aaatgettte egcaaggeee tttatggtae aaceteagaa acageaactt 1320 ggagacgttg tgcaaactat gtcaatggga atatggaaaa tgctgtgggg aggctttatg 1380 tggaagcagc atttgctgga gagagtaaac atgtggtcga ggatttgatt gcacagatcc 1440 gagaagtttt tattcagact ttagatgacc tcacttggat ggatgccgag acaaaaaga 1500 gagctgaaga aaaggcctta gcaattaaag aaaggatcgg ctatcctgat gacattgttt 1560 caaatgataa caaactgaat aatgagtacc tcgagttgaa ctacaaagaa gatgaatact 1620 tcgagaacat aattcaaaat ttgaaattca gccaaagtaa acaactgaag aagctccgag 1680 aaaaggtgga caaagatgag tggataagtg gagcagctgt agtcaatgca ttttactctt 1740 caggaagaaa tcagatagtc ttcccagccg gcattctgca gcccccttc tttagtgccc 1800 agcagtccaa ctcattgaac tatgggggca tcggcatggt cataggacac gaaatcaccc 1860 atggcttcga tgacaatggc agaaacttta acaaagatgg agacctcgtt gactggtgga 1920 ctcaacagtc tgcaagtaac tttaaggagc aatcccagtg catggtgtat cagtatggaa 1980 acttttcctg ggacctggca ggtggacagc accttaatgg aattaataca ctgggagaaa 2040 acattgctga taatggaggt cttggtcaag catacagagc ctatcagaat tatattaaaa 2100 agaatggcga agaaaaatta cttcctggac ttgacctaaa tcacaaacaa ctattttct 2160 tgaactttgc acaggtgtgg tgtggaacct ataggccaga gtatgcggtt aactccatta 2220 aaacagatgt gcacagtcca ggcaatttca ggattattgg gactttgcag aactctgcag 2280 agttttcaga agcctttcac tgccgcaaga attcatacat gaatccagaa aagaagtgcc 2340 gggtttggtg atcttcaaaa gaagcattgc agcccttggc tagacttgcc aacaccacag 2400 aaatggggaa ttctctaatc gaaagaaaat gggccctagg ggtcactgta ctgacttgag 2460 ggtgattaac agagaggca ccatcacaat acagataaca ttaggttgtc ctagaaaggg 2520 tgtggaggga ggaagggggt ctaaggtcta tcaagtcaat catttctcac tgtgtacata 2580 atgcttaatt tctaaagata atattactgt ttatttctgt ttctcatatg gtctaccagt 2640 ttgctgatgt ccctagaaaa caatgcaaaa cctttgaggt agaccaggat ttctaatcaa 2700 aagggaaaag aagatgttga agaatagagt taggcaccag aagaagagta ggtgacacta 2760 tagtttaaaa cacattgcct aactactagt ttttactttt atttgcaaca tttacagtcc 2820 ttcaaaatcc ttccaaagaa ttcttataca cattggggcc ttggagctta catagtttta 2880 aactcatttt tgccatacat cagttattca ttctgtgatc atttatttta agcactctta 2940 aagcaaaaaa tgaatgtcta aaattgtttt ttgttgtacc tgctttgact gatgctgaga 3000 ttcttcaggc ttcctgcaat tttctaagca atttcttgct ctatctctca aaacttggta 3060

|            | acceacaca  | ucgeudada  | · uucuacccc | acacccaacc          | accaaccaca | 3120 |
|------------|------------|------------|-------------|---------------------|------------|------|
| tttatgagta | actattatta | taggtaatca | atgaatattg  | aagtttcagc          | ttaaaataaa | 3180 |
| cagttgtgaa | ccaagatcta | taaagcgata | tacagatgaa  | aatttgagad          | tatttaaact | 3240 |
| tataaatcat | attgatgaaa | agatttaago | acaaacttta  | gggtaaaaat          | tgcgattgga | 3300 |
| cagttgtcta | gagatatata | tacttgtggt | tttcaaattg  | gactttcaaa          | attaaatctg | 3360 |
| tccctgagag | tgtctctgat | aaaagggcaa | atctgcacct  | atgtagctct          | gcatctcctg | 3420 |
| tetttteagg | tttgtcatca | gatggaaata | ttttgataat  | aaattgaaat          | tgtgaactca | 3480 |
| ttgctcccta | agactgtgac | aactgtctaa | ctttagaagt  | gcatttctga          | atagaaatgg | 3540 |
| gaggeetetg | atggaccttc | tagaattata | agtcacaaag  | agttctggaa          | aagaactgtt | 3600 |
| tactgcttga | taggaattca | tcttttgagg | cttctgttcc  | tctcttttcc          | tgttgtattg | 3660 |
| actattttcg | ttcattactt | gattaagatt | ttacaaaaga  | ggagcacttc          | caaaattctt | 3720 |
| atttttccta | acaaaagatg | aaagcaggga | atttctatct  | aaatga <b>tg</b> ag | tattagttcc | 3780 |
| ctgtctcttg | aaaaatgccc | atttgccttt | aaaaaaaaa   | gttacagaaa          | tactataaca | 3840 |
| tatgtacata | aattgcataa | agcataagta | tacagttcaa  | taaacttaac          | tttaactgaa | 3900 |
| caatggccct | gtagccagca | cctgtaagaa | acagagcagt  | accagegete          | taaaagcacc | 3960 |
| tccttgtcac | tttattactc | ccagaacaac | aactatcctg  | acttctaata          | tcattcacta | 4020 |
| gctttgcctg | gttttgtctt | ttatgcagat | agaatcaatc  | agtatgtatt          | cttttgtgcc | 4080 |
| tggcttcttt | ctctcagcct | tacatttgtg | agattcctct  | gtattgtgct          | gattgtggat | 4140 |
| cttttcattc | tcattgcaga | ataatgttct | attgtgggac  | ttattacaat          | ttgttcatcc | 4200 |
| tattgttgat | gggcacttga | gaactttcca | ttttggcgct  | attacaaata          | gtgcaactat | 4260 |
| gaatgtactg | catgttacca | tcttacttga | gcctttaatg  | gacttatttc          | ttcaaatcct | 4320 |
| tccaaaaatt | attataagca | ttgaaattat | agtttcaagc  | caactgtgga          | taccettace | 4380 |
| ctttcctcct | ttatcacaac | caccgttaca | agtatactta  | tatttcccta          | aaatacattt | 4440 |
| aaaacttacc | taagtgacat | ttgtagttgg | agtaatagga  | gcttccagct          | ctaataaaac | 4500 |
| agctgtctct | aacttatttt | atttccatca | tgtcagagca  | ggtgaagagc          | cagaagtgaa | 4560 |
| gagtgactag | tacaaattat | aaaaagccac | tagactette  | actgttagct          | tttaaaaca  | 4620 |
| ttaggctccc | atccctatgg | aggaacaact | ctccagtgcc  | tggatcccct          | ctgtctacaa | 4680 |
| atataagatt | ttctgggcct | aaaggataga | tcaaagtcaa  | aaatagcaat          | gcctccctat | 4740 |
| cctcacaca  | tccagacatc | atgaatttta | catggtactc  | ttgttgagtt          | ctatagagcc | 4800 |
| tctgatgtc  | tctaaagcac | taccgattct | ttggagttgt  | cacatcagat          | aagacatatc | 4860 |
| ctaattcca  | tccataaatc | cagttctact | atggctgagt  | tctggtcaaa          | gaaagaaagt | 4920 |

| ttagaagetg agacacaaag ggttgggage tgatgaaact cacaaatgat ggtaggaag                                     | 4980 |
|------------------------------------------------------------------------------------------------------|------|
| agetetegae aataceegtt ggeaaggagt etgeeteeat getgeagtgt tegagtggat                                    | 5040 |
| tgtaggtgca agatggaaag gattgtaggt gcaagctgtc cagagaaaag agtccttgtt                                    | 5100 |
| ccagccctat tctgccactc ctgacagggt gaccttgggt atttgcaata ttcctttgg                                     | 5160 |
| cctctgcttc tctcacctaa aaaaagagaa ttagattata ttggtggttc tcagcaagag                                    | 5220 |
| aaggagtatg tgtccaatgc tgccttccca tgaatctgtc tcccagttat gaatcagtgc                                    | 5280 |
| gcaggataaa ctgaaaactc ccatttaagt gtctgaatcg agtgagacaa aattttagtc                                    | 5340 |
| caaataacaa gtaccaaagt tttatcaagt ttgggtctgt gctgctgtta ctgttaacca                                    | 5400 |
| tttaagtggg gcaaaacctt gctaattttc tcaaaagcat ttatcattct tgttgccaca                                    | 5460 |
| gctggagctc tcaaactaaa agacatttgt tattttggaa agaagaaaga ctctattctc                                    | 5520 |
| aaagtttcct aatcagaaat ttttatcagt ttccagtctc aaaaatacaa aataaaaaca                                    | 5580 |
| aacgttttta atact                                                                                     | 5595 |
| <pre>&lt;210&gt; 348 &lt;211&gt; 1466 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 348</pre> |      |
| cttagtaaca cgttgatgag aaatctactt tttccactct tgactcactc tgagccttca                                    | 60   |
| cagggcagtc tgcgaagatt gcaggcattg tttgttcttg tcttggattt atgcctttaa                                    | 120  |
| atttcacctt ttattacaca gctatagcag gcctttttat gagactaacc tggcctctcc                                    | 180  |
| actaaaggat gtgtgacttt ctggggacag aagagtacag tccctgacat cacacactgc                                    | 240  |
| agagatggat aaccaaggag taatctactc agacctgaat ctgcccccaa acccaaagag                                    | 300  |
| gcagcaacga aaacctaaag gcaataaaag ctccatttta gcaactgaac aggaaataac                                    | 360  |
| ctatgcggaa ttaaaccttc aaaaagcttc tcaggatttt caagggaatg acaaaaccta                                    | 420  |
| teactgcaaa gatttaccat cagetecaga gaageteatt gttgggatee tgggaattat                                    | 480  |
| ctgtcttatc ttaatggcct ctgtggtaac gatagttgtt attccctcta cattaataca                                    | 540  |
| gaggcacaac aattottooc tgaatacaag aactcagaaa gcacgtcatt gtggccattg                                    | 600  |
| tcctgaggag tggattacat attccaacag ttgttactac attggtaagg aaagaagaac                                    | 660  |
| ttgggaagag agtttgctgg cctgtacttc gaagaactcc agtctgcttt ctatagataa                                    | 720  |
| tgaagaagaa atgaaatttc tgtccatcat ttcaccatcc tcatggattg gtgtgtttcg                                    | 780  |
| taacagcagt catcatccat gggtgacaat gaatggtttg gctttcaaac atgagataaa                                    | 840  |
| agactcagat aatgctgaac ttaactgtgc agtgctacaa gtaaatcgac ttaaatcagc                                    | 900  |

ccagtgtgga tcttcaataa tatatcattg taagcataag ctttagaggt aaagcgtttg 960 catttgcagt gcatcagata aattgtatat ttcttaaaat agaaatatat tatgattgca 1020 taaatettaa aatgaattat gttatttget etaataagaa aattetaaat caattattga 1080 aacaggatac acacaattac taaagtacag acatectage atttgtgteg ggctcatttt 1140 qctcaacatq gtatttqtgg ttttcagcct ttctaaaagt tgcatgttat gtgagtcagc 1200 ttataggaag taccaagaac agtcaaaccc atggagacag aaagtagaat agtggttgcc 1260 aatgtctgag ggaggttgaa ataggagatg acctctaact gatagaacgt tactttgtgt 1320 cgtgatgaaa actttctaaa tttcagtagt ggtgatggtt gtaactctgc gaatatacta 1380 aacatcattq atttttaatc attttaagtg catgaaatgt atgctttqta cacgacactt 1440 1466 caataaagct atccagaaaa aaaaaa <210> 349 <211> 2341 <212> DNA <213> Homo sapiens <400> 349 gattetgtgt gtgteeteag atgeteagee acagacettt gagggagtaa agggggcaga 60 cccaccacc ttgcctccaq gctctttcct tcctggtcct gttctatggt ggggctccct 120 tqccaqactt caqactqaqa aqtcaqatqa agtttcaaqa aaaggaaatt ggtgggtgac 180 aqaqatqqqt qqaqqqctq qqqaaaqqct qtttacttcc tcctqtctag tcggtttggt 240 ccctttaggg ctccqqatat ctttqqtqac ttqtcctctc caqtqtggca tcatqtqgca 300 gctgctcctc ccaactgctc tgctacttct agtttcagct ggcatgcgga ctgaagatct 360 420 cccaaaqqct qtqqtqttcc tqqaqcctca atqqtacaqq gtqctcqaqa aqqacaqtgt gactotgaag tgccagggag cotactocco tgaggacaat tocacacagt ggtttcacaa 480

cagtggagag tacaggtgcc agacaaacct ctccaccctc agtgacccgg tgcagctaga 600 agtecatate ggetggetgt tgetecagge eceteggtgg gtgttcaagg aggaagaeee 660 tattcacctg aggtgtcaca gctggaagaa cactgctctg cataaggtca catatttaca 720 gaatqqcaaa gqcaggaagt attttcatca taattctgac ttctacattc caaaaqccac 780 actcaaaqac aqcqqctcct acttctqcag qqqqcttqtt qqqaqtaaaa atgtqtcttc 840 agagactqtq aacatcacca tcactcaagg tttgqcagtg tcaaccatct catcattctt 900 tecacetqqq taccaagtet etttetqett qqtqatqqta etectttttg caqtggacae 960 aggactatat ttctctgtga agacaaacat tcgaagctca acaagagact ggaaggacca 1020

tgagagette ateteaagee aggeetegag etaetteatt gaegetgeea cagtegaega

| taaatttaaa | tggagaaagg | accctcaaga          | caaatgaccc | ccatcccatg | 9999taataa | 108  |
|------------|------------|---------------------|------------|------------|------------|------|
| gagcagtagc | agcagcatct | ctgaacattt          | ctctggattt | gcaaccctat | catcctcagg | 1140 |
| cctctctaca | agcagcagga | aacatagaac          | tcagagccag | atcccttatc | caactctcga | 1200 |
| cttttccttg | gtctccagtg | gaagggaaaa          | gcccatgatc | ttcaagcagg | gaagccccag | 1260 |
| tgagtagctg | cattcctaga | aattgaagtt          | tcagagctac | acaaacactt | tttctgtccc | 1320 |
| aaccgttccc | tcacagcaaa | gcaacaatac          | aggctaggga | tggtaatcct | ttaaacatac | 1380 |
| aaaaattgct | cgtgttataa | attacccagt          | ttagagggga | aaaaaaaca  | attattccta | 1440 |
| aataaatgga | taagtagaat | taatggttga          | ggcaggacca | tacagagtgt | gggaactgct | 1500 |
| ggggatctag | ggaattcagt | gggaccaatg          | aaagcatggc | tgagaaatag | caggtagtcc | 1560 |
| aggatagtct | aagggaggtg | ttcccatctg          | agcccagaga | taagggtgtc | ttcctagaac | 1620 |
| attagccgta | gtggaattaa | caggaaatca          | tgagggtgac | gtagaattga | gtcttccagg | 1680 |
| ggactctatc | agaactggac | catctccaag          | tatataacga | tgagtcctct | taatgctagg | 1740 |
| agtagaaaat | ggtcctagga | aggggactga          | ggattgcggt | ggggggtggg | gtggaaaaga | 1800 |
| aagtacagaa | caaaccctgt | gtcactgtcc          | caagttgcta | agtgaacaga | actatctcag | 1860 |
| catcagaatg | agaaagcctg | agaagaaaga          | accaaccaca | agcacacagg | aaggaaagcg | 1920 |
| caggaggtga | aaatgctttc | ttggccaggg          | tagtaagaat | tagaggttaa | tgcagggact | 1980 |
| gtaaaaccac | cttttctgct | tcaatatcta          | attcctgtgt | agctttgttc | attgcattta | 2040 |
| ttaaacaaat | gttgtataac | caatactaaa          | tgtactactg | agcttcgctg | agttaagtta | 2100 |
| tgaaactttc | aaatccttca | tcatgtcagt          | tccaatgagg | tggggatgga | gaagacaatt | 2160 |
| gttgcttatg | aaagaaagct | ttagctgtct          | ctgttttgta | agctttaagc | gcaacatttc | 2220 |
| ttggttccaa | taaagcattt | tacaagatct          | tgcatgctac | tcttagatag | aagatgggaa | 2280 |
| aaccatggta | ataaaatatg | aatgat <b>a</b> aaa | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | 2340 |
| a          |            |                     |            |            |            | 2341 |
| <210> 350  |            |                     |            |            |            |      |
|            |            |                     |            |            |            |      |

<210> 350 <211> 887

<212> DNA

<213> Homo sapiens

<400> 350

tetttggtga ettgtecaet eeagtgtgge ateatgtgg agetgeteet eecaaetget 60
etgetaette tagtteage tggeatgegg aetgaagate teceaaagge tgtggtgtte 120
etggageete aatggtacag egtgettgag aaggacagtg tgaetetgaa gtgeeaggga 180
geetaeteee etgaggacaa tteeaaaag tggttteaaa atggaggeet eateteaage 240

caggoctega getaetteat tgacgetgee acagteaacg acagtggaga gtacaggtge 300 cagacaaacc totocaccct cagtgacccg gtgcagctag aagtccatat cggctggctg 360 ttgctccagg cccctcggtg ggtgttcaag gaggaagacc ctattcacct gaggtgtcac 420 aqctqqaaqa acactqctct qcataaggtc acatatttac agaatggcaa agacaggaag 480 tattttcatc ataattctqa cttccacatt ccaaaagcca cactcaaaga tagcggctcc 540 tacttctqca qqqqqcttqt tqqqaqtaaa aatqtqtctt caqaqactqt qaacatcacc 600 atcactcaaq qtttqqcaqt qtcaaccatc tcatcattct ctccacctgq gtaccaagtc 660 tetttetget tggtgatggt acteettttt geagtggaca caggactata tttetetgtg 720 aagacaaaca tttgaagctc aacaagagac tggaaggacc ataaacttaa atggagaaag 780 qaccetcaaq acaaatqace eccateccat qqqaqtaata aqaqcaqtqq caqcaqcate 840 totgaacatt tototggatt tgcaacccca toatcotcag goototc 887 <210> 351 <211> 1991 DNA <213> Homo sapiens

60

<213> Homo sapiens

<400> 351 acaggggtga aggcccagag accagcagaa cggcatccca gccacgacgg ccactttgct

ctqtctqctq tccqccacqq ccctqctctq ttccctqqqa caccccqcc cccacctcct 120 180 caggetgeet gatetgeeca getttecage ttteetetgg atteeggeet etggteatee 240 ctccccacc tctctccaag gccctctcct ggtctccctt cttctagaac cccttcctcc 300 acctccctct ctgcagaact tctcctttac cccccacccc ccaccactgc cccctttcct tttctgacct ccttttggag ggctcagcgc tgcccagacc ataggagaga tgtgggaggc 360 teagtteetg ggettgetgt ttetgeagee getttgggtg geteeagtga ageeteteea 420 gccaqqqqct gaggtcccqg tggtgtgggc ccaggagggg gctcctgccc agctcccctg 480 cagocccaca atccccctcc aggateteag cettetgega agageagggg teacttggca 540 600 quateaqcca qacaqtqqcc eqcceqctqc eqcceceggc cateccetgg ecceeggece teacceggeg gegecetect cetgggggee caggeceege egetacaegg tgctgagegt 660 720 qqqtcccqqa qqcctqcqca qcqqqaqqct qcccctqcag ccccgcgtcc agctggatga 780 gegeggeegg cagegeggg actteteget atggetgege ceageegge gegeggaege cggcgagtac cgcgccgcg tqcacctcag ggaccgcgc ctctcctgcc gcctccgtct 840 900 gcgcctgggc caggcctcga tgactgccag cccccagga tctctcagag cctccgactg ggtcattttq aactgctcct tcagccqccc tgaccqccca gcctctgtgc attggttccq 960

| gaacegggge                                         | cagggccgag | tecetgteeg | ggagtccccc | catcaccact | tagcggaaag | 1020 |
|----------------------------------------------------|------------|------------|------------|------------|------------|------|
| cttcctcttc                                         | ctgccccaag | tcagccccat | ggactctggg | ccctggggct | gcatcctcac | 1080 |
| ctacagagat                                         | ggcttcaacg | tctccatcat | gtataacctc | actgttctgg | gtctggagcc | 1140 |
| cccaactccc                                         | ttgacagtgt | acgctggagc | aggttccagg | gtggggctgc | cctgccgcct | 1200 |
| gcctgctggt                                         | gtggggaccc | ggtctttcct | cactgccaag | tggactcctc | ctgggggagg | 1260 |
| ccctgacctc                                         | ctggtgactg | gagacaatgg | cgactttacc | cttcgactag | aggatgtgag | 1320 |
| ccaggcccag                                         | gctgggacct | acacctgcca | tatccatctg | caggaacagc | agctcaatgc | 1380 |
| cactgtcaca                                         | ttggcaatca | tcacagtgac | tcccaaatcc | tttgggtcac | ctggatccct | 1440 |
| ggggaagctg                                         | ctttgtgagg | tgactccagt | atctggacaa | gaacgctttg | tgtggagctc | 1500 |
| tctggacacc                                         | ccatcccaga | ggagtttctc | aggaccttgg | ctggaggcac | aggaggccca | 1560 |
| gctcctttcc                                         | cagcettgge | aatgccagct | gtaccagggg | gagaggcttc | ttggagcagc | 1620 |
| agtgtacttc                                         | acagagctgt | ctagcccagg | tgcccaacgc | tctgggagag | ccccaggtgc | 1680 |
| cctcccagca                                         | ggccacctcc | tgctgtttct | cacccttggt | gtcctttctc | tgctcctttt | 1740 |
| ggtgactgga                                         | gcctttggct | ttcacctttg | gagaagacag | tggcgaccaa | gacgattttc | 1800 |
| tgccttagag                                         | caagggattc | acceteegea | ggctcagagc | aagatagagg | agctggagca | 1860 |
| agaaccggag                                         | ccggagccgg | agccggaacc | ggagcccgag | cccgagcccg | agccggagca | 1920 |
| gctctgacct                                         | ggagctgagg | cagccagcag | atctcagcag | cccagtccaa | ataaacgtcc | 1980 |
| tgtctagcag                                         | С          |            |            |            |            | 1991 |
| <210> 352<br><211> 3189<br><212> DNA<br><213> Homo | sapiens    |            |            |            |            |      |
| <400> 352                                          | taactaccat | tacctoacca | acaca2a2a  | cggtctctct |            |      |
|                                                    |            |            |            |            |            | 60   |
|                                                    |            |            |            | gtttctcaac |            | 120  |
|                                                    |            |            |            | gaactaactg |            | 180  |
|                                                    |            |            |            | acgatgtggc |            | 240  |
|                                                    |            |            |            | aactctttca |            | 300  |
|                                                    |            |            |            | gggaagaacc |            | 360  |
|                                                    |            |            |            | cagcaccaga |            | 420  |
|                                                    |            |            |            | agcacagaga |            | 480  |
| teetgaagte                                         | cggatctatg | actcagggac | atataaatgt | actgtgattg | tgaacaacaa | 540  |

agagaaaacc actgcagagt accaggtgtt qqtggaagga gtgcccagtc ccaqqqtqac 600 actggacaag aaagaggcca tccaaqqtqq qatcgtgagg gtcaactqtt ctqtccaqa 660 ggaaaaggcc ccaatacact tcacaattqa aaaacttgaa ctaaatqaaa aaatggtcaa 720 gctgaaaaga qagaagaatt ctcqaqacca qaattttqtq atactqqaat tccccqttqa 780 ggaacaggac cgcqttttat ccttccgatq tcaagctagq atcatttctq ggatccatat 840 gcagacctca gaatctacca agagtqaact ggtcaccgtg acggaatcct tctctacacc 900 caagttccac atcagcccca ccggaatgat catggaagga gctcagctcc acattaaqtq 960 caccattcaa gtgactcacc tggcccagga gtttccagaa atcataattc agaaggacaa 1020 ggcgattgtg gcccacaaca gacatggcaa caaggctgtg tactcagtca tggccatggt 1080 ggagcacagt ggcaactaca cgtgcaaagt ggagtccagc cgcatatcca aggtcagcag 1140 catcgtggtc aacataacag aactattttc caagcccgaa ctggaatctt ccttcacaca 1200 tetggaccaa ggtgaaagac tgaacetgte etgetecate ceaggageac etecagecaa 1260 cttcaccatc cagaaggaag atacgattgt gtcacagact caagatttca ccaagatagc 1320 ctcaaagtcg gacagtggga cgtatatctg cactgcaggt attgacaaag tgqtcaagaa 1380 aagcaacaca gtccagatag tcgtatgtga aatgctctcc cagcccagga tttcttatga 1440 tgcccagttt gaggtcataa aaggacagac catcgaagtc cqttqcgaat cqatcaqtqq 1500 aactttgcct atttcttacc aacttttaaa aacaaqtaaa qttttqqaqa ataqtaccaa 1560 gaactcaaat gatcctgcgg tattcaaaga caaccccact gaagacgtcg aataccagtg 1620 tgttgcagat aattgccatt cccacgccaa aatgttaagt gaggttctga gggtgaaggt 1680 gatagccccg gtggatgagg tccagatttc tatcctgtca agtaaggtgg tggagtctgg 1740 agaggacatt qtqctqcaat qtqctqtqaa tqaaqqatct qqtcccatca cctataaqtt 1800 ttacagagaa aaagagggca aacccttcta tcaaatgacc tcaaatgcca cccaggcatt 1860 ttggaccaag cagaaggcta acaaggaaca ggagggagag tattactgca cagccttcaa 1920 cagagecaac caegecteca gtgteeceag aageaaaata etgacagtea gagteattet 1980 tgccccatgg aagaaaggac ttattgcagt ggttatcatc ggagtgatca ttgctctctt 2040 gatcattgcg gccaaatgtt attttctgag gaaagccaag gccaagcaga tgccagtgga 2100 aatgtccagg ccagcagtac cacttctgaa ctccaacaac gagaaaatgt cagatcccaa 2160 tatggaaget aacagteatt aeggteacaa tgacgatgte ggaaaceatg caatgaaace 2220 aataaatgat aataaagagc ctctgaactc agacgtgcag tacacggaag ttcaagtgtc 2280 ctcagctgag tctcacaaag atctaggaaa qaaqqacaca qaqacagtgt acagtgaagt 2340

| ccggaaagct             | gtccctgatg | ccgtggaaag | cagatactct | agaacggaag | gctcccttga | 2400 |
|------------------------|------------|------------|------------|------------|------------|------|
| tggaacttag             | acagcaaggc | cagatgcaca | tccctggaag | gacatccatg | ttccgagaag | 2460 |
| aacagatgat             | ccctgtattt | caagacctct | gtgcacttat | ttatgaacct | gccctgctcc | 2520 |
| cacagaacac             | agcaattcct | caggctaagc | tgccggttct | taaatccatc | ctgctaagtt | 2580 |
| aatgttgggt             | agaaagagat | acagaggggc | tgttgaattt | cccacataca | ctccttccac | 2640 |
| caagttggaa             | catccttgga | aattggaaga | gcacaagagg | agatccaggg | caaggccatt | 2700 |
| gggatattct             | gaaacttgaa | tattttgttt | tgtgcagaga | taaagacctt | ttccatgcac | 2760 |
| cctcatacac             | agaaaccaat | tttcttttt  | atactcaatc | atttctagcg | catggcctgg | 2820 |
| ttagaggctg             | gttttttctc | ttttcctttg | gtccttcaaa | ggcttgtagt | tttgggtagt | 2880 |
| ccttgttctt             | tggaaataca | cagtgctgac | cagacagcct | cccctgtcc  | cctctatgac | 2940 |
| ctcgccctcc             | acaaatggga | aaaccagact | acttgggagc | accgcctgtg | aaataccaac | 3000 |
| ctgaagacac             | ggttcattca | ggcaacgcac | aaaacagaaa | atgaaggtgg | aacaagcaca | 3060 |
| gatgttcttc             | aactgtttt  | gtctacactc | tttctctttt | cctctaccat | gctgaaggct | 3120 |
| gaaagacagg             | aagatggtgc | catcagcaaa | tattattctt | aattgaaaac | ttgaaaaaaa | 3180 |
| aaaaaaaa               |            |            |            |            |            | 3189 |
|                        |            |            |            |            |            |      |
| <210> 353              |            |            |            |            |            |      |
| <211> 265<br><212> DNA |            |            |            |            |            |      |
|                        | o sapiens  |            |            |            |            |      |
|                        |            |            |            |            |            |      |
| <400> 353              |            | agaggggtg  | ataacaaaa  | casatsatat | attacastas | 60   |
| cccgggcgga             | gggggcggga | ayayegegte | ccggccaage | cyaytagtgt | cttccaeteg | 60   |
|                        |            |            |            |            |            |      |

gtgcgtctct ctaggagccg cgcqqqaaqq atqctqqtcc qcaqqqqcqc qcqccaqqq 120 cccaggatgc cqcqqqqctq qaccqcqctt tqcttqctqa qtttqctqcc ttctqqqttc 180 atgagtcttg acaacaacgg tactgctacc ccagagttac ctacccaggg aacattttca 240 aatgtttcta caaatgtatc ctaccaaqaa actacaacac ctagtaccct tggaaqtacc 300 agootgoacc ctgtgtctca acatggcaat gaggccacaa caaacatcac agaaacgaca 360 gtcaaattca catctacctc tgtgataacc tcagtttatg gaaacacaaa ctcttctgtc 420 cagtcacaga cctctgtaat cagcacagtg ttcaccaccc cagccaacgt ttcaactcca 480 gagacaacct tgaagcctag cctgtcacct ggaaatgttt cagacctttc aaccactagc 540 actagecttg caacatetee cactaaacee tatacateat etteteetat eetaagtgae 600 atcaaggcag aaatcaaatg ttcaggcatc agagaagtga aattgactca gggcatctgc 660 ctggagcaaa ataagacctc cagctgtgcg gagtttaaga aggacagggg agagggcctg 720

qcccgagtgc tgtgtgggga ggagcaggct gatgctgatg ctggggccca ggtatgctcc 780 ctqctccttg cccagtctga ggtgaggcct cagtgtctac tgctggtctt ggccaacaga 840 acagaaattt ccagcaaact ccaacttatg aaaaagcacc aatctgacct gaaaaagctg 900 gggatcctag atttcactga gcaagatgtt gcaagccacc agagctattc ccaaaagacc 960 ctgattgcac tggtcacctc gggagccctg ctggctgtct tgggcatcac tggctatttc 1020 ctgatgaatc gccgcagctg gagccccaca ggagaaaggc tggagctgga accctgacca 1080 ctcttcagga agaaaggagt ctgcacatgc agctgcaccc tccctccgat ccttcctccc 1140 accteccet ecceettete ecaeccetge ecceaettee tgtttgggee eteteccate 1200 cagtgtetca cagecetget taccagataa tgetaettta tttatacaet gtetagggeg 1260 aagaccctta ttacacggaa aacggtggag gccagggcta tagctcagga cctgggacct 1320 1380 cccctqaqqc tcaqqqaaaq qccaqtqtqa accqaqqqc tcaqqaaaac gggaccggcc aggccacctc cagaaacggc cattcagcaa gacaacacgt ggtggctgat accgaattgt 1440 1500 gacteggeta ggtggggeaa ggctgggeaq tgtecgagag agcacccctc tetgcatetg 1560 accacgtgct acccccatgc tggaggtgac atctcttacg cccaaccctt ccccactgca cacacctcag aggctgttct tggggcccta caccttgagg aggggcaggt aaactcctgt 1620 1680 cetttacaca ttegeteect ggageagact etggtettet ttgggtaaac gtgtgaeggg 1740 ggaaagccaa ggtctggaga agctcccagg aacaactgat ggccttgcag cactcacaca ggaccccctt cccctacccc ctcctctctg ccgcaataca ggaaccccca ggggaaagat 1800 qaqcttttct aggctacaat tttctcccag gaagctttga tttttaccgt ttcttccctg 1860 tattttcttt ctctactttq aqqaaaccaa agtaaccttt tgcacctgct ctcttgtaat 1920 1980 gatatageca gaaaaacqtq ttgccttgaa ccacttccct catctctct ccaagacact 2040 gtggacttgg tcaccagctc ctcccttgtt ctctaagttc cactgagctc catgtgcccc 2100 ctctaccatt tgcagagtcc tgcacagttt tctggctgga gcctagaaca ggcctcccaa gttttaggac aaacagctca gttctagtct ctctggggcc acacagaaac tctttttggg 2160 2220 ctcttttttc tccctctgga tcaaagtagg caggaccatg ggaccaggtc ttggagctga 2280 geeteteace tgtactette egaaaaatee tetteetetg aggetggate etageettat 2340 cctctgatct ccatggcttc ctcctccctc ctgccgactc ctgggttgag ctgttgcctc 2400 aqtececcaa cagatgettt tetgtetetg ceteceteae cetgageece tteettgete tgcacccca tatggtcata gcccagatca gctcctaacc cttatcacca gctgcctctt 2460 ctqtgggtga cccaggtcct tgtttgctgt tgatttcttt ccagaggggt tgaacaggga 2520 tcctggtttc aatgacggtt ggaaatagaa atttccagag aagagagtat tgggtagata 2580

| ttttttctga                                       | atacaaagtg     | atgtgtttaa | atactgcaat | taaagtgata | ctgaaacaca | 2640 |
|--------------------------------------------------|----------------|------------|------------|------------|------------|------|
| aaaaaaaaa                                        | aaaaaaa        |            |            |            |            | 2657 |
| <210> 354<br><211> 223<br><212> DNA<br><213> Hom | 0<br>o sapiens |            |            |            |            |      |
| <400> 354                                        |                |            |            |            |            |      |
|                                                  |                |            | ctgctccttt |            |            | 60   |
| gtggacacca                                       | caaaggcagt     | gatcactttg | cagcctccat | gggtcagcgt | gttccaagag | 120  |
| gaaaccgtaa                                       | ccttgcattg     | tgaggtgctc | catctgcctg | ggagcagctc | tacacagtgg | 180  |
| tttctcaatg                                       | gcacagccac     | tcagacctcg | acccccagct | acagaatcac | ctctgccagt | 240  |
| gtcaatgaca                                       | gtggtgaata     | caggtgccag | agaggtctct | cagggcgaag | tgaccccata | 300  |
| cagctggaaa                                       | tccacagagg     | ctggctacta | ctgcaggtct | ccagcagagt | cttcacggaa | 360  |
| ggagaacctc                                       | tggccttgag     | gtgtcatgcg | tggaaggata | agctggtgta | caatgtgctt | 420  |
| tactatcgaa                                       | atggcaaagc     | ctttaagttt | ttccactgga | attctaacct | caccattctg | 480  |
| aaaaccaaca                                       | taagtcacaa     | tggcacctac | cattgctcag | gcatgggaaa | gcatcgctac | 540  |
| acatcagcag                                       | gaatatctgt     | cactgtgaaa | gagctatttc | cagctccagt | gctgaatgca | 600  |
| tctgtgacat                                       | ccccactcct     | ggaggggaat | ctggtcaccc | tgagctgtga | aacaaagttg | 660  |
| ctcttgcaga                                       | ggcctggttt     | gcagctttac | ttctccttct | acatgggcag | caagaccctg | 720  |
| cgaggcagga                                       | acacatcctc     | tgaataccaa | atactaactg | ctagaagaga | agactctggg | 780  |
| ttatactggt                                       | gcgaggctgc     | cacagaggat | ggaaatgtcc | ttaagcgcag | ccctgagttg | 840  |
| gagcttcaag                                       | tgcttggcct     | ccagttacca | actcctgtct | ggtttcatgt | ccttttctat | 900  |
| ctggcagtgg                                       | gaataatgtt     | tttagtgaac | actgttctct | gggtgacaat | acgtaaagaa | 960  |
| ctgaaaagaa                                       | agaaaaagtg     | ggatttagaa | atctctttgg | attctggtca | tgagaagaag | 1020 |
| gtaatttcca                                       | gccttcaaga     | agacagacat | ttagaagaag | agctgaaatg | tcaggaacaa | 1080 |
| aaagaagaac                                       | agctgcagga     | aggggtgcac | cggaaggagc | cccagggggc | cacgtagcag | 1140 |
| cggctcagtg                                       | ggtggccatc     | gatctggacc | gtcccctgcc | cacttgctcc | ccgtgagcac | 1200 |
| tgcgtacaaa                                       | catccaaaag     | ttcaacaaca | ccagaactgt | gtgtctcatg | gtatgtaact | 1260 |
| cttaaagcaa                                       | ataaatgaac     | tgacttcaac | tgggatacat | ttggaaatgt | ggtcatcaaa | 1320 |
| gatgacttga                                       | aatgaggcct     | actctaaaga | attcttgaaa | aacttacaag | tcaagcctag | 1380 |
| cctgataatc                                       | ctattacata     | gtttgaaaaa | tagtatttta | tttctcagaa | caaggtaaaa | 1440 |
| aggtgagtgg                                       | gtgcatatgt     | acagaagatt | aagacagaga | aacagacaga | aagagacaca | 1500 |

| cacacagcca                                                                                                                                               | ggagtgggta                                                                                                                                             | gatttcaggg                                                                                                                                             | agacaagagg                                                                                                                                             | gaatagtata                                                                                                                 | gacaataagg                                                                                                                                             | 1560                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| aaggaaatag                                                                                                                                               | tacttacaaa                                                                                                                                             | tgactcctaa                                                                                                                                             | gggactgtga                                                                                                                                             | gactgagagg                                                                                                                 | gctcacgcct                                                                                                                                             | 1620                                                        |
| ctgtgttcag                                                                                                                                               | gatacttagt                                                                                                                                             | tcatggcttt                                                                                                                                             | tctctttgac                                                                                                                                             | tttactaaaa                                                                                                                 | gagaatgtct                                                                                                                                             | 1680                                                        |
| ccatacgcgt                                                                                                                                               | tctaggcata                                                                                                                                             | caagggggta                                                                                                                                             | actcatgatg                                                                                                                                             | agaaatggat                                                                                                                 | gtgttattct                                                                                                                                             | 1740                                                        |
| tgccctctct                                                                                                                                               | tttgaggctc                                                                                                                                             | tctcataacc                                                                                                                                             | cctctatttc                                                                                                                                             | tagagacaac                                                                                                                 | aaaaatgctg                                                                                                                                             | 1800                                                        |
| ccagtcctag                                                                                                                                               | gcccctgccc                                                                                                                                             | tgtaggaagg                                                                                                                                             | cagaatgtaa                                                                                                                                             | ctgttctgtt                                                                                                                 | tgtttaacga                                                                                                                                             | 1860                                                        |
| ttaagtccaa                                                                                                                                               | atctccaagt                                                                                                                                             | geggeactge                                                                                                                                             | aaagagacgc                                                                                                                                             | ttcaagtggg                                                                                                                 | gagaagcggc                                                                                                                                             | 1920                                                        |
| gataccatag                                                                                                                                               | agtccagatc                                                                                                                                             | ttgcctccag                                                                                                                                             | agatttgct't                                                                                                                                            | taccttcctg                                                                                                                 | attttctggt                                                                                                                                             | 1980                                                        |
| tactaattag                                                                                                                                               | cttcaggata                                                                                                                                             | cgctgctctc                                                                                                                                             | atacttgggc                                                                                                                                             | tgtagtttgg                                                                                                                 | agacaaaata                                                                                                                                             | 2040                                                        |
| ttttcctgcc                                                                                                                                               | actgtgtaac                                                                                                                                             | atagctgagg                                                                                                                                             | taaaaactga                                                                                                                                             | actatgtaaa                                                                                                                 | tgactctact                                                                                                                                             | 2100                                                        |
| aaaagtttag                                                                                                                                               | ggaaaaaaaa                                                                                                                                             | caggaggagt                                                                                                                                             | atgacacaaa                                                                                                                                             | aaaaaaaaa                                                                                                                  | aaaaaaaaa                                                                                                                                              | 2160                                                        |
| aaaaaaaaa                                                                                                                                                | aaaaaaaaa                                                                                                                                              | aaaaaaaaa                                                                                                                                              | aaaaaaaaa                                                                                                                                              | aaaaaaaaa                                                                                                                  | aaaaaaaaa                                                                                                                                              | 2220                                                        |
| aaaaaaaaa                                                                                                                                                |                                                                                                                                                        |                                                                                                                                                        |                                                                                                                                                        |                                                                                                                            |                                                                                                                                                        | 2230                                                        |
| <210> 355<br><211> 5010                                                                                                                                  | )                                                                                                                                                      |                                                                                                                                                        |                                                                                                                                                        |                                                                                                                            |                                                                                                                                                        |                                                             |
|                                                                                                                                                          | o sapiens                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                        |                                                                                                                            |                                                                                                                                                        |                                                             |
| <213> Homo                                                                                                                                               | sapiens<br>gacggaggac                                                                                                                                  | gcgctagtgt                                                                                                                                             | gagtgeggge                                                                                                                                             | ttctagaact                                                                                                                 | acaccgaccc                                                                                                                                             | 60                                                          |
| <213> Homo                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                        |                                                                                                                                                        |                                                                                                                            |                                                                                                                                                        | 60<br>120                                                   |
| <213> Homo<br><400> 355<br>ggcggctcgg<br>tcgtgtcctc                                                                                                      | gacggaggac                                                                                                                                             | geggggetgg                                                                                                                                             | ctggagcggc                                                                                                                                             | cgctccggtg                                                                                                                 | ctgtccagca                                                                                                                                             |                                                             |
| <213> Homo <400> 355 ggcggctcgg tcgtgtcctc gccataggga                                                                                                    | gacggaggac                                                                                                                                             | geggggetgg<br>gagegggaaa                                                                                                                               | ctggagcggc<br>gcggtcgcgg                                                                                                                               | cgctccggtg                                                                                                                 | ctgtccagca<br>ggcggccggg                                                                                                                               | 120                                                         |
| <213> Homo <400> 355 ggcggctcgg tcgtgtcctc gccataggga atggagcggg                                                                                         | gacggaggac<br>ccttcatcct<br>gccgcacggg                                                                                                                 | gcggggctgg<br>gagcgggaaa<br>tgtggggaag                                                                                                                 | ctggagcggc<br>gcggtcgcgg<br>gggctgtggc                                                                                                                 | cgctccggtg<br>ccccaggcgg<br>ggcgcctcga                                                                                     | ctgtccagca<br>ggcggccggg<br>gcggctgcag                                                                                                                 | 120<br>180                                                  |
| <213> Homo <400> 355 ggcggctcgg tcgtgtcctc gccataggga atggagcggg gttcttctgt                                                                              | gacggaggac<br>ccttcatcct<br>gccgcacggg<br>gccgcgagcc                                                                                                   | gcggggctgg<br>gagcgggaaa<br>tgtggggaag<br>agaatgatgg                                                                                                   | ctggagcggc<br>gcggtcgcgg<br>gggctgtggc<br>atcaagctag                                                                                                   | cgctccggtg<br>ccccaggcgg<br>ggcgcctcga<br>atcagcattc                                                                       | ctgtccagca<br>ggcggccggg<br>gcggctgcag<br>tctaacttgt                                                                                                   | 120<br>180<br>240                                           |
| <213> Home <400> 355 ggcggctcgg tcgtgtcctc gccataggga atggagcggg gttcttctgt ttggtggaga                                                                   | gacggaggac<br>ccttcatcct<br>gccgcacggg<br>gccgcgagcc<br>gtggcagttc                                                                                     | gcggggctgg<br>gagcgggaaa<br>tgtggggaag<br>agaatgatgg<br>tatacccggt                                                                                     | ctggagcggc<br>gcggtcgcgg<br>gggctgtggc<br>atcaagctag<br>tcagcctggc                                                                                     | cgctccggtg<br>ccccaggcgg<br>ggcgcctcga<br>atcagcattc<br>tcggcaagta                                                         | ctgtccagca<br>ggcggccggg<br>gcggctgcag<br>tctaacttgt<br>gatggcgata                                                                                     | 120<br>180<br>240<br>300                                    |
| <213> Home <400> 355 ggcggctcgg tcgtgtcctc gccataggga atggagcggg gttcttctgt ttggtggaga acagtcatgt                                                        | gacggaggac<br>ccttcatcct<br>gccgcacggg<br>gccgcgagcc<br>gtggcagttc<br>accattgtca                                                                       | gcggggctgg<br>gagcgggaaa<br>tgtggggaag<br>agaatgatgg<br>tatacccggt<br>cttgctgtag                                                                       | ctggagcggc<br>gcggtcgcgg<br>gggctgtggc<br>atcaagctag<br>tcagcctggc<br>atgaagaaga                                                                       | cgctccggtg<br>ccccaggcgg<br>ggcgcctcga<br>atcagcattc<br>tcggcaagta<br>aaatgctgac                                           | ctgtccagca<br>ggcggccggg<br>gcggctgcag<br>tctaacttgt<br>gatggcgata<br>aataacacaa                                                                       | 120<br>180<br>240<br>300<br>360                             |
| <213> Home <400> 355 ggcggctcgg tcgtgtcctc gccataggga atggagcggg gttcttctgt ttggtggaga acagtcatgt aggccaatgt                                             | gacggaggac<br>ccttcatcct<br>gccgcacggg<br>gccgcgagcc<br>gtggcagttc<br>accattgtca<br>ggagatgaaa                                                         | gcggggctgg<br>gagcgggaaa<br>tgtggggaag<br>agaatgatgg<br>tatacccggt<br>cttgctgtag<br>aaaaggtgta                                                         | ctggagcggc<br>gcggtcgcgg<br>gggctgtggc<br>atcaagctag<br>tcagcctggc<br>atgaagaaga<br>gtggaagtat                                                         | cgctccggtg<br>ccccaggcgg<br>ggcgcctcga<br>atcagcattc<br>tcggcaagta<br>aaatgctgac<br>ctgctatggg                             | ctgtccagca<br>ggcggccggg<br>gcggctgcag<br>tctaacttgt<br>gatggcgata<br>aataacacaa<br>actattgctg                                                         | 120<br>180<br>240<br>300<br>360<br>420                      |
| <213> Home <400> 355 gggggctcgg tcgtgtcctc gccataggga atggagcggg gttcttctgt ttggtggaga acagtcatgt aggccaatgt tgatcgtctt                                  | gacggaggac<br>ccttcatcct<br>gccgcacggg<br>gccgcgagcc<br>gtggcagttc<br>accattgtca<br>ggagatgaaa<br>cacaaaacca                                           | gcggggctgg<br>gagcgggaaa<br>tgtggggaag<br>agaatgatgg<br>tatacccggt<br>cttgctgtag<br>aaaaggtgta<br>ggatttatga                                           | ctggagcggc<br>gcggtcgcgg<br>gggctgtggc<br>atcaagctag<br>tcagcctggc<br>atgaagaaga<br>gtggaagtat<br>ttggctactt                                           | cgctccggtg<br>ccccaggcgg<br>ggcgcctcga<br>atcagcattc<br>tcggcaagta<br>aaatgctgac<br>ctgctatggg                             | ctgtccagca<br>ggcggccggg<br>gcggctgcag<br>tctaacttgt<br>gatggcgata<br>aataacacaa<br>actattgctg<br>aaaggggtag                                           | 120<br>180<br>240<br>300<br>360<br>420<br>480               |
| <213> Home <400> 355 gggggctcgg tcgtgtcctc gccataggga atggagcggg gttcttctgt ttggtggaga acagtcatgt aggccaatgt tgatcgtctt aaccaaaaaaaaaa                   | gacggaggac<br>ccttcatcct<br>gccgcacggg<br>gccgcgagcc<br>gtggcagttc<br>accattgtca<br>ggagatgaaa<br>cacaaaacca<br>tttcttgatt                             | geggggetgg<br>gagegggaaa<br>tgtggggaag<br>agaatgatgg<br>tataceeggt<br>ettgetgtag<br>aaaaggtgta<br>ggatttatga<br>agactggeag                             | ctggagegge<br>geggtegegg<br>gggetgtgge<br>atcaagetag<br>teageetgge<br>atgaagaaga<br>gtggaagtat<br>ttggetaett<br>gaacegagte                             | cgctccggtg<br>ccccaggcgg<br>ggcgcctcga<br>atcagcattc<br>tcggcaagta<br>aaatgctgac<br>ctgctatggg<br>gggctattgt<br>tccagtgagg | ctgtccagca<br>ggcggccggg<br>gcggctgcag<br>tctaacttgt<br>gatggcgata<br>aataacacaa<br>actattgctg<br>aaaggggtag<br>gaggagccag                             | 120<br>180<br>240<br>300<br>360<br>420<br>480               |
| <213> Home <400> 355 gggggctcgg tcgtgtcctc gccataggga atggagcggg gttcttctgt ttggtggaga acagtcatgt aggccaatgt tgatcgtctt aaccaaaaac gagaggactt            | gacggaggac<br>cettcatcet<br>geogcacggg<br>geogcgagce<br>gtggcagttc<br>accattgtca<br>ggagatgaaa<br>cacaaaacca<br>tttettgatt<br>tgagtgtgag               | geggggetgg<br>gagegggaaa<br>tgtggggaag<br>agaatgatgg<br>tataceeggt<br>ettgetgtag<br>aaaaggtgta<br>ggatttatga<br>agaetggeag<br>egtegettat               | ctggagegge<br>geggtegegg<br>gggetgtgge<br>atcaagetag<br>teageetgge<br>atgaagaaga<br>gtggaagtat<br>ttggetaett<br>gaaccgagte<br>attgggatga               | cgctccggtg ccccaggcgg ggcgcctcga atcagcattc tcggcaagta aaatgctgac ctgctatggg gggctattgt tccagtgagg cctgaagaga              | ctgtccagca<br>ggcggccggg<br>gcggctgcag<br>tctaacttgt<br>gatggcgata<br>aataacacaa<br>actattgctg<br>aaaggggtag<br>gaggagccag<br>aagttgtcgg               | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540        |
| <213> Home <400> 355 ggcggctcgg tcgtgtcctc gccataggga atggagcggg gttcttctgt ttggtggaga acagtcatgt aggccaatgt tgatcgtctt aaccaaaaac gagaggactt agaaactgga | gacggaggac<br>ccttcatcct<br>gccgcacggg<br>gccgcgagcc<br>gtggcagttc<br>accattgtca<br>ggagatgaaa<br>cacaaaacca<br>tttcttgatt<br>tgagtgtgag<br>ccctgcagca | geggggetgg<br>gagegggaaa<br>tgtggggaag<br>agaatgatgg<br>tataceeggt<br>ettgetgtag<br>aaaaggtgta<br>ggatttatga<br>agaetggeag<br>egtegettat<br>ttcaceagca | ctggagegge<br>geggtegegg<br>gggctgtgge<br>atcaagetag<br>teageetgge<br>atgaagaaga<br>gtggaagtat<br>ttggetaett<br>gaacegagte<br>attgggatga<br>ccatcaaget | cgctccggtg ccccaggcgg ggcgcctcga atcagcattc tcggcaagta aaatgctgac ctgctatggg gggctattgt tccagtgagg cctgaagaga gctgaatgaa   | ctgtccagca<br>ggcggccggg<br>gcggctgcag<br>tctaacttgt<br>gatggcgata<br>aataacacaa<br>actattgctg<br>aaaggggtag<br>gaggagccag<br>aagttgtcgg<br>aattcatatg | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600 |

aagacagcgc tcaaaactcg gtgatcatag ttgataagaa cggtagactt gtttacctqq 900 tggagaatcc tgggggttat gtggcgtata gtaaggctgc aacagttact ggtaaactgg 960 tocatgotaa ttttggtact aaaaaagatt ttgaggattt atacactcct gtgaatggat 1020 ctataqtqat tqtcaqaqca qqqaaaatca cctttgcaga aaaggttgca aatgctgaaa 1080 gettaaatge aattggtgtg ttgatataca tggaccagac taaattteec attgttaacg 1140 cagaactttc attetttgga catgetcatc tggggacagg tgaccettac acacctggat 1200 tecetteett caatcacact cagtttecac cateteggte atcaggattg cetaatatac 1260 ctgtccagac aatctccaga gctgctgcag aaaagctgtt tgggaatatg gaaggagact 1320 qtccctctqa ctqqaaaaca qactctacat qtaqqatqqt aacctcaqaa agcaaqaatq 1380 tgaagctcac tgtgagcaat gtgctgaaag agataaaaat tcttaacatc tttggagtta 1440 ttaaaggctt tgtagaacca gatcactatg ttgtagttgg ggcccagaga gatgcatggg 1500 gccctqqaqc tqcaaaatcc qqtqtaqqca caqctctcct attqaaactt qcccaqatqt 1560 tctcagatat ggtcttaaaa gatgggtttc agcccagcag aagcattatc tttgccagtt 1620 ggagtgctgg agactttgga tcggttggtg ccactgaatg gctagaggga tacctttcgt 1680 ccctgcattt aaaggctttc acttatatta atctggataa agcggttctt ggtaccagca 1740 acttcaaqqt ttctgccagc ccactgttgt atacgcttat tgagaaaaca atgcaaaatg 1800 tqaaqcatcc qqttactqgg caatttctat atcaggacag caactgggcc agcaaagttg 1860 agaaactcac tttaqacaat gctgctttcc ctttccttgc atattctgga atcccagcag 1920 tttctttctg tttttgcgag gacacagatt atccttattt gggtaccacc atggacacct 1980 ataaqqaact qattqaqaqq attcctqaqt tgaacaaaqt qqcacgagca gctqcaqagg 2040 tegetgetca gttegtgatt aaactaaccc atgatgttga attgaacctg gactatgaga 2100 ggtacaacag ccaactgctt tcatttgtga gggatctgaa ccaatacaga gcagacataa 2160 2220 aggaaatggg cctgagttta cagtggctgt attctgctcg tggagacttc ttccgtgcta 2280 cttccagact aacaacagat ttcgggaatg ctgagaaaac agacagattt gtcatgaaga 2340 aactcaatga tcgtgtcatg agagtggagt atcacttcct ctctccctac gtatctccaa 2400 aagagtetee ttteegacat gtettetggg geteeggete teacaegetg ecagetttae tggagaactt gaaactgcgt aaacaaaata acggtgcttt taatgaaacg ctgttcagaa 2460 2520 accagttggc tctagctact tggactattc agggagetgc aaatgccctc tctggtgacg tttgggacat tgacaatgag ttttaaatgt gatacccata gcttccatga gaacagcagg 2580 gtagtetggt ttetagaett gtgetgateg tgetaaattt teagtaggge tacaaaacet 2640

2700

gatgttaaaa ttocatccca tcatcttggt actactagat gtctttaggc agcagctttt aatacaqqqt aqataacctg tacttcaagt taaagtgaat aaccacttaa aaaatgtcca 2760 tgatggaata ttcccctatc tctagaattt taagtgcttt gtaatgggaa ctgcctcttt 2820 cctqttqttq ttaatqaaaa tqtcaqaaac caqttatqtq aatgatctct ctgaatccta 2880 agggetggte tetgetgaag gttgtaagtg gttegettae tttgagtgat cetecaactt 2940 3000 catttgatgc taaataggag ataccaggtt gaaagacctc tccaaatgag atctaagcct 3060 ttccataaqq aatqtaqcaq qtttcctcat tcctqaaaqa aacaqttaac tttcagaaga gatgggettg ttttettgcc aatgaggtet gaaatggagg teettetget ggataaaatg 3120 aggttcaact gttgattgca ggaataaggc cttaatatgt taacctcagt gtcatttatg 3180 aaaagaqqqq accaqaaqcc aaagacttaq tatattttct tttcctctqt cccttcccc 3240 ataagcctcc atttagttct ttgttatttt tgtttcttcc aaagcacatt gaaagagaac 3300 cagtttcagg tgtttagttg cagactcagt ttgtcagact ttaaagaata atatgctgcc 3360 aaattttqqc caaaqtqtta atcttaqqqq aqaqctttct qtccttttqq cactqaqata 3420 tttattgttt atttatcagt gacagagttc actataaatg gtgttttttt aatagaatat 3480 aattategga ageagtgeet teeataatta tgacagttat aetgteggtt ttttttaaat 3540 aaaagcagca totgotaata aaacccaaca gatactggaa gttttgcatt tatggtcaac 3600 acttaaqqqt tttaqaaaac aqccqtcaqc caaatgtaat tgaataaagt tgaagctaag 3660 atttaqaqat qaattaaatt taattaqqqq ttqctaaqaa qcqaqcactq accagataag 3720 aatqctqqtt ttcctaaatq caqtqaattq tqaccaaqtt ataaatcaat qtcacttaaa 3780 qqctqtqqta qtactcctqc aaaattttat aqctcaqttt atccaaqqtq taactctaat 3840 teccatttqc aaaatttcca qtacctttqt cacaatecta acacattatc qqqaqcaqtq 3900 3960 tottocataa totataaaga acaaggtagt ttttacctac cacagtotot gtatoggaga 4020 cagtgatete catatgttac actaagggtg taagtaatta tegggaacag tgttteccat aattttcttc atgcaatgac atcttcaaag cttgaagatc gttagtatct aacatgtatc 4080 ccaactccta taattcccta tcttttagtt ttagttgcag aaacattttg tggtcattaa 4140 gcattgggtg ggtaaattca accactgtaa aatgaaatta ctacaaaatt tgaaatttag 4200 4260 cttgggtttt tgttaccttt atggtttctc caggtcctct acttaatgag atagcagcat acatttataa tgtttgctat tgacaagtca ttttaattta tcacattatt tgcatgttac 4320 ctcctataaa cttagtgcgg acaagtttta atccaqaatt gaccttttga cttaaagcag 4380 aqqqactttq tataqaaggt ttqqqqqctq tqqqqaagqa qagtccctg aaggtctgac 4440 acqtctqcct acccattcgt ggtqatcaat taaatgtagg tatgaataag ttcgaagctc 4500

| cgtgagtgaa cc                                       | atcatata | aacgtgtagt | acagctgttt | gtcatagggc | agttggaaac | 4560 |
|-----------------------------------------------------|----------|------------|------------|------------|------------|------|
| ggcctcctag gg                                       | aaaagttc | atagggtctc | ttcaggttct | tagtgtcact | tacctagatt | 4620 |
| tacagcctca ct                                       | tgaatgtg | tcactactca | cagtctcttt | aatcttcagt | tttatcttta | 4680 |
| atctcctctt tt                                       | atcttgga | ctgacattta | gcgtagctaa | gtgaaaaggt | catagctgag | 4740 |
| attcctggtt cg                                       | ggtgttac | gcacacgtac | ttaaatgaaa | gcatgtggca | tgttcatcgt | 4800 |
| ataacacaat at                                       | gaatacag | ggcatgcatt | ttgcagcagt | gagtctcttc | agaaaaccct | 4860 |
| tttctacagt ta                                       | gggttgag | ttacttccta | tcaagccagt | acgtgctaac | aggctcaata | 4920 |
| ttcctgaatg aa                                       | atatcaga | ctagtgacaa | gctcctggtc | ttgagatgtc | ttctcgttaa | 4980 |
| ggagtagggc ct                                       | tttggagg | taaaggtata |            |            |            | 5010 |
| <210> 356<br><211> 784<br><212> DNA<br><213> Homo s | apiens   |            |            |            |            |      |
| <400> 356<br>agcatttgct ca                          | ggcagcct | ctctgggaag | atgctgcttc | ttcctctccc | cctgctgctc | 60   |
| tttctcttgt gc                                       | tccagagc | tgaagctggg | gagatcatcg | ggggcacaga | atgcaagcca | 120  |
| cattecegee ee                                       | tacatggc | ctacctggaa | attgtaactt | ccaacggtcc | ctcaaaattt | 180  |
| tgtggtggtt tc                                       | cttataag | acggaacttt | gtgctgacgg | ctgctcattg | tgcaggaagg | 240  |
| tctataacag tc                                       | accettgg | agcccataac | ataacagagg | aagaagacac | atggcagaag | 300  |
| cttgaggtta ta                                       | aagcaatt | ccgtcatcca | aaatataaca | cttctactct | tcaccacgat | 360  |
| atcatgttac ta                                       | aagttgaa | ggagaaagcc | agcctgaccc | tggctgtggg | gacactcccc | 420  |
| ttcccatcac aa                                       | ttcaactt | tgtcccacct | gggagaatgt | gccgggtggc | tggctgggga | 480  |
| agaacaggtg tg                                       | ttgaagcc | gggctcagac | actctgcaag | aggtgaagct | gagactcatg | 540  |

gatccccagg cctgcagcca cttcagagac tttgaccaca atcttcagct gtgtgtgggc 660
aatcccagga agacaaaatc tgcatttaag ggagactctg ggggccctct tctgtgtgct 660
ggggtggccc agggcatcgt atcctatgga cggtcggatg caaagccccc tgctgtcttc 720
acccgaatct cccattaccg gccctggatc aaccagatcc tgcaggcaaa ttaatcctgg 780

atcc

<sup>&</sup>lt;210> 357 <211> 5084

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 357

| 60   | tetetgegtt | cergggattt | getegeggeg          | gatgagagge | cagctaccgc | gateceateg |
|------|------------|------------|---------------------|------------|------------|------------|
| 120  | tccaggggaa | catctgtgag | tcttctcaac          | ccagacaggc | tgcttcgcgt | ctgctcctac |
| 180  | gggcgacgag | tagtccgcgt | tcagacttaa          | tccaggaaaa | catccatcca | ccgtctccac |
| 240  | cctggatgaa | cttttgagat | gtcaaatgga          | tccgggcttt | tatgcactga | attaggctgt |
| 300  | caacaccggc | cagaagccac | acggaaaagg          | tgaatggatc | ataagcagaa | acgaatgaga |
| 360  | tgttagagat | tttatgtgtt | agcaattcca          | acacggctta | gcaccaacaa | aaatacacgt |
| 420  | cgacacgctg | aagaagacaa | ttgtatggga          | tgaccgctcc | ttttccttgt | cctgccaagc |
| 480  | gtgccagggg | ccctcaaggg | accaattatt          | cccagaagtg | ctctcacaga | gtccgctgtc |
| 540  | catgatcaaa | aggcgggcat | cctgacccca          | gaggtttatt | ccaaggactt | aagcctcttc |
| 600  | ggagggcaag | ctgtggacca | ctgcattgtt          | teggetetgt | gcgcctacca | agtgtgaaac |
| 660  | tgtgcctgtt | ccttcaaagc | gtgaggccag          | catcctgaaa | cggaaaaatt | tcagtgctgt |
| 720  | agtgacgtgc | aagaattcac | agggaagggg          | ctatcttctt | ccaaagcaag | gtgtctgtgt |
| 780  | cagtcagact | aaagagaaaa | tcaacgtgga          | ttctgtgtac | atgtgtctag | acaataaaag |
| 840  | acgtcaggca | tcaattatga | cacggtgact          | tagctggcat | agaaatataa | aaactacagg |
| 900  | ttatgccaat | tgttcatgtg | gattctggag          | gagagttaat | tcagttcagc | acgttgacta |
| 960  | aggattcatt | tagtagataa | accttggaag          | tgtcacaaca | gatcagcaaa | aatacttttg |
| 1020 | tgtagatttg | atggagaaaa | tttgtaaacg          | cactacagta | ccatgataaa | aatatcttcc |
| 1080 | tatgaacaga | agtggatcta | gaacaccagc          | ccccaaacct | atgaagcatt | attgttgaat |
| 1140 | tatcagatac | atgaaagtaa | aagtctgaga          | agattatccc | ataaatggga | accttcactg |
| 1200 | cacattccta | gaggcactta | ggcaccgaag          | gagattaaaa | ttcatctaac | gtaagtgaac |
| 1260 | tacaaaacca | tttatgtgaa | gcatttaatg          | tgctgccata | ctgacgtcaa | gtgtccaatt |
| 1320 | agcaggattc | aatgtgtggc | ggcatgctcc          | gctcgtgaat | cttacgacag | gaaatcctga |
| 1380 | ctctgcttct | agcagagatg | ccaggaactg          | gtatttttgt | caatagattg | ccagagecca |
| 1440 | aaagctagtg | caccgtttgg | tcatctgggc          | gacactaaac | tggatgtgca | gtactgccag |
| 1500 | atgtaaggct | gcacggttga | aagcacaatg          | tagtgcattc | ctatagattc | gttcagagtt |
| 1560 | taacaacaaa | catttaaagg | tttaactttg          | ttctgcctat | tgggcaagac | tacaacgatg |
| 1620 | aatcgtagct | ttggtttcgt | cctt <b>t</b> gctga | cctgttcact | atccccacac | gagcaaatcc |
| 1680 | acccatgtat | atttacagaa | acctacaaat          | gatgattctg | gcattattgt | ggcatgatgt |
| 1740 | catagaccca | attatgttta | aatggaaaca          | tgaggagata | ggaaggttgt | gaagtacagt |
| 1800 | ttttgggaaa | acaggctgag | tttcccagaa          | caaatgggag | cttatgatca | acacaacttc |
| 1860 | cttaattaag | ctgcttatgg | gttgaggcaa          | cqqqaaqqtt | ctggagcttt | accetqqqtq |

tcaqatqcqq ccatgactgt cgctgtaaag atgctcaagc cgagtgccca tttqacagaa 1920 cgggaagccc tcatqtctga actcaaagtc ctgagttacc ttggtaatca catgaatatt 1980 qtqaatctac ttqqaqcctq caccattgga gggcccaccc tggtcattac agaatattgt 2040 tgctatggtg atcttttgaa ttttttgaga agaaaacgtg attcatttat ttgttcaaag 2100 caggaagatc atgcagaagc tgcactttat aagaatcttc tgcattcaaa ggagtcttcc 2160 tgcagcgata gtactaatga gtacatggac atgaaacctg gagtttctta tgttgtccca 2220 accaaggccg acaaaaggag atctgtgaga ataggctcat acatagaaag agatgtgact 2280 cccqccatca tqqaqqatqa cqaqttqqcc ctaqacttaq aaqacttqct qaqcttttct 2340 taccaggtgg caaagggcat ggctttcctc gcctccaaga attgtattca cagagacttg 2400 2460 qcaqccaqaa atatcctcct tactcatqqt cqqatcacaa aqatttqtqa ttttqqtcta qccaqaqaca tcaaqaatqa ttctaattat qtqqttaaaq qaaacqctcq actacctqtq 2520 2580 aaqtqqatqq cacctqaaaq cattttcaac tqtqtataca cqtttqaaaq tqacqtctqq 2640 tectatggga tttttetttg ggagetgtte tetttaggaa geageeeeta teetggaatg ccggtcgatt ctaagttcta caagatgatc aaggaaggct tccggatgct cagccctgaa 2700 2760 cacgcacctg ctgaaatgta tgacataatg aagacttgct gggatgcaga tcccctaaaa 2820 agaccaacat tcaagcaaat tgttcagcta attgagaagc agatttcaga gagcaccaat catatttact ccaacttagc aaactgcagc cccaaccgac agaagcccqt qqtagaccat 2880 tetqtqcqqa teaattetqt eqqcaqcace getteeteet eccageetet gettgtgcae 2940 gacgatgtct gagcagaatc agtgtttggg tcacccctcc aggaatgatc tcttcttttg 3000 gettecatga tggttatttt ettttette aacttgeate caactecagg atagtgggea 3060 coccactgca atcctgtctt totgagcaca otttagtggc cgatgatttt tgtcatcagc 3120 caccatccta ttqcaaaqqt tccaactqta tatattccca ataqcaacqt aqcttctacc 3180 atgaacagaa aacattctga tttggaaaaa gagagggagg tatggactgg gggccagagt 3240 3300 cctttccaag gcttctccaa ttctgcccaa aaatatggtt gatagtttac ctgaataaat 3360 ggtagtaatc acagttggcc ttcagaacca tccatagtag tatgatgata caagattaga agctgaaaac ctaagtcctt tatgtggaaa acagaacatc attagaacaa aggacagagt 3420 atgaacacct gggcttaaga aatctagtat ttcatgctgg gaatgagaca taggccatga 3480 aaaaaatgat ccccaagtgt gaacaaaaga tgctcttctg tggaccactg catgagcttt 3540 tatactaccg acctggtttt taaatagagt ttgctattag agcattgaat tggagagaag 3600 qcctccctag ccagcacttq tatatacqca tctataaatt gtccgtgttc atacatttga 3660

| ggggaaaaca | ccataaggtt | tegtttetgt | atacaaccct | ggcattatgt | ccactgtgta | 3720 |
|------------|------------|------------|------------|------------|------------|------|
| tagaagtaga | ttaagagcca | tataagtttg | aaggaaacag | ttaataccat | tttttaagga | 3780 |
| aacaatataa | ccacaaagca | cagtttgaac | aaaatctcct | cttttagctg | atgaacttat | 3840 |
| tctgtagatt | ctgtggaaca | agcctatcag | cttcagaatg | gcattgtact | caatggattt | 3900 |
| gatgctgttt | gacaaagtta | ctgattcact | gcatggctcc | cacaggagtg | ggaaaacact | 3960 |
| gccatcttag | tttggattct | tatgtagcag | gaaataaagt | ataggtttag | cctccttcgc | 4020 |
| aggcatgtcc | tggacaccgg | gccagtatct | atatatgtgt | atgtacgttt | gtatgtgtgt | 4080 |
| agacaaatat | ttggaggggt | atttttgccc | tgagtccaag | agggtccttt | agtacctgaa | 4140 |
| aagtaacttg | gctttcatta | ttagtactgc | tcttgtttct | tttcacatag | ctgtctagag | 4200 |
| tagcttacca | gaagcttcca | tagtggtgca | gaggaagtgg | aaggcatcag | tccctatgta | 4260 |
| tttgcagttc | acctgcactt | aaggcactct | gttatttaga | ctcatcttac | tgtacctgtt | 4320 |
| ccttagacct | tccataatgc | tactgtctca | ctgaaacatt | taaattttac | cctttagact | 4380 |
| gtagcctgga | tattattctt | gtagtttacc | tctttaaaaa | caaaacaaaa | caaaacaaaa | 4440 |
| aactcccctt | cctcactgcc | caatataaaa | ggcaaatgtg | tacatggcag | agtttgtgtg | 4500 |
| ttgtcttgaa | agattcaggt | atgttgcctt | tatggtttcc | cccttctaca | tttcttagac | 4560 |
| tacatttaga | gaactgtggc | cgttatctgg | aagtaaccat | ttgcactgga | gttctatgct | 4620 |
| ctcgcacctt | tccaaagtta | acagattttg | gggttgtgtt | gtcacccaag | agattgttgt | 4680 |
| ttgccatact | ttgtctgaaa | aattcctttg | tgtttctatt | gacttcaatg | atagtaagaa | 4740 |
| aagtggttgt | tagttataga | tgtctaggta | cttcaggggc | acttcattga | gagttttgtc | 4800 |
| ttgccatact | ttgtctgaaa | aattcctttg | tgtttctatt | gacttcaatg | atagtaagaa | 4860 |
| aagtggttgt | tagttataga | tgtctaggta | cttcaggggc | acttcattga | gagttttgtc | 4920 |
| aatgtctttt | gaatattccc | aagcccatga | gtccttgaaa | atattttta  | tatatacagt | 4980 |
| aactttatgt | gtaaatacat | aagcggcgta | agtttaaagg | atgttggtgt | tccacgtgtt | 5040 |
| ttattcctgt | atgttgtcca | attgttgaca | gttctgaaga | attc       |            | 5084 |

cctgaaggga ggatgggcta aggcaggcac acagtggcgg agaagatgcc ctcctgggcc 60 ctcttcatgg tcacctcctg cctcctcctg gcccctcaaa acctggccca agtcagcagc 120 caagatgtct ccttgctggc atcagactca gagcccctga agtgtttctc ccgaacattt 180

<sup>&</sup>lt;210> 358 <211> 3646 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 358

gaggacetea ettgettetg ggatgaggaa gaggeagege ecagtgggae ataccagetg 240 ctqtatqcct acceqeqqqa qaaqccceqt qcttqcccc tgagttccca gagcatgccc 300 360 cactttqqaa cccqatacqt qtqccaqttt ccaqaccagg aggaagtgcg tctcttcttt cegetgeace tetgggtgaa gaatgtgtte etaaaceaga eteggaetea gegagteete 420 tttgtggaca gtgtaggcct gccggctccc cccagtatca tcaaggccat gggtgggagc 480 cagccagggg aacttcagat cagctgggag gagccagctc cagaaatcag tgatttcctg 540 600 aggtacgaac tccgctatgg ccccagagat cccaagaact ccactggtcc cacggtcata cagctgattg ccacagaaac ctgctgccct gctctgcaga ggcctcactc agcctctgct 660 720 ctggaccagt ctccatgtgc tcagcccaca atgccctggc aagatggacc aaagcagacc 780 tccccaagta gagaagette agetetgaca gcagagggtg gaagetgeet catetcagga etecageetg geaacteeta etggetgeag etgegeageg aacetgatgg gateteete 840 900 ggtggctcct ggggatcctg gtccctccct gtgactgtgg acctgcctgg agatgcagtg quacttggac tgcaatgctt taccttggac ctgaagaatg ttacctgtca atggcagcaa 960 caggaccatq ctaqctccca aggcttcttc taccacagca gggcacggtg ctgccccaga 1020 qacaqqtacc ccatctqqqa qaactqcqaa gaggaagaga aaacaaatcc aggactacag 1080 accocacagt tototogotg coacttoaag toacgaaatg acagcattat toacatcott 1140 qtqqaqqtqa ccacaqcccc qqqtactqtt cacaqctacc tgggctcccc tttctggatc 1200 caccaggetq tgcgcctccc caccccaaac ttgcactgga gggagatctc cagtgggcat 1260 ctggaattgg agtggcagca cccatcgtcc tgggcagccc aagaqacctg ttatcaactc 1320 1380 cgatacacag gagaaggcca tcaggactgg aaggtgctgg agccgcctct cggggcccga ggagggaccc tggagctgcg cccgcgatct cgctaccgtt tacagctgcg cgccaggctc 1440 aacggcccca cctaccaagg tccctggagc tcgtggtcgg acccaactag ggtggagacc 1500 gccaccgaga ccgcctggat ctccttggtg accgctctgc atctagtgct gggcctcagc 1560 1620 qccqtcctqq qcctgctgct gctgaggtgg cagtttcctg cacactacag gagactgagg catqueetqt qqccctcact tccagacctq caccqqqtcc tagqccagta ccttagggac 1680 actgcagccc tgagcccgcc caaggccaca gtctcagata cctgtgaaga agtggaaccc 1740 agesteettq aaatsetees caagtsetea qagagqasts stittgesset gtgtteetes 1800 caqqcccaqa tqqactaccq aaqattqcaq ccttcttqcc tqggqaccat gcccctgtct 1860 qtqtqccac ccatqqctqa qtcaqqqtcc tqctqtacca cccacattgc caaccattcc 1920 tacctaccac taagctattq qcaqcacct tqaqqacaqq ctcctcactc ccaqttccct 1980 2040

agcaccccag aceteacete catececete tgtetgecet cacaattagg etteattgea 2100 ctgatettac tetactgetg etgacataaa accaggacce tttctccaca ggcaggetca 2160 tttcactaag ctcctccttt acttcctctc tcctctttqa tgtcaaacgc cttgaaaaca 2220 agectecact tecceacact teccatttae tettgagact actteaatta gtteccetae 2280 tacactttgc tagtgaactg cccaggcaaa gtgcacctca aatcttctaa ttccaagatc 2340 caataqqatc tcqttaatca tcagttcctt tgatctcgct gtaagatttg tcaaggctga 2400 ctactcactt ctcctttaaa ttctttccta ccttggtcct gcctctttga gtatattagt 2460 aggttttttt tatttgtttg agacagggtc tcactctgtc acccaggctg cagtgcaatg 2520 gegegatete ageteaetge aacetecace teegggttea agegattett gtgeetegge 2580 ctccctaqta gctgggatta caggcgcaca ccaccacaca cagctaattt ttttttttt 2640 ttttttttt tttttttt ttagacggag ccttgcctgt tgccagactg gagtgcagtg 2700 quacquitte qqctcactqc aacctctgcc tecegggtte aagccattet gcctcagcct 2760 cccaaqtaqc tqqqaqtaca gcqtctqcca ccatgcctaa tttttttcta tttttaggag 2820 agaccggttt tcaccacgtt ggccaggatg gtctcgatat ctgatctcgt gatccgcctg 2880 cctctqcctc ccaaaqtqct qqqattacaq qtqtqaccca ctqcqcacag ccccagctaa 2940 ttttcatatt tttagtagag acagggtttt gccatgttgc ccaggctggt cttgaactcc 3000 taacctcggg tgatccaccc accttggcct cccaaaqtgt taggattaca ggcatgagcc 3060 actgcgcccg gctgagtgta ctagtagtta agagaataaa ctagatctag aatcagagct 3120 3180 ggattcaatt cctgtccttc acatttacta gctgtgcaac cttgggcaca taacttaatg totttgagcc ttagtttttt catctgtaaa acagggataa taacagcacc ccatagagtt 3240 gtgacgagga ttgagataat ctaagtaaag cacagtccct aggacatagt aaatgattca 3300 tatatccgaa ctactgttat aattattcct tcttactctc ctcttctagc atttcttcca 3360 attattacaq tccttcaaqa ttccatttct taacagtctc caatcccatc tattctctgc 3420 ctttactata tgttgaccat tccaaagttc ttatctctag ctcagacatc tactacagca 3480 ctqtqatqct ttatqcaact aactqtttac atatctqtcc cctqctacta qattqtgagc 3540 teettqaqqq aaaqqaacat qatttatttq teetttteee eeaqeaceta qaqtaqtget 3600 3646 tggtgcatga tagtaggcct tcaataaatt ttttctaaat gaatga

<sup>&</sup>lt;210> 359

<sup>&</sup>lt;211> 4010

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

| <400> 359  |            |            |            |              |              |      |
|------------|------------|------------|------------|--------------|--------------|------|
| cggaggggg  | gggccgggct | gegttegete | cagccgcgg  | tctacagcag   | g cgggcggcgg | 60   |
| gacccgggac | ccagettgg  | gacggcgatt | ctcgacgcg  | g gcccccagga | ttctcccggc   | 120  |
| gccccaccto | tggagcagco | cctgccgcca | gcgtcaggt  | caccccggaa   | tcccagggac   | 180  |
| tctcggcgcc | gaacggacco | gggccggtgc | aacggggtc  | ccggactgga   | gaagacgcgg   | 240  |
| gtggcaccgt | gegageteca | ggagccccgg | gtccactgc  | aggcctcggg   | gggcgcagac   | 300  |
| ctgcagagac | tgcggccaac | gggaagaaat | aaagggatta | tagtccaccc   | aattcacaga   | 360  |
| cttctgagac | tcagacacga | ggagagatag | agaaccgcca | atctctagat   | caacaagcaa   | 420  |
| aggaggtgcc | aagcctgttt | gtcttcattg | tgacactgga | gtctagatgc   | tgggaagtcc   | 480  |
| aagatcaggg | tgccggcatg | gtcagttcct | ggcgaagcct | ctcttctagg   | tttcagactg   | 540  |
| ccctcttctt | tgttgtgtcc | tcgaatggca | gaaaaagggg | tggctgttgg   | aggaagggag   | 600  |
| gagagtaaat | gaagagaaag | aactggaata | accccttgca | gaaaaaaaaa   | aaaagggaag   | 660  |
| cttagctgta | caccctgagt | cttgcaaaag | ctgcagcccc | acccaggage   | agggtggtgg   | 720  |
| ctggggcgat | ggtggacgcc | ctgaagatgt | cccatggcta | ctgaaggggc   | tgcccagtta   | 780  |
| gggaacagag | tggcgggcat | ggtgtgtagc | ctatgggtgc | tgctcctggt   | gtcttcagtt   | 840  |
| ctggctctgg | aagaggtatt | gctggacacc | accggagaga | catctgagat   | tggctggctc   | 900  |
| acctacccac | caggggggtg | ggacgaggtg | agtgttctgg | acgaccagcg   | acgcctgact   | 960  |
| cggacctttg | aggcatgtca | tgtggcaggg | gcccctccag | gcaccgggca   | ggacaattgg   | 1020 |
| ttgcagacac | actttgtgga | gcggcgcggg | gcccagaggg | cgcacattcg   | actccacttc   | 1080 |
| tctgtgcggg | catgctccag | cctgggtgtg | ageggeggea | cctgccggga   | gaccttcacc   | 1140 |
| ctttactacc | gtcaggctga | ggagcccgac | agccctgaca | gcgtttcctc   | ctggcacctc   | 1200 |
| aaacgctgga | ccaaggtgga | cacaattgca | gcagacgaga | gctttccctc   | ctcctcctcc   | 1260 |
| tectectect | cttcttcctc | tgcagcgtgg | gctgtgggac | cccacggggc   | tgggcagcgg   | 1320 |
| gctggactgc | aactgaacgt | caaagagcgg | agctttgggc | ctctcaccca   | acgcggcttc   | 1380 |
| tacgtggcct | tccaggacac | gggggcctgc | ctggccctgg | tcgctgtcag   | gctcttctcc   | 1440 |
| tacacctgcc | ctgccgtgct | ccgatccttt | gcttcctttc | cagagacgca   | ggccagtggg   | 1500 |
| gctggggggg | cctccctggt | ggcagctgtg | ggcacctgtg | tggctcatgc   | agagccagag   | 1560 |
| gaggatggag | tagggggcca | ggcaggaggc | agccccccca | ggctgcactg   | caacggggag   | 1620 |
| ggcaagtgga | tggtagctgt | cgggggctgc | cgctgccagc | ctggatacca   | accagcacga   | 1680 |
| ggagacaagg | cctgccaagc | ctgcccacgg | gggctctata | agtettetge   | tgggaatgct   | 1740 |
| ccctgctcac | catgccctgc | ccgcagtcac | gctcccaacc | cagcagcccc   | cgtttgcccc   | 1800 |
|            |            |            |            |              |              |      |

tgcctggagg gcttctaccg ggccagttcc gacccaccag aggccccctg cactggtcct 1860 ccatcggctc cccaggagct ttggtttgag gtgcaaggct cagcactcat gctacactgg 1920 cgcctgcctc gggagctggg gggtcgaggg gacctgctct tcaatgtcgt gtgcaaggag 1980 tgtgaaggcc gccaggaacc tgccagcggt ggtgggggca cttgtcaccg ctgcagggat 2040 gaggtccact tcgaccctcg ccagagaggc ctgactgaga gccgagtgtt agtgggggga 2100 ctccgggcac acgtacccta catcttagag gtgcaggctg ttaatggggt gtctgagctc 2160 agccctgacc ctcctcaggc tgcagccatc aatgtcagca ccagccatga agtgccctct 2220 getgteeetg tggtgeacea ggtgageegg geatecaaca geateaeggt gteetggeeg 2280 cagecegace agaceaatgg gaacateetg gaetateage teegetaeta tgaceaggea 2340 gaagacgaat cccactcctt caccctgacc agcgagacca acactgccac cgtgacacag 2400 ctgagccctg gccacatcta tggtttccag gtgcgggccc ggactgctgc cggccacggc 2460 ccctacgggg gcaaagtcta tttccagaca cttcctcaag gggagctgtc ttcccagctt 2520 ccggaaagac teteettggt gateggetee ateetggggg etttggeett eeteetgetg 2580 gcagccatca ccgtgctggc ggtcgtcttc cagcggaagc ggcgtgggac tggctacacg 2640 gagcagctgc agcaatacag cagcccagga ctcggggtga agtattacat cgaccctcc 2700 acctacgagg acccctgtca ggccatccga gaacttgccc gggaagtcga tcctgcttat 2760 atcaagattg aggaggtcat tgggacaggc tettttggag aagtgegeca gggeegeetg 2820 cagccacggg gacggaggga gcagactgtg gccatccagg ccctgtgggc cggggggcgcc 2880 gaaagcctgc agatgacctt cctgggccgg gccgcagtgc tgggtcagtt ccagcacccc 2940 aacateetge ggetggaggg egtggteace aagageegae eeeteatggt getgaeggag 3000 ttcatggagc ttggccccct ggacagcttc ctcaggcagc gggagggcca gttcagcagc 3060 ctgcagctgg tggccatgca gcggggagtg gctgctgcca tgcagtacct gtccagcttt 3120 geettegtee ategeteget gtetgeecac agegtgetgg tgaatageea ettggtgtge 3180 aaggtggccc gtcttggcca cagtcctcag ggcccaagtt gtttgcttcg ctgggcagcc 3240 ccagaggtca ttgcacatgg aaagcataca acatccagtg atgtctggag ctttgggata 3300 ctcatgtggg aagtgatgag ttatggagaa cggccttact gggacatgag tgagcaggag 3360 gtactaaatg caatagagca ggagttccgg ctgccccgc ctccaggctg tcctcctgga 3420 ttacatctac ttatgttgga cacttggcag aaggaccgtg cccggcggcc tcattttgac 3480 cagetggtgg etgeatttga caagatgate egeaageeag ataceetgea ggetggeggg 3540 gacccagggg aaaggccttc ccaggccctt ctgacccctg tggccctgga ctttccttgt 3600 ctggactcac cccaggcctg gctttcagcc attggactgg agtgctacca ggacaacttc 3660

tccaagtttg gcctctgtac cttcagtgat gtggctcagc tcagcctaga agacctgcct 3720 gccctgggca tcaccctggc tggccaccag aagaagctgc tgcaccacat ccageteett 3780 cagcaacacc tgaggcagca gggctcagtg gaggtctgag aatgacgata cccgtgactc 3840 agccctggac actggtccga gaagggacat gtgggacgtg agccgggctc caacagcctc 3900 tgtgagagat geeccacace aaacccaace etceegatgg etgeatteee tggteeteeg 3960 cetetecace agececetee teattaaagg gaaagaaggg aatttgcaaa 4010 <210> 360 <211> 1849 <212> DNA

<213> Homo sapiens <400> 360 acttagaggc gcctggtcgg gaagggcctg gtcagctgcg tccggcggag gcagctgctg 60 acccagetgt ggaetgtgee gggggegggg gaeggagggg eaggageeet gggeteeeeg 120 tggcgggggc tgtatcatgg accaectegg ggcgtccctc tggccccagg tcggctccct 180 ttgtctcctg ctcgctgggg ccgcctgggc gcccccgcct aacctcccgg accccaagtt 240 cgagagcaaa gcggccttgc tggcggcccg ggggcccgaa gagcttctgt gcttcaccga 300 gcggttggag gacttggtgt gtttctggga ggaagcggcg agcgctgggg tgggcccggg 360 caactacage ttetectace agetegagga tgagecatgg aagetgtgte geetgeacea 420 ggctcccacg gctcgtggtg cggtgcgctt ctggtgttcg ctgcctacag ccgacacqtc 480 gagettegtg eccetagagt tgegegteae ageageetee ggegeteege gatateaeeg 540 tgtcatccac atcaatgaag tagtgctcct agacgccccc gtggggctgg tggcgcggtt 600 ggctgacgag agcggccacg tagtgttgcg ctggctcccg ccgcctgaga cacccatgac 660 gtctcacatc cgctacgagg tggacgtctc ggccggcaac ggcgcaggga gcgtacagag 720 ggtggagatc ctggagggcc gcaccgagtg tgtgctgagc aacctgcggg gccggacgcg 780 ctacacette geogteegeg egegtatgge tgageegage tteggegget tetggagege 840 ctggtcggag cctgtgtcgc tgctgacgcc tagcgacctg gaccccctca tcctgacgct 900 ctccctcatc ctcgtggtca tcctggtgct gctgaccgtg ctcgcgctgc tctcccaccg 960 ccgggctctg aagcagaaga tctggcctgg catcccgagc ccagagagcg agtttgaagg 1020 cetettcace acceacaagg gtaactteca getgtggetg taccagaatg atggetgeet 1080 gtggtggagc ccctgcaccc ccttcacgga ggacccacct gcttccctgg aagtcctctc 1140 agagcgctgc tgggggacga tgcaggcagt ggagccgggg acagatgatg agggccccct

gctggagcca gtgggcagtg agcatgccca ggatacctat ctggtgctgg acaaatggtt

1200

gctgcccqq aacccqccca qtqaqqacct cccagggcct qqtqqcaqtg tggacatagt 1320 ggccatggat gaaggctcag aagcatcctc ctgctcatct gctttggcct cgaagcccag 1380 cccaqaqqqa qcctctqctq ccaqctttqa qtacactatc ctqqacccca gctcccagct 1440 cttgcgtcca tggacactgt gccctgaget gccccctacc ccaccccacc taaagtacct 1500 gtaccttgtg gtatctgact ctggcatctc aactgactac agctcagggg actcccaggg 1560 ageceaaggg ggettateeg atggeeecta etceaaceet tatgagaaca geettateee 1620 agcegetqag cetetgeece ceagetatgt ggettgetet taggacacca ggetgeagat 1680 gatcagggat ccaatatgac tcagagaacc agtgcagact caagacttat ggaacaggga 1740 tggcgaggcc tctctcagga gcaggggcat tgctgatttt gtctgcccaa tccatcctgc 1800 tcaggaaacc acaaccttgc agtattttta aatatgtata gtttttttg 1849 <210> 361 <211> 1326

<400> 361 atgtccccca tctcaggagc ctcgcccagc tggagggctg cacccaaagc ctcagacctg 60 120 ctgggggccc ggggcccagg gggaaccttc cagggccgag atcttcgagg cggggcccat gcctcctctt cttccttgaa ccccatgcca ccatcgcagc tgcagctctc aacggtggat 180 qcccacqccc qqacccctqt gctqcaggtg cacccctgg agagcccagc catgatcagc 240 ctcacaccac ccaccaccgc cactggggtc ttctccctca aggcccggcc tggcctccca 300 cctqqqatca acqtqqccaq cctqqaatqq qtqtccaqqq agccgqcact gctctqcacc 360 420 ttcccaaatc ccaqtqcacc caqqaaqqac aqcacccttt cqqctgtgcc ccaqaqctcc 480 tacccactqc tqqcaaatqq tqtctqcaaq tqqcccqqat qtqaqaaqqt cttcqaaqaq ccaqaqqact tecteaaqca etqccaqqcq qaccatette tqqatqaqaa qqqcaqqqca 540 caatgtctcc tccagagaga gatggtacag tctctggagc agcagctggt gctggagaag 600 gagaagetga gtgccatgca ggcccacctg gctgggaaaa tggcactgac caaggettca 660 720 tetgtggeat cateegacaa gggeteetge tgeategtag etgetggeag eeaaggeeet gtegteecag cetggtetgg ceceegggag geceetgaca geetgtttge tgteeggagg 780 cacctgtggg gtagccatgg aaacagcaca ttcccagagt tcctccacaa catggactac 840 ttcaagttcc acaacatgcg accecetttc acctacgcca cgctcatccg ctgggccatc 900 ctggaggctc cagagaagca gcggacactc aatgagatct accactggtt cacacgcatg 960 tttgccttct tcaqaaacca tcctgccacc tgqaaqqtga qctcctctga ggtggcggtg 1020

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

actqqqatqq cctcaaqtqc catcqcaqct caaaqtqqqc aggcctqqgt ctqqqctcat 1080 aggcacattq qqqaqqaacq qqatqtqqqt tgttgqtqqt ggctgctggc ctcaqaqqtt 1140 qacqcccacc tqctccctqt ccccqqcctt ccacaqaacq ccatccqcca caacctqagt 1200 ctqcacaaqt qctttqtqcq qqtqqaqaqc qaqaaqqqqq ctqtqtqqac cqtqqatqaq 1260 ctggagttcc gcaagaaacg gagccagagg cccagcaggt gttccaaccc tacacctggc 1320 ccctga 1326

<210> 362

<211> 1498 <212> DNA

<213> Homo sapiens

<400> 362

qcaaaqqcca aqqccagcca ggacaccccc tgggatcaca ctgagcttgc cacatcccca 60 aggegeeqa accetecqea accaceagee caggttaate cecagagget ceatggagtt 120 180 coctqqcctq qqqtccctqq qqacctcaga gcccctcccc cagtttgtgg atcctgctct qqtqtcctcc acaccaqaat caqqqqtttt cttcccctct qqqcctgagg qcttggatgc 240 aggagettee tecactgee eqaqeacage caccqctgea getgeggeac tggcctacta 300 360 cagggacgct gaggcctaca gacactcccc agtctttcag gtgtacccat tgctcaactg 420 tatggaggg atcccagggg gctcaccata tgccggctgg gcctacggca agacggggct ctaccctgcc tcaactgtgt gtcccacccg cgaggactct cctccccagg ccgtggaaga 480 540 totggatgga aaaggcagca ccagottoot ggagactttg aagacagago ggotgagooo aqacetectg accetgggac etgcactgce ttcatcactc cetgtececa atagtgetta 600 tgggggccct gacttttcca gtaccttctt ttctcccacc gggagccccc tcaattcagc 660 agoctatics teleccaage tiegtggaas teleccettg celectigig aggecaggga 720 780 qtqtqtqaac tqcqqaqcaa caqccactcc actgtggcqq agggacagga caggccacta cctatgcaac gcctgcggcc tctatcacaa gatgaatggg cagaacaggc ccctcatccg 840 900 qcccaaqaaq cqcctqattq tcaqtaaacq qqcaqqtact caqtqcacca actqccaqac gaccaccacg acactgtggc ggagaaatgc cagtggggat cccgtgtgca atgcctgcgg 960 1020 cctctactac aagctacacc aggtgaaccg gccactgacc atgcggaagg atggtattca 1080 gactcgaaac cgcaaggcat ctggaaaagg gaaaaagaaa cggggctcca gtctgggagg cacaggagea geogaaggac cagetggtgg etttatggtg gtggetgggg geageggtag 1140 1200 cgggaattgt ggggaggtgg cttcaggcct gacactgggc cccccaggta ctgcccatct ctaccaaggc ctgggccctg tggtgctgtc agggcctgtt agccacctca tgcctttccc 1260

1320

tggacccta ctgggctcac ccacgggctc cttccccaca ggccccatgc ccccaccac

cagcactact gtggtggctc cgctcagctc atgagggcac agagcatggc ctccaqagga 1380 ggggtggtgt ccttctcctc ttgtagccag aattctggac aacccaagtc tctgggcccc 1440 aggcaccccc tggcttgaac cttcaaagct tttgtaaaat aaaaccacca aagtcctg 1498 <210> 363 <211> 3334 <212> DNA <213> Homo sapiens <400> 363 attectgeet gggaggttgt ggaagaagga agatggeeag agetttgtgt ceactgeaag 60 ccctctggct tctggagtgg gtgctgctgc tcttgggacc ttgtgctgcc cctccaqcct 120 gggccttgaa cctggaccca gtgcagctca ccttctatgc aggccccaat ggcagccagt 180 ttggattttc actggacttc cacaaggaca gccatgggag agtggccatc gtggtgggcg 240 cccqcqqac cctgqqcccc agccaggagg agacgggcgg cgtgttcctg tgcccctgga 300 qqqccqaqqq cqqccagtqc ccctcqctqc tctttgacct ccgtgatgag acccgaaatg 360 420 taggetecca aaetttacaa aeetteaagg ceegecaagg aetgggggeg teggtegtea

qctqqaqcqa cqtcattqtq qcctqcqccc cctqqcaqca ctgqaacqtc ctagaaaaga 480 ctgaggaggc tgagaagacg cccgtaggta gctgcttttt ggctcagcca gagagcggcc 540 600 geogegeega gtactecece tgtegeggga acaeeetgag cegeatttae gtggaaaatg 660 attttagctg ggacaagcgt tactgtgaag cgggcttcag ctccgtggtc actcaggccg 720 gagagetggt gettgggget cetggegget attatttett aggteteetg geceaggete 780 cagttgcgga tattttctcg agttaccgcc caggcatcct tttgtggcac gtgtcctccc agageetete etttgaetee ageaaceeag agtaettega eggetaetgg gggtaetegg 840 tggccqtggg cgagttcgac ggggatctca acactacaga atatgtcgtc ggtgcccca 900 cttggaqctq gaccctqqga gcqqtqqaaa ttttqgattc ctactaccag aggctgcatc 960 qqctqcqcq aqaqcaqatq qcqtcqtatt ttqqqcattc aqtqqctqtc actqacqtca 1020 acggggatgg gaggcatgat ctgctggtgg gcgctccact gtatatggag agccgggcag 1080 1140 accqaaaact qqccqaaqtq qqqcqtqtqt atttqttcct gcagccgcqa qqcccccacg egetgggtge ceccaquete etgetgactg geacacaget etatgggega tteggetetg 1200 1260 ccatcqcacc cctqqqcqac ctcqaccqqq atqqctacaa tqacattqca qtqqctgccc 1320 cctacggggg tcccagtggc cggggccaag tgctggtgtt cctgggtcag agtgaggggc tgaggtcacg tccctcccag gtcctggaca gccccttccc cacaggctct gcctttggct 1380

totocottog aggtgccqta qacategatg acaacggata cocagacotg atcgtgggag 1440 cttacggggc caaccaggtg gctgtgtaca gagctcagcc agtggtgaag gcctctgtcc 1500 agctactggt gcaagattca ctgaatcctg ctgtgaagag ctgtgtccta cctcagacca 1560 agacaccegt gagetgette aacatecaga tgtgtgttgg agccactggg cacaacatte 1620 ctcagaaqct atccctaaat gccgagctgc agctggaccg gcagaagccc cgccagggcc 1680 ggcgggtgct gctgctgggc tctcaacagg caggcaccac cctgaacctg gatctgggcg 1740 gaaagcacag ccccatctgc cacaccacca tggccttcct tcgagatgag gcagacttcc 1800 qggacaagct gagccccatt gtgctcagcc tcaatgtgtc cctaccgccc acggaggctg 1860 gaatggcccc tgctgtcgtg ctgcatggag acacccatgt gcaggagcag acacgaatcg 1920 tectggacte tggggaagat gacgtatgtg tgccccaget tcagetcact gccagegtga 1980 cqqqctcccc qctcctaqtt qqqqcagata atgtcctgga gctgcagatg gacgcagcca 2040 acqaqqqqa qqqqqctat qaaqcaqagc tggccgtgca cctgccccag ggcgcccact 2100 acatqcqqqc cctaagcaat qtcgagggct ttgagagact catctgtaat cagaagaagg 2160 aqaatqaqac caqqqtqqtq ctqttqaqc tqggcaaccc catgaagaag aacgcccaga 2220 taggaatcgc gatgttggtg agcgtgggga atctggaaga ggctggggag tctgtgtcct 2280 tccagctgca gatacggagc aagaacagcc agaatccaaa cagcaagatt gtgctgctgg 2340 2400 acgtgccggt ccgggcagag gcccaagtgg agctgcgagg gaactccttt ccagcctccc 2460 tggtggtggc agcagaagaa ggtgagaggg agcagaacag cttggacagc tggggaccca 2520 aagtggagga cacctatgag ctccacaaca atggccctgg gactgtgaat ggtcttcacc tcagcatcca ccttccggga cagtcccagc cctccgacct gctctacatc ctggatatac 2580 agecceaggg gggeetteag tgetteecae agecteetgt caaccetete aaggtggaet 2640 qqqqqctqcc catccccagc ccctccccca ttcacccggc ccatcacaag cgggatcgca 2700 gacagatett cetgecagag ceegageage cetegagget teaggateca gttetegtaa 2760 qctqcqactc qqcqccctqt actqtgqtqc aqtqtgacct gcaggagatg gcgcgcgggc 2820 agegggeeat ggteaeggtg etggeettee tgtggetgee eageetetae eagaggeete 2880 tggatcagtt tgtgctgcag tcgcacgcat ggttcaacgt gtcctccctc ccctatgcgg 2940 tgccccqct caqcctqccc cqaqqqqaaq ctcaqqtqtq qacacaqctq ctccqqqcct 3000 3060 tqqaqqaqaq qqccattcca atctqqtqqq tqctqqtqqq tqtqctqqqt qqcctqctgc 3120 tgctcaccat cctggtcctg gccatgtgga aggtcggctt cttcaagcgg aaccggccac ccctggaaga agatgatgaa gagggggagt gatggtgcag cctacactat tctagcagga 3180

| gggttgggcg                                        | tgctacctgc | accgcccctt | ctccaacaag | ttgcctccaa | gettigggtt | 3240 |
|---------------------------------------------------|------------|------------|------------|------------|------------|------|
| ggagctgttc                                        | cattgggtcc | tcttggtgtc | gtttccctcc | caacagagct | gggctacccc | 3300 |
| ccctcctgct                                        | gcctaataaa | gagactgagc | cctg       |            |            | 3334 |
| <210> 364<br><211> 738<br><212> DNA<br><213> Home | o sapiens  |            |            |            |            |      |
| <400> 364<br>gtatctgtgg                           | taaacccagt | gacacggggg | agatgacata | caaaaagggc | aggacctgag | 60   |
| aaagattaag                                        | ctgcaggctc | cctgcccata | aaacagggtg | tgaaaggcat | ctcagcggct | 120  |
| gccccaccat                                        | ggctacctgg | gccctcctgc | teettgeage | catgeteetg | ggcaacccag | 180  |
| gtctggtctt                                        | ctctcgtctg | agccctgagt | actacgacct | ggcaagagcc | cacctgcgtg | 240  |
| atgaggagaa                                        | atcctgcccg | tgcctggccc | aggagggccc | ccagggtgac | ctgttgacca | 300  |
| aaacacagga                                        | gctgggccgt | gactacagga | cctgtctgac | gatagtccaa | aaactgaaga | 360  |
| agatggtgga                                        | taagcccacc | cagagaagtg | tttccaatgc | tgcgacccgg | gtgtgtagga | 420  |
| cggggaggtc                                        | acgatggcgc | gacgtctgca | gaaatttcat | gaggaggtat | cagtctagag | 480  |
| ttacccaggg                                        | cctcgtggcc | ggagaaactg | cccagcagat | ctgtgaggac | ctcaggttgt | 540  |
| gtataccttc                                        | tacaggtccc | ctctgagccc | tctcaccttg | tcctgtggaa | gaagcacagg | 600  |
| ctcctgtcct                                        | cagatcccgg | gaacctcagc | aacctctgcc | ggctcctcgc | ttcctcgatc | 660  |
| cagaatccac                                        | tctccagtct | ccctcccctg | actccctctg | ctgtcctccc | ctctcacgag | 720  |
| aataaagtgt                                        | caagcaag   |            |            |            |            | 738  |
| <210> 365<br><211> 878<br><212> DNA<br><213> Hom  |            |            |            |            |            |      |
| <400> 365<br>cagattttca                           | ggttgattga | tgtgggacag | cagccacaat | gaggaactcc | tatagatttc | 60   |
| tggcatcctc                                        | tctctcagtt | gtcgtttctc | tcctgctaat | tcctgaagat | gtctgtgaaa | 120  |
| aaattattgg                                        | aggaaatgaa | gtaactcctc | attcaagacc | ctacatggtc | ctacttagtc | 180  |
| ttgacagaaa                                        | aaccatctgt | gctggggctt | tgattgcaaa | agactgggtg | ttgactgcag | 240  |
| ctcactgtaa                                        | cttgaacaaa | aggtcccagg | tcattcttgg | ggctcactca | ataaccaggg | 300  |
| aagagccaac                                        | aaaacagata | atgcttgtta | agaaagagtt | tecetateca | tgctatgacc | 360  |
| cagccacacg                                        | cgaaggtgac | cttaaacttt | tacagctgac | ggaaaaagca | aaaattaaca | 420  |
| aatatgtgac                                        | tatccttcat | ctacctaaaa | agggggatga | tgtgaaacca | ggaaccatgt | 480  |

| gccaagttgc                                        | agggtggggg | aggactcaca | atagtgcatc | ttggtccgat | actctgagag | 540 |
|---------------------------------------------------|------------|------------|------------|------------|------------|-----|
| aagtcaatat                                        | caccatcata | gacagaaaag | tctgcaatga | tcgaaatcac | tataatttta | 600 |
| accctgtgat                                        | tggaatgaat | atggtttgtg | ctggaagcct | ccgaggtgga | agagactcgt | 660 |
| gcaatggaga                                        | ttctggaagc | cctttgttgt | gcgagggtgt | tttccgaggg | gtcacttcct | 720 |
| ttggccttga                                        | aaataaatgc | ggagaccctc | gtgggcctgg | tgtctatatt | cttctctcaa | 780 |
| agaaacacct                                        | caactggata | attatgacta | tcaagggagc | agtttaaata | accgtttcct | 840 |
| ttcatttact                                        | gtggcttctt | aatcttttca | caaataaa   |            |            | 878 |
| <210> 366<br><211> 576<br><212> DNA<br><213> Homo | o sapiens  |            |            |            |            |     |
|                                                   | tccccacaga | ctcagagaga | acccaccatg | gtgctgtctc | ctgccgacaa | 60  |
| gaccaacgtc                                        | aaggccgcct | ggggtaaggt | cggcgcgcac | gctggcgagt | atggtgcgga | 120 |
| ggccctggag                                        | aggatgttcc | tgtccttccc | caccaccaag | acctacttcc | cgcacttcga | 180 |
| cctgagccac                                        | ggctctgccc | aggttaaggg | ccacggcaag | aaggtggccg | acgcgctgac | 240 |
| caacgccgtg                                        | gcgcacgtgg | acgacatgcc | caacgcgctg | tccgccctga | gcgacctgca | 300 |
| cgcgcacaag                                        | cttcgggtgg | acccggtcaa | cttcaagctc | ctaagccact | gcctgctggt | 360 |
| gaccctggcc                                        | gcccacctcc | ccgccgagtt | cacccctgcg | gtgcacgcct | ccctggacaa | 420 |
| gttcctggct                                        | tctgtgagca | ccgtgctgac | ctccaaatac | cgttaagctg | gagcctcggt | 480 |
| ggccatgctt                                        | cttgcccctt | gggcctcccc | ccagcccctc | ctcccttcc  | tgcacccgta | 540 |
| ccccgtggt                                         | ctttgaataa | agtctgagtg | ggcggc     |            |            | 576 |
|                                                   | o sapiens  |            |            |            |            |     |
| <400> 367<br>accaaggcca                           | gtcctgagca | ggcccaactc | cagtgcagct | gcccaccctg | ccgccatgtc | 60  |
| tctgaccaag                                        | actgagagga | ccatcattgt | gtccatgtgg | gccaagatct | ccacgcaggc | 120 |
| cgacaccatc                                        | ggcaccgaga | ctctggagag | gctcttcctc | agccacccgc | agaccaagac | 180 |
| ctacttcccg                                        | cacttcgacc | tgcacccggg | gtccgcgcag | ttgcgcgcgc | acggctccaa | 240 |
| ggtggtggcc                                        | gccgtgggcg | acgcggtgaa | gagcatcgac | gacatcggcg | gcgccctgtc | 300 |
| caagetgage                                        | gagetgeacg | cctacatcct | acacatagac | ccggtcaact | tcaagctcct | 360 |

| gtcccactgc                                        | ctgctggtca | ccctggccgc | gegetteece | gccgacttca | cggccgaggc | 420 |
|---------------------------------------------------|------------|------------|------------|------------|------------|-----|
| ccacgccgcc                                        | tgggacaagt | tcctatcggt | cgtatcctct | gtcctgaccg | agaagtaccg | 480 |
| ctgagcgccg                                        | cctccgggac | ccccaggaca | ggctgcggcc | cctccccgt  | cctggaggtt | 540 |
| ccccagcccc                                        | acttaccgcg | taatgcgcca | ataaaccaat | gaacgaagc  |            | 589 |
| <210> 368<br><211> 626<br><212> DNA<br><213> Homo | o sapiens  |            |            |            |            |     |
| <400> 368<br>acatttgctt                           | ctgacacaac | tgtgttcact | agcaacctca | aacagacacc | atggtgcatc | 60  |
| tgactcctga                                        | ggagaagtct | gccgttactg | ccctgtgggg | caaggtgaac | gtggatgaag | 120 |
| ttggtggtga                                        | ggccctgggc | aggctgctgg | tggtctaccc | ttggacccag | aggttctttg | 180 |
| agtcctttgg                                        | ggatctgtcc | actcctgatg | ctgttatggg | caaccctaag | gtgaaggctc | 240 |
| atggcaagaa                                        | agtgctcggt | gcctttagtg | atggcctggc | tcacctggac | aacctcaagg | 300 |
| gcacctttgc                                        | cacactgagt | gagctgcact | gtgacaagct | gcacgtggat | cctgagaact | 360 |
| tcaggctcct                                        | gggcaacgtg | ctggtctgtg | tgctggccca | tcactttggc | aaagaattca | 420 |
| ccccaccagt                                        | gcaggctgcc | tatcagaaag | tggtggctgg | tgtggctaat | gccctggccc | 480 |
| acaagtatca                                        | ctaagctcgc | tttcttgctg | tccaatttct | attaaaggtt | cctttgttcc | 540 |
| ctaagtccaa                                        | ctactaaact | gggggatatt | atgaagggcc | ttgagcatct | ggattctgcc | 600 |
| taataaaaaa                                        | catttattt  | cattgc     |            |            |            | 626 |
| <210> 369<br><211> 624<br><212> DNA<br><213> Homo | o sapiens  |            |            |            |            |     |
| <400> 369                                         | atanantnaa | 2010110201 | 2002200102 | 22020200   | ataataaata | 60  |
|                                                   | ctgacataac |            |            |            |            | 120 |
|                                                   | ggagaagact |            |            |            |            |     |
|                                                   | ggccctgggc |            |            |            |            | 180 |
|                                                   | ggatctgtcc |            |            |            |            | 240 |
|                                                   | ggtgctaggt |            |            |            |            | 300 |
|                                                   | tcagctgagt |            |            |            |            | 360 |
|                                                   | gggcaatgtg |            |            |            |            | 420 |
|                                                   | gcaggctgcc |            |            |            |            | 480 |
| acaagtacca                                        | ttgagatcct | ggactgtttc | ctgataacca | taagaagacc | ctatttccct | 540 |

| agattctatt                                        | ttctgaactt | gggaacacaa | tgcctacttc | aagggtatgg | cttctgccta | 600 |
|---------------------------------------------------|------------|------------|------------|------------|------------|-----|
| ataaagaatg                                        | ttcagctcaa | cttc       |            |            |            | 624 |
| <210> 370<br><211> 816<br><212> DNA<br><213> Home | o sapiens  |            |            |            |            |     |
| <400> 370<br>caacaaaaaa                           | gagcctcagg | atccagcaca | cattatcaca | aacttagtgt | ccatccatca | 60  |
| ctgctgaccc                                        | tctccggacc | tgactccacc | cctgagggac | acaggtcagc | cttgaccaat | 120 |
| gacttttaag                                        | taccatggag | aacagggggc | cagaacttcg | gcagtaaaga | ataaaaggcc | 180 |
| agacagagag                                        | gcagcagcac | atatctgctt | ccgacacagc | tgcaatcact | agcaagctct | 240 |
| caggcctggc                                        | atcatggtgc | attttactgc | tgaggagaag | gctgccgtca | ctagcctgtg | 300 |
| gagcaagatg                                        | aatgtggaag | aggctggagg | tgaagccttg | ggcagactcc | tcgttgttta | 360 |
| cccctggacc                                        | cagagatttt | ttgacagctt | tggaaacctg | tcgtctccct | ctgccatcct | 420 |
| gggcaacccc                                        | aaggtcaagg | cccatggcaa | gaaggtgctg | acttcctttg | gagatgctat | 480 |
| taaaaacatg                                        | gacaacctca | agcccgcctt | tgctaagctg | agtgagctgc | actgtgacaa | 540 |
| gctgcatgtg                                        | gatcctgaga | acttcaagct | cctgggtaac | gtgatggtga | ttattctggc | 600 |
| tactcacttt                                        | ggcaaggagt | tcacccctga | agtgcaggct | gcctggcaga | agctggtgtc | 660 |
| tgctgtcgcc                                        | attgccctgg | cccataagta | ccactgagtt | ctcttccagt | ttgcaggtgt | 720 |
| tcctgtgacc                                        | ctgacaccct | ccttctgcac | atggggactg | ggcttggcct | tgagagaaag | 780 |
| ccttctgttt                                        | aataaagtac | attttcttca | gtaatc     |            |            | 816 |
| <210> 371<br><211> 584<br><212> DNA<br><213> Hom  | o sapiens  |            |            |            |            |     |
| <400> 371<br>acactcgctt                           | ctggaacgtc | tgaggttatc | aataagctcc | tagtccagac | gccatgggtc | 60  |
| atttcacaga                                        | ggaggacaag | gctactatca | caagcctgtg | gggcaaggtg | aatgtggaag | 120 |
| atgctggagg                                        | agaaaccctg | ggaaggetee | tggttgtcta | cccatggacc | cagaggttct | 180 |
| ttgacagett                                        | tggcaacctg | tcctctgcct | ctgccatcat | gggcaacccc | aaagtcaagg | 240 |
| cacatggcaa                                        | gaaggtgctg | acttccttgg | gagatgccac | aaagcacctg | gatgatctca | 300 |
| agggcacctt                                        | tgcccagctg | agtgaactgc | actgtgacaa | gctgcatgtg | gatcctgaga | 360 |
| acttcaagct                                        | cctgggaaat | gtgctggtga | ccgttttggc | aatccatttc | ggcaaagaat | 420 |

| Leacecetga                                        | ggtgtaggtt     | ccccggcaga | agatggtgat | egeageggee | agegeeeege   | 400 |
|---------------------------------------------------|----------------|------------|------------|------------|--------------|-----|
| cctccagata                                        | ccactgagct     | cactgcccat | gattcagagc | tttcaaggat | aggctttatt   | 540 |
| ctgcaagcaa                                        | tacaaataat     | aaatctattc | tgctgagaga | tcac       |              | 584 |
| <210> 372<br><211> 651<br><212> DNA<br><213> Home | o sapiens      |            |            |            |              |     |
| <400> 372                                         |                |            |            | ~~~~~~~    | aggaga 2 ags | 60  |
|                                                   |                |            | _          | gacccccggg |              |     |
|                                                   |                |            |            | gtccgcgcag |              | 120 |
|                                                   |                |            |            | teegeggagg |              | 180 |
| ggtgcgcgcc                                        | ctgtggaaga     | agctgggcag | caacgtcggc | gtctacacga | cagaggccct   | 240 |
| ggaaaggacc                                        | ttcctggctt     | teceegecae | gaagacctac | ttctcccacc | tggacctgag   | 300 |
| ccccggctcc                                        | tcacaagtca     | gagcccacgg | ccagaaggtg | gcggacgcgc | tgagcctcgc   | 360 |
| cgtggagcgc                                        | ctggacgacc     | taccccacgc | gctgtccgcg | ctgagccacc | tgcacgcgtg   | 420 |
| ccagctgcga                                        | gtggacccgg     | ccagcttcca | gctcctgggc | cactgcctgc | tggtaaccct   | 480 |
| cgcccggcac                                        | taccccggag     | acttcagccc | cgcgctgcag | gcgtcgctgg | acaagttcct   | 540 |
| gagccacgtt                                        | atctcggcgc     | tggtttccga | gtaccgctga | actgtgggtg | ggtggccgcg   | 600 |
| ggatccccag                                        | gcgaccttcc     | ccgtgtttga | gtaaagcctc | tcccaggagc | a            | 651 |
|                                                   | 7<br>o sapiens |            |            |            |              |     |
| <400> 373<br>gctcacagtc                           | atcaattata     | gaccccacaa | catgcgccct | gaagacagaa | tgttccatat   | 60  |
| cagagetgtg                                        | atcttgagag     | ccctctcctt | ggctttcctg | ctgagtctcc | gaggagctgg   | 120 |
| ggccatcaag                                        | gcggaccatg     | tgtcaactta | tgccgcgttt | gtacagacgc | atagaccaac   | 180 |
| aggggagttt                                        | atgtttgaat     | ttgatgaaga | tgagatgttc | tatgtggatc | tggacaagaa   | 240 |
| ggagaccgtc                                        | tggcatctgg     | aggagtttgg | ccaagccttt | tcctttgagg | ctcagggcgg   | 300 |
| gctggctaac                                        | attgctatat     | tgaacaacaa | cttgaatacc | ttgatccagc | gttccaacca   | 360 |
| cactcaggcc                                        | accaacgatc     | cccctgaggt | gaccgtgttt | cccaaggagc | ctgtggagct   | 420 |
| gggccagccc                                        | aacaccctca     | tctgccacat | tgacaagttc | ttcccaccag | tgctcaacgt   | 480 |
| cacgtggctg                                        | tgcaacgggg     | agctggtcac | tgagggtgtc | gctgagagcc | tetteetgee   | 540 |
| cagaacagat                                        | tacagettee     | acaagttcca | ttacctgacc | tttgtgccct | cagcagagga   | 600 |

660 cttctatgac tgcagggtgg agcactgggg cttggaccag ccgctcctca agcactggga ggcccaagag ccaatccaga tgcctgagac aacggagact gtgctctgtg ccctgggcct 720 ggtgctgggc ctagtcggca tcatcgtggg caccgtcctc atcataaagt ctctgcgttc 780 tggccatgac ccccgggccc aggggaccct gtgaaatact gtaaaggtga caaaatatct 840 gaacagaaga ggacttagga gagatctgaa ctccagctgc cctacaaact ccatctcagc 900 ttttcttctc acttcatgtg aaaactactc cagtggctga ctgaattgct gacccttcaa 960 qctctqtcct tatccattac ctcaaagcag tcattcctta gtaaagtttc caacaaatag 1020 aaattaatga cactttggta gcactaatat ggagattatc ctttcattga gccttttatc 1080 ctctqttctc ctttqaaqaa cccctcactq tcaccttccc gagaataccc taagaccaat 1140 aaatacttca qtatttc 1157 <210> 374 <211> 1096 <212> DNA <213> Homo sapiens <400> 374 atgatectaa acaaagetet getgetgggg geeetegete tgaccacegt gatgageece 60 tqtqqaqqtq aaqacattqt qqctqaccac gttgcctctt gtggtgtaaa cttgtaccag 120 ttttacggtc cctctggcca gtacacccat gaatttgatg gagatgagca gttctacgtg 180 gacctggaga ggaaggagac tgcctggcgg tggcctgagt tcagcaaatt tggaggtttt 240 300 gacccgcagg gtgcactgag aaacatggct gtggcaaaac acaacttgaa catcatgatt 360 aaacqctaca actctaccqc tqctaccaat qaqqttcctq aqqtcacaqt qttttccaaq 420 tetecegtga caetgggtca geccaacace etcatttgte ttgtggacaa catettteet 480 cctgtggtca acatcacatg gctgagcaat gggcagtcag tcacagaagg tgtttctgag accagettee tetecaagag tgateattee ttetteaaga teagttaeet cacetteete 540 cettetqetq atgagattta tgactgcaag gtggagcact ggggcetgga ceagcetett 600 ctqaaacact qqqaqcctqa gattccagcc cctatgtcag agctcacaga gactgtggtc 660 tgtgccctgg ggttgtctgt gggcctcatg ggcattgtgg tgggcactgt cttcatcatc 720 caaqqcctqc qttcaqttqq tqcttccaqa caccaagggc cattqtgaat cccatcctgg 780 aaqqqaaqqt qcatcqccat ctacaqqaqc aqaaqaatgq acttqctaaa tgacctagca 840 900 ctattctctq qcccqattta tcatatccct tttctcctcc aaatatttct cctctcacct

960

1020

tttctctqqq acttaaqctq ctatatcccc tcaqaqctca caaatqcctt tacattcttt

ccctgacctc ctgatttttt ttttcttttc tcaaatgtta cctacaatac atgcctgggg

| taagccaccc                                          | ggctacctaa | ttcctcagta | acctccatct | aaaatctcca | aggaagcaat | 1080 |
|-----------------------------------------------------|------------|------------|------------|------------|------------|------|
| aaattccttt                                          | tatgag     |            |            |            |            | 1096 |
| <210> 375<br><211> 1182<br><212> DNA<br><213> Homo  | sapiens    |            |            |            |            |      |
| <400> 375<br>tagttctccc                             | tgagtgagac | ttgcctgctt | ctctggcccc | tggtcctgtc | ctgttctcca | 60   |
| gcatggtgtg                                          | tctgaagctc | cctggaggct | cctgcatgac | agcgctgaca | gtgacactga | 120  |
| tggtgctgag                                          | ctccccactg | gctttggctg | gggacacccg | accacgtttc | ttgtggcagc | 180  |
| ttaagtttga                                          | atgtcatttc | ttcaatggga | cggagcgggt | gcggttgctg | gaaagatgca | 240  |
| tctataacca                                          | agaggagtcc | gtgcgcttcg | acagcgacgt | gggggagtac | cgggcggtga | 300  |
| cggagctggg                                          | gcggcctgat | gccgagtact | ggaacagcca | gaaggacctc | ctggagcaga | 360  |
| ggcgggccgc                                          | ggtggacacc | tactgcagac | acaactacgg | ggttggtgag | agcttcacag | 420  |
| tgcagcggcg                                          | agttgagcct | aaggtgactg | tgtatccttc | aaagacccag | cccctgcagc | 480  |
| accacaacct                                          | cctggtctgc | tctgtgagtg | gtttctatcc | aggcagcatt | gaagtcaggt | 540  |
| ggttccggaa                                          | cggccaggaa | gagaaggctg | gggtggtgtc | cacaggcctg | atccagaatg | 600  |
| gagattggac                                          | cttccagacc | ctggtgatgc | tggaaacagt | tcctcggagt | ggagaggttt | 660  |
| acacctgcca                                          | agtggagcac | ccaagtgtga | cgagccctct | cacagtggaa | tggagagcac | 720  |
| ggtctgaatc                                          | tgcacagagc | aagatgctga | gtggagtcgg | gggcttcgtg | ctgggcctgc | 780  |
| tcttccttgg                                          | ggccgggctg | ttcatctact | tcaggaatca | gaaaggacac | tctggacttc | 840  |
| agccaacagg                                          | attcctgagc | tgaaatgcag | atgaccacat | tcaaggaaga | accttctgtc | 900  |
| ccagctttgc                                          | agaatgaaaa | gctttcctgc | ttggcagtta | ttcttccaca | agagaggct  | 960  |
| ttctcaggac                                          | ctggttgcta | ctggttcggc | aactgcagaa | aatgtcctcc | cttgtggctt | 1020 |
| cctcagctcc                                          | tgcccttggc | ctgaagtccc | agcattgatg | acagcgcctc | atcttcaact | 1080 |
| tttgtgctcc                                          | cctttgccta | aaccgtatgg | cctcccgtgc | atctgtactc | accctgtacg | 1140 |
| acaaacacat                                          | tacattatta | aatgtttctc | aaagatggag | tt         |            | 1182 |
| <210> 376 <211> 2610 <212> DNA <213> Homo <400> 376 | sapiens    |            |            |            |            |      |
|                                                     | ctatttctaa | caaacatgaa | gtcaggcctc | togtatttct | ttctcttctq | 60   |

cttgcgcatt aaagttttaa caggagaaat caatggttct gccaattatg agatgtttat 120 atttcacaac qqaqqtqtac aaattttatq caaatatcct qacattqtcc aqcaatttaa 180 aatgcagttg ctgaaagggg ggcaaatact ctgcgatctc actaagacaa aaggaagtgg 240 aaacacagtg tocattaaga gtotgaaatt otgocattot cagttatoca acaacagtgt 300 ctctttttt ctatacaact tggaccattc tcatgccaac tattacttct gcaacctatc 360 aatttttqat cctcctctt ttaaagtaac tcttacagga ggatatttgc atatttatga 420 atcacaactt tgttgccagc tgaagttctg gttacccata ggatgtgcag cctttgttgt 480 aqtctqcatt ttqqqatqca tacttatttq ttqqcttaca aaaaagaagt attcatccag 540 tqtqcacqac cctaacqqtq aatacatqtt catgagagca gtgaacacag ccaaaaaatc 600 tagactcaca gatqtqaccc tataatatqq aactctqqca cccaqqcatq aagcacqttq 660 qccaqttttc ctcaacttqa aqtqcaagat tctcttattt ccgggaccac ggagagtctg 720 acttaactac atacatcttc tqctqqtqtt ttqttcaatc tggaagaatg actgtatcag 780 tcaatqqqqa ttttaacaqa ctqccttqqt actqccqaqt cctctcaaaa caaacaccct 840 cttqcaacca qctttqqaqa aaqcccaqct cctqtqtqct cactqqqaqt qqaatccctq 900 960 totocacato tgotoctago agtgcatoag coagtaaaac aaacacattt acaagaaaaa 1020 tetgteegea ttteactate atactacete ttetttetgt agggatgaga atteetett 1080 taatcagtca agggagatgc ttcaaagctg gagctatttt atttctgaga tgttgatgtg 1140 aactgtacat tagtacatac tcagtactct ccttcaattg ctgaacccca gttgaccatt 1200 ttaccaagac tttagatgct ttcttgtgcc ctcaattttc tttttaaaaa tacttctaca 1260 1320 tqactqcttg acaqcccaac aqccactctc aatagagagc tatgtcttac attctttcct ctgctgctca atagttttat atatctatgc atacatatat acacacatat gtatataaaa 1380 ttcataatqa atatatttqc ctatattctc cctacaagaa tatttttqct ccaqaaagac 1440 atgttctttt ctcaaattca gttaaaatgg tttactttgt tcaagttagt ggtaggaaac 1500 attgcccqqa attgaaqca aatttattt attatcctat tttctaccat tatctatqtt 1560 ttcatggtgc tattaattac aagtttagtt ctttttgtag atcatattaa aattgcaaac 1620 aaaatcatct ttaatqqqcc aqcattctca tqqqqtaqaq caqaatattc atttaqcctq 1680 1740 aaagctgcag ttactatagg ttgctgtcag actataccca tggtgcctct gggcttgaca 1800 ggtcaaaatg gtccccatca gcctggagca gcctccaga cctgggtgga attccagggt tgagagactc ccctgagcca gaggccacta ggtattcttg ctcccagagg ctgaagtcac 1860 cctgggaatc acagtggtct acctgcattc ataattccag gatctgtgaa gagcacatat 1920

| gtgtcagggc acaattccct ct                                   | cataaaaa ccacacagco  | tggaaattgg | ccctggccct | 1980 |
|------------------------------------------------------------|----------------------|------------|------------|------|
| tcaagatagc cttctttaga at                                   | atgatttg gctagaaaga  | ttcttaaata | tgtggaatat | 2040 |
| gattattctt agctggaata tt                                   | ttctctac ttcctgtctg  | catgcccaag | gcttctgaag | 2100 |
| cagccaatgt cgatgcaaca ac                                   | catttgtaa ctttaggtaa | actgggatta | tgttgtagtt | 2160 |
| taacattttg taactgtgtg ct                                   | tatagttt acaagtgaga  | cccgatatgt | cattatgcat | 2220 |
| acttatatta tcttaagcat gt                                   | gtaatgct ggatgtgtac  | agtacagtac | ttaacttgta | 2280 |
| atttgaatct agtatggtgt to                                   | etgttttca gctgacttgg | acaacctgac | tggctttgca | 2340 |
| caggtgttcc ctgagttgtt tg                                   | gcaggtttc tgtgtgtggg | gtggggtatg | gggaggagaa | 2400 |
| ccttcatggt ggcccacctg gc                                   | ectggttgt ccaagctgtg | cctcgacaca | tcctcatccc | 2460 |
| aagcatggga cacctcaaga tg                                   | gaataataa ttcacaaaat | ttctgtgaaa | tcaaatccag | 2520 |
| ttttaagagg agccacttat ca                                   | aaagagatt ttaacagtag | taagaaggca | aagaataaac | 2580 |
| atttgatatt cagcaactga aa                                   | aaaaaaaa             |            |            | 2610 |
| <210> 377<br><211> 1145<br><212> DNA<br><213> Homo sapiens |                      |            |            |      |
| attetetece cagettgetg ag                                   | gecettige teecetggeg | actgcctgga | cagtcagcaa | 60   |

ggaattgtct cccagtgcat tttgccctcc tggctgccaa ctctggctgc taaagcggct 120 qccacctqct qcaqtctaca caqcttcggg aagaggaaag gaacctcaga ccttccagat 180 cgcttcctct cgcaacaaac tatttgtcgc aggaataaag atggctgctg aaccagtaga 240 agacaattgc atcaactttg tggcaatqaa atttattgac aatacqcttt actttatagc 300 tgaagatgat gaaaacctgg aatcagatta ctttggcaag cttgaatcta aattatcagt 360 cataagaaat ttgaatgacc aagttetett cattgaccaa ggaaategge etetatttga 420 agatatgact gattctgact gtagagataa tgcaccccgg accatattta ttataagtat 480 gtataaagat agccagccta gaggtatggc tgtaactatc tctgtgaagt gtgagaaaat 540 ttcaactctc tcctgtgaga acaaaattat ttcctttaag gaaatgaatc ctcctgataa 600 660 catcaaggat acaaaaagtg acatcatatt ctttcagaga agtgtcccag gacatgataa 720 taagatgcaa tttgaatctt catcatacga aggatacttt ctagcttgtg aaaaagagag 780 agacettttt aaacteattt tgaaaaaaga ggatgaattg ggggatagat etataatgtt cactqttcaa aacgaagact agctattaaa atttcatgcc gggcgcagtg gctcacgcct 840 900 gtaatcccaq ccctttggga ggctgaggcg ggcagatcac cagaggtcag gtgttcaaga

| ccagcctgac                                        | caacatggtg     | aaacctcatc | tctactaaaa | atacaaaaaa | ttagctgagt | 960  |
|---------------------------------------------------|----------------|------------|------------|------------|------------|------|
| gtagtgacgc                                        | atgccctcaa     | tcccagctac | tcaagaggct | gaggcaggag | aatcacttgc | 1020 |
| actccggagg                                        | tagaggttgt     | ggtgagccga | gattgcacca | ttgcgctcta | gcctgggcaa | 1080 |
| caacagcaaa                                        | actccatctc     | aaaaaataaa | ataaataaat | aaacaaataa | aaaattcata | 1140 |
| atgtg                                             |                |            |            |            |            | 1145 |
| <210> 378<br><211> 924<br><212> DNA<br><213> Home | o sapiens      |            |            |            |            |      |
| <400> 378<br>cagagececa                           | cgaaggacca     | gaacaagaca | gagtgcctcc | tgccgatcca | aacatgagcc | 60   |
| gcctgcccgt                                        | cctgctcctg     | ctccaactcc | tggtccgccc | cggactccaa | gctcccatga | 120  |
| cccagacaac                                        | gcccttgaag     | acaagctggg | ttaactgctc | taacatgatc | gatgaaatta | 180  |
| taacacactt                                        | aaagcagcca     | cctttgcctt | tgctggactt | caacaacctc | aatggggaag | 240  |
| accaagacat                                        | tctgatggaa     | aataaccttc | gaaggccaaa | cctggaggca | ttcaacaggg | 300  |
| ctgtcaagag                                        | tttacagaac     | gcatcagcaa | ttgagagcat | tcttaaaaat | ctcctgccat | 360  |
| gtctgcccct                                        | ggccacggcc     | gcacccacgc | gacatccaat | ccatatcaag | gacggtgact | 420  |
| ggaatgaatt                                        | ccggaggaaa     | ctgacgttct | atctgaaaac | ccttgagaat | gcgcaggctc | 480  |
| aacagacgac                                        | tttgagcctc     | gcgatctttt | gagtccaacg | tccagctcgt | tctctgggcc | 540  |
| ttctcaccac                                        | agagcctcgg     | gacatcaaaa | acagcagaac | ttctgaaacc | tctgggtcat | 600  |
| ctctcacaca                                        | ttccaggacc     | agaagcattt | caccttttcc | tgcggcatca | gatgaattgt | 660  |
| taattatcta                                        | atttctgaaa     | tgtgcagctc | ccatttggcc | ttgtgcggtt | gtgttctcat | 720  |
| ttttatccca                                        | ttgagactat     | ttatttatgt | atgtatgtat | ttatttattt | attgcctgga | 780  |
| gtgtgaactg                                        | tatttattt      | agcagaggag | ccatgtcctg | ctgcttctgc | aaaaactca  | 840  |
| g <b>a</b> gtg <b>gg</b> tg                       | gggagcatgt     | tcatttgtac | ctcgagtttt | aaactggttc | ctagggatgt | 900  |
| gtgagaataa                                        | actagactct     | gaac       |            |            |            | 924  |
| <210> 379 <211> 493 <212> DNA <213> Hom           | 2<br>o sapiens |            |            |            |            |      |
| <400> 379<br>ggcagggcac                           | acctggattg     | cattagaatg | agactcacta | cccagttcag | gtgtgttgcg | 60   |
| ttatagatet                                        | ccqqcacatt     | tcagaggctg | attaggaccc | tgaccccaca | ctqqqqttta | 120  |

caccectaaa agcaggtgtg teeegtggca actgagtggg tgcgtgaaaa ggggggatca 180 tcaattacca gctggagcaa tcgaatcggt taaatgtgaa tcaagtcaca gtgcttcctt 240 aacccaacct ctctgttggg gtcagccaca gcctaaaccg cctgccgttc agcctgagag 300 qctgctgcta qcctgctcac gcatgcagcc cgggctgcag aggaagtgtg gggaggaagg 360 aagtqqqtat aqaaqqqtqc tgagatqtgg gtcttgaaga gaataqccat aacqtctttq 420 teactaaaat qtteeceagg ggeettegge gagtettttt gtttggtttt ttgtttttaa 480 tetqtqqcte ttqataattt atetagtggt tgcctacace tgaaaaacaa gacacagtgt 540 ttaactatca acgaaagaac tggacggctc cccgccgcag tcccactccc cgagtttgtg 600 qctqqcattt qqqccacqcc qqqctqqqcg qctcacagcq aqqqqcgcgc agtttggggt 660 cacacaqctc cqcttctaqq ccccaaccac cqttaaaaqg ggaaqcccgt gccccatcaq 720 780 qtccqctctt gctqagccca qagccatccc gcgctctgcg ggctgggagg cccgggccag acqcqaqtcc tgcqcaqccq aqqttcccca gcgccccctg cagccqcgcg taggcagaga 840 900 eggageegg ceetgeget eggeaceacg eegggace cacceagegg ceegtaceeg qaqaaqcaqc qcqaqcaccc qaaqctcccq qctcqqcqqc aqaaaccqqq aqtqqqqccq 960 1020 qqcqaqtqcq cqqcatccca qqccqqcccq aacqtccqcc cqcqqtqqqc cqacttcccc tectettece teteteette etttageeeg etggegeegg acaegetgeg ecteatetet 1080 1140 tggggcgttc ttccccgttg gccaaccgtc gcatcccgtg caactttggg gtagtggccg cttagtqttg aatgttcccc accgagagcg catggcttgg gaagcgaggc gcgaacccgg 1200 geccegaage egecgteegg gagaeggtga tgetgttget gtgeetgggg gteeegaeeg 1260 geogeceta caacqtqqac actqaqaqcq egetgettta ecagqqeece cacaacacqe 1320 tgtteggeta eteggtegtg etgeacagee aeggggegaa eegatggete etagtgggtg 1380 egeceactge caactggete gecaacgett cagtgateaa teeeggggeg atttacagat 1440 1500 gcaqqatcqq aaaqaatccc qqccaqacqt qcqaacaqct ccaqctgggt agccctaatg gagaaccttg tggaaagact tgtttggaag agagagacaa tcagtggttg ggggtcacac 1560 1620 tttccagaca gccaggagaa aatggatcca tcgtgacttg tgggcataga tggaaaaata tattttacat aaagaatgaa aataagetee eeactggtgg ttgetatgga gtgeeeeetg 1680 1740 atttacgaac agaactgagt aaaagaatag ctccgtgtta tcaagattat gtgaaaaaat 1800 ttggagaaaa ttttgcatca tgtcaagctg gaatatccag tttttacaca aaggatttaa ttgtgatggg ggccccagga tcatcttact ggactggctc tctttttgtc tacaatataa 1860 1920 ctacaaataa atacaaggct tttttagaca aacaaaatca agtaaaattt ggaagttatt taggatatte agteggaget ggteatttte ggageeagea tactacegaa gtagteggag 1980

qaqctcctca acatgagcag attggtaagg catatatatt cagcattgat gaaaaagaac 2040 taaatatett acatqaaatg aaaggtaaaa agettggate gtaetttgga gettetqtet 2100 qtqctqtqqa cctcaatgca qatqgcttct cagatctgct cgtgggagca cccatqcaqa 2160 qcaccatcaq aqaqqaaqqa aqaqtqtttg tqtacatcaa ctctqqctcq qqaqcaqtaa 2220 tqaatqcaat qqaaacaaac ctcqttqqaa qtqacaaata tqctqcaaqa tttqqqqaat 2280 ctatagttaa tettggegae attgacaatg atggetttga agatgttget ateggagete 2340 cacaaqaaqa tqacttqcaa qqtqctattt atatttacaa tqqccqtqca qatqqqatct 2400 cgtcaacctt ctcacagaga attgaaggac ttcagatcag caaatcgtta agtatgtttg 2460 gacagtctat atcaggacaa attgatgcag ataataatgg ctatgtagat gtagcagttg 2520 gtgcttttcg gtctgattct gctgtcttgc taaggacaag acctgtagta attgttgacg 2580 cttctttaag ccacctgag tcagtaaata gaacgaaatt tgactgtgtt gaaaatggat 2640 ggccttctgt gtgcatagat ctaacacttt gtttctcata taagggcaag gaagttccag 2700 gttacattgt tttgttttat aacatgagtt tggatgtgaa cagaaaggca gagtctccac 2760 caagattcta tttctcttct aatggaactt ctgacgtgat tacaggaagc atacaggtgt 2820 ccagcagaga agctaactgt agaacacatc aagcatttat gcggaaagat gtgcgggaca 2880 tecteacece aatteaqatt gaagetgett accaeettgg teeteatgte ateagtaaae 2940 qaaqtacaqa qqaattccca ccacttcaqc caattcttca qcaqaaqaaa qaaaaaqaca 3000 taatgaaaaa aacaataaac tttqcaaqqt tttqtqccca tqaaaattqt tctqctqatt 3060 tacaggtttc tgcaaagatt gggtttttga agccccatga aaataaaaca tatcttgctg 3120 ttqqqaqtat qaaqacattq atqttqaatq tqtccttqtt taatqctqqa qatqatqcat 3180 atgaaacgac tctacatgtc aaactacccg tgggtcttta tttcattaag attttagagc 3240 3300 tggaagagaa gcaaataaac tgtgaagtca cagataactc tggcgtggta caacttgact gcagtattgg ctatatatat gtagatcatc tctcaaggat agatattagc tttctcctgg 3360 atgtgagete acteageaga geggaagagg accteagtat caeagtgeat getacetgtg 3420 aaaatgaaga ggaaatggac aatctaaagc acagcagagt gactgtagca atacctttaa 3480 aatatgaggt taaqctgact gttcatgggt ttgtaaaccc aacttcattt gtgtatggat 3540 caaatqatqa aaatqaqcct gaaacqtqca tqqtqqaqaa aatqaactta actttccatq 3600 ttatcaacac tgqcaatagt atgqctccca atgttaqtqt qqaaataatg gtaccaaatt 3660 cttttaqccc ccaaactgat aagctqttca acattttqqa tqtccaqact actactggaq 3720 3780 aatgccactt tqaaaattat caaaqaqtqt gtqcattaqa qcaqcaaaag aqtqcaatqc

| agacctt | gaa  | aggcatagtc         | cggttcttgt | ccaagactga | taagaggcta | ttgtactgca | 3840 |
|---------|------|--------------------|------------|------------|------------|------------|------|
| taaaagc | tga  | tccacattgt         | ttaaatttct | tgtgtaattt | tgggaaaatg | gaaagtggaa | 3900 |
| aagaago | cag  | tgttcatatc         | caactggaag | gccggccatc | cattttagaa | atggatgaga | 3960 |
| cttcago | act  | caagtttgaa         | ataagagcaa | caggttttcc | agagccaaat | ccaagagtaa | 4020 |
| ttgaact | aaa  | caaggatgag         | aatgttgcgc | atgttctact | ggaaggacta | catcatcaaa | 4080 |
| gacccaa | acg  | ttatttcacc         | atagtgatta | tttcaagtag | cttgctactt | ggacttattg | 4140 |
| tacttct | gtt  | gatctcatat         | gttatgtgga | aggetggett | ctttaaaaga | caatacaaat | 4200 |
| ctatcct | aca  | agaagaaaac         | agaagagaca | gttggagtta | tatcaacagt | aaaagcaatg | 4260 |
| atgatta | agg  | acttctttca         | aattgagaga | atggaaaaca | gactcaggtt | gtagtaaaga | 4320 |
| aatttaa | aag  | acactgttta         | caagaaaaaa | tgaattttgt | ttggacttct | tttactcatg | 4380 |
| atcttgt | gac  | atattatgtc         | ttcatgcaag | gggaaaatct | cagcaatgat | tactctttga | 4440 |
| gatagaa | igaa | ctgcaaaggt         | aataatacag | ccaaagataa | tctctcagct | tttaaatggg | 4500 |
| tagagaa | aca  | ctaaagcatt         | caatttattc | aagaaaagta | agcccttgaa | gatatcttga | 4560 |
| aatgaaa | igta | taactgagtt         | aaattatact | ggagaagtct | tagacttgaa | atactactta | 4620 |
| ccatato | jtgc | ttgcctcagt         | aaaatgaacc | ccactgggtg | ggcagaggtt | catttcaaat | 4680 |
| acatctt | tga  | tacttgttca         | aaatatgttc | tttaaaaata | taattttta  | gagagctgtt | 4740 |
| cccaaat | ttt  | ctaacgagtg         | gaccattatc | actttaaagc | cctttattta | taatacattt | 4800 |
| cctacgg | gct  | gtgttccaa <b>c</b> | aaccattttt | tttcagcaga | ctatgaatat | tatagtatta | 4860 |
| taggcca | aac  | tggcaaactt         | cagactgaac | atgtacactg | gtttgagctt | agtgaaatga | 4920 |
| cttccgg | gaat | ct                 |            |            |            |            | 4932 |
| <210>   | 380  |                    |            |            |            |            |      |
|         |      |                    |            |            |            |            |      |
| <211>   | 4740 | )                  |            |            |            |            |      |
| <212>   | DNA  |                    |            |            |            |            |      |

<213> Homo sapiens

<400> 380

tggetteett gtggtteete agtggtgeet geaaccect gteacctee tteeaggtte 60
tggeteette cagecatgge teteagagte ettetgttaa eageettgae ettatgteat 120
gggtteaact tggacactga aaacgeaatg acetteeaag agaacgeaag gggetteggg 180
cagagegtgg teeagettea gggateeagg gtggtggttg gagececeea ggagatagtg 240
getgeeaace aaaggggaag eetetaceag tgegactaca geacaggete atgegageee 300
ateegeetge aggteeegt ggaggeegt aacatgteee tgggeetgte eetggaagee 360
accaccagee eeeeteaget getggeetgt ggteeaacg tgeacagae ttgeagtgag 420

| aacacgtatg          | tgaaaggget | ergerreerg          | LLLGGALCCA          | acctacggca                  | gcagccccag | 400  |
|---------------------|------------|---------------------|---------------------|-----------------------------|------------|------|
| aagttcccag          | aggccctccg | agggtgtcct          | caagaggata          | gtgacattgc                  | cttcttgatt | 540  |
| gatggctctg          | gtagcatcat | cccacatgac          | tttcggcgga          | tgaaggagtt                  | tgtctcaact | 600  |
| gtgatggagc          | aattaaaaaa | gtccaaaacc          | ttgttctctt          | tgatgcagta                  | ctctgaagaa | 660  |
| ttccggattc          | actttacctt | caaagagttc          | cagaacaacc          | ctaacccaag                  | atcactggtg | 720  |
| aagccaataa          | cgcagctgct | tgggcggaca          | cacacggcca          | cgggcatccg                  | caaagtggta | 780  |
| cgagagctgt          | ttaacatcac | caacgga <b>gc</b> c | cgaaagaatg          | cctttaagat                  | cctagttgtc | 840  |
| atca <b>c</b> ggatg | gagaaaagtt | tggcgatccc          | ttgggatatg          | aggatgtcat                  | ccctgaggca | 900  |
| gacagagagg          | gagtcattcg | ctacgtcatt          | ggggtgggag          | atgccttccg                  | cagtgagaaa | 960  |
| teccgccaag          | agcttaatac | categeatee          | aagccgcctc          | gtgatcacgt                  | gttccaggtg | 1020 |
| aataactttg          | aggctctgaa | gaccattcag          | aaccagcttc          | gggagaagat                  | ctttgcgatc | 1080 |
| gagggtactc          | agacaggaag | tagcagetee          | tttgagcatg          | agatgtctca                  | ggaaggcttc | 1140 |
| agcgctgcca          | tcacctctaa | tggccccttg          | ctgagcactg          | tggggagcta                  | tgactgggct | 1200 |
| ggtggagtct          | ttctatatac | atcaaaggag          | aaaagcacct          | tcatcaacat                  | gaccagagtg | 1260 |
| gattcagaca          | tgaatgatgc | ttacttgggt          | tatgctgccg          | ccatcatctt                  | acggaaccgg | 1320 |
| gtgcaaagcc          | tggttctggg | ggcacctcga          | tatcagcaca          | tcggcctggt                  | agcgatgttc | 1380 |
| aggcagaaca          | ctggcatgtg | ggagtccaac          | gctaatgtca          | agggcaccca                  | gatcggcgcc | 1440 |
| tacttcgggg          | cctccctctg | ctccgtggac          | gtggacagca          | acggcagcac                  | cgacctggtc | 1500 |
| ctcatcgggg          | cccccatta  | ctacgagcag          | acccgagggg          | gcc <b>agg</b> tgt <b>c</b> | cgtgtgcccc | 1560 |
| ttgcccaggg          | ggagggctcg | gtggcagtgt          | gatgctgttc          | tctacgggga                  | gcagggccaa | 1620 |
| ccctggggcc          | gctttggggc | agccctaaca          | gtgct <b>g</b> gggg | acgtaaatgg                  | ggacaagctg | 1680 |
| acggacgtgg          | ccattggggc | cccaggagag          | gaggacaacc          | ggggtgctgt                  | ttacctgttt | 1740 |
| cacggaacct          | caggatctgg | catcagcccc          | tcccatagcc          | agcggatagc                  | aggctccaag | 1800 |
| ctctctccca          | ggctccagta | ttttggtcag          | tcactgagtg          | ggggccagga                  | cctcacaatg | 1860 |
| gatggactgg          | tagacctgac | tgtaggagcc          | caggggcacg          | tgctgctgct                  | caggtcccag | 1920 |
| ccagtactga          | gagtcaaggc | aatcatggag          | ttcaatccca          | gggaagtggc                  | aaggaatgta | 1980 |
| tttgagtgta          | atgatcaggt | ggtgaaaggc          | aaggaagccg          | gagaggtcag                  | agtctgcctc | 2040 |
| catgtccaga          | agagcacacg | ggatcggcta          | agagaaggac          | agatccagag                  | tgttgtgact | 2100 |
| tatgacctgg          | ctctggactc | cggccgccca          | cattcccgcg          | ccgtcttcaa                  | tgagacaaag | 2160 |
| aacagcacac          | gcagacagac | acaggtettg          | gggctgaccc          | agacttgtga                  | gaccctgaaa | 2220 |
| ctacagttgc          | cgaattgcat | cgaggaccca          | gtgagcccca          | ttgtgctgcg                  | cctgaacttc | 2280 |

2340 tetetgqtqq qaacqccatt gtetgettte gggaacctee ggccagtget ggcggaggat qctcaqaqac tcttcacaqc cttgtttccc tttgagaaga attgtggcaa tgacaacatc 2400 tgccaggatg acctcagcat caccttcagt ttcatgagcc tggactgcct cgtggtgggt 2460 qqqcccqqq aqttcaacqt qacaqtqact qtgagaaatg atggtgagga ctcctacagg 2520 acacagqtca ccttcttctt cccqcttqac ctqtcctacc qqaaqqtqtc cacactccag 2580 aaccageget cacagegate etggegeetg geetgtgagt etgeeteete cacegaagtg 2640 tetggggeet tgaagageac cagetgeage ataaaccace ceatetteec ggaaaactea 2700 gaggtcacct ttaatatcac gtttgatgta gactctaagg cttcccttgg aaacaaactg 2760 ctcctcaagg ccaatgtgac cagtgagaac aacatgccca gaaccaacaa aaccgaattc 2820 caactggage tgccggtgaa atatgctgte tacatggtgg tcaccageca tggggtctcc 2880 actagatate teaactteae qqceteaqaq aataccaqte qqqteatqca qcateaatat 2940 caggicagca acciggggca gaggagecce eccateagee iggigitett ggigecegie 3000 eggetgaace agactgteat atgggacege ecceaggtea cetteteega gaaceteteg 3060 agtacgtgcc acaccaagga gcgcttgccc tctcactccg actttctggc tgagcttcgg 3120 aaggccccq tggtgaactg ctccatcgct gtctgccaga gaatccagtg tgacatcccg 3180 ttctttggca tccaggaaga attcaatgct accctcaaag gcaacctctc gtttgactgg 3240 tacatcaaqa cctcqcataa ccacctcctq atcgtqagca cagctgagat cttgtttaac 3300 qattccqtqt tcaccctqct qccqqqacaq qqqgcqtttg tgaggtccca gacggagacc 3360 aaaqtqqaqc cqttcqaqqt ccccaaccc ctqccqctca tcqtqggcag ctctgtcqgq 3420 qqactqctqc tcctqqccct catcaccqcc qcqctqtaca agctcqqctt cttcaaqcqq 3480 3540 caatacaaqq acatqatqaq tqaaqqqqqt ccccqqqqq ccqaacccca qtagcqqctc 3600 cttcccgaca gagctgcctc tcggtggcca gcaggactct gcccagacca cacgagcccc caggetgetg gacacgtegg acagegaagt atccccgaca ggacgggett gggettecat 3660 3720 ttgtgtgtgt gcaagtgtgt atgtgcgtgt gtgcgagtgt gtgcaagtgt ctgtgtgcaa 3780 gtgtgtgcac gtgtgcgtgt gcgtgcatgt gcactcgcac gcccatgtgt gagtgtgtgc 3840 aaqtatqtqa qtgtgtccag tgtgtgtgcg tgtgtccatg tgtgtgcagt gtgtgcatgt qtqcqaqtqt qtgcatqtqt gtgctcaggg gctgtggctc acgtgtgtga ctcagagtgt 3900 ctctqqcqtq tqggtaggtq acggcagcgt agcctctccg gcagaaggga actgcctggg 3960 ctcccttqtq cqtqqqtaag ccqctqctqq qttttcctcc qqqagaqqgg acggtcaatc 4020 4080 ctqtqqqtqa aqaqaqqqq aaacacaqca qcatctctcc actqaaaqaa gtgggacttc

4140

ccqtcqcctq cqaqcctqcq gcctqctqqa qcctqcqcaq cttqqatqqa tactccatqa

qaaaaqccqt qqqtqqaacc aqqagcctcc tccacaccag cgctgatgcc caataaagat 4200 qcccactqaq qaatcatqaa qcttcctttc tqqattcatt tattatttca atgtgacttt 4260 aattttttqq atqqataaqc ctqtctatqq tacaaaaatc acaaggcatt caagtgtaca 4320 qtqaaaaqtc tccctttcca qatattcaaq tcacctcctt aaaqqtaqtc aaqattqtqt 4380 tttgaggttt ccttcagaca gattccaggc gatgtgcaag tgtatgcacg tgtgcacaca 4440 ccacacacat acacacaca aagctttttt acacaaatgg tagcatactt tatattggtc 4500 4560 tqtatcttqc tttttttcac caatatttct caqacatcqq ttcatattaa qacataaatt actttttcat tcttttatac cqctqcataq tattccattq tqtqaqtqta ccataatqta 4620 tttaaccagt cttcttttga tatactattt tcatctcttg ttattgcatc tgctgagtta 4680 4740 <210> 381 <211> 2798 <212> DNA <213> Homo sapiens <400> 381 cqttqctqtc qctctqcacq cacctatqtq qaaactaaaq cccaqaqaqa aaqtctqact 60 tgccccacag ccagtgagtg actgcagcag caccagaatc tggtctgttt cctgtttggc 120 tettetacca ctaeggettg ggateteggg catggtgget ttgccaatgg teettgtttt 180 gctgctggtc ctgagcagag gtgagagtga attggacgcc aagatcccat ccacagggga 240 tgccacagaa tggcggaatc ctcacctgtc catgctgggg tcctgccagc cagcccctc 300 ctgccagaag tgcatcctct cacaccccag ctgtgcatgg tgcaagcaac tgaacttcac 360

cqcqtcqqqa qaqqcqqaqq cqcqqcqctq cqcccqacqa qaqqaqctqc tqqctcqaqg 420 ctqccqctq qaqqaqctqq aqqaqccccq cqgccaqcaq qaqqtqctqc aqqaccaqcc 480 540 qctcaqccaq qqcqcccqcq qaqaqqqtqc cacccaqctq qcqccqcaqc qqqtccqggt 600 cacqctqcqq cctqqqqaqc cccaqcaqct ccaqqtccqc ttccttcqtq ctqaqqqata 660 cccqqtqqac ctqtactacc ttatqqacct qaqctactcc atqaaqqacq acctqqaacq cgtgcgccag ctcgggcacg ctctgctggt ccggctgcag gaagtcaccc attctgtgcg 720 cattggtttt ggttcctttg tggacaaaac ggtgctgccc tttgtgagca cagtaccctc 780 840 caaactgege caccectgee ccaccegget ggagegetge cagteaccat tcagetttca ccatqtqctq tccctqacqq qqqacqcaca aqccttcqaq cqqqaqqtqq qqcqccaqaq 900 tgtgtccggc aatctggact cgcctgaagg tggcttcgat gccattctgc aggctgcact 960

ctgccaggag cagattggct ggagaaatgt gtcccggctg ctggtgttca cttcaqacqa 1020 cacattecat acagetgggg acgggaagtt gggcggcatt ttcatgccca gtgatgggca 1080 1140 ctgccacttq qacaqcaatq qcctctacag tcgcagcaca gagtttgact acccttctgt qqqtcaqqta qcccaqqccc tctctqcaqc aaatatccag cccatctttg ctgtcaccag 1200 tgccgcactg cctqtctacc aggagctgag taaactgatt cctaagtctg cagttgggga 1260 getgagtgag gactecagea acqtqqtaca geteateatg gatgettata atagcetgte 1320 ttccaccqtq accettqaac actettcact ccctcctqqq gtccacattt cttacqaatc 1380 ccagtgtgag ggtcctgaga agagggaggg taaggctgag gatcgaggac agtgcaacca 1440 cgtccqaatc aaccaqacqq tqactttctq qqtttctctc Caaqccaccc actgcctccc 1500 1560 agageceat etectgagge teegggeet tggettetea gaggagetga ttgtggagtt 1620 gcacacgctq tqtqactqta attqcaqtqa cacccagccc caggctcccc actqcaqtqa tggccaggga cacctacaat gtggtgtatg cagctgtgcc cctggccgcc taggtcggct 1680 1740 ctgtgagtgc tctgtggcag agctgtcctc cccagacctg gaatctgggt gccgggctcc caatggcaca gggcccctgt gcagtggaaa gggtcactgt caatgtggac gctgcagctg 1800 cagtggacag agetetggge atetgtgega gtgtgacgat gecagetgtg agegacatga 1860 1920 qqqcatcctc tgcgqaggct ttggtcgctg ccaatgtgga gtatgtcact gtcatgccaa 1980 ccgcacgggc agagcatgcg aatgcagtgg ggacatggac agttgcatca gtcccgaggg agggetetge agtgggeatg gacgetgeaa atgeaacege tgccagtget tggacggeta 2040 ctatqqtqct ctatqcqacc aatqcccaqq ctqcaaqaca ccatqcqaga gacaccqqqa 2100 ctqtqcaqaq tqtqqqqcct tcaqqactqq cccactqqcc accaactqca gtacaqcttg 2160 2220 tgcccatacc aatgtgaccc tggccttggc ccctatcttg gatgatggct ggtgcaaaga 2280 gcggaccctg gacaaccagc tgttcttctt cttggtggag gatgacgcca gaggcacggt cgtgctcaga gtgagacccc aagaaaaggg agcagaccac acgcaggcca ttgtgctggg 2340 ctgcgtaggg ggcatcgtgg cagtggggct ggggctggtc ctggcttacc ggctctcggt 2400 2460 ggaaatctat gaccgccggg aatacagtcg ctttgagaag gagcagcaac aactcaactg 2520 gaaqcaggac agtaatcctc tctacaaaag tgccatcacg accaccatca atcctcgctt tcaagaggca gacagtccca ctctctgaag gagggaggga cacttaccca aggctcttct 2580 ccttgqaqqa caqtgqgaac tggaqqgtqa qaggaaggqt ggqtctgtaa gaccttggta 2640 qqqqactaat tcactqqcqa qqtqcqqcca ccaccctact tcattttcag agtqacaccc 2700 aaqaqqqctq cttcccatgc ctqcaacctt gcatccatct qggctacccc acccaagtat 2760 acaataaagt cttacctcag aaaaaaaaaa aaaaaaaa 2798

60

<210> 382 <211> 1837

<212> DNA

<213> Homo sapiens

<400> 382 gageegegea egggactggg aaggggacee accegagggt eeagceacea geeeceteac

taatagegge caeceeggea geggeggeag cageageage gaegeagegg egacagetea 120 gagcagggag gccgcgccac ctgcgggccg gccggagcgg gcagccccag gccccctccc 180 egggeacccq eqtteatqea acqcetqgtg gcctgggacc cagcatgtct ccccctgccg 240 ccqccqccqc ctqcctttaa atccatqgaa qtggccaact tctactacga ggcggactgc 300 ttqqctqctq cqtacqqcqq caaqqcggcc cccqcggcgc cccccgcggc cagacccggg 360 ecqcqcccc ccqccqgcga qctgqqcaqc atcqqcgacc acgagcgcgc catcgacttc 420 ageceqtace tqqaqeeqet qqqeqeqeeq caggeeeegg egecegeeae ggecaeggae 480 540 acettegagg eggeteegee egegeeege eeeggeeeg ceteeteegg geageaceae qacttcctct ccqacctctt ctccqacqac tacqqqqqca agaactgcaa gaagccggcc 600 gagtacqqct acqtqaqcct qqqqcqcctq qqqqccqcca aqqqcqcqct qcaccccggc 660 tgcttcgcgc ccctgcaccc accgcccccg ccgccgccgc cgcccgccga gctcaaggcg 720 780 gagccggget tegagcccgc ggactgcaag eggaaggagg aggccggggc geegggeggc 840 ggcqcaggca tggcggcggg cttcccgtac gcgctgcgcg cttacctcgg ctaccaggcg qtqccgaqcg gcagcagcgg gagcctctcc acgtcctcct cgtccagccc gcccggcacg 900 ccgagcccg ctgacgccaa ggcgccccg accgctgct acgcggggg cgcgccggc 960 ccctcqcagg tcaagagcaa ggccaagaag accgtggaca agcacagcga cgagtacaag 1020 atcoqqqqq aqcqcaacaa catcqccgtg cgcaagagcc gcgacaaggc caagatgcgc 1080 aacctggaga cgcagcacaa ggtcctggag ctcacggccg agaacgagcg gctgcagaag 1140 aaqqtqqaqc aqctqtcqcq cqaqctcaqc accctqcqqa acttqttcaa qcaqctgccc 1200 gageceetge tegeeteete eggecaetge tagegeggee eeegegegeg teeceetgee 1260 ggccggggct gagactccgg ggagcgcccg cgcccgcgcc ctcgcccccg cccccggcgg 1320 cgccggcaaa actttggcac tggggcactt ggcagcgcgg ggagcccgtc ggtaatttta 1380 1440 atattttatt atatatat atctatattt ttgtccaaac caaccgcaca tgcagatggg gctcccccc gtggtgttat ttaaaqaaqa aacqtctatg tgtacaqatg aatqataaac 1500 1560 tetetgette teeetetgee eeteteeagg egeeggegg egggeeggtt tegaagttga tgcaatcggt ttaaacatgg ctgaacgcgt gtgtacacgg gactgacgca acccacgtgt 1620

aactgtcagc cgggccctga gtaatcgctt aaagatgttc ctacgggctt gttgctqttq 1680 atgttttqtt ttqttttqtt ttttgqtctt tttttgtatt ataaaaaata atctatttct 1740 atgagaaaag aggcgtctgt atattttggg aatcttttcc gtttcaagca ttaagaacac 1800 ttttaataaa ctttttttt agaatggtta caaagcc 1837

<210> 383

<211> 1678 <212> DNA

<213> Homo sapiens

<400> 383 qcatatactq tcatcatctt qqaaagaaaa qqctgagaac qtaaaactga ggacagagga 60 qqaaaqcaqq qtqaccctq atgttqccct aqaaaatgga aaacaaaaca cagcaaaaca 120 qaaaaacaqa aqatctgact ctqcctttaq ccaqqaaaac agtttggggg agtaaaaagt 180 attaqqqaaa aqaqtqqqca ttttqcctqq aaaaaaqqtt tctaqaqcca tctgqgcttt 240 coqqqaacct qqaccaqact ctqqcccaqt aqqatgtccc cgtgtcctcc ccagcagagc 300 aggaacaggg tgatacagct gtccacttca gagctaggag agatggaact gacttggcag 360 gagatcatqt ccatcaccqa qctqcaqqqt ctqaatqctc caaqtqaqcc atcatttqaq 420 ccccaagecc cagetecata cettggacet ccaccaceca caaettactg cccctgetca 480 atccacccag attctggctt cccacttcct ccaccacctt atgagctccc agcatccaca 540 600 teccatgtee cagateeece atacteetat ggeaacatgg ceataceagt etecaageea ctgagcctct caggcctgct cagtgagccg ctccaagacc ccttagccct cctggacatt 660 qqqctqccaq caqqqccacc taaqccccaa gaagacccag aatccgactc aggattatcc 720 ctcaactata qcgatqctqa atctcttgaq ctggaggqqa cagaggctgg tcggcggcgc 780 agequatatq tagaqatqta cccaqtqqaq tacccctact cactcatgcc caactccttg 840 900 geocacteca actatacett geoagetget gagacecect tggcettaga geoctectca ggccctgtgc gggctaagcc cactgcacgg ggggaggcag ggagtcggga tgaacgtcgg 960 1020 gccttggcca tgaagattcc ttttcctacg gacaagattg tcaacttgcc ggtagatgac 1080 tttaatgage tattggcaag gtacccgctg acagagagee agctageget agtccgggac atccgacgac ggggcaaaaa caaggtggca gcccagaact gccgcaagag gaagctggaa 1140 1200 accattqtqc aqctqqaqcq qqaqctqqaq cqqctqacca atqaacqqqa qcqqcttctc agggcccgcg gggaggcaga ccggaccctg gaggtcatgc gccaacagct gacagagctg 1260 taccgtgaca ttttccagca ccttcgggat gaatcaggca acagctactc tcctgaagag 1320 tacgcgctgc aacaggctgc cgatgggacc atcttccttg tgccccgggg qaccaagatg 1380

gaggccacag actgagctgg cccagagggg tggaactgct gatgggattt ccttcattce 1440
cttetgataa aggtactccc caaccctgag tcccagaagg agctgagttc tctagaccag 1500
aagaggatga caatggcaac aagtgtttgg aagttccaag gtgtgttcaa agaggcttgc 1560
cttgagggag ggctggaatc tgtcttccct gactcggctc ctcaggtctt tagcctccac 1620
cttgtctaag ctttggtcta taaagtgcgc tacaggaaaa aaaaaaaaa aaaaaaaaa 1678

<210> 384

<211> 2106

<212> DNA

<213> Homo sapiens

<400> 384

agtttccctt ccgctcacct ccgcctgagc agtggagaag gcggcactct ggtggggctg 60 ctccaggcat gcagatccca caggcgccct ggccagtcgt ctgggcggtg ctacaactqq 120 getggeggee aggatggtte ttagaeteee cagacaggee etggaaceee eccacettet 180 toccagooot gotogtggtg accgaagggg acaacgocac ottoacotgo agottotoca 240 acacategga gagettegtg etaaaetggt acegeatgag eeccageaae cagaeggaca 300 360 agetqqccqc cttccccqaq qaccqcaqcc ageccqqcca ggactqccqc ttccgtgtca cacaactqcc caacqqcqt qacttccaca tqaqcqtqqt caqqqcccqq cgcaatqaca 420 qcqqcaccta cctctqtqqq qccatctccc tqqcccccaa qqcqcaqatc aaaqaqaqcc 480 540 tgcgggcaga gctcagggtg acagagagaa gggcagaagt gcccacagcc caccccagcc 600 cctcacccag gccagccggc cagttccaaa ccctggtggt tggtgtcgtg ggcggcctgc taggcagcct agtactacta atctagatcc tagccatcat ctactcccaa accacaaa 660 720 ggacaatagg agccaggcgc accggccagc ccctgaagga ggacccctca gccgtgcctg tgttctctgt ggactatggg gagctggatt tccagtggcg agagaagacc ccggagcccc 780 ccgtgccctg tgtccctgag cagacggagt atgccaccat tgtctttcct agcggaatgg 840 quacticate eccegeoge agggeteag ecgaeggee teggagtgee cagecactga 900 qqcctqaqqa tqqacactqc tcttqqcccc tctqaccqgc ttccttggcc accagtgttc 960 tgcagaccct ccaccatgag cccgggtcag cgcatttcct caggagaagc aggcagggtg 1020 caqqccattq caqqccqtcc aqqqqctqaq ctqcctqqqq qcqaccqqqq ctccaqcctq 1080 cacctgcacc aggcacagcc ccaccacagg actcatgtct caatgcccac agtgagccca 1140 qqcaqcaqqt qtcaccqtcc cctacaqqqa qqqccaqatq caqtcactqc ttcaqqtcct 1200 1260 gccagcacag agetgcetgc gtccagetcc etgaatetet getgetgetg etgetgetge tgctgctgcc tgcggcccgg ggctgaaggc gccgtggccc tgcctgacgc cccggagcct 1320

| cctgcctgaa                    | cttgggggct | ggttggagat | ggccttggag | cagccaaggt | gcccctggca | 1380 |
|-------------------------------|------------|------------|------------|------------|------------|------|
| gtggcatccc                    | gaaacgccct | ggacgcaggg | cccaagactg | ggcacaggag | tgggaggtac | 1440 |
| atggggctgg                    | ggactcccca | ggagttatct | gctccctgca | ggcctagaga | agtttcaggg | 1500 |
| aaggtcagaa                    | gagctcctgg | ctgtggtggg | cagggcagga | aacccctccc | acctttacac | 1560 |
| atgcccaggc                    | agcacctcag | gccctttgtg | gggcagggaa | gctgaggcag | taagegggca | 1620 |
| ggcagagctg                    | gaggcctttc | aggccagcca | gcactctggc | ctcctgccgc | cgcattccac | 1680 |
| cccagcccct                    | cacaccactc | gggagaggga | catcctacgg | tcccaaggtc | aggagggcag | 1740 |
| ggctggggtt                    | gactcaggcc | cctcccagct | gtggccacct | gggtgttggg | agggcagaag | 1800 |
| tgcaggcacc                    | tagggccccc | catgtgccca | ccctgggagc | tctccttgga | acccattcct | 1860 |
| gaaattattt                    | aaaggggttg | gccgggctcc | caccagggcc | tgggtgggaa | ggtacaggcg | 1920 |
| ttcccccggg                    | gcctagtacc | cccgcgtggc | ctatccactc | ctcacatcca | cacactgcac | 1980 |
| cccactcct                     | ggggcagggc | caccagcatc | caggcggcca | gcaggcacct | gagtggctgg | 2040 |
| gacaagggat                    | ccccttccc  | tgtggttcta | ttatattata | attataatta | aatatgagag | 2100 |
| catgct                        |            |            |            |            |            | 2106 |
| .010: 205                     |            |            |            |            |            |      |
| <210> 385<br><211> 439        |            |            |            |            |            |      |
| <212> DNA<br><213> Hom        | o sapiens  |            |            |            |            |      |
| <400> 385                     |            |            |            |            |            |      |
|                               | agctccgcag | ccgggttctg | cgcctcacgc | cccgggctgc | tgttcctggg | 60   |
| gttgctgctc                    | ctgccacttg | tggtcgcctt | cgccagcgct | gaagctgaag | aagatgggga | 120  |
| cctgcagtgc                    | ctgtgtgtga | agaccacctc | ccaggtccgt | cccaggcaca | tcaccagcct | 180  |
| ggaggtgatc                    | aaggccggac | cccactgccc | cactgcccaa | ctgatagcca | cgctgaagaa | 240  |
| tggaaggaaa                    | atttgcttgg | acctgcaagc | cccgctgtac | aagaaaataa | ttaagaaact | 300  |
| tttggagagt                    | tagctactag | ctgcctacgt | gtgtgcattt | gctatatagc | atacttcttt | 360  |
| tttccagttt                    | caatctaact | gtgaaagaaa | cttctgatat | ttgtgttatc | cttatgattt | 420  |
| taaataaaca                    | aaataaatc  |            | ٠          |            |            | 439  |
| <210> 386 <211> 270 <212> DNA |            |            |            |            |            |      |
|                               | o sapiens  |            |            |            |            |      |
| <400> 386                     |            | catotcocca | tttcttcgga | ttaacttatc | caactttgac | 60   |

| tgcgggtcct | gccagtcttg | tcagggcgag | gctgttaacc | cttactgtgc | tgtgctegtc | 120  |
|------------|------------|------------|------------|------------|------------|------|
| aaagagtatg | tcgaatcaga | gaacgggcag | atgtatatcc | agaaaaagcc | taccatgtac | 180  |
| ccaccctggg | acagcacttt | tgatgcccat | atcaacaagg | gaagagtcat | gcagatcatt | 240  |
| gtgaaaggca | aaaacgtgga | cctcatctct | gaaaccaccg | tggagctcta | ctcgctggct | 300  |
| gagaggtgca | ggaagaacaa | cgggaagaca | gaaatatggt | tagagctgaa | acctcaaggc | 360  |
| cgaatgctaa | tgaatgcaag | atactttctg | gaaatgagtg | acacaaagga | catgaatgaa | 420  |
| tttgagacgg | aaggcttctt | tgctttgcat | cagcgccggg | gtgccatcaa | gcaggcaaag | 480  |
| gtccaccacg | tcaagtgcca | cgagttcact | gccaccttct | tcccacagcc | cacattttgc | 540  |
| tetgtetgee | acgagtttgt | ctggggcctg | aacaaacagg | gctaccagtg | ccgacaatgc | 600  |
| aatgcagcaa | ttcacaagaa | gtgtattgat | aaagttatag | caaagtgcac | aggatcagct | 660  |
| atcaatagcc | gagaaaccat | gttccacaag | gagagattca | aaattgacat | gccacacaga | 720  |
| tttaaagtct | acaattacaa | gagecegace | ttctgtgaac | actgtgggac | cctgctgtgg | 780  |
| ggactggcac | ggcaaggact | caagtgtgat | gcatgtggca | tgaatgtgca | tcatagatgc | 840  |
| cagacaaagg | tggccaacct | ttgtggcata | aaccagaagc | taatggctga | agcgctggcc | 900  |
| atgattgaga | gcactcaaca | ggctcgctgc | ttaagagata | ctgaacagat | cttcagagaa | 960  |
| ggtccggttg | aaattggtct | cccatgctcc | atcaaaaatg | aagcaaggcc | gccatgttta | 1020 |
| ccgacaccgg | gaaaaagaga | gcctcagggc | atttcctggg | agteteegtt | ggatgaggtg | 1080 |
| gataaaatgt | gccatcttcc | agaacctgaa | ctgaacaaag | aaagaccatc | tctgcagatt | 1140 |
| aaactaaaaa | ttgaggattt | tatcttgcac | aaaatgttgg | ggaaaggaag | ttttggcaag | 1200 |
| gtcttcctgg | cagaattcaa | gaaaaccaat | caatttttcg | caataaaggc | cttaaagaaa | 1260 |
| gatgtggtct | tgatggacga | tgatgttgag | tgcacgatgg | tagagaagag | agttctttcc | 1320 |
| ttggcctggg | agcatccgtt | tctgacgcac | atgttttgta | cattccagac | caaggaaaac | 1380 |
| ctcttttttg | tgatggagta | cctcaacgga | ggggacttaa | tgtaccacat | ccaaagctgc | 1440 |
| cacaagttcg | acctttccag | agcgacgttt | tatgctgctg | aaatcattct | tggtctgcag | 1500 |
| ttccttcatt | ccaaaggaat | agtctacagg | gacctgaagc | tagataacat | cctgttagac | 1560 |
| aaagatggac | atatcaagat | cgcggatttt | ggaatgtgca | aggagaacat | gttaggagat | 1620 |
| gccaagacga | ataccttctg | tgggacacct | gactacatcg | ccccagagat | cttgctgggt | 1680 |
| cagaaataca | accactctgt | ggactggtgg | tecttegggg | ttctccttta | tgaaatgetg | 1740 |
| attggtcagt | cgcctttcca | cgggcaggat | gaggaggagc | tcttccactc | catccgcatg | 1800 |
| gacaatccct | tttacccacg | gtggctggag | aaggaagcaa | aggaccttct | ggtgaagete | 1860 |
| ttcqtqcqaq | aacctgagaa | gaggetggge | gtgaggggag | acatccqcca | qcaccctttq | 1920 |

tttcgggaga tcaactggga ggaacttgaa cggaaggaga ttgacccacc gttccggccg 1980 aaagtgaaat caccatttga ctgcagcaat ttcgacaaag aattcttaaa cgagaagccc 2040 cqqctqtcat ttqccgacag agcactgatc aacagcatgg accagaatat gttcaggaac 2100 ttttccttca tqaacccgq qatggagcgg ctgatatcct gaatcttgcc cctccagaga 2160 caggaaagaa tttgccttct ccctgggaac tggttcaaga gacactgctt gggttccttt 2220 ttcaacttqq aaaaaqaaaq aaacactcaa caataaagac tgagacccqt tcqccccat 2280 qtqactttat ctqtaqcaqa aaccaaqtct acttcactaa tgacgatgcc gtqtqtctcg 2340 totoctqaca tqtctcacaq acqctcctqa aqttaggtca ttactaacca taqttattta 2400 cttqaaaqat qqqtctccqc acttqqaaaq qtttcaaqac ttgatactqc aataaattat 2460 qqctcttcac ctqqqcqcca actqctqatc aacqaaatqc ttqttqaatc aqqqqcaaac 2520 qqaqtacaqa cqtctcaaqa ctqaaacqqc cccattqcct qqtctaqtaq cqqatctcac 2580 tcaqccqcaq acaaqtaatc actaacccqt tttattctat cctatctqtq qatqtataaa 2640 tgctggggc cagcctgga taggttttta tgggaattct ttacaataaa catagcttgt 2700 acttq 2705

<210> 387 <211> 6317

<212> DNA

<213> Homo sapiens

<400> 387

120 tgctctgtgt cactgtggat tggagttgaa aaagcttgac tggcgtcatt caggagctgg atggcgtggg acatgtgcaa ccaggactct gagtctgtat ggagtgacat cgagtgtgct 180 gctctggttg gtgaagacca gcctctttgc ccagatcttc ctgaacttga tctttctgaa 240 ctaqatqtga acgacttgga tacagacagc tttctgggtg gactcaagtg gtgcagtgac 300 caatcaqaaa taatatccaa tcaqtacaac aatgagcctt caaacatatt tgagaagata 360 qatqaaqaqa atqaqqcaaa cttqctaqca qtcctcacag agacactaga cagtctccct 420 qtqqatqaaq acqqattqcc ctcatttqat gcqctqacaq atqqaqacqt gaccactgac 480 aatqaqqcta qtccttcctc catqcctqac qqcacccctc caccccaqqa qqcaqaagaq 540 ccqtctctac ttaaqaaqct cttactqqca ccaqccaaca ctcaqctaaq ttataatqaa 600 660 tgcagtggtc tcagtaccca gaaccatgca aatcacaatc acaggatcag aacaaaccct 720 qcaattqtta aqactqaqaa ttcatqqaqc aataaaqcqa aqaqtatttq tcaacaqcaa 780 aagccacaaa gacgtccctg ctcggagctt ctcaaatatc tgaccacaaa cgatgaccct

tagtaagaca ggtgccttca gttcactctc agtaaggggc tggttgcctg catgagtgtg

cctcacacca aacccacaga gaacagaaac agcagcagag acaaatgcac ctccaaaaaq 840 aaqtcccaca cacaqtcqca qtcacaacac ttacaagcca aaccaacaac tttatctctt 900 cctctqaccc caqaqtcacc aaatqacccc aaqqqttccc catttqaqaa caaqactatt 960 quacquaect taaqtqtqqa actetetqqa actqcaqqce taactecace caccacteet 1020 cctcataaaq ccaaccaaqa taaccctttt agggcttctc caaagctgaa gtcctcttgc 1080 aagactgtgg tgccaccacc atcaaagaag cccaggtaca gtgagtcttc tggtacacaa 1140 ggcaataact ccaccaagaa agggccggag caatccgagt tgtatgcaca actcagcaag 1200 teeteagtee teactggtgg acacgaggaa aggaagacca ageggeecag tetgeggetg 1260 tttqqtqacc atqactattq ccaqtcaatt aattccaaaa caqaaatact cattaatata 1320 tcacaggage tccaagacte tagacaacta gaaaataaag atgteteete tgattggcag 1380 gggcagattt gttcttccac agattcagac cagtgctacc tgagagagac tttggaggca 1440 agcaagcagg teteteettg cagcacaaga aaacagetee aagaccagga aateegagee 1500 gagetgaaca ageacttegg teateceagt caagetgttt ttgacgaega ageagaeaag 1560 accggtgaac tgagggacag tgatttcagt aatgaacaat tetecaaact acctatgttt 1620 ataaattcaq qactagccat qqatqqcctg tttqatgaca gcgaagatga aagtgataaa 1680 ctgagctacc cttgggatgg cacgcaatcc tattcattgt tcaatgtgtc tccttcttgt 1740 tcttctttta actctccatg tagagattct gtgtcaccac ccaaatcctt attttctcaa 1800 agaccccaaa qqatqcqctc tcqttcaaqq tccttttctc qacacaqqtc qtqttcccqa 1860 1920 tcaccatatt ccaqqtcaaq atcaaqqtct ccaqqcaqta qatcctcttc aaqatcctqc 1980 tattactatq aqtcaaqcca ctacaqacac cqcacqcacc qaaattctcc cttqtatqtq agatcacqtt caagatcqcc ctacaqccqt cqqcccaqqt atqacaqcta cqaqqaatat 2040 cagcacgaga ggctgaagag ggaagaatat cgcagagagt atgagaagcg agagtctgag 2100 agggccaagc aaagggagag gcagaggcag aaggcaattg aagagcgccg tgtgatttat 2160 gtcggtaaaa tcagacctga cacaacacgg acagaactga gggaccgttt tgaagttttt 2220 ggtgaaattg aggagtgcac agtaaatctg cgggatgatg gagacagcta tggtttcatt 2280 acctaccgtt atacctqtqa tqcttttqct gctcttqaaa atgqatacac tttgcgcagg 2340 tcaaacqaaa ctgactttqa qctqtacttt tqtqqacqca aqcaattttt caagtctaac 2400 2460 tatgcaqacc tagattcaaa ctcaqatqac tttqaccctq cttccaccaa qagcaagtat qactctctgq attttqatag tttactqaaa qaaqctcaqa qaaqcttqcg caqgtaacat 2520 qttccctaqc tgaggatgac agagggatgg cgaatacctc atgggacagc gcqtccttcc 2580

ctaaagacta ttgcaagtca tacttaggaa tttctcctac tttacactct ctgtacaaaa 2640 acaaaacaaa acaacaacaa tacaacaaga acaacaacaa caataacaac aatggtttac 2700 atgaacacag ctgctgaaga ggcaagagac agaatgatat ccagtaagca catgtttatt 2760 catgggtgte agetttgett tteetggagt etettggtga tggagtgtge gtgtgtgeat 2820 qtatqtqtqt qtqtatqtat qtqtgtqqtq tgtgtgcttg gtttagggga agtatgtgtq 2880 qqtacatqtq aqqactqqqq gcacctgacc aqaatqcgca aqggcaaacc atttcaaatg 2940 3000 quaqcaqttc catqaaqaca cqcttaaaac ctaqaacttc aaaatgttcg tattctattc 3060 aqaaaactaa caaccaacca accaaccaac caaccacaa ccaccctaaa atgacagccq 3120 ctgatgtctg ggcatcagcc tttgtactct gtttttttaa gaaagtgcag aatcaacttg 3180 aaqcaaqctt tctctcataa cqtaatqatt atatqacaat cctgaagaaa ccacaggttc 3240 catagaacta atatectgte tetetetete tetetetete tetettttt 3300 cettttqcca tqqaatctqq qtqqqaqaqq atactqcqqq caccaqaatq ctaaaqtttc 3360 ctaacatttt qaaqtttctq taqttcatcc ttaatcctqa cacccatqta aatqtccaaa 3420 3480 atgttgatct tccactgcaa atttcaaaag ccttgtcaat ggtcaagcgt gcagcttgtt cagcggttct ttctgaggag cggacaccgg gttacattac taatgagagt tgggtagaac 3540 tototgagat gtgttcagat agtgtaattg ctacattctc tgatgtagtt aagtatttac 3600 3660 agatgttaaa tggagtattt ttattttatg tatatactat acaacaatgt tcttttttgt tacagctatg cactgtaaat gcagccttct tttcaaaact gctaaatttt tcttaatcaa 3720 qaatattcaa atqtaattat gaggtgaaac aattattgta cactaacata tttagaagct 3780 gaacttactg cttatatata tttgattgta aaaacaaaaa gacagtgtgt gtgtctgttg 3840 aqtqcaacaa qaqcaaaatq atqctttccq cacatccatc ccttaggtqa gcttcaatct 3900 aagcatettq teaaqaaata teetaqteee etaaaqqtat taaccaette tqcqatattt 3960 ttccacattt tcttqtcqct tqtttttctt tqaaqtttta tacactqqat ttqttaqqqq 4020 aatgaaattt totoatotaa aatttttota gaagatatoa tgattttatg taaagtotot 4080 caatgggtaa ccattaagaa atgtttttat tttctctatc aacagtagtt ttgaaactag 4140 aagtcaaaaa totttttaaa atgotgtttt gttttaattt ttgtgatttt aatttgatac 4200 aaaatgctga ggtaataatt atagtatgat ttttacaata attaatgtgt gtctgaagac 4260 tatetttqaa qecaqtattt ettteeettq qeaqaqtatq acqatqqtat ttatetqtat 4320 tttttacagt tatgcatcct gtataaatac tgatatttca ttcctttgtt tactaaagag 4380 acatatttat caqttgcaqa taqcctattt attataaatt atgaqatgat gaaaataata 4440

aaqccaqtqq aaattttcta cctaqqatqc atqacaattg tcaggttgga gtgtaagtgc 4500 ttcatttqqq aaattcaqct tttqcaqaaq cagtgtttct acttgcacta gcatggcctc 4560 tgacgtgacc atggtgttgt tettgatgac attgettetg etaaatttaa taaaaaette 4620 4680 ttcagtaaca tttggagtgt gtattcaagt ttctaaattg agattcgatt actgtttggc 4740 tgacatgact tttctggaag acatgataca cctactactc aattgttctt ttcctttctc 4800 togoccaaca cgatottgta agatggattt caccoccagg ccaatgcagc taattttgat 4860 agetgcatte atttateace ageatattgt gttetgagtg aatceactgt ttgteetgte 4920 ggatgettge ttgattttt ggettettat ttetaagtag atagaaagca ataaaaatae 4980 tatgaaatga aagaacttgt tcacaggttc tgcgttacaa cagtaacaca tctttaatcc 5040 gcctaattct tgttgttctg taggttaaat gcaggtattt taactgtgtg aacgccaaac 5100 taaagtttac agtctttctt tctgaatttt gagtatcttc tgttgtagaa taataataaa 5160 aagactatta agagcaataa attattttta agaaatcgag atttagtaaa tootattatg 5220 tgttcaagga ccacatgtgt tctctatttt gcctttaaat ttttgtgaac caattttaaa 5280 tacattetee tttttgeeet ggattgttga catgagtgga atacttggtt tettttetta 5340 cttatcaaaa qacaqcacta caqatatcat attgaggatt aatttatccc ccctaccccc 5400 agectgacaa atattqttac catgaagata qttttcctca atggacttca aattgcatct 5460 agaattaqtq qaqcttttqt atcttctqca qacactqtqq qtaqcccatc aaaatqtaag 5520 ctgtgctcct ctcattttta tttttatttt tttgggagag aatatttcaa atgaacacgt 5580 qcaccccatc atcactqqaq qcaaatttca qcataqatct qtaqqatttt taqaaqaccq 5640 5700 tgggccattg cettcatgcc gtggtaagta ccacatctac aattttggta accgaactgg tgctttagta atgtggattt ttttcttttt taaaagagat gtagcagaat aattcttcca 5760 gtgcaacaaa atcaattttt tgctaaacga ctccgagaac aacagttggg ctgtcaacat 5820 tcaaaqcagc agagagggaa ctttgcacta ttggggtatg atgtttgggt cagttgataa 5880 aaggaaacct tttcatgcct ttagatgtga gcttccagta ggtaatgatt atgtgtcctt 5940 tettqatqqc tqtaatgaga actteaatca etqtagteta agacetgate tatagatgae 6000 ctaqaataqc catqtactat aatqtqatqa ttctaaattt gtacctatgt gacagacatt 6060 ttcaataatg tgaactgctg atttgatgga gctactttaa gatttgtagg tgaaagtgta 6120 atactgttgg ttgaactatg ctgaagaggg aaagtgagcg attagttgag cccttgccgg 6180 qccttttttc cacctqccaa ttctacatqt attqttqtqq ttttattcat tqtatgaaaa 6240

| tteetgtgat                                         | LLLLLLdad      | tgtgcagtac | acateageet | cactgageta | acadagggaa | 6300 |
|----------------------------------------------------|----------------|------------|------------|------------|------------|------|
| acgaatgttt                                         | caaatct        |            |            |            |            | 6317 |
| <210> 388<br><211> 655'<br><212> DNA<br><213> Home | 7<br>o sapiens |            |            |            |            |      |
| <400> 388                                          |                |            |            |            |            |      |
|                                                    |                | agaacacact |            |            |            | 60   |
| accaaattgc                                         | agacatctca     | acactttggc | caggcagcct | gctgagcaag | gtacctcagc | 120  |
| cagcatggca                                         | gcctctttcc     | cacccacctt | gggactcagt | tctgccccag | atgaaattca | 180  |
| gcacccacat                                         | attaaatttt     | cagaatggaa | atttaagctg | ttccgggtga | gatcctttga | 240  |
| aaagacacct                                         | gaagaagctc     | aaaaggaaaa | gaaggattcc | tttgagggga | aaccctctct | 300  |
| ggagcaatct                                         | ccagcagtcc     | tggacaaggc | tgatggtcag | aagccagtcc | caactcagcc | 360  |
| attgttaaaa                                         | gcccacccta     | agttttcaaa | gaaatttcac | gacaacgaga | aagcaagagg | 420  |
| caaagcgatc                                         | catcaagcca     | accttcgaca | tctctgccgc | atctgtggga | attcttttag | 480  |
| agctgatgag                                         | cacaacagga     | gatatccagt | ccatggtcct | gtggatggta | aaaccctagg | 540  |
| ccttttacga                                         | aagaaggaaa     | agagagctac | ttcctggccg | gacctcattg | ccaaggtttt | 600  |
| ccggatcgat                                         | gtgaaggcag     | atgttgactc | gatccacccc | actgagttct | gccataactg | 660  |
| ctggagcatc                                         | atgcacagga     | agtttagcag | tgccccatgt | gaggtttact | tcccgaggaa | 720  |
| cgtgaccatg                                         | gagtggcacc     | cccacacacc | atcctgtgac | atctgcaaca | ctgcccgtcg | 780  |
| gggactcaag                                         | aggaagagtc     | ttcagccaaa | cttgcagctc | agcaaaaaac | tcaaaactgt | 840  |
| gcttgaccaa                                         | gcaagacaag     | cccgtcagcg | caagagaaga | gctcaggcaa | ggatcagcag | 900  |
| caaggatgtc                                         | atgaagaaga     | tcgccaactg | cagtaagata | catcttagta | ccaagctcct | 960  |
| tgcagtggac                                         | ttcccagagc     | actttgtgaa | atccatctcc | tgccagatct | gtgaacacat | 1020 |
| tctggctgac                                         | cctgtggaga     | ccaactgtaa | gcatgtcttt | tgccgggtct | gcattctcag | 1080 |
| atgcctcaaa                                         | gtcatgggca     | gctattgtcc | ctcttgccga | tatccatgct | tccctactga | 1140 |
| cctggagagt                                         | ccagtgaagt     | cctttctgag | cgtcttgaat | tccctgatgg | tgaaatgtcc | 1200 |
| agcaaaagag                                         | tgcaatgagg     | aggtcagttt | ggaaaaatat | aatcaccaca | tctcaagtca | 1260 |
| caaggaatca                                         | aaagagattt     | ttgtgcacat | taataaaggg | ggccggcccc | gccaacatct | 1320 |
| tctgtcgctg                                         | actcggagag     | ctcagaagca | ccggctgagg | gagctcaagc | tgcaagtcaa | 1380 |
| agcctttgct                                         | gacaaagaag     | aaggtggaga | tgtgaagtcc | gtgtgcatga | ccttgttcct | 1440 |
| gctggctctg                                         | agggcgagga     | atgagcacag | gcaagctgat | gagctggagg | ccatcatgca | 1500 |
|                                                    |                |            |            |            |            |      |

qqqaaaqqqc tctqqcctqc agccagctgt ttqcttggcc atccgtgtca acaccttcct 1560 cagctgcagt cagtaccaca agatgtacag gactgtgaaa gccatcacag ggaqacaqat 1620 ttttcaqcct ttqcatqccc ttcqqaatqc tqaqaaggta cttctgccag gctaccacca 1680 ctttqaqtqq caqccacctc tqaaqaatqt qtcttccagc actgatgttg qcattattqa 1740 tgggctgtct ggactatcat cctctgtgga tgattaccca gtggacacca ttgcaaaqaq 1800 gttccgctat gattcagctt tggtgtctgc tttgatggac atggaagaag acatcttgga 1860 aggcatgaga teccaagace ttgatgatta cetgaatgge ceetteactg tggtggtgaa 1920 ggagtcttgt gatggaatgg gagacgtgag tgagaagcat gggagtgggc ctgtagttcc 1980 agaaaaggca gtccgttttt cattcacaat catgaaaatt actattgccc acagctctca 2040 2100 qaatqtqaaa qtatttqaaq aaqccaaacc taactctqaa ctqtqttqca aqccattqtq cettatgetq qeaqatqaqt etqaccacqa qacqetqact qecatcetqa qteeteteat 2160 tgctgagagg gaggccatga agagcagtga attaatgctt gagctgggag gcattctccg 2220 2280 gactitcaaq ticatcitca qqqqcaccqq ctatqatqaa aaactiqtqc qqqaaqtqqa 2340 aggeetegag gettetgget eagtetacat ttgtactett tgtgatgeea eeegtetgga agecteteaa aatettgtet teeactetat aaccagaage catgetgaga acetggaacg 2400 2460 ttatqaqqtc tggcgttcca accettacca tgagtctgtg gaagaactgc gggatcgggt 2520 qaaaqqqqtc tcaqctaaac ctttcattga gacagtccct tccatagatg cactccactg tqacattqqc aatqcaqctq aqttctacaa qatcttccag ctagaqatag gggaagtgta 2580 taaqaatccc aatqcttcca aaqaqqaaaq qaaaaqqtqq caqqccacac tqqacaaqca 2640 tctccqqaaq aaqatqaacc tcaaaccaat catqaqqatq aatqqcaact ttqccaqqaa 2700 2760 gctcatgacc aaagagactg tggatgcagt ttgtgagtta attccttccg aggagaggca 2820 cgaggetetg agggagetga tggatettta cetgaagatg aaaccagtat ggegateate atgeeetget aaagagtgee cagaateeet etgeeagtae agttteaatt cacagegttt 2880 tgctgagctc ctttctacga agttcaagta taggtatgag ggaaaaatca ccaattattt 2940 tcacaaaacc ctggcccatg ttcctgaaat tattgagagg gatggctcca ttggggcatg 3000 ggcaagtgag ggaaatgagt ctggtaacaa actgtttagg cgcttccgga aaatgaatgc 3060 caqqcaqtcc aaatgctatg agatggaaga tgtcctgaaa caccactggt tgtacacctc 3120 caaatacctc caqaaqttta tqaatqctca taatqcatta aaaacctctg ggtttaccat 3180 qaaccctcaq qcaaqcttaq qqqacccatt aqqcatagaq gactctctqq aaagccaaga 3240 ttcaatqqaa ttttaaqtaq qqcaaccact tatqaqttgq tttttqcaat tqaqtttccc 3300 totogqttqc attqaqqqct totoctaqca cootttactg ctqtqtatgg ggottcacca 3360

tccaaqaqqt qqtaqqttqq aqtaaqatqc tacaqatqct ctcaaqtcaq qaataqaaac 3420 tgatgagctg attgcttgag gcttttagtg agttccgaaa agcaacagga aaaatcagtt 3480 atctgaaagc tcagtaactc agaacaggag taactgcagg ggaccagaga tgagcaaaga 3540 tctgtgtgtgt ttggggagct gtcatgtaaa tcaaagccaa ggttgtcaaa gaacagccag 3600 tgaggccaga aattggtctt gtggttttca tttttttccc ccttgattga ttatattttg 3660 tattgaqata tqataagtgc cttctatttc atttttgaat aattcttcat ttttataatt 3720 ttacatatct tggcttgcta tataagattc aaaagagctt tttaaatttt tctaataata 3780 tettacattt gtacagcatg atgacettta caaagtgete teaatgeatt tacceatteg 3840 ttatataaat atgttacatc aggacaactt tgagaaaatc agtccttttt tatgtttaaa 3900 ttatqtatct attgtaacct tcagagttta ggaggtcatc tgctgtcatq qatttttcaa 3960 taatqaattt aqaatacacc tgttagctac agttagttat taaatcttct qataatatat 4020 qtttacttaq ctatcaqaaq ccaagtatga ttctttattt ttacttttc atttcaaqaa 4080 atttaqaqtt tccaaattta qaqcttctqc atacaqtctt aaagccacag aggcttgtaa 4140 aaatataqqt taqcttqatq tctaaaaata tatttcatgt cttactgaaa cattttgcca 4200 qactttctcc aaatqaaacc tqaatcaatt tttctaaatc taqgtttcat agagtcctct 4260 cctctqcaat qtqttattct ttctataatq atcaqtttac tttcaqtqqa ttcaqaattg 4320 tgtagcagga taaccttgta tttttccatc cgctaagttt agatggagtc caaacgcagt 4380 acagcagaag agttaacatt tacacagtgc tttttaccac tgtggaatgt tttcacactc 4440 atttttcctt acaacaattc tgaggagtag gtgttgttat tatctccatt tgatggggt 4500 ttaatgattt gctcaaagtc atttaggggt aataaatact tggcttggaa atttaacaca 4560 gtccttttgt ctccaaagcc cttcttcttt ccaccacaaa ttaatcacta tgtttataag 4620 gtagtatcag aattttttta ggattcacaa ctaatcacta tagcacatga ccttqqqatt 4680 acatttttat ggggcagggg taagcggctt ttaaatcatt tgtgtgctct ggctcttttg 4740 4800 ataqaaqaaa qcaacacaaa aqctccaaaq qqccccctaa ccctcttgtg gctccagtta tttqqaaact atqatctqca tccttaqqaa tctqqqattt gccagttgct ggcaatgtag 4860 aggagggatg gaattttata tqctaqtqaq tcataatqat atqttaqtqt taattagttt 4920 ttcttccttt qattttattq qccataattq ctactcttca tacacaqtat atcaaaqaqc 4980 ttgataattt agttgtcaaa agtgcatcgg cgacattatc tttaattgta tgtatttggt 5040 qcttcttcaq qqattqaact caqtatcttt cattaaaaaa cacaqcaqtt ttccttqctt 5100 tttatatqca qaatatcaaa qtcatttcta atttaqttqt caaaaacata tacatatttt 5160

| aacattagtt | tttttgaaaa | ctcttggttt | tgttttttg  | gaaatgagtg | ggccactaag | 5220 |
|------------|------------|------------|------------|------------|------------|------|
| ccacactttc | ccttcatcct | gcttaatcct | tccagcatgt | ctctgcacta | ataaacagct | 5280 |
| aaattcacat | aatcatccta | tttactgaag | catggtcatg | ctggtttata | gattttttac | 5340 |
| ccatttctac | tettttete  | tattggtggc | actgtaaata | ctttccagta | ttaaattatc | 5400 |
| cttttctaac | actgtaggaa | ctattttgaa | tgcatgtgac | taagagcatg | atttatagca | 5460 |
| caacctttcc | aataatccct | taatcagatc | acattttgat | aaaccctggg | aacatctggc | 5520 |
| tgcaggaatt | tcaatatgta | gaaacgctgc | ctatggtttt | ttgcccttac | tgttgagact | 5580 |
| gcaatatcct | agaccctagt | tttatactag | agttttattt | ttagcaatgc | ctattgcaag | 5640 |
| tgcaattata | tactccaggg | aaattcacca | cactgaatcg | agcatttgtg | tgtgtatgtg | 5700 |
| tgaagtatat | ctgggacttc | agaagtgcaa | tgtattttc  | tcctgtgaaa | cctgaatcta | 5760 |
| caagttttct | gccaagccac | tcaggtgcat | tgcagggacc | agtgataatg | gctgatgaaa | 5820 |
| attgatgatt | ggtcagtgag | gtcaaaagga | gccttgggat | taataaacat | gcactgagaa | 5880 |
| gcaagaggag | gagaaaaaga | tgtctttttc | ttccaggtga | actggaattt | agttttgcct | 5940 |
| cagattttt  | tcccacaaga | tacagaagaa | gataaagatt | tttttggttg | agagtgtggg | 6000 |
| tcttgcatta | catcaaacag | agttcaaatt | ccacacagat | aagaggcagg | atatataagc | 6060 |
| gccagtggta | gttgggagga | ataaaccatt | atttggatgc | aggtggtttt | tgattgcaaa | 6120 |
| tatgtgtgtg | tcttcagtga | ttgtatgaca | gatgatgtat | tcttttgatg | ttaaaagatt | 6180 |
| ttaagtaaga | gtagatacat | tgtacccatt | ttacattttc | ttattttaac | tacagtaatc | 6240 |
| tacataaata | tacctcagaa | atcatttttg | gtgattattt | tttgttttgt | agaattgcac | 6300 |
| ttcagtttat | tttcttacaa | ataaccttac | attttgttta | atggcttcca | agagcctttt | 6360 |
| tttttttgta | tttcagagaa | aattcaggta | ccaggatgca | atggatttat | ttgattcagg | 6420 |
| ggacctgtat | ttccatgtca | aatgttttca | aataaaatga | aatatgagtt | tcaatacttt | 6480 |
| ttatatttta | atatttcctt | aatattatgg | ttattgtccg | ccattttgtt | gtatattgta | 6540 |
| aataaagttt | agattgt    |            |            |            |            | 6557 |

<400> 389 actetettta caqteaqeet tetqettqce acaqteataq tqqqcaqtea gtqaatette 60

cccaagtgct gacaattaat acctggttta gcggcaaaga ttcagagagg cgtgagcagc 120 ccctctggcc ttcagacaaa aatctacgta ccatcagaaa ctatgtctct gcagatggta 180

<sup>&</sup>lt;210> 389

<sup>&</sup>lt;211> 2414

<sup>&</sup>lt;212> DNA <213> Homo sapiens

| acagtcagta | ataacatage | cttaattcag | ccaggettet          | Cactgatgaa | ttttgatgga          | 240  |
|------------|------------|------------|---------------------|------------|---------------------|------|
| caagttttct | tctttggaca | aaaaggctgg | cccaaaagat          | cctgccccac | tggagttttc          | 300  |
| catctggatg | taaagcataa | ccatgtcaaa | ctgaagccta          | caattttctc | taaggattcc          | 360  |
| tgctacctcc | ctcctcttcg | ctacccagcc | acttgcacat          | tcaaaggcag | cttggagtct          | 420  |
| gaaaagcatc | aatacatcat | ccatggaggg | aaaacaccaa          | acaatgaggt | ttcagataag          | 480  |
| atttatgtca | tgtctattgt | ttgcaagaac | aacaaaaagg          | ttacttttcg | ctgcacagag          | 540  |
| aaagacttgg | taggagatgt | tcctgaagcc | agatatggtc          | attccattaa | tgtggtgtac          | 600  |
| agccgaggga | aaagtatggg | tgctctcttt | ggaggacgct          | catacatgcc | ttctacccac          | 660  |
| agaaccacag | aaaaatggaa | tagtgtagct | gactgcctgc          | cctgtgtttt | cctggtggat          | 720  |
| tttgaatttg | ggtgtgctac | atcatacatt | cttccagaac          | ttcaggatgg | gctatctttt          | 780  |
| catgtctcta | ttgccaaaaa | tgacaccatc | tatattttag          | gaggacattc | acttgccaat          | 840  |
| aatatccggc | ctgccaacct | gtacagaata | agggttga <b>t</b> c | ttcccctggg | tagcccagct          | 900  |
| gtgaattgca | cagtcttgcc | aggaggaatc | tctgtctcca          | gtgcaatcct | gactcaaact          | 960  |
| aacaatgatg | aatttgttat | tgttggtggc | tatcagcttg          | aaaatcaaaa | aagaatgatc          | 1020 |
| tgcaacatca | tctctttaga | ggacaacaag | atagaaattc          | gtgagatgga | gaccccagat          | 1080 |
| tggaccccag | acattaagca | cagcaagata | tggtttggaa          | gcaacacggg | aaatggaact          | 1140 |
| gtttttcttg | gcataccagg | agacaataaa | caagttgttt          | cagaaggatt | ctatttctat          | 1200 |
| atgttgaaat | gtgctgaaga | tgatactaat | gaagagcaga          | caacattcac | aaacagtcaa          | 1260 |
| acatcaacag | aagatccagg | ggattccact | ccctttgaag          | actctgaaga | attttgtttc          | 1320 |
| agtgcagaag | caaatagttt | tgatggtgat | gatgaatttg          | acacctataa | tgaagatgat          | 1380 |
| gaagaagatg | agtctgagac | aggctactgg | attacatgct          | gccctacttg | tgatg <b>t</b> ggat | 1440 |
| atcaacactt | gggtaccatt | ctattcaact | gagctcaaca          | aacccgccat | gatctactgc          | 1500 |
| tctcatgggg | atgggcactg | ggtccatgct | cagtgcatgg          | atctggcaga | acgcacactc          | 1560 |
| atccatctgt | cagcaggaag | caacaagtat | tactgcaatg          | agcatgtgga | gatagcaaga          | 1620 |
| gctctacaca | ctccccaaag | agtcctaccc | ttaaaaaagc          | ctccaatgaa | atccctccgt          | 1680 |
| aaaaaaggtt | ctggaaaaat | cttgactcct | gccaagaaat          | cctttcttag | aaggttgttt          | 1740 |
| gattagtttt | gcaaaagcct | ttcagattca | ggtgtatgga          | atttttgaat | ctatttttaa          | 1800 |
| aatcataaca | ttgattttaa | aaatacattt | ttgtttattt          | aaaatgccta | tgttttcttt          | 1860 |
| tagttacatg | aattaagggc | cagaaaaaag | tgtttataat          | gcaatgataa | ataaagtcat          | 1920 |
| tctagaccct | atacattttg | aaaatatttt | acccaaatac          | tcaatttact | aatttattct          | 1980 |
| tcactgagga | tttctqatct | gatttttat  | tcaacaaacc          | ttaaacaccc | agaagcagta          | 2040 |

ataatcatcg aggtatgttt atatttatta tatgagtctt ggtaacaaat aacctataaa 2100 gtgtttatga caaatttagc caataaagaa attaacaccc aaaagaatta aattgattat 2160 tttgtgcaac ataacaattc ggcagttggc caaaacttaa aagcaagatc tactacatcc 2220 cacattagtg ttctttatat accttcaagc aaccctttgg attatgccca tgaacaagtt 2280 aqtttctcat agctttacag atqtagatat aaatataaat atatgtatac atatagatag 2340 2400 aaaaaaaaa aaaa 2414 <210> 390 <211> 3524 <212> DNA <213> Homo sapiens <400> 390 totocqteaq coqcattqcc cqctcqqcqt ccqqcccccq acccqtqctc qtccqcccqc 60 cogcogco googgoca tgaacqccaa qqtcqtqqtc qtqctqqtcc tcqtqctqac 120 egegetetge eteagegaeg ggaageeegt eageetgage tacagatgee catgeegatt 180 cttcgaaagc catgttgcca gagccaacgt caagcatctc aaaattctca acactccaaa 240 ctgtqccctt cagattgtag cccggctgaa gaacaacaac agacaagtgt gcattgaccc 300 qaaqctaaaq tqqattcagg aqtacctgga gaaagcttta aacaagaggt tcaagatgtg 360 agaggtcag acqcctqagg aacccttaca qtaggagccc agctctgaaa ccagtgttag 420 qqaaqqqcct qccacaqcct cccctqccaq qqcaqqqccc caqqcattqc caaqqqcttt 480

qttttqcaca ctttqccata ttttcaccat ttqattatqt aqcaaaatac atqacattta 600 tttttcattt agtttgatta ttcagtgtca ctggcgacac gtagcagctt agactaaggc cattattgta cttgccttat tagagtgtct ttccacggag ccactcctct gactcagggc 660 tectqqqttt tqtattetet qaqetqtqca qqtqqqqaqa etqqqetqaq qqaqeetqqe 720 780 cccatggtca gccctagggt ggagagccac caagagggac gcctgggggt gccaggacca 840 catgggaggc tcacccctt ctccatccac atgggagccg ggtctgcctc ttctgggagg 900 gcagcagggc taccctgagc tgaggcagca gtgtgaggcc agggcagagt gagacccagc 960 ceteateceq aqeaceteca cateetecac gttetgetea teattetetg teteatecat 1020 catcatqtqt gtccacqact qtctccatgg ccccqcaaaa ggactctcag gaccaaagct 1080 ttcatqtaaa ctqtqcacca aqcaqqaaat qaaaatqtct tqtqttacct gaaaacactg 1140 tgcacatctq tgtcttgtgt qqaatattgt ccattgtcca atcctatgtt tttgttcaaa 1200

gccagcqtcc tcctctqtqa ccaatqtctt qatqcatqca ctqttccccc tqtqcaqccq 1260 ctgagcgagg agatgctcct tqqqcccttt gagtqcaqtc ctgatcagag ccqtqqtcct 1320 ttggggtgaa ctaccttggt tcccccactg atcacaaaaa catggtgggt ccatgggcag 1380 agcccaaggg aattcggtgt gcaccagggt tgaccccaga ggattgctgc cccatcagtg 1440 ctccctcaca tgtcagtacc ttcaaactag ggccaagccc agcactgctt gaggaaaaca 1500 agcattcaca acttqttttt ggtttttaaa acccagtcca caaaataacc aatcctggac 1560 atqaaqattc tttcccaatt cacatctaac ctcatcttct tcaccatttg gcaatgccat 1620 catetectge ettectectg ggccetetet getetgegtg teacetgtge ttegggeeet 1680 tcccacaqqa catttctcta aqaqaacaat gtgctatgtg aagagtaagt caacctgcct 1740 gacatttgga gtgttcccct cccactgagg gcagtcgata gagctgtatt aaqccactta 1800 aaatqttcac ttttqacaaa qqcaagcact tgtgggtttt tgttttgttt ttcattcagt 1860 cttacqaata cttttqccct ttqattaaag actccagtta aaaaaaattt taatgaagaa 1920 aqtqqaaaac aaqqaaqtca aaqcaaqqaa actatqtaac atgtaggaag taggaagtaa 1980 attataqtqa tqtaatcttq aattqtaact qttcqtqaat ttaataatct gtagggtaat 2040 tagtaacatg tgttaagtat tttcataagt atttcaaatt ggagcttcat ggcagaaggc 2100 agacccatca acaaaaattq tcccttaaac aaaaattaaa atcctcaatc caqctatqtt 2160 atattgaaaa aatagagcct gagggatctt tactagttat aaagatacag aactctttca 2220 agacettttg agattaget etcactatac eggtatagtt gagttttegg tggggeagte 2280 2340 attatccagg taatccaaga tattttaaaa tctqtcacqt aqaacttqqa tqtacctqcc 2400 cccaatccat qaaccaaqac cattgaattc ttggttgagg aaacaaacat gaccctaaat cttqactaca qtcaqqaaaq gaatcatttc tatttctcct ccatgqqaqa aaataqataa 2460 qaqtaqaaac tqcaqqqaaa attatttgca taacaattcc tctactaaca atcagctcct 2520 tcctqqaqac tqcccaqcta aaqcaatatg catttaaata cagtcttcca tttqcaaqqq 2580 2640 aaaaqtctct tqtaatccqa atctcttttt gctttcqaac tqctaqtcaa gtgcgtccac qaqctqttta ctaqqqatcc ctcatctqtc cctccqqqac ctqqtqctqc ctctacctga 2700 cactcocttq qqctccctqt aacctcttca qaqqccctcq ctqccaqctc tqtatcaqqa 2760 cccaqaqqaa qqqqccaqaq qctcqttqac tqqctqtqtq ttqqqattqa qtctqtqcca 2820 2880 cgtgtatgtg ctgtggtgtg tcccctctg tccaggcact gagataccag cgaggaggct ccagagggca ctctgcttgt tattagagat tacctcctga gaaaaaagct tccgcttgga 2940 gcagagggc tgaatagcag aaggttgcac ctcccccaac cttagatgtt ctaagtcttt 3000

ccattggatc tcattggacc cttccatggt gtgatcgtct gactggtgtt atcaccgtgg 3060 3120 gctccctgac tgggagttga tcgcctttcc caggtgctac acccttttcc agctggatga gaatttgagt getetgatee etetacagag etteeetgae teattetgaa ggageeceat 3180 tcctgggaaa tattccctag aaacttccaa atcccctaag cagaccactg ataaaaccat 3240 qtaqaaaatt tqttattttq caacctcgct ggactctcag tctctgagca gtgaatgatt 3300 cagtgttaaa tgtgatgaat actgtatttt gtattgtttc aagtgcatct cccaqataat 3360 qtqaaaatqq tccaggaqaa qqccaattcc tatacgcagc gtgctttaaa aaataaataa 3420 qaaacaactc tttqaqaaac aacaatttct actttqaagt cataccaatg aaaaaatgta 3480 tatqcactta taattttcct aataaagttc tgtactcaaa tgta 3524 <210> 391 <211> 1084 <212> DNA <213> Homo sapiens <400> 391 egaggatgtg egtggggget eggeggetgg geegegggee gtgtgegget etgeteetee 60 tgggcctggg gctgagcacc gtgacggggc tccactgtgt cggggacacc taccccagca 120 acqaccqqtg ctgccacqag tqcaqqccag gcaacgggat ggtgagccgc tgcagccgct 180 cccaqaacac qqtqtqccqt ccqtqcgqqc cqqqcttcta caacgacgtg gtcagctcca 240 agccqtqcaa qccctqcacq tqqtqtaacc tcaqaaqtqq qaqtqaqcqg aaqcaqctgt 300

qcacqqccac acaqqacaca qtctqccqct qccqqqcqqq cacccaqccc ctqgacaqct 360 420 acaaqcctqq aqttqactqt qcccctqcc ctccaqqqca cttctcccca qqcqacaacc 480 aggeotycaa geeetggace aactgcacet tggctgggaa geacaceetg cageeggeea qcaataqctc qqacqcaatc tqtqaqqaca qqqacccccc aqccacqcaq ccccaqqaqa 540 cccagggccc cccggccagg cccatcactg tccagcccac tgaagcctgg cccagaacct 600 cacagggacc etecacegg eeegtggagg teeeeggggg eegtgeggtt geegecatee 660 tgggcctggg cctggtgctg gggctgctgg gcccctggc catcctgctg gccctgtacc 720 tgctccggag ggaccagagg ctgccccccg atgcccacaa gccccctggg ggaggcagtt 780 tecqqaeeee catecaaqaq qaqeaqqeeq acqeecacte caccetggee aagatetgae 840 ctqqqccac caaqqtqqac qctqqqccc qccaqqctqq aqcccqqagg qtctqctggg 900 960 cqaqcaqqqc aqqtqcagqc cqcctqccc qccacqctcc tqqqccaact ctgcaccgtt 1020 ctaggtgccg atggctgcct ccggctctct gcttacgtat gccatgcata cctcctgccc

130

aaaa 1084

| 392  |             |
|------|-------------|
| 3510 |             |
| DNA  |             |
| Homo | sapiens     |
|      | 3510<br>DNA |

<400> 392 tcaatcqcct tttatctctq qccctqqqac ctttqcctat tttctgattg ataggctttg 60 ttttgtettt aceteettet ttetggggaa aactteagtt ttategeaeg tteeeetttt 120 ccatatette atetteeete taeccagatt gtgaagatgg aaagggteea acceetqqaa 180 qaqaatqtqq qaaatqcaqc caqqccaaqa ttcqaqaqqa acaagctatt gctggtggcc 240 totataatto agggactggg gotgotootg tgottoacot acatotgcot goacttotot 300 getetteagg tateacateg gtateetega atteaaagta teaaagtaca atttacegaa 360 tataaqaaqq aqaaaqqttt catcctcact tcccaaaaqq aqqatqaaat catgaaggtg 420 cagaacaact cagtcatcat caactgtgat gggttttatc tcatctccct gaagggctac 480 540 ttctcccagg aagtcaacat tagccttcat taccagaagg atgaggagcc cctcttccaa ctgaagaagg tcaggtctgt caactccttg atggtggcct ctctgactta caaagacaaa 600 gtctacttga atgtgaccac tgacaatacc tccctggatg acttccatgt gaatggcgga 660 quactigatic tratecatea anatectiggt guartetigtig teetitigagg ggetgatgge 720 aatatetaaa accaqqeacc agcatgaaca ccaagetggg ggtggacaqg gcatggatte 780 840 ttcattqcaa qtqaaqqaqc ctcccaqctc agccacgtgg gatgtgacaa gaagcagatc 900 ctggcctcc cqccccacc cctcagggat atttaaaact tattttatat accagttaat cttatttatc cttatatttt ctaaattqcc taqccgtcac accccaagat tgccttgagc 960 ctactaggca cctttqtqaq aaaqaaaaaa taqatqcctc ttcttcaaga tgcattgttt 1020 ctattggtca ggcaattgtc ataataaact tatgtcattg aaaacggtac ctgactacca 1080 tttgctggaa atttgacatg tgtgtggcat tatcaaaatg aagaggagca aggagtgaag 1140 gagtggggtt atgaatctgc caaaggtggt atgaaccaac ccctggaagc caaagcggcc 1200 totocaaggt taaattgatt goagtttgca tattgcctaa atttaaactt totoatttgg 1260 1320 tgggggttca aaagaagaat cagcttgtga aaaatcagga cttgaagaga gccgtctaag 1380 aaataccacq tgcttttttt ctttaccatt ttgctttccc agcctccaaa catagttaat aqaaatttcc cttcaaagaa ctgtctgqgg atgtgatgct ttgaaaaaatc taatcagtga 1440 cttaaqaqaq attttcttqt atacagggag agtgagataa cttattqtqa agggttagct 1500 . ttactqtaca qqataqcagq qaactqqaca tctcaggqta aaagtcagta cggattttaa 1560

tagcctgggg aggaaaacac attctttgcc acagacaggc aaagcaacac atgctcatcc 1620 tectgeetat getgagatac geacteaget ceatgtettg tacacacaga aacattgetg 1680 qtttcaagaa atgaggtgat cctattatca aattcaatct gatgtcaaat agcactaaga 1740 agttattgtg ccttatgaaa aataatgatc tctgtctaga aataccatag accatatata 1800 1860 qtctcacatt qataattqaa actaqaaggg tctaatatca gcctatgcca gggcttcaat 1920 qqaataqtat ccccttatqt ttagttgaaa tgtcccctta acttgatata atgtgttatg cttatggcgc tgtggacaat ctgatttttc atgtcaactt tccagatgat ttgtaacttc 1980 2040 totqtqccaa accttttata aacataaatt tttgagatat gtattttaaa attgtagcac atgtttccct qacattttca ataqaqqata caacatcaca gaatctttct ggatgattct 2100 gtgttatcaa ggaattgtac tgtgctacaa ttatctctag aatctccaga aaggtggagg 2160 gctgttcgcc cttacactaa atggtctcag ttggattttt ttttcctgtt ttctatttcc 2220 tottaaqtac accttcaact atattcccat coctctattt taatctgtta tgaaggaagg 2280 2340 ggctgccaag gcactcacag aatcataatc atggctaaat atttatggag ggcctactgt 2400 ggaccaggca ctgggctaaa tacttacatt tacaagaatc attctgagac agatattcaa 2460 2520 tatttcactt tttgttattg accatgttct gcaaaattgc agttactcag tgagtgatat 2580 2640 ccgaaaaagt aaacgtttat gactataggt aatatttaag aaaatgcatg gttcattttt aagtttggaa tttttatcta tatttctcac agatgtgcag tgcacatgca ggcctaagta 2700 2760 tatgttqtqt qtqttgtttg tctttgatgt catggtcccc tctcttaggt gctcactcgc tttgggtgca cctggcctgc tcttcccatg ttggcctctg caaccacaca gggatatttc 2820 tgctatgcac cagceteact ecacetteet tecateaaaa atatgtgtgt gtgteteagt 2880 ccctqtaaqt catqtccttc acaqqqaqaa ttaacccttc gatatacatg gcagagtttt 2940 qtqqqaaaaq aattqaatqa aaaqtcaqqa qatcaqaatt ttaaatttqa cttaqccact 3000 aactagccat gtaaccttgg gaaagtcatt teccatttet gggtettget tttetttetg 3060 ttaaatgaga ggaatgttaa atatctaaca gtttagaatc ttatgcttac agtgttatct 3120 gtgaatgcac atattaaatg totatgttot tgttgctatg agtcaaggag tgtaaccttc 3180 tcctttacta tqttqaatqt attttttct qqacaaqctt acatcttcct caqccatctt 3240 tgtgagtcct tcaagagcag ttatcaattg ttagttagat attttctatt tagagaatgc 3300 ttaagggatt ccaatcccga tccaaatcat aatttgttct taagtatact gggcaggtcc 3360 cctattttaa gtcataattt tgtatttagt gctttcctgg ctctcagaga gtattaatat 3420

| tgatattaat aatatagtt                                       | a atagtaatat | tgctatttac  | atggaaacaa  | ataaaagatc | 3480 |
|------------------------------------------------------------|--------------|-------------|-------------|------------|------|
| tcagaattca ctaaaaaaa                                       | a aaaaaaaaaa |             |             |            | 3510 |
| <210> 393<br><211> 1158<br><212> DNA<br><213> Homo sapiens |              |             |             |            |      |
| <400> 393<br>ggaattccgt ggccaggat                          |              | hart astaga | ant annat a | ********   | 60   |
|                                                            |              |             |             |            |      |
| gegeetaege ggeeeetge                                       |              |             |             |            | 120  |
| aggaggcccc caggagcaa                                       | g tggccctggc | aggtgagcct  | gagagtccgc  | gaccgatact | 180  |
| ggatgcactt ctgcggggg                                       | c tccctcatcc | acccccagtg  | ggtgctgacc  | gcggcgcact | 240  |
| gcctgggacc ggacgtcaa                                       | g gatctggcca | ccctcagggt  | gcaactgcgg  | gagcagcacc | 300  |
| tctactacca ggaccagct                                       | g ctgccagtca | gcaggatcat  | cgtgcaccca  | cagttctaca | 360  |
| tcatccagac tggagcgga                                       | t atcgccctgc | tggagctgga  | ggagcccgtg  | aacatctcca | 420  |
| gccgcgtcca cacggtcat                                       | g ctgcccctg  | cctcggagac  | cttccccccg  | gggatgccgt | 480  |
| gctgggtcac tggctgggg                                       | c gatgtggaca | atgatgagcc  | cctcccaccg  | ccatttcccc | 540  |
| tgaagcaggt gaaggtccc                                       | c ataatggaaa | accacatttg  | tgacgcaaaa  | taccaccttg | 600  |
| gcgcctacac gggagacga                                       | c gtccgcatca | tccgtgacga  | catgctgtgt  | gccgggaaca | 660  |
| gccagaggga ctcctgcaa                                       | g ggcgactctg | gagggcccct  | ggtgtgcaag  | gtgaatggca | 720  |
| cctggctaca ggcgggcgt                                       | g gtcagctggg | acgagggctg  | tgcccagccc  | aaccggcctg | 780  |
| gcatctacac ccgtgtcac                                       | c tactacttgg | actggatcca  | ccactatgtc  | cccaaaaagc | 840  |
| cgtgagtcag gcctgggtg                                       | t gccacctggg | tcactggagg  | accaacccct  | gctgtccaaa | 900  |
| acaccactgc ttcctaccc                                       | a ggtggcgact | gcccccaca   | ccttccctgc  | cccgtcctga | 960  |
| gtgcccttc ctgtcctas                                        | g ccccctgctc | tcttctgagc  | cccttcccct  | gtcctgagga | 1020 |
| cccttcccca tcctgagcc                                       | c ccttccctgt | cctaagcctg  | acgcctgcac  | tgggccctcc | 1080 |
| ggccctcccc tgcccaggc                                       | a gctggtggtg | ggcgctaatc  | ctcctgagtg  | ctggacctca | 1140 |
| ttaaagtgca tggaaatc                                        |              |             |             |            | 1158 |
| <210> 394<br><211> 1497<br><212> DNA                       |              |             |             |            |      |

<sup>&</sup>lt;212> DNA <213> Homo sapiens

<sup>&</sup>lt;400> 394

accgctggcc ccagggaaag ccgagcggcc accgagccgg cagagaccca ccgagcggcg 60

| 120  | gccttcgaca | ccagacgccc | gcaccatggc | gcgcacgagg | cagcgccggg | gcggagggag |
|------|------------|------------|------------|------------|------------|------------|
| 180  | accatcttat | caagcctgaa | acggatccat | gtccacctag | agaactgcat | agcccaaagt |
| 240  | ctgctgaacg | agcagagggg | cagctaacac | ategecetee | gaggagaggg | actatggcag |
| 300  | gactactaca | ggccaaattt | cagacttcct | ctcacccttc | ggacaagccg | tcattggcat |
| 360  | tttgtagaga | cgcctatgag | tcaaaaggat | cgggaggcta | cgcgggctgc | tgcctgctat |
| 420  | ctgctggcca | cagtccgcac | aggtgcggta | gtgtatgtgg | agagggcgtg | tgaaggccaa |
| 480  | ccagacgagg | ggacctcacc | aggctgaagg | ccctggaacc | ggagccaatc | actccaaagt |
| 540  | gtcaaggccc | agacttcggg | agggggagcg | ggcctgcagg | agtgggccag | tggtggccct |
| 600  | gtggagctgt | ccccaaggtg | ccaactggtc | cgccaccagc | gtgctgcatg | ggtccatcct |
| 660  | gagaccatcc | ggctggagat | ccattgacct | accgtggtag | ccagcagcag | gtaagaacta |
| 720  | aagagcggca | ggaggctgtg | aggcctacca | ggacatgtcc | cctcttgcct | caggaagcag |
| 780  | gaggctgtgg | agtagtaaaa | gctcggccga | ggggaggtgg | tgtccacgcc | ttcaccgtac |
| 840  | caggcccttt | cctggaagac | gctaccacac | ctgggacacg | gacagagcgg | acatactcaa |
| 900  | agctacctca | cccctggtcc | tcgagatctg | aacatgcact | gcggcaggaa | ataacaggct |
| 960  | gaccaggcta | gctcaaaaat | cagtcattcg | acggagcatg | gaagccggac | ctggtgcctg |
| 1020 | actgattacc | caccctggac | tcttcaagtc | gacccgctca | caacacagat | actactcgct |
| 1080 | aacatcaatg | taaaaggctg | aagaggagtt | ggctttactg | acgggacatg | agatgaccaa |
| 1140 | ctgctctata | gcttctcgac | aaaagaggga | ccagaagatg | tagtttcctc | cggccaaatc |
| 1200 | cgccactcct | cctctgaaga | cagggcagaa | tcagcctctg | gatgccacct | aagcctatgg |
| 1260 | tttttacatt | ctgagcaaca | ctctgtgggg | gtcaccccaa | accctgtgga | ccaagccttc |
| 1320 | gaaccctatg | tgatgctcct | agtcagttac | tgatctcaat | aagaagacca | tattccttcc |
| 1380 | gattatgtgc | tcacttctct | catggccgcg | tatacctcgg | tgcacacacg | tgtccatttc |
| 1440 | ctccttctgt | atctgaaacc | gcatggttga | ttgcacatgg | accagcgccc | cctggcaggg |
| 1497 | ggcatgc    | catggctggt | taaagaagcc | tggtgctcaa | actgaaaatc | ggcaacttgt |

<sup>&</sup>lt;210> 395

<sup>&</sup>lt;211> 2085

<sup>&</sup>lt;212> DNA <213> Homo sapiens

<sup>&</sup>lt;400> 395

gcatttette ettetgegta tgggacagga ecetttetgg aatgggggte ttatgaceta 60 caatcaaaca agaacatgga cttcccgtgc ctctggctag ggctgttgct gcctttggta 120 getgegetgg atttcaacta ceaeegeeag gaagggatgg aagegttttt gaagaetgtt 180

240 gcccaaaact acaqttctgt cactcactta cacagtattg ggaaatctgt gaaaggtaga aacctqtqqq ttcttqttqt qqqqcqqttt ccaaaggaac acagaattqg gattccagaq 300 ttcaaatacq tqqcaaatat qcatqqaqat qaqactgttg ggcgggagct gctgctccat 360 ctgattgact atctcgtaac caqtgatggc aaagaccctg aaatcacaaa tctgatcaat 420 agtacccgga tacacatcat gccttccatg aacccagatg gatttgaagc cgtcaaaaag 480 cctgactgtt actacagcat cggaagggaa aattataacc agtatgactt gaatcgaaat 540 ttccccqatq cttttqaata taataatqtc tcaaqqcaqc ctqaaactqt ggcagtcatq 600 aagtggctga aaacagagac gtttgtcctc tctgcaaacc tccatggtgg tgccctcgtg 660 gccagttacc catttgataa tqqtqttcaa qcaactqqqq cattatactc ccqaaqctta 720 acqcctqatq atqatqtttt tcaatatctt qcacatacct atqcttcaaq aaatcccaac 780 840 atgaagaaag gagacgagtg taaaaacaaa atgaactttc ctaatggtgt tacaaatgga tactcttggt atccactcca aggtggaatg caagattaca actacatctg ggcccagtgt 900 960 tttgaaatta cgttggagct gtcatgctgt aaatatcctc gtgaggagaa gcttccatcc 1020 ttttggaata ataacaaagc ctcattaatt gaatatataa agcaggtgca cctaggtgta aaqqqtcaaq tttttgatca gaatggaaat ccattaccca atgtaattgt ggaagtccaa 1080 qacaqaaaac atatctqccc ctatagaacc aacaaatatg gagagtatta tctccttctc 1140 1200 ttqcctqqqt cttatattat aaatgttaca qtccctqqac atgatccaca catcacaaag qtqattattc cqqaqaaatc ccaqaacttc aqtqctctta aaaaggatat tctacttcca 1260 ttccaaqqqc aattqqattc tatcccaqta tcaaatcctt catqcccaat gattcctcta 1320 tacaqaaatt tqccaqacca ctcaqctqca acaaaqccta qtttqttctt atttttaqtq 1380 1440 agtettttgc acatattett caaataaagt aaaatgtgaa actcaaccca catcaccacc 1500 tggaatcagg gattgctcac tccaggttac tgcaacccta actcactcta gtgggacctt 1560 gactggagaa actccacgat cttcctgaag aagagaaatg gatgtttcca aattccacaa taaqcaatat gtggtgataa tgaaaagaat gattcagtct tgacggtgaa tggaagacac 1620 1680 ttacctaaca agtactgctc atttacactc aaattaatct tgaagtagtc ttaaaatgtg 1740 taaqaaqtta aaacttgaga agcaaaaaat gcctgcaaaa agaagatcat tttgtataca gaqaaccgga tgaatataag caatgaagat gaacatttat tgatcttcta catacaagac 1800 ttcaccataa qqccaggaqc agtqctcacq ccttgtaatc ccagcacttt gggaggccaa 1860 qqtqqqqqa tcaccttqaq qtcaqqaqtt caagaccagc ctgaccaaca tggtgaaacc 1920 ctqtctctac taaatattaq cqqqqtqtqq tqqcgggqcac ctqtagtcgc agcctttcgq 1980 qaqqetqaqa caqqaqaatc qcttqaaccc tagaggcgga gtttqcaqtg agccqagata 2040

| gtgccattgt                                        | actccagctt | gggcaacaga | gtaagactct | gtctc      |            | 2085 |
|---------------------------------------------------|------------|------------|------------|------------|------------|------|
| <210> 396<br><211> 781<br><212> DNA<br><213> Homo | o sapiens  |            |            |            |            |      |
| <400> 396<br>acacagagag                           | aaaggctaaa | gttctctgga | ggatgtggct | gcagageetg | ctgctcttgg | 60   |
| gcactgtggc                                        | ctgcagcatc | tctgcacccg | cccgctcgcc | cagccccagc | acgcagccct | 120  |
| gggagcatgt                                        | gaatgccatc | caggaggccc | ggcgtctcct | gaacctgagt | agagacactg | 180  |
| ctgctgagat                                        | gaatgaaaca | gtagaagtca | tctcagaaat | gtttgacctc | caggagccga | 240  |
| cctgcctaca                                        | gacccgcctg | gagctgtaca | agcagggcct | gcggggcagc | ctcaccaagc | 300  |
| tcaagggccc                                        | cttgaccatg | atggccagcc | actacaagca | gcactgccct | ccaaccccgg | 360  |
| aaacttcctg                                        | tgcaacccag | attatcacct | ttgaaagttt | caaagagaac | ctgaaggact | 420  |
| ttctgcttgt                                        | catccccttt | gactgctggg | agccagtcca | ggagtgagac | cggccagatg | 480  |
| aggetggeca                                        | agccggggag | ctgctctctc | atgaaacaag | agctagaaac | tcaggatggt | 540  |
| catcttggag                                        | ggaccaaggg | gtgggccaca | gccatggtgg | gagtggcctg | gacctgccct | 600  |
| gggccacact                                        | gaccctgata | caggcatggc | agaagaatgg | gaatatttta | tactgacaga | 660  |
| aatcagtaat                                        | atttatatat | ttatattttt | aaaatattta | tttatttatt | tatttaagtt | 720  |
| catattccat                                        | atttattcaa | gatgttttac | cgtaataatt | attattaaaa | atatgcttct | 780  |
| a                                                 |            |            |            |            |            | 781  |
| <210> 397 <211> 150 <212> DNA <213> Home          |            |            |            |            |            |      |
| <400> 397<br>aaaacagccc                           | ggagcctgca | gcccagcccc | acccagaccc | atggctggac | ctgccaccca | 60   |
| gagececatg                                        | aagctgatgg | ccctgcagct | gctgctgtgg | cacagtgcac | tctggacagt | 120  |
|                                                   |            |            |            | cagagettee |            | 180  |
|                                                   |            |            |            | ctccaggaga |            | 240  |
|                                                   |            |            |            | ggacactctc |            | 300  |
|                                                   |            |            |            | ctggcaggct |            | 360  |
|                                                   |            |            |            | gccctggaag |            | 420  |
| _                                                 |            |            |            | gccgactttg |            | 480  |
| -242233-                                          |            |            | J-09940960 |            |            | - 20 |

| ctggcagcag | atggaagaac | tgggaatggc | ccctgccctg | cagcccaccc | agggtgccat | 540  |
|------------|------------|------------|------------|------------|------------|------|
| gccggccttc | gcctctgctt | tccagcgccg | ggcaggaggg | gtcctggttg | cctcccatct | 600  |
| gcagagcttc | ctggaggtgt | cgtaccgcgt | tctacgccac | cttgcccagc | cctgagccaa | 660  |
| gccctcccca | tcccatgtat | ttatctctat | ttaatattta | tgtctattta | agcctcatat | 720  |
| ttaaagacag | ggaagagcag | aacggagccc | caggcctctg | tgtccttccc | tgcatttctg | 780  |
| agtttcattc | tcctgcctgt | agcagtgaga | aaaagctcct | gtcctcccat | cccctggact | 840  |
| gggaggtaga | taggtaaata | ccaagtattt | attactatga | ctgctcccca | gccctggctc | 900  |
| tgcaatgggc | actgggatga | gccgctgtga | gcccctggtc | ctgagggtcc | ccacctggga | 960  |
| cccttgagag | tatcaggtct | cccacgtggg | agacaagaaa | tccctgttta | atatttaaac | 1020 |
| agcagtgttc | cccatctggg | tccttgcacc | cctcactctg | gcctcagccg | actgcacagc | 1080 |
| ggcccctgca | teceettgge | tgtgaggccc | ctggacaagc | agaggtggcc | agagctggga | 1140 |
| ggcatggccc | tggggtccca | cgaatttgct | ggggaatete | gtttttcttc | ttaagacttt | 1200 |
| tgggacatgg | tttgactccc | gaacatcacc | gacgtgtctc | ctgttttct  | gggtggcctc | 1260 |
| gggacacctg | ccctgccccc | acgagggtca | ggactgtgac | tctttttagg | gccaggcagg | 1320 |
| tgcctggaca | tttgccttgc | tggacgggga | ctggggatgt | gggagggagc | agacaggagg | 1380 |
| aatcatgtca | ggcctgtgtg | tgaaaggaag | ctccactgtc | accetecace | tcttcacccc | 1440 |
| ccactcacca | gtgtcccctc | cactgtcaca | ttgtaactga | acttcaggat | aataaagtgt | 1500 |
| ttgcctcca  |            |            |            |            |            | 1509 |
|            |            |            |            |            |            |      |

<210> 398 <211> 1631

<212> DNA

<213> Homo sapiens

<400> 398

ggacttctag cccctgaact ttcagccgaa tacatctttt ccaaaggagt gaattcaggc 60 ccttgtatca ctggcagcag gacgtgacca tggagaagct gttgtgtttc ttggtcttga 120 ccagectete teatgetttt ggecagaeag acatgtegag gaaggetttt gtgttteeca 180 aagagtegga taetteetat gtateeetea aageacegtt aacgaageet eteaaageet 240 300 teactgtgtg cetecaette tacaeggaac tgteetegae ceggggtaca gtatttete 360 gtatgccacc aagagacaag acaatgagat tetteatatt ttggtetaag gatataggat 420 acagttttac agtgggtggg tctgaaatat tattcgaggt tcctgaagtc acagtagctc cagtacacat ttgtacaagc tgggagtccg cctcagggat cgtggagttc tgggtagatg 480 ggaagcccag ggtgaggaag agtctgaaga agggatacac tgtgggggca gaagcaagca 540

| tcatcttggg | gcaggagcag | gattccttcg | gtgggaactt | tgaaggaagc | cagtccctgg | 600  |
|------------|------------|------------|------------|------------|------------|------|
| tgggagacat | tggaaatgtg | aacatgtggg | actttgtgct | gtcaccagat | gagattaaca | 660  |
| ccatctatct | tggcgggccc | ttcagtccta | atgtcctgaa | ctggcgggca | ctgaagtatg | 720  |
| aagtgcaagg | cgaagtgttc | accaaacccc | agctgtggcc | ctgaggccca | gctgtgggtc | 780  |
| ctgaaggtac | ctcccggttt | tttacaccgc | atgggcccca | cgtctctgtc | tctggtacct | 840  |
| cccgcttttt | tacactgcat | ggttcccacg | tetetgtete | tgggcctttg | ttcccctata | 900  |
| tgcattgcag | gcctgctcca | ccctcctcag | cgcctgagaa | tggaggtaaa | gtgtctggtc | 960  |
| tgggagctcg | ttaactatgc | tgggaaacgg | tccaaaagaa | tcagaatttg | aggtgttttg | 1020 |
| ttttcatttt | tatttcaagt | tggacagatc | ttggagataa | tttcttacct | cacatagatg | 1080 |
| agaaaactaa | cacccagaaa | ggagaaatga | tgttataaaa | aactcataag | gcaagagctg | 1140 |
| agaaggaagc | gctgatcttc | tatttaattc | cccacccatg | acccccagaa | agcaggagca | 1200 |
| ttgcccacat | tcacagggct | cttcagtatc | agaatcagga | cactggccag | gtgtctggtt | 1260 |
| tgggtccaga | gtgctcatca | tcatgtcata | gaactgctgg | gcccaggtct | cctgaaatgg | 1320 |
| gaagcccagc | aataccacgc | agtccctcca | ctttctcaaa | gcacactgga | aaggccatta | 1380 |
| gaattgcccc | agcagagcag | atctgctttt | tttccagagc | aaaatgaagc | actaggtata | 1440 |
| aatatgttgt | tactgccaag | aacttaaatg | actggttttt | gtttgcttgc | agtgctttct | 1500 |
| taattttatg | gctcttctgg | gaaactcctc | cccttttcca | cacgaacctt | gtggggctgt | 1560 |
| gaattctttc | ttcatccccg | cattcccaat | atacccaggc | cacaagagtg | gacgtgaaca | 1620 |
| caggtgccgt | g          |            |            |            |            | 1631 |

- <210> 399
- <211> 3475 <212> DNA
- <213> Homo sapiens

<400> 399

cgaggggaa tccgagggct gggcacggcg cctgggggaa cccggggtcc ggaggccatg 60
ccggcgttgg cgcgacgc gggcaccgtg ccgctgctcg ttgtttttt tgcaatgata 120
tttgggacta ttacaaatca agatctgcct gtgatcaagt gtgttttaat caatcataag 180
aacaatgatt catcagtggg gaagtcatca tcatatccca tggtatcaga atcccggaa 240
gacctcgggt gtgcgttgag accccaagac tcagggacag tgtacgaagc tgccgctgtg 300
gaagtggatg tatctgcttc catcacactg caagtgctgg tcgatgccc agggaacatt 360
tcctgtctct gggtctttaa gcacagctcc ctgaattgcc agccacatt tgattacaa 420
aacagaggag ttgtttccat ggtcatttt aaaaatgacag aaacccaagc tggagaatac 480

| ctacttttta          | ttcagagtga | agctaccaat | tacacaatat | tgtttacagt | gagtataaga | 540  |
|---------------------|------------|------------|------------|------------|------------|------|
| aataccctgc          | tttacacatt | aagaagacct | tactttagaa | aaatggaaaa | ccaggacgcc | 600  |
| ctggtctgca          | tatctgagag | cgttccagag | ccgatcgtgg | aatgggtgct | ttgcgattca | 660  |
| cagggggaaa          | gctgtaaaga | agaaagtcca | gctgttgtta | aaaaggagga | aaaagtgctt | 720  |
| catgaattat          | ttgggacgga | cataaggtgc | tgtgccagaa | atgaactggg | cagggaatgc | 780  |
| accaggctgt          | tcacaataga | tctaaatcaa | actcctcaga | ccacattgcc | acaattattt | 840  |
| cttaaagtag          | gggaaccett | atggataagg | tgcaaagctg | ttcatgtgaa | ccatggattc | 900  |
| gggctcacct          | gggaattaga | aaacaaagca | ctcgaggagg | gcaactactt | tgagatgagt | 960  |
| acctattcaa          | caaacagaac | tatgatacgg | attctgtttg | cttttgtatc | atcagtggca | 1020 |
| agaaacgaca          | ccggatacta | cacttgttcc | tcttcaaagc | atcccagtca | atcagctttg | 1080 |
| gttaccatcg          | taggaaaggg | atttataaat | gctaccaatt | caagtgaaga | ttatgaaatt | 1140 |
| gaccaatatg          | aagagttttg | tttttctgtc | aggtttaaag | cctacccaca | aatcagatgt | 1200 |
| acgtggacct          | tctctcgaaa | atcatttcct | tgtgagcaaa | agggtcttga | taacggatac | 1260 |
| agcatatcca          | agttttgcaa | tcataagcac | cagccaggag | aatatatatt | ccatgcagaa | 1320 |
| aatgatgatg          | cccaatttac | caaaatgttc | acgctgaata | taagaaggaa | acctcaagtg | 1380 |
| ctcgcagaag          | catcggcaag | tcaggcgtcc | tgtttctcgg | atggataccc | attaccatct | 1440 |
| tggacctgga          | agaagtgttc | agacaagtct | cccaactgca | cagaagagat | cacagaagga | 1500 |
| gtctggaata          | gaaaggctaa | cagaaaagtg | tttggacagt | gggtgtcgag | cagtactcta | 1560 |
| aacatgagtg          | aagccataaa | agggttcctg | gtcaagtgct | gtgcatacaa | ttcccttggc | 1620 |
| acatcttgtg          | agacgatcct | tttaaactct | ccaggcccct | tecettteat | ccaagacaac | 1680 |
| atctcattct          | atgcaacaat | tggtgtttgt | ctcctcttca | ttgtcgtttt | aaccctgcta | 1740 |
| atttgtcaca          | agtacaaaaa | gcaatttagg | tatgaaagcc | agctacagat | ggtacaggtg | 1800 |
| accggctcct          | cagataatga | gtacttctac | gttgatttca | gagaatatga | atatgatete | 1860 |
| aaatgggagt          | ttccaagaga | aaatttagag | tttgggaagg | tactaggatc | aggtgctttt | 1920 |
| ggaaaagtga          | tgaacgcaac | agcttatgga | attagcaaaa | caggagtete | aatccaggtt | 1980 |
| gccgtcaaaa          | tgctgaaaga | aaaagcagac | agctctgaaa | gagaggcact | catgtcagaa | 2040 |
| ctcaagatga          | tgacccagct | gggaagccac | gagaatattg | tgaacctgct | gggggegtge | 2100 |
| acactgtcag          | gaccaattta | cttgattttt | gaatactgtt | gctatggtga | tetteteaac | 2160 |
| tatctaagaa          | gtaaaagaga | aaaatttcac | aggacttgga | cagagatttt | caaggaacac | 2220 |
| aatttcagtt          | tttaccccac | tttccaatca | catccaaatt | ccagcatgcc | tggttcaaga | 2280 |
| gaagtt <b>c</b> aga | tacacccgga | ctcggatcaa | atctcagggc | ttcatgggaa | ttcatttcac | 2340 |

tctqaaqatg aaattgaata tgaaaaccaa aaaaggctgg aagaagagga ggacttgaat 2400 qtqcttacat ttqaaqatct tctttgcttt gcatatcaag ttgccaaagg aatggaattt 2460 ctqqaattta aqtcqtqtqt tcacagagac ctqqccgcca ggaacgtgct tgtcacccac 2520 qqqaaaqtqq tqaaqatatq tqactttqqa ttqqctcqaq atatcatgag tgattccaac 2580 tatqttqtca qqqqcaatqc ccqtctqcct qtaaaatqqa tqqcccccga aagcctgttt 2640 qaaqqcatct acaccattaa qaqtqatqtc tqqtcatatq qaatattact qtqqqaaatc 2700 ttctcacttq qtqtqaatcc ttaccctqqc attccqqttq atqctaactt ctacaaactq 2760 attcaaaatg gatttaaaat ggatcagcca ttttatgcta cagaagaaat atacattata 2820 atgcaatcct gctgggcttt tgactcaagg aaacggccat ccttccctaa tttgacttcg 2880 tttttaggat gtcagctggc agatgcagaa gaagcgatgt atcagaatgt ggatggccgt 2940 gtttcggaat gtcctcacac ctaccaaaac aggcgacctt tcagcagaga gatggatttg 3000 gggctactct ctccqcaqqc tcaqqtcqaa qattcqtaqa qqaacaattt aqttttaaqq 3060 acttcatccc tccacctatc cctaacaggc tgtagattac caaaacaaga ttaatttcat 3120 cactaaaaga aaatctatta tcaactgctg cttcaccaga cttttctcta gaagccgtct 3180 gcqtttactc ttgttttcaa agggactttt gtaaaatcaa atcatcctgt cacaaggcag 3240 qaqqaqctqa taatqaactt tattggagca ttgatctgca tccaaggcct tctcaggccg 3300 gcttgagtga attgtgtacc tgaagtacag tatattcttg taaatacata aaacaaaaqc 3360 attttqctaa qqaqaaqcta atatqatttt ttaaqtctat qttttaaaat aatatgtaaa 3420 3475 tttttcagct atttagtgat atattttatg ggtgggaata aaatttctac tacag

<400> 400

teccaquett eccatecece cacegaaaqe aaatcattca acqaeeceeg accetecgae 60 120 ggcaggagec cecegacete ceaggeggae egecettece teceegegeg ggtteeggge ccggcgagag ggcgcgacga cagccgaggc catggaggtg acggcggacc agccgcgctg 180 240 qqtqaqccac caccacccq ccqtqctcaa cqqqcaqcac ccqqacacqc accacccqqq 300 cctcaqccac tectacatqq acqcqqcqca qtacccqctq ccqqaqqaqq tqqatqtqct ttttaacatc gacggtcaag gcaaccacgt cccgccctac tacggaaact cggtcagggc 360 caeggtgeag aggtacecte egacecaeca egggagecag gtgtgeegee egeetetget 420 tcatggatcc ctaccctqqc tqqacqqcqq caaaqccctq qqcaqccacc acaccqcctc 480

<sup>&</sup>lt;210> 400

<sup>&</sup>lt;211> 2365 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

cccctqqaat ctcaqccct tctccaaqac qtccatccac cacggctccc cgqqqccct 540 ctccgtctac cccccggcct cgtcctcctc cttgtcgggg ggccacgcca gcccgcacct 600 cttcaccttc cccccaccc ccccqaagga cctctccccq qacccatcqc tqtccacccc 660 aggeteggee ggeteggeee ggeaggaega gaaagagtge etcaagtace aggtgeeeet 720 qcccqacagc atgaagctgg agtcgtccca ctcccgtggc agcatgaccg ccctqqqtqq 780 agestseteg tegasseace accepateas casstaceeg sestaegtgs ceqaqtacag 840 ctccqqactc ttcccccca qcagcctgct gggcggctcc cccaccggct tcggatgcaa 900 qtccaqqccc aaqqcccqqt ccaqcacaqq cagggagtgt gtgaactgtg gggcaacctc 960 gaccccactg tggcggcgag atggcacggg acactacctg tgcaacgcct gcgggctcta 1020 tcacaaaatq aacqqacaqa accggccct cattaagccc aagcgaaggc tgtctgcagc 1080 caggagagea gggacgteet gtgcgaactg tcagaccacc acaaccacac tctggaggag 1140 quatqccaat qqqqaccctg tctgcaatqc ctqtgggctc tactacaagc ttcacaatat 1200 taacaqaccc ctqactatqa agaaggaaqg catccagacc agaaaccgaa aaatgtctag 1260 caaatccaaa aagtgcaaaa aagtgcatga ctcactggag gacttcccca agaacagctc 1320 qtttaacccq qccqccctct ccaqacacat qtcctccctq aqccacatct cgcccttcaq 1380 ccactccage cacatgetga ccacgeccac geogatgeac ccgccateca geotgteett 1440 tggaccacac cacccctcca gcatggtcac cgccatgggt tagagccctg ctcgatgctc 1500 acagggeee cagegagagt ceetgeagte cetttegact tgcatttttg caggageagt 1560 1620 atcatgaagc ctaaacgcga tggatatatg tttttgaagg cagaaagcaa aattatgttt qccactttqc aaaggagctc actgtggtgt ctgtgttcca accactgaat ctggacccca 1680 tetqtqaata aqceattetg acteatatee eetatttaac agggteteta gtgetgtgaa 1740 aaaaaaaaat cctgaacatt gcatataact tatattgtaa gaaatactgt acaatgactt 1800 tattqcatct qqqtaqctqt aaqqcatqaa qqatgccaag aagtttaagg aatatgggag 1860 aaatagtgtg gaaattaaga agaaactagg totgatatto aaatggacaa actgocagtt 1920 ttgtttcctt tcactggcca cagttgtttg atgcattaaa agaaaataaa aaaaagaaaa 1980 aagaqaaaag aaaaaaaaag aaaaaagttg taggcgaatc atttgttcaa agctgttggc 2040 cetetqeaaa qqaaatacca qttetqqqea atcaqtqtta ceqtteacca qttqccattq 2100 2160 aggetttcag agageetttt tetaggeeta catgetttgt gaacaagtee etgtaattgt tqtttqtatq tataattcaa aqcaccaaaa taaqaaaaqa tqtaqattta tttcatcata 2220 ttatacagac cgaactgttg tataaattta tttactgcta gtcttaagaa ctgctttctt 2280

| tegtttgttt gt                                        | ttcaatat | tttccttctc                   | tctcaatttt | cggttgaata | aactagatta          | 2340 |
|------------------------------------------------------|----------|------------------------------|------------|------------|---------------------|------|
| cattcagttg gc                                        | aaaaaaaa | aaaaa                        |            |            |                     | 2365 |
| <210> 401<br><211> 1658<br><212> DNA<br><213> Homo s | apiens   |                              |            |            |                     |      |
| <400> 401<br>ctctctctct at                           | ctctctca | gaatgacaat                   | tctaggtaca | acttttggca | tggtttttc           | 60   |
| tttacttcaa gt                                        | cgtttctg | gagaaagtgg                   | ctatgctcaa | aatggagact | tggaagatgc          | 120  |
| agaactggat ga                                        | ctactcat | tctcatgcta                   | tagccagttg | gaagtgaatg | gatcgcagca          | 180  |
| ttcactgacc tg                                        | tgcttttg | aggacccaga                   | tgtcaacacc | accaatctgg | aatttgaaat          | 240  |
| atgtggggcc ct                                        | cgtggagg | taaagtgcct                   | gaatttcagg | aaactacaag | agatatattt          | 300  |
| catcgagaca aa                                        | gaaattct | tactgattgg                   | aaagagcaat | atatgtgtga | aggttggaga          | 360  |
| aaagagtcta ac                                        | ctgcaaaa | aaatagacct                   | aaccactata | gttaaacctg | aggctccttt          | 420  |
| tgacctgagt gt                                        | catctatc | gggaaggagc                   | caatgacttt | gtggtgacat | ttaatacatc          | 480  |
| acacttgcaa aa                                        | gaagtatg | taaaagtttt                   | aatgcatgat | gtagcttacc | gcc <b>agg</b> aaaa | 540  |
| ggatgaaaac aa                                        | atggacgc | atgtgaattt                   | atccagcaca | aagctgacac | tcctgcagag          | 600  |
| aaagctccaa cc                                        | ggcagcaa | tgtatga <b>g</b> at          | taaagttcga | tccatccctg | atcacțattt          | 660  |
| taaaggcttc tg                                        | gagtgaat | <b>gga</b> gtccaag           | ttattacttc | agaactccag | agatcaataa          | 720  |
| tagctcaggg ga                                        | gatggatc | ctatcttact                   | aaccatcagc | attttgagtt | ttttctctgt          | 780  |
| cgctctgttg gt                                        | catcttgg | cctgtgtgtt                   | atggaaaaaa | aggattaagc | ctatcgtatg          | 840  |
| gcccagtctc cc                                        | cgatcata | agaagactct                   | ggaacatctt | tgtaagaaac | caagaaaaaa          | 900  |
| tttaaatgtg ag                                        | tttcaatc | ctgaaagttt                   | cctggactgc | cagattcata | gggtggatga          | 960  |
| cattcaagct ag                                        | agatgaag | tggaaggttt                   | tctgcaagat | acgtttcctc | agcaactaga          | 1020 |
| agaatctgag aa                                        | gcagaggc | tt <b>g</b> ga <b>g</b> ggga | tgtgcagagc | cccaactgcc | catctgagga          | 1080 |
| tgtagtcgtc ac                                        | tccagaaa | gctttggaag                   | agattcatcc | ctcacatgcc | tggctgggaa          | 1140 |
| tgtcagtgca tg                                        | tgacgccc | ctattctctc                   | ctcttccagg | tccctagact | gcagggagag          | 1200 |
| tggcaagaat gg                                        | gcctcatg | tgtaccagga                   | cctcctgctt | agccttggga | ctacaaacag          | 1260 |
| cacgctgccc cc                                        | tccatttt | ctctccaatc                   | tggaatcctg | acattgaacc | cagttgctca          | 1320 |
| gggtcagccc at                                        | tcttactt | ccctgggatc                   | aaatcaagaa | gaagcatatg | tcaccatgtc          | 1380 |
| cagettetae ca                                        | aaaccagt | gaagtgtaag                   | aaacccagac | tgaacttacc | gtgagcgaca          | 1440 |
| aagatgattt aa                                        | aagggaag | tctagagttc                   | ctagtctccc | tcacagcaca | gagaagacaa          | 1500 |

| aattagcaaa                                                    | accccactac     | acagtetgea | agattctgaa | acattgcttt | gaccactett | 1560 |
|---------------------------------------------------------------|----------------|------------|------------|------------|------------|------|
| cctgagttca                                                    | gtggcactca     | acatgagtca | agagcatcct | gcttctacca | tgtggatttg | 1620 |
| gtcacaaggt                                                    | ttaaggtgac     | ccaatgattc | agctattt   |            |            | 1658 |
| <210> 402<br><211> 1153<br><212> DNA<br><213> Homo            | 2<br>o sapiens |            |            |            |            |      |
| <400> 402                                                     | cgagggagce     | gaggaagagg | aggettgagg | cccagggtgg | gcaccagcca | 60   |
|                                                               |                |            |            |            |            | 120  |
|                                                               |                | cgccttgccc |            |            |            |      |
| ttcccggaca                                                    | cacaggatga     | cttcctcaag | tggtggcgct | ccgaagaggc | gcaggacatg | 180  |
| ggcccgggtc                                                    | ctcctgaccc     | cacggagccg | cccctccacg | tgaagtctga | ggaccagccc | 240  |
| ggggaggaag                                                    | aggacgatga     | gaggggcgcg | gacgccacct | gggacctgga | tctcctcctc | 300  |
| accaacttct                                                    | cgggcccgga     | gcccggtggc | gcgccccaga | cctgcgctct | ggcgcccagc | 360  |
| gaggcctccg                                                    | gggcgcaata     | teegeegeeg | cccgagactc | tgggcgcata | tgctggcggc | 420  |
| ccggggctgg                                                    | tggctgggct     | tttgggttcg | gaggatcact | cgggttgggt | gcgccctgcc | 480  |
| ctgcgagccc                                                    | gggctcccga     | cgccttcgtg | ggcccagccc | tggctccagc | cccggccccc | 540  |
| gagcccaagg                                                    | cgctggcgct     | gcaaccggtg | tacccggggc | ccggcgccgg | ctcctcgggt | 600  |
| ggctacttcc                                                    | cgcggaccgg     | gctttcagtg | cctgcggcgt | cgggcgcccc | ctacgggcta | 660  |
| ctgtccgggt                                                    | accccgcgat     | gtacccggcg | cctcagtacc | aagggcactt | ccagctcttc | 720  |
| cgcgggctcc                                                    | agggacccgc     | gcccggtccc | gccacgtccc | cctccttcct | gagttgtttg | 780  |
| ggacccggga                                                    | cggtgggcac     | tggactcggg | gggactgcag | aggatccagg | tgtgatagcc | 840  |
| gagaccgcgc                                                    | catccaagcg     | aggccgacgt | tcgtgggcgc | gcaagaggca | ggcagcgcac | 900  |
| acgtgcgcgc                                                    | acccgggttg     | cggcaagagc | tacaccaaga | gctcccacct | gaaggcgcat | 960  |
| ctgcgcacgc                                                    | acacagggga     | gaagccatac | gcctgcacgt | gggaaggctg | cggctggaga | 1020 |
| ttcgcgcgct                                                    | cggacgagct     | gacccgccac | taccggaaac | acacggggca | gcgccccttc | 1080 |
| cgctgccagc                                                    | tctgcccacg     | tgctttttcg | cgctctgacc | acctggcctt | gcacatgaag | 1140 |
| cgccaccttt                                                    | ga             |            |            |            |            | 1152 |
| <210> 403<br><211> 203<br><212> DNA<br><213> Hom<br><400> 403 | 2<br>o sapiens |            |            |            |            |      |
|                                                               | atgtgaatgg     | ggccagaggg | ctcccggact | gggcagggac | catgggctgt | 60   |

qqctqcaqct cacacccqqa aqatqactqq atqqaaaaca tcqatqtqtq tqaqaactqc 120 cattatecca tagteccaet ggatggeaag ggeaegetge teateegaaa tggetetgag 180 gtgcggacc cactggttac ctacgaaggc tccaatccgc cggcttcccc actgcaagac 240 aacctggtta tcgctctgca cagctatgag ccctctcacg acggagatct gggctttgag 300 aagqgggaac cactccgcat cctggagcag agcggcgagt ggtggaaggc gcagtccctg 360 accacqqqcc aggaagqctt catccccttc aattttgtgg ccaaagcgaa cagcctggag 420 cccqaaccct qqttcttcaa gaacctgagc cgcaaggacg cggagcggca gctcctggcg 480 cccqqqaaca ctcacqqctc cttcctcatc cgggagagcg agagcaccgc cgggtccttt 540 tcactgtcqq tccqqqactt cgaccaaaac cagggagagg tggtgaaaca ttacaagatc 600 cqtaatctqq acaacgqtgg cttctacatc tcccctcgaa tcacttttcc cggcctgcat 660 qaactqqtcc qccattacac caatgcttca gatgggctgt gcacacggtt gagccgcccc 720 tqccaqaccc aqaaqcccca qaaqccgtgg tqqqaggacg agtgggaggt tcccaqggag 780 acqctqaaqc tqqtqqaqcq qctqqqqqct ggacagttcg gggaggtgtg gatggggtac 840 tacaacqqqc acacqaaqqt qqcqqtgaaq aqcctgaagc agggcagcat gtccccggac 900 gccttcctgg ccgaggccaa cctcatgaag cagctgcaac accagcggct ggttcggctc 960 tacgctgtgg tcacccagga gcccatctac atcatcactg aatacatgga gaatgggagt 1020 1080 ctagtggatt ttctcaagac cccttcaggc atcaagttga ccatcaacaa actcctggac 1140 atggcagccc aaattgcaga aggcatggca ttcattgaag agcggaatta tattcatcgt 1200 gaccttcggg ctgccaacat tctggtgtct gacaccctga gctgcaagat tgcagacttt 1260 ggcctagcac gcctcattga ggacaacgag tacacagcca gggagggggc caagtttccc attaaqtqqa cagcgccaga agccattaac tacgggacat tcaccatcaa gtcagatgtg 1320 tgqtcttttq qgatcctgct qacqqaaatt gtcacccacg gccgcatccc ttacccaggg 1380 atqaccaacc cqqaqqtqat tcagaacctg gagcgaggct accgcatggt gcgccctgac 1440 aactqtccaq aqqaqctqta ccaactcatq agqctgtqct qqaaqqaqcg cccagaggac 1500 eggeeeacct ttgactacct gegeagtgtg etggaggaet tetteaegge caeagaggge 1560 1620 cagtaccage etcageettg agaggaggee ttgagaggee etggggttet ecceetttet 1680 ctccaqcctq acttqqqqaq atqqaqttct tqtqccataq tcacatqqcc tatqcacata tggactctgc acatgaatcc cacccacatg tgacacatat gcaccttgtg tctgtacacg 1740 1800 tgtcctgtag ttgcgtggac tctgcacatg tcttgtgcat gtgtagcctg tgcatgtatg tettggacac tgtacaaggt acceetttet ggeteteeca ttteetgaga ccaccagaga 1860

gaggggagaa geetgggatt gacagaaget tetgeecace taettttett teetcagate 1920 atccagaagt tcctcaaggg ccaggacttt atctaatacc tctqtqtqct cctccttqqt 1980 gcctggcctg qcacacatca ggagttcaat aaatgtctgt tgatgactgc cg 2032

<210> 404 <211> 3084

<212> DNA <213> Homo sapiens

<400> 404 aagatctaaa aacqqacatc tccaccqtqq qtqqctcctt tttcttttc ttttttccc 60 accettcagg aagtggacgt ttcgttatct tctgatcett gcacettett ttggggaaac 120 180 ggggccttc tgcccagatc ccctctttt tctcggaaaa caaactacta agtcggcatc cogggtaact acagtggaga gggtttccgc ggagacgcgc cgccggaccc tcctctgcac 240 tttggggagg cgtgctccct ccagaaccgg cgttctccgc gcgcaaatcc cggcgacgcg 300 gggtegeggg gtggeegeeg gggeageete gtetagegeg egeegegeag aegeeeeegg 360 agtegecage tacegeagee etegecgeee agtgecette ggeetegggg egggegeetg 420 480 cgtcgqtctc cgcgaagcgg gaaagcgcgg cggccgccgg gattcgggcg ccgcggcagc 540 ctqcacqaac ccttccaact ctcctttcct cccccaccct tgagttaccc ctctgtcttt 600 cctqctqttq cqcqqqtqct cccacaqcqq aqcqqaqatt acagagccgc cgggatgccc 660 caactotoog gaggaggtgg cggcggggg ggggacccgg aactotgcgc cacggacgag 720 780 atgateceet teaaggacga gggcgateet cagaaggaaa agatettege egagateagt 840 catcccqaaq aqqaaqqcqa tttaqctqac atcaaqtctt ccttqqtqaa cqaqtctgaa 900 atcatecegg ecageaacgg acacgaggtg gecagacaag cacaaacete teaggagece 960 taccacgaca aggccagaga acaccccgat gacggaaagc atccagatgg aggcctctac aacaagggac cctcctactc gagttattcc gggtacataa tgatgccaaa tatgaataac 1020 gacccataca tgtcaaatgg atctctttct ccacccatcc cgagaacatc aaataaagtg 1080 cccgtggtgc agccatccca tgcggtccat cctctcaccc ccctcatcac ttacagtgac 1140 qaqcactttt ctccaqgatc acacccgtca cacatcccat cagatgtcaa ctccaaacaa 1200 qqcatqtcca qacatcctcc aqctcctqat atccctactt tttatccctt gtctccgggt 1260 qqtqttqqac aqatcacccc acctcttggc tggcaaggtc agcctgtata tcccatcacg 1320 1380 qqtqqattca qqcaacccta cccatcctca ctgtcagtcg acacttccat gtccaggttt teccateata tgatteegg tecteetggt ecceacacaa etggeateec teatecaget 1440

| attgtaacac | ctcaggtcaa | acaggaacat | ceceacacty | acagigacei | aatgcacgtg | 1500 |
|------------|------------|------------|------------|------------|------------|------|
| aagcctcagc | atgaacagag | aaaggagcag | gagccaaaaa | gacctcacat | taagaagcct | 1560 |
| ctgaatgctt | ttatgttata | catgaaagaa | atgagagcga | atgtcgttgc | tgagtgtact | 1620 |
| ctaaaagaaa | gtgcagctat | caaccagatt | cttggcagaa | ggtggcatgc | cctctcccgt | 1680 |
| gaagagcagg | ctaaatatta | tgaattagca | cggaaagaaa | gacagctaca | tatgcagctt | 1740 |
| tatccaggct | ggtctgcaag | agacaattat | ggtaagaaaa | agaagaggaa | gagagagaaa | 1800 |
| ctacaggaat | ctgcatcagg | tacaggtcca | agaatgacag | ctgcctacat | ctgaaacatg | 1860 |
| gtggaaaacg | aagctcattc | ccaacgtgca | aagccaaggc | agcgacccca | ggacetette | 1920 |
| tggagatgga | agcttgttga | aaacccagac | tgtctccacg | gcctgcccag | tcgacgccaa | 1980 |
| aggaacactg | acatcaattt | taccctgagg | tcactgctag | agacgctgat | ccataaagac | 2040 |
| aatcactgcc | aacccctctt | tcgtctactg | caagagccaa | gttccaaaat | aaagcataaa | 2100 |
| aaggttttt  | aaaaggaaat | gtaaaagcac | atgagaatgc | tagcaggctg | tggggcagct | 2160 |
| gagcagcttt | tetececca  | tatetgegtg | cacttcccag | agcatcttgc | atccaaacct | 2220 |
| gtaacctttc | ggcaaggacg | gtaacttggc | tgcatttgcc | tgtcatgcgc | aactggagcc | 2280 |
| agcaaccagc | tatccatcag | caccccagtg | gaggagttca | tggaagagtt | ccctctttgt | 2340 |
| ttctgcttca | tttttcttc  | ttttctttc  | tcctaaagct | tttatttaac | agtgcaaaag | 2400 |
| gatcgttttt | ttttgctttt | ttaaacttga | attttttaa  | tttacacttt | ttagttttaa | 2460 |
| ttttcttgta | tattttgcta | gctatgagct | tttaaataaa | attgaaagtt | ctggaaaagt | 2520 |
| ttgaaataat | gacataaaaa | gaagccttct | ttttctgaga | cagcttgtct | ggtaagtggc | 2580 |
| ttctctgtga | attgcctgta | acacatagtg | gcttctccgc | ccttgtaagg | tgttcagtag | 2640 |
| agctaaataa | atgtaatagc | caaaccccac | tctgttggta | gcaattggca | gccctatttc | 2700 |
| agtttatttt | ttcttctgtt | ttcttcttt  | cttttttaa  | acagtaaacc | ttaacagatg | 2760 |
| cgttcagcag | actggtttgc | agtgaatttt | catttctttc | cttatcaccc | ccttgttgta | 2820 |
| aaaagcccag | cacttgaatt | gttattactt | taaatgttct | gtatttgtat | ctgtttttat | 2880 |
| tagccaatta | gtgggatttt | atgccagttg | ttaaaatgag | cattgatgta | cccattttt  | 2940 |
| aaaaaagcaa | gcacagcctt | tgcccaaaac | tgtcatccta | acgtttgtca | ttccagtttg | 3000 |
| agttaatgtg | ctgagcattt | ttttaaaaga | agctttgtaa | taaaacattt | ttaaaaattg | 306  |
| tcatttaaaa | aaaaaaaaa  | aaaa       |            |            |            | 3084 |

<sup>&</sup>lt;210> 405 <211> 1743 <212> DNA <213> Homo sapiens

<400> 405 cagtatecet cetgacaaaa etaacaaaaa teetgttage caaataatea gecacattea 60 tatttaccqt caaaqttttt atcctcattt tacaqcaqtq qaqaqcqatt qccccqqqtc 120 ccacqttaqq aaqaqaqaq actqqqattt qcacccaqqc aatctqqqqa caqaqctqtq 180 atcacaactc catgagtcag ggccgagcca gccccttcac caccagccgg ccgcgccccg 240 qqaaqqaagt ttqtqqcqqa qqaqqttcqt acgggaggag ggggaggcgc ccacqcatct 300 qqqqctqact cqctctttcg caaaacgtct gggaggagtc cctggggcca caaaactgcc 360 tectteetga qqecagaaqq aqagaagaeg tgcagggacc ccgcgcacag gagetgccet 420 egegacatgg gteaccegee getgetgeeg etgetgetge tgeteeacae etgegteeca 480 qcctcttqqq qcctqcqqtg catgcagtgt aagaccaacg gggattqccq tqtqqaaqaq 540 tqcqccctqq qacaqqacct ctgcagqacc acgatcgtgc gcttgtggga agaaggagaa 600 qaqctqqaqc tqqtqqaqaa aaqctgtacc cactcagaga agaccaacag gaccctgagc 660 tateqqactq qettgaaqat caccaqeett accgaggttg tgtgtgggtt agaettgtge 720 aaccaqqqca actctqqccq qqctqtcacc tattcccgaa gccgttacct cgaatgcatt 780 tectqtqqct catcaqacat qaqctqtqaq aqqqqccqqc accaqaqcct gcaqtqccqc 840 agccctqaaq aacaqtqcct qqatqtqqtq acccactqqa tccaqqaaqq tqaaqaaqqq 900 cqtccaaaqq atqaccqcca cctccqtqqc tqtqqctacc ttcccqqctq cccqqqctcc 960 1020 aatggtttcc acaacaacga caccttccac ttcctgaaat gctgcaacac caccaaatgc 1080 aacgagggcc caatcctgga gcttgaaaat ctgccgcaga atggccgcca gtgttacagc tgcaagggga acagcacca tggatgctcc tctgaagaga ctttcctcat tgactgccga 1140 ggccccatga atcaatgtct ggtagccacc ggcactcacg aaccgaaaaa ccaaagctat 1200 atggtaaqaq qctgtqcaac cgcctcaatg tgccaacatg cccacctggg tgacgccttc 1260 agcatqaacc acattqatqt ctcctgctgt actaaaagtg gctgtaacca cccagacctg 1320 gatqtccaqt accqcaqtqq qqctqctcct caqcctqqcc ctqcccatct cagcctcacc 1380 atcaccetge taatqactge caqactgtqq qqaqqcacte teetetqqac etaaacetqa 1440 aatcccctc tctqccctqq ctqqatccqq qqqacccctt tqcccttccc tcqqctccca 1500 1560 qccctacaga cttqctqtqt qacctcaqqc caqtqtqccq acctctctqq qcctcaqttt tcccaqctat qaaaacaqct atctcacaaa qttqtqtqaa qcaqaaqaqa aaaqctqqaq 1620 gaaggccgtg ggcaatggga gagctcttgt tattattaat attgttqccg ctgttgtgtt 1680 1740 gttgttatta attaatattc atattattta ttttatactt acataaagat tttgtaccag 1743 taa

| <210> 406<br><211> 120<br><212> DNA<br><213> Hom | 4            |            |            |            |            |      |
|--------------------------------------------------|--------------|------------|------------|------------|------------|------|
| <400> 406                                        |              |            |            |            |            |      |
| gaaattctta                                       | caaaaactga   | aagtgaaatg | aggaagacag | attgagcaat | ccaatcggag | 60   |
| ggtaaatgcc                                       | agcaaaccta   | ctgtacagta | ggggtagaga | tgcagaaagg | cagaaaggag | 120  |
| aaaattcagg                                       | ataactctcc   | tgaggggtga | gccaagccct | gccatgtagt | gcacgcagga | 180  |
| catcaacaaa                                       | cacagataac   | aggaaatgat | ccattccctg | tggtcactta | ttctaaaggc | 240  |
| cccaaccttc                                       | aaagttcaag   | tagtgatatg | gatgactcca | cagaaaggga | gcagtcacgc | 300  |
| cttacttctt                                       | gccttaagaa   | aagagaagaa | atgaaactga | aggagtgtgt | ttccatcctc | 360  |
| ccacggaagg                                       | aaagcccctc   | tgtccgatcc | tccaaagacg | gaaagctgct | ggctgcaacc | 420  |
| ttgctgctgg                                       | cactgctgtc   | ttgctgcctc | acggtggtgt | ctttctacca | ggtggccgcc | 480  |
| ctgcaagggg                                       | acctggccag   | cctccgggca | gagctgcagg | gccaccacgc | ggagaagctg | 540  |
| ccagcaggag                                       | caggagcccc   | caaggccggc | ctggaggaag | ctccagctgt | caccgcggga | 600  |
| ctgaaaatct                                       | ttgaaccacc   | agctccagga | gaaggcaact | ccagtcagaa | cagcagaaat | 660  |
| aagcgtgccg                                       | ttcagggtcc   | agaagaaaca | gtcactcaag | actgcttgca | actgattgca | 720  |
| gacagtgaaa                                       | caccaactat   | acaaaaagga | tcttacacat | ttgttccatg | gcttctcagc | 780  |
| tttaaaaggg                                       | gaagtgccct   | agaagaaaaa | gagaataaaa | tattggtcaa | agaaactggt | 840  |
| tactttttta                                       | tatatggtca   | ggttttatat | actgataaga | cctacgccat | gggacatcta | 900  |
| attcagagga                                       | agaaggtcca   | tgtctttggg | gatgaattga | gtctggtgac | tttgtttcga | 960  |
| tgtattcaaa                                       | atatgcctga   | aacactaccc | aataattcct | gctattcagc | tggcattgca | 1020 |
| aaactggaag                                       | aaggagatga   | actccaactt | gcaataccaa | gagaaaatgc | acaaatatca | 1080 |
| ctggatggag                                       | atgtcacatt   | ttttggtgca | ttgaaactgc | tgtgacctac | ttacaccatg | 1140 |
| tctgtagcta                                       | tttcctccc    | tttctctgta | cctctaagaa | gaaagaatct | aactgaaaat | 1200 |
| acca                                             |              |            |            |            |            | 1204 |
|                                                  | s<br>sapiens |            |            |            |            |      |
| <400> 407<br>ctccataagg                          | cacaaacttt   | cagagacagc | agagcacaca | agcttctagg | acaagagcca | 60   |
| ggaagaaacc                                       | accggaagga   | accatctcac | tgtgtgtaaa | catgacttcc | aagctggccg | 120  |

| 180  | gttttgccaa | tgaaggtgca | cagetetgtg | ctgatttetg | ggcagcettc | tggetetett          |
|------|------------|------------|------------|------------|------------|---------------------|
| 240  | ttccacccca | ctccaaacct | taaagacata | tgtcagtgca | agaacttaga | ggagtgctaa          |
| 300  | acagaaatta | ctgcgccaac | gtggaccaca | gtgattgaga | agaactgaga | aatttatcaa          |
| 360  | tgggtgcaga | caaggaaaac | gtctggaccc | agagagctct | ttctgatgga | ttgtaaagct          |
| 420  | ttctctgtgg | aaaaaattca | agaattcata | aagagggctg | gaagtttttg | gggttgtgga          |
| 480  | aacacttcat | aatctacttc | acttcaagca | tgccagtgaa | tcagtgaaga | tatccaagaa          |
| 540  | gttaaatttg | aagattcctg | gatgcaatac | agggttgcca | ggtctgttgt | gtattgtgtg          |
| 600  | acatacttat | aatatccaga | tgtaccatga | agtttttcat | aacaatgaat | aatt <b>tca</b> gta |
| 660  | aatataagga | ataatttta  | aaaacaacaa | gaatctacaa | ttatttattt | atgtaaagta          |
| 720  | agggccaaga | attgaggcca | aaatagcaaa | gagaatatac | tattgcacgg | ttttcctaga          |
| 780  | tatttgaagc | tagaatgtga | atgggtttgc | caggaattga | actttaattt | gaatatccga          |
| 840  | ctggaaatcc | tcaaatttag | tgccataaag | caataaattt | aatgatggga | atcacataaa          |
| 900  | acaagtcctt | gccaggatcc | tagtctgcta | ctggcaaccc | tctgttaaat | tggattttt           |
| 960  | gccaccatct | aaaagtatta | tctaagtgga | ctcctttatt | gccttggttt | gttccactgt          |
| 1020 | atcataacat | aagtttttc  | gaagcacttt | aggacatgtg | tgatgttgtg | tacctcacag          |
| 1080 | tttaagcatc | tatgtattta | atttattatt | ttattaacct | caagtgtaac | aaattatttt          |
| 1140 | tagttataaa | attgattgaa | aagatgaatc | ggaaaaatag | gcaagaattt | aaatatttgt          |
| 1200 | gataaatttc | tgttttatta | tattaaatga | ttattttaga | taaatttatt | gatgttatag          |
| 1260 | tttcatttca | ccagttaaat | aattgggtac | acaaacaaac | tttagattaa | aatcagggtt          |
| 1320 | attttaattg | tttatctgaa | tacattattg | ttagtataag | aaataatttt | gataaacaac          |
| 1380 | tggtagtgct | ccagctgtgt | cttgtcattg | tactcccagt | cctagtttga | aactaacaat          |
| 1440 | cacagtcaat | gccaaaactc | tattaaaaca | gagttagaac | acggaataat | gtgttgaatt          |
| 1500 | cttataatat | caaatagatt | ttattatgta | tgaaacttgt | tcttgctggt | attagtaatt          |
| 1560 | agatgtttt  | tttaacttta | gctttatatt | taaatacaag | actgcatttt | tatttaaatg          |
| 1620 | agtaaatatg | gaaatataaa | tgattgtatg | ttactgtttc | caaattttt  | atgtgctctc          |
| 1666 |            | 22222      | +          | attatassa  | aatataattt | aaacatttaa          |

<sup>&</sup>lt;210> 408 <211> 960 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 408

agcageteca accagggeag cetteetgag aagatgeaac caateetget tetgetggee 60

ttcctcctgc tqcccagggc agatgcaggg gagatcatcg ggggacatga ggccaagccc 120 cactecegee ectacatgge tratetratg atetgggate agaagtetet gaagaggtge 180 ggtggcttcc tgatacaaga cgacttcgtg ctgacagctg ctcactgttg gggaagctcc 240 ataaatgtca ccttgggggc ccacaatatc aaagaacagg agccgaccca gcagtttatc 300 cctqtqaaaa qacccatccc ccatccaqcc tataatccta agaacttctc caacgacatc 360 atgctactgc agctggagag aaaggccaag cggaccagag ctgtgcagcc cctcaggcta 420 cctaqcaaca aqqcccaqqt qaaqccaqqq caqacatgca gtgtggccgg ctgggggcag 480 acqqccccc tqqqaaaaca ctcacacaca ctacaaqaqq tgaagatgac agtgcaggaa 540 qatcqaaaqt qcqaatctqa cttacqccat tattacqaca gtaccattga gttgtgcgtg 600 660 ggggacccag agattaaaaa gactteettt aagggggact etggaggece tettgtgtgt 720 aacaaqqtqq cccaqqqcat tqtctcctat qqacqaaaca atgqcatqcc tccacqagcc 780 tqcaccaaaq tctcaaqctt tqtacactqq ataaaqaaaa ccatqaaacg ctactaacta caggaagcaa actaagcccc cqctqtaatq aaacaccttc tctqqaqcca aqtccagatt 840 900 tacactggga gaggtgccag caactgaata aatacctctc ccagtgtaaa tctggagcca agtccagatt tacactggga gaggtgccag caactgaata aatacctctt agctgagtgg 960 <210> 409 <211> 1909 <212> DNA <213> Homo sapiens

<400> 409 60 gaggtgtttc ccttagctat ggaaactcta taagagagat ccagcttgcc tcctcttgag cagtcagcaa cagggtcccg tccttgacac ctcagcctct acaggactga gaagaagtaa 120 aaccgtttgc tggggctggc ctgactcacc agctgccatg cagcagccct tcaattaccc 180 atatececaq atetactggq tgqacageag tgccagetet ceetgggeec etecaggeac 240 aqttcttccc tgtccaacct ctgtgcccag aaggcctggt caaaggaggc caccaccacc 300 accgccaccg ccaccactac cacctccgcc gccgccgcca ccactgcctc cactaccgct 360 gccacccctg aagaagagag ggaaccacag cacaggcctg tgtctccttg tgatgttttt 420 480 catggttctq gttqccttqq taggattqqq cctqqqqatq tttcagctct tccacctaca gaaggagetg geagaactee gagagtetae eagceagatg cacacageat catetttgga 540 qaaqcaaata qqccacccca qtccaccccc tqaaaaaaaaq qaqctqaqga aagtqqccca 600 660 tttaacaggc aagtccaact caaggtccat gcctctggaa tgggaagaca cctatggaat 720 tgtcctgctt tctggagtga agtataagaa gggtggcctt gtgatcaatg aaactgggct

| gtactttgta | tattccaaag | tatacttccg | gggtcaatct | tgcaacaacc | tgcccctgag | 780  |
|------------|------------|------------|------------|------------|------------|------|
| ccacaaggtc | tacatgagga | actctaagta | tecceaggat | ctggtgatga | tggaggggaa | 840  |
| gatgatgagc | tactgcacta | ctgggcagat | gtgggcccgc | agcagctacc | tgggggcagt | 900  |
| gttcaatctt | accagtgctg | atcatttata | tgtcaacgta | tctgagctct | ctctggtcaa | 960  |
| ttttgaggaa | tctcagacgt | tttteggett | atataagctc | taagagaagc | actttgggat | 1020 |
| tctttccatt | atgattettt | gttacaggca | ccgagaatgt | tgtattcagt | gagggtette | 1080 |
| ttacatgcat | ttgaggtcaa | gtaagaagac | atgaaccaag | tggaccttga | gaccacaggg | 1140 |
| ttcaaaatgt | ctgtagctcc | tcaactcacc | taatgtttat | gagccagaca | aatggaggaa | 1200 |
| tatgacggaa | gaacatagaa | ctctgggctg | ccatgtgaag | agggagaagc | atgaaaaagc | 1260 |
| agctaccagg | tgttctacac | tcatcttagt | gcctgagagt | atttaggcag | attgaaaagg | 1320 |
| acacctttta | actcacctct | caaggtgggc | cttgctacct | caagggggac | tgtctttcag | 1380 |
| atacatggtt | gtgacctgag | gatttaaggg | atggaaaagg | aagactagag | gcttgcataa | 1440 |
| taagctaaag | aggctgaaag | aggccaatgc | cccactggca | gcatcttcac | ttctaaatgc | 1500 |
| atatcctgag | ccatcggtga | aactaacaga | taagcaagag | agatgttttg | gggactcatt | 1560 |
| tcattcctaa | cacagcatgt | gtatttccag | tgcaattgta | ggggtgtgtg | tgtgtgtgtg | 1620 |
| tgtgtgtgtg | tgtgtatgac | taaagagaga | atgtagatat | tgtgaagtac | atattaggaa | 1680 |
| aatatgggtt | gcatttggtc | aagattttga | atgcttcctg | acaatcaact | ctaatagtgc | 1740 |
| ttaaaaatca | ttgattgtca | gctactaatg | atgttttcct | ataatataat | aaatatttat | 1800 |
| gtagatgtgc | atttttgtga | aatgaaaaca | tgtaataaaa | agtatatgtt | aggatacaaa | 1860 |
| aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  |            | 1909 |

<210> 410 <211> 2700

<212> DNA

<213> Homo sapiens

<400> 410

geggggetet gteceggget ggegggagt cagtetgag tecegeceg egtgegegga 60
geggggetet gtecegga ggeggegge gagacacc eggggaccat gggetecatg 120
tteeggageg aggaggtgg ectggtecag etettetge ceacagegge tgeetacacc 180
tgegtgagte ggetgggega getgggete gtggagttea gagaceteaa egeeteggtg 240
agegeettee agagaegett tgtggttgat gtteggeget gtgaggaget ggagaagacc 300
tteacettee tgeaggaga ggtgeggeg getgggetgg teetgeecee gecaaagggg 360
aggetgeegg cacceccacc eegggacetg etggeatee aggagagaac ggagegeetg 420

| gcccaggagc | tgcgggatgt | gcggggcaac | cagcaggccc | tgcgggccca | gctgcaccag | 480  |
|------------|------------|------------|------------|------------|------------|------|
| ctgcagctcc | acgeegeegt | gctacgccag | ggccatgaac | ctcagctggc | agccgcccac | 540  |
| acagatgggg | cctcagagag | gacgcccctg | ctccaggccc | ccggggggcc | gcaccaggac | 600  |
| ctgagggtca | actttgtggc | aggtgccgtg | gagccccaca | aggcccctgc | cctagagcgc | 660  |
| ctgctctgga | gggcctgccg | cggcttcctc | attgccagct | tcagggagct | ggagcagccg | 720  |
| ctggagcacc | ccgtgacggg | cgagccagcc | acgtggatga | ccttcctcat | ctcctactgg | 780  |
| ggtgagcaga | teggacagaa | gatccgcaag | atcacggact | gcttccactg | ccacgtcttc | 840  |
| ccgtttctgc | agcaggagga | ggcccgcctc | ggggccctgc | agcagctgca | acagcagagc | 900  |
| caggagctgc | aggaggtcct | cggggagaca | gagcggttcc | tgagccaggt | gctaggccgg | 960  |
| gtgctgcagc | tgctgccgcc | agggcaggtg | caggtccaca | agatgaaggc | cgtgtacctg | 1020 |
| gccctgaacc | agtgcagcgt | gagcaccacg | cacaagtgcc | tcattgccga | ggcctggtgc | 1080 |
| tctgtgcgag | acctgcccgc | cctgcaggag | gccctgcggg | acagetegat | ggaggaggga | 1140 |
| gtgagtgccg | tggctcaccg | catcccctgc | cgggacatgc | ccccacact  | catccgcacc | 1200 |
| aaccgcttca | cggccagctt | ccagggcatc | gtggatgcct | acggcgtggg | ccgctaccag | 1260 |
| gaggtcaacc | ccgctcccta | caccatcatc | accttcccct | tcctgtttgc | tgtgatgttc | 1320 |
| ggggatgtgg | gccacgggct | gctcatgttc | ctcttcgccc | tggccatggt | ccttgcggag | 1380 |
| aaccgaccgg | ctgtgaaggc | cgcgcagaac | gagatctggc | agactttctt | caggggccgc | 1440 |
| tacctgctcc | tgcttatggg | cctgttctcc | atctacaccg | gcttcatcta | caacgagtgc | 1500 |
| ttcagtcgcg | ccaccagcat | cttcccctcg | ggctggagtg | tggccgccat | ggccaaccag | 1560 |
| tctggctgga | gtgatgcatt | cctggcccag | cacacgatgc | ttaccctgga | tcccaacgtc | 1620 |
| accggtgtct | tcctgggacc | ctaccccttt | ggcatcgatc | ctatttggag | cctggctgcc | 1680 |
| aaccacttga | gcttcctcaa | ctccttcaag | atgaagatgt | ccgtcatcct | gggcgtcgtg | 1740 |
| cacatggcct | ttggggtggt | cctcggagtc | ttcaaccacg | tgcactttgg | ccagaggcac | 1800 |
| cggctgctgc | tggagacgct | gccggagctc | accttcctgc | tgggactctt | cggttacctc | 1860 |
| gtgttcctag | tcatctacaa | gtggctgtgt | gtctgggctg | ccagggccgc | ctcggccccc | 1920 |
| agcatcctca | tccacttcat | caacatgttc | ctcttctccc | acagececag | caacaggctg | 1980 |
| ctctaccccc | ggcaggaggt | ggtccaggcc | acgctggtgg | tcctggcctt | ggccatggtg | 2040 |
| cccatcctgc | tgcttggcac | acccctgcac | ctgctgcacc | gccaccgccg | ccgcctgcgg | 2100 |
| aggaggcccg | ctgaccgaca | ggaggaaaac | aaggccgggt | tgctggacct | gcctgacgca | 2160 |
| tctgtgaatg | gctggagctc | cgatgaggaa | aaggcagggg | gcctggatga | tgaagaggag | 2220 |
| gccgagctcg | tcccctccga | ggtgctcatg | caccaggcca | tccacaccat | cgagttctgc | 2280 |

ctgggctgcg tetecaacae egectectae etgegeetgt gggeeetgag eetggeecae 2340 geceagetgt cegaggttet gtgggccatg gtgatgegea taggeetggg cetgggeegg 2400 gaggtgggcg tggcggctgt ggtgctggtc cccatctttg ccgcctttgc cqtqatqacc 2460 gtggctatcc tgctggtgat ggagggactc tcagccttcc tgcacgccct gcggctgcac 2520 tgggtggaat tccagaacaa gttctactca ggcacgggct acaagctgag tcccttcacc 2580 ttegetgeca cagatgacta gggcccactg caggteetge cagaceteet teetgacete 2640 2700 <210> 411 <211> 1668 <212> DNA <213> Homo sapiens <400> 411 atggcagccc gtctgctcct cctgggcatc cttctcctgc tgctgcccct qcccqtccct 60 geccegtgee acacageege acgeteagag tgcaagegea gecacaagtt egtgeetggt 120 gcatggctgg ccggggaggg tgtggacgtg accagcctcc gccgctcggg ctccttccca 180 gtggacacac aaaggtteet geggeeegae ggeaeetgea eeetetgtga aaatgeeeta 240 caggagggca ccctccagcg cctgcctctg gcgctcacca actggcgggc ccagggctct 300 ggctgccagc gccatgtaac cagggccaaa gtcagctcca ctgaagctgt ggcccgggat 360 geggetegta geateegeaa egaetggaag gtegggetgg aegtgaetee taageeeace 420 agcaatgtgc atgtgtctgt ggccggctca cactcacagg cagccaactt tgcagcccag 480 aagacccacc aggaccagta cagcttcagc actgacacgg tggagtgccg cttctacagt 540 ttccatgtgg tacacactcc cccgctgcac cctgacttca agagggccct cqqqqacctq 600 ccccaccact tcaacgcctc cacccagccc gcctacctca ggcttatctc caactacggc 660 acccacttca teegggetgt ggagetgggt ggeegeatat eggeeeteae tgeeetgege 720 acctgcgagc tggccctgga agggctcacg gacaacgagg tggaggactg cctgactgtc 780 gaggcccagg tcaacatagg catccacggc agcatctctg ccgaagccaa ggcctgtgag 840 gagaagaaga agaagcacaa gatgacggcc teettecacc aaacctaccg ggagcgccac 900 teggaagtgg ttggeggeea teacacetee attaacgace tgetgttegg gateeaggee 960 gggcccgagc agtactcagc ctgggtaaac tccgtgcccg gcagccctgg cctqqtggac 1020 tacaccetgg aacceetgea egtgetgetg gacagecagg accegeggeg ggaggeactg 1080 aggagggeee tgagteagta eetgaeggae agggeteget ggagggaetg eageeggeeg 1140 tgcccaccag ggcggcagaa gagcccccga gacccatgcc agtgtgtgtg ccatggctca 1200

PCT/US2003/012946 WO 2004/042346

| gcggtcacca                                        | cccaggactg | ctgccctcgg | cagaggggcc | tggcccagct | ggaggtgacc | 1260 |
|---------------------------------------------------|------------|------------|------------|------------|------------|------|
| ttcatccaag                                        | catggagcct | gtgggggac  | tggttcactg | ccacggatgc | ctatgtgaag | 1320 |
| ctcttctttg                                        | gtggccagga | gctgaggacg | agcaccgtgt | gggacaataa | caaccccatc | 1380 |
| tggtcagtgc                                        | ggctggattt | tggggatgtg | ctcctggcca | caggggggcc | cctgaggttg | 1440 |
| caggtctggg                                        | atcaggactc | tggcagggac | gatgacctcc | ttggcacctg | tgatcaggct | 1500 |
| cccaagtctg                                        | gttcccatga | ggtgagatgc | aacctgaatc | atggccacct | aaaattccgc | 1560 |
| tatcatgcca                                        | ggtgcttgcc | ccacctggga | ggaggcacct | gcctggacta | tgtcccccaa | 1620 |
| atgcttctgg                                        | gggagcctcc | aggaaaccgg | agtggggccg | tgtggtga   |            | 1668 |
| <210> 412<br><211> 921<br><212> DNA<br><213> Homo | o sapiens  |            |            |            |            |      |
|                                                   | agcaaaaagc | cagcagcagc | cccaagctga | taagattaat | ctaaagagca | 60   |
| aattatggtg                                        | taatttccta | tgctgaaact | ttgtagttaa | tttttaaaa  | aggtttcatt | 120  |
| ttcctattgg                                        | tctgatttca | caggaacatt | ttacctgttt | gtgaggcatt | ttttctcctg | 180  |
| gaagagaggt                                        | gctgattggc | cccaagtgac | tgacaatctg | gtgtaacgaa | aatttccaat | 240  |
| gtaaactcat                                        | tttccctcgg | tttcagcaat | tttaaatcta | tatatagaga | tatctttgtc | 300  |
| agcattgcat                                        | cgttagcttc | tcctgataaa | ctaattgcct | cacattgtca | ctgcaaatcg | 360  |
| acacctatta                                        | atgggtctca | cctcccaact | gcttccccct | ctgttcttcc | tgctagcatg | 420  |
| tgccggcaac                                        | tttgtccacg | gacacaagtg | cgatatcacc | ttacaggaga | tcatcaaaac | 480  |
| tttgaacagc                                        | ctcacagagc | agaagactct | gtgcaccgag | ttgaccgtaa | cagacatctt | 540  |
| tgctgcctcc                                        | aagaacacaa | ctgagaagga | aaccttctgc | agggctgcga | ctgtgctccg | 600  |
| gcagttctac                                        | agccaccatg | agaaggacac | tcgctgcctg | ggtgcgactg | cacagcagtt | 660  |
| ccacaggcac                                        | aagcagctga | teegatteet | gaaacggete | gacaggaacc | tetggggeet | 720  |
| ggegggettg                                        | aattcctgtc | ctgtgaagga | agccaaccag | agtacgttgg | aaaacttctt | 780  |
| ggaaaggcta                                        | aagacgatca | tgagagagaa | atattcaaag | tgttcgagct | gaatattta  | 840  |
| atttatgagt                                        | ttttgatagc | tttattttt  | aagtatttat | atatttataa | ctcatcataa | 900  |

aataaagtat atatagaatc t

<sup>&</sup>lt;210> 413 <211> 1282 <212> DNA <213> Homo sapiens

| <400> 413                                                     |                |            |            |            |            |      |
|---------------------------------------------------------------|----------------|------------|------------|------------|------------|------|
| aagccaccca                                                    | gcctatgcat     | ccgctcctca | atcctctcct | gttggcactg | ggcctcatgg | 60   |
| cgcttttgtt                                                    | gaccacggtc     | attgctctca | cttgccttgg | cggctttgcc | tccccaggcc | 120  |
| ctgtgcctcc                                                    | ctctacagcc     | ctcagggagc | tcattgagga | gctggtcaac | atcacccaga | 180  |
| accagaaggc                                                    | teegetetge     | aatggcagca | tggtatggag | catcaacctg | acagctggca | 240  |
| tgtactgtgc                                                    | agccctggaa     | tccctgatca | acgtgtcagg | ctgcagtgcc | atcgagaaga | 300  |
| cccagaggat                                                    | gctgagcgga     | ttctgcccgc | acaaggtctc | agctgggcag | ttttccagct | 360  |
| tgcatgtccg                                                    | agacaccaaa     | atcgaggtgg | cccagtttgt | aaaggacctg | ctcttacatt | 420  |
| taaagaaact                                                    | ttttcgcgag     | ggacagttca | actgaaactt | cgaaagcatc | attatttgca | 480  |
| gagacaggac                                                    | ctgactattg     | aagttgcaga | ttcatttttc | tttctgatgt | caaaaatgtc | 540  |
| ttgggtaggc                                                    | gggaaggagg     | gttagggagg | ggtaaaattc | cttagcttag | acctcagcct | 600  |
| gtgctgcccg                                                    | tcttcagcct     | agccgacctc | agccttcccc | ttgcccaggg | ctcagcctgg | 660  |
| tgggcctcct                                                    | ctgtccaggg     | ccctgagctc | ggtggaccca | gggatgacat | gtccctacac | 720  |
| ccctcccctg                                                    | ccctagagca     | cactgtagca | ttacagtggg | tgcccccctt | gccagacatg | 780  |
| tggtgggaca                                                    | gggacccact     | tcacacacag | gcaactgagg | cagacagcag | ctcaggcaca | 840  |
| cttcttcttg                                                    | gtcttattta     | ttattgtgtg | ttatttaaat | gagtgtgttt | gtcaccgttg | 900  |
| gggattgggg                                                    | aagactgtgg     | ctgctagcac | ttggagccaa | gggttcagag | actcagggcc | 960  |
| ccagcactaa                                                    | agcagtggac     | accaggagtc | cctggtaata | agtactgtgt | acagaattct | 1020 |
| gctacctcac                                                    | tggggtcctg     | gggcctcgga | gcctcatccg | aggcagggtc | aggagagggg | 1080 |
| cagaacagcc                                                    | gctcctgtct     | gccagccagc | agccagctct | cagccaacga | gtaatttatt | 1140 |
| gtttttcctt                                                    | gtatttaaat     | attaaatatg | ttagcaaaga | gttaatatat | agaagggtac | 1200 |
| cttgaacact                                                    | gggggagggg     | acattgaaca | agttgtttca | ttgactatca | aactgaagcc | 1260 |
| agaaataaag                                                    | ttggtgacag     | at         |            |            |            | 1282 |
| <210> 414<br><211> 202<br><212> DNA<br><213> Hom<br><400> 414 | 5<br>o sapiens |            |            |            |            |      |
|                                                               | tgcacatgtg     | taatacatat | ctgggatcaa | agctatctat | ataaagtcct | 60   |
| tgattctgtg                                                    | tgggttcaaa     | cacatttcaa | agcttcagga | tcctgaaagg | ttttqctcta | 120  |

155

cttcctgaag acctgaacac cgctcccata aagccatggc ttgccttgga tttcagcggc 180
acaaggctca gctgaacctg gctaccagga cctggccctg cactctcctg tttttcttc 240

tetteatece tgtettetge aaageaatge aegtggeeca geetgetgtg gtactggeea 300 qeaqeeqaqq cateqeeaqe tttqtqtqtq aqtatgeate tecaggeaaa gecactgagg 360 teeggqtgac agtgettegg caggetgaca gecaggtgac tgaagtetgt geggeaacet 420 acatgatggg gaatgagttg accttectag atgattecat etgeaeggge accteeagtg 480 gaaatcaagt gaacetcact atecaaggae tgagggeeat ggacaeggga etetacatet 540 gcaaggtgga gctcatgtac ccaccgccat actacctggg cataggcaac ggaacccaga 600 tttatgtaat tgatecagaa eegtgeecag attetgaett eeteetetgg ateettgeag 660 cagttagttc ggggttgttt ttttatagct ttctcctcac agctgtttct ttgagcaaaa 720 780 tgctaaagaa aagaagcct cttacaacag gggtctatgt gaaaatgccc ccaacagagc cagaatgtga aaagcaattt cagccttatt ttattcccat caattgagaa accattatga 840 900 agaagagagt ccatatttca atttccaaga gctgaggcaa ttctaacttt tttgctatcc 960 agctattttt atttgtttgt gcatttgggg ggaattcatc tctctttaat ataaagttgg atgcggaacc caaattacgt gtactacaat ttaaagcaaa ggagtagaaa gacagagctg 1020 qqatqtttct qtcacatcaq ctccactttc agtgaaagca tcacttggga ttaatatggg 1080 gatgcagcat tatgatgtgg gtcaaggaat taagttaggg aatggcacag cccaaagaag 1140 qaaaaqqcaq qqaqcqaqqq aqaaqactat attgtacaca ccttatattt acgtatgaga 1200 cqtttataqc cqaaatqatc ttttcaaqtt aaattttatq ccttttattt cttaaacaaa 1260 tgtatgatta catcaagget tcaaaaatac tcacatgget atgttttage cagtgatget 1320 1380 1440 atatatatat tttaatttga tagtattgtg catagagcca cgtatgtttt tgtgtatttg 1500 ttaatggttt gaatataaac actatatggc agtgtctttc caccttgggt cccagggaag 1560 ttttgtggag gagctcagga cactaataca ccaggtagaa cacaaggtca tttgctaact agettggaaa etggatgagg teatageagt gettgattge gtggaattgt getgagttgg 1620 tgttgacatq tgctttqggg cttttacacc agttcctttc aatggtttgc aaggaagcca 1680 caqctqqtqq tatctqaqtt qacttqacaq aacactgtct tgaagacaat ggcttactcc 1740 aggagaccca caggtatgac cttctaggaa gctccagttc gatgggccca attcttacaa 1800 acatqtqqtt aatqccatqq acaqaaqaaq qcaqcagqtq gcagaatqqg gtqcatqaag 1860 qtttctqaaa attaacactq cttqtqtttt taactcaata ttttccatqa aaatqcaaca 1920 acatgtataa tatttttaat taaataaaaa totgtggtqq toqttttaaa aaaaaaaaaa 1980 2025

60

<210> 415 <211> 2261

<212> DNA

<213> Homo sapiens

<400> 415

gaaatcaggc teegggeegg eegaagggeg caacttteec eeeteggege eeeacegget cccgcgcgcc tcccctcgcg cccgagcttc gagccaagca gcgtcctggg gagcgcgtca 120 taggettage agtgacegee ttgeteetge egetggeett getgeteeae geegeeagge 180 cgaqccaqtt ccqqqtqtcq ccqctqqatc qqacctqqaa cctqggcgag acagtggagc 240 tgaagtgcca ggtgctgctg tccaacccga cgtcgggctg ctcgtggctc ttccagccgc 300 geggegeege egecagteee acetteetee tatacetete ecaaaacaag eccaaggegg 360 ccgaggggct ggacacccag cggttctcgg gcaagaggtt gggggacacc ttcgtcctca 420 480 ccctgagcga cttccqccga qaqaacqaqq qctactattt ctqctcqqcc ctgagcaact ccatcatgta cttcagccac ttcgtgccgg tcttcctgcc agcgaagccc accacgacgc 540 600 cagogogog accaccaaca coggogocoa coatogogto goagococtg tocotgogoc cagaggggtg ccggccagcg gcggggggcg cagtgcacac gagggggctg gacttcgcct 660 qtqatatcta catctgggcg cccttggccg ggacttgtgg ggtccttctc ctgtcactgg 720 780 ttatcaccct ttactqcaac cacaggaacc gaagacgtgt ttgcaaatgt ccccggcctg 840 tqqtcaaatc qqqaqacaaq cccaqccttt cggcgagata cgtctaaccc tgtgcaacag ccactacatt acttcaaact qaqatccttc cttttgaggg agcaagtcct tccctttcat 900 tttttccaqt cttcctccct qtqtattcat tctcatqatt attattttag tggggggggg 960 qtqqqaaqqa ttacttttc tttatqtqtt tqacqqqaaa caaaactagg taaaatctac 1020 1080 agtacaccac aagggtcaca atactgttgt gcgcacatcg cggtagggcg tggaaagggg 1140 caggccagag ctacccgcag agttctcaga atcatgctga gagagctgga ggcacccatg ccatctcaac ctcttccccg cccgttttac aaagggggag gctaaagccc agagacagct 1200 tgatcaaagg cacacagcaa gtcagggttg gagcagtagc tggagggacc ttgtctccca 1260 qctcaqqqct ctttcctcca caccattcag gtctttcttt ccgaggcccc tgtctcaggg 1320 1380 tgaqqtgctt gagtctccaa cggcaaggga acaagtactt cttgatacct gggatactgt qcccaqaqcc tcqaqqaggt aatgaattaa agaagagaac tgcctttqqc aqaqttctat 1440 aatqtaaaca atatcaqact ttttttttt ataatcaagc ctaaaattgt atagacctaa 1500 aataaaatqa aqtqqtqaqc ttaaccctqq aaaatqaatc cctctatctc taaagaaaat 1560 ctctqtqaaa cccctatqtq qaqqcqqaat tqctctccca gcccttgcat tgcagagggg 1620 cccatgaaag aggacagget acccctttac aaatagaatt tgagcatcag tgaggttaaa 1680

ctaaggcct cttqaatctc tqaatttqaq atacaaacat gttcctggga tcactqatqa 1740 ctttttatac tttqtaaaqa caattqttqq aqagccctc acacagccct qgcctctqct 1800 caactagcag atacagggat gaggcagacc tgactctctt aaggaggctg agagcccaaa 1860 ctgctgtccc aaacatgcac ttccttgctt aaggtatggt acaagcaatg cctgcccatt 1920 ggagagaaa aacttaagta gataaggaaa taagaaccac tcataattct tcaccttagg 1980 aataatctcc tqttaatatg gtgtacattc ttcctgatta ttttctacac atacatgtaa 2040 aatatgtett tetttttaa atagggttgt actatgetgt tatgagtgge tttaatgaat 2100 2160 2220 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 2261 <210> 416 <211> 1425 <212> DNA <213> Homo sapiens <400> 416 cagtotgaga acaagaaaga agaacttotg totogagggt otcactgtca accaggocag 60 agtgcagtga agatcatacc tcactacatc cgtgaactcc cgggctcctc ccacctaagt 120 180 ctcttqaqta qctqqqactt caggaqactg aagccaagga taccagcaga gccaacattt getteaagtt cetgggeetg etgacagegt geaggatget gttggaacce ggeagagget 240 qctqtqccct qqccatcctq ctqqcaattq tqqacatcca qtctggtgga tgcattaaca 300 teaccagete agetteecag qaaqqaacqc qactaaactt aatetqtact gtatggcata 360

agaaagaaga ggctgagggg tttgtagtgt ttttgtgcaa ggacaggtct ggagactgtt 420 ctcctqaqac caqtttaaaa caqctqaqac ttaaaaqqqa tcctqqqata gatqqtqttg 480 540 qtqaaatatc atctcaqttq atqttcacca taaqccaaqt cacaccqttq cacaqtqqqa cctaccagtg ttgtgccaga agccagaagt caggtatccg ccttcagggc cattttttct 600 ccattctatt cacagagaca gggaactaca cagtgacggg attgaaacaa agacaacacc 660 ttgagttcag ccataatgaa ggcactctca gttcaggctt cctacaagaa aaggtctggg 720 780 taatqctqqt caccaqcctt gtggcccttc aagctttgta agcctgtcca aaagaacttt taaaacaqct acaqcaaqat gaqtctqact atgqcttagt atctttctca ttacaatagg 840 cacaqaqaaq aatqcaacaq gqcacaqqqq aaqaqatqct aaatatacca agaatctgtg 900 qaaatataaq ctqqqqcaaa tcaqtqtaat ccttqacttt qctcctcacc atcagggcaa 960 acttqccttc ttccctccta agctccagta aataaacaga acagctttca ccaaagtggg 1020

| tagtatagtc              | ctcaaatatc | ggataaatat | atgcgttttt | gtaccccaga | aaaacttttc | 1080 |
|-------------------------|------------|------------|------------|------------|------------|------|
| ctccctcttc              | atcaacatag | taaaataagt | caaacaaaat | gagaacacca | aattttgggg | 1140 |
| gaataaattt              | ttatttaaca | ctgcaaagga | aagagagaga | aaacaagcaa | agataggtag | 1200 |
| gacagaaagg              | aagacagcca | gatccagtga | ttgacttggc | atgaaaatga | gaaaatgcag | 1260 |
| acagacetca              | acattcaaca | ttcaacaaca | tccatacagc | actgctggag | gaagaggaag | 1320 |
| atttgtgcag              | accaagagca | ccacagacta | caactgccca | gcttcatcta | aatacttgtt | 1380 |
| aacctctttg              | gtcatttctc | tttttaaata | aatgcccata | gcagt      |            | 1425 |
|                         | o sapiens  |            |            |            |            |      |
| <400> 417<br>tcttcaacaa | ggggtaaatc | agtcagtttc | taaaactggt | gggaggtctc | cataaacctg | 60   |
| ataacaagat              | cccaaactcc | aaactgattg | actgagttaa | ttcctgatca | tttgggttga | 120  |
| acttaagagt              | tatacaagaa | aatggtaggg | gacgaggagg | ttgtataaag | gggaaaaaac | 180  |
| aacaactgca              | aaaagcccaa | gagcctgaat | ttagaccaat | ctatcatctt | cctcctctta | 240  |
| aaaagaaaac              | aatttaaaag | tttcaaaaaa | aaaaaaaaa  | aaaaaaaaaa | aa         | 292  |
|                         | o sapiens  |            |            |            |            |      |
| <400> 418<br>acatttgctt | ctgacacaac | tgtgttcact | agcaacctca | aacagacacc | atggtgcatc | 60   |
| tgactcctga              | ggagaagtct | gccgttactg | ccctgtgggg | caaggtgaac | gtggatgaag | 120  |
| ttggtggtga              | ggccctgggc | aggctgctgg | tggtctaccc | ttggacccag | aggttctttg | 180  |
| agtcctttgg              | ggatctgtcc | actcctgatg | ctgttatggg | caaccctaag | gtgaaggctc | 240  |
| atggcaagaa              | agtgctcggt | gcctttagtg | atggcctggc | tcacctggac | aacctcaagg | 300  |
| gcacctttgc              | cacactgagt | gagetgeact | gtgacaagct | gcacgtggat | cctgagaact | 360  |
| tcaggctcct              | gggcaacgtg | ctggtctgtg | tgctggccca | tcactttggc | aaagaattca | 420  |
| ccccaccagt              | gcaggctgcc | tatcagaaag | tggtggctgg | tgtggctaat | gccctggccc | 480  |
| acaagtatca              | ctaagctcgc | tttcttgctg | tccaatttct | attaaaggtt | cctttgttcc | 540  |
| ctaagtccaa              | ctactaaact | gggggatatt | atgaagggcc | ttgagcatct | ggattctgcc | 600  |
| taataaaaaa              | catttattt  | cattqc     |            |            |            | 626  |

60

cqtctqqttc aqqqqctaqa aaaqaqcqtc qatqccqqcq qcagtgatga qtcctaqqaq

<210> 419 <211> 1764 <212> DNA

<213> Homo sapiens

<400> 419

gegetggete tttggegget eggaggageg getgetgetg etgetgetge tgetggtgge 120 ccctttgcag atgtattgct gtccttgaat attagcccat ttgaaaacgc ctgggaagtt 180 cagccatcag tatgtccaag tacaaactta ttatgttaag acatggagag ggtgcttgga 240 300 ataaqqaqaa ccqtttttqt aqctqqqtqq atcaqaaact caacaqcqaa qqaatqqaqq 360 aagctcqqaa ctqtqqqaaq caactcaaaq cqttaaactt tqaqtttqat cttqtattca catctgtcct taatcggtcc attcacacag cctggctgat cctggaagag ctaggccagg 420 480 aatgggtgcc tgtggaaagc tcctggcgtc taaatgagcg tcactatggg gccttgatcg qtctcaacag ggagcagatg gctttgaatc atggtgaaga acaagtgagg ctctqgaqaa 540 gaagetacaa tgtaaccccg ceteccattg aggagtetca teettactac caagaaatet 600 660 acaacgaccg gaggtataaa gtatgcgatg tgcccttgga tcaactgcca cggtcggaaa qcttaaaqqa tqttctggag agactccttc cctattggaa tgaaaggatt gctcccgaag 720 tattacqtqq caaaaccatt ctqatatctg ctcatggaaa tagcagtagg gcactcctaa 780 aacacctqqa aqqtatctca qatqaaqaca tcatcaacat tactcttcct actqqaqtcc 840 ccattettet qqaattqqat qaaaacctqc qtqctqttqq qcctcatcaq ttcctqqqtq 900 accaaqaqqc qatccaaqca qccattaaqa aaqtaqaaqa tcaaqqaaaa qtqaaacaaq 960 1020 ctaaaaaata gtctttctca actgttggct aagaagaaat gcaaaagaag tggcatagga 1080 gtgtgttatg ggtgctgaac tetetetett ttteccegat tttecagage taggetgtgg agtagagttt gtataggtaa ctaggtaact tattgtggcc cagataaggc tttaggatgc 1140 1200 ctcagtgctt atgtcatagc cttatgagtt agctttcttg ctagcccct agtcggtcac caaactagta actagtgggg cttaatgaag gtcataagtt tctgagatgg gagagcaaca 1260 agtaqagatg aagttaaagg tatttatcat tcaagaaatc attattgagt caccattgac 1320 aggcactatt ctaatcagta gttcacttta atatttaata agattttctg ggataacagt 1380 aaqqqatatt aqataatata ccqtatqtat ttattactaq tcttttcctc taggaaaagg 1440 qatactttqa taattaaggc caqaggccca ttagttqaga aagtcacaga tatatttctc 1500 caaqaaaqcc aacaaccacc accacaatga cagaaatgac aacaaggccc tttaacttgt 1560 cttctagttt agagacatcc ttcatttgac atttagtaga attcctcttt ggccacaaga 1620

ataagcagca aataaacaac tatggctgtt gaggttctca ttttggtttg ttttaatttt 1680
ttgaactttg ggtacctgta attagtttaa aaataaagtt cctgataata aagtgactga
aaatggcaaa aaaaaaaaaa aaaa 1764

<210> 420

<211> 2154 <212> DNA

<213> Homo sapiens

<400> 420 atataaccgc gtggcccgcg cgcgcgcttc cctcccggcg cagtcaccgg cgcggtctat 60 qqctqcqact tctctaatgt ctgctttggc tgcccggctg ctgcagcccg cgcacagctg 120 ctcccttcqc cttcqccctt tccacctcqc ggcagttcga aatgaagctg ttgtcatttc 180 tqqaaqqaaa ctqqcccaqc aqatcaaqca ggaaqtgcgg caggaggtag aagagtgggt 240 qqcctcaqqc aacaaacqqc cacacctgag tgtgatcctg gttggcgaga atcctgcaag 300 tcactcctat qtcctcaaca aaaccagggc agctgcagtt gtgggaatca acagtgagac 360 aattatgaaa ccagcttcaa tttcagagga agaattgttg aatttaatca ataaactgaa 420 taatqatqat aatqtaqatq qcctccttqt tcaqttgcct cttccagagc atattgatga 480 gagaaggatc tgcaatgctg tttctccaga caaggatgtt gatggctttc atgtaattaa 540 tgtaggacga atgtgtttgg atcagtattc catgttaccg gctactccat ggggtgtgtg 600 660 qqaaataatc aagcgaactg gcattccaac cctagggaag aatgtggttg tggctggaag gtcaaaaaac gttggaatgc ccattgcaat gttactgcac acagatgggg cgcatgaacg 720 780 teceggaggt gatgecactg ttacaatate teategatat acteecaaag ageagttgaa qaaacataca attettgcaq atattgtaat atetgetgca ggtattecaa atetgateae 840 agcagatatg atcaaggaag gagcagcagt cattgatgtg ggaataaata gagttcacga 900 tcctqtaact qccaaacca aqttqqttqq agatqtqqat tttgaaggag tcagacaaaa 960 agetgggtat atcactccag ttcctggagg tgttggcccc atgacagtgg caatgctaat 1020 qaaqaatacc attattqctq caaaaaaqqt qctqaqqctt gaagagcgag aagtgctgaa 1080 gtctaaagag cttggggtag ccactaatta actactgtgt cttctgtgtc acaaacagca 1140 1200 ctccaggcca gctcaagaag caaagcaggc caatagaaat gcaatatttt taatttattc 1260 tactgaaatg gtttaaaatg atgccttgta tttattgaaa gcttaaatgg gtgggtgttt ctgcacatac ctctgcagta cctcaccagg gagcattcca gtatcatgca gggtcctgtg 1320 atctagccag gagcagccat taacctagtg attaatatgg gagacattac catatggagg 1380

atggatgett cactttgtca agcacctcag ttacacattc gccttttcta ggattgcatt

161

teccaagtge tattgeaata acagttgata eteattttag gtaccagace ttttgagtte 1500 1560 aactgatcaa accaaaggaa aagtgttgct agagaaaatt ggggaaaagg tgaaaaagaa aaaatggtag taattgagca gaaaaaaatt aatttatata tgtattgatt ggcaaccaga 1620 tttatctaag tagaactgaa ttggctagga aaaaagaaaa actgcatgtt aatcattttc 1680 ctaagctgtc cttttgaggc ttagtcagtt tattgggaaa atgtttagga ttattccttq 1740 ctattagtac tcattttatg tatgttaccc ttcagtaagt tctccccatt ttagttttct 1800 aggactgaaa ggattctttt ctacattata catgtgtgtt gtcatatttg gcttttgcta 1860 tatactttaa cttcattgtt aaatttttgt attgtatagt ttctttggtg tatcttaaaa 1920 cctatttttq aaaaacaaac ttqqcttgat aatcatttgg gcagcttggg taagtacgca 1980 acttactttt ccaccaaaqa actqtcaqca qctgcctgct tttctgtgat gtatgtatcc 2040 2100 tqttqacttt tccaqaaatt ttttaagagt ttgagttact attgaattta atcagacttt ctgattaaag ggttttcttt cttttttaat aaaacacatc tgtctggtat ggta 2154 <210> 421 <211> 2960 <212> DNA <213> Homo sapiens <400> 421 qqcacqaqqq tqtqcqtqat qqaqaaaatt qqqcaccaqq gctgctcccq agattctcag 60 atctgatttc cacgettget accaaaatag tetgggeagg ceaettttgg aagtaggegt 120 tatctaqtqa qcaqqcqqcc qctttcqatt tcqctttccc ctaaatqqct gagcttctcg 180 240 ccaqcqcaqq atcaqcctqt tcctqqqact ttccqaqaqc cccqccttq ttccctccc 300 cagcoccag tagggagga ctcggcggta cccqqagctt caggccccac cggggcgcgg 360 agagteccag geoggeodg gaccgggacg gegtecgagt gecaatgget agetetaggt

gtecegetee eegegggtge egetgeetee eeggagette tetegeatgg etggggacag 420 tactgctact tctcgccgac tgggtgctgc tccggaccgc gctgccccgc atattctccc 480 tgctggtgcc caccgcgctg ccactgctcc gggtctgggc ggtgggcctg agccgctggg 540 ccqtqctctg qctqqqqqcc tqcqqqqtcc tcagggcaac ggttggctcc aagagcgaaa 600 acqcaqqtqc ccaqqqctqq ctqqctqctt tqaaqccatt agctgcggca ctgggcttgg 660 ccctqccqqq acttqccttq ttccqaqaqc tqatctcatq qqqaqcccc gggtccgcgg 720 780 ataqcaccaq qctactqcac tqqqqaaqtc accctaccqc cttcqttgtc agttatgcag cggcactgcc cgcagcagcc ctgtggcaca aactcgggag cctctgggtg cccggcggtc 840 900 agggcgctc tqqaaaccct qtqcqtcqqc ttctaqqctq cctqqgctcq gagacgcgcc

gcctctcqct qttcctqqtc ctqqtqqtcc tctcctctt tqqqqaqatq qccattccat 960 tetttacggg ccqcctcact qactqqattc tacaaqatqq ctcaqccqat acettcactc 1020 qaaacttaac tctcatgtcc attctcacca tagccagtgc agtgctggag ttcgtgggtg 1080 acgggatcta taacaacac atgggccacg tgcacagcca cttgcaggga gaggtgtttg 1140 gggctgtcct gcgccaggag acggagtttt tccaacagaa ccagacaggt aacatcatgt 1200 ctcqqqtaac aqaqqacacq tccaccetga gtgattetet gagtgagaat etgagettat 1260 ttctqtqqta cctqqtqcqa ggcctatqtc tcttggggat catgctctgg ggatcagtgt 1320 ccctcaccat ggtcaccctg atcaccctgc ctctgctttt ccttctgccc aagaaggtgg 1380 qaaaatqqta ccaqttqctq qaaqtqcaqq tqcgggaatc tctggcaaag tccagccagg 1440 tqqccattqa qqctctqtcq qccatqccta caqttcgaag ctttgccaac gaggagggcg 1500 1560 aaqcccaqaa qtttaqqqaa aaqctqcaaq aaataaagac actcaaccag aaggaggctg tgqcctatqc aqtcaactcc tgqaccacta qtatttcagg tatgctgctg aaagtgggaa 1620 1680 tectetacat tqqtqqcaq etqqtqaeca qtqqqqetgt aagcagtggg aacettgtea 1740 cattlettet ctaccagate cagtteacce aggetetega getactete tecatetace 1800 ccagagtaca gaaggctgtg ggctcctcag agaaaatatt tgagtacctg gaccgcaccc 1860 ctegetgece acceagtggt ctgttgacte cettacaett ggagggeett gtecagttee 1920 aagatgtctc ctttgcctac ccaaaccgcc cagatgtctt agtgctacag gggctgacat 1980 tcaccctacg ccctggcgag gtgacggcgc tggtgggacc caatgggtct gggaagagca caqtqqctqc cctqctqcaq aatctqtacc agcccaccqq gggacagctq ctqttggatq 2040 qqaaqccct tccccaatat qaqcaccgct acctgcacag gcaggtggct gcagtgggac 2100 2160 aaqaqccaca ggtatttgga agaagtcttc aagaaaatat tgcctatggc ctgacccaga 2220 agecaactat qqaqqaaatc acaqctqctq caqtaaagtc tggggcccat agtttcatct ctqqactccc tcaqqqctat qacacaqaqq taqacqaggc tgggagccag ctgtcagggg 2280 gtcagcgaca ggcagtggcg ttggcccgag cattgatccg gaaaccgtgt gtacttatcc 2340 2400 tggatgatgc caccagtgcc ctggatgcaa acagccagtt acaggtggag cagctcctgt acgaaagccc tgagcggtac tcccgctcag tgcttctcat cacccagcac ctcagcctgg 2460 2520 tggagcaggc tgaccacatc ctctttctgg aaggaggcgc tatccgggag gggggaaccc 2580 accagcaget catggagaaa aaggggtget actgggccat ggtgcagget cctgcagatg ctccagaatg aaagcettet cagacetgeg cactecatet ceeteeettt tettetetet 2640 gtggtggaga accacagetg cagagtagge agetgcetce aggatgagtt acttgaaatt 2700 tgccttgagt gtgttacctc ctttccaagc tcctcgtgat aatgcagact tcctggagta 2760

```
caaacacagg atttgtaatt ccttactgta acggagttta gagccagggc tgatgctttg
                                                                 2820
qtqtqqccaq cactctqaaa ctqaqaaatq ttcaqaatqt acqqaaaqat qatcaqctat
                                                                2880
tttcaacata actgaaggca tatgctggcc cataaacacc ctgtaggttc ttgatattta
                                                                2940
taataaaatt ggtgttttgt
                                                                  2960
<210> 422
<211> 456
<212> DNA
<213> Homo sapiens
<400> 422
qcacqaqtqq aqttqqqtqt cqqctttttt aqccaqcttt tqtqqqaatt qcctttqacc
                                                                  6.0
tattaaaqaa qqaaaqtqqq taatqqaqtc ccaqccactc aaqaqactqq atatcccccq 120
agaatggctt gggttaccag ctatggaccc ttggaagatg aatctaatcc ttctcactgg 180
tttttctttq caaattcatt tqcttttatt tttctaataa caataaactc tattttccat 240
gttctcaggg cccctgggta gacagacaca gcttgatttc agagcagaca taggcgaaga 300
aaacatggca ttgagtgtgc tgagtccaga caaatgttat ttatatacac atccaaattt 360
gaagagaaaa tgtatttctt taggtttcaa acactgtaat agatataaag caaaaataaa
                                                                  420
                                                                   456
aacctgttgc aaagttaaaa aaaaaaaaa aaaaaa
<210> 423
<211> 691
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (35)..(35)
<223> n is a, c, q, t or u
<220>
<221> misc_feature
<222> (140)..(140)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (394)..(394)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (397)..(397)
<223> n is a, c, q, t or u
<220>
<221> misc feature
```

```
<222> (401)..(401)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (404)..(404)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (412)..(412)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (536)..(536)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (569)..(569)
<223> n is a, c, q, t or u
<220>
<221> misc_feature
<222> (581)..(581)
<223> n is a, c, q, t or u
<220>
<221> misc_feature
<222> (615)..(615)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (619)..(619)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (640)..(640)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (651)..(651)
<223> n is a, c, q, t or u
<220>
<221> misc feature
<222> (662)..(662)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (677)..(677)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (680)..(680)
```

<223> n is a, c, q, t or u <220> <221> misc\_feature <222> (687)..(687) <223> n is a, c, g, t or u <400> 423 ttttttttt tttttttt ttttttttt tttttcaaaa tataaactt attatttac 60 120 attcaagtga aacttccatc tggaggggct aaacacagct gccggccaca ttcactgatt tattactttg ttgccttttn cgttcacctg atggaagaat tcaaccctct taaaaacata 180 240 acaacaacaa aaacagetgg agagteecag cegtaataet aggtgtagae acgeacaage acacacacaa attcaaaaac ttctacatag aaaaataaag gataaacatt atccatctat 300 360 420 ttttttttaa ctgttttcag tcactgcaaa tttnctnccc nccnctggga tntaaggatc 480 cagggaggag gctgccacag tgaaacaaaa aagctacatt ctgcccaggg aggaaaaaaa aaaqcaattt etegeteeee tteecaagte etteetgtee accaccacct eggatnttee 540 cqcacacaqc cttccqqtqa qcqqqcqtnc cqtccctcc nctctctaag gcattgggga 600 acaaaaqqcc catanqcanc ccctqccaaa aaaaaaaatn atctaccttt naaqaaaaqq 660 cnaggggctg ggatccngcn aaaaatnact t 691 <210> 424 <211> 1705 <212> DNA <213> Homo sapiens <400> 424 ccaqccctqa qattcccacq tqtttccatt caqtqatcaq cactgaacac agaggactcg 60 ccatggagtt tgggctgagc tgggttttcc ttgttgctat tttaaaaggt gtccagtgtg 120 aggtgcagtt ggtggagtct gggggaggtg tggtacggcc tggggggtcc ctgagactct 180 cctqtqcaac ctctqqattc acctttqatq attccqqcqc qaqctqqqtc cqccaagctc 240 cagggaaggg actggagtgg gtctctagta ttaattggaa tggtggtagc acaaattatg 300 cagactetgt gaagggega tteaccatet ceagagaeaa egecaagaac teectatate 360 tacaaatgaa cagtotgaga gtogaggaca oggoottgta ttactgtgog agagacocga 420 480 ctaaatattg tagtggtggc agctgcctgg ggtactacat ggacgtctgg ggcaagggga 540 ccacqqtcac cgtctcctca gcatccccga ccagccccaa ggtcttcccg ctgagcctct gcagcaccca gccagatggg aacgtggtca tcgcctgcct ggtccagggc ttcttccccc 600 660 aggagecact cagtgtgace tggagegaaa geggacaggg egtgacegee agaaaettee

720

300

cacccagcca ggatgcctcc ggggacctgt acaccacgag cagccagctg accctgccgg

| *                                                 | 333            | 3333       |            |            | 3 33       |      |
|---------------------------------------------------|----------------|------------|------------|------------|------------|------|
| ccacacagtg                                        | cctagccggc     | aagtccgtga | catgccacgt | gaagcactac | acgaatccca | 780  |
| gccaggatgt                                        | gactgtgccc     | tgcccagttc | cctcaactcc | acctacccca | tctccctcaa | 840  |
| ctccacctac                                        | cccatctccc     | tcatgctgcc | acccccgact | gtcactgcac | cgaccggccc | 900  |
| tcgaggacct                                        | gctcttaggt     | tcagaagcga | acctcacgtg | cacactgacc | ggcctgagag | 960  |
| atgcctcagg                                        | tgtcaccttc     | acctggacgc | cctcaagtgg | gaagageget | gttcaaggac | 1020 |
| cacctgaccg                                        | tgacctctgt     | ggctgctaca | gcgtgtccag | tgtcctgccg | ggctgtgccg | 1080 |
| agccatggaa                                        | ccatgggaag     | accttcactt | gcactgctgc | ctaccccgag | tccaagaccc | 1140 |
| cgctaaccgc                                        | caccctctca     | aaatccggaa | acacattccg | gcccgaggtc | cacctgctgc | 1200 |
| cgccgccgtc                                        | ggaggagctg     | gccctgaacg | agctggtgac | gctgacgtgc | ctggcacgtg | 1260 |
| gcttcagccc                                        | caaggatgtg     | ctggttcgct | ggctgcaggg | gtcacaggag | ctgccccgcg | 1320 |
| agaagtacct                                        | gacttgggca     | tcccggcagg | agcccagcca | gggcaccacc | accttcgctg | 1380 |
| tgaccagcat                                        | actgcgcgtg     | gcagccgagg | actggaagaa | gggggacacc | ttctcctgca | 1440 |
| tggtgggcca                                        | cgaggccctg     | ccgctggcct | tcacacagaa | gaccatcgac | cgcttggcgg | 1500 |
| gtaaacccac                                        | ccatgtcaat     | gtgtctgttg | tcatggcgga | ggtggacggc | acctgctact | 1560 |
| gagccgcccg                                        | cctgtcccca     | cccctgaata | aactccatgc | tcccccaaaa | aaaaaaaaa  | 1620 |
| aaaaaaaaa                                         | aaaaaaaaa      | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | 1680 |
| aaaaaaaaa                                         | aaaaaaaaa      | aaaaa      |            |            |            | 1705 |
| <210> 425 <211> 449 <212> DNA <213> Hom <400> 425 | 8<br>o sapiens |            |            |            |            |      |
|                                                   | acagacacaa     | gtcaccttct | tattgcactt | agctctccct | ggggacttaa | 60   |
| attttggcag                                        | tgttcctctt     | tacatgatat | cctccaagat | gatgagttct | aatcctgagg | 120  |
| aagacccttt                                        | ggacacattt     | ctccagtaca | ttgaggatat | ggggatgaag | gcctacgatg | 180  |
| gcttggttat                                        | tcagaatgcg     | tcagatattg | ctcgagagaa | tgatcgcttg | agaaatgaaa | 240  |

agcgcatagg tggagaagta gggcgaggcc acgaaggaag ttacgtggg aaacatttcc 360 gcatgggatt catgacaatg cctgccctc aggacagact tccccatcct tgctccagtg 420 gcttttctgt gagatcacag tccctgcact cggttggggg cacagacgat gacagcagct 480 gtggctcacg gagacaacca ccaccaaac ccaagaggga ccccagcacc aagctgagca 540

ctaacctagc ctatttgaaa gagaagaatg aaaaacgccg aagacaagaa gaagcaataa

| cctcatcaga gacagtcagc agcactgcag ccagtaagag cgggaaaacc cctgaga   | gga 600 |
|------------------------------------------------------------------|---------|
| ctgaagcgtc agctaaacca agaccccaca gcgatgaata ttccaagaag attcctc   | ctc 660 |
| ccaaaccgaa gcgaaatccg aacactcage tgagcacate tttcgatgaa acgtaca   | tca 720 |
| aaaagcatgg gccccggagg acgtcgctgc cgcgggactc ctccttgtcc cagatgg   | gca 780 |
| geceegeggg agaceeegag gaagaggage eegtgtacat egagatggtg gggaaca(  | tc 840  |
| tcagagactt caggaaggag gacgatgacc agagcgaggc cgtctacgag gaaatgaa  | agt 900 |
| accetatett tgacgaettg ggccaagaeg ccaaatgtga ettegaecat cacagets  | jtt 960 |
| cttcgcagtg tgctactccc acggtgcctg acttggactt cgccaaggcc tcagtgcc  | at 1020 |
| gcccccccaa ggggctgctt tgcgacatcc ctccgccctt ccccaacctg ctttctca  | ca 1080 |
| gacccccgct gctggtattt ccccccgccc ccgtgcattg ctcccccaac tccgacga  | gt 1140 |
| ccccgcttac ccctctggag gtcacgaagc ttcccgtgct ggaaaacgtg tcttacat  | ga 1200 |
| aacagccagc cggggcgtcg ccctccacgc tgccgtccca cgtccccggc catgcgaa  | ac 1260 |
| tggagaaaga gcaggccgcg gccctgggac ctgcctctgc cacccctgcg ctctcctc  | gt 1320 |
| cgcccccacc cccgtctacg ctgtaccgaa cccagtctcc ccatggctac cctaaaag  | tc 1380 |
| actccacctc tecetecece gteageatgg ggaggteect gactecectg agecteaa  | aa 1440 |
| ggcctccccc ttacgacgct gtgcattcgg gcagcctctc aaggagctct ccttcagt  | gc 1500 |
| ctcactcgac ccccagaccc gtgtcgcaag atggggccaa gatggtcaac gccgcggt  | ga 1560 |
| acacctacgg ggcagecceg ggtggetece ggteceggae acccaegage eegetgga  | gg 1620 |
| agetgaceag cetettetee teeggeegea geetgetgeg caagtegtee agtggeege | gc 1680 |
| gctccaaaga gcctgcagag aaatcaacag aggaactgaa agtccgaagc cacagcac  | gg 1740 |
| agecattace aaagttggac aacaaggaaa gaggecacea tggggegtet teetecag  | ag 1800 |
| agectgteaa ageteaggaa tgggatggaa caccagggee acctgtggte accagtega | ac 1860 |
| taggaagatg ctctgtgagc cccaccttgt tagcgggaaa ccacagttca gagcctaaa | ag 1920 |
| taagetgeaa attaggeegg tetgegtega egteaggtgt geeteeteea teagteact | c 1980  |
| ccctcaggca aagcagtgac ctgcaacaga gccaggtacc atcatcgtta gccaatcgt | g 2040  |
| attgacttcc tgtgatacaa cttgccaaat gcttcccacc tctgtctgtc ctgttgctg | jt 2100 |
| agacaacttt cgcatttgct tttatttttc tatgtgtgta tgggttaggg gatgcgggg | ıg 2160 |
| atgagttctg gcagtctgtg ttttcatttg aaaaagaata tctttcttcc ttgtgattg | ıg 2220 |
| tggtgaaact ttctttgctg tttgttacca aatcgttttt gtctctggtt tccatcatt |         |
| tgtaatataa atgtagtaaa cttgtactat atgtattggc ttagtggttc ttttttaaa | t 2340  |
| totttototo tttcatgttt tgtgtacttt tatactgtot otgaaaattt atcaatatt | t 2400  |
|                                                                  |         |

gataaattta totaotttgt tttatgtaga tttottttta aatgttttgt ccagaacact 2460 cqcacaqatq ttqtcaatqa atttqtacat atttcttagc tcttatccta ttatactqta 2520 atatttctgg tggttttatt tttatttagc ttggagcatg actgtaagac actgttgaat 2580 attgatqtcc ttataaatat tcatatcccq attcatttgg attgagtatg gcagctagtc 2640 tttcttcttt cttaggctat tgactggcct aagacagttt gactggccag acaaattgac 2700 tggccagata atctagatat ttaacaaaaa ctgcagatta ataaggcaac ctttaaatga 2760 atgacttttc tctcttatac caacaatatc agaaatgttc tcagaaaggg aatgtaagtg 2820 ttcatgcatg gtaaatgaga tctcaattat cacttggaga aaagagacaa gaaataaagg 2880 cataaactga aatatcattt aatcctttac agcataatat gttgctctga tgttcgtttg 2940 qqtacatqqt tqtqqatqqq qaattaqtat qqqqaaaaat cactacacat aaatqtccta 3000 cetttagete acceaatagg aatteaatac attgacttaa tttgtgagge ttaattgteg 3060 ttactqttaa qtattataqq tqttaaqtaq qqtqqtqtca ttctqqaatq ttttctctct 3120 gcttcctagc ttcaatcttt gcattcatga aactcttctg aaatagcaac ttataaaaca 3180 ctgatgatac ctccaaggga actgcccatt actgatgaga aaattacata ttcatctatt 3240 attttaaatg tcaggctatt ttaaaaacat aactaagtag aataattgcg ttttcttcta 3300 atqaqaqaca ttgtqcctct tagtqttttt gtctgactta aatatgcaaa atagttgatt 3360 tataaatata tqaqqtatct qcaaatacaa qaaatgagag gcttctctca agggtatctc 3420 aaqtaccatt taqaatttct tqtgtcttaa tttaaaattt aaatgccttt atataaatgt 3480 taaatgcctt tataactaaa tgtaccaact caaacacttt ttggatataa aagaagtaga 3540 aacaqtaaqa cactqaataa aataaataaq ataaactqcc aacttaqcta attaaaqcta 3600 3660 ttccaaaaat attqtactta ccaacattta aaqcttaaaa acattqqqta ctqaaaqaaq agaagtttag ctaattggca gaggattgca ctaatacaat caagttttca agtttatgac 3720 3780 cttttttcct agttgtcttt atagctgttt caccctaagc cccttcaaac tctcaatgaa 3840 agcaggttct tgggataaac ttccagaata gagacaaggt ataccetttg tgcctttgca 3900 3960 ttatcaactc tttgttcacc tgatgggaag ttcttcgttt ttcaaaatgt agcaagggag aaaqcccaqq acqcctttat atqctgttag tttccttacc tgctgataga gattctgaca 4020 cacaqtcaaa tcatacatgg gctgtcagag ctataaatta gaaggctggc ctctaggctt 4080 ctcctctqtq qcttatagcc agttqtaata tacatqcatt cctatactct agagatgaag 4140 tgqtaaqcat agctcatatg aacactgctc tgaactcctc tqacttagca ttcaacttaa 4200

gtcaagaaat acttattggc tgggcgtggt ggctcacgcc tgtaatccca gcactctggg 4260
aggcagaggt gggtggatca caaggtcagg agattgagac catcctggct aacacggtga 4320
gaccccatct ctactaaaaa tacaaaaaat tagccaggtg tggtggcggg cgcctgtagt 4380
cccagctact tgggaggtg aggcaggaga atgtggtgaa cctgggaggt ggagcttgca 4440
gtgagctgag atcgcaccac tgcactccag cctgggtgac agagcgagac tccatctc 4498

<210> 426 <211> 3478

<212> DNA

<213> Homo sapiens

<400> 426 attttccqqq ccqqqcqcac taaqqtqcqc qqcccqqqq cccaqtatat gacccqccqt 60 cetgetatec ttegetteec cegececatg tggetgeggg geogggggg cgctgeccac 120 tatggcccgg aaagtagtta gcaggaagcg gaaagcgccc gcctcgccgg gagctgggag 180 cgacgctcag ggccgcagt tggctgggat cactcgcttc acaaaaggaa aagacttcct 240 cctgtgaaga gatccttagt atactacttg aagaaccggg aagtcaggct acagaatgaa 300 accagetact etegagtgtt geatggttat geageacage aactteecag teteetgaag 360 qaqaqaqagt ttcaccttqq gacccttaat aaagtgtttg catctcagtg gttgaatcat 420 aggcaagtgg tgtgtggcac aaaatgcaac acgctatttg tcgtagatgt ccagacaagc 480 cagatcacca agatccccat tctgaaagac cgggagcctg gaggtgtgac ccagcagggc 540 tqtqqtatcc atqccatcqa qctqcatcct tctagaacac tgctagccac tggaggagac 600 660 aaccccaaca qtcttqccat ctatcqacta cctacqctqq atcctqtgtg tgtaqqagat 720 gatggacaca aggactggat cttttccatc gcatggatca gcgacactat ggcagtgtct 780 qqctcacqtq atqqttctat qqqactctqq qaqqtqacaq atqatqtttt qaccaaaaqt gatgcgagac acaatgtgtc acgggtccct gtgtatgcac acatcactca caaggcctta 840 aaggacatcc ccaaagaaga cacaaaccct gacaactgca aggttcgggc tctggccttc 900 aacaacaaga acaaggaact gggagcagtg tetetggatg getaetttea tetetggaag 960 qctqaaaata cactatctaa gctcctctcc accaaactgc catattgccg tgagaatgtg 1020 tqtctqqctt atqqtaqtqa atqqtcaqtt tatqcaqtgg gctcccaagc tcatgtctcc 1080 ttettqqate cacqqcaqce atcatacaac qtcaagtetq tetqttecag ggagcgagge 1140 1200 aqtqqaatcc qqtcaqtqaq tttctacqaq cacatcatca ctgtqqgaac agggcagggc tecetqctqt tctatqacat ccqaqctcaq agatttctqq aaqaqaqct ctcaqcttgt 1260 1320 tatqqqtcca aqcccaqact aqcaqgqqaq aatctqaaac taaccactgg caaaqgctgg

1380 ctgaatcatq atgaaacctg gaggaattac ttttcagaca ttgacttctt ccccaatqct qtttacaccc actgctacga ctcqtctgqa acgaaactct ttgtggcagq aggtcccctc 1440 ccttcaqqqc tccatqqaaa ctatqctqqq ctctggagtt aatqacaact ccccaaatqc 1500 agagatttac actaacttcc attctcaqtt tccttqtttc ttttqatttt ttttcctaat 1560 tqtqtqaqqc tcttqtqttt taqtqqqaac accaaaqttt qcctataqtt taqqcactta 1620 ataggaagaa gctctgtaca gaaatctgaa agttgttttg ctttttgttt tcccctttgg 1680 taatcaaaat tttactatct tttattattt ctggcttttc aaccaaacat tgttgctaat 1740 ccctattttt ccttaagtga cacacattct cctgtctctg gcttcttcag gctgaaatga 1800 catagtettt eteaceetta etteactett qaqaqqtaqq qeteetttat aattacatqq 1860 ttgctctcag actttctgtg aaagtttggg agctgtgtgt gtctgtgtgt gtgtgagaga 1920 gagatettqt etgegtqtqt qtqtqtqate ttqtqtqcct qtaqqtactq tqtqtcactq 1980 aaattacctq qaqtqaqqat tacttqtaat taaaaatattt ataaaaqaaa caactttatt 2040 cacagagtcc agctttggga ctagtctgta tcttgttttt taagtctaac aacactgata 2100 ataggaagta aaaacagaaa ggaaaagaaa ttaccactgg gaaaatcttt ttagttagat 2160 tgtaggette etggggeete ceatgeeagg actgeaaagt gateeageee tacetgtett 2220 cccacctqtq tqtcccccqt gtgggaaqtt gqtgtcactt ccccttccca ccctcacatc 2280 tgcttagcca gtagccacac ccctaaaaca tcagactcac catccaggtg cagctccaga 2340 qqctacaaaa qqcttcatqq qacttqaatc cccatcctaq cttctctct cttcccctca 2400 agacctgate tqqttttaaq qqqcctqqaq ctqqqaqtct caaqtctqct aaqattcaca 2460 tecatagece cegtgettt gaggagaate etetetgeca ttettecaat etececagtg 2520 qqttttqcta ttattttcta aattqqqtta aqtctaaqaa qqtqqqqqtq aqcaqqqqt 2580 ttatctgtgt gtagtgagtg cttcatgtgt ggaatattca ttttcttact gcagtgggac 2640 ttggggttga agccaccct cetactetgt tggcttagcc ctgagatggt gacaggetgg 2700 cctgcagtca gcatcattgt gcatgtgaca gcatcaatgt gattagtaat ttgtctgttc 2760 ctecettgaa etgtetgttt agtetgaggt ttttaaaett geaggeaget gaetgtgatg 2820 tecaettgtt ceetgatttt tacaeateat gteaaagata acagetgtte ecaeceacea 2880 gttcctctaa gcacatactc tgcttttctg tcaacatccc attttgggga aaggaaaagt 2940 catatttatt cctqcacccc aqttttttaa cttqttctcc caqttqtccc cctcttctct 3000 3060 qqctactqqa qaqqaqaqac aqcaaqtcca ccctaacttq ttacacaqca cataccacaq 3120 gttccggaat tctcatcttc gaacctagag aaataggtgc tataaacagg gaattaagca 3180

| adalgetgga tgetatagat ettttaattg tettaatttt ttttetatta ttaaaetaca              | 3240 |
|--------------------------------------------------------------------------------|------|
| ggctgtagat ttcttagttc tcacagaact tctatcattt taaactgact tgtatattta              | 3300 |
| aaaaaaaaat cttcagtagg atgttttgta ctattgctag accctcttct gtaatgggta              | 3360 |
| atgcgtttga ttgtttgaga ctttctgttt ttaaaaatgt agcacttgac tttttgccag              | 3420 |
| gaaaaaaata aaaattattc cgtgcaaaaa aaaaaaaaaa                                    | 3478 |
| <210> 427<br><211> 584<br><212> DNA<br><213> Homo sapiens<br><400> 427         |      |
| atttggccct cgaggccaag aattcggcac gaggcgctca gtttcagcag ccagataatg              | 60   |
| gctatattta tctaacatct tgagttcaaa agcatgacgg cgcattttgg ggcactgaac              | 120  |
| aacatcaatg caggcgtcca agtagatgca acctttcgat tcttttgaat ttttctcatc              | 180  |
| tttataggaa ttgagaatat atgaaccgtc aggaagttgg gtcaagtaaa aatatcgtct              | 240  |
| cttgaatacc ttcatggtta ctgtgatggt actatttaca tttgctttat gcaaccagcc              | 300  |
| ttgttttatc acaccaccct tctgagaaca taaagaagat gagtcctcat ctttctcaca              | 360  |
| gtottoatot atotoaaata catgattagg aatottttot ggtotoaaag atttacatgg              | 420  |
| caacattoga aagtooccag agaagtooto ataottgtag tttaccacgt gocaatotgt              | 480  |
| gctataggtt ttaatacact ctttaacaaa taaactctgg gccctctttt cagcatcttc              | 540  |
| tggtacagta aaactgaacc gttctgggtt gacgacctat aacc                               | 584  |
| <210> 428<br><211> 1679<br><212> DNA<br><213> Homo sapiens                     |      |
| <400> 428<br>gtttgttggc tgcggcagca ggtagcaaag tgacgccgag ggcctgagtg ctccagtagc | 60   |
| caccgcatct ggagaaccag cggttaccat ggaggggatc agtatataca cttcagataa              | 120  |
| ctacaccgag gaaatggget caggggacta tgactccatg aaggaaccct gtttccgtga              | 180  |
| agaaaatget aattteaata aaatetteet geecaecate taeteeatea tettettaae              | 240  |
| ggcattgtg ggcaatggat tggtcatcct ggtcatgggt taccagaaga aactgagaag               | 300  |
| atgacggac aagtacaggc tgcacctgtc agtggccgac ctcctctttg tcatcacgct               | 360  |
| cccttctgg gcagttgatg ccgtggcaaa ctggtacttt gggaacttcc tatgcaaggc               | 420  |
| gtccatgtc atctacacag tcaacctcta cagcagtgtc ctcatcctgg ccttcatcag               | 480  |

| cccggaccgc | tacctggcca | tegtecaege | caccaacagt | cagaggccaa | ggaagctgtt | 540  |
|------------|------------|------------|------------|------------|------------|------|
| ggctgaaaag | gtggtctatg | ttggcgtctg | gatecetgee | ctcctgctga | ctattcccga | 600  |
| cttcatcttt | gccaacgtca | gtgaggcaga | tgacagatat | atctgtgacc | gcttctaccc | 660  |
| caatgacttg | tgggtggttg | tgttccagtt | tcagcacatc | atggttggcc | ttatcctgcc | 720  |
| tggtattgtc | atcctgtcct | gctattgcat | tatcatctcc | aagctgtcac | actccaaggg | 780  |
| ccaccagaag | cgcaaggccc | tcaagaccac | agtcatcctc | atcctggctt | tcttcgcctg | 840  |
| ttggctgcct | tactacattg | ggatcagcat | cgactccttc | atcctcctgg | aaatcatcaa | 900  |
| gcaagggtgt | gagtttgaga | acactgtgca | caagtggatt | tccatcaccg | aggccctagc | 960  |
| tttcttccac | tgttgtctga | accccatcct | ctatgctttc | cttggagcca | aatttaaaac | 1020 |
| ctctgcccag | cacgcactca | cctctgtgag | cagagggtcc | agcctcaaga | tcctctccaa | 1080 |
| aggaaagcga | ggtggacatt | catctgtttc | cactgagtct | gagtcttcaa | gttttcactc | 1140 |
| cagctaacac | agatgtaaaa | gactttttt  | tatacgataa | ataactttt  | tttaagttac | 1200 |
| acatttttca | gatataaaag | actgaccaat | attgtacagt | ttttattgct | tgttggattt | 1260 |
| ttgtcttgtg | tttctttagt | ttttgtgaag | tttaattgac | ttatttatat | aaatttttt  | 1320 |
| tgtttcatat | tgatgtgtgt | ctaggcagga | cctgtggcca | agttcttagt | tgctgtatgt | 1380 |
| ctcgtggtag | gactgtagaa | aagggaactg | aacattccag | agcgtgtagt | gaatcacgta | 1440 |
| aagctagaaa | tgatccccag | ctgtttatgc | atagataatc | tctccattcc | cgtggaacgt | 1500 |
| ttttcctgtt | cttaagacgt | gattttgctg | tagaagatgg | cacttataac | caaagcccaa | 1560 |
| agtggtatag | aaatgctggt | ttttcagttt | tcaggagtgg | gttgatttca | gcacctacag | 1620 |
| tgtacagtct | tgtattaagt | tgttaataaa | agtacatgtt | aaacttactt | agtgttatg  | 1679 |
|            |            |            |            |            |            |      |

agactCaaca agagctccag caaagacttt cactgtagct tgacttgacc tgagattaac 60
tagggaatct tgagaataaa gatgagctct gaaaattgtt tcgtagcaga gaacagctct 120
ttgcatccgg agagtggaca agaaaatgat gccaccagtc cccatttctc aacacgtcat 180
gaagggtcct tccaagttcc tgtcctgtgt gctgtaatga atgtggtctt catcaccatt 240
ttaatcatag ctctcattgc cttatcagtg ggccaataca attgtccagg ccaatacaca 300
ttctcaatgc catcagacag ccatgttct tcatgctctg aggactgggt tggctaccag 360
aggaaatgct actttatttc tactgtgaag aggagctgga cttcagccca aaatgcttgt 420

<sup>&</sup>lt;210> 429 <211> 1702

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 429

| tctgaacatg | gtgctactct | tgctgtcatt | gattctgaaa | aggacatgaa | ctttctaaaa | 480  |
|------------|------------|------------|------------|------------|------------|------|
| cgatacgcag | gtagagagga | acactgggtt | ggactgaaaa | aggaacctgg | tcacccatgg | 540  |
| aagtggtcaa | atggcaaaga | atttaacaac | tggttcaacg | ttacagggtc | tgacaagtgt | 600  |
| gtttttctga | aaaacacaga | ggtcagcagc | atggaatgtg | agaagaattt | atactggata | 660  |
| tgtaacaaac | cttacaaata | ataaggaaac | atgttcactt | attgactatt | atagaatgga | 720  |
| actcaaggaa | atctgtgtca | gtggatgctg | ctctgtggtc | cgaagtcttc | catagagact | 780  |
| ttgtgaaaaa | aaattttata | gtgtcttggg | aattttcttc | caaacagaac | tatggaaaaa | 840  |
| aaggaagaaa | ttccaggaaa | atctgcactg | tgggctttta | ttgccatgag | ctagaagcat | 900  |
| cacaggttga | ccaataacca | tgcccaagaa | tgagaagaat | gactatgcaa | cctttggatg | 960  |
| cactttatat | tattttgaat | ccagaaataa | tgaaataact | aggcgtggac | ttactattta | 1020 |
| ttgctgaatg | actaccaaca | gtgagagccc | ttcatgcatt | tgcactactg | gaaggagtta | 1080 |
| gatgttggta | ctagatactg | aatgtaaaca | aaggaattat | ggctggtaac | ataggtttt  | 1140 |
| agtctaattg | aatcccttaa | actcagggag | catttataaa | tggacaaatg | cttatgaaac | 1200 |
| taagatttgt | aatatttctc | tctttttaga | gaaatttgcc | aatttacttt | gttattttc  | 1260 |
| cccaaaaaga | atgggatgat | cgtgtattta | tttttttact | tcctcagctg | tagacaggtc | 1320 |
| cttttcgatg | gtacatattt | ctttgccttt | ataatctttt | atacagtgtc | ttacagagaa | 1380 |
| aagacataag | caaagactat | gaggaatatt | tgcaagacat | agaatagtgt | tggaaaatgt | 1440 |
| gcaatatgtg | atgtggcaaa | tctctattag | gaaatattct | gtaatcttca | gacctagaat | 1500 |
| aatactagtc | ttataatagg | tttgtgactt | tcctaaatca | attctattac | gtgcaatact | 1560 |
| tcaatacttc | atttaaaata | ttttatgtg  | caataaaatg | tatttgtttg | tattttgtgt | 1620 |
| tcagtacaat | tataagctgt | ttttatatat | gtgaaataaa | agtagaataa | acacaaaaaa | 1680 |
| aaaaaaaaa  | aaaaaaaaa  | aa         |            |            |            | 1702 |

<400> 430

getgeagagg attectgeag aggateaga cageaegtgg acetegeae geeteteea 60
caggtaceat gaaggtetee geggeageee tegetgteat eeteattget aetgeeetet 120
gegeteetge atetgeetee ceatatteet eggacaeea acetggetge tittgeetaea 180
ttgeeegeee aetgeeeegt geecaeatea aggagtatit etacaeeagt ggeaagtget 240
ceaaeceage agtegtetit gteaeeegaa agaaeegeea agtggtggee aaeceeagaga 300

<sup>&</sup>lt;210> 430 <211> 1237

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

agaaatgggt tcgggagtac atcaactctt tggagatgag ctaggatgga gagtccttga 360 acctgaactt acacaaattt geetgtttet gettgetett gteetagett gggaggette 420 ccctcactat cctaccccac ccgctccttg aagggcccag attctaccac acagcagcag 480 ttacaaaaac cttccccagg ctggacgtgg tggctcacgc ctgtaatccc agcactttgg 540 gaggccaagg tgggtggatc acttgaggtc aggagttcga gaccagcctg qccaacatga 600 tgaaacccca tctctactaa aaatacaaaa aattagccgg gcgtggtagc qqqcqcctqt 660 agtcccagct actcgggagg ctgaggcagg agaatggcgt gaacccggga ggcggagctt 720 gcaqtgagcc gagatcgegc cactgcactc cagcctgggc gacagagcga gactccgtct 780 caaaaaaaaa aaaaaaaaa aaaatacaaa aattagccgg gcgtggtggc ccacgcctgt 840 aatcccagct actcgggagg ctaaggcagg aaaattgttt gaacccagga ggtggaggct 900 gcagtgaget gagattgtge caettcaete cageetgggt gacaaagtga gaeteegtea 960 caacaacaac aacaaaaagc ttccccaact aaagcctaga agagcttctg aggcgctgct 1020 ttgtcaaaag gaagtctcta ggttctgagc tctggctttg ccttggcttt gccagggctc 1080 tqtqaccaqg aaggaagtca gcatgcctct agaggcaagg aggggaggaa cactgcactc 1140 ttaagettee geegteteaa eeeeteacag gagettaetg geaaacatga aaaategget 1200 taccattaaa gttctcaatg caaccataaa aaaaaaa 1237 <210> 431 <211> 1125 <212> DNA <213> Homo sapiens <400> 431 ttctgccctc gagcccaccg ggaacgaaag agaagctcta tctcgcctcc aggagcccag 60

ctatgaactc cttctccaca agegeetteg gtccagttgc cttctccctg gggetgetec 120 tggtgttgcc tgctgccttc cctgccccag tacccccagg agaagattcc aaagatgtag 180 ccgccccaca cagacagcca ctcacctctt cagaacgaat tgacaaacaa attcggtaca 240 tcctcgacgg catctcagcc ctgagaaagg agacatgtaa caagagtaac atgtgtgaaa 300 gcagcaaaga ggcactggca gaaaacaacc tgaaccttcc aaagatggct gaaaaagatg 360 gatgcttcca atctggattc aatqaggaga cttqcctggt gaaaatcatc actggtcttt 420 tgqagtttga ggtataccta gagtacctcc agaacagatt tgagagtagt gaggaacaag 480 ccaqagctgt gcaqatgagt acaaaagtcc tqatccagtt cctqcagaaa aaggcaaaqa 540 atctagatgc aataaccacc cctgacccaa ccacaaatgc cagcctgctg acgaagetgc 600 aggcacagaa ccagtggctg caggacatga caactcatct cattctgcgc agctttaagg 660

| agttcctgca                                                    | gtccagcctg | agggctcttc | ggcaaatgta | gcatgggcac | ctcagattgt | 720  |
|---------------------------------------------------------------|------------|------------|------------|------------|------------|------|
| tgttgttaat                                                    | gggcattcct | tcttctggtc | agaaacctgt | ccactgggca | cagaacttat | 780  |
| gttgttctct                                                    | atggagaact | aaaagtatga | gcgttaggac | actattttaa | ttatttttaa | 840  |
| tttattaata                                                    | tttaaatatg | tgaagctgag | ttaatttatg | taagtcatat | ttatatttt  | 900  |
| aagaagtacc                                                    | acttgaaaca | ttttatgtat | tagttttgaa | ataataatgg | aaagtggcta | 960  |
| tgcagtttga                                                    | atatcctttg | tttcagagcc | agatcatttc | ttggaaagtg | taggcttacc | 1020 |
| tcaaataaat                                                    | ggctaactta | tacatatttt | taaagaaata | tttatattgt | atttatataa | 1080 |
| tgtataaatg                                                    | gtttttatac | caataaatgg | cattttaaaa | aattc      |            | 1125 |
| <210> 432<br><211> 104<br><212> DNA<br><213> Hom<br><400> 432 | 7          |            |            |            |            |      |
| cgaattcccc                                                    | tatcacctaa | gtgtgggcta | atgtaacaaa | gagggatttc | acctacatcc | 60   |
| attcagtcag                                                    | tctttggggg | tttaaagaaa | ttccaaagag | tcatcagaag | aggaaaaatg | 120  |
| aaggtaatgt                                                    | tttttcagac | aggtaaagtc | tttgaaaata | tgtgtaatat | gtaaaacatt | 180  |
| ttgacacccc                                                    | cataatattt | ttccagaatt | aacagtataa | attgcatctc | ttgttcaaga | 240  |
| gttccctatc                                                    | actctcttta | atcactactc | acagtaacct | caactcctgc | cacaatgtac | 300  |
| aggatgcaac                                                    | tcctgtcttg | cattgcacta | agtcttgcac | ttgtcacaaa | cagtgcacct | 360  |
| acttcaagtt                                                    | ctacaaagaa | aacacagcta | caactggagc | atttactgct | ggatttacag | 420  |
| atgattttga                                                    | atggaattaa | taattacaag | aatcccaaac | tcaccaggat | gctcacattt | 480  |
| aagttttaca                                                    | tgcccaagaa | ggccacagaa | ctgaaacatc | ttcagtgtct | agaagaagaa | 540  |
| ctcaaacctc                                                    | tggaggaagt | gctaaattta | gctcaaagca | aaaactttca | cttaagaccc | 600  |
| agggacttaa                                                    | tcagcaatat | caacgtaata | gttctggaac | taaagggatc | tgaaacaaca | 660  |
| ttcatgtgtg                                                    | aatatgctga | tgagacagca | accattgtag | aatttctgaa | cagatggatt | 720  |
| accttttgtc                                                    | aaagcatcat | ctcaacactg | acttgataat | taagtgcttc | ccacttaaaa | 780  |
| catatcaggc                                                    | cttctattta | tttaaatatt | taaattttat | atttattgtt | gaatgtatgg | 840  |
| tttgctacct                                                    | attgtaacta | ttattcttaa | tcttaaaact | ataaatatgg | atcttttatg | 900  |
| attctttttg                                                    | taagccctag | gggctctaaa | atggtttcac | ttatttatcc | caaaatattt | 960  |
| attattatgt                                                    | tgaatgttaa | atatagtatc | tatgtagatt | ggttagtaaa | actatttaat | 1020 |

<210> 433

aaatttgata aatataaaaa aaaaaaa

| <211> 1242                                                 |                |            |            |            |      |
|------------------------------------------------------------|----------------|------------|------------|------------|------|
| <212> DNA                                                  |                |            |            |            |      |
| <213> Homo sapiens                                         | 5              |            |            |            |      |
| <400> 433<br>atttcatgtt atactta                            | ata aaacaaaaca | tacctgtata | cacacacatt | cactcacatt | 60   |
| gaagatgcaa gatgaaga                                        | aaa gatacatgac | attgaatgta | cagtcaaaga | aaaggagttc | 120  |
| tgcccaaaca tctcaact                                        | tta catttaaaga | ttattcagtg | acgttgcact | ggtataaaat | 180  |
| cttactggga atatctg                                         | gaa ccgtgaatgg | tattctcact | ttgactttga | tctccttgat | 240  |
| cctgttggtt tctcaggg                                        | gag tattgctaaa | atgccaaaaa | ggaagttgtt | caaatgccac | 300  |
| tcagtatgag gacactgg                                        | gag atctaaaagt | gaataatggc | acaagaagaa | atataagtaa | 360  |
| taaggacett tgtgette                                        | cga gatctgcaga | ccagacagta | ctatgccaat | cagaatggct | 420  |
| caaataccaa gggaagt                                         | gtt attggttctc | taatgagatg | aaaagctgga | gtgacagtta | 480  |
| tgtgtattgt ttggaaag                                        | gaa aatctcatct | actaatcata | catgaccaac | ttgaaatggc | 540  |
| ttttatacag aaaaacct                                        | taa gacaattaaa | ctacgtatgg | attgggctta | actttacctc | 600  |
| cttgaaaatg acatggad                                        | ctt gggtggatgg | ttctccaata | gattcaaaga | tattcttcat | 660  |
| aaagggacca gctaaag                                         | aaa acagctgtgc | tgccattaag | gaaagcaaaa | ttttctctga | 720  |
| aacctgcagc agtgttt                                         | tca aatggatttg | tcagtattag | agtttgacaa | aattcacagt | 780  |
| gaaataatca atgatca                                         | cta tttttggcct | attagtttct | aatattaatc | tccaggtgta | 840  |
| agattttaaa gtgcaat                                         | taa atgccaaaat | ctcttctccc | ttetecetec | atcatcgaca | 900  |
| ctggtctagc ctcagag                                         | taa cccctgttaa | caaactaaaa | tgtacacttc | aaaatttta  | 960  |
| cgtgatagta taaaccaa                                        | atg tgacttcatg | tgatcatatc | caggattttt | attcgtcgct | 1020 |
| tattttatgc caaatgt                                         | gat caaattatgc | ctgtttttct | gtatcttgcg | ttttaaattc | 1080 |
| ttaataaggt cctaaac                                         | aaa atttottata | tttctaatgg | ttgaattata | atgtgggttt | 1140 |
| atacattttt taccctt                                         | ttg tcaaagagaa | ttaactttgt | ttccaggctt | ttgctactct | 1200 |
| tcactcagct acaataa                                         | aca teetgaatgt | tttcttaaaa | aa         |            | 1242 |
| <210> 434<br><211> 2298<br><212> DNA<br><213> Homo sapien: | s              |            |            |            |      |
| <400> 434<br>teggeegage ceagaga                            | cag ccagttcctc | tcccgccgcg | ccgggccgcg | tgccgctcgc | 60   |
| tecceggeeg tggegee                                         | tcc gggccagacg | cgctgcagcc | tecageeege | ggcaagcggg | 120  |
| cggggcggcc gcgccac                                         | ccc cggccccgcg | ccagcagccc | ctcgccgcgc | gtccagcgtt | 180  |
| cccggccagc agcctcc                                         | cca tacgcagtcc | tgetggaeeg | ccccgtcgcg | cccccactc  | 240  |

tgaactcaag tcaccgtgga gctccgccgc cccgaaactt tcacgcgagc gggaaatatq 300 ggatgtataa aatcaaaagg gaaagacagc ttgagtgacg atggagtaga tttgaagact 360 caaccagtac gtaatactga aagaactatt tatgtgagag atccaacgtc caataaacag 420 caaaqqccag ttccaqaatc tcagctttta cctggacaga ggtttcaaac taaagatcca 480 qaqqaacaaq qaqacattqt qqtaqccttq tacccctatg atggcatcca cccggacgac 540 ttqtctttca aqaaqqaqa qaaqatqaaa qtcctqqaqq aqcatggaga atggtqqaaa 600 qcaaaqtccc ttttaacaaa aaaaqaaqqc ttcatcccca gcaactatgt ggccaaactc 660 aacaccttaq aaacaqaaqa qtqqtttttc aaqqatataa ccaggaagga cgcagaaagg 720 caqcttttqq caccaqqaaa taqcqctqqa qctttcctta ttaqaqaaag tqaaacatta 780 aaaqqaaqct tctctctqtc tqtcaqaqac tttqaccctg tgcatggtga tgttattaag 840 cactacaaaa ttaqaaqtct qqataatqqq qqctattaca tctctccacq aatcactttt 900 ccctqtatca qcqacatqat taaacattac caaaaqcagg cagatqqctt qtqcaqaaqa 960 ttqqaqaaqq cttqtattaq tcccaaqcca caqaaqccat qqqataaaqa tgcctqqqaq 1020 atccccqqq aqtccatcaa qttqqtqaaa aqqcttqqcq ctqqqcaqtt tqqqqaaqtc 1080 tggatgggtt actataacaa cagtaccaag gtggctgtga aaaccctgaa gccaggaact 1140 atgtetgtgc aageetteet ggaagaagee aaceteatga agaeeetgca geatgacaag 1200 1260 ctcqtqaqqc tctacqctqt qqtcaccaqq qaqqaqcca tttacatcat caccqaqtac 1320 atggccaagg gcagtttgct ggatttcctg aagagcgatg aaggtggcaa agtgctgctt ccaaaqctca ttgacttttc tgctcagatt gcagagggaa tggcatacat cgagcggaag 1380 aactacattc accoppacct gcgagcagct aatgttctgg tctccgagtc actaatgtgc 1440 aaaattqcaq attttqqcct tqctagagta attgaagata atqaqtacac agcaaqqgaa 1500 qqtqctaaqt tccctattaa qtqqacqqct ccaqaaqcaa tcaactttqq atqtttcact 1560 attaaqtctq atqtqtqqtc ctttqqaatc ctcctatacq aaattqtcac ctatqqqaaa 1620 attecetace cagggagaac taatgccgac gtgatgaccg ccctgtccca gggctacagg 1680 atgeccegtg tggagaactg cccagatgag ctctatgaca ttatgaaaat gtgctggaaa 1740 1800 qaaaaqqcaq aaqaqaqacc aacqtttqac tacttacaqa qcqtcctqqa tqatttctac 1860 acagcacgg aagggcaata ccagcagcag ccttagagca cagggagacc cgtccatttg gcagggtgg ctgcctcatt tagagaggaa aagtaaccat cactggttgc acttatgatt 1920 tcatgtgcgg ggatcatctg ccgtgcctgg atcctgaaat agaggctaaa ttactcagga 1980 agaacaccct ctaaatggga aagtattctg tactcttaga tggattctcc actcaqttqc 2040

| aacttggact tgtcctcagc agctggtaat cttgctctgc ttgacaacat ctgagtgca  | g 2100 |
|-------------------------------------------------------------------|--------|
| ccgtttgaga agaaaacatc tattctctcc aaaaatgcac ccaactagct ctatgttta  | c 2160 |
| aaatggacat aggactcaaa gtttcagaga ccattgcaat gaatccccaa taattgcag  | a 2220 |
| actaaactca tttataaagc taaaataacc ggatatatac atagcatgac atttctttg  | t 2280 |
| gctttggctt acttgttt                                               | 2298   |
| <210> 435<br><211> 2308<br><212> DNA<br><2123 DMomo sapiens       |        |
| gagagactgg atggacccac aagggtgaca gcccaggcgg accgatette ccateccae  | a 60   |
| teeteeggeg egatgeeaaa aagaggetga eggeaactgg geettetgea gagaaagace | 120    |
| teegetteac tgeecegget ggteecaagg gteaggaaga tggatteata cetgetgate | 180    |
| tggggactgc tcacgttcat catggtgcct ggctgccagg cagagctctg tgacgatgac | 240    |
| ccgccagaga tcccacacgc cacattcaaa gccatggcct acaaggaagg aaccatgttg | 300    |
| aactgtgaat gcaagagagg tttccgcaga ataaaaagcg ggtcactcta tatgctctgt | 360    |
| acaggaaact ctagccactc gtcctgggac aaccaatgtc aatgcacaag ctctgccact | 420    |
| cggaacacaa cgaaacaagt gacacctcaa cctgaagaac agaaagaaag gaaaaccaca | 480    |
| gaaatgcaaa gtccaatgca gccagtggac caagcgagcc ttccaggtca ctgcagggaa | 540    |
| cctccaccat gggaaaatga agccacagag agaatttatc atttcgtggt ggggcagatg | 600    |
| gtttattatc agtgcgtcca gggatacagg gctctacaca gaggtcctgc tgagagcgtc | 660    |
| tgcaaaatga cccacgggaa gacaaggtgg acccagccc agctcatatg cacaggtgaa  | 720    |
| atggagacca gtcagtttcc aggtgaagag aagcctcagg caagccccga aggccgtcct | 780    |
| gagagtgaga cttcctgcct cgtcacaaca acagattttc aaatacagac agaaatggct | 840    |
| gcaaccatgg agacgtccat atttacaaca gagtaccagg tagcagtggc cggctgtgtt | 900    |
| ttcctgctga tcagcgtcct cctcctgagt gggctcacct ggcagcggag acagaggaag | 960    |
| agtagaagaa caatctagaa aaccaaaaga acaagaattt cttggtaaga agccgggaac | 1020   |
| agacaacaga agtcatgaag cccaagtgaa atcaaaggtg ctaaatggtc gcccaggaga | 1080   |
| cateegttgt gettgeetge gttttggaag etetgaagte acateacagg acaeggggca | 1140   |
| gtggcaacct tgtctctatg ccagctcagt cccatcagag agcgagcgct acccacttct | 1200   |
| aaatagcaat ttcgccgttg aagaggaagg gcaaaaccac tagaactctc catcttattt | 1260   |
| tcatgtatat gtgttcatta aagcatgaat ggtatggaac tctctccacc ctatatgtag | 1320   |

| tataaagaaa                                       | agtaggttta | cattcatctc | attccaactt | cccagttcag | gagtcccaag | 1380 |
|--------------------------------------------------|------------|------------|------------|------------|------------|------|
| gaaagcccca                                       | gcactaacgt | aaatacacaa | cacacacact | ctaccctata | caactggaca | 1440 |
| ttgtctgcgt                                       | ggttcctttc | tcagccgctt | ctgactgctg | attctcccgt | tcacgttgcc | 1500 |
| taataaacat                                       | ccttcaagaa | ctctgggctg | ctacccagaa | atcattttac | ccttggctca | 1560 |
| atcctctaac                                       | ctaaccccct | tctactgagc | cttcagtctt | gaatttctaa | aaaacagagg | 1620 |
| ccatggcaga                                       | ataatctttg | ggtaacttca | aaacggggca | gccaaaccca | tgaggcaatg | 1680 |
| tcaggaacag                                       | aaggatgaat | gaggtcccag | gcagagaatc | atacttagca | aagttttacc | 1740 |
| tgtgcgttac                                       | taattggcct | ctttaagagt | tagtttcttt | gggattgcta | tgaatgatac | 1800 |
| cctgaatttg                                       | gcctgcacta | atttgatgtt | tacaggtgga | cacacaaggt | gcaaatcaat | 1860 |
| gcgtacgttt                                       | cctgagaagt | gtctaaaaac | accaaaaagg | gatccgtaca | ttcaatgttt | 1920 |
| atgcaaggaa                                       | ggaaagaaag | aaggaagtga | agagggagaa | gggatggagg | tcacactggt | 1980 |
| agaacgtaac                                       | cacggaaaag | agcgcatcag | gcctggcacg | gtggctcagg | cctataaccc | 2040 |
| cageteeeta                                       | ggagaccaag | gcgggagcat | ctcttgaggc | caggagtttg | agaccagcct | 2100 |
| gggcagcata                                       | gcaagacaca | tccctacaaa | aaattagaaa | ttggctggat | gtggtggcat | 2160 |
| acgcctgtag                                       | tcctagccac | tcaggaggct | gaggcaggag | gattgcttga | gcccaggagt | 2220 |
| tegaggetge                                       | agtcagtcat | gatggcacca | ctgcactcca | gcctgggcaa | cagagcaaga | 2280 |
| teetgtettt                                       | aaggaaaaaa | agacaagg   |            |            |            | 2308 |
| <210> 436<br><211> 696<br><212> DNA<br><213> Hom | o sapiens  |            |            |            |            |      |
|                                                  | cccccccc   | ccccgcccga | gcacaggaca | cagctgggtt | ctgaagcttc | 60   |
| tgagttctgc                                       | agcctcacct | ctgagaaaac | ctcttttcca | ccaataccat | gaagctctgc | 120  |
| gtgactgtcc                                       | tgtctctcct | catgctagta | gctgccttct | gctctccagc | gctctcagca | 180  |
| ccaatgggct                                       | cagaccctcc | caccgcctgc | tgcttttctt | acaccgcgag | gaagetteet | 240  |

tgagttctge agectcacet etgagaaaa etettteea ceaataceat gaagetetge 120
gtgactgtee tgteteteet eatgetagta getgeettet geteteeage geteteagea 180
ceaatggget eagacettee eacgeetge tgetttett acacegegag gaagetteet 240
egeaactttg tggtagatta etatgagace ageageetet geteecagea agetgtggta 360
ttecaaacca aaagaageaa geaagtetgt getgateea gtgaateetg ggtecaggag 360
tacegtgtatg acetggaact gaactgaget geteagagae aggaagtete caggaaggt 420
cacetgagee eggatgette tecatgagae acateteete eatacteagg acteetetee 480
geagtteetg teeetteet taatttaate ttttttatg geegtgtat tggatggeag 540
gteattteea ttattatat tagtttagee aaaggataag tgteetagg ggatggteea 600

| ctgtcactgt                                        | ttctctgctg | ttgcaaatac | atggataaca | catttgattc | tgtgtgtttt | 660  |
|---------------------------------------------------|------------|------------|------------|------------|------------|------|
| ccataataaa                                        | actttaaaat | aaaatgcaga | cagtta     |            |            | 696  |
| <210> 437<br><211> 116<br><212> DNA<br><213> Home | o sapiens  |            |            |            |            |      |
| <400> 437<br>gatcagattt                           | gggtgggaga | aagaagtggg | tatcaagggt | gatttgaatt | ttctgcagca | 60   |
| ttaaagtggc                                        | gttaataaga | taagtaataa | taaagaattc | taacatccat | gtcaaa     | 116  |
|                                                   | sapiens    |            |            |            |            |      |
| <400> 438<br>gagcaatgat                           | gtagccacct | cctaaccttc | ccttcttgaa | ccccaggtc  | ccctcttgct | 60   |
| gttggctgca                                        | catcaggaag | gctgtgatgg | gaatgaaggt | gaaaacttgg | agatttcact | 120  |
| tcagtcattg                                        | cttctgcctg | caagatcatc | ctttaaaagt | agagaagctg | ctctgtgtgg | 180  |
| tggttaactc                                        | caagaggcag | aactcgttct | agaaggaaat | ggatgcaagc | agctccgggg | 240  |
| gccccaaacg                                        | catgetteet | gtgatctagc | ccagggaagc | ccttccgtgg | gggccccggc | 300  |
| tttgagggat                                        | gccaccggtt | ctggacgcat | ggctgattct | gaatgatgat | ggttcgccgg | 360  |
| gggctgcttg                                        | cgtggatttc | ccgggtggtg | gttttgctgg | tgctcctctg | ctgtgctatc | 420  |
| tctgtcctgt                                        | acatgttggc | ctgcacccca | aaaggtgacg | aggagcagct | ggcactgccc | 480  |
| agggccaaca                                        | gccccacggg | gaaggaggg  | taccaggccg | tccttcagga | gtgggaggag | 540  |
| cagcaccgca                                        | actacgtgag | cagcctgaag | cggcagatcg | cacageteaa | ggaggagctg | 600  |
| caggagagga                                        | gtgagcagct | caggaatggg | cagtaccaag | ccagcgatgc | tgctggcctg | 660  |
| ggtctggaca                                        | ggagccccc  | agagaaaacc | caggccgacc | tcctggcctt | cctgcactcg | 720  |
| caggtggaca                                        | aggcagaggt | gaatgctggc | gtcaagctgg | ccacagagta | tgcagcagtg | 780  |
| cctttcgata                                        | gctttactct | acagaaggtg | taccagctgg | agactggcct | tacccgccac | 840  |
| cccgaggaga                                        | agcctgtgag | gaaggacaag | cgggatgagt | tggtggaagc | cattgaatca | 900  |
| gccttggaga                                        | ccctgaacaa | tcctgcagag | aacagcccca | atcaccgtcc | ttacacggcc | 960  |
| tctgatttca                                        | tagaagggat | ctaccgaaca | gaaagggaca | aagggacatt | gtatgagete | 1020 |
| accttcaaag                                        | gggaccacaa | acatgaattc | aaacggctca | tcttatttcg | accattcggc | 1080 |
| cccatcatga                                        | aagtgaaaaa | tgaaaagctc | aacatggcca | acacgettat | caatgttatc | 1140 |
| gtgcctctag                                        | caaaaagggt | ggacaagttc | cggcagttca | tgcagaattt | cagggagatg | 1200 |

tgcattgagc aggatgggag agtccatctc actgttgttt actttgggaa agaagaaata 1260 aatgaagtca aaggaatact tgaaaacact tccaaagctg ccaacttcag gaactttacc 1320 ttcatccagc tgaatggaga attttctcgg ggaaagggac ttgatgttgg agcccgcttc 1380 tggaagggaa gcaacgtcct tctctttttc tgtgatgtgg acatctactt cacatctgaa 1440 ttcctcaata cgtgtaggct gaatacacag ccagggaaga aggtatttta tccagttctt 1500 ttcagtcagt acaatcctgg cataatatac ggccaccatg atgcagtccc tcccttggaa 1560 cagcagctgg tcataaagaa ggaaactgga ttttggagag actttggatt tgggatgacg 1620 tgtcagtatc ggtcagactt catcaatata ggtgggtttg atctggacat caaaggctgg 1680 ggcggagagg atgtgcacct ttatcgcaag tatctccaca gcaacctcat agtggtacgg 1740 acgcctgtgc gaggactctt ccacctctgg catgagaagc gctgcatgga cgagctgacc 1800 cccgagcagt acaagatgtg catgcagtcc aaggccatga acgaggcatc ccacggccag 1860 ctgggcatgc tggtgttcag gcacgagata gaggctcacc ttcgcaaaca gaaacagaag 1920 acaagtagca aaaaaacatg aactcccaga gaaggattgt gggagacact ttttctttcc 1980 ttttgcaatt actgaaagtg gctgcaacag agaaaagact tccataaagg acgacaaaag 2040 aattggactg atgggtcaga gatgagaaag cctccgattt ctctctgttg ggctttttac 2100 aacagaaatc aaaatctccg ctttgcctgc aaaagtaacc cagttgcacc ctgtgaagtg 2160 tctgacaaag gcagaatgct tgtgagatta taagcctaat ggtgtggagg ttttgatggt 2220 gtttacaata cactgagacc tgttgttttg tgtgctcatt gaaatattca tgatttaaga 2280 gcagttttgt aaaaaattca ttagcatgaa aggcaagcat atttctcctc atatgaatga 2340 2400 2460 gaaaccataa atatcgtgtc atattttccc caagattaac caaaaataat ctgcttatct 2520 ttttggttgt ccttttaact gtctccgttt ttttctttta tttaaaaatg cactttttt 2580 cccttgtgag ttatagtctg cttatttaat taccactttg caagccttac aagagagcac 2640 aagttggcct acatttttat attttttaag aagatacttt gagatgcatt atgagaactt 2700 tcagttcaaa gcatcaaatt gatgccatat ccaaggacat gccaaatgct gattctgtca 2760 ggcactgaat gtcaggcatt gagacatagg gaaggaatgg tttgtactaa tacagacgta 2820 cagatacttt ctctgaagag tattttcgaa gaggagcaac tgaacactgg aggaaaagaa 2880 aatgacactt tctgctttac agaaaaggaa actcattcag actggtgata tcgtgatgta 2940 cctaaaagtc agaaaccaca ttttctcctc agaagtaggg accgctttct tacctgttta 3000

3060 aataaaccaa agtataccgt gtgaaccaaa caatctcttt tcaaaacagg gtgctcctcc tggcttctgg cttccataag aagaaatgga gaaaaatata tatatatat tatatattgt 3120 gaaagatcaa tocatotgoo agaatctagt gggatggaag tttttgctac atgttatoca 3180 ccccaggcca ggtggaagta actgaattat tttttaaatt aagcagttet actcgatcac 3240 3300 cagttaacat agaqtqqttt cttcattcat qtqaaaatta ttaqccaqca ccagatgcat 3360 qagctaatta tctctttqaq tccttqcttc tqtttqctca cagtaagctc attgtttaaa 3420 agcttc 3426 <210> 439 <211> 384 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> (144)..(145) <223> n is a, c, q, t or u <220> <221> misc feature <222> (159)..(159) <223> n is a, c, q, t or u <220> <221> misc feature <222> (165)..(165) <223> n is a, c, g, t or u <220> <221> misc\_feature <222> (223)..(223) <223> n is a, c, q, t or u <220> <221> misc feature <222> (309)..(309) <223> n is a, c, q, t or u <400> 439 ttttttttt tttttttt tcgaagatca gtactttatt ttctctagct ccagtgtttt 60 gcaactgtag cagcatatca gaaacatccc cacacaaaaa cacacaattc tccccttctt 120 caaaqaqctq qcaacaattq aqanncaqaa acaataqtna ctacnqqcat ttqaqaaatt 180 240 taagaaataa cacttgctca cccttgaaac atacattgtg cgncttgcag gtcggaagca qcaqtacatt tqtcattcaa aqacacaatc atccttaaat aaaqttaaat aaaaccttat 300 tggcataana accqcqttqq agatqcaqct ttatcqqqqqa ctttqqqaqq aaqqtqcttq 360

gaataagaca tgagcatttt aaaa

WO 2004/042346 PCT/US2003/012946

384

<210> 440 <211> 2545 <212> DNA <213> Homo sapiens

<400> 440

atccaataca ggagtgactt ggaactccat tctatcacta tgaagaaaag tggtgttctt 60 ttcctcttgg gcatcatctt gctggttctg attggagtgc aaggaacccc agtagtgaga 120 aagggteget gtteetgeat cageaccaac caagggacta tecacetaca ateettgaaa 180 gaccttaaac aatttgcccc aagcccttcc tgcgagaaaa ttgaaatcat tgctacactg 240 aagaatggag ttcaaacatg tctaaaccca gattcagcag atgtgaagga actgattaaa 300 aagtgggaga aacaggtcag ccaaaagaaa aagcaaaaga atgggaaaaa acatcaaaaa 360 aagaaagttc tgaaagttcg aaaatctcaa cgttctcgtc aaaagaagac tacataagag 420 accacttcac caataagtat totgtgttaa aaatgttota ttttaattat accgctatca 480 ttccaaagga ggatggcata taatacaaag gcttattaat ttgactagaa aatttaaaac 540 attactctga aattgtaact aaagttagaa agttgatttt aagaatccaa acgttaagaa 600 ttgttaaagg ctatgattgt ctttgttctt ctaccaccca ccagttgaat ttcatcatgc 660 ttaaggccat gattttagca atacccatgt ctacacagat gttcacccaa ccacatccca 720 ctcacaacag ctgcctggaa gagcagccct aggcttccac gtactgcagc ctccagagag 780 tatetgagge acatgteage aagteetaag cetgttagea tgetggtgag ceaageagtt 840 tgaaattgag ctggacctca ccaagctgct gtggccatca acctctgtat ttgaatcagc 900 ctacaggcct cacacacaat gtgtctgaga gattcatgct gattgttatt gggtatcacc 960 actggagatc accagtgtgt ggctttcaga gcctcctttc tggctttgga agccatgtga 1020 ttccatcttg cccgctcagg ctgaccactt tatttctttt tgttcccctt tgcttcattc 1080 aagtcagctc ttctccatcc taccacaatg cagtgccttt cttctctcca gtgcacctgt 1140 catatgetet gatttatetg agtcaactee ttteteatet tgteeceaac accecacaga 1200 agtgetttet teteceaatt cateeteact cagtecaget tagtteaagt cetgeetett 1260 aaataaacct ttttggacac acaaattatc ttaaaactcc tgtttcactt ggttcagtac 1320 cacatgggtg aacactcaat ggttaactaa ttcttgggtg tttatcctat ctctccaacc 1380 agattgtcag ctccttgagg gcaagagcca cagtatattt ccctgtttct tccacagtgc 1440 ctaataatac tgtggaacta ggttttaata attttttaat tgatgttgtt atgggcagga 1500 tggcaaccag accattgtct cagagcaggt gctggctctt tcctggctac tccatgttgg 1560

| ctagectetg gtaacetett aettattate tteaggaeae teactaeagg gaccagggat | 1620 |
|-------------------------------------------------------------------|------|
| gatgcaacat cettgtettt ttatgacagg atgtttgete agetteteca acaataagaa | 1680 |
| gcacgtggta aaacacttgc ggatattctg gactgttttt aaaaaatata cagtttaccg | 1740 |
| aaaatcatat aatcttacaa tgaaaaggac tttatagatc agccagtgac caaccttttc | 1800 |
| ccaaccatac aaaaatteet ttteeegaag gaaaaggget tteteaataa geeteagett | 1860 |
| tctaagatct aacaagatag ccaccgagat ccttatcgaa actcatttta ggcaaatatg | 1920 |
| agttttattg tccgtttact tgtttcagag tttgtattgt gattatcaat taccacacca | 1980 |
| tctcccatga agaaagggaa cggtgaagta ctaagcgcta gaggaagcag ccaagtcggt | 2040 |
| tagtggaagc atgattggtg cccagttagc ctctgcagga tgtggaaacc tccttccagg | 2100 |
| ggaggttcag tgaattgtgt aggagaggtt gtctgtggcc agaatttaaa cctatactca | 2160 |
| ctttcccaaa ttgaatcact gctcacactg ctgatgattt agagtgctgt ccggtggaga | 2220 |
| teccaeeega aegtettate taateatgaa aeteeetagt teetteatgt aaetteeetg | 2280 |
| aaaaatctaa gtgtttcata aatttgagag tetgtgaeee aettaeettg cateteacag | 2340 |
| gtagacagta tataactaac aaccaaagac tacatattgt cactgacaca cacgttataa | 2400 |
| tcatttatca tatatataca tacatgcata cactctcaaa gcaaataatt tttcacttca | 2460 |
| aaacagtatt gacttgtata ccttgtaatt tgaaatattt tctttgttaa aatagaatgg | 2520 |
| tatcaataaa tagaccatta atcag                                       | 2545 |
| <210> 441<br><211> 1172<br><212> DNA<br><213> Homo sapiens        |      |
| gagacattee teaattgett agacatatte tgageetaca geagaggaae etecagtete | 60   |
| agcaccatga atcaaactgc gattotgatt tgctgcctta totttotgac totaagtggc | 120  |
| attcaaggag tacctctctc tagaaccgta cgctgtacct gcatcagcat tagtaatcaa | 180  |
| cctgttaatc caaggtcttt agaaaaactt gaaattattc ctgcaagcca attttgtcca | 240  |
| cgtgttgaga tcattgctac aatgaaaaag aagggtgaga agagatgtct gaatccagaa | 300  |
| togaaggoca toaagaattt actgaaagoa gttagoaagg aaatgtotaa aagatotoot | 360  |
| taaaaccaga ggggagcaaa atcgatgcag tgcttccaag gatggaccac acagaggctg | 420  |
| cctctcccat cacttcccta catggagtat atgtcaagcc ataattgttc ttagtttgca | 480  |
| gttacactaa aaggtgacca atgatggtca ccaaatcagc tgctactact cctgtaggaa | 540  |
| ggttaatgtt catcatccta agctattcag taataactct accctggcac tataatgtaa | 600  |
|                                                                   |      |

getetactga ggtgetatgt tettagtgga tgttetgace etgetteaaa tattteeete 660 acctttccca tcttccaagg gtactaagga atctttctgc tttggggttt atcagaattc 720 tcaqaatctc aaataactaa aaqqtatqca atcaaatctq ctttttaaaq aatqctcttt 780 acttcatqqa cttccactqc catcctccca aqqqqcccaa attctttcaq tqqctaccta 840 catacaattc caaacacata caggaaggta gaaatatctg aaaatgtatg tgtaagtatt 900 cttatttaat gaaagactgt acaaagtata agtcttagat gtatatattt cctatattgt 960 tttcagtgta catggaataa catgtaatta agtactatgt atcaatgagt aacaggaaaa 1020 ttttaaaaat acagatagat atatgctctg catgttacat aagataaatg tgctgaatgg 1080 ttttcaaata aaaatgaggt actctcctgg aaatattaag aaagactatc taaatgttga 1140 aagatcaaaa ggttaataaa gtaattataa ct 1172 <210> 442 <211> 1859 <212> DNA <213> Homo sapiens <400> 442 gcaggcacaa actcatccat ccccagttga ttggaagaaa caacgatgac tcctgggaag 60

acctcattgg tgtcactgct actgctgctg agcctggagg ccatagtgaa ggcaggaatc 120 acaatcccac gaaatccagg atgcccaaat tctgaggaca agaacttccc ccggactgtg 180 atgqtcaacc tgaacatcca taaccggaat accaatacca atcccaaaag gtcctcagat 240 tactacaacc gatccacctc accttggaat ctccaccgca atgaggaccc tgagagatat 300 ccctctqtqa tctqqqaqqc aaaqtqccqc cacttqqqct qcatcaacqc tqatqqqaac 360 qtqqactacc acatqaactc tqtccccatc caqcaaqaqa tcctqqtcct qcqcaqqqaq 420 cottocacact goodcaacto ottocqqotq qaqaaqatac tqqtqtocqt qqqctqcaco 480 tqtqtcaccc cqattqtcca ccatqtqqcc taaqaqctct qqqqaqccca cactccccaa 540 agcagttaga ctatggagag ccgacccagc ccctcaggaa ccctcatcct tcaaagacag 600 cctcatttcg gactaaactc attagagttc ttaaggcagt ttgtccaatt aaagcttcag 660 aggtaacact tggccaagat atgagatctg aattacettt ccetetttee aagaaggaag 720 gtttgactga gtaccaattt gcttcttgtt tactttttta agggctttaa gttatttatg 780 tatttaatat gccctgagat aactttgggg tataagattc cattttaatg aattacctac 840 tttattttgt ttgtcttttt aaagaagata agattctggg cttgggaatt ttattattta 900 aaaqqtaaaa cctqtattta tttqaqctat ttaaqqatct atttatgttt aaqtatttag 960 aaaaaggtga aaaagcacta ttatcagttc tgcctaggta aatgtaagat agaattaaat 1020

| ggcagtgcaa aatttctgag tctttacaac atacggatat agtatttcct cctctttgtt                                    | 1080 |
|------------------------------------------------------------------------------------------------------|------|
| tttaaaagtt ataacatggc tgaaaagaaa gattaaacct actttcatat gtattaattt                                    | 1140 |
| aaattttgca atttgttgag gttttacaag agatacagca agtctaactc tctgttccat                                    | 1200 |
| taaaccetta taataaaate ettetgtaat aataaagttt caaaagaaaa tgtttatttg                                    | 1260 |
| tteteattaa atgtatttta geaaaeteag etetteeeta ttgggaagag ttatgeaaat                                    | 1320 |
| tctcctataa gcaaaacaaa gcatgtcttt gagtaacaat gacctggaaa tacccaaaat                                    | 1380 |
| tccaagttct cgatttcaca tgccttcaag actgaacacc gactaaggtt ttcatactat                                    | 1440 |
| tagccaatgc tgtagacaga agcattttga taggaataga gcaaataaga taatggccct                                    | 1500 |
| gaggaatggc atgtcattat taaagatcat atggggaaaa tgaaaccctc cccaaaatac                                    | 1560 |
| aagaagttet gggaggagae attgtettea gactacaatg tecagtttet eccetagaet                                    | 1620 |
| caggetteet ttggagatta aggeeeetea gagateaaca gaeeaacatt tttetettee                                    | 1680 |
| tcaagcaaca ctcctagggc ctggcttctg tctgatcaag gcaccacaca acccagaaag                                    | 1740 |
| gagctgatgg ggcagaacga actttaagta tgagaaaagt tcagcccaag taaaataaaa                                    | 1800 |
| actcaatcac attcaattcc agagtagttt caagtttcac atcgtaacca ttttcgccc                                     | 1859 |
| <pre>&lt;210&gt; 443 &lt;211&gt; 1496 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 443</pre> |      |
| gactoogggt ggcaggogce ogggggaato coagotgact ogotoactgo ottogaagto                                    | 60   |
| eggegecece egggagggaa etgggtggee geacectece ggetgeggtg getgtegece                                    | 120  |
| cccaccetge agccaggact cgatggagaa tccattccaa tatatggcca tgtggctctt                                    | 180  |
| tggagcaatg ttccatcatg ttccatgctg ctgctgacgt cacatggagc acagaaatca                                    | 240  |
| atgttagcag atagccagcc catacaagat cgtattgtat tgtaggaggc atcgtggatg                                    | 300  |
| gatggctgct ggaaacccct tgccatagcc agctcttctt caatacttaa ggatttaccg                                    | 360  |
| tggctttgag taatgagaat ttcgaaacca catttgagaa gtatttccat ccagtgctac                                    | 420  |
| ttgtgtttac ttctaaacag tcattttcta actgaagctg gcattcatgt cttcattttg                                    | 480  |
| ggctgtttca gtgcagggct tcctaaaaca gaagccaact gggtgaatgt aataagtgat                                    | 540  |
| ttgaaaaaaa ttgaagatct tattcaatct atgcatattg atgctacttt atatacggaa                                    | 600  |
| agtgatgttc accccagttg caaagtaaca gcaatgaagt gctttctctt ggagttacaa                                    | 660  |
| gttatttcac ttgagtccgg agatgcaagt attcatgata cagtagaaaa tctgatcatc                                    | 720  |
| ctagcaaaca acagtttgtc ttctaatggg aatgtaacag aatctggatg caaagaatgt                                    | 780  |
|                                                                                                      |      |

gaggaactgg aggaaaaaaa tattaaagaa tttttgcaga gttttgtaca tattgtccaa 840 atgitcatca acacticity attgcaatty attctttta aagtgtttct gitattaaca 900 aacatcactc tgctgcttaq acataacaaa acactcggca tttcaaatgt qctqtcaaaa 960 caaqtttttc tqtcaaqaaq atqatcagac cttggatcag atgaactctt aqaaatqaaq 1020 qcaqaaaaat qtcattqaqt aatataqtqa ctatqaactt ctctcaqact tactttactc 1080 atttttttaa tttattattq aaattqtaca tatttqtqqa ataatqtaaa atqttqaata 1140 1200 aaaatatgta caagtgttgt tttttaagtt gcactgatat tttacctctt attgcaaaat agcatttgtt taagggtgat agtcaaatta tgtattggtg gggctgggta ccaatgctgc 1260 aggtcaacag ctatgctggt aggctcctgc cagtgtggaa ccactgacta ctggctctca 1320 1380 ttgacttcct tactaagcat agcaaacaga ggaagaattt gttatcagta agaaaaagaa quactatatq tquatcetet tetttatact qtaatttaqt tattqatqta taaaqcaact 1440 1496 <210> 444 <211> 1629 <212> DNA <213> Homo sapiens <400> 444 acacatcagg ggcttgctct tgcaaaacca aaccacaaga cagacttgca aaagaaggca 60 tgcacagctc agcactgctc tgttgcctgg tcctcctgac tggggtgagg gccagcccag 120 gccagggac ccagtctgag aacagctgca cccacttccc aggcaacctg cctaacatgc 180 ttcgagatct ccgagatgcc ttcagcagag tgaagacttt ctttcaaatg aaggatcagc 240 tggacaactt gttgttaaag gagtccttgc tggaggactt taagggttac ctgggttgcc 300 aagcettgte tgagatgate cagttttace tggaggaggt gatgeeccaa getgagaace 360 aagacccaga catcaaggcg catgtgaact ccctggggga gaacctgaag accctcaggc 420 tqaqqctacq qcqctqtcat cgatttcttc cctgtgaaaa caagagcaag gccgtggagc 480 aggtgaagaa tgcctttaat aagctccaag agaaaggcat ctacaaagcc atgagtgagt 540 ttgacatctt catcaactac atagaagcct acatgacaat gaagatacga aactgagaca 600

tcagggtggc gactctatag actctaggac ataaattaga ggtctccaaa atcggatctg

gggctctggg atagctgacc cagccccttg agaaacctta ttgtacctct cttatagaat atttattacc tctqatacct caacccccat ttctatttat ttactqaqct tctctqtqaa

cgatttagaa agaagcccaa tattataatt tttttcaata tttattattt tcacctgttt

ttaagctgtt tccatagggt gacacactat ggtatttgag tgttttaaga taaattataa

660

720

780

840

| gttacataag ggaggaaaaa aaatgttett tggggageea acagaagett ecattecaag                                          | 960  |
|------------------------------------------------------------------------------------------------------------|------|
| cctgaccacg ctttctagct gttgagctgt tttccctgac ctccctctaa tttatcttgt                                          | 1020 |
| ctctgggctt ggggcttcct aactgctaca aatactctta ggaagagaaa ccagggagcc                                          | 1080 |
| cctttgatga ttaattcacc ttccagtgtc tcggagggat tcccctaacc tcattcccca                                          | 1140 |
| accacttcat tettgaaage tgtggeeage ttgttattta taacaaceta aatttggtte                                          | 1200 |
| taggccgggc gcggtggctc acgcctgtaa tcccagcact ttgggaggct gaggcgggtg                                          | 1260 |
| gatcacttga ggtcaggagt tcctaaccag cctggtcaac atggtgaaac cccgtctcta                                          | 1320 |
| ctaaaaatac aaaaattagc cgggcatggt ggcgcgcacc tgtaatccca gctacttggg                                          | 1380 |
| aggotgaggo aagagaattg ottgaacoca ggagatggaa gttgcagtga gotgatatca                                          | 1440 |
| tgcccctgta ctccagcctg ggtgacagag caagactctg tctcaaaaaa taaaaataaa                                          | 1500 |
| aataaatttg gttctaatag aactcagttt taactagaat ttattcaatt cctctgggaa                                          | 1560 |
| tgttacattg tttgtctgtc ttcatagcag attttaattt tgaataaata aatgtatctt                                          | 1620 |
| attcacate                                                                                                  | 1629 |
| <pre>&lt;210   445 &lt;211&gt;   1193 &lt;212&gt;   DNA &lt;213&gt;   Homo sapiens &lt;400&gt;   445</pre> |      |
| tgaagatcag ctattagaag agaaagatca gttaagtcct ttggacctga tcagcttgat                                          | 60   |
| acaagaacta ctgatttcaa cttctttggc ttaattctct cggaaacgat gaaatataca                                          | 120  |
| agttatatet tggettttea getetgeate gttttgggtt etettggetg ttactgeeag                                          | 180  |
| gacccatatg taaaagaagc agaaaacctt aagaaatatt ttaatgcagg tcattcagat                                          | 240  |
| gtageggata atggaaetet tttettagge attttgaaga attggaaaga ggagagtgae                                          | 300  |
| agaaaaataa tgcagagcca aattgtctcc ttttacttca aactttttaa aaactttaaa                                          | 360  |
| gatgaccaga gcatccaaaa gagtgtggag accatcaagg aagacatgaa tgtcaagttt                                          | 420  |
| ttcaatagca acaaaaagaa acgagatgac ttcgaaaagc tgactaatta ttcggtaact                                          | 480  |
| gacttgaatg tccaacgcaa agcaatacat gaactcatcc aagtgatggc tgaactgtcg                                          | 540  |
| ccagcagcta aaacagggaa gcgaaaaagg agtcagatgc tgtttcaagg tcgaagagca                                          | 600  |
| tcccagtaat ggttgtcctg cctgcaatat ttgaatttta aatctaaatc tatttattaa                                          | 660  |
| tatttaacat tatttatatg gggaatatat ttttagactc atcaatcaaa taagtattta                                          | 720  |
| taatagcaac ttttgtgtaa tgaaaatgaa tatctattaa tatatgtatt atttataatt                                          | 780  |
| cctatatcct gtgactgtct cacttaatcc tttgttttct gactaattag gcaaggctat                                          | 840  |

| gtgattacaa ggctttatct                                      | caggggccaa | ctaggcagcc | aacctaagca | agatcccatg | 900  |  |
|------------------------------------------------------------|------------|------------|------------|------------|------|--|
| ggttgtgtgt ttatttcact                                      | tgatgataca | atgaacactt | ataagtgaag | tgatactatc | 960  |  |
| cagttactgc cggtttgaaa                                      | atatgcctgc | aatctgagcc | agtgctttaa | tggcatgtca | 1020 |  |
| gacagaactt gaatgtgtca                                      | ggtgaccctg | atgaaaacat | agcatctcag | gagatttcat | 1080 |  |
| gcctggtgct tccaaatatt                                      | gttgacaact | gtgactgtac | ccaaatggaa | agtaactcat | 1140 |  |
| ttgttaaaat tatcaatatc                                      | taatatatat | gaataaagtg | taagttcaca | act        | 1193 |  |
| <210> 446<br><211> 1182<br><212> DNA<br><213> Homo sapiens |            |            |            |            |      |  |
| <400> 446<br>tagttetece tgagtgagae                         | ttgcctgctt | ctctggcccc | tggtcctgtc | ctgttctcca | 60   |  |
| gcatggtgtg tctgaagctc                                      | cctggaggct | cctgcatgac | agcgctgaca | gtgacactga | 120  |  |
| tggtgctgag ctccccactg                                      | gctttggctg | gggacacccg | accacgtttc | ttgtggcagc | 180  |  |
| ttaagtttga atgtcatttc                                      | ttcaatggga | cggagcgggt | gcggttgctg | gaaagatgca | 240  |  |
| tctataacca agaggagtcc                                      | gtgcgcttcg | acagcgacgt | gggggagtac | cgggcggtga | 300  |  |
| cggagctggg gcggcctgat                                      | gccgagtact | ggaacagcca | gaaggacctc | ctggagcaga | 360  |  |
| ggcgggccgc ggtggacacc                                      | tactgcagac | acaactacgg | ggttggtgag | agcttcacag | 420  |  |
| tgcagcggcg agttgagcct                                      | aaggtgactg | tgtatccttc | aaagacccag | cccctgcagc | 480  |  |
| accacaacct cctqqtctqc                                      | tctqtqaqtq | gtttctatcc | aggcagcatt | gaagtcaggt | 540  |  |

tgcagcggcg agttgagcct aaggtgactg tgtatccttc aaagacccag cccctgcagc 480
accacaacct cctggtctgc tctgtgagtg gtttctatcc aggcagcatt gaagtcaggt 540
ggttccggaa cggccaggaa gagaaggctg gggtgtgtc cacaggcctg atccagaatg 600
gagattggac cttccagacc ctggtgatgc tggaaacagt tcctcggagt ggagaggttt 660
acacctgcca agtggagcac ccaagtgtga cgagccctc cacagtggaa tggagaggac 720
ggtctgaatc tgcacagagc aagatgctga gtggagtcgg gggcttcgtg ctggagcctgc 780
tcttccttgg ggccgggctg ttcatctact tcaggaatca gaaaggacac tctggacttc 840
agccaacagg attcctgagc tgaaatgcag atgaccacat tcaaggaaga accttctgtc 900
ccagctttgc agaatgaaaa gctttcctgc ttggcagta ttctccaca agagagggct 960
ttctcaggac ctggttgcta ctggttcggc aactgcagaa aatgtcctc cttgtggctt 1020
cctcagctcc tgcccttqcc ctgaaatccc acacttgata acacccct atcttcacat

tttgtgctcc cctttgccta aaccgtatgg cctcccgtgc atctgtactc accctgtacg

acaaacacat tacattatta aatgtttctc aaagatggag tt

<210> 447

1140

<211> 1410 <212> DNA

<213> Homo sapiens

<400> 447

gcgactgtet ccgccgagec cccggggcca ggtgtcccgg gcgcgccacg atgcggccgc 60 ggetgtgget ceteetggee gegeagetga eagtteteea tggeaactea gteeteeage 120 agacccctgc atacataaag gtgcaaacca acaagatggt gatgctgtcc tgcgaggcta 180 aaatctccct cagtaacatg cgcatctact ggctgagaca gcgccaggca ccgagcaqtq 240 acagtcacca cgagttcctg gccctctggg attccgcaaa agggactatc cacggtgaag 300 aggtggaaca ggagaagata gctgtgtttc gggatgcaag ccggttcatt ctcaatctca 360 caagegtgaa geeggaagae agtggeatet acttetgeat gategteggg ageeeegage 420 tgaccttcgg gaagggaact cagctgagtg tggttgattt ccttcccacc actgcccagc 480 ccaccaagaa gtccaccctc aagaagagag tgtgccggtt acccaggcca gagacccaga 540 agggcccact ttgtagcccc atcacccttg gcctgctggt ggctggcgtc ctggttctgc 600 tggtttccct gggagtggcc atccacctgt gctgccggcg gaggagagcc cggcttcgtt 660 tcatgaaaca attttacaaa tgagcagaga atacggtttt ggtgtcctgc tacaaaaaga 720 catcggtcag taacgagcac gatgtggaaa aatgagagaa gggacacatt caaccctgga 780 gagttcaatg gctgctgaag ctgcctgctt ttcactgctg caaggccttt ctgtgtgtga 840 tgtgcatggg agcaacttgt tcgtgggtca tcgggaatac tagggagaag gtttcattgc 900 ccccagggca cttcacagag tgtgctggag gactgagtaa gaaatgctgc ccatgccacc 960 getteegget cetgtgettt ceetgaactg ggacetttag tggtggeeat ttagecacea 1020 tetttgeagg ttgetttgee etggtaggge agtaacattg ggteetgggt ettteatggg 1080 gtgatgctgg gctggctccc tcttggtctt cccaggctgg ggctgacctt cctcgcaqaq 1140 aggccaggtg caggttggga atgaggcttg ctgagagggg ctgtccagtt cccagaaggc 1200 atatcagtct ctgagggctt cctttggggc cgggaacttg cgggtttgag gataggagtt 1260 cacticatet teteagetee cattietaet ettaagtite teageteeca titetaetet 1320 cccatggctt aatgcttctt tcattttctg tttgttttat acaaatgtct tagttgtaca 1380 aataaagtcc caggttaaag ataaaaaaaa 1410

<sup>&</sup>lt;210> 448 <211> 3084

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 448

ctgggctcct ggttgcagag ctccaagtcc tcacacagat acgcctgttt gagaagcagc

gggcaagaaa gacgcaagcc cagaggccct gccatttctg tgggctcagg tccctactgg 120 ctcaggcccc tgcctccctc ggcaaggcca caatgaaccg gggagtccct tttaggcact 180 tgettetggt getgeaactg gegeteetee cagcagecae teagggaaag aaaqtggtge 240 tgggcaaaaa aggggataca gtggaactga cctgtacagc ttcccagaag aagagcatac 300 aattccactg gaaaaactcc aaccagataa agattctggg aaatcagggc tccttcttaa 360 ctaaaggtcc atccaagctg aatgatcgcg ctgactcaag aagaagcctt tgggaccaag 420 gaaactttcc cctgatcatc aagaatctta agatagaaga ctcagatact tacatctgtg 480 aagtggagga ccagaaggag gaggtgcaat tgctagtgtt cggattgact gccaactctg 540 acacccacct gcttcagggg cagagcctga ccctgacctt ggagagcccc cctggtagta 600 gcccctcagt gcaatgtagg agtccaaggg gtaaaaacat acaggggggg aagaccctct 660 ccgtgtctca gctggagctc caggatagtg gcacctggac atgcactgtc ttgcagaacc 720 agaagaaggt ggagttcaaa atagacateg tggtgctagc tttccagaag gcctccagca 780 tagtctataa gaaagagggg gaacaggtgg agttctcctt cccactcgcc tttacagttg 840 aaaagctgac gggcagtggc gagctgtggt ggcaggcgga gagggcttcc tcctccaagt 900 cttggatcac ctttgacctg aagaacaagg aagtgtctgt aaaacgggtt acccaggacc 960 ctaageteea gatgggeaag aageteeege teeaceteae eetgeeeeag geettgeete 1020 agtatgctgg ctctggaaac ctcaccctgg cccttgaagc gaaaacagga aagttgcatc 1080 aggaagtgaa cotggtggtg atgagagcca ctcagctcca gaaaaatttg acctgtgagg 1140 tgtggggacc cacctcccct aagctgatgc tgagcttgaa actggagaac aaggaggcaa 1200 aggtctcgaa gcgggagaag gcggtgtggg tgctgaaccc tgaggcgggg atgtggcagt 1260 gtctgctgag tgactcggga caggtcctgc tggaatccaa catcaaggtt ctgcccacat 1320 ggtccacccc ggtgcagcca atggccctga ttgtgctggg gggcgtcgcc ggcctcctgc 1380 ttttcattgg gctaggcatc ttcttctgtg tcaggtgccg gcaccgaagg cgccaagcag 1440 ageggatgte teagateaag agaeteetea gtgagaagaa gaeetgeeag tgeeeteaee 1500 gqtttcagaa gacatgtagc cccatttgag gcacgaggcc aggcagatcc cacttgcagc 1560 ctccccaqgt gtctgccccg cgtttcctgc ctgcggacca gatgaatgta gcagatccca 1620 qqcctctqqc ctcctgttcq cctcctctac aatttgccat tgtttetect qggttaqqcc 1680 coggetteac tggttgagtg ttgeteteta gtttecagag gettaateac accgteetee 1740 acgccattte etttteette aagcetagee etteteteat tatttetete tgaccetete 1800 cccactgctc atttggatcc caggggagtg ttcagggcca gccctggctg gcatggaggg 1860

| tgaggctggg          | tgtctggaag | catggagcat | gggactgttc | ttttacaaga | caggaccctg | 1920 |
|---------------------|------------|------------|------------|------------|------------|------|
| ggaccacaga          | gggcaggagc | ttgcacgaaa | tcacacagcc | aagccagtca | aggatggatg | 1980 |
| cagatccaga          | ggtttctggc | agccagtacc | tcctgcccca | tgctgcccgc | ttctcaccct | 2040 |
| atgt <b>gg</b> gtgg | ggccacagac | tcacatcctg | accttgcaca | aacagcccct | ctggacacag | 2100 |
| ccccatgtac          | acggcctcaa | gggatgtctc | acatcctctg | tctatttgag | acttagaaaa | 2160 |
| atcctacaag          | gctggcagtg | acagaactaa | gatgatcatc | tccagtttat | agaccagaac | 2220 |
| cagagctcag          | agaggetaga | tgattgatta | ccaagtgccg | gactagcaag | tgctggagtc | 2280 |
| gggactaacc          | caggtccctt | gtcccaagtt | ccactgctgc | ctcttgaatg | cagggacaaa | 2340 |
| tgccacacgg          | ctctcaccag | tggctagtgg | tgggtactca | atgtgtactt | ttgggttcac | 2400 |
| agaagcacag          | cacccatggg | aagggtccat | ctcagagaat | ttacgagcag | ggatgaaggc | 2460 |
| ctccctgtct          | aaaatccctc | cttcatcccc | cgctggtggc | agaatctgtt | accagaggac | 2520 |
| aaagcctttg          | gctcttctaa | tcagagtgca | agctgggagc | acaggcactg | caggagagaa | 2580 |
| tgcccagtga          | ccagtcactg | accctgtgca | gaacctcctg | gaagcgagct | ttgctgggag | 2640 |
| agggggtagc          | tagcctgaga | gggaaccctc | caagggacct | caaaggtgat | tgtgccaggc | 2700 |
| tctgcgcctg          | ccccacaccc | tcccttaccc | tcctccagac | cattcaggac | acagggaaat | 2760 |
| cagggttaca          | aatcttcttg | atccacttct | ctcaggatcc | cctctcttcc | tacccttcct | 2820 |
| caccacttcc          | ctcagtccca | actccttttc | cctatttcct | tctcctcctg | tctttaaagc | 2880 |
| ctgcctcttc          | caggaagacc | cccctattgc | tgctggggct | cccatttgc  | ttactttgca | 2940 |
| tttgtgccca          | ctctccaccc | ctgctcccct | gagctgaaat | aaaaatacaa | taaacttact | 3000 |
| ataaagataa          | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | 3060 |
| aaaaaaaaa           | aaaaaaaaa  | aaaa       |            |            |            | 3084 |

- <210> 449
- <211> 1670 <212> DNA
- <213> Homo sapiens
- Taran nome suprem

<400> 449

 ccaaccacaa
 gcaccaacaag
 agaggggcag
 gcagcacac
 accaagtgc
 cagaggaccac
 120

 gcccagcact
 ggtccttgag
 gtgagtgacc
 accaagtgct
 aaatgacgc
 gagttgccg
 120

 ccctcctgga
 gaacttcagc
 tcttcctatg
 actatggaga
 aaacgagagt
 gactggcc
 tctgcgc

 gtacctcccc
 gccctgccca
 caggacttca
 gcctgaactt
 cgaccgggcc
 tctctgccag
 240

 ccctctacaa
 cctcctcttt
 ctgctgggca
 tgctgggcaa
 cggcgcgtg
 gcagccgtg
 gagccggtg

 tgctgagccg
 gcggacagcc
 ctgagcagca
 ccgacacctt
 ctgtctcac
 ctagttgag
 360

| cagacacgc                                         | getggtget  | acactgccg  | c tctgggcagt | ggacgctgc  | gtccagtggg | 420  |
|---------------------------------------------------|------------|------------|--------------|------------|------------|------|
| tctttggct                                         | tggcctctg  | aaagtggca  | g gtgccctctt | caacatcaac | ttctacgcag | 480  |
| gagccctcct                                        | getggeetge | atcagcttt  | g accgctacct | gaacatagtt | catgccaccc | 540  |
| agctctacco                                        | ccgggggccc | ccggcccgcg | g tgaccctcac | ctgcctggct | gtctgggggc | 600  |
| tetgeetget                                        | tttcgccctc | ccagacttca | a tetteetgte | ggcccaccac | gacgagcgcc | 660  |
| tcaacgccac                                        | ccactgccaa | tacaacttc  | cacaggtggg   | ccgcacggct | ctgcgggtgc | 720  |
| tgcagctggt                                        | ggctggcttt | ctgctgccc  | tgctggtcat   | ggcctactgc | tatgcccaca | 780  |
| teetggeegt                                        | gctgctggtt | tccaggggc  | ageggegeet   | gcgggccatg | cggctggtgg | 840  |
| tggtggtcgt                                        | ggtggccttt | gccctctgct | ggacccccta   | tcacctggtg | gtgctggtgg | 900  |
| acatcctcat                                        | ggacctgggc | gctttggccc | gcaactgtgg   | ccgagaaagc | agggtagacg | 960  |
| tggccaagtc                                        | ggtcacctca | ggcctgggct | acatgcactg   | ctgcctcaac | ccgctgctct | 1020 |
| atgcctttgt                                        | aggggtcaag | ttccgggagc | ggatgtggat   | gctgctcttg | cgcctgggct | 1080 |
| gccccaacca                                        | gagagggete | cagaggcagc | categtette   | ccgccgggat | tcatcctggt | 1140 |
| ctgagacctc                                        | agaggcctcc | tactcgggct | tgtgaggccg   | gaatccgggc | tcccctttcg | 1200 |
| cccacagtct                                        | gacttccccg | cattccaggc | tcctccctcc   | ctctgccggc | tctggctctc | 1260 |
| cccaatatcc                                        | tegeteeegg | gactcactgg | cagccccagc   | accaccaggt | ctcccgggaa | 1320 |
| gccaccctcc                                        | cagctctgag | gactgcacca | ttgctgctcc   | ttagctgcca | agccccatcc | 1380 |
| tgeegeeega                                        | ggtggctgcc | tggagcccca | ctgcccttct   | catttggaaa | ctaaaacttc | 1440 |
| atcttcccca                                        | agtgcgggga | gtacaaggca | tggcgtagag   | ggtgctgccc | catgaagcca | 1500 |
| cagcccaggc                                        | ctccagctca | gcagtgactg | tggccatggt   | ccccaagacc | tctatatttg | 1560 |
| ctcttttatt                                        | tttatgtcta | aaatcctgct | taaaactttt   | caataaacaa | gatcgtcagg | 1620 |
| accaaaaaaa                                        | aaaaaaaaaa | aaaaaaaaa  | aaaaaaaaa    | aaaaaaaaa  |            | 1670 |
| <210> 450<br><211> 322<br><212> DNA<br><213> Homo | o sapiens  |            |              |            |            |      |
|                                                   | cttccattgg | tgtgcaggtg | gattcgtggt   | gctaaactat | gttatgtggg | 60   |
| tgtgggggcc                                        | gaggagggg  | ttgtgctctg | gcagcggtgg   | cgccctaaat | gatctatagg | 120  |
| taaactctaa                                        | tggcttccgc | agggggtgca | gtgcggagga   | caagagcttg | gggctctctg | 180  |

t gctgagtgat ctgggggaca ctcaagcggt ttgtttctgt agaaatggga atcttaaggc 240 ctctctggaa agggtgtgag ggggtcgagg gggagcgggc gccgggcctt ttgcgcttca 300

| ttaggtgggt ttgctttgcg                                                   | ag                                          | 322 |
|-------------------------------------------------------------------------|---------------------------------------------|-----|
| <210> 451<br><211> 568<br><212> DNA<br><213> Homo sapiens               |                                             |     |
| <400> 451                                                               |                                             |     |
| ttttttttt cagtctattc                                                    | cccctgtctg gaaggccctt catcctactc tcttggcctc | 60  |
| ttctaatttt tttcagtgga                                                   | gtccaaagta ctcataaaca cattcattaa aaatgtaaga | 120 |
| agccaaaggg caaaaaaaaa                                                   | atttttttta atcagggatg aggagggaag ctaagaattt | 180 |
| taaaatagta aatgaaaaat 1                                                 | ttagaaatat gtattttgta gaaaatagta gacttagcac | 240 |
| taagatgaaa tgtttttggt a                                                 | aaagttttta atttgggagt tttgctgatt ccttcttacc | 300 |
| cttcaggaca attcacagat a                                                 | atcaatcett tetggagtta ceeetgaete eetcaacace | 360 |
| ccaaaactct aaatgccacg                                                   | gtcatctgtt tctatatcaa ccttttaaca tatttatggc | 420 |
| caggcgtggt ggctcatgcc t                                                 | tgtaatccta gcactttggg aggccaaggc aggagtcact | 480 |
|                                                                         | tttttagtag agacggggtt ttaccatgtt ggccacgctg | 540 |
| gtctcgaact cttgatctca a                                                 |                                             | 568 |
| <210> 452<br><211> 1103<br><212> DNA<br><213> Homo sapiens<br><400> 452 |                                             |     |
| cacagagece gggeegeagg e                                                 | acctecteg ccagetette egeteetete acageegeea  | 60  |
| gacccgcctg ctgagcccca t                                                 | ggcccgcgc tgctctctcc gccgccccca gcaatccccg  | 120 |
| gctcctgcga gtggcactgc t                                                 | gctcctgct cctggtagcc gctggccggc gcgcagcagg  | 180 |
| agcgtccgtg gccactgaac t                                                 | gegetgeea gtgettgeag accetgeagg gaatteacce  | 240 |
| caagaacatc caaagtgtga a                                                 | cgtgaagtc ccccggaccc cactgcgccc aaaccgaagt  | 300 |
| catagecaca etcaagaatg g                                                 | gcggaaagc ttgcctcaat cctgcatccc ccatagttaa  | 360 |
| gaaaatcatc gaaaagatgc t                                                 | gaacagtga caaatccaac tgaccagaag ggaggaggaa  | 420 |
| geteactggt ggetgtteet g                                                 | aaggaggcc ctgcccttat aggaacagaa gaggaaagag  | 480 |
| agacacaget gcagaggeca co                                                | ctggattgt gcctaatgtg tttgagcatc gcttaggaga  | 540 |
| agtottotat ttatttattt at                                                | ttcattagt tttgaagatt ctatgttaat attttaggtg  | 600 |
| taaaataatt aagggtatga tt                                                | taactctac ctgcacactg tcctattata ttcattcttt  | 660 |
|                                                                         | agttcaatc tggattcata tttaatttga aggtagaatg  | 720 |
|                                                                         | ttatgttaa tatttetgag gageetgeaa catgeeagee  | 700 |

actgtgatag aggctggcgg atccaagcaa atggccaatg agatcattgt gaaggcaggg 840 gaatgtatgt gcacatctgt tttgtaactg tttagatgaa tgtcagttgt tatttattga 900 aatgatttca caqtqtqtgq tcaacatttc tcatqttgaa actttaagaa ctaaaatgtt 960 ctaaatatcc cttqqacatt ttatqtcttt cttqtaaqqc atactqcctt gtttaatgqt 1020 aqttttacaq tqtttctqqc ttaqaacaaa qqqqcttaat tattqatqtt ttcataqaqa 1080 atataaaaat aaagcactta tag 1103 <210> 453 <211> 4156 <212> DNA <213> Homo sapiens <400> 453 gttattgtga cttgtcgggc cacggccccg gatgttgtgg ctgccgcggg gagatggctg 60

aggccgaagg ggttcccacg accccaggcc cggcttcggg gtcgactttc aggggccgcc 120 gagatgtgtc aggctcctgg gagcgggacc agcaggttga ggcggcgcag cgggccctgg 180 tgqagqtqct qqqqccttac qaqcctctqc tqaqtcqqqt qcaqqcaqcc ctqqtqtqqq 240 agcqqccaqc taqqaqcqct ctqtqqtqcc tqqqqctqaa cqcqqctttc tqqtqaqaqa 300 360 actggaccct cggaaaccct ccgagtcccg aattcgttgg ttcctctagg gctctacttc 420 tegectgeec tgttttette getgeactgg etectteetg tacttgeeta attttgeete acctecttee actecateee geetgeagge tteggeacce tagttettee cagggeegte 480 cacccatctt ctctgcctta cctgtgcccg cacccccgcc ccgcacatct ggcgggagct 540 totogotaaca tottogogogo otcaagagto agogaggot cotottttoa gooogacaaa 600 gctgcgtccc tttaaagcca tcacttcctt tctcttgtct gctcaagtgc aagttctaga 660 ttgtttccag aggttttagt agtttattgt tggagtagag gcgtgaagtc ttgcaaaggt 720 tttttgccct gacatctctt cgtcttgtgt ttttacttgc atttggcttg atgatcattg 780 tgtgtattga tcaatggaag aacaaaatct ggcctgaaat aaaagctggg gctttgtgca 840 900 ccctcqqttq ctcaqcqtqc ccqaqctctq ccaccatqta qctqaaqtct qqqttaqtqq gaccattttc ataaggaatg ttttgctttt caaaaagcaa aacccaggca agttctgctt 960 gctgagctqt gggatactga cctttttggc tqtcttgggc cgctacqtcc ctgggcttct 1020 gctgtcctac ttgatgcttg tcactgtcat gatgtggccc cttgctgtgt accaccgact 1080 qtqqqatcqa qcatatqtqc qqctqaaqcc aqctctqcaq cqqctaqact tcaqtqtccq 1140 tggctacatg atgtccaagc agagagagag acaattacgc cgcagagctc tccacccaga 1200 acgagecatg gacaaccaca gtgacagega agaggagett getgeettet gteeteaget 1260

ggacgattet actgttgcca gggaattggc catcacagac tetgagcact cagacgetga 1320 agteteetgt acagacaatg geacatteaa tettteaagg ggeeaaacac etetaacgga 1380 aggetetgaa gaeetagatg gteacagtga tecagaggaa teetttgeca gagacettee 1440 agacttecet tecattaata tggateetge tggeetggat gatgaggaeg acactageat 1500 tggcatgccc agettgatgt accepttctcc gccaggggct gaggagcccc aggccccacc 1560 tgccagccgg gacgaggctg cgctgccgga gctcctgctt ggtgctcttc ctgtaggatc 1620 caacctcacc agcaaccttg ccagcctggt ctcccagggt atgattcagc tggccttgtc 1680 aggggcctcc caaccaggcc cttctggagc acctgcccag agagcaacga gaggcttcct 1740 ccggtccccc agttcagacc tggacactga tgctgagggg gatgactttg agcttctgga 1800 ccagtcggag ctgagtcagc tggaccctgc cagttctagg agccactgag gcagagactc 1860 cttttgggag tcactgtggt ttaggttttt ttctccccat cccacttaag gtgatggggc 1920 aagggaagaa ctcagctccc ctcccctgaa ttatatttgt atgctgggtg gcctggctga 1980 tgctcagagg cctccttaga gaggacactc actcccctcc caccagctgg atgcccattt 2040 ctgagctcag tcactgaagt gagagtgtgc tcccccaagg gaggcttctc tccatcagga 2100 tggtactttg ggggaacaaa atagtcaggg atattggttc ccctttgagg aggtgctgct 2160 gtttgctttt aggtatgagt gctcaggggc cctcactgaa agagcccatg cctgccttcc 2220 tcctttcatc gcctctctag agcccccaaa gtcaggcagc agctggagta gttacattgt 2280 catcatcttt ttttttgaga cagtttcgct ctgttgccca ggctggagtg cagtggtgtg 2340 atcttggctt tetgcaacgt etgeetteea ggttgaagag gtteteetge eteageetee 2400 ttagtagtgg gattacaggt gcccgctact atgcccggct aatttttctt ttggtatttt 2460 tagtagaaat ggggtttcac catgttggcc aggctggtct caaactcctg acctcaagtg 2520 agctgactgc cttggcctcc cagagtgctg ggattagtcg tcatcttttg ttaaaccagg 2580 attigatitt titctitict titcttitct titctitit tittititga gacagagict 2640 ctctctgttg cccaggctgg agtgcagtgg cacaatctcg gctcactgca gcctccgcct 2700 gccgggtcaa gcgattctcc tacctcagcc tcctcagtag ctgagattac aggcatgcac 2760 caccatgccc ggctaatttt tttgtgtttt tagtagagat ggggtttcac cgtgctggcc 2820 aggetggtet agaacteetg actgeaaatg atcageeege etcageeace caaagtgttg 2880 ggattacagg tgtgagccac tgtgcccagc gtgatttttt ttttttttt taaagcaaac 2940 ttgtcctttg gttttgcaga acaggcctgc tccctctcat ctagcccacc atttcttggg 3000 gcctgaaccc cagtggtcca aagtattgct tgtgaaattt aaaaaatgtg aatatgatgt 3060

| ggggatgggc ctcttctaca ttaccttggc ccagggggat cagctggctg ggaggattag | 3120 |
|-------------------------------------------------------------------|------|
| tgagcacctc tgtattttga ggtctgagtc ttctggagct gtgtagttaa tcttcggttt | 3180 |
| ctgataaccc ctgggtccat ctggccatca gcctcagcag tgagcaaagc aataccatac | 3240 |
| tcatttctat gttcctgttc cttcctctgc tcctcctttg gagaagcaat aattcatggg | 3300 |
| ggatgataca gtagcacttt acaaatggct ccatgtcatt catcccaggg gccataatct | 3360 |
| cttgcaccac ctattcttac ttcctgttca gctcctttac agcttttatt ttcaactgct | 3420 |
| tcccaacttg gtggggcctc ctttaaggat gagccaatag taagaatgtg gctgtaatca | 3480 |
| gcagagaccc ctctgagggg tatctgttct gcagccccta gtgaaatcat gtgatgtgag | 3540 |
| acagaaacct aaacatggta cttgattcta aacctgtgcc agtctatagc ctctgcctcc | 3600 |
| ccaagcagag ctcaagccaa acgcttctgt cctctttcct tctgcattaa ccctttgctg | 3660 |
| atcctcaggg gccactcccc caacacccct gtacttgggt gagggatgtt ggacagagcc | 3720 |
| tgttttcatg tactgcaggt gggggtgtgc tgacatgttt gctcttggtt gatggagaag | 3780 |
| gtacagaggc cagggagtga aaatggttga cagaagaggg aagagttagg tgtctcatag | 3840 |
| tcactcatag tggggtggtc aggggtaatg gcatctcccc actttaggct tctcaaacag | 3900 |
| acttttgaca cctctcaagt tcagagctct gatgtggaaa gacaggaggt gtggggaagg | 3960 |
| agggggattt cgtgtgtttg catgagtgtg cgcttcaggc cttgggagtt ggcaagaggg | 4020 |
| agggaaggaa ggagagcaaa atcttcggaa ggtgtttctt gtacctgagg gatcctgccc | 4080 |
| tgaateteca tagtetecae tgtgaactga ggaggggagg ggtgtgetgg ggaataaate | 4140 |
| ttgtatgaga acaatc                                                 | 4156 |
| <210> 454                                                         |      |
| <211> 2075                                                        |      |
| <212> DNA<br><213> Homo sapiens                                   |      |
| <400> 454                                                         |      |
| gccataaagg ccgccgcgcg cccacgcgcc tcgcttgctg cgcgctgccg gcgctccttc | 60   |
| ctcctcggct cgcgtctcac tcagtgtacc ttctagtccc gccatggccg ctctcacccg | 120  |
| ggacccccag ttccagaagc tgcagcaatg gtaccgcgag caccgctccg agctgaacct | 180  |
| gegeegeete ttegatgeea acaaggaeeg etteaaceae tteagettga eeeteaacae | 240  |
| caaccatggg catatcctgg tggattactc caagaacctg gtgacggagg acgtgatgcg | 300  |
| gatgctggtg gacttggcca agtccagggg cgtggaggcc gcccgggagc ggatgttcaa | 360  |
|                                                                   |      |

198

480

tggtgagaag atcaactaca ccgagggtcg agccgtgctg cacgtggctc tgcggaaccg 420 gtcaaacaca cccatcctgg tagacggcaa ggatgtgatg ccagaggtca acaaggttct

| ggacaagatg aagtetttet gecagegtgt eeggageggt gaetggaagg ggtacaeagg | 540  |
|-------------------------------------------------------------------|------|
| caagaccatc acggacgtca tcaacattgg cattggcggc tccgacctgg gacccctcat | 600  |
| ggtgactgaa gcccttaagc catactcttc aggaggtccc cgcgtctggt atgtctccaa | 660  |
| cattgatgga actcacattg ccaaaaccct ggcccagctg aaccccgagt cctccctgtt | 720  |
| catcattgcc tccaagacct ttactaccca ggagaccatc acgaatgcag agacggcgaa | 780  |
| ggagtggttt ctccaggcgg ccaaggatcc ttctgcagtg gcgaagcact ttgttgccct | 840  |
| gtctactaac acaaccaaag tgaaggagtt tggaattgac cctcaaaaca tgttcgagtt | 900  |
| ctgggattgg gtgggaggac gctactcgct gtggtcggcc atcggactct ccattgccct | 960  |
| gcacgtgggt tttgacaact tcgagcagct gctctcgggg gctcactgga tggaccagca | 1020 |
| cttccgcacg acgcccctgg agaagaacgc ccccgtcttg ctggccctgc tgggtatctg | 1080 |
| gtacatcaac tgctttgggt gtgagacaca cgccatgctg ccctatgacc agtacctgca | 1140 |
| cegetttget gegtaettee ageagggega catggagtee aatgggaaat acateaceaa | 1200 |
| atctggaacc cgtgtggacc accagacagg ccccattgtg tggggggagc cagggaccaa | 1260 |
| tggccagcat gctttttacc agctcatcca ccaaggcacc aagatgatac cctgtgactt | 1320 |
| cctcatcccg gtccagaccc agcaccccat acggaagggt ctgcatcaca agatcctcct | 1380 |
| ggccaacttc ttggcccaga cagaggccct gatgagggga aaatcgacgg aggaggcccg | 1440 |
| aaaggagete caggetgegg geaagagtee agaggaeett gagaggetge tgecacataa | 1500 |
| ggtctttgaa ggaaatcgcc caaccaactc tattgtgttc accaagctca caccattcat | 1560 |
| gcttggagcc ttggtcgcca tgtatgagca caagatette gttcagggca tcatctggga | 1620 |
| catcaacagc tttgaccagt ggggagtgga gctgggaaag cagctggcta agaaaataga | 1680 |
| gcctgagctt gatggcagtg ctcaagtgac ctctcacgac gcttctacca atgggctcat | 1740 |
| caacttcatc aagcagcagc gcgaggccag agtccaataa actcgtgctc atctgcagcc | 1800 |
| tectetgtga eteccettte tettetegte eetecteece ggageeggea etgeatgtte | 1860 |
| ctggacacca cccagagcac cctctggttg tgggcttgga ccacgagccc ttagcaggga | 1920 |
| aggetggtet eccecageet aacceccage ecctecatgt etatgeteec tetgtgttag | 1980 |
| aattggctga agtgtttttg tgcagctgac ttttctgacc catgttcacg ttgttcacat | 2040 |
| cccatgtaga aaaataaaga tgccacggag gaggt                            | 2075 |

<sup>&</sup>lt;210> 455

<sup>&</sup>lt;211> 1285 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 455

| gggctgcctg | tgacgcgcgg | cgcggtcggt | cctgcctgta | acggcggcgg | cggctgctgc | 60   |
|------------|------------|------------|------------|------------|------------|------|
| tccagacacc | tgeggeggeg | gcggcgaccc | cgcggcgggc | gcggagatgt | ggcccctggt | 120  |
| agcggcgctg | ttgctgggct | cggcgtgctg | cggatcagct | cagctactat | ttaataaaac | 180  |
| aaaatctgta | gaattcacgt | tttgtaatga | cactgtcgtc | attccatgct | ttgttactaa | 240  |
| tatggaggca | caaaacacta | ctgaagtata | cgtaaagtgg | aaatttaaag | gaagagatat | 300  |
| ttacaccttt | gatggagctc | taaacaagtc | cactgtcccc | actgacttta | gtagtgcaaa | 360  |
| aattgaagtc | tcacaattac | taaaaggaga | tgcctctttg | aagatggata | agagtgatgc | 420  |
| tgtctcacac | acaggaaact | acacttgtga | agtaacagaa | ttaaccagag | aaggtgaaac | 480  |
| gatcatcgag | ctaaaatatc | gtgttgtttc | atggttttct | ccaaatgaaa | atattcttat | 540  |
| tgttattttc | ccaatttttg | ctatactcct | gttctgggga | cagtttggta | ttaaaacact | 600  |
| taaatataga | tccggtggta | tggatgagaa | aacaattgct | ttacttgttg | ctggactagt | 660  |
| gatcactgtc | attgtcattg | ttggagccat | tettttegte | ccaggtgaat | attcattaaa | 720  |
| gaatgctact | ggccttggtt | taattgtgac | ttctacaggg | atattaatat | tacttcacta | 780  |
| ctatgtgttt | agtacagcga | ttggattaac | ctccttcgtc | attgccatat | tggttattca | 840  |
| ggtgatagcc | tatatcctcg | ctgtggttgg | actgagtctc | tgtattgcgg | cgtgtatacc | 900  |
| aatgcatggc | cctcttctga | tttcaggttt | gagtatctta | gctctagcac | aattacttgg | 960  |
| actagtttat | atgaaatttg | tggcttccaa | tcagaagact | atacaacctc | ctaggaaagc | 1020 |
| tgtagaggaa | ccccttaatg | cattcaaaga | atcaaaagga | atgatgaatg | atgaataact | 1080 |
| gaagtgaagt | gatggactcc | gatttggaga | gtagtaagac | gtgaaaggaa | tacacttctg | 1140 |
| tttaagcacc | atggccttga | tgattcactg | ttggggagaa | gaaacaagaa | aagtaactgg | 1200 |
| ttgtcaccta | tgagaccctt | acgtgattgt | tagttaagtt | tttattcaaa | gcagctgtaa | 1260 |
| tttagttaat | aaaataatta | tgatc      |            |            |            | 1285 |

<400> 456

atggcgcccc gaagcctcct cctgctgctc tcaggggccc tggccctgac cgatacttgg 60 gegggeteec acteettgag gtattteage acegetgtgt egeggeeegg eegeggggag 120 ccccgctaca tcgccgtgga gtacgtagac gacacgcaat tcctgcggtt cgacagcgac 180 gccgcgattc cgaggatgga gccgcgggag ccgtgggtgg agcaagaggg gccgcagtat 240 tgggagtgga ccacagggta cgccaaggcc aacgcacaga ctgaccgagt ggccctgagg 300

<sup>&</sup>lt;210> 456 <211> 1188 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

aacctgetee geegetacaa ceaqagegag getgggtete acacceteca qqqaatgaat 360 ggetgegaca tggggeeega eggaegeete eteegegggt ateaecagea egeqtacqae 420 480 ggcaaggatt acateteeet gaacgaggae etgegeteet ggacegegge ggacaccqtg geteagatea eccagegett etatgaggea gaggaatatg cagaggagtt caggacetae 540 ctggagggg agtgcctgga gttgctccgc agatacttgg agaatgggaa ggagacgcta 600 cagegegeag atectecaaa ggcacaegtt geccaceaee ccatetetga ccatgaggee 660 720 accetgaggt getgggeeet gggettetae cetgeggaga teacgetgae etggeagegg gatggggagg aacagaccca ggacacagag cttgtggaga ccaggcctgc aggggatgga 780 accttecaqa aqtgggcege tgtggtggtg cettetggag aggaacagag atacacatge 840 900 catqtqcaqc acgagggct gccccagccc ctcatcctga gatgggagca gtctccccag occaccatoc coatogtggg catogttgct ggccttgttg toottggagc tgtggtcact 960 1020 qqaqctqtgg tcgctqctqt gatgtggagg aagaagagct cagatagaaa cagagggagc tactotcagg ctgcagtcac tgacagtgcc cagggctctg gggtgtctct cacagctaat 1080 aaaqtqtqaq acaqcttcct tqtgtgggac tgagaagcaa gatatcaatg taqcaqaatt 1140 gcacttgtgc ctcacgaaca tacataaatt ttaaaaataa agaataaa 1188

<210> 457 <211> 1727

<212> DNA

<213> Homo sapiens

<400> 457 ctacaqaaaa tqqqttaaqa qtatacqcat ttcatcaaac acatataggg gaaaaaatcc 60 ttcaatttag agttaaataa ctcagctttg tatagtagag ttagcgctcc agtatctaac 120 aateteagaa teatetetga aaaetggtaa etatgettee atttttaatt ttgteetaaa 180 tatcagatgt ctttgatgta agggtaggga atggagaaat attttcaatt gtgtatttgt 240 attacaaaga acttgaaatt tactttctta gttgattata ttaaatgatg tatatattat 300 360 atgtggttta taagctcaac actggccatt ttttttagtt ttattgttaa atggtatttt tctatgttta attataatag atctggcttt ttctggatag cataaagatc actgaactat 420 atatatata gaaacaagag ttctatttta gcacaaaggc attttatatt atttattgaa 480 540 tecataagtt tgttttegte aaaaacatte catattattt etgeteettt ttatttgtat aqtttqttat ttaaaqaaat ggcagtcctt cctgttctta atacaataaa attgaaataa 600 tqcacctaqt aatqtggccg acatctcttc tcaccaccat ggactgtttt caacaacagt 660 tqatcttctq qtctqtgctq agaggggcat gcatgtcttt cgtcacgtcg ggcagcacac 720

ctgctgtgaa atactgcttt catctacctc ttcagaaggc ttcttgcttg ttgacaagta 780 ccgcaaaggc tttattctgg actggctatc tcataaaagg atttctgtaa gactttgcaq 840 900 tqtcattccc tcagaaccta ggtttgtttc taaagccacg gtattgtcca ggagcccctg tqtqtqqqqc aggtagctat ccctcccatg tcattagtaa tcctttagga tttaaggtac 960 aactggacag catcattect teceettatt gtgecaaate eecaecatea geettgecat 1020 tqccttaaqa tttqattatt qcacccaatt acctaaccac taaacagaaa ggccaccttc 1080 actotttgaa aaaggcaago tgtgottaga aacactgott ttaagagtag cacatttgag 1140 tqtqactttt tccccccttc actatttcaa aatqqttttq aaatggggtc ttaaaggtaa 1200 gegeeteat acatgactga aactttgtga gaggtettat atttgaatgg accettaatg 1260 atttatqtqa aataqaatqa aqtcctqtct ctqtqaqaga acgtgcctcc tcactcattt 1320 1380 qtctctqtct qttttcataq ccatcaatat agtaacatat ttactatatt cttgaatacc cttqaaqaaa qaaatccqtt ttctattqtq cattqctata cqaaqtqaag ccagtaaact 1440 1500 agatactgta aatctagata ttgtacctag acaaaatatc attggttcta tctctttttg 1560 tatctqttqt qccaqqqaaq qtttataatc ccttctcaqt atacactcac taqtqcacgt ctgaaatagt atcccacggg agatgctgct ccacgtctga ggtcacctgc cctgtgtggg 1620 gcacaccacc gtcagcacca ccgtttttac agttactttg gagctgctag actggttttc 1680 1727 tgtgttggta aattgcctat ataaatctga ataaaaagga tctgtac

<210> 458 <211> 1046

<212> DNA

<213> Homo sapiens

<400> 458

ataaacaact tgatgcagat gtttccccca agcccactat ttttcttcct tcgattgctg aaacaaaact ccagaaggct ggaacatatc tttgtcttct tgagaaattt ttcccagata 120 ttattaaqat acattggcaa qaaaagaaga gcaacacgat tctgggatcc caggagggga 180 acaccatqaa qactaacqac acatacatqa aatttagctg gttaacggtg ccagaagagt 240 cactggacaa agaacacaga tgtatcgtca gacatgagaa taataaaaac ggaattgatc 300 aagaaattat ctttcctcca ataaagacag atgtcaccac agtggatccc aaagacagtt 360 attcaaaaqa tqcaaatqat qtcaccacaq tqqatcccaa atacaattat tcaaaqqatq 420 caaatqatqt catcacaatq qatcccaaaq acaattqqtc aaaaqatqca aatqatacac 480 tactgctgca gctcacaaac acctctgcat attacatgta cctcctcctg ctcctcaaga 540 600 gtgtggtcta ttttgccatc atcacctgct gtctgcttgg aagaacggct ttctgctgca

202

WO 2004/042346 PCT/US2003/012946 atggagagaa atcataacag acggtggcac aaggaggcca tcttttcctc atcggttatt 660 gtccctagaa gcgtcttctg aggatctagt tgggctttct ttctgggttt gggccatttc 720 agttctcatg tgtgtactat tctatcatta ttgtataatg gttttcaaac cagtgggcac 780 acagagaacc tcagtctgta ataacaatga ggaatagcca tggcgatctc cagcaccaat 840 ctctccatgt tttccacagc tcctccagcc aacccaaata gcgcctgcta tagtgtagac 900 agcctgcggc ttctagcctt gtccctctct tagtgttctt taatcagata actgcctgga 960 agcettteat tttacaegee etgaageagt ettetttget agttgaatta tgtggtgtgt 1020 ttttccgtaa taagcaaaat aaattt 1046 <210> 459 <211> 169 <212> DNA <213> Homo sapiens <400> 459 cgtgtttgca gcctctagaa aagaagtgta attataaaaa acatttacca taaccgtaac 60 aatgaatgaa gaaaggaaga cttggttctt ctagctctgg acaaaattcc attttttta aaaaaaatat tgatttccag ctgaagtata gtacatctct gatgttttc 169 <210> 460 <211> 4465 <212> DNA <213> Homo sapiens <400> 460 caattgtcat acgacttgca gtgagcgtca ggagcacgtc caggaactcc tcagcagcgc 60 ctccttcagc tccacagcca gacgccctca gacagcaaag cctacccccg cgccgcgccc 120 tgcccgccgc tcggatgctc gcccgcgccc tgctgctgtg cgcggtcctg gcgctcagcc 180 atacagcaaa teettgetgt teecacecat gteaaaaeeg aggtgtatgt atgagtgtgg 240 gatttgacca gtataagtgc gattgtaccc ggacaggatt ctatggagaa aactgctcaa 300 caccggaatt tttgacaaga ataaaattat ttctgaaacc cactccaaac acagtgcact 360 acatacttac ccacttcaag ggattttgga acgttgtgaa taacattccc ttccttcgaa 420 atgcaattat gagttatgtc ttgacatcca gatcacattt gattgacagt ccaccaactt 480 acaatgctga ctatggctac aaaagctggg aagccttctc taacctctcc tattatacta 540 gagecettee teetgtgeet gatgattgee egacteeett gggtgtcaaa ggtaaaaage 600 agetteetga tteaaatgag attgtggaaa aattgettet aagaagaaag tteateeetg 660

720

780

atccccaggg ctcaaacatg atgtttgcat tctttgccca gcacttcacg catcagtttt

tcaagacaga tcataagcga gggccagctt tcaccaacgg gctgggccat ggggtggact

taaatcatat ttacggtgaa actctggcta gacagcgtaa actgcgcctt ttcaaqqatq 840 gaaaaatgaa atatcagata attgatggag agatgtatcc tcccacagtc aaagatactc 900 aggcagagat gatctaccct cctcaagtcc ctgagcatct acggtttgct gtggggcagg 960 aggtctttgg tctggtgcct ggtctgatga tgtatgccac aatctggctg cgggaacaca 1020 acagagtatg cgatgtgctt aaacaggagc atcctgaatg gggtgatgag cagttgttcc 1080 agacaagcag gctaatactg ataggagaga ctattaagat tgtgattgaa gattatgtgc 1140 aacacttgag tggctatcac ttcaaactga aatttgaccc agaactactt ttcaacaaac 1200 aattccagta ccaaaatcgt attgctgctg aatttaacac cctctatcac tggcatcccc 1260 ttctgcctga cacctttcaa attcatgacc agaaatacaa ctatcaacag tttatctaca 1320 acaactctat attgctggaa catggaatta cccagtttgt tgaatcattc accaggcaaa 1380 ttgctggcag ggttgctggt ggtaggaatg ttccacccgc agtacagaaa gtatcacagg 1440 cttccattga ccagagcagg cagatgaaat accagtcttt taatgagtac cgcaaacgct 1500 ttatgctgaa gccctatgaa tcatttgaag aacttacagg agaaaaggaa atgtctgcag 1560 agttggaagc actctatggt gacatcgatg ctgtggagct gtatcctgcc cttctggtag 1620 aaaagcctcq gccagatgcc atctttggtg aaaccatggt agaagttgga gcaccattct 1680 ccttgaaagg acttatgggt aatgttatat gttctcctgc ctactggaag ccaagcactt 1740 ttggtggaga agtgggtttt caaatcatca acactgcctc aattcagtct ctcatctgca 1800 ataacgtgaa gggctgtccc tttacttcat tcagtgttcc agatccagag ctcattaaaa 1860 cagtcaccat caatgcaagt tetteceget ceggactaga tgatatcaat cecacagtae 1920 tactaaaaga acgttcgact gaactgtaga agtctaatga tcatatttat ttatttatat 1980 gaaccatgtc tattaattta attatttaat aatatttata ttaaactcct tatgttactt 2040 aacatettet gtaacagaag teagtaetee tgttgeggag aaaggagtea taettgtgaa 2100 gacttttatg tcactactct aaagattttg ctgttgctgt taagtttgga aaacagtttt 2160 tattctgttt tataaaccag agagaaatga gttttgacgt ctttttactt gaatttcaac 2220 ttatattata agaacgaaag taaagatgtt tgaatactta aacactatca caagatggca 2280 aaatgctgaa agtttttaca ctgtcgatgt ttccaatgca tcttccatga tgcattagaa 2340 gtaactaatg titgaaatti taaagtacti tiggitatti tictgicatc aaacaaaaac 2400 aggtatcagt gcattattaa atgaatattt aaattagaca ttaccagtaa tttcatgtct 2460 actititaaa atcagcaatg aaacaataat tigaaatiic taaaticata gggtagaatc 2520 acctgtaaaa gcttgtttga tttcttaaag ttattaaact tgtacatata ccaaaaagaa 2580

| 3 3 3 9      |                     | graduateag   | atgaaattt  | actacaatte | Cityliaaaa | 2640 |
|--------------|---------------------|--------------|------------|------------|------------|------|
| tattttataa   | gtgatgttcc          | tttttcacca   | agagtataaa | cctttttagt | gtgactgtta | 2700 |
| aaacttcctt   | ttaaatcaaa          | atgccaaatt   | tattaaggtg | gtggagccac | tgcagtgtta | 2760 |
| tctcaaaata   | agaatatttt          | gttgagatat   | tccagaattt | gtttatatgg | ctggtaacat | 2820 |
| gtaaaatcta   | tatcagcaaa          | agggtctacc   | tttaaaataa | gcaataacaa | agaagaaaac | 2880 |
| caaattattg   | ttcaaattta          | ggtttaaact   | tttgaagcaa | actttttt   | atccttgtgc | 2940 |
| actgcaggcc   | tggtactcag          | attttgctat   | gaggttaatg | aagtaccaag | ctgtgcttga | 3000 |
| ataacgatat   | gttttctcag          | attttctgtt   | gtacagttta | atttagcagt | ccatatcaca | 3060 |
| ttgcaaaagt   | agcaatgacc          | tcataaaata   | cctcttcaaa | atgcttaaat | tcatttcaca | 3120 |
| cattaatttt   | atctcagtct          | tgaagccaat   | tcagtaggtg | cattggaatc | aagcctggct | 3180 |
| acctgcatgc   | tgttcctttt          | cttttcttct   | tttagccatt | ttgctaagag | acacagtett | 3240 |
| ctcatcactt   | cgtttctcct          | attttgtttt   | actagtttta | agatcagagt | tcactttctt | 3300 |
| tggactctgc   | ctatattttc          | ttacctgaac   | ttttgcaagt | tttcaggtaa | acctcagctc | 3360 |
| aggactgcta   | tttagctcct          | cttaagaaga   | ttaaaagaga | aaaaaaagg  | cccttttaaa | 3420 |
| aatagtatac   | acttatttta          | agtgaaaagc   | agagaatttt | atttatagct | aattttagct | 3480 |
| atctgtaacc   | aagatggatg          | caaagaggct   | agtgcctcag | agagaactgt | acggggtttg | 3540 |
| tgactggaaa   | aagttacgtt          | cccattctaa   | ttaatgccct | ttcttattta | aaaacaaaac | 3600 |
| caaatgatat   | ctaagtagtt          | ctcagcaata   | ataataatga | cgataatact | tcttttccac | 3660 |
| atctcattgt   | cactgacatt          | taatggtact   | gtatattact | taatttattg | aagattatta | 3720 |
| tttatgtctt   | attaggacac          | tatggttata   | aactgtgttt | aagcctacaa | tcattgattt | 3780 |
| ttttttgtta   | tgtcacaatc          | agtatatttt   | ctttggggtt | acctctctga | atattatgta | 3840 |
| aacaatccaa   | agaaatgatt          | gtattaagat   | ttgtgaataa | atttttagaa | atctgattgg | 3900 |
| catattgaga   | tatttaaggt          | tgaatgtttg   | tccttaggat | aggcctatgt | gctagcccac | 3960 |
| aaagaatatt   | gtct <b>c</b> attag | cctgaatgtg   | ccataagact | gaccttttaa | aatgttttga | 4020 |
| gggatctgtg   | gatgcttcgt          | taatttgttc   | agccacaatt | tattgagaaa | atattctgtg | 4080 |
| tcaagcactg   | tgggttttaa          | tatttttaaa   | tcaaacgctg | attacagata | atagtattta | 4140 |
| tataaataat   | tgaaaaaaat          | tttcttttgg   | gaagagggag | aaaatgaaat | aaatatcatt | 4200 |
| aaagataact   | caggagaatc          | ttctttacaa   | ttttacgttt | agaatgttta | aggttaagaa | 4260 |
| agaaatagtc   | aatatgcttg          | tataaaacac   | tgttcactgt | ttttttaaa  | aaaaaaactt | 4320 |
| gatttgttat   | taacattgat          | ctgctgacaa   | aacctgggaa | tttgggttgt | gtatgcgaat | 4380 |
| gtttcagtgc ( | ctcagacaaa 1        | tgtgtattta . | acttatgtaa | aagataagtc | tggaaataaa | 4440 |

60

1560

4465 tgtctgttta tttttgtact attta

<210> 461

<211> 3056 <212> DNA

<213> Homo sapiens

<4005 461

aqcqqqattt qcqtcccqqa aqcqqcqqtg gcggccgcgg cgtaggcgga ggaqattttc 120 qqacctqcqa cttccqaaca accctqqcaq qaqqagcqqc qttcagccgq qqqaqgcctq 180 aagaaacget ccqqqqccca qtqqctctac ccctqctcct qccqaccct qccqcctccc tcacggagcc agcggccggg taggatgcag acatcagaac gtgaggggag tgggccggag 240 300 ctgagccca gcgtgatgcc cgaggctccc ctggagtctc caccttttcc taccaagtcc 360 ccagcgtttg accttttcaa cttggttctc tcctacaaga ggctggagat caacctggaa cccttqaaqq atqcaqqtqa tqqtqttcqa tacttqctca qqtqqcaqat qcctttgtqt 420 480 tccttqctqa cctqcctqqq cctcaacqtc ttqttcctca ctttqaatqa qqqtqcatqq tactcagtag gtgccctgat gatttcagtg cccgccctgc tgggctacct tcaggaggtt 540 tgccgggcac ggctgcctga ttccgagctg atgcggagga agtatcatag cgtgaggcag 600 gaggacetge agagagtteg cetgtetegt eeegaggeeg tggetgaggt gaagagette 660 ttgatccagc tggaggcctt cctgagccgc ctgtgctgca catgtgaagc cgcctaccgc 720 qtqctqcact gggagaaccc cgtcgtgtcc tcacagttct atggggctct tctgggcaca 780 qtctqcatqc tqtatttqct qccactctgc tgggttctca cccttttaaa cagcacgctc 840 tttctqqqqa atqtqqaqtt cttccqaqtt qtgtctgagt acagggcatc tctqcagcag 900 960 aggatgaacc caaagcagga agagcatgcc tttgagagtc ctccaccacc agatgttggg 1020 qqqaaqqatq qtctqatqqa caqcacqcct qccctcacac ccacggagga cctcacaccg 1080 qqcaqcqtqq aqqaqqctqa qqaqqctqaq ccaqatqaaq aqtttaaaqa tqcqattqaq qaqacccact tqqtqqtqct qqaqqatqat qaqqqcqccc cqtqcccaqc aqaqqatqaq 1140 ctggccctgc aggacaacgg gttcctgagc aagaatgagg tgctgcgcag caaggtgtct 1200 cggctcacgg agcggctccg caagcgctac cccaccaaca acttcgggaa ctgcacgggc 1260 tqctcqqcca ccttctcaqt qctqaaqaaq agqcqqaqct qcagtaattq tqqaaacaqc 1320 ttetgetete gatgetgete etteaaggtg eecaagteat ceatggggge cacageceet 1380 1440 qaaqcccaqa qqqaqactgt gtttqtqtqt qcctcqtqta accagacctt gagcaagtga qaaqaqaqc caqqqtccaa ccaqqcaccc qtccttqqqq ccaqcaqtag acccccact 1500

ctececace etggeceact gtggtgtgtg etggcaaat gtggeetgaa tgetaggtag

| gcttcccctt | ccttcctcac | tetetecage | tggattctgg | agctgttctc | catccatgag | 162  |
|------------|------------|------------|------------|------------|------------|------|
| agtggctggc | aatggctgct | ctcaatccct | tgagggagaa | gagcccctgg | agggcctggc | 1680 |
| atgtttgccc | tgctctgcct | gggactgagc | gagtggactt | agggctgggc | aggcagtagc | 1740 |
| caccagaggg | cagcagcgaa | ctaggccagg | cctgactggg | gtctgaagat | cagggtcagt | 1800 |
| gtggctatgc | ctgggaattc | cagacctgag | gttgggaaaa | gaggttttc  | tcctgcaggg | 1860 |
| tactgggcca | ggccctcagc | ctcagagagc | ctgcagaagg | gcttgggagt | gccacacccc | 1920 |
| atctctgctg | attgaatgtc | cctccaggca | ccaggatete | atcatttccc | catcagaggg | 1980 |
| tgtggccagg | cctaacaaga | ccatgggtgc | ttctagaaac | agggttgaag | ttcccagatt | 2040 |
| ccctgagagg | agaatgtgta | taggagggtt | tggctgagtc | cttcagcgtt | aagtggagga | 2100 |
| aagcttgggg | aagccccaat | agctggacag | acctcagcct | cccctcgaag | acacctcaat | 2160 |
| tcacagactc | tcagcccaca | caatgcccca | gtgtccccag | ctccgctgga | gcagctgcag | 2220 |
| ggcacttgga | tcacaacttc | tgcaccctct | gtccagagtc | tagggcagtc | ctccactggc | 2280 |
| ccagcactcc | agtttccttt | ccctgcctct | tgtccaatgg | agtgggaggc | caggtgagtg | 2340 |
| gagcagaggt | cctgaagccc | ttgacccctg | ggggcctggg | tagtgtagga | tctcgctggg | 2400 |
| ctgggtcctg | gattccaggg | ctattccctg | gaggacagtc | tcagttatgg | gataaggccc | 2460 |
| cctgggggtc | tccatttctt | tccaacagtt | tcatgttcac | tactggactc | ttacgggctc | 2520 |
| agtatctctc | ccttagccat | gagctggctc | aggcatccct | teeetteeet | ggagctgccc | 2580 |
| tgcctttctc | aagtatttat | ttatttattg | catggttcct | gggaacatgt | ggcacaagta | 2640 |
| atgggatgag | gaggaattgg | gggtgggggt | cttctaccta | ggactettee | ctggagtcat | 2700 |
| gggctgcctg | ggacccagga | cccatgaggg | ggctgagagg | tttctacact | cgaggagcag | 2760 |
| gggtccagag | aggcaggctg | gggaggcaag | ggacccatcc | taggcccgct | ttcttgccga | 2820 |
| gccaagcagc | ttagctgggg | ctgtgcagcc | aggggcttac | ccaggccagt | ggaggtgcca | 2880 |
| cagccctggg | gagccagaca | ggctttggta | tcgtatcgcc | tctgtgtcct | tttaagagag | 2940 |
| gagagttcag | taccccgtgc | tttctttaca | ctggagagga | actaaaagga | tctctgtgtc | 3000 |
| tatggagaat | tgtcaataaa | aaggcctcaa | gcttcaaaag | aaaaaaaaa  | aaaaaa     | 3056 |

<sup>&</sup>lt;210> 462 <211> 2615

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 462

gaatteeggg aagecagaeg gttaacacag acaaagtget geegtgacae teggeeetee 60
agtgttgegg agaggcaaga geagegaeeg egeacetgte egeeeggage tgggaegge 120

gcccgggcgg ccggacgaag cgaggaggga ccgccgaggc tgcccccaag tgtaactcca 180 gcactgtgag gtttcaggga ttggcagagg ggaccaaggg gacatgaaaa tggacatgga 240 ggatgcggat atgactctgt ggacagaggc tgagtttgaa gagaagtgta catacattgt 300 gaacgaccac ccctgggatt ctggtgctga tggcggtact tcggttcagg cggaggcatc 360 cttaccaagg aatctgcttt tcaagtatgc caccaacagt gaagaggtta ttggagtgat 420 gagtaaagaa tacataccaa agggcacacg ttttggaccc ctaataggtg aaatctacac 480 caatgacaca gttcctaaga acgccaacag gaaatatttt tggaggatct attccagagg 540 ggagcttcac cacttcattg acggctttaa tgaagagaaa agcaactgga tgcgctatgt 600 gaatccagca cactetecce gggagcaaaa cetggetgeg tgtcagaacg ggatgaacat 660 ctacttctac accattaagc ccatccctgc caaccaggaa cttcttgtgt ggtattgtcg 720 ggactttgca gaaaggette actaccetta teeeggagag etgacaatga tgaateteae 780 acaaacacag agcagtctaa agcaaccgag cactgagaaa aatgaactct gcccaaagaa 840 tgtcccaaag agagagtaca gcgtgaaaga aatcctaaaa ttggactcca acccctccaa 900 aggaaaggac ctctaccgtt ctaacatttc acccctcaca tcagaaaagg acctcgatga 960 ctttagaaga cgtgggagcc ccgaaatgcc cttctaccct cgggtcgttt accccatccg 1020 ggeecetetg ccagaagact ttttgaaage tteeetggee taegggateg agagaeceae 1080 gtacatcact cgctccccca ttccatcctc caccactcca ageccctctg caagaagcag 1140 ccccgaccaa agectcaaga gctccagccc tcacagcagc cctgggaata cggtgtcccc 1200 tgtgggcccc ggctctcaag agcaccggga ctcctacgct tacttgaacg cgtcctacgg 1260 cacggaaggt ttgggeteet accetggeta egeacecetg ecceacetee egecagettt 1320 catecocteg tacaacgete actaccecaa gtteetettg cececetaeg geatgaattg 1380 taatggcctg agcgctgtga gcagcatgaa tggcatcaac aactttggcc tcttcccgag 1440 gctgtgccet gtctacagca atctcctcgg tgggggcagc ctgccccacc ccatgctcaa 1500 ccccacttet etcccgaget egetgecete agatggagec eggaggttge tecageegga 1560 gcateccagg gaggtgettg teeeggegee ecacagtgee tteteettta eeggggeege 1620 cgccagcatg aaggacaagg cctgtagccc cacaagcggg tctcccacgg cgggaacagc 1680 egecaeggea gaacatgtgg tgeageceaa agetaeetea geagegatgg eageeceeag 1740 cagcgacgaa gccatgaatc tcattaaaaa caaaagaaac atgaccggct acaagaccct 1800 tecetaceeg etgaagaage agaaeggeaa gateaagtae gaatgeaaeg tttgegeeaa 1860 gactttcggc cageteteca atetgaaggt ceacetgaga gtgcacagtg gagaacggce 1920

| tttcaaatgt                                         | cagacttgca     | acaagggett | tactcagcto | gcccacctg  | agaaacacta   | 1980 |
|----------------------------------------------------|----------------|------------|------------|------------|--------------|------|
| cctggtacac                                         | acgggagaaa     | agccacatga | atgccaggto | tgccacaaga | a gatttagcag | 2040 |
| caccagcaat                                         | ctcaagacco     | acctgcgact | ccattctgga | gagaaaccat | accaatgcaa   | 2100 |
| ggtgtgccct                                         | gccaagttca     | cccagtttgt | gcacctgaaa | ctgcacaago | gtctgcacac   | 2160 |
| ccgggagcgg                                         | ccccacaagt     | gctcccagtg | ccacaagaac | tacatccato | tctgtagcct   | 2220 |
| caaggttcac                                         | ctgaaaggga     | actgcgctgc | ggccceggcg | cctgggctg  | ccttggaaga   | 2280 |
| tctgacccga                                         | atcaatgaag     | aaatcgagaa | gtttgacato | agtgacaatg | ctgaccggct   | 2340 |
| cgaggacgtg                                         | gaggatgaca     | tcagtgtgat | ctctgtagtg | gagaaggaaa | ttctggccgt   | 2400 |
| ggtcagaaaa                                         | gagaaagaag     | aaactggcct | gaaagtgtct | ttgcaaagaa | acatggggaa   | 2460 |
| tggactcctc                                         | tcctcagggt     | gcagccttta | tgagtcatca | gatctacccc | tcatgaagtt   | 2520 |
| gcctcccagc                                         | aacccactac     | ctctggtacc | tgtaaaggto | aaacaagaaa | cagttgaacc   | 2580 |
| aatggatcct                                         | taagattttc     | agaaaacact | tattt      |            |              | 2615 |
| <210> 463<br><211> 1432<br><212> DNA<br><213> Homo | 2<br>o sapiens |            |            |            |              |      |
|                                                    | ctgcgtcgct     | ccgggagctg | ccgacggacg | gagegeeeee | gcccccgccc   | 60   |
| ggccgcccgc                                         | ccgccgccgc     | catgcccttc | tccaacagcc | acaacgcact | gaagctgcgc   | 120  |
| ttcccggccg                                         | aggacgagtt     | ccccgacctg | agcgcccaca | acaaccacat | ggccaaggtg   | 180  |
| ctgacccccg                                         | agctgtacgc     | ggagctgcgc | gccaagagca | cgccgagcgg | cttcacgctg   | 240  |
| gacgacgtca                                         | tccagacagg     | cgtggacaac | ccgggccacc | cgtacatcat | gaccgtgggc   | 300  |
| tgcgtggcgg                                         | gcgacgagga     | gtcctacgaa | gtgttcaagg | atctcttcga | ccccatcatc   | 360  |
| gaggaccggc                                         | acggcggcta     | caagcccagc | gatgagcaca | agaccgacct | caaccccgac   | 420  |
| aacctgcagg                                         | gcggcgacga     | cctggacccc | aactacgtgc | tgagctcgcg | ggtgcgcacg   | 480  |
| ggccgcagca                                         | tccgtggctt     | ctgcctcccc | ccgcactgca | gccgcgggga | gcgccgcgcc   | 540  |
| atcgagaagc                                         | tcgcggtgga     | agccctgtcc | agcctggacg | gcgacctggc | gggccgatac   | 600  |
| tacgcgctca                                         | agagcatgac     | ggaggcggag | cagcagcagc | tcatcgacga | ccacttcctc   | 660  |
| ttcgacaagc                                         | ccgtgtcgcc     | cctgctgctg | gcctcgggca | tggcccgcga | ctggcccgac   | 720  |
| gcccgcggta                                         | tctggcacaa     | tgacaataag | accttcctgg | tgtgggtcaa | cgaggaggac   | 780  |
| cacctgcggg                                         | tcatctccat     | gcagaagggg | ggcaacatga | aggaggtgtt | cacccgcttc   | 840  |
| tgcaccggcc                                         | tcacccagat     | tgaaactctc | ttcaaqtc+a | aggactatos | attcatatas   | 900  |

| aacceteace tgggetacat ceteacetge ceatecaace tgggcacegg getgegggca | 960  |
|-------------------------------------------------------------------|------|
| ggtgtgcata tcaagctgcc caacctgggc aagcatgaga agttctcgga ggtgcttaag | 1020 |
| cggctgcgac ttcagaagcg aggcacaggc ggtgtggaca cggctgcggt gggcggggtc | 1080 |
| ttcgacgtct ccaacgctga ccgcctgggc ttctcagagg tggagctggt gcagatggtg | 1140 |
| gtggacggag tgaagctgct catcgagatg gagcagcggc tggagcaggg ccaggccatc | 1200 |
| gacgacetea tgeetgeeca gaaatgaage eeggeecaca eeegacaeca geeetgetge | 1260 |
| ttcctaactt attgcctggg cagtgcccac catgcacccc tgatgttcgc cgtctggcga | 1320 |
| goodttagoo ttgctgtaga gacttoogto accottggta gagtttattt ttttgatggo | 1380 |
| taagatactg ctgatgctga aataaactag ggttttggcc tgcctgcgtc tg         | 1432 |
| <210> 464<br><211> 2073<br><212> DNA<br><213+ Homo sapiens        |      |
| ggggcgtccc gggatatttg gaggataaag ggtgatgacc acacctgccg gctccggcag | 60   |
| cggcttcggc tccgtgtcct ggtggggcct gtccccggcg ctggacctgc aggctgaaag | 120  |
| tectectgtg gacccagaet eccaggeega tacagtgeac ageaaceeeg agetagatgt | 180  |
| gctgcttctg ggctctgtgg atggacggca cctgctgcgg accctgtccc gagcgaagtt | 240  |
| ctggcctcgc aggaggttca acttctttgt gctggagaat aatctggaag ctgtggcccg | 300  |
| acacatgctg atcttcagcc tagccctgga ggaaccggag aagatggggc tgcaagagcg | 360  |
| aagcgagacc ttcctggaag tgtgggggaa cgcgctgctg cgcccgccag tggccgcctt | 420  |
| cgtgcgtgcc caggccgacc tgctggcgca cctggtcccc gagcccgacc gcctggagga | 480  |
| acagetgeec tggetcagec tccgcgccct caagtteege gagegggatg ccctggagge | 540  |
| cgtattccgc ttctgggctg gcggcgagaa agggccccag gcgttcccca tgagccgcct | 600  |
| ctgggacteg egeetgegee actaeetggg eteeegetae gaegeeegge geggtgteag | 660  |
| cgactgggac ctgcgcatga agctgcatga ccgcggggct caagtcattc acccccagga | 720  |
| gttccgacgc tggcgggaca caggcgtcgc ctttgaactc agggactcca gcgcctatca | 780  |
| tgtgcccaac cggaccctgg cgtccggtcg cctcctgagc taccgtgggg agcgcgtggc | 840  |
| agcgcgcggg tactgggggg acatcgccac ggggcccttc gtggccttcg gcatcgaagc | 900  |

210

1080

ggacgacgag agcctcctgc ggacgagcaa cggccagcca gtcaagacgg ccggggagat 960 cactcaacac aacgtgacgg agctgctccg cgacgtggcc gcctgggggc gcgcgagagc 1020 caccgggggg gacctggagg agcagcagca cgcggaggga agcccggagc cagggactcc

agcagececq acceeggaat ettteacegt ceaetteetg eegeteaatt etgeteagae 1140 totocaccac aagagotgot acaacggoog attocagoto ototatgtgg cotgtggtat 1200 qqtccatctt ctcatccctq aqcttqqqqc ctgtgtggca cccggaggga acttqattqt 1260 ggaattagec eggtacetgg tggacgtgeg geaggageag etgeagggat teaacaceeg 1320 qqtcaqqqaq ctaqctcaqq caqctqqatt tqctccacaq accqqqqcca qqccttcaqa 1380 gaccttegea egtttetgea agteecagga atcagetetg ggeaacactg teccagetgt 1440 1500 qqaacccqqa actccqccc ttqacatcct qqcccaqcct cttqaaqcca qcaacccaqc cettgaggge etgacecage etetgeaggg tgggacecea caetgtgage cetgeeaget 1560 gccctctgag tctccaggtt cactctcaga ggttctggct cagcctcagg gggccttggc 1620 1680 tecgeccaac tgtgagteag actecaaaac tggagtetga eccaaccect agacaccect tatetecaae ttecaaagte aggttgtagg atgagaacce getgatacca ttetaagtee 1740 1800 gctgctagag tcctcaattt tattctaatc attcccactc agtacccgcc acccccaccc cgggagtgtt ggtagacttt caaattccat ttctgagatt ctatggtcta ttcctagaat 1860 tctagattgt tctctcagaa ttccaaattc cacttctgag gctctaagcc cagcctagga 1920 totgacactq agtotcaggo cottgacttt ggooccottg ttoccaggoa cootgtggot 1980 qactaqqqqc tqqqqtqtct cctcaccaqq gcctqqtcag cacccagatg gttcaagtaa 2040 2073 agcaagttgt gtccaccaaa aaaaaaaaaa aaa

<210> 465 <211> 1124

<212> DNA <213> Homo sapiens

<400> 465

60 cqqqaaacct qcactqactt ttttctcctt ttgqagggag agcagagacc atgtctgaca taqaaqaqqt qqtqqaaqaq tacqaqqaqq aqqaqcaqqa aqaaqcaqct gttqaaqaqc 120 aggaggaggc agcggaagag gatgctgaag cagaggctga gaccgaggag accagggcag 180 aaqaaqatqa aqaaqaaqaq qaaqcaaaqq aqqctqaaqa tqqcccaatq qaqqaqtcca 240 aaccaaagcc caggtcgttc atgcccaact tggtgcctcc caagatcccc gatggagaga 300 qaqtqqactt tqatqacatc caccqqaaqc qcatqqaqaa qqacctqaat qaqttqcaqq 360 cgctgattga ggctcacttt gagaacagga agaaagagga ggaggagctc gtttctctca 420 aagacaggat cgagagacgt cgggcagagc gggccgagca gcagcgcatc cggaatgagc 480 gggagaagga gcggcagaac cgcctggctg aagagagggc tcgacgagag gaggaggaga 540 acaqqaggaa ggctgaggat gaggcccgga aqaagaaggc tttgtccaac atgatgcatt 600

WO 2004/042346 PCT/US2003/012946 ttqggggtta catccagaag caggcccaga cagagcggaa aagtgggaag aggcagactg 660 agcgggaaaa gaagaagaag attctggctg agaggaggaa ggtgctggcc attgaccacc 720 tgaatgaaga tcagctgagg gagaaggcca aggagctgtg gcagagcatc tataacttgg 780 aqqcaqaqaa gttcgacctg caggagaagt tcaagcagca gaaatatgag atcaatgttc 840 teegaaacag gateaacgat aaccagaaag tetecaagae eegegggaag getaaagtea 900 ccggqcqctq qaaataqagc ctggcctcct tcaccaaaga tctgctcctc gctcgcacct 960 geoteeggee tgcacteece cagtteeegg qeeeteetgg qeacceeagg cageteetgt 1020 ttggaaatgg ggagctggcc taggtgggag ccaccactcc tgcctgcccc cacacccact 1080 ccacaccagt aataaaaagc caccacacc tgaaaaaaaa aaaa 1124 <210> 466 <211> 1066 <212> DNA <213> Homo sapiens <400> 466 accccagctg ttggggccag gacacccagt gagcccatac ttgctcttt tgtcttcttc 60 agactgcgcc atggggctca gcgacgggga atggcagttg gtgctgaacg tctgggggaa 120 ggtggagget gacateceag gecatgggea ggaagteete ateaggetet ttaagggtea 180 cccagagact ctggagaagt ttgacaagtt caagcacctg aagtcagagg acgagatgaa 240 ggcatctgag gacttaaaga agcatggtgc cactgtgctc accgccctgg gtggcatcct 300 taagaagaag gggcatcatg aggcagagat taagcccctg gcacagtcgc atgccaccaa 360 gcacaagate eeegtgaagt aeetggagtt eateteggaa tgeateatee aggttetgea 420 gagcaagcat cccggggact ttggtgctga tgcccagggg gccatgaaca aggccctgga 480 getgttccgg aaggacatgg cetecaacta caaggagetg ggettecagg getaggeece 540 tgccgctccc acccccaccc atctgggccc cgggttcaag agagagcggg gtctgatctc 600 gtgtagccat atagagtttg cttctgagtg tctgctttgt ttagtagagg tgggcaggag 660 gagetgaggg getggggetg gggtgttgaa gttggetttg catgeecage gatgegeete 720 cctgtgggat gtcatcaccc tgggaaccgg gagtgccctt ggctcactgt gttctgcatg 780 gtttggatct gaattaattg teetttette taaateecaa eegaaettet teeaaeetee 840 aaactggctg taaccccaaa tccaagccat taactacacc tgacagtagc aattgtctga 900 ttaatcactg gccccttgaa gacagcagaa tgtccctttg caatgaggag gagatctggg 960

1020

1066

ctgggcgggc cagctgggga agcatttgac tatctggaac ttgtgtgtgc ctcctcaggt

atggcagtga ctcacctggt tttaataaaa caacctgcaa catctc

<210> 467 <211> 3144 <212> DNA <213> Homo sapiens

<400> 467

atggtcagaa agcctgttgt gtccaccatc tccaaaggag gttacctgca gggaaatgtt 60 aacgggaggc tgccttccct gggcaacaag gagccacctg ggcaggagaa agtgcagctg 120 aagaggaaag tcactttact gaggggagtc tccattatca ttggcaccat cattggagca 180 ggaatettea teteteetaa gggegtgete cagaacaegg geagegtggg catgtetetg 240 accatctgga cggtgtgtgg ggtcctgtca ctatttggag ctttgtctta tgctgaattg 300 ggaacaacta taaagaaatc tggaggtcat tacacatata ttttggaagt ctttggtcca 360 ttaccagett ttgtacgagt etgggtggaa etecteataa tacgeeetge agetactget 420 gtgatatccc tggcatttgg acgctacatt ctggaaccat tttttattca atgtgaaatc 480 cctgaacttg cgatcaagct cattacagct gtgggcataa ctgtagtgat ggtcctaaat 540 agcatgagtg tcagctggag cgcccggatc cagattttct taaccttttg caagctcaca 600 gcaattctga taattatagt ccctggagtt atgcagctaa ttaaaggtca aacgcagaac 660 tttaaagacg cgttttcagg aagagattca agtattacgc ggttgccact ggctttttat 720 tatggaatgt atgcatatgc tggctggttt tacctcaact ttgttactga agaagtagaa 780 aaccetgaaa aaaccattee cettgeaata tgtatateea tggecattgt caccattgge 840 tatgtgctga caaatgtggc ctactttacg accattaatg ctgaggagct gctgctttca 900 aatgcagtgg cagtgacctt ttctgagcgg ctactgggaa atttctcatt agcagttccg 960 atctttqttq ccctctcctg ctttggctcc atgaacggtg gtgtgtttgc tgtctccagg 1020 ttattctatg ttgcgtctcg agagggtcac cttccagaaa tcctctccat gattcatgtc 1080 cgcaagcaca ctcctctacc agctgttatt gttttgcacc ctttgacaat gataatgctc 1140 ttctctggag acctcgacag tcttttgaat ttcctcagtt ttgccaggtg gctttttatt 1200 gggctggcag ttgctgggct gatttatctt cgatacaaat gcccagatat gcatcgtcct 1260 ttcaaggtgc cactgttcat cccagctttg ttttccttca catgcctctt catggttgcc 1320 ctttccctct attcggaccc atttagtaca gggattggct tcgtcatcac tctgactgga 1380 gtccctgcgt attatctctt tattatatgg gacaagaaac ccagqtggtt tagaataatg 1440 tcagagaaaa taaccagaac attacaaata atactggaag ttgtaccaga agaagataag 1500 ttatgaacta atggacttga gatcttggca atctgcccaa ggggagacac aaaataggga 1560 tttttacttc attttctgaa agtctagaga attacaactt tggtgataaa caaaaggagt 1620

| cagttatttt | tattcatata | ttttagcata | ttcgaactaa | tttctaagaa | atttagttat | 1680 |
|------------|------------|------------|------------|------------|------------|------|
| aactctatgt | agttatagaa | agtgaatatg | cagttattct | atgagtcgca | caattcttga | 1740 |
| gtctctgata | cctacctatt | ggggttagga | gaaaagacta | gacaattact | atgtggtcat | 1800 |
| tctctacaac | atatgttagc | acggcaaaga | accttcaaat | tgaagactga | gatttttctg | 1860 |
| tatatatggg | ttttgtaaag | atggttttac | acactacaga | tgtctatact | gtgaaaagtg | 1920 |
| ttttcaattc | tgaaaaaaag | catacatcat | gattatggca | aagaggagag | aaagaaattt | 1980 |
| attttacatt | gacattgcat | tgcttcccct | tagataccaa | tttagataac | aaacactcat | 2040 |
| gctttaatgg | attataccca | gagcactttg | aacaaaggtc | agtggggatt | gttgaataca | 2100 |
| ttaaagaaga | gtttctaggg | gctactgttt | atgagacaca | tccaggagtt | atgtttaagt | 2160 |
| aaaaatcctt | gagaatttat | tatgtcagat | gttttttcat | tcattatcag | gaagttttag | 2220 |
| ttatctgtca | tttttttt   | tcacatcagt | ttgatcagga | aagtgtataa | cacatcttag | 2280 |
| agcaagagtt | agtttggtat | taaatcctca | ttagaacaac | cacctgtttc | actaataact | 2340 |
| tacccctgat | gagtctatct | aaacatatgc | attttaagcc | ttcaaattac | attatcaaca | 2400 |
| tgagagaaat | aaccaacaaa | gaagatgttc | aaaataatag | tcccatatct | gtaatcatat | 2460 |
| ctacatgcaa | tgttagtaat | tctgaagttt | tttaaattta | tggctatttt | tacacgatga | 2520 |
| tgaattttga | cagtttgtgc | attttcttta | tacattttat | attcttctgt | taaaatatct | 2580 |
| cttcagatga | aactgtccag | attaattagg | aaaaggcata | tattaacata | aaaattgcaa | 2640 |
| aagaaatgtc | gctgtaaata | agatttacaa | ctgatgtttc | tagaaaattt | ccacttctat | 2700 |
| atctaggctt | tgtcagtaat | ttccacacct | taattatcat | tcaacttgca | aaagagacaa | 2760 |
| ctgataagaa | gaaaattgaa | atgagaatct | gtggataagt | gtttgtgttc | agaagatgtt | 2820 |
| gttttgccag | tattagaaaa | tactgtgagc | cgggcatggt | ggcttacatc | tgtaatccca | 2880 |
| gcactttggg | aggctgaggg | ggtggatcac | ctgaggtcgg | gagttctaga | ccagcctgac | 2940 |
| caacatggag | aaaccccatc | tctactaaaa | atacaaaatt | agctgggcat | ggtggcacat | 3000 |
| gctggtaatc | tcagctattg | aggaggctga | ggcaggagaa | ttgcttgaac | ccgggaggcg | 3060 |
| gaggttgcag | tgagccaaga | ttgcaccact | gtactccagc | ctgggtgaca | aagtcagact | 3120 |
| ccatctccaa | aaaaaaaaa  | aaaa       |            |            |            | 3144 |

<sup>&</sup>lt;210> 468 <211> 1177 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 468

gccaaggctg gggcagggga gtcagcagag gcctcgctcg ggcgcccagt ggtcctgccg 60

| cctggt  | ctca | cctcgctatg | gttcgtctgc | ctctgcagtg | cgtcctctgg | ggctgcttgc | 120  |
|---------|------|------------|------------|------------|------------|------------|------|
| tgaccg  | ctgt | ccatccagaa | ccacccactg | catgcagaga | aaaacagtac | ctaataaaca | 180  |
| gtcagt  | gctg | ttctttgtgc | cagccaggac | agaaactggt | gagtgactgc | acagagttca | 240  |
| ctgaaa  | cgga | atgccttcct | tgcggtgaaa | gcgaattcct | agacacctgg | aacagagaga | 300  |
| cacact  | gcca | ccagcacaaa | tactgcgacc | ccaacctagg | gcttcgggtc | cagcagaagg | 360  |
| gcacct  | caga | aacagacacc | atctgcacct | gtgaagaagg | ctggcactgt | acgagtgagg | 420  |
| cctgtga | agag | ctgtgtcctg | caccgctcat | gctcgcccgg | ctttggggtc | aagcagattg | 480  |
| ctacago | gggt | ttctgatacc | atctgcgagc | cctgcccagt | cggcttcttc | tccaatgtgt | 540  |
| catctgo | ettt | cgaaaaatgt | cacccttgga | caagctgtga | gaccaaagac | ctggttgtgc | 600  |
| aacaggo | cagg | cacaaacaag | actgatgttg | tctgtggtcc | ccaggatcgg | ctgagagccc | 660  |
| tggtggt | gat  | ccccatcatc | ttcgggatcc | tgtttgccat | cctcttggtg | ctggtcttta | 720  |
| tcaaaaa | iggt | ggccaagaag | ccaaccaata | aggcccccca | ccccaagcag | gaaccccagg | 780  |
| agatcaa | ttt  | tcccgacgat | cttcctggct | ccaacactgc | tgctccagtg | caggagactt | 840  |
| tacatgg | gatg | ccaaccggtc | acccaggagg | atggcaaaga | gagtcgcatc | tcagtgcagg | 900  |
| agagaca | gtg  | aggctgcacc | cacccaggag | tgtggccacg | tgggcaaaca | ggcagttggc | 960  |
| cagagag | cct  | ggtgctgctg | ctgctgtggc | gtgagggtga | ggggctggca | ctgactgggc | 1020 |
| atagcto | ccc  | gcttctgcct | gcacccctgc | agtttgagac | aggagacctg | gcactggatg | 1080 |
| cagaaac | agt  | tcaccttgaa | gaacctctca | cttcaccctg | gagcccatcc | agtctcccaa | 1140 |
| cttgtat | taa  | agacagaggc | agaaaaaaa  | aaaaaaa    |            |            | 1177 |
| <210>   | 469  |            |            |            |            |            |      |
|         |      |            |            |            |            |            |      |
|         | 1323 |            |            |            |            |            |      |
| <212>   | DNA  |            |            |            |            |            |      |

gtggaggttg ctgctatgag agagaaaaaa aaaaacagcc acaatagaga ttctgccttc 60 aaaggttggc ttgccacctg aagcagccac tgcccagggg gtgcaaagaa gagacagcag 120 cgcccagctt ggaggtgcta actccagagg ccagcatcag caactgggca cagaaaggag 180 ccgcctgggc agggaccatg gcacggccac atccctggtg gctgtgcgtt ctggggaccc 240 tggtggggct ctcagctact ccagccccca agagctgccc agagaggcac tactgggctc 300 agggaaaget gtgetgeeag atgtgtgage caggaacatt cetegtgaag gaetgtgace 360 agcatagaaa ggctgctcag tgtgatcctt gcataccggg ggtctccttc tctcctgacc 420 accacacccg geoccactgt gagagetgte ggcactgtaa etetggtett etegttegea 480

<sup>&</sup>lt;400> 469

<sup>&</sup>lt;213> Homo sapiens

actoraccat cactoccaat octoaqtoto cototoqcaa toqctoqcaq tocaqoqaca 540 aggagtgcac cgagtgtgat cctcttccaa accettcgct gaccgctcgg tcgtctcagg 600 ccctqaqccc acaccctcag cccacccact taccttatgt cagtgagatg ctggagqcca 660 qqacaqctqq qcacatqcaq actctqqctq acttcaqqca gctqcctqcc cqqactctct 720 ctacccactq qccaccccaa agatccctqt qcaqctccqa ttttattcgc atccttqtqa 780 tettetetgg aatgtteett gtttteacce tggeegggge cetgtteete cateaacgaa 840 900 qqaaatataq atcaaacaaa qqaqaaaqtc ctqtqqaqcc tgcaqagcct tqtcqttaca gctgcccaq qqaqqaqqaq qqcaqcacca tccccatcca qqaqqattac cqaaaaccqq 960 agectgeetg etceccetga gecagcacet gegggagetg cactacagec etggeetcca 1020 1080 ccccaccc qccqaccatc caaqqqaqaq tqaqacctqq caqccacaac tqcaqtccca tectettqte aqqqccettt cetqtqtaca cqtqacaqaq tqcctttteq aqactqqcaq 1140 1200 qqacqaqqac aaatatqqat qaqqtqqaqa qtqqqaaqca qqaqcccaqc caqctqcqcc tgcgctgcag gaggggggg gctctggttg taaaacacac ttcctgctgc gaaagaccca 1260 1320 aaa 1323

<210> 470 <211> 2781

<212> DNA <213> Homo sapiens

<400> 470

ggaaggettg cacagggtga aagetttget tetetgetge tgtaacaggg actagcacag 60 acacacggat gagtggggtc atttccagat attaggtcac agcagaagca gccaaaatgg 120 atccccaqtg cactatggga ctgagtaaca ttctctttgt gatggccttc ctgctctctg 180 gtqctqctcc tctqaaqatt caaqcttatt tcaatgagac tgcaqacctg ccatgccaat 240 ttqcaaactc tcaaaaccaa agcctgagtg agctagtagt attttggcag gaccaggaaa 300 acttggttct gaatgaggta tacttaggca aagagaaatt tgacagtgtt cattccaagt 360 atatgggccg cacaagtttt gattcggaca gttggacctt gagacttcac aatcttcaga 420 480 tcaaqqacaa qqqcttqtat caatqtatca tccatcacaa aaaqcccaca qqaatqattc 540 gcatccacca gatgaattet gaactgtcag tgettgetaa etteagteaa eetgaaatag taccaatttc taatataaca qaaaatqtqt acataaattt qacctqctca tctatacacq 600 gttacccaga acctaagaag atgagtgttt tgctaagaac caagaattca actatcgagt 660 atgatggtat tatgcagaaa tctcaagata atgtcacaga actgtacgac gtttccatca 720

| gcttgtctg  | t ttcattccct | gatgttacga | gcaatatgad | catcttctgt   | attctggaaa | 780  |
|------------|--------------|------------|------------|--------------|------------|------|
| ctgacaaga  | c geggetttta | tcttcacctt | tctctataga | a gcttgaggad | cctcagcctc | 840  |
| ccccagacc  | a cattccttgg | attacagctg | tacttccaac | agttattata   | tgtgtgatgg | 900  |
| ttttctgtc  | aattctatgg   | aaatggaaga | agaagaagco | gcctcgcaac   | tcttataaat | 960  |
| gtggaacca  | a cacaatggag | agggaagaga | gtgaacagac | caagaaaaga   | gaaaaaatcc | 1020 |
| atatacctga | a aagatctgat | gaagcccagc | gtgtttttaa | aagttcgaag   | acatcttcat | 1080 |
| gcgacaaaa  | g tgatacatgt | ttttaattaa | agagtaaago | ccatacaagt   | attcattttt | 1140 |
| tctacccttt | cctttgtaag   | ttcctgggca | acctttttga | tttcttccag   | aaggcaaaaa | 1200 |
| gacattacca | tgagtaataa   | gggggctcca | ggactccctc | taagtggaat   | agcctccctg | 1260 |
| taactccago | tctgctccgt   | atgccaagag | gagactttaa | ttctcttact   | gcttcttttc | 1320 |
| acttcagago | acacttatgg   | gccaagccca | gcttaatggc | tcatgacctg   | gaaataaaat | 1380 |
| ttaggaccaa | tacctcctcc   | agatcagatt | cttctcttaa | tttcatagat   | tgtgttttt  | 1440 |
| tttaaataga | cctctcaatt   | tctggaaaac | tgccttttat | ctgcccagaa   | ttctaagctg | 1500 |
| gtgccccact | gaatcttgtg   | tacctgtgac | taaacaacta | cctcctcagt   | ctgggtggga | 1560 |
| cttatgtatt | tatgacctta   | tagtgttaat | atcttgaaac | atagagatct   | atgtactgta | 1620 |
| atagtgtgat | tactatgctc   | tagagaaaag | tctacccctg | ctaaggagtt   | ctcatccctc | 1680 |
| tgtcagggtc | agtaaggaaa   | acggtggcct | agggtacagg | caacaatgag   | cagaccaacc | 1740 |
| taaatttggg | gaaattagga   | gaggcagaga | tagaacctgg | agccacttct   | atctgggctg | 1800 |
| ttgctaatat | tgaggaggct   | tgccccaccc | aacaagccat | agtggagaga   | actgaataaa | 1860 |
| caggaaaatg | ccagagettg   | tgaaccctgt | ttctcttgaa | gaactgacta   | gtgagatggc | 1920 |
| ctggggaagc | tgtgaaagaa   | ccaaaagaga | tcacaatact | caaaagagag   | agagagagaa | 1980 |
| aaaagagaga | tcttgatcca   | cagaaataca | tgaaatgtct | ggtctgtcca   | ccccatcaac | 2040 |
| aagtcttgaa | acaagcaaca   | gatggatagt | ctgtccaaat | ggacataaga   | cagacagcag | 2100 |
| tttccctggt | ggtcagggag   | gggttttggt | gatacccaag | ttattgggat   | gtcatcttcc | 2160 |
| tggaagcaga | gctggggagg   | gagagccatc | accttgataa | tgggatgaat   | ggaaggaggc | 2220 |
| ttaggacttt | ccactcctgg   | ctgagagagg | aagagctgca | acggaattag   | gaagaccaag | 2280 |
| acacagatca | cccggggctt   | acttagccta | cagatgtcct | acgggaacgt   | gggctggccc | 2340 |
| agcatagggc | tagcaaattt   | gagttggatg | attgtttttg | ctcaaggcaa   | ccagaggaaa | 2400 |
| cttgcataca | gagacagata   | tactgggaga | aatgactttg | aaaacctggc   | tctaaggtgg | 2460 |
| gatcactaag | ggatggggca   | gtctctgccc | aaacataaag | agaactctgg   | ggagcctgag | 2520 |
| ccacaaaaat | gttcctttat   | tttatgtaaa | ccctcaaggg | ttatagactg   | ccatgctaga | 2580 |

caagettgte catgtaatat teccatgttt ttaccetgee cetgeettga ttagacteet 2640 agcacctggc tagtttctaa catgttttgt gcagcacagt ttttaataaa tgcttgttac 2700 2760 aaaaaaaaa aaaaaaaaaa a 2781 <210> 471 <211> 1363 <212> DNA <213> Homo sapiens <400> 471 gaggaaaagc tttcggactg ctgaaggccc agcaggaaga gaggctggat gagatcaaca 60 agcaattcct agacgatccc aaatatagca gtgatgagga tctgccctcc aaactggaag 120 gcttcaaagg tgaggggaa actgtaggcg gtggagacag ggctgggggt aggagggtta 180 ggatttccac aagaacaagg caggaacagc agagataaaa agtttacttt tgtggtagca 240 aaaggggaac ctgcctttat tgccctcctg ccacactgcg gtccctttcc cgggcctgcc 300 teteteagea teccetetag etecttacae ectagegggg ecceteaact ecceaacee 360 acticctctg cetgeccete etectectic caegitgiet cetecaceta geagitggit 420 ggcaacccct tecteactea eccagagaaa tacatggagt ttgacettaa tggaaatgge 480 gatattggtg agaaacgggt gatttgcggg ggcagggtgg tgtgcaggcc taagaagaca 540 gaggtetete ctacatgete catteeteat gatttgggag ggggeeeace taccacagtg 600 660 ccccatcccc atcctctgcc cccagatatc atgtccctga aacgaatgct ggagaaactt 720 ggagtcccca agactcacct agagctaaag aaattaattg gagaggtgtc cagtggctcc 780 ggggagacgt tcagctaccc tgactttctc aggatgatgc tgggcaagag atctgccatc 840 ctaaaaatgt gagtgtcaat ttccaacctc ccctgtactt acctgttttc tcctcccca 900 tccctaccct tgtccacagg ctcaacattt ctacacgttg cccatcatcc cttcttccat 960 ccttagaggg accettecaa ggtcccgacc ccatccctat ccatagtcct ggtccccaqa 1020 aactccaacc cctgcccttc ctcttccccc ttccaccctc acatccccat ccccttctag 1080 cctttcctag caccctatga tttattccct tgagaggagt gttccctgat ccctgtgcct 1140 cttcccatct caaccaggat cctgatgtat gaggaaaaag cgagagaaaa ggaaaagcca 1200 acaqgccccc cagccaagaa agctatctct gagttgccct gatttgaagg gaaaagggat 1260 gatgggattg aaggggcttc taatgaccca gatatggaaa cagaagacaa aattgtaagc 1320 cagagtcaac aaattaaata aattaccccc tcctccagat caa 1363

| <210> 472<br><211> 1080<br><212> DNA<br><213> Homo sapiens                     |      |
|--------------------------------------------------------------------------------|------|
| <400> 472<br>caggcgcatc agggcctgct ctagggctat aagttcccca tagatttttc tatacatgga | 60   |
| ataggcctcc ttggagatgg cgttatttcc caggtggcgg cagatgaact tgatcatgga              | 120  |
| aaagctgttc acaaaggcaa gcctccctga ccgttcccag taggtgttga tgcacaggga              | 180  |
| caccaaaggc acgttcatga caaacttttc ctcaaacccg tggatcatag cctcgactac              | 240  |
| gtagaagaag gctggatagg cagtgtcata ggcagtatcc tgcacagtct caataacggc              | 300  |
| ctgatecacc acgtgggcca gagatgtggc ggtctcaaac tgctgccccc gggcctcttg              | 360  |
| gaatgcaget ggggccaggg gagtcggcag gttacccacc attagccggt gcacagccct              | 420  |
| gtgcctggcc ctctccccgg catccctgcc aatgtaaata tcataaaggg ggtgcagctc              | 480  |
| cagccgcagc aggtcataat tggacgggtg gaggaagtct tcggtgggca gcccgcactt              | 540  |
| gagagetata tetgteaegg gggetgeata ettgttatea tagaaetegt eeacaataae              | 600  |
| aagcacattc atgtgattgg gcctcctgtg ttgcagggag taggtctcgc gcctgtctcg              | 660  |
| cggggccggg gccgcgttga ggctgtttag ggtatgggcg ggtgtgtgga gtcggggggtg             | 720  |
| acagagaacc ttgagagcat tctgtaggtt aaacgcgagg agaaggttat tcttgtttac              | 780  |
| gatecatgee tecaceggta getgetgtgt ggggttgtee ageattttga tggeggegga              | 840  |
| ggtcgtgtac ttgggattgg gcataaacag gcccactggg aaatagtagc tgtactgcat              | 900  |
| tettetgttg agggggtatg gggactgagt gteattgtae atettttgea ggettteeae              | 960  |
| ggccaccgcg tggttgccca gcttgatgac ggcggctgag atcggcaccc ggggctgatc              | 1020 |
| ctcgacccct gcggccacag ccggcaggtc agacttggtg cttccggctt tttccggtga              | 1080 |
| <210> 473<br><211> 195<br><212> DNA<br><213> Homo sapiens                      |      |
| ccctgaaggt gaaccgctta ccacctcctc ttcttgctgg acgaggaccc ttctacggac              | 60   |
| tegtetgggt tettggeece etetggtagg actgggegae eggtgeette ttaggagetg              | 120  |
| tccgagggga ccctctggcc cgataccggg gggcccgggc cgggttggtc cagggccttc              | 180  |
| acttcggtct cccct                                                               | 195  |

<210> 474

| <211>   | 223    |             |             |              |              |            |     |
|---------|--------|-------------|-------------|--------------|--------------|------------|-----|
| <212>   |        |             |             |              |              |            |     |
| <213>   |        | o sapiens   |             |              |              |            |     |
| -0157   | 110111 | o bapiens   |             |              |              |            |     |
| <400>   | 474    |             |             |              |              |            |     |
|         |        | gggaab      |             |              |              |            |     |
| uacgg.  | aaayt  | ccgaaceeta  | cacatttcta  | gtcgtgacgg   | ctagcttttt   | ggtggtcatg | 60  |
|         |        |             |             |              |              |            |     |
| gegge   | ggrgg  | tcaacatata  | tctccagata  | caggagatga   | ggaaaaaaaa   | ggaggacaag | 120 |
|         |        |             |             |              |              |            |     |
| tetaa   | cggaa  | taatatccga  | tcatatatat  | ggagggatat   | caggtcatca   | ttgtgtatca | 180 |
|         |        |             |             |              |              |            |     |
| aaagat  | tgatt  | tgtacaacag  | ggaaggatac  | ggttttaaag   | gtt          |            | 223 |
|         |        |             |             |              | -            |            |     |
|         |        |             |             |              |              |            |     |
| <210>   | 475    |             |             |              |              |            |     |
| <211>   | 249    |             |             |              |              |            |     |
| <212>   | DNA    |             |             |              |              |            |     |
| <213>   | Homo   | sapiens     |             |              |              |            |     |
|         |        | •           |             |              |              |            |     |
| <400>   | 475    |             |             |              |              |            |     |
| tcataa  | agta   | acqatqctac  | ++++++      | taassass     | tttttctttg   |            |     |
|         | -550u  | acgacgccac  | ccccccaac   | tecaagatgg   | tttttctttg   | ttagtctttt | 60  |
| attasa  | ttaa   | taatt       |             |              |              |            |     |
| geegae  | Lege   | rggricectaa | aagttcgcaa  | aaacgattgt   | gtgaagattt   | tatgacgttg | 120 |
|         |        |             |             |              |              |            |     |
| gttgac  | tagt   | tcatgagatt  | ctgctgtacg  | tgtgatggtt   | attcgctggt   | tcqttctaaq | 180 |
|         |        |             |             |              |              |            |     |
| atgagt  | atcg   | tactgtgtct  | gcgatggtcg  | tctcttactq   | gcattctctc   | gactacetet | 240 |
|         |        |             |             |              | J            | 3300900000 | 240 |
| tgcttt  | cat    |             |             |              |              |            | 240 |
|         |        |             |             |              |              |            | 249 |
|         |        |             |             |              |              |            |     |
| <210>   | 476    |             |             |              |              |            |     |
|         | 185    |             |             |              |              |            |     |
| <212>   |        |             |             |              |              |            |     |
|         |        |             |             |              |              |            |     |
| <213>   | ното   | sapiens     |             |              |              |            |     |
|         |        |             |             |              |              |            |     |
|         |        |             |             |              |              |            |     |
| <220>   |        |             |             |              |              |            |     |
| <221>   | misc   | feature     |             |              |              |            |     |
| <222>   | (54)   | (54)        |             |              |              |            |     |
| <223>   |        | a, c, g, t  | or 11       |              |              |            |     |
|         |        | ., ., 3, -  | u           |              |              |            |     |
| <220>   |        |             |             |              |              |            |     |
|         | miec   | feature     |             |              |              |            |     |
| <222>   | (62)   | _reacure    |             |              |              |            |     |
|         |        |             |             |              |              |            |     |
| ~2233   | n is   | a, c, g, t  | or u        |              |              |            |     |
|         |        |             |             |              |              |            |     |
| <220>   |        |             |             |              |              |            |     |
| <221>   |        | feature     |             |              |              |            |     |
|         |        | (110)       |             |              |              |            |     |
| <223>   | n is   | a, c, g, t  | or u        |              |              |            |     |
|         |        |             |             |              |              |            |     |
| <220>   |        |             |             |              |              |            |     |
| <221>   | misc   | feature     |             |              |              |            |     |
|         |        | (137)       |             |              |              |            |     |
|         |        | a, c, g, t  | or "        |              |              |            |     |
|         | 10     | u, c, g, t  | OI U        |              |              |            |     |
| <400>   | 476    |             |             |              |              |            |     |
|         |        |             |             |              |              |            |     |
| gagtto  | rgc c  | aygacatct t | tctcggggt t | ctcgttgca a  | atcctcggtc a | actngttcaa | 60  |
|         |        |             |             |              |              |            |     |
| ingtttt | gag g  | gattetteg g | ccaactctg g | gaaacagcgg d | tctcccaqn d  | tcagctgac  | 120 |

```
tgttaacctc cttcctnaac atagtctgca ggaacgtcgt ggccttggtc acqqqtqtct
                                                                       180
cadac
                                                                         185
<210> 477
<211> 300
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (11)..(11)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (17)..(17)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (32),.(32)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (34)..(35)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (50)..(50)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (103)..(103)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (110)..(110)
<223> n is a, c, q, t or u
<220>
<221> misc_feature 
<222> (116)..(116)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (122)..(122)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (134)..(135)
<223> n is a, c, g, t or u
```

```
<220>
 <221> misc feature
 <222> (149)..(149)
 <223> n is a, c, g, t or u
 <220>
 <221> misc_feature
 <222> (152)..(152)
 <223> n is a, c, g, t or u
<220>
 <221> misc feature
 <222> (159)..(159)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (169)..(169)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (172)..(172)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (182)..(182)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (197)..(197)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (204)..(204)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (257)..(257)
<223> n is a, c, g, t or u
<400> 477
teteateagg ngageantga ggeaagttet gnanngeege eatggeetgn etgeageeat
                                                                    60
tggtggtett agggaagget gagttettgg taaagaacte tanatteetn tageanatat
                                                                   120
anatcatett tetnntaagt teateettnt tngeaeggne ettageetne antgeaeece
                                                                  180
cnaacttgtt ageggenece ttgntcacat catgcagete ettaatacaa gccatecaca
                                                                 240
tetecegett atectenggt acaatgtagt teteatacat getetgeata gttageecaa
                                                                 300
```

<210> 478 <211> 363 <212> DNA

PCT/US2003/012946 WO 2004/042346

<213> Homo sapiens

| <400> 478<br>cttgacagcc                                       | cggcaggcag | catccctgat | attccttgcg | gtatatggtg | tgatgtcgtg | 60  |
|---------------------------------------------------------------|------------|------------|------------|------------|------------|-----|
| tggaggcaac                                                    | catggcggca | cattgtcttc | cgtgtctaaa | agatggccgg | acaaggcagc | 120 |
| ccgtcttctc                                                    | cgccttcgcc | tgatgcgctg | catccagcct | ctgttttcat | cacccctgct | 180 |
| ttgcccccaa                                                    | ggttgctgat | ctcttgagta | tgactcttct | ggtaccaatc | tctcagaagc | 240 |
| cccactggat                                                    | ggaggccccg | gcccagggtc | ctgatcatgc | tcgccggtag | tctgtacatt | 300 |
| atctccccgc                                                    | tcattgtcgg | gtgactgtct | agagtccccc | tgtccttcaa | atgattccat | 360 |
| ggt                                                           |            |            |            |            |            | 363 |
| <210> 479 <211> 600 <212> DNA <213> Hom <400> 479             | o sapiens  |            |            |            |            |     |
|                                                               | tttaagagat | cctcgtgtaa | aacatctggt | gtccggggga | taatggagtc | 60  |
| aacatccagg                                                    | cttgggcaca | tctgcttcaa | caggaggcgc | agcctgtcat | tttcagatga | 120 |
| tttggcagca                                                    | gccacctcac | ggtagtgctg | cagcagttgc | ttaaacttgg | cccggcattt | 180 |
| tctggaagco                                                    | acccgattct | tgtatcgctt | tatttctagt | tcagaatcgc | attcctccag | 240 |
| cgattctggc                                                    | tgttgtggtt | tccgtgtgcg | tegtgeeggg | gcagccactg | gtgcaggctg | 300 |
| tggaacacca                                                    | atgtctgcta | gctgttgtcc | ttggttagcc | ccggggcaag | caaacaccac | 360 |
| tgctgctgct                                                    | gtttgaacag | tagaattgtc | tccaggttga | ggtgcttctc | ccccggcttg | 420 |
| gttagtctgt                                                    | tgattctggg | ttatgtcgga | gactgggaac | agctgaggtg | ctgcataagc | 480 |
| ttgataagca                                                    | ttctcaggag | caggctgagg | ggcagaaaac | cacgacccag | tcggagcggt | 540 |
| tgaaacatga                                                    | taggcagtta | gctggccttg | tggcagaggc | tctggcagca | ccggccacag | 600 |
| <210> 480<br><211> 146<br><212> DNA<br><213> Hon<br><400> 480 | o sapiens  |            |            |            |            |     |
|                                                               | gaaccgctta | ccacctcctc | ttcttgctgg | acgaggaccc | ttctacggac | 60  |
| tcgtctgggt                                                    | tcttggcccc | ctctggtagg | actgggcgac | cggtgccttc | ttaggagctg | 120 |
| tccgagggga                                                    | ccctctggcc | cgatac     |            |            |            | 146 |

<sup>&</sup>lt;210> 481 <211> 66 <212> DNA

| <213>            | Homo sapiens                                                       |     |
|------------------|--------------------------------------------------------------------|-----|
| <400><br>cctaggg | 481<br>ggag accgaagtga aggceetgga ecaaceegge eegggeeeee eggtateggg | 60  |
| ccagag           |                                                                    | 66  |
| <210>            | 482                                                                |     |
| <211>            | 176                                                                |     |
| <212><br><213>   | DNA<br>Homo sapiens                                                |     |
| (213)            | nomo saprens                                                       |     |
| <400>            | 482                                                                |     |
| cctctac          | cagt caaacagatt aaggttcgag tggacatgct gcggcataga atcaaggagc        | 60  |
| acatgct          | tgaa aaaatatacc cagacggaag agaaattcac tggcgccttt aatatgatgg        | 120 |
| gaggat           | gttt gcagaatgcc ttagatatct tagataaggt tcatgagcct ttcgag            | 176 |
|                  |                                                                    |     |
| <210>            | 483                                                                |     |
|                  | 185<br>DVA                                                         |     |
| <212>            | Homo sapiens                                                       |     |
|                  |                                                                    |     |
|                  |                                                                    |     |
| <220><br><221>   |                                                                    |     |
| <221>            | misc_feature<br>(54)(54)                                           |     |
| <223>            | n is a, c, g, t or u                                               |     |
|                  |                                                                    |     |
| <220>            |                                                                    |     |
| <221>            | misc_feature                                                       |     |
| <222>            | (62)(62)<br>n is a, c, g, t or u                                   |     |
| 1000             | , ., g,                                                            |     |
| <220>            |                                                                    |     |
| <221>            |                                                                    |     |
|                  | (110)(110)<br>n is a, c, g, t or u                                 |     |
| 12257            | 11 10 4, 4, 5, 4 41 4                                              |     |
| <220>            |                                                                    |     |
|                  | misc_feature                                                       |     |
| <222><br><223>   | (137)(137)<br>n is a, c, g, t or u                                 |     |
| 12237            | 11 15 a, c, g, c or u                                              |     |
| <400>            | 483                                                                |     |
| cgagtt           | ctgc caggacatct ttctcggggt tctcgttgca atcctcggtc actngttcaa        | 60  |
| angttt           | tgag ggattetteg gecaactetg gaaacagegg gteteeeagn etcagetgae        | 120 |
| tgttaa           | cete etteetnaac atagtetgea ggaacgtegt ggeettggte aegggtgtet        | 180 |
| cgggc            |                                                                    | 185 |
|                  |                                                                    |     |
| <210>            | 484                                                                |     |
| <211>            | 641                                                                |     |
| <212>            | DNA                                                                |     |
| <213>            | Homo sapiens                                                       |     |

<400> 484 atttaaattc tqcaqctcaq aqattcacac aqaagtctgg acacaattca gaagagccac 60 ccagaaggag acaacaatgt ccctgctacc cgtgccatac acagaggctg cctctttqtc 120 tactqqttct actqtqacaa tcaaaqqqcq accacttgcc tgtttcttga atgaaccata 180 totgoaggtg gatttocaca otgagatgaa ggaggaatca gacattgtot tocatttoca 240 agtgtgcttt ggtcgtcgtg tggtcatgaa cagccgtgag tatggggcct ggaagcagca 300 qqtqqaatcc aaqaatatqc cctttcaqqa tqqccaaqaa tttqaactga gcatctcaqt 360 gctgccagat aagtaccagg taatggtcaa tggccaatcc tcttacacct ttgaccatag 420 480 aatcaagcct gaggctgtga agatggtgca agtgtggaga gatatctccc tgaccaaatt taatgtcagc tatttaaaga gataaccaga cttcatgttg ccaaggaatc cctgtctcta 540 600 cgtgaacttg ggattccaaa gccagctaac agcatgatct tttctcactt caatccttac 641 <210> 485 <211> 2165 <212> DNA <213> Homo sapiens <400> 485 tgcgccgcgg ctgctgctgc gcaggcccag tgctgcgctt cgcggcagag gcgtctgcgg 60 120 tgacagetca gteagttgag etetgtgtge caggegeteg ggagggggta getettetag 180 tagtgctcgg cgtcagacat ggcggaggcg atggatttgg gcaaagaccc caacgggccc acceptant catalogue acceptant catalogue acceptant catalogue 240 cccaqcccqq ccaaqcqtcq qctqtcqacq ctcatcctgc acggcggcgg caccgtgtgc 300 cqaqtqcaqq aqcccqqqqc cqtqctgctg gcccaqcccg gggaggcgct ggccgaggcc 360 tegggtgatt teatetecae geageacate etggaetgeg tggagegeaa egagaggetg 420

tacctgctgg gggacgcgcc ggtgagcccc tcctcccaga agctcaagcg gaaggcggag gaggacccgg aggccgcgga tagcggggaa ccacagaata agagaactcc agatttgcct gaagaagagt atgtgaagga agaaatccag gagaatgaag aagcagtcaa aaagatgctt

qaqctqqaqq cctatcqqct qqqccccqcc tcgqcqgcgg acaccqqctc ggaagcaaag

cccqqqqcc tqqccqaqqq cqccqcqqaq ccqqaqccqc aqcqqcacqc cqqqcqqatc

gccttcacgg atgcggacga cgtagccatc cttacctacg tgaaggaaaa tgcccgctcg

cccagctccq tcacaggtaa cqccttqtqq aaaqcqatqq aqaaqaqctc qctcacqcaq

cactogtogc agtocotgaa ggaccoctac otcaagcaco tgcggggcca ggagcataag

480

540

660

720

780

840

| gtggaagcca                   | cccgggagtt | tgaggaggtt | gtggtggatg | agagccctcc | tgattttgaa                  | 960  |
|------------------------------|------------|------------|------------|------------|-----------------------------|------|
| atacatataa                   | ctatgtgtga | tgatgatcca | cccacacctg | aggaagactc | agaaacacag                  | 1020 |
| cctgatgagg                   | agtaagaaga | agaagaagaa | aaagtttctc | aaccagaggt | gggagctgcc                  | 1080 |
| attaagatca                   | ttcggcagtt | aatggagaag | tttaacttgg | atctatcaac | agttacacag                  | 1140 |
| gccttcctaa                   | aaaatagtgg | tgagctggag | gctacttccg | ccttcttagc | gtctggtcag                  | 1200 |
| agagctgatg                   | gatatcccat | ttggtcccga | caagatgaca | tagatttgca | aaaagatgat                  | 1260 |
| gaggatacca                   | gagaggcatt | ggtcaaaaaa | tttggtgctc | agaatgtagc | tcggaggatt                  | 1320 |
| gaa <b>t</b> tt <b>c</b> gaa | agaaataatt | ggcaagataa | tgagaaaaga | aaaaagtcat | ggtaggtgag                  | 1380 |
| gtggttaaaa                   | aaaattgtga | ccaatgaact | ttagagagtt | cttgcattgg | aactggcact                  | 1440 |
| tattttctga                   | ccategetge | tgttgctctg | taagtcctag | atttttgtag | ccaagcagag                  | 1500 |
| ttgtagaggg                   | ggataaaaag | aaaagaaatt | ggatgtattt | acagctgtcc | ttgaacaagt                  | 1560 |
| atcaatgtgt                   | ttatgaaagg | aagatotaaa | tcagacagga | gttggtctac | atagtagtga                  | 1620 |
| tccattgttg                   | gaatggaacc | cttgctatag | tagtgacaaa | gtgaaaggaa | atttaggagg                  | 1680 |
| cataggccat                   | ttcaggcagc | ataagtaatc | tcctgtcctt | tggcagaagc | tcctttagat                  | 1740 |
| tgggatagat                   | tccaaataaa | gaatctagaa | ataggagaag | atttaattat | gaggccttga                  | 1800 |
| acacggatta                   | tccccaaacc | cttgtcattt | ccccagtga  | gctctgattt | ctagactgct                  | 1860 |
| ttgaaaatgc                   | tgtattcatt | ttgctaactt | agtatttggg | taccctgctc | tttggctgtt                  | 1920 |
| cttttttgg                    | agcccttctc | agtcaagtct | gccggatgtc | tttctttacc | tacccctcag                  | 1980 |
| ttttccttaa                   | aacgcgcaca | caactctaga | gagtgttaag | aataatgtta | cttggttaat                  | 2040 |
| gtgttattta                   | ttgagtattg | tttgtgctaa | gcattgtgtt | agatttaaaa | aattagtgga                  | 2100 |
| ttgactccac                   | tttgttgtgt | tgttttcatt | gttgaaaata | aatataactt | tg <b>t</b> att <b>cgaa</b> | 2160 |
| aaaaa                        |            |            |            |            |                             | 2165 |
| <210> 486                    |            |            |            |            |                             |      |
|                              |            |            |            |            |                             |      |

<211> 1098 <212> DNA

<213> Homo sapiens

<400> 486

atggccgtea tggcgcccg aacectecte etgetaete egggggceet ggceetgaee 60
cagacetggg egggeteea etecatgagg tatteettea cateegtgte eeggeeegge
egggggage eeggetteat egeegtggge taegtggaeg acaegeagt egtgeggtte 180
gacagegaeg eeggageea gaggatggaa eeggggge egtggataga geaggaggg 240
ceggagtatt gggaceagga gacaeggaa gtgaaggae egtgaagae tgacegagtg 300

| gacctgggga                                       | ccctgcgcgg     | ctactacaac | cagagcgagg | ccggttctca | caccatccag | 360  |
|--------------------------------------------------|----------------|------------|------------|------------|------------|------|
| ataatgtatg                                       | gctgcgacgt     | ggggteggae | gggcgcttcc | tccgcgggta | ccggcaggac | 420  |
| gcctacgacg                                       | gcaaggatta     | categeeetg | aacgaggacc | tgcgctcttg | gaccgcggcg | 480  |
| gacatggcgg                                       | ctcagatcac     | caagcgcaag | tgggaggcgg | cccatgaggc | ggagcagttg | 540  |
| agagcctacc                                       | tggatggcac     | gtgcgtggag | tggctccgca | gatacctgga | gaacgggaag | 600  |
| gagacgctgc                                       | agcgcacgga     | ccccccaag  | acacatatga | cccaccaccc | catctctgac | 660  |
| catgaggcca                                       | ccctgaggtg     | ctgggccctg | ggettetace | ctgcggagat | cacactgacc | 720  |
| tggcagcggg                                       | atggggagga     | ccagacccag | gacacggagc | tcgtggagac | caggcctgca | 780  |
| ggggatggaa                                       | ccttccagaa     | gtgggcggct | gtggtggtgc | cttctggaga | ggagcagaga | 840  |
| tacacctgcc                                       | atgtgcagca     | tgagggtctg | cccaagcccc | tcaccctgag | atgggagctg | 900  |
| tcttcccagc                                       | ccaccatccc     | catcgtgggc | atcattgctg | gcctggttct | ccttggagct | 960  |
| gtgatcactg                                       | gagctgtggt     | cgctgccgtg | atgtggagga | ggaagagctc | agatagaaaa | 1020 |
| ggagggagtt                                       | acactcaggc     | tgcaagcagt | gacagtgccc | agggctctga | tgtgtccctc | 1080 |
| acagcttgta                                       | aagtgtga       |            |            |            |            | 1098 |
|                                                  | o sapiens      |            |            |            |            |      |
| <400> 487<br>ttttttttt                           | tttttctgat     | tctatgcttg | tgcatgaccc | tgatgagtag | taaatcaatt | 60   |
| caacaagaag                                       | gttgaattgt     | tacccagtaa | ctttcattct | tcttagggta | tgaaaattgg | 120  |
| ccactgaatg                                       | ttctgttcca     | aaattcccta | agcaagttaa | gctaaatatc | tggattaaaa | 180  |
| gatttatttt                                       | gattttaaaa     | tggacactac | atatctggct | tatttagtct | gccctcgtgc | 240  |
| cg                                               |                |            |            |            |            | 242  |
| <210> 488<br><211> 341<br><212> DNA<br><213> Hom | 5<br>o sapiens |            |            |            |            |      |
| <400> 488<br>cccctcccc                           | tectgeagee     | tectgegeec | cgccgagctg | gcggatggag | ctgcgcagcg | 60   |
| ggagcgtggg                                       | cagccaggcg     | gtggcgcgga | ggatggatgg | ggacagccga | gatggcggcg | 120  |
| gcggcaagga                                       | cgccaccggg     | tcggaggact | acgagaacct | gccgactagc | gcctccgtgt | 180  |
| ccacccacat                                       | gacagcagga     | gcgatggccg | ggatcctgga | gcactcggtc | atgtacccgg | 240  |
| taasataaat                                       | ~~~~~~~~       | atacaaaatt | tanataana  | teccaaagee | cactacacaa | 300  |

qtatctacqq agccctcaag aaaatcatgc ggaccgaagg cttctggagg cccttgcgag 360 qcqtcaacqt catgatcatq qgtgcaqqqc cagcccatgc catgtatttt gcctgctatg 420 aaaacatqaa aaggacttta aatqacqttt tccaccacca aggaaacagc cacctagcca 480 acqqtatttt qaaaqcqttt qtctqqaqtt aqaaaqttct cttcttcaac acqtccctcc 540 ccaqqqtqtt cctccctqtq acccaqccqc ctcqacttcq gcccqcttqc tcacqaataa 600 agaactcaga gttgtgtgtg caatgcacac ccagacacac gcacgcacac acacgcgcgc 660 gcacacacat gcttttttc tqttcccctc cgctttctqa agcctgggga qaaatcagtq 720 acagaggege tetetgggtt ttattgttat gtgggtttte ttttgtattt tttttgtttg 780 ttttgttttt aaacattcaa aagcaattaa tgatcagaca taggagaaac cctgaataga 840 aacaaaactt ttqaatqctq qattcaaaaa aqaaaaaaaq ttatctqqac aqcttctttq 900 agactattta aaaactggta caacaggtct ctacaacgcc aagatctaac taagctttaa 960 aaggtcaaga agttttatgg ctgacaaagg actcgcgcaa cgcagaaggc ctttcccacc 1020 ttaagettee ggggatetgg gaattttaee eecattetet tetgtttgte tgagteteat 1080 ctctctgcaa gcaagggctg aaatcatttt gtttggttgt tttgagggag agaggcgggg 1140 tggggggtg caaatctgcc agcagctctt acgtaaggca tgttttattg gggagggctg 1200 agettttatt tteteetete caqtqgggtt qgettttatt gtttettgtt tgggtttgga 1260 atggaaatat ggatagcagc ataaagtact tttattttga caaaattcat ttttttcaac 1320 aatqqaqaca taqatttqac ccacaataac ttctccccct ctctttttac tctgctcaaa 1380 aagcatetet ceteccatta cecaacettq qtcataaqtq tqcetqqetq qtttqcaqat 1440 atttqttctq ctttqtaaaa attqqccatt aqtqcattta ttqaqatqat ctctaaaqaq 1500 1560 ctatgccctq acctacccct gattctatga cattggggcc cttcttttgc tgaaactgcc 1620 ttacgtaatg gttttactcc ttgaaagaga tttgacggaa tccattttat gccaagtgct gccctgcact gtttctgcaa tatgtggtgt atgctgtggt gatcttgctg ggaatgatta 1680 taagtgtgtg tgtgatgggg gagtgggtat tacatgcatt gctgaagagt catcctggtg 1740 ttcctcattc ctcccacctt cccgtggtca ttttaattac ggggcagtgt caccgcaaag 1800 ggaqqaaact caaagccgaa agcaaaattc caggcctgat tctggctttt gaggttcctg 1860 qttcttqaaq ccaqqcctqa cccqactctc aqatqqqqtc agtcccgtcg ctttgcagac 1920 1980 ttttttttt ttttttttt tttttaaaqc ctqqattqta accagatttt cttttttccc 2040 2100 cetteteage tgtagatatg atateteett teagggeece agettaaggg caaagtgagt

| taatgtgtag | acaaaggcga | gggacaagag | agagttaaca | tctagacagt | ggaaaaagcc | 2160 |
|------------|------------|------------|------------|------------|------------|------|
| atggtgtgtg | gtttctggga | accaccaaca | cttgcaggtt | tagettttte | ccagggttga | 2220 |
| ctacaagaaa | gaaaaccatg | tttttgcaag | attaaaatgt | ggttgagtgt | gcctaaatta | 2280 |
| accatececa | tttttatcat | atttccacca | tcacttcagg | gttttaagag | tcagtgctca | 2340 |
| cctgggcgga | gctggtagta | cattttgctt | cttagaaagc | taagtcctgg | gttccgtctg | 2400 |
| attttaggtt | ccaggaactt | cctgagaaca | cccgatcgca | gagggtaatt | ttctggagtt | 2460 |
| tgttttgcag | ggatagctgg | gagtatggcc | accetgetee | acgatgcggt | aatgaatcca | 2520 |
| gcagaagtgg | tgaagcagcg | cttgcagatg | tacaactcgc | agcaccggtc | agcaatcagc | 2580 |
| tgcatccgga | cggtgtggag | gaccgagggg | ttgggggcct | tctaccggag | ctacaccacg | 2640 |
| cagctgacca | tgaacatccc | cttccagtcc | atccacttca | tcacctatga | gttcctgcag | 2700 |
| gagcaggtca | acccccaccg | gacctacaac | ccgcagtccc | acatcatctc | aggcgggctg | 2760 |
| gccggggccc | tcgccgcggc | cgccacgacc | cccctggacg | tctgtaagac | ccttctgaac | 2820 |
| actcaggaga | acgtggccct | ctcgctggcc | aacatcagcg | gccggctgtc | gggtatggcc | 2880 |
| aatgccttcc | ggacggtgta | ccagctcaac | ggcctggccg | gctacttcaa | aggcatccag | 2940 |
| gegegtgtea | tctaccagat | gccctccacc | gccatttctt | ggtctgtcta | tgagttette | 3000 |
| aagtactttc | tcaccaagcg | ccagctggaa | aatcgagctc | catactaaag | gaagggatca | 3060 |
| tagaatcttt | tcttaaagtc | attetetgee | tgcatccagc | cccttgccct | ctcctcacac | 3120 |
| gtagatcatt | ttttttttg  | cagggtgctg | cctatgggcc | ctctgctccc | caatgcctta | 3180 |
| gagagaggag | gggacggcac | ggccgctcac | cggaaggctg | tgtgcgggga | catccgaggt | 3240 |
| ggtggtggac | aggaaggact | tgggaagggg | agcgagaaat | tgctttttct | cttcctccct | 3300 |
| gggcagaatg | tagcttttct | gcttcactgt | ggcagcctcc | tccctggatc | cttagatccc | 3360 |
| agaggaggga | agaaaatttg | cagtgactga | aaacagtaaa | aaaaaaaaa  | aaaaa      | 3415 |
| <210> 489  |            |            |            |            |            |      |

aategggaaa cceggegage ggegegtgg ctategageg agegggggg aacegggagt 60
tgegeegceg ctegggege gggeteegte geggeegeag ecceggggt egeeteeeg 120
tgeetegeee geggacacee tggeegtgga caceetggee gtgggacace gegggggeg 180
gegggggge tgeggggg eggeggegg atgaaggtea egtegetega eggeggeeag 240
etgggaaaga tgeteegaa ggaggegg ggeggtgg tggtgetega etgeeggee

<sup>&</sup>lt;211> 2473 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 489

tatetggeet tegetgeete gaacgtgege ggetegetea acgteaacet caacteggtg 360 gtgetgegge gggeeegggg eggegeggtg teggegeget aegtgetgee egaegaggeg 420 gegegegege ggeteetgea ggagggegge ggeggegteg eggeegtggt ggtgetggae 480 caqqqcaqcc qccactqqca gaagctgcga gaggagagcg ccgcgcgtgt cgtcctcacc 540 tegetacteg ettgeetace egeggeeeg egggtetact teetcaaagg gggatatqag 600 actttctact cggaatatcc tgagtgttgc gtggatgtaa aacccatttc acaagagaag 660 attqaqaqtq agaqaqcct catcaqccaq tqtqqaaaac caqtggtaaa tgtcaqctac 720 aggccagctt atgaccaggg tggcccagtt gaaatccttc ccttcctcta ccttggaagt 780 qcctaccatq catccaaqtq cqaqttcctc qccaacttqc acatcacaqc cctgctqaat 840 gtetecegae ggacetecga ggcetgcatg acceaectae actacaaatg gatecetgtg 900 qaaqacaqcc acacqqctqa cattaqctcc cactttcaaq aaqcaataqa cttcattqac 960 tqtqtcaqqq aaaaqqqaqq caaqqtcctq qtccactqtg aggctgggat ctcccgttca 1020 cccaccatct qcatqqctta ccttatqaaq accaaqcaqt tccqcctqaa qqaqqccttc 1080 gattacatca agcagaggag gagcatggtc tcgcccaact ttggcttcat gggccagctc 1140 ctgcagtacg aatctgagat cctgccctcc acgcccaacc cccagcctcc ctcctgccaa 1200 1260 ggggaggcag caggetette actgatagge catttgcaga cactgagece tgacatgcag ggtgcctact gcacattccc tgcctcggtg ctggcaccgg tgcctaccca ctcaacagtc 1320 tcaqaqctca qcaqaaqccc tgtggcaacg gccacatcct gctaaaactg ggatggagga 1380 atcggcccag ccccaagagc aactgtgatt tttgttttta agactcatgg acatttcata 1440 cctqtqcaat actqaaqacc tcattctqtc atqctgcccc agtgagatag tgagtggtca 1500 1560 ccaqqcttqc aaatqaactt caqacqqacc tcaqqqtagg ttctcgggac tgaaqqaaqq 1620 ccaaqccatt acqqqaqcac aqcatqtqct qactactqta cttccaqacc cctqccctct tgggactgcc cagtccttgc acctcagagt tcgccttttc atttcaagca taagccaata 1680 aatacctgca gcaacgtggg agaaagaagt tgctggacca ggagaaaagg cagttatgaa 1740 qccaattcat tttqaaqqaa qcacaatttc caccttattt tttqaacttt qqcaqtttca 1800 atgtetgtet etgttgette ggggcataag etgateaceg tetagttggg aaagteacee 1860 tacagggttt gtagggacat gatcagcatc ctgatttgaa ccctgaaatg ttgtgtagac 1920 accetettgg gtecaatgag gtagttggtt gaagtagcaa gatgttgget tttetggatt 1980 ttttttgcca tgggttcttc actgaccttg gactttggca tgattcttag tcatacttga 2040 acttgtctca ttccacctct tctcagagca actcttcctt tgggaaaaga gttcttcaga 2100 tcatagacca aaaaagtcat accttcgagg tggtagcagt agattccagg aggagaaggg 2160

| tacttgctag                                            | gtatcctggg | tcagtggcgg | tgcaaactgg | tttcctcagc | tgcctgtcct | 2220 |
|-------------------------------------------------------|------------|------------|------------|------------|------------|------|
| tctgtgtgct                                            | tatgtctctt | gtgacaattg | ttttcctccc | tgcccctgga | ggttgtcttc | 2280 |
| aactgtggac                                            | ttctgggatt | tgcagatttt | gcaacgtggt | actactttt  | tttctttttg | 2340 |
| tctgttagtt                                            | atttctccag | gggaaaaggc | aataattttc | taagacccgt | gtgaatgtga | 2400 |
| agaaaagcag                                            | tatgttactg | gttgttgttg | ttgttcttgt | tttttatatg | taaaataaaa | 2460 |
| atagtgaaag                                            | gag        |            |            |            |            | 2473 |
| <210 > 490<br><211 > 121<br><212 > DNA<br><213 > Home | sapiens    |            |            |            |            |      |
|                                                       | caacttggat | ctgtgctgaa | aaattgtgac | atttcagtac | atctggtaga | 60   |
| gggtacagct                                            | tttatcttgc | acatgaattt | tttgatgttc | ttcctgtgca | taaatttcag | 120  |
| aaaacaccac                                            | agggatggcg | agaagtattt | gttgacattg | atccacaggt | ttctgataaa | 180  |
| ctgaggtttg                                            | ttttggcacc | ttctgccacc | ccagcagaag | ccttcataca | acatgacgaa | 240  |
| acaagggatc                                            | atgttgaagt | gtgtcctgat | gctggtgtta | tcatcgagga | actttctcaa | 300  |
| cgcattgcat                                            | taactggagg | tgctgcactg | gttgctgatt | atggtcatga | tggaacaaag | 360  |
| acagatacct                                            | tcagagggtt | ttgcgaccac | aagcttcatg | atgtcttaat | tgccccagga | 420  |
| acagcagatc                                            | taacagctga | tgtggacttc | agttatttgc | gaagaatggc | acagggaaaa | 480  |
| gtagcctctc                                            | tgggcccaat | aaaacaacac | acatttttaa | aaaatatggg | tattgatgtc | 540  |
| cggctgaagg                                            | ttcttttaga | taaatcaaat | gagccatcag | tgaggcagca | gttacttcaa | 600  |
| ggatatgata                                            | tgttaatgaa | tccaaagaag | atgggagaga | gatttaactt | ttttgccttg | 660  |
| ctacctcatc                                            | agagacttca | aggtggaaga | tatcagagga | atgcacgtca | gtcaaaaccc | 720  |
| tttgcatccg                                            | ttgtagctgg | gtttagtgaa | cttgcttggc | agtgatattt | cagcttggac | 780  |
| attttaccct                                            | tcagtcggcc | caagaaatca | aaataaagga | aacacatttc | atatactgca | 840  |
| ggtaacaaaa                                            | gtcaaagtat | tttatctttt | cacagcaaga | acagtccatg | ttgtatataa | 900  |
| tacaaccaac                                            | attatagaac | ttttagggtt | gtgactggct | ttggtgcaaa | tgtgtgctca | 960  |
| agctaataag                                            | ttattgtgaa | actgagtttc | ctttaactta | caaagctagt | tgccatattt | 1020 |
| ctattttatt                                            | ttaaaaagta | aacatgegge | tgggcgtggt | ggctcatgcc | tgtaatccca | 1080 |
| gcactttggg                                            | aggctgaggt | gggcatatca | cctgaggtca | gcagttaaag | accagcctga | 1140 |
| ccaaaatgga                                            | gaaaccccat | ctctactaaa | aatacaaaac | tagccgggta | tggtggtaca | 1200 |
| tgcctgtaat                                            | cccagc     |            |            |            |            | 1216 |

<210> 491 <211> 5590 <212> DNA

<213> Homo sapiens

<400> 491 ttttaccacq atqtaaacaa acaaacaaaa aactctcqqc attqcccca ctcctqqca 60 qtqtctattq tqqqaqqaqa qaccqaaatt ctcaqqacac acccaqqcct caaqacttct 120 cgcccaatcc gtcaccactt cctggcgcag acatcggact gttaaggccc ctccacttcc 180 cgctcaggtt acagacccca gggcacatcc ccccatcctc acccgcctgc atgaccaggc 240 tgccccctgc cccgcacacc tctctctgag tagcctcctg tcttccctct ggcagctgag 300 teagetteac caceteactg ggtetggaac agceaactee tgacacttte acacteacag 360 aggtggagca ggggcacggg ggctgggcac caccagtgtg tgggcagcac ccaggcatta 420 aacacagcag aggatggcgc aggcacccct gttctcctcc cagagccaaq cttcaqqcca 480 tgtccagcgg gggaggctgt gagtcacctc tgcctcatgt gggtgatcat aggagggtgt 540 gagtcagctc tqtccacatg gttgctcatg ggagggtatg agtcagctct gtcaatgtgg 600 qtqqtqqqtq qtcacqqqaq qqtqtqaqtc aqctctqtcc acqtqqttqc tcataqqaqq 660 ttqtqaqtca qctctqtcca tqtqqqqtqc tcacaqqaqq qtqtqtqtca qctctqtctq 720 tqtqqqtqqt cacqqqaqqq tqtqaqtcaq ctctqtctqt qqqtqqtcac aqqaqqtqt 780 gagtcagetc tgtctgagtg ggtggtcacg ggagggtgtg tgtcagetct gtctgtgtgg 840 qtqqtcacqq qaqqqtqtqt qtcaqctctq tccqtqtqqq tqctcacqqq aqqqtqtqaq 900 teagetetat etatatagat gateacaga aggtatatat cagetetate tatatagata 960 ctcacgggag ggtgtgagtc agctctgtct gtgtgggtgg tcacagaagg gtgtgtgtca 1020 getetgtgtg ggtgeteaeg ggagggtgtg agteagetet gtetgtgtgg gtggteaeag 1080 gagggtgtgt gtcagctctg tctgtgtggg tggtcacggg agggtgtgag tcagctctgt 1140 ctgtgtgggt ggtcacagga gggtgtgagt cagctctgtc tgtgtgggtg gtcacaggag 1200 1260 ggtgtgagtc agctctqtcc atgtgqgtgc tcacqqqaqq ttqtgaqtca qctctqtctq tgtgggtggt cacaggaggg tgtgagtcac ctctgcctgt gggtggtcac gggagggtgt 1320 qaqtcaqctc tqtctqtqtq qqtqqtcaca qqaqqqtqtq aqtcaqctct qqqtqqtcac 1380 qqqaqqqtqt qaqtcaqctc tqtctqtqtq qqtqqtcacq qqaqqqtqtq aqtcaqctct 1440 qtctqtqqq qtqctcacqq qaqqqtqtqa qtcaqctctq tctqtqqqq tqctcacaqq 1500 agggtgtgag tcagctctgt ctgtgtgggt ggtcacggga gggtgtgagt cagctttgtc 1560

1620

tgtgtgggtg ctcacaggag ggtgtgagtc agttctgtgt gggtggtcac aggagggtgt

qaqtcaqctc tqtqtgggtg gtcacqqqaq qqtgtgagtc agctctgtct gtgtgggtgc 1680 tcacaqqaqq qtqtqaqtca qctctqtctq tqtgqgtggt cacgggaggg tgtqtgtcaq 1740 ctttqtctqt qtqqqtqctc acaqqaqqqt qtqaqtcagc tctgtccgtg tggqtqctca 1800 caggagggtg tgagtcagct ctgtgtgggt tgtcacggga gggtgtgagt cagctctgtc 1860 tototogqtq qtcacaqqaq qqtqtqaqtc aqctctqtct ctqtqqqtqq tcacaqqcqq 1920 gtgtgagtca getetgtete tggggtggte acaggegggt gtgagtcage tetgtetetg 1980 tgggtggtca ccggcgggtg tgagtcagct ctgtccgtgt gggtgctcac aggagggtgt 2040 gtgtcagetc tgtctctgtg ggtggtcaca gtagcgtgtg agtcagetct gtctgtgtgg 2100 gtggtcacgg gagcgtgtga gtcagctctg tctgtgtggg tgctcacagg agggtgtgag 2160 tcagctctgt gtgtgtgggt ggtcacagga gagtgtgagt cagctctgtg tgtgtgggtg 2220 gtcacaggag ggtgtgagtc agctctgtct ctgtgggtgg tcacgggagg gtgtgagtca 2280 gctgtacgtc atgtagttgg tcatctgtgt gttccacctg catcctgggg tagcctgttg 2340 gccatttttg ttgccactat aaagccctga gtgtggctag gaagggggtg ctgggtggga 2400 ccqtatgatc acgtgtgctc agtttggcat gtgtgatcgt catgtgactg ggctcacaga 2460 aaqqaqettq teectaatqa tttecaacet teggactgtg teetgacetg geetgtagte 2520 ctgctgtctg ggtttgcatg gccccgagag cccttctgaa caaaggatgc tgatggattc 2580 aagccagctt ggtgggtgcc gggccctccc tcccacctcc tttagtcttt atgttgacct 2640 tgagctgggg tggtcctggg accccgaggt tcgtgagcgg aagggcttgc aggagggcac 2700 acagcagggg agctgggaga gggggcttgt ttgcctcagc attgggggag ccgaggaaac 2760 2820 gttcatgaaa gcttctgaaa gggaagcagg aaggattttc accccagggc tgcagcttca 2880 gggactacat gagggtatgg gtggggatga ggggaaggcc cacagggtgt tattcccatc teategteet cetetggett tgetttgtgt tgegaaceeg cateetgagg etgactteag 2940 aatqttaaga aaggcagccc tgagcctttg atcaccccag gagttccaga aggcaccagg 3000 gagteetete gggteecatg ecceteecag eccettgggg teaccetgat eggeetggee 3060 aaggtcgcca gctgcctggg gactggggag cagccacatg ccctctgcag gggagtagtt 3120 qccaqqaaqq tqcaqqcqqa ggccctgctc tccatcacag cggtcctgat tatgagatcg 3180 tcactctcaa qaqqccaaaa qttatqacca aacttcaaqa gaaactccca gtaaagtagt 3240 atttccacag cagacagttg ggatgcaggt ccacccacag ccagctctga gctgacacag 3300 qqqcctqqc caqqqttcca ccctqctctq cctqcctqqq qccctqqcta qcctqcagat 3360 aacatcaaqt aqtttcqtaa tttccacaca caqcacttcc agaqcctcat aatcaaccat 3420

ctataaagtc tcaagaagcc atgttgcttc ctcatggcac ctgctttcct tcctctgtgg 3480 tetegggcag ggtcagagag agggccattt agttgagaat ggaagggagg ggccqctqqc 3540 ttctcactcc tcaggaaggc gcccctgctg ctgccccttg agctgggagt gtccggcact 3600 gtggtctcag cacgttccag gccccccgg cccctgtgtt ctctgctggg cctccccttc 3660 ccqaqqqqac taqqqqaqqc aqctqqqatc tqcccaqaqc ttggtcctca ccctcctqtt 3720 cetgggetee ceageetgte agaccettge tggetetttg etatgaccae acagttggat 3780 3840 ggaggettet ccaaggaaaa ggeagagaec aggggeeage aacteeeetg eggetgaaea tggaactctc aggccaagag gagccctggg gtgagcaaca gccctgtggc cttgctttcg 3900 ggttcaggtg gtgcagggag ccaccccgga cctccgtgaa ggccagtgaa atggacagga 3960 4020 caaggtgett ggcctgcgc tggagagcc atcttcttac cccttggcca catggttctg ggaaggcact gacgctttgt aaaacttgcc tggtgtggaa aatgatggcg gtcatatgta 4080 gtaccttaga aggetgtgct gggagttaac gatataacat agegeaaatg cetgaccect 4140 gggagagggg cagtgagagt ttgttgaagt tggcatgtga agtcgaggct ctcagtgagg 4200 tgcagacttt tcctgtccag gaatgggaga caaggagctg tcattcactc aagccetteg 4260 tetgecagee cetggeetgt tatacaceee ttttcaatee tgtaaggtaa gtgttettat 4320 ctccaacttc caggtgggaa gtctgaagct cagagagcct gggccaatqq tacaqqtcac 4380 acaqcacatc aqtqqctaca tgtgagctca gacctgggtc tgctgctgtc tgtcttccca 4440 atatccatqa ccttqactqa tqcaqqtqtc tagggatacq tccatccccg tcctgctgga 4500 qcccaqaqca cqqaaqcctq qccctccqaq qaqacaqaaq qqaqtqtcqq acaccatgac 4560 qaqaqcttqc cacqaaatat qcaqcttcct ttccctqaqa aaatqqcaaa qaaaattcaa 4620 4680 cacagaaggc cagggaggt gtgtggaaac gattcacatg ttcaaaagat ttatatgtgt 4740 agaagaaagc tgtgaagtgt gaagtatatt ttctattgta gaatggatga aaatggaata aaaataatat cctttgctag gcagaataaa taacttcttt aaacaatttt acggcatgaa 4800 4860 gaaatctqqa ccaqtttatt aaatgggatt tctgccacaa accttggaag aatcacatca tettagecca aggtgaaaac tgtgttgegt aacaaagaac atgaetgege tecacacata 4920 4980 catcattqcc cggcgaggcg ggacacaagt caacgacgga acacttgaga caggcctaca actqtqcacq gttcagaagc aggtttaagc catacttgct gcagtgagac tacatttctg 5040 tctaaaqaaq atgtgagtcc taagcagact taaaqccaag aaaataagaa gaggaaagag 5100 agagggectq cettaaccac etqtqqtqet qaettggaca attecaggte aagaggaact 5160 gtctactttc gactttgtgt gatagtaact ttttaagcag tggaccggga gcccaagact 5220 caqatqcaqc aaqctttqca aqqctqacqa qaqctgagat cttcagtggc cgatgggtac 5280

agggctgctg ggagcgtagc cacgtctgct ccaaggtggc ttgaatgagg cagtgcccaa 5340
gtccttttga ctggctgagg tgagcctgtg gctcagtcac actttgtccc tctcgtaata 5400
agtgcatttc ccagacagca gctccttggt gtcatgcaac tgaggaacct aattgtctgg
gtgggttgtt cccatccaac ttccacctgt cacgaaggtt gctttttcag atcagtctcc 5520
acagctacca tcttgtcggg cacagagccg ggcatcaaca agtgtatgtt gaataaagaa 5580
tgaattgatg 5590

<210> 492

<211> 2057 <212> DNA

<213> Homo sapiens

<400> 492

60 ccqtqcaqcc cqaqatqqqc tcqtctcqqq caccctggat qqqqcqtqtq ggtgggcacq 120 qqatqatqqc actqctqctq qctqqtctcc tcctqccaqq qaccttqqct aagagcattg quacettete agaccetqt aaqqaeeeca eqeqtateae eteceetaae gacceetqee 180 tcactgggaa gggtgactcc agcggcttca gtagctacag tggctccagc agttctggca 240 gctccatttc cagtgccaga agctctggtg gtggctccag tggtagctcc agcggatcca 300 360 gcattgccca gggtggttct gcaggatctt ttaagccagg aacggggtat tcccaggtca 420 gctactcctc cqqatctggc tctagtctac aaggtgcatc cggttcctcc cagctgggga qcaqcaqctc tcactcqqqa aqcaqcqqct ctcactcqqq aagcaqcagc tctcattcqa 480 qcaqcaqcaq caqctttcaq ttcaqcaqca qcaqcttcca aqtaqggaat ggctctgctc 540 tqccaaccaa tqacaactct taccqcqqaa tactaaaccc ttcccagcct qqacaaagct 600 660 cttcctcttc ccaaacctct qqqqtatcca gcaqtqqcca aagcqtcagc tccaaccagc 720 gtccctgtag ttcggacatc cccgactctc cctgcagtgg agggcccatc gtctcgcact 780 ctggcccta catccccagc tcccactctg tgtcaggggg tcagaggcct gtggtggtgg tggtggacca gcacggttct ggtgcccctg gagtggttca aggtcccccc tgtagcaatg 840 gtggccttcc aggcaagccc tgtcccccaa tcacctctgt agacaaatcc tatggtggct 900 960 acgaggtggt gggtggctcc tctgacagtt atctggttcc aggcatgacc tacagtaagg qtaaaatcta tootgtgggc tacttcacca aagagaaccc tgtgaaaggc totccaqqgg 1020 tecetteett tgeagetggg eeceecatet etgagggeaa ataettetee ageaacceca 1080 teatececag ccaqteggea getteetegg ccattgegtt ccagecagtg gggactggtg 1140 qqqtccaqct ctgtgqaggc ggctccacgg qctccaaqqq accctgctct ccctccagtt 1200 ctegagtece cagcagttet agcattteca geageteegg tteacectae catecetgeg 1260

| gcagtgcttc cc               | agagcccc  | tgctccccac | caggcaccgg | ctccttcago | agcagctcca | 132  |
|-----------------------------|-----------|------------|------------|------------|------------|------|
| gttcccaatc ga               | gtggcaaa  | atcatccttc | agccttgtgg | cagcaagtcc | agctcttctg | 138  |
| gtcacccttg ca               | tgtctgtc  | tcctccttga | cactgactgg | gggccccgat | ggctctcccc | 1440 |
| atcctgatcc ct               | ccgctggt  | gccaagccct | gtggctccag | cagtgctgga | aagatcccct | 1500 |
| geegeteeat ee               | gggatatc  | ctagcccaag | tgaagcctct | ggggccccag | ctagctgacc | 1560 |
| ctgaagtttt cc               | taccccaa  | ggagagttac | tcgacagtcc | ataagtcaac | tgttgtgtgt | 1620 |
| gtgcatgcct tg               | ggcacaaa  | caagcacata | cactatatcc | catatgggag | aaggccagtg | 1680 |
| cccaggcata ggg              | gttagctc  | agtttccctc | cttcccaaaa | gagtggttct | gctttctcta | 1740 |
| ctaccctaag gtt              | tgcagact  | ctctcttatc | accccttcct | ccttcctctt | ctcaaaatgg | 1800 |
| tagattcaaa gct              | tectetet  | tgattctctc | ctactgttta | aattcccatt | ccaccacagt | 1860 |
| gcccctcagc cag              | gatcacca  | ccccttacaa | ttccctctac | tgtgttgaaa | tggtccattg | 1920 |
| agtaacaccc cca              | atcacctt  | ctcaactggg | aaacccctga | aatgctctca | gagcacctct | 1980 |
| gacgcctgaa gaa              | agttatac  | cttcctcttc | ccctttacca | aataaagcaa | agtcaaacca | 2040 |
| tcaaaaaaa aaa               | aaaaa     |            |            |            |            | 2057 |
|                             |           |            |            |            |            |      |
| <210> 493                   |           |            |            |            |            |      |
| <211> 629                   |           |            |            |            |            |      |
| <212> DNA                   |           |            |            |            |            |      |
| <213> Homo sa               | apiens    |            |            |            |            |      |
| <220>                       |           |            |            |            |            |      |
| <220><br><221> misc fe      |           |            |            |            |            |      |
| <221> MISC_IE               |           |            |            |            |            |      |
|                             | c, g, t   | or 11      |            |            |            |      |
|                             | 0, 5, 0   | 01 u       |            |            |            |      |
| <400> 493<br>acaaatagga caa | agaaagt   | aagaagataa | atgatgactt | ttatttgcca | acatttqqtt | 60   |
| cagcacaact tto              |           |            |            |            |            | 120  |
|                             |           |            |            |            |            |      |
| gtgatttgtc aag              |           |            |            |            |            | 180  |
| atgagacaac ttg              |           |            |            |            |            | 240  |
| tataaatggt cac              |           |            |            |            |            | 300  |
| actacttgac tca              | tttctgt   | ctcgagtaaa | tggactttgg | tagtagcaac | gccataccgt | 360  |
| gatgatatca ttt              | gtgttgg ( | gaatcaaact | gggcaatgca | agagtgtttt | tgaagcctaa | 420  |
| atctatgtaa gac              | ttatcag   | tttgggagag | gataataata | aaagtaacaa | tcaatgcttc | 480  |
| caaactccaa ttg              | actgtct   | tttttagctt | ttatatttac | ctagttgtta | tgctaaccaa | 540  |
| tcagctttt tac               | tgttgct   | gttgttgttg | ttttaagaaa | taaaatttct | gattgctgtt | 600  |

| ttcanaaaaa                                            | aaaaaaaaa                                              | aaaggacgc                                              |                                                                                  |                                                                    |                                                                   | 629               |
|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|-------------------|
| <210 > 494<br><211 > 514<br><212 > DNA<br><213 > Home | o sapiens                                              |                                                        |                                                                                  |                                                                    |                                                                   |                   |
| <400> 494<br>cttccttttt                               | gtccgacatc                                             | ttgacgaggc                                             | tgeggtgtet                                                                       | gctgctattc                                                         | tccgagcttc                                                        | 60                |
| gcaatgccgc                                            | ctaaggacga                                             | caagaagaag                                             | aaggacgctg                                                                       | gaaagtcggc                                                         | caagaaagac                                                        | 120               |
| aaagacccag                                            | tgaacaaatc                                             | cgggggcaag                                             | gccaaaaaga                                                                       | agaagtggtc                                                         | caaaggcaaa                                                        | 180               |
| gttcgggaca                                            | agctcaataa                                             | cttagtcttg                                             | tttgacaaag                                                                       | ctacctatga                                                         | taaactctgt                                                        | 240               |
| aagga <b>a</b> gttc                                   | ccaactataa                                             | acttataacc                                             | ccagctgtgg                                                                       | tctctgagag                                                         | actgaagatt                                                        | 300               |
| cgaggctccc                                            | tggccagggc                                             | agcccttcag                                             | gagctcctta                                                                       | gtaaaggact                                                         | tatcaaactg                                                        | 360               |
| gttt <b>caa</b> agc                                   | acagagetca                                             | agtaatttac                                             | accagaaata                                                                       | ccaagggtgg                                                         | agatgctcca                                                        | 420               |
| gctgctggtg                                            | aagatgcatg                                             | aataggtcca                                             | accagctgta                                                                       | catttggaaa                                                         | aataaaactt                                                        | 480               |
| tattaaatca                                            | aaaaaaaaa                                              | aaaaaaaaa                                              | aaaa                                                                             |                                                                    |                                                                   | 514               |
|                                                       |                                                        |                                                        |                                                                                  |                                                                    |                                                                   |                   |
| <400> 495<br>ctctctgctc                               | ctcctgttcg                                             | acagtcagcc                                             | gcatcttctt                                                                       | ttgcgtcgcc                                                         | ageegageea                                                        | 60                |
| catcgctcag                                            | acaccatggg                                             | gaaggtgaag                                             | gtcggagtca                                                                       | acggatttgg                                                         | tcgtattggg                                                        | 120               |
| cgcctggtca                                            | ccagggctgc                                             | ttttaactct                                             | ggtaaagtgg                                                                       | atattgttgc                                                         | catcaatgac                                                        | 180               |
| cccttcattg                                            | acctcaacta                                             | catggtttac                                             | atgttccaat                                                                       | atgattccac                                                         | ccatggcaaa                                                        | 240               |
| ttccatggca                                            | ccgtcaaggc                                             | tgagaacggg                                             | aagcttgtca                                                                       | tcaatggaaa                                                         | tcccatcacc                                                        | 300               |
| atcttccagg                                            | agcgagatcc                                             | ataassata                                              |                                                                                  |                                                                    |                                                                   | 360               |
| gtggagtcca                                            | 5 5 5                                                  | CCCCaaaacc                                             | aagtggggcg                                                                       | atgctggcgc                                                         | tgagtacgtc                                                        |                   |
|                                                       | ctggcgtctt                                             |                                                        |                                                                                  |                                                                    |                                                                   | 420               |
| gccaaaaggg                                            |                                                        | caccaccatg                                             | gagaaggetg                                                                       | gggctcattt                                                         | gcagggggga                                                        | 420<br>480        |
|                                                       | ctggcgtctt                                             | caccaccatg                                             | gagaaggetg                                                                       | gggctcattt                                                         | gcagggggga<br>catgggtgtg                                          |                   |
| aaccatgaga                                            | ctggcgtctt                                             | caccaccatg<br>tgccccetct<br>cagcctcaag                 | gagaaggetg<br>getgatgeee<br>atcatcagea                                           | gggctcattt<br>ccatgttcgt<br>atgcctcctg                             | gcagggggga<br>catgggtgtg<br>caccaccaac                            | 480               |
| aaccatgaga<br>tgcttagcac                              | ctggcgtctt<br>tcatcatctc<br>agtatgacaa                 | caccaccatg<br>tgccccctct<br>cagcctcaag<br>ggtcatccat   | gagaaggctg<br>gctgatgccc<br>atcatcagca<br>gacaactttg                             | gggctcattt<br>ccatgttcgt<br>atgcctcctg<br>gtatcgtgga               | gcaggggga<br>catgggtgtg<br>caccaccaac<br>aggactcatg               | 480<br>540        |
| aaccatgaga<br>tgcttagcac<br>accacagtcc                | ctggcgtctt tcatcatctc agtatgacaa ccctggccaa            | caccaccatg tgccccctct cagcctcaag ggtcatccat tgccacccag | gagaaggctg<br>gctgatgccc<br>atcatcagca<br>gacaactttg<br>aagactgtgg               | gggctcattt<br>ccatgttcgt<br>atgcctcctg<br>gtatcgtgga<br>atggcccctc | gcaggggga<br>catgggtgtg<br>caccaccaac<br>aggactcatg<br>cgggaaactg | 480<br>540<br>600 |
| aaccatgaga<br>tgcttagcac<br>accacagtcc<br>tggcgtgatg  | ctggcgtctt tcatcatctc agtatgacaa ccctggccaa atgccatcac | caccaccatg tgccccctct cagcctcaag ggtcatccat tgccacccag | gagaaggctg<br>gctgatgccc<br>atcatcagca<br>gacaactttg<br>aagactgtgg<br>atcatccctg | gggctcattt ccatgttcgt atgcctcctg gtatcgtgga atggcccctc             | gcaggggga<br>catgggtgtg<br>caccaccaac<br>aggactcatg<br>cgggaaactg | 480<br>540<br>600 |

| cccactgcca              | acgtgtcagt | ggtggacctg | acctgccgtc | tagaaaaacc | tgccaaatat | 840  |
|-------------------------|------------|------------|------------|------------|------------|------|
| gatgacatca              | agaaggtggt | gaagcaggcg | teggagggee | ccctcaaggg | catcctgggc | 900  |
| tacactgage              | accaggtggt | ctcctctgac | ttcaacagcg | acacccactc | ctccaccttt | 960  |
| gacgctgggg              | ctggcattgc | cctcaacgac | cactttgtca | agctcatttc | ctggtatgac | 1020 |
| aacgaatttg              | gctacagcaa | cagggtggtg | gacctcatgg | cccacatggc | ctccaaggag | 1080 |
| taagacccct              | ggaccaccag | ccccagcaag | agcacaagag | gaagagagag | accctcactg | 1140 |
| ctggggagtc              | cctgccacac | tcagtccccc | accacactga | atctcccctc | ctcacagttg | 1200 |
| ccatgtagac              | cccttgaaga | ggggaggggc | ctagggagcc | gcaccttgtc | atgtaccatc | 1260 |
| aataaagtac              | cctgtgctca | acc        |            |            |            | 1283 |
|                         | o sapiens  |            |            |            |            |      |
| <400> 496<br>cctttcctca | gctgccgcca | aggtgctcgg | tccttccgag | gaagctaagg | ctgcgttggg | 60   |
| gtgaggccct              | cacttcatcc | ggcgactagc | accgcgtccg | gcagcgccag | ccctacactc | 120  |
| gcccgcgcca              | tggcctctgt | ctccgagctc | gcctgcatct | actcggccct | cattctgcac | 180  |
| gacgatgagg              | tgacagtcac | ggaggataag | atcaatgccc | tcattaaagc | agccggtgta | 240  |
| aatgttgagc              | ctttttggcc | tggcttgttt | gcaaaggccc | tggccaacgt | caacattggg | 300  |
| agcctcatct              | gcaatgtagg | ggccggtgga | cctgctccag | cagctggtgc | tgcaccagca | 360  |
| ggaggtcctg              | cccctccac  | tgctgctgct | ccagctgagg | agaagaaagt | ggaagcaaag | 420  |
| aaagaagaat              | ccgaggagtc | tgatgatgac | atgggctttg | gtctttttga | ctaaacctct | 480  |
| tttataacat              | gttcaataaa | aagctgaact | tt         |            |            | 512  |
|                         | o sapiens  |            |            |            |            |      |
| <400> 497               | tttttttt   | tttttttt   | tttttttt   | tttttttt   | cccaagggct | 60   |
| tttttttca               | aagggccccc | caaaaattcc | tttttaaaa  | ttccgggcct | tggggttttt | 120  |
| agtgggaaat              | ccaaaaaaaa | aagccaagga | aacccctgct | tgaaaatatt | ttttttccg  | 180  |
| gggcaaccaa              | ccaaaattgc | ccctttttt  | tttcccgaaa | tgaccagggg | ggaccccccc | 240  |
| ctttttcccc              | tcacatcctt | tgatttgcac | agggctaagg | gttccaaaaa | catggaaaat | 300  |
| tttgaacttt              | gtttttttt  | gggttcaaaa | tcctgccccc | caccctcgta | ggaggcaaat | 360  |

tctggaaaaa tggattattt gtggttggaa aaaacaaaaa aaaaaatggg gccg 414 <210> 498 <211> 6087 <212> DNA <213> Homo sapiens <400> 498 geccegegge teegaacteg gtggteetgg aageteegea ggatggggga gaagatggeg 60 gaagaggaga ggttccccaa tacaactcat gagggtttca atgtcaccct ccacaccacc 120 ctggttgtca cgacgaaact ggtgctcccg acccctggca agcccatcct ccccgtgcag 180 acaggggagc aggcccagca agaggagcag tccagcggca tgaccatttt cttcagcctc 240 cttgtcctag ctatctgcat catattggtg catttactga tccgatacag attacatttc 300 ttgccagaga gtgttgctgt tgtttcttta ggtattctca tgggagcagt tataaaaatt 360 atagagttta aaaaactggc gaattggaag gaagaagaaa tgtttcgtcc aaacatgttt 420 ttcctcctcc tgcttccccc tattatcttt gagtctggat attcattaca caagggtaac 480 ttctttcaaa atattggttc catcaccctg tttgctgttt ttgggacggc aatctccgct 540 tttgtagtag gtggaggaat ttattttctg ggtcaggctg atgtaatctc taaactcaac 600 atgacagaca gttttgcgtt tggctcccta atatctgctg tcgatccagt ggccactatt 660 gccattttca atgcacttca tgtggacccc gtgctcaaca tgctggtctt tggagaaagt 720 attotcaacg atgcagtoto cattgttotg accaacacag otgaaggttt aacaagaaaa 780 aatatgtcag atgtcagtgg gtggcaaaca tttttacaag cccttgacta cttcctcaaa 840 atgitetitg getetgeage geteggeact eteacigget taatitetge attagigetg 900 aagcatattg acttgaggaa aacgcettee ttggagtttg geatgatgat catttttget 960 tatetgeett atgggettge agaaggaate teacteteag geateatgge cateetgtte 1020 traggeateg tgatgtccca ctacacgcac cataacctct ccccagtcac ccagatcctc 1080 atgcagcaga ccctccgcac cgtggccttc ttatgtgaaa catgtgtgtt tgcatttctt 1140 ggcctgtcca tttttagttt tcctcacaag tttgaaattt cctttgtcat ctggtgcata 1200 gtgcttgtac tatttggcag agcggtaaac attttccctc tttcctacct cctgaatttc 1260 ttccgggatc ataaaatcac accgaagatg atgttcatca tgtggtttag tggcctgcgg 1320 ggagccatcc cctatgccct gagcctacac ctggacctgg agcccatgga gaagcggcag 1380 ctcatcggca ccaccaccat cgtcatcgtg ctcttcacca tcctgctgct gggcggcagc 1440 accatgcccc tcattcgcct catggacatc gaggacgcca aggcacaccg caggaacaag 1500 aaggacgtca acctcagcaa gactgagaag atgggcaaca ctgtggagtc ggagcacctg 1560

teggagetea eggaggagga gtacgaggee caetacatea ggeggeagga cettaaggge 1620 ttcgtgtggc tggacgccaa gtacctgaac cccttcttca ctcggaggct gacgcaggag 1680 gacctgcacc acgggcgcat ccagatgaaa actctcacca acaagtggta cgaggaggta 1740 cgccagggcc cctccggctc cgaggacgac gagcaggagc tgctctgacg ccaggtgcca 1800 aggetteagg caggeaggee caggatggge gtttgetgeg cacagacact cageagggge 1860 ctcgcagaga tgcgtgcatc cagcagcccc ttcaagacat aagagggcgg ggcgaggtac 1920 tggctgcaga gtcgccttag tccagaacct gacaggcctc tggagccagg cgacttcttg 1980 ggaaactgtc atctcccgac tcctccctga gccagcctcc gctcagtgtg gctcctcagc 2040 ccacagaggg gagggagcat ggggccaggt gccagtcatc tgtgaagcta gggcgcctac 2100 ccccccaccc ggaggacccc tgcggccccc tgcctagagg agcaccatct acagttgtgc 2160 cattccccag ccactgcctt catgctgccc ccgccggact ggcagagcca ggggtcagcc 2220 acctgccttt gagtcatcaa gatgcctctg cagccacaat tctgacctaa gtggcagggc 2280 ccagaaatcc tgaaaacctc ccgctgcctt ttgtgatact tcctgtgctc cctcagagag 2340 aaacggagtg accttttgtc ctttacctga ttggcacttc gcagtctatc tccctgggta 2400 gcagacggct gctgcccttc tctgggcatg ttctgaatgt ttacactggt accttctggt 2460 atcttcttta gagccccctg caagctgcaa ctctaggctt ttatcttgcg gggtcagagc 2520 gccctctaga gggaaaagct agaggcacag ggtttctgcc ggcccacaac tgctgtcttg 2580 atttgcattt tacagcaaag tgctgagagc ctctagtcgc ctcctgccat ctgatctccc 2640 tecceaceat tecegtacte agttgttett ttgtetaate ggaggeeact gtgetgagge 2700 cctgcagtgt ctgctcactg ctgccatctt cgctgctagt cagggttcca tcctctttcc 2760 cctctcccag ttccctacca cgttggatcc cattcgtcac ccatgctagg gtccccaaag 2820 cactggggca ggggccagag cagcagcacc cagtgctccc tcctctactc tgacctgggg 2880 ccccagcate etggagcaca egetecaege acacacace cagecetgte ecaggggeet 2940 ggccccctca gccatctcag ggtgaggagc tgccagtcat gtccagatgg aatgactccc 3000 atcetetect cateteeect ttgacgagee tcaaactget cageteatea aagageeatt 3060 gccaacttcc gtatgtggtt ctgggtccca gggagccttg gaacctggca ccctggggtq 3120 gtttaattca tcattaagaa gcattcctgc ttctcaaggg acacagtggc ctgcatgggc 3180 cagcatggac cctgggctga tcatgtgcat tcctgcttct ctggggacac agtgggccca 3240 catgggccag catggaccct gggctagagc aagcacatct ccatctcttc cacctcaggc 3300 agtgtggctc cagatgtcag gagggactga cctcaggacc ttccaggttc ctctgtgcca 3360

| ggaatgagag   | gccaggcccg  | atcctaccac   | ctcgccttga  | a ccctgaagto | agagcaggcc | 3420 |
|--------------|-------------|--------------|-------------|--------------|------------|------|
| agccaagcag   | gaagcacact  | gtttacttt    | tgcatgaaaa  | gtaaatgtgt   | acttgataga | 3480 |
| gctaaaatat   | gatcttttt   | aatttctcaa   | ccccataatt  | tgagccattg   | ccttgcttaa | 3540 |
| ttttggtttc   | caccatttcc  | tttagtgga    | gaagagagga  | agtcagaggg   | tagggacctt | 3600 |
| tgcctgcccc   | tgggcgagtg  | cgggcaggga   | tctgagacca  | gattgttctc   | gcacccctgc | 3660 |
| cagaactcac   | tctcccctga  | agtttagggt   | cccatctccc  | agatgtaagt   | tgttttgcaa | 3720 |
| actcagtttg   | ccaggatttc  | tttctttcct   | aatcttaaat  | tcacagataa   | agcaatgaaa | 3780 |
| agagtcagat   | cccatttccg  | tctgcccct    | cgtcaccagg  | tgtgatagcc   | ccagccaggt | 3840 |
| cacacctggc   | ctcacacttt  | gagctgagac   | ttgaaaacga  | tgctgtggcg   | gaagagcatg | 3900 |
| tggggcttgg   | tggaggggcc  | ccaggatttg   | ttgggggcaa  | agggggtggc   | gggaccgttc | 3960 |
| ccaggaggta   | ccagcacctg  | cctcgatctc   | ctctgagcct  | cttctgcccc   | ccgtcggcca | 4020 |
| ggtgaggtca   | gcagcctggg  | agagtgcccc   | caagagatga  | gggcaccccg   | tgttccttgg | 4080 |
| caatcttggc   | tcaccttggt  | aacaaaaggc   | catagaagtc  | tgtttttctg   | ggtcagtttt | 4140 |
| ttttgcctga   | gaataacaaa  | ttgctgctgt   | ctacctttag  | cacacccaat   | aattctattt | 4200 |
| ggggcagtga   | atgcatagaa  | gatataaaaa   | tacgcagctt  | aactatatct   | tcctgcgtgt | 4260 |
| gtatttattt   | tcttctgggt  | ctaggccatg   | gtacaggaga  | actgtggcgt   | gtaggaggaa | 4320 |
| tacttcagga   | tgagtgaagg  | ctggagccag   | ggagcgctgg  | aggaaaccag   | ccctttagcc | 4380 |
| agcagcccct   | ccaccacagg  | cactgctgtg   | tggaacgagt  | tcttggaatg   | aatcccatgc | 4440 |
| tttctgcagc   | ctgtagttgt  | tatgacccct   | cggaacaacc  | accccgtggc   | ttgtgtgggg | 4500 |
| tctcgcaggg   | aaaagggetg  | gcttctaggt   | ccccgagata  | agtgtgcagg   | gggatgggcc | 4560 |
| agggccaggc   | taagggtggc  | tcagttccat   | catctggagg  | tcagacacac   | tgtccagagg | 4620 |
| cagaactgaa g | gccctctcgg  | cccctaccct   | aagccagcca  | cccctcttca   | cagtgggtga | 4680 |
| gctgggctgg g | gctggctggc  | atgaggccaa   | ggggtaggcc  | tgagcgccag   | agtcgcccag | 4740 |
| gttagcccac a | aggattcctt  | tgtgtgccat   | ggaatgctga  | aagatgggtg   | actggggacc | 4800 |
| cttcttaaaa o | ctttggcaa   | aggtgccatc   | ggcagggctt  | ggcctcatga   | agtctcaggt | 4860 |
| ccgtgttccc c | gcagggcgca  | catgcttgga ( | gagtcctcag  | cagggtagcc   | gaggccaggc | 4920 |
| cacttctgct c | gaggatgggg  | caggctgggg 1 | tgtgggtgtg  | gcctggggtg   | gctcagggct | 4980 |
| ggaactgctg o | ctgattcct   | gtgtggggag a | aagctcagtg  | gccgtttgct   | gccactgaca | 5040 |
| aggatttcac a | itgcagaaga  | gaaaaggccc d | cctccaccc   | cccgcattcc   | ctgccgagtg | 5100 |
| agagccagtg t | ttgctgccc   | ttgctggggg ( | gggtaggaa ; | accetgaget 1 | tectgatgeg | 5160 |
| gagtcatgaa g | cagagteet ( | egggaaggca t | ctccacage o | cccgggtcct ( | tgtctaacg  | 5220 |
|              |             |              |             |              |            |      |

| ccctccattt                               | cacgccctcc  | atctcacagt | caagataaag | gcctcgagaa | taaagagcca | 5280 |
|------------------------------------------|-------------|------------|------------|------------|------------|------|
| gcccccttcc                               | atttagtctc  | ctgccgtttc | ccaaacagtt | gtccaacagt | tagacattga | 5340 |
| ggggcttcac                               | tgttaccagg  | catgtaacag | aaggaggaag | actaacacac | acccctgcc  | 5400 |
| ccatcccatc                               | ccctctccc   | gagctatttt | cttgctgtgg | cctctggtgc | ccttgagttg | 5460 |
| gtctccccgg                               | ctgctctgcg  | ggggcttcac | tggcttcgga | gtgagcgcga | agtgctggtg | 5520 |
| agcagtgggc                               | ctgtgattgg  | atgggaagat | gtgcatccgt | ggtcaaaagt | cagctgccag | 5580 |
| ccctgcggaa                               | ccagagcete  | aggctgggat | ggggaggcct | ccctgcttcc | acctgcatgg | 5640 |
| tgggcatggc                               | ctggcttaca  | ccaaaggctt | tgacggtttc | tccaagtaag | gatctgcaaa | 5700 |
| tcttgaatcg                               | tcctcaaaat  | gacgaagctt | gaattgtcct | caagatggat | gtgaatctta | 5760 |
| cattcctttt                               | catcatttcc  | tttgtaaaaa | tgacgagtgc | tgggttttg  | ttttaagaag | 5820 |
| cattatgaag                               | gccagactta  | ctcatttttc | tcccccaagt | gagctgcaag | aggcccctgt | 5880 |
| taggcccctg                               | tttcctgagc  | agtgatgtgc | tgctcttctt | ggtggggctt | tgggctggga | 5940 |
| ggggaaggcg                               | ggtcagagat  | gggggacctg | tggctgccat | gcaggagccc | ctgcgtcatc | 6000 |
| tcgttggact                               | ctttaaggga  | gtcaggaata | gatgtatgaa | cagtcgtgtc | actggatgcc | 6060 |
| tatttagaaa                               | taaagtgtat  | gctgctg    |            |            |            | 6087 |
| <210> 499 <211> 657 <212> DNA <213> Homo | sapiens     |            |            |            |            |      |
| <400> 499                                | cocat saase | caatgctcag |            | ******     |            |      |
|                                          |             |            |            |            |            | 60   |
|                                          |             | tcaatattcc |            |            |            | 120  |
|                                          |             | ctgttcctgt |            |            |            | 180  |
|                                          |             | agccctgact |            |            |            | 240  |
|                                          |             | gacatggttt |            |            |            | 300  |
|                                          |             | gtcatctcct |            |            |            | 360  |
| ttgccatttt                               | tggaggcatg  | gaagaaagac | atgctcctga | gtgtgatggc | cctatgaccg | 420  |
| gtttgtagcc                               | atctgtcacc  | ctctatatta | ttcagccatc | atgaacccat | gtttctgtgg | 480  |

657

ctttctagtt ctgttgtctt gtcgtctcag tcttttagac tcccagctgc acaatttgat 540 tgccttgcaa attacctgct tcaaggatgt ggaaattcct aatttcttct gtgaaccttc 600 tcaaatcccc cagcatgcgt gtagtgacac cttcaccaat taacatagtc atgtatt

<210> 500 <211> 1909 <212> DNA

<213> Homo sapiens

<400> 500

getggtggtg gegegeggeg eggegeggeg atggeggegg gtggeagega teegeggget 60 ggcgacgtag aggaggacgc ctcacagctc atctttccta aagagtttga aacagctgag 120 acacttctaa attcagaagt tcatatgctt ctggaacatc gaaagcagca gaatgagagt 180 gcagaggacg aacaggagct ctcagaagtc ttcatgaaaa cattaaacta cacagcccgt 240 ttcaqtcgtt tcaaaaacag agagaccatt gccagtgttc gtagcttgct actccagaaa 300 aagetteata agtttgagtt ggeetgtttg geeaacettt geecagagae tgetgaggag 360 tecaaggete taateecaag ettggaggga eggtttgaag atgaggaget geageaqatt 420 cttgatgata tccagacaaa gcgcagcttt cagtattaat ctccaaacat cactgctgct 480 cggagaaacc acatccccag gcataacacc accttcccac tgtctggggc tgacttgcac 540 agaaattctg ttgaagacag ttgagaattc ctttggagaa aacagcccag cttggcgtgg 600 ggttaggttg ctgtttcaaa taactcacag gcccaggtga catggaatct tggagcagcc 660 ttgtgcagtg gcagccagtg gcttcctgaa cgtgcctctg cgaagtgtga gatgaggggt 720 cacataacca cactgttgac tacctcattc ctggtttttg gcctccacat catcttttt 780 cttaatattt catgttttaa tttcagggtg tttatacttt ttgaaactag accagaagat 840 agtagaettt atagagaaag accagtttta eetagataet aaaggaagaa ttaaaeeget 900 gttagtttga aatgettttt ttttttttt ttaaatggag atagggtett aactettgte 960 caggetggag gagtgcagte gtacagteat ggeteactga agtettgace eegetgeete 1020 agceteccaa ataactgggg ccacaggtgt gcaccacaac teteagetaa tttttaaaat 1080 tttttataga ggtggggttt tactatgctg tccagactgg tcttaaactc ctgggctcaa 1140 gtgatccccc tgccttggcc tcccaaactg gtgagattac aggcatgagc caccacaact 1200 ggcctgaaat tettaaagga tgggagtgte gatgacagca cettggcate gttqtqccta 1260 acctgggaga cggaagaagc acgccatggg aagtgtttac acttggggga caagtgctaa 1320 gtattgtgga gcccatagcc ccttgagata gatggctact ttgcctttct tcttgaactg 1380 tettgcagaa tgtggatttg gggtaagtgg tettgaagga tteatttagt caccetcaaa 1440 ttaagatttt tacttcatct ttcttgggcc tgcacctcca agataacaaa gaagaagcaa 1500 tggtcgtgcc aaagaggtcc acaaccaggt gtgcactgtt cactgcagcc catttgctgt 1560 atgaactgtg gttgttgtgt gcccaatgac aaggctacta agaaattcat catttgaaac 1620 gtagaggccg cagcagtcag cgatgtttct gaaatgagca tccttgacgc ctgtgtactt 1680

| cccaggctgg a                                                    | tgtgaagct | acattaccat | gtgagttgtg | ccattcacag | cacagtggtg | 1740 |
|-----------------------------------------------------------------|-----------|------------|------------|------------|------------|------|
| aggaattgag c                                                    | tcatgaagc | aggcaaggac | cgaacacctc | caccccaacg | tagacctgca | 1800 |
| ggtgctgccc c                                                    | atgacctcc | accaaagccc | atataaggag | cggagttgtt | aaggactgaa | 1860 |
| gaaaaacttc t                                                    | ctggagaaa | aataaaattg | caattctact | taaaaaaaa  |            | 1909 |
| <210> 501<br><211> 912<br><212> DNA<br><213> Homo               | sapiens   |            |            |            |            |      |
| <400> 501<br>cgcttccgcc t                                       | acctcgccc | aggetgeeag | accggaagcg | ctccgctgta | cctggatcct | 60   |
| gctcctctgg g                                                    | ttgaaaccc | gggcgccgcc | aagatgccgg | cttaccactc | ttctctcatg | 120  |
| gatcctgata c                                                    | caaactcat | cggaaacatg | gcactgttgc | ctatcagaag | tcaattcaaa | 180  |
| ggacctgccc c                                                    | cagagagac | aaaagataca | gatattgtgg | atgaagccat | ctattacttc | 240  |
| aaggccaatg t                                                    | cttcttcaa | aaactatgaa | attaagaatg | aagctgatag | gaccttgata | 300  |
| tatataactc t                                                    | ctacatttc | tgaatgtctg | aagaaactgc | aaaagtgcaa | ttccaaaagc | 360  |
| caaggtgaga a                                                    | agaaatgta | tacgctggga | atcactaatt | ttcccattcc | tggagagcct | 420  |
| ggttttccac t                                                    | taacgcaat | ttatgccaaa | cctgcaaaca | aacaggaaga | tgaagtgatg | 480  |
| agagcctatt t                                                    | acaacagct | aaggcaagag | actggactga | gactttgtga | gaaagttttc | 540  |
| gaccctcaga a                                                    | tgataaacc | cagcaagtgg | tggacttgct | ttgtgaagag | acagttcatg | 600  |
| aacaagagtc t                                                    | ttcaggacc | tggacagtga | agggagcccg | ggcagccacc | gtctccagag | 660  |
| ccctgggcag c                                                    | attttccag | caagatgtac | acaatctttt | gcctttattt | cgtaaagttt | 720  |
| tatacagaag a                                                    | gagaagagc | atgtctttac | ttgaaaaact | cttgatcaag | aatttgggtg | 780  |
| ggagaaaaga a                                                    | agtgggtta | tcaagggtga | tttgaaattt | tctgcagcat | taaagctggc | 840  |
| gcttaataag a                                                    | ataagtaat | aataaagaaa | tttctaacat | tccaaaaaaa | aaaaaaaaa  | 900  |
| aaaaaaaaa a                                                     | a         |            |            |            |            | 912  |
| <210> 502<br><211> 2227<br><212> DNA<br><213> Homo<br><400> 502 | sapiens   |            |            |            |            |      |
| taattcagaa t                                                    | tgagtaaag | aaatatttt  | tctagtcctt | catatattga | aaacttgcca | 60   |
| catgacattg t                                                    | atcgtcttc | attttccaga | agatgcgttg | gtgtgccata | ggtttctaac | 120  |
| ttccttgaaa a                                                    | tagttttt  | aagtcaattg | taaatatacg | tattattgtt | aaaagtaact | 180  |

| ttaaactgca | acacataget | tcaaaacaat | atagagattt | tgtaatacct | tataagtgga | 240  |
|------------|------------|------------|------------|------------|------------|------|
| gttggctaaa | ataccttato | catataaaa  | ttattctatt | ctttgcatgo | ttattttgtg | 300  |
| tgttggttg  | tagcttaaag | tttgatttgt | tgttactctt | tgtgtgccaa | attcactagg | 360  |
| caagcggatt | tttcctcaga | cttcaaaaa  | taattcttt  | aagaaaaaat | gtaaaaatgt | 420  |
| ttattctaaa | aagctgcatt | aaagggacaa | cctataaaaa | gttttgctag | ctcatcttta | 480  |
| gaaggaagaa | agaatattag | cttgggtgat | gtttaatttg | ggtggcgata | gtttctgtag | 540  |
| gctaaacttt | atgagaaaag | tgtacctact | ctataaaggt | aataaatgta | aaacctcttg | 600  |
| ctgttattga | ggaagctctt | caactaccct | aaatttcaca | aatgtaactt | ataacactat | 660  |
| gaaaagattt | gaccaacaat | ttacgtttgc | tgtgtgcttt | agtttttgtt | taagcatatt | 720  |
| cttttgcttg | aatttctgtg | ttcatgagag | ttagggtgtt | ttatgcttct | tgaactaatt | 780  |
| ttataacata | tttaatatat | taccagttaa | gatataaaat | catttgtaca | tagcgaattg | 840  |
|            | attaaagtag |            |            |            |            | 900  |
| agaagtcctg | acagaacaac | cagtttattt | gcacataggt | agcttctgtt | tgaaggaagg | 960  |
|            | aggaaactca |            |            |            |            | 1020 |
|            | gtgctgaagg |            |            |            |            | 1080 |
|            | tacttaggga |            |            |            |            | 1140 |
|            | cattaaaaat |            |            |            |            | 1200 |
|            | aactacttgt |            |            |            |            | 1260 |
|            | ttatacattg |            |            |            |            | 1320 |
|            | agcatttcca |            |            |            |            | 1380 |
|            | gacagtttt  |            |            |            |            |      |
|            | aatttggagc |            |            |            |            | 1440 |
|            | tagaaagtga |            |            |            |            | 1500 |
|            |            |            |            |            |            | 1560 |
|            | tattaaatta |            |            |            |            | 1620 |
|            | cacttgaaaa |            |            |            |            | 1680 |
|            | gttgctaaat |            |            |            |            | 1740 |
|            | ttttactatc |            |            |            |            | 1800 |
|            | ttaaattact |            |            |            |            | 1860 |
|            | tgttgaaaca |            |            |            |            | 1920 |
|            | tacagtttta |            |            |            |            | 1980 |
| aaaactgtcc | tctacctcac | gtgaaataaa | tattttatat | ggttttacta | aaaataagac | 2040 |

| tcatgtatct                                         | ggccacctag               | tttacaaatt | ttgaattata | cccaccyaaa | catgacatac | 2100 |
|----------------------------------------------------|--------------------------|------------|------------|------------|------------|------|
| tgtgctctga                                         | gcttatacct               | caattgtatt | ttgtgctgtt | ttccattttc | atgccttgta | 2160 |
| aataacttgt                                         | atagattgtg               | gatcaaatac | taaataaaaa | cttttaatgc | caaaaaaaa  | 2220 |
| aaaaaaa                                            |                          |            |            |            |            | 2227 |
| <210> 503<br><211> 2992<br><212> DNA<br><213> Homo | s sapiens                |            |            |            |            |      |
| <400> 503<br>taagcctcat                            | agtctaagaa               | agccctcaag | caaggetaac | attttggtca | tctgcgagaa | 60   |
| gattgagcac                                         | tcggtgtcct               | tgctcctttc | agcttcgcag | catcttctgg | agcagcatga | 120  |
| getteteact                                         | ctgactcata               | agtctcccac | cctcataagc | cccactgggg | agtttggggg | 180  |
| cetctattge                                         | catgtgcctg               | gaattattat | atgctcatca | ctttatgata | cdhcaadatt | 240  |
| tgtcdtgvct                                         | gyctttaaag               | ttacattcgt | tetteegete | aaatcctgat | ctggtccatt | 300  |
| aaagagtgtt                                         | cgcagacaaa               | gtttctgaaa | gattagagaa | gaatccccc  | caagattgcc | 360  |
| ccaacactga                                         | actacagaca               | aacactattt | tatttaaata | aggagacagc | tttctaaaag | 420  |
| tatacattct                                         | ctaataaaaa               | tagtttatta | ttttgaatga | tttaatggtt | ttctacacaa | 480  |
| tttacatcac                                         | aacatgtaaa               | ttttagcagt | aacatctgat | tctaacagca | catcatgcta | 540  |
| ttcctttcat                                         | agagccttca               | gagattcaat | gctaaacaaa | tttccttagt | tggcatcaag | 600  |
|                                                    | ctttagaggc               |            |            |            |            | 660  |
|                                                    | cccatcactg               |            |            | *          |            | 720  |
|                                                    | tttctcaatc               |            |            |            |            | 780  |
|                                                    | ttaaggaact               |            |            |            |            | 840  |
|                                                    | agaatgcaag               |            |            |            |            | 900  |
|                                                    | gaaatgaagc               |            |            |            |            | 960  |
|                                                    | cacacagcac               |            |            |            |            | 1020 |
|                                                    | cttttattcc               |            |            |            |            | 1080 |
|                                                    | ttgtaaaagc               |            |            |            |            | 1140 |
|                                                    | ttattttgt                |            |            |            |            | 1200 |
| _                                                  | taaattggta<br>gtagtaagaa | _          | _          |            |            | 1320 |
| _                                                  | tgcctttact               |            | _          |            |            | 1380 |
|                                                    |                          |            |            |            |            |      |

| atc | atactgc  | caggetggtt | atgactcaga | agatgttatc | tgaaaaaagt | ctatagaaaa | 1440 |
|-----|----------|------------|------------|------------|------------|------------|------|
| aaa | aaaacak  | gtcccctccc | tcatcaacaa | aagcccaccc | tctaagagac | attcaagctg | 1500 |
| aac | tatcaca  | attcttaatc | agttacaatt | tacaaacaga | taagtttaaa | ataaacaatt | 1560 |
| tac | aaaattt  | ttgaagcata | ccttaacatc | ttgttttgca | gttaaacaat | ggaaaagtat | 1620 |
| tto | tcctaca  | ctaaaaaaaa | acttgcttra | cacacaactg | aaaatagaat | cttacttgat | 1680 |
| aat | acaaaag  | ctaccatcag | aagaaatccc | ttcaggatca | ttaagccact | teetttgete | 1740 |
| tgo | agtttct  | atagtagttt | taaattatta | ttaaatcacc | tgaaaaaaat | tccaaaagag | 1800 |
| aac | cacacac  | taccatatcc | aaacaacttt | tgcatttccc | ataattgtag | ttaatgtcag | 1860 |
| ccc | agtaggc  | cagaccaacc | cccagttcaa | tactttcctt | ccccaaagc  | tctatacttt | 1920 |
| gga | aggaaaac | agatacagta | tcaaattatg | acactttcct | tgcccaaatt | aatgcactgg | 1980 |
| tac | cacccagt | ggctcatatt | taacttcccc | cagcttccca | attcaaactg | gggggaaaaa | 2040 |
| aac | ctaaatca | ttgggagtta | cttgccaact | tggaagttga | tatttcttta | ctttttccat | 2100 |
| tct | aagactt  | taagttetet | ggcatgagtt | tatctgcaat | cataaactaa | acaattacct | 2160 |
| aaa | acccaccc | caccaatccc | aaccgtaaca | ggccactgcc | aactaattgc | caatatttgc | 2220 |
| cc  | ctcccctt | taataaaact | tttaagaagt | cacattattg | gaaaacttaa | cttcaacatt | 2280 |
| tg  | gcctactc | aagctcttct | gaagttctcc | tgagatgact | gaatatgaac | caaagctgca | 2340 |
| ct  | gtgctgta | cttttcagct | tcaactggga | atactctccc | aaggataaaa | gcagctccag | 2400 |
| tc  | cctgaagg | tgttcgtgcc | aacagcacag | cggtacactc | cttctctaac | ccagtttgtc | 2460 |
| aat | tagtacta | tagcatctgt | ggaaaatctt | agaaaaaaac | attttctccc | ccaccctctc | 2520 |
| tc  | ttccctgt | taagaccatc | ccaaaatgct | tcaagtaaaa | aataacaagt | ttaaggggtt | 2580 |
| aa  | gcactttt | aaagtctgat | taagggggtg | ggggaaaaa  | agagtaacta | ccagccattt | 2640 |
| ct  | ccaatgga | catctcttcc | acagacctca | acgtgagaac | tgctctagtt | tctataaact | 2700 |
| gt  | aaacctgt | ggtggtctga | ttatcctgat | attggatttt | cttgttttct | gttacacctt | 2760 |
| ga  | gtcatttg | cctttaggat | tctagacaga | cctaagggaa | aaagaactga | aaacatattt | 2820 |
| tg  | ccccacc  | cccacaaaaa | aaaatactga | aaactccccc | ccgcctcagt | tacacatcca | 2880 |
| aa  | ctctacat | ttacaaaacg | aattcagggt | gaggaagtaa | aaacaggtca | tctattcaca | 2940 |
|     |          |            |            | antigannat | aattaaaaat |            | 2002 |

<sup>&</sup>lt;210> 504 <211> 972 <212> DNA <213> Homo sapiens

| <400> 504                                                 |                 |            |            |            |     |
|-----------------------------------------------------------|-----------------|------------|------------|------------|-----|
| gcatgagtag tgctct                                         | ttat gaaacgcaac | atgcaataat | agagtaggta | tggtttcaga | 60  |
| agtcagagca gcaggg                                         | ttt tttgtttgtt  | tttgttttac | actatgctaa | tttcagacaa | 120 |
| acagttttca atttaga                                        | aat acaaaaactt  | ttaaactcga | aaaatggcga | acactggttt | 180 |
| tttgggaatg tgtttt                                         | act ttgcatcaag  | atgaatttag | gagaaaatca | cggtgctttt | 240 |
| attaaatgaa cttcaga                                        | atat atgtaaattg | tttttaaag  | ttacatcatt | aacattagta | 300 |
| acctagcatt ttcatta                                        | attg gtataggaat | taatgtttat | tgtacagtat | ctaaggtaaa | 360 |
| atgtgtttct gttttgt                                        | aaa aactactgta  | gatttttact | tacaagtgcc | tttttgccac | 420 |
| ctaatgtttt tatttat                                        | agg aatgetgate  | ttttgtacat | acattttgtt | ttaaaatcat | 480 |
| gtttaataaa tgtttgt                                        | ata taaatgcata  | tgtacagaag | cctatttcaa | aaggaaatca | 540 |
| aagttgctag taaaatg                                        | ttt gagattacat  | ttagaactaa | ctgataatgc | atatagattt | 600 |
| gtgaaaattt tgtgatt                                        | gtt ctgtgtgata  | agggaagctg | ttggtcttga | attctttaat | 660 |
| tttgtccaaa atagttg                                        | ccc caagatttaa  | attttgaggg | tggcttcttt | aagcagtaat | 720 |
| ttattcatgt ccagtgg                                        | ctt ccattagatg  | ggggaacgta | ccggtgttgg | cgccaacttt | 780 |
| aaacattctt caaatct                                        | agt tcgcggggca  | gacgcgttcg | ctccccaggg | cgtcgaaaat | 840 |
| actttcagta cgatatg                                        | gcc gctccagaaa  | aggcgttccc | gtgatgaagg | atctcaacga | 900 |
| aaggeteaca etaacag                                        | ggg aggattacag  | caccacaata | ctacatatct | tctatatatc | 960 |
| ttcttttcta ca                                             |                 |            |            |            | 972 |
| <210> 505<br><211> 2631<br><212> DNA<br><213> Homo sapien | s               |            |            |            |     |
| ggcacgagga acaacct                                        | att tgcaaagttg  | gcgcaaacat | tcctgcctga | caggaccatg | 60  |
| gacacaggtt gtagaga                                        | tag agatggctct  | ggctgtgcat | tcagcagatt | ctgtagatag | 120 |
| aattaatagg acttgga                                        | tgg gattgtggtg  | agagaaagtg | aaatgaaaga | taagttctag | 180 |
| tttggaagtt ttaacaa                                        | ctg aatgtttaaa  | ctcaaataga | cacaaaatat | tggaagagtg | 240 |
| gcaggtttgg gaggatg                                        | aga caatcaactg  | tttggttgag | ccacgttagg | tttgaaatgt | 300 |
| ctacgggatc ccgtggg                                        | gag aggttatatc  | agactggagc | accagagaga | ggccaaggct | 360 |
| gatagtttag atgaaaa                                        | gag agcatgatat  | tttaagccct | gagactggat | aatatcacct | 420 |
| atagaaagac tatatag                                        | aga taagagaggt  | ggggaacaag | taaaagctgc | gggacactcc | 480 |

540

600

taaatttaga gtcaaattta gagcagaaaa tactagcaaa ggggactgaa aagcggtggc

caattgagct tcaaatgcaa gtgaaagtgt gttgtgtgta catttatcat ctcatggcac

aggaaaaacg tgatttaagg agaaggaaqc qatccaatgg gaagaagaga tccaatggat 660 cctctatcac gaagatattq aqataaqaac caatatggat ttgcacccac tqcatttqca 720 gccttqaggt cataagcatc ctcagqaaaa tqcaccaggt gctgctggca aqatqqaaac 780 caacttctcc actcctctqa atqaatatqa aqaagtgtcc tatgagtctq ctqqctacac 840 tqttctqcqq atcctcccat tqqtqqtqct tqqqqtcacc tttqtcctcq qqqtcctqqq 900 caatgggctt gtgatctggg tggctggatt ccggatgaca cgcacagtca ccaccatctg 960 ttacctgaac ctggccctgg ctgacttttc tttcacggcc acattaccat tcctcattgt 1020 ctccatggcc atgggagaaa aatggccttt tggctggttc ctgtgtaagt taattcacat 1080 cgtggtggac atcaacctct ttggaagtgt cttcttgatt ggtttcattg cactggaccg 1140 ctgcatttqt qtcctqcatc caqtctqqqc ccaqaaccac cqcactqtqa qtctqqccat 1200 gaaggtgatc gtcggacctt ggattcttgc tctagtcctt accttgccag ttttcctctt 1260 tttgactaca gtaactattc caaatgggga cacatactgt actttcaact ttgcatcctg 1320 qqqtqqcacc cctqaqqaqa qqctqaaqqt qqccattacc atqctqacaq ccaqaqqqat 1380 tateoggttt gteattgget ttagettgee gatgteeatt gttgeeatet getatggget 1440 cattgcagcc aagatccaca aaaagggcat gattaaatcc agccgtccct tacgggtcct 1500 cactgotgtq gtgqcttctt tcttcatctg ttggtttccc tttcaactgg ttgcccttct 1560 qqqcaccqtc tqqctcaaaq aqatqttqtt ctatqqcaaq tacaaaatca ttqacatcct 1620 ggttaaccca acgageteec tggcettett caacaqetqe etcaacccca tgctttacgt 1680 ctttgtgggc caagacttcc gagagagact gatccactcc ctgcccacca gtctggagag 1740 ggccctqtct gaggactcag ccccaactaa tgacacggct gccaattctg cttcacctcc 1800 1860 tgcagagact gagttacagg caatgtgagg atggggtcag ggatattttg agttctgttc 1920 atcctaccct aatgccagtt ccagcttcat ctacccttga gtcatattga ggcattcaag gatgcacagc tcaagtattt attcaggaaa aatgcttttg tgtccctgat ttggggctaa 1980 gaaatagaca gtcaggctac taaaatatta gtgttatttt ttgttttttg acttctgcct 2040 ataccctggg gtaagtggag ttgggaaata caagaagaga aagaccagtg gggatttgta 2100 agacttagat gagatagcgc ataataaggg gaagacttta aagtataaag taaaatgttt 2160 qctqtaggtt ttttatagct attaaaaaaa atcagattat ggaagttttc ttctattttt 2220 agtttqctaa gagttttctg tttctttttc ttacatcatg aqtggacttt qcattttatc 2280 aaatqcattt tctacatgta ttaaqatqqt catattattc ttcttctttt atgtaaatca 2340 ttataaataa tgttcattaa qttctgaatg ttaaactact cttgaattcc tggaataaac 2400

| cacacttagt                                        | cctgatgtac     | tttaaatatt | tatatctcac | aggagttggt | tagaatttct | 2460 |
|---------------------------------------------------|----------------|------------|------------|------------|------------|------|
| gtgtttatgt                                        | ttatatactg     | ttatttcact | ttttctacta | tccttgctaa | gttttcatag | 2520 |
| aaaataagga                                        | acaaagagaa     | acttgtaatg | gtctctgaaa | aggaattgag | aagtaattcc | 2580 |
| tctgattctg                                        | ttttctggtg     | ttatatcttt | attaaatatt | cagaaaaatt | с          | 2631 |
| <210> 506<br><211> 137<br><212> DNA<br><213> Home | 9<br>o sapiens |            |            |            |            |      |
| <400> 506                                         |                | ****       |            |            |            |      |
|                                                   | tctttcccag     |            |            |            |            | 60   |
|                                                   | cctctccgcg     |            |            |            | -          | 120  |
|                                                   | agaggtgatt     |            |            |            |            | 180  |
| ggccgcgcag                                        | gtgctgacct     | gaacctggtt | catccctttc | tgaccaaaac | tgttcactca | 240  |
| ccgtggaagg                                        | gactaagcat     | ccatatggag | acgccaccag | tcaatacaat | tggagaaaag | 300  |
| gacacctctc                                        | agccgcaaca     | agagtgggaa | aagaaccttc | gggagaacct | tgattcagtt | 360  |
| attcagatta                                        | ggcagcagcc     | ccgagaccct | cctaccgaaa | cgcttgagct | ggaagtaagc | 420  |
| ccagatccag                                        | ccagccaaat     | tctagagcat | actcaaggag | ctgaaaaact | ggttgctgaa | 480  |
| cttgaaggag                                        | actctcataa     | gtctcatgga | tcaaccagtc | agatgccaga | ggcccttcaa | 540  |
| gcttctgatc                                        | tctggtactg     | ccccgatggg | agctttgtca | agaagatcgt | aatccgtggc | 600  |
| catggcttgg                                        | acaaacccaa     | actaggctcc | tgctgccggg | tactggcttt | ggggtttcct | 660  |
| ttcggatcag                                        | ggccgccaga     | gggctggaca | gagctaacta | tgggcgtagg | gccatggagg | 720  |
| gaggaaactt                                        | ggggggagct     | catagagaaa | tgcttggagt | ccatgtgtca | aggtgaggaa | 780  |
| gcagagcttc                                        | agctgcctgg     | gcactctgga | cctcctgtca | ggctcacact | ggcatcette | 840  |
| actcaaggcc                                        | gagactcctg     | ggagctggag | actagcgaga | aggaagccct | ggccagggaa | 900  |
| gaacgtgcaa                                        | ggggcacaga     | actatttcga | gctgggaacc | ctgaaggagc | tgcccgatgc | 960  |
| tatggacggg                                        | ctcttcggct     | gctcctgact | ttacccccac | ctggccctcc | agaacgaact | 1020 |
| gtccttcatg                                        | ccaatctggc     | tgcctgtcag | ttgttgctag | ggcagcctca | gttggcagcc | 1080 |
| cagagetgtg                                        | accgggtgtt     | ggagcgggag | cctggccatt | taaaggcctt | ataccgaagg | 1140 |
| ggggttgccc                                        | aggctgccct     | tgggaacctg | gaaaaagcaa | ctgctgacct | caagaaggtg | 1200 |
| ctggcgatag                                        | atcccaaaaa     | ccgggcagcc | caggaggaac | tggggaaggt | ggtcattcag | 1260 |
| gggaagaacc                                        | aggatgcagg     | gctggctcag | ggtctgcgca | agatgtttgg | ctgattaaaa | 1320 |
| gttaaacctt                                        | aaaagagaaa     | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | 1379 |

<210> 507 <211> 2059 <212> DNA

<213> Homo sapiens

<400> 507

gtgtgagagg ggtagggagt gctcccggcg gcgacggggc cgagttcacc agccgccqqq 60 geagtagteg aaggeeegge geggeatgte etgggtgeeg eggtgeggge agtgaacgeg 120 egeegggegg gatgggeegg egeegggege cagagetgta eegggeteeg tteeegttgt 180 acgcgcttca ggtcgacccc agcactgggc tgctcatcgc tgcgggcgga ggaggcgccg 240 ccaagacagg cataaagaat ggcgtgcact ttctgcagct agagctgatt aatgggcqct 300 tgagtgcctc cttgctgcac tcccatgaca cagagacacg ggccaccatg aacttggcac 360 tggctggtga catcettget geagggeagg atgeacactg teageteetg egetteeagg 420 cacatcaaca gcagggcaac aaggcagaga aggccggttc caaggagcag gggcctcgac 480 aaaggaaggg agcagcccca gcagagaaga aatgtggagc ggaaacccag cacgaggggc 540 tagaactcag ggtagagaat ttgcaggcgg tgcagacaga ctttagctcc gatccactgc 600 agaaagttgt gtgcttcaac cacgataata ccctgcttgc cactggagga acagatggct 660 acgtccgtgt ctggaaggtg cccagcctgg agaaggttct ggagttcaaa gcccacgaag 720 gggagattga agacctggct ttagggcctg atggcaagtt ggtaaccgtg ggccgggacc 780 ttaaggcctc tgtgtggcag aaggatcagc tggtgacaca gctgcactgg caagaaaatg 840 gacccacctt ttccagcaca ccttaccgct accaggcctg caggtttggg caggttccag 900 accagectge tggeetgega etetteacag tgeaaattee ecacaagegg etgeggeage 960 cccctccctg ctacctcaca gcctgggatg gctccaactt cttgcccctt cggaccaagt 1020 cctgtggcca tgaagtcgtc tcctgcctcg atgtcagtga atccggcacc ttcctaggcc 1080 tgggcacagt cactggctct gttgccatct acatagcttt ctctctccag tgcctctact 1140 acgtgaggga ggcccatggc attgtggtga cggatgtggc ctttctacct gagaagggtc 1200 gtggtccaga gctccttggg tcccatgaaa ctgccctgtt ctctgtggct gtggacagtc 1260 gttgccagct gcatctgttg ccctcacggc ggagtgttcc tgtgtggctc ctgctcctgc 1320 tqtgtgtcgg gcttattatt gtgaccatcc tgctgctcca gagtgccttt ccaggtttcc 1380 tttagettee etgetteetg ggaatcagga geetggacae tgeeatetet agageagagt 1440 ggaggcetgg actecetttg etcactecat tegggtecae agetgaggtt geetetgaea 1500 agatgaatgg gcactgcctg cccttctagt gaaaaggctt ggctatggcc ctgtgtgact 1560 ccaggtccca ggaaccttgc cttcgtcatc tgtggatcca tccagaacag cggtatctga 1620

| ageccaggee atacteeetg ceteetttet tetgeetace agaggeteea gagttgaget                     | 1680 |
|---------------------------------------------------------------------------------------|------|
| tgtccttatc tagaaacatg tgaagatgcc caagagcctg gaggcactgc tgtccttcct                     | 1740 |
| gcagaaacag tttctcctcc tcccctcagc cttgtggcca gttcctcttc acatgaagcc                     | 1800 |
| cctggcattt gctggggaag ggactggcct ggtacttgct gttagggcag gaaggggcaa                     | 1860 |
| aaggaagact tgggtagtaa tctgggggtt cagatgggta gcactaagcc agctggccta                     | 1920 |
| aagatgcaat aagttcctag gtagtctacc cttaccttga ggaatgggaa aatgaacctc                     | 1980 |
| agcccattag gcaggaaaag ttgatattta ataaacaagg aaagagtgaa ctgagacccc $$                  | 2040 |
| aaaaaaaaaa aaaaaaaaa                                                                  | 2059 |
| <210> 508<br><211> 1028<br><212> DNA<br><213> Homo sapiens<br><400> 508               |      |
| aatgcaagag gcagttgtta gtcttcaggg cttggcaact gaaatagcta tgtggcggat                     | 60   |
| acggaaaaca gaggacaatt tgaggatctt gctggaataa taaatgacag ctaccatttg                     | 120  |
| ttgagcacct attatatatc aggcactgag ctgggtaggc tctaaacttc acaataaccc                     | 180  |
| tgtgacttaa ctactttatc tccattttgt agttgaagaa ataagttcag agagaaagat                     | 240  |
| tccttcccaa ggtcatgcag ctagtaaatg atagaatcag gattcatagc atcactatag                     | 300  |
| ggggtcaata tttacacaaa aaaggaaagt cacaagcctg tttaaaatga agtgaccacc                     | 360  |
| ttttcttgca tagactaaat aactcgaact ggcattttta ggttggaaag acagctgaat                     | 420  |
| tagtagttaa gtctgatagc caagtaagtt ttaaaaacca aagcatccag gatgcacacc                     | 480  |
| cctgcaccat ttgctgtgcg aattaatagt tctgtctctc tctctctttc ttttttcttt                     | 540  |
| ttattctttg agatggattt tcgctcttgt cgcccaggct ggagtaccgt gagccaagat                     | 600  |
| cacgccactg cctccaggct gggcaacaga gtgagactcc gtctcaaaaa ttaattgcat                     | 660  |
| tttgttagaa aggtcacaat ggctattaaa tttacatctc tatttcatct tcaaggagat                     | 720  |
| $\verb ccggggataa  tatgetatge  \verb ggettgacet  gtttgacace  accetetttg  gaataatgge $ | 780  |
| ${\tt ggccctcact\ taaggcacca\ tatggcccca\ atatatgagc\ aactggagca\ actacccaaa}$        | 840  |
| gtatacagac aaaaaaattt ttcacagaac ttcttttgag ggcccttgac aaaagggagg                     | 900  |
| ttacctacac aacacaaagt tggccccatt aaattaacgg ccatcacacc cacgactgac                     | 960  |
| ggtgatcaaa caaattcaca gcacagacac cgcgcaacaa cgcaacttct ccagcaggac                     | 1020 |
| ategacte                                                                              | 1028 |

<210> 509

<211> 1406 <212> DNA

<213> Homo sapiens

<400> 509

cetetgegge gtcactggga geeegacgga aaactgeget aaaggettgt ettteeeetg 60 ceegacegaa ggageegace ttgeetgege tacagettee ttattttegt eqeetgttet 120 cctgatcctg cgtgttctaa aaacccctta ggctttccat gggttcccag accatggcgg 180 tggcgctgcc cagggacttg cggcaggacg ccaacctggc aaagaggagg cacgcggagc 240 tgtgcaggca gaagcgggtc ttcaacgcca gaaacaggat aattggggga gacactgaag 300 cctgggatgt tcaagttcat gaccagaaga taaaagaagc tactgaaaaa gctagacatg 360 aaacctttgc tgctgaaatg aggcaaaatg acaaaatcat gtgcatattg gaaaaccgga 420 aaaagaggga taggaaaaat ctctgtaggg ctatcaatga cttccaacag agctttcaga 480 agccagaaac tcgccgtgaa tttgatctgt ccgaccccct agcccttaag aaagatcttc 540 cagcccggca gtcagataat gatgttcgga atacgatatc aggaatgcag aaattcatgg 600 gagaggattt aaacttccat gagaggaaga aattccaaga ggaacaaaac agagaatggt 660 ctttgcagca gcaaagggaa tggaagaacg cccgtgctga acaaaaatgc gcagaggccc 720 tctacacaga gacaaggctg cagtttgacg agacagccaa gcacctccag aagctggaaa 780

tcaccaacct cctgcgtggg gacctgctct ccgagaaccc gcagcaggca gccagctcct 960 tegggececa cegegtggte cetgaceget ggaagggcat gacccaggag cagetggage 1020

840

900

60

gcaccaccag aaaggcagtt tgtgcatctg tgaaagactt caacaagagc caggccatcg

agtcagtgga aaggaaaaag caagagaaaa agcaagaaca agaggacaac ttggccgaga

agateegeet agteeagaag cagcaaatee aggagaaget gaggeteeag gaagaaaage 1080 gccagcgaga cctggactgg gaccggcgga ggattcaggg ggctcgcgcc accctgctgt 1140

ttgageggea geagtggegg eggeagegeg acetgegeag agetetggae ageageaace 1200 tcagcctggc caaggagcag catttgcaga aaaaatatat gaatgaagtc tatacaaatc 1260

aacccacggg agactatttc acacaattta atacaggaag tcgataatga ggaacacacc 1320 cttgttcccq tcattcacqt ataaagaqtg gctaccttaa aaaaaaaaaa aaaaaaaaaa 1380

aaaaaaaaa aaaaaaa 1406

<210> 510

<211> 4357

<212> DNA

<213> Homo sapiens

<400> 510

atagtcacca gaagctggaa gagtcaaagg acacattctc ccctcaagcc ccagtgggag

cacqgcccag ctggattttg gacttctggc ctccagaact agacagggcc tcacggtgtc 120 acccagggtg gaatacagtg gtgtgatcat agctcactgc agcctggaat tcctgggctc 180 aagcaaccct gccacctcag ccttccaagt agctaggact acagaacatc catgatagca 240 gtottotgta aatogaactt ttoaagaatt ototgaagga accaagtagg atattottac 300 atcatgactt aatgtgaatg caagaacaag aaataggttt tatctctaaa tataatgaag 360 ggctgtgtgt aaacactgac cctgtctcaa ttctaacaag cattttagac atgagtttac 420 atcggcaaat gggttcagat cgagatcttc agtcctctgc ttcatctgtg agcttgcctt 480 cagtcaaaaa ggcacccaaa aaaagaagaa tttcaatagg ctccctgttt cggaggaaaa 540 aagataacaa acgtaaatca agggagctaa atggcggggt ggatggaatt gcaagtattq 600 aaagtataca ttotgaaatg tgtactgata agaactccat tttctctaca aatacctctt 660 ctgacaatgg attaacttcc atcagcaaac aaattggaga cttcatagag tgccctttgt 720 gccttttgcg gcattctaaa gacagatttc ctgatataat gacttgtcat cacagatctt 780 gtgtggattg cttacgacaa tatttaagga tagaaatctc tgaaagcaga gttaatatta 840 gttgcccaga atgtactgag cggtttaatc cccatgatat tcgcttgata ttaagtgatg 900 atgtcttgat ggaaaaatac gaagaattta tgcttagacg gtggcttgtt gcagatcctg 960 attgtaggtg gtgtccagct ccagactgtg gatatgctgt gatagcattt ggatgtgcca 1020 gctgtccaaa attaacttgt gggcgagagg gctgtggaac agagttttgc taccactgta 1080 aacagatttg gcaccccaac cagacctgtg atgctgctcg acaagagaga gcccagagct 1140 tacgtttgag aactatacgt tcttcatcca ttagttatag tcaagagtct ggagcagcag 1200 ctgatgatat aaagccatgt ccacgatgtg ctgcttatat aataaagatg aatgatggga 1260 gctgcaatca catgacatgt gctgtttgtg gttgtgagtt ttgttggttg tgtatgaaag 1320 aaatctcaga tttgcattat ctaagtccat caggatgtac tttttggggg aagaaaccct 1380 ggagccgaaa gaagaaaata ttgtggcaac tgggaacact ggttggtgct cctgtcqqaa 1440 togotttaat agotggoatt gotattootg caatgattat tggoattoot gtgtatgtgg 1500 gccqcaagat tcacaatcgc tatgaaggca aggatgtttc aaagcacaaa cggaatttgg 1560 ccatagoagg tggtgtaacg ttgtctgtaa tcgtgtctcc agtagtagct gcagtgactg 1620 taggtategg tgttcctatt atgttagett atgtctatgg cgtagttcca atttctcttt 1680 gtcgaagcgg aggttgtgga gtctcagcag gcaatggaaa aggagttagg attgaatttg 1740 atgatgaaaa tgatataaat gttggtggaa ctaacacagc tgtagacaca acatcagtag 1800 cagaagcaag acacaaccca agcatagggg agggaagtgt tggtgggctg actggcagtt 1860

| -3-5050005 | cygaagooao | acggaccgaa | caggagecae | cegagacaac | cigagigaaa | 1920 |
|------------|------------|------------|------------|------------|------------|------|
| cggccagcac | catggcacta | gctggagcca | gtataacggg | gagtctgtca | ggaagtgcca | 1980 |
| tggtaaactg | ttttaacagg | ttggaagtac | aagcagatgt | acagaaagaa | cggtacagtc | 2040 |
| taagtggaga | atctggcaca | gtcagcttgg | gaacagttag | tgataatgcc | agcaccaaag | 2100 |
| caatggcagg | atccattctg | aattcctaca | tcccattgga | caaagaaggc | aacagtatgg | 2160 |
| aggtgcaagt | agatattgag | tcaaagccat | ccaaattcag | gcacaacagt | ggaagcagta | 2220 |
| gtgtggatga | tggcagtgcc | acccgaagtt | atgctggcgg | ttcatccagt | ggcttgcctg | 2280 |
| aaggtaaatc | tagtgccacc | aagtggtcca | aagaagcaac | agcagggaaa | aaatcaaaaa | 2340 |
| gtggtaaact | gaggaaaaag | ggtaacatga | agataaatga | gacgagagag | gacatggatg | 2400 |
| cacagttgtt | agaacaacaa | agcacgaact | caagtgaatt | tgaggctcca | tccctcagtg | 2460 |
| acagtatgcc | ttctgtagca | gattctcact | ctagtcattt | ttctgaattt | agttgttctg | 2520 |
| acctagaaag | catgaaaact | tcttgtagtc | atggttccag | tgattatcac | acccgctttg | 2580 |
| ctactgttaa | cattcttcct | gaggtagaaa | atgaccgtct | ggaaaattcc | ccacatcagt | 2640 |
| gtagcatttc | tgtggttacc | caaactgctt | cctgttcaga | agtttcacag | ttgaatcata | 2700 |
| ttgctgaaga | acatggtaac | aatggaataa | aacctaatgt | tgatttatat | tttggcgatg | 2760 |
| cactaaaaga | aacaaataac | aaccactcac | atcagacaat | ggaattaaaa | gttgcaattc | 2820 |
| agactgaaat | ttaggcccat | aaatgctgca | gaataattac | cactgtacaa | ccgtgtttgg | 2880 |
| agctggttga | actacatgtg | actacttaag | tttcaggtta | ccagcaaaag | ccgggtttca | 2940 |
| ttatcataat | gcagatacat | tttctgtgtt | cagcaaggca | ttgtgtgtca | tgtggatctt | 3000 |
| agttaccaaa | ctatgaagtg | aaggctttaa | aagtgcatta | ttttaaggat | aataaatttg | 3060 |
| aagagcaaag | catgttttgt | gtgtttgcca | caaaacattg | cttgaagcac | atacttagat | 3120 |
| agaaattggt | cttaatttat | ataatcaata | taaaatacta | atgcaattct | acagcattca | 3180 |
| aatgaagaaa | acttgaggct | ttagggataa | gtggttagtg | atattttatt | gaaaccacta | 3240 |
| aagagataag | tttaaaagaa | ctgcataggt | tactctcagt | atatgatact | ctgtaacatt | 3300 |
| tctatttata | tcggcataaa | tttcattttt | tttcttcata | tgcaatgtgg | ttatataaag | 3360 |
| cttaatgcag | ctcatttgct | accatttgga | tacttagaca | ctttgagcaa | gattgtggca | 3420 |
| gtttttgcac | aactttgaaa | tagaaatacc | tggtactcta | tcttgtttat | tgttgatgcc | 3480 |
| atcttagagg | aaaaaatgta | aaggtaagta | attaagcata | tgacagcaac | aaataagata | 3540 |
| cataaaacta | caaaataaag | tcccattagg | ttataagtat | tacaaaaaat | ccacctttct | 3600 |
| ctaaggggaa | gtttgtaccc | cattgattct | tggtgccttt | gggatcgact | gggttttaat | 3660 |
| ggcctagtta | tttgaggatt | ttgctgtgtt | gttttccatg | tcttctctgg | tcaccttgga | 3720 |

| ttatatataa aaatacagga aatagataaa catgaatgtg attaataatg ctgaaaaagt | 3780 |
|-------------------------------------------------------------------|------|
| attagectae caaagacaca etcaggettt agtgaataae tttacataae etcagttttt | 3840 |
| aacacatgca tatcttctcc aaccatgaaa tcaaagcacg gtgcagaact tgtaccaagt | 3900 |
| acaaaaggte catgtatgat tagcattatt ttettttget tttgtttatg gacaatgtte | 3960 |
| agctgacata agcagaagtt ggccaaaata ctgcctgtac tgttaatttc ctgtataatt | 4020 |
| cacttaaata aaagcaggtt aacctcaatg atagcagtta aaatgttcta tcttatgtat | 4080 |
| ttottttaag tattaccatt atggtgctac tgagcgtttt cttttggtaa aaagaaaaat | 4140 |
| gccatgggct gcagtettet tecateaett tteeetaeea ggteeattaa tatgettata | 4200 |
| acactagtgc cagttatttt atttgataat gcttatggta tttgtatatt tgtttgcatt | 4260 |
| ccaattttgt ttaataatga gtgtgtaaac tgcatacgtt aaataaatgt aaatactaat | 4320 |
| gtactgctgc aaaaaaaaaa aaaaaaaa aaaaaaa                            | 4357 |
| <210> 511<br><211> 5476<br><212> DNA<br><213> Homo sapiens        |      |
| ggacggccat actattttta tottgotttt togttotgto goagtactgt ttaatatgag | 60   |
| tccagcgacg gctctgtgac tgttttcctc tggtaaaatc gctcttgcgt cctcagcgtt | 120  |
| tateteaggt geggaaggte teacaggttt ggaaatageg eeggaaaaat egateegegg | 180  |
| agtgagacgg ctcgtaccac actgcagggc ccggaggtca agatggtggc tgtaaaacta | 240  |
| ggatecetga egattgetta geattaagge eegacatgga aceggggtgt gaegagttee | 300  |
| tgccgccacc ggagtgcccg gtttttgagc ctagctgggc tgaattccaa gacccgcttg | 360  |
| gctacattgc gaaaataagg cccatagcag agaagtctgg catctgcaaa atccgcccac | 420  |
| cegeggattg geageeteet tttgeagtag aagttgacaa ttteagattt aeteetegeg | 480  |
| tccaaaggct aaatgaactg gaggcccaaa ctagagtgaa attgaactat ttggatcaga | 540  |
| ttgcaaaatt ctgggaaatt caaggeteet etttaaagat teecaatgtg gageggaaga | 600  |
| tettggacet etacageett agtaagattg tgattgagga aggtggetat gaageeatet | 660  |
| gcaaggateg teggtggget egagttgeee agegteteea etaeceacea ggcaaaaaca | 720  |
| ttggctccct gctacgatca cattacgaac gcattattta cccctatgaa atgtttcagt | 780  |
| ctggagccaa ccatgtgcaa tgtaacacac acccgtttga caatgaggta aaagataagg | 840  |
| aatacaagcc ccacagcatc ccccttagac agtctgtgca gccttcaaag ttcagcagct | 900  |
| acagtegacg ggcaaaaagg ctacagcetg atccagagec tacagaggag gacattgaga | 960  |

agcatccaga gctaaagaag ttacagatat atgggccagg tcccaaaatg atgggcttgg 1020 gccttatggc taaggataag gataagactg tgcataagaa agtcacatgc cccccaactg 1080 ttacggtgaa ggatgagcaa agtggaggtg ggaacgtgtc atcaacattg ctcaagcagc 1140 acttgagect agagecetge actaagacaa ceatgeaact tegaaagaat cacaqeaqtq 1200 cccagtttat tgactcatat atttgccaag tatgctcccg tgqqqatqaa qataataaqc 1260 ttettttetg tgatggetgt gatgacaatt accacatett etgettgtta ceaeceette 1320 ctgaaatccc cagaggcatc tggaggtgcc caaaatgtat cttggcggag tgtaaacagc 1380 ctcctgaagc ttttggattt gaacaggcta cccaggagta cagtttgcag agttttggtg 1440 aaatggetga tteetteaag teegaetaet teaacatgee tgtacatatg gtgeetacag 1500 aacttgtaga gaaggaattc tggaggctgg tgagcagcat tgaggaagac gtgacagttg 1560 aatatggage tgatatteat tecaaagaat ttqqcaqtqq ettteetqte aqeaataqea 1620 aacaaaactt atctcctgag gagaaggagt atgcgaccag tggttggaac ctgaatgtga 1680 tgccagtgct agatcagtct gttctctgtc acatcaatgc agacatctca ggcatgaagg 1740 tgccctggct gtacgtgggc atggttttct cagcattttg ttggcatatt gaggatcact 1800 ggagttactc tattaactat ctgcattggg gtgagccgaa gacctggtat ggtgtaccct 1860 ccctggcagc agagcatttg gaggaggtga tgaagatgct gacacctgag ctgtttgata 1920 gocagootga totootacao cagottgtoa ototoatgaa toocaacaot ttgatgtooc 1980 atggtgtgcc agttgtccgc acaaaccagt gtgcagggga gtttgtcatc acttttcctc 2040 gtgcttacca cagtggtttt aaccaaggct acaattttgc tgaaqctgtc aacttttqta 2100 ctgctgactg gctacctgct ggacgccagt gcattgaaca ctaccqccqq ctccqqcqct 2160 attgtgtctt ctcccacgag gagctcatct gcaaqatqqc tqccttccca qaqacqttqq 2220 atctcaatct agcagtagct gtgcacaagg agatgttcat tatggttcag gaggagcgac 2280 gtctacgaaa ggcccttttg gagaagqqcq tcacqqaqqc tqaqcqaqaq qcttttqaqc 2340 tgctcccaga tgatgaacgc cagtgcatca agtgcaagac cacgtgcttc ttgtcagccc 2400 tggcctgcta cgactgccca gatggccttg tatgcctttc ccacatcaat gacctctgca 2460 agtgctctag tagccgacag tacctccggt atcggtacac cttggatgag ctccccacca 2520 tgctgcataa actgaagatt cgggctgagt cttttgacac ctgggccaac aaagtqcqaq 2580 tggccttgga ggtggaggat ggccgtaaac gcagctttga agagctaagg gcactggagt 2640 ctgaggeteg tgagaggagg tttcctaata gtgagetget tcagegactg aaqaactgee 2700 tgagtgaggt ggaggettgt attgetcaag teetgggget ggteagtggt eaqqtqqeea 2760

| ggacggacac | tecacagety | actitigacty | aacteegggt | cettettgag | cagatgggca | 2820 |
|------------|------------|-------------|------------|------------|------------|------|
| gcctgccctg | egecatgeat | cagattgggg  | atgtcaagga | tgtcctggaa | caggtggagg | 2880 |
| cctatcaage | tgaggctcgt | gaggetetgg  | ccacactgcc | ctctagtcca | gggctattgc | 2940 |
| ggtccctgtt | ggagagggg  | cagcagctgg  | gtgtagaggt | gcctgaagcc | catcagette | 3000 |
| agcagcaggt | ggagcaggcg | caatggctag  | atgaagtgaa | gcaggccctg | gccccttctg | 3060 |
| ctcacagggg | ctctctggtc | atcatgcagg  | ggcttttggt | tatgggtgcc | aagatagcct | 3120 |
| ccagcccttc | tgtggacaag | gcccgggctg  | agctgcaaga | actactgacc | attgcagagc | 3180 |
| gctgggaaga | aaaggctcat | ttctgcctgg  | aggccaggca | gaagcatcca | ccagccacat | 3240 |
| tggaagccat | aattcgtgag | acagaaaaca  | tccctgttca | cctgcctaac | atccaggctc | 3300 |
| tcaaagaagc | tctgactaag | gcacaagctt  | ggattgctga | tgtggatgag | atccaaaatg | 3360 |
| gtgaccacta | cccctgtcta | gatgacttgg  | agggcctggt | ggctgtgggc | cgggacctgc | 3420 |
| ctgtggggct | ggaagagctg | agacagctag  | agctgcaggt | attgacagca | cattcctgga | 3480 |
| gagagaaggc | ctccaagacc | tttctcaaga  | agaattcttg | ctacacactg | cttgaggtgc | 3540 |
| tttgcccgtg | tgcagacgct | ggctcagaca  | gcaccaageg | tagccggtgg | atggagaagg | 3600 |
| cgctggggtt | gtaccagtgt | gacacagagc  | tgctggggct | gtctgcacag | gacctcagag | 3660 |
| acccaggctc | tgtgattgtg | gccttcaagg  | aaggggaaca | gaaggagaag | gagggtatcc | 3720 |
| tgcagctgcg | tcgcaccaac | tcagccaagc  | ccagtccact | ggcaccatcc | ctcatggcct | 3780 |
| cttctccaac | ttctatctgt | gtgtgtgggc  | aggtgccagc | tggggtggga | cttctgcagt | 3840 |
| gtgacctgtg | tcaggactgg | ttccatgggc  | agtgtgtgtc | agtgccccat | ctcctcacct | 3900 |
| ctccaaagcc | cagtctcact | tcatctccac  | tgctagcctg | gtgggaatgg | gacacaaaat | 3960 |
| tcctgtgtcc | actgtgtatg | cgctcacgac  | ggccacgcct | agagacaatc | ctagccttgc | 4020 |
| tggttgccct | gcagaggctg | cccgtgcggc  | tgcctgaggg | tgaggccctt | cagtgtctca | 4080 |
| cagagagggc | cattggctgg | caagaccgtg  | ccagaaaggc | tctggccttt | gaagatgtga | 4140 |
| ctgctctgtt | gcgacagctg | gctgagcttc  | gccaacagct | acaggccaaa | cccagaccag | 4200 |
| aggaggcctc | agtctacact | tcagccactg  | cctgtgaccc | tatcagagaa | ggcagtggca | 4260 |
| acaatatttc | taaggtccaa | gggctgctgg  | agaatggaga | cagtgtgacc | agtcctgaga | 4320 |
| acatggctcc | aggaaagggc | tctgacctgg  | agctactgtc | ctcgctgttg | ccgcagttga | 4380 |
| ctggccctgt | gttggagctg | cctgaggcaa  | tccgggctcc | cctggaggag | ctcatgatgg | 4440 |
| aagggggcct | gcttgaggtg | accctggatg  | agaaccacag | catctggcag | ctgctgcagg | 4500 |
| ctggacagcc | tccagacctg | gacagaattc  | gcacacttct | ggagctggaa | aaatttgaac | 4560 |
| atcaagggag | tcggacaagg | agcegggete  | tggagagggg | acqqcqqcqq | cagaaggtgg | 4620 |

| atcagggtag                                       | aaacgttgag | aatcttgttc | aacaggagct | tcagtcaaaa | agggctcgga | 4680 |
|--------------------------------------------------|------------|------------|------------|------------|------------|------|
| gctcagggat                                       | tatgtctcag | gtgggccgag | aagaagaaca | ttatcaggag | aaagcagacc | 4740 |
| gtgaaaatat                                       | gttcctgaca | ccttccacag | accacagece | tttcttgaaa | ggaaaccaaa | 4800 |
| atagcttaca                                       | acacaaggat | tcaggctctt | cagctgcttg | tccttctta  | atgcctttgc | 4860 |
| tacaactctc                                       | ctactctgat | gagcaacagt | tgtgacagtg | gcaccaaagg | tcatttgtgg | 4920 |
| ttgtttttgt                                       | ttgtttgttt | cttaaatcct | actatctcct | ggcctggacc | tcagaaggag | 4980 |
| etttttgeet                                       | atctataatt | tttcactgcc | aatttttgat | atcctctctc | ctagagttac | 5040 |
| tgttaaaagg                                       | ttggttcgta | aagtccacac | cccgatgctc | agaagtgtct | tgccagcaac | 5100 |
| attcctgcta                                       | gcatacagga | gtgatttcct | aaaccagttt | cattctagtc | tgaataggga | 5160 |
| caaacaaatc                                       | ttgaggaagc | ccaagtgcgt | acctttattt | ttgcccccac | caccctcttt | 5220 |
| ctgtacttca                                       | atttttgttt | gttttttgtt | ttttgtccc  | tgtcataaaa | tattttggtg | 5280 |
| cttcaaaact                                       | tgtaccttca | ttgtacatcc | ttttctttc  | tccccttggg | tcttattata | 5340 |
| aaagaagaca                                       | atgtacgttg | taattaccaa | aaagaatagg | gaaaaacaag | aatttcatga | 5400 |
| ctctacctgt                                       | ggtctatctt | taatttcatt | tcttttgtta | aaaataaaac | aatgagtatg | 5460 |
| tttgggaaaa                                       | aaaaaa     |            |            |            |            | 5476 |
| <210> 512<br><211> 297<br><212> DNA<br><213> Hom | o sapiens  |            |            |            |            |      |
| <400> 512<br>ttacgagcaa                          | gagttcatca | cggaccagcc | gtgaggcagg | gcacacgcgg | gtcggcggcg | 60   |
| atgatgtccc                                       | ccgcgaaggg | gacaacgaaa | acaagaggcc | gccggccgcg | gccacggatg | 120  |
| cgtagcggtt                                       | acacaatgtt | tggttgagcg | ttttgtttca | tcgtcgtggt | ggttttgttg | 180  |
| ttctctgtat                                       | atatcgtgtg | gtggctttat | cgtcatcatt | attatcatca | ttcttgtttc | 240  |
| catcatcacg                                       | atgagttttc | tccgttttcc | tctcctccag | tggtagtcgt | gtatcat    | 297  |
| <210> 513<br><211> 229<br><212> DNA<br><213> Hom | 4          |            |            |            |            |      |
| <400> 513                                        | tccactgcac | ctccacttoo | tgactgacgc | cataaccaaa | aacatcctoo | 60   |
|                                                  | ccacacatgg |            |            |            |            | 120  |
| 3 5                                              |            |            |            |            | tatgggctaa | 180  |

tgaagetggt getgeecagt geettgeetg etgagetgge eegegteatt gteetggaca 240 cqqatqtcac cttcqcctct qacatctcqq aqctctgggc cctctttgct cacttttctq 300 360 acacqcaqqc qatcqqtctt qtqqaqaacc aqaqtqactq gtacctgggc aacctctqqa agaaccacag gccctggcct gccttgggcc ggggatttaa cacaggtgtg atcctgctgc 420 qqctqqaccq qctccqqcaq qctqqctqqq aqcaqatqtq qaqqctqaca qccaqqcqqq 480 540 ageteettag eetgeetgee aceteactgg etgaceaggt etgaggaage ettgeegggt ggggtgtggc aggctggggg ctgggatgtg atgggtgtct ctgctcagga catcttcaac 600 getgtgatca aggagcacce ggggetagtg cagegtetge ettgtgtetg gaatgtgcag 660 etgteagate acacactgge egagegetge tactetgagg egtetgacet caaggtgate 720 cactggaact caccaaagaa gcttcgggtg aagaacaagc atgtggaatt cttccgcaat 780 ttetacetga cetteetgga gtacgatggg aacetgetge ggagagaget etttgtgtge 840 cccagccagc ccccacctgg tgctgagcag ttgcagcagg ccctggcaca actggacggg 900 gaagacccct gctttgagtt ccggcagcag cagetcactg tgcaccgtgt gcatgtcact 960 ttcctgccc atgaaccgcc accccccgg cctcacgatg tcacccttgt ggcccagctg 1020 tecatgace ggetgeagat gttggaagee etgtgeagge actggeetgg ecceatgage 1080 ctqqccttqt acctqacaqa cqcaqaaqct caqcaqttcc tgcatttcgt cqaggcctca 1140 ccagtgcttg ctgcccggca ggacgtggcc taccatgtgg tgtaccgtga ggggccccta 1200 taccccqtca accaqcttcq caacqtqqcc ttqqcccaqq ccctcacqcc ttacqtcttc 1260 ctcaqtqaca ttqacttcct qcctqcctat tctctctacq actacctcaq qqaqqccaqq 1320 geeggettea acagcagete cacetgtggt tgtgcccace cgtcgcatca ggcaagatgg 1380 cccatggtgg totagtcctg tggctaatgc cctgatgagt gtcactggcc cagtcctaga 1440 tgccccgctc ttctcccctg ctcatgggtg ctcctcctca gggcctccat tgagcagctg 1500 gggctgggca gccggcgcaa ggcagcactg gtggtgccgg catttgagac cctgcgctac 1560 cgcttcagct tcccccattc caaggtggag ctgttggcct tgctggatgc gggcactctc 1620 tacaccttca ggtaccacga gtggccccqa ggccacgcac ccacagacta tgcccgctgg 1680 cqqqaqqctc aqqccccqta ccqtqtgcaa tqggcggcca actatgaacc ctacgtggtg 1740 qtqccacqaq actqtccccq ctatqatcct cqctttqtqq qcttcqqctq qaacaaaqtq 1800 qcccacattq tqqaqctqqa tqcccaqqaa tatqaqctcc tqqtqctqcc cqaqqccttc 1860 accatecate tgecccacge tecaageetg gacateteec getteegete cageeceace 1920 tateqtqact gcctccaggc cctcaaggac gaattccacc aggacttqtc ccqccaccat 1980 ggggctgctg ccctcaaata cctcccagcc ctgcagcagc cccagagccc tgcccgaggc 2040

tqaqqctqqq ccqqcqctqc ccctcatctt aqcattgggc agacaccagg gcaacctgcc 2100 ctccgccatc cctgctattt aaattattta aggtctctgg gaagggctgg ggcagagcat 2160 ctgtggggtg gggtcttccc cttgctgcta ttgtatggct ggggactggt ctctctctqc 2220 cccagccagt ttggggctgg ttcccccatc ttgaattgtt tatccctttt tcataattaa 2280 2294 agttttaaaa catc <210> 514 <211> 1542 <212> DNA <213> Homo sapiens <400> 514 ctectettea eteqeaque eteqqaeatq qtqqeeeccq geteegtgae cageeggetg 60 qqctcqqtat tccccttcct qctaqtcctq qtqqatctqc agtacgaagg tgctgaatgt 120 qqaqtaaatq caqatqttqa qaaacatctt qaattqqqca agaaattact tgcagctgga 180 caqctaqctq atqctttatc tcaqtttcat qctqccqtaq atqqtgaccc tgataactat 240 attgcttatt atcggaggc tactgtcttt ttagctatgg gcaaatcaaa agctgcactt 300 cctgatttaa ctaaagtgat tcaattgaag atggacttca ctgcagcaag attacagaga 360 ggtcacttat tactcaaaca aggaaaactt gatgaagcag aagatgattt taaaaaagtg 420 480 ctcaaatcta atccaagtga aaatgaagaa aaggaagcac agtctcaact tataaaatct 540 qatqaaatgc agcgtttgcg ttcacaagca cttaacgctt ttggaagtgg agattatact qctqctataq ccttccttqa taagatttta gaggtttgtg tttgggatgc agaactacgg 600 qaacttcqaq ctqaatqttt tataaaaqaa ggagaaccta ggaaagctat aagtgactta 660 aaaqctqcqt caaaqttgaa gaatgataat actgaagcgt tttataaaat aagcacactg 720

tactaccaac taggagacca cgaactgtcc ctcagtgaag ttcgggaatg tcttaaactt

gaccaggatc ataaaaggtg ttttgcacac tataaacaag taaagaaact taataagctg

attgagtcag ctgaagaget catcagagat ggcagataca cagatgctac cagcaaatat

qaatctqtca tqaaaacaqa qccaaqcatt qctqaatata caqttcqttc aaaqqaqaqq

atttgccact gcttttctaa ggacgagaag cctgttgaag ctattagggt ttgttctgaa

gttttacaga tggaacctga caatgtgaat gccctgaaag atcgagcaga ggcctatttg

atagaggaaa tgtatgatga agctattcag gattatgaaa ctgctcagga acacaatgaa

aatgatcagc agattcgaga aggtctagag aaagcacaaa gattattgaa acagtcgcag

aaacgagatt attataaaat cttgggagta aaaagaaatg ccaaaaagca aqaaattatt

aaagcatacc gaaaattagc actgcagtgg cacccagata acttccagaa tgaagaagaa

780

840

900

960

1020

1080

1140

1200

1260

1320

aaqaaaaaag ctgagaaaaa gttcattgat atagcagctg ctaaagaagt cctctctgat 1380 ccagaaatga gaaagaagtt tgacgacgga gaagatcctt tggatgcaga gagccagcaa 1440 ggaggcggcg gcaaccettt ccacagaagc tggaactcat ggcaagggtt caatcectte 1500 agctcaggcg gaccatttag atttaaattc cacttcaatt aa 1542 <210> 515 <211> 4346 <212> DNA <213> Homo sapiens <400> 515 gcgtgggcgc cagaaagcgg aacctcccgg gccagtcgcg cqqtqqtcac cctcttqqqa 60 gctggggagg aggctgcgga ggctggcccg gctccttcgg gcgtcgcttc ccggaccggg 120 tgcgcggggt cccccggaac gtgtgttcca ggtcctcccg cgccagtgtt cgcagtcccc 180 gcctggtcgc ggcggcgcct cgggcgcggg tgcaggcgcg cggcgcgcag gcggggggg 240 ctgtggtctt ggcgcggga ccgagccgct cggccagacc cgcctctttt ccctccccgc 300 cagceegece geetgeeege eececaegeg tegtgtegee gggaageegg geggagaeag 360 agegettggg atecaeggeg eteggacege tgteetecaa cagegeaggg cagagegget 420 ggcgccgccg gagcgcggag ccacgaccct ccctggccgc ctttgtctac tggccgtgcg 480 geceggaace gecaetetee agggeegggg acgegeeege agetgteggt gacageteet 540 ccctaccgca accctccggg gcggaggggc ggtcgggccg ggccctgcta qcccqcqacc 600 gcaagcccgc gctcgcggat cgatgccccc gcagcagggg gaccccgcgt tccccgaccg 660 ctgcgaggcg cctccggtgc cgccgcgtcg ggagcgcggt ggacgcgggg gacgcgggcc 720 tggggagccg gggggccggg ggcgtgcggg gggtgccgag gggcgcggcg tcaagtgcgt 780 gctggtcggc gacggcgcgg tgggcaagac gagcctggtg gtgagctaca ccaccaacgg 840 ctaccccacc gagtacatcc ctactgcctt cgacaacttc tccgcggtgg tgtctgtgga 900 tgggcggccc gtgagactcc aactetgtga cactgccgga caggatgaat ttgacaaget 960 gaggeetete tgetacacca acacagacat etteetgete tgetteagtg tegtgageee 1020 ctcatccttc cagaacgtca gtgagaaatg ggtgccggag attcgatgcc actgtcccaa 1080 agcccccatc atcctagttg gaacgcagtc ggatctcaga gaagatgtca aagtcctcat 1140 tgagttggac aaatgcaaag aaaagccagt gcctgaaqag gcggctaagc tqtqcqccqa 1200 ggaaatcaaa gccgcctcct acatcgagtg ttcagccttg actcaaaaaa acctcaaaga 1260 ggtctttgat gcagccatcg tcgctggcat tcaatactcg gacactcagc aacagccaaa 1320 gaagtetaaa agcaggaete cagataaaat gaaaaacete tecaagteet ggtggaagaa 1380

gtactgctgt ttcgtatgat gctggcaaga cacccagaaa ggctattttc agatgaaatc 1440 gatattagaa getatattag etgaaacaac teettttact gegtagaace tatategaga 1500 gtgtgtgtat atgtattata ggaggagete teaattttat gtattettte tgeetttaat 1560 tttcttgttt gtttgagctt agggatgaga tacttatgca agatattttt gaagtaaatt 1620 aaacattttt cacatctctg gaaatttaga gttctagacc tctggttaat ttatatctaa 1680 tatgaagaag acacctctaa tctggatgtt aagaatgaag ttctgctaca ttataatgta 1740 cagaagagca aaagggagga acactatggt taaccctctc ttgattaagg gctacttaat 1800 gcacagtgca ttatgtacac aggtcaacca tggtaacaat agttcttagc tttgaaactc 1860 catgcaaacc atgccttttt tttaaggagc aaaaatctga gaaaaaaagt gagagacctc 1920 tgcctacaaa acctcaaacc agtcactttt gtcaattgct aatacccagt tacttatgat 1980 ttaaaaaacaa ccaacagaaa acatcccact gactgtatgg cactctgtag tcaaaaaagg 2040 aaacttcctt attgggactt ttctttctta gtccagttgt gttgacacat atgaacacag 2100 acaaagtgct atgcggagga aagcaagtgt tggtcagtag tttcatgttt tagggagtgg 2160 ttcctgtgga gatcagaaag tgacatttgc tttcggtact gtaatacgtg caccaaactg 2220 cctcaatcct aggtaacgag ggcaacaggg agcacctgtc tggattgttt ttaaacctcc 2280 atactcaagc tgtctcttcg gcagggaggt gaatactctt gaaaggccaa cagcaagtgt 2340 ttgtgggaca caacacagat aattttttct taagtcggcc aagatgtact tctctgtgtg 2400 cacacccatg cacactcatg cacacagata cataggtctg tatggctgta tttgctgttg 2460 attcagactt tcacaccatt aatggggaaa agcgtggcca caaaaacaga tgctaggaag 2520 cttggcttcc tcttcttgtt gacccttttt tgaaccaaca tcttttttat tatattcaga 2580 gtatgttttt aagtgtatct taatatatac attttttagg acatcttaaa tctaaacaaa 2640 aaataaaatg aacatetett gaaacetgtt aaaacaacea gttaaageea cagatggett 2700 tcagggcagt agcagcagag gccagtggac tctgagggact cctgaggggc ggggcgtgta 2760 gccagccagg tgcatgccgg gaccatggcc cccatacttg gctgcttcct gtgacagtga 2820 aatacateet teaaggtgge agetgttagg getgaatett etggagaaaa aggtgeeate 2880 tcaggagaat agcttttact ctggtaggaa tgcttccgag acaccacaag gcagcctgaa 2940 cactcagttg cagggtcggg cttgcggtgg gtgacccaga gccaccaaag tcacatccac 3000 3060 ttgtgttgtc ttttttatgt taaaaagaaa tccagtttgt gtttttctat agaaaaagta 3120 aaagatcagg ttatacttta ggttaggggt tctatttatt cctgttagta aataaaatta 3180

| acaaatttot tigittaaca aaagattaat oittaaacca                | ctaaaataca  | a tagactgatt | 3240 |
|------------------------------------------------------------|-------------|--------------|------|
| gattattcaa cacattggaa ttgatgtcgg tcatagtttc                | ctgaagcatt  | tagttacaac   | 3300 |
| ctgaaggaat aaaatgattt gtggaaatgc ttaaaataga                | cctaactgaa  | tacagtetea   | 3360 |
| tcttgccgcg cctggcttac ctatctgtgg aaagctaggc                | ttcccaggct  | gggctctgcc   | 3420 |
| tgtctggtgc ctggaggtgt gggagggaag atgagttatt                | taactggtaa  | gcgatttgaa   | 3480 |
| acactatttt tatattaaag taaatggcat ggagtatagt                | gcaaattcat  | ttttaagata   | 3540 |
| gaacacaaaa cttgaaagaa gttttatgcg tgtgacagtg                | tatggggctg  | cagttggtct   | 3600 |
| ccctggaggg gacttccaca cctcctgcct ttaggcatgg                | gtggaaagtg  | ctcagtgaag   | 3660 |
| tacacctgtg tggcccagtt ctgaaagctt tatacagttg                |             |              | 3720 |
| acacettgga etgttagtgt taaaaateta gtgggttgae                |             |              | 3780 |
| aaaatatatt gctgcatttt atagaatagt aaaggtacga                | ttatacttga  | gattttcctc   | 3840 |
| catttttatt tcttcgtgaa catagagttt ggggccgaaa a              | atgttttaa   | agtatgtgtt   | 3900 |
| tgagttaaat ataaagttgg ttcacttcaa agctaaaaaa t              | ttgttaaact  | tgcagcttgg   | 3960 |
| tattgcagag aagattttat aagaattttg ctttagagaa t              | tgccactttg  | gctgaactac   | 4020 |
| aagtgtaggc caccattata atttataaat acagcatact t              | tcaaaactgt  | ttgttatctc   | 4080 |
| ttgttaccat gtatgtataa atggaccttt tataaccttg t              | tctctgctt   | gacagactca   | 4140 |
| agagaaacta cccaggtatt acacaagcca aaatgggagc a              | aggccttct   | ctccagacta   | 4200 |
| tcgtaacctg gtgccttacc aagttgtgct tttctgtttt c              | aagtgtaaa   | tgatgttgag   | 4260 |
| cagaatgttg tacttgaaaa tgctataagt gagatggtat g              | gaaataaatt  | ctgacttatg   | 4320 |
| aataaaaaa aaaaaaaaa aaaaaa                                 |             |              | 4346 |
| <210> 516<br><211> 2236<br><212> DNA<br><213> Homo sapiens |             |              |      |
| <400> 516                                                  |             |              |      |
| cccgagtotc aggagcctgc cttacagcag gaggtgcagg c              | ctcgtcacc   | tgcagaggtg   | 60   |
| cctgtgtctc agcctgaccc cttgccagct tctgaccaca g              | ttacgagct ( | gcgcaatggt   | 120  |
| gaagccattg ggcgggatcg ccgggggcgc agggcccgga g              | gaacaacag i | tggagaagca   | 180  |

cecegaptete agagectge ettacageag gaggtgeagg ectegteace tgeagaggtg 60
cetgtgtete agectgacce ettgecaget tetgaccaca gttacgaget gegeaatggt 120
gaagceattg ggeggateg eegggggeg agggeegga ggaacaacag tggagaagca 180
ggeggggag ecacaagga getettetge teageetgtg accagetett tetetacace 240
caccagetac ageageacet geggagteac egggagggeg tetttaagtg ecceetgtge 300
agtegtgtet teeetageee tteeagtetg gaccageace ttggagacca tageageag 360
teacacttee tgtgtgtaga etgtggeetg geetteggea eagaggeet ecteetggee 420

264

| caccggcgag | cccacacccc | gaatcctctg | cattcatgtc | catgtgggaa | gacctttgtc | 480  |
|------------|------------|------------|------------|------------|------------|------|
| aaccttacca | agttccttta | tcaccggcgt | actcatgggg | tagggggtgt | ccctctgccc | 540  |
| acaacaccag | tcccaccaga | ggaacctgtc | attggtttcc | ctgagccagc | cccagcagag | 600  |
| actggagagc | cagaggcccc | tgagccccct | gtgtctgagg | agacctcagc | agggcccgct | 660  |
| gccccaggca | cctaccgctg | cctcctgtgc | agccgtgaat | ttggaaaggc | cttgcagctg | 720  |
| acceggcacc | aacgttttgt | gcatcggctg | gagcggcgcc | ataaatgcag | catttgtggc | 780  |
| aagatgttca | agaagaagtc | tcacgtgcgt | aaccacctgc | gcacacacac | aggggagcgg | 840  |
| cccttcccct | gccctgactg | ctccaagccc | ttcaactcac | ctgccaacct | ggcccgccac | 900  |
| cggctcacac | acacaggaga | gcggccctac | cggtgtgggg | actgtggcaa | ggctttcacg | 960  |
| caaagctcca | cactgaggca | gcaccgcttg | gtgcatgccc | agcacttccc | ctaccgctgc | 1020 |
| caggaatgtg | gggtgcgttt | tcaccgtcct | taccgcctgc | tcatgcaccg | ctaccatcac | 1080 |
| acaggtgaat | acccctacaa | gtgtcgcgag | tgcccccgct | ccttcttgct | gcgtcggctg | 1140 |
| ctggaggtgc | accagctcgt | ggtccatgcc | gggcgccagc | cccaccgctg | cccatcctgt | 1200 |
| ggggctgcct | teccetecte | actgcggctc | cgggagcacc | gctgtgcagc | cgctgctgcc | 1260 |
| caggccccac | ggcgctttga | gtgtggcacc | tgtggcaaga | aagtgggctc | agctgctcga | 1320 |
| ctgcaggcac | acgaggcggc | ccatgcagct | gctgggcctg | gagaggtcct | ggctaaggag | 1380 |
| cccctgccc  | ctcgagcccc | acgggccact | cgtgcaccag | ttgcctctcc | agcagccctt | 1440 |
| ggaagcactg | ctacagcatc | ccctgcggcc | cctgcccgcc | gccggggtct | agagtgcagc | 1500 |
| gagtgcaaga | agctgttcag | cacagagacg | tcactgcagg | tgcaccggcg | catccacaca | 1560 |
| ggtgagcggc | catacccatg | tccagactgt | ggcaaagcgt | tccgtcagag | tacccacctg | 1620 |
| aaagaccacc | ggcgcctgca | cacaggtgag | cggccctttg | cctgtgaagt | gtgtggcaag | 1680 |
| gcctttgcca | tctccatgcg | cctggcagaa | catcgccgca | tccacacagg | cgaacgaccc | 1740 |
| tactcctgcc | ctgactgtgg | caagagctac | cgctccttct | ccaacctctg | gaagcaccgc | 1800 |
| aagacccatc | agcagcagca | tcaggcagct | gtgcggcagc | agctggcaga | ggcggaggct | 1860 |
| gccgttggcc | tggccgtcat | ggagactgct | gtggaggcgc | tacccctggt | ggaagccatt | 1920 |
| gagatctacc | ctctggccga | ggctgagggg | gtccagatca | gtggctgact | ctgcccgact | 1980 |
| tcctctttgg | cacctccatt | ccctgttgct | gaaggccctc | cagcatcccc | ttaagcatct | 2040 |
| gtacatactg | tgtcccttcc | tcttcccatc | cccaccacct | tgtaagttct | aaattggatt | 2100 |
| tattctctcg | tgagggggt  | gctctggggt | ccttgacaca | cataaaggtg | ccccccacc  | 2160 |
| ttccacctct | tagcactggt | gaccccaaaa | atgaaaccat | caataaagac | tgggttgcca | 2220 |
| aaaaaaaaa  | aaaaaa     |            |            |            |            | 2236 |

<210> 517 <211> 1900 <212> DNA

<213> Homo sapiens

<400> 517 acaactctca qaqqaqcatt qcccqtcaqa caqcaactca qaqaataacc aqaqaacaac 60 cagattgaaa caatggagga tetttgtgtg gcaaacacac tetttgeeet caatttatte 120 aagcatctgg caaaagcaag ccccaccag aacctcttcc tctccccatg gagcatctcg 180 tccaccatgg ccatggtcta catgggctcc aggggcagca ccgaagacca gatqqccaaq 240 gtgcttcagt ttaatgaagt gggagccaat gcagttaccc ccatgactcc agaqaacttt 300 accagetgtg ggttcatgca geagatecag aagggtagtt atcetgatge gattttgcag 360 gcacaagetg cagataaaat ccattcatce tteegetete teagetetge aatcaatgea 420 tccacaggga attatttact ggaaagtgtc aataagctgt ttggtgagaa gtctgcgagc 480 ttccgggaaq aatatattcg actctgtcag aaatattact cctcagaacc ccaggcagta 540 gacttcctag aatgtgcaga agaagctaga aaaaaqatta attcctqqqt caaqactcaa 600 accaaaggca aaatcccaaa cttgttacct qaaqqttctq taqatqqqqa taccaqqatq 660 gtcctggtga atgctgtcta cttcaaaqqa aaqtqqaaaa ctccatttqa qaaqaaacta 720 aatgggcttt atcctttccq tqtaaactcq qctcaqcqca cacctqtaca qatqatqtac 780 ttqcqtqaaa aqctaaacat tqqatacata qaaqacctaa aqqctcaqat tctaqaactc 840 ccatatgctg gagatgttag catgttcttg ttgcttccag atgaaattgc cgatgtqtcc 900 actggcttgg agctgctgga aagtgaaata acctatgaca aactcaacaa gtggaccagc 960 aaagacaaaa tggctgaaga tgaagttgag gtatacatac cccagttcaa attaqaaqaq 1020 cattatgaac tcagatccat tctgagaagc atgggcatgg aggacqcctt caacaaqqqa 1080 cgggccaatt tctcagggat gtcggagagg aatgacctgt ttctttctqa aqtqttccac 1140 caagccatgg tggatgtgaa tgaggagggc actgaagcag ccqctqqcac aqqaqqtqtt 1200 atqacaqqga gaactggaca tggaggccca cagtttgtgg cagatcatcc ttttcttttt 1260 cttattatgc ataagataac caactqcatt ttatttttcq qcaqattttc ctcaccctaa 1320 aactaagcgt gctgcttctg caaaagattt ttgtagatga gctgtgtgcc tcagaattgc 1380 tatttcaaat tgccaaaaat ttagagatgt tttctacata tttctgctct tctgaacaac 1440 ttctgctacc cactaaataa aaacacagaa ataattagac aattgtctat tataacatga 1500 caaccctatt aatcatttgg tcttctaaaa tgggatcatg cccatttaga ttttccttac 1560

1620

tatcagttta tttttataac attaactttt actttgttat ttattatttt atataatggt

gagtttttaa attattgctc actgcctatt taatgtagct aataaagtta taqaaqcaqa 1680 tgatctgtta atttcctatc taataaatqc ctttaattgt tctcataatq aaqaataaqt 1740 aggtaccete catgecette tgtaataaat atetqqaaaa aacattaaac aataqqcaaa 1800 tatatgttat qtgcatttct agaaatacat aacacatata tatqtctqta tcttatattc 1860 aattqcaaqt atataataaa taaacctqct tccaaacaac 1900 <210> 518 <211> 1812 <212> DNA <213> Homo sapiens <400> 518 tagctaggca ggaagtcggc gcgggcqqcq cqqacaqtat ctqtqqqtac ccqqaqcacq 60 gagatotogo oggotttaog ttoacotogg tgtotgoago accotocgot toototota 120 ggcgacgaga cccagtggct agaagttcac catgtctatt ctcaaqatcc atqccaqqqa 180 gatctttgac tctcqcqqqa atcccactqt tqaqqttqat ctcttcacct caaaaqqtct 240 cttcagaget getgtgeeca gtggtgette aactggtate tatgaggeec tagageteeg 300 ggacaatgat aagactcgct atatggggaa gggtgtctca aaggctgttg agcacatcaa 360 taaaactatt gcgcctgccc tggttagcaa gaaactgaac gtcacagaac aagagaagat 420 tgacaaactg atgatcgaga tggatggaac agaaaataaa tctaagtttg gtgcgaacgc 480 cattetgggg gtgtcccttg ccgtctgcaa agctggtgcc gttgagaagg gggtccccct 540 gtaccgccac atcgctgact tggctggcaa ctctgaagtc atcctgccag tcccqqcqtt 600 caatgtcatc aatggcggtt ctcatgctgg caacaagctg gccatqcaqq aqttcatqat 660 cctcccagtc ggtgcagcaa acttcaggga agccatgcgc attggagcag aggtttacca 720 caacctgaag aatgtcatca aggagaaata tqqqaaaqat qccaccaatq tqqqqqatqa 780 aggogggttt gctcccaaca tcctqqaqaa taaaqaaqqc ctqqaqctqc tqaaqactqc 840 tattgggaaa gctggctaca ctgataaggt ggtcatcggc atggacgtag cggcctccga 900 gttcttcagg tctgggaagt atgacctgga cttcaagtct cccgatgacc ccagcaggta 960 catctcgcct gaccagctgg ctgacctgta caagtccttc atcaaggact acccagtggt 1020 gtctatcgaa gatccctttg accaggatga ctggggagct tggcagaagt tcacagccag 1080 tgcaggaatc caggtagtgg gggatgatct cacagtgacc aacccaaaga ggatcgccaa 1140 ggccgtgaac gagaagtcct gcaactgcct cctgctcaaa gtcaaccaga ttggctccgt 1200

1260

1320

gaccgagtct cttcaggcgt gcaagctggc ccaggccaat ggttggggcg tcatggtgtc

tcatcgttcg ggggagactg aagatacctt catcgctgac ctggttgtgg ggctgtgcac

| tgggcagate aagaetggtg cecettgeeg atetgagege ttggccaagt acaaccaget           | 1380 |
|-----------------------------------------------------------------------------|------|
| cctcagaatt gaagaggagc tgggcagcaa ggctaagttt gccggcagga acttcagaaa           | 1440 |
| ccccttggcc aagtaagctg tgggcaggca agcccttcgg tcacctgttg gctacacaga           | 1500 |
| cccctcccct cgtgtcagct caggcagctc gaggcccccg accaacactt gcaggggtcc           | 1560 |
| ctgctagtta gcgccccacc gccgtggagt tcgtaccgct tccttagaac ttctacagaa           | 1620 |
| gccaagctcc ctggagccct gttggcagct ctagctttgc agtcgtgtaa ttggcccaag           | 1680 |
| tcattgtttt tctcgcctca ctttccacca agtgtctaga gtcatgtgag cctcgtgtca           | 1740 |
| totooggggt ggccacaggc tagatococg gtggttttgt gctcaaaata aaaagcotca           | 1800 |
| gtgacccatg ag                                                               | 1812 |
| <210> 519<br><211> 330<br><212> DNA<br><213> Homo sapiens                   |      |
| <220>                                                                       |      |
| <221> misc_feature<br><222> (113)(113)                                      |      |
| <223> n is a, c, g, t or u                                                  |      |
| <220>                                                                       |      |
| <221> misc_feature                                                          |      |
| <222> (270)(270)<br><223> n is a. c. g. t or u                              |      |
|                                                                             |      |
| <400> 519                                                                   |      |
| tttttttttt tttttttggc cagatcaata gctaggtaga aaccttttca actgggacag           | 60   |
| gagacaccat cctttgggtg ttgttctcta ccttcccatg caaaaggcag tanaagatgt           | 120  |
| ggaggacaga gaggaagagc tgagagtcct ggaaagccaa aaggctacac acatcacata           | 180  |
| aactgattgg cctcagggaa aagactgagg ttcaaagagg tgacagactc catcaaggtg           | 240  |
| acatgactgg ctggttgcct gcagaagtan atgcaggtcc caggtccagc tctggtctca           | 300  |
| attacagece aaageetate tecageeaca                                            | 330  |
| <210> 520<br><211> 348<br><212> DNA<br><213> Homo sapiens                   |      |
| <400> 520 acgtccctgg tagacggggt agggggatct accagcccag ggatcgcgtc tttcgccgcc | 60   |
| acgetgette accgatatee aataaaccca teccetegee acgacgtete egegtatett           | 120  |
| tgtagcctca agaatccgtc cccacgtcca cccatcccga gcactccaca cgccataaca           | 180  |
|                                                                             |      |

| uuccacgga                                            | acgacaaacg | catgedadet   | teteatttat | tgtgtetaet | actctgtgtt | 240 |
|------------------------------------------------------|------------|--------------|------------|------------|------------|-----|
| gctacaggga                                           | gtgaagaggg | g tgaaggcaaa | gaaaaaaaaa | aggaacaaaa | taatagatta | 300 |
| gcagaaggaa                                           | taatccgtgc | gaccgagctt   | gtgcttcttt | tcttataa   |            | 348 |
| <210> 521<br><211> 862<br><212> DNA<br><213> Hon     | ?          |              |            |            |            |     |
| <400> 521                                            |            |              |            |            |            |     |
|                                                      |            |              |            |            | cggccccctt | 60  |
| gaccttcago                                           | aaatcacttc | tctccctgcg   | ctcacacaga | cacacacaca | cacacgtaca | 120 |
| tgcacacatt                                           | tttcctgtca | ggttaactta   | tttgtaggtt | ctgcattatt | agaactttct | 180 |
| agatatacto                                           | attccatctc | cccctcattt   | ttttaatcag | gtttccttgc | ttttgccatt | 240 |
| tttcttcctt                                           | cttttttcac | tgatttatta   | tgagagtggg | gctgaggtct | gagctgagcc | 300 |
| ttatcagact                                           | gagatgcagc | tggttgtgtt   | gaggacttgt | gtgggctgcc | tgtccccggc | 360 |
| agtcgctgat                                           | gcacatgaca | tgattctcat   | ctgggtgcag | aggtgggagg | caccaggtgg | 420 |
| gcacccgtgg                                           | gggttagggc | ttggaagagt   | ggcacaggac | tgggcacgct | cagtgaggct | 480 |
| cagggaattc                                           | agactagcct | cgattgtcac   | tccgagaaat | gggcatggta | ttgggggtcg | 540 |
| ggggggcggt                                           | gcaagggacg | cacatgagar   | actgtttggg | agcttctggg | gagccctgct | 600 |
| agttgtctca                                           | gtkatgtctg | tkggacctcc   | agtcccttga | gaccccacgt | catgtagaga | 660 |
| agttaacggc                                           | ccaagtggtg | ggcaggctgg   | cgggacctgg | ggaacatcag | gagaggagtt | 720 |
| cagagcccac                                           | gtctactgcg | gaaaagtcag   | gggaaactgc | caaacaaagg | aaaatgcccc | 780 |
| aaaggcatat                                           | atkctttagg | gcctttggtc   | caaatggccc | gggkgggcac | tcttccagat | 840 |
| agaccaggca                                           | actctccctc | cc           | •          |            |            | 862 |
| <210 > 522<br><211 > 315<br><212 > DNA<br><213 > Hom | o sapiens  |              |            |            |            |     |
| 400> 522                                             |            |              |            |            |            |     |
|                                                      | tgactacaat |              |            |            |            | 60  |
|                                                      | tgatcgcatg |              |            |            |            | 120 |
|                                                      | gtaggaagac |              |            |            |            | 180 |
| gtctagtgaa                                           | gctgtttcat | gtagctgctt   | taggaagtgg | tttaaggaag | cttactccca | 240 |
| ttcaagtta                                            | agcaccaaag | caatcactaa   | ttctggagca | caggaagact | gctatctcat | 300 |

| WO 2004                                           | /042346    |            |            |            | PCT/US200  | 3/01294 |
|---------------------------------------------------|------------|------------|------------|------------|------------|---------|
| cattcacctt                                        | tgcag      |            |            |            |            | 315     |
| <210> 523<br><211> 972<br><212> DNA<br><213> Hom  |            |            |            |            |            |         |
| <400> 523<br>atgacaccga                           | cgacgacgac | cgcggaactc | acgacggagt | ttgactacga | tgaagacgcg | 60      |
| actccttgtg                                        | ttttcaccga | cgtgcttaat | cagtcaaagc | cagttacgtt | gtttctgtac | 120     |
| ggcgttgtct                                        | ttctcttcgg | ttccatcggc | aacttcttgg | tgatcttcac | catcacctgg | 180     |
| cgacgtcgga                                        | ttcaatgctc | cggcgatgtt | tactttatca | acctcgcggc | cgccgatttg | 240     |
| cttttcgttt                                        | gtacactacc | tctgtggatg | caatacctcc | tagatcacaa | ctccctagcc | 300     |
| agcgtgccgt                                        | gtacgttact | cactgcctgt | ttctacgtgg | ctatgtttgc | cagtttgtgt | 360     |
| tttatcacgg                                        | agattgcact | cgatcgctac | tacgctattg | tttacatgag | atatcggcct | 420     |
| gtaaaacagg                                        | cctgcctttt | cagtatttt  | tggtggatct | ttgccgtgat | catcgccatt | 480     |
| ccacacttta                                        | tggtggtgac | caaaaaagac | aatcaatgta | tgaccgacta | cgactactta | 540     |
| gaggtcagtt                                        | acccgatcat | cctcaacgta | gaactcatgc | ttggtgcttt | cgtgatcccg | 600     |
| ctcagtgtta                                        | tcagctactg | ctactaccgc | atttccagaa | tcgttgcggt | gtctcagtcg | 660     |
| cgccacaaag                                        | gtcgcattgt | acgggtactt | atagcggtcg | tgcttgtctt | tatcatcttt | 720     |
| tggctgccgt                                        | accacctaac | gctgtttgtg | gacacgttaa | aactcctcaa | atggatctcc | 780     |
| agcagctgcg                                        | agttcgaaag | atcgctcaaa | cgtgcgctca | tcttgaccga | gtcgctcgcc | 840     |
| ttttgtcact                                        | gttgtctcaa | tccgctgctg | tacgtcttcg | tgggcaccaa | gtttcgcaag | 900     |
| aactacactg                                        | tctgctggcc | gagtttcgcc | agcgactcít | ttcccgcgat | gtatcctggt | 960     |
| accacagcat                                        | ga         |            |            |            |            | 972     |
| <210> 524<br><211> 949<br><212> DNA<br><213> Homo | o sapiens  |            |            |            |            |         |

<400> 524

tttctcgcca cggcacaacg ccaccttggg caaacctaat tccagtcttg gatgccacct 60 tgctgacgac aaggcacttc cttacaatga gcctggaatt ctaagcagca gcttcacaat 120 ctgcaattgc acgtttctgc cctttacaat aaagaaacac acactttcct ttcaccaccc 180 acacccacca aaaataccac cacactccaa cacaccccac gaagaaagcg agaaagccca 240 aaactgggcc ccccaccaca accgcacccc cacgaatctg tcatacatcc acaagacacc 300 egggeeetet gageaceeae ggegaaegge egeeaageeg ceaeeeeeet eeeaggegge 360

agececcaca tgegecacgt egtacateae qteacecaae gecacegace tatgegeaat 420 cgcgcgcata gccccgtact cgggccagca gccccacccc agccagccac actgctcccc 480 ctequadad acaccaagat equequede aacquadeda cteegcacca caccccacac 540 cacceccace ecqcteqace aquatqtqte acaaccecqt accegcacce tqaqtaccac 600 qaaacqqaca qqctaacqac qcqaaqtacc tcacccaccc qaccqaacqc qatccacqqt 660 720 cccqtaaqcq ctaattccaq actacacccc cataqctcqc cqcaatqqtc tqcacqtcca ccccacacca acagagatca ctacagaaat atgcctccaa ccccqcccac qttaaactcc 780 840 ccactccaca cqcaqcaatq tcactcqqca ccqcqccttt cacqqtqtqa caqqtcttct ccatagatgt cggatcggcc tccttactac ctccccctt acgaaagagt acacactcca 900 949 caaccacaga cetecqeeca aggegeegee egegegeece gegeacgtg <210> 525 <211> 2298 <212> DNA <213> Homo sapiens <400> 525 aataqaaqat cqctcqqqaa ttcttactct cqataaaqat tataacaaca taqqaaaatt 60 cttaaataga attttaggca tggaggtgca tcagcagaat gcgttatttc agtattttgc 120 180 qqacacactt actqcaqttq ttcaaaatqc caaaaaaaat qqaaqatatq atatqqqaat cttagatctt ggttctggag atgaaaaagt gcggaaaagt gatgttaaaa agtttctgac 240 tccaggatat tcaacctctg gccacgtaga attatacaca attagtgtag agaggggaat 300 qtcatqqqaq qaagctacca agatttgggc tgagctgaca ggaccagacg atggctttta 360 cttgtcattg caaataagga acaacaagaa aactgccatc ttagttaaag aagtgaatcc 420 taaaaaqaaa cttttcttag tttatcgacc aaatactggg aagcagctca aattagaaat 480 ttatqctqat ctaaaaaaqa aatataaqaa qqtcqtctca qatqatqccc tqatqcactq 540 qttaqatcaq tataattcat ctqcaqatac ttqtactcat qcttattqqc qcqqcaattq 600 caaaaaaqca aqcttqqqqc taqtttqtqa aataqqtctt cqttqccqta catattatqt 660 attatqtqqt tcaqtqctqa qtqtctqqac aaaaqttqaq qqtqttctaq catctqtcaq 720 togcacaaac qtqaaqatqc aqatcqtqcq qctaaqaacq qaaqatqqqc aacqqattqt 780 aggtttgatc attccggcaa attgtgtgtc tcctcttgta aatctcctat caacttcaga 840 ccagtctcaa cagcttgcgg tccaacagaa acagctatgg caacagcatc accctcagag 900 catcaccaac ttqaqcaacq catqaaqaac aqacaqqttt caacatqqat qqatctqaaa 960

1020

tgctgttgaa gcatatcatt tgcataaaaa tcagggacag tttccaaaga attatatatt

| cccccagcc              | gracierera | greagettt  | ttgggagtaa | ggacaaacct | ggaatagata | 1080 |
|------------------------|------------|------------|------------|------------|------------|------|
| gcaaaactga             | aaatcagcag | tgctgatggt | ggtacatatg | tettteettt | agcttctccc | 1140 |
| ctgataattc             | ccatctgctt | ttacttcggg | tgagcagagg | gggatgtgtg | tgtgcgtgtg | 1200 |
| tgtcagtctg             | tttgtgagtg | tgttaaaggc | tacagaccac | agttggttta | aaatgcttgg | 1260 |
| aacttcccaa             | actggcttta | ctttatgttt | atacagtgct | cagggttaac | gcagtacatc | 1320 |
| catgccattg             | ctgtgggagg | tatccccgga | tgcatgtgtt | ttgagtctat | aaatatagaa | 1380 |
| aatatatatt             | ggtttctttt | tccaacttaa | taggtttatt | aaagcatgaa | atgaaaggtt | 1440 |
| gcatatcatg             | cattcaggtt | attttctaat | ttttgttctg | acagtgcatg | tctttggaag | 1500 |
| catgctgaaa             | caagattaac | acaggagtcg | agtaacagag | agaaacattt | gttagatgta | 1560 |
| cagcattggt             | tattgcattt | ttatagtgtt | tatacctggg | tattgcttca | aaccctgcag | 1620 |
| acccctcctt             | ccccttctcc | ctgccctggg | tttctggtca | aggtaatgaa | tacatacatt | 1680 |
| tttctgtgat             | aaaactctta | aaagttaatt | ttaatgtatt | aatagtattc | ctaatgtgtg | 1740 |
| ctgcagaaat             | ggctatgagc | ctcttaaatt | tacatttgca | acttaaaggt | agttttagaa | 1800 |
| ggaagtacaa             | attggctttc | atcttgcaaa | caatcgtttt | ttacttcatt | atcttaattt | 1860 |
| gctttgtcac             | tcataaaaag | gaaaccatac | ctgagttgta | gacaatgagg | aaacacttga | 1920 |
| ggcttctgct             | gtgtgttctt | ttgttattgt | tgttattgtt | gttactcagt | aacttgaata | 1980 |
| ttgtttaatg             | tgttgtaaga | cgtagagttt | atctcaagct | gttaaaaatg | gtaatgtaca | 2040 |
| aatgtgaata             | gacacttatc | tatataatat | gggtaagttt | tgtttcgcct | ataatagatg | 2100 |
| tttataaaaa             | caagtgaggg | gacagttggt | ctttttatct | tttctttctt | tttctttctt | 2160 |
| ttctttttt              | ctttttttc  | tttttttt   | tttttgcttc | cacaggttgc | actattgaaa | 2220 |
| aatcgagatt             | gtataaacct | ggtaaaaagc | tgcaagatgc | caaaatcttg | tagatgtcaa | 2280 |
| ataaaaagtt             | attatact   |            |            |            |            | 2298 |
| <210> 526              |            |            |            |            |            |      |
| <211> 618<br><212> DNA |            |            |            |            |            |      |
|                        | sapiens    |            |            |            |            |      |
| <400> 526              |            |            |            |            |            |      |
| cttttgcggg             | tggcggcgaa | cgcggagagc | acgccatgaa | ggcctcgggc | acgctacgag | 60   |
| agtacaaggt             | agtgggtcgc | tgcctgccca | ccccaaatg  | ccacacgccg | cccctctacc | 120  |
| gcatgcgaat             | ctttgcgcct | aatcatgtcg | tcgccaagtc | ccgcttctgg | tactttgtat | 180  |
| ctcagttaaa             | gaagatgaag | aagtcttcag | gggagattgt | ctactgtggg | caggtgtttg | 240  |
| agaagtcccc             | cctgcgggtg | aagaacttcg | ggatctggct | gcgctatgac | teceggageg | 300  |

gcacccacaa catgtaccgg gaataccggg actgaccac cgcaggcgt gtcacccagt 360
gctaccggaa catgggtgc cggcaccgc ccgaggcca ctccattcag atcatgaagg 420
tggaggagat cgcggcagc agggccgc gccggctg caagcagtt cacgactca 480
agatcaaggt cccgatgcc caccgggtcc tgcgcgcta gcacaagcca cgcttcacca 540
ccaagaggcc caacacctt tctaggtgc agggccctcg tccgggtgg ccccaaataa 600
actcaggaac gccccggt

<210> 527 <211> 2640

<212> DNA

<213> Homo sapiens

<400> 527 gggcggccaa cgtgggctcg ctcttcgacg acccagaaaa cctgcagaag aactggcttc 60 gggaatttta ccaggtcgtg cacacacaca agccgcactt catggccttg cactgtcagg 120 agtttggagg gaagaactac gaggcctcca tgtcccacgt ggacaagttc gtcaaagaac 180 tattgtcgag tgatgcgatg aaagaatata acagggctcg agtctacctg gatgaaaact 240 acaaatccca ggagcacttc acggcactag gaagctttta ttttcttcat gagtccttaa 300 aaaacatcta ccagtttgac tttaaagcta agaagtatag aaaggtcgct ggcaaagaga 360 tctactcgga taccttagag agcacgccca tgctggagaa ggagaagttt cgcagactac 420 ttccccqagt gcaaatggtc aagaaaaggc ttcatccgga cgaggtggtg attgcagact 480 gtgcctttga cttggtgaat atccatcttt tccatgatgc ttccaatctg gtcgcctggg 540 aaacaagccc ttccgtgtac tcgggaatcc ggcacaaggc actgggctac gtgctggaca 600 gaatcattga tcagcgattc gagaaggttt cctactttgt atttggtgat ttcaacttcc 660 ggctggattc caagtctgtc gtggagacgc tctcagcaaa accaccgatg cagacggtcc 720 gggccgccga caccaatgaa gtggtgaagc tcatatttcg tgagtcggac aacgaccqqa 780 aggttatgct ccagttagaa aagaaactct tcgactactt caaccaggag gttttccgag 840 acaacaacgg caccgcgctc ttggagtttg acaaggagtt gtctgtcttt aaggacagac 900 tgtatgaact ggacateteg tteeeteeca getaceegta cagtgaggae geeegeeagg 960 gtgagcagta catgaacacc cggtgcccag cctggtgtga ccgcatcctc atgtccccgt 1020 ctgccaagga gctggtgctg cggtcggaga gcgaggagaa ggttgtcacc tatgaccaca 1080 ttgggcccaa cgtctgcatg ggagaccaca agcccgtgtt cctggccttc cgaatcatgc 1140 ccggggcagg taaacctcat gcccatgtgc acaagtgttg tgtcgtgcag tgacgtggtg 1200 ggaagagatg ccagcgccac gagaggacac ttcgtgagcc tccctgtagc cgtggaccga 1260

| atacgcactc | ttgaaagctg | catcgagaac | ccgcccaagc | gccacctgct | agacggccag | 1320 |
|------------|------------|------------|------------|------------|------------|------|
| ccccacactt | cgcttcagcc | tccggaccat | tccggagcag | ccccacatac | ctcactgtct | 1380 |
| cgtctgtcta | tgtgacatta | agtagaaata | ttggttttt  | tttttttta  | aataagtcac | 1440 |
| agtcctgttg | tcaaaactct | aatagacagc | aaagagggtc | tgtaccgtag | acttcacagt | 1500 |
| tttcagtttt | taatgattgc | cagtggaggg | gcttcttcag | cacagagacc | ccccactgtg | 1560 |
| tecagggace | ccctctgcca | ggtggaggtg | tgtccagggg | ctggggaagc | cgagacgggc | 1620 |
| actccctctg | ccggccggca | gcgtggccct | gagcatggca | agggggtctg | tctctgccga | 1680 |
| tgctccttcc | gcggcactga | ctctgcgccg | tgtcacatgg | tttttgaatc | acactgcagc | 1740 |
| tgctttccat | ttttatatat | atataaatat | atataaatat | atacttttta | aaaataattt | 1800 |
| ataaatctta | ccaaaactta | tgctaaatat | actttccagt | atgaacgcac | aggagagtcc | 1860 |
| catcagcagg | cggcattgga | gtctaggagc | tcagctgtgt | gtccatcaac | acacaaattc | 1920 |
| gtaaaaaaca | cacatggcct | cgccatcgtg | ggtaaaatcg | gccccacagc | acgtctgcac | 1980 |
| cagcgggccg | ttactcccat | gccgttcttc | tgtgtaatat | taagaactga | atgtgaagtt | 2040 |
| tatagctagc | ctgggtgtac | cttttaagaa | ttttgtaaac | cgtttgtctg | tcttttgtta | 2100 |
| ctgttttatg | gtgccaagta | tcctacgtta | caacaataat | atcatgggag | aaatagaaat | 2160 |
| agcctagttt | gcttccaata | gaaactgctt | ttaacatggg | ctgtatataa | aaatattaaa | 2220 |
| gagaaacaaa | actgtacatt | tcctcattgc | tccgctacag | acaacccatg | tcataacctt | 2280 |
| gttgcaaata | tttttctcct | atagcagtaa | gtacagcatt | agaaggtgat | tagagagtct | 2340 |
| gttgatgaaa | cacaaatgta | tgttttatt  | gatttttact | ttagaacact | acagagttcc | 2400 |
| tgggaccggg | gtgaaggcat | tagctgggtg | tttgtgtggg | ataaatacta | ccactgcaag | 2460 |
| tgactgctgt | ccgctgcgga | atctgttctt | ggtggaagca | caggtccgtg | tcgctgctgt | 2520 |
| ggttgccgct | gtccgcggtt | caacacggag | tccgccccgc | gggtttcagc | tgttggtcgt | 2580 |
| tctgaggggc | ctttggaagt | gaccggtctg | gttcctaagc | aataaaattg | accgtggtga | 2640 |
| <210> 528  |            |            |            |            |            |      |
|            |            |            |            |            |            |      |

<400> 528

agcgtgggta aaagcaaaag caacagctca agcagcctc ttggagaaaa cctgaaaatt 60
caacttgttc aagagaaggt cttgtacgtg cctaagttct agagcctct gacgtgagca 120
tggctgagag tgaggaccgc tccctgagga tcgttctggt aggaaaact ggaagtggga 180
aaagtgcaac agcgaacacc atccttgaga aggaaatctt tgattctaga attgctgccc 240

<sup>&</sup>lt;210> 528

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

| aagctgttac                                        | caagaactgt | caaaaagcat | cccgggaatg | gcaggggaga | gaccttcttg | 300 |
|---------------------------------------------------|------------|------------|------------|------------|------------|-----|
| ttgtagacac                                        | tccagggctc | tttgacacca | aggagagcct | ggacaccacc | tgcaaggaaa | 360 |
| tcagccgctg                                        | catcatctcc | tcctgcccag | ggccccatgc | tattgtccta | gttctgctgc | 420 |
| tgggccgcta                                        | cacagaggag | gagcagaaaa | ccgttgcatt | gatcaaggct | gtctttggga | 480 |
| agtcagccat                                        | gaagcacatg | gtcatcttgt | tcactcgcaa | agaagagttg | gagggccaga | 540 |
| gcttccatga                                        | cttcatagca | gatgcggatg | tgggcctaaa | aagcatcgtc | aaggagtgcg | 600 |
| ggaaccgctg                                        | ctgtgccttt | agcaacagca | agaaaaccag | taaggcagag | aacgaaagtc | 660 |
| aagtgcagcg                                        | agttgggtgg | aagctgatag | agcaacacat | ggtgcagtgc | aacgaacggg | 720 |
| ccttactttt                                        | ctgatgacct | ata        |            |            |            | 743 |
| <210> 529 <211> 346 <212> DNA <213> Homo          | o sapiens  |            |            |            |            |     |
|                                                   | gttgcactgc | tgagagcaag | atgggtcacc | agcagctgta | ctggagccac | 60  |
| ccgcgaaaat                                        | tcggccaggg | ttctcgctct | tgtcgtgtct | gttcaaaccg | gcacggtctg | 120 |
| atccggaaat                                        | atggcctcaa | tatgtgccgc | cagtgtttcc | gtcagtacgc | gaaggatatc | 180 |
| ggtttcatta                                        | agttggacta | aatgetette | cttcagagga | ttatccgggg | catctactca | 240 |
| atgaaaaacc                                        | atgataattc | tttgtatata | aaataaacat | ttgaaaaaaa | aaaaaaaaa  | 300 |
| aaaaaaaaa                                         | aaaaaaaaaa | aaaaaaaaa  | aaaaaaaaa  | aaaaaa     |            | 346 |
| <210> 530<br><211> 397<br><212> DNA<br><213> Homo | o sapiens  |            |            |            |            |     |
|                                                   | tgggctagtc | tcaaactcct | tgcctcaaat | gatcctccca | catcagtctc | 60  |
| ccaaacagtt                                        | caacctacac | gaacaggcaa | ccatgcctgg | tgtatttatt | aaaatgtagc | 120 |
| tactagaata                                        | tttaaaattc | acatgtgcct | cacatattat | ttcttagaga | attgcctcat | 180 |
| tttgaaatc                                         | tcaggctgcc | tgctctaaaa | cctggatgtg | ccaggaaagt | aaaaaatctg | 240 |
| aaattttaaa                                        | ataattgtca | ttatattgct | tccatgtatg | aataacacat | atatatttt  | 300 |
| cataaataca                                        | aataatctta | cacacaaatg | aaaatgcaag | tattttacag | tcagggccag | 360 |
| tgtccagtgc                                        | atgaaggaag | ccctgccaga | aaaggat    |            |            | 397 |

<210> 531

| <211> 1236<br><212> DNA<br><213> Homo sapiens                                  |      |
|--------------------------------------------------------------------------------|------|
| <400> 531<br>ttactgagac ttgttcctca ggtcctggat ggctgcctcg atggccaggc tcagggtgtc | 60   |
|                                                                                |      |
| caggiteting ggaggggitet eggitgggetg etcaaactge eccaeggegit aggeetinge          | 120  |
| ggccgtctcg tagataggca gcatgaaccc accctggttg gtggagaaga tgcgcaccat              | 180  |
| gacctgtttg ggaaactttt gcatcagggg caggcacagg ttgagagcgc ccaacaggtc              | 240  |
| cacgggggtg gcagcgtgga tgatcatgtt gcggtaatcg gaggaacggg ggcataattg              | 300  |
| gtgggtgtgc aattetttga ggeteeaege ggeettgaeg eettegttae aageategge              | 360  |
| tgtgcgctgc gccacttcgg gtggatgtgt cacgggcatg gtgtgctcca tgaggaaggg              | 420  |
| agtggagagg gccaggttgc acatggtgcc caggcgacac cgcaccgcat ccacctcact              | 480  |
| cttcacctca tgattgcggg tgtagataat ctggatgccc ttgttgttca cctgcatggt              | 540  |
| tttgcaggct ttgatggcct catctaacac ctggtgcata ctgggaatcg tgaagggcag              | 600  |
| gttcttgtac tcaagagage gattggtgtt geggaacatg eggetcaect egtcaatett              | 660  |
| gacgcgaccc cgccgagtct gcacgttggg tgtgcagaag ggggtgttct tatctttcat              | 720  |
| gatattgcgc accttctcgt tgtccaactc ggagatgcgt ttgctcttct tcttgcgggg              | 780  |
| tccggtgctc gccccgccgc tgctctgatg gccgcagctc agcagagagg aggaggccgc              | 840  |
| gccaccaaaa ccgccgcgcc catggtggct cgaggtcacg gatgctcctc cgccactgct              | 900  |
| gcatttcatc tcctcggact cactctccga gtccgaagcc gaactgcagg aggaggaaga              | 960  |
| cgaagaggaa ctatcttcat cgggccggcc caagggatcg ggaagaggag ggtggttcat              | 1020 |
| ctgggagagc gggtgcgtgg gagaggtcac tcgcggcgtg ccgctgccgg tggaagggga              | 1080 |
| agacgcggta gcaccgcggg tttcgacttc ttcaccctgt tcttcctcgc tatcagagat              | 1140 |
| cacgatacag ccggcggtat cgataatctt gttgcggtac tggatggtaa agtcgggctc              | 1200 |
| gggcttgatg tcttcctgtt tgatgagggg cagcat                                        | 1236 |
| <210> 532<br><211> 2034<br><212> DNA<br><213> Homo sapiens                     |      |
| <400> 532<br>aaaccttggc catggtcact tcctcttttc caatctctgt ggcagttttt gccctaataa | 60   |
|                                                                                | 120  |
| ccctgcaggt tggtactcag gacagtttta tagctgcagt gtatgaacat gctgtcattt              |      |
| tgccaaataa aacagaaaca ccagtttctc aggaggatgc cttgaatctc atgaacgaga              | 180  |
| atatagacat tetggagaca gegateaage aggeagetga geagggtget egaateattg              | 240  |

tgactccaga agatgcactt tatggatgga aatttaccag ggaaactgtt ttcccttatc 300 tggaggatat cccagaccct caggtgaact ggattccgtg tcaagacccc cacaqatttq 360 gtcacacacc agtacaagca agactcagct gcctggccaa ggacaactct atctatgtct 420 tggcaaattt gggggacaaa aagccatgta attcccqtqa ctccacatgt cctcctaatg 480 gctactttca atacaatacc aatqtqqtqt ataatacaqa aqqaaaactc qtqqcacqtt 540 accataagta ccacctgtac tctqaqcctc agtttaatgt ccctqaaaag ccqqaqttqq 600 tgactttcaa caccgcattt ggaaggtttq qcattttcac qtqctttqat atattcttct 660 atgatectgg tgttaccetg gtgaaagatt tecatgtgga caccatactg ttteccacag 720 cttggatgaa cgttttgccc cttttgacag ctattgaatt ccattcagct tgggcaatgg 780 gaatgggagt taatettett qtqqccaaca cacatcatqt caqcctaaat atqacaqqaa 840 gtggtattta tgcaccaaat qqtcccaaaq tqtatcatta tqacatqaaq acaqaqttqq 900 gaaaacttct cctttcaqaq qtqqattcac atcccctatc ctcqcttqcc tacccaacaq 960 ctgttaattg qaatgcctac gccaccacca tcaaaccatt tccagtacag aaaaacactt 1020 tcaggggatt tatttccagg gatgggttca acttcacaga actttttgaa aatgcaggaa 1080 accttacagt ctgtcaaaag gagctttgct gtcatttaag ctacagaatg ttacaaaaag 1140 aagagaatga agtatacgtt ctaggagctt ttacaggatt acatggccqa aggaqaaqaq 1200 agtactggca ggtctgcaca atgctgaagt gcaaaactac taatttqaca acttqtqqac 1260 ggccagtaga aactgcttct acaagatttq aaatgttctc cctcaqtqqc acatttqqaa 1320 cagagtatgt ttttcctgaa gtgctactta ccgaaattca tctgtcacct ggaaaatttg 1380 aggtgctgaa agatgggcgt ttggtaaaca agaatggatc atctgggcct atactaacag 1440 tgtcactctt tgggaggtgg tacacaaaqq actcacttta caqctcatqt qqqaccagca 1500 attcagcaat aacttacctg ctaatattca tattattaat gatcatagct ttgcaaaata 1560 ttgtaatgtt atagggegte tetttateae teagettetg eateatatge ttggetgaat 1620 gtgtttatcg gcttcccaag tttactaaga aactttgaag ggctatttca qtaqtataga 1680 ccagtgagtc ctaaatattt tttctcatca ataattattt tttaagtatt atgataatgt 1740 tgtccatttt tttggctact ctgaaatgtt gcagtgtgga acaatggaaa qaqcctqqqt 1800 gtttgggtca gataaatgaa gatcaaactc cagctccagc ctcatttqct tqaqactttq 1860 tgtgtatggg ggacttgtat gtatgggagt gaggagttte agggccattg caaacatage 1920 tgtgcccttg aagagaatag taatgatggg aatttagagg tttatgactg aattcccttt 1980 2034

<210> 533 <211> 4500 <212> DNA

<213> Homo sapiens

<400> 533

cgggtggttg agtggaagcg gtcgccatgt ccgcggggag cgcgacacat cctggaqctg 60 gegggegeeg cageaaatgg gaceaaceag etecageece aettetette etecegeeag 120 eggeeceagg tggggaggte accageagtg ggggaagtee tgggggcaee acagetgete 180 cttcaggage cttggatget getgetgetg tggetgecaa gattaatgee atgeteatgg 240 caaaagggaa gctgaaacca actcagaatg cttctgagaa gcttcaggct cctggcaaag 300 gcctaactag caataaaagc aaggatgacc tggtggtagc tgaagtagaa attaatgatg 360 tgcctctcac atgtaggaac ttgctgactc gaggacagac tcaagacgag atcagccgac 420 ttagtggggc tgcagtatca actcgaggga ggttcatgac aactgaggaa aaagccaaag 480 tgggaccagg ggatcgtcca ttatatcttc atgttcaggg ccagacacgg gaattagtgg 540 acagagetgt aaaceggate aaagaaatta teaceaatgg agtggtaaaa getgecacag 600 gaacaagtee aacttttaat ggtgeaacag taactgteta teaccageea geacceateg 660 ctcagttgtc tccagctgtt agccagaagc ctcccttcca gtcagggatg cattatgttc 720 aagataaatt atttgtgggt ctagaacatg ctgtacccac ttttaatgtc aaggagaagg 780 tggaaggtcc aggctgctcc tatttgcagc acattcagat tgaaacaggt gccaaagtct 840 tcctqcgggg caaaggttca ggctgcattg agccagcatc tggccgagaa gcttttqaac 900 ctatgtatat ttacatcagt caccccaaac cagaaggcct ggctgctgcc aagaagcttt 960 gtgagaatct tttgcaaaca gttcatgctg aatactctag atttgtgaat caqattaata 1020 ctgctgtacc tttaccaggc tatacacaac cctctgctat aagtagtgtc cctcctcaac 1080 caccatatta tecatecaat ggetateagt etggttacce tgttgtteec ectecteage 1140 agccagttca acctccctac ggagtaccaa gcatagtgcc accagctgtt tcattagcac 1200 ctggagtett geeggeatta ectaetggag teccaectgt geeaacacaa taecegataa 1260 cacaagtgca gcctccagct agcactggac agagtccgat gggtggtcct tttattcctg 1320 ctgctcctgt caaaactgcc ttgcctgctg gcccccagcc ccagccccag ccccagccc 1380 cacteccaag teageeccag geacagaaga gacgatteae agaggageta ceagatgaae 1440 gggaatctgg actgcttgga taccagcatg gacccattca tatgactaat ttaggtacag 1500 gcttctccag tcagaatgag attgaaggtg caggatcgaa gccagcaagt tcctcaggca 1560 aagagagaga gagggacagg cagttgatgc ctccaccagc ctttccagtg actggaataa 1620

aaacagagtc cqatqaaagg aatggqtctq ggaccttaac agggagccat ggtgagtgtq 1680 atataqctqq qqqaacaggg gaqtqqctaa qactqqtcta aagctattag ttttctcagc 1740 1800 egggegeagt ggeteaegee tqtaateeca geaetttggg aggeegaggt gggeagatea cctaaqqtca qqaqttcaaq accaqcttqq ccaacataqt gaaatcccat ctctactaaa 1860 aatacaaaaa ctaqcqqqca tqqtqqtqqq cqcctqtaat tccaqctact caqqqqqttq 1920 aggcaggaga atcgcttcaa cctgggaggc agaggttgca gtgagccaag atcagaccac 1980 tqccctccaq cctqqqcaat agaqcaaqac tccatctcat aaataaataa atacataaat 2040 aaagctatta attttctaac ctgatgttca ttcaggtgtt taatccaacc tctataatct 2100 gttggccagt gaaaatactt ttgggctggg cacggtggct cacgcctgta atcccagcac 2160 tttgggaggc caaggtgggc ggataacctg aggtcaggag tttgagacca gcgtggctaa 2220 2280 cacqqtqaaa cccqtctct actaaaaata qaaaaattaa qctqqqcatq qtqqtqcatq cctqtaattc caqcqqcttq qaaqqctqaq qcaqqaqaat cacttqaact tqqqaqqtqq 2340 aggttqcagt gggccgagat cacaccactg cattccagcc tgggcactag agtgagactc 2400 tgtctcaaaa aaaaagaaag agaaagagaa aatagtttct aaaaaattgt atacagacaa 2460 ccttttattt ccaacaaacg tgtgccgaga gagagagaga gaaaatagtt ttaaaaaaaat 2520 2580 tgtatacaga caaccttttg tttccaacca acgtgtatct agaaaagagt tagtcgactt attttataca tagcatcagt gaatagtaat gagtggtagg tcatttcaaa atcctgttgc 2640 ctatattatq tqaataccaq gaggtcatct gatacggact taataaaggt tgattttgct 2700 ttatattqqq aqctqaqcca cacctcccct tataactcta ttggtcagta atggtcagtt 2760 tqtqqctqtt aqqaaaatqt tqccttttaq cattccaqaa ctctaaatcc tqtaqaqqta 2820 2880 catgggatat tttattcttt gcctgtactc ataaaaatga acagaagaaa atacgttttt 2940 ttetttett aacttettt ettttaacte tttaaaaggt gaaatateag ceetcaagag actcacttgc taactttcct ttttttcttt tttttcttt tttttgtgtt tctttttct 3000 ttctctgttt tcttacatgg ttctggtgga ttcacatttg ctgatgctgg tgctgttttt 3060 cgtgtgatct tcaacgtttt tgggtgacca ttgaccctgt gacctcaaaa tggtgtccaa 3120 ctaaccactt aaaattaaca tottttttt aattaacgaa tttatggtat tttttttt 3180 cccttggcgg ggatggggtt ggggttgttt tttctctatt ctagattatc cagccaagaa 3240 qatqaaaact acagagaagg gatttggctt ggtqgcttat gctgcagatt catctgatga 3300 aqaggagqaa catqgagqtc ataaaaatgc aagtagtttt ccacagggct qgagtttggq 3360 ataccaatat cetteateac aaccaegage taaacaacag atgecattet ggatggetee 3420 ctaggaaaca qtggaacaga gttttgaccc tcagtgactc ttcttagcaa taatqcatgc 3480

```
atttgattta acaagactct ggggcctgtg ctgggaacca tctggacctt tgcagaagtt
                                                                    3540
 agagattcag tgcccccctt tcttaaaggg gttccttaac aaccacaaaa atccttattt
                                                                   3600
 ctgcagtggc atagaatctg ttaaaattta attagaatca caaatttatc tcagaagctt
                                                                   3660
 tttaacaqtt ggtgaaatgt gcttgtccaa caaagcatcc taacagggtc qttcccatac
                                                                   3720
 acatttgacc tggtcagcct tttccaggtg aatagcccca gttctgacat aaagaaagtt
                                                                   3780
 ttatttgtat tttactactg tttggtcaat tttgatatat aactggttac aaacagagcc
                                                                   3840
 ttactattta ttagtgggga aatgatttta agaccgtcct tttcagtatt taattctgac
                                                                   3900
 agatetgeat coetgittig tittggatta tittetgitti ggaaaatget gieteatita
                                                                   3960
 aaactgttgg atatagctgg atcctggata ggaaaatgaa attattttt cattgtgttt
                                                                   4020
 tttaattggg gtgatccaaa gctggcacct tcaggcacat tggtctcata gccattactg
                                                                   4080
 tttttattgc ccttctaaga tcctgtcttc agctgggtca gagaaaactt cttgactaaa
                                                                   4140
 actggtcaga actcatcaca gaaatgaaat acagtggtct ctctctccca gaactggttg
                                                                   4200
 cagctaaaac agagagatct gactgctggc tataggattt tggacttaat gactgaaatt
                                                                  4260
gcaaattgtc cttttcttg gcattacaga ttttgccaaa ataacttttt gtatcaaata
                                                                  4320
ttgatgtgtg aaagtgaagg agctagtctg ctgaaccagg aatagtttga gatattgaac
                                                                  4380
tgtcattttt gcacatttga atactttgca ggctggcttt gtataaactt atcctctggt
                                                                  4440
ttcctatatg ttgtaaatat ttagaccata atttcattat aaataaatct ataaatattc
                                                                 4500
<210> 534
<211> 594
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (15)..(64)
<223> n is a, c, g, t or u
<400> 534
60
nnnntgtgtc tcatgaatag gaaagaaagc agatgtaaag agttacataa aagcaaacag
                                                                  120
cttgctctgg tttctgggtc taacaattac gacttaaaca atggagccaa agaaaaatac
                                                                   180
attagatgat teteaacetg gaaageaaga etgeaaatta taaceacaaa aacaaagate
                                                                  240
tactgtctcc cagataccgg aaatggtaac ccggatattt gaggcttcca aggcaggaag
                                                                  300
ataaaggaga atcagacccc tgagcaggga ctctggagca gcactccagg accctgccta
                                                                  360
gagactaagc ctcaggtgga gcagtgaggt agacatetgc tcacaccagt ttcctctcac
```

420

| agatgtacac agattggggt gttgggtgag ggcctgatgg gggaaaggaa agagagaact              |      |
|--------------------------------------------------------------------------------|------|
| gctataggtg aatctctctg tggcttgttg tgggaccctg cgccctttaa attagggcat              | 540  |
| attttacaaa aacttattat tctacacagc ccttcttggg cctttacaga acga                    | 594  |
| <210> 535<br><211> 1721<br><212> DNA<br><213> Homo sapiens                     |      |
| <400> 535<br>cgggtgtaga tttcacaacc cagggggcgg agccaggatg atgaccccgc cccctcccta |      |
|                                                                                | 60   |
| aataattete eegggaggga caeggaagga geaaceggga tgggaegggg agagaggagg              | 120  |
| cactactggg gacctaagct ggttctcaaa tgcctctcct tttcccctcc aagcctccca              | 180  |
| ggcttcctat ggtccctaag tcccgggttc tcagcgtgac attccagagc aaacacagct              | 240  |
| ccccattact ctataccagg cactggcatg gattaattta tctaatcaca acatcccagt              | 300  |
| aagatatgcc ctgcctctcc tgctcacact ctatggctgg cattcacctg tggggccagg              | 360  |
| tegaaaetee tggettggee gteaatgeet taetggaget getetgetaa eeteetgetg              | 420  |
| cttcctctcg gacctcgatt cagccatcat gaatttacca gcatagagca tgtgattcca              | 480  |
| cacctccaag cttttgcaca tgctgctccc tgccagcgac cctcttttgg ccggcctacc              | 540  |
| ccgggaccct gactactctg tgtcctgcct ctactcacct ccctcaccct ccagcatgtg              | 600  |
| tttgcctgct aacatgaagt gtgacaagta ctggggctct tcctcggaca aggctctgga              | 660  |
| agogtacago toactggtoc aggactocag agocagagao ottgggatgo octgottotg              | 720  |
| gggacacagt gaggactgca gactgcaggc cagggtgggg ctcagggcct tcgccacatg              | 780  |
| aggetgeece etececcagt ccagacetge agaageagtg etgtaatgae caggacattt              | 840  |
| tgaagaggca tcacaacgta tctaagaagc ccttggagac cagctcttcc aaagtcaaag              | 900  |
| ccaagaccat tgtgatgatt cccgactccc agaagctcct gcgatgtgaa cttgagtcac              | 960  |
| tcaagagcca gttacaggcc cagaccaagg ctttcgagtt cctgaaccac tcagtgacca              |      |
| tgttggagaa ggagagctgc ttgcagcaaa tcaagattca gcagcttgaa gaggtgctga              | 1020 |
| gccccacagg ccgccaggga gagaaggagg agcacaagtg gggcatggag cagggcggc               | 1080 |
|                                                                                | 1140 |
| aggagetgta tggggeeetg acceaaggee tteagggget ggagaagace etgegtgaca              | 1200 |
| gtgaggagat gcagcgggcc cgcaccactc gctgcctgca gctgctggcc caggagatcc              | 1260 |
| gggacagcaa gaagttcctg tgggaggagc tggaactggt gcgggaggag gtgaccttca              | 1320 |
| tetateagaa geteeaageg eaggaggatg agateteaga gaaettggtg aacatteaga              | 1380 |
| aaatgcagaa aacgcaggtg aaatgccgca aaatcctgac caagatgaag cagcagggtc              | 1440 |

| atgagacage egeet                                        | tgtccg gagactgaa | g agataccgca | gggagccagt | ggctgctgga | 1500 |
|---------------------------------------------------------|------------------|--------------|------------|------------|------|
| aggatgacct ccaga                                        | aaggaa ctgagtgat | a tatggtctgc | tgtgcacgtg | ctgcagaact | 1560 |
| ccatagacag cctca                                        | actttg tgctcgggg | g cctgtcccaa | ggcctcgagc | ctaagaggcc | 1620 |
| acaaggggca ccagt                                        | tgcctg agccctcca | c teceeteetg | ggactctgac | tccgactgtg | 1680 |
| accaggacct ctccc                                        | cageca cettteage | a agagcggccg | c          |            | 1721 |
| <210> 536<br><211> 526<br><212> DNA<br><213> Homo sapi  | Lens             |              |            |            |      |
| cgcctgcggt ccccc                                        | aggag ttcaaggct  | g tggtgagcta | tgattgtacc | actgcactcg | 60   |
| tgcttgagca acaga                                        | gcaag accgcatct  | c aaaaacacaa | aaacaacacc | tatcctcttg | 120  |
| ctttgctgcc agaaa                                        | agaca aaaagcaca  | a ataaacaagc | acctgacagc | gttataggtg | 180  |
| gagaccgagt tctat                                        | gagtg cagtaaagt  | g gggcacggca | cagagatgga | gctgtactct | 240  |
| agacagggtg ttctg                                        | aatca ggaatggac  | tacaaaacat   | ctgcagtcag | aaattcacat | 300  |
| acagactata gtaga                                        | tcaaa agctcattt  | aaactatcaa   | tgaggaaaaa | agcaattcat | 360  |
| ttacataaca ttctc                                        | tttcc aactcaaac  | a tcaggtacaa | attgctttct | tttagcatat | 420  |
| gccagaaatc tgtca                                        | ttaca caatagetta | a gcaagtgtga | cacaagatac | tgccactttc | 480  |
| tctacacaaa gaccc                                        | accca aacaccagct | : ttgtttaaaa | cattac     |            | 526  |
| <210> 537<br><211> 1837<br><212> DNA<br><213> Homo sapi | ens              |              |            |            |      |
| <400> 537<br>tttttcgcaa cgggti                          | ttgcc gccagaacac | aggtgtcgtg   | aaaactaccc | ctasaacca  | 60   |
| aaatgggaaa ggaaaa                                       |                  |              |            |            | 120  |
| agtecaccac tactgo                                       |                  |              |            |            | 180  |
| aaaaatttga gaagga                                       |                  |              |            |            | 240  |
| tggataaact gaaago                                       | •                |              |            |            | 300  |
| tgagaccag caagta                                        |                  |              |            |            | 360  |
| aaaacatgat tacagg                                       |                  |              |            |            | 420  |
| tggtgaatt tgaago                                        |                  |              |            |            | 480  |
| ttacacact gggtgt                                        |                  |              |            |            | 540  |
|                                                         |                  |              |            |            |      |

| caccctacag | ccagaagaga | tatgaggaaa | ttgttaagga | agtcagcact | tacattaaga | 600  |
|------------|------------|------------|------------|------------|------------|------|
| aaattggcta | caaccccgac | acagtagcat | ttgtgccaat | ttctggttgg | aatggtgaca | 660  |
| acatgctgga | gccaagtgct | aacatgcctt | ggttcaaggg | atggaaagtc | acccgtaagg | 720  |
| atggcaatgc | cagtggaacc | acgctgcttg | aggctctgga | ctgcatccta | ccaccaactc | 780  |
| gtccaactga | caagcccttg | cgcctgcctc | tccaggatgt | ctacaaaatt | ggtggtattg | 840  |
| gtactgttcc | tgttggccga | gtggagactg | gtgttctcaa | acccggtatg | gtggtcacct | 900  |
| ttgctccagt | caacgttaca | acggaagtaa | aatctgtcga | aatgcaccat | gaagctttga | 960  |
| gtgaagctct | tcctggggac | aatgtgggct | tcaatgtcaa | gaatgtgtct | gtcaaggatg | 1020 |
| ttegtegtgg | caacgttgct | ggtgacagca | aaaatgaccc | accaatggaa | gcagctggct | 1080 |
| tcactgctca | ggtgattatc | ctgaaccatc | caggccaaat | aagcgccggc | tatgcccctg | 1140 |
| tattggattg | ccacacgget | cacattgcat | gcaagtttgc | tgagctgaag | gaaaagattg | 1200 |
| atcgccgttc | tggtaaaaag | ctggaagatg | gccctaaatt | cttgaagtct | ggtgatgctg | 1260 |
| ccattgttga | tatggttcct | ggcaagccca | tgtgtgttga | gagcttctca | gactatecae | 1320 |
| ctttgggtcg | ctttgctgtt | cgtgatatga | gacagacagt | tgcggtgggt | gtcatcaaag | 1380 |
| cagtggacaa | gaaggetget | ggagctggca | aggtcaccaa | gtctgcccag | aaagctcaga | 1440 |
| aggctaaatg | aatattatcc | ctaatacctg | ccaccccact | cttaatcagt | ggtggaagaa | 1500 |
| cggtctcaga | actgtttgtt | tcaattggcc | atttaagttt | agtagtaaaa | gactggttaa | 1560 |
| tgataacaat | gcatcgtaaa | accttcagaa | ggaaaggaga | atgttttgtg | gaccactttg | 1620 |
| gttttctttt | ttgcgtgtgg | cagttttaag | ttattagttt | ttaaaatcag | tactttttaa | 1680 |
| tggaaacaac | ttgaccaaaa | atttgtcaca | gaattttgag | acccattaaa | aaagttaaat | 1740 |
| gagaaaaaaa | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | 1800 |
| aaaaaaaaa  | aaaaaaaaaa | aaaaaaaaaa | aaaaaaa    |            |            | 1837 |
|            |            |            |            |            |            |      |

<400> 538

ggatcgaggg gactctgacc acagcctgtg gctgggaagg gagacagagg cggcggggc 60
tcaggggaaa cgaggctgca gtggtggtag taggaagatg tcgggcgagg acgagcaca 120
ggagcaaact accgctgagg acctggtcgt gaccaagtat aagatggggg gcgacatcgc 180
caacagggta cttcggtcct tggtggaagc acctagctca ggtggtgtcgg tactcagcct 240
gtgtgagaaaa ggtgatgcca tgattatgga agaacaaggg aaaatcttca agaaagaaaa 300

<sup>&</sup>lt;210> 538

<sup>&</sup>lt;211> 1697 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

| ggaaatgaag | aaaggtattg | cttttcccac | cagcatttcg | gtaaataact | gtgtatgtca | 360  |
|------------|------------|------------|------------|------------|------------|------|
| cttctcccct | ttgaagagcg | accaggatta | tattctcaag | gaaggtgact | tggtaaaaat | 420  |
| tgaccttggg | gtccatgtgg | atggcttcat | cgctaatgta | gctcacactt | ttgtggttga | 480  |
| tgtagctcag | gggacccaag | taacagggag | gaaagcagat | gttattaagg | cagctcacct | 540  |
| ttgtgctgaa | gctgccctac | gcctggtcaa | acctggaaat | cagaacacac | aagtgacaga | 600  |
| agcctggaac | aaagttgccc | actcatttaa | ctgcacgcca | atagaaggta | tgctgtcaca | 660  |
| ccagttgaag | cagcatgtca | tcgatggaga | aaaaaccatt | atccagaatc | ccacagacca | 720  |
| gcagaagaag | gaccatgaaa | aagctgaatt | tgaggtacat | gaagtatatg | ctgtggatgt | 780  |
| tetegteage | tcaggagagg | gcaaggccaa | ggatgcagga | cagagaacca | ctatttacaa | 840  |
| acgagacccc | tctaaacagt | atggactgaa | aatgaaaact | tcacgtgcct | tcttcagtga | 900  |
| ggtggaaagg | cgttttgatg | ccatgccgtt | tactttaaga | gcatttgaag | atgagaagaa | 960  |
| ggctcggatg | ggtgtggtgg | agtgcgccaa | acatgaactg | ctgcaaccat | ttaatgttct | 1020 |
| ctatgagaag | gagggtgaat | ttgttgccca | gtttaaattt | acagttctgc | tcatgcccaa | 1080 |
| tggccccatg | cggataacca | gtggtccctt | cgagcctgac | ctctacaagt | ctgagatgga | 1140 |
| ggtccaggat | gcagagctaa | aggeeeteet | ccagagttct | gcaagtcgaa | aaacccagaa | 1200 |
| aaagaaaaaa | aagaaggcct | ccaagactgc | agagaatccc | accagtgggg | aaacattaga | 1260 |
| agaaaatgaa | gctggggact | gaggtgcgtc | ccatctcccc | agcttgctgc | tcctgcctca | 1320 |
| tccccttccc | accaaacccc | agactctgtg | aagtgcagtt | cttctccacc | taggaccgcc | 1380 |
| agcagagcgg | ggggatetee | ctgccccac  | cccagttccc | caacccactc | ccttccaaca | 1440 |
| acaaccagct | ccaactgact | ctggtcttgg | gaggtgaggc | ttcccaacca | cggaagacta | 1500 |
| ctttaaacga | aaaaaagaaa | ttgaataata | aaatcaggag | tcaaaattca | tegtetteaa | 1560 |
| ggcccctctt | tctagccttt | tctactactc | tctgcttggt | caaggtttgt | gcccactac  | 1620 |
| agaacagggc | taaattagcc | accaccactg | aaaactcagc | cgaattttt  | tataccactc | 1680 |
| tgacgtcagc | attttt     |            |            |            |            | 1697 |

<210> 539

<400> 539

ctctctgctc ctcctgttcg acagtcagcc gcatcttctt ttgcgtcgcc agccgagcca 60 categeteag acaccatggg gaaggtgaag gteggagtea acggatttgg tegtattggg 120

cgcctggtca ccagggctgc ttttaactct ggtaaagtgg atattgttgc catcaatgac 180

<sup>&</sup>lt;211> 1283 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

| cccttcattg | acctcaacta | catggtttac | atgttccaat | atgattccac | ccatggcaaa | 240  |
|------------|------------|------------|------------|------------|------------|------|
| ttccatggca | ccgtcaaggc | tgagaacggg | aagcttgtca | tcaatggaaa | tcccatcacc | 300  |
| atcttccagg | agcgagatcc | ctccaaaatc | aagtggggcg | atgctggcgc | tgagtacgtc | 360  |
| gtggagtcca | ctggcgtctt | caccaccatg | gagaaggctg | gggctcattt | gcagggggga | 420  |
| gccaaaaggg | tcatcatctc | tgccccctct | gctgatgccc | ccatgttcgt | catgggtgtg | 480  |
| aaccatgaga | agtatgacaa | cagcctcaag | atcatcagca | atgcctcctg | caccaccaac | 540  |
| tgcttagcac | ccctggccaa | ggtcatccat | gacaactttg | gtatcgtgga | aggactcatg | 600  |
| accacagtcc | atgccatcac | tgccacccag | aagactgtgg | atggcccctc | cgggaaactg | 660  |
| tggcgtgatg | gccgcggggc | tctccagaac | atcatccctg | cctctactgg | cgctgccaag | 720  |
| gctgtgggca | aggtcatccc | tgagctgaac | gggaagctca | ctggcatggc | cttccgtgtc | 780  |
| cccactgcca | acgtgtcagt | ggtggacctg | acctgccgtc | tagaaaaacc | tgccaaatat | 840  |
| gatgacatca | agaaggtggt | gaagcaggcg | tcggagggcc | ccctcaaggg | catcctgggc | 900  |
| tacactgagc | accaggtggt | ctcctctgac | ttcaacagcg | acacccactc | ctccaccttt | 960  |
| gacgctgggg | ctggcattgc | cctcaacgac | cactttgtca | agctcatttc | ctggtatgac | 1020 |
| aacgaatttg | gctacagcaa | cagggtggtg | gacctcatgg | cccacatggc | ctccaaggag | 1080 |
| taagacccct | ggaccaccag | ccccagcaag | agcacaagag | gaagagagag | accctcactg | 1140 |
| ctggggagtc | cctgccacac | tcagtccccc | accacactga | atctcccctc | ctcacagttg | 1200 |
| ccatgtagac | cccttgaaga | ggggagggc  | ctagggagcc | gcaccttgtc | atgtaccatc | 1260 |
| aataaagtac | cctgtgctca | acc        |            |            |            | 1283 |
|            |            |            |            |            |            |      |

<400> 540

 geogetecege
 gtactcegge
 ceagtgtaga
 ggtectcagg
 cegceggcag
 gagacagctgg
 60

 gccaattccc
 tggccgggag
 cggaagggga
 tggcgtcggg
 cetgggctcc
 cegteccect
 120

 gctcggcggg
 cagtgaggag
 gagatatgg
 atgcacttt
 gaacaacagc
 ctgccccac
 180

 cccacccaga
 aaatgaagag
 gacccagaag
 aggatttgtc
 agaaacagag
 actccaaagc
 240

 tcaagaagaa
 gaaaaagcct
 aagaaacctc
 gggacctaa
 aatccctaag
 agcaagcgcc
 300

 aaaaaaagga
 gcgtatgctc
 ttatgccggc
 agctggggga
 cagtgagggc
 agcgactata
 420

 ctcctggcaa
 gaagaagaag
 agaagaagaag
 agaagaagaag
 aggaagaagaag
 480

<sup>&</sup>lt;210> 540 <211> 6417

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

| ageggaagga | ggaggaggag | gaggatgatg   | atgatgatga | ttcaaaggag | cctaaatcat | 540  |
|------------|------------|--------------|------------|------------|------------|------|
| ctgctcagct | cctggaagac | : tggggcatgg | aagacattga | ccacgtgttc | tcagaggagg | 600  |
| attatcgaac | cctcaccaac | tacaaggcct   | tcagccagtt | tgtcagaccc | ctcattgctg | 660  |
| ccaaaaatcc | caagattgct | gtctccaaga   | tgatgatggt | tttgggtgca | aaatggcggg | 720  |
| agttcagtac | caataaccc  | : ttcaaaggca | gttctggggc | atcagtggca | gctgcggcag | 780  |
| cagcagcggt | agctgtggtg | gagagcatgg   | tgacagccac | tgaggttgca | ccaccacctc | 840  |
| cccctgtgga | ggtgcctato | cgcaaggcca   | agaccaagga | gggcaaaggt | cccaatgctc | 900  |
| ggaggaagcc | caagggcagc | cctcgtgtac   | ctgatgccaa | gaagcctaaa | cccaagaaag | 960  |
| tagctcccct | gaaaatcaag | ctgggaggtt   | ttggttccaa | gcgtaagaga | tcctcgagtg | 1020 |
| aggatgatga | cttagatgtg | gaatctgact   | tcgatgatgc | cagtatcaat | agctattctg | 1080 |
| tttctgatgg | ttccaccage | cgtagtagcc   | gcagccgcaa | gaaactccga | accactaaaa | 1140 |
| agaaaaagaa | aggcgaggag | gaggtgactg   | ctgtggatgg | ttatgagaca | gaccaccagg | 1200 |
| actattgcga | ggtgtgccag | caaggcggtg   | agatcatcct | gtgtgatacc | tgtccccgtg | 1260 |
| cttaccacat | ggtctgcctg | gatcccgaca   | tggagaaggc | tcccgagggc | aagtggagct | 1320 |
| gcccacactg | cgagaaggaa | ggcatccagt   | gggaagctaa | agaggacaat | tcggagggtg | 1380 |
| aggagatcct | ggaagaggtt | gggggagacc   | tcgaagagga | ggatgaccac | catatggaat | 1440 |
| tctgtcgggt | ctgcaaggat | ggtggggaac   | tgctctgctg | tgatacctgt | ccttcttcct | 1500 |
| accacatcca | ctgcctgaat | ccccacttc    | cagagatece | caacggtgaa | tggctctgtc | 1560 |
| cccgttgtac | gtgtccagct | ctgaagggca   | aagtgcagaa | gatcctaatc | tggaagtggg | 1620 |
| gtcagccacc | atctcccaca | ccagtgcctc   | ggcctccaga | tgctgatccc | aacacgccct | 1680 |
| ccccaaagcc | cttggagggg | cggccagagc   | ggcagttctt | tgtgaaatgg | caaggcatgt | 1740 |
| cttactggca | ctgctcctgg | gtttctgaac   | tgcagctgga | gctgcactgt | caggtgatgt | 1800 |
| tccgaaacta | tcagcggaag | aatgatatgg   | atgagccacc | ttctggggac | tttggtggtg | 1860 |
| atgaagagaa | aagccgaaag | cgaaagaaca   | aggaccctaa | atttgcagag | atggaggaac | 1920 |
| gcttctatcg | ctatgggata | aaacccgagt   | ggatgatgat | ccaccgaatc | ctcaaccaca | 1980 |
| gtgtggacaa | gaagggccac | gtccactact   | tgatcaagtg | gcgggactta | ccttacgatc | 2040 |
| aggettettg | ggagagtgag | gatgtggaga   | tccaggatta | cgacctgttc | aagcagagct | 2100 |
| attggaatca | cagggagtta | atgaggggtg   | aggaaggccg | accaggcaag | aagctcaaga | 2160 |
| aggtgaagct | tcggaagttg | gagaggcctc   | cagaaacgcc | aacagttgat | ccaacagtga | 2220 |
| agtatgagcg | acagccagag | tacctggatg   | ctacaggtgg | aaccctgcac | ccctatcaaa | 2280 |
| tggagggcct | gaattggttg | cgcttctcct   | gggctcaggg | cactgacacc | atcttggctg | 2340 |

atgagatggg ccttgggaaa actgtacaga cagcagtctt cctgtattcc ctttacaagg 2400 agggtcattc caaaggcccc ttcctagtga gcgcccctct ttctaccatc atcaactggg 2460 agcgggagtt tgaaatgtgg gctccagaca tgtatgtcgt aacctatgtg ggtgacaagg 2520 acagcogtgc catcatecga gagaatgagt teteetttga agacaatgcc attegtggtg 2580 gcaagaaggc ctcccgcatg aagaaagagg catctgtgaa attccatgtg ctgctgacat 2640 cctatgaatt gatcaccatt gacatggcta ttttgggctc tattgattgg gcctgcctca 2700 tcgtggatga agcccatcgg ctgaagaaca atcagtctaa gttcttccgg gtattgaatg 2760 gttactcact ccagcacaag ctgttgctga ctgggacacc attacaaaac aatctggaag 2820 agttgtttca tctgctcaac tttctcaccc ccgagaggtt ccacaatttg gaaggttttt 2880 tggaggagtt tgctgacatt gccaaggagg accagataaa aaaactgcat gacatgctgg 2940 ggccgcacat gttgcggcgg ctcaaagccg atgtgttcaa gaacatgccc tccaagacag 3000 aactaattgt gcgtgtggag ctgagcccta tgcagaagaa atactacaag tacatcctca 3060 ctcgaaattt tgaagcactc aatgcccgag gtggtggcaa ccaggtgtct ctgctgaatg 3120 tggtgatgga tcttaagaag tgctgcaacc atccatacct cttccctgtg gctgcaatgg 3180 aagctcctaa gatgcctaat ggcatgtatg atggcagtgc cctaatcaga gcatctggga 3240 aattattgct qctgcagaaa atgctcaaga accttaagga gggtgggcat cgtgtactca 3300 tcttttccca gatgaccaag atgctagacc tgctagagga tttcttggaa catgaaggtt 3360 ataaatacga acgcatcgat ggtggaatca ctggggaacat gcggcaagag gccattgacc 3420 getteaatge accgggtget cagcagttet gettettget tteeactega getgggggee 3480 ttggaatcaa tctggccact gctgacacag ttattatcta tgactctgac tggaaccccc 3540 ataatgacat tcaggccttt agcagagctc accggattgg gcaaaataaa aaggtaatga 3600 tctaccggtt tgtgacccgt gcgtcagtgg aggagcgcat cacgcaggtg gcaaagaaga 3660 3720 ccaaacagga gcttgatgat atcctcaaat ttggcactga ggaactattc aaggatgaag 3780 ccactgatgg aggaggagac aacaaagagg gagaagatag cagtgttatc cactacgatg 3840 ataaggccat tgaacggctg ctagaccgta accaggatga gactgaagac acagaattgc 3900 agggcatgaa tgaatatttg agctcattca aagtggccca gtatgtggta cgggaagaag 3960 aaatggggga ggaagaggag gtagaacggg aaatcattaa acaggaagaa agtgtggatc 4020 ctgactactg ggagaaattg ctgcggcacc attatgagca gcagcaagaa gatctagccc 4080 gaaatctggg caaaggaaaa agaatccgta aacaggtcaa ctacaatgat ggctcccagg 4140

aggaccqaga ttggcaggac gaccagtccg acaaccagtc cgattactca gtggcttcag 4200 aggaaggtga tgaagacttt gatgaacgtt cagaagctcc ccgtaggccc agtcgtaagg 4260 gcctgcggaa tgataaagat aagccattgc ctcctctgtt ggcccgtgtt ggtgggaata 4320 ttgaagtact tggttttaat gctcgtcagc gaaaagcctt tcttaatgca attatgcgat 4380 atggtatgcc acctcaggat gcttttacta cccagtggct tgtaagagac ctgcgaggca 4440 4500 aatcagagaa agagttcaag gcatatgtct ctcttttcat gcggcattta tgtgagccgg gggcagatgg ggctgagacc tttgctgatg gtgtcccccg agaaggcctg tctcgccagc 4560 atgtccttac tagaattggt gttatgtctt tgattcgcaa gaaggttcaq qaqtttqaac 4620 atgttaatgg gcgctggagc atgcctgaac tggctgaggt ggaggaaaac aagaagatgt 4680 cccagccagg gtcaccctcc ccaaaaactc ctacaccctc cactccaggg gacacgcagc 4740 ccaacactcc tqcacctgtc ccacctgctg aagatgggat aaaaatagag gaaaatagcc 4800 tcaaagaaga agagagcata gaaggagaaa aggaggttaa atctacagcc cctgagactg 4860 ccattgagtg tacacaggcc cctgcccctg cctcagagga tgaaaaggtc gttgttgaac 4920 cccctqaqqq aqaqqaaa qtqqaaaaqq caqaqqtgaa qqaqaaaca qaqqaaccta 4980 tggaqacaga gcccaaaggt gctgctgatg tagaqaaggt ggaggaaaag tcagcaatag 5040 atctgaccc tattgtggta qaaqacaaaq aagaqaagaa agaagaagaa gagaaaaaaa 5100 5160 aggtgatgct tcagaatgga gagaccccca aggacctgaa tgatgagaaa cagaagaaaa 5220 atattaaaca acqtttcatq tttaacattq caqatqqtqq ttttactqaq ttqcactccc tttqqcaqaa tqaaqaqcqq qcaqccacaq ttaccaaqaa qacttatqaq atctqqcatc 5280 gacggcatga ctactggctg ctagccggca ttataaacca tggctatgcc cggtggcaag 5340 acatecagaa tgacccaege tatgccatee teaatgagee tttcaagggt gaaatgaace 5400 gtggcaattt cttagagatc aagaataaat ttctagctcg aaggtttaag ctcttagaac 5460 aagctctggt gattgaggaa cagctgcgcc gggctgctta cttgaacatg tcagaagacc 5520 cttctcaccc ttccatggcc ctcaacaccc gctttgctga ggtggagtgt ttggcggaaa 5580 qtcatcaqca cctqtccaaq qaqtcaatqq caqqaaacaa qccaqccaat qcaqtcctqc 5640 acaaaqttct qaaacaqctg qaaqaactqc tqaqtqacat qaaaqctqat qtqactcgac 5700 teccagetac cattgeega atteccecag ttgetgtgag gttacagatg teagagegta 5760 acatteteaq ecqcetqqca aaccqqqcac ecqaacetac eccacaqcaq qtaqeecaqe 5820 agcagtgaag atgcagactg ataccacctc caccgctgag cagtgacctt cctcactttc 5880 tettqtecca gettetecce tqqqqqcetq aqaqaceete acetteette tqcccatett 5940 ccatgttgta aaggaacagc cccagtgcac tgggggaggg gagggagtga ggggcagtgg 6000

tgcccttcct gcagaagaga catgcagcag tagcgctggc gccatctgca ggagctggcg 6060 ggetggeett etggaccetg getteteece actgtaacge etgttacaca caaactgttg 6120 tgggttcctg ccaggcttga agaaaatgat ctgaattttt tcctcctttt ggttttattt 6180 6240 ccctgggcga gacacagcta cctctgttgg catcttttta ataccaggaa cccagcggct 6300 6360 ctaqccactq aqcqctaaa tqaaataaaq tqqaaaaaaa aaaaaaaqqa aaaaaccaaa agcataaaaa accacagcaa atttcttgat gaaaattgaa aataaaagtt tccttgt 6417 <210> 541 <211> 1680 <212> DNA <213> Homo sapiens

60

<400> 541 cacqqcaqcc ctacactcqq cctqqaaqaa ttqtttttct tctctqqaaa qqtqaacatt

tatagcattt atttcccaaa tctgttaaca tggcaaaata tgtcagtctc actgaagcta 120 acgaagaact caaggtotta atggacgaga accagaccag ccgccccgtg gccgttcaca 180 cctccaccgt gaacccqctc gggaagcagc tcttgccgaa aacctttgga cagtccagtg 240 tcaacattqa ccaqcaagtg qtaattggta tgcctcagag accagcagca tcaaacatcc 300 360 ctgtggtagg aagccaaac ccaccagca ctcactttgc ctctcagaac cagcattcct 420 actectcace teettgggee gggcagcaca acaggaaagg agagaagaat ggcatgggee tqtqccqtct ttccatqaaq qtctqqqaqa cqqtqcaqaq qaaaqqqacc acttcctqcc 480 aggaagtggt gggcgagctg gtcgccaagt tcagagctgc cagcaaccac gcctcaccaa 540 acquired ttatqueqtq aaaaacataa aacqqcqcac ctacqatqcc ttaaacqtqc 600 tgatggccat gaatatcatc tccagggaga aaaagaagat caagtggatt ggtctgacca 660 ccaactcggc tcagaactgt cagaacttac gggtggaaag acagaagaga cttgaaagaa 720 taaaqcagaa acaqtctgaa cttcaacaac ttattctaca gcaaattgct ttcaagaacc 780 tgqtqctqaq aaaccagtat qtqqaqqaqc aqqtcaqcca qcgqccgctg cccaactcag 840 tcatccacgt gcccttcatc atcatcagca gtagcaaqaa gaccgtcatc aactgcagca 900 totocgacqa caaatcagaa tatotgttta agtttaacag ctcotttgaa atocacgatg 960 acacagaagt gctgatgtgg atgggcatga cttttgggct agagtccggg agctgctctg 1020 ccgaagacct taaaatggcc agaaatttgg tcccaaaggc tctggagccg tacgtgacag 1080 aaatggctca gggaactttt ggaggtgtgt tcacgacggc aggttccagg tctaatggca 1140 cqtqqctttc tqccaqtqac ctqaccaaca ttqcqattqq qatqctqqcc acaaqctccq 1200

gtggatetea gtacagtgge tecagggtgg agaceecage agtegaggag gaagaggagg 1260 aggacaacaa cgatgacgac ctcagtgaga atgacgagga tgactgacgt cctctcgcct 1320 taagattcag cttcaggaaa acatttaggg aaaagaaact ttttttttt ttttaatgtg 1380 aggttttctg tttctttttt gcctactccc aagaagatat tggtaagcta tagaatttag 1440 atatgcacct ctgataagca aggattgttt cccgtatgat taagacgtgc tgttgatgtg 1500 tgttttgata ccagtgtgct gacacagaat ctttatttac tttttaggat tttgtgtttt 1560 cattttctat ttttctttaa atgcagagtt cattgttgcc ccttaacagt ttttcctgag 1620 tttactgaag aaattgtact tcatccacat ccatgaaaat aaaatgctct ccttttgtgc 1680 <210> 542 <211> 2055 <212> DNA <213> Homo sapiens <400> 542 agcactcaaa aagagtgaat gaaatgtgca gctcagagtg tcatttctga agggaggagt 60 ctttctcttg gagaagagtc ctcaatgagc ctggccgagg cccgggatct gtgtgaagtg 120 gactaaggat taagtaggat gtcaactgag acagaacttc aagtagctgt gaaaaccagc 180 gccaagaaag actccagaaa gaaaggtcag gatcgcagtg aagccacttt gataaagagg 240 tttaaaggtg aaggggtccg gtacaaagcc aaattgatcg ggattgatga agtttccgca 300 gctcggggag acaagttatg tcaagattcc atgatgaaac tcaagggcgt tgttgctggc 360 gctcgttcca aaggagaaca caaacagaaa atctttttaa ccatctcctt tggaggaatc 420 aaaatctttg atgagaagac aggggccctt cagcatcatc atgctgttca tgaaatatcc 480 tacattgcaa aggacattac agatcaccgg gcctttggat atgtttgtgg gaaggaaggg 540 aatcacagat ttgtggccat aaaaacagcc caggcggctg aacctgttat tctggacttg 600 agagatetet tteaacteat ttatgaattg aagcaaagag aagaattaga aaaaaaggca 660 caaaaggata agcagtgtga acaagctgtg taccagacaa tattggaaga ggatgttgaa 720 gatectgtgt accagtacat tgtgtttgag getggacaeg agecaateeg tgateeegaa 780 acggaagaaa acatttatca ggttcccacc agccaaaaga aggaaggtgt ttatgatgtg 840 ccaaaaagtc aacctgctgt gacccaatta gaactttttg gggacatgtc cacacccct 900 gatataacct ctcccccac tcctgcaact ccaggtgatg cctttatccc atcttcatct 960 cagaccette cagegagtge agatgtgttt agttetgtae ettteggeae tgetgetgta 1020 ccctcaggtt acgttgcaat gggcgctgtc ctcccgtcct tctggggtca gcagccctc 1080 gtccaacagc agatggtcat gggtgcccag ccaccagtcg ctcaggtgat gccqqqqqct 1140

| cagcccatcg                                                                                                                                                                       | catggggcca                                                                                        | gccgggtctc                                                                                     | tttcctgcca                                                                                                                 | ctcagcagcc                                                                                                  | ctggccaact                                                                                                                 | 1200                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| gtggccgggc                                                                                                                                                                       | agtttccgcc                                                                                        | agccgccttc                                                                                     | atgcccacac                                                                                                                 | aaactgttat                                                                                                  | gcctttgcca                                                                                                                 | 1260                                                        |
| gctgccatgt                                                                                                                                                                       | tccaaggtcc                                                                                        | cctcaccccc                                                                                     | cttgccaccg                                                                                                                 | teccaggeae                                                                                                  | gagtgactcc                                                                                                                 | 1320                                                        |
| accaggtcaa                                                                                                                                                                       | gtccacagac                                                                                        | cgacaagccc                                                                                     | aggcagaaaa                                                                                                                 | tgggcaaaga                                                                                                  | aacgtttaag                                                                                                                 | 1380                                                        |
| gatttccaga                                                                                                                                                                       | tggcccagcc                                                                                        | teegecegtg                                                                                     | ccctcccgca                                                                                                                 | aacccgacca                                                                                                  | gccctccctc                                                                                                                 | 1440                                                        |
| acctgtacct                                                                                                                                                                       | cagaggcctt                                                                                        | ctccagttac                                                                                     | ttcaacaaag                                                                                                                 | teggggtgge                                                                                                  | acaggataca                                                                                                                 | 1500                                                        |
| gacgactgtg                                                                                                                                                                       | atgactttga                                                                                        | catctcccag                                                                                     | ttgaatttga                                                                                                                 | cccctgtgac                                                                                                  | ttctaccaca                                                                                                                 | 1560                                                        |
| ccatcgacca                                                                                                                                                                       | acteacetee                                                                                        | aaccccagcc                                                                                     | cctagacaga                                                                                                                 | gctctccatc                                                                                                  | caaatcatct                                                                                                                 | 1620                                                        |
| gcatcccatg                                                                                                                                                                       | ccagtgatcc                                                                                        | taccacagat                                                                                     | gacatctttg                                                                                                                 | aagagggett                                                                                                  | tgaaagtccc                                                                                                                 | 1680                                                        |
| agcaaaagcg                                                                                                                                                                       | aagagcaaga                                                                                        | agctcctgat                                                                                     | ggatcacagg                                                                                                                 | cctcatccaa                                                                                                  | cagtgatcca                                                                                                                 | 1740                                                        |
| tttggtgagc                                                                                                                                                                       | ccagtgggga                                                                                        | gcccagtggt                                                                                     | gataatataa                                                                                                                 | gtccacaggc                                                                                                  | cggtagctag                                                                                                                 | 1800                                                        |
| atagcgcagg                                                                                                                                                                       | tctgggagcc                                                                                        | agagcctctg                                                                                     | tacgcgcaga                                                                                                                 | tcaacagacc                                                                                                  | taagaaatag                                                                                                                 | 1860                                                        |
| catcgatgcg                                                                                                                                                                       | agctcgtggt                                                                                        | gggtgctcaa                                                                                     | gactggcatg                                                                                                                 | gacatcagca                                                                                                  | tcacgacagg                                                                                                                 | 1920                                                        |
| ctctcttgta                                                                                                                                                                       | ttctttcacc                                                                                        | tetteccaca                                                                                     | agaaattcat                                                                                                                 | gattgcccaa                                                                                                  | tggaactcgc                                                                                                                 | 1980                                                        |
|                                                                                                                                                                                  |                                                                                                   |                                                                                                |                                                                                                                            |                                                                                                             |                                                                                                                            |                                                             |
| tcagaagagg                                                                                                                                                                       | gaactaagca                                                                                        | tttttggcaa                                                                                     | ccaatggcag                                                                                                                 | atatctatgg                                                                                                  | cagcacacaa                                                                                                                 | 2040                                                        |
| tcagaagagg<br>aaaaaaaaa                                                                                                                                                          |                                                                                                   | tttttggcaa<br>,                                                                                | ccaatggcag                                                                                                                 | atatctatgg                                                                                                  | cagcacacaa                                                                                                                 | 2040                                                        |
| <210> 543 <211> 423 <212> DNA <213> Home                                                                                                                                         | aaaaa<br>9                                                                                        | tttttggcaa<br>'                                                                                | ccaatggcag                                                                                                                 | atatctatgg                                                                                                  | cagcacacaa                                                                                                                 |                                                             |
| <210> 543 <211> 423 <212> DNA <213> Home <400> 543                                                                                                                               | aaaaa<br>9<br>o sapiens                                                                           | tttttggcaa                                                                                     |                                                                                                                            |                                                                                                             |                                                                                                                            |                                                             |
| <pre>&lt;210&gt; 543 &lt;211&gt; 423 &lt;212&gt; DNA &lt;213&gt; Hom &lt;4400&gt; 543 ctgtgggcct</pre>                                                                           | aaaaa<br>9<br>0 sapiens<br>gggagetgee                                                             |                                                                                                | acgccgcagg                                                                                                                 | gccaggcatg                                                                                                  | tgaggtctct                                                                                                                 | 2055                                                        |
| <pre>&lt;210 &gt; 543 &lt;211 &gt; 423 &lt;211 &gt; 423 &lt;212 &gt; DNA &lt;213 &gt; Hom &lt;400 &gt; 543 ctgtgggcct gcgggtcatg</pre>                                           | aaaaa  9 D sapiens gggagctgcc gagaacctcc                                                          | tctgaggaac                                                                                     | acgccgcagg                                                                                                                 | gccaggcatg                                                                                                  | tgaggtctct<br>tggggagggg                                                                                                   | 2055                                                        |
| <pre>&lt;210 &gt; 543 &lt;211 &gt; 423 &lt;212 &gt; DNA &lt;213 &gt; Home &lt;400 &gt; 543 ctgtgggcct gcgggtcatg tcctgtggga</pre>                                                | aaaaa  9 o sapiens gggagctgcc gagaacctcc ccctcaggag                                               | tctgaggaac<br>ctgccgtgac                                                                       | acgccgcagg<br>cactgaggag<br>ccgggaccag                                                                                     | gccaggcatg<br>ccgacccca<br>gtccggactg                                                                       | tgaggtctct<br>tggggagggg<br>tggtcatgag                                                                                     | 2055<br>60<br>120                                           |
| <pre>&lt;210&gt; 543 &lt;211&gt; 423 &lt;212&gt; DNA &lt;213&gt; Hom &lt;400&gt; 543 ctgtgggcct gcgggtcatg tcctgtggga </pre>                                                     | o sapiens gggagetgee gagaacetee ccetcaggag agetgggaga                                             | tetgaggaac<br>etgeegtgae<br>gtggeageac                                                         | acgccgcagg<br>cactgaggag<br>ccgggaccag                                                                                     | gccaggcatg<br>ccgacccca<br>gtccggactg<br>aaggcgccgg                                                         | tgaggtetet<br>tggggaggg<br>tggteatgag<br>tgagaggcga                                                                        | 2055<br>60<br>120<br>180                                    |
| <pre>&lt;210&gt; 543 &lt;211&gt; 423 &lt;212&gt; DA &lt;213&gt; Hom &lt;4400&gt; 543 ctgtgggcct gcgggtcatg tcctgtggga </pre>                                                     | gggagctgcc gagaacctcc ccctcaggag agctgggaga cctgcccgcg                                            | tctgaggaac<br>ctgccgtgac<br>gtggcagcac<br>aagcggggcc                                           | acgccgcagg<br>cactgaggag<br>ccgggaccag<br>cgaggaggcc<br>tgctgctggg                                                         | gccaggcatg<br>ccgaccccca<br>gtccggactg<br>aaggcgccgg<br>acccctccct                                          | tgaggtetet<br>tggggagggg<br>tggteatgag<br>tgagaggega<br>gecagatggg                                                         | 2055<br>60<br>120<br>180<br>240                             |
| aaaaaaaaaa  <210> 543  <211> 423  <211> May  <212> MA  <213> Hom  <400> 543  ctgtgggcct  gcgggtcatg  tcctgtggga  gccctctgtg  cgaggctcct  ggtttatccc  ggtttatccc                  | saaaaa  soo sapiens gggagetgee gagaacetee ecctcaggag agetgggaga ectgeeegeg acagacetga             | tctgaggaac<br>ctgccgtgac<br>gtggcagcac<br>aagcggggcc<br>tggctgggcc<br>ccctgcagct               | acgccgcagg<br>cactgaggag<br>ccgggaccag<br>cgaggaggcc<br>tgctgctggg<br>gctggctgtg                                           | gccaggcatg<br>ccgacccca<br>gtccggactg<br>aaggcgccgg<br>accctccct<br>cggaggaaga                              | tgaggtetet<br>tggggagggg<br>tggteatgag<br>tgagaggega<br>gecagatggg                                                         | 2055<br>60<br>120<br>180<br>240<br>300                      |
| aaaaaaaaaa  <210> 543 <211> M2 <212> DNA <212> DNA <213> Hom <400> 543 ctgtgggct gcgggtcatg tccttgtggga gccctctgtg cgaggtcatt gggttattatcc gggttatcgggtatg                       | po sapiens gggagctgcc gagaacctcc ccctcaggag agctgggaga cctgcccgcg acagacctga ctacagcaga           | tctgaggaac<br>ctgccgtgac<br>gtggcagcac<br>aagcggggcc<br>tggctgggcc<br>ccctgcagct               | acgccgcagg<br>cactgaggag<br>ccgggaccag<br>cgaggaggcc<br>tgctgctggg<br>gctggctgtg<br>ccagctccgc                             | gccaggcatg<br>ccgacccca<br>gtccggactg<br>aaggcgccgg<br>accetecet<br>cggaggaaga<br>ctgctggaga                | tgaggtetet<br>tggggagggg<br>tggteatgag<br>tgagaggega<br>gecagatggg<br>geagaetgeg<br>atgatageeg                             | 2055<br>60<br>120<br>180<br>240<br>300<br>360               |
| aaaaaaaaaaa  <211> 543  <211> 423  <212> DNA  <212> DNA  <213> Hom  <400> 543  ctgtgggect  gcgggtcatg  tcctgtggga  gccctctgtg  cgaggctcct  gggtttatccc  gggaccccggc  ggaaccccggc | p sapiens gggagctgcc gagaacctcc ccctcaggag agctgggaga cctgcccgcg acagacctga                       | tctgaggaac<br>ctgccgtgac<br>gtggcagcac<br>aagcggggcc<br>tggctgggcc<br>ccctgcagct<br>ccctccgggg | acgccgcagg<br>cactgaggag<br>ccgggaccag<br>cgaggaggcc<br>tgctgctgg<br>gctggctgtg<br>ccagctccgc<br>agccagctg                 | gccaggcatg<br>ccgacccca<br>gtccggactg<br>aaggcgccgg<br>accctccct<br>cggaggaaga<br>ctgctggaga<br>ctgctgcatcc | tgaggtetet<br>tggggagggg<br>tggteatgag<br>tgagaggega<br>gecagatggg<br>geagaetgeg<br>atgatageeg<br>acagtgaeca               | 2055<br>60<br>120<br>180<br>240<br>300<br>360<br>420        |
| aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa                                                                                                                                           | p sapiens gggagctgcc gagaacctcc ccctcaggag agctgggaga cctgcccgcg acagacctga ctacagcaga cgcgtgcttg | tctgaggaac<br>ctgccgtgac<br>gtggcagcac<br>aagcggggcc<br>tggctgggcc<br>ccctgcagct<br>ccctccgggg | acgccgcagg<br>cactgaggag<br>ccgggaccag<br>cgaggaggcc<br>tgctgctggg<br>gctggctgtg<br>ccagctccgc<br>agccaggctg<br>tgaagaaatc | gccaggcatg ccgacccca gtccggactg aaggcgccgg acccetccet cggaggaaga ctgctggaga ctgtccatcc tggaagtttt           | tgaggtetet<br>tggggagggg<br>tggteatgag<br>tgagaggega<br>gecagatggg<br>geagaetgeg<br>atgatageeg<br>acagtgaeea<br>ecaectaeea | 2055<br>60<br>120<br>180<br>240<br>300<br>360<br>420<br>480 |

gctcttgccc agtgaggagg aggagacggc catccaagtc catgtggatg agaacgcctt 660

aaggctgacc cacgagagcc tcctcatcca agaagggccc ttctttgtcc tgtgtcctga 720 ccaccatgtg agagtgatga cgggtccccg ggatgcagga aatggccccc aggccctcag 780 gcaggcttcg ggggcacccc agggagaggc ggccccggaa acagactctt caccgccgag 840 ccccagcgtg tcctccgagg aggtggcagt ggcggccgcc ccggagcctt tgattccatt 900 tcatcagtgg gctcttagga tcccccagga ccccatcgac gatgccatgg gtggcctgt 960 gatgcccggc aacccgctga tggctgtggg cctggcctcg gcattggcag acttccaqqq 1020 ctcggggccc gaagagatga ccttccgagg tggcgacctc atcgagatcc ttggggcgca 1080 ggtgcccagc ctgccctggt gcgtgggccg acacgcagcc tcgggccggg tggggtttgt 1140 geggageage eteateagea tgeagggeee egtgteegag ttggaaagtg egattttet 1200 caatgaggaa gaaaagtcat tottcagcga gggctgcttt totgaggagg atgccaggca 1260 gttgctgagg cggatgtcgg gcaccgatgt ctgcagcgtg tacagcctgg actcagtaga 1320 ggaagctgag accgagcagc cgcaggaaaa agaaatacct ccaccttgcc tgagcccgga 1380 gccacaggag accttgcaga aggtgaagaa tgttctggaa caatgcaaga cctgcccagg 1440 ctgcccccag gagccagcgt cctggggtct ctgtgcggca tccagcgacg tgagcttgca 1500 ggaccccgag gagccctcct tctgcttgga agccgaggac gactgggagg acccagaggc 1560 cctgagetea etgetgetgt teetgaaege eeetgggtae aaggeeaget teegtggeet 1620 gtacgatgtg gcgctgccgt ggctgagcag cgtgttccgc agcttcagcg acgaggagga 1680 gctgactggg cgcctggcac aggcccgggg ggcggccaag aaagctggcc tcctcatggc 1740 cctggccagg ctctgcttcc tcctggggcg gctgtgcagc aggaggctca agctgtccca 1800 ggcccgggtg tactttgagg aagcgctggg ggccctggag ggcagcttcg gggacctgtt 1860 cctggtggtg gctgtgtacg ccaacctggc cagcatttac cggaagcaga agaaccggga 1920 gaagtgtgca caggtggtgc ccaaagccat ggccctgctc ctggggacgc ccgaccacat 1980 ctgcagcacc gaggcggagg gggagctcct gcagctggcg ctgcqgcggg cggtqqqtqq 2040 ccagageetg caggeegagg eccgggeetg etteetgetg gecaggeace acgtgeacet 2100 caagcagccc gaggaggccc tgcccttcct agagcggctg ctgcttttgc acagggactc 2160 gggagcccca gaggccgcgt ggctctcaga ctgctaccta ctcctggctg acatctacag 2220 ccgcaagtgc ctgccccacc tggtgctgag ctgtgtcaag gtggcctcat tgcggacacg 2280 gggctcgctg gccggctcgc tgaggagtgt gaacctggtg ctccagaacg cccccagcc 2340 ccacagcete cetgeccaaa etteccacta ceteaggeaa gegetggeet eeetgaceee 2400 gggcacaggc caggcgctgc gcggccccct ctacaccagc ttggcccagc tgtacagcca 2460

2520

ccatqqctqc cacqqccqq ccatcacctt catgacgcag gcagtggaag ccaqtqctat tgccgqaqtc cqtqccatcq tgqaccacct ggtggccctg gcctggctgc acqtqcttca 2580 2640 tgggcagagc ccggtggccc tggacatcct gcagtctgtc cgggatgcag tggtggccag 2700 cgaggaccag gagggcgtga ttgccaacat ggtggccgtg gctctgaaga ggacgggccg 2760 gacgaggcag gcagctgaga gctactaccg cgccctgcgg gtggctcggg acctgggcca 2820 gcaaaggaac caggcagtgg ggctggccaa cttcggggcc ctgtgcctgc atgcgggtgc 2880 cagcaggetg geccagcact acctectgga ggccgtgcgg ctgttctcga ggctgcccct tggggagtgt ggccgggact tcacccacgt gctcctgcag ctgggccatc tctgcacccg 2940 ccagggcccg gcccagcagg gcaagggcta ctacgagtgg gcccttctgg tcgccgtgga 3000 qatqqqccac qtqqaqaqcc agctgcgggc cgtccagcgg ctgtgccact tctacagcgc 3060 cgtcatgccc agcgaggccc agtgtgtcat ctaccatgag ctccagctct ccccqqcctq 3120 caaqqtqqcc qacaaqgtgc tggaqgggca gctcctggag accatcagcc agctctacct 3180 qtccctqqqc accqagcqqg cctacaaatc cgcactqqac tacaccaaac gaagtctggg 3240 qattttcatt qacctccaqa aqaaaqaqaa qqaqqcqcat qcctqgctgc aagcagggaa 3300 qatctattac atcttqcqqc aqaqcqaqct qqtqqacctc tacatccaqq tqqcacaqaa 3360 cqtqqcctq tacacaqqcq acccaacct qqqqctqqaq ctqtttqaqq cqqctqqaqa 3420 3480 catcttcttc qacqqqcct qqqaqcqqqa qaaaqctqtq tccttctacc qqqaccqqqc 3540 cctgccctg gcagtgacta cgggcaaccg caaggcggag ctgcggctgt gcaacaagct ggtggcactg ctggccacgc tggaggagcc ccaggagggc ttggagtttg cccacatggc 3600 cctagcactc agcatcaccc tgggggaccg gctgaacgag cgcgtggcct accaccggct 3660 ggccqccttg caacaccgac tgggccatgg cgagctggca gagcacttct acctcaaggc 3720 cctqtcqctc tgcaactcgc cgctggagtt tgacgaggag accctctact acgtgaaggt 3780 qtacctqqtq ctcqqtqaca tcatcttcta cgacctgaag gacccgtttg atgcagccgg 3840 qtactaccaq ctqqcqctqq cqqccqccqt qqacctqqqc aacaaqaaqq cacaqctqaa 3900 gatctacacq cqqctqqcca ccatctacca caacttcctc ctqqaccqtq aqaaqtcqct 3960 cttcttctac caqaaqqcca qqaccttcqc cacaqaqctc aacqtccqca qqqtcaacct 4020 qcctcctctq ccactctqcq qqtqqqccc ctqqttqqcc cccaqccacc ctcqctqaqq 4080 acagcateca agggagtggg ttttgtgcaa gggctggggg tctcctgcct ctcctggtgt 4140 cgcggtggc tcattttctg gcaaatggag gcacgaacgc aggggccaaa tagcaataaa 4200 tgggttttgt ttttttttg caataaaaaa aaaaaaaaa 4239

<210> 544 <211> 2207

<212> DNA

<213> Homo sapiens

<400> 544

atatttette tatgaatett ttgtgtacag atttttgtgt agacatatat gtttttatet 60 ctgttgggtg tatacctgag agtagaatta ctgggttata tggtaactct atgtttagcc 120 ttttgaggaa ctgctagact gtttcccaaa ggagctgtat cattttacat aaccaccaga 180 tatgtttgag ggttctgatt tctccacagt ctcatgaata cttattattg tctgccattt 240 ttattttagc cagtcaaggg ggtttgaaat ggtacctcat tatggtttca gtttgtgttt 300 ttctaatgag taatgatgtt gagtatcatt ttatattttc tgtgcttatt aaccatttgt 360 atatcatctt tggagaaatg tctgttcata tcctttgctc attttttaaa gattggatta 420 tttgatttct cattattgaa ttgtaagagt tctttatata gtctagctat aagtcatata 480 tatatatgat ttgcacaaat tttcttccat tctataggtt gttctcactt tcatgatggt 540 gagaaccttg ttttttaaac agtttctcac ttgtcttgtg aaagggtact ggataccaac 600 cccctcatgc tggcttagcc atcaaaagcg tcccattttt acactttgta gattcctctt 660 ggacccactt ttctccaaag aaccctattc cccccaagtt atccttccag ttctctagca 720 tcaaaacaaa attcgctttc atttggcagt tgttagtcca aactgcacca ttttgtaagt 780 cccccagcat tttgcagacc ttggtcaaag tgacacattc caggcgagtt tgggctgtga 840 gaaacatcct gcctaaccac ctgaccacaa cacacaagaa catccttatc ataccctgct 900 aagcaaaggc ccaactgaag gaacgtccct atcataccct gcaactggaa caaagggcca 960 aaccacctga tcataggaac atcttaatat cctgccgggc agcaaaccag acagcccaga 1020 cccctcctgc ccatacctat aagtccccag cctgtgaacg gcagtgggct ctggcattaa 1080 gctgcacccc ccacctctgc aggtttttgc aatatacttg tgttgctgta gagcccccc 1140 cccacccca tctttcttta actcccacct tccctttaaa aaaaacctaa cagcaatagc 1200 atggtatgat tcaaaaactc attttgccac taactgacat tgtatcttgg ttaggtcact 1260 taatatcact ggttctcagg tttttttgta aaataaatta atttatttct agtaattcat 1320 gtgagtagca gacttcattc acctgatact tgattttaaa agaaaagttt ttcaacccag 1380 ggaatttata gtgggtgtca gtcgagaaaa atgatgggac aagtctcaat cattttagga 1440 gatttatttg ccaaagttaa ggacgtgccc gggaggcaag tctatgtctt tcttcgaaga 1500 tgattttgag gtctccaaat ttaaagggga aagggcagga tgttgagaag tacacaattg 1560 tcatgtaaga ggtgggtagg ggcaaatagt tatttatgcc tttggctcag tgaatctgca 1620 ttttttacgt aagatgacat aaaaggggca gaggaaaata ttaggggaat ctgcatttta 1680

| cataagataa                                                    | cagacaaaat | ggggtagggg | aacaatcaga | tttgcattta | tgtctggtgg | 1740  |
|---------------------------------------------------------------|------------|------------|------------|------------|------------|-------|
| gccaggggta                                                    | actgcacctg | taagetgtea | attgacattg | ccatgatgaa | attttagctc | 1800  |
| actgggaatt                                                    | tecetgtggg | caaaatacag | gggaggtgtg | tagcttttca | tcttgtagcc | 1860  |
| atcctattta                                                    | gaaaccaaaa | gggggagac  | aggtttgcat | gacccagttc | ccagcttgac | 1920  |
| ttetteeett                                                    | tggctaaatg | agtttggggt | cccaaaattt | aatttccttt | cacatttccc | 1980  |
| ttetttttte                                                    | tgtaaaatct | tttggagaaa | gcattttaaa | aggaagacga | gttcctggcc | 2040  |
| tcaggttggt                                                    | ttttcctccc | ttttttgagc | tgctttctta | ttgctaggat | ggtttattcc | 2100  |
| tagaagttca                                                    | ggtccccagt | ctctaggaag | gctcatttct | aagaggtcat | gtcccatgaa | 2160  |
| ggttaaaaaa                                                    | aaaaaatagg | aagaggaaag | aagtaaaaaa | ggaaagg    |            | 2207  |
| <210> 545<br><211> 467<br><212> DNA<br><213> Hom<br><400> 545 | o sapiens  |            |            |            |            |       |
|                                                               | gtcccaccgc | caccaggcga | ccccaccca  | gagagggaca | gacatgcggg | 60    |
| gagccagcac                                                    | cgggcaagat | ggctctgggg | atcctcattc | tgtgaagaca | ccaactcatt | 120   |
| ctcaaacac                                                     | aggatccagg | agacagatgg | ctcctaaatg | gagatggcac | atgctccgtg | . 180 |
| ggtccctca                                                     | tagaggagtg | ccaccctcca | cactggccac | gctgggctgc | cccagagegg | 240   |
| ccagaaagga                                                    | aggtgggagc | tagccccatc | ctcactcaga | ggccggaagg | aggaagatgg | 300   |
| catctcgcca                                                    | acttcagage | cgaatggcct | ctagccacac | tgcttccaga | ccccagacgg | 360   |
| gcagcagca                                                     | gcagttccca | gatgagcacc | cattgttgca | gctaggaccc | accaaggatg | 420   |
| gactcctgg                                                     | agtcaggtgc | acaccaggta | acccaggacc | acgcctc    |            | 467   |
|                                                               | o sapiens  |            |            |            |            |       |
| :400> 546<br> tcatgaact                                       | atttttaaca | tttccgaaag | cctcctggaa | attattatge | agccagccac | 60    |
| acagggctg                                                     | caacaaaatg | ccagtatctt | cgcttttctc | tggagtccca | tcagctcagt | 120   |
| ccgtcacac                                                     | tgatcaaagg | cactgcctgg | cagtcatcta | tgttagtgat | gagtaaagta | 180   |
| acaggaaat                                                     | tcattgttgc | ttgataaatg | tectetecaa | gtcaccccat | cttgggaaac | 240   |
| caccaccta                                                     | tttacccagt | tgcccaagtc | aaatgcagga | gtcacccctg | gttcttctct | 300   |
| tetqteact                                                     | ctqtctcccc | aaccccaatc | cageteatea | gcaagtcccc | caageetgge | 360   |

| atggcacagg ggctccacaa ttatttgttg actgaatgac ctccatctga taagtgaact | 420 |
|-------------------------------------------------------------------|-----|
| tgaatgtgcc cagaaaataa gaaaataacg aaaagcctg                        | 459 |
| <210> 547                                                         |     |
| <211> 428                                                         |     |
| <212> DNA                                                         |     |
| <213> Homo sapiens                                                |     |
| <400> 547                                                         |     |
| atgtetettg teagetgtet tteagaagae etggtgggge aagteegtgg geateatgtt | 60  |
| gaccgagctg gagaaagcct tgaactctat catcgacgtc taccacaagt actccctgat | 120 |
| aaaggggaat ttccatgccg tctacaggga tgacctgaag aaattgctag agaccgagtg | 180 |
| tcctcagtat atcaggaaaa agggtgcaga cgtctggttc aaagagttgg atatcaacac | 240 |
| tgatggtgca gttaacttcc aggagttcct cattctggtg ataaagatgg gcgtggcagc | 300 |
| ccacaaaaaa agccatgaag aaagccacaa agagtagctg agttactggg cccagaggct | 360 |
| gggcccctgg acatgtacct gcagaataat aaagtcatca atacctcaaa aaaaaaaaaa |     |
|                                                                   | 420 |
| aaaaaaa                                                           | 428 |
| <210> 548                                                         |     |
| <211> 1131                                                        |     |
| <212> DNA                                                         |     |
| <213> Homo sapiens                                                |     |
|                                                                   |     |
| <220>                                                             |     |
| <221> misc_feature                                                |     |
| <222> (33)(33)<br><223> n is a. c. g. t or n                      |     |
| 4, 5, c of a                                                      |     |
| <220>                                                             |     |
| <221> misc_feature<br><222> (624)(624)                            |     |
|                                                                   |     |
| = == =, v, g, c or u                                              |     |
| <220> <221> misc feature                                          |     |
| <221> misc_feature<br><222> (848)(848)                            |     |
| <223> n is a, c, g, t or u                                        |     |
| <400> 548                                                         |     |
| ttccgaatat cgtcgaccac gcgtccgtag aanataaaac tgctatgaga tagaaatgat |     |
|                                                                   | 60  |
| gtaaaattat gtggaaagtt ttccctcata tactcacata cagcctttga agggctctgg | 120 |
| ctctgaccgg ttgatggcct tgagcgagat gaaatcatga aattgagtca aatcaatttg | 180 |
| acattgaaat gacaagagga aactcttaaa tacataaaaa caagctctca tttgcctagg | 240 |
| atagatactg tettaaaaat aaagactgaa eetagatgtt etgageacta geaacaaggt | 300 |
| attttaacaa gtttaaagga attctctgaa aaagttataa aattattcta ggaaacataa | 260 |

296

ccataatagt gttttaaggg actttcacct ggggatttta tattcatgaa caqaqtqtat 420 tctgtattta aaatgtctca tttgtgggaa ttggatgaca tgttttttga taaatttatt 480 cacaatataa attgactttt tattctagga ccatgtgaat aatgggttcc attgcacaaa 540 tacaaatatt ttaataqctt cttaqqcaqt qqtgtagaca tcttggatat aaataattqt 600 agatettqta tatttqattt ttanaaaact agaataaaca gagaggcata aacatatett 660 agaqtccaaq tqqtaqtqtt taqcattqqa tataataaat ggatqtttta caaaqtqttt 720 ccataattct cttcctatac ataaatgtct tqttttcaaa agtggatgga acttggctgg 780 840 qtqtqqtggc tcacqcctqt aatcctagca ctttgggaag ccaggccggg aggatcactt qaqctcanqa qtttqaqaca tcctqqqcca cataqtqaga cctqqtctcc tqaaaaaaaa 900 aaqtqqatqq qacttqtacc aqaqatttta tctacttctc caactqcttc aqaataccca 960 ttgagatqtt cccctggaa agatgaccc atactgcctc ttgagccatt tcttcccacc 1020 taacattctt aaatgataaa ggcccaactt ttggcattct tcccaatttc gggaacctga 1080 1131 gtttgagggg gttccaaatt tggggaaaaa aatggggttt aaggtttaac t <210> 549

<211> 3854 <212> DNA

<213> Homo sapiens

<400> 549 qccaqaqtct ctccqcttta atqcqctccc attaqtqccq tcccccactq qaaaaccqtq

gettetgtat tatttgccat etttgttgtg taggagcagg gagggettee teeeggggte 120 ctaggeggeg gtgeagteeg tegtagaaga attagagtag aagttgtegg ggteegetet 180 taggacgcag ccgcctcatg ggggtccagg ggctctggaa gctgctggag tgctccgggc 240 ggcaggtcag ccccgaagcg ctggaaggga agatcctggc tgttgatatt agcatttggt 300 taaaccaagc acttaaagga gtccgggatc gccatgggaa ctcaatagaa aatcctcatc 360 ttctcacttt gtttcatcgg ctctgcaaac tcttatttt tcgaattcgt cctatttttg 420 tqtttqatqq qqatqctcca ctattqaaqa aacaqacttt qqtqaaqaqa agqcagagaa 480 aggacttagc gtccagtgac tccaggaaaa cgacagagaa gcttctgaaa acatttttga 540 aaaqacaaqc catcaaaact qccttcaqaa qcaaaaqaqa tqaaqcacta cccaqtctta 600 cccaagttcg aagagaaaac gacctctatg ttttgcctcc tttacaagag gaagaaaaac 660 acagttcaga agaggaagat gaaaaagaat ggcaagaaag aatgaatcaa aaacaagcat 720 tacaqqaaqa qttctttcat aatcctcaaq cqataqatat tqaqtctqaq qacttcaqca 780 gcctgcccc tgaagtaaag catgaaatct tgactgatat gaaagagttc accaagcgca 840

60

gaagaacatt atttgaagca atgccagagg agtctgatga cttttcacag taccaactca 900 aaggettget taaaaagaac tatetgaace agcatataga acatgteeaa aaggaaatga 960 atcagcaaca ttcaggacac atccgaaggc agtatgaaga tgaagggggc tttctqaagg 1020 aggtagagtc aaggagagtg gtctctgaag acacttcaca ttacatcttg ataaaaggta 1080 ttcaagctaa gacagttgca gaagtggatt cagagtctct tccttcttcc agcaaaatgc 1140 acggcatgtc ttttgacgtg aagtcatctc catgtgaaaa actgaagaca gagaaagagc 1200 ctgatgctac ccctccttct ccaagaactt tactagctat gcaagctgcc ctgctgggaa 1260 gtagctcaga agaggagctg gagagtgaaa atcgaaggca ggcccgtggg aggaacgcac 1320 ctgctgctgt agacgaaggc tccatatcac cccggactct ttcagccatt aagagagctc 1380 ttgacgatga cgaagatgta aaagtgtgtg ctggggatga tgtgcagacg ggagggccag 1440 gagcagaaga aatgcgtata aacagctcca ccgagaacag tgatgaagga cttaaagtga 1500 gagatggaaa aggaataccg tttactgcaa cacttgcgtc atctagtgtg aactctgcag 1560 aggagcacgt agccagcact aatgagggga gagagcccac agactcagtt ccaaaagaac 1620 aaatgtcact tgttcacgtg gggactgaag cctttccgat aagtgatgag tctatgatta 1680 aggacagaaa agatcggctg cctctggaga gtgcagtggt tagacatagt gacgcacctg 1740 ggctcccgaa tggaagggaa ctgacaccgg catctccaac ttgtacaaat tctgtgtcaa 1800 agaatgaaac acatgctgaa gtgcttgagc agcagaacga actttgccca tatgagagta 1860 aattcgattc ttctcttctt tcaagtgatg atgaaacaaa atgtaaaccg aattctgctt 1920 ctgaagtcat tggccctgtc agtttgcaag aaacaagtag catagtaagt gtcccttcag 1980 aggcagtaga taatgtggaa aatgtggtgt catttaatgc taaagagcat gagaattttc 2040 tggaaaccat ccaagaacag cagaccactg aatctgcagg ccaggattta atttccattc 2100 caaaggccgt ggaaccaatg gaaattgact cggaagaaag tgaatctgat ggaagtttca 2160 ttgaagtgca aagtgtgatt agtgatgagg aacttcaagc agaattccct gaaacttcca 2220 aacctccctc agaacaaggc gaagaggaac tggtaggaac tagggaggga gaagcccctg 2280 ctgagtccga gagcctcctg agggacaact ctgagaggga cgacgtggat ggtgagccac 2340 aggaagctga gaaagatgcg gaagattcgc tccatgaatg gcaagatatt aatttggagg 2400 agttggaaac tctggagagc aacctcttag cacagcagaa ttcactgaaa gctcaaaaac 2460 agcagcaaga acggatcgct gctactgtca ccggacagat gttcctggaa agccaggaac 2520 tectgegeet gtteggeatt ecctacatee aggeteecat ggaageagag gegeagtgeg 2580 ccatcctgga cctgactgat cagacttccg gaaccatcac tgatgacagt gatatctggc 2640

| WO 2004/042340 FC1/05200                                          | 33/012940 |
|-------------------------------------------------------------------|-----------|
| tgtttggagc gcggcatgtc tatagaaact tttttaataa aaacaagttt gtagaatatt | 2700      |
| atcaatatgt ggactttcac aatcaattgg gattggaccg gaataagtta ataaatttgg | 2760      |
| cttatttgct tggaagtgat tataccgaag gaataccaac tgtgggttgt gtaaccgcca | 2820      |
| tggaaattot caatgaatto ootgggoatg gootggaaco totootaaaa ttotoagaat | 2880      |
| ggtggcatga agctcaaaaa aatccaaaga taagacctaa tcctcatgac accaaagtga | 2940      |
| aaaaaaaatt acggacattg caactcaccc ctggctttcc taacccagct gttgccgagg | 3000      |
| cctacctcaa acccgtggtg gatgactcga agggatcctt tctgtggggg aaacctgatc | 3060      |
| tcgacaaaat tagagaattt tgtcagcggt atttcggctg gaacagaacg aagacagatg | 3120      |
| aatototgtt tootgtatta aagcaactog atgoccagca gacacagoto ogaattgatt | 3180      |
| ccttctttag attagcacaa caggagaaag aagatgctaa acgtattaag agccagagac | 3240      |
| taaacagagc tgtgacatgt atgctaagga aagagaaaga agcagcagcc agcgaaatag | 3300      |
| aagcagtttc tgttgccatg gagaaagaat ttgagctact tgataaggca aaacgaaaaa | 3360      |
| cccagaagag aggcataaca aataccttag aagagtcatc aagcctgaaa agaaagaggc | 3420      |
| tttcagattc taaacgaaag aatacatgcg gtggattttt gggggagacc tgcctctcag | 3480      |
| aatcatctga tggatcttca agtgaacatg ctgaaagttc atctttaatg aatgtacaaa | 3540      |
| ggagaacagc tgcgaaagag ccaaaaacca gtgcttcaga ttcgcagaac tcagtgaagg | 3600      |
| aageteeegt gaagaatgga ggtgegacea ceageagete tagtgatagt gatgaegatg | 3660      |
| gagggaaaga gaagatggtc ctcgtgaccg ccagatctgt gtttgggaag aaaagaagga | 3720      |
| aactaagacg tgcgagggga agaaaaagga aaacctaatt aaaaaatatg tatcctctat | 3780      |
| aattagttat gacagccatt tgtaatgaat ttgtcgcaaa gacgtaataa aattaactgg | 3840      |
| tggcacggtc aaaa                                                   | 3854      |
|                                                                   |           |
| <210> 550<br><211> 344                                            |           |
| <212> DNA                                                         |           |
| <213> Homo sapiens                                                |           |
| <400> 550                                                         |           |
| cettteegge ggtgaegaec taegeaeaeg agaacatgee tetegeaaag gateteette | 60        |

atccctctcc agaagaggag aagaggaaac acaagaagaa acgcctggtg cagagcccca 120

attcctactt catggatgtg aaatgcccag gatgctataa aatcaccacg gtctttagcc 180 atgcacaaac ggtagttttg tgtgttggct gctccactgt cctctgccag cctacaggag 240 gaaaagcaag gcttacagaa ggatgtteet teaggaggaa geagcactaa aagcactetg 300

agtcaagatg agtgggaaac catctcaata aacacatttt ggat

344

<210> 551 <211> 2692 <212> DNA <213> Homo sapiens

<400> 551

acatggatgg gtgcaaaaaa gagctgcccc gcttgcaaga gccggaggag gacgaggatt 60 gttacateet taatgtteag teaageagtg atgacaceag tgggtettet gtggeeagaa 120 gageteegaa gagacaggeg agttgeatee ttaatgteea gteaaggagt ggtgacacea 180 gtgggtcttc tgtggccaga agagctccga agagacaggc gagctccgtg gtagtgattg 240 actetgatte tgatgaggaa tgteacacee atgaagagaa gaaagetaag ttattggaaa 300 taaacagcga cgatgagagt ccggagtgtt gtcatgtgaa gcctgccatc caggaacctc 360 caatagttat tagtgatgat gacaatgacg atgacaacgg taatgatttg gaagttcccg 420 acgacaacag tgatgattca gaageteeeg acgacaacag tgatgatteg gaageteetg 480 acgacaacag tgatgattcg gaageteeeg acgacaacag tgatgatteg gaageteeeg 540 acgacaatag tgatgattcg gatgttcccg acgacaacag tgatgattca tccgacgaca 600 acagtgatga ttcatccgac gacaacagtg atgattcgga tgttcccgac gacaagagtg 660 atgattcgga tgttcccgac gacagcagtg atgattcgga tgttcccgac gacagcagtg 720 atgattcgga agctcccgac gacagcagtg atgattcgga agctcccgac gacagcagtg 780 atgattcgga agetcccgac gacagcagtg atgattcgga agetcccgac gacagcagtg 840 atgattcgga agcttccgac gacagcagtg atgattcgga agcttccgac gacagcagtg 900 atgattcgga agctcccgac gacaagagtg atgattcgga tgttcccgaa gacaagagtg 960 atgattcgga tgttcccgat gacaatagtg atgatttgga agttcctgtg ccagcagaag 1020 atttgtgtaa tgaaggccaa attgcttcag atgaagaaga gctggttgag gctgctgctg 1080 ctgtctccca gcatgattca tctgatgatg ctggtgagca ggatcttggt gagaatctca 1140 gcaaaccacc aagtgatcct gaggctaacc ctgaagtttc agagagaaag ctgccaactg 1200 aggaagagcc tgcacctgtg gtggaacaat cagggaaaag gaagtcaaaa accaaaacta 1260 ttgtggagcc accgaggaaa aggcagacaa agaccaaaaa tatagtggag ccaccaagga 1320 aaaggcagac aaagaccaaa aatatagtgg agccactgag gaagaggaag gcgaaaacca 1380 aaaatgtatc tgtgacacct ggacataaga agcgtgggcc ttcaaagaag aaacccggtg 1440 cagcaaaagt tgaaaaacgc aagactagga ctcctaaatg caaagtccct ggatgtttct 1500 tgcaagacct tgaaaagtca aagaaatact ctggaaaaaa tttaaagcga aataaggatg 1560 aattggttca gagaatctac gacctgttta acagatccgt ctgtgataaa aagctgccag

1620

| agaaactacg cataggctgg                                     | aataacaaga | tggtgaaaac | tgctggctta | tgcagcactg | 1680  |
|-----------------------------------------------------------|------------|------------|------------|------------|-------|
| gtgagatgtg gtacccaaag                                     | tggcggcgct | ttgccaagat | ccagattggc | ttgaaagtct | 1740  |
| gegactetge agacegaate                                     | cgggatacct | tgatccatga | aatgtgccat | gctgcctcct | 1800  |
| ggctgattga tggtatccat                                     | gattctcatg | gtgacgcatg | gaagtattat | gccaggaaat | 1860  |
| ccaacaggat acacccggag                                     | ctgcccaggg | tcacccgttg | ccataactat | aagattaact | 1920  |
| acaaggtcca ttatgaatgt                                     | actggatgca | aaacgaggat | tggctgctac | accaaatcgt | 1980  |
| tggacaccag ccgcttcatc                                     | tgtgccaaat | gcaaggggtc | tctggtcatg | gtgccattaa | 2040  |
| ctcagaaaga tgggacccgt                                     | attgtgcccc | acgtgtgacc | atttgctgtg | tatgtgcaga | 2100  |
| agtattatag aaaaattatg                                     | caggagatgg | ctaggattag | ccttggggat | gtgatgaaaa | 2160  |
| cacttggcag gaattacaag                                     | gcaatgaaga | attcttaagg | ttatcttaga | gtatattaat | 2220  |
| gtgagctata tcctttactg                                     | gtaagaagtt | ttagaaaagt | ttgttttgtg | aagttaggaa | 2280  |
| tattagaatt taggtactgt                                     | taagtaagta | atgttagaat | ttaagattca | tgttattaac | 2340  |
| gatgattgac cttaaatagg                                     | gactctattg | ctaaccattc | tgtgcccttg | acagggtatt | 2400  |
| tctgaagccc ttgggatcta                                     | ccttgggtct | tacttgagtt | ccatatttt  | cacatgtaga | 2460  |
| acaaaatgca aaagaaaagt                                     | gagttttcaa | gagtggcagg | ttgagagagg | agaatgctgg | 2520  |
| aaagaggaca agtttgagag                                     | gcaacactta | aacactaggg | ctactgtggc | atctatgtag | 2580  |
| acaggaaaga caaacgtgtt                                     | tcataaaatt | cgttgttgat | ggtattgatt | gaaactatct | 2640  |
| gagccatgta atcaaaaaat                                     | aaaagttttc | tgcatcaaaa | aaaaaaaaa  | aa         | 2692  |
| <210> 552<br><211> 390<br><212> DNA<br><213> Homo sapiens |            |            |            |            |       |
| <400> 552<br>ttttttttt tttttttt                           | ttttttttt  | tteetttae  | aaaatataaa | tttattatga | 60    |
| aaacctggaa ggataatcca                                     |            |            |            | -          | 120   |
| gcaggaagga gaggaaaaga                                     |            |            |            |            | 180   |
| agcacaacaa aagtgcaaaa                                     |            |            |            |            | 240   |
| cgtgtcagaa aacaaagcat                                     |            |            |            |            | 300   |
| aagaggtaaa ttaaaaagct                                     |            |            |            |            | 360   |
| agaaaattaa aaaaaaaaga g                                   |            |            | - 5        |            | 390   |
| -                                                         | 5 5 5 5 5  |            |            |            | J J U |

<sup>&</sup>lt;210> 553 <211> 4314 <212> DNA

<213> Homo sapiens

<400> 553 gaacagattc atgggtgatt tagcctatct gtcccaggcc agcgtggctg agtgtgctgq 60 ctggaggcct ctctctctgc ttcgagggta gctgagatcc accccggaaa ccggcaggat 120 gaagggggca agtgaggaga agctggcatc tgtgtccaac ctggtcactg tgtttgagaa 180 tagcaggtat gggcagctgg ggtgggaggg tcaccatggt gggctggcag ccaccctcca 240 gcctttctgg cagctctctc cctgggccct gccccggacc ctcctcctgc aggggcagcc 300 ccgcgttcct cggtcacgga ttccttggag catgggagag tgtcggtggg acaccaggag 360 ccaggcaggg gtgagagtgc cagtgtgtgt tgggagagtc cagacaggtg tggttacgag 420 caagcatggg cagaccaaag cctgtgtgtg ggcacaggac cccacccagt gcctgccagc 480 accteteaga aaaggtaget gatacteace aagaatttae geeetatgat taggataace 540 atataattta tcattcagca cacaattgaa actgaaagta aatgccaaat aaaatgtggt 600 ggttgtgggg gaggcattac aggtaaagct gggaccgtat gaggcaaacc aggatgtacg 660 ggcagcatcc tgatggggta ctccctactc taagttcatg tccttactta tttaatttag 720 tcatcgaaca gcctaacagg ggtagattct gtttctgttc ccgtcttata gatgaggaaa 780 tggagacaca gagaggtgag gatgccaagt gctttaagta tctggggcaa tgctggggcg 840 tctgtctgga gggaaaaggc tgggccagat gcgtggagtc attggtagcc ctgggagcat 900 gtgtgtttgt gtgtgtgcgc gtgtgtgtat gtgtgtgttg tgtgttatgt gtggcatcaa 960 tccattctgc aggcatttct taagctcagg actgtgttag gggctgtccc aggtagggtt 1020 ttctggaaat agactcagac agaggtttgc ctcaggtgat ttatcaggga gagcttttgg 1080 gaacaacagc tgtgggtgtg agggaagcag ggccgggcag ggggagatgc tgaactgcag 1140 tgcacctgcc acagaggcct cagcctgtcc cagggagctc tggagctggg atgcctctcg 1200 gttgttccag ctgaggaaga gggctgggta tttgtatctc catgtggact ggacaagaga 1260 ctctgggtga ggcagctctc tcttccagag agtgattccc agagagggac tcagccaata 1320 aattacccgg cagcccccag tactaccagt agctggtggg gatggtgtgg ggaggcctca 1380 ttcctgaagg agggacatgg gtggcacagc acagcatcct acaggaactg tagaggatga 1440 agaagggttt cagtatttgg atgctgagct catcgaataa ctatgatgca aggtcataga 1500 cagtagatgt cctaggaatg gcccggatgc tgtattgagg gcactcatgg caggcaatgt 1560 ttcctgtagg cttcagggtg gagatggcat agatgtagac ctagaagtct tcaacttcct 1620 gagetgggtg atteteccet geeteteccg ggatetttge caagetegte etgtteagea 1680 ccaaagacag ctcttgggtg ccgccttcct ggcccaccac ccccttgggt gtgggtggat 1740

ggtaccacct cactcaacat gcttgacgtg gactaggcac acctgggtgg agcccctcag 1800 catgetgtgc tetgeecagg caataaceet ggeaggagtg ggeageeett agaegggagt 1860 taggtcccag caggcatcaa gagggtgaga gccactcctt actgagtgag gggacccata 1920 ccaactgcct tggcctgggc ttccttatga ggtctccagc acctcagctg atctgaaact 1980 gaggggcaaa gaggaaacag aagctggcca ggggccctag aacagaaatg cagaacctga 2040 aaccaaatgt agaacagaaa geetgagaac cagetacgee catgagetge agacceatgg 2100 gctgagaaac cagggactgg ggtgccaggg aggggtggga gagcctggga gtagccacac 2160 agcactaggt cccaatgctt tcgctgccac aaacccaatt gtgtcacttg gggcaagtca 2220 ctttgactcc gcggacctgt ttctccttta ctcaaatggg gagggcagg ttagagtgaa 2280 ggctcaggaa gcagtcgcct gatttgaatc ccacctctgc cacttccgag ccgcatgtta 2340 ctcatcctgt ccagacctca gtttccttga gtgcaaaata tgggtaatga aaacctttct 2400 cacggagttt tggagatttc gtatttgttt ggccttccat ttcctggcct gtctttctca 2460 taaggatgcc tgccctgttc tgtcatcaca agcccttcca caccaagggc aacgttgggt 2520 gtattcatca agggtgggcc ctgttgtcta aggaatttga ctggcttgca gaacccagta 2580 cacagggtaa taaaggtgac ctacgaaggc ccgtccctgg gagaacagag catctgctgc 2640 tgggctggct ctccctgctt ctggacgtgt ggaggatgtc gatcccattg agaagcccca 2700 gettttgcag geetgetete aetttatatt gttetgtgge teetaeette eettgatgta 2760 taggttactg atgtggaaac tgaaaacaga ggtgaggtcc aaaggtgagg ataatccagg 2820 gggtaccact caaaaacccc tatatacaga aaggattcct ggacactgtg gcttcatttt 2880 aaacaaggaa gtatgcagtt ccccagaaaa taaaatatag tccaccctga ctcattttga 2940 acactgagtt ccctccaaga atgtgttggg agagaagtga aagtcttact cagcatgttc 3000 ccaaagaaag ccaggcaccc aggggcccct gcactgggga tttgcaccag gcaacccaaa 3060 tccacaccag ggacttgctg ctgttttccc tgttctccag ggaggaagcc ctcaggtctg 3120 tetettetee teaggacece agaageagea ceeagaggee agaagetaga ggacgtgeat 3180 cacegeeetg agtgeaggee teeegagtee ceaggaceae gggagaagae gaatgteggg 3240 gaggccgtgg ggtctgagcc caggacagtc agcaggaggt acctgaactc cctgaagaac 3300 aagctgtcca gcgaagcctg gaggaaatct tgccagcctg tgaccctctc aggatcgggg 3360 acgcaggtgc ctgagggctg aggtagaggt gtggggtgct ggggtgggga gctctccctg 3420 acctcacctc cacacatgct ttcctagcca gagccagcag ttccccaggt gggggtatgg 3480 tgtgatcaga ggtcagctgg gagctagatt tccccatgct taatggcctt tgattcacta 3540 actgcctgct acgcaccgtg ctggattact tcgcgagtcc ctcgtgtagg agttttttgg 3600

| acaaggaag                                         | t tgaaacacag    | , ttttaaggaa | cttattcaag | gccacacagc | ttggaacagt | 3660 |
|---------------------------------------------------|-----------------|--------------|------------|------------|------------|------|
| ctccatctt                                         | g tgaacctaat    | actcttctca   | ggtggggcct | cagtttaccc | actggaggag | 3720 |
| acaacaatc                                         | t caacctagaa    | atagaggtct   | gagtgtgaac | tgtcctgccc | ttagactaaa | 3780 |
| gcccagtct                                         | g atctcttctg    | tggcttgcag   | ttttctcatc | tgcagagttc | aagggttggc | 3840 |
| atgcagata                                         | tgtgcaccca      | aattccctgg   | agtcacatcc | cagcacgtct | gcttactaac | 3900 |
| tgtgtgtcc                                         | tgggcaagtc      | acttgagtct   | ctttgtgcca | gtttcctcat | ttgtaaaatg | 3960 |
| gggatagtg                                         | g ttatagtaat    | gegteetggt   | tttcaatcgc | tgctgaacaa | acctatcaaa | 4020 |
| aatgtagcgg                                        | g ctggccgggt    | gcagtaactc   | acgcctgtaa | tcccagcact | ttgggaggcc | 4080 |
| gaggtgggca                                        | a gatcacctga    | ggtcaggagt   | tcaagaccag | cctggccaac | atagggaaac | 4140 |
| actgtctcaa                                        | a ctaaaaatac    | aaaaattagt   | tgggcatggt | ggtgggcgcc | tgtaatccca | 4200 |
| gctactcagt                                        | aggctgagac      | aggagaatca   | cttgaatcca | ggaggaggag | gttgcagtga | 4260 |
| gccgagattg                                        | gccactcca       | ctctagcctg   | ggtgacagag | cgagactctg | tctc       | 4314 |
| <210> 554 <211> 689 <212> DNA <213> Hom <400> 554 | o<br>No sapiens |              |            |            |            |      |
|                                                   | ctgtaaactc      | tgggcacgcg   | gctagcgcca | ggtcctctcc | agccctaaca | 60   |
| ttctgtgatt                                        | ctaaacttgt      | ctgatttgtc   | tcatatgttg | caaggctcgt | agcaaaaaga | 120  |
| aaaaaatact                                        | ccataactat      | ttaacaggaa   | ttagctaaag | cacageteta | gagagaga   | 180  |
| cacacacaca                                        | cgtttcaaat      | aacccgaaca   | ctagaaccta | gtgaatttta | tacctttact | 240  |
| aaactttagc                                        | gattatttgt      | ttctttcgta   | acaaaggtta | ttgattagat | ttagtgctga | 300  |
| aaaaaccaa                                         | caacgtgcgc      | ttcggtcatt   | tgtcttatgg | aggaaacata | aatctataaa | 360  |
| tcttcctcct                                        | gtctctaaga      | aataaaactc   | tcttcatttc | caaagtaaaa | aaaaaaaaat | 420  |
| tggcaaaata                                        | ccaaaaaggt      | caaaaaaaaa   | actcgagggg | gggcccggta | cccaattcgc | 480  |
| cctataggga                                        | gtcgtattac      | aattcactgg   | ccgtcgtttt | acaacgtcgt | gactgggaaa | 540  |
| accctggcgt                                        | tacccaactt      | aatcgccttg   | gagcacattc | ccctttcggc | agctggcgta | 600  |
|                                                   |                 |              |            |            |            |      |
| atagcgaaaa                                        | ggcccgcacc      | gatcgccctt   | tccaacagtt | gggcaccctg | aatggcaaat | 660  |

<sup>&</sup>lt;210> 555 <211> 4828 <212> DNA <213> Homo sapiens

<400> 555 cactgttcct acagcaatcg gtcagttgtg ggagtgcttg tccactacca gaaaagacac 60 ccagaaataa aggttactgc caaatatatc agacaggctc ctcccacagc tgcaatgatg 120 agaggggtcg aagggcccca aggctccccc cggccacccg cccccataca acagctgaac 180 cgaagcagct ctgagagaga tggccctcct gtggagaatg agatgttctt ttgccagcac 240 tgtgattatg ggaaccggac ggtcaaaggg gtactcattc attatcagaa gaagcaccga 300 gacttcaagg ccaatgcaga tgtgatccgg cagcatacgg ccaccattcg aagcctctqc 360 gaccgaaatc ggaagaagcc tgccagctgc gtgcttatct ccccctctaa tctggaqcqq 420 gacaaaacga aactccgagc actcaaatgt aggcagtgct catatacctc cccctacttc 480 tatgcactga ggaagcatat caagaaagac caccccgccc tgaaagccac agtcacgtcc 540 atcatgcgat gggcatttct agatggcttg atagaagctg gctaccactg cgagtggtgc 600 atctactccc atacggagcc caacggtttg ctcctgcatt accgacggag gcatccaqaa 660 cactatgttg attacaccta catggctact aaactgtggg ctgggccaga cccatcccct 720 ccctctctca caatgccagc cgaagccaaa acctacagat gcagggactg tgttttcgaa 780 gctgtttcca tctgggacat cactaatcac taccaagcat tccacccctg ggccatgaat 840 ggtgatgagt cagtgctact ggacatcatc aaggagaaag atgctgtgga gaagcccatt 900 ctttcatccg aagagttgac aggccctgtg aattgtgcaa acagtatacc cacccctttc 960 ccggagcagg aagctgaatg tccagaggat gcaagactgt cccctgagaa aagcctgcag 1020 ctagetteag ceaaccege catateetee acceeatace agtgeaeggt atgecaatet 1080 gagtataaca acttgcacgg ccttctcact cattatggga agaagcaccc tggcatgaaa 1140 gtgaaggctg ctgactttgc ccaggacatt gacatcaacc caggtgccgt ctacaaatqc 1200 aggcattgcc catacatcaa cacccgcatc cacggcgtac tgacccacta ccagaagcga 1260 caccegteca teaaggtgac egetgaggac tttgtgcacg acgtagagca gtctgctgac 1320 atatcccaga atgacgtgga ggagacgagc aggatcttca agcaagggta tggcgcctac 1380 cggtgcaaac tgtgtccgta cacacacggc actttggaga aactaaaaat ccactacgag 1440 aagtatcaca atcageetga atttgatgte tttteecagt egeeeeegaa getgeeagte 1500 cccctcgagc ccgagatgac cactgaagtg agcccttccc aagtctccat cactgaggag 1560 gaggtgggag aggagecegt gtecaettet caetteteta ceteceaeet ggteteceae 1620 actgtgttcc ggtgccagct ctgcaagtac ttctgctcca cgaggaaggg gatcgccagg 1680 cactaccgca tcaagcacaa taatgtccga gcccagccag aaggcaagaa caacctcttc 1740 aagtgtgccc tgtgtgccta caccaacccc atccgcaaag gtctggcagc ccactaccag 1800

| aagcgccacg | acattgatgc | gtattacact | cactgcttgg | cagcetecag | gaccatcage   | 1860 |
|------------|------------|------------|------------|------------|--------------|------|
| gacaagccca | acaaagtgat | catcccatcc | ccgcccaagg | acgactcccc | tcagctgagc   | 1920 |
| gaggaactcc | ggcgggcagt | ggagaagaaa | aagtgctcct | tgtgctcttt | ccagtcgttc   | 1980 |
| agcaagaagg | gcatcgtgtc | ccattacatg | aaacgccacc | caggggtgtt | cccaaagaag   | 2040 |
| cagcacgcca | gcaagttggg | gggctacttc | acggccgtct | atgcagatga | gcatgagaag   | 2100 |
| cccacactga | tggaagaaga | ggagagaggc | aactttgaga | aagccgaggt | ggagggtgaa   | 2160 |
| gctcaggaaa | tcgagtggct | cccattccgc | tgcatcaaat | gcttcaagct | gtcctttagc   | 2220 |
| actgcagagc | tgctgtgcat | gcattacact | gaccaccaca | gtcgggacct | aaagagggac   | 2280 |
| ttcatcatac | tgggcaacgg | ccccgcttg  | cagaactcca | cctaccagtg | taagcactgt   | 2340 |
| gatagcaaac | tgcaaagcac | agccgagctg | acctcacact | tgaacattca | caatgaggaa   | 2400 |
| ttccagaagc | gtgccaaacg | tcaggagagg | aggaaacagc | ttttgagcaa | gcaggaatat   | 2460 |
| gcagatggtg | cttttgcaga | tttcaaacaa | gagaggcctt | ttggtcactt | agaagaggtg   | 2520 |
| ccaaagatca | aggagaggaa | agtggtgggc | tacaaatgta | aattctgtgt | ggaagtgcac   | 2580 |
| ccaacgctcc | gagccatctg | caatcacctc | cgaaagcacg | tccagtatgg | caatgtccca   | 2640 |
| gctgtgtcag | ctgctgtgaa | ggaggcggat | gaccctgccc | acttattcct | ggatggattg   | 2700 |
| gaagcagcca | aagacgcaag | tggcgccctg | gtgggccggg | tggatggtga | acactgcttg   | 2760 |
| cttgatggaa | tgttggagga | tgaaacccgg | ccggggggat | accattgcag | tcaatgtgac   | 2820 |
| agagtcctga | tgtccatgca | ggggctgcgt | tctcatgaga | ggagccacct | ggccctggcc   | 2880 |
| atgtttaccc | gcgaggacaa | gtacagctgc | cagtataget | cgtttgtttc | tgctttcagg   | 2940 |
| cacaatttgg | atcgccatat | gcaaacccac | cacggacacc | ataaaccatt | ccgatgcaaa   | 3000 |
| ctctgctcct | tcaagtcctc | ctataacagc | cggctgaaaa | cacatatact | caaagctcat   | 3060 |
| gctggtgagc | atgcctacaa | gtgttcttgg | tgctcattct | ccaccatgac | aatcagccag   | 3120 |
| ctgaaggaac | actccctcaa | ggtccacgga | aaagccctga | ccctccccag | gccacggatc   | 3180 |
| gtcagtctcc | tctcctcaca | ctcccaccac | tcctcccaaa | aagctacccc | ggctgaagaa   | 3240 |
| gtggaagact | ccaatgactc | atcatattca | gagcccccag | atgttcagca | gcagttgaac   | 3300 |
| cactatcagt | cagctgccct | ggcaaggaac | aacagccgtg | ttagccctgt | gcctctttct   | 3360 |
| ggggctgctg | ctggcactga | gcagaaaact | gaagccgtgc | ttcactgcga | attctgtgaa : | 3420 |
| tteteeteeg | gctacatcca | gagcatcagg | cgtcattacc | gggacaagca | tggtgggaag   | 3480 |
| aagcttttca | agtgcaaaga | ctgctccttt | tacacagget | ttaaatctgc | ttttactatg   | 3540 |
| cacgtggaag | ctgggcactc | agcagttccc | gaggagggcc | ccaaagatct | tegetgteet   | 3600 |

| ctctgcctct | atcacaccaa | atacaagcgc | aacatgattg | accacatcgt | gctgcactga | 3660 |
|------------|------------|------------|------------|------------|------------|------|
| gaagagcgtg | ttgtccccat | tgaagtttgc | cggtccaaac | tgtccaaata | cttgcaggga | 3720 |
| gtagttttcc | gctgtgataa | gtgtaccttc | acctgctcca | gtgatgagag | cctccagcaa | 3780 |
| catatagaaa | agcacaatga | actgaaacct | tacaaatgcc | agctctgcta | ctatgagacc | 3840 |
| aagcacacgg | aggaactgga | cagccacctt | cgggatgagc | ataaggtaag | ccgtaacttt | 3900 |
| gagctggttg | gacgggttaa | cttggatcag | ctggaacaga | tgaaggagaa | aatggagagc | 3960 |
| tccagcagcg | atgatgagga | caaggaagaa | gaaatgaaca | gcaaggctga | agacagagag | 4020 |
| ctgatgagat | tttctgacca | cggggctgct | cttaacactg | agaagcgttt | tccatgtgaa | 4080 |
| ttttgtggac | gggcgttttc | acagggctct | gagtgggaaa | gacatgtgct | gagacacggc | 4140 |
| atggcattga | atgacaccaa | gcaggtgagc | agagaagaaa | tccacccaaa | agagatcatg | 4200 |
| gagaacagtg | ttaaaatgcc | ctccatagag | gaaaaggaag | atgacgaggc | cattgggata | 4260 |
| gacttttccc | taaagaatga | aacagtagcc | atctgtgtag | taactgccga | caaatctctc | 4320 |
| ctggagaatg | cagaggccaa | aaaagaatga | gcgtttggtg | aaattcttaa | tcaaacctta | 4380 |
| cttgaacagt | gatgaaaaag | tgggagggct | ggctttggct | gagaagggag | ggacagaaaa | 4440 |
| gagaagacag | aacaaagctg | ctttttagga | ctgaacaatc | tattttcaaa | gcactggtac | 4500 |
| ctgtgtgagt | gagtatgtaa | attaaagtta | tttaaatggt | tggaatatgt | ggctcctttt | 4560 |
| ccatcactac | atcttttctt | ccggatcttc | atcatggaag | tttcatttgt | tgcggaatat | 4620 |
| ggaagcacct | cccaatggta | cggtgcaccc | tgtggtggtc | ttggacagta | tgtggaaaca | 4680 |
| gaagctccat | gacggtagaa | gacttctcat | tggggagcaa | cttttttacg | cacaactttt | 4740 |
| ggtgcgtttt | tctagtttta | ataccttaag | ctttttcaag | acctaactgc | agccgctttg | 4800 |
| ggaaaaaaaa | acaaaaaaca | aaaaacag   | *          |            |            | 4828 |

<210> 556

<211> 279 <212> DNA

<213> Homo sapiens

-400> 556

ggggggcgc tccatggaga agccggatgt ggcgaataca cacctgggg cacattgatc 60
agtgctacgc atgagatggg gggcagcgtg ggggccgtat acaacggcga gacactttaa 120
ccaggtgtag atcaagaccg agatgatcgg ccactacctg ggcgagatct ccatcaccta 180
ctagcccgga aagcatggcc ggcccgtgat cacggccacc cacttgtcca gcttcatccc 240
tctgaagtaa tggctcagct aataaaggct cacatgact 279

<210> 557

```
<211> 390
 <212> DNA
<213> Homo sapiens
<400> 557
ttttttttt tttttttgct ctgctggcaa ttccaagaac atcactgcta cattgagcaa
                                                                      60
ctatccatct ttaaagagcc agcagagcaa aacaaaataa atctcttttc caaagccagg
                                                                     120
ataaccaaga agactteett caaaaagcag gggactggga aaaggggaaa agggaaggaa
                                                                     180
agagataaag taaagctttt ccaaattttg gctttttgct cctattccct ctgcctqttt
                                                                     240
tgaaaactta aggataagca atgacattag cagtgtcttt ggtatctaaa ccaaatccca
                                                                     300
cttaagttct gtgggatcat ttatttaaaa aaatagcctt tctagagata cagtctatat
                                                                     360
ccaaactcag ggagccaaga aagtttgtcc
                                                                     390
<210> 558
<211> 1227
<212> DNA
<213> Homo sapiens
<400> 558
cgtagcggaa gttactgcag ccgcggtgtt gtgctgtggg gaagggagaa ggatttgtaa
                                                                      60
acceeggage gaggttetge ttaccegagg cegetgetgt geggagacee cegggtgaaq
                                                                     120
ccaccgtcat catgtctgac caggaggcaa aaccttcaac tgaggacttg ggggataaqa
                                                                     180
aggaaggtga atatattaaa ctcaaagtca ttggacagga tagcagtgag attcacttca
                                                                     240
aagtgaaaat gacaacacat ctcaagaaac tcaaagaatc atactgtcaa agacagggtg
                                                                     300
ttccaatgaa ttcactcagg tttctctttg agggtcagag aattgctgat aatcatactc
                                                                     360
caaaagaact gggaatggag gaagaagatg tgattgaagt ttatcaggaa caaacggggg
                                                                     420
gtcattcaac agtttagata ttctttttat ttttttttt tttccctcaa tccttttta
                                                                     480
tttttaaaaa tagttetttt gtaatgtggt gttcaaaacg gaattgaaaa ctggcacccc
                                                                     540
atctctttga aacatctggt aatttgaatt ctagtgctca ttattcatta ttgtttgttt
                                                                    600
tcattgtgct gatttttggt gatcaagcct cagtcccctt catattaccc tctccttttt
                                                                     660
aaaaattacg tgtgcacaga gaggtcacct ttttcaggac attgcatttt caggcttgtg
                                                                    720
gtgataaata agatcgacca atgcaagtgt tcataatgac tttccaattg gccctgatgt
                                                                     780
```

gtaatgacta actccaaaga tggcttcact gaagaaaagg cattttaaga ttttttaaaa 1020 atcttgtcag aagatcccag aaaagttcta attttcatta gcaattaata aagctataca 1080

840

900

960

tctagcatgt gattacttca ctcctggact gtgactttca gtgggagatg gaaqtttttc

agagaactga actgtggaaa aatgaccttt ccttaacttg aagctacttt taaaatttga

gggtctggac caaaagaaga ggaatatcag gttgaagtca agatgacaga taaggtgaga

| tgcagaaatg aatacaacag aacactgete tttttgattt tatttgtact tttttggeetg      | 1140 |
|-------------------------------------------------------------------------|------|
| ggatatgggt tttaaatgga cattgtctgt accagcttca ttaaaataaa caatatttgt       | 1200 |
| aaaaatcaaa aaaaaaaaa aaaaaaa                                            | 1227 |
| <210> 559 <211> 452 <212> DNA <213> Homo sapiens                        |      |
| <220> <221> misc_feature <222> (1)(1) <223> n is a, c, g, t or u        |      |
| <220> <221> misc_feature <222> (340)(340) <223> n is a, c, g, t or u    |      |
| <400> 559                                                               |      |
| ngacaaatag actegeetaa gagggeettt eteteeaage eetegeeage acaggetgtg       | 60   |
| teactitett aggiggeace taccgietgt tgeacactig etgeagatga tittggeacag      | 120  |
| gatgtcgctt cagaaaacct tgtaggaagc cgtgagtcgt taccgtcccc atttcacaga       | 180  |
| caggaaagtg caggccttag atgcactgcc tgataccctg tggcccccgc gttcctagac       | 240  |
| agatacactg cctggtacac tgtacccccc cacccccgct atcgtttgca agctggggtt       | 300  |
| gaacccctgc aattcaatag acaaggttcc cccttgagtn agccccccat ctgcttaact       | 360  |
| gagggettgt ceteggttat aaatgtetgg gtgggggtgg geactgetgg etgeagetgt       | 420  |
| caggactggg aatgctgaac ctgcactgag gg                                     | 452  |
| <210> 560<br><211> 1197<br><212> DNA<br><213> Homo sapiens<br><400> 560 |      |
| gtagcgggaa ccatatacgg ctaggtacga ggctgggtgg ctaggcgcat ggctccccgc       | 60   |
| gggaggaagc gtaaggctga ggccgcggtg gtcgccgtag ccgagaagcg agagaagctg       | 120  |
| gcgaacggcg gggagggaat ggaggaggcg accgttgtta tcgagcattg cactagctga       | 180  |
| cgcgtctatg ggcgcaacgc cgcggccctg agccaggcgc tgcgcctgga ggccccagag       | 240  |
| cttccagtaa aggtgaaccc gacgaagccc cggaggggca gcttcgaggt gacgctgctg       | 300  |
| cgcccgggac ggcagcagtg cggagctctg gactggggat taagaagggg cccccatgca       | 360  |
| aactcaaatt ccctgagcct caagaggtgg tggaagagtt gaacgcaaqt acctgtcgat       | 420  |

| agggagcatt             | gggtagaagc | cctcattgct | gagctttgtg | ttccctggtg | atgtgggacc | 480  |
|------------------------|------------|------------|------------|------------|------------|------|
| attaatgatg             | gaacatggcc | aaatttcagt | cattgatcct | gaagccatgg | tttcttcccg | 540  |
| tgccagaaat             | gacaggetea | gttatgaggc | aaccctctta | gtagggcatt | gtaaaacgta | 600  |
| cctggattgg             | ggtttactac | caccgtttga | cacttacggt | acacacaaac | acacaaaaaa | 660  |
| aaacgttggg             | gggcactcta | tagtgccgag | gggcgcggac | aacaccgcgg | ttacatgaac | 720  |
| gtggcacatt             | ggggccaata | gggtgttccc | ctggacgcac | agtttctttg | gtacacaggg | 780  |
| ggggtaaac              | tctggcgggg | acacccctta | atagggagag | ggcgagaata | aattttcgga | 840  |
| aaacgcagg              | gttaccttgt | atagacatct | tgactgtaca | acaagagggg | aacgaaaacg | 900  |
| aaagcacaaa             | acaaaggaga | aaaacgacga | ctgggagaaa | aggaggagga | gagggaggag | 960  |
| gagagggaga             | gcagaagaag | cgagaggagc | aggaaaagag | gaggaccacc | caaagagacg | 1020 |
| aggaaacaag             | agaggagaga | gaacagagga | taacgcgaaa | gaaaggaaga | agcacgatgc | 1080 |
| aaacagaaac             | aagacgagac | agagtgagcg | agcaggagag | aggggagaaa | agaaggagag | 1140 |
| gagaggagag             | aggagaagaa | agcaagagga | aggggacgca | gacagaaggg | caggacg    | 1197 |
|                        | o sapiens  |            |            |            |            |      |
| :400> 561<br>gcacgagcc | cggcagtgca | gctgccgcta | ccgccgccct | ctgcccgccg | gcccgtctgt | 60   |
| tacccccag              | catgagcggc | ctgcgcgtct | acagcacgtc | ggtcaccggc | tcccgcgaaa | 120  |
| caagtccca              | gcagagcgag | gtgacccgaa | tcctggatgg | gaagcgcatc | caataccagc | 180  |
| agtggacat              | ctcccaggac | aacgccctga | gggatgagat | gcgagccttg | gcaggcaacc | 240  |
| caaggccac              | cccaccccag | attgtcaacg | gggaccagta | ctgtggggac | tatgagctct | 300  |
| cgtggaggc              | tgtggaacaa | aacacgctgc | aggagttcct | gaagctggct | tgagtcaagc | 360  |
| tgtccagag              | ttcccctgct | ggactccatc | accacactcc | ccccagcctt | cacctggcca | 420  |
| gaaggacct              | tttgaccaac | tccctgtcat | tcctaaccta | accttagagt | ccctcccccc | 480  |
| atgcaggcc              | acttctcctc | cctccttctc | taaatgtagt | cccctctcct | ccatgtaaag | 540  |
| caacattcc              | ttacccatta | gtctcagaaa | ttgtcttaag | caacagcccc | aaatgctggc | 600  |
| gccccagc               | caagcattgg | ggccgccatc | ctgcctggca | ctggctgatg | ggcacctctg | 660  |
| tggttccat              | cagccagagc | tctgccaaag | gccccgcagt | ccctctccca | ggaggaccct | 720  |
| gaggcaatt              | aaatgatgtc | ctgttcaaaa | aaaaaaaaa  | aaaa       |            | 764  |

<210> 562

<211> 2661 <212> DNA

<213> Homo sapiens

<400> 562

getecegggg ccaegggatg acgeeteete egeeeggaeg tgeegeeeee agegeaeege 60 gegeeegegt eeetggeeg eeggeteggt tggggettee getgeggetg eggetgetge 120 tgctgctctg ggcggccgcc gcctccgccc agggccacct aaggagcgqa ccccqcatct 180 tegeogtetg gaaaggecat gtagggeagg acegggtgga etttggecag actgageege 240 acacggtgct tttccacgag ccaggcagct cctctgtgtg ggtgggagga cgtggcaagg 300 tctacctctt tgacttcccc gagggcaaga acgcatctgt gcgcacggtg aatatcggct 360 ccacaaaggg gtcctgtctg gataagcggg actgcgagaa ctacatcact ctcctggaga 420 ggcggagtga ggggctgctg gcctgtggca ccaacgcccg gcaccccagc tgctggaacc 480 tggtgaatgg cactgtggtg ccacttggcg agatgagagg ctacgccccc ttcagcccgg 540 acgagaactc cctggttctg tttgaagggg acgaggtgta ttccaccatc cggaagcagg 600 aatacaatgg gaagatccct cggttccgcc gcatccgggg cgagagtgag ctgtacacca 660 gtgatactgt catgcagaac ccacagttca tcaaagccac catcgtgcac caagaccagg 720 cttacgatga caagatctac tacttcttcc gagaggacaa tcctgacaag aatcctgagg 780 ctcctctcaa tgtgtcccgt gtggcccagt tgtgcagggg ggaccagggt ggggaaagtt . 840 cactgtcagt ctccaagtgg aacacttttc tgaaagccat gctggtatgc agtgatgctg 900 ccaccaacaa gaacttcaac aggetgcaag acgtetteet geteeetgae eccageggee 960 agtggaggga caccagggtc tatggtgttt tctccaaccc ctggaactac tcagccgtct 1020 gtgtgtattc cctcggtgac attgacaagg tcttccgtac ctcctcactc aagggctacc 1080 actcaagcet teccaaceeg eggeetggea agtgeeteee agaccagcag eegataceea 1140 cagagacett ccaggtgget gaccgtcacc cagaggtgge gcagagggtg gagcccatgg 1200 ggcctctgaa gacgccattg ttccactcta aataccacta ccagaaagtg gccgtccacc 1260 gcatgcaagc cagccacggg gagacettte atgtgettta cetaactaca gacaggggca 1320 ctatecacaa ggtggtggaa ccgggggage aggagcacag cttcgccttc aacatcatgg 1380 agatccagcc cttccgccgc gcggctgcca tccagaccat gtcgctggat gctgagcgga 1440 ggaagetgta tgtgagetee cagtgggagg tgagecaggt geceetggae etgtgtgagg 1500 tctatggcgg gggctgccac ggttgcctca tgtcccgaga cccctactgc ggctgggacc 1560 aaggccgctg catetecate tacageteeg aaeggteagt getgeaatee attaatecag 1620 ccgagccaca caaggagtgt cccaacccca aaccagacaa ggccccactg cagaaggttt 1680

| ccctggcccc aaactctcgc tactacctga                          | gctgccccat | ggaatcccgc | cacgccacct | 1740 |
|-----------------------------------------------------------|------------|------------|------------|------|
| actcatggcg ccacaaggag aacgtggagc                          | agagctgcga | acctggtcac | cagagececa | 1800 |
| actgcatcct gttcatcgag aacctcacgg                          | cgcagcagta | cggccactac | ttctgcgagg | 1860 |
| cccaggaggg ctcctacttc cgcgaggctc                          | agcactggca | gctgctgccc | gaggacggca | 1920 |
| tcatggccga gcacctgctg ggtcatgcct                          | gtgccctggc | cgcctccctc | tggctggggg | 1980 |
| tgctgcccac actcactctt ggcttgctgg                          | tccactaggg | cctcccgagg | ctgggcatgc | 2040 |
| ctcaggette tgcageecag ggeactagaa                          | cgtctcacac | tcagagccgg | ctggcccggg | 2100 |
| ageteettge etgecaette tteeagggga                          | cagaataacc | cagtggagga | tgccaggcct | 2160 |
| ggagacgtcc agccgcaggc ggctgctggg                          | ccccaggtgc | gcacggatgg | tgaggggctg | 2220 |
| agaatgaggg caccgactgt gaagctgggg                          | catcgatgac | ccaagacttt | atcttctgga | 2280 |
| aaatattttt cagactccct caaacttgac                          | taaatgcagc | gatgctccca | gcccaagagc | 2340 |
| ccatgggtcg gggagtgggt ttggatagga                          | gagctgggac | tccatctcga | ccctggggct | 2400 |
| gaggeetgag teettetgga etettggtae                          | ccacattgcc | tecttecect | ccctctctca | 2460 |
| tggctgggtg gctggtgttc ctgaagaccc                          | agggctaccc | tctgtccagc | cctgtcctct | 2520 |
| gcagctccct ctctggtcct gggtcccaca                          | ggacageege | cttgcatgtt | tattgaagga | 2580 |
| tgtttgcttt ccggacggaa ggacggaaaa                          | agctctattt | ttatgttagg | cttatttcat | 2640 |
| gtatagctac ttccgactgc c                                   |            |            |            | 2661 |
| <210> 563<br><211> 507<br><212> DNA<br><213+ Homo sapiens |            |            |            |      |
| ttctccaggc tggccctcag cctggcgccc                          | cttccgcaga | catccctaga | aaaagaacta | 60   |
| acgcggcctt ctccgagccc agggctggag                          | taggaagtac | ccgccctccc | gaacgcgagg | 120  |
| tcctggctgc gcattggctg cgaaggccgt                          | cagtactccg | gagggcggag | cctcccggca | 180  |
| cccageggaa ttteaggeee geaceteegg                          | gagggtcctc | cgggctcccg | ggcttctttc | 240  |
| ctcccctta acactacccc cgcacacaca                           | ccggccccga | gaaggcaact | agcctcctca | 300  |
| aacggtteet ttgeettttt atttegeagg                          | ccttcctctc | accccataca | gttactgccc | 360  |
| ctttgactcc tccgagaggc aaagcttttt c                        | caaagctcta | acacetetee | cctaccccag | 420  |
| caagttcccc gtgcgagacc aaatagagga t                        | tgccgctgtt | ctaagagtga | agcaagctgt | 480  |
| ggactggatc tcgccgaggg agagaga                             |            |            |            | 507  |

| <211> 4<br><212> E            | 664<br>130<br>DNA<br>Homo sapiens  |               |            |            |            |     |
|-------------------------------|------------------------------------|---------------|------------|------------|------------|-----|
|                               | 664<br>ag ttatcttt                 | ta ttaatatatt | gtgtgtgcac | cttgtcttcc | tcaggcttag | 60  |
| aattcccc                      | ag gtgctggg                        | aa cttgagcctg | cttccctttc | ctctgtcttc | cataattcat | 120 |
| tccttaat                      | gc aacatctc                        | ct gagggcctac | tttgtgtcag | aaactacatt | atttgctagg | 180 |
| ggtgcaga                      | agc ccaggaag                       | gc acaggtgctt | ccctcaagca | gttctgaaat | gaatagggta | 240 |
| cagataag                      | gta aacccccc                       | tc tcctatccag | tgagtagagt | tgtgtacaag | gggacacaaa | 300 |
| atgagete                      | tg gagacttg                        | ct cccccaaaat | gggagccatg | gaccatcagc | attggcatca | 360 |
| cctgggag                      | gat caatagag                       | at gcagacccct | gtacccattc | agttggagtg | tgcatttgaa | 420 |
| ataagato                      | ecc                                |               |            |            |            | 430 |
| <211> 6<br><212> I            | 565<br>542<br>DNA<br>Homo sapiens  |               |            |            |            |     |
|                               | 565<br>tga aaacgaga                | cc aaggtctagc | tctactgttg | gtacttatga | gatccagtcc | 60  |
| tggcaaca                      | atg gagaggat                       | tg tcatctgtct | gatggtcatc | ttcttgggga | cactggtcca | 120 |
| caaatcaa                      | agc teccaagg                       | tc aagatcgcca | catgattaga | atgcgtcaac | ttatagatat | 180 |
| tgttgato                      | cag ctgaaaaa                       | tt atgtgaatga | cttggtccct | gaatttctgc | cagctccaga | 240 |
| agatgtag                      | gag acaaactg                       | tg agtggtcagc | ttttcctgt  | tttcagaagg | cccaactaaa | 300 |
| gtcagcaa                      | aat acaggaaa                       | ca atgaaaggat | aatcaatgta | tcaattaaaa | agctgaagag | 360 |
| gaaaccac                      | ect tecacaaa                       | tg cagggagaag | acagaaacac | agactaacat | gcccttcatg | 420 |
| tgattctt                      | tat gagaaaaa                       | ac cacccaaaga | attcctagaa | agattcaaat | cacttctcca | 480 |
| aaagatga                      | att catcagca                       | tc tgtcctctag | aacacacgga | agtgaagatt | cctgaggatc | 540 |
| taacttgo                      | cag ttggacac                       | ta tgttacatac | tctaatatag | tagtgaaagt | catttctttg | 600 |
| tattccaa                      | agt ggaggagc                       | cc tattaaatta | tataaagaaa | ta         |            | 642 |
| <211> 4<br><212> I<br><213> F | 566<br>4894<br>DNA<br>Homo sapiens |               |            |            |            |     |
|                               |                                    | gg gtccggcgag | aggggctgtg | acagtcggag | tcccaagctg | 60  |
| cggttcgg                      | gct gctgccga                       | ga actgcaaggt | gtggaatatt | tctggcttct | agtccaatgc | 120 |

caagtgtgtg acctgtggct acatgattcc ctgaaagata agaacaatgt tatgttgggg 180 atattggtct ctgggccaac ctggtatcag caccaacctg cagggaattg tggctgagcc 240 ccaggtgtgt gggttcatat ctgacagaag tgtcaaggaa gtggcctgtg ggggaaacca 300 ctctgtgttc ctgctggaag atggggaagt ttacacatgt ggtttgaaca ccaaggggca 360 actgggccat gagagggaag gaaacaagcc agaacaaatt ggagctctgg cagatcagca 420 tatcattcat gtggcatgtg gcgagtccca cagtctggcc ctcagtgacc gaggccagct 480 gttttcttgg ggtgcaggga gtgatggtca gctaggactc atgactactg aggattctgt 540 ggcagtgccc aggttaatac aaaagctgaa ccagcaaaca atattacaag tttcctgtgg 600 caactggcat tgcttggctc ttgcggctga tggccagttc ttcacctggg gaaagaacag 660 ccatgggcag cttggcttag ggaaggagtt cccctcccaa gccagcccac agagggtgag 720 gtccctggag gggatcccac tggctcaggt ggctgccgga ggggctcaca gctttgccct 780 gtctctctca ggagctgttt ttggctgggg gatgaataat gccgggcagc tagggctcag 840 tgatgaaaaa gatcgagaat ctccatgcca tgtaaaactc ttacgcacgc aaaaagttgt 900 ctatattagt tgtggagaag aacacacagc agttctcaca aagagtggag gtgtgtttac 960 ctttggcgct ggttcctgtg ggcaacttgg acacgactcc atgaatgatg aggttaaccc 1020 tagaagagtt ctagagctga tgggtagtga agtaactcaa attgcttgtg gcagacaaca 1080 taccctagcc ttcgtgcctt cttctggact catctatgca tttggttgtg gagcaagagg 1140 tcaattagga actgggcaca cttgtaatgt taagtgccca tctcctgtca agggttactg 1200 ggctgcccac agtggccagc tttcagcccg agctgatcgc tttaaatatc atatcgttaa 1260 gcagatette tetggaggag accagaettt tgtaetttge tecaaataeg agaattatte 1320 tcctgctgtt gacttcagga ctatgaacca agcacattat accagtttaa taaatgatga 1380 aaccatagca gtttggagac aaaaactctc agaacacaac aatgcaaata caatcaatgg 1440 1500 tgatgaacat tttaaaacga gtcccaaaat ccctgggatt gacctgaact caactagggt 1560 gttatttgag aagttaatga actctcagca ctccatgatt ctagaacaga ttttgaacag 1620 ttttgaaagt tgtctgattc cccagttgtc aagctcacca ccagatgttg aagccatgag 1680 aatctattta atactacctg agtttcccct actccaggat tccaagtatt atataacatt 1740 gactattccc ttggctatgg ccattcttcg gctggataca aaccccagca aagtactaga 1800 taactggtgg tctcaggtat gcccgaaata tttcatgaag ctggtaaacc tctataaagg 1860 tgcagtcctt tatctactga ggggaagaaa gacattctta attcccgtac tgtttaacaa 1920

| CLACALCACA | geagetetea | aactettgga | gaagttatat | aaggtaaatc | ttaaagtgaa | 1980 |
|------------|------------|------------|------------|------------|------------|------|
| gcatgtggaa | tatgatacat | tttacattcc | tgagatttcc | aatctcgtgg | acattcagga | 2040 |
| agactacctc | atgtggttct | tgcatcaagc | agggatgaag | gctagaccat | caataataca | 2100 |
| ggatactgta | acactttgtt | cctacccttt | catctttgat | gcccaagcca | agaccaaaat | 2160 |
| gttacagaca | gatgctgaac | tacagatgca | ggtggcagtc | aatggagcca | acctgcagaa | 2220 |
| tgtcttcatg | cttctcaccc | tggagcctct | gctggccaga | agccccttcc | tggtccttca | 2280 |
| cgttcgcagg | aacaaccttg | ttggagatgc | cctaagagag | ctgagcattc | attctgatat | 2340 |
| tgatttgaaa | aagcctctca | aagtaatctt | tgatggtgaa | gaagcagtgg | atgccggtgg | 2400 |
| tgttacaaag | gaatttttc  | ttttgctgtt | aaaagaactt | ttgaatccca | tctatggaat | 2460 |
| gtttacctac | tatcaagatt | caaatctctt | gtggttttca | gacacgtgtt | ttgtagagca | 2520 |
| caactggttt | cacttgattg | gtataacctg | tggactagct | atctacaact | ccactgtggt | 2580 |
| cgatctccac | ttcccattgg | ctctctacaa | gaagttactc | aatgtaaagc | ctggcttgga | 2640 |
| agacttaaag | gagttgtcac | ccactgaagg | aaggagtete | caagagcttt | tagattaccc | 2700 |
| cggggaggat | gtggaggaga | ctttctgcct | caacttcacg | atctgccgag | aaagctatgg | 2760 |
| agtgattgaa | cagaagaagc | tgatacctgg | gggagataat | gtaactgtgt | gcaaggataa | 2820 |
| caggcaggaa | tttgtggatg | cttatgtgaa | ttatgtcttc | caaatctcag | ttcatgaatg | 2880 |
| gtacacagcc | ttctctagtg | gcttcctaaa | ggtgtgtggt | ggcaaagtac | ttgagctctt | 2940 |
| ccagccttca | gaactgaggg | ctatgatggt | ggggaacagc | aactacaact | gggaagaact | 3000 |
| ggaagagact | gccatctaca | agggagatta | ctcggccaca | catcccactg | taaaactatt | 3060 |
| ttgggaaaca | tttcatgagt | ttccattgga | aaagaagaag | aagtttctct | tgttcctgac | 3120 |
| aggcagcgat | cggattccca | tctacggcat | ggccagtctg | cagattgtca | tccagtccac | 3180 |
| agccagcggg | gaggagtact | tgccggtggc | ccacacttgc | tacaaccttc | ttgacctccc | 3240 |
| caagtacagc | agcaaagaga | ttctgagtgc | ccggctgacc | caggcccttg | acaactatga | 3300 |
| agggtttagt | ttggcctgag | gcttctcagc | ttgtccagta | tttcccttcg | ttcctcagtg | 3360 |
| tccacattga | ggcctataca | gaaaatcatg | gggagtgatt | tctattttt  | tattgtctaa | 3420 |
| gtgggttggg | acttttaaat | actgagcctg | gttgatgtgt | ttctgggatt | gtatagcagt | 3480 |
| aaacaacctt | tttgaaaaat | tagaggttgg | ggatggggtg | aaaaattggc | ccttgtatgg | 3540 |
| gaggtgtttt | tgtttttgtt | ttaaaccaaa | ctacccagta | ttccttgcac | ttgtgaatgt | 3600 |
| gttgcactct | gctggatgaa | atggcagtgg | atttttaaac | tttaatttcc | caaatgtctc | 3660 |
| ctcagccct  | gatgttttct | cacagtgctt | ccttgtcctt | ctcttaactt | ctcattcctc | 3720 |
| ataagaatg  | atttagactg | acctgtcctt | ttttatctqc | qcatqcqaqa | acatcacc++ | 3780 |

| cctctgtaca              | cttggaaatg | cctctggctt | gttgcagccc | tcctttaacc | caaaggagga | 3840 |
|-------------------------|------------|------------|------------|------------|------------|------|
| aaggactgct              | tcagaaactc | ccaattccaa | aaagctgagt | ctgggtccat | tattttggca | 3900 |
| gaactcctaa              | gaatttatgg | gagcctatat | aaacatatct | tgcttttaaa | aagttcttga | 3960 |
| gggaatagca              | actttcccat | ggctgtgcct | atttcctaga | ccttttaaaa | gatgtgcaga | 4020 |
| gcagcttagc              | attcgttgca | gctgagccta | attttttctt | gctcatcctt | gtccctttga | 4080 |
| caataaggtt              | aattgataga | cccaccacct | cttgcactct | cgcttttgga | gcaagttgca | 4140 |
| ttaactattt              | tgagtctcta | tattgtccaa | gaaaagtaga | aataataaat | ttactttccc | 4200 |
| tttttctatc              | accttatgtc | ctctaccatt | ttctccttcc | tcccttccct | tattttctcc | 4260 |
| ttttcgtacc              | ctgtgtcctc | cctgattttc | ctttcgtttc | ttctttattt | tatcccattc | 4320 |
| tctgttactt              | gactcagtgc | tecetteete | tcctctcctt | ctagtggatg | catgcagcct | 4380 |
| ttttttcaat              | ttttatttaa | attgcaaaat | ttttactcag | atttttttc  | ctcttcccta | 4440 |
| attgctaaga              | tttaaggacg | ttctttatta | tgaaacttta | tcacattcga | aatgtttgtt | 4500 |
| tacagtggga              | ttttaggggg | gattgtgttt | aaatcaaata | tatgtatttt | aaaaataatg | 4560 |
| acatgctcaa              | ccttcctcat | catggagtaa | gaaaattcta | catgattaaa | gaatccatgt | 4620 |
| aagtctaatt              | ttaaattcct | agtaactaga | gaaaagactt | atttatataa | aatgaagtat | 4680 |
| ttatgaactg              | tgataaagca | tcaaatcttg | atgaaggatt | gtagatttt  | gctttttctt | 4740 |
| tttgtttta               | aaacttattc | caattgctaa | attggtagtt | tttcagtctt | tataaataca | 4800 |
| ggattaaaaa              | tatatataca | gttatatgaa | atgtttattt | tctatgtgtg | tgcatatagt | 4860 |
| tcaatattat              | gcaataaatt | tggtgtttta | actt       |            |            | 4894 |
|                         | sapiens    |            |            |            |            |      |
| <400> 567<br>aggtgaatga | tgactacaat | aacattgcaa | ctatttcttt | cctggcatag | ggaggtaata | 60   |
| agaaactaaa              | tgatcgcatg | gtacatgctt | gtattatata | gatgggttta | ggaatctata | 120  |
| aagtatggag              | gtaggaagac | accatatgtc | caggatcaaa | acattcctca | tattgaggta | 180  |
| gtctagtgaa              | gctgtttcat | gtagctgctt | taggaagtgg | tttaaggaag | cttactccca | 240  |
| cttcaagtta              | agcaccaaag | caatcactaa | ttctggagca | caggaagact | gctatctcat | 300  |
| cattcacctt              | tgcag      |            |            |            |            | 315  |

<sup>&</sup>lt;210> 568 <211> 2321

<212> DNA

<213> Homo sapiens

<400> 568 60 cttcctgaaa ggatctggag acaccagctc cacaagtcct ggtgtcttta aaaggatcag cttgaggaat aaggetegte tgagagetgt gacatteate tgactetagt gaaagtecaa 120 180 caqccactcc ctttttggcc tccaactggg caccatgagg gcctgcatct ccctggtatt ggccgtgctg tgtggcctgg cctgggctga ggaccacaaa gagtcagagc cattqccaca 240 gctggaggaa gagacagaag aggccctcgc cagcaacttg tactcggcac ccacctcctg 300 ccaqqqccgc tqctacgaag cctttgacaa gcaccaccaa tgtcactgca atgcccgctg 360 ccaagagttt gggaactgct gcaaggattt tgagagcctg tgtagtgacc acgaggtctc 420 ccacaqcaqt qatqccataa caaaaqagga gattcagagc atctctgaga agatctacag 480 ggcagacacc aacaaagccc agaaggaaga catcgttctc aatagccaaa actgcatctc 540 cccqtcagaq accaqaaacc aagtggatcg ctgcccaaag ccactcttca cttatgtcaa 600 tgagaagctg ttctccaagc ccacctatgc agccttcatc aacctcctca acaactacca 660 qeqqqeaaca qqccatqqqq aqcacttcag tgcccaqqag ctqqccqagc aggacgcctt 720 cctcaqaqaq atcatqaaqa caqcaqtcat qaaqqaqctc tacaqcttcc tccatcacca 780 quatcoctat qoctcaqaqc aaqaqtttqt cqatqacttq aagaacatgt gqtttgggct 840 ctattcaaga ggcaatgaag agggggactc gagtggcttt gaacatgtct tctcaggtga 900 960 ggtaaaaaaa ggcaaggtta ctggcttcca taactggatc cgcttctacc tggaggagaa ggagggtctg gttgactatt acagtcacat ctacgatggg ccttgggatt cttaccccga 1020 tgtgctggca atgcagttca actgggacgg ctactataag gaagtgggct ctgctttcat 1080 eggeageage cetgagtttg agtttgeact etactecetg tgetteateg ceaggecagg 1140 caaagtgtgc cagttaagcc tgggaggata tcccttagct gtccggacat atacctggga 1200 caagtccacc tatgggaatg gcaagaagta catcgccaca gcctacatag tgtcttccac 1260 ctaataqaac ttcqaqccaq aaaqqqqcat qaqqqctctt qcqaqactga agtgctatct 1320 tctctqqact aqaqaqaaqa qqqaqaqqac tqqaaqqqat Caccaaatct caaaqcaatq 1380 agaaqcattc ctaaatccca aaqtqcccac atqqqaaaqa qataaaatgt acaaattaga 1440 aaaatgtgga taaacagtca aacctttatc ctctagaatt ttggcaatgt tgactaagaa 1500 acagagteca agcagagaag gtaggaaccc tccatagetc tctgccctga tgtgtgggg 1560 aactaggaag aagteetttg accteaceag geeteatget teeetttaat gtaaagggaa 1620 ggggtttgcc cactttcctc tttttggggt tggtgagagg gcaaaccctg atatttttac 1680 tgtgaaggtg ttttcagttg ttcttaggaa gaacagctga tagaaattca agattactat 1740

| aatggctgtt                                        | attatacaca | gctctgtaaa | ctaccactca          | gccctgtgtt | ggggtcctca | 1800  |
|---------------------------------------------------|------------|------------|---------------------|------------|------------|-------|
| aagaagtaag                                        | gccacagtaa | tcaagcaagg | gcctttggtt          | ttttccagag | ttagatcctc | 1860  |
| t <b>c</b> agaacaga                               | gtctgggaga | actccaatgc | tgaatggaga          | agggtaatag | gttggtgcag | 1920  |
| tgaatgggct                                        | gggggtgggg | tggccttctc | caggcctgag          | tgtttttgtg | tccagctcag | 1980  |
| tatctgcaac                                        | aagaagtttc | ccacttgtgg | atgtttagtg          | cagccacaga | cttgtatttt | 2040  |
| gatccccaat                                        | ttttttttga | aagagttctc | ctcataggag          | gatgattcag | catcagaaga | 2.100 |
| agaaggaacc                                        | catagcttgg | tgtcattaac | ataat <b>t</b> attt | taagccttat | ccagcagcca | 2160  |
| taatttgaat                                        | aactctacga | gaccagagag | actgtagttc          | cctattttaa | cctcaattat | 2220  |
| gcatttgtcc                                        | cccaacccca | ctgagaacta | aatgctgtac          | cacagageeg | ggtgtgaact | 2280  |
| atggtttaga                                        | aggttcaagt | ttccaattaa | agtcattgaa          | g          |            | 2321  |
| <210> 569 <211> 497 <212> DNA <213> Home          | o sapiens  |            |                     |            |            |       |
| <400> 569<br>tttttttttt                           | tttttttgag | gggaggaagt | <b>g</b> gaggagaga  | tgataggaaa | ctcctcctta | 60    |
| aggttgccga                                        | ctcctaactt | tctgaaaatg | actaaggaag          | agaaattcca | agggaagaga | 120   |
| aacatgtttc                                        | tttcttggtc | tctggttatc | ccacctgagg          | agagaggcct | ctgatgacca | 180   |
| gacatggaca                                        | acagggaggt | gctggtttct | ggaaatgtgt          | aaccaagttg | gagcaccagc | 240   |
| agggatggat                                        | tacacccacg | ggccacctct | catttcagat          | gattcgcatt | gattctcaac | 300   |
| tcattaggga                                        | aacccgcctt | gcatctccaa | gggcttcgaa          | atttgataca | ggaaataaga | 360   |
| tgtggaggta                                        | ggggtgatgt | ttcatccctt | cttctagttg          | taggccataa | ctttagaaaa | 420   |
| gaaaagcatg                                        | tatggaaatt | taacaggata | ccatttagat          | gcccgcaatg | agcaggattt | 480   |
| gttttgctaa                                        | attatgg    |            |                     |            |            | 497   |
| <210> 570<br><211> 658<br><212> DNA<br><213> Homo | o sapiens  |            |                     |            |            |       |
| <400> 570                                         | araaacakaa | taacgttata | gtatttgtca          | gaagttgggg | tetecataaa | 60    |
|                                                   |            | agtggattag |                     |            |            | 120   |
|                                                   |            | cagggcccaa |                     |            |            | 180   |
|                                                   |            | aatgaccagt |                     |            |            | 240   |

| tacaaggaag                                         | cagagetete | caagggcgag | tctgtgtgcc | tggaccgatg | tgtctctaag | 300 |
|----------------------------------------------------|------------|------------|------------|------------|------------|-----|
| tacctggaca                                         | tccatgagcg | gatgggcaaa | aagttgacag | agttgtctat | gcaggatgaa | 360 |
| gagctgatga                                         | agagggtgca | gcagagetet | gggcctgcat | gaggtccctg | tcagtataca | 420 |
| ccctggggtg                                         | taccccaccc | cttcccactt | taataaacgt | gctccctgtt | gggtgtcatc | 480 |
| tgtgaagact                                         | gccaggccta | ggctctctgt | agagagtctt | caagatcccg | gagtggtagc | 540 |
| gctgtctcct                                         | ggtgaaggag | tatttgtcac | actggaatgt | gactgtgtgt | gtatgtatgt | 600 |
| gtatatatat                                         | atatatatat | atatataaac | aagtttgttg | acacctacaa | aaaaaaa    | 658 |
| <210> 571<br><211> 4045<br><212> DNA<br><213> Homo | sapiens    |            |            |            |            |     |
| atctctctcc                                         | ccgctcccca | gcctcgggcg | aggccgtccg | gccgctaccc | ctcctgctcg | 60  |
| gccgccgcag                                         | tegeegtege | cgccgccgcc | gccgccatgg | ccaatgacag | cggcgggccc | 120 |
| ggcgggccga                                         | gcccgagcga | gcgagaccgg | cagtactgcg | agctgtgcgg | gaagatggag | 180 |
| aacctgctgc                                         | gctgcagccg | ctgccgcagc | tccttctact | gctgcaagga | gcaccagcgt | 240 |
| caggactgga                                         | agaagcacaa | gctcgtgtgc | cagggcagcg | agggcgccct | cggccacgga | 300 |
| gtgggcccac                                         | accagcattc | cggccccgcg | ccgccggctg | cagtgccgcc | gcccagggcc | 360 |
| ggggcccggg                                         | agcccaggaa | ggcagcggcg | cgccgggaca | acgcctccgg | ggacgcggcc | 420 |
| aagggaaaag                                         | taaaggccaa | gcccccggcc | gacccagcgg | cggccgcgtc | gccgtgtcgt | 480 |
| geggeegeeg                                         | gcggccaggg | ctcggcggtg | gctgccgaag | ccgagcccgg | caaggaggag | 540 |
| ccgccggccc                                         | gctcatcgct | gttccaggag | aaggcgaacc | tgtaccccc  | aagcaacacg | 600 |
| cccggggatg                                         | cgctgagccc | cggcggcggc | ctgcggccca | acgggcagac | gaagcccctg | 660 |

ccggcgctga agctggcgct cgagtacatc gtgccgtgca tgaacaagca cggcatctgt

gtggtggacg acttcctcgg caaggagacc ggacagcaga tcggcgacga ggtgcgcgcc

ctgcacgaca ccgggaagtt cacggacggg cagctggtca gccagaagag tgactcgtcc

aaggacatcc gaggcgataa gatcacctgg atcgagggca aggagcccgg ctgcgaaacc

attgggctgc tcatgagcag catggacgac ctgatacgcc actgtaacgg gaagctgggc

agctacaaaa tcaatggccg gacgaaagcc atggttgctt gttatccggg caatggaacg

ggttatgtac gtcatgttga taatccaaat ggagatggaa gatgtgtgac atgtatatat

tatcttaata aagactggga tqccaaggta agtgqaqgta tacttcgaat ttttccaqaa

ggcaaagccc agtttgctga cattgaaccc aaatttgata gactgctgtt tttctggtct

720

780

840

900

960

1020

1080

1140

1200

| gaccgtcgca | a acceteatga | agtacaacca | gcatatgcta | caaggtacgo | : aataactgtt | 1260 |
|------------|--------------|------------|------------|------------|--------------|------|
| tggtattttg | g atgcagatga | gagagcacga | gctaaagtaa | aatatctaac | aggtgaaaaa   | 1320 |
| ggtgtgaggg | g ttgaactcaa | taaaccttca | gattcggtcg | gtaaagacgt | cttctagagc   | 1380 |
| ctttgatcca | gcaataccc    | acttcaccta | caatattgtt | aactatttgt | taacttgtga   | 1440 |
| atacgaataa | atgggataaa   | gaaaaataga | caaccagtto | gcattttaat | aaggaaacag   | 1500 |
| aaacaacttt | ttgtgttgca   | tcaaacagaa | gattttgact | gctgtgactt | tgtactgcat   | 1560 |
| gatcaactto | aaatctgtga   | ttgcttacag | gaggaagata | agctactaat | tgaaaatggt   | 1620 |
| ttttacatct | ggatatgaaa   | taagtgccct | gtgtagaatt | tttttcattc | ttatattttg   | 1680 |
| ccagatetgt | tatctagctg   | agttcatttc | atctctccct | tttttatatc | aagtttgaat   | 1740 |
| ttgggataat | ttttctatat   | taggtacaat | ttatctaaac | tgaattgaga | aaaaattaca   | 1800 |
| gtattattcc | tcaaaataac   | atcaatctat | ttttgtaaac | ctgttcatac | tattaaattt   | 1860 |
| tgccctaaaa | gacctcttaa   | taatgattgt | tgccagtgac | tgatgattaa | ttttatttta   | 1920 |
|            | gaaaaggagc   |            |            |            |              | 1980 |
| ttccttacac | taatttgaac   | tgttaaagat | tgctgctttt | tttttgacat | tgtcaataac   | 2040 |
| gaaacctaat | tgtaaaacag   | tcaccattta | ctaccaataa | cttttagtta | atgttttaca   | 2100 |
| aggaaaaaga | cacaagaaga   | gtttaaattt | ttttgttttg | ttttgtttt  | ttgagacagt   | 2160 |
| cttgctctgt | tacccaggct   | ggaggggagt | ggtgcattct | tggctcactg | caacctccgc   | 2220 |
| cttccaggtt | caagcaatcc   | teccacetea | gcctcccaac | tagctgggac | tgcaggcaca   | 2280 |
| caccaccatg | cctgactaat   | ttttgtatgt | ttagtagaga | cggggttttg | ccatgttgcc   | 2340 |
| taggctgggg | tttaagttaa   | atttttaaa  | aaactaaagt | gactggcact | aagtgaactt   | 2400 |
| gagattatcc | tcagcttcaa   | gttcctaaga | taagggcttt | cttaagcttt | caggtgtatg   | 2460 |
| tatcctctag | atgtagacaa   | taatgtccca | tttctaagtc | ttttcctttt | gcttctcctt   | 2520 |
| aaattgattg | tacttccaaa   | tttgctgtta | tgttttttc  | ctaatactgt | gatctatctg   | 2580 |
| atctgcagac | aagaaccttg   | tctctgttga | agagcatcaa | ggggagatta | tgtacacatt   | 2640 |
| gaaactgaag | tgtggtgtta   | ctgacggaat | gtgcagtaac | tcctcagata | tctgttaagg   | 2700 |
| catttcccag | atgtgatgcc   | agccttctta | cctgtactga | aagatgctta | gcttagaaaa   | 2760 |
| aaacaaaaca | gatgcaaaat   | cagataattt | tattttgttt | catgggtttt | cttatttact   | 2820 |
| ttttaaacaa | gggaaggaat   | attagaaaat | cacacaaggc | ctcacataca | tgttatttaa   | 2880 |
| agaatgaatt | gggacggatg   | tcttagactt | cactttccta | ggctttttag | ccaaaaccta   | 2940 |
| aagggtggta | tccatatttt   | gcgtgaatta | tgggtgtaag | accttgccca | cttaggtttt   | 3000 |
| ctatctctgt | ccttgatctt   | cttgccaaaa | tgtgagtata | cagaaatttt | ctgtatattt   | 3060 |

| caacttaaga | catttttago | atctgtatag | ttgtattcaa | tttgagacct | tttctatggg | 3120 |
|------------|------------|------------|------------|------------|------------|------|
| aagctcagta | atttttatta | aaagattgcc | attgctattc | atgtaaaaca | tggaaaaaaa | 3180 |
| attgtgtagt | gaagccaaca | gtggacttag | gatgggattg | aatgttcagt | atagtgatct | 3240 |
| cacttaggag | aatttgcagg | agaaagtgat | agtttattgt | tttttcctcg | cccatattca | 3300 |
| gttttgttct | acttcctccc | cttccttcca | gatgataaca | tcacatctct | acagtaagtg | 3360 |
| cctctgccag | cccaacccag | gagcgcaagt | tgtctttgcc | atctggtcta | tagtacagtg | 3420 |
| cgcggcgtta | ggccacaact | caaaagcatt | atcttttta  | gggttagtag | aaattgtttt | 3480 |
| atgttgatgg | gaggtttgtt | tgattgtcaa | aatgtacagc | cacagcettt | taatttggga | 3540 |
| gcccctgttg | tcattcaaat | gtgtacctct | acagttgtaa | aaagtattag | attctactat | 3600 |
| ctgtgggttg | tgcttgccag | acaggtctta | aattgtatat | tttttggaaa | agtttatata | 3660 |
| ctctcttagg | aatcattgtg | aaaagatcaa | gaaatcagga | tggccattta | tttaatatcc | 3720 |
| attcatttca | tgttagtggg | actattaact | tgtcaccaag | caggactcta | tttcaaacaa | 3780 |
| aatttaaaac | tgtttgtggc | ctatatgtgt | ttaatcctgg | ttaaagataa | agcttcataa | 3840 |
| tgctgttttt | attcaacaca | ttaaccagct | gtaaaacaca | gacctttatc | aagagtaggc | 3900 |
| aaagattttc | aggattcata | tacagataga | ctataaagtc | atgtaatttg | aaaagcagtg | 3960 |
| tttcattatg | aaagagctct | caagttgctt | gtaaagctaa | tctaattaaa | aagatgtata | 4020 |
| aatgttgttg | aaacaaaaaa | aaaaa      |            |            |            | 4045 |
|            |            |            |            |            |            |      |

<210> 572

<211> 1575 <212> DNA

<213> Homo sapiens

<400> 572

gagagaggaa gcttgaagcc aatatggagt ccgtcagttg ctccgctgct gctgtcagga 60 ccggagacat ggagtcccag cgggacctga gcctggtgcc tgagcggctt cagagacgcg 120 aacaagaacg gcagctggaa gttgaaaggc ggaaacaaaa gcggcagaac caggaggtag 180 agaaggagaa cagccacttt ttcgtcgcca cctttgctcg ggagcgagcg gccgtggaag 240 agettetgga gegegeggag teggtegage ggetggagga ggeggeetet eggeteeagg 300 ggctgcagaa actaatcaac gactcagttt ttttcctagc cgcttacgac ctgcggcagg 360 gacaagagge getggeggg etgeaggegg eettggeega geggegeegg gggetgeage 420 ccaagaagcg tttcgctttc aagacccggg gaaaggatgc tgcttcgtct accaaagtag 480 acgeggetee tggcateece eeggeagttg aaageataca ggaeteeeeg etgeecaaga 540 aggcggaagg agacctcggc cccagctggg tctgcggttt ctccaacctg gagtcccaag 600

|                   | ccyyayaa                                  | gagagecage | gagttgcace | agegegaegt | tcttttgacc | gaactgagca | 660  |
|-------------------|-------------------------------------------|------------|------------|------------|------------|------------|------|
| ac                | tgcacggt                                  | cagactgtat | ggaaatccca | acaccctgcg | gctaaccaag | gcccacagct | 720  |
| gc                | aagctgct                                  | ctgcggtccg | gtgtctacct | ctgttttcct | ggaggactgc | agtgactgcg | 780  |
| tg                | ctggcagt                                  | ggcctgccaa | cageteegea | tacacagtac | gaaagacacc | cgcatcttcc | 840  |
| tg                | caggtgac                                  | cagcagggcc | atcgtggagg | actgcagtgg | gatccagttc | gccccttaca | 900  |
| CC                | tggagcta                                  | cccggagatc | gacaaggact | tcgagagctc | tggtttagat | aggagcaaaa | 960  |
| at                | aactggaa                                  | cgatgttgac | gattttaact | ggctggcccg | ggatatggcc | tccccaaact | 1020 |
| gg                | agtattct                                  | tcctgaagag | gagcgaaata | tccagtggga | ctaagcagtt | gtcactctgt | 1080 |
| tc                | ttcactcc                                  | taccaaatac | tttccacgtt | ggactttccc | ccttattggg | tctcgaagtt | 1140 |
| ta                | cttattgt                                  | cacactgtgt | atgttttcag | cattttaagg | ctagagattg | taatgggctc | 1200 |
| ct                | acttgtaa                                  | tttccattaa | attcgtaaca | ggtataacac | taaagcattt | ttgctatttt | 1260 |
| cg                | tcatgcct                                  | ttgagactga | gtcttactcc | gtccccagc  | gtggtggcgc | gctgggatta | 1320 |
| ca                | ggcgcgcg                                  | ccaccacgcg | aactcgtatt | tttagtagag | acggggtttc | gccatgttgt | 1380 |
| cc                | gggctgct                                  | ctcgaactcc | tgacctcagg | tgatccaccc | gcttcagctt | cccaaagtgc | 1440 |
| tg                | gcattaca                                  | ggcgtgagcc | accacgccag | ggctttattt | atttatttt  | accacaatag | 1500 |
| ttt               | tgaagcag                                  | taagggggaa | ggagggtgat | tatattgctt | tgtaatggtt | tgtgatactt | 1560 |
| gaa               | aacatcac                                  | ggtgc      |            |            |            |            | 1575 |
| <21<br><21<br><21 | 10> 573<br>11> 995<br>12> DNA<br>13> Home | o sapiens  |            |            |            |            |      |
|                   |                                           | ataaaaaggg | gggcccaaaa | aacgggggag | cggagatttt | tttgggaaat | 60   |
| ttt               | tttttt                                    | ttcctttgga | tatatgacca | gcagtgggat | tgctggatct | tacgatggaa | 120  |
| tto               | ccaaaga                                   | tgttgaccag | gaagatcaag | ctgtgggaca | tcaacgccca | catcacctgc | 180  |
| cgc               | ctgtgca                                   | gcgggtacct | catcgacgcc | accacggtga | ccgagtgtct | gcacaccttc | 240  |
| tgo               | aggaget                                   | gcctggtgaa | gtacctggag | gagaacaaca | cctgccccac | ctgcaggatt | 300  |
| gtg               | gatccacc                                  | agagccaccc | cctgcagtac | atcggtcatg | acagaaccat | gcaagatatt | 360  |
| gtt               | tacaaat                                   | tggtaccagg | cctccaagaa | gcggaaatga | gaaagcagag | ggagttctat | 420  |
| cac               | aaattgg                                   | gcatggaggt | gccgggagac | atcaaggggg | agacctgctc | tgcaaaacag | 480  |
| cac               | ttagatt                                   | cccatcggaa | tggtgaaacc | aaagcagacg | acagttcaaa | caaagaggcc | 540  |

gcggaggaga agccggagga ggacaacgac taccaccgca gcgacgagca ggtgagcatc 600

| tgcttggagt gtaacagca                                                    | g caaactgcgc | gggctgaagc | ggaagtggat | ccgctgctca | 660  |
|-------------------------------------------------------------------------|--------------|------------|------------|------------|------|
| gcccaggcga ccgtcttgc                                                    | a tctgaagaag | ttcatcgcca | aaaaactcaa | cctttcatcc | 720  |
| tttaacgagc tggacattt                                                    | atgcaacgag   | gagatcctgg | gcaaggacca | cacactcaag | 780  |
| ttcgtggttg tcactaggtg                                                   | g gagattcaag | aaggcgccgc | tectgetgea | ctacagaccc | 840  |
| aagatggact tgctgtgaa                                                    | ggtgccacac   | agcgcccaca | gactgggctc | gcacccttgg | 900  |
| gtgctcccgg ccgccgcgc                                                    | taagaacatt   | gcctctgggt | gtcatgtgga | ccagacttct | 960  |
| gaatagagaa tatttataa                                                    | ttttgtatga   | gagag      |            |            | 995  |
| <210> 574<br><211> 3367<br><212> DNA<br><213> Homo sapiens<br><400> 574 |              |            |            |            |      |
| ccttctggca ctttctatgg                                                   | gaggattete   | gtaacagcag | cacaccaact | gaaaagccca | 60   |
| aactgctcgc tcttggtgaa                                                   | aattatgaac   | tgcttatcta | tgaatttaat | ttgaaagatg | 120  |
| gaagatgtga tgcaaccatt                                                   | ttgtatagct   | gtagtaggga | ggcattgcaa | aagctcattg | 180  |
| acgatcaaga tatcagtatt                                                   | tccttattgt   | ctttgagaat | cctgtcattt | cacaataaca | 240  |
| catcattact gttcatcaac                                                   | aaatgtgtca   | tcctacatat | tatatttcct | gaaagagatg | 300  |
| ctgcaattag agtactcaac                                                   | tgtttcacac   | ttcccttgcc | tgcacaggca | gtggacatga | 360  |
| ttattgacac gcagctctgc                                                   | agaggaattc   | tttttgtttt | gagtagttta | ggctggatct | 420  |
| acatttttga tgttgtggat                                                   | ggtacatatg   | tagctcatgt | ggatttagca | cttcacaaag | 480  |
| aagacatgtg taatgagcag                                                   | caacaggagc   | cagccaagat | ttcttcattt | acttcactga | 540  |
| aagtttctca agacctcgat                                                   | gttgcagtga   | ttgtcagctc | ctccaactcc | gcagttgctc | 600  |
| ttaacttaaa tttgtatttc                                                   |              |            |            |            | 660  |
| aagatettee tatteaagga                                                   |              |            |            |            | 720  |
| acaacatgaa actggccaag                                                   |              |            |            |            | 780  |
| catcattgaa tgaaacaata                                                   |              |            |            |            | 840  |
| tccaggatat tttgcatttg                                                   |              |            |            |            | 900  |
| gctgggcctt cattccacag                                                   |              |            |            |            | 960  |
| atgccaagac cagtgatcca                                                   |              |            |            |            | 1020 |
| aacccataga gcttaaatgt                                                   |              |            |            |            | 1080 |
| tggaaaggat gggctatacc                                                   |              |            | gacccagggc | atgcagtgtt | 1140 |
| tttcccttgg cacaaagtgt                                                   | attectetae   | agagtagtag | 202200000  |            |      |

ttttgacaga gaatggactc tctctgattt tgtttggttt gactcaagaa gagtttttaa 1260 acagactcat gatccatgga agtgccagca ctgtggacac tctttgtcat ctcaatggct 1320 ggggaaggtg ctcaattccc atacatgcac tagaggccgg gatagaaaat cgtcagctgg 1380 acacagtaaa tttctttttg aagagcaagg aaaatctttt taatccatcc tcaaaatctt 1440 ctgtatctga tcagtttgat cacttgtcat cccatttata tttaagaaat gtggaagaqc 1500 tgataccagc attggattta ctttgctcgg caattagaga aagttattct gaaccccaaa 1560 gcaaacactt ttcagaacaa ttgcttaatc ttacactgtc tttccttaac aaccaaataa 1620 aggagetttt catteacact gaagaactag atgaacatet geaaaaagga gtgaacattt 1680 tgactagcta cattaatgaa cttcgaacct tcatgataaa gtttccttgg aagctaacag 1740 atgctataga tgaatatgat gtacatgaaa atgtccccaa agtaaaggag agcaatatat 1800 ggaagaaact cagctttgag gaagttattg ccagcgccat tttaaacaac aaaataccag 1860 aggcacagac tttcttcagg attgatagtc attctgctca aaaacttgag gagcttattg 1920 gcataggcct aaatttggtc tttgacaatt taaaaaagaa caatataaag gaagcctctg 1980 aacttttgaa gaatatgggg tttgatgtaa aaggccaatt gctcaagatc tgcttctata 2040 caactaataa aaatatacgt gactttttgg ttgaaatttt aaaagaaaaa aattattttt 2100 ctgaaaaaga gaaaagaact atagacttcg tgcatcaagt tgagaagctt tatttgggac 2160 atttccaaga aaatatgcaa atccagtcat ttcccaggta ctggataaag gaacaagatt 2220 tttcaagcac aagtctgttt tggactcatt cctgaaatat gattgtaaag atgaatttaa 2280 caaacaggac catagaattg tgttaaattg ggctctgtgg tgggatcaac taacacaaga 2340 atccatcctt ctccccagga taagtccaga agaatacaaa tcatattccc ctgaagccct 2400 ctggagatac ctcacagctc gccatgattg gttaaacatt atcttatgga ttggagaatt 2460 tcaaacccag catagttatg cttcacttca gcagaacaaa tggccccttc tgactgttga 2520 tgttattaac cagaatactt cctgtaacaa ctacatgagg aatgaaattt tagataaqct 2580 qqccaggaat qgggtttttt tggcatctga actggaagac tttgaatgct tcctcctaag 2640 actgagccgt attggaggtg taatacagga taccctccct gttcaaaact acaagaccaa 2700 agaaggttgg gatttccatt ctcaattcat tctctattgt ttggagcaca gtctgcagca 2760 tottotttat gtotacottg actgttacaa acttagtcot gaaaattgto cotttttgga 2820 aaaaaaagag ttacatgaag cacacccttg gtttgaattt ttagttcagt gtcgacaagt 2880 tgccagtaac ttaacagatc ccaaactgat cttccaggct agccttgcaa atgctcagat 2940 tttgattccc accaatcagg ccagtgtaag cagtatgcta ttggaaggac ataccetect 3000

qqcccttqct actacaatqt attctcctqq qqqtqtcaqt caggttqttc aqaatqaaqa 3060 aaatqaaaac tqtttqaaqa aaqtqqatcc ccaqctattq aaqatqqcat taactcctta 3120 ccccaageta aaaactgete tetteccaca gtgcacteet cctagtgtee tgccatetga 3180 tattacaatc taccacctta ttcagtcatt atcacccttt gatcctagca gattgtttgg 3240 ctggcagtct gctaacacac tagctatagg agatgcatgg agtcatctcc cacatttctc 3300 tagccctgac ctggttaata aatatgctat agtggaacgt ctgaattttg cttattattt 3360 3367 acataaa <210> 575 <211> 1615 <212> DNA <213> Homo sapiens

<400> 575

qqqaqqaqqc aqqqcaqqqc ctctqqqacq qqqttqqacq qcttqttqac qqaaacqaqc 60 cettgacget gtggcccgga agtggagcgg etgtegcagt geggeteegg cagtggcage 120 qqaqqcctqt qtttqcqqcc ttcqqcaaqc qactqaqatq qcqaqcqcaa ctqcacctqc 180 agccgcagtc cccacctgg cttcgccttt ggagcagctc cggcacttgg cggaggagct 240 qeqgttqctc ctgcctcgag tgcgggtcgg cgaagcccag gagaccaccg aggagtttaa 300 tcqaqaqatg ttctgqagaa gactcaatga ggcagctgtg actgtgtcaa gggaagccac 360 qactotqacc ataqtottot otcagottoc actgooqtot ccacaggaaa cccaqaaqtt 420 ctqtqaacaa qtccatqctq ccatcaaqqc atttattqca qtqtactatt tqcttccaaa 480 qqatcaqqqq atcaccctqa qaaaqctqqt acqqqqcqcc accctqqaca tcqtqqatqq 540 600 catggctcag ctcatggaag tactttccgt cactccaact cagagcctg agaacaatga cottatttcc tacaacaqtq totqqqttqc qtqccaqcaq atqcctcaqa taccaaqaqa 660 taacaaagct gcagctcttt tgatgctgac caagaatgtg gattttgtga aggatgcaca 720 tgaagaaatg gagcaggctg tggaagaatg tgacccttac tctggcctct tgaatgatac 780 tgaggagaac aactetgaca accacaatca tgaggatgat gtgttggggt tteecagcaa 840 tcaggacttg tattggtcag aggacgatca agagctcata atcccatgcc ttgcgctggt 900 gagaqcatcc aaagcctgcc tqaagaaaat tcggatgtta gtggcagaga atgggaagaa 960 qqatcaqqtq qcacaqatqq ctqacattqt ggatatttct gatgaaatca qccctaqtqt 1020 1080 ggatgatttg getetgagea tatateeace tatgtgteac etgacegtge gaateaatte tqcqaaactt gtatctqttt taaaqaaqqc acttqaaatt acaaaaqcaa qtcatqtqac 1140 ccctcagcca gaagatagtt qqatcccttt acttattaat gccattgatc attgcatqaa 1200

325

| tagaatcaag gagctcactc agagtgaact tgaattatga cttttcaggc tcatttgtac              | 1260 |
|--------------------------------------------------------------------------------|------|
| tetetteece teteategte atggteagge tetgatacet gettttaaaa tggagetaga              | 1320 |
| atgettgetg gattgaaagg gagtgeetat etatatttag caagagacae tattaccaaa              | 1380 |
| gattgttggt taggccagat tgacacctat ttataaacca tatgcgtata tttttctgtg              | 1440 |
| ctatatatga aaaataattg catgatttet catteetgag teatttetea gagatteeta              | 1500 |
| ggaaagetge ettattetet tittgeagta aagtatgitg titteatigt aaagatgitg              | 1560 |
| atggtctcaa taaaatgcta acttgccagt gattaaaaaa aaaaaaaaaa                         | 1615 |
| <210> 576<br><211> 2882<br><212> DNA<br><213> Homo sapiens                     |      |
| <400> 576<br>ctgcaggtaa cggatcagcg ctgccgggat cctttcaatc atcaggaaca gcaacaggtt | 60   |
| tgcagggtca ggctggggac cctcgcccat taactctttc ttctccctgt ttctttctct              | 120  |
| taggtgaggg gaaactgagt tecagggtag getecagagt gaagagggaa gaaacatgat              | 180  |
| totcaaggee aggtotggac aagtgtgaac accttgggee tgegaattca geeceeteet              | 240  |
| teetttetet ggteaaagge tägaettgea ggagettgeg tttgaaggga eageecagaa              | 300  |
| ggcatcgtct gcactcccca tacaggtact tetgggtctg tgggactggc gcagggttct              | 360  |
| totoccaaag otgocagcac tgaggotgag goagtgtoag googgoggoa goggoagtgg              | 420  |
| tgcaatcgtt ctgggaagga tagtggccgg cctgaattct ctgtggcaag ggaggggagc              | 480  |
| ccaagtggga ggccccttgg ggacaccgag gaccaggtcc gctactgctc ctcccccagg              | 540  |
| aggtccccta ggggctacat tggctggcag gggctgagca gcggtgagcc tggctggctt              | 600  |
| cgaccegggg cgacteeggg cateegggac agetteteet egetgecaee teggecagte              | 660  |
| agaccccgag acacctgtca ctaccccctc agccttccca agccaggagc ctgggagtcc              | 720  |
| ggctctggcc tacctccggc agcgctccta ggcgcacgtc ccgggctggc ggcgccgggg              | 780  |
| cccgcccct agggctgcgg cgcgcggggc gggggctggg ggctgcgcgg ggcggggcgg               | 840  |
| gecegggege teegggeece eteceegee eeeetgaegt eageeceegg eageetegag               | 900  |
| ctgctcactt gcgtctcgcc ctccggccaa gcatggggct tcccaggctg gtctgcgcct              | 960  |
| tettgetege egeetgetge tgetgteete gegtegeggg tgagtteget tegetegeag              | 1020 |
| gggccgcgcc ccggctaggg gtctgcggtg gagcgtgcca gggagcagag ccagcggcgc              | 1080 |
| ggcgggtcgg ggcgttgcgt ctgggaggac gagcctcctc cctgggtccc cgatccccgg              | 1140 |
| gcccttgcgc gcgagcaact cttctttgca gccagtttgc agccgggatt ctagagtatc              | 1200 |

| ccgggagcag cactcggaag | gcggggagga | ggctgcttct | gggaacgaga | aggggtggag | 1260 |
|-----------------------|------------|------------|------------|------------|------|
| ctcagccttt cggggtgctg | gggggtgggt | ggtccctgag | gtgctcactc | tgggggcccg | 1320 |
| caattgaagc cgggcaggag | gcgcagctgg | ggcgcatcct | caaagcctga | attccgcgcc | 1380 |
| eggetgttge tggaaaagge | agcttccttc | gctggagggg | gtgcgccgac | ccaccccttc | 1440 |
| ccccttctgc ctgggcatca | cgccaggctg | gaggtgagcg | agagcgggag | gttcggcggc | 1500 |
| teeegeeega getgggegtt | ggcaggggtt | gcggggcggt | gtgggtcgcc | tegegeetee | 1560 |
| ccgagtgatg ggatcatagg | ggacagagat | gagggatgga | ggattcccat | actggacgcc | 1620 |
| cgctggctta ttttggggac | cacattcagg | tgggaagtgc | gcccgggcac | ctcggagcgt | 1680 |
| ttctccggat ccgcctggta | gcagggtgct | ctcgggtccc | gctgcccttg | tatggcccgc | 1740 |
| gcagcggtgt cgcgtgtttc | tcttggctcc | cattccgccg | tecegetgte | cggctgggga | 1800 |
| aggggagggc taggcaatac | cagctcgctg | gcctcatgcc | cagtgccaac | catgtcctgg | 1860 |
| ggtattccag ctactgcctc | ccaggctgac | tttatttctg | ggaaagggct | aaatcgggct | 1920 |
| ccacagttgc agccggtcca | gctccaccct | gccctgctct | tctagtctcg | ggaggagtca | 1980 |
| ggggtctgag gctctgggtt | ggagacccca | ccttccacct | gccctccttg | tccgagagcc | 2040 |
| aaggtaacaa cccaggactc | ccagagtccc | aggcagatgg | tgtcgagtga | catcacctcc | 2100 |
| tcacagggct ggcagcacgc | tggcaccact | gacgtcactc | ctgcccactg | cctggccctt | 2160 |
| gccctgaccc ctgggggaga | ctctgacctc | tccatcctta | ccagctacct | agggtggggt | 2220 |
| ccgcgggtgt gtgcggagtg | ttcatggcgg | tgcagctgag | ggagggagca | tgagaccgga | 2280 |
| acttccgcca gagttagccc | gctggggagt | gagggcaggg | attttggagg | gcagaggggt | 2340 |
| agagcagtgg tgtcttcctg | gcggtggtga | cacaaaaggc | ctgttggccc | cagcctggca | 2400 |
| catcgtttgc attcccacac | tctgagctca | cccggagagg | agggggcctg | gaaggaaagg | 2460 |
| cgttcctctt gccccgagcc | tagttgcccc | tttctgcccc | tctacagcct | cagctggagc | 2520 |
| tgtcggtgct cagtctctgc | tcaatctctg | cttggctcca | aggacctggg | atctcctggt | 2580 |
| acggggagag ggctggccca | ggtggggtgg | cgggtcgggg | tgggggtaga | gcgttcagag | 2640 |
| acagggccct ctgcagaccc | tctgagtggc | aggaaaaaca | gctcgacgag | cgctgcgagg | 2700 |
| ggagggggg acacgacgcg  | gacgtgacac | agcctgggcc | ccgcctccct | ccccaggtg  | 2760 |
| tgcccggaga ggctgagcag | cctgcgcctg | agctggtgga | ggtggaagtg | ggcagcacag | 2820 |
| cccttctgaa gtgcggcctc | tcccagtccc | aaggcaacct | cagccatgtc | gactggtttt | 2880 |
| ct                    |            |            |            |            | 2882 |

<sup>&</sup>lt;210> 577 <211> 2733

<212> DNA

<213> Homo sapiens

<400> 577 ctcgcgaggc cggctaggcc cgaatgtcgt tagccgtggg gaaagatggc ggaaaattta 60 aaaggetgea gegtgtgttg caagtettet tggaateage tgeaggacet gtgeegeetg 120 qccaaqctct cctqccctqc cctcggtatc tctaagagga acctctatga ctttgaagtc 180 gagtacctgt gcgattacaa gaagatccgc gaacaggaat attacctggt gaaatggcgt 240 ggatatccag actcagagag cacctgggag ccacggcaga atctcaagtg tgtqcqtatc 300 ctcaaqcaqt tccacaaqqa cttaqaaaqq gagctgctcc ggcggcacca Ccggtcaaaq 360 acceccqqc acctqqaccc aaqcttqqcc aactacctgg tgcagaaggc caagcagagg 420 cqqqcqctcc qtcqctqqqa qcaqqaqctc aatqccaagc qcagccatct gggacgcatc 480 actqtaqaqa atqaqqtqqa cctqqacggc cctccqcqqq ccttcqtgta catcaatgag 540 600 taccqtqttq qtqaqqqcat caccctcaac caggtqqctg tqqqctgcga gtgccaggac tqtctqtqqq cacccactqq aqqctqctqc ccggggqcqt cactqcacaa qtttgcctac 660 aatgaccagg gccaggtgcg gcttcgagcc gggctgccca tctacgagtg caactcccgc 720 tgccgctgcg gctatgactg cccaaatcgt gtggtacaga agggtatccg atatgacctc 780 tgcatcttcc ggacggatga tgggcgtggc tggggcgtcc gcaccctgga gaagattcgc 840 900 aagaacagct tcgtcatgga gtacgtggga gagatcatta cctcagagga ggcagagcgg 960 cgqqgccaga tctacgaccg tcagggcgcc acctacctct ttgacctgga ctacgtggag gacgtgtaca ccgtggatgc cgcctactat ggcaacatct cccactttgt caaccacagt 1020 tqtqacccca acctqcaqqt qtacaacgtc ttcatagaca accttgacga gcggctgccc 1080 cqcatcqctt tctttgccac aagaaccatc cgggcaggcg aggagctcac ctttgattac 1140 aacatgcaag tggaccccgt ggacatggag agcacccgca tggactccaa ctttggcctg 1200 gctqqqctcc ctqqctcccc taaqaaqcgq gtccqtattg aatqcaaqtg tgggactqaq 1260 tcctgccgca aatacctctt ctagccctta gaagtctgag gccagactga ctgaggggc 1320 ctgaagetac atgcacctcc cccactgctg ccctcctqtc gagaatgaCt gccagggcct 1380 egectacete cacetacece cacetactec tacetactet acqttcaqqq etqtqqcqt 1440 ggtgaggacc gactccagga gtcccctttc cctgtcccag ccccatctgt gggttgcact 1500 tacaaacccc caccacctt cagaaatagt ttttcaacat caagactctc tgtcgttggg 1560 attcatggcc tattaaggag gtccaagggg tgagtcccaa cccagcccca gaatatattt 1620 gtttttgcac ctgcttctgc ctggagattg aggggtctgc tgcaggcctc ctccctgctg 1680

1740

ccccaaaggt atggggaagc aaccccagag caggcagaca tcagaggcca qaqtqcctag

| cccgacatga             | agetggttee | ccaaccacag | aaactttgta | ctagtgaaag | aaaggggtcc | 1800 |
|------------------------|------------|------------|------------|------------|------------|------|
| ctggcctacg             | ggctgaggct | ggtttctgct | cgtgcttaca | gtgctgggta | gtgttggccc | 1860 |
| taagagctgt             | agggtetett | cttcagggct | gcatatctga | gaagtggatg | cccacatgcc | 1920 |
| actggaaggg             | aagtgggtgt | ccatgggcca | ctgagcagtg | agaggaaggc | agtgcagagc | 1980 |
| tggccagccc             | tggaggtagg | ctgggaccaa | gctctgcctt | cacagtgcag | tgaaggtacc | 2040 |
| tagggctctt             | gggagctctg | cggttgctag | gggccctgac | ctggggtgtc | atgaccgctg | 2100 |
| acaccactca             | gagctggaac | caagatctag | atagtccgta | gatagcactt | aggacaagaa | 2160 |
| tgtgcattga             | tggggtggtg | atgaggtgcc | aggcactagg | tagagcacct | ggtccacgtg | 2220 |
| gattgtctca             | gggaagcctt | gaaaaccacg | gaggtggatg | ccaggaaagg | gcccatgtgg | 2280 |
| cagaaggcaa             | agtacaggcc | aagaattggg | ggtgggggag | atggetteee | cactatggga | 2340 |
| tgacgaggcg             | agagggaagc | ccttgctgcc | tgccattccc | agaccccagc | cctttgtgct | 2400 |
| caccctggtt             | ccactggtct | caaaagtcac | ctgcctacaa | atgtacaaaa | ggcgaaggtt | 2460 |
| ctgatggctg             | ccttgctcct | tgctcccca  | cccctgtga  | ggacttctct | aggaagtcct | 2520 |
| tcctgactac             | ctgtgcccag | agtgccccta | catgagactg | tatgccctgc | tatcagatgc | 2580 |
| cagatctatg             | tgtctgtctg | tgtgtccatc | cegeeggeee | cccagactaa | cctccaggca | 2640 |
| tggactgaat             | ctggttctcc | tcttgtacac | ccctcaaccc | tatgcagcct | ggagtgggca | 2700 |
| tcaataaaat             | gaactgtcga | ctgaaaaaaa | aaa        |            |            | 2733 |
| <210> 578<br><211> 710 |            |            |            |            |            |      |

<212> DNA

<213> Homo sapiens

<400> 578

gagaggtgga ggcgctttga aaggtgagag cgcgagggcg gtgcggggct gtctcccggc 60 tgggactcgc tcgcgctccc ggtgctaatg gtttatgaga gggcggggga agccgtgcct 120 cctcgcggac taagagaaaa attcccgcgg gcgctctttg ggtgggccgg agaacgcccc 180 teagecettt gegeetetaa ceeteeteag etgagetgea gtgggegegg tgeeegttat 240 ttccgccttg gggaggtgct tggaactgat gtagggagct cggttggtga tttctcgggt 300 ttctggcctt tccagaccct tgtaattgtt ttctcggtgc agagctcttt tggggtctgg 360 gggtttccgt cgtcctgcgc gcgtcatcgc gaagcttggc ctgagggtcc ggtttcctag 420 ctactgtgcc cctccctcct ggaggcagag tgacggacta gtgggctagc gggcgctggg 480 ttcctgcgtc ccgccaaaga ggtttgtaat catgaaagtt cacccttccg ggtgttaatt 540 cctgagagga tctactccac tgtctaccac tcattcctgc tgcattaacc ttcattgtta 600

| deggattita atgaataata tagitateee ggataceatg etggcaggat ecaetttgeg    | 660 |
|----------------------------------------------------------------------|-----|
| aaattgtgga ctgttggact gtgattctaa gtgggggaaa taggctttag               | 710 |
| <210> 579<br><211> 287<br><212> DNA<br><213> Homo sapiens            |     |
| <220> <221> misc_feature <222> (235)(235) <223> n is a, c, g, t or u |     |
| <400> 579                                                            |     |
| caccatetee tgegtetege gggggtagge acgeaegaag aacateegge tatggeaeag    | 60  |
| cegeatatge gegacettea eegtegtegt caegeeggee ageaceaega eeteatgget    | 120 |
| ccagtcgaac tggtaagcct cgcccggctc aaagctcagc ggcacgaacg cggtcgccgt    | 180 |
| gcggcccact tectegeget gccageggeg ggcatggegg egaaeggtat cataneegee    | 240 |
| ctcgtatcct tgcgcccgca gcgtctcgaa caggcggatc agcgtca                  | 287 |
| <210> 580<br><211> 2693<br><212> DNA<br><213> Homo sapiens           |     |
| cgaaaaaaga ggggaagagt attaaagacc atttctggct gggcagggca               | 60  |
| ctcaactgcc cagcgtgacc agtggccacc tctgcagtgt cttccacaac ctggtcttga    | 120 |
| ctcgtctgct gaacaaatcc tctgacctca ggccggctgt gaacgtagtt cctgagagat    | 180 |
| agcaaacatg cccaacagtg agcccgcatc tctgctggag ctgttcaaca gcatcgccac    | 240 |
| acaaggggag ctcgtaaggt ccctcaaagc gggaaatgcg tcaaaggatg aaattgattc    | 300 |
| tgcagtaaag atgttggtgt cattaaaaat gagctacaaa gctgccgcgg gggaggatta    | 360 |
| caaggetgae tgtcctccag ggaacccage acctaccagt aatcatggee cagatgeeac    | 420 |
| agaagctgaa gaggattttg tggacccatg gacagtacag acaagcagtg caaaaggcat    | 480 |
| agactacgat aagctcattg ttcggtttgg aagtagtaaa attgacaaag agctaataaa    | 540 |
| ccgaatagag agagccaccg gccaaagacc acaccacttc ctgcgcagag gcatcttctt    | 600 |
| ctcacacaga gatatgaatc aggttcttga tgcctatgaa aataagaagc cattttatct    | 660 |
| gtacacgggc cggggcccct cttctgaagc aatgcatgta ggtcacctca ttccatttat    | 720 |
| tttcacaaag tggctccagg atgtatttaa cgtgcccttg gtcatccaga tgacggatga    | 780 |
|                                                                      |     |

| -3-39      |              | , accegaceer | . ggaccaggcc | catggtgatg | ctgttgagaa | 840  |
|------------|--------------|--------------|--------------|------------|------------|------|
| tgccaagga  | atcategeet   | gtggctttga   | catcaacaag   | actttcatat | tctctgacct | 900  |
| ggactacato | gggatgagct   | : caggtttcta | caaaaatgtg   | gtgaagatto | aaaagcatgt | 960  |
| taccttcaac | : caagtgaaag | gcattttcgg   | cttcactgac   | agcgactgca | ttgggaagat | 1020 |
| cagttttcct | gccatccagg   | ctgctccctc   | cttcagcaac   | tcattcccac | agatetteeg | 1080 |
| agacaggacg | gatatccagt   | gccttatccc   | atgtgccatt   | gaccaggato | cttactttag | 1140 |
| aatgacaagg | gacgtcgccc   | ccaggatcgg   | ctatcctaaa   | ccagccctgt | tgcactccac | 1200 |
| cttcttccca | gccctgcagg   | gcgcccagac   | caaaatgagt   | gccagcgacc | caaactcctc | 1260 |
| catcttcctc | accgacacgg   | ccaagcagat   | caaaaccaag   | gtcaataagc | atgcgttttc | 1320 |
| tggagggaga | gacaccatcg   | aggagcacag   | gcagtttggg   | ggcaactgtg | atgtggacgt | 1380 |
| gtctttcatg | tacctgacct   | tcttcctcga   | ggacgacgac   | aagctcgagc | agatcaggaa | 1440 |
| ggattacacc | agcggagcca   | tgctcaccgg   | tgagctcaag   | aaggcactca | tagaggttct | 1500 |
| gcagcccttg | atcgcagagc   | accaggcccg   | gcgcaaggag   | gtcacggatg | agatagtgaa | 1560 |
| agagttcatg | actccccgga   | agctgtcctt   | cgactttcag   | tagcactcgt | tttacatatg | 1620 |
| cttataaaag | aagtgatgta   | tcagtaatgt   | atcaataatc   | ccagcccagt | caaagcaccg | 1680 |
| ccacctgtag | gcttctgtct   | catggtaatt   | actgggcctg   | gcctctgtaa | gcctgtgtat | 1740 |
| gttatcaata | ctgtttcttc   | ctgtgagttc   | cattatttct   | atctcttatg | ggcaaagcat | 1800 |
| tgtgggtaat | tggtgctggc   | taacattgca   | tggtcggata   | gagaagtcca | gctgtgagtc | 1860 |
| tctccccaaa | gcagccccac   | agtggagcct   | tcggctggaa   | gtccatgggc | caccctgttc | 1920 |
| ttgtccatgg | aggacttccg   | agggttccaa   | gtatactctt   | aagacccact | ctgtttaaaa | 1980 |
| atatatattc | tatgtatgcg   | tatatggaat   | tgaaatgtca   | ttattgtaac | ctagaaagtg | 2040 |
| ctttgaaata | ttgatgtggg   | gaggtttatt   | gagcacaaga   | tgtatttcag | cccatgcccc | 2100 |
| ctcccaaaaa | gaaattgata   | agtaaaagct   | tcgttataca   | tttgactaag | aaatcaccca | 2160 |
| gctttaaagc | tgcttttaac   | aatgaagatt   | gaacagagtt   | cagcaatttt | gattaaatta | 2220 |
| agacttgggg | gtgaaacttt   | ccagtttact   | gaactccaga   | ccatgcatgt | agtccactcc | 2280 |
| agaaatcatg | ctcgcttccc   | ttggcacacc   | agtgttctcc   | tgccaaatga | ccctagaccc | 2340 |
| tctgtcctgc | agagtcaggg   | tggcttttcc   | cctgactgtg   | tccgatgcca | aggagtcctg | 2400 |
| gcctccgcag | atgcttcatt   | ttgacccttg   | gctgcagtgg   | aagtcagcac | agagcagtgc | 2460 |
| ectggctgtg | tcctggacgg   | gtggacttag   | ctagggagaa   | agtcgaggca | gcagccctcg | 2520 |
| aggccctcac | agatgtctag   | gcaggcctca   | tttcatcacg   | cagcatgtgc | aggcctggaa | 2580 |
| gagcaaagcc | aaatctcagg   | gaagtccttg   | gttgatgtat   | ctgggtctcc | tctqqaqcac | 2640 |

| tctgccctcc                                       | tgtcacccag | tagagtaaat | aaacttcctt | ggctcctaaa | aaa        | 2693 |
|--------------------------------------------------|------------|------------|------------|------------|------------|------|
| <210> 581<br><211> 463<br><212> DNA<br><213> Hom | 3          |            |            |            |            |      |
| <400> 581<br>tacggctgcg                          |            | agaaggggag | aagaaagcca | gtgcgtctct | gggcgcaggg | 60   |
| gccagtgggg                                       | ctcggaggca | caggcacccc | gegacactee | aggttccccg | acccacgtcc | 120  |
| ctggcagccc                                       | cgattattta | cageeteage | agagcacggg | gcgggggcag | aggggcccgc | 180  |
| cegggaggge                                       | tgctacttct | taaaacctct | gegggetget | tagtcacago | ccccttgct  | 240  |
| tgggtgtgtc                                       | cttcgctcgc | tccctccctc | cgtcttaggt | cactgttttc | aacctcgaat | 300  |
| aaaaactgca                                       | gccaacttcc | gaggcagcct | cattgcccag | cggaccccag | cctctgccag | 360  |
| gttcggtccg                                       | ccatcctcgt | cccgtcctcc | gccggcccct | gccccgcgcc | cagggatcct | 420  |
| ccagctcctt                                       | tegeeegege | cctccgttcg | ctccggacac | catggacaag | ttttggtggc | 480  |
| acgcagcctg                                       | gggactctgc | ctcgtgccgc | tgagcctggc | gcagatcgat | ttgaatataa | 540  |
| cctgccgctt                                       | tgcaggtgta | ttccacgtgg | agaaaaatgg | tcgctacagc | atctctcgga | 600  |
| cggaggccgc                                       | tgacctctgc | aaggctttca | atagcacctt | gcccacaatg | gcccagatgg | 660  |
| agaaagctet                                       | gagcatcgga | tttgagacct | gcaggtatgg | gttcatagaa | gggcacgtgg | 720  |
| tgattccccg                                       | gatccacccc | aactccatct | gtgcagcaaa | caacacaggg | gtgtacatcc | 780  |
| tcacatccaa                                       | cacctcccag | tatgacacat | attgcttcaa | tgcttcagct | ccacctgaag | 840  |
| aagattgtac                                       | atcagtcaca | gacctgccca | atgcctttga | tggaccaatt | accataacta | 900  |
| ttgttaaccg                                       | tgatggcacc | cgctatgtcc | agaaaggaga | atacagaacg | aatcctgaag | 960  |
| acatctaccc                                       | cagcaaccct | actgatgatg | acgtgagcag | cggctcctcc | agtgaaagga | 1020 |
| gcagcacttc                                       | aggaggttac | atcttttaca | ccttttctac | tgtacacccc | atcccagacg | 1080 |
| aagacagtcc                                       | ctggatcacc | gacagcacag | acagaatccc | tgctaccaga | gaccaagaca | 1140 |
| attccaccc                                        | cagtgggggg | tcccatacca | ctcatggatc | tgaatcagat | ggacactcac | 1200 |
| atgggagtca                                       | agaaggtgga | gcaaacacaa | cctctggtcc | tataaggaca | ccccaaattc | 1260 |
| cagaatggct                                       | gatcatcttg | gcatccctct | tggccttggc | tttgattctt | gcagtttgca | 1320 |
| tgcagtcaa                                        | cagtcgaaga | aggtgtgggc | agaagaaaaa | gctagtgatc | aacagtggca | 1380 |
| tggagctgt                                        | ggaggacaga | aagccaagtg | gactcaacgg | agaggccagc | aagtctcagg | 1440 |
| aatggtgca                                        | tttggcgaac | aaggagtcgt | cagaaactcc | agaccagttt | atgacagetg | 1500 |
| tgagacaag                                        | gaacctgcag | aatgtggaca | tgaagattgg | ggtgtaacac | ctacaccatt | 1560 |

atcttggaag gaaacaaccg ttggaaacat aaccattaca gggagctggg acacttaaca 1620 gatgcaatgt gctactgatt gtttcattgc gaatcttttt tagcataaaa ttttctactc 1680 tttttgtttt ttgtgttttg ttctttaaag tcaggtccaa tttgtaaaaa cagcattgct 1740 ttctgaaatt agggcccaat taataatcag caagaatttg atcgttccag ttcccacttg 1800 gaggeettte ateceteggg tgtgetatgg atggetteta acaaaaacta cacatatgta 1860 ttcctgatcg ccaacctttc ccccaccagc taaggacatt tcccagggtt aatagggct 1920 ggtccctggg aggaaatttg aatgggtcca ttttgccctt ccatagccta atccctgggc 1980 attgctttcc actgaggttg ggggttgggg tgtactagtt acacatcttc aacagacccc 2040 ctctagaaat ttttcagatg cttctgggag acacccaaag ggtgaagcta tttatctgta 2100 gtaaactatt tatctgtgtt tttgaaatat taaaccctgg atcagtcctt tgatcagtat 2160 aattttttaa agttactttg tcagaggcac aaaagggttt aaactgattc ataataaata 2220 totgtacttc ttcgatcttc accttttgtg ctgtgattct tcagtttcta aaccagcact 2280 gtctgggtcc ctacaatgta tcaggaagag ctgagaatgg taaggagact cttctaagtc 2340 ttcatctcag agaccctgag ttcccactca gacccactca gccaaatctc atggaagacc 2400 aaggagggca gcactgtttt tgttttttgt tttttgtttt tttttttttg acactgtcca 2460 aaggttttcc atcctgtcct ggaatcagag ttggaagctg aggagcttca gcctctttta 2520 tggtttaatg gccacctgtt ctctcctgtg aaaggctttg caaagtcaca ttaagtttgc 2580 atgacctgtt atccctgggg ccctatttca tagaggctgg ccctattagt gatttccaaa 2640 aacaatatgg aagtgccttt tgatgtctta caataagaga agaagccaat ggaaatgaaa 2700 gagattggca aaggggaagg atgatgccat gtagatcctg tttgacattt ttatggctgt 2760 atttgtaaac ttaaacacac cagtgtctgt tcttgatgca gttgctattt aggatgagtt 2820 aagtgcctgg ggagtccctc aaaaggttaa agggattccc atcattggaa tcttatcacc 2880 agataggcaa gtttatgacc aaacaagaga gtactggctt tatcctctaa cctcatattt 2940 tctcccactt ggcaagtcct ttgtggcatt tattcatcag tcagggtgtc cgattggtcc 3000 tagaacttcc aaaggctgct tgtcatagaa gccattgcat ctataaagca acggctcctg 3060 ttaaatggta teteetttet gaggeteeta etaaaagtea tttgttaeet aaaettatgt 3120 gettaacagg caatgettet cagaccacaa agcagaaaga agaagaaaag eteetgacta 3180 aatcagggct gggcttagac agagttgatc tgtagaatat ctttaaagga gagatgtcaa 3240 ctttctgcac tattcccage ctctgctcct ccctgcctac cctctcccct ccctctctcc 3300 ctccacttca ccccacaatc ttgaaaaact tcctttctct tctgtgaaca tcattggcca 3360

| gatccatttt | cagtggtctg | gatttcttt  | tattttcttt | tcaacttgaa | agaaactgga | 3420 |
|------------|------------|------------|------------|------------|------------|------|
| cattaggcca | ctatgtgttg | ttactgccac | tagtgttcaa | gtgcctcttg | ttttcccaga | 3480 |
| gatttcctgg | gtctgccaga | ggcccagaca | ggctcactca | agctctttaa | ctgaaaagca | 3540 |
| acaagccact | ccaggacaag | gttcaaaatg | gttacaacag | cctctacctg | tcgccccagg | 3600 |
| gagaaagggg | tagtgataca | agtctcatag | ccagagatgg | ttttccactc | cttctagata | 3660 |
| ttcccaaaaa | gaggctgaga | caggaggtta | ttttcaattt | tattttggaa | ttaaatactt | 3720 |
| ttttcccttt | attactgttg | tagtccctca | cttggatata | cctctgtttt | cacgatagaa | 3780 |
| ataagggagg | tctagagctt | ctattccttg | gccattgtca | acggagagct | ggccaagtct | 3840 |
| tcacaaaccc | ttgcaacatt | gcctgaagtt | tatggaataa | gatgtattct | cactcccttg | 3900 |
| atctcaaggg | cgtaactctg | gaagcacagc | ttgactacac | gtcattttta | ccaatgattt | 3960 |
| tcaggtgacc | tgggctaagt | catttaaact | gggtctttat | aaaagtaaaa | ggccaacatt | 4020 |
| taattattt  | gcaaagcaac | ctaagagcta | aagatgtaat | ttttcttgca | attgtaaatc | 4080 |
| ttttgcgtct | cctgaagact | tcccttaaaa | ttagctctga | gtgaaaaatc | aaaagagaca | 4140 |
| aaagacatct | tcgaatccat | atttcaagcc | tggtagaatt | ggcttttcta | gcagaacctt | 4200 |
| tccaaaagtt | ttatattgag | attcataaca | acaccaagaa | ttgattttgt | agccaacatt | 4260 |
| cattcaatac | tgttatatca | gaggagtagg | agagaggaaa | catttgactt | atctggaaaa | 4320 |
| gcaaaatgta | cttaagaata | agaataacat | ggtccattca | cctttatgtt | atagatatgt | 4380 |
| ctttgtgtaa | atcatttgtt | ttgagttttc | aaagaatagc | ccattgttca | ttcttgtgct | 4440 |
| gtacaatgac | cactgttatt | gttactttga | cttttcagag | cacacccttc | ctctggtttt | 4500 |
| tgcatattta | ttgatggatc | aataataatg | aggaaagcat | gatatgtata | ttgctgagtt | 4560 |
| gaaagcactt | attggaaaat | attaaaaggc | taacattaaa | agactaaagg | aaacagaaaa | 4620 |
| aaaaaaaaa  | aaa        |            |            |            |            | 4633 |
| <210> 582  |            |            |            |            |            |      |
| <211> 770  |            |            |            |            |            |      |
| <212> DNA  |            |            |            |            |            |      |
| <213> Homo | sapiens    |            |            |            |            |      |
| <400> 582  |            |            |            |            |            |      |
| ccaattagtg | tcctaactct | gtcttcccat | agtaccaccc | aaaaagtgct | ccatgctcaa | 60   |
| gtaagtttgg | ttaaatgaag | tagattgtca | gaaagacaga | aagattctca | gtcttttaat | 120  |

acactgatat gcattttgaa atatgtagtt aattctcaat tttattgcag aattctgcaa 180 acagtggtta acattgctta cagattttct gcatgttaat ttgaatcttt aatcatatta 240 aaatgcaaat actcctggga aggataatga acttcttaac ttgtaactga aaacattcac 300

PCT/US2003/012946 WO 2004/042346

| acattttete atagtgtegt tgttteaatt acttacetga aaagaaettt ttgtaeggta                                                                          | 360 |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| cagcacttgg ctgggttaat actcaccaac tttgagaagg ttggtctctg ctcttctgta                                                                          | 420 |
| tactttttat gaggcagtat cacttagggc ttaaggttta aactttcttt ttctctctgt                                                                          | 480 |
| gttcatttca tattgagatt atggataaaa agtttgttct gacattgctt aacatttttc                                                                          | 540 |
| tttaatcatg tgattacaga aattcaatga cttacaaaac aataaatgta ccttagaatg                                                                          | 600 |
| aaaaatgcat cagtaaggtc tgtatttaaa tgtggatgta gacatcataa ttaccaagac                                                                          | 660 |
| aagaaattgt tttgagaaat tototgatgt ttttottott caggtttcac gtgccacgat                                                                          | 720 |
| catggtgcca cggtactgca gtatgcaccc aaacagcaac tcctaatctc                                                                                     | 770 |
| <210> 583<br><211> 391<br><212> DNA<br><213> Homo sapiens<br><400> 583                                                                     |     |
| ttttttttttg tacatgactc tcattttatt gtttcttaga catttagaaa cctgggagta                                                                         | 60  |
| agagcaaaaa ctcacggcct aattatgttt acactgatag tttaaagata ttttagcact                                                                          | 120 |
| aaccagcatc aattcctaat attcattcaa aatgttagca cttggtataa agaaggaaac                                                                          | 180 |
| aggttgagca aggtggctca tgcctgtaat cccagtactt tggcaggctg aggtgggcag                                                                          | 240 |
| atcacttgag cccaggagtt tgagaccaga ctgggcaaca tggcaaaacc ctgtctctac                                                                          | 300 |
| aaacaataca aaaattagct gggtttggtg gtgtatgcct atagtcccag ctacttggga                                                                          | 360 |
| ggctgaggca ggagaatcgc ttgaacctgg g                                                                                                         | 391 |
| <210> 584<br><211> 407<br><212> DNA<br><213> Homo sapiens<br><220><br><221> misc_feature<br><222> (289)(289)<br><223> n is a, c, g, t or u |     |
| <400> 584                                                                                                                                  |     |
| gtttcctgct tggggaaatg ttcacacccc cttgtggata cattgtccag cccagagttt                                                                          | 60  |
| gteeteeetg gatatgtttt gaattaatga eggeegeace teettteetg tatttatttg                                                                          | 120 |
| gaattgeetg gtggaaggag gaetetgetg caeteaetga etgtgtgate tttggtaaat                                                                          | 180 |
| atcttaccct ctctgggctt agtttcccta gtggtaaagt ggaaatagtg ataactatct                                                                          | 240 |
| tagatagctg ttgtgatgcc cacatgagat agcatctggg ctttacccnt tcccctcggt                                                                          | 300 |
| ctgggcaata acgggttacc ttgcaaggat tgggcagaaa gccttagagg tatggtqctt                                                                          | 360 |

С

tgcagatggt caccgttgtg attaatgtgg gtgagttcca tgagaga 407 <210> 585 <211> 2324 <212> DNA <213> Homo sapiens <400> 585 gatgtggacc gtagtcggac cgttctaagc tccaaaagct gcggaattcc tcgagcactg 60 ttggcctact ggtctgctta aaattctgtt tttaaaaccc agtttcctag ttttccaggc 120 aaatagctac ctccgggaaa gttgctgggg gggcctgaag cacaatgtag cgcagatgct 180 teettteeag geeattetet cacceageet geacggagga gatgggagat getgggggte 240 ctgccctcag tetttttggg cettaggegt ttegtteate etgetaaggg gatgaagcaa 300 acacgaggtg atteettige ettteagagt ggaageeetg gagttigtti tgaaggeeag 360 gaggetgaag gatetetaag etacggtgtg ggettaatag cagcaggett tgteeteetg 420 tetectecaa gecagtgtet gatteettgg caacacaggt ettagtetgt ggagtggete 480 tgctgtggcc ttcctctggc cgggcaggca ctgtccagcc atagccagct cctgagaata 540 ggtcagcete teetttetgt etcecaggge acatecagee egtgeetgtg tteaetgtge 600 cccqaagtgc aattacccat accccttctc agcctgggga ccccaggcaa ccacagactg 660 tecaeteagg ggagetgaat eecaggteag eeetgeeaat gteeettagg aactgeeeag 720 gcaaggcccc tggttttgta tacttgttcc tgccacccag cagtagatga gtgtttcagg 780 tgaagaccag gatagatttt ctaagtgtga atccccactt cacatatgga accccttatg 840 ctgaacttga aaagcaccaa gacttcctgt agacaagaaa qtqcttaqqt agggacagcc 900 cctgggcatc ccacccaatg tagctggcac cccactatgg caaaggtgcc ttgataactg 960 agecetgtat coeteccatg eccagecaga ttetcatggg aagecetete cettetttte 1020 tgcctaacac catctcatcg tttctggcct cactgtggac aatccacaca cattcttctt 1080 tecteteetg geggggeaca gagecacccc ettgeetttt ettttettga aggttetagt 1140 teageteetg atteateaga ecettetage eceetgeate tageagtgaa geatgaagee 1200 tggtggggat gtggtactcc catctggtgt ggccaccagc tctgccaatg ttcctgtagc 1260 cttggaaaac ttgctctctc ggttcttttg ggtgctgtgt actccccagc ttcccccctt 1320 cccccccat tttgcacctg ggtttagtga aaggatggca tttggttgac ccatatagaa 1380 acccagaatg aggteteagg geeaggagge etggtatttg taggeeaggg aaggggaaga 1440 ggcaagtggt ctggggtatc accagccagc cctctctgat ttggcctcta ctccccataa 1500 gtcacagtac cataagcagg cttctggcct cagcaatttg gtctttgtgc ccaagtttat 1560

tgtgagaatt teetgaaaac tetataaaag gtetetteet actgtaggee tetaatgttt 1620 ctcccctttt tgcttcagtc cactcttcag tcttgtaggc ctagttttca aacctgcaca 1680 tgtgtcctac ctggccacag gcatgcaggc ctcaggcagc tgggccagtt tgggagcctc 1740 gggtgatgtc tgcacgatct ggggctgcct ctgcacccct gctgtgggct tcaggqttgg 1800 agaagggctg ggaccaaccg ggtgagatcc acaagtctct ggatgtggct gaaggcaaat 1860 acacaattga agtactttct gttttgaagt gctttccctt ttgaatctgg tttgaaacat 1920 gcagcttctg tctctagccc aaggaaagac caaaacatag ggaaataaaa gcatttatct 1980 ttgtcttgga agtaattgtt gaagttgtgc agttgatcag tgcacagtta ggtgcaatgt 2040 ttatagaaat tgattgttaa accaaattta cactggcatg tgtggtgtag tttctaaaag 2100 gcacttcaca tttgaaattt ttcttacctt agaaagtttc tagtgatcta aatgtctagt 2160 tttgtattct tttgtgtgtg ttcactgttt ctcagtatta ccacttgaat aattctctgt acaggggggt ttgtgctata cactgggatg tctaattgca gcaataaagc ctttctttaa 2280 aaaggaaaaa aaaaaaaaa aaaaaaaaa aaaa 2324 <210> 586 <211> 1179 <212> DNA <213> Homo sapiens <400> 586 atgggttctc tcagcacagc taacgttgaa ttttgccttg atgtgttcaa agagctgaac 60 agtaacaaca taggagataa catcttcttt tcttcgctga gtctgcttta tgctctaagc 120 atggtcctcc ttggtgccag gggagagact gcagagcaat tggagaaggt gcttcatttt 180 agtcatactg tagactcatt aaaaccaggg ttcaaggact cacctaagtg cagccaagct 240 ggaagaattc attccgagtt tggtgtcgaa ttctctcaaa tcaaccagcc agactctaac 300 tgtaccetca geattgecaa caggetetae gggacaaaga egatggeatt teatcageaa 360 tatttaaget gttetgagaa atggtateaa geeaggttge aaaetgtgga ttttgaaeag 420 tctacagaag aaacgaggaa aatgattaat gcttgggttg aaaataaaac taatggaaaa 480 gtcgcaaatc tctttggaaa gagcacaatt gacccttcat ctgtaatggt cctggtgaat 540 accatatatt tcaaaggaca aaggcaaaat aaatttcaag taagagagac agttaaaagt 600 ccttttcagc taagtgaagg taaaaatgta actgtggaaa tgatgtatca aattggaaca 660 tttaaactgg cctttgtaaa ggagccgcag atgcaagttc ttgagctgcc ctacgttaac 720

780

840

aacaaattaa gcatgattat tetgetteea gtaggeatag etaatetgaa acagatagaa

aagcagetga atteggggae gttteatgag tggacaaget ettetaacat gatggaaaga

| gaagttgaag              | tacacctccc     | cagattcaaa | cttgaaatta | agtatgagct | aaattccctg | 900  |
|-------------------------|----------------|------------|------------|------------|------------|------|
| ttaaaacctc              | taggggtgac     | agatctcttc | aaccaggtca | aagctgatct | ttctggaatg | 960  |
| tcaccaacca              | agggcctata     | tttatcaaaa | gccatccaca | agtcatacct | ggatgtcagc | 1020 |
| gaagagggca              | cggaggcagc     | agcagccact | ggggacagca | tcgctgtaaa | aagcctacca | 1080 |
| atgagagete              | agttcaaggc     | gaaccacccc | ttcctgttct | ttataaggca | cactcatacc | 1140 |
| aacacgatcc              | tattctgtgg     | caagcttgcc | tctccctaa  |            |            | 1179 |
|                         | o sapiens      |            |            |            |            |      |
| <400> 587<br>gatcctcttt | ccctcttccc     | caccctcatt | ataggetgeg | aagcctcctc | tctgcacctg | 60   |
| ataacaaaac              | gtcatatgag     | aagcatggta | gatccttagc | atcaaaggtt | gaggactctt | 120  |
| attctgatta              | taagtagtgg     | ctcttgacta | caatcaagtc | tcaaataata | gtgtaagaga | 180  |
| ataaagcaga              | ataataagac     | taagttaaca | gtttaggctt | ctttggaatc | atgcgggcct | 240  |
| agatgaaaat              | cccaacactg     | tcctttacta | gctaagtgac | cttgagcaac | tgattacacc | 300  |
| ctttgatgcc              | tcagttttct     | cctctgtgtt | gtggggtaat | agtaatatct | acttcctggg | 360  |
| gttgttcgtg              | aagattaatt     | aacaattata | cttgtcaaag | ctttagcaca | gtgccctgta | 420  |
| tgttatttcc              | ttggccaaac     | tttcttactc | tgccatttgt | tcaatgtcct | aatgagcatg | 480  |
| aacactacat              | taggtatcat     | gcagaacact | ctaaagataa | gtattatgat | ctctatttca | 540  |
| cagataagga              | aatttaaact     | gggagaggct | aaagggctga | cttgcccaag | gtcacttgaa | 600  |
| actaatatgc              | cagcagagac     | agaattagga | gccaagtata | tttaagagcc | aagtgtattg | 660  |
| aacctaaaat              | ctgggctcct     | aaataccaag | cttcactggc | tctctggtcc | cagtgagagt | 720  |
| tggtgctaaa              | aagtattccg     | gaatgaaaag | ttctcttcca | gagaccetgg | ccttccaaag | 780  |
| cggtcacctg              | atagggaagt     | cttacggcta | ggaagttaca | aa         |            | 822  |
|                         | 9<br>o sapiens |            |            |            |            |      |
| <400> 588<br>cgactcgtcg |                | agcaggtcgg | cctcggccca | ggggcgagta | tccgttgctg | 60   |
| tgtcggagac              | actagtcccc     | gacaccgaga | cagccagccc | tctcccctgc | ctcgcggcgg | 120  |
| gagagcgtgt              | ccggccggcc     | ggccggcggg | gctcgcgcaa | cctccctcgc | ctcccttcc  | 180  |

congradest conceeded aggreedade eddactood aggreedade tectodfort 240 eggtegeege tgeegeeggg ettaacagee eegteegeeg ettetettee tagtttgaga 300 agccaaggaa ggaaacaggg aaaaatgtcg ccatgaaggc cgagaaccgc tgccgccc 360 gacccegec ggeeetgaac gecatgagec tgggteeeeg cegegeeege teegeteega 420 etgeegtege egeegaggee eeegttgatg cegetgaget eeeecaaege egeegeeace 480 gentengana tyganaagaa nagoggeten aanagetent negentette yggeagnage 540 aaagggcaac agccgccccg ctccgcctcg gcggggccag ccggcgagtc taaacccaag 600 agogatggaa agaactccag tggatccaag cgttataatc gcaaacgtga actttcctac 660 cccaaaaatg aaagttttaa caaccagtcc cgtcgctcca gttcacagaa aagcaagact 720 tttaacaaga tgcctcctca aaggggcggc ggcagcagca aactctttag ctcttcttt 780 aatggtggaa gacgagatga ggtagcagag gctcaacggg cagagtttag ccctgcccag 840 ttctctggtc ctaagaagat caacctgaac cacttgttga atttcacttt tgaaccccgt 900 960 qgccagacqq qtcactttqa aqqcaqtqqa catqqtaqct qqqqaaaqaq qaacaaqtqq 1020 ggacataagc cttttaacaa ggaactcttt ttacaggcca actgccaatt tgtggtgtct gaagaccaag actacacagc tcattttgct gatcctgata cattagttaa ctgggacttt 1080 gtggaacaag tgcgcatttg tagccatgaa gtgccatctt gcccaatatg cctctatcca 1140 1200 cctactgcag ccaagataac ccgttgtgga cacatcttct gctgggcatg catcctgcac tatctttcac tgagtgagaa gacgtggagt aaatgtccca tctgttacag ttctgtgcat 1260 aagaaggatc tcaagagtgt tgttgccaca gagtcacatc agtatgttgt tggtgatacc 1320 attacgatgc agctgatgaa gagggagaaa ggggtgttgg tggctttgcc caaatccaaa 1380 1440 tggatgaatg tagaccatcc cattcatcta ggagatgaac agcacagcca gtactccaag 1500 tttctgctgg cctctaagga gcaggtgctg caccgggtag ttctggagga gaaagtagca ctagagcagc agctggcaga ggagaagcac actcccgagt cctgctttat tgaggcagct 1560 atccaggagc tcaagactcg ggaagaggct ctgtcgggat tggccggaag cagaagggag 1620 gtcactggtg ttgtggctgc tctggaacaa ctggtgctga tggctccctt ggcgaaggag 1680 totgtttttc aacccaggaa gggtgtgctg gagtatctgt ctgccttcga tgaagaaacc 1740 acggaagttt gttctctgga cactccttct agacctcttg ctctccctct ggtagaagag 1800 gaggaagcag tgtctgaacc agagcctgag gggttgccag aggcctgtga tgacttggag 1860 ttagcagatg acaatcttaa agaggggacc atttgcactg agtccagcca gcaggaaccc 1920 atcaccaagt caggetteac acgectcage ageteteett gttactaett ttaccaageg 1980 gaagatggac agcatatgtt cctgcaccct gtgaatgtgc gctgcctcgt gcgggagtac 2040

| ggcagcctgg agaggagccc cgagaagatc tcagcaactg tggtggagat tgctggctac       | 2100 |
|-------------------------------------------------------------------------|------|
| tccatgtctg aggatgttcg acagcgtcac agatatctct ctcacttgcc actcacctgt       | 2160 |
| gagttcagca tctgtgaact ggctttgcaa cctcctgtgg tctctaagga aaccctagag       | 2220 |
| atgttctcag atgacattga gaagaggaaa cgtcagcgcc aaaagaaggc tcgggaggaa       | 2280 |
| cgccgccgag agcgcaggat tgagatagag gagaacaaga aacagggcaa gtacccagaa       | 2340 |
| gtccacattc ccctcgagaa tctacagcag tttcctgcct tcaattctta tacctgctcc       | 2400 |
| totgattotg otttgggtoc caccagcacc gagggccatg gggccctctc catttctcct       | 2460 |
| ctcagcagaa gtccaggttc ccatgcagac tttctgctga cccctctgtc acccactgcc       | 2520 |
| agtcagggca gtccctcatt ctgcgttggg agtctggaag aagactctcc cttcccttcc       | 2580 |
| tttgcccaga tgctgagggt tggaaaagca aaagcagatg tgtggcccaa aactgctcca       | 2640 |
| aagaaagatg agaacagctt agttcctcct gcccctgtgg acagcgacgg ggagagtgat       | 2700 |
| aattcagacc gtgttcctgt gcccagtttt caaaattcct tcagccaagc tattgaagca       | 2760 |
| gccttcatga aactggacac accagctact tcagatcccc tctctgaaga gaaaggagga       | 2820 |
| aagaaaagaa aaaaacagaa acagaagctc ctgttcagca cctcagtcgt ccacaccaag       | 2880 |
| tgacactact ggcccaggct accttctcca tctggttttt gtttttgttt ttttttcccc       | 2940 |
| catgettttg tttggetget gtaattttta agtatttgag tttgaacaga ttagetetgg       | 3000 |
| ggggaggggg tttccacaat gtgaggggga accaagaaaa ttttaaatac agtgtatttt       | 3060 |
| ccagetteet gtetttacae caaaataaag tattgacaca agagaaaaaa aaaaaaaaaa       | 3120 |
| aaaaaaaa                                                                | 3129 |
| <210> 589<br><211> 3116<br><212> DNA<br><213+ Homo sapiens<br><400> 589 |      |
| agegeteaga taegegaege gtageaggeg gggaeegaae gggtgeetea gtgteettee       | 60   |
| cotcocctcg cotggcotcg cogtoctotc cocgcagccg gaccggaact atgtgatccc       | 120  |
| ggaagttccg gggcctttgc tgtgtgggat aaacagtaat ggcggaggct gcaactcccg       | 180  |
| gaacaacage cacaacatca ggagcaggag cggcagcggc gacggcggca gcagcctccc       | 240  |
| ccaccccgat ccccacagtc accgccccgt ccctgggggc gggcggaggg ggcggcggca       | 300  |
| gcgacggcag cggcggcggc tggactaaac aggtcacctg caggtatttt atgcatgggg       | 360  |
| tttgtaagga aggagacaac tgtcgctact cgcatgacct ctctgacagt ccgtatagtg       | 420  |
| tagtgtgcaa gtattttcag cgagggtact gtatttatgg agaccgctgc agatatgaac       | 480  |

atagcaaacc attgaaacag gaagaagcaa ctgctacaga gctaactaca aagtcatccc 540 ttgctgcttc ctcaagtctc tcatcgatag ttggaccact tgttgaaatg aatacaggcg 600 aagctgagtc aagaaattca aactttgcaa ctgtaggagc aggttcagag gactgggtga 660 atgctattga gtttgttcct gggcaaccct actgtggccg tactgcgcct tcctgcactg 720 aagcacccct gcagggctca gtgaccaagg aagaatcaga gaaagagcaa accgccgtgg 780 agacaaagaa gcagctgtgc ccctatgctg cagtgggaga gtgccgatac ggggagaact 840 gtgtgtatet ccacggagat tettgtgaca tgtgtggget gcageteetg catecaatgg 900 atgctgccca gagatcgcag catatcaaat cgtgcattga ggcccatgag aaggacatgg 960 agctctcatt tgccgtgcag cgcagcaagg acatggtgtg tgggatctgc atggaggtgg 1020 tctatgagaa agccaacccc agtgagcgcc gcttcgggat cctctccaac tgcaaccaca 1080 cctactgtct caagtgcatt cgcaagtgga ggagtgctaa gcaatttgag agcaagatca 1140 taaagtcctg cccagaatgc cggatcacat ctaactttgt cattccaagt gagtactggg 1200 tggaggagaa agaagagaag cagaaactca ttctgaaata caaggaggca atgagcaaca 1260 aggogtgcag gtattttgat gaaggacgtg ggagctgccc atttggaggg aactgtttt 1320 acaagcatgc gtaccctgat ggccgtagag aggagccaca gagacagaaa gtgggaacat 1380 caagcagata ccgggcccaa cgaaggaacc acttctggga actcattgag gaaagagaga 1440 acagcaaccc ctttgacaac gatgaagaag aggttgtcac ctttgagctg ggcgagatgt 1500 tgcttatgct tttggctgca ggtggggacg acgaactaac agactctgaa gatgagtggg 1560 acttgtttca tgatgagctg gaagattttt atgacttgga tctatagcaa ccttgcgtgg 1620 cgtgtgaact ggtctgctga cctcagacag cagctgtccc ctgtqgtggt gtqqcagtqc 1680 ctgtgttctc tcctaggcag gcctctcaac tccaggtgct gtcctaagaa tttttaccca 1740 gggcctgtct tctcaacccc tcacctttcc ctgaggagtg tgttgttttc cctgttgaaa 1800 aaagttacaa aaataaatct taaagttagt tttttgtaac acgaatttaa ctgtcagaca 1860 gttagtgtag gtgtgttgcg tcatctgttt tcaaccagat tgcatttatg gacttttcac 1920 acactcattt tgaggacccc aggttcaaaa gtaaaagcag tggccctgct ttggggtcca 1980 agaataggag tgatgggtga agggacctaa gctggccaat agccctctgc cccagacatg 2040 qqatgtggat ccttgaggtt tctggtgaaa tctgcacatc tgtgttttta tatctgttcc 2100 ctaccctgta atccctacca cgtgcacttg ttctgtggtt ttggtctctt gtttaattgc 2160 acacaagtaa tactactggg taaccagaat caggtgtgaa tgtgttgaga ttttttactg 2220 ttttgcatga taggaaaatt gagaaagaat acgtataaaa gatagagagg cataacatca 2280

| acgcagagcc                                        | ggaagttggc | Leccaaggge | tgacatggtg | tgagtgtgtg | ggtgtgtgat | 2340 |
|---------------------------------------------------|------------|------------|------------|------------|------------|------|
| aagcttctca                                        | tccctgcata | gatgcagtat | tcttagcctt | agtagaaaaa | cctggtttag | 2400 |
| tggtttaagc                                        | cttgtgtggc | agatagatct | taaagggcaa | agcagtatat | tggtagttgt | 2460 |
| caatatagca                                        | gtgctagctc | tgtctatata | aatagagaaa | tggggttagc | catagaggtt | 2520 |
| aaaactacct                                        | ggttatccca | tataataaca | caaactgggt | cttggataca | cagttgtatt | 2580 |
| taatgtttta                                        | cgatctagcc | tttccagtac | aggcactttc | tgagaaacct | ttgtcctcac | 2640 |
| ttgaggcatt                                        | ttgttgtcgg | gtttttgtgt | ttgtttttgt | gggtatttgc | ctcattccac | 2700 |
| ccctgagctt                                        | tcaggtagac | agacgtgatt | caaaactctg | ttctaaggtg | tttattgtag | 2760 |
| tggagtaatg                                        | ggtttgcagt | gataagtcat | acttttccac | cgaaagggag | ggcttgggaa | 2820 |
| tccctgagat                                        | tagctaaagt | taagttgttg | gaagaattcc | ttgattggaa | attgtacctt | 2880 |
| tgtgttttgt                                        | tgctctgttt | cctgaaaata | actcggggat | gctcctggtt | tgtccatcta | 2940 |
| ctgctttgat                                        | tccttggatc | ccacccattc | tttcacttta | agaaaaaaca | aataattgtt | 3000 |
| gcagaggtct                                        | ctgtattttg | cagctgccct | tttgtaagaa | gcacttttcc | caaataaaac | 3060 |
| aattaaaaaa                                        | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | aaaaaa     | 3116 |
| <210> 590<br><211> 570<br><212> DNA<br><213> Homo | sapiens    |            |            |            |            |      |
|                                                   | gcggcgccgc | gcggtgaggt | tgtctagtcc | acgctcggag | ccatgccgtc | 60   |
| caagggcccg                                        | ctgcagtctg | tgcaggtctt | cggacgcaag | aagacagcga | cagctgtggc | 120  |
| gcactgcaaa                                        | cgcggcaatg | gtctcatcaa | ggtgaacggg | cggcccctgg | agatgattga | 180  |
| gccgcgcacg                                        | ctacagtaca | agctgctgga | gccagttctg | cttctcggca | aggagcgatt | 240  |
| tgctggtgta                                        | gacatccgtg | tccgtgtaaa | gggtggtggt | cacgtggccc | agatttatgc | 300  |
| tatccgtcag                                        | tccatctcca | aagccctggt | ggcctattac | cagaaatatg | tggatgaggc | 360  |
| ttccaagaag                                        | gagatcaaag | acatcctcat | ccagtatgac | cggaccctgc | tggtagctga | 420  |
| ccctcgtcgc                                        | tgcgagtcca | aaaagtttgg | aggccctggt | gcccgcgctc | gctaccagaa | 480  |
| atcctaccga                                        | taagcccatc | gtgactcaaa | actcacttgt | ataataaaca | gtttttgagg | 540  |

gattttaaag tttcaaaaaa aaaaaaaaaa

570

<sup>&</sup>lt;210> 591

<sup>&</sup>lt;211> 5925 <212> DNA <213> Homo sapiens

<220>
<221> misc\_feature
<222> (5402)..(5402)
<223> n is a, c, g, t or u

<400> 591 cttttcccat cgtgtagtca agagtctgtg ccagacttga aggctttact ttgttagcca 60 tgtgtttatg aacccccagc gctttcccta gatcttttgg ctgataatct caaacatgga 120 ggatgcttct gaatcttcac gaggggttgc tccattaatt aataatgtag ttctcccagg 180 ctctccgctg tctcttcctg tatcagtgac aggctgtaaa agtcatcgag tagccaataa 240 aaaggtagaa gegaggagtg aaaageteet eecaacaget etteeteett cagageegaa 300 agtagatcag aaacttccca ggagctccga gaggcgggga agtggcggtg ggacgcaatt 360 ccccgcgcgg agtcgggcag tggcagcggg agaagcggca gccagggggc cggcggggcc 420 ggagagaggc agtcccctgg gaagacgggt ctcccctcgt tgcctttgta gtggagaagg 480 tggacaagtg gcagtcggcg tgatcgcagg gaagcggggc cggcgcgggc gcgacgggtc 540 caggegagee cegggeggae gggagatgee getgetacae egaaageegt ttgtgagaea 600 gaagccgccc gcggacctgc ggcccgacga ggaagttttc tactgtaaag tcaccaacga 660 gatcttccgc cactacgatg acttttttga acgaaccatt ctgtgcaaca gccttgtqtq 720 gagttgtgct gtgacgggta gacctggact gacgtatcag gaagcacttg agtcaqaaaa 780 aaaagcaaga cagaatcttc agagttttcc agaaccacta attattccag ttttatactt 840 gaccagcctt acccatcgtt cgcgcttaca tgaaatttgt gatgatatct ttgcatatgt 900 caaggatcga tattttgtcg aagaaactgt ggaagtcatt aggaacaatg gtgcaaggtt 960 gcagtgtacg attttggaag tcctccctcc atcacatcaa aatggttttg ctaatggaca 1020 tgttaacagt gtggatggag aaactattat catcagtgat agtgatgatt cagaaacaca 1080 aagctgttet tttcaaaatg ggaagaaaaa agatgcaatt gateeettae tattcaagta 1140 taaagtgcaa cccactaaaa aagaattaca tgagtctgct attgttaaag caacacaaat 1200 cagccggaga aaacacctat tttctcgtga taaactaaag cttttctga agcaacactg 1260 tgaaccacaa gaaggagtca ttaaaataaa ggcatcatct ctttcaacgt ataaaatagc 1320 agaacaagat tittettatt tetteeetga tgateeacce acatttatet teagteetge 1380 taacagacga agagggagac ctcccaaacg aatacatatt agtcaagagg acaatgttqc 1440 taataaacag actcttgcaa gttataggag caaagctact aaagaaagag ataaactttt 1500 qaaacaagaa gaaatgaagt cactggcttt tgaaaaggct aaattaaaaa gagaaaaagc 1560 agatgcccta gaagcgaaga aaaaagaaaa agaagataaa gagaaaaaga gggaagaatt 1620

| qaaaaaaat  | t attangan   | a 2000000    |              |                       |              |      |
|------------|--------------|--------------|--------------|-----------------------|--------------|------|
|            |              |              |              |                       | a ggcttaaagt | 1680 |
|            |              |              |              |                       | g tggaatactt | 1740 |
|            |              |              |              |                       | g aacttccaga | 1800 |
|            |              |              |              |                       | c tgatggtttt | 1860 |
|            |              |              |              |                       | c ctgatggagt | 1920 |
| aaccctaga  | a gtattagag  | g aagctcttg  | t tggaaatga  | c agtgaaggc           | c cactgtgtga | 1980 |
| attgetttt  | t ttcttcctg  | a ctgcaatct  | t ccaggcaat  | a gctgaagaaq          | g aagaggaagt | 2040 |
| agccaaaga  | g caactaact  | g atgctgacad | caaaggetg    | c agtttgaaaa          | gtttggatct   | 2100 |
| tgatagetge | c actetttcaç | g aaatcctcaq | g actgcacat  | c ttagcttcag          | gtgctgatgt   | 2160 |
| aacatcagca | a aatgcaaagt | atagatatca   | a aaaacgagga | a ggattt <b>g</b> atg | g ctacagatga | 2220 |
| tgcttgtatg | gagettegtt   | tgagcaatco   | cagtetagte   | g aagaaactgt          | caagcacctc   | 2280 |
| agtgtatgat | ttgacaccag   | gagaaaaaat   | gaagatacto   | catgetetet            | gtggaaagct   | 2340 |
| actgacccta | gtttcaacta   | gggattttat   | tgaagattat   | gttgatatat            | tacgacagge   | 2400 |
| aaagcaggag | ttccgggaat   | taaaagcaga   | acaacatcga   | aaagagaggg            | aagaagcagc   | 2460 |
| tgccagaatt | cgtaaaagga   | aggaagaaaa   | acttaaggag   | caagaacaaa            | aaatgaaaga   | 2520 |
|            |              |              |              |                       | tatctattgg   | 2580 |
| ggaggaagaa | agggaagatt   | ttgatactag   | cattgagago   | aaagacacag            | agcaaaagga   | 2640 |
|            |              |              |              | ggatcacata            |              | 2700 |
|            |              |              |              | aggcaagaac            |              | 2760 |
|            |              |              |              | ttaaaacagg            |              | 2820 |
|            |              |              |              | gcctgtacca            |              | 2880 |
|            |              |              |              | ccttctattc            |              | 2940 |
|            |              |              |              | ttgcctagac            |              | 3000 |
| tcagaataat | gtacagtete   | aagatcctca   | ggtatccact   | aaaactggag            | agcctttgat   | 3060 |
|            |              |              |              | cattctgtgc            |              | 3120 |
|            |              |              |              | tgtgaacagc            |              | 3180 |
|            |              |              |              | ttaaaagaaa            |              | 3240 |
|            |              |              |              | gaagagaaat            |              | 3300 |
|            |              |              |              | ggaagatett            |              | 3360 |
|            |              |              |              | aggctgagag            |              | 3420 |
|            |              |              |              | atcaaggtta            |              | 3480 |
|            |              |              |              |                       |              |      |

tatctggaga tcagcattag aaagtggacg gtatgagctg ttaagtgagg aaaacaaqqa 3540 aaatgggata attaaaactg tgaatgaaga cgtagaagag atggaaattg atgaacaaac 3600 aaaggtcata gtaaaagaca gacttttggg gataaaaaca gaaactccaa gtactgtatc 3660 aacaaatgca agtacaccac aatcagtgag cagtgtggtt cattatctgg caatggcact 3720 ctttcaaata gagcagggca ttgagcggcg ttttctgaaa gctccacttg atgccagtga 3780 cagtgggcgt tettataaaa cagttetgga cegttggaga gagtetetee tttettetge 3840 tagtctatcc caagtttttc ttcacctatc caccttggat cgtagcgtga tatggtctaa 3900 atctatactg aatgcgcgtt gcaagatatg tcgaaagaaa ggcgatgctg aaaacatggt 3960 tetttgtgat ggetgtgata ggggteatea tacetactgt gttegaceaa ageteaagae 4020 tgtgcctgaa ggagactggt tttgtccaga atgtcgacca aagcaacgtt gtagaagact 4080 gtcctttaga cagagaccat ccttggaaag tgatgaagat gtggaagaca gtatgggagg 4140 tgaggatgat gaagttgatg gcgatgaaga agaaggtcaa agtgaggagg aagagtatga 4200 ggtagaacaa gatgaagatg actctcaaga agaggaagaa gtcagcctac ccaaacgagg 4260 aagaccacaa gttagattgc cagttaaaac aagagggaaa cttagctctt ctttctcaag 4320 tcgtqgccaa caacaagaac ctggaagata cccttccagg agtcagcaga gcacacccaa 4380 aacaactgtt tottotaaaa otggtagaag ootaagaaag ataaactotg otootootac 4440 agaaacaaaa totttaagaa ttgccagtog ttotactogo cacagtoatg gcccactgca 4500 agcagatgta tttgtggaat tgcttagtcc tcgtagaaaa cgcagaggca ggaaaaqtqc 4560 taataataca ccagaaaata gtcccaactt ccctaacttc agagtcattg ccacaaagtc 4620 aagtgaacag tcaagatctg taaatattgc ttcaaaaactt tctctccaag agagtgaatc 4680 caaaagaaga tgcagaaaaa gacaatctcc agagccatcg cctgtgacac tgggtcgaag 4740 gagttctggc cgacagggag gagttcatga attgtctgct tttgaacaac ttgttgtaga 4800 attggtacga catgatgaca gctggccttt tttgaaactt gtttctaaaa tccaggtccc 4860 agactactat gacatcatca aaaagcccat tgccttaaat ataattcgtg aaaaagtgaa 4920 taagtgtgaa tataaattag catctgagtt tattgatgac attgagttaa tgttttcgaa 4980 ctgctttgaa tacaaccctc gtaacacaag tgaagcaaaa gctggaacta ggcttcaagc 5040 attttttcat attcaggetc aaaagettgg actccacgtc acacccagta atgtggacca 5100 agttagcaca ccaccggctg cgaaaaagtc acgaatctga ctttgtcctt ctaaaggata 5160 tatttgaaga aaaacaaatt gttcatgaaa atggaacatt aaatcatgct gtataaaqca 5220 ataacaaaca attgattgac cacatgaaag tgtggcctgc actatattct caattttaat 5280

WO 2004/042346 PCT/US2003/012946 attaagcact caggagaatg taggaaagat atcctttgct acagttttgt tcagtatcta 5340 ataagtttga tagatgtatt ggatacagta ctggtttaca gaggtttttg tacatttttg 5400 anatcattca tgtgtccaga gatcttggaa aatatttttt cacccacgat ttattttgtt 5460 attgatgatt tatttttaaa gtggtggtat taagggagag ttatctacat ggatgagtct 5520 tccgctatag cacagtttag aaaaggtgtt tatgtcttaa ttaattgttt gagtacattc 5580 tttcaacact acacatgaat gaatccaatc ttataacctt gaagtgctgt accagtgctg 5640 gctgcaggta ttaaqtccaa qtttattaac tagatattta tttagtattg agagtaattt 5700 gtgaatttgt tttgtattta taaaatttat acctggaaaa tgttccttaa tgttttaaac 5760 cttttactgt gtttttattc ctctaacttc cttaatgatc aatcaaaaaa agtaacaccc 5820 tecettttte etgacagtte ttteagettt acagaactgt attataagtt etatgtataa 5880 ttttaactgt tcaaataaaa tacatttttc caataaaaaa aaaaa 5925 <210> 592 <211> 468 <212> DNA <213> Homo sapiens <400> 592 ttttttttt tttttttaaa tgtacacctc ctttaatctg atttttctcc tttttgaaac 60 agggtctccc tgtcacccag gctggagtgc agcagtgcaa tcacagctca ctgcagcctt 120 gacateceag ggttcaageg atecteeegt eteageetee egagtageeg ggaceaeagg 180 agcgcaccac cacacccgga taattttttg tagagatggg gtttcaccgt gttgcccagg 240 tcactctcaa actcctgggc tcaagcgatc tgcctgcctt ggtcttccaa agtcctggga 300 ttataggcgt gagccaccat gcccagcctt aatcatttta agtggaaatg taaccatttt 360 aggataatgt cctacaaaaa cgtgagtaca agcaagcaaa gacatttgca gaaagatttt 420 cacagatgat gtgagtctaa tgccaaaaaa ctaaacacag ccttttgg 468 <210> 593 <211> 1154 <212> DNA <213> Homo sapiens <400> 593 gggggccttc cggcgggtga cattcagccg gcggttcggg gcgacggact ctccattcca 60 gaaccatggc ccaatttgtc cgtaaccttg tggagaagac cccggcgctg gtgaacgctg 120 ctgtgactta ctcgaagcct cgattggcca cattttggta ctacgccaag gttgagctgg 180 ttcctcccac ccctgctgag atccctagag ctattcagag cctgaaaaaa atagccaata

gtgctcagac tggtagcttc aaacagctca cagttaagga agctgtgctg aatggtttgg

240

300

```
tggccactga ggtgttgatg tggttttatg tcggagagat tataggcaag cggggcatca
                                                                360
ttggctatga tgtttgaaga ccaatcttta acatctgatt atatttgatt tattatttga
                                                                420
gtgttgttgg accatgtgtg atcagactgc tatctgaata aaataagatt tgtcaaaact
                                                                480
cagtgttttc tccatcagat actccatgaa aggtcacaat ttctcttgat attaagctgg
                                                                540
gttgtcttta aacaacccta aatacacgtc tgtttagccc gcaattggaa aggatatatg
                                                                600
tqqcaatatt aacctggtac atgaatatat ggggataaca ttttaatttg aaggtttgga 660
atatatatat ttaagcttta tttccagaac agtgagggtt aggtcttggg aaaactataa 720
cttqccaaag tagaagaaat agtagtacca tatgccaaag tgatagagat gaatcatgtc
                                                                780
agtagttaga ataacatttc aactgttttc tttgctaaaa tcacagaaag accctattga
                                                               840
caacatctat qtctqtaaaa atgttagagt acttgtcatc ttgaatatag cctccccaag
                                                               900
aqaqaacagg qtqqtattct aagtatgttt ctttgtaaca tctttagcag taggacagag 960
ccatacatqt qaaatctgat ttttatgtgt gttattcgtt tgtctggttt tactaccttt 1020
qcaaaaacaa aataccccaa agatatttaa acaaggttat aatttagcat cttccctgga 1080
aaaaaaaaa aaaa
                                                               1154
<210> 594
<211> 434
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (8)..(44)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (263)..(372)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (408)..(408)
<223> n is a, c, q, t or u
<220>
<221> misc feature
<222> (423)..(423)
<223> n is a, c, q, t or u
<400> 594
```

347

60

tacaaqcnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnaaaqaa qtaaaatctt

| tatcatgaaa tttatatgta aaagaatcac tcagtaaaga caatttccat aaaataaaaa              | 120  |
|--------------------------------------------------------------------------------|------|
| tggatatgga tactatttaa ctatgttgta ttaaaaaaaa ctgatcaaag aattggttta              | 180  |
| atggaaaatg ctctggaaaa ttcttttgca acagttcatc gctgttgata taatcctaat              | 240  |
| taaaattatc ggactccagt ttnnnnnnnn nnnnnnnnn nnnnnnnnnn nnnnnn                   | 300  |
| nnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn                                         | 360  |
| nnnnnnnnn nnagagaaag ttgcacgtgt gcacgtttcc ttgccgcnga aggtaaaaa                | 420  |
| aanaaaaaag agga                                                                | 434  |
| <210> 595<br><211> 1424<br><212> DNA<br><213> Homo sapiens                     |      |
| <400> 595<br>ggcacgaggg ccacatggac ggagctgccg gggcggcggc gccgggagca ggatgcggcc | 60   |
| gcccgtaatt aaatagcatt tactcttatt attactaata ataataacgt aatcatacct              | 120  |
| ctagtcatag cataccattt atcgggctcg gcgcaggccc gcggggagcg cagcccggcg              | 180  |
| gaggtetece tetgatgeeg ageegaaget ggaeggtaet getgeeatet eggeteactg              | 240  |
| caaceteest geetgattet eetgeeteag eetgeegagt geetgegatt gaaggegtge              | 300  |
| gccgccacgc ctgactggtt ttcgtatttt tttggtggag acggggtttc gctgtgttgg              | 360  |
| ccgggctggt ctccagctcc taaccgcgag tgatgcacca gcctcggcct cccgaggtgc              | 420  |
| cgggattgca gacggagtct cgttcactca gtgctcaatg gtgccaaggc tggagtgcag              | 480  |
| tggcgtgatc tcggctcgct acaacctcca cctcccagca gcctgccttg gcctcccaaa              | 540  |
| gtgccgagat tgcagcctct gcccggccgc caccccgtct gggaagtgag gagcgtctct              | 600  |
| gcctggccgc ccatcgtctg ggatgtgagg agcccctctg cctggctgcc cagtctggaa              | 660  |
| agtgaggagc gtctctgccc agccgccatc ccatctagga agtgaggagc gcctcttccc              | 720  |
| ggccgccatc ccatctggga agtgaggagc gtctctgccc ggccgcccat cgtctgagat              | 780  |
| gtggggagca cctctgccct gccaccccgt ccgggatgtg aggagcgtct ctgcccggcc              | 840  |
| gececatetg agaagtgagg ageceeteeg eeeggeagee geeeegtetg agaagtgagg              | 900  |
| ageceeteeg eecageagee acceegtetg ggaagtgagg agegteteeg eeeggeagee              | 960  |
| acctegteeg ggagggaggt eggggggtea geceeegge eggeeageeg eecegteeag               | 1020 |
| gaggaaactc ttggatgatg tactgaccaa aacagggaat aacctaacag agaggaagac              | 1080 |
| agggatttta ggaaaccgga gatcacacag gaaggaggta aagggaaatc ccaggatgat              | 1140 |
| ggcaaaggga agtccccaaa caacagctgt gcaacaagaa taaagaacaa tcagaggacc              | 1200 |
|                                                                                |      |

| cccgagccc                                        | agaggeeaag | Jorgoggrau | gecaaggeeg | rgecactaca | ctgaageetg | 1260 |
|--------------------------------------------------|------------|------------|------------|------------|------------|------|
| ggcaacagag                                       | tgagaccctg | tctcaaaaca | gaaaaggacc | tatcagcccc | aagtggagca | 1320 |
| gaacagaggg                                       | atttgggagg | aatgtcctca | gaaaaagata | ttaaaacaca | gttatctgaa | 1380 |
| aaaaaaaaaa                                       | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | aaaa       |            | 1424 |
| <210> 596<br><211> 212<br><212> DNA<br><213> Hom |            |            |            |            |            |      |
| <400> 596<br>cgcattgtgg                          | teegettete | tgcactatgt | cgggtggcct | cctgaaggcg | ctgcgcagcg | 60   |
| actcctacgt                                       | ggagctgagc | cagtaccggg | accagcactt | ccggggtgac | aatgaagaac | 120  |
| aagaaaaatt                                       | actgaagaaa | agctgtacgt | tatatgttgg | aaatctttct | ttttacacaa | 180  |
| ctgaagaaca                                       | aatctatgaa | ctcttcagca | aaagtggtga | cataaagaaa | atcattatgg | 240  |
| gtctggataa                                       | aatgaagaaa | acagcatgtg | gattctgttt | tgtggaatat | tactcacgcg | 300  |
| cagatgcgga                                       | aaacgccatg | cggtacataa | atgggacgcg | tctggatgac | cgaatcattc | 360  |
| gcacagactg                                       | ggacgcaggc | tttaaggagg | gcaggcaata | cggccgtggg | cgatctgggg | 420  |
| gccaggttcg                                       | ggatgagtat | cggcaggact | acgatgctgg | gagaggaggc | tatggaaaac | 480  |
| tggcacagaa                                       | ccagtgagtg | gtgagagctc | tgtcagtgac | aaacactcct | ttggcctgtt | 540  |
| gaatttgctg                                       | aagaacatca | cctaaagtct | gcacacgagc | ccatttttac | caagatttga | 600  |
| tcagtgtctt                                       | tactgagctg | gaagcctctg | aaagttatta | aaggacagaa | tccaaaagaa | 660  |
| tgcctttaat                                       | tcttgtctga | gaatcttggc | catgtgtcag | attatcagaa | caattttgtt | 720  |
| accaggtcag                                       | aaattgtgtt | ctttgacaac | agattggatc | tgtaatgttg | attagtcttt | 780  |
| agccataacc                                       | actacacttt | tagaaagaca | gaaaaatgta | agaatttgtt | tttaccataa | 840  |
| tgagtcttaa                                       | gtaggttcat | gatctacatt | ggggcctggg | attattttt  | taattttaag | 900  |
| tttgcatgag                                       | atagcctaat | aaatggaggt | ggggccaggc | atggtggctc | acacgtgtaa | 960  |
| tcccaacact                                       | ttgggaggct | gaggaggaag | gatagcttga | ggccaggagt | ttgagactag | 1020 |
| actgggcaac                                       | atagcaagac | cccgtctcta | caaagcacaa | cgaaaaacaa | caaatggagt | 1080 |
| tgtgctatgt                                       | tgtattgctt | tgcacaaaat | taggaacagg | tgtttgacaa | ttgaatttgt | 1140 |
| tttctgtgaa                                       | ttctaacctc | taaaggcatg | cttagaggtc | aaggaccttc | ctgtgtagtt | 1200 |
| ggtgcaaaag                                       | caatctccac | aggacagcac | tgcttccatg | cttcatacat | caggaaatga | 1260 |
| ggccagaact                                       | tgagtattta | ctaacacgtt | tttcaaaaga | tgtcagtgtt | atacctaaag | 1320 |
| ctaaaaaaaa                                       | gcaagggttt | gtcatagagg | gaacctctaa | ataatttcag | gggtaggga  | 1380 |

| gatgttgtca                                         | ataggaaatg     | ggataaaata | tcaagagaca | atgaaaacac | tgccttgaca | 1440 |
|----------------------------------------------------|----------------|------------|------------|------------|------------|------|
| tgaggaccag                                         | caagtttatt     | cttttcattt | tcagtgatgt | tgggaatgga | ctgggtttta | 1500 |
| aaagggagct                                         | tgaagaggga     | atgtttgaca | gtcacagaag | gttcctgcag | cagatgcctc | 1560 |
| ttttagccat                                         | ttctcatttt     | tttcctcaaa | ttttacctac | tgaggctcaa | gccttcacag | 1620 |
| tgagctgatg                                         | gtctctacag     | ggaggggagt | ctagggaatt | tatttggtat | ttgtaaggca | 1680 |
| agaggtgatt                                         | tetetetaat     | atatctgagt | tattgctcat | ttaaaactgt | taagtccagt | 1740 |
| ataattttcc                                         | ctgatatgaa     | aaaatgtgca | ttttttcac  | ttagcaacaa | agtaccttct | 1800 |
| aatttccaat                                         | agtccgtgaa     | agttggggct | gaagtaccta | agtgtgaatg | tctctcccgt | 1860 |
| taaactgagt                                         | gtagaaatct     | gaatttttaa | aagagctgta | actagttgta | agtgcttagg | 1920 |
| aagaaacttt                                         | gcaaacattt     | aatgaggata | cactgttcat | ttttaaaatt | ccttcacact | 1980 |
| gtaatttaat                                         | gtgttttata     | ttcttttgta | gtaaaacaac | ataactcaga | tttctacagg | 2040 |
| agacagtggt                                         | tttatttgga     | ttgtcttctg | taataggttt | caataaagct | ggatgaactt | 2100 |
| aaaaaaaaa                                          | aaaaaaaaa      |            |            |            |            | 2120 |
|                                                    | o sapiens      |            |            |            |            |      |
| <400> 597<br>ttttttttt                             | tttttttgca     | cacacatatc | ttttatttg  | agagtttaaa | aggaaatctg | 60   |
| aggtccagag                                         | gatcacagag     | cctcttgttc | tgctatcaaa | ggaccaataa | gaagcaaact | 120  |
| gatattacag                                         | ggcaaatgtt     | cccagacagc | ccagcctgct | ccccttagga | atgagtgtcc | 180  |
| ctggaggggg                                         | agagcctgga     | accaaagccc | cgccaggaac | tgcttcccct | aaactgaggt | 240  |
| tctctgaaaa                                         | aaatgttcgc     | ctggctgata | aagccgcctc | ttaacagagc | ccagacactt | 300  |
| ctgtgcttcc                                         | cctgggttgc     | taattgagga | cactaaagcc | ctaagagata | ccccaggtcg | 360  |
| ggggaagggg                                         | ccccaagacc     | tagacctccg | gtggcgacca | tgcccttgag | aggatgggag | 420  |
| ctgaattgga                                         | gcacgagatt     | atttatcatc | gctggatgaa | gcttccagct | agagctcagt | 480  |
| atttcctctt                                         | tttctgggct     | cagacagaca | cagactggaa | ggaatcctgt | ccgtttggct | 540  |
| gtgggagtgt                                         | t              |            |            |            |            | 551  |
| <210> 598 <211> 145 <212> DNA <213> Home <400> 598 | 8<br>o sapiens |            |            |            |            |      |
|                                                    | ggggagcccc     | tggtgccccg | gatacggctg | attttgtcgt | gtgggacctg | 60   |

| ttctggctg  | c tecagececa | ggaaggaccc | aggacacccg | gaagccggaa | atggactcag | 120  |
|------------|--------------|------------|------------|------------|------------|------|
| tggcctttg  | a ggatgtggct | gtgaacttca | cccaggagga | gtgggctttg | ctgagtcctt | 180  |
| cccagaagaa | a tetetacaga | gatgtgacgc | tggaaacctt | caggaacctg | gcctcggtcg | 240  |
| gaatccaat  | g gaaagaccag | gacattgaga | atctgtacca | aaacctgggg | attaagctaa | 300  |
| gaagtctggt | ggagagactc   | tgtggacgta | aagaagggaa | tgaacacaga | gaaactttca | 360  |
| gccagattco | tgattgtcac   | ctgaacaaga | aaagtcaaac | tggagtgaaa | ccatgcaaat | 420  |
| gcagcgtgtg | g tgggaaagtc | ttcctccgtc | attcattcct | ggacaggcac | atgagagete | 480  |
| atgctggaca | a caaacgatct | gagtgtggtg | gggaatggag | agagacgccc | cgtaaacaga | 540  |
| aacaacatgg | g gaaageetee | atttccccca | gtagtggtgc | acggcgcaca | gtaacaccaa | 600  |
| ctcgaaagag | g accttatgaa | tgcaaggtgt | gcgggaaagc | ctttaattct | cccaatttat | 660  |
| ttcaaatcca | tcaaagaact   | cacactggaa | agaggtccta | taaatgtagg | gaaatagtga | 720  |
| gagcetteac | agtttccagt   | ttctttcgaa | aacatggaaa | aatgcatact | ggagaaaaac | 780  |
| gctatgaatg | taaatactgt   | ggaaaaccta | tcgattatcc | cagtttattt | caaattcatg | 840  |
| ttagaactca | cactggagaa   | aaaccttaca | aatgtaaaca | atgtggtaaa | gccttcattt | 900  |
| cegcaggtta | ccttcggaca   | catgaaatca | gatctcacgc | gctggagaaa | tcccaccaat | 960  |
| gtcaggaatg | tgggaaaaaa   | ctcagttgtt | ccagttccct | tcacagacat | gaaagaactc | 1020 |
| atagtggagg | aaaactctac   | gaatgtcaaa | aatgtgccaa | agtctttaga | tgtcccacgt | 1080 |
| cccttcaagc | acatgaaaga   | gctcacactg | gagaaagacc | ttatgaatgt | aataaatgtg | 1140 |
| gtaaaacctt | caattatccc   | agttgtttc  | gaagacataa | aaaaactcat | agtggagaaa | 1200 |
| agccatatga | atgtacaagg   | tgtggtaaag | cctttgggtg | gtgcagttcc | ctccgaagac | 1260 |
| atgaaatgac | tcacactgga ( | gaaaaaccct | ttgattgtaa | acagtgtggt | aaagtcttta | 1320 |
| ctttttcaaa | ttaccttaga ( | cttcatgaaa | gaactcattt | ggccgggcgt | agccagtgct | 1380 |
| ttggcaggag | gcagggggat   | cacctgagec | caggagtttg | agaccagcct | gggcaacata | 1440 |
| agaaggcccc | cggaattc     |            |            |            |            | 1458 |

<400> 599

acccagggac ctatcacaca aatataagaa ctattcattc tttaaggcat gtatttccaa 60 gcctttgtat ttttttccat gcttagggtt ggcaaggaat atatatatat ttgtacaaat 120 atatatgtgt atatgtacaa atacatgtat atatagtaca aatatatata tatatttgta 180

<sup>&</sup>lt;210> 599

<sup>&</sup>lt;211> 3176 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

caattettea qaetttqtaq aatttqtata atqteqtate ttqctttttt taaccaetqa 240 tgttataagc atatttatgc cacttcattc attttagaga cttaataata aatgatctag 300 tggataattt atcattccct gatggagaaa aatttagctt tgtttatttt agagttataa 360 acquitqctgg gtcaggtatc tttatgtttg aagatggctc catatttggg ttgtttccac 420 agaactettt cetagaaatg etttttetag gttaatgget acagatattt etaggeacet 480 qacatattqa cacccacctc taaaqtattt ttatqatcca caactaqcqt ttaacacaqc 540 qccctaqtca ctacatqact aataaataqa caaatqactq aaacatqacc tcatqctttc 600 tattecteca gettteatte agttetttge etetgggagg aggaagggtt gtgcageeet 660 ccacaqcatc aqcccatcaa ccctatccct qtqqttataq caqctqaqqa aqcaqaattq 720 780 caqctctqtq qqaaqqaatq qqqctqqaqa qttcatqcac aqaccaqttc ttatqaqaaq qqactqacta aqaataqcct tqqqttqaca tatacccctc ttcacactca caqqaqaaac 840 900 catttcccta tqaaactata acaaqtcatq aqttqaqaqc tqaqaqttaq aqaataqctc 960 aaagatgeta ttettggata teetgageee etgtggteae eagggaeeet gagttgtgea acttagcatg acagcatcac tacgcttaaa aatttccctc ctcaccccca gattccattt 1020 ccccatccgc cagggctgcc tataaagagg agagctggtt tcagacttca gaaggacacg 1080 ggcagcagac agtggtcagt cetttettgg etetgetgac actegagece acatteegte 1140 acctgctcag aatcatgcag gtctccactg ctgcccttgc tgtcctcctc tgcaccatgg 1200 ctctctqcaa ccaqttctct qcatcacgtg aqtctgagtt tcqttqtqqq tatcaccact 1260 ctctqqccat qqttaqacca catcaatctt ttcttqtqqc ctaaaaqccc ccaaqaqaaa 1320 agagaacttc ttaaagggct gccaaacatc ttggtctttc tctttaagac ttttattttt 1380 atototaqaa qqqqtottaq coccotaqto tocaqqtatq aqaatotaqq caqqqqcaqq 1440 qqaqttacaq tcccttttac aqataqaaaa acaqqqttcq aaacqaatca qttaqcaaqa 1500 ggcagaatcc agggctgctt acttcccagt ggggtatgtt gttcactctc cagctcactc 1560 taggtetece aggagetetg teeettagat gtettatgag agatgteeaa ggettetett 1620 gggttggggt atgacttctt gaaccagaca aaattccctg aagagaactg agataagaga 1680 acagtccgtt caggtatctg gatcacacag agaaacagag aacccactat gaagagtcaa 1740 ggaqaaagaa ggatacagac agaaacaaag agacatttct cagcaaaaat gcccaaatgc 1800 cttccagtca cttggtctga gcaagcctgc cttcctcaac tgctcgggga tcagaagctg 1860 cctggccttt tcttctgagc tgtgactcgg gctcattctc ttcctttctc cacagttgct 1920 gctgacacgc cgaccgcctg ctgcttcaqc tacacctccc ggcagattcc acaqaatttc 1980

| aaaggctatcc tggaaaggcc cagcettcag gagcatateg gggatacagg acgcagggct 2160 ccgaggtgtg acctgacttg gagctggagt gaggcatgtg ttacagagtc aggaagggct 2220 gccccaqccc agaggaaagg gacaggaaga aggaggcagc gggacactct gagggccacc 2280 cctactgagt cactgagaaa agctctctag acagagatag gcagggggcc cctgaaagag gagcaagccc tgagctgccc aggacagaag gcagaatgg ggggccatgg tgggcccaag attcccctgc tggattcccc aggacagaag gcagaatggt ggggccatgg tgggcccaag actgagagcc ggcaggtctg tgctgacccc agtgaggagag gggtccagaa atatgtcagc gacctggagc tgagtgcctg aggggtccag aagcttcgag gcccagcac ctcggtgggc gacctggagc tgagtgcctg aggggtccag aagcttcgag gcccagcac ctcggtgggc ccagtgggga ggagcaggag cctgagcctt gggaacatg gtgtgacctc cacagctacc 2640 tcttctatgg actggttgt gccaaacagc cacactgtgg gactcttctt aacttaaatt 2700 ttaatttatt tatactattt agtttttgta atttatttc gatttcacag tgtgtttgtg 2760 attgtttgct ctgagagtc ccctgtccc tccccttcc ctcacaccgc gtctggtgac 2820 aaccgagtgg ctgtcatcag cctgtgtagg cagtcatggc accaaagcca ccagactgac 2820 aaccgagtgg ctgtcatcag cctgtgtagg cagtcatggc accaaagcca ccagactgac 2820 aaccgagtgg ctgtcatcag cctgtgtagg cagtcatggc accaaagcca ccagactgac 2820 aactggttat cggatgcttt tgttcagggc tgtgatcggc ctggggaaat aataaagatg 2940 ctcttttaaa aggtaaacca gtattgagtt tggttttgtt ttactggcaa atcaaaatca 3000 ctggttaaga ggaatcatag gcaaagatta ggaagaggtg aaatggggg aaattgggg 3060 agatggggag ggctaccaca gagttatcca ctttacaacg gagcacagt tctggaacat 3120 ttgaaactacg aatatgttat aactcaaatc ataacatgca tgctctagga gaattc 3176 <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | atagctga                      | act                | actttgagac                   | gagcagccag | tgctccaage | ceggigicat | gtaagtgcca | 2040 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|------------------------------|------------|------------|------------|------------|------|
| ccgaggtgtgt acctgacttg gagctggagt gaggcatgtg ttacagagtc aggaagggct 2220 gccccagcc agaggaaagg gacaggaaga agaggagag gggacactct gagggccacc cctactgagt cactgagaa agctctctag acagagatag gcagggggc cctgaaagag gagcaagccc tgagctgccc aggacagaag gcagaatggt ggggccatgg tgggccaagg attcccctgc tggattcccc aggacagaag gcagaatggt ggggccatgg tgggccaagg attcccctgc tggattcccc agtgcttaac tcttcctccc ttctccacag cttcctaacc aagcgaagcc ggcaggtctg tgctgacccc agtgaggagg gggtccagaa atatgcagc gacctggagc tgagtgcctg aggggtccag aagcttcgag gcccaggac ctcggtgggc ccagtgggga ggagcaggag cctgagcctt gggaacatg gtgtgacctc cacagctacc cactgtggga gagcaggag cctgagcctt gggaacatg gtgtgacctc cacagctacc tcttctatgg actggttgt cccaaacagc cacactgtgg gactcttctt aacttaaatt 2700 attgtttgct ctgagagttc ccctgtcccc tcccccttcc ctcacaccgc gtctggtgac aaccgagtgg ctgtaccag cctgtgtagg cagtcatgga accaaagcca ccagactgac aaccgagtgg ctgtaccag cctgtgtagg cagtcatggc accaaagcca ccagactgac aactggtgat cggatgctt tgttcagggc tgtgatcgg ctggggaaat aataaagatg ctcttttaaa aggtaaacca gtattgagtt tggttttgtt tttctggcaa atcaaaatca ctggttaaga ggaatcatag gcaaagatta ggaagaggtg aaatggaggg aaattgggaa gagtgggag ggctaccaca gagttatcca ctttacaacg gagacacagt tctggaacat tgaaactacg aatatgttat aactcaaatc ataacatgca tgctctagga gaattc  <210> 600 <211> 130 <212> DNA <213> Homo sapiens  600 <221> DNA <213> Homo sapiens  600 <210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gtcttcct                      | gc                 | tcacctctat                   | ggaggtaggg | agggtcaggg | ttggggcaga | gacaggccag | 2100 |
| gecccagece agaggaaagg gacaggaaga agaggacage gggacactet gagggccace 2280 cetactgagt cactgagaa agetetetag acagagatag geagggggcc cetgaaagag 2340 gagcaagece tgagetgece aggacagaga geagaatggt ggggccatgg tgggcccagg 2400 attecetge tggatteece agtgettaac tetteetee ttetecacag etteetaace 2460 aageggage ggaggetgt tgetgacece agtgaggag gggtccagaa atatgtcage 2520 gacetggage tgagtgectg aggggccag aagettegag geecagegac eteggtgggc 2580 ccagtgggg ggagcaggag cetgagett gggaacatg gggtcaagaa atatgtcage 2640 tettetatgg actggtgt tgecaaacage cacactgtgg gactetett aacttaaatt 2700 tettetatgg actggttgt gccaaacage cacactgtgg gactetett aacttaaatt 2700 attgtttgt etgagagte cectgteece tececettee etcacacege gtetggtgac 2820 aacegagtgg ctgtatcag cetggtgage cagtactgg cagteatgge accaaagcca cagactgac 2820 aacegagtgg ctgtatcag cetggtgag cagteatgge accaaagcca cagactgac 2820 aacegagtgg ctgtatcag cetggtgag cagteatgge ctggggaaat aataaagatg 2940 etcttttaaa aggtaacaca gtattgagtt tggtttgtt tttetggcaa atcaaaatca 3000 ctggttaaga ggaatcatag gcaaagatta ggaagaggg aaattgggag aaattgggag ggataccaca gagttateca etttacaacg gagacacagt tetggaacat 3120 ctggts 130 company aggacacaa ataggaagg aaggagga aaattggaag 3060 agatggggag ggctaccaca gagttateca etttacaacg gagacacagt tetggaacat 3120 ctgs 130 company aggacacaaca atcaaaatca ataacatgca tgetetagga gaattc 3176 ctgs 130 company aggacacaaca atcaaaatca ataacatgca tgetetagga gaattc 3176 ctgs 130 company aggacacaaca accaaacaa accaaacaa accaaacaa accaaacaa accaaacaa accaaacaa accaaacaa accaaacaa cacaaacaa cacaaacaa accaaacaa accaaacaa accaaacaa accaaacaa accaaacaa accaaacaa accaaacaa accaaacaa accaaacaaacaa accaaacaaacaa accaaacaaacaa accaaacaaacaaacaaacaaaacaaacaaacaaacaaacaaacaaacaaacaaacaaacaacaacaacaacaacaacaacaaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaacaaca | aaggctat                      | cc                 | tggaaaggcc                   | cagccttcag | gagcctatcg | gggatacagg | acgcagggct | 2160 |
| cctactgagt cactgagaga agctetetag acagagatag gcagggggcc cctgaaagag 2340 gagcaagccc tgagctgccc aggacagaga gcagaatggt ggggccatgg tgggccaagg 2400 atteccetge tggatteccc agtgcttaac tettectecc ttetecacag cttectaacc 2460 aagcgaagcc ggcaggtetg tgctgacccc agtgaggagt ggggtccagaa atatgtcagc 2520 gacctggagc tgagtgcctg aggggtccag aagcttcgag gcccaggac ctcggtgggc 2580 ccagtgggga ggagcaggag cctgaggctt gggaacatgc gtgtgacctc cacagctacc 2640 tettetatgg actggttgt gccaaacagc cacactgtgg gactettett aacttaaatt 2700 ttaatttatt tatactattt agtttttgta atttatttt gatttcacag tgtgtttgtg 2760 attgtttgct ctgagagttc ccctgtcccc tcccccttc ctcacaccgc gtctggtgac 2820 aaccgagtgg ctgtcatcag cctgtgtagg cagtcatggc accaaagcca ccagactgac 2820 aaccgagtgg ctgtcatcag cctgtgtagg cagtcatggc ctggggaaat aataaagatg 2940 ctcttttaaa aggtaaccac gtattgagtt tggttttgtt tttctggcaa atcaaaatca 3000 ctggttaaga ggaatcatag gcaaagatta ggaagaggtg aaatgggagg aaattggggg aggtagggga ggctaccaca gagttatcca ctttacaacg gagacacagt tctggaacat 3120 tgaaactacg aatatgttat aactcaaatc ataacatgca tgctctagga gaattc 3176 <210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ccgaggtg                      | gtg                | acctgacttg                   | gagctggagt | gaggcatgtg | ttacagagtc | aggaagggct | 2220 |
| gagcaagccc tgagctgccc aggacaggag gagaatggt ggggccatgg tgggcccagg 2400 atteccetge tggatteccc agtgettaac tettectecc ttetecacag ettectaacc 2460 aagcgaagcc ggcaggtetg tgetgacccc agtgaggagt gggtccagaa atatgtcagc 2520 gacctggagc tgagtgcctg aggggtccag aagcttcgag gcccagcgac ctcggtgggc 2580 ccagtgggag ggagcaggag cctgagcctt gggaacatgc gtgtgacctc cacagctacc 2640 tettetatgg actggttgt gccaaacagc cacactgtgg gactettett aacttaaatt 2700 ttaatttatt tatactattt agttittgta attiattite gatticacag tgtgttgtg 2760 attgtttgct ctgagagtc ccctggtcccc teccccticc ctcacaccgc gtctggtgac 2820 aaccgagtgg ctgtcatcag cctgtgtagg cagtcatggc accaaagcca ccagactgac 2880 aaatgtgtat cggatgctt tgttcagggc tgtgatcggc ctggggaaat aataaagatg 2940 ctctittaaa aggtaaacca gtattgagti tggttitgt tttctggcaa atcaaaaca 3000 ctggttaaga ggaatcatag gcaaagatta ggaagaggtg aaatgggag aaatgggag 3060 agatggggag ggctaccaca gagttatca ctitacaacg gagacacagt tctggaacat 3176 c210 600 c211 130 c210 600 c211 130 c400 600 gggcccctca cgatgtgccc atcagccca cctgaaatag caagaaatct tcttcagcag 3000 agagcgaata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gccccago                      | ccc                | agaggaaagg                   | gacaggaaga | aggaggcagc | gggacactct | gagggccacc | 2280 |
| attecectge tggattecec agtgettaac tettectece ttetecacag ettectaace 2460 aagegaagec ggcaggtetg tgetgacece agtgaggagt gggtecagaa atatgteage 2520 gacetggage tgagtgetg aggggtecag aagettegag geceagegac eteggtggge 2580 ceagtgggga ggagcaggag cetaggett gggaacatg gtgtgacete cacagetace 2640 tettetatgg aetggttgt gecaaacage cacactgtgg gactettett aacttaaatt 2700 ttaatttatt tatactattt agttittga atttattite gatticacag tgtgttgtg 2760 attgtttget etgagagte ecetggeece tececetice etcacacege gtetggtgac 2820 aacegagtgg etgteateag cetggtagg cagteatgge aceaaageca ceagactgac 2880 aaatggtat eggatgett tgtecagge tgtgategge etggggaaat aataaaagatg 2940 etettitaaa aggtaaacea gtattgagt tggtttgtt tttetggaa ateaaaatea 3000 etggttaaga ggaatcatag geaaagatta ggaagaggtg aaatggagg aaatggggag agatagggag ggetaceaca aggttateca etttacaacg gagacacagt tetggaacat 3120 tegataaca gaatagttat aacteaaate ataacatgca tgctetagga gaatte 4210> 600 4211> 130 4212> DNA 4213> Homo sapiens 400> 601 4211> 200 4210> 601 4211> 200 4212> DNA 4213> Homo sapiens 4210> 601 4211> 200 4212> DNA 4213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cctactga                      | agt                | cactgagaga                   | agctctctag | acagagatag | gcagggggcc | cctgaaagag | 2340 |
| aagegaagee ggeaggtetg tgetgaceee agtgaggag gggteeagaa atatgteage 2520 gacetggage tgagtgeetg aggggteeag aagettegag geecagegae eteggtggge 2580 ceagtgggag ggageaggag cetgageett gggaacatge gtgtgacete cacagetace 2640 tettetatga aetggttgtt geeaaacage cacactgtgg gactettett aacttaaatt 2700 ttaatttatt tatactattt agttittgta atttattite gatticacag tgtgttgtg 2760 attgtttget etgagagtee eeetgteeee teeceettee eteacacge gtetggtgae 2820 aacegagtgg etgteateag cetgtgtagg cagteatgge aceaaageea ceagactgae 2880 aaatggtat eggatgettt tgtecaggge tgtgategge etggggaaat aataaagatg 2940 etettitaaa aggtaaacea gtattgagtt tggtttgtt tittetggaa ateaaaatea 3000 etggttaaga ggaatcatag geaaagatta ggaagaggtg aaatgggag aaatggggag aggtadeaga ggaatcatag geaaagatta ggaagaggtg aaatggagg aaatgggga aggtgggagagata aggaagatgat tggategge etggacacagt tetggaacat 3176 etggttaaga ggaatcatag geaaagatta ataacatgea tgetetagga gaatte 3176 etggttaaga ataagataa aaceaaate ataacatgea tgetetagga gaatte 3176 etglib 600 etglib 130 etglib 600 etglib 130 etglib 600 etglib 600 etglib 130 etglib 600 etglib 600 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 602 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 601 etglib 602 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 603 etglib 6 | gagcaago                      | ccc                | tgagctgccc                   | aggacagaga | gcagaatggt | ggggccatgg | tgggcccagg | 2400 |
| gacctggagc tgagtgcttg aggggtccag aggtttgag gcccagegac ctcggtgggc 2580 ccagtgggag ggagcaggag cctgagctt gggaacatg gtgtgacctc cacagctacc 2640 tcttctatgg actggttgtt gccaaacagc cacactgtgg gactcttctt aacttaaatt 2700 ttaatttatt tatactattt agtttttgta atttattttc gatttcacag tgtgtttgtg 2760 attgtttgct ctgagagttc ccctgtcccc tcccccttcc ctcacaccgc gtctggtgac 2820 aaccgagtgg ctgtcatcag cctgtgtagg cagtcatggc accaaagcca ccagactgac 2880 aaatgtgtat cggatgcttt tgttcagggc tgtgatcggc ctggggaaat aataaagatg 2940 ctcttttaaa aggtaaacca gtattgagtt tggtttgtt tttctggcaa atcaaaatca 3000 ctggttaaga ggaatcatag gcaaagatta ggaagaggtg aaatggagg aaattgggag agatggggag ggctaccaca gagttatcca ctttacaacg gagacacagt tctggaacat 3120 agatggggag ggctaccaca gagttatcca ctttacaacg gagacacagt tctggaacat 3176   <210> 600   <211> 130    <212> DNA   <213 Homo sapiens   <210> 601   <210> 602   <210> 603 </td <td>attcccct</td> <td>tgc</td> <td>tggattcccc</td> <td>agtgcttaac</td> <td>tetteetece</td> <td>ttctccacag</td> <td>cttcctaacc</td> <td>2460</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | attcccct                      | tgc                | tggattcccc                   | agtgcttaac | tetteetece | ttctccacag | cttcctaacc | 2460 |
| ccagtgaga gagacagaga cctgagcctt gagaacatga gtgtgacctc cacagctacc 2640 tcttctatga actggttgtt gccaaacagc cacactgtga gactctcttt aacttaaatt 2700 ttaatttatt tatactattt agtttttgta atttatttc gatttcacag tgtgttgtg 2760 attgtttgct ctgagagttc ccctgtcccc tcccccttcc ctcacaccgc gtctggtgac 2820 aaccgagtga ctgtcatcag cctgtgtaga cagtcatggc accaaagcca ccagactgac 2880 aaatgtgtat cggatgcttt tgttcagggc tgtgatcggc ctggggaaat aataaagatg 2940 ctcttttaaa aggtaaacca gtattgagtt tggttttgtt tttctggcaa atcaaaatca 3000 ctggttaaga ggaatcatag gcaaagatta ggaagaggtg aaatggagag aaattgggag 3060 agatggggag ggctaccaca gagttatcca ctttacaacg gagacacagt tctggaacat 3120 cglis 130 <2110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aagcgaag                      | gcc                | ggcaggtctg                   | tgctgacccc | agtgaggagt | gggtccagaa | atatgtcagc | 2520 |
| tcttctatag actggttgtt gccaaacagc cacactgtgg gactcttctt aacttaaatt 2700 ttaatttatt tatactattt agtttttgta atttattttc gatttcacag tgtgtttgtg 2760 attgtttgct ctgagagttc ccctgtcccc tcccccttcc ctcacaccgc gtctggtgac 2820 aaccgagtgg ctgtcatcag cctgtgtagg cagtcatggc accaaagcca ccagactgac 2880 aaatggtat cggatgcttt tgttcagggc tgtgatcggc ctggggaaat aataaagatg 2940 ctcttttaaa aggtaaacca gtattgagtt tggtttgtt tttctggcaa atcaaaatca 3000 ctggttaaga ggaatcatag gcaaagatta ggaagaggtg aaatggaggg aaattgggag agatggggag ggctaccaca gagttatcca ctttacaacg gagacacagt tctggaacat 3120 c210> 600 c211> 130 c212> DNA c213> Homo sapiens c400> 600 gggcccctca cgatgtgccc atcagccca cctgaaatag caagaaatct tcttcagcag agagcgaata agagcgaata 130 c210> 601 c210> 602 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c300 600 c | gacctgga                      | agc                | tgagtgcctg                   | aggggtccag | aagcttcgag | gcccagcgac | ctcggtgggc | 2580 |
| attgattatt tatactattt agttttgta atttatttc gatttcacag tgtgtttgtg 2760 attgtttgct ctgagagttc ccctgtcccc tcccccttcc ctcacaccgc gtctggtgac 2820 aaccgagtgg ctgtcatcag cctgtgtagg cagtcatggc accaaagcca ccagactgac 2880 aaatgtgtat cggatgcttt tgttcagggc tgtgatcggc ctggggaaat aataaagatg 2940 ctcttttaaa aggtaaacca gtattgagtt tggttttgtt tttctggcaa atcaaaatca 3000 ctggttaaga ggaatcatag gcaaagatta ggaagaggtg aaatggaggg aaattgggag agatggggag ggctaccaca gagttatcca ctttacaacg gagacacagt tctggaacat 3120 tgaaactacg aatatgttat aactcaaatc ataacatgca tgctctagga gaattc 3176  <210 > 600 <211 > 130 <212 > DNA <213 > Homo sapiens  <400 > 600 ggcccctca cgatgtgccc atcagccca cctgaaatag caagaaatct tcttcagcag agagcgaata  320 320 320 320 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 321 320 320 320 320 320 320 320 320 320 320                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ccagtggg                      | gga                | ggagcaggag                   | cctgagcctt | gggaacatgc | gtgtgacctc | cacagctacc | 2640 |
| attgtttgct ctgagagttc ccctgtcccc tcccccttcc ctcacaccgc gtctggtgac 2820 aaccgagtgg ctgtcatcag cctgtgtagg cagtcatggc accaaagcca ccagactgac 2880 aaatgtgtat cggatgcttt tgttcagggc tgtgatcggc ctggggaaat aataaagatg 2940 ctcttttaaa aggtaaacca gtattgagtt tggttttgtt tttctggcaa atcaaaatca 3000 ctggttaaga ggaatcatag gcaaagatta ggaagaggtg aaatgggagg aaattgggag agatggggag ggctaccaca gagttatcca ctttacaacg gagacacagt tctggaacat 3120 tgaaactacg aatatgttat aactcaaatc ataacatgca tgctctagga gaattc 3176 <210 > 600 <211 > 130 <212 > DNA <213 > Homo sapiens  60 gggcccctca cgatgtgccc atcagccca cctgaaatag caagaaatct tcttcagcag agagcgaata  130  4210 > 601 <211 > 100 Adol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tcttctat                      | tgg                | actggttgtt                   | gccaaacagc | cacactgtgg | gactcttctt | aacttaaatt | 2700 |
| aaccgagtgg ctgtcatcag cctgtgtagg cagtcatggc accaaagcca ccagactgac 2880 aaatgtgtat cggatgcttt tgttcagggc tgtgatcggc ctggggaaat aataaagatg 2940 ctcttttaaa aggtaaacca gtattgagtt tggttttgtt tttctggcaa atcaaaatca 3000 ctggttaaga ggaatcatag gcaaagatta ggaagaggtg aaatgggagg aaattgggag agatggggag ggctaccaca gagttatcca ctttacaacg gagacacagt tctggaacat 3120 tgaaactacg aatatgttat aactcaaatc ataacatgca tgctctagga gaattc 3176 <210> 600 <211> 130 <212> DNA <213> Homo sapiens  440> 600 gtaactagaa atggcaggt aaggagtgtt tgcctgacat cgtctcgttt ttacggaaga gggcccctca cgatgtgccc atcagccca cctgaaatag caagaaatct tcttcagcag 120 agagcggaata 130 <210> 601 <211> 200 <2121 DNA AGD 601 <211> 200 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 601 AGD 602 AGD 603 AGD 603 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD 604 AGD  | ttaattta                      | att                | tatactattt                   | agtttttgta | atttatttc  | gatttcacag | tgtgtttgtg | 2760 |
| aaatgtgtat cggatgcttt tgttcagggc tgtgatcggc ctggggaaat aataaagatg 2940 ctcttttaaa aggtaaacca gtattgagtt tggtttgtt tttctggcaa atcaaaatca 3000 ctggttaaga ggaatcatag gcaaagatta ggaagaggtg aaatgggagg aaattgggag agatggggag ggctaccaca gagttatcca ctttacaacg gagacacagt tctggaacat 3120 tgaaactacg aatatgttat aactcaaatc ataacatgca tgctctagga gaattc 3176 <210> 600 <211> 130 <212> DNA <213> Homo sapiens  400> 600 gtaactagaa atggcaggt aaggagtgt tgcctgacat cgtctcgttt ttacggaaga gggcccctca cgatgtgccc atcagccca cctgaaatag caagaaatct tcttcagcag 120 agagcgaata 130 <210> 601 <211> 200 <211> 200 <211> 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | attgtttg                      | gct                | ctgagagttc                   | ccctgtcccc | tccccttcc  | ctcacaccgc | gtctggtgac | 2820 |
| ctettttaaa aggtaaacca gtattgagtt tggtttgtt tttetggaa atcaaaatca 3000 ctggttaaga ggaatcatag gcaaagatta ggaagaggtg aaatggaggg aaattgggag agatggggag ggctaccaca gagttatcca etttacaacg gagacacagt tetggaacat tgaaactacg aatatgttat aactcaaatc ataacatgca tgetetagga gaattc 3176  <210> 600 <211> 130 <212> DNA <213> Homo sapiens <400> 600 gtaactagaa atggcaggt aaggagtgt tgeetgacat egtetegtt ttacggaaga 60 gggceectca egatgtgeec ateageecca eetgaaatag caagaaatet tetteagcag agageggata  <210> 601 <211> 200 <211> 200 <2121> DNA <211> Homo sapiens <400 Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aaccgagt                      | tgg                | ctgtcatcag                   | cctgtgtagg | cagtcatggc | accaaagcca | ccagactgac | 2880 |
| ctggttaaga ggaatcatag gcaaagatta ggaagagtg aaatggaggg aaattggagg 3060 agatggggag ggctaccaca gagttatcca ctttacaacg gagacacagt tctggaacat 3120 tgaaactacg aatatgttat aactcaaatc ataacatgca tgctctagga gaattc 3176 <210> 600 <211> 130 <211> DNA <2113 Homo sapiens <400> 600 gtaactagaa atggcagggt aaggagtgtt tgcctgacat cgtctcgttt ttacggaaga 60 gggcccctca cgatgtgccc atcagccca cctgaaatag caagaaatct tcttcagcag 120 agagcgaata 130 <210> 601 <211> 200 <212> DNA <211> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | aaatgtgt                      | tat                | cggatgcttt                   | tgttcagggc | tgtgatcggc | ctggggaaat | aataaagatg | 2940 |
| agatggggag ggctaccaca gagttatcca ctttacaacg gagacacagt tctggaacat tgaaactacg aatatgttat aactcaaatc ataacatgca tgctctagga gaattc 3176  <210> 600 <211> 130 <212> DNA <213 Homo sapiens  <400> 600 gtaactagaa atggcagggt aaggagtgtt tgcctgacat cgtctcgttt ttacggaaga gggcccctca cgatgtgccc atcagccca cctgaaatag caagaaatct tcttcagcag agagcgaata  130  <210> 601 <211> 200 <212> DNA <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ctctttta                      | aaa                | aggtaaacca                   | gtattgagtt | tggttttgtt | tttctggcaa | atcaaaatca | 3000 |
| tgaaactacg aatatgttat aactcaaatc ataacatgca tgctctagga gaattc 3176  <210> 600 <211> 100 <211> 100 <211> 100 <211> 100 <211> 100 <211> 100 <211> 100 <211> 100 <211> 100 <211> 100 <211> 100 <211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ctggttaa                      | aga                | ggaatcatag                   | gcaaagatta | ggaagaggtg | aaatggaggg | aaattgggag | 3060 |
| <pre>&lt;210&gt; 600 &lt;211&gt; 130 &lt;211&gt; DNA &lt;2113 Homo sapiens &lt;400&gt; 600 gggcccctca cgatgtgccc atcagcccca cctgaaatag caagaaatct tcttcagcag 120 agagcgaata 130 &lt;210&gt; 601 &lt;211&gt; DNA &lt;313 Homo sapiens &lt;400&gt; 600 Homo sapiens &lt;400&gt; 600 Homo sapiens &lt;400&gt; 600 Homo sapiens &lt;400&gt; 600 Homo sapiens &lt;400&gt; 600 Homo sapiens Homo sapiens Homo sapiens Homo sapiens</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | agatgggg                      | gag                | ggctaccaca                   | gagttatcca | ctttacaacg | gagacacagt | tctggaacat | 3120 |
| <pre>&lt;211&gt; 130 &lt;212&gt; DNA &lt;213&gt; Homo sapiens </pre> <pre>&lt;400&gt; 600 gtaactagaa atggcagggt aaggagtgtt tgcctgacat cgtctcgttt ttacggaaga</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tgaaacta                      | acg                | aatatgttat                   | aactcaaatc | ataacatgca | tgctctagga | gaattc     | 3176 |
| gtaactagaa atggcagggt aaggagtgtt tgcctgacat cgtctcgttt ttacggaaga 60 gggcccctca cgatgtgccc atcagccca cctgaaatag caagaaatct tcttcagcag 120 agagcgaata 130 <210> 601 <211> 200 <212> DNA <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <211> I<br><212> I<br><213> I | 130<br>DNA<br>Homo | o sapiens                    |            |            |            |            |      |
| agagcgaata 130 <210> 601 <211> 200 <2112 DNA <2113 HOMO sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | gaa                | a <b>t</b> gg <b>ca</b> gggt | aaggagtgtt | tgcctgacat | cgtctcgttt | ttacggaaga | 60   |
| <210> 601<br><211> 200<br><212> DNA<br><213> HOMO sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gggcccct                      | tca                | cgatgtgccc                   | atcagcccca | cctgaaatag | caagaaatct | tcttcagcag | 120  |
| <211> 200<br><212> DNA<br><213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | agagcgaa                      | ata                |                              |            |            |            |            | 130  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <211> 2<br><212> I<br><213> I | 200<br>DNA<br>Homo | o sapiens                    |            |            |            |            |      |

400> 601

|                                                  |              | - 9999000000 | g gcccccca | Laaaaaccag | ggggaaggtt | 120 |
|--------------------------------------------------|--------------|--------------|------------|------------|------------|-----|
| tgggccaaa                                        | e eecccagget | ttgggtttt    | cececece   | ccgggaaagg | gggccccccc | 180 |
| cccccccaa                                        | a aaaaaaccca | ı            |            |            |            | 200 |
| <210> 602<br><211> 923<br><212> DNA<br><213> Hor | i            |              |            |            |            |     |
| <400> 602                                        |              |              |            |            |            |     |
|                                                  |              |              |            |            | cgctgccgct | 60  |
|                                                  |              |              | ccaccgaagg |            |            | 120 |
|                                                  |              |              | gggctgggag |            |            | 180 |
| tcgcgaagag                                       | gagtgccact   | tctacgcggg   | tggacaagtg | tacccgggag | aggcatcccg | 240 |
| ggtateggte                                       | gccgaccact   | ccctgcacct   | aagcaaagcg | aagatttcca | agccagcgcc | 300 |
| ctactgggaa                                       | ggaacagctg   | tgatcgatgg   | agaatttaag | gagctgaagt | taactgatta | 360 |
| tcgtgggaaa                                       | tacttggttt   | tcttcttcta   | cccacttgat | ttcacatttg | tgtgtccaac | 420 |
| tgaaattato                                       | gcttttggcg   | acagacttga   | agaattcaga | tctataaata | ctgaagtggt | 480 |
| agcatgctct                                       | gttgattcac   | agtttaccca   | tttggcctgg | attaataccc | ctcgaagaca | 540 |
| aggaggactt                                       | gggccaataa   | ggattccact   | tctttcagat | ttgacccatc | agatctcaaa | 600 |
| ggactatggt                                       | gtatacctag   | aggactcagg   | ccacactctt | agaggtetet | tcattattga | 660 |
| tgacaaagga                                       | atcctaagac   | aaattactct   | gaatgatctt | cctgtgggta | gatcagtgga | 720 |
| tgagacacta                                       | cgtttggttc   | aagcattcca   | gtacactgac | aaacacggag | aagtctgccc | 780 |
|                                                  |              |              | aatcccagat |            |            | 840 |
| tttcgataaa                                       | ctgaattgag   | aaatacttct   | tcaagttatg | atgcttgaaa | gttctcaata | 900 |
| aagttcacgg                                       | tttcattacc   | a            |            |            |            | 921 |
| <210> 603<br><211> 259<br><212> DNA<br><213> Hom | 1            |              |            |            |            |     |
| <400> 603                                        |              |              |            |            |            |     |
| ctc <b>ag</b> actgt                              | ccttcctctc   | tggactgtaa   | gaatatgtct | ccagggccag | tgtctgctgc | 60  |
| gategagtee                                       | caccttccaa   | gtcctggcat   | ctcaatgcat | ctgggaagct | acctgcatta | 120 |
| agtcaggact                                       | gagcacacag   | gtgaactcca   | gaaagaagaa | gctatggccg | cagtgattct | 180 |
| ggagagcatc                                       | tttctgaagc   | gatcccaaca   | gaaaaagaaa | acatcacctc | taaacttcaa | 240 |

| gaagegeetg tttetettg  | a ccgtgcaca  | a actctccta  | c tatgagtat | g actttgaacg | 300  |
|-----------------------|--------------|--------------|-------------|--------------|------|
| tgggagaaga ggcagtaag  | a agggttcaa  | t agatgttga  | g aagatcact | t gtgttgaaac | 360  |
| agtggttcct gaaaaaaat  | c ctcctccag  | a aagacagat  | t ccgagaaga | g gtgaagagtc | 420  |
| cagtgaaatg gagcaaatt  | t caatcattg  | a aaggttccc  | t tatcccttc | c aggttgtata | 480  |
| tgatgaaggg cctctctac  | g tetteteee  | c aactgaaga  | a ctaaggaag | c ggtggattca | 540  |
| ccagctcaaa aacgtaatc  | c ggtacaaca  | g tgatctggt  | cagaaatat   | c accettgett | 600  |
| ctggatcgat gggcagtate | c tetgetget  | c tcagacage  | aaaaatgcta  | a tgggctgcca | 660  |
| aattttggag aacaggaat  | g gaagettaa  | a acctgggagt | teteacegga  | a agacaaaaaa | 720  |
| gcctcttccc ccaacgcct  | g aggaggacca | gatettgaaa   | aagccacta   | cgcctgagcc   | 780  |
| agcagcagca ccagteteea | a caagtgaget | gaaaaaggtt   | gtggcccttt  | atgattacat   | 840  |
| gccaatgaat gcaaatgato | tacagetge    | g gaagggtgat | gaatatttta  | tcttggagga   | 900  |
| aagcaactta ccatggtgga | a gagcacgaga | taaaaatggg   | caggaaggct  | acattcctag   | 960  |
| taactatgtc actgaagcag | aagactccat   | agaaatgtat   | gagtggtatt  | ccaaacacat   | 1020 |
| gactcggagt caggctgagc | : aactgctaaa | gcaagagggg   | aaagaaggag  | gtttcattgt   | 1080 |
| cagagactee ageaaagetg | gcaaatatac   | agtgtctgtg   | tttgctaaat  | ccacagggga   | 1140 |
| ccctcaaggg gtgatacgtc | attatgttgt   | gtgttccaca   | cctcagagcc  | agtattacct   | 1200 |
| ggctgagaag caccttttca | gcaccatccc   | tgagctcatt   | aactaccatc  | agcacaactc   | 1260 |
| tgcaggactc atatccaggc | tcaaatatcc   | agtgtctcaa   | caaaacaaga  | atgcaccttc   | 1320 |
| cactgcaggc ctgggatacg | gatcatggga   | aattgatcca   | aaggacctga  | ccttcttgaa   | 1380 |
| ggagctgggg actggacaat | ttggggtagt   | gaagtatggg   | aaatggagag  | gccagtacga   | 1440 |
| cgtggccatc aagatgatca | aagaaggctc   | catgtctgaa   | gatgaattca  | ttgaagaagc   | 1500 |
| caaagtcatg atgaatcttt | cccatgagaa   | gctggtgcag   | ttgtatggcg  | tctgcaccaa   | 1560 |
| gcagcgcccc atcttcatca | tcactgagta   | catggccaat   | ggctgcctcc  | tgaactacct   | 1620 |
| gagggagatg cgccaccgct | tccagactca   | gcagctgcta   | gagatgtgca  | aggatgtctg   | 1680 |
| tgaagccatg gaatacctgg | agtcaaagca   | gttccttcac   | cgagacctgg  | cagctcgaaa   | 1740 |
| ctgtttggta aacgatcaag | gagttgttaa   | agtatctgat   | ttcggcctgt  | ccaggtatgt   | 1800 |
| cctggatgat gaatacacaa | gctcagtagg   | ctccaaattt   | ccagtccggt  | ggtccccacc   | 1860 |
| ggaagteetg atgtatagea | agttcagcag   | caaatctgac   | atttgggctt  | ttggggtttt   | 1920 |
| gatgtgggaa atttactccc | tggggaagat   | gccatatgag   | agatttacta  | acagtgagac   | 1980 |
| gctgaacac attgcccaag  | gcctacgtct   | ctacaggcct   | catctggctt  | cagagaaggt   | 2040 |
| atataccatc atgtacagtt | gttggcatga   | gaaagcagat   | gagegteeca  | ctttcaaaat   | 2100 |

| tettetgage aatattetag atgteatgga tgaagaatee tgagetegee aataagette                                                                                                                                                                                                                                                                                                                                                                                      | 2160                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| ttggttctac ttctcttctc cacaagcccc aatttcactt tctcagagga aatcccaagc                                                                                                                                                                                                                                                                                                                                                                                      | 2220                            |
| ttaggagece tggagecttt gtgeteceae teaatacaaa aaggeeeete tetacatetg                                                                                                                                                                                                                                                                                                                                                                                      | 2280                            |
| gggatgcacc tettetttga tteeettggga tagtggette tgagcaaagg ccaaaaaatt                                                                                                                                                                                                                                                                                                                                                                                     | 2340                            |
| attgtgcctg aaatttcccg agagaattaa gacagactga atttgcgatg aaaatatttt                                                                                                                                                                                                                                                                                                                                                                                      | 2400                            |
| ttaggaggga ggatgtaaat agccgcacaa aggggtccaa cagctctttg agtaggcatt                                                                                                                                                                                                                                                                                                                                                                                      | 2460                            |
| tggtagaget tgggggtgtg tgtgtggggg tggaccgaat ttggcaagaa tgaaatggtg                                                                                                                                                                                                                                                                                                                                                                                      | 2520                            |
| tcataaagat gggaggggag ggtgttttga taaaataaat                                                                                                                                                                                                                                                                                                                                                                                                            | 2580                            |
| aaaaaaaaa a                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2591                            |
| <210> 604<br><211> 594<br><212> DNA<br><213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
| <220> <221> misc_feature                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
| <221> misc_feature<br><222> (520)(520)                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |
| <pre>&lt;221&gt; misc_feature &lt;222&gt; (520)(520) &lt;223&gt; n is a, c, g, t or u</pre>                                                                                                                                                                                                                                                                                                                                                            | 60                              |
| <221> misc_feature<br><222> (520). (520)<br><223> nis a, c, g, tor u<br><400> 604                                                                                                                                                                                                                                                                                                                                                                      | 60<br>120                       |
| <221> misc_feature <222> (520)(520) <223> mis a, c, g, t or u <400> 604 tttttttttt tttttgtact tttgttcata gatcggcact tgactttgaa cctggcacca                                                                                                                                                                                                                                                                                                              |                                 |
| <pre>&lt;221&gt; misc_feature &lt;222&gt; (520)(520) &lt;223&gt; n is a, c, g, t or u &lt;400&gt; 604 ttttttttt ttttttgtact tttgttcata gatcggcact tgactttgaa cctggcacca aaaggcacaa tatctgatac cctgtacaag agctattaga gatgctgcca tatggatggg</pre>                                                                                                                                                                                                        | 120                             |
| <pre>&lt;221&gt; misc_feature &lt;222&gt; (520)(520) &lt;223&gt; n is a, c, g, t or u  &lt;400&gt; 604 tttttttttt ttttttgtact tttgttcata gatcggcact tgactttgaa cctggcacca aaaggcacaa tatctgatac cctgtacaag agctattaga gatgctgca tatggatggg caaaactgag ccaatcccac ttaggaatgg aaggcttgga catggaaggg aggatataaa</pre>                                                                                                                                     | 120<br>180                      |
| <pre>&lt;221&gt; misc_feature &lt;222&gt; (520)(520) &lt;223&gt; n is a, c, g, t or u &lt;400&gt; 604 tttttttttt ttttttgtact tttgttcata gatcggcact tgactttgaa cctggcacca aaaggcacaa tatctgatac cctgtacaag agctattaga gatgctgcca tatggatggg caaaactgag ccaatcccac ttaggaatgg aaggcttgga catggaaggg aggatataaa cgaggagttg gagaaaaacg caagcccagt ttttgctaga gtggaaatga aagtgggaat</pre>                                                                   | 120<br>180<br>240               |
| <pre>&lt;221&gt; misc_feature &lt;222&gt; (520)(520) &lt;223&gt; n is a, c, g, t or u &lt;400&gt; 604 tttttttttt ttttttgtact tttgttcata gatcggcact tgactttgaa cctggcacca aaaggcacaa tatctgatac cctgtacaag agctattaga gatgctgcca tatggatggg caaaactgag ccaatcccac ttaggaatgg aaggcttgga catggaaggg aggatataaa cgaggagttg gagaaaaacg caagcccagt ttttgctaga gtggaaatga aagtgggaat gagggtcttg tttttagtcc tctaaggacc aggaagcaat tttaaaactt ccttggtttt</pre> | 120<br>180<br>240<br>300        |
| <pre>&lt;221&gt; misc_feature &lt;222&gt; (520)(520) &lt;223&gt; n is a, c, g, t or u &lt;400&gt; 604 ttttttttt ttttttttttttttttttttttttttt</pre>                                                                                                                                                                                                                                                                                                      | 120<br>180<br>240<br>300<br>360 |

<400> 605

caacttcagt ggaaaaataa aaccttttcc aagtgccatt ttcatcacaa gact 594

<sup>&</sup>lt;210> 605 <211> 2338 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

agegeacgte ggeagtegge tecetegttg aeegaateae egacetetet eeceagetgt 60

| atttccaaaa | tgtcgctttc | taacaagctg | acgetggaca | agetggaegt | taaagggaag | 120  |
|------------|------------|------------|------------|------------|------------|------|
| cgggtcgtta | tgagagtcga | cttcaatgtt | cctatgaaga | acaaccagat | aacaaacaac | 180  |
| cagaggatta | aggetgetgt | cccaagcatc | aaattctgct | tggacaatgg | agccaagtcg | 240  |
| gtagtcctta | tgagccacct | aggccggcct | gatggtgtgc | ccatgcctga | caagtactcc | 300  |
| ttagagccag | ttgctgtaga | actcaaatct | ctgctgggca | aggatgttct | gttcttgaag | 360  |
| gactgtgtag | gcccagaagt | ggagaaagcc | tgtgccaacc | cagctgctgg | gtctgtcatc | 420  |
| ctgctggaga | acctccgctt | tcatgtggag | gaagaaggga | agggaaaaga | tgcttctggg | 480  |
| aacaaggtta | aagccgagcc | agccaaaata | gaagctttcc | gagcttcact | ttccaagcta | 540  |
| ggggatgtct | atgtcaatga | tgcttttggc | actgctcaca | gagcccacag | ctccatggta | 600  |
| ggagtcaatc | tgccacagaa | ggctggtggg | tttttgatga | agaaggagct | gaactacttt | 660  |
| gcaaaggcct | tggagagece | agagcgaccc | ttcctggcca | teetgggegg | agctaaagtt | 720  |
| gcagacaaga | tccagctcat | caataatatg | ctggacaaag | tcaatgagat | gattattggt | 780  |
| ggtggaatgg | cttttacctt | ccttaaggtg | ctcaacaaca | tggagattgg | cacttctctg | 840  |
| tttgatgaag | agggagccaa | gattgtcaaa | gacctaatgt | ccaaagctga | gaagaatggt | 900  |
| gtgaagatta | ccttgcctgt | tgactttgtc | actgctgaca | agtttgatga | gaatgccaag | 960  |
| actggccaag | ccactgtggc | ttctggcata | cctgctggct | ggatgggctt | ggactgtggt | 1020 |
| cctgaaagca | gcaagaagta | tgctgaggct | gtcactcggg | ctaagcagat | tgtgtggaat | 1080 |
| ggtcctgtgg | gggtatttga | atgggaagct | tttgcccggg | gaaccaaagc | tctcatggat | 1140 |
| gaggtggtga | aagccacttc | taggggctgc | atcaccatca | taggtggtgg | agacactgcc | 1200 |
| acttgctgtg | ccaaatggaa | cacggaggat | aaagtcagcc | atgtgagcac | tgggggtggt | 1260 |
| gccagtttgg | agctcctgga | aggtaaagtc | cttcctgggg | tggatgctct | cagcaatatt | 1320 |
| tagtactttc | ctgcctttta | gttcctgtgc | acageceeta | agtcaactta | gcattttctg | 1380 |
| catctccact | tggcattagc | taaaaccttc | catgtcaaga | ttcagctagt | ggccaagaga | 1440 |
| tgcagtgcca | ggaaccctta | aacagttgca | cagcatctca | gctcatcttc | actgcaccct | 1500 |
| ggatttgcat | acattcttca | agatcccatt | tgaattttt  | agtgactaaa | ccattgtgca | 1560 |
| ttctagagtg | catatatțta | tattttgcct | gttaaaaaga | aagtgagcag | tgttagctta | 1620 |
| gttctcttt  | gatgtaggtt | attatgatta | gctttgtcac | tgtttcacta | ctcagcatgg | 1680 |
| aaacaagatg | aaattccatt | tgtaggtagt | gagacaaaat | tgatgatcca | ttaagtaaac | 1740 |
| aataaaagtg | tccattgaaa | ccgtgatttt | ttttttttc  | ctgtcatact | ttgttaggaa | 1800 |
| gggtgagaat | agaatcttga | ggaacggatc | agatgtctat | attgctgaat | gcaagaagtg | 1860 |
| gggcagcagc | agtggagaga | tgggacaatt | agataaatgt | ccattcttta | tcaagggcct | 1920 |

| actttatggc agacattgtg ctagtgcttt tattctaact tttattttta tcagttacac | 1980 |
|-------------------------------------------------------------------|------|
| atgatcataa tttaaaaagt caaggettat aacaaaaaag ccccagccca ttcctcccat | 2040 |
| tcaagattcc cactccccag aggtgaccac tttcaactct tgagtttttc aggtatatac | 2100 |
| ctccatgttt ctaagtaata tgcttatatt gttcacttcc ttttttttta ttttttaaag | 2160 |
| aaatctattt cataccatgg aggaaggete tgttccacat atatttccac ttetteatte | 2220 |
| tctcggtata gttttgtcac aattatagat tagatcaaaa gtctacataa ctaatacagc | 2280 |
| tgagctatgt agtatgctat gattaaattt acttatgtaa aaaaaaaaaa            | 2338 |
| <210> 606<br><211> 1723<br><212> DNA<br><213> Homo sapiens        |      |
| actccgaatg cgaagttctg tettgtcata gccaagcacg etgettettg gattgacetg | 60   |
| gcaggatggc gccaccacca gctagagtac atctaggtgc gttcctggca gtgactccga | 120  |
| atecegggag egeagegagt gggacagagg cageeggge cacacecage aaagtgtggg  | 180  |
| getetteege ggggaggatt gaaccaegag gegggggeeg aggagegete cetaceteea | 240  |
| tgggacagca cggacccagt gcccgggccc gggcagggcg cgccccagga cccaggccgg | 300  |
| cgcgggaagc cagccctcgg ctccgggtcc acaagacctt caagtttgtc gtcgtcgggg | 360  |
| tectgetgea ggtegtacet ageteagetg caaccateaa aetteatgat caateaattg | 420  |
| gcacacagca atgggaacat agccctttgg gagagttgtg tccaccagga tctcatagat | 480  |
| cagaacatcc tggagcctgt aaccggtgca cagagggtgt gggttacacc aatgcttcca | 540  |
| acaatttgtt tgcttgcctc ccatgtacag cttgtaaatc agatgaagaa gagagaagtc | 600  |
| cctgcaccac gaccaggaac acagcatgtc agtgcaaacc aggaactttc cggaatgaca | 660  |
| attotgotga gatgtgoogg aagtgoagoa gagggtgooo cagagggatg gtcaaggtoa | 720  |
| aggattgtac gccctggagt gacatcgagt gtgtccacaa agaatcaggc aatggacata | 780  |
| atatatgggt gattttggtt gtgactttgg ttgttccgtt gctgttggtg gctgtgctga | 840  |
| ttgtctgttg ttgcatcggc tcaggttgtg gaggggaccc caagtgcatg gacagggtgt | 900  |
| gtttctggcg cttgggtctc ctacgagggc ctggggctga ggacaatgct cacaacgaga | 960  |
| ttctgagcaa cgcagactcg ctgtccactt tcgtctctga gcagcaaatg gaaagccagg | 1020 |
| agceggeaga tttgacaggt gtcactgtac agtccccagg ggaggeacag tgtctgctgg | 1080 |
| gaccggcaga agctgaaggg tctcagagga ggaggctgct ggttccagca aatggtgctg | 1140 |
| accecactga gactetgatg etgttetttg acaagtttge aaacategtg ecetttgact | 1200 |

cctgggacca gctcatgagg cagctggacc tcacgaaaaa tgagatcgat gtggtcagag 1260 ctggtacage aggeecaggg gatgeettgt atgeaatget gatgaaatgg gteaacaaaa 1320 ctggacggaa cgcctcgatc cacaccctgc tggatgcctt ggagaggatg gaagagagac 1380 atgcaaaaga gaagattcag gacctcttgg tggactctgg aaagttcatc tacttagaag 1440 atggcacagg ctctgccgtg tccttggagt gaaagactct ttttaccaga ggtttcctct 1500 taggtgttag gagttaatac atattaggtt ttttttttt ttaacatgta tacaaagtaa 1560 attettagee aggtgtagtg geteatgeet gtaateeeag eactttggga ggetgaggeq 1620 ggtggatcac ttgaggtcag aagttcaaga ccagcctgac caacatcgtg aaatgccgtc 1680 1723 <210> 607 <211> 1449 <212> DNA <213> Homo sapiens <400> 607 ctggatagaa cagctcaagc cttgccactt cgggcttctc actgcagctg ggcttggact 60 teggagtttt gecattgeca gtgggaegte tgagaettte teetteaagt acttggeaga 120 tcactctctt agcagggtct gcgcttcgca gccgggatga agctggtttc cgtcgccctg 180 atgtacetgg gttcgctcgc.cttcctaggc gctgacaccg ctcggttgga tgtcgcqtcq 240 gagtttcgaa agaagtggaa taagtgggct ctgagtcgtg ggaagaggga actgcggatg 300 tccagcaget accccacegg gctcgctgac gtgaaggccg ggcctgccca gacccttatt 360 cggccccagg acatgaaggg tgcctctcga agccccgaag acagcagtcc ggatgccgcc 420 cgcatccgag tcaagcgcta ccgccagagc atgaacaact tccagggcct ccggagcttt 480 ggctgccgct tcgggacgtg cacggtgcag aagctggcac accagatcta ccagttcaca 540 gataaggaca aggacaacgt cgcccccagg agcaagatca gcccccaggg ctacggccgc 600 cggcgccggc gctccctgcc cgaggccggc ccgggtcgga ctctggtgtc ttctaagcca 660 caagcacacg gggctccagc cccccgagt ggaagtgctc cccactttct ttaggattta 720 ggcgcccatg gtacaaggaa tagtcgcgca agcatcccgc tggtgcctcc cgggacgaag 780 gacttcccga gcggtgtggg gaccgggctc tgacagccct gcggagaccc tgagtccggg 840 aggeacegte eggeggegag etetggettt geaagggeee eteettetgg gggetteget 900 tccttagcct tgctcaggtg caagtgcccc aggggggggg gtgcagaaga atccgagtgt 960 ttgccaggct taaggagagg agaaactgag aaatgaatgc tgagaccccc ggagcagggg 1020 tetgagecae ageegtgete geccacaaae tgatttetea eggegtgtea eeceaceagg 1080

| gegeaageet e                                       | actattact                               | tgaactttcc | aaaacctaaa | gaggaaaagt | gcaatgcgtg | 1140 |
|----------------------------------------------------|-----------------------------------------|------------|------------|------------|------------|------|
| ttgtacatac a                                       | gaggtaact                               | atcaatattt | aagtttgttg | ctgtcaagat | tttttttgta | 1200 |
| acttcaaata t                                       | agagatatt                               | tttgtacgtt | atatattgta | ttaagggcat | tttaaaagca | 1260 |
| attatattgt c                                       | ctcccctat                               | tttaagacgt | gaatgtctca | gcgaggtgta | aagttgttcg | 1320 |
| ccgcgtggaa t                                       | gtgagtgtg                               | tttgtgtgca | tgaaagagaa | agactgatta | cctcctgtgt | 1380 |
| ggaagaagga a                                       | acaccgagt                               | ctctgtataa | tctatttaca | taaaatgggt | gatatgcgaa | 1440 |
| cagcaaacc                                          |                                         |            |            |            |            | 1449 |
| <220><br><221> misc_<br><222> (11).                | .(39)<br>a, c, g, t<br>feature<br>(475) |            |            |            |            |      |
| <400> 608                                          |                                         |            |            |            |            |      |
| aggtacaagc r                                       |                                         |            |            | _          | -          | 60   |
| tattgatttg g                                       |                                         |            |            |            | -          | 120  |
| tttacattaa a                                       |                                         |            |            |            |            | 180  |
| taaaaactga a                                       |                                         |            |            |            |            | 240  |
| cttttttaat a                                       | aagaagggg                               | gacggggtct | tggattagta | taaatataac | aataatggaa | 300  |
| aagttgaata t                                       | gttaaggaa                               | taagaattaa | tctcatttaa | agcctcaaaa | caaccatgaa | 360  |
| aaggattaga a                                       | acattttan                               | nnnnnnnn   | nnnnnnnn   | nnnnnnnnn  | nnnnnnnnn  | 420  |
| nnnnnnnnn r                                        | nnnnnnnn                                | nnnnnnnnn  | nnnnnnnnn  | nnnnnnnnn  | nnnnngattt | 480  |
| aaaaaaaaaa a                                       | aaataga                                 |            |            |            |            | 498  |
| <210> 609<br><211> 3216<br><212> DNA<br><213> Homo | sapiens                                 |            |            |            |            |      |
| <400> 609<br>gcggacggtg a                          | agtggggatg                              | gactggagtt | gaagageteg | agatgaaggg | cttgagggcg | 60   |
| tatattattt o                                       | attttcttca                              | agcatttggt | cgagattaag | aattaaaaat | gtcatccaaa | 120  |

caagaaataa tgagtgacca gcggtttaga cgggttgcaa aggacccgag attttgggaa 180 atgccagaaa aggatcgaaa agtcaaaatt gacaagagat ttcgagccat gtttcatgac 240 aagaagttca agttgaacta tgccgtggat aaaagagggc gccccattag ccatagcact 300 acagaggatt tgaagcgttt ttacgacctt tcagattctg attccaatct ctctggtgaa 360 gatagcaaag cattgagtca aaagaaaata aagaagaaaa aaacccagac taaaaaagaa 420 atcqattcaa aaaatctagt tgagaaaaag aaaqaaacca agaaggctaa tcacaaqqgt 480 tctgaaaata aaactgattt agataattct ataggaatta aaaaaatgaa aacctcatgt 540 aaatttaaga tagattcaaa cataagtccg aagaaggata gcaaagaatt tacacaaaaa 600 aataagaaag agaaaaaaa cattgttcaa catactacag actcttctct cgaagaaaaa 660 caaaggacat tagactcagg cacctctgaa attgtgaaat ctcccagaat cgagtgttct 720 aagacaagaa gagaaatgca atcagtggtt caactcataa tgacaagaga cagtgatggt 780 tatgaaaact caacagatgg tgaaatgtgt gacaaagatg ctctggagga agattcagaa 840 agcgttagtg aaataggaag tgatgaggaa tctgaaaatg aaattacaag tgttggtaga 900 gcttcaggtg atgacgatgg aagtgaagat gatgaagagg aggatgaaga tgaagaggag 960 gatgaagatg aggatagtga ggatgatgat aaaagtgaca gtggccctga tcttgcaagg 1020 ggtaaaggaa atatagaaac tagttctgaa gatgaagatg atacggcaga tttgtttcca 1080 gaagaatctg gttttgagca tgcttggaga gaattagata aagatgctcc tcgtgctgat 1140 gagattacac gtcgattagc agtttgtaac atggactggg atagattaaa ggcaaaagat 1200 ttgctggctc tgttcaattc atttaaaccc aaaggaggtg taatattttc cgtcaagata 1260 tatccttcag aatttggaaa ggagaggatg aaggaagagc aagttcaagg accagtagag 1320 ctattaagta ttcctgaaga tgccccagaa aaagactgga cgtctagaga aaaattgaga 1380 gattatcaat tcaaacgact gaagtactat tatgcagtag tagactgtga ttctccggaa 1440 acagctagta aaatttatga ggattgtgat ggcctggaat ttgaaagtag ttgttctttc 1500 atagatetaa ggtttatacc agatgatatt acttttgatg atgageetaa ggatgtagee 1560 tcagaagtga atttaacagc atataaacca aaatatttca cttctgctgc aatgggaaca 1620 tcaacggtgg aaatcacttg ggatgagact gatcatgaaa gaattacaat gctcaacagg 1680 aagtttaaaa aggaagagct tttggacatg gattttcaag cctacttagc ttcctctagt 1740 gaagatgaag aggagataga agaggagcta caaggtgatg atggagtcaa tgtagaagaa 1800 gatgggaaaa caaagaaaag tcagaaggat gatgaagaac aaattgctaa atacaggcag 1860 ctcttgcagg ttattcaaga aaaagaaaag aaaggcaaag aaaatgatat ggaaatggaa 1920

| attaaatggg | ttccaggtct | taaagaaagt | gcagaagaga | tggtcaaaaa | caaattggaa | 1980 |
|------------|------------|------------|------------|------------|------------|------|
| ggaaaggata | aactgacccc | ttgggaacaa | tttttagaga | agaagaaaga | gaaaaaaaga | 2040 |
| ctgaaaagga | aacagaaggc | tcttgctgaa | gaggccagtg | aagaggaact | tccctctgat | 2100 |
| gttgatttga | atgacccata | ctttgctgaa | gaagttaaac | aaataggtat | aaataaaaaa | 2160 |
| tcggtaaaat | ctgcaaaaga | tggcacatct | ccagaagaag | aaattgaaat | agaaagacaa | 2220 |
| aaggctgaaa | tggctttgct | tatgatggat | gaggacgagg | acagtaagaa | acacttcaat | 2280 |
| tacaacaaga | ttgtggagca | ccagaatctg | agcaaaaaga | agaaaaagca | gctcatgaaa | 2340 |
| aagaaggaat | taatagagga | tgactttgag | gtaaatgtta | acgatgcacg | gtttcaggca | 2400 |
| atgtacactt | cccacttgtt | caatttggac | ccctcagatc | ccaatttcaa | gaaaacaaaa | 2460 |
| gctatggaaa | aaatccttga | ggagaaggcc | cggcaaagag | aacggaaaga | acaagaactt | 2520 |
| actcaggcaa | taaagaaaaa | agagagtgag | attgaaaagg | aatcacaaag | gaagtccatt | 2580 |
| gatectgett | tgtcaatgtt | gattaaatct | ataaaaacca | aaacagagca | gtttcaagca | 2640 |
| agaaaaaagc | aaaaagtcaa | ataactggat | gttacttatt | tttgaactga | atacatcttt | 2700 |
| tcctaaaatg | tacaaaaata | ataggaggga | atatttattg | ggaacaaagc | tatctttcaa | 2760 |
| gaacatgaat | aaaatctttt | tctggacata | gtaaaatttt | tctccataaa | taattgtact | 2820 |
| taattgtgga | tgactgacaa | atttttattg | tatattccta | cagatcagtc | ataattaaat | 2880 |
| tacctgcatt | atagggttta | taaaattttt | atattttaca | atgttcagtt | ctaactagtg | 2940 |
| gaaagttact | ctagcttttt | aaaaggctgt | ttacaattct | gtgtaaaaat | agagcagtat | 3000 |
| ctactcaagt | ttgtgtaaat | gttagggata | atttgaaaaa | tatatatatt | taatacatta | 3060 |
| atttctctgg | aagcaggagg | catgtttaaa | taactattaa | aataatttat | ttttctagcc | 3120 |
| ataaaggatg | gaagtcaaga | actttttgtt | gtttagtcat | gttaagtata | gtttatgaaa | 3180 |
| ttaacttgta | aataaaagtg | taaaatattt | tcatta     |            |            | 3216 |
|            |            |            |            |            |            |      |

teggggggtt egectegttt geetegegee etecaetgga getgttegeg eeteceggget 60
cccaccegcag cccaccegge agaggagteg etaccagege ccagtgeget etgteagtee 120
geaaacteet tgeegeeege ecegggetgg gegecaaata ccaggetace atggtetaca 180
agactetett egetettig atettaactg caggatgga ggtacagagt etgeetacat 240
cageteettt getegtete etteegacaa acattgtace aceggactace atetggacta 300

<sup>&</sup>lt;210> 610

<sup>&</sup>lt;211> 2155 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 610

| 3                   | dudcaccgar | geagacacte   | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC | . caacggcaci | cacaacaact | 360  |
|---------------------|------------|--------------|-----------------------------------------|--------------|------------|------|
| cggtgctccc          | agttacagca | tcagccccaa   | catctctgct                              | tcctaagaad   | atttccatag | 420  |
| agtccagaga          | agaggagato | accageccag   | gttcgaattg                              | ggaaggcaca   | aacacagacc | 480  |
| cctcacctto          | tgggtteteg | j tcaacaageg | gtggagtcca                              | cttaacaac    | acgttggagg | 540  |
| aacacagctt          | gggcactcct | gaagcaggcg   | tggcagctac                              | actgtcgcag   | tccgctgctg | 600  |
| agcctcccac          | actcatctcc | cctcaagctc   | : cagcctcatc                            | acceteated   | ctatcaacct | 660  |
| caccacctga          | ggtcttttet | gecteegtta   | ctaccaacca                              | tagetecact   | gtgaccagca | 720  |
| cccaacccac          | tggageteca | actgcaccag   | agtececaae                              | agaggagtco   | agctctgacc | 780  |
| acacacccac          | ttcacatgcc | acagetgage   | cagtgcccca                              | ggagaaaaca   | ccccaacaa  | 840  |
| ctgtgtcagg          | caaagtgatg | tgtgagctca   | tagacatgga                              | gacaccacca   | cctttcccag | 900  |
| ggtgatcatg          | caggaagtag | aacatgcatt   | aagttcaggc                              | agcatcgccg   | ccattaccgt | 960  |
| gacagtcatt          | gccgtggtgc | tgctggtgtt   | tggagttgca                              | gcctacctaa   | aaatcaggca | 1020 |
| ttcctcctat          | ggaagacttt | tggacgacca   | tgactacggg                              | tcctggggaa   | actacaacaa | 1080 |
| ccctctgtac          | gatgactcct | aacaatggaa   | tatggcctgg                              | gatgaggatt   | aactgttctt | 1140 |
| tatttataag          | tgcttatcca | gtagaattaa   | taagtacctg                              | atgcgcattg   | aacgacaatc | 1200 |
| ttaagccctg          | ttttgttggt | atggttgttt   | ttgttttcct                              | ccctctcctc   | tggctgctac | 1260 |
| aacttcccct          | ttctggtaca | agaagaacca   | ttctttaaag                              | gtgagtggag   | gctgatttgc | 1320 |
| agctgaagtg          | ggccagcctt | gcaccagcca   | ggccagacca                              | ccatggtgaa   | ggcttctttc | 1380 |
| cccactgcag          | gacccacttt | gagaaggacc   | gaggaggagg                              | atttgggttg   | ttttgttagg | 1440 |
| ggttactttc          | aggggaacat | ttcatttgtg   | ttatttctta                              | aacttctatt   | taggaaatta | 1500 |
| cattaagtat          | taatgagggg | aaaggaaatg   | agctctacga                              | ggatttcacc   | ctgcatggga | 1560 |
| gagagcaggg          | ttttctcaga | ttccttttta   | atctctattt                              | atctggttgt   | ttctgacagg | 1620 |
| atgctgcctg          | cttggctcta | caagctggaa   | agcagcttct                              | tagctgccta   | attaatgaaa | 1680 |
| gatgaaaata          | ggaagtgccc | tggagggggc   | cagcaggtca                              | cggggcagaa   | tctctcaggt | 1740 |
| t <b>g</b> ctgtggga | tctcagtgtg | cccctacctg   | ttctcccctc                              | caggccacct   | gtctctgtaa | 1800 |
| aggatgtctg          | ctctgttcaa | aaggcagctg   | ggatcccagc                              | ccacaagtga   | tcagcagagt | 1860 |
| tgcatttcca          | aagaaaaagg | ctatgagatg   | agctgagtta                              | tagagagaaa   | gggagaggca | 1920 |
| tgtacggtgt          | ggggaagtgg | aagggaagct   | ggcgggggag                              | aaggaggcta   | acctgcactg | 1980 |
| agtacttcat          | taggacaagt | gagaatcagc   | tattgataat                              | ggccagagat   | atccacaget | 2040 |
| ggaggagcc           | cagagaccgt | ttgctttata   | cccacacage                              | aactggtcca   | ctgctttact | 2100 |
| gtctgttgga          | taatggctgt | aaaatgttta   | aaaacaaaaa                              | aaaaaaaaa    | aaaaa      | 2155 |

60

ggcacgaggc tagagcgatg ccgggccgqa qttqcqtcqc cttaqtcctc ctqqctqccq

<210> 611 <211> 2333 <212> DNA

<213> Homo sapiens

<400> 611

ccgtcagctg tgccgtcgcg cagcacgcgc cgccgtggac agaggactgc agaaaatcaa 120 cctatectee tteaggacea acgtacagag gtgcagttee atggtacace ataaatettg 180 acttaccacc ctacaaaaga tggcatgaat tgatgcttga caaggcacca atgctaaagg 240 ttatagtgaa ttctctgaag aatatgataa atacattcgt gccaagtgga aaagttatgc 300 aggtggtgga tgaaaaattg cctggcctac ttgqcaactt tcctggccct tttgaagagg 360 aaatgaaggg tattgccgct gttactgata tacctttagg agagattatt tcattcaata 420 ttttttatga attatttacc atttgtactt caatagtagc agaagacaaa aaaggtcatc 480 taatacatgg gagaaacatg gattttggag tatttcttgg gtggaacata aataatgata 540 cctgggtcat aactgagcaa ctaaaacctt taacagtgaa tttggatttc caaagaaaca 600 acaaaactgt cttcaaggct tcaagctttg ctggctatgt gggcatgtta acaggattca 660 aaccaggact gttcagtctt acactgaatg aacgtttcag tataaatggt ggttatctqq 720 gtattctaga atggattctg ggaaagaaag atgccatgtg gatagggttc ctcactagaa 780 cagttctgga aaatagcaca agttatgaag aagccaagaa tttattgacc aagaccaaga 840 tattggcccc agcctacttt atcctgggag gcaaccaqtc tqqqqaaqqt tqtqtqatta 900 cacgagacag aaaggaatca ttggatgtat atgaactcqa tqctaaqcaq qqtaqatqqt 960 atgtggtaca aacaaattat gaccgttgga aacatccctt cttccttgat gatcgcagaa 1020 cgcctgcaaa gatgtgtctg aaccgcacca gccaagagaa tatctcattt gaaaccatgt 1080 atgatgtcct gtcaacaaaa cctgtcctca acaagctgac cgtatacaca accttgatag 1140 atgttaccaa aggtcaattc gaaacttacc tgcgggactg ccctgaccct tgtataggtt 1200 ggtgagcaca cgtctggcct acagaatgcg gcctctgaga catgaagaca ccatctccat 1260 gtgaccgaac actgcagctg tctgaccttc caaagactaa gactcgcggc aggttctctt 1320 tgagtcaata gcttgtcttc gtccatctgt tgacaaatga cagatctttt ttttttccc 1380 cctatcagtt gatttttctt atttacagat aacttcttta ggggaagtaa aacagtcatc 1440 tagaattcac tgagttttgt ttcactttga catttgggga tctggtgggc agtcgaacca 1500 tggtgaactc cacctccgtg gaataaatgg agattcagcg tgggtgttga atccagcacg 1560 tetgtgtgag taacgggaca gtaaacactc cacattette agttttteac ttetacetac 1620

| atatttgtat                                         | gtttttctgt | ataacagcct | tttccttctg | gttctaactg | g ctgttaaaat | 1680 |
|----------------------------------------------------|------------|------------|------------|------------|--------------|------|
| taatatatca                                         | ttatctttgc | tgttattgac | agcgatatta | tttattaca  | tatcattaga   | 1740 |
| gggatgagac                                         | agacattcac | ctgtatattt | cttttaatgg | gcacaaaatg | ggcccttgcc   | 1800 |
| tctaaatagc                                         | actttttggg | gttcaagaag | taatcagtat | gcaaagcaat | cttttataca   | 1860 |
| ataattgaag                                         | tgttcccttt | ttcataatta | ctctacttcc | cagtaaccct | aaggaagttg   | 1920 |
| ctaacttaaa                                         | aaactgcatc | ccacgttctg | ttaatttagt | aaataaacaa | gtcaaagact   | 1980 |
| tgtggaaaat                                         | aggaagtgaa | cccatatttt | aaattctcat | aagtagcatt | gatgtaataa   | 2040 |
| acaggttttt                                         | agtttgttct | tcagattgat | agggagtttt | aaagaaattt | tagtagttac   | 2100 |
| taaaattatg                                         | ttactgtatt | tttcagaaat | caaactgctt | atgaaaagta | ctaatagaac   | 2160 |
| ttgttaacct                                         | ttctaacctt | cacgattaac | tgtgaaatgt | acgtcatttg | tgcaagaccg   | 2220 |
| tttgtccact                                         | tcattttgta | taatcacagt | tgtgttcctg | acactcaata | aacagtcact   | 2280 |
| ggaaagagtg                                         | ccagtcagca | gtcatgcacg | ctgataaaaa | aaaaaaaaa  | aaa          | 2333 |
| <210> 612<br><211> 2010<br><212> DNA<br><213> Homo | sapiens    |            |            |            |              |      |
|                                                    | tgtcctcgga | tcacagtctc | ttctcactac | agtgtcgccg | cctctgcctg   | 60   |
| cgtagccccg                                         | gccatggctc | tgtagcctcg | acccctttgt | gccccggcc  | cgtctccgcg   | 120  |
| ctcaccacgc                                         | ctgcgctctc | cgctcccacc | ttctttcttc | agccgaggcc | gccgccgcct   | 180  |
| ctccttgctg                                         | cagccatgga | gtcttccact | ttcgccttgg | tgcctgtctt | cgcccacctg   | 240  |
| agcatcctcc                                         | agagcctcgt | gccagctgct | ggtgcagcct | ctcctgttgc | catcagtgcc   | 300  |
| cagcacctgt                                         | gctacagcca | tgtcactcct | ggcgaccctg | gggctggagc | tggacagggc   | 360  |
| cctgctccca                                         | gctagtgggc | tgggatggct | cgtagactat | gggaaactcc | ccccggcccc   | 420  |
| tgcccccctg                                         | gctccctatg | aggtccttgg | gggagccctg | gagggeggge | ttccagtggg   | 480  |
| gggagagccc                                         | ctggcaggtg | atggcttctc | tgactggatg | actgagcgag | ttgatttcac   | 540  |
| agctctcctc                                         | cctctggagc | ctcccctacc | ccccggcacc | ctcccccaac | cttccccaac   | 600  |
| cccacctgac                                         | ctggaagcta | tggcctccct | cctcaagaag | gagetggaae | agatggaaga   | 660  |
| cttcttccta                                         | gatgccccgc | ccctcccacc | accctccccg | ccgccactac | caccaccacc   | 720  |
| actaccacca                                         | gcccctccc  | tccccctgtc | cctcccctcc | tttgacctcc | cccagccccc   | 780  |
| tgtcttggat .                                       | actctggact | tgctggccat | ctactgccgc | aacgaggccg | ggcaggagga   | 840  |

agtggggatg ccgcctctgc ccccgccaca gcagccccct cctccttctc cacctcaacc 900

| ttctcgcctg              | geceectace     | cacatcetge | caccaccega | ggggaeegea | agcaaaagaa | 960  |
|-------------------------|----------------|------------|------------|------------|------------|------|
| gagagaccag              | aacaagtcgg     | cggctctgag | gtaccgccag | cggaagcggg | cagagggtga | 1020 |
| ggccctggag              | ggcgagtgcc     | aggggctgga | ggcacggaat | cgcgagctga | aggaacgggc | 1080 |
| agagtccgtg              | gagcgcgaga     | tccagtacgt | caaggacctg | ctcatcgagg | tttacaaggc | 1140 |
| ccggagccag              | aggacccgta     | gctgctagaa | gggcaggggt | gtggcttctg | ggggctggtc | 1200 |
| ttcagctctg              | gcgccttcat     | cccctgcct  | ctaccttcat | tccaaacccc | tctcggccgg | 1260 |
| gtgcagtggc              | ttatgcttgt     | aatcccagca | ctttgggagg | ccaaggcagg | aggatcgttt | 1320 |
| gaggccagga              | ggtcaatacc     | agcctgggca | acatagtaag | accctgtctc | tattaaaaaa | 1380 |
| aaaaaatcaa              | cccttcttcc     | ccaccaaacc | acccaactcc | tetetactet | tatcctttta | 1440 |
| tectetgtet              | ctgcttatca     | cctctcttgc | gtatttctgg | atctccttcc | ctcctttctc | 1500 |
| gtccaaatca              | tgaaatgttt     | ggccttagtc | aatgtctatg | cccgtcacat | aacagccgag | 1560 |
| gcaccgaggc              | ccacagggaa     | gcagctggga | gcttggaaac | ctggtctctt | gaatttcaaa | 1620 |
| cctggtttct              | tacaggtggt     | tgtctggggt | gggtggagtg | gcgacaggat | agagctgaag | 1680 |
| gactatgcaa              | atgaggaagt     | aagtcagggc | gggetttgag | aaggggaccc | atatcctaca | 1740 |
| ggcaaaaagc              | aggctaggtg     | accttgggac | actacgctaa | gggagggagg | ctaaaggcgg | 1800 |
| ccaggtttgc              | agtgcgggaa     | gatgagcagg | ccagtgggag | gaggggcagg | gcagggctgt | 1860 |
| agttggtgac              | tgggtgttca     | ttttagctct | aagaaaaaaa | atcagtgttt | cgtgaaggtg | 1920 |
| ttggagaggg              | gctgtgtctg     | ggtgagggat | ggcggggtac | tgatttttt  | gggaggttat | 1980 |
| gagcaaaaat              | aaaacgaaac     | atttcctctg |            |            |            | 2010 |
|                         | 3<br>o sapiens |            |            |            |            |      |
| <400> 613<br>ggcacgaggt | agagaagcag     | gggatagact | cataggetge | aacaaaggtg | actctgtccc | 60   |
| tggacactgc              | ctccgtactt     | tetecttget | tcactggcca | cagcatetee | ctccagccct | 120  |
| cgctatgtgc              | ctctgccatc     | ttcacccatc | atggagcaga | ggtgaggaga | ggcagcctgg | 180  |
| gaatatggag              | accagtgaag     | gaccaggcct | ggagagcaca | gggtcctacc | tgggcatcca | 240  |
| gcagaggagc              | ccctaaaggc     | caggagcacc | ccaagaggag | ggagggcagc | cagcctccat | 300  |
| tascaacasa              | cctccagccc     | tctcctactt | tgatcaccat | ttctctccag | actitctacc | 360  |

tecgagatgt ggeaccatag tgeggtgee tgtggettea eegecetaet tecaceteeg 420
eccageetgt aatgtttata taägeageet eaaggaecaa gäaccatetg egaaaggaea 480

| cacacaggaa attcataaaa gaaatctgaa tggataaaac catgaaaaaa agtatgcttc              | 540  |
|--------------------------------------------------------------------------------|------|
| attagtaatt aaagaaaggc aaatagagct ggaagcattt ttcccttagc aaaccataac              | 600  |
| agaaaaaaat aagacccaat attggcaaag agactactga aaaaacattc ccatacattg              | 660  |
| cgtgtgggag tatacatcgg tgcaggcttc ctggatgaca gttgggtgat atgtgtcatg              | 720  |
| tggcctaaaa gcctccatgt catttgacct acgaattcta tctttgggaa tttatcctaa              | 780  |
| gaaaatactt aaggatttag ttagtgataa gatgttcatc ccagcattgc aatggagaaa              | 840  |
| aatgggaagc aatggtttgg ttgggaattt atteetttte tgetgtaaeg aaagtttgea              | 900  |
| ataggggatt gcttaagtaa attattgtat ctccatccag atggtggagt accgcgcaga              | 960  |
| cattaaaagt catgtaaaag aacatctgac tgaaagaaaa atgctccttg aatattaaaa              | 1020 |
| ggttgtaaaa atagtgcatg ttatgtgatt tcaattttgt tttttaaaat atgggtgtat              | 1080 |
| gcttgtatac gtagagcaga taaaaaagac ggaaggcata ctaaaaaatg ttgagtggtt              | 1140 |
| atctttgtat ggtggaacaa agtcactgta attttcatct ttggtttttc tgtaatttcc              | 1200 |
| aaattttcca cattttgtat ttcatataat aaatataatt taagaaaaaa aaaaaaaaaa              | 1260 |
| aaa                                                                            | 1263 |
| <210> 614<br><211> 447<br><212> DNA<br><213> Homo sapiens                      |      |
| <400> 614<br>tttttttttt ttttttttgg tgaaacaatt tattagccat ggttcagaat aatacaaaaa | 60   |
| taaaggtgtg gctttattta cacacactct tgaagctctt ggcattcagc ggacagcaaa              | 120  |
| caccatactc agagtgatgg aattaatagc atttagggta agcaaggacc agtgtgagac              | 180  |
| tgggcccagg aaatggggag ggaatgtgag gagaaacagg gaatgacatt aaagaagaaa              | 240  |
| cagacacctt ggagaattta tgactccttt ctctatgtca tgtccagaag aggcaagtct              | 300  |
| acagagatca aagtagccta ggggtgccta gggatgggga ggttggggtg gcgactaagg              | 360  |
| ggggctggat ttcttttggg ggtagtcaac tctaagacgg actgtgctga tggctgctga              | 420  |
| actgtgacta tactaaaccg gcatcaa                                                  | 447  |
| <210> 615<br><211> 2372<br><212> DNA<br><213> Homo sapiens                     |      |
| gcaccgcgcg agcttggctg cttctggggc ctgtgtggcc ctgtgtgtcg gaaagatgga              | 60   |

| gcaagaagc  | gageeegage   | ggeggeegeg | accectetga | ccgagatcct | gctgctttcg | 120  |
|------------|--------------|------------|------------|------------|------------|------|
| cagccagga  | g caccgtccct | ccccggatta | gtgcgtacga | gcgcccagtg | ccctggcccg | 180  |
| gagagtgga  | a tgatccccga | ggcccagggc | gtcgtgcttc | cgcagtagto | agtccccgtg | 240  |
| aaggaaact  | g gggagtettg | agggaccccc | gactccaagc | gcgaaaaccc | cggatggtga | 300  |
| ggagcaggc  | a aatgtgcaat | accaacatgt | ctgtacctac | tgatggtgct | gtaaccacct | 360  |
| cacagattc  | agcttcggaa   | caagagaccc | tggttagacc | aaagccattg | cttttgaagt | 420  |
| tattaaagto | tgttggtgca   | caaaaagaca | cttatactat | gaaagaggtt | cttttttatc | 480  |
| ttggccagta | tattatgact   | aaacgattat | atgatgagaa | gcaacaacat | attgtatatt | 540  |
| gttcaaatga | tcttctagga   | gatttgtttg | gcgtgccaag | cttctctgtg | aaagagcaca | 600  |
| ggaaaatata | taccatgatc   | tacaggaact | tggtagtagt | caatcagcag | gaatcatcgg | 660  |
| actcaggtac | atctgtgagt   | gagaacaggt | gtcaccttga | aggtgggagt | gatcaaaagg | 720  |
| accttgtaca | agagcttcag   | gaagagaaac | cttcatcttc | acatttggtt | tctagaccat | 780  |
| ctacctcato | tagaaggaga   | gcaattagtg | agacagaaga | aaattcagat | gaattatctg | 840  |
| gtgaacgaca | aagaaaacgc   | cacaaatctg | atagtatttc | cctttccttt | gatgaaagcc | 900  |
| tggctctgtg | tgtaataagg   | gagatatgtt | gtgaaagaag | cagtagcagt | gaatctacag | 960  |
| ggacgccatc | gaatccggat   | cttgatgctg | gtgtaagtga | acattcaggt | gattggttgg | 1020 |
| atcaggatto | agtttcagat   | cagtttagtg | tagaatttga | agttgaatct | ctcgactcag | 1080 |
| aagattatag | ccttagtgaa   | gaaggacaag | aactctcaga | tgaagatgat | gaggtatatc | 1140 |
| aagttactgt | gtatcaggca   | ggggagagtg | atacagattc | atttgaagaa | gatcctgaaa | 1200 |
| tttccttagc | tgactattgg   | aaatgcactt | catgcaatga | aatgaatccc | ccccttccat | 1260 |
| cacattgcaa | cagatgttgg   | gcccttcgtg | agaattggct | tcctgaagat | aaagggaaag | 1320 |
| ataaagggga | aatctctgag   | aaagccaaac | tggaaaactc | aacacaagct | gaagagggct | 1380 |
| ttgatgttcc | tgattgtaaa   | aaaactatag | tgaatgattc | cagagagtca | tgtgttgagg | 1440 |
| aaaatgatga | taaaattaca   | caagcttcac | aatcacaaga | aagtgaagac | tattctcagc | 1500 |
| catcaacttc | tagtagcatt   | atttatagca | gccaagaaga | tgtgaaagag | tttgaaaggg | 1560 |
| aagaaaccca | agacaaagaa   | gagagtgtgg | aatctagttt | gccccttaat | gccattgaac | 1620 |
| cttgtgtgat | tigtcaaggt   | cgacctaaaa | atggttgcat | tgtccatggc | aaaacaggac | 1680 |
| atcttatggc | ctgctttaca   | tgtgcaaaga | agctaaagaa | aaggaataag | ccctgcccag | 1740 |
| tatgtagaca | accaattcaa   | atgattgtgc | taacttattt | cccctagttg | acctgtctat | 1800 |
| aagagaatta | tatatttcta   | actatataac | cctaggaatt | tagacaacct | gaaatttatt | 1860 |
| cacatatatc | aaagtgagaa   | aatgcctcaa | ttcacataga | tttcttctct | ttagtataat | 1920 |

|   | tgacctactt                                        | tggtagtgga | atagtgaata | cttactataa | tttgacttga | atatgtagct | 198  |
|---|---------------------------------------------------|------------|------------|------------|------------|------------|------|
|   | catcctttac                                        | accaactcct | aattttaaat | aatttctact | ctgtcttaaa | tgagaagtac | 204  |
|   | ttggttttt                                         | ttttcttaaa | tatgtatatg | acatttaaat | gtaacttatt | atttttttg  | 2100 |
|   | agaccgagtc                                        | ttgctctgtt | acccaggctg | gagtgcagtg | ggtgatcttg | gctcactgca | 2160 |
|   | agetetgeee                                        | teccegggtt | cgcaccattc | tcctgcctca | gcctcccaat | tagcttggcc | 2220 |
|   | tacagtcatc                                        | tgccaccaca | cctggctaat | tttttgtact | tttagtagag | acagggtttc | 2280 |
|   | accgtgttag                                        | ccaggatggt | ctcgatctcc | tgacctcgtg | atccgcccac | ctcggcctcc | 2340 |
|   | caaagtgctg                                        | ggattacagg | catgagccac | cg         |            |            | 2372 |
|   | <210> 616<br><211> 319<br><212> DNA<br><213> Home |            |            |            |            |            |      |
|   | ccgcatgctc                                        | ccgtatcttt | ggttacgctc | gtcagccggt | cggccgccgc | ctccagccgt | 60   |
| • | gtgccgctat                                        | gggagtcccg | gcgttcttcc | gctggctcag | ccgcaagtac | ccgtccatca | 120  |
|   | tagtcaactg                                        | cgtggaagag | aagccaaaag | aatgcaatgg | tgtaaagatt | ccagttgatg | 180  |
| • | ccagtaaacc                                        | taatccaaat | gatgtggagt | ttgataatct | gtatttggat | atgaatggaa | 240  |
| 1 | tcatccatcc                                        | ctgtactcat | cctgaagaca | aaccagcacc | aaaaaatgaa | gatgaaatga | 300  |
| 1 | tggttgcaat                                        | ttttgagtac | attgacagac | ttttcagtat | tgtaagacca | agaagacttc | 360  |
| 1 | tctacatggc                                        | aatagatgga | gtggcaccac | gtgtaaaaat | gaaccagcag | cgttcaagga | 420  |
| 9 | ggttcagggc                                        | catcaaaaga | ggaatggaag | cagcagtcga | gaagcagcga | gtcagggaag | 480  |
| ě | aaatattggc                                        | aaaaggtggc | tttcttcctc | cagaagaaat | aaaagaaaga | tttgacagca | 540  |
| ě | actgtattac                                        | accaggaact | gaattcatgg | acaatcttgc | taaatgcctt | cgctattaca | 600  |
|   | agctgatcg                                         | tttaaataat | gaccctgggt | ggaaaaattt | gacagttatt | ttatctgatg | 660  |
| • | ctagtgctcc                                        | tggtgaagga | gaacataaaa | tcatggatta | cattagaagg | caaagagccc | 720  |
| ā | agcctaacca                                        | tgacccaaat | actcatcatt | gtttatgtgg | agctgatgct | gatctcatta | 780  |
| t | gettggeet                                         | tgccacacat | gaaccgaact | ttaccattat | tagagaagaa | ttcaaaccaa | 840  |
| ě | acaggcccaa                                        | accatgtggt | ctttgtaatc | agtttggaca | tgaggtcaaa | gattgtgaag | 900  |
| 9 | gtttgtcaag                                        | agaaaagaag | ggaaagcatg | atgaacttgc | cgatagtctt | ccttgtgcag | 960  |
| á | aggagagtt                                         | tatcttcctt | cggcttaatg | ttcttcgtga | gtatttggaa | agagaactca | 1020 |
| c | aatggccag                                         | cctaccattc | acatttgatg | ttgagaggag | cattgatgac | tgggttttca | 1080 |
| + | atacttett                                         | tataaaaaat | anatt ant  |            |            |            |      |

atgcaattga ccgtttggtt aacatataca aaaatgtggt acacaaaact gggggttacc 1200 ttacagaaag tggttatgtc aatctgcaaa gagtacagat gatcatgtta gcagttggtg 1260 aagttgagga tagcattttt aaaaagagaa aggatgatga ggacagtttt agaagacgac 1320 agaaagaaaa aagaaagaga atgaagagag atcaaccagc tttcactcct agtggaatat 1380 taactcctca tgccttgggt tcaagaaatt caccaggttc tcaagtagcc agtaatccga 1440 gacaagcagc ctatgacatg aggatgcaga ataactctag tccttcgata tctcctaata 1500 cqaqtttcac atctgatggc tccccgtctc cattaggagg aattaagcga aaagcagaag 1560 acagtgacag tgaacctgag ccagaggata atgtcaggtt atgggaagct ggctggaagc 1620 aqcqgtacta caagaacaaa tttgatgtgg atgcagctga tgagaaattc cgtcggaaag 1680 ttgtgcagtc gtacgttgaa ggactttgct gggttcttag atattattac cagggctgtg 1740 cttcctggaa gtggtattat ccatttcatt atgcaccatt tgcttcagac tttgaaggca 1800 ttgcagacat gccatctgaa tttgaaaagg gtacgaaacc gtttaaacca ctagaacaac 1860 ttatgggggt atttccagct gcaagtggta attttctacc tccatcatgg cggaagctca 1920 tgagtgatcc tgattctagt ataattgact tctatcctga agattttgct attgatttga 1980 atgggaagaa atatgcatgg caaggtgttg ctctcttgcc attcgtggat gagcgaaggc 2040 tacgagetge cetagaagag gtatacceag aceteactee agaagagace agaagaaaca 2100 gccttggagg tgatgtctta tttgtgggga aacatcaccc actccatgac ttcattttag 2160 agctgtacca gacaggttcc acagagccag tggaggtacc ccctgaacta tgtcatggga 2220 ttcaaggaaa gttttctttg gatgaagaag ccattcttcc agatcaaata gtatgtgctc 2280 ctgttcctat gttaagggat ctgacacaga acactgtagt cagtattaat tttaaagacc 2340 cacagtttgc tgaagattac atttttaaag ctgtaatgct tccaggagca agaaagccag 2400 cagcagtact gaaacctagt gactggggaa aatccagcaa tggacggcag tggaaqcctc 2460 agcttggctt taaccgtgac cggaggcctg tgcacctgga tcaggcagcc ttcaggactt 2520 tgggccatgt gatgccaaga ggctcaggaa ctggcattta cagcaatgct gcaccaccac 2580 ctgtgactta ccagggaaac ttatacaggc cgcttttgag aggacaagcc cagattccaa 2640 aacttatgtc aaatatgagg ccccaggatt cctggcgagg tcctcctccc cttttccagc 2700 agcaaaggtt tgacagaggc gttggggctg aacctctgct cccatggaac cggatgctgc 2760 aaacccagaa tgcagccttc cagccaaacc agtaccagat gctagctggg cctggtgggt 2820 atccacccag acgagatgat cgtggaggga gacagggata tcccagagaa ggaaggaaat 2880 accetttgcc accaccetca ggaagataca attggaatta agettttgta aagettteec 2940

| aaatcctttc                                        | atcattctac | agttttatgc | tatttgtgga | aagatttett | tctcaagtag | 3000 |
|---------------------------------------------------|------------|------------|------------|------------|------------|------|
| tagtttttaa                                        | taaaactaca | gtactttgtg | tatttcttt  | aactgtgtat | atttctactg | 3060 |
| atctgatctc                                        | actgtttatg | ttgctttcca | aagatgtatg | ttgcataata | cagtggatct | 3120 |
| gaatttatta                                        | atgcttataa | acacatttga | ggaataggag | gtccgggttt | tccataatgg | 3180 |
| gtaaaatgga                                        | accagetg   |            |            |            |            | 3198 |
| <210> 617<br><211> 422<br><212> DNA<br><213> Home | o sapiens  |            |            |            |            |      |
| <400> 617<br>tgagtgtaaa                           | gaaaggttta | ctccttgtat | catcccctcc | ccgtggactg | cttcaattct | 60   |
| atcggggaca                                        | ggccagtccc | tggaggctgc | aaggagccac | aaacctttcc | cagctcacac | 120  |
| tetgcacece                                        | tcagtctctg | ctgctaaaga | atcagactca | ggtagatggg | gtgtccacag | 180  |
| tctgtcctca                                        | ttacccagtc | ataccgggta | gcatggcccg | agagagccct | tatctctccc | 240  |
| caccttaaaa                                        | ccctcagcat | cacacagcag | gaaccagtcc | acagggctta | ccaaggatac | 300  |
| gcagtgaaaa                                        | cagaataatg | tctgttacaa | accccctaaa | cctgagatgg | ctgaagagcc | 360  |
| agattcctgc                                        | accccatctg | actcccccag | gcagtgggag | atgacccaaa | gccccattc  | 420  |
| cc                                                |            |            |            |            |            | 422  |
| <210> 618<br><211> 287<br><212> DNA<br><213> Hom  | o sapiens  |            |            |            |            |      |
| <400> 618                                         | tttttcatca | gcaatttcaa | ttttatgttt | tctacttatt | tttatataaa | 60   |
|                                                   |            | _          |            | gatgtgcata |            | 120  |
| _                                                 |            |            |            | taaatgcttg |            | 180  |
|                                                   |            |            |            | acagttattg |            | 240  |
| _                                                 | tttaaatcaa |            |            |            |            | 287  |
| <210> 619 <211> 515 <212> DNA                     | o sapiens  | ÷          |            |            |            |      |
|                                                   |            |            |            |            |            |      |
| <400> 619                                         | tttttttt   | tttttttt   | tctgcttaat | ggcatgagag | ctccatgaag | 60   |

| gtccacattc agcaccaggg gaaattcgtg catcacatga catcgcctca ttaaagctgt                            | 180  |
|----------------------------------------------------------------------------------------------|------|
| cagcataact ttaccaaaca agttatataa caaccaagaa gccactggta caggataata                            | 240  |
| ttcagaatgt gacatgtaaa aattgcaata agtagaatat attttttatg ttgttgaaca                            | 300  |
| aaagaaaatt gaaagaatta aagcaatcca agggcctaga agcaagtgaa ttctctgata                            | 360  |
| cctgtgagta aggctacttt aggacagccc atgaatccat tcctcgggtt gttctgagct                            | 420  |
| ccttgagaaa tggccccaac tgggtttttg gagtgaacct ggttcaatac agattgcctt                            | 480  |
| aggatgttca ctgaaagttt cggcttgctc tggac                                                       | 515  |
| <210> 620<br><211> 1843<br><212> DNA<br><213> Homo sapiens                                   |      |
| <pre>&lt;400&gt; 620 ggaggaggtg gcggcgctgg agctcctccc ggggaccagc gacccgggga gcgagcacgt</pre> | 60   |
| egetecgeae egetetteet ecageegetg ageegteeet tetegecatg teccagagea                            | 120  |
| ggcaccgcgc cgaggccccg ccgctggagc gcgaggacag tgggaccttc agtttgggga                            | 180  |
| agatgataac agctaagcca gggaaaacac cgattcaggt attacacgaa tacggcatga                            | 240  |
| agaccaagaa catcccagtt tatgaatgtg aaagatctga tgtgcaaata cacgtgccca                            | 300  |
| ctttcacctt cagagtaacc gttggtgaca taacctgcac aggtgaaggt acaagtaaga                            | 360  |
| agctggcgaa acatagagct gcagaggctg ccataaacat tttgaaagcc aatgcaagta                            | 420  |
| tttgctttgc agttcctgac cccttaatgc ctgacccttc caagcaacca aagaaccagc                            | 480  |
| ttaatcctat tggttcatta caggaattgg ctattcatca tggctggaga cttcctgaat                            | 540  |
| ataccettte ecaggaggga ggacetgete ataagagaga atatactaca atttgcagge                            | 600  |
| tagagtcatt tatggaaact ggaaaggggg catcaaaaaa gcaagccaaa aggaatgctg                            | 660  |
| ctgagaaatt tcttgccaaa tttagtaata tttctccaga gaaccacatt tctttaacaa                            | 720  |
| atgtagtagg acattettta ggatgtactt ggcatteett gaggaattet eetggtgaaa                            | 780  |
| agatcaactt actgaaaaga agcctcctta gtattccaaa tacagattac atccagctgc                            | 840  |
| ttagtgaaat tgccaaggaa caaggtttta atataacata tttggatata gatgaactga                            | 900  |
| gegecaatgg acaatateaa tgtettgetg aactgteeac cageeccate acagtetgte                            | 960  |
| atggctccgg tatctcctgt ggcaatgcac aaagtgatgc agctcacaat gctttgcagt                            | 1020 |
| atttaaagat aatagcagaa agaaagtaaa tctggagcaa cttaaaaaat ctttcagtag                            | 1080 |
| cacataaaaa gttcccctct ggccccttcc caagtaaaac ttttaccgta gtgtttatgt                            | 1140 |
| cttgtttcta aatctcttca tagattccat caacactcca gatttaatta tctcctcata                            | 1200 |

| gitgitatta agcicittit aatggcttca actitgtatc agtatactgt atttataaac            | 1260 |
|------------------------------------------------------------------------------|------|
| tttgtaccac aagagagagt gtagcaccca ttttacagtg ccatgcacat cagagaaaga            | 1320 |
| aactgcatgt ttgttgttga tgatgaaata aaaatgctag cgacagtctt tcttactggt            | 1380 |
| gcttaagctc ttctttgcac aaagctttat aaagggaatt caaaggaagc cctttagaat            | 1440 |
| tagagtettg agggacagea etaacaggee tttattaagt atgattgatt gttaaattte            | 1500 |
| agggaacatg attggtctgc tgtgtatttg aattcatgta acaaagaact gttacgatgg            | 1560 |
| gattctgctc attttattaa aaagctactg acttgactgt catcctgttc ttgttagcca            | 1620 |
| ttgtgaataa gattttaatg ttgataattc tgttatttac atatctctaa tttactttga            | 1680 |
| aattcaaagg tgaaaataaa aaatgatggc ctaagtaaaa tttaaaaaaaa aaaaaaaaa            | 1740 |
| aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa                                      | 1800 |
| aaaaaaaaa aaaaaaaaa aaaaaaaaaa aaaaaccccc ggg                                | 1843 |
| <210> 621<br><211> 267<br><212> DNA<br><213> Homo sapiens                    |      |
| ttttttttt tttttgcctc ttccacttgg tctgcagtct gattcactcc tttactttcc             | 60   |
| tccaatatac tgaccettgg gacttgggta ttgctggcct gctttgggcc ctcaggctct            | 120  |
| ttgcctgctg gtttctgagc tttccatagt cacagtctgg ttttaggcag aaactgtacc            | 180  |
| tccatttgca atcaaccctt ttgcagctgt gccttacgct tcttactgtg tttttaccaa            | 240  |
| ttcatctgga acaaactaga aaaggaa                                                | 267  |
| <210> 622<br><211> 363<br><212> DNA<br><213> Homo sapiens                    |      |
| <220> <221> misc_feature <222> (316)(316) <223> nisa, c, g, t or u <400> 622 |      |
| ctttgccatc aggtggtggt caacgaaggg gcccttcttc agcgaacgag tcatggccta            | 60   |
| geoettaett ettgegaege gagaegatga aegtetgegt gegettgttg ttgegagtge            | 120  |
| ggtagccctt cgtcagggtg ttccacggcg acacagggac ctggccctcg ccggtgcggc            | 180  |
| cttcgccacc accgtgcggg tgatccaccg ggttcatggc aacgccacga acggtcgggc            | 240  |
| ggatgccctt ccagcggatc gcgccggcct tgccgtactg gcgcaggctg tgctcttcgt            | 300  |

| tgctcacttc                                         | accganggtg | gcgcggcagt | cgatgtgcac | geggeggaet | tegeeggage | 360 |
|----------------------------------------------------|------------|------------|------------|------------|------------|-----|
| gca                                                |            |            |            |            |            | 363 |
| <210> 623<br><211> 345<br><212> DNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| <400> 623<br>acaatttcac                            | acaggagatc | tcagacagat | gactatatco | tteeetgggt | acttgcaggg | 60  |
| taagcacatc d                                       | ccctcgaaat | agcagcagct | ctaaacatga | aattetteet | ggaggatttt | 120 |
| cttactcttg a                                       | agttctattc | taccaaattt | tttgagcact | tactgtcagg | cattcagaat | 180 |
| gtgagcaatg a                                       | acaataattt | acctacactt | ttgcacttac | agtatgctgg | gcccagttga | 240 |
| ttctcaaaac a                                       | agttctggga | attagctata | aaaatgcccc | catcttacag | atgaggaagc | 300 |
| tcaggctcag a                                       | aaaggcaaaa | aaaaaaaagc | cctatagtga | gtcgt      |            | 345 |
| <210> 624<br><211> 417<br><212> DNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| <400> 624                                          |            |            |            |            |            |     |
| gcaaaggaaa a                                       |            |            |            |            |            | 60  |
| ggaaaagwta c                                       |            |            |            |            |            | 120 |
| mmaggtgaaa c                                       |            |            |            |            |            | 180 |
| ccaactatcg t                                       |            |            |            |            |            | 240 |
| tttbbtgttt t                                       | tbgttgttt  | ttyatttgrg | acggrgtytc | gytctgtcac | ccaggctggr | 300 |
| gtscagtggc g                                       | cgatcttgg  | ytcactgcaa | cctccgcctc | ctgggttcaa | gcaattctct | 360 |
| gcctcagcct c                                       | ccaagtagc  | tgggdttaca | ggcgcccgcc | accacgcccg | gctaatt    | 417 |
| <210> 625<br><211> 2422<br><212> DNA<br><213> Homo | sapiens    |            |            |            |            |     |
| <400> 625                                          |            |            |            |            |            |     |
| gtcagcctcc c                                       |            |            |            |            |            | 60  |
| gtgtttttct c                                       |            |            |            |            |            | 120 |
| aaggtttgga g                                       | agcggctgg  | gttegeggga | cccgcgggct | tgcacccgcc | cagactegga | 180 |
| cgggctttgc c                                       | accetetee  | gcttgcctgg | teccetetee | tctccgccct | cccgctcgcc | 240 |
| agtccatttg a                                       | tcagcggag  | acteggegge | cgggccgggg | cttccccgca | gcccctgcgc | 300 |

gctcctagag ctcgggccgt ggctcgtcgg ggtctgtgtc ttttggctcc gagggcagtc 360 420 tttttgagag tgcgagagag gcggtcgtgc agacccggga gaaagatgtc aaacgtgcga 480 gtgtctaacg ggagccctag cctggagcgg atggacgcca ggcaggcgga qcaccccaag 540 ccctcggcct gcaggaacct cttcggcccg gtggaccacg aagagttaac ccgggacttg 600 gagaagcact gcagagacat ggaagaggcg agccagcgca agtggaattt cgattttcag 660 aatcacaaac ccctagaggg caagtacgag tggcaagagg tggagaaggg cagcttgccc 720 gagttetact acagacecce geggeecece aaaggtgeet geaaggtgee ggegeaggag 780 agccaggatg tcagcgggag ccgcccggcg gcgcctttaa ttggggctcc ggctaactct 840 gaggacacgc atttggtgga cccaaagact gatccgtcgg acagccagac ggggttagcg 900 gagcaatgcg caggaataag gaagcgacct gcaaccgacg attcttctac tcaaaacaaa 960 agagccaaca gaacagaaga aaatgtttca gacggttccc caaatgccgg ttctgtggag 1020 cagacgccca agaagcctgg cctcagaaga cgtcaaacgt aaacagctcg aattaagaat 1080 atgtttcctt gtttatcaga tacatcactg cttgatgaag caaggaagat atacatgaaa 1140 attttaaaaa tacatatcgc tgacttcatg gaatggacat cctgtataag cactgaaaaa 1200 caacaacaca ataacactaa aattttaggc actcttaaat gatctgcctc taaaagcgtt 1260 ggatgtagca ttatgcaatt aggtttttcc ttatttgctt cattgtacta cctgtgtata 1320 tagtttttac cttttatgta gcacataaac tttggggaag ggagggcagg gtggggctga 1380 ggaactgacg tggagcgggg tatgaagagc ttgctttgat ttacagcaag tagataaata 1440 tttgacttgc atgaagagaa gcaattttgg ggaagggttt gaattgtttt ctttaaagat 1500 gtaatgtccc tttcagagac agctgatact tcatttaaaa aaatcacaaa aatttgaaca 1560 ctggctaaag ataattgcta tttattttta caagaagttt attctcattt gggagatctg 1620 gtgatctccc aagctatcta aagtttgtta gatagctgca tgtggctttt ttaaaaaaagc 1680 aacagaaacc tatcctcact gccctcccca gtctctctta aagttggaat ttaccaqtta 1740 attactcagc agaatggtga tcactccagg tagtttgggg caaaaatccg aggtgcttgg 1800 gagttttgaa tgttaagaat tgaccatctg cttttattaa atttgttgac aaaattttct 1860 cattttcttt tcacttcggg ctgtgtaaac acagtcaaaa taattctaaa tccctcgata 1920 tttttaaaga tctgtaagta acttcacatt aaaaaatgaa atatttttta atttaaagct 1980 tactctgtcc atttatccac aggaaagtgt tatttttaaa ggaaggttca tgtagagaaa 2040 agcacacttg taggataagt gaaatggata ctacatcttt aaacagtatt tcattgcctg 2100

| tgtatggaaa aaccatttga                                      | agtgtacctg | tgtacataac | tctgtaaaaa | cactgaaaaa | 2160 |
|------------------------------------------------------------|------------|------------|------------|------------|------|
| ttatactaac ttatttatgt                                      | taaaagattt | tttttaatct | agacaatata | caagccaaag | 2220 |
| tggcatgttt tgtgcatttg                                      | taaatgctgt | gttgggtaga | ataggttttc | ccctcttttg | 2280 |
| ttaaataata tggctatgct                                      | taaaaggttg | catactgage | caagtataat | tttttgtaat | 2340 |
| gtgtgaaaaa gatgccaatt                                      | attgttacac | attaagtaat | caataaagaa | aacttccata | 2400 |
| gctaaaaaaa aaaaaaaaaa                                      | aa         |            |            |            | 2422 |
| <210> 626<br><211> 3115<br><212> DNA<br><213> Homo sapiens |            |            |            |            |      |
| <400> 626<br>ccaccatatc ggtcccgtat                         | ttcacattga | taaggtcctg | tttcatttct | cgtgacattg | 60   |
| ggtagaatga ggatcctgtt                                      | ttcaatgggt | cgctttaccc | tgggactgac | agggaggctc | 120  |
| tgaccattta gccaccaaat                                      | gtaggtgtag | ttctcactct | taggttcacc | ccgcggccga | 180  |
| tegtecceca taceteggee                                      | atgcggcccc | tgctgctact | ggccctgctg | ggctggctgc | 240  |
| tgctggccga agcgaagggc                                      | gacgccaagc | cggaggacaa | ccttttagtc | ctcacggtgg | 300  |
| ccactaagga gaccgaggga                                      | ttccgtcgct | tcaagcgctc | agctcagttc | ttcaactaca | 360  |
| agatccaggc gcttggccta                                      | ggggaggact | ggaatgtgga | gaaggggacg | tcggcaggtg | 420  |
| gagggcagaa ggtccggctg                                      | ctgaagaaag | ctctggagaa | gcacgcagac | aaggaggatc | 480  |
| tggtcattct cttcacagac                                      | agctatgacg | tgctgtttgc | atcggggccc | cgggagctcc | 540  |
| tgaagaagtt ccggcaggcc                                      | aggagccagg | tggtcttctc | tgctgaggag | ctcatctacc | 600  |
| cagaccgcag gctggagacc                                      | aagtatccgg | tggtgtccga | tggcaagagg | ttcctgggct | 660  |
| ctggaggctt categgttat                                      | gcccccaacc | tcagcaaact | ggtggccgag | tgggagggcc | 720  |
| aggacagega cagegateag                                      | ctgttttaca | ccaagatctt | cttggacccg | gagaagaggg | 780  |
| agcagatcaa tatcaccctg                                      | gaccaccgct | gccgtatctt | ccagaacctg | gatggagcct | 840  |
| tggatgaggt cgtgctcaag                                      | tttgaaatgg | gccatgtgag | agcgaggaac | ctggcctatg | 900  |
| acacectece ggteetgate                                      | catggcaacg | ggccaaccaa | gctgcagttg | aactacctgg | 960  |
| gcaactacat cccgcgcttc                                      | tggaccttcg | aaacaggctg | caccgtgtgt | gacgaaggct | 1020 |
| tgcgcagcct caagggcatt                                      | ggggatgaag | ctctgcccac | ggtcctggtc | ggcgtgttca | 1080 |
| tcgaacagcc cacgccgttt                                      | gtgtccctgt | tcttccagcg | gctcctgcgg | ctccactacc | 1140 |
| cccagaaaca catgcgactt                                      | ttcatccaca | accacgagca | gcaccacaag | gctcaggtgg | 1200 |

aagagtteet ggeacageat ggeagegagt accagtetgt gaagetggtg ggeeetgagg 1260

| tgcggatggc | gaatgcagat | gccaggaaca | tgggcgcaga   | cctgtgccgg | g caggacegea | 1320 |
|------------|------------|------------|--------------|------------|--------------|------|
| gctgcaccta | ctacttcago | gtggatgctg | acgtggccct   | gaccgagcc  | : aacagcctgc | 1380 |
| ggctgctgat | ccaacagaac | aagaatgtca | ttgccccgct   | gatgacccgg | g catgggaggc | 1440 |
| tgtggtcgaa | cttctggggg | gctctcagtg | g cagatggcta | ctatgcccgt | tccgaggact   | 1500 |
| acgtggacat | tgtgcagggg | cggcgtgttg | gtgtctggaa   | tgtgccctat | atttcaaaca   | 1560 |
| tctacttgat | caagggcagt | gccctgcggg | gtgagctgca   | gtcctcagat | ctcttccacc   | 1620 |
| acagcaagct | ggaccccgac | atggccttct | gtgccaacat   | ccggcagcag | gatgtgttca   | 1680 |
| tgttcctgac | caaccggcac | accettggee | atctgctctc   | cctagacago | taccgcacca   | 1740 |
| cccacctgca | caacgacctc | tgggaggtgt | tcagcaaccc   | cgaggactgg | aaggagaagt   | 1800 |
| acatccacca | gaactacacc | aaagccctgg | cagggaagct   | ggtggagacg | ccctgcccgg   | 1860 |
| atgtctattg | gttccccatc | ttcacggagg | tggcctgtga   | tgagctggtg | gaggagatgg   | 1920 |
| agcactttgg | ccagtggtct | ctgggcaaca | acaaggacaa   | ccgcatccag | ggtggctacg   | 1980 |
| agaacgtgcc | gactattgac | atccacatga | accagatcgg   | ctttgagcgg | gagtggcaca   | 2040 |
| aattcctgct | ggagtacatt | gcgcccatga | cggagaagct   | ctaccccggc | tactacacca   | 2100 |
| gggcccagtt | tgacctggcc | tttgtcgtcc | gctacaagcc   | tgatgagcag | ccctcactga   | 2160 |
| tgccacacca | tgatgcctcc | accttcacca | tcaacatcgc   | cctgaaccga | gtcggggtgg   | 2220 |
| attacgaggg | cgggggctgt | cggttcctgc | gctacaactg   | ttccatccga | gccccaagga   | 2280 |
| agggctggac | cctcatgcac | cctggacgac | tcacgcatta   | ccatgagggg | ctccccacca   | 2340 |
| ccaggggcac | ccgctacatc | gcagtctcct | tegtegatee   | ctaattggcc | aggcctgacc   | 2400 |
| ctcttggacc | tttcttcttt | gccgacaacc | actgcccagc   | agcctctggg | acctcggggt   | 2460 |
| cccagggaac | ccagtccagc | ctcctggctg | ttgacttccc   | attgctcttg | gagccaccaa   | 2520 |
| tcaaagagat | tcaaagagat | tcctgcaggc | cagaggccgg   | aacacacctt | tatggctggg   | 2580 |
| gctctccgtg | gtgttctgga | cccagcccct | ggagacacca   | ttcactttta | ctgctttgta   | 2640 |
| gtgactcgtg | ctctccaacc | tgtcttcctg | aaaaaccaag   | gccccttcc  | cccacctctt   | 2700 |
| ccatggggtg | agacttgagc | agaacagggg | cttccccaag   | ttgcccagaa | agactgtctg   | 2760 |
| ggtgagaagc | catggccaga | gcttctccca | ggcacaggtg   | ttgcaccagg | gacttctgct   | 2820 |
| tcaagttttg | gggtaaagac | acctggatca | gactccaagg   | gctgccctga | gtctgggact   | 2880 |
| ctgcctcca  | tggctggtca | tgagagcaaa | ccgtagtccc   | ctggagacag | ccactccaga   | 2940 |
| gaacctcttg | ggagacagaa | gaggcatctg | tgcacagctc   | gatcttctac | ttgcctgtgg   | 3000 |
| ggaggggagt | gacaggtcca | cacaccacac | tgggtcaccc   | tgtcctggat | gcctctgaag   | 3060 |
| agagggacag | accgtcagaa | actggagagt | ttctattaaa   | ggtcatttaa | accac        | 3115 |

<210> 627 <211> 2889 <212> DNA

<213> Homo sapiens

<400> 627 agatectgtg gtteactgtg agaceteege etetetegte tgeeteaege tgeeceeteg 60 cacccccaag gtatgacggc atttgaacaa tgcacgtgcc catctagagc cttggggtgg 120 gcctgtgaga gagtggccgc ccaccccagt ccccaccagg tgcatagtcc tgcggctaag 180 tcagggcggt tgtaacaaag gctcagaccc tccaactacc aggctgtgtt gtgacgaggc 240 tgctggagcc ccaggcacca tgacgggaat gggtgaatcc acccacagtg ggtgactctc 300 aatgtgatac tagcccggta cacttagaca cccaaaaatc aacgcggcag acgttgtatc 360 cccaggagaa ggacccccc gaacagacac gtgggacaat ggcaagcatg gccatccctg 420 aggacaatgg caggacccag agtgcctctc tcctcctcaa ggcatgaact ggcccctcca 480 gatacaggga caaccttttc ttcccacctc ggcctgtaac agacacgaca caggccatac 540 ccttggctag agtcactgca acatgatcca gagggtgact gtgaaaggag ccagcggggc 600 tgctgtgtcg gttttcctgg agacacggaa atgggtacaa acttaaaaca tctgggcaga 660 ggtctttggg ataaagtcca gaaaatcaca gctggctcca tcattcagga attgatttcc 720 cccatgacac catcggatgc aaccttgtcc ctgccgcctc cagctctcct tgatttcccc 780 tctqagctca caaaaagaaa caaaagctca gagaggctga ataactttcc cagcttacac 840 ggaggagctg ggtttgaatc cagacatcac actgatcagc acgcagaccc gcagggtttc 900 atactettee ggeattteae gtacacetet etceatetea eegeeteaee ataggaggtg 960 aggcctattc ctatccgcac aatctgacag ggaaattgag actcagagag gttaagtaac 1020 ttgcctaagg ccacatagct cgtaatcagg gcagcaggga ttccaggccg agcaggcagg 1080 cccctgatcc aggctcctag cctgctgccc agggaggtca gagctggaaa ccacttccac 1140 agcacaagga gactetgett ggactgtget tggeetcaeg tgacetetga eetceetgge 1200 ceteetgtga eeetgacagg tgtgetgage ttetgaaggg tgggaaggee tgcaagggge 1260 ctgcgtgcat tctgtgtgca tcgacccagg acaccacggt tggtgcctct gagttcatca 1320 cgtcgatcat ccccgtcttc tttctgctca agtacttgat ttgtcaacat gcacagaagg 1380 gtgagacctg gccatggtgc tgcttgaatc ttgttaacag ttaggctctg attcaatagt 1440 1500 gtcttgctct gttgcccagg ctggagtgca gtggtgcaat ctcagctcac tqcaacctcc 1560 ccctcctggg ttcatgcaat tctcttgcct cagcctccca agtagctggg actataggca

1620

| cgcgccacca | tgcctggcta | atttttgtat | ttttagtaga | gatagggttt | caccatgccg | 1680 |
|------------|------------|------------|------------|------------|------------|------|
| gccaggctgg | tctcaaactc | ctgacctcaa | gtgatctgcc | cgccttggcc | tcccaaagtg | 1740 |
| ctgggattcc | aggcatgagc | ccccgcaccc | gccagactct | gcatctctaa | agtgctggga | 1800 |
| ttccgggtgt | gagcccccac | gcccgccaga | ctctgcatct | ctaaagcgct | cccagggatg | 1860 |
| ctgatgctgc | catctggggg | accacgcttg | gagtactgcg | gccctggcaa | accatctctt | 1920 |
| ccaggaaget | gcatcttgct | ctgccttcct | cccctgccag | cagctcagcc | ctgatcatct | 1980 |
| ctcacctgag | gcccttaaaa | gcctcccaat | cagcetetet | gcccccgacc | cccaggcctg | 2040 |
| cacccggtcc | tctcccgcac | tgcagcccag | cgctgtctaa | ctgagcgacc | tgggttacat | 2100 |
| ttcagcatcc | cccatgtgat | tccctgctgt | ccacaccagc | aagtctctga | gtgcaacccg | 2160 |
| cagccacgtg | catcataatc | agctgagctg | ctggtgaagg | ggtagattcc | tgggcctcac | 2220 |
| ccctgacaga | tcctatccca | gcccctgcgg | gaggggccca | ggaatgcagc | cagttcacca | 2280 |
| gctgccctgc | caaagcctgg | caatctctgg | gcctagaggc | ttgagaacgg | tcaagcagct | 2340 |
| cgccctggct | cccctgggag | ccaccctagc | ctggaacgct | gcacaccaga | caggggtggt | 2400 |
| agagctcctg | gccattccca | aatgccccac | acccagcagc | gcctggaatg | tgctcatgca | 2460 |
| ggttcctcgt | gacatggaca | cacccccttc | cccatcctac | ccacatgtcc | ccagcccagg | 2520 |
| cctcgttccc | actcccccag | gatgccccaa | ccctccaagg | gaacaaagag | aatgctcttc | 2580 |
| cctttctcca | gaagcccagc | acccgggcca | catagtcaag | cgctttgtct | ttgaaacata | 2640 |
| aaaatagcta | tagaagggct | ccgttagctg | gcatcggcca | gagagagaac | atttccatat | 2700 |
| aattagagct | taccctttca | tatggaaagt | tagacatttc | tctgtctaag | gcgcctacgt | 2760 |
| agaatatgta | atttgacctt | ctttggggga | aattttggat | tgtctttggg | atgataatat | 2820 |
| aggaaatccc | tcgagggctt | ttaaaatgta | aagaacagag | gtcccataaa | ctaagtgacc | 2880 |
| ccagaatgc  |            |            |            |            |            | 2889 |

<210>. 628 <211> 449

<212> DNA <213> Homo sapiens

<400> 628

tettettette tettetteaa geagtaaaat teeateagaa aagaaaaget etteagaeta 60
geaatgtatg tatgaggeac teatgggtta gaaacacatt cactgagaaa catteattig 120
gaacettete tgggetcage actgagttag getetagga teeggagata aataaaacca 180
getecageec teaaggeact cagggaggea gagacataga geagcaatca cattecagtg 240
aagaaagtgt caggtgaaag aatggtetgg cagccaataa gggegetaac gggacetgac 300

| occuration agreement                                       | age acaggeeee | g ciciagaci  | g ctttgggtt  | aaactctttc | 360  |
|------------------------------------------------------------|---------------|--------------|--------------|------------|------|
| tcttcactta ctagetg                                         | tgt gtccttggg | c atttttcttg | g acctctctgt | gcctgagttt | 420  |
| cctcttctgt aaaatgaa                                        | aaa ttataacag |              |              |            | 449  |
| <210> 629<br><211> 7391<br><212> DNA<br><213> Homo sapiens | 3             |              |              |            |      |
| <400> 629                                                  |               |              |              |            |      |
| gctgcgcagc gctggctg                                        |               |              |              |            | 60   |
| cggcttgtgg gctcgccg                                        |               |              |              |            | 120  |
| cgggacgtct aaaatccc                                        |               |              |              |            | 180  |
| tegtegeege ateacact                                        | ce egteeeggg  | a gctgggagca | gcgcgggcag   | ccggcgcccc | 240  |
| cgtgcaaact gggggtgt                                        | ct gccagagcag | g ccccagccgc | tgccgctgct   | acccccgatg | 300  |
| ctggccatgg cctggcgg                                        | gg cgcagggccg | g agcgtcccgg | gggcgcccgg   | gggcgtcggt | 360  |
| ctcagtctgg ggttgctc                                        | ct gcagttgctg | ctgctcctgg   | ggccggcgcg   | gggcttcggg | 420  |
| gacgaggaag agcggcgc                                        | tg cgaccccato | cgcatctcca   | tgtgccagaa   | cctcggctac | 480  |
| aacgtgacca agatgccc                                        | aa cctggttggg | g cacgagetge | agacggacgc   | cgagctgcag | 540  |
| ctgacaactt tcacaccg                                        | ct catccagtac | ggctgctcca   | gccagctgca   | gttcttcctt | 600  |
| tgttctgttt atgtgcca                                        | at gtgcacagag | g aagatcaaca | tccccattgg   | cccatgcggc | 660  |
| ggcatgtgtc tttcagtc                                        |               |              |              |            | 720  |
| tggccagaga gtctgaac                                        | tg cagcaaattc | ccaccacaga   | acgaccacaa   | ccacatgtgc | 780  |
| atggaagggc caggtgat                                        | ga agaggtgccc | ttacctcaca   | aaacccccat   | ccagcctggg | 840  |
| gaagagtgtc actctgtg                                        | gg aaccaattct | gatcagtaca   | tctgggtgaa   | aaggagcctg | 900  |
| aactgtgtgc tcaagtgt                                        | gg ctatgatgct | ggcttataca   | gccgctcagc   | caaggagttc | 960  |
| actgatatct ggatggct                                        | gt gtgggccagc | ctgtgtttca   | tctccactgc   | cttcacagta | 1020 |
| tgaccttcc tgatcgat                                         | tc ttctaggttt | tcctaccctg   | agcgccccat   | catatttctc | 1080 |
| agtatgtgct ataatatt                                        | ta tagcattgct | tatattgtca   | ggctgactgt   | aggccgggaa | 1140 |
| aggatateet gtgatttt                                        | ga agaggcagca | gaacctgttc   | tcatccaaga   | aggacttaag | 1200 |
| acacaggat gtgcaataa                                        | at tttcttgctg | atgtactttt   | ttggaatggc   | cagctccatt | 1260 |
| ggtgggtta ttctgacad                                        |               |              |              |            | 1320 |
| gccattgaaa tgcacagct                                       |               |              |              |            | 1380 |
| ccattgtca tcttgatta                                        |               |              |              |            | 1440 |
|                                                            |               |              |              |            |      |

gttggaaacc aaaatctcga tgccctcacc gggttcgtgg tggctcccct ctttacttat 1500 ttqqtcattq qaactttqtt cattqctqca qqtttqqtgg ccttqttcaa aattcqqtca 1560 aatcttcaaa aqqatqqqac aaaqacaqac aaqttagaaa gactgatggt caaqattqgg 1620 qtqttctcaq tactqtacac aqttcctqca acqtqtqtga ttgcctgtta tttttatqaa 1680 atctccaact gggcactttt tcggtattct gcagatgatt ccaacatggc tgttgaaatg 1740 ttgaaaattt ttatgtcttt gttggtgggc atcacttcag gcatgtggat ttggtctgcc 1800 aaaactcttc acacqtqqca qaaqtqttcc aacaqattqq tqaattctqq aaaqqtaaaq 1860 1920 agaqaqaaqa qaqqaaatqq ttqqqtqaaq cctqqaaaaq qcaqtqagac tqtqqtataa ggctagtcag cctccatgct ttcttcattt tgaagggggg aatgccagca ttttggagga 1980 aattctacta aaagttttat qcaqtqaatc tcaqtttqaa caaactaqca acaattaaqt 2040 2100 gacccccqtc aacccactqc ctcccacccc gaccccaqca tcaaaaaaacc aatgattttq ctgcagactt tggaatgatc caaaatggaa aagccagtta gaggctttca aagctgtgaa 2160 2220 aaatcaaaac gttgatcact ttagcaggtt gcagcttgga gcgtggaggt cctgcctaga ttccaggaag tccagggcga tactgttttc ccctgcaggg tgggatttga gctgtgagtt 2280 2340 ggtaactagc agggagaaat attaactttt ttaaccettt accattttaa atactaactg 2400 qqtctttcag ataqcaaaqc aatctataaa cactggaaac gctgggttca gaaaagtgtt acaaqaqttt tatagtttgg ctgatgtaac ataaacatct tctgtggtgc gctgtctgct 2460 qtttaqaact ttqtqqactg cactcccaag aaqtggtqtt agaatctttc agtgcctttg 2520 tcataaaaca qttatttqaa caaacaaaag tactgtactc acacacataa ggtatccagt 2580 ggatttttct tctctgtctt cctctcttaa atttcaacat ctctcttctt ggctgctgct 2640 gttttcttca ttttatgtta atgactcaaa aaaggtattt ttatagaatt tttgtactgc 2700 agcatgctta aagaggggaa aaggaagggt gattcacttt ctgacaatca cttaattcag 2760 aggaaaatga gatttactaa gttgacttac ctgacggacc ccagagacct attgcattga 2820 2880 gcagtgggga cttaatatat tttacttgtg tgattgcatc tatgcagacg ccagtctgga 2940 agagetgaaa tgttaagttt ettggeaact ttgcattcac acagattage tgtgtaattt ttgtgtgtca attacaatta aaagcacatt gttggaccat gacatagtat actcaactga 3000 ctttaaaact atggtcaact tcaacttgca ttctcagaat gatagtgcct ttaaaaaattt 3060 ttttattttt taaaqcataa gaatqttatc agaatctgqt ctacttagga caatggagac 3120 tttttcaqtt ttataaaggg aactgaggac agctaatcca actacttggt gcgtaattgt 3180 ttcctagtaa ttggcaaagg ctccttqtaa qatttcactq qaggcagtgt ggcctggagt 3240

| 33         |              |            | - egeougeous | augeergari | - ggrtagtagg | 3300 |
|------------|--------------|------------|--------------|------------|--------------|------|
| gaataaagtg | j tagaccatat | gaaatgaact | t gcaaactcta | atagcccago | tcttaattgc   | 3360 |
| ctttagcaga | ggtatccaaa   | gcttttaaaa | a tttatgcata | cgttcttcac | aagggggtac   | 3420 |
| ccccagcagc | ctctcgaaaa   | ttgcacttct | cttaaaactg   | taactggcct | ttctcttacc   | 3480 |
| ttgccttagg | ccttctaato   | atgagatctt | ggggacaaat   | tgactatgto | acaggttgct   | 3540 |
| ctccttgtaa | ctcatacctg   | tctgcttcag | g caactgcttt | gcaatgacat | ttatttatta   | 3600 |
| attcatgcct | taaaaaaata   | ggaagggaag | g ctttttttt  | tcttttttt  | tttttcaatc   | 3660 |
| acactttgtg | gaaaaacatt   | tccagggact | caaaattcca   | aaaaggtggt | caaattctgg   | 3720 |
| aagtaagcat | ttcctcttt    | ttaaaaattt | ggtttgagcc   | ttatgcccat | agtttgacat   | 3780 |
| ttccctttct | tctttccttt   | ttgtttttgt | gtggttcttg   | agctctctga | catcaagatg   | 3840 |
| catgtaaagt | cgattgtatg   | ttttggaagg | caaagtcttg   | gcttttgaga | ctgaagttaa   | 3900 |
| gtgggcacag | gtggcccctg   | ctgctgtgcc | cagtctgagt   | accttggcta | gactctaggt   | 3960 |
| caggetecag | gagcatgaga   | attgatecce | agaagaacca   | ttttaactcc | atctgatact   | 4020 |
| ccattgccta | tgaaatgtaa   | aatgtgaact | ccctgtgctg   | cttgtagaca | gttcccataa   | 4080 |
| ctgtccacgg | ccctggagca   | cgcacccagg | ggcagagcct   | gcccttactc | acgctctgct   | 4140 |
| ctggtgtctt | gggagttgtg   | cagggactct | ggcccaggca   | ggggaaggaa | gaccaggcgg   | 4200 |
| taggggactg | gtcttgctgt   | tagagtatag | aggtttgtaa   | tgcagttttc | ttcataatgt   | 4260 |
| gtcagtgatt | gtgtgaccaa   | ggcagcatct | agcagaaagc   | caggcatgga | gtaggtgatc   | 4320 |
| gatacttgtc | aatgactaaa   | taataacaat | aaaagagcac   | ttgggtgaat | ctgggcacct   | 4380 |
| gatttctgag | ttttgagttc   | tggagctagt | gttttgacaa   | tgctttgggt | tttgacatgc   | 4440 |
| cttttccaca | aatctcttgc   | cttttcaggg | caaagtgtat   | ttgatcagaa | gtggccattt   | 4500 |
| ggattagtag | ccttagcaat   | gctacagggt | tataggcctc   | tcctttcaca | ttccagacaa   | 4560 |
| tggagagtgt | ttatggtttc   | aggaaaagaa | ctttgtggct   | gaggggtcag | ttaccagtga   | 4620 |
| ccttcaatca | actccatcac   | ttcttaaatc | ggtatttgtt   | aaaaaaatca | gttattttat   | 4680 |
| ttattgagtg | ccgactgtag   | taaagccctg | aaatagataa   | tctctgttct | tctaactgat   | 4740 |
| ctaggatggg | gacgcaccca   | ggtctgctga | actttactgt   | tcctctggga | aaggagcagg   | 4800 |
| gacctctgga | attcccatct   | gtttcactgt | ctccattcca   | taaatctctt | cctgtgtgag   | 4860 |
| ccaccacacc | cagcctgggt   | ctctctactt | ttaacacatc   | tctcatccct | ttcccaggat   | 4920 |
| ccttccaag  | tcagttacag   | gtggttttaa | cagaaagcat   | cagctctgct | tcgtgacagt   | 4980 |
| etctggagaa | atcccttagg   | aagactatga | gagtaggcca   | caaggacatg | ggcccacaca   | 5040 |
| ctgctttgg  | ctttgccggc   | aattcagggc | ttggggtatt   | ccatgtgact | tatatagata   | E100 |

tatttgagga cagcatcttg ctagagaaaa ggtgagggtt gtttttcttt ctctgaaacc 5160 tacaqtaaat qqqtatqatt qtaqcttcct caqaaatccc ttgqcctcca qaqattaaac 5220 atggtgcaat ggcacctctg tccaacctcc tttctggtag attcctttct cctgcttcat 5280 ataggccaaa cctcagggca agggaacatg ggggtagagt ggtgctggcc agaaccatct 5340 gettgageta ettggttgat teatateete ttteetttat ggagaceeat tteetgatet 5400 ctgagactgt tgctgaactg gcaacttact tgggcctgaa actggagaag gggtgacatt 5460 tttttaattt cagagatget ttetgatttt ceteteccag gteactgtet cacetgeact 5520 ctccaaactc aggttccggg aagcttgtgt gtctagatac tgaattgaga ttctgttcag 5580 caccttttag ctctatactc tctggctccc ctcatcctca tggtcactga attaaatqct 5640 tattgtattg agaaccaaga tgggacctga ggacacaaag atgagctcaa cagtctcagc 5700 cctagaggaa tagactcagg gatttcacca ggtcggtgca gtatttgatt tctggtgagg 5760 tgaccacage tgcaqttagg gaagggaqee attgagcaca gactttggaa ggaacetttt 5820 ttttgttgtt tgtttgtttg tttgtttgtt tgtttgtttg agacagggtc ttgctctgtc 5880 acccaqctq qgqcqcaatq qcacqatctt ggctcactgc aacctctgcc tcctgggttc 5940 aagtgattct cctgccacag cctcctgagg agctgggact acaggtgcgt gctaccacgc 6000 ccaqctactt ctqtattttt aqtaqaqacq qqqtttcact qtqttqqcca qqctqgtctc 6060 6120 gaacteetga ceteatgate tgeeegeete ageeteecaa agtgetggga ttacaagtgt 6180 gagccaccac acctggcctg gaaggaacct cttaaaatca gtttacgtct tgtattttgt tototoatog aggacactog agagagttoc tattocagto aatcatotog agtoactoga 6240 6300 ctctgaaaat cctattggtt cctttatttt atttgagttt agagttccct tctgggtttg tattatgtct ggcaaatgac ctgggttatc acttttcctc cagggttaga tcatagatct 6360 tggaaactcc ttagagagca ttttgctcct accaaggatc agatactgga gccccacata 6420 atagatttca tttcactcta gcctacatag agctttctgt tgctgtctct tgccatgcac 6480 ttqtqcqqtq attacacact tqacaqtacc aggagacaaa tgacttacag atcccccgac 6540 atgectette ccettggcaa geteagttge cetgatagta geatgtttet gtttetgatg 6600 tacctttttt ctcttcttct ttqcatcaqc caattcccaq aatttcccca qqcaatttgt 6660 agaggacett tttggggtee tatatgagee atgteeteaa agettttaaa ceteettget 6720 6780 ctcctacaat attcaqtaca tqaccactqt catcctaqaa gqcttctqaa aaqaqqqca 6840 agaggcactc tgcgccacaa aggttgggtc catcttctct ccgaggttgt gaaagttttc aaattqtact aataqqctqq qqccctqact tqqctqtqqq ctttqqqaqq qqtaaqctqc 6900

tttctaqatc tctcccagtg aggcatggag gtgtttctga attttgtcta cctcacaggg 6960 7020 atqttqtqaq qcttqaaaaq qtcaaaaaat gatggcccct tgagctcttt gtaagaaagg tagatgaaat atcggatgta atctgaaaaa aagataaaat gtgacttccc ctgctctgtg 7080 cagcagtegg getggatget etgtggeett tettgggtee teatgecace ceacagetee 7140 aggaaccttq aagccaatct qqqqqacttt caqatqtttg acaaaqaqgt accaqqcaaa 7200 cttcctgcta cacatgccct gaatgaattg ctaaatttca aaggaaatgg accctgcttt 7260 7320 taaqqatqta caaaaqtatq totqcatcqa tqtctqtact gtaaatttct aatttatcac 7380 7391 ttaaaaaaaa a <210> 630 <211> 1310 <212> DNA <213> Homo sapiens <400> 630 agacgccgag atgctggtca tggcgccccg aaccgtcctc ctgctgctct cgqcqqccct qqccctqacc qaqacctqqq ccqqctccca ctccatqagg tatttctaca cctccgtgtc 120 ccggcccggc cgcggggagc cccgcttcat ctcagtgggc tacgtggacg acacccagtt 180 240 cgtgaggttc gacagcgacg ccgcgagtcc gagagaggag ccgcgggcgc cgtggataga 300 qcaggaqqqq ccggagtatt gggaccggaa cacacagatc tacaaggccc aggcacagac

tgaccgagag agcctgcgga acctgcgcgg ctactacaac cagagcgagg ccgggtctca 360 caccetecag ageatgtacg getgegacgt ggggceggac gggegeetee teegegggea 420 tgaccagtac gcctacgacg gcaaggatta catcgccctg aacgaggacc tgcgctcctg 480 gaccgccgcg gacacggcgg ctcagatcac ccagcgcaag tgggaggcgg cccgtgaggc 540 qqaqcaqcqq aqaqcctacc tqqaqqqcqa gtqcqtggag tggctccgca gatacctgga 600 qaacqqqaaq qacaaqctqq aqcqcqctqa ccccccaaag acacacgtga cccaccaccc 660 720 catctctqac catqaqqcca ccctqaqqtq ctqqqccctq qqtttctacc ctgcggagat cacactgacc tggcagcggg atggcgagga ccaaactcag gacactgagc ttgtggagac 780 840 caqaccaqca qqaqataqaa ccttccaqaa qtqqqcaqct qtqqtqqtgc cttctgqaqa 900 agagcagaga tacacatgcc atgtacagca tgaggggctg ccgaagcccc tcaccctgag 960 atgggageeq tetteceagt ceaceqteec categtggge attgttgetg geetggetgt cctagcagtt gtggtcatcg gagctgtggt cgctgctgtg atgtgtagga ggaagagttc 1020

aggtggaaaa ggagggaget acteteagge tgegtgeage gacagtgeee agggetetga

384

1080

| egegeocoe.                                       | e acagerigae    | aageetgaga   | cagetytett | . grgagggact | gagatgcagg | 1140 |
|--------------------------------------------------|-----------------|--------------|------------|--------------|------------|------|
| atttcttca                                        | c gcctcccctt    | : tgtgacttca | agageetetg | gcatctctt    | ctgcaaaggc | 1200 |
| acctgaatg                                        | t gtctgcgtc     | ctgttagcat   | aatgtgagga | ggtggagaga   | cagcccaccc | 1260 |
| ttgtgtcca                                        | tgtgacccct      | gttcgcatgc   | tgacctgtgt | ttcctcccca   | 1          | 1310 |
| <210> 63:<br><211> 320<br><212> DNJ<br><213> Hor | )               |              |            |              |            |      |
| <400> 633<br>gcggggctca                          |                 | cttcggaaac   | gagagegege | ccaccaccag   | caactggaac | 60   |
|                                                  |                 |              |            |              | gcggggcgtg | 120  |
| tacaagccgt                                       | ccgacacgtt      | ttcgttcacg   | ctcgtcgcct | acaacgggtg   | gaacgccctc | 180  |
| ggaaacccga                                       | acccgtacaa      | gtcgggtggg   | tatcgcgtcg | agtggcacco   | cagcgacacg | 240  |
| gtggccgtcg                                       | ccaacgccgc      | gcacgtcggc   | atcgtcgggt | ctacaaggac   | cttcgcatct | 300  |
| tcgaagacct                                       | ggtggtcacc      |              |            |              |            | 320  |
| <210> 632<br><211> 128<br><212> DNA<br><213> Hom | 1<br>No sapiens |              |            |              |            |      |
|                                                  |                 | gagcaagacc   | acagctggtg | aacagtccag   | gagcagacaa | 60   |
| gatggagaca                                       | aattcctctc      | tccccacgaa   | catctctgga | gggacacctg   | ctgtatctgc | 120  |
| tggctatctc                                       | ttcctggata      | tcatcactta   | tctggtattt | gcagtcacct   | ttgtcctcgg | 180  |
| ggtcctgggc                                       | aacgggcttg      | tgatctgggt   | ggctggattc | cggatgacac   | acacagtcac | 240  |
| caccatcagt                                       | tacctgaacc      | tggccgtggc   | tgacttctgt | ttcacctcca   | ctttgccatt | 300  |
| cttcatggtc                                       | aggaaggcca      | tgggaggaca   | ttggcctttc | ggctggttcc   | tgtgcaaatt | 360  |
| cgtctttacc                                       | atagtggaca      | tcaacttgtt   | cggaagtgtc | ttcctgatcg   | ccctcattgc | 420  |
| tctggaccgc                                       | tgtgtttgcg      | tcctgcatcc   | agtctggacc | cagaaccacc   | gcaccgtgag | 480  |
| cctggccaag                                       | aaggtgatca      | ttgggccctg   | ggtgatggct | ctgctcctca   | cattgccagt | 540  |
|                                                  |                 | tacctggtaa   |            |              |            | 600  |
|                                                  |                 | ctaaagagag   |            |              |            | 660  |
|                                                  |                 | tcattggctt   |            |              |            | 720  |
|                                                  |                 | agatccacaa   |            |              |            | 780  |
| acqqqtcctc                                       | teetttatea      | cagcagcctt   | ttttctctcc | taatccccat   | ********   | 840  |

qqcccttata qccacaqtca qaatccqtqa qttattqcaa qqcatqtaca aaqaaattqq 900 tattgcagtg gatgtgacaa gtgccctggc cttcttcaac agctgcctca accccatgct 960 ctatotette atgggecagg actteeggga gaggetgate caegecette eegecagtet 1020 ggagagggcc ctgaccgagg actcaaccca aaccagtgac acagctacca attctacttt 1080 accttctgca qaggtggagt tacaggcaaa gtgaggaggg agctggggga cactttcgag 1140 ctcccagctc cagcttcgtc tcaccttgag ttaggctgag cacaggcatt tcctgcttat 1200 tttaggatta cccactcatc agaaaaaaaa aaaaaagcct ttgtgtcccc tgatttgggg 1260 agaataaaca gatatgagtt t 1281 <210> 633 <211> 2298 <212> DNA <213> Homo sapiens <400> 633 cgaccgcttc tcacccqccc tctccqcacq tccqccqqcq cctcaqqttt cccccqqaca 60 gttgctgtgc gacttggaca gtagaggagc gcctcccaag ttttcatcca actgccaacc 120 ccaaagcttc caccettete ceetcagaga ggaegtttga tgccgggccc cttgagagge 180 tcattgacaa gcctgcccct ctgggtcccc ctgagcagag cctgctgacc caattgccca 240 cetttqcqqc tttqatqcct aqccatqtct qcctcatcct caggcggctc ccccaggttt 300 ccatcqtqtq qqaaqaacqq aqtaacqaqt ctcacqcaqa aaaaqqtctt qaqaqcacct 360 420 tqtqqcqcac ccaqtqtaac tqtqacqaaa tctcacaaqc qaggaatgaa aggggacact 480 qtqaatqtqc qqcqqaqtqt ccqqqtqaaa accaaqaatc cacctcattq cctqqaqatc acqccaccat cttcaqaaaa qctqqtctca qtqatqcqqt taaqtqacct ctctacaqaa 540 gatgatgact caggtcactg taaaatgaac cgttatgata agaagattga tagtctaatg 600 aatqcqqttq qttqtctqaa qtctqaqqtc aaqatqcaaa aaqqtqaqcq ccaqatqqcc 660 720 aaaaggttcc tggaggaacg gaaggaagag ctggaggagg tggcccacga actggctgag actgagcacg agaacacggt gttgaggcac aacatcgagc gcatgaagga ggagaaggac 780

840

900

960

1020

1080

1140

ttcaccatac ttcagaagaa acacctacaa caggagaagg agtgcctcat gtccaagctg

gtggaggcgg aaatggatgg ggctgcggct gccaagcagg tcatggcctt gaaggatacc

atcqqqaaqc tqaaaacqqa qaaacaaatq acctqcacgg acatcaacac cctgacaagg

cagaaggaac ttctcctgca gaagctgagc acatttgagg agaccaaccg caccctccga

qacctcctqa qqqaacaqca ctqcaaaqaq qattctqaaa gactaatgga gcaacaagga

quactgctga aacggctqqc qqaqqccqac tcaqaqaaag cgcgcctgct gttactgctg

| caagacaagg acaaggaggt ggaagagctc cttcaggaaa tacaatgtga gaaggctcaa | 1200 |
|-------------------------------------------------------------------|------|
| gcaaagacag cctctgagct ttctaaatcc atggagtcca tgcgtgggca tttgcaggca | 1260 |
| cagetteggt ccaaagagge tgagaacagt egeetgtgea tgeagattaa gaatetggag | 1320 |
| cgcagcggga atcagcataa ggcagaagtg gaggccatca tggagcagct gaaggagttg | 1380 |
| aagcagaagg gagaccgaga caaagagagc ttgaagaagg ccatccgagc ccagaaggag | 1440 |
| cgagccgaga agagcgagga gtatgctgag cagctacacg tgcaactcgc tgacaaggat | 1500 |
| ctttatgtcg ctgaagettt atccactctg gaateetgga ggageegeta caaccaagtt | 1560 |
| gtaaaagaaa agggagacct tgagctggaa attattgtcc tgaatgaccg ggtaacagat | 1620 |
| cttgtaaacc aacaacaaac cctggaggag aagatgcggg aagaccggga tagcctggtg | 1680 |
| gagagactac accgtcagac tgctgagtat tccgcattca agctggagaa tgagaggctg | 1740 |
| aaggccagct ttgctccaat ggaggacaaa ctcaaccagg cacacctcga ggtccagcag | 1800 |
| ctgaaggeet cagtgaagaa ctatgagggg atgattgaca actataagag tcaggtgatg | 1860 |
| aagaccagat tggaggctga tgaagtagct gcccagctag aacgctgtga caaagagaac | 1920 |
| aagatcctta aagatgagat gaacaaagag attgaggcgg cacgaaggca gttccagtct | 1980 |
| cagetggetg acctgeagea geteectgae ateetgaaga teaeggagge gaagetgget | 2040 |
| gagtgccaag accaactgca gggctatgag cggaagaaca tcgacctcac agccatcata | 2100 |
| tcagacctgc gcagccgggt aagggactgg cagaaagggt cccacgaact gacccgagca | 2160 |
| ggggcccgca taccaagatg agctgcacgc cccccaaggg aggactactt ccttttctt  | 2220 |
| ggctgctgct ttttaaaagg agtgagctat catcagtgct gtgaaataaa agtctggtgt | 2280 |
| gccaaaaaaa aaaaaaaa                                               | 2298 |
| <210> 634<br><211> 359<br><212> DNA<br><213> Homo sapiens         |      |
| <400> 634<br>tttttttttt ttttttttt ttttttttt tttttttt              | 60   |
| taaaaccccc aaaaaaaact tttaacaaaa ggggacccat accattcccc aaaaaagttt | 120  |
| agctgaaaaa tggcaaacaa aaagggcaag gcttttttta aacccccaaa aataaggttc | 180  |
| cacaaaaaag gacccgccaa aaccaaatta tagcggcaaa ttttttttgg ccataaatag | 240  |
| ggatcccctt aaaaatcctt ggaaactcct tggcagtttt aaggcccaaa ctaacccttg | 300  |
| tgggccagtg gctcaccttc atcaaaaaaa ggaacccatt tggcaaaaaa attttggtt  | 359  |

| <210> 635                                                                   |     |
|-----------------------------------------------------------------------------|-----|
| <211> 240                                                                   |     |
| <212> DNA                                                                   |     |
| <213> Homo sapiens                                                          |     |
| <400> 635                                                                   |     |
| <400> 635 cgtcttcgac aagaccggca ccctcaccaa gggggagccc gaggtcacgg acgtcattgt | 60  |
| cyclicidae aagaccygca cochcaccaa gygggageee gaggicaegg aegecacege           | 00  |
| cggcgacttc gatcgcgatc gggtcctggc gctcgcgggc gcactcgaac gagagtccga           | 120 |
| -55-5 55-5 55555 55-555 55                                                  |     |
| acatectete geteaggeeg tegtgegeea egtegatgea acegatgtge egegettgeg           | 180 |
|                                                                             |     |
| egecacegeg tteegeaaeg teaegggeat eggegeeete geegaggteg aeggecacea           | 240 |
|                                                                             |     |
|                                                                             |     |
| <210> 636                                                                   |     |
| <211> 498<br><212> DNA                                                      |     |
| <213> Homo sapiens                                                          |     |
| 1225 Homo Bapieno                                                           |     |
|                                                                             |     |
| <220>                                                                       |     |
| <221> misc feature                                                          |     |
| <222> (384)(489)                                                            |     |
| <223> n is a, c, g, t or u                                                  |     |
|                                                                             |     |
| <400> 636                                                                   |     |
| tgecettece ttegetggag agececettt ceceetttee tgectettee ecatggecee           | 60  |
|                                                                             | 120 |
| gagcatette cagcagacce cagtgtatga eteetteeta eeteeccaaa gaatggggag           | 120 |
| agggaacgag cagageetgt geetgageea tetegtteaa egeetteaae geggggettg           | 180 |
| aggaacgag cagageerge goodgageen coocgetean ogeoverne goggggees              |     |
| gagteetgge ttggcactee ettgetggtg atettgggca aaccatgetg ggcetegatt           | 240 |
|                                                                             |     |
| ttcctactgg caccagagag agcaggacga cttcttcaaa ttcttgtgca aatacggcga           | 300 |
|                                                                             |     |
| gaagaagtgc atgagaaagt gctttataag ctgtatagct ctcttgccta tgagagtatc           | 360 |
|                                                                             |     |
| attgtagttc atctcacata accnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnn                | 420 |
|                                                                             | 480 |
| nnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn                                      | 400 |
| nnnnnnnc agaggaaa                                                           | 498 |
| minimize agaggaaa                                                           |     |
|                                                                             |     |
| <210> 637                                                                   |     |
| <211> 443                                                                   |     |
| <212> DNA                                                                   |     |
| <213> Homo sapiens                                                          |     |
|                                                                             |     |
| <400> 637                                                                   |     |
| ttttttttttg gaagagatct ttattaatag agtgctttta ttaataattc ataccttgtc          | 60  |
| tanggatan anaggaga gagattang gantaggar gatattana astatan                    | 120 |
| taagcggtaa aaacccagca gaggattaac ccatgcccat ggtatttgaa actataaaga           | 120 |
| ataaagtttt ctcctgtatt tgttaggaat tgctcttggc tgcaagtaac agagaactga           | 180 |
| acadagoooc occorgiace cyclagydda cyclollygo cychagiddo dydyddolyd           | _00 |
| aataacagtc atttaacaca agacacaaat ttetttetgt eteatgtaaa agaaacecaa           | 240 |
| ,                                                                           |     |
| gcagcagtcc tgggccccca agtatcatca gtgactgtgg ctccttcttt ctttctgatc           | 300 |
|                                                                             |     |

| egecacecce                                         | Caagiggggi     | ttccaccetc | acagtcacct | caagatgcaa | gaacactgct | 360 |
|----------------------------------------------------|----------------|------------|------------|------------|------------|-----|
| ggtgctccag                                         | ccattgcgtc     | tgcatccgca | gcagaaaact | ggaggaagcg | ccatttgtct | 420 |
| ctcccccaaa                                         | cttcccctta     | cat        |            |            |            | 443 |
| <210> 638<br><211> 450<br><212> DNA<br><213> Home  |                |            |            |            |            |     |
| <400> 638                                          | gagga et t t   |            |            |            |            |     |
|                                                    |                |            |            |            | aagaatttta | 60  |
|                                                    |                |            |            |            | ttaagccttc | 120 |
|                                                    |                |            |            |            | attggtgaaa | 180 |
| atactttgtg                                         | aaagaaacat     | aactttaaga | tagtactata | tctgaatccc | ttgctgttcc | 240 |
| ctatatggtg                                         | ccttacacat     | cataagccag | caaatacctt | ggtctgattg | aatggtaatg | 300 |
| ggatatattt                                         | tattaaaatc     | aaagttttgc | tagggctggg | aagctctacc | aaaagaagaa | 360 |
| aaaattatct                                         | ttcttggtca     | tgtttccctc | tttactccac | gacagtttca | ttattgtaac | 420 |
| cagggatcaa                                         | tgaaagaaga     | aagcagggtt |            |            |            | 450 |
| <210> 639<br><211> 1048<br><212> DNA<br><213> Homo | 3<br>o sapiens |            |            |            |            |     |
|                                                    | caggccgctc     | caagcccagc | ctgccccgct | gccgccacca | tgacgctcct | 60  |
| ccccggcctc                                         | ctgtttctga     | cctggctgca | cacatgcctg | gcccaccatg | acccctccct | 120 |
| cagggggcac                                         | ccccacagtc     | acggtacccc | acactgctac | tcggctgagg | aactgcccct | 180 |
| cggccaggcc                                         | ccccacacc      | tgctggctcg | aggtgccaag | tgggggcagg | ctttgcctgt | 240 |
| agccctggtg                                         | tccagcctgg     | aggcagcaag | ccacaggggg | aggcacgaga | ggccctcagc | 300 |
| tacgacccag                                         | tgcccggtgc     | tgcggccgga | ggaggtgttg | gaggcagaca | cccaccagcg | 360 |
| ctccatctca                                         | ccctggagat     | accgtgtgga | cacggatgag | gaccgctatc | cacagaagct | 420 |
| ggccttcgcc                                         | gagtgcctgt     | gcagaggctg | tatcgatgca | cggacgggcc | gcgagacagc | 480 |
| tgcgctcaac                                         | tccgtgcggc     | tgctccagag | cctgctggtg | ctgcgccgcc | ggccctgctc | 540 |
| ccgcgacggc                                         | teggggetee     | ccacacctgg | ggcctttgcc | ttccacaccg | agttcatcca | 600 |
| egtecccgte                                         | ggctgcacct     | gcgtgctgcc | ccgttcagtg | tgaccgccga | ggccgtgggg | 660 |
| ccctagact                                          | ggacacgtgt     | gctccccaga | gggcaccccc | tatttatgtg | tatttattgt | 720 |

| tatttatatg                                        | cctccccaa  | cactaccctt | ggggtctggg | cattccccgt | gtctggagga | 780  |
|---------------------------------------------------|------------|------------|------------|------------|------------|------|
| cagecececa                                        | ctgttctcct | catctccagc | ctcagtagtt | gggggtagaa | ggagctcagc | 840  |
| acctcttcca                                        | gcccttaaag | ctgcagaaaa | ggtgtcacac | ggctgcctgt | accttggctc | 900  |
| cetgteetge                                        | teceggette | ccttacccta | tcactggcct | caggcccccg | caggctgcct | 960  |
| cttcccaacc                                        | tccttggaag | tacccctgtt | tcttaaacaa | ttatttaagt | gtacgtgtat | 1020 |
| tattaaactg                                        | atgaacacat | ccccaaaa   |            |            |            | 1048 |
|                                                   | o sapiens  |            |            |            |            |      |
| <400> 640<br>ttttttttt                            | tttttttac  | ataactagaa | taaaatttaa | tgtaaatgtg | ccaaagagga | 60   |
| gaagaaatca                                        | catgagattt | acaaaactta | catgaaataa | gaaaatgttc | agctatgtaa | 120  |
| taaccaaagc                                        | ttccttaact | tgggaatctt | gggaacctag | aaagtgaggt | aacccaagcc | 180  |
| aaattcctct                                        | ggtgtcacag | ttcctcctat | accaggccag | gcacttgcca | atgacactgg | 240  |
| agtaggggta                                        | agccctgggt | gtgttgtgta | gtgtgtgacg | tagtaggtga | aaaacagcaa | 300  |
| agaggtaatt                                        | ctttattctc | gagagcttcc | tcgtgcacat | gatcagcttt | tgcacatgct | 360  |
| tgaaggaaaa                                        | acaacactat | taaaatgtct | ttttaaaagt | caaagctaaa | tgagtatgca | 420  |
| ataaagcttt                                        | gagaaatgga | aaagaaaatc | tatgaggaaa | acgtcagctt | gcttatccag | 480  |
| ggaatgagca                                        | ggacttaatt | ctcatgccgg | catggggctg | ccgggcaccc | agctcctttc | 540  |
| ctgtgggtag                                        | aaaacaagtc | cccaagttgc | tactgagcca | aactgtaaag | gccagtcagg | 600  |
| aaatgagcag                                        | cagtgctgaa | tgggcctcgt | gcc        |            |            | 633  |
| <210> 641<br><211> 306<br><212> DNA<br><213> Homo | o sapiens  |            |            |            |            |      |
| <400> 641<br>gacactgtcc                           | aaaggttttc | catcctgtcc | tggaatcaga | gttggaaget | gaggagcttc | 60   |
| agcctctttt                                        | atggtttaat | ggccacctgt | tctctcctgt | gaaaggcttt | gcaaagtcac | 120  |
| attaagtttg                                        | catgacctgt | tatccctggg | gccctatttc | atagaggctg | gccctattag | 180  |
| tgatttccaa                                        | aaacaatatg | gaagtgcctt | ttgatgtctt | acaataagag | aagaagccaa | 240  |
| tggaaatgaa                                        | agagattggc | aaaggggaag | gatgatgcca | tgtagatcct | gtttgacatt | 300  |
| tttatg                                            |            |            |            |            |            | 306  |

<210> 642 <211> 2311 <212> DNA

<213> Homo sapiens

<400> 642 tagccagaaa agggggggg aagggctgta gggtacttgt caattcgccg ccatgaacgt 60 qqtttttqct qtqaaqcaqt acatttccaa aatgatagag gacagcgggc ctqqtatqaa 120 agtacttctc atggataaag agacgactgg catagtgagt atggtataca cacaatcgga 180 gattctacag aaggaagtgt acctctttga acgcattgat tctcaaaatc gagagatcat 240 300 tcaggagete egaagaceca aatacactat atattteatt tattteagta atgtgateag 360 420 caaqaqtqac qtqaaqtcat tqqctqaaqc tqatqaacaq qaaqttqtqq ctqaqqttca qqaattttat qqtqattaca ttqctqtqaa cccacatttq ttttccctca atattttqqq 480 540 ttgctgccag ggtcgaaatt gggatccagc ccagctatct agaacaactc aagggcttac ageteteett ttatetetga agaagtgtee catgattegt tateagetet cateagagge 600 agcaaagaga cttgcagagt gcgttaagca agtgataact aaagaatatg aactgtttga 660 atteogtegg acagaggtte etecattget cettatttta gategetgtg atgatgecat 720 caccccattg ctaaaccagt ggacatatca ggccatggtc cacgaactac taggcataaa 780 caacaatcgg attgatcttt ccagagtgcc gggaatcagt aaagacttaa gagaagtggt 840 cctatctqct qaaaatqatg aattctatgc taataatatg tacctgaact ttgctgagat 900 tqqtaqcaat ataaaqaatc tcatqqaaqa ttttcaqaaq aaqaaaccaa aagaacagca 960 1020 aaaactaqaa tcaataqcaq acatqaaqqc qtttqttqaq aattatccac agttcaaqaa 1080 aatqtctqqq actqtttcaa aqcatqtqac aqtqqttqqa qaactqtctc qattqqtcaq 1140 tgaacggaat ctgctggagg tttcagaggt tgagcaagaa ctggcctgtc aaaatgacca ttctagtgct ctccagaata taaaaaggct tctgcagaac cccaaagtga cagagtttga 1200 1260 tgctgcccgc ctggtgatgc tttatgcttt acattatgag cgacacagca gcaatagcct gccaggacta atgatggacc tcaggaataa aggtgtttct gagaagtatc gaaagctcgt 1320 gtotgoagtt gttgaatatg gtggtaaacg agtcagagga agtgacctct tcagccccaa 1380 agatgctgtg gctatcacca aacaattcct caaaggactg aagggagtag aaaatgtata 1440 tacacagcat caacctttcc tacatgaaac cctggatcat ctcatcaaag gaaggcttaa 1500 ggaaaaccta tatccttatt taggccccag cacactcaga gacagacctc aggatatcat 1560 tqtqtttqta attqqaqqaq ccacctatqa agaggctcta acagtttata acctqaaccg 1620

1680

caccactcct ggagtgagga ttgtcctggg aggcaccaca gtgcacaaca cgaaaagttt

| cctagaggaa                                        | gttctggctt | ctggactgca | cagccgaagc | aaggagagct | ctcaagtcac | 1740 |
|---------------------------------------------------|------------|------------|------------|------------|------------|------|
| atcaaggtca                                        | gcgagcagaa | gatgaaacgg | tggttggggg | aagggcacag | cttcctctct | 1800 |
| tgtccccact                                        | acaggttttc | cctactaaac | aaaggtgttg | gagagcagct | ttgggttctg | 1860 |
| tgctggttgt                                        | tagaactcat | ctccaggtag | cccacggata | cgtggttggc | acagacacaa | 1920 |
| gactcccaga                                        | gttgtcctaa | caataagtct | gagcccatct | caacccactt | ttctccggta | 1980 |
| gtctttatgt                                        | atctgttagc | acaatcactt | cagttactga | tgaattttgt | tgggatctga | 2040 |
| cttggggaaa                                        | gggttatcag | agcctagagg | ggcttaaaaa | gtaatcattt | gatgtacata | 2100 |
| ccacactcct                                        | tggcttcctt | tctcttccct | taaccctttc | tgcttttcat | taaccacatt | 2160 |
| cctgcacaac                                        | tcatttctga | aaacctacca | tgtttcttta | cagagccatc | caaaaatttt | 2220 |
| ttgtccctac                                        | atagcaattt | tctgtggcac | tgagaaacca | tgtatgacca | caataaaaat | 2280 |
| ccattttgtg                                        | aaaggaaaaa | aaaaaaaaa  | a          |            |            | 2311 |
| <210> 643 <211> 329 <212> DNA <213> Hom <400> 643 | o sapiens  |            |            |            |            |      |
|                                                   | gaggtccaaa | tttactaata | aggcctgaaa | ccctgtgtaa | ttttgctcct | 60   |
| agttatggct                                        | ggcatctgca | ccacaactac | agccactgcc | acctccccct | gccacacaca | 120  |
| cattttaaaa                                        | gtaacaatag | tagtgttttc | tgtgttttgc | atatacagtc | ttttctcatc | 180  |
| tcccagcctt                                        | cttgagcttt | tectetgeet | gagatacgct | cccactcaca | tagacattgg | 240  |
| gggcactaaa                                        | taaaaatagc | tgtttaattg | aattggaatc | gttccacttg | gaacccaagt | 300  |
| ttggaaattt                                        | tgctacttct | tgttaagct  |            |            |            | 329  |
| <210> 644<br><211> 373<br><212> DNA<br><213> Hom  |            |            |            |            |            |      |
| <400> 644<br>ttttttttt                            | ttctgtttat | attataatct | ttattgcatc | tgatggtcct | gtctcatttt | 60   |
| tgctgtctca                                        | tcagtaaacc | attgcaaacc | acagtgccag | cccttgtgtc | cccacatttt | 120  |
| tgacacaata                                        | atttcctcca | ggtgtggctg | agtcagaatt | ccgtccgcgt | ccatccctgt | 180  |
| gcgtcctgta                                        | tgggtgacag | tgcaagggta | agaacagtgg | gtgtattcag | tggggaaata | 240  |
| acatgtgtgc                                        | tgtgaaagaa | aatgagaaaa | acacagcgtc | tccattaaaa | aactgtatgt | 300  |
| cctcgagtcc                                        | acaaaagagt | tggaaaaaaa | ccactcgggc | catctgggca | tctgttcaga | 360  |

| tgaacgatct                                        | tgt            |            |            |            |            | 373  |
|---------------------------------------------------|----------------|------------|------------|------------|------------|------|
| <210> 645<br><211> 351<br><212> DNA<br><213> Home | o sapiens      |            |            |            |            |      |
| <400> 645                                         |                |            |            |            |            |      |
|                                                   | cctcagggtg     | agccagctct | gcaataggat | gcactgcttt | gtctgcagcc | 60   |
| tcacagacct                                        | gaaatgcact     | ctcatgtcct | gtgcctcagt | gctggctggg | ccttggtcct | 120  |
| attacatctt                                        | gaactcaagg     | taatacatca | gtggccggga | ttcacactca | gaaccacctt | 180  |
| gaaagtctgt                                        | gctgttacca     | ccatgtcaca | gaggtagaag | tagatgtctg | tataaacaac | 240  |
| ctttgggtag                                        | caggtggtca     | gttaggcagg | aaaaatagtt | ctgctacatt | atatatatca | 300  |
| ggagtatatt                                        | gacaggaaca     | tgtgtgttgg | gaatatatat | gtcagtaaca | g          | 351  |
| <210> 646<br><211> 469<br><212> DNA<br><213> Home | 2<br>o sapiens |            |            |            |            |      |
| <400> 646                                         |                |            |            |            | ~~~~       | 60   |
|                                                   |                |            |            | ctggcggtga |            |      |
| ggctactgag                                        | aagcccggcg     | acggaggaac | gcaggtctgc | tgccagggat | tgaggagact | 120  |
| gaagaacgct                                        | gaagacaggc     | tgatgggctc | agctggtagg | ctccactatc | tcgccatgac | 180  |
| tgctgaaaat                                        | cccactcctg     | gagacctggc | teeggeeeee | ctcatcactt | gcaaactctg | 240  |
| cctgtgtgag                                        | cagtctctgg     | acaagatgac | cacactccag | gaatgccagt | gcatcttttg | 300  |
| cacagcttgc                                        | ctgaaacagt     | acatgcagct | ggcaatccga | gaaggatgtg | ggtctcccat | 360  |
| cacttgccct                                        | gacatggtgt     | gcctaaacca | cgggaccctg | caggaagctg | agattgcctg | 420  |
| tttggtacct                                        | gtggaccagt     | ttcaacttta | tcagaggtta | aaatttgaaa | gagaagttca | 480  |
| tctggacccc                                        | taccgaacat     | ggtgtcctgt | tgcagactgt | cagacagtgt | gccctgttgc | 540  |
| ctcgagtgac                                        | ccaggacagc     | ctgtgctggt | ggaatgccct | tcttgccacc | tgaaattctg | 600  |
| ctcgtgttgc                                        | aaggatgctt     | ggcatgcaga | ggtctcctgt | agagacagtc | agcctattgt | 660  |
| cctgccaaca                                        | gagcaccgag     | ccctctttgg | gacagatgca | gaagccccca | ttaagcagtg | 720  |
| cccagtttgc                                        | cgggtttata     | tcgaacgcaa | tgaaggctgc | gctcagatga | tgtgcaaaaa | 780  |
| ctgcaagcat                                        | acattttgct     | ggtactgcct | ccagaacttg | gataatgaca | ttttcctcag | 840  |
| acattatgac                                        | aaagggccat     | gcaggaataa | acttggccac | tcaagagcat | cagtgatgtg | 900  |
| gaaccgaaca                                        | caggtggtgg     | ggattcccgt | aggettggge | atcattgcct | tggttacttc | 960  |
| acccttgtta                                        | ctcctggcct     | ccccatgtat | aatctgttgt | gtctgcaagt | cctgtcgggg | 1020 |

caaqaaqaaa aaqcacqacc catccacaac ctaaaqatct ctgtgttcat acqccccaqa 1080 tatgtgagtt acatgagatg gcacagtgat aaagccccat ttagtgacct tgcctccttc 1140 teettgecaa etttgaaagt geeteegtgt eeagaetttg aacttgeetg eeageettea 1200 qcatcaggaa aggccaagtc ctgggtgtga gtgttcctgt gtaacaagaa ctgggctcaa 1260 cqqtccaqct qtttctatqq aqctttqqqq ttccttqaqa tqaatqaaca tatcatttta 1320 tcatccaaag gatctcactg gactgttcaa cttccagcca aattcaagga gcttqcqqqa 1380 acatttgata taacaaatgt gttgtcattg ttggcaacat acaagataac caagaagctg 1440 qaqtctqttc tqtqttqatt tqactaccat gagaaacaca ggggaaacct gatgaggaga 1500 aggataagac tgcgtaagga gaaatcctca taggagctat aaagcaggct gctgatctca 1560 quaqttqata tqqtqqttqt gcctctgctq gctactgggt gtgctgtccc catgttcccq 1620 ctqtqatttq gcaqaaacac aataggcttc tccttgtgtg atctcagctt caagcaggtg 1680 aaactqctqt qcaqaqqqag ttgccccttc ccagtaaaag agttgcagcc tgttaaacaa 1740 tqtqqtctaa tttaqtqtct ctcccttqgc aaatgtaagt tttctaagtt ggccaacttg 1800 tctcttacaq ccaqtqqctq tqqtctacaq aattgtttca tataaaatac gggtagagtg 1860 gtagagtttc aaaactttcg tcatagatat ctgggacctt tctcaggatc tgtgttcgca 1920 cagccaatag atttggaatc aggcctaaga gtacacatgg agggtaaata ttaaagtgcg 1980 2040 tattatgtac atctagaatc catgtgactt gcagcctacc tgtaatttct atccattgag 2100 catgcatgga tatacccaat agtacacaca aaataaatgt ttacttaaga gccattctat 2160 ccttttgtga ctgaaatggt ttattgtaaa tctgcctaaa gattttttgc atattatata tgtgaatttt ggttgtaagt tcataactta cccaagggta tagactcata actcttttaa 2220 aacaqtgctt agtacaatat cctgccatct ctgtaaaaac gctaattgat aaccgagtca 2280 tttacatqtt ttcgaacaca gaatagctct tttctcagca tcattattgc tctttcagca 2340 tctqttaqqa caqtctqaat actttctqtt tcaaggcact gataaaaccg caacaaaaac 2400 atqtaaqaaa taaaataqaa qtqctttata tattttaqtt taaatttatg tatcacctca 2460 ttgtgactta ttttttccat tataccatta gtcagatttg aataacgagg ttttgaaagg 2520 ataaaacctt ttctccaatg acaggattat ataattgcta ttggcaatgt agcctggtgc 2580 2640 ttcatgagac ctatgctaaa tgttactgga gagttcttga agccagggat accatatcag 2700 gaactattca ggatctatga tattttctga ggtaactggg taatagaata tcaaattgct 2760 gctatctcgg acctattgtt aaaggacgat gctttgccta tgtaatagga tatatcctaa gtggggatgt gtatatttca ggaactttaa ttcacaagta tatattgata tctgatgtgt 2820

qtataqtaca tctqttggtt atgtacattt taatttacat qttqtqtaqa acataqatga 2880 qaactctqqq aaaacttggg aatqqcaacc aaccaaaatc atttttaatc atttattaqa 2940 3000 aatttctcaa tattgtgtct ttttcttttg aaactctaaa cacttcagaa aaaaacacta 3060 tragtgtagt tratgttagt ataattatag atttacatat atttgaatag ttaatttgct ttgttttaca cgtaqcccac tqcctcatta taggtaaaag qcatttataa ctqctcaqqq 3120 gattacgaga actcaactga aactgaattt ttgtaacaag aatgttaata gtggcaaagt 3180 cetetgteag taaactettt aagettggtg cegcaaagag tetttaaatg ggggetgatt 3240 tcaaqtaacc taaaaqactq tqttatcaqa qqaaqaqqtc ccaaatttqq aqtaaaqatq 3300 ggagaaaata aatatgtgct atttccttgg cgagttgggt gaatttgcca ccttacagag 3360 3420 gagtgggggt tgtttgtcaa actgattttc aataattgga tttaattttt tttaacattg 3480 aaaagtgcct gaaaaatggt aaattcttaa atgtgtgtga gattgtcaga atcaacaaaa 3540 ctaggttggt taaacatatc tctggtacat caaggggcat gatacaaacc agtctaaaga 3600 ctgtttataa aggagagagc tggcgactta tttttatttt ttttttttgg acagagtctc 3660 cctttgtcac ccaggccgga gtgcagtggc atgatcatgg ttcacttcaa cccctacctc 3720 ctgggctcaa gtgttcctct caccttatcc tcctgagcag ctgggactac aggcacacac 3780 caccacacct ggctaagttt tgtatttttt gtagagatgg ggtttctctg tgttgcccag 3840 tettqtetca aacteetqqq etcaaqeqat etacecacet tgqgeteeca aagtgteggg 3900 attacaggtg tgtgtcactg tgcctgacag ctgacagttt taactgacaa ctttgataac 3960 agaggetget attittettt tagataatte gecagtgaca gagtttacce ttgcctectt 4020 4080 tettagteta ccaqetttat cetttetaa taattetett tetatattaa qaqqaaqtat gggtctacat agggatgttt ggatgctatg gcaagaatct ttttgtgttt ggagtgtagt 4140 ccatttgcaa tagaaataaa aaaatccgtc accaaattgt aacctggatg ttatagccca 4200 gcatctagaa atcctatgaa atgtattagc acaatatctt gccattgtcc catctaggaa 4260 attttttctt gttgtgaggt agggaagtga ggaggaaagc catgccgaag caaatgttag 4320 aatottaggo atootattig ticatgocat gggtattigo titiggactig gagtotgtac 4380 tttqaaagag gcctttgaaa aacaaataat tctgtgtgaa ttttcttgta gcgtgcttca 4440 tqaaaatatc tacttatcca qqtttqcaaa tqtacatqtt catttqaatq taaatcacca 4500 tttcttggaa ccccacqttt tttcttaaaa attattctga attaaatgta tatttcttta 4560 gccttcccta cacagtacta ataaaaqact tttctttctg ttcaaaaaaaa aaaaaaaaaa 4620 4680

aaaaaaaaa aa 4692

<210> 647 <211> 1991

<211> DNA

<213> Homo sapiens

<400> 647

cttqctccqa qaqqqaqtcc tcqcqqacqt caqccaagat tccagaatga ctatcttgac 60 ttaccccttt aaaaatcttc ccactgcatc aaaatgggcc ctcagatttt ccataagacc 120 tetgagetgt teeteecage tacqagetge cecagetgte cagaccaaaa cgaagaagac 180 qttaqccaaa cccaatataa qqaatqttqt qqtqqtqqat qqtqttcqca ctccattttt 240 qctqtctqqc acttcatata aaqacctqat qccacatqat ttqqctaqaq cagcqcttac 300 qqqtttqttq catcqqacca qtqtccctaa qqaaqtaqtt qattatatca tctttqqtac 360 agttattcag gaagtgaaaa caagcaatgt ggctagagag gctgcccttg gagctggctt 420 ctctqacaaq actcctqctc acactqtcac catqqcttqt atctctqcca accaaqccat 480 540 qaccacaqqt qttqqcttqa ttqcttctqq ccaqtqtqat qtqatcqtqq caqqtqtqt tgagttgatg tccgatgtcc ctattcgtca ctcaaggaaa atgagaaaac tgatgcttga 600 tctcaataag gccaaatcta tgggccagcg actgtcttta atctctaaat tccgatttaa 660 720 tttcctaqca cctgagctcc ctgcggtttc tgagttctcc accagtgaga ccatgggcca 780 ctctqcaqac cqactggccg ctgcctttgc tgtttctcgg ctggaacagg atgaatatgc actqcqctct cacaqtctaq ccaaqaaqgc acaqqatgaa ggactccttt ctgatgtggt 840 accettcaaa qtaccaqqaa aaqatacaqt taccaaagat aatggcatcc gtccttcctc 900 actggagcag atggccaaac taaaacctgc attcatcaag ccctacggca cagtgacagc 960 tqcaaattct tctttcttqa ctqatqqtqc atctqcaatq ttaatcatqq cqqaqqaaaa 1020 1080 ggctctggcc atgggttata agccgaaggc atatttgagg gattttatgt atgtgtctca ggatccaaaa gatcaactat tacttggacc aacatatgct actccaaaag ttctagaaaa 1140 qqcaqqattq accatqaatq atattqatqc ttttqaattt catqaaqctt tctcqqqtca 1200 gattttggca aattttaaag ccatggattc tgattggttt gcagaaaact acatgggtag 1260 aaaaaccaag gttggattgc ctcctttgga gaagtttaat aactggggtg gatctctgtc 1320 1380 cctgggacac ccatttggag ccactggctg caggttggtc atggctgctg ccaacagatt acggaaagaa ggaggcagt atggcttagt ggctgcgtgt gcagctggag ggcagggcca 1440 tgctatgata gtggaagctt atccaaaata atagatccag aagaagtgac ctgaagtttc 1500 tgtgcaacac tcacactagg caatgccatt tcaatgcatt actaaatgac atttgtagtt 1560

cctaqctcct cttaggaaaa caqttcttqt qqccttctat taaatagttt gcacttaagc 1620 cttqccaqtq ttctqaqctt ttcaataatc aqtttactgc tctttcaggg atttctaaqc 1680 caccagaatc tcacatgaga tgtgtgggtg gttgtttttg gtctctgttg tcactaaaga 1740 ctaaatqaqq qtttqcaqtt qqqaaaqaqq tcaactqaga tttggaaatc atctttqtaa 1800 tatttqcaaa ttatacttqt tcttatctqt qtcctaaaqa tqtqttctct ataaaataca 1860 aaccaacgtg cctaattaat tatggaaaaa taattcagaa tctaaacacc actgaaaact 1920 tataaaaaat gtttagatac ataaatatgg tggtcagcgt taataaagtg gagaaatatt 1980 ggaaaaaaaa a 1991

<210> 648 <211> 2811

<212> DNA

<213> Homo sapiens

<400> 648

60 acacaqqaag ctgaqccgqc ttqqqqccca qcatacacaq qcccccagqa cccctggqqa 120 qaqqqcccq ctqqqctqqc cctqcaqqqa ccatqqaatc caqaqctqaa qqqqgctccc 180 ccatectgeg geagtteect ccagaettea gggaccagga agetatgeag atggtgeeta 240 300 aattotgott coottttgat gtggaaaggg agccccccag ccccgccgtg cagcatttca cettegeeet cacagacett geeggeaace geagatttgg tttctgeege etgegggegg 360 gtacccagag ctgtctctgc atcctcagcc acctgccttg gttcgaggtg ttttacaagc 420 tattgaacac agtgggagac ctcctagccc aggaccaagt caccgaggca gaggaacttc 480 ttcaaaatct qtttcagcag tccctgtctg ggccccaggc ctcagtgggg cttgagctgg 540 gcagcqqaqt qacqqtctcc agcqqqcaqq gtatccccc ccctacccgg qggaatagca 600 660 ageogettte etgetteqtq geeeeggaet eeggeegeet geeateeate eetgagaaca ggaacctaac ggaqctqqtq qtqqccqtqa ctqacqaqaa catcqtgqqq ctqttcqcqq 720 780 egetectgge egagagaaga gteetgetea eegecageaa acteageace etgaeetegt gegtecaege gteetgegeg eteetgtace ceatgegetg ggagcaegtg etgateceea 840 egetgeeece acacetgetg gactactget gegegeecat geectacete attggagtge 900 acqccaqtct cqccqaqaqa qtacqaqaaa aaqccctqqa qqacqtcqtq qtqctqaacq 960 tggacgccaa taccttggag acgaccttta acgacgtgca ggcgctgcct ccagacgtgg 1020 tgtccctgct gaggctccgg ctcaggaagg tcgccctggc ccccggggaa ggggtgtccc 1080 gtetetteet caaageecag geeetgetet teggggggta eegegaegea etegtetgea 1140

| gecegggeca | gccagtgacc | ttcagtgagg | aagtettett | ggcccagaag          | cctggggcac | 1200 |
|------------|------------|------------|------------|---------------------|------------|------|
| ctctgcaggc | cttccaccgg | cgggctgtgc | acctgcagct | gttcaaacag          | ttcatcgaag | 1260 |
| cccggctgga | gaagctcaac | aagggggagg | gcttctcaga | tcaattcgag          | caggagatca | 1320 |
| ctggctgcgg | ggcctcccca | ggggcccttc | gatcctatca | gctctgggcc          | gacaatctaa | 1380 |
| agaaaggtgg | tggcgccctc | ctgcactcag | tcaaggccaa | gacccaacca          | gccgtcaaga | 1440 |
| acatgtaccg | ctcggccaag | agtggcttga | agggggtgca | gagccttcta          | atgtataagg | 1500 |
| atggggactc | tgtcctgcag | agggggggct | ctctgagggc | cccagccctc          | cccagccgct | 1560 |
| cagaccgcct | gcagcaacgc | ctcccaatca | ctcagcactt | tggaaagaac          | cggccccttc | 1620 |
| gccccagcag | gagacgccag | ctggaagagg | gaacttccga | gcccccaggg          | gcggggacac | 1680 |
| ccccactgag | ccctgaggat | gaggggtgcc | cgtgggcaga | agaagctctg          | gacagcagct | 1740 |
| tcttggggtc | tggagaagaa | ctggatttgt | tgagcgagat | tctggacagt          | cttagcatgg | 1800 |
| gagccaagag | cgcaggcagc | ctgagaccga | gccagagttt | agactgctgt          | cacagaggag | 1860 |
| acctggacag | ctgcttcagc | ctgcccaaca | tactaagatg | gcaaccagac          | gataagaaac | 1920 |
| taccagagcc | ggagccccag | ccccttccc  | tgccatccct | gcaaaatgcc          | tcgtctttgg | 1980 |
| atgccaccag | ctcttcaaag | gactccaggt | cccagctgat | accctcagag          | tccgaccaag | 2040 |
| aagtcacgtc | tccatcccag | tcctcaacag | cttctgcaga | cccaagcatc          | tggggggacc | 2100 |
| ccaaaccctc | tcctctcaca | gagcccctaa | ttcttcatct | caccccttcc          | cacaaggcag | 2160 |
| ctgaagattt | tacagcccag | gaaaacccca | ctccctggct | ctccactgca          | cccactgagc | 2220 |
| ccagccctcc | agaaagcccc | caaattctgg | ccccacaaa  | geccaacttt          | gatatageet | 2280 |
| ggacgtccca | gccccttgat | ccttcctcag | accccagttc | tctggaggac          | cccagagccc | 2340 |
| ggcctcccaa | agccctgctg | gcagagcgcg | ctcacctcca | gccacgggag          | gaaccaggag | 2400 |
| ccctgaattc | ccctgctaca | cccaccagca | actgtcaaaa | gtcccagccc          | agcaagccgg | 2460 |
| cccagagtcg | ctgatcttaa | gaagtgcttt | gagggttaag | aatcag <b>gg</b> gt | ccaagagaga | 2520 |
| cccagtccc  | tcaataaagc | cacaagagcc | caaaaaagct | ggttttttc           | ctggtgaatt | 2580 |
| tctctggtgc | cctcactctg | ctcggaaatc | cateccacec | acctctgtcc          | ctccaagggc | 2640 |
| agcctctcta | actggctcct | agcagggaat | tccaggaagc | ctcctggtct          | tctagaatcc | 2700 |
| tggcaacctt | acaattcctc | tcggcatttg | tcacttccat | ctcagctaat          | gcacccacca | 2760 |
| octcasacac | accaataaag | cttttattac | teteaaaaaa | 222222222           | а          | 2811 |

<sup>&</sup>lt;210> 649 <211> 2315 <212> DNA

## <213> Homo sapiens

<400> 649 ttttttcctg tttctctgca gttttcctca gctttgggtg gtggccgctg ccgggcatcg 60 gettecagte egeggaggge gaggeggegt ggacagegge eeeggeacce agegeeeege 120 egecegeaag eegegegeee gteegeegeg eeeegageee geegetteet ateteagege 180 cctgccgccg ccgccgcggc ccagcgagcg gccctgatgc aggccatcaa gtgtgtggtg 240 gtgggagacg gagctgtagg taaaacttgc ctactgatca gttacacaac caatgcattt 300 cctggagaat atatccctac tgtctttgac aattattctg ccaatgttat ggtagatgga 360 aaaccggtga atctgggctt atgggataca gctggacaag aagattatga cagattacgc 420 cocctatect atcogcaaac agatgtgttc ttaatttgct tttcccttgt gagtcctgca 480 tcatttgaaa atgtccgtgc aaagtggtat cctgaggtgc ggcaccactg tcccaacact 540 cccatcatcc tagtgggaac taaacttgat cttagggatg ataaagacac gatcgagaaa 600 ctgaaggaga agaagctgac tcccatcacc tatccgcagg gtctagccat ggctaaggag 660 attggtgctg taaaatacct ggagtgctcg gcgctcacac agcgaggcct caagacagtg 720 tttgacgaag cgatccgagc agtcctctgc ccgcctcccg tgaagaagag gaagagaaaa 780 tqcctqctqt tqtaaatqtc tcaqcccctc gttcttggtc ctgtcccttg gaacctttgt 840 900 togcactcaa tgccaacttt ttgttacaga ttaatttttc cataaaacca ttttttgaac 960 caatcaqtaa ttttaaqqtt ttqtttqttc taaatqtaaq aqttcaqact cacattctat 1020 1080 taaaatttag ccctaaaatg acaagccttc ttaaagcctt atttttcaaa agcgccccc 1140 ccattettgt teagattaag agttgeeaaa atacettetg aactacaetg cattgttgtg 1200 ccgagaacac cgagcactga actttgcaaa gaccttcgtc tttgagaaga cggtagcttc 1260 tgcagttagg aggtgcagac acttgctctc ctatgtagtt ctcagatgcg taaagcagaa cagceteceg aatgaagegt tgccattgaa etcaceagtg agttageage aegtgtteee 1320 gacataacat tgtactgtaa tggagtgagc gtagcagctc agctctttgg atcagtcttt 1380 gtgatttcat agcgagtttt ctgaccagct tttgcggaga ttttgaacag aactgctatt 1440 tcctctaatq aaqaattctq tttaqctqtq ggtqtqccqq gtggggtgtg tgtgatcaaa 1500 qqacaaaqac aqtattttqa caaaatacqa aqtqqaqatt tacactacat tqtacaagga 1560 1620 atqaaaqtqt cacqqqtaaa aactctaaaa qqttaatttc tgtcaaatgc aqtagatgat 1680 qaaaqaaaqq ttqqtattat caqqaaatqt tttcttaaqc ttttcctttc tcttacacct qccatqcctc cccaaattqq qcatttaatt catctttaaa ctgqttgttc tqttagtcgc 1740

| taacttagta                                            | agtgcttttc | ttatagaacc | ccttctgact | gagcaatatg | cctccttgta | 1800 |
|-------------------------------------------------------|------------|------------|------------|------------|------------|------|
| ttataaaatc                                            | tttctgataa | tgcattagaa | ggttttttg  | tcgattagta | aaagtgcttt | 1860 |
| ccatgttact                                            | ttattcagag | ctaataagtg | ctttccttag | ttttctagta | actaggtgta | 1920 |
| aaaatcatgt                                            | gttgcagctt | tatagttttt | aaaatatttt | agataattct | taaactatga | 1980 |
| accttcttaa                                            | catcactgtc | ttgccagatt | accgacactg | tcacttgacc | aatactgacc | 2040 |
| ctctttacct                                            | cgcccacgcg | gacacacgcc | tcctgtagtc | gctttgccta | ttgatgttcc | 2100 |
| tttgggtctg                                            | tgaggttctg | taaactgtgc | tagtgctgac | gatgttctgt | acaacttaac | 2160 |
| tcactggcga                                            | gaatacagcg | tgggaccctt | cagccactac | aacagaattt | tttaaattga | 2220 |
| cagttgcaga                                            | attgtggagt | gtttttacat | tgatcttttg | ctaatgcaat | tagcattatg | 2280 |
| ttttgcatgt                                            | atgacttaat | aaatccttga | atcat      |            |            | 2315 |
| <210 > 650<br><211 > 636<br><212 > DNA<br><213 > Homo | o sapiens  |            |            |            |            |      |
|                                                       | tgtgataatt | ccaggtgatt | ctctacatct | gcagcttgag | gtgggaagtc | 60   |
| tgaagctcag                                            | agagcctggg | ccaatggtac | aggtcacaca | gcacatcagt | ggctacatgt | 120  |
| gagctcagac                                            | ctgggtctgc | tgctgtctgt | cttcccaata | tecatgacet | tgactgatgc | 180  |
| aggtgtctag                                            | ggatacgtcc | atccccgtcc | tgctggagcc | cagagcacgg | aagcctggcc | 240  |
| ctccgaggag                                            | acagaaggga | gtgtcggaca | ccatgacgag | agcttggcag | aataaataac | 300  |
| ttctttaaac                                            | aattttacgg | catgaagaaa | tctggaccag | tttattaaat | gggatttctg | 360  |
| ccacaaacct                                            | tggaagaatc | acatcatctt | agcccaaggt | gaaaactgtg | ttgcgtaaca | 420  |
| aagaacatga                                            | ctgcgctcca | cacatacatc | attgcccggc | gaggcgggac | acaagtcaac | 480  |
| gacggaacac                                            | ttgagacagg | cctacaactg | tgcacggttc | aaaagcaggt | ttaagccata | 540  |
| cttgctgcag                                            | tgagactaca | tttctgtcta | aagaagatgt | ccctgacttg | atctgtttt  | 600  |
| caactccagt                                            | tcccagatgt | gcgtgttgtg | gtcccc     |            |            | 636  |
| <210> 651<br><211> 886<br><212> DNA<br><213> Home     | o sapiens  |            |            |            |            |      |
| <400> 651<br>gtcggttccg                               | ggcgttacca | tegteegtge | gcaccgcccg | gcgtccaggt | gagtctccca | 60   |
| tctgcagaga                                            | cgcggacgcg | ccggcccgca | gttggcctgc | ggagcgcggt | ggacggtttg | 120  |
| gcgcccacca                                            | ggcgatcaat | actttggatt | tttaatttct | agatttggca | attcttcgct | 180  |

| gaagccacca                                                                                                                                     | tgagcttttt                                                                                                               | ccaactcctg                                                                                                                          | atgaaaagga                                                                                                                                                          | aggaactcat                                                                                                                           | tcccttggtg                                                                                                                               | 240                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| gtgttcatga                                                                                                                                     | ctgtggcggc                                                                                                               | gggtggagcc                                                                                                                          | tcatctttcg                                                                                                                                                          | ctgtgtattc                                                                                                                           | tctttggaaa                                                                                                                               | 300                                                                       |
| accgatgtga                                                                                                                                     | tccttgatcg                                                                                                               | aaaaaaaat                                                                                                                           | ccagaacctt                                                                                                                                                          | gggaaactgt                                                                                                                           | ggaccctact                                                                                                                               | 360                                                                       |
| gtacctcaaa                                                                                                                                     | agcttataac                                                                                                               | aatcaaccaa                                                                                                                          | caatggaaac                                                                                                                                                          | ccattgaaga                                                                                                                           | gttgcaaaat                                                                                                                               | 420                                                                       |
| gtccaaaggg                                                                                                                                     | tgaccaaatg                                                                                                               | acgagccctc                                                                                                                          | gcctctttct                                                                                                                                                          | tctgaagagt                                                                                                                           | actctataaa                                                                                                                               | 480                                                                       |
| tctagtggaa                                                                                                                                     | acatttctgc                                                                                                               | acaaactaga                                                                                                                          | ttctggacac                                                                                                                                                          | cagtgtgcgg                                                                                                                           | aaatgcttct                                                                                                                               | 540                                                                       |
| gctacatttt                                                                                                                                     | tagggtttgt                                                                                                               | ctacatttt                                                                                                                           | tgggctctgg                                                                                                                                                          | ataaggaatt                                                                                                                           | aaaggagtgc                                                                                                                               | 600                                                                       |
| agcaataact                                                                                                                                     | gcactgtcta                                                                                                               | aaagtttgtg                                                                                                                          | cttattttct                                                                                                                                                          | tgtaaatttg                                                                                                                           | aatattgcat                                                                                                                               | 660                                                                       |
| attgaaattt                                                                                                                                     | ttgtttatga                                                                                                               | tctatgaatg                                                                                                                          | tttttcttaa                                                                                                                                                          | aatttacaaa                                                                                                                           | gctttgtaaa                                                                                                                               | 720                                                                       |
| ttagattttc                                                                                                                                     | tttaataaaa                                                                                                               | tgccatttgt                                                                                                                          | gcaagatttc                                                                                                                                                          | tcaaagatta                                                                                                                           | ggtatatatt                                                                                                                               | 780                                                                       |
| taaatggaag                                                                                                                                     | agaaaatatt                                                                                                               | tttatgggag                                                                                                                          | aaaaatacat                                                                                                                                                          | ttgaaccatg                                                                                                                           | aaatttcatc                                                                                                                               | 840                                                                       |
| ttttaaataa                                                                                                                                     | catccagtac                                                                                                               | agatatctgt                                                                                                                          | gtaaaaaaaa                                                                                                                                                          | aaaaaa                                                                                                                               |                                                                                                                                          | 886                                                                       |
| <210> 652<br><211> 7686<br><212> DNA<br><213> Home                                                                                             | sapiens                                                                                                                  |                                                                                                                                     |                                                                                                                                                                     |                                                                                                                                      |                                                                                                                                          |                                                                           |
|                                                                                                                                                |                                                                                                                          |                                                                                                                                     |                                                                                                                                                                     |                                                                                                                                      |                                                                                                                                          |                                                                           |
| <400> 652<br>tttatagcag                                                                                                                        | cagcagaaat                                                                                                               | ataccaccct                                                                                                                          | agaggacaca                                                                                                                                                          | cctcctttta                                                                                                                           | gctaggtacc                                                                                                                               | 60                                                                        |
| tttatagcag                                                                                                                                     | cagcagaaat<br>caggattttc                                                                                                 |                                                                                                                                     |                                                                                                                                                                     |                                                                                                                                      |                                                                                                                                          | 60<br>120                                                                 |
| tttatagcag<br>tataaatgtc                                                                                                                       |                                                                                                                          | tattcaattg                                                                                                                          | agaagaaccc                                                                                                                                                          | agcaaaatgg                                                                                                                           | ggatetecae                                                                                                                               |                                                                           |
| tttatagcag<br>tataaatgtc<br>agtcatcctt                                                                                                         | caggattttc                                                                                                               | tattcaattg<br>ttttatgggg                                                                                                            | agaagaaccc<br>acaagttcta                                                                                                                                            | agcaaaatgg<br>tctacaggtg                                                                                                             | ggatctccac<br>ggtggatccc                                                                                                                 | 120                                                                       |
| tttatagcag<br>tataaatgtc<br>agtcatcctt<br>aaggactaca                                                                                           | caggattttc<br>gaaatgtgtc                                                                                                 | tattcaattg<br>ttttatgggg<br>cactgattcc                                                                                              | agaagaaccc<br>acaagttcta<br>ctcggaggtg                                                                                                                              | agcaaaatgg<br>tctacaggtg<br>cccttggatc                                                                                               | ggatetecae<br>ggtggatece<br>aaaetgtage                                                                                                   | 120<br>180                                                                |
| tttatagcag<br>tataaatgtc<br>agtcatcctt<br>aaggactaca<br>agaaggttct                                                                             | caggattttc<br>gaaatgtgtc<br>gactacgctt                                                                                   | tattcaattg ttttatgggg cactgattcc cggagtcgac                                                                                         | agaagaaccc<br>acaagttcta<br>ctcggaggtg<br>cctggagtca                                                                                                                | agcaaaatgg<br>tctacaggtg<br>cccttggatc<br>actgcagcag                                                                                 | ggatetecae<br>ggtggatece<br>aaactgtage<br>aaggttetee                                                                                     | 120<br>180<br>240                                                         |
| tttatagcag<br>tataaatgtc<br>agtcatcctt<br>aaggactaca<br>agaaggttct<br>gatttccttg                                                               | caggattttc gaaatgtgtc gactacgctt ccatttccct                                                                              | tattcaattg ttttatgggg cactgattcc cggagtcgac tggagtcaac                                                                              | agaagaaccc<br>acaagttcta<br>ctcggaggtg<br>cctggagtca<br>tgtagcagaa                                                                                                  | agcaaaatgg<br>tctacaggtg<br>cccttggatc<br>actgcagcag<br>ggttctctga                                                                   | ggatctccac ggtggatccc aaactgtagc aaggttctcc ttccctcaga                                                                                   | 120<br>180<br>240<br>300                                                  |
| tttatagcag tataaatgtc agtcatcctt aaggactaca agaaggttct gatttccttg gtcaaccctg                                                                   | caggatttc gaaatgtgtc gactacgctt ccatttccct gagtcaaccc                                                                    | tattcaattg ttttatgggg cactgattcc cggagtcgac tggagtcaac tagcagaagg                                                                   | agaagaaccc<br>acaagttcta<br>ctcggaggtg<br>cctggagtca<br>tgtagcagaa<br>atctgattct                                                                                    | agcaaaatgg tctacaggtg cccttggatc actgcagcag ggttctctga ggttttggccc                                                                   | ggatctccac ggtggatccc aaactgtagc aaggttctcc ttccctcaga tgaggctggt                                                                        | 120<br>180<br>240<br>300<br>360                                           |
| tttatagcag tataaatgtc agtcatcctt aaggactaca agaaggttct gatttccttg gtcaaccctg gaatggagat                                                        | caggattttc gaaatgtgtc gactacgctt ccatttccct gagtcaaccc gagtcaactg                                                        | tattcaattg ttttatgggg cactgattcc cggagtcgac tggagtcaac tagcagaagg agggccgagt                                                        | agaagaaccc<br>acaagttcta<br>ctcggaggtg<br>cctggagtca<br>tgtagcagaa<br>atctgattct<br>ggagatccta                                                                      | agcaaaatgg tctacaggtg cccttggatc actgcagcag ggttctctga ggtttggccc taccgaggct                                                         | ggatetecae<br>ggtggatece<br>aaactgtage<br>aaggttetee<br>tteeeteaga<br>tgaggetggt                                                         | 120<br>180<br>240<br>300<br>360<br>420                                    |
| tttatagcag tataaatgtc agtcatcctt aaggactaca agaaggttct gatttccttg gtcaaccctg gaatggagat cgtgtgtgat                                             | caggattttc gaaatgtgtc gactacgctt ccatttccct gagtcaaccc gagtcaactg ggcaggtgtc                                             | tattcaattg ttttatgggg cactgattcc cggagtcgac tggagtcaac tagcagaagg agggccgagt acaccaatga                                             | agaagaaccc<br>acaagttcta<br>ctcggaggtg<br>cctggagtca<br>tgtagcagaa<br>atctgattct<br>ggagatccta<br>tgccaacgtg                                                        | agcaaaatgg tctacaggtg cccttggatc actgcagcag ggttctctga ggttttggccc taccgaggct gtctgtaggc                                             | ggatctccac<br>ggtggatccc<br>aaactgtagc<br>aaggttctcc<br>ttccctcaga<br>tgaggctggt<br>cctggggcac<br>agctgggttg                             | 120<br>180<br>240<br>300<br>360<br>420<br>480                             |
| tttatagcag tataaatgtc agtcatcctt aaggactaca agaaggttct gatttccttg gtcaaccctg gaatggagat cgtgtgtgat tggctgggcc                                  | caggatttc gaaatgtgtc gactacgctt ccatttccct gagtcaaccc gagtcaacct ggcaggtgtc gacagctggg                                   | tattcaattg ttttatgggg cactgattcc cggagtcgac tggagtcaac tagcagaagg agggccgagt acaccaatga caggaaatgc                                  | agaagaaccc<br>acaagttcta<br>ctcggagtg<br>cctggagtca<br>tgtagcagaa<br>atctgattct<br>ggagatccta<br>tgccaacgtg<br>ctggtttggc                                           | agcaaaatgg tctcaggtg cccttggatc actgcagcag ggttctctga ggtttgccc taccgaggct gtctgtaggc cagggctcag                                     | ggatetecac ggtggatece aaactgtage aaggttetee tteecteaga tgaggetggt ectggggeac agetgggttg gaccattge                                        | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540                      |
| tttatagcag tataaatgtc agtcatcctt aaggactaca agaaggttct gatttccttg gtcaaccctg gaatggagat cgtgtgtgat tggctgggcc cctggatgat                       | caggatttc gaaatgtgtc gactacgctt ccatttccct gagtcaaccc gagtcaactg ggcaggtgtc gacagctggg atgtcagctc                        | tattcaattg ttttatgggg cactgattcc cggagtcgac tggagtcaac tagcagaagg agggccgagt acaccaatga caggaaatgc caggaaatgc                       | agaagaaccc<br>acaagttcta<br>ctcggagtg<br>cctggagtca<br>tgtagcagaa<br>atctgattct<br>ggagatccta<br>tgccaacgtg<br>ctggtttggc<br>atcctacctg                             | agcaaaatgg tctacaggtg cccttggatc actgcagcag ggttctctga ggtttggccc taccgaggct gtctgtaggc cagggctcag tggagctcag                        | ggatetceac<br>ggtggatece<br>aaactgtage<br>aaggttetee<br>tteectcaga<br>tgaggetggt<br>ectggggcac<br>agetgggttg<br>gacccattge<br>eccacaatgg | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540                      |
| tttatagcag tataaatgtc agtcatcctt aaggactaca agaaggttct gatttccttg gtcaaccctg gaatggagat cgtgtgtgat tggctggac cctggatgat ctggctccc              | caggattttc gaaatgtgtc gactacgctt ccatttccct gagtcaaccc gagtcaactg ggcaggtgtc gacagctggg atgtcagctc gtgcgctgct            | tattcaattg ttttatgggg cactgattcc cggagtcgac tggagtcaac tagcagaagg agggccgagt acaccaatga caggaaatgc caggacacga gccatggtga            | agaagaaccc<br>acaagttcta<br>ctcggagtg<br>cctggagtca<br>tgtagcagaa<br>atctgattct<br>ggagatccta<br>tgccaacgtg<br>ctggtttggc<br>atcctacctg<br>agatgctggt               | agcaaaatgg tctacaggtg cccttggatc actgcagcag ggtttttggccc taccgaggct gtctgtaggc cagggctcag tggagctccg                                 | ggatetceae ggtggatece aaactgtage aaggttetce tteecteaga tgaggetggt ectggggeae agetgggttg gacceattge eccacaatgg eagetgecea                 | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600               |
| tttatagoag tataaatgto agtoatoctt aaggactaca agaaggttot gatttocttg gtcaaccctg gaatggagat cgtgtgtgat tggctggac cctggatgat cttggctctcc gcctcagtca | caggattttc gaaatgtgtc gactacgctt ccatttccct gagtcaaccc gagtcaactg ggcaggtgtc gacagctggg atgtcagctc gtgcgctgct cataactgtg | tattcaattg ttttatgggg cactgattcc cggagtcgac tggagtcaac tagcagaagg agggccgagt acaccaatga caggaaatgc caggacacga gccatggtga cagaaagttg | agaagaaccc<br>acaagttcta<br>ctcggagtg<br>cctggagtca<br>tgtagcagaa<br>atctgattct<br>ggagatccta<br>tgccaacgtg<br>ctggtttggc<br>atcctacctg<br>agatgctggt<br>gcctgtcagg | agcaaaatgg tctacaggtg cccttggatc actgcagcag ggttttctga ggttttggccc taccgaggct gtctgtaggc cagggctcag tggagctgcc gttatctgct atatcaccac | ggatetecae ggtggatece aaactgtage aaggttetec tteecteaga tgaggetggt ectggggeae agetgggttg gaccattge eccaeaatgg eagetgeeea etgtacceae       | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600<br>660<br>720 |

caatqatgcc aatgtggtct gcaggcagct gggctgtggc tgggccatgt cagccccaqq 960 aaatgcccag tttggccagg gctcaggacc cattgtcctg gatgatgtgc gctqctcaqq 1020 acacqagtcc tacctqtqqa gctgcccca caatggctgg ctcacccaca actgtggcca 1080 taqtqaaqac qctqqtqtca tctqctcagc tccccagtcc cggccgacac ccagcccaga 1140 tacttqqccq acctcacatq catcaacaqc aggacctgaa tccagtttgg ccctgaggct 1200 qqtqaatqqa qqtqacaqqt qtcaqqqccq aqtqqaggtc ctataccqag qctcctqqqq 1260 caccqtqtqt qatqataqct qqqacaccaq tqacqccaat gtqqtctqcc ggcagctggg 1320 ctqtqqctqq qccacqtcaq ccccaqqaaa tqcccggttt ggccagggtt caggacccat 1380 tqtcctqqat qacqtqcqct qctcaqqcta tqaqtcctac ctgtgqagct gccccacaa 1440 tggctggctc tcccataact gtcagcacag tgaagacgct ggtgtcatct gctcagctgc 1500 ccactectqq teqacqeeca qtecaqaeac qttqccqaec atcacettac etgcategae 1560 1620 agtaggatet gaateeagtt tggeeetgag getggtgaat ggaggtgaca ggtgteaggg ccgagtggag gtcctatacc gaggctcctg gggcaccgtg tgtgatgaca gctgggacac 1680 caatgatgcc aatgtggtct gcaggcagct gggctgtggc tgggccatgt tggccccagg 1740 1800 aaatgecegg tttggteagg geteaggace cattgteetg gatgaegtge getgeteagg 1860 gaatgagtcc tacttgtgga gctgcccca caatggctgg ctctcccata actgtggcca 1920 taqtqaaqac qctqqtgtca tctgctcagg acctgaatcc agtttggccc tgaggctggt 1980 qaatqqaqqt qacaqqtqtc aqqqccgagt ggaggtccta taccgaggct cttggggcac cqtqtqtqat qacaqctqqq acaccaatga tgccaatgtg gtctgcaggc agctgggctg 2040 tqqctqqqcc atqtcaqccc caqqaaatqc ccggtttggt cagggctcag gacccattgt 2100 cetggatgat gtgcgctgct caggacatga gtcctacetg tggagetgcc ccaacaatgg 2160 ctggctctcc cacaactgtg gccatcatga agatgctggt gtcatctgct cagctgccca 2220 gteceggteg acgeecagge cagacacgtt gtegaccate acgttacete categacagt 2280 2340 aggatctgaa tccagtttga ccctgaggct ggtgaatgga agtgacaggt gtcagggccg agtagaggtc ctataccgag gctcctgggg caccgtgtgt gatgacagct gggataccaa 2400 tgatgccaat gtggtctgca ggcagctggg ctgtggctgg gccatgtcag ccccaggaaa 2460 2520 tgcccggttt ggccagggct caggacccat tgttctggat gatgtgcgct gctcaggaca cgagtectac ctgtggaget geecccacaa tggetggete teccacaact gtggecatca 2580 tgaagatget ggtgtcatet geteagttte eeagteeegg eegacaceca gteeagatae 2640 ttggccgacc tcacatgcat caacagcagg atctgaatcc agtttggccc tgaggctggt 2700

qaatqqaqqt qacaqqtqtc aqqqccqaqt qqaqqtccta taccgaqqct cctqqqqcac 2760 cqtqtqtqat qataqctqqq acaccaqtqa cqccaatqtg gtctgccqqc aqctqqqctq 2820 2880 tggctgggcc acgtcagccc caggaaatgc ccggtttggc Cagggttcag gacccattgt 2940 cctqqatqac qtqcqctqct caqqctatqa qtcctacctq tqqaqctqcc cccacaatqq etggetetee cataactgte ageacagtga agaegetggt gteatetget cagetgeeca 3000 ctcctggtcg acgcccagtc cagacacatt gccgaccatc accttgcctg catcgacagt 3060 aggatetgaa tecagtttgg eeetgagget ggtgaatgga ggtgacaggt gteagggeeg 3120 agtggaggtc ctataccaag gctcctgggg caccgtgtgc gatgacagct gggacaccaa 3180 3240 tgatgccaat gtcgtctgca ggcaaccggg ctgtggctgg gccatgtcag ccccaggaaa tgcccggttt ggtcagggct caggacccat tgtcctggat gatgtgcgct gctcaggaca 3300 3360 cgagtettac cegtggaget geecceacaa tggetggete teccacaact gtggecatag tgaagacgct ggtgtcatct gctcagcttc ccagtcccgg ccaacaccta gtccagacac 3420 ttggccaacc tcacatgcat caacagcagg atctgaatcc agtttggccc tgaggctggt 3480 gaatggaggt qacaggtgtc agggccgagt ggaggtccta taccgaggct cctggggcac 3540 3600 eqtqtgtqat qactactqqg acaccaatga tgccaatgtg gtttgcaggc agctgggctg tggctgggcc atgtcagccc caggaaatgc ccggtttggc cagggttcag gacccattgt 3660 cctggatgat gtgcgctgct caggacatga gtcctatctg tggagctgcc cccacaatgg 3720 3780 ctggctctcc cacaactgtg gccatcatga agacgctggt gtcatctgct cagcttccca 3840 gteccagecg acacccagec cagacacttg gecaacctca catgcatcaa cagcaggate 3900 tgaatccagt ttggccctga ggctggtgaa tggaggtgac aggtgtcagg gccgagtgga 3960 ggtcctatac cgaggctcct ggggcaccgt gtgtgatgac tactgggaca ccaatgatgc caatgtggtt tgcaggcagc tgggctgtgg ctgggccacg tcagccccag gaaatgcccg 4020 gtttggccag ggttcaggac ccattgtcct ggatgatgtg cgctgctcag gacatgagtc 4080 ctatctgtgg agctgccccc acaatggctg gctctcccac aactgtggcc atcatgaaga 4140 cqctqqtqtc atctqctcaq cttcccaqtc ccaqccqaca cccaqcccag acacttggcc 4200 aacctcacat gcatcaacag caggatctga atccagtttg gccctgaggc tggtgaatgg 4260 aggtgacagg tgtcagggcc gagtggaggt cctataccga ggctcctggg gcaccgtgtg 4320 tgatgactac tgggacacca atgatgccaa tgtggtttqc aggcagctgg gctgtggctg 4380 4440 ggccacgtca gccccaggaa atgcccggtt tggccagggt tcaggaccca ttgtcctgga 4500 tgatgtgcgc tgctcaggac atgagtccta tctgtggagc tgcccccaca atggctggct ctcccacaac tgtggccatc atgaagacgc tggtgtcatc tgctcagctt cccagtccca 4560

geogacacce ageocagaca ettggecaac etetegtgea teaacagcag gatetgaate 4620 cactttqqcc ctqaqactqq tqaatqqaqq tqacaqqtqt cgaggccgag tqqaqqtcct 4680 4740 ataccaaggc tcctggggca ccgtgtgtga tgactactgg gacaccaatg atgccaacgt ggtctgcagg cagctgggct gtggctgggc catgtcagcc ccaggaaatg cccagtttgg 4800 ccagggetca ggacccattg tcctggatga tgtgcgctgc tcaggacacg agtcttacct 4860 gtggagetge ecceacaatg getggetete ecacaactgt ggccatcatg aagatgetgg 4920 tgtcatctgc tcagctgctc agtcccagtc aacgcccagg ccagatactt ggctgaccac 4980 caacttaccg gcattgacag taggatctga atccagtttg gctctgaggc tggtgaatgg 5040 5100 aggtgacagg tgtcgaggcc gagtggaggt cctgtatcga ggctcctggg gaaccgtgtg tgatgacagc tgggacacca atgatgccaa tgtggtctgc aggcagctgg gctgtggctg 5160 5220 ggccatgtcg gccccaggaa atgcccggtt tggccagggc tcaggaccca ttgtcctgga tgatgtgcqc tgctcaggga atgagtccta cctgtggagc tgcccccaca aaggctggct 5280 cacceacaac tgtggccatc acgaagacgc tggtgtcatc tgctcagcca cccaaataaa 5340 ttctactacq acaqattqqt qqcatccaac aactacaacc actgcaagac cctcttcaaa 5400 ttgtggtggc ttcttattct atgccagtgg gacattctcc agcccatcct accctgcata 5460 ctaccccaac aatgctaagt gtgtttggga aatagaagtg aattctggtt atcgcataaa 5520 cctgggcttc agtaatctga aattggaggc acaccataac tgcagttttg attatgttga 5580 aatotttgat ggatcattga atagcagtot cotgotgggg aaaatotgta atgataccag 5640 gcaaatattt acatcttctt acaaccgaat gaccattcac tttcgaagtg acatcagttt 5700 ccaaaacact ggctttttgg cttggtataa ctccttccca agcgatgcca ccttgaggtt 5760 ggtcaattta aattcatcct atggtctatg tgccgggcgt gtagaaattt accatggtgg 5820 cacctgggg acagtttgtg atgactcctg gaccattcag gaagctgagg tggtctgcag 5880 acaqctaqqq tqtqqacqtq cagtttcagc ccttggaaat gcatattttg gctctggctc 5940 tggccccatc accetggacg atgtagagtg ctcagggacg gaatccactc tctggcagtg 6000 ccqqaaccqa qqctqqttct cccacaactq taatcatcqt gaaqatqctg qtqtcatctg 6060 ctcaggaaac catctatcga cacctgctcc ttttctcaac atcacccgtc caaacacaga 6120 6180 ttattcctqc qqaqqcttcc tatcccaacc atcaqqqqac ttttccaqcc cattctatcc cgggaactat ccaaacaatg ccaagtgtgt gtgggacatt gaggtgcaaa acaactaccg 6240 6300 tgtgactgtg atcttcagag atgtccagct tgaaggtggc tgcaactatg attatattga 6360 agttttegat ggecectace geagtteece teteattget egagtttgtg atggggecag

| a | ggctccttc  | acttcttcct | ccaacttcat | gtccattcgc | ttcatcagtg | accacagcat | 6420 |
|---|------------|------------|------------|------------|------------|------------|------|
| С | acaaggaga  | gggttccggg | ctgagtacta | ctccagtccc | tccaatgaca | gcaccaacct | 6480 |
| 9 | ctctgtctg  | ccaaatcaca | tgcaagccag | tgtgagcagg | agctatctcc | aatccttggg | 6540 |
| С | ttttctgcc  | agtgaccttg | tcatttccac | ctggaatgga | tactacgagt | gtcggcccca | 6600 |
| 9 | ataacgccg  | aacctggtga | tattcacaat | tecetaetea | ggctgcggca | ccttcaagca | 6660 |
| 9 | gcagacaat  | gacaccatcg | actattccaa | cttcctcaca | gcagctgtct | caggtggcat | 6720 |
| С | atcaagagg  | aggacagacc | tccgtattca | cgtcagctgc | agaatgcttc | agaacacctg | 6780 |
| g | gtcgacacc  | atgtacattg | ctaatgacac | catccacgtt | gctaataaca | ccatccaggt | 6840 |
| c | gaggaagtc  | cagtatggca | attttgacgt | gaacatttcc | ttttatactt | cctcatcttt | 6900 |
| c | ttgtatcct  | gtgaccagcc | gcccttacta | cgtggacctg | aaccaggact | tgtacgttca | 6960 |
| g | gctgaaatc  | ctccattctg | atgctgtact | gaccttgttt | gtggacacct | gcgtggcatc | 7020 |
| а | ccatactcc  | aatgacttca | cgtctttgac | ttatgatcta | atccggagtg | gatgcgtgag | 7080 |
| 9 | gatgacacc  | tacggaccct | actectegee | gtctcttcgc | attgcccgct | tccggttcag | 7140 |
| g | gccttccac  | ttcctgaacc | gcttcccctc | cgtgtacctg | cgttgtaaaa | tggtggtgtg | 7200 |
| c | agagcgtat  | gacccctctt | cccgctgcta | ccgaggctgt | gtgttgaggt | cgaagaggga | 7260 |
| t | gtgggctcc  | taccaggaaa | aggtggacgt | cgtcctgggt | cccatccagc | tgcagacccc | 7320 |
| c | ccacgccga  | gaagaggagc | ctcggtaggt | ggtcgctctc | agaccccact | gtccaccggg | 7380 |
| ç | gegeagaeee | ctgactcggg | gacttgggat | gttcctcttg | gtgtcatatt | ccaactcaga | 7440 |
| t | tgagcccta  | cattgtgctg | cacctggtca | tacggagttg | aatcagacct | ggttcccgcc | 7500 |
| t | cccccaagg  | ctcatggtcc | ttggaggacc | cgttgcaggg | cgaggtcaag | agagttctga | 7560 |
| c | ctggatggc  | ccatagacct | gacgtcccag | aatccatgct | tctcatctgc | aaaatgaaaa | 7620 |
| t | gtcaatact  | tacttcttag | cactgttgag | agggttactt | acataaagga | attttggtga | 7680 |
| ä | actgc      |            |            |            |            |            | 7686 |

<210> 653

<211> 506

<212> DNA <213> Homo sapiens

<400> 653

ctettteget caggecegtg gegeegacag gatgggeaag tgtegtggac ttegtactge 60
taggaagete egtagteace gaegagacea gaagtggeat gataaacagt ataagaaage
teatttggge acagecetaa aggeeaace ttttggaggt getteteatg caaaaggaat 180
egtgetggaa aaagtaggag ttgaagecaa acagecaaat tetgecatta ggaagtgtgt 240

| agggtccag                                          | ctgatcaaqa | atggcaagaa | aatcacagcc | tttgtaccca | atgacggttq | 300  |
|----------------------------------------------------|------------|------------|------------|------------|------------|------|
|                                                    |            |            | tetggttget |            |            | 360  |
|                                                    |            |            | taaggttgtc |            |            | 420  |
|                                                    |            |            |            |            |            |      |
| ttggcccta                                          | tacaaaggca | agaaggaaag | accaagatca | taaatattaa | tggtgaaaac | 480  |
| actgtagtaa                                         | taaattttca | tatgcc     |            |            |            | 506  |
| <210> 654<br><211> 2952<br><212> DNA<br><213> Homo | sapiens    |            |            |            |            |      |
| 400> 654<br>ggcgcggtcg                             | agtcatcgca | gggcctcacc | gcttcgttct | cccgtccctc | cccgcgcctt | 60   |
| ggctcgacta                                         | gccaagtgag | gcgggaggcg | actcggacct | ttccctgcat | ttcgtttcgg | 120  |
| ccagtgccgg                                         | ggctacccgc | cctggggcct | gggatccttg | gggcccgtga | gccactctta | 180  |
| geggeegggg                                         | ctaccgcggc | ccgccgtggc | cctcatgagg | catagctgac | caagetgetg | 240  |
| gcagcctcgg                                         | gcagcaactc | cccaacccgc | agtgagagcc | cggagccggc | tgcaacttgt | 300  |
| tegetgeeet                                         | ctgacctgac | ccgggctgca | gcgggggagg | aggagacggc | ggcggcgatc | 360  |
| teceggeege                                         | aagcagcagt | ttggcgacga | aggagagttg | gaagccggga | gggggagccg | 420  |
| eggeggegtg                                         | gccgtgcgcg | cgccctcccc | cgaggagatg | gaggaggagg | cgatcgccag | 480  |
| ctcccgggg                                          | gaagagacgg | aggatatgga | ctttctgtct | gggctggaac | tggcggatct | 540  |
| cctggacccc                                         | aggcaaccgg | actggcacct | ggaccccggg | cttagctcgc | cggggcctct | 600  |
| ctcctcgtct                                         | ggcggaggct | cggatagcgg | cggcctgtgg | agaggggacg | atgacgatga | 660  |
| ggcegegget                                         | gctgaaatgc | agcgcttctc | tgacctgctg | caaaggctgt | taaacggtat | 720  |
| eggaggetge                                         | agcagcagca | gtgacagtgg | cagcgccgaa | aagaggcgga | gaaagtcccc | 780  |
| aggaggaggc                                         | ggcggtggcg | gcagcggtaa | cgacaacaac | caggcggcga | caaagagtcc | 840  |
| ccggaaggcg                                         | geggeggeeg | ctgcccgcct | taatcgactg | aagaagaagg | agtacgtgat | 900  |
| ggggctggag                                         | agtcgagtcc | ggggtctggc | agccgagaac | caggagctgc | gggccgagaa | 960  |
| tcgggagctg                                         | ggcaaacgcg | tacaggcact | gcaggaggag | agtcgctacc | tacgggcagt | 1020 |
| cttagccaac                                         | gagactggac | tggctcgctt | gctgagccgg | ctgagcggcg | tgggactgcg | 1080 |
| getgaceace                                         | tegetettea | gagactcgcc | cgccggtgac | cacgactacg | ctctgccagt | 1140 |
| gggaaagcag                                         | aagcaggacc | tgctggaaga | ggacgactcg | gcgggaggag | tetgteteca | 1200 |
| tataaacaaa                                         | gataaggtgt | caataaaatt | ctactcaaca | tacacccaaa | aggcgtcgtc | 1260 |

ttctcttaaa atgtagggtc aagtaatctg ctctttatcc gcgtttaccc ctttcaactc 1320

PCT/US2003/012946 WO 2004/042346

| ccttacacca         | tgtcaaactt          | accttagtgg | gacatettea | eeggacacat | ttcagaggag | 1380 |
|--------------------|---------------------|------------|------------|------------|------------|------|
| agaaaaaaag         | taatattgaa          | tcttaaagtg | tttagctaaa | agcatgaatg | tgacacagta | 1440 |
| accaactcct         | aatgataaca          | tgtgactatt | aaatctctct | gacagtttct | tttttaggtg | 1500 |
| atttccttcc         | tgccaggctc          | cgttgtaggg | gttacagaac | agtcgttccc | gcctcacaac | 1560 |
| ctgtggatac         | agctgttggg          | gcagaagaga | cgggaccagc | tgctggccac | atttcctgct | 1620 |
| ttattttaaa         | aggtagtata          | agaatgagga | aaaagaggta | atatcagggc | ttctgctgtt | 1680 |
| ttttatttt <b>t</b> | aacatgttca          | taattaaaaa | gtattttcca | gcagtccaaa | gatgtaagtt | 1740 |
| atcttacaca         | taatatg <b>t</b> tt | tattttgtta | tttggttatg | aaaatggaat | ccttgttctt | 1800 |
| gcacaactgt         | aaatg <b>tt</b> ttg | ttgctagata | atacgatttg | agacctgaat | tggtctttgg | 1860 |
| tttccagtgc         | atcacagcat          | attttgtaaa | atcatgtact | actgcacttg | agcatgaatg | 1920 |
| ggtagtagcc         | aaactcacaa          | attggagtga | tgaacctgct | tatacctaag | ggcaggagca | 1980 |
| agcccctcac         | aatgcagctg          | catgggtttt | tagtgcctac | tgaattatat | atatatac   | 2040 |
| atatatatat         | atatatataa          | accaaaagta | gttggaaaga | ttatttgaaa | tgactaactt | 2100 |
| tgtgctatct         | ttatgaaata          | tgttaaatgt | agctttttg  | aaacagaagc | cttgaattga | 2160 |
| aatttaacta         | atacttgaac          | attttgtata | tatttctttg | tatataattt | tgtgcagtac | 2220 |
| caatgacaaa         | aatatggtgt          | cataataaaa | ccaggtttgt | tgatctttta | gttatgggct | 2280 |
| caaagaattt         | attcatctct          | aacatgatat | tggaaaataa | tggatgaaaa | taggaaaaat | 2340 |
| gattgttaat         | gctgactgtg          | ggtcttaaaa | ggttctggaa | agcagtaagt | tcatttttct | 2400 |
| aaaaactata         | acattctgtt          | ggagtatttt | cttccttacg | tcaatacttt | tcctgcatta | 2460 |
| tttgaaattg         | tgggctgggg          | agaaacagta | gtcaaagctt | tctgaattga | gatactttga | 2520 |
| aattccaagt         | gtagattttt          | agaatgtcat | tttataaatg | gccgtttttg | gaattacttg | 2580 |
| ataagaactt         | ttgaaaatgg          | aaggattagt | atggcctatt | tttaaagctg | ctttgttagg | 2640 |
| ttccttatgt         | tttattaact          | gtcttttctc | agtttccatt | tcatttttt  | ttttctagtt | 2700 |
| ttggtgactt         | agtgattttg          | tcatttttta | catcaacttc | atggtcttgt | ttttacatgg | 2760 |
| taattgcatg         | tacttaggat          | ctatctaata | ggggctttaa | ataaatttgg | tcatatttat | 2820 |
| gtgtaagcac         | attttactgt          | aaatgtttgg | gtttctgaat | ttaaacagat | ctgtttattt | 2880 |
| cagtatgtag         | taaacaatat          | cttaaagtgt | ccgattcact | acttgttaat | taaaaaagtt | 2940 |
| atgattaatg         | tq                  |            |            |            |            | 2952 |

<sup>&</sup>lt;210> 655

<sup>&</sup>lt;211> 2618 <212> DNA <213> Homo sapiens

<400> 655 atgaagcacc tgaagcggtg gtggtcggcc ggcggcggcc teetgcacct caccetectq 60 ctgagettgg eggggeteeg egtagaceta gatetttace tgetgetgee geegeeeace 120 180 ctqctqcaqq acqaqctqct qttcctqqqc qgcccggcca gctccgccta cgcqctcaqc ccetteteqq ceteqqqaqq qtqqqqqqq qcqqqqcact tgcaccccaa qqqccqqqaq 240 ctggaccctg ccgcgccgcc cgagggccag ctgctccggg aggtgcgcgc gctcggggtc 300 360 cccttcgtcc ctcgcaccag cgtggatgca tggctggtgc acagcgtggc tgccgggagc geggaegagg cecaeggget geteggegee geegeegeet egteeaeegg aggageegge 420 qccaqcqtqq acqqcqqcaq ccaqqctqtq caqqqqqqq qcqqqqaccc ccqaqcqqct 480 cggagtggcc ccttggacgc cggggaagag gagaaggcac ccgcggaacc gacggctcag 540 qtqccqqacq ctqqcqqatq tqcqaqcqaq qaqaatqqqq tactaaqaqa aaaqcacqaa 600 660 gctqtqqatc ataqttccca qcatqaqqaa aatqaaqaaa qqqtqtcaqc ccaqaaqqaq aactcacttc agcagaatga tgatgatgaa aacaaaatag cagagaaacc tgactgggag 720 780 gcagaaaaga ccactgaatc tagaaatgag agacatctga atgggacaga tacttctttc tctctggaag acttattcca gttgctttca tcacagcctg aaaattcact ggagggcatc 840 900 tcattgggag atattcctct tccaggcagt atcagtgatg gcatgaattc ttcagcacat 960 tatcatgtaa acttcagcca ggctataagt caggatgtga atcttcatga ggccatcttg ctttqtccca acaatacatt taqaaqagat ccaacaqcaa ggacttcaca qtcacaagaa 1020 ccatttctqc aqttaaattc tcataccacc aatcctqaqc aaacccttcc tqqaactaat 1080 1140 ttgacaggat ttctttcacc ggttgacaat catatgagga atctaacaag ccaagaccta 1200 ctqtatqacc ttqacataaa tatatttqat qaqataaact taatqtcatt qqccacaqaa 1260 gacaactttg atccaatcga tgtttctcag ctttttgatg aaccagattc tgattctggc ctttctttag attcaagtca caataatacc tctgtcatca agtctaattc ctctcactct 1320 gtgtgtgatg aaggtgctat aggttattgc actgaccatg aatctagttc ccatcatgac 1380 ttagaaggtg ctgtaggtgg ctactaccca gaacccagta agctttgtca cttggatcaa 1440 agtgattctg atttccatgg agatcttaca tttcaacacg tatttcataa ccacacttac 1500 cacttacage caactgcace agaatctact tetgaacett tteegtggee tgggaagtea 1560 caqaaqataa ggaqtagata ccttgaaqac acagatagaa acttgagccg tgatgaacag 1620 cqtqctaaag ctttgcatat ccctttttct gtagatgaaa ttgtcggcat gcctgttgat 1680 tettteaata geatgttaag tagatattat etgacagace tacaagtete aettateegt 1740 qacatcagac gaaqagggaa aaataaaqtt gctgcgcaga actgtcgtaa acgcaaattg 1800

1860

gacataattt tgaatttaga agatgatgta tgtaacttgc aagcaaagaa ggaaactett

aagaqagagc aagcacaatg taacaaagct attaacataa tgaaacagaa actgcatgac 1920 ctttatcatq atatttttaq tagattaaga gatgaccaag gtaggccagt caatcccaac 1980 cactatgete tecagtgtae ccatgatgga agtatettga tagtacecaa agaactggtg 2040 gcctcaggcc acaaaaagga aacccaaaag ggaaagagaa agtgagaaga aactgaagat 2100 ggactctatt atgtgaagta gtaatgttca gaaactgatt atttggatca gaaaccattg 2160 aaactgcttc aagaattgta tctttaagta ctgctacttg aataactcag ttaacgctgt 2220 tttqaaqctt acatqqacaa atqtttagga cttcaagatc acacttgtgg gcaatctggg 2280 qqaqccacaa cttttcatqa aqtqcattqt atacaaaatt cataqttatg tccaaagaat 2340 2400 aggttaacat qaaaacccag taagactttc catcttggca gccatccttt ttaagagtaa gttggttact tcaaaaagag caaacactgg ggatcaaatt attttaagag gtatttcagt 2460 tttaaatqca aaataqcctt attttcattt aqtttgttag cactatagtg agcttttcaa 2520 acactatttt aatctttata tttaacttat aaattttgct ttctatggaa ataaattttg 2580 tatttqtatt aaaaattaac ttttcccttt tatacaga 2618 <210> 656 <211> 2128 <212> DNA <213> Homo sapiens <400> 656 qqqcqqcaq qqqcqqtqcq cqqqaaqqqa ccccqqaccc qqaqqtcqcq gaqaqctqqq 60 120 cagtgttggc cgctggcgga gcgctggggc agcatgaagt gcctggtcac gggcggcaac 180 gtgaaggtgc tcggcaaggc cgtccactcc ctgtcccgca tcggggacga gctctacctg gaaccettgg aggacgggct ctccctccgg acggtgaact cctcccgctc tgcctatgcc 240 tgctttctct ttgccccgct cttcttccag caataccagg cagccacccc tggtcaggac 300 360

cagtgttggc cgctggcgga gcgctggggc agcatgaagt gcctggtcac gggcggcaac 120
gtgaaggtgc tcggcaaggc cgtccactcc ctgtcccgca tcggggacga gctctacctg 180
gaaccettgg aggacgggct ctccctccgg acggtgaact cctcccgctc tgcctatgcc 240
tgctttctct ttgccccgct cttcttccag caataccagg cagccacccc tggtcaggac 360
ctggagaaga cggtggaaaa atgctgcatc tccctgaatg gccggagcag ccgctggtg 420
gtccagctgc attgcaagtt cggggtggg aagactcaca acctgtcctt ccaggactgt 480
gagtcctgc aggcggtt cgaccagcc tcgtccccc acatgctccg cgcccagca 540
cgggttctgg ggagaggtgt tctgccctt ctcctgcac gagagagg gagacgggc 600
attggccgtg gccgagggt catcctgca gatgaccac aggaagggg agacagcact 660
gccaaagcca tggtgactga gatgtgcctt ggagagagga attccagca gctgcaggcc
caggaagggg tggccatcac tttctgcctc aaggaattc gggggctct gaggtttgca

| gagtcagcaa | acttgaatct | tagcattcat | tttgatgctc | caggcaggcc | cgccatcttc | 840  |
|------------|------------|------------|------------|------------|------------|------|
| accatcaagg | actctttgct | ggacggccac | tttgtcttgg | ccacactctc | agacaccgac | 900  |
| tcgcactccc | aggacctggg | ctcccagag  | cgtcaccagc | cagtgcctca | gctccaggct | 960  |
| cacagcacac | cccacccgga | cgactttgcc | aatgacgaca | ttgactctta | catgatcgcc | 1020 |
| atggaaacca | ctataggcaa | tgagggctcg | cgggtgctgc | cctccatttc | cctttcacct | 1080 |
| ggcccccagc | ccccaagag  | ccccggtccc | cactccgagg | aggaagatga | ggctgagccc | 1140 |
| agtacagtgc | ctgggactcc | cccacccaag | aagttccgct | cactgttctt | cggctccatc | 1200 |
| ctggcccctg | tacgetecce | ccagggcccc | agccctgtgc | tggcggaaga | cagtgagggt | 1260 |
| gaaggctgaa | ccaagaacct | gaagcctgta | cccagaggcc | ttggactaga | cgaagcccca | 1320 |
| gccagtggca | gaactgggtc | tctcagccct | ggggatcaga | aaggtgggct | tgctggagct | 1380 |
| gagctgtttc | actgcctctc | gcaggcccca | gctggctgtc | actgtaaagc | tgtcccacag | 1440 |
| cggtcgggcc | tgggccgtta | tctccccaca | acccccagcc | aatcaggact | ttccagactt | 1500 |
| ggccctgaac | tactgacgtt | cctacctctt | atttctcatt | gagcctcagg | ctatactcca | 1560 |
| gctggccaag | gctggaaacc | tgtctccctc | aggctcacct | tcctaaggaa | aatgtcatag | 1620 |
| taggtgctgc | tggcccctgg | tgatccagct | tctctgccaa | tcatgacctg | ttccttcctg | 1680 |
| aagtcctggg | catgcatctg | ggacccccgt | ggagctgaca | agttttcctt | gctttcctga | 1740 |
| tactctttgg | cgctgacttg | gaattctaag | agccttggac | ccgagtgtgt | ggctagggtt | 1800 |
| gccctggctg | gggcccggtg | ccgagactcc | caageggete | tgtgcagaag | agctgccagg | 1860 |
| cagtgtctta | gatgtgagac | ggaggccatg | gcgagaatcc | agctttgacc | tttattcaag | 1920 |
| agaccagatg | ggttgcccca | ggatccggct | gccagccctg | aggccaagca | cggctggaga | 1980 |
| cccacgacct | ggcctgccgt | tgccctgagc | tgcagcctcg | gccccaggat | cctgctcaca | 2040 |
| gtcaccgcag | gtgcaggcag | gaagcagccc | tgggggactg | gacgctgcta | ttgattcatt | 2100 |
| aaaaaaagaa | aagaaaaata | caaaaaaa   |            |            |            | 2128 |

<210> 657 <211> 500

<212> DNA

<213> Homo sapiens

tttccaattc acttcaattt tttattcag caagcagcag tgggcctgtg aagttttcaa 60
agtgccccag gcattcttt ctggactcaa tatattaagt caaagaaagt agcaggtctt 120
aggtgccaat gaagtggcat taagctattt ctctttgcaa ggcctccttc tctgtgaagc 180

aaatcccagc cactcactca cttaaagcaa tgcagaacgt ctggtcagca aacagaaaaa 240

qqataaaaat tootcaqtto otcacotqta ttattaccat tooctoccoc aqqqaaaqqo 300 aggetagtag aaattetaca gaggteagta aacataggtg gttatttgca aaagtagtta 360 gtacttttct caggetataa aagcaatggc atttgggggt cacaatgcta accatacact 420 geceetetg atgaetttta tteettgagg ttegeteatt ggatgeecca etetatagee 480 agategeate acacageete 500 <210> 658 <211> 5458 <212> DNA <213> Homo sapiens <400> 658 qccccaqqqc ctqqaqaqqt ctqaaqaaac ctqqqaqcca qcaqcccqqq qctccactct 60 qqqttctqaa aqcccattcc ctqctctqcq qctcctccca ccccacctct tctcagcctt 120 qcaqctcaaq qqttqatctc aqqaqtccaq qacccaqqaq aqqqaaqaat ctqaqqaaca 180 240 cagaacagtq agcqttqccc acaccccatc tcccqtcacc acatctcccc tcaccctcac 300 cotcoctace tagecetaga ecceatecea agacetecet ateagetage ttettecagt gtettgeagg eccetetggg etectecete ecctggettt tectaceact eccetetat 360 420 cggcgtctat ctgtaggtgc cctgggattt ataaaactgg gttccgaatg ctgaataaga qacggtaaga gccaaggcaa aggacagcac tgttctctgc ctgcctgata ccctcaccac 480 ctgggaacat cccccagaca ccctcttaac tccgggacag agatggctgg cggagcctgg 540 qqccqcctqq cctqttactt qqaqttcctq aagaaqqaqg aqctgaagga qttccagctt 600 ctqctcqcca ataaaqcqca ctccaqqaqc tcttcqqqtq aqacacccqc tcaqccagag 660 720 aaqacqaqtq qcatqqaqqt qqcctcqtac ctqqtqqctc aqtatggqqa gcagcqggcc 780 tgggacctag ccctccatac ctgggagcag atggggctga ggtcactgtg cgcccaagcc caggaaggg caggcactc tecetcatte cectacagee caagtgaace ceacetgggg 840 teteccagee aacceacete cacegeagtg ctaatgeeet ggatecatga attgeeggeg 900 gggtgcaccc agggctcaga gagaagggtt ttgagacagc tgcctgacac atctggacgc 960 cgctggagag aaatctctgc ctcactcctc taccaagctc ttccaagctc cccagaccat 1020 gagtetecaa gecaggagte acceaaegee cecacateca cageagtget ggggagetgg 1080 qqatccccac ctcagcccag cctagcaccc agagagcagg aggctcctgg gacccaatgg 1140 cctctggatg aaacgtcagg aatttactac acaqaaatca gagaaagaga gagagagaaa 1200 tcagaqaaag gcaggccccc atgggcaqcg gtqqtaqqaa cgccccaca ggcgcacacc 1260 agectacage eccaccacca eccatgggag cettetqtga gagagageet etgttecaca 1320

tggccctgga aaaatgagga ttttaaccaa aaattcacac agctgctact tctacaaaga 1380 cetcacecca gaagecaaga teecetggte aagagaaget ggeetgatta tgtggaggag 1440 aatcqaqqac atttaattqa qatcaqaqac ttatttqqcc caqqcctqqa tacccaaqaa 1500 cctcgcatag tcatactgca gggggctgct ggaattggga agtcaacact ggccaggcag 1560 gtgaaggaag cetgggggag aggccagetg tatggggace gettecagea tgtettetae 1620 ttcagctgca gagagctggc ccagtccaag gtggtgagtc tcgctgagct catcggaaaa 1680 gatgggacag ccactcoggc teccattaga cagatectgt ctaggecaga geggetgete 1740 ttcatcctcg atggtgtaga tgagccagga tgggtcttgc aggagccgag ttctgagctc 1800 tqtctgcact ggagccagcc acagccggcg gatgcactgc tgggcagttt gctggggaaa 1860 actatacttc ccgaggcatc cttcctgatc acggctcgga ccacagctct gcagaacctc 1920 atteettett tggagcagge acgttgggta gaggteetgg ggttetetga gteeageagg 1980 aaggaatatt totacagata tttcacagat gaaaggcaag caattagago otttaggttg 2040 2100 tqcacttqcc tqatqcaqca qatqaaqcqq aaggaaaaac tcacactgac ttccaagacc 2160 accacaaccc tetqtctaca ttaccttqcc caqqctctcc aaqctcaqcc attqggaccc 2220 cageteagag acetetgete tetggetget gagggeatet ggeaaaaaaa gaceetttte 2280 2340 agtecagatg acctcaggaa gcatgggtta gatggggcca tcatctccac cttcttgaag 2400 atgggtattc ttcaagagca ccccatccct ctgagctaca gcttcattca cctctqtttc caagagttct ttgcagcaat gtcctatgtc ttggaggatg agaaggggag aggtaaacat 2460 2520 tctaattgca tcatagattt ggaaaagacg ctagaagcat atggaataca tggcctgttt ggggcatcaa ccacacgttt cctattgggc ctgttaagtg atgaggggga gagagagatg 2580 gagaacatct ttcactgccg gctgtctcag gggaggaacc tgatgcagtg ggtcccgtcc 2640 ctgcaqctgc tqctqcaqcc acactctctg gagtccctcc actgcttgta cgagactcgg 2700 aacaaaacqt tcctqacaca aqtqatqqcc catttcqaaq aaatqqqcat gtqtgtagaa 2760 acaqacatqq aqctcttaqt qtqcactttc tqcattaaat tcaqccqcca cqtqaaqaaq 2820 cttcaqctqa ttqaqqqcaq qcaqcacaqa tcaacatqqa qccccaccat qqtaqtcctq 2880 ttcaqqtqqq tcccaqtcac aqatqcctat tqqcaqattc tcttctccqt cctcaaqqtc 2940 3000 accagaaacc tqaaqqaqct qqacctaaqt qqaaactcqc tqaqccactc tqcaqtqaaq 3060 agtetttqta agaccetqag acqceetcqe tgeetcetqq agaccetqcg qttqqetqqe tqtqqcctca caqctqaqqa ctqcaaqqac cttqcctttq qqctqaqaqc caaccaqacc 3120

ctgaccgage tggacctgag cttcaatgtg ctcacggatg ctggagccaa acacetttge 3180 cagagactga gacagccgag ctgcaagcta cagcgactgc agctggtcag ctgtggcctc 3240 3300 acqtctgact gctgccagga cctggcctct gtgcttagtg ccagccccag cctgaaggag ctaqacctqc agcagaacaa cctggatgac gttggcgtgc gactgctctg tgaggggctc 3360 aggeatectg cetgeaaact catacgeetg gggetggace agacaactet gagtgatgag 3420 atgaggcagg aactgagggc cctggagcag gagaaacctc agctgctcat cttcagcaga 3480 cqqaaaccaa qtqtqatqac ccctactqaq qqcctgqata cgggagagat qaqtaatagc 3540 acatecteae teaaqeqqea qaqaeteqqa teaqagagqq eggetteeca tqttqeteaq 3600 qctaatctca aactcctqqa cqtqaqcaaq atcttcccaa ttqctqaqat tqcaqaqqaa 3660 ageteeceaq aggtaqtace qqtqqaaete ttqtqcqtqc cttctcctqc ctctcaaqqq 3720 3780 qacctqcata cqaaqccttt qqqqactqac qatqacttct qqqqccccac qqqqcctgtq gctactgagg tagttgacaa agaaaagaac ttgtaccgag ttcacttccc tgtagctggc 3840 3900 tectaceget ggeccaacae gggtetetge tttgtgatga gagaageggt gacegttgag 3960 attgaattet gtgtgtggga ccagtteetg ggtgagatea acceacagea cagetggatg gtggcagggc ctctgctgga catcaaggct gagcctggag ctgtggaagc tgtgcacctc 4020 4080 cctcactttg tggctctcca agggggccat gtggacacat ccctgttcca aatggcccac 4140 tttaaagagg aggggatgct cctggagaag ccagccaggg tggagctgca tcacatagtt ctggaaaacc ccaqcttctc ccccttggga gtcctcctga aaatgatcca taatgccctg 4200 cqcttcattc ccqtcacctc tqtqqtqttq ctttaccacc gcgtccatcc tgaggaagtc 4260 accttccacc tctacctqat cccaaqtqac tqctccattc qqaaggaact ggaqctctgc 4320 4380 tateqaaqee etqqaqaaqa ecaqetqtte tegqaqttet acgttggeea ettgggatea 4440 qqqatcaqqc tqcaaqtqaa aqacaaqaaa qatqaqactc tqqtqtqqqa qqccttqqtq aaaccaggag atctcatgcc tgcaactact ctgatccctc cagcccgcat agccgtacct 4500 tcacctctgg atgccccgca gttgctgcac tttgtggacc agtatcgaga gcagctgata 4560 gecegagtga categgtgga ggttgtettg gacaaactgc atggacaggt getgagecag 4620 4680 gagcagtacg agagggtgct ggctgagaac acgaggccca gccagatgcg gaagctgttc agettgagec agteetggga eeggaagtge aaagatggae tetaccaage eetgaaggag 4740 acceatecte accteattat ggaactetgg gagaagggea geaaaaaggg acteetgeea 4800 ctcagcagct gaagtatcaa caccagcct tgaccettga gtcctggctt tggctgaccc 4860 ttetttgggt eteagtttet ttetetgeaa acaagttgee atetggtttg cetteeagea 4920 ctaaagtaat ggaactttga tgatgccttt gctgggcatt atgtgtccat gccagggatg 4980

ccacaggggg ccccagtcca ggtggcctaa cagcatctca gggaatgtcc atctggagct 5040 ggcaagaccc ctgcagacct catagagcct catctggtgg ccacagcagc caagcctaga 5100 qccctccqqa tcccatccag qcgcaaagag gaataggagg gacatggaac catttgcctc 5160 tqqctqtqtc acaqqgtgaq ccccaaaatt ggggttcagc gtgggaggcc acqtqqattc 5220 ttqqctttqt acaqqaaqat ctacaagaqc aagccaacag aqtaaagtgg aagqaagttt 5280 attcaqaaaa taaaqqaqta tcacaqctct tttagaattt qtctaqcaqq ctttccaqtt 5340 tttaccaqaa aacccctata aattaaaaat tttttactta aatttaaqaa ttaaaaaaat 5400 acaaaaaaga aaaaatgaaa ataaaggaat aagaagttac ctactccaaa aaaaaaaa 5458

<210> 659 <211> 1373

<212> DNA <213> Homo sapiens

<220>

<221> misc\_feature <222> (241)..(241)

<223> n is a, c, g, t or u

<400> 659
cttttttttt ttcqtctqqq ctqccaacat qccatccaga ctqaggaaqa cccqgaaact

taggggcac gtgagccacg gccacggcgc ataggcaagc accggaagca ccccggcggc 120 180 cgcqqtaatq ctqqtqtct qcatcaccac cqqatcaact tcqacaaata ccacccaqqc 240 tacttqqqqa aaqtqqqtat qaaqcattac cacttaaaqa qqaaccaqaq cttctqccca natgtcaacc ttgacaaatg tgtgggactt gggtcagtga acagacacgg gtgaatgctg 300 ctaaaaacaa qactqqqqct qctcccatca ttqatqtqqt qcqatcqqqc tactataaaq 360 ttctgggaaa gggaaagctc ccaaagcagc ctgtcatcgt gaaggccaaa ttcttcagca 420 gaaqagctqa ggagaagatt acgagtgtgg ggggggcctg tgtcctgqtg gcttgaagcc 480 acatqqagqq agttcataaa tggtatacca aaaaaaaaaqa aaaaaaaaa attgtttggg 540 qcqqqccca qaaaattcaa accacqqtqc qqqcqqqcca qaqatqqcaa cqqqccqagg 600 qcqcaqaqac cggqacqaca ggqqqqttcc acaaaaaaaqc qcqqqccqgg tgaagaacag 660 720 ggtcgccaq ggtcgcaggc acggatcatc ccccgccgcq gcccacacac gacgacacag acaaacgaag agacaagacc catctgatgt cctcagtctc aggcgacgac gtgccaggag 780 aggegegeag aaacactgca aaaaactgac accgcagcag geccagccac ccacaaggca 840 900 aaaqtqccac cqacqcqcqc aaccqqaqcq ccaaaqccqa qccaaqacqa qaaqaaccqa cacqaqcaqc acaaqqqcqq cqacqcqqaa qqaqacaqqa qccacqqcaq acqqaccaga 960

| cacgatgcaa                                        | cacacgcaaa     | gacgcaccca | agacagaacg | gacagacaca | aacaaggaga | 1020 |
|---------------------------------------------------|----------------|------------|------------|------------|------------|------|
| aagcaggaga                                        | actaccgacc     | gcgacgcaag | agacacagaa | aacagagggg | aacgaggcag | 1080 |
| agaaaagaga                                        | acgagcgcga     | acgcgacgga | tcaaggcgag | cagaccagac | acagaacagc | 1140 |
| ggggacacag                                        | cagaagaacg     | aagaacaaca | gagacgcgac | agaaagacaa | agaaccgcag | 1200 |
| agcagacacc                                        | aggccaagag     | caagagggga | gaacacacag | cgagggaacg | agcgagagag | 1260 |
| agatgagaaa                                        | tacagacatg     | aaggaagacg | agcaaggaca | cagcgagagt | ccaggaacag | 1320 |
| gcagacaagc                                        | gagaaagagg     | agaagcgcaa | cacgaacaga | aaaccagagc | gag        | 1373 |
| <210> 660<br><211> 690<br><212> DNA<br><213> Homo | o sapiens      |            |            |            |            |      |
| <400> 660<br>tgcacaagca                           | gaatcttcag     | aacaggttct | ccttccccag | tcaccagttg | ctcgagttag | 60   |
| aattgtctgc                                        | aatggccgcc     | ctgcagaaat | ctgtgagctc | tttccttatg | gggaccctgg | 120  |
| ccaccagctg                                        | cctccttctc     | ttggccctct | tggtacaggg | aggagcagct | gcgcccatca | 180  |
| gctcccactg                                        | caggettgae     | aagtccaact | tccagcagcc | ctatatcacc | aaccgcacct | 240  |
| tcatgctggc                                        | taaggaggct     | agcttggctg | ataacaacac | agacgttcgt | ctcattgggg | 300  |
| agaaactgtt                                        | ccacggagtc     | agtatgagtg | agcgctgcta | tctgatgaag | caggtgctga | 360  |
| acttcaccct                                        | tgaagaagtg     | ctgttccctc | aatctgatag | gttccagcct | tatatgcagg | 420  |
| aggtggtgcc                                        | cttcctggcc     | aggctcagca | acaggctaag | cacatgtcat | attgaaggtg | 480  |
| atgacctgca                                        | tatccagagg     | aatgtgcaaa | agctgaagga | cacagtgaaa | aagcttggag | 540  |
| agagtggaga                                        | gatcaaagca     | attggagaac | tggatttgct | gtttatgtct | ctgagaaatg | 600  |
| cctgcatttg                                        | accagagcaa     | agctgaaaaa | tgaataacta | acccctttc  | cctgctagaa | 660  |
| ataacaatta                                        | gatgccccaa     | agcgattttt |            |            |            | 690  |
| <210> 661<br><211> 118<br><212> DNA<br><213> Home | 9<br>o sapiens |            |            |            |            |      |
| <400> 661                                         | gggggcata      | ttagcagcgg | ttattcggtg | agcggtggta | gtttattctt | 60   |
|                                                   |                | tggacatctc |            |            |            | 120  |
|                                                   |                | ctcgaagata |            |            |            | 180  |
|                                                   |                | aatatqccat |            |            |            | 240  |

|            | a gcaaatgatg |            |            |            |            | 300  |
|------------|--------------|------------|------------|------------|------------|------|
| tettgatga  | a gtctttttt  | ctgaaaaaat | ttataaactc | aatgaggaca | tggcttgcag | 360  |
| tgtggcagg  | ataacttctg   | atgctaatgt | tctgactaat | gaactaaggc | tcattgctca | 420  |
| aaggtattta | ttacagtatc   | aggagccaat | accttgtgag | cagttggtta | cagcgctgtg | 480  |
|            | caagcttata   |            |            |            |            | 540  |
|            | tgggataagc   |            |            |            |            | 600  |
|            | tggaaggcca   |            |            |            |            | 660  |
|            | tataaagaag   |            |            |            |            | 720  |
|            | aagaccatgg   |            |            |            |            | 780  |
|            | gagaatggaa   |            |            |            |            | 840  |
|            | aaacatgagg   |            |            |            |            | 900  |
|            | aaggataaat   |            |            |            |            | 960  |
|            | agtcctactc   |            |            |            |            | 1020 |
|            | ggacattaca   |            |            |            |            | 1080 |
|            | cgatgatggt   |            |            |            |            |      |
|            | taaaatttgg   |            |            |            | Cacacccccc | 1140 |
|            | 33           | 35         | -3         | uuuuadddd  |            | 1189 |
| <210> 662  |              |            |            |            |            |      |

<210> 662 <211> 1890

<212> DNA

<213> Homo sapiens

<400> 662 cccgcgagcg gacgcggcag cgcctctgtc tcgctttttc ttatttttcc cccctttccc 60 ctttctttt tttttttct tttctttct cccctcccc cctttcacca tttcccctcg 120 gaggegettt eccegggeag gggeagagee ggteteaece eccgeetete eccggeecee 180 geogeoctat ggogagaggg agoccoctee caaccoggge tegageggeg geggeeteag 240 gccgggggtc atcatggaac taattcgctg accgacccag cggccgcagc cgtgcgtccc 300 getegagege cagegeeege geeegegeee ceegateege tteccettte teeeteetea 360 gttggccgag tcgtcccgcg cgcaccgcct ccgcgcgcct atgagaatga ggtggtaacg 420 ggcccccgga tgaccccgcg tcaccactgt gaggcctaca gctctgccgg ggaggaggag 480 gaggaggaag aggaggagaa ggtagctaca gcaagctggg tagcaggcag atccaaagga 540 tatcatgaag tttccagggc ctttggaaaa ccagagattg tctttcctgt tggaaaaggc 600

aatcactagg gaagcacaga tgtgggaaagt gaatgtgcgg aaaatgcctt caaatcagaa

416

| tgtttctcca | teccagagag | atgaagtaat | tcaatggctg | gccaaactca | agtaccaatt | 720  |
|------------|------------|------------|------------|------------|------------|------|
| caacctttac | ccagaaacat | ttgctctggc | tagcagtctt | ttggataggt | ttttagctac | 780  |
| cgtaaaggct | catccaaaat | acttgagttg | tattgcaatc | agctgttttt | tcctagctgc | 840  |
| caagactgtt | gaggaagatg | agagaattcc | agtactaaag | gtattggcaa | gagacagttt | 900  |
| ctgtggatgt | tcctcatctg | aaattttgag | aatggagaga | attattctgg | ataagttgaa | 960  |
| ttgggatctt | cacacagcca | caccattgga | ttttcttcat | attttccatg | ccattgcagt | 1020 |
| gtcaactagg | cctcagttac | ttttcagttt | gcccaaattg | ageceatete | aacatttggc | 1080 |
| agtccttacc | aagcaactac | ttcactgtat | ggcctgcaac | caacttctgc | aattcagagg | 1140 |
| atccatgctt | gctctggcca | tggttagtct | ggaaatggag | aaactcattc | ctgattggct | 1200 |
| ttctcttaca | attgaactgc | ttcagaaagc | acagatggat | agctcccagt | tgatccattg | 1260 |
| tcgggagctt | gtggcacatc | acctttctac | tctgcagtct | tccctgcctc | tgaattccgt | 1320 |
| ttatgtctac | cgtcccctca | agcacaccct | ggtgacctgt | gacaaaggag | tgttcagatt | 1380 |
| acatccctcc | tctgtcccag | gcccagactt | ctccaaggac | aacagcaagc | cagaagtgcc | 1440 |
| agtcagaggt | acagcagcct | tttaccatca | tctcccagct | gccagtgggt | gcaagcagac | 1500 |
| ctctactaaa | cgcaaagtag | aggaaatgga | agtggatgac | ttctatgatg | gaatcaaacg | 1560 |
| gctctataat | gaagataatg | tctcagaaaa | tgtgggttct | gtgtgtggca | ctgatttatc | 1620 |
| aagacaagag | ggacatgctt | ccccttgtcc | acctttgcag | cctgtttctg | tcatgtagtt | 1680 |
| tcaacaagtg | ctacctttga | gtgtaaacta | aggtagacta | ctttgggaat | gagaacatgo | 1740 |
| aaaatcagga | aaggctgtag | aaggaaatat | accttaacag | gctgatttgg | agtgagccag | 1800 |
| aaaaaaaaa  | taaaactctc | attatttgtg | tggctaatta | taattcagcg | ttatttaagc | 1860 |
| acataaagac | caaaaaaaaa | aaaaaaaaa  |            |            |            | 1890 |

<400> 663

60

cttgcaatcc aggctttcct tggaagtggc tgtaacatgt atgaaaagaa agaaaggagg

<sup>&</sup>lt;210> 663

<sup>&</sup>lt;211> 4050

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

accaagagat gaaagaggc tgcacgctg ggggcccgag tggtgggcgg ggacagtcgt 120
cttgttacag gggtgctggc cttccctggc gcctgcccct gtcggccccg cccgagaacc 180
tccctgcgcc agggcagggt ttactcatcc cggcgaggtg atcccatgcg cgagggcggg 240
cgcaagggcg gccagagaac ccagcaatcc gagtatgcgg catcagccct tcccaccagg 300
cacttccttc cttttcccga acgtccaggg agggagggc gggcacttat aaactcgagc 360

cctggccgat ccgcatgtca gaggctgcct cgcaggggct gcgcgcacgg caagaagtgt 420 ctgggctggg acggacagga gaggctgtcg ccatcggcgt cctgtgcccc tctgctccgg 480 caeggeeetg tegeagtgee egegetttee eeggegeetg caegeggege geetgggtaa 540 600 catqcttqqq qtcctqqtcc ttqqcqcqct qqccctggcc ggcctggggt tccccqcacc 660 egeagageeg cageegggtg geageeagtg egtegageac gaetgetteg egetetacce 720 gggccccqcq accttectca atgccagtca gatetgcgac ggactgcggg gccacctaat 780 gacagtgcgc tecteggtgg etgeegatgt cattleettg etactgaacg gegaeggegg 840 egttggeege eggegeetet ggateggeet geagetgeea eeeggetgeg gegaceeeaa gegeeteggg eccetgegeg getteeagtg ggttaeggga gacaacaaca ceagetatag 900 caggtgggca eggetegace teaatggggc teceetetge ggeeegttgt gegtegetgt 960 1020 cteegetget gaggecactg tgeccagega geegatetgg gaggageage agtgegaagt 1080 gaaggccgat ggcttcctct gcgagttcca cttcccagcc acctgcaggc cactggctgt 1140 ggagcceggc gccgcggctg ccgccgtctc gatcacctac ggcaccccgt tcgcggcccg eggageggae tteeaggege tgeeggtggg eageteegee geggtggete eeeteggett 1200 1260 acagetaatg tgcacegege egeceggage ggtecagggg caetgggeca gggaggegee gggcgcttgg gactgcagcg tggagaacgg cggctgcgag cacgcgtgca atgcgatccc 1320 tggggctccc cgctgccagt gcccagccgg cgccgccctg caggcagacg ggcgctcctg 1380 caccgcatcc gcgacgcagt cctgcaacga cctctgcgag cacttctgcg ttcccaaccc 1440 cgaccagccg ggctcctact cgtgcatgtg cgagaccggc taccggctgg cggccgacca 1500 1560 acaccagtic gaggacgtig atgacticat actggagece agtecgtite egeagegetig 1620 tgtcaacaca cagggtggct tcgagtgcca ctgctaccct aactacgacc tggtggacgg 1680 cgagtgtgtg gagcccgtgg acccgtgctt cagagccaac tgcgagtacc agtgccagcc cctgaaccaa actagctacc tctgcgtctg cgccgagggc ttcgcgccca ttccccacga 1740 gccgcacagg tgccagatgt tttgcaacca gactgcctgt ccagccgact gcgaccccaa 1800 cacccagget agetgtgagt geeetgaagg etacateetg gaegaeggtt teatetgeae 1860 ggacatcgac gagtgcgaaa acggcggctt ctgctccggg gtgtgccaca acctccccgg 1920 tacettegag tgcatetgeg ggecegaete ggecettgee egecacattg gcacegaetg 1980 tqactccqqc aaqgtqqacq qtgqcqacaq cggctctggc gagcccccgc ccagcccqac 2040 2100 qcccqqctcc accttgactc ctccqqccqt qgggctcgtg cattcgggct tgctcataqg catctccatc gcgagcctgt gcctggtggt ggcgcttttg gcgctcctct gccacctgcg 2160 2220 caagaagcag ggcgccgcca qqqccaaqat qqaqtacaaq tqcqcqqccc cttccaaqqa

ggtagtgctg cagcacgtgc ggaccgagcg gacgccgcag agactctgag cgqcctccqt 2280 ccaqqaqcct qqctccqtcc aggagctgtg cctcctcacc cccagctttg ctaccaaagc 2340 accttagetq qeattacage tqqagaagac ceteceegca ceeeccaage tqttttette 2400 tattccatqq ctaactqqcq aqqqqqtqat tagaqqgagg agaatgagcc tcqqcctctt 2460 ccgtgacgtc actggaccac tgggcaatga tggcaatttt gtaacgaaga cacagactgc 2520 gatttqtccc aqqtcctcac taccqqqcqc aqqaqqqtqa qcqttattgg tcqqcaqcct 2580 tctqqqcaqa ccttqacctc qtqqqctaqq qatqactaaa atatttattt tttttaaqta 2640 tttaggtttt tgtttgtttc ctttgttctt acctgtatgt ctccagtatc cactttgcac 2700 ageteteegg tetetetete tetacaaact cecaettqte atqtqacagg taaactatet 2760 2820 tqqtqaattt ttttttccta qccctctcac atttatqaaq caagccccac ttattcccca ttetteetaq tttteteete ecaqqaactq qqccaactca cetqaqtcac cetacetqtq 2880 2940 cctgacccta cttcttttgc tcatctagct gtctgctcag acagaacccc tacatgaaac 3000 agaaacaaaa acactaaaaa taaaaatggc catttgcttt ttcaccagat ttgctaattt atcctgaaat ttcagattcc cagagcaaaa taattttaaa caaagggttg agatgtaaaa 3060 3120 ggtattaaat tgatgttgct ggactgtcat agaaattaca cccaaagagg tatttatctt 3180 tacttttaaa cagtgagcct gaattttgtt gctgttttga tttgtactga aaaatggtaa ttqttqctaa tcttcttatg caatttcctt ttttgttatt attacttatt tttgacagtg 3240 ttgaaaatqt tcaqaaqgtt qctctaqatt gaqaqaagag acaaacacct cccaggagac 3300 aqttcaaqaa aqcttcaaac tqcatgattc atgccaatta qcaattgact gtcactgttc 3360 cttqtcactq qtaqaccaaa ataaaaccaq ctctactqqt cttqtqgaat tgggagcttg 3420 ggaatggatc ctggaggatg cccaattagg gcctagcctt aatcaggtcc tcagagaatt 3480 tctaccattt caqaqaqqcc ttttqqaatq tqqccctqa acaaqaattq qaaqctqccc 3540 tgcccatggg agetggttag aaatgcagaa tcctaggctc caccccatcc agttcatgag 3600 3660 aatctatatt taacaagatc tgcaggggt gtgtctgctc agtaatttga ggacaaccat tecagactge ttecaatttt etggaataca tgaaatatag ateagttata agtageagge 3720 caagtcaggc ccttattttc aagaaactga ggaattttct ttgtgtagct ttgctctttg 3780 gtagaaaagg ctaggtacac agctctagac actgccacac agggtctgca aggtctttgg 3840 ttcagctaag ctaggaatga aatcctgctt cagtgtatgg aaataaatgt atcatagaaa 3900 tgtaactttt gtaagacaaa ggttttcctc ttctattttg taaactcaaa atatttgtac 3960 ataqttattt atttattqqa qataatctaq aacacaqqca aaatccttgc ttatgacatc 4020

| acttotacaa aataaacaaa taacaatoto | 4050 |
|----------------------------------|------|

| <210><br><211><br><212><br><213> | 664<br>1258<br>DNA<br>Homo | sapiens    |            |            |            |            |     |
|----------------------------------|----------------------------|------------|------------|------------|------------|------------|-----|
| <400><br>ccgggct                 |                            | cccagagcaa | gaccctgatg | gctgcggtgt | ttctggtaac | gctttatgaa | 60  |
| tactcg                           | ccgc                       | ttttctacat | cgcggtggtc | tttacctgct | tcatcgtgac | caccggcctg | 120 |
| gtattg                           | ggat                       | ggtttggttg | ggatgttcca | gtaattctga | gaaattcaga | agagacccag | 180 |
| ttcagc                           | acaa                       | gagttttcaa | aaagcaaatg | agacaagtca | agaatccttt | tggcttagag | 240 |
| atcact                           | aatc                       | catcttcagc | ttcaattaca | actggcataa | ccttgacaac | agattgcctt | 300 |
| gaagat                           | agcc                       | tccttacatg | ctactggggg | tgcagtgttc | aaaaattata | tgaagctctg | 360 |
| cagaag                           | catg                       | tttattgctt | cagaataagc | actccccaag | cattagaaga | tgctctgtat | 420 |
| agtgaa                           | tatc                       | tctatcagga | acagtatttt | attaaaaagg | atagcaaaga | agaaatatat | 480 |
| tgccag                           | ttac                       | caagagatac | taaaattgaa | gactttggta | cagtacccag | atctcgctat | 540 |
| ccattg                           | gtag                       | cgctattgac | cttagctgat | gaggatgacc | gggaaattta | tgatattatt | 600 |
| tccatg                           | gtgt                       | cagtgattca | tattcctgat | aggacttata | aactatcctg | cagaatattg | 660 |
| tatcaa                           | tatt                       | tactcttggc | tcaaggtcaa | tttcatgatc | ttaagcaact | tttcatgtct | 720 |
| acaaat                           | 22+2                       | atttcactcc | ctccaacaat | tectettead | aanaaaaaaa | cacacacaca | 780 |

gcaaataata atttcactcc ctccaacaat tcctcttcag aagaaaaaaa cacagacaga 780
agtttgttgg aaaaggtggg actctctgaa agtgaagttg agccatcgga agagaacagc 840
aaggactgtg ttgtttgcca gaatgggact gtgaactggg tactcttacc atgcagacac 900
acatgcctgt gtgatggctg tgtgaagtat tttcagcagt gcccaatgtg caggcagttt 960
gttcaggaat cttttgcact ttgcagtcaa aaagagcaag ataaagacaa accgaagact 1020
ctttgaagac atcgtaacac tgaaaagtac actttctact aaagatgcag aaattgatga 1080

tottggaatt catcataaca tggaatctac agtactgacc atcaatgaaa attatattt 1140
aacttcatat ttgtatggta cttggatgat aaaaattaat tattcctttc tgcttagtga 1200

atgaatactg gaatccatct gtgttgatac aataaaaatt cattcaactc ttgaaaag 1258

<sup>&</sup>lt;210> 665 <211> 21

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 665

gtaacccgtt gaaccccatt c

| WO 2004/042346        | P   | CT/US2003/012946 |
|-----------------------|-----|------------------|
| <210> 666             |     |                  |
| <211> 20              |     |                  |
| <212> DNA             |     |                  |
| <213> Homo sapiens    |     |                  |
| <400> 666             |     |                  |
| cacaatgtgg ccgaggactt |     | 20               |
|                       |     |                  |
|                       |     |                  |
| <210> 667             |     |                  |
| <211> 20              |     |                  |
| <212> DNA             |     |                  |
| <213> Homo sapiens    |     |                  |
| <400> 667             |     |                  |
| caccgatete aggggttetg |     | 20               |
| 5 5555 5              |     |                  |
|                       |     |                  |
| <210> 668             |     |                  |
| <211> 23              |     |                  |
| <212> DNA             |     |                  |
| <213> Homo sapiens    |     |                  |
| <400> 668             |     |                  |
| tecaacatea acatettggt | cag | 23               |
|                       |     |                  |
| <210> 669             |     |                  |
| <210> 669             |     |                  |
| <211> 21<br><212> DNA |     |                  |
| <213> Homo sapiens    |     |                  |
|                       |     |                  |
| <400> 669             |     |                  |
| ccaaaagaca ccagccactc | a   | 21               |
|                       |     |                  |
| <210> 670             |     |                  |
| <211> 20              |     |                  |
| <212> DNA             |     |                  |
| <213> Homo sapiens    |     |                  |
| <400> 670             |     |                  |
| ccctccctcc atcgttttct |     | 20               |
| ccccccc accgccccc     |     | 20               |
|                       |     |                  |
| <210> 671             |     |                  |
| <211> 21              |     |                  |
| <212> DNA             |     |                  |
| <213> Homo sapiens    |     |                  |
| <400> 671             |     |                  |
| tggggtcaag actgacaatc | c   | 21               |
|                       |     |                  |
| <210> 672             |     |                  |
| <211> 672             |     |                  |
| <211> 23<br><212> DNA |     |                  |
| <213> Homo sapiens    |     |                  |
| -                     |     |                  |
| <400> 672             |     |                  |
| gaggaaaaag cgagagaaaa | gga | 23               |
|                       |     |                  |

| <210>  | 673             |  |
|--------|-----------------|--|
| <211>  |                 |  |
| <212>  |                 |  |
|        | Homo sapiens    |  |
|        |                 |  |
| <400>  | 673             |  |
|        | cagg atgtgtctgt |  |
| ccccc  | cagg acgegeeege |  |
|        |                 |  |
| <210>  | 674             |  |
| <211>  |                 |  |
| <212>  |                 |  |
|        | Homo sapiens    |  |
| (213)  | nomo saprens    |  |
| <400>  | 674             |  |
|        | cctg atgcccaact |  |
|        | acgoodaacc      |  |
|        |                 |  |
| <210>  | 675             |  |
| <211>  |                 |  |
| <212>  |                 |  |
|        | Homo sapiens    |  |
|        |                 |  |
| <400>  | 675             |  |
| cctact | gctt tgccccaaga |  |
|        |                 |  |
|        |                 |  |
| <210>  |                 |  |
| <211>  |                 |  |
| <212>  | DNA             |  |
| <213>  | Homo sapiens    |  |
|        |                 |  |
| <400>  |                 |  |
| gacctc | ccct ggtgaagaca |  |
|        |                 |  |
| -210   | 600             |  |
| <210>  |                 |  |
| <211>  |                 |  |
| <212>  |                 |  |
| <213>  | Homo sapiens    |  |
| <400>  | 622             |  |
|        | gacg ccctctgatt |  |
| caacag | gacy cooledgall |  |
|        |                 |  |
| <210>  | 678             |  |
| <211>  |                 |  |
| <212>  |                 |  |
|        | Homo sapiens    |  |
|        |                 |  |
| <400>  | 678             |  |
|        | gcag gaagcaacga |  |
| 5      |                 |  |
|        |                 |  |
| <210>  | 679             |  |
| <211>  | 20              |  |
| <212>  | DNA             |  |
| -212-  | Treme appiers   |  |

| WO 2004/042346                     | PCT/US2003/012946 |
|------------------------------------|-------------------|
| <400> 679<br>caaagggttg ggagctgatg | 20                |
| Caaagggttg ggagetgatg              | 20                |
| <210> 680                          |                   |
| <211> 21                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| <400> 680                          |                   |
| agtttgctgg cctgtacttc g            | 21                |
|                                    |                   |
| <210> 681<br><211> 20              |                   |
| <211> 20<br><212> DNA              |                   |
| <213> Homo sapiens                 |                   |
|                                    |                   |
| <400> 681                          | 20                |
| ccaaccacaa gcacacagga              | 20                |
| <210> 682                          |                   |
| <211> 20                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| <400> 682                          |                   |
| tccacattcc aaaagccaca              | 20                |
|                                    |                   |
| <210> 683                          |                   |
| <211> 20                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| <400> 683                          |                   |
| gccacctcct gctgtttctc              | 20                |
| geometric geogreece                |                   |
| <210> 684                          |                   |
| <211> 20                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| <400> 684                          |                   |
| cccctgtccc ctctatgacc              | 20                |
|                                    |                   |
| <210> 685                          |                   |
| <211> 20                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| <400> 685                          | 20                |
| ggaccaggtc ttggagctga              | 20                |
| <210> 686                          |                   |
| <211> 666 <211> 20                 |                   |
| <211> 20<br><212> DNA              |                   |
|                                    |                   |

| WO 2004/042346                     | PCT/US2003/012946 |
|------------------------------------|-------------------|
| <213> Homo sapiens                 |                   |
| <400> 686                          |                   |
| ctgccctgta ggaaggcaga              | 20                |
|                                    |                   |
| <210> 687                          |                   |
| <211> 20                           |                   |
| <212> DNA<br><213> Homo sapiens    |                   |
| (213) HOMO SAPIERS                 |                   |
| <400> 687                          |                   |
| tteetggtte gggtgttaeg              | 20                |
|                                    |                   |
| <210> 688                          |                   |
| <211> 20<br><212> DNA              |                   |
| <213> Homo sapiens                 |                   |
|                                    |                   |
| <400> 688<br>ggcaatccca ggaagacaaa | 20                |
| ggcaaccoca ggaagacaaa              | 20                |
| <210> 689                          |                   |
| <211> 25                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| <400> 689                          |                   |
| tcaggtatgt tgcctttatg gtttc        | 25                |
|                                    |                   |
| <210> 690                          |                   |
| <211> 20<br><212> DNA              |                   |
| <213> Homo sapiens                 |                   |
|                                    |                   |
| <400> 690<br>tgctgtacca cccacattgc | 20                |
| tgetgtacea cecacattge              | 20                |
| <210> 691                          |                   |
| <211> 20                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| <400> 691                          |                   |
| cacatccagc tccttcagca              | 20                |
|                                    |                   |
| <210> 692                          |                   |
| <211> 20<br><212> DNA              |                   |
| <213> Homo sapiens                 |                   |
| i                                  |                   |
| <400> 692<br>cctaccccac cccacctaaa | 20                |
| ectacceae cocacetaaa               | 20                |
|                                    |                   |

<210> 693

| <211>          | 20               |    |
|----------------|------------------|----|
|                | DNA              |    |
| <213>          | Homo sapiens     |    |
| <400>          | 693              |    |
|                | gatg gcctcaagtg  | 20 |
| gactgg         | gatg geeteaageg  | -  |
|                |                  |    |
| <210>          |                  |    |
|                |                  |    |
| <212>          |                  |    |
| <213>          | Homo sapiens     |    |
| <400>          | 694              |    |
| ggcagg         | stact cagtgcacca | 20 |
|                |                  |    |
| <210>          | 695              |    |
| <211>          |                  |    |
| <212>          |                  |    |
|                | Homo sapiens     |    |
|                |                  |    |
| <400>          | gggcc attccaatct | 20 |
| ggagag         | gggcc attccaatct | 2. |
|                |                  |    |
| <210>          |                  |    |
| <211>          |                  |    |
| <212>          |                  |    |
| <213>          | Homo sapiens     |    |
| <400>          | 696              |    |
| caccto         | gcgtg atgaggagaa | 20 |
|                |                  |    |
| <210>          | 697              |    |
| <211>          |                  |    |
| <212>          |                  |    |
|                | Homo sapiens     |    |
|                |                  |    |
| <400>          |                  | 20 |
| ctggaa         | agccc tttgttgtgc | 20 |
|                |                  |    |
| <210>          | 698              |    |
| <211>          |                  |    |
| <212>          |                  |    |
| <213>          | Homo sapiens     |    |
| <400>          | 698              |    |
|                | geega caagaccaac | 21 |
|                |                  |    |
|                |                  |    |
| <210>          |                  |    |
| <211><br><212> |                  |    |
|                | Homo sapiens     |    |
|                |                  |    |
| <400>          |                  |    |
| tactto         | cege acttegacet  | 21 |

| <210>  | 700               |    |
|--------|-------------------|----|
| <211>  |                   |    |
| <212>  |                   |    |
|        |                   |    |
| <213>  | Homo sapiens      |    |
| .400-  | 700               |    |
| <400>  |                   | 21 |
| aggcag | aatc cagatgctca a | 21 |
|        |                   |    |
| 210    | 701               |    |
|        |                   |    |
| <211>  |                   |    |
|        | DNA               |    |
| <213>  | Homo sapiens      |    |
|        |                   |    |
| <400>  |                   |    |
| ggcaga | agcc ataccettga   | 20 |
|        |                   |    |
|        |                   |    |
| <210>  | 702               |    |
|        | 20                |    |
| <212>  |                   |    |
| <213>  | Homo sapiens      |    |
|        |                   |    |
| <400>  | 702               |    |
| gtggaa | gagg ctggaggtga   | 20 |
|        |                   |    |
|        |                   |    |
| <210>  |                   |    |
| <211>  |                   |    |
| <212>  |                   |    |
| <213>  | Homo sapiens      |    |
|        |                   |    |
| <400>  | 703               |    |
| cagctt | tggc aacctgtcct   | 20 |
|        |                   |    |
|        |                   |    |
|        | 704               |    |
|        | 20                |    |
| <212>  |                   |    |
| <213>  | Homo sapiens      |    |
|        |                   |    |
| <400>  | 704               |    |
| gcacta | cccc ggagacttca   | 20 |
|        |                   |    |
|        |                   |    |
| <210>  |                   |    |
| <211>  |                   |    |
| <212>  |                   |    |
| <213>  | Homo sapiens      |    |
|        |                   |    |
| <400>  | 705               |    |
| tatgad | tgca gggtggagca   | 20 |
|        |                   |    |
|        |                   |    |
| <210>  | 706               |    |
| <211>  | 20                |    |
| <212>  | DNA               |    |
| <213>  | Homo sapiens      |    |
|        |                   |    |
| -400>  | 706               |    |

| W                       | O 2004/042346             | PCT/US2003/012946 |
|-------------------------|---------------------------|-------------------|
| agtga                   | accate tececateca         | 20                |
| <210:<br><211:<br><212: |                           |                   |
|                         | Homo sapiens              |                   |
| <400><br>tacac          | . 707<br>Ctgcc aagtggagca | 20                |
|                         | 20<br>DNA                 |                   |
| <213>                   | Homo sapiens              | ٠                 |
| <400><br>ctgtg          | 708<br>tgtgg ggtggggtat   | 20                |
| <210><br><211><br><212> | 20<br>DNA                 |                   |
| <213>                   |                           |                   |
| <400><br>gacca          | 709<br>aggaa atcggcctct   | 20                |
| <210><br><211>          |                           |                   |
| <212>                   | DNA                       |                   |
| <213>                   | Homo sapiens              |                   |
| <400>                   |                           |                   |
| cacge                   | gacat ccaatccata          | 20                |
| <210>                   |                           |                   |
| <211><br><212>          |                           |                   |
| <213>                   | Homo sapiens              |                   |
| <400>                   |                           |                   |
| ggetgt                  | gttc caacaaccat t         | 21                |
| <210>                   |                           |                   |
| <211><br><212>          | 20<br>DNA                 |                   |
| <213>                   |                           |                   |
| <400>                   | 712                       |                   |
| gtaggt                  | gacg gcagcgtagc           | 20                |
|                         | 713                       |                   |
| <211><br><212>          | 20<br>DNA                 |                   |
| <213>                   |                           |                   |

| <400><br>cctcgc | 713<br>tttc aagaggcaga   | 20 |
|-----------------|--------------------------|----|
| <210>           | 714                      |    |
| <211><212>      | 20<br>DNA                |    |
| <212>           | Homo sapiens             |    |
| (213)           | nomo sapiens             |    |
| <400>           | 714                      |    |
|                 | gtac acgggactga          | 20 |
|                 |                          |    |
| <210>           | 715                      |    |
| <211>           | 20                       |    |
| <212>           | DNA                      |    |
| <213>           | Homo sapiens             |    |
|                 |                          |    |
| <400>           |                          | 20 |
| ctgaag          | agta cgcgctgcaa          | 20 |
|                 |                          |    |
| <210>           | 716                      |    |
| <211>           | 20                       |    |
| <212>           | DNA                      |    |
| <213>           | Homo sapiens             |    |
| <400>           | 716                      |    |
|                 | ggag ggcagaagtg          | 20 |
| graces          | ggag ggcagaagcg          |    |
|                 |                          |    |
| <210>           | 717                      |    |
| <211>           | 20                       |    |
| <212>           | DNA                      |    |
| <213>           | Homo sapiens             |    |
| <400>           | 717                      |    |
|                 | accac ctcccaggtc         | 20 |
|                 |                          |    |
|                 | m10                      |    |
| <210>           | 718                      |    |
| <211><br><212>  | 20<br>DNA                |    |
| <212>           | Homo sapiens             |    |
|                 |                          |    |
| <400>           | 718                      |    |
| ccgtgt          | gtet egtet <b>ee</b> tga | 20 |
|                 |                          |    |
| <210>           | 719                      |    |
| <211>           |                          |    |
| <211>           |                          |    |
| <213>           | Homo sapiens             |    |
|                 |                          |    |
| <400>           | 719                      |    |
| tcaaag          | gcagc agagaggaa c        | 21 |
|                 |                          |    |
| <210>           | 720                      |    |
| <211>           | 21                       |    |

WO 2004/042346 PCT/US2003/012946 <212> DNA <213> Homo sapiens <400> 720 ggttgagagt gtgggtcttg c 21 <210> 721 <211> 26 <212> DNA <213> Homo sapiens <400> 721 gccaataaag aaattaacac ccaaaa 26 <210> 722 <211> 20 <212> DNA <213> Homo sapiens <400> 722 tggagcagag gggctgaata 20 <210> 723 <211> 20 <212> DNA <213> Homo sapiens <400> 723 atcctgctgg ccctgtacct 20 <210> 724 <211> 22 <212> DNA <213> Homo sapiens <400> 724 22 cctcagccat ctttgtgagt cc <210> 725 <211> 20 <212> DNA <213> Homo sapiens <400> 725 ggcgatgtgg acaatgatga 20 <210> 726 <211> 20 <212> DNA <213> Homo sapiens <400> 726 20 geegegteac ttetetgatt

WO 2004/042346 PCT/US2003/012946 <210> 727 <211> 22 <212> DNA <213> Homo sapiens <400> 727 agtgggacct tgactggaga aa 22 <210> 728 <211> 20 <212> DNA <213> Homo sapiens <400> 728 tcatcttgga gggaccaagg 20 <210> 729 <211> 20 <212> DNA <213> Homo sapiens <400> 729 20 atgtgggagg gagcagacag <210> 730 <211> 20 <212> DNA <213> Homo sapiens <400> 730 20 ggagggactg cgtggtattg <210> 731 <211> 21 <212> DNA <213> Homo sapiens <400> 731 gggataggtg gagggatgaa g 21 <210> 732 <211> 21 <212> DNA <213> Homo sapiens <400> 732 21 tcaaacaact qtqqccaqtq a

<210> 733
<211> 20
<212> DNA
<213> Homo sapiens
<400> 733
accctgagca actgggttca

| <210>  | 734                  |    |
|--------|----------------------|----|
| <211>  |                      |    |
|        |                      |    |
| <212>  |                      |    |
| <213>  | Homo sapiens         |    |
|        |                      |    |
| <400>  | 734                  |    |
|        | rtgtt tccggtagtg     |    |
| 00090  | - cooggeageg         | 20 |
|        |                      |    |
|        |                      |    |
| <210>  |                      |    |
| <211>  |                      |    |
| <212>  | DNA                  |    |
| <213>  | Homo sapiens         |    |
|        | •                    |    |
| <400>  | 736                  |    |
|        |                      |    |
| ctggta | ctgg ccctctgtgg      | 20 |
|        |                      |    |
|        |                      |    |
| <210>  | 736                  |    |
| <211>  | 20                   |    |
| <212>  | DNA                  |    |
|        | Homo sapiens         |    |
| 12132  | Nome Saptems         |    |
| <400>  | 736                  |    |
|        |                      |    |
| accaac | agag tggggtttgg      | 20 |
|        |                      |    |
|        |                      |    |
| <210>  | 737                  |    |
| <211>  | 20                   |    |
| <212>  |                      |    |
|        |                      |    |
| (213)  | Homo sapiens         |    |
|        |                      |    |
| <400>  |                      |    |
| cggcag | attt tcaagctcca      | 20 |
|        |                      |    |
|        |                      |    |
| <210>  | 738                  |    |
| <211>  |                      |    |
|        |                      |    |
| <212>  |                      |    |
| <213>  | Homo sapiens         |    |
|        |                      |    |
| <400>  | 738                  |    |
| gcaatg | ccag ctgaatagca      | 20 |
|        | 333                  | 20 |
|        |                      |    |
| <210>  | 720                  |    |
|        |                      |    |
| <211>  |                      |    |
| <212>  |                      |    |
| <213>  | Homo sapiens         |    |
|        |                      |    |
| <400>  | 739                  |    |
|        | tccc agtottgtca ttgc |    |
| egatat | seed ageotegeea eege | 24 |
|        |                      |    |
|        |                      |    |
| <210>  | 740                  |    |
| <211>  | 20                   |    |
| <212>  | DNA                  |    |
| <213>  | Homo sapiens         |    |
|        |                      |    |

| WO 2004/042346                  | PCT/US2003/012946 |
|---------------------------------|-------------------|
| <400> 740                       |                   |
| acgageetge accaaagtet           | 20                |
|                                 |                   |
| <210> 741                       |                   |
| <211> 23                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 741                       |                   |
| ctacctcaag ggggactgtc ttt       | 23                |
|                                 |                   |
| <210> 742                       |                   |
| <211> 19                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 742                       |                   |
| gcacgggcta caagctgag            | 19                |
|                                 |                   |
| <210> 743                       |                   |
| <211> 21                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 743                       |                   |
| agcaccgtgt gggacaataa c         | 21                |
|                                 |                   |
| <210> 744                       |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 744                       |                   |
| gactgtgctc cggcagttct           | 20                |
|                                 |                   |
| <210> 745                       |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 745                       |                   |
| ctgaggcaga cagcagctca           | 20                |
|                                 |                   |
| <210> 746                       |                   |
| <211> 20                        |                   |
| <212> DNA<br><213> Homo sapiens |                   |
| <213> Homo sapiens              |                   |
| <400> 746                       |                   |
| ttcgatgggc ccaattctta           | 20                |
|                                 |                   |
| <210> 747                       |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |

| WO 2004/042346                  | PCT/US2003/012946 |
|---------------------------------|-------------------|
| <213> Homo sapiens              |                   |
| <400> 747                       |                   |
| aattgttgga gagecectca           | 20                |
|                                 |                   |
| <210> 748                       |                   |
| <211> 24                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 748                       |                   |
| agtgattgac ttggcatgaa aatg      | 24                |
| <210> 749                       |                   |
| <211> 22                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 749                       |                   |
| ctggtgggag gtctccataa ac        | 22                |
|                                 |                   |
| <210> 750                       |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 750                       |                   |
| ctggctcacc tggacaacct           | 20                |
|                                 |                   |
| <210> 751                       |                   |
| <211> 21<br><212> DNA           |                   |
| <212> DNA<br><213> Homo sapiens |                   |
| 22137 HOMO Saprens              |                   |
| <400> 751                       | 21                |
| ggccacaaga ataagcagca a         | 21                |
| <210> 752                       |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 752                       |                   |
| tttgggcagc ttgggtaagt           | 20                |
|                                 |                   |
| <210> 753                       |                   |
| <211> 29                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 753                       |                   |
| ttcaaagtta aaagcaaaca cttacagaa | 29                |

<210> 754

| <211>  | 20              |          |    |
|--------|-----------------|----------|----|
| <212>  |                 |          |    |
|        |                 |          |    |
| <213>  | Homo sapiens    |          |    |
|        |                 |          |    |
| <400>  | 754             |          |    |
| acgagt | ggag ttgggtgtcg |          | 20 |
|        |                 |          |    |
|        |                 |          |    |
| <210>  | 755             |          |    |
| <211>  | 20              |          |    |
|        |                 |          |    |
| <212>  |                 |          |    |
| <213>  | Homo sapiens    |          |    |
|        |                 |          |    |
| <400>  |                 |          |    |
| tgtgtg | tgct tgtgcgtgtc |          | 20 |
|        |                 |          |    |
|        |                 |          |    |
| <210>  | 756             |          |    |
| <211>  | 20              |          |    |
| <212>  |                 |          |    |
|        | Homo sapiens    |          |    |
| (213)  | nomo saprens    |          |    |
|        |                 |          |    |
| <400>  |                 |          |    |
| agccga | ggac tggaagaagg |          | 20 |
|        |                 |          |    |
|        |                 |          |    |
| <210>  | 757             |          |    |
| <211>  | 20              |          |    |
| <212>  | DNA             |          |    |
| <213>  |                 |          |    |
|        | nome bapaone    |          |    |
| <400>  | 757             |          |    |
|        |                 |          | 20 |
| ggggga | tgag ttctggcagt |          | 20 |
|        |                 |          |    |
|        |                 |          |    |
| <210>  | 758             |          |    |
| <211>  | 21              |          |    |
| <212>  | DNA             |          |    |
| <213>  | Homo sapiens    |          |    |
|        |                 |          |    |
| <400>  | 758             |          |    |
|        | actg gagaggagag | ä        | 21 |
| 222200 | acca Jagassasas | <u>"</u> |    |
|        |                 |          |    |
| <210>  | 759             |          |    |
|        |                 |          |    |
| <211>  | 20              |          |    |
| <212>  | DNA             |          |    |
| <213>  | Homo sapiens    |          |    |
|        |                 |          |    |
| <400>  | 759             |          |    |
| tcaatg | cagg cgtccaagta |          | 20 |
|        |                 |          |    |
|        |                 |          |    |
| <210>  | 760             |          |    |
| <211>  | 24              |          |    |
| <211>  | DNA             |          |    |
|        |                 |          |    |
| <213>  | Homo sapiens    |          |    |
|        | 200             |          |    |
| <400>  | 760             |          |    |
| acgtga | tttt gctgtagaag | atgg     | 24 |
|        |                 |          |    |

| <210>                                | 761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <211>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <212>                                | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                      | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| <213>                                | nomo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <400>                                | 761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| gagtat                               | gagg aatatttgca agacatagaa t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| gaeca                                | gagg accattigea agatatagaa t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31 |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <210>                                | 762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| <211>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <212>                                | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| <213>                                | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                      | 840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| <400>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| ctgago                               | tctg gctttgcctt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <210>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <211>                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <212>                                | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <213>                                | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <400>                                | 763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| anticca                              | gcct gagggctctt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| agecea                               | acce agaggeeeee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <210>                                | 764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <211>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <212>                                | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| <213>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| (213)                                | homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <400>                                | 764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| tgcaga                               | tgag acagcaacca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 050050                               | -545 acageaacea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <210>                                | 765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| <211>                                | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <212>                                | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| <213>                                | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| .400                                 | Total Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the |    |
| <400>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| tgccaa                               | aatc tottotooot to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22 |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| -210                                 | nec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <210>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <211>                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| -212-                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <212>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                      | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <213>                                | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| <213><br><400>                       | Homo sapiens<br>766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| <213><br><400>                       | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 |
| <213><br><400>                       | Homo sapiens<br>766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 |
| <213><br><400>                       | Homo sapiens<br>766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 |
| <213><br><400><br>acaggg             | Homo sapiens<br>766<br>agac ccgtccattt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 |
| <213> <400> acaggg                   | Homo sapiens 766 ugac ccgtccattt 767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 |
| <213> <400> acaggg                   | Homo sapiens 766 agac cogtcoattt 767 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 |
| <213> <400> acaggg                   | Homo sapiens 766 agac cogtcoattt 767 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 |
| <213> <400> acaggg <210> <211> <212> | Homo sapiens 766 agac cogtccattt 767 21 DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 |
| <213> <400> acaggg <210> <211> <212> | Homo sapiens 766 agac cogtcoattt 767 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 |
| <213> <400> acaggg <210> <211> <212> | Homo sapiens 766 agac cogtccattt 767 21 DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 |

| WO 2004/042346        |         | PCT/US2003/012946 |
|-----------------------|---------|-------------------|
| aaacagaggc catggcagaa | a t     | 21                |
| <210> 768             |         |                   |
| <211> 25              |         |                   |
| <212> DNA             |         |                   |
| <213> Homo sapiens    |         |                   |
| <400> 768             |         |                   |
| tgccgtgtta ttgtattag  | g tgtca | 25                |
|                       |         |                   |
| <210> 769             |         |                   |
| <211> 20              |         |                   |
| <212> DNA             |         |                   |
| <213> Homo sapiens    |         |                   |
| <400> 769             |         |                   |
| gtccaccact tgctgggtt  |         | 20                |
| <210> 770             |         |                   |
| <211> 20              |         |                   |
| <211> 20<br><212> DNA |         |                   |
|                       |         |                   |
| <213> Homo sapiens    |         |                   |
| <400> 770             |         |                   |
| aagccagaag ccaggaggag | 9       | 20                |
|                       |         |                   |
| <210> 771             |         |                   |
| <211> 24              |         |                   |
| <212> DNA             |         |                   |
| <213> Homo sapiens    |         |                   |
| <400> 771             |         |                   |
| tgctgtactc aggtggcact | aact    | 24                |
|                       |         |                   |
| <210> 772             |         |                   |
| <211> 22<br><212> DNA |         |                   |
|                       |         |                   |
| <213> Homo sapiens    |         |                   |
| <400> 772             |         |                   |
| tcccaaattg aatcactgct | ca      | 22                |
|                       |         |                   |
| <210> 773             |         |                   |
| <211> 18              |         |                   |
| <212> DNA             |         |                   |
| <213> Homo sapiens    |         |                   |
| <400> 773             |         |                   |
| tccactgcca tcctccca   |         | 18                |
|                       |         |                   |
| <210> 774             |         |                   |
| <211> 20              |         |                   |
| <212> DNA             |         |                   |
| <213> Homo sapiens    |         |                   |

| WO 2004/042346                  | PCT/US2003/012946 |
|---------------------------------|-------------------|
| <400> 774                       |                   |
| tagggcctgg cttctgtctg           | 20                |
|                                 |                   |
| <210> 775<br><211> 25           |                   |
| <211> 25<br><212> DNA           |                   |
| <213> Homo sapiens              |                   |
| <400> 775                       |                   |
| caaacatcac tetgetgett agaca     | 25                |
|                                 |                   |
| <210> 776                       |                   |
| < <b>211&gt;</b> 25             |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 776                       |                   |
| gattaattca ccttccagtg tctcg     | 25                |
|                                 |                   |
| <210> 777                       |                   |
| <211> 22                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 777                       |                   |
| tggcatgtca gacagaactt ga        | 22                |
|                                 |                   |
| <210> 778                       |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 778                       |                   |
| ttgtggcttc ctcagctcct           | 20                |
|                                 |                   |
| <210> 779                       |                   |
| <211> 20                        |                   |
| <212> DNA<br><213> Homo sapiens |                   |
| (213) Homo Bapiens              |                   |
| <400> 779                       |                   |
| gctgaccttc ctcgcagaga           | 20                |
|                                 |                   |
| <210> 780                       |                   |
| <211> 21                        |                   |
| <212> DNA<br><213> Homo sapiens |                   |
| SELS TOMO BUPICIES              |                   |
| <400> 780                       |                   |
| teceteagte ceaacteett t         | 21                |
|                                 |                   |
|                                 |                   |

<210> 781 <211> 19

| WO 2004/042346                  |          | PCT/US2003/012946 |
|---------------------------------|----------|-------------------|
| <212> DNA                       |          |                   |
| <213> Homo sapiens              |          |                   |
| <400> 781                       |          |                   |
| ttcatcttcc ccaagtgeg            |          | 19                |
|                                 |          |                   |
| <210> 782                       |          |                   |
| <211> 19                        |          |                   |
| <212> DNA<br><213> Homo sapiens |          |                   |
| <213> Homo sapiens              |          |                   |
| <400> 782                       |          |                   |
| cttgtcctcc gcactgcac            |          | 19                |
| <210> 783                       |          |                   |
| <211> 23                        |          |                   |
| <212> DNA                       |          |                   |
| <213> Homo sapiens              |          |                   |
| <400> 783                       |          |                   |
| tgggagtttt gctgattcct           | tct      | 23                |
| <210> 784                       |          |                   |
| <211> 28                        |          |                   |
| <212> DNA                       |          |                   |
| <213> Homo sapiens              |          |                   |
| <400> 784                       |          |                   |
| ctaagccaga aacactgtaa           | aactacca | 28                |
| 010 505                         |          |                   |
| <210> 785<br><211> 21           |          |                   |
| <211> 21<br><212> DNA           |          |                   |
| <213> Homo sapiens              |          |                   |
| <400> 785                       |          |                   |
| cccatcccca catcatattc           | a        | 21                |
|                                 |          |                   |
| <210> 786                       |          |                   |
| <211> 21                        |          |                   |
| <212> DNA                       |          |                   |
| <213> Homo sapiens              |          |                   |
| <400> 786                       |          |                   |
| cctctcacga cgcttctacc           | a        | 21                |
| <210> 787                       |          |                   |
| <211> 20                        |          |                   |
| <212> DNA                       |          |                   |
| <213> Homo sapiens              |          |                   |
| <400> 787                       |          |                   |
| ttgcggcgtg tataccaatg           |          | 20                |
|                                 |          |                   |

| wo     | 2004/042346                 |       | PCT/US2003/012946 |
|--------|-----------------------------|-------|-------------------|
| <210>  | 700                         |       |                   |
| <211>  |                             |       |                   |
| <212>  |                             |       |                   |
|        | Homo sapiens                |       |                   |
|        |                             |       |                   |
| <400>  |                             |       | 20                |
| grage  | cctt ctggagagga             |       | 20                |
|        |                             |       |                   |
| <210>  |                             |       |                   |
| <211>  |                             |       |                   |
|        |                             |       |                   |
| <2132  | Homo sapiens                |       |                   |
| <400>  |                             |       |                   |
| tgttgt | gcca gggaaggttt             |       | 20                |
|        |                             |       |                   |
| <210>  | 790                         |       |                   |
| <211>  | 22                          |       |                   |
| <212>  | DNA                         |       |                   |
| <213>  | Homo sapiens                |       |                   |
| <400>  | 790                         |       |                   |
|        | tcat cctcacccag ga          | 1     | 22                |
|        |                             |       |                   |
| <210>  | 791                         |       |                   |
| <211>  |                             |       |                   |
| <212>  |                             |       |                   |
|        | Homo sapiens                |       |                   |
| 1      |                             |       |                   |
| <400>  |                             |       |                   |
| catgct | ttga gagtgattat tt          | ccttt | 27                |
|        |                             |       |                   |
| <210>  |                             |       |                   |
| <211>  |                             |       |                   |
| <212>  |                             |       |                   |
| <213>  | Homo sapiens                |       |                   |
| <400>  | 792                         |       |                   |
| tctcat | tagc ctgaatg <b>t</b> gc ca | ata   | 24                |
|        |                             |       |                   |
| <210>  | 793                         |       |                   |
| <211>  | 20                          |       |                   |
| <212>  | DNA                         |       |                   |
| <213>  | Homo sapiens                |       |                   |
| <400>  | 793                         |       |                   |
|        | agat tttcggacct             |       | 20                |
| 33 33  | 5 55                        |       | -                 |
| <210>  | 794                         |       |                   |
| <211>  |                             |       |                   |
| <211>  |                             |       |                   |
| <213>  | Homo sapiens                |       |                   |
|        |                             |       |                   |
| <400>  | 794                         |       | 0.0               |
| cettgg | aaga tctgacccga a           |       | . 21              |

| <210>   | 795                          |    |  |  |  |
|---------|------------------------------|----|--|--|--|
| <211>   |                              |    |  |  |  |
| <212>   |                              |    |  |  |  |
|         | Homo sapiens                 |    |  |  |  |
|         | nome Baparana                |    |  |  |  |
| <400>   | 795                          |    |  |  |  |
|         | gage tggtgcagat              | 20 |  |  |  |
| 9499195 | Jago cygogoagac              | 20 |  |  |  |
|         |                              |    |  |  |  |
| <210>   | 796                          |    |  |  |  |
| <211>   |                              |    |  |  |  |
| <211>   |                              |    |  |  |  |
|         |                              |    |  |  |  |
| <213>   | Homo sapiens                 |    |  |  |  |
| <400>   | 796                          |    |  |  |  |
|         |                              |    |  |  |  |
| geecage | ccta ggatctgaca              | 20 |  |  |  |
|         |                              |    |  |  |  |
|         | 745                          |    |  |  |  |
| <210>   |                              |    |  |  |  |
| <211>   |                              |    |  |  |  |
| <212>   |                              |    |  |  |  |
| <213>   | Homo sapiens                 |    |  |  |  |
|         |                              |    |  |  |  |
| <400>   | 797                          |    |  |  |  |
| gcagact | gag cgggaaaaga               | 20 |  |  |  |
|         |                              |    |  |  |  |
|         |                              |    |  |  |  |
|         | 798                          |    |  |  |  |
| <211>   |                              |    |  |  |  |
| <212>   |                              |    |  |  |  |
| <213>   | Homo sapiens                 |    |  |  |  |
|         |                              |    |  |  |  |
|         | 798                          |    |  |  |  |
| tcccaac | cga acttetteca               | 20 |  |  |  |
|         |                              |    |  |  |  |
|         |                              |    |  |  |  |
| <210>   |                              |    |  |  |  |
| <211>   |                              |    |  |  |  |
| <212>   |                              |    |  |  |  |
| <213>   | Homo sapiens                 |    |  |  |  |
|         |                              |    |  |  |  |
| <400>   | 799                          |    |  |  |  |
| tctacat | gca atgttagtaa ttctgaagtt tt | 32 |  |  |  |
|         |                              |    |  |  |  |
|         |                              |    |  |  |  |
|         | 800                          |    |  |  |  |
| <211>   |                              |    |  |  |  |
| <212>   |                              |    |  |  |  |
| <213>   | Homo sapiens                 |    |  |  |  |
|         |                              |    |  |  |  |
| <400>   | 800                          |    |  |  |  |
| ccaggag | ccaggaggat ggcaaagaga 20     |    |  |  |  |
|         |                              |    |  |  |  |
|         |                              |    |  |  |  |
|         | 801                          |    |  |  |  |
|         | 20                           |    |  |  |  |
|         | DNA .                        |    |  |  |  |
| <213>   | Homo sapiens                 |    |  |  |  |

| WO 2004/042346                     | PCT/US2003/012946 |  |  |  |
|------------------------------------|-------------------|--|--|--|
| <400> 801                          |                   |  |  |  |
| cgaccatcca agggagagtg              | 20                |  |  |  |
|                                    | 20                |  |  |  |
| <210> 802                          |                   |  |  |  |
| <210> 802<br><211> 20              |                   |  |  |  |
| <212> DNA                          |                   |  |  |  |
| <213> Homo sapiens                 |                   |  |  |  |
|                                    |                   |  |  |  |
| <400> 802                          |                   |  |  |  |
| gggctccagg actccctcta              | 20                |  |  |  |
|                                    |                   |  |  |  |
| <210> 803                          |                   |  |  |  |
| <211> 20                           |                   |  |  |  |
| <212> DNA                          |                   |  |  |  |
| <213> Homo sapiens                 |                   |  |  |  |
| <400> 803                          |                   |  |  |  |
| gcctcttccc atctcaacca              | 20                |  |  |  |
|                                    | 20                |  |  |  |
| ***                                |                   |  |  |  |
| <210> 804<br><211> 20              |                   |  |  |  |
| <211> 20<br><212> DNA              |                   |  |  |  |
| <213> Homo sapiens                 |                   |  |  |  |
| - Iomo Bapiens                     |                   |  |  |  |
| <400> 804                          |                   |  |  |  |
| ggtggatcag gccgttattg              | 20                |  |  |  |
|                                    |                   |  |  |  |
| <210> 805                          |                   |  |  |  |
| <211> 20                           |                   |  |  |  |
| <212> DNA                          |                   |  |  |  |
| <213> Homo sapiens                 |                   |  |  |  |
| 400 000                            |                   |  |  |  |
| <400> 805<br>aggggagacc gaagtgaagg |                   |  |  |  |
| aggggagace gaagegaagg              | 20                |  |  |  |
|                                    |                   |  |  |  |
| <210> 806                          |                   |  |  |  |
| <211> 23                           |                   |  |  |  |
| <212> DNA                          |                   |  |  |  |
| <213> Homo sapiens                 |                   |  |  |  |
| <400> 806                          |                   |  |  |  |
| aaaaccgtat ccttccctgt tgt          | 23                |  |  |  |
|                                    |                   |  |  |  |
| <210> 807                          |                   |  |  |  |
| <210> 807<br><211> 20              |                   |  |  |  |
| <212> DNA                          |                   |  |  |  |
| <213> Homo sapiens                 |                   |  |  |  |
|                                    |                   |  |  |  |
| <400> 807                          |                   |  |  |  |
| aagaggcagc cgagagaatg 20           |                   |  |  |  |
|                                    |                   |  |  |  |
| <210> 808                          |                   |  |  |  |
| <211> 20                           |                   |  |  |  |
| <212> DNA                          |                   |  |  |  |

| WO 2004/04234    | 6            | PCT/US2003/012946 |  |  |  |
|------------------|--------------|-------------------|--|--|--|
| <213> Homo sap   | iens         |                   |  |  |  |
| <400> 808        |              |                   |  |  |  |
| accegetgtt teca  | gagttg       | 20                |  |  |  |
| accegorate coca  | 343003       | 20                |  |  |  |
| <210> 809        |              |                   |  |  |  |
| <211> 24         |              |                   |  |  |  |
| <212> DNA        |              |                   |  |  |  |
| <213> Homo sap   | iens         |                   |  |  |  |
| <400> 809        |              |                   |  |  |  |
| tgggctaact atgc  | agagca tgta  | 24                |  |  |  |
|                  |              |                   |  |  |  |
| <210> 810        |              |                   |  |  |  |
| <211> 20         |              |                   |  |  |  |
| <212> DNA        |              |                   |  |  |  |
| <213> Homo sap   | iens         |                   |  |  |  |
| <400> 810        |              |                   |  |  |  |
| tggggcttct gaga  | gattgg       | 20                |  |  |  |
| 3300             | 3 3 <b>3</b> | 20                |  |  |  |
| <210> 811        |              |                   |  |  |  |
| <211> 20         |              |                   |  |  |  |
| <212> DNA        |              |                   |  |  |  |
| <213> Homo sap   | iens         |                   |  |  |  |
| <400> 811        |              |                   |  |  |  |
| cttaaacttg gccc  | ggcatt       | 20                |  |  |  |
|                  |              | 20                |  |  |  |
| <210> 812        |              |                   |  |  |  |
| <211> 20         |              |                   |  |  |  |
| <212> DNA        |              |                   |  |  |  |
| <213> Homo sap:  | iens         |                   |  |  |  |
| <400> 812        |              |                   |  |  |  |
| cggtgccttc ttag  | gagetg       | 20                |  |  |  |
|                  |              |                   |  |  |  |
| <210> 813        |              |                   |  |  |  |
| <211> 21         |              |                   |  |  |  |
| <212> DNA        |              |                   |  |  |  |
| <213> Homo sap   | iens         |                   |  |  |  |
| <400> 813        |              |                   |  |  |  |
| cctaggggag accga | aagtga a     | 21                |  |  |  |
|                  |              |                   |  |  |  |
| <210> 814        |              |                   |  |  |  |
| <211> 20         |              |                   |  |  |  |
| <212> DNA        |              |                   |  |  |  |
| <213> Homo sapi  | iens         |                   |  |  |  |
| <400> 814        |              |                   |  |  |  |
| tgctgcggca tagaa | atcaag       | 20                |  |  |  |
| 3 5 55 59        |              |                   |  |  |  |
| <210> 815        |              |                   |  |  |  |
| -2207 013        |              |                   |  |  |  |

| WO 2004/042346                     | PCT/US2003/012946 |
|------------------------------------|-------------------|
| <211> 19                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
|                                    |                   |
| <400> 815                          |                   |
| tegttgeaat ceteggtea               | 19                |
|                                    |                   |
| <210> 816                          |                   |
| <211> 20                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| 400 076                            |                   |
| <400> 816<br>agcagcaggt ggaatccaag |                   |
| ageageagge ggaacccaag              | 20                |
|                                    |                   |
| <210> 817                          |                   |
| <211> 20                           |                   |
| <212> DNA<br><213> Homo sapiens    |                   |
| (213) homo sapiens                 |                   |
| <400> 817                          |                   |
| ggccatttca ggcagcataa              | 20                |
|                                    | 20                |
| <210> 818                          |                   |
| <210> 818<br><211> 21              |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
|                                    |                   |
| <400> 818                          |                   |
| ttctaccctg cggagatcac a            | 21                |
|                                    |                   |
| <210> 819                          |                   |
| <211> 20                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| :400: 010                          |                   |
| <400> 819<br>gcttgtgcat gaccetgatg |                   |
| geregegear gaeeergarg              | 20                |
|                                    |                   |
| <210> 820                          |                   |
| <211> 20                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| <400> 820                          |                   |
| ttgccctctc ctcacacgta              | 20                |
|                                    | 20                |
| <210> 821                          |                   |
| <210> 821<br><211> 20              |                   |
| <211> 20<br><212> DNA              |                   |
| <213> Homo sapiens                 |                   |
|                                    |                   |
| <400> 821                          |                   |
| cccctggagg ttgtcttcaa              | 20                |
|                                    |                   |

| <210>                                                                              | 822                                                                                   |    |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----|
| <211>                                                                              |                                                                                       |    |
| <212>                                                                              |                                                                                       |    |
|                                                                                    | Homo sapiens                                                                          |    |
|                                                                                    | nome supreme                                                                          |    |
| <400>                                                                              | 822                                                                                   |    |
|                                                                                    |                                                                                       | 22 |
| cycccc                                                                             | geta cereactaga gu                                                                    |    |
|                                                                                    |                                                                                       |    |
| <210>                                                                              | R23                                                                                   |    |
| <211>                                                                              |                                                                                       |    |
| <212>                                                                              |                                                                                       |    |
|                                                                                    | Homo sapiens                                                                          |    |
|                                                                                    | nome angular                                                                          |    |
| <400>                                                                              | 823                                                                                   |    |
|                                                                                    | ggcc tgccttaacc                                                                       | 20 |
| 3.3.3                                                                              |                                                                                       |    |
|                                                                                    |                                                                                       |    |
| <210>                                                                              | 824                                                                                   |    |
| <211>                                                                              | 19                                                                                    |    |
| <212>                                                                              |                                                                                       |    |
| <213>                                                                              | Homo sapiens                                                                          |    |
|                                                                                    |                                                                                       |    |
| <400>                                                                              |                                                                                       |    |
| tcccat                                                                             | toca ccacagtge                                                                        | 19 |
|                                                                                    |                                                                                       |    |
|                                                                                    |                                                                                       |    |
| <210>                                                                              |                                                                                       |    |
| <211>                                                                              |                                                                                       |    |
| <212>                                                                              |                                                                                       |    |
| <213>                                                                              | Homo sapiens                                                                          |    |
|                                                                                    | 205                                                                                   |    |
| <400>                                                                              |                                                                                       | 22 |
| ccaagg                                                                             | atca gtttcaccca ca                                                                    | 22 |
|                                                                                    |                                                                                       |    |
| <210>                                                                              |                                                                                       |    |
|                                                                                    | 826                                                                                   |    |
| <211>                                                                              |                                                                                       |    |
| <211><br><212>                                                                     | 19                                                                                    |    |
| <212>                                                                              | 19<br>DNA                                                                             |    |
| <212>                                                                              | 19                                                                                    |    |
| <212>                                                                              | 19<br>DNA<br>Homo sapiens                                                             |    |
| <212><br><213>                                                                     | 19<br>DNA<br>Homo sapiens<br>826                                                      | 19 |
| <212><br><213>                                                                     | 19<br>DNA<br>Homo sapiens                                                             | 19 |
| <212><br><213><br><400><br>ttctcc                                                  | 19<br>DNA<br>Homo sapiens<br>826<br>gagc ttegcaatg                                    | 19 |
| <212><br><213><br><400><br>ttctcc                                                  | 19<br>DNA<br>Homo sapiens<br>826<br>gagc ttcgcaatg                                    | 19 |
| <212><213><400><br>ttctcc<210><211>                                                | 19 DNA Homo sapiens 826 gagc ttcgcaatg 827 20                                         | 19 |
| <212><213><400><br>ttctcc<210><211><212>                                           | 19 DNA Homo sapiens 826 gage ttegeaatg 827 20 DNA                                     | 19 |
| <212><213><400><br>ttctcc<210><211><212>                                           | 19 DNA Homo sapiens 826 gagc ttcgcaatg 827 20                                         | 19 |
| <212><213><400><br>ttctcc<210><211><212><213>                                      | 19 DNA Homo sapiens  826 gagc ttcgcaatg  827 20 DNA Homo sapiens                      | 19 |
| <212><213> <400> ttctcc <210><211><212><213> <400>                                 | 19 DNA Homo sapiens 826 gage ttegeaatg  827 20 DNA Homo sapiens 827                   |    |
| <212><213> <400> ttctcc <210><211><212><213> <400>                                 | 19 DNA Homo sapiens  826 gagc ttcgcaatg  827 20 DNA Homo sapiens                      | 19 |
| <212><213> <400> ttctcc <210><211><212><213> <400>                                 | 19 DNA Homo sapiens 826 gage ttegeaatg  827 20 DNA Homo sapiens 827                   |    |
| <212><213> 400<br>ttctcc<210><221><211><212><213> 400<br>ggcatc                    | 19 DNA Homo sapiens 826 gagc ttcgcaatg  827 20 DNA Homo sapiens 827 cttgg gctacactga  |    |
| <212><213> <400> ttctcc <210><211><211><212><213> <400> ggcatc <210><              | 19 DNA Homo sapiens 826 gage ttegeaatg  827 20 DNA Homo sapiens 827 ctegg getacactga  |    |
| <212><213> 400 ttetee<210><211><211><212><213><400>ggcate<210><211>                | 19 DNA Homo sapiens 826 gagc ttcgcaatg  827 20 DNA Homo sapiens 827 ctgg gctacactga   |    |
| <212><213> 400 ttctccc   <210><211><211><212><213>   <400>ggcatc   <210><211><212> | 19 DNA Homo sapiens 826 gagc ttcgcaatg  827 20 DNA Homo sapiens 827 7 ctgg gctacactga |    |
| <212><213> 400 ttctccc   <210><211><211><212><213>   <400>ggcatc   <210><211><212> | 19 DNA Homo sapiens 826 gagc ttcgcaatg  827 20 DNA Homo sapiens 827 ctgg gctacactga   |    |
| <212><213> 400 ttctccc   <210><211><211><212><213>   <400>ggcatc   <210><211><212> | 19 DNA Homo sapiens 826 gagc ttcgcaatg  827 20 DNA Homo sapiens 827 7 ctgg gctacactga |    |

| WO 2004/042346          | PCT/US2003/012946 |
|-------------------------|-------------------|
| gcacgacgat gaggtgacag   | 20                |
| <210> 829               |                   |
| <211> 20                |                   |
| <212> DNA               |                   |
| <213> Homo sapiens      |                   |
| <400> 829               |                   |
| ccaaccaaaa ttgccccttt   | 20                |
| <210> 830               |                   |
| <211> 20                |                   |
| <212> DNA               |                   |
| <213> Homo sapiens      |                   |
| <400> 830               |                   |
| tgttaggccc ctgtttcctq   | 20                |
|                         | 20                |
| <210> 831               |                   |
| <211> 19                |                   |
| <212> DNA               |                   |
| <213> Homo sapiens      |                   |
| <400> 831               |                   |
| ctcatcatcc tggccgtca    |                   |
| -55-05-04               | 19                |
| <210> 832               |                   |
| <211> 20                |                   |
| <212> DNA               |                   |
| <213> Homo sapiens      |                   |
| <400> 832               |                   |
| tgttcactgc agcccatttg   | 20                |
| • •                     | 20                |
| <210> 833               |                   |
| <211> 21                |                   |
| <212> DNA               |                   |
| <213> Homo sapiens      |                   |
| <400> 833               |                   |
| ttccaaaagc caaggtgaga a | 21                |
|                         |                   |
| <210> 834               |                   |
| <211> 21                |                   |
| <212> DNA               |                   |
| <213> Homo sapiens      |                   |
| <400> 834               |                   |
| aaagttgctg tggttggttg c | 21                |
|                         | 21                |
| <210> 835               |                   |
| <211> 21                |                   |
| <211> 21<br><212> DNA   |                   |
| <213> Homo sapiens      |                   |
| supreme                 |                   |

| <400>  | 835                  |    |
|--------|----------------------|----|
| qaccat | ccca aaatgcttca a    | 21 |
| -      |                      | 21 |
|        |                      |    |
| <210>  | 836                  |    |
| <211>  |                      |    |
| <212>  |                      |    |
|        |                      |    |
| <213>  | Homo sapiens         |    |
|        |                      |    |
| <400>  | 836                  |    |
| tggcgc | caac tttaaacatt c    | 21 |
|        |                      |    |
|        |                      |    |
| <210>  |                      |    |
| <211>  |                      |    |
| <212>  |                      |    |
| <213>  | Homo sapiens         |    |
|        |                      |    |
| <400>  | 837                  |    |
| cctcaa | cccc atgctttacg      | 20 |
|        | - •                  | 20 |
|        |                      |    |
| <210>  | 838                  |    |
| <211>  |                      |    |
| <212>  |                      |    |
|        | Homo sapiens         |    |
| 12137  | nome sapiens         |    |
| <400>  | 02.0                 |    |
|        |                      |    |
| tetteg | gctg ctcctgactt      | 20 |
|        |                      |    |
|        | ***                  |    |
| <210>  |                      |    |
| <211>  |                      |    |
| <212>  |                      |    |
| <213>  | Homo sapiens         |    |
|        |                      |    |
| <400>  | 839                  |    |
| tttctc | ctcc teeceteage      | 20 |
|        |                      |    |
|        |                      |    |
| <210>  | 840                  |    |
| <211>  |                      |    |
| <212>  |                      |    |
|        | Homo sapiens         |    |
|        | nome Baptons         |    |
| <400>  | 840                  |    |
|        |                      |    |
| ccgagg | gccc ttgacaaaag      | 20 |
|        |                      |    |
| <210>  | 841                  |    |
|        |                      |    |
| <211>  |                      |    |
| <212>  |                      |    |
| <213>  | Homo sapiens         |    |
|        |                      |    |
| <400>  |                      |    |
| ccatta | tggt gctactgagc gttt | 24 |
|        |                      |    |
|        |                      |    |
| <210>  | 842                  |    |
| -211   | 22                   |    |

WO 2004/042346 PCT/US2003/012946 <212> DNA <213> Homo sapiens <400> 842 aggggaagtt tgtaccccat tg 22 <210> 843 <211> 21 <212> DNA <213> Homo sapiens <400> 843 ggctcttcag ctgcttgtcc t 21 <210> 844 <211> 20 <212> DNA <213> Homo sapiens <400> 844 tegtegtggt ggttttgttg 20 <210> 845 <211> 20 <212> DNA <213> Homo sapiens <400> 845 tccgccatcc ctgctattta 20 <210> 846 <211> 20 <212> DNA <213> Homo sapiens <400> 846 gatgcagaga gccagcaagg 20 <210> 847 <211> 23 <212> DNA <213> Homo sapiens <400> 847 cccaggtatt acacaagcca aaa 23 <210> 848 <211> 20 <212> DNA <213> Homo sapiens <400> 848 ctgactctgc ccgacttcct 20

WO 2004/042346 <210> 849 <211> 32 <212> DNA <213> Homo sapiens <400> 849 ttcctatcta ataaatgcct ttaattgttc tc 32 <210> 850 <211> 21 <212> DNA <213> Homo sapiens <400> 850 gcgtcatggt gtctcatcgt t 21 <210> 851 <211> 20 <212> DNA <213> Homo sapiens <400> 851 20 tgacatgact ggctggttgc <210> 852 <211> 20 <212> DNA <213> Homo sapiens <400> 852 cacqacqtct ccqcqtatct 20 <210> 853 <211> 20 <212> DNA <213> Homo sapiens <400> 853 agttaacggc ccaagtggtg 20 <210> 854 <211> 25 <212> DNA <213> Homo sapiens <400> 854 25 agetgtttca tgtagetget ttagg <210> 855 <211> 19 <212> DNA <213> Homo sapiens <400> 855 gaaacacagc ccgatggtg 19

PCT/US2003/012946

| <210>  | 856             |  |
|--------|-----------------|--|
| <211>  | 20              |  |
| <212>  |                 |  |
|        |                 |  |
| -213>  | Homo sapiens    |  |
|        | 0=4             |  |
| 400>   |                 |  |
| tcctt  | cac cacccacacc  |  |
|        |                 |  |
|        |                 |  |
| <210>  |                 |  |
| <211>  |                 |  |
| <212>  |                 |  |
| 213>   | Homo sapiens    |  |
|        |                 |  |
| :400>  |                 |  |
| acccci | cct teceettet   |  |
|        |                 |  |
|        |                 |  |
| 210>   | 858             |  |
| <211>  | 20              |  |
| <212>  |                 |  |
|        | Homo sapiens    |  |
|        | <u>-</u>        |  |
| 400>   | 858             |  |
|        | gtgc taccgagaca |  |
|        |                 |  |
|        |                 |  |
| <210>  | 859             |  |
| <211>  |                 |  |
| <212>  |                 |  |
|        | Homo sapiens    |  |
|        | oup.c.ib        |  |
| <400>  | 859             |  |
|        | gct gtggttgc    |  |
| -50090 | -5 5-5550       |  |
|        |                 |  |
| <210>  | 860             |  |
| <211>  |                 |  |
| <212>  |                 |  |
|        | Homo sapiens    |  |
|        | saprens         |  |
| <400>  | 860 .           |  |
|        | gaag cacatggtca |  |
| agecat | Juan cacacygica |  |
|        |                 |  |
| <210>  | 861             |  |
| <211>  |                 |  |
|        |                 |  |
| 212>   |                 |  |
| <∠13>  | Homo sapiens    |  |
|        |                 |  |
| <400>  |                 |  |
| caatat | gtgc cgccagtgtt |  |
|        |                 |  |
|        |                 |  |
| <210>  |                 |  |
| <211>  |                 |  |
| <212>  |                 |  |
| -212-  | Homo ganieng    |  |

| WO 2004/042346                 | PCT/US2003/012946 |
|--------------------------------|-------------------|
| <400> 862                      |                   |
| aatcttacac acaaatgaaa atgcaagt | 28                |
| J                              | 28                |
|                                |                   |
| <210> 863                      |                   |
| <211> 20                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 863                      |                   |
| atgttgcggt aatcggagga          |                   |
| and and and a maccada adda     | 20                |
|                                |                   |
| <210> 864                      |                   |
| <211> 20                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
|                                |                   |
| <400> 864                      |                   |
| cctgggtgtt tgggtcagat          | 20                |
|                                |                   |
| <210> 865                      |                   |
|                                |                   |
| <211> 22<br><212> DNA          |                   |
|                                |                   |
| <213> Homo sapiens             |                   |
| <400> 865                      |                   |
| ctgtcttcag ctgggtcaga ga       | 22                |
| 55555500050 50                 | 22                |
|                                |                   |
| <210> 866                      |                   |
| <211> 20                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
|                                |                   |
| <400> 866                      |                   |
| gagcagggac tctggagcag          | 20                |
|                                |                   |
| <210> 867                      |                   |
| <211> 21                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
|                                |                   |
| <400> 867                      |                   |
| cagaaaacgc aggtgaaatg c        | 21                |
|                                |                   |
|                                |                   |
| <210> 868                      |                   |
| <211> 22                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 868                      |                   |
| gcgttatagg tggagaccga gt       |                   |
| 2 2 22 - 22 42 44 45 4         | 22                |
|                                |                   |
| <210> 869                      |                   |
| <211> 19                       |                   |
| <212> DNA                      |                   |
|                                |                   |

| <pre>&lt;133</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WO 2004/042346        | PCT/US2003/012946 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <213> Homo sapiens    |                   |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <400> 869             |                   |
| <pre> &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens  &lt;400&gt; 870 tctggtcttg ggaggtgagg</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | 19                |
| <pre> &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens  &lt;400&gt; 870 tctggtcttg ggaggtgagg</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                   |
| <pre>&lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 870 tctggtcttg ggaggtgagg</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                   |
| <pre>&lt;213&gt; Homo sapiens &lt;400&gt; 870 tctggtcttg ggaggtgagg 20  &lt;210&gt; 871 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 871 gcaccaggtg gtctcctctg 20 &lt;210&gt; 872 &lt;221&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 872 ctacccaca gcaggtagcc 20 &lt;210&gt; 873 &lt;221&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 872 ctacccaca gcaggtagcc 20 &lt;210&gt; 873 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 873 cctacccaca dtcgattg 20 &lt;210&gt; B74 &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 873 cctgaccaac attgcgattg 20 &lt;210&gt; B74 &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; Homo sapiens &lt;400&gt; 874 ccatgccag tgatcctacc 20 &lt;210&gt; 875 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213+ Homo sapiens &lt;400&gt; 874 Cccatgccag tgatcctacc 20 &lt;210&gt; 875 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213+ Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213+ Homo sapiens &lt;400&gt; 875 &lt;211&gt; BNA &lt;213+ Homo sapiens &lt;400&gt; 875</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                   |
| tctggtcttg ggaggtgagg 20  <210> 871 <211> 20 <212> DNA <213> Home sapiens  <400> 871 gcaccaggtg gtctccttg 20  <2210> 872 <2211> 20 <2212> DNA <213> Home sapiens  <400> 872 ctaccccaca gcaggtagcc 20  <210> 873 <2211> 20  <212> DNA <213> Home sapiens  <400> 872 ctaccccaca gcaggtagcc 20  <210> 873 <2211> 20 <212> DNA <213> Home sapiens  <400> 873 cctgaccaac attgcgattg 20  <210> 874 <211> 20 <212> DNA <213> Home sapiens  <400> 873 cctgaccaac attgcgattg 20  <210> 874 <211> 20 <212> DNA <213> Home sapiens  <400> 874 ccatgccag tgatcctacc 20  <210> 875 <211> 20 <212> DNA <213+ Home sapiens  <400> 875 <211> Home sapiens  <400> 875 <211> Home sapiens  <400> 875 <211> Home sapiens  <400> 875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                   |
| <pre> &lt;210  871 &lt;211  20 &lt;2112  DNA &lt;2113  Homo sapiens &lt;400  871 caccaggtg gtctccttg  20  &lt;210  872 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens &lt;400  872 ctacccaca gcaggtagcc  20  &lt;210  873 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens &lt;400  872 ctacccaca gcaggtagcc  20  &lt;210  873 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens  &lt;400  873 cctacccaca gcaggtagcc  20  &lt;210  873 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens  &lt;400  873 cctgaccaac attgcgattg  20  &lt;210  874 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens  &lt;400  874 ccatgccag tgatcctacc  20  &lt;210  875 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens  &lt;400  874 ccatgccag tgatcctacc  20  &lt;210  875 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens &lt;400  875 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens &lt;400  875 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens &lt;400  875 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens &lt;400  875 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens &lt;400  875 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens &lt;400  875 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens &lt;400  875 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens &lt;400  875 &lt;211  20 &lt;212  DNA &lt;213  Homo sapiens &lt;400  875 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <400> 870             |                   |
| <pre> &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens </pre> <pre> &lt;400&gt; 871 gcaccaggtg gtctcctctg</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tctggtcttg ggaggtgagg | 20                |
| <pre> &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens </pre> <pre> &lt;400&gt; 871 gcaccaggtg gtctcctctg</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                   |
| <pre>&lt;212</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                   |
| <pre>&lt;213&gt; Homo sapiens &lt;400&gt; 871 gcaccaggtg gtctcctctg</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                   |
| <pre>&lt;400&gt; 871 gcaccaggtg gtctcctctg  &lt;210&gt; 872 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 872 ctaccccaca gcaggtagcc  &lt;210&gt; 873 &lt;211&gt; 20 &lt;212&gt; DNA &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 873 cctgaccaca attgcgattg  &lt;210&gt; 873 cctgaccaca attgcgattg  &lt;210&gt; 874 &lt;211&gt; 20 &lt;212&gt; DNA &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 873 cctgaccaca attgcgattg  &lt;20 &lt;210&gt; 874 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 874 cccatgccag tgatcctacc  &lt;20 &lt;210&gt; 875 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; Homo sapiens &lt;400&gt; 875</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                   |
| \$\frac{210}{210} \times 872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <213> Homo sapiens    |                   |
| <pre>&lt;210&gt; 872 &lt;211&gt; 20 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 872 ctaccccaca gcaggtagcc 20  &lt;210&gt; 873 &lt;211&gt; 20 &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 873 cctgaccaac attgcgattg 20  &lt;210&gt; 874 &lt;211&gt; 20 &lt;210&gt; BNA &lt;211&gt; 20 &lt;210&gt; BNA &lt;211&gt; 20 &lt;210&gt; BNA &lt;211&gt; 20 &lt;210&gt; BNA &lt;211&gt; 20 &lt;210&gt; BNA &lt;211&gt; 20 &lt;210&gt; BNA &lt;211&gt; 20 &lt;210&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; Homo sapiens &lt;400&gt; 874 ccatgccag tgatcctacc 20 &lt;210&gt; BNA &lt;211&gt; DNA &lt;211&gt; Homo sapiens &lt;400&gt; 874 ccatgccag tgatcctacc 20 &lt;210&gt; BNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; Homo sapiens &lt;400&gt; 875</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                   |
| <pre> &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens  &lt;400&gt; 872 ctaccccaca geaggtagcc  20  &lt;210&gt; 873 &lt;211&gt; 20 &lt;212&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;213&gt; Homo sapiens  &lt;400&gt; 873 cctgaccaac attgcgattg  20  &lt;210&gt; 874 &lt;211&gt; 20 &lt;212&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; Homo sapiens  &lt;400&gt; 874 ccatgccag tgatcctacc  20 &lt;210&gt; 875 &lt;211&gt; DNA &lt;210&gt; B75 &lt;211&gt; DNA &lt;211&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;211&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gcaccaggtg gtctcctctg | 20                |
| <pre> &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens  &lt;400&gt; 872 ctaccccaca geaggtagcc  20  &lt;210&gt; 873 &lt;211&gt; 20 &lt;212&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;213&gt; Homo sapiens  &lt;400&gt; 873 cctgaccaac attgcgattg  20  &lt;210&gt; 874 &lt;211&gt; 20 &lt;212&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; DNA &lt;211&gt; Homo sapiens  &lt;400&gt; 874 ccatgccag tgatcctacc  20 &lt;210&gt; 875 &lt;211&gt; DNA &lt;210&gt; B75 &lt;211&gt; DNA &lt;211&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;211&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                   |
| <pre>&lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 872 ctaccccaca gcaggtagcc 20  &lt;210&gt; 873 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 873 cctgaccaac attgcgattg 20  &lt;212&gt; DNA &lt;213+ Homo sapiens &lt;400&gt; 873 cctgaccaac attgcgattg 20  &lt;210&gt; 874 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213+ Homo sapiens &lt;400&gt; 874 cctacgccag tgatcctacc 20  &lt;210&gt; 875 &lt;211&gt; 20 &lt;212&gt; DNA ccatgccag tgatcctacc 20 &lt;210&gt; 875 &lt;211&gt; 20 &lt;212&gt; DNA ccatgccag thatcctacc 20 &lt;210&gt; 875 &lt;211&gt; 20 &lt;212&gt; DNA ccatgccag thatcctacc 20 &lt;210&gt; 875 &lt;211&gt; 20 &lt;212&gt; DNA ccatgccag thatcctacc 20 &lt;210&gt; 875 &lt;211&gt; 20 &lt;212&gt; DNA ccatgccag thatcctacc 20 &lt;210&gt; 875 &lt;211&gt; 20 &lt;212&gt; DNA ccatgccag thatcctacc 20 &lt;210&gt; 875 &lt;211&gt; 20 ccatgccag thatcctacc 20 &lt;210&gt; 875 &lt;211&gt; 20 ccatgccag thatcctacc 20 &lt;210&gt; 875 &lt;211&gt; 20 ccatgccag thatcctacc 20 &lt;210&gt; 875 &lt;211&gt; 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatgccag thatcctacc 20 ccatg</pre> |                       |                   |
| <pre>&lt;213&gt; Homo sapiens &lt;400&gt; 872 ctaccccaca gcaggtagcc 20  &lt;210&gt; 873 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 873 cctgaccaac attgcgattg 20  &lt;210&gt; 874 &lt;211&gt; 20 &lt;210&gt; DNA &lt;211&gt; DNA &lt;211&gt; 20 &lt;212&gt; DNA &lt;211&gt; 20 &lt;212&gt; DNA &lt;211&gt; 20 &lt;212&gt; DNA &lt;213+ Homo sapiens &lt;400&gt; 874 cc113- Homo sapiens &lt;400&gt; 874 cc212&gt; DNA &lt;213+ Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;210+ B75 &lt;211&gt; 20 &lt;212&gt; DNA &lt;210+ B75 &lt;211&gt; DNA &lt;211&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;211&gt; Homo sapiens &lt;400&gt; 875</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                   |
| <pre>&lt;400&gt; 872 ctaccccaca gcaggtagcc 20  &lt;210&gt; 873 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 873 cctgaccaac attgcgattg 20  &lt;210&gt; 874 &lt;211&gt; 20 &lt;212&gt; DNA &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens 20 &lt;212</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                   |
| ctaccccaca gcaggtagcc 20  <210> 873 <211> 20 <212> DNA <213> Homo sapiens <400> 873 cctgaccaac attgcgattg 20  <210> 874 <211> 20 <212> DNA <211> Homo sapiens 20  <210> 874 <211> 20 <212> DNA <213> Homo sapiens 20 <212> DNA <213> Homo sapiens 20 <212> DNA <213> Homo sapiens 20 <212> DNA <213+ Homo sapiens 20 <212> DNA <213+ Homo sapiens 20 <211> 20 <212> DNA <213+ Homo sapiens 375 <211> 20 <212> DNA <213+ Homo sapiens 375 <211> 20 <212> DNA <213+ Homo sapiens 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                   |
| <pre>&lt;210&gt; 873 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 873 cctgaccaac attgcgattg 20 &lt;210&gt; 874 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 874 cc112&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 874 ccatgccag tgatcctacc 20 &lt;210&gt; 875 &lt;211&gt; 20 &lt;210&gt; 875 &lt;211&gt; 20 &lt;210&gt; 875 &lt;211&gt; 20 &lt;211&gt; DNA &lt;211&gt; Homo sapiens &lt;400&gt; 875</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                   |
| <pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 873 cctgaccaac attgcgattg</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ctaccccaca gcaggtagcc | 20                |
| <pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 873 cctgaccaac attgcgattg</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                   |
| <pre>&lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 873 cctgaccaac attgcgattg  20  &lt;210&gt; 874 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 874 cccatgccag tgatcctacc  20  &lt;210&gt; 875 &lt;211&gt; 20 &lt;210&gt; R75 &lt;211&gt; 20 &lt;213 Homo sapiens &lt;400&gt; 875 &lt;211&gt; And Cccatgcag tgatcctacc &lt;210 R75 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                   |
| <pre>&lt;13&gt; Homo sapiens &lt;400&gt; 873 cctgaccaac attgcgattg 20  &lt;210&gt; 874 &lt;211&gt; 20  &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 874 cccatgccag tgatcctacc 20  &lt;210&gt; 875 &lt;211&gt; 20  &lt;210&gt; 875 &lt;211&gt; DNA &lt;211&gt; DNA &lt;210&gt; 875 &lt;211&gt; DNA</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                   |
| <pre>&lt;400&gt; 873 cctgaccaac attgcgattg  &lt;210&gt; 874 &lt;211&gt; 20  &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 874 cccatgcag tgatcctacc  &lt;210&gt; 875 &lt;211&gt; 20 &lt;212&gt; DNA &lt;212&gt; Homo sapiens &lt;400&gt; 875 &lt;211&gt; 20</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                   |
| cctgaccaac attgcgattg 20  <210> 874 <211> 20 <212> DNA <213> Homo sapiens <400> 874 cccatgccag tgatcctacc 20  <210> 875 <211> 20 <212> DNA <400> 875 <211> 400> 875 <211> 400> 875 <211> 500 <212> 500 <212> 500 <213> 500 <213> 500 <213> 500 <213> 500 <213  500 <213> 500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  500 <213  5                                                                                                                                                                                                                                                             |                       |                   |
| <210> 874 <211> DNA <212> DNA <213> Homo sapiens <400> 874 cccatgccag tgatcctacc 20 <210> 875 <211> 20 <212> DNA <213> Homo sapiens <400> 875 <211> 20 <400> 875 <401> 875 <401> 875 <401> 875 <401> 875 <401> 875 <401> 875 <401> 875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                   |
| <pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 874 cccatgccag tgatcctacc 20  &lt;210&gt; 875 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213+ Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213+ Homo sapiens &lt;400&gt; 875</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cctgaccaac attgcgattg | 20                |
| <pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 874 cccatgccag tgatcctacc 20  &lt;210&gt; 875 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213+ Homo sapiens &lt;400&gt; 875 &lt;211&gt; DNA &lt;213+ Homo sapiens &lt;400&gt; 875</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <210> 874             |                   |
| <pre>&lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 874 cccatgccag tgatcctacc 20  &lt;210&gt; 875 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                   |
| <pre>&lt;400&gt; 874 cccatgccag tgatcctacc 20  &lt;210&gt; 875 &lt;211&gt; 20  &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                   |
| <pre>cccatgccag tgatcctacc 20  &lt;210&gt; 875 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <213> Homo sapiens    |                   |
| <210> 875<br><211> 20<br><212> DNA<br><213> Homo sapiens<br><400> 875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <400> 874             |                   |
| <pre>&lt;211&gt; 20     DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cccatgccag tgatcctacc | 20                |
| <pre>&lt;211&gt; 20     DNA &lt;213&gt; Homo sapiens &lt;400&gt; 875</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                   |
| <212> DNA<br><213> Homo sapiens<br><400> 875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                   |
| <213> Homo sapiens<br><400> 875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                   |
| <400> 875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                   |
| teeteetgga eegtgagaag 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tecteetgga eegtgagaag | 20                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                   |

<210> 876

| WO 2004/042346                | PCT/US2003/012946 |
|-------------------------------|-------------------|
| <211> 23                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 876                     |                   |
| gattcctctt ggacccactt ttc     | 23                |
|                               |                   |
| <210> 877<br><211> 20         |                   |
| <211> 20<br><212> DNA         |                   |
| <213> Homo sapiens            |                   |
| <400> 877                     |                   |
| gctagcccca tcctcactca         | 20                |
|                               |                   |
| <210> 878<br><211> 21         |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 878                     |                   |
| ccgaaagcct cctggaaatt a       | 21                |
|                               |                   |
| <210> 879                     |                   |
| <211> 20<br><212> DNA         |                   |
| <213> Homo sapiens            |                   |
|                               |                   |
| <400> 879                     |                   |
| gcatcatgtt gaccgagctg         | 20                |
| <210> 880                     |                   |
| <211> 27                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 880                     |                   |
| tgtggaaagt tttccctcat atactca | 27                |
| <210> 881                     |                   |
| <211> 21                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 881                     |                   |
| gggagacctg cctctcagaa t       | 21                |
|                               |                   |
| <210> 882                     |                   |
| <211> 20                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 882                     |                   |
| tgcagagccc caattcctac         | 20                |
|                               |                   |

| <210>  | 003                  |    |
|--------|----------------------|----|
|        |                      |    |
| <211>  |                      |    |
| <212>  |                      |    |
| <213>  | Homo sapiens         |    |
|        |                      |    |
| <400>  | 883                  |    |
|        | egtg tgaccatt        | 18 |
| gececa | egeg egaceate        | 10 |
|        |                      |    |
|        |                      |    |
| <210>  | 884                  |    |
| <211>  | 24                   |    |
| <212>  |                      |    |
|        | Homo sapiens         |    |
| (213)  | nomo saprens         |    |
|        |                      |    |
| <400>  |                      |    |
| tcgttg | tgta atcgtgtcag aaaa | 24 |
|        |                      |    |
|        |                      |    |
| <210>  | 885                  |    |
| <211>  |                      |    |
|        |                      |    |
| <212>  |                      |    |
| <213>  | Homo sapiens         |    |
|        |                      |    |
| <400>  | 885                  |    |
| aacaaq | ctgt ccagcgaagc      | 20 |
|        |                      |    |
|        |                      |    |
| <210>  | 206                  |    |
|        |                      |    |
| <211>  |                      |    |
| <212>  |                      |    |
| <213>  | Homo sapiens         |    |
|        | -                    |    |
| <400>  | 886                  |    |
|        | ccaa ttcgccctat      | 20 |
| cggtac | ccaa ccegecerae      | 20 |
|        |                      |    |
|        |                      |    |
| <210>  | 887                  |    |
| <211>  | 20                   |    |
| <212>  | DNA                  |    |
|        | Homo sapiens         |    |
| 12257  | none paptens         |    |
|        |                      |    |
| <400>  | 887                  |    |
| accctg | tggt ggtcttggac      | 20 |
|        |                      |    |
|        |                      |    |
| <210>  | 888                  |    |
| <211>  |                      |    |
| <211>  |                      |    |
|        |                      |    |
| <213>  | Homo sapiens         |    |
|        |                      |    |
| <400>  | 888                  |    |
| accata | taca acggcgagac      | 20 |
| 5500   | 22 0 0               |    |
|        |                      |    |
| 010    | 000                  |    |
|        | 889                  |    |
| <211>  |                      |    |
| <212>  | DNA                  |    |
| <213>  | Homo sapiens         |    |
|        | -                    |    |
| <400>  | 889                  |    |
|        |                      |    |

| wo      | 2004/042346        | PCT/US2003/012946 |
|---------|--------------------|-------------------|
| aagagc  | cagc agagcaaaac a  | 21                |
| <210>   | 890                |                   |
| <211>   |                    |                   |
| <212>   |                    |                   |
| <213>   | Homo sapiens       |                   |
| <400>   | 890                |                   |
|         | gtgc acagagaggt ca |                   |
| ccacgo  | gege acagagagge ca | 22                |
|         |                    |                   |
| <210>   |                    |                   |
| <211>   |                    |                   |
| <212>   |                    |                   |
| <213>   | Homo sapiens       |                   |
| <400>   | 891                |                   |
| ggtggc  | acct accgtctgtt    | 20                |
|         |                    |                   |
| <210>   | 892                |                   |
| <211>   | 20                 |                   |
| <212>   |                    |                   |
|         | Homo sapiens       |                   |
| <400>   | 892                |                   |
|         |                    |                   |
| tgtgtt  | ccct ggtgatgtgg    | 20                |
| <210>   | 893                |                   |
|         | 20                 |                   |
|         | DNA                |                   |
|         | Homo sapiens       |                   |
|         | -                  |                   |
|         | 893                |                   |
| cttcgtg | ggag gctgtggaac    | 20                |
|         |                    |                   |
|         | 894                |                   |
| <211>   |                    |                   |
| <212>   |                    |                   |
| <213>   | Homo sapiens       |                   |
| <400>   | 894                |                   |
| tgaggco | tga gtccttctgg     | 20                |
|         |                    |                   |
| <210>   | 895                |                   |
|         | 20                 |                   |
| <212>   | DNA                |                   |
| <213>   | Homo sapiens       |                   |
| <400>   | 005                |                   |
|         | 895                |                   |
| accogo  | eagg cettectete    | 20                |
| <210>   | 896                |                   |
|         | 21                 |                   |
|         | DNA                |                   |
|         | Homo sapiens       |                   |
| -2137   | nomo saprens       |                   |

| <400>   | 896                     |     |
|---------|-------------------------|-----|
|         |                         |     |
| tgtgtg  | tgca ccttgtcttc c       | 21  |
|         |                         |     |
|         |                         |     |
| -210-   | 897                     |     |
| <210>   |                         |     |
| <211>   | 20                      |     |
| <212>   | DNA                     |     |
| -213-   | Homo sapiens            |     |
| 12137   | nomo sapiene            |     |
|         |                         |     |
| <400>   | 897                     |     |
| atccta  | gcaa catggagagg         | 20  |
|         | 3 3 3 33                |     |
|         |                         |     |
|         |                         |     |
| <210>   | 898                     |     |
| <211>   | 27                      |     |
| <212>   | DNA                     |     |
|         | Homo sapiens            |     |
| (213)   | HOMO Saprens            |     |
|         |                         |     |
| <400>   | 898                     |     |
| ccctaa  | ttgc taagatttaa ggacgtt | 27  |
|         | 33 333                  | - ' |
|         |                         |     |
|         |                         |     |
| <210>   | 899                     |     |
| <211>   | 25                      |     |
| <212>   | DNA                     |     |
| <213>   |                         |     |
| (213)   | Homo sapiens            |     |
|         |                         |     |
| <400>   | 899                     |     |
| ttgagg  | gagt agtggaatga aaaca   | 25  |
| 5-55    | gase ageggaaega aaaca   | 23  |
|         |                         |     |
|         |                         |     |
| <210>   | 900                     |     |
| <211>   | 20                      |     |
| <212>   |                         |     |
|         |                         |     |
| <213>   | Homo sapiens            |     |
|         |                         |     |
| <400>   | 900                     |     |
|         | aact ccaatgetga         | 20  |
| cgggag. | adec cedatgetga         | 20  |
|         |                         |     |
|         |                         |     |
| <210>   | 901                     |     |
| <211>   |                         |     |
|         |                         |     |
| <212>   |                         |     |
| <213>   | Homo sapiens            |     |
|         |                         |     |
| <400>   | 901                     |     |
|         |                         |     |
| guacca  | gcag ggatggatta         | 20  |
|         |                         |     |
|         |                         |     |
| <210>   | 902                     |     |
| <211>   |                         |     |
|         |                         |     |
| <212>   |                         |     |
| <213>   | Homo sapiens            |     |
|         | -                       |     |
| <400>   | 902                     |     |
|         |                         |     |
| gcctgg  | accg atgtgtctct         | 20  |
|         |                         |     |
|         |                         |     |
| <210>   | 903                     |     |
|         |                         |     |
| <211>   |                         |     |

| we     | O 2004/042346       | PCT/US2003/012946 |
|--------|---------------------|-------------------|
| <212>  | DNA                 |                   |
| <213>  | Homo sapiens        |                   |
|        | 903                 |                   |
| cagcca | cagc cttttaattt gg  | 22                |
| <210>  |                     |                   |
| <211>  |                     |                   |
| <212>  |                     |                   |
| <213>  | Homo sapiens        |                   |
| <400>  | 904                 |                   |
| aagaca | acceg catetteetg    | 20                |
| <210>  | 005                 |                   |
| <211>  |                     |                   |
| <211>  |                     |                   |
|        | Homo sapiens        |                   |
| <400>  | 905                 |                   |
| gggaga | cctg ctctgcaaaa     | 20                |
| <210>  | 906                 |                   |
| <211>  |                     |                   |
| <211>  |                     |                   |
|        | Homo sapiens        |                   |
| <400>  | 906                 |                   |
| cccaaa | actga tettecagge ta | 22                |
| <210>  | 907                 |                   |
| <211>  |                     |                   |
| <211>  |                     |                   |
|        | Homo sapiens        |                   |
|        | 907                 |                   |
| ttcccc | etete ategteatgg    | 20                |
| <210>  | 908                 |                   |
| <211>  |                     |                   |
| <212>  | DNA                 |                   |
| <213>  | Homo sapiens        |                   |
| <400>  |                     |                   |
| ccaagg | gacct gggatctcct    | 20                |
| <210>  | 909                 |                   |
| <211>  |                     |                   |
| <212>  |                     |                   |
|        | Homo sapiens        |                   |
| <400>  | 909                 |                   |
|        | cacg gaggtggatg     | 20                |
| J      | 5 5 55 55 55        |                   |

<210> 910 <211> 20 <212> DNA <213> Homo sapiens <400> 910 tggaggcaga gtgacggact 20 <210> 911 <211> 20 <212> DNA <213> Homo sapiens <400> 911 gtaggcacgc acgaagaaca 20 <210> 912 <211> 20 <212> DNA <213> Homo sapiens <400> 912 cctccgcaga tgcttcattt 20 <210> 913 <211> 27 <212> DNA <213> Homo sapiens <400> 913 tttgttttga gttttcaaag aatagcc 27 <210> 914 <211> 22 <212> DNA <213> Homo sapiens <400> 914 ggtacagcac ttggctgggt ta 22 <210> 915 <211> 31 <212> DNA <213> Homo sapiens <400> 915 tttgtacatg actctcattt tattgtttct t 31 <210> 916 <211> 20 <212> DNA <213> Homo sapiens <400> 916 cctqcttqqq qaaatqttca 20

PCT/US2003/012946

WO 2004/042346

| <210><br><211><br><212> | 19                     |    |
|-------------------------|------------------------|----|
|                         | Homo sapiens           |    |
| <400>                   | 917                    |    |
| gtgggci                 | tca gggttggag          | 19 |
|                         |                        |    |
| <210>                   | 918                    |    |
| <211>                   |                        |    |
| <212><br><213>          |                        |    |
| (213)                   | nomo saprens           |    |
| <400>                   |                        |    |
| cctgga                  | gtc agcgaagagg         | 20 |
|                         |                        |    |
| <210>                   | 919                    |    |
| <211><br><212>          |                        |    |
|                         | Homo sapiens           |    |
|                         | ·                      |    |
| <400>                   |                        | 21 |
| caaget                  | cae tggetetetg g       | 21 |
|                         |                        |    |
| <210>                   |                        |    |
| <211><br><212>          |                        |    |
|                         | Homo sapiens           |    |
|                         |                        |    |
| <400>                   | 920<br>aact gctccaaaga | 20 |
| gcccaa                  | acc gerecadya          | 20 |
|                         |                        |    |
| <210><br><211>          | 921                    |    |
| <212>                   |                        |    |
| <213>                   | Homo sapiens           |    |
| <400>                   | 921                    |    |
|                         | ccag tacaggcact tt     | 22 |
|                         | 3                      |    |
| <210>                   | 922                    |    |
| <211>                   |                        |    |
| <212>                   | DNA                    |    |
| <213>                   | Homo sapiens           |    |
| <400>                   | 922                    |    |
|                         | tgag gttgtctagt        | 20 |
|                         |                        |    |
| <210>                   | 923                    |    |
| <211>                   | 26                     |    |
| <212>                   | DNA                    |    |
| <213>                   | Homo sapiens           |    |

| W              | O 2004/042346                 | PCT/US2003/012946 |
|----------------|-------------------------------|-------------------|
| <400>          | 923                           |                   |
| tcaac          | actac acatgaatga atccaa       | 26                |
| <210>          | 924                           |                   |
| <211>          |                               |                   |
| <212>          | DNA                           |                   |
| <213>          | Homo sapiens                  |                   |
| <400>          | 924                           |                   |
| tggaa          | atgta accattttag gataatgtc    | 29                |
| <210>          | 925                           |                   |
| <211>          | 21                            |                   |
| <212>          | DNA                           |                   |
| <213>          | Homo sapiens                  |                   |
| <400>          | 925                           |                   |
| cccaa          | yagag aacagggtgg t            | 21                |
| <210>          | 926                           |                   |
| <211>          | 32                            |                   |
| <212>          | DNA                           |                   |
| <213>          | Homo sapiens                  |                   |
| <400>          |                               |                   |
| Cacto          | gtaa agacaatttc cataaaataa aa | 32                |
| <210>          | 927                           |                   |
| <211>          |                               |                   |
| <212>          | DNA                           |                   |
| <213>          | Homo sapiens                  |                   |
| <400>          | 927                           |                   |
| ccgccc         | gtaa ttaaatagca               | 20                |
|                | •                             |                   |
| <210>          |                               |                   |
| <211>          |                               |                   |
| <212><br><213> | Homo sapiens                  |                   |
| <400>          |                               |                   |
|                | gcag atgcetett                |                   |
| cccgce         | geag algebrate                | 20                |
| <210>          | 929                           |                   |
| <211>          |                               |                   |
| <212>          |                               |                   |
| <213>          | Homo sapiens                  |                   |
| <400>          | 929<br>gggt tgctaattga        |                   |
|                | aaac caccaaccaa               | 20                |
| <210>          | 930                           |                   |
| <211>          |                               |                   |
| <212>          | DNA                           |                   |

| w              | J 2004/042346          | PC 1/US2003/01294 |
|----------------|------------------------|-------------------|
| <213>          | Homo sapiens           |                   |
| <400>          | 930                    |                   |
|                | attt ccgcaggtta        | 20                |
| gccccc         | accc cogcaggeou        | 20                |
|                |                        |                   |
|                | 931                    |                   |
| <211>          |                        |                   |
| <212>          | Homo sapiens           |                   |
| (213)          | HOMO SAPIENS           |                   |
| <400>          | 931                    |                   |
| cgtctg         | gtga caaccgagtg        | 20                |
|                |                        |                   |
| <210>          | 932                    |                   |
|                | 21                     |                   |
| <212>          |                        |                   |
| <213>          | Homo sapiens           |                   |
| <400>          | 932                    |                   |
|                | ggta aggagtgttt g      | 21                |
| 50 5           |                        |                   |
|                |                        |                   |
| <210><br><211> |                        |                   |
| <211>          |                        |                   |
|                | Homo sapiens           |                   |
|                | -                      |                   |
| <400>          |                        | 20                |
| atcgct         | tttg gcgacagact        | 20                |
|                |                        |                   |
|                | 934                    |                   |
| <211>          |                        |                   |
| <212>          |                        |                   |
| <213>          | Homo sapiens           |                   |
| <400>          | 934                    |                   |
| tcctga         | gctc gccaataagc        | 20                |
|                |                        |                   |
| <210>          | 935                    |                   |
| <211>          |                        |                   |
| <212>          |                        |                   |
| <213>          | Homo sapiens           |                   |
|                | ***                    |                   |
| <400>          | 935<br>caaa aggcacaata | 20                |
| eggeae         | cada aggenedada        |                   |
|                |                        |                   |
| <210>          |                        |                   |
| <211>          |                        |                   |
| <212>          | DNA<br>Homo sapiens    |                   |
| -2137          | TOWN DABTOTTO          |                   |
| <400>          | 936                    |                   |
| caagag         | atgc agtgccagga        | 20                |
|                |                        |                   |
| <210>          | 937                    |                   |
|                |                        |                   |

PCT/US2003/012946

WO 2004/042346

<211> 20 <212> DNA <213> Homo sapiens <400> 937 20 agaggaggag gctgctggtt <210> 938 <211> 20 <212> DNA <213> Homo sapiens <400> 938 20 gctcgcccac aaactgattt <210> 939 <211> 25 <212> DNA <213> Homo sapiens <400> 939 tgatttggat acggtgaata agctg 25 <210> 940 <211> 20 <212> DNA <213> Homo sapiens <400> 940 cggcaaagag aacggaaaga 20 <210> 941 <211> 20 <212> DNA <213> Homo sapiens <400> 941 20 gatcccagcc cacaagtgat <210> 942 <211> 27 <212> DNA <213> Homo sapiens

<400> 942 acttgttaac ctttctaacc ttcacga 27 <210> 943

<211> 20 <212> DNA <213> Homo sapiens <400> 943

20 agtaagtcag ggcgggcttt

| <210>          |                      |    |
|----------------|----------------------|----|
| <211><br><212> |                      |    |
|                | Homo sapiens         |    |
| (213)          | HOMO SAPIENS         |    |
| <400>          | 944                  |    |
|                | accca tcatggagca     |    |
|                | assou ceaeggagea     | 20 |
|                |                      |    |
| <210>          | 945                  |    |
| <211>          | 20                   |    |
| <212>          | DNA                  |    |
| <213>          | Homo sapiens         |    |
|                |                      |    |
| <400>          |                      |    |
| cattc          | agcgg acagcaaaca     | 20 |
|                |                      |    |
|                |                      |    |
| <210>          |                      |    |
| <211>          |                      |    |
| <212>          |                      |    |
| <213>          | Homo sapiens         |    |
| <400>          | 946                  |    |
|                | catgg caaaacagga     |    |
| 005000         | outgg tuddacagga     | 20 |
|                |                      |    |
| <210>          | 947                  |    |
| <211>          | 20                   |    |
| <212>          | DNA                  |    |
| <213>          | Homo sapiens         |    |
|                | -                    |    |
| <400>          | 947                  |    |
| aggtco         | steet eccettttee     | 20 |
|                |                      |    |
|                |                      |    |
| <210>          |                      |    |
| <211>          |                      |    |
| <212>          |                      |    |
| <213>          | Homo sapiens         |    |
| . 400          | 0.40                 |    |
| <400>          |                      |    |
| Coacac         | totg caccoctcag      | 20 |
|                |                      |    |
| <210>          | 949                  |    |
| <211>          |                      |    |
| <212>          |                      |    |
|                | Homo sapiens         |    |
|                | nome suprems         |    |
| <400>          | 949                  |    |
|                | tggc tggtaatagg cttt |    |
|                | -330 oggeddedgg ceee | 24 |
|                |                      |    |
| <210>          | 950                  |    |
| <211>          | 20                   |    |
| <212>          | DNA                  |    |
| <213>          | Homo sapiens         |    |
|                |                      |    |

<400> 950

| wo     | 2004/042346       | I    | PCT/US2003/012946 |
|--------|-------------------|------|-------------------|
| tccact | gece taacacaega   |      | 20                |
| <210>  | 951               |      |                   |
| <211>  | 21                |      |                   |
| <212>  |                   |      |                   |
|        | Homo sapiens      |      |                   |
| <400>  | 951               | *    |                   |
| acccat | ttta cagtgccatg c |      | 21                |
|        |                   |      |                   |
| <210>  |                   |      |                   |
|        | 20                |      |                   |
|        | DNA               |      |                   |
| <213>  | Homo sapiens      |      |                   |
|        | 952               |      |                   |
| gctctt | tgcc tgctggtttc   |      | 20                |
| <210>  | 953               |      |                   |
|        |                   |      |                   |
|        | 20                |      |                   |
| <212>  |                   |      |                   |
| <213>  | Homo sapiens      |      |                   |
|        | 953               |      | 20                |
| cgaacg | agtc atggcctagc   |      | 20                |
| <210>  | 954               |      |                   |
|        | 20                |      |                   |
|        |                   |      |                   |
| <212>  |                   |      |                   |
| <213>  | Homo sapiens      |      |                   |
| <400>  | 954               |      |                   |
| ggtaag | caca teceetegaa   |      | 20                |
|        |                   |      |                   |
| <210>  |                   |      |                   |
| <211>  |                   |      |                   |
| <212>  |                   |      |                   |
| <213>  | Homo sapiens      |      |                   |
| <400>  |                   |      |                   |
| cccata | acca aaatttaaag g | caaa | 25                |
|        |                   |      |                   |
| <210>  |                   |      |                   |
| <211>  |                   |      |                   |
| <212>  |                   |      |                   |
| <213>  | Homo sapiens      |      |                   |
| <400>  |                   |      |                   |
| tggcat | gttt tgtgcatttg t |      | 21                |
|        |                   |      |                   |
| <210>  |                   |      |                   |
| <211>  |                   |      |                   |
| <212>  |                   |      |                   |
| <213>  | Homo sapiens      |      |                   |

| <400>   | 957                   |    |
|---------|-----------------------|----|
|         |                       |    |
| ccatgg  | ggtg agacttgagc       | 20 |
|         |                       |    |
|         |                       |    |
| <210>   | 958                   |    |
|         |                       |    |
| <211>   |                       |    |
| <212>   | DNA                   |    |
| <213>   | Homo sapiens          |    |
| 12257   | nomo Bapteno          |    |
|         |                       |    |
| <400>   | 958                   |    |
| tttctc  | caga agcccagcac       | 20 |
|         |                       |    |
|         |                       |    |
| <210>   | 959                   |    |
|         |                       |    |
|         | 25                    |    |
| <212>   | DNA                   |    |
| <213>   | Homo sapiens          |    |
|         |                       |    |
|         | 0.50                  |    |
| <400>   | 959                   |    |
| ttttt   | ttca agcagtaaaa ttcca | 25 |
|         |                       |    |
|         |                       |    |
| <210>   | 960                   |    |
|         |                       |    |
| <211>   |                       |    |
| <212>   | DNA                   |    |
| <213>   | Homo sapiens          |    |
|         |                       |    |
| <400>   | 960                   |    |
|         |                       |    |
| cactct  | gcgc cacaaaggtt       | 20 |
|         |                       |    |
|         |                       |    |
| <210>   | 061                   |    |
|         |                       |    |
| <211>   |                       |    |
| <212>   | DNA                   |    |
| <213>   | Homo sapiens          |    |
|         |                       |    |
|         |                       |    |
| <400>   | 961                   |    |
| gaagcc  | cctc accctgagat       | 20 |
|         |                       |    |
|         |                       |    |
| <210>   | 963                   |    |
|         |                       |    |
| <211>   |                       |    |
| <212>   | DNA                   |    |
| <213>   | Homo sapiens          |    |
|         |                       |    |
| -100    | 0.00                  |    |
|         | 962                   |    |
| ccgtac  | aagt cgggtgggta       | 20 |
|         |                       |    |
|         |                       |    |
| -210-   | 063                   |    |
| <210>   |                       |    |
| <211>   |                       |    |
| <212>   | DNA                   |    |
|         | Homo sapiens          |    |
|         |                       |    |
|         | 252                   |    |
|         | 963                   |    |
| gcaaagt | tgag gagggagctg       | 20 |
| -       |                       |    |
|         |                       |    |
| 010     | 201                   |    |
| <210>   | 964                   |    |
| <211>   | 20                    |    |

| WO 2004/042346                  | PCT/US2003/012946 |
|---------------------------------|-------------------|
| <212> DNA<br><213> Homo sapiens |                   |
| (213) Homo Baptons              |                   |
| <400> 964                       |                   |
| cagggctatg agcggaagaa           | 20                |
| <210> 965                       |                   |
| <210> 965<br><211> 20           |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 965                       |                   |
| gacccgccaa aaccaaatta           | 20                |
| <210> 966                       |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 966                       |                   |
| gacgtcattg teggegactt           | 20                |
| <210> 967                       |                   |
| <210> 967<br><211> 20           |                   |
| <211> 20<br><212> DNA           |                   |
| <213> Homo sapiens              |                   |
| <400> 967                       |                   |
| cttccagcag accccagtgt           | 20                |
|                                 |                   |
| <210> 968                       |                   |
| <211> 20<br><212> DNA           |                   |
| <213> Homo sapiens              |                   |
| <400> 968                       |                   |
| cctctgctgg gttgttaccg           | 20                |
| <210> 969                       |                   |
| <211> 21                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 969                       |                   |
| tgaatccctt gctgttccct a         | 21                |
|                                 |                   |
| <210> 970<br><211> 20           |                   |
| <211> 20<br><212> DNA           |                   |
| <213> Homo sapiens              |                   |
| <400> 970                       |                   |
| taccttggct ccctgtcctg           | 20                |
|                                 |                   |

<210> 971 <211> 20 <212> DNA <213> Homo sapiens <400> 971 taggggtaag ccctgggtgt 20 <210> 972 <211> 21 <212> DNA <213> Homo sapiens <400> 972 ttccatcctg tcctggaatc a 21 <210> 973 <211> 20 <212> DNA <213> Homo sapiens <400> 973 20 gggcacagct tcctctcttg <210> 974 <211> 20 <212> DNA <213> Homo sapiens <400> 974 ccctqccaca cacacatttt 20 <210> 975 <211> 20 <212> DNA <213> Homo sapiens <400> 975 cccttqtqtc cccacatttt 20 <210> 976 <211> 20 <212> DNA <213> Homo sapiens <400> 976 20 ctgcagcctc acagacctga <210> 977 <211> 21 <212> DNA <213> Homo sapiens <400> 977 tgccattgtc ccatctagga a 21

PCT/US2003/012946

WO 2004/042346

| <210><br><211><br><212> | 21                     |    |
|-------------------------|------------------------|----|
| <213>                   | Homo sapiens           |    |
| <400>                   | 978                    |    |
| tcaggg                  | attt ctaagccacc a      | 21 |
|                         |                        |    |
| <210>                   | 979                    |    |
| <211>                   |                        |    |
| <212>                   |                        |    |
| <213>                   | Homo sapiens           |    |
| <400>                   | 979                    |    |
| agcagg                  | gaat tccaggaagc        | 20 |
|                         |                        |    |
| <210>                   | 980                    |    |
| <211>                   | 20                     |    |
| <212>                   |                        |    |
| <213>                   | Homo sapiens           |    |
| <400>                   | 980                    |    |
|                         | tgta gtcgctttgc        | 20 |
| -                       |                        |    |
|                         | 981                    |    |
| <210><br><211>          |                        |    |
| <212>                   |                        |    |
|                         | Homo sapiens           |    |
|                         | -                      |    |
| <400>                   |                        | 20 |
| geaegg                  | ttca aaagcaggtt        | 20 |
|                         |                        |    |
| <210>                   | 982                    |    |
| <211>                   |                        |    |
| <212>                   |                        |    |
| <213>                   | Homo sapiens           |    |
| <400>                   | 982                    |    |
|                         | tcgc ctctttcttc        | 20 |
|                         |                        |    |
| <210>                   | 983                    |    |
| <211>                   |                        |    |
| <212>                   |                        |    |
| <213>                   | Homo sapiens           |    |
| .400.                   | 002                    |    |
| <400>                   | 983<br>gtgc agagcgtatg | 20 |
| 33,39,                  | 3-3- u3u3-3-u-3        | 20 |
| -210:                   | 984                    |    |
| <210><br><211>          |                        |    |
| <211>                   |                        |    |
| <213>                   |                        |    |

| wo             | 2004/042346             | PCT/US2003/012946 |
|----------------|-------------------------|-------------------|
| <400>          | 984                     |                   |
|                | gaga ccagaagtgg         | 20                |
|                |                         |                   |
|                |                         |                   |
| <210><br><211> | 985                     |                   |
| <211>          |                         |                   |
| <213>          |                         |                   |
| 1220           |                         |                   |
| <400>          | 985                     |                   |
| ttctgt         | tgga gtattttctt ccttacg | 27                |
|                |                         |                   |
| <210>          | 986                     |                   |
| <211>          |                         |                   |
| <212>          |                         |                   |
|                | Homo sapiens            |                   |
|                |                         |                   |
| <400>          | 986                     |                   |
| cacact         | tgtg ggcaatctgg         | 20                |
|                |                         |                   |
| <210>          | 987                     |                   |
| <211>          |                         |                   |
| <212>          |                         |                   |
|                | Homo sapiens            |                   |
|                | •                       |                   |
| <400>          |                         |                   |
| cccgtg         | gagc tgacaagttt         | 20                |
|                |                         |                   |
| <210>          | 988                     |                   |
| <211>          |                         |                   |
| <212>          | DNA                     |                   |
| <213>          | Homo sapiens            |                   |
|                |                         |                   |
| <400>          |                         | 20                |
| agtgee         | ccag gcatttcttt         | 20                |
|                |                         |                   |
| <210>          | 989                     |                   |
| <211>          |                         |                   |
| <212>          | DNA                     |                   |
| <213>          | Homo sapiens            |                   |
| <400>          | 989                     |                   |
|                | gctg ggcattatgt         | 20                |
| geeett         | 3003 3300000036         | 20                |
|                |                         |                   |
| <210>          |                         |                   |
| <211>          |                         |                   |
| <212>          |                         |                   |
| <213>          | Homo sapiens            |                   |
|                |                         |                   |

<210> 991 <211> 20 <212> DNA

<400> 990

ccgagccaag acgagaagaa

| WO 2004/042346                  | PCT/US2003/012946 |
|---------------------------------|-------------------|
| <213> Homo sapiens              |                   |
| <400> 991                       |                   |
| cctgcatttg accagagcaa           | 20                |
| <210> 992                       |                   |
| <211> 25                        |                   |
| <212> DNA<br><213> Homo sapiens |                   |
|                                 |                   |
| <400> 992                       |                   |
| tgcaacacta acaagagaga atgga     | 25                |
| <210> 993                       |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 993                       |                   |
| aggcccagac ttctccaagg           | 20                |
| <210> 994                       |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 994                       |                   |
| aggccaagtc aggcccttat           | 20                |
|                                 |                   |
| <210> 995                       |                   |
| <211> 20<br><212> DNA           |                   |
| <213> Homo sapiens              |                   |
|                                 |                   |
| <400> 995                       |                   |
| ttgccagaat gggactgtga           | 20                |
| <210> 996                       |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 996                       |                   |
| gcaagettat gaccegcact           | 20                |
| <210> 997                       |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 997                       |                   |
| tggcttttag gatggcaagg           | 20                |
|                                 |                   |
|                                 |                   |

<210> 998

| W      | O 2004/042346      | PCT/US2003/012946 |
|--------|--------------------|-------------------|
| <211>  | 19                 |                   |
| <212>  | DNA                |                   |
| <213>  | Homo sapiens       |                   |
|        | 998                |                   |
| ccgata | aggg cgaggtctg     | 19                |
| <210>  | 999                |                   |
| <211>  |                    |                   |
| <212>  | DNA                |                   |
| <213>  | Homo sapiens       |                   |
| <400>  |                    |                   |
| tttccc | ccaa attctaagca ga | 22                |
| <210>  |                    |                   |
| <211>  |                    |                   |
| <212>  |                    |                   |
| <213>  | Homo sapiens       |                   |
| <400>  | 1000               | *                 |
|        | gecca ggttteteaa   | 20                |
| ccagag | gooda ggeototoaa   | 20                |
| <210>  | 1001               |                   |
| <211>  | 20                 |                   |
| <212>  | DNA                |                   |
|        | Homo sapiens       |                   |
| <400>  | 1001               |                   |
| ggcaag | gtgag gggatgagtg   | 20                |
| <210>  | 1002               |                   |
| <211>  | 20                 |                   |
| <212>  | DNA                |                   |
| <213>  | Homo sapiens       |                   |
|        | 1002               |                   |
| ggcgct | ctct atgtgggtgt    | 20                |
| <210>  | 1003               |                   |
| <211>  |                    |                   |
| <212>  |                    |                   |
|        | Homo sapiens       |                   |
| <400>  | 1003               | •                 |
| gggtca | attag aagccccttc a | 21                |
|        |                    |                   |
| <210>  |                    |                   |
| <211>  |                    |                   |
| <212>  | DNA                |                   |
| <213>  | Homo sapiens       |                   |
| <400>  | 1004               |                   |
| cccato | gttcc cgaagtagga   | 20                |

| <210>  | 1005                                    |
|--------|-----------------------------------------|
| <211>  |                                         |
| <212>  |                                         |
|        | Homo sapiens                            |
|        |                                         |
| <400>  | 1005                                    |
|        | ggtgg ataggcaaac                        |
| 25534  | ,, ,, ===,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|        |                                         |
| -2105  | 1006                                    |
| <211>  |                                         |
| <211>  |                                         |
|        | Homo sapiens                            |
| <213>  | Homo sapiens                            |
|        |                                         |
|        | 1006                                    |
| ttttc  | agece ettgettete                        |
|        |                                         |
|        |                                         |
| <210>  |                                         |
| <211>  |                                         |
| <212>  |                                         |
| <213>  | Homo sapiens                            |
|        |                                         |
| <400>  |                                         |
| ggacg  | tcttt ggttgggatt                        |
|        |                                         |
|        |                                         |
| <210>  | 1008                                    |
| <211>  | 20                                      |
| <212>  |                                         |
|        | Homo sapiens                            |
|        |                                         |
| <400>  | 1008                                    |
|        | agggg tgggttgtto                        |
| gaagg. | maaaa caaaccacc                         |
|        |                                         |
| .010   | 1000                                    |
| <210>  |                                         |
| <211>  |                                         |
| <212>  |                                         |
| <213>  | Homo sapiens                            |
|        |                                         |
| <400>  |                                         |
| ttgac  | ttggc ccagagggta                        |
|        |                                         |
|        |                                         |
| <210>  | 1010                                    |
| <211>  |                                         |
| <212>  |                                         |
|        | Homo sapiens                            |
|        |                                         |
| <400>  | 1010                                    |
|        | aacac tgcagcatg                         |
| acceg  | aacac tycaycaty                         |
|        |                                         |
|        |                                         |
| <210>  |                                         |
| <211>  |                                         |
| <212>  |                                         |
| <213>  | Homo sapiens                            |
|        |                                         |
| <400>  | 1011                                    |

| W               | 2004/042346        | PCT/US2003/012946 |
|-----------------|--------------------|-------------------|
| cccatg          | gatg atgactgctg    | 20                |
| <210>           | 1012               |                   |
| <211>           |                    |                   |
| <212>           |                    |                   |
|                 | Homo sapiens       |                   |
| <400>           | 1012               |                   |
| g <b>g</b> tggt | ttta cagtccctgc at | 22                |
|                 |                    |                   |
| <210>           | 1013               |                   |
| <211>           |                    |                   |
| <212>           |                    |                   |
| <213>           | Homo sapiens       |                   |
| <400>           |                    |                   |
| tgccaa          | acct tgagtgatgg    | 20                |
|                 |                    |                   |
| <210>           | 1014               |                   |
| <211>           | 20                 |                   |
| <212>           |                    |                   |
| <213>           | Homo sapiens       |                   |
| <400>           | 1014               |                   |
|                 |                    | 20                |
| accyc           | ttgg tcgccactgt    | 20                |
| <210>           | 1015               |                   |
| <211>           | 20                 |                   |
| <212>           |                    |                   |
|                 | Homo sapiens       |                   |
| (213)           | nomo sapiens       |                   |
| <400>           | 1015               |                   |
| tgtgcg          | ttgc ctgaatgaac    | 20                |
|                 |                    |                   |
| <210>           |                    |                   |
| <211>           |                    |                   |
| <212>           |                    |                   |
| <213>           | Homo sapiens       |                   |
| <400>           | 1016               |                   |
| ggagga          | agcc atggagatca    | 20                |
|                 |                    |                   |
| <210>           | 1017               |                   |
| <211>           | 20                 |                   |
| <212>           | DNA                |                   |
| <213>           | Homo sapiens       |                   |
| <400>           | 1017               |                   |
|                 | cact tgaagcgtct    | 20                |
|                 |                    |                   |
| <210>           |                    |                   |
| <211>           |                    |                   |
| <212>           |                    |                   |
| <213>           | Homo sapiens       |                   |
|                 |                    |                   |

| <400>  | 1018            |
|--------|-----------------|
|        | atgc atgccctgta |
| cycaaa | assa acgeologia |
|        |                 |
| <210>  | 1019            |
| <211>  | 20              |
| <212>  |                 |
|        | Homo sapiens    |
|        |                 |
| <400>  | 1019            |
|        | gtcc ataggatacg |
| ,,     |                 |
|        |                 |
| <210>  | 1020            |
| <211>  | 20              |
| <212>  | DNA             |
| <213>  | Homo sapiens    |
|        |                 |
| <400>  | 1020            |
|        | aaag gtgcgagagc |
|        |                 |
|        |                 |
| <210>  |                 |
| <211>  | 20              |
| <212>  | DNA             |
| <213>  | Homo sapiens    |
|        | -               |
| <400>  | 1021            |
|        | gaac tgggagtgag |
|        |                 |
|        |                 |
| <210>  | 1022            |
| <211>  | 20              |
| <212>  |                 |
|        | Homo sapiens    |
|        | •               |
| <400>  | 1022            |
| tccctt | ctcg gaccagtgtc |
|        |                 |
|        |                 |
| <210>  | 1023            |
| <211>  |                 |
| <212>  |                 |
|        | Homo sapiens    |
|        | •               |
| <400>  | 1023            |
|        | gcca tcggataagc |
| 5555   | .5 55           |
|        |                 |
| <210>  | 1024            |
| <211>  |                 |
| <212>  |                 |
|        | Homo sapiens    |
| -2137  | nomo supreme    |
| <400>  | 1024            |
|        | aaca acccacatcc |
| accacc | auca accedence  |
|        |                 |
| <210>  | 1025            |
| <211>  |                 |
|        |                 |

| wo             | 2004/042346     | PCT/US2003/012940 |
|----------------|-----------------|-------------------|
| <212>          | DNA             |                   |
|                | Homo sapiens    |                   |
| <400>          | 1025            |                   |
|                | ccac tggcatttct | 20                |
|                |                 |                   |
| <210>          | 1026            |                   |
| <211>          |                 |                   |
| <212>          |                 |                   |
| <213>          | Homo sapiens    |                   |
| <400>          | 1026            |                   |
| gaagaa         | geeg acetteeaea | 20                |
|                |                 |                   |
| <210>          | 1027            |                   |
| <211>          |                 |                   |
| <212>          |                 |                   |
| <213>          | Homo sapiens    |                   |
| <400>          | 1027            |                   |
| ctgtag         | tcac ggcccagctc | 20                |
|                |                 |                   |
| <210>          | 1028            |                   |
| <211>          |                 |                   |
| <212>          | DNA             |                   |
| <213>          | Homo sapiens    |                   |
| <400>          | 1028            |                   |
| atagac         | acca ggcccacgag | 20                |
|                |                 |                   |
| <210>          | 1029            |                   |
| <211>          | 20              |                   |
| <212>          | DNA             |                   |
| <213>          | Homo sapiens    |                   |
| <400>          | 1029            |                   |
|                | ggac aggaacatcc | 20                |
| 5555           |                 | 20                |
| <210>          | 1020            |                   |
| <211>          |                 |                   |
| <212>          |                 |                   |
|                | Homo sapiens    |                   |
| <400>          | 1020            |                   |
|                |                 |                   |
| egeoge         | egat getetteace | 20                |
| 2.50           |                 |                   |
| <210><br><211> | 1031            |                   |
| <211><br><212> | 20              |                   |
|                | Homo sapiens    |                   |
| -2132          | wowo papiens    |                   |
| <400>          |                 |                   |
| ccctgg         | cca caagtatcac  | 20                |
|                |                 |                   |

WO 2004/042346 PCT/US2003/012946 <210> 1032 <211> 20 <212> DNA <213> Homo sapiens <400> 1032 20 gccctggctc acaagtacca <210> 1033 <211> 20 <212> DNA <213> Homo sapiens <400> 1033 20 atggcagagg gagacgacag <210> 1034 <211> 20 <212> DNA <213> Homo sapiens <400> 1034 gctttgtggc atctcccaag 20 <210> 1035 <211> 20 <212> DNA <213> Homo sapiens <400> 1035 20 ttcagcggta ctcggaaacc <210> 1036 <211> 20 <212> DNA <213> Homo sapiens <400> 1036 20 caggcatctg gattggctct <210> 1037 <211> 20 <212> DNA <213> Homo sapiens <400> 1037 attccgaaac caccggactt 20 <210> 1038 <211> 21 <212> DNA <213> Homo sapiens <400> 1038 21 cgactccact cagcatcttg c

| 1039                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| gagg atgtgtcgag                                                                                                                                                                                                                                                                                                                                                                                                        | 20  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 1040                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| DNA                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 1040                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        | 23  |
| cocc taggetgget atc                                                                                                                                                                                                                                                                                                                                                                                                    | 2.3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 1041                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| attc tcaagggttt                                                                                                                                                                                                                                                                                                                                                                                                        | 20  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 1042                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| 1042<br>23                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 23<br>DNA                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| 23<br>DNA                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 23<br>DNA<br>Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                              | 23  |
| 23<br>DNA<br>Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                              | 23  |
| 23<br>DNA<br>Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                              | 23  |
| 23 DNA Homo sapiens 1042 aagt catttcacta agc                                                                                                                                                                                                                                                                                                                                                                           | 23  |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc                                                                                                                                                                                                                                                                                                                                                                          | 23  |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20                                                                                                                                                                                                                                                                                                                                                                 | 23  |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20 DNA                                                                                                                                                                                                                                                                                                                                                             | 23  |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20                                                                                                                                                                                                                                                                                                                                                                 | 23  |
| 23 DNA Homo sapiens  1042 sagt catttcacta agc  1043 20 DNA Homo sapiens                                                                                                                                                                                                                                                                                                                                                | 23  |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20 DNA Homo sapiens  1043                                                                                                                                                                                                                                                                                                                                          |     |
| 23 DNA Homo sapiens  1042 sagt catttcacta agc  1043 20 DNA Homo sapiens                                                                                                                                                                                                                                                                                                                                                | 23  |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20 DNA Homo sapiens  1043                                                                                                                                                                                                                                                                                                                                          |     |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20 DNA Homo sapiens  1043 gacc gtccctctc                                                                                                                                                                                                                                                                                                                           |     |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20 DNA Homo sapiens  1043 gacc gteccetete                                                                                                                                                                                                                                                                                                                          |     |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20 DNA Homo sapiens  1043 gacc gtcccctctc                                                                                                                                                                                                                                                                                                                          |     |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20 DNA Homo sapiens  1043 gacc gtcccctctc                                                                                                                                                                                                                                                                                                                          |     |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20 DNA Homo sapiens  1043 gacc gtcccctctc                                                                                                                                                                                                                                                                                                                          |     |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20 DNA Homo sapiens  1043 gacc gtccctctc  1044 20 DNA Homo sapiens                                                                                                                                                                                                                                                                                                 |     |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20 DNA Homo sapiens  1043 gacc gtccctctc  1044 20 DNA Homo sapiens                                                                                                                                                                                                                                                                                                 | 20  |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20 DNA Homo sapiens  1043 gacc gtccctctc  1044 20 DNA Homo sapiens                                                                                                                                                                                                                                                                                                 |     |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20 DNA Homo sapiens  1043 gacc gtccctctc  1044 20 DNA Homo sapiens                                                                                                                                                                                                                                                                                                 | 20  |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20 DNA Homo sapiens  1043 gacc gtcccctctc  1044 20 DNA Homo sapiens 1044 20 DNA Homo sapiens                                                                                                                                                                                                                                                                       | 20  |
| 23 DNA Homo sapiens  1042 east cattcacta agc  1043 20 DNA Homo sapiens  1043 gacc gtcccctctc  1044 20 DNA Homo sapiens  1044 20 DNA Homo sapiens  1044 20 DNA Homo sapiens  1044 20 DNA Homo sapiens                                                                                                                                                                                                                   | 20  |
| 23 DNA Homo sapiens  1042 aagt catttcacta agc  1043 20 DNA Homo sapiens  1043 gacc gtcccctctc  1044 20 DNA Homo sapiens 1044 20 DNA Homo sapiens 1044 20 DNA Homo sapiens 1044 20 DNA Homo sapiens 1044 20 DNA Homo sapiens 1044 202 DNA Homo sapiens 1044 202 DNA Homo sapiens 1044 202 DNA Homo sapiens 1044 202 DNA Homo sapiens 1044 202 DNA Homo sapiens 1044 202 DNA Homo sapiens 1044 202 DNA Homo sapiens 1044 | 20  |
| 23 DNA Homo sapiens  1042 east cattcacta agc  1043 20 DNA Homo sapiens  1043 gacc gtcccctctc  1044 20 DNA Homo sapiens  1044 20 DNA Homo sapiens  1044 20 DNA Homo sapiens  1044 20 DNA Homo sapiens                                                                                                                                                                                                                   | 20  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                      | 23  |

| WO 2004/042346           | PCT/US2003/012946 |
|--------------------------|-------------------|
| <400> 1045               |                   |
| tcaacagcaa caagcccgta    |                   |
|                          | 20                |
|                          |                   |
| <210> 1046               |                   |
| <211> 19                 |                   |
| <212> DNA                | "                 |
| <213> Homo sapiens       |                   |
| <400> 1046               |                   |
| agcagttcca cccctctgg     |                   |
| 5 555                    | 19                |
|                          |                   |
| <210> 1047               |                   |
| <211> 20                 |                   |
| <212> DNA                |                   |
| <213> Homo sapiens       |                   |
| <400> 1047               |                   |
| ccggccaacc cctttaaata    |                   |
| 55                       | 20                |
| .010                     |                   |
| <210> 1048               |                   |
| <211> 20                 |                   |
| <212> DNA                |                   |
| <213> Homo sapiens       |                   |
| <400> 1048               |                   |
| tcagcgtggc tatcagttgg    | 20                |
|                          | 20                |
| <210> 1049               |                   |
| <211> 20                 |                   |
| <212> DNA                |                   |
|                          |                   |
| <213> Homo sapiens       |                   |
| <400> 1049               |                   |
| caagtgcgga gacccatctt    | 20                |
|                          | 20                |
| <210> 1050               |                   |
| <211> 22                 |                   |
| <212> DNA                |                   |
| <213> Homo sapiens       |                   |
| (213) homo sapiens       |                   |
| <400> 1050               |                   |
| acagccatca agaaaggaca ca | 22                |
|                          |                   |
| <210> 1051               |                   |
| <211> 21                 |                   |
| <212> DNA                |                   |
| <213> Homo sapiens       |                   |
| vario nomo saptens       |                   |
| <400> 1051               |                   |
| ccacctgcat ccaaataatg g  | 21                |
|                          | 21                |
| <210> 1052               |                   |
| <210> 1052<br><211> 20   |                   |
| <211> 20<br><212> DNA    |                   |
| CIES DNA                 |                   |

| <pre>&lt;400&gt; 1052 tccaaagggt tgcttgaagg  20  &lt;210&gt; 1053 &lt;211&gt; 20  &lt;212&gt; DNA &lt;213&gt; Homo sapiens  &lt;400 1053 ccatggaagg gtccaatgag  20  &lt;210 1054 &lt;211&gt; 19  &lt;212&gt; DNA &lt;213 Homo sapiens  &lt;400 1055 &lt;211&gt; 20  &lt;210&gt; 1055 &lt;2211&gt; 20  &lt;211&gt; DNA &lt;213 Homo sapiens  &lt;400 1055 saatagggga cctgccagt  20  &lt;210 1056 &lt;211 20 &lt;212&gt; DNA &lt;213 Homo sapiens  &lt;400 1055 saatagggga cctgccagt  20  &lt;210 1056 &lt;211 20 &lt;212 DNA &lt;213 Homo sapiens  &lt;400 1056 tgtaggcgc aaggtggtat  20  &lt;210 1056 &lt;211 20 &lt;212 DNA &lt;213 Homo sapiens  &lt;400 1057 &lt;211 20 &lt;212 DNA &lt;213 Homo sapiens  &lt;400 1057 &lt;211 21 &lt;212 DNA &lt;213 Homo sapiens  &lt;400 1057 &lt;211 21 &lt;212 DNA &lt;213 Homo sapiens  &lt;400 1057 &lt;211 21 &lt;212 DNA &lt;213 Homo sapiens  &lt;400 1057 &lt;211 22 &lt;212 DNA &lt;213 Homo sapiens  &lt;400 1057 &lt;211 22 &lt;212 DNA &lt;213 Homo sapiens  &lt;400 1058 tccattcacc gtcaagactg aa  &lt;22 &lt;&lt;210 1059 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WO 2004/042346           | PCT/US2003/012946 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <213> Homo sapiens       |                   |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4005 1052                |                   |
| <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   |
| <pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens </pre> <pre>&lt;400&gt; 1053 ccatggaagg gtccaatgag</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tccaaagggt tgcttgaagg    | 20                |
| <pre>&lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1053 ccatggaagg gtccaatgag</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                   |
| <pre>&lt;213&gt; Homo sapiens &lt;4400&gt; 1053 ccatggaagg gtccaatgag</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   |
| <pre>&lt;400&gt; 1053 ccatggaagg gtccaatgag  &lt;210&gt; 1054 &lt;2211&gt; 19 &lt;212&gt; DNA &lt;2213&gt; Homo sapiens &lt;400&gt; 1054 gcctgctcct cttggatgg  19  &lt;2210&gt; 1055 &lt;2211&gt; 20 &lt;2212&gt; DNA &lt;2213&gt; Homo sapiens &lt;400&gt; 1055 c211&gt; 20 &lt;2212&gt; DNA &lt;2213&gt; Homo sapiens &lt;400&gt; 1055 aaataggga cctgcccagt  20  &lt;2210&gt; 1056 &lt;2211&gt; 20 &lt;2212&gt; DNA &lt;2213&gt; Homo sapiens &lt;400&gt; 1056 tgtaggegcc aaggtggtat  20  &lt;210&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1057 tgtaggegcc aaggtggtat  21 &lt;2212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213 Homo sapiens &lt;400&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213 Homo sapiens &lt;400&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213 Homo sapiens &lt;400&gt; 1057 sqtagcacag aaggaggtt t  21 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   |
| Coatggaagg gtccaatgag   Coatggaagg   Coatggaagg   Coatggaagg gtccaatgag   Coatggaagg   Coatggaagg   Coatggaagg   Coatggaagg   Coatggaagg   Coatggaagg   Coatggaagg   Coatggaagg   Coatggaaggaagggaagggaagggaagggaagggaaggg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <213> Homo sapiens       |                   |
| <pre> &lt;210&gt; 1054 &lt;211&gt; 19 &lt;212&gt; DNA &lt;211&gt; Home sapiens &lt;400&gt; 1054 gcctgctcct cttggatgg</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <400> 1053               |                   |
| <pre> &lt;211&gt; 19  &lt;212&gt; DNA  &lt;213&gt; Home sapiens  &lt;400&gt; 1054 gcctgctcct cttggatgg  19  &lt;210&gt; 1055 &lt;211&gt; 20  &lt;211&gt; DNA  &lt;2113 Home sapiens  &lt;400 1055 aaatagggga cctgcccagt  20  &lt;210&gt; 1056 &lt;211&gt; 20  &lt;211&gt; DNA  &lt;2113 Home sapiens  &lt;400 1056 tgtaggcgcc aaggtggtat  20  &lt;210&gt; DNA  &lt;2113 Home sapiens  &lt;400 1056 tgtaggcgcc aaggtggtat  20  &lt;210&gt; DNA  &lt;2113 Home sapiens  &lt;400 1056 tgtaggcgcc aaggtggtat  21  &lt;210&gt; 1057 &lt;211&gt; 21  &lt;212&gt; DNA  &lt;2123 Home sapiens  &lt;400&gt; 1057 gttgccacag aaggaggtt t  21  &lt;210&gt; 1058  &lt;211&gt; 22  &lt;212&gt; DNA  &lt;213&gt; Home sapiens  &lt;400 1058  &lt;211&gt; 22  &lt;212&gt; DNA  &lt;213&gt; Home sapiens  &lt;400 1058  &lt;213&gt; Home sapiens  &lt;400 1058  &lt;211&gt; 22  &lt;212&gt; DNA  &lt;213&gt; Home sapiens  &lt;400 1058  &lt;213</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ccatggaagg gtccaatgag    | 20                |
| <pre>&lt;212</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                   |
| <pre>&lt;213&gt; Homo sapiens &lt;400&gt; 1054 gcctgctcct cttggatgg  19  &lt;2210    1055 &lt;2211    20 &lt;2212    DNA &lt;213    Homo sapiens  &lt;400    1056 &lt;2211    20  &lt;210    1056 &lt;2211    20 &lt;211    20  &lt;211    20  &lt;211    20  &lt;212    NDA &lt;213    Homo sapiens  &lt;400    1056 &lt;211    20 &lt;212    DNA &lt;213    Homo sapiens &lt;400    1056 tgtaggcgcc aaggtggtat  20  &lt;210    1057 &lt;211    21 &lt;212    DNA &lt;213    Homo sapiens &lt;400    1057 &lt;211    21 &lt;212    DNA &lt;213    Homo sapiens &lt;400    1057 &lt;211    21 &lt;212    DNA &lt;213    Homo sapiens &lt;400    1057 &lt;215    Homo sapiens &lt;400    1057 &lt;215    Homo sapiens &lt;400    1057 &lt;215    Homo sapiens &lt;400    1058 &lt;211    22 &lt;212    DNA &lt;213    Homo sapiens &lt;400    1058 &lt;2213    Homo sapiens &lt;400    1058 &lt;221    DNA &lt;2213    Homo sapiens &lt;400    1058 &lt;221    DNA &lt;2213    Homo sapiens &lt;400    1058 &lt;222 &lt;222 &lt;222    DNA &lt;223    Homo sapiens &lt;400    1058 &lt;222 &lt;222 &lt;223    DNA &lt;223    Homo sapiens &lt;400    1058 &lt;222 &lt;222 &lt;223    DNA &lt;223    Homo sapiens &lt;400    1058 &lt;222 &lt;222 &lt;223    DNA &lt;223    Homo sapiens &lt;400    1058 &lt;222 &lt;222 &lt;223    DNA &lt;223    Homo sapiens &lt;400    1058 &lt;222 &lt;222 &lt;223    DNA &lt;223    Homo sapiens &lt;400    1058 &lt;220    Homo sapiens &lt;400    1058 &lt;220    Homo sapiens &lt;400    1058 &lt;220    Homo sapiens &lt;400    1058 &lt;220    Homo sapiens &lt;400    1058 &lt;220    Homo sapiens &lt;400    Homo sapiens &lt;400    1058 &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo sapiens &lt;400    Homo s</pre>                                                                                                                                                                                                                                                                         |                          |                   |
| <pre>&lt;400&gt; 1054 gcctgctcct cttggatgg  </pre> <pre> &lt;210&gt; 1055 &lt;2211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Home sapiens  &lt;400&gt; 1055 aaatagggga cctgcccagt  </pre> <pre> &lt;210&gt; 1056 &lt;2211&gt; 20 &lt;212&gt; DNA &lt;2213 Home sapiens &lt;400&gt; 1055 tgtagggac ctgccagt  </pre> <pre> &lt;210&gt; 1056 tgtagggac aaggtggtat  </pre> <pre> &lt;210&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;2213 Home sapiens &lt;400&gt; 1057 tgtaggcgcc aaggtggtat  </pre> <pre> &lt;210&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;2213 Home sapiens &lt;400&gt; 1057 gttgccacag aaggaggtt t  </pre> <pre> &lt;210 1058 &lt;2210&gt; DNA &lt;2213 Home sapiens &lt;400&gt; 1058 &lt;2211&gt; 22 &lt;2212&gt; DNA &lt;2213 Home sapiens &lt;400&gt; 1058 &lt;2213 Home sapiens &lt;400&gt; 1058 &lt;2210 DNA &lt;2213 Home sapiens &lt;400&gt; 1058 &lt;2210 DNA &lt;2213 Home sapiens &lt;400&gt; 1058 &lt;2210 DNA &lt;2213 Home sapiens &lt;400&gt; 1058 &lt;2210 DNA &lt;2213 Home sapiens &lt;400&gt; 1058 &lt;2210 DNA &lt;2213 Home sapiens &lt;400&gt; 1058 &lt;222 &lt;222 &lt;222 &lt;223 DNA &lt;223 DNA &lt;224 DNA &lt;225 DNA &lt;226 DNA &lt;227 DNA &lt;227 DNA &lt;228 DNA &lt;228 DNA &lt;228 DNA &lt;229 DNA &lt;220 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;222 DNA &lt;223 DNA &lt;224 DNA &lt;225 DNA &lt;226 DNA &lt;227 DNA &lt;227 DNA &lt;228 DNA &lt;228 DNA &lt;229 DNA &lt;220 DNA &lt;220 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;221 DNA &lt;2</pre> |                          |                   |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                   |
| <pre>&lt;210&gt; 1055 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Home sapiens &lt;400&gt; 1055 aaatagggga cctgcccagt  20 &lt;210&gt; 1056 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Home sapiens &lt;400&gt; 1056 tgtaggcgcc aaggtggtat  20 &lt;210&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213&gt; Home sapiens &lt;400&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213&gt; Home sapiens &lt;400&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213&gt; Home sapiens &lt;400&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213&gt; Home sapiens &lt;400&gt; 1057 &lt;213&gt; Home sapiens &lt;400&gt; 1057 &lt;213&gt; Home sapiens &lt;400&gt; 1058 &lt;211&gt; 22 &lt;212&gt; DNA &lt;213&gt; Home sapiens &lt;400&gt; 1058 &lt;213  Home sapiens &lt;400&gt; 1058 &lt;213  Home sapiens &lt;400&gt; 1058 &lt;213  Home sapiens &lt;400&gt; 1058 &lt;213  Home sapiens &lt;400&gt; 1058 &lt;222 &lt;212&gt; DNA &lt;213&gt; Home sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400&gt; 1058 capter Sapiens &lt;400 capter Sapiens &lt;400 capter Sapiens &lt;400 capter Sapiens &lt;400 capter S</pre>                                                                      |                          |                   |
| <pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1055 asatagggga cctgcccagt</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gcctgctcct cttggatgg     | 19                |
| <pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1055 asatagggga cctgcccagt  20 &lt;210&gt; 1056 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1056 tgtaggcgcc aaggtggtat  20 &lt;210&gt; 1057 &lt;211&gt; 21 &lt;210&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1057 gttgccacag aaggaggtt t  21 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <210> 1055               |                   |
| <pre>&lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1055 aaataggga cctgcccagt 20 &lt;210&gt; 1056 &lt;2211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1056 tgtaggcgc aaggtggtat 20 &lt;210&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213+ Homo sapiens &lt;400&gt; 1057 tgtagcacag aaggtggtat 21 &lt;210&gt; DNA &lt;211&gt; 21 &lt;212&gt; DNA &lt;213+ Homo sapiens &lt;400&gt; 1057 tgtagcacag aaggaggtt 21 &lt;212&gt; DNA &lt;213+ Homo sapiens &lt;400&gt; 1057 tgtgccacag aaggaggtt 21 &lt;210&gt; 1058 tgtgccacag aaggaggtt 32 &lt;210&gt; DNA &lt;211&gt; 22 &lt;212&gt; DNA &lt;213+ Homo sapiens &lt;400+ 1058 tccattcacc gtcaagactg aa</pre> <22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                   |
| <pre>&lt;213&gt; Homo sapiens &lt;400&gt; 1055 aaatagggga cctgcccagt  20 &lt;210&gt; 1056 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1056 tgtaggcgcc aaggtggtat  20 &lt;210&gt; 1057 &lt;211&gt; 21 &lt;210&gt; DNA &lt;211&gt; Homo sapiens &lt;400 1057 gttgccacag aaggaggtt t  21 &lt;210&gt; 1057 &lt;211&gt; 21 &lt;211&gt; Homo sapiens &lt;400&gt; 1057 gttgccacag aaggaggtt t  21 &lt;210&gt; 1058 &lt;211&gt; 22 &lt;211&gt; 23 &lt;211&gt; 1058 &lt;211&gt; 1058 &lt;220</pre> <400> 1058 <220 cattagagagagagagagagagagagagagagagagagag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                   |
| <pre>&lt;400&gt; 1055 aaatagggga cctgcccagt  &lt;2210&gt; 1056 &lt;2211&gt; 20 &lt;212&gt; DNA &lt;2213&gt; Homo sapiens &lt;400&gt; 1056 tgtaggggc aaggtggtat  &lt;2210&gt; 1057 &lt;2211&gt; 21 &lt;212&gt; DNA &lt;2213&gt; Homo sapiens &lt;400&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1057 gttgccacag aaggaggtt t  21 </pre> <pre>&lt;210&gt; 1058 &lt;2211&gt; 22 &lt;212&gt; DNA &lt;2213&gt; Homo sapiens &lt;400&gt; 1058 &lt;2213 Homo sapiens &lt;400&gt; 1058 &lt;2213 Homo sapiens &lt;400&gt; 1058 &lt;2213 Homo sapiens &lt;400&gt; 1058 &lt;2215 Homo sapiens &lt;400&gt; 1058 &lt;222 &lt;222 DNA &lt;2213 Homo sapiens &lt;400&gt; 1058 &lt;220 &lt;220 &lt;220 &lt;220 &lt;220 &lt;220 &lt;220 &lt;22</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |
| 20   210   1056   221   20   212   213   214   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   215   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216   216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                        |                   |
| <pre> &lt;210&gt; 1056 &lt;211&gt; 20</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   |
| <pre> &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Home sapiens  &lt;400&gt; 1056 tgtaggcgcc aaggtggtat  20   &lt;210- 1057 &lt;211- 21 &lt;212- DNA &lt;213- Home sapiens  &lt;400&gt; 1057 gttgccacag aaggaggt t  &lt;210- 1058 &lt;211- 22 &lt;212- DNA &lt;213- Home sapiens  &lt;400- 1058 &lt;211- 22 &lt;212- DNA &lt;213- Home sapiens  &lt;210- 1058 &lt;211- 22 &lt;212- DNA &lt;213- Home sapiens &lt;210- 1058 &lt;211- 22 &lt;212- DNA &lt;213- Home sapiens &lt;210- 1058 &lt;211- 22 &lt;212- DNA &lt;213- Home sapiens &lt;400- 1058 &lt;400- 1058 tccattcacc gtcaagactg aa </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | aaatagggga cctgcccagt    | 20                |
| <pre>&lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1056 tgtaggcgcc aaggtggtat  20  &lt;210&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1057 tgtgccacag aaggaggtt</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                   |
| <213> Homo sapiens  <400> 1056 tgtaggcgcc aaggtggtat 20  <210> 1057 <211> 21 <212> DNA <213> Homo sapiens  <400> 1057 gttgccacag aaggaggtt t 21  <210> 1058 <211> 22 <212> DNA <213> Homo sapiens  <400> 1058 <211> 22 <212> DNA <213> Homo sapiens 21  <210> 1058 <221> 22 <212> DNA <213> Homo sapiens 22 <212> DNA <213> Homo sapiens 32 <213> Homo sapiens 32 <210> DNA <211> 1058 <221> 1058 <221> 22 <212> DNA <213> Homo sapiens 32 <22 <212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                   |
| <pre>&lt;400&gt; 1056 tgtaggcgcc aaggtggtat  &lt;2210&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1057 gttgccacag aaggaggtt t  21  &lt;210&gt; 1058 &lt;211&gt; 22 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1058 &lt;211&gt; 22 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;210&gt; 22 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;2210</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                   |
| <pre> &lt;210&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213+ Bemo sapiens &lt;400&gt; 1057 gttgccacag aaggaggtt t 21 </pre> <pre> &lt;210&gt; 1058 &lt;211&gt; 22 &lt;212&gt; DNA &lt;213+ Homo sapiens &lt;220&gt; 22 &lt;212&gt; DNA &lt;213+ Homo sapiens &lt;220</pre> <pre> &lt;220&gt; 1058 &lt;2213</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <213> Homo sapiens       |                   |
| <pre> &lt;210&gt; 1057 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1057  &lt;210&gt; 1058 &lt;211&gt; 22 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;210&gt; 1058 &lt;211&gt; 22 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1058 &lt;221&gt; 22 &lt;222 DNA &lt;213 Homo sapiens &lt;400&gt; 1058 &lt;220</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400> 1056               |                   |
| <pre>&lt;211&gt; 21 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1057 gttgccacag aaggagggtt t</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tgtaggcgcc aaggtggtat    | 20                |
| <pre>&lt;212&gt; DNA &lt;213&gt; Bomo sapiens &lt;400&gt; 1057 gttgccacag aaggagggtt t</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                   |
| <213> Homo sapiens  <400> 1057 gttgccacag aaggagggtt t 21  <210> 1058 <221> 22 <212> DNA <213> Homo sapiens  <400> 1058 tccattcacc gtcaagactg aa 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                   |
| <pre>&lt;400&gt; 1057 gttgccacag aaggaggtt t 21  &lt;210&gt; 1058 &lt;211&gt; 22 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1058 tccattcacc gtcaagactg aa 22</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                   |
| 21   22   22   212   23   24   24   24   24   25   25   25   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <213> Homo sapiens       |                   |
| <pre>&lt;210&gt; 1058 &lt;211&gt; 22 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 1058 tccattcacc gtcaagactg aa 22</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <400> 1057               |                   |
| <211> 22 <212> DNA <213+ Homo sapiens <400> 1058 tccattcacc gtcaagactg aa 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gttgccacag aaggagggtt t  | 21                |
| <211> 22 <212> DNA <213+ Homo sapiens <400> 1058 tccattcacc gtcaagactg aa 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -210- 1050               |                   |
| <212> DNA <213> Homo sapiens <400> 1058 tccattcacc gtcaagactg aa 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                   |
| <213> Homo sapiens  <400> 1058 tccattcacc gtcaagactg aa 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                   |
| <400> 1058<br>tccattcacc gtcaagactg aa 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                   |
| tocattcacc gtcaagactg aa 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                   |
| <210> 1059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tocattoacc gtcaagactg aa | 22                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <210> 1059               |                   |

<211> 22 <212> DNA <213> Homo sapiens <400> 1059 22 tattcccatt cttctgccat gc <210> 1060 <211> 20 <212> DNA <213> Homo sapiens <400> 1060 20 ggtgaagagg tggagggtga <210> 1061 <211> 20 <212> DNA <213> Homo sapiens <400> 1061 ggtgtctggt ttgggtccag 20 <210> 1062 <211> 20 <212> DNA <213> Homo sapiens <400> 1062 aacaggcgac ctttcagcag 20 <210> 1063 <211> 20 <212> DNA <213> Homo sapiens <400> 1063 aggcatgaag gatgccaaga 20 <210> 1064 <211> 20 <212> DNA <213> Homo sapiens <400> 1064 ccaggacete etgettagee 20 <210> 1065 <211> 20 <212> DNA <213> Homo sapiens <400> 1065 20 cacaggggag aagccatacg

PCT/US2003/012946

WO 2004/042346

| <210><br><211><br><212> |                         |    |
|-------------------------|-------------------------|----|
| <213>                   | Homo sapiens            |    |
| <400><br>tcatga         | 1066<br>ggct gtgctggaag | 20 |
| <210>                   | 1067                    |    |
| <211>                   |                         |    |
| <212>                   |                         |    |
|                         | Homo sapiens            |    |
| <400>                   | 1067                    |    |
|                         | stotg tgaattgoot gt     | 22 |
|                         |                         |    |
| <210>                   | 1068                    |    |
| <211>                   |                         |    |
| <212>                   |                         |    |
| <213>                   | Homo sapiens            |    |
| <400>                   | 1068                    |    |
| ggctcc                  | aatg gtttccacaa         | 20 |
|                         |                         |    |
| <210>                   |                         |    |
| <211>                   |                         |    |
| <212>                   |                         |    |
| <213>                   | Homo sapiens            |    |
| <400>                   | 1069                    |    |
| ggtcca                  | tgtc tttggggatg         | 20 |
|                         |                         |    |
| <210>                   |                         |    |
| <211>                   |                         |    |
| <212>                   |                         |    |
| <213>                   | Homo sapiens            |    |
| <400>                   |                         |    |
| gactgt                  | ggag ttttggctgt ttta    | 24 |
|                         |                         |    |
| <210>                   |                         |    |
| <211><br><212>          |                         |    |
|                         | Homo sapiens            |    |
|                         |                         |    |
| <400>                   |                         |    |
| catta                   | cage gggggcttag         | 20 |
|                         |                         |    |
| <210><br><211>          |                         |    |
| <211>                   |                         |    |
|                         | Homo sapiens            |    |
|                         |                         |    |
| <400>                   | 1072                    |    |

| WO 2004/042346                                            | PCT/US2003/012946 | 5 |
|-----------------------------------------------------------|-------------------|---|
| ttggcctctt tcagcctctt t                                   | 21                |   |
| <210> 1073<br><211> 19<br><212> DNA<br><213> Homo sapiens |                   |   |
| <400> 1073<br>cctgcagtgg gccctagtc                        | 19                |   |
| <210> 1074<br><211> 20<br><212> DNA<br><213> Homo sapiens |                   |   |
| <400> 1074<br>gagcacatcc ccaaaatcca                       | 20                |   |
| <210> 1075<br><211> 20<br><212> DNA<br><213> Homo sapiens |                   |   |
| <400> 1075<br>gatcagctgc ttgtgcctgt                       | 20                |   |
| <210> 1076<br><211> 20<br><212> DNA<br><213> Homo sapiens |                   |   |
| <400> 1076 cagccacagt cttccccaat                          | 20                |   |
| <210> 1077<br><211> 20<br><212> DNA<br><213> Homo sapiens |                   |   |
| <400> 1077<br>aaccttcatg caccccattc                       | 20                |   |
| <210> 1078<br><211> 20<br><212> DNA<br><213> Homo sapiens |                   |   |
| <400> 1078<br>agtgcatgtt tgggacagca                       | 20                |   |
| <210> 1079<br><211> 20<br><212> DNA<br><213> Homo sapiens |                   |   |

|                | 1079<br>gtgct cttggtctgc | 20 |
|----------------|--------------------------|----|
| <210><br><211> | 23                       |    |
| <212><br><213> | DNA<br>Homo sapiens      |    |
| <400>          |                          |    |
| agttc          | aaccc aaatgatcag gaa     | 23 |
| <210><br><211> | 1081                     |    |
| <212>          |                          |    |
|                | Homo sapiens             |    |
| <400>          | 1081<br>ggagc ctgaagttct |    |
| J              | 22-31 205443 6666        | 20 |
| <210>          |                          |    |
| <211>          |                          |    |
| <212>          |                          |    |
| <213>          | Homo sapiens             |    |
| <400>          | 1082                     |    |
| accaaa         | latga gaacctcaac agc     | 23 |
| <210>          |                          |    |
| <211>          |                          |    |
| <212>          |                          |    |
| <213>          | Homo sapiens             |    |
| <400>          |                          |    |
| aattto         | tgga aaagtcaaca ggataca  | 27 |
| <210>          | 1084                     |    |
| <211>          |                          |    |
| <212>          | DNA                      |    |
| <213>          | Homo sapiens             |    |
| <400>          | 1084                     |    |
| ttgatg         | atgt ctctcactct gttcc    | 25 |
| <210>          | 1085                     |    |
| <211>          |                          |    |
| <212>          | DNA                      |    |
| <213>          | Homo sapiens             |    |
| <400>          | 1085                     |    |
| ttgagt         | ggct gggactccat          | 20 |
| <210>          | 1006                     |    |
| <210>          | 1086<br>20               |    |

WO 2004/042346 PCT/US2003/012946 <212> DNA <213> Homo sapiens <400> 1086 20 ccqqccacat tcactgattt <210> 1087 <211> 20 <212> DNA <213> Homo sapiens <400> 1087 aagcggtcga tggtcttctg 20 <210> 1088 <211> 24 <212> DNA <213> Homo sapiens <400> 1088 gatggaaacc agagacaaaa acga 24 <210> 1089 <211> 20 <212> DNA <213> Homo sapiens <400> 1089 gagaattccg gaacctgtgg 20 <210> 1090 <211> 20 <212> DNA <213> Homo sapiens <400> 1090 20 cccaacttcc tgacggttca <210> 1091 <211> 21 <212> DNA <213> Homo sapiens <400> 1091 ggtgctgaaa tcaacccact c 21 <210> 1092 <211> 28 <212> DNA <213> Homo sapiens <400> 1092

agaattgatt taggaaagtc acaaacct

WO 2004/042346 PCT/US2003/012946 <210> 1093 <211> 20 <212> DNA <213> Homo sapiens <400> 1093 tgcagtgttc ctcccttcct 20 <210> 1094 <211> 20 <212> DNA <213> Homo sapiens <400> 1094 gcccagtgga caggtttctg 20 <210> 1095 <211> 25 <212> DNA <213> Homo sapiens <400> 1095 cctgatatgt tttaagtggg aagca 25 <210> 1096 <211> 25 <212> DNA <213> Homo sapiens <400> 1096 tgatcacatg aagtcacatt qqttt 25 <210> 1097 <211> 19 <212> DNA <213> Homo sapiens <400> 1097 agatgatece egeacatga 19 <210> 1098 <211> 20 <212> DNA <213> Homo sapiens <400> 1098 ctgcctggga cctcattcat 20 <210> 1099 <211> 23 <212> DNA <213> Homo sapiens <400> 1099 ccatgtattt gcaacagcag aga 23

| <210>  | 1100                |            |
|--------|---------------------|------------|
| <211>  |                     |            |
| <212>  |                     |            |
|        |                     |            |
| <213>  | Homo sapiens        |            |
|        |                     |            |
| <400>  |                     |            |
| gccaaa | cctg caaacaaca      | 20         |
|        |                     |            |
|        |                     |            |
| <210>  | 1101                |            |
| <211>  |                     |            |
| <212>  |                     |            |
|        |                     |            |
| <213>  | Homo sapiens        |            |
|        |                     |            |
| <400>  |                     |            |
| gggacc | gctt tcttacctgt t   | 21         |
|        |                     |            |
|        |                     |            |
| <210>  | 1102                |            |
| <211>  | 23                  |            |
| <212>  | DNA                 |            |
|        | Homo sapiens        |            |
|        | nome cop-           |            |
| <400>  | 1102                |            |
|        |                     | 2          |
| cagica | ttgg tgtctttgga gtg | ,          |
|        |                     |            |
|        |                     |            |
| <210>  |                     |            |
| <211>  | 20                  |            |
| <212>  | DNA                 |            |
| <213>  | Homo sapiens        |            |
|        |                     |            |
| <400>  | 1103                |            |
|        | cacc ggacagcact     | 20         |
| gucco  | cace ggaeageace     | <u>-</u> - |
|        |                     |            |
|        |                     |            |
| <210>  |                     |            |
| <211>  |                     |            |
| <212>  |                     |            |
| <213>  | Homo sapiens        |            |
|        |                     |            |
| <400>  | 1104                |            |
| cacata | catt ttcagatatt tct | accttcc 3  |
|        | -                   |            |
|        |                     |            |
| <210>  | 1105                |            |
| <211>  |                     |            |
| <211>  |                     |            |
|        |                     |            |
| <213>  | Homo sapiens        |            |
|        |                     |            |
| <400>  |                     |            |
| gttcat | tctg ccccatcagc     | 20         |
|        |                     |            |
|        |                     |            |
| <210>  | 1106                |            |
| <211>  |                     |            |
| <212>  |                     |            |
|        |                     |            |
|        | Homo sapiens        |            |

| W      | O 2004/042346    | PCT/US | 2003/012946 |
|--------|------------------|--------|-------------|
| <400>  | 1106             |        |             |
|        | ggtct gatcatcttc | ttga   | 24          |
|        |                  |        |             |
| <210>  | 1107             |        |             |
| <211>  | 23               |        |             |
| <212>  |                  |        |             |
| <213>  | Homo sapiens     |        |             |
| <400>  | 1107             |        |             |
| gcttt  | caaga atgaagtggt | tgg    | 23          |
|        |                  |        |             |
| <210>  | 1108             |        |             |
| <211>  | 24               |        |             |
| <212>  |                  |        |             |
| <213>  | Homo sapiens     |        |             |
| <400>  | 1108             |        |             |
| gtcaa  | caata tttggaagca | ccag   | 24          |
|        |                  |        |             |
| <210>  | 1109             |        |             |
| <211>  |                  |        |             |
| <212>  | DNA              |        |             |
| <213>  | Homo sapiens     |        |             |
| <400>  | 1109             |        |             |
| tttag  | gcaaa ggggagcaca |        | 20          |
|        |                  |        |             |
| <210>  | 1110             |        |             |
| <211>  |                  |        |             |
| <212>  | DNA              |        |             |
| <213>  | Homo sapiens     |        |             |
| <400>  | 1110             |        |             |
|        | gaag ccctcagaga  |        | 20          |
|        |                  |        |             |
| <210>  | 1111             |        |             |
| <211>  |                  |        |             |
| <212>  |                  |        |             |
| <213>  | Homo sapiens     |        |             |
| <400>  | 1111             |        |             |
| gggcad | aaat gcaaagtaag  | c      | 21          |
|        |                  |        |             |
| <210>  | 1112             |        |             |
| <211>  | 18               |        |             |
| <212>  |                  |        |             |
| <213>  | Homo sapiens     |        |             |
| <400>  | 1112             |        |             |
|        | ctgt ggcttcat    |        | 18          |
|        |                  |        |             |
| <210>  | 1113             |        |             |
| <211>  | 21               |        |             |
| <212>  |                  |        |             |
|        |                  |        |             |

| WO 2004/042346         |      | PCT/US2003/012946 |
|------------------------|------|-------------------|
| <213> Homo sapiens     |      |                   |
| <400> 1113             |      |                   |
| caggtggatt cgtggtgcta  | a    | 21                |
| <210> 1114             |      |                   |
| <211> 21               |      |                   |
| <212> DNA              |      |                   |
| <213> Homo sapiens     |      |                   |
| <400> 1114             |      |                   |
| gttttggggt gttgagggag  | t    | 21                |
|                        |      |                   |
| <210> 1115             |      |                   |
| <211> 24               |      |                   |
| <212> DNA              |      |                   |
| <213> Homo sapiens     |      |                   |
| <400> 1115             |      |                   |
| ttcacagtgt gtggtcaaca  | tttc | 24                |
|                        |      |                   |
| <210> 1116             |      |                   |
| <211> 20               |      |                   |
| <212> DNA              |      |                   |
| <213> Homo sapiens     |      |                   |
|                        |      |                   |
| <400> 1116             |      |                   |
| ccctctcatc tagcccacca  |      | 20                |
|                        |      |                   |
| <210> 1117<br><211> 20 |      |                   |
| <211> 20<br><212> DNA  |      |                   |
| <213> Homo sapiens     |      |                   |
| 12137 Homo Baptemb     |      |                   |
| <400> 1117             |      |                   |
| cacagaggag gctgcagatg  |      | 20                |
|                        |      |                   |
| <210> 1118             |      |                   |
| <211> 22               |      |                   |
| <212> DNA              |      |                   |
| <213> Homo sapiens     |      |                   |
| <400> 1118             |      |                   |
| tgattggaag ccacaaattt  | ca   | 22                |
|                        |      |                   |
| <210> 1119             |      |                   |
| <211> 20               |      |                   |
| <212> DNA              |      |                   |
| <213> Homo sapiens     |      |                   |
| <400> 1119             |      |                   |
| gggagactgc teccatetca  |      | 20                |
|                        |      |                   |
|                        |      |                   |
| <210> 1120             |      |                   |

| <211><br><212><br><213> | 20<br>DNA<br>Homo sapiens |    |
|-------------------------|---------------------------|----|
| <400>                   | 1120<br>caga cgtggagcag   | 20 |
| cgacco                  | caga cgcggagcag           | 20 |
| <210><br><211>          | 20                        |    |
| <212><br><213>          | DNA<br>Homo sapiens       |    |
|                         | 1121<br>tgga gctcaatctt   | 20 |
|                         | 1122<br>27                |    |
| <212>                   |                           |    |
| <213>                   | Homo sapiens              |    |
|                         | 1122                      |    |
| ctgttg                  | atct gtttcttgaa ctttcct   | 27 |
| <210><br><211>          |                           |    |
| <212>                   | DNA                       |    |
| <213>                   | Homo sapiens              |    |
|                         | 1123                      |    |
| taaaac                  | ccac agtgcttgac aca       | 23 |
| <210>                   | 1124                      |    |
| <211>                   | 20                        |    |
| <212>                   |                           |    |
|                         | Homo sapiens              |    |
| <400>                   | 1124<br>1gggg tagagccact  | 20 |
| ggagca                  | gggg tagagctact           | 20 |
| <210>                   |                           |    |
| <211>                   |                           |    |
| <212>                   |                           |    |
|                         | Homo sapiens              |    |
| <400>                   | 1125                      |    |
| ggccag                  | gaatt teetteteea e        | 21 |
| <210>                   | 1126                      |    |
|                         | 19<br>DVA                 |    |
|                         | DNA<br>Homo sapiens       |    |
| <400>                   | 1126                      |    |
|                         | tiggg caggcatga           | 19 |
|                         |                           |    |

| <210>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <211>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |    |
| <212>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |    |
| <213>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Homo sapiens                                                                                                                                                   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |    |
| <400>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1127                                                                                                                                                           |    |
| gagaca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ccc agcccctagt                                                                                                                                                 | 20 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |    |
| <210>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1128                                                                                                                                                           |    |
| <211>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |    |
| <212>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Homo sapiens                                                                                                                                                   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E .                                                                                                                                                            |    |
| <400>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1128                                                                                                                                                           |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ctqc cacagctcct                                                                                                                                                | 20 |
| 500500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |    |
| <210>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1129                                                                                                                                                           |    |
| <211>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |    |
| <212>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Homo sapiens                                                                                                                                                   |    |
| (213)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nomo saprens                                                                                                                                                   |    |
| <400>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1129                                                                                                                                                           |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                | 20 |
| etgtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tcaa ggggccagtg                                                                                                                                                | 20 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |    |
| <210>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1120                                                                                                                                                           |    |
| <211>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |    |
| <212>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |    |
| <213>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Homo sapiens                                                                                                                                                   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |    |
| <400>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1130                                                                                                                                                           |    |
| <400>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                | 29 |
| <400>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1130                                                                                                                                                           | 29 |
| <400><br>aattaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1130<br>Letg gacagtttca tetgaagag                                                                                                                              | 29 |
| <400><br>aattaa<br><210>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1130<br>totg gacagtttca totgaagag<br>1131                                                                                                                      | 29 |
| <400><br>aattaa<br><210><br><211>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1130<br>bctg gacagtttca tctgaagag<br>1131<br>20                                                                                                                | 29 |
| <400> aattaa <210> <211> <212>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1130<br>totg gacagtttca totgaagag<br>1131<br>20<br>DNA                                                                                                         | 29 |
| <400> aattaa <210> <211> <212>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1130<br>bctg gacagtttca tctgaagag<br>1131<br>20                                                                                                                | 29 |
| <400> aattaa  <210> <211> <212> <213>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1130  Letg gacagtttca tetgaagag  1131 20  DNA  Homo sapiens                                                                                                    | 29 |
| <400> aattaa  <210> <211> <212> <213> <400>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1130 tctg gacagtttca tctgaagag  1131 20 DNA Homo sapiens                                                                                                       |    |
| <400> aattaa  <210> <211> <212> <213> <400>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1130  Letg gacagtttca tetgaagag  1131 20  DNA  Homo sapiens                                                                                                    | 29 |
| <400> aattaa  <210> <211> <212> <213> <400>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1130 tctg gacagtttca tctgaagag  1131 20 DNA Homo sapiens                                                                                                       |    |
| <400> aattaa  <210> <211> <212> <213> <400> ctctgg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1130 tctg gacagtttca tctgaagag  1131 20 DNA Homo sapiens 1131 1131 1131 1131 1131 1131                                                                         |    |
| <400> aattaa  <210> <211> <212> <213> <400> ctctgg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1130 cctg gacagtttca tctgaagag  1131 20 DNA Homo sapiens 1131 ccaa ctgcctgttt                                                                                  |    |
| <400> aattaa  <210> <211> <212> <213>  <400> ctctgg  <210> <211>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1130 tctg gacagtttca tctgaagag  1131 20 DNA Homo sapiens 1131 tcaa ctgcctgttt                                                                                  |    |
| <400> aattaa  <210> <211> <212> <213> <400> ctctgg  <210> <210> <211> <210> <211>                                                                                                                                                                                                                                                                                                                                                                                                                              | 1130 tetg gacagtttca tetgaagag  1131 20 DNA Homo sapiens 1131 ccaa etgeetgttt  1132 20 DNA                                                                     |    |
| <400> aattaa  <210> <211> <212> <213> <400> ctctgg  <210> <210> <211> <210> <211>                                                                                                                                                                                                                                                                                                                                                                                                                              | 1130 tctg gacagtttca tctgaagag  1131 20 DNA Homo sapiens 1131 tcaa ctgcctgttt                                                                                  |    |
| <400> aattaa  <210> <211> <212> <213>  <400> ctctgg  <210> <211> <2212 <213>                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1130 tctg gacagtttca tctgaagag  1131 20 DNA Homo sapiens  1131 tccaa ctgcctgttt  1132 20 DNA Homo sapiens                                                      |    |
| <400> aattaa  <210> <211> <212> <213>  <400> ctctgg  <210> <211> <212> <213> <400>                                                                                                                                                                                                                                                                                                                                                                                                                             | 1130 tctg gacagtttca tctgaagag  1131 20 DNA Homo sapiens  1131 ccaa ctgcctgttt  1132 20 DNA Homo sapiens  1131 1132 1132 1133                                  | 20 |
| <400> aattaa  <210> <211> <212> <213>  <400> ctctgg  <210> <211> <212> <213> <400>                                                                                                                                                                                                                                                                                                                                                                                                                             | 1130 tctg gacagtttca tctgaagag  1131 20 DNA Homo sapiens  1131 tccaa ctgcctgttt  1132 20 DNA Homo sapiens                                                      |    |
| <400> aattaa  <210> <211> <212> <213>  <400> ctctgg  <210> <211> <212> <213> <400>                                                                                                                                                                                                                                                                                                                                                                                                                             | 1130 tctg gacagtttca tctgaagag  1131 20 DNA Homo sapiens  1131 ccaa ctgcctgttt  1132 20 DNA Homo sapiens  1131 1132 1132 1133                                  | 20 |
| <400> aattaa  <210> <211> <212> <213>  <400> ctctgg  <210> <211> <212> <213> <400>                                                                                                                                                                                                                                                                                                                                                                                                                             | 1130 tctg gacagtttca tctgaagag  1131 20 DNA Homo sapiens  1131 ccaa ctgcctgttt  1132 20 DNA Homo sapiens  1131 1132 1132 1133                                  | 20 |
| <400> aattaa  <210> <211> <212> <213>  <400> ctctgg  <210> <211> <212> <213> <400>                                                                                                                                                                                                                                                                                                                                                                                                                             | 1130 totg gacagtttca totgaagag  1131 20 DNA Homo sapiens  1131 ccaa ctgcctgttt  1132 20 DNA Homo sapiens  1132 20 CONA Homo sapiens  1132 20 CONA Homo sapiens | 20 |
| <400> aattaa  <210> <211> <212> <212> <213>  <400> ctctgg  <210> <211> <211> <211> <211> <212> <213>                                                                                                                                                                                                                                                                                                                                                                                                           | 1130 tctg gacagtttca tctgaagag  1131 20 DNA Homo sapiens  1131 tcaa ctgcctgttt  1132 20 DNA Homo sapiens  1132 coag tctcgaaaag                                 | 20 |
| <pre>&lt;400&gt; aattaa  &lt;210&gt; &lt;211&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400&gt; ctctgg  &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;211&gt; &lt;210&gt; &lt;210&gt; &lt;211&gt; &lt;211&gt; &lt;211&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt; &lt;213&gt;</pre> | 1130 tctg gacagtttca tctgaagag  1131 20 DNA Homo sapiens  1131 ccaa ctgcctgttt  1132 20 DNA Homo sapiens  1132 20 Example 1132 20 Example 1133 20  1133 20     | 20 |
| <400> aattaa  <210> <211> <212> <213> <400> ctctgg  <210> <211> <212> <211> <212> <211> <212> <213>                                                                                                                                                                                                                                                                                                                                                                                                            | 1130 tetg gacagtttca tetgaagag  1131 20 DNA Homo sapiens  1132 20 DNA Homo sapiens  1132 2ccag tetegaaaag  1133 20 DNA                                         | 20 |
| <400> aattaa  <210> <211> <212> <213> <400> ctctgg  <210> <211> <212> <211> <212> <211> <212> <213>                                                                                                                                                                                                                                                                                                                                                                                                            | 1130 tctg gacagtttca tctgaagag  1131 20 DNA Homo sapiens  1131 ccaa ctgcctgttt  1132 20 DNA Homo sapiens  1132 20 Example 1132 20 Example 1133 20  1133 20     | 20 |

| WO 2004/042346                                            |       | PCT/US2003/012946 |
|-----------------------------------------------------------|-------|-------------------|
| gcttggccca taagtgtgct                                     |       | 20                |
| <210> 1134<br><211> 20<br><212> DNA<br><213> Homo sapiens |       |                   |
| <400> 1134<br>agccccttca atcccatcat                       |       | 20                |
| <210> 1135<br><211> 20<br><212> DNA<br><213> Homo sapiens |       |                   |
| <400> 1135<br>tcctcaaacc cgtggatcat                       |       | 20                |
| <210> 1136<br><211> 20<br><212> DNA<br><213> Homo sapiens |       |                   |
| <400> 1136<br>cggtgccttc ttaggagctg                       |       | 20                |
| <210> 1137<br><211> 25<br><212> DNA<br><213> Homo sapiens |       |                   |
| <400> 1137<br>aaaaggagga caagtctaac                       | ggaat | 25                |
| <210> 1138<br><211> 21<br><212> DNA<br><213> Homo sapiens |       |                   |
| <400> 1138<br>tgatggttat tcgctggttc                       | g     | 21                |
| <210> 1139<br><211> 21<br><212> DNA<br><213> Homo sapiens |       |                   |
| <400> 1139<br>totgocagga catotttoto                       | g     | 21                |
| <210> 1140<br><211> 25<br><212> DNA<br><213> Homo sapiens |       |                   |

| <400> 1140                  |    |
|-----------------------------|----|
|                             | 25 |
| cacatcatgc agctccttaa tacaa | 25 |
|                             |    |
|                             |    |
| <210> 1141                  |    |
| <211> 20                    |    |
| <212> DNA                   |    |
| <213> Homo sapiens          |    |
| -                           |    |
| <400> 1141                  |    |
| gctgcatcca gcctctgttt       | 20 |
| 33                          |    |
|                             |    |
| <210> 1142                  |    |
| <211> 20                    |    |
| <212> DNA                   |    |
|                             |    |
| <213> Homo sapiens          |    |
|                             |    |
| <400> 1142                  |    |
| aacagccaga atcgctggag       | 20 |
|                             |    |
|                             |    |
| <210> 1143                  |    |
| <211> 20                    |    |
| <212> DNA                   |    |
| <213> Homo sapiens          |    |
| The suppose                 |    |
| <400> 1143                  |    |
|                             | 20 |
| aggggagacc gaagtgaagg       | 20 |
|                             |    |
|                             |    |
| <210> 1144                  |    |
| <211> 17                    |    |
| <212> DNA                   |    |
| <213> Homo sapiens          |    |
|                             |    |
| <400> 1144                  |    |
| ctctggcccg ataccgg          | 17 |
|                             |    |
|                             |    |
| <210> 1145                  |    |
|                             |    |
| <211> 20                    |    |
| <212> DNA                   |    |
| <213> Homo sapiens          |    |
|                             |    |
| <400> 1145                  |    |
| ctgcaaacat cctcccatca       | 20 |
|                             |    |
|                             |    |
| <210> 1146                  |    |
| <211> 20                    |    |
| <212> DNA                   |    |
| <213> Homo sapiens          |    |
| (213) HOMO SUPTEMS          |    |
| .400: 1146                  |    |
| <400> 1146                  |    |
| ggccgaagaa tccctcaaaa       | 20 |
|                             |    |
|                             |    |
| <210> 1147                  |    |
| <211> 21                    |    |

WO 2004/042346 PCT/US2003/012946 <212> DNA <213> Homo sapiens <400> 1147 ttggccattg accattacct g 21 <210> 1148 <211> 21 <212> DNA <213> Homo sapiens <400> 1148 tttggggata atccgtgttc a 21 <210> 1149 <211> 20 <212> DNA <213> Homo sapiens <400> 1149 gtgtcctggg tctggtcctc 20 <210> 1150 <211> 26 <212> DNA <213> Homo sapiens <400> 1150 cttagggaat tttggaacag aacatt 26 <210> 1151 <211> 20 <212> DNA <213> Homo sapiens <400> 1151 20 geegteeect ceteteteta <210> 1152 <211> 22 <212> DNA <213> Homo sapiens <400> 1152 22 aattattgcc ttttcccctg ga <210> 1153 <211> 20 <212> DNA <213> Homo sapiens <400> 1153 ccagctacaa cggatgcaaa 20

<210> 1154 <211> 20 <212> DNA <213> Homo sapiens <400> 1154 teceggteca etgettaaaa 20 <210> 1155 <211> 20 <212> DNA <213> Homo sapiens <400> 1155 tcaggggttt cccagttgag 20 <210> 1156 <211> 20 <212> DNA <213> Homo sapiens <400> 1156 20 atcatcacgg tatggcgttg <210> 1157 <211> 19 <212> DNA <213> Homo sapiens <400> 1157 19 ccccqqattt gttcactgg <210> 1158 <211> 20 <212> DNA <213> Homo sapiens <400> 1158 20 agtggtcgtt gagggcaatg <210> 1159 <211> 19 <212> DNA <213> Homo sapiens <400> 1159 19 cagggccttt gcaaacaag <210> 1160 <211> 21 <212> DNA <213> Homo sapiens <400> 1160 ttttggaacc cttagccctg t 21

PCT/US2003/012946

WO 2004/042346

| <210>  | 1161                         |    |
|--------|------------------------------|----|
| <211>  |                              |    |
|        |                              |    |
| <212>  |                              |    |
| <213>  | Homo sapiens                 |    |
|        |                              |    |
| <400>  | 1161                         |    |
| ccatct | ctga cccgccttc               | 19 |
|        |                              |    |
|        |                              |    |
| <210>  | 1162                         |    |
| <211>  |                              |    |
| <212>  |                              |    |
|        |                              |    |
| <213>  | Homo sapiens                 |    |
|        |                              |    |
| <400>  | 1162                         |    |
| ggacca | tggt ggaggtgaaa              | 20 |
|        |                              |    |
|        |                              |    |
| <210>  | 1163                         |    |
| <211>  | 20                           |    |
| <212>  |                              |    |
|        | Homo sapiens                 |    |
| <213>  | nomo saprens                 |    |
| <400>  | 11.62                        |    |
|        |                              | 20 |
| ctgact | gctg cggcctctac              | 20 |
|        |                              |    |
|        |                              |    |
| <210>  | 1164                         |    |
| <211>  | 23                           |    |
| <212>  | DNA                          |    |
|        | Homo sapiens                 |    |
|        |                              |    |
| <400>  | 1164                         |    |
|        | aggt ttqqcataaa ttg          | 23 |
| gtttgc | aggt ttggcataaa ttg          | 23 |
|        |                              |    |
|        |                              |    |
| <210>  |                              |    |
| <211>  | 31                           |    |
| <212>  | DNA                          |    |
| <213>  | Homo sapiens                 |    |
|        | •                            |    |
| <400>  | 1165                         |    |
|        | tgac cagatacatg agtottattt t | 31 |
| accagg | can oughthoused agreecant o  |    |
|        |                              |    |
| .010   | 11.00                        |    |
| <210>  |                              |    |
| <211>  |                              |    |
| <212>  |                              |    |
| <213>  | Homo sapiens                 |    |
|        |                              |    |
| <400>  | 1166                         |    |
|        | gaga aatggctggt              | 20 |
|        |                              |    |
|        |                              |    |
| <210>  | 1167                         |    |
| <211>  |                              |    |
| <211>  |                              |    |
|        |                              |    |
|        | Homo sapiens                 |    |

| WO 2004/042346                         | PCT/US2003/012946 |
|----------------------------------------|-------------------|
| <400> 1167                             |                   |
| ttttctggag cggccatatc                  |                   |
| ************************************** | 20                |
|                                        |                   |
| <210> 1168                             |                   |
| <211> 20                               |                   |
| <212> DNA                              |                   |
| <213> Homo sapiens                     |                   |
| <400> 1168                             |                   |
| gggctgagtc ctcagacagg                  |                   |
| aggorgager recagaragg                  | 20                |
|                                        |                   |
| <210> 1169                             |                   |
| <211> 20                               |                   |
| <212> DNA                              |                   |
| <213> Homo sapiens                     |                   |
|                                        |                   |
| <400> 1169                             |                   |
| aactgaggct gccctagcaa                  | 20                |
|                                        |                   |
| <210> 1170                             |                   |
| <211> 20                               |                   |
| <212> DNA                              |                   |
| <213> Homo sapiens                     |                   |
| 12137 Homo sapiens                     |                   |
| <400> 1170                             |                   |
| ccttcctgcc ctaacagcaa                  | 20                |
| •                                      | 20                |
|                                        |                   |
| <210> 1171                             |                   |
| <211> 19                               |                   |
| <212> DNA                              |                   |
| <213> Homo sapiens                     |                   |
| <400> 1171                             |                   |
| caccgtcagt cgtgggtgt                   |                   |
| caccaccage cacagagaga                  | 19                |
|                                        |                   |
| <210> 1172                             |                   |
| <211> 22                               |                   |
| <212> DNA                              |                   |
| <213> Homo sapiens                     |                   |
| 400 4000                               |                   |
| <400> 1172                             |                   |
| cct <b>g</b> gtaggg aaaagtgatg ga      | 22                |
|                                        |                   |
| <210> 1173                             |                   |
| <211> 23                               |                   |
| <212> DNA                              |                   |
| <213> Homo sapiens                     |                   |
|                                        |                   |
| <400> 1173                             |                   |
| tggaaaacaa cacagcaaaa tcc              | 23                |
|                                        |                   |
| <210> 1174                             |                   |
| <211> 21                               |                   |
| <212> DNA                              |                   |
|                                        |                   |

| wo     | D 2004/042346             | PCT/US2003/012946 |
|--------|---------------------------|-------------------|
| <213>  | Homo sapiens              |                   |
| <400>  | 1174                      |                   |
|        | acctt tggtgccact g        | 21                |
| <210>  |                           |                   |
| <211>  |                           |                   |
| <212>  |                           |                   |
| <213>  | Homo sapiens              |                   |
| <400>  | 1175                      |                   |
| tggagg | gagag gaaaacggag a        | 21                |
| <210>  | 1176                      |                   |
| <211>  | 21                        |                   |
| <212>  |                           |                   |
| <213>  | Homo sapiens              |                   |
| <400>  | 1176                      |                   |
| aatago | cagca aggggaagac c        | 21                |
|        |                           |                   |
| <210>  |                           |                   |
| <211>  |                           |                   |
|        |                           |                   |
| <213>  | Homo sapiens              |                   |
| <400>  | 1177                      |                   |
| atctaa | aatgg teegeetgag e        | 21                |
|        |                           |                   |
| <210>  | 1178                      |                   |
| <211>  |                           |                   |
|        |                           |                   |
| <213>  | Homo sapiens              |                   |
| <400>  |                           |                   |
| gcacaa | acttg gtaaggcacc a        | 21                |
| <210>  | 1179                      |                   |
| <211>  |                           |                   |
| <212>  |                           |                   |
| <213>  | Homo sapiens              |                   |
| <400>  | 1179                      |                   |
| tgggaa | gagg aagggacaca           | 20                |
|        |                           |                   |
| <210>  | 1180                      |                   |
| <211>  | 29                        |                   |
| <212>  |                           |                   |
| <213>  | Homo sapiens              |                   |
| <400>  | 1180                      |                   |
| tgcaca | taac atatatttgc ctattgttt | 29                |
|        |                           |                   |

496

<210> 1181

| WO 2004/042346          | PCT/US2003/012946 |
|-------------------------|-------------------|
| <211> 20                |                   |
| <212> DNA               |                   |
| <213> Homo sapiens      |                   |
| <400> 1181              |                   |
| caaggggcac cagtcttgat   | 20                |
|                         |                   |
| <210> 1182<br><211> 20  |                   |
| <211> 20<br><212> DNA   |                   |
| <213> Homo sapiens      |                   |
| <400> 1182              |                   |
| tggctggaga taggctttgg   |                   |
| cyyccyyaga taggetttgg   | 20                |
| <210> 1183              |                   |
| <211> 20                |                   |
| <212> DNA               |                   |
| <213> Homo sapiens      |                   |
| <400> 1183              |                   |
| tttgtcgtgt ccgtggtttg   | 20                |
|                         | 20                |
| <210> 1184              |                   |
| <211> 20                |                   |
| <212> DNA               |                   |
| <213> Homo sapiens      |                   |
| <400> 1184              |                   |
| ttggcagttt cccctgactt   | 20                |
| •                       | 20                |
| <210> 1185              |                   |
| <211> 21                |                   |
| <212> DNA               |                   |
| <213> Homo sapiens      |                   |
| <400> 1185              |                   |
| agcagtette etgtgeteca g | 21                |
|                         |                   |
| <210> 1186              |                   |
| <211> 20<br><212> DNA   |                   |
| <213> Homo sapiens      |                   |
|                         |                   |
| <400> 1186              |                   |
| acactgctac cctgcgctct   | 20                |
| <210> 1187              |                   |
| <210> 1187<br><211> 20  |                   |
| <211> 20<br><212> DNA   |                   |
|                         |                   |
| <213> Homo sapiens      |                   |
| <400> 1187              |                   |
| gcccagtttt gggctttctc   | 20                |
|                         |                   |

| <210>  | 1100               |   |
|--------|--------------------|---|
|        |                    |   |
| <211>  |                    |   |
| <212>  |                    |   |
| <213>  | Homo sapiens       |   |
|        |                    |   |
| <400>  | 1188               |   |
|        | catt totgoagoac ac | 2 |
| cacage | care conseased as  | - |
|        |                    |   |
|        |                    |   |
| <210>  |                    |   |
| <211>  | 20                 |   |
| <212>  | DNA                |   |
| <213>  | Homo sapiens       |   |
|        | -                  |   |
| <400>  | 1189               |   |
|        |                    | 2 |
| cegegg | aact gettgacage    | - |
|        |                    |   |
|        |                    |   |
| <210>  |                    |   |
| <211>  | 20                 |   |
| <212>  | DNA                |   |
| <213>  | Homo sapiens       |   |
|        |                    |   |
| <400>  | 1190               |   |
|        | accg gtcacttcca    | 2 |
| aaccag | accg gecaceteca    | - |
|        |                    |   |
|        |                    |   |
| <210>  |                    |   |
| <211>  | 20                 |   |
| <212>  | DNA                |   |
|        | Homo sapiens       |   |
|        |                    |   |
| <400>  | 1191               |   |
|        |                    | 2 |
| cccaca | teeg catetgetat    | - |
|        |                    |   |
|        |                    |   |
| <210>  |                    |   |
| <211>  | 20                 |   |
| <212>  |                    |   |
|        | Homo sapiens       |   |
|        |                    |   |
| <400>  | 1192               |   |
|        |                    | 2 |
| gatgcc | ccgg ataatcctct    | 4 |
|        |                    |   |
|        |                    |   |
| <210>  |                    |   |
| <211>  | 19                 |   |
| <212>  | DNA                |   |
|        | Homo sapiens       |   |
|        |                    |   |
| <400>  | 1102               |   |
|        |                    |   |
| cetttt | ctgg cagggcttc     | 1 |
|        |                    |   |
|        |                    |   |
|        | 1194               |   |
| <211>  | 20                 |   |
| <212>  |                    |   |
|        | Homo sapiens       |   |
| ~2137  | nomo papaeno       |   |
| .400   | 1104               |   |
| <400>  | 1194               |   |

| WO 2004/042346                                            | PCT/US2003/012946 |
|-----------------------------------------------------------|-------------------|
| gcacagccga tgcttgtaac                                     | 20                |
| <210> 1195<br><211> 20<br><212> DNA<br><213> Homo sapiens |                   |
| <400> 1195<br>tggccctgaa actcctcact                       | 20                |
| <210> 1196<br><211> 21<br><212> DNA                       |                   |
| <213> Homo sapiens                                        |                   |
| <400> 1196<br>tgcaaccagt tctgggagag a                     | 21                |
| <210> 1197<br><211> 20<br><212> DNA                       |                   |
| <213> Homo sapiens                                        |                   |
| <400> 1197<br>cacccaacac cccaatctgt                       | 20                |
| <210> 1198<br><211> 20                                    |                   |
| <212> DNA<br><213> Homo sapiens                           |                   |
| <400> 1198<br>ggctccctgc ggtatctctt                       | 20                |
| <210> 1199<br><211> 24<br><212> DNA                       |                   |
| <213> Homo sapiens                                        |                   |
| <400> 1199<br>agtccattcc tgattcagaa cacc                  | 24                |
| <210> 1200<br><211> 19                                    |                   |
| <212> DNA<br><213> Homo sapiens                           |                   |
| <400> 1200<br>gtgaccttgc cagctccag                        | 19                |
| <210> 1201<br><211> 19                                    |                   |
| <212> DNA<br><213> Homo sapiens                           |                   |

<212> DNA <213> Homo sapiens <400> 1207 actgccaaat gaaagcgaat tt

<210> 1208 <211> 20

WO 2004/042346 PCT/US2003/012946 <212> DNA <213> Homo sapiens <400> 1208 ctggggtctg gaagcagtgt 20 <210> 1209 <211> 20 <212> DNA <213> Homo sapiens <400> 1209 agtgtgacgg cactgagctg 20 <210> 1210 <211> 19 <212> DNA <213> Homo sapiens <400> 1210 ccctgtagac ggcatggaa 19 <210> 1211 <211> 22 <212> DNA <213> Homo sapiens <400> 1211 catgatttca tctcqctcaa qq 22 <210> 1212 <211> 20 <212> DNA <213> Homo sapiens <400> 1212 ggctctttcg cagctgttct 20 <210> 1213 <211> 20 <212> DNA <213> Homo sapiens <400> 1213 gacagtggag cagccaacac 20 <210> 1214 <211> 22 <212> DNA <213> Homo sapiens <400> 1214 cctgccaagt gttttcatca ca 22

<210> 1215 <211> 19 <212> DNA <213> Homo sapiens <400> 1215 ccccttccca aggagettt 19 <210> 1216 <211> 21 <212> DNA <213> Homo sapiens <400> 1216 accccacacc tctacctcag c 21 <210> 1217 <211> 20 <212> DNA <213> Homo sapiens <400> 1217 gttgggtaac gccagggttt 20 <210> 1218 <211> 20 <212> DNA <213> Homo sapiens <400> 1218 cgcaccaaaa gttgtgcgta 20 <210> 1219 <211> 20 <212> DNA <213> Homo sapiens <400> 1219 tccgggctag taggtgatgq 20 <210> 1220 <211> 20 <212> DNA <213> Homo sapiens <400> 1220 ttttcccctt ttcccagtcc 20 <210> 1221 <211> 20 <212> DNA <213> Homo sapiens <400> 1221 catcagggcc aattggaaag 20

PCT/US2003/012946

WO 2004/042346

| <210>           | 1222             |
|-----------------|------------------|
| <211>           | 20               |
| <212>           | DNA              |
|                 | Homo sapiens     |
|                 |                  |
| <400>           | 1222             |
|                 | acgg taacgactca  |
|                 | ,mogg caacgaccca |
|                 |                  |
| <210>           | 1223             |
| <211>           |                  |
| <212>           |                  |
|                 | Homo sapiens     |
|                 |                  |
| <400>           | 1223             |
|                 | tctg gcacgggaag  |
|                 | 5 5              |
|                 |                  |
| <210>           | 1224             |
| <211>           | 20               |
| <212>           | DNA              |
| <213>           | Homo sapiens     |
|                 | -                |
| <400>           | 1224             |
| ggggag          | tgtg gtgatggagt  |
|                 |                  |
|                 |                  |
| <210>           |                  |
| <211>           |                  |
| <212>           |                  |
| <213>           | Homo sapiens     |
|                 |                  |
| <400>           |                  |
| agccct          | gggt cttcaggaac  |
|                 |                  |
| <210>           | 1226             |
| <210>           |                  |
| <211>           |                  |
|                 | Homo sapiens     |
| <b>\213&gt;</b> | nous sabraug     |
| <400>           | 1226             |
|                 | tagg ggagaggtgt  |
| 9999            |                  |
|                 |                  |
| <210>           | 1227             |
| <211>           |                  |
| <212>           |                  |
|                 | Homo sapiens     |
|                 | neme Daprens     |
| <400>           | 1227             |
|                 | gaag caggeteaag  |
| J               | JJJ9000ddg       |
|                 |                  |
| <210>           | 1228             |
| <211>           | 21               |
|                 | DNA              |
| <213>           | Homo sapiens     |
|                 |                  |

| WO 2004/042346                    | PCT/U     | S2003/012946 |
|-----------------------------------|-----------|--------------|
| <400> 1228                        |           |              |
| tcatgtggcg atcttga                | cct t     |              |
|                                   |           | 21           |
| <210> 1229                        |           |              |
| <211> 21                          |           |              |
| <212> DNA                         |           |              |
| <213> Homo sapiens                | s         |              |
| <400> 1229                        |           |              |
| ccatgatgag gaaggtt                | gag c     |              |
| -55-5 555                         | 243 6     | 21           |
| <210> 1230                        |           |              |
| <211> 25                          |           |              |
| <212> DNA                         |           |              |
| <213> Homo sapiens                | s         |              |
| <400> 1230                        |           |              |
| <400> 1230<br>ttgagggagt agtggaat | tga aaaca |              |
| 0 000 0 -0-00                     | -3        | 25           |
| .210. 1021                        |           |              |
| <210> 1231<br><211> 20            |           |              |
| <211> 20<br><212> DNA             |           |              |
|                                   |           |              |
| <213> Homo sapiens                | 3         |              |
| <400> 1231                        |           |              |
| acactcaggc ctggagaa               | agg       | 20           |
|                                   |           |              |
| <210> 1232                        |           |              |
| <211> 20                          |           |              |
| <212> DNA                         |           |              |
| <213> Homo sapiens                | 3         |              |
| <400> 1232                        |           |              |
| tttcgaagcc cttggaga               | ntq       | 20           |
|                                   | 3         | 20           |
| <210> 1233                        |           |              |
| <211> 20                          |           |              |
| <212> DNA                         |           |              |
| <213> Homo sapiens                | ;         |              |
| <400> 1233                        |           |              |
|                                   |           |              |
| tgctgcaccc tcttcatc               | ag        | 20           |
|                                   |           |              |
| <210> 1234<br><211> 20            |           |              |
| <211> 20<br><212> DNA             |           |              |
| <213> Homo sapiens                |           |              |
|                                   |           |              |
| <400> 1234                        |           |              |
| ggcaagcaca acccacaga              | ac        | 20           |
|                                   |           |              |
| <210> 1235                        |           |              |
| <211> 20                          |           |              |
| <212> DNA                         |           |              |

| wo     | 2004/042346     | PCT/US2003/012946 |
|--------|-----------------|-------------------|
| <213>  | Homo sapiens    |                   |
| <400>  | 1235            |                   |
|        | tcga tctccgggta | 20                |
| _      | 3 333           | 20                |
|        | 1236            |                   |
|        | 20              |                   |
| <212>  |                 |                   |
| <213>  | Homo sapiens    |                   |
| <400>  | 1236            |                   |
| gttgtc | ctcc tccggcttct | 20                |
|        |                 |                   |
|        | 1237            |                   |
| <211>  |                 |                   |
| <212>  |                 |                   |
| <213>  | Homo sapiens    |                   |
| <400>  | 1237            |                   |
| ggccag | gagg gtatgtcctt | 20                |
|        |                 |                   |
| <210>  | 1238            |                   |
| <211>  |                 |                   |
| <212>  | DNA             |                   |
| <213>  | Homo sapiens    |                   |
| <400>  | 1238            |                   |
| cccttt | caat ccagcaagca | . 20              |
|        |                 |                   |
| <210>  |                 |                   |
| <211>  |                 |                   |
| <212>  |                 |                   |
| <213>  | Homo sapiens    |                   |
| <400>  | 1239            |                   |
| cagagg | gccc tgtctctgaa | 20                |
|        |                 |                   |
| <210>  |                 |                   |
|        | 20              |                   |
| <212>  |                 |                   |
| <213>  | Homo sapiens    |                   |
| <400>  | 1240            |                   |
| tcatcc | cata gtggggaagc | 20                |
|        |                 |                   |
| <210>  |                 |                   |
| <211>  |                 |                   |
| <212>  |                 |                   |
| <213>  | Homo sapiens    |                   |
| <400>  | 1241            |                   |
|        | cccg gaagggtgaa | 20                |
|        |                 | 20                |
| <210>  | 1242            |                   |
|        |                 |                   |

WO 2004/042346 PCT/US2003/012946 <211> 20 <212> DNA <213> Homo sapiens <400> 1242 20 gactggagec atgaggtegt <210> 1243 <211> 20 <212> DNA <213> Homo sapiens <400> 1243 getgetgeet egactttete 20 <210> 1244 <211> 20 <212> DNA <213> Homo sapiens <400> 1244 ccagaggaag ggtgtgctct 20 <210> 1245 <211> 25 <212> DNA <213> Homo sapiens <400> 1245 ttaagcccta agtgatactg cctca 25 <210> 1246 <211> 25 <212> DNA <213> Homo sapiens <400> 1246 ttaggaattg atgctggtta gtgct 25 <210> 1247 <211> 20 <212> DNA <213> Homo sapiens <400> 1247 geggeegtea ttaatteaaa 20 <210> 1248 <211> 20 <212> DNA

506

20

<213> Homo sapiens

atttgccttc agccacatcc

|                                                                                                                                | 1249                                                                                |    |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----|
|                                                                                                                                |                                                                                     |    |
| <211>                                                                                                                          |                                                                                     |    |
| <212>                                                                                                                          |                                                                                     |    |
| <213>                                                                                                                          | Homo sapiens                                                                        |    |
|                                                                                                                                |                                                                                     |    |
| <400>                                                                                                                          | 1249                                                                                |    |
|                                                                                                                                |                                                                                     | 20 |
| ggrggr                                                                                                                         | ttcgc cttgaactga                                                                    | 20 |
|                                                                                                                                |                                                                                     |    |
|                                                                                                                                |                                                                                     |    |
| <210>                                                                                                                          | 1250                                                                                |    |
| <211>                                                                                                                          | 20                                                                                  |    |
| <212>                                                                                                                          |                                                                                     |    |
|                                                                                                                                | Homo sapiens                                                                        |    |
| (213)                                                                                                                          | nomo sapiens                                                                        |    |
|                                                                                                                                |                                                                                     |    |
| <400>                                                                                                                          |                                                                                     |    |
| atcagg                                                                                                                         | gtgac cgctttggaa                                                                    | 20 |
|                                                                                                                                |                                                                                     |    |
|                                                                                                                                |                                                                                     |    |
| <210>                                                                                                                          | 1251                                                                                |    |
| <211>                                                                                                                          |                                                                                     |    |
| <212>                                                                                                                          |                                                                                     |    |
|                                                                                                                                |                                                                                     |    |
| <213>                                                                                                                          | Homo sapiens                                                                        |    |
|                                                                                                                                |                                                                                     |    |
| <400>                                                                                                                          | 1251                                                                                |    |
| gcacag                                                                                                                         | ggaac acggtctgaa                                                                    | 20 |
|                                                                                                                                |                                                                                     |    |
|                                                                                                                                |                                                                                     |    |
| <210>                                                                                                                          | 1050                                                                                |    |
|                                                                                                                                |                                                                                     |    |
|                                                                                                                                |                                                                                     |    |
| <212>                                                                                                                          |                                                                                     |    |
| <213>                                                                                                                          | Homo sapiens                                                                        |    |
|                                                                                                                                |                                                                                     |    |
| <400>                                                                                                                          | 1252                                                                                |    |
|                                                                                                                                | tggaa tgaggcaaat                                                                    | 20 |
| ~5555                                                                                                                          | -55                                                                                 |    |
|                                                                                                                                |                                                                                     |    |
|                                                                                                                                |                                                                                     |    |
|                                                                                                                                | 1253                                                                                |    |
| <211>                                                                                                                          |                                                                                     |    |
| <212>                                                                                                                          | DNA                                                                                 |    |
| <213>                                                                                                                          |                                                                                     |    |
|                                                                                                                                | Homo sapiens                                                                        |    |
|                                                                                                                                | Homo sapiens                                                                        |    |
| <400>                                                                                                                          |                                                                                     |    |
|                                                                                                                                | 1253                                                                                | 20 |
|                                                                                                                                |                                                                                     | 20 |
|                                                                                                                                | 1253                                                                                | 20 |
| ccacag                                                                                                                         | 1253<br>getgt egetgtette                                                            | 20 |
| ccacag                                                                                                                         | 1253                                                                                | 20 |
| ccacag                                                                                                                         | 1253<br>gctgt cgctgtcttc<br>1254                                                    | 20 |
| <210><211>                                                                                                                     | 1253<br>gctgt egetgtette<br>1254<br>32                                              | 20 |
| <210><211><212>                                                                                                                | 1253<br>gctgt egetgtette<br>1254<br>32<br>DNA                                       | 20 |
| <210><211><212>                                                                                                                | 1253<br>gctgt egetgtette<br>1254<br>32                                              | 20 |
| <210> <211> <212> <213>                                                                                                        | 1253<br>gctgt cgctgtcttc<br>1254<br>32<br>DNA<br>Homo sapiens                       | 20 |
| <210> <211> <212> <213> <400>                                                                                                  | 1253 gctgt cgctgtcttc  1254 32 DNA Homo sapiens                                     |    |
| <210> <211> <212> <213> <400>                                                                                                  | 1253<br>gctgt cgctgtcttc<br>1254<br>32<br>DNA<br>Homo sapiens                       | 20 |
| <210> <211> <212> <213> <400>                                                                                                  | 1253 gctgt cgctgtcttc  1254 32 DNA Homo sapiens                                     |    |
| <210> <211> <212> <213> <400>                                                                                                  | 1253 gctgt cgctgtcttc  1254 32 DNA Homo sapiens                                     |    |
| <210> <211> <212> <213> <400> aaatac                                                                                           | 1253 gctgt cgctgtcttc  1254 32 DNA Homo sapiens                                     |    |
| <210> <211> <212> <213> <400> aaatac                                                                                           | 1253 gctgt cgctgtcttc  1254 32 DNA Homo sapiens 1254 caaaa caaattcaca aattactctc aa |    |
| <210> <211> <212> <213> <400> aaatac                                                                                           | 1253 gctgt cgctgtcttc  1254 32 DNA Homo sapiens 1254 caaca cacattcaca asttactctc aa |    |
| <210> <211> <212> <213> <400> aaatac                                                                                           | 1254 32 DNA Homo sapiens 1254 caaaa caaattcaca aattactctc aa                        |    |
| <210> <211> <212> <213> <400> aaatac                                                                                           | 1253 gctgt cgctgtcttc  1254 32 DNA Homo sapiens 1254 caaca cacattcaca asttactctc aa |    |
| <pre>&lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400&gt; aaatac  &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt;</pre> | 1254 32 DNA Homo sapiens 1254 caaaa caaattcaca aattactctc aa                        |    |

| wo             | 2004/042346                   | PCT/US2003/012946 |
|----------------|-------------------------------|-------------------|
| ttggcat        | tag actcacatca tctgt          | 25                |
| <210>          |                               |                   |
| <211>          |                               |                   |
| <212>          |                               |                   |
| <213>          | Homo sapiens                  |                   |
| <400>          | 1256                          |                   |
| aaaccag        | aca aacga <b>a</b> taac acaca | 25                |
| <210>          |                               |                   |
| <211>          |                               |                   |
| <212>          |                               |                   |
| <213>          | Homo sapiens                  |                   |
| <400>          |                               |                   |
| aggatta        | tat caacagcgat gaactg         | 26                |
| <210>          | 1258                          |                   |
| <211>          |                               |                   |
| <212>          |                               |                   |
|                | Homo sapiens                  |                   |
| <400>          | 1258                          |                   |
| ccgagcc        | cga taaatggta                 | 19                |
|                |                               |                   |
| <210>          |                               |                   |
| <211>          |                               |                   |
| <212>          |                               |                   |
| <213>          | Homo sapiens                  |                   |
| <400>          | 1259                          |                   |
|                | cct gtagagacca                | 20                |
|                |                               |                   |
| <210><br><211> |                               |                   |
|                |                               |                   |
| <212>          |                               |                   |
|                | Homo sapiens                  |                   |
| <400>          |                               |                   |
| catcctc        | tca agggcatggt                | 20                |
|                |                               |                   |
| <210>          |                               |                   |
| <211>          |                               |                   |
| <212>          |                               |                   |
| <213>          | Homo sapiens                  |                   |
| <400>          | 1261                          |                   |
| tcccaca        | ttc ctgacattgg t              | 21                |
| <210>          | 1262                          |                   |
| <210>          |                               |                   |
|                | 20<br>DNA                     |                   |
|                |                               |                   |
| <213>          | Homo sapiens                  |                   |

| WO 2004/042346                        | PCT/US2003/012946 |
|---------------------------------------|-------------------|
| <400> 1262                            |                   |
| cacagecetg aacaaaagea                 | 20                |
|                                       |                   |
|                                       |                   |
| <210> 1263                            |                   |
| <211> 20                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1263                            |                   |
| gctatttcag gtggggctga                 | 20                |
| 5 3-33333-                            |                   |
|                                       |                   |
| <210> 1264                            |                   |
| <211> 21                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1264                            |                   |
| aatccaggcc aaatgggtaa a               | 21                |
|                                       |                   |
|                                       |                   |
| <210> 1265                            |                   |
| <211> 20                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1265                            |                   |
| aaaggctcca gggctcctaa                 | 20                |
| 33 333                                |                   |
|                                       |                   |
| <210> 1266                            |                   |
| <211> 20                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1266                            |                   |
| tccatgtcca agccttccat                 | 20                |
| , , , , , , , , , , , , , , , , , , , |                   |
|                                       |                   |
| <210> 1267                            |                   |
| <211> 20                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1267                            |                   |
| atgcaaatcc agggtgcagt                 | 20                |
| 5555-55                               |                   |
|                                       |                   |
| <210> 1268                            |                   |
| <211> 20                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |

<210> 1269 <211> 20

<400> 1268

caggagtcaa agggcacgat

| WO 2004/042346                  | PCT/US2003/012946 |
|---------------------------------|-------------------|
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 1269                      |                   |
| cacgcattgc acttttcctc           | 20                |
|                                 |                   |
| <210> 1270                      |                   |
| <210> 1270<br><211> 27          |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
|                                 |                   |
| <400> 1270                      |                   |
| acaaatctgt acccaatcgt tattgtt   | 27                |
|                                 |                   |
| <210> 1271                      |                   |
| <211> 23                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 1271                      |                   |
| tcaacattga caaagcagga tca       | 23                |
| seascassia caaageagga cca       | 23                |
|                                 |                   |
| <210> 1272                      |                   |
| <211> 20                        |                   |
| <212> DNA<br><213> Homo sapiens |                   |
| (213) NOMO BADIENS              |                   |
| <400> 1272                      |                   |
| cccacaccgt acatgcctct           | 20                |
|                                 |                   |
| <210> 1273                      |                   |
| <211> 23                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
|                                 |                   |
| <400> 1273                      |                   |
| tggcactett tecagtgact gtt       | 23                |
|                                 |                   |
| <210> 1274                      |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 1274                      |                   |
| agcctccctc ccttagcgta           | 20                |
|                                 |                   |
| <210> 1275                      |                   |
| <210> 1275<br><211> 20          |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
|                                 |                   |
| <400> 1275                      |                   |
| atgcccaggt aggaccctgt           | 20                |
|                                 |                   |

| WO 2004/042346                          | PCT/US2003/012946 |
|-----------------------------------------|-------------------|
| <210> 1276                              |                   |
| <211> 20                                |                   |
| <212> DNA                               |                   |
| <213> Homo sapiens                      |                   |
| •                                       |                   |
| <400> 1276                              |                   |
| cctcacattc cctccccatt                   | 20                |
|                                         | 20                |
| <210> 1277                              |                   |
| <211> 20                                |                   |
| <212> DNA                               |                   |
| <213> Homo sapiens                      |                   |
| <400> 1277                              |                   |
| ctgggcaggg cttattcctt                   | 20                |
|                                         | 20                |
| <210> 1278                              |                   |
| <211> 20                                |                   |
| <212> DNA                               |                   |
| <213> Homo sapiens                      |                   |
| <400> 1278                              |                   |
| aaggctgcat tctgggtttg                   | 20                |
| •                                       | 20                |
| <210> 1279                              |                   |
| <211> 20                                |                   |
| <212> DNA                               |                   |
| <213> Homo sapiens                      |                   |
| <400> 1279                              |                   |
| gccatgctac ccggtatgac                   |                   |
| 3                                       | 20                |
| <210> 1280                              |                   |
| <211> 24                                |                   |
| <212> DNA                               |                   |
| <213> Homo sapiens                      |                   |
| <400> 1280                              |                   |
| tgatttaaaa tagggctggg aaaa              |                   |
| •                                       | 24                |
| <210> 1281                              |                   |
| <211> 20                                |                   |
| <212> DNA                               |                   |
| <213> Homo sapiens                      |                   |
| <400> 1281                              |                   |
| cgatgtcatg tgatgcacga                   |                   |
| 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 20                |
| <210> 1282                              |                   |
| <211> 23                                |                   |
| <212> DNA                               |                   |
| <213> Homo sapiens                      |                   |
| ·                                       |                   |
| <400> 1282                              |                   |
| gcaaagaaga gcttaagcac cag               | 23                |
|                                         |                   |
|                                         |                   |

| <210><br><211><br><212>  | 20                              |     |  |  |  |
|--------------------------|---------------------------------|-----|--|--|--|
|                          | Homo sapiens                    |     |  |  |  |
| <400>                    | 1283                            |     |  |  |  |
| cgtaaggcac agctgcaaaa 20 |                                 |     |  |  |  |
| <210>                    | 1204                            |     |  |  |  |
| <211>                    |                                 |     |  |  |  |
| <212>                    |                                 |     |  |  |  |
| <213>                    | Homo sapiens                    |     |  |  |  |
| <400>                    |                                 | 20  |  |  |  |
| gtggaa                   | cacc ctgacgaagg                 | 20  |  |  |  |
| <210>                    | 1285                            |     |  |  |  |
| <211>                    | 23                              |     |  |  |  |
| <212>                    |                                 |     |  |  |  |
| <213>                    | Homo sapiens                    |     |  |  |  |
| <400>                    |                                 |     |  |  |  |
| tgcctg                   | acag taagtgctca aaa             | 23  |  |  |  |
|                          |                                 |     |  |  |  |
| <210>                    |                                 |     |  |  |  |
| <211>                    |                                 |     |  |  |  |
| <212><br><213>           | Homo sapiens                    |     |  |  |  |
|                          |                                 |     |  |  |  |
| <400>                    | 1286<br>Ettg ottgttagtg accttga | 27  |  |  |  |
| aaaccc                   | series occeptinging accorda     | -   |  |  |  |
| <210>                    | 1287                            |     |  |  |  |
| <211>                    |                                 |     |  |  |  |
| <212>                    |                                 |     |  |  |  |
| <213>                    | Homo sapiens                    |     |  |  |  |
| <400>                    | 1287                            |     |  |  |  |
| cttggc                   | tcag tatgcaacct ttt             | 23  |  |  |  |
|                          |                                 |     |  |  |  |
| <210>                    |                                 |     |  |  |  |
| <211>                    |                                 |     |  |  |  |
| <212>                    | Homo sapiens                    |     |  |  |  |
|                          |                                 |     |  |  |  |
| <400>                    |                                 | 2.0 |  |  |  |
| acacotgtgc ctgggagaag 20 |                                 |     |  |  |  |
| <210>                    | 1289                            |     |  |  |  |
| <211>                    |                                 |     |  |  |  |
| <212>                    |                                 |     |  |  |  |
|                          | Homo sapiens                    |     |  |  |  |

| we                       | O 2004/042346    | PCT/US20 | 003/012946 |  |  |
|--------------------------|------------------|----------|------------|--|--|
| <400>                    |                  |          |            |  |  |
| gttet                    | ctctc tggccgatgc | 3        | 20         |  |  |
| <210>                    |                  |          | /          |  |  |
| <211>                    |                  |          |            |  |  |
| <212>                    |                  |          |            |  |  |
| <213>                    | Homo sapiens     |          |            |  |  |
| <400>                    | 1290             |          |            |  |  |
| tgttte                   | ctaac ccataagtgc | ctca     | 24         |  |  |
|                          |                  |          |            |  |  |
| <210>                    | 1291             |          |            |  |  |
| <211>                    | 20               |          |            |  |  |
| <212>                    | DNA              |          |            |  |  |
| <213>                    | Homo sapiens     |          |            |  |  |
| <400>                    | 1291             |          |            |  |  |
| aaagc                    | caca gccaagtcag  | ı        | 20         |  |  |
|                          |                  |          |            |  |  |
| <210>                    | 1292             |          |            |  |  |
| <211>                    |                  |          |            |  |  |
| <212>                    |                  |          |            |  |  |
|                          | Homo sapiens     |          |            |  |  |
|                          |                  |          |            |  |  |
| <400>                    |                  |          |            |  |  |
| cacago                   | tccg atgaccacaa  |          | 20         |  |  |
|                          |                  |          |            |  |  |
| <210>                    |                  |          |            |  |  |
| <211>                    |                  |          |            |  |  |
| <212>                    |                  |          |            |  |  |
| <213>                    | Homo sapiens     |          |            |  |  |
| <400>                    | 1293             |          |            |  |  |
| ggtcct                   | tgta gacccgacga  |          | 20         |  |  |
|                          |                  |          |            |  |  |
| <210>                    |                  |          |            |  |  |
| <211>                    |                  |          |            |  |  |
| <212>                    |                  |          |            |  |  |
| <213>                    | Homo sapiens     |          |            |  |  |
| <400>                    | 1294             |          |            |  |  |
| agcagg                   | aaat gcctgtgctc  |          | 20         |  |  |
|                          |                  |          |            |  |  |
| <210>                    | 1295             |          |            |  |  |
| <211>                    |                  |          |            |  |  |
| <212>                    |                  |          |            |  |  |
|                          | Homo sapiens     |          |            |  |  |
| <400>                    | 1295             |          |            |  |  |
| tcagttcgtg ggaccettte 20 |                  |          |            |  |  |
| _                        |                  |          | 20         |  |  |
| <210>                    | 1296             |          |            |  |  |
| <211>                    | 20               |          |            |  |  |
| <211>                    |                  |          |            |  |  |
| <212>                    | DINA             |          |            |  |  |

| wo                                | 2004/042346     | PCT/US2003/012946 |  |
|-----------------------------------|-----------------|-------------------|--|
| <213>                             | Homo sapiens    |                   |  |
| <400>                             | 1296            |                   |  |
|                                   | taaa actgccaagg | 20                |  |
| 333                               | 49              | 20                |  |
| <210>                             |                 |                   |  |
| <211>                             |                 |                   |  |
| <212>                             |                 |                   |  |
| <213>                             | Homo sapiens    |                   |  |
| <400>                             |                 |                   |  |
| gcctga                            | gcga gaggatgttc | 20                |  |
| <210>                             | 1298            |                   |  |
| <211>                             | 20              |                   |  |
| <212>                             | DNA             |                   |  |
| <213>                             | Homo sapiens    |                   |  |
| <400>                             | 1298            |                   |  |
| gaaggo                            | gttg aacgagatgg | 20                |  |
|                                   |                 |                   |  |
| <210>                             | 1299            |                   |  |
| <211>                             |                 |                   |  |
| <212>                             |                 |                   |  |
| <213>                             | Homo sapiens    |                   |  |
| <400> 1299                        |                 |                   |  |
| tcccaatcta atttaaaccc tcataaca 28 |                 |                   |  |
|                                   |                 |                   |  |
| <210>                             | 1300            |                   |  |
| <211>                             |                 |                   |  |
| <212>                             |                 |                   |  |
|                                   | Homo sapiens    |                   |  |
| <400>                             |                 |                   |  |
| agctto                            | ccag ccctagcaaa | 20                |  |
|                                   |                 |                   |  |
| <210>                             | 1301            |                   |  |
| <211>                             |                 |                   |  |
| <212>                             |                 |                   |  |
| <213>                             | Homo sapiens    |                   |  |
| <400>                             | 1301            |                   |  |
| ccaagg                            | aggt tgggaagagg | 20                |  |
|                                   |                 |                   |  |
| <210>                             | 1302            |                   |  |
| <211>                             | 20              |                   |  |
| <212>                             |                 |                   |  |
|                                   | Homo sapiens    |                   |  |
| <400>                             | 1302            |                   |  |
| tcatgt                            | gcac gaggaagete | 20                |  |
|                                   |                 |                   |  |

<210> 1303

| WO 2004/042346                  | PCT/US2003/012946 |
|---------------------------------|-------------------|
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 1303                      |                   |
| ttgcaaagcc tttcacagga           | 20                |
|                                 |                   |
| <210> 1304                      |                   |
| <211> 20                        |                   |
| <212> DNA<br><213> Homo sapiens |                   |
|                                 |                   |
| <400> 1304                      |                   |
| accagcacag aacccaaagc           | 20                |
|                                 |                   |
| <210> 1305<br><211> 20          |                   |
| <211> 20<br><212> DNA           |                   |
| <213> Homo sapiens              |                   |
| *                               |                   |
| <400> 1305                      |                   |
| gggagcgtat ctcaggcaga           | 20                |
| <210> 1306                      |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 1306                      |                   |
| cacccataca ggacgcacag           | 20                |
|                                 |                   |
| <210> 1307                      |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 1307                      |                   |
| gaatcccggc cactgatgta           | 20                |
|                                 |                   |
| <210> 1308                      |                   |
| <211> 20                        |                   |
| <212> DNA<br><213> Homo sapiens |                   |
| (213) NOMO BADIENS              |                   |
| <400> 1308                      |                   |
| taacatttgc ttcggcatgg           | 20                |
|                                 |                   |
| <210> 1309                      |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 1309                      |                   |
| tcccaactgc aaaccctcat           | 20                |
|                                 |                   |

| <210>          | 1310              |
|----------------|-------------------|
| <211>          |                   |
| <212>          |                   |
|                | Homo sapiens      |
| 12137          | nomo sapiens      |
| <400>          | 1310              |
|                |                   |
| ccgago         | ctggt gggtgcatta  |
|                |                   |
|                |                   |
| <210>          |                   |
| <211>          |                   |
| <212>          | DNA               |
|                | Homo sapiens      |
|                |                   |
| <400>          | 1311              |
|                | tattc tcgccagtga  |
| cgccgc         | cacco cogocagoga  |
|                |                   |
|                |                   |
| <210>          |                   |
| <211>          |                   |
| <212>          |                   |
| <213>          | Homo sapiens      |
|                |                   |
| <400>          | 1312              |
|                | gcac atctgggaac   |
| Jaacat         | -goad accorgggaac |
|                |                   |
|                |                   |
| <210>          |                   |
| <211>          |                   |
| <212>          | DNA               |
|                | Homo sapiens      |
|                | Dapiens           |
| <400>          | 1212              |
|                |                   |
| aagcat         | ttcc gcacactgg    |
|                |                   |
|                |                   |
| <210>          | 1314              |
| <211>          |                   |
| <212>          |                   |
|                | Homo sapiens      |
| ~413>          | nomo saprens      |
|                |                   |
| <400>          |                   |
| acgacg         | tcca ccttttcctg   |
|                |                   |
|                |                   |
| <210>          | 1315              |
| <211>          |                   |
| <211>          |                   |
|                |                   |
| <213>          | Homo sapiens      |
|                |                   |
| <400>          | 1315              |
| ttgcat         | gaga agcacctcca   |
|                |                   |
|                |                   |
|                | 1316              |
| -210-          |                   |
| <210>          |                   |
| <211>          | 27                |
| <211><br><212> | 27<br>DNA         |
| <211><br><212> | 27                |
| <211><br><212> | 27<br>DNA         |

| WO 2004/042346           | PC1/US2003/01 | 12940 |
|--------------------------|---------------|-------|
|                          |               | 27    |
| tcagaaaget ttgactactg tt | LCLCC 2       | ٠,    |
|                          |               |       |
| <210> 1317               |               |       |
| <211> 20                 |               |       |
| <212> DNA                |               |       |
| <213> Homo sapiens       |               |       |
| <400> 1317               |               |       |
| atggctqcca agatggaaag    | 9             | 20    |
| arggergeea agarggaaag    | _             |       |
|                          |               |       |
| <210> 1318               |               |       |
| <211> 20                 |               |       |
| <212> DNA                |               |       |
| <213> Homo sapiens       |               |       |
| <400> 1318               |               |       |
| ggcaacccta gccacacact    | •             | 20    |
| ggcaacccta gccacacact    | 2             | 20    |
|                          |               |       |
| <210> 1319               |               |       |
| <211> 20                 |               |       |
| <212> DNA                |               |       |
| <213> Homo sapiens       |               |       |
|                          |               |       |
| <400> 1319               |               |       |
| cacagagaag gaggccttgc    | 2             | 20    |
|                          |               |       |
| <210> 1320               |               |       |
| <211> 20                 |               |       |
| <212> DNA                |               |       |
| <213> Homo sapiens       |               |       |
| -                        |               |       |
| <400> 1320               |               |       |
| gccagctcca gatggacatt    | 2             | 20    |
|                          |               |       |
| <210> 1321               |               |       |
| <210> 1321 <211> 20      |               |       |
| <212> DNA                |               |       |
| <213> Homo sapiens       |               |       |
| 12137 Homo Dapteno       |               |       |
| <400> 1321               |               |       |
| cgtgtgttgc atcgtgtctg    | 2             | 20    |
|                          |               |       |
|                          |               |       |
| <210> 1322               |               |       |
| <211> 20                 |               |       |
| <212> DNA                |               |       |
| <213> Homo sapiens       |               |       |
| <400> 1322               |               |       |
| cgctttgggg catctaattg    | 2             | 20    |
| -33333                   | •             |       |
|                          |               |       |
| <210> 1323               |               |       |
| <211> 20                 |               |       |
| <212> DNA                |               |       |
| <213> Homo sapiens       |               |       |

WO 2004/042346

PCT/US2003/012946

| <400>  | 1323                          |    |
|--------|-------------------------------|----|
|        |                               |    |
| cgctc  | agett tggettette              | 20 |
|        |                               |    |
|        |                               |    |
| <210>  | 1324                          |    |
| <211>  |                               |    |
|        |                               |    |
| <212>  |                               |    |
| <213>  | Homo sapiens                  |    |
|        | •                             |    |
| <400>  | 1324                          |    |
|        |                               |    |
| gaggt  | etget tgeacceact              | 20 |
|        |                               |    |
|        |                               |    |
| <210>  | 1325                          |    |
| <211>  |                               |    |
|        |                               |    |
| <212>  |                               |    |
| <213>  | Homo sapiens                  |    |
|        |                               |    |
| <400>  | 1325                          |    |
|        |                               |    |
| Cagaco | ectgt gtggcagtgt              | 20 |
|        |                               |    |
|        |                               |    |
| <210>  | 1326                          |    |
| <211>  |                               |    |
|        |                               |    |
| <212>  |                               |    |
| <213>  | Homo sapiens                  |    |
|        |                               |    |
| <400>  | 1326                          |    |
|        |                               |    |
| cacatt | gggc actgctgaaa               | 20 |
|        |                               |    |
|        |                               |    |
| <210>  | 1327                          |    |
|        |                               |    |
| <211>  |                               |    |
| <212>  | DNA                           |    |
| <213>  | Homo sapiens                  |    |
|        | 2                             |    |
| <400>  | 1327                          |    |
|        |                               |    |
| tgatgg | ggat cggggattgc a             | 21 |
|        |                               |    |
|        |                               |    |
| <210>  | 1220                          |    |
|        |                               |    |
| <211>  |                               |    |
| <212>  | DNA                           |    |
| <213>  | Homo sapiens                  |    |
|        | • -                           |    |
| <400>  | 1328                          |    |
|        |                               |    |
| tcctgt | aaca atgcatctca tatttggaat ga | 32 |
|        |                               |    |
|        |                               |    |
| <210>  | 1329                          |    |
| <211>  |                               |    |
|        |                               |    |
| <212>  |                               |    |
| <213>  | Homo sapiens                  |    |
|        | •                             |    |
| <400>  | 1229                          |    |
|        |                               |    |
| cgtcca | gcct gggtcggggt               | 20 |
|        |                               |    |
|        |                               |    |
| <210>  | 1330                          |    |
|        | 200                           |    |

| wo             | 2004/042346                      | PCT/US2003/012946 |
|----------------|----------------------------------|-------------------|
| <212>          | DNA                              |                   |
| <213>          | Homo sapiens                     |                   |
| <400>          | 1330                             |                   |
| tgaact         | cttc aatctcttgc actcaaagct tg    | 32                |
|                |                                  |                   |
| <210><br><211> | 1331                             |                   |
| <211>          |                                  |                   |
| <213>          | Homo sapiens                     |                   |
| <400>          | 1331                             |                   |
| ccaato         | aagg tataacacac aaatgttatc tgcgc | 35                |
|                |                                  |                   |
| <210>          |                                  |                   |
| <211><br><212> |                                  |                   |
|                | Homo sapiens                     |                   |
| <400>          | 1332                             |                   |
|                | tccc gctggcttgg                  | 20                |
|                |                                  | 20                |
| <210>          | 1333                             |                   |
| <211>          |                                  |                   |
| <212>          | DNA<br>Homo sapiens              |                   |
|                |                                  |                   |
| <400>          |                                  |                   |
| ggccgc         | ccac cacagcatgg t                | 21                |
| <210>          | 1334                             |                   |
| <211>          |                                  |                   |
| <212>          |                                  |                   |
| <213>          | Homo sapiens                     |                   |
| <400>          |                                  |                   |
| tgeeet         | gatt tgaagggaaa agggatg          | 27                |
| <210>          | 1225                             |                   |
| <211>          |                                  |                   |
| <212>          |                                  |                   |
| <213>          | Homo sapiens                     |                   |
| <400>          |                                  |                   |
| ggacgg         | cgac agaaattgca ggc              | 23                |
|                |                                  |                   |
| <210><br><211> |                                  |                   |
| <211>          |                                  |                   |
|                | Homo sapiens                     |                   |
| <400>          | 1336                             |                   |
|                | tcc cccgtcccca                   | 20                |
|                |                                  |                   |

WO 2004/042346 PCT/US2003/012946 <210> 1337 <211> 30 <212> DNA <213> Homo sapiens <400> 1337 gggcgtacac tttcccttct caatctctca 3.0 <210> 1338 <211> 30 <212> DNA <213> Homo sapiens <400> 1338 tcacagcatt ggcattatct gagatggtga 30 <210> 1339 <211> 34 <212> DNA <213> Homo sapiens <400> 1339 34 aaggtttcaa cctaatggag ggatgagaag atca <210> 1340 <211> 30 <212> DNA <213> Homo sapiens <400> 1340 gggtcctatg ctactgttgc actctccaca 30 <210> 1341 <211> 26 <212> DNA <213> Homo sapiens <400> 1341 26 ggcagactcc ttgccaacgg gtattg <210> 1342 <211> 28 <212> DNA <213> Homo sapiens <400> 1342 ccaatccatg aggatggtga aatgatgg 28 <210> 1343 <211> 27 <212> DNA <213> Homo sapiens <400> 1343 ggccaagaaa gcattttcac ctcctgc 27

| <210>   | 1344              |           |       |
|---------|-------------------|-----------|-------|
| <211>   | 22                |           |       |
| <212>   | DNA               |           |       |
|         | Homo sapiens      |           |       |
|         | •                 |           |       |
| <400>   | 1344              |           |       |
| tcccaa  | caag cccctgcag a  | aa        | 2     |
|         | 555 .             |           | 2.    |
|         |                   |           |       |
| <210>   | 1345              |           |       |
| <211>   |                   |           |       |
| <212>   |                   |           |       |
|         | Homo sapiens      |           |       |
|         |                   |           |       |
| <400>   | 1345              |           |       |
|         | ccaa aggctccagt o | racca     | 2:    |
| - 3 3   |                   | Juccu     | 2:    |
|         |                   |           |       |
| <210>   | 1346              |           |       |
| <211>   |                   |           |       |
| <212>   | DNA               |           |       |
| <213>   | Homo sapiens      |           |       |
|         | •                 |           |       |
| <400>   | 1346              |           |       |
| ggtttt  | ccca tttgtggagg g | ıcqa      | 24    |
|         |                   |           |       |
|         |                   |           |       |
| <210>   | 1347              |           |       |
| <211>   | 28                |           |       |
| <212>   | DNA               |           |       |
| <213>   | Homo sapiens      |           | /     |
|         |                   |           |       |
| <400>   | 1347              |           |       |
| ccagcc  | tcag aggaagagga t | ttttcgg   | 28    |
|         |                   |           |       |
|         |                   |           |       |
| <210>   |                   |           |       |
| <211>   |                   |           |       |
| <212>   |                   |           |       |
| <213>   | Homo sapiens      |           |       |
|         |                   |           |       |
| <400>   | 1348              |           |       |
| gcagtg  | ccgc acttggagat t | tgg       | 24    |
|         |                   |           |       |
|         |                   |           |       |
| <210>   |                   |           |       |
|         | 32                |           |       |
| <212>   |                   |           |       |
| <213>   | Homo sapiens      |           |       |
|         |                   |           |       |
|         | 1349              |           |       |
| gugttai | acg atgaacatgc c  | acatgcttt | ca 32 |
|         |                   |           |       |
| 210     | 1250              |           |       |
|         | 1350              |           |       |
|         | 20                |           |       |
| <212>   |                   |           |       |
| <213>   | Homo sapiens      |           |       |

| WO 2004/042346                      | PCT/US2003/012946 |
|-------------------------------------|-------------------|
| <400> 1350<br>cctgggccac cccagcacac | 20                |
|                                     | 20                |
| <210> 1351<br><211> 29              |                   |
| <211> 29<br><212> DNA               |                   |
| <213> Homo sapiens                  |                   |
| <400> 1351                          |                   |
| tgcaaatggt tacttccaga taacggcca     | 29                |
| <210> 1352                          |                   |
| <211> 22                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1352                          |                   |
| gcetgteete aaggetgetg ce            | 22                |
| <210> 1353                          |                   |
| <211> 22                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1353                          |                   |
| tccactgagc cctgctgcct ca            | 22                |
| <210> 1354                          |                   |
| <211> 20                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1354                          |                   |
| tgggctccct gggagtcccc               | 20                |
| <210> 1355                          |                   |
| <210> 1355<br><211> 20              |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1355                          |                   |
| agcccagacc caggcctgcc               | 20                |
| <210> 1356                          |                   |
| <211> 22                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1356                          |                   |
| ccgccacagt gtcgtggtgg tc            | 22                |
| <210> 1357                          |                   |
| <211> 20                            |                   |
| <212> DNA                           |                   |

| wo             | 2004/042346                     | PCT/US2003/012946 |
|----------------|---------------------------------|-------------------|
| <213>          | Homo sapiens                    |                   |
| <400>          | 1357                            |                   |
| gcaggo         | cacc cagcacaccc                 | 20                |
|                |                                 |                   |
| <210>          |                                 |                   |
| <211>          |                                 |                   |
| <212>          | Homo sapiens                    |                   |
|                |                                 |                   |
| <400>          |                                 |                   |
| tcaccc         | tggg ggccctcctg                 | 20                |
|                |                                 |                   |
| <210>          |                                 |                   |
| <211>          |                                 |                   |
| <212>          |                                 |                   |
| <213>          | Homo sapiens                    |                   |
| <400>          |                                 |                   |
| ggccaa         | agga agtgacccct cgg             | 23                |
|                |                                 |                   |
| <210>          |                                 |                   |
| <211><br><212> |                                 |                   |
|                | Homo sapiens                    |                   |
| 12137          | nomo sapreno                    |                   |
|                | 1360                            |                   |
| tctcca         | gggc ctccgcacca                 | 20                |
|                |                                 |                   |
| <210>          |                                 |                   |
| <211>          |                                 |                   |
| <212>          |                                 |                   |
| <213>          | Homo sapiens                    |                   |
| <400>          |                                 |                   |
| accacc         | ttgg agccgtgcgc                 | 20                |
|                |                                 |                   |
| <210>          | 1362                            |                   |
| <211>          |                                 |                   |
|                | DNA                             |                   |
| <213>          | Homo sapiens                    |                   |
| <400>          | 1362                            |                   |
| ccaact         | acta aactggggga tattatgaag ggcc | 34                |
|                |                                 |                   |
| <210>          |                                 |                   |
| <211>          |                                 |                   |
| <212>          |                                 |                   |
| <213>          | Homo sapiens                    |                   |
| <400>          | 1363                            |                   |
|                | ctgt ttcctgataa ccataagaag accc | 34                |
| -              | 3 3                             | 34                |
|                |                                 |                   |

<210> 1364

| <211>  | 25                       |    |
|--------|--------------------------|----|
| <212>  |                          |    |
|        |                          |    |
| <213>  | Homo sapiens             |    |
|        |                          |    |
| <400>  | 1364                     |    |
| tgggtc | cagg ggtaaacaac gagga    | 25 |
|        |                          |    |
|        |                          |    |
| <210>  | 1365                     |    |
|        |                          |    |
| <211>  |                          |    |
| <212>  |                          |    |
| <213>  | Homo sapiens             |    |
|        |                          |    |
| <400>  | 1365                     |    |
| tggggt | tgcc catgatggca          | 20 |
|        |                          |    |
|        |                          |    |
| <210>  | 1366                     |    |
| <211>  |                          |    |
| <212>  |                          |    |
|        |                          |    |
| <213>  | Homo sapiens             |    |
|        |                          |    |
| <400>  |                          |    |
| tgtcca | gcga cgcctgcagc          | 20 |
|        |                          |    |
|        |                          |    |
| <210>  | 1367                     |    |
| <211>  | 22                       |    |
| <212>  |                          |    |
|        | Homo sapiens             |    |
| (213)  | None Baptens             |    |
|        | 40.47                    |    |
|        | 1367                     |    |
| cagccg | ctcc tcaagcactg gg       | 22 |
|        |                          |    |
|        |                          |    |
| <210>  | 1368                     |    |
| <211>  | 23                       |    |
| <212>  | DNA                      |    |
| <213>  | Homo sapiens             |    |
|        |                          |    |
| <400>  | 1368                     |    |
|        | caac caccacaacc tgc      | 23 |
| ggcccc | caac caccacacc ege       |    |
|        |                          |    |
|        | *****                    |    |
|        | 1369                     |    |
| <211>  |                          |    |
| <212>  | DNA                      |    |
| <213>  | Homo sapiens             |    |
|        |                          |    |
| <400>  | 1369                     |    |
| gccctc | tcac agtggaatgg agagca   | 26 |
|        |                          |    |
|        |                          |    |
| <210>  | 1370                     |    |
| <211>  | 20                       |    |
|        | DNA                      |    |
|        |                          |    |
| <213>  | Homo sapiens             |    |
|        |                          |    |
| <400>  | 1370                     |    |
| caacca | ggcc aggtg <b>gg</b> cca | 20 |
|        |                          |    |

| <211>                          | . 1371<br>. 29<br>. DNA<br>. Homo sapiens       |    |
|--------------------------------|-------------------------------------------------|----|
|                                | 1371<br>cgggg tgcattatct ctacagtca              | 29 |
| <211><212>                     | 1372<br>25<br>DNA<br>HOmo sapiens               |    |
|                                | 1372<br>ggaat teattecagt caceg                  | 25 |
| <211><br><212>                 |                                                 |    |
| <400>                          | 1373<br>agtct gaagtttgcc agtttggcc              | 29 |
| <211><br><212>                 | DNA                                             |    |
| <400>                          | Homo sapiens<br>1374<br>gcaca agggagocca        | 20 |
| <210><211><211><212>           | 26<br>DNA                                       |    |
| <400>                          | Homo sapiens<br>1375<br>ttccc tccttcagag agtggg | 26 |
| <210><211><211><212>           | 22<br>DNA                                       |    |
| <400>                          | Homo sapiens<br>1376<br>actc agggcccggc tg      | 22 |
| <210><211><211><212><212><213> | 20                                              |    |
| <400>                          |                                                 |    |

| WO 2004/042346        | PCT/US2003/   | 012946 |
|-----------------------|---------------|--------|
| cccccggggc acaaggaaga |               | 20     |
| <210> 1378            |               |        |
| <211> 20              |               |        |
| <212> DNA             |               |        |
| <213> Homo sapiens    |               |        |
| (213) HOMO Sapiens    |               |        |
| <400> 1378            |               |        |
| tcccagggtg ggcacatggg |               | 20     |
| <210> 1379            |               |        |
| <211> 20              |               |        |
| <212> DNA             |               |        |
|                       |               |        |
| <213> Homo sapiens    |               |        |
| <400> 1379            |               |        |
| cagtggggca gtggggtccg |               | 20     |
|                       |               |        |
| <210> 1380            |               |        |
| <211> 32              |               |        |
| <212> DNA             |               |        |
| <213> Homo sapiens    |               |        |
|                       |               |        |
| <400> 1380            |               |        |
| tgacctaact tcaggagcgt | ctqtqaqaca tq | 32     |
|                       |               |        |
| <210> 1381            |               |        |
| <211> 29              |               |        |
| <212> DNA             |               |        |
| <213> Homo sapiens    |               |        |
| alle nome bupiens     |               |        |
| <400> 1381            |               |        |
| tgacccaaac atcatacccc | aatagtgca     | 29     |
|                       |               |        |
| <210> 1382            |               |        |
| <211> 29              |               |        |
| <212> DNA             |               |        |
| <213> Homo sapiens    |               |        |
| <400> 1382            |               |        |
| tttattcctc ccaactacca | ctagcactt     | 29     |
|                       | 55-5          | 23     |
| <210> 1383            |               |        |
| <211> 27              |               |        |
|                       |               |        |
| <212> DNA             |               |        |
| <213> Homo sapiens    |               |        |
| <400> 1383            |               |        |
| tgcttttaag ttttggccaa | ctgccga       | 27     |
|                       |               |        |
| <210> 1384            |               |        |
| <211> 22              |               |        |
| <212> DNA             |               |        |
| <213> Homo sapiens    |               |        |
| p0110                 |               |        |

| <400><br>tgggg | 1384<br>gaggt gcaaccttot gc   | 22 |
|----------------|-------------------------------|----|
| <210>          | 1385                          |    |
| <211>          |                               |    |
| <212>          |                               |    |
|                | Homo sapiens                  |    |
| <400>          | 1385                          |    |
|                | ccca gggggettgt               |    |
| 3              | 33333-4434                    | 20 |
| <210>          |                               |    |
| <211>          |                               |    |
| <212>          |                               |    |
| <213>          | Homo sapiens                  |    |
| <400>          | 1386                          |    |
| eggatt         | ggga ttggaatccc ttaagca       | 27 |
|                |                               |    |
| <210>          | 1387                          |    |
| <211>          | 27                            |    |
| <212>          | DNA                           |    |
| <213>          | Homo sapiens                  |    |
| <400>          | 1387                          |    |
| ccatta         | tggg gaccttcacc tgcttca       | 27 |
|                |                               |    |
| <210>          | 1388                          |    |
| <211>          | 20                            |    |
| <212>          | DNA                           |    |
| <213>          | Homo sapiens                  |    |
|                |                               |    |
| <400>          | 1388                          |    |
| atgccc         | atgt gcaagggcgc               | 20 |
|                |                               |    |
| <210>          | 1389                          |    |
|                | 32                            |    |
| <212>          | DNA                           |    |
| <213>          | Homo sapiens                  |    |
| <400>          | 1389                          |    |
| catcca         | tttc tcttcttcag gaagatcgtg ga | 32 |
|                |                               |    |
| <210>          | 1390                          |    |
| <211>          | 20                            |    |
|                | DNA                           |    |
| <213>          | Homo sapiens                  |    |
| <400>          | 1390                          |    |
|                |                               |    |
| LCCCac         | catg gctgtggccc               | 20 |
|                |                               |    |
| <210>          | 1391                          |    |
| <211>          | 26                            |    |

| WO 2004/042346                             | PCT/US2003/012946 |
|--------------------------------------------|-------------------|
| <212> DNA<br><213> Homo sapiens            |                   |
| •                                          |                   |
| <400> 1391<br>ggagcttcct ttcacacaca ggcctg | 26                |
| <210> 1392                                 |                   |
| <211> 21                                   |                   |
| <212> DNA                                  |                   |
| <213> Homo sapiens                         |                   |
| <400> 1392                                 |                   |
| tcaggagacc tgggcccagc a                    | 21                |
| <210> 1393                                 |                   |
| <211> 23                                   |                   |
| <212> DNA                                  |                   |
| <213> Homo sapiens                         |                   |
| <400> 1393                                 |                   |
| ttcgacctga gcctgcggag aga                  | 23                |
| <210> 1394                                 |                   |
| <211> 31                                   |                   |
| <212> DNA                                  |                   |
| <213> Homo sapiens                         |                   |
| <400> 1394                                 |                   |
| ggaaacaaaa ctggcagttt gtccatttga a         | 31                |
|                                            |                   |
| <210> 1395                                 |                   |
| <211> 20                                   |                   |
| <212> DNA                                  |                   |
| <213> Homo sapiens                         |                   |
| <400> 1395<br>tggagggggc agcgtgctgt        |                   |
| -ggagggggc agegegetgt                      | 20                |
| <210> 1396                                 |                   |
| <211> 20                                   |                   |
| <212> DNA                                  |                   |
| <213> Homo sapiens                         |                   |
| <400> 1396                                 |                   |
| ccgagcgcgc gaatctccag                      | 20                |
| <210> 1397                                 |                   |
| <211> 20                                   |                   |
| <212> DNA                                  |                   |
| <213> Homo sapiens                         |                   |
| <400> 1397                                 |                   |
| aggtgggccg gtcctctggg                      | 20                |

<210> 1398 <211> 26 <212> DNA <213> Homo sapiens <400> 1398 aacaccttac aagggcggag aagcca 26 <210> 1399 <211> 22 <212> DNA <213> Homo sapiens <400> 1399 tgggccctcg ttgcatttgg tg 22 <210> 1400 <211> 35 <212> DNA <213> Homo sapiens <400> 1400 tgggtagtgt ttcaggcata ttttgaatac atcga 35 <210> 1401 <211> 32 <212> DNA <213> Homo sapiens <400> 1401 tcattattcc gtaattcaac acagcactac ca 32 <210> 1402 <211> 31 <212> DNA <213> Homo sapiens <400> 1402 tgtacactgg ataaagaaaa ccatgaaacg c 31 <210> 1403 <211> 29 <212> DNA <213> Homo sapiens <400> 1403 29 ccatccctta aatcctcagg tcacaacca <210> 1404 <211> 22 <212> DNA <213> Homo sapiens <400> 1404 teeetteacc ttegetgeca ca 22

PCT/US2003/012946

WO 2004/042346

| <211>          |                              |    |
|----------------|------------------------------|----|
| <212><br><213> | DNA<br>Homo sapiens          |    |
| <400>          | 1405                         |    |
|                |                              | 22 |
|                |                              |    |
| <210>          | 1406                         |    |
| <211>          |                              |    |
| <212>          | DNA<br>Homo sapiens          |    |
| 12137          | Italia gapterio              |    |
| <400>          |                              | 20 |
| egetge         | ctgg gtgcgactgc              | 20 |
| <210>          | 1407                         |    |
| <211>          |                              |    |
| <212>          |                              |    |
| <213>          | Homo sapiens                 |    |
| <400>          |                              |    |
| ccccaa         | eggt gacaaacaca etca         | 24 |
|                |                              |    |
| <210>          |                              |    |
| <211><br><212> |                              |    |
|                | Homo sapiens                 |    |
|                |                              |    |
| <400>          | 1408<br>ggac agaagaaggc agca | 24 |
| 090000         | 2240 #24#24#224 #24#         |    |
| <210>          | 1409                         |    |
| <211>          |                              |    |
| <212>          |                              |    |
| <213>          | Homo sapiens                 |    |
| <400>          | 1409                         |    |
| cacage         | cctg gcctctgctc aact         | 24 |
|                |                              |    |
| <210>          |                              |    |
| <211><br><212> |                              |    |
|                | Homo sapiens                 |    |
|                |                              |    |
| <400>          |                              |    |
| ccata          | cagc actgctggag gaagagga     | 28 |
| 210            | 141                          |    |
| <210><br><211> | 1411                         |    |
| <211>          |                              |    |
|                | Homo sapiens                 |    |

| W      | O 2004/042346     |                 | PCT/US2003/012946 |
|--------|-------------------|-----------------|-------------------|
| <400>  | 1411              |                 |                   |
|        | ccca aaatccaaac ( | tgattgactg ag   | 32                |
| caagae |                   | -546654665 45   |                   |
| <210>  | 1412              |                 |                   |
| <211>  | 24                |                 |                   |
| <211>  |                   |                 |                   |
|        | Homo sapiens      |                 |                   |
|        |                   |                 |                   |
| <400>  |                   |                 |                   |
| tgcact | gtga caagetgeae q | gtgg            | 24                |
|        |                   |                 |                   |
| <210>  | 1413              |                 |                   |
| <211>  | 28                |                 |                   |
| <212>  | DNA               |                 |                   |
| <213>  | Homo sapiens      |                 |                   |
| <400>  | 1412              |                 |                   |
|        | ttgg ccacaagaat a | aaggagga        | 28                |
|        | cegg coacaagaac . | aagcagca        | 20                |
| 212    | 1414              |                 |                   |
| <210>  |                   |                 |                   |
| <211>  |                   |                 |                   |
|        | Homo sapiens      |                 |                   |
| <213>  | Homo sapiens      |                 |                   |
|        | 1414              |                 |                   |
| ccacca | aaga actgtcagca   | gctgcc          | 26                |
|        |                   |                 |                   |
| <210>  | 1415              |                 |                   |
|        | 34                |                 |                   |
| <212>  |                   |                 |                   |
|        | Homo sapiens      |                 |                   |
|        |                   |                 |                   |
| <400>  | 1415              |                 |                   |
| tectca | gtca agttcagagt   | cttcagagac ttcg | 34                |
|        |                   |                 |                   |
| <210>  |                   |                 |                   |
| <211>  |                   |                 |                   |
| <212>  | DNA               |                 |                   |
| <213>  | Homo sapiens      |                 |                   |
| <400>  | 1416              |                 |                   |
|        | caat tcccacaaaa   | actaac          | 26                |
|        |                   | 3 33            |                   |
| <210>  | 1417              |                 |                   |
| <211>  |                   |                 |                   |
| <211>  |                   |                 |                   |
|        | Homo sapiens      |                 |                   |
|        | <del>-</del>      |                 |                   |
| <400>  | 1417              | ~~~             | 24                |
| aaaaca | gctg gagagtccca   | geeg            | 24                |
|        |                   |                 |                   |
| <210>  | 1418              |                 |                   |
| <211>  |                   |                 |                   |
| <212>  | DNA               |                 |                   |

| WO 2004/042346                      | PCT/US2003/012946 |
|-------------------------------------|-------------------|
| <213> Homo sapiens                  |                   |
| <400> 1418                          |                   |
| acattgacat gggtgggttt               | 20                |
| <210> 1419                          |                   |
| <211> 31                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1419                          |                   |
| teettgtgat tggtggtgaa aetttetttg e  | 31                |
| <210> 1420                          |                   |
| <211> 31                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1420                          |                   |
| tgctgtgtaa caagttaggg tggacttgct g  | 31                |
|                                     |                   |
| <210> 1421                          |                   |
| <211> 32                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1421                          |                   |
| tgagaaaaat tcaaaagaat cgaaaggttg ca | 32                |
|                                     |                   |
| <210> 1422<br><211> 31              |                   |
| <211> 31<br><212> DNA               |                   |
| <213> Homo sapiens                  |                   |
|                                     |                   |
| <400> 1422                          | 31                |
| ccagcatttc tataccactt tgggctttgg t  | 31                |
| <210> 1423                          |                   |
| <211> 29                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1423                          |                   |
| tggaaaatgt gcaatatgtg atgtggcaa     | 29                |
|                                     |                   |
| <210> 1424                          |                   |
| <211> 26                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1424                          |                   |
| tgcaagggct ctgtgacaag gaagga        | 26                |
|                                     |                   |
| <210> 1425                          |                   |

WO 2004/042346 PCT/US2003/012946 <211> 22 <212> DNA <213> Homo sapiens <400> 1425 cqqcaaatqt aqcatqqqca cc 22 <210> 1426 <211> 33 <212> DNA <213> Homo sapiens <400> 1426 tqqattacct tttqtcaaag catcatctca aca 33 <210> 1427 <211> 27 <212> DNA <213> Homo sapiens <400> 1427 ccctccatca tcgacactgg tctagcc 27 <210> 1428 <211> 21 <212> DNA <213> Homo sapiens <400> 1428 tggcaggggt ggctgcctca t 21 <210> 1429 <211> 20 <212> DNA <213> Homo sapiens <400> 1429 20 tcatgggttt ggctgccccg <210> 1430 <211> 25 <212> DNA <213> Homo sapiens 25

<400> 1430
cccctatggg gatggtccac tgtca

<210> 1431
<211> 32
<212> DNA
<213+ Homo sapiens

<400> 1431
ggcaagagac tggactgaga ctttgtgaga aa

| <210>  | 1433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <211>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <212>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <213>  | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <400>  | 1432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|        | gaac caaacaatct cttttcaaaa ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32 |
| 5-5-,  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <211>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <212>  | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <213>  | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| <400>  | 1433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|        | cagc cagttagtgc cacctga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27 |
| cattle | tage tagetage tacetga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2, |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <211>  | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <212>  | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <213>  | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| <400>  | 1434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|        | gatt tagagtgctg tccggtgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28 |
| getgat | gatt tagagigetg teeggigg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <211>  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <212>  | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|        | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|        | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |    |
| <400>  | 1425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|        | ttct ttcagtggct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 |
| CCCaaa | ttet tteagtgget                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <211>  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <212>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 12257  | none suprems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| <400>  | 1436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| caaggc | acca cacaacccag aaagga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210>  | 1437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| <211>  | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <212>  | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|        | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| -2133  | nome supreme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| -400.  | 1427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| <400>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| cactcg | gcat ttaaaatgtg ctgtcaaaac a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210>  | 1438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| <211>  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <212>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|        | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| ~2133  | nomo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| -400>  | 1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

| wo             | 2004/042346                  | PCT/US2003/012946 |
|----------------|------------------------------|-------------------|
|                |                              |                   |
| gggatt         | cccc taacctcatt ccccaa       | 26                |
|                |                              |                   |
| <210>          |                              |                   |
| <211>          |                              |                   |
| <212>          | DNA<br>Homo sapiens          |                   |
| <213>          | nomo saprens                 |                   |
| <400>          |                              |                   |
| tgtgtc         | aggt gaccctgatg aaaacatagc a | 31                |
|                |                              |                   |
| <210>          | 1440                         |                   |
| <211>          |                              |                   |
| <212>          |                              |                   |
| <213>          | Homo sapiens                 |                   |
| <400>          | 1440                         |                   |
|                | ggcc tgaagtccca gc           | 22                |
| _              |                              |                   |
| <210>          | 1441                         |                   |
| <211>          |                              |                   |
| <212>          |                              |                   |
|                | Homo sapiens                 |                   |
|                | -                            |                   |
| <400>          |                              |                   |
| caagcc         | tcat tcccaacctg cacct        | 25                |
|                |                              |                   |
| <210>          | 1442                         |                   |
| <211>          | 20                           |                   |
| <212>          |                              |                   |
| <213>          | Homo sapiens                 |                   |
| <400>          | 1442                         |                   |
|                | gget ceceatttge              | 20                |
| -555           | 33                           |                   |
|                |                              |                   |
| <210><br><211> |                              |                   |
| <211>          |                              |                   |
|                | Homo sapiens                 |                   |
|                |                              |                   |
| <400>          |                              |                   |
| caaggo         | atgg cgtagagggt gctg         | 24                |
|                |                              |                   |
| <210>          | 1444                         |                   |
| <211>          |                              |                   |
| <212>          |                              |                   |
| <213>          | Homo sapiens                 |                   |
| <400>          | 1444                         |                   |
|                | ecct cctcggccc               | 20                |
|                |                              |                   |

535

<210> 1445 <211> 34 <212> DNA <213> Homo sapiens

| <400> 1445<br>caggggtaac tccagaaagg attgatatct gtga | 34 |
|-----------------------------------------------------|----|
|                                                     |    |
| <210> 1446                                          |    |
| <211> 34                                            |    |
| <212> DNA                                           |    |
| <213> Homo sapiens                                  |    |
| <400> 1446                                          |    |
| tgccttacaa gaaagacata aaatgtccaa ggga               | 34 |
|                                                     |    |
| <210> 1447                                          |    |
| <211> 20                                            |    |
| <212> DNA                                           |    |
| <213> Homo sapiens                                  |    |
| <400> 1447                                          |    |
| ccactggggt tcaggcccca                               | 20 |
| ccaccagage ccagaccca                                |    |
|                                                     |    |
| <210> 1448                                          |    |
| <211> 20                                            |    |
| <212> DNA                                           |    |
| <213> Homo sapiens                                  |    |
| <400> 1448                                          |    |
| ctggcctcgc gctgctgctt                               | 20 |
|                                                     |    |
|                                                     |    |
| <210> 1449                                          |    |
| <211> 29                                            |    |
| <212> DNA                                           |    |
| <213> Homo sapiens                                  |    |
| <400> 1449                                          |    |
| ctcaaacctg aaatcagaag agggccatg                     | 29 |
|                                                     |    |
| <210> 1450                                          |    |
| <210> 1450<br><211> 20                              |    |
| <211> 20<br><212> DNA                               |    |
| <213> Homo sapiens                                  |    |
| 12107 Hollo Bupiolib                                |    |
| <400> 1450                                          |    |
| gcagccctc gtgctgcaca                                | 20 |
|                                                     |    |
| <210> 1451                                          |    |
| <211> 28                                            |    |
| <212> DNA                                           |    |
| <213> Homo sapiens                                  |    |
|                                                     |    |
| <400> 1451                                          |    |
| tcccgtggga tactatttca gacgtgca                      | 28 |
|                                                     |    |
| <210> 1452                                          |    |
| <211> 29                                            |    |

| •     | WO 2004/042346              | PCT/US2003/012946 |
|-------|-----------------------------|-------------------|
| <212  |                             |                   |
| <213: | > Homo sapiens              |                   |
| <400: | > 1452                      |                   |
| tcct  | gtacct gctcccaatc tgtgttcct | 29                |
|       |                             |                   |
| <210  | > 1453                      |                   |
|       | > 28                        |                   |
|       | > DNA<br>> Homo sapiens     |                   |
|       | > nomo sapiens              |                   |
|       | > 1453                      |                   |
| acgaa | agcatc cacagatccc tcaaaaca  | 28                |
|       |                             |                   |
|       | > 1454<br>> 20              |                   |
|       | > DNA                       |                   |
| <213  | > Homo sapiens              |                   |
| -400- | > 1454                      |                   |
|       | gatgaa cgccgctcct           | 20                |
|       |                             |                   |
| <210: | > 1455                      |                   |
|       | > 22                        |                   |
|       | > DNA                       |                   |
| <213  | > Homo sapiens              |                   |
| <400: | > 1455                      |                   |
| ccgg  | ctcgag gacgtggagg at        | 22                |
|       |                             |                   |
|       | > 1456                      |                   |
|       | > 20<br>> DNA               |                   |
|       | > Homo sapiens              |                   |
|       |                             |                   |
|       | > 1456<br>gatggc ctggccctgc | 20                |
|       | 333                         |                   |
| -210  | > 1457                      |                   |
|       | > 20                        |                   |
| <212  | > DNA                       |                   |
| <213  | > Homo sapiens              |                   |
| <400  | > 1457                      |                   |
|       | gggaac aagggggcca           | 20                |
|       |                             |                   |
| <210  | > 1458                      |                   |
| <211  |                             |                   |
|       | > DNA                       |                   |
| <213  | > Homo sapiens              |                   |
| <400  |                             |                   |
| tcag  | gtggtc aatggccagc acc       | 23                |

| WO 2004/042346                        | PCT/US2003/012946 |
|---------------------------------------|-------------------|
| <210> 1459                            |                   |
| <211> 25                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1459                            |                   |
| tggcttggat ttggggttac agcca           | 25                |
|                                       |                   |
| <210> 1460                            |                   |
| <211> 34<br><212> DNA                 |                   |
| <213> Homo sapiens                    |                   |
|                                       |                   |
| <400> 1460                            |                   |
| gaaaatgcac aaactgtcaa aattcatcat cgtg | 34                |
| <210> 1461                            |                   |
| <211> 21                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1461                            |                   |
| tcctgggtgg gtgcagcctc a               |                   |
|                                       | 21                |
| <210> 1462                            |                   |
| <211> 22                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1462                            |                   |
| gggactgcag ttgtggctgc ca              |                   |
| 5 5 5,5550 60                         | 22                |
| <210> 1463                            |                   |
| <211> 25                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1463                            |                   |
| tcttggcata cggagcagag ctgga           |                   |
| 50.00                                 | 25                |
| <210> 1464                            |                   |
| <211> 25                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1464                            |                   |
| gggggcctgt tggcttttcc ttttc           | 25                |
|                                       | 25                |
| <210> 1465                            |                   |
| <211> 29                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1465                            |                   |
| ggcagtgtca taggcagtat cctgcacag       | e -               |
|                                       | 29                |
|                                       |                   |

| <210>  | 1466                            |    |
|--------|---------------------------------|----|
| <211>  | 20                              |    |
| <212>  | DNA                             |    |
| <213>  | Homo sapiens                    |    |
|        | •                               |    |
| <400>  | 1466                            |    |
| qaqqqq | accc tctggcccga                 | 20 |
| 0 0000 |                                 |    |
|        |                                 |    |
| <210>  | 1467                            |    |
| <211>  | 34                              |    |
| <212>  | DNA                             |    |
| <213>  | Homo sapiens                    |    |
|        |                                 |    |
| <400>  | 1467                            |    |
| tggagg | gata tcaggtcatc attgtgtatc aaaa | 34 |
|        |                                 |    |
|        |                                 |    |
| <210>  | 1468                            |    |
| <211>  |                                 |    |
| <212>  |                                 |    |
| <213>  | Homo sapiens                    |    |
|        |                                 |    |
|        | 1468                            |    |
| tgtgtc | egeg atggtegtet ettaetgg        | 28 |
|        |                                 |    |
|        |                                 |    |
| <210>  | 1469                            |    |
| <211>  |                                 |    |
| <212>  |                                 |    |
| <213>  | Homo sapiens                    |    |
| .400-  | 1160                            |    |
| <400>  |                                 | 25 |
| gggttc | togt tgcaatcoto ggtoa           | 25 |
|        |                                 |    |
| <210>  | 1470                            |    |
|        |                                 |    |
| <211>  |                                 |    |
| <212>  | Homo sapiens                    |    |
| <213>  | nomo sapiens                    |    |
| <400>  | 1470                            |    |
|        | caca tetecegett atecte          | 26 |
| Jecate |                                 |    |
|        |                                 |    |
| <210>  | 1471                            |    |
| <211>  |                                 |    |
| <212>  |                                 |    |
|        | Homo sapiens                    |    |
| -2100  | tions argument                  |    |
| <400>  | 1471                            |    |
|        | ctgc tttgccccca                 | 20 |
|        | J J                             |    |
|        |                                 |    |
| <210>  | 1472                            |    |
| <211>  |                                 |    |
| <212>  |                                 |    |
|        | Homo sapiens                    |    |
|        |                                 |    |

| W      | O 2004/042346                  | PCT/US2003/012946 |
|--------|--------------------------------|-------------------|
| 100    | 1470                           |                   |
|        | 1472<br>ccac ccgattettg tatege | 26                |
| tggaag | ecae ecgattetty tatege         | 20                |
|        |                                |                   |
|        | 1473                           |                   |
| <211>  | 20                             |                   |
| <212>  | DNA                            |                   |
| <213>  | Homo sapiens                   |                   |
| <400>  | 1473                           |                   |
|        | accc tctggcccga                | 20                |
| 5 5    |                                |                   |
| 214    | 4.0.                           |                   |
| <210>  | 14 /4                          |                   |
|        | DNA                            |                   |
|        | Homo sapiens                   |                   |
| (215)  | nomo suprens                   |                   |
| <400>  | 1474                           |                   |
| ccctgg | acca acceggece                 | 19                |
|        |                                |                   |
| <210>  | 1475                           |                   |
| <211>  |                                |                   |
| <212>  |                                |                   |
|        | Homo sapiens                   |                   |
|        |                                |                   |
| <400>  |                                |                   |
| gacgga | agag aaattcactg gegeet         | 26                |
|        |                                |                   |
| <210>  | 1476                           |                   |
| <211>  |                                |                   |
|        | DNA                            |                   |
|        | Homo sapiens                   |                   |
|        | •                              |                   |
| <400>  | 1476                           |                   |
| tcaaat | tett ggecateetg aaaggge        | 27                |
|        |                                |                   |
| <210>  | 1477                           |                   |
| <211>  | 29                             |                   |
| <212>  | DNA                            |                   |
| <213>  | Homo sapiens                   |                   |
| <400>  | 1477                           |                   |
|        | :ctaa aggagettet gecaaagga     | 29                |
| cccaai | ctaa aggagettet geeaaagga      | 2,5               |
|        |                                |                   |
| <210>  | 1478                           |                   |
| <211>  | = -                            |                   |
| <212>  | DNA                            |                   |
| <213>  | Homo sapiens                   |                   |
| <400>  | 1478                           |                   |
|        | eege tgecaggtca                | 20                |
|        |                                |                   |
|        | 4.470                          |                   |
| <210>  | 1479                           |                   |
| <211>  |                                |                   |
| <212>  | NA                             |                   |

| ***            | J 2004/042540   |            |     |  | 1 € 1/632003 | 101274 |
|----------------|-----------------|------------|-----|--|--------------|--------|
| <213>          | Homo sapiens    |            |     |  |              |        |
|                |                 |            |     |  |              |        |
| <400>          |                 |            |     |  |              |        |
| cagtgg         | ccaa ttttcatacc | ctaagaagaa | tga |  |              | 33     |
|                |                 |            |     |  |              |        |
| <210>          | 1480            |            |     |  |              |        |
| <211>          | 21              |            |     |  |              |        |
| <212>          |                 |            |     |  |              |        |
| <213>          | Homo sapiens    |            |     |  |              |        |
| <400>          | 1480            |            |     |  |              |        |
|                | ggag cagagggccc | a          |     |  |              | 21     |
| caccag         | ggag cagagggecc | u          |     |  |              |        |
|                |                 |            |     |  |              |        |
| <210>          |                 |            |     |  |              |        |
|                | 26              |            |     |  |              |        |
|                | DNA             |            |     |  |              |        |
| <213>          | Homo sapiens    |            |     |  |              |        |
| <400>          | 1481            |            |     |  |              |        |
| ccacgt         | tgca aaatctgcaa | atccca     |     |  |              | 26     |
|                |                 |            |     |  |              |        |
| <210>          | 1402            |            |     |  |              |        |
| <211>          | 28              |            |     |  |              |        |
| <212>          |                 |            |     |  |              |        |
|                | Homo sapiens    |            |     |  |              |        |
|                |                 |            |     |  |              |        |
| <400>          |                 |            |     |  |              | 28     |
| gggttt         | tgac tgacgtgcat | teetetga   |     |  |              | 28     |
|                |                 |            |     |  |              |        |
| <210>          | 1483            |            |     |  |              |        |
| <211>          |                 |            |     |  |              |        |
| <212>          |                 |            |     |  |              |        |
| <213>          | Homo sapiens    |            |     |  |              |        |
| <400>          | 1483            |            |     |  |              |        |
|                | tgtc caagtcagca | ccacagg    |     |  |              | 27     |
|                |                 |            |     |  |              |        |
|                |                 |            |     |  |              |        |
| <210><br><211> | 1484            |            |     |  |              |        |
| <211>          |                 |            |     |  |              |        |
|                | Homo sapiens    |            |     |  |              |        |
|                |                 |            |     |  |              |        |
| <400>          | 1484            |            |     |  |              |        |
| aggggt         | ggtg atctggctga | 999        |     |  |              | 23     |
|                |                 |            |     |  |              |        |
| <210>          | 1485            |            |     |  |              |        |
| <211>          | 33              |            |     |  |              |        |
| <212>          |                 |            |     |  |              |        |
| <213>          | Homo sapiens    |            |     |  |              |        |
| <400>          | 1485            |            |     |  |              |        |
|                | tcca tttactcgag | acagaaatga | atc |  |              | 33     |
|                | ,               | 5 254      |     |  |              |        |
|                |                 |            |     |  |              |        |
| <210>          | 1486            |            |     |  |              |        |

PCT/US2003/012946

WO 2004/042346

WO 2004/042346 PCT/HS2003/012946 <211> 30 <212> DNA <213> Homo sapiens <400> 1486 gegteettet tettettgte gteettagge 30 <210> 1487 <211> 26 <212> DNA <213> Homo sapiens <400> 1487 26 tgggtgtcgc tgttgaagtc agagga <210> 1488 <211> 25 <211> 25 <213> Homo sapiens <400> 1488 25 ccggctgctt taatgagggc attga <210> 1489 <211> 26 <212> DNA <213> Homo sapiens <400> 1489 26 caaaggatgt gaggggaaaa aggggg <210> 1490 <211> 20 <212> DNA <213> Homo sapiens <400> 1490 cctcccaqcc caaaqcccca 20 <210> 1491 <211> 22 <212> DNA <213> Homo sapiens <400> 1491 catgggggtg tggaggtggg ag 22 <210> 1492 <211> 26 <212> DNA <213> Homo sapiens <400> 1492

26

geettgteat tgggeacaca acaacc

| 14.92                                       |                                                                                                                                                                                                                                                                                             |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| Homo sapiens                                |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| 1493                                        |                                                                                                                                                                                                                                                                                             |
| accaq qctctccaqq aatqqq                     | 26                                                                                                                                                                                                                                                                                          |
| 5 5 55 55 55                                | 20                                                                                                                                                                                                                                                                                          |
|                                             |                                                                                                                                                                                                                                                                                             |
| 1494                                        |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| Homo sapiens                                |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| 1494                                        |                                                                                                                                                                                                                                                                                             |
| gagg tagaggacag ttttctgtgt ca               | 32                                                                                                                                                                                                                                                                                          |
|                                             | 32                                                                                                                                                                                                                                                                                          |
|                                             |                                                                                                                                                                                                                                                                                             |
| 1495                                        |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| nomo sapiens                                |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| cccc ttaatcagac tttaaaagtg c                | 31                                                                                                                                                                                                                                                                                          |
|                                             |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| 1496                                        |                                                                                                                                                                                                                                                                                             |
| 20                                          |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| nomo saprens                                |                                                                                                                                                                                                                                                                                             |
| 1104                                        |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| tgcc ccgcgaacta                             | 20                                                                                                                                                                                                                                                                                          |
|                                             |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| 1497                                        |                                                                                                                                                                                                                                                                                             |
| 22                                          |                                                                                                                                                                                                                                                                                             |
| DNA                                         |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| nome suprome                                |                                                                                                                                                                                                                                                                                             |
| 1407                                        |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| ccca gactggtggg ca                          | 22                                                                                                                                                                                                                                                                                          |
|                                             |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| 20                                          |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| DNA                                         |                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                                                                             |
| DNA<br>Homo sapiens                         |                                                                                                                                                                                                                                                                                             |
| Homo sapiens                                |                                                                                                                                                                                                                                                                                             |
| Homo sapiens                                |                                                                                                                                                                                                                                                                                             |
| Homo sapiens                                | 20                                                                                                                                                                                                                                                                                          |
| Homo sapiens                                | 20                                                                                                                                                                                                                                                                                          |
| Homo sapiens<br>1498<br>gggc caggtggggg     | 20                                                                                                                                                                                                                                                                                          |
| Homo sapiens 1498 gggc caggtggggg           | 20                                                                                                                                                                                                                                                                                          |
| Homo sapiens  1498 gggc caggtggggg  1499 20 | 20                                                                                                                                                                                                                                                                                          |
| Homo sapiens 1498 gggc caggtggggg           | 20                                                                                                                                                                                                                                                                                          |
| Homo sapiens 1498 20 DNA                    | 20                                                                                                                                                                                                                                                                                          |
| Homo sapiens  1498 gggc caggtggggg  1499 20 | 20                                                                                                                                                                                                                                                                                          |
|                                             | 1493 26 DNA Homo sapiens 1493 accag getetecagg aatggg  1494 32 DNA Homo sapiens 1495 31 DNA Homo sapiens 1495 31 DNA Homo sapiens 1496 20 DNA Homo sapiens 1496 20 DNA Homo sapiens 1496 20 DNA Homo sapiens 1497 22 DNA Homo sapiens 1497 22 DNA Homo sapiens 1497 1497 teca gactggtggg ca |

| WO 2004/042346                      | PCT/US2003/012946 |
|-------------------------------------|-------------------|
| ccccagcaaa tgccaggggc               | 20                |
| <210> 1500                          |                   |
| <211> 28                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  | 2                 |
| <400> 1500                          |                   |
|                                     | 20                |
| ggccgttaat ttaatggggc caactttg      | 28                |
| <210> 1501                          |                   |
| <211> 28                            |                   |
|                                     |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1501                          | 20                |
| gcagcccatg gcatttttct ttttacca      | 28                |
| <210> 1502                          |                   |
|                                     |                   |
| <211> 23                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1502                          |                   |
| tggtgccttt gggatcgact ggg           | 23                |
|                                     |                   |
| <210> 1503                          |                   |
| <211> 33                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1503                          |                   |
| gctcatcaga gtaggagagt tgtagcaaag gc | a 33              |
| 5                                   |                   |
| <210> 1504                          |                   |
| <211> 33                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1504                          |                   |
| aactcatcgt gatgatggaa acaagaatga tg | a 33              |
|                                     |                   |
| <210> 1505                          |                   |
| <211> 21                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| •                                   |                   |
| <400> 1505                          |                   |
| tgccccagcc cttcccagag a             | 21                |
|                                     |                   |
| <210> 1506                          |                   |
| <211> 26                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
|                                     |                   |

| <400>  | 1506                            |     |
|--------|---------------------------------|-----|
|        |                                 | 26  |
| gggart | gaac cettgecatg agttee          | 20  |
|        |                                 |     |
|        |                                 |     |
| <210>  | 1507                            |     |
| <211>  | 25                              |     |
| <212>  | DNA                             |     |
|        | Homo sapiens                    |     |
| 12107  | nomo supreno                    |     |
|        | 1507                            |     |
| <400>  |                                 | 2.5 |
| gtctgg | agag aaggeettge teeca           | 25  |
|        |                                 |     |
|        |                                 |     |
| <210>  | 1508                            |     |
| <211>  | 21                              |     |
| <212>  | DNA                             |     |
| <213>  | Homo sapiens                    |     |
| 72201  | nome baggeons                   |     |
| <400>  | 1508                            |     |
|        |                                 | 21  |
| ggggat | gctg gagggccttc a               | 21  |
|        |                                 |     |
|        |                                 |     |
| <210>  | 1509                            |     |
| <211>  | 34                              |     |
| <212>  | DNA                             |     |
| <213>  | Homo sapiens                    |     |
|        |                                 |     |
| <400>  | 1509                            |     |
|        | ggca tggagggtac ctacttattc ttca | 34  |
| Cagaag | ggea tggagggtae etaeteatte ttea | 34  |
|        |                                 |     |
|        |                                 |     |
| <210>  | 1510                            |     |
| <211>  | 20                              |     |
| <212>  | DNA                             |     |
| <213>  | Homo sapiens                    |     |
|        |                                 |     |
| <400>  | 1510                            |     |
|        | agtg cacagococa                 | 20  |
| cegece | ageg cacagooca                  |     |
|        |                                 |     |
| .010   | 1511                            |     |
| <210>  | 1511                            |     |
| <211>  | 23                              |     |
| <212>  | DNA                             |     |
| <213>  | Homo sapiens                    |     |
|        |                                 |     |
| <400>  | 1511                            |     |
| ccagag | ctgg acctgggacc tgc             | 23  |
|        |                                 |     |
|        |                                 |     |
| <210>  | 1512                            |     |
|        |                                 |     |
| <211>  | 20                              |     |
| <212>  | DNA                             |     |
| <213>  | Homo sapiens                    |     |
|        |                                 |     |
| <400>  | 1512                            |     |
|        | tggg tggacgtggg                 | 20  |
| - 223- |                                 |     |
|        |                                 |     |
| <210>  | 1513                            |     |
|        |                                 |     |
| <211>  | 20                              |     |

| wo       | 2004/042346                  | PCT/US2003/012946 |
|----------|------------------------------|-------------------|
|          | DNA                          |                   |
| <213>    | Homo sapiens                 |                   |
| <400>    |                              |                   |
| gttccc   | cagg tecegecage              | 20                |
| <210>    |                              |                   |
| <211>    |                              |                   |
| <212>    |                              |                   |
|          | Homo sapiens                 |                   |
| <400>    |                              |                   |
| tgattg   | ettt ggtgettaae ttgaagtggg a | 31                |
| <210>    |                              |                   |
| <211>    |                              |                   |
| <212>    |                              |                   |
|          | Homo sapiens                 |                   |
|          | 1515                         |                   |
| actggct  | gga acgteggege               | 20                |
| <210>    |                              |                   |
| <211>    |                              |                   |
| <212>    |                              |                   |
| <213>    | Homo sapiens                 |                   |
| <400>    | 1516                         |                   |
| cgtgggg  | tgt gttggagtgt ggtg          | 24                |
| <210>    | 1517                         |                   |
| <211>    |                              |                   |
| <212>    | DNA                          |                   |
| <213>    | Homo sapiens                 |                   |
| <400>    |                              |                   |
| ttgacca  | gaa acccagggca ggg           | 23                |
| <210>    | 1518                         |                   |
| <211>    |                              |                   |
| <212>    |                              |                   |
| <213>    | Homo sapiens                 |                   |
| <400>    |                              |                   |
| aatggag  | tgg gctcgggcgc               | 20                |
| <210>    | 1510                         |                   |
| <210>    |                              |                   |
| <212>    |                              |                   |
|          | Homo sapiens                 |                   |
|          | 1519                         |                   |
| acagetga | aaa cccgcggggc               | 20                |
|          |                              |                   |

| wo      | 2004/042346                      | PCT/US2003/01294 |
|---------|----------------------------------|------------------|
| <210>   | 1520                             |                  |
| <211>   | 24                               |                  |
| <212>   | DNA                              |                  |
| <213>   | Homo sapiens                     |                  |
| <400>   | 1520                             |                  |
| tggcc   | ctcca actcttcttt gcga            | 24               |
|         |                                  |                  |
| <210>   |                                  |                  |
| <211>   |                                  |                  |
| <212>   |                                  |                  |
| <213>   | Homo sapiens                     |                  |
| <400>   |                                  |                  |
| aaacco  | gatat cottogogta otgaogga        | 28               |
| <210>   | 1522                             |                  |
| <211>   |                                  |                  |
| <212>   |                                  |                  |
|         | Homo sapiens                     |                  |
| <400>   | 1500                             |                  |
|         | ctgg acactggccc tqa              |                  |
| cacge   | acactygeee tga                   | 23               |
| <210>   | 1523                             |                  |
| <211>   | 20                               |                  |
| <212>   | DNA                              |                  |
| <213>   | Homo sapiens                     |                  |
| <400>   | 1523                             |                  |
|         | gtca aggccgcgtg                  | 20               |
|         |                                  | 2.0              |
| <210>   | 1524                             |                  |
| <211>   | 25                               |                  |
| <212>   | DNA                              |                  |
| <213>   | Homo sapiens                     |                  |
| <400>   | 1524                             |                  |
| tcaagc  | aaat gaggctggag ctgga            | 25               |
|         |                                  |                  |
| <210>   |                                  |                  |
| <211>   |                                  |                  |
| <212>   |                                  |                  |
| <213>   | Homo sapiens                     |                  |
| <400>   |                                  |                  |
| ccactg  | tatt toatttotgt gatgagttot gacca | 35               |
|         |                                  |                  |
|         | 1526                             |                  |
|         | 27                               |                  |
| <212>   |                                  |                  |
| <213>   | Homo sapiens                     |                  |
| <400>   | 1526                             |                  |
| gcctcag | ggtg gagcagtgag gtagaca          | 27               |
|         |                                  |                  |

| <210><br><211><br><212> | 21                              |    |
|-------------------------|---------------------------------|----|
|                         | Homo sapiens                    |    |
| <400>                   |                                 | 21 |
| Leegga                  | cagg cggctgtctc a               | 21 |
| <210><br><211>          | 1528<br>21                      |    |
| <211>                   |                                 |    |
|                         | Homo sapiens                    |    |
| <400>                   | 1528<br>ctqt gccqtqcccc a       | 21 |
| ccatct                  | cege geograpeed a               |    |
|                         | 1529                            |    |
| <211><br><212>          |                                 |    |
|                         | Homo sapiens                    |    |
| <400>                   |                                 | 23 |
| tgettt                  | gatg acacccaccg caa             | 23 |
| <210>                   |                                 |    |
| <211><br><212>          |                                 |    |
|                         | Homo sapiens                    |    |
| <400>                   |                                 |    |
| tttttc                  | gttt aaagtagtot toogtggttg ggaa | 34 |
| <210>                   |                                 |    |
| <211><br><212>          |                                 |    |
|                         | Homo sapiens                    |    |
| <400>                   | 1531                            |    |
| tggagg                  | agtg ggtgtcgctg ttga            | 24 |
| <210>                   |                                 |    |
| <211>                   |                                 |    |
| <212>                   | DNA<br>Homo sapiens             |    |
|                         | 1532                            |    |
|                         | tcag cggtggaggt gg              | 22 |
|                         |                                 |    |
|                         | 1533                            |    |
| <211><br><212>          | 21<br>DNA                       |    |
| <212>                   | Homo sapiens                    |    |
|                         |                                 |    |

| wo             | 2004/042346     |            |     | PCT/US2003/0 | 1294 |
|----------------|-----------------|------------|-----|--------------|------|
| <400>          | 1533            |            |     |              |      |
|                | aget tgtggecage | a          |     |              | 21   |
|                | 5 -5-55 5-      |            |     |              |      |
|                |                 |            |     |              |      |
| <210><br><211> |                 |            |     |              |      |
| <211>          |                 |            |     |              |      |
|                | Homo sapiens    |            |     |              |      |
|                |                 |            |     |              |      |
| <400>          |                 |            |     |              |      |
| tegetti        | tgc tgggactttc  | aaagcc     |     |              | 26   |
|                |                 |            |     |              |      |
| <210>          | 1535            |            |     |              |      |
| <211>          |                 |            |     |              |      |
| <212>          |                 |            |     |              |      |
| <213>          | Homo sapiens    |            |     |              |      |
| <400>          | 1535            |            |     |              |      |
| tgcgga         | gtt gagctctgtg  | gc         |     |              | 22   |
|                |                 |            |     |              |      |
| <210>          | 1536            |            |     |              |      |
| <211>          |                 |            |     |              |      |
| <212>          | DNA             |            |     |              |      |
| <213>          | Homo sapiens    |            |     |              |      |
| <400>          | 1536            |            |     |              |      |
|                | agag aactggaagg | ataacttqqq | qq  |              | 32   |
|                |                 |            |     |              |      |
| <210>          | 1537            |            |     |              |      |
| <211>          |                 |            |     |              |      |
| <212>          |                 |            |     |              |      |
| <213>          | Homo sapiens    |            |     |              |      |
|                |                 |            |     |              |      |
| <400>          | ttc ctccttccgg  |            |     |              | 22   |
| - gccuc        | ecc cccccccgg   | cc         |     |              | 22   |
|                |                 |            |     |              |      |
| <210>          |                 |            |     |              |      |
| <211><br><212> |                 |            |     |              |      |
|                | Homo sapiens    |            |     |              |      |
|                |                 |            |     |              |      |
| <400>          |                 |            |     |              |      |
| gccctgi        | tgt ggctggctgc  | a          |     |              | 21   |
|                |                 |            |     |              |      |
| <210>          |                 |            |     |              |      |
| <211>          |                 |            | •   |              |      |
| <212>          |                 |            |     |              |      |
| ~213>          | Homo sapiens    |            |     |              |      |
| <400>          |                 |            |     |              |      |
| cccttt         | atca gggagtactt | gtggtagacg | teg |              | 33   |
|                |                 |            |     |              |      |
| <210>          | 1540            |            |     |              |      |
| <211>          | 23              |            |     |              |      |
| <212>          | DNA             |            |     |              |      |

| WO 2004/042346                      | PCT/US2003/012946 |
|-------------------------------------|-------------------|
| <213> Homo sapiens                  |                   |
| <400> 1540                          |                   |
|                                     |                   |
| tcaaccggtc agagccagag ccc           | 23                |
| <210> 1541                          |                   |
| <211> 32                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1541                          |                   |
| ttcagcatgt tcacttgaag atccatcaga tg | 32                |
| <210> 1542                          |                   |
| <211> 28                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1542                          |                   |
| ccgtggtgat tttatagcat cctgggca      | 28                |
|                                     |                   |
| <210> 1543                          |                   |
| <211> 28                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1543                          |                   |
| cccaaggeta atectageea teteetge      | 28                |
| <210> 1544                          |                   |
| <211> 32                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1544                          |                   |
| caagtggatg ggaagtaaag ccctatgtgt ca | 32                |
| <210> 1545                          |                   |
| <211> 20                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1545                          |                   |
| ctcaggcacc tgcgtccccg               |                   |
|                                     | 20                |
| <210> 1546                          |                   |
| <211> 25                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 1546                          |                   |
| tcacgacgtt gtaaaacgac ggcca         | 25                |
| <210> 1547                          |                   |
|                                     |                   |

| WO 2004/042346                  |               | PCT/US2003/012946 |
|---------------------------------|---------------|-------------------|
| <211> 29                        |               |                   |
| <212> DNA                       |               |                   |
| <213> Homo sapiens              |               |                   |
| <400> 1547                      |               |                   |
| tctaccgtca tggagcttct           | gtttccaca     | 29                |
|                                 |               | 2,7               |
| <210> 1548                      |               |                   |
| <211> 22                        |               |                   |
| <212> DNA                       |               |                   |
| <213> Homo sapiens              |               |                   |
| <400> 1548                      |               |                   |
| tcgcccaggt agtggccgat           | ca            | 22                |
|                                 |               |                   |
| <210> 1549                      |               |                   |
| <211> 32                        |               |                   |
| <212> DNA<br><213> Homo sapiens |               |                   |
| (213) HOMO Sapiens              |               |                   |
| <400> 1549                      |               |                   |
| ggaagtette ttggttatee           | tggctttgga aa | 32                |
|                                 |               |                   |
| <210> 1550                      |               |                   |
| <211> 27<br><212> DNA           |               |                   |
| <213> Homo sapiens              |               |                   |
|                                 |               |                   |
| <400> 1550                      |               |                   |
| ccacaagcct gaaaatgcaa           | tgtcctg       | 27                |
|                                 |               |                   |
| <210> 1551                      |               |                   |
| <211> 25<br><212> DNA           |               |                   |
| <213> Homo sapiens              |               |                   |
|                                 |               |                   |
| <400> 1551                      |               |                   |
| tcctgtgcca aatcatctgc           | agcaa         | 25                |
| <210> 1552                      |               |                   |
| <211> 29                        |               |                   |
| <212> DNA                       |               |                   |
| <213> Homo sapiens              |               |                   |
| <400> 1552                      |               |                   |
| tcaggatcaa tgactgaaat           | ttggccatg     | 29                |
|                                 |               |                   |
| <210> 1553                      |               |                   |
| <211> 24                        |               |                   |
| <212> DNA                       |               |                   |
| <213> Homo sapiens              |               |                   |
| <400> 1553                      |               |                   |
| ccagcagggg aactctggac           | aggc          | 24                |
|                                 |               |                   |

| 1554                                                                                                                             |                                                                                                      |                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
| Homo sapiens                                                                                                                     |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
| 1554                                                                                                                             |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  | ngg 23                                                                                               | 3                                                                                                                                                                                                            |
| 55 5-555- 5                                                                                                                      |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
| DNA                                                                                                                              |                                                                                                      |                                                                                                                                                                                                              |
| Homo sapiens                                                                                                                     |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
| 1555                                                                                                                             |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  | agac 24                                                                                              | ı                                                                                                                                                                                                            |
| -55" 55"5"                                                                                                                       |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
| 1556                                                                                                                             |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
| Homo sapiens                                                                                                                     |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
| 1556                                                                                                                             |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  | agec 25                                                                                              | 5                                                                                                                                                                                                            |
| 3555440000 4                                                                                                                     |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
| Homo sapiens                                                                                                                     |                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                              |
| •                                                                                                                                |                                                                                                      |                                                                                                                                                                                                              |
| 1557                                                                                                                             |                                                                                                      |                                                                                                                                                                                                              |
| 1557                                                                                                                             | cccca 26                                                                                             | 5                                                                                                                                                                                                            |
|                                                                                                                                  | cccca 26                                                                                             | 5                                                                                                                                                                                                            |
| 1557                                                                                                                             | cecca 26                                                                                             | 5                                                                                                                                                                                                            |
| 1557<br>Ettg tggaccagtg t                                                                                                        | cccca 26                                                                                             | 5                                                                                                                                                                                                            |
| 1557<br>htttg tggaccagtg t                                                                                                       | coccoa 26                                                                                            | 5                                                                                                                                                                                                            |
| 1557<br>tttg tggaccagtg t<br>1558<br>33                                                                                          | cccca 26                                                                                             | 5                                                                                                                                                                                                            |
| 1557<br>tttg tggaccagtg t<br>1558<br>33<br>DNA                                                                                   | cecca 26                                                                                             | 5                                                                                                                                                                                                            |
| 1557<br>tttg tggaccagtg t<br>1558<br>33                                                                                          | cecca 26                                                                                             | 5                                                                                                                                                                                                            |
| 1557<br>tttg tggaccagtg t<br>1558<br>33<br>DNA                                                                                   | cecca 26                                                                                             | 5                                                                                                                                                                                                            |
| 1557<br>tttg tggaccagtg t<br>1558<br>33<br>DNA                                                                                   | cecca 26                                                                                             | 5                                                                                                                                                                                                            |
| 1557<br>tttg tggaccagtg t<br>1558<br>33<br>DNA<br>Homo sapiens                                                                   |                                                                                                      |                                                                                                                                                                                                              |
| 1557<br>ttttg tggaccagtg t<br>1558<br>33<br>DNA<br>Homo sapiens                                                                  |                                                                                                      |                                                                                                                                                                                                              |
| 1557<br>tttg tggaccagtg t<br>1558<br>33<br>DNA<br>Homo sapiens                                                                   |                                                                                                      |                                                                                                                                                                                                              |
| 1557<br>tttg tggaccagtg t<br>1558<br>33<br>DNA<br>Homo sapiens<br>1558<br>aaaa tcccactgta a                                      |                                                                                                      |                                                                                                                                                                                                              |
| 1557<br>tttg tggaccagtg t<br>1558<br>33<br>DNA<br>Homo sapiens<br>1558<br>aaaa tcccactgta a                                      |                                                                                                      |                                                                                                                                                                                                              |
| 1557<br>ttttg tggaccagtg t<br>1558<br>33<br>DNA<br>Homo sapiens<br>1558<br>aaaa tcccactgta a                                     |                                                                                                      |                                                                                                                                                                                                              |
| 1557<br>tttg tggaccagtg t<br>1558<br>33<br>DNA<br>Homo sapiens<br>1558<br>aaaa tcccactgta a<br>1559<br>36<br>DNA                 |                                                                                                      |                                                                                                                                                                                                              |
| 1557<br>ttttg tggaccagtg t<br>1558<br>33<br>DNA<br>Homo sapiens<br>1558<br>aaaa tcccactgta a                                     |                                                                                                      |                                                                                                                                                                                                              |
| 1557<br>tttg tggaccagtg t<br>1558<br>33<br>DNA<br>Homo sapiens<br>1558<br>aaaa tcccactgta a<br>1559<br>36<br>DNA                 |                                                                                                      |                                                                                                                                                                                                              |
| 1557<br>tttg tggaccagtg t<br>1558<br>33<br>DNA<br>Homo sapiens<br>1558<br>aaaa tcccactgta a<br>1559<br>36<br>DNA                 |                                                                                                      |                                                                                                                                                                                                              |
| 1557<br>tttg tggaccagtg t<br>1558<br>33<br>DNA<br>Homo sapiens<br>1558<br>aaaa tcccactgta a<br>1559<br>36<br>DNA<br>Homo sapiens | nacaaacatt tog 33                                                                                    | 3                                                                                                                                                                                                            |
| 1557<br>tttg tggaccagtg t<br>1558<br>33<br>DNA<br>Homo sapiens<br>1558<br>aaaa tcccactgta a<br>1559<br>36<br>DNA<br>Homo sapiens | nacaaacatt tog 33                                                                                    | 3                                                                                                                                                                                                            |
| 1557<br>tttg tggaccagtg t<br>1558<br>33<br>DNA<br>Homo sapiens<br>1558<br>aaaa tcccactgta a<br>1559<br>36<br>DNA<br>Homo sapiens | nacaaacatt tog 33                                                                                    | 3                                                                                                                                                                                                            |
| 1557 ttttg tggaccagtg t  1558 33 DNA Homo sapiens 1558 aaaa tcccactgta a  1559 36 DNA Homo sapiens                               | nacaaacatt tog 33                                                                                    | 3                                                                                                                                                                                                            |
| 1557 tttg tggaccagtg t  1558 33 DNA Homo sapiens 1558 aaaa tcccactgta a  1559 36 DNA Homo sapiens                                | nacaaacatt tog 33                                                                                    | 3                                                                                                                                                                                                            |
| 1557 ttttg tggaccagtg t  1558 33 DNA Homo sapiens 1558 aaaa tcccactgta a  1559 36 DNA Homo sapiens 1559 tgtt tttacatgtg g        | nacaaacatt tog 33                                                                                    | 3                                                                                                                                                                                                            |
| 1557 tttg tggaccagtg t  1558 33 DNA Homo sapiens 1558 aaaa tcccactgta a  1559 36 DNA Homo sapiens                                | nacaaacatt tog 33                                                                                    | 3                                                                                                                                                                                                            |
| 1557 ttttg tggaccagtg t  1558 33 DNA HOMO sapiens 1559 36 DNA HOMO sapiens 1559 tgtt tttacatgtg g  1560 20 DNA                   | nacaaacatt tog 33                                                                                    | 3                                                                                                                                                                                                            |
| 1557 ttttg tggaccagtg t  1558 33 DNA Homo sapiens 1558 aaaa tcccactgta a  1559 36 DNA Homo sapiens 1559 tgtt tttacatgtg g        | nacaaacatt tog 33                                                                                    | 3                                                                                                                                                                                                            |
|                                                                                                                                  | 1555<br>24<br>DNA<br>Homo sapiens<br>1555<br>ccgga ggagtcaaag g<br>1556<br>25<br>DNA<br>Homo sapiens | DNA Homo sapiens 1555 24 DNA Homo sapiens 1555 cegga ggagtcaaag gggc 24 1556 25 DNA Homo sapiens 1556 25 Company and the sapiens 1556 25 DNA Homo sapiens 26 1557 26 DNA DNA DNA DNA DNA DNA DNA DNA DNA DNA |

| WO 2004/042346                     | PCT/US2003/012946 |
|------------------------------------|-------------------|
| caccccaccc ccagcccatt              | 20                |
| <210> 1561                         |                   |
| <211> 23                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| <400> 1561                         |                   |
| tgaaatgaga ggtggcccgt ggg          | 23                |
| <210> 1562                         |                   |
| <211> 22                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| <400> 1562                         |                   |
| gcccatccgc tcatggatgt cc           | 22                |
| <210> 1563                         |                   |
| <211> 31                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| <400> 1563                         |                   |
| gaggtacaca tttgaatgac aacaggggct c |                   |
| 2 22                               | 31                |
| <210> 1564                         |                   |
| <211> 21                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| <400> 1564                         |                   |
| ccacgatggc cctgctggtc a            | 21                |
| <210> 1565                         |                   |
| <211> 23                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| <400> 1565                         |                   |
| cctccgcggc ctctttgttt gaa          | 23                |
| <210> 1566                         |                   |
| <211> 25                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |
| <400> 1566                         |                   |
| tgcttacact ggcctgattg gtggg        | 25                |
| <210> 1567                         |                   |
| <211> 36                           |                   |
| <212> DNA                          |                   |
| <213> Homo sapiens                 |                   |

| 1567                                                                                        |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| tetg atacctgett t                                                                           | taaaatgga gctaga                                                             | 36                                                                                                                                             |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| 20                                                                                          |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| DNA                                                                                         |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| Homo sapiens                                                                                |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| 1568                                                                                        |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             | •                                                                            | 20                                                                                                                                             |                                                                                                                                                                        |
| ccca ccccgacccg                                                                             |                                                                              | 20                                                                                                                                             |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| Homo sapiens                                                                                |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| 1569                                                                                        |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| cccc aattcttggc c                                                                           |                                                                              | 21                                                                                                                                             |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| 1570                                                                                        |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| nomo saprens                                                                                |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| cccg ctagcccact                                                                             |                                                                              | 20                                                                                                                                             |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| 1571                                                                                        |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| 20                                                                                          |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| DNA                                                                                         |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| Homo sapiens                                                                                |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
|                                                                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| 1571                                                                                        |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| 1571                                                                                        |                                                                              | 20                                                                                                                                             |                                                                                                                                                                        |
| 1571<br>atgc ggctgtgcca                                                                     |                                                                              | _ 20                                                                                                                                           |                                                                                                                                                                        |
|                                                                                             |                                                                              | 20                                                                                                                                             |                                                                                                                                                                        |
| atgc ggctgtgcca                                                                             |                                                                              | 20                                                                                                                                             |                                                                                                                                                                        |
| atgc ggctgtgcca                                                                             |                                                                              | . 20                                                                                                                                           |                                                                                                                                                                        |
| atgc ggctgtgcca<br>1572<br>21                                                               |                                                                              | 20                                                                                                                                             |                                                                                                                                                                        |
| atgc ggctgtgcca<br>1572<br>21<br>DNA                                                        |                                                                              | . 20                                                                                                                                           |                                                                                                                                                                        |
| atgc ggctgtgcca<br>1572<br>21                                                               |                                                                              | 20                                                                                                                                             |                                                                                                                                                                        |
| atgc ggctgtgcca<br>1572<br>21<br>DNA                                                        |                                                                              | . 20                                                                                                                                           |                                                                                                                                                                        |
| atgc ggctgtgcca<br>1572<br>21<br>DNA                                                        |                                                                              | . 20                                                                                                                                           |                                                                                                                                                                        |
| 1572<br>21<br>DNA<br>Homo sapiens                                                           |                                                                              | . 20                                                                                                                                           |                                                                                                                                                                        |
| 1572<br>21<br>DNA<br>Homo sapiens                                                           |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| 1572<br>21<br>DNA<br>Homo sapiens                                                           |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| 1572<br>21<br>DNA<br>Homo sapiens<br>1572<br>aggac acagccaggg c                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| 1572 21 DNA Homo sapiens 1572 ggac acagccaggg c                                             |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| atgc ggctgtgcca  1572 21 DNA Homo sapiens 1572 ggac acagccaggg c                            |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| atgc ggctgtgcca  1572 21 DNA Homo sapiens 1572 ggac acagccaggg c                            |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| atgc ggctgtgcca  1572 21 DNA Homo sapiens 1572 ggac acagccaggg c                            |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| 1572 21 DNA Homo sapiens 1573 1573 344 DNA Homo sapiens                                     |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| atgc ggctgtgcca  1572 21 DNA Homo sapiens  1572 ggac acagccaggg c  1573 34 DNA Homo sapiens |                                                                              | 21                                                                                                                                             |                                                                                                                                                                        |
| 1572 21 DNA Homo sapiens 1573 1573 344 DNA Homo sapiens                                     |                                                                              |                                                                                                                                                |                                                                                                                                                                        |
| atgc ggctgtgcca  1572 21 DNA Homo sapiens  1572 ggac acagccaggg c  1573 34 DNA Homo sapiens |                                                                              | 21                                                                                                                                             |                                                                                                                                                                        |
| atgc ggctgtgcca  1572 21 DNA Homo sapiens  1572 ggac acagccaggg c  1573 34 DNA Homo sapiens |                                                                              | 21                                                                                                                                             |                                                                                                                                                                        |
| atgc ggctgtgcca  1572 21 DNA Homo sapiens  1572 ggac acagccaggg c  1573 34 DNA Homo sapiens |                                                                              | 21                                                                                                                                             |                                                                                                                                                                        |
|                                                                                             | 1568 20 DNA Homo sapiens 1568 cccca ccccgacccg 1569 21 DNA Homo sapiens 1569 | 20 DNA Homo sapiens 1568 1569 21 DNA Homo sapiens 1569 21 DNA Homo sapiens 1569 cccc aattettggc c 1570 20 DNA Homo sapiens 1570 2ccg ctagccact | 1568 20 DNA Homo sapiens  1568 secca cecegaceg 20  1569 21 DNA Homo sapiens  1569 secce aattettgge c 21  1570 20 DNA Homo sapiens  1570 geog ctagecact 20  1571 20 DNA |

WO 2004/042346 PCT/US2003/012946 <212> DNA <213> Homo sapiens <400> 1574 gagcagagac caacettete aaagttggtg a 31 <210> 1575 <211> 28 <212> DNA <213> Homo sapiens <400> 1575 28 geogtgagtt tttgetetta etcecagg <210> 1576 <211> 25 <212> DNA <213> Homo sapiens <400> 1576 25 cagggaggac aaactctggg ctgga <210> 1577 <211> 20 <212> DNA <213> Homo sapiens <400> 1577 caccoggttg gtcccagccc 20 <210> 1578 <211> 20 <212> DNA <213> Homo sapiens <400> 1578 20 tggctgctgc tgcctccgtg <210> 1579 <211> 29 <212> DNA <213> Homo sapiens <400> 1579 ggccagggtc tctggaagag aacttttca 29 <210> 1580 <211> 20 <212> DNA <213> Homo sapiens <400> 1580 ccgtcgctgt ccacaggggc 20

WO 2004/042346 PCT/US2003/012946 <210> 1581 <211> 27 <212> DNA <213> Homo sapiens <400> 1581 cccgacaaca aaatgcctca agtgagg 27 <210> 1582 <211> 20 <212> DNA <213> Homo sapiens <400> 1582 ggcccttgga cggcatggct 20 <210> 1583 <211> 24 <212> DNA <213> Homo sapiens <400> 1583 cctgcageca gcactggtae agea 24 <210> 1584 <211> 30 <212> DNA <213> Homo sapiens <400> 1584 tgcaaatgtc tttgcttgct tgtactcacg 30 <210> 1585 <211> 34 <212> DNA <213> Homo sapiens <400> 1585 tcagatttca catgtatggc tctgtcctac tgct 34 <210> 1586 <211> 35 <212> DNA <213> Homo sapiens <400> 1586 35 . ccaqaqcatt ttccattaaa ccaattcttt qatca <210> 1587 <211> 27 <212> DNA <213> Homo sapiens <400> 1587 aacgtaatca tacctctagt catagca 27

| <210><br><211> |                                 |    |
|----------------|---------------------------------|----|
| <212>          |                                 |    |
| <213>          | Homo sapiens                    |    |
| <400>          |                                 |    |
| cageto         | cactg tgaaggettg ageetea        | 27 |
|                |                                 |    |
| <210>          |                                 |    |
| <211><212>     |                                 |    |
|                | Homo sapiens                    |    |
|                |                                 |    |
| <400>          |                                 |    |
| CCCLLC         | eccc gacctggggt                 | 20 |
|                |                                 |    |
| <210><br><211> |                                 |    |
| <211>          |                                 |    |
|                | Homo sapiens                    |    |
|                |                                 |    |
| <400>          | 1590<br>octoc agogogtgag atotga |    |
| 994000         | acco agogogogag accoga          | 26 |
|                |                                 |    |
| <210><br><211> |                                 |    |
| <212>          |                                 |    |
|                | Homo sapiens                    |    |
| <400>          | 1501                            |    |
|                | tggt gccatgactg cct             |    |
|                | 55 555                          | 23 |
| <210>          | 1502                            |    |
| <211>          |                                 |    |
| <212>          |                                 |    |
| <213>          | Homo sapiens                    |    |
| <400>          | 1592                            |    |
|                | catc gtgaggggcc                 | 20 |
|                |                                 |    |
| <210>          | 1593                            |    |
| <211>          |                                 |    |
| <212>          |                                 |    |
| <213>          | Homo sapiens                    |    |
| <400>          | 1593                            |    |
|                | atca acagagcatg ctaccacttc agt  | 33 |
|                |                                 |    |
| <210>          | 1594                            |    |
| <211>          |                                 |    |
|                | DNA                             |    |
| <213>          | Homo sapiens                    |    |

| WO 2004/042346                         | PCT/US2003/012946 |
|----------------------------------------|-------------------|
| <400> 1594                             |                   |
| tgagaaagtg aaattggggc ttgtggaga        | 29                |
| -9-9                                   |                   |
| <210> 1595                             |                   |
| <210> 1595<br><211> 24                 |                   |
| <212> DNA                              |                   |
| <213> Homo sapiens                     |                   |
| <400> 1595                             |                   |
| gtgggattgg ctcagttttg ccca             | 24                |
| 3 333 33 3                             |                   |
| <210> 1596                             |                   |
| <211> 30                               |                   |
| <212> DNA                              |                   |
| <213> Homo sapiens                     |                   |
| <400> 1596                             |                   |
| gagetgagat getgtgeaac tgtttaaggg       | 30                |
| 2020020200 2002020000 0200000255       |                   |
| 010 1508                               |                   |
| <210> 1597<br><211> 23                 |                   |
| <211> 23<br><212> DNA                  |                   |
| <213> Homo sapiens                     |                   |
|                                        |                   |
| <400> 1597                             |                   |
| gtggggtcag caccatttgc tgg              | 23                |
|                                        |                   |
| <210> 1598                             |                   |
| <211> 20                               |                   |
| <212> DNA                              |                   |
| <213> Homo sapiens                     |                   |
| <400> 1598                             |                   |
| gccctggtgg ggtgacacgc                  | 20                |
|                                        |                   |
| <210> 1599                             |                   |
| <211> 34                               |                   |
| <212> DNA                              |                   |
| <213> Homo sapiens                     |                   |
| <400> 1599                             |                   |
| aacttgtttt acccctctc ctcaacatct tgtc   | 34                |
| -                                      |                   |
| <210> 1600                             |                   |
| <211> 35                               |                   |
| <211> 35<br><212> DNA                  |                   |
| <213> Homo sapiens                     |                   |
|                                        |                   |
| <400> 1600                             | 35                |
| tggacttcct ttgtgattcc ttttcaatct cactc | 33                |
|                                        |                   |
| <210> 1601                             |                   |
| <211> 30<br><212> DNA                  |                   |
| <212> DNA                              |                   |

| WO 2004/042346                   | PCT/US2003/012946 |
|----------------------------------|-------------------|
| <213> Homo sapiens               |                   |
| <400> 1601                       |                   |
| geetttttet tiggaaatge aactetgetg |                   |
| geotettet tiggaaatge aactetgetg  | 30                |
| <210> 1602                       |                   |
| <211> 27                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 1602                       |                   |
| tggacaaacg gtcttgcaca aatgacg    | 27                |
| <210> 1603                       |                   |
| <211> 27                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 1603                       |                   |
| ccaaggtcac ctagcctgct ttttgcc    | 27                |
| <210> 1604                       |                   |
| <211> 23                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 1604                       |                   |
| ttcccagget geeteteete ace        | 23                |
| <210> 1605                       |                   |
| <211> 23                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 1605                       |                   |
| tcctgggccc agtctcacac tgg        | 23                |
| <210> 1606                       |                   |
| <211> 28                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 1606                       |                   |
| agettetttg cacatgtaaa geaggeea   | 28                |
| 010                              |                   |
| <210> 1607                       |                   |
| <211> 22                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 1607                       |                   |
| tgggagcaga ggttcagccc ca         | 22                |
| <210> 1608                       |                   |
|                                  |                   |

| <211>   | 27                              |     |
|---------|---------------------------------|-----|
| <212>   | DNA                             |     |
| <213>   | Homo sapiens                    |     |
|         | •                               |     |
| <400>   | 1608                            |     |
|         | caga ctgtggacac cccatct         | 27  |
| cgagga  | caga Cigiggacae cecatee         |     |
|         |                                 |     |
| 0.7.0   | 1600                            |     |
|         | 1609                            |     |
| <211>   | 26                              |     |
| <212>   |                                 |     |
| <213>   | Homo sapiens                    |     |
|         |                                 |     |
| <400>   | 1609                            |     |
| ctgtaa  | gccc ccttttggat gccaaa          | 26  |
|         |                                 |     |
|         |                                 |     |
| <210>   | 1610                            |     |
| <211>   | 24                              |     |
| <212>   |                                 |     |
|         | Homo sapiens                    |     |
| 12137   | 1000 Suprem                     |     |
| <400>   | 1610                            |     |
|         | tggt gctgaatgtg gaca            | 24  |
| 110000  | tggt getgaatgtg gaea            | 24  |
|         |                                 |     |
|         |                                 |     |
| <210>   |                                 |     |
| <211>   |                                 |     |
| <212>   |                                 |     |
| <213>   | Homo sapiens                    |     |
|         |                                 |     |
| <400>   | 1611                            |     |
| tcatca  | acaa caaacatgca gtttctttct ctga | 34  |
|         |                                 |     |
|         |                                 |     |
| <210>   | 1612                            |     |
| <211>   |                                 |     |
| <212>   |                                 |     |
|         | Homo sapiens                    |     |
| (213)   | 110/110 Bapietis                |     |
| <400>   | 1612                            |     |
|         |                                 | 31  |
| ttgatt  | gcaa atggaggtac agtttctgcc t    | 31  |
|         |                                 |     |
|         |                                 |     |
| <210>   |                                 |     |
| <211>   |                                 |     |
| <212>   |                                 |     |
| <213>   | Homo sapiens                    |     |
|         |                                 |     |
| <400>   | 1613                            |     |
| cgcaac  | aaca agcgcacgca                 | 20  |
|         |                                 |     |
|         |                                 |     |
| <210>   | 1614                            |     |
| <211>   | 32                              |     |
| <212>   |                                 |     |
| <213>   | Homo sapiens                    |     |
| ~4132   | nome suprems                    |     |
| -400:   | 1614                            |     |
| <400>   | 1614                            | 2.2 |
| r.ccaaa | aaga atttcatgtt tagagctgct gc   | 32  |

| <210>   | 1615            |            |     |     |
|---------|-----------------|------------|-----|-----|
| <211>   |                 |            |     |     |
| <212>   |                 |            |     |     |
|         | Homo sapiens    |            |     |     |
| (213)   | nomo saprens    |            |     |     |
|         |                 |            |     |     |
|         | 1615            |            |     |     |
| cgatagi | ttgg gcatctgtat | ttccacttgt | gtg | 33  |
|         |                 |            |     |     |
|         |                 |            |     |     |
| <210>   |                 |            |     |     |
| <211>   |                 |            |     |     |
| <212>   | DNA             |            |     |     |
| <213>   | Homo sapiens    |            |     |     |
|         | -               |            |     |     |
| <400>   | 1616            |            |     |     |
| agaggg  | gaaa acctattcta | cccaacacag | ca  | 32  |
| -9-355  | ,               |            |     |     |
|         |                 |            |     |     |
| <210>   | 1617            |            |     |     |
|         | 22              |            |     |     |
| <212>   |                 |            |     |     |
|         | Homo sapiens    |            |     |     |
| <213>   | HOMO Sapiens    |            |     |     |
| 400     | 1617            |            |     |     |
| <400>   | 1617            |            |     |     |
| tgggca  | actt ggggaagccc | CE         |     | 22  |
|         |                 |            |     |     |
|         |                 |            |     |     |
| <210>   |                 |            |     |     |
| <211>   |                 |            |     |     |
| <212>   | DNA             |            |     |     |
| <213>   | Homo sapiens    |            |     |     |
|         | •               |            |     |     |
| <400>   | 1618            |            |     |     |
|         | ttga ctatgtggcc | caa        |     | 23  |
| ~~5~5~  |                 | -55        |     |     |
|         |                 |            |     |     |
| <210>   | 1610            |            |     |     |
| <211>   |                 |            |     |     |
|         |                 |            |     |     |
| <212>   |                 |            |     |     |
| <213>   | Homo sapiens    |            |     |     |
|         |                 |            |     |     |
| <400>   | 1619            |            |     |     |
| tcagaa  | aaga aaagctcttt | agactagcaa | tg  | 32  |
|         |                 |            |     |     |
|         |                 |            |     |     |
| <210>   |                 |            |     |     |
| <211>   | 27              |            |     |     |
| <212>   | DNA             |            |     |     |
| <213>   | Homo sapiens    |            |     |     |
|         | -               |            |     |     |
| <400>   | 1620            |            |     |     |
|         | cctc ggagagaaga | tggaccc    |     | 27  |
| _04044  | 9509090090      | -35000     |     | - ' |
|         |                 |            |     |     |
| <210>   | 1621            |            |     |     |
|         | 22              |            |     |     |
|         |                 |            |     |     |
|         | DNA             |            |     |     |
| <213>   | Homo sapiens    |            |     |     |
|         |                 |            |     |     |
| <400>   | 1621            |            |     |     |

| WO 2004/042346        | PC1/US2003/0   | 12940 |
|-----------------------|----------------|-------|
| aggccagcaa caatgcccac | ga 2           | 22    |
|                       |                |       |
| <210> 1622            |                |       |
| <211> 19              |                |       |
| <212> DNA             |                |       |
| <213> Homo sapiens    |                |       |
| <400> 1622            |                |       |
| tggggtgcca ctcgacgcg  | 1              | 19    |
|                       |                |       |
| <210> 1623            |                |       |
| <211> 22              |                |       |
| <212> DNA             |                |       |
| <213> Homo sapiens    |                |       |
| <400> 1623            |                |       |
| cgaagctgga gctgggagct | . cq 2         | 22    |
| 2 2 22 2 222 2        | -              |       |
| <210> 1624            |                |       |
| <211> 20              |                |       |
| <212> DNA             |                |       |
| <213> Homo sapiens    |                |       |
| varis nome suprems    |                |       |
| <400> 1624            |                |       |
| acceggetge geaggtetga | i              | 20    |
|                       |                |       |
| <210> 1625            |                |       |
| <211> 33              |                |       |
| <212> DNA             |                |       |
| <213> Homo sapiens    |                |       |
| <400> 1625            |                |       |
|                       | abbbabase as . | 33    |
| ggatttttaa ggggatccct | acceacygee aaa | 33    |
|                       |                |       |
| <210> 1626            |                |       |
| <211> 20              |                |       |
| <212> DNA             |                |       |
| <213> Homo sapiens    |                |       |
| <400> 1626            |                |       |
| ccaggacccg atcgcgatcg | i -            | 20    |
|                       |                |       |
| <210> 1627            |                |       |
| <211> 24              |                |       |
| <212> DNA             |                |       |
| <213> Homo sapiens    |                |       |
|                       |                |       |
| <400> 1627            |                | ~ 4   |
| aggetetget egtteeetet | . eeee         | 24    |
|                       |                |       |
| <210> 1628            |                |       |
| <211> 21              |                |       |
| <212> DNA             |                |       |
| <213> Homo sapiens    |                |       |

WO 2004/042346

PCT/US2003/012946

| <400> 1628<br>tgegggegea agettatgte e | 21 |
|---------------------------------------|----|
| <210> 1629                            |    |
| <211> 29                              |    |
| <212> DNA                             |    |
| <213> Homo sapiens                    |    |
| <400> 1629                            |    |
| tttgctggct tatgatgtgt aaggcacca       | 29 |
|                                       |    |
| <210> 1630                            |    |
| <211> 19                              |    |
| <212> DNA                             |    |
| <213> Homo sapiens                    |    |
| <400> 1630                            |    |
| cgggggcctg aggccagtg                  | 19 |
|                                       |    |
| <210> 1631                            |    |
| <211> 34                              |    |
| <212> DNA                             |    |
| <213> Homo sapiens                    |    |
| <400> 1631                            |    |
| cototttgct gtttttcacc tactacgtca caca | 34 |
|                                       |    |
| <210> 1632                            |    |
| <211> 29                              |    |
| <212> DNA                             |    |
| <213> Homo sapiens                    |    |
| <400> 1632                            |    |
| agaggetgaa geteeteage tteeaacte       | 29 |
|                                       |    |
| <210> 1633                            |    |
| <211> 34                              |    |
| <212> DNA                             |    |
| <213> Homo sapiens                    |    |
| <400> 1633                            |    |
| tgctctccaa cacctttgtt tagtagggaa aacc | 34 |
|                                       |    |
| <210> 1634                            |    |
| <211> 28                              |    |
| <212> DNA                             |    |
| <213> Homo sapiens                    |    |
| <400> 1634                            |    |
| ggaaaagctc aagaaggctg ggagatga        | 28 |
|                                       |    |
| <210> 1635                            |    |
| <211> 23                              |    |

| W              | 2004/042346                    | PCT/US2003/012946 |
|----------------|--------------------------------|-------------------|
| <212>          | DNA                            |                   |
| <213>          | Homo sapiens                   |                   |
| <400>          | 1635                           |                   |
| ggatg          | gacgc ggacggaatt ctg           | 23                |
|                |                                |                   |
| <210><br><211> |                                |                   |
| <211>          |                                |                   |
|                | Homo sapiens                   |                   |
| <400>          | 1636                           |                   |
|                | caagg cccagccagc a             | 21                |
|                |                                |                   |
|                | 1637                           |                   |
| <211>          |                                |                   |
| <212>          | Homo sapiens                   |                   |
| 12132          | nome sapiens                   |                   |
|                | 1637                           |                   |
| CCCCC          | ctcac ttccctacct cacaacaaga a  | 31                |
| <210>          | 1630                           |                   |
| <210>          |                                |                   |
| <212>          |                                |                   |
| <213>          | Homo sapiens                   |                   |
| <400>          | 1638                           |                   |
| tgacaa         | caga gaccaaaaac aaccaccca      | 29                |
|                |                                |                   |
| <210>          |                                |                   |
| <211>          |                                |                   |
| <212>          |                                |                   |
| <213>          | Homo sapiens                   |                   |
| <400>          |                                |                   |
| cgccga         | gagg aattgtaagg ttgcca         | 26                |
| <210>          | 1640                           |                   |
| <211>          |                                |                   |
| <212>          |                                |                   |
| <213>          | Homo sapiens                   |                   |
| <400>          | 1640                           |                   |
| cagaac         | ctca cagacccaaa ggaacatcaa     | 30                |
|                |                                | 30                |
| <210>          | 1641                           |                   |
| <211>          |                                |                   |
| <212>          |                                |                   |
| <213>          | Homo sapiens                   |                   |
| <400>          | 1641                           |                   |
| tggagt         | tgaa aaacagatca agtcagggac atc | 33                |

| wo      | 2004/042346                      | PCT/US2003/012946 |
|---------|----------------------------------|-------------------|
| <210>   | 1642                             |                   |
| <211>   |                                  |                   |
|         | DNA                              |                   |
| <213>   | Homo sapiens                     |                   |
| <400>   |                                  |                   |
| tgtcc   | agaat ctagtttgtg cagaaatgtt tcca | 34                |
|         |                                  |                   |
|         | 1643                             |                   |
| <211>   |                                  |                   |
| <212>   | Homo sapiens                     |                   |
|         |                                  |                   |
|         | 1643                             |                   |
| Cacag   | ecteg gtageagegg ga              | 22                |
| <210>   | 1644                             |                   |
| <211>   |                                  |                   |
| <212>   |                                  |                   |
| <213>   | Homo sapiens                     |                   |
| <400>   | 1644                             |                   |
| gttggd  | cttt agggctgtgc cca              |                   |
|         |                                  | 23                |
| <210>   |                                  |                   |
| <211>   |                                  |                   |
| <212>   |                                  |                   |
| (213)   | Homo sapiens                     |                   |
| <400>   |                                  |                   |
| ccagco  | caca atttcaaata atgcaggaa        | 29                |
|         |                                  |                   |
| <210>   |                                  |                   |
| <211>   |                                  |                   |
| <212>   |                                  |                   |
| <213>   | Homo sapiens                     |                   |
| <400>   |                                  |                   |
| aatgca  | cttc atgaaaagtt gtggctccc        | 29                |
| <210>   | 1647                             |                   |
| <211>   |                                  |                   |
| <212>   |                                  |                   |
|         | Homo sapiens                     |                   |
| <400>   | 1647                             |                   |
| gcgccaa | aga gtatcaggaa agcaagga          |                   |
|         | 33                               | 28                |
| <210>   |                                  |                   |
| <211>   |                                  |                   |
| <212>   |                                  |                   |
| <213>   | Homo sapiens                     |                   |
|         | 1648                             |                   |
| tgccact | tca ttggcaccta agacctg           | 27                |
|         | - 2                              | 27                |

| <210>  | 1649                             |    |
|--------|----------------------------------|----|
| <212>  |                                  |    |
|        | Homo sapiens                     |    |
| (213)  | nomo saprens                     |    |
| <400>  | 1649                             |    |
|        | tggc atccctggca                  | 20 |
| ccccrg | -330 400003300                   |    |
|        |                                  |    |
| <210>  | 1650                             |    |
| <211>  |                                  |    |
| <212>  |                                  |    |
|        | Homo sapiens                     |    |
|        |                                  |    |
| <400>  | 1650                             |    |
|        | cctt gtgctgctc                   | 19 |
| -33.   | 5.55                             |    |
|        |                                  |    |
| <210>  | 1651                             |    |
| <211>  | 35                               |    |
| <212>  | DNA                              |    |
| <213>  | Homo sapiens                     |    |
|        |                                  |    |
| <400>  | 1651                             |    |
| gcaggg | aaag ggggttagtt attcattttt cagct | 35 |
|        |                                  |    |
|        |                                  |    |
| <210>  | 1652                             |    |
| <211>  | 35                               |    |
| <212>  | DNA                              |    |
| <213>  | Homo sapiens                     |    |
|        |                                  |    |
| <400>  |                                  |    |
| caactg | ctcc acttcttttt gtttgagaac tctga | 35 |
|        |                                  |    |
|        | 4.650                            |    |
| <210>  |                                  |    |
| <211>  |                                  |    |
| <212>  |                                  |    |
| <213>  | Homo sapiens                     |    |
| <400>  | 1652                             |    |
|        |                                  | 28 |
| ggcagc | tggg agatgatggt aaaaggct         | 20 |
|        |                                  |    |
| <210>  | 1654                             |    |
| <211>  |                                  |    |
| <212>  |                                  |    |
|        | Homo sapiens                     |    |
| .2.57  |                                  |    |
| <400>  | 1654                             |    |
|        | agca aagctacaca aagaaaattc ctcag | 35 |
|        |                                  |    |
|        |                                  |    |
| <210>  | 1655                             |    |
| <211>  | 25                               |    |
| <212>  | DNA                              |    |
| <213>  | Homo sapiens                     |    |

| WO 2004/042346              | PCT/US2003/012946 |
|-----------------------------|-------------------|
| <400> 1655                  |                   |
| cacacaggca tgtgtgtctg catgg | 25                |
| <210> 1656                  |                   |
| <211> 20                    |                   |
| <212> DNA                   |                   |
| <213> Homo sapiens          |                   |
| <400> 1656                  |                   |
| aagtgcageg tteettttge       | 20                |
|                             |                   |
| <210> 1657                  |                   |
| <211> 20                    |                   |
| <212> DNA                   |                   |
| <213> Homo sapiens          |                   |
| <400> 1657                  |                   |
| ccggggtgac aagcagatac       | 20                |
|                             |                   |
| <210> 1658                  |                   |
| <211> 20                    |                   |
| <212> DNA                   |                   |
| <213> Homo sapiens          |                   |
| <400> 1658                  |                   |
| aaggaagcct cctccacgtt       | 20                |
|                             |                   |
| <210> 1659                  |                   |
| <211> 20                    |                   |
| <212> DNA                   |                   |
| <213> Homo sapiens          |                   |
| •                           |                   |
| <400> 1659                  |                   |
| cagaagcaag gggctgaaaa       | 20                |
| <210> 1660                  |                   |
| <211> 20                    |                   |
| <212> DNA                   |                   |
| <213> Homo sapiens          |                   |
|                             |                   |
| <400> 1660                  |                   |
| caacccaccc ctccttcttt       | 20                |
| .210. 1661                  |                   |
| <210> 1661                  |                   |
| <211> 22                    |                   |
| <212> DNA                   |                   |
| <213> Homo sapiens          |                   |
| <400> 1661                  |                   |
| tcagggaatg aaggtgtcag aa    | 22                |
|                             |                   |
| <210> 1662                  |                   |
| <211> 22                    |                   |
| <212> DNA                   |                   |

| WO 2004/042346           | PCT/US2003/012946 |
|--------------------------|-------------------|
| <213> Homo sapiens       |                   |
| <400> 1662               |                   |
| tggctgagtt ctggtcaaag aa |                   |
| eggeegagee eeggeeaaag aa | 22                |
| <210> 1663               |                   |
| <211> 22                 |                   |
| <212> DNA                |                   |
| <213> Homo sapiens       |                   |
| <400> 1663               |                   |
| totgtocate atttcaccat co | 22                |
| 010 1664                 |                   |
| <210> 1664               |                   |
| <211> 20                 |                   |
| <212> DNA                |                   |
| <213> Homo sapiens       |                   |
| <400> 1664               |                   |
| ctcggtgggt gttcaaggag    | 20                |
| 33 3                     | 20                |
| <210> 1665               |                   |
| <211> 20                 |                   |
| <212> DNA                |                   |
| <213> Homo sapiens       |                   |
|                          |                   |
| <400> 1665               |                   |
| tgctcctttt ggtgactgga    | 20                |
| <210> 1666               |                   |
| <211> 20                 |                   |
| <212> DNA                |                   |
| <213> Homo sapiens       |                   |
| <400> 1666               |                   |
|                          |                   |
| ggcctggtta gaggctggtt    | 20                |
| <210> 1667               |                   |
| <211> 20                 |                   |
| <212> DNA                |                   |
| <213> Homo sapiens       |                   |
| <400> 1667               |                   |
| ctgtctctgc ctccctcacc    | 20                |
| -                        | 20                |
| <210> 1668               |                   |
| <211> 20                 |                   |
| <212> DNA                |                   |
| <213> Homo sapiens       |                   |
| <400> 1668               |                   |
| ggagaagcgg cgataccata    | 20                |
|                          |                   |
| <210> 1669               |                   |

<211> 20 <212> DNA <213> Homo sapiens <400> 1669 20 gteccacctg ggagaatgtg <210> 1670 <211> 20 <211> DNA <213> Homo sapiens <400> 1670 20 teacteccag ttecctggac <210> 1671 <211> 20 <212> DNA <213> Homo sapiens <400> 1671 atccgccaca acctgagtct 20 <210> 1672 <211> 20 <212> DNA <213> Homo sapiens <400> 1672 gtgtcctccc tcccctatgc 20 <210> 1673 <211> 20 <212> DNA <213> Homo sapiens <400> 1673 20 ctgggccgtg actacaggac <210> 1674 <211> 20 <212> DNA <213> Homo sapiens <400> 1674 tcgtgcaatg gagattctgg 20 <210> 1675 <211> 20 <212> DNA <213> Homo sapiens <400> 1675 20 ctaagccact gcctgctggt

PCT/US2003/012946

WO 2004/042346

| <210><br><211>  |                          |  |
|-----------------|--------------------------|--|
| <212>           | DNA<br>Homo sapiens      |  |
|                 | -                        |  |
| <400>           | 1676<br>ggcca agatetecac |  |
| acgegg          | ggeen agavereeuv         |  |
| <210>           | 1677                     |  |
| <211>           | 22                       |  |
| <212>           |                          |  |
| <213>           | Homo sapiens             |  |
| <400>           |                          |  |
| gccctt          | ccata atatocccca gt      |  |
| <210>           | 1678                     |  |
| <211>           |                          |  |
| <212>           |                          |  |
| <213>           | Homo sapiens             |  |
| <400>           |                          |  |
| ggcatt          | tgtgt tcccaagttc a       |  |
|                 |                          |  |
| <210>           |                          |  |
| <211>           |                          |  |
| <212>           |                          |  |
| <213>           | Homo sapiens             |  |
|                 | 1679                     |  |
| cgtctc          | ccctc tgccatect          |  |
|                 |                          |  |
|                 | 1680                     |  |
| <211>           |                          |  |
| <212>           | DNA<br>Homo sapiens      |  |
| <b>\213&gt;</b> | nomo sapiens             |  |
|                 | 1680                     |  |
| gggaag          | ggete etggttgtet         |  |
|                 |                          |  |
| <210><br><211>  | 1681                     |  |
| <211><br><212>  |                          |  |
|                 | Homo sapiens             |  |
| <400>           | 1681                     |  |
|                 | ggccc tggaaaggac         |  |
|                 |                          |  |
| -210>           | 1682                     |  |
|                 |                          |  |
| <211>           |                          |  |
| <211><br><212>  | 21<br>DNA                |  |
| <211><br><212>  | 21                       |  |

| WO 200                | 4/042346          | PCT/US2003/012946 |
|-----------------------|-------------------|-------------------|
| tacctgacct            | ttgtgccctc a      | 21                |
| <210> 168             | 3                 |                   |
| <211> 20              |                   |                   |
| <212> DNA             |                   |                   |
| <213> Hom             | o sapiens         |                   |
| <400> 168             | 3                 |                   |
| aagtccggtg            | gtttcggaat        | 20                |
|                       |                   |                   |
| <210> 168             | 4                 |                   |
| <211> 20              |                   |                   |
| <212> DNA             |                   |                   |
| <213> Hom             | o sapiens         |                   |
| <400> 168             | 4                 |                   |
| ggaatggaga            | gcacggtctg        | 20                |
|                       |                   |                   |
| <210> 168             | 5                 |                   |
| <211> 20              |                   |                   |
| <212> DNA             |                   |                   |
| <213> Hom             | o sapiens         |                   |
| <400> 168             |                   |                   |
| tttgcacagg            | tgttccctga        | 20                |
| <210> 168             |                   |                   |
|                       | 10                |                   |
| <211> 26              |                   |                   |
| <212> DNA             |                   |                   |
| <213> Hom             | no sapiens        |                   |
| <400> 168             | 6                 |                   |
| tttgaatgac            | caagttetet teattg | 26                |
|                       | _                 |                   |
| <210> 168             | 7                 |                   |
| <211> 20              |                   |                   |
| <212> DNA             |                   |                   |
| <213> Hom             | o sapiens         |                   |
| <400> 168             | 17                |                   |
| cacctttgcc            | : tttgctggac      | 20                |
|                       |                   |                   |
| <210> 168             | 18                |                   |
| <211> 20              |                   |                   |
| <212> DNA             |                   |                   |
| <213> Hon             | no sapiens        |                   |
| <400> 168             |                   |                   |
| ctcccttgtg            | g cgtgggtaag      | 20                |
| <210> 168             | 9.0               |                   |
|                       |                   |                   |
| <211> 20<br><212> DNF |                   |                   |
|                       |                   |                   |
| <213> Hon             | n sahrens         |                   |

| <400>   | 1689                   |    |
|---------|------------------------|----|
|         |                        |    |
| ettete  | cctc tgcccctctc        | 20 |
|         |                        |    |
|         |                        |    |
| <210>   | 1690                   |    |
| <211>   | 20                     |    |
| <212>   |                        |    |
|         |                        |    |
| <213>   | Homo sapiens           |    |
|         |                        |    |
| <400>   | 1690                   |    |
| gggaga  | ggga catcctacgg        | 20 |
| 333 3   | 333                    | 20 |
|         |                        |    |
| <210>   | 1691                   |    |
|         |                        |    |
| <211>   |                        |    |
| <212>   |                        |    |
| <213>   | Homo sapiens           |    |
|         |                        |    |
| <400>   | 1691                   |    |
|         | tgga ggtgatcaag        |    |
| ccagcc  | rgga ggrgarcaag        | 20 |
|         |                        |    |
|         |                        |    |
| <210>   | 1692                   |    |
| <211>   | 20                     |    |
| <212>   | DNA                    |    |
|         | Homo sapiens           |    |
| 12137   | nome saprens           |    |
|         |                        |    |
| <400>   |                        |    |
| aagatg  | ggtc tccgcacttg        | 20 |
|         |                        |    |
|         |                        |    |
| <210>   | 1603                   |    |
| <211>   |                        |    |
|         |                        |    |
| <212>   |                        |    |
| <213>   | Homo sapiens           |    |
|         |                        |    |
| <400>   | 1693                   |    |
|         | ggta gttgggagga        | •  |
| gocage  | ggea geegggagga        | 20 |
|         |                        |    |
|         |                        |    |
| <210>   |                        |    |
| <211>   | 26                     |    |
| <212>   | DNA                    |    |
|         | Homo sapiens           |    |
| 12137   | nome suprems           |    |
| . 400   | 1604                   |    |
| <400>   |                        |    |
| gccaat  | aaag aaattaacac ccaaaa | 26 |
|         |                        |    |
|         |                        |    |
| <210>   | 1695                   |    |
| <211>   |                        |    |
| <212>   |                        |    |
|         |                        |    |
| <213>   | Homo sapiens           |    |
|         |                        |    |
| <400>   | 1695                   |    |
| accette | ccat ggtgtgatcg        | 20 |
|         | 55 5 5 5               | 20 |
|         |                        |    |
| .210.   | 1606                   |    |
| <210>   | 1696                   |    |
| <211>   | 20                     |    |

WO 2004/042346 PCT/US2003/012946 <212> DNA <213> Homo sapiens <400> 1696 acctcacagg gaccetecae 20 <210> 1697 <211> 24 <212> DNA <213> Homo sapiens <400> 1697 ctqqacaaqc ttacatcttc ctca 24 <210> 1698 <211> 20 <212> DNA <213> Homo sapiens <400> 1698 atccgtgacg acatgctgtg 20 <210> 1699 <211> 20 <212> DNA <213> Homo sapiens <400> 1699 gatgecacet teageetetq 20 <210> 1700 <211> 20 <212> DNA <213> Homo sapiens <400> 1700 ccacctggaa tcagggattg 20 <210> 1701 <211> 20 <212> DNA <213> Homo sapiens <400> 1701 tcatcttgga gggaccaagg 20 <210> 1702 <211> 19 <212> DNA <213> Homo sapiens <400> 1702 ggacatttgc cttgctgga 19

WO 2004/042346 PCT/US2003/012946 <210> 1703 <211> 20 <212> DNA <213> Homo sapiens <400> 1703 gggcccagca gttctatgac 20 <210> 1704 <211> 20 <212> DNA <213> Homo sapiens <400> 1704 cctgccttgt gacaggatga 20 <210> 1705 <211> 21 <212> DNA <213> Homo sapiens <400> 1705 ggcaactggt gaacggtaac a 21 <210> 1706 <211> 20 <212> DNA <213> Homo sapiens <400> 1706 cccaaggcta agcaggaggt 20 <210> 1707 <211> 20 <212> DNA <213> Homo sapiens <400> 1707 gggtcccaaa caactcagga 20 <210> 1708 <211> 20 <212> DNA <213> Homo sapiens <400> 1708 cccaagtcag gctggagaga 20 <210> 1709 <211> 22 <212> DNA <213> Homo sapiens <400> 1709 aacaattcaa gtgctgggct tt 22

| <210>                                                                                                                                                                                                                                                                                                                        | 1710                                                                                                                                                                                        |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <211>                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                          |    |
| <212>                                                                                                                                                                                                                                                                                                                        | DNA                                                                                                                                                                                         |    |
|                                                                                                                                                                                                                                                                                                                              | Homo sapiens                                                                                                                                                                                |    |
| 72157                                                                                                                                                                                                                                                                                                                        | nome buggeting                                                                                                                                                                              |    |
| <400>                                                                                                                                                                                                                                                                                                                        | 1710                                                                                                                                                                                        |    |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             | 20 |
| eggegg                                                                                                                                                                                                                                                                                                                       | ctac cagacattga                                                                                                                                                                             | 20 |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |    |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |    |
| <210>                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |    |
| <211>                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |    |
| <212>                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |    |
| <213>                                                                                                                                                                                                                                                                                                                        | Homo sapiens                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |    |
| <400>                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |    |
| cagcag                                                                                                                                                                                                                                                                                                                       | tttc aatgcaccaa a                                                                                                                                                                           | 21 |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |    |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |    |
| <210>                                                                                                                                                                                                                                                                                                                        | 1712                                                                                                                                                                                        |    |
| <211>                                                                                                                                                                                                                                                                                                                        | 26                                                                                                                                                                                          |    |
| <212>                                                                                                                                                                                                                                                                                                                        | DNA                                                                                                                                                                                         |    |
|                                                                                                                                                                                                                                                                                                                              | Homo sapiens                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |    |
| <400>                                                                                                                                                                                                                                                                                                                        | 1712                                                                                                                                                                                        |    |
|                                                                                                                                                                                                                                                                                                                              | tttc gcatttgctt ttattt                                                                                                                                                                      | 26 |
| gacaac                                                                                                                                                                                                                                                                                                                       | coo goaccogooc coacco                                                                                                                                                                       |    |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |    |
| .010.                                                                                                                                                                                                                                                                                                                        | 1012                                                                                                                                                                                        |    |
| <210>                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |    |
| <211>                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |    |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |    |
| <212>                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |    |
|                                                                                                                                                                                                                                                                                                                              | DNA<br>Homo sapiens                                                                                                                                                                         |    |
| <213>                                                                                                                                                                                                                                                                                                                        | Homo sapiens                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                              | Homo sapiens                                                                                                                                                                                |    |
| <213><br><400>                                                                                                                                                                                                                                                                                                               | Homo sapiens                                                                                                                                                                                | 25 |
| <213><br><400>                                                                                                                                                                                                                                                                                                               | Homo sapiens                                                                                                                                                                                | 25 |
| <213><br><400>                                                                                                                                                                                                                                                                                                               | Homo sapiens                                                                                                                                                                                | 25 |
| <213><br><400>                                                                                                                                                                                                                                                                                                               | Homo sapiens<br>1713<br>atgg catgtcagac agaac                                                                                                                                               | 25 |
| <213><br><400><br>gcttta                                                                                                                                                                                                                                                                                                     | Homo sapiens 1713 atgg catgtcagac agaac 1714                                                                                                                                                | 25 |
| <213> <400> gcttta                                                                                                                                                                                                                                                                                                           | Homo sapiens 1713 atgg catgtcagac agaac 1714 21                                                                                                                                             | 25 |
| <213> <400> gcttta <210> <211> <212>                                                                                                                                                                                                                                                                                         | Homo sapiens 1713 ateg catgtcagac agaac 1714 21 DNA                                                                                                                                         | 25 |
| <213> <400> gcttta <210> <211> <212>                                                                                                                                                                                                                                                                                         | Homo sapiens 1713 atgg catgtcagac agaac 1714 21                                                                                                                                             | 25 |
| <213> <400> gcttta <210> <211> <212> <213>                                                                                                                                                                                                                                                                                   | Homo sapiens  1713 atgg catgtcagac agaac  1714 21 DNA Homo sapiens                                                                                                                          | 25 |
| <213> <400> gcttta  <210> <211> <212> <213> <400>                                                                                                                                                                                                                                                                            | Homo sapiens 1713 atgg catgtcagac agaac 1714 21 DNA Homo sapiens 1714                                                                                                                       | 25 |
| <213> <400> gcttta  <210> <211> <212> <213> <400>                                                                                                                                                                                                                                                                            | Homo sapiens  1713 atgg catgtcagac agaac  1714 21 DNA Homo sapiens                                                                                                                          |    |
| <213> <400> gcttta  <210> <211> <212> <213> <400>                                                                                                                                                                                                                                                                            | Homo sapiens 1713 atgg catgtcagac agaac 1714 21 DNA Homo sapiens 1714                                                                                                                       |    |
| <213> <400> gettta  <210> <211> <212> <213> <400> agteco                                                                                                                                                                                                                                                                     | Homo sapiens  1713 atgg catgtcagac agaac  1714 21 DNA Homo sapiens  1714 agca ttgatgacag c                                                                                                  |    |
| <210> <210> <211> <210> <211> <212> <213> <400> agtecc                                                                                                                                                                                                                                                                       | Homo sapiens  1713 atgg catgtcagac agaac  1714 21 DNA Homo sapiens  1714 agca ttgatgacag c                                                                                                  |    |
| <213> <400> gcttta  <210> <211> <212> <213> <400> agtccc  <210> <211>                                                                                                                                                                                                                                                        | Homo sapiens  1713 atgg catgtcagac agaac  1714 21 DNA Homo sapiens  1714 agca ttgatgacag c                                                                                                  |    |
| <213> <400> gcttta  <210> <211> <212> <213> <400> agtccc  <210> <211> <212> <213                                                                                                                                                                                                                                             | Homo sapiens  1713 ateg catgtcagac agaac  1714 21 DNA Homo sapiens  1714 agca ttgatgacag c  1715 20 DNA                                                                                     |    |
| <213> <400> gcttta  <210> <211> <212> <213> <400> agtccc  <210> <211> <212> <213                                                                                                                                                                                                                                             | Homo sapiens  1713 atgg catgtcagac agaac  1714 21 DNA Homo sapiens  1714 agca ttgatgacag c                                                                                                  |    |
| <213> <400> gcttta  <210> <211> <212> <213> <400> agtccc  <210> <211> <212> <213>                                                                                                                                                                                                                                            | Homo sapiens  1713 ategg catgtcagac agaac  1714 21 DNA Homo sapiens  1714 agca ttgatgacag c  1715 20 DNA Homo sapiens                                                                       |    |
| <213> <400> gettta <210> <211> <212> <213> <400> agtccc <211> <212> <213> <400> <400>                                                                                                                                                                                                                                        | Homo sapiens  1713 atgg catgtcagac agaac  1714 21 DNA Homo sapiens  1714 agca ttgatgacag c  1715 20 DNA Homo sapiens  1715                                                                  | 21 |
| <213> <400> gettta <210> <211> <212> <213> <400> agtccc <211> <212> <213> <400> <400>                                                                                                                                                                                                                                        | Homo sapiens  1713 ategg catgtcagac agaac  1714 21 DNA Homo sapiens  1714 agca ttgatgacag c  1715 20 DNA Homo sapiens                                                                       |    |
| <213> <400> gettta <210> <211> <212> <213> <400> agtccc <211> <212> <213> <400> <400>                                                                                                                                                                                                                                        | Homo sapiens  1713 atgg catgtcagac agaac  1714 21 DNA Homo sapiens  1714 agca ttgatgacag c  1715 20 DNA Homo sapiens  1715                                                                  | 21 |
| <210> <210> <211> <210> <211> <212> <213> <400> agtccc <210> <211> <212> <213>                                                                                                                                                                                                                                               | Homo sapiens  1713 atgg catgtcagac agaac  1714 21 DNA Homo sapiens  1714 agca ttgatgacag c  1715 20 DNA Homo sapiens  1715 tgcc atcctcttgg                                                  | 21 |
| <213> <400> gcttta  <210> <211> <212> <213> <400> agtccc  <210> <211> <212> <213> <400> cctgtt  <400> cctgtt  <210>                                                                                                                                                                                                          | Homo sapiens  1713 atgg catgtcagac agaac  1714 21 DNA Homo sapiens  1714 agca ttgatgacag c  1715 20 DNA Homo sapiens  1715 tgcc atcctcttgg                                                  | 21 |
| <213> <400> gcttta  <210> <211> <212> <213> <400 agtccc  <210> <211> <212> <213> <400 cctgtt  <210> <211> <212> <213>                                                                                                                                                                                                        | Homo sapiens  1713 atgg catgtcagac agaac  1714 21 DNA Homo sapiens  1714 agca ttgatgacag c  1715 20 DNA Homo sapiens  1715 tgcc atcctcttgg                                                  | 21 |
| <213> <400> gcttta  <210> <211> <212> <213> <400> agtccc  <210> <211> <212> <213> <400> ctgtt  <210> <211> <212> <213> <400> <211> <212> <213> <400> <210> <211> <212> <213> <400> <210> <211> <212> <212> <213> <400> <210> <211> <212> <212> <212> <212> <212> <212> <212> <212> <212> <212> <212> <212> <212> <212> <212> | Homo sapiens  1713 atgg catgtcagac agaac  1714 21 DNA Homo sapiens  1714 agca ttgatgacag c  1715 20 DNA Homo sapiens  1715 tgcc atcctcttgg  1716 20 DNA DNA DNA DNA DNA DNA DNA DNA DNA DNA | 21 |
| <213> <400> gcttta  <210> <211> <212> <213> <400> agtccc  <210> <211> <212> <213> <400> ctgtt  <210> <211> <212> <213> <400> <211> <212> <213> <400> <210> <211> <212> <213> <400> <210> <211> <212> <212> <213> <400> <210> <211> <212> <212> <212> <212> <212> <212> <212> <212> <212> <212> <212> <212> <212> <212> <212> | Homo sapiens  1713 atgg catgtcagac agaac  1714 21 DNA Homo sapiens  1714 agca ttgatgacag c  1715 20 DNA Homo sapiens  1715 tgcc atcctcttgg                                                  | 21 |

| WO 2004/042346                     |                                         | PCT/US2003/012946 |
|------------------------------------|-----------------------------------------|-------------------|
| <400> 1716                         |                                         |                   |
| caccggctaa tggtgggta               | a                                       | 20                |
|                                    |                                         |                   |
| <210> 1717                         |                                         |                   |
| <211> 20                           |                                         |                   |
| <212> DNA<br><213> Homo sapiens    |                                         |                   |
| (213) Homo Sapiens                 |                                         |                   |
| <400> 1717                         |                                         |                   |
| gtcgcccagt cctaccaga               | g                                       | 20                |
|                                    |                                         |                   |
| <210> 1718                         |                                         |                   |
| <211> 25                           |                                         |                   |
| <212> DNA                          |                                         |                   |
| <213> Homo sapiens                 |                                         |                   |
| 1710                               |                                         |                   |
| <400> 1718<br>attccqttag acttgtcct | C CTTT                                  | 25                |
| accedenced accedence               | • • • • • • • • • • • • • • • • • • • • |                   |
|                                    |                                         |                   |
| <210> 1719                         |                                         |                   |
| <211> 20<br><212> DNA              |                                         |                   |
| <213> Homo sapiens                 |                                         |                   |
| (213) NOMO Baptens                 |                                         |                   |
| <400> 1719                         |                                         |                   |
| gacgaccatc gcagacaca               | g                                       | 20                |
|                                    |                                         |                   |
| <210> 1720                         |                                         |                   |
| <211> 19                           |                                         |                   |
| <212> DNA                          |                                         |                   |
| <213> Homo sapiens                 |                                         |                   |
|                                    |                                         |                   |
| <400> 1720<br>ctgggagacc cgctgtttc |                                         | 19                |
| ergggagaee egergeeee               |                                         | 19                |
|                                    |                                         |                   |
| <210> 1721                         |                                         |                   |
| <211> 24                           |                                         |                   |
| <212> DNA<br><213> Homo sapiens    |                                         |                   |
| <213> Homo sapiens                 |                                         |                   |
| <400> 1721                         |                                         |                   |
| tgggctaact atgcagagc               | a tgta                                  | 24                |
|                                    |                                         |                   |
| <210> 1722                         |                                         |                   |
| <211> 20                           |                                         |                   |
| <212> DNA                          |                                         |                   |
| <213> Homo sapiens                 |                                         |                   |
|                                    |                                         |                   |
| <400> 1722                         | _                                       | 2.5               |
| cgacaatgag cggggagat               | a                                       | 20                |
|                                    |                                         |                   |
| <210> 1723                         |                                         |                   |
| <211> 20                           |                                         |                   |
| <212> DNA                          |                                         |                   |

| w              | J 2004/042346    |       | PC 1/US2003/0129 |
|----------------|------------------|-------|------------------|
| <213>          | Homo sapiens     |       |                  |
| <400>          | 1723             |       |                  |
|                | gctg ctgctgtttg  |       | 20               |
| accace         | 5005 0050050115  |       |                  |
|                |                  |       |                  |
|                | 1724             |       |                  |
| <211><br><212> |                  |       |                  |
|                | Homo sapiens     |       |                  |
| 12137          | nomo bapiono     |       |                  |
| <400>          | 1724             |       |                  |
| ccctga         | aggt gaaccgctta  |       | 20               |
|                |                  |       |                  |
| <210>          | 1725             |       |                  |
|                | 25               |       |                  |
| <212>          | DNA              |       |                  |
| <213>          | Homo sapiens     |       |                  |
| <400>          | 1725             |       |                  |
|                | caga ttaaggttcg  | agtag | 25               |
| 3              |                  | 3-33  |                  |
|                |                  |       |                  |
| <210>          |                  |       |                  |
| <211><br><212> |                  |       |                  |
|                | Homo sapiens     |       |                  |
| 12201          | nome supreme     |       |                  |
| <400>          |                  |       |                  |
| gcctga         | ggct gtgaagatgg  |       | 20               |
|                |                  |       |                  |
| <210>          | 1727             |       |                  |
| <211>          | 21               |       |                  |
| <212>          |                  |       |                  |
| <213>          | Homo sapiens     |       |                  |
| <400>          | 1727             |       |                  |
|                | cata ggccatttca  | a     | 21               |
| -55-55         | , 33             | 3     |                  |
|                |                  |       |                  |
| <210>          |                  |       |                  |
| <211><br><212> |                  |       |                  |
|                | Homo sapiens     |       |                  |
|                | nome supreme     |       |                  |
| <400>          | 1728             |       |                  |
| gaggac         | caga cccaggacac  |       | 20               |
|                |                  |       |                  |
| <210>          | 1729             |       |                  |
| <211>          |                  |       |                  |
| <212>          |                  |       |                  |
| <213>          | Homo sapiens     |       |                  |
| -400           | 1720             |       |                  |
| <400>          | geat gaccetgatg  |       | 20               |
| gerege         | .gour gaccergaty |       | 20               |
|                |                  |       |                  |
| <210>          | 1730             |       |                  |
|                |                  |       |                  |

WO 2004/042346

PCT/US2003/012946

WO 2004/042346 PCT/US2003/012946 <211> 19 <212> DNA <213> Homo sapiens <400> 1730 19 caggagaacg tggccctct <210> 1731 <211> 20 <212> DNA <213> Homo sapiens <400> 1731 20 tgcctgtcct tctgtgtgct <210> 1732 <211> 22 <212> DNA <213> Homo sapiens <400> 1732 gaggaatgca cgtcagtcaa aa 22 <210> 1733 <211> 19 <212> DNA <213> Homo sapiens <400> 1733 gcaaggctga cgagagctg 19 <210> 1734 <211> 20 <212> DNA <213> Homo sapiens <400> 1734 ccatccggga tatcctagcc 20 <210> 1735 <211> 20 <212> DNA <213> Homo sapiens <400> 1735 ccctgtctct ccccaccttt 20 <210> 1736 <211> 18 <212> DNA <213> Homo sapiens <400> 1736

gacgaggetg eggtgtet

| <210><br><211><br><212> |                           |   |
|-------------------------|---------------------------|---|
| <213>                   | Homo sapiens              |   |
| <400>                   | 1737                      |   |
|                         | ctgt ggcgtgatg            | 3 |
|                         |                           |   |
| <210>                   | 1738                      |   |
| <211>                   |                           |   |
| <212>                   |                           |   |
| <213>                   | Homo sapiens              |   |
|                         |                           |   |
| <400>                   | 1738<br>gtgt aaatgttgag c | 2 |
| cageeg                  | gigt addigitigad t        | • |
|                         |                           |   |
|                         | 1739                      |   |
| <211><br><212>          | 19<br>DNA                 |   |
|                         | Homo sapiens              |   |
|                         | •                         |   |
| <400>                   |                           |   |
| ttaaaa                  | ttcc gggccttgg            | 3 |
|                         |                           |   |
| <210>                   | 1740                      |   |
| <211>                   |                           |   |
| <212>                   |                           |   |
| <213>                   | Homo sapiens              |   |
| <400>                   | 1740                      |   |
|                         | ccgt ggtcaaaagt c         | : |
|                         |                           |   |
| <210>                   | 1741                      |   |
| <211>                   |                           |   |
| <212>                   |                           |   |
| <213>                   | Homo sapiens              |   |
| <400>                   | 1741                      |   |
|                         | :ccat gtgcctggt           |   |
| 200090                  | 9-999-                    |   |
|                         |                           |   |
| <210>                   |                           |   |
| <211><br><212>          |                           |   |
|                         | Homo sapiens              |   |
|                         |                           |   |
| <400>                   |                           |   |
| gcagca                  | agtca gcgatgtttc          | : |
|                         |                           |   |
| <210>                   | 1743                      |   |
| <211>                   |                           |   |
| <212>                   |                           |   |
| <213>                   | Homo sapiens              |   |
| <400>                   | 1743                      |   |
|                         |                           |   |

| WO 2004/042346         | PCT/US2003/0 | 012946 |
|------------------------|--------------|--------|
| ccaaacctgc aaacaaacag  | g            | 21     |
| <210> 1744             |              |        |
| <211> 26               |              |        |
| <212> DNA              |              |        |
| <213> Homo sapiens     |              |        |
| <400> 1744             | a branch b   |        |
| tgccaatgat gtacagtttt  | atggtt       | 26     |
| <210> 1745             |              |        |
| <211> 22               |              |        |
| <212> DNA              |              |        |
| <213> Homo sapiens     |              |        |
| <400> 1745             |              |        |
| agccatttct ccaatggaca  | tc           | 22     |
| <210> 1746             |              |        |
| <211> 21               |              |        |
| <212> DNA              |              |        |
| <213> Homo sapiens     |              |        |
| <400> 1746             |              |        |
| attcatgtcc agtggcttcc  |              |        |
| acceatgice agiggettee  | a            | 21     |
| <210> 1747             |              |        |
| <211> 19               |              |        |
| <212> DNA              |              |        |
| <213> Homo sapiens     |              |        |
| <400> 1747             |              |        |
| actocotgoo caccagtot   |              | 19     |
|                        |              | 13     |
| <210> 1748             |              |        |
| <211> 20               |              |        |
| <212> DNA              |              |        |
| <213> Homo sapiens     |              |        |
| <400> 1748             |              |        |
| aaggagctgc ccgatgctat  |              | 20     |
|                        |              |        |
| <210> 1749             |              |        |
| <211> 20               |              |        |
| <212> DNA              |              |        |
| <213> Homo sapiens     |              |        |
| <400> 1749             |              |        |
| gccatactcc ctgcctcctt  |              | 20     |
| <210> 1750             |              |        |
| <210> 1/50<br><211> 21 |              |        |
|                        |              |        |
| <212> DNA              |              |        |
| <213> Homo sapiens     |              |        |

| <400>          | 1750                                     |    |
|----------------|------------------------------------------|----|
|                |                                          | 21 |
| ttgaca         | ccac cctctttgga a                        | 21 |
|                |                                          |    |
|                |                                          |    |
| <210>          | 1751                                     |    |
|                |                                          |    |
| <211>          |                                          |    |
| <212>          | DNA                                      |    |
| <213>          | Homo sapiens                             |    |
|                |                                          |    |
| <400>          | 1751                                     |    |
|                |                                          |    |
| ctccaa         | ccat gaaatcaaag ca                       | 22 |
|                |                                          |    |
|                |                                          |    |
| <210>          | 1752                                     |    |
|                |                                          |    |
| <211>          |                                          |    |
| <212>          | DNA                                      |    |
| <213>          | Homo sapiens                             |    |
|                | •                                        |    |
| <400>          | 1762                                     |    |
|                |                                          | 21 |
| gaaato         | aaag cacggtgcag a                        | 21 |
|                | •                                        |    |
|                |                                          |    |
| <210>          | 1753                                     |    |
|                |                                          |    |
| <211>          |                                          |    |
| <212>          | DNA                                      |    |
| <213>          | Homo sapiens                             |    |
|                | -                                        |    |
| <400>          | 1762                                     |    |
|                |                                          |    |
| ccccga         | tgct cagaagtgtc                          | 20 |
|                |                                          |    |
|                |                                          |    |
| <210>          | 1754                                     |    |
|                |                                          |    |
| <211>          |                                          |    |
| <212>          | DNA                                      |    |
| <213>          | Homo sapiens                             |    |
|                |                                          |    |
|                | 4754                                     |    |
| <400>          |                                          |    |
| ggggad         | caacg aaaacaagag g                       | 21 |
|                |                                          |    |
|                |                                          |    |
| <210>          | 1766                                     |    |
|                |                                          |    |
| <211>          |                                          |    |
| <212>          | DNA                                      |    |
| <213>          | Homo sapiens                             |    |
|                |                                          |    |
| -400           | 1956                                     |    |
| <400>          |                                          |    |
| ccgcta         | atgat cctcgctttg                         | 20 |
|                |                                          |    |
|                |                                          |    |
| <210>          | 1756                                     |    |
|                |                                          |    |
| <211>          |                                          |    |
| <212>          | DNA                                      |    |
| <213>          | Homo sapiens                             |    |
|                | or or or or or or or or or or or or or o |    |
| 400            | 1866                                     |    |
| <400>          | 1756                                     |    |
| ggagaa         | agatc ctttggatgc ag                      | 22 |
|                |                                          |    |
|                |                                          |    |
|                |                                          |    |
|                | 1757                                     |    |
| <210><br><211> | 1757<br>20                               |    |

| WO 2004/042346        | PCT/US2003/012946 |
|-----------------------|-------------------|
| <212> DNA             |                   |
| <213> Homo sapiens    |                   |
| <400> 1757            |                   |
| caagccaaaa tgggagcaag | 20                |
| 3                     |                   |
| <210> 1758            |                   |
| <211> 19              |                   |
| <212> DNA             |                   |
| <213> Homo sapiens    |                   |
| <400> 1758            |                   |
| ctggccgtca tggagactg  | 19                |
| <210> 1759            |                   |
| <211> 20              |                   |
| <212> DNA             |                   |
| <213> Homo sapiens    |                   |
| <400> 1759            |                   |
| agtcctgcaa ctgcctcctg | 20                |
|                       |                   |
| <210> 1760            |                   |
| <211> 20              |                   |
| <212> DNA             |                   |
| <213> Homo sapiens    |                   |
| <400> 1760            |                   |
| tggcctcagg gaaaagactg | 20                |
|                       |                   |
| <210> 1761            |                   |
| <211> 20<br><212> DNA |                   |
| <213> Homo sapiens    |                   |
| _                     |                   |
| <400> 1761            |                   |
| tccctggtag acggggtagg | 20                |
| <210> 1762            |                   |
| <211> 20              |                   |
| <212> DNA             |                   |
| <213> Homo sapiens    |                   |
| <400> 1762            |                   |
| gcggaaaagt caggggaaac | 20                |
|                       |                   |
| <210> 1763            |                   |
| <211> 22              |                   |
| <212> DNA             |                   |
| <213> Homo sapiens    |                   |
| <400> 1763            |                   |
| tccaggatca aaacattcct | ca 22             |
|                       |                   |

WO 2004/042346 PCT/US2003/012946 <210> 1764 <211> 20 <212> DNA <213> Homo sapiens <400> 1764 20 cagacgcaga gcatggatga <210> 1765 <211> 20 <212> DNA <213> Homo sapiens <400> 1765 cccgtaagcg ctaattccag 20 <210> 1766 <211> 25 <212> DNA <213> Homo sapiens <400> 1766 25 catgctgaaa caagattaac acagg <210> 1767 <211> 20 <212> DNA <213> Homo sapiens <400> 1767 ttgcgcctaa tcatgtcgtc 20 <210> 1768 <211> 19 <212> DNA <213> Homo sapiens <400> 1768 19 gaagcacagg tccgtgtcg <210> 1769 <211> 20 <212> DNA <213> Homo sapiens <400> 1769 20 gcagaaaacc gttgcattga <210> 1770 <211> 20 <212> DNA <213> Homo sapiens <400> 1770

cgccagtgtt tccgtcagta

| <210>     | 1771                          |    |  |  |
|-----------|-------------------------------|----|--|--|
| <211>     |                               |    |  |  |
|           |                               |    |  |  |
| <212>     |                               |    |  |  |
| <213>     | Homo sapiens                  |    |  |  |
|           |                               |    |  |  |
| <400>     | 1771                          |    |  |  |
| atacaa    | ataa tottacacac aaatgaaaat go | 32 |  |  |
| a ca ca a |                               |    |  |  |
|           |                               |    |  |  |
|           | 1880                          |    |  |  |
|           | 1772                          |    |  |  |
| <211>     |                               |    |  |  |
| <212>     |                               |    |  |  |
| <213>     | Homo sapiens                  |    |  |  |
|           |                               |    |  |  |
| <400>     | 1772                          |    |  |  |
|           | cgta gataggcagc a             | 21 |  |  |
|           | -5 5555                       |    |  |  |
|           |                               |    |  |  |
| .210.     | 1772                          |    |  |  |
| <210>     |                               |    |  |  |
| <211>     |                               |    |  |  |
| <212>     |                               |    |  |  |
| <213>     | Homo sapiens                  |    |  |  |
|           |                               |    |  |  |
| <400>     | 1773                          |    |  |  |
| acticca   | gcct catttgcttg               | 20 |  |  |
| 3         |                               |    |  |  |
|           |                               |    |  |  |
| <210>     | 1004                          |    |  |  |
|           |                               |    |  |  |
| <211>     |                               |    |  |  |
| <212>     | DNA                           |    |  |  |
| <213>     | Homo sapiens                  |    |  |  |
|           |                               |    |  |  |
| <400>     | 1774                          |    |  |  |
| ttttaa    | ttgg ggtgatccaa agc           | 23 |  |  |
|           |                               |    |  |  |
|           |                               |    |  |  |
| 010       | 1775                          |    |  |  |
| <210>     |                               |    |  |  |
| <211>     |                               |    |  |  |
| <212>     | DNA                           |    |  |  |
| <213>     | Homo sapiens                  |    |  |  |
|           |                               |    |  |  |
| <400>     | 1775                          |    |  |  |
| aagcct    | cagg tggagcagtg               | 20 |  |  |
|           |                               |    |  |  |
|           |                               |    |  |  |
| <210>     | 1776                          |    |  |  |
|           |                               |    |  |  |
| <211>     |                               |    |  |  |
| <212>     |                               |    |  |  |
| <213>     | Homo sapiens                  |    |  |  |
|           |                               |    |  |  |
| <400>     | 1776                          |    |  |  |
|           | ccgg agactgaaga               | 20 |  |  |
|           |                               |    |  |  |
|           |                               |    |  |  |
| <210>     | 1777                          |    |  |  |
| <211>     |                               |    |  |  |
|           |                               |    |  |  |
| <212>     |                               |    |  |  |
| -213-     | Homo saniens                  |    |  |  |

| wo             | 2004/042346     | PCT/US2003/012946 |
|----------------|-----------------|-------------------|
| <400>          | 1777            |                   |
|                | agag atggagctg  | 19                |
| cggcac         | ugug u:55u5+5   |                   |
|                |                 |                   |
| <210><br><211> |                 |                   |
| <211>          |                 |                   |
|                | Homo sapiens    |                   |
| 12137          | nono bapione    |                   |
| <400>          | 1778            |                   |
| tccacc         | tttg ggtcgcttt  | 19                |
|                |                 |                   |
| <210>          | 1779            |                   |
| <211>          |                 |                   |
| <212>          |                 |                   |
| <213>          | Homo sapiens    |                   |
| <400>          | 1779            |                   |
|                | caaa ccccagact  | 19                |
| cccac          | caaa cccagace   |                   |
|                |                 |                   |
| <210>          |                 |                   |
| <211>          |                 |                   |
| <212>          |                 |                   |
| <213>          | Homo sapiens    |                   |
| <400>          | 1780            |                   |
| gccctc         | aacg accactttgt | 20                |
|                |                 |                   |
| <210>          | 1781            |                   |
| <211>          | 20              |                   |
| <212>          | DNA             |                   |
| <213>          | Homo sapiens    |                   |
| <400>          | 1781            |                   |
|                | gagc agtgaccttc | 20                |
|                | 5-55-5          |                   |
| <210>          | 1702            |                   |
|                | 20              |                   |
| <211><br><212> |                 |                   |
|                | Homo sapiens    |                   |
|                |                 |                   |
| <400>          |                 |                   |
| cacaag         | ctcc ggtggatctc | 20                |
|                |                 |                   |
| <210>          | 1783            |                   |
| <211>          |                 |                   |
| <212>          |                 |                   |
| <213>          | Homo sapiens    |                   |
| <400>          | 1783            |                   |
|                | gccc ctagacagag | 20                |
|                | <del>-</del>    |                   |
| <210>          | 1794            |                   |
|                | 20              |                   |
| <211>          |                 |                   |
| 12127          | aran.           |                   |

| WO 2004/042346                          | PCT/US2003/012946 |
|-----------------------------------------|-------------------|
| <213> Homo sapiens                      |                   |
| <400> 1784                              |                   |
| aacctgcctc ctctgccact                   | 20                |
|                                         |                   |
| <210> 1785<br><211> 24                  |                   |
| <211> 24<br><212> DNA                   |                   |
| <213> Homo sapiens                      |                   |
| <400> 1785                              |                   |
| gtgaaagggt actggatacc aacc              | 24                |
|                                         |                   |
| <210> 1786                              |                   |
| <211> 20                                |                   |
| <212> DNA                               |                   |
| <213> Homo sapiens                      |                   |
| <400> 1786                              |                   |
| cgaatggcct ctagccacac                   | 20                |
|                                         |                   |
| <210> 1787                              |                   |
| <211> 20                                |                   |
| <212> DNA<br><213> Homo sapiens         |                   |
| (213) Nono Sapieno                      |                   |
| <400> 1787                              |                   |
| cacaacaggg ctgcaacaaa                   | 20                |
| <210> 1788                              |                   |
| <210> 1788<br><211> 23                  |                   |
| <211> 23<br><212> DNA                   |                   |
| <213> Homo sapiens                      |                   |
|                                         |                   |
| <400> 1788<br>gacgtctggt tcaaagagtt gga | 23                |
| gacgtetggt teaaagagtt gga               | 23                |
| <210> 1789                              |                   |
| <211> 19                                |                   |
| <212> DNA                               |                   |
| <213> Homo sapiens                      |                   |
| <400> 1789                              |                   |
| tggctctgac cggttgatg                    | 19                |
|                                         |                   |
| <210> 1790                              |                   |
| <211> 19                                |                   |
| <212> DNA                               |                   |
| <213> Homo sapiens                      |                   |
| <400> 1790                              |                   |
| gcgaccacca gcagctcta                    | 19                |
|                                         |                   |
| <210> 1791                              |                   |

<211> 19 <212> DNA <213> Homo sapiens <400> 1791 19 tgtgaaatgc ccaggatgc <210> 1792 <211> 22 <212> DNA <213> Homo sapiens <400> 1792 22 gcccttgaca gggtatttct ga <210> 1793 <211> 25 <212> DNA <213> Homo sapiens <400> 1793 cgtgtcagaa aacaaagcat actga 25 <210> 1794 <211> 19 <212> DNA <213> Homo sapiens <400> 1794 ggggagctct ccctgacct 19 <210> 1795 <211> 20 <212> DNA <213> Homo sapiens <400> 1795 acaattcact ggccgtcgtt 20 <210> 1796 <211> 20 <212> DNA <213> Homo sapiens <400> 1796 ggagaatgca gaggccaaaa 20 <210> 1797 <211> 20 <212> DNA <213> Homo sapiens <400> 1797 20 cgagatgatc ggccactacc

PCT/US2003/012946

WO 2004/042346

| :210> | 1798                                   |  |
|-------|----------------------------------------|--|
| :211> |                                        |  |
| <212> |                                        |  |
|       | Homo sapiens                           |  |
|       |                                        |  |
| :400> | 1798                                   |  |
|       | ggga ctgggaaaag                        |  |
| agous | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |  |
|       |                                        |  |
| <210> |                                        |  |
| <211> |                                        |  |
| <212> |                                        |  |
| 213>  | Homo sapiens                           |  |
| 400-  | 1799                                   |  |
|       | tttc aggcttgtgg                        |  |
| Lycat | citt aggettgigg                        |  |
|       |                                        |  |
|       | 1800                                   |  |
| 211>  |                                        |  |
| 212>  |                                        |  |
| 213>  | Homo sapiens                           |  |
| -00   | 1800                                   |  |
|       | taag agggcctttc                        |  |
| 900   | 5559000000                             |  |
|       |                                        |  |
|       | 1801                                   |  |
| 211>  |                                        |  |
| 212>  |                                        |  |
| 13>   | Homo sapiens                           |  |
| 400>  | 1801                                   |  |
|       | acac cccttaatag                        |  |
| -2399 | acac coortaatag                        |  |
|       |                                        |  |
|       | 1802                                   |  |
| 211>  |                                        |  |
| 212>  |                                        |  |
| 213>  | Homo sapiens                           |  |
| 400>  | 1802                                   |  |
|       | acag ccccaaatgc                        |  |
|       |                                        |  |
|       |                                        |  |
| 210>  |                                        |  |
| 211>  |                                        |  |
| 212>  |                                        |  |
| 213>  | Homo sapiens                           |  |
| 400>  | 1803                                   |  |
|       | tggg tttggatagg                        |  |
| 22248 | . 333332433                            |  |
|       |                                        |  |
|       | 1804                                   |  |
| 211>  |                                        |  |
| 212>  |                                        |  |
| 213>  | Homo sapiens                           |  |
| 100>  | 1804                                   |  |
|       |                                        |  |

| we     | 2004/042346                    | PCT/US2003/012946 |
|--------|--------------------------------|-------------------|
| gcctc  | ctcaa acggttcctt               | 20                |
|        | 1805                           |                   |
| <211>  |                                |                   |
| <212>  |                                |                   |
| <213>  | Homo sapiens                   |                   |
| <400>  | 1805                           |                   |
| ctttt  | attaa tatattgtgt gtgcaccttg t  | 31                |
| <210>  | 1806                           |                   |
| <211>  |                                |                   |
| <212>  |                                |                   |
|        | Homo sapiens                   |                   |
|        |                                |                   |
| <400>  |                                |                   |
| tccaca | aaatc aagctcccaa g             | 21                |
| <210>  | 1807                           |                   |
| <211>  | 32                             |                   |
| <212>  | DNA                            |                   |
| <213>  | Homo sapiens                   |                   |
| <400>  |                                |                   |
| aggac  | pttct ttattatgaa actttatcac at | 32                |
|        |                                |                   |
| <210>  |                                |                   |
| <211>  | 25                             |                   |
| <212>  | DNA                            |                   |
| <213>  | Homo sapiens                   |                   |
| <400>  | 1808                           |                   |
| ttaaat | gtca aaatgaaagg ggaca          | 25                |
| <210>  | 1809                           |                   |
| <211>  |                                |                   |
| <212>  |                                |                   |
|        | Homo sapiens                   |                   |
|        |                                |                   |
| <400>  |                                |                   |
| ccttct | ccag gcctgagtgt t              | 21                |
| <210>  | 1810                           |                   |
| <211>  |                                |                   |
| <212>  |                                |                   |
|        | Homo sapiens                   |                   |
| <400>  | 1810                           |                   |
| gaggcc | tctg atgaccagac a              | 21                |
| <210>  | 1011                           |                   |
| <211>  |                                |                   |
| <211>  |                                |                   |
|        | Homo sapiens                   |                   |
| -613>  | nome paptens                   |                   |

| <400>           |                  |    |
|-----------------|------------------|----|
| gctccc          | tgtt gggtgtcatc  | 20 |
|                 |                  |    |
|                 |                  |    |
| <210>           | 1012             |    |
|                 |                  |    |
| <211>           |                  |    |
| <212>           | DNA              |    |
| <213>           | Homo sapiens     |    |
| 12.0            |                  |    |
|                 |                  |    |
| <400>           | 1812             |    |
| gtgggt          | tgtg cttgccaga   | 19 |
|                 |                  |    |
|                 |                  |    |
| <210>           | 1813             |    |
|                 |                  |    |
| <211>           |                  |    |
| <212>           |                  |    |
| <213>           | Homo sapiens     |    |
|                 | -                |    |
| <400>           | 1813             |    |
|                 |                  | 20 |
| tacccc          | gaga tcgacaagga  | 20 |
|                 |                  |    |
|                 |                  |    |
| <210>           | 1814             |    |
| <211>           |                  |    |
|                 |                  |    |
| <212>           |                  |    |
| <213>           | Homo sapiens     |    |
|                 |                  |    |
| <400>           | 1814             |    |
|                 |                  | 20 |
| cggaat          | ggtg aaaccaaagc  | 20 |
|                 |                  |    |
|                 |                  |    |
| <210>           | 1815             |    |
| <211>           | 30               |    |
| <212>           |                  |    |
|                 |                  |    |
| <213>           | Homo sapiens     |    |
|                 |                  |    |
| <400>           | 1815             |    |
|                 | cete etggecettg  | 20 |
| acacac          | coco coggeocorg  | 20 |
|                 |                  |    |
|                 |                  |    |
| <210>           | 1816             |    |
| <211>           | 20               |    |
| <212>           |                  |    |
|                 |                  |    |
| <213>           | Homo sapiens     |    |
|                 |                  |    |
| <400>           | 1816             |    |
| acctg           | accgt gcgaatcaat | 20 |
|                 |                  |    |
|                 |                  |    |
|                 |                  |    |
| <210>           |                  |    |
| <211>           | 20               |    |
| <212>           |                  |    |
|                 | Homo sapiens     |    |
| <b>~213&gt;</b> | nomo sabrens     |    |
|                 |                  |    |
| <400>           | 1817             |    |
| ctcttc          | gcccc gagcctagtt | 20 |
|                 | • • = =          |    |
|                 |                  |    |
| <210>           | 1010             |    |
|                 | 1818             |    |
| <211>           |                  |    |

WO 2004/042346 PCT/US2003/012946 <212> DNA <213> Homo sapiens <400> 1818 ccccactatg ggatgacgag 20 <210> 1819 <211> 21 <212> DNA <213> Homo sapiens <400> 1819 cagagetett ttggggtetg g 21 <210> 1820 <211> 19 <212> DNA <213> Homo sapiens <400> 1820 caccatctcc tgcgtctcg 19 <210> 1821 <211> 20 <212> DNA <213> Homo sapiens <400> 1821 ttggcacacc agtgttctcc 20 <210> 1822 <211> 21 <212> DNA <213> Homo sapiens <400> 1822 gcccattgtt cattcttgtg c 21 <210> 1823 <211> 26 <212> DNA <213> Homo sapiens <400> 1823 ccaaqacaag aaattgtttt gagaaa 26 <210> 1824 <211> 31 <212> DNA <213> Homo sapiens <400> 1824 tttgtacatg actctcattt tattgtttct t 31

WO 2004/042346 PCT/US2003/012946 <210> 1825 <211> 19 <212> DNA <213> Homo sapiens <400> 1825 ccctcqqtct qqqcaataa 19 <210> 1826 <211> 20 <212> DNA <213> Homo sapiens <400> 1826 ccgggtgaga tccacaagtc 20 <210> 1827 <211> 20 <212> DNA <213> Homo sapiens <400> 1827 gagccgcaga tgcaagttct 20 <210> 1828 <211> 23 <212> DNA <213> Homo sapiens <400> 1828 gggctcctaa ataccaagct tca 23 <210> 1829 <211> 20 <212> DNA <213> Homo sapiens <400> 1829 tcagcacctc agtcgtccac 20 <210> 1830 <211> 22 <212> DNA <213> Homo sapiens <400> 1830 cacttgaggc attttgttgt cg 22 <210> 1831 <211> 20 <212> DNA <213> Homo sapiens <400> 1831 agccctggtg gcctattacc 20

| <210>          | 1832                                    |    |
|----------------|-----------------------------------------|----|
| <211>          |                                         |    |
| <212>          |                                         |    |
|                | Homo sapiens                            |    |
| 10101          | nome supercise                          |    |
| <400>          | 1832                                    |    |
| tgttt          | gagta cattotttca acactacaca t           | 3  |
|                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 3  |
|                |                                         |    |
| <210>          |                                         |    |
| <211>          |                                         |    |
| <212>          | DNA                                     |    |
| <213>          | Homo sapiens                            |    |
|                |                                         |    |
| <400>          |                                         |    |
| ttttaa         | agtgg aaatgtaacc attttagga              | 2  |
|                |                                         |    |
| .010           | 1024                                    |    |
| <210><br><211> |                                         |    |
|                |                                         |    |
| <212>          |                                         |    |
| <213>          | Homo sapiens                            |    |
| <400>          | 1024                                    |    |
|                | cccc aagagagaac ag                      |    |
| cugoco         | secce aagagagaac ag                     | 22 |
|                |                                         |    |
| <210>          | 1835                                    |    |
| <211>          |                                         |    |
| <212>          |                                         |    |
|                | Homo sapiens                            |    |
|                |                                         |    |
| <400>          | 1835                                    |    |
| ccgccc         | gtaa ttaaatagca t                       | 21 |
|                |                                         |    |
|                |                                         |    |
| <210>          |                                         |    |
| <211>          |                                         |    |
| <212>          |                                         |    |
| <213>          | Homo sapiens                            |    |
|                | 1                                       |    |
| <400>          |                                         |    |
| agggag         | cttg aagagggaat g                       | 21 |
|                |                                         |    |
| <210>          | 1027                                    |    |
| <211>          |                                         |    |
| <211>          |                                         |    |
|                | Homo sapiens                            |    |
| ~613>          | nomo sabrens                            |    |
| <400>          | 1837                                    |    |
|                | ttcg cctggctgat                         | 20 |
|                | J JJ: -J                                | 20 |
|                |                                         |    |
| <210>          | 1838                                    |    |
| <211>          | 20                                      |    |
| <212>          | DNA                                     |    |
|                | Homo sapiens                            |    |

| we     | 2004/042346         | PCT/US2003 | 3/012946 |
|--------|---------------------|------------|----------|
| <400>  | 1838                |            |          |
|        | caat gtcaggaatg     |            | 20       |
| ccccac | caac goodggaacg     |            |          |
| <210>  | 1839                |            |          |
| <211>  | 21                  |            |          |
| <212>  | DNA                 |            |          |
| <213>  | Homo sapiens        |            |          |
| <400>  | 1839                |            |          |
| gctctg | agag ttcccctgtc     | С          | 21       |
|        |                     |            |          |
| <210>  | 1840                |            |          |
| <211>  | 20                  |            |          |
| <212>  | DNA                 |            |          |
| <213>  | Homo sapiens        |            |          |
| <400>  | 1840                |            |          |
| tttgcc | tgac atcgtctcgt     |            | 20       |
|        |                     |            |          |
| <210>  |                     |            |          |
| <211>  |                     |            |          |
| <212>  |                     |            |          |
| <213>  | Homo sapiens        |            |          |
| <400>  |                     |            |          |
| ttgggd | caat aaggattcca     |            | 20       |
| <210>  | 1942                |            |          |
| <211>  |                     |            |          |
| <212>  |                     |            |          |
|        | Homo sapiens        |            |          |
|        |                     |            |          |
|        | 1842                |            |          |
| gcagat | gage gteceaettt     |            | 20       |
|        |                     |            |          |
| <210>  |                     |            |          |
| <211>  |                     |            |          |
|        | DNA<br>Homo sapiens |            |          |
|        | <del>-</del>        |            |          |
| <400>  |                     |            |          |
| aatgga | aggc ttggacatgg     |            | 20       |
|        |                     |            |          |
| <210>  |                     |            |          |
| <211>  |                     |            |          |
|        | Homo sapiens        |            |          |
| <213>  | nomo saprens        |            |          |
| <400>  |                     |            |          |
| aaaagt | gtcc attgaaaccg     | tga        | 23       |
|        |                     |            |          |
| <210>  |                     |            |          |
|        | 20                  |            |          |
| <212>  | DNA                 |            |          |

| WO 2004/042346                 | PCT/US2003/012946 |
|--------------------------------|-------------------|
| <213> Homo sapiens             |                   |
|                                |                   |
| <400> 1845                     | 20                |
| tgccttggag aggatgg <b>a</b> ag | 20                |
| <210> 1846                     |                   |
| <211> 20                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 1846                     |                   |
| tgccaggctt aaggagagga          | 20                |
| <210> 1847                     |                   |
| <211> 28                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 1847                     |                   |
| ctaatgatat tgatttggat acggtgaa | 28                |
|                                |                   |
| <210> 1848                     |                   |
| <211> 20                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 1848                     |                   |
| cccctcagat cccaatttca          | 20 .              |
|                                |                   |
| <210> 1849                     |                   |
| <211> 20                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 1849                     |                   |
| gctgtgggat ctcagtgtgc          | 20                |
|                                |                   |
| <210> 1850                     |                   |
| <211> 27                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 1850                     |                   |
| acttgttaac ctttctaacc ttcacga  | 27                |
|                                |                   |
| <210> 1851                     | •                 |
| <211> 20                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 1851                     |                   |
| ggaagatgag caggccagtg          | 20                |
|                                |                   |
| <210> 1852                     |                   |

| WO 2004/042346                        | PCT/US2003/012946 |
|---------------------------------------|-------------------|
| <211> 20                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1852                            |                   |
| tgtgcctctg ccatcttcac                 | 20                |
|                                       |                   |
| <210> 1853                            |                   |
| <211> 21<br><212> DNA                 |                   |
| <213> Homo sapiens                    |                   |
| <400> 1853                            |                   |
| ttgaagetet tggeatteag e               |                   |
| · · · · · · · · · · · · · · · · · · · | 21                |
| <210> 1854                            |                   |
| <211> 23                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1854                            |                   |
| gcagccaaga agatgtgaaa gag             | 23                |
|                                       |                   |
| <210> 1855                            |                   |
| <211> 20                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1855                            |                   |
| ggatgctgca aacccagaat                 | 20                |
| <210> 1856                            |                   |
| <210> 1856<br><211> 20                |                   |
| <211> 20<br><212> DNA                 |                   |
| <213> Homo sapiens                    |                   |
| <400> 1856                            |                   |
| cccgtggact gcttcaattc                 |                   |
| orogen good good and the              | 20                |
| <210> 1857                            |                   |
| <211> 27                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 1857                            |                   |
| ccatgttatg atctaaatgc ttgttca         | 27                |
| <210> 1858                            |                   |
| <210> 1858<br><211> 20                |                   |
| <211> 20<br><212> DNA                 |                   |
| <213> Homo sapiens                    |                   |
| •                                     |                   |
| <400> 1858                            |                   |
| ttgagaaatg gccccaactg                 | 20                |
|                                       |                   |

| -210-          | 1859                                                   |    |
|----------------|--------------------------------------------------------|----|
|                |                                                        |    |
| <211>          |                                                        |    |
|                | DNA                                                    |    |
| <213>          | Homo sapiens                                           |    |
|                |                                                        |    |
| <400>          | 1859                                                   |    |
|                | catga ttggtctgct g                                     |    |
| 333            |                                                        | 2: |
|                |                                                        |    |
| .210-          | 1860                                                   |    |
|                |                                                        |    |
| <211>          |                                                        |    |
| <212>          |                                                        |    |
| <213>          | Homo sapiens                                           |    |
|                |                                                        |    |
| <400>          | 1860                                                   |    |
| gcctc          | ttcca cttggtctgc                                       | 20 |
| _              |                                                        | 20 |
|                |                                                        |    |
| <210>          | 1861                                                   |    |
| <211>          |                                                        |    |
| <212>          |                                                        |    |
|                |                                                        |    |
| <213>          | Homo sapiens                                           |    |
|                |                                                        |    |
| <400>          |                                                        |    |
| ccctt          | ettca gegaaegagt                                       | 20 |
|                |                                                        |    |
|                |                                                        |    |
| <210>          | 1862                                                   |    |
| <211>          | 25                                                     |    |
| <212>          | DNA                                                    |    |
|                | Homo sapiens                                           |    |
| 10107          | none supreme                                           |    |
| <400>          | 1062                                                   |    |
|                |                                                        |    |
| cccac          | cacag gagateteag acaga                                 | 25 |
|                |                                                        |    |
|                |                                                        |    |
| <210>          |                                                        |    |
| <211>          |                                                        |    |
| <212>          |                                                        |    |
| <213>          | Homo sapiens                                           |    |
|                | •                                                      |    |
| <400>          | 1863                                                   |    |
|                | aaat ttaaaggcaa attcaca                                |    |
|                |                                                        | 27 |
|                |                                                        |    |
| <210>          | 1064                                                   |    |
|                |                                                        |    |
| <211>          |                                                        |    |
| <212>          |                                                        |    |
| <213>          | Homo sapiens                                           |    |
|                |                                                        |    |
| <400>          | 1864                                                   |    |
| caagco         |                                                        |    |
|                | aaag tggcatgttt t                                      | 21 |
|                |                                                        | 21 |
|                |                                                        | 21 |
| <210>          | aaag tggcatgttt t                                      | 21 |
| <210><br><211> | aaag tggcatgttt t                                      | 21 |
| <211>          | aaag tggcatgttt t<br>1865<br>21                        | 21 |
| <211><br><212> | aaag tggcatgttt t<br>1865<br>21<br>DNA                 | 21 |
| <211><br><212> | aaag tggcatgttt t<br>1865<br>21                        | 21 |
| <211><br><212> | aaag tggcatgttt t<br>1865<br>21<br>DNA<br>Homo sapiens | 21 |

| WO 2004/042346                  | PCT/US2003/012946 |
|---------------------------------|-------------------|
| tcgtgctctc caacctgtct t         | 21                |
| <210> 1866                      |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 1866                      |                   |
| cctcgtgaca tggacacacc           | 20                |
| <210> 1867                      |                   |
| <211> 23                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 1867                      |                   |
| ttttttcaag cagtaaaatt cca       | 23                |
| <210> 1868                      |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 1868                      |                   |
| gtggcettte ttgggteete           | 20                |
|                                 | 20                |
| <210> 1869<br><211> 20          |                   |
|                                 |                   |
| <212> DNA<br><213> Homo sapiens |                   |
|                                 |                   |
|                                 |                   |
| gcctggctgt cctagcagtt           | 20                |
| <210> 1870                      |                   |
| <211> 19                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
| <400> 1870                      |                   |
| gtacaagccg teegacaeg            | 19                |
| <210> 1871                      |                   |
| <211> 20                        |                   |
| <211> 20<br><212> DNA           |                   |
| <213> Homo sapiens              |                   |
| <400> 1871                      |                   |
| gaccgaggac tcaacccaaa           | 20                |
|                                 | 20                |
| <210> 1872                      |                   |
| <211> 20                        |                   |
| <212> DNA                       |                   |
| <213> Homo sapiens              |                   |
|                                 |                   |

| <400>   | 1872                             |    |
|---------|----------------------------------|----|
|         |                                  | 20 |
| gcggaag | gaac atcgacctca                  | 20 |
|         |                                  |    |
|         |                                  |    |
| <210>   | 1873                             |    |
| <211>   |                                  |    |
| <212>   |                                  |    |
|         |                                  |    |
| <213>   | Homo sapiens                     |    |
|         |                                  |    |
| <400>   | 1873                             |    |
|         | Ett aaggeccaaa c                 | 21 |
| cggcag  | aaggeecaaa e                     | 21 |
|         |                                  |    |
|         |                                  |    |
| <210>   | 1874                             |    |
| <211>   | 19                               |    |
| <212>   |                                  |    |
|         |                                  |    |
| <213>   | Homo sapiens                     |    |
|         |                                  |    |
| <400>   | 1874                             |    |
| acaaqa  | cogg cacceteac                   | 19 |
| _       |                                  |    |
|         |                                  |    |
|         |                                  |    |
| <210>   |                                  |    |
| <211>   | 20                               |    |
| <212>   | DNA                              |    |
|         | Homo sapiens                     |    |
| 12137   | none suprem                      |    |
|         |                                  |    |
| <400>   | 1875                             |    |
| aagaat  | gggg agagggaacg                  | 20 |
| _       |                                  |    |
|         |                                  |    |
| <210>   | 1006                             |    |
|         |                                  |    |
| <211>   |                                  |    |
| <212>   | DNA                              |    |
| <213>   | Homo sapiens                     |    |
|         | none superior                    |    |
|         | 1076                             |    |
| <400>   | 1876                             |    |
| ggagaa  | aact ttattettta tagttteaaa taeea | 35 |
|         |                                  |    |
|         |                                  |    |
| <210>   | 1977                             |    |
|         |                                  |    |
| <211>   |                                  |    |
| <212>   | DNA                              |    |
| <213>   | Homo sapiens                     |    |
|         |                                  |    |
| 400     | 1877                             |    |
|         |                                  |    |
| ggctgg  | gaag ctctaccaaa a                | 21 |
|         |                                  |    |
|         |                                  |    |
| <210>   | 1878                             |    |
|         |                                  |    |
| <211>   |                                  |    |
| <212>   | DNA                              |    |
| <213>   | Homo sapiens                     |    |
|         | *                                |    |
| <400>   | 1878                             |    |
|         |                                  |    |
| ggaget  | cago acctottoca                  | 20 |
|         |                                  |    |
|         |                                  |    |
| <210>   | 1879                             |    |
| <211>   | 20                               |    |
|         |                                  |    |

| W      | O 2004/042346     | PCT/US2003/01294 |
|--------|-------------------|------------------|
| <212>  | DNA               |                  |
| <213>  | Homo sapiens      |                  |
| <400>  | 1879              |                  |
|        | agete ettteetgtg  | 20               |
|        | _                 | 20               |
| <210>  | 1880              |                  |
| <211>  | 20                |                  |
| <212>  |                   |                  |
| <213>  | Homo sapiens      |                  |
| <400>  | 1880              |                  |
| ccctg  | gggcc ctatttcata  | 20               |
|        |                   |                  |
|        | 1881              |                  |
| <211>  |                   |                  |
| <212>  |                   |                  |
| <213>  | Homo sapiens      |                  |
| <400>  |                   |                  |
| ctcca  | ggtag cccacggata  | 20               |
|        |                   |                  |
|        | 1882              |                  |
| <211>  |                   |                  |
| <212>  |                   |                  |
| <213>  | Homo sapiens      |                  |
| <400>  | 1882              |                  |
| ctggca | itctg caccacaact  | 20               |
|        |                   |                  |
| <210>  | 1883              |                  |
| <211>  | 20                |                  |
| <212>  |                   |                  |
| <213>  | Homo sapiens      |                  |
| <400>  | 1883              |                  |
| tected | aggt gtggctgagt   | 20               |
|        |                   | 20               |
| <210>  | 1884              |                  |
| <211>  | 21                |                  |
| <212>  | DNA               |                  |
| <213>  | Homo sapiens      |                  |
| <400>  | 1884              |                  |
| cgggat | tcac actcagaacc a | 21               |
|        |                   |                  |
| <210>  | 1885              |                  |
| <211>  |                   |                  |
| <212>  |                   |                  |
| <213>  | Homo sapiens      |                  |
| <400>  | 1885              |                  |
|        | tgcc gaagcaaat    | 19               |
|        |                   | 19               |

WO 2004/042346 PCT/US2003/012946 <210> 1886 <211> 21 <212> DNA <213> Homo sapiens <400> 1886 21 catgagatgt gtgggtggtt g <210> 1887 <211> 20 <212> DNA <213> Homo sapiens <400> 1887 ctctggtgcc ctcactctgc 20 <210> 1888 <211> 21 <212> DNA <213> Homo sapiens <400> 1888 21 tqttcctttq qqtctqtgag g <210> 1889 <211> 20 <212> DNA <213> Homo sapiens <400> 1889 ctgggccaat ggtacaggtc 20 <210> 1890 <211> 23 <212> DNA <213> Homo sapiens <400> 1890 23 acaatcaacc aacaatggaa acc <210> 1891 <211> 20 <212> DNA <213> Homo sapiens <400> 1891 20 gggctcctac caggaaaagg <210> 1892 <211> 20 <212> DNA <213> Homo sapiens <400> 1892 20 atgggcaagt gtcgtggact

| <210>    | 1893                    |     |
|----------|-------------------------|-----|
| <211>    | 28                      |     |
| <212>    | DNA                     |     |
| <213>    | Homo sapiens            |     |
|          | •                       |     |
| <400>    | 1893                    |     |
|          | cct tacgtcaata cttttcct | 28  |
|          | g                       |     |
|          |                         |     |
| <210>    | 1894                    |     |
| <211>    |                         |     |
| <212>    |                         |     |
|          | Homo sapiens            |     |
| ~~~~     | 10.00 Deptotio          |     |
| <400>    | 1894                    |     |
|          | aacc cagtaagact ttcca   | 25  |
| ou oguu. | aco daganagano ocon     |     |
|          |                         |     |
| <210>    | 1895                    |     |
| <211>    |                         |     |
| <212>    |                         |     |
|          | Homo sapiens            |     |
| 12137    | nomo saprens            |     |
| <400>    | 1805                    |     |
|          |                         | 20  |
| gaagte   | ctgg gcatgcatct         | 20  |
|          |                         |     |
| <210>    | 1006                    |     |
| <211>    |                         |     |
| <211>    |                         |     |
|          |                         |     |
| <213>    | Homo sapiens            |     |
| <400>    | 1006                    |     |
|          |                         | 21  |
| grggge   | ctgt gaagttttca a       | 21  |
|          |                         |     |
|          | 1000                    |     |
| <210>    |                         |     |
| <211>    |                         |     |
| <212>    |                         |     |
| <213>    | Homo sapiens            |     |
|          | 1000                    |     |
| <400>    |                         | 20  |
| agccct   | tgac ccttgagtcc         | 20  |
|          |                         |     |
|          | ****                    |     |
| <210>    |                         |     |
| <211>    |                         |     |
| <212>    |                         |     |
| <213>    | Homo sapiens            |     |
|          | ****                    |     |
| <400>    |                         | 2.0 |
| ggggac   | acag cagaagaacg         | 20  |
|          |                         |     |
|          | ****                    |     |
| <210>    |                         |     |
| <211>    |                         |     |
| <212>    |                         |     |
|          | Nomo caniene            |     |

| WO 2004/042346             | PCT/US2003/012946 |
|----------------------------|-------------------|
| <400> 1899                 |                   |
| atcaccaacc gcaccttcat      | 20                |
|                            | 20                |
|                            |                   |
| <210> 1900                 |                   |
| <211> 20                   |                   |
| <212> DNA                  |                   |
| <213> Homo sapiens         |                   |
| <400> 1900                 |                   |
| tggggcacca tttcagtgta      | 20                |
| 5-5                        | 20                |
|                            |                   |
| <210> 1901                 |                   |
| <211> 21                   |                   |
| <212> DNA                  |                   |
| <213> Homo sapiens         |                   |
| <400> 1901                 |                   |
| cctttgcagc ctgtttctgt c    |                   |
| courage degree e           | 21                |
|                            |                   |
| <210> 1902                 |                   |
| <211> 24                   |                   |
| <212> DNA                  |                   |
| <213> Homo sapiens         |                   |
|                            |                   |
| <400> 1902                 |                   |
| gggtgtgtct gctcagtaat ttga | 24                |
|                            |                   |
| <210> 1903                 |                   |
| <2103 1903<br><211> 20     |                   |
| <211> 20<br><212> DNA      |                   |
| <213> Homo sapiens         |                   |
| (213) homo sapiens         |                   |
| <400> 1903                 |                   |
| agccategga agagaacage      | 20                |
|                            | 20                |
|                            |                   |
| <210> 1904                 |                   |
| <211> 20                   |                   |
| <212> DNA                  |                   |
| <213> Homo sapiens         |                   |
| <400> 1904                 |                   |
| gaagggacac gcaggtggta      |                   |
| 5magggacac geaggeggea      | 20                |
|                            |                   |
| <210> 1905                 |                   |
| <211> 24                   |                   |
| <212> DNA                  |                   |
| <213> Homo sapiens         |                   |
|                            |                   |
| <400> 1905                 |                   |
| tgacttttaa ttccccaatc aagg | 24                |
|                            |                   |
| <210> 1906                 |                   |
| <211> 21                   |                   |
| <212> DNA                  |                   |
|                            |                   |

| WO 2004/042346             | PCT/US2003/012946 |
|----------------------------|-------------------|
| <213> Homo sapiens         |                   |
| <400> 1906                 |                   |
| ccgtctgtgc atccatattc c    | 21                |
| cogeological accountable o | 21                |
| <210> 1907                 |                   |
| <211> 20                   |                   |
| <212> DNA                  |                   |
| <213> Homo sapiens         |                   |
| <400> 1907                 |                   |
| atgatcccca cgatccatgt      | 20                |
|                            |                   |
|                            |                   |
| <210> 1908                 |                   |
| <211> 20                   |                   |
| <212> DNA                  |                   |
| <213> Homo sapiens         |                   |
| <400> 1908                 |                   |
| gcacctggag aacccattca      | 20                |
|                            |                   |
| <210> 1909                 |                   |
| <211> 20                   |                   |
| <211> 20<br><212> DNA      |                   |
| <213> Homo sapiens         |                   |
| (21) Homo Bapiens          |                   |
| <400> 1909                 |                   |
| tttcccttcg ttgcttcctg      | 20                |
|                            |                   |
| <210> 1910                 |                   |
| <211> 20                   |                   |
| <212> DNA                  |                   |
| <213> Homo sapiens         |                   |
|                            |                   |
| <400> 1910                 | 20                |
| teettgeeaa egggtattgt      | 20                |
|                            |                   |
| <210> 1911                 |                   |
| <211> 21                   |                   |
| <212> DNA                  |                   |
| <213> Homo sapiens         |                   |
| <400> 1911                 |                   |
| gccaaaccat tcattgtcac c    | 21                |
|                            |                   |
| <210> 1912                 |                   |
| <211> 20                   |                   |
| <212> DNA                  |                   |
| <213> Homo sapiens         |                   |
| <400> 1912                 |                   |
| tgtggetttt ggaatgtgga      | 20                |
| -3-33 3344-3-334           | 20                |
|                            |                   |
| <210> 1913                 |                   |

<211> 20 <212> DNA

<213> Homo sapiens

<400> 1913

ggagggtgaa tecettgete 20

<210> 1914 <211> 21 <212> DNA

<213> Homo sapiens

<400> 1914

<400> 1914
aggctgtctg gtcagcactg t 21

<210> 1915

<211> 20 <212> DNA <213> Homo sapiens

<400> 1915
ccacagaaga ggcagctggt 20

23

20

20

<210> 1916 <211> 23

<212> DNA <213> Homo sapiens

<400> 1916

gagagcagcg tatcctgaag cta

<210> 1917 <211> 20

<212> DNA <213> Homo sapiens

<400> 1917

ggggatccat gagtctcagc

<210> 1918 <211> 20

<211> 20 <212> DNA

<213> Homo sapiens

<400> 1918

gtgaggtctg gggtgcttgt 20

<210> 1919

<211> 20 <212> DNA

<213> Homo sapiens

<400> 1919

cttqcqqaac tccagctcat

| <400>           |                           | 20 |
|-----------------|---------------------------|----|
| <210><211>      | 1921<br>20                |    |
| <212><br><213>  | DNA<br>Homo sapiens       |    |
| <400>           | 1921<br>gcatt ggaaacactt  |    |
| cegea           | grade ggaaacactt          | 20 |
| <210><br><211>  | 20                        |    |
| <212><br><213>  | DNA<br>Homo sapiens       |    |
|                 | 1922<br>gggto teegeattta  | 20 |
| <210><211>      |                           |    |
| <212>           |                           |    |
|                 | Homo sapiens              |    |
| <400><br>gtgcto | 1923<br>acag aagccaggaa c | 21 |
| <210>           | 100                       |    |
| <210>           |                           |    |
| <212>           |                           |    |
|                 | Homo sapiens              |    |
| <400>           | 1924                      |    |
| cgaagt          | gcgg gaagtaggtc           | 20 |
| <210>           |                           |    |
| <211><br><212>  |                           |    |
|                 | Homo sapiens              |    |
|                 | 1925<br>tggt gtggctaa     | 18 |
| <210>           | 1926                      |    |
| <211>           |                           |    |
| <212>           |                           |    |
| <213>           | Homo sapiens              |    |
| <400>           | 1926                      |    |

| we     | 2004/042346             | PCT/US2003/012946 |
|--------|-------------------------|-------------------|
| agaagg | tggt ggctggtgtg         | 20                |
| <210>  | 1927                    |                   |
| <211>  | 20                      |                   |
| <212>  | DNA                     |                   |
| <213>  | Homo sapiens            |                   |
| <400>  | 1927                    |                   |
| gggctt | gagg ttgtccatgt         | 20                |
| <210>  | 1928                    |                   |
| <211>  |                         |                   |
| <212>  |                         |                   |
|        | Homo sapiens            |                   |
| 12132  | nomo suprems            |                   |
| <400>  | 1928<br>tgac tttggggttg | 20                |
| gtgcct | tgac triggggrig         | 20                |
| <210>  | 1929                    |                   |
|        | 20                      |                   |
| <212>  |                         |                   |
|        | Homo sapiens            |                   |
| <213>  | Homo sapiens            |                   |
| <400>  | 1929                    |                   |
| tgggct | ctga cttgtgagga         | 20                |
| <210>  | 1930                    |                   |
| <211>  |                         |                   |
| <212>  |                         |                   |
|        | Homo sapiens            |                   |
| (213)  | NOMO SAPIENS            |                   |
| <400>  | 1930                    |                   |
| cgttgt | ctca ggcatctgga         | 20                |
| <210>  | 1931                    |                   |
| <211>  |                         |                   |
| <212>  | DNA                     |                   |
| <213>  | Homo sapiens            |                   |
| <400>  | 1931                    |                   |
|        | gtca tttccagcat         | 20                |
|        |                         |                   |
| <210>  | 1932                    |                   |
| <211>  | 18                      |                   |
| <212>  | DNA                     |                   |
| <213>  | Homo sapiens            |                   |
| <400>  | 1932                    |                   |
|        | aagg aagagcag           | 18                |
|        |                         |                   |
| <210>  |                         |                   |
| <211>  | 19                      |                   |
| <212>  | DNA                     |                   |
| <213>  | Homo sapiens            |                   |

| •••    | 2001/012010       | <br>1,002000,0125 |
|--------|-------------------|-------------------|
| -400+  | 1933              |                   |
|        |                   |                   |
| ggcac  | agett ggacaacca   | 19                |
| <210>  | 1934              |                   |
| <211>  |                   |                   |
|        | DNA               |                   |
|        | Homo sapiens      |                   |
| <400>  | 1934              |                   |
|        | gtccg gggtgcatta  |                   |
|        | 55 5550504004     | 20                |
| <210>  | 1935              |                   |
| <211>  | 20                |                   |
| <212>  | DNA               |                   |
| <213>  | Homo sapiens      |                   |
| <400>  | 1935              |                   |
| cctgt: | tgaat geeteeaggt  | 20                |
|        |                   | 20                |
|        | 1936              |                   |
| <211>  | 21                |                   |
| <212>  | DNA               |                   |
| <213>  | Homo sapiens      |                   |
| <400>  | 1936              |                   |
| tgctgo | tgtg tttccctctc t | 21                |
|        |                   | 21                |
| <210>  |                   |                   |
| <211>  | 20                |                   |
| <212>  | DNA               |                   |
| <213>  | Homo sapiens      |                   |
| <400>  | 1937              |                   |
|        |                   |                   |
| tacaco | tggg ttgcgtcagt   | 20                |
| <210>  | 1020              |                   |
| <211>  |                   |                   |
| <211>  |                   |                   |
|        | Homo sapiens      |                   |
|        | 1938              |                   |
|        |                   |                   |
| Cactte | tgcc ctcccaacac   | 20                |
| <210>  | 1020              |                   |
| <211>  |                   |                   |
|        |                   |                   |
| <212>  |                   |                   |
| <213>  | Homo sapiens      |                   |
|        | 1939              |                   |
| gettge | aggt ccaagcaaat   | 20                |
|        |                   |                   |
| <210>  |                   |                   |
| <211>  | 20                |                   |

WO 2004/042346

PCT/US2003/012946

| w              | O 2004/042346           | PC1/US2003/012946 |
|----------------|-------------------------|-------------------|
| <212>          | DNA                     |                   |
| <213>          |                         |                   |
|                | •                       |                   |
| <400>          |                         |                   |
| gcccc          | tgatt caacaagcat        | 20                |
|                |                         |                   |
| <210>          | 1941                    |                   |
| <211>          |                         |                   |
| <212>          |                         |                   |
| <213>          | Homo sapiens            |                   |
| <400>          | 1941                    |                   |
|                | caatc actgaagaca cacaca | 26                |
|                |                         |                   |
| <210>          | 1942                    |                   |
| <211>          |                         |                   |
| <212>          |                         |                   |
| <213>          | Homo sapiens            |                   |
| <400>          | 1942                    |                   |
|                | natcc aaagggttgc t      | 21                |
| 35             |                         | 21                |
|                |                         |                   |
| <210>          | 1943                    |                   |
| <211>          |                         |                   |
|                | Homo sapiens            |                   |
|                |                         |                   |
| <400>          |                         |                   |
| cageto         | ggaaa agggtgtagc a      | 21                |
|                |                         |                   |
| <210>          |                         |                   |
| <211>          |                         |                   |
| <212>          | DNA<br>Homo sapiens     |                   |
| 12137          | nomo sapiens            |                   |
| <400>          | 1944                    |                   |
| aggtac         | aggg ccagcaggat         | 20                |
|                |                         |                   |
| <210>          | 1945                    |                   |
| <211>          |                         |                   |
| <212>          |                         |                   |
| <213>          | Homo sapiens            |                   |
| <400>          | 1945                    |                   |
|                | gatc gggattggaa         | 20                |
|                |                         | 20                |
| .210           | 1046                    |                   |
| <210><br><211> |                         |                   |
|                | DNA                     |                   |
| <213>          |                         |                   |
|                |                         |                   |
| <400>          | 1946                    |                   |
| gtgcca         | ttca ccttgcacac         | 20                |

WO 2004/042346 PCT/US2003/012946 <210> 1947 <211> 20 <212> DNA <213> Homo sapiens <400> 1947 aatgttgctc agccccacag 20 <210> 1948 <211> 23 <212> DNA <213> Homo sapiens <400> 1948 tgtggaattt ggaaacatcc att 23 <210> 1949 <211> 20 <212> DNA <213> Homo sapiens <400> 1949 ccatgcctgt atcagggtca 20 <210> 1950 <211> 21 <212> DNA <213> Homo sapiens <400> 1950 gggtgacagt ggagetteet t 21 <210> 1951 <211> 20 <212> DNA <213> Homo sapiens <400> 1951 cccacattca cagggctctt 20 <210> 1952 <211> 22 <212> DNA <213> Homo sapiens <400> 1952 tcaactgctg cttcaccaga ct 22 <210> 1953 <211> 20 <212> DNA <213> Homo sapiens <400> 1953 ttcaaagctg ttggccctct 20

| <210>  | 1954            |
|--------|-----------------|
| <211>  |                 |
| <212>  |                 |
|        | Homo sapiens    |
| 12137  | nomo sapiens    |
| <400>  | 1054            |
|        |                 |
| cgacge | ecct attetetec  |
|        |                 |
|        |                 |
| <210>  |                 |
| <211>  |                 |
| <212>  | DNA             |
| <213>  | Homo sapiens    |
|        | -               |
| <400>  | 1955            |
|        | cttc cagetette  |
| 5555   | ougococco       |
|        |                 |
| .010.  | 1056            |
| <210>  |                 |
| <211>  |                 |
| <212>  |                 |
| <213>  | Homo sapiens    |
|        |                 |
| <400>  | 1956            |
| ggactt | cttc acggccaca  |
|        |                 |
|        |                 |
| <210>  | 1957            |
| <211>  |                 |
| <211>  |                 |
|        |                 |
| <213>  | Homo sapiens    |
|        |                 |
| <400>  |                 |
| tgcgtt | cage agactggtt  |
|        |                 |
|        |                 |
| <210>  | 1958            |
| <211>  |                 |
| <212>  |                 |
|        |                 |
| ~4±3>  | Homo sapiens    |
| -100   | 1070            |
| <400>  |                 |
| agaatg | gccg ccagtgtta  |
|        |                 |
|        |                 |
| <210>  |                 |
| <211>  | 20              |
| <212>  | DNA             |
|        | Homo sapiens    |
|        |                 |
| <400>  | 1959            |
|        |                 |
| ccggca | ttgc aaaactggaa |
|        |                 |
|        |                 |
| <210>  | 1960            |
| <211>  | 22              |
| <212>  | DNA             |
| -212-  | Heme contour    |

| wc             | 2004/042346        | PCT/US2003/012946 |
|----------------|--------------------|-------------------|
| <400>          | 1960               |                   |
|                | ccaa tcacaaggaa ga | 22                |
|                | 33 3               | 22                |
| 0.1.0          | 101-               |                   |
| <210><br><211> | 1961               |                   |
| <211>          |                    |                   |
|                | Homo sapiens       |                   |
|                | nome bupicine      |                   |
| <400>          | 1961               |                   |
| gcacca         | ggca tgaaatctcc    | 20                |
|                |                    |                   |
| <210>          | 1962               |                   |
| <211>          |                    |                   |
|                | DNA                |                   |
|                | Homo sapiens       |                   |
|                |                    |                   |
| <400>          | 1962               |                   |
| gggagg         | ccat acggtttagg    | 20                |
|                |                    |                   |
| <210>          | 1963               |                   |
| <211>          |                    |                   |
| <212>          | DNA                |                   |
| <213>          | Homo sapiens       |                   |
|                |                    |                   |
|                | 1963               |                   |
| gatete         | ctgg ggttcctgct    | 20                |
|                |                    |                   |
|                | 1964               |                   |
| <211>          |                    |                   |
| <212>          |                    |                   |
| <213>          | Homo sapiens       |                   |
| <400>          | 1964               |                   |
|                | tgtg geggteteaa    |                   |
|                | -5-5 5-555-c-c-a   | 20                |
|                |                    |                   |
| <210>          |                    |                   |
|                | 20                 |                   |
|                | DNA                |                   |
| <213>          | Homo sapiens       |                   |
| <400>          | 1965               |                   |
|                | aggt gaaccgctta    | 20                |
| _              |                    | 20                |
|                |                    |                   |
| <210>          |                    |                   |
| <211><br><212> |                    |                   |
|                | Homo sapiens       |                   |
| .2.27          | nome paparents     |                   |
| <400>          | 1966               |                   |
|                | aagt ccgaatccta ca | 22                |
|                |                    |                   |
| .03.0          | 4000               |                   |
| <210>          | 1967               |                   |
|                | 24<br>DNA          |                   |
|                | arana.             |                   |

| w              | 2004/042346               | PCT/US2003/012946 |
|----------------|---------------------------|-------------------|
| <213>          | Homo sapiens              |                   |
| <400>          | 1967                      |                   |
|                | gatt ctgctgtacg tgtg      | 24                |
| <210>          | 1968                      |                   |
| <211>          | 20                        |                   |
| <212>          |                           |                   |
| <213>          | Homo sapiens              |                   |
| <400>          | 1968                      |                   |
| catctt         | tete ggggtteteg           | 20                |
|                |                           |                   |
| <210>          | 1969                      |                   |
| <211>          |                           |                   |
| <212>          |                           |                   |
| <213>          | Homo sapiens              |                   |
| <400>          |                           |                   |
| cagago         | atgt atgagaacta cattgtacc | 29                |
|                |                           |                   |
| <210><br><211> |                           |                   |
| <211>          |                           |                   |
|                | Homo sapiens              |                   |
| <400>          | 1970                      |                   |
|                | gaag ccccactgga           | 20                |
| 00000          | gaag coccacigga           | 20                |
| <210>          | 1971                      |                   |
| <211>          |                           |                   |
| <212>          | DNA                       |                   |
| <213>          | Homo sapiens              |                   |
| <400>          | 1971                      |                   |
| gcacct         | cage tgttcccagt           | 20                |
|                |                           |                   |
| <210>          |                           |                   |
| <211>          | 20                        |                   |
| <212>          |                           |                   |
| <213>          | Homo sapiens              |                   |
| <400>          | 1972                      |                   |
| gtcgcc         | cagt cctaccagag           | 20                |
|                |                           |                   |
| <210>          | 1973                      |                   |
| <211>          | 29                        |                   |
| <212>          |                           |                   |
| <213>          | Homo sapiens              |                   |
| <400>          | 1973                      |                   |
| taagat         | atct aaggcattct gcaaacatc | 29                |
|                |                           |                   |

<210> 1974

| <211><br><212><br><213> | 21<br>DNA<br>Homo sapiens |         |    |
|-------------------------|---------------------------|---------|----|
| 400                     | 1074                      |         |    |
| <400>                   | ggat teettggeaa           | C       | 21 |
| agacag                  | ggac cocceggeaa           |         |    |
|                         |                           |         |    |
| <210>                   |                           |         |    |
| <211><br><212>          |                           |         |    |
|                         | Homo sapiens              |         |    |
|                         | nomo bapieno              |         |    |
| <400>                   |                           |         |    |
| tccgtg                  | ttca aggcctcata           | a       | 21 |
|                         |                           |         |    |
| <210>                   | 1976                      |         |    |
| <211>                   | 22                        |         |    |
| <212>                   |                           |         |    |
| <213>                   | Homo sapiens              |         |    |
| <400>                   | 1976                      |         |    |
| ctgcac                  | atgg caggtgtatc           | tc      | 22 |
|                         |                           |         |    |
| <210>                   | 1000                      |         |    |
| <211>                   |                           |         |    |
| <212>                   |                           |         |    |
| <213>                   | Homo sapiens              |         |    |
|                         |                           |         |    |
|                         | 1977                      |         | 28 |
| tttage                  | ttaa cttgcttagg           | gaacceg | 20 |
|                         |                           |         |    |
| <210>                   |                           |         |    |
| <211>                   |                           |         |    |
| <212>                   | Homo sapiens              |         |    |
| 72237                   | nomo bapacino             |         |    |
| <400>                   | 1978                      |         |    |
| aggccg                  | ttga gctggtacac           |         | 20 |
|                         |                           |         |    |
| <210>                   | 1979                      |         |    |
|                         | 22                        |         |    |
| <212>                   |                           |         |    |
| <213>                   | Homo sapiens              |         |    |
| <400>                   | 1979                      |         |    |
|                         | totg caaatoccag           | aa '    | 22 |
| -                       | -                         |         |    |
| .010                    | 1000                      |         |    |
|                         | 1980<br>21                |         |    |
|                         | DNA                       |         |    |
|                         | Homo sapiens              |         |    |
|                         |                           |         |    |
| <400>                   | 1980                      | _       | 21 |
| ggccga                  | ctga agggtaaaat           | g       | 21 |

| 1981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
| Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
| gcac tgcctcattc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
| 1982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
| 1982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t 21                                                                                       |
| caca cacacaacag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
| 1003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
| Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
| ccaa gttgtctcat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tt 22                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
| DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |
| Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |
| 1984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ct 22                                                                                      |
| 1984<br>stett tettggeega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ct 22                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ct 22                                                                                      |
| stett tettggeega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ct 22                                                                                      |
| stett tettggeega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ct 22                                                                                      |
| tett tettggeega<br>1985<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22<br>22                                                                                   |
| tett tettggeega<br>1985<br>20<br>DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ct 22                                                                                      |
| tett tettggeega<br>1985<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ct 22                                                                                      |
| 1985<br>20<br>DNA<br>Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ct 22                                                                                      |
| 1985<br>20<br>DNA<br>Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |
| 1985<br>20<br>DNA<br>Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ct 22                                                                                      |
| 1985<br>20<br>DNA<br>Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |
| 1985<br>20<br>DNA<br>Homo sapiens<br>1985<br>Laggg atgaccttgc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                            |
| 1985<br>20<br>DNA<br>Homo sapiens<br>1985<br>saggg atgacettge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                            |
| 1985<br>20 DNA<br>Homo sapiens<br>1985<br>2093 atgacettge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |
| 1985<br>20<br>DNA<br>Homo sapiens<br>1985<br>2aggg atgacettge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                            |
| 1985<br>20 DNA<br>Homo sapiens<br>1985<br>2093 atgacettge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |
| 1985 20 DNA Homo sapiens 1985 2aggg atgaccttgc 1986 18 DNA Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |
| 1985 20 DNA Homo sapiens 1985 2aggg atgaccttgc 1986 18 DNA Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                         |
| 1985 20 DNA Homo sapiens 1985 2aggg atgaccttgc 1986 18 DNA Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |
| 1985 20 DNA Homo sapiens 1985 2aggg atgaccttgc 1986 18 DNA Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                         |
| 1985 20 DNA Homo sapiens 1985 20 20 Enggg atgaccttgc 1986 18 DNA Homo sapiens 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                         |
| 1985 20 DNA Homo sapiens 1985 2aggg atgaccttgc 1986 18 DNA Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                         |
| 1985 20 DNA Homo sapiens 1985 20 20 English to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the | 20                                                                                         |
| 1985 20 DNA Homo sapiens 1985 2aggg atgaccttgc 1986 18 DNA Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                         |
| 1985 20 DNA Homo sapiens 1985 2aggg atgaccttgc 1986 18 DNA Homo sapiens 1986 20 1986 18 DNA Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                         |
| 1985 20 DNA Homo sapiens 1985 20 20 English to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the | 20                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22<br>DNA<br>HOmo sapiens<br>1983<br>cccaa gttgtctcat<br>1984<br>22<br>DNA<br>Homo sapiens |

| wo     | 2004/042346             | PCT/US2003/012946 |
|--------|-------------------------|-------------------|
| aaaggg | gcaa ttttggttgg         | 20                |
| <210>  | 1988                    |                   |
| <211>  |                         |                   |
| <212>  |                         |                   |
|        | Homo sapiens            |                   |
|        |                         |                   |
| <400>  | 1988                    |                   |
|        | cagg tggaagcag          | 19                |
| _      |                         |                   |
|        |                         |                   |
| <210>  |                         |                   |
| <211>  |                         |                   |
| <212>  |                         |                   |
| <213>  | Homo sapiens            |                   |
|        |                         |                   |
| <400>  |                         |                   |
| ggtgtg | gagg tgggagtcag         | 20                |
|        |                         |                   |
| <210>  | 1000                    |                   |
|        |                         |                   |
| <211>  |                         |                   |
| <212>  |                         |                   |
| <213>  | Homo sapiens            |                   |
| <400>  | 1990                    |                   |
|        | gtga atggcacaac t       | 21                |
| tgtgtt | gega aeggeacaae e       |                   |
|        |                         |                   |
| <210>  | 1991                    |                   |
| <211>  |                         |                   |
| <212>  | DNA                     |                   |
| <213>  | Homo sapiens            |                   |
|        |                         |                   |
| <400>  | 1991                    |                   |
| ttgctg | ggtt tatcattctg agg     | 23                |
|        |                         |                   |
|        |                         |                   |
| <210>  |                         |                   |
| <211>  |                         |                   |
| <212>  |                         |                   |
| <213>  | Homo sapiens            |                   |
| <400>  | 1002                    |                   |
|        | ttca cgtgaggtag aggacag | 27                |
| acctat | tica cytyagytay aggacay | 21                |
|        |                         |                   |
| <210>  | 1993                    |                   |
| <211>  |                         |                   |
| <212>  |                         |                   |
| <213>  | Homo sapiens            |                   |
|        | =                       |                   |
| <400>  | 1993                    |                   |
| caggat | aatc agaccaccac agg     | 23                |
|        |                         |                   |
|        |                         |                   |
| <210>  |                         |                   |
| <211>  |                         |                   |
| <212>  |                         |                   |
| <213>  | Homo sapiens            |                   |

WO 2004/042346 PCT/US2003/012946 <400> 1994 ccccgcgaac tagatttgaa 20 <210> 1995 <211> 20 <212> DNA <213> Homo sapiens <400> 1995 tctctgcagg aggtgaagca 20 <210> 1996 <211> 20 <212> DNA <213> Homo sapiens <400> 1996 gccagattgg catgaaggac 20 <210> 1997 <211> 20 <212> DNA <213> Homo sapiens <400> 1997 aaggacagca gtgcctccag 20 <210> 1998 <211> 21 <212> DNA <213> Homo sapiens <400> 1998 ttgggtagtt gctccagttg c 21 <210> 1999 <211> 25 <212> DNA <213> Homo sapiens <400> 1999 tgtcagctga acattgtcca taaac 25

<210> 2000 <211> 24 <212> DNA <213> Homo sapiens <400> 2000 cagtattttg gccaacttct gctt

cagcactery goodacter got

<210> 2001 <211> 22

WO 2004/042346 PCT/US2003/012946 <212> DNA <213> Homo sapiens <400> 2001 22 taaaggtacg cacttgggct to <210> 2002 <211> 21 <212> DNA <213> Homo sapiens <400> 2002 21 aaaccaccac gacgatgaaa c <210> 2003 <211> 21 <212> DNA <213> Homo sapiens <400> 2003 21 ageteatatt cetgggeate e <210> 2004 <211> 20 <212> DNA <213> Homo sapiens <400> 2004 gcctgagctg aagggattga 20 <210> 2005 <211> 27 <212> DNA <213> Homo sapiens <400> 2005 27 acaacattct qctcaacatc atttaca <210> 2006 <211> 20 <212> DNA <213> Homo sapiens <400> 2006 gggcagagtc agccactgat 20 <210> 2007 <211> 18 <212> DNA <213> Homo sapiens

18

<400> 2007 catgacgccc caaccatt

WO 2004/042346 PCT/US2003/012946 <210> 2008 <211> 19 <212> DNA <213> Homo sapiens <400> 2008 19 ctqqacctqq qacctqcat <210> 2009 <211> 20 <212> DNA <213> Homo sapiens <400> 2009 gcgaggggat gggtttattg 20 <210> 2010 <211> 20 <212> DNA <213> Homo sapiens <400> 2010 ggagggagag ttgcctggtc 20 <210> 2011 <211> 25 <212> DNA <213> Homo sapiens <400> 2011 agtgattgct ttggtgctta acttg 25 <210> 2012 <211> 21 <212> DNA <213> Homo sapiens <400> 2012 21 accetqatqc tqqtcatqqt a <210> 2013 <211> 20 <212> DNA <213> Homo sapiens <400> 2013 cggggttgga ggcatatttc 20 <210> 2014 <211> 20 <212> DNA <213> Homo sapiens <400> 2014 20 aqaaqqqqaa ggaqqqqtct

| 0.3.0                                                                                                                                     | 0.015                                                                                                                                  |    |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----|
| <210>                                                                                                                                     |                                                                                                                                        |    |
| <211>                                                                                                                                     | 21                                                                                                                                     |    |
| <212>                                                                                                                                     | DNA                                                                                                                                    |    |
| <213>                                                                                                                                     | Homo sapiens                                                                                                                           |    |
|                                                                                                                                           |                                                                                                                                        |    |
|                                                                                                                                           | 2015                                                                                                                                   |    |
| <400>                                                                                                                                     |                                                                                                                                        |    |
| cttctca                                                                                                                                   | aac acctgcccac a                                                                                                                       | 21 |
|                                                                                                                                           |                                                                                                                                        |    |
|                                                                                                                                           |                                                                                                                                        |    |
| <210>                                                                                                                                     | 2016                                                                                                                                   |    |
|                                                                                                                                           | 19                                                                                                                                     |    |
|                                                                                                                                           |                                                                                                                                        |    |
| <212>                                                                                                                                     |                                                                                                                                        |    |
| <213>                                                                                                                                     | Homo sapiens                                                                                                                           |    |
|                                                                                                                                           |                                                                                                                                        |    |
| <400>                                                                                                                                     | 2016                                                                                                                                   |    |
|                                                                                                                                           |                                                                                                                                        | 19 |
| caaagg                                                                                                                                    | ccc tcagaacga                                                                                                                          | 10 |
|                                                                                                                                           |                                                                                                                                        |    |
|                                                                                                                                           |                                                                                                                                        |    |
| <210>                                                                                                                                     | 2017                                                                                                                                   |    |
| <211>                                                                                                                                     | 20                                                                                                                                     |    |
| <212>                                                                                                                                     |                                                                                                                                        |    |
|                                                                                                                                           |                                                                                                                                        |    |
| <213>                                                                                                                                     | Homo sapiens                                                                                                                           |    |
|                                                                                                                                           |                                                                                                                                        |    |
| <400>                                                                                                                                     | 2017                                                                                                                                   |    |
| gaaget                                                                                                                                    | ctgg ccctccaact                                                                                                                        | 20 |
| gaagee.                                                                                                                                   | 255 23523445                                                                                                                           |    |
|                                                                                                                                           |                                                                                                                                        |    |
|                                                                                                                                           |                                                                                                                                        |    |
| <210>                                                                                                                                     | 2018                                                                                                                                   |    |
| <211>                                                                                                                                     | 22                                                                                                                                     |    |
|                                                                                                                                           |                                                                                                                                        |    |
| -2125                                                                                                                                     | DNA                                                                                                                                    |    |
| <212>                                                                                                                                     |                                                                                                                                        |    |
|                                                                                                                                           | DNA<br>Homo sapiens                                                                                                                    |    |
| <213>                                                                                                                                     | Homo sapiens                                                                                                                           |    |
|                                                                                                                                           | Homo sapiens                                                                                                                           |    |
| <213><br><400>                                                                                                                            | Homo sapiens<br>2018                                                                                                                   | 22 |
| <213><br><400>                                                                                                                            | Homo sapiens                                                                                                                           | 22 |
| <213><br><400>                                                                                                                            | Homo sapiens<br>2018                                                                                                                   | 22 |
| <213><br><400><br>cattgag                                                                                                                 | Homo sapiens<br>2018<br>ptag atgcccgga ta                                                                                              | 22 |
| <213> <400> cattgag                                                                                                                       | Homo sapiens 2018 stag atgeccegga ta 2019                                                                                              | 22 |
| <213> <400> cattgas <210> <211>                                                                                                           | Homo sapiens  2018  gtag atgcccgga ta  2019  18                                                                                        | 22 |
| <213> <400> cattgag                                                                                                                       | Homo sapiens  2018  gtag atgcccgga ta  2019  18                                                                                        | 22 |
| <213> <400> cattgage <210> <211> <212>                                                                                                    | Homo sapiens 2018 gtag atgccccgga ta 2019 18 DNN                                                                                       | 22 |
| <213> <400> cattgage <210> <211> <212>                                                                                                    | Homo sapiens  2018  gtag atgcccgga ta  2019  18                                                                                        | 22 |
| <213> <400> cattgas <210> <211> <212> <213>                                                                                               | Homo sapiens  2018  2019  18  DNA  Homo sapiens                                                                                        | 22 |
| <213> <400> cattgas <210> <211> <212> <213> <400>                                                                                         | Homo sapiens  2018 gtag atgccccgga ta  2019 18 DNA Homo sapiens  2019                                                                  |    |
| <213> <400> cattgas <210> <211> <212> <213> <400>                                                                                         | Homo sapiens  2018  2019  18  DNA  Homo sapiens                                                                                        | 22 |
| <213> <400> cattgas <210> <211> <212> <213> <400>                                                                                         | Homo sapiens  2018 gtag atgccccgga ta  2019 18 DNA Homo sapiens  2019                                                                  |    |
| <213> <400> cattgas <210> <211> <212> <213> <400>                                                                                         | Homo sapiens  2018 gtag atgccccgga ta  2019 18 DNA Homo sapiens  2019                                                                  |    |
| <213> <400> cattgas <210> <211> <212> <213> <400>                                                                                         | Homo sapiens  2018 gtag atgcccgga ta  2019 18 DNA Homo sapiens  2019 gggc ttccttca                                                     |    |
| <213> <400> cattgag <210> <211> <212> <213> <400> ctggcag <210>                                                                           | Homo sapiens  2018  2019  18  DNA Homo sapiens  2019  2019  2019  2020                                                                 |    |
| <213> <400> cattga; <210> <211> <212> <213> <400> ctggca; <210> <211>                                                                     | Homo sapiens  2018 gtag atgcccgga ta  2019 18 18 DNA Homo sapiens 2019 gggc ttccttca                                                   |    |
| <213> <400> cattga; <210> <211> <212> <213> <400> ctggca; <210> <211> <212>                                                               | Homo sapiens 2018 2019 18 DNA Homo sapiens 2019 2019 2020 20 DNA                                                                       |    |
| <213> <400> cattga; <210> <211> <212> <213> <400> ctggca; <210> <211> <212>                                                               | Homo sapiens  2018 gtag atgcccgga ta  2019 18 18 DNA Homo sapiens 2019 gggc ttccttca                                                   |    |
| <213> <400> cattga; <210> <211> <212> <213> <400> ctggca; <210> <211> <212>                                                               | Homo sapiens 2018 2019 18 DNA Homo sapiens 2019 2019 2020 20 DNA                                                                       |    |
| <213> <400> cattga; <210> <211> <212> <213> <400> ctggca; <210> <211> <212> <213>                                                         | Homo sapiens 2018 gtag atgccccgga ta  2019 18 DNA Homo sapiens 2019 gcgc ttccttca  2020 20 DNA Homo sapiens                            |    |
| <213> <400> cattga; <210> <211> <212> <213> <400> ctggca; <210> <211> <213> <400> <211> <210> <400>                                       | Homo sapiens  2018  tag atgcccgga ta  2019  18  DNA Homo sapiens  2019  gggc ttccttca  2020  20  DNA Homo sapiens  2020                | 18 |
| <213> <400> cattga; <210> <211> <212> <213> <400> ctggca; <210> <211> <213> <400> <211> <210> <400>                                       | Homo sapiens 2018 gtag atgccccgga ta  2019 18 DNA Homo sapiens 2019 gcgc ttccttca  2020 20 DNA Homo sapiens                            |    |
| <213> <400> cattga; <210> <211> <212> <213> <400> ctggca; <210> <211> <213> <400> <211> <210> <400>                                       | Homo sapiens  2018  tag atgcccgga ta  2019  18  DNA Homo sapiens  2019  gggc ttccttca  2020  20  DNA Homo sapiens  2020                | 18 |
| <213> <400> cattgag <210> <211> <212> <213> <400> ctggcag <210> <211> <211> <211> <212> <213>                                             | Homo sapiens  2018 gtag atgccccgga ta  2019 18 DNA Homo sapiens  2019 gggc ttccttca  2020 20 DNA Homo sapiens 2020 20 DNA Homo sapiens | 18 |
| <213> <400> cattga; <210> <211> <212> <213> <400> ctggca; <212> <213> <400> ctggca; <210> <211> <212> <213> <400> <210> <211> <212> <213> | Homo sapiens  2018  2019  18  DNA Homo sapiens  2019  2020  20  DNA Homo sapiens  2020  20  20  20  20  20  20  20  20                 | 18 |
| <213> <400> cattgag <210> <211> <212> <213> <400> ctggcag <210> <211> <211> <211> <212> <213>                                             | Homo sapiens  2018 gtag atgccccgga ta  2019 18 DNA Homo sapiens  2019 gggc ttccttca  2020 20 DNA Homo sapiens 2020 20 DNA Homo sapiens | 18 |
| <213> <400> cattga; <210> <211> <212> <213> <400> ctggca; <212> <213> <400> ctggca; <210> <211> <212> <213> <400> <210> <211> <212> <213> | Homo sapiens  2018  2019  18  DNA Homo sapiens  2019  2020  20  DNA Homo sapiens  2020  20  20  20  20  20  20  20  20                 | 18 |

| WO 2004/042346                  | PCT/US2003/012946 |  |  |  |
|---------------------------------|-------------------|--|--|--|
| <400> 2021                      | 22                |  |  |  |
| ttcaagggca cagctatgtt tg        | 22                |  |  |  |
| <210> 2022                      |                   |  |  |  |
| <211> 20                        |                   |  |  |  |
| <212> DNA                       |                   |  |  |  |
| <213> Homo sapiens              |                   |  |  |  |
| <400> 2022                      |                   |  |  |  |
| tgacccagct gaagacagga           | 20                |  |  |  |
| 010 0000                        |                   |  |  |  |
| <210> 2023                      |                   |  |  |  |
| <211> 20<br><212> DNA           |                   |  |  |  |
| <212> DNA<br><213> Homo sapiens |                   |  |  |  |
| <400> 2023                      |                   |  |  |  |
| tcccacaaca agccacagag           | 20                |  |  |  |
| 3 33                            |                   |  |  |  |
| <210> 2024                      |                   |  |  |  |
| <211> 19                        |                   |  |  |  |
| <212> DNA                       |                   |  |  |  |
| <213> Homo sapiens              |                   |  |  |  |
| <400> 2024                      |                   |  |  |  |
| cagcacgtgc acagcagac            | 19                |  |  |  |
| <210> 2025                      |                   |  |  |  |
| <211> 25                        |                   |  |  |  |
| <212> DNA                       |                   |  |  |  |
| <213> Homo sapiens              |                   |  |  |  |
|                                 |                   |  |  |  |
| <400> 2025                      | 25                |  |  |  |
| tgaatttctg actgcagatg ttttg 25  |                   |  |  |  |
| <210> 2026                      |                   |  |  |  |
| <211> 21                        |                   |  |  |  |
| <212> DNA                       |                   |  |  |  |
| <213> Homo sapiens              |                   |  |  |  |
| <400> 2026                      |                   |  |  |  |
| agetecagea geettettgt c         | 21                |  |  |  |
| 33                              |                   |  |  |  |
| <210> 2027                      |                   |  |  |  |
| <211> 19                        |                   |  |  |  |
| <212> DNA                       |                   |  |  |  |
| <213> Homo sapiens              |                   |  |  |  |
| <400> 2027                      | 19                |  |  |  |
| gagtgggttg gggaactgg 19         |                   |  |  |  |
| <210> 2028                      |                   |  |  |  |
| <211> 22                        |                   |  |  |  |
| <212> DNA                       |                   |  |  |  |
|                                 |                   |  |  |  |

| WO 2004/042346                     |          | PCT/US2003/012946 |
|------------------------------------|----------|-------------------|
| <213> Homo sapiens                 |          |                   |
| <400> 2028                         |          |                   |
| cttactcctt ggaggccatg              | g tg     | 22                |
| <210> 2029                         |          |                   |
| <211> 21                           |          |                   |
| <212> DNA                          |          |                   |
| <213> Homo sapiens                 |          |                   |
| <400> 2029                         |          |                   |
| caacatggaa gatgggcaga              | a a      | 21                |
|                                    |          |                   |
| <210> 2030                         |          |                   |
| <211> 21<br><212> DNA              |          |                   |
| <212> DNA<br><213> Homo sapiens    |          |                   |
| <400> 2030                         |          |                   |
| ggtcgtcatc gttgttgtc               | e t      | 21                |
| 33-3                               |          |                   |
| <210> 2031                         |          |                   |
| <211> 20                           |          |                   |
| <212> DNA                          |          |                   |
| <213> Homo sapiens                 |          |                   |
| <400> 2031                         |          |                   |
| cgcttttgct gggactttc               | <b>a</b> | 20                |
| <210> 2032                         |          |                   |
| <211> 2032                         |          |                   |
| <212> DNA                          |          |                   |
| <213> Homo sapiens                 |          |                   |
| <400> 2032                         |          |                   |
| cccttgcaca aaacccact               | 2        | 20                |
|                                    |          |                   |
| <210> 2033                         |          |                   |
| <211> 22<br><212> DNA              |          |                   |
| <213> Homo sapiens                 |          |                   |
|                                    |          |                   |
| <400> 2033<br>tttggagaaa agtgggtcc | a aα     | 22                |
| gagaaa agegggeee                   |          |                   |
| <210> 2034                         |          |                   |
| <211> 20                           |          |                   |
| <212> DNA                          |          |                   |
| <213> Homo sapiens                 |          |                   |
| <400> 2034                         |          |                   |
| catcettggt gggteetag               | С        | 20                |
|                                    |          |                   |

<210> 2035

| WO 2004/042346                 | PCT/US2003/012946 |
|--------------------------------|-------------------|
| <211> 21                       |                   |
| <211> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 2035                     |                   |
| ggcagtgcct ttgatcagtg t        | 21                |
|                                |                   |
| <210> 2036                     |                   |
| <211> 20                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 2036                     |                   |
| ctgccacgcc catctttatc          | 20                |
|                                |                   |
| <210> 2037                     |                   |
| <211> 28                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 2037                     |                   |
| acagtatcta tcctaggcaa atgagagc | 28                |
|                                |                   |
| <210> 2038                     |                   |
| <211> 20                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 2038                     |                   |
| tottoccotc gcacgtotta          | 20                |
|                                |                   |
| <210> 2039                     |                   |
| <211> 20                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 2039                     |                   |
| teeteetgta ggetggeaga          | 20                |
| <210> 2040                     |                   |
|                                |                   |
| <211> 21                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 2040                     |                   |
| teetetetea acetgecact c        | 21                |
|                                |                   |
| <210> 2041                     |                   |
| <211> 19                       |                   |
| <212> DNA                      |                   |
| <213> Homo sapiens             |                   |
| <400> 2041                     | T.                |
|                                | 19                |
| catgtcccct tcccaagga           | 19                |

| <210>  | 2042            |      |
|--------|-----------------|------|
| <211>  |                 |      |
| <212>  |                 |      |
|        | Homo sapiens    |      |
|        |                 |      |
| <400>  | 2042            |      |
|        | cage tgacetetga |      |
| 3      | 955-            |      |
|        |                 |      |
| <210>  | 2043            |      |
| <211>  | 21              |      |
| <212>  |                 |      |
| <213>  | Homo sapiens    |      |
|        |                 |      |
| <400>  |                 |      |
| gaatgt | gctc caaggcgatt | a    |
|        |                 |      |
|        |                 |      |
| <210>  |                 |      |
| <211>  |                 |      |
| <212>  | DNA             |      |
| <213>  | Homo sapiens    |      |
|        |                 |      |
| <400>  |                 |      |
| ccctcc | cttc tcagccaaa  | i    |
|        |                 |      |
|        |                 |      |
| <210>  |                 |      |
| <211>  |                 |      |
| <212>  |                 |      |
| <213>  | Homo sapiens    |      |
|        |                 |      |
| <400>  |                 |      |
| cagagg | gatg aagctggac  | . a  |
|        |                 |      |
| .210   | 2046            |      |
| <210>  |                 |      |
| <211>  |                 |      |
| <212>  |                 |      |
| <213>  | Homo sapiens    |      |
| <400>  | 2046            |      |
|        |                 |      |
| cttcaa | aaca ggcagaggg  | . at |
|        |                 |      |
| <210×  | 2047            |      |
| <210>  |                 |      |
| <211>  |                 |      |
|        | Homo sapiens    |      |
| <5T2>  | HOWO SAPIERS    |      |
| <400>  | 2047            |      |
|        |                 |      |
| LLCCAC | etgaa agtcacagt | . ca |
|        |                 |      |
| <210>  | 2048            |      |
| <211>  |                 |      |
| <211>  |                 |      |
|        |                 |      |
| <213>  | Homo sapiens    |      |
| -400   | 2048            |      |
| <400>  | 2048            |      |

| w      | O 2004/042346      | PCT/US2003/012946 |
|--------|--------------------|-------------------|
| tgca   | gcaagt gtgcaacaga  |                   |
| - Ugea | genage gegenacaga  | 20                |
| <210   | > 2049             |                   |
| <211   | > 20               |                   |
| <212   | > DNA              |                   |
| <213   | > Homo sapiens     |                   |
| <400   | > 2049             |                   |
| tcgt   | ttegt tecestettg   |                   |
|        | -                  | 20                |
| <210   | > 2050             |                   |
|        | 20                 |                   |
|        | > DNA              |                   |
|        | Homo sapiens       |                   |
|        |                    |                   |
|        | 2050               |                   |
| gaget  | ctggc tgatggaacc   | 20                |
|        |                    |                   |
| <210>  | 2051               |                   |
| <211>  |                    |                   |
|        | DNA                |                   |
|        | Homo sapiens       |                   |
|        |                    |                   |
| <400>  |                    |                   |
| ggaag  | gaggc aatgtgggta   | 20                |
|        |                    |                   |
| <210>  | 2052               |                   |
| <211>  |                    |                   |
| <212>  |                    |                   |
|        | Homo sapiens       |                   |
|        |                    |                   |
| <400>  |                    |                   |
| gcttt  | gcctc tcggaggagt   | 20                |
|        |                    | 20                |
| <210>  | 2053               |                   |
| <211>  |                    |                   |
| <212>  |                    |                   |
|        | Homo sapiens       |                   |
|        |                    |                   |
| <400>  |                    |                   |
| ggaaga | caga ggaaagggaa gc | 22                |
|        |                    | 22                |
| <210>  | 2054               |                   |
| <211>  |                    |                   |
| <212>  |                    |                   |
| <213>  |                    |                   |
|        |                    |                   |
| <400>  |                    |                   |
| ggcaga | aatt cagggaccaa    | 20                |
|        |                    | 20                |
| <210>  | 2055               |                   |
| <211>  | 29                 |                   |
| <212>  |                    |                   |
|        | Homo sapiens       |                   |
|        | •                  |                   |

| <400>                                                             |                                                                                                |     |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----|
|                                                                   |                                                                                                |     |
|                                                                   |                                                                                                |     |
| atgtag                                                            | gaatt ttettaetee atgatgagg                                                                     | 29  |
|                                                                   |                                                                                                |     |
|                                                                   |                                                                                                |     |
| <210>                                                             | 2056                                                                                           |     |
|                                                                   |                                                                                                |     |
|                                                                   |                                                                                                |     |
| <212>                                                             | DNA                                                                                            |     |
| <213>                                                             | Homo sapiens                                                                                   |     |
|                                                                   |                                                                                                |     |
| <400>                                                             | 2056                                                                                           |     |
|                                                                   |                                                                                                |     |
| tgtttt                                                            | catt ccactactcc ctcaa                                                                          | 25  |
|                                                                   |                                                                                                |     |
|                                                                   |                                                                                                |     |
| <210>                                                             | 2057                                                                                           |     |
|                                                                   |                                                                                                |     |
| <211>                                                             | 21                                                                                             |     |
| <212>                                                             |                                                                                                |     |
| <213>                                                             | Homo sapiens                                                                                   |     |
|                                                                   |                                                                                                |     |
| <400>                                                             | 2057                                                                                           |     |
|                                                                   |                                                                                                | 21  |
| tggctg                                                            | gcact aaacatccac a                                                                             | 21  |
|                                                                   |                                                                                                |     |
|                                                                   |                                                                                                |     |
| <210>                                                             | 2058                                                                                           |     |
| <211>                                                             |                                                                                                |     |
|                                                                   |                                                                                                |     |
| <212>                                                             |                                                                                                |     |
| <213>                                                             | Homo sapiens                                                                                   |     |
|                                                                   |                                                                                                |     |
| <400>                                                             | 2058                                                                                           |     |
|                                                                   |                                                                                                | 19  |
| geeege                                                            | gggt gtaatccat                                                                                 | 1,5 |
|                                                                   |                                                                                                |     |
|                                                                   |                                                                                                |     |
| <210>                                                             | 2059                                                                                           |     |
| <211>                                                             |                                                                                                |     |
|                                                                   |                                                                                                |     |
| <212>                                                             |                                                                                                |     |
| <213>                                                             | Homo sapiens                                                                                   |     |
|                                                                   |                                                                                                |     |
| <400>                                                             | 2059                                                                                           |     |
|                                                                   |                                                                                                | 20  |
| accage                                                            | gagac agcgctacca                                                                               | 20  |
|                                                                   |                                                                                                |     |
|                                                                   |                                                                                                |     |
| <210>                                                             | 2060                                                                                           |     |
| <211>                                                             |                                                                                                |     |
|                                                                   |                                                                                                |     |
|                                                                   |                                                                                                |     |
| <212>                                                             | DNA                                                                                            |     |
|                                                                   | DNA                                                                                            |     |
| <212>                                                             | DNA                                                                                            |     |
| <212><br><213>                                                    | DNA<br>Homo sapiens                                                                            |     |
| <212><br><213>                                                    | DNA<br>Homo sapiens<br>2060                                                                    | 24  |
| <212><br><213>                                                    | DNA<br>Homo sapiens                                                                            | 24  |
| <212><br><213>                                                    | DNA<br>Homo sapiens<br>2060                                                                    | 24  |
| <212><br><213><br><400><br>tcccac                                 | DNA<br>Homo sapiens<br>2060<br>ttaac atgaaatgaa tgga                                           | 24  |
| <212><br><213>                                                    | DNA<br>Homo sapiens<br>2060<br>ttaac atgaaatgaa tgga                                           | 24  |
| <212><br><213><br><400><br>tcccac                                 | DNA<br>Homo sapiens<br>2060<br>ctaac atgaaatgaa tgga                                           | 24  |
| <212> <213> <400> tcccac <210> <211>                              | DNA Homo sapiens 2060 thanc atgaaatgaa tgga 2061 20                                            | 24  |
| <212> <213> <400> tcccac <210> <211> <212>                        | DNA Homo sapiens  2060 ttaac atgaaatgaa tgga  2061 20 DNA                                      | 24  |
| <212><213> 400<br>tcccac<210><211>                                | DNA Homo sapiens  2060 ttaac atgaaatgaa tgga  2061 20 DNA                                      | 24  |
| <212> <213> <400> tcccac <210> <211> <212>                        | DNA Homo sapiens  2060 ttaac atgaaatgaa tgga  2061 20 DNA                                      | 24  |
| <212> <213> <400> tcccac <210> <211> <212>                        | DNA Homo sapiens  2060 ttaac atgaaatgaa tgga  2061 20 DNA                                      | 24  |
| <212><213> 400<br>tcccac<210><211><211><212><213> 400             | DNA Homo sapiens  2060 ctaac atgaaatgaa tgga  2061 20 DNA Homo sapiens  2061                   |     |
| <212><213> 400<br>tcccac<210><211><211><212><213> 400             | DNA Homo sapiens 2060 ttaac atgaaatgaa tgga 2061 20 DNA Homo sapiens                           | 24  |
| <212><213> 400<br>tcccac<210><211><211><212><213> 400             | DNA Homo sapiens  2060 ctaac atgaaatgaa tgga  2061 20 DNA Homo sapiens  2061                   |     |
| <212> <213> <400> tcccac     <210> <211> <212> <213> <400> agtttg | DNA Homo sapiens  2060 ttaac atgaaatgaa tgga  2061 20 DNA Homo sapiens  2061 2099ga ggccatatcc |     |
| <212><213> 400<br>tcccac<210><211><211><212><213> 400             | DNA Homo sapiens  2060 ctaac atgaaatgaa tgga  2061 20 DNA Homo sapiens  2061                   |     |

| WO 2004/04                | 2346      | PCT/US2003/012946 |
|---------------------------|-----------|-------------------|
| <212> DNA                 |           |                   |
| <213> Homo s              | apiens    |                   |
| <400> 2062                |           |                   |
| cagatgetea ee             | etgetegte | 20                |
| <210> 2063                |           |                   |
| <211> 2063                |           |                   |
| <212> DNA                 |           |                   |
| <213> Homo s              | apiens    |                   |
| <400> 2063                |           |                   |
| tqqggatcca ct             | ttattan n | 21                |
| eggggaceca et             | eccccaa a | 21                |
| <210> 2064                |           |                   |
| <211> 20                  |           |                   |
| <212> DNA                 |           |                   |
| <213> Homo s              | sapiens   |                   |
| <400> 2064                |           |                   |
| ttctggctga g              | ggtcacat  | 20                |
|                           |           |                   |
| <210> 2065                |           | •                 |
| <211> 20                  |           |                   |
| <212> DNA<br><213> Homo s | aniona    |                   |
|                           | apiens    |                   |
| <400> 2065                |           |                   |
| gtccttggag co             | caagcagag | 20                |
| <210> 2066                |           |                   |
| <211> 2066                |           |                   |
| <211> 20<br><212> DNA     |           |                   |
| <213> Homo s              | sapiens   |                   |
| <400> 2066                |           |                   |
| accagtggaa co             | cagggtgag | 20                |
|                           |           |                   |
| <210> 2067                |           |                   |
| <211> 20                  |           |                   |
| <212> DNA                 |           |                   |
| <213> Homo s              | sapiens   |                   |
| <400> 2067                |           |                   |
| aggagggagg g              | gcacagtag | 20                |
|                           |           |                   |
| <210> 2068                |           |                   |
| <211> 20                  |           |                   |
| <212> DNA<br><213> Homo : | sapiens   |                   |
|                           |           |                   |
| <400> 2068                |           | 20                |
| gtgccatagc c              | gatyttet  | 20                |

WO 2004/042346 PCT/US2003/012946 <210> 2069 <211> 20 <212> DNA <213> Homo sapiens <400> 2069 gactccttgg catcggacac 20 <210> 2070 <211> 27 <212> DNA <213> Homo sapiens <400> 2070 tcatgctttc ctcattatta ttgatcc 27 <210> 2071 <211> 21 <212> DNA <213> Homo sapiens <400> 2071 ttgctgtttg ggtgcatact g 21 <210> 2072 <211> 28 <212> DNA <213> Homo sapiens <400> 2072 tttgaatgaa tattaggaat tgatgctg 28 <210> 2073 <211> 20 <212> DNA <213> Homo sapiens <400> 2073 acaacqqtqa ccatctqcaa 20 <210> 2074 <211> 22 <212> DNA <213> Homo sapiens <400> 2074 accagattca aaagggaaag ca 22 <210> 2075 <211> 20 <212> DNA <213> Homo sapiens <400> 2075 ctcatgaaac gtccccgaat 20

| <210>   | 2076                          |    |
|---------|-------------------------------|----|
|         |                               |    |
| <211>   |                               |    |
| <212>   | DNA                           |    |
| <213>   | Homo sapiens                  |    |
|         |                               |    |
| <400>   | 2076                          |    |
|         |                               | 20 |
| aggecag | gggt ctctggaaga               | 20 |
|         |                               |    |
|         |                               |    |
| <210>   | 2077                          |    |
| <211>   | 20                            |    |
| <212>   |                               |    |
|         | Homo sapiens                  |    |
| <213>   | NOMO Sapiens                  |    |
|         |                               |    |
| <400>   |                               |    |
| acagcag | gcca aacaaaagca               | 20 |
|         |                               |    |
|         |                               |    |
| <210>   | 2078                          |    |
| <211>   |                               |    |
|         |                               |    |
| <212>   |                               |    |
| <213>   | Homo sapiens                  |    |
|         |                               |    |
| <400>   | 2078                          |    |
| ctgaaa  | gctc aggggtggaa               | 20 |
|         | 5555 52                       |    |
|         |                               |    |
| <210>   | 2070                          |    |
|         |                               |    |
| <211>   |                               |    |
| <212>   | DNA                           |    |
| <213>   | Homo sapiens                  |    |
|         | -                             |    |
| <400>   | 2079                          |    |
|         | ggtc cggtcatact               | 20 |
| cagcag  | ggcc cggccacacc               |    |
|         |                               |    |
|         |                               |    |
| <210>   | 2080                          |    |
| <211>   | 32                            |    |
| <212>   | DNA                           |    |
|         | Homo sapiens                  |    |
|         |                               |    |
| <400>   | 2000                          |    |
|         |                               |    |
| acaaaa  | caaa ttcacaaatt actctcaata ct | 32 |
|         |                               |    |
|         |                               |    |
| <210>   | 2081                          |    |
| <211>   | 26                            |    |
| <212>   |                               |    |
|         | Homo sapiens                  |    |
| ~2137   | nome suprems                  |    |
|         | 0001                          |    |
| <400>   |                               |    |
| tctgtg  | aaaa totttotgoa aatgto        | 26 |
|         |                               |    |
|         |                               |    |
| <210>   | 2082                          |    |
| <211>   |                               |    |
| <211>   |                               |    |
|         |                               |    |
| <2135   | Homo sapiens                  |    |

| WO 2004/042346                           | PCT/US2003/012946 |
|------------------------------------------|-------------------|
| <400> 2082                               |                   |
| agtaaaacca gacaaacgaa taacacac           |                   |
| agradaded gaedaacgaa taacacac            | 28                |
|                                          |                   |
| <210> 2083                               |                   |
| <211> 18                                 |                   |
| <212> DNA                                |                   |
| <213> Homo sapiens                       |                   |
| <400> 2083                               |                   |
| ccgagcccga taaatggt                      |                   |
| oogagoooga caaacggc                      | 18                |
|                                          |                   |
| <210> 2084                               |                   |
| <211> 20                                 |                   |
| <212> DNA                                |                   |
| <213> Homo sapiens                       |                   |
| <400> 2084                               |                   |
|                                          |                   |
| tcccctccct gtagagacca                    | 20                |
|                                          |                   |
| <210> 2085                               |                   |
| <211> 20                                 |                   |
| <212> DNA                                |                   |
| <213> Homo sapiens                       |                   |
|                                          |                   |
| <400> 2085                               |                   |
| cccgacctgg ggtatctctt                    | 20                |
|                                          |                   |
| <210> 2086                               |                   |
| <211> 2086                               |                   |
| <211> 20<br><212> DNA                    |                   |
| <213> Homo sapiens                       |                   |
| 12137 NOMO BADIENB                       |                   |
| <400> 2086                               |                   |
| cttgaaggga cgtgggacat                    | 20                |
|                                          | 20                |
| ***                                      |                   |
| <210> 2087                               |                   |
| <211> 20<br><212> DNA                    |                   |
| <213> Homo sapiens                       |                   |
| (213) Nomo Sapiens                       |                   |
| <400> 2087                               |                   |
| tttggtgcca tgactgccta                    | 20                |
| 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 20                |
|                                          |                   |
| <210> 2088                               |                   |
| <211> 23                                 |                   |
| <212> DNA                                |                   |
| <213> Homo sapiens                       |                   |
| <400> 2088                               |                   |
| ttcgctctct gctgaagaag att                |                   |
| goryanyany att                           | 23                |
|                                          |                   |
| <210> 2089                               |                   |
| <211> 22                                 |                   |
| <212> DNA                                |                   |
|                                          |                   |

| WO 2004/042346          | PCT/US2003/0129- | 16 |
|-------------------------|------------------|----|
| <213> Homo sapiens      |                  |    |
|                         |                  |    |
| <400> 2089              |                  |    |
| aagagtgtgg cctgagtcct   | 22               |    |
| <210> 2090              |                  |    |
| <211> 20                |                  |    |
| <212> DNA               |                  |    |
| <213> Homo sapiens      |                  |    |
| <400> 2090              |                  |    |
| ttggggcttg tggagaagag   | 20               |    |
| 0 00 0 0 0              | 20               |    |
| <210> 2091              |                  |    |
| <211> 22                |                  |    |
| <212> DNA               |                  |    |
| <213> Homo sapiens      | ř                |    |
| <400> 2091              |                  |    |
| aagaccctca ttcccacttt   | ca 22            |    |
| -                       | 22               |    |
| <210> 2092              |                  |    |
| <211> 20                |                  |    |
| <212> DNA               |                  |    |
| <213> Homo sapiens      |                  |    |
| <400> 2092              |                  |    |
| ccccacttct tgcattcagc   | 20               |    |
|                         |                  |    |
| <210> 2093              |                  |    |
| <211> 20                |                  |    |
| <212> DNA               |                  |    |
| <213> Homo sapiens      |                  |    |
| <400> 2093              |                  |    |
| actccaagga cacggcagag   | 20               |    |
|                         |                  |    |
| <210> 2094              |                  |    |
| <211> 20                |                  |    |
| <212> DNA               |                  |    |
| <213> Homo sapiens      |                  |    |
| <400> 2094              |                  |    |
| cgccgtgaga aatcagtttg   | 20               |    |
|                         |                  |    |
| <210> 2095              |                  |    |
| <211> 28                |                  |    |
| <212> DNA               |                  |    |
| <213> Homo sapiens      |                  |    |
| <400> 2095              |                  |    |
| accatcactt acaaatctgt a | CCCaatc 28       |    |
|                         | 20               |    |
| <210> 2096              |                  |    |
|                         |                  |    |

| WO 2004/042346                  | PCT/US2003/01 | 12946 |
|---------------------------------|---------------|-------|
| <211> 27                        |               |       |
| <212> DNA                       |               |       |
| <213> Homo sapiens              |               |       |
| <400> 2096                      |               |       |
| tgagtaagtt cttgttcttt           | ccgttct       | 27    |
|                                 |               |       |
| <210> 2097<br><211> 20          |               |       |
| <211> 20<br><212> DNA           |               |       |
| <213> Homo sapiens              |               |       |
| <400> 2097                      |               |       |
| gateccaget geettttgaa           |               | 20    |
| J                               | •             | :0    |
| <210> 2098                      |               |       |
| <211> 28                        |               |       |
| <212> DNA                       |               |       |
| <213> Homo sapiens              |               |       |
| <400> 2098                      |               |       |
| tgtgattata caaaatgaag           | tggacaaa      | 28    |
|                                 |               |       |
| <210> 2099                      |               |       |
| <211> 20<br><212> DNA           |               |       |
| <212> DNA<br><213> Homo sapiens |               |       |
| <400> 2099                      |               |       |
| ccctctccaa caccttcacq           | _             |       |
| coccecata caccecacy             | 2             | 0 0   |
| <210> 2100                      |               |       |
| <211> 20                        |               |       |
| <212> DNA                       |               |       |
| <213> Homo sapiens              |               |       |
| <400> 2100                      |               |       |
| aggcctggtc cttcactggt           | 2             | 0     |
|                                 |               |       |
| <210> 2101                      |               |       |
| <211> 22                        |               |       |
| <212> DNA                       |               |       |
| <213> Homo sapiens              |               |       |
| <400> 2101                      |               |       |
| cagteteaca etggteettg           | ct 2          | 2     |
|                                 |               |       |
| <210> 2102                      |               |       |
| <211> 20                        |               |       |
| <212> DNA<br><213> Homo sapiens |               |       |
|                                 |               |       |
| <400> 2102                      |               |       |
| caatggcatt aaggggcaaa           | 2             | 0     |

| -210-  | 2102                  |    |
|--------|-----------------------|----|
|        | 2103                  |    |
| <211>  |                       |    |
| <212>  |                       |    |
| <213>  | Homo sapiens          |    |
|        |                       |    |
| <400>  | 2103                  |    |
|        | gatca tetegtetgg      |    |
| coode  | gacca coccycocyg      | 20 |
|        |                       |    |
|        | ***                   |    |
|        | 2104                  |    |
| <211>  |                       |    |
| <212>  |                       |    |
| <213>  | Homo sapiens          |    |
|        |                       |    |
| <400>  | 2104                  |    |
| ctgagg | gggtg cagagtgtga      |    |
| 33.    | 222-2 0-24202024      | 20 |
|        |                       |    |
| <210>  | 2105                  |    |
|        |                       |    |
| <211>  |                       |    |
| <212>  |                       |    |
| <213>  | Homo sapiens          |    |
|        |                       |    |
| <400>  | 2105                  |    |
| cagtet | ttgt cataggcaaa cttga |    |
| 3      | 555                   | 25 |
|        |                       |    |
| <210>  | 2106                  |    |
|        |                       |    |
| <211>  |                       |    |
| <212>  |                       |    |
| <213>  | Homo sapiens          |    |
|        |                       |    |
| <400>  | 2106                  |    |
| tccaga | gcaa gccgaaactt       | 20 |
| _      | 2 2 3                 | 20 |
|        |                       |    |
| <210>  | 2107                  |    |
| <211>  |                       |    |
|        |                       |    |
| <212>  |                       |    |
| <213>  | Homo sapiens          |    |
|        |                       |    |
| <400>  | 2107                  |    |
| ttcaca | atgg ctaacaagaa cagg  | 24 |
|        |                       | 24 |
|        |                       |    |
| <210>  | 2108                  |    |
| <211>  |                       |    |
| <211>  |                       |    |
|        |                       |    |
| <213>  | Homo sapiens          |    |
|        |                       |    |
| <400>  | 2108                  |    |
| ccaaag | cagg ccagcaatac       | 20 |
| _      |                       | 20 |
|        |                       |    |
| <210>  | 2109                  |    |
| <211>  |                       |    |
|        |                       |    |
| <212>  |                       |    |
| <213>  | Homo sapiens          |    |
|        |                       |    |
| <400>  | 2109                  |    |

| WO 2004/042346                | PCT/US2003/012946 |
|-------------------------------|-------------------|
| gacgaagggc taccgcact          | 19                |
|                               |                   |
| <210> 2110                    |                   |
| <211> 21                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 2110                    |                   |
| getatttega ggggatgtge t       | 21                |
|                               |                   |
| <210> 2111                    |                   |
| <211> 27                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| •                             |                   |
| <400> 2111                    |                   |
| aaattotttg ottgttagtg accttga | 27                |
|                               |                   |
| <210> 2112                    |                   |
| <211> 24                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 2112                    |                   |
| tgcaaccttt taagcatagc cata    | 24                |
| -g                            |                   |
|                               |                   |
| <210> 2113<br><211> 20        |                   |
| <211> 20<br><212> DNA         |                   |
| <213> Homo sapiens            |                   |
| 1225 Homo Supremo             |                   |
| <400> 2113                    |                   |
| gaageceetg ttetgeteaa         | 20                |
|                               |                   |
| <210> 2114                    |                   |
| <211> 20                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 2114                    |                   |
| tttgttccct tggagggttg         | 20                |
| congested aggaggerg           |                   |
|                               |                   |
| <210> 2115                    |                   |
| <211> 23                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 2115                    |                   |
| ctaacccata agtgcctcat aca     | 23                |
|                               |                   |
| <210> 2116                    |                   |
| <211> 20                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
|                               | •                 |

| wo     | 2004/042346        | PCT/US2003/012946 |
|--------|--------------------|-------------------|
| <400>  |                    |                   |
| caggg  | catgt gtagcaggaa   | 20                |
| <210>  | 2117               |                   |
| <211>  | 22                 |                   |
| <212>  |                    |                   |
| <213>  | Homo sapiens       |                   |
| <400>  | 2117               |                   |
| gcctga | gagt agetecetee tt | 22                |
|        |                    |                   |
| <210>  | 2118               |                   |
| <211>  |                    |                   |
| <212>  |                    |                   |
| <213>  | Homo sapiens       |                   |
| <400>  | 2118               |                   |
| gacttg | tacg ggttcgggtt t  | 21                |
|        |                    |                   |
| <210>  | 2119               |                   |
| <211>  | 20                 |                   |
| <212>  |                    |                   |
| <213>  | Homo sapiens       |                   |
| <400>  | 2119               |                   |
| ggagct | ggga gctcgaaagt    | 20                |
|        |                    |                   |
| <210>  | 2120               |                   |
| <211>  | 20                 |                   |
| <212>  | DNA                |                   |
| <213>  | Homo sapiens       |                   |
| <400>  | 2120               |                   |
| gcgtgc | agct catcttggta    | 20                |
|        |                    |                   |
| <210>  | 2121               |                   |
| <211>  |                    |                   |
| <212>  | DNA                |                   |
| <213>  | Homo sapiens       |                   |
|        |                    |                   |

<21 <21 <400> 2121 ttttgccaaa tgggttcctt t

<211> 19 <212> DNA <213> Homo sapiens <400> 2122

atcgaagtcg ccgacaatg

<210> 2123 <211> 20

<210> 2122

21

19

| WO 2004/042346        |                  | PCT/US2003/012946 |
|-----------------------|------------------|-------------------|
| <212> DNA             |                  |                   |
| <213> Homo sapiens    |                  |                   |
| <400> 2123            |                  |                   |
| gatcaccage aagggagtgc |                  | 20                |
|                       |                  |                   |
| <210> 2124            |                  |                   |
| <211> 35              |                  |                   |
| <212> DNA             |                  |                   |
| <213> Homo sapiens    |                  |                   |
| <400> 2124            |                  |                   |
| ttaataattc atacctagta | ctaagcggta acaac | 35                |
| <210> 2125            |                  |                   |
| <211> 24              |                  |                   |
| <212> DNA             |                  |                   |
| <213> Homo sapiens    |                  |                   |
| <400> 2125            |                  |                   |
| cctgctttct tctttcattg | atcc             | 24                |
| <210> 2126            |                  |                   |
| <211> 2120            |                  |                   |
| <212> DNA             |                  |                   |
| <213> Homo sapiens    |                  |                   |
| <400> 2126            |                  |                   |
| cctgaggcca gtgatagggt | aa               | 22                |
|                       |                  |                   |
| <210> 2127            |                  |                   |
| <211> 20              |                  |                   |
| <212> DNA             |                  |                   |
| <213> Homo sapiens    |                  |                   |
| <400> 2127            |                  |                   |
| gcactgctgc tcatttcctg |                  | 20                |
| <210> 2128            |                  |                   |
| <211> 20              |                  |                   |
| <212> DNA             |                  |                   |
| <213> Homo sapiens    |                  |                   |
| <400> 2128            |                  |                   |
| teetteeest ttgecaatet |                  | 20                |
|                       |                  |                   |
| <210> 2129            |                  |                   |
| <211> 21              |                  |                   |
| <212> DNA             |                  |                   |
| <213> Homo sapiens    |                  |                   |
| <400> 2129            |                  |                   |
| accggagaaa agtgggttga | g                | 21                |

| WO 2004/042346        |       | PCT/US2003/012946 |
|-----------------------|-------|-------------------|
| <210> 2130            |       |                   |
| <211> 21              |       |                   |
| <212> DNA             |       |                   |
| <213> Homo sapiens    |       |                   |
| <400> 2130            |       |                   |
| aagetcaaga aggetgggag | a     | 21                |
| <210> 2131            |       |                   |
| <211> 22              |       |                   |
| <212> DNA             |       |                   |
| <213> Homo sapiens    |       |                   |
| <400> 2131            |       |                   |
| cacccactgt tettaccett | gc    | 22                |
| <210> 2132            |       |                   |
| <211> 21              |       |                   |
| <212> DNA             |       |                   |
| <213> Homo sapiens    |       |                   |
| <400> 2132            |       |                   |
| tectgectaa etgaceacet | q     | 21                |
| •                     |       |                   |
| <210> 2133            |       |                   |
| <211> 23              |       |                   |
| <212> DNA             |       |                   |
| <213> Homo sapiens    |       |                   |
| <400> 2133            |       |                   |
| cagactccaa gtccaaagca | aat   | 23                |
| <210> 2134            |       |                   |
| <211> 25              |       |                   |
| <212> DNA             |       |                   |
| <213> Homo sapiens    |       |                   |
| <400> 2134            |       |                   |
| tgatttccaa atctcagttg | acctc | 25                |
| <210> 2135            |       |                   |
| <211> 20              |       |                   |
| <212> DNA             |       |                   |
| <213> Homo sapiens    |       |                   |
| <400> 2135            |       |                   |
| gcttcctgga attccctgct |       | 20                |
| <210> 2136            |       |                   |
| <211> 20              |       |                   |
| <212> DNA             |       |                   |
| <213> Homo sapiens    |       |                   |
| <400> 2136            |       |                   |
| tgaagggtcc cacgctgtat |       | 20                |
| _                     |       | ŕ                 |

| <210>  | 2137                         |    |
|--------|------------------------------|----|
| <211>  | 21                           |    |
| <212>  | DNA                          |    |
| <213>  | Homo sapiens                 |    |
|        |                              |    |
| <400>  | 2127                         |    |
|        |                              | 21 |
| tgcate | agtc aaggtcatgg a            | 21 |
|        |                              |    |
|        |                              |    |
| <210>  | 2138                         |    |
| <211>  | 19                           |    |
| <212>  | DNA                          |    |
| <213>  | Homo sapiens                 |    |
|        |                              |    |
| <400>  | 2120                         |    |
|        |                              | 19 |
| cgaggg | ctcg tcatttggt               | 19 |
|        |                              |    |
|        |                              |    |
| <210>  |                              |    |
| <211>  | 20                           |    |
| <212>  | DNA                          |    |
| <213>  | Homo sapiens                 |    |
|        | •                            |    |
| <400>  | 2139                         |    |
|        | gcga ccacctaccg              | 20 |
| ccyaya | gega ceacetaceg              | 20 |
|        |                              |    |
|        |                              |    |
| <210>  |                              |    |
| <211>  |                              |    |
| <212>  | DNA                          |    |
| <213>  | Homo sapiens                 |    |
|        |                              |    |
| <400>  | 2140                         |    |
|        | ccca aatgagcttt              | 20 |
| 500505 |                              |    |
|        |                              |    |
| <210>  | 0141                         |    |
|        |                              |    |
| <211>  |                              |    |
| <212>  |                              |    |
| <213>  | Homo sapiens                 |    |
|        |                              |    |
| <400>  | 2141                         |    |
| qtatct | caat tcagaaagct ttgactactg t | 31 |
| •      | 3 3 3 <b>3</b>               |    |
|        |                              |    |
| <210>  | 2142                         |    |
| <211>  |                              |    |
|        |                              |    |
| <212>  |                              |    |
| <213>  | Homo sapiens                 |    |
|        |                              |    |
| <400>  | 2142                         |    |
| tttgat | cccc agtgtttgct c            | 21 |
|        |                              |    |
|        |                              |    |
| <210>  | 2143                         |    |
| <211>  | 20                           |    |
| <212>  |                              |    |
| <212>  |                              |    |
| <7T7>  | Homo sapiens                 |    |

| v                        | O 2004/042346              | PCT/US2003/012946 |
|--------------------------|----------------------------|-------------------|
| <400:                    | 2143                       |                   |
|                          | aagtc agegecaaag           | 20                |
|                          | 3 3 3 3                    | 20                |
|                          |                            |                   |
| <210:                    | 2144                       |                   |
|                          | DNA                        |                   |
|                          | Homo sapiens               |                   |
|                          | -                          |                   |
|                          | 2144                       |                   |
| atgc                     | acttc attggcacct           | 20                |
|                          |                            |                   |
| <210:                    | 2145                       |                   |
| <211:                    | 20                         |                   |
|                          | DNA                        |                   |
| <213:                    | Homo sapiens               |                   |
| -400                     | 2145                       |                   |
|                          | gaagg caaaccagat           | 2.0               |
| cgccs                    | gaagg caaaccagac           | 20                |
|                          |                            |                   |
|                          | 2146                       |                   |
| <211:                    |                            |                   |
|                          | DNA<br>Homo sapiens        |                   |
| <213                     | nomo sapiens               |                   |
| <400>                    | 2146                       |                   |
| tccca                    | gaaga gatgacggag gctaccttc | 29                |
|                          |                            |                   |
| -010-                    | 2147                       |                   |
| <211>                    |                            |                   |
|                          | DNA                        |                   |
| <213>                    | Homo sapiens               |                   |
|                          |                            |                   |
|                          | 2147                       |                   |
| cgctgtgtgt tctcccctct 20 |                            |                   |
|                          |                            |                   |
| <210>                    | 2148                       |                   |
| <211>                    |                            |                   |
| <212>                    |                            |                   |
| <213>                    | Homo sapiens               |                   |
| -400>                    | 2148                       |                   |
|                          | cagtt tctccccaat g         | 21                |
|                          | ,                          | 21                |
|                          |                            |                   |
|                          | 2149                       |                   |
| <211><212>               |                            |                   |
|                          | Homo sapiens               |                   |
|                          | r ·····                    |                   |
|                          | 2149                       |                   |
| tcaat                    | tggac agaaatgaca agga      | 24                |
|                          |                            |                   |
| <210>                    | 2150                       |                   |
| <211>                    | 21                         |                   |
| <212>                    |                            |                   |

| we             | 2004/042346                    | PCT/US2003/012946 |
|----------------|--------------------------------|-------------------|
| <213>          | Homo sapiens                   |                   |
| <400>          | 2150                           |                   |
| tctggc         | tcac tccaaatcag c              | 21                |
| <210>          |                                |                   |
| <211>          |                                |                   |
| <212><br><213> | Homo sapiens                   |                   |
| <400>          |                                |                   |
| gcctga         | cttg gcctgctact                | 20                |
| <210>          | 2152                           |                   |
| <211>          |                                |                   |
| <212>          |                                |                   |
|                | Homo sapiens                   |                   |
| <400>          |                                |                   |
| tcacac         | agcc atcacacagg                | 20                |
|                |                                |                   |
| <210><br><211> |                                |                   |
| <211>          |                                |                   |
|                | Homo sapiens                   |                   |
| <400>          | 2153                           |                   |
| tgccaa         | tgaa accaggtatc ccca           | 24                |
| <210>          | 2154                           |                   |
| <211>          |                                |                   |
| <212>          | DNA                            |                   |
| <213>          | Homo sapiens                   |                   |
| <400>          |                                |                   |
| tgagtg         | gctg gtgtcttttg gttagtgtaa cca | 33                |
| <210>          | 2155                           |                   |
| <211>          |                                |                   |
| <212>          | DNA                            |                   |
| <213>          | Homo sapiens                   |                   |
| <400>          |                                |                   |
| ggccag         | caca atgccccagg                | 20                |
| <210>          | 2156                           |                   |
| <211>          | 29                             |                   |
| <212>          |                                |                   |
| <213>          | Homo sapiens                   |                   |
| <400>          | 2156                           |                   |
| tcaggo         | aaat tcacaaccca gtgagtctg      | 29                |
| <210>          | 2157 -                         |                   |

WO 2004/042346 PCT/US2003/012946 <211> 25 <212> DNA <213> Homo sapiens <400> 2157 tgacagccac aatgctcacc qttca 25 <210> 2158 <211> 26 <212> DNA <213> Homo sapiens <400> 2158 cagctcccaa ccctttgtgt ctcagc 26 <210> 2159 <211> 30 <212> DNA <213> Homo sapiens <400> 2159 ggatgatgac tgctgttacg aaacacacca 30 <210> 2160 <211> 27 <212> DNA <213> Homo sapiens <400> 2160 tgcagagcag tgttcttcca gctgtga 27 <210> 2161 <211> 24 <212> DNA <213> Homo sapiens <400> 2161 ggcagaaaat cgtcttggtc gcca 24 <210> 2162 <211> 32 <212> DNA <213> Homo sapiens <400> 2162 ccaaaactac aagcetttga aggaccaaag ga 32 <210> 2163 <211> 22 <212> DNA <213> Homo sapiens

22

<400> 2163

gggtgcagag caaggaaggg gc

| <210><br><211><br><212> | 30                         |    |
|-------------------------|----------------------------|----|
|                         | Homo sapiens               |    |
| <400>                   |                            |    |
| tcagga                  | aggt aaagcaaatc tctggaggca | 30 |
| <210>                   | 2165                       |    |
| <211>                   |                            |    |
| <212>                   |                            |    |
|                         | Homo sapiens               |    |
| <400>                   |                            |    |
|                         | cage cagecacceg            | 20 |
| CLLCCC                  | sage cagecaceeg            | 20 |
| <210>                   | 2166                       |    |
| <211>                   |                            |    |
| <212>                   |                            |    |
|                         | Homo sapiens               |    |
| (213)                   | nomo sapiens               |    |
| <400>                   | 2166                       |    |
| ttgtgg                  | gggt agggtaggga agttcaca   | 28 |
|                         |                            |    |
|                         |                            |    |
| <210>                   |                            |    |
| <211>                   |                            |    |
| <212>                   | Homo sapiens               |    |
| <213>                   | nomo saprens               |    |
| <400>                   | 2167                       |    |
| ccacgg                  | tcca cacageceee            | 20 |
|                         |                            |    |
| <210>                   | 2169                       |    |
| <211>                   |                            |    |
| <211>                   |                            |    |
|                         | Homo sapiens               |    |
| ~2137                   | nome supreme               |    |
| <400>                   | 2168                       |    |
| cttccc                  | ctcg gggcaggctg            | 20 |
|                         |                            |    |
| .010:                   | 2162                       |    |
| <210><br><211>          |                            |    |
| <211><br><212>          |                            |    |
|                         | Homo sapiens               |    |
| ~213>                   | nomo saprens               |    |
| <400>                   | 2169                       |    |
| tgggtg                  | ggct tatccaccat cttcttca   | 28 |
|                         |                            |    |
| <210>                   | 2170                       |    |
| <210>                   |                            |    |
| <211>                   |                            |    |
|                         | Homo sapiens               |    |
| -2133                   | nomo bupitono              |    |
| <400>                   | 2170                       |    |

WO 2004/042346 PCT/US2003/012946 cccctcggaa aacaccctcg ca 22 <210> 2171 <211> 20 <212> DNA <213> Homo sapiens <400> 2171 gaactcggcg gggaggtqqq 20 <210> 2172 <211> 20 <212> DNA <213> Homo sapiens <400> 2172 ggtgccgatg gtgtcggcct 20 <210> 2173 <211> 27 <212> DNA <213> Homo sapiens <400> 2173 tgccctgqcc cacaaqtatc actaaqc 27 <210> 2174 <211> 27 <212> DNA <213> Homo sapiens <400> 2174 tgccctggct cacaagtacc attgaga 27 <210> 2175 <211> 21 <212> DNA <213> Homo sapiens <400> 2175 gccatgggcc ttgaccttgg g 21 <210> 2176 <211> 23 <212> DNA <213> Homo sapiens <400> 2176 cccatgatgg cagaggcaga gga 23

<211> 20 <212> DNA <213> Homo sapiens

<210> 2177

| W O 2004/042540                 |                 | TC1/032003/ | 012340 |
|---------------------------------|-----------------|-------------|--------|
|                                 |                 |             |        |
| <400> 2177                      |                 |             |        |
| gccggggctc aggtccaggt           |                 |             | 20     |
|                                 |                 |             |        |
| <210> 2178                      |                 |             |        |
| <211> 20                        |                 |             |        |
| <212> DNA                       |                 |             |        |
| <213> Homo sapiens              |                 |             |        |
|                                 |                 |             |        |
| <400> 2178                      |                 |             | 20     |
| gcagggtgga gcactggggc           |                 |             | 20     |
|                                 |                 |             |        |
| <210> 2179                      |                 |             |        |
| <211> 26                        |                 |             |        |
| <212> DNA                       |                 |             |        |
| <213> Homo sapiens              |                 |             |        |
| <400> 2179                      |                 |             |        |
| tggtgactgg accttccaga t         | cetaa           |             | 26     |
| tygtgattyg actiticing           |                 |             |        |
|                                 |                 |             |        |
| <210> 2180                      |                 |             |        |
| <211> 23                        |                 |             |        |
| <212> DNA                       |                 |             |        |
| <213> Homo sapiens              |                 |             |        |
| <400> 2180                      |                 |             |        |
| gatgctgagt ggagtcgggg g         | ct              |             | 23     |
|                                 |                 |             |        |
|                                 |                 |             |        |
| <210> 2181                      |                 |             |        |
| <211> 20                        |                 |             |        |
| <212> DNA                       |                 |             |        |
| <213> Homo sapiens              |                 |             |        |
| <400> 2181                      |                 |             |        |
| ggccaggtgg gccaccatga           |                 |             | 20     |
|                                 |                 |             |        |
|                                 |                 |             |        |
| <210> 2182                      |                 |             |        |
| <211> 35                        |                 |             |        |
| <212> DNA<br><213> Homo sapiens |                 |             |        |
| (213) nomo sapiens              |                 |             |        |
| <400> 2182                      |                 |             |        |
| cagtcatatc ttcaaataga g         | gccgatttc cttgg |             | 35     |
|                                 |                 |             |        |
|                                 |                 |             |        |
| <210> 2183                      |                 |             |        |
| <211> 28<br><212> DNA           |                 |             |        |
| <212> DNA<br><213> Homo sapiens |                 |             |        |
| and aprens                      |                 |             |        |
| <400> 2183                      |                 |             |        |
| ttccatcaga atgtcttggt c         | ttcccca         |             | 28     |
|                                 |                 |             |        |
| 210                             |                 |             |        |
| <210> 2184                      |                 |             |        |
| <211> 20                        |                 |             |        |

PCT/US2003/012946

| WO 2004/042346                | PCT/US2003/012946 |
|-------------------------------|-------------------|
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 2184                    |                   |
| cegteeecte teeeggagga         | 20                |
| <210> 2185                    |                   |
| <211> 2165                    |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 2185                    |                   |
| acttegaaac eggeeegeee         | 20                |
| <210> 2186                    |                   |
| <211> 20                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 2186                    |                   |
| caaccccage cetgecetee         | 20                |
| <210> 2187                    |                   |
| <211> 20                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 2187                    | 20                |
| cagtggggca gtggggtccg         | 20                |
| <210> 2188                    |                   |
| <211> 20                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 2188                    | 20                |
| ggcgcccagg tgaagagcca         | 20                |
| <210> 2189                    |                   |
| <211> 26                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 2189                    | 26                |
| tgcaatcaaa aaccacctgc atccaa  | 26                |
| <210> 2190                    |                   |
| <211> 27                      |                   |
| <212> DNA                     |                   |
| <213> Homo sapiens            |                   |
| <400> 2190                    | 27                |
| tgcttttaag ttttggccaa ctgccga | 27                |

| WO 2004/042346                          | PCT/US2003/012946 |
|-----------------------------------------|-------------------|
| <210> 2191                              |                   |
| <210> 2191<br><211> 21                  |                   |
| <211> Z1<br><212> DNA                   |                   |
| <213> Homo sapiens                      |                   |
| 1213 Homo Debiona                       |                   |
| <400> 2191                              |                   |
| teccagteag ggageecacg g                 | 21                |
|                                         |                   |
|                                         |                   |
| <210> 2192                              |                   |
| <211> 20                                |                   |
| <212> DNA                               |                   |
| <213> Homo sapiens                      |                   |
| <400> 2192                              |                   |
| aggcccagga tggcggcaac                   | 20                |
| aggecougga eggeggeade                   | 2.0               |
|                                         |                   |
| <210> 2193                              |                   |
| <211> 34                                |                   |
| <212> DNA                               |                   |
| <213> Homo sapiens                      |                   |
|                                         |                   |
| <400> 2193                              |                   |
| tgataactgc tcttgaagga ctcacaaaga tggc   | 34                |
|                                         |                   |
| <210> 2194                              |                   |
| <210> 2194<br><211> 20                  |                   |
| <211> 20<br><212> DNA                   | ,                 |
| <211> DNA<br><213> Homo sapiens         |                   |
| (213) NOMO Bapiens                      |                   |
| <400> 2194                              |                   |
| ccctctggct gttcccggca                   | 20                |
| 33 3                                    |                   |
|                                         |                   |
| <210> 2195                              |                   |
| <211> 23                                |                   |
| <212> DNA                               |                   |
| <213> Homo sapiens                      |                   |
| .400. 2105                              |                   |
| <400> 2195<br>ggtgaagget tggaggagtg geg | 23                |
| agegaaggee eggaggageg geg               |                   |
|                                         |                   |
| <210> 2196                              |                   |
| <211> 27                                |                   |
| <212> DNA                               |                   |
| <213> Homo sapiens                      |                   |
|                                         |                   |
| <400> 2196                              |                   |
| cgtggagttt ctccagtcaa ggtccca           | 27                |
|                                         |                   |
| <210> 2197                              |                   |
| <211> 20                                |                   |
| <211> 20<br><212> DNA                   |                   |
| <213> Homo sapiens                      |                   |
|                                         |                   |
| <400> 2197                              |                   |
| tcccaccatg gctgtggccc                   | 20                |
|                                         |                   |

| < | 210><br>211> | 22              |            |     |
|---|--------------|-----------------|------------|-----|
|   | 212>         |                 |            |     |
| < | 213>         | Homo sapiens    |            |     |
| < | 400>         | 2198            |            |     |
|   |              | cac atccccagtc  | cc         | 22  |
|   |              |                 |            |     |
|   |              |                 |            |     |
|   | 210><br>211> |                 |            |     |
|   | 212>         |                 |            |     |
|   |              | Homo sapiens    |            |     |
|   |              | -               |            |     |
|   | 400>         |                 |            |     |
| g | gaccc        | aaac cagacacctg | gcc        | 23  |
|   |              |                 |            |     |
| ٠ | 210>         | 2200            |            |     |
|   | 211>         |                 |            |     |
|   | 212>         |                 |            |     |
| < | 213>         | Homo sapiens    |            |     |
|   | 400>         | 2200            |            |     |
|   |              | aaaa caagagtaaa | cacagacggc | 30  |
| ٠ | occes.       | audu cuagugcuau | 2504540550 | • • |
|   |              |                 |            |     |
|   | 210>         |                 |            |     |
|   | 211>         |                 |            |     |
|   | 212>         |                 |            |     |
| < | 213>         | Homo sapiens    |            |     |
| < | 400>         | 2201            |            |     |
|   |              | gccc agaactggta | tttcctttgc | 30  |
|   |              |                 |            |     |
|   |              |                 |            |     |
|   | 210><br>211> |                 |            |     |
|   | 211>         |                 |            |     |
|   |              | Homo sapiens    |            |     |
|   |              | •               |            |     |
|   | 400>         |                 |            |     |
| 9 | gccca        | ttct tgccactctc | cctg       | 24  |
|   |              |                 |            |     |
| - | 210>         | 2203            |            |     |
|   | 211>         |                 |            |     |
| < | 212>         | DNA             |            |     |
| < | 213>         | Homo sapiens    |            |     |
|   | 400          | 20.02           |            |     |
|   | 400>         |                 |            | 19  |
| a | 33399        | acgt ggcgggacc  |            |     |
|   |              |                 |            |     |
|   | 210>         |                 |            |     |
|   | 211>         |                 |            |     |
|   | 212>         |                 |            |     |
| < | 213>         | Homo sapiens    |            |     |

| <400> 2204<br>gggggagaac cccagggcct                             | 20 |
|-----------------------------------------------------------------|----|
| <210> 2205<br><2211> 34<br><212> DNA<br><213> Homo sapiens      |    |
| <400> 2205<br>gggggtgata aggaaagaaa tgaaaattca ctgc             | 34 |
| <210> 2206<br><211> 20<br><212> DWA<br><213> Homo sapiens       |    |
| <400> 2206<br>toatggggcc teggcagtea                             | 20 |
| <210> 2207<br><211> 31<br><212> DNA<br><213> Homo sapiens       |    |
| <400> 2207<br>tgtgacatct ccatccagtg atatttgtgc a                | 31 |
| <210> 2208<br><211> 20<br><212> DNA<br><213> Homo sapiens       |    |
| <400> 2208<br>tgggttaggg gatgcggggg                             | 20 |
| <210> 2209<br><211> 30<br><212> DNA                             |    |
| <213> Homo sapiens  <400> 2209 tgaatgtgtc aggtgaccct gatgaaaaca | 30 |
| <210> 2210<br><211> 29                                          |    |
| <212> DNA<br><213> Homo sapiens                                 |    |
| <400> 2210<br>gcctcatctt caacttttgt gctcccctt                   | 29 |
| <210> 2211<br><211> 26<br><212> DNA                             |    |

| <213>           | Homo sapiens                     |    |
|-----------------|----------------------------------|----|
| <400><br>tggttg | 2211<br>gctt cttggccacc tttttg   | 26 |
|                 |                                  |    |
| <210>           | 2212                             |    |
| <211>           |                                  |    |
| <212>           | DNA                              |    |
| <213>           | Homo sapiens                     |    |
| <400>           | 2212                             |    |
|                 | gctg gggccagggg                  | 20 |
|                 |                                  |    |
| <210>           | 2213                             |    |
| <211>           | 23                               |    |
| <212>           |                                  |    |
| <213>           | Homo sapiens                     |    |
| <400>           | 2213                             |    |
| cggact          | egtc tgggttcttg gcc              | 23 |
|                 |                                  |    |
| <210>           | 2214                             |    |
| <211>           |                                  |    |
| <212>           | DNA                              |    |
| <213>           | Homo sapiens                     |    |
| <400>           | 2214                             |    |
|                 | tggc ggtggtggtc a                | 21 |
|                 |                                  |    |
| <210>           | 2215                             |    |
| <211>           |                                  |    |
| <212>           |                                  |    |
| <213>           | Homo sapiens                     |    |
| <400>           | 2216                             |    |
|                 | ttcg ctggttcgtt ctaagatgag tatcg | 35 |
|                 |                                  |    |
| <210>           | 2216                             |    |
| <211>           |                                  |    |
| <212>           |                                  |    |
| <213>           | Homo sapiens                     |    |
| <400>           | 2216                             |    |
|                 | aggg attettegge caactetg         | 28 |
| 3               |                                  |    |
| <210>           | 2217                             |    |
| <211>           |                                  |    |
| <212>           |                                  |    |
|                 | Homo sapiens                     |    |
| <400>           | 2217                             |    |
|                 | caca totocogott atcoto           | 26 |
| 500000          |                                  |    |
|                 |                                  |    |
| <210>           | 2218                             |    |

649

| <211><br><212>                                                                                                                                                     |                                                                                                                                                                        |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <212>                                                                                                                                                              |                                                                                                                                                                        |    |
|                                                                                                                                                                    | 20                                                                                                                                                                     |    |
|                                                                                                                                                                    | DNA                                                                                                                                                                    |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| <213>                                                                                                                                                              | Homo sapiens                                                                                                                                                           |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| <400>                                                                                                                                                              | 2218                                                                                                                                                                   |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| cccaac                                                                                                                                                             | ccag ggtcctgatc                                                                                                                                                        | 20 |
|                                                                                                                                                                    | 3 33 3                                                                                                                                                                 |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| <210>                                                                                                                                                              | 2219                                                                                                                                                                   |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| <211>                                                                                                                                                              | 21                                                                                                                                                                     |    |
| <212>                                                                                                                                                              | DNA                                                                                                                                                                    |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| <213>                                                                                                                                                              | Homo sapiens                                                                                                                                                           |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| <400>                                                                                                                                                              | 2210                                                                                                                                                                   |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| ggtgct                                                                                                                                                             | tete ecceggettg g                                                                                                                                                      | 21 |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| <210>                                                                                                                                                              | 2220                                                                                                                                                                   |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| <211>                                                                                                                                                              |                                                                                                                                                                        |    |
| <212>                                                                                                                                                              | DNA                                                                                                                                                                    |    |
|                                                                                                                                                                    | Homo sapiens                                                                                                                                                           |    |
| (213)                                                                                                                                                              | nomo saprens                                                                                                                                                           |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| <400>                                                                                                                                                              | 2220                                                                                                                                                                   |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| cggact                                                                                                                                                             | egte tgggttettg gee                                                                                                                                                    | 23 |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| <210>                                                                                                                                                              | 2221                                                                                                                                                                   |    |
| <211>                                                                                                                                                              | 25                                                                                                                                                                     |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| <212>                                                                                                                                                              | DNA                                                                                                                                                                    |    |
| -212-                                                                                                                                                              | Homo sapiens                                                                                                                                                           |    |
| (213)                                                                                                                                                              | none saprens                                                                                                                                                           |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| <400>                                                                                                                                                              | 2221                                                                                                                                                                   |    |
|                                                                                                                                                                    |                                                                                                                                                                        |    |
| to see to be an a                                                                                                                                                  |                                                                                                                                                                        | 25 |
| tgctg                                                                                                                                                              | ggca tagaatcaag gagca                                                                                                                                                  | 25 |
| tgctg                                                                                                                                                              | egca tagaatcaag gagca                                                                                                                                                  | 25 |
| tgctg                                                                                                                                                              | ggca tagaatcaag gagca                                                                                                                                                  | 25 |
|                                                                                                                                                                    |                                                                                                                                                                        | 25 |
| tgctgc                                                                                                                                                             |                                                                                                                                                                        | 25 |
| <210>                                                                                                                                                              | 2222                                                                                                                                                                   | 25 |
| <210><br><211>                                                                                                                                                     | 2222<br>30                                                                                                                                                             | 25 |
| <210>                                                                                                                                                              | 2222<br>30                                                                                                                                                             | 25 |
| <210><br><211><br><212>                                                                                                                                            | 2222<br>30<br>DNA                                                                                                                                                      | 25 |
| <210><br><211>                                                                                                                                                     | 2222<br>30                                                                                                                                                             | 25 |
| <210><211><211><212><213>                                                                                                                                          | 2222<br>30<br>DNA<br>Homo sapiens                                                                                                                                      | 25 |
| <210><br><211><br><212>                                                                                                                                            | 2222<br>30<br>DNA                                                                                                                                                      | 25 |
| <210><211><212><212><213>                                                                                                                                          | 2222<br>30<br>DNA<br>Homo sapiens                                                                                                                                      |    |
| <210><211><212><212><213>                                                                                                                                          | 2222<br>30<br>DNA<br>Homo sapiens                                                                                                                                      | 30 |
| <210><211><212><212><213>                                                                                                                                          | 2222<br>30<br>DNA<br>Homo sapiens                                                                                                                                      |    |
| <210><211><212><212><213>                                                                                                                                          | 2222<br>30<br>DNA<br>Homo sapiens                                                                                                                                      |    |
| <210> <211> <212> <213> <400> tggtca                                                                                                                               | 2222<br>30<br>DNA<br>Homo sapiens<br>2222<br>ggga gatatototo cacacttgoa                                                                                                |    |
| <210> <211> <212> <213> <400> tggtcs                                                                                                                               | 2222<br>30<br>DNA<br>Homo sapiens<br>2222<br>19gga gatatetete cacacttgca                                                                                               |    |
| <210> <211> <212> <213> <400> tggtcs                                                                                                                               | 2222<br>30<br>DNA<br>Homo sapiens<br>2222<br>19gga gatatetete cacacttgca                                                                                               |    |
| <210> <211> <212> <213> <400> tggtcs                                                                                                                               | 2222 30 DNA Homo sapiens 2222 ggga gatatototo cacacttgca 2223                                                                                                          |    |
| <210> <211> <212> <213> <400> tggtcs <210> <211> <210>                                                                                                             | 2222 30 DNA Homo sapiens 2222 gggga gatatetete cacacttgea 2223 29 DNA                                                                                                  |    |
| <210> <211> <212> <213> <400> tggtcs <210> <211> <210>                                                                                                             | 2222 30 DNA Homo sapiens 2222 ggga gatatototo cacacttgca 2223                                                                                                          |    |
| <210> <211> <212> <213> <400> tggtcs <210> <211> <210>                                                                                                             | 2222 30 DNA Homo sapiens 2222 gggga gatatetete cacacttgea 2223 29 DNA                                                                                                  |    |
| <210><211><212><213><213><400>tggtca<210><211><211><211><213>                                                                                                      | 2222 30 DNA Homo sapiens 2222 2ggga gatatetete cacacttgea 2223 29 DNA Homo sapiens                                                                                     |    |
| <210> <211> <212> <213> <400> tggtcs <210> <211> <210>                                                                                                             | 2222 30 DNA Homo sapiens 2222 gggga gatatetete cacacttgea 2223 29 DNA                                                                                                  | 30 |
| <210><211><212><213><400><br>tggtca                                                                                                                                | 2222 30 DNA Homo sapiens 2222 gggga gatatetete cacaettgea  2223 29 DNA Homo sapiens 2223                                                                               |    |
| <210><211><212><213><400><br>tggtca                                                                                                                                | 2222 30 DNA Homo sapiens 2222 2ggga gatatetete cacacttgea 2223 29 DNA Homo sapiens                                                                                     | 30 |
| <210><211><212><213><400><br>tggtca                                                                                                                                | 2222 30 DNA Homo sapiens 2222 gggga gatatetete cacaettgea  2223 29 DNA Homo sapiens 2223                                                                               | 30 |
| <210><211><212><213><400><br>tggtca                                                                                                                                | 2222 30 DNA Homo sapiens 2222 gggga gatatetete cacaettgea  2223 29 DNA Homo sapiens 2223                                                                               | 30 |
| <210><211><212><213><400> tggtca<2212><213><400> cccaat                                                                                                            | 2222 30 DNA Homo sapiens 2222 2222 229 DNA Homo sapiens 2223 29 DNA Homo sapiens 2223 2                                                                                | 30 |
| <210><211><212><213><400> tggtca<210><211><210><213>                                                                                                               | 2222 30 DNA Homo sapiens 2222 19999 gatatetete cacacttgea  2223 29 DNA Homo sapiens 2223 20 actaa aggagettet gccaaagga                                                 | 30 |
| <210><211><212><213><400> tggtca<2212><213><400> cccaat                                                                                                            | 2222 30 DNA Homo sapiens 2222 19999 gatatetete cacacttgea  2223 29 DNA Homo sapiens 2223 20 actaa aggagettet gccaaagga                                                 | 30 |
| <210><211><212><213><400><br>tggtca<211><2213><br><210><2213><br><211><212><213><br><211><212><213><br><213><br><210><2213><br><211>                               | 2222 30 DNA Homo sapiens 2222 2222 223 29 DNA Homo sapiens 2223 29 Low Sapiens 2223 2022 223 232 242 21                                                                | 30 |
| <210><211><212><212><213><400><br>tggtca<210><211> <c13>&lt;211&gt;<c212>&lt;213&gt;&lt;400&gt;<br/>cccaat&lt;210&gt;<br/>&lt;211&gt;<br/>&lt;212&gt;</c212></c13> | 2222 30 DNA Homo sapiens 2222 gggga gatatetete cacacttgea  2223 29 DNA Homo sapiens 2223 cetaa aggagettet gccaaagga                                                    | 30 |
| <210><211><212><213><400><br>tggtca<211><2213><br><210><2213><br><211><212><213><br><211><212><213><br><213><br><210><2213><br><211>                               | 2222 30 DNA Homo sapiens 2222 gggga gatatetete cacacttgea  2223 29 DNA Homo sapiens 2223 cetaa aggagettet gccaaagga                                                    | 30 |
| <210><211><212><212><213><400><br>tggtca<210><211> <c13>&lt;211&gt;<c212>&lt;213&gt;&lt;400&gt;<br/>cccaat&lt;210&gt;<br/>&lt;211&gt;<br/>&lt;212&gt;</c212></c13> | 2222 30 DNA Homo sapiens 2222 gggga gatatetete cacacttgea  2223 29 DNA Homo sapiens 2223 cetaa aggagettet gccaaagga                                                    | 30 |
| <210><211><212><213> <2010><211> <210><211> <210><211> <212><213>                                                                                                  | 2222 30 DNA Homo sapiens 2222 gggga gatatetete cacacttgea  2223 29 DNA Homo sapiens 2223 cetaa aggagettet gccaaagga  2224 21 DNA Homo sapiens                          | 30 |
| <210><211><212><213><400>tggtca<212><213><400>cocaat<212><211><212><213><400>cccaat<210><211><212><213>                                                            | 2222 30 DNA Homo sapiens 2222 logga gatatctctc cacacttgca  2223 29 DNA Homo sapiens 2223 cctaa aggagcttct gccaaagga  2224 21 DNA Homo sapiens 2224 21 DNA Homo sapiens | 30 |
| <210><211><212><213><400>tggtca<212><213><400>cocaat<212><211><212><213><400>cccaat<210><211><212><213>                                                            | 2222 30 DNA Homo sapiens 2222 gggga gatatetete cacacttgea  2223 29 DNA Homo sapiens 2223 cetaa aggagettet gccaaagga  2224 21 DNA Homo sapiens                          | 30 |

| <210>   | 2225                            |    |
|---------|---------------------------------|----|
|         |                                 |    |
| <211>   |                                 |    |
| <212>   |                                 |    |
| <213>   | Homo sapiens                    |    |
|         |                                 |    |
| <400>   | 2225                            |    |
|         | aca tteagtggee aatttteata eec   | 33 |
| gaacagi | and coolingenges discovered out |    |
|         |                                 |    |
|         |                                 |    |
| <210>   |                                 |    |
| <211>   |                                 |    |
| <212>   | DNA                             |    |
| <213>   | Homo sapiens                    |    |
|         | -                               |    |
| <400>   | 2226                            |    |
|         | gaag gcattggcca                 | 20 |
| egreeg  | gaag geattggeea                 | 20 |
|         |                                 |    |
|         |                                 |    |
| <210>   |                                 |    |
| <211>   | 22                              |    |
| <212>   | DNA                             |    |
| <213>   | Homo sapiens                    |    |
|         |                                 |    |
| <400>   | 2227                            |    |
|         |                                 | 22 |
| Caaccc  | ccag gggcagggag ga              | 22 |
|         |                                 |    |
|         |                                 |    |
| <210>   |                                 |    |
| <211>   | 26                              |    |
| <212>   | DNA                             |    |
| <213>   | Homo sapiens                    |    |
|         |                                 |    |
| <400>   | 2228                            |    |
|         | gcta caacggatgc aaaggg          | 26 |
| aaccca  | gera caacggarge aaaggg          | 20 |
|         |                                 |    |
|         |                                 |    |
| <210>   |                                 |    |
| <211>   |                                 |    |
| <212>   | DNA                             |    |
| <213>   | Homo sapiens                    |    |
|         |                                 |    |
| <400>   | 2229                            |    |
|         |                                 | 21 |
| cyycla  | eget eccageagee e               | 21 |
|         |                                 |    |
|         |                                 |    |
| <210>   |                                 |    |
| <211>   | 28                              |    |
| <212>   |                                 |    |
| <213>   | Homo sapiens                    |    |
|         | •                               |    |
| <400>   | 2230                            |    |
|         | ttca gggtcagcta gctggggc        | 28 |
| gaaaac  | 3222 30-53230                   | 23 |
|         |                                 |    |
|         |                                 |    |
| <210>   |                                 |    |
| <211>   |                                 |    |
| <212>   | DNA                             |    |
| <213>   | Homo sapiens                    |    |
|         | -                               |    |
| <400>   | 2231                            |    |
|         |                                 |    |

| WO 2004/042346                  | P             | PCT/US2003/012946 |
|---------------------------------|---------------|-------------------|
| ccttgctcca tcttgacaaa           | tcacttttct gc | 32                |
| <210> 2232                      |               |                   |
| <211> 27                        |               |                   |
| <212> DNA                       |               |                   |
| <213> Homo sapiens              |               |                   |
| <400> 2232                      |               |                   |
| gcattgcgaa gctcggagaa           | tagcagc       | 27                |
| <210> 2233                      |               |                   |
| <211> 20                        |               |                   |
| <212> DNA                       |               |                   |
| <213> Homo sapiens              |               |                   |
| <400> 2233                      |               |                   |
| gttctggaga gccccgcggc           |               | 20                |
|                                 |               |                   |
| <210> 2234                      |               |                   |
| <211> 23                        |               |                   |
| <212> DNA<br><213> Homo sapiens |               |                   |
|                                 |               |                   |
| <400> 2234                      |               |                   |
| ccagggcctt tgcaaacaag           | cca           | 23                |
| <210> 2235                      |               |                   |
| <211> 28                        |               |                   |
| <212> DNA                       |               |                   |
| <213> Homo sapiens              |               |                   |
| <400> 2235                      |               |                   |
| tttcaagcag gggtttcctt           |               | 28                |
| tttcaageag gggtttcett           | ggettet       | 20                |
| <210> 2236                      |               |                   |
| <211> 20                        |               |                   |
| <212> DNA                       |               |                   |
| <213> Homo sapiens              |               |                   |
| <400> 2236                      |               | 20                |
| ggcetececa teccageetg           |               | 20                |
| <210> 2237                      |               |                   |
| <211> 23                        |               |                   |
| <212> DNA                       |               |                   |
| <213> Homo sapiens              |               |                   |
| <400> 2237                      |               |                   |
| tgacggccag gatgatgagc           | agg           | 23                |
|                                 |               |                   |

<210> 2238 <211> 24 <212> DNA <213> Homo sapiens

| <400>          | 2238             |                |    |
|----------------|------------------|----------------|----|
| tccago         | ctgg gaagtacaca  | ggcg           | 24 |
|                |                  |                |    |
|                |                  |                |    |
| <210>          | 2239             |                |    |
|                | 33               |                |    |
| <212>          |                  |                |    |
| <213>          | Homo sapiens     |                |    |
| <400>          | 2239             |                |    |
|                | agtc tcagtccagt  | ctcttqcctt agc | 33 |
|                |                  | •              |    |
| <210>          | 2240             |                |    |
| <211>          |                  |                |    |
|                | DNA              |                |    |
|                | Homo sapiens     |                |    |
| 12137          | nomo bapieno     |                |    |
|                | 2240             |                |    |
| tgtgtc         | atgt aatgcaacca  | accacagca      | 29 |
|                |                  |                |    |
| <210>          | 2241             |                |    |
| <211>          | 29               |                |    |
| <212>          | DNA              |                |    |
|                | Homo sapiens     |                |    |
| <400>          | 2241             |                |    |
|                | ctca cgttgaggtc  | tgtggaaga      | 29 |
| 5209CC         | 99499            |                |    |
| <210>          | 2242             |                |    |
| <210>          | 2242             |                |    |
| <211><br><212> |                  |                |    |
|                |                  |                |    |
| <213>          | Homo sapiens     |                |    |
| <400>          | 2242             |                |    |
|                | caac accggtacgt  | t t            | 21 |
| 25 5-          | 55               |                |    |
| <210>          | 2243             |                |    |
| <211>          | 2243             |                |    |
| <211>          |                  |                |    |
| <213>          |                  |                |    |
| -2233          | TOWN DUPTOUS     |                |    |
| <400>          | 2243             |                |    |
| tggcag         | gccgt gtcattagtt | 3999           | 24 |
|                |                  |                |    |
| <210>          | 2244             |                |    |
| <211>          | 20               |                |    |
| <212>          | DNA              |                |    |
| <213>          | Homo sapiens     |                |    |
| <400>          | 2244             |                |    |
|                |                  | 1              | 20 |
| cccyga         | agggc caggtgggg  | 1              | 20 |
|                |                  |                |    |
| <210><br><211> | 2245<br>27       |                |    |
| <2 TT>         | 21               |                |    |

653

<400> 2249 <210> 2250 <211> 19

<400> 2250

19 ctacgcatec gtggccgcg

<210> 2251 <211> 22 <212> DNA <213> Homo sapiens

<212> DNA <213> Homo sapiens

<400> 2251 tgggccactt tgttccagcc ga 22

PCT/US2003/012946 <210> 2252 <211> 19 <212> DNA <213> Homo sapiens <400> 2252 19 egeegeetee ttgetgget <210> 2253 <211> 29 <212> DNA <213> Homo sapiens <400> 2253 gcacaacttg gtaaggcacc aggttacga 29 <210> 2254 <211> 20 <212> DNA <213> Homo sapiens <400> 2254 acccctcag cctcggccag 20 <210> 2255 <211> 20 <212> DNA <213> Homo sapiens <400> 2255 ctgggccagc ttgcacgcct 20 <210> 2256 <211> 24 <212> DNA <213> Homo sapiens <400> 2256 tctqcaqqca accaqccaqt catq 24 <210> 2257 <211> 20 <212> DNA <213> Homo sapiens <400> 2257 agcagcgtgg cggcgaaaga 20 <210> 2258 <211> 24 <212> DNA <213> Homo sapiens <400> 2258 24 tggggcattt tcctttgttt ggca

| <210><br><211> | 34                              |    |
|----------------|---------------------------------|----|
| <212>          |                                 |    |
| <213>          | Homo sapiens                    |    |
| <400>          | 2259                            |    |
|                | cota aagcagotac atgaaacago ttoa | 34 |
|                |                                 |    |
|                |                                 |    |
| <210>          |                                 |    |
| <211>          | 21                              |    |
| <212>          |                                 |    |
| <213>          | Homo sapiens                    |    |
| 400            | 2000                            |    |
|                | 2260                            | 21 |
| teegtg         | toca coatogggot g               | 21 |
|                |                                 |    |
| <210>          | 2261                            |    |
| <211>          | 20                              |    |
| <212>          | DNA                             |    |
| <213>          | Homo sapiens                    |    |
|                |                                 |    |
| <400>          |                                 |    |
| tgcggc         | gagc tatgggggtg                 | 20 |
|                |                                 |    |
| <210>          | 2262                            |    |
| <211>          |                                 |    |
| <211>          |                                 |    |
|                | Homo sapiens                    |    |
| 12257          | 1000 Dapteno                    |    |
| <400>          | 2262                            |    |
| gcaggg         | tttg aagcaatacc caggtataaa cact | 34 |
|                |                                 |    |
|                |                                 |    |
| <210>          |                                 |    |
| <211>          |                                 |    |
| <212>          |                                 |    |
| <213>          | Homo sapiens                    |    |
| <400>          | 2263                            |    |
|                | caaa gtaccagaag cgggacttgg c    | 31 |
| 33             | 333 -33333 -                    |    |
|                |                                 |    |
| <210>          | 2264                            |    |
| <211>          |                                 |    |
| <212>          |                                 |    |
| <213>          | Homo sapiens                    |    |
| -400:          | 2264                            |    |
| <400>          |                                 | 20 |
| acaget         | gaaa cccgcggggc                 | 20 |
|                |                                 |    |
| <210>          | 2265                            |    |
| <211>          | 26                              |    |
| <212>          | DNA                             |    |
| <213>          | Homo sapiens                    |    |

| WO 2004/042346                   | PCT/US2003/012946 |
|----------------------------------|-------------------|
|                                  |                   |
| <400> 2265                       |                   |
| tcatggctga cttcccaaag acagcc     | 26                |
| <210> 2266                       |                   |
| <211> 30                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 2266                       |                   |
| tccaacttaa tgaaaccgat atccttcgcg | 30                |
|                                  |                   |
| <210> 2267                       |                   |
| <211> 24                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 2267                       |                   |
| tgcactggac actggccctg actg       | 24                |
| <210> 2268                       |                   |
| <211> 22                         |                   |
| <211> 22<br><212> DNA            |                   |
| <213> Homo sapiens               |                   |
| (213) Homo Baptens               |                   |
| <400> 2268                       |                   |
| cccaaacagg tcatggtgcg ca         | 22                |
| <210> 2269                       |                   |
| <211> 24                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
|                                  |                   |
| <400> 2269                       |                   |
| tggccctgaa actcctcact ccca       | 24                |
| <210> 2270                       |                   |
|                                  |                   |
| <211> 25<br><212> DNA            |                   |
| <213> Homo sapiens               |                   |
|                                  |                   |
| <400> 2270                       |                   |
| gagaccaatg tgcctgaagg tgcca      | 25                |
| <210> 2271                       |                   |
| <211> 20                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 2271                       |                   |
| gggtgagggc ctgatggggg            | 20                |
|                                  |                   |
| <210> 2272                       |                   |
| <211> 20                         |                   |
| <212> DNA                        |                   |
|                                  |                   |

| we             | J 2004/042346   | PC              | . 1/US2003/012940 |
|----------------|-----------------|-----------------|-------------------|
| <213>          | Homo sapiens    |                 |                   |
| <400>          | 2272            |                 |                   |
|                |                 |                 | 20                |
| cageca         | ctgg ctccctgcgg |                 | 20                |
| <210>          | 2273            |                 |                   |
| <211>          |                 |                 |                   |
| <212>          |                 |                 |                   |
|                | Homo sapiens    |                 |                   |
| <400>          |                 |                 |                   |
| aagtcc         | attc ctgattcaga | acaccetgte taga | 34                |
|                |                 |                 |                   |
| <210><br><211> |                 |                 |                   |
| <211>          |                 |                 |                   |
|                | Homo sapiens    |                 |                   |
|                | -               |                 |                   |
| <400>          |                 |                 | 23                |
| tgettt         | gatg acacccaccg | caa             | 23                |
| <210>          | 2275            |                 |                   |
| <211>          |                 |                 |                   |
| <212>          |                 |                 |                   |
|                | Homo sapiens    |                 |                   |
|                |                 |                 |                   |
| <400>          |                 |                 |                   |
| cccgct         | ctgc tggcggtcct |                 | 20                |
| .010.          | 2276            |                 |                   |
| <210><br><211> |                 |                 |                   |
| <212>          |                 |                 |                   |
|                | Homo sapiens    |                 |                   |
|                | -               |                 |                   |
| <400>          |                 |                 | 24                |
| Lecace         | accc tgttgctgta | gcca            | 24                |
| <210>          | 2277            |                 |                   |
| <211>          |                 |                 |                   |
| <212>          |                 |                 |                   |
|                | Homo sapiens    |                 |                   |
| <400>          | 2277            |                 |                   |
|                | gggg agaagctggg | a               | 21                |
|                | 3333 -33333     |                 |                   |
| <210>          | 2278            |                 |                   |
| <211>          |                 |                 |                   |
| <212>          |                 |                 |                   |
| <213>          | Homo sapiens    |                 |                   |
| <400>          | 2278            |                 |                   |
|                | tcca ccctggagcc | a               | 21                |
|                |                 |                 |                   |
| <210>          | 2279            |                 |                   |
|                |                 |                 |                   |

PCT/US2003/012946

| <211><br><212><br><213> | 24<br>DNA<br>Homo sapiens     |    |
|-------------------------|-------------------------------|----|
| <400>                   | 2279                          |    |
| tggcat                  | ggga tgcagatgat ttgg          | 24 |
| <210>                   |                               |    |
| <211><br><212>          |                               |    |
|                         | Homo sapiens                  |    |
| <400>                   |                               |    |
| gagggt                  | ggct gggggccaac               | 20 |
| <210>                   |                               |    |
| <211>                   |                               |    |
| <212>                   |                               |    |
|                         | Homo sapiens                  |    |
| <400>                   |                               | 25 |
| tgggac                  | gott ttgatggota agoca         | 25 |
| <210>                   |                               |    |
| <211>                   |                               |    |
| <212>                   |                               |    |
|                         | Homo sapiens                  |    |
| <400>                   |                               | 20 |
| tgcccc                  | gtct ggggtctgga               | 20 |
| <210>                   |                               |    |
| <211>                   |                               |    |
| <212><br><213>          | Homo sapiens                  |    |
|                         | 2283                          |    |
| acggca                  | actga gctgatggga ctcc         | 24 |
| <210>                   |                               |    |
| <211>                   |                               |    |
| <212>                   |                               |    |
|                         | Homo sapiens                  |    |
|                         | 2284                          |    |
| teetgg                  | gaagt taactgcacc atcagtgttg a | 31 |
| <210>                   | 2285                          |    |
| <211>                   | 30                            |    |
| <212>                   |                               |    |
| <213>                   | Homo sapiens                  |    |
| <400>                   | 2285                          |    |
| tcaatt                  | tcat gatttcatct cgctcaaggc    | 30 |

| <213<br><213 | 1><br>2> | DNA                    |                |    |
|--------------|----------|------------------------|----------------|----|
| <213         | 3 >      | Homo sapiens           |                |    |
|              |          | 2286<br>cac gaggaccatc | ttc            | 23 |
|              |          |                        |                |    |
| <210         |          | 2287                   |                |    |
| <21          |          |                        |                |    |
|              |          | Homo sapiens           |                |    |
| <400         | 0>       | 2287                   |                |    |
|              |          | gga gcagccaaca         | cacaaa         | 26 |
|              |          |                        |                |    |
| <210         |          |                        |                |    |
| <21          |          |                        |                |    |
|              |          | DNA<br>Homo sapiens    |                |    |
| <b>\21</b> . | ٥,       | nomo sapiens           |                |    |
|              |          | 2288                   |                |    |
| caa          | gtaa     | agac ccaaggtaga        | tcccaagggc     | 30 |
|              |          |                        |                |    |
| <21          |          | 2289                   |                |    |
| <21          |          | 33                     |                |    |
|              |          | DNA                    |                |    |
| <21.         | 3>       | Homo sapiens           |                |    |
| <40          |          | 2289                   |                |    |
| aac          | tcaa     | agtg gatgggaagt        | aaagccctat gtg | 33 |
|              |          |                        |                |    |
|              |          | 2290                   |                |    |
| <21          |          |                        |                |    |
|              |          | DNA<br>Homo sapiens    |                |    |
| -21          | 3,       | nomo sapiens           |                |    |
|              |          | 2290                   |                |    |
| ccc          | acct     | ggg gaactgctgg         | С              | 21 |
|              |          |                        |                |    |
|              |          | 2291                   |                |    |
|              | 1>       |                        |                |    |
|              |          | DNA<br>Homo sapiens    |                |    |
| 121          | 37       | nomo sapiens           |                |    |
|              |          | 2291                   |                |    |
| cgc          | cag      | ggtt ttcccagtca        | cg             | 22 |
|              |          |                        |                |    |
|              |          | 2292                   |                |    |
|              | 1>       |                        |                |    |
|              |          | DNA<br>Homo sapiens    |                |    |
| <b>~21</b>   | -        | nomo sapiens           |                |    |
| < 40         | 0 >      | 2292                   |                |    |

| WO 2004/042346                      | PCT/US2003/012946 |
|-------------------------------------|-------------------|
| ccagecetee eacttttea teactgtt       | 28                |
| <210> 2293                          |                   |
| <211> 20                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 2293<br>tggaggcaga gtgacggact | 20                |
| tggaggtaga gegatggatt               | 20                |
| <210> 2294                          |                   |
| <211> 32                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 2294                          |                   |
| aggagcaaaa agccaaaatt tggaaaagct tt | 32                |
| <210> 2295                          |                   |
| <211> 30                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 2295                          |                   |
| tcagggccaa ttggaaagtc attatgaaca    | 30                |
| <210> 2296                          |                   |
| <211> 20                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 2296                          |                   |
| cagectgtge tggegaggge               | 20                |
| <210> 2297                          |                   |
| <211> 30                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 2297                          |                   |
| tgcgtttatc cgaaaattta ttctcgccct    | 30                |
| <210> 2298                          |                   |
| <211> 20                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |
| <400> 2298                          | 22                |
| ccaatgettg getgggggca               | 20                |
| <210> 2299                          |                   |
| <211> 20                            |                   |
| <212> DNA                           |                   |
| <213> Homo sapiens                  |                   |

WO 2004/042346 PCT/US2003/012946 <400> 2299 aggectcage cccagggtcg 20 <210> 2300 <211> 22 <212> DNA <213> Homo sapiens <400> 2300 ggggtgagag gaaggcctgc ga 22 <210> 2301 <211> 23 <212> DNA <213> Homo sapiens <400> 2301 gctcaagttc ccagcacctg ggg 23 <210> 2302 <211> 29 <212> DNA <213> Homo sapiens <400> 2302 tgacgcattc taatcatgtg gcgatcttg 29 <210> 2303 <211> 33 <212> DNA <213> Homo sapiens <400> 2303 ccccctaaaa tcccactgta aacaaacatt tcg 33 <210> 2304 <211> 36 <212> DNA <213> Homo sapiens <400> 2304 agetgeaact ttacagggac ttgaaaagaa agaaaa 36

<210> 2305
<211> 32
<212> DNA
<213> Homo sapiens
<400> 2305
gggaaacttc ttgttgcaga tactgagctg ga
32

<210> 2306 <211> 26

| W              | 2004/042346                       | PCT/US2003/012946 |
|----------------|-----------------------------------|-------------------|
| <212>          | DNA                               |                   |
| <213>          | Homo sapiens                      |                   |
| <400>          | 2306                              |                   |
|                | gaaac cagcacctcc ctgttg           | 26                |
|                |                                   | 20                |
| <210>          |                                   |                   |
| <211>          |                                   |                   |
| <212>          | DNA<br>Homo sapiens               |                   |
| 12132          | nomo saprens                      |                   |
| <400>          |                                   |                   |
| cagag          | agcet aggeetggca gtettea          | 27                |
|                |                                   |                   |
| <210>          |                                   |                   |
| <211><br><212> |                                   |                   |
|                | Homo sapiens                      |                   |
|                | -                                 |                   |
| <400>          |                                   |                   |
| cggcc          | atcot gatttottga tottttoaca       | 30                |
| <210>          | 2222                              |                   |
| <211>          |                                   |                   |
| <212>          | DNA                               |                   |
| <213>          | Homo sapiens                      |                   |
| <400>          | 2309                              |                   |
| cgggcd         | agcc agttaaaatc gtcaa             | 25                |
|                |                                   | , 23              |
| <210>          | 2310                              |                   |
| <211>          | 20                                |                   |
| <212>          |                                   |                   |
| <213>          | Homo sapiens                      |                   |
| <400>          |                                   |                   |
| ctccgg         | cttc tcctccgcgg                   | 20                |
|                |                                   |                   |
| <210>          | 2311                              |                   |
| <211>          |                                   |                   |
| <212>          | DNA<br>Homo sapiens               |                   |
| 12137          | nomo sapiens                      |                   |
| <400>          | 2311                              |                   |
| tgaaca         | acct gactgacacc cccagg            | 26                |
|                |                                   |                   |
|                | 2312                              |                   |
| <211>          |                                   |                   |
| <212>          |                                   |                   |
| ~413>          | Homo sapiens                      |                   |
|                | 2312                              |                   |
| tgcgaa         | actt gtatetgttt taaagaagge acttga | 36                |
|                |                                   | 20                |

| wo     | 2004/042346             | PCT/US2003/012946 |
|--------|-------------------------|-------------------|
| <210>  | 2313                    |                   |
| <211>  |                         |                   |
| <212>  |                         |                   |
|        | Homo sapiens            |                   |
| <400>  | 2313                    |                   |
| tgagca | ccga cagetecage tga     | 23                |
| <210>  | 2314                    |                   |
| <211>  | 21                      |                   |
| <212>  |                         |                   |
| <213>  | Homo sapiens            |                   |
| <400>  |                         |                   |
| ggggtc | tggg aatggcaggc a       | 21                |
| <210>  | 2315                    |                   |
| <211>  | 20                      |                   |
| <212>  | DNA                     |                   |
| <213>  | Homo sapiens            |                   |
| <400>  | 2315                    |                   |
|        | agga cgacggaaac         | 20                |
| 3-3-3- | -554 -54-554440         | 20                |
| <210>  |                         |                   |
| <211>  |                         |                   |
| <212>  |                         |                   |
| <213>  | Homo sapiens            |                   |
| <400>  | 2316                    |                   |
| tegtge | gtgc ctaccccg           | 19                |
| <210>  | 2317                    |                   |
| <211>  |                         |                   |
| <212>  | DNA                     |                   |
| <213>  | Homo sapiens            |                   |
| <400>  |                         |                   |
| ggggaa | aagc caccotgact otgo    | 24                |
| <210>  | 2318                    |                   |
|        | 27                      |                   |
| <212>  | DNA                     |                   |
|        | Homo sapiens            |                   |
| <400>  | 2318                    |                   |
| tgcaaa | aacc agaggaaggg tgtgctc | 27                |
| 222    | 222                     |                   |
| <210>  |                         |                   |
| <211>  |                         |                   |
|        | DNA<br>Home canions     |                   |
| <213>  | Homo sapiens            |                   |
| <400>  | 2319                    |                   |
| tggcac | catg atcgtggcac g       | 21                |

| <210><br><211><br><212> | 28                               |    |
|-------------------------|----------------------------------|----|
|                         | Homo sapiens                     |    |
| <400><br>gccgtga        | 2320<br>agtt tttgctctta ctcccagg | 28 |
|                         |                                  |    |
| <210>                   |                                  |    |
| <211><br><212>          |                                  |    |
|                         | Homo sapiens                     |    |
| <400>                   | 2321                             |    |
|                         | 2321<br>Cook tgcaaggtaa coog     | 24 |
|                         |                                  |    |
| <210>                   | 2322                             |    |
| <211>                   |                                  |    |
| <212>                   | DNA<br>Homo sapiens              |    |
| (213)                   | nomo saprens                     |    |
| <400>                   |                                  |    |
| tgtgta                  | ttg ccttcagcca catccaga          | 28 |
|                         |                                  |    |
| <210>                   |                                  |    |
| <211><br><212>          |                                  |    |
|                         | Homo sapiens                     |    |
| <400>                   | 2323                             |    |
|                         | taat ttgttgttaa cgtagggcag ctca  | 34 |
|                         |                                  |    |
| <210>                   | 2324                             |    |
| <211>                   |                                  |    |
| <212>                   |                                  |    |
| <213>                   | Homo sapiens                     |    |
| <400>                   |                                  |    |
| ccaact                  | ctca ctgggaccag agagcca          | 27 |
|                         |                                  |    |
| <210>                   |                                  |    |
| <211><br><212>          |                                  |    |
|                         | Homo sapiens                     |    |
| <400>                   | 2325                             |    |
|                         | ggag aaggtageet gggcc            | 25 |
|                         |                                  |    |
| <210>                   | 2326                             |    |
| <211>                   | 32                               |    |
| <212>                   |                                  |    |
| <213>                   | Homo sapiens                     |    |

| WO 2004/042346                               | PCT/US2003/012946 |
|----------------------------------------------|-------------------|
| <400> 2326                                   |                   |
| tgaggcaaat acccacaaaa acaaacacaa aa          |                   |
|                                              | 32                |
| <210> 2327                                   |                   |
| <210> 2327<br><211> 29                       |                   |
| <212> DNA                                    |                   |
| <213> Homo sapiens                           |                   |
|                                              |                   |
| <400> 2327                                   |                   |
| tttgatctcc ttcttggaag cctcatcca              | 29                |
|                                              |                   |
| <210> 2328                                   |                   |
| <211> 24                                     |                   |
| <212> DNA                                    |                   |
| <213> Homo sapiens                           |                   |
| <400> 2328                                   |                   |
| cctgcagcca gcactggtac agca                   |                   |
| gg-va- gowooggede dged                       | 24                |
|                                              |                   |
| <210> 2329                                   |                   |
| <211> 35                                     |                   |
| <212> DNA                                    |                   |
| <213> Homo sapiens                           |                   |
| <400> 2329                                   |                   |
| tttgcttgct tgtactcacg tttttgtagg acatt       | 35                |
|                                              | 35                |
| <210> 2330                                   |                   |
| <211> 34                                     |                   |
| <212> DNA                                    |                   |
| <213> Homo sapiens                           |                   |
|                                              |                   |
| <400> 2330                                   |                   |
| tcagatttca catgtatggc tctgtcctac tgct        | 34                |
|                                              |                   |
| <210> 2331                                   |                   |
| <211> 27                                     |                   |
| <212> DNA                                    |                   |
| <213> Homo sapiens                           |                   |
| <400> 2331                                   |                   |
| aacgtaatca tacctctagt catagca                |                   |
| many surrous successing caragea              | 27                |
|                                              |                   |
| <210> 2332                                   |                   |
| <211> 26 · · · · · · · · · · · · · · · · · · |                   |
| <212> DNA<br><213> Homo sapiens              |                   |
| mono papiens                                 |                   |
| <400> 2332                                   |                   |
| ggcatctgct gcaggaacct tctgtg                 | 26                |
|                                              | -0                |
| <210> 2333                                   |                   |
| <210> 2333<br><211> 25                       |                   |
| <212> DNA                                    |                   |
|                                              |                   |

| wo             | 2004/042346                    | PCT/US2003/012946 |
|----------------|--------------------------------|-------------------|
| <213>          | Homo sapiens                   |                   |
| <400>          | 2333                           |                   |
|                |                                |                   |
| gcaacc         | ccagg ggaagcacag aagtg         | 25                |
| <210>          |                                |                   |
| <211>          | 31                             |                   |
| <212>          |                                |                   |
| <213>          | Homo sapiens                   |                   |
| <400>          | 2334                           |                   |
| tcatgt         | ctgt gaagggaact ggaacaactg a   | 31                |
| <210>          |                                |                   |
| <211><br><212> | 20                             |                   |
|                | Homo sapiens                   |                   |
|                | -                              |                   |
| <400>          | 2335                           |                   |
| cgcggt         | gtga gggaaggggg                | 20                |
| <210>          | 2336                           |                   |
| <211>          | 20                             |                   |
| <212>          | DNA                            |                   |
| <213>          | Homo sapiens                   |                   |
| <400>          |                                |                   |
| tgggca         | catc gtgaggggcc                | 20                |
| <210>          |                                |                   |
| <211>          |                                |                   |
| <212>          |                                |                   |
| <213>          | Homo sapiens                   |                   |
| <400>          | 2337                           |                   |
| acacca         | tagt cetttgagat etgatgggte aaa | 33                |
| <210>          |                                |                   |
|                | 25                             |                   |
| <212>          |                                |                   |
| <213>          | Homo sapiens                   |                   |
| <400>          | 2338                           |                   |
| tggcga         | gete aggattette ateca          | 25                |
| <210>          | 2339                           |                   |
| <211>          | 25                             |                   |
| <212>          |                                |                   |
| <213>          | Homo sapiens                   |                   |
| <400>          | 2339                           |                   |
| tgggct         | tgcg tttttctcca actcc          | 25                |
| <210>          | 2340                           |                   |
| -2103          | 2340                           |                   |

| W              | O 2004/042346                  | PCT/US2003/01294 |
|----------------|--------------------------------|------------------|
| <211>          | 32                             |                  |
|                | DNA                            |                  |
|                | Homo sapiens                   |                  |
|                |                                |                  |
|                | 2340                           |                  |
| tccgt          | tecte aagattetat teteaceett ee | 32               |
|                |                                | 32               |
| <210×          | 2341                           |                  |
| <211>          |                                |                  |
| <212>          |                                |                  |
|                | Homo sapiens                   |                  |
|                | nome suprems                   |                  |
| <400>          | 2341                           |                  |
| ttcca          | gagtc caccaagagg tcctgaatc     | 29               |
|                |                                |                  |
| <210>          | 2342                           |                  |
| <211>          |                                |                  |
| <212>          |                                |                  |
| <213>          | Homo sapiens                   |                  |
| 10157          | nono saprens                   |                  |
| <400>          | 2342                           |                  |
| gcgag          | cacgg ctgtggctca               | 20               |
|                |                                | 20               |
| -210-          | 2343                           |                  |
| <211>          |                                |                  |
| <211>          |                                |                  |
|                | Homo sapiens                   |                  |
| 12137          | nomo sapiens                   |                  |
| <400>          | 2343                           |                  |
| ccccct         | ctcc tcaacatctt gtccagc        | 27               |
|                | 5g-                            | 27               |
| 220            | ***                            |                  |
| <210>          |                                |                  |
| <211><br><212> |                                |                  |
|                |                                |                  |
| <213>          | Homo sapiens                   |                  |
| <400>          | 2344                           |                  |
| tgccgg         | gcct tctcctcaag g              | 21               |
|                |                                | 21               |
| <210>          | 2345                           |                  |
| <211>          |                                |                  |
| <211>          |                                |                  |
|                | Homo sapiens                   |                  |
|                | nome suprems                   |                  |
| <400>          | 2345                           |                  |
| caggtg         | gcct ggaggggaga aca            | 23               |
|                |                                | 2.5              |
| <210>          | 2246                           |                  |
| <211>          |                                |                  |
|                | DNA                            |                  |
|                | Homo sapiens                   |                  |
| -2132          | nomo saprens                   |                  |
| <400>          | 2346                           |                  |
|                | tgca caaatgacgt acatttcaca     |                  |
| 55             |                                | 30               |
|                |                                |                  |

| <210>  | 2347                           |    |
|--------|--------------------------------|----|
| <211>  |                                |    |
| <211>  |                                |    |
|        |                                |    |
| <213>  | Homo sapiens                   |    |
| 400    | 00.0                           |    |
|        | 2347                           |    |
| agece  | tgccc tgcccctcct               | 20 |
|        |                                |    |
|        |                                |    |
|        | 2348                           |    |
| <211>  |                                |    |
| <212>  |                                |    |
| <213>  | Homo sapiens                   |    |
|        |                                |    |
|        | 2348                           |    |
| ttccca | agget geeteteete ace           | 23 |
|        |                                |    |
|        |                                |    |
| <210>  |                                |    |
| <211>  | 31                             |    |
| <212>  | DNA                            |    |
| <213>  | Homo sapiens                   |    |
|        |                                |    |
| <400>  | 2349                           |    |
|        | actc tgagtatggt gtttgctgtc c   |    |
|        |                                | 31 |
|        |                                |    |
| <210>  | 2350                           |    |
| <211>  |                                |    |
| <211>  |                                |    |
|        |                                |    |
| <213>  | Homo sapiens                   |    |
|        |                                |    |
| <400>  |                                |    |
| tccaca | ctct cttctttgtc ttgggtttct tcc | 33 |
|        |                                |    |
|        |                                |    |
| <210>  |                                |    |
|        | 24                             |    |
| <212>  | DNA                            |    |
| <213>  | Homo sapiens                   |    |
|        |                                |    |
| <400>  | 2351                           |    |
| ccacca | ggcc cagctagcat ctgg           | 24 |
|        | 5 555                          | 24 |
|        |                                |    |
| <210>  | 2352                           |    |
| <211>  |                                |    |
| <212>  |                                |    |
|        | Homo sapiens                   |    |
|        | nome suprems                   |    |
| <400>  | 2352                           |    |
|        | 2352<br>ctgg cetgtececq a      |    |
| caggga | cegg coegecoog a               | 21 |
|        |                                |    |
| -210   | 2252                           |    |
| <210>  |                                |    |
| <211>  |                                |    |
| <212>  |                                |    |
| <213>  | Homo sapiens                   |    |
|        |                                |    |
| -400-  | 2353                           |    |

| WO 2004/042346        |            |       | PCT/US2003/012946 |
|-----------------------|------------|-------|-------------------|
| ctgtaagccc ccttttggat | gccaaa     |       | 26                |
| <210> 2354            |            |       |                   |
| <211> 33              |            |       |                   |
| <212> DNA             |            |       |                   |
| <213> Homo sapiens    |            |       |                   |
| <400> 2354            |            |       | 33                |
| catcctaagg caatctgtat | tgaaccaggt | tca   | 33                |
| <210> 2355            |            |       |                   |
| <211> 35              |            |       |                   |
| <212> DNA             |            |       |                   |
| <213> Homo sapiens    |            |       |                   |
| <400> 2355            |            |       |                   |
| tgagcagaat cccatcgtaa | cagttctttg | ttaca | 35                |
|                       |            |       |                   |
| <210> 2356            |            |       |                   |
| <211> 31              |            |       |                   |
| <212> DNA             |            |       |                   |
| <213> Homo sapiens    |            |       |                   |
| <400> 2356            |            |       |                   |
| ccaagtccca agggtcagta | tattggagga | a     | 31                |
|                       |            |       |                   |
| <210> 2357            |            |       |                   |
| <211> 20              |            |       |                   |
| <212> DNA             |            |       |                   |
| <213> Homo sapiens    |            |       |                   |
| <400> 2357            |            |       |                   |
| cgcaacaaca agcgcacgca |            |       | 20                |
| <210> 2358            |            |       |                   |
| <211> 2358            |            |       |                   |
| <211> 31<br><212> DNA |            |       |                   |
| <213> Homo sapiens    |            |       |                   |
|                       |            |       |                   |
| <400> 2358            |            |       | 31                |
| ccctgcaagt acccagggaa | ggatatagte | a     | 31                |
| <210> 2359            |            |       |                   |
| <211> 35              |            |       |                   |
| <212> DNA             |            |       |                   |
| <213> Homo sapiens    |            |       |                   |
| <400> 2359            |            |       |                   |
| tttgtacgat agttgggcat | ctgtatttcc | acttg | 35                |
|                       |            |       |                   |
| <210> 2360            |            |       |                   |
| <211> 32              |            |       |                   |
| <212> DNA             |            |       |                   |
| <213> Homo sapiens    |            |       |                   |
|                       |            |       |                   |

| <400>  | 2360                          |    |
|--------|-------------------------------|----|
|        |                               |    |
| agaggg | gaaa acctattcta cccaacacag ca | 32 |
|        |                               |    |
|        |                               |    |
|        | 2361                          |    |
| <211>  | 20                            |    |
| <212>  | DNA                           |    |
|        | Homo sapiens                  |    |
| 12137  | nome saptens                  |    |
| 400    | 0.00                          |    |
| <400>  | 2361                          |    |
| tggggg | aagg gggccttggt               | 20 |
|        |                               |    |
|        |                               |    |
| <210>  | 2362                          |    |
| <211>  | 20                            |    |
| <212>  | DNA                           |    |
|        | Homo sapiens                  |    |
| 12137  | nome saprens                  |    |
| <400>  | 22.62                         |    |
|        |                               |    |
| aacgag | gcct gggctgggga               | 20 |
|        |                               |    |
|        |                               |    |
| <210>  | 2363                          |    |
| <211>  | 32                            |    |
| <212>  | DNA                           |    |
|        | Homo sapiens                  |    |
| \Z13>  | none sapiens                  |    |
| <400>  | 2363                          |    |
|        |                               |    |
| tcagaa | aaga aaagctcttt agactagcaa tg | 32 |
|        |                               |    |
|        |                               |    |
|        | 2364                          |    |
| <211>  | 21                            |    |
| <212>  | DNA                           |    |
| <213>  | Homo sapiens                  |    |
|        | neme bapicino                 |    |
| <400>  | 2364                          |    |
|        |                               |    |
| tcctgg | aget gtggggtgge a             | 21 |
|        |                               |    |
|        |                               |    |
| <210>  | 2365                          |    |
| <211>  | 23                            |    |
| <212>  |                               |    |
|        | Homo sapiens                  |    |
| (213)  | nomo sapiens                  |    |
| -400   | 2265                          |    |
| <400>  |                               |    |
| agcgac | caca geteegatga eea           | 23 |
|        |                               |    |
|        |                               |    |
| <210>  | 2366                          |    |
| <211>  | 20                            |    |
| <212>  |                               |    |
|        |                               |    |
| \Z13>  | Homo sapiens                  |    |
|        |                               |    |
| <400>  |                               |    |
| ccgagg | gogt tocaccogtt               | 20 |
|        |                               |    |
|        |                               |    |
| <210>  | 2367                          |    |
| <211>  |                               |    |

671

| WO 2004/042346                   | PCT/US2003/012946 |
|----------------------------------|-------------------|
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 2367                       |                   |
| tcccccagct ccctcctcac tttg       | 24                |
| <210> 2368                       |                   |
| <210> 2368 <211> 20              |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
|                                  |                   |
| <400> 2368 acccggctgc gcaggtctga |                   |
| acceggeege geaggeeega            | 20                |
| <210> 2369                       |                   |
| <211> 21                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 2369                       |                   |
| tgagccactg gcccacaagg g          | 21                |
|                                  |                   |
| <210> 2370                       |                   |
| <211> 20                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 2370                       |                   |
| tccgtgacct cgggctcccc            | 20                |
|                                  |                   |
| <210> 2371                       |                   |
| <211> 20                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 2371                       |                   |
| ccccgcgttg aaggcgttga            | 20                |
|                                  |                   |
| <210> 2372                       |                   |
| <211> 24                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 2372                       |                   |
| tgggcatggg ttatcctctg ctgg       | 24                |
|                                  |                   |
| <210> 2373                       |                   |
| <211> 30                         |                   |
| <212> DNA                        |                   |
| <213> Homo sapiens               |                   |
| <400> 2373                       |                   |
| tgtcgtggag taaagaggga aacatgacca | 30                |
|                                  |                   |

WO 2004/042346 PCT/US2003/012946

<210> 2374
<211> 21
<212> DNA

<213> Homo sapiens

<400> 2374
cgggagcagg acagggagcc a 21

<210> 2375 <211> 30 <212> DNA <213+ Homo sapiens

<400> 2375 tggctcagta gcaacttggg gacttgtttt 30

<210> 2376 <211> 32 <212> DNA <213+ Homo sapiens <400> 2376

tgtttttgga aatcactaat agggccagcc tc 32
<210> 2377

<212> DNA <213> Homo sapiens <400> 2377

<211> 26

<211> 21

<213> Homo sapiens

tgggagtctt gtgtctgtgc caacca 26

<212> DNA <213> Homo sapiens <400> 2378

aggggaggt ggcagtggct g 21

<210> 2379 <211> 20 <212> DNA

<400> 2379 acgcacaggg atggacgcg 20

<210> 2380 <211> 29 <212> DNA <213> Homo sapiens

<400> 2380
cctctctcac atggtggtaa cagcacaga 29

| <211><br><212> |                                  |    |
|----------------|----------------------------------|----|
|                |                                  |    |
|                | 2381<br>ggcat gaacaaatag gatgoot |    |
| CCCGC          | geac gaacaaatag gatgeet          | 27 |
|                |                                  |    |
| <210>          |                                  |    |
| <211><br><212> |                                  |    |
|                | Homo sapiens                     |    |
|                |                                  |    |
| <400>          |                                  |    |
| tcccaa         | actgc aaaccctcat ttagtcttta gtga | 34 |
|                |                                  |    |
| <210>          | 2383                             |    |
| <211>          |                                  |    |
| <212>          |                                  |    |
| <213>          | Homo sapiens                     |    |
| <400>          | 2383                             |    |
|                | gaca gaggtgggtg gg               | 22 |
|                |                                  |    |
| .010           | 2224                             |    |
| <210><br><211> |                                  |    |
| <211>          |                                  |    |
|                | Homo sapiens                     |    |
|                |                                  |    |
| <400>          |                                  |    |
| cgccag         | tgag ttaagttgta cagaacatcg tca   | 33 |
|                |                                  |    |
| <210>          |                                  |    |
| <211>          |                                  |    |
| <212>          |                                  |    |
| <213>          | Homo sapiens                     |    |
| <400>          | 2385                             |    |
| gggaag         | acag acagcagcag accca            | 25 |
|                |                                  |    |
| <210>          | 2206                             |    |
| <211>          |                                  |    |
| <212>          |                                  |    |
|                | Homo sapiens                     |    |
|                |                                  |    |
| <400>          |                                  |    |
| CACCCE         | ttgg acattttgca actcttcaat g     | 31 |
|                |                                  |    |
| <210>          |                                  |    |
| <211>          |                                  |    |
| <212>          | DNA                              |    |
|                |                                  |    |

| WO 2004/042346                        | PCT/US2003/012946 |
|---------------------------------------|-------------------|
|                                       |                   |
| <400> 2387<br>tgggacccag gacgacgtcc a | 21                |
| egggaeeeag gaegaegeee a               |                   |
|                                       |                   |
| <210> 2388<br><211> 24                |                   |
| <211> 24<br><212> DNA                 |                   |
| <213> Homo sapiens                    |                   |
| (213) Nome Sapiens                    |                   |
| <400> 2388                            |                   |
| tgccacttct ggtctcgtcg gtga            | 24                |
|                                       |                   |
| <210> 2389                            |                   |
| <211> 28                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 2389                            |                   |
| ctcccagcc cacaatttca aataatgc         | 28                |
|                                       |                   |
|                                       |                   |
| <210> 2390<br><211> 34                |                   |
| <211> 34<br><212> DNA                 |                   |
| <213> Homo sapiens                    |                   |
| (21) Homo Bupiens                     |                   |
| <400> 2390                            |                   |
| accaacttac tcttaaaaag gatggctgcc aaga | 34                |
|                                       |                   |
| <210> 2391                            |                   |
| <211> 21                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 2391                            |                   |
| tgtcagctcc acgggggtcc c               | 21                |
|                                       |                   |
| <210> 2392                            |                   |
| <211> 26                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
|                                       |                   |
| <400> 2392                            | 0.0               |
| gagtccagaa agaaatgcct ggggca          | 26                |
|                                       |                   |
| <210> 2393                            |                   |
| <211> 25                              |                   |
| <212> DNA                             |                   |
| <213> Homo sapiens                    |                   |
| <400> 2393                            |                   |
| cccaaagaag ggtcagccaa agcca           | 25                |
|                                       |                   |
| <210> 2394                            |                   |
| <211> 21                              |                   |
| <212> DNA                             |                   |
|                                       |                   |

| W              | O 2004/042346                                       | PCT/US2003/012946 |
|----------------|-----------------------------------------------------|-------------------|
| <213           |                                                     |                   |
| 1213           | > Homo sapiens                                      |                   |
| <400           | > 2394                                              |                   |
| ggcci          | tggtgt ctgctctgcg g                                 |                   |
|                |                                                     | 21                |
| <210:          | > 2395                                              |                   |
|                | > 27                                                |                   |
|                | > DNA                                               |                   |
|                | Homo sapiens                                        |                   |
|                |                                                     |                   |
|                | 2395                                                |                   |
| Cago           | caage tageeteett ageeage                            | 27                |
|                |                                                     |                   |
| <210>          | 2396                                                |                   |
| <211>          |                                                     |                   |
|                | DNA                                                 |                   |
| <213>          | Homo sapiens                                        |                   |
| <400>          | 2396                                                |                   |
|                |                                                     |                   |
| couge          | atgta atgteetatt tteeeaetge acca                    | 34                |
|                |                                                     |                   |
| <210>          |                                                     |                   |
| <211>          |                                                     |                   |
| <212>          |                                                     |                   |
| <213>          | Homo sapiens                                        |                   |
| <400>          | 2397                                                |                   |
|                | gattt tgcatgttct cattcccaaa                         |                   |
|                | 5 mg saocccaaa                                      | 30                |
|                |                                                     |                   |
| <210><br><211> |                                                     |                   |
| <211>          |                                                     |                   |
|                | Homo sapiens                                        |                   |
|                | nome pupiens                                        |                   |
| <400>          |                                                     |                   |
| tccaga         | aaat tggaagcagt ctggaatgg                           | 29                |
|                |                                                     | 23                |
| <210>          | 2300                                                |                   |
| <211>          |                                                     |                   |
| <212>          | DNA                                                 |                   |
| <213>          | Homo sapiens                                        |                   |
|                |                                                     |                   |
| <400>          |                                                     |                   |
| cccage         | tcac agtcccattc tggca                               | 25                |
|                |                                                     |                   |
| <210>          |                                                     |                   |
| <211>          |                                                     |                   |
| <212>          |                                                     |                   |
| ~215>          | Homo sapiens                                        |                   |
| <400>          | 2400                                                |                   |
|                |                                                     |                   |
| Met Asp        | Asp Asp Ile Ala Ala Leu Val Val Asp Asn Gly Ser Gly | Mot               |
| 1              | 5 10 15                                             | riec              |
|                |                                                     |                   |

Cys Lys Ala Gly Phe Ala Gly Asp Asp Ala Pro Arg Ala Val Phe Pro 20 25 Ser Ile Val Gly Arg Pro Arg His Gln Gly Val Met Val Gly Met Gly Gln Lys Asp Ser Tyr Val Gly Asp Glu Ala Gln Ser Lys Arg Gly Ile Leu Thr Leu Lys Tyr Pro Ile Glu His Gly Ile Val Thr Asn Trp Asp 75 Asp Met Glu Lys Ile Trp His His Thr Phe Tyr Asn Glu Leu Arg Val Ala Pro Glu Glu His Pro Val Leu Leu Thr Glu Ala Pro Leu Asn Pro 105 Lys Ala Asn Arg Glu Lys Met Thr Gln Ile Met Phe Glu Thr Phe Asn 115 120 Thr Pro Ala Met Tyr Val Ala Ile Gln Ala Val Leu Ser Leu Tyr Ala 130 135 Ser Gly Arg Thr Thr Gly Ile Val Met Asp Ser Gly Asp Gly Val Thr 145 150 155 His Thr Val Pro Ile Tyr Glu Gly Tyr Ala Leu Pro His Ala Ile Leu 165 170 Arg Leu Asp Leu Ala Gly Arg Asp Leu Thr Asp Tyr Leu Met Lys Ile 180 185 190 Leu Thr Glu Arg Gly Tyr Ser Phe Thr Thr Thr Ala Glu Arg Glu Ile 195 200 Val Arg Asp Ile Lys Glu Lys Leu Cys Tyr Val Ala Leu Asp Phe Glu 210 215 220

Gln Glu Met Ala Thr Ala Ala Ser Ser Ser Ser Leu Glu Lys Ser Tyr 225 230 235 240

Glu Leu Pro Asp Gly Gln Val Ile Thr Ile Gly Asn Glu Arg Phe Arg 245 250 255

Cys Pro Glu Ala Leu Phe Gln Pro Ser Phe Leu Gly Met Glu Ser Cys  $260 \hspace{0.2in}$  265  $\hspace{0.2in}$  270  $\hspace{0.2in}$ 

Gly Ile His Glu Thr Thr Phe Asn Ser Ile Met Lys Cys Asp Val Asp 285 280 285

Ile Arg Lys Asp Leu Tyr Ala Asn Thr Val Leu Ser Gly Gly Thr Thr 290 300

Met Tyr Pro Gly Ile Ala Asp Arg Met Gln Lys Glu Ile Thr Ala Leu 305 310 315 320

Ala Pro Ser Thr Met Lys Ile Lys Ile Ile Ala Pro Pro Glu Arg Lys 325 330 335

Tyr Ser Val Trp Ile Gly Gly Ser Ile Leu Ala Ser Leu Ser Thr Phe 340 345 350

Gln Gln Met Trp Ile Ser Lys Gln Glu Tyr Asp Glu Ser Gly Pro Ser 355 360 365

Ile Val His Arg Lys Cys Phe 370 375

<210> 2401

<211> 651

<212> PRT

<213> Homo sapiens

<400> 2401

Met Ala Arg Gly Ser Ala Val Ala Trp Ala Ala Leu Gly Pro Leu Leu 1 5 10 15

Ser Pro Ser Arg Glu Cys Lys Glu Leu Asp Gly Leu Trp Ser Phe Arg  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Ala Asp Phe Ser Asp Asn Arg Arg Arg Gly Phe Glu Glu Gln Trp Tyr 50 60

Arg Arg Pro Leu Trp Glu Ser Gly Pro Thr Val Asp Met Pro Val Pro 65 70 75 80

Ser Ser Phe Asn Asp Ile Ser Gln Asp Trp Arg Leu Arg His Phe Val \$85\$ 90 95

| G        | ly        | Trp        | Val        | Trp<br>100 |            | Glu        | Arg        | Glu        | Val<br>105 | Ile        | Leu        | Pro        | Glu        | Arg<br>110 |            | Thr        |
|----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| G        | ln        | Asp        | Leu<br>115 | Arg        | Thr        | Arg        | Val        | Val<br>120 | Leu        | Arg        | Ile        | Gly        | Ser<br>125 | Ala        | His        | Ser        |
| Т        | γr        | Ala<br>130 | Ile        | Val        | Trp        | Val        | Asn<br>135 | Gly        | Val        | Asp        | Thr        | Leu<br>140 | Glu        | His        | Glu        | Gly        |
| G:       | l y<br>15 | Tyr        | Leu        | Pro        | Phe        | Glu<br>150 | Ala        | Asp        | Ile        | Ser        | Asn<br>155 | Leu        | Val        | Gln        | Val        | Gly<br>160 |
| Pi       | О         | Leu        | Pro        | Ser        | Arg<br>165 | Leu        | Arg        | Ile        | Thr        | Ile<br>170 | Ala        | Ile        | Asn        | Asn        | Thr<br>175 | Leu        |
| Tì       | ır        | Pro        | Thr        | Thr<br>180 | Leu        | Pro        | Pro        | Gly        | Thr<br>185 | Ile        | Gln        | Tyr        | Leu        | Thr<br>190 | Asp        | Thr        |
| Se       | er        | Lys        | Tyr<br>195 | Pro        | Lys        | Gly        | Tyr        | Phe<br>200 | Val        | Gln        | Asn        | Thr        | Tyr<br>205 | Phe        | Asp        | Phe        |
| Pł       | ıe        | Asn<br>210 | Tyr        | Ala        | Gly        | Leu        | Gln<br>215 | Arg        | Ser        | Val        | Leu        | Leu<br>220 | Tyr        | Thr        | Thr        | Pro        |
| Th<br>22 | ır<br>25  | Thr        | Tyr        | Ile        | Asp        | Asp<br>230 | Ile        | Thr        | Val        | Thr        | Thr<br>235 | Ser        | Val        | Glu        | Gln        | Asp<br>240 |
| Se       | er        | Gly        | Leu        | Val        | Asn<br>245 | Tyr        | Gln        | Ile        | Ser        | Val<br>250 | Lys        | Gly        | Ser        | Asn        | Leu<br>255 | Phe        |
| Ly       | /s        | Leu        | Glu        | Val<br>260 | Arg        | Leu        | Leu        | Asp        | Ala<br>265 | Glu        | Asn        | Lys        | Val        | Val<br>270 | Ala        | Asn        |
| G1       | ·y        | Thr        | Gly<br>275 | Thr        | Gln        | Gly        | Gln        | Leu<br>280 | Lys        | Val        | Pro        | Gly        | Val<br>285 | Ser        | Leu        | Trp        |
| Tr       | р         | Pro<br>290 | Tyr        | Leu        | Met        | His        | Glu<br>295 | Arg        | Pro        | Ala        | Tyr        | Leu<br>300 | Tyr        | Ser        | Leu        | Glu        |
| Va<br>30 | 1         | Gln        | Leu        | Thr        | Ala        | Gln<br>310 | Thr        | Ser        | Leu        | Gly        | Pro<br>315 | Va1        | Ser        | Asp        | Phe        | Tyr<br>320 |
| Th       | r         | Leu        | Pro        | Val        | Gly<br>325 | Ile        | Arg        | Thr        | Val        | Ala<br>330 | Val        | Thr        | Lys        | Ser        | Gln<br>335 | Phe        |

679

Asp Ala Asp Ile Arg Gly Lys Gly Phe Asp Trp Pro Leu Leu Val Lys 355 360 365

Asp Phe Asn Leu Leu Arg Trp Leu Gly Ala Asn Ala Phe Arg Thr Ser 370 375 380

His Tyr Pro Tyr Ala Glu Glu Val Met Gln Met Cys Asp Arg Tyr Gly 385 390 395 400

Ile Val Val Ile Asp Glu Cys Pro Gly Val Gly Leu Ala Leu Pro Gln 405 410 415

Phe Phe Asn Asn Val Ser Leu His His His Met Gln Val Met Glu Glu 420 425 430

Val Val Arg Arg Asp Lys Asn His Pro Ala Val Val Met Trp Ser Val 435 440 445

Ala Asn Glu Pro Ala Ser His Leu Glu Ser Ala Gly Tyr Tyr Leu Lys  $450 \ \ \, 455 \ \ \, 460 \ \ \,$ 

Met Val Ile Ala His Thr Lys Ser Leu Asp Pro Ser Arg Pro Val Thr 465 470 475 480

Phe Val Ser Asn Ser Asn Tyr Ala Ala Asp Lys Gly Ala Pro Tyr Val 485 490 495

Asp Val Ile Cys Leu Asn Ser Tyr Tyr Ser Trp Tyr His Asp Tyr Gly  $500 \hspace{1cm} 505 \hspace{1cm} 510 \hspace{1cm}$ 

His Leu Glu Leu Ile Gln Leu Gln Leu Ala Thr Gln Phe Glu Asn Trp 515 520 525

Tyr Lys Lys Tyr Gln Lys Pro Ile Ile Gln Ser Glu Tyr Gly Ala Glu 530 \$535\$

Thr Ile Ala Gly Phe His Gln Asp Pro Pro Leu Met Phe Thr Glu Glu 545 550 555 560

Tyr Gln Lys Ser Leu Leu Glu Gln Tyr His Leu Gly Leu Asp Gln Lys 565 570 575

Arg Arg Lys Tyr Val Val Gly Glu Leu Ile Trp Asn Phe Ala Asp Phe 580 585 590

Met Thr Glu Gln Ser Pro Thr Arg Val Leu Gly Asn Lys Lys Gly Ile 595 600 605

Phe Thr Arg Gln Arg Gln Pro Lys Ser Ala Ala Phe Leu Leu Arg Glu 610 615 620

Arg Tyr Trp Lys Ile Ala Asn Glu Thr Arg Tyr Pro His Ser Val Ala 625  $\phantom{\bigg|}$  630  $\phantom{\bigg|}$  635  $\phantom{\bigg|}$  640

Lys Ser Gln Cys Leu Glu Asn Ser Pro Phe Thr

<210> 2402

<211> 119

<212> PRT <213> Homo sapiens

<400> 2402

Met Ser Arg Ser Val Ala Leu Ala Val Leu Ala Leu Leu Ser Leu Ser 1 10 15

Gly Leu Glu Ala Ile Gln Arg Thr Pro Lys Ile Gln Val Tyr Ser Arg 20 25 30

His Pro Ala Glu Asn Gly Lys Ser Asn Phe Leu Asn Cys Tyr Val Ser 35 40 45

Gly Phe His Pro Ser Asp Ile Glu Val Asp Leu Leu Lys Asn Gly Glu 50 60

Arg Ile Glu Lys Val Glu His Ser Asp Leu Ser Phe Ser Lys Asp Trp

Ser Phe Tyr Leu Leu Tyr Tyr Thr Glu Phe Thr Pro Thr Glu Lys Asp 85 90 95

Glu Tyr Ala Cys Arg Val Asn His Val Thr Leu Ser Gln Pro Lys Ile 100 105 110

Val Lys Trp Asp Arg Asp Met 115

<210> 2403 <211> 228

<212> PRT <213> Homo sapiens

<400> .2403

Met Ser Val Ser Glu Ile Phe Val Glu Leu Gln Gly Phe Leu Ala Ala 1 5 10 15

Glu Gln Asp Ile Arg Glu Glu Ile Arg Lys Val Val Gln Ser Leu Glu 20 25 30

Gln Thr Ala Arg Glu Ile Leu Thr Leu Leu Gln Gly Val His Gln Gly  $35 \ \ 40 \ \ 45$ 

Ala Gly Phe Gln Asp Ile Pro Lys Arg Cys Leu Lys Ala Arg Glu His 50 \$50\$

Phe Gly Thr Val Lys Thr His Leu Thr Ser Leu Lys Thr Lys Phe Pro 65 70 75 80

Ala Glu Gln Tyr Tyr Arg Phe His Glu His Trp Arg Phe Val Leu Gln 85 90 95

Arg Leu Val Phe Leu Ala Ala Phe Val Val Tyr Leu Glu Thr Glu Thr 100 105 110

Leu Val Thr Arg Glu Ala Val Thr Glu Ile Leu Gly Ile Glu Pro Asp 115 120 120

Arg Glu Lys Gly Phe His Leu Asp Val Glu Asp Tyr Leu Ser Gly Val 130 140

Leu Ile Leu Ala Ser Glu Leu Ser Arg Leu Ser Val Asn Ser Val Thr 145 150 155 160

Ala Gly Asp Tyr Ser Arg Pro Leu His Ile Ser Thr Phe Ile Asn Glu 165 170 175

Leu Asp Ser Gly Phe Arg Leu Leu Asn Leu Lys Asn Asp Ser Leu Arg 180 185 190

Lys Arg Tyr Asp Gly Leu Lys Tyr Asp Val Lys Lys Val Glu Glu Val 195 200 205

Val Tyr Asp Leu Ser Ile Arg Gly Phe Asn Lys Glu Thr Ala Ala Ala 210 215 220

Cys Val Glu Lys 225

<210> 2404

<211> 378 <212> PRT

<213> Homo sapiens

<400> 2404

Met Asp Leu Gly Lys Pro Met Lys Ser Val Leu Val Val Ala Leu Leu 1 5 10 15

Val Ile Phe Gln Val Cys Leu Cys Gln Asp Glu Val Thr Asp Asp Tyr 20 25 30

Ile Gly Asp Asn Thr Thr Val Asp Tyr Thr Leu Phe Glu Ser Leu Cys  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Ser Lys Lys Asp Val Arg Asn Phe Lys Ala Trp Phe Leu Pro Ile Met  $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60$ 

Tyr Ser Ile Ile Cys Phe Val Gly Leu Leu Gly Asn Gly Leu Val Val 65 70 75 80

Leu Thr Tyr Ile Tyr Phe Lys Arg Leu Lys Thr Met Thr Asp Thr Tyr  $85 \hspace{1cm} 90 \hspace{1cm} 95$ 

Leu Leu Asn Leu Ala Val Ala Asp Ile Leu Phe Leu Leu Thr Leu Pro  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Phe Trp Ala Tyr Ser Ala Ala Lys Ser Trp Val Phe Gly Val His Phe 115 120 125

Cys Lys Leu Ile Phe Ala Ile Tyr Lys Met Ser Phe Phe Ser Gly Met 130  $$135\$ 

Leu Leu Leu Cys Ile Ser Ile Asp Arg Tyr Val Ala Ile Val Gln 145 150 155 160

Ala Val Ser Ala His Arg His Arg Ala Arg Val Leu Leu Ile Ser Lys 165 170 175

Leu Ser Cys Val Gly Ile Trp Ile Leu Ala Thr Val Leu Ser Ile Pro 180 185 190

Glu Leu Leu Tyr Ser Asp Leu Gln Arg Ser Ser Ser Glu Gln Ala Met 195 200 205

Arg Cys Ser Leu Ile Thr Glu His Val Glu Ala Phe Ile Thr Ile Gln 210 215 Val Ala Gln Met Val Ile Gly Phe Leu Val Pro Leu Leu Ala Met Ser 230 235 Phe Cys Tyr Leu Val Ile Ile Arg Thr Leu Leu Gln Ala Arg Asn Phe 245 250 Glu Arg Asn Lys Ala Ile Lys Val Ile Ile Ala Val Val Val Phe 260 265 270 Ile Val Phe Gln Leu Pro Tyr Asn Gly Val Val Leu Ala Gln Thr Val 275 Ala Asn Phe Asn Ile Thr Ser Ser Thr Cys Glu Leu Ser Lys Gln Leu 290 295 Asn Ile Ala Tyr Asp Val Thr Tyr Ser Leu Ala Cys Val Arg Cys Cys 305 315 Val Asn Pro Phe Leu Tyr Ala Phe Ile Gly Val Lys Phe Arg Asn Asp 325 330 Leu Phe Lys Leu Phe Lys Asp Leu Gly Cys Leu Ser Gln Glu Gln Leu 340 345 Arg Gln Trp Ser Ser Cys Arg His Ile Arg Arg Ser Ser Met Ser Val 355 360 365

Glu Ala Glu Thr Thr Thr Thr Phe Ser Pro

<210> 2405

<211> 398

<212> PRT

<213> Homo sapiens

<400> 2405

Met Leu Arg Leu Tyr Val Leu Val Met Gly Val Ser Ala Phe Thr Leu 1 5 10 15

Gln Pro Ala Ala His Thr Gly Ala Ala Arg Ser Cys Arg Phe Arg Gly 20 25 30

Arg His Tyr Lys Arg Glu Phe Arg Leu Glu Gly Glu Pro Val Ala Leu  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}$ 

- Arg Cys Pro Gln Val Pro Tyr Trp Leu Trp Ala Ser Val Ser Pro Arg 50 55 60
- Ile Asn Leu Thr Trp His Lys Asn Asp Ser Ala Arg Thr Val Pro Gly 65  $\phantom{-}70\phantom{0}$  70  $\phantom{-}75\phantom{0}$  80
- Glu Glu Glu Thr Arg Met Trp Ala Gln Asp Gly Ala Leu Trp Leu Leu 85 90
- Pro Ala Leu Gln Glu Asp Ser Gly Thr Tyr Val Cys Thr Thr Arg Asn 100 105 110
- Ala Ser Tyr Cys Asp Lys Met Ser Ile Glu Leu Arg Val Phe Glu Asn 115 120 125
- Thr Asp Ala Phe Leu Pro Phe Ile Ser Tyr Pro Gln Ile Leu Thr Leu 130 135 140
- Ser Thr Ser Gly Val Leu Val Cys Pro Asp Leu Ser Glu Phe Thr Arg 145 150 155 160
- Asp Lys Thr Asp Val Lys Ile Gln Trp Tyr Lys Asp Ser Leu Leu Leu 165 170 175
- Asp Lys Asp Asn Glu Lys Phe Leu Ser Val Arg Gly Thr Thr His Leu 180 \$180\$
- Leu Val His Asp Val Ala Leu Glu Asp Ala Gly Tyr Tyr Arg Cys Val 195 200 205
- Leu Thr Phe Ala His Glu Gly Gln Gln Tyr Asn Ile Thr Arg Ser Ile 210 215 220
- Glu Leu Arg Ile Lys Lys Lys Glu Glu Thr Ile Pro Val Ile Ile 225 230 235 240
- Ser Pro Leu Lys Thr Ile Ser Ala Ser Leu Gly Ser Arg Leu Thr Ile
  245 250 255
- Pro Cys Lys Val Phe Leu Gly Thr Gly Thr Pro Leu Thr Thr Met Leu 260 265 270
- Trp Trp Thr Ala Asn Asp Thr His Ile Glu Ser Ala Tyr Pro Gly Gly

275

280

285

Arg Val Thr Glu Gly Pro Arg Gln Glu Tyr Ser Glu Asn Asn Glu Asn 290 295 300

Tyr Ile Glu Val Pro Leu Ile Phe Asp Pro Val Thr Arg Glu Asp Leu 305 310 315 320

His Met Asp Phe Lys Cys Val Val His Asn Thr Leu Ser Phe Gln Thr 325 330 335

Leu Arg Thr Thr Val Lys Glu Ala Ser Ser Thr Phe Ser Trp Gly Ile \$340\$ \$350\$

Val Leu Ala Pro Leu Ser Leu Ala Phe Leu Val Leu Gly Gly Ile Trp 355 360 365

Met His Arg Arg Cys Lys His Arg Thr Gly Lys Ala Asp Gly Leu Thr 370 380

Val Leu Trp Pro His His Gln Asp Phe Gln Ser Tyr Pro Lys 385 390 395

<210> 2406

<211> 132 <212> PRT

<213> Homo sapiens

<400> 2406

Met Glu Phe Asp Leu Asn Gly Asn Gly Asp Ile Gly Glu Lys Arg Val 1  $\phantom{\bigg|}5\phantom{\bigg|}$  10  $\phantom{\bigg|}10\phantom{\bigg|}$  15

Ile Cys Gly Gly Arg Val Val Cys Arg Pro Lys Lys Thr Glu Val Ser 20 25 30

Pro Thr Cys Ser Ile Pro His Asp Leu Gly Gly Gly Pro Pro Thr Thr 35 40 45

Val Gly Gly Arg Arg Met Gly Met Arg Lys Trp Glu Arg Arg Glu Arg 50 60

Val Ser Pro Pro Ser Pro His Pro His Pro Leu Pro Pro Asp Ile Met 65 70 75 80

Ser Leu Lys Arg Met Leu Glu Lys Leu Gly Val Pro Lys Thr His Leu 85 90 95

Glu Leu Lys Lys Leu Ile Gly Glu Val Ser Ser Gly Ser Gly Glu Thr

Phe Ser Tyr Pro Asp Phe Leu Arg Met Met Leu Gly Lys Arg Ser Ala 115 120 125

Ile Leu Lys Met

<210> 2407

<211> 587

<212> PRT <213> Homo sapiens

<400> 2407

Met Val Thr Ala Ala Met Leu Leu Gln Cys Cys Pro Val Leu Ala Arg 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Gly Pro Thr Ser Leu Leu Gly Lys Val Val Lys Thr His Gln Phe Leu 20 25 30

Phe Gly Ile Gly Arg Cys Pro Ile Leu Ala Thr Gln Gly Pro Asn Cys 35 40 45

Ser Gln Ile His Leu Lys Ala Thr Lys Ala Gly Gly Asp Ser Pro Ser 50  $\phantom{000}55\phantom{000}$ 

Trp Ala Lys Gly His Cys Pro Phe Met Leu Ser Glu Leu Gln Asp Gly 65 70 75 80

Lys Ser Lys Ile Val Gln Lys Ala Ala Pro Glu Val Gln Glu Asp Val 85 90 95

Lys Ala Phe Lys Thr Asp Leu Pro Ser Ser Leu Val Ser Val Ser Leu 100 105 110

Arg Lys Pro Phe Ser Gly Pro Gln Glu Gln Glu Gln Ile Ser Gly Lys 115 120 125

Val Thr His Leu Ile Gln Asn Asn Met Pro Gly Asn Tyr Val Phe Ser 130 135 140

Tyr Asp Gln Phe Phe Arg Asp Lys Ile Met Glu Lys Lys Gln Asp His 145  $\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}155\phantom{\bigg|}160\phantom{\bigg|}$ 

Thr Tyr Arg Val Phe Lys Thr Val Asn Arg Trp Ala Asp Ala Tyr Pro

Phe Ala Gln His Phe Phe Glu Ala Ser Val Ala Ser Lys Asp Val Ser 

Val Trp Cys Ser Asn Asp Tyr Leu Gly Met Ser Arg His Pro Gln Val 

Leu Gln Ala Thr Gln Glu Thr Leu Gln Arg His Gly Ala Gly Ala Gly 

Gly Thr Arg Asn Ile Ser Gly Thr Ser Lys Phe His Val Glu Leu Glu 

Gln Glu Leu Ala Glu Leu His Gln Lys Asp Ser Ala Leu Leu Phe Ser 

Ser Cys Phe Val Ala Asn Asp Ser Thr Leu Phe Thr Leu Ala Lys Ile 

Leu Pro Gly Cys Glu Ile Tyr Ser Asp Ala Gly Asn His Ala Ser Met 

Ile Gln Gly Ile Arg Asn Ser Gly Ala Ala Lys Phe Val Phe Arg His 

Asn Asp Pro Asp His Leu Lys Lys Leu Leu Glu Lys Ser Asn Pro Lys 

Ile Pro Lys Ile Val Ala Phe Glu Thr Val His Ser Met Asp Gly Ala 

Ile Cys Pro Leu Glu Glu Leu Cys Asp Val Ser His Gln Tyr Gly Ala 

Leu Thr Phe Val Asp Glu Val His Ala Val Gly Leu Tyr Gly Ser Arg 

Gly Ala Gly Ile Gly Glu Arg Asp Gly Ile Met His Lys Ile Asp Ile 

Ile Ser Gly Thr Leu Gly Lys Ala Phe Gly Cys Val Gly Gly Tyr Ile 

Ala Ser Thr Arg Asp Leu Val Asp Met Val Arg Ser Tyr Ala Ala Gly 

Phe Ile Phe Thr Thr Ser Leu Pro Pro Met Val Leu Ser Gly Ala Leu 420 Glu Ser Val Arg Leu Leu Lys Gly Glu Glu Gly Gln Ala Leu Arg Arg 440 Ala His Gln Arg Asn Val Lys His Met Arg Gln Leu Leu Met Asp Arg 450 455 Gly Leu Pro Val Ile Pro Cys Pro Ser His Ile Ile Pro Ile Arg Val 465 470 475 Gly Asn Ala Ala Leu Asn Ser Lys Leu Cys Asp Leu Leu Leu Ser Lys 490 ' His Gly Ile Tyr Val Gln Ala Ile Asn Tyr Pro Thr Val Pro Arg Gly 500 505 Glu Glu Leu Leu Arg Leu Ala Pro Ser Pro His His Ser Pro Gln Met 520 525 Met Glu Asp Phe Val Glu Lys Leu Leu Leu Ala Trp Thr Ala Val Gly 530 535 Leu Pro Leu Gln Asp Val Ser Val Ala Ala Cys Asn Phe Cys Arg Arg 545 550 555 Pro Val His Phe Glu Leu Met Ser Glu Trp Glu Arg Ser Tyr Phe Gly 565 570 Asn Met Gly Pro Gln Tyr Val Thr Thr Tyr Ala 580 585 <210> 2408 <211> 122 <212> PRT <213> Homo sapiens

<400> 2408

Met Ser Ala Thr Trp Cys Ser Pro Glu Gly Gln Gly Met Gly Gln Gly
1 5 10 15

Pro Gly Arg Glu Val Gly Gly Asn Ser Ala Ala Ser Gly Pro Ala Ser 20 25 30

Pro Ile Arg Asp Pro Cys Leu Ser Glu Ala Gly Leu Lys Gly Pro Pro 40 45

Ser Ala His Pro Arg Arg Leu Cys Leu Leu His Arg Leu Val Cys Phe 55

Ser Gly Gly Leu Thr Ser Ile Gln Leu Ser Pro Arg Thr Cys Cys Ser 70 75

His Gln Trp Ala Gln Leu Phe Ser Pro Ala Cys Phe Pro Gln Trp Arg 90

Ala Pro Gly Cys Ser Leu Asp Asp Ser Arg Ser Leu Thr Arg Ile Arg 100 105

Pro Val His Leu Pro Gly Pro Ser Leu Asp

<210> 2409

<211> 288 <212> PRT

<213> Homo sapiens

<400> 2409

Met Gly His Thr Arq Arq Gln Gly Thr Ser Pro Ser Lys Cys Pro Tyr

Leu Asn Phe Phe Gln Leu Leu Val Leu Ala Gly Leu Ser His Phe Cys 20 25

Ser Gly Val Ile His Val Thr Lys Glu Val Lys Glu Val Ala Thr Leu 35 40

Ser Cys Gly His Asn Val Ser Val Glu Glu Leu Ala Gln Thr Arg Ile 55 50

Tyr Trp Gln Lys Glu Lys Lys Met Val Leu Thr Met Met Ser Gly Asp 70 65

Met Asn Ile Trp Pro Glu Tyr Lys Asn Arg Thr Ile Phe Asp Ile Thr 85 90

Asn Asn Leu Ser Ile Val Ile Leu Ala Leu Arq Pro Ser Asp Glu Gly

Thr Tyr Glu Cys Val Val Leu Lys Tyr Glu Lys Asp Ala Phe Lys Arq 120

Glu His Leu Ala Glu Val Thr Leu Ser Val Lys Ala Asp Phe Pro Thr 135 140 Pro Ser Ile Ser Asp Phe Glu Ile Pro Thr Ser Asn Ile Arg Arg Ile 150 155 160 Ile Cys Ser Thr Ser Gly Gly Phe Pro Glu Pro His Leu Ser Trp Leu 170 Glu Asn Gly Glu Glu Leu Asn Ala Ile Asn Thr Thr Val Ser Gln Asp 180 185 Pro Glu Thr Glu Leu Tyr Ala Val Ser Ser Lys Leu Asp Phe Asn Met 195 200 Thr Thr Asn His Ser Phe Met Cys Leu Ile Lys Tyr Gly His Leu Arg 210 Val Asn Gln Thr Phe Asn Trp Asn Thr Thr Lys Gln Glu His Phe Pro 225 230 235 Asp Asn Leu Leu Pro Ser Trp Ala Ile Thr Leu Ile Ser Val Asn Gly 245 250 Ile Phe Val Ile Cys Cys Leu Thr Tyr Cys Phe Ala Pro Arg Cys Arg 260 265 Glu Arg Arg Arg Asn Glu Arg Leu Arg Arg Glu Ser Val Arg Pro Val 275 280 <210> 2410 <211> 588 <212> PRT <213> Homo sapiens <400> 2410 Met His Cys Lys Val Ser Leu Leu Asp Asp Thr Val Tyr Glu Cys Val 10 15

Val Glu Lys His Ala Lys Gly Gln Asp Leu Leu Lys Arg Val Cys Glu 20 25 30

His Leu Asn Leu Leu Glu Glu Asp Tyr Phe Gly Leu Ala Ile Trp Asp 35 40 45 /US2003/012946

|            | wo:        | 2004/0     | )42340     | 5          |            |            |            |            |            |            |            |            |            |            | PCT        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asn        | Ala<br>50  | Thr        | Ser        | Lys        | Thr        | Trp<br>55  | Leu        | Asp        | Ser        | Ala        | Lys<br>60  | Glu        | Ile        | Lys        | Lys        |
| Gln<br>65  | Val        | Arg        | Gly        | Val        | Pro<br>70  | Trp        | Asn        | Phe        | Thr        | Phe<br>75  | Asn        | Val        | Lys        | Phe        | Tyr<br>80  |
| Pro        | Pro        | Asp        | Pro        | Ala<br>85  | Gln        | Leu        | Thr        | Glu        | Asp<br>90  | Ile        | Thr        | Arg        | Tyr        | Tyr<br>95  | Leu        |
| Cys        | Leu        | Gln        | Leu<br>100 | Arg        | Gln        | qaA        | Ile        | Val<br>105 | Ala        | Gly        | Arg        | Leu        | Pro<br>110 | Cys        | Ser        |
| Phe        | Ala        | Thr<br>115 | Leu        | Ala        | Leu        | Leu        | Gly<br>120 | Ser        | Tyr        | Thr        | Ile        | Gln<br>125 | Ser        | Glu        | Leu        |
| Gly        | Asp<br>130 | Tyr        | Asp        | Pro        | Glu        | Leu<br>135 | His        | Gly        | Val        | Asp        | Tyr<br>140 | Val        | Ser        | Asp        | Phe        |
| Lys<br>145 | Leu        | Ala        | Pro        | Asn        | Gln<br>150 | Thr        | Lys        | Glu        | Leu        | Glu<br>155 | Glu        | Lys        | Val        | Met        | Glu<br>160 |
| Leu        | His        | Lys        | Ser        | Tyr<br>165 | Arg        | Ser        | Met        | Thr        | Pro<br>170 | Ala        | Gln        | Ala        | Asp        | Leu<br>175 | Glu        |
| Phe        | Leu        | Glu        | Asn<br>180 | Ala        | Lys        | Lys        | Leu        | Ser<br>185 | Met        | Tyr        | Gly        | Val        | Asp<br>190 | Leu        | His        |
| Lys        | Ala        | Lys<br>195 | Asp        | Leu        | Glu        | Gly        | Val<br>200 | Asp        | Ile        | Ile        | Leu        | Gly<br>205 | Val        | Сув        | Ser        |
| Ser        | Gly<br>210 | Leu        | Leu        | Val        | Tyr        | Lys<br>215 | Asp        | Lys        | Leu        | Arg        | Ile<br>220 | Asn        | Arg        | Phe        | Pro        |
| Trp<br>225 | Pro        | Lys        | Val        | Leu        | Lys<br>230 | Ile        | Ser        | Tyr        | Lys        | Arg<br>235 | Ser        | Ser        | Phe        | Phe        | 11e<br>240 |
| Lys        | Ile        | Arg        | Pro        | Gly<br>245 | Glu        | Gln        | Glu        | Gln        | Tyr<br>250 | Glu        | Ser        | Thr        | Ile        | Gly<br>255 | Phe        |
| Lys        | Leu        | Pro        | Ser<br>260 | Tyr        | Arg        | Ala        | Ala        | Lys<br>265 | Lys        | Leu        | Trp        | Lys        | Val<br>270 | Cys        | Val        |
| Glu        | His        | His<br>275 | Thr        | Phe        | Phe        | Arg        | Leu<br>280 | Thr        | Ser        | Thr        | Asp        | Thr<br>285 | Ile        | Pro        | Lys        |

Ser Lys Phe Leu Ala Leu Gly Ser Lys Phe Arg Tyr Ser Gly Arg Thr

290 295 300

Gln Ala Gln Thr Arg Gln Ala Ser Ala Leu Ile Asp Arg Pro Ala Pro 305 \$310\$ 310 \$315\$

His Phe Glu Arg Thr Ala Ser Lys Arg Ala Ser Arg Ser Leu Asp Gly 325 330 335

Ala Ala Ala Val Asp Ser Ala Asp Arg Ser Pro Arg Pro Thr Ser Ala \$340\$ \$350\$

Pro Ala Ile Thr Gln Gly Gln Val Ala Glu Gly Gly Val Leu Asp Ala 355 360 365

Ser Ala Lys Lys Thr Val Val Pro Lys Ala Gln Lys Glu Thr Val Lys  $370 \\ \hspace*{1.5cm} 375 \\ \hspace*{1.5cm} 380$ 

Ala Glu Val Lys Lys Glu Asp Glu Pro Pro Glu Gln Ala Glu Pro Glu 385 390 395 400

Pro Thr Glu Ala Trp Lys Lys Lys Arg Glu Arg Leu Asp Gly Glu Asn  $405 \hspace{1cm} 410 \hspace{1cm} 415$ 

Ile Tyr Ile Arg His Ser Asn Leu Met Leu Glu Asp Leu Asp Lys Ser 420 425 430

Gln Glu Glu Ile Lys Lys His His Ala Ser Ile Ser Glu Leu Lys Lys 435 440 445

Asn Phe Met Glu Ser Val Pro Glu Pro Arg Pro Ser Glu Trp Asp Lys 450 460

Arg Leu Ser Thr His Ser Pro Phe Arg Thr Leu Asn Ile Asn Gly Gln 465 470 470 480

Ile Pro Thr Gly Glu Gly Pro Pro Leu Val Lys Thr Gln Thr Val Thr 485 490 495

Ile Ser Asp Asn Ala Asn Ala Val Lys Ser Glu Ile Pro Thr Lys Asp 500 505 510

Val Pro Ile Val His Thr Glu Thr Lys Thr Ile Thr Tyr Glu Ala Ala 515 520 525

Gln Thr Val Lys Gly Gly Ile Ser Glu Thr Arg Ile Glu Lys Arg Ile 530 540

Val Ile Thr Gly Asp Ala Asp Ile Asp His Asp Gln Val Leu Val Gln 545 550 555 560

Ala Ile Lys Glu Ala Lys Glu Gln His Pro Asp Met Ser Val Thr Lys 565 570 575

Val Val His Gln Glu Thr Glu Ile Ala Asp Glu

<210> 2411

<211> 982

<212> PRT <213> Homo sapiens

<400> 2411

Met Ala Asn Ser Met Asn Gly Arg Asn Pro Gly Gly Arg Gly Gly Asn 1  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Pro Arg Lys Gly Arg Ile Leu Gly Ile Ile Asp Ala Ile Gln Asp Ala 20  $\phantom{\bigg|}25\phantom{\bigg|}$  30

Val Gly Pro Pro Lys Gln Ala Ala Ala Asp Arg Arg Thr Val Glu Lys  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Thr Trp Lys Leu Met Asp Lys Val Val Arg Leu Cys Gln Asn Pro Lys 50 55 60

Leu Gln Leu Lys Asn Ser Pro Pro Tyr Ile Leu Asp Ile Leu Pro Asp 65 70 75 80

Thr Tyr Gln His Leu Arg Leu Ile Leu Ser Lys Tyr Asp Asp Asn Gln 85 90 95

Lys Leu Ala Gln Leu Ser Glu Asn Glu Tyr Phe Lys Ile Tyr Ile Asp

Ser Leu Met Lys Lys Ser Lys Arg Ala Ile Arg Leu Phe Lys Glu Gly 115 120 125

Lys Glu Arg Met Tyr Glu Glu Gln Ser Gln Asp Arg Arg Asn Leu Thr 130 135 140

Lys Leu Ser Leu Ile Phe Ser His Met Leu Ala Glu Ile Lys Ala Ile 145 150 155 160

Phe Pro Asn Gly Gln Phe Gln Gly Asp Asn Phe Arg Ile Thr Lys Ala Asp Ala Ala Glu Phe Trp Arg Lys Phe Phe Gly Asp Lys Thr Ile Val Pro Trp Lys Val Phe Arg Gln Cys Leu His Glu Val His Gln Ile Ser Ser Gly Leu Glu Ala Met Ala Leu Lys Ser Thr Ile Asp Leu Thr Cys Asn Asp Tyr Ile Ser Val Phe Glu Phe Asp Ile Phe Thr Arg Leu Phe Gln Pro Trp Gly Ser Ile Leu Arg Asn Trp Asn Phe Leu Ala Val Thr His Pro Gly Tyr Met Ala Phe Leu Thr Tyr Asp Glu Val Lys Ala Arg Leu Gln Lys Tyr Ser Thr Lys Pro Gly Ser Tyr Ile Phe Arg Leu Ser

Cys Thr Arg Leu Gly Gln Trp Ala Ile Gly Tyr Val Thr Gly Asp Gly 

Asn Ile Leu Gln Thr Ile Pro His Asn Lys Pro Leu Phe Gln Ala Leu 

Ile Asp Gly Ser Arg Glu Gly Phe Tyr Leu Tyr Pro Asp Gly Arg Ser 

Tyr Asn Pro Asp Leu Thr Gly Leu Cys Glu Pro Thr Pro His Asp His 

Ile Lys Val Thr Gln Glu Gln Tyr Glu Leu Tyr Cys Glu Met Gly Ser 

Thr Phe Gln Leu Cys Lys Ile Cys Ala Glu Asn Asp Lys Asp Val Lys 

Ile Glu Pro Cys Gly His Leu Met Cys Thr Ser Cys Leu Thr Ala Trp 

Gln Glu Ser Asp Gly Gln Gly Cys Pro Phe Cys Arq Cys Glu Ile Lys

405 410 415

Gly Thr Glu Pro Ile Ile Val Asp Pro Phe Asp Pro Arg Asp Glu Gly

Leu Asp Asp Asp Asp Asp Arg Glu Glu Ser Leu Met Met Asn Arg Leu 450 455 460

Ala Asn Val Arg Lys Cys Thr Asp Arg Gln Asn Ser Pro Val Thr Ser 465 470 470 475

Pro Gly Ser Ser Pro Leu Ala Gln Arg Arg Lys Pro Gln Pro Asp Pro 495

Leu Gln Ile Pro His Leu Ser Leu Pro Pro Val Pro Pro Arg Leu Asp  $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510 \hspace{1.5cm}$ 

Leu Ile Gln Lys Gly Ile Val Arg Ser Pro Cys Gly Ser Pro Thr Gly 515 520 525

Ser Pro Lys Ser Ser Pro Cys Met Val Arg Lys Gln Asp Lys Pro Leu 530 535 540

Pro Ala Pro Pro Pro Pro Leu Arg Asp Pro Pro Pro Pro Pro Pro Glu 545 550 555 560

Arg Pro Pro Pro Ile Pro Pro Asp Asn Arg Leu Ser Arg His Ile His
565 570 575

His Val Glu Ser Val Pro Ser Lys Asp Pro Pro Met Pro Leu Glu Ala 580 585 590

Trp Cys Pro Arg Asp Val Phe Gly Thr Asn Gln Leu Val Gly Cys Arg  $595 \hspace{1cm} 600 \hspace{1cm} 605$ 

Leu Leu Gly Glu Gly Ser Pro Lys Pro Gly Ile Thr Ala Ser Ser Asn 610 615 620

Val Asn Gly Arg His Ser Arg Val Gly Ser Asp Pro Val Leu Met Arg 625 630 635 640

Lys His Arg Arg His Asp Leu Pro Leu Glu Gly Ala Lys Val Phe Ser

Asn Gly His Leu Gly Ser Glu Glu Tyr Asp Val Pro Pro Arg Leu Ser Pro Pro Pro Pro Val Thr Thr Leu Leu Pro Ser Ile Lys Cys Thr Gly Pro Leu Ala Asn Ser Leu Ser Glu Lys Thr Arg Asp Pro Val Glu Glu Asp Asp Asp Glu Tyr Lys Ile Pro Ser Ser His Pro Val Ser Leu Asn Ser Gln Pro Ser His Cys His Asn Val Lys Pro Pro Val Arg Ser Cys Asp Asn Gly His Cys Met Leu Asn Gly Thr His Gly Pro Ser Ser Glu Lys Lys Ser Asn Ile Pro Asp Leu Ser Ile Tyr Leu Lys Gly Asp Val Phe Asp Ser Ala Ser Asp Pro Val Pro Leu Pro Pro Ala Arg Pro Pro Thr Arg Asp Asn Pro Lys His Gly Ser Ser Leu Asn Arg Thr Pro Ser Asp Tyr Asp Leu Leu Ile Pro Pro Leu Gly Glu Asp Ala Phe Asp Ala Leu Pro Pro Ser Leu Pro Pro Pro Pro Pro Pro Ala Arg His Ser Leu Ile Glu His Ser Lys Pro Pro Gly Ser Ser Ser Arg Pro Ser Ser Gly Gln Asp Leu Phe Leu Leu Pro Ser Asp Pro Phe Val Asp Leu Ala Ser Gly Gln Val Pro Leu Pro Pro Ala Arq Arq Leu Pro Gly Glu Asn Val 

Lys Thr Asn Arg Thr Ser Gln Asp Tyr Asp Gln Leu Pro Ser Cys Ser 885 890 895

Asp Gly Ser Gln Ala Pro Ala Arg Pro Pro Lys Pro Arg Pro Arg Arg 900 905 910

Thr Ala Pro Glu Ile His His Arg Lys Pro His Gly Pro Glu Ala Ala 915 920 925

Leu Glu Asn Val Asp Ala Lys Ile Ala Lys Leu Met Gly Glu Gly Tyr 930 935 940

Ala Phe Glu Glu Val Lys Arg Ala Leu Glu Ile Ala Gln Asn Asn Val 945 950 955 960

Glu Val Ala Arg Ser Ile Leu Arg Glu Phe Ala Phe Pro Pro Val 965 975 970 970

Ser Pro Arg Leu Asn Leu 980

<210> 2412

<211> 352 <212> PRT

<213> Homo sapiens

<400> 2412

Met Asp Tyr Gln Val Ser Ser Pro Ile Tyr Asp Ile Asn Tyr Tyr Thr 1  $\phantom{\Big|}$  5  $\phantom{\Big|}$  10  $\phantom{\Big|}$  15

Ser Glu Pro Cys Gln Lys Ile Asn Val Lys Gln Ile Ala Ala Arg Leu \$20\$ \$30\$

Leu Pro Pro Leu Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Met Leu Val Ile Leu Ile Leu Ile Asn Cys Lys Arg Leu Lys Ser Met 50 55 60

Thr Asp Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Phe Phe Leu 70 75 80

Leu Thr Val Pro Phe Trp Ala His Tyr Ala Ala Ala Gln Trp Asp Phe 85 90 95

Gly Asn Thr Met Cys Gln Leu Leu Thr Gly Leu Tyr Phe Ile Gly Phe  $100 \ 105 \ 110$ 

Phe Ser Gly Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu

Ala Val Val His Ala Val Phe Ala Leu Lvs Ala Arg Thr Val Thr Phe 

Gly Val Val Thr Ser Val Ile Thr Trp Val Val Ala Val Phe Ala Ser 

Leu Pro Gly Ile Ile Phe Thr Arg Ser Gln Lys Glu Gly Leu His Tyr 

Thr Cys Ser Ser His Phe Pro Tyr Ser Gln Tyr Gln Phe Trp Lys Asn 

Phe Gln Thr Leu Lys Ile Val Ile Leu Gly Leu Val Leu Pro Leu Leu 

Val Met Val Ile Cys Tyr Ser Gly Ile Leu Lys Thr Leu Leu Arg Cys 

Arg Asn Glu Lys Lys Arg His Arg Ala Val Arg Leu Ile Phe Thr Ile 

Met Ile Val Tyr Phe Leu Phe Trp Ala Pro Tyr Asn Ile Val Leu Leu 

Leu Asn Thr Phe Gln Glu Phe Phe Gly Leu Asn Asn Cys Ser Ser Ser 

Asn Arq Leu Asp Gln Ala Met Gln Val Thr Glu Thr Leu Gly Met Thr 

His Cys Cys Ile Asn Pro Ile Ile Tyr Ala Phe Val Gly Glu Lys Phe 

Arg Asn Tyr Leu Leu Val Phe Phe Gln Lys His Ile Ala Lys Arg Phe 

Cys Lys Cys Cys Ser Ile Phe Gln Gln Glu Ala Pro Glu Arg Ala Ser 

Ser Val Tyr Thr Arg Ser Thr Gly Glu Gln Glu Ile Ser Val Gly Leu 

<210> 2413

<211> 750

<212> PRT <213> Homo sapiens

<400> 2413

Met Gly Lys Ser Glu Ser Gln Met Asp IIe Thr Asp IIe Asn Thr Pro 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Lys Pro Lys Lys Lys Gln Arg Trp Thr Arg Leu Glu Ile Ser Leu Ser 20 25 30

Val Leu Val Leu Leu Thr Ile Ile Ala Val Arg Met Ile Ala Leu 35 40 45

Ser Ala Ala Arg Leu Ile Gln Asn Met Asp Ala Thr Thr Glu Pro Cys 65 70 75 80

Arg Asp Phe Phe Lys Tyr Ala Cys Gly Gly Trp Leu Lys Arg Asn Val 85 90 95

Ile Pro Glu Thr Ser Ser Arg Tyr Gly Asn Phe Asp Ile Leu Arg Asp  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Glu Leu Glu Val Val Leu Lys Asp Val Leu Gln Glu Pro Lys Thr Glu 115 120 125

Asp Ile Val Ala Val Gln Lys Ala Lys Ala Leu Tyr Arg Ser Cys Ile 130 140

Asn Glu Ser Ala Ile Asp Ser Arg Gly Gly Glu Pro Leu Leu Lys Leu 145 150 155 160

Leu Pro Asp Ile Tyr Gly Trp Pro Val Ala Thr Glu Asn Trp Glu Gln 165 170 175

Lys Tyr Gly Ala Ser Trp Thr Ala Glu Lys Ala Ile Ala Gln Leu Asn 180 185 190

Ser Lys Tyr Gly Lys Lys Val Leu Ile Asn Leu Phe Val Gly Thr Asp 195 200 205

Asp Lys Asn Ser Val Asn His Val Ile His Ile Asp Gln Pro Arg Leu 210 220

700

Gly Leu Pro Ser Arg Asp Tyr Tyr Glu Cys Thr Gly Ile Tyr Lys Glu 225 230 235 240

Ala Cys Thr Ala Tyr Val Asp Phe Met Ile Ser Val Ala Arg Leu Ile  $245 \\ 250 \\ 255$ 

Arg Gln Glu Glu Arg Leu Pro Ile Asp Glu Asn Gln Leu Ala Leu Glu 260 265 270

Met Asn Lys Val Met Glu Leu Glu Lys Glu Ile Ala Asn Ala Thr Ala 275 280 285

Lys Pro Glu Asp Arg Asn Asp Pro Met Leu Leu Tyr Asn Lys Met Arg 290 295 300

Leu Ala Gln Ile Gln Asn Asn Phe Ser Leu Glu Ile Asn Gly Lys Pro 305 \$310\$ \$315

Phe Ser Trp Leu Asn Phe Thr Asn Glu Ile Met Ser Thr Val Asn Ile 325 330 330

Ser Ile Thr Asn Glu Glu Asp Val Val Val Tyr Ala Pro Glu Tyr Leu  $340 \hspace{1cm} 345 \hspace{1cm} 350 \hspace{1cm}$ 

Thr Lys Leu Lys Pro Ile Leu Thr Lys Tyr Ser Ala Arg Asp Leu Gln 355 360 365

Asn Leu Met Ser Trp Arg Phe Ile Met Asp Leu Val Ser Ser Leu Ser 370 \$375\$

Arg Thr Tyr Lys Glu Ser Arg Asn Ala Phe Arg Lys Ala Leu Tyr Gly 385 \$390\$ \$395\$

Thr Thr Ser Glu Thr Ala Thr Trp Arg Arg Cys Ala Asn Tyr Val Asn 405 \$410\$

Gly Asn Met Glu Asn Ala Val Gly Arg Leu Tyr Val Glu Ala Ala Phe \$420\$

Ala Gly Glu Ser Lys His Val Val Glu Asp Leu Ile Ala Gln Ile Arg 435 440 445

Glu Val Phe Ile Gln Thr Leu Asp Asp Leu Thr Trp Met Asp Ala Glu 450 460

Thr Lys Lys Arg Ala Glu Glu Lys Ala Leu Ala Ile Lys Glu Arg Ile

465 470 475 480

Gly Tyr Pro Asp Asp Ile Val Ser Asn Asp Asn Lys Leu Asn Asn Glu 485 490 495

Tyr Leu Glu Leu Asn Tyr Lys Glu Asp Glu Tyr Phe Glu Asn Ile Ile 500 505 510

Gln Asn Leu Lys Phe Ser Gln Ser Lys Gln Leu Lys Lys Leu Arg Glu 515 520 525

Lys Val Asp Lys Asp Glu Trp Ile Ser Gly Ala Ala Val Val Asn Ala 530 540

Phe Tyr Ser Ser Gly Arg Asn Gln Ile Val Phe Pro Ala Gly Ile Leu 545 550 555 560

Gln Pro Pro Phe Phe Ser Ala Gln Gln Ser Asn Ser Leu Asn Tyr Gly 565 570 575

Gly Ile Gly Met Val Ile Gly His Glu Ile Thr His Gly Phe Asp Asp 580 585 590

Asn Gly Arg Asn Phe Asn Lys Asp Gly Asp Leu Val Asp Trp Trp Thr  $595 \hspace{1.5cm} 600 \hspace{1.5cm} 605$ 

Gln Gln Ser Ala Ser Asn Phe Lys Glu Gln Ser Gln Cys Met Val Tyr 610 615 620

Gln Tyr Gly Asn Phe Ser Trp Asp Leu Ala Gly Gly Gln His Leu Asn 625 630 635

Gly Ile Asn Thr Leu Gly Glu Asn Ile Ala Asp Asn Gly Gly Leu Gly 645 650 655

Gln Ala Tyr Arg Ala Tyr Gln Asn Tyr Ile Lys Lys Asn Gly Glu Glu 660 665 670

Lys Leu Leu Pro Gly Leu Asp Leu Asn His Lys Gln Leu Phe Phe Leu 675 680 685

Asn Phe Ala Gln Val Trp Cys Gly Thr Tyr Arg Pro Glu Tyr Ala Val 690 695 700

Asn Ser Ile Lys Thr Asp Val His Ser Pro Gly Asn Phe Arg Ile Ile 705 710 720

Gly Thr Leu Gln Asn Ser Ala Glu Phe Ser Glu Ala Phe His Cys Arg 725 730 Lys Asn Ser Tyr Met Asn Pro Glu Lys Lys Cys Arg Val Trp 740 745 <210> 2414 <211> 233 <212> PRT <213> Homo sapiens <400> 2414 Met Asp Asn Gln Gly Val Ile Tyr Ser Asp Leu Asn Leu Pro Pro Asn 10 Pro Lys Arg Gln Gln Arg Lys Pro Lys Gly Asn Lys Ser Ser Ile Leu 20 Ala Thr Glu Gln Glu Ile Thr Tyr Ala Glu Leu Asn Leu Gln Lys Ala 40 Ser Gln Asp Phe Gln Gly Asn Asp Lys Thr Tyr His Cys Lys Asp Leu 50 55 60 Pro Ser Ala Pro Glu Lys Leu Ile Val Gly Ile Leu Gly Ile Ile Cys 70 Leu Ile Leu Met Ala Ser Val Val Thr Ile Val Val Ile Pro Ser Thr 85 Leu Ile Gln Arg His Asn Asn Ser Ser Leu Asn Thr Arg Thr Gln Lys 100 105 110 Ala Arg His Cys Gly His Cys Pro Glu Glu Trp Ile Thr Tyr Ser Asn 115 120 Ser Cys Tyr Tyr Ile Gly Lys Glu Arg Arg Thr Trp Glu Glu Ser Leu

130 135 140

Leu Ala Cys Thr Ser Lys Asn Ser Ser Leu Leu Ser Ile Asp Asn Glu 145 150

Glu Glu Met Lys Phe Leu Ser Ile Ile Ser Pro Ser Ser Trp Ile Gly 165 170 175

Val Phe Arg Asn Ser Ser His His Pro Trp Val Thr Met Asn Gly Leu 180 185 190

Ala Phe Lys His Glu Ile Lys Asp Ser Asp Asn Ala Glu Leu Asn Cys \$195\$ \$200\$

Ala Val Leu Gln Val Asn Arg Leu Lys Ser Ala Gln Cys Gly Ser Ser 210  $$\rm 225$$ 

Ile Ile Tyr His Cys Lys His Lys Leu 225 230

<210> 2415

<211> 290 <212> PRT

<213> Homo sapiens

<400> 2415

Met Gly Gly Gly Ala Gly Glu Arg Leu Phe Thr Ser Ser Cys Leu Val 1 10 15

Gly Leu Val Pro Leu Gly Leu Arg Ile Ser Leu Val Thr Cys Pro Leu 20 25 30

Gln Cys Gly Ile Met Trp Gln Leu Leu Leu Pro Thr Ala Leu Leu Leu 35 40 45

Leu Val Ser Ala Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val 50 60

Phe Leu Glu Pro Gln Trp Tyr Arg Val Leu Glu Lys Asp Ser Val Thr 65 70 75 80

Leu Lys Cys Gln Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Gln Trp 85 90 95

Phe His Asn Glu Ser Leu Ile Ser Ser Gln Ala Ser Ser Tyr Phe Ile 100 \$105\$

Asp Ala Ala Thr Val Asp Asp Ser Gly Glu Tyr Arg Cys Gln Thr Asn 115 120 125

Leu Ser Thr Leu Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp 130 135 140

Leu Leu Gln Ala Pro Arg Trp Val Phe Lys Glu Glu Asp Pro Ile 145 150 155 160

His Leu Arg Cys His Ser Trp Lys Asn Thr Ala Leu His Lys Val Thr 165 170 175 Tyr Leu Gln Asn Gly Lys Gly Arg Lys Tyr Phe His His Asn Ser Asp 185 Phe Tyr Ile Pro Lys Ala Thr Leu Lys Asp Ser Gly Ser Tyr Phe Cys 195 200 205 Arg Gly Leu Val Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile 215 220 Thr Ile Thr Gln Gly Leu Ala Val Ser Thr Ile Ser Ser Phe Phe Pro 225 230 235 240 Pro Gly Tyr Gln Val Ser Phe Cys Leu Val Met Val Leu Leu Phe Ala 245 250 Val Asp Thr Gly Leu Tyr Phe Ser Val Lys Thr Asn Ile Arg Ser Ser 260 265 Thr Arg Asp Trp Lys Asp His Lys Phe Lys Trp Arg Lys Asp Pro Gln 280 285 Asp Lys 290 <210> 2416 <211> 233 <212> PRT <213> Homo sapiens <400> 2416 Met Trp Gln Leu Leu Pro Thr Ala Leu Leu Leu Val Ser Ala Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro 20 25

Gln Trp Tyr Ser Val Leu Glu Lys Asp Ser Val Thr Leu Lys Cys Gln
35 40 45

Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Gln Trp Phe His Asn Glu 50 60

Ser Leu Ile Ser Ser Gln Ala Ser Ser Tyr Phe Ile Asp Ala Ala Thr Val Asn Asp Ser Gly Glu Tyr Arg Cys Gln Thr Asn Leu Ser Thr Leu 85 90 Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp Leu Leu Cln 100 105 Ala Pro Arg Trp Val Phe Lys Glu Glu Asp Pro Ile His Leu Arg Cys 115 His Ser Trp Lys Asn Thr Ala Leu His Lys Val Thr Tyr Leu Gln Asn 135 Gly Lys Asp Arg Lys Tyr Phe His His Asn Ser Asp Phe His Ile Pro 150 155 Lys Ala Thr Leu Lys Asp Ser Gly Ser Tyr Phe Cys Arg Gly Leu Val 165 170 Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile Thr Ile Thr Gln Gly Leu Ala Val Ser Thr Ile Ser Ser Phe Ser Pro Pro Gly Tyr Gln 195 200 Val Ser Phe Cys Leu Val Met Val Leu Leu Phe Ala Val Asp Thr Gly 210 215 220 Leu Tyr Phe Ser Val Lys Thr Asn Ile 225 230 <210> 2417 <211> 525 <212> PRT <213> Homo sapiens <400> 2417 Met Trp Glu Ala Gln Phe Leu Gly Leu Leu Phe Leu Gln Pro Leu Trp 5 10 Val Ala Pro Val Lys Pro Leu Gln Pro Gly Ala Glu Val Pro Val Val

Val Ala Pro Val Lys Pro Leu Gln Pro Gly Ala Glu Val Pro Val Va 20 25 30

Trp Ala Gln Glu Gly Ala Pro Ala Gln Leu Pro Cys Ser Pro Thr Ile  $35 \ 40^{\circ} \ 45$ 

Pro Leu Gln Asp Leu Ser Leu Leu Arg Arg Ala Gly Val Thr Trp Gln His Gln Pro Asp Ser Gly Pro Pro Ala Ala Pro Gly His Pro Leu Ala Pro Gly Pro His Pro Ala Ala Pro Ser Ser Trp Gly Pro Arg Pro Arg Arg Tyr Thr Val Leu Ser Val Gly Pro Gly Gly Leu Arg Ser Gly Arg Leu Pro Leu Gln Pro Arg Val Gln Leu Asp Glu Arg Gly Arg Gln Arg Gly Asp Phe Ser Leu Trp Leu Arg Pro Ala Arg Arg Ala Asp Ala Gly Glu Tyr Arg Ala Ala Val His Leu Arg Asp Arg Ala Leu Ser Cys Arg Leu Arg Leu Gly Gln Ala Ser Met Thr Ala Ser Pro Pro Gly Ser Leu Arg Ala Ser Asp Trp Val Ile Leu Asn Cys Ser Phe Ser Arg Pro Asp Arg Pro Ala Ser Val His Trp Phe Arg Asn Arg Gly Gln Gly Arg Val Pro Val Arg Glu Ser Pro His His His Leu Ala Glu Ser Phe Leu Phe Leu Pro Gln Val Ser Pro Met Asp Ser Gly Pro Trp Gly Cys Ile Leu Thr Tyr Arg Asp Gly Phe Asn Val Ser Ile Met Tyr Asn Leu Thr Val Leu Gly Leu Glu Pro Pro Thr Pro Leu Thr Val Tyr Ala Gly Ala Gly Ser Arg Val Gly Leu Pro Cys Arg Leu Pro Ala Gly Val

Gly Thr Arg Ser Phe Leu Thr Ala Lys Trp Thr Pro Pro Gly Gly Gly 290 . 295 Pro Asp Leu Leu Val Thr Gly Asp Asn Gly Asp Phe Thr Leu Arg Leu Glu Asp Val Ser Gln Ala Gln Ala Gly Thr Tyr Thr Cys His Ile His Leu Gln Glu Gln Leu Asn Ala Thr Val Thr Leu Ala Ile Ile Thr Val Thr Pro Lys Ser Phe Gly Ser Pro Gly Ser Leu Gly Lys Leu Leu Cvs Glu Val Thr Pro Val Ser Glv Gln Glu Arg Phe Val Trp Ser Ser - 380 Leu Asp Thr Pro Ser Gln Arg Ser Phe Ser Glv Pro Trp Leu Glu Ala Gln Glu Ala Gln Leu Leu Ser Gln Pro Trp Gln Cys Gln Leu Tyr Gln Gly Glu Arg Leu Leu Gly Ala Ala Val Tyr Phe Thr Glu Leu Ser Ser Pro Gly Ala Gln Arg Ser Gly Arg Ala Pro Gly Ala Leu Pro Ala Gly His Leu Leu Leu Phe Leu Thr Leu Gly Val Leu Ser Leu Leu Leu Leu Val Thr Gly Ala Phe Gly Phe His Leu Trp Arg Arg Gln Trp Arg Pro Arg Arg Phe Ser Ala Leu Glu Gln Gly Ile His Pro Pro Gln Ala Gln Ser Lys Ile Glu Glu Leu Glu Glu Pro Glu Pro Glu Pro Glu Pro Glu Pro Glu Pro Glu Pro Glu Pro Glu Pro Glu Gln Leu

<210> 2418

<211> 738 <212> PRT

<213> Homo sapiens

<400> 2418

Met Gln Pro Arg Trp Ala Gln Gly Ala Thr Met Trp Leu Gly Val Leu 1 5 10 15

Leu Thr Leu Leu Cys Ser Ser Leu Glu Glu Gln Gln Asn Ser Phe \$20\$

Thr Ile Asn Ser Val Asp Met Lys Ser Leu Pro Asp Trp Thr Val Gln 35 40 45

Asn Gly Lys Asn Leu Thr Leu Gln Cys Phe Ala Asp Val Ser Thr Thr 50 60

Ser His Val Lys Pro Gln His Gln Met Leu Phe Tyr Lys Asp Asp Val 65 70 75 80

Leu Phe Tyr Asn Ile Ser Ser Met Lys Ser Thr Glu Ser Tyr Phe Ile 85 90 95

Pro Glu Val Arg Ile Tyr Asp Ser Gly Thr Tyr Lys Cys Thr Val Ile 100 \$105\$

Val Asn Asn Lys Glu Lys Thr Thr Ala Glu Tyr Gln Val Leu Val Glu 115 120 125

Gly Val Pro Ser Pro Arg Val Thr Leu Asp Lys Lys Glu Ala Ile Gln 130 135 140

Gly Gly Ile Val Arg Val Asn Cys Ser Val Pro Glu Glu Lys Ala Pro 145 150 155 160

Ile His Phe Thr Ile Glu Lys Leu Glu Leu Asn Glu Lys Met Val Lys 165 170 175

Leu Lys Arg Glu Lys Asn Ser Arg Asp Gln Asn Phe Val Ile Leu Glu 180 185 190

Phe Pro Val Glu Glu Gln Asp Arg Val Leu Ser Phe Arg Cys Gln Ala 195 \$200\$

Arg Ile Ile Ser Gly Ile His Met Gln Thr Ser Glu Ser Thr Lys Ser 210 215 220

Glu Leu Val Thr Val Thr Glu Ser Phe Ser Thr Pro Lys Phe His Ile Ser Pro Thr Gly Met Ile Met Glu Gly Ala Gln Leu His Ile Lys Cys Thr Ile Gln Val Thr His Leu Ala Gln Glu Phe Pro Glu Ile Ile Ile Gln Lys Asp Lys Ala Ile Val Ala His Asn Arq His Gly Asn Lys Ala Val Tyr Ser Val Met Ala Met Val Glu His Ser Gly Asn Tyr Thr Cys Lys Val Glu Ser Ser Arg Ile Ser Lys Val Ser Ser Ile Val Val Asn Ile Thr Glu Leu Phe Ser Lys Pro Glu Leu Glu Ser Ser Phe Thr His Leu Asp Gln Gly Glu Arg Leu Asn Leu Ser Cys Ser Ile Pro Gly Ala Pro Pro Ala Asn Phe Thr Ile Gln Lys Glu Asp Thr Ile Val Ser Gln Thr Gln Asp Phe Thr Lvs Ile Ala Ser Lvs Ser Asp Ser Glv Thr Tvr Ile Cys Thr Ala Gly Ile Asp Lys Val Val Lys Lys Ser Asn Thr Val Gln Ile Val Val Cys Glu Met Leu Ser Gln Pro Arg Ile Ser Tyr Asp Ala Gln Phe Glu Val Ile Lys Gly Gln Thr Ile Glu Val Arg Cys Glu Ser Ile Ser Gly Thr Leu Pro Ile Ser Tyr Gln Leu Leu Lys Thr Ser 

Lys Val Leu Glu Asn Ser Thr Lys Asn Ser Asn Asp Pro Ala Val Phe

Lys Asp Asn Pro Thr Glu Asp Val Glu Tyr Gln Cys Val Ala Asp Asn 465 470 475 480

- Cys His Ser His Ala Lys Met Leu Ser Glu Val Leu Arg Val Lys Val 485 490 490
- Ile Ala Pro Val Asp Glu Val Gln Ile Ser Ile Leu Ser Ser Lys Val 500 505 510
- Val Glu Ser Gly Glu Asp Ile Val Leu Gln Cys Ala Val Asn Glu Gly 515 520 525
- Ser Gly Pro Ile Thr Tyr Lys Phe Tyr Arg Glu Lys Glu Gly Lys Pro 530 535 540
- Phe Tyr Gln Met Thr Ser Asn Ala Thr Gln Ala Phe Trp Thr Lys Gln 545 550 555 560
- Lys Ala Asn Lys Glu Gln Glu Gly Glu Tyr Tyr Cys Thr Ala Phe Asn 565 570 575
- Arg Ala Asn His Ala Ser Ser Val Pro Arg Ser Lys Ile Leu Thr Val
- Arg Val Ile Leu Ala Pro Trp Lys Lys Gly Leu Ile Ala Val Val Ile 595  $\,\,$  600  $\,\,$  605
- Ile Gly Val Ile Ile Ala Leu Leu Ile Ile Ala Ala Lys Cys Tyr Phe  $610 \hspace{1.5cm} 615 \hspace{1.5cm} 620$
- Leu Arg Lys Ala Lys Ala Lys Gln Met Pro Val Glu Met Ser Arg Pro 625 630 635 640
- Ala Val Pro Leu Leu Asn Ser Asn Asn Glu Lys Met Ser Asp Pro Asn 645 650 655
- Met Glu Ala Asn Ser His Tyr Gly His Asn Asp Asp Val Gly Asn His 660 665 670
- Ala Met Lys Pro Ile Asn Asp Asn Lys Glu Pro Leu Asn Ser Asp Val 675 680 685
- Gln Tyr Thr Glu Val Gln Val Ser Ser Ala Glu Ser His Lys Asp Leu 690 695 700

Gly Lys Lys Asp Thr Glu Thr Val Tyr Ser Glu Val Arg Lys Ala Val 705  $\phantom{000}710\phantom{000}715\phantom{000}715$ 

Pro Asp Ala Val Glu Ser Arg Tyr Ser Arg Thr Glu Gly Ser Leu Asp  $725 \hspace{1.5cm} 730 \hspace{1.5cm} 735$ 

Gly Thr

<210> 2419

<211> 328

<212> PRT <213> Homo sapiens

<400> 2419

Met Leu Val Arg Arg Gly Ala Arg Ala Gly Pro Arg Met Pro Arg Gly 1 5 10 15

Trp Thr Ala Leu Cys Leu Leu Ser Leu Leu Pro Ser Gly Phe Met Ser 20 25 30

Leu Asp Asn Asn Gly Thr Ala Thr Pro Glu Leu Pro Thr Gln Gly Thr 35 40 45

Phe Ser Asn Val Ser Thr Asn Val Ser Tyr Gln Glu Thr Thr Thr Pro 50

Ser Thr Leu Gly Ser Thr Ser Leu His Pro Val Ser Gln His Gly Asn 65 70 75 80

Glu Ala Thr Thr Asn Ile Thr Glu Thr Thr Val Lys Phe Thr Ser Thr 85 90 95

Ser Val Ile Thr Ser Val Tyr Gly Asn Thr Asn Ser Ser Val Gln Ser  $100 \\ 105 \\ 110$ 

Gln Thr Ser Val Ile Ser Thr Val Phe Thr Thr Pro Ala Asn Val Ser 115 \$120\$

Thr Pro Glu Thr Thr Leu Lys Pro Ser Leu Ser Pro Gly Asn Val Ser 130 135 140

Asp Leu Ser Thr Thr Ser Thr Ser Leu Ala Thr Ser Pro Thr Lys Pro 145 150 155 160

Tyr Thr Ser Ser Ser Pro Ile Leu Ser Asp Ile Lys Ala Glu Ile Lys 165 170 175

Cys Ser Gly Ile Arg Glu Val Lys Leu Thr Gln Gly Ile Cys Leu Glu 180  $$185\ \ \ \, 190\ \ \, ]$ 

- Gln Asn Lys Thr Ser Ser Cys Ala Glu Phe Lys Lys Asp Arg Gly Glu 195 200 205
- Gly Leu Ala Arg Val Leu Cys Gly Glu Glu Glu Ala Asp Ala Asp Ala 210 215 220
- Gly Ala Gln Val Cys Ser Leu Leu Leu Ala Gln Ser Glu Val Arg Pro 225 230 235 240
- Gln Cys Leu Leu Leu Val Leu Ala Asn Arg Thr Glu Ile Ser Ser Lys \$245\$
- Leu Gln Leu Met Lys Lys His Gln Ser Asp Leu Lys Lys Leu Gly Ile \$260\$
- Leu Asp Phe Thr Glu Gln Asp Val Ala Ser His Gln Ser Tyr Ser Gln 275 280 285
- Lys Thr Leu Ile Ala Leu Val Thr Ser Gly Ala Leu Leu Ala Val Leu 290 300
- Gly Ile Thr Gly Tyr Phe Leu Met Asn Arg Arg Ser Trp Ser Pro Thr 305 \$310\$ \$315 \$320
- Gly Glu Arg Leu Glu Leu Glu Pro 325
- <210> 2420
- <211> 374
- <212> PRT
- <213> Homo sapiens
- <400> 2420
- Met Trp Phe Leu Thr Thr Leu Leu Leu Trp Val Pro Val Asp Gly Gln 1 5 10 15
- Val Asp Thr Thr Lys Ala Val Ile Thr Leu Gln Pro Pro Trp Val Ser 20 25 30
- Val Phe Gln Glu Glu Thr Val Thr Leu His Cys Glu Val Leu His Leu 35 40 45

Pro Gly Ser Ser Ser Thr Gln Trp Phe Leu Asn Gly Thr Ala Thr Gln 50  $$\rm 55$$ 

Thr Ser Thr Pro Ser Tyr Arg Ile Thr Ser Ala Ser Val Asn Asp Ser 65 75 80

Gln Leu Glu Ile His Arg Gly Trp Leu Leu Leu Gln Val Ser Ser Arg  $100 \\ 105 \\ 110$ 

Val Phe Thr Glu Gly Glu Pro Leu Ala Leu Arg Cys His Ala Trp Lys 115 120 125

Asp Lys Leu Val Tyr Asn Val Leu Tyr Tyr Arg Asn Gly Lys Ala Phe 130  $$140\,$ 

Lys Phe Phe His Trp Asn Ser Asn Leu Thr Ile Leu Lys Thr Asn Ile 145 150 155 160

Ser His Asn Gly Thr Tyr His Cys Ser Gly Met Gly Lys His Arg Tyr 165 170 175

Thr Ser Ala Gly Ile Ser Val Thr Val Lys Glu Leu Phe Pro Ala Pro 180 185 190

Val Leu Asn Ala Ser Val Thr Ser Pro Leu Leu Glu Gly Asn Leu Val 195 200 205

Thr Leu Ser Cys Glu Thr Lys Leu Leu Leu Gln Arg Pro Gly Leu Gln 215 220

Leu Tyr Phe Ser Phe Tyr Met Gly Ser Lys Thr Leu Arg Gly Arg Asn 225 230 230 235

Thr Ser Ser Glu Tyr Gln Ile Leu Thr Ala Arg Arg Glu Asp Ser Gly 245 250

Leu Tyr Trp Cys Glu Ala Ala Thr Glu Asp Gly Asn Val Leu Lys Arg  $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$ 

Ser Pro Glu Leu Glu Leu Gln Val Leu Gly Leu Gln Leu Pro Thr Pro 275 280 285

Val Trp Phe His Val Leu Phe Tyr Leu Ala Val Gly Ile Met Phe Leu

290 295 300

Val Asn Thr Val Leu Trp Val Thr Ile Arg Lys Glu Leu Lys Arg Lys 305 310 315 320

Lys Lys Trp Asp Leu Glu Ile Ser Leu Asp Ser Gly His Glu Lys Lys 325 330 335

Val Ile Ser Ser Leu Gln Glu Asp Arg His Leu Glu Glu Glu Leu Lys 340 345 350

Cys Gln Glu Gln Lys Glu Glu Gln Leu Gln Glu Gly Val His Arg Lys \$355\$

Glu Pro Gln Gly Ala Thr 370

<210> 2421

<211> 760 <212> PRT

<213> Homo sapiens

<400> 2421

Met Met Asp Gln Ala Arg Ser Ala Phe Ser Asn Leu Phe Gly Glu Glu 1 5 10 15

Pro Leu Ser Tyr Thr Arg Phe Ser Leu Ala Arg Gln Val Asp Gly Asp 20 25 30

Asn Ser His Val Glu Met Lys Leu Ala Val Asp Glu Glu Asn Ala 35  $\phantom{\bigg|}40\phantom{\bigg|}40$ 

Asp Asn Asn Thr Lys Ala Asn Val Thr Lys Pro Lys Arg Cys Ser Gly  $50 \ \ 55 \ \ \ 60$ 

Ser Ile Cys Tyr Gly Thr Ile Ala Val Ile Val Phe Phe Leu Ile Gly 65  $\phantom{000}70\phantom{000}75\phantom{000}$  80

Phe Met Ile Gly Tyr Leu Gly Tyr Cys Lys Gly Val Glu Pro Lys Thr \$85\$

Glu Cys Glu Arg Leu Ala Gly Thr Glu Ser Pro Val Arg Glu Glu Pro
100 105 110

Gly Glu Asp Phe Pro Ala Ala Arg Arg Leu Tyr Trp Asp Asp Leu Lys 115 \$120\$

Arg Lys Leu Ser Glu Lys Leu Asp Ser Thr Asp Phe Thr Ser Thr Ile 130  $$140\$ 

Lys Leu Leu Asn Glu Asn Ser Tyr Val Pro Arg Glu Ala Gly Ser Gln 145 150 155 160

Lys Asp Glu Asn Leu Ala Leu Tyr Val Glu Asn Gln Phe Arg Glu Phe 165 170 175

Lys Leu Ser Lys Val Trp Arg Asp Gln His Phe Val Lys Ile Gln Val

Lys Asp Ser Ala Gln Asn Ser Val Ile Ile Val Asp Lys Asn Gly Arg \$195\$ \$200\$

Leu Val Tyr Leu Val Glu Asn Pro Gly Gly Tyr Val Ala Tyr Ser Lys 210 215 220

Ala Ala Thr Val Thr Gly Lys Leu Val His Ala Asn Phe Gly Thr Lys 225 230 235 240

Lys Asp Phe Glu Asp Leu Tyr Thr Pro Val Asn Gly Ser Ile Val Ile 245 250 255

Val Arg Ala Gly Lys Ile Thr Phe Ala Glu Lys Val Ala Asn Ala Glu  $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$ 

Ser Leu Asn Ala Ile Gly Val Leu Ile Tyr Met Asp Gln Thr Lys Phe 275 280 285

Pro Ile Val Asn Ala Glu Leu Ser Phe Phe Gly His Ala His Leu Gly 290 295 300

Thr Gly Asp Pro Tyr Thr Pro Gly Phe Pro Ser Phe Asn His Thr Gln 305 310 315 320

Phe Pro Pro Ser Arg Ser Ser Gly Leu Pro Asn Ile Pro Val Gln Thr 325 330 335

Ile Ser Arg Ala Ala Ala Glu Lys Leu Phe Gly Asn Met Glu Gly Asp  $340 \hspace{1cm} 345 \hspace{1cm} 350$ 

Cys Pro Ser Asp Trp Lys Thr Asp Ser Thr Cys Arg Met Val Thr Ser 355 360 365

| Glu Ser Lys Asn Val<br>370 | Lys Leu Thr Val | Ser Asn Val Leu Lys Glu I<br>380 | le |
|----------------------------|-----------------|----------------------------------|----|
|----------------------------|-----------------|----------------------------------|----|

- Lys Ile Leu Asn Ile Phe Gly Val Ile Lys Gly Phe Val Glu Pro Asp 385 390 395 400
- His Tyr Val Val Val Gly Ala Gln Arg Asp Ala Trp Gly Pro Gly Ala 405 410 415
- Ala Lys Ser Gly Val Gly Thr Ala Leu Leu Leu Lys Leu Ala Gln Met 420 \$420\$
- Phe Ser Asp Met Val Leu Lys Asp Gly Phe Gln Pro Ser Arg Ser Ile 435 440 445
- Glu Trp Leu Glu Gly Tyr Leu Ser Ser Leu His Leu Lys Ala Phe Thr 465 \$470\$
- Tyr Ile Asn Leu Asp Lys Ala Val Leu Gly Thr Ser Asn Phe Lys Val \$485\$ \$490\$
- Ser Ala Ser Pro Leu Leu Tyr Thr Leu Ile Glu Lys Thr Met Gln Asn 500 510
- Val Lys His Pro Val Thr Gly Gln Phe Leu Tyr Gln Asp Ser Asn Trp  $515 \hspace{1cm} 520 \hspace{1cm} 525$
- Ala Ser Lys Val Glu Lys Leu Thr Leu Asp Asn Ala Ala Phe Pro Phe 530 540
- Leu Ala Tyr Ser Gly Ile Pro Ala Val Ser Phe Cys Phe Cys Glu Asp  $545 \hspace{1.5cm} 550 \hspace{1.5cm} 555 \hspace{1.5cm} 560$
- Thr Asp Tyr Pro Tyr Leu Gly Thr Thr Met Asp Thr Tyr Lys Glu Leu \$565\$ \$570\$
- Ile Glu Arg Ile Pro Glu Leu Asn Lys Val Ala Arg Ala Ala Ala Glu 580 585 590
- Val Ala Gly Gln Phe Val Ile Lys Leu Thr His Asp Val Glu Leu Asn 595 600 605
- Leu Asp Tyr Glu Arg Tyr Asn Ser Gln Leu Leu Ser Phe Val Arg Asp

610 615 620

Leu Asn Gln Tyr Arg Ala Asp Ile Lys Glu Met Gly Leu Ser Leu Gln 625 630 635 640

Trp Leu Tyr Ser Ala Arg Gly Asp Phe Phe Arg Ala Thr Ser Arg Leu \$645\$

Thr Thr Asp Phe Gly Asn Ala Glu Lys Thr Asp Arg Phe Val Met Lys 660 665 670

Lys Leu Asn Asp Arg Val Met Arg Val Glu Tyr His Phe Leu Ser Pro 675 680 685

Tyr Val Ser Pro Lys Glu Ser Pro Phe Arg His Val Phe Trp Gly Ser 690 695 700

Gly Ser His Thr Leu Pro Ala Leu Leu Glu Asn Leu Lys Leu Arg Lys 705 710 715 720

Gln Asn Asn Gly Ala Phe Asn Glu Thr Leu Phe Arg Asn Gln Leu Ala 725 730 735

Leu Ala Thr Trp Thr Ile Gln Gly Ala Ala Asn Ala Leu Ser Gly Asp 740 745 750

Val Trp Asp Ile Asp Asn Glu Phe 755 760

<210> 2422

<211> 247

<212> PRT

<213> Homo sapiens

<400> 2422

Met Leu Leu Pro Leu Pro Leu Leu Leu Phe Leu Leu Cys Ser Arg

1 10 15

Ala Glu Ala Gly Glu Ile Ile Gly Gly Thr Glu Cys Lys Pro His Ser

Arg Pro Tyr Met Ala Tyr Leu Glu Ile Val Thr Ser Asn Gly Pro Ser 35 40 45

Lys Phe Cys Gly Gly Phe Leu Ile Arg Arg Asn Phe Val Leu Thr Ala 50 55 60

Ala His Cys Ala Gly Arg Ser Ile Thr Val Thr Leu Gly Ala His Asn 65 70 75 80

Ile Thr Glu Glu Glu Asp Thr Trp Gln Lys Leu Glu Val Ile Lys Gln 85 90 95

Phe Arg His Pro Lys Tyr Asn Thr Ser Thr Leu His His Asp Ile Met

Leu Leu Lys Leu Lys Glu Lys Ala Ser Leu Thr Leu Ala Val Gly Thr 115 120 125

Leu Pro Phe Pro Ser Gln Phe Asn Phe Val Pro Pro Gly Arg Met Cys 130 135 140

Arg Val Ala Gly Trp Gly Arg Thr Gly Val Leu Lys Pro Gly Ser Asp 145  $\phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}$ 

Thr Leu Gln Glu Val Lys Leu Arg Leu Met Asp Pro Gln Ala Cys Ser 165 170 175

His Phe Arg Asp Phe Asp His Asn Leu Gln Leu Cys Val Gly Asn Pro 180 185 190

Arg Lys Thr Lys Ser Ala Phe Lys Gly Asp Ser Gly Gly Pro Leu Leu 195 200 205

Cys Ala Gly Val Ala Gln Gly Ile Val Ser Tyr Gly Arg Ser Asp Ala 210 215 220

Lys Pro Pro Ala Val Phe Thr Arg Ile Ser His Tyr Arg Pro Trp Ile 225  $\phantom{\bigg|}230\phantom{\bigg|}235\phantom{\bigg|}240\phantom{\bigg|}$ 

Asn Gln Ile Leu Gln Ala Asn 245

<210> 2423

<211> 976

<212> PRT

<213> Homo sapiens

<400> 2423

Met Arg Gly Ala Arg Gly Ala Trp Asp Phe Leu Cys Val Leu Leu Leu 1  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Leu Leu Arg Val Gln Thr Gly Ser Ser Gln Pro Ser Val Ser Pro Gly

Glu Pro Ser Pro Pro Ser Ile His Pro Gly Lys Ser Asp Leu Ile Val 

Arg Val Gly Asp Glu Ile Arg Leu Leu Cys Thr Asp Pro Gly Phe Val

Lys Trp Thr Phe Glu Ile Leu Asp Glu Thr Asn Glu Asn Lys Gln Asn 

Glu Trp Ile Thr Glu Lys Ala Glu Ala Thr Asn Thr Gly Lys Tyr Thr 

Cys Thr Asn Lys His Gly Leu Ser Asn Ser Ile Tyr Val Phe Val Arg 

Asp Pro Ala Lys Leu Phe Leu Val Asp Arg Ser Leu Tyr Gly Lys Glu 

Asp Asn Asp Thr Leu Val Arg Cys Pro Leu Thr Asp Pro Glu Val Thr 

Asn Tyr Ser Leu Lys Gly Cys Gln Gly Lys Pro Leu Pro Lys Asp Leu 

Arg Phe Ile Pro Asp Pro Lys Ala Gly Ile Met Ile Lys Ser Val Lys 

Arg Ala Tyr His Arg Leu Cys Leu His Cys Ser Val Asp Gln Glu Gly 

Lys Ser Val Leu Ser Glu Lys Phe Ile Leu Lys Val Arg Pro Ala Phe 

Lys Ala Val Pro Val Val Ser Val Ser Lys Ala Ser Tyr Leu Leu Arg 

Glu Gly Glu Glu Phe Thr Val Thr Cys Thr Ile Lys Asp Val Ser Ser 

Ser Val Tyr Ser Thr Trp Lys Arg Glu Asn Ser Gln Thr Lys Leu Gln 

Glu Lys Tyr Asn Ser Trp His His Gly Asp Phe Asn Tyr Glu Arg Gln 

Ala Thr Leu Thr Ile Ser Ser Ala Arg Val Asn Asp Ser Gly Val Phe 275 280 285

Met Cys Tyr Ala Asn Asn Thr Phe Gly Ser Ala Asn Val Thr Thr Thr 290 \$295\$

Leu Glu Val Val Asp Lys Gly Phe Ile Asn Ile Phe Pro Met Ile Asn 305 \$310\$ 310 \$315\$

Thr Thr Val Phe Val Asn Asp Gly Glu Asn Val Asp Leu Ile Val Glu 325 330 335

Tyr Glu Ala Phe Pro Lys Pro Glu His Gln Gln Trp Ile Tyr Met Asn \$340\$ \$350\$

Arg Thr Phe Thr Asp Lys Trp Glu Asp Tyr Pro Lys Ser Glu Asn Glu 355 360 365

Ser Asn Ile Arg Tyr Val Ser Glu Leu His Leu Thr Arg Leu Lys Gly 370 380

Thr Glu Gly Gly Thr Tyr Thr Phe Leu Val Ser Asn Ser Asp Val Asn 385 390 395 400

Ala Ala Ile Ala Phe Asn Val Tyr Val Asn Thr Lys Pro Glu Ile Leu \$405\$ \$410\$

Thr Tyr Asp Arg Leu Val Asn Gly Met Leu Gln Cys Val Ala Ala Gly \$420\$ \$430

Phe Pro Glu Pro Thr Ile Asp Trp Tyr Phe Cys Pro Gly Thr Glu Gln 435 440 445

Arg Cys Ser Ala Ser Val Leu Pro Val Asp Val Gln Thr Leu Asn Ser 450 455 460

Ser Gly Pro Pro Phe Gly Lys Leu Val Val Gln Ser Ser Ile Asp Ser 465 470 475 480

Ser Ala Phe Lys His Asn Gly Thr Val Glu Cys Lys Ala Tyr Asn Asp 485 490 495

Val Gly Lys Thr Ser Ala Tyr Phe Asn Phe Ala Phe Lys Gly Asn Asn 500 505 510

Lys Glu Gln Ile His Pro His Thr Leu Phe Thr Pro Leu Leu Ile Gly
515 526

- Phe Val Ile Val Ala Gly Met Met Cys Ile Ile Val Met Ile Leu Thr 530 535
- Tyr Lys Tyr Leu Gln Lys Pro Met Tyr Glu Val Gln Trp Lys Val Val 545 550 555 555
- Glu Glu Ile Asn Gly Asn Asn Tyr Val Tyr Ile Asp Pro Thr Gln Leu 565 570 575
- Pro Tyr Asp His Lys Trp Glu Phe Pro Arg Asn Arg Leu Ser Phe Gly 580 585 590
- Lys Thr Leu Gly Ala Gly Ala Phe Gly Lys Val Val Glu Ala Thr Ala 595 600 605
- Tyr Gly Leu Ile Lys Ser Asp Ala Ala Met Thr Val Ala Val Lys Met 610 620
- Leu Lys Pro Ser Ala His Leu Thr Glu Arg Glu Ala Leu Met Ser Glu 625 630 635 640
- Leu Lys Val Leu Ser Tyr Leu Gly Asn His Met Asn Ile Val Asn Leu 645 650 655
- Leu Gly Ala Cys Thr Ile Gly Gly Pro Thr Leu Val Ile Thr Glu Tyr
  660 665 670
- Cys Cys Tyr Gly Asp Leu Leu Asn Phe Leu Arg Arg Lys Arg Asp Ser  $675 \hspace{1.5cm} 680 \hspace{1.5cm} 685$
- Phe Ile Cys Ser Lys Gln Glu Asp His Ala Glu Ala Ala Leu Tyr Lys 690 700
- Asn Leu Leu His Ser Lys Glu Ser Ser Cys Ser Asp Ser Thr Asn Glu 705 710 715 720
- Tyr Met Asp Met Lys Pro Gly Val Ser Tyr Val Val Pro Thr Lys Ala  $725 \hspace{1cm} 730 \hspace{1cm} 735$
- Asp Lys Arg Arg Ser Val Arg Ile Gly Ser Tyr Ile Glu Arg Asp Val 740 745 750

Thr Pro Ala Ile Met Glu Asp Asp Glu Leu Ala Leu Asp Leu Glu Asp 

- Leu Leu Ser Phe Ser Tyr Gln Val Ala Lys Gly Met Ala Phe Leu Ala
- Ser Lys Asn Cys Ile His Arg Asp Leu Ala Ala Arg Asn Ile Leu Leu
- Thr His Gly Arg Ile Thr Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp
- Ile Lys Asn Asp Ser Asn Tyr Val Val Lys Gly Asn Ala Arg Leu Pro
- Val Lys Trp Met Ala Pro Glu Ser Ile Phe Asn Cys Val Tyr Thr Phe
- Glu Ser Asp Val Trp Ser Tyr Gly Ile Phe Leu Trp Glu Leu Phe Ser
- Leu Gly Ser Ser Pro Tyr Pro Gly Met Pro Val Asp Ser Lys Phe Tyr
- Lys Met Ile Lys Glu Gly Phe Arg Met Leu Ser Pro Glu His Ala Pro
- Ala Glu Met Tyr Asp Ile Met Lys Thr Cys Trp Asp Ala Asp Pro Leu
- Lys Arg Pro Thr Phe Lys Gln Ile Val Gln Leu Ile Glu Lys Gln Ile
- Ser Glu Ser Thr Asn His Ile Tyr Ser Asn Leu Ala Asn Cys Ser Pro
- Asn Arg Gln Lys Pro Val Val Asp His Ser Val Arg Ile Asn Ser Val
- Gly Ser Thr Ala Ser Ser Ser Gln Pro Leu Leu Val His Asp Asp Val

<sup>&</sup>lt;210> 2424

<sup>&</sup>lt;211> 635 <212> PRT

<sup>&</sup>lt;213> Homo sapiens

| -1 | 00> | 24 | 21 |
|----|-----|----|----|
|    |     |    |    |

Met Pro Ser Trp Ala Leu Phe Met Val Thr Ser Cys Leu Leu Leu Ala

Pro Gln Asn Leu Ala Gln Val Ser Ser Gln Asp Val Ser Leu Leu Ala 20 25 30

Ser Asp Ser Glu Pro Leu Lys Cys Phe Ser Arg Thr Phe Glu Asp Leu 35 40 45

Thr Cys Phe Trp Asp Glu Glu Glu Ala Ala Pro Ser Gly Thr Tyr Gln 50

Leu Leu Tyr Ala Tyr Pro Arg Glu Lys Pro Arg Ala Cys Pro Leu Ser 65 70 75 80

Ser Gln Ser Met Pro His Phe Gly Thr Arg Tyr Val Cys Gln Phe Pro 85 90~ 95

Asp Gln Glu Glu Val Arg Leu Phe Phe Pro Leu His Leu Trp Val Lys

Asn Val Phe Leu Asn Gln Thr Arg Thr Gln Arg Val Leu Phe Val Asp

Ser Val Gly Leu Pro Ala Pro Pro Ser Ile Ile Lys Ala Met Gly Gly 130 135 140

Ser Gln Pro Gly Glu Leu Gln Ile Ser Trp Glu Glu Pro Ala Pro Glu 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Ile Ser Asp Phe Leu Arg Tyr Glu Leu Arg Tyr Gly Pro Arg Asp Pro 165 170 175

Lys Asn Ser Thr Gly Pro Thr Val Ile Gln Leu Ile Ala Thr Glu Thr 180  $$185\$ 

Cys Cys Pro Ala Leu Gln Arg Pro His Ser Ala Ser Ala Leu Asp Gln 195 200 205

Ser Pro Cys Ala Gln Pro Thr Met Pro Trp Gln Asp Gly Pro Lys Gln 210  $\phantom{\bigg|}215\phantom{\bigg|}220\phantom{\bigg|}$ 

Thr Ser Pro Ser Arg Glu Ala Ser Ala Leu Thr Ala Glu Gly Gly Ser 225 230 235 240

Cys Leu Ile Ser Gly Leu Gln Pro Gly Asn Ser Tyr Trp Leu Gln Leu Arg Ser Glu Pro Asp Gly Ile Ser Leu Gly Gly Ser Trp Gly Ser Trp Ser Leu Pro Val Thr Val Asp Leu Pro Gly Asp Ala Val Ala Leu Gly Leu Gln Cys Phe Thr Leu Asp Leu Lys Asn Val Thr Cys Gln Trp Gln Gln Gln Asp His Ala Ser Ser Gln Gly Phe Phe Tyr His Ser Arg Ala Arg Cys Cys Pro Arg Asp Arg Tyr Pro Ile Trp Glu Asn Cys Glu Glu Glu Glu Lys Thr Asn Pro Gly Leu Gln Thr Pro Gln Phe Ser Arg Cys His Phe Lys Ser Arg Asn Asp Ser Ile Ile His Ile Leu Val Glu Val Thr Thr Ala Pro Gly Thr Val His Ser Tyr Leu Gly Ser Pro Phe Trp Ile His Gln Ala Val Arg Leu Pro Thr Pro Asn Leu His Trp Arg Glu Ile Ser Ser Gly His Leu Glu Leu Glu Trp Gln His Pro Ser Ser Trp Ala Ala Gln Glu Thr Cvs Tvr Gln Leu Arg Tvr Thr Glv Glu Glv His Gln Asp Trp Lys Val Leu Glu Pro Pro Leu Gly Ala Arg Gly Gly Thr Leu Glu Leu Arg Pro Arg Ser Arg Tyr Arg Leu Gln Leu Arg Ala Arg Leu Asn Gly Pro Thr Tyr Gln Gly Pro Trp Ser Ser Trp Ser Asp Pro 

Thr Arg Val Glu Thr Ala Thr Glu Thr Ala Trp Ile Ser Leu Val Thr 485 490 495

Ala Leu His Leu Val Leu Gly Leu Ser Ala Val Leu Gly Leu Leu Leu 500 505 510

Leu Arg Trp Gln Phe Pro Ala His Tyr Arg Arg Leu Arg His Ala Leu 515 520 525

Trp Pro Ser Leu Pro Asp Leu His Arg Val Leu Gly Gln Tyr Leu Arg  $530 \hspace{1.5cm} 535 \hspace{1.5cm} 540 \hspace{1.5cm}$ 

Asp Thr Ala Ala Leu Ser Pro Pro Lys Ala Thr Val Ser Asp Thr Cys 545 550 555

Glu Glu Val Glu Pro Ser Leu Leu Glu Ile Leu Pro Lys Ser Ser Glu 565 570 575

Arg Thr Pro Leu Pro Leu Cys Ser Ser Gln Ala Gln Met Asp Tyr Arg 580 585 590

Arg Leu Gln Pro Ser Cys Leu Gly Thr Met Pro Leu Ser Val Cys Pro 595 600 605

Pro Met Ala Glu Ser Gly Ser Cys Cys Thr Thr His Ile Ala Asn His 610 615 620

Ser Tyr Leu Pro Leu Ser Tyr Trp Gln Gln Pro 625 630 635

<210> 2425

<211> 1006

<212> PRT

<213> Homo sapiens

<400> 2425

Met Val Cys Ser Leu Trp Val Leu Leu Leu Val Ser Ser Val Leu Ala 1 5 10 15

Leu Glu Glu Val Leu Leu Asp Thr Thr Gly Glu Thr Ser Glu Ile Gly 20 25 30

Trp Leu Thr Tyr Pro Pro Gly Gly Trp Asp Glu Val Ser Val Leu Asp  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Asp Gln Arg Arg Leu Thr Arg Thr Phe Glu Ala Cys His Val Ala Gly 50 55 60

Ala Pro Pro Gly Thr Gly Gln Asp Asn Trp Leu Gln Thr His Phe Val Glu Arg Arg Gly Ala Gln Arg Ala His Ile Arg Leu His Phe Ser Val Arg Ala Cys Ser Ser Leu Gly Val Ser Gly Gly Thr Cys Arg Glu Thr Phe Thr Leu Tyr Tyr Arg Gln Ala Glu Glu Pro Asp Ser Pro Asp Ser Val Ser Ser Trp His Leu Lys Arg Trp Thr Lys Val Asp Thr Ile Ala Ser Ala Ala Trp Ala Val Gly Pro His Gly Ala Gly Gln Arg Ala Gly Leu Gln Leu Asn Val Lys Glu Arg Ser Phe Gly Pro Leu Thr Gln Arg Gly Phe Tyr Val Ala Phe Gln Asp Thr Gly Ala Cys Leu Ala Leu Val Ala Val Arg Leu Phe Ser Tyr Thr Cys Pro Ala Val Leu Arg Ser Phe Ala Ser Phe Pro Glu Thr Gln Ala Ser Gly Ala Gly Gly Ala Ser Leu Val Ala Ala Val Gly Thr Cys Val Ala His Ala Glu Pro Glu Glu Asp Gly Val Gly Gln Ala Gly Gly Ser Pro Pro Arg Leu His Cys Asn Gly Glu Gly Lys Trp Met Val Ala Val Gly Gly Cys Arg Cys Gln Pro 

Gly Tyr Gln Pro Ala Arg Gly Asp Lys Ala Cys Gln Ala Cys Pro Arg 290 295 300

| Gl <sub>3</sub><br>305 | Leu        | туз        | Lys        | Ser        | Ser<br>310 | Ala        | Gly        | ' Asr      | a Ala      | 315        |            | s Sei      | Pro        | Су:        | 320        |
|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ala                    | Arg        | Se:        | His        | 325        | Pro        | Asn        | Pro        | Ala        | Ala<br>330 | Pro        | Val        | Cys        | Pro        | 335        |            |
| Glu                    | Gly        | Phe        | Tyr<br>340 | Arg        | Ala        | Ser        | Ser        | Asp<br>345 | Pro        | Pro        | Glu        | Ala        | 350        |            | Thi        |
| Gly                    | Pro        | Pro<br>355 | Ser        | Ala        | Pro        | Gln        | Glu<br>360 | Leu        | Trp        | Phe        | Glu        | Val<br>365 |            | Gly        | Sei        |
| Ala                    | Leu<br>370 | Met        | Leu        | His        | Trp        | Arg<br>375 | Leu        | Pro        | Arg        | Glu        | Leu<br>380 |            | Gly        | Arg        | Gly        |
| Asp<br>385             | Leu        | Leu        | Phe        | Asn        | Val<br>390 | Val        | Cys        | Lys        | Glu        | Cys<br>395 |            | Gly        | Arg        | Gln        | Glu<br>400 |
| Pro                    | Ala        | Ser        | Gly        | Gly<br>405 | Gly        | Gly        | Thr        | Cys        | His<br>410 | Arg        | Cys        | Arg        | Asp        | Glu<br>415 |            |
| His                    | Phe        | Asp        | Pro<br>420 | Arg        | Gln        | Arg        | Gly        | Leu<br>425 | Thr        | Glu        | Ser        | Arg        | Val<br>430 | Leu        | Val        |
| Gly                    | Gly        | Leu<br>435 | Arg        | Ala        | His        | Val        | Pro<br>440 | Tyr        | Ile        | Leu        | Glu        | Val<br>445 | Gln        | Ala        | Val        |
| Asn                    | Gly<br>450 | Val        | Ser        | Glu        | Leu        | Ser<br>455 | Pro        | Asp        | Pro        | Pro        | Gln<br>460 | Ala        | Ala        | Ala        | Ile        |
| Asn<br>465             | Val        | Ser        | Thr        | Ser        | His<br>470 | Glu        | Val        | Pro        | Ser        | Ala<br>475 | Val        | Pro        | Val        | Val        | His<br>480 |
| Gln                    | Val        | Ser        | Arg        | Ala<br>485 | Ser        | Asn        | Ser        | Ile        | Thr<br>490 | Val        | Ser        | Trp        | Pro        | Gln<br>495 | Pro        |
| Asp                    | Gln        | Thr        | Asn<br>500 | Gly        | Asn        | Ile        | Leu        | Asp<br>505 | Tyr        | Gln        | Leu        | Arg        | Tyr<br>510 | Tyr        | Asp        |
| Gln                    | Ala        | Glu<br>515 | Asp        | Glu        | Ser        | His        | Ser<br>520 | Phe        | Thr        | Leu        | Thr        | Ser<br>525 | Glu        | Thr        | Asn        |
|                        |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

Thr Ala Thr Val Thr Gln Leu Ser Pro Gly His Ile Tyr Gly Phe Gln  $530 \ \ \,$  535  $\ \ \,$  540

Val Arg Ala Arg Thr Ala Ala Gly His Gly Pro Tyr Gly Gly Lys Val 545 550 560

Tyr Phe Gln Thr Leu Pro Gln Gly Glu Leu Ser Ser Gln Leu Pro Glu 565 570 575

Arg Leu Ser Leu Val Ile Gly Ser Ile Leu Gly Ala Leu Ala Phe Leu 580 585 590

Leu Leu Ala Ala Ile Thr Val Leu Ala Val Val Phe Gln Arg Lys Arg 595 600 605

Arg Gly Thr Gly Tyr Thr Glu Gln Leu Gln Gln Tyr Ser Ser Pro Gly 610 620

Leu Gly Val Lys Tyr Tyr Ile Asp Pro Ser Thr Tyr Glu Asp Pro Cys 625 630 635 640

Gln Ala Ile Arg Glu Leu Ala Arg Glu Val Asp Pro Ala Tyr Ile Lys 645 655

Ile Glu Glu Val Ile Gly Thr Gly Ser Phe Gly Glu Val Arg Gln Gly
660 665 670

Arg Leu Gln Pro Arg Gly Arg Arg Glu Gln Thr Val Ala Ile Gln Ala 675 680 685

Leu Trp Ala Gly Gly Ala Glu Ser Leu Gln Met Thr Phe Leu Gly Arg 690 695 700

Ala Ala Val Leu Gly Gln Phe Gln His Pro Asn Ile Leu Arg Leu Glu 705 710 715 720

Gly Val Val Thr Lys Ser Arg Pro Leu Met Val Leu Thr Glu Phe Met 725 730 735

Glu Leu Gly Pro Leu Asp Ser Phe Leu Arg Gln Arg Glu Gly Gln Phe
740 750

Ser Ser Leu Gln Leu Val Ala Met Gln Arg Gly Val Ala Ala Ala Met 755 760 765

Gln Tyr Leu Ser Ser Phe Ala Phe Val His Arg Ser Leu Ser Ala His 770 775 780

Ser Val Leu Val Asn Ser His Leu Val Cys Lys Val Ala Arg Leu Gly

729

785 790 795 800

His Ser Pro Gln Gly Pro Ser Cys Leu Leu Arg Trp Ala Ala Pro Glu 805 810 815

Val Ile Ala His Gly Lys His Thr Thr Ser Ser Asp Val Trp Ser Phe 820 \$820\$

Gly Ile Leu Met Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp 835 840 845

Asp Met Ser Glu Gln Glu Val Leu Asn Ala Ile Glu Gln Glu Phe Arg 850 855 860

Leu Pro Pro Pro Pro Gly Cys Pro Pro Gly Leu His Leu Leu Met Leu 865 870 875

Asp Thr Trp Gln Lys Asp Arg Ala Arg Arg Pro His Phe Asp Gln Leu 885 890 895

Val Ala Ala Phe Asp Lys Met Ile Arg Lys Pro Asp Thr Leu Gln Ala 900 905 910

Gly Gly Asp Pro Gly Glu Arg Pro Ser Gln Ala Leu Leu Thr Pro Val 915 920 925

Ala Leu Asp Phe Pro Cys Leu Asp Ser Pro Gln Ala Trp Leu Ser Ala 930 935 940

Ile Gly Leu Glu Cys Tyr Gln Asp Asn Phe Ser Lys Phe Gly Leu Cys 945 950 955 960

Thr Phe Ser Asp Val Ala Gln Leu Ser Leu Glu Asp Leu Pro Ala Leu 965 970 975

Gly Ile Thr Leu Ala Gly His Gln Lys Lys Leu Leu His His Ile Gln 980 985 990

Leu Leu Gln Gln His Leu Arg Gln Gln Gly Ser Val Glu Val 995 1000 1005

<210> 2426

<211> 508 <212> PRT

<213> Homo sapiens

<400> 2426

Met Asp His Leu Gly Ala Ser Leu Trp Pro Gln Val Gly Ser Leu Cys 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Leu Leu Leu Ala Gly Ala Ala Trp Ala Pro Pro Pro Asn Leu Pro Asp  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Pro Lys Phe Glu Ser Lys Ala Ala Leu Leu Ala Ala Arg Gly Pro Glu  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Glu Leu Leu Cys Phe Thr Glu Arg Leu Glu Asp Leu Val Cys Phe Trp 50 60

Glu Glu Ala Ala Ser Ala Gly Val Gly Pro Gly Asn Tyr Ser Phe Ser  $65 \\ 0 \\ 70 \\ 75 \\ 80$ 

Tyr Gln Leu Glu Asp Glu Pro Trp Lys Leu Cys Arg Leu His Gln Ala 85 90 95

Pro Thr Ala Arg Gly Ala Val Arg Phe Trp Cys Ser Leu Pro Thr Ala 100 105 110

Asp Thr Ser Ser Phe Val Pro Leu Glu Leu Arg Val Thr Ala Ala Ser 115  $$\rm 120$$ 

Gly Ala Pro Arg Tyr His Arg Val Ile His Ile Asn Glu Val Val Leu 130 140

Leu Asp Ala Pro Val Gly Leu Val Ala Arg Leu Ala Asp Glu Ser Gly 145 155 160

His Val Val Leu Arg Trp Leu Pro Pro Pro Glu Thr Pro Met Thr Ser 165 170 175

His Ile Arg Tyr Glu Val Asp Val Ser Ala Gly Asn Gly Ala Gly Ser 180 185 190

Val Gln Arg Val Glu Ile Leu Glu Gly Arg Thr Glu Cys Val Leu Ser 195 200 205

Ala Glu Pro Ser Phe Gly Gly Phe Trp Ser Ala Trp Ser Glu Pro Val 225 230 235 240

Ser Leu Leu Thr Pro Ser Asp Leu Asp Pro Leu Ile Leu Thr Leu Ser 245 250 255

Leu Ile Leu Val Val Ile Leu Val Leu Leu Thr Val Leu Ala Leu Leu 260 265 270

Ser His Arg Arg Ala Leu Lys Gln Lys Ile Trp Pro Gly Ile Pro Ser  $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285 \hspace{1.5cm} .$ 

Pro Glu Ser Glu Phe Glu Gly Leu Phe Thr Thr His Lys Gly Asn Phe 290 295 300

Gln Leu Trp Leu Tyr Gln Asn Asp Gly Cys Leu Trp Trp Ser Pro Cys 305 310 315 320

Thr Pro Phe Thr Glu Asp Pro Pro Ala Ser Leu Glu Val Leu Ser Glu
325 330 335

Arg Cys Trp Gly Thr Met Gln Ala Val Glu Pro Gly Thr Asp Asp Glu 340 345 350

Gly Pro Leu Leu Glu Pro Val Gly Ser Glu His Ala Gln Asp Thr Tyr 355 360 365

Leu Val Leu Asp Lys Trp Leu Leu Pro Arg Asn Pro Pro Ser Glu Asp 370 380

Leu Pro Gly Pro Gly Gly Ser Val Asp Ile Val Ala Met Asp Glu Gly 385 390 395 400

Ser Glu Ala Ser Ser Ser Ser Ala Leu Ala Ser Lys Pro Ser Pro 405 410 415

Glu Gly Ala Ser Ala Ala Ser Phe Glu Tyr Thr Ile Leu Asp Pro Ser 420 425 430

Ser Gln Leu Leu Arg Pro Trp Thr Leu Cys Pro Glu Leu Pro Pro Thr 435 440 445

Pro Pro His Leu Lys Tyr Leu Tyr Leu Val Val Ser Asp Ser Gly Ile 450 460

Ser Thr Asp Tyr Ser Ser Gly Asp Ser Gln Gly Ala Gln Gly Gly Leu 465 470 475 480

Ser Asp Gly Pro Tyr Ser Asn Pro Tyr Glu Asn Ser Leu Ile Pro Ala

485 490 495

Ala Glu Pro Leu Pro Pro Ser Tyr Val Ala Cys Ser

<210> 2427

<211> 441 <212> PRT

<213> Homo sapiens

<400> 2427

Met Ser Pro Ile Ser Gly Ala Ser Pro Ser Trp Arg Ala Ala Pro Lys 1  $\phantom{\Big|}$  10  $\phantom{\Big|}$  15

Ala Ser Asp Leu Leu Gly Ala Arg Gly Pro Gly Gly Thr Phe Gln Gly 20 25 30

Arg Asp Leu Arg Gly Gly Ala His Ala Ser Ser Ser Ser Leu Asn Pro \$35\$

Met Pro Pro Ser Gln Leu Gln Leu Ser Thr Val Asp Ala His Ala Arg 50 60

Thr Pro Val Leu Gln Val His Pro Leu Glu Ser Pro Ala Met Ile Ser 65 70 75 80

Leu Thr Pro Pro Thr Thr Ala Thr Gly Val Phe Ser Leu Lys Ala Arg \$85\$ 90 95

Pro Gly Leu Pro Pro Gly Ile Asn Val Ala Ser Leu Glu Trp Val Ser 100 105 110

Arg Glu Pro Ala Leu Leu Cys Thr Phe Pro Asn Pro Ser Ala Pro Arg 115 120 125

Lys Asp Ser Thr Leu Ser Ala Val Pro Gln Ser Ser Tyr Pro Leu Leu 130 135 140

Ala Asn Gly Val Cys Lys Trp Pro Gly Cys Glu Lys Val Phe Glu Glu 145 155 160

Pro Glu Asp Phe Leu Lys His Cys Gln Ala Asp His Leu Leu Asp Glu 165 170 175

Lys Gly Arg Ala Gln Cys Leu Leu Gln Arg Glu Met Val Gln Ser Leu 180 185 190

Glu Gln Gln Leu Val Leu Glu Lys Glu Lys Leu Ser Ala Met Gln Ala 195 200 205

- His Leu Ala Gly Lys Met Ala Leu Thr Lys Ala Ser Ser Val Ala Ser 210 215 220
- Ser Asp Lys Gly Ser Cys Cys Ile Val Ala Ala Gly Ser Gln Gly Pro 225 230 235 240
- Val Val Pro Ala Trp Ser Gly Pro Arg Glu Ala Pro Asp Ser Leu Phe 245 250 250
- Ala Val Arg Arg His Leu Trp Gly Ser His Gly Asn Ser Thr Phe Pro \$260\$ \$265\$ \$270\$
- Glu Phe Leu His Asn Met Asp Tyr Phe Lys Phe His Asn Met Arg Pro  $275 \hspace{1cm} 280 \hspace{1cm} 285 \hspace{1cm}$
- Pro Phe Thr Tyr Ala Thr Leu Ile Arg Trp Ala Ile Leu Glu Ala Pro 290 295 300
- Glu Lys Gln Arg Thr Leu Asn Glu Ile Tyr His Trp Phe Thr Arg Met 305 310 315 320
- Phe Ala Phe Phe Arg Asn His Pro Ala Thr Trp Lys Val Ser Ser Ser Ser 335
- Glu Val Ala Val Thr Gly Met Ala Ser Ser Ala Ile Ala Ala Gln Ser 340 345 350
- Gly Gln Ala Trp Val Trp Ala His Arg His Ile Gly Glu Glu Arg Asp 355 360 365
- Val Gly Cys Trp Trp Trp Leu Leu Ala Ser Glu Val Asp Ala His Leu 370 380
- Leu Pro Val Pro Gly Leu Pro Gln Asn Ala Ile Arg His Asn Leu Ser 385 390 395 400
- Leu His Lys Cys Phe Val Arg Val Glu Ser Glu Lys Gly Ala Val Trp 405 410 415
- Thr Val Asp Glu Leu Glu Phe Arg Lys Lys Arg Ser Gln Arg Pro Ser 420 425 430

Arg Cys Ser Asn Pro Thr Pro Gly Pro

<210> 2428 <211> 413

<211> 413

<213> Homo sapiens

<400> 2428

Met Glu Phe Pro Gly Leu Gly Ser Leu Gly Thr Ser Glu Pro Leu Pro 1 5 10 15

Gln Phe Val Asp Pro Ala Leu Val Ser Ser Thr Pro Glu Ser Gly Val

Phe Phe Pro Ser Gly Pro Glu Gly Leu Asp Ala Ala Ala Ser Ser Thr 35 40 45

Ala Pro Ser Thr Ala Thr Ala Ala Ala Ala Ala Leu Ala Tyr Tyr Arg 50  $\,$  60  $\,$ 

Asp Ala Glu Ala Tyr Arg His Ser Pro Val Phe Gln Val Tyr Pro Leu 65 70 75 80

Leu Asn Cys Met Glu Gly Ile Pro Gly Gly Ser Pro Tyr Ala Gly Trp 85 90 95

Ala Tyr Gly Lys Thr Gly Leu Tyr Pro Ala Ser Thr Val Cys Pro Thr 100  $$105\$ 

Arg Glu Asp Ser Pro Pro Gln Ala Val Glu Asp Leu Asp Gly Lys Gly 115 120 125

Ser Thr Ser Phe Leu Glu Thr Leu Lys Thr Glu Arg Leu Ser Pro Asp 130 140

Leu Leu Thr Leu Gly Pro Ala Leu Pro Ser Ser Leu Pro Val Pro Asn 145 150 155 160

Ser Ala Tyr Gly Gly Pro Asp Phe Ser Ser Thr Phe Phe Ser Pro Thr 165 170 175

Gly Ser Pro Leu Asn Ser Ala Ala Tyr Ser Ser Pro Lys Leu Arg Gly 180  $$185\$ 

Thr Leu Pro Leu Pro Pro Cys Glu Ala Arg Glu Cys Val Asn Cys Gly 195  $\phantom{\bigg|}200\phantom{\bigg|}$  205

Ala Thr Ala Thr Pro Leu Trp Arg Arg Asp Arg Thr Gly His Tyr Leu 210 215 220 Cys Asn Ala Cys Gly Leu Tyr His Lys Met Asn Gly Gln Asn Arg Pro 225 230 235 Leu Ile Arg Pro Lys Lys Arg Leu Ile Val Ser Lys Arg Ala Gly Thr 245 250 Gln Cys Thr Asn Cys Gln Thr Thr Thr Thr Thr Leu Trp Arg Asn Ala Ser Gly Asp Pro Val Cys Asn Ala Cys Gly Leu Tyr Tyr Lys Leu 280 His Gln Val Asn Arg Pro Leu Thr Met Arg Lys Asp Glv Ile Gln Thr 295 300 Arg Asn Arg Lys Ala Ser Gly Lys Gly Lys Lys Lys Arg Gly Ser Ser 305 310 315 320 Leu Gly Gly Thr Gly Ala Ala Glu Gly Pro Ala Gly Gly Phe Met Val 325 330 335 Val Ala Gly Gly Ser Gly Ser Gly Asn Cys Gly Glu Val Ala Ser Gly 340 345 350 Leu Thr Leu Gly Pro Pro Gly Thr Ala His Leu Tyr Gln Gly Leu Gly 355 360 365

Pro Val Val Leu Ser Gly Pro Val Ser His Leu Met Pro Phe Pro Gly

Pro Leu Leu Gly Ser Pro Thr Gly Ser Phe Pro Thr Gly Pro Met Pro 385 390 395

Pro Thr Thr Ser Thr Thr Val Val Ala Pro Leu Ser Ser

<210> 2429

<211> 1039 <212> PRT

<213> Homo sapiens

<400> 2429

Met Ala Arg Ala Leu Cys Pro Leu Gln Ala Leu Trp Leu Leu Glu Trp 1 5 10 15

- Val Leu Leu Leu Gly Pro Cys Ala Ala Pro Pro Ala Trp Ala Leu 20 25 30
- Asn Leu Asp Pro Val Gln Leu Thr Phe Tyr Ala Gly Pro Asn Gly Ser  $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$
- Gln Phe Gly Phe Ser Leu Asp Phe His Lys Asp Ser His Gly Arg Val 50 60
- Ala Ile Val Val Gly Ala Pro Arg Thr Leu Gly Pro Ser Gln Glu Glu 65 70 75 80
- Thr Gly Gly Val Phe Leu Cys Pro Trp Arg Ala Glu Gly Gly Gln Cys 85 90 95
- Pro Ser Leu Leu Phe Asp Leu Arg Asp Glu Thr Arg Asn Val Gly Ser 100 105 110
- Gln Thr Leu Gln Thr Phe Lys Ala Arg Gln Gly Leu Gly Ala Ser Val 115 \$120\$
- Val Ser Trp Ser Asp Val Ile Val Ala Cys Ala Pro Trp Gln His Trp 130 135 140
- Asn Val Leu Glu Lys Thr Glu Glu Ala Glu Lys Thr Pro Val Gly Ser 145 \$150\$
- Cys Phe Leu Ala Gln Pro Glu Ser Gly Arg Arg Ala Glu Tyr Ser Pro 165 170 170 175
- Cys Arg Gly Asn Thr Leu Ser Arg Ile Tyr Val Glu Asn Asp Phe Ser 180 185 190
- Trp Asp Lys Arg Tyr Cys Glu Ala Gly Phe Ser Ser Val Val Thr Gln 195 \$200\$
- Ala Gly Glu Leu Val Leu Gly Ala Pro Gly Gly Tyr Tyr Phe Leu Gly 210 215 220
- Leu Leu Ala Gln Ala Pro Val Ala Asp Ile Phe Ser Ser Tyr Arg Pro 225 230 235 240
- Gly Ile Leu Leu Trp His Val Ser Ser Gln Ser Leu Ser Phe Asp Ser

245 250 255

Ser Asn Pro Glu Tyr Phe Asp Gly Tyr Trp Gly Tyr Ser Val Ala Val 260 265 270

Gly Glu Phe Asp Gly Asp Leu Asn Thr Thr Glu Tyr Val Val Gly Ala 275 280 285

Pro Thr Trp Ser Trp Thr Leu Gly Ala Val Glu Ile Leu Asp Ser Tyr 290 295 300

Tyr Gln Arg Leu His Arg Leu Arg Ala Glu Gln Met Ala Ser Tyr Phe 305 310 315 320

Gly His Ser Val Ala Val Thr Asp Val Asn Gly Asp Gly Arg His Asp 325  $\phantom{\bigg|}$  330  $\phantom{\bigg|}$  335

Leu Leu Val Gly Ala Pro Leu Tyr Met Glu Ser Arg Ala Asp Arg Lys 340 345 350

His Ala Leu Gly Ala Pro Ser Leu Leu Leu Thr Gly Thr Gln Leu Tyr 370 375 380

Gly Arg Phe Gly Ser Ala Ile Ala Pro Leu Gly Asp Leu Asp Arg Asp 385 390 395

Gly Tyr Asn Asp Ile Ala Val Ala Ala Pro Tyr Gly Gly Pro Ser Gly 405 415

Arg Gly Gln Val Leu Val Phe Leu Gly Gln Ser Glu Gly Leu Arg Ser  $420 \\ \hspace*{1.5cm} 425 \\ \hspace*{1.5cm} 430$ 

Arg Pro Ser Gln Val Leu Asp Ser Pro Phe Pro Thr Gly Ser Ala Phe 435 440 445

Asp Leu Ile Val Gly Ala Tyr Gly Ala Asn Gln Val Ala Val Tyr Arg 465 470 475 480

Ala Gln Pro Val Val Lys Ala Ser Val Gln Leu Leu Val Gln Asp Ser 485 490 495

| Leu        | Asn        | Pro        | Ala<br>500 | Val        | Lys        | Ser        | Cys        | Val<br>505 | Leu        | Pro        | Gln        | Thr        | Lys<br>510 | Thr        | Pro        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Val        | Ser        | Cys<br>515 | Phe        | Asn        | Ile        | Gln        | Met<br>520 | Cys        | Val        | Gly        | Ala        | Thr<br>525 | Gly        | His        | Asn        |
| Ile        | Pro<br>530 | Gln        | Lys        | Leu        | Ser        | Leu<br>535 | Asn        | Ala        | Glu        | Leu        | Gln<br>540 | Leu        | Asp        | Arg        | Gln        |
| Lys<br>545 | Pro        | Arg        | Gln        | Gly        | Arg<br>550 | Arg        | Val        | Leu        | Leu        | Leu<br>555 | Gly        | Ser        | Gln        | Gln        | Ala<br>560 |
| Gly        | Thr        | Thr        | Leu        | Asn<br>565 | Leu        | Asp        | Leu        | Gly        | Gly<br>570 | Lys        | His        | Ser        | Pro        | Ile<br>575 | Cys        |
| His        | Thr        | Thr        | Met<br>580 | Ala        | Phe        | Leu        | Arg        | Asp<br>585 | Glu        | Ala        | Asp        | Phe        | Arg<br>590 | Asp        | Lys        |
| Leu        | Ser        | Pro<br>595 | Ile        | val        | Leu        | Ser        | Leu<br>600 | Asn        | Val        | Ser        | Leu        | Pro<br>605 | Pro        | Thr        | Glu        |
| Ala        | Gly<br>610 | Met        | Ala        | Pro        | Ala        | Val<br>615 | Val        | Leu        | His        | Gly        | Asp<br>620 | Thr        | His        | Val        | Gln        |
| Glu<br>625 | Gln        | Thr        | Arg        | Ile        | Val<br>630 | Leu        | Asp        | Ser        | Gly        | Glu<br>635 | Asp        | Asp        | Val        | Сув        | Val<br>640 |
| Pro        | Gln        | Leu        | Gln        | Leu<br>645 | Thr        | Ala        | Ser        | Val        | Thr<br>650 | Gly        | Ser        | Pro        | Leu        | Leu<br>655 | Val        |
| Gly        | Ala        | Asp        | Asn<br>660 | Val        | Leu        | Glu        | Leu        | Gln<br>665 | Met        | Asp        | Ala        | Ala        | Asn<br>670 | Glu        | Gly        |
| Glu        | Gly        | Ala<br>675 | Tyr        | Glu        | Ala        | Glu        | Leu<br>680 | Ala        | Val        | His        | Leu        | Pro<br>685 | Gln        | Gly        | Ala        |
| His        | Tyr<br>690 | Met        | Arg        | Ala        | Leu        | Ser<br>695 | Asn        | Val        | Glu        | Gly        | Phe<br>700 | Glu        | Arg        | Leu        | Ile        |
| Cys<br>705 | Asn        | Gln        | Lys        | Lys        | Glu<br>710 | Asn        | Glu        | Thr        | Arg        | Val<br>715 | Val        | Leu        | Cys        | Glu        | Leu<br>720 |
| Gly        | Asn        | Pro        | Met        | Lys<br>725 | Lys        | Asn        | Ala        |            | Ile<br>730 |            |            | Ala        | Met        | Leu<br>735 | Val        |

Ser Val Gly Asn Leu Glu Glu Ala Gly Glu Ser Val Ser Phe Gln Leu
740 745

- Gln Ile Arg Ser Lys Asn Ser Gln Asn Pro Asn Ser Lys Ile Val Leu 755 760 765
- Leu Asp Val Pro Val Arg Ala Glu Ala Gln Val Glu Leu Arg Gly Asn 770 775 780
- Ser Phe Pro Ala Ser Leu Val Val Ala Ala Glu Glu Gly Glu Arg Glu 785 790 795 800
- Gln Asn Ser Leu Asp Ser Trp Gly Pro Lys Val Glu His Thr Tyr Glu 805 810
- Leu His Asn Asn Gly Pro Gly Thr Val Asn Gly Leu His Leu Ser Ile 820 825 830
- His Leu Pro Gly Gln Ser Gln Pro Ser Asp Leu Leu Tyr Ile Leu Asp 835 840 845
- Ile Gln Pro Gln Gly Gly Leu Gln Cys Phe Pro Gln Pro Pro Val Asn 850 855 860
- Pro Leu Lys Val Asp Trp Gly Leu Pro Ile Pro Ser Pro Ser Pro Ile 865 870 875 880
- His Pro Ala His His Lys Arg Asp Arg Gln Ile Phe Leu Pro Glu 885 890 895
- Pro Glu Gln Pro Ser Arg Leu Gln Asp Pro Val Leu Val Ser Cys Asp 900 905 910
- Ser Ala Pro Cys Thr Val Val Gln Cys Asp Leu Gln Glu Met Ala Arg 915 920 925
- Gly Gln Arg Ala Met Val Thr Val Leu Ala Phe Leu Trp Leu Pro Ser 930 935 940
- Leu Tyr Gln Arg Pro Leu Asp Gln Phe Val Leu Gln Ser His Ala Trp 945 950 955 960
- Phe Asn Val Ser Ser Leu Pro Tyr Ala Val Pro Pro Leu Ser Leu Pro 965 970 975

Arg Gly Glu Ala Gln Val Trp Thr Gln Leu Leu Arg Ala Leu Glu Glu 980 985 990

Arg Ala Ile Pro Ile Trp Trp Val Leu Val Gly Val Leu Gly Gly Leu
995 1000 1005

Leu Leu Leu Thr Ile Leu Val Leu Ala Met Trp Lys Val Gly Phe 1010 1015 1020

Phe Lys Arg Asn Arg Pro Pro Leu Glu Glu Asp Asp Glu Glu Gly 1025 1030 1035

Glu

<210> 2430

<211> 145

<212> PRT

<213> Homo sapiens

<400> 2430

Met Ala Thr Trp Ala Leu Leu Leu Leu Ala Ala Met Leu Leu Gly Asn 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Pro Gly Leu Val Phe Ser Arg Leu Ser Pro Glu Tyr Tyr Asp Leu Ala 20 25 30

Arg Ala His Leu Arg Asp Glu Glu Lys Ser Cys Pro Cys Leu Ala Gln 35 40 45

Glu Gly Pro Gln Gly Asp Leu Leu Thr Lys Thr Gln Glu Leu Gly Arg 50 55 60

Asp Tyr Arg Thr Cys Leu Thr Ile Val Gln Lys Leu Lys Lys Met Val 65 70 75 80

Asp Lys Pro Thr Gln Arg Ser Val Ser Asn Ala Ala Thr Arg Val Cys 85 90 95

Arg Thr Gly Arg Ser Arg Trp Arg Asp Val Cys Arg Asn Phe Met Arg  $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$ 

Arg Tyr Gln Ser Arg Val Thr Gln Gly Leu Val Ala Gly Glu Thr Ala 115 120 125

Gln Gln Ile Cys Glu Asp Leu Arg Leu Cys Ile Pro Ser Thr Gly Pro 130 135 140

Leu 145 <210> 2431 <211> 262 <212> PRT <213> Homo sapiens <400> 2431 Met Arg Asn Ser Tyr Arg Phe Leu Ala Ser Ser Leu Ser Val Val Val 10 Ser Leu Leu Ile Pro Glu Asp Val Cys Glu Lys Ile Ile Gly Gly 25 20 Asn Glu Val Thr Pro His Ser Arg Pro Tyr Met Val Leu Leu Ser Leu 35 40 Asp Arg Lys Thr Ile Cys Ala Gly Ala Leu Ile Ala Lys Asp Trp Val 50 55 Leu Thr Ala Ala His Cys Asn Leu Asn Lys Arg Ser Gln Val Ile Leu Gly Ala His Ser Ile Thr Arq Glu Glu Pro Thr Lys Gln Ile Met Leu Val Lys Lys Glu Phe Pro Tyr Pro Cys Tyr Asp Pro Ala Thr Arg Glu 100 105 110 Gly Asp Leu Lys Leu Cln Leu Thr Glu Lys Ala Lys Ile Asn Lys 115 120 125 Tyr Val Thr Ile Leu His Leu Pro Lys Lys Gly Asp Asp Val Lys Pro 130 135 140 Gly Thr Met Cys Gln Val Ala Gly Trp Gly Arq Thr His Asn Ser Ala 145 150 155 160 Ser Trp Ser Asp Thr Leu Arq Glu Val Asn Ile Thr Ile Ile Asp Arq 165 170 Lys Val Cys Asn Asp Arq Asn His Tyr Asn Phe Asn Pro Val Ile Gly 185

Met Asn Met Val Cys Ala Gly Ser Leu Arg Gly Gly Arg Asp Ser Cys \$195\$ . \$200\$

Asn Gly Asp Ser Gly Ser Pro Leu Leu Cys Glu Gly Val Phe Arg Gly 210 210 220

Val Thr Ser Phe Gly Leu Glu Asn Lys Cys Gly Asp Pro Arg Gly Pro 225 235 240

Gly Val Tyr Ile Leu Leu Ser Lys Lys His Leu Asn Trp Ile Ile Met 245 250 255

Thr Ile Lys Gly Ala Val

<210> 2432

<211> 142

<212> PRT <213> Homo sapiens

<400> 2432

Met Val Leu Ser Pro Ala Asp Lys Thr Asn Val Lys Ala Ala Trp Gly
1 10 15

Lys Val Gly Ala His Ala Gly Glu Tyr Gly Ala Glu Ala Leu Glu Arg 20 25 30

Met Phe Leu Ser Phe Pro Thr Thr Lys Thr Tyr Phe Pro His Phe Asp  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Leu Ser His Gly Ser Ala Gln Val Lys Gly His Gly Lys Lys Val Ala 50 55 60

Asp Ala Leu Thr Asn Ala Val Ala His Val Asp Asp Met Pro Asn Ala 65 70 75 80

Leu Ser Ala Leu Ser Asp Leu His Ala His Lys Leu Arg Val Asp Pro \$85\$

Val Asn Phe Lys Leu Leu Ser His Cys Leu Leu Val Thr Leu Ala Ala 100 105 110

His Leu Pro Ala Glu Phe Thr Pro Ala Val His Ala Ser Leu Asp Lys 115 120 125

Phe Leu Ala Ser Val Ser Thr Val Leu Thr Ser Lys Tyr Arg 130 135 140

<210> 2433 <211> 142 <212> PRT <213> Homo sapiens <400> 2433 Met Ser Leu Thr Lys Thr Glu Arg Thr Ile Ile Val Ser Met Trp Ala Lys Ile Ser Thr Gln Ala Asp Thr Ile Gly Thr Glu Thr Leu Glu Arg 25 Leu Phe Leu Ser His Pro Gln Thr Lys Thr Tyr Phe Pro His Phe Asp 35 40 Leu His Pro Gly Ser Ala Gln Leu Arg Ala His Gly Ser Lys Val Val 60 Ala Ala Val Gly Asp Ala Val Lys Ser Ile Asp Asp Ile Gly Gly Ala 70 75 Leu Ser Lys Leu Ser Glu Leu His Ala Tyr Ile Leu Arg Val Asp Pro 85 90 95 Val Asn Phe Lys Leu Leu Ser His Cys Leu Leu Val Thr Leu Ala Ala 100 105 Arg Phe Pro Ala Asp Phe Thr Ala Glu Ala His Ala Ala Trp Asp Lys 115 120 Phe Leu Ser Val Val Ser Ser Val Leu Thr Glu Lys Tyr Arq 130 135 140 <210> 2434 <211> 147 <212> PRT <213> Homo sapiens <400> 2434 Met Val His Leu Thr Pro Glu Glu Lys Thr Ala Val Asn Ala Leu Trp Gly Lys Val Asn Val Asp Ala Val Gly Gly Glu Ala Leu Gly Arg Leu 20 25 30

Leu Val Val Tyr Pro Trp Thr Gln Arg Phe Phe Glu Ser Phe Gly Asp

35 40 45

Leu Ser Ser Pro Asp Ala Val Met Gly Asn Pro Lys Val Lys Ala His 50 60

Gly Lys Lys Val Leu Gly Ala Phe Ser Asp Gly Leu Ala His Leu Asp 65 70 75 80

Asn Leu Lys Gly Thr Phe Ser Gln Leu Ser Glu Leu His Cys Asp Lys 85 90 95

Leu His Val Asp Pro Glu Asn Phe Arg Leu Leu Gly Asn Val Leu Val

Cys Val Leu Ala Arg Asn Phe Gly Lys Glu Phe Thr Pro Gln Met Gln 115 120 125

Ala Ala Tyr Gln Lys Val Val Ala Gly Val Ala Asn Ala Leu Ala His 130 \$135\$

Lys Tyr His 145

<210> 2435 <211> 147

<211> 147 <212> PRT

<213> Homo sapiens

<400> 2435

Met Val His Phe Thr Ala Glu Glu Lys Ala Ala Val Thr Ser Leu Trp 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Ser Lys Met Asn Val Glu Glu Ala Gly Gly Glu Ala Leu Gly Arg Leu 20 25 30

Leu Val Val Tyr Pro Trp Thr Gln Arg Phe Phe Asp Ser Phe Gly Asn 35 40 45

Leu Ser Ser Pro Ser Ala Ile Leu Gly Asn Pro Lys Val Lys Ala His 50

Gly Lys Lys Val Leu Thr Ser Phe Gly Asp Ala Ile Lys Asn Met Asp 65 70 75 80

Asn Leu Lys Pro Ala Phe Ala Lys Leu Ser Glu Leu His Cys Asp Lys 85 90 95

Leu His Val Asp Pro Glu Asn Phe Lys Leu Leu Gly Asn Val Met Val

Ile Ile Leu Ala Thr His Phe Gly Lys Glu Phe Thr Pro Glu Val Gln 115 120 125

Ala Ala Trp Gln Lys Leu Val Ser Ala Val Ala Ile Ala Leu Ala His 130 135 140

Lys Tyr His 145

<210> 2436 <211> 147

<212> PRT <213> Homo sapiens

<400> 2436

Met Gly His Phe Thr Glu Glu Asp Lys Ala Thr Ile Thr Ser Leu Trp 1 5 10 15

Gly Lys Val Asn Val Glu Asp Ala Gly Gly Glu Thr Leu Gly Arg Leu 20 25 30

Leu Val Val Tyr Pro Trp Thr Gln Arg Phe Phe Asp Ser Phe Gly Asn  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Leu Ser Ser Ala Ser Ala Ile Met Gly Asn Pro Lys Val Lys Ala His 50 55 60

Gly Lys Lys Val Leu Thr Ser Leu Gly Asp Ala Thr Lys His Leu Asp 65  $\phantom{-}70\phantom{0}$  75  $\phantom{-}80\phantom{0}$ 

Asp Leu Lys Gly Thr Phe Ala Gln Leu Ser Glu Leu His Cys Asp Lys 85 90 95

Leu His Val Asp Pro Glu Asn Phe Lys Leu Leu Gly Asn Val Leu Val 100 105 110

Thr Val Leu Ala Ile His Phe Gly Lys Glu Phe Thr Pro Glu Val Gln 115 120 125

Ala Ser Trp Gln Lys Met Val Thr Ala Val Ala Ser Ala Leu Ser Ser 130 140

Arg Tyr His

145

<210> 2437

<211> 142 <212> PRT

<213> Homo sapiens

<400> 2437

Met Ala Leu Ser Ala Glu Asp Arg Ala Leu Val Arg Ala Leu Trp Lys 1  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Lys Leu Gly Ser Asn Val Gly Val Tyr Thr Thr Glu Ala Leu Glu Arg 20 25 30

Thr Phe Leu Ala Phe Pro Ala Thr Lys Thr Tyr Phe Ser His Leu Asp  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Leu Ser Pro Gly Ser Ser Gln Val Arg Ala His Gly Gln Lys Val Ala 50 55 60

Asp Ala Leu Ser Leu Ala Val Glu Arg Leu Asp Asp Leu Pro His Ala 65 70 75 80

Leu Ser Ala Leu Ser His Leu His Ala Cys Gln Leu Arg Val Asp Pro 85 90 95

Ala Ser Phe Gln Leu Leu Gly His Cys Leu Leu Val Thr Leu Ala Arg \$100\$

His Tyr Pro Gly Asp Phe Ser Pro Ala Leu Gln Ala Ser Leu Asp Lys 115 120 125

Phe Leu Ser His Val Ile Ser Ala Leu Val Ser Glu Tyr Arg 130 135 140

<210> 2438

<211> 260

<212> PRT <213> Homo sapiens

<400> 2438

Met Arg Pro Glu Asp Arg Met Phe His Ile Arg Ala Val Ile Leu Arg 1 5 10 15

Ala Leu Ser Leu Ala Phe Leu Leu Ser Leu Arg Gly Ala Gly Ala Ile  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$ 

Lys Ala Asp His Val Ser Thr Tyr Ala Ala Phe Val Gln Thr His Arg  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Pro Thr Gly Glu Phe Met Phe Glu Phe Asp Glu Asp Glu Met Phe Tyr 50 60

Val Asp Leu Asp Lys Lys Glu Thr Val Trp His Leu Glu Glu Phe Gly 65 70 75 80

Gln Ala Phe Ser Phe Glu Ala Gln Gly Gly Leu Ala Asn Ile Ala Ile 85 90 95

Ala Thr Asn Asp Pro Pro Glu Val Thr Val Phe Pro Lys Glu Pro Val 115  $$\rm 120$$ 

Glu Leu Gly Gln Pro Asn Thr Leu Ile Cys His Ile Asp Lys Phe Phe 130 135 140

Pro Pro Val Leu Asn Val Thr Trp Leu Cys Asn Gly Glu Leu Val Thr 145 150 155 160

Glu Gly Val Ala Glu Ser Leu Phe Leu Pro Arg Thr Asp Tyr Ser Phe 165 175

His Lys Phe His Tyr Leu Thr Phe Val Pro Ser Ala Glu Asp Phe Tyr 180 185 190

Asp Cys Arg Val Glu His Trp Gly Leu Asp Gln Pro Leu Leu Lys His 195 200 205

Trp Glu Ala Gln Glu Pro Ile Gln Met Pro Glu Thr Thr Glu Thr Val 210 215 220

Leu Cys Ala Leu Gly Leu Val Leu Gly Leu Val Gly Ile Ile Val Gly 225 230 235 240

Thr Val Leu Ile Ile Lys Ser Leu Arg Ser Gly His Asp Pro Arg Ala 245 250 255

Gln Gly Thr Leu 260

<210> 2439

- <211> 255 <212> PRT
- <213> Homo sapiens

<400> 2439

Met Ile Leu Asn Lys Ala Leu Leu Leu Gly Ala Leu Ala Leu Thr Thr 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Val Met Ser Pro Cys Gly Gly Glu Asp Ile Val Ala Asp His Val Ala 20 25 30

Ser Cys Gly Val Asn Leu Tyr Gln Phe Tyr Gly Pro Ser Gly Gln Tyr 35 40 45

Thr His Glu Phe Asp Gly Asp Glu Gln Phe Tyr Val Asp Leu Glu Arg 50  $\,$  55  $\,$  60

Lys Glu Thr Ala Trp Arg Trp Pro Glu Phe Ser Lys Phe Gly Gly Phe 65 70 75 80

Asp Pro Gln Gly Ala Leu Arg Asn Met Ala Val Ala Lys His Asn Leu 85 90 95

Asn Ile Met Ile Lys Arg Tyr Asn Ser Thr Ala Ala Thr Asn Glu Val

Pro Glu Val Thr Val Phe Ser Lys Ser Pro Val Thr Leu Gly Gln Pro 115 120 125

Asn Thr Leu Ile Cys Leu Val Asp Asn Ile Phe Pro Pro Val Val Asn 130 135

Ile Thr Trp Leu Ser Asn Gly Gln Ser Val Thr Glu Gly Val Ser Glu 145 150 155

Thr Ser Phe Leu Ser Lys Ser Asp His Ser Phe Phe Lys Ile Ser Tyr 165 170 175

Leu Thr Phe Leu Pro Ser Ala Asp Glu Ile Tyr Asp Cys Lys Val Glu 180 185 190

His Trp Gly Leu Asp Gln Pro Leu Leu Lys His Trp Glu Pro Glu Ile 195  $\phantom{\bigg|}200\phantom{\bigg|}$  205

Pro Ala Pro Met Ser Glu Leu Thr Glu Thr Val Val Cys Ala Leu Gly 210 215 220

Leu Ser Val Gly Leu Met Gly Ile Val Val Gly Thr Val Phe Ile Ile 225 230 235 Gln Gly Leu Arg Ser Val Gly Ala Ser Arg His Gln Gly Pro Leu 245 250 <210> 2440 <211> 199 <212> PRT <213> Homo sapiens <400> 2440 Met Lys Ser Gly Leu Trp Tyr Phe Phe Leu Phe Cys Leu Arg Ile Lys 10 Val Leu Thr Gly Glu Ile Asn Gly Ser Ala Asn Tyr Glu Met Phe Ile 20 25 Phe His Asn Gly Gly Val Gln Ile Leu Cys Lys Tyr Pro Asp Ile Val 35 40 Gln Gln Phe Lys Met Gln Leu Leu Lys Gly Gln Ile Leu Cys Asp 50 55 Leu Thr Lys Thr Lys Gly Ser Gly Asn Thr Val Ser Ile Lys Ser Leu 70 Lys Phe Cys His Ser Gln Leu Ser Asn Asn Ser Val Ser Phe Phe Leu 85 90 95 Tyr Asn Leu Asp His Ser His Ala Asn Tyr Tyr Phe Cys Asn Leu Ser 100 105 Ile Phe Asp Pro Pro Pro Phe Lys Val Thr Leu Thr Gly Gly Tyr Leu 115 120 125 His Ile Tyr Glu Ser Gln Leu Cys Cys Gln Leu Lys Phe Trp Leu Pro 130 135 140 Ile Gly Cys Ala Ala Phe Val Val Cys Ile Leu Gly Cys Ile Leu 145 150 155

Ile Cys Trp Leu Thr Lys Lys Lys Tyr Ser Ser Ser Val His Asp Pro

Asn Gly Glu Tyr Met Phe Met Arg Ala Val Asn Thr Ala Lys Lys Ser

> 180 185 190

Arg Leu Thr Asp Val Thr Leu 195

<210> 2441 <211> 193

<212> PRT <213> Homo sapiens

<400> 2441

Met Ala Ala Glu Pro Val Glu Asp Asn Cys Ile Asn Phe Val Ala Met 5

Lys Phe Ile Asp Asn Thr Leu Tyr Phe Ile Ala Glu Asp Asp Glu Asn 25

Leu Glu Ser Asp Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile 40

Arg Asn Leu Asn Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro

Leu Phe Glu Asp Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg 65 70 75

Thr Ile Phe Ile Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met 85 90

Ala Val Thr Ile Ser Val Lys Cys Glu Lys Ile Ser Thr Leu Ser Cys 100 105

Glu Asn Lys Ile Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile 115 120

Lys Asp Thr Lys Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly 135

His Asp Asn Lys Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe 145 150 155 160

Leu Ala Cys Glu Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys 170 165

Glu Asp Glu Leu Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu 180 185 190

Asp

<210> 2442

<211> 152

<212> PRT <213> Homo sapiens

<400> 2442

Met Ser Arg Leu Pro Val Leu Leu Leu Gln Leu Leu Val Arg Pro 1 5 10 15

Gly Leu Gln Ala Pro Met Thr Gln Thr Thr Pro Leu Lys Thr Ser Trp 20 25 30

Val Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln 35 40 45

Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln 50 55 60

Asp Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe 65 70 75 80

Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile 85 90 95

Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr

Arg His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg

Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln 130 \$135\$

Thr Thr Leu Ser Leu Ala Ile Phe

<210> 2443

<211> 1038 <212> PRT

<213> Homo sapiens

<400> 2443

Met Phe Pro Thr Glu Ser Ala Trp Leu Gly Lys Arg Gly Ala Asn Pro 1 5 10 15

Gly Pro Glu Ala Ala Val Arg Glu Thr Val Met Leu Leu Leu Cys Leu Gly Val Pro Thr Gly Arg Pro Tyr Asn Val Asp Thr Glu Ser Ala Leu Leu Tyr Gln Gly Pro His Asn Thr Leu Phe Gly Tyr Ser Val Val Leu His Ser His Gly Ala Asn Arg Trp Leu Leu Val Gly Ala Pro Thr Ala Asn Trp Leu Ala Asn Ala Ser Val Ile Asn Pro Gly Ala Ile Tyr Arq Cys Arq Ile Gly Lys Asn Pro Gly Gln Thr Cys Glu Gln Leu Gln Leu Gly Ser Pro Asn Gly Glu Pro Cys Gly Lys Thr Cys Leu Glu Glu Arg Asp Asn Gln Trp Leu Gly Val Thr Leu Ser Arg Gln Pro Gly Glu Asn Gly Ser Ile Val Thr Cys Gly His Arg Trp Lys Asn Ile Phe Tyr Ile Lys Asn Glu Asn Lys Leu Pro Thr Gly Gly Cys Tyr Gly Val Pro Pro Asp Leu Arg Thr Glu Leu Ser Lys Arg Ile Ala Pro Cys Tyr Gln Asp Tyr Val Lys Lys Phe Gly Glu Asn Phe Ala Ser Cys Gln Ala Gly Ile Ser Ser Phe Tyr Thr Lys Asp Leu Ile Val Met Gly Ala Pro Gly Ser Ser Tyr Trp Thr Gly Ser Leu Phe Val Tyr Asn Ile Thr Thr Asn Lys 

Tyr Lys Ala Phe Leu Asp Lys Gln Asn Gln Val Lys Phe Gly Ser Tyr  $245 \hspace{1cm} 250 \hspace{1cm} 250 \hspace{1cm} 255 \hspace{1cm}$ 

Leu Gly Tyr Ser Val Gly Ala Gly His Phe Arg Ser Gln His Thr Thr Glu Val Val Gly Gly Ala Pro Gln His Glu Gln Ile Gly Lys Ala Tyr Ile Phe Ser Ile Asp Glu Lys Glu Leu Asn Ile Leu His Glu Met Lys Gly Lys Lys Leu Gly Ser Tyr Phe Gly Ala Ser Val Cys Ala Val Asp Leu Asn Ala Asp Gly Phe Ser Asp Leu Leu Val Gly Ala Pro Met Gln Ser Thr Ile Arq Glu Glu Gly Arq Val Phe Val Tyr Ile Asn Ser Gly Ser Gly Ala Val Met Asn Ala Met Glu Thr Asn Leu Val Gly Ser Asp Lvs Tvr Ala Ala Arg Phe Glv Glu Ser Ile Val Asn Leu Glv Asp Ile Asp Asn Asp Gly Phe Glu Asp Val Ala Ile Gly Ala Pro Gln Glu Asp Asp Leu Gln Gly Ala Ile Tyr Ile Tyr Asn Gly Arg Ala Asp Gly Ile Ser Ser Thr Phe Ser Gln Arg Ile Glu Gly Leu Gln Ile Ser Lys Ser Leu Ser Met Phe Gly Gln Ser Ile Ser Gly Gln Ile Asp Ala Asp Asn Asn Glv Tyr Val Asp Val Ala Val Gly Ala Phe Arg Ser Asp Ser Ala Val Leu Leu Arg Thr Arg Pro Val Val Ile Val Asp Ala Ser Leu Ser

His Pro Glu Ser Val Asn Arg Thr Lys Phe Asp Cys Val Glu Asn Gly
485 490 490 495

Trp Pro Ser Val Cys Ile Asp Leu Thr Leu Cys Phe Ser Tyr Lys Gly 500 505 510

- Lys Glu Val Pro Gly Tyr Ile Val Leu Phe Tyr Asn Met Ser Leu Asp 515 520 525
- Val Asn Arg Lys Ala Glu Ser Pro Pro Arg Phe Tyr Phe Ser Ser Asn 530 535 540
- Gly Thr Ser Asp Val Ile Thr Gly Ser Ile Gln Val Ser Ser Arg Glu 545 550 555 560
- Ala Asn Cys Arg Thr His Gln Ala Phe Met Arg Lys Asp Val Arg Asp 565 570 575
- Ile Leu Thr Pro Ile Gln Ile Glu Ala Ala Tyr His Leu Gly Pro His
  580 585 590
- Val Ile Ser Lys Arg Ser Thr Glu Glu Phe Pro Pro Leu Gln Pro Ile 595 600 605
- Leu Gln Gln Lys Lys Glu Lys Asp Ile Met Lys Lys Thr Ile Asn Phe  $610 \\ \hspace*{1.5cm} 615 \\ \hspace*{1.5cm} 620$
- Ala Arg Phe Cys Ala His Glu Asn Cys Ser Ala Asp Leu Gln Val Ser 625  $\phantom{\bigg|}630\phantom{\bigg|}635\phantom{\bigg|}635\phantom{\bigg|}$
- Ala Lys Ile Gly Phe Leu Lys Pro His Glu Asn Lys Thr Tyr Leu Ala  $645 \hspace{1.5cm} 655 \hspace{1.5cm} 655$
- Val Gly Ser Met Lys Thr Leu Met Leu Asn Val Ser Leu Phe Asn Ala 660 665 670
- Leu Tyr Phe Ile Lys Ile Leu Glu Leu Glu Glu Lys Gln Ile Asn Cys 690 695 700
- Glu Val Thr Asp Asn Ser Gly Val Val Gln Leu Asp Cys Ser Ile Gly 705 710 715 720
- Tyr Ile Tyr Val Asp His Leu Ser Arg Ile Asp Ile Ser Phe Leu Leu 725 730 735
- Asp Val Ser Ser Leu Ser Arg Ala Glu Glu Asp Leu Ser Ile Thr Val

740 745 750

His Ala Thr Cys Glu Asn Glu Glu Glu Met Asp Asn Leu Lys His Ser 755 760 765

Arg Val Thr Val Ala Ile Pro Leu Lys Tyr Glu Val Lys Leu Thr Val 770 780

His Gly Phe Val Asn Pro Thr Ser Phe Val Tyr Gly Ser Asn Asp Glu 785 790 795 800

Asn Glu Pro Glu Thr Cys Met Val Glu Lys Met Asn Leu Thr Phe His 805 810 810

Val Ile Asn Thr Gly Asn Ser Met Ala Pro Asn Val Ser Val Glu Ile 820 825 830

Met Val Pro Asn Ser Phe Ser Pro Gln Thr Asp Lys Leu Phe Asn Ile 835 840 845

Leu Asp Val Gln Thr Thr Thr Gly Glu Cys His Phe Glu Asn Tyr Gln 850 855 860

Arg Val Cys Ala Leu Glu Gln Gln Lys Ser Ala Met Gln Thr Leu Lys 865 870 875

Gly Ile Val Arg Phe Leu Ser Lys Thr Asp Lys Arg Leu Leu Tyr Cys 885 890 895

Ile Lys Ala Asp Pro His Cys Leu Asn Phe Leu Cys Asn Phe Gly Lys  $900 \hspace{1.5cm} 905 \hspace{1.5cm} 910 \hspace{1.5cm}$ 

Met Glu Ser Gly Lys Glu Ala Ser Val His Ile Gln Leu Glu Gly Arg 915 920 925

Pro Ser Ile Leu Glu Met Asp Glu Thr Ser Ala Leu Lys Phe Glu Ile 930 940

Arg Ala Thr Gly Phe Pro Glu Pro Asn Pro Arg Val Ile Glu Leu Asn 945 950 955 960

Lys Asp Glu Asn Val Ala His Val Leu Leu Glu Gly Leu His His Gln 965 970 975

Arg Pro Lys Arg Tyr Phe Thr Ile Val Ile Ile Ser Ser Ser Leu Leu  $980 \hspace{1.5cm} 995 \hspace{1.5cm} 990 \hspace{1.5cm}$ 

Leu Gly Leu Ile Val Leu Leu Leu Ile Ser Tyr Val Met Trp Lys Ala

Gly Phe Phe Lys Arg Gln Tyr Lys Ser Ile Leu Gln Glu Glu Asn 1010 1015 1020

Arg Arg Asp Ser Trp Ser Tyr Ile Asn Ser Lys Ser Asn Asp Asp 1025 1030 1035

<210> 2444

<211> 1152

<212> PRT <213> Homo sapiens

<400> 2444

Met Ala Leu Arg Val Leu Leu Leu Thr Ala Leu Thr Leu Cys His Gly
1 10 15

Phe Asn Leu Asp Thr Glu Asn Ala Met Thr Phe Gln Glu Asn Ala Arg  $20 \\ 25 \\ 30 \\$ 

Gly Phe Gly Gln Ser Val Val Gln Leu Gln Gly Ser Arg Val Val Val 35  $\phantom{\bigg|}40\phantom{\bigg|}$ 

Gly Ala Pro Gln Glu Ile Val Ala Ala Asn Gln Arg Gly Ser Leu Tyr  $50 \hspace{1.5cm} 60$ 

Gln Cys Asp Tyr Ser Thr Gly Ser Cys Glu Pro Ile Arg Leu Gln Val 65 70 75 80

Pro Val Glu Ala Val Asn Met Ser Leu Gly Leu Ser Leu Ala Ala Thr  $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$ 

Thr Ser Pro Pro Gln Leu Leu Ala Cys Gly Pro Thr Val His Gln Thr

Cys Ser Glu Asn Thr Tyr Val Lys Gly Leu Cys Phe Leu Phe Gly Ser 115 120 125

Asn Leu Arg Gln Gln Pro Gln Lys Phe Pro Glu Ala Leu Arg Gly Cys 130 135 140

Pro Gln Glu Asp Ser Asp Ile Ala Phe Leu Ile Asp Gly Ser Gly Ser 145 150 155 160

| Ile | Ile | Pro | His | Asp | Phe | Arg | Arg | Met | Lys | Glu | Phe | Val | Ser | Thr | Val |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     | 165 |     |     |     |     | 170 |     |     |     |     | 175 |     |

- Met Glu Gln Leu Lys Lys Ser Lys Thr Leu Phe Ser Leu Met Gln Tyr 180 185 190
- Ser Glu Glu Phe Arg Ile His Phe Thr Phe Lys Glu Phe Gln Asn Asn 195 200 205
- Pro Asn Pro Arg Ser Leu Val Lys Pro Ile Thr Gln Leu Leu Gly Arg 210 215 220
- Thr His Thr Ala Thr Gly Ile Arg Lys Val Val Arg Glu Leu Phe Asn 225 230 235 240
- Ile Thr Asn Gly Ala Arg Lys Asn Ala Phe Lys Ile Leu Val Val Ile 245 250 255
- Thr Asp Gly Glu Lys Phe Gly Asp Pro Leu Gly Tyr Glu Asp Val Ile 260 265 270
- Pro Glu Ala Asp Arg Glu Gly Val Ile Arg Tyr Val Ile Gly Val Gly 275 280 285
- Asp Ala Phe Arg Ser Glu Lys Ser Arg Gln Glu Leu Asn Thr Ile Ala 290 295 300
- Ser Lys Pro Pro Arg Asp His Val Phe Gln Val Asn Asn Phe Glu Ala 305 310 315 320
- Leu Lys Thr Ile Gln Asn Gln Leu Arg Glu Lys Ile Phe Ala Ile Glu 325 330 335
- Gly Thr Gln Thr Gly Ser Ser Ser Ser Phe Glu His Glu Met Ser Gln  $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$
- Val Gly Ser Tyr Asp Trp Ala Gly Gly Val Phe Leu Tyr Thr Ser Lys 370 375 380
- Glu Lys Ser Thr Phe Ile Asn Met Thr Arg Val Asp Ser Asp Met Asn
- Asp Ala Tyr Leu Gly Tyr Ala Ala Ala Ile Ile Leu Arg Asp Arg Val

405 410 415

Gln Ser Leu Val Leu Gly Ala Pro Arg Tyr Gln His Ile Gly Leu Val 420 425 430

Ala Met Phe Arg Gln Asn Thr Gly Met Trp Glu Ser Asn Ala Asn Val 435  $\phantom{\bigg|}440\phantom{\bigg|}$ 

Lys Gly Thr Gln Ile Gly Ala Tyr Phe Gly Ala Ser Leu Cys Ser Val 450 455 460

Asp Val Asp Ser Asn Gly Ser Thr Asp Leu Val Leu Ile Gly Ala Pro 465 470 475

His Tyr Tyr Glu Gln Thr Arg Gly Gly Gln Val Ser Val Cys Pro Leu 485 490 495

Pro Arg Gly Arg Ala Arg Trp Gln Cys Asp Ala Val Leu Tyr Gly Glu
500 505 510

Gln Gly Gln Pro Trp Gly Arg Phe Gly Ala Ala Leu Thr Val Leu Gly 515 520 525

Glu Glu Asp Asn Arg Gly Ala Val Tyr Leu Phe His Gly Thr Ser Gly 545  $\phantom{00}$  550  $\phantom{00}$  555  $\phantom{00}$  560

Ser Gly Ile Ser Pro Ser His Ser Gln Arg Ile Ala Gly Ser Lys Leu 565 570 575

Ser Pro Arg Leu Gln Tyr Phe Gly Gln Ser Leu Ser Gly Gln Asp  $580 \hspace{1.5cm} 585 \hspace{1.5cm} 590 \hspace{1.5cm}$ 

Leu Thr Met Asp Gly Leu Val Asp Leu Thr Val Gly Ala Gln Gly His 595 600 605

Val Leu Leu Leu Arg Ser Gln Pro Val Leu Arg Val Lys Ala Ile Met 610 615 620

Gln Val Val Lys Gly Lys Glu Ala Gly Glu Val Arg Val Cys Leu His
645 650 655

Val Gln Lys Ser Thr Arg Asp Arg Leu Arg Glu Gly Gln Ile Gln Ser Val Val Thr Tyr Asp Leu Ala Leu Asp Ser Gly Arg Pro His Ser Arg Ala Val Phe Asn Glu Thr Lys Asn Ser Thr Arg Arg Gln Thr Gln Val Leu Gly Leu Thr Gln Thr Cys Glu Thr Leu Lys Leu Gln Leu Pro Asn Cvs Ile Glu Asp Pro Val Ser Pro Ile Val Leu Arg Leu Asn Phe Ser Leu Val Gly Thr Pro Leu Ser Ala Phe Gly Asn Leu Arg Pro Val Leu Ala Glu Asp Ala Gln Arg Leu Phe Thr Ala Leu Phe Pro Phe Glu LVs Asn Cys Gly Asn Asp Asn Ile Cys Gln Asp Asp Leu Ser Ile Thr Phe Ser Phe Met Ser Leu Asp Cys Leu Val Val Gly Gly Pro Arg Glu Phe Asn Val Thr Val Thr Val Arg Asn Asp Gly Glu Asp Ser Tyr Arg Thr Gln Val Thr Phe Phe Pro Leu Asp Leu Ser Tyr Arg Lys Val Ser Thr Leu Gln Asn Gln Arg Ser Gln Arg Ser Trp Arg Leu Ala Cys Glu Ser Ala Ser Ser Thr Glu Val Ser Gly Ala Leu Lys Ser Thr Ser Cys Ser Ile Asn His Pro Ile Phe Pro Glu Asn Ser Glu Val Thr Phe Asn Ile Thr Phe Asp Val Asp Ser Lys Ala Ser Leu Gly Asn Lys Leu Leu 

Leu Lys Ala Asn Val Thr Ser Glu Asn Asn Met Pro Arg Thr Asn Lys

- Thr Glu Phe Gln Leu Glu Leu Pro Val Lys Tyr Ala Val Tyr Met Val 915 920 925
- Val Thr Ser His Gly Val Ser Thr Lys Tyr Leu Asn Phe Thr Ala Ser 930 935 940
- Glu Asn Thr Ser Arg Val Met Gln His Gln Tyr Gln Val Ser Asn Leu 945 950 955 960
- Gly Gln Arg Ser Pro Pro Ile Ser Leu Val Phe Leu Val Pro Val Arg 965 970 975
- Leu Asn Gln Thr Val Ile Trp Asp Arg Pro Gln Val Thr Phe Ser Glu 980 985 990
- Asn Leu Ser Ser Thr Cys His Thr Lys Glu Arg Leu Pro Ser His Ser 995 1000 1005
- Asp Phe Leu Ala Glu Leu Arg Lys Ala Pro Val Val Asn Cys Ser 1010 1015 1020
- Ile Ala Val Cys Gln Arg Ile Gln Cys Asp Ile Pro Phe Phe Gly
- Ile Gln Glu Glu Phe Asn Ala Thr Leu Lys Gly Asn Leu Ser Phe
- Asp Trp Tyr Ile Lys Thr Ser His Asn His Leu Leu Ile Val Ser 1055 1060 1065
- Thr Ala Glu Ile Leu Phe Asn Asp Ser Val Phe Thr Leu Leu Pro 1070 1075 1080
- Gly Gln Gly Ala Phe Val Arg Ser Gln Thr Glu Thr Lys Val Glu 1085 1090 1095
- Pro Phe Glu Val Pro Asn Pro Leu Pro Leu Ile Val Gly Ser Ser 1100 1105 1110
- Val Gly Gly Leu Leu Leu Leu Ala Leu Ile Thr Ala Ala Leu Tyr 1115 1120 1125

Lys Leu Gly Phe Phe Lys Arg Gln Tyr Lys Asp Met Met Ser Glu 1130 1135 1140

Gly Gly Pro Pro Gly Ala Glu Pro Gln 1145 1150

<210> 2445.

<211> 798 <212> PRT

<213> Homo sapiens

<400> 2445

Met Val Ala Leu Pro Met Val Leu Val Leu Leu Leu Val Leu Ser Arg 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Gly Glu Ser Glu Leu Asp Ala Lys Ile Pro Ser Thr Gly Asp Ala Thr 20 25 30

Glu Trp Arg Asn Pro His Leu Ser Met Leu Gly Ser Cys Gln Pro Ala 35 40 45

Pro Ser Cys Gln Lys Cys Ile Leu Ser His Pro Ser Cys Ala Trp Cys 50 55 60

Lys Gln Leu Asn Phe Thr Ala Ser Gly Glu Ala Glu Ala Arg Arg Cys 65  $\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}75\phantom{\bigg|}75\phantom{\bigg|}80\phantom{\bigg|}$ 

Ala Arg Arg Glu Glu Leu Leu Ala Arg Gly Cys Pro Leu Glu Glu Leu 85 90 95

Glu Glu Pro Arg Gly Gln Gln Glu Val Leu Gln Asp Gln Pro Leu Ser  $100 \,$   $\,$  100  $\,$   $\,$  110  $\,$ 

Gln Gly Ala Arg Gly Glu Gly Ala Thr Gln Leu Ala Pro Gln Arg Val \$115\$

Arg Val Thr Leu Arg Pro Gly Glu Pro Gln Gln Leu Gln Val Arg Phe 130 135 140

Leu Arg Ala Glu Gly Tyr Pro Val Asp Leu Tyr Tyr Leu Met Asp Leu 145 150 155 160

Ser Tyr Ser Met Lys Asp Asp Leu Glu Arg Val Arg Gln Leu Gly His 165 170 175

Ala Leu Leu Val Arg Leu Gln Glu Val Thr His Ser Val Arg Ile Gly 180 185 190

Phe Gly Ser Phe Val Asp Lys Thr Val Leu Pro Phe Val Ser Thr Val Pro Ser Lys Leu Arg His Pro Cys Pro Thr Arg Leu Glu Arg Cys Gln Ser Pro Phe Ser Phe His His Val Leu Ser Leu Thr Gly Asp Ala Gln Ala Phe Glu Arg Glu Val Gly Arg Gln Ser Val Ser Gly Asn Leu Asp Ser Pro Glu Gly Gly Phe Asp Ala Ile Leu Gln Ala Ala Leu Cys Gln Glu Gln Ile Gly Trp Arg Asn Val Ser Arg Leu Leu Val Phe Thr Ser Asp Asp Thr Phe His Thr Ala Gly Asp Gly Lys Leu Gly Gly Ile Phe Met Pro Ser Asp Gly His Cys His Leu Asp Ser Asn Gly Leu Tyr Ser Arg Ser Thr Glu Phe Asp Tyr Pro Ser Val Gly Gln Val Ala Gln Ala Leu Ser Ala Ala Asn Ile Gln Pro Ile Phe Ala Val Thr Ser Ala Ala Leu Pro Val Tyr Gln Glu Leu Ser Lys Leu Ile Pro Lys Ser Ala Val Gly Glu Leu Ser Glu Asp Ser Ser Asn Val Val Gln Leu Ile Met Asp Ala Tyr Asn Ser Leu Ser Ser Thr Val Thr Leu Glu His Ser Ser Leu Pro Pro Glv Val His Ile Ser Tyr Glu Ser Gln Cys Glu Gly Pro Glu Lys Arg Glu Gly Lys Ala Glu Asp Arg Gly Gln Cys Asn His Val Arg 

Ile Asn Gln Thr Val Thr Phe Trp Val Ser Leu Gln Ala Thr His Cys Leu Pro Glu Pro His Leu Leu Arg Leu Arg Ala Leu Gly Phe Ser Glu Glu Leu Ile Val Glu Leu His Thr Leu Cys Asp Cys Asn Cys Ser Asp Thr Gln Pro Gln Ala Pro His Cys Ser Asp Gly Gln Gly His Leu Gln Cvs Glv Val Cvs Ser Cvs Ala Pro Glv Arq Leu Glv Arq Leu Cvs Glu Cvs Ser Val Ala Glu Leu Ser Ser Pro Asp Leu Glu Ser Gly Cys Arq Ala Pro Asn Glv Thr Glv Pro Leu Cys Ser Glv Lys Glv His Cys Gln Cys Gly Arg Cys Ser Cys Ser Gly Gln Ser Ser Gly His Leu Cys Glu Cys Asp Asp Ala Ser Cys Glu Arg His Glu Gly Ile Leu Cys Gly Gly Phe Gly Arg Cys Gln Cys Gly Val Cys His Cys His Ala Asn Arg Thr Gly Arg Ala Cvs Glu Cvs Ser Gly Asp Met Asp Ser Cys Ile Ser Pro Glu Glv Glv Leu Cvs Ser Glv His Glv Arg Cvs Lvs Cvs Asn Arg Cvs Gln Cys Leu Asp Gly Tyr Tyr Gly Ala Leu Cys Asp Gln Cys Pro Gly Cys Lys Thr Pro Cys Glu Arq His Arq Asp Cys Ala Glu Cys Gly Ala Phe Arg Thr Gly Pro Leu Ala Thr Asn Cys Ser Thr Ala Cys Ala His 

Thr Asn Val Thr Leu Ala Leu Ala Pro Ile Leu Asp Asp Gly Trp Cys 675 680 685

Lys Glu Arg Thr Leu Asp Asn Gln Leu Phe Phe Phe Leu Val Glu Asp 690 695 700

Asp Ala Arg Gly Thr Val Val Leu Arg Val Arg Pro Gln Glu Lys Gly 705 710 715 720

Ala Asp His Thr Gln Ala Ile Val Leu Gly Cys Val Gly Gly Ile Val 725 730 735

Ala Val Gly Leu Gly Leu Val Leu Ala Tyr Arg Leu Ser Val Glu Ile 740 745 750

Tyr Asp Arg Arg Glu Tyr Ser Arg Phe Glu Lys Glu Gln Gln Gln Leu 755  $\phantom{\bigg|}760\phantom{\bigg|}$  760

Asn Trp Lys Gln Asp Ser Asn Pro Leu Tyr Lys Ser Ala Ile Thr Thr

Thr Ile Asn Pro Arg Phe Gln Glu Ala Asp Ser Pro Thr Leu 785 790 795

<210> 2446

<211> 345 <212> PRT

<213> Homo sapiens

<400> 2446

Met Gln Arg Leu Val Ala Trp Asp Pro Ala Cys Leu Pro Leu Pro Pro 1  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Pro Pro Pro Ala Phe Lys Ser Met Glu Val Ala Asn Phe Tyr Tyr Glu 20 25 30

Ala Asp Cys Leu Ala Ala Ala Tyr Gly Gly Lys Ala Ala Pro Ala Ala 35 40 45

Pro Pro Ala Ala Arg Pro Gly Pro Arg Pro Pro Ala Gly Glu Leu Gly 50 55 60

Ser Ile Gly Asp His Glu Arg Ala Ile Asp Phe Ser Pro Tyr Leu Glu 65 70 75 80

Pro Leu Gly Ala Pro Gln Ala Pro Ala Pro Ala Thr Ala Thr Asp Thr 85 90 95

Phe Glu Ala Ala Pro Pro Ala Pro Ala Pro Ala Pro Ala Ser Ser Gly Gln His His Asp Phe Leu Ser Asp Leu Phe Ser Asp Asp Tyr Gly Gly Lys Asn Cys Lys Lys Pro Ala Glu Tyr Gly Tyr Val Ser Leu Gly Arq Leu Gly Ala Ala Lys Gly Ala Leu His Pro Gly Cys Phe Ala Pro Leu His Pro Pro Pro Pro Pro Pro Pro Pro Pro Ala Glu Leu Lys Ala Glu Pro Gly Phe Glu Pro Ala Asp Cys Lys Arg Lys Glu Glu Ala Gly Ala Pro Gly Gly Gly Ala Gly Met Ala Ala Gly Phe Pro Tyr Ala Leu Arq Ala Tyr Leu Gly Tyr Gln Ala Val Pro Ser Gly Ser Ser Gly Ser Leu Ser Thr Ser Ser Ser Ser Pro Pro Gly Thr Pro Ser Pro Ala Asp Ala Lys Ala Pro Pro Thr Ala Cys Tyr Ala Gly Ala Ala Pro Ala Pro Ser Gln Val Lys Ser Lys Ala Lys Lys Thr Val Asp Lys His Ser Asp Glu Tyr Lys Ile Arg Arg Glu Arg Asn Asn Ile Ala Val Arg Lys Ser Arg Asp Lys Ala Lys Met Arg Asn Leu Glu Thr Gln His Lys Val Leu Glu Leu Thr Ala Glu Asn Glu Arg Leu Gln Lys Lys Val Glu Gln Leu Ser Arg Glu Leu Ser Thr Leu Arg Asn Leu Phe Lys Gln Leu Pro Glu 

Pro Leu Leu Ala Ser Ser Gly His Cys 340 345

<210> 2447

<211> 373 <212> PRT

<213> Homo sapiens

<400> 2447

Met Ser Pro Cys Pro Gln Gln Ser Arg Asn Arg Val Ile Gln Leu 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Ser Thr Ser Glu Leu Gly Glu Met Glu Leu Thr Trp Gln Glu Ile Met  $20 \hspace{1.5cm} \textbf{25} \hspace{1.5cm} \textbf{30}$ 

Ser Ile Thr Glu Leu Gln Gly Leu Asn Ala Pro Ser Glu Pro Ser Phe  $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$ 

Glu Pro Gln Ala Pro Ala Pro Tyr Leu Gly Pro Pro Pro Pro Thr Thr 50

Tyr Cys Pro Cys Ser Ile His Pro Asp Ser Gly Phe Pro Leu Pro 65 70 75 80

Pro Pro Tyr Glu Leu Pro Ala Ser Thr Ser His Val Pro Asp Pro Pro 85 90 95

Tyr Ser Tyr Gly Asn Met Ala Ile Pro Val Ser Lys Pro Leu Ser Leu 100 105 110

Ser Gly Leu Leu Ser Glu Pro Leu Gln Asp Pro Leu Ala Leu Leu Asp 115 120 125

Ile Gly Leu Pro Ala Gly Pro Pro Lys Pro Gln Glu Asp Pro Glu Ser 130 140

Asp Ser Gly Leu Ser Leu Asn Tyr Ser Asp Ala Glu Ser Leu Glu Leu 145 150 155 160

Glu Gly Thr Glu Ala Gly Arg Arg Arg Ser Glu Tyr Val Glu Met Tyr 165 170 175

Pro Val Glu Tyr Pro Tyr Ser Leu Met Pro Asn Ser Leu Ala His Ser 180 185 190

Asn Tyr Thr Leu Pro Ala Ala Glu Thr Pro Leu Ala Leu Glu Pro Ser

195 200 205

Ser Gly Pro Val Arg Ala Lys Pro Thr Ala Arg Gly Glu Ala Gly Ser 210 215 220

Arg Asp Glu Arg Alg Ala Leu Ala Met Lys Ile Pro Phe Pro Thr Asp 225  $\phantom{\bigg|}230\phantom{\bigg|}230\phantom{\bigg|}235\phantom{\bigg|}$ 

Lys Ile Val Asn Leu Pro Val Asp Asp Phe Asn Glu Leu Leu Ala Arg 245 250 255

Tyr Pro Leu Thr Glu Ser Gln Leu Ala Leu Val Arg Asp Ile Arg Arg 260 265 270

Arg Gly Lys Asn Lys Val Ala Ala Gln Asn Cys Arg Lys Arg Lys Leu 275 280 285

Glu Thr Ile Val Gln Leu Glu Arg Glu Leu Glu Arg Leu Thr Asn Glu 290 295 300

Arg Glu Arg Leu Leu Arg Ala Arg Gly Glu Ala Asp Arg Thr Leu Glu 305 310 315 320

Val Met Arg Gln Gln Leu Thr Glu Leu Tyr Arg Asp Ile Phe Gln His 325 330 335

Leu Arg Asp Glu Ser Gly Asn Ser Tyr Ser Pro Glu Glu Tyr Ala Leu 340 345 350

Gln Gln Ala Ala Asp Gly Thr Ile Phe Leu Val Pro Arg Gly Thr Lys \$355\$

Met Glu Ala Thr Asp

<210> 2448

<211> 288

<212> PRT <213> Homo sapiens

<400> 2448

Met Gln Ile Pro Gln Ala Pro Trp Pro Val Val Trp Ala Val Leu Gln 1 5 10 15

Leu Gly Trp Arg Pro Gly Trp Phe Leu Asp Ser Pro Asp Arg Pro Trp 20 25 30

Asn Pro Pro Thr Phe Phe Pro Ala Leu Leu Val Val Thr Glu Gly Asp
45

Asn Ala Thr Phe Thr Cys Ser Phe Ser Asn Thr Ser Glu Ser Phe Val
50

Leu Asn Trp Tyr Arg Met Ser Pro Ser Asn Gln Thr Asp Lys Leu Ala
65

70

80

Ala Phe Pro Glu Asp Arg Ser Gln Pro Gly Gln Asp Cys Arg Phe Arg 85 90 95

Val Thr Gln Leu Pro Asn Gly Arg Asp Phe His Met Ser Val Val Arg 100 105 110

Ala Arg Arg Asn Asp Ser Gly Thr Tyr Leu Cys Gly Ala Ile Ser Leu 115 120 125

Ala Pro Lys Ala Gln Ile Lys Glu Ser Leu Arg Ala Glu Leu Arg Val 130 135 140

Thr Glu Arg Arg Ala Glu Val Pro Thr Ala His Pro Ser Pro Ser Pro 145 150 155 160

Arg Pro Ala Gly Gln Phe Gln Thr Leu Val Val Gly Val Val Gly Gly 165 170 175

Leu Leu Gly Ser Leu Val Leu Leu Val Trp Val Leu Ala Val Ile Cys 180 185 190

Ser Arg Ala Ala Arg Gly Thr Ile Gly Ala Arg Arg Thr Gly Gln Pro

Leu Lys Glu Asp Pro Ser Ala Val Pro Val Phe Ser Val Asp Tyr Gly 210 215 220

Glu Leu Asp Phe Gln Trp Arg Glu Lys Thr Pro Glu Pro Pro Val Pro 225 230 · 230 240

Cys Val Pro Glu Gln Thr Glu Tyr Ala Thr Ile Val Phe Pro Ser Gly 245 250 255

Met Gly Thr Ser Ser Pro Ala Arg Arg Gly Ser Ala Asp Gly Pro Arg 260 265 270

Ser Ala Gln Pro Leu Arg Pro Glu Asp Gly His Cys Ser Trp Pro Leu 275 280 285

<210> 2449

<211> 101 <212> PRT

<213> Homo sapiens

<400> 2449

Met Ser Ser Ala Ala Gly Phe Cys Ala Ser Arg Pro Gly Leu Leu Phe 1 5 10 15

Leu Gly Leu Leu Leu Pro Leu Val Val Ala Phe Ala Ser Ala Glu 20 25 30

Ala Glu Glu Asp Gly Asp Leu Gln Cys Leu Cys Val Lys Thr Thr Ser 35 40 45

Gln Val Arg Pro Arg His Ile Thr Ser Leu Glu Val Ile Lys Ala Gly 50 55 60

Pro His Cys Pro Thr Ala Gln Leu Ile Ala Thr Leu Lys Asn Gly Arg 65 70 75 80

Lys Ile Cys Leu Asp Leu Gln Ala Pro Leu Tyr Lys Lys Ile Ile Lys 85 90 95

Lys Leu Leu Glu Ser

<210> 2450

<211> 706 <212> PRT

<213> Homo sapiens

<400> 2450

Met Ser Pro Phe Leu Arg Ile Gly Leu Ser Asn Phe Asp Cys Gly Ser 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Cys Gln Ser Cys Gln Gly Glu Ala Val Asn Pro Tyr Cys Ala Val Leu 20 25 30

Val Lys Glu Tyr Val Glu Ser Glu Asn Gly Gln Met Tyr Ile Gln Lys 35 40 45

Lys Pro Thr Met Tyr Pro Pro Trp Asp Ser Thr Phe Asp Ala His Ile 50  $\,$  55  $\,$  60  $\,$ 

Asn Lys Gly Arg Val Met Gln Ile Ile Val Lys Gly Lys Asn Val Asp 65 70 75 80

- Leu Ile Ser Glu Thr Thr Val Glu Leu Tyr Ser Leu Ala Glu Arg Cys 85 90 95
- Arg Lys Asn Asn Gly Lys Thr Glu Ile Trp Leu Glu Leu Lys Pro Gln  $100 \\ 0.05 \\ 100 \\ 101 \\ 100 \\ 110 \\ 110$
- Gly Arg Met Leu Met Asn Ala Arg Tyr Phe Leu Glu Met Ser Asp Thr 115 120 125
- Lys Asp Met Asn Glu Phe Glu Thr Glu Gly Phe Phe Ala Leu His Gln 130 140
- Arg Arg Gly Ala Ile Lys Gln Ala Lys Val His His Val Lys Cys His 145 \$150\$ 155 \$160\$
- Glu Phe Thr Ala Thr Phe Phe Pro Gln Pro Thr Phe Cys Ser Val Cys 165 170 175
- His Glu Phe Val Trp Gly Leu Asn Lys Gln Gly Tyr Gln Cys Arg Gln 180 185 190
- Cys Asn Ala Ala Ile His Lys Lys Cys Ile Asp Lys Val Ile Ala Lys  $195 \\ 200 \\ 205$
- Cys Thr Gly Ser Ala Ile Asn Ser Arg Glu Thr Met Phe His Lys Glu 210 220
- Arg Phe Lys Ile Asp Met Pro His Arg Phe Lys Val Tyr Asn Tyr Lys 225 230 235 240
- Ser Pro Thr Phe Cys Glu His Cys Gly Thr Leu Leu Trp Gly Leu Ala \$245\$ \$250\$
- Arg Gln Gly Leu Lys Cys Asp Ala Cys Gly Met Asn Val His His Arg 260 265 270
- Cys Gln Thr Lys Val Ala Asn Leu Cys Gly Ile Asn Gln Lys Leu Met 275 280 285
- Ala Glu Ala Leu Ala Met Ile Glu Ser Thr Gln Gln Ala Arg Cys Leu 290 295 300

PCT/US2003/012946

WO 2004/042346 Arg Asp Thr Glu Gln Ile Phe Arg Glu Gly Pro Val Glu Ile Gly Leu Pro Cys Ser Ile Lys Asn Glu Ala Arq Pro Pro Cys Leu Pro Thr Pro Gly Lys Arg Glu Pro Gln Gly Ile Ser Trp Glu Ser Pro Leu Asp Glu Val Asp Lys Met Cys His Leu Pro Glu Pro Glu Leu Asn Lys Glu Arg Pro Ser Leu Gln Ile Lys Leu Lys Ile Glu Asp Phe Ile Leu His Lys Met Leu Gly Lys Gly Ser Phe Gly Lys Val Phe Leu Ala Glu Phe Lys Lys Thr Asn Gln Phe Phe Ala Ile Lys Ala Leu Lys Lys Asp Val Val Leu Met Asp Asp Asp Val Glu Cys Thr Met Val Glu Lys Arg Val Leu 

Ser Leu Ala Trp Glu His Pro Phe Leu Thr His Met Phe Cys Thr Phe 

Gln Thr Lys Glu Asn Leu Phe Phe Val Met Glu Tyr Leu Asn Gly Gly 

Asp Leu Met Tyr His Ile Gln Ser Cys His Lys Phe Asp Leu Ser Arg 

Ala Thr Phe Tyr Ala Ala Glu Ile Ile Leu Gly Leu Gln Phe Leu His 

Ser Lys Gly Ile Val Tyr Arq Asp Leu Lys Leu Asp Asn Ile Leu Leu 

Asp Lys Asp Gly His Ile Lys Ile Ala Asp Phe Gly Met Cys Lys Glu 

Asn Met Leu Gly Asp Ala Lys Thr Asn Thr Phe Cys Gly Thr Pro Asp 

Tyr Ile Ala Pro Glu Ile Leu Leu Gly Gln Lys Tyr Asn His Ser Val

545 550 555 560

Asp Trp Trp Ser Phe Gly Val Leu Leu Tyr Glu Met Leu Ile Gly Gln 565 570 575

Ser Pro Phe His Gly Gln Asp Glu Glu Glu Leu Phe His Ser Ile Arg  $580 \hspace{1.5cm} 585 \hspace{1.5cm} 590$ 

Met Asp Asn Pro Phe Tyr Pro Arg Trp Leu Glu Lys Glu Ala Lys Asp 595 600 605

Leu Leu Val Lys Leu Phe Val Arg Glu Pro Glu Lys Arg Leu Gly Val 610 615 620

Arg Gly Asp Ile Arg Gln His Pro Leu Phe Arg Glu Ile Asn Trp Glu 625 630 635

Glu Leu Glu Arg Lys Glu Ile Asp Pro Pro Phe Arg Pro Lys Val Lys  $645 \hspace{1.5cm} 655 \hspace{1.5cm} 655$ 

Ser Pro Phe Asp Cys Ser Asn Phe Asp Lys Glu Phe Leu Asn Glu Lys

Pro Arg Leu Ser Phe Ala Asp Arg Ala Leu Ile Asn Ser Met Asp Gln 675 680 685

Asn Met Phe Arg Asn Phe Ser Phe Met Asn Pro Gly Met Glu Arg Leu 690 700

Ile Ser 705

<210> 2451

<211> 798

<212> PRT

<213> Homo sapiens

<400> 2451

Met Ala Trp Asp Met Cys Asn Gln Asp Ser Glu Ser Val Trp Ser Asp 1  $\phantom{\Big|}$  5  $\phantom{\Big|}$  10  $\phantom{\Big|}$  15

Ile Glu Cys Ala Ala Leu Val Gly Glu Asp Gln Pro Leu Cys Pro Asp  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$ 

Leu Pro Glu Leu Asp Leu Ser Glu Leu Asp Val Asn Asp Leu Asp Thr 35 40 45

Asp Ser Phe Leu Gly Gly Leu Lys Trp Cys Ser Asp Gln Ser Glu Ile Ile Ser Asn Gln Tvr Asn Asn Glu Pro Ser Asn Ile Phe Glu Lys Ile Asp Glu Glu Asn Glu Ala Asn Leu Leu Ala Val Leu Thr Glu Thr Leu Asp Ser Leu Pro Val Asp Glu Asp Gly Leu Pro Ser Phe Asp Ala Leu Thr Asp Gly Asp Val Thr Thr Asp Asn Glu Ala Ser Pro Ser Ser Met Pro Asp Gly Thr Pro Pro Pro Gln Glu Ala Glu Glu Pro Ser Leu Leu Lys Lys Leu Leu Leu Ala Pro Ala Asn Thr Gln Leu Ser Tyr Asn Glu Cvs Ser Gly Leu Ser Thr Gln Asn His Ala Asn His Asn His Arg Ile Arg Thr Asn Pro Ala Ile Val Lys Thr Glu Asn Ser Trp Ser Asn Lys Ala Lys Ser Ile Cys Gln Gln Gln Lys Pro Gln Arg Arg Pro Cys Ser Glu Leu Leu Lys Tyr Leu Thr Thr Asn Asp Asp Pro Pro His Thr Lys Pro Thr Glu Asn Arg Asn Ser Ser Arg Asp Lys Cys Thr Ser Lys Lys Lys Ser His Thr Gln Ser Gln Ser Gln His Leu Gln Ala Lys Pro Thr Thr Leu Ser Leu Pro Leu Thr Pro Glu Ser Pro Asn Asp Pro Lys Gly Ser Pro Phe Glu Asn Lys Thr Ile Glu Arg Thr Leu Ser Val Glu Leu

PCT/US2003/012946

WO 2004/042346 Ser Gly Thr Ala Gly Leu Thr Pro Pro Thr Thr Pro Pro His Lys Ala Asn Gln Asp Asn Pro Phe Arg Ala Ser Pro Lys Leu Lys Ser Ser Cys Lys Thr Val Val Pro Pro Pro Ser Lys Lys Pro Arg Tyr Ser Glu Ser Ser Gly Thr Gln Gly Asn Asn Ser Thr Lys Lys Gly Pro Glu Gln Ser Glu Leu Tyr Ala Gln Leu Ser Lys Ser Ser Val Leu Thr Gly Gly His Glu Glu Arg Lys Thr Lys Arg Pro Ser Leu Arg Leu Phe Gly Asp His Asp Tvr Cvs Gln Ser Ile Asn Ser Lvs Thr Glu Ile Leu Ile Asn Ile Ser Gln Glu Leu Gln Asp Ser Arg Gln Leu Glu Asn Lys Asp Val Ser Ser Asp Trp Gln Gly Gln Ile Cys Ser Ser Thr Asp Ser Asp Gln Cys Tyr Leu Arg Glu Thr Leu Glu Ala Ser Lys Gln Val Ser Pro Cys Ser Thr Arg Lys Gln Leu Gln Asp Gln Glu Ile Arg Ala Glu Leu Asn Lys His Phe Gly His Pro Ser Gln Ala Val Phe Asp Asp Glu Ala Asp Lys Thr Gly Glu Leu Arg Asp Ser Asp Phe Ser Asn Glu Gln Phe Ser Lys Leu Pro Met Phe Ile Asn Ser Gly Leu Ala Met Asp Gly Leu Phe Asp

Asp Ser Glu Asp Glu Ser Asp Lys Leu Ser Tyr Pro Trp Asp Gly Thr 

Gln Ser Tyr Ser Leu Phe Asn Val Ser Pro Ser Cys Ser Ser Phe Asn

530 535 540

Ser Pro Cys Arg Asp Ser Val Ser Pro Pro Lys Ser Leu Phe Ser Gln 545 550 550 560

Arg Pro Gln Arg Met Arg Ser Arg Ser Arg Ser Phe Ser Arg His Arg 565 570 575

Ser Cys Ser Arg Ser Pro Tyr Ser Arg Ser Arg Ser Arg Ser Pro Gly 580 585

Ser Arg Ser Ser Ser Arg Ser Cys Tyr Tyr Tyr Glu Ser Ser His Tyr 595 600 605

Arg His Arg Thr His Arg Asn Ser Pro Leu Tyr Val Arg Ser Arg Ser 610 615 620

Arg Ser Pro Tyr Ser Arg Arg Pro Arg Tyr Asp Ser Tyr Glu Glu Tyr 625 630 635 640

Gln His Glu Arg Leu Lys Arg Glu Glu Tyr Arg Arg Glu Tyr Glu Lys 645 650 655

Arg Glu Ser Glu Arg Ala Lys Gln Arg Glu Arg Gln Arg Gln Lys Ala
660 665 670

Ile Glu Glu Arg Arg Val Ile Tyr Val Gly Lys Ile Arg Pro Asp Thr  $675 \hspace{1.5cm} 680 \hspace{1.5cm} 685$ 

Thr Arg Thr Glu Leu Arg Asp Arg Phe Glu Val Phe Gly Glu Ile Glu 690 695 700

Glu Cys Thr Val Asn Leu Arg Asp Asp Gly Asp Ser Tyr Gly Phe Ile 705  $\phantom{000}710\phantom{000}715\phantom{000}715$ 

Thr Tyr Arg Tyr Thr Cys Asp Ala Phe Ala Ala Leu Glu Asn Gly Tyr 725  $\phantom{000}730$   $\phantom{000}735$ 

Thr Leu Arg Arg Ser Asn Glu Thr Asp Phe Glu Leu Tyr Phe Cys Gly 740  $\phantom{0000}$  745  $\phantom{0000}$  750

Arg Lys Gln Phe Phe Lys Ser Asn Tyr Ala Asp Leu Asp Ser Asn Ser 755  $\,$  760  $\,$  765

Asp Asp Phe Asp Pro Ala Ser Thr Lys Ser Lys Tyr Asp Ser Leu Asp 770 775 780

Phe Asp Ser Leu Leu Lys Glu Ala Gln Arg Ser Leu Arg Arg 785 790 795

<210> 2452 <211> 1043

<212> PRT

<213> Homo sapiens

<400> 2452

Met Ala Ala Ser Phe Pro Pro Thr Leu Gly Leu Ser Ser Ala Pro Asp 1 10 15

Glu Ile Gln His Pro His Ile Lys Phe Ser Glu Trp Lys Phe Lys Leu 20 25 30

Phe Arg Val Arg Ser Phe Glu Lys Thr Pro Glu Glu Ala Gln Lys Glu 35 40 45

Lys Lys Asp Ser Phe Glu Gly Lys Pro Ser Leu Glu Gln Ser Pro Ala 50 55 60

Val Leu Asp Lys Ala Asp Gly Gln Lys Pro Val Pro Thr Gln Pro Leu 65 70 75 80

Leu Lys Ala His Pro Lys Phe Ser Lys Lys Phe His Asp Asn Glu Lys 85 90 95

Ala Arg Gly Lys Ala Ile His Gln Ala Asn Leu Arg His Leu Cys Arg  $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$ 

Ile Cys Gly Asn Ser Phe Arg Ala Asp Glu His Asn Arg Arg Tyr Pro

Val His Gly Pro Val Asp Gly Lys Thr Leu Gly Leu Leu Arg Lys Lys 130 135 140

Glu Lys Arg Ala Thr Ser Trp Pro Asp Leu Ile Ala Lys Val Phe Arg 145 150 155 160

Ile Asp Val Lys Ala Asp Val Asp Ser Ile His Pro Thr Glu Phe Cys 165 170 175

His Asn Cys Trp Ser Ile Met His Arg Lys Phe Ser Ser Ala Pro Cys 180 185 190 /US2003/012946

|            | wo         | 2004/      | 04234      | 6          |            |            |            |            |            |            |            |            |            |            | PCT        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Glu        | Val        | Tyr<br>195 | Phe        | Pro        | Arg        | Asn        | Val<br>200 | Thr        | Met        | Glu        | Trp        | His<br>205 | Pro        | His        | Thr        |
| Pro        | Ser<br>210 | Сув        | Asp        | Ile        | Cys        | Asn<br>215 | Thr        | Ala        | Arg        | Arg        | Gly<br>220 | Leu        | Lys        | Arg        | Lys        |
| Ser<br>225 | Leu        | Gln        | Pro        | Asn        | Leu<br>230 | Gln        | Leu        | Ser        | Lys        | Lys<br>235 | Leu        | Lys        | Thr        | Val        | Leu<br>240 |
| Asp        | Gln        | Ala        | Arg        | Gln<br>245 | Ala        | Arg        | Gln        | Arg        | Lys<br>250 | Arg        | Arg        | Ala        | Gln        | Ala<br>255 | Arg        |
| Ile        | Ser        | Ser        | Lys<br>260 | Asp        | Val        | Met        | Lys        | Lys<br>265 | Ile        | Ala        | Asn        | Сув        | Ser<br>270 | Lys        | Ile        |
| His        | Leu        | Ser<br>275 | Thr        | Lys        | Leu        | Leu        | Ala<br>280 | Val        | Asp        | Phe        | Pro        | Glu<br>285 | His        | Phe        | Val        |
| Lys        | Ser<br>290 | Ile        | Ser        | Cys        | Gln        | Ile<br>295 | Cys        | Glu        | His        | Ile        | Leu<br>300 | Ala        | Asp        | Pro        | Val        |
| Glu<br>305 | Thr        | Asn        | Сув        | Lys        | His<br>310 | Val        | Phe        | Cys        | Arg        | Val<br>315 | Cys        | Ile        | Leu        | Arg        | Cys<br>320 |
| Leu        | Lys        | Val        | Met        | Gly<br>325 | Ser        | Tyr        | Cys        | Pro        | Ser<br>330 | Сув        | Arg        | Tyr        | Pro        | Cys<br>335 | Phe        |
| Pro        | Thr        | Asp        | Leu<br>340 | Glu        | Ser        | Pro        | Val        | Lys<br>345 | Ser        | Phe        | Leu        | Ser        | Val<br>350 | Leu        | Asn        |
| Ser        | Leu        | Met<br>355 | Val        | Lys        | Cys        | Pro        | Ala<br>360 | Lys        | Glu        | Cys        | Asn        | Glu<br>365 | Glu        | Val        | Ser        |
| Leu        | Glu<br>370 | Lys        | Tyr        | Asn        | His        | His<br>375 | Ile        | Ser        | Ser        | His        | Lys<br>380 | Glu        | Ser        | Lys        | Glu        |
| Ile<br>385 | Phe        | Val        | His        | Ile        | Asn<br>390 | Lys        | Gly        | Gly        | Arg        | Pro<br>395 | Arg        | Gln        | His        | Leu        | Leu<br>400 |

Ser Leu Thr Arg Arg Ala Gln Lys His Arg Leu Arg Glu Leu Lys Leu 405 410

Gln Val Lys Ala Phe Ala Asp Lys Glu Glu Gly Gly Asp Val Lys Ser 420 425 430

Val Cys Met Thr Leu Phe Leu Leu Ala Leu Arg Ala Arg Asn Glu His

435 440 445

Arg Gln Ala Asp Glu Leu Glu Ala Ile Met Gln Gly Lys Gly Ser Gly 450  $\,$  455  $\,$  460

Leu Gln Pro Ala Val Cys Leu Ala Ile Arg Val Asn Thr Phe Leu Ser 465 470 475

Cys Ser Gln Tyr His Lys Met Tyr Arg Thr Val Lys Ala Ile Thr Gly 485 490 495

Arg Gln Ile Phe Gln Pro Leu His Ala Leu Arg Asn Ala Glu Lys Val $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510$ 

Leu Leu Pro Gly Tyr His His Phe Glu Trp Gln Pro Pro Leu Lys Asn 515 520 525

Val Ser Ser Ser Thr Asp Val Gly Ile Ile Asp Gly Leu Ser Gly Leu 530 535 540

Ser Ser Ser Val Asp Asp Tyr Pro Val Asp Thr Ile Ala Lys Arg Phe 545 550 555 560

Arg Tyr Asp Ser Ala Leu Val Ser Ala Leu Met Asp Met Glu Glu Asp 565 570 575

Ile Leu Glu Gly Met Arg Ser Gln Asp Leu Asp Asp Tyr Leu Asn Gly 580 585 590

Pro Phe Thr Val Val Val Lys Glu Ser Cys Asp Gly Met Gly Asp Val 595 600 605

Ser Glu Lys His Gly Ser Gly Pro Val Val Pro Glu Lys Ala Val Arg 610 615 620

Phe Ser Phe Thr Ile Met Lys Ile Thr Ile Ala His Ser Ser Gln Asn 625  $\,$  630  $\,$  635  $\,$  640

Val Lys Val Phe Glu Glu Ala Lys Pro Asn Ser Glu Leu Cys Cys Lys 645 650 655

Pro Leu Cys Leu Met Leu Ala Asp Glu Ser Asp His Glu Thr Leu Thr  $660 \hspace{1.5cm} 665 \hspace{1.5cm} 665 \hspace{1.5cm} 670 \hspace{1.5cm}$ 

Ala Ile Leu Ser Pro Leu Ile Ala Glu Arg Glu Ala Met Lys Ser Ser 675 680 685

Glu Leu Met Leu Glu Leu Gly Gly Ile Leu Arg Thr Phe Lys Phe Ile Phe Arg Gly Thr Gly Tyr Asp Glu Lys Leu Val Arg Glu Val Glu Gly Leu Glu Ala Ser Gly Ser Val Tyr Ile Cys Thr Leu Cys Asp Ala Thr Arg Leu Glu Ala Ser Gln Asn Leu Val Phe His Ser Ile Thr Arg Ser His Ala Glu Asn Leu Glu Arg Tyr Glu Val Trp Arg Ser Asn Pro Tyr His Glu Ser Val Glu Glu Leu Arq Asp Arq Val Lys Gly Val Ser Ala Lys Pro Phe Ile Glu Thr Val Pro Ser Ile Asp Ala Leu His Cys Asp Ile Gly Asn Ala Ala Glu Phe Tyr Lys Ile Phe Gln Leu Glu Ile Gly Glu Val Tyr Lys Asn Pro Asn Ala Ser Lys Glu Glu Arg Lys Arg Trp Gln Ala Thr Leu Asp Lys His Leu Arg Lys Lys Met Asn Leu Lys Pro Ile Met Arg Met Asn Gly Asn Phe Ala Arg Lys Leu Met Thr Lys Glu Thr Val Asp Ala Val Cys Glu Leu Ile Pro Ser Glu Glu Arq His Glu Ala Leu Arg Glu Leu Met Asp Leu Tyr Leu Lys Met Lys Pro Val Trp Arg Ser Ser Cys Pro Ala Lys Glu Cys Pro Glu Ser Leu Cys Gln Tyr Ser Phe Asn Ser Gln Arg Phe Ala Glu Leu Leu Ser Thr Lys Phe Lys 

Tyr Arg Tyr Glu Gly Lys Ile Thr Asn Tyr Phe His Lys Thr Leu Ala

His Val Pro Glu Ile Ile Glu Arg Asp Gly Ser Ile Gly Ala Trp Ala 945 950 955 960

Ser Glu Gly Asn Glu Ser Gly Asn Lys Leu Phe Arg Arg Phe Arg Lys 965 970 975

Met Asn Ala Arg Gln Ser Lys Cys Tyr Glu Met Glu Asp Val Leu Lys 980 985 990

His His Trp Leu Tyr Thr Ser Lys Tyr Leu Gln Lys Phe Met Asn Ala 995 1000 1005

His Asn Ala Leu Lys Thr Ser Gly Phe Thr Met Asn Pro Gln Ala 1010 1015 1020

Ser Leu Gly Asp Pro Leu Gly Ile Glu Asp Ser Leu Glu Ser Gln 1025 1030 1035

Asp Ser Met Glu Phe 1040

<210> 2453 <211> 527

<212> PRT

<213> Homo sapiens

<400> 2453

Met Ser Leu Gln Met Val Thr Val Ser Asn Asn Ile Ala Leu Ile Gln 1 5 10 15

Pro Gly Phe Ser Leu Met Asn Phe Asp Gly Gln Val Phe Phe Gly  $20 \ \ 25 \ \ 30$ 

Gln Lys Gly Trp Pro Lys Arg Ser Cys Pro Thr Gly Val Phe His Leu 35 40 45

Asp Val Lys His Asn His Val Lys Leu Lys Pro Thr Ile Phe Ser Lys 50 55 60

Asp Ser Cys Tyr Leu Pro Pro Leu Arg Tyr Pro Ala Thr Cys Thr Phe 65 70 75 80

Lys Gly Ser Leu Glu Ser Glu Lys His Gln Tyr Ile Ile His Gly Gly

85 90 95

Lys Thr Pro Asn Asn Glu Val Ser Asp Lys Ile Tyr Val Met Ser Ile 100 105 110

Val Cys Lys Asn Asn Lys Lys Val Thr Phe Arg Cys Thr Glu Lys Asp 115 120 125

Leu Val Gly Asp Val Pro Glu Ala Arg Tyr Gly His Ser Ile Asn Val

Val Tyr Ser Arg Gly Lys Ser Met Gly Ala Leu Phe Gly Gly Arg Ser 145 150 155 160

Tyr Met Pro Ser Thr His Arg Thr Thr Glu Lys Trp Asn Ser Val Ala 165 170 175

Asp Cys Leu Pro Cys Val Phe Leu Val Asp Phe Glu Phe Gly Cys Ala

Thr Ser Tyr Ile Leu Pro Glu Leu Gln Asp Gly Leu Ser Phe His Val

Ser Ile Ala Lys Asn Asp Thr Ile Tyr Ile Leu Gly Gly His Ser Leu 210 215 220

Ala Asn Asn Ile Arg Pro Ala Asn Leu Tyr Arg Ile Arg Val Asp Leu 225 230 235 240

Pro Leu Gly Ser Pro Ala Val Asn Cys Thr Val Leu Pro Gly Gly Ile \$245\$

Ser Val Ser Ser Ala Ile Leu Thr Gln Thr Asn Asn Asp Glu Phe Val 260 265 270

Ile Val Gly Gly Tyr Gln Leu Glu Asn Gln Lys Arg Met Ile Cys Asn 275 280 285

Ile Ile Ser Leu Glu Asp Asn Lys Ile Glu Ile Arg Glu Met Glu Thr 290 295 300

Pro Asp Trp Thr Pro Asp Ile Lys His Ser Lys Ile Trp Phe Gly Ser 305 310 315

Asn Thr Gly Asn Gly Thr Val Phe Leu Gly Ile Pro Gly Asp Asn Lys \$325\$

Gln Val Val Ser Glu Gly Phe Tyr Phe Tyr Met Leu Lys Cys Ala Glu 340 345 Met Leu Lys Cys Ala Glu 350 Asp Thr Asn Glu Glu Gln Thr Thr Phe Thr Asn Ser Gln Thr Ser 355 360 365

Thr Glu Asp Pro Gly Asp Ser Thr Pro Phe Glu Asp Ser Glu Glu Phe 370 380

Cys Phe Ser Ala Glu Ala Asn Ser Phe Asp Gly Asp Asp Glu Phe Asp 385 390 395 400

Thr Tyr Asn Glu Asp Asp Glu Glu Asp Glu Ser Glu Thr Gly Tyr Trp \$405\$

Ile Thr Cys Cys Pro Thr Cys Asp Val Asp Ile Asn Thr Trp Val Pro 420 425 430

Phe Tyr Ser Thr Glu Leu Asn Lys Pro Ala Met Ile Tyr Cys Ser His  $435 \ \ \, 440 \ \ \, 445$ 

Gly Asp Gly His Trp Val His Ala Gln Cys Met Asp Leu Ala Glu Arg 450  $\,$  455  $\,$  460

Thr Leu Ile His Leu Ser Ala Gly Ser Asn Lys Tyr Tyr Cys Asn Glu 465 470 475 480

His Val Glu Ile Ala Arg Ala Leu His Thr Pro Gln Arg Val Leu Pro
485 490 495

Leu Lys Lys Pro Pro Met Lys Ser Leu Arg Lys Lys Gly Ser Gly Lys 500 505 510

Ile Leu Thr Pro Ala Lys Lys Ser Phe Leu Arg Arg Leu Phe Asp 515 525

<210> 2454

<211> 93 <212> PRT

<213> Homo sapiens

<400> 2454

Met Asn Ala Lys Val Val Val Val Leu Val Leu Val Leu Thr Ala Leu 1 5 10 15

Cys Leu Ser Asp Gly Lys Pro Val Ser Leu Ser Tyr Arg Cys Pro Cys 20 25 30

Arg Phe Phe Glu Ser His Val Ala Arg Ala Asn Val Lys His Leu Lys 35 40 45

Ile Leu Asn Thr Pro Asn Cys Ala Leu Gln Ile Val Ala Arg Leu Lys 50 55 60

Asn Asn Asn Arg Gln Val Cys Ile Asp Pro Lys Leu Lys Trp Ile Gln 65 70 75 80

Glu Tyr Leu Glu Lys Ala Leu Asn Lys Arg Phe Lys Met 85 90

<210> 2455

<211> 277

<212> PRT <213> Homo sapiens

<400> 2455

Met Cys Val Gly Ala Arg Arg Leu Gly Arg Gly Pro Cys Ala Ala Leu 1 5 10 15

Leu Leu Gly Leu Gly Leu Ser Thr Val Thr Gly Leu His Cys Val 20 25 30

Gly Asp Thr Tyr Pro Ser Asn Asp Arg Cys Cys His Glu Cys Arg Pro  $35 \ \ \, 40 \ \ \, 45$ 

Gly Asn Gly Met Val Ser Arg Cys Ser Arg Ser Gln Asn Thr Val Cys 50

Arg Pro Cys Gly Pro Gly Phe Tyr Asn Asp Val Val Ser Ser Lys Pro 65  $\phantom{\bigg|}$  70  $\phantom{\bigg|}$  75  $\phantom{\bigg|}$  80

Cys Lys Pro Cys Thr Trp Cys Asn Leu Arg Ser Gly Ser Glu Arg Lys 85 90 95

Gln Leu Cys Thr Ala Thr Gln Asp Thr Val Cys Arg Cys Arg Ala Gly
100 105 110

Thr Gln Pro Leu Asp Ser Tyr Lys Pro Gly Val Asp Cys Ala Pro Cys 115 120 125

Pro Pro Gly His Phe Ser Pro Gly Asp Asn Gln Ala Cys Lys Pro Trp 130 135 140

Thr Asn Cys Thr Leu Ala Gly Lys His Thr Leu Gln Pro Ala Ser Asn 150 155

Ser Ser Asp Ala Ile Cys Glu Asp Arg Asp Pro Pro Ala Thr Gln Pro 165 170

Gln Glu Thr Gln Gly Pro Pro Ala Arg Pro Ile Thr Val Gln Pro Thr 185

Glu Ala Trp Pro Arg Thr Ser Gln Gly Pro Ser Thr Arg Pro Val Glu

Val Pro Gly Gly Arg Ala Val Ala Ala Ile Leu Gly Leu Gly Leu Val 215

Leu Gly Leu Leu Gly Pro Leu Ala Ile Leu Leu Ala Leu Tyr Leu Leu 225 230 235

Arg Arg Asp Gln Arg Leu Pro Pro Asp Ala His Lys Pro Pro Gly Gly 245 250

Gly Ser Phe Arg Thr Pro Ile Gln Glu Glu Gln Ala Asp Ala His Ser 260 265 270

Thr Leu Ala Lys Ile 275

<210> 2456 <211> 183

<212> PRT <213> Homo sapiens

<400> 2456

Met Glu Arg Val Gln Pro Leu Glu Glu Asn Val Gly Asn Ala Ala Arg 5

Pro Arg Phe Glu Arg Asn Lys Leu Leu Leu Val Ala Ser Val Ile Gln 20

Gly Leu Gly Leu Leu Cys Phe Thr Tyr Ile Cys Leu His Phe Ser 35 40

Ala Leu Gln Val Ser His Arg Tyr Pro Arg Ile Gln Ser Ile Lys Val 55

Gln Phe Thr Glu Tyr Lys Lys Glu Lys Gly Phe Ile Leu Thr Ser Gln 65 70 75 80

Lys Glu Asp Glu Ile Met Lys Val Gln Asn Asn Ser Val Ile Ile Asn 85 90 95

Cys Asp Gly Phe Tyr Leu Ile Ser Leu Lys Gly Tyr Phe Ser Gln Glu

Val Asn Ile Ser Leu His Tyr Gln Lys Asp Glu Glu Pro Leu Phe Gln 115 120 125

Leu Lys Lys Val Arg Ser Val Asn Ser Leu Met Val Ala Ser Leu Thr 130 135 140

Tyr Lys Asp Lys Val Tyr Leu Asn Val Thr Thr Asp Asn Thr Ser Leu 145  $\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}155\phantom{\bigg|}160\phantom{\bigg|}$ 

Asp Asp Phe His Val Asn Gly Gly Glu Leu Ile Leu Ile His Gln Asn 165 170 175

Pro Gly Glu Phe Cys Val Leu 180

<210> 2457

<211> 275 <212> PRT <213> Homo sapiens

<400> 2457

Met Leu Ser Leu Leu Leu Leu Ala Leu Pro Val Leu Ala Ser Arg Ala 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Tyr Ala Ala Pro Ala Pro Val Gln Ala Leu Gln Gln Ala Gly Ile Val 20 25 30

Gly Gl<br/>n Glu Ala Pro Arg Ser Lys Trp Pro Trp Gl<br/>n Val Ser Leu 35 40 45

Arg Val Arg Asp Arg Tyr Trp Met His Phe Cys Gly Gly Ser Leu Ile 50  $\,$  55  $\,$  60  $\,$ 

His Pro Gln Trp Val Leu Thr Ala Ala His Cys Leu Gly Pro Asp Val 65 70 75 80

Lys Asp Leu Ala Thr Leu Arg Val Gln Leu Arg Glu Gln His Leu Tyr \$85\$

Tyr Gln Asp Gln Leu Leu Pro Val Ser Arg Ile Ile Val His Pro Gln Phe Tyr Ile Ile Gln Thr Gly Ala Asp Ile Ala Leu Leu Glu Leu Glu Glu Pro Val Asn Ile Ser Ser Arg Val His Thr Val Met Leu Pro Pro Ala Ser Glu Thr Phe Pro Pro Gly Met Pro Cys Trp Val Thr Gly Trp Gly Asp Val Asp Asn Asp Glu Pro Leu Pro Pro Pro Phe Pro Leu Lys Gln Val Lys Val Pro Ile Met Glu Asn His Ile Cys Asp Ala Lys Tyr His Leu Gly Ala Tyr Thr Gly Asp Asp Val Arg Ile Ile Arg Asp Asp Met Leu Cys Ala Gly Asn Ser Gln Arg Asp Ser Cys Lys Gly Asp Ser Gly Gly Pro Leu Val Cys Lys Val Asn Gly Thr Trp Leu Gln Ala Gly Val Val Ser Trp Asp Glu Gly Cys Ala Gln Pro Asn Arg Pro Gly Ile Tyr Thr Arq Val Thr Tyr Tyr Leu Asp Trp Ile His His Tyr Val Pro Lys Lys Pro <210> 2458 <211> 363 <212> PRT <213> Homo sapiens <400> 2458

Met Ala Gln Thr Pro Ala Phe Asp Lys Pro Lys Val Glu Leu His Val

His Leu Asp Gly Ser Ile Lys Pro Glu Thr Ile Leu Tyr Tyr Gly Arg 20 25 30

- Arg Arg Gly Ile Ala Leu Pro Ala Asn Thr Ala Glu Gly Leu Leu Asn 35 40 45
- Val Ile Gly Met Asp Lys Pro Leu Thr Leu Pro Asp Phe Leu Ala Lys 50 55 60
- Phe Asp Tyr Tyr Met Pro Ala Ile Ala Gly Cys Arg Glu Ala Ile Lys 65 70 75 80
- Arg Ile Ala Tyr Glu Phe Val Glu Met Lys Ala Lys Glu Gly Val Val 85 90 95
- Tyr Val Glu Val Arg Tyr Ser Pro His Leu Leu Ala Asn Ser Lys Val
- Glu Pro Ile Pro Trp Asn Gln Ala Glu Gly Asp Leu Thr Pro Asp Glu 115 120 125
- Val Val Ala Leu Val Gly Gln Gly Leu Gln Glu Gly Glu Arg Asp Phe 130 135 140
- Gly Val Lys Ala Arg Ser Ile Leu Cys Cys Met Arg His Gln Pro Asn 145 150 155 160
- Trp Ser Pro Lys Val Val Glu Leu Cys Lys Asn Tyr Gln Gln Gln Thr  $165 \\ 170 \\ 175$
- Val Val Ala Ile Asp Leu Ala Gly Asp Glu Thr Ile Pro Gly Ser Ser 180 185 190
- Leu Leu Pro Gly His Val Gln Ala Tyr Gln Glu Ala Val Lys Ser Gly 195 200 205
- Ile His Arg Thr Val His Ala Gly Glu Val Gly Ser Ala Glu Val Val 210 215 220
- Lys Glu Ala Val Asp Ile Leu Lys Thr Glu Arg Leu Gly His Gly Tyr 225 230 235 240
- His Thr Leu Glu Asp Gln Ala Leu Tyr Asn Arg Leu Arg Gln Glu Asn 245 250 255
- Met His Phe Glu Ile Cys Pro Trp Ser Ser Tyr Leu Thr Gly Ala Trp

260 265 270

Lys Pro Asp Thr Glu His Ala Val Ile Arg Leu Lys Asn Asp Gln Ala 275  $\phantom{\bigg|}280\phantom{\bigg|}$ 

Asn Tyr Ser Leu Asn Thr Asp Asp Pro Leu Ile Phe Lys Ser Thr Leu 290 295 300

Asp Thr Asp Tyr Gln Met Thr Lys Arg Asp Met Gly Phe Thr Glu Glu 305 \$310\$

Glu Phe Lys Arg Leu Asn Ile Asn Ala Ala Lys Ser Ser Phe Leu Pro 325 330 335

Glu Asp Glu Lys Arg Glu Leu Leu Asp Leu Leu Tyr Lys Ala Tyr Gly  $340 \hspace{1cm} 345 \hspace{1cm} 350$ 

Met Pro Pro Ser Ala Ser Ala Gly Gln Asn Leu 355 360

<210> 2459

<211> 443

<212> PRT <213> Homo sapiens

<400> 2459

Met Asp Phe Pro Cys Leu Trp Leu Gly Leu Leu Leu Pro Leu Val Ala 1 5 10 15

Ala Leu Asp Phe Asn Tyr His Arg Gln Glu Gly Met Glu Ala Phe Leu 20 25 30

Lys Thr Val Ala Gln Asn Tyr Ser Ser Val Thr His Leu His Ser Ile 35 40 45

Gly Lys Ser Val Lys Gly Arg Asn Leu Trp Val Leu Val Val Gly Arg 50

Asn Met His Gly Asp Glu Thr Val Gly Arg Glu Leu Leu His Leu 85 90 95

Ile Asp Tyr Leu Val Thr Ser Asp Gly Lys Asp Pro Glu Ile Thr Asn 100 105 110

Leu Ile Asn Ser Thr Arg Ile His Ile Met Pro Ser Met Asn Pro Asp Gly Phe Glu Ala Val Lys Lys Pro Asp Cys Tyr Tyr Ser Ile Gly Arg Glu Asn Tyr Asn Gln Tyr Asp Leu Asn Arg Asn Phe Pro Asp Ala Phe Glu Tyr Asn Asn Val Ser Arg Gln Pro Glu Thr Val Ala Val Met Lys Trp Leu Lys Thr Glu Thr Phe Val Leu Ser Ala Asn Leu His Gly Gly Ala Leu Val Ala Ser Tyr Pro Phe Asp Asn Gly Val Gln Ala Thr Gly Ala Leu Tyr Ser Arg Ser Leu Thr Pro Asp Asp Val Phe Gln Tyr Leu Ala His Thr Tyr Ala Ser Arg Asn Pro Asn Met Lys Lys Gly Asp Glu Cys Lys Asn Lys Met Asn Phe Pro Asn Gly Val Thr Asn Gly Tyr Ser Trp Tyr Pro Leu Gln Gly Gly Met Gln Asp Tyr Asn Tyr Ile Trp Ala Gln Cys Phe Glu Ile Thr Leu Glu Leu Ser Cys Cys Lys Tyr Pro Arg Glu Glu Lys Leu Pro Ser Phe Trp Asn Asn Asn Lys Ala Ser Leu Ile Glu Tyr Ile Lys Gln Val His Leu Gly Val Lys Gly Gln Val Phe Asp Gln Asn Gly Asn Pro Leu Pro Asn Val Ile Val Glu Val Gln Asp Arg Lys His Ile Cys Pro Tyr Arg Thr Asn Lys Tyr Gly Glu Tyr Tyr 

Leu Leu Leu Pro Gly Ser Tyr Ile Ile Asn Val Thr Val Pro Gly 355 360 365

His Asp Pro His Ile Thr Lys Val Ile Ile Pro Glu Lys Ser Gln Asn 370 375 380

Phe Ser Ala Leu Lys Lys Asp Ile Leu Leu Pro Phe Gln Gly Gln Leu 385 390 395 400

Asp Ser Ile Pro Val Ser Asn Pro Ser Cys Pro Met Ile Pro Leu Tyr 405 410 415

Arg Asn Leu Pro Asp His Ser Ala Ala Thr Lys Pro Ser Leu Phe Leu
420 425 430

Phe Leu Val Ser Leu Leu His Ile Phe Phe Lys 435 440

<210> 2460

<211> 144

<212> PRT <213> Homo sapiens

<400> 2460

Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$ 

Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp 35 40 45

Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe 50 55 60

Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys 65 70 75 80

Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met  $85 \\ 90 \\ 95$ 

Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser 100 \$105\$

Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys 115 120 125

Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu 130 135 140

<210> 2461

<211> 204 <212> PRT

<213> Homo sapiens

<400> 2461

Met Ala Gly Pro Ala Thr Gln Ser Pro Met Lys Leu Met Ala Leu Gln 1 5 10 15

Leu Leu Eur Trp His Ser Ala Leu Trp Thr Val Gln Glu Ala Thr Pro

Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys
50 60

Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu 65 70 75 80

Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser 85 90 95

Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu 100 105 110

Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu 115 120 125

Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala 130 135 140

Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu 145 150 155 160

Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg 165 170 175

Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu 180 185 190

Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro

<210> 2462

<211> 224 <212> PRT

<213> Homo sapiens

<400> 2462

Met Glu Lys Leu Cys Phe Leu Val Leu Thr Ser Leu Ser His Ala 1 5 10 15

Phe Gly Gln Thr Asp Met Ser Arg Lys Ala Phe Val Phe Pro Lys Glu 20 25 30

Ser Asp Thr Ser Tyr Val Ser Leu Lys Ala Pro Leu Thr Lys Pro Leu 35 40 45

Lys Ala Phe Thr Val Cys Leu His Phe Tyr Thr Glu Leu Ser Ser Thr 50 55 60

Arg Gly Thr Val Phe Ser Arg Met Pro Pro Arg Asp Lys Thr Met Arg 65 70 75 80

Phe Phe Ile Phe Trp Ser Lys Asp Ile Gly Tyr Ser Phe Thr Val Gly 85 90 95

Gly Ser Glu Ile Leu Phe Glu Val Pro Glu Val Thr Val Ala Pro Val 100 105 110

His Ile Cys Thr Ser Trp Glu Ser Ala Ser Gly Ile Val Glu Phe Trp 115 120 125

Val Asp Gly Lys Pro Arg Val Arg Lys Ser Leu Lys Lys Gly Tyr Thr 130 135 140

Val Gly Ala Glu Ala Ser Ile Ile Leu Gly Gln Glu Gln Asp Ser Phe 145 150 155 160

Gly Gly Asn Phe Glu Gly Ser Gln Ser Leu Val Gly Asp Ile Gly Asn 165 170 175

Val Asn Met Trp Asp Phe Val Leu Ser Pro Asp Glu Ile Asn Thr Ile 180 185 190

Tyr Leu Gly Gly Pro Phe Ser Pro Asn Val Leu Asn Trp Arg Ala Leu 195 200 205

Lys Tyr Glu Val Gln Gly Glu Val Phe Thr Lys Pro Gln Leu Trp Pro 210 215 220 <210> 2463 <211> 993 <212> PRT <213> Homo sapiens <400> 2463 Met Pro Ala Leu Ala Arg Asp Ala Gly Thr Val Pro Leu Leu Val Val Phe Ser Ala Met Ile Phe Gly Thr Ile Thr Asn Gln Asp Leu Pro Val 25 Ile Lys Cys Val Leu Ile Asn His Lys Asn Asn Asp Ser Ser Val Gly 35 40 Lys Ser Ser Ser Tyr Pro Met Val Ser Glu Ser Pro Glu Asp Leu Gly 50 55 Cys Ala Leu Arg Pro Gln Ser Ser Gly Thr Val Tyr Glu Ala Ala Ala 65 70 Val Glu Val Asp Val Ser Ala Ser Ile Thr Leu Gln Val Leu Val Asp Ala Pro Gly Asn Ile Ser Cys Leu Trp Val Phe Lys His Ser Ser Leu 100 105 110 Asn Cys Gln Pro His Phe Asp Leu Gln Asn Arg Gly Val Val Ser Met 115 120 125 Val Ile Leu Lys Met Thr Glu Thr Gln Ala Gly Glu Tyr Leu Leu Phe 130 135 140 Ile Gln Ser Glu Ala Thr Asn Tyr Thr Ile Leu Phe Thr Val Ser Ile 145 150 155

Arg Asn Thr Leu Leu Tyr Thr Leu Arg Arg Pro Tyr Phe Arg Lys Met

165 170

Glu Asn Gln Asp Ala Leu Val Cys Ile Ser Glu Ser Val Pro Glu Pro 180 185

Ile Val Glu Trp Val Leu Cys Asp Ser Gln Gly Glu Ser Cys Lys Glu 195 200 205

Glu Ser Pro Ala Val Val Lys Lys Glu Glu Lys Val Leu His Glu Leu 210 215 220

Phe Gly Thr Asp Ile Arg Cys Cys Ala Arg Asn Glu Leu Gly Arg Glu 225 230 240

Cys Thr Arg Leu Phe Thr Ile Asp Leu Asn Gln Thr Pro Gln Thr Thr 245 250 255

Leu Pro Gln Leu Phe Leu Lys Val Gly Glu Pro Leu Trp Ile Arg Cys 260 265 270

Lys Ala Val His Val Asn His Gly Phe Gly Leu Thr Trp Glu Leu Glu 275 280 285

Asn Lys Ala Leu Glu Glu Gly Asn Tyr Phe Glu Met Ser Thr Tyr Ser 290 \$295\$

Thr Asn Arg Thr Met Ile Arg Ile Leu Phe Ala Phe Val Ser Ser Val 305 310 315 320

Ala Arg Asn Asp Thr Gly Tyr Tyr Thr Cys Ser Ser Ser Lys His Pro \$325\$ \$330 \$335\$

Ser Gln Ser Ala Leu Val Thr Ile Val Gly Lys Gly Phe Ile Asn Ala 340 345 350

Thr Asn Ser Ser Glu Asp Tyr Glu Ile Asp Gln Tyr Glu Glu Phe Cys \$355\$

Phe Ser Val Arg Phe Lys Ala Tyr Pro Gln Ile Arg Cys Thr Trp Thr 370 380

Phe Ser Arg Lys Ser Phe Pro Cys Glu Gln Lys Gly Leu Asp Asn Gly 385 390 395 400

Tyr Ser Ile Ser Lys Phe Cys Asn His Lys His Gln Pro Gly Glu Tyr 405 410 415

Ile Phe His Ala Glu Asn Asp Asp Ala Gln Phe Thr Lys Met Phe Thr 420 425 430

Leu Asn Ile Arg Arg Lys Pro Gln Val Leu Ala Glu Ala Ser Ala Ser

435 440 445

Gln Ala Ser Cys Phe Ser Asp Gly Tyr Pro Leu Pro Ser Trp Thr Trp 450 455 460

Lys Lys Cys Ser Asp Lys Ser Pro Asn Cys Thr Glu Glu Ile Thr Glu 465 470 475 480

Gly Val Trp Asn Arg Lys Ala Asn Arg Lys Val Phe Gly Gln Trp Val 485 490 495

Ser Ser Ser Thr Leu Asn Met Ser Glu Ala Ile Lys Gly Phe Leu Val

Lys Cys Cys Ala Tyr Asn Ser Leu Gly Thr Ser Cys Glu Thr Ile Leu 515 520 525

Leu Asn Ser Pro Gly Pro Phe Pro Phe Ile Gln Asp Asn Ile Ser Phe 530 535 540

Tyr Ala Thr Ile Gly Val Cys Leu Leu Phe Ile Val Val Leu Thr Leu 545 550 555 560

Leu Ile Cys His Lys Tyr Lys Lys Gln Phe Arg Tyr Glu Ser Gln Leu
565 570 575

Gln Met Val Gln Val Thr Gly Ser Ser Asp Asn Glu Tyr Phe Tyr Val

Asp Phe Arg Glu Tyr Glu Tyr Asp Leu Lys Trp Glu Phe Pro Arg Glu 595 600 605

Asn Leu Glu Phe Gly Lys Val Leu Gly Ser Gly Ala Phe Gly Lys Val 610  $\,$  620  $\,$ 

Met Asn Ala Thr Ala Tyr Gly Ile Ser Lys Thr Gly Val Ser Ile Gln 625 630 635

Val Ala Val Lys Met Leu Lys Glu Lys Ala Asp Ser Ser Glu Arg Glu 645 650 655

Ala Leu Met Ser Glu Leu Lys Met Met Thr Gln Leu Gly Ser His Glu 660 665 670

Asn Ile Val Asn Leu Leu Gly Ala Cys Thr Leu Ser Gly Pro Ile Tyr 675 680 685

| Leu        | Ile<br>690 | Phe        | Glu        | Tyr        | Сув        | Cys<br>695 | Tyr        | Gly        | Asp        | Leu        | Leu<br>700 |            | Tyr        | Leu        | Arg        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ser<br>705 | Lys        | Arg        | Glu        | Lys        | Phe<br>710 | His        | Arg        | Thr        | Trp        | Thr<br>715 |            | Ile        | Phe        | Lys        | Glu<br>720 |
| His        | Asn        | Phe        | Ser        | Phe<br>725 | Tyr        | Pro        | Thr        | Phe        | Gln<br>730 |            | His        | Pro        | Asn        | Ser<br>735 | Ser        |
| Met        | Pro        | Gly        | Ser<br>740 | Arg        | Glu        | Val        | Gln        | Ile<br>745 | His        | Pro        | Asp        | Ser        | Asp<br>750 | Gln        | Ile        |
| Ser        | Gly        | Leu<br>755 | His        | Gly        | Asn        | Ser        | Phe<br>760 | His        | Ser        | Glu        | Asp        | Glu<br>765 | Ile        | Glu        | Tyr        |
| Glu        | Asn<br>770 | Gln        | Lys        | Arg        | Leu        | Glu<br>775 | Glu        | Glu        | Glu        | Asp        | Leu<br>780 | Asn        | Val        | Leu        | Thr        |
| Phe<br>785 | Glu        | Asp        | Leu        | Leu        | Cys<br>790 | Phe        | Ala        | Tyr        | Gln        | Val<br>795 | Ala        | Lys        | Gly        | Met        | Glu<br>800 |
| Phe        | Leu        | Glu        | Phe        | Lys<br>805 | Ser        | Сув        | Val        | His        | Arg<br>810 | Asp        | Leu        | Ala        | Ala        | Arg<br>815 | Asn        |
| Val        | Leu        | Val        | Thr<br>820 | His        | Gly        | Lys        | Val        | Val<br>825 | Lys        | Ile        | Cys        | Asp        | Phe<br>830 | Gly        | Leu        |
| Ala        | Arg        | Asp<br>835 | Ile        | Met        | Ser        | Asp        | Ser<br>840 | Asn        | Tyr        | Val        | Val        | Arg<br>845 | Gly        | Asn        | Ala        |
| Arg        | Leu<br>850 | Pro        | Val        | Lys        | Trp        | Met<br>855 | Ala        | Pro        | Glu        | Ser        | Leu<br>860 | Phe        | Glu        | Gly        | Ile        |
| Tyr<br>865 | Thr        | Ile        | Lys        | Ser        | Asp<br>870 | Val        | Trp        | Ser        | Tyr        | Gly<br>875 | Ile        | Leu        | Leu        | Trp        | Glu<br>880 |
| Ile        | Phe        | Ser        | Leu        | Gly<br>885 | Val        | Asn        | Pro        | Tyr        | Pro<br>890 | Gly        | Ile        | Pro        | Val        | Asp<br>895 | Ala        |
| Asn        | Phe        | Tyr        | Lys<br>900 | Leu        | Ile        | Gln        | Asn        | Gly<br>905 | Phe        | Lys        | Met        | Asp        | Gln<br>910 | Pro        | Phe        |
| Tyr        | Ala        | Thr<br>915 | Glu        | Glu        | Ile        | Tyr        | Ile<br>920 | Ile        | Met        | Gln        | Ser        | Cys<br>925 | Trp        | Ala        | Phe        |

Asp Ser Arg Lys Arg Pro Ser Phe Pro Asn Leu Thr Ser Phe Leu Gly 930 935 940

Cys Gln Leu Ala Asp Ala Glu Glu Ala Met Tyr Gln Asn Val Asp Gly 945 950 955 960

Arg Val Ser Glu Cys Pro His Thr Tyr Gln Asn Arg Arg Pro Phe Ser 965 970 975

Arg Glu Met Asp Leu Gly Leu Leu Ser Pro Gln Ala Gln Val Glu Asp

Ser

<210> 2464

<211> 443 <212> PRT

<213> Homo sapiens

<400> 2464

Met Glu Val Thr Ala Asp Gln Pro Arg Trp Val Ser His His His Pro 1 5 10 15

Ala Val Leu Asn Gly Gln His Pro Asp Thr His His Pro Gly Leu Ser

His Ser Tyr Met Asp Ala Ala Gln Tyr Pro Leu Pro Glu Glu Val Asp 35 40 45

Val Leu Phe Asn Ile Asp Gly Gln Gly Asn His Val Pro Pro Tyr Tyr 50 55 60

Gly Asn Ser Val Arg Ala Thr Val Gln Arg Tyr Pro Pro Thr His His 65 70 75 80

Gly Ser Gln Val Cys Arg Pro Pro Leu Leu His Gly Ser Leu Pro Trp 85 90 95

Leu Asp Gly Gly Lys Ala Leu Gly Ser His His Thr Ala Ser Pro Trp

Asn Leu Ser Pro Phe Ser Lys Thr Ser Ile His His Gly Ser Pro Gly
115 120 125

Pro Leu Ser Val Tyr Pro Pro Ala Ser Ser Ser Leu Ser Gly Gly

130 135 140

His Ala Ser Pro His Leu Phe Thr Phe Pro Pro Thr Pro Pro Lys Asp 145 150 155 160

Val Ser Pro Asp Pro Ser Leu Ser Thr Pro Gly Ser Ala Gly Ser Ala 165 170 175

Arg Gln Asp Glu Lys Glu Cys Leu Lys Tyr Gln Val Pro Leu Pro Asp 180 185 190

Ser Met Lys Leu Glu Ser Ser His Ser Arg Gly Ser Met Thr Ala Leu 195 200 205

Gly Gly Ala Ser Ser Ser Thr His His Pro Ile Thr Thr Tyr Pro Pro 210 \$215\$

Tyr Val Pro Glu Tyr Ser Ser Gly Leu Phe Pro Pro Ser Ser Leu Leu 225 230 235 240

Gly Gly Ser Pro Thr Gly Phe Gly Cys Lys Ser Arg Pro Lys Ala Arg 245 250 25

Ser Ser Thr Gly Arg Glu Cys Val Asn Cys Gly Ala Thr Ser Thr Pro

Leu Trp Arg Arg Asp Gly Thr Gly His Tyr Leu Cys Asn Ala Cys Gly 275 280 285

Leu Tyr His Lys Met Asn Gly Gln Asn Arg Pro Leu Ile Lys Pro Lys 290 295 300

Arg Arg Leu Ser Ala Ala Arg Arg Ala Gly Thr Ser Cys Ala Asn Cys 305 310 315 320

Gln Thr Thr Thr Thr Leu Trp Arg Arg Asn Ala Asn Gly Asp Pro \$325\$

Val Cys Asn Ala Cys Gly Leu Tyr Tyr Lys Leu His Asn Ile Asn Arg 340 345 350

Pro Leu Thr Met Lys Lys Glu Gly Ile Gln Thr Arg Asn Arg Lys Met 355 360 365

Ser Ser Lys Ser Lys Lys Cys Lys Lys Val His Asp Ser Leu Glu Asp 370 375 380

Phe Pro Lys Asn Ser Ser Phe Asn Pro Ala Ala Leu Ser Arg His Met Ser Ser Leu Ser His Ile Ser Pro Phe Ser His Ser Ser His Met Leu Thr Thr Pro Thr Pro Met His Pro Pro Ser Ser Leu Ser Phe Gly Pro His His Pro Ser Ser Met Val Thr Ala Met Gly <210> 2465 <211> 459 <212> PRT <213> Homo sapiens <400> 2465 Met Thr Ile Leu Gly Thr Thr Phe Gly Met Val Phe Ser Leu Leu Gln Val Val Ser Gly Glu Ser Gly Tyr Ala Gln Asn Gly Asp Leu Glu Asp Ala Glu Leu Asp Asp Tyr Ser Phe Ser Cys Tyr Ser Gln Leu Glu Val Asn Gly Ser Gln His Ser Leu Thr Cys Ala Phe Glu Asp Pro Asp Val Asn Ile Thr Asn Leu Glu Phe Glu Ile Cys Gly Ala Leu Val Glu Val Lys Cys Leu Asn Phe Arg Lys Leu Gln Glu Ile Tyr Phe Ile Glu Thr Lys Lys Phe Leu Leu Ile Gly Lys Ser Asn Ile Cys Val Lys Val Gly Glu Lys Ser Leu Thr Cys Lys Lys Ile Asp Leu Thr Thr Ile Val Lys Pro Glu Ala Pro Phe Asp Leu Ser Val Val Tyr Arg Glu Gly Ala Asn

US2003/012946

|            | WO 2       | 2004/0     | 42340      | 5          |            |            |            |            |            |            |            |            |            |            | PCT/U        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|
| As;<br>145 | Phe<br>5   | e Va       | l Va       | l Th       | r Phe      | Asr        | Thi        | Ser        | His        | 15!        | ı Glr<br>5 | Lys        | . Lys      | з Туі      | r Val<br>160 |
| Lys        | Va]        | l Le       | u Me       | t His      | s Asp      | Val        | Ala        | Туг        | 170        | g Glr      | ı Glı      | Lys        | Asp        | Glu<br>175 | ı Asn        |
| Lys        | Trp        | Thi        | 7 His      | s Va]      | Asn        | Leu        | Ser        | Ser<br>185 | Thr        | Lys        | Leu        | Thr        | Leu<br>190 |            | ı Gln        |
| Arg        | Lys        | Let<br>195 | Glr        | n Pro      | Ala        | Ala        | Met<br>200 | Tyr        | Glu        | Ile        | . Lys      | Val<br>205 |            | Ser        | Ile          |
| Pro        | Asp<br>210 | His        | Туг        | Phe        | Lys        | Gly<br>215 | Phe        | Trp        | Ser        | Glu        | Trp<br>220 | Ser        | Pro        | Ser        | Tyr          |
| Tyr<br>225 | Phe        | Arg        | Thr        | Pro        | G1u<br>230 | Ile        | Asn        | Asn        | Ser        | Ser<br>235 | Gly        | Glu        | Met        | Asp        | Pro<br>240   |
| Ile        | Leu        | Leu        | Thr        | Ile<br>245 | Ser        | Ile        | Leu        | Ser        | Phe<br>250 | Phe        | Ser        | Val        | Ala        | Leu<br>255 | Leu          |
| Val        | Ile        | Leu        | Ala<br>260 | Сув        | Val        | Leu        | Trp        | Lys<br>265 | Lys        | Arg        | Ile        | Lys        | Pro<br>270 | Ile        | Val          |
| Trp        | Pro        | Ser<br>275 | Leu        | Pro        | Asp        | His        | Lys<br>280 | Lys        | Thr        | Leu        | Glu        | His<br>285 | Leu        | Сув        | Lys          |
| Lys        | Pro<br>290 | Arg        | Lys        | Asn        | Leu        | Asn<br>295 | Val        | Ser        | Phe        | Asn        | Pro<br>300 | Glu        | Ser        | Phe        | Leu          |
| Asp<br>305 | Cys        | Gln        | Ile        | His        | Arg<br>310 | Val        | Asp        | Asp        | Ile        | Gln<br>315 | Ala        | Arg        | Asp        | Glu        | Val<br>320   |
| Glu        | Gly        | Phe        | Leu        | Gln<br>325 | Asp        | Thr        | Phe        | Pro        | Gln<br>330 | Gln        | Leu        | Glu        |            | Ser<br>335 | Glu          |
| Lys        | Gln        | Arg        | Leu        | Gly        | Gly .      | Asp        | Val        | Gln .      | Ser        | Pro        | Asn        | Cys        | Pro        | Ser        | Glu          |

Asp Val Val Ile Thr Pro Glu Ser Phe Gly Arg Asp Ser Ser Leu Thr 

Cys Leu Ala Gly Asn Val Ser Ala Cys Asp Ala Pro Ile Leu Ser Ser 

Ser Arg Ser Leu Asp Cys Arg Glu Ser Gly Lys Asn Gly Pro His Val

385 390 395 400

Tyr Gln Asp Leu Leu Leu Ser Leu Gly Thr Thr Asn Ser Thr Leu Pro 405 410 415

Pro Pro Phe Ser Leu Gln Ser Gly Ile Leu Thr Leu Asn Pro Val Ala 420 \$425\$

Gln Gly Gln Pro Ile Leu Thr Ser Leu Gly Ser Asn Gln Glu Glu Ala 435  $\phantom{\bigg|}440\phantom{\bigg|}$ 

Tyr Val Thr Met Ser Ser Phe Tyr Gln Asn Gln 450 455

<210> 2466

<211> 362 <212> PRT

<213> Homo sapiens

<400> 2466

Met Ala Thr Ala Glu Thr Ala Leu Pro Ser Ile Ser Thr Leu Thr Ala 1 5 10 15

Leu Gly Pro Phe Pro Asp Thr Gln Asp Asp Phe Leu Lys Trp Trp Arg

Ser Glu Glu Ala Gln Asp Met Gly Pro Gly Pro Pro Asp Pro Thr Glu 35 40 45

Pro Pro Leu His Val Lys Ser Glu Asp Gln Pro Gly Glu Glu Glu Asp 50 60

Asp Glu Arg Gly Ala Asp Ala Thr Trp Asp Leu Asp Leu Leu Leu Thr 65  $\phantom{\bigg|}$  70  $\phantom{\bigg|}$  75  $\phantom{\bigg|}$  80

Asn Phe Ser Gly Pro Glu Pro Gly Gly Ala Pro Gln Thr Cys Ala Leu 85 90 95

Leu Gly Ala Tyr Ala Gly Gly Pro Gly Leu Val Ala Gly Leu Leu Gly
115 120 125

Ser Glu Asp His Ser Gly Trp Val Arg Pro Ala Leu Arg Ala Arg Ala 130 135 140

Pro Asp Ala Phe Val Gly Pro Ala Leu Ala Pro Ala Pro Ala Pro Glu 

Pro Lys Ala Leu Ala Leu Gln Pro Val Tyr Pro Gly Pro Gly Ala Gly 

Ser Ser Gly Gly Tyr Phe Pro Arg Thr Gly Leu Ser Val Pro Ala Ala 

Ser Gly Ala Pro Tyr Gly Leu Leu Ser Gly Tyr Pro Ala Met Tyr Pro 

Ala Pro Gln Tyr Gln Gly His Phe Gln Leu Phe Arg Gly Leu Gln Gly 

Pro Ala Pro Gly Pro Ala Thr Ser Pro Ser Phe Leu Ser Cys Leu Gly 

Pro Gly Thr Val Gly Thr Gly Leu Gly Gly Thr Ala Glu Asp Pro Gly 

Val Ile Ala Glu Thr Ala Pro Ser Lys Arg Gly Arg Arg Ser Trp Ala 

Arg Lys Arg Gln Ala Ala His Thr Cys Ala His Pro Gly Cys Gly Lys 

Ser Tyr Thr Lys Ser Ser His Leu Lys Ala His Leu Arg Thr His Thr 

Gly Glu Lys Pro Tyr Ala Cys Thr Trp Glu Gly Cys Gly Trp Arg Phe 

Ala Arg Ser Asp Glu Leu Thr Arg His Tyr Arg Lys His Thr Gly Gln 

Arg Pro Phe Arg Cys Gln Leu Cys Pro Arg Ala Phe Ser Arg Ser Asp 

His Leu Ala Leu His Met Lys Arg His Leu 

<210> 2467

<211> 509 <212> PRT

<213> Homo sapiens

| -4 |  | 24 |  |
|----|--|----|--|

Met Gly Cys Gly Cys Ser Ser His Pro Glu Asp Asp Trp Met Glu Asn 1 10 15

Ile Asp Val Cys Glu Asn Cys His Tyr Pro Ile Val Pro Leu Asp Gly 20 25 30

Lys Gly Thr Leu Leu Ile Arg Asn Gly Ser Glu Val Arg Asp Pro Leu  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Val Thr Tyr Glu Gly Ser Asn Pro Pro Ala Ser Pro Leu Gln Asp Asn 50 60

Leu Val Ile Ala Leu His Ser Tyr Glu Pro Ser His Asp Gly Asp Leu 65 70 75 80

Gly Phe Glu Lys Gly Glu Pro Leu Arg Ile Leu Glu Gln Ser Gly Glu 85 90 95

Trp Trp Lys Ala Gln Ser Leu Thr Thr Gly Gln Glu Gly Phe Ile Pro  $100 \hspace{1cm} 100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$ 

Phe Asn Phe Val Ala Lys Ala Asn Ser Leu Glu Pro Glu Pro Trp Phe 115 120 125

Phe Lys Asn Leu Ser Arg Lys Asp Ala Glu Arg Gln Leu Leu Ala Pro 130 \$135\$

Gly Asn Thr His Gly Ser Phe Leu Ile Arg Glu Ser Glu Ser Thr Ala 145 150 155 160

Gly Ser Phe Ser Leu Ser Val Arg Asp Phe Asp Gln Asn Gln Gly Glu 165 170 175

Val Val Lys His Tyr Lys Ile Arg Asn Leu Asp Asn Gly Gly Phe Tyr 180 185 190

Ile Ser Pro Arg Ile Thr Phe Pro Gly Leu His Glu Leu Val Arg His 195 200 205

Tyr Thr Asn Ala Ser Asp Gly Leu Cys Thr Arg Leu Ser Arg Pro Cys 210 215 220

Gln Thr Gln Lys Pro Gln Lys Pro Trp Trp Glu Asp Glu Trp Glu Val 225 230 235 240

Pro Arg Glu Thr Leu Lys Leu Val Glu Arg Leu Gly Ala Gly Gln Phe Gly Glu Val Trp Met Gly Tyr Tyr Asn Gly His Thr Lys Val Ala Val Lys Ser Leu Lys Gln Gly Ser Met Ser Pro Asp Ala Phe Leu Ala Glu Ala Asn Leu Met Lys Gln Leu Gln His Gln Arg Leu Val Arg Leu Tyr Ala Val Val Thr Gln Glu Pro Ile Tyr Ile Ile Thr Glu Tyr Met Glu Asn Gly Ser Leu Val Asp Phe Leu Lys Thr Pro Ser Gly Ile Lys Leu Thr Ile Asn Lys Leu Leu Asp Met Ala Ala Gln Ile Ala Glu Gly Met Ala Phe Ile Glu Glu Arg Asn Tyr Ile His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val Ser Asp Thr Leu Ser Cys Lys Ile Ala Asp Phe Gly Leu Ala Arg Leu Ile Glu Asp Asn Glu Tyr Thr Ala Arg Glu Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ile Asn Tyr Gly Thr Phe Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Ile Val Thr His Gly Arg Ile Pro Tyr Pro Gly Met Thr Asn Pro Glu Val Ile Gln Asn Leu Glu Arg Gly Tyr Arg Met Val Arg Pro Asp Asn 

Cys Pro Glu Glu Leu Tyr Gln Leu Met Arg Leu Cys Trp Lys Glu Arg

Pro Glu Asp Arg Pro Thr Phe Asp Tyr Leu Arg Ser Val Leu Glu Asp 485 \$490\$

Phe Phe Thr Ala Thr Glu Gly Gln Tyr Gln Pro Gln Pro 500 505

<210> 2468

<211> 399 '
<212> PRT

<213> Homo sapiens

<400> 2468

Met Pro Gln Leu Ser Gly Gly Gly Gly Gly Gly Gly Gly Asp Pro Glu 1 5 10 10 15

Gln Lys Glu Lys Ile Phe Ala Glu Ile Ser His Pro Glu Glu Glu Gly 35  $$40\$ 

Asp Leu Ala Asp Ile Lys Ser Ser Leu Val Asn Glu Ser Glu Ile Ile 50  $\phantom{\bigg|}55\phantom{\bigg|}$ 

Pro Ala Ser Asn Gly His Glu Val Ala Arg Gln Ala Gln Thr Ser Gln 65 70 75 80

Glu Pro Tyr His Asp Lys Ala Arg Glu His Pro Asp Asp Gly Lys His 85  $\phantom{-}90\phantom{0}$  95

Pro Asp Gly Gly Leu Tyr Asn Lys Gly Pro Ser Tyr Ser Ser Tyr Ser 100 105 110

Gly Tyr Ile Met Met Pro Asn Met Asn Asn Asp Pro Tyr Met Ser Asn 115 120 125

Gly Ser Leu Ser Pro Pro Ile Pro Arg Thr Ser Asn Lys Val Pro Val 130 135 140

Val Gln Pro Ser His Ala Val His Pro Leu Thr Pro Leu Ile Thr Tyr 145 150 155 160

Ser Asp Glu His Phe Ser Pro Gly Ser His Pro Ser His Ile Pro Ser 165 170 175

Asp Val Asn Ser Lys Gln Gly Met Ser Arg His Pro Pro Ala Pro Asp

180 185 190

Ile Pro Thr Phe Tyr Pro Leu Ser Pro Gly Gly Val Gly Gln Ile Thr

Pro Pro Leu Gly Trp Gln Gly Gln Pro Val Tyr Pro Ile Thr Gly Gly 210 215 220

Phe Arg Gln Pro Tyr Pro Ser Ser Leu Ser Val Asp Thr Ser Met Ser 225  $\phantom{\bigg|}230\phantom{\bigg|}235\phantom{\bigg|}235\phantom{\bigg|}235\phantom{\bigg|}$ 

Gly Ile Pro His Pro Ala Ile Val Thr Pro Gln Val Lys Gln Glu His  $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$ 

Arg Lys Glu Gln Glu Pro Lys Arg Pro His Ile Lys Lys Pro Leu Asn 290 \$295\$

Ala Phe Met Leu Tyr Met Lys Glu Met Arg Ala Asn Val Val Ala Glu 305 310 315 320

Cys Thr Leu Lys Glu Ser Ala Ala Ile Asn Gln Ile Leu Gly Arg Arg 325 330 335

Trp His Ala Leu Ser Arg Glu Glu Gln Ala Lys Tyr Tyr Glu Leu Ala  $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350$ 

Arg Lys Glu Arg Gln Leu His Met Gln Leu Tyr Pro Gly Trp Ser Ala \$355\$

Arg Asp Asn Tyr Gly Lys Lys Lys Lys Arg Lys Arg Glu Lys Leu Gln 370 375

Glu Ser Ala Ser Gly Thr Gly Pro Arg Met Thr Ala Ala Tyr Ile 385 390 395

<210> 2469

<211> 335

<212> PRT

<213> Homo sapiens

<400> 2469

| Met<br>1   | GIY        | HIS        | Pro        | 5          | Leu        | Leu        | Pro        | Leu        | Leu<br>10  | Leu        | Leu        | Leu        | His        | Thr<br>15  | Cys        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Val        | Pro        | Ala        | Ser<br>20  | Trp        | Gly        | Leu        | Arg        | Cys<br>25  | Met        | Gln        | Cys        | Lys        | Thr<br>30  | Asn        | Gly        |
| Asp        | Cys        | Arg<br>35  | Val        | Glu        | Glu        | Сув        | Ala<br>40  | Leu        | Gly        | Gln        | Asp        | Leu<br>45  | Cys        | Arg        | Thr        |
| Thr        | 11e<br>50  | Val        | Arg        | Leu        | Trp        | Glu<br>55  | Glu        | Gly        | Glu        | Glu        | Leu<br>60  | Glu        | Leu        | Val        | Glu        |
| Lys<br>65  | Ser        | Cys        | Thr        | His        | Ser<br>70  | Glu        | Lys        | Thr        | Asn        | Arg<br>75  | Thr        | Leu        | Ser        | Tyr        | Arg<br>80  |
| Thr        | Gly        | Leu        | Lys        | Ile<br>85  | Thr        | Ser        | Leu        | Thr        | Glu<br>90  | Val        | Val        | Сув        | Gly        | Leu<br>95  | Asp        |
| Leu        | Сув        | Asn        | Gln<br>100 | Gly        | Asn        | Ser        | Gly        | Arg<br>105 | Ala        | Val        | Thr        | Tyr        | Ser<br>110 | Arg        | Ser        |
| Arg        | Tyr        | Leu<br>115 | Glu        | Cys        | Ile        | Ser        | Cys<br>120 | Gly        | Ser        | Ser        | Asp        | Met<br>125 | Ser        | Сув        | Glu        |
| Arg        | Gly<br>130 | Arg        | His        | Gln        | Ser        | Leu<br>135 | Gln        | Сув        | Arg        | Ser        | Pro<br>140 | Glu        | Glu        | Gln        | Cys        |
| Leu<br>145 | Asp        | Val        | Val        | Thr        | His<br>150 | Trp        | Ile        | Gln        | Glu        | Gly<br>155 | Glu        | Glu        | Gly        | Arg        | Pro<br>160 |
| Lys        | Asp        | Asp        | Arg        | His<br>165 | Leu        | Arg        | Gly        | Сув        | Gly<br>170 | Tyr        | Leu        | Pro        | Gly        | Cys<br>175 | Pro        |
| Gly        | Ser        | Asn        | Gly<br>180 | Phe        | His        | Asn        | Asn        | Asp<br>185 | Thr        | Phe        | His        | Phe        | Leu<br>190 | Lys        | Cys        |
| Сув        | Asn        | Thr<br>195 | Thr        | Lys        | Cys        | Asn        | Glu<br>200 | Gly        | Pro        | Ile        | Leu        | G1u<br>205 | Leu        | Glu        | Asn        |
| Leu        | Pro<br>210 | Gln        | Asn        | Gly        | Arg        | Gln<br>215 | Cys        | Tyr        | Ser        | Сув        | Lуs<br>220 | Gly        | Asn        | Ser        | Thr        |
| His<br>225 | Gly        | Сув        | Ser        | Ser        | Glu<br>230 | Glu        | Thr        | Phe        | Leu        | Ile<br>235 | Asp        | Cys        | Arg        | Gly        | Pro<br>240 |

Met Asn Gln Cys Leu Val Ala Thr Gly Thr His Glu Pro Lys Asn Gln 245 250 255

Ser Tyr Met Val Arg Gly Cys Ala Thr Ala Ser Met Cys Gln His Ala 260 265 270

His Leu Gly Asp Ala Phe Ser Met Asn His Ile Asp Val Ser Cys Cys 275 280 285

Thr Lys Ser Gly Cys Asn His Pro Asp Leu Asp Val Gln Tyr Arg Ser 290 295 300

Gly Ala Ala Pro Gln Pro Gly Pro Ala His Leu Ser Leu Thr Ile Thr 305 310 315 320

Leu Leu Met Thr Ala Arg Leu Trp Gly Gly Thr Leu Leu Trp Thr 325 330 335

<210> 2470

<211> 285

<212> PRT

<213> Homo sapiens

<400> 2470

Met Asp Asp Ser Thr Glu Arg Glu Gln Ser Arg Leu Thr Ser Cys Leu 1 5 10 15

Lys Lys Arg Glu Glu Met Lys Leu Lys Glu Cys Val Ser Ile Leu Pro 20 25 30

Arg Lys Glu Ser Pro Ser Val Arg Ser Ser Lys Asp Gly Lys Leu Leu  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Ala Ala Thr Leu Leu Leu Ala Leu Leu Ser Cys Cys Leu Thr Val Val 50 55 60

Ser Phe Tyr Gln Val Ala Ala Leu Gln Gly Asp Leu Ala Ser Leu Arg 65 70 75 80

Ala Glu Leu Gln Gly His His Ala Glu Lys Leu Pro Ala Gly Ala Gly 85 90 95

Ala Pro Lys Ala Gly Leu Glu Glu Ala Pro Ala Val Thr Ala Gly Leu 100 105 110

Lys Ile Phe Glu Pro Pro Ala Pro Gly Glu Gly Asn Ser Ser Gln Asn 115 120 125

Ser Arg Asn Lys Arg Ala Val Gln Gly Pro Glu Glu Thr Val Thr Gln Asp Cys Leu Gln Leu Ile Ala Asp Ser Glu Thr Pro Thr Ile Gln Lys Gly Ser Tyr Thr Phe Val Pro Trp Leu Leu Ser Phe Lys Arg Gly Ser Ala Leu Glu Glu Lys Glu Asn Lys Ile Leu Val Lys Glu Thr Gly Tyr Phe Phe Ile Tyr Gly Gln Val Leu Tyr Thr Asp Lys Thr Tyr Ala Met Gly His Leu Ile Gln Arg Lys Lys Val His Val Phe Gly Asp Glu Leu Ser Leu Val Thr Leu Phe Arg Cys Ile Gln Asn Met Pro Glu Thr Leu Pro Asn Asn Ser Cys Tyr Ser Ala Gly Ile Ala Lys Leu Glu Glu Gly Asp Glu Leu Gln Leu Ala Ile Pro Arg Glu Asn Ala Gln Ile Ser Leu Asp Gly Asp Val Thr Phe Phe Gly Ala Leu Lys Leu Leu <210> 2471 <211> 99 <212> PRT <213> Homo sapiens <400> 2471 Met Thr Ser Lys Leu Ala Val Ala Leu Leu Ala Ala Phe Leu Ile Ser Ala Ala Leu Cys Glu Gly Ala Val Leu Pro Arg Ser Ala Lys Glu Leu Arg Cys Gln Cys Ile Lys Thr Tyr Ser Lys Pro Phe His Pro Lys Phe 

Glu Ile Ile Val Lys Leu Ser Asp Gly Arg Glu Leu Cys Leu Asp Pro 65 70 75 80

Lys Glu Asn Trp Val Gln Arg Val Val Glu Lys Phe Leu Lys Arg Ala

Glu Asn Ser

<210> 2472

<211> 247

<212> PRT <213> Homo sapiens

<400> 2472

Met Gln Pro Ile Leu Leu Leu Leu Ala Phe Leu Leu Leu Pro Arg Ala 1 5 10 15

Asp Ala Gly Glu Ile Ile Gly Gly His Glu Ala Lys Pro His Ser Arg 20 25 30

Pro Tyr Met Ala Tyr Leu Met Ile Trp Asp Gln Lys Ser Leu Lys Arg 35 40 45

Cys Gly Gly Phe Leu Ile Gln Asp Asp Phe Val Leu Thr Ala Ala His 50 55 60

Cys Trp Gly Ser Ser Ile Asn Val Thr Leu Gly Ala His Asn Ile Lys 65 70 75 80

Glu Gln Glu Pro Thr Gln Gln Phe Ile Pro Val Lys Arg Pro Ile Pro 85 90 95

His Pro Ala Tyr Asn Pro Lys Asn Phe Ser Asn Asp Ile Met Leu Leu 100 105 110

Gln Leu Glu Arg Lys Ala Lys Arg Thr Arg Ala Val Gln Pro Leu Arg 115 120 125

Leu Pro Ser Asn Lys Ala Gln Val Lys Pro Gly Gln Thr Cys Ser Val 130 135 140

Ala Gly Trp Gly Gln Thr Ala Pro Leu Gly Lys His Ser His Thr Leu 145 150 155 160

Gln Glu Val Lys Met Thr Val Gln Glu Asp Arg Lys Cys Glu Ser Asp 165 170 175

Leu Arg His Tyr Tyr Asp Ser Thr Ile Glu Leu Cys Val Gly Asp Pro 180 185 190

Glu Ile Lys Lys Thr Ser Phe Lys Gly Asp Ser Gly Gly Pro Leu Val

Cys Asn Lys Val Ala Gln Gly Ile Val Ser Tyr Gly Arg Asn Asn Gly 210 215 220

Met Pro Pro Arg Ala Cys Thr Lys Val Ser Ser Phe Val His Trp Ile 225 230 235 240

Lys Lys Thr Met Lys Arg Tyr 245

<210> 2473

<211> 281 <212> PRT

<213> Homo sapiens

<400> 2473

Met Gln Gln Pro Phe Asn Tyr Pro Tyr Pro Gln Ile Tyr Trp Val Asp 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Ser Ser Ala Ser Ser Pro Trp Ala Pro Pro Gly Thr Val Leu Pro Cys 20 25 30

Pro Thr Ser Val Pro Arg Arg Pro Gly Gln Arg Arg Pro Pro Pro Pro 35 40 45

Pro Leu Pro Leu Pro Pro Leu Lys Lys Arg Gly Asn His Ser Thr Gly 65 70 75 80

Leu Cys Leu Leu Val Met Phe Phe Met Val Leu Val Ala Leu Val Gly 85 90 95

Leu Gly Leu Gly Met Phe Gln Leu Phe His Leu Gln Lys Glu Leu Ala 100 \$105\$

US2003/012946

|                                      | wo 2           | 2004/0                     | 42340      | 5          |            |            |            |            |            |            |            |            |            |            | PCT/U      |
|--------------------------------------|----------------|----------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Glu                                  | Leu            | Arg<br>115                 | Glu        | Ser        | Thr        | Ser        | Gln<br>120 | Met        | His        | Thr        | Ala        | Ser<br>125 | Ser        | Leu        | Glu        |
| Lys                                  | Gln<br>130     | Ile                        | Gly        | His        | Pro        | Ser<br>135 | Pro        | Pro        | Pro        | Glu        | Lys<br>140 | Lys        | Glu        | Leu        | Arg        |
| Lys<br>145                           | Val            | Ala                        | His        | Leu        | Thr<br>150 | Gly        | Lys        | Ser        | Asn        | Ser<br>155 | Arg        | Ser        | Met        | Pro        | Leu<br>160 |
| Glu                                  | Trp            | Glu                        | Asp        | Thr<br>165 | Tyr        | Gly        | Ilè        | Val        | Leu<br>170 | Leu        | Ser        | Gly        | Val        | Lys<br>175 | Tyr        |
| Lys                                  | Lys            | Gly                        | Gly<br>180 | Leu        | Val        | Ile        | Asn        | Glu<br>185 | Thr        | Gly        | Leu        | Tyr        | Phe<br>190 | Val        | Tyr        |
| Ser                                  | Lys            | Val<br>195                 | Tyr        | Phe        | Arg        | Gly        | Gln<br>200 | Ser        | Cys        | Asn        | Asn        | Leu<br>205 | Pro        | Leu        | Ser        |
| His                                  | Lys<br>210     | Val                        | Tyr        | Met        | Arg        | Asn<br>215 | Ser        | Lys        | Tyr        | Pro        | Gln<br>220 | Asp        | Leu        | Val        | Met        |
| Met<br>225                           | Glu            | Gly                        | Lys        | Met        | Met<br>230 | Ser        | Tyr        | Сув        | Thr        | Thr<br>235 | Gly        | Gln        | Met        | Trp        | Ala<br>240 |
| Arg                                  | Ser            | Ser                        | Tyr        | Leu<br>245 | Gly        | Ala        | Val        | Phe        | Asn<br>250 | Leu        | Thr        | Ser        | Ala        | Asp<br>255 | His        |
| Leu                                  | Tyr            | Val                        | Asn<br>260 | Val        | Ser        | Glu        | Leu        | Ser<br>265 | Leu        | Val        | Asn        | Phe        | Glu<br>270 | Glu        | Ser        |
| Gln                                  | Thr            | Phe<br>275                 | Phe        | Gly        | Leu        | Tyr        | Lys<br>280 | Leu        |            |            |            |            |            |            |            |
| <21:<br><21:<br><21:<br><21:<br><40: | 1><br>2><br>3> | 2474<br>830<br>PRT<br>Homo | sap        | iens       |            |            |            |            |            |            |            |            |            |            |            |
|                                      |                |                            | Met        | Phe<br>5   | Arg        | Ser        | Glu        | Glu        | Val<br>10  | Ala        | Leu        | Val        | Gln        | Leu<br>15  | Phe        |
| Leu                                  | Pro            | Thr                        | Ala<br>20  | Ala        | Ala        | Tyr        | Thr        | Суs<br>25  | Val        | Ser        | Arg        | Leu        | Gly<br>30  | Glu        | Leu        |

Gly Leu Val Glu Phe Arg Asp Leu Asn Ala Ser Val Ser Ala Phe Gln \$35\$

| Arg        | Arg<br>50  | Phe        | Val        | Val        | Asp        | Val<br>55  | Arg        | Arg        | Cys        | Glu        | Glu<br>60  | Leu        | Glu        | Lys        | Thr        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Phe<br>65  | Thr        | Phe        | Leu        | Gln        | Glu<br>70  | Glu        | Val        | Arg        | Arg        | Ala<br>75  | Gly        | Leu        | Val        | Leu        | Pro<br>80  |
| Pro        | Pro        | Lys        | Gly        | Arg<br>85  | Leu        | Pro        | Ala        | Pro        | Pro<br>90  | Pro        | Arg        | Asp        | Leu        | Leu<br>95  | Arg        |
| Ile        | Gln        | Glu        | Glu<br>100 | Thr        | Glu        | Arg        | Leu        | Ala<br>105 | Gln        | Glu        | Leu        | Arg        | Asp<br>110 | Val        | Arg        |
| Gly        | Asn        | Gln<br>115 | Gln        | Ala        | Leu        | Arg        | Ala<br>120 | Gln        | Leu        | His        | Gln        | Leu<br>125 | Gln        | Leu        | His        |
| Ala        | Ala<br>130 | Val        | Leu        | Arg        | Gln        | Gly<br>135 | His        | Glu        | Pro        | Gln        | Leu<br>140 | Ala        | Ala        | Ala        | His        |
| Thr<br>145 | Asp        | Gly        | Ala        | Ser        | Glu<br>150 | Arg        | Thr        | Pro        | Leu        | Leu<br>155 | Gln        | Ala        | Pro        | Gly        | Gly<br>160 |
| Pro        | His        | Gln        | Asp        | Leu<br>165 | Arg        | Val        | Asn        | Phe        | Val<br>170 | Ala        | Gly        | Ala        | Val        | Glu<br>175 | Pro        |
| His        | Lys        | Ala        | Pro<br>180 | Ala        | Leu        | Glu        | Arg        | Leu<br>185 | Leu        | Trp        | Arg        | Ala        | Cys<br>190 | Arg        | Gly        |
| Phe        | Leu        | Ile<br>195 | Ala        | Ser        | Phe        | Arg        | Glu<br>200 | Leu        | Glu        | Gln        | Pro        | Leu<br>205 | Glu        | His        | Pro        |
| Val        | Thr<br>210 | Gly        | Glu        | Pro        | Ala        | Thr<br>215 | Trp        | Met        | Thr        | Phe        | Leu<br>220 | Ile        | Ser        | Tyr        | Trp        |
| Gly<br>225 | Glu        | Gln        | Ile        | Gly        | Gln<br>230 | Lys        | Ile        | Arg        | Lys        | Ile<br>235 | Thr        | Asp        | Cys        | Phe        | His<br>240 |
| Cys        | His        | Val        | Phe        | Pro<br>245 | Phe        | Leu        | Gln        | Gln        | Glu<br>250 | Glu        | Ala        | Arg        | Leu        | Gly<br>255 | Ala        |
| Leu        | Gln        | Gln        | Leu<br>260 | Gln        | Gln        | Gln        | Ser        | Gln<br>265 | Glu        | Leu        | Gln        | Glu        | Val<br>270 | Leu        | Gly        |
| Glu        | Thr        | Glu<br>275 | Arg        | Phe        | Leu        | Ser        | Gln<br>280 | Val        | Leu        | Gly        | Arg        | Val<br>285 | Leu        | Gln        | Leu        |

| Leu        | Pro<br>290 | Pro        | Gly        | Gln        | Val        | Gln<br>295 | Val        | His        | Lys        | Met        | Lys<br>300 | Ala        | Val        | Tyr        | Leu        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ala<br>305 | Leu        | Asn        | Gln        | Cys        | Ser<br>310 | Val        | Ser        | Thr        | Thr        | His<br>315 | Lys        | Cys        | Leu        | Ile        | Ala<br>320 |
| Glu        | Ala        | Trp        | Cys        | Ser<br>325 | Val        | Arg        | Asp        | Leu        | Pro<br>330 | Ala        | Leu        | Gln        | Glu        | Ala<br>335 | Leu        |
| Arg        | Asp        | Ser        | Ser<br>340 | Met        | Glu        | Glu        | Gly        | Val<br>345 | Ser        | Ala        | Val        | Ala        | His<br>350 | Arg        | Ile        |
| Pro        | Cys        | Arg<br>355 | Asp        | Met        | Pro        | Pro        | Thr<br>360 | Leu        | Ile        | Arg        | Thr        | Asn<br>365 | Arg        | Phe        | Thr        |
| Ala        | Ser<br>370 | Phe        | Gln        | Gly        | Ile        | Val<br>375 | Asp        | Ala        | Tyr        | Gly        | Val<br>380 | Gly        | Arg        | Tyr        | Glr        |
| Glu<br>385 | Val        | Asn        | Pro        | Ala        | Pro<br>390 | Tyr        | Thr        | Ile        | Ile        | Thr<br>395 | Phe        | Pro        | Phe        | Leu        | Phe<br>400 |
| Ala        | Val        | Met        | Phe        | Gly<br>405 | Asp        | Val        | Gly        | His        | Gly<br>410 | Leu        | Leu        | Met        | Phe        | Leu<br>415 | Phe        |
| Ala        | Leu        | Ala        | Met<br>420 | Val        | Leu        | Ala        | Glu        | Asn<br>425 | Arg        | Pro        | Ala        | Val        | Lys<br>430 | Ala        | Ala        |
| Gln        | Asn        | Glu<br>435 | Ile        | Trp        | Gln        | Thr        | Phe<br>440 | Phe        | Arg        | Gly        | Arg        | Tyr<br>445 | Leu        | Leu        | Leu        |
| Leu        | Met<br>450 | Gly        | Leu        | Phe        | Ser        | Ile<br>455 | Tyr        | Thr        | Gly        | Phe        | Ile<br>460 | Tyr        | Asn        | Glu        | Суя        |
| Phe<br>465 | Ser        | Arg        | Ala        | Thr        | Ser<br>470 | Ile        | Phe        | Pro        | Ser        | Gly<br>475 | Trp        | Ser        | Val        | Ala        | Ala<br>480 |
| Met        | Ala        | Asn        | Gln        | Ser<br>485 | Gly        | Trp        | ser        | Asp        | Ala<br>490 | Phe        | Leu        | Ala        | Gln        | His<br>495 | Thi        |

Pro Phe Gly Ile Asp Pro Ile Trp Ser Leu Ala Ala Asn His Leu Ser  $515 \hspace{1.5cm} 525 \hspace{1.5cm}$ 

Met Leu Thr Leu Asp Pro Asn Val Thr Gly Val Phe Leu Gly Pro Tyr

505

500

510

/US2003/012946

|            | WO 2               | 2004/0     | 42346      | 5          |            |            |            |            |            |            | P          |            |            |            |            |  |  |
|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|--|
| Phe        | <b>Le</b> u<br>530 | Asn        | Ser        | Phe        | Lys        | Met<br>535 | Lys        | Met        | Ser        | Val        | Ile<br>540 | Leu        | Gly        | Val        | Val        |  |  |
| His<br>545 | Met                | Ala        | Phe        | Gly        | Val<br>550 | Val        | Leu        | Gly        | Val        | Phe<br>555 | Asn        | His        | Val        | His        | Phe<br>560 |  |  |
| Gly        | Gln                | Arg        | His        | Arg<br>565 | Leu        | Leu        | Leu        | Glu        | Thr<br>570 | Leu        | Pro        | Glu        | Leu        | Thr<br>575 | Phe        |  |  |
| Leu        | Leu                | Gly        | Leu<br>580 | Phe        | Gly        | туr        | Leu        | Val<br>585 | Phe        | Leu        | Val        | Ile        | Tyr<br>590 | Lys        | Trp        |  |  |
| Leu        | Cys                | Val<br>595 | Trp        | Ala        | Ala        | Arg        | Ala<br>600 | Ala        | Ser        | Ala        | Pro        | Ser<br>605 | Ile        | Leu        | Ile        |  |  |
| His        | Phe<br>610         | Ile        | Asn        | Met        | Phe        | Leu<br>615 | Phe        | Ser        | His        | Ser        | Pro<br>620 | Ser        | Asn        | Arg        | Leu        |  |  |
| Leu<br>625 | Tyr                | Pro        | Arg        | Gln        | Glu<br>630 | Val        | Val        | Gln        | Ala        | Thr<br>635 | Leu        | Val        | Val        | Leu        | Ala<br>640 |  |  |
| Leu        | Ala                | Met        | Val        | Pro<br>645 | Ile        | Leu        | Leu        | Leu        | Gly<br>650 | Thr        | Pro        | Leu        | His        | Leu<br>655 | Leu        |  |  |
| His        | Arg                | His        | Arg<br>660 | Arg        | Arg        | Leu        | Arg        | Arg<br>665 | Arg        | Pro        | Ala        | Asp        | Arg<br>670 | Gln        | Glu        |  |  |
| Glu        | Asn                | Lys<br>675 | Ala        | Gly        | Leu        | Leu        | Asp<br>680 | Leu        | Pro        | Asp        | Ala        | Ser<br>685 | Val        | Asn        | Gly        |  |  |
| Trp        | Ser<br>690         | Ser        | Asp        | Glu        | Glu        | Lys<br>695 | Ala        | Gly        | Gly        | Leu        | Asp<br>700 | Asp        | Glu        | Glu        | Glu        |  |  |
| Ala<br>705 | Glu                | Leu        | Val        | Pro        | Ser<br>710 | Glu        | Val        | Leu        | Met        | His<br>715 | Gln        | Ala        | Ile        | His        | Thr<br>720 |  |  |
| Ile        | Glu                | Phe        | Cys        | Leu<br>725 | Gly        | Cys        | Val        | Ser        | Asn<br>730 | Thr        | Ala        | Ser        | Tyr        | Leu<br>735 | Arg        |  |  |
| Leu        | Trp                | Ala        | Leu<br>740 | Ser        | Leu        | Ala        | His        | Ala<br>745 | Gln        | Leu        | Ser        | Glu        | Val<br>750 | Leu        | Trp        |  |  |

Ala Met Val Met Arg Ile Gly Leu Gly Leu Gly Arg Glu Val Gly Val 755 760

Ala Ala Val Val Leu Val Pro Ile Phe Ala Ala Phe Ala Val Met Thr

770 775 780

Val Ala Ile Leu Leu Val Met Glu Gly Leu Ser Ala Phe Leu His Ala 785 790 795 800

Leu Arg Leu His Trp Val Glu Phe Gln Asn Lys Phe Tyr Ser Gly Thr  $805 \\ \hspace*{1.5cm} 810 \\ \hspace*{1.5cm} 810 \\ \hspace*{1.5cm} 815 \\ \hspace*{1.5cm}$ 

Gly Tyr Lys Leu Ser Pro Phe Thr Phe Ala Ala Thr Asp Asp 820 825 830

<210> 2475

<211> 555 <212> PRT

<213> Homo sapiens

<400> 2475

Met Ala Ala Arg Leu Leu Leu Gly Ile Leu Leu Leu Leu Leu Pro 1 5 10 15

Leu Pro Val Pro Ala Pro Cys His Thr Ala Ala Arg Ser Glu Cys Lys
20 25 30

Arg Ser His Lys Phe Val Pro Gly Ala Trp Leu Ala Gly Glu Gly Val 35 40 45

Asp Val Thr Ser Leu Arg Arg Ser Gly Ser Phe Pro Val Asp Thr Gln 50

Arg Phe Leu Arg Pro Asp Gly Thr Cys Thr Leu Cys Glu Asn Ala Leu 65  $\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}75\phantom{\bigg|}75\phantom{\bigg|}$ 

Gln Glu Gly Thr Leu Gln Arg Leu Pro Leu Ala Leu Thr Asn Trp Arg 85 90 95

Ser Thr Glu Ala Val Ala Arg Asp Ala Ala Arg Ser Ile Arg Asn Asp 115 120 125

Trp Lys Val Gly Leu Asp Val Thr Pro Lys Pro Thr Ser Asn Val His 130 135 140

Val Ser Val Ala Gly Ser His Ser Gln Ala Ala Asn Phe Ala Ala Gln 145 150 155 160

Lys Thr His Gln Asp Gln Tyr Ser Phe Ser Thr Asp Thr Val Glu Cys Arg Phe Tyr Ser Phe His Val Val His Thr Pro Pro Leu His Pro Asp Phe Lys Arg Ala Leu Gly Asp Leu Pro His His Phe Asn Ala Ser Thr Gln Pro Ala Tyr Leu Arg Leu Ile Ser Asn Tyr Gly Thr His Phe Ile Arg Ala Val Glu Leu Gly Gly Arg Ile Ser Ala Leu Thr Ala Leu Arg Thr Cys Glu Leu Ala Leu Glu Gly Leu Thr Asp Asn Glu Val Glu Asp Cys Leu Thr Val Glu Ala Gln Val Asn Ile Gly Ile His Gly Ser Ile Ser Ala Glu Ala Lys Ala Cys Glu Glu Lys Lys Lys His Lys Met Thr Ala Ser Phe His Gln Thr Tyr Arg Glu Arg His Ser Glu Val Val Gly Gly His His Thr Ser Ile Asn Asp Leu Leu Phe Gly Ile Gln Ala Gly Pro Glu Gln Tyr Ser Ala Trp Val Asn Ser Val Pro Gly Ser Pro Gly Leu Val Asp Tyr Thr Leu Glu Pro Leu His Val Leu Leu Asp Ser Gln Asp Pro Arg Arg Glu Ala Leu Arg Arg Ala Leu Ser Gln Tyr Leu Thr Asp Arg Ala Arg Trp Arg Asp Cys Ser Arg Pro Cys Pro Pro Gly Arg Gln Lys Ser Pro Arg Asp Pro Cys Gln Cys Val Cys His Gly Ser 

Ala Val Thr Thr Gln Asp Cys Cys Pro Arg Gln Arg Gly Leu Ala Gln  $405 \hspace{1cm} 410 \hspace{1cm} 410 \hspace{1cm} 415$ 

Leu Glu Val Thr Phe Ile Gln Ala Trp Ser Leu Trp Gly Asp Trp Phe 420 425 430

Thr Ala Thr Asp Ala Tyr Val Lys Leu Phe Phe Gly Gly Gln Glu Leu 435 \$440\$

Arg Thr Ser Thr Val Trp Asp Asn Asn Asn Pro Ile Trp Ser Val Arg 450 \$450\$

Leu Asp Phe Gly Asp Val Leu Leu Ala Thr Gly Gly Pro Leu Arg Leu 465 470 470

Gln Val Trp Asp Gln Asp Ser Gly Arg Asp Asp Asp Leu Leu Gly Thr 485 490 495

Cys Asp Gln Ala Pro Lys Ser Gly Ser His Glu Val Arg Cys Asn Leu  $500 \hspace{1cm} 505 \hspace{1cm} 510 \hspace{1cm}$ 

Asn His Gly His Leu Lys Phe Arg Tyr His Ala Arg Cys Leu Pro His  $515 \\ 520 \\ 525$ 

Leu Gly Gly Gly Thr Cys Leu Asp Tyr Val Pro Gln Met Leu Leu Gly 530 540

Glu Pro Pro Gly Asn Arg Ser Gly Ala Val Trp 545 550 555

<210> 2476

<211> 153 <212> PRT

<213> Homo sapiens

<400> 2476

Met Gly Leu Thr Ser Gln Leu Leu Pro Pro Leu Phe Phe Leu Leu Ala 1 5 10 15

Cys Ala Gly Asn Phe Val His Gly His Lys Cys Asp Ile Thr Leu Gln 20 25 30

Glu Ile Ile Lys Thr Leu Asn Ser Leu Thr Glu Gln Lys Thr Leu Cys  $^{35}$   $^{40}$   $^{45}$ 

Thr Glu Leu Thr Val Thr Asp Ile Phe Ala Ala Ser Lys Asn Thr Thr 50 60

Glu Lys Glu Thr Phe Cys Arg Ala Ala Thr Val Leu Arg Gln Phe Tyr 65 70 75 80

Ser His His Glu Lys Asp Thr Arg Cys Leu Gly Ala Thr Ala Gln Gln Gln 85 90 95

Phe His Arg His Lys Gln Leu Ile Arg Phe Leu Lys Arg Leu Asp Arg

Asn Leu Trp Gly Leu Ala Gly Leu Asn Ser Cys Pro Val Lys Glu Ala 115 120 125

Asn Gln Ser Thr Leu Glu Asn Phe Leu Glu Arg Leu Lys Thr Ile Met 130 135 140

Arg Glu Lys Tyr Ser Lys Cys Ser Ser 145 150

<210> 2477

<211> 146

<212> PRT <213> Homo sapiens

<400> 2477

Met His Pro Leu Leu Asn Pro Leu Leu Leu Ala Leu Gly Leu Met Ala

Leu Leu Leu Thr Thr Val Ile Ala Leu Thr Cys Leu Gly Gly Phe Ala  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu 35 40 45

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly 50 60

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala 65 70 75 80

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr 85 90 95

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln 100 105 110

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe 115 120 125

Val Lys Asp Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Gln 130 135 140

Phe Asn

<210> 2478

<211> 223

<212> PRT

<213> Homo sapiens

<400> 2478

Met Ala Cys Leu Gly Phe Gln Arg His Lys Ala Gln Leu Asn Leu Ala 1 5 10 15

Thr Arg Thr Trp Pro Cys Thr Leu Leu Phe Phe Leu Leu Phe Ile Pro 20 25 30

Val Phe Cys Lys Ala Met His Val Ala Gln Pro Ala Val Val Leu Ala 35 40 45

Ser Ser Arg Gly Ile Ala Ser Phe Val Cys Glu Tyr Ala Ser Pro Gly 50 55 60

Lys Ala Thr Glu Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln 65 70 75 80

Val Thr Glu Val Cys Ala Ala Thr Tyr Met Met Gly Asn Glu Leu Thr 85 90 95

Phe Leu Asp Asp Ser Ile Cys Thr Gly Thr Ser Ser Gly Asn Gln Val

Asn Leu Thr Ile Gln Gly Leu Arg Ala Met Asp Thr Gly Leu Tyr Ile 115 120 125

Cys Lys Val Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly Ile Gly 130 135 140

Asn Gly Thr Gln Ile Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser 145 150 155 160

Asp Phe Leu Leu Trp Ile Leu Ala Ala Val Ser Ser Gly Leu Phe Phe 165 \$170\$

Tyr Ser Phe Leu Leu Thr Ala Val Ser Leu Ser Lys Met Leu Lys Lys 180 185 Arg Ser Pro Leu Thr Thr Gly Val Tyr Val Lys Met Pro Pro Thr Glu 200 205 Pro Glu Cys Glu Lys Gln Phe Gln Pro Tyr Phe Ile Pro Ile Asn 210 215 220 <210> 2479 <211> 235 <212> PRT <213> Homo sapiens <400> 2479 Met Ala Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu 10 His Ala Ala Arg Pro Ser Gln Phe Arg Val Ser Pro Leu Asp Arg Thr 20 25 30 Trp Asn Leu Gly Glu Thr Val Glu Leu Lys Cys Gln Val Leu Leu Ser 35 40 Asn Pro Thr Ser Gly Cys Ser Trp Leu Phe Gln Pro Arg Gly Ala Ala 50 55 Ala Ser Pro Thr Phe Leu Leu Tyr Leu Ser Gln Asn Lys Pro Lys Ala 70 75 Ala Glu Gly Leu Asp Thr Gln Arg Phe Ser Gly Lys Arg Leu Gly Asp

85 90

Thr Phe Val Leu Thr Leu Ser Asp Phe Arg Arg Glu Asn Glu Gly Tyr 100 105

Tyr Phe Cys Ser Ala Leu Ser Asn Ser Ile Met Tyr Phe Ser His Phe 115 120

Val Pro Val Phe Leu Pro Ala Lys Pro Thr Thr Thr Pro Ala Pro Arg 130 135

Pro Pro Thr Pro Ala Pro Thr Ile Ala Ser Gln Pro Leu Ser Leu Arg 145 150 155

Pro Glu Ala Cys Arg Pro Ala Ala Gly Gly Ala Val His Thr Arg Gly
165 170 175

Leu Asp Phe Ala Cys Asp Ile Tyr Ile Trp Ala Pro Leu Ala Gly Thr \$180\$

Cys Gly Val Leu Leu Leu Ser Leu Val Ile Thr Leu Tyr Cys Asn His  $195 \hspace{1.5cm} 200 \hspace{1.5cm} 205$ 

Arg Asn Arg Arg Arg Val Cys Lys Cys Pro Arg Pro Val Val Lys Ser 210 220

Gly Asp Lys Pro Ser Leu Ser Ala Arg Tyr Val 225 230 235

<210> 2480 <211> 181

<212> PRT <213> Homo sapiens

<400> 2480

Met Leu Leu Glu Pro Gly Arg Gly Cys Cys Ala Leu Ala Ile Leu Leu  $1 ext{ } 5 ext{ } 10 ext{ } 15$ 

Ala Ile Val Asp Ile Gln Ser Gly Gly Cys Ile Asn Ile Thr Ser Ser 20 25 30

Ala Ser Gln Glu Gly Thr Arg Leu Asn Leu Ile Cys Thr Val Trp His 35 40 45

Lys Lys Glu Glu Ala Glu Gly Phe Val Val Phe Leu Cys Lys Asp Arg 50 60

Ser Gly Asp Cys Ser Pro Glu Thr Ser Leu Lys Gln Leu Arg Leu Lys 65 70 75 80

Arg Asp Pro Gly Ile Asp Gly Val Gly Glu Ile Ser Ser Gln Leu Met 85 90 95

Phe Thr Ile Ser Gln Val Thr Pro Leu His Ser Gly Thr Tyr Gln Cys 100 105 110

Cys Ala Arg Ser Gln Lys Ser Gly Ile Arg Leu Gln Gly His Phe Phe 115 120 125

Ser Ile Leu Phe Thr Glu Thr Gly Asn Tyr Thr Val Thr Gly Leu Lys 130 140

Gln Arg Gln His Leu Glu Phe Ser His Asn Glu Gly Thr Leu Ser Ser 145 150 155 160

Gly Phe Leu Gln Glu Lys Val Trp Val Met Leu Val Thr Ser Leu Val 165 170 175

Ala Leu Gln Ala Leu 180

<210> 2481

<211> 147

<212> PRT

<213> Homo sapiens

<400> 2481

Met Val His Leu Thr Pro Glu Glu Lys Ser Ala Val Thr Ala Leu Trp 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Gly Lys Val Asn Val Asp Glu Val Gly Gly Glu Ala Leu Gly Arg Leu  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$ 

Leu Val Val Tyr Pro Trp Thr Gln Arg Phe Phe Glu Ser Phe Gly Asp  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Leu Ser Thr Pro Asp Ala Val Met Gly Asn Pro Lys Val Lys Ala His 50

Gly Lys Lys Val Leu Gly Ala Phe Ser Asp Gly Leu Ala His Leu Asp 65 70 75 80

Asn Leu Lys Gly Thr Phe Ala Thr Leu Ser Glu Leu His Cys Asp Lys 85 90 95

Leu His Val Asp Pro Glu Asn Phe Arg Leu Leu Gly Asn Val Leu Val

Cys Val Leu Ala His His Phe Gly Lys Glu Phe Thr Pro Pro Val Gln 115 120 125

Ala Ala Tyr Gln Lys Val Val Ala Gly Val Ala Asn Ala Leu Ala His 130  $$135\$ 

Lys Tyr His 145

<210> 2482 <211> 259

<211> 259 <212> PRT

<213> Homo sapiens

<400> 2482

Met Ser Lys Tyr Lys Leu Ile Met Leu Arg His Gly Glu Gly Ala Trp 1  $\phantom{\bigg|}$  15

Asn Lys Glu Asn Arg Phe Cys Ser Trp Val Asp Gln Lys Leu Asn Ser 20 25 30

Glu Gly Met Glu Glu Ala Arg Asn Cys Gly Lys Gln Leu Lys Ala Leu  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

His Thr Ala Trp Leu Ile Leu Glu Glu Leu Gly Gln Glu Trp Val Pro 65 70 75 80

Val Glu Ser Ser Trp Arg Leu Asn Glu Arg His Tyr Gly Ala Leu Ile 85 90 95

Arg Leu Trp Arg Arg Ser Tyr Asn Val Thr Pro Pro Pro Ile Glu Glu
115 120 125

Ser His Pro Tyr Tyr Gln Glu Ile Tyr Asn Asp Arg Arg Tyr Lys Val

Cys Asp Val Pro Leu Asp Gln Leu Pro Arg Ser Glu Ser Leu Lys Asp 145 \$150\$

Val Leu Glu Arg Leu Leu Pro Tyr Trp Asn Glu Arg Ile Ala Pro Glu 165 170 175

Val Leu Arg Gly Lys Thr Ile Leu Ile Ser Ala His Gly Asn Ser Ser 180 185 190

Arg Ala Leu Leu Lys His Leu Glu Gly Ile Ser Asp Glu Asp Ile Ile 195 200 205

Asn Ile Thr Leu Pro Thr Gly Val Pro Ile Leu Leu Glu Leu Asp Glu 210 220

Asn Leu Arg Ala Val Gly Pro His Gln Phe Leu Gly Asp Gln Glu Ala 225 230 235 240

Ile Gln Ala Ala Ile Lys Lys Val Glu Asp Gln Gly Lys Val Lys Gln 245 250 255

Ala Lys Lys

<210> 2483

<211> 344 <212> PRT

<213> Homo sapiens

<400> 2483

Met Ser Ala Leu Ala Ala Arg Leu Leu Gln Pro Ala His Ser Cys Ser 1 10 15

Leu Arg Leu Arg Pro Phe His Leu Ala Ala Val Arg Asn Glu Ala Val 20 25 30

Val Ile Ser Gly Arg Lys Leu Ala Gln Gln Ile Lys Gln Glu Val Arg 35 40 45

Gln Glu Val Glu Glu Trp Val Ala Ser Gly Asn Lys Arg Pro His Leu
50 55 60

Ser Val Ile Leu Val Gly Glu Asn Pro Ala Ser His Ser Tyr Val Leu 65 70 75 80

Asn Lys Thr Arg Ala Ala Ala Val Val Gly Ile Asn Ser Glu Thr Ile 85 90 95

Met Lys Pro Ala Ser Ile Ser Glu Glu Glu Leu Leu Asn Leu Ile Asn 100 105 110

Lys Leu Asn Asn Asp Asp Asn Val Asp Gly Leu Leu Val Gln Leu Pro 115 120 125

Leu Pro Glu His Ile Asp Glu Arg Arg Ile Cys Asn Ala Val Ser Pro

Asp Lys Asp Val Asp Gly Phe His Val Ile Asn Val Gly Arg Met Cys 145 150 155 160

Leu Asp Gln Tyr Ser Met Leu Pro Ala Thr Pro Trp Gly Val Trp Glu 165 170 175

Ile Ile Lys Arg Thr Gly Ile Pro Thr Leu Gly Lys Asn Val Val Val 180 185 190

Ala Gly Arg Ser Lys Asn Val Gly Met Pro Ile Ala Met Leu Leu His

Thr Asp Gly Ala His Glu Arg Pro Gly Gly Asp Ala Thr Val Thr Ile 210 215 220

Ser His Arg Tyr Thr Pro Lys Glu Gln Leu Lys Lys His Thr Ile Leu 225 230 235 240

Ala Asp Ile Val Ile Ser Ala Ala Gly Ile Pro Asn Leu Ile Thr Ala 245 \$250\$

Asp Met Ile Lys Glu Gly Ala Ala Val Ile Asp Val Gly Ile Asn Arg \$260\$ 265 \$270\$

Val His Asp Pro Val Thr Ala Lys Pro Lys Leu Val Gly Asp Val Asp 275 280 285

Phe Glu Gly Val Arg Gln Lys Ala Gly Tyr Ile Thr Pro Val Pro Gly 290 295 300

Gly Val Gly Pro Met Thr Val Ala Met Leu Met Lys Asn Thr Ile Ile 305 \$310\$

Ala Ala Lys Lys Val Leu Arg Leu Glu Glu Arg Glu Val Leu Lys Ser 325 330 335

Lys Glu Leu Gly Val Ala Thr Asn 340

<210> 2484 <211> 808

<211> 808 <212> PRT

<213> Homo sapiens

<400> 2484

Met Ala Glu Leu Leu Ala Ser Ala Gly Ser Ala Cys Ser Trp Asp Phe  $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$ 

Pro Arg Ala Pro Pro Ser Phe Pro Pro Pro Ala Ala Ser Arg Gly Gly  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$ 

Leu Gly Gly Thr Arg Ser Phe Arg Pro His Arg Gly Ala Glu Ser Pro Arg Pro Gly Arg Asp Arg Asp Gly Val Arg Val Pro Met Ala Ser Ser Arg Cys Pro Ala Pro Arg Gly Cys Arg Cys Leu Pro Gly Ala Ser Leu Ala Trp Leu Gly Thr Val Leu Leu Leu Leu Ala Asp Trp Val Leu Leu Arg Thr Ala Leu Pro Arg Ile Phe Ser Leu Leu Val Pro Thr Ala Leu Pro Leu Leu Arg Val Trp Ala Val Gly Leu Ser Arg Trp Ala Val Leu Trp Leu Gly Ala Cys Gly Val Leu Arg Ala Thr Val Gly Ser Lys Ser Glu Asn Ala Gly Ala Gln Gly Trp Leu Ala Ala Leu Lys Pro Leu Ala Ala Ala Leu Gly Leu Ala Leu Pro Gly Leu Ala Leu Phe Arg Glu Leu Ile Ser Trp Gly Ala Pro Gly Ser Ala Asp Ser Thr Arg Leu Leu His Trp Gly Ser His Pro Thr Ala Phe Val Val Ser Tyr Ala Ala Ala Leu Pro Ala Ala Ala Leu Trp His Lys Leu Gly Ser Leu Trp Val Pro Gly Gly Gln Gly Gly Ser Gly Asn Pro Val Arg Arg Leu Leu Gly Cys Leu Gly Ser Glu Thr Arg Arg Leu Ser Leu Phe Leu Val Leu Val Val Leu Ser Ser Leu Gly Glu Met Ala Ile Pro Phe Phe Thr Gly Arg Leu Thr 

Asp Trp Ile Leu Gln Asp Gly Ser Ala Asp Thr Phe Thr Arg Asn Leu Thr Leu Met Ser Ile Leu Thr Ile Ala Ser Ala Val Leu Glu Phe Val Gly Asp Gly Ile Tyr Asn Asn Thr Met Gly His Val His Ser His Leu Gln Gly Glu Val Phe Gly Ala Val Leu Arg Gln Glu Thr Glu Phe Phe Gln Gln Asn Gln Thr Gly Asn Ile Met Ser Arg Val Thr Glu Asp Thr Ser Thr Leu Ser Asp Ser Leu Ser Glu Asn Leu Ser Leu Phe Leu Trp Tyr Leu Val Arg Gly Leu Cys Leu Leu Gly Ile Met Leu Trp Gly Ser Val Ser Leu Thr Met Val Thr Leu Ile Thr Leu Pro Leu Leu Phe Leu Leu Pro Lys Lys Val Gly Lys Trp Tyr Gln Leu Leu Glu Val Gln Val Arg Glu Ser Leu Ala Lys Ser Ser Gln Val Ala Ile Glu Ala Leu Ser Ala Met Pro Thr Val Arg Ser Phe Ala Asn Glu Glu Gly Glu Ala Gln Lys Phe Arq Glu Lys Leu Gln Glu Ile Lys Thr Leu Asn Gln Lys Glu Ala Val Ala Tvr Ala Val Asn Ser Trp Thr Thr Ser Ile Ser Gly Met Leu Leu Lys Val Gly Ile Leu Tyr Ile Gly Gly Gln Leu Val Thr Ser 

Gly Ala Val Ser Ser Gly Asn Leu Val Thr Phe Val Leu Tyr Gln Met

Gln Phe Thr Gln Ala Val Glu Val Leu Leu Ser Ile Tyr Pro Arg Val 515 520 525

- Gln Lys Ala Val Gly Ser Ser Glu Lys Ile Phe Glu Tyr Leu Asp Arg  $530 \hspace{1.5cm} 535 \hspace{1.5cm} 540$
- Thr Pro Arg Cys Pro Pro Ser Gly Leu Leu Thr Pro Leu His Leu Glu 545 550 555 555
- Gly Leu Val Gln Phe Gln Asp Val Ser Phe Ala Tyr Pro Asn Arg Pro 565 570 575
- Asp Val Leu Val Leu Gln Gly Leu Thr Phe Thr Leu Arg Pro Gly Glu
  580 585 590
- Val Thr Ala Leu Val Gly Pro Asn Gly Ser Gly Lys Ser Thr Val Ala 595 600 605
- Ala Leu Leu Gln Asn Leu Tyr Gln Pro Thr Gly Gly Gln Leu Leu 610 615 620
- Asp Gly Lys Pro Leu Pro Gln Tyr Glu His Arg Tyr Leu His Arg Gln 625 630 635
- Val Ala Ala Val Gly Gln Glu Pro Gln Val Phe Gly Arg Ser Leu Gln 645 655
- Glu Asn Ile Ala Tyr Gly Leu Thr Gln Lys Pro Thr Met Glu Glu Ile 660 665 670
- Thr Ala Ala Ala Val Lys Ser Gly Ala His Ser Phe Ile Ser Gly Leu 675 680 685
- Pro Gln Gly Tyr Asp Thr Glu Val Asp Glu Ala Gly Ser Gln Leu Ser 690 695 700
- Gly Gly Gln Arg Gln Ala Val Ala Leu Ala Arg Ala Leu Ile Arg Lys 705 710 715 720
- Pro Cys Val Leu Ile Leu Asp Asp Ala Thr Ser Ala Leu Asp Ala Asn 725 730 735
- Ser Gln Leu Gln Val Glu Gln Leu Leu Tyr Glu Ser Pro Glu Arg Tyr 740 745 750
- Ser Arg Ser Val Leu Leu Ile Thr Gln His Leu Ser Leu Val Glu Gln

755

760

765

Ala Asp His Ile Leu Phe Leu Glu Gly Gly Ala Ile Arg Glu Gly Gly 770 775 780

Thr His Gln Gln Leu Met Glu Lys Lys Gly Cys Tyr Trp Ala Met Val 785 790 795 800

Gln Ala Pro Ala Asp Ala Pro Glu 805

<210> 2485

<211> 453 <212> PRT

<213> Homo sapiens

<400> 2485

Met Ala Arg Lys Val Val Ser Arg Lys Arg Lys Ala Pro Ala Ser Pro 1 10 15

Gly Ala Gly Ser Asp Ala Gln Gly Pro Gln Phe Gly Trp Asp His Ser \$20\$

Leu His Lys Arg Lys Arg Leu Pro Pro Val Lys Arg Ser Leu Val Tyr  $35 \hspace{1cm} 40 \hspace{1cm} 40$ 

Tyr Leu Lys Asn Arg Glu Val Arg Leu Gln Asn Glu Thr Ser Tyr Ser 50 55 60

Arg Val Leu His Gly Tyr Ala Ala Gln Gln Leu Pro Ser Leu Lys 65 70 75 80

Glu Arg Glu Phe His Leu Gly Thr Leu Asn Lys Val Phe Ala Ser Gln 85 90 95

Trp Leu Asn His Arg Gln Val Val Cys Gly Thr Lys Cys Asn Thr Leu  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Phe Val Val Asp Val Gln Thr Ser Gln Ile Thr Lys Ile Pro Ile Leu 115 120 125

Lys Asp Arg Glu Pro Gly Gly Val Thr Gln Gln Gly Cys Gly Ile His 130 135 140

Ala Ile Glu Leu Asn Pro Ser Arg Thr Leu Leu Ala Thr Gly Gly Asp 145 150 155 160

| Asn        | Pro        | Asn        | Ser        | Leu<br>165 | Ala        | Ile        | Tyr        | Arg        | Leu<br>170 | Pro        | Thr        | Leu        | Asp        | Pro<br>175 | Val        |  |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|
| Cys        | Val        | Gly        | Asp<br>180 | Asp        | Gly        | His        | Lys        | Asp<br>185 | Trp        | Ile        | Phe        | Ser        | Ile<br>190 | Ala        | Trp        |  |
| Ile        | Ser        | Asp<br>195 | Thr        | Met        | Ala        | Val        | Ser<br>200 | Gly        | Ser        | Arg        | Asp        | Gly<br>205 | Ser        | Met        | Gly        |  |
| Leu        | Trp<br>210 | Glu        | Val        | Thr        | Asp        | Asp<br>215 | Val        | Leu        | Thr        | Lys        | Ser<br>220 | Asp        | Ala        | Arg        | His        |  |
| Asn<br>225 | Val        | Ser        | Arg        | Val        | Pro<br>230 | Val        | Tyr        | Ala        | His        | Ile<br>235 | Thr        | His        | Lys        | Ala        | Leu<br>240 |  |
| Lys        | Asp        | Ile        | Pro        | Lys<br>245 | Glu        | Asp        | Thr        | Asn        | Pro<br>250 | Asp        | Asn        | Cys        | Lys        | Val<br>255 | Arg        |  |
| Ala        | Leu        | Ala        | Phe<br>260 | Asn        | Asn        | ьуз        | Asn        | Lys<br>265 | Glu        | Leu        | Gly        | Ala        | Val<br>270 | Ser        | Leu        |  |
| Asp        | Gly        | Tyr<br>275 | Phe        | His        | Leu        | Trp        | Lys<br>280 | Ala        | Glu        | Asn        | Thr        | Leu<br>285 | Ser        | Lys        | Leu        |  |
| Leu        | Ser<br>290 | Thr        | Lys        | Leu        | Pro        | Tyr<br>295 | Сув        | Arg        | Glu        | Asn        | Val<br>300 | Сув        | Leu        | Ala        | Tyr        |  |
| Gly<br>305 | Ser        | Glu        | Trp        | Ser        | Val<br>310 | Tyr        | Ala        | Val        | Gly        | Ser<br>315 | Gln        | Ala        | His        | Val        | Ser<br>320 |  |
| Phe        | Leu        | Asp        | Pro        | Arg<br>325 | Gln        | Pro        | Ser        | Tyr        | Asn<br>330 | Val        | Lys        | Ser        | Val        | Cys<br>335 | Ser        |  |
| Arg        | Glu        | Arg        | Gly<br>340 | Ser        | Gly        | Ile        | Arg        | Ser<br>345 | Val        | Ser        | Phe        | Tyr        | Glu<br>350 | His        | Ile        |  |
| Ile        | Thr        | Val<br>355 | Gly        | Thr        | Gly        | Gln        | Gly<br>360 | Ser        | Leu        | Leu        | Phe        | Tyr<br>365 | Asp        | Ile        | Arg        |  |
| Ala        | Gln<br>370 | Arg        | Phe        | Leu        | Glu        | Glu<br>375 | Arg        | Leu        | Ser        | Ala        | Cys<br>380 | Tyr        | Gly        | Ser        | Lys        |  |
| Pro<br>385 | Arg        | Leu        | Ala        | Gly        | Glu<br>390 |            | Leu        | Lys        | Leu        | Thr<br>395 | Thr        | Gly        | Lys        | Gly        | Trp<br>400 |  |

832

Leu Asn His Asp Glu Thr Trp Arg Asn Tyr Phe Ser Asp Ile Asp Phe
405 410 415

Phe Pro Asn Ala Val Tyr Thr His Cys Tyr Asp Ser Ser Gly Thr Lys 420 425 430

Leu Phe Val Ala Gly Gly Pro Leu Pro Ser Gly Leu His Gly Asn Tyr 435 440 445

Ala Gly Leu Trp Ser 450

<210> 2486

<211> 352

<212> PRT <213> Homo sapiens

<400> 2486

Met Glu Gly Ile Ser Ile Tyr Thr Ser Asp Asn Tyr Thr Glu Glu Met 1 5 10 15

Gly Ser Gly Asp Tyr Asp Ser Met Lys Glu Pro Cys Phe Arg Glu Glu 20  $\phantom{-}25\phantom{+}30\phantom{+}$ 

Asn Ala Asn Phe Asn Lys Ile Phe Leu Pro Thr Ile Tyr Ser Ile Ile 35 40 45

Phe Leu Thr Gly Ile Val Gly Asn Gly Leu Val Ile Leu Val Met Gly 50 55 60

Tyr Gln Lys Lys Leu Arg Ser Met Thr Asp Lys Tyr Arg Leu His Leu 65 70 75 80

Ser Val Ala Asp Leu Leu Phe Val Ile Thr Leu Pro Phe Trp Ala Val 85  $\phantom{\bigg|}90\phantom{\bigg|}$  90 95

Asp Ala Val Ala Asn Trp Tyr Phe Gly Asn Phe Leu Cys Lys Ala Val

His Val Ile Tyr Thr Val Asn Leu Tyr Ser Ser Val Leu Ile Leu Ala 115  $$\rm 120$$ 

Phe Ile Ser Leu Asp Arg Tyr Leu Ala Ile Val His Ala Thr Asn Ser 130 135 140

Gln Arg Pro Arg Lys Leu Leu Ala Glu Lys Val Val Tyr Val Gly Val 145 150 155 160

Trp Ile Pro Ala Leu Leu Leu Thr Ile Pro Asp Phe Ile Phe Ala Asn 165 170 Val Ser Glu Ala Asp Asp Arg Tyr Ile Cys Asp Arg Phe Tyr Pro Asn 180 185 190 Asp Leu Trp Val Val Val Phe Gln Phe Gln His Ile Met Val Gly Leu 195 Ile Leu Pro Gly Ile Val Ile Leu Ser Cys Tyr Cys Ile Ile Ile Ser 215 Lys Leu Ser His Ser Lys Gly His Gln Lys Arg Lys Ala Leu Lys Thr 225 230 235 Thr Val Ile Leu Ile Leu Ala Phe Phe Ala Cys Trp Leu Pro Tyr Tyr 245 250 Ile Gly Ile Ser Ile Asp Ser Phe Ile Leu Leu Glu Ile Ile Lys Gln 260 265 270 Gly Cys Glu Phe Glu Asn Thr Val His Lys Trp Ile Ser Ile Thr Glu 275 280 285 Ala Leu Ala Phe Phe His Cys Cys Leu Asn Pro Ile Leu Tyr Ala Phe 290 295 300 Leu Gly Ala Lys Phe Lys Thr Ser Ala Gln His Ala Leu Thr Ser Val 310 Ser Arg Gly Ser Ser Leu Lys Ile Leu Ser Lys Gly Lys Arg Gly Gly 325 330 His Ser Ser Val Ser Thr Glu Ser Glu Ser Ser Ser Phe His Ser Ser 340 345 350 <210> 2487 <211> 199 <212> PRT <213> Homo sapiens <400> 2487

834

15

Met Ser Ser Glu Asn Cys Phe Val Ala Glu Asn Ser Ser Leu His Pro 10

PCT/US2003/012946

WO 2004/042346 Glu Ser Gly Gln Glu Asn Asp Ala Thr Ser Pro His Phe Ser Thr Arg 20 25 His Glu Gly Ser Phe Gln Val Pro Val Leu Cys Ala Val Met Asn Val 40 Val Phe Ile Thr Ile Leu Ile Ile Ala Leu Ile Ala Leu Ser Val Gly Gln Tyr Asn Cys Pro Gly Gln Tyr Thr Phe Ser Met Pro Ser Asp Ser His Val Ser Ser Cvs Ser Glu Asp Trp Val Gly Tvr Gln Arg Lys Cvs 85 Tyr Phe Ile Ser Thr Val Lys Arg Ser Trp Thr Ser Ala Gln Asn Ala 100 105 Cys Ser Glu His Gly Ala Thr Leu Ala Val Ile Asp Ser Glu Lys Asp 120 115 Met Asn Phe Leu Lys Arg Tyr Ala Gly Arg Glu Glu His Trp Val Gly 130 135 140 Leu Lys Lys Glu Pro Gly His Pro Trp Lys Trp Ser Asn Gly Lys Glu 145 150 155 Phe Asn Asn Tro Phe Asn Val Thr Gly Ser Asp Lys Cys Val Phe Leu 165 170 175 Lys Asn Thr Glu Val Ser Ser Met Glu Cys Glu Lys Asn Leu Tyr Trp 180 185 Ile Cys Asn Lys Pro Tyr Lys 195 <210> 2488 <211> 91 <212> PRT <213> Homo sapiens <400> 2488

Met Lys Val Ser Ala Ala Ala Leu Ala Val Ile Leu Ile Ala Thr Ala 10

Leu Cys Ala Pro Ala Ser Ala Ser Pro Tyr Ser Ser Asp Thr Thr Pro 20 25 30

Cys Cys Phe Ala Tyr Ile Ala Arg Pro Leu Pro Arg Ala His Ile Lys  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Val Thr Arg Lys Asn Arg Gln Val Cys Ala Asn Pro Glu Lys Lys Trp 65 70 75 80

Val Arg Glu Tyr Ile Asn Ser Leu Glu Met Ser 85 90

<210> 2489

<211> 212

<213> Homo sapiens

<400> 2489

Met Asn Ser Phe Ser Thr Ser Ala Phe Gly Pro Val Ala Phe Ser Leu

1 10 15

Gly Leu Leu Val Leu Pro Ala Ala Phe Pro Ala Pro Val Pro Pro 20 25 30

Gly Glu Asp Ser Lys Asp Val Ala Ala Pro His Arg Gln Pro Leu Thr \$35\$

Ser Ser Glu Arg Ile Asp Lys Gln Ile Arg Tyr Ile Leu Asp Gly Ile 50 55 60

Ser Ala Leu Arg Lys Glu Thr Cys Asn Lys Ser Asn Met Cys Glu Ser 65 70 75 80 80

Ser Lys Gl $\dot{u}$  Ala Leu Ala Glu Asn Asn Leu Asn Leu Pro Lys Met Ala 85 90 95

Glu Lys Asp Gly Cys Phe Gln Ser Gly Phe Asn Glu Glu Thr Cys Leu 100 105 110

Val Lys Ile Ile Thr Gly Leu Leu Glu Phe Glu Val Tyr Leu Glu Tyr 115 120 125

Leu Gln Asn Arg Phe Glu Ser Ser Glu Glu Gln Ala Arg Ala Val Gln 130 135 140

Met Ser Thr Lys Val Leu Ile Gln Phe Leu Gln Lys Lys Ala Lys Asn 145  $\phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}155\phantom{\bigg|}$ 

Leu Asp Ala Ile Thr Thr Pro Asp Pro Thr Thr Asn Ala Ser Leu Leu 165 170 175

Thr Lys Leu Gln Ala Gln Asn Gln Trp Leu Gln Asp Met Thr Thr His

Leu Ile Leu Arg Ser Phe Lys Glu Phe Leu Gln Ser Ser Leu Arg Ala 195  $\phantom{\bigg|}200\phantom{\bigg|}$  205

Leu Arg Gln Met 210

<210> 2490

<211> 153 <212> PRT

<213> Homo sapiens

<400> 2490

Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ser Leu Ala Leu 1 5 10 15

Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$ 

Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile 35 40 45

Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe 50 55 60

Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu 65 70 75 80

Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys 85 90 95

Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile 100 105 110

Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala 115 120 125

Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe 130 140

Cys Gln Ser Ile Ile Ser Thr Leu Thr 145 150 <210> 2491 <211> 231 <212> PRT <213> Homo sapiens <400> 2491 Met Gln Asp Glu Glu Arg Tyr Met Thr Leu Asn Val Gln Ser Lys Lys 10 Arg Ser Ser Ala Gln Thr Ser Gln Leu Thr Phe Lys Asp Tyr Ser Val 25 20 30 Thr Leu His Trp Tyr Lys Ile Leu Leu Gly Ile Ser Gly Thr Val Asn 35 40 Gly Ile Leu Thr Leu Thr Leu Ile Ser Leu Ile Leu Leu Val Ser Gln Gly Val Leu Leu Lys Cys Gln Lys Gly Ser Cys Ser Asn Ala Thr Gln 70 75 Tyr Glu Asp Thr Gly Asp Leu Lys Val Asn Asn Gly Thr Arg Arg Asn 85 Ile Ser Asn Lys Asp Leu Cys Ala Ser Arg Ser Ala Asp Gln Thr Val 100 105 Leu Cys Gln Ser Glu Trp Leu Lys Tyr Gln Gly Lys Cys Tyr Trp Phe 115 120 125 Ser Asn Glu Met Lys Ser Trp Ser Asp Ser Tyr Val Tyr Cys Leu Glu 130 135 140 Arg Lys Ser His Leu Leu Ile Ile His Asp Gln Leu Glu Met Ala Phe 145 150 155 Ile Gln Lys Asn Leu Arg Gln Leu Asn Tyr Val Trp Ile Gly Leu Asn

Phe Thr Ser Leu Lys Met Thr Trp Thr Trp Val Asp Gly Ser Pro Ile 180 185 190

Asp Ser Lys Ile Phe Phe Ile Lys Gly Pro Ala Lys Glu Asn Ser Cys \$195\$

Ala Ala Ile Lys Glu Ser Lys Ile Phe Ser Glu Thr Cys Ser Ser Val  ${}^{210}$   ${}^{215}$   ${}^{220}$ 

Phe Lys Trp Ile Cys Gln Tyr 225 230

<210> 2492 <211> 512

<212> PRT

<213> Homo sapiens

<400> 2492

Met Gly Cys Ile Lys Ser Lys Gly Lys Asp Ser Leu Ser Asp Asp Gly  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Val Asp Leu Lys Thr Gln Pro Val Arg Asn Thr Glu Arg Thr Ile Tyr 20 25 30

Val Arg Asp Pro Thr Ser Asn Lys Gln Gln Arg Pro Val Pro Glu Ser 35 40 45

Gln Leu Leu Pro Gly Gln Arg Phe Gln Thr Lys Asp Pro Glu Glu Gln 50 55 60

Gly Asp Ile Val Val Ala Leu Tyr Pro Tyr Asp Gly Ile His Pro Asp 65 70 70 75 80

Asp Leu Ser Phe Lys Lys Gly Glu Lys Met Lys Val Leu Glu His 85 90 95

Gly Glu Trp Trp Lys Ala Lys Ser Leu Leu Thr Lys Lys Glu Gly Phe \$100\$

Ile Pro Ser Asn Tyr Val Ala Lys Leu Asn Thr Leu Glu Thr Glu Glu 115 120 125

Trp Phe Phe Lys Asp Ile Thr Arg Lys Asp Ala Glu Arg Gln Leu Leu 130 135 140

Ala Pro Gly Asn Ser Ala Gly Ala Phe Leu Ile Arg Glu Ser Glu Thr 145 150 155 160

Leu Lys Gly Ser Phe Ser Leu Ser Val Arg Asp Phe Asp Pro Val His 165 170 175

| G1:        | y Asj      | o Va       | 1 Ile      | e Lys      | s His      | Ту         | r Lys      | 18:             | e Ar       | g Se       | r Lei      | ı Ası      | 0 Ası<br>190 |            | y Gl       |
|------------|------------|------------|------------|------------|------------|------------|------------|-----------------|------------|------------|------------|------------|--------------|------------|------------|
| Ту         | г Ту       | 110<br>199 | e Sei      | Pro        | Arg        | Ile        | 200        | r Phe           | e Pr       | о Су       | s Ile      | 205        | r Asp        | ) Me       | t Il       |
| Lys        | 210        | туі        | c Glr      | Lys        | Gln        | Ala<br>215 | Asp        | Gl <sub>y</sub> | / Le       | и Суг      | 220        | Arç        | j Lei        | ı Glı      | ı Ly       |
| Ala<br>225 | Cys        | : Ile      | e Ser      | Pro        | Lys<br>230 | Pro        | Gln        | Lys             | Pro        | 235        | Asp        | Lys        | Asp          | Ala        | 240        |
| Glu        | Ile        | Pro        | Arg        | Glu<br>245 | Ser        | Ile        | Lys        | Leu             | Val<br>250 | L Lys      | Arg        | Leu        | Gly          | Ala<br>255 |            |
| Gln        | Phe        | Gly        | Glu<br>260 | Val        | Trp        | Met        | Gly        | Tyr<br>265      | Туз        | Asr        | Asn        | Ser        | Thr<br>270   | Lys        | Val        |
| Ala        | Val        | Lys<br>275 | Thr        | Leu        | Lys        | Pro        | Gly<br>280 | Thr             | Met        | Ser        | Val        | Gln<br>285 |              | Phe        | Leu        |
| Glu        | Glu<br>290 | Ala        | Asn        | Leu        | Met        | Lys<br>295 | Thr        | Leu             | Gln        | His        | Asp<br>300 | Lys        | Leu          | Val        | Arg        |
| Leu<br>305 | Tyr        | Ala        | Val        | Val        | Thr<br>310 | Arg        | Glu        | Glu             | Pro        | Ile<br>315 | Tyr        | Ile        | Ile          | Thr        | Glu<br>320 |
| Tyr        | Met        | Ala        | Lys        | Gly<br>325 | Ser        | Leu        | Leu        | Asp             | Phe<br>330 | Leu        | Lys        | Ser        | Asp          | Glu<br>335 | Gly        |
| Gly        | Lys        | Val        | Leu<br>340 | Leu        | Pro        | Lys        | Leu        | Ile<br>345      | Asp        | Phe        | Ser        | Ala        | Gln<br>350   | Ile        | Ala        |
| Glu        | Gly        | Met<br>355 | Ala        | Tyr        | Ile        | Glu        | Arg<br>360 | Lys             | Asn        | Tyr        | Ile        | His<br>365 | Arg          | Asp        | Leu        |
| Arg        | Ala<br>370 | Ala        | Asn        | Val        | Leu        | Val<br>375 | Ser        | Glu             | Ser        | Leu        | Met<br>380 | Cys        | Lys          | Ile        | Ala        |
| Asp<br>385 | Phe        | Gly        | Leu        | Ala        | Arg<br>390 | Val        | Ile        | Glu             | Asp        | Asn<br>395 | Glu        | Tyr        | Thr          | Ala        | Arg<br>400 |

Glu Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ile Asn 405  $$\rm 410$$ 

Phe Gly Cys Phe Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu 420 425 430

Leu Tyr Glu Ile Val Thr Tyr Gly Lys Ile Pro Tyr Pro Gly Arg Thr
435 440 445

Asn Ala Asp Val Met Thr Ala Leu Ser Gln Gly Tyr Arg Met Pro Arg 450 \$450\$

Val Glu Asn Cys Pro Asp Glu Leu Tyr Asp Ile Met Lys Met Cys Trp 465 470 475 480

Lys Glu Lys Ala Glu Glu Arg Pro Thr Phe Asp Tyr Leu Gln Ser Val 485 490 495

Leu Asp Asp Phe Tyr Thr Ala Thr Glu Gly Gln Tyr Gln Gln Gln Pro

<210> 2493

<211> 272

<212> PRT <213> Homo sapiens

<400> 2493

Met Asp Ser Tyr Leu Leu Met Trp Gly Leu Leu Thr Phe Ile Met Val 1 5 10 15

Pro Gly Cys Gln Ala Glu Leu Cys Asp Asp Asp Pro Pro Glu Ile Pro 20 25 . 30

His Ala Thr Phe Lys Ala Met Ala Tyr Lys Glu Gly Thr Met Leu Asn 35  $\phantom{\bigg|}40\phantom{\bigg|}45\phantom{\bigg|}$ 

Cys Glu Cys Lys Arg Gly Phe Arg Arg Ile Lys Ser Gly Ser Leu Tyr 50 60

Met Leu Cys Thr Gly Asn Ser Ser His Ser Ser Trp Asp Asn Gln Cys 65 70 75 80

Gln Cys Thr Ser Ser Ala Thr Arg Asn Thr Thr Lys Gln Val Thr Pro 85 90 95

Gln Pro Glu Glu Gln Lys Glu Arg Lys Thr Thr Glu Met Gln Ser Pro  $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$ 

Met Gln Pro Val Asp Gln Ala Ser Leu Pro Gly His Cys Arg Glu Pro

125

115 120

Pro Pro Trp Glu Asn Glu Ala Thr Glu Arg Ile Tyr His Phe Val Val 130 140

Gly Gln Met Val Tyr Tyr Gln Cys Val Gln Gly Tyr Arg Ala Leu His 145 \$150\$ 155 \$160\$

Arg Gly Pro Ala Glu Ser Val Cys Lys Met Thr His Gly Lys Thr Arg \$165\$ \$170\$ \$175\$

Trp Thr Gln Pro Gln Leu Ile Cys Thr Gly Glu Met Glu Thr Ser Gln 180 185 190

Phe Pro Gly Glu Glu Lys Pro Gln Ala Ser Pro Glu Gly Arg Pro Glu 195 200 205

Ser Glu Thr Ser Cys Leu Val Thr Thr Thr Asp Phe Gln Ile Gln Thr 210 220

Glu Met Ala Ala Thr Met Glu Thr Ser Ile Phe Thr Thr Glu Tyr Gln 225 230 235 240

Val Ala Val Ala Gly Cys Val Phe Leu Leu Ile Ser Val Leu Leu Leu Leu 245 250 255

Ser Gly Leu Thr Trp Gln Arg Arg Gln Arg Lys Ser Arg Arg Thr Ile \$260\$

<210> 2494

<211> 92

<211> 92 <212> PRT

<213> Homo sapiens

<400> 2494

Met Lys Leu Cys Val Thr Val Leu Ser Leu Leu Met Leu Val Ala Ala 1 5 10 15

Phe Cys Ser Pro Ala Leu Ser Ala Pro Met Gly Ser Asp Pro Pro Thr 20 25 30

Ala Cys Cys Phe Ser Tyr Thr Ala Arg Lys Leu Pro Arg Asn Phe Val  $_{\mbox{\footnotesize 35}}$ 

Val Asp Tyr Tyr Glu Thr Ser Ser Leu Cys Ser Gln Pro Ala Val Val 50 60

Phe Gln Thr Lys Arg Ser Lys Gln Val Cys Ala Asp Pro Ser Glu Ser 65 70 75 80

Trp Val Glu Glu Tyr Val Tyr Asp Leu Glu Leu Asn 85 90

<210> 2495

<210> 249 <211> 532 <212> PRT

<213> Homo sapiens

<400> 2495

Met Met Met Val Arg Arg Gly Leu Leu Ala Trp Ile Ser Arg Val Val 1 5 10 15

Val Leu Leu Val Leu Leu Cys Cys Ala Ile Ser Val Leu Tyr Met Leu 20 25 30

Ala Cys Thr Pro Lys Gly Asp Glu Glu Glu Leu Ala Leu Pro Arg Ala 35 40 45

As Ser Pro Thr Gly Lys Glu Gly Tyr Gln Ala Val Leu Gln Glu Trp 50 60

Glu Glu Gln His Arg Asn Tyr Val Ser Ser Leu Lys Arg Gln Ile Ala 65 70 75 80

Gln Leu Lys Glu Glu Leu Gln Glu Arg Ser Glu Gln Leu Arg Asn Gly 85 90 95

Gln Tyr Gln Ala Ser Asp Ala Ala Gly Leu Gly Leu Asp Arg Ser Pro 100 105 110

Pro Glu Lys Thr Gln Ala Asp Leu Leu Ala Phe Leu His Ser Gln Val 115 120 125

Asp Lys Ala Glu Val Asn Ala Gly Val Lys Leu Ala Thr Glu Tyr Ala 130 140

Ala Val Pro Phe Asp Ser Phe Thr Leu Gln Lys Val Tyr Gln Leu Glu 145 150 155 160

Thr Gly Leu Thr Arg His Pro Glu Glu Lys Pro Val Arg Lys Asp Lys

Arg Asp Glu Leu Val Glu Ala Ile Glu Ser Ala Leu Glu Thr Leu Asn

180 185 190

Asn Pro Ala Glu Asn Ser Pro Asn His Arg Pro Tyr Thr Ala Ser Asp 195 200 205

Phe Ile Glu Gly Ile Tyr Arg Thr Glu Arg Asp Lys Gly Thr Leu Tyr 210 215 220

Glu Leu Thr Phe Lys Gly Asp His Lys His Glu Phe Lys Arg Leu Ile 225  $\phantom{\bigg|}230\phantom{\bigg|}235\phantom{\bigg|}$  235  $\phantom{\bigg|}240\phantom{\bigg|}$ 

Leu Phe Arg Pro Phe Gly Pro Ile Met Lys Val Lys Asn Glu Lys Leu 245 250 255

Asn Met Ala Asn Thr Leu Ile Asn Val Ile Val Pro Leu Ala Lys Arg 260 265 270

Val Asp Lys Phe Arg Gln Phe Met Gln Asn Phe Arg Glu Met Cys Ile 275 280 285

Glu Gln Asp Gly Arg Val His Leu Thr Val Val Tyr Phe Gly Lys Glu 290 295 300

Glu Ile Asn Glu Val Lys Gly Ile Leu Glu Asn Thr Ser Lys Ala Ala 305  $\phantom{\bigg|}$  310  $\phantom{\bigg|}$  315  $\phantom{\bigg|}$  320

Asn Phe Arg Asn Phe Thr Phe Ile Gln Leu Asn Gly Glu Phe Ser Arg 325 330 335

Gly Lys Gly Leu Asp Val Gly Ala Arg Phe Trp Lys Gly Ser Asn Val 340 345 350

Leu Leu Phe Phe Cys Asp Val Asp Ile Tyr Phe Thr Ser Glu Phe Leu 355 360 365

Asn Thr Cys Arg Leu Asn Thr Gln Pro Gly Lys Lys Val Phe Tyr Pro 370 375 380

Val Leu Phe Ser Gln Tyr Asn Pro Gly Ile Ile Tyr Gly His His Asp 385 390 395 400

Ala Val Pro Pro Leu Glu Gln Gln Leu Val Ile Lys Lys Glu Thr Gly 405 410 415

Phe Trp Arg Asp Phe Gly Phe Gly Met Thr Cys Gln Tyr Arg Ser Asp 420 425 430

Phe Ile Asn Ile Gly Gly Phe Asp Leu Asp Ile Lys Gly Trp Gly Gly
435 440 445

Glu Asp Val His Leu Tyr Arg Lys Tyr Leu His Ser Asn Leu Ile Val 450 455 460

Val Arg Thr Pro Val Arg Gly Leu Phe His Leu Trp His Glu Lys Arg 465 470 475 480

Cys Met Asp Glu Leu Thr Pro Glu Gln Tyr Lys Met Cys Met Gln Ser 495 495

Lys Ala Met Asn Glu Ala Ser His Gly Gln Leu Gly Met Leu Val Phe 500 505 510

Ser Lys Lys Thr 530

<210> 2496 <211> 125

<211> 125 <212> PRT

<213> Homo sapiens

<400> 2496

Met Lys Lys Ser Gly Val Leu Phe Leu Leu Gly Ile Ile Leu Leu Val

Leu Ile Gly Val Gln Gly Thr Pro Val Val Arg Lys Gly Arg Cys Ser

Cys Ile Ser Thr Asn Gln Gly Thr Ile His Leu Gln Ser Leu Lys Asp \$35\$

Leu Lys Gln Phe Ala Pro Ser Pro Ser Cys Glu Lys Ile Glu Ile Ile 50 55 60

Ala Thr Leu Lys Asn Gly Val Gln Thr Cys Leu Asn Pro Asp Ser Ala 65 70 75 80

Asp Val Lys Glu Leu Ile Lys Lys Trp Glu Lys Gln Val Ser Gln Lys . 85 90 95

Lys Lys Gln Lys Asn Gly Lys Lys His Gln Lys Lys Lys Val Leu Lys  $100 \\ 05 \\ 105$ 

Val Arg Lys Ser Gln Arg Ser Arg Gln Lys Lys Thr Thr 115 120 125

<210> 2497 <211> 98

<212> PRT

<213> Homo sapiens

<400> 2497

Met Asn Gln Thr Ala Ile Leu Ile Cys Cys Leu Ile Phe Leu Thr Leu 1 5 10 15

Ser Gly Ile Gln Gly Val Pro Leu Ser Arg Thr Val Arg Cys Thr Cys  $20 \\ 25 \\ 30$ 

Ile Ser Ile Ser Asn Gln Pro Val Asn Pro Arg Ser Leu Glu Lys Leu 35 40 45

Glu Ile Ile Pro Ala Ser Gln Phe Cys Pro Arg Val Glu Ile Ile Ala 50 \$55\$ 60

Thr Met Lys Lys Lys Gly Glu Lys Arg Cys Leu Asn Pro Glu Ser Lys 65 75 80

Ala Ile Lys Asn Leu Leu Lys Ala Val Ser Lys Glu Met Ser Lys Arg 85 90 95

Ser Pro

<210> 2498

<211> 155 <212> PRT

<213> Homo sapiens

<400> 2498

Met Thr Pro Gly Lys Thr Ser Leu Val Ser Leu Leu Leu Leu Ser 1 5 10 15

Leu Glu Ala Ile Val Lys Ala Gly Ile Thr Ile Pro Arg Asn Pro Gly  $25 \ \ 30$ 

Cys Pro Asn Ser Glu Asp Lys Asn Phe Pro Arg Thr Val Met Val Asn  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Leu Asn Ile His Asn Arg Asn Thr Asn Thr Asn Pro Lys Arg Ser Ser 50 55 60

Asp Tyr Tyr Asn Arg Ser Thr Ser Pro Trp Asn Leu His Arg Asn Glu 65 70 75 80

Asp Pro Glu Arg Tyr Pro Ser Val Ile Trp Glu Ala Lys Cys Arg His

Leu Gly Cys Ile Asn Ala Asp Gly Asn Val Asp Tyr His Met Asn Ser 100 105 110

Val Pro Ile Gln Gln Glu Ile Leu Val Leu Arg Arg Glu Pro Pro His 115 120 125

Cys Pro Asn Ser Phe Arg Leu Glu Lys Ile Leu Val Ser Val Gly Cys 130 135 140

Thr Cys Val Thr Pro Ile Val His His Val Ala 145 150 155

<210> 2499

<211> 162 <212> PRT

<213> Homo sapiens

<400> 2499

Met Arg Ile Ser Lys Pro His Leu Arg Ser Ile Ser Ile Gln Cys Tyr 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Leu Cys Leu Leu Leu Asn Ser His Phe Leu Thr Glu Ala Gly Ile His 20 25 30

Val Phe Ile Leu Gly Cys Phe Ser Ala Gly Leu Pro Lys Thr Glu Ala 35  $\phantom{\bigg|}40\phantom{\bigg|}40\phantom{\bigg|}45\phantom{\bigg|}$ 

Asn Trp Val Asn Val Ile Ser Asp Leu Lys Lys Ile Glu Asp Leu Ile 50 55 60

Gln Ser Met His Ile Asp Ala Thr Leu Tyr Thr Glu Ser Asp Val His 65 70 75 80

Pro Ser Cys Lys Val Thr Ala Met Lys Cys Phe Leu Leu Glu Leu Gln 85 90 95

Val Ile Ser Leu Glu Ser Gly Asp Ala Ser Ile His Asp Thr Val Glu

100 105 110

Asn Leu Ile Ile Leu Ala Asn Asn Ser Leu Ser Ser Asn Gly Asn Val

Thr Glu Ser Gly Cys Lys Glu Cys Glu Glu Leu Glu Glu Lys Asn Ile 130 135 140

Lys Glu Phe Leu Gln Ser Phe Val His Ile Val Gln Met Phe Ile Asn 145 150 155 160

Thr Ser

<210> 2500

<211> 178 <212> PRT

<213> Homo sapiens

<400> 2500

Met His Ser Ser Ala Leu Leu Cys Cys Leu Val Leu Leu Thr Gly Val

Arg Ala Ser Pro Gly Gln Gly Thr Gln Ser Glu Asn Ser Cys Thr His  $20 \\ \hspace{1.5cm} 25 \\ \hspace{1.5cm} 30 \\ \hspace{1.5cm}$ 

Phe Pro Gly Asn Leu Pro Asn Met Leu Arg Asp Leu Arg Asp Ala Phe  $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$ 

Ser Arg Val Lys Thr Phe Phe Gln Met Lys Asp Gln Leu Asp Asn Leu 50

Leu Leu Lys Glu Ser Leu Leu Glu Asp Phe Lys Gly Tyr Leu Gly Cys 65 70 75 80

Gln Ala Leu Ser Glu Met Ile Gln Phe Tyr Leu Glu Glu Val Met Pro $85 \hspace{0.25in} 90 \hspace{0.25in} 95$ 

Gln Ala Glu Asn Gln Asp Pro Asp Ile Lys Ala His Val Asn Ser Leu 100 105 110

Gly Glu Asn Leu Lys Thr Leu Arg Leu Arg Leu Arg Arg Cys His Arg 115 \$120\$

Phe Leu Pro Cys Glu Asn Lys Ser Lys Ala Val Glu Gln Val Lys Asn 130 135

Ala Phe Asn Lys Leu Gln Glu Lys Gly Ile Tyr Lys Ala Met Ser Glu 145 150 155 160

Phe Asp Ile Phe Ile Asn Tyr Ile Glu Ala Tyr Met Thr Met Lys Ile 165  $$170\$ 

Arg Asn

<210> 2501

<211> 166 <212> PRT

<213> Homo sapiens

<400> 2501

Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Ile Val Leu 1 5 10 15

Gly Ser Leu Gly Cys Tyr Cys Gln Asp Pro Tyr Val Lys Glu Ala Glu 20 25 30

Asn Leu Lys Lys Tyr Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn 35 40 45

Arg Lys Ile Met Gln Ser Gln Ile Val Ser Phe Tyr Phe Lys Leu Phe 65 70 75 80

Lys Asn Phe Lys Asp Asp Gln Ser Ile Gln Lys Ser Val Glu Thr Ile 85 90 95

Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser Asn Lys Lys Lys Arg

Asp Asp Phe Glu Lys Leu Thr Asn Tyr Ser Val Thr Asp Leu Asn Val 115 120 125

Gln Arg Lys Ala Ile His Glu Leu Ile Gln Val Met Ala Glu Leu Ser 130 135 140

Pro Ala Ala Lys Thr Gly Lys Arg Lys Arg Ser Gln Met Leu Phe Gln 145 150 155 160

Gly Arg Arg Ala Ser Gln

165

| <21        |            | 2502       |            |            |            |            |            |            |            |            |            |            |            |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| <21        |            | 266<br>PRT |            |            |            |            |            |            |            |            |            |            |            |            |            |
| <21        |            |            | sap        | iens       |            |            |            |            |            |            |            |            |            |            |            |
| < 40       | 0>         | 2502       |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1   | Val        | Cys        | Leu        | Lys<br>5   | Leu        | Pro        | Gly        | Gly        | Ser<br>10  | Cys        | Met        | Thr        | Ala        | Leu<br>15  | Thr        |
| Val        | Thr        | Leu        | Met<br>20  | Val        | Leu        | Ser        | Ser        | Pro<br>25  | Leu        | Ala        | Leu        | Ala        | Gly<br>30  | Asp        | Thr        |
| Arg        | Pro        | Arg<br>35  | Phe        | Leu        | Trp        | Gln        | Leu<br>40  | Lys        | Phe        | Glu        | Cys        | His<br>45  | Phe        | Phe        | Asn        |
| Gly        | Thr<br>50  | Glu        | Arg        | Val        | Arg        | Leu<br>55  | Leu        | Glu        | Arg        | Cys        | Ile<br>60  | Tyr        | Asn        | Gln        | Glu        |
| Glu<br>65  | Ser        | Val        | Arg        | Phe        | Asp<br>70  | Ser        | Asp        | Val        | Gly        | Glu<br>75  | Tyr        | Arg        | Ala        | Val        | Thr<br>80  |
| Glu        | Leu        | Gly        | Arg        | Pro<br>85  | Asp        | Ala        | Glu        | Tyr        | Trp<br>90  | Asn        | Ser        | Gln        | Lys        | Asp<br>95  | Leu        |
| Leu        | Glu        | Gln        | Arg<br>100 | Arg        | Ala        | Ala        | Val        | Asp<br>105 | Thr        | Tyr        | Cys        | Arg        | His<br>110 | Asn        | Tyr        |
| Gly        | Val        | Gly<br>115 | Glu        | Ser        | Phe        | Thr        | Val<br>120 | Gln        | Arg        | Arg        | Val        | Glu<br>125 | Pro        | Lys        | Val        |
| Thr        | Val<br>130 | Tyr        | Pro        | Ser        | Lys        | Thr<br>135 | Gln        | Pro        | Leu        | Gln        | His<br>140 | His        | Asn        | Leu        | Leu        |
| Val<br>145 | Cys        | Ser        | Val        | Ser        | Gly<br>150 | Phe        | Tyr        | Pro        | Gly        | Ser<br>155 | Ile        | Glu        | Val        | Arg        | Trp<br>160 |
| Phe        | Arg        | Asn        | Gly        | Gln<br>165 | Glu        | Glu        | Lys        | Ala        | Gly<br>170 | Val        | Val        | Ser        | Thr        | Gly<br>175 | Leu        |
| Ile        | Gln        | Asn        | Gly<br>180 | Asp        | Trp        | Thr        | Phe        | Gln<br>185 | Thr        | Leu        | Val        | Met        | Leu<br>190 | Glu        | Thr        |

850

Val Pro Arg Ser Gly Glu Val Tyr Thr Cys Gln Val Glu His Pro Ser 195  $\phantom{\bigg|}$  200  $\phantom{\bigg|}$  205

Val Thr Ser Pro Leu Thr Val Glu Trp Arg Ala Arg Ser Glu Ser Ala 210 215 Gln Ser Lys Met Leu Ser Gly Val Gly Gly Phe Val Leu Gly Leu Leu 230 235 Phe Leu Gly Ala Gly Leu Phe Ile Tyr Phe Arg Asn Gln Lys Gly His 250 Ser Gly Leu Gln Pro Thr Gly Phe Leu Ser 260 <210> 2503 <211> 210 <212> PRT <213> Homo sapiens <400> 2503 Met Arg Pro Arg Leu Trp Leu Leu Leu Ala Ala Gln Leu Thr Val Leu His Gly Asn Ser Val Leu Gln Gln Thr Pro Ala Tyr Ile Lys Val Gln 20 25 Thr Asn Lys Met Val Met Leu Ser Cys Glu Ala Lys Ile Ser Leu Ser

35 40

Asn Met Arg Ile Tyr Trp Leu Arg Gln Arg Gln Ala Pro Ser Ser Asp 50 60 55

Ser His His Glu Phe Leu Ala Leu Trp Asp Ser Ala Lys Gly Thr Ile 70

His Gly Glu Glu Val Glu Gln Glu Lys Ile Ala Val Phe Arg Asp Ala

Ser Arg Phe Ile Leu Asn Leu Thr Ser Val Lys Pro Glu Asp Ser Gly 100 105

Ile Tyr Phe Cys Met Ile Val Gly Ser Pro Glu Leu Thr Phe Gly Lys 115 120 125

Gly Thr Gln Leu Ser Val Val Asp Phe Leu Pro Thr Thr Ala Gln Pro 130 135 140

Thr Lys Lys Ser Thr Leu Lys Lys Arg Val Cys Arg Leu Pro Arg Pro

145 150 155 160

Glu Thr Gln Lys Gly Pro Leu Cys Ser Pro Ile Thr Leu Gly Leu Leu 165 170 175

Val Ala Gly Val Leu Val Leu Val Ser Leu Gly Val Ala Ile His 180 185 190

Leu Cys Cys Arg Arg Arg Arg Ala Arg Leu Arg Phe Met Lys Gln Phe 195 200 205

Tyr Lys 210

<210> 2504 <211> 458

<212> PRT <213> Homo sapiens

<400> 2504

Met Asn Arg Gly Val Pro Phe Arg His Leu Leu Leu Val Leu Gln Leu 1 5 10 15

Ala Leu Leu Pro Ala Ala Thr Gln Gly Lys Lys Val Val Leu Gly Lys 20 25 30

Lys Gly Asp Thr Val Glu Leu Thr Cys Thr Ala Ser Gln Lys Lys Ser 35 40 45

Gln Gly Ser Phe Leu Thr Lys Gly Pro Ser Lys Leu Asn Asp Arg Ala 65 70 75 80

Asp Ser Arg Arg Ser Leu Trp Asp Gln Gly Asn Phe Pro Leu Ile Ile 85 90 95

Lys Asn Leu Lys Ile Glu Asp Ser Asp Thr Tyr Ile Cys Glu Val Glu 100 105 110

Asp Gln Lys Glu Glu Val Gln Leu Leu Val Phe Gly Leu Thr Ala Asn 115 120 125

Ser Asp Thr His Leu Leu Gln Gly Gln Ser Leu Thr Leu Thr Leu Glu 130 135 140

| Ser<br>145 | Pro        | Pro        | Gly        | Ser        | Ser<br>150 | Pro        | Ser        | Val        | Gln        | Cys<br>155 | Arg        | Ser        | Pro        | Arg        | Gly<br>160 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Lys        | Asn        | Ile        | Gln        | Gly<br>165 | Gly        | Lys        | Thr        | Leu        | Ser<br>170 | Val        | Ser        | Gln        | Leu        | Glu<br>175 | Leu        |
| Gln        | Asp        | Ser        | Gly<br>180 | Thr        | Trp        | Thr        | Cys        | Thr<br>185 | Val        | Leu        | Gln        | Asn        | Gln<br>190 | Lys        | Lys        |
| Val        | Glu        | Phe<br>195 | Lys        | Ile        | Asp        | Ile        | Val<br>200 | Val        | Leu        | Ala        | Phe        | Gln<br>205 | Lys        | Ala        | Ser        |
| Ser        | Ile<br>210 | Val        | Tyr        | Lys        | Lys        | Glu<br>215 | Gly        | Glu        | Gln        | Val        | Glu<br>220 | Phe        | Ser        | Phe        | Pro        |
| Leu<br>225 | Ala        | Phe        | Thr        | Val        | Glu<br>230 | Lys        | Leu        | Thr        | Gly        | Ser<br>235 | Gly        | Glu        | Leu        | Trp        | Trp<br>240 |
| Gln        | Ala        | Glu        | Arg        | Ala<br>245 | Ser        | Ser        | Ser        | Lys        | Ser<br>250 | Trp        | Ile        | Thr        | Phe        | Asp<br>255 | Leu        |
| Lys        | Asn        | Lys        | Glu<br>260 | Val        | Ser        | Val        | Lys        | Arg<br>265 | Val        | Thr        | Gln        | Asp        | Pro<br>270 | Lys        | Leu        |
| Gln        | Met        | Gly<br>275 | Lys        | Lys        | Leu        | Pro        | Leu<br>280 | His        | Leu        | Thr        | Leu        | Pro<br>285 | Gln        | Ala        | Leu        |
| Pro        | Gln<br>290 | Tyr        | Ala        | Gly        | Ser        | Gly<br>295 | Asn        | Leu        | Thr        | Leu        | Ala<br>300 | Leu        | Glu        | Ala        | Lys        |
| Thr<br>305 | Gly        | Lys        | Leu        | His        | Gln<br>310 | Glu        | Val        | Asn        | Leu        | Val<br>315 | Val        | Met        | Arg        | Ala        | Thr<br>320 |
| Gln        | Leu        | Gln        | Lys        | Asn<br>325 | Leu        | Thr        | Cys        | Glu        | Val<br>330 | Trp        | Gly        | Pro        | Thr        | Ser<br>335 | Pro        |
| Lys        | Leu        | Met        | Leu<br>340 | Ser        | Leu        | Lys        | Leu        | Glu<br>345 | Asn        | Lys        | Glu        | Ala        | Lys<br>350 | Val        | Ser        |
| Lys        | Arg        | Glu<br>355 | Lys        | Ala        | Val        | Trp        | Val<br>360 | Leu        | Asn        | Pro        | Glu        | Ala<br>365 | Gly        | Met        | Trp        |
| Gln        | Cys<br>370 | Leu        | Leu        | Ser        | Asp        | Ser<br>375 | Gly        | Gln        | Val        | Leu        | Leu<br>380 | Glu        | Ser        | Asn        | Ile        |

Lys Val Leu Pro Thr Trp Ser Thr Pro Val Gln Pro Met Ala Leu Ile 385 390 395 400

Val Leu Gly Gly Val Ala Gly Leu Leu Leu Phe Ile Gly Leu Gly Ile 405 410 415

Phe Phe Cys Val Arg Cys Arg His Arg Arg Arg Gln Ala Glu Arg Met
420 425 430

His Arg Phe Gln Lys Thr Cys Ser Pro Ile 450 455

<210> 2505

<211> 368

<212> PRT <213> Homo sapiens

<400> 2505

Met Val Leu Glu Val Ser Asp His Gln Val Leu Asn Asp Ala Glu Val 1 10 15

Ala Ala Leu Leu Glu Asn Phe Ser Ser Ser Tyr Asp Tyr Gly Glu Asn 20 25 30

Glu Ser Asp Ser Cys Cys Thr Ser Pro Pro Cys Pro Gln Asp Phe Ser 35 40 45

Leu Asn Phe Asp Arg Ala Phe Leu Pro Ala Leu Tyr Ser Leu Leu Phe 50 55 60

Leu Leu Gly Leu Leu Gly Asn Gly Ala Val Ala Val Leu Leu Ser 65 70 75 80

Arg Arg Thr Ala Leu Ser Ser Thr Asp Thr Phe Leu Leu His Leu Ala 85 90 95

Val Ala Asp Thr Leu Leu Val Leu Thr Leu Pro Leu Trp Ala Val Asp

Ala Ala Val Gln Trp Val Phe Gly Ser Gly Leu Cys Lys Val Ala Gly
115 120 125

Ala Leu Phe Asn Ile Asn Phe Tyr Ala Gly Ala Leu Leu Leu Ala Cys 130 140

Ile Ser Phe Asp Arg Tyr Leu Asn Ile Val His Ala Thr Gln Leu Tyr 145 150 155 160

- Arg Arg Gly Pro Pro Ala Arg Val Thr Leu Thr Cys Leu Ala Val Trp \$165\$ \$170\$ \$175\$
- Gly Leu Cys Leu Leu Phe Ala Leu Pro Asp Phe Ile Phe Leu Ser Ala 180 185 190
- His His Asp Glu Arg Leu Asn Ala Thr His Cys Gln Tyr Asn Phe Pro 195 200 205
- Gln Val Gly Arg Thr Ala Leu Arg Val Leu Gln Leu Val Ala Gly Phe 210 220
- Leu Leu Pro Leu Leu Val Met Ala Tyr Cys Tyr Ala His Ile Leu Ala 225 230 235 240
- Val Leu Leu Val Ser Arg Gly Gln Arg Arg Leu Arg Ala Met Arg Leu 245 250 250
- Val Val Val Val Val Ala Phe Ala Leu Cys Trp Thr Pro Tyr His  $260 \hspace{0.2in} 265 \hspace{0.2in} 270 \hspace{0.2in}$
- Leu Val Leu Val Asp Ile Leu Met Asp Leu Gly Ala Leu Ala Arg 275 280 285
- Asn Cys Gly Arg Glu Ser Arg Val Asp Val Ala Lys Ser Val Thr Ser  $290 \ \ \, 295 \ \ \, 300 \ \ \,$
- Gly Leu Gly Tyr Met His Cys Cys Leu Asn Pro Leu Leu Tyr Ala Phe 305 310 320
- Val Gly Val Lys Phe Arg Glu Arg Met Trp Met Leu Leu Leu Arg Leu 325 330 335
- Gly Cys Pro Asn Gln Arg Gly Leu Gln Arg Gln Pro Ser Ser Arg  $340~\rm{345}~\rm{350}$
- Arg Asp Ser Ser Trp Ser Glu Thr Ser Glu Ala Ser Tyr Ser Gly Leu 355 360 365
- <210> 2506
- <211> 107
- <212> PRT

<213> Homo sapiens

<400> 2506

Met Ala Arg Ala Ala Leu Ser Ala Ala Pro Ser Asn Pro Arg Leu Leu  $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$ 

Arg Val Ala Leu Leu Leu Leu Leu Val Ala Ala Gly Arg Arg Ala 20 25 30

Ala Gly Ala Ser Val Ala Thr Glu Leu Arg Cys Gln Cys Leu Gln Thr  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Leu Gln Gly Ile His Pro Lys Asn Ile Gln Ser Val Asn Val Lys Ser 50 60

Pro Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys Asn 65 70 75 80

Gly Arg Lys Ala Cys Leu Asn Pro Ala Ser Pro Ile Val Lys Lys Ile 85 90 95

Ile Glu Lys Met Leu Asn Ser Asp Lys Ser Asn 100 105

<210> 2507 <211> 558

<211> 558 <212> PRT

<213> Homo sapiens

<400> 2507

Met Ala Ala Leu Thr Arg Asp Pro Gln Phe Gln Lys Leu Gln Gln Trp  $1 \hspace{1cm} 10 \hspace{1cm} 15$ 

Tyr Arg Glu His Arg Ser Glu Leu Asn Leu Arg Arg Leu Phe Asp Ala 20 25 30

Asn Lys Asp Arg Phe Asn His Phe Ser Leu Thr Leu Asn Thr Asn His  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Gly His Ile Leu Val Asp Tyr Ser Lys Asn Leu Val Thr Glu Asp Val 50 60

Met Arg Met Leu Val Asp Leu Ala Lys Ser Arg Gly Val Glu Ala Ala 65 75 80

Arg Glu Arg Met Phe Asn Gly Glu Lys Ile Asn Tyr Thr Glu Gly Arg 85 90 95

| Ala Val Leu His V | Val Ala Leu Arg | Asn Arg Ser Asn<br>105 | Thr Pro Ile Leu<br>110 |
|-------------------|-----------------|------------------------|------------------------|
|-------------------|-----------------|------------------------|------------------------|

- Val Asp Gly Lys Asp Val Met Pro Glu Val Asn Lys Val Leu Asp Lys 115 120 125
- Met Lys Ser Phe Cys Gln Arg Val Arg Ser Gly Asp Trp Lys Gly Tyr 130 135 140
- Thr Gly Lys Thr Ile Thr Asp Val Ile Asn Ile Gly Ile Gly Gly Ser 145 150 155 160
- Asp Leu Gly Pro Leu Met Val Thr Glu Ala Leu Lys Pro Tyr Ser Ser 165 170 175
- Gly Gly Pro Arg Val Trp Tyr Val Ser Asn Ile Asp Gly Thr His Ile 180 185 190
- Ala Lys Thr Leu Ala Gln Leu Asn Pro Glu Ser Ser Leu Phe Ile Ile 195 200 205
- Ala Ser Lys Thr Phe Thr Thr Gln Glu Thr Ile Thr Asn Ala Glu Thr 210  $$\rm 220$$
- Ala Lys Glu Trp Phe Leu Gln Ala Ala Lys Asp Pro Ser Ala Val Ala 225  $\phantom{\bigg|}230\phantom{\bigg|}235\phantom{\bigg|}235\phantom{\bigg|}$
- Lys His Phe Val Ala Leu Ser Thr Asn Thr Thr Lys Val Lys Glu Phe \$245\$ \$250\$
- Gly Ile Asp Pro Gln Asn Met Phe Glu Phe Trp Asp Trp Val Gly Gly 260 \$265\$
- Arg Tyr Ser Leu Trp Ser Ala Ile Gly Leu Ser Ile Ala Leu His Val 275 280 285
- Gly Phe Asp Asn Phe Glu Gln Leu Leu Ser Gly Ala His Trp Met Asp 290 295 300
- Gln His Phe Arg Thr Thr Pro Leu Glu Lys Asn Ala Pro Val Leu Leu 305 310 310 315
- Ala Leu Leu Gly Ile Trp Tyr Ile Asn Cys Phe Gly Cys Glu Thr His \$325\$ \$330\$ \$335

Ala Met Leu Pro Tyr Asp Gln Tyr Leu His Arg Phe Ala Ala Tyr Phe  $340 \hspace{1cm} 345 \hspace{1cm} 350$ 

Gln Gln Gly Asp Met Glu Ser Asn Gly Lys Tyr Ile Thr Lys Ser Gly
355 360 365

Thr Arg Val Asp His Gln Thr Gly Pro Ile Val Trp Gly Glu Pro Gly 370 375 380

Thr Asn Gly Gln His Ala Phe Tyr Gln Leu Ile His Gln Gly Thr Lys 385 390 395 400

Met Ile Pro Cys Asp Phe Leu Ile Pro Val Gln Thr Gln His Pro Ile  $405 \hspace{0.25in} 410 \hspace{0.25in} 415$ 

Arg Lys Gly Leu His His Lys Ile Leu Leu Ala Asn Phe Leu Ala Gln \$420\$

Thr Glu Ala Leu Met Arg Gly Lys Ser Thr Glu Glu Ala Arg Lys Glu 435  $\phantom{0}440$   $\phantom{0}445$ 

Leu Gln Ala Ala Gly Lys Ser Pro Glu Asp Leu Glu Arg Leu Leu Pro 450 450

His Lys Val Phe Glu Gly Asn Arg Pro Thr Asn Ser Ile Val Phe Thr 465 470 475 480

Lys Leu Thr Pro Phe Met Leu Gly Ala Leu Val Ala Met Tyr Glu His 485 490 495

Lys Ile Phe Val Gln Gly Ile Ile Trp Asp Ile Asn Ser Phe Asp Gln  $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510 \hspace{1.5cm}$ 

Trp Gly Val Glu Leu Gly Lys Gln Leu Ala Lys Lys Ile Glu Pro Glu 515 520 525

Leu Asp Gly Ser Ala Gln Val Thr Ser His Asp Ala Ser Thr Asn Gly 530 540

Leu Ile Asn Phe Ile Lys Gln Gln Arg Glu Ala Arg Val Gln 545 550 555

<210> 2508

<211> 323

<212> PRT

<213> Homo sapiens

| <400> | 2508 |
|-------|------|
|-------|------|

Met Trp Pro Leu Val Ala Ala Leu Leu Gly Ser Ala Cys Cys Gly 1 10 15

- Ser Ala Gln Leu Leu Phe Asn Lys Thr Lys Ser Val Glu Phe Thr Phe \$20\$
- Cys Asn Asp Thr Val Val Ile Pro Cys Phe Val Thr Asn Met Glu Ala  $35 \ \ \, 40 \ \ \,$
- Gln Asn Thr Thr Glu Val Tyr Val Lys Trp Lys Phe Lys Gly Arg Asp 50 60
- Phe Ser Ser Ala Lys Ile Glu Val Ser Gln Leu Leu Lys Gly Asp Ala 85 90 95
- Ser Leu Lys Met Asp Lys Ser Asp Ala Val Ser His Thr Gly Asn Tyr  $100 \\ 105 \\ 110$
- Thr Cys Glu Val Thr Glu Leu Thr Arg Glu Gly Glu Thr Ile Ile Glu 115 120 125
- Leu Lys Tyr Arg Val Val Ser Trp Phe Ser Pro Asn Glu Asn Ile Leu 130 135 140
- Ile Val Ile Phe Pro Ile Phe Ala Ile Leu Leu Phe Trp Gly Gln Phe 145 150 155 160
- Gly Ile Lys Thr Leu Lys Tyr Arg Ser Gly Gly Met Asp Glu Lys Thr \$165\$ \$170\$
- Ile Ala Leu Leu Val Ala Gly Leu Val Ile Thr Val Ile Val Ile Val 180  $$180\$
- Gly Ala Ile Leu Phe Val Pro Gly Glu Tyr Ser Leu Lys Asn Ala Thr  $200 \ 205$
- Gly Leu Gly Leu Ile Val Thr Ser Thr Gly Ile Leu Ile Leu Leu His 210 220
- Tyr Tyr Val Phe Ser Thr Ala Ile Gly Leu Thr Ser Phe Val Ile Ala 225 230 235 240

Ile Leu Val Ile Gln Val Ile Ala Tyr Ile Leu Ala Val Val Gly Leu 245 250 255

Ser Leu Cys Ile Ala Ala Cys Ile Pro Met His Gly Pro Leu Leu Ile 260 265 270

Ser Gly Leu Ser Ile Leu Ala Leu Ala Gln Leu Leu Gly Leu Val Tyr 275 280 285

Met Lys Phe Val Ala Ser Asn Gln Lys Thr Ile Gln Pro Pro Arg Lys 290 295 300

Ala Val Glu Glu Pro Leu Asn Ala Phe Lys Glu Ser Lys Gly Met Met 305 310 315 320

Asn Asp Glu

<210> 2509

<211> 362 <212> PRT

<213> Homo sapiens

<400> 2509

Met Ala Pro Arg Ser Leu Leu Leu Leu Leu Ser Gly Ala Leu leu 1 5 10 15

Thr Asp Thr Trp Ala Gly Ser His Ser Leu Arg Tyr Phe Ser Thr Ala 20 25 30

Val Ser Arg Pro Gly Arg Gly Glu Pro Arg Tyr Ile Ala Val Glu Tyr 35 40 45

Val Asp Asp Thr Gln Phe Leu Arg Phe Asp Ser Asp Ala Ala Ile Pro . 50  $\,$  60  $\,$ 

Arg Met Glu Pro Arg Glu Pro Trp Val Glu Glu Glu Gly Pro Gln Tyr 65 70 75 80

Trp Glu Trp Thr Thr Gly Tyr Ala Lys Ala Asn Ala Gln Thr Asp Arg 85 90 95

Val Ala Leu Arg Asn Leu Leu Arg Arg Tyr Asn Gln Ser Glu Ala Gly
100 105 110

Ser His Thr Leu Gln Gly Met Asn Gly Cys Asp Met Gly Pro Asp Gly 115 120 125

- Arg Leu Leu Arg Gly Tyr His Gln His Ala Tyr Asp Gly Lys Asp Tyr 130 \$135\$
- Ile Ser Leu Asn Glu Asp Leu Arg Ser Trp Thr Ala Ala Asp Thr Val 145 150 155 160
- Ala Gln Ile Thr Gln Arg Phe Tyr Glu Ala Glu Glu Tyr Ala Glu Glu 165 170 175
- Phe Arg Thr Tyr Leu Glu Gly Glu Cys Leu Glu Leu Leu Arg Arg Tyr 180 185 190
- Leu Glu Asn Gly Lys Glu Thr Leu Gln Arg Ala Asp Pro Pro Lys Ala 195 200 205
- His Val Ala His His Pro Ile Ser Asp His Glu Ala Thr Leu Arg Cys 210 220
- Trp Ala Leu Gly Phe Tyr Pro Ala Glu Ile Thr Leu Thr Trp Gln Arg 225 230 235 240
- Asp Gly Glu Glu Gln Thr Gln Asp Thr Glu Leu Val Glu Thr Arg Pro \$250\$
- Ala Gly Asp Gly Thr Phe Gln Lys Trp Ala Ala Val Val Pro Ser \$260\$
- Gly Glu Glu Gln Arg Tyr Thr Cys His Val Gln His Glu Gly Leu Pro 275 280 285
- Gln Pro Leu Ile Leu Arg Trp Glu Gln Ser Pro Gln Pro Thr Ile Pro 290 300
- Ile Val Gly Ile Val Ala Gly Leu Val Val Leu Gly Ala Val Val Thr 305 \$310\$ \$315 \$320
- Gly Ala Val Val Ala Ala Val Met Trp Arg Lys Lys Ser Ser Asp Arg 325 330 336
- Asn Arg Gly Ser Tyr Ser Gln Ala Ala Val Thr Asp Ser Ala Gln Gly 340 345 350

Ser Gly Val Ser Leu Thr Ala Asn Lys Val

360

<210> 2510 <211> 604

<212> PRT

<213> Homo sapiens

355

<400> 2510

Met Leu Ala Arg Ala Leu Leu Leu Cys Ala Val Leu Ala Leu Ser His 5

Thr Ala Asn Pro Cys Cys Ser His Pro Cys Gln Asn Arg Gly Val Cys

Met Ser Val Gly Phe Asp Gln Tyr Lys Cys Asp Cys Thr Arg Thr Gly 40

Phe Tyr Gly Glu Asn Cys Ser Thr Pro Glu Phe Leu Thr Arg Ile Lys 55

Leu Phe Leu Lys Pro Thr Pro Asn Thr Val His Tyr Ile Leu Thr His

Phe Lys Gly Phe Trp Asn Val Val Asn Asn Ile Pro Phe Leu Arg Asn 85

Ala Ile Met Ser Tvr Val Leu Thr Ser Arg Ser His Leu Ile Asp Ser 100 105 110

Pro Pro Thr Tyr Asn Ala Asp Tyr Gly Tyr Lys Ser Trp Glu Ala Phe 115 120

Ser Asn Leu Ser Tyr Tyr Thr Arg Ala Leu Pro Pro Val Pro Asp Asp 135 140

Cys Pro Thr Pro Leu Gly Val Lys Gly Lys Lys Gln Leu Pro Asp Ser 145 150 155

Asn Glu Ile Val Glu Lys Leu Leu Leu Arg Arg Lys Phe Ile Pro Asp 165 170 175

Pro Gln Gly Ser Asn Met Met Phe Ala Phe Phe Ala Gln His Phe Thr 180 185

His Gln Phe Phe Lys Thr Asp His Lys Arg Gly Pro Ala Phe Thr Asn 195 200 205

S2003/012946

|            | wo         | 2004/        | 04234      | 6           |             |            |            |            |            |              |            |            |            |            | PCT/US       |
|------------|------------|--------------|------------|-------------|-------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|--------------|
| G1         | у Le<br>21 | u G]         | y Hi       | s Gl        | y Va        | l As<br>21 | p Le       | u As       | n Hi       | s Il         | e Ty:      | r Gly      | / Gl       | u Th       | r Leu        |
| A1<br>22   | a Ar<br>5  | g Gl         | n Ar       | g Ly        | s Le:<br>23 | u Ar       | g Lei      | u Ph       | e Ly:      | s Ası<br>23! | o Gly      | / Lys      | Me         | t Ly:      | 5 Tyr<br>240 |
| G1:        | n Il       | e Il         | e As       | p G1:<br>24 | y Gla<br>5  | ı Mei      | туз        | Pro        | 250        | o Thi        | val        | . Lys      | Ası        | 255        | Gln          |
| Ala        | a Gl       | u Me         | t I1<br>26 | е Ту:<br>0  | r Pro       | Pro        | Glr        | va]<br>265 | Pro        | Glu          | His        | Leu        | Arg<br>270 | j Phe      | : Ala        |
| Va]        | l Gl       | y G1:<br>27: | n Gl       | u Val       | l Phe       | : Gly      | Leu<br>280 | Val        | Pro        | Gly          | Leu        | Met<br>285 | Met        | туг        | Ala          |
| Thr        | 290        | e Trj        | ) Le       | ı Arg       | g Glu       | His<br>295 | Asn        | Arg        | Val        | Сув          | Asp<br>300 | Val        | Leu        | Lys        | Gln          |
| Glu<br>305 | His        | Pro          | Glu        | Trp         | Gly<br>310  | Asp        | Glu        | Gln        | Leu        | Phe<br>315   | Gln        | Thr        | Ser        | Arg        | Leu<br>320   |
| Ile        | Leu        | ı Ile        | e Gly      | Glu<br>325  | Thr         | Ile        | Lys        | Ile        | Val<br>330 | Ile          | Glu        | Asp        | Tyr        | Val<br>335 | Gln          |
| His        | Leu        | Ser          | Gly<br>340 | Tyr         | His         | Phe        | Lys        | Leu<br>345 | Lys        | Phe          | Asp        | Pro        | Glu<br>350 | Leu        | Leu          |
| Phe        | Asn        | Lys<br>355   | Gln        | Phe         | Gln         | Tyr        | Gln<br>360 | Asn        | Arg        | Ile          | Ala        | Ala<br>365 | Glu        | Phe        | Asn          |
| Thr        | Leu<br>370 | Tyr          | His        | Trp         | His         | Pro<br>375 | Leu        | Leu        | Pro        | Asp          | Thr<br>380 | Phe        | Gln        | Ile        | His          |
| Asp<br>385 | Gln        | Lys          | Tyr        | Asn         | Tyr<br>390  | Gln        | Gln        | Phe        | Ile        | Tyr<br>395   | Asn        | Asn        | Ser        |            | Leu<br>400   |
| Leu        | Glu        | His          | Gly        | Ile<br>405  | Thr         | Gln        | Phe        | Val        | Glu<br>410 | Ser          | Phe '      | Thr :      |            | Gln<br>415 | Ile          |

Ala Gly Arg Val Ala Gly Gly Arg Asn Val Pro Pro Ala Val Gln Lys

Val Ser Gln Ala Ser Ile Asp Gln Ser Arg Gln Met Lys Tyr Gln Ser

Phe Asn Glu Tyr Arg Lys Arg Phe Met Leu Lys Pro Tyr Glu Ser Phe 450 455 460 Glu Glu Leu Thr Gly Glu Lys Glu Met Ser Ala Glu Leu Glu Ala Leu 465 470 475 Tyr Gly Asp Ile Asp Ala Val Glu Leu Tyr Pro Ala Leu Leu Val Glu 485 490 Lys Pro Arg Pro Asp Ala Ile Phe Gly Glu Thr Met Val Glu Val Gly Ala Pro Phe Ser Leu Lys Gly Leu Met Gly Asn Val Ile Cys Ser Pro Ala Tyr Trp Lys Pro Ser Thr Phe Gly Gly Glu Val Gly Phe Gln Ile 530 535 540 Ile Asn Thr Ala Ser Ile Gln Ser Leu Ile Cys Asn Asn Val Lys Gly 545 550 555 Cys Pro Phe Thr Ser Phe Ser Val Pro Asp Pro Glu Leu Ile Lys Thr 565 570 575 Val Thr Ile Asn Ala Ser Ser Ser Arg Ser Gly Leu Asp Asp Ile Asn 580 585 590 Pro Thr Val Leu Leu Lys Glu Arg Ser Thr Glu Leu 595 600 <210> 2511 <211> 343 <212> PRT <213> Homo sapiens <400> 2511 Met Pro Leu Cys Ser Leu Leu Thr Cys Leu Gly Leu Asn Val Leu Phe 5 Leu Thr Leu Asn Glu Gly Ala Trp Tyr Ser Val Gly Ala Leu Met Ile Ser Val Pro Ala Leu Leu Gly Tyr Leu Gln Glu Val Cys Arg Ala Arg 40

Leu Pro Asp Ser Glu Leu Met Arg Arg Lys Tyr His Ser Val Arg Gln 50 60

Glu Asp Leu Gln Arg Val Arg Leu Ser Arg Pro Glu Ala Val Ala Glu Val Lys Ser Phe Leu Ile Gln Leu Glu Ala Phe Leu Ser Arg Leu Cys Cys Thr Cys Glu Ala Ala Tyr Arg Val Leu His Trp Glu Asn Pro Val Val Ser Ser Gln Phe Tyr Gly Ala Leu Leu Gly Thr Val Cys Met Leu Tyr Leu Leu Pro Leu Cys Trp Val Leu Thr Leu Leu Asn Ser Thr Leu Phe Leu Gly Asn Val Glu Phe Phe Arg Val Val Ser Glu Tyr Arg Ala Ser Leu Gln Gln Arg Met Asn Pro Lys Gln Glu Glu His Ala Phe Glu Ser Pro Pro Pro Pro Asp Val Gly Gly Lys Asp Gly Leu Met Asp Ser Thr Pro Ala Leu Thr Pro Thr Glu Asp Leu Thr Pro Gly Ser Val Glu Glu Ala Glu Glu Ala Glu Pro Asp Glu Glu Phe Lys Asp Ala Ile Glu Glu Thr His Leu Val Val Leu Glu Asp Asp Glu Gly Ala Pro Cys Pro Ala Glu Asp Glu Leu Ala Leu Gln Asp Asn Gly Phe Leu Ser Lys Asn Glu Val Leu Arg Ser Lys Val Ser Arg Leu Thr Glu Arg Leu Arg Lys Arg Tyr Pro Thr Asn Asn Phe Gly Asn Cys Thr Gly Cys Ser Ala Thr Phe Ser Val Leu Lys Lys Arg Arg Ser Cys Ser Asn Cys Gly Asn Ser 

Phe Cys Ser Arg Cys Cys Ser Phe Lys Val Pro Lys Ser Ser Met Gly 305 310 315 320

Ala Thr Ala Pro Glu Ala Gln Arg Glu Thr Val Phe Val Cys Ala Ser \$325\$

Cys Asn Gln Thr Leu Ser Lys 340

<210> 2512 <211> 789

<212> PRT <213> Homo sapiens

<400> 2512

Met Lys Met Asp Met Glu Asp Ala Asp Met Thr Leu Trp Thr Glu Ala 1 5 10 15

Glu Phe Glu Glu Lys Cys Thr Tyr Ile Val Asn Asp His Pro Trp Asp

Ser Gly Ala Asp Gly Gly Thr Ser Val Gln Ala Glu Ala Ser Leu Pro 35 40 45

Arg Asn Leu Leu Phe Lys Tyr Ala Thr Asn Ser Glu Glu Val Ile Gly 50 55 60

Val Met Ser Lys Glu Tyr Ile Pro Lys Gly Thr Arg Phe Gly Pro Leu 65 70 75 80

Ile Gly Glu Ile Tyr Thr Asn Asp Thr Val Pro Lys Asn Ala Asn Arg 85 90 95

Lys Tyr Phe Trp Arg Ile Tyr Ser Arg Gly Glu Leu His His Phe Ile 100 105 110

Asp Gly Phe Asn Glu Glu Lys Ser Asn Trp Met Arg Tyr Val Asn Pro 115 120 125

Ala His Ser Pro Arg Glu Gln Asn Leu Ala Ala Cys Gln Asn Gly Met 130 135 140

Asn Ile Tyr Phe Tyr Thr Ile Lys Pro Ile Pro Ala Asn Gln Glu Leu 145 150 155 160

Leu Val Trp Tyr Cys Arg Asp Phe Ala Glu Arg Leu His Tyr Pro Tyr

Pro Gly Glu Leu Thr Met Met Asn Leu Thr Gln Thr Gln Ser Ser Leu 

Lys Gln Pro Ser Thr Glu Lys Asn Glu Leu Cys Pro Lys Asn Val Pro 

Lys Arg Glu Tyr Ser Val Lys Glu Ile Leu Lys Leu Asp Ser Asn Pro 

Ser Lys Gly Lys Asp Leu Tyr Arg Ser Asn Ile Ser Pro Leu Thr Ser 

Glu Lys Asp Leu Asp Asp Phe Arg Arg Gly Ser Pro Glu Met Pro 

Phe Tyr Pro Arg Val Val Tyr Pro Ile Arg Ala Pro Leu Pro Glu Asp 

Phe Leu Lys Ala Ser Leu Ala Tyr Gly Ile Glu Arg Pro Thr Tyr Ile 

Thr Arg Ser Pro Ile Pro Ser Ser Thr Thr Pro Ser Pro Ser Ala Arg 

Ser Ser Pro Asp Gln Ser Leu Lys Ser Ser Ser Pro His Ser Ser Pro 

Gly Asn Thr Val Ser Pro Val Gly Pro Gly Ser Gln Glu His Arg Asp 

Ser Tyr Ala Tyr Leu Asn Ala Ser Tyr Gly Thr Glu Gly Leu Gly Ser 

Tyr Pro Gly Tyr Ala Pro Leu Pro His Leu Pro Pro Ala Phe Ile Pro 

Ser Tyr Asn Ala His Tyr Pro Lys Phe Leu Leu Pro Pro Tyr Gly Met 

Asn Cys Asn Gly Leu Ser Ala Val Ser Ser Met Asn Gly Ile Asn Asn 

Phe Gly Leu Phe Pro Arg Leu Cys Pro Val Tyr Ser Asn Leu Leu Gly 

Gly Gly Ser Leu Pro His Pro Met Leu Asn Pro Thr Ser Leu Pro Ser Ser Leu Pro Ser Asp Gly Ala Arg Arg Leu Leu Gln Pro Glu His Pro Arg Glu Val Leu Val Pro Ala Pro His Ser Ala Phe Ser Phe Thr Gly Ala Ala Ala Ser Met Lys Asp Lys Ala Cys Ser Pro Thr Ser Gly Ser Pro Thr Ala Gly Thr Ala Ala Thr Ala Glu His Val Val Gln Pro Lys Ala Thr Ser Ala Ala Met Ala Ala Pro Ser Ser Asp Glu Ala Met Asn Leu Ile Lys Asn Lys Arg Asn Met Thr Gly Tyr Lys Thr Leu Pro Tyr Pro Leu Lys Lys Gln Asn Gly Lys Ile Lys Tyr Glu Cys Asn Val Cys Ala Lys Thr Phe Gly Gln Leu Ser Asn Leu Lys Val His Leu Arg Val His Ser Gly Glu Arg Pro Phe Lys Cys Gln Thr Cys Asn Lys Gly Phe Thr Gln Leu Ala His Leu Gln Lys His Tyr Leu Val His Thr Gly Glu Lys Pro His Glu Cys Gln Val Cys His Lys Arg Phe Ser Ser Thr Ser Asn Leu Lys Thr His Leu Arg Leu His Ser Gly Glu Lys Pro Tyr Gln Cys Lys Val Cys Pro Ala Lys Phe Thr Gln Phe Val His Leu Lys Leu 

His Lys Arg Leu His Thr Arg Glu Arg Pro His Lys Cys Ser Gln Cys 645 650 655

His Lys Asn Tyr Ile His Leu Cys Ser Leu Lys Val His Leu Lys Gly
660 665 670

Asn Cys Ala Ala Ala Pro Ala Pro Gly Leu Pro Leu Glu Asp Leu Thr 675 680 680 685

Arg Ile Asn Glu Glu Ile Glu Lys Phe Asp Ile Ser Asp Asn Ala Asp 690 695 700

Arg Leu Glu Asp Val Glu Asp Asp Ile Ser Val Ile Ser Val Val Glu 705 710 720

Lys Glu Ile Leu Ala Val Val Arg Lys Glu Lys Glu Glu Thr Gly Leu 725 730 735

Lys Val Ser Leu Gln Arg Asn Met Gly Asn Gly Leu Leu Ser Ser Gly 740  $\phantom{0000}745$   $\phantom{0000}745$ 

Cys Ser Leu Tyr Glu Ser Ser Asp Leu Pro Leu Met Lys Leu Pro Pro 755  $\phantom{\bigg|}760\phantom{\bigg|}765\phantom{\bigg|}$ 

Ser Asn Pro Leu Pro Leu Val Pro Val Lys Val Lys Gln Glu Thr Val 770 780

Glu Pro Met Asp Pro 785

<210> 2513

<211> 381 <212> PRT

<213> Homo sapiens

<400> 2513

Met Pro Phe Ser Asn Ser His Asn Ala Leu Lys Leu Arg Phe Pro Ala 1 5 10 15

Glu Asp Glu Phe Pro Asp Leu Ser Ala His Asn Asn His Met Ala Lys 20 25 30

Val Leu Thr Pro Glu Leu Tyr Ala Glu Leu Arg Ala Lys Ser Thr Pro 35 40 45

Ser Gly Phe Thr Leu Asp Asp Val Ile Gln Thr Gly Val Asp Asn Pro 50 60

Gly His Pro Tyr Ile Met Thr Val Gly Cys Val Ala Gly Asp Glu Glu

65 70 75 80

Ser Tyr Glu Val Phe Lys Asp Leu Phe Asp Pro Ile Ile Glu Asp Arg 85 90 90 95

His Gly Gly Tyr Lys Pro Ser Asp Glu His Lys Thr Asp Leu Asn Pro 100 105 110

Asp Asn Leu Gln Gly Gly Asp Asp Leu Asp Pro Asn Tyr Val Leu Ser \$115\$ \$120\$ \$125\$

His Cys Ser Arg Gly Glu Arg Arg Ala Ile Glu Lys Leu Ala Val Glu 145 150 155 160

Ala Leu Ser Ser Leu Asp Gly Asp Leu Ala Gly Arg Tyr Tyr Ala Leu 165 170 175

Lys Ser Met Thr Glu Ala Glu Gln Gln Gln Leu Ile Asp Asp His Phe 180 185 190

Leu Phe Asp Lys Pro Val Ser Pro Leu Leu Leu Ala Ser Gly Met Ala 195 200 205

Arg Asp Trp Pro Asp Ala Arg Gly Ile Trp His Asn Asp Asn Lys Thr 210 215 220

Phe Leu Val Trp Val Asn Glu Glu Asp His Leu Arg Val Ile Ser Met 225 230 235 240

Gln Lys Gly Gly Asn Met Lys Glu Val Phe Thr Arg Phe Cys Thr Gly 245 250 255

Leu Thr Gln Ile Glu Thr Leu Phe Lys Ser Lys Asp Tyr Glu Phe Met 260 265 270

Trp Asn Pro His Leu Gly Tyr Ile Leu Thr Cys Pro Ser Asn Leu Gly 275 280 285

Thr Gly Leu Arg Ala Gly Val His Ile Lys Leu Pro Asn Leu Gly Lys 290 295 300

His Glu Lys Phe Ser Glu Val Leu Lys Arg Leu Arg Leu Gln Lys Arg 305 310 315 320

Gly Thr Gly Gly Val Asp Thr Ala Ala Val Gly Gly Val Phe Asp Val 325 \$335\$

Ser Asn Ala Asp Arg Leu Gly Phe Ser Glu Val Glu Leu Val Gln Met 340 345 350

Val Val Asp Gly Val Lys Leu Leu Ile Glu Met Glu Gln Arg Leu Glu 355 360 365

Gln Gly Gln Ala Ile Asp Asp Leu Met Pro Ala Gln Lys 370 375 380

<210> 2514

<211> 541 <212> PRT

<213> Homo sapiens

<400> 2514

Met Thr Thr Pro Ala Gly Ser Gly Ser Gly Phe Gly Ser Val Ser Trp  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Asp Pro Asp Ser Gln Ala Asp Thr Val His Ser Asn Pro Glu Leu Asp 35  $\phantom{\bigg|}40\phantom{\bigg|}40\phantom{\bigg|}45\phantom{\bigg|}$ 

Val Leu Leu Leu Gly Ser Val Asp Gly Arg His Leu Leu Arg Thr Leu 50 55 60

Ser Arg Ala Lys Phe Trp Pro Arg Arg Arg Phe Asn Phe Phe Val Leu 65 70 75

Glu Asn Asn Leu Glu Ala Val Ala Arg His Met Leu Ile Phe Ser Leu 85 90 95

Ala Leu Glu Glu Pro Glu Lys Met Gly Leu Gln Glu Arg Ser Glu Thr 100 105 110

Phe Leu Glu Val Trp Gly Asn Ala Leu Leu Arg Pro Pro Val Ala Ala 115 120 125

Phe Val Arg Ala Gln Ala Asp Leu Leu Ala His Leu Val Pro Glu Pro 130 135 140

Asp Arg Leu Glu Glu Gln Leu Pro Trp Leu Ser Leu Arg Ala Leu Lys 145 \$150\$

- Phe Arg Glu Arg Asp Ala Leu Glu Ala Val Phe Arg Phe Trp Ala Gly
  165 170 175
- Gly Glu Lys Gly Pro Gln Ala Phe Pro Met Ser Arg Leu Trp Asp Ser 180 185 190
- Arg Leu Arg His Tyr Leu Gly Ser Arg Tyr Asp Ala Arg Arg Gly Val
- Ser Asp Trp Asp Leu Arg Met Lys Leu His Asp Arg Gly Ala Gln Val 210 215 220
- Ile His Pro Gln Glu Phe Arg Arg Trp Arg Asp Thr Gly Val Ala Phe 225 230 235 240
- Ser Gly Arg Leu Leu Ser Tyr Arg Gly Glu Arg Val Ala Ala Arg Gly 260 265 270
- Tyr Trp Gly Asp Ile Ala Thr Gly Pro Phe Val Ala Phe Gly Ile Glu 275 280 285
- Ala Asp Asp Glu Ser Leu Leu Arg Thr Ser Asn Gly Gln Pro Val Lys 290 295 300
- Thr Ala Gly Glu Ile Thr Gln His Asn Val Thr Glu Leu Leu Arg Asp 305 310 315 320
- Val Ala Ala Trp Gly Arg Ala Arg Ala Thr Gly Gly Asp Leu Glu Glu 325 330 335
- Gln Gln His Ala Glu Gly Ser Pro Glu Pro Gly Thr Pro Ala Ala Pro 340 \$340\$
- Thr Pro Glu Ser Phe Thr Val His Phe Leu Pro Leu Asn Ser Ala Gln 355 360 365
- Thr Leu His His Lys Ser Cys Tyr Asn Gly Arg Phe Gln Leu Leu Tyr 370 375 380
- Val Ala Cys Gly Met Val His Leu Leu Ile Pro Glu Leu Gly Ala Cys

385 390 395 400

Val Ala Pro Gly Gly Asn Leu Ile Val Glu Leu Ala Arg Tyr Leu Val 405 410 415

Asp Val Arg Gln Glu Gln Leu Gln Gly Phe Asn Thr Arg Val Arg Glu 420 425 430

Leu Ala Gl<br/>n Ala Ala Gly Phe Ala Pro Gl<br/>n Thr Gly Ala Arg Pro Ser 435  $\phantom{\bigg|}440\phantom{\bigg|}$  445

Glu Thr Phe Ala Arg Phe Cys Lys Ser Gln Glu Ser Ala Leu Gly Asn 450  $\,$  455  $\,$  460

Thr Val Pro Ala Val Glu Pro Gly Thr Pro Pro Leu Asp Ile Leu Ala 465 470 475 480

Gln Pro Leu Glu Ala Ser Asn Pro Ala Leu Glu Gly Leu Thr Gln Pro
485 490 495

Leu Gln Gly Gly Thr Pro His Cys Glu Pro Cys Gln Leu Pro Ser Glu
500 505 510

Ser Pro Gly Ser Leu Ser Glu Val Leu Ala Gln Pro Gln Gly Ala Leu 515 520 525

Ala Pro Pro Asn Cys Glu Ser Asp Ser Lys Thr Gly Val 530 535 540

<210> 2515

<211> 288 <212> PRT

<213> Homo sapiens

<400> 2515

Met Ser Asp Ile Glu Glu Val Val Glu Glu Glu Glu Glu Glu Glu Glu Il 5 10 15

Glu Glu Ala Ala Val Glu Glu Glu Glu Glu Ala Ala Glu Glu Asp Ala 20 25 30

Glu Ala Glu Ala Glu Thr Glu Glu Thr Arg Ala Glu Glu Asp Glu Glu 35  $\phantom{\bigg|}40\phantom{\bigg|}45\phantom{\bigg|}$ 

Glu Glu Glu Ala Lys Glu Ala Glu Asp Gly Pro Met Glu Glu Ser Lys 50  $\,$  55  $\,$  60

Pro Lys Pro Arg Ser Phe Met Pro Asn Leu Val Pro Pro Lys Ile Pro Asp Gly Glu Arg Val Asp Phe Asp Asp Ile His Arg Lys Arg Met Glu Lys Asp Leu Asn Glu Leu Gln Ala Leu Ile Glu Ala His Phe Glu Asn Arg Lys Lys Glu Glu Glu Leu Val Ser Leu Lys Asp Arg Ile Glu Arg Arg Arg Ala Glu Arg Ala Glu Gln Gln Arg Ile Arg Asn Glu Arg Glu Lys Glu Arg Gln Asn Arg Leu Ala Glu Glu Arg Ala Arg Arg Glu Glu Glu Glu Asn Arg Arg Lys Ala Glu Asp Glu Ala Arg Lys Lys Ala Leu Ser Asn Met Met His Phe Gly Gly Tyr Ile Gln Lys Gln Ala Gln Thr Glu Arg Lys Ser Gly Lys Arg Gln Thr Glu Arg Glu Lys Lys Lys Lys Ile Leu Ala Glu Arg Arg Lys Val Leu Ala Ile Asp His Leu Asn Glu Asp Gln Leu Arg Glu Lys Ala Lys Glu Leu Trp Gln Ser Ile Tyr Asn Leu Glu Ala Glu Lys Phe Asp Leu Gln Glu Lys Phe Lys Gln Gln Lys Tyr Glu Ile Asn Val Leu Arg Asn Arg Ile Asn Asp Asn Gln Lys Val Ser Lys Thr Arg Gly Lys Ala Lys Val Thr Gly Arg Trp Lys

<210> 2516

<211> 154

<212> PRT

<213> Homo sapiens

<400> 2516

Met Gly Leu Ser Asp Gly Glu Trp Gln Leu Val Leu Asn Val Trp Gly
1 5 10 15

Lys Val Glu Ala Asp Ile Pro Gly His Gly Gln Glu Val Leu Ile Arg  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Leu Phe Lys Gly His Pro Glu Thr Leu Glu Lys Phe Asp Lys Phe Lys 35 40 45

His Leu Lys Ser Glu Asp Glu Met Lys Ala Ser Glu Asp Leu Lys Lys 50 60

His Gly Ala Thr Val Leu Thr Ala Leu Gly Gly Ile Leu Lys Lys Lys 65 70 70 75 80

Gly His His Glu Ala Glu Ile Lys Pro Leu Ala Gln Ser His Ala Thr \$85\$ 90 95

Lys His Lys Ile Pro Val Lys Tyr Leu Glu Phe Ile Ser Glu Cys Ile 100 105 110

Ile Gln Val Leu Gln Ser Lys His Pro Gly Asp Phe Gly Ala Asp Ala 115 120 125

Gln Gly Ala Met Asn Lys Ala Leu Glu Leu Phe Arg Lys Asp Met Ala 130  $$135\$ 

Ser Asn Tyr Lys Glu Leu Gly Phe Gln Gly

<210> 2517

<211> 501 <212> PRT

<213> Homo sapiens

<400> 2517

Met Val Arg Lys Pro Val Val Ser Thr Ile Ser Lys Gly Gly Tyr Leu 1 5 10 15

Gln Gly Asn Val Asn Gly Arg Leu Pro Ser Leu Gly Asn Lys Glu Pro 20 25 30

Pro Gly Glu Lys Val Gln Leu Lys Arg Lys Val Thr Leu Leu Arg 35 40 45

Gly Val Ser Ile Ile Ile Gly Thr Ile Ile Gly Ala Gly Ile Phe Ile 50  $$\rm 55$   $\rm 60$ 

Ser Pro Lys Gly Val Leu Gln Asn Thr Gly Ser Val Gly Met Ser Leu 65 75 75 80

Thr Ile Trp Thr Val Cys Gly Val Leu Ser Leu Phe Gly Ala Leu Ser 85 90 95

Tyr Ala Glu Leu Gly Thr Thr Ile Lys Lys Ser Gly Gly His Tyr Thr  $100 \\ 105 \\ 110$ 

Tyr Ile Leu Glu Val Phe Gly Pro Leu Pro Ala Phe Val Arg Val Trp 115 120 125

Val Glu Leu Leu Ile Ile Arg Pro Ala Ala Thr Ala Val Ile Ser Leu 130 140

Ala Phe Gly Arg Tyr Ile Leu Glu Pro Phe Phe Ile Gln Cys Glu Ile 145 150 150 160

Pro Glu Leu Ala Ile Lys Leu Ile Thr Ala Val Gly Ile Thr Val Val 165 \$170\$ 175

Met Val Leu Asn Ser Met Ser Val Ser Trp Ser Ala Arg Ile Gln Ile 180 180 190

Phe Leu Thr Phe Cys Lys Leu Thr Ala Ile Leu Ile Ile Ile Val Pro 195 200 205

Gly Val Met Gln Leu Ile Lys Gly Gln Thr Gln Asn Phe Lys Asp Ala 210 220

Phe Ser Gly Arg Asp Ser Ser Ile Thr Arg Leu Pro Leu Ala Phe Tyr 225 230 240

Tyr Gly Met Tyr Ala Tyr Ala Gly Trp Phe Tyr Leu Asn Phe Val Thr 245 250 25

Glu Glu Val Glu Asn Pro Glu Lys Thr Ile Pro Leu Ala Ile Cys Ile 260 265 270

Ser Met Ala Ile Val Thr Ile Gly Tyr Val Leu Thr Asn Val Ala Tyr 275 280 285

Phe Thr Thr Ile Asn Ala Glu Glu Leu Leu Leu Ser Asn Ala Val Ala 290 295 300

- Val Thr Phe Ser Glu Arg Leu Leu Gly Asn Phe Ser Leu Ala Val Pro 305 310 315 320
- Ile Phe Val Ala Leu Ser Cys Phe Gly Ser Met Asn Gly Gly Val Phe 325 330 335
- Ala Val Ser Arg Leu Phe Tyr Val Ala Ser Arg Glu Gly His Leu Pro  $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$
- Glu Ile Leu Ser Met Ile His Val Arg Lys His Thr Pro Leu Pro Ala 355 360 365
- Val Ile Val Leu His Pro Leu Thr Met Ile Met Leu Phe Ser Gly Asp 370 375 380
- Leu Asp Ser Leu Leu Asn Phe Leu Ser Phe Ala Arg Trp Leu Phe Ile 385 \$390\$
- Gly Leu Ala Val Ala Gly Leu Ile Tyr Leu Arg Tyr Lys Cys Pro Asp 405 410 415
- Met His Arg Pro Phe Lys Val Pro Leu Phe Ile Pro Ala Leu Phe Ser 420 425 430
- Phe Thr Cys Leu Phe Met Val Ala Leu Ser Leu Tyr Ser Asp Pro Phe 435 445
- Ser Thr Gly Ile Gly Phe Val Ile Thr Leu Thr Gly Val Pro Ala Tyr 450 455 460
- Tyr Leu Phe Ile Ile Trp Asp Lys Lys Pro Arg Trp Phe Arg Ile Met 465 \$470\$
- Ser Glu Lys Ile Thr Arg Thr Leu Gln Ile Ile Leu Glu Val Val Pro
  485 490 490
- Glu Glu Asp Lys Leu 500
- <210> 2518
- <211> 277 <212> PRT
- <213> Homo sapiens

<400> 2518

Met Val Arg Leu Pro Leu Gln Cys Val Leu Trp Gly Cys Leu Leu Thr 1  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Ala Val His Pro Glu Pro Pro Thr Ala Cys Arg Glu Lys Gln Tyr Leu 20 25 30

Ile Asn Ser Gln Cys Cys Ser Leu Cys Gln Pro Gly Gln Lys Leu Val  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Ser Asp Cys Thr Glu Phe Thr Glu Thr Glu Cys Leu Pro Cys Gly Glu 50 60

Ser Glu Phe Leu Asp Thr Trp Asn Arg Glu Thr His Cys His Gln His 65 70 75 80

Lys Tyr Cys Asp Pro Asn Leu Gly Leu Arg Val Gln Gln Lys Gly Thr 85 90 95

Ser Glu Thr Asp Thr Ile Cys Thr Cys Glu Glu Gly Trp His Cys Thr  $100 \\ 105 \\ 110$ 

Ser Glu Ala Cys Glu Ser Cys Val Leu His Arg Ser Cys Ser Pro Gly 115 120 125

Phe Gly Val Lys Gln Ile Ala Thr Gly Val Ser Asp Thr Ile Cys Glu 130 135 140

Pro Cys Pro Val Gly Phe Phe Ser Asn Val Ser Ser Ala Phe Glu Lys 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Cys His Pro Trp Thr Ser Cys Glu Thr Lys Asp Leu Val Val Gln Gln 175

Ala Gly Thr Asn Lys Thr Asp Val Val Cys Gly Pro Gln Asp Arg Leu 180 185 190

Arg Ala Leu Val Val Ile Pro Ile Ile Phe Gly Ile Leu Phe Ala Ile 195 200 205

Leu Val Leu Val Phe Ile Lys Lys Val Ala Lys Lys Pro Thr Asn 210 215 220

Lys Ala Pro His Pro Lys Gln Glu Pro Gln Glu Ile Asn Phe Pro Asp 225 230 235 240

878

Asp Leu Pro Gly Ser Asn Thr Ala Ala Pro Val Gln Glu Thr Leu His 245 250 255

Gly Cys Gln Pro Val Thr Gln Glu Asp Gly Lys Glu Ser Arg Ile Ser 260 265 270

Val Gln Glu Arg Gln 275

<210> 2519

<211> 260 <212> PRT

<213> Homo sapiens

<400> 2519

Met Ala Arg Pro His Pro Trp Trp Leu Cys Val Leu Gly Thr Leu Val

Gly Leu Ser Ala Thr Pro Ala Pro Lys Ser Cys Pro Glu Arg His Tyr

Trp Ala Gln Gly Lys Leu Cys Cys Gln Met Cys Glu Pro Gly Thr Phe  $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$ 

Cys Ile Pro Gly Val Ser Phe Ser Pro Asp His His Thr Arg Pro His 65 70 75 80

Cys Glu Ser Cys Arg His Cys Asn Ser Gly Leu Leu Val Arg Asn Cys \$85\$ 90 95

Thr Ile Thr Ala Asn Ala Glu Cys Ala Cys Arg Asn Gly Trp Gln Cys 100 105 110

Arg Asp Lys Glu Cys Thr Glu Cys Asp Pro Leu Pro Asn Pro Ser Leu 115 120 125

Thr Ala Arg Ser Ser Gln Ala Leu Ser Pro His Pro Gln Pro Thr His 130 135 140

Leu Pro Tyr Val Ser Glu Met Leu Glu Ala Arg Thr Ala Gly His Met 145 150 155 160

Gln Thr Leu Ala Asp Phe Arg Gln Leu Pro Ala Arg Thr Leu Ser Thr

165

5 170 175

His Trp Pro Pro Gln Arg Ser Leu Cys Ser Ser Asp Phe Ile Arg Ile
180 185 190

Leu Val Ile Phe Ser Gly Met Phe Leu Val Phe Thr Leu Ala Gly Ala 195 200 205

Leu Phe Leu His Gln Arg Arg Lys Tyr Arg Ser Asn Lys Gly Glu Ser 210 \$215\$

Pro Val Glu Pro Ala Glu Pro Cys Arg Tyr Ser Cys Pro Arg Glu Glu 225 230 235 240

Glu Gly Ser Thr Ile Pro Ile Gln Glu Asp Tyr Arg Lys Pro Glu Pro 245 250 255

Ala Cys Ser Pro 260

<210> 2520

<211> 329 <212> PRT

<213> Homo sapiens

<400> 2520

Met Asp Pro Gln Cys Thr Met Gly Leu Ser Asn Ile Leu Phe Val Met 1 5 10 15

Ala Phe Leu Leu Ser Gly Ala Ala Pro Leu Lys Ile Gln Ala Tyr Phe \$20\$

As Glu Thr Ala Asp Leu Pro Cys Gln Phe Ala Asn Ser Gln Asn Gln  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Ser Leu Ser Glu Leu Val Val Phe Trp Gln Asp Gln Glu Asn Leu Val 50 60

Leu Asn Glu Val Tyr Leu Gly Lys Glu Lys Phe Asp Ser Val His Ser 65 70 75 80

Lys Tyr Met Gly Arg Thr Ser Phe Asp Ser Asp Ser Trp Thr Leu Arg 85  $\phantom{\bigg|}90\phantom{\bigg|}95\phantom{\bigg|}$ 

Leu His Asn Leu Gln Ile Lys Asp Lys Gly Leu Tyr Gln Cys Ile Ile 100 105 110

His His Lys Lys Pro Thr Gly Met Ile Arg Ile His Gln Met Asn Ser Glu Leu Ser Val Leu Ala Asn Phe Ser Gln Pro Glu Ile Val Pro Ile Ser Asn Ile Thr Glu Asn Val Tyr Ile Asn Leu Thr Cys Ser Ser Ile His Gly Tyr Pro Glu Pro Lys Lys Met Ser Val Leu Leu Arg Thr Lys Asn Ser Thr Ile Glu Tyr Asp Gly Ile Met Gln Lys Ser Gln Asp Asn Val Thr Glu Leu Tyr Asp Val Ser Ile Ser Leu Ser Val Ser Phe Pro Asp Val Thr Ser Asn Met Thr Ile Phe Cys Ile Leu Glu Thr Asp Lys Thr Arg Leu Leu Ser Ser Pro Phe Ser Ile Glu Leu Glu Asp Pro Gln Pro Pro Pro Asp His Ile Pro Trp Ile Thr Ala Val Leu Pro Thr Val Ile Ile Cys Val Met Val Phe Cys Leu Ile Leu Trp Lys Trp Lys Lys 

Lys Lys Arg Pro Arg Asn Ser Tyr Lys Cys Gly Thr Asn Thr Met Glu 

Arg Glu Glu Ser Glu Gln Thr Lys Lys Arg Glu Lys Ile His Ile Pro 

Glu Arg Ser Asp Glu Ala Gln Arg Val Phe Lys Ser Ser Lys Thr Ser 

Ser Cys Asp Lys Ser Asp Thr Cys Phe 

<210> 2521

<211> 132

<212> PRT

<213> Homo sapiens

<400> 2521

Met Glu Phe Asp Leu Asn Gly Asn Gly Asp Ile Gly Glu Lys Arg Val  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Ile Cys Gly Gly Arg Val Val Cys Arg Pro Lys Lys Thr Glu Val Ser 20 25 30

Pro Thr Cys Ser Ile Pro His Asp Leu Gly Gly Gly Pro Pro Thr Thr  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Val Gly Gly Arg Arg Met Gly Met Arg Lys Trp Glu Arg Arg Glu Arg 50 60

Val Ser Pro Pro Ser Pro His Pro His Pro Leu Pro Pro Asp Ile Met 65 70 75 80

Ser Leu Lys Arg Met Leu Glu Lys Leu Gly Val Pro Lys Thr His Leu 85 90 95

Glu Leu Lys Leu Ile Gly Glu Val Ser Ser Gly Ser Gly Glu Thr \$100\$

Phe Ser Tyr Pro Asp Phe Leu Arg Met Met Leu Gly Lys Arg Ser Ala 115 120 125

Ile Leu Lys Met

<210> 2522

<211> 491

<212> PRT

<213> Homo sapiens

<400> 2522

Met Glu Ser Ser Ala Lys Arg Lys Met Asp Pro Asp Asn Pro Asp Glu  $1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm}$ 

Gly Pro Ser Ser Lys Val Pro Arg Pro Glu Thr Pro Val Thr Lys Ala 20 25 30

Thr Thr Phe Leu Gln Thr Met Leu Arg Lys Glu Val Asn Ser Gln Leu 35 40 45

Ser Leu Gly Asp Pro Leu Phe Pro Glu Leu Ala Glu Glu Ser Leu Lys 50 55 60

Thr Phe Glu Gln Val Thr Glu Asp Cys Asn Glu Asn Pro Glu Lys Asp Val Leu Ala Glu Leu Val Lys Gln Ile Lys Val Arg Val Asp Met Val Arg His Arg Ile Lys Glu His Met Leu Lys Lys Tyr Thr Gln Thr Glu Glu Lys Phe Thr Gly Ala Phe Asn Met Met Gly Gly Cys Leu Gln Asn Ala Leu Asp Ile Leu Asp Lys Val His Glu Pro Phe Glu Glu Met Lys Cys Ile Gly Leu Thr Met Gln Ser Met Tyr Glu Asn Tyr Ile Val Pro Glu Asp Lys Arg Glu Met Trp Met Ala Cys Ile Lys Glu Leu His Asp Val Ser Lys Gly Ala Ala Asn Lys Leu Gly Gly Ala Leu Gln Ala Lys Ala Arg Ala Lys Lys Asp Glu Leu Arg Arg Lys Met Met Tyr Met Cys Tyr Arg Asn Ile Glu Phe Phe Thr Lys Asn Ser Ala Phe Pro Lys Thr Thr Asn Gly Cys Ser Gln Ala Met Ala Ala Leu Gln Asn Leu Pro Gln Cys Ser Pro Asp Glu Ile Met Ala Tyr Ala Gln Lys Ile Phe Lys Ile Leu Asp Glu Glu Arg Asp Lys Val Leu Thr His Ile Asp His Ile Phe 

Val Thr Ser Asp Ala Cys Met Met Thr Met Tyr Gly Gly Ile Ser Leu 

Met Asp Ile Leu Thr Thr Cys Val Glu Thr Met Cys Asn Glu Tyr Lys

Leu Ser Glu Phe Cys Arg Val Leu Cys Cys Tyr Val Leu Glu Glu Thr 

Ser Val Met Leu Ala Lys Arg Pro Leu Ile Thr Lys Pro Glu Val Ile 

Ser Val Met Lys Arg Arg Ile Glu Glu Ile Cys Met Lys Val Phe Ala 

Gln Tyr Ile Leu Gly Ala Asp Pro Leu Arg Val Cys Ser Pro Ser Val 

Asp Asp Leu Arg Ala Ile Ala Glu Glu Ser Asp Glu Glu Glu Ala Ile 

Val Ala Tyr Thr Leu Ala Thr Ala Gly Val Ser Ser Ser Asp Ser Leu 

Val Ser Pro Pro Glu Ser Pro Val Pro Ala Thr Ile Pro Leu Ser Ser 

Val Ile Val Ala Glu Asn Ser Asp Gln Glu Glu Ser Glu Gln Ser Asp 

Glu Glu Glu Glu Gly Ala Gln Glu Glu Arg Glu Asp Thr Val Ser 

Val Lys Ser Glu Pro Val Ser Glu Ile Glu Glu Val Ala Pro Glu Glu 

Glu Glu Asp Gly Ala Glu Glu Pro Thr Ala Ser Gly Gly Lys Ser Thr 

His Pro Met Val Thr Arg Ser Lys Ala Asp Gln 

<210> 2523

<211> 491 <212> PRT

<213> Homo sapiens

<400> 2523

Met Glu Ser Ser Ala Lys Arg Lys Met Asp Pro Asp Asn Pro Asp Glu 

Gly Pro Ser Ser Lys Val Pro Arg Pro Glu Thr Pro Val Thr Lys Ala 

Thr Thr Phe Leu Gln Thr Met Leu Arg Lys Glu Val Asn Ser Gln Leu 40 Ser Leu Gly Asp Pro Leu Phe Pro Glu Leu Ala Glu Glu Ser Leu Lys 50 60

Thr Phe Glu Gln Val Thr Glu Asp Cys Asn Glu Asn Pro Glu Lys Asp 65 70 75 80

Val Leu Ala Glu Leu Val Lys Gln Ile Lys Val Arg Val Asp Met Val 85 90 95

Arg His Arg Ile Lys Glu His Met Leu Lys Lys Tyr Thr Gln Thr Glu 100 105 110

Glu Lys Phe Thr Gly Ala Phe Asn Met Met Gly Gly Cys Leu Gln Asn 115 120 125

Ala Leu Asp Ile Leu Asp Lys Val His Glu Pro Phe Glu Glu Met Lys 130 135 140

Cys Ile Gly Leu Thr Met Gln Ser Met Tyr Glu Asn Tyr Ile Val Pro 145  $\phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}$ 

Glu Asp Lys Arg Glu Met Trp Met Ala Cys Ile Lys Glu Leu His Asp 165 170 170 175

Val Ser Lys Gly Ala Ala Asn Lys Leu Gly Gly Ala Leu Gln Ala Lys 180 185 190

Ala Arg Ala Lys Lys Asp Glu Leu Arg Arg Lys Met Met Tyr Met Cys 195 200 205

Tyr Arg Asn Ile Glu Phe Phe Thr Lys Asn Ser Ala Phe Pro Lys Thr 210 \$215\$

Thr Asn Gly Cys Ser Gln Ala Met Ala Ala Leu Gln Asn Leu Pro Gln 225 230 235 240

Cys Ser Pro Asp Glu Ile Met Ala Tyr Ala Gln Lys Ile Phe Lys Ile
245 250 255

Leu Asp Glu Glu Arg Asp Lys Val Leu Thr His Ile Asp His Ile Phe 260 265 270

Met Asp Ile Leu Thr Thr Cys Val Glu Thr Met Cys Asn Glu Tyr Lys 275 280 285

Val Thr Ser Asp Ala Cys Met Met Thr Met Tyr Gly Gly Ile Ser Leu 290 295 300

Leu Ser Glu Phe Cys Arg Val Leu Cys Cys Tyr Val Leu Glu Glu Thr 305 310 315 320

Ser Val Met Leu Ala Lys Arg Pro Leu Ile Thr Lys Pro Glu Val Ile 325 330 335

Ser Val Met Lys Arg Arg Ile Glu Glu Ile Cys Met Lys Val Phe Ala 340 345 350

Gln Tyr Ile Leu Gly Ala Asp Pro Leu Arg Val Cys Ser Pro Ser Val \$355\$

Asp Asp Leu Arg Ala Ile Ala Glu Glu Ser Asp Glu Glu Glu Ala Ile 370 \$375\$

Val Ala Tyr Thr Leu Ala Thr Ala Gly Val Ser Ser Ser Asp Ser Leu 385 390 395 400

Val Ser Pro Pro Glu Ser Pro Val Pro Ala Thr Ile Pro Leu Ser Ser 415

Val Ile Val Ala Glu Asn Ser Asp Gln Glu Glu Ser Glu Gln Ser Asp 420 425 430

Val Lys Ser Glu Pro Val Ser Glu Ile Glu Glu Val Ala Pro Glu Glu
450 455 460

Glu Glu Asp Gly Ala Glu Glu Pro Thr Ala Ser Gly Gly Lys Ser Thr 465 \$470\$

His Pro Met Val Thr Arg Ser Lys Ala Asp Gln 485 490

<210> 2524

<211> 641

<212> PRT

<213> Homo sapiens

<400> 2524

Met Ser Asp Glu Gly Pro Gly Thr Gly Pro Gly Asn Gly Leu Gly Glu 1 5 10 15

Lys Gly Asp Thr Ser Gly Pro Glu Gly Ser Gly Gly Ser Gly Pro Gln 20 25 30

Arg Arg Gly Gly Asp Asn His Gly Arg Gly Arg Gly Arg Gly Arg Gly 35 40 45

Arg Gly Gly Gly Arg Pro Gly Ala Pro Gly Gly Ser Gly Ser Gly Pro 50 60

Arg His Arg Asp Gly Val Arg Arg Pro Gln Lys Arg Pro Ser Cys Ile 65 70 75 80

Gly Cys Lys Gly Thr His Gly Gly Thr Gly Ala Gly Ala Gly Ala Gly 85 90 95

Gly Ala Gly Ala Gly Gly Ala Gly Gly Gly Ala Gly Ala Gly 100 105 110

Gly Gly Ala Gly Gly Ala Gly Gly Ala Gly Gly Ala Gly Ala Gly Gly 115 120 125

Gly Ala Gly Ala Gly Gly Gly Ala Gly Gly Ala Gly Gly Ala Gly Ala Gly Ala 130 135 140

Gly Gly Ala Gly Gly Ala Gly Gly Ala Gly Gly Gly Gly Ala Gly 175 \$170\$

Ala Gly Gly Gly Ala Gly Gly Ala Gly Ala Gly Gly Gly Ala Gly Gly 180 185 190

Ala Gly Gly Ala Gly Ala Gly Gly Ala Gly Ala Gly Ala Gly 195  $\phantom{\bigg|}200\phantom{\bigg|}$  205

Gly Ala Gly Gly Ala Gly Ala Gly Gly Ala Gly Ala Gly Gly Gly Ala` 210 215 220

Gly Gly Ala Gly Gly Ala Gly Ala Gly Gly Ala Gly Gly Ala Gly Gly Ala 225  $230 \hspace{1.5cm} 235 \hspace{1.5cm} 240$ 

|            | ""         | 2004/1          | 742540      | ,            |                   |            |              |              |              |            |              |                        |              |              | 101/0      |
|------------|------------|-----------------|-------------|--------------|-------------------|------------|--------------|--------------|--------------|------------|--------------|------------------------|--------------|--------------|------------|
| G1         | y Al       | a Gl            | y Gl        | y Ala<br>24! | a Gl <sub>l</sub> | / Al       | a Gly        | y Gl         | y Ala<br>250 | a Gl       | y Gl         | y Ala                  | a Gly        | y Ala<br>255 | a Gly      |
| G1         | y Ala      | a Gl            | y Gl;<br>26 | y Ala        | a Gly             | / Ala      | a Gly        | / Gly<br>265 | y Ala<br>5   | a Gly      | / Gly        | / Ala                  | a Gly<br>270 | / Ala        | a Gly      |
| Gly        | / Gly      | 7 Ala<br>27     | a Gly       | / Gly        | / Ala             | Gly        | / Ala<br>280 | Gly          | / Gly        | / Gly      | / Ala        | Gl <sub>y</sub><br>285 | / Gl}        | / Ala        | Gly        |
| Ala        | 290        | / Gly           | / Ala       | Gly          | gly               | Ala<br>295 | Gly          | Ala          | a Gly        | Gly        | 7 Ala<br>300 | Gly                    | gly          | Ala          | Gly        |
| Ala<br>305 | Gly        | Gl <sub>y</sub> | / Ala       | Gly          | Gly<br>310        | Ala        | Gly          | Ala          | Gly          | Gly<br>315 | Gly          | Ala                    | Gly          | · Ala        | Gly<br>320 |
| Gly        | Ala        | Gly             | Ala         | Gly<br>325   | Gly               | Gly        | Gly          | Arg          | Gly<br>330   | Arg        | Gly          | Gly                    | Ser          | Gly<br>335   | Gly        |
| Arg        | Gly        | Arg             | Gly<br>340  | Gly          | Ser               | Gly        | Gly          | Arg<br>345   | Gly          | Arg        | Gly          | Gly                    | Ser<br>350   | Gly          | Gly        |
| Arg        | Arg        | Gly<br>355      | Arg         | Gly          | Arg               | Glu        | Arg<br>360   | Ala          | Arg          | Gly        | Gly          | Ser<br>365             | Arg          | Glu          | Arg        |
| Ala        | Arg<br>370 | Gly             | Arg         | Gly          | Arg               | Gly<br>375 | Arg          | Gly          | Glu          | Lys        | Arg<br>380   | Pro                    | Arg          | Ser          | Pro        |
| Ser<br>385 | Ser        | Gln             | Ser         | Ser          | Ser<br>390        | Ser        | Gly          | Ser          | Pro          | Pro<br>395 | Arg          | Arg                    | Pro          | Pro          | Pro<br>400 |
| Gly        | Arg        | Arg             | Pro         | Phe<br>405   | Phe               | His        | Pro          | Val          | Gly<br>410   | Glu        | Ala          | Asp                    | Tyr          | Phe<br>415   | Glu        |
| Tyr        | His        | Gln             | Glu<br>420  | Gly          | Gly               | Pro        | Asp          | Gly<br>425   | Glu          | Pro        | Asp          | Val                    | Pro<br>430   | Pro          | Gly        |

Ala Ile Glu Gln Gly Pro Ala Asp Asp Pro Gly Glu Gly Pro Ser Thr 

Gly Pro Arg Gly Gln Gly Asp Gly Gly Arg Arg Lys Lys Gly Gly Trp 

Phe Gly Lys His Arg Gly Gln Gly Gly Ser Asn Pro Lys Phe Glu Asn 

Ile Ala Glu Gly Leu Arg Ala Leu Leu Ala Arg Ser His Val Glu Arg

Thr Thr Asp Glu Gly Thr Trp Val Ala Gly Val Phe Val Tyr Gly Gly 500 505 510

Ser Lys Thr Ser Leu Tyr Asn Leu Arg Arg Gly Thr Ala Leu Ala Ile 515 520 525

Pro Gln Cys Arg Leu Thr Pro Leu Ser Arg Leu Pro Phe Gly Met Ala 530 540

Pro Gly Pro Gly Pro Gln Pro Gly Pro Leu Arg Glu Ser Ile Val Cys 545 550 555 560

Tyr Phe Met Val Phe Leu Gln Thr His Ile Phe Ala Glu Val Leu Lys 565 570

Asp Ala Ile Lys Asp Leu Val Met Thr Lys Pro Ala Pro Thr Cys Asn 580 585 590

Ile Arg Val Thr Val Cys Ser Phe Asp Asp Gly Val Asp Leu Pro Pro 595  $\,\,$  600  $\,\,$ 

Trp Phe Pro Pro Met Val Glu Gly Ala Ala Ala Glu Gly Asp Asp Gly 610 615 620

Glu

<210> 2525

<211> 245

<212> PRT

<213> Homo sapiens

<400> 2525

Met Met Asp Pro Asn Ser Thr Ser Glu Asp Val Lys Phe Thr Pro Asp 1  $\phantom{\bigg|}10\phantom{\bigg|}$  15

Pro Tyr Gln Val Pro Phe Val Gln Ala Phe Asp Gln Ala Thr Arg Val

Tyr Gln Asp Leu Gly Gly Pro Ser Gln Ala Pro Leu Pro Cys Val Leu

35 40 45

His Val Ser Thr Ala Pro Thr Gly Ser Trp Phe Ser Ala Pro Gln Pro 65 70 75 80

Ala Pro Glu Asn Ala Tyr Gln Ala Tyr Ala Ala Pro Gln Leu Pro 85 90 95

Val Ser Asp Ile Thr Gln Asn Gln Gln Thr Asn Gln Ala Gly Glu 100 105 110

Ala Pro Gln Pro Gly Asp Asn Ser Thr Val Gln Thr Ala Ala Ala Val 115 120 125

Val Phe Ala Cys Pro Gly Ala Asn Gln Gly Gln Gln Leu Ala Asp Ile 130 135 140

Gly Val Pro Gln Pro Ala Pro Val Ala Ala Pro Ala Arg Arg Thr Arg 145 150 155 160

Lys Pro Gln Gln Pro Glu Ser Leu Glu Glu Cys Asp Ser Glu Leu Glu 165 \$170\$

Ile Lys Arg Tyr Lys Asn Arg Val Ala Ser Arg Lys Cys Arg Ala Lys \$180\$ 185 190

Phe Lys Gln Leu Leu Gln His Tyr Arg Glu Val Ala Ala Ala Lys Ser 195 200 205

Ser Glu Asn Asp Arg Leu Arg Leu Leu Leu Lys Gln Met Cys Pro Ser 210 215 220

Leu Asp Val Asp Ser Ile Ile Pro Arg Thr Pro Asp Val Leu His Glu 225 230 235 240

Asp Leu Leu Asn Phe 245

<210> 2526

<211> 491 <212> PRT

<213> Homo sapiens

<400> 2526

| Met<br>1   | Glu        | Ser        | Ser        | Ala<br>5   | Lys        | Arg        | Lys        | Met        | Asp<br>10  | Pro        | Asp        | Asn        | Pro        | Asp<br>15  | Glu        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly        | Pro        | Ser        | Ser<br>20  | Lys        | Val        | Pro        | Arg        | Pro<br>25  | Glu        | Thr        | Pro        | Val        | Thr<br>30  | Lys        | Ala        |
| Thr        | Thr        | Phe<br>35  | Leu        | Gln        | Thr        | Met        | Leu<br>40  | Arg        | Lys        | Glu        | Val        | Asn<br>45  | Ser        | Gln        | Leu        |
| Ser        | Leu<br>50  | Gly        | Asp        | Pro        | Leu        | Phe<br>55  | Pro        | Glu        | Leu        | Ala        | Glu<br>60  | Glu        | Ser        | Leu        | Lys        |
| Thr<br>65  | Phe        | Glu        | Gln        | Val        | Thr<br>70  | Glu        | Asp        | Cys        | Asn        | Glu<br>75  | Asn        | Pro        | Glu        | Lys        | Asp<br>80  |
| Val        | Leu        | Ala        | Glu        | Leu<br>85  | Val        | Lys        | Gln        | Ile        | Lys<br>90  | Val        | Arg        | Val        | Asp        | Met<br>95  | Val        |
| Arg        | His        | Arg        | Ile<br>100 | Lys        | Glu        | His        | Met        | Leu<br>105 | Lys        | Lys        | Tyr        | Thr        | Gln<br>110 | Thr        | Glu        |
| Glu        | Lys        | Phe<br>115 | Thr        | Gly        | Ala        | Phe        | Asn<br>120 | Met        | Met        | Gly        | Gly        | Cys<br>125 | Leu        | Gln        | Asn        |
| Ala        | Leu<br>130 | Asp        | Ile        | Leu        | Asp        | Lys<br>135 | Val        | His        | Glu        | Pro        | Phe<br>140 | Glu        | Glu        | Met        | Lys        |
| Cys<br>145 | Ile        | Gly        | Leu        | Thr        | Met<br>150 | Gln        | Ser        | Met        | Tyr        | Glu<br>155 | Asn        | Tyr        | Ile        | Val        | Pro<br>160 |
| Glu        | Asp        | Lys        | Arg        | Glu<br>165 | Met        | Trp        | Met        | Ala        | Cys<br>170 | Ile        | Lys        | Glu        | Leu        | His<br>175 | Asp        |
| Val        | Ser        | Lys        | Gly<br>180 | Ala        | Ala        | Asn        | Lys        | Leu<br>185 | Gly        | Gly        | Ala        | Leu        | Gln<br>190 | Ala        | Lys        |
| Ala        | Arg        | Ala<br>195 | Lys        | Lys        | Asp        | Glu        | Leu<br>200 | Arg        | Arg        | Lys        | Met        | Met<br>205 | Tyr        | Met        | Сув        |
| Tyr        | Arg<br>210 | Asn        | Ile        | Glu        | Phe        | Phe<br>215 | Thr        | Lys        | Asn        | Ser        | Ala<br>220 | Phe        | Pro        | Lys        | Thr        |
| Thr<br>225 | Asn        | Gly        | Cys        | Ser        | Gln<br>230 | Ala        | Met        | Ala        | Ala        | Leu<br>235 | Gln        | Asn        | Leu        | Pro        | Gln<br>240 |

| Cys | Ser | Pro | Asp | Glu | Ile | Met | Ala | Tyr | Ala | Gln | Lys | Ile | Phe | Lys | Ile |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     | 245 |     |     |     |     | 250 |     |     |     |     | 255 |     |

- Leu Asp Glu Glu Arg Asp Lys Val Leu Thr His Ile Asp His Ile Phe 260 265 270
- Met Asp Ile Leu Thr Thr Cys Val Glu Thr Met Cys Asn Glu Tyr Lys 275 280 285
- Val Thr Ser Asp Ala Cys Met Met Thr Met Tyr Gly Gly Ile Ser Leu 290 295 300
- Leu Ser Glu Phe Cys Arg Val Leu Cys Cys Tyr Val Leu Glu Glu Thr 305 310 315 320
- Ser Val Met Leu Ala Lys Arg Pro Leu Ile Thr Lys Pro Glu Val Ile 325 330 335
- Ser Val Met Lys Arg Arg Ile Glu Glu Ile Cys Met Lys Val Phe Ala 340 345 350
- Gln Tyr Ile Leu Gly Ala Asp Pro Leu Arg Val Cys Ser Pro Ser Val
- Asp Asp Leu Arg Ala Ile Ala Glu Glu Ser Asp Glu Glu Glu Ala Ile 370 380
- Val Ala Tyr Thr Leu Ala Thr Ala Gly Val Ser Ser Ser Asp Ser Leu 385 390 395 400
- Val Ser Pro Pro Glu Ser Pro Val Pro Ala Thr Ile Pro Leu Ser Ser 405 410 415
- Val Ile Val Ala Glu Asn Ser Asp Glu Glu Glu Ser Glu Gln Ser Asp 420 425 430
- Val Lys Ser Glu Pro Val Ser Glu Ile Glu Glu Val Ala Pro Glu Glu 450 455 460
- Glu Glu Asp Gly Ala Glu Glu Pro Thr Ala Ser Gly Gly Lys Ser Thr 465 470 475 480

His Pro Met Val Thr Arg Ser Lys Ala Asp Gln

485 490

<210> 2527

<211> 491 <212> PRT

<213> Homo sapiens

<400> 2527

Met Glu Ser Ser Ala Lys Arg Lys Met Asp Pro Asp Asn Pro Asp Glu  $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$ 

Gly Pro Ser Ser Lys Val Pro Arg Pro Glu Thr Pro Val Thr Lys Ala 20 30

Thr Thr Phe Leu Gln Thr Met Leu Arg Lys Glu Val Asn Ser Gln Leu 35 \$40\$

Ser Leu Gly Asp Pro Leu Phe Pro Glu Leu Ala Glu Glu Ser Leu Lys 50 60

Thr Phe Glu Gln Val Thr Glu Asp Cys Asn Glu Asn Pro Glu Lys Asp 65 70 75 80

Val Leu Ala Glu Leu Val Lys Gln Ile Lys Val Arg Val Asp Met Val 85 90 95

Arg His Arg Ile Lys Glu His Met Leu Lys Lys Tyr Thr Gln Thr Glu 100 105 110

Glu Lys Phe Thr Gly Ala Phe Asn Met Met Gly Gly Cys Leu Gln Asn 115 120 125

Ala Leu Asp Ile Leu Asp Lys Val His Glu Pro Phe Glu Glu Met Lys 130 135 140

Cys Ile Gly Leu Thr Met Gln Ser Met Tyr Glu Asn Tyr Ile Val Pro 150 150 155 160

Glu Asp Lys Arg Glu Met Trp Met Ala Cys Ile Lys Glu Leu His Asp \$165\$ \$170\$ \$175\$

Val Ser Lys Gly Ala Ala Asn Lys Leu Gly Gly Ala Leu Gln Ala Lys 180 180 180

Ala Arg Ala Lys Lys Asp Glu Leu Arg Arg Lys Met Met Tyr Met Cys 195 200 205

Tyr Arg Asn Ile Glu Phe Phe Thr Lys Asn Ser Ala Phe Pro Lys Thr 210 215 220

- Thr Asn Gly Cys Ser Gln Ala Met Ala Ala Leu Gln Asn Leu Pro Gln 225 230 235 240
- Cys Ser Pro Asp Glu Ile Met Ala Tyr Ala Gln Lys Ile Phe Lys Ile 245 .250 .255
- Leu Asp Glu Glu Arg Asp Lys Val Leu Thr His Ile Asp His Ile Phe 260 270
- Met Asp Ile Leu Thr Thr Cys Val Glu Thr Met Cys Asn Glu Tyr Lys 275 280 285
- Val Thr Ser Asp Ala Cys Met Met Thr Met Tyr Gly Gly Ile Ser Leu 290 295 300
- Leu Ser Glu Phe Cys Arg Val Leu Cys Cys Tyr Val Leu Glu Glu Thr 305 310 315 320
- Ser Val Met Leu Ala Lys Arg Pro Leu Ile Thr Lys Pro Glu Val Ile 325 330 335
- Ser Val Met Lys Arg Arg Ile Glu Glu Ile Cys Met Lys Val Phe Ala 340 345 350
- Gln Tyr Ile Leu Gly Ala Asp Pro Leu Arg Val Cys Ser Pro Ser Val 355 360 365
- Asp Asp Leu Arg Ala Ile Ala Glu Glu Ser Asp Glu Glu Glu Ala Ile 370 380
- Val Ala Tyr Thr Leu Ala Thr Ala Gly Val Ser Ser Ser Asp Ser Leu 385 390 395 400
- Val Ser Pro Pro Glu Ser Pro Val Pro Ala Thr Ile Pro Leu Ser Ser 405 410 415
- Val Ile Val Ala Glu Asn Ser Asp Gln Glu Glu Ser Glu Gln Ser Asp 420 425 430
- Glu Glu Glu Glu Gly Ala Gln Glu Glu Arg Glu Asp Thr Val Ser 435 440 445

Val Lys Ser Glu Pro Val Ser Glu Ile Glu Glu Val Ala Pro Glu Glu 450 460

Glu Glu Asp Gly Ala Glu Glu Pro Thr Ala Ser Gly Gly Lys Ser Thr 465 \$470\$

His Pro Met Val Thr Arg Ser Lys Ala Asp Gln 485 490

<210> 2528

<211> 142 <212> PRT

<213> Homo sapiens

<400> 2528

Met Ser Leu Leu Pro Val Pro Tyr Thr Glu Ala Ala Ser Leu Ser Thr 1 5 10 15

Gly Ser Thr Val Thr Ile Lys Gly Arg Pro Leu Ala Cys Phe Leu Asn  $20 \\ 25 \\ 30$ 

Glu Pro Tyr Leu Gln Val Asp Phe His Thr Glu Met Lys Glu Glu Ser  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Asp Ile Val Phe His Phe Gln Val Cys Phe Gly Arg Arg Val Val Met  $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60 \hspace{1.5cm}$ 

Asn Ser Arg Glu Tyr Gly Ala Trp Lys Gln Gln Val Glu Ser Lys Asn 65 70 75 80

Met Pro Phe Gln Asp Gly Gln Glu Phe Glu Leu Ser Ile Ser Val Leu 85 90 95

Asp His Arg Ile Lys Pro Glu Ala Val Lys Met Val Gln Val Trp Arg 115 120 120

Asp Ile Ser Leu Thr Lys Phe Asn Val Ser Tyr Leu Lys Arg 130  $$135\$ 

<210> 2529

<211> 298 <212> PRT

<213> Homo sapiens

<400> 2529

| Met<br>1   | Ala        | Glu        | Ala        | Met<br>5   | Asp        | Leu        | Gly        | Lys        | Asp<br>10  | Pro        | Asn        | Gly        | Pro        | Thr<br>15  | His        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ser        | Ser        | Thr        | Leu<br>20  | Phe        | Val        | Arg        | Asp        | Asp<br>25  | Gly        | Ser        | Ser        | Met        | Ser<br>30  | Phe        | Tyr        |
| Val        | Arg        | Pro<br>35  | Ser        | Pro        | Ala        | Lys        | Arg<br>40  | Arg        | Leu        | Ser        | Thr        | Leu<br>45  | Ile        | Leu        | His        |
| Gly        | Gly<br>50  | Gly        | Thr        | Val        | Cys        | Arg<br>55  | Val        | Gln        | Glu        | Pro        | Gly<br>60  | Ala        | Val        | Leu        | Leu        |
| Ala<br>65  | Gln        | Pro        | Gly        | Glu        | Ala<br>70  | Leu        | Ala        | Glu        | Ala        | Ser<br>75  | Gly        | Asp        | Phe        | Ile        | Ser<br>80  |
| Thr        | Gln        | His        | Ile        | Leu<br>85  | Asp        | Cys        | Val        | Glu        | Arg<br>90  | Asn        | Glu        | Arg        | Leu        | Glu<br>95  | Leu        |
| Glu        | Ala        | Tyr        | Arg<br>100 | Leu        | Gly        | Pro        | Ala        | Ser<br>105 | Ala        | Ala        | Asp        | Thr        | Gly<br>110 | Ser        | Glu        |
| Ala        | Lys        | Pro<br>115 | Gly        | Ala        | Leu        | Ala        | Glu<br>120 | Gly        | Ala        | Ala        | Glu        | Pro<br>125 | Glu        | Pro        | Gln        |
| Arg        | His<br>130 | Ala        | Gly        | Arg        | Ile        | Ala<br>135 | Phe        | Thr        | Asp        | Ala        | Asp<br>140 | Asp        | Val        | Ala        | Ile        |
| Leu<br>145 | Thr        | Tyr        | Val        | Lys        | Glu<br>150 | Asn        | Ala        | Arg        | Ser        | Pro<br>155 | Ser        | Ser        | Val        | Thr        | Gly<br>160 |
| Asn        | Ala        | Leu        | Trp        | Lys<br>165 | Ala        | Met        | Glu        | Lys        | Ser<br>170 | Ser        | Leu        | Thr        | Gln        | His<br>175 | Ser        |
| Trp        | Gln        | Ser        | Leu<br>180 | Lys        | Asp        | Arg        | Tyr        | Leu<br>185 | Lys        | His        | Leu        | Arg        | Gly<br>190 | Gln        | Glu        |
| His        | Lys        | Tyr<br>195 | Leu        | Leu        | Gly        | Asp        | Ala<br>200 | Pro        | Val        | Ser        | Pro        | Ser<br>205 | Ser        | Gln        | Lys        |
| Leu        | Lys<br>210 | Arg        | Lys        | Ala        |            | Glu<br>215 | Asp        | Pro        | Glu        | Ala        | Ala<br>220 | Asp        | Ser        | Gly        | Glu        |
| Pro<br>225 | Gln        | Asn        | Lys        | Arg        | Thr<br>230 | Pro        | Asp        | Leu        | Pro        | Glu<br>235 | Glu        | Glu        | Tyr        | Val        | Lys<br>240 |

Glu Glu Ile Glu Asn Glu Glu Ala Val Lys Lys Met Leu Val Glu 245 250 255

Ala Thr Arg Glu Phe Glu Glu Val Val Val Asp Glu Ser Pro Pro Asp
260 265 270

Phe Glu Ile His Ile Thr Met Cys Asp Asp Pro Pro Thr Pro Glu 275 280 285

Glu Asp Ser Glu Thr Gln Pro Asp Glu Glu 290 295

<210> 2530

<211> 365 <212> PRT

<213> Homo sapiens

<400> 2530

Met Ala Val Met Ala Pro Arg Thr Leu Leu Leu Leu Leu Ser Gly Ala 1 5 10 15

Leu Ala Leu Thr Gln Thr Trp Ala Gly Ser His Ser Met Arg Tyr Phe 20 25 30

Phe Thr Ser Val Ser Arg Pro Gly Arg Gly Glu Pro Arg Phe Ile Ala  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Val Gly Tyr Val Asp Asp Thr Gln Phe Val Arg Phe Asp Ser Asp Ala 50 60

Ala Ser Gln Arg Met Glu Pro Arg Ala Pro Trp Ile Glu Gln Glu Gly 65 70 75 80

Pro Glu Tyr Trp Asp Gln Glu Thr Arg Asn Val Lys Ala Gln Ser Gln 85 90 95

Thr Asp Arg Val Asp Leu Gly Thr Leu Arg Gly Tyr Tyr Asn Gln Ser 100 105 110

Glu Ala Gly Ser His Thr Ile Gln Ile Met Tyr Gly Cys Asp Val Gly 115 120 125

Ser Asp Gly Arg Phe Leu Arg Gly Tyr Arg Gln Asp Ala Tyr Asp Gly 130 135 140

Lys Asp Tyr Ile Ala Leu Asn Glu Asp Leu Arg Ser Trp Thr Ala Ala 145 150 155 160

Asp Met Ala Ala Gln Ile Thr Lys Arg Lys Trp Glu Ala Ala His Glu 165 170 Ala Glu Gln Leu Arg Ala Tyr Leu Asp Gly Thr Cys Val Glu Trp Leu 185 Arg Arg Tyr Leu Glu Asn Gly Lys Glu Thr Leu Gln Arg Thr Asp Pro 195 200 Pro Lys Thr His Met Thr His His Pro Ile Ser Asp His Glu Ala Thr 210 215 220 Leu Arg Cys Trp Ala Leu Gly Phe Tyr Pro Ala Glu Ile Thr Leu Thr 225 230 235 Trp Gln Arg Asp Gly Glu Asp Gln Thr Gln Asp Thr Glu Leu Val Glu 245 250 Thr Arg Pro Ala Gly Asp Gly Thr Phe Gln Lys Trp Ala Ala Val Val 260 265 270 Val Pro Ser Gly Glu Glu Gln Arg Tyr Thr Cys His Val Gln His Glu 285 275 280 Gly Leu Pro Lys Pro Leu Thr Leu Arg Trp Glu Leu Ser Ser Gln Pro 290 295 Thr Ile Pro Ile Val Gly Ile Ile Ala Gly Leu Val Leu Leu Gly Ala 310 315 Val Ile Thr Glv Ala Val Val Ala Ala Val Met Trp Arg Arg Lys Ser 325 330

Ser Asp Arg Lys Gly Gly Ser Tyr Thr Gln Ala Ala Ser Ser Asp Ser 340 345 350

Ala Gln Gly Ser Asp Val Ser Leu Thr Ala Cys Lys Val 355 360 365

<210> 2531

<211> 155 <212> PRT

<213> Homo sapiens

<400> 2531

Met Glu Leu Arg Ser Gly Ser Val Gly Ser Gln Ala Val Ala Arg Arg 1  $\phantom{\bigg|}10\phantom{\bigg|}$  15

Met Asp Gly Asp Ser Arg Asp Gly Gly Gly Gly Lys Asp Ala Thr Gly  $20 \\ 25 \\ 30$ 

Ser Glu Asp Tyr Glu Asn Leu Pro Thr Ser Ala Ser Val Ser Thr His  $35 \\ 0 \\ 40$ 

Met Thr Ala Gly Ala Met Ala Gly Ile Leu Glu His Ser Val Met Tyr 50 60

Pro Val Asp Ser Val Lys Thr Arg Met Gln Ser Leu Ser Pro Asp Pro 65 70 75 80

Lys Ala Gln Tyr Thr Ser Ile Tyr Gly Ala Leu Lys Lys Ile Met Arg 85 90 95

Thr Glu Gly Phe Trp Arg Pro Leu Arg Gly Val Asn Val Met Ile Met 100 105 110

Gly Ala Gly Pro Ala His Ala Met Tyr Phe Ala Cys Tyr Glu Asn Met 115 120 125

Lys Arg Thr Leu Asn Asp Val Phe His His Gln Gly Asn Ser His Leu 130 \$135\$

Ala Asn Gly Ile Leu Lys Ala Phe Val Trp Ser 145 150 155

<210> 2532

<211> 384 <212> PRT

<213> Homo sapiens

<400> 2532

Met Lys Val Thr Ser Leu Asp Gly Arg Gln Leu Arg Lys Met Leu Arg 1 5 10 15 15

Lys Glu Ala Ala Arg Cys Val Val Leu Asp Cys Arg Pro Tyr Leu 20 25 30

Ala Phe Ala Ala Ser Asn Val Arg Gly Ser Leu Asn Val Asn Leu Asn 35 40 45

Ser Val Val Leu Arg Arg Ala Arg Gly Gly Ala Val Ser Ala Arg Tyr 50 60

Val Leu Pro Asp Glu Ala Ala Arg Ala Arg Leu Leu Gln Glu Gly Gly 65  $\phantom{000}70\phantom{000}70\phantom{000}75\phantom{0000}$  Leu Leu Gln Glu Gly Gly 65  $\phantom{0000}70\phantom{0000}70\phantom{0000}$ 

- Gly Gly Val Ala Ala Val Val Val Leu Asp Gln Gly Ser Arg His Trp \$85\$ 90 95
- Gln Lys Leu Arg Glu Glu Ser Ala Ala Arg Val Val Leu Thr Ser Leu  $100 \hspace{1cm} 105 \hspace{1cm} 115 \hspace{1cm}$
- Leu Ala Cys Leu Pro Ala Gly Pro Arg Val Tyr Phe Leu Lys Gly Gly 115 120 125
- Tyr Glu Thr Phe Tyr Ser Glu Tyr Pro Glu Cys Cys Val Asp Val Lys 130 140
- Pro Ile Ser Gln Glu Lys Ile Glu Ser Glu Arg Ala Leu Ile Ser Gln 145 150 155 160
- Cys Gly Lys Pro Val Val Asn Val Ser Tyr Arg Pro Ala Tyr Asp Gln 165 170 175
- Gly Gly Pro Val Glu Ile Leu Pro Phe Leu Tyr Leu Gly Ser Ala Tyr 180 185 190
- His Ala Ser Lys Cys Glu Phe Leu Ala Asn Leu His Ile Thr Ala Leu 195 200 205
- Leu Asn Val Ser Arg Arg Thr Ser Glu Ala Cys Met Thr His Leu His 210 220
- Tyr Lys Trp Ile Pro Val Glu Asp Ser His Thr Ala Asp Ile Ser Ser 225 230 235 240
- His Phe Gln Glu Ala Ile Asp Phe Ile Asp Cys Val Arg Glu Lys Gly 245 250 255
- Gly Lys Val Leu Val His Cys Glu Ala Gly Ile Ser Arg Ser Pro Thr  $260 \hspace{0.25cm} 265 \hspace{0.25cm} 270 \hspace{0.25cm}$
- Ile Cys Met Ala Tyr Leu Met Lys Thr Lys Gln Phe Arg Leu Lys Glu 275 280 285
- Ala Phe Asp Tyr Ile Lys Gln Arg Arg Ser Met Val Ser Pro Asn Phe 290 295 300

Gly Phe Met Gly Gln Leu Leu Gln Tyr Glu Ser Glu Ile Leu Pro Ser 310

Thr Pro Asn Pro Gln Pro Pro Ser Cys Gln Gly Glu Ala Ala Gly Ser 330

Ser Leu Ile Gly His Leu Gln Thr Leu Ser Pro Asp Met Gln Gly Ala 345

Tyr Cys Thr Phe Pro Ala Ser Val Leu Ala Pro Val Pro Thr His Ser 355 360 365

Thr Val Ser Glu Leu Ser Arg Ser Pro Val Ala Thr Ala Thr Ser Cys 370 375 380

<210> 2533

<211> 99 <212> PRT <213> Homo sapiens

<400> 2533

Met Ala Gln Gly Lys Val Ala Ser Leu Gly Pro Ile Lys Gln His Thr 10

Phe Leu Lys Asn Met Gly Ile Asp Val Arg Leu Lys Val Leu Leu Asp 30 20 25

Lys Ser Asn Glu Pro Ser Val Arg Gln Gln Leu Leu Gln Gly Tyr Asp 35 40

Met Leu Met Asn Pro Lys Lys Met Gly Glu Arg Phe Asn Phe Phe Ala

Leu Leu Pro His Gln Arg Leu Gln Gly Gly Arg Tyr Gln Arg Asn Ala

Arg Gln Ser Lys Pro Phe Ala Ser Val Val Ala Gly Phe Ser Glu Leu 85 90

Ala Trp Gln

<210> 2534

<211> 529

<212> PRT

<213> Homo sapiens

| < 41 | 2534 |
|------|------|
|      |      |

Met Gly Ser Ser Arg Ala Pro Trp Met Gly Arg Val Gly Gly His Gly 1 5 10 15

Met Met Ala Leu Leu Leu Ala Gly Leu Leu Leu Pro Gly Thr Leu Ala 20 25 30

Lys Ser Ile Gly Thr Phe Ser Asp Pro Cys Lys Asp Pro Thr Arg Ile 35 40 45

Thr Ser Pro Asn Asp Pro Cys Leu Thr Gly Lys Gly Asp Ser Ser Gly 50 60

Phe Ser Ser Tyr Ser Gly Ser Ser Ser Ser Gly Ser Ser Ile Ser Ser 65 70 75 80

Ile Ala Gln Gly Gly Ser Ala Gly Ser Phe Lys Pro Gly Thr Gly Tyr \$100\$

Ser Gln Val Ser Tyr Ser Ser Gly Ser Gly Ser Ser Leu Gln Gly Ala 115 120 125

Ser Gly Ser Ser Gln Leu Gly Ser Ser Ser Ser His Ser Gly Ser Ser 130 135 140

Gly Ser His Ser Gly Ser Ser Ser Ser His Ser Ser Ser Ser Ser Ser Ser 145 150 155 160

Phe Gln Phe Ser Ser Ser Ser Phe Gln Val Gly Asn Gly Ser Ala Leu 165 170 175

Pro Thr Asn Asp Asn Ser Tyr Arg Gly Ile Leu Asn Pro Ser Gln Pro 180 185 190

Gly Gln Ser Ser Ser Ser Gln Thr Ser Gly Val Ser Ser Ser Gly 195 200 205

Gln Ser Val Ser Ser Asn Gln Arg Pro Cys Ser Ser Asp Ile Pro Asp 210 215 220

Ser Pro Cys Ser Gly Gly Pro Ile Val Ser His Ser Gly Pro Tyr Ile 225 230 235 240

| Pro        | Ser        | Ser        | His        | Ser<br>245 |            | Ser        | Gly        | Gly        | 250        |            | Pro        | Val        | Val        | Val<br>255 | Val        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Val        | Asp        | Gln        | His<br>260 | Gly        | Ser        | Gly        | Ala        | Pro<br>265 |            | Val        | Val        | Gln        | Gly<br>270 |            | Pro        |
| Cys        | Ser        | Asn<br>275 | Gly        | Gly        | Leu        | Pro        | Gly<br>280 | Lys        | Pro        | Сув        | Pro        | Pro<br>285 |            | Thr        | Ser        |
| Val        | Asp<br>290 | Lys        | Ser        | Tyr        | Gly        | Gly<br>295 | Tyr        | Glu        | Val        | Val        | Gly<br>300 | Gly        | Ser        | Ser        | Asp        |
| Ser<br>305 | Tyr        | Leu        | Val        | Pro        | Gly<br>310 | Met        | Thr        | Tyr        | Ser        | Lys<br>315 | Gly        | Lys        | Ile        | Tyr        | Pro<br>320 |
| Val        | Gly        | Tyr        | Phe        | Thr<br>325 |            | Glu        | Asn        | Pro        | Val<br>330 |            | Gly        | Ser        | Pro        | Gly<br>335 | Val        |
| Pro        | Ser        | Phe        | Ala<br>340 | Ala        | Gly        | Pro        | Pro        | Ile<br>345 | Ser        | Glu        | Gly        | Lys        | Tyr<br>350 | Phe        | Ser        |
| Ser        | Asn        | Pro<br>355 | Ile        | Ile        | Pro        | Ser        | Gln<br>360 | Ser        | Ala        | Ala        | Ser        | Ser<br>365 | Ala        | Ile        | Ala        |
| Phe        | Gln<br>370 | Pro        | Val        | Gly        | Thr        | Gly<br>375 | Gly        | Val        | Gln        | Leu        | Cys<br>380 | Gly        | Gly        | Gly        | Ser        |
| Thr<br>385 | Gly        | Ser        | Lys        | Gly        | Pro<br>390 | Cys        | Ser        | Pro        | Ser        | Ser<br>395 | Ser        | Arg        | Val        | Pro        | Ser<br>400 |
| Ser        | Ser        | Ser        | Ile        | Ser<br>405 | Ser        | Ser        | Ser        | Gly        | Ser<br>410 | Pro        | Tyr        | His        | Pro        | Cys<br>415 | Gly        |
| Ser        | Ala        | Ser        | Gln<br>420 | Ser        | Pro        | Cys        | Ser        | Pro<br>425 | Pro        | Gly        | Thr        | Gly        | Ser<br>430 | Phe        | Ser        |
| Ser        | Ser        | Ser<br>435 | Ser        | Ser        | Gln        | Ser        | Ser<br>440 | Gly        | Lys        | Ile        | Ile        | Leu<br>445 | Gln        | Pro        | Cys        |
| Gly        | Ser<br>450 | Lys        | Ser        | Ser        | Ser        | Ser<br>455 | Gly        | His        | Pro        | Cys        | Met<br>460 | Ser        | Val        | Ser        | Ser        |
| Leu<br>465 | Thr        | Leu        | Thr        | Gly        | Gly<br>470 | Pro        | Asp        | Gly        | Ser        | Pro<br>475 | His        | Pro        | Asp        | Pro        | Ser<br>480 |

Ala Gly Ala Lys Pro Cys Gly Ser Ser Ser Ala Gly Lys Ile Pro Cys 485 \$490\$

Arg Ser Ile Arg Asp Ile Leu Ala Gln Val Lys Pro Leu Gly Pro Gln  $500 \hspace{1cm} 505 \hspace{1cm} 505 \hspace{1cm} 510 \hspace{1cm}$ 

Leu Ala Asp Pro Glu Val Phe Leu Pro Gln Gly Glu Leu Leu Asp Ser 515 520 525

Pro

<210> 2535 <211> 125

<212> PRT

<213> Homo sapiens

<400> 2535

Met Pro Pro Lys Asp Asp Lys Lys Lys Lys Asp Ala Gly Lys Ser Ala 1 5 10 15

Lys Lys Asp Lys Asp Pro Val Asn Lys Ser Gly Gly Lys Ala Lys Lys  $20 \\ 25 \\ 30$ 

Lys Lys Trp Ser Lys Gly Lys Val Arg Asp Lys Leu Asn Asn Leu Val \$35\$

Leu Phe Asp Lys Ala Thr Tyr Asp Lys Leu Cys Lys Glu Val Pro Asn 50 60

Tyr Lys Leu Ile Thr Pro Ala Val Val Ser Glu Arg Leu Lys Ile Arg 65 75 80

Gly Ser Leu Ala Arg Ala Ala Leu Gln Glu Leu Leu Ser Lys Gly Leu 85 90 95

Ile Lys Leu Val Ser Lys His Arg Ala Gln Val Ile Tyr Thr Arg Asn \$100\$

Thr Lys Gly Gly Asp Ala Pro Ala Ala Gly Glu Asp Ala 115 120 125

<210> 2536

<211> 335 <212> PRT

<213> Homo sapiens

<400> 2536

Met Gly Lys Val Lys Val Gly Val Asn Gly Phe Gly Arg Ile Gly Arg

1 10 15 15

Leu Val Thr Arg Ala Ala Phe Asn Ser Gly Lys Val Asp Ile Val Ala

- 20 25 30
- Ile Asn Asp Pro Phe Ile Asp Leu Asn Tyr Met Val Tyr Met Phe Gln
  35 40 45
- Tyr Asp Ser Thr His Gly Lys Phe His Gly Thr Val Lys Ala Glu Asn  $50 \hspace{1cm} 55 \hspace{1cm} 60$
- Gly Lys Leu Val Ile Asn Gly Asn Pro Ile Thr Ile Phe Gln Glu Arg 65  $\phantom{+}70\phantom{+}70\phantom{+}75\phantom{+}80\phantom{+}$
- Asp Pro Ser Lys Ile Lys Trp Gly Asp Ala Gly Ala Glu Tyr Val Val 85 \$90\$
- Glu Ser Thr Gly Val Phe Thr Thr Met Glu Lys Ala Gly Ala His Leu  $100 \hspace{1cm} 105 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$
- Gln Gly Gly Ala Lys Arg Val Ile Ile Ser Ala Pro Ser Ala Asp Ala 115 120 125
- Pro Met Phe Val Met Gly Val Asn His Glu Lys Tyr Asp Asn Ser Leu 130 140
- Lys Ile Ile Ser Asn Ala Sèr Cys Thr Thr Asn Cys Leu Ala Pro Leu 145 150 155 160
- Ala Lys Val Ile His Asp Asn Phe Gly Ile Val Glu Gly Leu Met Thr 165 170 170
- Thr Val His Ala Ile Thr Ala Thr Gln Lys Thr Val Asp Gly Pro Ser 180 185 190
- Gly Lys Leu Trp Arg Asp Gly Arg Gly Ala Leu Gln Asn Ile Ile Pro 195 200 205
- Ala Ser Thr Gly Ala Ala Lys Ala Val Gly Lys Val Ile Pro Glu Leu 210 220
- Asn Gly Lys Leu Thr Gly Met Ala Phe Arg Val Pro Thr Ala Asn Val 225 230 235 240

Ser Val Val Asp Leu Thr Cys Arg Leu Glu Lys Pro Ala Lys Tyr Asp 245 250 255

Asp Ile Lys Lys Val Val Lys Gln Ala Ser Glu Gly Pro Leu Lys Gly
260 . 265 270

Ile Leu Gly Tyr Thr Glu His Gln Val Val Ser Ser Asp Phe Asn Ser

Asp Thr His Ser Ser Thr Phe Asp Ala Gly Ala Gly Ile Ala Leu Asn

Asp His Phe Val Lys Leu Ile Ser Trp Tyr Asp Asn Glu Phe Gly Tyr 305 310 315 320

Ser Asn Arg Val Val Asp Leu Met Ala His Met Ala Ser Lys Glu 325 330 335

<210> 2537

<211> 114 <212> PRT

<213> Homo sapiens

<400> 2537

Met Ala Ser Val Ser Glu Leu Ala Cys Ile Tyr Ser Ala Leu Ile Leu 1 5 10 15

His Asp Asp Glu Val Thr Val Thr Glu Asp Lys Ile Asn Ala Leu Ile
20 25 30

Lys Ala Ala Gly Val Asn Val Glu Pro Phe Trp Pro Gly Leu Phe Ala 35 40 45

Lys Ala Leu Ala Asn Val Asn Ile Gly Ser Leu Ile Cys Asn Val Gly 50  $\,$  55  $\,$  60  $\,$ 

Ala Gly Gly Pro Ala Pro Ala Ala Gly Ala Ala Pro Ala Gly Gly Pro 65 70 75 80

Ala Pro Ser Thr Ala Ala Ala Pro Ala Glu Glu Lys Lys Val Glu Ala 85 90 95

Lys Lys Glu Glu Ser Glu Glu Ser Asp Asp Asp Met Gly Phe Gly Leu 100 \$105\$

Phe Asp

<210> 2538 <211> 142 <212> PRT <213> Homo sapiens <400> 2538 Met Ala Ala Gly Gly Ser Asp Pro Arq Ala Gly Asp Val Glu Glu Asp Ala Ser Gln Leu Ile Phe Pro Lys Glu Phe Glu Thr Ala Glu Thr Leu Leu Asn Ser Glu Val His Met Leu Leu Glu His Arg Lys Gln Gln Asn Glu Ser Ala Glu Asp Glu Gln Glu Leu Ser Glu Val Phe Met Lys Thr 50 55 Leu Asn Tvr Thr Ala Arg Phe Ser Arg Phe Lvs Asn Arg Glu Thr Ile 65 70 Ala Ser Val Arg Ser Leu Leu Gln Lys Lys Leu His Lys Phe Glu Leu Ala Cys Leu Ala Asn Leu Cys Pro Glu Thr Ala Glu Glu Ser Lys 105 Ala Leu Ile Pro Ser Leu Glu Gly Arg Phe Glu Asp Glu Glu Leu Gln 115 120 125 Gln Ile Leu Asp Asp Ile Gln Thr Lys Arg Ser Phe Gln Tyr 130 135 <210> 2539 <211> 178 <212> PRT <213> Homo sapiens <400> 2539 Met Pro Ala Tyr His Ser Ser Leu Met Asp Pro Asp Thr Lys Leu Ile 5 10 Gly Asn Met Ala Leu Leu Pro Ile Arg Ser Gln Phe Lys Gly Pro Ala 20 25

Pro Arg Glu Thr Lys Asp Thr Asp Ile Val Asp Glu Ala Ile Tyr Tyr

35 40 45

Phe Lys Ala Asn Val Phe Phe Lys Asn Tyr Glu Ile Lys Asn Glu Ala 50  $\,$  55  $\,$  60

Asp Arg Thr Leu Ile Tyr Ile Thr Leu Tyr Ile Ser Glu Cys Leu Lys 65 70 75 80

Lys Leu Gln Lys Cys Asn Ser Lys Ser Gln Gly Glu Lys Glu Met Tyr 85 90 95

Thr Leu Gly Ile Thr Asn Phe Pro Ile Pro Gly Glu Pro Gly Phe Pro 100  $$100\$ 

Leu Asn Ala Ile Tyr Ala Lys Pro Ala Asn Lys Gln Glu Asp Glu Val 115 120 125

Met Arg Ala Tyr Leu Gln Gln Leu Arg Gln Glu Thr Gly Leu Arg Leu 130 \$135\$

Cys Glu Lys Val Phe Asp Pro Gln Asn Asp Lys Pro Ser Lys Trp Trp 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Thr Cys Phe Val Lys Arg Gln Phe Met Asn Lys Ser Leu Ser Gly Pro  $_{165}$   $_{170}$   $_{175}$ 

Gly Gln

<210> 2540

<211> 351 <212> PRT

<213> Homo sapiens

<400> 2540

Met Glu Thr Asn Phe Ser Thr Pro Leu Asn Glu Tyr Glu Glu Val Ser 1 \$10\$

Tyr Glu Ser Ala Gly Tyr Thr Val Leu Arg Ile Leu Pro Leu Val Val 20 25 30

Leu Gly Val Thr Phe Val Leu Gly Val Leu Gly Asn Gly Leu Val Ile 35  $\phantom{\bigg|}40\phantom{\bigg|}$ 

Trp Val Ala Gly Phe Arg Met Thr Arg Thr Val Thr Thr Ile Cys Tyr 50 60

Leu Asn Leu Ala Leu Ala Asp Phe Ser Phe Thr Ala Thr Leu Pro Phe Leu Ile Val Ser Met Ala Met Gly Glu Lys Trp Pro Phe Gly Trp Phe Leu Cys Lys Leu Ile His Ile Val Val Asp Ile Asn Leu Phe Gly Ser Val Phe Leu Ile Gly Phe Ile Ala Leu Asp Arg Cys Ile Cys Val Leu His Pro Val Trp Ala Gln Asn His Arg Thr Val Ser Leu Ala Met Lys Val Ile Val Gly Pro Trp Ile Leu Ala Leu Val Leu Thr Leu Pro Val Phe Leu Phe Leu Thr Thr Val Thr Ile Pro Asn Gly Asp Thr Tyr Cys Thr Phe Asn Phe Ala Ser Trp Gly Gly Thr Pro Glu Glu Arg Leu Lys Val Ala Ile Thr Met Leu Thr Ala Arg Gly Ile Ile Arg Phe Val Ile Gly Phe Ser Leu Pro Met Ser Ile Val Ala Ile Cys Tyr Gly Leu Ile Ala Ala Lys Ile His Lys Lys Gly Met Ile Lys Ser Ser Arg Pro Leu Arg Val Leu Thr Ala Val Val Ala Ser Phe Phe Ile Cys Trp Phe Pro Phe Gln Leu Val Ala Leu Leu Gly Thr Val Trp Leu Lys Glu Met Leu Phe Tyr Gly Lys Tyr Lys Ile Ile Asp Ile Leu Val Asn Pro Thr Ser Ser Leu Ala Phe Phe Asn Ser Cys Leu Asn Pro Met Leu Tyr Val Phe

Γ/US2003/012946

|            | wo:                  | 2004/0                     | 42340      | 5          |            |            |            |            |            |            |            |            |            |            | PCT        |
|------------|----------------------|----------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Val<br>305 | Gly                  | Gln                        | Asp        | Phe        | Arg<br>310 | Glu        | Arg        | Leu        | Ile        | His<br>315 | Ser        | Leu        | Pro        | Thr        | Se1        |
| Leu        | Glu                  | Arg                        | Ala        | Leu<br>325 | Ser        | Glu        | Asp        | Ser        | Ala<br>330 | Pro        | Thr        | Asn        | Asp        | Thr<br>335 | Ala        |
| Ala        | Asn                  | Ser                        | Ala<br>340 | Ser        | Pro        | Pro        | Ala        | Glu<br>345 | Thr        | Glu        | Leu        | Gln        | Ala<br>350 | Met        |            |
|            | L> :<br>2> :<br>3> : | 2541<br>349<br>PRT<br>Homo | sap:       | iens       |            |            |            |            |            |            |            |            |            |            |            |
| <400       |                      | 2541                       |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1   | Glu                  | Thr                        | Pro        | Pro<br>5   | Val        | Asn        | Thr        | Ile        | Gly<br>10  | Glu        | Lys        | Asp        | Thr        | Ser<br>15  | Glr        |
| Pro        | Gln                  | Gln                        | Glu<br>20  | Trp        | Glu        | Lys        | Asn        | Leu<br>25  | Arg        | Glu        | Asn        | Leu        | Asp<br>30  | Ser        | Val        |
| Ile        | Gln                  | Ile<br>35                  | Arg        | Gln        | Gln        | Pro        | Arg<br>40  | Asp        | Pro        | Pro        | Thr        | Glu<br>45  | Thr        | Leu        | Glu        |
| Leu        | Glu<br>50            | Val                        | Ser        | Pro        | Asp        | Pro<br>55  | Ala        | Ser        | Gln        | Ile        | Leu<br>60  | Glu        | His        | Thr        | Gln        |
| Gly<br>65  | Ala                  | Glu                        | Lys        | Leu        | Val<br>70  | Ala        | Glu        | Leu        | Glu        | Gly<br>75  | Asp        | Ser        | His        | Lys        | Ser<br>80  |
| His        | Gly                  | Ser                        | Thr        | Ser<br>85  | Gln        | Met        | Pro        | Glu        | Ala<br>90  | Leu        | Gln        | Ala        | Ser        | Asp<br>95  | Leu        |
| Trp        | Tyr                  | Cys                        | Pro<br>100 | Asp        | Gly        | Ser        | Phe        | Val<br>105 | Lys        | Lys        | Ile        | Val        | Ile<br>110 | Arg        | Gly        |
| His        | Gly                  | Leu<br>115                 | Asp        | Lys        | Pro        | Lys        | Leu<br>120 | Gly        | Ser        | Cys        | Cys        | Arg<br>125 | Val        | Leu        | Ala        |
| Leu        | Gly<br>130           | Phe                        | Pro        | Phe        | Gly        | Ser<br>135 | Gly        | Pro        | Pro        | Glu        | Gly<br>140 | Trp        | Thr        | Glu        | Leu        |
| Thr<br>145 | Met                  | Gly                        | Val        | Gly        | Pro<br>150 | Trp        | Arg        | Glu        | Glu        | Thr<br>155 | Trp        | Gly        | Glu        | Leu        | Ile<br>160 |

Glu Lys Cys Leu Glu Ser Met Cys Gln Gly Glu Glu Ala Glu Leu Gln 165 170 175

Leu Pro Gly His Ser Gly Pro Pro Val Arg Leu Thr Leu Ala Ser Phe 180 185 190

Thr Gln Gly Arg Asp Ser Trp Glu Leu Glu Thr Ser Glu Lys Glu Ala 195 200 205

Leu Ala Arg Glu Glu Arg Ala Arg Gly Thr Glu Leu Phe Arg Ala Gly 210 215 220

Asn Pro Glu Gly Ala Ala Arg Cys Tyr Gly Arg Ala Leu Arg Leu 225 230 235 240

Leu Thr Leu Pro Pro Pro Gly Pro Pro Glu Arg Thr Val Leu His Ala 245 250 255

Asn Leu Ala Ala Cys Gln Leu Leu Leu Gly Gln Pro Gln Leu Ala Ala 260 265 270

Gln Ser Cys Asp Arg Val Leu Glu Arg Glu Pro Gly His Leu Lys Ala \$275\$ \$280\$ \$285

Leu Tyr Arg Arg Gly Val Ala Gln Ala Ala Leu Gly Asn Leu Glu Lys 290 295 300

Ala Thr Ala Asp Leu Lys Lys Val Leu Ala Ile Asp Pro Lys Asn Arg 305 310 315 320

Ala Ala Gln Glu Glu Leu Gly Lys Val Val Ile Gln Gly Lys Asn Gln 325 330 335

Asp Ala Gly Leu Ala Gln Gly Leu Arg Lys Met Phe Gly 340 345

<210> 2542

<211> 417

<212> PRT

<213> Homo sapiens

<400> 2542

Met Gly Arg Arg Ala Pro Glu Leu Tyr Arg Ala Pro Phe Pro Leu 1 5 10 15

Tyr Ala Leu Gln Val Asp Pro Ser Thr Gly Leu Leu Ile Ala Ala Gly 20 25 30

Gly Gly Gly Ala Ala Lys Thr Gly Ile Lys Asn Gly Val His Phe Leu  $35 \ \ \, 40 \ \ \, 45$ 

- Gln Leu Glu Leu Ile Asn Gly Arg Leu Ser Ala Ser Leu Leu His Ser 50  $\,$
- His Asp Thr Glu Thr Arg Ala Thr Met Asn Leu Ala Leu Ala Gly Asp 65 70 75 80
- Ile Leu Ala Ala Gly Gln Asp Ala His Cys Gln Leu Leu Arg Phe Gln 85 90 95
- Ala His Gln Gln Gln Gly Asn Lys Ala Glu Lys Ala Gly Ser Lys Glu 100 105 110
- Gln Gly Pro Arg Gln Arg Lys Gly Ala Ala Pro Ala Glu Lys Lys Cys 115 120 125
- Gly Ala Glu Thr Gln His Glu Gly Leu Glu Leu Arg Val Glu Asn Leu 130 135 140
- Gln Ala Val Gln Thr Asp Phe Ser Ser Asp Pro Leu Gln Lys Val Val 145 \$150\$
- Cys Phe Asn His Asp Asn Thr Leu Leu Ala Thr Gly Gly Thr Asp Gly 165 170 175
- Tyr Val Arg Val Trp Lys Val Pro Ser Leu Glu Lys Val Leu Glu Phe 180 \$180\$
- Lys Ala His Glu Gly Glu Ile Glu Asp Leu Ala Leu Gly Pro Asp Gly 195 200 205
- Lys Leu Val Thr Val Gly Arg Asp Leu Lys Ala Ser Val Trp Gln Lys 210 215 220
- Asp Gln Leu Val Thr Gln Leu His Trp Gln Glu Asn Gly Pro Thr Phe 225 230 235 240
- Ser Ser Thr Pro Tyr Arg Tyr Gln Ala Cys Arg Phe Gly Gln Val Pro 245 250 25
- Asp Gln Pro Ala Gly Leu Arg Leu Phe Thr Val Gln Ile Pro His Lys 260 265 270
- Arg Leu Arg Gln Pro Pro Pro Cys Tyr Leu Thr Ala Trp Asp Gly Ser

275 280 285

Asn Phe Leu Pro Leu Arg Thr Lys Ser Cys Gly His Glu Val Val Ser 295

Cys Leu Asp Val Ser Glu Ser Gly Thr Phe Leu Gly Leu Gly Thr Val 310 315

Thr Gly Ser Val Ala Ile Tyr Ile Ala Phe Ser Leu Gln Cys Leu Tyr 325 330

Tyr Val Arg Glu Ala His Gly Ile Val Val Thr Asp Val Ala Phe Leu 340 345

Pro Glu Lys Gly Arq Gly Pro Glu Leu Leu Gly Ser His Glu Thr Ala . 355 360

Leu Phe Ser Val Ala Val Asp Ser Arg Cys Gln Leu His Leu Leu Pro 370 375 380

Ser Arg Arg Ser Val Pro Val Trp Leu Leu Leu Leu Cys Val Gly 385 390 400

Leu Ile Ile Val Thr Ile Leu Leu Gln Ser Ala Phe Pro Gly Phe 405 410 415

Leu

<210> 2543

<211> 309

<212> PRT <213> Homo sapiens

<400> 2543

Met Arg Gln Asn Asp Lys Ile Met Cys Ile Leu Glu Asn Arg Lys Lys 10

Arg Asp Arg Lys Asn Leu Cys Arg Ala Ile Asn Asp Phe Gln Gln Ser 20 25

Phe Gln Lys Pro Glu Thr Arg Arg Glu Phe Asp Leu Ser Asp Pro Leu 35 40

Ala Leu Lys Lys Asp Leu Pro Ala Arg Gln Ser Asp Asn Asp Val Arg 50 55 60

| Asn<br>65  | Thr        | Ile        | Ser        | Gly        | Met<br>70  | Gln        | Lys        | Phe        | Met        | Gly<br>75  | Glu        | Asp        | Leu        | Asn        | Phe<br>80  |  |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|
| His        | Glu        | Arg        | Lys        | Lys<br>85  | Phe        | Gln        | Glu        | Glu        | Gln<br>90  | Asn        | Arg        | Glu        | Trp        | Ser<br>95  | Leu        |  |
| Gln        | Gln        | Gln        | Arg<br>100 | Glu        | Trp        | Lys        | Asn        | Ala<br>105 | Arg        | Ala        | Glu        | Gln        | Lys<br>110 | Сув        | Ala        |  |
| Glu        | Ala        | Leu<br>115 | Tyr        | Thr        | Glu        | Thr        | Arg<br>120 | Leu        | Gln        | Phe        | Asp        | Glu<br>125 | Thr        | Ala        | Lys        |  |
| His        | Leu<br>130 | Gln        | Lys        | Leu        | Glu        | Ser<br>135 | Thr        | Thr        | Arg        | Lys        | Ala<br>140 | Val        | Cys        | Ala        | Ser        |  |
| Val<br>145 | Lys        | Asp        | Phe        | Asn        | Lys<br>150 | Ser        | Gln        | Ala        | Ile        | Glu<br>155 | Ser        | Val        | Glu        | Arg        | Lys<br>160 |  |
| Lys        | Gln        | Glu        | Lys        | Lys<br>165 | Gln        | Glu        | Gln        | Glu        | Asp<br>170 | Asn        | Leu        | Ala        | Glu        | Ile<br>175 | Thr        |  |
| Asn        | Leu        | Leu        | Arg<br>180 | Gly        | Asp        | Leu        | Leu        | Ser<br>185 | Glu        | Asn        | Pro        | Gln        | Gln<br>190 | Ala        | Ala        |  |
| Ser        | Ser        | Phe<br>195 | Gly        | Pro        | His        | Arg        | Val<br>200 | Val        | Pro        | Asp        | Arg        | Trp<br>205 | Lys        | Gly        | Met        |  |
| Thr        | Gln<br>210 | Glu        | Gln        | Leu        | Glu        | Gln<br>215 | Ile        | Arg        | Leu        | Val        | Gln<br>220 | Lys        | Gln        | Gln        | Ile        |  |
| Gln<br>225 | Glu        | Lys        | Leu        | Arg        | Leu<br>230 | Gln        | Glu        | Glu        | Lys        | Arg<br>235 | Gln        | Arg        | Asp        | Leu        | Asp<br>240 |  |
| Trp        | Asp        | Arg        | Arg        | Arg<br>245 | Ile        | Gln        | Gly        | Ala        | Arg<br>250 | Ala        | Thr        | Leu        | Leu        | Phe<br>255 | Glu        |  |
| Arg        | Gln        | Gln        | Trp<br>260 | Arg        | Arg        | Gln        | Arg        | Asp<br>265 |            | Arg        | Arg        | Ala        | Leu<br>270 | Asp        | Ser        |  |
| Ser        | Asn        | Leu<br>275 | Ser        | Leu        | Ala        | Lys        | Glu<br>280 | Gln        | His        | Leu        | Gln        | Lys<br>285 | Lys        | Tyr        | Met        |  |
|            | Glu<br>290 |            | Tyr        |            |            | Gln<br>295 |            |            |            |            | Tyr<br>300 |            | Thr        | Gln        | Phe        |  |

Asn Thr Gly Ser Arg

<210> 2544 <211> 838 <212> PRT

<213> Homo sapiens

<400> 2544

Met Gln Glu Gln Glu Ile Gly Phe Ile Ser Lys Tyr Asn Glu Gly Leu 1  $\phantom{\bigg|}$  15

Cys Val Asn Thr Asp Pro Val Ser Ile Leu Thr Ser Ile Leu Asp Met 20 25 30

Ser Leu His Arg Gln Met Gly Ser Asp Arg Asp Leu Gln Ser Ser Ala 35 40 45

Ser Ser Val Ser Leu Pro Ser Val Lys Lys Ala Pro Lys Lys Arg Arg 50 55 60

Ile Ser Ile Gly Ser Leu Phe Arg Arg Lys Lys Asp Asn Lys Arg Lys 65 70 75 80

Ser Arg Glu Leu Asn Gly Gly Val Asp Gly Ile Ala Ser Ile Glu Ser 85 90 95

Ile His Ser Glu Met Cys Thr Asp Lys Asn Ser Ile Phe Ser Thr Asn  $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$ 

Thr Ser Ser Asp Asn Gly Leu Thr Ser Ile Ser Lys Gln Ile Gly Asp 115 120 125

Phe Ile Glu Cys Pro Leu Cys Leu Leu Arg His Ser Lys Asp Arg Phe 130 135 140

Pro Asp Ile Met Thr Cys His His Arg Ser Cys Val Asp Cys Leu Arg 145 150 155 160

Gln Tyr Leu Arg Ile Glu Ile Ser Glu Ser Arg Val Asn Ile Ser Cys 165 170 175

Pro Glu Cys Thr Glu Arg Phe Asn Pro His Asp Ile Arg Leu Ile Leu 180 185 190

Ser Asp Asp Val Leu Met Glu Lys Tyr Glu Glu Phe Met Leu Arg Arg 195 200 205

Trp Leu Val Ala Asp Pro Asp Cys Arg Trp Cys Pro Ala Pro Asp Cys Gly Tyr Ala Val Ile Ala Phe Gly Cys Ala Ser Cys Pro Lys Leu Thr Cys Gly Arg Glu Gly Cys Gly Thr Glu Phe Cys Tyr His Cys Lys Gln Ile Trp His Pro Asn Gln Thr Cys Asp Ala Ala Arg Gln Glu Arg Ala Gln Ser Leu Arg Leu Arg Thr Ile Arg Ser Ser Ser Ile Ser Tyr Ser Gln Glu Ser Gly Ala Ala Ala Asp Asp Ile Lys Pro Cys Pro Arg Cys Ala Ala Tyr Ile Ile Lys Met Asn Asp Gly Ser Cys Asn His Met Thr Cys Ala Val Cys Gly Cys Glu Phe Cys Trp Leu Cys Met Lys Glu Ile Ser Asp Leu His Tyr Leu Ser Pro Ser Gly Cys Thr Phe Trp Gly Lys Lys Pro Trp Ser Arg Lys Lys Lys Ile Leu Trp Gln Leu Gly Thr Leu Val Gly Ala Pro Val Gly Ile Ala Leu Ile Ala Gly Ile Ala Ile Pro Ala Met Ile Ile Gly Ile Pro Val Tyr Val Gly Arg Lys Ile His Asn Arg Tyr Glu Gly Lys Asp Val Ser Lys His Lys Arg Asn Leu Ala Ile Ala Gly Gly Val Thr Leu Ser Val Ile Val Ser Pro Val Val Ala Ala Val Thr Val Gly Ile Gly Val Pro Ile Met Leu Ala Tyr Val Tyr Gly 

Val Val Pro Ile Ser Leu Cys Arg Ser Gly Gly Cys Gly Val Ser Ala Gly Asn Gly Lys Gly Val Arg Ile Glu Phe Asp Asp Glu Asn Asp Ile Asn Val Gly Gly Thr Asn Thr Ala Val Asp Thr Thr Ser Val Ala Glu Ala Arg His Asn Pro Ser Ile Gly Glu Gly Ser Val Gly Gly Leu Thr Gly Ser Leu Ser Ala Ser Gly Ser His Met Asp Arg Ile Gly Ala Ile Arg Asp Asn Leu Ser Glu Thr Ala Ser Thr Met Ala Leu Ala Gly Ala Ser Ile Thr Gly Ser Leu Ser Gly Ser Ala Met Val Asn Cys Phe Asn Arg Leu Glu Val Gln Ala Asp Val Gln Lys Glu Arg Tyr Ser Leu Ser Gly Glu Ser Gly Thr Val Ser Leu Gly Thr Val Ser Asp Asn Ala Ser Thr Lys Ala Met Ala Gly Ser Ile Leu Asn Ser Tyr Ile Pro Leu Asp Lys Glu Gly Asn Ser Met Glu Val Gln Val Asp Ile Glu Ser Lys Pro Ser Lys Phe Arg His Asn Ser Gly Ser Ser Ser Val Asp Asp Gly Ser Ala Thr Arg Ser Tyr Ala Gly Gly Ser Ser Ser Gly Leu Pro Glu Gly Lvs Ser Ser Ala Thr Lvs Trp Ser Lvs Glu Ala Thr Ala Glv Lvs Lvs Ser Lys Ser Gly Lys Leu Arg Lys Lys Gly Asn Met Lys Ile Asn Glu 

Thr Arq Glu Asp Met Asp Ala Gln Leu Leu Glu Gln Gln Ser Thr Asn 695

Ser Ser Glu Phe Glu Ala Pro Ser Leu Ser Asp Ser Met Pro Ser Val 705 710 715

Ala Asp Ser His Ser Ser His Phe Ser Glu Phe Ser Cys Ser Asp Leu 725 730 735

Glu Ser Met Lys Thr Ser Cys Ser His Gly Ser Ser Asp Tyr His Thr 745 740

Arg Phe Ala Thr Val Asn Ile Leu Pro Glu Val Glu Asn Asp Arg Leu 760

Glu Asn Ser Pro His Gln Cys Ser Ile Ser Val Val Thr Gln Thr Ala 775

Ser Cys Ser Glu Val Ser Gln Leu Asn His Ile Ala Glu Glu His Gly 785 790 795

Asn Asn Gly Ile Lys Pro Asn Val Asp Leu Tyr Phe Gly Asp Ala Leu 805 810

Lys Glu Thr Asn Asn Asn His Ser His Gln Thr Met Glu Leu Lys Val 820 825 830

Ala Ile Gln Thr Glu Ile 835

<210> 2545 <211> 1539

<212> PRT

<213> Homo sapiens

<400> 2545

Met Glu Pro Gly Cys Asp Glu Phe Leu Pro Pro Pro Glu Cys Pro Val 5

Phe Glu Pro Ser Trp Ala Glu Phe Gln Asp Pro Leu Gly Tyr Ile Ala 20 25 30

Lys Ile Arg Pro Ile Ala Glu Lys Ser Gly Ile Cys Lys Ile Arg Pro 40

Pro Ala Asp Trp Gln Pro Pro Phe Ala Val Glu Val Asp Asn Phe Arg 55

Phe Thr Pro Arg Val Gln Arg Leu Asn Glu Leu Glu Ala Gln Thr Arg Val Lys Leu Asn Tyr Leu Asp Gln Ile Ala Lys Phe Trp Glu Ile Gln Gly Ser Ser Leu Lys Ile Pro Asn Val Glu Arg Lys Ile Leu Asp Leu Tyr Ser Leu Ser Lys Ile Val Ile Glu Glu Gly Gly Tyr Glu Ala Ile Cys Lys Asp Arg Arg Trp Ala Arg Val Ala Gln Arg Leu His Tyr Pro Pro Gly Lys Asn Ile Gly Ser Leu Leu Arg Ser His Tyr Glu Arg Ile Ile Tyr Pro Tyr Glu Met Phe Gln Ser Gly Ala Asn His Val Gln Cys Asn Thr His Pro Phe Asp Asn Glu Val Lys Asp Lys Glu Tyr Lys Pro His Ser Ile Pro Leu Arg Gln Ser Val Gln Pro Ser Lys Phe Ser Ser Tyr Ser Arg Arg Ala Lys Arg Leu Gln Pro Asp Pro Glu Pro Thr Glu Glu Asp Ile Glu Lys His Pro Glu Leu Lys Lys Leu Gln Ile Tyr Gly Pro Gly Pro Lys Met Met Gly Leu Gly Leu Met Ala Lys Asp Lys Asp Lys Thr Val His Lys Lys Val Thr Cys Pro Pro Thr Val Thr Val Lys Asp Glu Gln Ser Gly Gly Gly Asn Val Ser Ser Thr Leu Leu Lys Gln His Leu Ser Leu Glu Pro Cys Thr Lys Thr Thr Met Gln Leu Arg Lys 

| Asn<br>305 | His        | Ser        | Ser        | Ala        | Gln<br>310 | Phe        | Ile        | Asp        | Ser        | Tyr<br>315 | Ile        | Cys        | Gln        | Val        | Cys<br>320 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ser        | Arg        | Gly        | Asp        | Glu<br>325 | Asp        | Asn        | Lys        | Leu        | Leu<br>330 | Phe        | Cys        | Asp        | Gly        | Cys<br>335 | Asp        |
| Asp        | Asn        | Tyr        | His<br>340 | Ile        | Phe        | Cys        |            | Leu<br>345 | Pro        | Pro        | Leu        | Pro        | Glu<br>350 | Ile        | Pro        |
| Arg        | Gly        | Ile<br>355 | Trp        | Arg        | Cys        | Pro        | Lys<br>360 | Cys        | Ile        | Leu        | Ala        | Glu<br>365 | Cys        | Lys        | Gln        |
| Pro        | Pro<br>370 | Glu        | Ala        | Phe        | Gly        | Phe<br>375 | Glu        | Gln        | Ala        | Thr        | Gln<br>380 | Glu        | Tyr        | Ser        | Leu        |
| Gln<br>385 | Ser        | Phe        | Gly        | Glu        | Met<br>390 | Ala        | Asp        | Ser        | Phe        | Lys<br>395 | Ser        | Asp        | Tyr        | Phe        | Asn<br>400 |
| Met        | Pro        | Val        | His        | Met<br>405 | Val        | Pro        | Thr        | Glu        | Leu<br>410 | Val        | Glu        | Lys        | Glu        | Phe<br>415 | Trp        |
| Arg        | Leu        | Val        | Ser<br>420 | Ser        | Ile        | Glu        | Glu        | Asp<br>425 | Val        | Thr        | Val        | Glu        | Tyr<br>430 | Gly        | Ala        |
| Asp        | Ile        | His<br>435 | Ser        | Lys        | Glu        | Phe        | Gly<br>440 | Ser        | Gly        | Phe        | Pro        | Val<br>445 | Ser        | Asn        | Ser        |
| Lys        | Gln<br>450 | Asn        | Leu        | Ser        | Pro        | Glu<br>455 | Glu        | Lys        | Glu        | Tyr        | Ala<br>460 | Thr        | Ser        | Gly        | Trp        |
| Asn<br>465 | Leu        | Asn        | Val        | Met        | Pro<br>470 | Val        | Leu        | Asp        | Gln        | Ser<br>475 | Val        | Leu        | Cys        | His        | Ile<br>480 |
| Asn        | Ala        | Asp        | Ile        | Ser<br>485 | Gly        | Met        | Lys        | Val        | Pro<br>490 | Trp        | Leu        | Tyr        | Val        | Gly<br>495 | Met        |
| Val        | Phe        | Ser        | Ala<br>500 | Phe        | Cys        | Trp        |            | Ile<br>505 | Glu        | Asp        | His        | Trp        | Ser<br>510 | Tyr        | Ser        |
| Ile        | Asn        | Tyr<br>515 | Leu        | His        | Trp        | Gly        | Glu<br>520 | Pro        | Lys        | Thr        | Trp        | Tyr<br>525 | Gly        | Val        | Pro        |
| Ser        | Leu<br>530 | Ala        | Ala        | Glu        | His        | Leu<br>535 | Glu        | Glu        | Val        | Met        | Lys<br>540 | Met        | Leu        | Thr        | Pro        |

|            | WU         | 2004/0     | 142341     | U          |            |            |            |                    |                    |            |            |            |            |            | rc I/      |
|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|--------------------|------------|------------|------------|------------|------------|------------|
| Glu<br>545 | Leu        | Phe        | Asp        | Ser        | Gln<br>550 | Pro        | Asp        | Leu                | Leu                | His<br>555 | Gln        | Leu        | Val        | Thr        | Leu<br>560 |
| Met        | Asn        | Pro        | Asn        | Thr<br>565 | Leu        | Met        | Ser        | His                | Gly<br>570         | Val        | Pro        | Val        | Val        | Arg<br>575 | Thr        |
| Asn        | Gln        | Cys        | Ala<br>580 | Gly        | Glu        | Phe        | Val        | Ile<br>5 <b>85</b> | Thr                | Phe        | Pro        | Arg        | Ala<br>590 | Tyr        | His        |
| Ser        | Gly        | Phe<br>595 | Asn        | Gln        | Gly        | Tyr        | Asn<br>600 | Phe                | Ala                | Glu        | Ala        | Val<br>605 | Asn        | Phe        | Cys        |
| Thr        | Ala<br>610 | Asp        | Trp        | Leu        | Pro        | Ala<br>615 | Gly        | Arg                | Gln                | Cys        | Ile<br>620 | Glu        | His        | Tyr        | Arg        |
| Arg<br>625 | Leu        | Arg        | Arg        | Tyr        | Cys<br>630 | Val        | Phe        | Ser                | His                | Glu<br>635 | Glu        | Leu        | Ile        | Cys        | Lys<br>640 |
| Met        | Ala        | Ala        | Phe        | Pro<br>645 | Glu        | Thr        | Leu        | Asp                | <b>Le</b> u<br>650 | Asn        | Leu        | Ala        | Val        | Ala<br>655 | Val        |
| His        | Lys        | Glu        | Met<br>660 | Phe        | Ile        | Met        | Val        | Gln<br>665         | Glu                | Glu        | Arg        | Arg        | Leu<br>670 | Arg        | Lys        |
| Ala        | Leu        | Leu<br>675 | Glu        | Lys        | Gly        | Val        | Thr<br>680 | Glu                | Ala                | Glu        | Arg        | Glu<br>685 | Ala        | Phe        | Glu        |
| Leu        | Leu<br>690 | Pro        | Asp        | Asp        | Glu        | Arg<br>695 | Gln        | Cys                | Ile                | Lys        | Cys<br>700 | Lys        | Thr        | Thr        | Сув        |
| Phe<br>705 | Leu        | Ser        | Ala        | Leu        | Ala<br>710 | Cys        | Tyr        | Asp                | Cys                | Pro<br>715 | Asp        | Gly        | Leu        | Val        | Сув<br>720 |
| Leu        | Ser        | His        | Ile        | Asn<br>725 | Asp        | Leu        | Cys        | Lys                | Cys<br>730         | Ser        | Ser        | Ser        | Arg        | Gln<br>735 | Tyr        |
| Leu        | Arg        | Tyr        | Arg<br>740 |            | Thr        | Leu        | Asp        | Glu<br>745         | Leu                | Pro        | Thr        | Met        | Leu<br>750 | His        | Lys        |
| Leu        | Lys        | Ile<br>755 | Arg        | Ala        | Glu        | Ser        | Phe<br>760 | Asp                | Thr                | Trp        | Ala        | Asn<br>765 | Lys        | Val        | Arg        |
| Val        | Ala<br>770 | Leu        | Glu        | Val        | Glu        | Asp<br>775 | Gly        | Arg                | Lys                | Arg        | Ser<br>780 | Phe        | Glu        | Glu        | Leu        |

Arg Ala Leu Glu Ser Glu Ala Arg Glu Arg Arg Phe Pro Asn Ser Glu

785 790 795 800

Leu Leu Gln Arg Leu Lys Asn Cys Leu Ser Glu Val Glu Ala Cys Ile 805 810 815

Ala Gln Val Leu Gly Leu Val Ser Gly Gln Val Ala Arg Met Asp Thr 820 825 830

Pro Gln Leu Thr Leu Thr Glu Leu Arg Val Leu Leu Glu Gln Met Gly 835 840 845

Ser Leu Pro Cys Ala Met His Gln Ile Gly Asp Val Lys Asp Val Leu 850 855 860

Glu Gln Val Glu Ala Tyr Gln Ala Glu Ala Arg Glu Ala Leu Ala Thr 865 870 875 880

Leu Pro Ser Ser Pro Gly Leu Leu Arg Ser Leu Leu Glu Arg Gly Gln 885 890 895

Gln Leu Gly Val Glu Val Pro Glu Ala His Gln Leu Gln Gln Gln Val 900 905 910

Glu Gln Ala Gln Trp Leu Asp Glu Val Lys Gln Ala Leu Ala Pro Ser 915 920 925

Ala His Arg Gly Ser Leu Val Ile Met Gln Gly Leu Leu Val Met Gly 930 935 940

Ala Lys Ile Ala Ser Ser Pro Ser Val Asp Lys Ala Arg Ala Glu Leu 945 950 955 960

Gln Glu Leu Leu Thr Ile Ala Glu Arg Trp Glu Glu Lys Ala His Phe 965 970 975

Cys Leu Glu Ala Arg Gln Lys His Pro Pro Ala Thr Leu Glu Ala Ile 980 985 990

Ile Arg Glu Thr Glu Asn Ile Pro Val His Leu Pro Asn Ile Gln Ala 995 1000 1005

Leu Lys Glu Ala Leu Thr Lys Ala Gln Ala Trp Ile Ala Asp Val 1010 \$1015\$

Asp Glu Ile Gln Asn Gly Asp His Tyr Pro Cys Leu Asp Asp Leu 1025 1030 1035

| Glu | Gly<br>1040 | Leu | Val | Ala | Val | Gly<br>1045 | Arg | Asp | Leu | Pro | Val<br>1050 | Gly | Leu | Glu |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Glu | Leu<br>1055 | Arg | Gln | Leu | Glu | Leu<br>1060 | Gln | Val | Leu | Thr | Ala<br>1065 | His | Ser | Trp |
| Arg | Glu<br>1070 | Lys | Ala | Ser | Lys | Thr<br>1075 | Phe | Leu | Lys | Lys | Asn<br>1080 | Ser | Cys | Tyr |
| Thr | Leu<br>1085 | Leu | Glu | Val | Leu | Cys<br>1090 |     | Сув | Ala | Asp | Ala<br>1095 | Gly | Ser | Asp |
| Ser | Thr<br>1100 | Lys | Arg | Ser | Arg | Trp<br>1105 | Met | Glu | Lys | Ala | Leu<br>1110 | Gly | Leu | Tyr |
| Gln | Cys<br>1115 | Asp | Thr | Glu | Leu | Leu<br>1120 |     | Leu | Ser | Ala | Gln<br>1125 | Asp | Leu | Arg |
| Asp | Pro<br>1130 |     | Ser | Val | Ile | Val<br>1135 | Ala | Phe | Lys | Glu | Gly<br>1140 | Glu | Gln | Lys |
| Glu | Lys<br>1145 |     | Gly | Ile | Leu | Gln<br>1150 |     | Arg | Arg | Thr | Asn<br>1155 | Ser | Ala | Lys |
| Pro | Ser<br>1160 |     | Leu | Ala | Pro | Ser<br>1165 | Leu | Met | Ala | Ser | Ser<br>1170 |     | Thr | Ser |
| Ile | Cys<br>1175 |     | Сув | Gly | Gln | Val<br>1180 |     | Ala | Gly | Val | Gly<br>1185 |     | Leu | Gln |
| Cys | Asp<br>1190 |     | Суз | Gln | Asp | Trp<br>1195 |     | His | Gly | Gln | Cys<br>1200 |     | Ser | Val |
| Pro | His<br>1205 |     | Leu | Thr | Ser | Pro<br>1210 |     | Pro | Ser | Leu | Thr<br>1215 | Ser | Ser | Pro |
| Leu | Leu<br>1220 |     | Trp | Trp | Glu | Trp<br>1225 |     | Thr | Lys | Phe | Leu<br>1230 |     | Pro | Leu |
| Cys | Met<br>1235 |     | Ser | Arg | Arg | Pro<br>1240 |     | Leu | Glu | Thr | Ile<br>1245 |     | Ala | Leu |
| Leu | Val<br>1250 |     | Leu | Gln | Arg | Leu<br>1255 |     | Val | Arg | Leu | Pro<br>1260 |     | Gly | Glu |

| Ala | Leu<br>1265 | Gln | Cys | Leu |     | Glu<br>1270 |     | Ala | Ile |     | Trp<br>1275 |     | Asp | Arg |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Ala | Arg<br>1280 | Lys | Ala | Leu | Ala | Phe<br>1285 | Glu | Asp | Val | Thr | Ala<br>1290 | Leu | Leu | Arg |
| Gln | Leu<br>1295 | Ala | Glu | Leu | Arg | Gln<br>1300 | Gln | Leu | Gln | Ala | Lys<br>1305 | Pro | Arg | Pro |
| Glu | Glu<br>1310 | Ala | Ser | Val | Tyr | Thr<br>1315 |     | Ala | Thr | Ala | Cys<br>1320 | Asp | Pro | Ile |
| Arg | Glu<br>1325 | Gly | Ser | Gly |     | Asn<br>1330 |     | Ser | Lys | Val | Gln<br>1335 | Gly | Leu | Leu |
| Glu | Asn<br>1340 |     | Asp | Ser |     | Thr<br>1345 |     | Pro | Glu | Asn | Met<br>1350 | Ala | Pro | Gly |
| Lys | Gly<br>1355 |     | Asp | Leu |     | Leu<br>1360 |     | Ser | Ser |     | Leu<br>1365 |     | Gln | Leu |
| Thr | Gly<br>1370 |     | Val | Leu |     | Leu<br>1375 |     | Glu | Ala |     | Arg<br>1380 |     | Pro | Leu |
| Glu | Glu<br>1385 | Leu | Met | Met | Glu | Gly<br>1390 |     | Leu | Leu | Glu | Val<br>1395 |     | Leu | Asp |
| Glu | Asn<br>1400 |     | Ser | Ile | Trp | Gln<br>1405 |     | Leu | Gln | Ala | Gly<br>1410 |     | Pro | Pro |
| Asp | Leu<br>1415 |     | Arg | Ile | Arg | Thr<br>1420 |     | Leu | Glu | Leu | Glu<br>1425 |     | Phe | Glu |
| His | Gln<br>1430 |     | Ser | Arg |     | Arg<br>1435 |     | Arg | Ala |     | Glu<br>1440 |     | Arg | Arg |
| Arg | Arg<br>1445 |     | Lys | Val | Asp | Gln<br>1450 |     | Arg | Asn | Val | Glu<br>1455 |     | Leu | Val |
| Gln | Gln<br>1460 |     | Leu | Gln |     | Lys<br>1465 |     | Ala | Arg |     | Ser<br>1470 |     | Ile | Met |
| Ser | Gln<br>1475 |     | Gly | Arg | Glu | Glu<br>1480 |     | His | Tyr | Gln | Glu<br>1485 |     | Ala | Asp |

Arg Glu Asn Met Phe Leu Thr Pro Ser Thr Asp His Ser Pro Phe 1490 1495

Leu Lys Gly Asn Gln Asn Ser Leu Gln His Lys Asp Ser Gly Ser 1505 1510 1515

Ser Ala Ala Cys Pro Ser Leu Met Pro Leu Leu Gln Leu Ser Tyr 1520 1525 1530

Ser Asp Glu Gln Gln Leu 1535

<210> 2546

<211> 274

<212> PRT <213> Homo sapiens

<400> 2546

Met Gly Val Ser Ala Gln Asp Ile Phe Asn Ala Val Ile Lys Glu His 1 10 15

Pro Gly Leu Val Gln Arg Leu Pro Cys Val Trp Asn Val Gln Leu Ser 20 25 30

Asp His Thr Leu Ala Glu Arg Cys Tyr Ser Glu Ala Ser Asp Leu Lys  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Val Ile His Trp Asn Ser Pro Lys Lys Leu Arg Val Lys Asn Lys His 50 55 60

Val Glu Phe Phe Arg Asn Phe Tyr Leu Thr Phe Leu Glu Tyr Asp Gly 65 70 75 80

Asn Leu Leu Arg Arg Glu Leu Phe Val Cys Pro Ser Gln Pro Pro Pro 85 90 95

Gly Ala Glu Gln Leu Gln Gln Ala Leu Ala Gln Leu Asp Gly Glu Asp 100 105 110

Pro Cys Phe Glu Phe Arg Gln Gln Gln Leu Thr Val His Arg Val His 115 120 125

Val Thr Phe Leu Pro His Glu Pro Pro Pro Pro Arg Pro His Asp Val

Thr Leu Val Ala Gln Leu Ser Met Asp Arg Leu Gln Met Leu Glu Ala 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Leu Cys Arg His Trp Pro Gly Pro Met Ser Leu Ala Leu Tyr Leu Thr

Asp Ala Glu Ala Gln Gln Phe Leu His Phe Val Glu Ala Ser Pro Val

Leu Ala Ala Arg Gln Asp Val Ala Tyr His Val Val Tyr Arg Glu Gly 195 200 205

Pro Leu Tyr Pro Val Asn Gln Leu Arg Asn Val Ala Leu Ala Gln Ala 210 215 220

Leu Thr Pro Tyr Val Phe Leu Ser Asp Ile Asp Phe Leu Pro Ala Tyr 225 230 235 240

Ser Leu Tyr Asp Tyr Leu Arg Glu Ala Arg Ala Gly Phe Asn Ser Ser 245 250 255

Ser Thr Cys Gly Cys Ala His Pro Ser His Gln Ala Arg Trp Pro Met 260 265 270

Val Val

<210> 2547

<211> 504 <212> PRT

<213> Homo sapiens

<400> 2547

Met Val Ala Pro Gly Ser Val Thr Ser Arg Leu Gly Ser Val Pro 1  $\phantom{\bigg|}$  15

Phe Leu Leu Val Leu Val Asp Leu Gln Tyr Glu Gly Ala Glu Cys Gly
20 25 30

Val Asn Ala Asp Val Glu Lys His Leu Glu Leu Gly Lys Lys Leu Leu 35  $\phantom{\bigg|}40\phantom{\bigg|}$ 

Ala Ala Gly Gln Leu Ala Asp Ala Leu Ser Gln Phe His Ala Ala Val $50 \ \ \, 55 \ \ \, 60$ 

Asp Gly Asp Pro Asp Asn Tyr Ile Ala Tyr Tyr Arg Arg Ala Thr Val 65 70 75 80

Phe Leu Ala Met Gly Lys Ser Lys Ala Ala Leu Pro Asp Leu Thr Lys

Val Ile Gln Leu Lys Met Asp Phe Thr Ala Ala Arg Leu Gln Arg Gly 100 105 110

His Leu Leu Lys Gln Gly Lys Leu Asp Glu Ala Glu Asp Asp Phe 115 120 125

Lys Lys Val Leu Lys Ser Asn Pro Ser Glu Asn Glu Glu Lys Glu Ala 130 135 140

Gln Ser Gln Leu Ile Lys Ser Asp Glu Met Gln Arg Leu Arg Ser Gln 145 150 155 160

Ala Leu Asn Ala Phe Gly Ser Gly Asp Tyr Thr Ala Ala Ile Ala Phe 165 170 175

Leu Asp Lys Ile Leu Glu Val Cys Val Trp Asp Ala Glu Leu Arg Glu 180 185 190

Leu Arg Ala Glu Cys Phe Ile Lys Glu Gly Glu Pro Arg Lys Ala Ile 195 200 205

Ser Asp Leu Lys Ala Ala Ser Lys Leu Lys Asn Asp Asn Thr Glu Ala 210 215 220

Phe Tyr Lys Ile Ser Thr Leu Tyr Tyr Gln Leu Gly Asp His Glu Leu 225 230 235

Ser Leu Ser Glu Val Arg Glu Cys Leu Lys Leu Asp Gln Asp His Lys 245 250 255

Arg Cys Phe Ala His Tyr Lys Gln Val Lys Lys Leu Asn Lys Leu Ile 260 265 270

Glu Ser Ala Glu Glu Leu Ile Arg Asp Gly Arg Tyr Thr Asp Ala Thr 275 280 285

Ser Lys Tyr Glu Ser Val Met Lys Thr Glu Pro Ser Ile Ala Glu Tyr 290 295 300

Thr Val Arg Ser Lys Glu Arg Ile Cys His Cys Phe Ser Lys Asp Glu 305 310 315 320

Lys Pro Val Glu Ala Ile Arg Val Cys Ser Glu Val Leu Gln Met Glu

325 330 335

Pro Asp Asn Val Asn Ala Leu Lys Asp Arg Ala Glu Ala Tyr Leu Ile 340 345 350

Glu Glu Met Tyr Asp Glu Ala Ile Gln Asp Tyr Glu Thr Ala Gln Glu 355 \$360\$

His Asn Glu Asn Asp Gln Gln Ile Arg Glu Gly Leu Glu Lys Ala Gln 370 375 380

Arg Leu Leu Lys Gln Ser Gln Lys Arg Asp Tyr Tyr Lys Ile Leu Gly 385  $\phantom{\bigg|}$  390  $\phantom{\bigg|}$  395  $\phantom{\bigg|}$  400

Val Lys Arg Asn Ala Lys Lys Gln Glu Ile Ile Lys Ala Tyr Arg Lys 405 410 415

Leu Ala Leu Gln Trp His Pro Asp Asn Phe Gln Asn Glu Glu Glu Lys 420 425 430

Lys Lys Ala Glu Lys Lys Phe Ile Asp Ile Ala Ala Ala Lys Glu Val 435 440 445

Leu Ser Asp Pro Glu Met Arg Lys Lys Phe Asp Asp Gly Glu Asp Pro 450 455

Leu Asp Ala Glu Ser Gln Gln Gly Gly Gly Gly Asn Pro Phe His Arg 465 470 475 480

Ser Trp Asn Ser Trp Gln Gly Phe Asn Pro Phe Ser Ser Gly Gly Pro

Phe Arg Phe Lys Phe His Phe Asn 500

<210> 2548

<211> 258

<212> PRT

<213> Homo sapiens

<400> 2548

Met Pro Pro Gln Gln Gly Asp Pro Ala Phe Pro Asp Arg Cys Glu Ala

Pro Pro Val Pro Pro Arg Arg Glu Arg Gly Gly Arg Gly Gly Arg Gly 25 30

Pro Gly Glu Pro Gly Gly Arg Gly Arg Ala Gly Gly Ala Glu Gly Arg 35 40 45

Gly Val Lys Cys Val Leu Val Gly Asp Gly Ala Val Gly Lys Thr Ser 50 60

Leu Val Val Ser Tyr Thr Thr Asn Gly Tyr Pro Thr Glu Tyr Ile Pro 65 70 75 80

Thr Ala Phe Asp Asn Phe Ser Ala Val Val Ser Val Asp Gly Arg Pro

Val Arg Leu Gln Leu Cys Asp Thr Ala Gly Gln Asp Glu Phe Asp Lys 100 105 110

Leu Arg Pro Leu Cys Tyr Thr Asn Thr Asp Ile Phe Leu Leu Cys Phe 115 120 125

Ser Val Val Ser Pro Ser Ser Phe Gln Asn Val Ser Glu Lys Trp Val 130 135 140

Thr Gln Ser Asp Leu Arg Glu Asp Val Lys Val Leu Ile Glu Leu Asp

Lys Cys Lys Glu Lys Pro Val Pro Glu Glu Ala Ala Lys Leu Cys Ala 180 185 190

Glu Glu Ile Lys Ala Ala Ser Tyr Ile Glu Cys Ser Ala Leu Thr Gln
195 200 205

Lys Asn Leu Lys Glu Val Phe Asp Ala Ala Ile Val Ala Gly Ile Gln 210 215 220

Tyr Ser Asp Thr Gln Gln Gln Pro Lys Lys Ser Lys Ser Arg Thr Pro 225  $\phantom{\bigg|}230\phantom{\bigg|}235\phantom{\bigg|}235\phantom{\bigg|}$ 

Asp Lys Met Lys Asn Leu Ser Lys Ser Trp Trp Lys Lys Tyr Cys Cys 245 250 255

Phe Val

<210> 2549

<211> 394 <212> PRT

<213> Homo sapiens

<400> 2549

Met Phe Lys Lys Lys Ser His Val Arg Asn His Leu Arg Thr His Thr 1 5 10 15

Gly Glu Arg Pro Phe Pro Cys Pro Asp Cys Ser Lys Pro Phe Asn Ser 20 25 30

Pro Ala Asn Leu Ala Arg His Arg Leu Thr His Thr Gly Glu Arg Pro  $_{35}$  40 45

Tyr Arg Cys Gly Asp Cys Gly Lys Ala Phe Thr Gln Ser Ser Thr Leu 50 55 60

Arg Gln His Arg Leu Val His Ala Gln His Phe Pro Tyr Arg Cys Gln 65 70 75 80

Glu Cys Gly Val Arg Phe His Arg Pro Tyr Arg Leu Leu Met His Arg 85 90 95

Tyr His His Thr Gly Glu Tyr Pro Tyr Lys Cys Arg Glu Cys Pro Arg

Ser Phe Leu Leu Arg Arg Leu Leu Glu Val His Gln Leu Val Val His

Ala Gly Arg Gln Pro His Arg Cys Pro Ser Cys Gly Ala Ala Phe Pro 130 135 140

Ser Ser Leu Arg Leu Arg Glu His Arg Cys Ala Ala Ala Ala Ala Glu 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Ala Pro Arg Arg Phe Glu Cys Gly Thr Cys Gly Lys Lys Val Gly Ser 165 170 175

Ala Ala Arg Leu Gln Ala His Glu Ala Ala His Ala Ala Ala Gly Pro  $180 \hspace{1.5cm} 185 \hspace{1.5cm} 190 \hspace{1.5cm}$ 

Gly Glu Val Leu Ala Lys Glu Pro Pro Ala Pro Arg Ala Pro Arg Ala 195 200 205

Thr Arg Ala Pro Val Ala Ser Pro Ala Ala Leu Gly Ser Thr Ala Thr 210 215 220

Ala Ser Pro Ala Ala Pro Ala Arg Arg Gly Leu Glu Cys Ser Glu 225 230 235 Cys Lys Lys Leu Phe Ser Thr Glu Thr Ser Leu Gln Val His Arg Arg 245 250 Ile His Thr Gly Glu Arg Pro Tyr Pro Cys Pro Asp Cys Gly Lys Ala 260 265 Phe Arg Gln Ser Thr His Leu Lys Asp His Arg Arg Leu His Thr Gly 275 280 Glu Arg Pro Phe Ala Cys Glu Val Cys Gly Lys Ala Phe Ala Ile Ser 295 Met Arg Leu Ala Glu His Arg Arg Ile His Thr Gly Glu Arg Pro Tyr 305 310 315 Ser Cys Pro Asp Cys Gly Lys Ser Tyr Arg Ser Phe Ser Asn Leu Trp 325 330 Lys His Arg Lys Thr His Gln Gln His Gln Ala Ala Val Arg Gln 340 345 350 Gln Leu Ala Glu Ala Glu Ala Val Gly Leu Ala Val Met Glu Thr 355 360 365 Ala Val Glu Ala Leu Pro Leu Val Glu Ala Ile Glu Ile Tyr Pro Leu 370 380 375 Ala Glu Ala Glu Gly Val Gln Ile Ser Gly 385 390 <210> 2550 <211> 415 <212> PRT <213> Homo sapiens <400> 2550 Met Glu Asp Leu Cys Val Ala Asn Thr Leu Phe Ala Leu Asn Leu Phe 10

Lys His Leu Ala Lys Ala Ser Pro Thr Gln Asn Leu Phe Leu Ser Pro  $20 \\ \hspace*{1.5cm} 25 \\ \hspace*{1.5cm} 30 \\ \hspace*{1.5cm}$ 

/US2003/012946

|            | wo 2       | 2004/0     | )4234      | 6          |            |            |            |            |            |            |            |            |            |            | PCT        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Trp        | Ser        | Ile<br>35  | Ser        | Ser        | Thr        | Met        | Ala<br>40  | Met        | Val        | Tyr        | Met        | Gly<br>45  | Ser        | Arg        | Gly        |
| Ser        | Thr<br>50  | Glu        | Asp        | Gln        | Met        | Ala<br>55  | Lys        | Val        | Leu        | Gln        | Phe<br>60  | Asn        | Glu        | Val        | Gly        |
| Ala<br>65  | Asn        | Ala        | Val        | Thr        | Pro<br>70  | Met        | Thr        | Pro        | Glu        | Asn<br>75  | Phe        | Thr        | Ser        | Cys        | Gly<br>80  |
| Phe        | Met        | Gln        | Gln        | Ile<br>85  | Gln        | Lys        | Gly        | Ser        | Tyr<br>90  | Pro        | Asp        | Ala        | Ile        | Leu<br>95  | Gln        |
| Ala        | Gln        | Ala        | Ala<br>100 | Asp        | Lys        | Ile        | His        | Ser<br>105 | Ser        | Phe        | Arg        | Ser        | Leu<br>110 | Ser        | Ser        |
| Ala        | Ile        | Asn<br>115 | Ala        | Ser        | Thr        | Gly        | Asn<br>120 | Tyr        | Leu        | Leu        | Glu        | Ser<br>125 | Val        | Asn        | Lys        |
| Leu        | Phe<br>130 | Gly        | Glu        | Lys        | Ser        | Ala<br>135 | Ser        | Phe        | Arg        | Glu        | Glu<br>140 | Tyr        | Ile        | Arg        | Leu        |
| Cys<br>145 | Gln        | Lys        | Tyr        | Tyr        | Ser<br>150 | Ser        | Glu        | Pro        | Gln        | Ala<br>155 | Val        | Asp        | Phe        | Leu        | Glu<br>160 |
| Сув        | Ala        | Glu        | Glu        | Ala<br>165 | Arg        | Lys        | Lys        | Ile        | Asn<br>170 | Ser        | Trp        | Val        | Lys        | Thr<br>175 | Gln        |
| Thr        | Lys        | Gly        | Lys<br>180 | Ile        | Pro        | Asn        | Leu        | Leu<br>185 | Pro        | Glu        | Gly        | Ser        | Val<br>190 | Asp        | Gly        |
| Asp        | Thr        | Arg<br>195 | Met        | Val        | Leu        | Val        | Asn<br>200 | Ala        | Val        | Tyr        | Phe        | Lys<br>205 | Gly        | Lys        | Trp        |
| Lys        | Thr<br>210 | Pro        | Phe        | Glu        | Lys        | Lys<br>215 | Leu        | Asn        | Gly        | Leu        | Tyr<br>220 | Pro        | Phe        | Arg        | Val        |
| Asn<br>225 | Ser        | Ala        | Gln        | Arg        | Thr<br>230 | Pro        | Val        | Gln        | Met        | Met<br>235 | Tyr        | Leu        | Arg        | Glu        | Lys<br>240 |
| Leu        | Asn        | Ile        | Gly        | Tyr<br>245 | Ile        | Glu        | Asp        | Leu        | Lys<br>250 | Ala        | Gln        | Ile        | Leu        | Glu<br>255 | Leu        |

Pro Tyr Ala Gly Asp Val Ser Met Phe Leu Leu Pro Asp Glu Ile 265 260 270

Ala Asp Val Ser Thr Gly Leu Glu Leu Leu Glu Ser Glu Ile Thr Tyr

Asp Lys Leu Asn Lys Trp Thr Ser Lys Asp Lys Met Ala Glu Asp Glu 

Val Glu Val Tyr Ile Pro Gln Phe Lys Leu Glu Glu His Tyr Glu Leu 

Arg Ser Ile Leu Arg Ser Met Gly Met Glu Asp Ala Phe Asn Lys Gly 

Arg Ala Asn Phe Ser Gly Met Ser Glu Arg Asn Asp Leu Phe Leu Ser 

Glu Val Phe His Gln Ala Met Val Asp Val Asn Glu Glu Gly Thr Glu 

Ala Ala Ala Gly Thr Gly Gly Val Met Thr Gly Arg Thr Gly His Gly 

Gly Pro Gln Phe Val Ala Asp His Pro Phe Leu Phe Leu Ile Met His

Lys Ile Thr Asn Cys Ile Leu Phe Phe Gly Arg Phe Ser Ser Pro 

<210> 2551 <211> 434

<212> PRT <213> Homo sapiens

<400> 2551

Met Ser Ile Leu Lys Ile His Ala Arg Glu Ile Phe Asp Ser Arg Gly 

Asn Pro Thr Val Glu Val Asp Leu Phe Thr Ser Lys Gly Leu Phe Arg 

Ala Ala Val Pro Ser Gly Ala Ser Thr Gly Ile Tyr Glu Ala Leu Glu 

Leu Arg Asp Asn Asp Lys Thr Arg Tyr Met Gly Lys Gly Val Ser Lys 

Ala Val Glu His Ile Asn Lys Thr Ile Ala Pro Ala Leu Val Ser Lys 

Lys Leu Asn Val Thr Glu Gln Glu Lys Ile Asp Lys Leu Met Ile Glu Met Asp Gly Thr Glu Asn Lys Ser Lys Phe Gly Ala Asn Ala Ile Leu Gly Val Ser Leu Ala Val Cys Lys Ala Gly Ala Val Glu Lys Gly Val Pro Leu Tyr Arg His Ile Ala Asp Leu Ala Gly Asn Ser Glu Val Ile Leu Pro Val Pro Ala Phe Asn Val Ile Asn Gly Gly Ser His Ala Gly Asn Lys Leu Ala Met Gln Glu Phe Met Ile Leu Pro Val Gly Ala Ala Asn Phe Arg Glu Ala Met Arg Ile Gly Ala Glu Val Tyr His Asn Leu Lys Asn Val Ile Lys Glu Lys Tyr Gly Lys Asp Ala Thr Asn Val Gly Asp Glu Gly Gly Phe Ala Pro Asn Ile Leu Glu Asn Lys Glu Gly Leu Glu Leu Leu Lys Thr Ala Ile Gly Lys Ala Gly Tyr Thr Asp Lys Val Val Ile Gly Met Asp Val Ala Ala Ser Glu Phe Phe Arg Ser Gly Lys Tyr Asp Leu Asp Phe Lys Ser Pro Asp Asp Pro Ser Arg Tyr Ile Ser Pro Asp Gln Leu Ala Asp Leu Tyr Lys Ser Phe Ile Lys Asp Tyr Pro Val Val Ser Ile Glu Asp Pro Phe Asp Gln Asp Asp Trp Gly Ala Trp Gln Lys Phe Thr Ala Ser Ala Gly Ile Gln Val Val Gly Asp Asp Leu 

Thr Val Thr Asn Pro Lys Arg Ile Ala Lys Ala Val Asn Glu Lys Ser 325 330 335

Cys Asn Cys Leu Leu Leu Lys Val Asn Gln Ile Gly Ser Val Thr Glu 340 345 350

Ser Leu Gln Ala Cys Lys Leu Ala Gln Ala Asn Gly Trp Gly Val Met

Val Ser His Arg Ser Gly Glu Thr Glu Asp Thr Phe Ile Ala Asp Leu 370 375 380

Val Val Gly Leu Cys Thr Gly Gln Ile Lys Thr Gly Ala Pro Cys Arg 385  $\phantom{\bigg|}390\phantom{\bigg|}395\phantom{\bigg|}395\phantom{\bigg|}$ 

Ser Glu Arg Leu Ala Lys Tyr Asn Gln Leu Leu Arg Ile Glu Glu Glu 405 410 415

Leu Gly Ser Lys Ala Lys Phe Ala Gly Arg Asn Phe Arg Asn Pro Leu

Ala Lys

<210> 2552

<211> 281

<212> PRT <213> Homo sapiens

<400> 2552

Met Glu Val His Gln Gln Asn Ala Leu Phe Gln Tyr Phe Ala Asp Thr 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Leu Thr Ala Val Val Gln Asn Ala Lys Lys Asn Gly Arg Tyr Asp Met 20 25 30

Gly Ile Leu Asp Leu Gly Ser Gly Asp Glu Lys Val Arg Lys Ser Asp 35 40 45

Val Lys Lys Phe Leu Thr Pro Gly Tyr Ser Thr Ser Gly His Val Glu 50 55 60

Leu Tyr Thr Ile Ser Val Glu Arg Gly Met Ser Trp Glu Glu Ala Thr 65 70 75 80

Lys Ile Trp Ala Glu Leu Thr Gly Pro Asp Asp Gly Phe Tyr Leu Ser 85 90 95

Leu Gln Ile Arg Asn Asn Lys Lys Thr Ala Ile Leu Val Lys Glu Val

Asn Pro Lys Lys Leu Phe Leu Val Tyr Arg Pro Asn Thr Gly Lys 115 120 125

Gln Leu Lys Leu Glu Ile Tyr Ala Asp Leu Lys Lys Lys Tyr Lys Lys 130 135 140

Val Val Ser Asp Asp Ala Leu Met His Trp Leu Asp Gln Tyr Asn Ser 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Ser Ala Asp Thr Cys Thr His Ala Tyr Trp Arg Gly Asn Cys Lys Lys 165 \$170\$

Ala Ser Leu Gly Leu Val Cys Glu Ile Gly Leu Arg Cys Arg Thr Tyr \$180\$ \$180 \$185 \$190

Tyr Val Leu Cys Gly Ser Val Leu Ser Val Trp Thr Lys Val Glu Gly 195 200 205

Val Leu Ala Ser Val Ser Gly Thr Asn Val Lys Met Gln Ile Val Arg 210 215 220

Leu Arg Thr Glu Asp Gly Gln Arg Ile Val Gly Leu Ile Ile Pro Ala 225 230 235

Asn Cys Val Ser Pro Leu Val Asn Leu Leu Ser Thr Ser Asp Gln Ser 245 250 255

Gln Gln Leu Ala Val Gln Gln Lys Gln Leu Trp Gln Gln His His Pro \$260\$

Gln Ser Ile Thr Asn Leu Ser Asn Ala 275 280

<210> 2553

<211> 176 <212> PRT

<213> Homo sapiens

<400> 2553

Met Lys Ala Ser Gly Thr Leu Arg Glu Tyr Lys Val Val Gly Arg Cys

Leu Pro Thr Pro Lys Cys His Thr Pro Pro Leu Tyr Arg Met Arg Ile 20 25 30

Phe Ala Pro Asn His Val Val Ala Lys Ser Arg Phe Trp Tyr Phe Val 35 40 45

Ser Gln Leu Lys Lys Met Lys Lys Ser Ser Gly Glu Ile Val Tyr Cys 50 55 60

Gly Gln Val Phe Glu Lys Ser Pro Leu Arg Val Lys Asn Phe Gly Ile 65 70 75 80

Trp Leu Arg Tyr Asp Ser Arg Ser Gly Thr His Asn Met Tyr Arg Glu  $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$ 

Tyr Arg Asp Leu Thr Thr Ala Gly Ala Val Thr Gln Cys Tyr Arg Asp  $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$ 

Met Gly Ala Arg His Arg Ala Arg Ala His Ser Ile Gln Ile Met Lys 115 120 125

Val Glu Glu Ile Ala Ala Ser Lys Cys Arg Arg Pro Ala Val Lys Gln 130 135 140

Phe His Asp Ser Lys Ile Lys Phe Pro Leu Pro His Arg Val Leu Arg 145 150 155 160

Arg Gln His Lys Pro Arg Phe Thr Thr Lys Arg Pro Asn Thr Phe Phe 165 170 175

<210> 2554

<211> 363 <212> PRT

<213> Homo sapiens

----- nome supress

<400> 2554

Met Ala Leu His Cys Gln Glu Phe Gly Gly Lys Asn Tyr Glu Ala Ser 1  $\phantom{\bigg|}$  5

Met Ser His Val Asp Lys Phe Val Lys Glu Leu Leu Ser Ser Asp Ala 20 25 30

Met Lys Glu Tyr Asn Arg Ala Arg Val Tyr Leu Asp Glu Asn Tyr Lys 35 40 45

Ser Gln Glu His Phe Thr Ala Leu Gly Ser Phe Tyr Phe Leu His Glu 50 55 60

Ser Leu Lys Asn Ile Tyr Gln Phe Asp Phe Lys Ala Lys Lys Tyr Arq Lys Val Ala Gly Lys Glu Ile Tyr Ser Asp Thr Leu Glu Ser Thr Pro Met Leu Glu Lys Glu Lys Phe Arg Arg Leu Leu Pro Arg Val Gln Met Val Lys Lys Arg Leu His Pro Asp Glu Val Val Ile Ala Asp Cys Ala Phe Asp Leu Val Asn Ile His Leu Phe His Asp Ala Ser Asn Leu Val Ala Trp Glu Thr Ser Pro Ser Val Tyr Ser Gly Ile Arq His Lys Ala Leu Gly Tyr Val Leu Asp Arg Ile Ile Asp Gln Arg Phe Glu Lys Val Ser Tyr Phe Val Phe Gly Asp Phe Asn Phe Arg Leu Asp Ser Lys Ser Val Val Glu Thr Leu Ser Ala Lys Pro Pro Met Gln Thr Val Arg Ala Ala Asp Thr Asn Glu Val Val Lys Leu Ile Phe Arg Glu Ser Asp Asn Asp Arg Lys Val Met Leu Gln Leu Glu'Lys Lys Leu Phe Asp Tyr Phe Asn Gln Glu Val Phe Arg Asp Asn Asn Gly Thr Ala Leu Leu Glu Phe Asp Lys Glu Leu Ser Val Phe Lys Asp Arg Leu Tyr Glu Leu Asp Ile Ser Phe Pro Pro Ser Tyr Pro Tyr Ser Glu Asp Ala Arg Gln Gly Glu Gln Tyr Met Asn Thr Arq Cys Pro Ala Trp Cys Asp Arq Ile Leu Met 

Ser Pro Ser Ala Lys Glu Leu Val Leu Arg Ser Glu Ser Glu Glu Lys 305 310 315 320

Val Val Thr Tyr Asp His Ile Gly Pro Asn Val Cys Met Gly Asp His 325 330 335

Lys Pro Val Phe Leu Ala Phe Arg Ile Met Pro Gly Ala Gly Lys Pro

His Ala His Val His Lys Cys Cys Val Val Gln 355 360

<210> 2555

<211> 56

<212> PRT <213> Homo sapiens

<400> 2555

Met Gly His Gln Gln Leu Tyr Trp Ser His Pro Arg Lys Phe Gly Gln 1 5 10 15

Gly Ser Arg Ser Cys Arg Val Cys Ser Asn Arg His Gly Leu Ile Arg

Lys Tyr Gly Leu Asn Met Cys Arg Gln Cys Phe Arg Gln Tyr Ala Lys  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Asp Ile Gly Phe Ile Lys Leu Asp 50 55

<210> 2556

<211> 520

<212> PRT <213> Homo sapiens

<400> 2556

Met Val Thr Ser Ser Phe Pro Ile Ser Val Ala Val Phe Ala Leu Ile 1  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Thr Leu Gln Val Gly Thr Gln Asp Ser Phe Ile Ala Ala Val Tyr Glu 20 25 30

His Ala Val Ile Leu Pro Asn Lys Thr Glu Thr Pro Val Ser Gln Glu 35 40 45

Asp Ala Leu Asn Leu Met Asn Glu Asn Ile Asp Ile Leu Glu Thr Ala 50 60

| Ile<br>65  | Lys        | Gln        | Ala        | Ala        | Glu<br>70  | Gln        | Gly        | Ala        | Arg        | Ile<br>75  | Ile        | Val        | Thr        | Pro        | Glu<br>80  |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asp        | Ala        | Leu        | Tyr        | Gly<br>85  | Trp        | Lys        | Phe        | Thr        | Arg<br>90  | Glu        | Thr        | Val        | Phe        | Pro<br>95  | туг        |
| Leu        | Glu        | Asp        | Ile<br>100 | Pro        | Asp        | Pro        | Gln        | Val<br>105 | Asn        | Trp        | Ile        | Pro        | Cys<br>110 | Gln        | Asp        |
| Pro        | His        | Arg<br>115 | Phe        | Gly        | His        | Thr        | Pro<br>120 | Val        | Gln        | Ala        | Arg        | Leu<br>125 | Ser        | Cys        | Leu        |
| Ala        | Lys<br>130 | Asp        | Asn        | Ser        | Ile        | Tyr<br>135 | Val        | Leu        | Ala        | Asn        | Leu<br>140 | Gly        | Asp        | Lys        | Lys        |
| Pro<br>145 | Сув        | Asn        | Ser        | Arg        | Asp<br>150 | Ser        | Thr        | Сув        | Pro        | Pro<br>155 | Asn        | Gly        | Tyr        | Phe        | Gln<br>160 |
| Tyr        | Asn        | Thr        | Asn        | Val<br>165 | Val        | Tyr        | Asn        | Thr        | Glu<br>170 | Gly        | Lys        | Leu        | Val        | Ala<br>175 | Arg        |
| Tyr        | His        | Lys        | Tyr<br>180 | His        | Leu        | Tyr        | Ser        | Glu<br>185 | Pro        | Gln        | Phe        | Asn        | Val<br>190 | Pro        | Glu        |
| Lys        | Pro        | Glu<br>195 | Leu        | Val        | Thr        | Phe        | Asn<br>200 | Thr        | Ala        | Phe        | Gly        | Arg<br>205 | Phe        | Gly        | Ile        |
| Phe        | Thr<br>210 | Cys        | Phe        | Asp        | Ile        | Phe<br>215 | Phe        | Tyr        | Asp        | Pro        | Gly<br>220 | Val        | Thr        | Leu        | Val        |
| Lys<br>225 | Asp        | Phe        | His        | Val        | Asp<br>230 | Thr        | Ile        | Leu        | Phe        | Pro<br>235 | Thr        | Ala        | Trp        | Met        | Asn<br>240 |
| Val        | Leu        | Pro        | Leu        | Leu<br>245 | Thr        | Ala        | Ile        | Glu        | Phe<br>250 | His        | Ser        | Ala        | Trp        | Ala<br>255 | Met        |
| Gly        | Met        | Gly        | Val<br>260 | Asn        | Leu        | Leu        | Val        | Ala<br>265 | Asn        | Thr        | His        | His        | Val<br>270 | Ser        | Leu        |
| Asn        | Met        | Thr<br>275 | Gly        | Ser        | Gly        | Ile        | Tyr<br>280 | Ala        | Pro        | Asn        | Gly        | Pro<br>285 | Lys        | Val        | Tyr        |
| His        | Tyr<br>290 |            | Met        | Lys        |            | Glu<br>295 |            | Gly        | Lys        | Leu        | Leu        | Leu        | Ser        | Glu        | Val        |

PCT/US2003/012946

| WO 2004/04234          | 6                   |                       |                           | PCT/US200      |
|------------------------|---------------------|-----------------------|---------------------------|----------------|
| Asp Ser His P          | ro Leu Ser S<br>310 | er Leu Ala Tyr        | Pro Thr Ala Val           | Asn Trp<br>320 |
| Asn Ala Tyr A          | la Thr Thr I<br>325 | le Lys Pro Phe<br>330 | Pro Val Gln Lys           | Asn Thr<br>335 |
| Phe Arg Gly Ph<br>34   | ne Ile Ser An<br>10 | rg Asp Gly Phe<br>345 | Asn Phe Thr Glu 350       | Leu Phe        |
| Glu Asn Ala Gl<br>355  | y Asn Leu Th        | nr Val Cys Gln<br>360 | Lys Glu Leu Cys (         | Cys His        |
| Leu Ser Tyr Ar<br>370  | g Met Leu Gl<br>37  | n Lys Glu Glu<br>5    | Asn Glu Val Tyr v<br>380  | /al Leu        |
| Gly Ala Phe Th<br>385  | r Gly Leu Hi<br>390 | s Gly Arg Arg         | Arg Arg Glu Tyr 1<br>395  | Erp Gln<br>400 |
| Val Cys Thr Me         | t Leu Lys Cy<br>405 | s Lys Thr Thr 410     | Asn Leu Thr Thr C         | ys Gly<br>15   |
| Arg Pro Val Glu<br>420 | Thr Ala Se          | r Thr Arg Phe (       | Glu Met Phe Ser L<br>430  | eu Ser         |
| Gly Thr Phe Gly<br>435 | Thr Glu Ty          | Val Phe Pro (         | Glu Val Leu Leu T.<br>445 | hr Glu         |
| Ile His Leu Ser<br>450 | Pro Gly Lys<br>455  | Phe Glu Val I         | Leu Lys Asp Gly A:<br>460 | rg Leu         |
| Val Asn Lys Asn<br>465 | Gly Ser Ser<br>470  | Gly Pro Ile I         | eu Thr Val Ser Le<br>75   | Phe<br>480     |
| Gly Arg Trp Tyr        | Thr Lys Asp<br>485  | Ser Leu Tyr S<br>490  | er Ser Cys Gly Th         |                |
| Asn Ser Ala Ile<br>500 | Thr Tyr Leu         | Leu Ile Phe I<br>505  | le Leu Leu Met Il<br>510  | e Ile          |
| Ala Leu Gln Asn<br>515 | Ile Val Met         | Leu<br>520            |                           |                |

- <210> 2557 <211> 564 <212> PRT <213> Homo sapiens

| < 40 | Λ. | 2557 |
|------|----|------|
|      |    | 2557 |

Met Ser Ala Gly Ser Ala Thr His Pro Gly Ala Gly Gly Arg Arg Ser 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Lys Trp Asp Gln Pro Ala Pro Ala Pro Leu Leu Phe Leu Pro Pro Ala 20 25 30

Ala Pro Gly Gly Glu Val Thr Ser Ser Gly Gly Ser Pro Gly Gly Thr  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Thr Ala Ala Pro Ser Gly Ala Leu Asp Ala Ala Ala Ala Val Ala Ala 50 60

Lys Ile Asn Ala Met Leu Met Ala Lys Gly Lys Leu Lys Pro Thr Gln 65 75 80

Asn Ala Ser Glu Lys Leu Gln Ala Pro Gly Lys Gly Leu Thr Ser Asn 85 90 95

Lys Ser Lys Asp Asp Leu Val Val Ala Glu Val Glu Ile Asn Asp Val  $100 \\ 100 \\ 110$ 

Pro Leu Thr Cys Arg Asn Leu Leu Thr Arg Gly Gln Thr Gln Asp Glu 115 120 125

Ile Ser Arg Leu Ser Gly Ala Ala Val Ser Thr Arg Gly Arg Phe Met 130 140

Thr Thr Glu Glu Lys Ala Lys Val Gly Pro Gly Asp Arg Pro Leu Tyr 145 150 155 160

Leu His Val Gln Gly Gln Thr Arg Glu Leu Val Asp Arg Ala Val Asn 165 170 175

Arg Ile Lys Glu Ile Ile Thr Asn Gly Val Val Lys Ala Ala Thr Gly 180 185 190

Thr Ser Pro Thr Phe Asn Gly Ala Thr Val Thr Val Tyr His Gln Pro 195 200 205

Ala Pro Ile Ala Gln Leu Ser Pro Ala Val Ser Gln Lys Pro Pro Phe 210 220

Gln Ser Gly Met His Tyr Val Gln Asp Lys Leu Phe Val Gly Leu Glu 225 235 240

His Ala Val Pro Thr Phe Asn Val Lys Glu Lys Val Glu Gly Pro Gly 245 250 255

Cys Ser Tyr Leu Gln His Ile Gln Ile Glu Thr Gly Ala Lys Val Phe \$260\$

Leu Arg Gly Lys Gly Ser Gly Cys Ile Glu Pro Ala Ser Gly Arg Glu 275 280 285

Ala Phe Glu Pro Met Tyr Ile Tyr Ile Ser His Pro Lys Pro Glu Gly 290 295 300

Leu Ala Ala Lys Lys Leu Cys Glu Asn Leu Leu Gln Thr Val His 305 310 315 320

Ala Glu Tyr Ser Arg Phe Val Asn Gln Ile Asn Thr Ala Val Pro Leu 325 330

Pro Gly Tyr Thr Gln Pro Ser Ala Ile Ser Ser Val Pro Pro Gln Pro 340 \$345\$

Pro Tyr Tyr Pro Ser Asn Gly Tyr Gln Ser Gly Tyr Pro Val Val Pro 355 360 365

Pro Pro Gln Gln Pro Val Gln Pro Pro Tyr Gly Val Pro Ser Ile Val 370 \$375\$

Pro Pro Ala Val Ser Leu Ala Pro Gly Val Leu Pro Ala Leu Pro Thr 385 390 395 400

Gly Val Pro Pro Val Pro Thr Gln Tyr Pro Ile Thr Gln Val Gln Pro 405 410 415

Pro Ala Ser Thr Gly Gln Ser Pro Met Gly Gly Pro Phe Ile Pro Ala 420 425 430

Ala Pro Val Lys Thr Ala Leu Pro Ala Gly Pro Gln Pro Gln Pro Gln 435 440 445

Pro Gln Pro Pro Leu Pro Ser Gln Pro Gln Ala Gln Lys Arg Arg Phe 450 460

Thr Glu Glu Leu Pro Asp Glu Arg Glu Ser Gly Leu Leu Gly Tyr Gln 465 470 475 480

His Gly Pro Ile His Met Thr Asn Leu Gly Thr Gly Phe Ser Ser Gln
485 490 495

Asn Glu Ile Glu Gly Ala Gly Ser Lys Pro Ala Ser Ser Ser Gly Lys 500 505 510

Glu Arg Glu Arg Asp Arg Gln Leu Met Pro Pro Pro Ala Phe Pro Val515 520 - 525

Thr Gly Ile Lys Thr Glu Ser Asp Glu Arg Asn Gly Ser Gly Thr Leu 530 535 540

Thr Gly Ser His Gly Glu Cys Asp Ile Ala Gly Gly Thr Gly Glu Trp 545 550 555 560

Leu Arg Leu Val

<210> 2558

<211> 462

<212> PRT <213> Homo sapiens

<400> 2558

Met Gly Lys Glu Lys Thr His Ile Asn Ile Val Val Ile Gly His Val 1  $\phantom{-}$  15

Asp Ser Gly Lys Ser Thr Thr Thr Gly His Leu Ile Tyr Lys Cys Gly  $20 \\ 25 \\ 30$ 

Gly Ile Asp Lys Arg Thr Ile Glu Lys Phe Glu Lys Glu Ala Ala Glu 35  $\phantom{\bigg|}40\phantom{\bigg|}45\phantom{\bigg|}$ 

Met Gly Lys Gly Ser Phe Lys Tyr Ala Trp Val Leu Asp Lys Leu Lys 50 60

Ala Glu Arg Glu Arg Gly Ile Thr Ile Asp Ile Ser Leu Trp Lys Phe 65 70 75 80

Glu Thr Ser Lys Tyr Tyr Val Thr Ile Ile Asp Ala Pro Gly His Arg 85 90 95

Asp Phe Ile Lys Asn Met Ile Thr Gly Thr Ser Gln Ala Asp Cys Ala 100 105 110

Val Leu Ile Val Ala Ala Gly Val Gly Glu Phe Glu Ala Gly Ile Ser

Lys Asn Gly Gln Thr Arg Glu His Ala Leu Leu Ala Tyr Thr Leu Gly 

Val Lys Gln Leu Ile Val Gly Val Asn Lys Met Asp Ser Thr Glu Pro 

Pro Tyr Ser Gln Lys Arg Tyr Glu Glu Ile Val Lys Glu Val Ser Thr 

Tyr Ile Lys Lys Ile Gly Tyr Asn Pro Asp Thr Val Ala Phe Val Pro 

Ile Ser Gly Trp Asn Gly Asp Asn Met Leu Glu Pro Ser Ala Asn Met

Pro Trp Phe Lys Gly Trp Lys Val Thr Arg Lys Asp Gly Asn Ala Ser 

Gly Thr Thr Leu Leu Glu Ala Leu Asp Cys Ile Leu Pro Pro Thr Arg 

Pro Thr Asp Lys Pro Leu Arg Leu Pro Leu Gln Asp Val Tyr Lys Ile 

Gly Gly Ile Gly Thr Val Pro Val Gly Arg Val Glu Thr Gly Val Leu 

Lys Pro Gly Met Val Val Thr Phe Ala Pro Val Asn Val Thr Thr Glu 

Val Lys Ser Val Glu Met His His Glu Ala Leu Ser Glu Ala Leu Pro 

Gly Asp Asn Val Gly Phe Asn Val Lys Asn Val Ser Val Lys Asp Val 

Arg Arg Gly Asn Val Ala Gly Asp Ser Lys Asn Asp Pro Pro Met Glu 

Ala Ala Gly Phe Thr Ala Gln Val Ile Ile Leu Asn His Pro Gly Gln 

Ile Ser Ala Gly Tyr Ala Pro Val Leu Asp Cys His Thr Ala His Ile 

Ala Cys Lys Phe Ala Glu Leu Lys Glu Lys Ile Asp Arg Arg Ser Gly 370 380

Lys Lys Leu Glu Asp Gly Pro Lys Phe Leu Lys Ser Gly Asp Ala Ala 385 \$390\$ \$395\$

Ile Val Asp Met Val Pro Gly Lys Pro Met Cys Val Glu Ser Phe Ser 405 410 410

Asp Tyr Pro Pro Leu Gly Arg Phe Ala Val Arg Asp Met Arg Gln Thr 420 425 430

Val Ala Val Gly Val Ile Lys Ala Val Asp Lys Lys Ala Ala Gly Ala 435 445

Gly Lys Val Thr Lys Ser Ala Gln Lys Ala Gln Lys Ala Lys  $450 \\ 450$ 

<210> 2559 <211> 394 <212> PRT

<213> Homo sapiens

<400> 2559

Met Ser Gly Glu Asp Glu Gln Gln Gln Gln Thr Ile Ala Glu Asp Leu 1 5 10 15

Val Val Thr Lys Tyr Lys Met Gly Gly Asp Ile Ala Asn Arg Val Leu 20 25 30

Arg Ser Leu Val Glu Ala Ser Ser Ser Gly Val Ser Val Leu Ser Leu 35 40 45

Lys Lys Glu Lys Glu Met Lys Lys Gly Ile Ala Phe Pro Thr Ser Ile 65 70 75 80

Ser Val Asn Asn Cys Val Cys His Phe Ser Pro Leu Lys Ser Asp Gln 85 90 95

Asp Tyr Ile Leu Lys Glu Gly Asp Leu Val Lys Ile Asp Leu Gly Val 100 105 110

His Val Asp Gly Phe Ile Ala Asn Val Ala His Thr Phe Val Val Asp 115 120 125

Val Ala Gln Gly Thr Gln Val Thr Gly Arg Lys Ala Asp Val Ile Lys 130 140

Ala Ala His Leu Cys Ala Glu Ala Ala Leu Arg Leu Val Lys Pro Gly 145 150 155 160

As Gln As Thr Gln Val Thr Glu Ala Trp As Lys Val Ala His Ser 165 175

Phe Asn Cys Thr Pro Ile Glu Gly Met Leu Ser His Gln Leu Lys Gln 180 185 190

His Val Ile Asp Gly Glu Lys Thr Ile Ile Gln Asn Pro Thr Asp Gln 195 200 205

Gln Lys Lys Asp His Glu Lys Ala Glu Phe Glu Val His Glu Val Tyr 210 220

Ala Val Asp Val Leu Val Ser Ser Gly Glu Gly Lys Ala Lys Asp Ala 225 230 240

Gly Gln Arg Thr Thr Ile Tyr Lys Arg Asp Pro Ser Lys Gln Tyr Gly \$250\$

Leu Lys Met Lys Thr Ser Arg Ala Phe Phe Ser Glu Val Glu Arg Arg 260 265 270

Phe Asp Ala Met Pro Phe Thr Leu Arg Ala Phe Glu Asp Glu Lys Lys 275 280 285

Ala Arg Met Gly Val Val Glu Cys Ala Lys His Glu Leu Leu Gln Pro 290 295 300

Phe Asn Val Leu Tyr Glu Lys Glu Gly Glu Phe Val Ala Gln Phe Lys 305 310 315 320

Phe Thr Val Leu Leu Met Pro  $\lambda$ sn Gly Pro Met Arg Ile Thr Ser Gly 325 330 335

Pro Phe Glu Pro Asp Leu Tyr Lys Ser Glu Met Glu Val Gln Asp Ala 340 345 350

Glu Leu Lys Ala Leu Leu Gln Ser Ser Ala Ser Arg Lys Thr Gln Lys

355 360 365

Lys Lys Lys Lys Lys Ala Ser Lys Thr Ala Glu Asn Pro Thr Ser Gly  $370 \ \ 375 \ \ 380$ 

Glu Thr Leu Glu Glu Asn Glu Ala Gly Asp 385

<210> 2560

<211> 335

<212> PRT

<213> Homo sapiens

<400> 2560

Met Gly Lys Val Lys Val Gly Val Asn Gly Phe Gly Arg Ile Gly Arg 1 15  $\,$ 

Leu Val Thr Arg Ala Ala Phe Asn Ser Gly Lys Val Asp Ile Val Ala 20 25 30

Ile Asn Asp Pro Phe Ile Asp Leu Asn Tyr Met Val Tyr Met Phe Gln 35 40 45

Tyr Asp Ser Thr His Gly Lys Phe His Gly Thr Val Lys Ala Glu Asn 50 55 60

Gly Lys Leu Val Ile Asn Gly Asn Pro Ile Thr Ile Phe Gln Glu Arg 65 70 75 80

Asp Pro Ser Lys Ile Lys Trp Gly Asp Ala Gly Ala Glu Tyr Val Val 85 90 95

Glu Ser Thr Gly Val Phe Thr Thr Met Glu Lys Ala Gly Ala His Leu 100 \$105\$

Gln Gly Gly Ala Lys Arg Val Ile Ile Ser Ala Pro Ser Ala Asp Ala 115 120 125

Pro Met Phe Val Met Gly Val Asn His Glu Lys Tyr Asp Asn Ser Leu 130 135 140

Lys Ile Ile Ser Asn Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro Leu 145 150 155 160

Ala Lys Val Ile His Asp Asn Phe Gly Ile Val Glu Gly Leu Met Thr 165 170 175

Thr Val His Ala Ile Thr Ala Thr Gln Lys Thr Val Asp Gly Pro Ser 180 185 Gly Lys Leu Trp Arg Asp Gly Arg Gly Ala Leu Gln Asn Ile Ile Pro 200 Ala Ser Thr Gly Ala Ala Lys Ala Val Gly Lys Val Ile Pro Glu Leu 215 Asn Gly Lys Leu Thr Gly Met Ala Phe Arg Val Pro Thr Ala Asn Val 225 230 235 Ser Val Val Asp Leu Thr Cys Arq Leu Glu Lys Pro Ala Lys Tyr Asp 245 250 255 Asp Ile Lys Lys Val Val Lys Gln Ala Ser Glu Gly Pro Leu Lys Gly 260 265 270 Ile Leu Gly Tyr Thr Glu His Gln Val Val Ser Ser Asp Phe Asn Ser 275 280 Asp Thr His Ser Ser Thr Phe Asp Ala Gly Ala Gly Ile Ala Leu Asn 295 300 Asp His Phe Val Lys Leu Ile Ser Trp Tyr Asp Asn Glu Phe Gly Tyr 305 310 315 Ser Asn Arg Val Val Asp Leu Met Ala His Met Ala Ser Lys Glu 330 325 <210> 2561 <211> 1912 <212> PRT <213> Homo sapiens <400> 2561 Met Ala Ser Gly Leu Gly Ser Pro Ser Pro Cys Ser Ala Gly Ser Glu 10 Glu Glu Asp Met Asp Ala Leu Leu Asn Asn Ser Leu Pro Pro Pro His 20 25 Pro Glu Asn Glu Glu Asp Pro Glu Glu Asp Leu Ser Glu Thr Glu Thr 35 40 45

Pro Lys Leu Lys Lys Lys Lys Pro Lys Lys Pro Arg Asp Pro Lys

50 55 60

- Gln Leu Gly Asp Ser Ser Gly Glu Gly Pro Glu Phe Val Glu Glu Glu 95  $90\,$  95
- Glu Glu Val Ala Leu Arg Ser Asp Ser Glu Gly Ser Asp Tyr Thr Pro 100 105 110
- Gly Lys Lys Lys Lys Lys Leu Gly Pro Lys Lys Glu Lys Lys Ser 115 \$120\$
- Lys Ser Lys Arg Lys Glu Glu Glu Glu Glu Asp Asp Asp Asp Asp Asp 130 135 140
- Ser Lys Glu Pro Lys Ser Ser Ala Gln Leu Leu Glu Asp Trp Gly Met 145 150 155 160
- Glu Asp Ile Asp His Val Phe Ser Glu Glu Asp Tyr Arg Thr Leu Thr 165 170 175
- Asn Tyr Lys Ala Phe Ser Gln Phe Val Arg Pro Leu Ile Ala Ala Lys 180 185 190
- Asn Pro Lys Ile Ala Val Ser Lys Met Met Met Val Leu Gly Ala Lys 195 200 205
- Trp Arg Glu Phe Ser Thr Asn Asn Pro Phe Lys Gly Ser Ser Gly Ala 210 215 220
- Ser Val Ala Ala Ala Ala Ala Ala Ala Val Val Val Glu Ser Met 225 230 240
- Val Thr Ala Thr Glu Val Ala Pro Pro Pro Pro Pro Val Glu Val Pro 245 250 255
- Ile Arg Lys Ala Lys Thr Lys Glu Gly Lys Gly Pro Asn Ala Arg Arg 260  $\phantom{\bigg|}265\phantom{\bigg|}270\phantom{\bigg|}$
- Lys Pro Lys Gly Ser Pro Arg Val Pro Asp Ala Lys Lys Pro Lys Pro 275 280 285
- Lys Lys Val Ala Pro Leu Lys Ile Lys Leu Gly Gly Phe Gly Ser Lys 290 295 300

| Arg<br>305 | Lys        | Arg        | Ser        | Ser        | Ser<br>310 |            | Asp        | Asp        | Asp        | 1 Leu<br>315 |            | Val        | Glu        | Ser        | Asp<br>320 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|
| Phe        | Asp        | Asp        | Ala        | Ser<br>325 | Ile        | Asn        | Ser        | Tyr        | Ser<br>330 |              | Ser        | Asp        | Gly        | Ser<br>335 | Thr        |
| Ser        | Arg        | Ser        | Ser<br>340 | Arg        | Ser        | Arg        | Lys        | Lys<br>345 | Leu        | Arg          | Thr        | Thr        | Lys<br>350 |            | Lys        |
| Lys        | Lys        | Gly<br>355 | Glu        | Glu        | Glu        | Val        | Thr<br>360 | Ala        | Val        | Asp          | Gly        | Tyr<br>365 | Glu        | Thr        | Asp        |
| His        | Gln<br>370 | Asp        | Tyr        | Cys        | Glu        | Val<br>375 | Cys        | Gln        | Gln        | Gly          | Gly<br>380 | Glu        | Ile        | Ile        | Leu        |
| Cys<br>385 | Asp        | Thr        | Cys        | Pro        | Arg<br>390 | Ala        | Tyr        | His        | Met        | Val<br>395   | Cys        | Leu        | Asp        | Pro        | Asp<br>400 |
| Met        | Glu        | Lys        | Ala        | Pro<br>405 | Glu        | Gly        | Lys        | Trp        | Ser<br>410 | Cys          | Pro        | His        | Cys        | Glu<br>415 | Lys        |
| Glu        | Gly        | Ile        | Gln<br>420 | Trp        | Glu        | Ala        | Lys        | Glu<br>425 | Asp        | Asn          | Ser        | Glu        | Gly<br>430 | Glu        | Glu        |
| Ile        | Leu        | Glu<br>435 | Glu        | Val        | Gly        | Gly        | Asp<br>440 | Leu        | Glu        | Glu          | Glu        | Asp<br>445 | Asp        | His        | His        |
| Met        | Glu<br>450 | Phe        | Cys        | Arg        | Val        | Cys<br>455 | Lys        | Asp        | Gly        | Gly          | Glu<br>460 | Leu        | Leu        | Cys        | Cys        |
| Asp<br>465 | Thr        | Сув        | Pro        | Ser        | Ser<br>470 | Tyr        | His        | Ile        | His        | Cys<br>475   | Leu        | Asn        | Pro        | Pro        | Leu<br>480 |
| Pro        | Glu        | Ile        | Pro        | Asn<br>485 | Gly        | Glu        | Trp        | Leu        | Cys<br>490 | Pro          | Arg        | Cys        | Thr        | Cys<br>495 | Pro        |
| Ala        | Leu        | Lys        | Gly<br>500 | Lys        | Val        | Gln        | Lys        | Ile<br>505 | Leu        | Ile          | Trp        | Lys        | Trp<br>510 | Gly        | Gln        |
| Pro        | Pro        | Ser<br>515 | Pro        | Thr        | Pro        | Val        | Pro<br>520 | Arg        | Pro        | Pro          | Asp        | Ala<br>525 | Asp        | Pro        | Asn        |
| Thr        | Pro<br>530 | Ser        | Pro        | Lys        | Pro        | Leu<br>535 | Glu        | Gly        | Arg        | Pro          | Glu<br>540 | Arg        | Gln        | Phe        | Phe        |

PCT/US2003/012946

|            | wo          | 20     | 04/0     | 4234       | 6          |          |            |            |            |     |            |            |      |          |            |            |            |          |            | PCT        | /US      |
|------------|-------------|--------|----------|------------|------------|----------|------------|------------|------------|-----|------------|------------|------|----------|------------|------------|------------|----------|------------|------------|----------|
| Va<br>54   | l Ly<br>5   | γs     | Tr       | p G        | ln G       | ly       | Me1        | : Se       | er T       | yr  | Tr         | р Н        | is ( | :<br>555 | Se         | r Tı       | p V        | a 1      | Se         |            | 1u<br>60 |
| Le         | u G         | ln     | Le       | u Gl       | u L<br>5   | eu<br>65 | His        | з Су       | s G        | ln  | Va         | 1 Me<br>57 | et I | he       | Arg        | g As       | n T        | yr       | G1:        | n Ai       | rg       |
| Ly         | s As        | n      | As       | р Ме<br>58 | t A        | sp       | Glu        | Pr         | O P1       | :0  | Se:        | r G1       | уА   | sp       | Phe        | e G1       | у G<br>5   | 1y<br>90 | Asj        | o Gl       | lu       |
| Glı        | <b>.</b> Ьу | s      | Se:      | r Ar       | g Ly       | /s       | Arg        | Ly         | s As<br>60 | n   | Lys        | s As       | рΡ   | ro       | Lys        | Ph<br>60   | e A.       | la       | Glı        | ı Me       | et       |
| Glı        | 61          | u<br>0 | Arg      | g Ph       | е ту       | r        | Arg        | Ty:        | r Gl       | у   | Ile        | Ly         | s P  | ro       | Glu<br>620 | Tr         | р Ме       | et       | Met        | 11         | е        |
| His<br>625 | Ar          | 9      | Ile      | : Le       | ı As       | n        | His<br>630 | Se         | r Va       | 1.  | Asp        | Ly         | 5 Ly | /s<br>35 | Gly        | His        | s Va       | 1        | His        | Ту<br>64   |          |
| Leu        | Ile         | e ]    | Lys      | Tr         | 64         | g i      | Asp        | Leu        | ı Pr       | o ' | Tyr        | Asp<br>650 | G]   | ln       | Ala        | Ser        | Tr         |          | G1u<br>655 | Se         | r        |
| Glu        | Asp         | 7      | /a1      | G1:<br>660 | Il         | e (      | Gln        | Asp        | Туз        | : 1 | Asp<br>565 | Leu        | Ph   | e        | Lys        | Gln        | Se<br>67   | r '      | Tyr        | Trp        | Þ        |
| Asn        | His         | · A    | rg<br>75 | Glu        | Le         | u N      | let        | Arg        | G1y<br>680 | , ( | 31u        | Glu        | G1   | у        | Arg        | Pro<br>685 | G1         | y I      | Lуs        | Lys        | 3        |
| Leu        | Lys<br>690  | L      | ys       | Val        | Lys        | 3 L      | eu         | Arg<br>695 | Lys        | L   | eu         | Glu        | Ar   | g I      | Pro<br>700 | Pro        | Gli        | 1 7      | Thr        | Pro        | •        |
| Thr<br>705 | Val         | A      | sp       | Pro        | Thr        | 7        | al :<br>10 | Lys        | Tyr        | G   | lu         | Arg        | G1:  | n I      | ro         | Glu        | туг        | · I      |            | Asp<br>720 |          |
| Ala        | Thr         | G      | ly       | Gly        | Thr<br>725 | L        | eu 1       | His        | Pro        | T   | yr         | Gln<br>730 | Met  | : G      | lu (       | Gly        | Leu        |          | sn<br>35   | Trp        |          |
| Leu        | Arg         | Pl     | ıe       | Ser<br>740 | Trp        | A.       | la c       | ln         | Gly        | Tl  | ır ;       | Asp        | Thr  | . 1      | le 1       | Leu        | Ala<br>750 | A        | sp (       | Glu        |          |

Met Gly Leu Gly Lys Thr Val Gln Thr Ala Val Phe Leu Tyr Ser Leu 755  $\phantom{\bigg|}760\phantom{\bigg|}765\phantom{\bigg|}$ 

Tyr Lys Glu Gly His Ser Lys Gly Pro Phe Leu Val Ser Ala Pro Leu 770 780

Ser Thr Ile Ile Asn Trp Glu Arg Glu Phe Glu Met Trp Ala Pro Asp 785 790 795 800

- Met Tyr Val Val Thr Tyr Val Gly Asp Lys Asp Ser Arg Ala Ile Ile 805 \$810\$
- Arg Glu Asn Glu Phe Ser Phe Glu Asp Asn Ala Ile Arg Gly Gly Lys \$820\$ \$825\$ \$830
- Lys Ala Ser Arg Met Lys Lys Glu Ala Ser Val Lys Phe His Val Leu 835 840 845
- Leu Thr Ser Tyr Glu Leu Ile Thr Ile Asp Met Ala Ile Leu Gly Ser  $850 \\ \hspace*{0.2in} 8560$
- Ile Asp Trp Ala Cys Leu Ile Val Asp Glu Ala His Arg Leu Lys Asn 865 870 880
- Asn Gln Ser Lys Phe Phe Arg Val Leu Asn Gly Tyr Ser Leu Gln His 885 890
- Lys Leu Leu Thr Gly Thr Pro Leu Gln Asn Asn Leu Glu Glu Leu 900 905 910
- Phe His Leu Leu Asn Phe Leu Thr Pro Glu Arg Phe His Asn Leu Glu 915 920 925
- Gly Phe Leu Glu Glu Phe Ala Asp Ile Ala Lys Glu Asp Gln Ile Lys 930 935 940
- Lys Leu His Asp Met Leu Gly Pro His Met Leu Arg Arg Leu Lys Ala 945  $950 \ 950 \ 955$
- Asp Val Phe Lys Asn Met Pro Ser Lys Thr Glu Leu Ile Val Arg Val 965 970 970 975
- Glu Leu Ser Pro Met Gln Lys Lys Tyr Tyr Lys Tyr Ile Leu Thr Arg 980 985 990
- Asn Phe Glu Ala Leu Asn Ala Arg Gly Gly Gly Asn Gln Val Ser Leu 995 1000 1005
- Leu Asn Val Val Met Asp Leu Lys Lys Cys Cys Asn His Pro Tyr 1010 1020
- Leu Phe Pro Val Ala Ala Met Glu Ala Pro Lys Met Pro Asn Gly

1025 1030 1035

Met Tyr Asp Gly Ser Ala Leu Ile Arg Ala Ser Gly Lys Leu Leu Leu Leu Gln Lys Met Leu Lys Asn Leu Lys Glu Gly Gly His Arg Val Leu Ile Phe Ser Gln Met Thr Lys Met Leu Asp Leu Leu Glu Asp Phe Leu Glu His Glu Gly Tyr Lys Tyr Glu Arg Ile Asp Gly Gly Ile Thr Gly Asn Met Arg Gln Glu Ala Ile Asp Arg Phe Asn Ala Pro Gly Ala Gln Gln Phe Cys Phe Leu Leu Ser Thr Arg Ala 1120 . 1125 Gly Gly Leu Gly Ile Asn Leu Ala Thr Ala Asp Thr Val Ile Ile Tyr Asp Ser Asp Trp Asn Pro His Asn Asp Ile Gln Ala Phe Ser Arg Ala His Arg Ile Gly Gln Asn Lys Lys Val Met Ile Tyr Arg Phe Val Thr Arg Ala Ser Val Glu Glu Arg Ile Thr Gln Val Ala Lys Lys Lys Met Met Leu Thr His Leu Val Val Arg Pro Gly Leu Gly Ser Lys Thr Gly Ser Met Ser Lys Gln Glu Leu Asp Asp Ile Leu Lys Phe Gly Thr Glu Glu Leu Phe Lys Asp Glu Ala Thr Asp Gly Gly Gly Asp Asn Lys Glu Gly Glu Asp Ser Ser Val Ile His 

Tyr Asp Asp Lys Ala Ile Glu Arg Leu Leu Asp Arg Asn Gln Asp

| Glu Thr Glu Asp Thr Glu Leu Gln Gly Met Asn Glu Tyr Leu Ser<br>1265 1270 1275 |
|-------------------------------------------------------------------------------|
| Ser Phe Lys Val Ala Gln Tyr Val Val Arg Glu Glu Met Gly<br>1280 1285 1290     |
| Glu Glu Glu Glu Val Glu Arg Glu Ile Ile Lys Gln Glu Glu Ser<br>1295 1300 1305 |
| Val Asp Pro Asp Tyr Trp Glu Lys Leu Leu Arg His His Tyr Glu<br>1310 1320      |
| Gln Gln Gln Glu Asp Leu Ala Arg Asn Leu Gly Lys Gly Lys Arg<br>1325 1330 1335 |
| Ile Arg Lys Gln Val Asn Tyr Asn Asp Gly Ser Gln Glu Asp Arg<br>1340 1345 1350 |
| Asp Trp Gln Asp Asp Gln Ser Asp Asn Gln Ser Asp Tyr Ser Val                   |
| Ala Ser Glu Glu Gly Asp Glu Asp Phe Asp Glu Arg Ser Glu Ala<br>1370 1375 1380 |
| Pro Arg Arg Pro Ser Arg Lys Gly Leu Arg Asn Asp Lys Asp Lys<br>1385 1390 1395 |
| Pro Leu Pro Pro Leu Leu Ala Arg Val Gly Gly Asn Ile Glu Val                   |
| Leu Gly Phe Asn Ala Arg Gln Arg Lys Ala Phe Leu Asn Ala Ile<br>1415 1420 1425 |
| Met Arg Tyr Gly Met Pro Pro Gln Asp Ala Phe Thr Thr Gln Trp<br>1430 1435 1440 |
| Leu Val Arg Asp Leu Arg Gly Lys Ser Glu Lys Glu Phe Lys Ala<br>1445 1450 1455 |
| Tyr Val Ser Leu Phe Met Arg His Leu Cys Glu Pro Gly Ala Asp<br>1460 1465 1470 |
| Gly Ala Glu Thr Phe Ala Asp Gly Val Pro Arg Glu Gly Leu Ser<br>1485 1486      |

JS2003/012946

| w      | /O 200               | )4/042 | 346   |       |       |               |          |       |       |       |               |          |       | PCT/U |
|--------|----------------------|--------|-------|-------|-------|---------------|----------|-------|-------|-------|---------------|----------|-------|-------|
| Arg    | Gln<br>1490          | His    | Val   | Lei   | Th    | r Arg<br>149  | 11e<br>5 | e Gl  | y Va  | l Me  | Ser<br>150    | Let<br>0 | ı Ile | e Arg |
| Lys    | Lys<br>1505          | Val    | Gln   | Glu   | Phe   | Glu<br>151    | His<br>O | Va:   | l Ası | n Gly | / Arg         | Trp      | Ser   | Met   |
| Pro    | Glu<br>1520          | Leu    | Ala   | Glu   | . Val | Glu<br>1525   | Glu<br>5 | l Ası | n Lys | Lys   | Met<br>1530   | Ser      | Gln   | Pro   |
| Gly    | Ser<br>1535          | Pro    | Ser   | Pro   | Lys   | Thr<br>1540   | Pro      | Thr   | Pro   | Ser   | Thr<br>1545   | Pro      | Gly   | Asp   |
| Thr    | Gln<br>1550          | Pro    | Asn   | Thr   | Pro   | Ala<br>1555   | Pro      | Val   | Pro   | Pro   | Ala<br>1560   | Glu      | Asp   | Gly   |
| Ile    | Lys<br>1565          | Ile    | Glu   | Glu   | Asn   | Ser<br>1570   | Leu      | Lys   | Glu   | Glu   | Glu<br>1575   | Ser      | Ile   | Glu   |
| Gly (  | Glu<br>1580          | Lys    | Glu   | Val   | Lys   | Ser<br>1585   | Thr      | Ala   | Pro   | Glu   | Thr<br>1590   | Ala      | Ile   | Glu   |
| Cys 1  | Thr<br>1 <b>5</b> 95 | Gln    | Ala   | Pro   | Ala   | Pro<br>1600   | Ala      | Ser   | Glu   | Asp   | Glu<br>1605   | Lys      | Val   | Val   |
| Val G  | 31u<br>.610          | Pro :  | Pro ( | Glu   | Gly   | Glu<br>1615   | Glu      | Lys   | Val   | Glu   | Lys<br>1620   | Ala      | Glu   | Val   |
| Lys G  | lu 2<br>625          | Arg :  | Thr ( | 3lu   | Glu   | Pro<br>1630   | Met      | Glu   | Thr   | Glu   | Pro<br>1635   | Lys      | Gly . | Ala   |
| Ala A  | sp 1                 | Val (  | 3lu I | Lys ' | Val ( | Glu<br>1645   | Glu      | Lys   | Ser   | Ala   | Ile<br>1650   | Asp 1    | eu :  | Thr   |
| Pro I  | le 1<br>655          | /al V  | al G  | Slu A | Asp 1 | Lys<br>1660   | Glu (    | 31u   | Lys   | Lys ( | 3lu  <br>1665 | Glu (    | lu (  | 31u   |
| Lys Ly | ys G<br>670          | 3lu V  | al M  | let I | eu (  | 31n .<br>1675 | Asn (    | Gly ( | Glu ' | Thr I | Pro 1         | Lys A    | sp I  | eu    |

1695

Asn Asp Glu Lys Gln Lys Lys Asn Ile Lys Gln Arg Phe Met Phe 1685 1690 1695

Asn Ile Ala Asp Gly Gly Phe Thr Glu Leu His Ser Leu Trp Gln 1705

Asn Glu Glu Arg Ala Ala Thr Val Thr Lys Lys Thr Tyr Glu Ile 1715

- Trp His Arg Arg His Asp Tyr Trp Leu Leu Ala Gly Ile Ile Asn 1735 1740
- His Gly Tyr Ala Arg Trp Gln Asp Ile Gln Asn Asp Pro Arg Tyr 1750
- Ala Ile Leu Asn Glu Pro Phe Lys Gly Glu Met Asn Arg Gly Asn 1765
- Phe Leu Glu Ile Lys Asn Lys Phe Leu Ala Arg Arg Phe Lys Leu 1780
- Leu Glu Gln Ala Leu Val Ile Glu Glu Gln Leu Arg Arg Ala Ala 1795
- Tyr Leu Asn Met Ser Glu Asp Pro Ser His Pro Ser Met Ala Leu 1805 1810
- Asn Thr Arg Phe Ala Glu Val Glu Cys Leu Ala Glu Ser His Gln
- His Leu Ser Lys Glu Ser Met Ala Gly Asn Lys Pro Ala Asn Ala 1840 1845
- Val Leu His Lys Val Leu Lys Gln Leu Glu Glu Leu Leu Ser Asp 1855 1860
- Met Lys Ala Asp Val Thr Arg Leu Pro Ala Thr Ile Ala Arg Ile 1870 1875
- Pro Pro Val Ala Val Arg Leu Gln Met Ser Glu Arg Asn Ile Leu 1880 1885
- Ser Arg Leu Ala Asn Arg Ala Pro Glu Pro Thr Pro Gln Gln Val 1895 1900
- Ala Gln Gln Gln 1910
- <210> 2562 <211> 345 <212> PRT
- <213> Homo sapiens

<400> 2562

Met Pro Gln Arg Pro Ala Ala Ser Asn Ile Pro Val Val Gly Ser Pro l 5 10 10 515

Asn Pro Pro Ser Thr His Phe Ala Ser Gln Asn Gln His Ser Tyr Ser 20 25 30

Ser Pro Pro Trp Ala Gly Gln His Asn Arg Lys Gly Glu Lys Asn Gly 35 40 45

Met Gly Leu Cys Arg Leu Ser Met Lys Val Trp Glu Thr Val Gln Arg 50 60

Lys Gly Thr Thr Ser Cys Gln Glu Val Val Gly Glu Leu Val Ala Lys 65 70 75 80

Phe Arg Ala Ala Ser Asn His Ala Ser Pro Asn Glu Ser Ala Tyr Asp 85 90 95

Val Lys Asn Ile Lys Arg Arg Thr Tyr Asp Ala Leu Asn Val Leu Met 100 105 110

Ala Met Asn Ile Ile Ser Arg Glu Lys Lys Lys Ile Lys Trp Ile Gly 115 120 125

Leu Thr Thr Asn Ser Ala Gln Asn Cys Gln Asn Leu Arg Val Glu Arg 130 135 140

Gln Lys Arg Leu Glu Arg Ile Lys Gln Lys Gln Ser Glu Leu Gln Gln 145 150 155 160

Leu Ile Leu Gln Gln Ile Ala Phe Lys Asn Leu Val Leu Arg Asn Gln 165 170 175

Tyr Val Glu Glu Gln Val Ser Gln Arg Pro Leu Pro Asn Ser Val Ile 180 185 190

His Val Pro Phe Ile Ile Ser Ser Ser Lys Lys Thr Val Ile Asn 195 200 205

Cys Ser Ile Ser Asp Asp Lys Ser Glu Tyr Leu Phe Lys Phe Asn Ser 210 220

Ser Phe Glu Ile His Asp Asp Thr Glu Val Leu Met Trp Met Gly Met 225 230 230 240

Thr Phe Gly Leu Glu Ser Gly Ser Cys Ser Ala Glu Asp Leu Lys Met 245 250 250

Ala Arg Asn Leu Val Pro Lys Ala Leu Glu Pro Tyr Val Thr Glu Met 260 265 270

Ala Gln Gly Thr Phe Gly Gly Val Phe Thr Thr Ala Gly Ser Arg Ser 275  $$280\$ 

Asn Gly Thr Trp Leu Ser Ala Ser Asp Leu Thr Asn Ile Ala Ile Gly 290 295 300

Met Leu Ala Thr Ser Ser Gly Gly Ser Gln Tyr Ser Gly Ser Arg Val 305 \$310\$ \$310\$ \$315\$

Glu Thr Pro Ala Val Glu Glu Glu Glu Glu Glu Asp Asn Asp Asp 325 \$335\$

Asp Leu Ser Glu Asn Asp Glu Asp Asp 340

<210> 2563 <211> 553

<212> PRT <213> Homo sapiens

<400> 2563

Met Ser Thr Glu Thr Glu Leu Gln Val Ala Val Lys Thr Ser Ala Lys 1 5 10 15

Lys Asp Ser Arg Lys Lys Gly Gln Asp Arg Ser Glu Ala Thr Leu Ile 20 25 30

Lys Arg Phe Lys Gly Glu Gly Val Arg Tyr Lys Ala Lys Leu Ile Gly  $^{35}$  40  $^{45}$ 

Ile Asp Glu Val Ser Ala Ala Arg Gly Asp Lys Leu Cys Gln Asp Ser 50 . 60

Met Met Lys Leu Lys Gly Val Val Ala Gly Ala Arg Ser Lys Gly Glu 65 70 75 80

His Lys Gln Lys Ile Phe Leu Thr Ile Ser Phe Gly Gly Ile Lys Ile 85 90 95

Phe Asp Glu Lys Thr Gly Ala Leu Gln His His His Ala Val His Glu

100 105 110

Ile Ser Tyr Ile Ala Lys Asp Ile Thr Asp His Arg Ala Phe Gly Tyr 115 120 125

Val Cys Gly Lys Glu Gly Asn His Arg Phe Val Ala Ile Lys Thr Ala 130 135 140

Gln Ala Ala Glu Pro Val Ile Leu Asp Leu Arg Asp Leu Phe Gln Leu 145 155 160

Ile Tyr Glu Leu Lys Gln Arg Glu Glu Leu Glu Lys Lys Ala Gln Lys 165 170 175

Asp Lys Gln Cys Glu Gln Ala Val Tyr Gln Thr Ile Leu Glu Glu Asp 180 185 190

Val Glu Asp Pro Val Tyr Gln Tyr Ile Val Phe Glu Ala Gly His Glu 195 200 205

Pro Ile Arg Asp Pro Glu Thr Glu Glu Asn Ile Tyr Gln Val Pro Thr 210 220

Ser Gln Lys Lys Glu Gly Val Tyr Asp Val Pro Lys Ser Gln Pro Ala 225 230 230 235 240

Val Thr Gln Leu Glu Leu Phe Gly Asp Met Ser Thr Pro Pro Asp Ile 245 250 255

Thr Ser Pro Pro Thr Pro Ala Thr Pro Gly Asp Ala Phe IIe Pro Ser 260 265 270

Ser Ser Gln Thr Leu Pro Ala Ser Ala Asp Val Phe Ser Ser Val Pro 275 280 285

Phe Gly Thr Ala Ala Val Pro Ser Gly Tyr Val Ala Met Gly Ala Val 290 300

Leu Pro Ser Phe Trp Gly Gln Gln Pro Leu Val Gln Gln Gln Met Val 305 310 310 320

Met Gly Ala Gln Pro Pro Val Ala Gln Val Met Pro Gly Ala Gln Pro 325 330 335

Ile Ala Trp Gly Gln Pro Gly Leu Phe Pro Ala Thr Gln Gln Pro Trp 340 345 350

Pro Thr Val Ala Gly Gln Phe Pro Pro Ala Ala Phe Met Pro Thr Gln 355 360 365

Thr Val Met Pro Leu Pro Ala Ala Met Phe Gln Gly Pro Leu Thr Pro 370 375 380

Leu Ala Thr Val Pro Gly Thr Ser Asp Ser Thr Arg Ser Ser Pro Gln 385 390 395 400

Thr Asp Lys Pro Arg Gln Lys Met Gly Lys Glu Thr Phe Lys Asp Phe 405 410 415

Gln Met Ala Gln Pro Pro Pro Val Pro Ser Arg Lys Pro Asp Gln Pro 420 425 430

Ser Leu Thr Cys Thr Ser Glu Ala Phe Ser Ser Tyr Phe Asn Lys Val

Gly Val Ala Gln Asp Thr Asp Asp Cys Asp Asp Phe Asp Ile Ser Gln  ${450}$ 

Leu Asn Leu Thr Pro Val Thr Ser Thr Thr Pro Ser Thr Asn Ser Pro 465 470 475 480

Pro Thr Pro Ala Pro Arg Gln Ser Ser Pro Ser Lys Ser Ser Ala Ser 485 \$485\$

His Ala Ser Asp Pro Thr Thr Asp Asp Ile Phe Glu Glu Gly Phe Glu 500 505 510

Ser Pro Ser Lys Ser Glu Glu Glu Glu Ala Pro Asp Gly Ser Gln Ala 515 520 525

Ser Ser Asn Ser Asp Pro Phe Gly Glu Pro Ser Gly Glu Pro Ser Gly 530 540

Asp Asn Ile Ser Pro Gln Ala Gly Ser 545 550

<210> 2564 <211> 1336

<212> PRT

<213> Homo sapiens

<400> 2564

Met Glu Asn Leu Pro Ala Val Thr Thr Glu Glu Pro Thr Pro Met Gly 1 5 10 15

- Arg Gly Pro Val Gly Pro Ser Gly Gly Gly Ser Thr Arg Asp Gln Val \$20\$
- Arg Thr Val Val Met Arg Pro Ser Val Ser Trp Glu Lys Ala Gly Pro  $35 \ \ \, 40 \ \ \, 45$
- Glu Glu Ala Lys Ala Pro Val Arg Gly Asp Glu Ala Pro Pro Ala Arg 50 55 60
- Val Ala Gly Pro Ala Ala Gly Thr Pro Pro Cys Gln Met Gly Val Tyr 65 70 75 80
- Pro Thr Asp Leu Thr Leu Gln Leu Leu Ala Val Arg Arg Lys Ser Arg 85 90 95
- Leu Arg Asp Pro Gly Leu Gln Gln Thr Leu Arg Gly Gln Leu Arg Leu 100 \$105\$
- Leu Glu Asn Asp Ser Arg Glu Met Ala Arg Val Leu Gly Glu Leu Ser 115 120 125
- Ala Arg Leu Leu Ser Ile His Ser Asp Gln Asp Arg Ile Val Val Thr 130 135 140
- Phe Lys Thr Phe Glu Glu Ile Trp Lys Phe Ser Thr Tyr His Ala Leu 145 \$150\$
- Gly Phe Thr His His Cys Leu Ala Asn Leu Leu Met Asp Gln Ala Phe 165 \$170\$
- Trp Leu Leu Leu Pro Ser Glu Glu Glu Glu Thr Ala Ile Gln Val His
- Val Asp Glu Asn Ala Leu Arg Leu Thr His Glu Ser Leu Leu Ile Gln 195 200 205
- Glu Gly Pro Phe Phe Val Leu Cys Pro Asp His His Val Arg Val Met 210 220
- Thr Gly Pro Arg Asp Ala Gly Asn Gly Pro Gln Ala Leu Arg Gln Ala 225 230 235 240
- Ser Gly Ala Pro Gln Gly Glu Ala Ala Pro Glu Thr Asp Ser Ser Pro

245 250 255

Pro Ser Pro Ser Val Ser Ser Glu Glu Val Ala Val Ala Ala Ala Pro
260 265 270

Glu Pro Leu Ile Pro Phe His Gln Trp Ala Leu Arg Ile Pro Gln Asp  $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285 \hspace{1.5cm}$ 

Pro Ile Asp Asp Ala Met Gly Gly Pro Val Met Pro Gly Asn Pro Leu 290 295 300

Met Ala Val Gly Leu Ala Ser Ala Leu Ala Asp Phe Gln Gly Ser Gly 305 310 315 320

Pro Glu Glu Met Thr Phe Arg Gly Gly Asp Leu Ile Glu Ile Leu Gly \$325\$

Ala Gln Val Pro Ser Leu Pro Trp Cys Val Gly Arg His Ala Ala Ser 340 345 350

Gly Arg Val Gly Phe Val Arg Ser Ser Leu Ile Ser Met Gln Gly Pro \$355\$

Val Ser Glu Leu Glu Ser Ala Ile Phe Leu Asn Glu Glu Glu Lys Ser 370 375 380

Phe Phe Ser Glu Gly Cys Phe Ser Glu Glu Asp Ala Arg Gln Leu Leu 385 390 395 400

Arg Arg Met Ser Gly Thr Asp Val Cys Ser Val Tyr Ser Leu Asp Ser 405 415

Val Glu Glu Ala Glu Thr Glu Gln Pro Gln Glu Lys Glu Ile Pro Pro 420 425 430

Pro Cys Leu Ser Pro Glu Pro Gln Glu Thr Leu Gln Lys Val Lys Asn 435 440 445

Val Leu Glu Gln Cys Lys Thr Cys Pro Gly Cys Pro Gln Glu Pro Ala 450 455 460

Ser Trp Gly Leu Cys Ala Ala Ser Ser Asp Val Ser Leu Gln Asp Pro 465 470 475 480

Glu Glu Pro Ser Phe Cys Leu Glu Ala Glu Asp Asp Trp Glu Asp Pro 485 490 495

Glu Ala Leu Ser Ser Leu Leu Leu Phe Leu Asn Ala Pro Gly Tyr Lys Ala Ser Phe Arg Gly Leu Tyr Asp Val Ala Leu Pro Trp Leu Ser Ser Val Phe Arg Ser Phe Ser Asp Glu Glu Leu Thr Gly Arg Leu Ala Gln Ala Arg Gly Ala Ala Lys Lys Ala Gly Leu Leu Met Ala Leu Ala Arg Leu Cys Phe Leu Leu Gly Arg Leu Cys Ser Arg Arg Leu Lys Leu Ser Gln Ala Arg Val Tyr Phe Glu Glu Ala Leu Gly Ala Leu Glu Gly Ser Phe Gly Asp Leu Phe Leu Val Val Ala Val Tyr Ala Asn Leu Ala Ser Ile Tyr Arg Lys Gln Lys Asn Arg Glu Lys Cys Ala Gln Val Val Pro Lys Ala Met Ala Leu Leu Gly Thr Pro Asp His Ile Cys Ser Thr Glu Ala Glu Gly Glu Leu Leu Gln Leu Ala Leu Arg Arg Ala Val Gly Gly Gln Ser Leu Gln Ala Glu Ala Arg Ala Cys Phe Leu Leu Ala Arg His His Val His Leu Lys Gln Pro Glu Glu Ala Leu Pro Phe Leu Glu Arg Leu Leu Leu His Arg Asp Ser Gly Ala Pro Glu Ala Ala Trp Leu Ser Asp Cys Tyr Leu Leu Leu Ala Asp Ile Tyr Ser Arg Lys 

Cys Leu Pro His Leu Val Leu Ser Cys Val Lys Val Ala Ser Leu Arg 725 730 735

Thr Arg Gly Ser Leu Ala Gly Ser Leu Arg Ser Val Asn Leu Val Leu 740 750

- Gln Asn Ala Pro Gln Pro His Ser Leu Pro Ala Gln Thr Ser His Tyr  $755 \hspace{1cm} 760 \hspace{1cm} 765$
- Leu Arg Gln Ala Leu Ala Ser Leu Thr Pro Gly Thr Gly Gln Ala Leu 770 780
- Arg Gly Pro Leu Tyr Thr Ser Leu Ala Gln Leu Tyr Ser His His Gly 785 790 800
- Cys His Gly Pro Ala Ile Thr Phe Met Thr Gln Ala Val Glu Ala Ser 805 810 815
- Ala Ile Ala Gly Val Arg Ala Ile Val Asp His Leu Val Ala Leu Ala 820 830
- Trp Leu His Val Leu His Gly Gln Ser Pro Val Ala Leu Asp Ile Leu 835 \$840\$
- Gln Ser Val Arg Asp Ala Val Val Ala Ser Glu Asp Gln Glu Gly Val 850 860
- Ile Ala Asn Met Val Ala Val Ala Leu Lys Arg Thr Gly Arg Thr Arg 865 870 880
- Gln Ala Ala Glu Ser Tyr Tyr Arg Ala Leu Arg Val Ala Arg Asp Leu 885 890
- Gly Gln Gln Arg Asn Gln Ala Val Gly Leu Ala Asn Phe Gly Ala Leu 900 905 910
- Cys Leu His Ala Gly Ala Ser Arg Leu Ala Gln His Tyr Leu Leu Glu 915 920 925
- Ala Val Arg Leu Phe Ser Arg Leu Pro Leu Gly Glu Cys Gly Arg Asp 930 935 940
- Phe Thr His Val Leu Leu Gln Leu Gly His Leu Cys Thr Arg Gln Gly 945 950 955 960
- Pro Ala Gln Gln Gly Lys Gly Tyr Tyr Glu Trp Ala Leu Leu Val Ala 965 970 975

Val Glu Met Gly His Val Glu Ser Gln Leu Arg Ala Val Gln Arg Leu 980 985 990

- Cys His Phe Tyr Ser Ala Val Met Pro Ser Glu Ala Gln Cys Val Ile 995 1000 1005
- Tyr His Glu Leu Gln Leu Ser Pro Ala Cys Lys Val Ala Asp Lys 1010 \$1015\$
- Val Leu Glu Gly Gln Leu Leu Glu Thr Ile Ser Gln Leu Tyr Leu 1025 1035
- Ser Leu Gly Thr Glu Arg Ala Tyr Lys Ser Ala Leu Asp Tyr Thr 1040 1045 1050
- Lys Arg Ser Leu Gly Ile Phe Ile Asp Leu Gln Lys Lys Glu Lys 1055 1060 1065
- Glu Ala His Ala Trp Leu Gln Ala Gly Lys Ile Tyr Tyr Ile Leu 1070 1080
- Arg Gln Ser Glu Leu Val Asp Leu Tyr Ile Gln Val Ala Gln Asn 1085 \$1090\$
- Val Ala Leu Tyr Thr Gly Asp Pro Asn Leu Gly Leu Glu Leu Phe 1100 1110 1110
- Lys Ala Val Ser Phe Tyr Arg Asp Arg Ala Leu Pro Leu Ala Val 1130 1135 1140
- Thr Thr Gly Asn Arg Lys Ala Glu Leu Arg Leu Cys Asn Lys Leu 1145 1150 1155
- Val Ala Leu Leu Ala Thr Leu Glu Glu Pro Gln Glu Gly Leu Glu 1160 1165 1170
- Phe Ala His Met Ala Leu Ala Leu Ser Ile Thr Leu Gly Asp Arg 1175 1180 1185
- Leu Asn Glu Arg Val Ala Tyr His Arg Leu Ala Ala Leu Gln His 1190 1195 1200
- Arg Leu Gly His Gly Glu Leu Ala Glu His Phe Tyr Leu Lys Ala

1205 1210 1215

Leu Ser Leu Cys Asn Ser Pro Leu Glu Phe Asp Glu Glu Thr Leu 1220 1230

Tyr Tyr Val Lys Val Tyr Leu Val Leu Gly Asp Ile Ile Phe Tyr 1235 1240 1245

Asp Leu Lys Asp Pro Phe Asp Ala Ala Gly Tyr Tyr Gln Leu Ala 1250 1255 1260

Leu Ala Ala Val Asp Leu Gly Asn Lys Lys Ala Gln Leu Lys 1265 1270 1275

Ile Tyr Thr Arg Leu Ala Thr Ile Tyr His Asn Phe Leu Leu Asp 1280 1285 1290

Arg Glu Lys Ser Leu Phe Phe Tyr Gln Lys Ala Arg Thr Phe Ala 1295  $$1300\ \ \, 1305\ \ \, 1305$ 

Thr Glu Leu Asn Val Arg Arg Val Asn Leu Pro Pro Leu Pro Leu 1310 1315 1320

Cys Gly Trp Ala Pro Trp Leu Ala Pro Ser His Pro Arg 1325 1330 1335

<210> 2565

<211> 93

<212> PRT

<213> Homo sapiens

<400> 2565

Met Leu Thr Glu Leu Glu Lys Ala Leu Asn Ser Ile Ile Asp Val Tyr  $1 \hspace{1.5cm} 10 \hspace{1.5cm} 15$ 

His Lys Tyr Ser Leu Ile Lys Gly Asn Phe His Ala Val Tyr Arg Asp  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Asp Leu Lys Lys Leu Leu Glu Thr Glu Cys Pro Gln Tyr Ile Arg Lys  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Lys Gly Ala Asp Val Trp Phe Lys Glu Leu Asp Ile Asn Thr Asp Gly 50  $\phantom{\bigg|}55\phantom{\bigg|}$ 

Ala Val Asn Phe Gln Glu Phe Leu Ile Leu Val Ile Lys Met Gly Val 65 70 70 80

Ala Ala His Lys Lys Ser His Glu Glu Ser His Lys Glu 85 90

- <210> 2566 <211> 1186
- <211> 1186 <212> PRT
- <213> Homo sapiens
- <400> 2566

Met Gly Val Gln Gly Leu Trp Lys Leu Leu Glu Cys Ser Gly Arg Gln 1 5 10 15

Val Ser Pro Glu Ala Leu Glu Gly Lys Ile Leu Ala Val Asp Ile Ser  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Ile Trp Leu Asn Gln Ala Leu Lys Gly Val Arg Asp Arg His Gly Asn  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Ser Ile Glu Asn Pro His Leu Leu Thr Leu Phe His Arg Leu Cys Lys 50 55 60

Leu Leu Phe Phe Arg Ile Arg Pro Ile Phe Val Phe Asp Gly Asp Ala 65 70 75 80

Pro Leu Leu Lys Lys Gln Thr Leu Val Lys Arg Arg Gln Arg Lys Asp 85 90 95

Leu Ala Ser Ser Asp Ser Arg Lys Thr Thr Glu Lys Leu Lys Thr  $100 \\ 105 \\ 110$ 

Phe Leu Lys Arg Gln Ala Ile Lys Thr Ala Phe Arg Ser Lys Arg Asp 115 120 125

Glu Ala Leu Pro Ser Leu Thr Gln Val Arg Arg Glu Asn Asp Leu Tyr 130 135 140

Val Leu Pro Pro Leu Gln Glu Glu Glu Lys His Ser Ser Glu Glu Glu 145 150 150 155 160

Asp Glu Lys Glu Trp Gln Glu Arg Met Asn Gln Lys Gln Ala Leu Gln 165 170 175

Glu Glu Phe Phe His Asn Pro Gln Ala Ile Asp Ile Glu Ser Glu Asp 180 185 190

Phe Ser Ser Leu Pro Pro Glu Val Lys His Glu Ile Leu Thr Asp Met

WO 2004/042346

PCT/US2003/012946 

Lys Glu Phe Thr Lys Arg Arg Thr Leu Phe Glu Ala Met Pro Glu 

Glu Ser Asp Asp Phe Ser Gln Tyr Gln Leu Lys Gly Leu Leu Lys Lys 

Asn Tyr Leu Asn Gln His Ile Glu His Val Gln Lys Glu Met Asn Gln 

Gln His Ser Gly His Ile Arg Arg Gln Tyr Glu Asp Glu Gly Gly Phe 

Leu Lys Glu Val Glu Ser Arg Arg Val Val Ser Glu Asp Thr Ser His 

Tyr Ile Leu Ile Lys Gly Ile Gln Ala Lys Thr Val Ala Glu Val Asp 

Ser Glu Ser Leu Pro Ser Ser Ser Lys Met His Gly Met Ser Phe Asp 

Val Lys Ser Ser Pro Cys Glu Lys Leu Lys Thr Glu Lys Glu Pro Asp 

Ala Thr Pro Pro Ser Pro Arg Thr Leu Leu Ala Met Gln Ala Ala Leu 

Leu Gly Ser Ser Ser Glu Glu Glu Leu Glu Ser Glu Asn Arg Arg Gln 

Ala Arg Gly Arg Asn Ala Pro Ala Ala Val Asp Glu Gly Ser Ile Ser 

Pro Arg Thr Leu Ser Ala Ile Lys Arg Ala Leu Asp Asp Asp Glu Asp 

Val Lys Val Cys Ala Gly Asp Asp Val Gln Thr Gly Gly Pro Gly Ala 

Glu Glu Met Arg Ile Asn Ser Ser Thr Glu Asn Ser Asp Glu Gly Leu 

Lys Val Arg Asp Gly Lys Gly Ile Pro Phe Thr Ala Thr Leu Ala Ser 

Ser Ser Val Asn Ser Ala Glu Glu His Val Ala Ser Thr Asn Glu Gly Arg Glu Pro Thr Asp Ser Val Pro Lys Glu Gln Met Ser Leu Val His Val Gly Thr Glu Ala Phe Pro Ile Ser Asp Glu Ser Met Ile Lys Asp Arg Lys Asp Arg Leu Pro Leu Glu Ser Ala Val Val Arg His Ser Asp Ala Pro Gly Leu Pro Asn Gly Arg Glu Leu Thr Pro Ala Ser Pro Thr Cys Thr Asn Ser Val Ser Lys Asn Glu Thr His Ala Glu Val Leu Glu Gln Gln Asn Glu Leu Cys Pro Tyr Glu Ser Lys Phe Asp Ser Ser Leu Leu Ser Ser Asp Asp Glu Thr Lys Cys Lys Pro Asn Ser Ala Ser Glu Val Ile Gly Pro Val Ser Leu Gln Glu Thr Ser Ser Ile Val Ser Val Pro Ser Glu Ala Val Asp Asn Val Glu Asn Val Val Ser Phe Asn Ala Lys Glu His Glu Asn Phe Leu Glu Thr Ile Gln Glu Gln Gln Thr Thr Glu Ser Ala Gly Gln Asp Leu Ile Ser Ile Pro Lys Ala Val Glu Pro Met Glu Ile Asp Ser Glu Glu Ser Glu Ser Asp Gly Ser Phe Ile Glu Val Gln Ser Val Ile Ser Asp Glu Glu Leu Gln Ala Glu Phe Pro Glu Thr Ser Lys Pro Pro Ser Glu Glu Glu Glu Glu Leu Val Gly Thr

| Arg        | Glu<br>690 | Gly        | Glu        | Ala        | Pro        | Ala<br>695 | Glu        | Ser        | Glu        | Ser        | Leu<br>700 | Leu        | Arg        | Asp        | Asn        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ser<br>705 | Glu        | Arg        | Asp        | Asp        | Val<br>710 | Asp        | Gly        | Glu        | Pro        | Gln<br>715 | Glu        | Ala        | Glu        | Lys        | Asp<br>720 |
| Ala        | Glu        | Asp        | Ser        | Leu<br>725 | His        | Glu        | Trp        | Gln        | Asp<br>730 | Ile        | Asn        | Leu        | Glu        | Glu<br>735 | Leu        |
| Glu        | Thr        | Leu        | Glu<br>740 | Ser        | Asn        | Leu        | Leu        | Ala<br>745 | Gln        | Gln        | Asn        | Ser        | Leu<br>750 | Lys        | Ala        |
| Gln        | Lys        | Gln<br>755 | Gln        | Gln        | Glu        | Arg        | Ile<br>760 | Ala        | Ala        | Thr        | Val        | Thr<br>765 | Gly        | Gln        | Met        |
| Phe        | Leu<br>770 | Glu        | Ser        | Gln        | Glu        | Leu<br>775 | Leu        | Arg        | Leu        | Phe        | Gly<br>780 | Ile        | Pro        | Tyr        | Ile        |
| Gln<br>785 | Ala        | Pro        | Met        | Glu        | Ala<br>790 | Glu        | Ala        | Gln        | Cys        | Ala<br>795 | Ile        | Leu        | Asp        | Leu        | Thr<br>800 |
| Asp        | Gln        | Thr        | Ser        | Gly<br>805 | Thr        | Ile        | Thr        | Asp        | Asp<br>810 | Ser        | Asp        | Ile        | Trp        | Leu<br>815 | Phe        |
| Gly        | Ala        | Arg        | His<br>820 | Val        | Tyr        | Arg        | Asn        | Phe<br>825 | Phe        | Asn        | Lys        | Asn        | Lys<br>830 | Phe        | Val        |
| Glu        | Tyr        | Tyr<br>835 | Gln        | Tyr        | Val        | Asp        | Phe<br>840 | His        | Asn        | Gln        | Leu        | Gly<br>845 | Leu        | Asp        | Arg        |
| Asn        | Lys<br>850 | Leu        | Ile        | Asn        | Leu        | Ala<br>855 | Tyr        | Leu        | Leu        | Gly        | Ser<br>860 | Asp        | Tyr        | Thr        | Glu        |
| Gly<br>865 | Ile        | Pro        | Thr        | Val        | Gly<br>870 | Cys        | Val        | Thr        | Ala        | Met<br>875 | Glu        | Ile        | Leu        | Asn        | Glu<br>880 |
| Phe        | Pro        | Gly        | His        | Gly<br>885 | Leu        | Glu        | Pro        | Leu        | Leu<br>890 | Lys        | Phe        | Ser        | Glu        | Trp<br>895 | Trp        |
| His        | Glu        | Ala        | Gln<br>900 | Lys        | Asn        | Pro        | Ьys        | Ile<br>905 | Arg        | Pro        | Asn        | Pro        | His<br>910 | Asp        | Thr        |
| Lys        | Val        | Lys<br>915 | Lys        | Lys        | Leu        | Arg        | Thr<br>920 | Leu        | Gln        | Leu        | Thr        | Pro<br>925 | Gly        | Phe        | Pro        |

Asn Pro Ala Val Ala Glu Ala Tyr Leu Lys Pro Val Val Asp Asp Ser 930 940

- Lys Gly Ser Phe Leu Trp Gly Lys Pro Asp Leu Asp Lys Ile Arg Glu 945 950 955 960
- Phe Cys Gln Arg Tyr Phe Gly Trp Asn Arg Thr Lys Thr Asp Glu Ser 975 975
- Leu Phe Pro Val Leu Lys Gln Leu Asp Ala Gln Gln Thr Gln Leu Arg 980 985 990
- Ile Asp Ser Phe Phe Arg Leu Ala Gln Gln Glu Lys Glu Asp Ala Lys 995 1000 1005
- Arg Ile Lys Ser Gln Arg Leu Asn Arg Ala Val Thr Cys Met Leu 1010 1015 1020
- Arg Lys Glu Lys Glu Ala Ala Ala Ser Glu Ile Glu Ala Val Ser 1025 1030 1035
- Val Ala Met Glu Lys Glu Phe Glu Leu Leu Asp Lys Ala Lys Arg 1040 1045 1050
- Ser Leu Lys Arg Lys Arg Leu Ser Asp Ser Lys Arg Lys Asn Thr 1070 1080
- Cys Gly Gly Phe Leu Gly Glu Thr Cys Leu Ser Glu Ser Ser Asp 1085 1090 1095
- Gly Ser Ser Ser Glu His Ala Glu Ser Ser Ser Leu Met Asn Val 1100 1105 1110
- Gln Arg Arg Thr Ala Ala Lys Glu Pro Lys Thr Ser Ala Ser Asp 1115 1120 1125
- Ser Gln Asn Ser Val Lys Glu Ala Pro Val Lys Asn Gly Gly Ala 1130 1135 1140
- Thr Thr Ser Ser Ser Ser Asp Ser Asp Asp Asp Gly Gly Lys Glu 1145 1150 1155
- Lys Met Val Leu Val Thr Ala Arg Ser Val Phe Gly Lys Lys Arg

1160 1165 1170

Arg Lys Leu Arg Arg Ala Arg Gly Arg Lys Arg Lys Thr

<210> 2567

<211> 84 <212> PRT

<213> Homo sapiens

<400> 2567

Met Pro Leu Ala Lys Asp Leu Leu His Pro Ser Pro Glu Glu Glu Lys 1 5 10 15

Arg Lys His Lys Lys Lys Arg Leu Val Gln Ser Pro Asn Ser Tyr Phe 20 25 30

Met Asp Val Lys Cys Pro Gly Cys Tyr Lys Ile Thr Thr Val Phe Ser 35 40 45

His Ala Gln Thr Val Val Leu Cys Val Gly Cys Ser Thr Val Leu Cys 50 60

Gln Pro Thr Gly Gly Lys Ala Arg Leu Thr Glu Gly Cys Ser Phe Arg 65 70 75 80

Arq Lys Gln His

<210> 2568

<211> 691

<212> PRT

<213> Homo sapiens

<400> 2568

Met Asp Gly Cys Lys Lys Glu Leu Pro Arg Leu Gln Glu Pro Glu Glu 1 5 10 15

Asp Glu Asp Cys Tyr Ile Leu Asn Val Gln Ser Ser Ser Asp Asp Thr 20 25 30

Ser Gly Ser Ser Val Ala Arg Arg Ala Pro Lys Arg Gln Ala Ser Cys 35 40 45

Ile Leu Asn Val Gln Ser Arg Ser Gly Asp Thr Ser Gly Ser Ser Val 50 55 60

- Ser Asp Ser Asp Glu Glu Cys His Thr His Glu Glu Lys Lys Ala Lys 85  $\phantom{\bigg|}90\phantom{\bigg|}95\phantom{\bigg|}$
- Leu Leu Glu Ile Asn Ser Asp Asp Glu Ser Pro Glu Cys Cys His Val  $100 \\ 05 \\ 105 \\ 110$
- Lys Pro Ala Ile Gln Glu Pro Pro Ile Val Ile Ser Asp Asp Asp Asn 115  $$\rm 120$$
- Asp Asp Asn Gly Asn Asp Leu Glu Val Pro Asp Asn Asn Ser Asp 130 135
- Asp Ser Glu Ala Pro Asp Asp Asn Ser Asp Asp Ser Glu Ala Pro Asp 145 150 155 160
- Asp Asn Ser Asp Asp Ser Glu Ala Pro Asp Asp Asn Ser Asp Asp Ser 165 \$170\$
- Glu Ala Pro Asp Asp Asn Ser Asp Asp Ser Asp Val Pro Asp Asp Asn 180 189 190
- Ser Asp Asp Ser Ser Asp Asp Asn Ser Asp Asp Ser Ser Asp Asp Asn 195 200 205
- Ser Asp Asp Ser Asp Val Pro Asp Asp Lys Ser Asp Asp Ser Asp Val 210 215 220
- Pro Asp Asp Ser Ser Asp Asp Ser Asp Val Pro Asp Asp Ser Ser Asp 225 230 230 235 240
- Asp Ser Glu Ala Pro Asp Ser Ser Ser Asp Asp Ser Glu Ala Pro Asp 245 250 250
- Asp Ser Ser Asp Asp Ser Glu Ala Pro Asp Asp Ser Ser Asp Asp Ser 260 265 270
- Glu Ala Pro Asp Asp Ser Ser Asp Asp Ser Glu Ala Ser Asp Asp Ser 275 280 285
- Ser Asp Asp Ser Glu Ala Ser Asp Asp Ser Ser Asp Asp Ser Glu Ala 290 295 300
- Pro Asp Asp Lys Ser Asp Ser Asp Val Pro Glu Asp Lys Ser Asp

WO 2004/042346 PCT/US2003/0 305 310 315 320

Asp Ser Asp Val Pro Asp Asp Asp Ser Asp Asp Leu Glu Val Pro Val 325 330 335

Pro Ala Glu Asp Leu Cys Asn Glu Gly Gln Ile Ala Ser Asp Glu Glu 340 345 350

Glu Leu Val Glu Ala Ala Ala Ala Val Ser Gln His Asp Ser Ser Asp 355 360 365

Asp Ala Gly Glu Gln Asp Leu Gly Glu Asn Leu Ser Lys Pro Pro Ser 370 380

Asp Pro Glu Ala Asn Pro Glu Val Ser Glu Arg Lys Leu Pro Thr Glu 385 390 395 400

Glu Glu Pro Ala Pro Val Val Glu Gln Ser Gly Lys Arg Lys Ser Lys 405 410 415

Thr Lys Thr Ile Val Glu Pro Pro Arg Lys Arg Gln Thr Lys Thr Lys 420 425 430

Asn Ile Val Glu Pro Pro Arg Lys Arg Gln Thr Lys Thr Lys Asn Ile \$435\$

Val Glu Pro Leu Arg Lys Arg Lys Ala Lys Thr Lys Asn Val Ser Val 450 455 460

Thr Pro Gly His Lys Lys Arg Gly Pro Ser Lys Lys Lys Pro Gly Ala 465 470 480

Ala Lys Val Glu Lys Arg Lys Thr Arg Thr Pro Lys Cys Lys Val Pro 485 490 495

Gly Cys Phe Leu Gln Asp Leu Glu Lys Ser Lys Lys Tyr Ser Gly Lys 500 505 510

Asn Leu Lys Arg Asn Lys Asp Glu Leu Val Gln Arg Ile Tyr Asp Leu 515 520 525

Phe Asn Arg Ser Val Cys Asp Lys Leu Pro Glu Lys Leu Arg Ile 530 535 540

Gly Trp Asn Asn Lys Met Val Lys Thr Ala Gly Leu Cys Ser Thr Gly 545 550 550 560

Glu Met Trp Tyr Pro Lys Trp Arg Arg Phe Ala Lys Ile Gln Ile Gly 565 575 575

Leu Lys Val Cys Asp Ser Ala Asp Arg Ile Arg Asp Thr Leu Ile His  $580 \hspace{1.5cm} 595 \hspace{1.5cm} 595$ 

Glu Met Cys His Ala Ala Ser Trp Leu Ile Asp Gly Ile His Asp Ser  $595 \hspace{1.5cm} 600 \hspace{1.5cm} 605$ 

His Gly Asp Ala Trp Lys Tyr Tyr Ala Arg Lys Ser Asn Arg Ile His 610 620

Pro Glu Leu Pro Arg Val Thr Arg Cys His Asn Tyr Lys Ile Asn Tyr 625 630 635 640

Lys Val His Tyr Glu Cys Thr Gly Cys Lys Thr Arg Ile Gly Cys Tyr \$645\$ \$650\$

Thr Lys Ser Leu Asp Thr Ser Arg Phe Ile Cys Ala Lys Cys Lys Gly 660 660 670

Ser Leu Val Met Val Pro Leu Thr Gln Lys Asp Gly Thr Arg Ile Val 675 680 685

Pro His Val

<210> 2569

<211> 101

<212> PRT <213> Homo sapiens

<400> 2569

Met Ser Asp Gln Glu Ala Lys Pro Ser Thr Glu Asp Leu Gly Asp Lys 1 5 10 15

Glu Ile His Phe Lys Val Lys Met Thr Thr His Leu Lys Lys Leu Lys 35 40 45

Glu Ser Tyr Cys Gln Arg Gln Gly Val Pro Met Asn Ser Leu Arg Phe 50 60

Leu Phe Glu Gly Gln Arg Ile Ala Asp Asn His Thr Pro Lys Glu Leu  $65 \hspace{1cm} 70 \hspace{1cm} 75 \hspace{1cm} 80$ 

Gly Met Glu Glu Glu Asp Val Ile Glu Val Tyr Gln Glu Gln Thr Gly 85 90 95

Gly His Ser Thr Val

<210> 2570 <211> 93

<212> PRT

<213> Homo sapiens

<400> 2570

Met Ser Gly Leu Arg Val Tyr Ser Thr Ser Val Thr Gly Ser Arg Glu 1 5 10 15

Ile Lys Ser Gln Gln Ser Glu Val Thr Arg Ile Leu Asp Gly Lys Arg 20 25 30

Ile Gln Tyr Gln Leu Val Asp Ile Ser Gln Asp Asn Ala Leu Arg Asp  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Glu Met Arg Ala Leu Ala Gly Asn Pro Lys Ala Thr Pro Pro Gln Ile  $50 \hspace{1cm} 55$ 

Val Asn Gly Asp Gln Tyr Cys Gly Asp Tyr Glu Leu Phe Val Glu Ala 65 75 80

Val Glu Gln Asn Thr Leu Gln Glu Phe Leu Lys Leu Ala 85 90

<210> 2571

<211> 666 <212> PRT

<213> Homo sapiens

<400> 2571

Met Thr Pro Pro Pro Pro Gly Arg Ala Ala Pro Ser Ala Pro Arg Ala 1 5 10 15

Leu Leu Leu Leu Trp Ala Ala Ala Ala Ser Ala Gln Gly His Leu  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Thr Asn Ala Arg His Pro Ser Cys Trp Asn Leu Val Asn Gly Thr Val

155

160

Val Pro Leu Gly Glu Met Arg Gly Tyr Ala Pro Phe Ser Pro Asp Glu . 165 170 175

Asn Ser Leu Val Leu Phe Glu Gly Asp Glu Val Tyr Ser Thr Ile Arg 180 185 190

Lys Gln Glu Tyr Asn Gly Lys Ile Pro Arg Phe Arg Arg Ile Arg Gly 195 \$200\$

Glu Ser Glu Leu Tyr Thr Ser Asp Thr Val Met Gln Asn Pro Gln Phe 210 215 220

Ile Lys Ala Thr Ile Val His Gln Asp Gln Ala Tyr Asp Asp Lys Ile 225 230 235 240

Tyr Tyr Phe Phe Arg Glu Asp Asn Pro Asp Lys Asn Pro Glu Ala Pro 245 250 255

Leu Asn Val Ser Arg Val Ala Gln Leu Cys Arg Gly Asp Gln Gly Gly 260 265 270

Glu Ser Ser Leu Ser Val Ser Lys Trp Asn Thr Phe Leu Lys Ala Met 275 280 285

Leu Val Cys Ser Asp Ala Ala Thr Asn Lys Asn Phe Asn Arg Leu Gln 290 295 300

Asp Val Phe Leu Leu Pro Asp Pro Ser Gly Gln Trp Arg Asp Thr Arg 305 \$310\$ \$315\$ 320

Val Tyr Gly Val Phe Ser Asn Pro Trp Asn Tyr Ser Ala Val Cys Val 325 330 335

Tyr Ser Leu Gly Asp Ile Asp Lys Val Phe Arg Thr Ser Ser Leu Lys \$340\$ \$345\$ \$350

Gly Tyr His Ser Ser Leu Pro Asn Pro Arg Pro Gly Lys Cys Leu Pro 355 360 365

Asp Gln Gln Pro Ile Pro Thr Glu Thr Phe Gln Val Ala Asp Arg His 370 375 380

Pro Glu Val Ala Gln Arg Val Glu Pro Met Gly Pro Leu Lys Thr Pro 385 390 395 400

Leu Phe His Ser Lys Tyr His Tyr Gln Lys Val Ala Val His Arg Met 405 410 415

Gln Ala Ser His Gly Glu Thr Phe His Val Leu Tyr Leu Thr Thr Asp 420 425 430

Arg Gly Thr Ile His Lys Val Val Glu Pro Gly Glu Gln Glu His Ser 440 445

Phe Ala Phe Asn Ile Met Glu Ile Gln Pro Phe Arg Arg Ala Ala Ala 450 460

Ile Gln Thr Met Ser Leu Asp Ala Glu Arg Arg Lys Leu Tyr Val Ser 465 \$470\$ . 480

Ser Gln Trp Glu Val Ser Gln Val Pro Leu Asp Leu Cys Glu Val Tyr 485 490 490

Gly Gly Gly Cys His Gly Cys Leu Met Ser Arg Asp Pro Tyr Cys Gly  $500 \hspace{1cm} 505 \hspace{1cm} 510$ 

Trp Asp Gln Gly Arg Cys Ile Ser Ile Tyr Ser Ser Glu Arg Ser Val 515 520 525

Leu Gln Ser Ile Asn Pro Ala Glu Pro His Lys Glu Cys Pro Asn Pro

530 535 540

Lys Pro Asp Lys Ala Pro Leu Gln Lys Val Ser Leu Ala Pro Asn Ser 545 550 550 560

Arg Tyr Tyr Leu Ser Cys Pro Met Glu Ser Arg His Ala Thr Tyr Ser 565 570 575

Trp Arg His Lys Glu Asn Val Glu Gln Ser Cys Glu Pro Gly His Gln 580 585 590

Ser Pro Asn Cys Ile Leu Phe Ile Glu Asn Leu Thr Ala Gln Gln Tyr 595  $\,$  600  $\,$  605

Gly His Tyr Phe Cys Glu Ala Gln Glu Gly Ser Tyr Phe Arg Glu Ala 610  $\,$  620  $\,$ 

Gln His Trp Gln Leu Leu Pro Glu Asp Gly Ile Met Ala Glu His Leu 625  $\phantom{\bigg|}$  630  $\phantom{\bigg|}$  635  $\phantom{\bigg|}$  640

Leu Gly His Ala Cys Ala Leu Ala Ala Ser Leu Trp Leu Gly Val Leu 645 650 655

Pro Thr Leu Thr Leu Gly Leu Leu Val His 660 665

<210> 2572

<211> 162 <212> PRT

<213> Homo sapiens

<400> 2572

Met Arg Ser Ser Pro Gly Asn Met Glu Arg Ile Val Ile Cys Leu Met 1 10 15

Val Ile Phe Leu Gly Thr Leu Val His Lys Ser Ser Ser Gln Gly Gln 20 25 30

Asp Arg His Met Ile Arg Met Arg Gln Leu Ile Asp Ile Val Asp Gln 35 40 45

Leu Lys Asn Tyr Val Asn Asp Leu Val Pro Glu Phe Leu Pro Ala Pro 50 55 60

Glu Asp Val Glu Thr Asn Cys Glu Trp Ser Ala Phe Ser Cys Phe Gln 65 70 75 80

Lys Ala Gln Leu Lys Ser Ala Asn Thr Gly Asn Asn Glu Arg Ile Ile 85 \$90\$

As n Val Ser Ile Lys Lys Leu Lys Arg Lys Pro Pro Ser Thr As Ala 100 \$105\$

Gly Arg Arg Gln Lys His Arg Leu Thr Cys Pro Ser Cys Asp Ser Tyr 115 120 125

Glu Lys Lys Pro Pro Lys Glu Phe Leu Glu Arg Phe Lys Ser Leu Leu 130 140

Gln Lys Met Ile His Gln His Leu Ser Ser Arg Thr His Gly Ser Glu 145 \$150\$ 150 \$150\$

Asp Ser

<210> 2573 <211> 1050

<212> PRT

<213> Homo sapiens

<400> 2573

Met Leu Cys Trp Gly Tyr Trp Ser Leu Gly Gln Pro Gly Ile Ser Thr 1  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Asn Leu Gln Gly Ile Val Ala Glu Pro Gln Val Cys Gly Phe Ile Ser  $20 \\ 25 \\ 30$ 

Asp Arg Ser Val Lys Glu Val Ala Cys Gly Gly Asn His Ser Val Phe 35 40 45

Leu Leu Glu Asp Gly Glu Val Tyr Thr Cys Gly Leu Asn Thr Lys Gly 50 60

Gln Leu Gly His Glu Arg Glu Gly Asn Lys Pro Glu Gln Ile Gly Ala 65 70 75 80

Leu Ala Asp Gln His Ile Ile His Val Ala Cys Gly Glu Ser His Ser 85 90 95

Leu Ala Leu Ser Asp Arg Gly Gln Leu Phe Ser Trp Gly Ala Gly Ser 100 105 110

Asp Gly Gln Leu Gly Leu Met Thr Thr Glu Asp Ser Val Ala Val Pro

WO 2004/042346

PCT/US2003/012946 

Arg Leu Ile Gln Lys Leu Asn Gln Gln Thr Ile Leu Gln Val Ser Cys 

Gly Asn Trp His Cys Leu Ala Leu Ala Ala Asp Gly Gln Phe Phe Thr 

Trp Gly Lys Asn Ser His Gly Gln Leu Gly Leu Gly Lys Glu Phe Pro 

Ser Gln Ala Ser Pro Gln Arg Val Arg Ser Leu Glu Gly Ile Pro Leu

Ala Gln Val Ala Ala Gly Gly Ala His Ser Phe Ala Leu Ser Leu Ser 

Gly Ala Val Phe Gly Trp Gly Met Asn Asn Ala Gly Gln Leu Gly Leu 

Ser Asp Glu Lys Asp Arg Glu Ser Pro Cys His Val Lys Leu Leu Arg 

Thr Gln Lys Val Val Tyr Ile Ser Cys Gly Glu Glu His Thr Ala Val 

Leu Thr Lys Ser Gly Gly Val Phe Thr Phe Gly Ala Gly Ser Cys Gly 

Gln Leu Gly His Asp Ser Met Asn Asp Glu Val Asn Pro Arg Arg Val 

Leu Glu Leu Met Gly Ser Glu Val Thr Gln Ile Ala Cys Gly Arg Gln 

His Thr Leu Ala Phe Val Pro Ser Ser Gly Leu Ile Tyr Ala Phe Gly 

Cys Gly Ala Arg Gly Gln Leu Gly Thr Gly His Thr Cys Asn Val Lys 

Cys Pro Ser Pro Val Lys Gly Tyr Trp Ala Ala His Ser Gly Gln Leu 

Ser Ala Arg Ala Asp Arg Phe Lys Tyr His Ile Val Lys Gln Ile Phe 

Ser Gly Gly Asp Gln Thr Phe Val Leu Cys Ser Lys Tyr Glu Asn Tyr Ser Pro Ala Val Asp Phe Arg Thr Met Asn Gln Ala His Tyr Thr Ser Leu Ile Asn Asp Glu Thr Ile Ala Val Trp Arg Gln Lys Leu Ser Glu His Asn Asn Ala Asn Thr Ile Asn Gly Val Val Gln Ile Leu Ser Ser Ala Ala Cys Trp Asn Gly Ser Phe Leu Glu Lys Lys Ile Asp Glu His Phe Lys Thr Ser Pro Lys Ile Pro Gly Ile Asp Leu Asn Ser Thr Arg Val Leu Phe Glu Lys Leu Met Asn Ser Gln His Ser Met Ile Leu Glu Gln Ile Leu Asn Ser Phe Glu Ser Cys Leu Ile Pro Gln Leu Ser Ser Ser Pro Pro Asp Val Glu Ala Met Arg Ile Tyr Leu Ile Leu Pro Glu Phe Pro Leu Ceu Gln Asp Ser Lys Tyr Tyr Ile Thr Leu Thr Ile Pro Leu Ala Met Ala Ile Leu Arg Leu Asp Thr Asn Pro Ser Lys Val Leu Asp Asn Trp Trp Ser Gln Val Cys Pro Lys Tyr Phe Met Lys Leu Val Asn Leu Tyr Lys Gly Ala Val Leu Tyr Leu Leu Arg Gly Arg Lys Thr Phe Leu Ile Pro Val Leu Phe Asn Asn Tyr Ile Thr Ala Ala Leu Lys Leu Leu Glu Lys Leu Tyr Lys Val Asn Leu Lys Val Lys His Val Glu

Tyr Asp Thr Phe Tyr Ile Pro Glu Ile Ser Asn Leu Val Asp Ile Gln Glu Asp Tyr Leu Met Trp Phe Leu His Gln Ala Gly Met Lys Ala Arg Pro Ser Ile Ile Gln Asp Thr Val Thr Leu Cys Ser Tyr Pro Phe Ile Phe Asp Ala Gln Ala Lys Thr Lys Met Leu Gln Thr Asp Ala Glu Leu Gln Met Gln Val Ala Val Asn Gly Ala Asn Leu Gln Asn Val Phe Met Leu Leu Thr Leu Glu Pro Leu Leu Ala Arg Ser Pro Phe Leu Val Leu His Val Arg Arg Asn Asn Leu Val Gly Asp Ala Leu Arg Glu Leu Ser Ile His Ser Asp Ile Asp Leu Lys Lys Pro Leu Lys Val Ile Phe Asp Gly Glu Glu Ala Val Asp Ala Gly Gly Val Thr Lys Glu Phe Phe Leu Leu Leu Lys Glu Leu Leu Asn Pro Ile Tyr Gly Met Phe Thr Tyr Tvr Gln Asp Ser Asn Leu Leu Trp Phe Ser Asp Thr Cys Phe Val Glu His Asn Trp Phe His Leu Ile Gly Ile Thr Cys Gly Leu Ala Ile Tyr Asn Ser Thr Val Val Asp Leu His Phe Pro Leu Ala Leu Tvr Lvs Lvs Leu Leu Asn Val Lys Pro Gly Leu Glu Asp Leu Lys Glu Leu Ser Pro 

Thr Glu Gly Arg Ser Leu Gln Glu Leu Leu Asp Tyr Pro Gly Glu Asp 835 840 845

Val Glu Glu Thr Phe Cys Leu Asn Phe Thr Ile Cys Arg Glu Ser Tyr 850 855 860

Gly Val Ile Glu Gln Lys Lys Leu Ile Pro Gly Gly Asp Asn Val Thr 865  $\,$  870  $\,$  875  $\,$  880

Val Cys Lys Asp Asn Arg Gln Glu Phe Val Asp Ala Tyr Val Asn Tyr 885 890 895

Val Phe Gln Ile Ser Val His Glu Trp Tyr Thr Ala Phe Ser Ser Gly

Phe Leu Lys Val Cys Gly Gly Lys Val Leu Glu Leu Phe Gln Pro Ser 915 920 925

Glu Leu Arg Ala Met Met Val Gly Asn Ser Asn Tyr Asn Trp Glu Glu 930 935 940

Leu Glu Glu Thr Ala Ile Tyr Lys Gly Asp Tyr Ser Ala Thr His Pro 945 950 955 960

Thr Val Lys Leu Phe Trp Glu Thr Phe His Glu Phe Pro Leu Glu Lys 965 970 975

Lys Lys Lys Phe Leu Leu Phe Leu Thr Gly Ser Asp Arg Ile Pro Ile 980 985 990

Tyr Gly Met Ala Ser Leu Gln Ile Val Ile Gln Ser Thr Ala Ser Gly 995 1000 1005

Glu Glu Tyr Leu Pro Val Ala His Thr Cys Tyr Asn Leu Leu Asp 1010 \$1015\$

Leu Pro Lys Tyr Ser Ser Lys Glu Ile Leu Ser Ala Arg Leu Thr 1025 1030 1035

Gln Ala Leu Asp Asn Tyr Glu Gly Phe Ser Leu Ala 1040 1045 105

<210> 2574

<211> 369 <212> PRT

<213> Homo sapiens

<400> 2574

Met Arg Ala Cys Ile Ser Leu Val Leu Ala Val Leu Cys Gly Leu Ala 1 5 10 15

Trp Ala Glu Asp His Lys Glu Ser Glu Pro Leu Pro Gln Leu Glu Glu Glu Thr Glu Glu Ala Leu Ala Ser Asn Leu Tyr Ser Ala Pro Thr Ser Cys Gln Gly Arg Cys Tyr Glu Ala Phe Asp Lys His His Gln Cys His Cys Asn Ala Arg Cys Gln Glu Phe Gly Asn Cys Cys Lys Asp Phe Glu Ser Leu Cys Ser Asp His Glu Val Ser His Ser Ser Asp Ala Ile Thr Lys Glu Glu Ile Gln Ser Ile Ser Glu Lys Ile Tyr Arg Ala Asp Thr Asn Lys Ala Gln Lys Glu Asp Ile Val Leu Asn Ser Gln Asn Cys Ile Ser Pro Ser Glu Thr Arg Asn Gln Val Asp Arg Cys Pro Lys Pro Leu Phe Thr Tyr Val Asn Glu Lys Leu Phe Ser Lys Pro Thr Tyr Ala Ala Phe Ile Asn Leu Leu Asn Asn Tyr Gln Arg Ala Thr Gly His Gly Glu His Phe Ser Ala Gln Glu Leu Ala Glu Gln Asp Ala Phe Leu Arg Glu Ile Met Lys Thr Ala Val Met Lys Glu Leu Tyr Ser Phe Leu His His Gln Asn Arg Tyr Gly Ser Glu Gln Glu Phe Val Asp Asp Leu Lys Asn Met Trp Phe Gly Leu Tyr Ser Arg Gly Asn Glu Glu Gly Asp Ser Ser 

Gly Phe Glu His Val Phe Ser Gly Glu Val Lys Lys Gly Lys Val Thr 245 250 255

Gly Phe His Asn Trp Ile Arg Phe Tyr Leu Glu Glu Lys Glu Gly Leu 260 265 270

Val Asp Tyr Tyr Ser His Ile Tyr Asp Gly Pro Trp Asp Ser Tyr Pro

Asp Val Leu Ala Met Gln Phe Asn Trp Asp Gly Tyr Tyr Lys Glu Val 290 295 300

Gly Ser Ala Phe Ile Gly Ser Ser Pro Glu Phe Glu Phe Ala Leu Tyr 305  $\phantom{\bigg|}310\phantom{\bigg|}310\phantom{\bigg|}315\phantom{\bigg|}$ 

Ser Leu Cys Phe Ile Ala Arg Pro Gly Lys Val Cys Gln Leu Ser Leu 325 330 335

Gly Gly Tyr Pro Leu Ala Val Arg Thr Tyr Thr Trp Asp Lys Ser Thr 340 345 350

Tyr Gly Asn Gly Lys Lys Tyr Ile Ala Thr Ala Tyr Ile Val Ser Ser

Thr

<210> 2575 <211> 90

<212> PRT

<213> Homo sapiens

<400> 2575

Met Asp Pro Leu Arg Ala Gln Gln Leu Ala Ala Glu Leu Glu Val Glu 1 5 10 15

Met Met Ala Asp Met Tyr Asn Arg Met Thr Ser Ala Cys His Arg Lys 20 25 30

Cys Val Pro Pro His Tyr Lys Glu Ala Glu Leu Ser Lys Gly Glu Ser 35 40 45

Val Cys Leu Asp Arg Cys Val Ser Lys Tyr Leu Asp Ile His Glu Arg 50 55 60

Met Gly Lys Lys Leu Thr Glu Leu Ser Met Gln Asp Glu Glu Leu Met 65 70 75 80

Lys Arg Val Gln Gln Ser Ser Gly Pro Ala

85 90

<210> 2576 <211> 426

<212> PRT

<213> Homo sapiens

<400> 2576

Met Ala Asn Asp Ser Gly Gly Pro Gly Gly Pro Ser Pro Ser Glu Arg 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Asp Arg Gln Tyr Cys Glu Leu Cys Gly Lys Met Glu Asn Leu Arg  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$ 

Cys Ser Arg Cys Arg Ser Ser Phe Tyr Cys Cys Lys Glu His Gln Arg 35 40 45

Gln Asp Trp Lys Lys His Lys Leu Val Cys Gln Gly Ser Glu Gly Ala 50 55 60

Leu Gly His Gly Val Gly Pro His Gln His Ser Gly Pro Ala Pro Pro 65 70 75 80

Ala Ala Val Pro Pro Pro Arg Ala Gly Ala Arg Glu Pro Arg Lys Ala 85 90 95

Ala Ala Arg Arg Asp Asn Ala Ser Gly Asp Ala Ala Lys Gly Lys Val

Lys Ala Lys Pro Pro Ala Asp Pro Ala Ala Ala Ala Ser Pro Cys Arg 115 120 125

Ala Ala Gly Gly Gln Gly Ser Ala Val Ala Ala Glu Ala Glu Pro
130 135 140

Gly Lys Glu Glu Pro Pro Ala Arg Ser Ser Leu Phe Gln Glu Lys Ala 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Asn Leu Tyr Pro Pro Ser Asn Thr Pro Gly Asp Ala Leu Ser Pro Gly 165 170 175

Gly Gly Leu Arg Pro Asn Gly Gln Thr Lys Pro Leu Pro Ala Leu Lys

Leu Ala Leu Glu Tyr Ile Val Pro Cys Met Asn Lys His Gly Ile Cys 195 200 205

Val Val Asp Asp Phe Leu Gly Lys Glu Thr Gly Gln Gln Ile Gly Asp 210 215 220

Glu Val Arg Ala Leu His Asp Thr Gly Lys Phe Thr Asp Gly Gln Leu 225  $\phantom{\bigg|}$  230  $\phantom{\bigg|}$  235  $\phantom{\bigg|}$  240

Val Ser Gln Lys Ser Asp Ser Ser Lys Asp Ile Arg Gly Asp Lys Ile 245 250 255

Thr Trp Ile Glu Gly Lys Glu Pro Gly Cys Glu Thr Ile Gly Leu Leu 260 265 270

Met Ser Ser Met Asp Asp Leu Ile Arg His Cys Asn Gly Lys Leu Gly 275 280 285

Ser Tyr Lys Ile Asn Gly Arg Thr Lys Ala Met Val Ala Cys Tyr Pro 290 295 300

Gly Asn Gly Thr Gly Tyr Val Arg His Val Asp Asn Pro Asn Gly Asp 305  $\phantom{\bigg|}$  310  $\phantom{\bigg|}$  315  $\phantom{\bigg|}$  320

Gly Arg Cys Val Thr Cys Ile Tyr Tyr Leu Asn Lys Asp Trp Asp Ala \$325\$

Lys Val Ser Gly Gly Ile Leu Arg Ile Phe Pro Glu Gly Lys Ala Gln 340 345 350

Phe Ala Asp Ile Glu Pro Lys Phe Asp Arg Leu Leu Phe Phe Trp Ser \$355\$

Asp Arg Arg Asn Pro His Glu Val Gln Pro Ala Tyr Ala Thr Arg Tyr 370 \$375\$

Ala Ile Thr Val Trp Tyr Phe Asp Ala Asp Glu Arg Ala Arg Ala Lys 385 390 395 400

Val Lys Tyr Leu Thr Gly Glu Lys Gly Val Arg Val Glu Leu Asn Lys  $405 \hspace{1.5cm} 410 \hspace{1.5cm} 410 \hspace{1.5cm} 415 \hspace{1.5cm}$ 

Pro Ser Asp Ser Val Gly Lys Asp Val Phe 420 425

<210> 2577

<211> 346

<212> PRT

<213> Homo sapiens

<400> 2577

Met Glu Ser Val Ser Cys Ser Ala Ala Ala Val Arg Thr Gly Asp Met 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Glu Ser Gln Arg Asp Leu Ser Leu Val Pro Glu Arg Leu Gln Arg Arg  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$ 

Glu Gln Glu Arg Gln Leu Glu Val Glu Arg Arg Lys Gln Lys Arg Gln 35 40 45

Asn Gln Glu Val Glu Lys Glu Asn Ser His Phe Phe Val Ala Thr Phe 50 60

Ala Arg Glu Arg Ala Ala Val Glu Glu Leu Leu Glu Arg Ala Glu Ser 65 70 75 80

Val Glu Arg Leu Glu Glu Ala Ala Ser Arg Leu Gln Gly Leu Gln Lys 85 90 95

Gly Gln Glu Ala Leu Ala Arg Leu Gln Ala Ala Leu Ala Glu Arg Arg 115 120 125

Arg Gly Leu Gln Pro Lys Lys Arg Phe Ala Phe Lys Thr Arg Gly Lys  $130 \ \ 135 \ \ 140$ 

Asp Ala Ala Ser Ser Thr Lys Val Asp Ala Ala Pro Gly Ile Pro Pro 145 150 155 160

Ala Val Glu Ser Ile Gln Asp Ser Pro Leu Pro Lys Lys Ala Glu Gly
165 170 175

Asp Leu Gly Pro Ser Trp Val Cys Gly Phe Ser Asn Leu Glu Ser Gln 180 185 190

Val Leu Glu Lys Arg Ala Ser Glu Leu His Gln Arg Asp Val Leu Leu 195 200 205

Thr Glu Leu Ser Asn Cys Thr Val Arg Leu Tyr Gly Asn Pro Asn Thr 210  $\phantom{\bigg|}215\phantom{\bigg|}$  220

Leu Arg Leu Thr Lys Ala His Ser Cys Lys Leu Leu Cys Gly Pro Val 225 230 235 240

Ser Thr Ser Val Phe Leu Glu Asp Cys Ser Asp Cys Val Leu Ala Val

Ala Cys Gln Gln Leu Arg Ile His Ser Thr Lys Asp Thr Arg Ile Phe

Leu Gln Val Thr Ser Arg Ala Ile Val Glu Asp Cys Ser Gly Ile Gln 275 280 285

Phe Ala Pro Tyr Thr Trp Ser Tyr Pro Glu Ile Asp Lys Asp Phe Glu 290 295 300

Ser Ser Gly Leu Asp Arg Ser Lys Asn Asn Trp Asn Asp Val Asp Asp 305 310 315

Phe Asn Trp Leu Ala Arg Asp Met Ala Ser Pro Asn Trp Ser Ile Leu  $325 \hspace{1cm} 330 \hspace{1cm} 335$ 

Pro Glu Glu Glu Arg Asn Ile Gln Trp Asp 340 345

<210> 2578

<211> 247 <212> PRT

<213> Homo sapiens

<400> 2578

Met Glu Phe Pro Lys Met Leu Thr Arg Lys Ile Lys Leu Trp Asp Ile 1 5 10 15

Asn Ala His Ile Thr Cys Arg Leu Cys Ser Gly Tyr Leu Ile Asp Ala \$20\$

Thr Thr Val Thr Glu Cys Leu His Thr Phe Cys Arg Ser Cys Leu Val 35 40 45

Lys Tyr Leu Glu Glu Asn Asn Thr Cys Pro Thr Cys Arg Ile Val Ile 50 55 60

His Gln Ser His Pro Leu Gln Tyr Ile Gly His Asp Arg Thr Met Gln 65 70 75 80

Asp Ile Val Tyr Lys Leu Val Pro Gly Leu Gln Glu Ala Glu Met Arg \$85\$ 90 95

Lys Gln Arg Glu Phe Tyr His Lys Leu Gly Met Glu Val Pro Gly Asp  $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105 \hspace{1.5cm} 110$ 

Ile Lys Gly Glu Thr Cys Ser Ala Lys Gln His Leu Asp Ser His Arg 115 120 125

Asn Gly Glu Thr Lys Ala Asp Asp Ser Ser Asn Lys Glu Ala Ala Glu 130 135 140

Glu Lys Pro Glu Glu Asp Asn Asp Tyr His Arg Ser Asp Glu Gln Val 145  $\phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}$ 

Ser Ile Cys Leu Glu Cys Asn Ser Ser Lys Leu Arg Gly Leu Lys Arg 165 170 175

Phe Ile Ala Lys Lys Leu Asn Leu Ser Ser Phe Asn Glu Leu Asp Ile 195 200 205

Leu Cys Asn Glu Glu Ile Leu Gly Lys Asp His Thr Leu Lys Phe Val 210 215 220

Val Val Thr Arg Trp Arg Phe Lys Lys Ala Pro Leu Leu Leu His Tyr 225 230 235 240

Arg Pro Lys Met Asp Leu Leu 245

<210> 2579

<211> 360 <212> PRT

<213> Homo sapiens

<400> 2579

Met Ala Ser Ala Thr Ala Pro Ala Ala Ala Val Pro Thr Leu Ala Ser 1 5 10 15

Pro Leu Glu Gln Leu Arg His Leu Ala Glu Glu Leu Arg Leu Leu Leu 20 25 30

Pro Arg Val Arg Val Gly Glu Ala Gln Glu Thr Thr Glu Glu Phe Asn 35 40 45

Arg Glu Met Phe Trp Arg Arg Leu Asn Glu Ala Ala Val Thr Val Ser 50 55 60

Arg Glu Ala Thr Thr Leu Thr Ile Val Phe Ser Gln Leu Pro Leu Pro Ser Pro Gln Glu Thr Gln Lys Phe Cys Glu Gln Val His Ala Ala Ile Lys Ala Phe Ile Ala Val Tyr Tyr Leu Leu Pro Lys Asp Gln Gly Ile Thr Leu Arg Lys Leu Val Arg Gly Ala Thr Leu Asp Ile Val Asp Gly Met Ala Gln Leu Met Glu Val Leu Ser Val Thr Pro Thr Gln Ser Pro Glu Asn Asn Asp Leu Ile Ser Tyr Asn Ser Val Trp Val Ala Cys Gln Gln Met Pro Gln Ile Pro Arg Asp Asn Lys Ala Ala Ala Leu Leu Met Leu Thr Lys Asn Val Asp Phe Val Lys Asp Ala His Glu Glu Met Glu Gln Ala Val Glu Glu Cys Asp Pro Tyr Ser Gly Leu Leu Asn Asp Thr Glu Glu Asn Asn Ser Asp Asn His Asn His Glu Asp Asp Val Leu Gly Phe Pro Ser Asn Gln Asp Leu Tyr Trp Ser Glu Asp Asp Gln Glu Leu Ile Ile Pro Cys Leu Ala Leu Val Arg Ala Ser Lys Ala Cys Leu Lys Lys Ile Arg Met Leu Val Ala Glu Asn Gly Lys Lys Asp Gln Val Ala Gln Met Ala Asp Ile Val Asp Ile Ser Asp Glu Ile Ser Pro Ser Val Asp Asp Leu Ala Leu Ser Ile Tyr Pro Pro Met Cys His Leu Thr Val

Arg Ile Asn Ser Ala Lys Leu Val Ser Val Leu Lys Lys Ala Leu Glu 305  $\phantom{\bigg|}310\phantom{\bigg|}310\phantom{\bigg|}315\phantom{\bigg|}$ 

Ile Thr Lys Ala Ser His Val Thr Pro Gln Pro Glu Asp Ser Trp Ile 325 330 335

Pro Leu Leu Ile Asn Ala Ile Asp His Cys Met Asn Arg Ile Lys Glu 340 345

Leu Thr Gln Ser Glu Leu Glu Leu 355 360

<210> 2580

<211> 412 <212> PRT

<213> Homo sapiens

<400> 2580

Met Ala Glu Asn Leu Lys Gly Cys Ser Val Cys Cys Lys Ser Ser Trp

Asn Gln Leu Gln Asp Leu Cys Arg Leu Ala Lys Leu Ser Cys Pro Ala

Leu Gly Ile Ser Lys Arg Asn Leu Tyr Asp Phe Glu Val Glu Tyr Leu  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Arg Gly Tyr Pro Asp Ser Glu Ser Thr Trp Glu Pro Arg Gln Asn Leu 65 70 75 80

Lys Cys Val Arg Ile Leu Lys Gln Phe His Lys Asp Leu Glu Arg Glu 85 90 95

Leu Leu Arg Arg His His Arg Ser Lys Thr Pro Arg His Leu Asp Pro 100 105 110

Ser Leu Ala Asn Tyr Leu Val Gln Lys Ala Lys Gln Arg Arg Ala Leu 115 120 125

Arg Arg Trp Glu Gln Glu Leu Asn Ala Lys Arg Ser His Leu Gly Arg 130 135 140

Ile Thr Val Glu Asn Glu Val Asp Leu Asp Gly Pro Pro Arg Ala Phe

| 145        |            |            |            |            | 150        |            |            |            |            | 155        |            |            |            |            | 160        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Val        | Tyr        | Ile        | Asn        | Glu<br>165 | Tyr        | Arg        | Val        | Gly        | Glu<br>170 | Gly        | Ile        | Thr        | Leu        | Asn<br>175 | Gln        |
| Val        | Ala        | Val        | Gly<br>180 | Cys        | Glu        | Сув        | Gln        | Asp<br>185 | Cys        | Leu        | Trp        | Ala        | Pro<br>190 | Thr        | Gly        |
| Gly        | Cys        | Cys<br>195 | Pro        | Gly        | Ala        | Ser        | Leu<br>200 | His        | Lys        | Phe        | Ala        | Tyr<br>205 | Asn        | Asp        | Gln        |
| Gly        | Gln<br>210 | Val        | Arg        | Leu        | Arg        | Ala<br>215 | Gly        | Leu        | Pro        | Ile        | Tyr<br>220 | Glu        | Cys        | Asn        | ser        |
| Arg<br>225 | Cys        | Arg        | Cys        | Gly        | Tyr<br>230 | Asp        | Сув        | Pro        | Asn        | Arg<br>235 | Val        | Val        | Gln        | Lys        | Gly<br>240 |
| Ile        | Arg        | Tyr        | Asp        | Leu<br>245 | Сув        | Ile        | Phe        | Arg        | Thr<br>250 | Asp        | Asp        | Gly        | Arg        | Gly<br>255 | Trp        |
| Gly        | Val        | Arg        | Thr<br>260 | Leu        | Glu        | Lys        | Ile        | Arg<br>265 | Lys        | Asn        | Ser        | Phe        | Val<br>270 | Met        | Glu        |
| Tyr        | Val        | Gly<br>275 | Glu        | Ile        | Ile        | Thr        | Ser<br>280 | Glu        | Glu        | Ala        | Glu        | Arg<br>285 | Arg        | Gly        | Gln        |
| Ile        | Tyr<br>290 | Asp        | Arg        | Gln        | Gly        | Ala<br>295 | Thr        | Tyr        | Leu        | Phe        | Asp<br>300 | Leu        | Asp        | Tyr        | Val        |
| Glu<br>305 | Asp        | Val        | Tyr        | Thr        | Val<br>310 | Asp        | Ala        | Ala        | Tyr        | Tyr<br>315 | Gly        | Asn        | Ile        | Ser        | His<br>320 |
| Phe        | Val        | Asn        | His        | Ser<br>325 | Сув        | Asp        | Pro        | Asn        | Leu<br>330 | Gln        | Val        | Tyr        | Asn        | Val<br>335 | Phe        |
| Ile        | Asp        | Asn        | Leu<br>340 | Asp        | Glu        | Arg        | Leu        | Pro<br>345 | Arg        | Ile        | Ala        | Phe        | Phe<br>350 | Ala        | Thr        |
| Arg        | Thr        | Ile<br>355 | Arg        | Ala        | Gly        | Glu        | Glu<br>360 | Leu        | Thr        | Phe        | Asp        | Tyr<br>365 | Asn        | Met        | Gln        |
| Val        | Asp<br>370 | Pro        | Val        | Asp        | Met        | Glu<br>375 | Ser        | Thr        | Arg        | Met        | Asp<br>380 | Ser        | Asn        | Phe        | Gly        |
| Leu<br>385 | Ala        | Gly        | Leu        | Pro        | Gly<br>390 | Ser        | Pro        | Lys        | Lys        | Arg<br>395 | Val        | Arg        | Ile        | Glu        | Cys<br>400 |

Lys Cys Gly Thr Glu Ser Cys Arg Lys Tyr Leu Phe 405 410

<210> 2581

<211> 110 <212> PRT

<213> Homo sapiens

<400> 2581

Glu Lys Phe Pro Arg Ala Leu Phe Gly Trp Ala Gly Glu Arg Pro Ser

Ala Leu Cys Ala Ser Asn Pro Pro Gln Leu Ser Cys Ser Gly Arg Gly 35 40 45

Ala Arg Tyr Phe Arg Leu Gly Glu Val Leu Gly Thr Asp Val Gly Ser 50 60

Val Phe Ser Val Gln Ser Ser Phe Gly Val Trp Gly Phe Pro Ser Ser 85 90 95

Cys Ala Arg His Arg Glu Ala Trp Pro Glu Gly Pro Val Ser 100 105 110

<210> 2582

<211> 471 <212> PRT

<213> Homo sapiens

<400> 2582

Met Pro Asn Ser Glu Pro Ala Ser Leu Leu Glu Leu Phe Asn Ser Ile 1 10 15

Ala Thr Gln Glu Leu Val Arg Ser Leu Lys Ala Gly Asn Ala Ser 20 25 30

Lys Asp Glu Ile Asp Ser Ala Val Lys Met Leu Val Ser Leu Lys Met 35 40 45

Ser Tyr Lys Ala Ala Ala Gly Glu Asp Tyr Lys Ala Asp Cys Pro Pro

Gly Asn Pro Ala Pro Thr Ser Asn His Gly Pro Asp Ala Thr Glu Ala 

Glu Glu Asp Phe Val Asp Pro Trp Thr Val Gln Thr Ser Ser Ala Lys 

Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly Ser Ser Lys Ile 

Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr Glv Gln Arg Pro 

His His Phe Leu Arq Arq Gly Ile Phe Phe Ser His Arq Asp Met Asn 

Gln Val Leu Asp Ala Tyr Glu Asn Lys Lys Pro Phe Tyr Leu Tyr Thr 

Gly Arg Gly Pro Ser Ser Glu Ala Met His Val Gly His Leu Ile Pro

Phe Ile Phe Thr Lys Trp Leu Gln Asp Val Phe Asn Val Pro Leu Val 

Ile Gln Met Thr Asp Asp Glu Lys Tyr Leu Trp Lys Asp Leu Thr Leu 

Asp Gln Ala Tyr Gly Asp Ala Val Glu Asn Ala Lys Asp Ile Ile Ala 

Cys Gly Phe Asp Ile Asn Lvs Thr Phe Ile Phe Ser Asp Leu Asp Tvr 

Met Gly Met Ser Ser Gly Phe Tyr Lys Asn Val Val Lys Ile Gln Lys 

His Val Thr Phe Asn Gln Val Lys Gly Ile Phe Gly Phe Thr Asp Ser 

Asp Cys Ile Gly Lys Ile Ser Phe Pro Ala Ile Gln Ala Ala Pro Ser 

Phe Ser Asn Ser Phe Pro Gln Ile Phe Arg Asp Arg Thr Asp Ile Gln 

Cys Leu Ile Pro Cys Ala Ile Asp Gln Asp Pro Tyr Phe Arg Met Thr 305 310 315 320 Arg Asp Val Ala Pro Arg Ile Gly Tyr Pro Lys Pro Ala Leu Leu His 325 330 Ser Thr Phe Phe Pro Ala Leu Gln Gly Ala Gln Thr Lvs Met Ser Ala 340 345 Ser Asp Pro Asn Ser Ser Ile Phe Leu Thr Asp Thr Ala Lys Gln Ile Lys Thr Lys Val Asn Lys His Ala Phe Ser Gly Gly Arg Asp Thr Ile Glu Glu His Arg Gln Phe Gly Gly Asn Cys Asp Val Asp Val Ser Phe 395 Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp Asp Lys Leu Glu Gln Ile 405 410 Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly Glu Leu Lys Lys 420 425 430 Ala Leu Ile Glu Val Leu Gln Pro Leu Ile Ala Glu His Gln Ala Arg 435 440 Arg Lys Glu Val Thr Asp Glu Ile Val Lys Glu Phe Met Thr Pro Arg 450 455 Lys Leu Ser Phe Asp Phe Gln 465 <210> 2583 <211> 392 <212> PRT <213> Homo sapiens <400> 2583 Met Gly Ser Leu Ser Thr Ala Asn Val Glu Phe Cys Leu Asp Val Phe 5 10 Lys Glu Leu Asn Ser Asn Asn Ile Gly Asp Asn Ile Phe Phe Ser Ser

998

25

20

Leu Ser Leu Leu Tyr Ala Leu Ser Met Val Leu Leu Gly Ala Arg Gly 35  $\phantom{\bigg|}40\phantom{\bigg|}$ 

Glu Thr Ala Glu Gln Leu Glu Lys Val Leu His Phe Ser His Thr Val 50  $\phantom{-}55\phantom{+}\phantom{0}$ 

Asp Ser Leu Lys Pro Gly Phe Lys Asp Ser Pro Lys Cys Ser Gln Ala 65  $\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg$ 

Gly Arg Ile His Ser Glu Phe Gly Val Glu Phe Ser Gln Ile Asn Gln 85 90 95

Pro Asp Ser Asn Cys Thr Leu Ser Ile Ala Asn Arg Leu Tyr Gly Thr 100 105 110

Lys Thr Met Ala Phe His Gln Gln Tyr Leu Ser Cys Ser Glu Lys Trp 115 120 125

Tyr Gln Ala Arg Leu Gln Thr Val Asp Phe Glu Gln Ser Thr Glu Glu 130 135 140

Thr Arg Lys Met Ile Asn Ala Trp Val Glu Asn Lys Thr Asn Gly Lys 145 150 155 160

Val Ala Asn Leu Phe Gly Lys Ser Thr Ile Asp Pro Ser Ser Val Met 165 170 175

Val Leu Val Asn Thr Ile Tyr Phe Lys Gly Gln Arg Gln Asn Lys Phe 180 185 190

Gln Val Arg Glu Thr Val Lys Ser Pro Phe Gln Leu Ser Glu Gly Lys  $195 \hspace{1.5cm} 200 \hspace{1.5cm} 205 \hspace{1.5cm} 205 \hspace{1.5cm}$ 

Asn Val Thr Val Glu Met Met Tyr Gln Ile Gly Thr Phe Lys Leu Ala 210 215 220

Phe Val Lys Glu Pro Gln Met Gln Val Leu Glu Leu Pro Tyr Val Asn 225 230 235 240

Asn Lys Leu Ser Met Ile Ile Leu Leu Pro Val Gly Ile Ala Asn Leu 245 250 255

Lys Gln Ile Glu Lys Gln Leu Asn Ser Gly Thr Phe His Glu Trp Thr 260 265 270

Ser Ser Ser Asn Met Met Glu Arg Glu Val Glu Val His Leu Pro Arg

275 280 285

Phe Lys Leu Glu Ile Lys Tyr Glu Leu Asn Ser Leu Leu Lys Pro Leu 290 295 300

Gly Val Thr Asp Leu Phe Asn Gln Val Lys Ala Asp Leu Ser Gly Met 305  $\phantom{\bigg|}$  310  $\phantom{\bigg|}$  315  $\phantom{\bigg|}$  320

Ser Pro Thr Lys Gly Leu Tyr Leu Ser Lys Ala Ile His Lys Ser Tyr \$325\$

Leu Asp Val Ser Glu Glu Gly Thr Glu Ala Ala Ala Ala Thr Gly Asp  $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$ 

Ser Ile Ala Val Lys Ser Leu Pro Met Arg Ala Gln Phe Lys Ala Asn 355 360 365

His Pro Phe Leu Phe Phe Ile Arg His Thr His Thr Asn Thr Ile Leu 370 375 380

Phe Cys Gly Lys Leu Ala Ser Pro 385 390

<210> 2584

<211> 811

<212> PRT

<213> Homo sapiens

<400> 2584

Met Pro Leu Ser Ser Pro Asn Ala Ala Ala Thr Ala Ser Asp Met Asp 1 5 10 15

Lys Asn Ser Gly Ser Asn Ser Ser Ser Ala Ser Ser Gly Ser Ser Lys 20 25 30

Gly Gln Gln Pro Pro Arg Ser Ala Ser Ala Gly Pro Ala Gly Glu Ser 35 40 45

Arg Lys Arg Glu Leu Ser Tyr Pro Lys Asn Glu Ser Phe Asn Asn Gln 65  $\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}75\phantom{\bigg|}75\phantom{\bigg|}75\phantom{\bigg|}$ 

Pro Gln Arg Gly Gly Ser Ser Lys Leu Phe Ser Ser Ser Phe Asn

- Gly Gly Arg Arg Asp Glu Val Ala Glu Ala Gln Arg Ala Glu Phe Ser 115 120 125
- Pro Ala Gln Phe Ser Gly Pro Lys Lys Ile Asn Leu Asn His Leu Leu 130 135 140
- Asn Phe Thr Phe Glu Pro Arg Gly Gln Thr Gly His Phe Glu Gly Ser 145 150 155 160
- Gly His Gly Ser Trp Gly Lys Arg Asn Lys Trp Gly His Lys Pro Phe
- Asn Lys Glu Leu Phe Leu Gln Ala Asn Cys Gln Phe Val Val Ser Glu 180 185 190
- Asp Gln Asp Tyr Thr Ala His Phe Ala Asp Pro Asp Thr Leu Val Asn 195 \$205\$
- Trp Asp Phe Val Glu Gln Val Arg Ile Cys Ser His Glu Val Pro Ser 210 215 220
- Cys Pro Ile Cys Leu Tyr Pro Pro Thr Ala Ala Lys Ile Thr Arg Cys 225 230 235 240
- Gly His Ile Phe Cys Trp Ala Cys Ile Leu His Tyr Leu Ser Leu Ser 245 250 255
- Glu Lys Thr Trp Ser Lys Cys Pro Ile Cys Tyr Ser Ser Val His Lys  $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$
- Lys Asp Leu Lys Ser Val Val Ala Thr Glu Ser His Gln Tyr Val Val 275  $\phantom{0}$  280  $\phantom{0}$  285
- Gly Asp Thr Ile Thr Met Gln Leu Met Lys Arg Glu Lys Gly Val Leu 290 295 300
- Val Ala Leu Pro Lys Ser Lys Trp Met Asn Val Asp His Pro Ile His 305 310 315 320
- Leu Gly Asp Glu Gln His Ser Gln Tyr Ser Lys Phe Leu Leu Ala Ser 325 330 335

| Lys | Glu | Gln        | Val<br>340 | Leu | His | Arg | Val        | Val<br>345 | Leu | Glu | Glu | Lys        | Val<br>350 | Ala | Leu |
|-----|-----|------------|------------|-----|-----|-----|------------|------------|-----|-----|-----|------------|------------|-----|-----|
| Glu | Gln | Gln<br>355 | Leu        | Ala | Glu | Glu | Lys<br>360 | His        | Thr | Pro | Glu | Ser<br>365 | Сув        | Phe | Ile |
| Glu | Ala | Ala        | Ile        | Gln | Glu | Leu | Lys        | Thr        | Arg | Glu | Glu | Ala        | Leu        | Ser | Gly |

- 370 375 380
- Leu Ala Gly Ser Arg Arg Glu Val Thr Gly Val Val Ala Ala Leu Glu 385 390 395 400
- Gln Leu Val Leu Met Ala Pro Leu Ala Lys Glu Ser Val Phe Gln Pro  $405 \hspace{0.25in} 410 \hspace{0.25in} 415$
- Arg Lys Gly Val Leu Glu Tyr Leu Ser Ala Phe Asp Glu Glu Thr Thr 420 425 430
- Glu Val Cys Ser Leu Asp Thr Pro Ser Arg Pro Leu Ala Leu Pro Leu
  435 440 445
- Val Glu Glu Glu Glu Ala Val Ser Glu Pro Glu Pro Glu Gly Leu Pro
  450 455 460
- Glu Ala Cys Asp Asp Leu Glu Leu Ala Asp Asp Asn Leu Lys Glu Gly 465 \$470\$
- Thr Ile Cys Thr Glu Ser Ser Gln Gln Glu Pro Ile Thr Lys Ser Gly
  485 490 495
- Phe Thr Arg Leu Ser Ser Ser Pro Cys Tyr Tyr Phe Tyr Gln Ala Glu 500 505 510
- Asp Gly Gln His Met Phe Leu His Pro Val Asn Val Arg Cys Leu Val 515 520 525
- Arg Glu Tyr Gly Ser Leu Glu Arg Ser Pro Glu Lys Ile Ser Ala Thr 530 535 540
- Val Val Glu Ile Ala Gly Tyr Ser Met Ser Glu Asp Val Arg Gln Arg 545 550 555 560
- His Arg Tyr Leu Ser His Leu Pro Leu Thr Cys Glu Phe Ser Ile Cys
- Glu Leu Ala Leu Gln Pro Pro Val Val Ser Lys Glu Thr Leu Glu Met

580

585

590

Phe Ser Asp Asp Ile Glu Lys Arg Lys Arg Gln Arg Gln Lys Lys Ala 595 600 605

Arg Glu Glu Arg Arg Arg Glu Arg Arg Ile Glu Ile Glu Glu Asn Lys

Lys Gln Gly Lys Tyr Pro Glu Val His Ile Pro Leu Glu Asn Leu Gln 625 630 635 640

Gln Phe Pro Ala Phe Asn Ser Tyr Thr Cys Ser Ser Asp Ser Ala Leu 645 650 655

Gly Pro Thr Ser Thr Glu Gly His Gly Ala Leu Ser Ile Ser Pro Leu 660 665 670

Ser Arg Ser Pro Gly Ser His Ala Asp Phe Leu Leu Thr Pro Leu Ser 675 680 685

Pro Thr Ala Ser Gln Gly Ser Pro Ser Phe Cys Val Gly Ser Leu Glu 690 700

Glu Asp Ser Pro Phe Pro Ser Phe Ala Gln Met Leu Arg Val Gly Lys 705 710 720

Ala Lys Ala Asp Val Trp Pro Lys Thr Ala Pro Lys Lys Asp Glu Asn 725 730 735

Ser Leu Val Pro Pro Ala Pro Val Asp Ser Asp Gly Glu Ser Asp Asn 740 745 750

Ser Asp Arg Val Pro Val Pro Ser Phe Gln Asn Ser Phe Ser Gln Ala 755 760 765

Ile Glu Ala Ala Phe Met Lys Leu Asp Thr Pro Ala Thr Ser Asp Pro 770 780

Leu Ser Glu Glu Lys Gly Gly Lys Lys Arg Lys Lys Gln Lys Gln Lys Gln Lys 785 790 795 800

Leu Leu Phe Ser Thr Ser Val Val His Thr Lys 805 810

<210> 2585 <211> 482

<212> PRT <213> Homo sapiens

<400> 2585

Met Ala Glu Ala Ala Thr Pro Gly Thr Thr Ala Thr Thr Ser Gly Ala
1 5 10 15

Gly Ala Ala Ala Ala Thr Ala Ala Ala Ala Ser Pro Thr Pro Ile Pro  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Thr Val Thr Ala Pro Ser Leu Gly Ala Gly Gly Gly Gly Gly Ser 35 40 45

Met His Gly Val Cys Lys Glu Gly Asp Asn Cys Arg Tyr Ser His Asp 65 70 75 80

Leu Ser Asp Ser Pro Tyr Ser Val Val Cys Lys Tyr Phe Gln Arg Gly 85 90 95

Tyr Cys Ile Tyr Gly Asp Arg Cys Arg Tyr Glu His Ser Lys Pro Leu  $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$ 

Lys Gln Glu Glu Ala Thr Ala Thr Glu Leu Thr Thr Lys Ser Ser Leu 115 120 125

Ala Ala Ser Ser Ser Leu Ser Ser Ile Val Gly Pro Leu Val Glu Met 130 135 140

Asn Thr Gly Glu Ala Glu Ser Arg Asn Ser Asn Phe Ala Thr Val Gly 145 150 155 160

Ala Gly Ser Glu Asp Trp Val Asn Ala Ile Glu Phe Val Pro Gly Gln 165 170 175

Pro Tyr Cys Gly Arg Thr Ala Pro Ser Cys Thr Glu Ala Pro Leu Gln 180 185 190

Gly Ser Val Thr Lys Glu Glu Ser Glu Lys Glu Gln Thr Ala Val Glu 195 200 205

Thr Lys Lys Gln Leu Cys Pro Tyr Ala Ala Val Gly Glu Cys Arg Tyr 210 215 220

Gly Glu Asn Cys Val Tyr Leu His Gly Asp Ser Cys Asp Met Cys Gly 225  $\phantom{\bigg|}230\phantom{\bigg|}235\phantom{\bigg|}235\phantom{\bigg|}$ 

Leu Gln Leu Leu His Pro Met Asp Ala Ala Gln Arg Ser Gln His Ile 245 250 255

Lys Ser Cys Ile Glu Ala His Glu Lys Asp Met Glu Leu Ser Phe Ala 260 265 270

Val Gln Arg Ser Lys Asp Met Val Cys Gly Ile Cys Met Glu Val Val 275 280 285

Tyr Glu Lys Ala Asn Pro Ser Glu Arg Arg Phe Gly Ile Leu Ser Asn 290 295 300

Cys Asn His Thr Tyr Cys Leu Lys Cys Ile Arg Lys Trp Arg Ser Ala 305 \$310\$ 310 \$315\$

Lys Gln Phe Glu Ser Lys Ile Ile Lys Ser Cys Pro Glu Cys Arg Ile 325 330 335

Thr Ser Asn Phe Val Ile Pro Ser Glu Tyr Trp Val Glu Glu Lys Glu 340 345 350

Glu Lys Gln Lys Leu Ile Leu Lys Tyr Lys Glu Ala Met Ser Asn Lys 355 360 365

Ala Cys Arg Tyr Phe Asp Glu Gly Arg Gly Ser Cys Pro Phe Gly Gly 370 380

Asn Cys Phe Tyr Lys His Ala Tyr Pro Asp Gly Arg Arg Glu Glu Pro 385 390 395 400

Gln Arg Gln Lys Val Gly Thr Ser Ser Arg Tyr Arg Ala Gln Arg Arg 405 415

Asn His Phe Trp Glu Leu Ile Glu Glu Arg Glu Asn Ser Asn Pro Phe 420 425 430

Asp Asn Asp Glu Glu Glu Val Val Thr Phe Glu Leu Gly Glu Met Leu 435 440 445

Leu Met Leu Leu Ala Ala Gly Gly Asp Asp Glu Leu Thr Asp Ser Glu 450 460

Asp Glu Trp Asp Leu Phe His Asp Glu Leu Glu Asp Phe Tyr Asp Leu

465 470 475 480

Asp Leu

<210> 2586

<211> 146 <212> PRT

<213> Homo sapiens

<400> 2586

Met Pro Ser Lys Gly Pro Leu Gln Ser Val Gln Val Phe Gly Arg Lys 1 5 10 15

Lys Thr Ala Thr Ala Val Ala His Cys Lys Arg Gly Asn Gly Leu Ile  $20 \\ \hspace*{1.5cm} 25 \\ \hspace*{1.5cm} 30 \\ \hspace*{1.5cm}$ 

Lys Val Asn Gly Arg Pro Leu Glu Met Ile Glu Pro Arg Thr Leu Gln 35 40 45

Tyr Lys Leu Leu Glu Pro Val Leu Leu Gly Lys Glu Arg Phe Ala 50 55

Gly Val Asp Ile Arg Val Arg Val Lys Gly Gly Gly His Val Ala Gln 65 70 75 80

Ile Tyr Ala Ile Arg Gln Ser Ile Ser Lys Ala Leu Val Ala Tyr Tyr 85 90 95

Gln Lys Tyr Val Asp Glu Ala Ser Lys Lys Glu Ile Lys Asp Ile Leu 100 105 110

Ile Gln Tyr Asp Arg Thr Leu Leu Val Ala Asp Pro Arg Arg Cys Glu 115 120 125

Ser Lys Lys Phe Gly Gly Pro Gly Ala Arg Ala Arg Tyr Gln Lys Ser 130 135 140

Tyr Arg

<210> 2587

<211> 1674

<212> PRT <213> Homo sapiens

<400> 2587

| Met Glu Asp Ala Ser Glu Ser Ser Arg Gly Val Ala Pro Leu Ile 1 $$\rm 10$$ | Asn |
|--------------------------------------------------------------------------|-----|
|--------------------------------------------------------------------------|-----|

- As n Val Val Leu Pro Gly Ser Pro Leu Ser Leu Pro Val Ser Val Thr 20 25 30
- Gly Cys Lys Ser His Arg Val Ala Asn Lys Lys Val Glu Ala Arg Ser  $^{35}$   $^{40}$
- Glu Lys Leu Pro Thr Ala Leu Pro Pro Ser Glu Pro Lys Val Asp  $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60 \hspace{1.5cm}$
- Gln Lys Leu Pro Arg Ser Ser Glu Arg Arg Gly Ser Gly Gly Thr  $^{65}$   $^{70}$   $^{70}$   $^{75}$
- Gln Phe Pro Ala Arg Ser Arg Ala Val Ala Ala Gly Glu Ala Ala Ala B<br/>5 90 95
- Arg Gly Ala Ala Gly Pro Glu Arg Gly Ser Pro Leu Gly Arg Arg Val  $100\,$   $105\,$   $110\,$
- Ser Pro Arg Cys Leu Cys Ser Gly Glu Gly Gly Gln Val Ala Val Gly 115 120 125
- Val Ile Ala Gly Lys Arg Gly Arg Gly Arg Asp Gly Ser Arg Arg 130 135 140
- Ala Pro Gly Gly Arg Glu Met Pro Leu Leu His Arg Lys Pro Phe Val 145 \$150\$ 150 150
- Arg Gln Lys Pro Pro Ala Asp Leu Arg Pro Asp Glu Glu Val Phe Tyr 165 170 175
- Cys Lys Val Thr Asn Glu Ile Phe Arg His Tyr Asp Asp Phe Phe Glu 180  $$180\,$
- Arg Thr Ile Leu Cys Asn Ser Leu Val Trp Ser Cys Ala Val Thr Gly 195 200 205
- Arg Pro Gly Leu Thr Tyr Gln Glu Ala Leu Glu Ser Glu Lys Lys Ala 210 220
- Arg Gln Asn Leu Gln Ser Phe Pro Glu Pro Leu Ile Ile Pro Val Leu 225 235 240
- Tyr Leu Thr Ser Leu Thr His Arg Ser Arg Leu His Glu Ile Cys Asp

245 250 255

Asp Ile Phe Ala Tyr Val Lys Asp Arg Tyr Phe Val Glu Glu Thr Val

Glu Val Ile Arg Asn Asn Gly Ala Arg Leu Gln Cys Thr Ile Leu Glu 275 280 285

Val Leu Pro Pro Ser His Gln Asn Gly Phe Ala Asn Gly His Val Asn 290 295

Ser Val Asp Gly Glu Thr Ile Ile Ile Ser Asp Ser Asp Asp Ser Glu 305 310 315 320

Thr Gln Ser Cys Ser Phe Gln Asn Gly Lys Lys Lys Asp Ala Ile Asp 325 330 335

Pro Leu Leu Phe Lys Tyr Lys Val Gln Pro Thr Lys Lys Glu Leu His 340 345 350

Glu Ser Ala Ile Val Lys Ala Thr Gln Ile Ser Arg Arg Lys His Leu 355 360 365

Phe Ser Arg Asp Lys Leu Lys Leu Phe Leu Lys Gln His Cys Glu Pro 370 375 380

Gln Glu Gly Val Ile Lys Ile Lys Ala Ser Ser Leu Ser Thr Tyr Lys 385  $\phantom{\bigg|}390\phantom{\bigg|}395\phantom{\bigg|}395\phantom{\bigg|}$ 

Ile Ala Glu Gln Asp Phe Ser Tyr Phe Phe Pro Asp Asp Pro Pro Thr \$405\$ \$410\$ \$415\$

Phe Ile Phe Ser Pro Ala Asn Arg Arg Arg Gly Arg Pro Pro Lys Arg 420 425 430

Ile His Ile Ser Gln Glu Asp Asn Val Ala Asn Lys Gln Thr Leu Ala 435 440 445

Ser Tyr Arg Ser Lys Ala Thr Lys Glu Arg Asp Lys Leu Leu Lys Glu 450 \$450\$

Glu Glu Met Lys Ser Leu Ala Phe Glu Lys Ala Lys Leu Lys Arg Glu 465 470 475 480

Lys Ala Asp Ala Leu Glu Ala Lys Lys Lys Glu Lys Glu Asp Lys Glu 485 490 495

| Lys        | Ly:        | s Ar       | g G1         | u Gl<br>0  | u Le         | u Ly         | s Ly         | 5 Il       | e Vai        | l Glı        | ı Glu        | ı Glı      | ı Ar<br>51 | g Le       | u Lys        |
|------------|------------|------------|--------------|------------|--------------|--------------|--------------|------------|--------------|--------------|--------------|------------|------------|------------|--------------|
| Lys        | Lys        | 5 Gl<br>51 | u Gl<br>5    | u Ly       | s Glı        | ı Ar         | g Let<br>520 | ı Ly:      | s Val        | l Glu        | ı Arg        | Gl:<br>525 | ь Ly       | s Gl       | u Arg        |
| Glu        | Lys<br>530 | Le         | u Ar         | g Gl       | u Glı        | 1 Lys<br>535 | s Arg        | j Lys      | туг          | · Val        | . Glu<br>540 | Туз        | Le         | u Ly       | s Gln        |
| Trp<br>545 | Ser        | Ly         | s Pr         | o Ar       | g Glu<br>550 | ı Asp        | ) Met        | Glu        | Cys          | 555          | Asp          | Leu        | Ly         | s Gl       | u Leu<br>560 |
| Pro        | Glu        | Pro        | ) Th         | 56         | o Val        | Lys          | Thr          | Arg        | Leu<br>570   | Pro          | Pro          | Glu        | Ile        | 9 Ph       | e Gly        |
| Asp        | Ala        | Let        | 1 Met<br>580 | : Va:      | l Leu        | Glu          | Phe          | Leu<br>585 | Asn          | Ala          | Phe          | Gly        | Glu<br>590 |            | ı Phe        |
| Asp        | Leu        | Glr<br>595 | ı Ası        | Glu        | l Phe        | Pro          | Asp<br>600   | Gly        | Val          | Thr          | Leu          | Glu<br>605 | Val        | Leu        | Glu          |
| Glu        | Ala<br>610 | Leu        | val          | Gly        | ' Asn        | Asp<br>615   | Ser          | Glu        | Gly          | Pro          | Leu<br>620   | Сув        | Glu        | Leu        | Leu          |
| Phe<br>625 | Phe        | Phe        | Leu          | Thr        | Ala<br>630   | Ile          | Phe          | Gln        | Ala          | Ile<br>635   | Ala          | Glu        | Glu        | Glu        | Glu<br>640   |
| Glu        | Val        | Ala        | Lys          | Glu<br>645 | Gln          | Leu          | Thr          | Asp        | Ala<br>650   | Asp          | Thr          | Lys        | Gly        | Cys<br>655 | Ser          |
| Leu :      | Lys        | Ser        | Leu<br>660   | Asp        | Leu          | Asp          | Ser          | Cys<br>665 | Thr          | Leu          | Ser          | Glu        | Ile<br>670 | Leu        | Arg          |
| Leu I      | His        | Ile<br>675 | Leu          | Ala        | Ser          | Gly          | Ala<br>680   | Asp        | Val          | Thr .        | Ser          | Ala<br>685 | Asn        | Ala        | Lys          |
| Tyr A      | Arg<br>590 | Tyr        | Gln          | Lys        | Arg          | Gly<br>695   | Gly          | Phe        | Asp .        | Ala :        | Thr 2        | Asp        | Asp        | Ala        | Cys          |
| Met 0      | 3lu :      | Leu        | Arg          | Leu        | Ser .<br>710 | Asn          | Pro :        | Ser :      | Leu '        | Val 1<br>715 | Lys I        | Lys 1      | Leu        | Ser        | Ser<br>720   |
| Thr S      | er V       | /al        | Tyr          | Asp<br>725 | Leu '        | Thr 1        | Pro (        | Gly (      | 31u I<br>730 | Lys M        | Met I        | ys I       | [le        | Leu<br>735 | His          |

Ala Leu Cys Gly Lys Leu Leu Thr Leu Val Ser Thr Arg Asp Phe Ile Glu Asp Tyr Val Asp Ile Leu Arg Gln Ala Lys Gln Glu Phe Arg Glu Leu Lys Ala Glu Gln His Arg Lys Glu Arg Glu Glu Ala Ala Arg Ile Arg Lys Arg Lys Glu Glu Lys Leu Lys Glu Gln Glu Gln Lys Met Lys Glu Lys Gln Glu Lys Leu Lys Glu Asp Glu Gln Arg Asn Ser Thr Ala Asp Ile Ser Ile Gly Glu Glu Arg Glu Asp Phe Asp Thr Ser Ile Glu Ser Lys Asp Thr Glu Gln Lys Glu Leu Asp Gln Asp Met Phe 

Thr Glu Asp Glu Asp Asp Pro Gly Ser His Lys Arg Gly Arg Arg Gly 

Lys Arg Gly Gln Asn Gly Phe Lys Glu Phe Thr Arg Gln Glu Gln Ile 

Asn Cys Val Thr Arg Glu Leu Leu Thr Ala Asp Glu Glu Glu Ala Leu 

Lys Gln Glu His Gln Arg Lys Glu Lys Glu Leu Leu Glu Lys Ile Gln 

Ser Ala Ile Ala Cys Thr Asn Ile Phe Pro Leu Gly Arg Asp Arg Met 

Tyr Arg Arg Tyr Trp Ile Phe Pro Ser Ile Pro Gly Leu Phe Ile Glu 

Glu Asp Tyr Ser Gly Leu Thr Glu Asp Met Leu Leu Pro Arg Pro Ser 

Ser Phe Gln Asn Asn Val Gln Ser Gln Asp Pro Gln Val Ser Thr Lys 

Thr Gly Glu Pro Leu Met Ser Glu Ser Thr Ser Asn Ile Asp Gln Gly 980 985 990

Pro Arg Asp His Ser Val Gln Leu Pro Lys Pro Val His Lys Pro Asn 995 1000 1005

Arg Trp Cys Phe Tyr Ser Ser Cys Glu Gln Leu Asp Gln Leu Ile 1010 1015 1020

Glu Ala Leu Asn Ser Arg Gly His Arg Glu Ser Ala Leu Lys Glu 1025 1030 1035

Thr Leu Leu Gln Glu Lys Ser Arg Ile Cys Ala Gln Leu Ala Arg 1040 1040 1045

Phe Ser Glu Glu Lys Phe His Phe Ser Asp Lys Pro Gln Pro Asp 1055 1060 1065

Ser Lys Pro Thr Tyr Ser Arg Gly Arg Ser Ser Asn Ala Tyr Asp 1070 1075 1080

Pro Ser Gln Met Cys Ala Glu Lys Gln Leu Glu Leu Arg Leu Arg 1085 1090 1095

Asp Phe Leu Leu Asp Ile Glu Asp Arg Ile Tyr Gln Gly Thr Leu 1100 1105 1110

Gly Ala Ile Lys Val Thr Asp Arg His Ile Trp Arg Ser Ala Leu 1115 1120 1125

Glu Ser Gly Arg Tyr Glu Leu Leu Ser Glu Glu Asn Lys Glu Asn 1130 1135 1140

Gly Ile Ile Lys Thr Val Asn Glu Asp Val Glu Glu Met Glu Ile 1145 1150 1155

Asp Glu Gln Thr Lys Val Ile Val Lys Asp Arg Leu Leu Gly Ile

Lys Thr Glu Thr Pro Ser Thr Val Ser Thr Asn Ala Ser Thr Pro 1175  $\phantom{\bigg|}1180\phantom{\bigg|}1185\phantom{\bigg|}$ 

Gln Ser Val Ser Ser Val Val His Tyr Leu Ala Met Ala Leu Phe 1190 1195

Gln Ile Glu Gln Gly Ile Glu Arg Arg Phe Leu Lys Ala Pro Leu

1205 1210 1215

Asp Ala Ser Asp Ser Gly Arg 1225 Ser Tyr Lys Thr Val Leu Asp Arg 1220

Trp Arg Glu Ser Leu Leu Ser 1240 Ser Leu Ser 1245

Leu His Leu Ser Thr Leu Asp Arg Ser Val Ile Trp Ser Lys Ser 1250

Ile Leu Asn Ala Arg Cys Lys Ile Cys Arg Lys Lys Gly Asp Ala 1265 1270 1275

Glu Asn Met Val Leu Cys Asp Gly Cys Asp Arg Gly His His Thr 1280 1285 1290

Tyr Cys Val Arg Pro Lys Leu Lys Thr Val Pro Glu Gly Asp Trp 1295 1300 1305

Phe Cys Pro Glu Cys Arg Pro Lys Gln Arg Cys Arg Arg Leu Ser 1310 1315 1320

Phe Arg Gln Arg Pro Ser Leu Glu Ser Asp Glu Asp Val Glu Asp 1325 1330 1335

Ser Met Gly Gly Glu Asp Asp Glu Val Asp Gly Asp Glu Glu Glu 1340 1345 1350

Gly Gln Ser Glu Glu Glu Glu Tyr Glu Val Glu Gln Asp Glu Asp 1365 1360 1365

Asp Ser Gln Glu Glu Glu Glu Val Ser Leu Pro Lys Arg Gly Arg 1370 \$1375\$

Pro Gln Val Arg Leu Pro Val Lys Thr Arg Gly Lys Leu Ser Ser 1385 1390 1395

Ser Arg Ser Gln Gln Ser Thr Pro Lys Thr Thr Val Ser Ser Lys 1415 1420 1425

Thr Gly Arg Ser Leu Arg Lys Ile Asn Ser Ala Pro Pro Thr Glu 1430 1435 1440

| Thr | Lys<br>1445 | Ser | Leu | a Arg | j Ile | ⊇ Ala<br>1450 | Ser | Arg | g Ser | Thr | Arg         | His | Sei | His |
|-----|-------------|-----|-----|-------|-------|---------------|-----|-----|-------|-----|-------------|-----|-----|-----|
| Gly | Pro<br>1460 | Leu | Gln | Ala   | Asp   | Val<br>1465   | Phe | Val | Glu   | Leu | Leu<br>1470 | Ser | Pro | Arg |
| Arg | Lys<br>1475 | Arg | Arg | Gly   | Arg   | Lys<br>1480   | Ser | Ala | Asn   | Asn | Thr<br>1485 | Pro | Glu | Asn |
| Ser | Pro<br>1490 | Asn | Phe | Pro   | Asn   | Phe<br>1495   | Arg | Val | Ile   | Ala | Thr<br>1500 | Lys | Ser | Ser |
| Glu | Gln<br>1505 | Ser | Arg | Ser   | Val   | Asn<br>1510   | Ile | Ala | Ser   | Lys | Leu<br>1515 | Ser | Leu | Gln |
| Glu | Ser<br>1520 | Glu | Ser | Lys   | Arg   | Arg<br>1525   | Cys | Arg | Lys   | Arg | Gln<br>1530 | Ser | Pro | Glu |
| Pro | Ser<br>1535 | Pro | Val | Thr   | Leu   | Gly<br>1540   | Arg | Arg | Ser   | Ser | Gly<br>1545 | Arg | Gln | Gly |
| Gly | Val<br>1550 | His | Glu | Leu   | Ser   | Ala<br>1555   | Phe | Glu | Gln   | Leu | Val<br>1560 | Val | Glu | Leu |
| Val | Arg<br>1565 | His | Asp | Asp   | Ser   | Trp<br>1570   | Pro | Phe | Leu   | Lys | Leu<br>1575 | Val | Ser | Lys |

- Ile Gln Val Pro Asp Tyr Tyr Asp Ile Ile Lys Lys Pro Ile Ala Leu Asn Ile Ile Arg Glu Lys Val Asn Lys Cys Glu Tyr Lys Leu
- Ala Ser Glu Phe Ile Asp Asp Ile Glu Leu Met Phe Ser Asn Cys

- Phe Glu Tyr Asn Pro Arg Asn Thr Ser Glu Ala Lys Ala Gly Thr
- Arg Leu  $\,$  Gln Ala Phe  $\,$  Phe  $\,$  His  $\,$  Ile Gln Ala  $\,$  Gln  $\,$  Lys  $\,$  Leu  $\,$  Gly Leu  $\,$  1640  $\,$  1650
- His Val Thr Pro Ser Asn Val Asp Gln Val Ser Thr Pro Pro Ala

Ala Lys Lys Ser Arg Ile 1670

<210> 2588

<211> 103 <212> PRT

<213> Homo sapiens

<400> 2588

Met Ala Gln Phe Val Arg Asn Leu Val Glu Lys Thr Pro Ala Leu Val 1  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Asn Ala Ala Val Thr Tyr Ser Lys Pro Arg Leu Ala Thr Phe Trp Tyr  $20 \\ \hspace*{1.5cm} 25 \\ \hspace*{1.5cm} 30$ 

Tyr Ala Lys Val Glu Leu Val Pro Pro Thr Pro Ala Glu Ile Pro Arg  $35 \ \ \, 40 \ \ \, 45$ 

Ala Ile Gln Ser Leu Lys Lys Ile Ala Asn Ser Ala Gln Thr Gly Ser 50 60

Phe Lys Gln Leu Thr Val Lys Glu Ala Val Leu Asn Gly Leu Val Ala 65 70 75 80

Thr Glu Val Leu Met Trp Phe Tyr Val Gly Glu Ile Ile Gly Lys Arg  $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$ 

Gly Ile Ile Gly Tyr Asp Val

<210> 2589 <211> 156

<211> 156 <212> PRT

<213> Homo sapiens

<400> 2589

Met Ser Gly Gly Leu Leu Lys Ala Leu Arg Ser Asp Ser Tyr Val Glu 1 5 10 15

Leu Ser Gln Tyr Arg Asp Gln His Phe Arg Gly Asp Asn Glu Gln Gln 20 25 30

Glu Lys Leu Lys Lys Ser Cys Thr Leu Tyr Val Gly Asn Leu Ser

Phe Tyr Thr Thr Glu Glu Gln Ile Tyr Glu Leu Phe Ser Lys Ser Gly 50  $\,$  55  $\,$  60

Asp Ile Lys Lys Ile Ile Met Gly Leu Asp Lys Met Lys Lys Thr Ala 65 70 75 80

Cys Gly Phe Cys Phe Val Glu Tyr Tyr Ser Arg Ala Asp Ala Glu Asn 85 90 95

Ala Met Arg Tyr Ile Asn Gly Thr Arg Leu Asp Asp Arg Ile Ile Arg 100 105 110

Thr Asp Trp Asp Ala Gly Phe Lys Glu Gly Arg Gln Tyr Gly Arg Gly 115 \$120\$

Arg Ser Gly Gly Gln Val Arg Asp Glu Tyr Arg Gln Asp Tyr Asp Ala 130 \$135\$

Gly Arg Gly Gly Tyr Gly Lys Leu Ala Gln Asn Gln 145 150 155

<210> 2590 <211> 436

<211> 436 <212> PRT

<213> Homo sapiens

<400> 2590

Met Asp Ser Val Ala Phe Glu Asp Val Ala Val Asn Phe Thr Gln Glu 1 5 10 15

Glu Trp Ala Leu Leu Ser Pro Ser Gln Lys Asn Leu Tyr Arg Asp Val 20 25 30

Thr Leu Glu Thr Phe Arg Asn Leu Ala Ser Val Gly Ile Gln Trp Lys  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Asp Gln Asp Ile Glu Asn Leu Tyr Gln Asn Leu Gly Ile Lys Leu Arg 50 55 60

Ser Leu Val Glu Arg Leu Cys Gly Arg Lys Glu Gly Asn Glu His Arg 65 70 75 80

Glu Thr Phe Ser Gln Ile Pro Asp Cys His Leu Asn Lys Lys Ser Gln 85 90 95

Thr Gly Val Lys Pro Cys Lys Cys Ser Val Cys Gly Lys Val Phe Leu 100 105 110

Arg His Ser Phe Leu Asp Arg His Met Arg Ala His Ala Gly His Lys \$115\$

- Arg Ser Glu Cys Gly Gly Glu Trp Arg Glu Thr Pro Arg Lys Gln Lys 130 140
- Gln His Gly Lys Ala Ser Ile Ser Pro Ser Ser Gly Ala Arg Arg Thr 145 \$150\$ 150 155 160
- Val Thr Pro Thr Arg Lys Arg Pro Tyr Glu Cys Lys Val Cys Gly Lys 165 170 175
- Ala Phe Asn Ser Pro Asn Leu Phe Gln Ile His Gln Arg Thr His Thr 180 185 190
- Gly Lys Arg Ser Tyr Lys Cys Arg Glu Ile Val Arg Ala Phe Thr Val \$195\$
- Ser Ser Phe Phe Arg Lys His Gly Lys Met His Thr Gly Glu Lys Arg 210 215
- Tyr Glu Cys Lys Tyr Cys Gly Lys Pro Ile Asp Tyr Pro Ser Leu Phe 225 230 235
- Gln Ile His Val Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Lys 245 250 255
- Gln Cys Gly Lys Ala Phe Ile Ser Ala Gly Tyr Leu Arg Thr His Glu 260 265 270
- Ile Arg Ser His Ala Leu Glu Lys Ser His Gln Cys Gln Glu Cys Gly 275 280 285
- Lys Lys Leu Ser Cys Ser Ser Ser Leu His Arg His Glu Arg Thr His 290 295 300
- Ser Gly Gly Lys Leu Tyr Glu Cys Gln Lys Cys Ala Lys Val Phe Arg 305 310 315
- Cys Pro Thr Ser Leu Gln Ala His Glu Arg Ala His Thr Gly Glu Arg 325 330 335
- Pro Tyr Glu Cys Asn Lys Cys Gly Lys Thr Phe Asn Tyr Pro Ser Cys 340 345 350
- Phe Arg Arg His Lys Lys Thr His Ser Gly Glu Lys Pro Tyr Glu Cys

355 360 365

Thr Arg Cys Gly Lys Ala Phe Gly Trp Cys Ser Ser Leu Arg Arg His 370 375 380

Glu Met Thr His Thr Gly Glu Lys Pro Phe Asp Cys Lys Gln Cys Gly 385 390 395 400

Lys Val Phe Thr Phe Ser Asn Tyr Leu Arg Leu His Glu Arg Thr His 405 410 415

Leu Ala Gly Arg Ser Gln Cys Phe Gly Arg Arg Gln Gly Asp His Leu \$420\$ \$430\$

Ser Pro Gly Val 435

<210> 2591

<211> 92 <212> PRT

<213> Homo \sapiens

<400> 2591

Met Gln Val Ser Thr Ala Ala Leu Ala Val Leu Leu Cys Thr Met Ala 1 5 10 15

Leu Cys Asn Gln Phe Ser Ala Ser Leu Ala Ala Asp Thr Pro Thr Ala 20 25 30

Cys Cys Phe Ser Tyr Thr Ser Arg Gln Ile Pro Gln Asn Phe Ile Ala 35

Asp Tyr Phe Glu Thr Ser Ser Gln Cys Ser Lys Pro Gly Val Ile Phe 50 55 60

Leu Thr Lys Arg Ser Arg Gln Val Cys Ala Asp Pro Ser Glu Glu Trp 65 70 75 80

Val Gln Lys Tyr Val Ser Asp Leu Glu Leu Ser Ala 85 90

<210> 2592

<211> 271

<212> PRT

<213> Homo sapiens

<400> 2592

| Met<br>1   | Glu        | Ala        | Leu        | Pro<br>5   | Leu        | Leu        | Ala        | Ala        | Thr<br>10  | Thr        | Pro        | Asp        | His        | Gly<br>15  | Arg        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| His        | Arg        | Arg        | Leu<br>20  | Leu        | Leu        | Leu        | Pro        | Leu<br>25  | Leu        | Leu        | Phe        | Leu        | Leu<br>30  | Pro        | Ala        |
| Gly        | Ala        | Val<br>35  | Gln        | Gly        | Trp        | Glu        | Thr<br>40  | Glu        | Glu        | Arg        | Pro        | Arg<br>45  | Thr        | Arg        | Glu        |
| Glu        | Glu<br>50  | Cys        | His        | Phe        | Tyr        | Ala<br>55  | Gly        | Gly        | Gln        | Val        | Tyr<br>60  | Pro        | Gly        | Glu        | Ala        |
| Ser<br>65  | Arg        | Val        | Ser        | Val        | Ala<br>70  | Asp        | His        | Ser        | Leu        | His<br>75  | Leu        | Ser        | Lys        | Ala        | Lys<br>80  |
| Ile        | Ser        | Lys        | Pro        | Ala<br>85  | Pro        | Туг        | Trp        | Glu        | Gly<br>90  | Thr        | Ala        | Val        | Ile        | Asp<br>95  | Gly        |
| Glu        | Phe        | Lys        | Glu<br>100 | Leu        | Lys        | Leu        | Thr        | Asp<br>105 | Tyr        | Arg        | Gly        | Lys        | Tyr<br>110 | Leu        | Val        |
| Phe        | Phe        | Phe<br>115 | Tyr        | Pro        | Leu        | Asp        | Phe<br>120 | Thr        | Phe        | Val        | Сув        | Pro<br>125 | Thr        | Glu        | Ile        |
| Ile        | Ala<br>130 | Phe        | Gly        | Asp        | Arg        | Leu<br>135 | Glu        | Glu        | Phe        | Arg        | Ser<br>140 | Ile        | Asn        | Thr        | Glu        |
| Val<br>145 | Val        | Ala        | Cys        | Ser        | Val<br>150 | Asp        | Ser        | Gln        | Phe        | Thr<br>155 | His        | Leu        | Ala        | Trp        | Ile<br>160 |
| Asn        | Thr        | Pro        | Arg        | Arg<br>165 | Gln        | Gly        | Gly        | Leu        | Gly<br>170 | Pro        | Ile        | Arg        | Ile        | Pro<br>175 | Leu        |
| Leu        | Ser        | Asp        | Leu<br>180 | Thr        | His        | Gln        | Ile        | Ser<br>185 | Lys        | Asp        | Tyr        | Gly        | Val<br>190 | Tyr        | Leu        |
| Glu        | Asp        | Ser<br>195 | Gly        | His        | Thr        | Leu        | Arg<br>200 | Gly        | Leu        | Phe        | Ile        | Ile<br>205 | Asp        | Asp        | Lys        |
| Gly        | Ile<br>210 | Leu        | Arg        | Gln        | Ile        | Thr<br>215 | Leu        | Asn        | Asp        | Leu        | Pro<br>220 | Val        | Gly        | Arg        | Ser        |
| Val<br>225 | Asp        | Glu        | Thr        | Leu        | Arg<br>230 | Leu        | Val        | Gln        | Ala        | Phe<br>235 | Gln        | Tyr        | Thr        | Asp        | Lys<br>240 |

His Gly Glu Val Cys Pro Ala Gly Trp Lys Pro Gly Ser Glu Thr Ile

PCT/US2003/012946

245 250 255

Ile Pro Asp Pro Ala Gly Lys Leu Lys Tyr Phe Asp Lys Leu Asn 260 265 270,

<210> 2593

<211> 659 <212> PRT

<213> Homo sapiens

<400> 2593

Met Ala Ala Val Ile Leu Glu Ser Ile Phe Leu Lys Arg Ser Gln Gln 15

Lys Lys Thr Ser Pro Leu Asn Phe Lys Lys Arg Leu Phe Leu Leu 20 25

Thr Val His Lys Leu Ser Tyr Tyr Glu Tyr Asp Phe Glu Arg Gly Arg 35 40

Arg Gly Ser Lys Lys Gly Ser Ile Asp Val Glu Lys Ile Thr Cys Val 50

Glu Thr Val Val Pro Glu Lys Asn Pro Pro Pro Glu Arg Gln Ile Pro 75

Arg Arg Gly Glu Glu Ser Ser Glu Met Glu Gln Ile Ser Ile Ile Glu 90

Arg Phe Pro Tyr Pro Phe Gln Val Val Tyr Asp Glu Gly Pro Leu Tyr 100 105

Val Phe Ser Pro Thr Glu Glu Leu Arg Lys Arg Trp Ile His Gln Leu 115 120

Lys Asn Val Ile Arg Tyr Asn Ser Asp Leu Val Gln Lys Tyr His Pro 130 135 140

Cys Phe Trp Ile Asp Gly Gln Tyr Leu Cys Cys Ser Gln Thr Ala Lys 145 150

Asn Ala Met Gly Cys Gln Ile Leu Glu Asn Arg Asn Gly Ser Leu Lys 170

Pro Gly Ser Ser His Arg Lys Thr Lys Lys Pro Leu Pro Pro Thr Pro 185 190

Glu Glu Asp Gln Ile Leu Lys Lys Pro Leu Pro Pro Glu Pro Ala Ala

- Ala Pro Val Ser Thr Ser Glu Leu Lys Lys Val Val Ala Leu Tyr Asp 210 215 220
- Tyr Met Pro Met Asn Ala Asn Asp Leu Gln Leu Arg Lys Gly Asp Glu 225 230 235 240
- Tyr Phe Ile Leu Glu Glu Ser Asn Leu Pro Trp Trp Arg Ala Arg Asp 245 250 255
- Lys Asn Gly Glu Glu Gly Tyr Ile Pro Ser Asn Tyr Val Thr Glu Ala 260 265 270
- Glu Asp Ser Ile Glu Met Tyr Glu Trp Tyr Ser Lys His Met Thr Arg 275 280 285
- Ser Gln Ala Glu Gln Leu Leu Lys Gln Glu Gly Lys Glu Gly Gly Phe 290 295 300
- Ile Val Arg Asp Ser Ser Lys Ala Gly Lys Tyr Thr Val Ser Val Phe 305 310 315
- Ala Lys Ser Thr Gly Asp Pro Gln Gly Val Ile Arg His Tyr Val Val 325  $$330\$
- Cys Ser Thr Pro Gln Ser Gln Tyr Tyr Leu Ala Glu Lys His Leu Phe \$340\$
- Ser Thr Ile Pro Glu Leu Ile Asn Tyr His Gln His Asn Ser Ala Gly \$355\$
- Leu Ile Ser Arg Leu Lys Tyr Pro Val Ser Gln Gln Asn Lys Asn Ala 370 375 380
- Pro Ser Thr Ala Gly Leu Gly Tyr Gly Ser Trp Glu Ile Asp Pro Lys 385 \$390\$ \$395\$ 400
- Asp Leu Thr Phe Leu Lys Glu Leu Gly Thr Gly Gln Phe Gly Val Val 405 410 415
- Lys Tyr Gly Lys Trp Arg Gly Gln Tyr Asp Val Ala Ile Lys Met Ile 420 425 430

Lys Glu Gly Ser Met Ser Glu Asp Glu Phe Ile Glu Glu Ala Lys Val 435 440 445

Met Met Asn Leu Ser His Glu Lys Leu Val Gln Leu Tyr Gly Val Cys 450 460

Thr Lys Gln Arg Pro Ile Phe Ile Ile Thr Glu Tyr Met Ala Asn Gly 465 470 475 480

Cys Leu Leu Asn Tyr Leu Arg Glu Met Arg His Arg Phe Gln Thr Gln 485 490 495

Gln Leu Leu Glu Met Cys Lys Asp Val Cys Glu Ala Met Glu Tyr Leu 500 505 510

Glu Ser Lys Gln Phe Leu His Arg Asp Leu Ala Ala Arg Asn Cys Leu 515 520 525

Val Asn Asp Gln Gly Val Val Lys Val Ser Asp Phe Gly Leu Ser Arg 535 540

Tyr Val Leu Asp Asp Glu Tyr Thr Ser Ser Val Gly Ser Lys Phe Pro 545 555 556

Val Arg Trp Ser Pro Pro Glu Val Leu Met Tyr Ser Lys Phe Ser Ser  $565 \\ 570 \\ 575$ 

Lys Ser Asp Ile Trp Ala Phe Gly Val Leu Met Trp Glu Ile Tyr Ser  $580 \\ 585 \\ 590$ 

Leu Gly Lys Met Pro Tyr Glu Arg Phe Thr Asn Ser Glu Thr Ala Glu 595 600 605

His Ile Ala Gln Gly Leu Arg Leu Tyr Arg Pro His Leu Ala Ser Glu 610 620

Lys Val Tyr Thr Ile Met Tyr Ser Cys Trp His Glu Lys Ala Asp Glu 625 635 640

Arg Pro Thr Phe Lys Ile Leu Leu Ser Asn Ile Leu Asp Val Met Asp 645 650

Glu Glu Ser

<210> 2594

<211> 417

<212> PRT

<213> Homo sapiens

<400> 2594

Met Ser Leu Ser Asn Lys Leu Thr Leu Asp Lys Leu Asp Val Lys Gly 1  $\phantom{\bigg|}^{1}$ 

Lys Arg Val Met Arg Val Asp Phe Asn Val Pro Met Lys Asn Asn 20 25 30

Gln Ile Thr Asn Asn Gln Arg Ile Lys Ala Ala Val Pro Ser Ile Lys  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Phe Cys Leu Asp Asn Gly Ala Lys Ser Val Val Leu Met Ser His Leu 50 55 60

Gly Arg Pro Asp Gly Val Pro Met Pro Asp Lys Tyr Ser Leu Glu Pro  $65 \\ 70 \\ 75 \\ 80$ 

Val Ala Val Glu Leu Lys Ser Leu Leu Gly Lys Asp Val Leu Phe Leu 85 90 95

Lys Asp Cys Val Gly Pro Glu Val Glu Lys Ala Cys Ala As<br/>n Pro Ala 100 105 110

Ala Gly Ser Val Ile Leu Leu Glu Asn Leu Arg Phe His Val Glu Glu 115 120 125

Glu Gly Lys Gly Lys Asp Ala Ser Gly Asn Lys Val Lys Ala Glu Pro  $130 \hspace{1cm} 135 \hspace{1cm} 140 \hspace{1cm}$ 

Ala Lys Ile Glu Ala Phe Arg Ala Ser Leu Ser Lys Leu Gly Asp Val 145 150 150 155 160

Tyr Val Asn Asp Ala Phe Gly Thr Ala His Arg Ala His Ser Ser Met 165 170 175

Val Gly Val Asn Leu Pro Gln Lys Ala Gly Gly Phe Leu Met Lys Lys 180 185 190

Glu Leu Asn Tyr Phe Ala Lys Ala Leu Glu Ser Pro Glu Arg Pro Phe 195 200 205

Leu Ala Ile Leu Gly Gly Ala Lys Val Ala Asp Lys Ile Gln Leu Ile 210 215 220

1022

Asn Asn Met Leu Asp Lys Val Asn Glu Met Ile Ile Gly Gly Met 225 230 235 240

Ala Phe Thr Phe Leu Lys Val Leu Asn Asn Met Glu Ile Gly Thr Ser 245 250 255

Leu Phe Asp Glu Glu Gly Ala Lys Ile Val Lys Asp Leu Met Ser Lys 260 265 270

Ala Glu Lys Asn Gly Val Lys Ile Thr Leu Pro Val Asp Phe Val Thr 275 280 285

Ala Asp Lys Phe Asp Glu Asn Ala Lys Thr Gly Gln Ala Thr Val Ala 290 295 300

Ser Gly Ile Pro Ala Gly Trp Met Gly Leu Asp Cys Gly Pro Glu Ser 305 \$310\$ \$315\$

Ser Lys Lys Tyr Ala Glu Ala Val Thr Arg Ala Lys Gln Ile Val Trp 325 330 335

Asn Gly Pro Val Gly Val Phe Glu Trp Glu Ala Phe Ala Arg Gly Thr  $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$ 

Lys Ala Leu Met Asp Glu Val Val Lys Ala Thr Ser Arg Gly Cys Ile 355 \$360\$

Thr Ile Ile Gly Gly Gly Asp Thr Ala Thr Cys Cys Ala Lys Trp Asn 370 375 380

Thr Glu Asp Lys Val Ser His Val Ser Thr Gly Gly Gly Ala Ser Leu 385  $\phantom{\bigg|}$  390  $\phantom{\bigg|}$  395  $\phantom{\bigg|}$  400

Glu Leu Leu Glu Gly Lys Val Leu Pro Gly Val Asp Ala Leu Ser Asn 405 \$410\$

Ile

<210> 2595

<211> 468

<212> PRT

<213> Homo sapiens

<400> 2595

Met Ala Pro Pro Pro Ala Arg Val His Leu Gly Ala Phe Leu Ala Val

Thr Pro Asn Pro Gly Ser Ala Ala Ser Gly Thr Glu Ala Ala Ala Ala 

Thr Pro Ser Lys Val Trp Gly Ser Ser Ala Gly Arg Ile Glu Pro Arg 

Gly Gly Arg Gly Ala Leu Pro Thr Ser Met Gly Gln His Gly Pro 

Ser Ala Arg Ala Arg Ala Gly Arg Ala Pro Gly Pro Arg Pro Ala Arg 

Glu Ala Ser Pro Arg Leu Arg Val His Lys Thr Phe Lys Phe Val Val 

Val Gly Val Leu Leu Gln Val Val Pro Ser Ser Ala Ala Thr Ile Lys 

Leu His Asp Gln Ser Ile Gly Thr Gln Gln Trp Glu His Ser Pro Leu 

Gly Glu Leu Cys Pro Pro Gly Ser His Arg Ser Glu His Pro Gly Ala 

Cys Asn Arg Cys Thr Glu Gly Val Gly Tyr Thr Asn Ala Ser Asn Asn 

Leu Phe Ala Cys Leu Pro Cys Thr Ala Cys Lys Ser Asp Glu Glu Glu 

Arg Ser Pro Cys Thr Thr Thr Arg Asn Thr Ala Cys Gln Cys Lys Pro 

Gly Thr Phe Arg Asn Asp Asn Ser Ala Glu Met Cys Arg Lys Cys Ser 

Arg Gly Cys Pro Arg Gly Met Val Lys Val Lys Asp Cys Thr Pro Trp 

Ser Asp Ile Glu Cys Val His Lys Glu Ser Gly Asn Gly His Asn Ile 

Trp Val Ile Leu Val Val Thr Leu Val Val Pro Leu Leu Val Ala 

Val Leu Ile Val Cys Cys Ile Gly Ser Gly Cys Gly Asp Pro 

- Lys Cys Met Asp Arg Val Cys Phe Trp Arg Leu Gly Leu Leu Arg Gly
- Pro Gly Ala Glu Asp Asn Ala His Asn Glu Ile Leu Ser Asn Ala Asp
- Ser Leu Ser Thr Phe Val Ser Glu Gln Gln Met Glu Ser Gln Glu Pro
- Ala Asp Leu Thr Gly Val Thr Val Gln Ser Pro Gly Glu Ala Gln Cys
- Leu Leu Gly Pro Ala Glu Ala Glu Gly Ser Gln Arg Arg Leu Leu
- Val Pro Ala Asn Gly Ala Asp Pro Thr Glu Thr Leu Met Leu Phe Phe
- Asp Lys Phe Ala Asn Ile Val Pro Phe Asp Ser Trp Asp Gln Leu Met
- Arg Gln Leu Asp Leu Thr Lys Asn Glu Ile Asp Val Val Arg Ala Gly
- Thr Ala Gly Pro Gly Asp Ala Leu Tyr Ala Met Leu Met Lys Trp Val
- Asn Lys Thr Gly Arg Asn Ala Ser Ile His Thr Leu Leu Asp Ala Leu
- Glu Arg Met Glu Glu Arg His Ala Lys Glu Lys Ile Gln Asp Leu Leu
- Val Asp Ser Gly Lys Phe Ile Tyr Leu Glu Asp Gly Thr Gly Ser Ala
- Val Ser Leu Glu
- <210> 2596
- <211> 185 <212> PRT

<213> Homo sapiens

<400> 2596

Met Lys Leu Val Ser Val Ala Leu Met Tyr Leu Gly Ser Leu Ala Phe 1 5 10 15

Leu Gly Ala Asp Thr Ala Arg Leu Asp Val Ala Ser Glu Phe Arg Lys 25 30

Lys Trp Asn Lys Trp Ala Leu Ser Arg Gly Lys Arg Glu Leu Arg Met  $^{35}$   $^{40}$ 

Ser Ser Tyr Pro Thr Gly Leu Ala Asp Val Lys Ala Gly Pro Ala 50 60

Gln Thr Leu Ile Arg Pro Gln Asp Met Lys Gly Ala Ser Arg Ser Pro 65 70 75 80

Glu Asp Ser Ser Pro Asp Ala Ala Arg Ile Arg Val Lys Arg Tyr Arg  $90 \hspace{1cm} 95 \hspace{1cm}$ 

Gln Ser Met Asn Asn Phe Gln Gly Leu Arg Ser Phe Gly Cys Arg Phe  $100 \\ 105 \\ 110$ 

Gly Thr Cys Thr Val Gln Lys Leu Ala His Gln Ile Tyr Gln Phe Thr 115 \$120\$ \$125\$

Asp Lys Asp Lys Asp Asn Val Ala Pro Arg Ser Lys Ile Ser Pro Gln 130 140

Gly Tyr Gly Arg Arg Arg Arg Ser Leu Pro Glu Ala Gly Pro Gly 145 \$150\$

Arg Thr Leu Val Ser Ser Lys Pro Gln Ala His Gly Ala Pro Ala Pro 165 170 175

Pro Ser Gly Ser Ala Pro His Phe Leu 180 185

<210> 2597

<211> 851

<212> PRT <213> Homo sapiens

<400> 2597

Met Ser Ser Lys Gln Glu Ile Met Ser Asp Gln Arg Phe Arg Arg Val 1 5 10 15

Ala Lys Asp Pro Arg Phe Trp Glu Met Pro Glu Lys Asp Arg Lys Val Lys Ile Asp Lys Arg Phe Arg Ala Met Phe His Asp Lys Lys Phe Lys Leu Asn Tyr Ala Val Asp Lys Arg Gly Arg Pro Ile Ser His Ser Thr Thr Glu Asp Leu Lys Arg Phe Tyr Asp Leu Ser Asp Ser Asp Ser Asn Leu Ser Gly Glu Asp Ser Lys Ala Leu Ser Gln Lys Lys Ile Lys Lys Lys Lys Thr Gln Thr Lys Lys Glu Ile Asp Ser Lys Asn Leu Val Glu Lys Lys Glu Thr Lys Lys Ala Asn His Lys Gly Ser Glu Asn Lys Thr Asp Leu Asp Asn Ser Ile Gly Ile Lys Lys Met Lys Thr Ser Cys Lys Phe Lys Ile Asp Ser Asn Ile Ser Pro Lys Lys Asp Ser Lys Glu Phe Thr Gln Lys Asn Lys Lys Glu Lys Lys Asn Ile Val Gln His Thr Thr Asp Ser Ser Leu Glu Glu Lys Gln Arg Thr Leu Asp Ser Gly Thr Ser Glu Ile Val Lys Ser Pro Arg Ile Glu Cys Ser Lys Thr Arg Arg Glu Met Gln Ser Val Val Gln Leu Ile Met Thr Arg Asp Ser Asp Gly Tyr Glu Asn Ser Thr Asp Gly Glu Met Cys Asp Lys Asp Ala Leu Glu Glu Asp Ser Glu Ser Val Ser Glu Ile Gly Ser Asp Glu Glu Ser Glu 

Asn Glu Ile Thr Ser Val Gly Arg Ala Ser Gly Asp Asp Asp Gly Ser 260 265 270

- Glu Asp Asp Glu Glu Glu Asp Glu Asp Glu Glu Glu Asp Glu Asp Glu Asp Glu 275 280 285
- Asp Ser Glu Asp Asp Asp Lys Ser Asp Ser Gly Pro Asp Leu Ala Arg 290 295 300
- Gly Lys Gly Asn Ile Glu Thr Ser Ser Glu Asp Glu Asp Asp Thr Ala 305 310 315 320
- Asp Leu Phe Pro Glu Glu Ser Gly Phe Glu His Ala Trp Arg Glu Leu 325 330 335
- Asp Lys Asp Ala Pro Arg Ala Asp Glu Ile Thr Arg Arg Leu Ala Val 340 345 350
- Cys Asn Met Asp Trp Asp Arg Leu Lys Ala Lys Asp Leu Leu Ala Leu 355 360 365
- Phe Asn Ser Phe Lys Pro Lys Gly Gly Val Ile Phe Ser Val Lys Ile 370 375 380
- Tyr Pro Ser Glu Phe Gly Lys Glu Arg Met Lys Glu Glu Glu Gln Val Gln 385 390 395 400
- Gly Pro Val Glu Leu Leu Ser Ile Pro Glu Asp Ala Pro Glu Lys Asp 405 \$415\$
- Trp Thr Ser Arg Glu Lys Leu Arg Asp Tyr Gln Phe Lys Arg Leu Lys 420 425 430
- Tyr Tyr Tyr Ala Val Val Asp Cys Asp Ser Pro Glu Thr Ala Ser Lys 435 440 445
- Ile Tyr Glu Asp Cys Asp Gly Leu Glu Phe Glu Ser Ser Cys Ser Phe
  450 460
- Ile Asp Leu Arg Phe Ile Pro Asp Asp Ile Thr Phe Asp Asp Glu Pro 465 470 475 480
- Lys Asp Val Ala Ser Glu Val Asn Leu Thr Ala Tyr Lys Pro Lys Tyr 485 490 495

Phe Thr Ser Ala Ala Met Gly Thr Ser Thr Val Glu Ile Thr Trp Asp  $500 \hspace{1cm} 505 \hspace{1cm} 505 \hspace{1cm} 510 \hspace{1cm}$ 

- Glu Thr Asp His Glu Arg Ile Thr Met Leu Asn Arg Lys Phe Lys Lys 515 520 525
- Glu Glu Leu Leu Asp Met Asp Phe Gln Ala Tyr Leu Ala Ser Ser Ser 530 535
- Glu Asp Glu Glu Glu Ile Glu Glu Glu Leu Gln Gly Asp Asp Gly Val 545 550 555 560
- Asn Val Glu Glu Asp Gly Lys Thr Lys Lys Ser Gln Lys Asp Asp Glu 565 570 575
- Glu Gln Ile Ala Lys Tyr Arg Gln Leu Leu Gln Val Ile Gln Glu Lys 580 585 590
- Glu Lys Lys Gly Lys Glu Asn Asp Met Glu Met Glu Ile Lys Trp Val 595 600 605
- Pro Gly Leu Lys Glu Ser Ala Glu Glu Met Val Lys Asn Lys Leu Glu 610 620
- Gly Lys Asp Lys Leu Thr Pro Trp Glu Gln Phe Leu Glu Lys Lys Lys 625 630 635 640
- Glu Lys Lys Arg Leu Lys Arg Lys Gln Lys Ala Leu Ala Glu Glu Ala 645 650 655
- Ser Glu Glu Leu Pro Ser Asp Val Asp Leu Asn Asp Pro Tyr Phe 660 665 670
- Ala Glu Glu Val Lys Gln Ile Gly Ile Asn Lys Lys Ser Val Lys Ser 675 680 685
- Ala Lys Asp Gly Thr Ser Pro Glu Glu Glu Ile Glu Ile Glu Arg Gln 690 695 700
- Lys Ala Glu Met Ala Leu Leu Met Met Asp Glu Asp Glu Asp Ser Lys 705 710 715 720
- Lys His Phe Asn Tyr Asn Lys Ile Val Glu His Gln Asn Leu Ser Lys 725 730 735
- Lys Lys Lys Lys Gln Leu Met Lys Lys Glu Leu Ile Glu Asp Asp

740 745 750

Phe Glu Val Asn Val Asn Asp Ala Arg Phe Gln Ala Met Tyr Thr Ser 765 765

His Leu Phe Asn Leu Asp Pro Ser Asp Pro Asn Phe Lys Lys Thr Lys 770 780

Ala Met Glu Lys Ile Leu Glu Glu Lys Ala Arg Gln Arg Glu Arg Lys 785 790 795 800

Glu Glu Glu Leu Thr Gln Ala Ile Lys Lys Lys Glu Ser Glu Ile Glu 805 810 815

Lys Glu Ser Gln Arg Lys Ser Ile Asp Pro Ala Leu Ser Met Leu Ile 820 825 830

Lys Ser Ile Lys Thr Lys Thr Glu Gln Phe Gln Ala Arg Lys Lys Gln 835 840 845

Lys Val Lys 850

<210> 2598

<211> 244 <212> PRT

<213> Homo sapiens

<400> 2598

Met Val Tyr Lys Thr Leu Phe Ala Leu Cys Ile Leu Thr Ala Gly Trp 1  $\phantom{\bigg|}5\phantom{\bigg|}$  15

Arg Val Gln Ser Leu Pro Thr Ser Ala Pro Leu Ser Val Ser Leu Pro 20 25 30

Thr Asn Ile Val Pro Pro Thr Thr Ile Trp Thr Ser Ser Pro Gln Asn 35 40 45

Thr Asp Ala Asp Thr Ala Ser Pro Ser Asn Gly Thr His Asn Asn Ser 50 55 60

Val Leu Pro Val Thr Ala Ser Ala Pro Thr Ser Leu Leu Pro Lys Asn 65 70 75

Ile Ser Ile Glu Ser Arg Glu Glu Glu Ile Thr Ser Pro Gly Ser Asn 85 90 95

Trp Glu Gly Thr Asn Thr Asp Pro Ser Pro Ser Gly Phe Ser Ser Thr 100 105 110

Ser Gly Gly Val His Leu Thr Thr Thr Leu Glu Glu His Ser Leu Gly 115 120 125

Thr Pro Glu Ala Gly Val Ala Ala Thr Leu Ser Gln Ser Ala Ala Glu 130 135 140

Pro Pro Thr Leu Ile Ser Pro Gln Ala Pro Ala Ser Ser Pro Ser Ser 145 150 155 160

Leu Ser Thr Ser Pro Pro Glu Val Phe Ser Ala Ser Val Thr Asn 165 170 175

His Ser Ser Thr Val Thr Ser Thr Gln Pro Thr Gly Ala Pro Thr Ala

Pro Glu Ser Pro Thr Glu Glu Ser Ser Ser Asp His Thr Pro Thr Ser 195 200 205

His Ala Thr Ala Glu Pro Val Pro Gln Glu Lys Thr Pro Pro Thr Thr 210 215 220

Val Ser Gly Lys Val Met Cys Glu Leu Ile Asp Met Glu Thr Pro Pro 225 230 235 240

Pro Phe Pro Glv

<210> 2599

<211> 395

<212> PRT

<213> Homo sapiens

<400> 2599

Met Pro Gly Arg Ser Cys Val Ala Leu Val Leu Leu Ala Ala Val 1 5 10 15

Lys Ser Thr Tyr Pro Pro Ser Gly Pro Thr Tyr Arg Gly Ala Val Pro  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Trp Tyr Thr Ile Asn Leu Asp Leu Pro Pro Tyr Lys Arg Trp His Glu

50 55 60

Leu Met Leu Asp Lys Ala Pro Met Leu Lys Val Ile Val Asn Ser Leu 65 70 75 80

Lys Asn Met Ile Asn Thr Phe Val Pro Ser Gly Lys Val Met Gln Val 85 90 95

Val Asp Glu Lys Leu Pro Gly Leu Leu Gly Asn Phe Pro Gly Pro Phe 100 \$100\$

Glu Glu Glu Met Lys Gly Ile Ala Ala Val Thr Asp Ile Pro Leu Gly 115 120 125

Glu Ile Ile Ser Phe Asn Ile Phe Tyr Glu Leu Phe Thr Ile Cys Thr 130 135 140

Ser Ile Val Ala Glu Asp Lys Lys Gly His Leu Ile His Gly Arg Asn 145 150 155 160

Met Asp Phe Gly Val Phe Leu Gly Trp Asn Ile Asn Asn Asp Thr Trp . 165 170 175

Val Ile Thr Glu Gln Leu Lys Pro Leu Thr Val Asn Leu Asp Phe Gln 180 185 190

Arg Asn Asn Lys Thr Val Phe Lys Ala Ser Ser Phe Ala Gly Tyr Val

Gly Met Leu Thr Gly Phe Lys Pro Gly Leu Phe Ser Leu Thr Leu Asn 210  $$\rm 215$$ 

Glu Arg Phe Ser Ile Asn Gly Gly Tyr Leu Gly Ile Leu Glu Trp Ile 225  $\phantom{\bigg|}230\phantom{\bigg|}235\phantom{\bigg|}235\phantom{\bigg|}$ 

Leu Gly Lys Lys Asp Ala Met Trp Ile Gly Phe Leu Thr Arg Thr Val 245 250 255

Leu Glu Asn Ser Thr Ser Tyr Glu Glu Ala Lys Asn Leu Leu Thr Lys 260 265 270

Thr Lys Ile Leu Ala Pro Ala Tyr Phe Ile Leu Gly Gly Asn Gln Ser 275 280 285

Gly Glu Gly Cys Val Ile Thr Arg Asp Arg Lys Glu Ser Leu Asp Val 290 295 300

Tyr Glu Leu Asp Ala Lys Gln Gly Arg Trp Tyr Val Val Gln Thr Asn 305 310 315 Tyr Asp Arg Trp Lys His Pro Phe Phe Leu Asp Asp Arg Arg Thr Pro 325 Ala Lys Met Cys Leu Asn Arg Thr Ser Gln Glu Asn Ile Ser Phe Glu 340 345 Thr Met Tyr Asp Val Leu Ser Thr Lys Pro Val Leu Asn Lys Leu Thr 355 360 Val Tyr Thr Thr Leu Ile Asp Val Thr Lys Gly Gln Phe Glu Thr Tyr 370 375 Leu Arg Asp Cys Pro Asp Pro Cys Ile Gly Trp 385 390 <210> 2600 <211> 282 <212> PRT <213> Homo sapiens <400> 2600

Met Ser Leu Leu Ala Thr Leu Gly Leu Glu Leu Asp Arg Ala Leu Leu 1 5 10 15

Pro Ala Ser Gly Leu Gly Trp Leu Val Asp Tyr Gly Lys Leu Pro Pro 20 25 30

Ala Pro Ala Pro Leu Ala Pro Tyr Glu Val Leu Gly Gly Ala Leu Glu  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Gly Gly Leu Pro Val Gly Gly Glu Pro Leu Ala Gly Asp Gly Phe Ser 50 60

Asp Trp Met Thr Glu Arg Val Asp Phe Thr Ala Leu Leu Pro Leu Glu

Pro Pro Leu Pro Gly Thr Leu Pro Gln Pro Ser Pro Thr Pro Pro 85 90 95

Asp Leu Glu Ala Met Ala Ser Leu Leu Lys Lys Glu Leu Glu Gln Met 100 105 110

Glu Asp Phe Phe Leu Asp Ala Pro Pro Leu Pro Pro Pro Ser Pro Pro 115 120 125

Pro Leu Pro Pro Pro Pro Leu Pro Pro Ala Pro Ser Leu Pro Leu Ser 130 135 140

Leu Pro Ser Phe Asp Leu Pro Gln Pro Pro Val Leu Asp Thr Leu Asp 145 150 155 160

Leu Leu Ala Ile Tyr Cys Arg Asn Glu Ala Gly Gln Glu Glu Val Gly 165 170 175

Gln Pro Ser Arg Leu Ala Pro Tyr Pro His Pro Ala Thr Thr Arg Gly 195 200 205

Asp Arg Lys Gln Lys Lys Arg Asp Gln Asn Lys Ser Ala Ala Leu Arg 210 215 220

Tyr Arg Gln Arg Lys Arg Ala Glu Gly Glu Ala Leu Glu Gly Glu Cys 225 230 235 240

Gln Gly Leu Glu Ala Arg Asn Arg Glu Leu Lys Glu Arg Ala Glu Ser 255

Val Glu Arg Glu Ile Gln Tyr Val Lys Asp Leu Leu Ile Glu Val Tyr 260 265 270

Lys Ala Arg Ser Gln Arg Thr Arg Ser Cys 275 280

<210> 2601

<211> 23 <212> PRT

<213> Homo sapiens

<400> 2601

Met Glu Thr Ser Glu Gly Pro Gly Leu Glu Ser Thr Gly Ser Tyr Leu  $1 ext{ } 5 ext{ } 10 ext{ } 15$ 

Gly Ile Gln Gln Arg Ser Pro

<210> 2602 <211> 491

<212> PRT

<213> Homo sapiens

<400> 2602

Met Cys Asn Thr Asn Met Ser Val Pro Thr Asp Gly Ala Val Thr Thr 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10 15

Ser Gln Ile Pro Ala Ser Glu Gln Glu Thr Leu Val Arg Pro Lys Pro 20 25 30

Leu Leu Leu Lys Leu Leu Lys Ser Val Gly Ala Gln Lys Asp Thr Tyr 35 40 45

Thr Met Lys Glu Val Leu Phe Tyr Leu Gly Gln Tyr Ile Met Thr Lys  $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60 \hspace{1.5cm}$ 

Arg Leu Tyr Asp Glu Lys Gln Gln His Ile Val Tyr Cys Ser Asn Asp 65 70 75 80

Leu Leu Gly Asp Leu Phe Gly Val Pro Ser Phe Ser Val Lys Glu His 85 90 95

Arg Lys Ile Tyr Thr Met Ile Tyr Arg Asn Leu Val Val Val Asn Gln
100 105 110

Gln Glu Ser Ser Asp Ser Gly Thr Ser Val Ser Glu Asn Arg Cys His 115 120 125

Leu Glu Gly Gly Ser Asp Gln Lys Asp Leu Val Gln Glu Leu Gln Glu 130 135 140

Glu Lys Pro Ser Ser Ser His Leu Val Ser Arg Pro Ser Thr Ser Ser 145 \$150\$

Arg Arg Arg Ala Ile Ser Glu Thr Glu Glu Asn Ser Asp Glu Leu Ser 165 170 175

Gly Glu Arg Gln Arg Lys Arg His Lys Ser Asp Ser Ile Ser Leu Ser 180 185 190

Phe Asp Glu Ser Leu Ala Leu Cys Val Ile Arg Glu Ile Cys Cys Glu 195 200 205

Arg Ser Ser Ser Ser Glu Ser Thr Gly Thr Pro Ser Asn Pro Asp Leu 210 215 220

Asp Ala Gly Val Ser Glu His Ser Gly Asp Trp Leu Asp Gln Asp Ser 225 230 235 240

Val Ser Asp Gln Phe Ser Val Glu Phe Glu Val Glu Ser Leu Asp Ser 245 250 255

Glu Asp Tyr Ser Leu Ser Glu Glu Gly Gln Glu Leu Ser Asp Glu Asp 260 265 270

Asp Glu Val Tyr Gln Val Thr Val Tyr Gln Ala Gly Glu Ser Asp Thr 275 280 285

Asp Ser Phe Glu Glu Asp Pro Glu Ile Ser Leu Ala Asp Tyr Trp Lys 290 295 300

Cys Thr Ser Cys Asn Glu Met Asn Pro Pro Leu Pro Ser His Cys Asn 305 \$310\$ 315 \$320

Arg Cys Trp Ala Leu Arg Glu Asn Trp Leu Pro Glu Asp Lys Gly Lys 325 \$335\$

Asp Lys Gly Glu Ile Ser Glu Lys Ala Lys Leu Glu Asn Ser Thr Gln \$340\$

Ala Glu Glu Gly Phe Asp Val Pro Asp Cys Lys Lys Thr Ile Val Asn \$355\$

Asp Ser Arg Glu Ser Cys Val Glu Glu Asn Asp Asp Lys Ile Thr Gln 370 375 380

Ala Ser Gln Ser Gln Glu Ser Glu Asp Tyr Ser Gln Pro Ser Thr Ser 385 390 395 400

Ser Ser Ile Ile Tyr Ser Ser Gln Glu Asp Val Lys Glu Phe Glu Arg 405 410 415

Glu Glu Thr Gln Asp Lys Glu Glu Ser Val Glu Ser Ser Leu Pro Leu 420 425 430

Asn Ala Ile Glu Pro Cys Val Ile Cys Gln Gly Arg Pro Lys Asn Gly 435 440 445

Cys Ile Val His Gly Lys Thr Gly His Leu Met Ala Cys Phe Thr Cys 450 455 460

Ala Lys Lys Leu Lys Lys Arg Asn Lys Pro Cys Pro Val Cys Arg Gln

Pro Ile Gln Met Ile Val Leu Thr Tyr Phe Pro 

<210> 2603 <211> 950

<212> PRT <213> Homo sapiens

<400> 2603

Met Gly Val Pro Ala Phe Phe Arg Trp Leu Ser Arg Lys Tyr Pro Ser 

Ile Ile Val Asn Cys Val Glu Glu Lys Pro Lys Glu Cys Asn Gly Val 

Lys Ile Pro Val Asp Ala Ser Lys Pro Asn Pro Asn Asp Val Glu Phe 

Asp Asn Leu Tyr Leu Asp Met Asn Gly Ile Ile His Pro Cys Thr His 

Pro Glu Asp Lys Pro Ala Pro Lys Asn Glu Asp Glu Met Met Val Ala 

Ile Phe Glu Tyr Ile Asp Arg Leu Phe Ser Ile Val Arg Pro Arg Arg 

Leu Leu Tyr Met Ala Ile Asp Gly Val Ala Pro Arg Ala Lys Met Asn

Gln Gln Arg Ser Arg Arg Phe Arg Ala Ser Lys Glu Gly Met Glu Ala 

Ala Val Glu Lys Gln Arg Val Arg Glu Glu Ile Leu Ala Lys Gly Gly 

Phe Leu Pro Pro Glu Glu Ile Lys Glu Arg Phe Asp Ser Asn Cys Ile 

Thr Pro Gly Thr Glu Phe Met Asp Asn Leu Ala Lys Cys Leu Arg Tyr 

Tyr Ile Ala Asp Arg Leu Asn Asp Pro Gly Trp Lys Asn Leu Thr 

Val Ile Leu Ser Asp Ala Ser Ala Pro Gly Glu Gly Glu His Lys Ile 195 200 205

Met Asp Tyr Ile Arg Arg Gln Arg Ala Gln Pro Asn His Asp Pro Asn 210 220

Thr His His Cys Leu Cys Gly Ala Asp Ala Asp Leu Ile Met Leu Gly 225 230 235 240

Leu Ala Thr His Glu Pro Asn Phe Thr Ile Ile Arg Glu Glu Phe Lys 245 250 255

Pro Asn Lys Pro Lys Pro Cys Gly Leu Cys Asn Gln Phe Gly His Glu 260 265 270

Val Lys Asp Cys Glu Gly Leu Pro Arg Glu Lys Lys Gly Lys His Asp 275 280 285

Glu Leu Ala Asp Ser Leu Pro Cys Ala Glu Glu Glu Phe Ile Phe Leu 290 - 295 300

Arg Leu Asn Val Leu Arg Glu Tyr Leu Glu Arg Glu Leu Thr Met Ala 305 310 315 320

Ser Leu Pro Phe Thr Phe Asp Val Glu Arg Ser Ile Asp Asp Trp Val 325 330 335

Phe Met Cys Phe Phe Val Gly Asn Asp Phe Leu Pro His Leu Pro Ser 340 345 350

Leu Glu Ile Arg Glu Asn Ala Ile Asp Arg Leu Val Asn Ile Tyr Lys 355 360 365

Asn Val Val His Lys Thr Gly Gly Tyr Leu Thr Glu Ser Gly Tyr Val

Asn Leu Gln Arg Val Gln Met Ile Met Leu Ala Val Gly Glu Val Glu 385 390 395

Asp Ser Ile Phe Lys Lys Arg Lys Asp Asp Glu Asp Ser Phe Arg Arg 405 410 415

Arg Gln Lys Glu Lys Arg Lys Arg Met Lys Arg Asp Gln Pro Ala Phe 420 425 430 PCT/US2003/012946

WO 2004/042346 Thr Pro Ser Gly Ile Leu Thr Pro His Ala Leu Gly Ser Arq Asn Ser pro Gly Ser Gln Val Ala Ser Asn Pro Arg Gln Ala Ala Tyr Glu Met Arg Met Gln Asn Asn Ser Ser Pro Ser Ile Ser Pro Asn Thr Ser Phe Thr Ser Asp Gly Ser Pro Ser Pro Leu Gly Gly Ile Lys Arg Lys Ala Glu Asp Ser Asp Ser Glu Pro Glu Pro Glu Asp Asn Val Arg Leu Trp Glu Ala Gly Trp Lys Gln Arg Tyr Tyr Lys Asn Lys Phe Asp Val Asp Ala Ala Asp Glu Lys Phe Arg Arg Lys Val Val Gln Ser Tyr Val Glu Gly Leu Cys Trp Val Leu Arg Tyr Tyr Tyr Gln Gly Cys Ala Ser Trp Lys Trp Tyr Tyr Pro Phe His Tyr Ala Pro Phe Ala Ser Asp Phe Glu Gly Ile Ala Asp Met Pro Ser Asp Phe Glu Lys Gly Thr Lys Pro Phe Lys Pro Leu Glu Gln Leu Met Gly Val Phe Pro Ala Ala Ser Gly Asn Phe Leu Pro Pro Ser Trp Arg Lys Leu Met Ser Asp Pro Asp Ser Ser Ile Ile Asp Phe Tyr Pro Glu Asp Phe Ala Ile Asp Leu Asn Gly Lys 

Lys Tyr Ala Trp Gln Gly Val Ala Leu Leu Pro Phe Val Asp Glu Arq 

Arg Leu Arg Ala Ala Leu Glu Glu Val Tyr Pro Asp Leu Thr Pro Glu 

Glu Thr Arg Arg Asn Ser Leu Gly Gly Asp Val Leu Phe Val Gly Lys

675 680 685

His His Pro Leu His Asp Phe Ile Leu Glu Leu Tyr Gln Thr Gly Ser 690 695 700

Thr Glu Pro Val Glu Val Pro Pro Glu Leu Cys His Gly Ile Gln Gly 705  $\phantom{\bigg|}$  710  $\phantom{\bigg|}$  715  $\phantom{\bigg|}$  720

Lys Phe Ser Leu Asp Glu Glu Ala Ile Leu Pro Asp Gln Ile Val Cys 725 730 730

Ser Pro Val Pro Met Leu Arg Asp Leu Thr Gln Asn Thr Val Val Ser 740 745 750

Ile Asn Phe Lys Asp Pro Gln Phe Ala Glu Asp Tyr Ile Phe Lys Ala 755 760 765

Val Met Leu Pro Gly Ala Arg Lys Pro Ala Ala Val Leu Lys Pro Ser 770 775 780

Asp Trp Glu Lys Ser Ser Asn Gly Arg Gln Trp Lys Pro Gln Leu Gly 785 790 795 800

Phe Asn Arg Asp Arg Pro Val His Leu Asp Gln Ala Ala Phe Arg 805 810 815

Thr Leu Gly His Val Met Pro Arg Gly Ser Gly Thr Gly Ile Tyr Ser 820 \$825\$

Asn Ala Ala Pro Pro Pro Val Thr Tyr Gln Gly Asn Leu Tyr Arg Pro 835  $\phantom{\bigg|}$  840  $\phantom{\bigg|}$  845

Leu Leu Arg Gly Gln Ala Gln Ile Pro Lys Leu Met Ser Asn Met Arg 850 855 860

Pro Gln Asp Ser Trp Arg Gly Pro Pro Pro Leu Phe Gln Gln Gln Arg 865 870 870 880

Phe Asp Arg Gly Val Gly Ala Glu Pro Leu Leu Pro Trp Asn Arg Met 885 890 895

Leu Gln Thr Gln Asn Ala Ala Phe Gln Pro Asn Gln Tyr Gln Met Leu 900 905 910

Ala Gly Pro Gly Gly Tyr Pro Pro Arg Arg Asp Asp Arg Gly Gly Arg 915  $920 \ \ 925$ 

Gln Gly Tyr Pro Arg Glu Gly Arg Lys Tyr Pro Leu Pro Pro Pro Ser 930 935 940

Gly Arg Tyr Asn Trp Asn 945 950

<210> 2604 <211> 313

<212> PRT

<213> Homo sapiens

<400> 2604

Met Ser Gln Ser Arg His Arg Ala Glu Ala Pro Pro Leu Glu Arg Glu 1 5 10 15

Asp Ser Gly Thr Phe Ser Leu Gly Lys Met Ile Thr Ala Lys Pro Gly  $20 \\ 25 \\ 30$ 

Lys Thr Pro Ile Gln Val Leu His Glu Tyr Gly Met Lys Thr Lys Asn  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Ile Pro Val Tyr Glu Cys Glu Arg Ser Asp Val Gln Ile His Val Pro 50 60

Thr Phe Thr Phe Arg Val Thr Val Gly Asp Ile Thr Cys Thr Gly Glu 65 75 80

Gly Thr Ser Lys Lys Leu Ala Lys His Arg Ala Ala Glu Ala Ala Ile 85 90 95

Asn Ile Leu Lys Ala Asn Ala Ser Ile Cys Phe Ala Val Pro Asp Pro  $100 \hspace{1.5cm} 100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$ 

Leu Met Pro Asp Pro Ser Lys Gln Pro Lys Asn Gln Leu Asn Pro Ile 115 120 125

Gly Ser Leu Gln Glu Leu Ala Ile His His Gly Trp Arg Leu Pro Glu 130 140

Tyr Thr Leu Ser Gln Glu Gly Gly Pro Ala His Lys Arg Glu Tyr Thr  $^{150}$   $\phantom{0}$   $\phantom{0}$   $\phantom{0}$   $\phantom{0}$   $\phantom{0}$  155  $\phantom{0}$   $\phantom{0}$  160

Thr Ile Cys Arg Leu Glu Ser Phe Met Glu Thr Gly Lys Gly Ala Ser \$165\$ \$170\$ \$175\$

Lys Lys Gln Ala Lys Arg Asn Ala Ala Glu Lys Phe Leu Ala Lys Phe 180 185 190

Ser Asn Ile Ser Pro Glu Asn His Ile Ser Leu Thr Asn Val Val Gly 195 200 205

His Ser Leu Gly Cys Thr Trp His Ser Leu Arg Asn Ser Pro Gly Glu 210 215 220

Lys Ile Asn Leu Leu Lys Arg Ser Leu Leu Ser Ile Pro Asn Thr Asp 225 230 235

Tyr Ile Gln Leu Leu Ser Glu Ile Ala Lys Glu Gln Gly Phe Asn Ile 245 250 255

Thr Tyr Leu Asp Ile Asp Glu Leu Ser Ala Asn Gly Gln Tyr Gln Cys 260 265 270

Leu Ala Glu Leu Ser Thr Ser Pro Ile Thr Val Cys His Gly Ser Gly 275 280 285

Ile Ser Cys Gly Asn Ala Gln Ser Asp Ala Ala His Asn Ala Leu Gln 290 295 300

Tyr Leu Lys Ile Ile Ala Glu Arg Lys 305 310

<210> 2605

<211> 198 <212> PRT

<213> Homo sapiens

<400> 2605

Met Ser Asn Val Arg Val Ser Asn Gly Ser Pro Ser Leu Glu Arg Met 1 5 10 15

Asp Ala Arg Gln Ala Glu His Pro Lys Pro Ser Ala Cys Arg Asn Leu 20 25 30

Phe Gly Pro Val Asp His Glu Glu Leu Thr Arg Asp Leu Glu Lys His 35 40 45

Cys Arg Asp Met Glu Glu Ala Ser Gln Arg Lys Trp Asn Phe Asp Phe 50 55 60

Gln Asn His Lys Pro Leu Glu Gly Lys Tyr Glu Trp Gln Glu Val Glu 65 70 75 80

Lys Gly Ser Leu Pro Glu Phe Tyr Tyr Arg Pro Pro Arg Pro Pro Lys 85 90 95

Gly Ala Cys Lys Val Pro Ala Gln Glu Ser Gln Asp Val Ser Gly Ser 100 105 110

Arg Pro Ala Ala Pro Leu Ile Gly Ala Pro Ala Asn Ser Glu Asp Thr 115 120 125

His Leu Val Asp Pro Lys Thr Asp Pro Ser Asp Ser Gln Thr Gly Leu 130 135 140

Ala Glu Gln Cys Ala Gly Ile Arg Lys Arg Pro Ala Thr Asp Asp Ser 145 150 155 160

Ser Thr Gln Asn Lys Arg Ala Asn Arg Thr Glu Glu Asn Val Ser Asp 165 170 175

Gly Ser Pro Asn Ala Gly Ser Val Glu Gln Thr Pro Lys Lys Pro Gly 180 180 190

Leu Arg Arg Gln Thr 195

<210> 2606

<211> 727 <212> PRT

<213> Homo sapiens

<400> 2606

Met Arg Pro Leu Leu Leu Leu Ala Leu Leu Gly Trp Leu Leu Ala 1 5 10 15

Glu Ala Lys Gly Asp Ala Lys Pro Glu Asp Asn Leu Leu Val Leu Thr  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Val Ala Thr Lys Glu Thr Glu Gly Phe Arg Arg Phe Lys Arg Ser Ala 35 40 45

Gln Phe Phe Asn Tyr Lys Ile Gln Ala Leu Gly Leu Gly Glu Asp Trp
50 55 60

Asn Val Glu Lys Gly Thr Ser Ala Gly Gly Gln Lys Val Arg Leu 65 70 75 80

Leu Lys Lys Ala Leu Glu Lys His Ala Asp Lys Glu Asp Leu Val 11e 85 \$90\$

Leu Phe Thr Asp Ser Tyr Asp Val Leu Phe Ala Ser Gly Pro Arg Glu 100 \$105\$

Leu Leu Lys Lys Phe Arg Gln Ala Arg Ser Gln Val Val Phe Ser Ala 115 120 125

Glu Glu Leu Ile Tyr Pro Asp Arg Arg Leu Glu Thr Lys Tyr Pro Val 130 \$135\$

Val Ser Asp Gly Lys Arg Phe Leu Gly Ser Gly Gly Phe Ile Gly Tyr 145 150 155 160

Ala Pro Asn Leu Ser Lys Leu Val Ala Glu Trp Glu Gly Gln Asp Ser 165 170 175

Asp Ser Asp Gln Leu Phe Tyr Thr Lys Ile Phe Leu Asp Pro Glu Lys 180 185 190

Arg Glu Gln Ile Asn Ile Thr Leu Asp His Arg Cys Arg Ile Phe Gln 195 \$200\$

Asn Leu Asp Gly Ala Leu Asp Glu Val Val Leu Lys Phe Glu Met Gly 210 215 220

His Val Arg Ala Arg Asn Leu Ala Tyr Asp Thr Leu Pro Val Leu Ile 225 230 235 240

His Gly Asn Gly Pro Thr Lys Leu Gln Leu Asn Tyr Leu Gly Asn Tyr 245 250 255

Ile Pro Arg Phe Trp Thr Phe Glu Thr Gly Cys Thr Val Cys Asp Glu 260 265 270

Gly Leu Arg Ser Leu Lys Gly Ile Gly Asp Glu Ala Leu Pro Thr Val 275 280 285

Leu Val Gly Val Phe Ile Glu Gln Pro Thr Pro Phe Val Ser Leu Phe 290 295 300

Phe Gln Arg Leu Leu Arg Leu His Tyr Pro Gln Lys His Met Arg Leu 305 310 315 320

Phe Ile His Asn His Glu Gln His His Lys Ala Gln Val Glu Glu Phe

325 330 335

Leu Ala Gln His Gly Ser Glu Tyr Gln Ser Val Lys Leu Val Gly Pro 340 345 350

Glu Val Arg Met Ala Asn Ala Asp Ala Arg Asn Met Gly Ala Asp Leu  $355 \hspace{1cm} 360 \hspace{1cm} 365$ 

Cys Arg Gln Asp Arg Ser Cys Thr Tyr Tyr Phe Ser Val Asp Ala Asp 370 375 380

Val Ala Leu Thr Glu Pro Asn Ser Leu Arg Leu Leu Ile Gln Gln Asn 385 390 395 400

Lys Asn Val Ile Ala Pro Leu Met Thr Arg His Gly Arg Leu Trp Ser \$405\$

Asn Phe Trp Gly Ala Leu Ser Ala Asp Gly Tyr Tyr Ala Arg Ser Glu 420 425 430

Asp Tyr Val Asp Ile Val Gln Gly Arg Arg Val Gly Val Trp Asn Val 435 440

Pro Tyr Ile Ser Asn Ile Tyr Leu Ile Lys Gly Ser Ala Leu Arg Gly 450 455 460

Glu Leu Gln Ser Ser Asp Leu Phe His His Ser Lys Leu Asp Pro Asp 465 470 475 480

Met Ala Phe Cys Ala Asn Ile Arg Gln Gln Asp Val Phe Met Phe Leu 485 490 490

Thr Asn Arg His Thr Leu Gly His Leu Leu Ser Leu Asp Ser Tyr Arg 500 505 510

Thr Thr His Leu His Asn Asp Leu Trp Glu Val Phe Ser Asn Pro Glu 515 520 525

Asp Trp Lys Glu Lys Tyr Ile His Gln Asn Tyr Thr Lys Ala Leu Ala 530 535 540

Gly Lys Leu Val Glu Thr Pro Cys Pro Asp Val Tyr Trp Phe Pro Ile 545 550 555 560

Phe Thr Glu Val Ala Cys Asp Glu Leu Val Glu Glu Met Glu His Phe 565 570 575

Gly Gln Trp Ser Leu Gly Asn Asn Lys Asp Asn Arg Ile Gln Gly Gly 580 585 Tyr Glu Asn Val Pro Thr Ile Asp Ile His Met Asn Gln Ile Gly Phe 595 600 605 Glu Arg Glu Trp His Lys Phe Leu Leu Glu Tyr Ile Ala Pro Met Thr 610 620 Glu Lys Leu Tyr Pro Gly Tyr Tyr Thr Arg Ala Gln Phe Asp Leu Ala 625 630 635 Phe Val Val Arg Tyr Lys Pro Asp Glu Gln Pro Ser Leu Met Pro His 645 His Asp Ala Ser Thr Phe Thr Ile Asn Ile Ala Leu Asn Arg Val Gly 665 Val Asp Tyr Glu Gly Gly Cys Arg Phe Leu Arg Tyr Asn Cys Ser 675 680 685 Ile Arg Ala Pro Arg Lys Gly Trp Thr Leu Met His Pro Gly Arg Leu 695 Thr His Tyr His Glu Gly Leu Pro Thr Thr Arg Gly Thr Arg Tyr Ile 705 710 715 Ala Val Ser Phe Val Asp Pro 725 <210> 2607 <211> 537 <212> PRT <213> Homo sapiens <400> 2607 Met Ala Trp Arg Gly Ala Gly Pro Ser Val Pro Gly Ala Pro Gly Gly 5 10 15 Val Gly Leu Ser Leu Gly Leu Leu Gln Leu Leu Leu Leu Gly 20 25 3.0

Pro Ala Arg Gly Phe Gly Asp Glu Glu Glu Arg Arg Cys Asp Pro Ile 35 40

| Arg        | Ile<br>50  | Ser        | Met        | Cys        | Gln        | Asn<br>55  | Leu        | Gly        | Tyr        | Asn        | Val<br>60  | Thr        | Lys        | Met        | Pro        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asn<br>65  | Leu        | Val        | Gly        | His        | Glu<br>70  | Leu        | Gln        | Thr        | Asp        | Ala<br>75  | Glu        | Leu        | Gln        | Leu        | Thr<br>80  |
| Thr        | Phe        | Thr        | Pro        | Leu<br>85  | Ile        | Gln        | Tyr        | Gly        | Суs<br>90  | Ser        | Ser        | Gln        | Leu        | Gln<br>95  | Phe        |
| Phe        | Leu        | Cys        | Ser<br>100 | Val        | Tyr        | Val        | Pro        | Met<br>105 | Сув        | Thr        | Glu        | Lys        | Ile<br>110 | Asn        | Ile        |
| Pro        | Ile        | Gly<br>115 | Pro        | Cys        | Gly        | Gly        | Met<br>120 | Сув        | Leu        | Ser        | Val        | Lys<br>125 | Arg        | Arg        | Cys        |
| Glu        | Pro<br>130 | Val        | Leu        | Lys        | Glu        | Phe<br>135 | Gly        | Phe        | Ala        | Trp        | Pro<br>140 | Glu        | Ser        | Leu        | Asn        |
| Cys<br>145 | ser        | Lys        | Phe        | Pro        | Pro<br>150 | Gln        | Asn        | Asp        | His        | Asn<br>155 | His        | Met        | Cys        | Met        | Glu<br>160 |
| Gly        | Pro        | Gly        | Asp        | Glu<br>165 | Glu        | Val        | Pro        | Leu        | Pro<br>170 | His        | Lys        | Thr        | Pro        | Ile<br>175 | Gln        |
| Pro        | Gly        | Glu        | Glu<br>180 | Сув        | His        | Ser        | Val        | Gly<br>185 | Thr        | Asn        | Ser        | Asp        | Gln<br>190 | Tyr        | Ile        |
| Trp        | Val        | Lys<br>195 | Arg        | Ser        | Leu        | Asn        | Cys<br>200 | Val        | Leu        | Lys        | Cys        | Gly<br>205 | Tyr        | Asp        | Ala        |
| Gly        | Leu<br>210 | Tyr        | Ser        | Arg        | Ser        | Ala<br>215 | Lys        | Glu        | Phe        | Thr        | Asp<br>220 | Ile        | Trp        | Met        | Ala        |
| Val<br>225 | Trp        | Ala        | Ser        | Leu        | Cys<br>230 | Phe        | Ile        | Ser        | Thr        | Ala<br>235 | Phe        | Thr        | Val        | Leu        | Thr<br>240 |
| Phe        | Leu        | Ile        | Asp        | Ser<br>245 | Ser        | Arg        | Phe        | Ser        | Tyr<br>250 | Pro        | Glu        | Arg        | Pro        | Ile<br>255 | Ile        |
| Phe        | Leu        | Ser        | Met<br>260 | Cys        | Tyr        | Asn        | Ile        | Tyr<br>265 | Ser        | Ile        | Ala        | Tyr        | Ile<br>270 | Val        | Arg        |
| Leu        | Thr        | Val<br>275 | Gly        | Arg        | Glu        | Arg        | Ile<br>280 | Ser        | Cys        | Asp        | Phe        | Glu<br>285 | Glu        | Ala        | Ala        |

1047

Glu Pro Val Leu Ile Gln Glu Gly Leu Lys Asn Thr Gly Cys Ala Ile

290 295 300

Ile Phe Leu Leu Met Tyr Phe Phe Gly Met Ala Ser Ser Ile Trp Trp 305 \$310\$ \$315\$

Val Ile Leu Thr Leu Thr Trp Phe Leu Ala Ala Gly Leu Lys Trp Gly 325 330 335

His Glu Ala Ile Glu Met His Ser Ser Tyr Phe His Ile Ala Ala Trp 340 345

Ala Ile Pro Ala Val Lys Thr Ile Val Ile Leu Ile Met Arg Leu Val 355 \$360\$

Asp Ala Asp Glu Leu Thr Gly Leu Cys Tyr Val Gly Asn Gln Asn Leu 370 375 380

Asp Ala Leu Thr Gly Phe Val Val Ala Pro Leu Phe Thr Tyr Leu Val 385 \$390\$

Ile Gly Thr Leu Phe Ile Ala Ala Gly Leu Val Ala Leu Phe Lys Ile 405 410 415

Arg Ser Asn Leu Gln Lys Asp Gly Thr Lys Thr Asp Lys Leu Glu Arg \$420\$

Leu Met Val Lys Ile Gly Val Phe Ser Val Leu Tyr Thr Val Pro Ala  $435 \ \ 440 \ \ 445$ 

Thr Cys Val Ile Ala Cys Tyr Phe Tyr Glu Ile Ser Asn Trp Ala Leu 450 450 460

Phe Arg Tyr Ser Ala Asp Asp Ser Asn Met Ala Val Glu Met Leu Lys 465 470 475 480

Ile Phe Met Ser Leu Leu Val Gly Ile Thr Ser Gly Met Trp Ile Trp 485 \$490\$

As Ser Gly Lys Val Lys Arg Glu Lys Arg Gly As Gly Trp Val Lys 515 520 525

Pro Gly Lys Gly Ser Glu Thr Val Val 530 535

<210> 2608

<211> 362 <212> PRT

<213> Homo sapiens

<400> 2608

Met Leu Val Met Ala Pro Arg Thr Val Leu Leu Leu Leu Ser Ala Ala 1 5 10 15

Leu Ala Leu Thr Glu Thr Trp Ala Gly Ser His Ser Met Arg Tyr Phe \$20\$

Tyr Thr Ser Val Ser Arg Pro Gly Arg Gly Glu Pro Arg Phe Ile Ser 35 40 45

Val Gly Tyr Val Asp Asp Thr Gln Phe Val Arg Phe Asp Ser Asp Ala 50 60

Ala Ser Pro Arg Glu Glu Pro Arg Ala Pro Trp Ile Glu Glu Glu Gly 65 70 75 80

Pro Glu Tyr Trp Asp Arg Asn Thr Gln Ile Tyr Lys Ala Gln Ala Gln 85 90 95

Thr Asp Arg Glu Ser Leu Arg Asn Leu Arg Gly Tyr Tyr Asn Gln Ser 100 105 110

Glu Ala Gly Ser His Thr Leu Gln Ser Met Tyr Gly Cys Asp Val Gly 115 120 125

Pro Asp Gly Arg Leu Leu Arg Gly His Asp Gln Tyr Ala Tyr Asp Gly 130 135 140

Lys Asp Tyr Ile Ala Leu Asn Glu Asp Leu Arg Ser Trp Thr Ala Ala 145 \$150\$ \$155\$

Asp Thr Ala Ala Gln Ile Thr Gln Arg Lys Trp Glu Ala Ala Arg Glu 165 170 175

Ala Glu Gln Arg Arg Ala Tyr Leu Glu Gly Glu Cys Val Glu Trp Leu 180 185 190

Arg Arg Tyr Leu Glu Asn Gly Lys Asp Lys Leu Glu Arg Ala Asp Pro 195 200 205

Pro Lys Thr His Val Thr His His Pro Ile Ser Asp His Glu Ala Thr 210  $$\rm 220$$ 

Leu Arg Cys Trp Ala Leu Gly Phe Tyr Pro Ala Glu Ile Thr Leu Thr 225 \$230\$ \$235\$ \$240

Trp Gln Arg Asp Gly Glu Asp Gln Thr Gln Asp Thr Glu Leu Val Glu  $^{245}$   $^{250}$   $^{250}$ 

Thr Arg Pro Ala Gly Asp Arg Thr Phe Gln Lys Trp Ala Ala Val Val 260 265 270

Val Pro Ser Gly Glu Glu Gln Arg Tyr Thr Cys His Val Gln His Glu 275 280 285

Gly Leu Pro Lys Pro Leu Thr Leu Arg Trp Glu Pro Ser Ser Gln Ser 290 295 300

Thr Val Pro Ile Val Gly Ile Val Ala Gly Leu Ala Val Leu Ala Val 305 310 320

Val Val Ile Gly Ala Val Val Ala Ala Val Met Cys Arg Arg Lys Ser 325 330 335

Ser Gly Gly Lys Gly Gly Ser Tyr Ser Gln Ala Ala Cys Ser Asp Ser 340 345 350

Ala Gln Gly Ser Asp Val Ser Leu Thr Ala 355 360

<210> 2609

<211> 350 <212> PRT

<213> Homo sapiens

<400> 2609

Met Glu Thr Asn Ser Ser Leu Pro Thr Asn Ile Ser Gly Gly Thr Pro 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Ala Val Ser Ala Gly Tyr Leu Phe Leu Asp Ile Ile Thr Tyr Leu Val  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Phe Ala Val Thr Phe Val Leu Gly Val Leu Gly Asn Gly Leu Val Ile  $^{35}$  45

Trp Val Ala Gly Phe Arg Met Thr His Thr Val Thr Thr Ile Ser Tyr 50 55 . 60

Leu Asn Leu Ala Val Ala Asp Phe Cys Phe Thr Ser Thr Leu Pro Phe Phe Met Val Arg Lys Ala Met Gly Gly His Trp Pro Phe Gly Trp Phe Leu Cys Lys Phe Val Phe Thr Ile Val Asp Ile Asn Leu Phe Gly Ser Val Phe Leu Ile Ala Leu Ile Ala Leu Asp Arg Cys Val Cys Val Leu His Pro Val Trp Thr Gln Asn His Arg Thr Val Ser Leu Ala Lys Lys Val Ile Ile Gly Pro Trp Val Met Ala Leu Leu Leu Thr Leu Pro Val Ile Ile Arg Val Thr Thr Val Pro Gly Lys Thr Gly Thr Val Ala Cys Thr Phe Asn Phe Ser Pro Trp Thr Asn Asp Pro Lys Glu Arg Ile Asn Val Ala Val Ala Met Leu Thr Val Arg Gly Ile Ile Arg Phe Ile Ile Gly Phe Ser Ala Pro Met Ser Ile Val Ala Val Ser Tyr Gly Leu Ile Ala Thr Lys Ile His Lys Gln Gly Leu Ile Lys Ser Ser Arg Pro Leu Arg Val Leu Ser Phe Val Ala Ala Ala Phe Phe Leu Cys Trp Ser Pro Tyr Gln Val Val Ala Leu Ile Ala Thr Val Arg Ile Arg Glu Leu Leu Gln Gly Met Tyr Lys Glu Ile Gly Ile Ala Val Asp Val Thr Ser Ala 

Leu Ala Phe Phe Asn Ser Cys Leu Asn Pro Met Leu Tyr Val Phe Met 290 295 300

Gly Gln Asp Phe Arg Glu Arg Leu Ile His Ala Leu Pro Ala Ser Leu 305 310 315 320

Glu Arg Ala Leu Thr Glu Asp Ser Thr Gln Thr Ser Asp Thr Ala Thr 325 330 335

As Ser Thr Leu Pro Ser Ala Glu Val Glu Leu Gln Ala Lys \$340\$

<210> 2610 <211> 638 <212> PRT

<213> Homo sapiens

<400> 2610

Met Ser Ala Ser Ser Ser Gly Gly Ser Pro Arg Phe Pro Ser Cys Gly
1 5 10 15

Lys Asn Gly Val Thr Ser Leu Thr Gln Lys Lys Val Leu Arg Ala Pro

Cys Gly Ala Pro Ser Val Thr Val Thr Lys Ser His Lys Arg Gly Met 35 40 45

Lys Gly Asp Thr Val Asn Val Arg Arg Ser Val Arg Val Lys Thr Lys 50 55 60

Asn Pro Pro His Cys Leu Glu Ile Thr Pro Pro Ser Ser Glu Lys Leu 65 70 75 75 80 80

Val Ser Val Met Arg Leu Ser Asp Leu Ser Thr Glu Asp Asp Asp Ser 85 90 95

Gly His Cys Lys Met Asn Arg Tyr Asp Lys Lys Ile Asp Ser Leu Met 100 105 110

Asn Ala Val Gly Cys Leu Lys Ser Glu Val Lys Met Gln Lys Gly Glu 115 120 125

Arg Gln Met Ala Lys Arg Phe Leu Glu Glu Arg Lys Glu Glu Leu Glu 130 135 140

Glu Val Ala His Glu Leu Ala Glu Thr Glu His Glu Asn Thr Val Leu 145 150 150 160

Arg His Asn Ile Glu Arg Met Lys Glu Glu Lys Asp Phe Thr Ile Leu

WO 2004/042346 Gln Lys Lys His Leu Gln Gln Glu Lys Glu Cys Leu Met Ser Lys Leu Val Glu Ala Glu Met Asp Gly Ala Ala Ala Ala Lys Gln Val Met Ala Leu Lys Asp Thr Ile Gly Lys Leu Lys Thr Glu Lys Gln Met Thr Cys Thr Asp Ile Asn Thr Leu Thr Arq Gln Lys Glu Leu Leu Leu Gln Lys Leu Ser Thr Phe Glu Glu Thr Asn Arg Thr Leu Arg Asp Leu Leu Arg Glu Gln His Cvs Lvs Glu Asp Ser Glu Arg Leu Met Glu Gln Gln Gly Ala Leu Leu Lys Arg Leu Ala Glu Ala Asp Ser Glu Lys Ala Arg Leu Leu Leu Leu Gln Asp Lys Asp Lys Glu Val Glu Glu Leu Leu Gln Glu Ile Gln Cys Glu Lys Ala Gln Ala Lys Thr Ala Ser Glu Leu Ser 

Lys Ser Met Glu Ser Met Arg Gly His Leu Gln Ala Gln Leu Arg Ser 

Lvs Glu Ala Glu Asn Ser Arg Leu Cys Met Gln Ile Lys Asn Leu Glu 

Arg Ser Gly Asn Gln His Lys Ala Glu Val Glu Ala Ile Met Glu Gln 

Leu Lys Glu Leu Lys Gln Lys Gly Asp Arg Asp Lys Glu Ser Leu Lys 

Lys Ala Ile Arg Ala Gln Lys Glu Arg Ala Glu Lys Ser Glu Glu Tyr 

Ala Glu Gln Leu His Val Gln Leu Ala Asp Lys Asp Leu Tyr Val Ala 

Glu Ala Leu Ser Thr Leu Glu Ser Trp Arg Ser Arg Tyr Asn Gln Val

Val Lys Glu Lys Gly Asp Leu Glu Leu Glu Ile Ile Val Leu Asn Asp 435 440 445

Arg Val Thr Asp Leu Val Asn Gln Gln Gln Thr Leu Glu Glu Lys Met 450 455 460

Arg Glu Asp Arg Asp Ser Leu Val Glu Arg Leu His Arg Gln Thr Ala 465 470 475 480

Glu Tyr Ser Ala Phe Lys Leu Glu Asn Glu Arg Leu Lys Ala Ser Phe 485 490 495

Ala Pro Met Glu Asp Lys Leu Asn Gln Ala His Leu Glu Val Gln Gln 500 505 510

Leu Lys Ala Ser Val Lys Asn Tyr Glu Gly Met Ile Asp Asn Tyr Lys  $515 \hspace{1.5cm} 520 \hspace{1.5cm} 525 \hspace{1.5cm}$ 

Ser Gln Val Met Lys Thr Arg Leu Glu Ala Asp Glu Val Ala Ala Gln 530 535

Leu Glu Arg Cys Asp Lys Glu Asn Lys Ile Leu Lys Asp Glu Met Asn 545 550 555 560

Lys Glu Ile Glu Ala Ala Arg Arg Gln Phe Gln Ser Gln Leu Ala Asp 565 570 575

Leu Gln Gln Leu Pro Asp Ile Leu Lys Ile Thr Glu Ala Lys Leu Ala 580 585 590

Glu Cys Gln Asp Gln Leu Gln Gly Tyr Glu Arg Lys Asn Ile Asp Leu  $595 \hspace{0.5in} 600 \hspace{0.5in} 605$ 

Gly Ser His Glu Leu Thr Arg Ala Gly Ala Arg Ile Pro Arg 625 630 635

<210> 2611

<211> 197

<212> PRT

<213> Homo sapiens

<400> 2611

Met Thr Leu Leu Pro Gly Leu Leu Phe Leu Thr Trp Leu His Thr Cys 5 10

Leu Ala His His Asp Pro Ser Leu Arg Gly His Pro His Ser His Gly 25

Thr Pro His Cys Tyr Ser Ala Glu Glu Leu Pro Leu Gly Gln Ala Pro

Pro His Leu Leu Ala Arg Gly Ala Lys Trp Gly Gln Ala Leu Pro Val 55

Ala Leu Val Ser Ser Leu Glu Ala Ala Ser His Arg Gly Arg His Glu 70 65

Arg Pro Ser Ala Thr Thr Gln Cys Pro Val Leu Arg Pro Glu Glu Val 85

Leu Glu Ala Asp Thr His Gln Arg Ser Ile Ser Pro Trp Arg Tyr Arg 105 100

Val Asp Thr Asp Glu Asp Arg Tyr Pro Gln Lys Leu Ala Phe Ala Glu 115 120

Cys Leu Cys Arg Gly Cys Ile Asp Ala Arg Thr Gly Arg Glu Thr Ala 130 135 140

Ala Leu Asn Ser Val Arg Leu Leu Gln Ser Leu Leu Val Leu Arg Arg 145 150 155

Arg Pro Cys Ser Arg Asp Gly Ser Gly Leu Pro Thr Pro Gly Ala Phe 165 170

Ala Phe His Thr Glu Phe Ile His Val Pro Val Gly Cys Thr Cys Val 185 190 180

Leu Pro Arg Ser Val 195

<210> 2612

<211> 570 <212> PRT

<213> Homo sapiens

| <400> | 2612 |
|-------|------|
|       |      |

Met Asn Val Val Phe Ala Val Lys Gln Tyr Ile Ser Lys Met Ile Glu 1 5 10 15

Asp Ser Gly Pro Gly Met Lys Val Leu Leu Met Asp Lys Glu Thr Thr 20 25 30

Gly Ile Val Ser Met Val Tyr Thr Gln Ser Glu Ile Leu Gln Lys Glu 35 40 45

Val Tyr Leu Phe Glu Arg Ile Asp Ser Gln Asn Arg Glu Ile Met Lys 50 55 60

His Leu Lys Ala Ile Cys Phe Leu Arg Pro Thr Lys Glu Asn Val Asp 65 70 75 80

Tyr Ile Ile Gln Glu Leu Arg Arg Pro Lys Tyr Thr Ile Tyr Phe Ile 85 90 95

Tyr Phe Ser Asn Val Ile Ser Lys Ser Asp Val Lys Ser Leu Ala Glu 100 105 110

Ala Asp Glu Glu Glu Val Val Ala Glu Val Glu Glu Phe Tyr Gly Asp 115 120 125

Tyr Ile Ala Val Asn Pro His Leu Phe Ser Leu Asn Ile Leu Gly Cys 130 135

Cys Gln Gly Arg Asn Trp Asp Pro Ala Gln Leu Ser Arg Thr Thr Gln 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Gly Leu Thr Ala Leu Leu Leu Ser Leu Lys Lys Cys Pro Met Ile Arg 165 \$170\$

Tyr Gln Leu Ser Ser Glu Ala Ala Lys Arg Leu Ala Glu Cys Val Lys 180 185 190

Gln Val Ile Thr Lys Glu Tyr Glu Leu Phe Glu Phe Arg Arg Thr Glu 195  $\phantom{\bigg|}200\phantom{\bigg|}205\phantom{\bigg|}$ 

Val Pro Pro Leu Leu Leu Ile Leu Asp Arg Cys Asp Asp Ala Ile Thr 210 215 220

Pro Leu Leu Asn Gln Trp Thr Tyr Gln Ala Met Val His Glu Leu Leu 225 230 230 240

Gly Ile Asn Asn Asn Arg Ile Asp Leu Ser Arg Val Pro Gly Ile Ser 250 Lys Asp Leu Arg Glu Val Val Leu Ser Ala Glu Asn Asp Glu Phe Tyr 265 260 Ala Asn Asn Met Tyr Leu Asn Phe Ala Glu Ile Gly Ser Asn Ile Lys 280 Asn Leu Met Glu Asp Phe Gln Lys Lys Pro Lys Glu Gln Gln Lys 300 290 295 Leu Glu Ser Ile Ala Asp Met Lys Ala Phe Val Glu Asn Tyr Pro Gln 305 310 315 320 Phe Lys Lys Met Ser Gly Thr Val Ser Lys His Val Thr Val Val Gly 325 330 335 Glu Leu Ser Arg Leu Val Ser Glu Arg Asn Leu Leu Glu Val Ser Glu 340 345

Val Glu Glu Leu Ala Cys Gln Asn Asp His Ser Ser Ala Leu Gln 355 360 365

Asn Ile Lys Arg Leu Leu Gln Asn Pro Lys Val Thr Glu Phe Asp Ala 370 375 380

Ala Arg Leu Val Met Leu Tyr Ala Leu His Tyr Glu Arg His Ser Ser 385 \$390\$

Asn Ser Leu Pro Gly Leu Met Met Asp Leu Arg Asn Lys Gly Val Ser 405 410 415

Glu Lys Tyr Arg Lys Leu Val Ser Ala Val Val Glu Tyr Gly Gly Lys \$420\$

Arg Val Arg Gly Ser Asp Leu Phe Ser Pro Lys Asp Ala Val Ala Ile  $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$ 

Thr Lys Gln Phe Leu Lys Gly Leu Lys Gly Val Glu Asn Val Tyr Thr 450 455 460

Gln His Gln Pro Phe Leu His Glu Thr Leu Asp His Leu Ile Lys Gly 465 \$470\$

Arg Leu Lys Glu Asn Leu Tyr Pro Tyr Leu Gly Pro Ser Thr Leu Arg

Asp Arg Pro Gln Asp Ile Ile Val Phe Val Ile Gly Gly Ala Thr Tyr 500 505 510

Glu Glu Ala Leu Thr Val Tyr Asn Leu Asn Arg Thr Thr Pro Gly Val

Arg Ile Val Leu Gly Gly Thr Thr Val His Asn Thr Lys Ser Phe Leu 530 540

Glu Glu Val Leu Ala Ser Gly Leu His Ser Arg Ser Lys Glu Ser Ser 545 550 555

Gln Val Thr Ser Arg Ser Ala Ser Arg Arg 565 570

<210> 2613

<211> 474

<212> PRT <213> Homo sapiens

<400> 2613

Met Thr Ile Leu Thr Tyr Pro Phe Lys Asn Leu Pro Thr Ala Ser Lys

Trp Ala Leu Arg Phe Ser Ile Arg Pro Leu Ser Cys Ser Ser Gln Leu 20 25 30

Arg Ala Ala Pro Ala Val Gln Thr Lys Thr Lys Lys Thr Leu Ala Lys 35 40 45

Pro Asn Ile Arg Asn Val Val Val Val Asp Gly Val Arg Thr Pro Phe 50

Leu Leu Ser Gly Thr Ser Tyr Lys Asp Leu Met Pro His Asp Leu Ala 65 70 75 80

Arg Ala Ala Leu Thr Gly Leu Leu His Arg Thr Ser Val Pro Lys Glu  $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$ 

Val Val Asp Tyr Ile Ile Phe Gly Thr Val Ile Gln Glu Val Lys Thr

Ser Asn Val Ala Arg Glu Ala Ala Leu Gly Ala Gly Phe Ser Asp Lys 115 120 125

1058

| Thr        | Pro<br>130 | Ala        | His        | Thr        | Val        | Thr<br>135 | Met        | Ala        | Cys        | Ile        | Ser<br>140 | Ala        | Asn        | Gln        | Ala        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Met<br>145 | Thr        | Thr        | Gly        | Val        | Gly<br>150 | Leu        | Ile        | Ala        | Ser        | Gly<br>155 | Gln        | Cys        | Asp        | Val        | Ile<br>160 |
| Val        | Ala        | Gly        | Gly        | Val<br>165 | Glu        | Leu        | Met        | Ser        | Asp<br>170 | Val        | Pro        | Ile        | Arg        | His<br>175 | Ser        |
| Arg        | Lys        | Met        | Arg<br>180 | Lys        | Leu        | Met        | Leu        | Asp<br>185 | Leu        | Asn        | Lys        | Ala        | Lys<br>190 | Ser        | Met        |
| Gly        | Gln        | Arg<br>195 | Leu        | Ser        | Leu        | Ile        | Ser<br>200 | Lys        | Phe        | Arg        | Phe        | Asn<br>205 | Phe        | Leu        | Ala        |
| Pro        | Glu<br>210 | Leu        | Pro        | Ala        | Val        | Ser<br>215 | Glu        | Phe        | Ser        | Thr        | Ser<br>220 | Glu        | Thr        | Met        | Gly        |
| His<br>225 | Ser        | Ala        | Asp        | Arg        | Leu<br>230 | Ala        | Ala        | Ala        | Phe        | Ala<br>235 | Val        | Ser        | Arg        | Leu        | Glu<br>240 |
| Gln        | Asp        | Glu        | Tyr        | Ala<br>245 | Leu        | Arg        | Ser        | His        | Ser<br>250 | Leu        | Ala        | Lys        | Lys        | Ala<br>255 | Gln        |
| Asp        | Glu        | Gly        | Leu<br>260 | Leu        | Ser        | Asp        | Val        | Val<br>265 | Pro        | Phe        | Lys        | Val        | Pro<br>270 | Gly        | Lys        |
| Asp        | Thr        | Val<br>275 | Thr        | Lys        | Asp        | Asn        | Gly<br>280 | Ile        | Arg        | Pro        | Ser        | Ser<br>285 | Leu        | Glu        | Gln        |
| Met        | Ala<br>290 | Lys        | Leu        | Lys        | Pro        | Ala<br>295 | Phe        | Ile        | Lys        | Pro        | Tyr<br>300 | Gly        | Thr        | Val        | Thr        |
| Ala<br>305 | Ala        | Asn        | Ser        | Ser        | Phe<br>310 | Leu        | Thr        | Asp        | Gly        | Ala<br>315 | Ser        | Ala        | Met        | Leu        | Ile<br>320 |
| Met        | Ala        | Glu        | Glu        | Lys<br>325 | Ala        | Leu        | Ala        | Met        | Gly<br>330 | Tyr        | Lys        | Pro        | Lys        | Ala<br>335 | Tyr        |
| Leu        | Arg        | Asp        | Phe<br>340 | Met        | Tyr        | Val        | Ser        | Gln<br>345 | Asp        | Pro        | Lys        | Asp        | Gln<br>350 | Leu        | Leu        |
| Leu        | Gly        | Pro<br>355 | Thr        | Tyr        | Ala        | Thr        | Pro<br>360 | Lys        | Val        | Leu        | Glu        | Lys<br>365 | Ala        | Gly        | Leu        |

Thr Met Asn Asp Ile Asp Ala Phe Glu Phe His Glu Ala Phe Ser Gly Gln Ile Leu Ala Asn Phe Lys Ala Met Asp Ser Asp Trp Phe Ala Glu 385 390 395 Asn Tyr Met Gly Arg Lys Thr Lys Val Gly Leu Pro Pro Leu Glu Lys 405 410 Phe Asn Asn Trp Gly Gly Ser Leu Ser Leu Gly His Pro Phe Gly Ala 425 430 420 Thr Gly Cys Arg Leu Val Met Ala Ala Ala Asn Arg Leu Arg Lys Glu 440 435 Gly Gly Gln Tyr Gly Leu Val Ala Ala Cys Ala Ala Gly Gly Gln Gly 450 455 460 His Ala Met Ile Val Glu Ala Tyr Pro Lys <210> 2614 <211> 793 <212> PRT <213> Homo sapiens <400> 2614 Met Glu Ser Arq Ala Glu Gly Gly Ser Pro Ala Val Phe Asp Trp Phe 15 10 Phe Glu Ala Ala Cys Pro Ala Ser Leu Gln Glu Asp Pro Pro Ile Leu Arg Gln Phe Pro Pro Asp Phe Arg Asp Gln Glu Ala Met Gln Met Val 40 Pro Lys Phe Cys Phe Pro Phe Asp Val Glu Arg Glu Pro Pro Ser Pro 55 60 50 Ala Val Gln His Phe Thr Phe Ala Leu Thr Asp Leu Ala Gly Asn Arg 70 75 65 Arg Phe Gly Phe Cys Arg Leu Arg Ala Gly Thr Gln Ser Cys Leu Cys 85 90

Ile Leu Ser His Leu Pro Trp Phe Glu Val Phe Tyr Lys Leu Leu Asn

100 105 110

Thr Val Gly Asp Leu Leu Ala Gln Asp Gln Val Thr Glu Ala Glu Glu 115 120 125

Leu Leu Gln Asn Leu Phe Gln Gln Ser Leu Ser Gly Pro Gln Ala Ser 130 135

Val Gly Leu Glu Leu Gly Ser Gly Val Thr Val Ser Ser Gly Gln Gly 145  $\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}155\phantom{\bigg|}$ 

Ile Pro Pro Pro Thr Arg Gly Asn Ser Lys Pro Leu Ser Cys Phe Val \$165\$

Ala Pro Asp Ser Gly Arg Leu Pro Ser Ile Pro Glu Asn Arg Asn Leu 180 185 190

Thr Glu Leu Val Val Ala Val Thr Asp Glu Asn Ile Val Gly Leu Phe 195 200 205

Ala Ala Leu Leu Ala Glu Arg Arg Val Leu Leu Thr Ala Ser Lys Leu 210 215

Ser Thr Leu Thr Ser Cys Val His Ala Ser Cys Ala Leu Leu Tyr Pro 225 230 235

Met Arg Trp Glu His Val Leu Ile Pro Thr Leu Pro Pro His Leu Leu 245 \$250\$

Asp Tyr Cys Cys Ala Pro Met Pro Tyr Leu Ile Gly Val His Ala Ser  $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$ 

Leu Ala Glu Arg Val Arg Glu Lys Ala Leu Glu Asp Val Val Leu 275 280 285

Asn Val Asp Ala Asn Thr Leu Glu Thr Thr Phe Asn Asp Val Gln Ala 290 295 300

Leu Pro Pro Asp Val Val Ser Leu Leu Arg Leu Arg Leu Arg Lys Val 305 310 315 320

Ala Leu Ala Pro Gly Glu Gly Val Ser Arg Leu Phe Leu Lys Ala Gln 325 330 335

Ala Leu Leu Phe Gly Gly Tyr Arg Asp Ala Leu Val Cys Ser Pro Gly 340 345 350

| G1         | n Pı       | o 1      | Val      | Th         | r Ph       | e Se        | r Gl       | u Gl<br>36 | u Va<br>0  | l Ph       | e Le       | u Al       | a Gl<br>36 | n Ly       | s Pr       | o Gly      |
|------------|------------|----------|----------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Al         | a Pr<br>37 | 0        | Leu      | Glr        | ı Al       | a Ph        | е Ні<br>37 | s Ar<br>5  | g Ar       | g Al       | a Va       | 1 Hi:      | s Le       | u Gli      | n Lei      | ı Phe      |
| Ly<br>38   | s G1<br>5  | n I      | Phe      | Ile        | Gli        | u Al.<br>39 | a Ar<br>O  | g Le       | u Gl       | u Ly:      | s Le       | u Ası<br>5 | n Ly:      | s Gly      | / Glu      | Gly        |
| Ph         | e Se       | rA       | \sp      | Gln        | 405        | e Glu       | ı Gl       | n Glı      | ı Il       | e Th:      | r Gl       | y Cys      | 3 Gly      | / Ala      | Ser<br>415 | Pro        |
| Gly        | / Al       | a I      | eu       | Arg<br>420 | Sei        | туз         | Gl:        | n Lei      | 1 Trj      | o Ala      | a Ası      | ) Asr      | ı Leı      | Lys<br>430 | Lys        | Gly        |
| Gly        | Gl:        | y A<br>4 | 1a<br>35 | Leu        | Leu        | His         | Sei        | Val        | Ly:        | s Ala      | a Lys      | Thr        | Gln<br>445 |            | Ala        | Val        |
| Lys        | 450        | n M      | et       | Tyr        | Arg        | Ser         | Ala<br>455 | Lys        | Sei        | Gly        | Leu        | Lys<br>460 | Gly        | Val        | Gln        | Ser        |
| Leu<br>465 | Let        | ı M      | et       | Tyr        | Lys        | Asp<br>470  | Gly        | ' Asp      | Ser        | Val        | Leu<br>475 | Gln        | Arg        | Gly        | Gly        | Ser<br>480 |
| Leu        | Arg        | j A      | la       | Pro        | Ala<br>485 | Leu         | Pro        | Ser        | Arg        | Ser<br>490 | Asp        | Arg        | Leu        | Gln        | Gln<br>495 | Arg        |
| Leu        | Pro        | I        | le       | Thr<br>500 | Gln        | His         | Phe        | Gly        | Lys<br>505 | Asn        | Arg        | Pro        | Leu        | Arg<br>510 | Pro        | Ser        |
| Arg        | Arg        | 51       | rg 1     | Gln        | Leu        | Glu         | Glu        | Gly<br>520 | Thr        | Ser        | Glu        | Pro        | Pro<br>525 | Gly        | Ala        | Gly        |
| Thr        | Pro<br>530 | Pr       | :o :     | Leu        | Ser        | Pro         | Glu<br>535 | Asp        | Glu        | Gly        | Сув        | Pro<br>540 | Trp        | Ala        | Glu        | Glu        |
| Ala<br>545 | Leu        | As       | p s      | Ser        | Ser        | Phe<br>550  | Leu        | Gly        | Ser        | Gly        | Glu<br>555 | Glu        | Leu        | Asp        | Leu        | Leu<br>560 |
| Ser        | Glu        | 11       | e I      | eu .       | Asp<br>565 | Ser         | Leu        | Ser        | Met        | Gly<br>570 | Ala        | Lys        | Ser        |            | Gly<br>575 | Ser        |
| Leu        | Arg        | Pr       | o S      | Ger<br>180 | Gln        | Ser         | Leu        | Asp        | Cys<br>585 | Сув        | His        | Arg        | Gly        | Asp<br>590 | Leu .      | Asp        |

1062

Ser Cys Phe Ser Leu Pro Asn Ile Leu Arg Trp Gln Pro Asp Asp Lys

Lys Leu Pro Glu Pro Glu Pro Gln Pro Leu Ser Leu Pro Ser Leu Gln 610 615 620

Asn Ala Ser Ser Leu Asp Ala Thr Ser Ser Ser Lys Asp Ser Arg Ser 625 630 635

Gln Leu Ile Pro Ser Glu Ser Asp Gln Glu Val Thr Ser Pro Ser Gln 645 650 655

Ser Ser Thr Ala Ser Ala Asp Pro Ser Ile Trp Gly Asp Pro Lys Pro

Ser Pro Leu Thr Glu Pro Leu Ile Leu His Leu Thr Pro Ser His Lys 675 680 685

Ala Ala Glu Asp Phe Thr Ala Gln Glu Asn Pro Thr Pro Trp Leu Ser 690 695 700

Thr Ala Pro Thr Glu Pro Ser Pro Pro Glu Ser Pro Gln Ile Leu Ala 705 710 715 720

Pro Thr Lys Pro Asn Phe Asp Ile Ala Trp Thr Ser Gln Pro Leu Asp  $725 \hspace{1cm} 730 \hspace{1cm} 735$ 

Pro Ser Ser Asp Pro Ser Ser Leu Glu Asp Pro Arg Ala Arg Pro Pro 740 745 750

Lys Ala Leu Leu Ala Glu Arg Ala His Leu Gln Pro Arg Glu Glu Pro 755 760 765

Gly Ala Leu Asn Ser Pro Ala Thr Pro Thr Ser Asn Cys Gln Lys Ser 770 780

Gln Pro Ser Lys Pro Ala Gln Ser Arg 785 790

<210> 2615

<211> 83

<212> PRT

<213> Homo sapiens

<400> 2615

Met Ser Phe Phe Gln Leu Leu Met Lys Arg Lys Glu Leu Ile Pro Leu

1 5 10 15

Val Val Phe Met Thr Val Ala Ala Gly Gly Ala Ser Ser Phe Ala Val

Tyr Ser Leu Trp Lys Thr Asp Val Ile Leu Asp Arg Lys Lys Asn Pro 35 40 45

Glu Pro Trp Glu Thr Val Asp Pro Thr Val Pro Gln Lys Leu Ile Thr 50 60

Ile Asn Gln Gln Trp Lys Pro Ile Glu Glu Leu Gln Asn Val Gln Arg 65 70 75 80

Val Thr Lys

<210> 2616 <211> 2413

<212> PRT <213> Homo sapiens

<400> 2616

Met Gly Ile Ser Thr Val Ile Leu Glu Met Cys Leu Leu Trp Gly Gln  $1 ext{5}$  10 15

Val Leu Ser Thr Gly Gly Trp Ile Pro Arg Thr Thr Asp Tyr Ala Ser 20 25 30

Leu Ile Pro Ser Glu Val Pro Leu Asp Gln Thr Val Ala Glu Gly Ser 35 40 45

Pro Phe Pro Ser Glu Ser Thr Leu Glu Ser Thr Ala Ala Glu Gly Ser 50 55 60

Pro Ile Ser Leu Glu Ser Thr Leu Glu Ser Thr Val Ala Glu Gly Ser 65 70 75 80

Leu Ile Pro Ser Glu Ser Thr Leu Glu Ser Thr Val Ala Glu Gly Ser 85 90 95

Asp Ser Gly Leu Ala Leu Arg Leu Val Asp Gly Asp Gly Arg Cys Gln 100 105 110

Gly Arg Val Glu Ile Leu Tyr Arg Gly Ser Trp Gly Thr Val Cys Asp \$115\$ \$120\$ \$125\$

Asp Ser Trp Asp Thr Asn Asp Ala Asn Val Val Cys Arg Gln Leu Gly 130 135

Cys Gly Trp Ala Met Ser Ala Pro Gly Asn Ala Trp Phe Gly Gln Gly 145 \$150\$ 155 \$160\$

Ser Gly Pro Ile Ala Leu Asp Asp Val Arg Cys Ser Gly His Glu Ser 165 170 175

Tyr Leu Trp Ser Cys Pro His Asn Gly Trp Leu Ser His Asn Cys Gly 180 185 190

His Gly Glu Asp Ala Gly Val Ile Cys Ser Ala Ala Gln Pro Gln Ser 195 200 205

Thr Leu Arg Pro Glu Ser Trp Pro Val Arg Ile Ser Pro Pro Val Pro 210 220

Thr Glu Gly Ser Glu Ser Ser Leu Ala Leu Arg Leu Val Asn Gly Gly 225 230 235 240

Asp Arg Cys Arg Gly Arg Val Glu Val Leu Tyr Arg Gly Ser Trp Gly \$245\$ \$250\$

Thr Val Cys Asp Asp Tyr Trp Asp Thr Asn Asp Ala Asn Val Cys 260 270

Arg Gln Leu Gly Cys Gly Trp Ala Met Ser Ala Pro Gly Asn Ala Gln 275 280 285

Phe Gly Gln Gly Ser Gly Pro Ile Val Leu Asp Asp Val Arg Cys Ser 290 295 300

Gly His Glu Ser Tyr Leu Trp Ser Cys Pro His Asn Gly Trp Leu Thr 305 \$310\$ \$315\$

His Asn Cys Gly His Ser Glu Asp Ala Gly Val Ile Cys Ser Ala Pro 325 330 335

Gln Ser Arg Pro Thr Pro Ser Pro Asp Thr Trp Pro Thr Ser His Ala 340 345 350

Ser Thr Ala Gly Pro Glu Ser Ser Leu Ala Leu Arg Leu Val Asn Gly \$355\$

| Gly        | Asp<br>370 | Arg        | Cys        | Gln        | Gly        | Arg<br>375 | Val        | Glu        | Val        | Leu        | Tyr<br>380 | Arg        | Gly        | Ser        | Trp        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly<br>385 | Thr        | Val        | Cys        | Asp        | Asp<br>390 | Ser        | Trp        | Asp        | Thr        | Ser<br>395 | Asp        | Ala        | Asn        | Val        | Val<br>400 |
| Cys        | Arg        | Gln        | Leu        | Gly<br>405 | Сув        | Gly        | Trp        | Ala        | Thr<br>410 | Ser        | Ala        | Pro        | Gly        | Asn<br>415 | Ala        |
| Arg        | Phe        | Gly        | Gln<br>420 | Gly        | Ser        | Gly        | Pro        | Ile<br>425 | Val        | Leu        | Asp        | Asp        | Val<br>430 | Arg        | Cys        |
| Ser        | Gly        | Tyr<br>435 | Glu        | Ser        | Tyr        | Leu        | Trp<br>440 | Ser        | Сув        | Pro        | His        | Asn<br>445 | Gly        | Trp        | Leu        |
| Ser        | His<br>450 | Asn        | Cys        | Gln        | His        | Ser<br>455 | Glu        | Asp        | Ala        | Gly        | Val<br>460 | Ile        | Cys        | Ser        | Ala        |
| Ala<br>465 | His        | Ser        | Trp        | Ser        | Thr<br>470 | Pro        | Ser        | Pro        | Asp        | Thr<br>475 | Leu        | Pro        | Thr        | Ile        | Thr<br>480 |
| Leu        | Pro        | Ala        | Ser        | Thr<br>485 | Val        | Gly        | Ser        | Glu        | Ser<br>490 | Ser        | Leu        | Ala        | Leu        | Arg<br>495 | Leu        |
| Val        | Asn        | Gly        | Gly<br>500 | Asp        | Arg        | Cys        | Gln        | Gly<br>505 | Arg        | Val        | Glu        | Val        | Leu<br>510 | Tyr        | Arg        |
| Gly        | Ser        | Trp<br>515 | Gly        | Thr        | Val        | Cys        | Asp<br>520 | Asp        | Ser        | Trp        | Asp        | Thr<br>525 | Asn        | Asp        | Ala        |
| Asn        | Val<br>530 | Val        | Cys        | Arg        | Gln        | Leu<br>535 | Gly        | Cys        | Gly        | Trp        | Ala<br>540 | Met        | Leu        | Ala        | Pro        |
| Gly<br>545 | Asn        | Ala        | Arg        | Phe        | Gly<br>550 | Gln        | Gly        | Ser        | Gly        | Pro<br>555 | Ile        | Val        | Leu        | Asp        | Asp<br>560 |
| Val        | Arg        | Cys        | Ser        | Gly<br>565 | Asn        | Glu        | Ser        | Tyr        | Leu<br>570 | Trp        | Ser        | Cys        | Pro        | His<br>575 | Asn        |
| Gly        | Trp        | Leu        | Ser<br>580 | His        | Asn        | Cys        | Gly        | His<br>585 | Ser        | Glu        | Asp        | Ala        | Gly<br>590 | Val        | Ile        |
| Сув        | Ser        | Gly<br>595 |            | Glu        | Ser        | Ser        | Leu<br>600 |            | Leu        | Arg        |            | Val<br>605 |            | Gly        | Gly        |

 $\hbox{Asp Arg Cys Gln Gly Arg Val Glu Val Leu Tyr Arg Gly Ser Trp Gly } \\$ 

610 615 620

Thr Val Cys Asp Asp Ser Trp Asp Thr Asn Asp Ala Asn Val Cys 625  $\phantom{\bigg|}$  630  $\phantom{\bigg|}$  635  $\phantom{\bigg|}$  640

Arg Gln Leu Gly Cys Gly Trp Ala Met Ser Ala Pro Gly Asn Ala Arg  $645 \hspace{1cm} 650 \hspace{1cm} 655$ 

Phe Gly Gln Gly Ser Gly Pro Ile Val Leu Asp Asp Val Arg Cys Ser 660  $\phantom{0000}665$   $\phantom{00000}665$ 

Gly His Glu Ser Tyr Leu Trp Ser Cys Pro Asn Asn Gly Trp Leu Ser 675 680 685

His Asn Cys Gly His His Glu Asp Ala Gly Val Ile Cys Ser Ala Ala 690  $\,$  695  $\,$  700  $\,$ 

Gln Ser Arg Ser Thr Pro Arg Pro Asp Thr Leu Ser Thr Ile Thr Leu 705 710 715 720

Pro Pro Ser Thr Val Gly Ser Glu Ser Ser Leu Thr Leu Arg Leu Val

Asn Gly Ser Asp Arg Cys Gln Gly Arg Val Glu Val Leu Tyr Arg Gly  $740 \hspace{1cm} 745 \hspace{1cm} 750 \hspace{1cm}$ 

Val Val Cys Arg Gln Leu Gly Cys Gly Trp Ala Met Ser Ala Pro Gly 770 775 780

Asn Ala Arg Phe Gly Gln Gly Ser Gly Pro Ile Val Leu Asp Asp Val 785 790 795 800

Arg Cys Ser Gly His Glu Ser Tyr Leu Trp Ser Cys Pro His Asn Gly 805 810 815

Trp Leu Ser His Asn Cys Gly His His Glu Asp Ala Gly Val Ile Cys 820 825 830

Ser Val Ser Gln Ser Arg Pro Thr Pro Ser Pro Asp Thr Trp Pro Thr 835 840 845

Ser His Ala Ser Thr Ala Gly Ser Glu Ser Ser Leu Ala Leu Arg Leu 850 855 860

Val Asn Gly Gly Asp Arg Cys Gln Gly Arg Val Glu Val Leu Tyr Arg Gly Ser Trp Gly Thr Val Cys Asp Asp Ser Trp Asp Thr Ser Asp Ala Asn Val Val Cys Arg Gln Leu Gly Cys Gly Trp Ala Thr Ser Ala Pro Gly Asn Ala Arg Phe Gly Gln Gly Ser Gly Pro Ile Val Leu Asp Asp Val Arg Cys Ser Gly Tyr Glu Ser Tyr Leu Trp Ser Cys Pro His Asn Gly Trp Leu Ser His Asn Cys Gln His Ser Glu Asp Ala Gly Val Ile Cys Ser Ala Ala His Ser Trp Ser Thr Pro Ser Pro Asp Thr Leu Pro Thr Ile Thr Leu Pro Ala Ser Thr Val Gly Ser Glu Ser Ser Leu Ala Leu Arg Leu Val Asn Gly Gly Asp Arg Cys Gln Gly Arg Val Glu Val Leu Tyr Gln Gly Ser Trp Gly Thr Val Cys Asp Asp Ser Trp Asp Thr Asn Asp Ala Asn Val Val Cys Arg Gln Pro Gly Cys Gly Trp Ala Met Ser Ala Pro Gly Asn Ala Arg Phe Gly Gln Gly Ser Gly Pro Ile Val Leu Asp Asp Val Arg Cys Ser Gly His Glu Ser Tyr Pro Trp Ser Cys Pro His Asn Gly Trp Leu Ser His Asn Cys Gly 

| Pro | Thr<br>1100 | Pro | Se: | Pro   | Asp | Thr<br>1105 | Trp | Pro | Thr | Ser | His         |     | ser | Thr |
|-----|-------------|-----|-----|-------|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Ala | Gly<br>1115 | Ser | Glu | ı Ser | Ser | Leu<br>1120 | Ala | Leu | Arg | Leu | Val<br>1125 | Asr | Gly | Gly |
| Asp | Arg<br>1130 | Cys | Glr | Gly   | Arg | Val<br>1135 | Glu | Val | Leu | Tyr | Arg<br>1140 | Gly | Ser | Trp |
| Gly | Thr<br>1145 | Val | Cys | Asp   | Asp | Tyr<br>1150 | Trp | Asp | Thr | Asn | Asp<br>1155 |     | Asn | Val |
| Val | Cys<br>1160 | Arg | Gln | Leu   | Gly | Cys<br>1165 | Gly | Trp | Ala | Met | Ser<br>1170 |     | Pro | Gly |
| Asn | Ala<br>1175 | Arg | Phe | Gly   | Gln | Gly<br>1180 | Ser | Gly | Pro | Ile | Val<br>1185 |     | Asp | Asp |
| Val | Arg<br>1190 | Cys | Ser | Gly   | His | Glu<br>1195 | Ser | Tyr | Leu | Trp | Ser<br>1200 | Сув | Pro | His |
|     | 1205        |     |     |       |     | 1210        |     |     |     |     | Glu<br>1215 |     |     |     |
| Val | Ile<br>1220 | Сув | Ser | Ala   | Ser | Gln<br>1225 | Ser | Gln | Pro | Thr | Pro<br>1230 | Ser | Pro | Asp |
|     | 1235        |     |     |       |     | 1240        |     |     |     |     | Ser<br>1245 |     |     |     |
|     | 1250        |     |     |       |     | 1255        |     |     |     |     | Cys<br>1260 |     |     |     |
|     | 1265        |     |     |       |     | 1270        |     |     |     |     | Val<br>1275 |     |     |     |
|     | 1280        |     |     |       |     | 1285        |     |     |     |     | Arg<br>1290 |     |     | -   |
|     | 1295        |     |     |       |     | 1300        |     |     |     |     | Arg<br>1305 |     |     |     |
| Gly | Ser<br>1310 | Gly | Pro | Ile   | Val | Leu<br>1315 | Asp | Asp | Val | Arg | Сув<br>1320 | Ser | Gly | His |

| Glu | Ser<br>1325 | Tyr | Leu | Trp |     | Cys<br>1330 | Pro | His | Asn | Gly | Trp<br>1335 | Leu | Ser | His |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Asn | Cys<br>1340 | Gly | His | His | Glu | Asp<br>1345 | Ala | Gly | Val | Ile | Cys<br>1350 | Ser | Ala | Ser |
| Gln | Ser<br>1355 | Gln | Pro | Thr | Pro | Ser<br>1360 | Pro | Asp | Thr | Trp | Pro<br>1365 | Thr | Ser | His |
| Ala | Ser<br>1370 | Thr | Ala | Gly | Ser | Glu<br>1375 |     | Ser | Leu | Ala | Leu<br>1380 | Arg | Leu | Val |
| Asn | Gly<br>1385 |     | Asp | Arg | Cys | Gln<br>1390 | Gly | Arg | Val | Glu | Val<br>1395 | Leu | Tyr | Arg |
| Gly | Ser<br>1400 |     | Gly | Thr | Val | Cys<br>1405 | Asp | Asp | Tyr | Trp | Asp<br>1410 | Thr | Asn | Asp |
| Ala | Asn<br>1415 | Val | Val | Cys | Arg | Gln<br>1420 | Leu | Gly | Сув | Gly | Trp<br>1425 | Ala | Thr | Ser |
| Ala | Pro<br>1430 |     | Asn | Ala | Arg | Phe<br>1435 |     | Gln | Gly | Ser | Gly<br>1440 | Pro | Ile | Val |
| Leu | Asp<br>1445 | Asp | Val | Arg | Сув | Ser<br>1450 | Gly | His | Glu | Ser | Tyr<br>1455 | Leu | Trp | Ser |
| Сув | Pro<br>1460 |     | Asn | Gly | Trp | Leu<br>1465 |     | His | Asn | Cys | Gly<br>1470 | His | His | Glu |
| Asp | Ala<br>1475 | Gly | Val | Ile | Cys | Ser<br>1480 | Ala | Ser | Gln | Ser | Gln<br>1485 | Pro | Thr | Pro |
| Ser | Pro<br>1490 | Asp | Thr | Trp | Pro | Thr<br>1495 | Ser | Arg | Ala | Ser | Thr<br>1500 | Ala | Gly | Ser |
| Glu | Ser<br>1505 |     | Leu | Ala | Leu | Arg<br>1510 |     | Val | Asn | Gly | Gly<br>1515 | Asp | Arg | Cys |
| Arg | Gly<br>1520 |     | Val | Glu | Val | Leu<br>1525 |     | Gln | Gly | Ser | Trp<br>1530 | Gly | Thr | Val |
| Cys | Asp<br>1535 |     | Tyr | Trp | Asp | Thr<br>1540 | Asn | Asp | Ala | Asn | Val<br>1545 | Val | Cys | Arg |
| Gln | Leu         | Gly | Cys | Gly | Trp | Ala         | Met | Ser | Ala | Pro | Gly         | Asn | Ala | Gln |

1550 1555 1560

| Phe | Gly<br>1565 | Gln | Gly | Ser | Gly | Pro<br>1570 |     | Val | Leu | Asp | Asp<br>1575 |     | Arg | Cys |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Ser | Gly<br>1580 | His | Glu | Ser | Tyr | Leu<br>1585 |     | Ser | Сув | Pro | His<br>1590 | Asn | Gly | Trp |
| Leu | Ser<br>1595 | His | Asn | Сув | Gly | His<br>1600 |     | Glu | Asp | Ala | Gly<br>1605 |     | Ile | Cys |
| Ser | Ala<br>1610 | Ala | Gln | ser | Gln | Ser<br>1615 | Thr | Pro | Arg | Pro | Asp<br>1620 |     | Trp | Leu |
| Thr | Thr<br>1625 |     | Leu | Pro | Ala | Leu<br>1630 |     | Val | Gly | Ser | Glu<br>1635 |     | Ser | Leu |
| Ala | Leu<br>1640 |     | Leu | Val | Asn | Gly<br>1645 |     | Asp | Arg | Сув | Arg<br>1650 |     | Arg | Val |
| Glu | Val<br>1655 |     | Tyr | Arg | Gly | Ser<br>1660 |     | Gly | Thr | Val | Cys<br>1665 |     | Asp | Ser |
| Trp | Asp<br>1670 |     | Asn | Asp | Ala | Asn<br>1675 |     | Val | Сув | Arg | Gln<br>1680 |     | Gly | Сув |
| Gly | Trp<br>1685 |     | Met | Ser | Ala | Pro<br>1690 |     | Asn | Ala | Arg | Phe<br>1695 |     | Gln | Gly |
| Ser | Gly<br>1700 |     | Ile | Val | Leu | Asp<br>1705 |     | Val | Arg | Cys | Ser<br>1710 |     | Asn | Glu |
| Ser | Tyr<br>1715 |     | Trp | Ser |     | Pro<br>1720 |     | Lys | Gly | Trp | Leu<br>1725 |     | His | Asn |
| Cys | Gly<br>1730 |     | His | Glu | Asp | Ala<br>1735 |     | Val | Ile | Cys | Ser<br>1740 |     | Thr | Gln |
| Ile | Asn<br>1745 |     | Thr | Thr | Thr | Asp<br>1750 |     | Trp | His | Pro | Thr<br>1755 |     | Thr | Thr |
| Thr | Ala<br>1760 |     | Pro | Ser | Ser | Asn<br>1765 |     | Gly | Gly | Phe | Leu<br>1770 |     | Tyr | Ala |
| Ser | Gly<br>1775 |     | Phe | Ser |     | Pro<br>1780 |     | Tyr | Pro |     | Tyr<br>1785 |     | Pro | Asn |

| Asn   | 1790        | Ly: | в Су  | s Va | l Trp | 179         | 11¢ | e Gl | u Va              | l As | n Ser<br>180  | G1<br>0         | у Ту  | r Arg |  |
|-------|-------------|-----|-------|------|-------|-------------|-----|------|-------------------|------|---------------|-----------------|-------|-------|--|
|       | 1005        | •   |       |      |       | 181         | )   |      |                   |      | u Ala<br>181  | 5               |       |       |  |
| Cys   | Ser<br>1820 | Phe | e Ası | ту:  | · Val | Glu<br>1825 | Ile | Phe  | e As <sub>l</sub> | p Gl | y Ser<br>1830 | Le <sup>s</sup> | u Ası | ı Ser |  |
| Ser   | Leu<br>1835 | Leu | . Let | Gly  | ' Lys | Ile<br>1840 | Cys | Asr  | ı Ası             | 7hı  | 1845          | Gli             | ı Ile | Phe   |  |
|       | 1050        |     |       |      |       | 1855        | •   |      |                   |      | 2 Arg<br>1860 | l               |       |       |  |
|       | 1003        |     |       |      |       | 1870        |     |      |                   |      | Asn<br>1875   |                 |       |       |  |
|       | 1000        |     |       |      |       | 1882        |     |      |                   |      | Ser<br>1890   |                 |       |       |  |
|       | 1095        |     |       |      |       | 1900        |     |      |                   |      | Gly<br>1905   |                 |       |       |  |
|       | 1910        |     |       |      |       | 1915        |     |      |                   |      | Ala<br>1920   |                 |       |       |  |
|       | 1925        |     |       |      |       | 1930        |     |      |                   |      | Ala<br>1935   |                 |       |       |  |
|       | 1940        |     |       |      |       | 1945        |     | •    |                   |      | Leu<br>1950   |                 |       |       |  |
|       | 1933        |     |       |      |       | 1960        |     |      |                   |      | Cys<br>1965   |                 |       |       |  |
|       | 1970        |     |       |      |       | 1975        |     |      |                   |      | Asp<br>1980   |                 |       |       |  |
|       | 1903        |     |       |      |       | 1990        |     |      |                   |      | Pro<br>1995   |                 |       |       |  |
| Ile 7 | Thr 2       | Arg | Pro   | Asn  | Thr i | Asp<br>2005 | Tyr | Ser  | Cys               | Gly  | Gly<br>2010   | Phe             | Leu   | Ser   |  |

Gln Pro Ser Gly Asp Phe Ser Ser Pro Phe Tyr Pro Gly Asn Tyr Pro Asn Asn Ala Lys Cys Val Trp Asp Ile Glu Val Gln Asn Asn Tyr Arg Val Thr Val Ile Phe Arg Asp Val Gln Leu Glu Glv Glv Cys Asn Tyr Asp Tyr Ile Glu Val Phe Asp Gly Pro Tyr Arg Ser Ser Pro Leu Ile Ala Arg Val Cys Asp Gly Ala Arg Gly Ser Phe Thr Ser Ser Ser Asn Phe Met Ser Ile Arg Phe Ile Ser Asp His Ser Ile Thr Arg Arg Gly Phe Arg Ala Glu Tyr Tyr Ser Ser Pro Ser Asn Asp Ser Thr Asn Leu Leu Cys Leu Pro Asn His Met Gln Ala Ser Val Ser Arg Ser Tyr Leu Gln Ser Leu Gly Phe Ser Ala Ser Asp Leu Val Ile Ser Thr Trp Asn Gly Tyr Tyr Glu Cys Arg Pro Gln Ile Thr Pro Asn Leu Val Ile Phe Thr Ile Pro Tyr Ser Gly Cys Gly Thr Phe Lys Gln Ala Asp Asn Asp Thr Ile Asp Tyr Ser Asn Phe Leu Thr Ala Ala Val Ser Gly Gly Ile Ile Lys Arg Arg Thr Asp Leu Arg Ile His Val Ser Cys Arg Met Leu Gln Asn 

Thr Trp Val Asp Thr Met Tyr Ile Ala Asn Asp Thr Ile His Val

PCT/US2003/012946

WO 2004/042346 Ala Asn Asn Thr Ile Gln Val Glu Glu Val Gln Tyr Gly Asn Phe 2245 2250 Asp Val Asn Ile Ser Phe Tyr Thr Ser Ser Ser Phe Leu Tyr Pro 2255 2260 Val Thr Ser Arg Pro Tyr Tyr Val Asp Leu Asn Gln Asp Leu Tyr 2270 2275 Val Gln Ala Glu Ile Leu His Ser Asp Ala Val Leu Thr Leu Phe 2285 2290 Val Asp Thr Cys Val Ala Ser Pro Tyr Ser Asn Asp Phe Thr Ser 2300 2305 2310 Leu Thr Tyr Asp Leu Ile Arg Ser Gly Cys Val Arg Asp Asp Thr 2320 Tyr Gly Pro Tyr Ser Ser Pro Ser Leu Arg Ile Ala Arg Phe Arg 2330 2335 2340 Phe Arg Ala Phe His Phe Leu Asn Arg Phe Pro Ser Val Tyr Leu 2345 2350 Arg Cys Lys Met Val Val Cys Arg Ala Tyr Asp Pro Ser Ser Arg 2360 2365 Cys Tyr Arg Gly Cys Val Leu Arg Ser Lys Arg Asp Val Gly Ser 2375 2380 2385 Tyr Gln Glu Lys Val Asp Val Val Leu Gly Pro Ile Gln Leu Gln 2390 2395 Thr Pro Pro Arg Arg Glu Glu Glu Pro Arg 2410

<210> 2617 <211> 143

<212> PRT

<213> Homo sapiens

<400> 2617

Met Gly Lys Cys Arg Gly Leu Arg Thr Ala Arg Lys Leu Arg Ser His 10

Arg Arg Asp Gln Lys Trp His Asp Lys Gln Tyr Lys Lys Ala His Leu 20 25

Gly Thr Ala Leu Lys Ala Asn Pro Phe Gly Gly Ala Ser His Ala Lys 35 Gly Ile Val Leu Glu Lys Val Gly Val Glu Ala Lys Gln Pro Asn Ser 50 55 60 Ala Ile Arg Lys Cys Val Arg Val Gln Leu Ile Lys Asn Gly Lys Lys Ile Thr Ala Phe Val Pro Asn Asp Gly Cys Leu Asn Phe Ile Glu Glu 90 Asn Asp Glu Val Leu Val Ala Gly Phe Gly Arg Lys Gly His Ala Val 105 Gly Asp Ile Pro Gly Val Arg Phe Lys Val Val Lys Val Ala Asn Val 115 120 125 Ser Leu Leu Ala Leu Tyr Lys Gly Lys Lys Glu Arg Pro Arg Ser <210> 2618 <211> 272 <212> PRT <213> Homo sapiens <400> 2618 Met Glu Glu Glu Ala Ile Ala Ser Leu Pro Gly Glu Glu Thr Glu Asp Met Asp Phe Leu Ser Gly Leu Glu Leu Ala Asp Leu Leu Asp Pro Arg 20 25 Gln Pro Asp Trp His Leu Asp Pro Gly Leu Ser Ser Pro Gly Pro Leu 35 40 Ser Ser Ser Gly Gly Gly Ser Asp Ser Gly Gly Leu Trp Arg Gly Asp 50 55 Asp Asp Asp Glu Ala Ala Ala Glu Met Gln Arg Phe Ser Asp Leu

Leu Gln Arg Leu Leu Asn Gly Ile Gly Gly Cys Ser Ser Ser Ser Asp 85 90 95. PCT/US2003/012946

WO 2004/042346 Ser Gly Ser Ala Glu Lys Arg Arg Lys Ser Pro Gly Gly Gly 100 105 Gly Gly Gly Ser Gly Asn Asp Asn Asn Gln Ala Ala Thr Lys Ser Pro 120 125 Arg Lys Ala Ala Ala Ala Ala Arg Leu Asn Arg Leu Lys Lys Lys 130 135 140 Glu Tyr Val Met Gly Leu Glu Ser Arg Val Arg Gly Leu Ala Ala Glu 145 150 155 Asn Gln Glu Leu Arg Ala Glu Asn Arg Glu Leu Gly Lys Arg Val Gln 165 Ala Leu Gln Glu Glu Ser Arg Tyr Leu Arg Ala Val Leu Ala Asn Glu 185 Thr Gly Leu Ala Arg Leu Leu Ser Arg Leu Ser Gly Val Gly Leu Arg 200 205 Leu Thr Thr Ser Leu Phe Arg Asp Ser Pro Ala Gly Asp His Asp Tyr 210 215 220

Ala Leu Pro Val Gly Lys Gln Lys Gln Asp Leu Leu Glu Glu Asp Asp 225 230 235

Ser Ala Gly Gly Val Cys Leu His Val Asp Lys Asp Lys Val Ser Val 245 250

Glu Phe Cys Ser Ala Cys Ala Arg Lys Ala Ser Ser Ser Leu Lys Met 265 260

<210> 2619 <211> 694

<212> PRT

<213> Homo sapiens

<400> 2619

Met Lys His Leu Lys Arg Trp Trp Ser Ala Gly Gly Leu Leu His 5

Leu Thr Leu Leu Ser Leu Ala Gly Leu Arg Val Asp Leu Asp Leu 20 25

Tyr Leu Leu Pro Pro Pro Thr Leu Leu Gln Asp Glu Leu Leu Phe 35 40 45

Leu Gly Gly Pro Ala Ser Ser Ala Tyr Ala Leu Ser Pro Phe Ser Ala 50 55 60

Ser Gly Gly Trp Gly Arg Ala Gly His Leu His Pro Lys Gly Arg Glu 65  $\phantom{000}70\phantom{000}$  70  $\phantom{0000}75\phantom{000}$  75 Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly Roughly R

Leu Asp Pro Ala Ala Pro Pro Glu Gly Gln Leu Leu Arg Glu Val Arg 85 90 95

Ala Leu Gly Val Pro Phe Val Pro Arg Thr Ser Val Asp Ala Trp Leu  $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$ 

Val His Ser Val Ala Ala Gly Ser Ala Asp Glu Ala His Gly Leu Leu 115 120 125

Gly Ala Ala Ala Ala Ser Ser Thr Gly Gly Ala Gly Ala Ser Val Asp 130 135 140

Gly Gly Ser Gln Ala Val Gln Gly Gly Gly Asp Pro Arg Ala Ala 145 \$150\$ 155 \$160\$

Arg Ser Gly Pro Leu Asp Ala Gly Glu Glu Lys Ala Pro Ala Glu 165 170 175

Pro Thr Ala Gln Val Pro Asp Ala Gly Gly Cys Ala Ser Glu Glu Asn 180 185 190

Gly Val Leu Arg Glu Lys His Glu Ala Val Asp His Ser Ser Gln His
195 200 205

Glu Glu Asn Glu Glu Arg Val Ser Ala Gln Lys Glu Asn Ser Leu Gln 210 215 220

Gln Asn Asp Asp Asp Glu Asn Lys Ile Ala Glu Lys Pro Asp Trp Glu 225 230 235 240

Ala Glu Lys Thr Thr Glu Ser Arg Asn Glu Arg His Leu Asn Gly Thr 245 250 255

Asp Thr Ser Phe Ser Leu Glu Asp Leu Phe Gln Leu Leu Ser Ser Gln 260 265 270

Pro Glu Asn Ser Leu Glu Gly Ile Ser Leu Gly Asp Ile Pro Leu Pro 275 280 285

PCT/US2003/012946

WO 2004/042346 Gly Ser Ile Ser Asp Gly Met Asn Ser Ser Ala His Tyr His Val Asn Phe Ser Gln Ala Ile Ser Gln Asp Val Asn Leu His Glu Ala Ile Leu Leu Cys Pro Asn Asn Thr Phe Arg Arg Asp Pro Thr Ala Arg Thr Ser Gln Ser Gln Glu Pro Phe Leu Gln Leu Asn Ser His Thr Thr Asn Pro Glu Gln Thr Leu Pro Gly Thr Asn Leu Thr Gly Phe Leu Ser Pro Val Asp Asn His Met Arg Asn Leu Thr Ser Gln Asp Leu Leu Tyr Asp Leu Asp Ile Asn Ile Phe Asp Glu Ile Asn Leu Met Ser Leu Ala Thr Glu 385. Asp Asn Phe Asp Pro Ile Asp Val Ser Gln Leu Phe Asp Glu Pro Asp Ser Asp Ser Gly Leu Ser Leu Asp Ser Ser His Asn Asn Thr Ser Val Ile Lys Ser Asn Ser Ser His Ser Val Cys Asp Glu Gly Ala Ile Gly Tyr Cys Thr Asp His Glu Ser Ser His His Asp Leu Glu Gly Ala 

Val Gly Gly Tyr Tyr Pro Glu Pro Ser Lys Leu Cys His Leu Asp Gln 

Ser Asp Ser Asp Phe His Gly Asp Leu Thr Phe Gln His Val Phe His 

Asn His Thr Tyr His Leu Gln Pro Thr Ala Pro Glu Ser Thr Ser Glu 

Pro Phe Pro Trp Pro Gly Lys Ser Gln Lys Ile Arg Ser Arg Tyr Leu 

| Glu                      | Asp<br>530   | Thr                        | Asp        | Arg        | Asn        | Leu<br>535 | Ser        | Arg        | Asp        | Glu        | Gln<br>540 | Arg        | Ala        | Lys        | Ala        |
|--------------------------|--------------|----------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Leu<br>545               | His          | Ile                        | Pro        | Phe        | Ser<br>550 | Val        | Asp        | Glu        | Ile        | Val<br>555 | Gly        | Met        | Pro        | Val        | Asp<br>560 |
| Ser                      | Phe          | Asn                        | Ser        | Met<br>565 | Leu        | Ser        | Arg        | Tyr        | Tyr<br>570 | Leu        | Thr        | Asp        | Leu        | Gln<br>575 | Val        |
| Ser                      | Leu          |                            | Arg<br>580 | Asp        | Ile        | Arg        | Arg        | Arg<br>585 | Gly        | Lys        | Asn        | Lys        | Val<br>590 | Ala        | Ala        |
| Gln                      | Asn          | Cys<br>595                 | Arg        | Lys        | Arg        | Lys        | Leu<br>600 | Asp        | Ile        | Ile        | Leu        | Asn<br>605 | Leu        | Glu        | Asp        |
| Asp                      | Val<br>610   | Cys                        | Asn        | Leu        | Gln        | Ala<br>615 | Lys        | Lys        | Glu        | Thr        | Leu<br>620 | Lys        | Arg        | Glu        | Gln        |
| Ala<br>625               | Gln          | Cys                        | Asn        | Lys        | Ala<br>630 | Ile        | Asn        | Ile        | Met        | Lys<br>635 | Gln        | Lys        | Leu        | His        | Asp<br>640 |
| Leu                      | Tyr          | His                        | Asp        | Ile<br>645 | Phe        | Ser        | Arg        | Leu        | Arg<br>650 | Asp        | Asp        | Gln        | Gly        | Arg<br>655 | Pro        |
| Val                      | Asn          | Pro                        | Asn<br>660 | His        | Tyr        | Ala        | Leu        | Gln<br>665 | Cys        | Thr        | His        | Asp        | Gly<br>670 | Ser        | Ile        |
| Leu                      | Ile          | Val<br>675                 | Pro        | Lys        | Glu        | Leu        | Val<br>680 | Ala        | Ser        | Gly        | His        | Lys<br>685 | Lys        | Glu        | Thr        |
| Gln                      | Lys<br>690   | Gly                        | Lys        | Arg        | Lys        |            |            |            |            |            |            |            |            |            |            |
| <21<br><21<br><21<br><21 | 1> :<br>2> : | 2620<br>391<br>PRT<br>Homo | sap        | iens       |            |            |            |            |            |            |            |            |            |            |            |
| <40                      | 0> :         | 2620                       | •          |            |            |            |            |            |            |            |            |            |            |            |            |
|                          | Lys          |                            | Leu        | Val<br>5   | Thr        | Gly        | Gly        | Asn        | Val<br>10  | Lys        | Val        | Leu        | Gly        | Lys<br>15  | Ala        |
| Val                      | His          | Ser                        | Leu<br>20  | Ser        | Arg        | Ile        | Gly        | Asp<br>25  | Glu        | Leu        | Tyr        | Leu        | Glu<br>30  | Pro        | Leu        |

Glu Asp Gly Leu Ser Leu Arg Thr Val Asn Ser Ser Arg Ser Ala Tyr 35 40 45

Ala Cys Phe Leu Phe Ala Pro Leu Phe Phe Gln Gln Tyr Gln Ala Ala Thr Pro Gly Gln Asp Leu Leu Arg Cys Lys Ile Leu Met Lys Ser Phe Leu Ser Val Phe Arq Ser Leu Ala Met Leu Glu Lys Thr Val Glu Lys Cys Cys Ile Ser Leu Asn Gly Arg Ser Ser Arg Leu Val Val Gln Leu His Cys Lys Phe Gly Val Arg Lys Thr His Asn Leu Ser Phe Gln Asp Cys Glu Ser Leu Gln Ala Val Phe Asp Pro Ala Ser Cys Pro His Met Leu Arg Ala Pro Ala Arg Val Leu Gly Glu Ala Val Leu Pro Phe Ser Pro Ala Leu Ala Glu Val Thr Leu Gly Ile Gly Arg Gly Arg Arg Val Ile Leu Arg Ser Tyr His Glu Glu Glu Ala Asp Ser Thr Ala Lys Ala Met Val Thr Glu Met Cys Leu Gly Glu Glu Asp Phe Gln Gln Leu Gln Ala Gln Glu Gly Val Ala Ile Thr Phe Cys Leu Lys Glu Phe Arg Gly Leu Leu Ser Phe Ala Glu Ser Ala Asn Leu Asn Leu Ser Ile His Phe Asp Ala Pro Gly Arg Pro Ala Ile Phe Thr Ile Lys Asp Ser Leu Leu Asp Gly His Phe Val Leu Ala Thr Leu Ser Asp Thr Asp Ser His Ser Gln Asp Leu Gly Ser Pro Glu Arg His Gln Pro Val Pro Gln Leu Gln 

Ala His Ser Thr Pro His Pro Asp Asp Phe Ala Asn Asp Asp Ile Asp 290 295 300

Ser Tyr Met Ile Ala Met Glu Thr Thr Ile Gly Asn Glu Gly Ser Arg 305 310 315 320

Val Leu Pro Ser Ile Ser Leu Ser Pro Gly Pro Gln Pro Pro Lys Ser 325 330 335

Pro Gly Pro His Ser Glu Glu Glu Asp Glu Ala Glu Pro Ser Thr Value 340 \$345\$

Pro Gly Thr Pro Pro Pro Lys Lys Phe Arg Ser Leu Phe Phe Gly Ser 355 360 365

Ile Leu Ala Pro Val Arg Ser Pro Gln Gly Pro Ser Pro Val Leu Ala 370 375 380

Glu Asp Ser Glu Gly Glu Gly 385 390

<210> 2621

<211> 1429

<212> PRT <213> Homo sapiens

<400> 2621

Met Ala Gly Gly Ala Trp Gly Arg Leu Ala Cys Tyr Leu Glu Phe Leu 1 5 10 15

Lys Lys Glu Glu Leu Lys Glu Phe Gln Leu Leu Leu Ala As<br/>n Lys Ala 20 25 30

His Ser Arg Ser Ser Ser Gly Glu Thr Pro Ala Gln Pro Glu Lys Thr \$35\$

Ser Gly Met Glu Val Ala Ser Tyr Leu Val Ala Gln Tyr Gly Glu Gln 50  $\phantom{\bigg|}55\phantom{\bigg|}$ 

Arg Ala Trp Asp Leu Ala Leu His Thr Trp Glu Gln Met Gly Leu Arg 65 70 75 80

Ser Leu Cys Ala Gln Ala Gln Glu Gly Ala Gly His Ser Pro Ser Phe 85 90 95

Pro Tyr Ser Pro Ser Glu Pro His Leu Gly Ser Pro Ser Gln Pro Thr

100 105 110

Ser Thr Ala Val Leu Met Pro Trp Ile His Glu Leu Pro Ala Gly Cys 115 120 125

Thr Gln Gly Ser Glu Arg Arg Val Leu Arg Gln Leu Pro Asp Thr Ser 130 135 140

Gly Arg Arg Trp Arg Glu Ile Ser Ala Ser Leu Leu Tyr Gln Ala Leu 145 \$150\$ Leu 155 \$160\$

Pro Ser Ser Pro Asp His Glu Ser Pro Ser Gln Glu Ser Pro Asn Ala 165 \$170\$

Pro Thr Ser Thr Ala Val Leu Gly Ser Trp Gly Ser Pro Pro Gln Pro 180 185 190

Ser Leu Ala Pro Arg Glu Glu Glú Ala Pro Gly Thr Gln Trp Pro Leu 195 200 205

Asp Glu Thr Ser Gly Ile Tyr Tyr Thr Glu Ile Arg Glu Arg Glu Arg 210 \$215\$

Glu Lys Ser Glu Lys Gly Arg Pro Pro Trp Ala Ala Val Val Gly Thr 225 230 235 240

Pro Pro Gln Ala His Thr Ser Leu Gln Pro His His His Pro Trp Glu 245 250 255

Pro Ser Val Arg Glu Ser Leu Cys Ser Thr Trp Pro Trp Lys Asn Glu 260 265 270

Asp Phe Asn Gln Lys Phe Thr Gln Leu Leu Leu Gln Arg Pro His 275 280 285

Pro Arg Ser Gln Asp Pro Leu Val Lys Arg Ser Trp Pro Asp Tyr Val 290 295 300

Glu Glu Asn Arg Gly His Leu Ile Glu Ile Arg Asp Leu Phe Gly Pro 305 310 315 320

Gly Leu Asp Thr Gln Glu Pro Arg Ile Val Ile Leu Gln Gly Ala Ala 325 330 335

| Arg        | Gly        | Gln<br>355 | Leu        | Tyr        | Gly        | Asp        | Arg<br>360 | Phe        | Gln        | His        | Val        | Phe<br>365 | Tyr        | Phe        | Ser        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Cys        | Arg<br>370 | Glu        | Leu        | Ala        | Gln        | Ser<br>375 | Lys        | Val        | Val        | Ser        | Leu<br>380 | Ala        | Glu        | Leu        | Ile        |
| Gly<br>385 | Lys        | Asp        | Gly        | Thr        | Ala<br>390 | Thr        | Pro        | Ala        | Pro        | Ile<br>395 | Arg        | Gln        | Ile        | Leu        | Ser<br>400 |
| Arg        | Pro        | Glu        | Arg        | Leu<br>405 | Leu        | Phe        | Ile        | Leu        | Asp<br>410 | Gly        | Val        | Asp        | Glu        | Pro<br>415 | Gly        |
| Trp        | Val        | Leu        | Gln<br>420 | Glu        | Pro        | Ser        | Ser        | Glu<br>425 | Leu        | Сув        | Leu        | His        | Trp<br>430 | Ser        | Gln        |
| Pro        | Gln        | Pro<br>435 | Ala        | Asp        | Ala        | Leu        | Leu<br>440 | Gly        | Ser        | Leu        | Leu        | Gly<br>445 | Lys        | Thr        | Ile        |
| Leu        | Pro<br>450 | Glu        | Ala        | Ser        | Phe        | Leu<br>455 | Ile        | Thr        | Ala        | Arg        | Thr<br>460 | Thr        | Ala        | Leu        | Gln        |
| Asn<br>465 | Leu        | Ile        | Pro        | Ser        | Leu<br>470 | Glu        | Gln        | Ala        | Arg        | Trp<br>475 | Val        | Glu        | Val        | Leu        | Gly<br>480 |
| Phe        | Ser        | Glu        | Ser        | Ser<br>485 | Arg        | Lys        | Glu        | Tyr        | Phe<br>490 | Tyr        | Arg        | Tyr        | Phe        | Thr<br>495 | Asp        |
| Glu        | Arg        | Gln        | Ala<br>500 | Ile        | Arg        | Ala        | Phe        | Arg<br>505 | Leu        | Val        | Lys        | Ser        | Asn<br>510 | Lys        | Glu        |
| Leu        | Trp        | Ala<br>515 | Leu        | Cys        | Leu        | Val        | Pro<br>520 | Trp        | Val        | Ser        | Trp        | Leu<br>525 | Ala        | Сув        | Thr        |
| Cys        | Leu<br>530 | Met        | Gln        | Gln        | Met        | Lys<br>535 | Arg        | Lys        | Glu        | Lys        | Leu<br>540 | Thr        | Leu        | Thr        | Ser        |
| Lys<br>545 | Thr        | Thr        | Thr        | Thr        | Leu<br>550 | Cys        | Leu        | His        | Tyr        | Leu<br>555 | Ala        | Gln        | Ala        | Leu        | Gln<br>560 |
| Ala        | Gln        | Pro        | Leu        | Gly<br>565 | Pro        | Gln        | Leu        | Arg        | Asp<br>570 | Leu        | Cys        | Ser        | Leu        | Ala<br>575 | Ala        |
| Glu        | Gly        | Ile        | Trp<br>580 | Gln        | Lys        | Lys        | Thr        | Leu<br>585 | Phe        | Ser        | Pro        | Asp        | Asp<br>590 | Leu        | Arg        |

Lys His Gly Leu Asp Gly Ala Ile Ile Ser Thr Phe Leu Lys Met Gly Ile Leu Gln Glu His Pro Ile Pro Leu Ser Tyr Ser Phe Ile His Leu Cys Phe Gln Glu Phe Phe Ala Ala Met Ser Tyr Val Leu Glu Asp Glu Lys Gly Arg Gly Lys His Ser Asn Cys Ile Ile Asp Leu Glu Lys Thr Leu Glu Ala Tyr Gly Ile His Gly Leu Phe Gly Ala Ser Thr Thr Arg Phe Leu Leu Gly Leu Leu Ser Asp Glu Gly Glu Arg Glu Met Glu Asn Ile Phe His Cys Arg Leu Ser Gln Gly Arg Asn Leu Met Gln Trp Val Pro Ser Leu Gln Leu Leu Gln Pro His Ser Leu Glu Ser Leu His Cys Leu Tyr Glu Thr Arg Asn Lys Thr Phe Leu Thr Gln Val Met Ala His Phe Glu Glu Met Gly Met Cys Val Glu Thr Asp Met Glu Leu Leu Val Cys Thr Phe Cys Ile Lys Phe Ser Arg His Val Lys Lys Leu Gln Leu Ile Glu Gly Arg Gln His Arg Ser Thr Trp Ser Pro Thr Met Val Val Leu Phe Arg Trp Val Pro Val Thr Asp Ala Tyr Trp Gln Ile Leu 

Phe Ser Val Leu Lys Val Thr Arg Asn Leu Lys Glu Leu Asp Leu Ser 805 810 815

Gly Asn Ser Leu Ser His Ser Ala Val Lys Ser Leu Cys Lys Thr Leu 820 825 830

Arg Arg Pro Arg Cys Leu Leu Glu Thr Leu Arg Leu Ala Gly Cys Gly 835 \$840\$

- Leu Thr Ala Glu Asp Cys Lys Asp Leu Ala Phe Gly Leu Arg Ala Asn 850 855 860
- Gln Thr Leu Thr Glu Leu Asp Leu Ser Phe Asn Val Leu Thr Asp Ala 865 870 875 880
- Gln Arg Leu Gln Leu Val Ser Cys Gly Leu Thr Ser Asp Cys Cys Gln  $900 \hspace{1.5cm} 905 \hspace{1.5cm} 910 \hspace{1.5cm}$
- Asp Leu Ala Ser Val Leu Ser Ala Ser Pro Ser Leu Lys Glu Leu Asp 915 920 925
- Leu Gln Gln Asn Asn Leu Asp Asp Val Gly Val Arg Leu Leu Cys Glu 930 935 940
- Gly Leu Arg His Pro Ala Cys Lys Leu Ile Arg Leu Gly Leu Asp Gln 945 950 955 960
- Thr Thr Leu Ser Asp Glu Met Arg Gln Glu Leu Arg Ala Leu Glu Gln 965 970 970
- Glu Lys Pro Gln Leu Leu Ile Phe Ser Arg Arg Lys Pro Ser Val Met 980 \$980\$
- Thr Pro Thr Glu Gly Leu Asp Thr Gly Glu Met Ser Asn Ser Thr Ser 995 1000 1005
- Ser Leu Lys Arg Gln Arg Leu Gly Ser Glu Arg Ala Ala Ser His 1010 1015 1020
- Val Ala Gln Ala Asn Leu Lys Leu Leu Asp Val Ser Lys Ile Phe 1025 1030 1035
- Pro Ile Ala Glu Ile Ala Glu Glu Ser Ser Pro Glu Val Val Pro 1040 1045 1050
- Val Glu Leu Leu Cys Val Pro Ser Pro Ala Ser Gln Gly Asp Leu 1055 1060 1065
- His Thr Lys Pro Leu Gly Thr Asp Asp Asp Phe Trp Gly Pro Thr

| 1070 | 1075 | 1080 |
|------|------|------|
|      |      |      |

Gly Pro Val Ala Thr Glu Val Val Asp Lys Glu Lys Asn Leu Tvr Arg Val His Phe Pro Val Ala Gly Ser Tyr Arg Trp Pro Asn Thr Gly Leu Cys Phe Val Met Arg Glu Ala Val Thr Val Glu Ile Glu Phe Cys Val Trp Asp Gln Phe Leu Gly Glu Ile Asn Pro Gln His Ser Trp Met Val Ala Gly Pro Leu Leu Asp Ile Lys Ala Glu Pro Gly Ala Val Glu Ala Val His Leu Pro His Phe Val Ala Leu Gln Gly Gly His Val Asp Thr Ser Leu Phe Gln Met Ala His Phe Lys Glu Glu Gly Met Leu Leu Glu Lys Pro Ala Arg Val Glu Leu His His Ile Val Leu Glu Asn Pro Ser Phe Ser Pro Leu Gly Val Leu Leu Lys Met Ile His Asn Ala Leu Arg Phe Ile Pro Val Thr Ser Val Val Leu Leu Tyr His Arg Val His Pro Glu Glu Val Thr Phe His Leu Tyr Leu Ile Pro Ser Asp Cys Ser Ile Arg Lys Glu Leu Glu Leu Cys Tyr Arg Ser Pro Gly Glu Asp Gln Leu Phe Ser Glu Phe Tyr Val Gly His Leu Gly Ser Gly Ile Arg Leu Gln Val Lys 

Asp Lys Lys Asp Glu Thr Leu Val Trp Glu Ala Leu Val Lys Pro 

Gly Asp Leu Met Pro Ala Thr Thr Leu Ile Pro Pro Ala Arg Ile 1310 1315 1320

- Ala Val Pro Ser Pro Leu Asp Ala Pro Gln Leu Leu His Phe Val 1325 1330 1335
- Asp Gln Tyr Arg Glu Gln Leu Ile Ala Arg Val Thr Ser Val Glu 1340 1345 1350
- Val Val Leu Asp Lys Leu His Gly Gln Val Leu Ser Gln Glu Gln 1355 1360 1365
- Tyr Glu Arg Val Leu Ala Glu Asn Thr Arg Pro Ser Gln Met Arg 1370 1375 1380
- Lys Leu Phe Ser Leu Ser Gln Ser Trp Asp Arg Lys Cys Lys Asp 1385 1390 1395
- Gly Leu Tyr Gln Ala Leu Lys Glu Thr His Pro His Leu Ile Met 1400 1405 1410
- Glu Leu Trp Glu Lys Gly Ser Lys Lys Gly Leu Leu Pro Leu Ser 1415 1420

Ser

- <210> 2622
- <211> 179
- <212> PRT
- <213> Homo sapiens
- <400> 2622
- Met Ala Ala Leu Gln Lys Ser Val Ser Ser Phe Leu Met Gly Thr Leu  $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$
- Ala Thr Ser Cys Leu Leu Leu Leu Leu Leu Leu Val Gln Gly Gly Ala 20 \$25\$
- Ala Ala Pro Ile Ser Ser His Cys Arg Leu Asp Lys Ser Asn Phe Gln 35 40 45
- Gln Pro Tyr Ile Thr Asn Arg Thr Phe Met Leu Ala Lys Glu Ala Ser  $50 \hspace{1cm} 55 \hspace{1cm} 60$

Leu Ala Asp Asn Asn Thr Asp Val Arg Leu Ile Gly Glu Lys Leu Phe 65 70 75 80

His Gly Val Ser Met Ser Glu Arg Cys Tyr Leu Met Lys Gln Val Leu 85 90 95

Asn Phe Thr Leu Glu Glu Val Leu Phe Pro Gln Ser Asp Arg Phe Gln 100 105 110

Pro Tyr Met Gln Glu Val Val Pro Phe Leu Ala Arg Leu Ser Asn Arg 115 120 125

Leu Ser Thr Cys His Ile Glu Gly Asp Asp Leu His Ile Gln Arg Asn 130 135 140

Val Gln Lys Leu Lys Asp Thr Val Lys Lys Leu Gly Glu Ser Gly Glu 145 150 150 160

Ile Lys Ala Ile Gly Glu Leu Asp Leu Leu Phe Met Ser Leu Asp Asn 165 170 175

Ala Cys Ile

<210> 2623

<211> 261

<212> PRT <213> Homo sapiens

<400> 2623

Met Ser Arg Arg Tyr Asp Ser Arg Thr Thr Ile Phe Ser Pro Glu Gly
1 5 10 15

Arg Leu Tyr Gln Val Glu Tyr Ala Met Glu Ala Ile Gly His Ala Gly 20 25 30

Thr Cys Leu Gly Ile Leu Ala Asn Asp Gly Val Leu Leu Ala Ala Glu  $35 \ \ 40 \ \ 45$ 

Arg Arg Asn Ile His Lys Leu Leu Asp Glu Val Phe Phe Ser Glu Lys 50 60

Ile Tyr Lys Leu Asn Glu Asp Met Ala Cys Ser Val Ala Gly Ile Thr 65 70 75 80

Ser Asp Ala Asn Val Leu Thr Asn Glu Leu Arg Leu Ile Ala Gln Arg 85 90 95

Tyr Leu Leu Gln Tyr Gln Glu Pro Ile Pro Cys Glu Gln Leu Val Thr Ala Leu Cys Asp Ile Lys Gln Ala Tyr Thr Gln Phe Gly Gly Lys Arg Pro Phe Gly Val Ser Leu Leu Tyr Ile Gly Trp Asp Lys His Tyr Gly Phe Gln Leu Tyr Gln Ser Asp Pro Ser Gly Asn Tyr Gly Gly Trp Lys Ala Thr Cys Ile Gly Asn Asn Ser Ala Ala Ala Val Ser Met Leu Lys Gln Asp Tyr Lys Glu Gly Glu Met Thr Leu Lys Ser Ala Leu Ala Leu Ala Ile Lys Val Leu Asn Lys Thr Met Asp Val Ser Lys Leu Ser Ala Glu Lys Val Glu Ile Ala Thr Leu Thr Arg Glu Asn Gly Lys Thr Val Ile Arq Val Leu Lys Gln Lys Glu Val Glu Gln Leu Ile Lys Lys His Glu Glu Glu Glu Ala Lys Ala Glu Arq Glu Lys Lys Glu Lys Glu Gln Lys Glu Lys Asp Lys <210> 2624 <211> 377 <212> PRT <213> Homo sapiens <400> 2624 Met Lys Phe Pro Gly Pro Leu Glu Asn Gln Arg Leu Ser Phe Leu Leu 

Glu Lys Ala Ile Thr Arg Glu Ala Gln Met Trp Lys Val Asn Val Arg 20 25 30

- Ile Gln Trp Leu Ala Lys Leu Lys Tyr Gln Phe Asn Leu Tyr Pro Glu 50 55 60
- Lys Ala His Pro Lys Tyr Leu Ser Cys Ile Ala Ile Ser Cys Phe Phe 85 90 95
- Leu Ala Ala Lys Thr Val Glu Glu Asp Glu Arg Ile Pro Val Leu Lys 100 105 110
- Val Leu Ala Arg Asp Ser Phe Cys Gly Cys Ser Ser Ser Glu Ile Leu 115 120 125
- Arg Met Glu Arg Ile Ile Leu Asp Lys Leu Asn Trp Asp Leu His Thr 130 140
- Ala Thr Pro Leu Asp Phe Leu His Ile Phe His Ala Ile Ala Val Ser 145 \$150\$ 155 \$160\$
- Thr Arg Pro Gln Leu Leu Phe Ser Leu Pro Lys Leu Ser Pro Ser Gln 165 170 175
- His Leu Ala Val Leu Thr Lys Gln Leu Leu His Cys Met Ala Cys Asn 180 185 190
- Gln Leu Leu Gln Phe Arg Gly Ser Met Leu Ala Leu Ala Met Val Ser 195 200 205
- Leu Glu Met Glu Lys Leu Ile Pro Asp Trp Leu Ser Leu Thr Ile Glu 210 215 220
- Leu Leu Gln Lys Ala Gln Met Asp Ser Ser Gln Leu Ile His Cys Arg 225 230 230 235
- Glu Leu Val Ala His His Leu Ser Thr Leu Gln Ser Ser Leu Pro Leu 245 250 250
- As Ser Val Tyr Val Tyr Arg Pro Leu Lys His Thr Leu Val Thr Cys 260 265 270
- Asp Lys Gly Val Phe Arg Leu His Pro Ser Ser Val Pro Gly Pro Asp

280 285 275

Phe Ser Lys Asp Asn Ser Lys Pro Glu Val Pro Val Arg Gly Thr Ala 295

Ala Phe Tyr His His Leu Pro Ala Ala Ser Gly Cys Lys Gln Thr Ser 310 315

Thr Lys Arg Lys Val Glu Glu Met Glu Val Asp Asp Phe Tyr Asp Gly 325

Ile Lys Arg Leu Tyr Asn Glu Asp Asn Val Ser Glu Asn Val Gly Ser 340 345

Val Cys Gly Thr Asp Leu Ser Arg Gln Glu Gly His Ala Ser Pro Cys 355 360

Pro Pro Leu Gln Pro Val Ser Val Met 370

<210> 2625

<211> 575

<212> PRT <213> Homo sapiens

<400> 2625

Met Leu Gly Val Leu Val Leu Gly Ala Leu Ala Leu Ala Gly Leu Gly 5 10 15

Phe Pro Ala Pro Ala Glu Pro Gln Pro Gly Gly Ser Gln Cys Val Glu

His Asp Cys Phe Ala Leu Tyr Pro Gly Pro Ala Thr Phe Leu Asn Ala 40

Ser Gln Ile Cys Asp Gly Leu Arg Gly His Leu Met Thr Val Arg Ser

Ser Val Ala Ala Asp Val Ile Ser Leu Leu Leu Asn Gly Asp Gly Gly 65 75

Val Gly Arg Arg Arg Leu Trp Ile Gly Leu Gln Leu Pro Pro Gly Cys 85

Gly Asp Pro Lys Arg Leu Gly Pro Leu Arg Gly Phe Gln Trp Val Thr 100 105 110

|            |            | .004,0     | 42540      | ,          |            |            |            |            |            |            |            |            |            |            | 1 ( 1)     |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly        | Asp        | Asn<br>115 |            | Thr        | Ser        | Tyr        | Ser<br>120 | Arg        | Trp        | Ala        | Arg        | Leu<br>125 |            | Leu        | Asn        |
| Gly        | Ala<br>130 | Pro        | Leu        | Cys        | Gly        | Pro<br>135 | Leu        | Cys        | Val        | Ala        | Val<br>140 | Ser        | Ala        | Ala        | Glu        |
| Ala<br>145 | Thr        | Val        | Pro        | Ser        | Glu<br>150 | Pro        | Ile        | Trp        | Glu        | Glu<br>155 | Gln        | Gln        | Cys        | Glu        | Val<br>160 |
| Lys        | Ala        | Asp        | Gly        | Phe<br>165 | Leu        | Cys        | Glu        | Phe        | His<br>170 |            | Pro        | Ala        | Thr        | Cys<br>175 | Arg        |
| Pro        | Leu        | Ala        | Val<br>180 | Glu        | Pro        | Gly        | Ala        | Ala<br>185 | Ala        | Ala        | Ala        | Val        | Ser<br>190 | Ile        | Thr        |
| Tyr        | Gly        | Thr<br>195 | Pro        | Phe        | Ala        | Ala        | Arg<br>200 | Gly        | Ala        | Asp        | Phe        | Gln<br>205 | Ala        | Leu        | Pro        |
| Val        | Gly<br>210 | Ser        | Ser        | Ala        | Ala        | Val<br>215 | Ala        | Pro        | Leu        | Gly        | Leu<br>220 | Gln        | Leu        | Met        | Cys        |
| Thr<br>225 | Ala        | Pro        | Pro        | Gly        | Ala<br>230 | Val        | Gln        | Gly        | His        | Trp<br>235 | Ala        | Arg        | Glu        | Ala        | Pro<br>240 |
| Gly        | Ala        | Trp        | Asp        | Cys<br>245 | Ser        | Val        | Glu        | Asn        | Gly<br>250 | Gly        | Cys        | Glu        | His        | Ala<br>255 | Сув        |
| Asn        | Ala        | Ile        | Pro<br>260 | Gly        | Ala        | Pro        | Arg        | Cys<br>265 | Gln        | Cys        | Pro        | Ala        | Gly<br>270 | Ala        | Ala        |
| Leu        | Gln        | Ala<br>275 | Asp        | Gly        | Arg        | Ser        | Cys<br>280 | Thr        | Ala        | Ser        | Ala        | Thr<br>285 | Gln        | Ser        | Cys        |
| Asn        | Asp<br>290 | Leu        | Cys        | Glu        | His        | Phe<br>295 | Cys        | Val        | Pro        | Asn        | Pro<br>300 | Asp        | Gln        | Pro        | Gly        |
| a          | m          |            | ~          |            | _          |            | _,         |            | _          |            |            | _          |            |            |            |

Ser Tyr Ser Cys Met Cys Glu Thr Gly Tyr Arg Leu Ala Ala Asp Gln 305 310 315

His Arg Cys Glu Asp Val Asp Asp Cys Ile Leu Glu Pro Ser Pro Cys 

Pro Gln Arg Cys Val Asn Thr Gln Gly Gly Phe Glu Cys His Cys Tyr 

Pro Asn Tyr Asp Leu Val Asp Gly Glu Cys Val Glu Pro Val Asp Pro Cys Phe Arg Ala Asn Cys Glu Tyr Gln Cys Gln Pro Leu Asn Gln Thr Ser Tyr Leu Cys Val Cys Ala Glu Gly Phe Ala Pro Ile Pro His Glu Pro His Arg Cys Gln Met Phe Cys Asn Gln Thr Ala Cys Pro Ala Asp Cvs Asp Pro Asn Thr Gln Ala Ser Cvs Glu Cvs Pro Glu Glv Tvr Ile Leu Asp Asp Glv Phe Ile Cvs Thr Asp Ile Asp Glu Cvs Glu Asp Glv Gly Phe Cys Ser Gly Val Cys His Asn Leu Pro Gly Thr Phe Glu Cys 

Ile Cys Gly Pro Asp Ser Ala Leu Ala Arg His Ile Gly Thr Asp Cys 

Asp Ser Gly Lys Val Asp Gly Gly Asp Ser Gly Ser Gly Glu Pro Pro 

Pro Ser Pro Thr Pro Gly Ser Thr Leu Thr Pro Pro Ala Val Gly Leu 

Val His Ser Glv Leu Leu Ile Glv Ile Ser Ile Ala Ser Leu Cvs Leu 

Val Val Ala Leu Leu Ala Leu Leu Cys His Leu Arg Lys Lys Gln Gly 

Ala Ala Arg Ala Lys Met Glu Tyr Lys Cys Ala Ala Pro Ser Lys Glu 

Val Val Leu Gln His Val Arg Thr Glu Arg Thr Pro Gln Arg Leu 

<210> 2626

<211> 332

<212> PRT

<213> Homo sapiens

<400> 2626

Met Ala Ala Val Phe Leu Val Thr Leu Tyr Glu Tyr Ser Pro Leu Phe 1 5 10 15

Tyr Ile Ala Val Val Phe Thr Cys Phe Ile Val Thr Thr Gly Leu Val 20 25 30

Leu Gly Trp Phe Gly Trp Asp Val Pro Val Ile Leu Arg Asn Ser Glu 35 40 45

Glu Thr Gln Phe Ser Thr Arg Val Phe Lys Lys Gln Met Arg Gln Val 50  $\,$  55  $\,$  60  $\,$ 

Lys Asn Pro Phe Gly Leu Glu Ile Thr Asn Pro Ser Ser Ala Ser Ile 65 70 75 80

Thr Thr Gly Ile Thr Leu Thr Thr Asp Cys Leu Glu Asp Ser Leu Leu . 85 90 95

Thr Cys Tyr Trp Gly Cys Ser Val Gln Lys Leu Tyr Glu Ala Leu Gln 100 105 110

Lys His Val Tyr Cys Phe Arg Ile Ser Thr Pro Gln Ala Leu Glu Asp 115 \$120\$

Ala Leu Tyr Ser Glu Tyr Leu Tyr Gln Glu Gln Tyr Phe Ile Lys Lys 130 135 140

Asp Ser Lys Glu Glu Ile Tyr Cys Gln Leu Pro Arg Asp Thr Lys Ile 145 150 155 160

Glu Asp Phe Gly Thr Val Pro Arg Ser Arg Tyr Pro Leu Val Ala Leu 165  $$170\$ 

Leu Thr Leu Ala Asp Glu Asp Asp Arg Glu Ile Tyr Asp Ile Ile Ser 180 185 190

Met Val Ser Val Ile His Ile Pro Asp Arg Thr Tyr Lys Leu Ser Cys 195 200 205

Arg Ile Leu Tyr Gln Tyr Leu Leu Leu Ala Gln Gly Gln Phe His Asp 210 215 220

Leu Lys Gln Leu Phe Met Ser Ala Asn Asn Asn Phe Thr Pro Ser Asn 225 230 235 240

| Asn                          | Ser          | Ser                       | Ser        | Glu<br>245 | Glu        | Lys        | Asn        | Thr        | Asp<br>250 | Arg        | Ser        | Leu        | Leu        | Glu<br>255 | Lys        |    |
|------------------------------|--------------|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
| Val                          | Gly          | Leu                       | Ser<br>260 | Glu        | Ser        | Glu        | Val        | Glu<br>265 | Pro        | Ser        | Glu        | Glu        | Asn<br>270 | Ser        | Lys        |    |
| Asp                          | Сув          | Val<br>275                | Val        | Cys        | Gln        | Asn        | Gly<br>280 | Thr        | Val        | Asn        | Trp        | Val<br>285 | Leu        | Leu        | Pro        |    |
| Cys                          | Arg<br>290   | His                       | Thr        | Сув        | Leu        | Сув<br>295 | Asp        | Gly        | Cys        | Val        | Lys<br>300 | Tyr        | Phe        | Gln        | Gln        |    |
| Cys<br>305                   | Pro          | Met                       | Cys        | Arg        | Gln<br>310 | Phe        | Val        | Gln        | Glu        | Ser<br>315 | Phe        | Ala        | Leu        | Cys        | Ser<br>320 |    |
| Gln                          | Lys          | Glu                       | Gln        | Asp<br>325 | Lys        | Asp        | Lys        | Pro        | Lys<br>330 | Thr        | Leu        |            |            |            |            |    |
| <210<br><211<br><212<br><213 | <br>         | 2627<br>50<br>DNA<br>Homo | sap.       | iens       |            |            |            |            |            |            |            |            |            |            |            |    |
| <400<br>agag                 |              | 2627<br>ttg               | caga       | geet       | gg ga      | acaa       | cctc       | : tt       | attga      | aagg       | gaa        | gagg       | gac        |            |            | 50 |
| <210<br><211<br><212<br><213 | L> !<br>!> ! | 2628<br>50<br>DNA<br>Homo | sap        | iens       |            |            |            |            |            |            |            |            |            |            |            |    |
| <400                         |              | 2628                      |            |            |            |            |            |            |            |            |            |            |            |            |            |    |
| taag                         | ggag         | tgt                       | tgga       | gata       | tg t       | gatt       | tggc       | t ag       | tgct       | attt       | aaa        | gaca       | ccc        |            |            | 50 |
| <210<br><211<br><212<br><213 | L> !<br>2> 1 | 2629<br>50<br>DNA<br>Homo | sap        | iens       |            |            |            |            |            |            |            |            |            |            |            |    |
| <400                         |              | 2629                      |            |            |            |            |            |            |            |            |            |            |            |            |            |    |
| gcca                         | aaga         | caa                       | taag       | ctag       | gc ta      | actg       | ggtc       | c ag       | ctac       | tact       | ttg        | gtgg       | gat        |            |            | 50 |
| <210<br><211<br><212<br><213 | l> !<br>2> ! | 2630<br>50<br>DNA<br>Homo | sap        | iens       |            |            |            |            |            |            |            |            |            |            |            |    |
| <400                         |              | 2630                      | race       | tata       | tt gi      | ttcs       | cett       | - ac       | atros      | racc       | ac.        | taat       | ata        |            |            | 50 |
| geac                         | ~~39         | cca                       | ·ucc       | cycc       | ee g       | ccca       |            | 9 99       | uegai      | Sec        | gca        | cgac.      | ~~9        |            |            | 50 |

| <210>                                       | > 2631                                                                                              |                        |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------|
| <211>                                       | > 50                                                                                                |                        |
| <212>                                       | > DNA                                                                                               |                        |
| <213>                                       | > Homo sapiens                                                                                      |                        |
|                                             |                                                                                                     |                        |
| <400>                                       | > 2631                                                                                              |                        |
|                                             | agagat tgcctgtggc tctaatatgc acctcaagat tt                                                          | taaggaga ro            |
| cgccag                                      | agagat tycotycygo totaatatyc accicaagat ti                                                          | taaggaga 50            |
|                                             |                                                                                                     |                        |
|                                             | 0.000                                                                                               |                        |
| <210>                                       |                                                                                                     |                        |
| <211>                                       |                                                                                                     |                        |
| <212>                                       |                                                                                                     |                        |
| <213>                                       | > Homo sapiens                                                                                      |                        |
|                                             |                                                                                                     |                        |
|                                             | > 2632                                                                                              |                        |
| ctttgc                                      | goctaa accetatgge etectgtgea tetgtactea ee                                                          | ctgtacca 50            |
|                                             |                                                                                                     | •                      |
|                                             |                                                                                                     |                        |
| <210>                                       | > 2633                                                                                              |                        |
| <211>                                       | > 50                                                                                                |                        |
| <212>                                       |                                                                                                     |                        |
|                                             | > Homo sapiens                                                                                      |                        |
| (213)                                       | Nomo saprens                                                                                        |                        |
| -100-                                       | > 2633                                                                                              |                        |
|                                             |                                                                                                     |                        |
| accttg                                      | tgggtt gagtaatget egtetgtgtg ttttagttte at                                                          | cacctgtt 50            |
|                                             |                                                                                                     |                        |
|                                             |                                                                                                     |                        |
| <210>                                       |                                                                                                     |                        |
| <211>                                       | > 70                                                                                                |                        |
| <212>                                       | > DNA                                                                                               |                        |
| <213>                                       | > Homo sapiens                                                                                      |                        |
|                                             |                                                                                                     |                        |
| <400>                                       | > 2634                                                                                              |                        |
| atttat                                      | atatta gtttagccaa aggataagtg teetatgggg at                                                          | ggtccact gtcactgttt 60 |
|                                             | Seerngeena aggaeaageg coccacgggg ac                                                                 | ggcccacc gccaccgccc 60 |
| ctctgc                                      | actatt                                                                                              | 70                     |
|                                             | ,00300                                                                                              | 70                     |
|                                             |                                                                                                     |                        |
| -210>                                       | > 2635                                                                                              |                        |
|                                             |                                                                                                     |                        |
| <211>                                       |                                                                                                     |                        |
| <212>                                       |                                                                                                     |                        |
| <213>                                       | Homo sapiens                                                                                        |                        |
|                                             |                                                                                                     |                        |
|                                             |                                                                                                     |                        |
| cccatg                                      | gtaag caccettea tttggcatte cecaettgag aa                                                            |                        |
|                                             |                                                                                                     | ttaccctt 50            |
|                                             |                                                                                                     | ttaccctt 50            |
|                                             |                                                                                                     | ttaccett 50            |
| <210>                                       | ▶ 2636                                                                                              | ttaccett 50            |
| <210><br><211>                              |                                                                                                     | ittaccett 50           |
| <211>                                       | > 50                                                                                                | Etaccett 50            |
| <211><br><212>                              | > 50<br>> DNA                                                                                       | ttaccctt 50            |
| <211><br><212>                              | > 50                                                                                                | ttaccett 50            |
| <211><br><212><br><213>                     | > 50<br>> DNA<br>> Homo sapiens                                                                     | ttaccett 50            |
| <211><br><212><br><213>                     | > 50<br>- DNA<br>- Homo sapiens<br>- 2636                                                           |                        |
| <211><br><212><br><213>                     | > 50<br>> DNA<br>> Homo sapiens                                                                     |                        |
| <211><br><212><br><213>                     | > 50<br>- DNA<br>- Homo sapiens<br>- 2636                                                           |                        |
| <211><br><212><br><213><br><400><br>tggaccs | > 50  DNA  Homo sapiens  2636  cegtaa tgaatgaatg tacaegecat aaaegecett tg                           |                        |
| <211><br><212><br><213><br><400><br>tggaccs | > 50 > DNA > DNA > Homo sapiens > 2636 cccgtaa tgaatgaatg tacacgccat aaacgccctt tg                  |                        |
| <211><br><212><br><213><br><400><br>tggaccg | > 50  DNA Homo sapiens  2636 ccgtaa tgaatgaatg tacacgccat aaacgccctt tg  2637                       |                        |
| <211><br><212><br><213><br><400><br>tggaccs | > 50 > DNA > DNA > Homo sapiens > 2636 cegtaa tgaatgaatg tacaegceat aaaegeeett tg > 2637 > 50 > DNA |                        |

| <400><br>tttcaa | 2637<br>Igaca gaaagtgacg ( | cagagaacct | cccggccca  | gtetegaege | 50  |
|-----------------|----------------------------|------------|------------|------------|-----|
| .210-           | 2638                       |            |            |            |     |
| <210><br><211>  |                            |            |            |            |     |
| <211>           | DNA                        |            |            |            |     |
|                 |                            |            |            |            |     |
| <213>           | Homo sapiens               |            |            |            |     |
| <400>           |                            |            |            |            |     |
| tgcac           | aaac agttgcccca            | aaagacatat | cttgttttaa | ggcccagacc | 50  |
|                 |                            |            |            |            |     |
| <210>           |                            |            |            |            |     |
| <211>           | 50                         |            |            |            |     |
| <212>           |                            |            |            |            |     |
| <213>           | Homo sapiens               |            |            |            |     |
| <400>           | 2639                       |            |            |            |     |
| gggta           | gcag cttgcaccca            | gttctccttt | atctcaactt | attttcctgg | 50  |
|                 |                            |            |            |            |     |
| <210>           | 2640                       |            |            |            |     |
| <211>           | 50                         |            |            |            |     |
| <212>           |                            |            |            |            |     |
| <213>           | Homo sapiens               |            |            |            |     |
| <400>           | 2640                       |            |            |            |     |
|                 | ccag tecteatgta            | acctcaggta | tetteagett | gtggagaata | 50  |
| ccaas           | ,coug cooccasjea           |            | Socioni    | 2033434404 |     |
| .010:           | 2641                       |            |            |            |     |
| <210><br><211>  |                            |            |            |            |     |
|                 |                            |            |            |            |     |
| <212>           |                            |            |            |            |     |
| <213>           | Homo sapiens               |            |            |            |     |
| <400>           | 2641                       |            |            |            |     |
| tgatt           | tgca acttaggatg            | tttttgagtc | ccatggttca | ttttgattgt | 50  |
|                 |                            |            |            |            |     |
| <210>           | 2642                       |            |            |            |     |
| <211>           |                            |            |            |            |     |
| <212>           |                            |            |            |            |     |
| <213>           | Homo sapiens               |            |            |            |     |
| <400>           | 2642                       |            |            |            |     |
|                 | gcgat ctctcacatg           | atggggttct | ttagtacatg | qtaacaqcca | 50  |
| -               |                            | 5555       | , ,        | -          |     |
| <210>           | 2643                       |            |            |            |     |
| <211>           |                            |            |            |            |     |
| <212>           |                            |            |            |            |     |
|                 | Homo sapiens               |            |            |            |     |
|                 |                            |            |            |            |     |
|                 | 2643                       |            |            |            | F.C |
| rarre           | cgtaa attaaatagg           | Leeggeedag | aagacccact | caaccgcctt | 50  |
|                 |                            |            |            |            |     |
| <210>           |                            |            |            |            |     |
| <211>           | 50                         |            |            |            |     |
| <212>           | DNA                        |            |            |            |     |

1097

| <213>          | Homo sapiens                                     |    |
|----------------|--------------------------------------------------|----|
| <400>          | 2644                                             |    |
|                | taag tgcctaagaa atgagactac aagctccatt tcagcaggac |    |
|                | ogooomagaa acgagactac aageeccaet ecageaggae      | 50 |
| <210>          | 2645                                             |    |
| <211>          | 50                                               |    |
| <212>          |                                                  |    |
| <213>          | Homo sapiens                                     |    |
| <400>          |                                                  |    |
| acaggg         | cctc agcaagggag ccatacattt ttgtaacatt ttgatatgtt | 50 |
|                |                                                  |    |
| <210>          |                                                  |    |
| <211>          |                                                  |    |
| <212><br><213> |                                                  |    |
| (213)          | Homo sapiens                                     |    |
| <400>          |                                                  |    |
| acaacc         | aacc agtttetttt etagecaate atetetgaag agttgetgtt | 50 |
|                |                                                  |    |
| <210>          |                                                  |    |
| <211>          |                                                  |    |
| <212>          |                                                  |    |
| <213>          | Homo sapiens                                     |    |
| <400>          |                                                  |    |
| cacacc         | tgca cactcacggc tgaaatctcc ctaacccagg gggaccttag | 50 |
|                |                                                  |    |
| <210>          | 2648                                             |    |
| <211>          |                                                  |    |
| <212>          |                                                  |    |
| <213>          | Homo sapiens                                     |    |
| <400>          |                                                  |    |
| catcct         | cagg tggtcaggcg tagatcacca gaataaaccc agcttccctc | 50 |
|                |                                                  |    |
| <210>          |                                                  |    |
| <211>          |                                                  |    |
| <212>          |                                                  |    |
| <213>          | Homo sapiens                                     |    |
|                | 2649                                             |    |
| gggagt         | ttg tgactgaaat gcttgaaacc aaagcttcag ataaacttgc  | 50 |
|                |                                                  |    |
| <210>          | 2650                                             |    |
| <211>          | 50                                               |    |
| <212>          |                                                  |    |
| <213>          | Homo sapiens                                     |    |
| <400>          | 2650                                             |    |
| ctctcct        | cag actgeteaag agaageacat gaaaaceatt acetgaettt  | 50 |
|                |                                                  |    |

<210> 2651

| <211><br><212><br><213> | 50<br>DNA<br>Homo sapiens |            |            |            |    |
|-------------------------|---------------------------|------------|------------|------------|----|
| <400><br>atccag         | 2651<br>ccc acccaatggc    | cttttgtgct | tgtttcctat | aacttcagta | 50 |
|                         |                           |            |            |            |    |
| <210><br><211>          | 2652<br>50                |            |            |            |    |
| <212><br><213>          | DNA<br>Homo sapiens       |            |            |            |    |
| <400>                   |                           |            |            |            |    |
| tttaca                  | agaa ttgtccatgt           | getteeetag | gctgagctgg | cattggtetg | 50 |
| <210><br><211>          | 2653<br>50                |            |            |            |    |
| <212>                   | DNA                       |            |            |            |    |
|                         | Homo sapiens              |            |            |            |    |
| <400>                   | 2653<br>gact tgaggagggc   | ttgaggttgg | taaaattaaa | tacatatttc | 50 |
| caegga                  | gace egaggaggge           | cegaggeegg | 0909522099 | 290303000  | •  |
| <210><br><211>          | 2654<br>50                |            |            |            |    |
| <211>                   |                           |            |            |            |    |
| <213>                   | Homo sapiens              |            |            |            |    |
| <400>                   |                           |            |            |            |    |
| tgtctg                  | tttt aatcatgtat           | ctggaatagg | gtcgggaagg | gtttgtgcta | 50 |
| <210>                   |                           |            |            |            |    |
| <211>                   |                           |            |            |            |    |
| <212><br><213>          | Homo sapiens              |            |            |            |    |
| <400>                   | 2655<br>ttac atgataaaaa   | asstatast  | ttatattaca | ttetttacae | 50 |
| ucaagt                  | couc acyacadada           | guaacgegat |            |            | 50 |
| <210><br><211>          | 2656<br>50                |            |            |            |    |
| <211>                   |                           |            |            |            |    |
|                         | Homo sapiens              |            |            |            |    |
| <400>                   | 2656<br>acac atcacaccca   | tttaaaaata | atottoagaa | ccttttcaaa | 50 |
| ⊶aaaat.                 | acac accacacca            | cccaaaagtg | accegagaa  |            |    |
| <210>                   | 2657                      |            |            |            |    |
| <211><br><212>          |                           |            |            |            |    |
|                         | Homo sapiens              |            |            |            |    |
| <400>                   |                           |            |            |            |    |
| tgtgtg                  | ttga tcccaagaca           | atgaaagttt | gcactgtatg | ctggacggca | 50 |

| <210>   | 2658            |            |            |            |    |
|---------|-----------------|------------|------------|------------|----|
| <211>   |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <212>   |                 |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   |                 |            |            |            |    |
| acctage | gga caatgatgga  | gagatctatg | atgatattgc | tgatggctgc | 50 |
| -       |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <210>   | 2659            |            |            |            |    |
|         | 50              |            |            |            |    |
|         |                 |            |            |            |    |
| <212>   |                 |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   |                 |            |            |            |    |
| gcaatc  | caca atctgacatt | ctcaggaagc | ccccaagttg | atatttctat | 50 |
|         |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <210>   | 2660            |            |            |            |    |
| <211>   |                 |            |            |            |    |
| <212>   |                 |            |            |            |    |
|         | Homo sapiens    |            |            |            |    |
| (213)   | nomo saprens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   |                 |            |            |            |    |
| gcctcc  | aacc atgttccctt | cttcttagca | ccacaaataa | tcaaaaccca | 50 |
|         |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <210>   | 2661            |            |            |            |    |
| <211>   | 50              |            |            |            |    |
| <212>   |                 |            |            |            |    |
|         | Homo sapiens    |            |            |            |    |
| 12137   | nomo bapieno    |            |            |            |    |
| <400>   | 2661            |            |            |            |    |
|         |                 |            |            |            | 50 |
| ggcaga  | gaag gaggagtatg | agcatcagaa | gagggagetg | gagcaaatct | 50 |
|         |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <210>   | 2662            |            |            |            |    |
| <211>   | 50              |            |            |            |    |
| <212>   | DNA             |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         | -               |            |            |            |    |
| <400>   | 2662            |            |            |            |    |
|         | tgtc atctaaccat | taantcatnt | otoaacacat | aaggacgtgt | 50 |
| cggaaa  | egec accedaceae | caagcoacge | gegaacacac | aaggacgcgc | 30 |
|         |                 |            |            |            |    |
| 210     | 2002            |            |            |            |    |
| <210>   |                 |            |            |            |    |
| <211>   |                 |            |            |            |    |
| <212>   |                 |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
|         |                 |            |            |            |    |
| <400>   | 2663            |            |            |            |    |
|         | taag caggaatgtc | atgttccaqt | tcattacaaa | agaaaacaat | 50 |
|         | _ 55 -5         |            |            | _          |    |
|         |                 |            |            |            |    |
| <210>   | 2664            |            |            |            |    |
| <211>   | 50              |            |            |            |    |
| <211>   |                 |            |            |            |    |
|         |                 |            |            |            |    |
| <213>   | Homo sapiens    |            |            |            |    |
| -400-   |                 |            |            |            |    |
|         |                 |            |            |            |    |

| cctctca        | igga cgtgccgggt     | ttatcattgc | tttgttattt | gtaaggactg | 50 |
|----------------|---------------------|------------|------------|------------|----|
| ***            | 2665                |            |            |            |    |
| <210><br><211> | 50                  |            |            |            |    |
|                | DNA                 |            |            |            |    |
|                | Homo sapiens        |            |            |            |    |
| <400>          | 2665                |            |            |            |    |
| cgaagaa        | agag ccacagtgag     | ggagatccca | tccccttgtc | tgaactggag | 50 |
|                |                     |            |            |            |    |
| <210>          | 2666                |            |            |            |    |
| <211>          | 50                  |            |            |            |    |
| <212>          |                     |            |            |            |    |
| <213>          | Homo sapiens        |            |            |            |    |
| <400>          | 2666                |            |            |            |    |
| ttgatga        | atgt aacttgacct     | tccagagtta | tggaaatttt | gtccccatgt | 50 |
|                |                     |            |            |            |    |
| <210>          | 2667                |            |            |            |    |
| <211>          | 50                  |            |            |            |    |
| <212>          | DNA                 |            |            |            |    |
| <213>          | Homo sapiens        |            |            |            |    |
| <400>          | 2667                |            |            |            |    |
|                | act ttgagtactg      | acatcattga | taaataaact | ggettgtggt | 50 |
|                |                     | _          |            | 35 5 55    |    |
|                |                     |            |            |            |    |
| <210><br><211> | 2668<br>50          |            |            |            |    |
| <211>          | DNA                 |            |            |            |    |
|                | Homo sapiens        |            |            |            |    |
|                | -                   |            |            |            |    |
| <400>          |                     |            |            |            |    |
| aggttt         | catc aggtggttaa     | agtcgtcaaa | gttgtaagtg | actaaccaag | 50 |
|                |                     |            |            |            |    |
| <210>          |                     |            |            |            |    |
| <211>          |                     |            |            |            |    |
| <212>          | DNA<br>Homo sapiens |            |            |            |    |
| (213)          | nomo saprens        |            |            |            |    |
| <400>          |                     |            |            |            |    |
| acctgt         | tatc ctttgtagag     | cacacagagt | taaaagttga | atatagcaat | 50 |
|                |                     |            |            |            |    |
| <210>          | 2670                |            |            |            |    |
| <211>          | 50                  |            |            |            |    |
| <212>          |                     |            |            |            |    |
| <213>          | Homo sapiens        |            |            |            |    |
| <400>          | 2670                |            |            |            |    |
|                | cccg gagccagcca     | ggcagtttta | ttgaaatctt | tttaaataat | 50 |
|                |                     |            |            |            |    |
| <210>          | 2671                |            |            |            |    |
| <211>          | 50                  |            |            |            |    |
| <212>          | DNA                 |            |            |            |    |
| <213>          | Homo sapiens        |            |            |            |    |

| <400><br>tccctaa | 2671<br>stag aaagccacct | attctttgtt | ggatttcttc | aagtttttct | 50 |
|------------------|-------------------------|------------|------------|------------|----|
| <210>            | 2672                    |            |            |            |    |
| <211>            |                         |            |            |            |    |
|                  | DNA                     |            |            |            |    |
|                  | Homo sapiens            |            |            |            |    |
| <400>            |                         |            |            |            |    |
| tgccttt          | tga gcaaataggg          | aatctaaggg | aggaaattat | caactgtgca | 50 |
|                  | 0.553                   |            |            |            |    |
|                  | 2673                    |            |            |            |    |
| <211>            | 50                      |            |            |            |    |
| <212>            |                         |            |            |            |    |
| <213>            | Homo sapiens            |            |            |            |    |
| <400>            | 2673<br>cag agggattttt  | asataaassa | gattagagtt | taataaataa | 50 |
| gagcacc          | cag agggatttt           | cagigggaag | Caccacaccc | cyctaaacca | 50 |
| <210>            | 2674                    |            |            |            |    |
| <211>            | 50                      |            |            |            |    |
| <212>            | DNA                     |            |            |            |    |
|                  | Homo sapiens            |            |            |            |    |
|                  |                         |            |            |            |    |
| <400>            | 2674                    |            |            |            |    |
| acagcto          | aag taccctaatt          | tagttctttt | ggactaatac | aattcaggaa | 50 |
|                  |                         |            |            |            |    |
| <210>            | 2675                    |            |            |            |    |
| <211>            | 50                      |            |            |            |    |
| <212>            |                         |            |            |            |    |
| <213>            | Homo sapiens            |            |            |            |    |
|                  |                         |            |            |            |    |
| <400>            | 2675                    |            |            |            |    |
| ttcctg           | cctg gattatttaa         | aaagccatgt | gtggaaaccc | actatttaat | 50 |
|                  | 0.00                    |            |            |            |    |
| <210><br><211>   | 2676<br>50              |            |            |            |    |
| <211>            |                         |            |            |            |    |
|                  |                         |            |            |            |    |
| <213>            | Homo sapiens            |            |            |            |    |
| <400>            |                         | h          |            |            | 50 |
| gcagaa           | aagg ggaactcatt         | tageteaega | gragregage | gaagattgaa | 50 |
| -210:            | 2677                    |            |            |            |    |
| <210>            | 2677                    |            |            |            |    |
| <211>            | 50                      |            |            |            |    |
| <212>            | DNA                     |            |            |            |    |
| <213>            | Homo sapiens            |            |            |            |    |
| <400>            | 2677                    |            |            |            |    |
| acagca           | aagc cccaactaat         | ctttagaagc | atattggaac | tgataactcc | 50 |
|                  |                         |            |            |            |    |
| <210>            | 2678                    |            |            |            |    |
| <211×            | 5.0                     |            |            |            |    |

1102

WO 2004/042346 PCT/US2003/012946 <212> DNA <213> Homo sapiens <400> 2678 atcctgaget geacttacet gtgagagtet teaaactttt aaacettgee 50 <210> 2679 <211> 50 <212> DNA <213> Homo sapiens <400> 2679 acagggcctc agcaagggag ccatacattt ttgtaacatt ttgatatgtt 50 <210> 2680 <211> 50 <212> DNA <213> Homo sapiens <400> 2680 acqacccatt ttqcaaqact taaaqccqqa aqaacacatt ttcaqattqt 50 <210> 2681 <211> 50 <212> DNA <213> Homo sapiens <400> 2681 aactgaacac aattttggga caacgtttaa acattacttt tcatacttga 50 <210> 2682 <211> 50 <212> DNA <213> Homo sapiens <400> 2682 50 cacgettagg gcagggatet gggaaattee agtgatetee tttagcagag <210> 2683 <211> 50 <212> DNA <213> Homo sapiens <400> 2683 agcatgtgtc tgccatttca tttgtacgct tgttcaaaac caagtttgtt 50

agcatgtgtc tgccatttca tttgtacgct tgttcaaaac caagtttgtt 50

/(2210> 2684
<2211> 50
<2212> DNA
<2213 Homo sapiens
<4400> 2684

<400> 2684 cttgtatete taaatatggt gtgatatgaa ccagtecatt cacattggaa 50

| <211><br><212>                   |                                    |                     |            |            |    |
|----------------------------------|------------------------------------|---------------------|------------|------------|----|
|                                  | 2685<br>tggg agtaactgct o          | ggtagtgcct          | tctttggttg | tgttgctcag | 50 |
| <210><br><211><br><212>          | DNA                                |                     |            |            |    |
| <400>                            | Homo sapiens  2686 gacc aacattaaca | caaccaatca          | acacatcatg | ttacagaact | 50 |
|                                  | 2687                               |                     |            |            |    |
| <211><br><212><br><213>          |                                    |                     |            |            |    |
| <400><br>tgtggg                  | 2687<br>ttga gaccagcact (          | ctgtgaaacc          | ttgaaatgag | aagtaaaggc | 50 |
| <210><211><211><212>             |                                    |                     |            |            |    |
| <400>                            | 2688<br>ctaa accctatggc            | ctcctgtgca          | tctgtactca | ccctgtacca | 50 |
| <210><211><211><212><213>        | 50                                 |                     |            |            |    |
|                                  | 2689<br>aaac attctaatta            | aaggetttge          | aacacatgcc | ttgtctgttt | 50 |
| <210><br><211><br><212><br><213> |                                    |                     |            |            |    |
|                                  | 2690<br>tggt tgaatctgaa            | accctccttc          | tgtggcaact | tgtactgaaa | 50 |
| <210><211><211><212><213>        | 50                                 |                     |            |            |    |
| <400><br>ctcato                  | 2691<br>taaa gacaccttcc            | ttt <b>cc</b> actgg | ctgtcaagcc | acagggcacc | 50 |

| <210>   | 2692                                              |    |
|---------|---------------------------------------------------|----|
| <211>   | 50                                                |    |
| <212>   | DNA                                               |    |
| <213>   |                                                   |    |
|         | Nomo Bapiens                                      |    |
| -400>   | 2692                                              |    |
|         |                                                   |    |
| gagtt   | accac accccatgag ggaagctcta aatagccaac acccatctgt | 50 |
|         |                                                   |    |
|         |                                                   |    |
| <210>   |                                                   |    |
| <211>   |                                                   |    |
| <212>   |                                                   |    |
| <213>   | Homo sapiens                                      |    |
|         |                                                   |    |
| <400>   | 2693                                              |    |
| cccaca  | actgc tttgctgtgt atacgcttgt tgccctgaaa taaatatgca |    |
|         | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5             | 50 |
|         |                                                   |    |
| <210>   | 2694                                              |    |
| <211>   |                                                   |    |
| <212>   |                                                   |    |
|         | Homo sapiens                                      |    |
| (213)   | nomo sapiens                                      |    |
| .400.   | 0004                                              |    |
|         | 2694                                              |    |
| cctgaa  | acag ctgccaccat cactcgcaag agaatcccct ccatctttgg  | 50 |
|         |                                                   |    |
|         |                                                   |    |
| <210>   |                                                   |    |
| <211>   |                                                   |    |
| <212>   | DNA                                               |    |
| <213>   | Homo sapiens                                      |    |
|         | -                                                 |    |
| <400>   | 2695                                              |    |
| qqaaqa  | accg tecagagetg agtgaegetg ggateeggga teaaagttgg  |    |
|         |                                                   | 50 |
|         |                                                   |    |
| <210>   | 2696                                              |    |
| <211>   |                                                   |    |
| <212>   |                                                   |    |
|         |                                                   |    |
| <213>   | Homo sapiens                                      |    |
|         | ****                                              |    |
| <400>   |                                                   |    |
| atttcc  | agtg agcttatcat gctgtcttta catggggttt tcaattttgc  | 50 |
|         |                                                   |    |
|         |                                                   |    |
| <210>   |                                                   |    |
| <211>   |                                                   |    |
| <212>   |                                                   |    |
| <213>   | Homo sapiens                                      |    |
|         | =                                                 |    |
| <400>   | 2697                                              |    |
| tgcaaqa | acat agaatagtgt tggaaaatgt gcaatatgtg atgtggcaaa  |    |
|         | 5 5-5- 055mmmego genarargeg argreggeaaa           | 50 |
|         |                                                   |    |
| <210>   | 2698                                              |    |
| <211>   | 50                                                |    |
|         | DNA                                               |    |
|         |                                                   |    |
| 13>     | Homo sapiens                                      |    |

50

50

50

50

<210> 2699
<211> 50
<212> DNA
<213> Homo sapiens
<400> 2699
ccttccaaag cggtcacctg atagggaagt cttacggcta ggaagttaca

aqtactcatq acttgagaga cgtggacgga gccagcttct accttgcttg

tgttataaaa gaggattttc ccaccttgac accaggcaat gtagttagca

aataagggtg ttgccctttg ttccctcaca taatcgtgaa aggctgcttt

<210> 2700 <221> 50 <212> DNA <213> Homo sapiens <400> 2700

<210> 2701 <221> 50 <212> DNA <213> Homo sapiens <400> 2701

<210> 2702 <211> 50 <212> DNA <213> Homo sapiens <400> 2702 cggattccaa attacttaaa gcctttatgg gaacacggta gattgtaggt 50

<210> 2703
<211> 50
<212> DNA
<213> Homo sapiens
<4400> 2703
acacttgate tetteettat tteteteaga aaacetgtag gattgtgeet
50

<211> 50
<212> DNA
<213> Homo sapiens
<400> 2704
cccgaggagg aagacgaatc gttaaacatc tgaaagggtc aggtgagtat 50

<210> 2705 <211> 50 <212> DNA

<210> 2704

|                                                                                                                                             | Homo sapiens                                                                                          |                   |                |    |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------|----------------|----|
| <400>                                                                                                                                       | 2705                                                                                                  |                   |                |    |
| gctagc                                                                                                                                      | acga ctctgccttg ttcct                                                                                 | ttgga gacaattgtt. | atcatcaata 5   | 50 |
|                                                                                                                                             |                                                                                                       |                   |                |    |
| <210>                                                                                                                                       | 2706                                                                                                  |                   |                |    |
| <211>                                                                                                                                       | 50                                                                                                    |                   |                |    |
| <212>                                                                                                                                       |                                                                                                       |                   |                |    |
| <213>                                                                                                                                       | Homo sapiens                                                                                          |                   |                |    |
| <400>                                                                                                                                       | 2706                                                                                                  |                   |                |    |
| ccctca                                                                                                                                      | aatc teccaateta eteca                                                                                 | igggaa aagacactto | : aagtgagaga 5 | 50 |
|                                                                                                                                             |                                                                                                       |                   |                |    |
| <210>                                                                                                                                       | 2707                                                                                                  |                   |                |    |
| <211>                                                                                                                                       | 50                                                                                                    |                   |                |    |
| <212>                                                                                                                                       |                                                                                                       |                   |                |    |
| <213>                                                                                                                                       | Homo sapiens                                                                                          |                   |                |    |
| <400>                                                                                                                                       | 2707                                                                                                  |                   |                |    |
| ggacca                                                                                                                                      | aagg ctgattcttg gaga                                                                                  | ttaac tccccacag   | g caatgggttt 5 | 50 |
|                                                                                                                                             |                                                                                                       |                   |                |    |
| <210>                                                                                                                                       | 2708                                                                                                  |                   |                |    |
| <211>                                                                                                                                       |                                                                                                       |                   |                |    |
| <212>                                                                                                                                       |                                                                                                       |                   |                |    |
| <213>                                                                                                                                       | Homo sapiens                                                                                          |                   |                |    |
| <400>                                                                                                                                       | 2708                                                                                                  |                   |                |    |
| gcctcc                                                                                                                                      | cgtg catctgtact cacc                                                                                  | tgtac gacaaacaca  | a ttacattatt 5 | 50 |
|                                                                                                                                             |                                                                                                       |                   |                |    |
| <210>                                                                                                                                       | 2709                                                                                                  |                   |                |    |
| <211>                                                                                                                                       |                                                                                                       |                   |                |    |
| <212>                                                                                                                                       |                                                                                                       |                   |                |    |
| <213>                                                                                                                                       |                                                                                                       |                   |                |    |
|                                                                                                                                             | Homo sapiens                                                                                          |                   |                |    |
| <400>                                                                                                                                       | 2709                                                                                                  |                   |                |    |
|                                                                                                                                             |                                                                                                       | igette acaataaacg | g getgegtete   | 50 |
|                                                                                                                                             | 2709                                                                                                  | agette acaataaacç | g getgegtete ! | 50 |
|                                                                                                                                             | 2709<br>attc cccacctgct tecc                                                                          | agette acaataaacg | g getgegtete ! | 50 |
| <210><211>                                                                                                                                  | 2709<br>attc cccacctgct tccc<br>2710<br>50                                                            | agette acaataaaeg | g gctgcgtctc ! | 50 |
| <210> <211> <212>                                                                                                                           | 2709<br>attc cccacctgct tccc<br>2710<br>50<br>DNA                                                     | agette acaataaacg | g gctgcgtctc ! | 50 |
| <210> <211> <212>                                                                                                                           | 2709<br>attc cccacctgct tccc<br>2710<br>50                                                            | agette acaataaaeq | g gctgcgtctc ! | 50 |
| <210> <211> <212> <213> <400>                                                                                                               | 2710<br>attc cccactgct tccc<br>2710<br>50<br>DNA<br>Homo sapiens<br>2710                              |                   | , 3-3-3        |    |
| <210> <211> <212> <213> <400>                                                                                                               | 2710 2710 50 DNA Homo sapiens                                                                         |                   | , 3-3-3        | 50 |
| <210> <211> <212> <213> <400>                                                                                                               | 2710<br>attc cccactgct tccc<br>2710<br>50<br>DNA<br>Homo sapiens<br>2710                              |                   | , 3-3-3        |    |
| <210> <211> <212> <213> <400> aactct                                                                                                        | 2710 2710 50 DNA Homo sapiens 2710 ttggc ctcagaggaa ggaa                                              |                   | , 3-3-3        |    |
| <210> <211> <212> <213> <400> aactct                                                                                                        | 2709 attc cccacctgct tccc 2710 50 DNA Homo sapiens 2710 tggc ctcagaggaa ggaa                          |                   | , 3-3-3        |    |
| <210> <211> <212> <213> <400> aactet                                                                                                        | 2710 2710 50 DNA Homo sapiens 2710 ttggc ctcagaggaa ggaa 2711 50 DNA                                  |                   | , 3-3-3        |    |
| <210> <211> <212> <213> <400> aactet                                                                                                        | 2709 attc cccacctgct tccc 2710 50 DNA Homo sapiens 2710 tggc ctcagaggaa ggaa                          |                   | , 3-3-3        |    |
| <pre>&lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400&gt; aactet  &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;400&gt; &lt;400&gt; </pre> | 2709 attc cccacctgct tccc 2710 50 DNA Homo sapiens 2710 tggc ctcagaggaa ggaa 2711 50 DNA Homo sapiens | aagcaa ctcaacacto | c atggtcaagt ! | 50 |
| <pre>&lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400&gt; aactet  &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;400&gt; &lt;400&gt; </pre> | 2710 street cocacctget tecce 2710 50 DNA Homo sapiens 2710 2711 50 DNA Homo sapiens                   | aagcaa ctcaacacto | c atggtcaagt ! |    |

1107

<210> 2712

| <211><br><212>  | DNA       | ;          |            |            |            |    |
|-----------------|-----------|------------|------------|------------|------------|----|
|                 |           | sapiens    |            |            |            |    |
| <400><br>ttaaaa |           | cacattaaaa | ttctcagagg | acttggcaag | ggccgcacag | 50 |
|                 |           |            | 5 55       | 353        | 3333       | 50 |
| <210>           |           |            |            |            |            |    |
| <211><br><212>  | 50<br>DNA |            |            |            |            |    |
|                 |           | sapiens    |            |            |            |    |
| <400>           |           |            |            |            |            |    |
| gcacac          | gcca t    | ctgtgtaac  | ttcaggatct | gttctgtttc | accatgtaac | 50 |
| <210>           | 2714      |            |            |            |            |    |
| <211>           |           |            |            |            |            |    |
| <212>           | DNA       |            |            |            |            |    |
| <213>           | Homo      | sapiens    |            |            |            |    |
| <400>           | 2714      |            |            |            |            |    |
| ttggag          | cgtt t    | ttgtgtttg  | agatattagc | tcaggtcaat | tccaaagagt | 50 |
|                 |           |            |            |            |            |    |
| <210><br><211>  |           |            |            |            |            |    |
| <212>           |           |            |            |            |            |    |
|                 |           | sapiens    |            |            |            |    |
| <400>           |           |            |            |            |            |    |
| aggaaa          | ccaa g    | ccctcacag  | gaaagaaagc | ctgattcaag | aaaacaaagt | 50 |
| <210>           | 2716      |            |            |            |            |    |
| <211>           |           |            |            |            |            |    |
| <212>           | DNA       |            |            |            |            |    |
| <213>           | Homo      | sapiens    |            |            |            |    |
| <400>           |           |            |            |            |            |    |
| acceegi         | -aay t    | gectaagaa  | augagactac | aagctccatt | tcagcaggac | 50 |
| <210>           | 2717      |            |            |            |            |    |
|                 | 50        |            |            |            |            |    |
| <212>           |           |            |            |            |            |    |
| <213>           | Homo      | sapiens    |            |            |            |    |
| <400>           |           |            |            |            |            |    |
| gcctcag         | gtac a    | gagggggct  | ctggaagtgt | ttgttgactg | aataaacgga | 50 |
| <210>           | 2718      |            |            |            |            |    |
| <211>           | 50        |            |            |            |            |    |
| <212>           |           |            |            |            |            |    |
| <213>           | Homo      | sapiens    |            |            |            |    |
| <400>           | 2718      |            |            |            |            |    |
| ggttaac         | get t     | ctgtgagga  | ccttctggct | cttgagatac | cctaaatatt | 50 |

| <211>          |                     |            |            |            |    |
|----------------|---------------------|------------|------------|------------|----|
| <212><br><213> | DNA<br>Homo sapiens |            |            |            |    |
| <400>          |                     |            |            |            |    |
| aggcaa         | agt catttettee      | ctatattttg | tcatgcttat | eteetgtete | 50 |
| <210>          |                     |            |            |            |    |
| <211><br><212> |                     |            |            |            |    |
|                |                     |            |            |            |    |
|                | Homo sapiens        |            |            |            |    |
| <400>          |                     |            |            |            |    |
| gagaaa         | gete ceagtetgte     | tttcccaaca | tecetteagt | ttcaataagc | 50 |
| <210>          |                     |            |            |            |    |
| <211>          |                     |            |            |            |    |
| <212>          |                     |            |            |            |    |
| <213>          | Homo sapiens        |            |            |            |    |
| <400>          | 2721                |            |            |            |    |
| ggaggt         | agg aagccctttt      | aaagtacaaa | ccccggcat  | ggggaatttt | 50 |
| <210>          | 2722                |            |            |            |    |
| <211>          | 50                  |            |            |            |    |
| <212>          |                     |            |            |            |    |
|                | Homo sapiens        |            |            |            |    |
| <400>          | 2722                |            |            |            |    |
|                | ataa tttcgaaccc     | ttgcatagtt | tcggtatggg | ccgtgccaac | 50 |
|                |                     |            |            |            |    |
| <210>          | 2723                |            |            |            |    |
| <211>          | 50                  |            |            |            |    |
| <212>          | DNA                 |            |            |            |    |
| <213>          | Homo sapiens        |            |            |            |    |
| <400>          | 2723                |            |            |            |    |
| cagacc         | tgtg ggctgattcc     | agactgagag | ttgaagtttt | gtgtgcatca | 50 |
| <210>          | 2724                |            |            |            |    |
| <211>          |                     |            |            |            |    |
| <211><br><212> |                     |            |            |            |    |
|                | Homo sapiens        |            |            |            |    |
|                |                     |            |            |            |    |
| <400>          |                     |            |            |            |    |
| aaatct         | catt tgcaagttct     | cccattaagc | aagggagtag | tttactagga | 50 |
| <210>          |                     |            |            |            |    |
| <211>          |                     |            |            |            |    |
| <212>          |                     |            |            |            |    |
| <213>          | Homo sapiens        |            |            |            |    |
| <400>          | 2725                |            |            |            |    |

| caaacac | egg cagttgaaag          | gaaaaggacg | gggaatgtga | tggaaaagag   | 50 |
|---------|-------------------------|------------|------------|--------------|----|
| <210>   | 2726                    |            |            |              |    |
|         | 50                      |            |            |              |    |
|         | DNA                     |            |            |              |    |
|         | Homo sapiens            |            |            |              |    |
| <2137   | nomo saprens            |            |            |              |    |
| <400>   | 2726                    |            |            |              |    |
| tggataa | atc tgagcaactt          | tcttcttgt  | gctccaggaa | cctacgcact   | 50 |
|         |                         |            |            |              |    |
| <210>   | 2727                    |            | •          |              |    |
| <211>   |                         |            |            |              |    |
| <212>   |                         |            |            |              |    |
|         | Homo sapiens            |            |            |              |    |
| ~213>   | nomo saprens            |            |            |              |    |
| <400>   | 2727                    |            |            |              |    |
| gacatto | atc tgtttccact          | gagtctgagt | cttcaagttt | tcactccagc   | 50 |
|         |                         |            |            |              |    |
| <210>   | 2728                    |            |            |              |    |
| <211>   |                         |            |            |              |    |
|         | DNA                     |            |            |              |    |
|         | Homo sapiens            |            |            |              |    |
|         |                         |            |            |              |    |
|         | 2728                    |            |            |              |    |
| cagtggt | tcc tgagagaatc          | ttagttcaaa | ggactgcccc | cgccaacccc   | 50 |
|         |                         |            |            |              |    |
| <210>   | 2729                    |            |            |              |    |
| <211>   |                         |            |            |              |    |
| <212>   |                         |            |            |              |    |
|         | Homo sapiens            |            |            |              |    |
|         | nome baptons            |            |            |              |    |
| <400>   |                         |            |            |              |    |
| taggcta | atag agatgtgagg         | gattattatt | agtcacacct | ctagtcatgc c | 51 |
|         |                         |            |            |              |    |
| <210>   | 2730                    |            |            |              |    |
| <211>   | 50                      |            |            |              |    |
| <212>   | DNA                     |            |            |              |    |
| <213>   | Homo sapiens            |            |            |              |    |
| 400     | 0.000                   |            |            |              |    |
|         | 2730<br>:gtc tttttaagac | ccctaatacc | cctttataac | ttgatggctt   | 50 |
|         |                         |            |            |              |    |
|         |                         |            |            |              |    |
|         | 2731                    |            |            |              |    |
|         | 50                      |            |            |              |    |
| <212>   |                         |            |            |              |    |
| <213>   | Homo sapiens            |            |            |              |    |
| <400>   | 2731                    |            |            |              |    |
|         | aaga acatctgcct         | ttgttgaacg | tgtttattac | ctgtccactc   | 50 |
|         |                         |            |            |              |    |
| <210>   | 2732                    |            |            |              |    |
| <210>   | 50                      |            |            |              |    |
|         | DNA                     |            |            |              |    |
|         | Homo sapiens            |            |            |              |    |
|         |                         |            |            |              |    |

1110

| <400><br>ttgtgct                 | 2732<br>Ecct gatacgacgt           | tgccacagtt | aatccgttct | gatetetget | 50 |
|----------------------------------|-----------------------------------|------------|------------|------------|----|
| <210><br><211><br><212><br><213> | 2733<br>50<br>DNA<br>Homo sapiens |            |            |            |    |
| <400><br>accette                 | 2733<br>ggtc actggtgttt           | caaacattct | ggcaagtcac | atcaatcaag | 50 |
| <211><br><212>                   |                                   |            |            |            |    |
| <400><br>tgtttc                  | 2734<br>gtaa attaaatagg           | tctggcccag | aagacccact | caattgcctt | 50 |
| <210><211><211>                  | 2735<br>50<br>DNA                 |            |            |            |    |
|                                  | Homo sapiens                      |            |            |            |    |
| <400><br>ttgtaa                  | 2735<br>ggtt ccggggaact           | gactcaacat | ggttctccaa | ctcgaggttg | 50 |
| <210>                            | 2736                              |            |            |            |    |
| <211><br><212>                   |                                   |            |            |            |    |
| <213>                            | Homo sapiens                      |            |            |            |    |
| <400>                            | 2736                              |            |            |            |    |
| tggtcc                           | actg tcactgtttc                   | tctgctgttg | caaatacatg | gataacacat | 50 |
| <210><br><211>                   | 2737<br>50                        |            |            |            |    |
| <212>                            |                                   |            |            |            |    |
| <213>                            | Homo sapiens                      |            |            |            |    |
| <400><br>ggaact                  | 2737<br>tetg ettecaetta           | cgatgaagga | acttgtactc | aatccatcca | 50 |
| <210><br><211>                   | 2738<br>50                        |            |            |            |    |
| <212><br><213>                   | DNA<br>Homo sapiens               |            |            |            |    |
| <400>                            |                                   |            |            |            |    |
|                                  | gggc acatgcacac                   | agacatttat | ctctgcactc | acattttgtg | 50 |
|                                  |                                   |            |            |            |    |
| <210><br><211>                   | 2739<br>50                        |            |            |            |    |

1111

WO 2004/042346 PCT/US2003/012946 <212> DNA <213> Homo sapiens <400> 2739 tgtcctctga acctgagtga agaaatatac tctgtccttt gtacctgcgt 50 <210> 2740 <211> 50 <212> DNA <213> Homo sapiens <400> 2740 tgcactctac cagatttgaa catctagtga ggttcacatt catactaagt 50 <210> 2741 <211> 50 <212> DNA <213> Homo sapiens <400> 2741 qqqtqtqatq aatagcgaat catctcaaat ccttgagcac tcaqtctaqt 50 <210> 2742 <211> 50 <212> DNA <213> Homo sapiens <400> 2742 tgctgaaagt ggtcccaaag gggtactagt ttttaagctc ccaactcccc 50 <210> 2743 <211> 50 <212> DNA <213> Homo sapiens <400> 2743 50 tqtttcqtaa attaaatagg tctggcccag aagacccact caattgcctt <210> 2744 <211> 50 <212> DNA <213> Homo sapiens 50

<400> 2744 agaatggcag acctgtttgc tgaagtgttc ataagataac aataggcttg

<210> 2745 <211> 50 <212> DNA

<213> Homo sapiens <400> 2745 ggcccagtgc taatgtaacc aatgatgcca tgtcgatatt ggaaaccata 50

| <210>     | 2746                                               |    |
|-----------|----------------------------------------------------|----|
| <211>     | 50                                                 |    |
|           |                                                    |    |
| <212>     |                                                    |    |
| <213>     | Homo sapiens                                       |    |
|           |                                                    |    |
|           | 0746                                               |    |
| <400>     |                                                    |    |
| tcttqto   | tccta gtcattgtgg caaccccatc tgacaccttg tgtagtacct  | 50 |
|           |                                                    |    |
|           |                                                    |    |
|           |                                                    |    |
| <210>     | 2747                                               |    |
| <211>     |                                                    |    |
|           |                                                    |    |
| <212>     |                                                    |    |
| <213>     | Homo sapiens                                       |    |
|           |                                                    |    |
|           | 27.47                                              |    |
| <400>     |                                                    |    |
| aagagta   | taaga ggcaacagat agagtgtcct tggtaataag aagtcagaga  | 50 |
|           |                                                    |    |
|           |                                                    |    |
|           |                                                    |    |
| <210>     | • 2748                                             |    |
| <211>     |                                                    |    |
|           |                                                    |    |
| <212>     | • DNA                                              |    |
| <213>     | Homo sapiens                                       |    |
|           | •                                                  |    |
|           |                                                    |    |
| <400>     |                                                    |    |
| tttccaa   | aatgo toottgotoo attttaaact tgotgtoott tataagagaa  | 50 |
|           |                                                    |    |
|           |                                                    |    |
|           |                                                    |    |
| <210>     | • 2749                                             |    |
| <211>     |                                                    |    |
|           |                                                    |    |
| <212>     | DNA                                                |    |
| <213>     | Homo sapiens                                       |    |
|           |                                                    |    |
|           |                                                    |    |
| <400>     | • 2749                                             |    |
| acattc    | catct gtttccactg aggtctgagt cttcaagttt tcaccccagc  | 50 |
|           | 3                                                  |    |
|           |                                                    |    |
|           |                                                    |    |
| <210>     | × 2750                                             |    |
| <211>     |                                                    |    |
|           |                                                    |    |
| <212>     | > DNA                                              |    |
| <213>     | Momo sapiens                                       |    |
|           |                                                    |    |
|           |                                                    |    |
|           | > 2750                                             |    |
| tatata    | gegae agggaggaag tttcaataaa geaacaacaa gettcaagga  | 50 |
| , , ,     | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3            |    |
|           |                                                    |    |
|           |                                                    |    |
| <210>     | > 2751                                             |    |
| <211>     |                                                    |    |
|           |                                                    |    |
| <212>     | > DNA                                              |    |
| <213>     | Homo sapiens                                       |    |
|           | -                                                  |    |
| . 4 0 0 - | 0.051                                              |    |
| <400>     |                                                    |    |
| ctccac    | accacc tgaccagagt gttctcttca gaggactggc tcctttccca | 50 |
|           |                                                    |    |
|           |                                                    |    |
|           |                                                    |    |
| <210>     | > 2752                                             |    |
| <211>     | > 50                                               |    |
|           |                                                    |    |
| <212>     |                                                    |    |
| <213>     | > Homo sapiens                                     |    |
|           |                                                    |    |
| -400:     | > 2752                                             |    |
|           |                                                    |    |
| ccccaa    | aaccac aggcatcagg caaccatttg aaataaaact ccttcagcct | 50 |

| <210>           | 2753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <211>           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <212>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                 | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 12137           | nome bull-time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <400>           | 2753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                 | aagg teactgagae ttttgeetea eetaaagaga eeaaggetea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 |
| cgccca          | and concedition continued and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and |    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <210>           | 2754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <211>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <212>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                 | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 12137           | nomo suprens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| <400>           | 2754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                 | gtga gaagaagcag gtttcctttc ctatggattg atgtgaccct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 |
| CCCCCC          | giga gaagaagcag gillicelle claiggalig algigaceel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <210>           | 2755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <211>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <212>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                 | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| <213>           | nomo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| <400>           | 2755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                 | accc ctggttgaga accacggttg tatagaaagg aattgaagca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 |
| agaayy          | acce etggitgaga accaeggitg tatagaaagg aaccgaagea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <210>           | 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <211>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <212>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <213>           | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| <400>           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 |
| aggtgc          | cago aactgaataa atacototoo cagtgtaaat otggagocaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <210>           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <211><br><212>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <2132           | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| <400>           | 2757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                 | 2757<br>agaa gtggggtgga agaagtgggg tgggacgaca gtgaaatcta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 |
| gaayga          | agaa grggggrgga agaagrgggg rgggargara grgaaarera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <210>           | 2758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <211>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <211><br><212>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <b>~213&gt;</b> | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| <400>           | 2758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 |
| Lydaat          | atgg gaaagttgct gctattgatt cagggtctgt cttggaggca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <210>           | 2759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <210>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <212>           | UNA<br>Homo saniens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |

WO 2004/042346 PCT/US2003/012946 <400> 2759 tgattagaaa aggcgtattc tttcatggtt tctgcaatga gaggaagtgt 50 <210> 2760 <211> 50 <212> DNA <213> Homo sapiens <400> 2760 aggagetatg attagaette tgttagaett ceteacteta teacceacat 50 <210> 2761 <211> 50 <212> DNA <213> Homo sapiens <400> 2761 agttgttagt tgccctgcta cctagtttgt tagtgcattt gagcacacat 50 <210> 2762 <211> 50 <212> DNA <213> Homo sapiens <400> 2762 aagtggaagt gggtgaattc tactttttat gttggagtgg accaatgtct 50 <210> 2763 <211> 50 <212> DNA <213> Homo sapiens <400> 2763 catttqtacc ctaggcccac gaacccacga gaatgtcctc tqacttccaq 50 50

<210> 2764 <211> 50 <212> DNA <213> Homo sapiens <400> 2764 gcactgaata tcgaacaagc actcaaattg aagtatcagt catgttttqt <210> 2765 <211> 50 <212> DNA

<400> 2765 totacotgca gtotocattg tttccagagt gaacttgtaa ttatottgtt 50

<210> 2766 <211> 50 <212> DNA

<213> Homo sapiens

| <213>          | Homo sapiens                                             |    |
|----------------|----------------------------------------------------------|----|
| <400>          | 2766                                                     |    |
| ggccag         | cctg gacccaatca tgaggaagat gcagactctt atgagaacat         | 50 |
|                |                                                          |    |
| <210><br><211> | 2767<br>50                                               |    |
| <211>          |                                                          |    |
|                | Homo sapiens                                             |    |
| <400>          | 2767                                                     |    |
|                | teat tggeccatag gtacattgga aaatgtatat etetecaget         | 50 |
|                |                                                          |    |
| <210>          | 2768                                                     |    |
| <211>          | 50                                                       |    |
| <212>          | DNA                                                      |    |
| <213>          | Homo sapiens                                             |    |
| <400>          |                                                          |    |
| accgtg         | taaa gtggggatgg ggtaaaagtg gttaacgtac tgttggatca         | 50 |
|                |                                                          |    |
| <210>          |                                                          |    |
| <211>          | 50                                                       |    |
| <212>          |                                                          |    |
| <213>          | Homo sapiens                                             |    |
| <400>          |                                                          |    |
| tggcaa         | atto tgogagtgtg ataatttoaa otgtgataga tocaatggot         | 50 |
|                |                                                          |    |
| <210>          | 2770                                                     |    |
| <211>          | 50                                                       |    |
| <212><br><213> |                                                          |    |
| <213>          | Homo sapiens                                             |    |
| <400>          |                                                          | 50 |
| cctagg         | gtga aacacgtgac agaagaataa agactattga atagtcctct         | 50 |
|                |                                                          |    |
| <210>          |                                                          |    |
| <211><br><212> | 50<br>DNA                                                |    |
|                | Homo sapiens                                             |    |
|                |                                                          |    |
| <400>          |                                                          | 50 |
| Lyagee         | tttc acacctgtgc tggcgctgga aaattatttg tgctcagctg         | 50 |
|                | 0.000                                                    |    |
| <210><br><211> | 2772<br>50                                               |    |
| <211>          |                                                          |    |
|                | Homo sapiens                                             |    |
|                |                                                          |    |
| <400>          |                                                          |    |
| haak-+         |                                                          | 50 |
| tgctat         | 2772<br>tgcc ttcctatttt gcataataaa tgcttcagtg aaaatgcagc | 50 |

1116

<210> 2773

| <211><212> | 50<br>DNA<br>Homo sapiens                        |    |
|------------|--------------------------------------------------|----|
| <400>      |                                                  |    |
|            | caca gtgccttcaa taaatggtat agcaaatgtt ttgacatgaa | 50 |
|            | 2774                                             |    |
| <211>      |                                                  |    |
| <212>      |                                                  |    |
|            | Homo sapiens                                     |    |
| <400>      |                                                  |    |
| tgccaa     | gcac agtgcctgca tgtatttatc caataaatgt gaaattctgt | 50 |
|            |                                                  |    |
| <210>      | 2775                                             |    |
| <211>      | 50                                               |    |
| <212>      |                                                  |    |
| <213>      | Homo sapiens                                     |    |
| <400>      | 2775                                             |    |
| acattg     | taat agaaacagat ttcccaaatt ccagcctggc atgaggtaat | 50 |
|            |                                                  |    |
| <210>      | 2776                                             |    |
| <211>      | 50                                               |    |
|            | DNA .                                            |    |
| <213>      | Homo sapiens                                     |    |
| <400>      | 2776                                             |    |
| tcacta     | tott totgataaca gaattgocaa ggcagoggga totogtatot | 50 |
|            |                                                  |    |
| <210>      | 2777                                             |    |
| <211>      | 50                                               |    |
| <212>      | DNA                                              |    |
| <213>      | Homo sapiens                                     |    |
| <400>      | 2777                                             |    |
| tctcaa     | agga gtaactgcag cttggtttga aatttgtact gtttctatca | 50 |
|            |                                                  |    |
| <210>      |                                                  |    |
| <211>      |                                                  |    |
| <212>      |                                                  |    |
| <213>      | Homo sapiens                                     |    |
| <400>      |                                                  |    |
| gacagg     | atcc cccagagacc ccatttgcct ctcaacactc agaccttcaa | 50 |
|            |                                                  |    |
| <210>      |                                                  |    |
| <211>      |                                                  |    |
| <212>      |                                                  |    |
| <213>      | Homo sapiens                                     |    |
| <400>      |                                                  |    |
| agtgcc     | ttcc ctqcctqtqq qqqtcatqct qccactttta atqqqtcctc | 50 |

| <210><211><212><213> | 50                       |            |            |            |    |
|----------------------|--------------------------|------------|------------|------------|----|
|                      | 2780<br>attet attgtttaca | caacgattac | tcgaagatga | ctgcaaaggt | 50 |
| <210><211><211>      |                          |            |            |            |    |
| <213>                | Homo sapiens             |            |            |            |    |
|                      | 2781<br>gagtg gtgtctggat | atattccttt | tgtcttcatc | actttctgaa | 50 |
| <210>                |                          |            |            |            |    |
| <211><212>           | DNA                      |            |            |            |    |
| <213>                | Homo sapiens             |            |            |            |    |
|                      | 2782                     |            |            |            | 50 |
| gaage                | tgcta ggggaaggac         | tggeetgget | ccagaatgtt | gttgccttt  | 50 |
| <210>                | 2783                     |            |            |            |    |
| <211>                |                          |            |            |            |    |
|                      | DNA<br>Homo sapiens      |            |            |            |    |
| <400>                | 2783                     |            |            |            |    |
| agccc                | tgcaa aaattcagag         | tccttgcaaa | attgtctaaa | atgtcagtgt | 50 |
|                      |                          |            |            |            |    |
| <210><211>           |                          |            |            |            |    |
|                      | DNA                      |            |            |            |    |
| <213>                | Homo sapiens             |            |            |            |    |
|                      | 2784                     |            |            |            |    |
| gggca                | gagaa ggtggagagt         | aaagacccaa | cattactaac | aatgatacag | 50 |
| ~21n>                | 2785                     |            |            |            |    |
| <211>                |                          |            |            |            |    |
|                      | DNA                      |            |            |            |    |
| <213>                | Homo sapiens             |            |            |            |    |
| <400>                |                          |            |            |            |    |
| aatat                | atgca attetecete         | ccccagccct | tecetgacce | claagttatt | 50 |
| <210>                | 2786                     |            |            |            |    |
| <211>                |                          |            |            |            |    |
|                      | DNA                      |            |            |            |    |
| <213:                | Homo sapiens             |            |            |            |    |
| <400>                | 2786                     |            |            |            |    |

| wo                               | O 2004/042346                                            | PCT/US2003/012946 |
|----------------------------------|----------------------------------------------------------|-------------------|
| agggag                           | acto toagoottoa gottootaaa ttotgtgtot gtgactttog         | 50                |
| <210><br><211><br><212><br><213> | 50                                                       |                   |
| <400><br>atgctq                  | 2787<br>gtgt catgtgacat ttgttgagtc tcgggcatgt tcacggtggg | 50                |
|                                  | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                  |                   |
| <210><br><211><br><212><br><213> | 51                                                       |                   |
| <400>                            | 2788                                                     |                   |
| caccgc                           | etet geeteegeet ettecaetgg agageeegag gteaaaaggt         | 51                |
| <210><br><211>                   |                                                          |                   |
|                                  | DNA                                                      |                   |
| <213>                            | Homo sapiens                                             |                   |
| <400>                            |                                                          |                   |
| atttgg                           | acag atgcagaagg aactgttagt gagtcaagac aaacacatct         | 50                |
| <210>                            | 2790                                                     |                   |
| <211>                            |                                                          |                   |
| <212><br><213>                   |                                                          |                   |
|                                  | •                                                        |                   |
| <400>                            | 2790<br>tect cequataaqe etgegteaga ttaaaacact gaactgacaa | 50                |
| acaccc                           | sees eegeacaage eegegeeaga eeaaaacaee gaacegacaa         | 30                |
| <210>                            |                                                          |                   |
| <211>                            |                                                          |                   |
| <212><br><213>                   | Homo sapiens                                             |                   |
|                                  |                                                          |                   |
| <400><br>tccago                  | 2791<br>cago cagotoattt cactttacac cotoatggac tgggattata | 50                |
|                                  |                                                          |                   |
| <210>                            |                                                          |                   |
| <211><br><212>                   |                                                          |                   |
|                                  | Homo sapiens                                             |                   |
| <400>                            | 2792                                                     |                   |
| ctggtc                           | tgtg tcgttggctt tatgacagga agtgcctgtg ggttatctta         | 50                |
| <210>                            | 2793                                                     |                   |
| <211>                            | 50                                                       |                   |
| <212>                            |                                                          |                   |
| <213>                            | Homo sapiens                                             |                   |

| 400> 279            | 3<br>gctacattac | caccactota | tcataaaagc | cagccacctt |            | 50  |
|---------------------|-----------------|------------|------------|------------|------------|-----|
| ccaaaaagg           | geracareae      | cuccuccycu | ccacaaaago | cagooaccoo |            | 20  |
| 210> 279            | 4               |            |            |            |            |     |
| 211> 50             | •               |            |            |            |            |     |
| 211> 50<br>212> DNA |                 |            |            |            |            |     |
|                     |                 |            |            |            |            |     |
| 213> HOIII          | o sapiens       |            |            |            |            |     |
| 400> 279            | -               |            |            |            |            | 50  |
| attettgte           | tggctaataa      | accatcacca | actgeettet | cctacaggga |            | 50  |
|                     | _               |            |            |            |            |     |
| 210> 279            | 5               |            |            |            |            |     |
| 211> 50             |                 |            |            |            |            |     |
| 212> DNA            |                 |            |            |            |            |     |
| 213> Hom            | o sapiens       |            |            |            |            |     |
| 400> 279            |                 |            |            |            |            |     |
| cccagacga           | aaataccaaa      | tgcatggaga | gctcccgtga | gtggttaata |            | 50  |
|                     |                 |            |            |            |            |     |
| 210> 279            | 6               |            |            |            |            |     |
| 211> 154            | 9               |            |            |            |            |     |
| 212> DNA            |                 |            |            |            |            |     |
| 213> Hom            | o sapiens       |            |            |            |            |     |
| 400> 279            | 6               |            |            |            |            |     |
|                     | gtatgcaaat      | ggataaccgg | ttgcctccca | aaaaagttcc | aggtttctgt | 60  |
|                     |                 |            |            |            |            | 120 |
| cettteget           | atggattgtc      | tttccttgtg | cactgttgta | atgitataat | aacagcacag | 120 |
| gtgcgtgcc           | tgaacctcac      | aatggtagtc | atggtgaata | gcacagatcc | acatggtttg | 180 |
| ccaacacct           | ccacaaagaa      | gctcctggat | aatataaaga | accctatqta | taattqqagc | 240 |
|                     |                 |            |            |            |            |     |
| cagatatco           | agggaatcat      | cttgagttcc | acctcctatg | gtgtcatcat | catccaagtt | 300 |
| ctgttggat           | acttctctgg      | aatatattct | acaaagaaaa | tgattggctt | tgcattatgc | 360 |
| tcaqctctq           | tgttaagcct      | gctcatccca | ccagcagctg | gaattggagt | agcttgggtc | 420 |
|                     |                 |            |            |            |            |     |
| gttgtatgtc          | gagcagttca      | gggagcagcc | caggggatag | ttgcaacagc | ccagtttgaa | 480 |
| tatatgtca           | aatgggctcc      | tcccctggaa | cgaggccgac | ttacttctat | gagtacatca | 540 |
| ggtttttgc           | tgggaccctt      | tattgtccta | cttgtgactg | gagttatctg | tgaatctctg | 600 |
|                     |                 |            |            |            |            | 660 |
| ggetggecca          | tggtcttcta      | tatttttggt | gettgtgget | gracegrara | tettetetgg | 660 |
| tegttetgt           | tttatgatga      | ccccaaagac | cacccatgta | taagcatcag | tgaaaaggaa | 720 |
| acatcacat           | cctccctggt      | ccagcaggtc | agttcaagta | gacaatctct | gcctatcaag | 780 |
| rctatactt=          | agtcgcttcc      | agtotagoot | atttccattq | gtagttttag | atttttctaa | 840 |
|                     |                 |            |            |            |            |     |
| cacataaca           | tcatgacact      | atacactcca | atgtttatca | actccatgct | tcatgttaat | 900 |
| ataaaagaga          | atgggttctt      | gtcttccctt | ccctatttgt | ttgcctggat | ctgtggtaac | 960 |

| ctagcaggtc agttatcaga cttcttcctg accaggaata ttctcagcgt aattgctgtc               | 1020 |
|---------------------------------------------------------------------------------|------|
| cggaaactet teacageage aggatttete etteetgeaa tetttggtgt etgeetgeet               | 1080 |
| tacctgagtt ccaccttcta cagcattgtc attttcctaa tacttgctgg tgcaacaggc               | 1140 |
| agcttttgct tgggtggagt gtttataaat ggcttggata ttgctcccag atattttgga               | 1200 |
| tttattaaag catgttcaac tttaactgga atgataggag gactaattgc ttccactttg               | 1260 |
| actggattga tccttaagca ggatccggaa tccgcctggt ttaaaacctt catcctgatg               | 1320 |
| gcagccatta atgtgactgg cctaattttc taccttatag ttgctacagc agaaattcag               | 1380 |
| gactgggcta aagaaaaaca acacacgt ctctgaagtg tgaaacagag cacttgcaga                 | 1440 |
| gcctgggaca acctccttat tgaagggaag agggaccagc acatgaggct gaggctgagg               | 1500 |
| ggcagtcacc agcaccagga agaaggtggt aggaggagtc ctaggggct                           | 1549 |
| <210> 2797<br><211> 626<br><212> DNA<br><213> Homo sapiens                      |      |
| tttttttttc catttctatg agtttaatac agtaccaggg ttcagacatt tccatgaaat               | 60   |
| attaactcta aacaaacata acagcattct agcagtagtc ttcagctaac atgctaatgg               | 120  |
| gattaagttg ctagaaccct ctgttagtat gtggacacaa gacagattgg catacctggt               | 180  |
| ttaggcatca ctccaaacaa agtttgtaat ccaggattac tagattccta aaccctattt               | 240  |
| atgcaaggac aggggtgtct ttaaatagca ctagccaaat cacatatctc caacactcct               | 300  |
| taattttcca gtgcaaaata acttctttta tttattaggc taattaggga accttctaga               | 360  |
| actototaga gataaagato attaaggoot tatagtagto ottoaaacao taccaaccao               | 420  |
| ttcctaaaag atgtgtgtcc agttaaagta ttttaaattt tagctacaac cttatagagg               | 480  |
| attaagaata cacacacacg cacacacaca cacacctgtc tatactagaa tatttaaaag               | 540  |
| taagttatag acaatataat agctagataa aacaaaagaa taaggtatat gggttttata               | 600  |
| aagacacaca gtataatgat ggtgtc                                                    | 626  |
| <210> 2798<br><211> 5601<br><212> DNA<br><213> Homo sapiens                     |      |
| <400> 2798<br>atggaccccg ttggcctcca gctcggcaac aagaacctgt ggagctgtct tgtgaggctg | 60   |
| ctcaccaaag acccagaatg gctgaacgcc aagatgaagt tcttcctccc caacacggac               | 120  |
| ctggattcca ggaacgagac cttggaccct gaacagagag tcatcctgca actcaacaag               | 180  |

ctgcatgtcc agggttcgga cacctggcag tctttcattc attgcgtgtg catgcagctg 240 gaggtgcctc tggacctgga ggtgcttctg ctaagtactt ttggctatga tgatgggttc 300 accaqccagc tqqqaqctqa qqqqaaaagc caacctgaat ctcagctcca ccatggcctg 360 aaqcqcccac atcaqaqctq tqqqtcctca ccccgccgga agcagtgcaa gaagcagcag 420 ctaqaqttqq ccaaqaaqta cctqcaqctc ctgcggacct ctqcccaqca qcqctacagg 480 aggcaaatcc ctgggtcagg gcagcccac gccttccacc aggtctatgt ccctccaatc 540 ctgcgccggg ccacagcatc cttagacact ccggaggggg ccattatggg ggacgtcaag 600 660 qtqqaaqatq qtqctqacqt qaqcatctcq qacctcttca acaccaqqgt taacaagggc ccqaqqqtqa ccqtqctttt qqqqaaqqct qqcatqqqca aqaccacqct qqcccaccqg 720 780 ctctqccaqa aqtqqcaqa qqqccatctq aactqtttcc aqqccctqtt cctttttgaa 840 ttcccccacc tcaacttqat cacqaqqttc ctqacaccqt ccqaqctcct ttttqatctq 900 tacctgagcc ctgaatcgga ccacqacact gtcttccagt acctggagaa gaacqctgac 960 caagteetge tgatetttga tgggetagat gaggeeetee ageetatggg teetgatgge ccaggcccag tectcaccet ttteteccat etetgcaatg ggaccetect geetggetge 1020 1080 cgggtgatgg ctacctcccg tccagggaag ctgcctgcct gcctgcctgc agaggcagcc atqqtccaca tgttggqctt tgatgqqcca cgggtggaag aatatgtgaa tcacttcttc 1140 agggcccagc catcgcggga qqgggccctg gtggagttac agacaaatgg acgtctccga 1200 agectqtqtq eqqtqeeeqe actqtqeeaa gtegeetgte tetgeeteea ceatetgett 1260 cetqaccacq ceccaqqeea qtetqtqqee etcetqeeca acatqactea getetatatq 1320 1380 cagatogtec togcoctcag coccectggg cacttgccca cotcgtccct actggacctg 1440 ggggaggtgg ccctgagggg cctggagaca gggaaggtta tcttctatgc aaaagatatt getecaecet tgatagettt tggggccaet caeageetge tgaetteett etgegtetge 1500 1560 acaggeettg ggeaccagea gacaggetat gettteacce aceteageet geaggagttt 1620 cttgctgccc tgcacctgat ggccagcccc aaggtgaaca aagacacact tacccagtat gttaccctcc attcccgctg ggtacagcgg accaaagcta gactgggcct ctcagaccac 1680 ctcccacct tcctggcggg cctggcatcc tgcacctgcc gccccttcct tagccacctg 1740 qcqcaqqqca atqaqqactq tqtqqqtqcc aagcaggctg ctgtagtgca ggtgttgaag 1800 aaqttqqcca cccqcaaqct cacaqqqcca aaggttgtag agctgtgtca ctgtgtggat 1860 qaqacacaqq aqcctqaqct qqccaqtctc accgcacaaa gcctccccta tcaactgccc 1920 ttccacaatt tcccactgac ctgcaccgac ctggccaccc tgaccaacat cctagagcac 1980

agggaggee ceatecact qqattttqat qqetqteec tqqaqeeea ctqeeetqaq 2040 gctctggtag gctgtgggca gatagagaat ctcagcttta agagcaggaa gtgtggggat 2100 gcctttgcag aagccctctc caggagcttg ccgacaatgg ggaggctgca gatgctgggg 2160 ttaqcaqqaa qtaaaatcac tgcccqaggc atcagccacc tggtgaaagc tttgcctctc 2220 tqtccacaqc tqaaaqaaqt cagttttcgq qacaaccagc tcagtgacca ggtggtgctg 2280 aacattqtqq aqqttctccc tcacctacca cggctccgga aqcttgacct gagcagcaac 2340 ageatetgeq tqtcaaccet actetgettq qcaaqqqtgg cagtcacgtg tectaccgte 2400 aggatgette aggecaggga geggaceate atetteette ttteecegee cacagagaca 2460 actgcagage tacaaagage tecagacetg caggaaagtg acggccagag gaaagggget 2520 caqaqcaqaa qcttqacqct caqqctqcaq aaqtqtcaqc tccaqqtcca cqatqcqqaq 2580 2640 qccctcataq ccctqctcca qqaaqqccct cacctqqaqq aaqtqqacct ctcaqqqaac caqctqqaaq atqaaqqctq tcqqctqatq qcaqaqqctq catcccaqct gcacatcqcc 2700 2760 aggaagetgg acctcagega caacgggett tetgtggeeg gggtgcattg tgtgetgagg geegtgagtg egtgetggae eetggeagag etgeacatea geetgeagea caaaactgtg 2820 atottcatgt ttgcccagga gccagaggag cagaaggggc cccaggagag ggctgcattt 2880 cttgacagec teatgeteca gatgecetet gagetgeete tgageteeeg aaggatgagg 2940 3000 ctgacacatt gtggcctcca agaaaagcac ctagagcagc tctgcaaggc tctgggagga agetgecace teggteacet ecacetegae tteteaggea atgetetggg ggatgaaggt 3060 quagecoqqc tqqctcaqct qctcccaqqq ctqqqaqctc tqcaqtcctt gaacctcagt 3120 qaqaacqqtt tqtccctqqa tqccqtqttq qqcttqqttc qqtgcttctc cactctqcaq 3180 3240 tggetettee gettggacat cagetttgaa agecaacaca teeteetgag aggggacaag 3300 acaagcaggg atatgtgggc cactggatct ttgccagact tcccagctgc agccaagttc ttagggttcc gtcagcgctg catccccagg agcctctgcc tcagtgagtg tcctctggag 3360 ccccaagec teaccegect etgtgecact etgaaggact geeegggace eetggaactg 3420 caattgteet gtgagtteet gagtgaccag ageetggaga etetaetgga etgettaeet 3480 caacteeste agetgageet getgeagetg agecagaegg gaetgteese gaaaageese 3540 tteetgetgg ccaacacett aageetgtgt ccaegggtta aaaaggtgga teteaggtee 3600 ctgcaccatg caactttgca cttcagatcc aacgaggagg aggaaggcgt gtgctgtggc 3660 agqttcacag gctgcagcct cagccaggag cacgtagagt cactctgctg gttgctgagc 3720 aagtgtaaag acctcagcca ggtggatctc tcagcaaacc tgctgggcga cagcggactc 3780 agatgccttc tggaatgtct gccgcaggtg cccatctccg gtttgcttga tctgagtcac 3840

aacagcattt ctcaqqaaaq tqccctqtac ctqctqqaga cactgccctc ctgcccacqt 3900 qtccgggagg cctcagtgaa cctgggctct gagcagagct tccggattca cttctccaga 3960 qaqqaccaqq ctqqqaaqac actcaqqcta aqtqaqtqca gcttccqqcc aqaqcacqtq 4020 tecaggetqq ccaceggett gageaagtee etgeagetga eggageteae getgaeecag 4080 tgctgcctgg gccagaagca gctggccatc ctcctgagct tggtggggcg acccqcaqqq 4140 ctgttcagcc tcagggtgca ggagccgtgg gcggacagag ccagggttct ctccctgtta 4200 qaaqtetqeq cecaqqeete aggeagtgte actgaaatea geateteega gacceageag 4260 caqctctqtq tccaqctqqa atttcctcqc caggaagaga atccagaagc tgtggcactc 4320 aggttggete actgtgacet tggageceae cacageette ttgtegggea getgatggag 4380 acatqtqcca qqctqcaqca qctcaqcttg tctcaggtta acctctgtga ggacgatgat 4440 qccaqttccc tqctqctqca qaqcctcctq ctgtccctct ctgagctgaa gacatttcgg 4500 ctgaceteca getgtgtgag caccgaggge etegeceace tggcatetgg tetgggecac 4560 tqccaccact tqqaqqaqct qqacttqtct aacaatcaat ttqatqaqga gggcaccaag 4620 gcgctgatga gggcccttga ggggaaatgg atgctaaaga ggctggacct cagtcacctt 4680 ctgctgaaca gctccacctt ggccttgctt actcacagac taagccagat gacctgcctg 4740 4800 cagageetea gaetgaacag gaacagtate ggtgatgteg gttgetgeea cetttetgag 4860 qctctcaggg ctgccaccag cctagaggag ctggacttga gccacaacca gattggagac 4920 qctqqtqtcc agcacttagc taccatcctg cctgggctgc cagagctcag gaagatagac 4980 ctctcaqqqa ataqcatcag ctcagccggg ggagtgcagt tggcaqaqtc tctcgttctt tgcaggcgcc tggaggagtt gatgcttggc tgcaatgccc tgggggatcc cacagccctg 5040 qqqctqqctc aqqaqctqcc ccaqcacctg agggtcctac acctaccatt cagccatctg 5100 ggcccaggtg gggccctgag cctggcccag gccctggatg gatcccccca tttggaagag 5160 atcagettgg eggaaaacaa eetggetgga ggggteetge gtttetgtat ggageteeeg 5220 5280 ctgctcagac agatagacct ggtttcctgt aagattgaca accagactgc caagctcctc acctccagct tcacgagctg ccctgccctg gaagtaatct tgctgtcctg gaatctcctc 5340 5400 gggatgagg cagctgccga gctgcccag gtgctgccga agatgggccg gctgaagaga gtggacctgg agaagaatca gatcacagct ttgggggcct ggctcctggc tgaaggactg 5460 geccaggggt ctagcateca agteateege ctetggaata accecattee etgegacatg 5520 5580 geccaqcace tgaagageca ggageccagg ctggactttg cettetttga caaccagece 5601 caggecett ggggtaettg a

60

cetettteac cetgtetagg ttgccagcaa atcccacggg cetectgacg etgcccetgg

<210> 2799

<211> 5133 <212> DNA

<213> Homo sapiens

<400> 2799

qqccacaqqt ccctcqagtg ctggaaggat gaaggattcc tgcatcactg tgatggccat 120 qqcqctqctq tctqqqttct ttttcttcqc gccggcctcg agctacaacc tggacgtgcg 180 ggggggggg agettetece caeeggggge egggaggeae tttggatace gegteetgea 240 300 tcaqtqccaq tcqqqcacaq qacactgcct gccagtcacc ctgagaggtt ccaactatac 360 ctccaaqtac ttgqgaatga ccttgqcaac agaccccaca gatggaagca ttttggcctg 420 tqaccetqqq ctqtctcqaa cgtgtqacca gaacacctat ctgagtggcc tgtgttacct 480 cttccqccag aatctqcaqq qtcccatgct qcaggggggc cctggttttc aggaatgtat 540 caaqqqcaac qtaqacctqq tatttctqtt tgatqgttcg atgagcttgc agccagatga 600 atttcaqaaa attctqqact tcatqaaqqa tqtqatqaag aaactcagca acacttcqta 660 ccaqtttqct qctqttcaqt tttccacaaq ctacaaaaca qaatttqatt tctcaqatta 720 tottaaatgg aaggaccctg atgctctgct gaagcatgta aagcacatgt tgctgttgac 780 840 caatacettt ggtgecatca attatgtege gacagaggtg tteegggagg agetggggge 900 cogccagat gccaccaaag tgcttatcat catcacggat ggggaggcca ctgacagtgg caacatcgat gcggccaaag acatcatccg ctacatcatc gggattggaa agcattttca 960 qaccaaqqag agtcaqqaga ccctccacaa atttgcatca aaacccgcga gcgagtttgt 1020 qaaaattctq qacacatttq aqaagctgaa agatctattc actgagctgc agaagaagat 1080 ctatqtcatt qaqqqcacaa gcaaacaqqa cctgacttcc ttcaacatgg agctgtcctc 1140 caqcqqcatc aqtqctqacc tcaqcaqqqq ccatgcaqtc qtqqqqcag taqqaqccaa 1200 qqactqqqct qqqqqctttc ttqacctqaa qqcaqacctq caqqatqaca catttattqq 1260 qaatqaacca ttqacaccaq aaqtqaqaqc aqqctatttq qqttacaccq tqacctgqct 1320 1380 qccctcccqq caaaaqactt cqttqctqqc ctcqqqaqcc cctcqatacc aqcacatqqq 1440 ccqaqtqctq ctqttccaaq aqccacaqqq cqqaqqacac tqqaqccaqq tccaqacaat ccatqqqacc caqattqqct cttatttcqq tqqqqaqctq tqtqqcqtcq acqtqqacca 1500 agatggggag acagagctgc tgctgattgg tgccccactg ttctatgggg agcagagagg 1560 aggccqqqtq tttatctacc agagaagaca qttqqqqttt qaaqaaqtct cagagctqca 1620

1125

qqqqacccc qqctacccac tcgggcggtt tggagaagcc atcactgctc tgacagacat 1680 caacqqcqat qqqctqqtaq acqtggctgt gggggccct ctggaggagc agggggctgt 1740 1800 qtacatcttc aatqqqaqqc acqqqqqqct taqtccccaq ccaagtcagc ggatagaagg gacccaagtg ctctcaggaa ttcagtggtt tggacgctcc atccatgggg tgaaggacct 1860 tgaaggggat ggcttggcag atgtggctgt gggggctgag agccagatga tcgtgctgag 1920 ctcccggccc gtggtggata tggtcaccct gatgtccttc tctccagctg agatcccagt 1980 2040 gcatgaagtg gagtgctcct attcaaccag taacaagatg aaagaaggag ttaatatcac aatctgtttc cagatcaagt ctctctaccc ccagttccaa ggccgcctgg ttgccaatct 2100 2160 cacttacact ctgcagctgg atggccaccg gaccagaaga cgggggttgt tcccaggagg gagacatgaa ctcagaagga atatagctgt caccaccagc atgtcatqca ctgacttctc 2220 atttcatttc coggtatgtg ttcaagacct catctccccc atcaatgttt coctgaattt 2280 2340 ctctctttgq gaggaggaag ggacaccgag ggaccaaagg gcgcagggca aggacatacc geocatectg agacettee tgcactegga aacetgggag atceettttg agaagaactg 2400 tggggaggac aagaagtgtg aggcaaactt gagagtgtcc ttctctcctg caagatccag 2460 agecetgeqt ctaactgett ttgccageet ctetgtggag etgageetga gtaacttgga 2520 agaaqatqct tactqqqtcc aqctggacct gcacttcccc ccgggactct ccttccgcaa 2580 qqtqqaqatq ctqaaqcccc ataqccaqat acctqtqaqc tqcqaqqagc ttcctqaaga 2640 gtccaggctt ctgtccaggg cattatcttg caatgtgagc tctcccatct tcaaagcagg 2700 2760 ccactcggtt gctctgcaga tgatgtttaa tacactggta aacagctcct ggggggactc 2820 ggttgaattg cacgccaatg tgacctgtaa caatgaggac tcagacctcc tggaggacaa ctcagccact accatcatcc ccatcctgta ccccatcaac atcctcatcc aggaccaaga 2880 agactecaca etetatgtea gttteacece caaaggeece aagatecace aagteaagea 2940 catqtaccaq gtgaqqatcc agccttccat ccacgaccac aacataccca ccctggaggc 3000 tqtqqttqqq qtqccacaqc ctcccaqcga ggggcccatc acacaccagt ggagcgtgca 3060 gatggagcct cccgtgccct gccactatga ggatctggag aggctcccgg atgcagctga 3120 qccttqtctc cccqqaqccc tqttccqctq ccctqttqtc ttcaqqcaqq agatcctcqt 3180 ccaaqtqatc qqqactctqq aqctqqtqqq aqaqatcqaq qcctcttcca tgttcaqcct 3240 ctgcagctcc ctctccatct ccttcaacaq caqcaaqcat ttccacctct atgqcaqcaa 3300 egecteectg geccaggttg teatgaaggt tgacgtggtg tatgagaage agatgeteta 3360 cctctacqtq ctqaqcqqca tcqqqqqqct qctqctqctq ctqctcattt tcataqtqct 3420 gtacaaggtt ggtttcttca aacggaacct gaaggagaag atggaggctg gcagaggtgt 3480

| • | cccgaatgga | atccctgcag | aagactetga | gcagctggca | tctgggcaag | aggctgggga | 3540 |
|---|------------|------------|------------|------------|------------|------------|------|
|   | teceggetge | ctgaagcccc | tccatgagaa | ggactctgag | agtggtggtg | gcaaggactg | 3600 |
|   | agtccaggcc | tgtgaggtgc | agagtgccca | gaactggact | caggatgccc | agggccactc | 3660 |
|   | tgcctctgcc | tgcattctgc | cgtgtgccct | cgggcgagtc | actgcctctc | cctggccctc | 3720 |
|   | agtttcccta | tctcgaacat | ggaactcatt | cctgaatgtc | tcctttgcag | gctcataggg | 3780 |
|   | aagacctgct | gagggaccag | ccaagagggc | tgcaaaagtg | agggcttgtc | attaccagac | 3840 |
| , | ggttcaccag | cctctcttgg | tteetteett | ggaagagaat | gtctgatcta | aatgtggaga | 3900 |
|   | aactgtagtc | tcaggaccta | gggatgttct | ggccctcacc | cctgccctgg | gatgtccaca | 3960 |
|   | gatgcctcca | cccccagaa  | cctgtccttg | cacactcccc | tgcactggag | tccagtctct | 4020 |
|   | tctgctggca | gaaagcaaat | gtgacctgtg | tcactacgtg | actgtggcac | acgccttgtt | 4080 |
|   | cttggccaaa | gaccaaattc | cttggcatgc | cttccagcac | cctgcaaaat | gagaccctcg | 4140 |
|   | tggccttccc | cagcetette | tagagccgtg | atgeeteeet | gttgaagctc | tggtgacacc | 4200 |
|   | agcctttctc | ccaggccagg | ctccttcctg | tetteetgea | ttcacccaga | cagetecete | 4260 |
|   | tgcctgaacc | ttccatctcg | cccacccctc | cttccttgac | cagcagatcc | cagctcacgt | 4320 |
|   | cacacacttg | gttgggtcct | cacatctttc | acacttccac | caccctgcac | tactccctca | 4380 |
|   | aagcacacgt | catgtttctt | catccggcag | cctggatgtt | ttttccctgt | ttaatgattg | 4440 |
|   | acgtacttag | cagctatctc | tcagtgaact | gtgagggtaa | aggctatact | tgtcttgttc | 4500 |
|   | accttgggat | gacgccgcat | gatatgtcag | ggcgtgggac | atctagtagg | tgcttgacat | 4560 |
|   | aatttcactg | aattaatgac | agagccagtg | ggaagataca | gaaaaagagg | gccggggctg | 4620 |
|   | ggcgcggtgg | ttcacgcctg | taatcccagc | actttgggag | gccaaggagg | gtggatcacc | 4680 |
|   | tgaggtcagg | agttagaggc | cagcctggcg | aaaccccatc | tctactaaaa | atacaaaatc | 4740 |
|   | caggcgtggt | ggcacacacc | tgtagtccca | gctactcagg | aggttgaggt | aggagaattg | 4800 |
|   | cttgaacctg | ggaggtggag | gttgcagtga | gccaagattg | cgccattgca | ctccagcctg | 4860 |
|   | ggcaacacag | cgagactccg | tctcaaggaa | aaaataaaaa | taaaaagcgg | gcacgggccc | 4920 |
|   | ggacatcccc | acccttggag | gctgtcttct | caggctctgc | cctgccctag | ctccacaccc | 4980 |
|   | tctcccagga | cccatcacgc | ctgtgcagtg | gccccacag  | aaagactgag | ctcaaggtgg | 5040 |
|   | gaaccacgtc | tgctaacttg | gagccccagt | gccaagcaca | gtgcctgcat | gtatttatcc | 5100 |
|   | aataaatgtg | aaattctgtc | caaaaaaaa  | aaa        |            |            | 5133 |

<sup>&</sup>lt;210> 2800 <211> 2376 <212> DNA

<213> Homo sapiens

<400> 2800 cgcgcggccc ctgtcctccg gcccgagatg aatcctgcgg cagaagccga gttcaacatc 60 ctcctqqcca ccqactccta caaqqttact cactataaac aatatccacc caacacaaqc 120 aaagtttatt cctactttga atgccgtgaa aagaagacag aaaactccaa attaaggaag 180 qtqaaatatg aggaaacagt attttatggg ttgcagtaca ttcttaataa gtacttaaaa 240 qqtaaaqtaq taaccaaaqa qaaaatccag gaagccaaag atgtctacaa agaacatttc 300 caaqatqatq tctttaatga aaagggatgg aactacattc ttgagaagta tgatgggcat 360 cttccaatag aaataaaagc tgttcctgag ggctttgtca ttcccagagg aaatgttctc 420 ttcacqqtqq aaaacacaga tccagagtgt tactggctta caaattqqat tqaqactatt 480 cttqttcaqt cctqqtatcc aatcacagtg gccacaaatt ctagagagca gaagaaaata 540 ttqqccaaat atttqttaga aacttctggt aacttagatg gtctggaata caagttacat 600 qattttqqct acagaqqaqt ctcttcccaa gagactgctg gcataggagc atctgctcac 660 ttggttaact tcaaaggaac agatacagta gcaggacttg ctctaattaa aaaatattat 720 qqaacqaaaq atcctqttcc aqqctattct qttccaqcag cagaacacag taccataaca 780 gcttggggga aagaccatga aaaagatgct tttgaacata ttgtaacaca gttttcatca 840 gtgcctgtat ctgtggtcag cgatagctat gacatttata atgcgtgtga gaaaatatgg 900 960 ggtgaagatc taagacattt aatagtatcg agaagtacac aggcaccact aataatcaga 1020 cctgattctg gaaaccctct tgacactgtg ttaaaggttt tggagatttt aggtaagaag tttcctqtta ctqaqaactc aaaqqqttac aaqttqctqc caccttatct taqaqttatt 1080 caaqqqqatg gagtagatat taatacctta caagagattg tagaaggcat gaaacaaaaa 1140 atqtqqaqta ttgaaaatat tgccttcggt tctggtggag gtttgctaca gaagttgaca 1200 agagatetet tqaattgtte etteaagtgt agetatgttg taactaatgg cettgggatt 1260 aacqtcttca aqqacccaqt tgctqatccc aacaaaaggt ccaaaaaggg ccgattatct 1320 1380 ttacatagga cqccaqcagg qaattttqtt acactggagg aaggaaaagg agaccttgag gaatatggtc aggatcttct ccatactgtc ttcaagaatg gcaaggtgac aaaaagctat 1440 1500 tcatttqatq aaataaqaaa aaatqcacaq ctqaatattq aactqqaaqc aqcacatcat 1560 taggetttat gactgggtgt gtgttgtgtg tatgtaatac ataatgttta ttgtacagat qtqtqqqtt tqtqttttat qatacattac aqccaaatta tttqttqqtt tatqqacata 1620 1680 ctgccctttc atttttttc ttttccagtg tttaggtgat ctcaaattag gaaatgcatt taaccatgta aaagatgagt gctaaagtaa gctttttagg gccctttgcc aataggtagt 1740

1800

960

cattcaatct qqtattqatc ttttcacaaa taacagaact gagaaacttt tatatataac tgatgatcac ataaaacaga tttgcataaa attaccatga ttgctttatg tttatattta 1860 1920 acttqtattt ttqtacaaac aaqattqtgt aaqatatatt tgaagtttca gtgatttaac 1980 agtettteca aetttteatg atttttatga geacagaett teaagaaaat aettgaaaat aaattacatt gccttttgtc cattaatcag caaataaaac atggccttaa caaagttgtt 2040 tgtgttattg tacaatttga aaattatgtc gggacatacc ctatagaatt actaacctta 2100 ctgcccttg tagaatatgt attaatcatt ctacattaaa gaaaataatg gttcttactg 2160 2220 gccaaatttg aaaggctgt actgcaattt tatatgtcag agattgcctg tggctctaat 2280 atgcacctca agattttaag gagataatgt ttttagagag aatttctgct tccactatag 2340 aatatataca taaatgtaaa atacttacaa aagtgg 2376 <210> 2801 <211> 1158 <212> DNA <213> Homo sapiens <400> 2801 60 geotgetget etggeeeetg gteetgteet etteteeage atggtgtgte tgaageteee tqqaqqctcc agcttggcag cgttgacagt gacactgatg gtgctgagct cccgactggc 120 tttegetggg gacacccgac cacqtttctt ggagetgegt aagtetgagt gtcatttctt 180 caatgggacg gagcgggtgc ggtacctgga cagatacttc cataaccagg aggagttcct 240 qcqcttcqac aqcqacqtqq qqqaqtaccq qqcqqtqacq qaqctqqqqc ggcctgtcgc 300 360 cqaqtcctqq aacaqccaqa aqqacctcct qqaqcaqaaq cqqqqccqqq tqqacaatta 420 ctgcagacac aactacgggg ttggtgagag cttcacagtg cagcggcgag tccatcctca

1129

teccqcetqq etqttattet tecacqagaq aqqqetttet caggacetag ttgctactgg

ttcagcaact gcagaaaatg tcctcccttg tggcttcctc agttcctgcc cttggcctga 1020
agtcccagca ttgatggcag cgcctcatct tcaacttttg tgctcccctt tgcctaacc 1080
ctatggcctc ctgtgcatct gtactcaccc tgtaccacaa acacattaca ttattaaatg 1140
tttctcaaaag atggagtt 1158

<210> 2802 <211> 3597

<212> DNA <213> Homo sapiens

<400> 2802 ggcgaatgga gcaggggcgc gcagataatt aaagatttac acacagctgg aagaaatcat 60 agagaageeg ggegtggtgg eteatgeeta taateeeage aettttggag getgaggegg 120 geagateact tgagateagg agttegagae cageetggtg cettggeate teccaatggg 180 qtqqctttgc tctgggctcc tgttccctgt gagctgcctg gtcctgctgc aggtggcaag 240 300 ctctqqqaac atgaaqqtct tgcaggagcc cacctgcgtc tccgactaca tgagcatctc tacttgcgag tggaagatga atggtcccac caattgcagc accgagctcc gcctgttgta 360 ccaqctqqtt tttctqctct ccqaagccca cacgtgtatc cctgagaaca acggaggcgc 420 qqqqtqcqtq tqccacctqc tcatqqatqa cqtqqtcagt qcggataact atacactgga 480 cctgtgggct gggcagcagc tgctgtggaa gggctccttc aagcccagcg agcatgtgaa 540 600 acccagggc ccaggaaacc tgacagttca caccaatgtc tccgacactc tgctgctgac 660 ctggaggaac ccgtatcccc ctgagaatta cctgtataat catctcacct atggagtgaa 720 cattiggagt gaaaacgacc cggcagattt cagaatctat aacgtgacct acctagaacc ctccttccgc atcgcagcca gcaccctgaa gtctgggatt tcctacaggg cacgggtgag 780 qqcctgqqct cagtgctata acaccacctg gagtgagtgg agccccagca ccaagtggca 840 caactectac agggageet tegageagea ceteetgetg ggegteageg ttteetgeat 900 tqtcatcctq qccqtctqcc tgttgtgcta tgtcagcatc accaagatta agaaagaatg 960 1020 qtqqqatcaq attcccaacc caqcccqcaq ccqcctcqtq gctataataa tccaggatgc tcaggggtca cagtgggaga agcggtcccg aggccaggaa ccagccaagt gcccacactg 1080 qaaqaattqt cttaccaaqc tcttqccctq ttttctqqaq cacaacatqa aaaqqqatqa 1140 1200 agatecteae aaggetgeea aagagatgee ttteeaggge tetggaaaat cagcatggtg cccagtggag atcagcaaga cagtcctctg gccagagagc atcagcgtgg tgcgatgtgt 1260 1320 ggagttgttt gaggccccgg tggagtgtga ggaggaggag gaggtagagg aagaaaaagg gagettetgt geategeetg agageageag ggatgaette caggagggaa gggagggeat 1380

1130

1440 ttgccagcag gacatgggg agtcatgcct tcttccacct tcgggaagta cgagtgctca 1500 catgecetgg gatgagttee caagtgeagg geecaaggag geaceteect ggggeaagga 1560 geagestate cacatggage caagtestes tgccageceg acceagagts cagacaacet 1620 qacttqcaca gagacqcccc tcgtcatcgc aggcaaccct gcttaccgca gcttcagcaa 1680 ctecetgage cagteacegt gteccagaga getgggteca gacceactge tggccagaca 1740 cetggaggaa gtagaacccg agatgccctg tgtcccccag ctctctqagc caaccactgt 1800 gccccaacct gagccagaaa cctgggagca gatcctccgc cgaaatgtcc tccagcatgg 1860 ggcagetgca geceeegtet eggeeeccae cagtggetat caggagtttg tacatgeggt 1920 ggagcaggt ggcacccagg ccagtgcggt ggtgggcttg ggtcccccag gagaggctgg 1980 ttacaaqqcc ttctcaaqcc tgcttgccag cagtgctgtg tccccagaga aatgtgggtt 2040 tgqqqctaqc aqtggggaag aggggtataa gcctttccaa gacctcattc ctggctgccc 2100 tggggaccct gccccagtcc ctgtcccctt gttcaccttt ggactggaca gggagccacc 2160 tegcaqtecq caqaqeteac ateteccaag cagetececa gageacetgg gtetggagee 2220 gggggaaaag gtagaggaca tgccaaagcc cccacttccc caggagcagg ccacagaccc 2280 cettqtqqac aqeetqqqca qtqqcattqt ctactcaqce cttacctqcc acctgtgcqq 2340 2400 ccacctgaaa cagtgtcatg gccaggagga tggtggccag acccctgtca tggccagtcc 2460 ttgctgtggc tgctgctgtg gagacaggtc ctcgccccct acaacccccc tgagggcccc 2520 agacccctct ccaggtgggg ttccactgga ggccagtctg tgtccggcct ccctggcacc 2580 ctcgggcatc tcagagaaga gtaaatcctc atcatccttc catcctgccc ctggcaatgc tcagagctca agccagaccc ccaaaatcgt gaactttgtc tccgtgggac ccacatacat 2640 qaqqqtctct taggtgcatg tcctcttgtt gctgagtctg cagatgagga ctagggctta 2700 tccatgcctg ggaaatgcca cctcctggaa ggcagccagg ctggcagatt tccaaaaagac 2760 ttqaaqaacc atqqtatqaa qqtqattqqc cccactqacq ttqqcctaac actgqqctgc 2820 agagactqqa ccccqcccaq cattqqqctq qqctcqccac atcccatqaq aqtaqaqqqc 2880 actgggtcgc cgtgccccac ggcaggcccc tgcaggaaaa ctgaggccct tgggcacctc 2940 gacttqtqaa cqaqttqttq qctqctccct ccacaqcttc tqcaqcaqac tqtccctqtt 3000 qtaactgccc aaggcatgtt ttgcccacca gatcatggcc cacgtggagg cccacctgcc 3060 totgtotcac tqaactaqaa qooqaqoota qaaactaaca caqooatcaa qqqaatqact 3120 tgggcggcct tgggaaatcg atgagaaatt gaacttcagg gagggtggtc attgcctaga 3180 ggtgctcatt catttaacag agcttcctta ggttgatgct ggaggcagaa tcccggctgt 3240

| caaggggtgt                                           | tcagttaagg | ggagcaacag | aggacatgaa | aaattgctat | gactaaagca | 3300 |
|------------------------------------------------------|------------|------------|------------|------------|------------|------|
| gggacaattt                                           | gctgccaaac | acccatgccc | agctgtatgg | ctgggggctc | ctcgtatgca | 3360 |
| tggaaccccc                                           | agaataaata | tgctcagcca | ccctgtgggc | cgggcaatcc | agacagcagg | 3420 |
| cataaggcac                                           | cagttaccct | gcatgttggc | ccagacctca | ggtgctaggg | aaggcgggaa | 3480 |
| ccttgggttg                                           | agtaatgctc | gtctgtgtgt | tttagtttca | tcacctgtta | tctgtgtttg | 3540 |
| ctgaggagag                                           | tggaacagaa | ggggtggagt | tttgtataaa | taaagtttct | ttgtctc    | 3597 |
| <210> 2803 <211> 696 <212> DNA <213> Homo <400> 2803 | sapiens    |            |            |            |            |      |
|                                                      |            | ccccgcccga | gcacaggaca | cagctgggtt | ctgaagcttc | 60   |
| tgagttctgc                                           | agcctcacct | ctgagaaaac | ctcttttcca | ccaataccat | gaagctctgc | 120  |
| gtgactgtcc                                           | tgtctctcct | catgctagta | getgeettet | gctctccagc | gctctcagca | 180  |
| ccaatgggct                                           | cagaccctcc | caccgcctgc | tgcttttctt | acaccgcgag | gaagcttcct | 240  |
| cgcaactttg                                           | tggtagatta | ctatgagacc | agcagcctct | gctcccagcc | agctgtggta | 300  |
| ttccaaacca                                           | aaagaagcaa | gcaagtctgt | gctgatccca | gtgaatcctg | ggtccaggag | 360  |
| tacgtgtatg                                           | acctggaact | gaactgagct | gctcagagac | aggaagtctt | cagggaaggt | 420  |
| cacctgagcc                                           | cggatgcttc | tccatgagac | acatctcctc | catactcagg | actcctctcc | 480  |
| gcagttcctg                                           | tcccttctct | taatttaatc | ttttttatgt | gccgtgttat | tgtattaggt | 540  |
| gtcatttcca                                           | ttatttatat | tagtttagcc | aaaggataag | tgtcctatgg | ggatggtcca | 600  |
| ctgtcactgt                                           | ttctctgctg | ttgcaaatac | atggataaca | catttgattc | tgtgtgtttt | 660  |
| ccataataaa                                           | actttaaaat | aaaatgcaga | cagtta     |            |            | 696  |
| <210> 280 <211> 145 <212> DNA <213> Home <400> 280   | sapiens    |            |            |            |            |      |
|                                                      |            | aagccatcat | taccattcac | atccctctta | ttcctgcagc | 60   |
| tgcccctgct                                           | gggagtgggg | ctgaacacga | caattctgac | gcccaatggg | aatgaagaca | 120  |
| ccacagetga                                           | tttcttcctg | accactatgc | ccactgactc | cctcagtgtt | tccactctgc | 180  |
| ccctcccaga                                           | ggttcagtgt | tttgtgttca | atgtcgagta | catgaattgc | acttggaaca | 240  |
| gcagctctga                                           | gccccagcct | accaacctca | ctctgcatta | ttggtacaag | aactcggata | 300  |

| atgatamagt                                        | ccagaagtgc     | agecactate | tattetetga | agaaattatt | terggerare | 360  |
|---------------------------------------------------|----------------|------------|------------|------------|------------|------|
| agttgcaaaa                                        | aaaggagatc     | cacctctacc | aaacatttgt | tgttcagctc | caggacccac | 420  |
| gggaacccag                                        | gagacaggcc     | acacagatgc | taaaactgca | gaatctggtg | atcccctggg | 480  |
| ctccagagaa                                        | cctaacactt     | cacaaactga | gtgaatccca | gctagaactg | aactggaaca | 540  |
| acagattctt                                        | gaaccactgt     | ttggagcact | tggtgcagta | ccggactgac | tgggaccaca | 600  |
| gctggactga                                        | acaatcagtg     | gattatagac | ataagttctc | cttgcctagt | gtggatgggc | 660  |
| agaaacgcta                                        | cacgtttcgt     | gttcggagcc | gctttaaccc | actctgtgga | agtgctcagc | 720  |
| attggagtga                                        | atggagccac     | ccaatccact | gggggagcaa | tacticaaaa | gagaatcctt | 780  |
| tcctgtttgc                                        | attggaagcc     | gtggttatct | ctgttggctc | catgggattg | attatcagcc | 840  |
| ttctctgtgt                                        | gtatttctgg     | ctggaacgga | cgatgccccg | aattcccacc | ctgaagaacc | 900  |
| tagaggatct                                        | tgttactgaa     | taccacggga | acttttcggc | ctggagtggt | gtgtctaagg | 960  |
| gactggctga                                        | gagtctgcag     | ccagactaca | gtgaacgact | ctgcctcgtc | agtgagattc | 1020 |
| ccccaaaagg                                        | aggggccctt     | ggggagggc  | ctggggcctc | cccatgcaac | cagcatagcc | 1080 |
| cctactgggc                                        | cccccatgt      | tacaccctaa | agcctgaaac | ctgaacccca | atcctctgac | 1140 |
| agaagaaccc                                        | cagggtcctg     | tagccctaag | tggtactaac | tttccttcat | tcaacccacc | 1200 |
| tgcgtctcat                                        | actcacctca     | ccccactgtg | gctgatttgg | aattttgtgc | ccccatgtaa | 1260 |
| gcaccccttc                                        | atttggcatt     | ccccacttga | gaattaccct | tttgccccga | acatgtttt  | 1320 |
| cttctccctc                                        | agtctggccc     | ttccttttcg | caggattctt | cctccctccc | tettteecte | 1380 |
| ccttcctctt                                        | tccatctacc     | ctccgattgt | tcctgaaccg | atgagaaata | aagtttctgt | 1440 |
| tgataatcat                                        | c              |            |            |            |            | 1451 |
| <210> 280 <211> 143 <212> DNA <213> Hom <400> 280 | 9<br>o sapiens |            |            |            |            |      |
|                                                   | acattcccat     | ggaaggtaaa | gccatcgcga | cgtctctcgg | tggtgatcgt | 60   |
| gtattgatat                                        | tcccgtgttc     | tcctcgctct | tccttcgttt | ttacatcccg | gctctctagc | 120  |
| ctgcctctaa                                        | agcgtgcgtc     | tatcggtggt | gctgtctctt | gttccggcgt | caatggcttg | 180  |
| acteggtgga                                        | attccattgt     | ttcgactcgc | cgactcgttc | ctgttcgttc | aattaactcg | 240  |
| gaatcggact                                        | cggactccga     | cttccctcac | gagaatcagc | agggaaatcc | aggtttgggg | 300  |

1133

360

aaatttaagg aataccaaga atgggactca tggacggcca agttctccgg tggagcaaac

attccgtttc tcatgctcca attgcctcag atcatcctca atacccagaa tcttttggcg 420

480

360

420

480

540

600

ggaaacaata ccgctctttc ggctgtccca tggctgggaa tgttgactgg tttgttagga

| aacctttcgt                                       | tgctttctta      | ttttgctaag | aagagagaaa | aagaagcagc | tgtggtgcaa | 540  |
|--------------------------------------------------|-----------------|------------|------------|------------|------------|------|
| acactgggag                                       | tggtctctac      | tcacattgtg | cttgcacagc | tcacaatggc | tgaagcaatg | 600  |
| cctattcagt                                       | attttgttgc      | tacttcagct | gttgtcacca | tcggtctcat | tgtgaactgt | 660  |
| ttgtactatt                                       | tcggtaagct      | tagcaaaact | gtgtggcaac | tgtgggaaga | cgttatcact | 720  |
| attggtggac                                       | teteegttet      | tcctcaaatc | atgtggtcaa | catttgtccc | tcttgtacca | 780  |
| aacagtatct                                       | tgcctgggac      | aactgctttt | ggtattgctg | tggcagctat | aatcatggct | 840  |
| cgaactggga                                       | aactttcaga      | gaaaggtgtt | aggtttgtag | ggtctttatc | tggatggaca | 900  |
| gcaactctta                                       | tgttcatgtg      | gatgccagtt | tcccaaatgt | ggacaaattt | tctaaacccg | 960  |
| gacaacataa                                       | aaggcttatc      | gtcaatcaca | atgttgctct | cgatgatggg | aaacgggctt | 1020 |
| atgatecete                                       | gagcactatt      | tatccgtgat | ttgatgtggc | tcactggttc | gctatgggca | 1080 |
| actctcttt                                        | atggatatgg      | aaatattctt | tgcttatacc | tggtaaattg | caccagccag | 1140 |
| tcattcttcg                                       | tggcagctac      | aattggtttg | atctcatgga | taggactggc | tttgtggaga | 1200 |
| gatgcagtgg                                       | cttatggtca      | caactcgccg | tttagatctt | tgaaagaact | tgtttttgga | 1260 |
| ccgtaatgaa                                       | tgaatgtaca      | cgccataaac | gccctttgtt | caagcaagtc | catagagatt | 1320 |
| acatgtattt                                       | tcattcttt       | ttcctaaggg | ttataagaca | actactctgt | aatttcatgt | 1380 |
| attttttac                                        | ttgaatcata      | tagtaaaata | atgtctgata | tcaaaaaaaa | aaaaaaaa   | 1439 |
| <210> 280<br><211> 954<br><212> DNA<br><213> Hom |                 |            |            |            |            | ,    |
| <400> 280<br>ggcacgaggc                          | 6<br>ggttgcacac | ttttttaaaa | aaagtaaatg | gatttgccac | aattaaatgt | 60   |
| cataacattt                                       | atgacagaat      | ataaaatatt | aacatatttt | aagccaagtt | ttaggtgtat | 120  |
| tttttgaatc                                       | ttggttataa      | acccaatttt | aaagggcgat | gtatccagcg | ttgtgaaggc | 180  |
| aacagagtgt                                       | acccatattt      | atatttttat | aaaataccta | taagactgtg | aatctcttgt | 240  |
| gctaatggct                                       | gagttaattg      | aaggatcgtt | ttgccccttt | ttagcctccc | agagettega | 300  |

ggactcaatt cgaacccgaa atcctgccgt gggggagggg ttgcgtcgag acctgggccc

ggggaggttc tcctgcgtca ctttctgtcc tgaaaggcgc ccttcctggt ttctgtggct

ccaattttct atgcagcccc acaccccttg ttgttttgat cctgagaaat aaaagggagg

ctgaattatt caaattaaaa tgaggtttcc ccttcatgga agtgctgctg acccttcgtg

cagaaatggg gagcacttga ggacacaggt gggtggaggc cctttgtgcg tggctggtcg

1134

| tattcgggca                                         | gccctccgtc | gctttttata | aaactttgtg | tgagaagaat | atattgataa | 660 |
|----------------------------------------------------|------------|------------|------------|------------|------------|-----|
| tgtcagtgaa                                         | acaagcagac | attgaaatgg | aggcacagat | tactccacaa | ggagttcttc | 720 |
| tgtatatttt                                         | ttctagatgc | aaataccttt | ttaattatgt | taattaatgt | taagactttc | 780 |
| taggcttata                                         | tcgaagctgt | gtgtgggtca | cggggtgatc | actgctaact | ggataaagtt | 840 |
| tgtgcagcac                                         | attcctgagt | gtacgatatt | gacctgtagc | ccagcgtgaa | aaatttataa | 900 |
| ataaattttt                                         | cattgatctt | tttatattaa | aaaaaaaaa  | aaaaaaaaa  | gttg       | 954 |
| <400> 2807                                         | sapiens    | teggaggece | tctattggtg | cctctctcct | gccgtcatca | 60  |
| ctatggcagg                                         | aaaacagaga | tggtttagta | atgaattatc | attcccaaac | ccgtgtccac | 120 |
|                                                    |            | catgtttgaa |            |            |            | 180 |
|                                                    |            | acaatgggcc |            |            |            | 240 |
|                                                    |            | ggaggccaca |            |            |            | 300 |
| tgccccaagc                                         | ccaggggatg | cctggagtcc | ccaggagctg | ggagaggcag | gaagggaccc | 360 |
| tcccctagag                                         | tctcttggag | ggaactgata | caattgcaga | gtgcactaaa | cagttgcccc | 420 |
| aaaagacata                                         | tcttgtttta | aggcccagac | ctgaaattt  |            |            | 459 |
| <210> 2808<br><211> 553<br><212> DNA<br><213> Homo | sapiens    |            |            |            |            |     |
|                                                    |            | ctggctggct | ggctgtccct | gtgtgtgtgt | gacacacggt | 60  |
| gtgagtgcag                                         | ggctgtgcgt | gtgtgggagg | gtgtctatgt | ggcactgact | gtcttagctc | 120 |
| agagctggtg                                         | gatectetee | atggacaatg | acactttaag | gattgtcttg | gtttgttttt | 180 |
| cctatttgtg                                         | gggtattttc | cccctcaggc | tcctgggtct | gctgctgcct | caaggtgtcc | 240 |
| tgaccttgag                                         | gctgatgagg | ggacccctgc | ctgtttcccc | catactgagt | tctagggagg | 300 |
| tgctcacccc                                         | agactcttag | gaagggtcta | gagaaatgag | aggagcccaa | gccaggggcc | 360 |
| agct ccgaga                                        | aagggtaacc | tccacgcttc | teteteccaa | attggaaatg | aagacaggtt | 420 |
| ttcaaaggca                                         | caggeteece | ctgccagctt | ctaggatctt | ccttggtgtg | caatgggcca | 480 |
| gttaggggta                                         | ggcagcttgc | acccagttct | cctttatctc | aacttattgt | cctggggaga | 540 |
| ggtgctagag                                         | gga        |            |            |            |            | 553 |

60

1620

<210> 2809

<211> 4628 <212> DNA

<213> Homo sapiens

<400> 2809 gagcagaccc cgaaagcccc atcctggacc tggaccttca cctgcccttg ctgtgcttca ggcctgagaa ggtgctacag atcctgacat gcatcctgac ggaacagcgg atcgtcttct 120 180 tetectegga etgggetetg etgacgetgg teactgagtg etteatggee tacetgtate egetgeagtg geageacece ttegtgeeca teetgtegga ceagatgetg gatttegtea 240 tggccccac gtccttcctg atgggctgcc atctcgacca cttcgaagaa gtcagcaagg 300 aagccgacgg tttagttctg ataaatattg atcatgggag catcacctac tccaagtcca 360 cggacgataa cgtggacatt cctgatgtcc ccctcctggc agcccagacg tttattcaga 420 480 gggtgcagag cotccagete caccatgage tgcaegeege ceaecteete tecageacag acctgaagga gggccgagcc caccggcggt cctggcagca gaaactcaac tgccagatac 540 aqcaqaccac cctqcagctg ctcgtgagca tcttcaggga tgtaaagaat catttaaact 600 atqaacacaq aqtctttaat agtgaaqaat ttctcaaaac cagggctcca ggggaccatc 660 agttttataa qcaqqtctta qacacctaca tqttccattc ttttcttaaa gcccggctca 720 ataggaggat ggacgccttt gctcagatgg acctcgacac ccagtcggag gaggacagaa 780 840 taaatqqaat qcttctaaqt ccaaqqaqac cqaccqttqa qaaaaqaqcc tcccqqaagt 900 cctcgcacct gcatgtcacc cacaggcgca tggtggtcag catgcccaac ctgcaggaca 960 ttqccatgcc tgagctggca cccaggaact cctcgctccg gctgacggac accgcaggct gtaggggag cagcgcagtt ctgaatgtca cgccgaagtc cccgtataca ttcaagattc 1020 ccqaaatcca ctttccgctg gagagcaagt gcgtgcaggc ataccatgcc cactttgtct 1080 ccatqctqag cqagqccatg tgctttctgg cccccgataa ctctctgctc ctggcccgct 1140 atttqtacct ccqaqqqctc qtttatctga tqcaqggaca gctgctgaac gccctcttgg 1200 acttccaqaa totqtataaa acaqacatac qgatctttcc cactgatttg gtgaagagga 1260 cqqtqqaatc catqtctqcc cctqaqtggg aqqqqqctqa qcaqqcqccg gagctgatga 1320 qqctcatcaq cqaqatcctq qacaaqccqc acqaqqcctc qaaqctqqac qaccacqtqa 1380 agaagttcaa gctgcccaag aagcacatgc agctgggcga cttcatgaag cgggtccagg 1440 agtcagggat cgtgaaggac gccagcatca tacaccggct gttcgaggcc ttgactgtag 1500 qacaqqaqaa acaaatcqac ccaqaaacat tcaaaqattt ctacaactqc tqqaaqqaqa 1560

cggaagcaga agcccaggag gtcagtctgc cgtggctggt gatggaacac ctggataaaa

acquittqtq qtqtaaqttq tccaqctccq tcaaqacaaa cctaqqcqtt qqcaaqatcq 1680 ccatgaccca gaagcgcctg ttcctcctaa ccgaaggaag gccaggctac ttggagattt 1740 ccaccttcag aaatatagag gaggtcagga gaaccactac tacatttcta cttcggagaa 1800 tacccacttt aaaaatcaga gtggcgtcca agaaagaagt cttcgaagcc aacctgaaaa 1860 ccqaqtgtga cctttggcac ctgatggtga aggagatgtg ggctgggaag aagctggccg 1920 atqaccacaa qgaccctcac tacgtccagc aggcgctgac caacgtcttg ctgatggacg 1980 ccqtcqtggg cacactgcag tcaccaggcg ccatctacgc tgcctccaag ttatcctact 2040 ttqataagat qagtaacgaa atgcccatga cgcttccgga gacaaccctg gaaacactga 2100 agcataaaat caacccctcg gcgggggaqq cgttcccaca agcggtggac gtgctgctct 2160 2220 acactecagg geatettgac ccageegaaa aagttgaaga tgeteaceec aagttatggt qtqctctqaq cqaaqqcaaq qtgaccgtgt tcaatgcttc ttcatggacc atccaccagc 2280 actectttaa agtqqqcact qcaaaagtqa actgcatggt qatgqccgac cagaaccagg 2340 tqtqqqttqq ctcqqaaqac tccqtcatct acatcatcaa cqtccacagc atgtcctqca 2400 acaagcaqct cacaqcccac tgctccaqtq tcacqqattt gattqtqcaq qacqqacaqq 2460 aggeacceag caacgtgtac tegtgcagea tggacggcat ggtgctggtg tggaatgtga 2520 gcacactgca ggtgaccagc cgcttccagc tgccgcgagg tggcctgacg tccatcagac 2580 tgcacggcgg ccgcctgtgg tgctgcacag gtaacagcat catggtcatg aaaatgaatg 2640 gatccctcca tcaagaattg aagattgagg agaacttcaa agacaccagt acctccttcc 2700 tggccttcca gctccttcct gaggaggagc agctgtgggc ggcctgtgca ggacgcagcg 2760 aggtttacat ctggagcctg aaggacctgg cccagcccc gcagagggtg cccctcgagg 2820 actqctctqa qatcaactqc atqatccggg tqaaqaagca ggtctqggtg ggcagccgag 2880 qqctqqqqa qqqaacaccc aaqqqqaaaa tctacqtqat tqacqccgaq aggaaqaccg 2940 tggagaagga gctggtggcg cacatggaca ccgtgaggac gctgtgctcg gctgaggaca 3000 3060 gatacgtgct gagtgggtcg ggcagggagg aggggaaagt cgccatttgg aaaggcgaat aaacgtggct gagtctgcca agtggaactg tgccctatgt gtggggactg gctgcccct 3120 agageetgee aggageagaa geetggaggg gtggeaggge agageageee aggeteagea 3180 tggaggggac ttaccgtgtg gccaggggg agacccatgg ccacgcact tctctcaggc 3240 cttegggece eetggttaaa etgeaceaag ggtgttteet gttggggtgt gteteaggea 3300 ggcagctgcg tcttgttggt gataacctct gctgggaggt tactttgttg cctagaaagt 3360 tetggaatee acaaccaggg getggcactg gagccagcag ettggccgag teacaggtga 3420

| cccgtggccc | tcacgtctct | ggttttacct | ttccttactt | cattcattca | ctcacccagt | 3480 |
|------------|------------|------------|------------|------------|------------|------|
| ccttacgaat | caccgaggaa | cactgggctg | agcacatgac | agggagcctg | gagccccggg | 3540 |
| geetecageg | aggcctgaga | agggtggttc | gggtaaccac | tgtgggctct | ctcccatcac | 3600 |
| agaaggtgga | cagggcctac | ccaggtggag | gggaccaccc | tgcgatcagg | tgtttgcgac | 3660 |
| aggggttggg | ccagctgagg | caagctgtct | tttttccctt | ttctttttaa | tagatgcaac | 3720 |
| atttttataa | taatcctaga | gaccttttt  | ctaccaaaga | tcacagacca | gaaaaagttc | 3780 |
| catctaaaat | atcatgccca | ggaaagcaca | tgggatcaaa | agtaaaatag | catcatgtgt | 3840 |
| gatetegtet | tecagegtge | cgctcagttc | cccgaatccg | tgtgcacacg | tgtgatctcg | 3900 |
| tcttcagtgt | gccgctcagt | tccctgaatc | cgtgtgcaca | ctgcgtatgt | gtacgcgcag | 3960 |
| catgctatac | tgaactcaac | aagatcttgg | ctgtacataa | atatttgtaa | aagagaccct | 4020 |
| ttgcaccttt | ttactgtcat | gttgagactt | cattacttaa | atgttctacg | gaaggttctg | 4080 |
| gtgtggttgt | tggagccgga | gggagcgtgt | cagcacgtgc | tgagggcatg | gggcctgccc | 4140 |
| cctgggcacc | catccacaag | ctgggccacg | gagctccagc | ttctcaggac | aaagccccgg | 4200 |
| ggctggcgca | tcctgagggt | ctctgggggt | gtttgccagg | ctcctgggat | gggccgcttt | 4260 |
| cagaagccct | gcagtgcctc | cagatggaaa | ggcgggcccg | gcctccggtt | gggtctgcat | 4320 |
| tttggagagt | ccacaccacg | gaccaggttt | tcccccaagg | cttggctttg | tgtagctact | 4380 |
| aacttcttgg | ggcattctga | gagtgtgggc | agagagaatt | atgtggcctc | atectecee  | 4440 |
| aaggctgtgc | ttgcagcccg | ggcaccttcc | cactttctag | ctctggagag | gttggatttt | 4500 |
| gcttttgtaa | acacatgaat | ccttatgata | aaagtctgtc | agtcaaaaat | acatttataa | 4560 |
| attatttaat | gccagtcctc | atgtaacctc | aggtatcttc | agcttgtgga | gaataaatct | 4620 |
| ggtttaat   |            |            |            |            |            | 4628 |
| <210> 281  | 0          |            |            |            |            |      |
| <210> 281  | -          |            |            |            |            |      |

<212> DNA

<213> Homo sapiens

<400> 2810

ggcacgagge aggcgctgac gaggagcccg gctgagggag gatgcgccgc tgacgcctgc 60
gggagccgcg cgcctggggc gggaggatgc tccagagggg cctctggccg tggcgcacgc 120
ggctgctgcc gacccctggc acctggcgc cagcgcgcc gtggcgctg ccgctccgc 180
cccaggtttt gcgtgtgaag ctgtgtggaa atgtgaaata ctaccagtca caccattata 240
gtaccgtggt gccacctgat gaaataacag ttatttatag acatggcctt cccttggtaa 300
cacttacctt gccatctaga aaagaacgtt gtcaattcgt agtcaaacca atgttgtcaa 360

cagttggttc attecttcag gacctacaaa atgaagataa gggtatcaaa actgcagcca 420 tetteacage agatggeaac atgattteag ettetacett gatggatatt ttgetaatga 480 atgattttaa acttqtcatt aataaaatag catatgatgt gcagtgtcca aagagagaaa 540 aaccaagtaa tgagcacact gctgagatgg aacacatgaa atccttggtt cacagactat 600 ttacaatott goatttagaa gagtotoaga aaaagagaga goaccattta otggagaaaa 660 720 ttqaccacct qaaqqaacaq ctqcagcccc ttgaacaggt gaaagctqqa atagaagctc attoggaago caaaaccagt ggactootgt gggotggatt ggcactgotg tocattoagg 780 qtqqqcact qqcctqqctc acqtqqtggg tgtactcctg ggatatcatg gagccagtta 840 catacttcat cacatttqca aattctatgg tcttttttqc atactttata gtcactcgac 900 960 aggattatac ttactcagct gttaagagta ggcaatttct tcagttcttc cacaagaaat caaagcaaca gcactttgat gtgcagcaat acaacaagtt aaaagaagac cttgctaagg 1020 1080 ctaaaqaatc cctqaaacaq qcqcqtcatt ctctctgttt gcaaatgcaa gtagaagaac tcaatqaaaa qaattaatct tacaqtttta aatgtcgtca gattttccat tatgtattga 1140 ttttgcaact taggatgttt ttgagtccca tggttcattt tgattgttta atctttgtta 1200 1245

<210> 2811 <211> 3780

<212> DNA

<213> Homo sapiens

<400> 2811 tactggacaa acattteete caaggacaca getetetgee tecatgteac cacetttgaa 60 ggactgactg attecetegg etggtgeeag tgeetgetee tgeeatgggg eeegegggga 120 gcctqctqgg cagcggacag atgcagatca ccctgtgggg aagtctggca gctgtcgcca 180 ttttcttcgt catcaccttc ctcatcttcc cgtgctctag ttgtgacagg gaaaagaagc 240 300 cqcqacaqca tagtqqqqac catgagaacc tgatgaacgt gccttcagac aaggagatgt tcaqccqttc aqttactaqc ctqqcaacag atgctcctgc cagcagtgag cagaatgggg 360 cacteaceaa tqqqqacatt ctttcaqagg acagtactct gacctgcatg cagcattacg 420 aggaaqtcca qacatcqqcc tcqqatctqc tqqattccca ggacaqcaca gggaaaccaa 480 aatqtcatca qaqtcqqqaq ctqcccaqaa tccctcccqa qaqcqcagtg gataccatgc 540 600 tcacqqcqaq aaqtqtqqac qqqqaccaqq qqctqqggat qgaaqggccc tatgaagtgc tcaaggacag ctcctcccaa gaaaacatgg tggaggactg cttgtatgaa actgtgaagg 660 720 agatcaagga ggtggctgca gctgcacacc tggagaaagg ccacagtggc aaggcaaaat

1139

780 ctacttetge etegaaagag eteccaggge eccagaetga aggeaaaget gagtttgetg aatatgcctc ggtggacaga aacaaaaaat gtcgtcaaag tgttaatgta gagagtatcc 840 900 ttqqaaattc atqtqatcca gaagaqqaqq ccccaccacc tgtccctgtt aagcttctgg acqaqaatqa aaaccttcaq qaqaaqqaaq qqqqaqaggc ggaagagagt gccacagaca 960 cgaccagtga aactaacaag agatttagct cattgtcata caagtctcgg gaagaagacc 1020 ccactctcac agaagaagag atctcagcta tgtactcatc agtaaataaa cctggacagt 1080 1140 tagtgaataa atcggggcag tcgcttacag ttccggagtc cacctacacc tccattcaag gggacccaca gaggtcaccc tcctcctgta atgatctcta tgctactgtt aaagacttcg 1200 aaaaaactcc aaacagcaca cttccaccag cagggaggcc cagcgaggag ccagagcctg 1260 1320 attatgaagc gatacagact ctcaacagag aggaagaaaa ggccaccctg gggaccaatg gccaccacgg tetegtecca aaggagaacg actacgagag cataagtgac ttgcagcaag 1380 1440 gcagagatat taccaggete tagcaaccca gaagacaacc etgggtagec tgtgatcagt gtctggagac gtttcttctg tggaagagaa gaagtgacac aaacctatac ttcatatgct 1500 1560 getttagtea cetgaagatg gttggagagg ceetgtegae tgtteteeca gttgtteagt ttctgagaca gagaggtacg gactaggctg cacctgagtg tgcccctgcc tgccagatgg 1620 1680 acaggtacac ccaagcacat ctccctgctg caccctcacc acccacaaaa gatcccagct qtcaqtqqtc tcatctcatt aqtqaqqaaa qccaaqctqt atggaaaagc tgcactcacc 1740 aaggaccaca atgccccqq cctaaagtac tgccattcag aaaagcaggt ttttcttcct 1800 ctettteett ttetetgtet getactgaet ttaaggettt tteeccettg aaatgteeag 1860 attectgtgg ttcatcccaa ggaaattttc acacaaagct tggcctttgc cctcaatata 1920 1980 agtatttag gatgqtgaca aaccatggct gctqctttct gcccaqctcg ccaqtcctcc 2040 ccaaagagtt gcgcatcagc acctggggat ctggaccctg cgggtgaagg gatggggagg gacgtccctg gagtctcttc tgtctttgtt ccttcttatt ttggcattcg atatcagcag 2100 2160 cctctcccca aagtacttga agtcagtttt agatgcttta ttttattttt ctagtcaaaa acqtqtttcc cccaqtqttt qaaaactcgt ccgaatcttt tcagtatttt ccatgagtat 2220 tqtqqtactt ctagacttgt ttaagcccag aactcattcc ttcaaaacag agagccttaa 2280 tetttatqtt qqqacacaqa ecacatattt qqacqqcaqe catgcateca tegetgaagg 2340 qctqtqqaca tqaatqtqta tttcccatqq tctccqctqc ccacaccaac agtgtggcat 2400 ctcataagtt aactqctacc ctaaggtaat ctaagattaa aatgtaaaca tttatttttg 2460 ttatqtaaqt ttataaqatq ttttatqttc aatqcctaat ttctcaaaaq tgccagaaaa 2520 aaatgtatat tagctatttt gattttatgt acaatgattt atactctcct tttgaaaaga 2580

| taccataaag | cacataagct | agatcactac | aaggagctgt | tatcttttt  | ctaatcaagt | 2640 |
|------------|------------|------------|------------|------------|------------|------|
| gtttaaaaca | ctgatggttt | ttaaagactc | acctttttaa | atggtacttg | gagctcctga | 2700 |
| ttcaaattac | ctagaccccc | tagagaaata | aatggaatat | acataaataa | tcattttcag | 2760 |
| tggtttatgg | tgggcaatat | tgcaatattt | gaaatggtaa | aaatggaaag | aagaacaaaa | 2820 |
| tatgatgaga | ggtggctgtg | aattataaac | ctcataaaag | tgtcataatt | ccattaaggt | 2880 |
| ttaattatat | tttttcagaa | aacagtgatg | aattctgtag | tccagtgctt | gccaatgcaa | 2940 |
| attgcctatt | ggaatcttct | tcctatattt | tacaaacatc | agtggctgaa | atagctcaga | 3000 |
| gtaagagctc | agcctggttt | gaatttaatc | atctctttag | atcttataag | gccagcatta | 3060 |
| ggaaacttgt | tcacttttca | ttttcaaagg | agcctagttg | aagtgctatt | atgagtgtgg | 3120 |
| gctatggaaa | gacagctttt | cctacactga | taaagaaaaa | aaatgaggaa | attatttcat | 3180 |
| ccccttgtga | catctgtgac | tttttggatt | taataatctt | gctgttttc  | ctctttatga | 3240 |
| caaagaatat | aattgggagg | atgaagtgtc | ttaaaaattg | tagagaccag | ctcactggaa | 3300 |
| tgtttttcca | tccctgtatt | catggcttga | ctttgtgact | gctctacact | gcatgtctga | 3360 |
| cattgcagag | tgagctatgt | tgaggtaaac | tggttggttg | tcattattt  | gcaatcagcc | 3420 |
| tggtctctcc | catgaagatg | tcgtgtgcat | aagcacaatc | atcactgatt | agaagatcac | 3480 |
| agcagaatac | ccttggatta | gagagaagtt | cgtaccttgc | atttctctga | attctagtct | 3540 |
| ctcataagca | ctgctttgct | ggatgatttt | cactgctttg | tgttaatgac | tttgagcgat | 3600 |
| ctctcacatg | atggggttct | ttagtacatg | gtaacagcca | tgtcatctta | cacacctage | 3660 |
| attgtgaatg | ctgtagtgac | atcctttata | ggcaccttac | agctcaaaac | ttttgtttca | 3720 |
| tttcatgcct | tacttatcaa | aaaggcagga | aagtaggtat | gatctctaaa | gtaaaaaaaa | 3780 |
|            |            |            |            |            |            |      |

<210> 2812 <211> 2176 <212> DNA

<213> Homo sapiens

<400> 2812

aaaaatgcaa tgattattga tatctaggtg acctgaaaaa aaatagtgaa tgtgctttgt 60 aaactgtaaa gcacttgtat tctactgtga taagcgttgt ggatacaaag aaaggagcaa 120 gcataaaaaa gtgctctttc aaaaggatat agtactatgc agacacaagg aattgtttga 180 taaatgaata aattatatgt atatttgagg ccaatttgtg tttgctgctc tggtaatttt 240 gagtaaaaat gcagtattcc aggtatcaga aacgaaaaca catggaaact gcttttaaac 300 tttaaaatat actgaaaaca taagggacta agcttgttgt ggtcacctat aatgtgccag 360 ataccatgct gggtgctaga gctaccaaag ggggaaaagt attctcatag aacaaaaaat 420

ttcagaaagg tgcatattaa agtgctttgt aaactaaagc atgatacaaa tgtcaatggg 480 ctacatattt atgaatgaat gaatggatga atgaatatta agtgcctctt acataccagc 540 tattttgggt actgtaaaat acaagattaa ttctcctatg taataagagg aaagtttatt 600 ctctatacta ttcagatgta aggaatgata tattgcttaa ttttaaacaa tcaagacttt 660 actggtgagg ttaagttaaa ttattactga tacatttttc caggtaacca ggaaagagct 720 aqtatqaqqa aatgaagtaa tagatgtgag atccagaccg aaagtcactt aattcagctt 780 qcqaatqtqc tttctaaatt ataaagcact tgtaaatgaa aaatttgatg ctttctgtat 840 qaataaaact ttctgtaagc taggtattgt ctctacaaaa ttctcattgt atagttaaac 900 cacaqtqaqa aqqqttctat aagtagttat acaaaccaag ggtttaaata cctqttaaat 960 agatcaattt tqattqccta ctatgtgaac tcactgttaa aggcactgaa aatttatcat 1020 atttcattta qccacaqcca aaaataaggc aatacctatg ttagcatttt gtgaactcta 1080 aggcaccata taaatqtaac tqttqatttt ctcacttggt gctgggtact aggtttataa 1140 aattgtatga tagttattat attgtgcaaa taaagtagga aaatttgaat aacaatgatt 1200 atcttttqaa tacqcatacq caaqqqattq qttqtctqaa gaatqccact atagtagtta 1260 tctattqtqt qccaatctca ttqctaqqca ttqqqqatqc aaaqataaac catctttatt 1320 gtgtcttggg tagcagaaga aaatatgtgt aaaatcaatt tataatttgt aaactgccac 1380 ccatatataa gctatatctg ctgaatgatc attgattact cttatcctta gagataacaa 1440 ctgggggac aaacatttat tatcattatt gaacctacaa cagagatcta tgtgtagatt 1500 1560 tacqaaqcct acaqttctat acaqataqqa atqaactatt qqcttactqa atqqtqatta ctttctqtgg qqctcqqaac tacatqccct aggatataaa aatgatgtta tcattataga 1620 qtqctcacaq aaggaaatga aqtaatataq gtgtgagatc cagaccaaaa gtcatttaac 1680 aaqtttattc aqtqatgaaa acatgggaca aatggactaa tataaqqcag tqtactaaqc 1740 tqaqtaqaqa qataaaqtcc tqtccaqaag atacatqctt cctggcctga ttgaggagat 1800 qqaaaatttt tqcaaaaaac aaggtqttqt qqtcttccat ccaqtttctt aagtqctqat 1860 gataaaagtg aattagaccc accttgacct ggcctacaga agtaaaggag taaaaataaa 1920 tgcctcaggc gtgctttttg attcatttga taaacaaagc atcttttatg tggaatatac 1980 cattetgggt cetgaggata agagagatga gggcattaga teactgacag etgaagatag 2040 aagaacatct ttggtttgat tgtttaaata atatttcaat gcctattctc tgcaaggtac 2100 2160 tatgtttcgt aaattaaata ggtctggccc agaagaccca ctcaattgcc tttgagatta 2176 aaaaaaaaa aaaaaa

```
<210> 2813
<211> 580
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(1)
<223> n is a, c, g, t or u
<400> 2813
nccttttgcc catgttgtct ggaatgccct tcttctccct cttgtttaca tcaagcatca
                                                                  60
gactgaatat ccctcttgtg cggccttcta aaacctcccg tccaaagcga aatatattgc
                                                                120
cctctattta tacttttaca qcatttqqca cacaaqtaca qaqtaqtaqc tttttatcac
                                                                180
attetetgat aattatatag atatggtatt tettagetet eteteeaact ggetaataag 240
ttgctttttg tctgagtgcc taattttgtg ttttgtgtct gagtgcctca gttcctcaaa 300
aaaaggtttt ttgattagtt cattattcat ttgaacatgg aaattatgct cactagtggc 360
aaatgccact aaccgtattc cagaagctag gtgtcatgtt tgcaataaga tatattatcc 420
cttctacaag tcacctttta tttcaggcat ttgtaaatgc ccattaataa agtatggttc 480
ataaatttta ccttqtaagt gcctaagaaa tgagactaca agctccattt cagcaggaca
                                                                 540
                                                                 580
<210> 2814
<211> 5426
<212> DNA
<213> Homo sapiens
<400> 2814
qqqqaqqaaq aaaqqcqaaq gcaaggcgaa ggggtggaga gtgatatgaa gagcgagaga
                                                                  60
aaaqaqaqqa caqcqqacqa qcaqatccgg tatctggaat cccggcgcct agaacgtgtt
                                                                 120
tttcgggaga gcaaaggctg tgtctacggc aggctgggga tatagcctct ccttccgatg
                                                                 180
aaaagagaaa ggaagaatgg actacagcca ccaaacgtcc ctagtcccat gtggacaaga
                                                                 240
taaatacatt tocaaaaatg aacttotott goatotgaag acctacaact tgtactatga 300
aggccagaat ttacagctcc ggcaccggga ggaagaagac gagttcattg tggaggggt
                                                                 360
cctgaacatc tcctggggcc tgcgccggcc cattcgcctg cagatgcagg atgacaacga 420
acquattcga coccetecat cotectecte etgqcactet qqctqtaacc tqqqqqctca
                                                                 480
gggaaccact ctgaagcccc tgactgtgcc caaagttcag atctcagagg tggatgcccc
                                                                 540
geeggaggt gaccagatge caageteeac agacteeagg ggeetgaage eeetgeagga
                                                                 600
ggacacccca cagctgatgc gcacacgcag tgatgttggg gtgcgtcgcc gtggcaatgt
                                                                 660
```

qaqqacqcct aqtqaccaqc qqcqaatcag acqccaccqc ttctccatca acqgccattt 720 ctacaaccat aagacatccg tgttcacacc agcctatggc tctgtcacca acgtccgcat 780 caacagcacc atgaccaccc cacaggtcct gaagctgctg ctcaacaaat ttaagattga 840 gaattcagca gaggagtttg ccttgtacgt ggtccatacg agtggtgaga aacagaagct 900 gaaggecace gattaceege tgattgeeeg aatceteeag ggeceatgtg ageagatete 960 caaagtgttc ctaatggaga aggaccaggt ggaggaagtc acctacgacg tggcccagta 1020 tataaagttc gagatgccgg tacttaaaag cttcattcag aagctccagg aggaagaaga 1080 tegggaagta aagaagetga tgegcaagta caeegtgete eggetaatga ttegacagag 1140 gctggaggag atagccgaga ccccagcaac aatctgagcc atgagaacga ggggatctgg 1200 gcaccccagg aaccgccatt gcccataaga cccccaggaa gctaggcact ttctttccat 1260 ggaaacattt agacacaaac ctccccagct ccggccaagc catcatttgc tacctggagc 1320 tggatgtaga agtcagcaga cagctcccta tccctggacc cctgccctcc ttttttctgc 1380 tcacaaqqac ttttqatttt agttataagg aggacccaaa atgtgtgtgt gtacatgtgt 1440 gtgcacacat ggtacgtgtc catgtgccta cctgatactt tcacatgtaa ttaaattcca 1500 ggcaaccagc acaagagccg tgagcttggc acatgtgctg ctcgtgagca ggaaaatcag 1560 aggagecact gatetgagtg gtatttaggt tgaaggaaag attteteete teaagtgeca 1620 1680 gggagcagcc acacgtctgt ctgtgtttag agagggaaga gggttctcca ggttcaccat 1740 ttgggttgtt tatatgttgg tagaaattct ccctgtatgc ctagaaggat cagtgaatgt aagageettg gaaattaaca aaataacage cacataacet tgeggeaagt etgatggaaa 1800 gaaaaagata aaccatccgt ggggtagatg caataagccc acgtattttt acactggaaa 1860 cqttgattgt tttaaatgac aaagacatat gtgatgttct atgtggaaac ctgtgaagag 1920 tagattetge etecatetet geeteeatgg etacetttag gagacagaga agateetgtg 1980 tgtttctctg tacccagctg acagcctgtc tctatggcgc ttccttgagt ggaaggaaat 2040 qtctcaaqaa acaaaqatct cqctqqtqcq tacacaqtqc tqaccaqcta qtqtqgccaq 2100 ggcctggtgg cctggtggcc aggaagtttc aggttgaagg gaaatgtcga ggctacctgc 2160 2220 agatatgaca ggtgccttga acgcagccca tcttcatgtc atcaaaggtc ttcctgcact tqaaqctqqq qcqatqtttq caqtcaaqac cattetttec aacctetqqq ttettqcaaq 2280 ttgccctcac cttgtgtgtg gagatgcatt ccaagaatga agcctcatct tgctactgag 2340 2400 tgtggggttc agggaagctc tttaggccac ctggtgaagg tgcatgggga ggatggagct tetecteage teetetgage agecacetat gtgatettta aatecaaece caatgggaga 2460

2520 aaaqqqcaag aacagtctgt gccctgggac tcctatcagg aagcttgaca ggcagctggg catcagtgca getgatateg tttgaggagg gagacagatg ettggacetg ggtqeetqqe 2580 tatggagatt gaccaagcaa gatcaggagc tcctgatagc aggcgtcttt gagcctagct 2640 qqqqtaqaqq cactgcccat ctcttctcca ccttctctcc acagaatgtt tgcagagctg 2700 qqcaqttqaq qaaaqqacaq cccctqqttq qtgcctccaa aggaaggtgg acttttttgg 2760 tggagacgtt tctgccctgg gcaccctcct gcccccgatt catacctatg gcttcttgag 2820 2880 aaqqctcaca qctqtqqtct taacqtaqac tqcagaaaga tggcatqcgg cccctggcat ttcgccaagg gttttatagc aagtctcctt cctccatagg gacagcagca ccagcctgt 2940 3000 qqqqcatqqa qtqqaaqccc aqaaqqqctt ctqcaaqctq cacaqaactq qqqtaaqaag acaaaqaqta qccaccqqqa qaqqcttcct ttqttacaqc tqqqaaaqaa caqttctqtq 3060 3120 aatqcaaaca cctcctqaqt tttqcaattq aqaaaatqat ttqqaqaact tctcttctgg taatttttat tttqaatqtt caqqqcctta qttqqcccca qtaattctcc ttqqaqqact 3180 tgggagaaga atttccacaa agcaaactac taaccactag ctcttactgg acagcgattt 3240 3300 ctggcttata agagttctct ttgatttgca ctagcactac gatagtgtta gatggggaaa tactgcaaca tgtccagttg gccagatcac tttccaaggg agcgatacta aggcagactc 3360 agetttttaa agatgggagg teaggaggtg gaagtgagag gagateceat eteacacaac 3420 3480 acacttccac gtaatgcaga ccacactttt ccattttgtc ctgccctctt gagaggtcat ttctcacqtc ctaaqaacct qatcaqaaat tttqqaaggg ttctttgaaa tagcagcagt 3540 tqaaacaqaq acactttqcc acaqtqtqqa qcaqattttc tcactqqtat cacatgqtct 3600 tgcagttttg aactettcga ccgatttgtg ggagtttatg taattgcgtg caatgaacct 3660 3720 qaaattqtqt aaaqqacaaa aqaccaqttt ataqqqttqq qttttttttc caacttgtqa 3780 aaagcagttt agctgcatct gtctccccac cacccccacc ccgggagggg cttatgttac aaggtgatca agtgaaggaa aaacctgagc ctatctggct gggatggtgg aattaagcac 3840 3900 aaggtcacat tctctgtgat cacatgagag ggaaggtgat gacttaaatg gcagggggtg gqqattatct tggggagagg ctgaaaagca caaaagatag tcttccctqt acqtattqqt 3960 gaagaacgtg cacaaggctg gatggacttc aacttggagt tgagttgagg caagaggatt 4020 tctqqatatt agtcacccat ctgcaagaaa aatgctgagg cctcgggtca agattttgat 4080 ctqaqacatq ctqatqcttc aaggagaaat attttcacaa tcctctcttc cctcaccaga 4140 agagaacagt actetetet agaaacetet aggtaaacac attttateet aatateggta 4200 qcatataatq cccccccaa aatatctqtt ttccatgcaa aaaagtctca acaagaagtc 4260 tqtqqaqttq aqtqqttact tcaaaqtqtc aggagagtga agaaattggc cacagaagag 4320

| caagaagctc                              | tcttaagaaa | agggaattct | ctttaaagaa | accaccacca | acaacaaac  | 4380 |
|-----------------------------------------|------------|------------|------------|------------|------------|------|
| aaccaaaaac                              | catgttttat | gtcaaagctc | tgtagcacag | agaatgtggt | gtcacagata | 4440 |
| catcgccgag                              | agaggtttct | ttctttcttt | tttttttt   | tgagacagag | tctggttctg | 4500 |
| tttcccaggc                              | tggagtgcag | tggtgggatc | tcagctcact | gcaacatccg | cctctggggt | 4560 |
| tcaagtgatt                              | ctcctgtctc | agcctcccaa | gtagctggaa | ttacagggac | ccgccaccac | 4620 |
| gcccggctaa                              | ttttttgtg  | tggttttagt | agaggtgggg | tttcaccatc | ttggccaggc | 4680 |
| tggtcttgaa                              | ctcctgacct | cgtgatccac | ccgcctaggc | ctcccaaagt | gttgggatta | 4740 |
| caggcgtgag                              | ccactgtgcc | cagccaaaag | agaaatttct | acatgaacaa | ggcaatttca | 4800 |
| gtgtcttaca                              | gcggccaaac | catgacgtga | agaatgagat | aggagacagg | agatcaccat | 4860 |
| aagcgtccct                              | gatatagcag | cacacatttt | cacgtttcca | cttaaatcgt | tttgcacaaa | 4920 |
| gtcttgcttc                              | gctcagatga | gatgagatat | gatttcctag | agatgtaaaa | ataagaatga | 4980 |
| atgtggcgcc                              | cccttcttcc | agatgtaata | gaaagctctg | ccctatcaca | aggggggtgt | 5040 |
| tgaagcgccc                              | cttgtgtttt | aactgtattt | aactgagcac | aagatgcaca | agctgtggtg | 5100 |
| ggaaaccctc                              | agtttacctt | tggagtcttc | cctgcagatc | gcagacctgt | ttccaggctg | 5160 |
| atgtttctgg                              | tgtgtaattg | ctagcgtttc | tgaagggttt | tcccaattgt | tttagccttg | 5220 |
| tgaagtattc                              | ttaattataa | cttgcctttc | agcgatggta | catgacttga | ttcaacgttt | 5280 |
| ggttctgaac                              | ttacacactg | atgcgtttac | tcatctaaca | taatctgaca | gggcctcagc | 5340 |
| aagggagcca                              | tacatttttg | taacattttg | atatgtttta | atgcatctga | cttagatctt | 5400 |
| actgaaataa                              | agcacttttc | aaagag     |            |            |            | 5426 |
| <210> 281 <211> 605 <212> DNA <213> Hom | o sapiens  |            |            |            |            |      |

60 ggetteecca egggaggaeg egaggeeceg geecagecat ggeeceetgg egeaaagetg acaaggageg geaeggegtg gecatataca acttecaagg cageggagee ceceagetet 120 180 ccctgcagat cggcgatgtg gtgcgaatac aggagacgtg tggagactgg tataggggat acctcataaa gcacaaaatg ttacagggca tttttcctaa gtcatttatc cacatcaagg 240 aagtgacagt tgagaaaaga agaaatactg agaacatcat tcctgcagaa attcctctgg 300 cacaagaagt gacaacgaca ctttgggaat ggggaagcat ctggaaacaa ctctatgtgg 360 ccagcaaaaa ggagcgtttt ctccaggtgc agtccatgat gtacgatctg atggagtgga 420 ggtcccagct tctctcagga accttaccca aggatgagct gaaggaactg aagcagaaag 480

540 aaqacggaaa tatcttggac cctgataata ccagtgtcat cagcttgttc catgcacatg 600 aqqaaqcaac tgataaaatc acagagcgta tcaaagaaga aatgtcaaaa gaccagccag 660 attatqcaat gtattcccgg atctcctcat cccccaccca tagcctctat gtgtttgtga 720 qaaactttqt qtqcaqaatt ggggaagatg ctgagctctt catgtctctc tacgacccca 780 acaaqcaaac qqtcataaqt gagaactacc tagtgcgatg gggcagccgg ggcttcccta 840 aqqaqattqa qatqctcaac aatctgaagg tggtcttcac ggatcttgga aacaaagacc 900 tcaacaqqqa taaaatttac ttgatttgtc aaatagtccg ggtcggcaag atggatctta 960 aggatactqq tqcaaaqaaq tqcacgcagg gactgaqgag gccctttggg gtggcagtta 1020 tqqatataac aqacatcatc aaqqqqaaaq caqaqaqtga tgaagaaaag cagcacttca 1080 ttccttttca cccqqttaca qctqaqaatq acttcctaca cagcctgctg ggcaaagtca 1140 1200 tagcctccaa qqqqqacaqt qqaqqqcaaq qcctctggqt gaccatgaag atgctggtgg 1260 gtgacatcat tcagattcgc aaggactatc cacacctggt ggacaggacc accgtggtgg ccaggaagct gggattccca gagatcatca tgccagggga tgtcaggaac gacatctaca 1320 1380 ttactctctt acaaggtgac tttgacaagt acaacaagac cacacagagg aatgtggaag 1440 tcatcatgtg tgtgtgcgcg gaggatggca aaacgctgcc taatgcaatt tgcgtgggag caggggacaa gcccatgaat gagtatcgct ccgttgtgta ctatcaagtc aaacagccac 1500 gctqqatqqa aacagtcaag gtggctgtcc ctattgaaga catgcagagg atccatctgc 1560 qattcatqtt tcqacatcgg tcatctctgg aatctaaaga taaaggagaa aagaactttg 1620 ccatgtccta tgtgaagctg atgaaagaag atgggactac tctacacgat ggattccatg 1680 acttaqttqt cctcaaqqqq qacaqcaaqa aqatqqaqqa tqccaqcgca tacctgaccc 1740 ttccttctta tcqacaccat qtqqaaaaca aqqqqccac qctqaqcaqq aqctccaqca 1800 gtgttggggg gctttctgtc agctcccggg atgtgttctc catttccacc ctggtgtgct 1860 1920 ccacaaagct cactcagaat gtgggcttgc tgggtttgct gaagtggcgt atgaagcctc 1980 aactgctaca ggagaattta gaaaagttga agattgtgga tggagaggaa gtggtgaagt ttctccagga tactctggat gccctcttca acatcatgat ggagcattct caaagtgatg 2040 2100 aatatgacat cotegtottt gatgoottga tttacataat aggactcatt gcagacegga aatttcagca tttcaacacc gttctggagg cttacatcca acagcatttc agtgcgacct 2160 tggcttacaa gaaattgatg acagtgctga agacttactt ggatacctcc agcagagggg 2220 agcaatqtqa gccaatccta agaacgctga aggctttgga atatgtgttc aagttcattg 2280

ttcggtcgag gacattattt tcacagcttt atgaaggcaa agaacagatg gagtttgaag 2340 2400 aatccatgag acggctcttt gaatccatca acaatctgat gaaaagtcaa tacaaaacta 2460 ccatcctttt qcaggtggcg gctttgaaat acatcccatc tgtcctgcat gatgtagaaa 2520 tgqtctttga tgcgaagtta ctcagccaac tcctgtatga gttctacacc tgcatccctc ctqtqaaact ccagaagcaq aaagtacagt ctatgaatga gatagtccaq aqcaacctct 2580 ttaaaaagca agaatgccgg gacattctgc ttcctgtcat caccaaagag ctqaaqqaqc 2640 2700 tqctqqaqca qaaqqatqac atgcaacacc aggtcctgga gaggaagtac tgcgttgaat 2760 tgctcaacaq catcttggaa gtccttagct accaggatgc ggccttcacc taccaccata tecaaqaqat catqqtecaq etgetqeqqa cagtgaaceg gacagteate accatgggee 2820 qqqatcacat tctqattaqt cactttgtqg catgtatgac agccatctta aaccagatgg 2880 qtqaccaqca ctactccttc tacattqaqa ccttccagac cagctctgaa cttgtggact 2940 3000 tottgatgga gaccttcatc atgttcaagg acctcattgg aaagaacgtg taccctggag actggatggc catgagcatg gttcaaaaca gggtcttcct gagagctatc aacaagtttg 3060 caqaaaccat qaaccaqaaq ttcctaqaac acacqaactt tgagttccag ctgtggaaca 3120 actattttca tctggcagtg gcttttatca cccaggattc tctgcagctg gagcagttct 3180 cacacgccaa atacaacaaa atcctgaata agtatgggga catgagacgg ctaattggct 3240 3300 tetecateeg tgatatgtgg tacaagettg gteagaacaa aatetgette ateccaggea 3360 tggtaggacc tatattagag atgacactta tccctgaggc tgagctccgg aaagccacca taccaatctt cttcgacatg atgctgtgtg aatatcaaag aagtggggat ttcaaaaagt 3420 3480 ttqaaaacqa aatcatcctq aagctggacc acgaggtaga agggggccga ggcgacgagc aqtacatqca qctqctqqag tcaatcctga tggaatgtgc tgcagagcac ccaaccattg 3540 ccaaqtcqqt qqaqaacttc qtgaacctqq tcaaaqqcct cctggagaag ctgctggatt 3600 accggggtgt gatgacagat gagagcaaag acaaccgcat gagctgcact gtgaacctgc 3660 tgaatttcta caaagataac aacagggagg agatgtacat aaggtacctg tacaaactcc 3720 gcgatcttca cctggactgt gacaattaca cagaggctgc ctacacgctc cttctccaca 3780 cetggettet caagtggteg gatgagcagt gtgcatcaca ggtcatgcag acaggecage 3840 agcaccccca gacacaccgg cagetcaagg agacgeteta egagaccate ataggetact 3900 ttgacaaagg aaagatgtgg gaagaggcca taagtctgtg caaggagctg gcggaacagt 3960 acqaqatqqa gatctttgac tatgagctgc tcagccagaa cctgatccag caggcaaaat 4020 tctatgaaag catcatgaaa atcctcaggc ccaaaccaga ctactttgct gttggatact 4080 acqqccaqqq attcccctcc ttcctqcqqa acaaagtgtt catctaccgc gggaaggaat 4140

atqaqcqaaq aqaaqatttc cagatgcagc tgatgaccca gttccccaat qcaqaqaaga 4200 4260 tqaacaccac ctctqccccg ggagatgatg tgaagaatgc cccaqqccaq tatatccagt getteactgt ccaqcetqte ttggatgaac atcccaggtt caagaataag ccagtgcetg 4320 accagattat aaacttetac aaatccaact acgtgcaaag gttccactac teeeggeeeg 4380 tgcgcagggg gaccgtagac ccagagaatg agtttgcttc catgtggatt gagagaacct 4440 4500 cetteqtqac tqcatacaaq etqceqqqqa tcetqcqctq qtttqaqqtq qtqcacatqt 4560 cgcagaccac aattagtect ctggagaatg ccatagaaac catgtecacg gccaatgaga 4620 agatectgat gatgataaac cagtaccaga gtgatgagac cetececate aacccactet ccatgetect gaacgggatt gtggaccetg ctgtcatggg aggettegec aagtatgaga 4680 aggeettett cactqaaqaq tatqtcaqqq accaccetqa qqaccaqqac aaqetqacce 4740 4800 acctcaagga cctgattgca tggcagatcc ccttcttggg agctgggatt aagatccatg agaaaagggt gtcagataac ttgcgaccct tccatgaccg gatggaggaa tgtttcaaga 4860 4920 acctgaaaat gaaggtggag aaggagtacg gtgtccgaga gatgcctgac tttgacgaca 4980 ggagagtggg ccgccccagg tetatgetgc getcatacag acagatgtcc atcatetete tqqcttccat qaattctgac tgcagcaccc ccagcaagcc tacctcagag agctttgacc 5040 tqqaattaqc atcacccaaq acqccgagaq tqqaqcaqga ggaaccgatc tccccgggga 5100 qcaccetqcc tqaqqtcaaq ctqcqqaqqt ccaaqaaqaq qacaaaqaqa agcagcqtaq 5160 tttttqcqqa tqaqaaaqca qctqcaqaqt cqqacctqaa gcqqctttcc aggaaqcatq 5220 5280 agtteatgag tgacaccaac eteteggage atgeggeeat ecceeteaag gegtetgtee tototoaaat gagotttqcc aqccaqtcca tgcctaccat cocagocotq gogototoaq 5340 tggcaggcat ccctgggttg gatgaggcca acacatetec ccgcctcagc cagacettec 5400 5460 tecaactete agatggtgae aagaagacae teacaeggaa gaaggteaat cagttettea agacaatgct ggccagcaaa teggetgaag aaggcaaaca gateecagae tegetgteca 5520 eggacetgtg agetgetget gaetaggget geatgggaga geeagggagg ggagtttetg 5580 qaaqaqqaaa gccatgcgtg gaacatcgaa gcctcagaga gtgggagact gtccccatca 5640 qttqtcctta cttaqaqqaq acaqagaggc caatcaggtc ccagagctgg agtgctaaca 5700 agcccagcat cccctggggc tgtgatcatg gtggatgagg aagcctcaac gtagattcct 5760 qaactcaaqq taccaqcaaq aatqccttct cccaqtqtqc tctccccaac atcctaggca 5820 5880 cagettteat aacccagttt ettaggtgta agaaactget tttateteat ttattaagte tcagaactta acagaaaagg aagcctttta aatattcttt ttaattttat tttagattaa 5940

| cagilligla cil                                         | cacaccc ccccacacaa | ccaaccagec | cocccccag  | ccaaccaccc | 8000 |
|--------------------------------------------------------|--------------------|------------|------------|------------|------|
| ctgaagagtt gct                                         | gtttctt actgacaata | aaaaatgttc | tcttggttcg |            | 6050 |
| <210> 2816<br><211> 1030<br><212> DNA<br><213> Homo sa | piens              |            |            |            |      |
| <400> 2816                                             |                    |            |            |            |      |
| agatgtaaac caa                                         | tttcagg ccacaactcc | cttttctggt | acagacagac | catgatgcgg | 60   |
| ggactggagt tgc                                         | tcattta ctttaacaac | aacgttccga | tagatgattc | agggatgccc | 120  |
| gaggatcgat tct                                         | cagctaa gatgcctaat | gcatcattct | ccactctgaa | gatccagccc | 180  |
| tcagaaccca ggg                                         | actcagc tgtgtacttc | tgtgccagca | gtttctcgac | ctgttcggct | 240  |
| aactatggct aca                                         | ccttcgg ttcggggacc | aggttaaccg | ttgtagagga | cctgaacaag | 300  |
| gtgttcccac ccg                                         | aggtcgc tgtgtttgag | ccatcagaag | cagagatete | ccacacccaa | 360  |
| aaggccacac tgg                                         | tgtgcct ggccacaggc | ttcttccccg | accacgtgga | gctgagctgg | 420  |
| tgggtgaatg gga                                         | aggaggt gcacagtggg | gtcagcacag | acccgcagcc | cctcaaggag | 480  |
| cagecegece tea                                         | atgactc cagatactgc | ctgagcagcc | gcctgagggt | ctcggccacc | 540  |
| ttctggcaga acc                                         | cccgcaa ccacttccgc | tgtcaagtcc | agttctacgg | gctctcggag | 600  |
| aatgacgagt gga                                         | cccagga tagggccaaa | cccgtcaccc | agatcgtcag | cgccgaggcc | 660  |
| tggggtagag cag                                         | actgtgg ctttacctcg | gtgtcctacc | agcaaggggt | cctgtctgcc | 720  |
| accatcctct atg                                         | agateet getagggaag | gccaccctgt | atgctgtgct | ggtcagcgcc | 780  |
| cttgtgttga tgg                                         | ccatggt caagagaaag | gatttctgaa | ggcagccctg | gaagtggagt | 840  |
| taggagette taa                                         | cccgtca tggtttcaat | acacattctt | cttttgccag | cgcttctgaa | 900  |
| gagetgetet cae                                         | ctctctg catcccaata | gatatcccc  | tatgtgcatg | cacacctgca | 960  |
| cactcacggc tga                                         | aatctcc ctaacccagg | gggaccttag | catgcctaag | tgactaaacc | 1020 |
| aataaaaatg                                             |                    |            |            |            | 1030 |
|                                                        |                    |            |            |            |      |
| <210> 2817                                             |                    |            |            |            |      |
| <211> 2454<br><212> DNA                                |                    |            |            |            |      |
| <213> Homo sa                                          | piens              |            |            |            |      |
| <400> 2817                                             |                    |            |            |            |      |
|                                                        | ttcagac aagcctgctt | gccggagctc | agcagacacc | aggccttccg | 60   |
| ggcaggcctg gcc                                         | caccgtg ggcctcagag | ctgctgctgg | ggcattcaga | accggctctc | 120  |
| cattggcatt ggg                                         | accagag accccgcaag | tggcctgttt | gcctggacat | ccacctgtac | 180  |
| gtccccaggt ttc                                         | gggaggc ccaggggcga | tgccagaccc | cgcggcgcac | ctgcccttct | 240  |

totacggcag catctcgcgt gccgaggccg aggagcacct gaagctggcg qqcatqqcqq 300 acgggetett cetgetgege cagtgeetge getegetggg eggetatgtg etgtegeteg 360 tgcacgatgt gegettecae caetttecca tegagegeca getcaaegge acetaegeca 420 ttgccggcgg caaagcgcac tgtggaccgg cagagctctg cgagttctac tcgcgcgacc 480 ccgacgggct gccctgcaac ctgcgcaaqc cqtqcaaccq qccqtcqqqc ctcgagccqc 540 agcoggggt cttcgactgc ctgcgagacg ccatggtgcg tgactacgtg cgccagacgt 600 ggaagctgga gggcgaggcc ctggagcagg ccatcatcag ccaggccccg caggtggaga 660 ageteattge taegaeggee caegagegga tgeeetggta ceaeageage etgaegegtg 720 aggaggccga gcgcaaactt tactctgggg cgcagaccga cggcaagttc ctgctgaggc 780 cgcggaagga gcagggcaca tacgccctgt ccctcatcta tgggaagacg gtgtaccact 840 acctcatcag ccaagacaag gcgggcaagt actgcattcc cgagggcacc aagtttgaca 900 cgctctggca gctggtggag tatctgaagc tgaaggcgga cgggctcatc tactgcctga 960 aggaggeetg ceceaacage agtgeeagea aegeeteagg ggetgetget eccaeactee 1020 cageceacce atceacgttg acteatecte agagacgaat egacaceete aacteagatg 1080 gatacacccc tgagccagca cgcataacgt ccccagacaa accgcggccg atgcccatgg 1140 acacgagegt gtatgagage cectacageg acceagagga geteaaggae aagaagetet 1200 tcctgaagcg cgataacctc ctcatagctg acattgaact tggctgcggc aactttggct 1260 cagtgcgcca gggcgtgtac cgcatgcgca agaagcagat cgacgtggcc atcaaggtgc 1320 tgaagcaggg cacggagaag gcagacacgg aagagatgat gcgcgaggcg cagatcatgc 1380 accagetgga caaccectae ategtgegge teattggegt etgeeaggee gaggeeetea 1440 tgctggtcat ggagatggct ggggggggc cgctgcacaa gttcctggtc ggcaagaggg 1500 aggagatccc tgtgagcaat gtggccgagc tgctgcacca ggtgtccatg gggatgaagt 1560 acctggagga gaagaacttt gtgcaccgtg acctggcggc ccgcaacgtc ctgctggtta 1620 accggcacta cgccaagatc agcgactttg gcctctccaa agcactgggt gccgacgaca 1680 getactacae tgecegetea geagggaagt ggeegeteaa gtggtaegea eeegaatgea 1740 tcaacttccg caagttctcc agccgcagcg atgtctggag ctatggggtc accatgtggg 1800 aggeettgte etaeggeeag aageeetaea agaagatgaa agggeeggag gteatggeet 1860 tcatcgagca gggcaagcgg atggagtgcc caccagagtg tccacccgaa ctgtacgcac 1920 tcatgagtga ctgctggatc tacaagtggg aggatcgccc cgacttcctg accgtggagc 1980 agegeatgeg agectgttac tacagectgg ccaqcaaggt ggaagggeec ccaggcagca 2040

cacaqaaqqc tgaggctgcc tgtgcctqaq ctcccgctgc ccaggggagc cctccacgcc 2100 qqctcttccc caccctcagc cccaccccaq qtcctgcagt ctggctgagc cctgcttqqt 2160 2220 tqtctccaca cacaqctqqq ctqtqqtaqq qqqtgtctca ggccacaccq gccttqcatt gcctgcctqq ccccctqtcc tctctqqctq qqqaqcagqg agqtccqqqa qqqtqcqqct 2280 gtgcagcetg teetgggetg gtggeteeeg gagggeeetg agetgaggge attgettaca 2340 eggatgeett eccetgggee etgacattgg ageetgggea teetcaggtg gteaggegta 2400 2454 gatcaccaga ataaacccag cttccctctt gaaaaaaaaa aaaaaaaaa aacc <210> 2818 <211> 2761 <212> DNA <213> Homo sapiens <400> 2818 agaggacgee eggtgaaggg getecageet ggcagtttet gegtgttage atttetagaa 60 tagagtgggt gggaactgac ccaagtaaag tcccagagac tcgaacactg acgcacagga 120 aagcctcaag tgggaggaga aatgcaaatc ccctactgat gatggcgtca gcggctttct 180 cctagggact gtgaggggg cttctgactt tggacttgag cactgcctgg gacctgtgct 240 gagagagege tageatgtet cagtggaate aagtecaaca gttagaaate aagtttttgg 300 agcaggtgga tcaattctat gatgacaact ttcccatgga aattcggcat ctgttggccc 360 aatggattga aaatcaagac tgggaggcag cttctaacaa tgaaaccatg gcaacgattc 420

ttcttcaaaa cttgttaata caactggatg aacagttagg tcgtgtttcc aaagagaaaa 480 acctactctt gatacacaat ctaaaaagaa ttaggaaggt ccttcaggga aaatttcatg 540 gaaatccaat gcatgtagct gtggttattt caaactgttt aagggaagag aggagaatat 600 tqqctqcaqc caacatqcct qtccaqqqgc ctctagagaa atccttacaa agttcttcag 660 tttcaqaaaq acaqaqqaat qtqqaqcaca aaqtqqctqc cattaaaaac aqtqtqcaga 720 tgacagaaca agataccaaa tacttagaag atctgcaaga cgaatttgac tacaggtata 780 840 aaacaattca qacaatqqat caqaqtqaca aqaataqtqc catqqtqaat caqqaaqttt tgacactgca ggaaatgctt aacagcctcg atttcaagag aaaggaggct ctcagtaaaa 900 tgacccaaat catccatgag acagacctgt taatgaacac catgctcata gaagagctgc 960

1152

PCT/US2003/012946 WO 2004/042346

| ttgtggttga | gcgacagcca | tgtatgccaa | cccaccctca | gaggccgttg | gtacttaaaa | 1260 |
|------------|------------|------------|------------|------------|------------|------|
| ccctaattca | gttcactgta | aaactaaggc | tactaataaa | attgccagaa | ctaaactatc | 1320 |
| aggtaaaggt | taaggcatca | attgacaaga | atgtttcaac | tctaagcaac | cgaagatttg | 1380 |
| tactttgtgg | aactaatgtc | aaagccatgt | ctattgaaga | atcttccaat | gggagtctct | 1440 |
| cagtagaatt | tcgacatttg | caaccaaagg | aaatgaagtc | cagtgctgga | ggtaaaggaa | 1500 |
| atgagggctg | tcacatggtg | actgaagaac | ttcattccat | aacgtttgaa | acacagatet | 1560 |
| gcctctatgg | cctgaccata | gatttggaga | ccagctcatt | gcctgtggtg | atgatttcca | 1620 |
| atgtcagtca | gttacctaat | gcttgggcat | ccatcatttg | gtacaacgtg | tcaaccaacg | 1680 |
| attcccagaa | cttggttttc | tttaataatc | ctccacctgc | cacattgagt | caactactgg | 1740 |
| aggtgatgag | ctggcagttt | tcatcgtacg | ttggtcgtgg | tcttaactca | gatcaactcc | 1800 |
| atatgctggc | agagaagctt | acagtccaat | ctagctacag | tgatggtcac | ctcacctggg | 1860 |
| ccaagttctg | caaggaacat | ttacctggta | aatcatttac | cttttggaca | tggcttgaag | 1920 |
| caatattgga | tctaattaag | aaacacattc | ttcccctttg | gattgatggg | tatgtcatgg | 1980 |
| gctttgttag | caaagagaag | gaacggctgt | tgctaaagga | taaaatgcct | ggcacctttt | 2040 |
| tattaagatt | cagtgaaagc | catctcggag | gaataacttt | cacctgggtg | gaccattctg | 2100 |
| aaagtgggga | agtgagattc | cactctgtag | aaccctacaa | taaaggccgg | ttgtctgctc | 2160 |
| tgccattcgc | tgacatcctg | cgagactaca | aagttattat | ggctgaaaac | attcctgaaa | 2220 |
| accctctgaa | gtacctatat | cctgacattc | ccaaagacaa | agccttcggt | aaacactaca | 2280 |
| gctctcagcc | ttgcgaagtt | tcaagaccaa | cagaaagggg | tgacaaaggt | tatgttcctt | 2340 |
| ctgtttttat | ccccatctca | acaatccgaa | gtgattcaac | agagccacat | tctccatcag | 2400 |
| accttcttcc | catgtctcca | agtgtgtatg | cggtgttgag | agaaaacctg | agteceacaa | 2460 |
| caattgaaac | tgcaatgaag | tctccttatt | ctgctgaatg | acaggataaa | ctctgacgca | 2520 |
| ccaagaaagg | aagcaaatga | aaaagtttaa | agactgttct | ttgcccaata | accacatttt | 2580 |
| atttcttcag | ctttgtaaat | accaggttct | aggaaatgtt | tgacatctga | agctctcttc | 2640 |
| acactcccgt | ggcactcctc | aattgggagt | gttgtgactg | aaatgcttga | aaccaaagct | 2700 |
| tcagataaac | ttgcaagata | agacaacttt | aagaaaccag | tgttaataac | aatattaaca | 2760 |
| g          |            |            |            |            |            | 2761 |

<sup>&</sup>lt;210> 2819
<211> 1190
<212> DNA
<213> Homo sapiens

<sup>&</sup>lt;400> 2819

| cagatccatc | aggtccgagc | tgtgttgact | accacttttc          | ccttcgtctc | aattatgtct | 60   |
|------------|------------|------------|---------------------|------------|------------|------|
| tggaaaaagg | ctttgcggat | ccccggaggc | cttcgggcag          | caactgtgac | cttgatgctg | 120  |
| tcgatgctga | gcaccccagt | ggctgagggc | aġagactctc          | ccgaggattt | cgtgtaccag | 180  |
| tttaagggca | tgtgctactt | caccaacggg | acagageg <b>c</b> g | tgcgtcttgt | gagcagaagc | 240  |
| atctataacc | gagaagagat | cgtgcgcttc | gacagegacg          | tgggggagtt | ccgggcggtg | 300  |
| acgctgctgg | ggctgcctgc | cgccgagtac | tggaacagcc          | agaaggacat | cctggagagg | 360  |
| aaacgggcgg | cggtggacag | ggtgtgcaga | cacaactacc          | agttggagct | ccgcacgacc | 420  |
| ttgcagcggc | gagtggagcc | cacagtgacc | atctccccat          | ccaggacaga | ggccctcaac | 480  |
| caccacaacc | tgctggtctg | ctcggtgaca | gatttctatc          | cagcccagat | caaagtccgg | 540  |
| tggtttcgga | atgaccagga | ggagacagct | ggcgttgtgt          | ccacccccct | tattaggaat | 600  |
| ggtgactgga | ccttccagat | cctggtgatg | ctggaaatga          | ctccccagcg | tggagacgtc | 660  |
| tacacctgcc | acgtggagca | ccccagcctc | cagageeeca          | tcaccgtgga | gtggcgggct | 720  |
| caatctgaat | ctgcccagag | caagatgctg | agtggcattg          | gaggettegt | gctggggctg | 780  |
| atcttcctcg | ggctgggcct | tatcatccat | cacaggagtc          | agaaagggct | cctgcactga | 840  |
| ctcctgagac | tattttaact | gggattggtt | atcacttttc          | tgtaacgcct | gcttgtccct | 900  |
| gcccagaatt | cccagctgtc | tgtgtcagcc | tgtccccctg          | agatcagagt | cctacagtgg | 960  |
| ctgtcacgca | gccaccaggt | catctccttt | catccccacc          | ttgaggcgga | tggctgtgac | 1020 |
| cctacttcct | gcactgaccc | acagcctctg | cctgtgcacg          | gccagctgca | tctactcagg | 1080 |
| ccccaagggg | tttctgtttc | tattctctcc | tcagactgct          | caagagaagc | acatgaaaac | 1140 |
| cattacctga | ctttagagct | tttttacata | attaaacatg          | atcctgagtt |            | 1190 |
|            |            |            |                     |            |            |      |

<400> 2820

teggggagag aagetggatt geagetggtt teaggaactt etettgaega gaagagagae 60
caaggaggee aageaggge tgggecagag gtgceaacat ggggaaactg aggetegget 120
cggaaaggtg aagtaacttg tecaagatea caaagetggt gaacateaag ttggtgetat 180
ggcaaggetg ggaaactgea geetgaettg ggetgeeetg ateateetge tgeteecegg 240
aagtetggag gagtgeggge acateagtgt eteageeee ategteeace tgggggatee 300
cateacagee teetgeatea teaageagaa etgeageeat etggaeeegg ageeacagat 360
tetgtggaga etgggageag agetteagee egggggagag eageagegte tgtetgatgg 420

<sup>&</sup>lt;210> 2820 <211> 3003

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

| gacccaggaa | tctatcatca | ccctgcccca | cctcaaccac | actcaggcct | ttctctcctg | 480  |
|------------|------------|------------|------------|------------|------------|------|
| ctgcctgaac | tggggcaaca | gcctgcagat | cctggaccag | gttgagctgc | gcgcaggcta | 540  |
| ccctccagcc | ataccccaca | acctctcctg | cctcatgaac | ctcacaacca | gcagcctcat | 600  |
| ctgccagtgg | gagccaggac | ctgagaccca | cctacccacc | agcttcactc | tgaagagttt | 660  |
| caagagccgg | ggcaactgtc | agacccaagg | ggactccatc | ctggactgcg | tgcccaagga | 720  |
| cgggcagagc | cactgctgca | tcccacgcaa | acacctgctg | ttgtaccaga | atatgggcat | 780  |
| ctgggtgcag | gcagagaatg | cgctggggac | cagcatgtcc | ccacaactgt | gtcttgatcc | 840  |
| catggatgtt | gtgaaactgg | agccccccat | gctgcggacc | atggacccca | gccctgaagc | 900  |
| ggcccctccc | caggcaggct | gcctacagct | gtgctgggag | ccatggcagc | caggcctgca | 960  |
| cataaatcag | aagtgtgagc | tgcgccacaa | gccgcagcgt | ggagaagcca | gctgggcact | 1020 |
| ggtgggcccc | ctccccttgg | aggcccttca | gtatgagctc | tgcgggctcc | tcccagccac | 1080 |
| ggcctacacc | ctgcagatac | gctgcatccg | ctggcccctg | cctggccact | ggagcgactg | 1140 |
| gagccccagc | ctggagctga | gaactaccga | acgggccccc | actgtcagac | tggacacatg | 1200 |
| gtggcggcag | aggcagctgg | accccaggac | agtgcagctg | ttctggaagc | cagtgcccct | 1260 |
| ggaggaagac | agcggacgga | tccaaggtta | tgtggtttct | tggagaccct | caggccaggc | 1320 |
| tggggccatc | ctgcccctct | gcaacaccac | agagctcagc | tgcaccttcc | acctgccttc | 1380 |
| agaagcccag | gaggtggccc | ttgtggccta | taactcagcc | gggacctctc | gtcccactcc | 1440 |
| ggtggtcttc | tcagaaagca | gaggcccagc | tctgaccaga | ctccatgcca | tggcccgaga | 1500 |
| ccctcacagc | ctctgggtag | gctgggagcc | ccccaatcca | tggcctcagg | gctatgtgat | 1560 |
| tgagtggggc | ctgggccccc | ccagcgcgag | caatagcaac | aagacctgga | ggatggaaca | 1620 |
| gaatgggaga | gccacggggt | ttctgctgaa | ggagaacatc | aggccctttc | agctctatga | 1680 |
| gatcatcgtg | actcccttgt | accaggacac | catgggaccc | tcccagcatg | tctatgccta | 1740 |
| ctctcaagaa | atggctccct | cccatgcccc | agagctgcat | ctaaagcaca | ttggcaagac | 1800 |
| ctgggcacag | ctggagtggg | tgcctgagcc | ccctgagctg | gggaagagcc | cccttaccca | 1860 |
| ctacaccatc | ttetggacea | acgctcagaa | ccagtccttc | tccgccatcc | tgaatgcctc | 1920 |
| ctcccgtggc | tttgtcctcc | atggcctgga | gcccgccagt | ctgtatcaca | tccacctcat | 1980 |
| ggctgccagc | caggetgggg | ccaccaacag | tacagtcctc | accctgatga | ccttgacccc | 2040 |
| agaggggtcg | gagctacaca | tcatcctggg | cctgttcggc | ctcctgctgt | tgctcacctg | 2100 |
| cctctgtgga | actgcctggc | tctgttgcag | ccccaacagg | aagaatcccc | tctggccaag | 2160 |
| tgtcccagac | ccagctcaca | gcagcctggg | ctcctgggtg | cccacaatca | tggaggagga | 2220 |
| tgccttccag | ctgcccggcc | ttggcacgcc | acccatcacc | aagctcacag | tgctggagga | 2280 |

PCT/US2003/012946 WO 2004/042346

| ggatgaaaag aageeggtge eetgggagte eeataacage teagagaeet gtggeeteee                                           | 2340 |
|-------------------------------------------------------------------------------------------------------------|------|
| cactotggto cagacotatg tgotocaggg ggacocaaga gcagtttoca cocagococa                                           | 2400 |
| atcccagtct ggcaccagcg atcaggtcct ttatgggcag ctgctgggca gccccacaag                                           | 2460 |
| cccagggcca gggcactate teegetgtga etecaeteag eeeetettgg egggeeteae                                           | 2520 |
| ccccagcccc aagtcctatg agaacctctg gttccaggcc agccccttgg ggaccctggt                                           | 2580 |
| aaccccagcc ccaagccagg aggacgactg tgtctttggg ccactgctca acttccccct                                           | 2640 |
| cctgcagggg atccgggtcc atgggatgga ggcgctgggg agcttctagg gcttcctggg                                           | 2700 |
| gttcccttct tgggcctgcc tcttaaaggc ctgagctagc tggagaagag gggagggtcc                                           | 2760 |
| ataageeeat gaetaaaaae taeeeeagee eaggetetea eeateteeag teaeeageat                                           | 2820 |
| ctccctctcc tcccaatctc cataggctgg gcctcccagg cgatctgcat actttaagga                                           | 2880 |
| ccagatcatg ctccatccag ccccacccaa tggccttttg tgcttgtttc ctataacttc                                           | 2940 |
| agtattgtaa actagttttt ggtttgcagt ttttgttgtt gtttatagac actcttgggt                                           | 3000 |
| gta                                                                                                         | 3003 |
| <pre>&lt;210   2821 &lt;211&gt;   718 &lt;212&gt;   DNA &lt;213&gt;   Homo sapiens &lt;400&gt;   2821</pre> |      |
| ttaagcaaag gaaaccaaag gaatcgtttc aaatggactc atggcttaga aatctttatt                                           | 60   |
| cttagggcag tcagtagtat tctaaagctt tctgacaaga taaaggaagt caccaaaatt                                           | 120  |
| tottttttta aattgtatot aatootoaac aacaaaccaa aacagaacaa ttaaacagoo                                           | 180  |
| aaataaaacc tcagggacaa catttttggt gtatttgagc cctcccagca agtttcacct                                           | 240  |
| tgggtttgta ttttaaatgt tttacaagaa ttgtccatgt gcttccctag gctgagctgg                                           | 300  |
| cattggtctg ctgacctgtt tttgtgtttt tcttttttt atacacaaca tttatttcaa                                            | 360  |
| actattggga gggatgagag tggcttaaaa acttccatcc ctacttttca agagtgcagt                                           | 420  |
| tgattetgaa tetgaaagee egeetetgte etaaaataca aacaageaca gacattaaac                                           | 480  |
| ctggatacta tatgataaag agggatgtaa ctattgaatt ggatacaagg atcagaatgg                                           | 540  |
| aaagaaactc acgatgaaat tgaacctggt ttttgtatat ttatcaaact tgtgctgaga                                           | 600  |
| atagtgtctg attatacgac ttttaagcaa agttgggtgt aattaggtga aaacagccca                                           | 660  |
| ggtcctcccg ggagcacaga ggggctaggg gctggtcctt ctcgtttgct ctagtctt                                             | 718  |
|                                                                                                             |      |

<sup>&</sup>lt;210> 2822 <211> 2776

<212> DNA

<213> Homo sapiens

<400> 2822

cagggcagac tggtagcaaa gcccccacgc ccagccagga gcaccgccgc ggactccagc 60 acaccgaggg acatgctggg cctgcgcccc ccactgctcg ccctggtggg gctgctctcc 120 ctcgggtgcg tcctctctca ggagtgcacg aagttcaagg tcagcagctg ccgggaatgc 180 ategagtegg ggceeggetg cacetggtge cagaagetga aetteacagg geegggggat 240 cctgactcca ttcgctgcga cacccggcca cagctgctca tgaggggctg tgcggctgac 300 gacatcatgg accccacaag cctcgctgaa acccaggaag accacaatgg gggccagaag 360 cagctgtccc cacaaaaagt gacgctttac ctgcgaccag gccaggcagc agcgttcaac 420 gtgaccttcc ggcgggccaa gggctacccc atcgacctgt actatctqat ggacctctcc 480 tactccatgc ttgatgacct caggaatgtc aagaagctag gtggcgacct gctccgggcc 540 ctcaacgaga tcaccgagtc cggccgcatt ggcttcgggt ccttcgtgga caagaccgtg 600 ctgccgttcg tgaacacgca ccctgataag ctgcgaaacc catgccccaa caaggagaaa 660 gagtgccage ccccgtttgc cttcaggcac gtgctgaage tgaccaacaa ctccaaccag 720 tttcagaccg aggtcgggaa gcagctgatt tccggaaacc tggatgcacc cgagggtggg 780 ctggacgcca tgatgcaggt cgccgcctgc ccggaggaaa tcggctggcg caacgtcacg 840 cggctgctgg tgtttgccac tgatgacggc ttccatttcg cgggcgacgg aaagctgggc 900 gccatcctga cccccaacga cggccgctgt cacctggagg acaacttgta caagaggagc 960 aacgaattcg actacccatc ggtgggccag ctggcgcaca agctggctga aaacaacatc 1020 cageceatet tegeggtgae cagtaggatg gtgaagaeet acgagaaaet caeegagate 1080 atccccaagt cagccgtggg ggagctgtct gaggactcca gcaatgtggt ccatctcatt 1140 aagaatgott acaataaact otootooagg gtottootgg atcacaacgo ootoocogac 1200 accetgaaag teacetaega eteettetge ageaatggag tgaegeacag gaaccagece 1260 agaggtgact gtgatggcgt gcagatcaat gtcccgatca ccttccaggt gaaggtcacg 1320 gccacagagt gcatccagga gcagtcgttt gtcatccggg cgctgggctt cacggacata 1380 gtgaccgtgc aggttcttcc ccagtgtgag tgccggtgcc gggaccagag cagagaccgc 1440 agectetgee atggeaaggg ettettggag tgeggeatet geaggtgtga caetggetae 1500 attgggaaaa actgtgagtg ccagacacag ggccggagca gccaggagct ggaaggaagc 1560 tgccggaagg acaacaactc catcatctgc tcagggctgg gggactgtgt ctgcgggcag 1620 tgcctgtgcc acaccagcga cgtccccggc aagctgatat acgggcagta ctgcgagtgt 1680 gacaccatca actgtgagcg ctacaacggc caggtctgcg gcggcccggg gagggggctc 1740

|   | tgcttctgcg                                          | ggaagtgccg | ctgccacccg | ggctttgagg | gctcagcgtg | ccagtgcgag | 1800 |
|---|-----------------------------------------------------|------------|------------|------------|------------|------------|------|
|   | aggaccactg                                          | agggctgcct | gaacccgcgg | cgtgttgagt | gtagtggtcg | tggccggtgc | 1860 |
|   | cgctgcaacg                                          | tatgcgagtg | ccattcaggc | taccagetge | ctctgtgcca | ggagtgcccc | 1920 |
|   | ggctgcccct                                          | caccetgtgg | caagtacatc | tcctgcgccg | agtgcctgaa | gttcgaaaag | 1980 |
|   | ggcccctttg                                          | ggaagaactg | cagcgcggcg | tgtccgggcc | tgcagctgtc | gaacaacccc | 2040 |
|   | gtgaagggca                                          | ggacctgcaa | ggagagggac | tcagagggct | gctgggtggc | ctacacgctg | 2100 |
|   | gagcagcagg                                          | acgggatgga | ccgctacctc | atctatgtgg | atgagagccg | agagtgtgtg | 2160 |
|   | gcaggcccca                                          | acatcgccgc | catcgtcggg | ggcaccgtgg | caggcatcgt | gctgatcggc | 2220 |
|   | attctcctgc                                          | tggtcatctg | gaaggctctg | atccacctga | gcgacctccg | ggagtacagg | 2280 |
|   | cgctttgaga                                          | aggagaagct | caagtcccag | tggaacaatg | ataatcccct | tttcaagagc | 2340 |
|   | gccaccacga                                          | cggtcatgaa | ccccaagttt | gctgagagtt | aggagcactt | ggtgaagaca | 2400 |
|   | aggccgtcag                                          | gacccaccat | gtctgcccca | tcacgcggcc | gagacatggc | ttggccacag | 2460 |
|   | ctcttgagga                                          | tgtcaccaat | taaccagaaa | tccagttatt | ttccgccctc | aaaatgacag | 2520 |
|   | ccatggccgg                                          | ccggtgcttc | tgggggctcg | tcggggggac | agctccactc | tgactggcac | 2580 |
|   | agtctttgca                                          | tggagacttg | aggagggctt | gaggttggtg | aggttaggtg | cgtgtttcct | 2640 |
|   | gtgcaagtca                                          | ggacatcagt | ctgattaaag | gtggtgccaa | tttatttaca | tttaaacttg | 2700 |
|   | tcagggtata                                          | aaatgacatc | ccattaatta | tattgttaat | caatcacgtg | tatagaaaaa | 2760 |
|   | aaaataaaac                                          | ttcaat     |            |            |            |            | 2776 |
|   | <210> 2823<br><211> 4428<br><212> DNA<br><213> Homo |            |            |            |            |            |      |
|   | <400> 2823                                          |            |            |            |            |            |      |
|   |                                                     |            | ctacctgcca |            |            |            | 60   |
|   |                                                     |            | aatgacagca |            |            |            | 120  |
|   |                                                     |            | agatccagag |            |            |            | 180  |
|   |                                                     |            | gctcggctgt |            |            |            | 240  |
|   |                                                     |            | tctgcagaac |            |            |            | 300  |
|   |                                                     |            | gcaccatgtt |            |            |            | 360  |
|   |                                                     |            | tgtgcaggag |            |            |            | 420  |
|   |                                                     |            | cgtcatgagt |            |            |            | 480  |
| , | cccaccatgg                                          | aggagattga | gaatgccttc | caaggaaatc | tgtgccgctg | cacaggctac | 540  |

agacccatcc tccagggctt ccggaccttt gccagggatg gtggatgctg tggaggagat 600 gggaataatc caaattgctg catgaaccag aagaaagacc actcagtcag ccactcgcca 660 tetttattea aaccagagga gttcacgece etggatecaa eccaggagee eatttteee 720 ccagagttgc tgaggctgaa agacactcct cggaagcagc tgcgatttga aagggagcgt 780 gtgacgtgga tacaggcctc aaccctcaag gagctgctgg acctcaaggc tcagcaccct 840 gacgccaagc tggtcgtggg gaacacggag attggcattg agatgaagtt caagaatatg 900 ctgtttccta tgattgtctg cccagcctgg atccctgagc tgaattcggt agaacatgga 960 cccgacggta tctcctttgg agctgcttgc cccctgagca ttgtggaaaa aaccctggtg 1020 gatgctgttg ctaagcttcc tgcccaaaag acagaggtgt tcagaggggt cctggagcag 1080 ctgcgctggt ttgctgggaa gcaagtcaag tctgtggcgt ccgttggagg gaacatcatc 1140 actgccagcc ccatctccga cctcaacccc gtgttcatgg ccagtggggc caagctgaca 1200 ctagtgtcca gaggcaccag gagaactgtc cagatggacc acaccttctt ccctggctac 1260 agaaagaccc tgctgagccc ggaggagata ctgctctcca tagagatccc ctacagcagg 1320 gagggggagt atttctcagc attcaagcag gcctcccgga gagaagatga cattgccaag 1380 gtaaccagtg gcatgagagt tttattcaag ccaggaacca cagaggtaca ggagctggcc 1440 ctttgctatg gtggaatggc caacagaacc atctcagccc tcaagaccac tcagaggcag 1500 ctttccaagc tctggaagga ggagctgctg caggacgtgt gtgcaggact ggcagaggag 1560 ctgcatctgc ctcccgatgc ccctggtggc atggtggact tccggtgcac cctcaccctc 1620 agettettet teaagtteta eetgacagte etteagaage tgggecaaga gaacetggaa 1680 gacaagtgtg gtaaactgga ccccactttc gccagtgcaa ctttactgtt tcagaaagac 1740 cccccagecg atgtccaget ettecaagag gtgcccaagg gtcagtetga ggaggacatg 1800 głgggccggc cccłgcccca ccłggcagcg gacałgcagg ccłcłggłga ggccgłgłac 1860 tgtgacgaca ttcctcgcta cgagaatgag ctgtctctcc ggctggtcac cagcacccgg 1920 gcccacgcca agatcaagtc catagataca tcagaagcta agaaggttcc agggtttgtt 1980 tgtttcattt ccgctgatga tgttcctggg agtaacataa ctggaatttg taatgatgag 2040 acagtetttg cgaaggataa ggttacttgt gttgggcata tcattggtgc tgtggttgct 2100 gacaccccgg aacacacaca gagagctgcc caaggggtga aaatcaccta tgaagaacta 2160 ccagccatta tcacaattga ggatgctata aagaacaact ccttttatgg acctgagctg 2220 aagatcgaga aaggggacct aaagaagggg ttttccgaag cagataatgt tgtgtcaggg 2280 gagatataca teggtggeea agageaette taeetggaga eteaetgeae eattgetgtt 2340

|   | ccaaaaggcg | g aggcagggga | gatggagct  | c tttgtgtct | a cacagaaca  | c catgaagacc | 2400 |
|---|------------|--------------|------------|-------------|--------------|--------------|------|
|   | cagagettte | g ttgcaaaaat | gttgggggt  | ccagcaaac   | ggattgtgg    | t tcgagtgaag | 2460 |
|   | agaatgggag | gaggetttgg   | aggcaagga  | g acceggage | a ctgtggtgte | cacggcagtg   | 2520 |
|   | gccctggctg | catataagac   | cggccgccct | gtgcgatgca  | a tgctggacc  | g tgatgaggac | 2580 |
|   | atgctgataa | ctggtggcag   | acatecette | ctggccagat  | acaaggttg    | g cttcatgaag | 2640 |
|   | actgggacag | ttgtggctct   | tgaggtggad | cacttcagca  | atgtggggaa   | a cacccaggat | 2700 |
|   | ctctctcaga | gtattatgga   | acgagcttta | ttccacatgo  | g acaactgcta | taaaatcccc   | 2760 |
|   | aacatccggg | gcactgggcg   | gctgtgcaaa | accaacctto  | cctccaacac   | ggccttccgg   | 2820 |
|   | ggctttgggg | ggccccaggg   | gatgctcatt | gccgagtgct  | ggatgagtga   | agttgcagtg   | 2880 |
|   | acctgtggga | tgcctgcaga   | ggaggtgcgg | agaaaaaacc  | tgtacaaaga   | aggggacctg   | 2940 |
|   | acacacttca | accagaagct   | tgagggtttc | accttgccca  | gatgctggga   | agaatgccta   | 3000 |
|   | gcaagctctc | agtatcatgo   | tcggaagagt | gaggttgaca  | agttcaacaa   | ggagaattgt   | 3060 |
|   | tggaaaaaga | gaggattgtg   | cataattccc | accaagtttg  | gaataagctt   | cacagttcct   | 3120 |
|   | tttctgaatc | aggcaggagc   | cctacttcat | gtgtacacag  | atggctctgt   | gctgctgacc   | 3180 |
|   | cacgggggga | ctgagatggg   | ccaaggcctt | cataccaaaa  | tggtccaggt   | ggccagtaga   | 3240 |
|   | gctctgaaaa | tccccacctc   | taagatttat | atcagcgaga  | caagcactaa   | cactgtgccc   | 3300 |
| J | aacacctctc | ccacggctgc   | ctctgtcagc | gctgacctca  | atggacaggc   | cgtctatgcg   | 3360 |
|   | gcttgtcaga | ccatcttgaa   | aaggctggaa | ccctacaaga  | agaagaatcc   | cagtggctcc   | 3420 |
|   | tgggaagact | gggtcacagc   | tgcctacatg | gacacagtga  | gcttgtctgc   | cactgggttt   | 3480 |
|   | tatagaacac | ccaatctggg   | ctacagettt | gagactaact  | cagggaaccg   | cttccactac   | 3540 |
|   | ttcagctatg | gggtggcttg   | ctctgaagta | gaaatcgact  | gcctaacagg   | agatcataag   | 3600 |
|   | aacctccgca | cagatattgt   | catggatgtt | ggctccagtc  | taaaccctgc   | cattgatatt   | 3660 |
|   | ggacaggtgg | aaggggcatt   | tgtccagggc | cttggcctct  | tcaccctaga   | ggagctacac   | 3720 |
|   | tattcccccg | aggggagcct   | gcacacccgt | ggccctagca  | cctacaagat   | cccggcattt   | 3780 |
|   | ggcagcatcc | ccattgagtt   | cagggtgtcc | ctgctccgcg  | actgccccaa   | caagaaggcc   | 3840 |
|   | atctatgcat | cgaaggctgt   | tggagagccg | cccctcttcc  | tggctgcttc   | tatcttcttt   | 3900 |
|   | gccatcaaag | atgccatccg   | tgcagctcga | gctcagcaca  | caggtaataa   | cgtgaaggaa   | 3960 |
|   | ctcttccgcc | tagacagccc   | tgccaccccg | gagaagatcc  | gcaatgcctg   | cgtggacaag   | 4020 |
|   | ttcaccaccc | tgtgtgtcac   | tggtgtccca | gaaaactgca  | aaccctggtc   | tgtgagggtc   | 4080 |
|   | taaagagaga | gtcctcagca   | gagtettett | gtgctgcctt  | tgggcttcca   | tggagcagga   | 4140 |
|   | ggaacatacc | acagaacatg   | gatctattaa | agtcacagaa  | tgacagacct   | gtgatttgtc   | 4200 |

aagatgggat ttggaagaca agtgaatgca atggaagatt ttgatcaaaa atgtaatttg 4260 taaacacaat gataagcaaa ttcaaaactg ttatgcctaa atggtgaata tgcaattagg 4320 atcattttct gtctgtttta atcatgtatc tggaataggg tcgggaaggg tttgtgctat 4380 tccccactta ctggacagcc tgtataacct caaaaaaaaa aaaaaaaa 4428 <210> 2824 <211> 1702 <212> DNA <213> Homo sapiens <400> 2824 aaattttcca gccgatcact ggagctgact tccgcaatcc cgatggaata aatctagcac 60 ccctgatggt gtgcccacac tttgctgccg aaacgaagcc agacaacaga tttccatcag 120 caggatgtgg gggctcaagg ttctgctgct acctgtggtg agctttgctc tgtaccctga 180 ggagatactg gacacccact gggagctatg gaagaagacc cacaggaagc aatataacaa 240 caaggtggat gaaatctctc ggcgtttaat ttgggaaaaa aacctgaagt atatttccat 300 ccataacctt gaggcttctc ttggtgtcca tacatatgaa ctggctatga accacctggg 360 ggacatgacc agtgaagagg tggttcagaa gatgactgga ctcaaagtac ccctgtctca 420 ttcccgcagt aatgacaccc tttatatccc agaatgggaa ggtagagccc cagactctgt 480 cgactatcga aagaaaggat atgttactcc tgtcaaaaat cagggtcagt gtggttcctg 540 ttgggetttt agetetgtgg gtgeeetgga gggeeaacte aagaagaaaa etggeaaact 600 cttaaatctg agtccccaga acctagtgga ttgtgtgtct gagaatgatg gctgtggagg 660 gggctacatg accaatgcct tccaatatgt gcagaagaac cggggtattg actctgaaga 720 tgcctaccca tatgtgggac aggaagagg ttgtatgtac aacccaacag gcaaggcagc 780 taaatgcaga gggtacagag agatccccga ggggaatgag aaagccctga agagggcagt 840 ggcccgagtg ggacctgtct ctgtggccat tgatgcaagc ctgacctcct tccagtttta 900 cagcaaaggt gtgtattatg atgaaagctg caatagcgat aatctgaacc atgcggtttt 960 ggcagtggga tatggaatcc agaagggaaa caagcactgg ataattaaaa acagctgggg 1020 agaaaactgg ggaaacaaag gatatateet catggetega aataagaaca aegeetgtgg 1080 cattgccaac ctggccaget tccccaagat gtgactccag ccagccaaat ccatcctgct 1140 cttccatttc ttccacgatg gtgcagtgta acgatgcact ttggaaggga gttggtgtgc 1200 tatttttgaa gcagatgtgg tgatactgag attgtctgtt cagtttcccc atttgtttgt 1260 getteaaatg atcetteeta etttgettet etceacceat gacettttte actgtggeca 1320 tcaggacttt ccctgacage tgtgtactct taggctaaga gatgtgacta cagcctgccc 1380

ctgactgtgt tgtcccaggg ctgatgctgt acaggtacag gctggagatt ttcacatagg 1440 ttagattete atteaeggga etagttaget ttaagcacce tagaggacta gggtaatetg 1500 actteteact tectaagtte cettetatat ceteaaggta gaaatgteta tgttttetae 1560 tccaattcat aaatctattc ataagtcttt ggtacaagtt tacatgataa aaagaaatgt 1620 gatttgtctt cccttctttg cacttttgaa ataaagtatt tatctcctgt ctacagttta 1680 ataaatagca tctaqtacac at 1702 ١ <210> 2825 <211> 2771 <212> DNA <213> Homo sapiens <400> 2825 cgaggcggat cgggtgttgc atccatggag cgagctgaga gctcgagtac agaacctgct 60 aaggccatca aacctattga tcggaagtca gtccatcaga tttgctctgg gcaggtggta 120 ctgagtctaa gcactgcggt aaaggagtta gtagaaaaca gtctggatgc tggtgccact 180 aatattgatc taaagcttaa ggactatgga gtggatctta ttgaagtttc agacaatgga 240 tgtggggtag aagaagaaaa cttcgaaggc ttaactctga aacatcacac atctaagatt 300 caagagtttg ccgacctaac tcaggttgaa acttttggct ttcgggggga agctctgagc 360 tcactttgtg cactgagcga tgtcaccatt tctacctgcc acgcatcggc gaaggttgga 420 actogactga tgtttgatca caatgggaaa attatocaga aaacccccta cccccgcccc 480 agagggacca cagtcagcgt gcagcagtta ttttccacac tacctgtgcg ccataaggaa 540 tttcaaagga atattaagaa ggagtatgcc aaaatggtcc aggtcttaca tgcatactgt 600 atcatttcag caggcatcog tgtaagttgc accaatcagc ttggacaagg aaaacgacag 660 cetgtggtat gcacaggtgg aagccccage ataaaggaaa atateggete tgtgtttggg 720 cagaagcagt tgcaaagcct catteetttt gttcagetge cecetagtga etcegtgtgt 780 gaagagtacg gtttgagctg ttcggatgct ctgcataatc ttttttacat ctcaggtttc 840 atttcacaat gcacgcatgg agttggaagg agttcaacag acagacagtt tttctttatc 900 aaccggcggc cttgtgaccc agcaaaggtc tgcagactcg tgaatgaggt ctaccacatq 960 tataatcgac accagtatcc atttgttgtt cttaacattt ctgttgattc agaatgcgtt 1020 gatatcaatg ttactccaga taaaaggcaa attttgctac aagaggaaaa gcttttgttg 1080 gcagttttaa agacctcttt gataggaatg tttgatagtg atgtcaacaa gctaaatgtc 1140 agtcagcagc cactgctgga tgttgaaggt aacttaataa aaatgcatgc agcggatttg 1200 gaaaagccca tggtagaaaa gcaggatcaa tccccttcat taaggactgg agaagaaaaa 1260

| aaagacgtgt | ccatttccag | actgcgagag | gccttttct   | ttcgtcacac | aacagagaac | 1320 |
|------------|------------|------------|-------------|------------|------------|------|
| aagcctcaca | gcccaaagad | tccagaacca | a agaaggagc | ctctaggaca | gaaaaggggt | 1380 |
| atgctgtctt | ctagcactto | aggtgccato | tctgacaaa   | gcgtcctgag | acctcagaaa | 1440 |
| gaggcagtga | gttccagtca | cggacccagt | gaccctacg   | acagagegga | ggtggagaag | 1500 |
| gactcggggc | acggcagcac | ttccgtggat | tctgaggggt  | tcagcatccc | agacacgggc | 1560 |
| agtcactgca | gcagcgagta | tgcggccagc | tccccagggg  | acaggggcto | gcaggaacat | 1620 |
|            |            |            |             |            | ggactgccat | 1680 |
| tcaaaccagg | aagataccgg | atgtaaattt | cgagttttgc  | ctcagccaac | taatctcgca | 1740 |
|            |            |            |             | ccagttctga |            | 1800 |
|            |            |            |             | atgtagctgt |            | 1860 |
|            |            |            |             | ctaaacgaat |            | 1920 |
|            |            |            |             | ggaagtttag |            | 1980 |
|            |            |            |             | aagagataag |            | 2040 |
| tttgcagaaa | tggaaatcat | tggtcagttt | aacctgggat  | ttataataac | caaactgaat | 2100 |
| gaggatatct | tcatagtgga | ccagcatgcc | acggacgaga  | agtataactt | cgagatgctg | 2160 |
|            |            |            |             | ctcagactct |            | 2220 |
|            |            |            |             | ttagaaagaa |            | 2280 |
|            |            |            |             | aactgatttc |            | 2340 |
|            |            |            |             | tgatcttcat |            | 2400 |
|            |            |            |             | tgtttgcctc |            | 2460 |
|            |            |            |             | agatgaagaa |            | 2520 |
| cacatggggg |            |            |             |            |            | 2580 |
| atcgccaacc |            |            |             |            |            | 2640 |
| tttatcgcag |            |            |             |            |            | 2700 |
| atgaaacctg |            | aaaatacaca | tcacacccat  | ttaaaagtga | tcttgagaac | 2760 |
| cttttcaaac | c          |            |             |            |            | 2771 |

<sup>&</sup>lt;210> 2826 <211> 3682 <212> DNA <213> Homo sapiens

<sup>&</sup>lt;400> 2826

gcgagcgcag cggagcctgg agagaaggcg ctgggctgcg agggcgcgag ggcgcgaggg 60

cagggggcaa ccggaccccg cccgcaccca tggcgcccgt cgccgtctgg gccgcgctgg 120 ccgtcggact ggagctctgg gctgcggcgc acgccttgcc cgcccaggtg gcatttacac 180 cctacgcccc ggagcccggg agcacatgcc ggctcagaga atactatgac cagacagctc 240 agatgtgctg cagcaaatgc tcgccgggcc aacatgcaaa agtcttctgt accaagacct 300 eggacacegt gtgtgactee tgtgaggaca geacatacae ceagetetgg aactgggtte 360 ccgagtgctt gagctgtggc tcccgctgta gctctgacca ggtggaaact caagcctgca 420 ctcgggaaca gaaccgcatc tgcacctgca ggcccggctg gtactgcgcg ctgagcaagc 480 aggaggggtg ccggctgtgc gcgccgctgc gcaagtgccg cccgggcttc ggcgtggcca 540 gaccaggaac tgaaacatca gacgtggtgt gcaagccctg tgccccgggg acgttctcca 600 acacgaette atceaeggat atttgeagge eccaecagat etgtaaegtg gtggeeatee 660 ctgggaatgc aagcatggat gcagtctgca cgtccacgtc ccccacccgg agtatggccc 720 caggggcagt acacttaccc cagccagtgt ccacacgatc ccaacacacg cagccaactc 780 cagaacccag cactgeteca ageacctect teetgeteec aatgggeece agecceccag 840 ctgaagggag cactggcgac ttcgctcttc cagttggact gattgtgggt gtgacagcct 900 tgggtctact aataatagga gtggtgaact gtgtcatcat gacccaggtg aaaaagaagc 960 ccttgtgcct gcagagagaa gccaaggtgc ctcacttgcc tgccgataag gcccggggta 1020 cacagggccc cgagcagcag cacctgctga tcacagcgcc gagctccagc agcagctccc 1080 tggagagete ggecagtgeg ttggacagaa gggegeeeae teggaaceag ccacaggeae 1140 caggcgtgga ggccagtggg gccggggagg cccgggccag caccgggagc tcagattctt 1200 cccctggtgg ccatgggacc caggtcaatg tcacctgcat cgtgaacgtc tgtagcagct 1260 ctgaccacag ctcacagtgc tcctcccaag ccagctccac aatgggagac acagattcca 1320 geceetegga gteecegaag gaegageagg teecettete caaggaggaa tgtgeettte 1380 ggtcacagct ggagacgcca gagaccctgc tggggagcac cgaagagaag cccctgcccc 1440 ttggagtgcc tgatgctggg atgaagccca gttaaccagg ccggtgtggg ctgtgtcgta 1500 gccaaggtgg gctgagccct ggcaggatga ccctgcgaag gggccctggt ccttccaggc 1560 ccccaccact aggactetga ggetetttet gggecaagtt cetetagtge cetecacage 1620 cgcagcctcc ctctgacctg caggccaaga gcagaggcag cgagttgtgg aaagcctctq 1680 ctgccatggc gtgtccctct cggaaggctg gctgggcatg gacgttcggg gcatgctggg 1740 gcaagtccct gactctctgt gacctgcccc gcccagctgc acctgccagc ctggcttctg 1800 gagecettgg gttttttgtt tgtttgtttg tttgtttgtt tgtttetece eetgggetet 1860

| gcccca   | gete  | tggcttcca  | g aaaacccca  | g catcetttt | c tgcagaggg  | g ctttctggag | 1920 |
|----------|-------|------------|--------------|-------------|--------------|--------------|------|
| aggagg   | gatg  | ctgcctgag  | t cacccatga  | a gacaggaca | g tgcttcagc  | c tgaggctgag | 1980 |
| actgcg   | ggat  | ggtcctggg  | g ctctgtgca  | g ggaggaggt | g gcagccctg  | t agggaacggg | 2040 |
| gtcctt   | caag  | ttagctcag  | g aggettggaa | a agcatcacc | t caggccagg  | t gcagtggctc | 2100 |
| acgcct   | atga  | tcccagcac  | t ttgggaggct | gaggcgggt   | g gatcacctg  | a ggttaggagt | 2160 |
| tcgaga   | ccag  | cctggccaa  | atggtaaaa    | cccatctct   | a ctaaaaata  | agaaattagc   | 2220 |
| cgggcgt  | tggt  | ggcgggcaco | tatagtccca   | gctactcaga  | a agcctgaggo | tgggaaatcg   | 2280 |
| tttgaad  | ccg   | ggaagcggag | g gttgcaggga | gccgagatca  | a cgccactgca | ctccagcctg   | 2340 |
| ggcgaca  | agag  | cgagagtctg | g tctcaaaaga | aaaaaaaaa   | g caccgcctco | aaatgccaac   | 2400 |
| ttgtcct  | ttt   | gtaccatggt | gtgaaagtca   | gatgcccaga  | gggcccaggc   | aggccaccat   | 2460 |
| attcagt  | gct   | gtggcctggg | caagataacg   | cacttctaac  | tagaaatctg   | ccaattttt    | 2520 |
| aaaaaag  | jtaa  | gtaccactca | ggccaacaag   | ccaacgacaa  | agccaaacto   | tgccagccac   | 2580 |
|          |       |            |              |             |              | ctgcagcccc   | 2640 |
| gcgcctc  | ctt   | ccttgctgtc | ctaggccaca   | ccatctcctt  | : tcagggaatt | tcaggaacta   | 2700 |
| gagatga  | ctg   | agtcctcgta | gccatctctc   | tactcctacc  | tcagcctaga   | ccctcctcct   | 2760 |
| ccccag   | agg   | ggtgggttcc | tcttccccac   | tccccacctt  | caattcctgg   | gccccaaacg   | 2820 |
| ggctgcc  | ctg   | ccactttggt | acatggccag   | tgtgatccca  | agtgccagtc   | ttgtgtctgc   | 2880 |
| gtctgtg  | ttg   | cgtgtcgtgg | gtgtgtgtag   | ccaaggtcgg  | taagttgaat   | ggcctgcctt   | 2940 |
| gaagcca  | ctg   | aagctgggat | tcctccccat   | tagagtcagc  | cttccccctc   | ccagggccag   | 3000 |
| ggccctg  | cag   | aggggaaacc | agtgtagcct   | tgcccggatt  | ctgggaggaa   | gcaggttgag   | 3060 |
| gggctcc  | tgg . | aaaggctcag | tctcaggagc   | atggggataa  | aggagaaggc   | atgaaattgt   | 3120 |
| ctagcaga | agc i | aggggcaggg | tgataaattg   | ttgataaatt  | ccactggact   | tgagcttggc   | 3180 |
| agctgaad | cta 1 | ttggagggtg | ggagagccca   | gccattacca  | tggagacaag   | aagggttttc   | 3240 |
| caccctg  | gaa 1 | tcaagatgtc | agactggctg   | gctgcagtga  | cgtgcacctg   | tactcaggag   | 3300 |
| gctgaggg | gga g | ggatcactgg | agcccaggag   | tttgaggctg  | cagcgagcta   | tgatcgcgcc   | 3360 |
| actacact | CC a  | agcctgagca | acagagtgag   | accctgtctc  | ttaaagaaaa   | aaaaagtcag   | 3420 |
| actgctgc | gga d | tggccaggt  | ttctgcccac   | attggaccca  | catgaggaca   | tgatggagcg   | 3480 |
| cacctgcc | ec c  | tggtggaca  | gtcctgggag   | aacctcaggc  | ttccttggca   | tcacagggca   | 3540 |
| gagccggg | jaa g | gcgatgaatt | tggagactct   | gtggggcctt  | ggttcccttg   | tgtgtgtgtg   | 3600 |
| ttgatccc | aa g  | jacaatgaaa | gtttgcactg   | tatgctggac  | ggcattcctg   | cttatcaata   | 3660 |
| aacctgtt | tg t  | tttaaaaaa  | aa           |             |              |              | 3682 |

60

<210> 2827 <211> 2400

<212> DNA

<213> Homo sapiens

<400> 2827 taggatggaa aggcagatgt aaagtccctc atggcgaaat ataacacggg gggcaacccg

120 acaqaqqatq tetcaqtcaa taqeeqaeee tteagagtca cagggccaaa etcatettca ggaatacaag caagaaagaa cttattcaac aaccaaggaa atgccagccc tcctgcagga 180 cccaqcaatq tacctaaqtt tqqqtcccca aagccacctg tqqcagtcaa accttcttct 240 300 gaggaaaagc ctgacaagga acccaagccc ccgtttctaa agcccactgg agcaggccaa agatteggaa caccageeag ettgaceace agagaceeeg aggegaaagt gggatttetg 360 aaacctqtaq qccccaaqcc catcaacttq cccaaaqaaq attccaaacc tacatttccc 420 tggcctcctg gaaacaagcc atctcttcac agtgtaaacc aagaccatga cttaaagcca 480 540 ctaggcccqa aatctgggcc tactcctcca acctcagaaa atgaacagaa gcaagcgttt cccaaattga ctggggttaa agggaaattt atgtcagcat cacaagatct tgaacccaag 600 cccctcttcc ccaaacccgc ctttggccag aagccgcccc taagtaccga gaactcccat 660 gaagacgaaa gccccatgaa gaatgtgtct tcatcaaaag ggtccccagc tcccctggga 720 gtcaggtcca aaagcggccc tttaaaacca gcaagggaag actcagaaaa taaagaccat 780 qcaqqqaga tttcaagttt gccctttcct ggagtggttt tgaaacctgc tgcgagcagg 840 qqaqqcctaq qtctctccaa aaatggtgaa gaaaaaaagg aagataggaa gatagatgct 900 qctaaqaaca ccttccaqaq caaaataaat caqqaaqaqt tqqcctcaqq qactcctcct 960 gccaggttcc ctaaggcccc ttctaagctg acagtggggg ggccatgggg ccaaagtcag 1020 qaaaaqqaaa aqqqaqacaa qaattcaqcc accccqaaac aqaaqccatt qcctccttq 1080 tttaccttgg gtccacctcc accaaaaccc aacagaccac caaatgttga cctgacgaaa 1140 ttccacaaaa cctcttctqq aaacaqtact aqcaaaqqcc aqacqtctta ctcaacaact 1200 tecetaceae cacetecace ateceateca accaqueaac caccattace ageateteae 1260 ccatcacaac caccagtccc aagcctacct cccagaaaca ttaaacctcc gtttgaccta 1320 aaaagccctg tcaatgaaga caatcaagat ggtgtcacgc actctgatgg tgctggaaat 1380 ctagatgagg aacaagacag tgaaggagaa acatatgaag acatagaagc atccaaagaa 1440 aqaqaqaaqa aaaqqqaaaa ggaaqaaaag aaqaggttag agctqqagaa aaaggaacag 1500 aaaqaqaaaq aaaaqaaaqa acaaqaaata aagaagaaat ttaaactaac aqqccctatt 1560 caaqtcatcc atcttqcaaa aqcttqttgt gatqtcaaag gaggaaagaa tqaactgagc 1620

ttcaagcaag gagagcaaat tgaaatcatc cgcatcacag acaacccaga aggaaaatgg 1680 ttgggcagaa cagcaagggg ttcatatggc tatattaaaa caactgctgt agagattgac 1740 tatgattett tgaaactgaa aaaagactet ettggtgeee etteaagace tattgaagat 1800 gaccaagaag tatatgatga tgttgcagag caggatgata ttagcagcca cagtcagagt 1860 ggaagtggag ggatattccc tccaccacca gatgatgaca tttatgatgg gattgaagag 1920 gaagatgctg atgatggttt ccctgctcct cctaaacaat tggacatggg agatgaagtt 1980 tacgatgatg tggatacctc tgatttccct gtttcatcag cagagatgag tcaaggaact 2040 aattttggaa aagctaagac agaagaaaag gaccttaaga agctaaaaaa gcaggaaaaa 2100 gaagaaaaag acttcaggaa aaaatttaaa tatgatggtg aaattagagt cctatattca 2160 actaaaqtta caacttccat aacttctaaa aagtggggaa ccagagatct acaggtaaaa 2220 cctggtgaat ctctagaagt tatacaaacc acagatgaca caaaagttct ctgcagaaat 2280 gaagaaggga aatatggtta tgtccttcgg agttacctag cggacaatga tggagagatc 2340 tatgatgata ttgctgatgg ctgcatctat gacaatgact agcactcaac tttggtcatt 2400 <210> 2828 <211> 2015 <212> DNA <213> Homo sapiens <400> 2828 cggaggcacg gaagatgagg aagatgatca ggaggatgat gaaggtgaag agggagatga 60 agacgatgac gacgatggct ctgaggggac ctcaggggct gccgagctgg ggggggctc 120 aagctgcgag gatccgggct gcccgcgaga cgaggagcgg gcgccaggat ggggtcgatg 180 aagtccaagt tcctccaggt cggaggcaat acattctcaa aaactgaaac cagcgccagc 240 ccacactgtc ctgtgtacgt gccggatccc acatccacca tcaagccggg gcctaatagc 300 cacaacagca acacaccagg aatcagggag gcaggctctg aggacatcat cgtggttgcc 360 ctgtatgatt acgaggccat tcaccacgaa gacctcagct tccagaaggg ggaccagatg 420 gtggtcctag aggaatccgg ggagtggtgg aaggctcgat ccctggccac ccggaaggag 480 ggctacatcc caagcaacta tgtcgcccgc gttgactctc tggagacaga ggagtggttt 540 ttcaagggca tcagccggaa ggacgcagag cgccaactgc tggctcccgg caacatgctg 600 ggctccttca tgatccggga tagcgagacc actaaaggaa gctactcttt gtccgtgcga 660 gactacgacc ctcggcaggg agataccgtg aaacattaca agatccggac cctggacaac 720 gggggettet acatatecce ecgaageace tteageacte tgeaggaget ggtggaceae

tacaagaagg ggaacgacgg gctctgccag aaactgtcgg tgccctgcat gtcttccaag

780

840

| ccccagaago | cttgggaga:   | a agatgcctg  | g gagatecete | gggaatccct | caagctggag | 900  |
|------------|--------------|--------------|--------------|------------|------------|------|
| aagaaactt  | g gagetggge  | a gtttggggaa | gtctggatgg   | ccacctacaa | caagcacacc | 960  |
| aaggtggcag | g tgaagacgat | gaagccagg    | g agcatgtcgg | tggaggcctt | cctggcagag | 1020 |
|            |              |              | aagctggtca   |            |            | 1080 |
|            |              |              | atggccaaag   |            |            | 1140 |
|            |              |              | ccaaaactca   |            |            | 1200 |
|            |              |              | aactacatcc   |            |            | 1260 |
|            |              |              | aagattgctg   |            |            | 1320 |
|            |              |              | ggggccaagt   |            |            | 1380 |
|            |              |              | atcaagtcag   |            |            | 1440 |
|            |              |              | atcccttacc   |            |            | 1500 |
|            |              |              | atgcctcgcc   |            |            | 1560 |
|            |              |              | aaccgtccgg   |            |            | 1620 |
|            |              |              | acggccacag   |            |            | 1680 |
|            |              |              | gggtgcccag   |            |            | 1740 |
|            |              |              | ttcctactcc   |            |            | 1800 |
|            |              |              | aggttggact   |            |            | 1860 |
|            |              |              | gccccaagt    |            |            | 1920 |
|            |              |              | ggaagggaaa   |            |            | 1980 |
|            |              | aatgcaagtc   |              |            |            | 2015 |
|            |              |              |              |            |            |      |
| 210> 2829  |              |              |              |            |            |      |
| 211> 1501  |              |              |              |            |            |      |
|            |              |              |              |            |            |      |

<212> DNA <213> Homo sapiens

<400> 2829

agcgagtcct tctttcctg actgcagctc ttttcatttt gccatccttt tccagctcca 60 tgatggttet gcaggtttet gcggcccccc ggacagtggc tctgacggcg ttactgatgg 120 tgctgctcac atctgtggtc cagggcaggg ccactccaga gaattacctt ttccagggac 180 ggcaggaatg ctacgcgttt aatgggacac agcgcttcct ggagagatac atctacaacc 240 gggaggagtt cgcgcgcttc gacagcgacg tgggggagtt ccgggcggtg acggagctgg 300 ggcggcctgc tgcggagtac tggaacagcc agaaggacat cctggaggag aagcgggcag 360 tgccggacag gatgtgcaga cacaactacg agctgggcgg gcccatgacc ctgcagcgcc 420

| gagtccagcc                                        | tagggtgaat | gtttccccct | ccaagaaggg | gcccttgcag | caccacaacc | 480  |
|---------------------------------------------------|------------|------------|------------|------------|------------|------|
| tgcttgtctg                                        | ccacgtgacg | gatttctacc | caggcagcat | tcaagtccga | tggttcctga | 540  |
| atggacagga                                        | ggaaacagct | ggggtcgtgt | ccaccaacct | gatccgtaat | ggagactgga | 600  |
| ccttccagat                                        | cctggtgatg | ctggaaatga | cccccagca  | gggagatgtc | tacacctgcc | 660  |
| aagtggagca                                        | caccagcctg | gatagtcctg | tcaccgtgga | gtggaaggca | cagtctgatt | 720  |
| ctgcccggag                                        | taagacattg | acgggagctg | ggggcttcgt | gctggggctc | atcatctgtg | 780  |
| gagtgggcat                                        | cttcatgcac | aggaggagca | agaaagttca | acgaggatct | gcataaacag | 840  |
| ggttcctgag                                        | ctcactgaaa | agactattgt | gccttaggaa | aagcatttgc | tgtgtttcgt | 900  |
| tagcatctgg                                        | ctccaggaca | gaccttcaac | ttccaaattg | gatactgctg | ccaagaagtt | 960  |
| gctctgaagt                                        | cagtttctat | cattctgctc | tttgattcaa | agcactgttt | ctctcactgg | 1020 |
| gcctccaacc                                        | atgttccctt | cttcttagca | ccacaaataa | tcaaaaccca | acatgactgt | 1080 |
| ttgttttcct                                        | ttaaaaatat | gcaccaaatc | atctctcatc | acttttctct | gagggtttta | 1140 |
| gtagacagta                                        | ggagttaata | aagaagttca | ttttggttta | aacataggaa | agaagagaac | 1200 |
| catgaaaatg                                        | gggatatgtt | aactattgta | taatggggcc | tgttacacat | gacactcttc | 1260 |
| tgaattgact                                        | gtatttcagt | gagetgeece | caaatcaagt | ttagtgccct | catccattta | 1320 |
| tgtctcagac                                        | cactattctt | aactattcaa | tggtgagcag | actgcaaatc | tgcctgatag | 1380 |
| gacccatatt                                        | cccacagcac | taattcaaca | tataccttac | tgagagcatg | ttttatcatt | 1440 |
| accattaaga                                        | agttaaatga | acatcagaat | ttaaaatcat | aaatataatc | taatacactt | 1500 |
| t                                                 |            |            |            |            |            | 1501 |
| <210> 283<br><211> 193<br><212> DNA<br><213> Home | o sapiens  |            |            |            |            |      |
|                                                   | cacgggagct | cgcggtgggc | atcgacctgg | gcaccaccta | ctcgtgcgtg | 60   |
| ggcgtgtttc                                        | agcagggccg | cgtggagatc | ctggccaacg | accagggcaa | ccgcaccacg | 120  |
| cccagctacg                                        | tggccttcac | cgacaccgag | cggctggtcg | gggacgcggc | caagagccag | 180  |
| gcggccctga                                        | accccacaa  | caccgtgttc | gatgccaagc | ggctgatcgg | gcgcaagttc | 240  |
| gcggacacca                                        | cggtgcagtc | ggacatgaag | cactggccct | teegggtggt | gagcgagggc | 300  |

ggcaagccca aggtgccggt atcgtaccgc ggggaggaca agacgttcta ccccgaggag 360
atctcgtcca tggtgctgag caagatgaag gagacggccg aggcgtacct gggccagcc 420
gtgaagcacg cagtgatcac cgtgcccgcc tatttcaatg actcgcagcg ccaggccacc 480

| aaggacgcgg | gggccatcgc | ggggctcaac | gtgttgcgga | tcatcaatga | gcccacggca | 540  |
|------------|------------|------------|------------|------------|------------|------|
| gctgccatcg | cctatgggct | ggaccggcgg | ggcgcgggag | agcgcaacgt | gctcattttt | 600  |
| gacctgggtg | ggggcacctt | cgatgtgtcg | gtteteteea | ttgacgctgg | tgtctttgag | 660  |
| gtgaaagcca | ctgctggaga | tacccacctg | ggaggagagg | acttcgacaa | ccggctcgtg | 720  |
| aaccacttca | tggaagaatt | ccggcggaag | catgggaagg | acctgagcgg | gaacaagcgt | 780  |
| gccctcggca | ggetgegeae | agcctgtgag | cgcgccaagc | gcaccctgtc | ctccagcacc | 840  |
| caggccaccc | tggagataga | ctccctgttc | gagggcgtgg | acttctacac | gtccatcact | 900  |
| cgtgcccgct | ttgaggaact | gtgctcagac | ctcttccgca | gcaccctgga | gccggtggag | 960  |
| aaggccctgc | gggatgccaa | gctggacaag | gcccagattc | atgacgtcgt | cctggtgggg | 1020 |
| ggctccactc | gcatccccaa | ggtgcagaag | ttgctgcagg | acttcttcaa | cggcaaggag | 1080 |
| ctgaacaaga | gcatcaaccc | tgatgaggct | gtggcctatg | gggctgctgt | gcaggcggcc | 1140 |
| gtgttgatgg | gggacaaatg | tgagaaagtg | caggatetee | tgctgctgga | tgtggctccc | 1200 |
| ctgtctctgg | ggctggagac | agcaggtggg | gtgatgacca | cgctgatcca | gaggaacgcc | 1260 |
| actatcccca | ccaagcagac | ccagactttc | accacctact | cggacaacca | gcctggggtc | 1320 |
| ttcatccagg | tgtatgaggg | tgagagggcc | atgaccaagg | acaacaacct | gctggggcgt | 1380 |
| tttgaactca | gtggcatccc | tcctgcccca | cgtggagtcc | cccagataga | ggtgaccttt | 1440 |
| gacattgatg | ctaatggcat | cctgagcgtg | acagccactg | acaggagcac | aggtaaggct | 1500 |
| aacaagatca | ccatcaccaa | tgacaagggc | cggctgagca | aggaggaggt | ggagaggatg | 1560 |
| gttcatgaag | ccgagcagta | caaggctgag | gatgaggccc | agagggacag | agtggctgcc | 1620 |
| aaaaactcgc | tggaggccca | tgtcttccat | gtgaaaggtt | ctttgcaaga | ggaaagcctt | 1680 |
| agggacaaga | ttcccgaaga | ggacaggcgc | aaaatgcaag | acaagtgtcg | ggaagtcctt | 1740 |
| geetggetgg | agcacaacca | gctggcagag | aaggaggagt | atgagcatca | gaagagggag | 1800 |
| ctggagcaaa | tetgtegeee | catcttctcc | aggctctatg | gggggcctgg | tgtccctggg | 1860 |
| ggcagcagtt | gtggcactca | agcccgccag | ggggacccca | gcaccggccc | catcattgag | 1920 |
| gaggttgatt | ga         |            |            |            |            | 1932 |

<sup>&</sup>lt;210> 2831 <211> 2035

<sup>&</sup>lt;211> 2035 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 2831

cgagccccgc cgaaccgagg ccacccggag ccgtgcccag tccacgcgg ccgtgcccgg 60 cggccttaag aaccaggcaa cctctgcctt cttccctctt ccactcggag tcgcgctccg 120

cgcgccctca ctgcagcccc tgcgtcgccg ggaccctcgc gcgcgaccag ccgaatcgct 180 cctgcagcag agccaacatg cccatcactc ggatgcgcat gagaccctgg ctagagatgc 240 agattaattc caaccaaatc ccggggctca tctggattaa taaagaggag atgatcttcc 300 agatcccatg gaagcatgct gccaagcatg gctgggacat caacaaggat gcctgtttgt 360 tccggagctg ggccattcac acaggccgat acaaagcagg ggaaaaggag ccagatccca 420 agacgtggaa ggccaacttt cgctgtgcca tgaactccct gccagatatc gaggaggtga 480 aagaccagag caggaacaag ggcagctcag ctgtgcgagt gtaccggatg cttccacctc 540 tcaccaagaa ccagagaaaa gaaagaaagt cgaagtccag ccgagatgct aagagcaagg 600 ccaagaggaa gtcatgtggg gattccagcc ctgatacctt ctctgatgga ctcagcagct 660 ccactetgcc tgatgaccac agcagctaca cagttccagg ctacatgcag gacttggagg 720 tggagcaggc cctgactcca gcactgtcgc catgtgctgt cagcagcact ctccccgact 780 ggcacatece agtggaagtt gtgccggaca gcaccagtga tetgtacaac ttccaggtgt 840 cacccatgcc ctccacctct gaagctacaa cagatgagga tgaggaaggg aaattacctg 900 aggacatcat gaagetettg gageagtegg agtggeagee aacaaacgtg gatgggaagg 960 ggtacctact caatgaacct ggagtccagc ccacctctgt ctatggagac tttagctgta 1020 aggaggagcc agaaattgac agcccagggg gggatattgg gctgagtcta cagcgtgtct 1080 tcacagatet gaagaacatg gatgccacet ggctggacag cetgctgace ecagtccggt 1140 tgccctccat ccaggccatt ccctgtgcac cgtagcaggg cccctgggcc cctcttattc 1200 ctctaggcaa gcaggacctg gcatcatggt ggatatggtg cagagaagct ggacttctgt 1260 gggcccctca acagccaagt gtgaccccac tgccaagtgg ggatgggcct ccctccttgg 1320 gtcattgacc tctcagggcc tggcaggcca gtgtctgggt ttttcttgtg gtgtaaagct 1380 ggccctgcct cctgggaaga tgaggttctg agaccagtgt atcaggtcag ggacttggac 1440 aggagtcagt gtctggcttt ttcctctgag cccagctgcc tggagagggt ctcgctgtca 1500 ctggctggct cctaggggaa cagaccagtg accccagaaa agcataacac caatcccagg 1560 gctggctctg cactaagcga aaattgcact aaatgaatct cgttccaaag aactacccct 1620 tttcagctga gccctgggga ctgttccaaa gccagtgaat gtgaaggaaa ctcccctcct 1680 teggggeaat geteecteag ceteagagga getetaceet geteeetget ttggetgagg 1740 ggcttgggaa aaaaacttgg cactttttcg tgtggatctt gccacatttc tgatcagagg 1800 tgtacactaa catttccccc gagctcttgg cctttgcatt tatttataca gtgccttgct 1860 cggggcccac caccccctca agccccagca gccctcaaca ggcccaggga gggaagtgtg 1920

agegeettqq tatgacttaa aattggaaat qteatetaac cattaagtca tgtgtgaaca 1980

|                                                     | _          |            | -          |            |            |      |
|-----------------------------------------------------|------------|------------|------------|------------|------------|------|
| cataaggacg                                          | tgtgtaaata | tgtacatttg | tctttttata | aaaagtaaaa | ttgtt      | 2035 |
| <210> 2832<br><211> 4068<br><212> DNA<br><213> Homo |            |            |            |            |            |      |
| <400> 2832                                          |            |            |            |            |            |      |
|                                                     |            | ccgttagctg |            |            |            | 60   |
| gcactgcctt                                          | ctgcgctaac | acctccattc | ctgtttataa | ccgtgtattt | attacttaat | 120  |
| gtatataatg                                          | taatgttttg | taagttatta | atttatatat | ctaacattgc | ctgccaatgg | 180  |
| t <b>g</b> gtgttaa <b>a</b>                         | tttgtgtaga | aaactctgcc | taagagttac | gactttttct | tgtaatgttt | 240  |
| tgtattgtgt                                          | attatataac | ccaaacgtca | cttagtagag | acatatggcc | cccttggcag | 300  |
| agaggacagg                                          | ggtgggcttt | tgttcaaagg | gtctgccctt | tccctgcctg | agttgctact | 360  |
| tctgcacaac                                          | ccctttatga | accagttttc | acccgaattt | tgactgtttc | atttagaaga | 420  |
| aaagcaaaat                                          | gagaaaaagc | tttcctcatt | tctccttgag | atggcaaagc | actcagaaat | 480  |
| gacatcacat                                          | accctaaaga | accctgggat | gactaaggca | gagagagtct | gagaaaactc | 540  |
| tttggtgctt                                          | ctgcctttag | ttttaggaca | catttatgca | gatgagctta | taagagaccg | 600  |
| ttccctccgc                                          | cttcttcctc | agaggaagtt | tettggtaga | tcaccgacac | ctcatccagg | 660  |
| cggggggttg                                          | gggggaaact | tggcaccagc | catcccaggc | agagcaccac | tgtgatttgt | 720  |
| teteetggtg                                          | gagagagctg | gaaggaagga | gccagcgtgc | aaataatgaa | ggagcacggg | 780  |
| ggcaccttca                                          | gtagcaccgg | aatcagcggt | ggtagcggtg | actctgctat | ggacagcctg | 840  |
| cagccgctcc                                          | agcctaacta | catgcctgtg | tgtttgtttg | cagaagaatc | ttatcaaaaa | 900  |
| ttagcaatgg                                          | aaacgctgga | ggaattagac | tggtgtttag | accagctaga | gaccatacag | 960  |
| acctaccggt                                          | ctgtcagtga | gatggcttct | aacaagttca | aaagaatgct | gaaccgggag | 1020 |
| ctgacacacc                                          | tctcagagat | gagccgatca | gggaaccagg | tgtctgaata | catttcaaat | 1080 |
| actttcttag                                          | acaagcagaa | tgatgtggag | atcccatctc | ctacccagaa | agacagggag | 1140 |
| aaaaagaaaa                                          | agcagcagct | catgacccag | ataagtggag | tgaagaaatt | aatgcatagt | 1200 |
| tcaagcctaa                                          | acaatacaag | catctcacgc | tttggagtca | acactgaaaa | tgaagatcac | 1260 |
| ctggccaagg                                          | agctggaaga | cctgaacaaa | tggggtctta | acatctttaa | tgtggctgga | 1320 |
| tattctcaca                                          | atagacccct | aacatgcatc | atgtatgcta | tattccagga | aagagacctc | 1380 |
| ctaaagacat                                          | tcagaatctc | atctgacaca | tttataacct | acatgatgac | tttagaagac | 1440 |
| cattaccatt                                          | ctgacgtggc | atatcacaac | agcctgcacg | ctgctgatgt | agcccagtcg | 1500 |

acceatotte teetttetae accageatta qaegetgtet teacagattt qqaqateetq 1560 1620 qctqccattt ttgcagctgc catccatgac gttgatcatc ctggagtctc caatcagttt ctcatcaaca caaattcaga acttgctttg atgtataatg atgaatctgt gttggaaaat 1680 1740 catcaccttq ctqtgggttt caaactgctg caagaagaac actgtgacat cttcatgaat ctcaccaaqa aqcagcgtca qacactcagg aagatggtta ttgacatggt gttagcaact 1800 qatatqtcta aacatatgaq cctqctggca gacctgaaga caatggtaga aacgaagaaa 1860 gttacaagtt caggegttet teteetagae aactataceg ategeattea ggteettege 1920 aacatqqtac actqtqcaqa cctqaqcaac cccaccaagt ccttggaatt gtatcggcaa 1980 tqqacaqacc qcatcatqqa qqaatttttc cagcagggaq acaaagagcg ggagagggga 2040 atggaaatta gcccaatgtg tgataaacac acagcttctg tggaaaaatc ccaggttggt 2100 ttcatcqact acattqtcca tccattqtqq qaqacatqqq cagatttggt acagcctgat 2160 2220 qctcaqqaca ttctcqatac cttaqaagat aacaqgaact ggtatcagag catgatacct caaaqtccct caccaccact qqacqaqcaq aacaqqqact qccaqqqtct gatggagaaq 2280 tttcagtttg aactgactct cgatgaggaa gattctgaag gacctgagaa ggagggagag 2340 ggacacaget atttcagcag cacaaagacg etttgtgtga ttgatccaga aaacagagat 2400 2460 tccctgggag agactgacat agacattgca acagaagaca agtcccccgt ggatacataa tececetete cetgtggaga tgaacattet atcettgatg agcatgecag etatgtggta 2520 qqqccaqccc accatggggg ccaagacctg cacaggacaa gggccacctg gcctttcagt 2580 tacttqaqtt tqqaqtcaqa aaqcaagacc aggaagcaaa tagcagctca ggaaatccca 2640 cqqttqactt qccttqatqq caaqcttggt qqaqaqqqct gaagctgttg ctgggggccg 2700 attotgatca agacacatgg cttgaaaatg gaagacacaa aactgagaga tcattotgca 2760 ctaaqtttcq qqaacttatc cccqacaqtq actgaactca ctgactaata acttcattta 2820 tgaatcttct cacttgtccc tttgtctgcc aacctgtgtg ccttttttgt aaaacatttt 2880 catgicttta aaatgeetgt tgaataeetg gagtttagta teaaetteta cacagataag 2940 ctttcaaagt tgacaaactt ttttgactct ttctggaaaa gggaaagaaa atagtcttcc 3000 ttettette ggcaatatee tteaetttae tacagttaet tttgcaaaca gacagaaagg 3060 atacacttct aaccacattt tacttccttc ccctgttgtc cagtccaact ccacagtcac 3120 tettaaaact tetetetgtt tgeetgeete caacagtact tttaactttt tgetgtaaac 3180 agaataaaat tgaacaaatt agggggtaga aaggagcagt ggtgtcqttc accqtqagaq 3240 tetqeataqa aeteageagt gtgeeetget gtgtettgga eeetgeeeee cacaggagtt 3300 getacagtee etggecetge tteccateet cetetettea eccegttage tgtttteaat 3360

PCT/US2003/012946 WO 2004/042346

| gtaatgetge egteettete ttgeactgee ttetgegeta acaeet               | ccat tcctgtttat 3420 |
|------------------------------------------------------------------|----------------------|
| aaccgtgtat ttattactta atgtatataa tgtaatgttt tgtaag               | ttat taatttatat 3480 |
| atctaacatt gcctgccaat ggtggtgtta aatttgtgta gaaaac               | tetg cetaagagtt 3540 |
| acgaettttt ettgtaatgt tttgtattgt gtattatata acceaa               | acgt cacttagtag 3600 |
| agacatatgg cccccttggc agagaggaca ggggtgggct tttgtt               | caaa gggtctgccc 3660 |
| tttccctgcc tgagttgcta cttctgcaca acccctttat gaacca               | gttt tggaaacaat 3720 |
| attctcacat tagatactaa atggtttata ctgagtcttt tacttt               | tgta tagcttgata 3780 |
| ggggcagggg caatgggatg tagtttttac ccaggttcta tccaaa               | tcta tgtgggcatg 3840 |
| agttgggtta taactggatc ctactatcat tgtggctttg gttcaa               | aagg aaacactaca 3900 |
| tttgctcaca gatgattctt ctgattcttc tgaatgctcc cgaact               | actg actttgaaga 3960 |
| ggtagcctcc tgcctgccat taagcaggaa tgtcatgttc cagttc               | atta caaaagaaaa 4020 |
| caataaaaca atgtgaattt ttataataaa aaaaaaaaaa                      | tc 4068              |
| <210> 2833<br><211> 664<br><212> DNA<br><213> Homo sapiens       |                      |
| <400> 2833<br>ggattgttgg tetgegtgga aetteteagg tggacaceag ageatg | gaac acatccacga 60   |
| cagcgatggc agttccagca gcagccacca gagcctcaag agcaca               | gcca aatgggcggc 120  |
| atccctggag aatctgctgg aagacccaga aggcgtgaaa agattt               | aggg aatttttaaa 180  |
| aaaggaattc agtgaagaaa atgttttgtt ttggctagca tgtgaa               | gatt ttaagaaaat 240  |
| gcaagataag acgcagatgc aggaaaaggc aaaggagatc tacatg               | acct ttctgtccag 300  |
| caaggcotca toacaggtca acgtggaggg gcagtotcgg ctcaac               | gaga agatcctgga 360  |
| agaaccgcac cctctgatgt tccagaaact ccaggaccag atcttt               | aatc tcatgaagta 420  |
| cgacagetac agecgettte ttaagtetga ettgttttta aaacae               | aagc gaaccgagga 480  |
| agaggaagaa gatttgcctg atgctcaaac tgcagctaaa agagct               | tcca gaatttataa 540  |
| cacatgagec cccaaaaage egggaetgge agetttaaga ageaaa               | ggaa tttcctctca 600  |
| ggacgtgccg ggtttatcat tgctttgtta tttgtaagga ctgaaa               | tgta caaaaccctt 660  |
| caat                                                             | 664                  |

<sup>&</sup>lt;210> 2834 <211> 615 <212> DNA <213> Homo sapiens

<400> 2834 geteagagag aagtgaettt gageteacag tqteacegee tgetgatggg agagetgaat 60 tcaaaaccag ggtgtctccc tgagcagagg gacctgcaca cagagactcc ctcctgggct 120 cetggcacca tggccccact gaagatgctg gccctggtca ccctcctcct gggggcttct 180 ctgcagcaca tccacqcagc tcgaqqqacc aatqtqqqcc gggagtqctg cctqqaqtac 240 ttcaagggag ccattcccct tagaaagctg aagacgtggt accagacatc tgaggactgc 300 360 tecagggatq ccatcqtttt tgtaactqtq caqqqcaqgg ccatctqttc qqacccaac aacaagagag tgaagaatgc agttaaatac ctgcaaagcc ttgagaggtc ttgaagcctc 420 ctcaccccag actcctgact gtctcccqqq actacctqqq acctccaccq ttqqtqttca 480 540 cogceccae cetqaqeqee tqqqtecaqq qqaqqeette caqqqaeqaa qaaqaqeeae aqtqaqqqaq atcccatccc cttqtctqaa ctqqaqccat qqqcacaaaq qqcccaqatt 600 615 aaagtettta teete <210> 2835 <211> 885 <212> DNA <213> Homo sapiens <400> 2835 agcctacgca cgaaagtgac tagggaggaa ggatattata aagtgatgca aacagaaatt 60 ccaccagect ccatgtatca teatgtgtea taactcagte aagetcagtg ageattetca 120 qcacattqcc tcaacaqctt caaqqtqaqc caqctcaaqa ctttqctctc caccaqqcaq 180 aaqatqacaq actqtqaatt tqqatatatt tacaqqctqq ctcaqqacta tctqcaqtqc 240 gtcctacaga taccacacc tggatcaggt ccaagcaaaa cgtccagagt gctacaaaat 300 gttgcgttct cagtccaaaa agaagtggaa aagaatctga agtcatgctt ggacaatgtt 360 aatgttgtgt ccgtagacac tgccagaaca ctattcaacc aagtgatgga aaaggagttt 420 qaagacggca tcattaactg gggaagaatt gtaaccatat ttgcatttqa aqqtattctc 480 atcaagaaac ttctacgaca gcaaattgcc ccggatgtgg atacctataa ggagatttca 540 tattttgttg cggagttcat aatgaataac acaggagaat ggataaggca aaacggaggc 600 tqqqaaaatq qctttqtaaa qaaqtttqaa cctaaatctq qctqqatqac ttttctaqaa 660 gttacaggaa agatctgtga aatgctatct ctcctgaagc aatactgttg accagaaagg 720

780

840

885

acactecata ttgtgaaacc ggcctaattt ttctgactga tatggaaacg attgccaaca

catacttcta cttttaaata aacaactttq atqatqtaac ttqaccttcc aqaqttatqq

aaattttgtc cccatgtaat gaataaattg tatgtatttt tctct

<210> 2836 <211> 1875

<211> 1879 <212> DNA

<213> Homo sapiens

<400> 2836

aaagcatcca gttcctttgc ggtcctcttc ttcagcacat gccaaagctg ttcctcacgg 60 cctgtgagac aagagcatct tggatgtagg acaatggaag agttagatgc cttattggag 120 gaactggaac gctccaccct tcaggacagt gatgaatatt ccaacccagc tcctcttccc 180 ctggatcagc attccagaaa ggagactaac cttgatgaga cttcggagat cctttctatt 240 caggataaca caagtccctt gccggcgcag ctcgtgtata ctaccaatat ccaggagctc 300 aatgtctaca gtgaagccca agagccaaag gaatcaccac caccttctaa aacgtcagca 360 gctgctcagt tggatgagct catggctcac ctgactgaga tgcaggccaa ggttgcagtg 420 agagcagatg ctggcaagaa gcacttacca gacaagcagg atcacaaggc ctccctggac 480 tcaatgcttg ggggtctgga gcaggaattg caggaccttg gcattgccac agtgcccaag 540 ggccattgtg catcctgcca gaaaccgatt gctgggaagg tgatccatgc tctagggcaa 600 teatggcate etgageattt tgtetgtaet cattgeaaag aagagattgg etceagteee 660 ttetttgage ggagtggett ggeetaetge eccaaegaet accaecaaet ttttteteea 720 egetgtgett aetgegetge teccateetg gataaagtge tgacagcaat gaaccagace 780 tqgcacccag agcacttett etgeteteae tgeggagagg tgtttggtge agaaggettt 840 catgaqaagg acaagaagcc atattgccga aaggatttct tagccatgtt ctcacccaag 900 tgtggtggct gcaatcgccc agtgttggaa aactaccttt cagccatgga cactgtctgg 960 cacccagagt gettigttig tggggactge ttcaccagtt tttctactgg etcettettt 1020 gaactggatg gacgtccatt ctgtgagctc cattaccatc accgccgggg aacgctctgc 1080 catgggtgtg ggcagcccat cactggccgt tgtatcagtg ccatggggta caagttccat 1140 cctgagcact ttgtgtgtgc tttctgcctg acacagttgt cgaagggcat tttcagggag 1200 cagaatgaca agacctattg tcaaccttgc ttcaataagc tcttcccact gtaatgccaa 1260 ctgatccata gcctcttcag attccttata aaatttaaac caagagagga gaggaaaggg 1320 taaattttct gttactgacc ttctgcttaa tagtcttata gaaaaaggaa aggtgatgag 1380 caaataaagg aacttctaga ctttacatga ctaggctgat aatcttattt tttaggcttc 1440 tatacagtta attotataaa ttototttot oootototto tooaatcaag caottggagt 1500 tagatetagg teettetate tegteeetet acagatgtat tttecaettg cataatteat 1560 gccaacactg gttttcttag gtttctccat tttcacctct agtgatggcc ctactcatat 1620

cffctctaat ttggtcctga tacttgtttc ttttcacgtt ttcccatttg ccctgtggct 1680 cactqtetta caatcactge tgtggaatca tgataccact tttagetett tgeatettee 1740 ttcaqtqtat ttttgttttt caagaggaag tagattttaa ctggacaact ttqaqtactq 1800 acatcattqa taaataaact qqcttqtggt ttcaataaaa aaaaaaaaaaa aaaaaaaaaa 1860 aaaaaaaaa aaaaa 1875

<210> 2837 <211> 2366

<212> DNA

<213> Homo sapiens

<400> 2837

qaccacqcgt atcgatgtcg acccacagga ttgtcacaga gggcagggtg gtgactgagg 60 accaretect catgettgag getgtggtga tgcacetegg gatecgetet geeegetgtg 120 tectqqqcat qqaqqqtcaq caqqtcatec tgcacetgcc ectateccag aaggggceet 180 totggacatg ggagectagt geceetegaa etetgeteea ggteetacag gatecagece 240 tqaaaqacct cqtcctcacc tqccccaccc tgccctggca ttccctgatc ctgcggcccc 300 agtatgagat ccaagccatc atgcacatgc gcaggaccat tgtcaagatc ccttctaccc 360 tggaggtcga cgtggaggac gtcaccgcct cctcccggca cgtccacttt atcaaaccgc 420 tgctgctgag cgaggtcctg gcctgggaag gccctttccc cctgtccatg gagatcctgg 480 aggtteetga gggeegeece atetteetea geeegtgggt gggeteettg caaaaaggee 540 agaggetttg egtetatgge etageeteac caccetggeg ggteetggee teaageaagg 600 geeqeaaqqt geecaggeac tteetggtgt cagggggeta ccaaggeaag etgeggegge 660 ggccaaggga gttccccacg gcctatgacc tcctaggtgc tttccagcca ggccqgccac 720 tccqqqtqqt qqccacaaaq gactgtgagg gcgagaggga ggagaatccc gagttcacgt 780 ccctggctgt gggtgaccgg ctggaggtgc tggggcctgg ccaggcccat ggggcccagg 840 qcaqtqacqt qqatqtcttq qtttqtcagc ggctgagtga ccaggctggg gaagatgagg 900 aggaagagtg caaagaggag gcagagaccc agagcgggtc ctgctgccct tccacttccc 960 1020 tggcagtttc gtggaggaga tgagtgacag ccggcgctac agcctggcag atctgactgc 1080 ccagttttca atgccttqtq aqqtcaaqqt qqtqqccaaq qacaccaqcc accccaatga ccctcagaac ctccttcctg ggcctgcggc tggaggagaa gatcacagag ccattcttgg 1140 tggtgagcct ggactctgag ctgggatgtg ctttgagatc cctccccgga ggctggacct 1200 gactqtcgtg gaggccaagg ggcagccaga cttgccagag gggtctctcc ccatagccac 1260 aqtqqaggaa gctggaacag acacctttta ttattgtctt cggaagttac cagcctgtga 1320

1177

| cagcagtgag ggagggtca agtettetea agtettaga ttgcagcaac acgttegget 144 gcccaaaccc aaggcgaaga cettgccaga gttcatcaag gatggctca gtacgtacag 150 caagatteet gcccacagga agggccacag gcccgctaag ccccaaaggc aggatetaga 156 tgatgatgaa catgattatg aagaaatact tgagcaattt cagaaaacca tctaagtget 162 ggaggaacca cgcttcctaa ctgctgcttc tcagggaatc cgacaccagc caaccatttt 1680 aagcetctaa aagacetcgg gcaagtetca cagaaaactga gctgcagacg gggagtaget 1740 ttgtggaaac tgatttgatg gacactgcac cagetteett caggttctag attettgeta 1800 cttagggegg gctggtttgg acctaacatc tcgcacgtga ctccctcage ctcagagect 1860 tgggatgcag agcagctggc agggttcctc tcaatcctgc aacccagct gtcccaccgg 1920 tggatgcaga ggggaatccg agggcatcaa cettggtgac agcagcgcag tgccaatgct 1980 gatcacactg catggggat tttgttaacg tctgccaccc ccactctcac ccccaagctc taagcccccg ggaggcctgg actgtcttcc tcatctctgt agcaccaagc ctgatagatc 2040 taagcccccg ggaggcctgg actgtcttcc tcatctctgt agcaccaagc ctgatagatc 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------|
| geccaaaccc aaggegaaga cettgecaga gtteateaag gatggeteca gtaegtacag 1500 caagatteet geccacagga agggecacag gecegetaag eccaaagge aggatetaga 1560 tgatgatgaa catgattatg aagaaatact tgageaatt cagaaacca tetaagtget 1620 ggaggaacca egetteetaa etgetgette teagggaate egacaccage caaccattt 1680 aageetetaa aagacetegg geaagteeta cagaaactga getgeagaag ggggagtagget 1740 ttgtggaaac tgattgatg gacactgac cagetteett eaggtteetag attettgeta 1800 ettagggaage getggttgg acctaacate tegeaggta eteceteage eteagageet 1800 ettagggatgeag getggttgg acctaacate tegeaggta eteceteage eteagageet 1800 ettaggatgeag aggagateeg agggeteete teaateetge aacceaget gteceacegg 1920 etggatgeaga ggggateeg agggeteete teaateetge aacceaget gteceacegg 1920 etggatgeaga ggggateeg agggeateaa eettggtgac aggaggeag tgecaatget 1980 gateacacatg catggggat tttgttaacg tetgeeacee ecaeteteac eccaaagete 2040 etaageecee ggagggeetgg actgtettee teatetetgt ageaccaage etgatagate 2100 etgtatatggt aaacaggggt ttaaccacat gtggttaaca tgggttgaa atggggaatttg 2160 getteaagaa ecaeacetta ggacettggg ecceaaaage tggtggtgaa atgagaggag 2220 eccaatttaag aagaceetta tggagacetg aggetgeaga aactggtagg ttteateagg 2340 aataaaaatg egteaaagt gtaagtgact aaccaagatt attteattt aaaaccacag 2340 aataaaaaatg acacctgage teetee 2366 etggtagaa etggtagaa ataaaacagg 120 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etggts 1633 etg | gatecaagee eececaceea ggeeeeetaa aaateaggge eteageaage agaggagaea | 1380 |
| tgatgatcct gcccacagga agggccacag gcccgctaag ccccaaaggc aggatctaga 1566 tgatgatgaa catgattatg aagaaatact tgagcaattt cagaaaacca tctaagtgct 1626 ggaggaacca cgcttcctaa ctgctgcttc tcagggaatc cgacacagc caaccatttt 1686 aagcctctaa aagacctcgg gcaagtctca cagaaacctga gctgcagacg gggagtagct 1746 ttgtggaaac tgatttgatg gacactgcac cagcttcctt caggttctag attcttgcta 1800 cttagggcgg gctggtttgg acctaacatc tcgcacgtga ctccctcagc ctcagagcct 1860 cttagggcgg gctggtttgg acctaacatc tcgcacgtga ctccctcagc ctcagagcct 1800 cttagggcag aggaatccg agggttcctc tcaatcctgc aacccagct gtcccaccgg 1920 tggatgcaga ggggaatccg agggcatcaa ccttggtgac agcagcgcag tgccaatgct 1980 gatcacactg catgggagat tttgttaacg tctgccaccc ccactctcac ccccaagctc 2040 taagcccccg ggaggcctgg actgtcttcc tcatctctgt agcaccaagc ctgatagatc 2100 tgtatatggt aaacaggggt ttaaccacat gtggttaaca tgggttaatg tggggaatttg 2160 gcttcaagaa cacaacctta ggaccttggg ccccaaaagc tggtggtgaa atgagaggag 2220 ccaatttaag aagaccctta tggagacctg aggctgcaga aactggtagg tttcatcagg 2280 ccaatttaag aagaccctta tggagacctg aggctgcaga aactggtagg tttcatcagg 2280 ccaatttaag aagaccctta tggagacctg aggctgcaga aactggtagg tttcatcagg 2340 aataaaaatg cgtcaaagtt gtaagtgact aaccaagatt atttcatttt aaaaccacaag 2340 aataaaaatg scgcatcaca ccatgtaggg catttactct tattttatac 60 attcagatat gtttgaaaca ttcttaaggc tacaaaacag aacatagaaa aataaacagg 120 aatatattca acacttacaa aaagtgatat gataaaacaag aacatagaaa aataaacagg 120 aatatattca acacttacaa aaagtgatat gataaagaat ataaagtact agtttccttt 180 taacacttca aaagatatg atatatactt tttttacaa gtaacatcac aaatgctcac 240 atcttcacat gctcttaaag tattatttgt actcagtgta aggctattat cgttttcat 300                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | 1440 |
| tgatgatgaa catgattatg aagaaatact tgagcaattt cagaaaacca tctaagtgct 1626 ggaggaacca cgcttcctaa ctgctgcttc tcagggaatc cgacaccagc caaccatttt 1686 aagcctctaa aagacctcgg gcaagtctca cagaaactga gctgcagacg gggagtagct 1746 ttgtggaaac tgatttgatg gacactgcac cagcttcctt caggttctag attcttgcta 1806 cttagggcgg gctggtttgg acctaacatc tcgcacgtga ctccctcagc ctcagagcct 1866 ttgggatgcag agcagctggc agggttcctc tcaatcctgc aacccagct gtcccaccgg 1920 tggatgcag agcagctggc agggttcctc tcaatcctgc acccagcg gtcccaccgg 1920 tggatgcaga ggggaatccg aggccatcaa ccttggtgac agcagcgcag tgccaatgct 2040 gatcacactg catgggagat tttgttaacg tctgccaccc ccactctcac ccccaagctc 2040 taagcccccg ggaggcctgg actgtcttcc tcatctctgt agcaccaagc ctgatagatc 2100 tgtatatggt aaacaggggt ttaaccacat gtggttaaca tggattaatg tgggaatttg 2160 gcttcaagaa cacaacctta ggaccttgg ccccaaaagc tggtggtgaa atgagaggag 2220 ccaatttaag aagaccctta tggagacctg aggctgcaga aactggtagg tttcatcagg 2280 ccaatttaag aagaccctta tggagacctg aggctgcaga aactggtagg tttcatcagg 2340 aataaaaaat cgtcaaaagtt gtaagtgact aaccaagatt atttcattt aaaaccacag 2340 aataaaaaat scacctgagc ttctcc 2366 <210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   | 1500 |
| aagcotctaa aagacotcgg gcaagtotca cagaaactga gctgcaagc gagagtagct 1740 ttgtggaaac tgatttgatg gacactgcac cagcttcctt caggttctag attettgcta 1800 cttagggcgg gctggtttgg acctaacatc tcgcacgtga ctccctcage ctcagagcct 1860 ttgggatgcag agcagctgg agggttcctc tcaatcctgc aaccccagct gtcccaccgg 1920 tggatgcag agcagctggc agggttcctc tcaatcctgc aaccccagct gtcccaccgg 1920 tggatgcag agggaatccg agggccatcaa ccttggtgac agcagcgcag tgccaatgct 2040 gatcacactg catgggagat tttgttaacg tctgccaccc ccactctcac ccccaagctc 2040 taagcccccg ggaggcctgg actgtctcc tcatctctgt agcaccaagc ctgatagatc 2100 tgtatatggt aaacaggggt ttaaccacat gtggttaaca tgggttaatg tgggaatttg 2160 gcttcaagaa cacaacctta ggaccttgg ccccaaaagc tggtggtgaa atgagaggag 2220 ccaatttaag aagaccctta tggagacctg aggctgcaga aactggtagg tttcatcagg 2280 tggttaaagt cgtcaaagtt gtaagtgact aaccaagatt atttcattt aaaaccacag 2340 aataaaaaat acacctgagc ttetcc 2366   <210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   | 1560 |
| aagcetteaa aagacetegg geaagtetea cagaaactga getgeagaeg gggagtaget 1740 ttgtggaaac tgatttgatg gacactgace cagetteett caggttetag attettgeta 1800 cttagggegg getggtttgg acetaacate tegeacegtga etceetcage etcagageet 1860 tgggatgeag ageagetgge agggtteete teaateetge aaceecaget gteecacegg 1920 tggatgeaga aggagateeg agggeteete teaateetge aaceecaget gteecacegg 1920 tggatgeaga ggggaateeg aggecateaa cettggtgac ageagegeag tgeeaatget 2040 taageeceeg ggaggeetgg actgettee teateetegt ageaceaage etgatagate 2100 tgtatatggt aaacaaggggt ttaaceacat gtggttaaca tggattaatg tgggaatttg getteaagae cacaacetta ggacettgg ceecaaaage tggtggtgaa atgaggagag getteaagaa cacaacetta tggagacetg aggetgeaga aactggtagg tteateagg 2220 ccaatttaag aagaceetta tggagacetg aggetgeaga aactggtagg ttteateagg 2280 tggttaaagt egteaaagtt gtaagtgact aaceaagatt attteatttt aaaaceacag 2340 aataaaaatg acacetgage tteece 2366  <210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   | 1620 |
| ttgtgggaaac tgatttgatg gacactgcac cagetteett caggttetag attettgeta 1800 cttagggegg getggtttgg acetaacate tegeaegtga etcecteage etcagageet 1860 tgggatgcag ageagetgga agggtteete teaateetge aaceccaget gteccacegg 1920 tggatgcag agggaateeg agggeteete teaateetge aaceccaget gteccacegg 1920 tggatgcaga ggggaateeg agggeteete etcateetegt ageaceagegeag tgecaatget 2040 taageeceeg ggaggeetgg actgettee teateetegt ageaceaage etgatagate 2100 tgatataggt aaacaggggt ttaaccacat gtggttaaca tggattaatg tgggaatttg 2160 getteaagaa cacaacetta ggacettggg ecceaaaage tggtggtgaa atgagaggag 2220 ccaatttaag aagaceetta tggagacetgg geceaaage tggtggtgaa atgagaggag 2220 ccaatttaag aagaceetta tggagacetg aggetgeaga aactggtagg tteatecag 2340 aataaaaatg egtcaaagtt gtaagtgac aaceaagatt attteattt aaaaceacag 2340 aataaaaatg acacetgage ttetee 2366 2110 6383 2120 DNA 22130 Homo sapiens 4400 2838 egeggeeget atatataatg cageateaca ccatgtaggg catttactet tatttatac 60 atteagatat gtttgaaaca ttettaagge tacaaaacag aacatagaaa aataaacagg 120 aatatattea acacttacaa aaagtgatat gataaagaat ataaagtact agttteett 180 taacacttea aacacttacaa aaagtgatat tttttttacaa gtaacatcac aaatgeteac 240 ateeteecat getettaaag tatatattgt acteagtgta aggetattat egtttteat 300 acataaaaatt ttetagetet gtaacacaat geaatttta atecatteaa gtaagteaa 360 acataaaaatt ttetagetet gtaacacaat geaatttta atecatteaa gtaagtteaa 3600 acataaaaatt ttetagetet gtaacacaat geaatttta atecatteaa gtaagtteaa 3600 acataaaaatt ttetagetet gtaacacaat geaatttta atecatteaa gtaagtteaa 3600 acataaaaatt ttetagetet gtaacacaat geaatttta atecatteaa gtaagtteaa 3600 acataaaaatt ttetagetet gtaacacaat geaatttta atecatteaa gtaagtteaa 3600 acataaaaatt ttetagetet gtaacacaat geaatttta atecatteaa gtaagtteaa 3600 acataaaaatt ttetagetet gtaacacaat geaatttta accatteaa gtaagtteaa 3600 acataaaaatt ttetagetet gtaacacaat geaatttta accatteaa gtaagtteaa 3600 acataaaaaatt ttetagetet gtaacacaat geaatttta accatteaa gtaagtteaa 3600 acataaaaaaaatt ttetagetet gtaacacaat geaatttta accatteaa gtaagtteaa 3600 acataaaaacaag aacatagaaa accacacaat gtaacataaaaaaaag 360 | ggaggaacca cgcttcctaa ctgctgcttc tcagggaatc cgacaccagc caaccatttt | 1680 |
| tgatcacatg catgggggggggggggggggggggggggg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   | 1740 |
| tgggatgcag agcagctggc agggttectc teaatcetgc aaccccagct gteccaccgg 1920 tggatgcaga ggggaatccg aggccatcaa cettggtgac agcagcgcag tgecaatgct 1980 gatcacactg catgggagat tttgttaacg tetgecacce ceaetctcac ceccaagetc 2040 taagcccccg ggaggcctgg actgtcttcc teatectctgt agcaccaagc ctgatagate 2100 tgtatatggt aaacaggggt ttaaccacat gtggttaaca tggattaatg tgggaatttg 2160 gettcaagaa cacaacctta ggaccttggg ceccaaaage tggtggtgaa atgagaggag 2220 ccaatttaag aagaccetta tggagacctg aggetgcaga aactggtagg tteatcacg 2280 tggttaaagt cgtcaaagtt gtaagtgact aaccaagatt attteattt aaaaccacag 2340 aataaaaatg acacctgage ttetee 2366  <10> <ul> <li>2838</li> <li>211&gt; 6383</li> <li>212&gt; DNA</li> <li>213&gt; Homo sapiens</li> <li>400&gt; 2838</li> <li>cgeggccgct atatataatg cagcatcaca ccatgtaggg catttactet tatttatac 60 attcagatat gtttgaaaca ttettaagge tacaaaacag aacatagaaa aataaacagg 120 aatatattca acacttacaa aaagtgatat gataaagaat ataaagtact agtttecttt 180 taacacttca aaagatatg atatatactt tttttacaa gtaacatcac aaatgctcac 240 atettcacat getettaaag tatatattgt accagtgta aggetattat egtttteat 300 accaaaaaatt ttetagetet gtaacacaat gcaatttta atccattcaa gtaagtcaa 360 accaaaaaatt ttetagetet gtaacacaat gcaatttta atccattcaa gtaagtcaa 360</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ttgtggaaac tgatttgatg gacactgcac cagcttcctt caggttctag attcttgcta | 1800 |
| gatcacactg catgggagat titgttaacg tetgetgac agcageggag tgecaatgget 2040 gatcacactg catgggagat titgttaacg tetgecacec ceacteteac ecceaagete 2040 taageceeg ggaggeetgg actgtettee teatetetgt agcacaage etgatagate 2100 tgtatatggt aaacaggggt titaaccacat gtggttaaca tggattaatg tgggaattig 2160 getteaagaa cacaacetta ggacettggg ecceaaaage tggtggtgaa atgagaggag 2220 ceaatitaag aagaceetta tggagacetg aggetgeaga aactggtagg titeateagg 2280 tggttaaagt egteaaagtt gtaagtgact aaccaagatt atticatiti aaaaccacag 2340 aataaaaatg acacetgage tietee 2366  <2210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   | 1860 |
| gatcacactg catgggagat titigitaacg tetgecaece coacteteae ecceaagete taagececeg ggaggeetgg actgettee teatetetgt ageaceaage etgatagate 2100 tgtatatggt aaacaggggt titaaceaet giggtitaaca tggataatg tgggaatitg 2160 getteaagaa eacaacetta ggacetiggg ecceaaaage tggtggtgaa atgagaggag 2220 ceaatitaag aagaceetta tggagacetg aggetgeaga aactggtagg titeateagg 2340 aataaaaatg egicaaagit gtaagigaet aaceaagati atticatiti aaaaceacag 2340 aataaaaaatg acacetgage titee 2366 c210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tgggatgcag agcagetgge agggtteete teaateetge aaccecaget gteecaeegg | 1920 |
| taagcccccg ggaggcctgg actgtcttcc tcatctctgt agcaccaagc ctgatagate 2100 tgtatatggt aaacaggggt ttaaccacat gtggttaaca tggattaatg tgggaatttg 2160 gcttcaagaa cacaacctta ggaccttggg ccccaaaagc tggtggtgaa atgagaggag 2220 ccaatttaag aagacccta tggagacctg aggctgcaga aactggtagg tttcatcagg 2240 tggttaaagt cgtcaaagt gtaagtgact aaccaagatt atttcattt aaaaccacag 2340 aataaaaatg acacctgage ttctcc 2366 c210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tggatgcaga ggggaatccg aggccatcaa ccttggtgac agcagcgcag tgccaatgct | 1980 |
| getteaagaa cacaacetta ggacettggg ceccaaaage tggtgggaa atgagaggag 2220 ccaatttaag aagacetta tggagacetg aggetgcaga aactggtagg tteatcagg 2280 tggttaaagt cgtcaaagtt gtaagtgact aaccaagatt attteattt aaaaceacag 2340 aataaaaatg acacetgage ttetee 2366 <210> 2838 <211> DNA <2113 Homo sapiens <4400> 2838 cgeggeeget atatataaatg cagcatcaca ccatgtaggg catttactet tatttatac 60 attcagatat gttgaaaca ttettaagge tacaaaacag aacatagaaa aataaacagg 120 aatatattca acacttacaa aaagtgatat gataaagaat ataaagtact agtteettt 180 taacacttca aaagatatg atatatactt tttttacaa gtaacatcac aaatgetcac 240 atettacaat getettaaag tattatttgt actcagtgta aggetattat cgtttteat 300 acataaaaatt ttetagetet gtaacacaat gcaatttta atecattcaa gtaagttcaa 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gatcacactg catgggagat tttgttaacg tctgccaccc ccactctcac ccccaagctc | 2040 |
| getteaagaa eacaacetta ggacettggg ceccaaaage tggtggtgaa atgagaggag 2220 ceaatttaag aagacectta tggagacetg aggetgcaga aactggtagg tteatcagg 2280 tggttaaagt egteaaagtt gtaagtgact aaccaagatt attecattt aaaaceacag 2340 aataaaaatg acacetgage ttetee 2366  <210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | taagcccccg ggaggcctgg actgtcttcc tcatctctgt agcaccaagc ctgatagatc | 2100 |
| ccaatttaag aagaccctta tggagacctg aggctgcaga aactggtagg tttcatcagg 2280 tggttaaagt cgtcaaagtt gtaagtgact aaccaagatt atttcattt aaaaccacag 2340 aataaaaatg acacctgagc ttctcc 2366  <210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tgtatatggt aaacaggggt ttaaccacat gtggttaaca tggattaatg tgggaatttg | 2160 |
| tggttaaagt cgtcaaagtt gtaagtgact aaccaagatt atttcatttt aaaaccacag 2340 aataaaaatg acacctgagc ttctcc 2366  <210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | getteaagaa cacaacetta ggacettggg ceecaaaage tggtggtgaa atgagaggag | 2220 |
| aataaaaatg acacctgagc ttctcc 2366  <210> 2838 <211> 6383 <212> DNA <213> Homo sapiens <410> 2838 cgcggcgct atatataatg cagcatcaca ccatgtaggg catttactct tattttatac 60 attcagatat gtttgaaaca ttcttaaggc tacaaaacag aacatagaaa aataaacagg 120 aatatattca acacttacaa aaagtgatat gataaagaat ataaagtact agtttccttt 180 taacacttca aaagatatg atatatactt tttttacaa gtaacatca aaatgctcac 240 atcttcacat gctcttaaag tattatttgt actcagtgta aggctattat cgttttcat 300 acataaaaatt ttctagctct gtaacacaat gcaatttta atccattcaa gtaagtcaa 3600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ccaatttaag aagaccctta tggagacctg aggctgcaga aactggtagg tttcatcagg | 2280 |
| <pre>&lt;210&gt; 2838 &lt;211&gt; 6383 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 2838 gogggccgct atatataatg cagcatcaca ccatgtaggg catttactct tattttatac 60 attcagatat gtttgaaaca ttcttaaggc tacaaaacag aacatagaaa aataaacagg 120 aatatattca acacttacaa aaagtgatat gataaagaat ataaagtact agtttccttt 180 taacacttca aaagtatgt atatatactt tttttacaa gtaacatcac aaatgctcac 240 atcttcacat gctcttaaag tattatttgt actcagtgta aggctattat cgttttcat 300 acataaaaatt ttctagctct gtaacacaat gcaatttta atccattcaa gtaagtcaa 360</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tggttaaagt cgtcaaagtt gtaagtgact aaccaagatt atttcatttt aaaaccacag | 2340 |
| <pre>&lt;211&gt; 6383 &lt;212&gt; DNA &lt;213&gt; Homo sapiens </pre> <pre>&lt;400&gt; 2838 cgcggccgct atatataatg cagcatcaca ccatgtaggg catttactct tattttatac 60 attcagatat gtttgaaaca ttcttaaggc tacaaaacag aacatagaaa aataaacagg 120 aatatattca acacttacaa aaagtgatat gataaagaat ataaaagtact agtttccttt 180 taacacttca aaagatatg atatatactt tttttacaa gtaacatcac aaatgctcac 240 atcttcacat gctcttaaag tattatttgt actcagtgta aggctattat cgttttcat 300 acataaaaatt ttctagctct gtaacacaat gcaatttta atccattcaa gtaagtcaa 360</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | aataaaaatg acacctgagc ttctcc                                      | 2366 |
| attcagatat gtttgaaaca ttcttaaggc tacaaaacag aacatagaaa aataaacagg 120 aatatattca acacttacaa aaagtgatat gataaagaat ataaagtact agtttccttt 180 taacacttca aaagatatgt atatatactt tttttacaa gtaacatcac aaatgctcac 240 atcttcacat gctcttaaag tattatttgt actcagtgta aggctattat cgttttcat 300 acataaaaatt ttctagctct gtaacacaat gcaatttta atccattcaa gtaagttcaa 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <211> 6383<br><212> DNA<br><213> Homo sapiens                     |      |
| aatatattca acacttacaa aaagtgatat gataaagaat ataaagtact agtttccttt 240 taacacttca aaagatatgt atatatactt ttttttacaa gtaacatcac aaatgctcac 240 atcttcacat gctcttaaag tattatttgt actcagtgta aggctattat cgtttttcat 360 acataaaaatt ttctagctct gtaacacaat gcaatttta atccattcaa gtaagttcaa 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | egeggeeget atatataatg eageateaca eeatgtaggg eatttactet tattttatae | 60   |
| taacacttca aaagatatgt atatatactt tttttacaa gtaacatcac aaatgctcac 240 atcttcacat gctcttaaag tattatttgt actcagtgta aggctattat cgtttttcat 300 acataaaatt ttctagctct gtaacacaat gcaattttta atccattcaa gtaagttcaa 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | attcagatat gtttgaaaca ttcttaaggc tacaaaacag aacatagaaa aataaacagg | 120  |
| acataaaatt ttctagctct gtaacacaat gcaattttta atccattcaa gtaagttcaa 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | aatatattca acacttacaa aaagtgatat gataaagaat ataaagtact agtttccttt | 180  |
| acataaaatt ttctagctct gtaacacaat gcaattttta atccattcaa gtaagttcaa 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | taacacttca aaagatatgt atatatactt ttttttacaa gtaacatcac aaatgctcac | 240  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atcttcacat gctcttaaag tattatttgt actcagtgta aggctattat cgtttttcat | 300  |
| ccccaaagtt gccgcttccc agcattaaga catgcaccca cccctcttct aagattttct 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | acataaaatt ttctagctct gtaacacaat gcaattttta atccattcaa gtaagttcaa | 360  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ccccaaagtt gccgcttccc agcattaaga catgcaccca cccctcttct aagattttct | 420  |

1178

480

540

aaacttgtat ttcggggaga aagacctctt ttaaaaaata atccaattag tgggagagta

aatggctgac attagtagca aaaccttagt tatctgaaaa taacatattg gaaatgagac

attattagga ttttaaacaa acaatagcat ttagacataa agtaggaagc aaaatacagt 600 aaacagaaat agtgtagcca aatatcattc tcttcagcta ccttaagtaa aagacaaaac 660 atttacctca tctaaaaatg aaggtaaaac gaaagaggca aaaataaata ttgctagttt 720 ctaggatggc tgaatgtttt ctaaaccaga aatggttaga aaggaacttt attgcaccaa 780 qtcaatcata aqcaaqtttg cagttcacaq qcattttaat tcaaccttga gtcacaaagg 840 aqaacaacac qctqcqagaa tacagtctac aqtctgcatt aaataagaat atatcagcat 900 tqtqqtctqq qaaaacctat qcttqccaqq acaaggcagg gtgctgagct taggtcatgc 960 catqaaaatq aatttqtqqq ttatcaqtaa acaqtatqaq gactacacaq atgccaqcat 1020 cctqctqcca aqqaqacatq qqqcaaqaqt tqaaqatttg agaggaaatq aagagacata 1080 cacaacacca aaggaaaagg gggctggaat caagttcagc caaagcacct aacacaaaaa 1140 acaqqtqaqc tttqqtcaqt ctqttcttca aaatatgtat gatcatatgg taatgaagtt 1200 tcataatttc caactcaaaa atacaaatga tcctcagttc tatacttttg cctctattct 1260 cttataaaqa aatatqtcaa cataacaqta tqacataaca qttaaaataa qqacaaaaqc 1320 ttgcttatct tagtttgacc tcagcataag gcaaaatccc ctggagaata catttaaaaa 1380 caaacttaaa aggaaaaaaa gcgaaaccaa cttcatgcaa agattccttt taaaactatc 1440 1500 aaaagtcagt tcttttattc cagaggtcac tgagaaaagt accatctgct aaaattctct ttcaagcact tcttccatca tatcctagag gtgagatatg ggaaacagaa agcaaatcag 1560 tqttcctcaq qagctatatc tgttactcaa ttgagggtaa gacaaagtga caatgaagat 1620 atqaqtaqta tttccttcca atttttaaag attttcagaa gctgagatca aaccccactc 1680 aataaaatqc aqqaqactaq aaqcaacaac ttattttqqa ctcctgagat caaacacatt 1740 gaactttcaa atctgggtgt ttctatcaaa atgtgatttt cattaaaatc agtaagctag 1800 toctacataa aaaaqcatqa qotqaaaqtq qaqqaccotc tatottotca ttocttaact 1860 gagecacega tgttaagaaa aaaatggett aageggtace ttcaacaact attetagtta 1920 agaaggtgac aacaaattga ggccgcgaat tcggcgaaaa ctctttcctt tggttgtgct 1980 aagaggtgat gcccaaggtg caccaccttt caagaactgg atcatgaaca actttatcct 2040 cctqqaaqaa caqctcatca aqaaatccca acaaaaqaqa aqaacttctc cctcqaactt 2100 taaaqtccqc ttctttqtgt taaccaaagc cagcctggca tactttgaag atcgtcatgg 2160 gaaqaaqcqc acqctgaaqg ggtccattga gctctcccga atcaaatgtg ttgagattgt 2220 gaaaaqtqac atcaqcatcc catgccacta taaatacccg tttcaggtgg tgcatgacaa 2280 ctacctccta tatgtgtttq ctccagatcg tgagagccgg cagcgctggg tgctggccct 2340 taaaqaaqaa acgaggaata ataacagttt ggtgcctaaa tatcatccta atttctggat 2400

ggatgggaag tggaggtgct gttctcagct ggagaagctt gcaacaggct gtgcccaata 2460 tgatccaacc aagaatgctt caaagaagcc tetteeteet acteetgaag acaacaggeg 2520 accactttgg gaacctgaag aaactgtggt cattgcctta tatgactacc aaaccaatga 2580 tecteaggaa etegeaetge ggegeaaega agagtaetge etgetggaea gttetgagat 2640 tcactggtgg agagtccagg acaggaatgg gcatgaagga tatgtaccaa gcagttatct 2700 ggtggaaaaa tctccaaata atctggaaac ctatgagtgg tacaataaga gtatcagccq 2760 agacaaagct gaaaaacttc ttttggacac aggcaaagaa ggagccttca tggtaagqga 2820 ttccaggact gcaggaacat acaccgtgtc tgttttcacc aaggctgttg taagtgagaa 2880 caatccctgt ataaagcatt atcacatcaa ggaaacaaat gacaatccta agcgatacta 2940 tgtggctgaa aagtatgtgt tcgattccat ccctcttctc atcaactatc accaacataa 3000 tggaggaggc ctggtgactc gactccggta tccagtttgt tttgggaggc agaaagcccc 3060 agttacagca gggctgagat acgggaaatg ggtgatcgac ccctcagagc tcacttttqt 3120 gcaagagatt ggcagtgggc aatttgggtt ggtgcatctg ggctactggc tcaacaagga 3180 caaggtggct atcaaaacca ttcgggaagg ggctatgtca gaagaggact tcatagagga 3240 ggctgaagta atgatgaaac tctctcatcc caaactggtg cagctgtatg gggtgtgcct 3300 ggagcaggcc cccatctgcc tggtgtttga gttcatggag cacggctgcc tgtcagatta 3360 tctacgcacc cagcggggac tttttgctgc agagaccctg ctgggcatgt gtctggatgt 3420 gtgtgagggc atggcctacc tggaagaggc atgtgtcatc cacagagact tggctgccag 3480 aaattgtttg gtgggagaaa accaagtcat caaggtgtct gactttggga tgacaaggtt 3540 cgttctggat gatcagtaca ccagttccac aggcaccaaa ttcccggtga agtgggcatc 3600 cccagaggtt ttctctttca gtcgctatag cagcaagtcc gatgtgtggt catttggtgt 3660 gctgatgtgg gaagttttca gtgaaggcaa aatcccgtat gaaaaccgaa gcaactcaga 3720 ggtggtggaa gacatcagta ccggatttcg gttgtacaag ccccggctgg cctccacaca 3780 cgtctaccag attatgaatc actgctggaa agagagacca gaagatcggc cagccttctc 3840 cagactgctg cgtcaactgg ctgaaattgc agaatcagga ctttagtaga gactgagtac 3900 caggccacgg gctcagatcc tgaatggagg aaggatatgt cctcattcca tagagcatta 3960 gaagetgeca ccageccagg accetecaga ggeageetgg cetgtactea gteectgagt 4020 caccatggaa gcagcatcct gaccacagct ggcagtcaag ccacagctgg agggtcagcc 4080 accaagctgg gagctgagcc agaacaggag tgatgtctct gcccttcctc tagcctcttg 4140 tcacatgtgg tgcacaaacc tcaacctgac agctttcaga cagcattctt gcacttctta 4200

| WO 2004/042346 PCT/US2                                            | 003/01294 |
|-------------------------------------------------------------------|-----------|
| gcaacagaga gagacatgac gtaagaccca gattgctatt tttattgtta tttttcaaca | 4260      |
| gtgaatctaa agtttatggt tccagggact ttttatttga cccaacaaca cagtatccca | 4320      |
| ggatatggag gcaaggggaa caagagcatg agtgtttttc caagaaactg gtgagttaag | 4380      |
| taagattaga gtgagtgtgc tetgttgetg tgatgetgte agccacaget teetgeegta | 4440      |
| gagaatgata gagcagctgc tcacacagga ggccggatat ctgataagca gctttatgag | 4500      |
| gttttacaga gtatgctgct acctctctcc ttgaagggag catggcagac ccattggatg | 4560      |
| gattggggtg aacagttcag gtcccatgct tggagcattg ggtatctgat gtctgcacca | 4620      |
| gaacaagaga acctetgacg gtggagaacc atgtggtgta agaagagate ttaggtetet | 4680      |
| totttatacc aagotcatgt tttataccaa gotcatottt tataccaago tgtgcaggtg | 4740      |
| actatgeete etettetgea cagaatgett eeaccageat eetgagaaga aatgattaet | 4800      |
| totgtaaaac atcotttttt ccagoototg ggaatcagoo cccccctotc tgcactatco | 4860      |
| gateeteate aacagaggge ageattgtgt tggteagtgt teeettggeg ageaattgaa | 4920      |
| acttgtttag gccctagggt tgagcaattt taaggttgag actccaagtc tcctaaaatt | 4980      |
| ctaggagaga aataaagagt ctgtttttgc tcaaaccatc aggatggaaa cagtcaggca | 5040      |
| ctgactgggg tgcttccaag aggcatgaga gtgcctactc tggcttgagc acttctatat | 5100      |
| gcaaggtgaa tatgtactga gctaggagac ttccctgcaa aatctctgtt caccctgggt | 5160      |
| tcacatcccc atgaggtaat attattattc ccattttaca aataatgtaa ctgaggcttt | 5220      |
| aaaaagccaa gacatctgcc caaagtgatg gaactagaaa gtctagagct ggtattctag | 5280      |
| cccaaatctg tctgaccgca atacacagat tatttattcc tattagacac tggcttctac | 5340      |
| tgaaaatgaa acttattgca gagggaataa atacaaagat ggaaagccag taaagaagtc | 5400      |
| agtatagaac cactagcgat agtgttgctc tggcacagac cactgtggtt gatgcatggc | 5460      |
| cctccaactt ggaataggat tttccttttc ctattctgta tccttacctt ggtcatgtta | 5520      |
| atgactttgg agttattcag ttcctgaccc tttaattctc acaaccaacc agtcatgttg | 5580      |
| cttgaagcca ttatagacga gcttcaaagc aactttaaaa gattgttatg tagaagtatg | 5640      |
| agttetteet ttaattatea ttecaaettt eagetgtagt ettettgaae aettatgagg | 5700      |
| agggaggaca ttccctgata taagagagga tggtgttgca attggctctt tctaaatcat | 5760      |
| gtgacgtttt gactggcttg agattcagat gcataatttt taattattgt gaagtggaga | 5820      |
| gootcaagat aaaactotgt cattacgaag atgattttac toagottato caaaattato | 5880      |
| totgtttaot ttttagaatt ttgtacatta tottttggga toottaatta gagatgattt | 5940      |
| ctggaacatt cagtctagaa agaaaacatt ggaattgact gatctctgtg gtttggttta | 6000      |
| gaaaatteee etgtgeatgg tattaeettt tteaagetea gatteateta ateeteaaet | 6060      |
|                                                                   |           |

gtacatgtgt acattettea ceteetggtg ceetateeeg caaaatggge tteetgeetg 6120 ggtttttctc ttctcacatt ttttaaatgg tcccctgtgt ttgtagagaa ctcccttata 6180 cagagitting gitclagitt tatticgtag attitigcatt tigtaccttt tgagactatg 6240 tatttatatt tggatcagat gcatatttat taatgtacag tcactgctag tgttcaaaat 6300 aaaaatgtta caaatacctg ttatcctttg tagagcacac agagttaaaa gttgaatata 6360 gcaatattaa agetgcattt taa 6383 <210> 2839 <211> 1531 <212> DNA <213> Homo sapiens <400> 2839 agtcacagag ggaacacaga gcctagttgt aaacggacag agacgagagg ggcaagggag 60 gacagtggat gacagggaag acgagtgggg gcagagctgc tcaggaccat ggctgaggcc 120 . atcacctatg cagatetgag gtttgtgaag geteeeetga agaagageat eteeageegg 180 ttaggacagg acccaggggc tgatgatgat ggggaaatca cctacgagaa tgttcaagtg 240 eccgcagtee taggggtgee etcaagettg gettettetg tactagggga caaageageg 300 gtcaagtcgg agcagccaac tgcgtcctgg agagccgtga cgtcaccagc tgtcgggcgg 360 atteteccet geogracaac etgeetgega taceteetge teggeetget eetcacetge 420 ctgctgttag gagtgaccgc catctgcctg ggagtgcgct atctgcaggt gtctcagcag 480 ctccagcaga cgaacagggt tctggaagtc actaacagca gcctgaggca gcagctccgc 540 ctcaagataa cgcagctggg acagagtgca gaggatctgc aggggtccag gagagagctg 600 gcgcagagtc aggaagcact acaggtggaa cagagggctc atcaggcggc cgaagggcag 660 ctacaggcct gccaggcaga cagacagaag acgaaggaga ccttgcaaag tgaggagcaa 720 cagaggaggg ccttggagca gaagctgagc aacatggaga acagactgaa gcccttcttc 780 acatgcggct cagcagacac ctgctgtccg tcgggatgga taatgcatca gaaaagctgc 840 ttttacatct cacttacttc aaaaaattgg caggagagcc aaaaacaatg tgaaactctg 900 tettecaage tggccacatt cagtgaaatt tatecacaat cacactetta etaettetta 960 aattcactgt tgccaaatgg tggttcaggg aattcatatt ggactggcct cagctctaac 1020

1080

1140

1200

1260

aaggattgga agttgactga tgatacacaa cgcactagga cttatgctca aagctcaaaa

tgtaacaagg tacataaaac ttggtcatgg tggacactgg agtcagagtc atgtagaagt

tetetteeet acatetgtga gatgacaget tteaggttte cagattagga cagteetttg

cactgagttg acactcatgc caacaagaac ctgtgcccct ccttcctaac ctgaggcctg

| gggttcctca gaccato                                         | tcc ttcattctgg | gcagtgccag | ccaccggctg | acccacacct | 1320 |
|------------------------------------------------------------|----------------|------------|------------|------------|------|
| gacacttcca gccagto                                         | tgc tgcctgctcc | ctcttcctga | aactggactg | ttcctgggaa | 1380 |
| aagggtgaag ccaccto                                         | tag aagggacttt | ggcctccccc | caagaactto | ccatggtaga | 1440 |
| atggggtggg ggaggag                                         | ggc gcacgggctg | agcggatagg | ggcggcccgg | agccagccag | 1500 |
| gcagttttat tgaaato                                         | ttt ttaaataatt | g          |            |            | 1531 |
| <210> 2840<br><211> 4446<br><212> DNA<br><213> Homo sapien | s              |            |            |            |      |
| <400> 2840<br>tgccttgacc aggactt                           | ggg actttgcgaa | aggatcgcgg | ggcccggaga | ggtgttggag | 60   |
| agcacaatgg ctgaaca                                         | agt ccttcctcag | gctttgtatt | tgagcaatat | gcggaaagct | 120  |
| gtgaagatac gggagag                                         | aac tccagaagac | atttttaaac | ctactaatgg | gatcattcat | 180  |
| cattttaaaa ccatgca                                         | ccg atacacactg | gaaatgttca | gaacttgcca | gttttgtcct | 240  |
| cagtttcggg agatcat                                         | cca caaagccctc | atcgacagaa | acatccaggc | caccctggaa | 300  |
| agccagaaga aactcaa                                         | ctg gtgtcgagaa | gtccggaagc | ttgtggcgct | gaaaacgaac | 360  |
| ggtgacggca attgcct                                         | cat gcatgccact | tctcagtaca | tgtggggcgt | tcaggacaca | 420  |
| gacttggtac tgaggaa                                         | ggc gctgttcagc | acgctcaagg | aaacagacac | acgcaacttt | 480  |
| aaattccgct ggcaact                                         | gga gtctctcaaa | tctcaggaat | ttgttgaaac | ggggctttgc | 540  |
| tatgatactc ggaactg                                         | gaa tgatgaatgg | gacaatctta | tcaaaatggc | ttccacagac | 600  |
| acacccatgg cccgaag                                         | tgg acttcagtac | aactcactgg | aagaaataca | catatttgtc | 660  |
| ctttgcaaca tcctcag                                         | aag gccaatcatt | gtcatttcag | acaaaatgct | aagaagtttg | 720  |
| gaatcaggtt ccaattt                                         | cgc ccctttgaaa | gtgggtggaa | tttacttgcc | tctccactgg | 780  |
| cctgcccagg aatgcta                                         | cag ataccccatt | gttctcggct | atgacagcca | tcattttgta | 840  |
| cccttggtga ccctgaa                                         | gga cagtgggcct | gaaatccgag | ctgttccact | tgttaacaga | 900  |
| gaccggggaa gatttga                                         | aga cttaaaagtt | cactttttga | cagatcctga | aaatgagatg | 960  |
| aaggagaagc tcttaaaa                                        | aga gtacttaatg | gtgatagaaa | tccccgtcca | aggctgggac | 1020 |
| catggcacaa ctcatcte                                        | cat caatgccgca | aagttggatg | aagctaactt | accaaaagaa | 1080 |
| atcaatctgg tagatga                                         | ta ctttgaactt  | gttcagcatg | agtacaagaa | atggcaggaa | 1140 |
| aacagcgagc aggggagg                                        | gag agaggggcac | gcccagaatc | ccatggaacc | ttccgtgccc | 1200 |
| cagetttete teatggat                                        | gt aaaatgtgaa  | acgcccaact | gccccttctt | catgtctgtg | 1260 |
| aacacccagc ctttatgo                                        | ca tgagtgctca  | gagaggggg  | aaaagaatca | aaacaaactc | 1320 |

ccaaagctga actccaagcc gggccctgag gggctccctg gcatggcgct cggggcctct 1380 cqqqqaqaag cctatgagcc cttggcgtgg aaccctgagg agtccactgg ggggcctcat 1440 teggececae egacageace eagceetttt etgtteagtg agaceactge catgaagtge 1500 aggagececg getgeeeett cacactgaat gtgeageaca aeggattttg tgaacgttge 1560 cacaacqccc qgcaacttca cgccagccac gccccagacc acacaaggca cttggatccc 1620 qqqaaqtqcc aaqcctqcct ccaggatgtt accaggacat ttaatggqat ctqcagtact 1680 tqcttcaaaa qqactacaqc agaggcctcc tccagcctca gcaccagcct ccctccttcc 1740 1800 tqtcaccaqc qttccaaqtc agatccctcg cggctcgtcc ggagcccctc cccgcattct tgccacagag ctggaaacga cgccctgct ggctgcctgt ctcaagctgc acggactcct 1860 1920 qqqqacaqqa cqqqqacqaq caaqtqcaga aaaqccqgct qcqtqtattt tqqqactcca 1980 qaaaacaaqq qcttttqcac actqtqtttc atcqaqtaca qaqaaaacaa acattttgct 2040 gctgctcag ggaaagtcag tcccacagcg tccaggttcc agaacaccat tccqtgcctg 2100 gggagggaat gcggcaccct tggaagcacc atgtttgaag gatactgcca gaagtgtttc 2160 attgaagctc agaatcagag atttcatgag gccaaaagga cagaagagca actgagatcg 2220 agecagegea gagatgtgee tegaaceaea caaageacet caaggeecaa gtgegeeegg 2280 gcctcctgca agaacatcct ggcctgccgc agcgaggagc tctgcatgga gtgtcagcat cccaaccaga qgatqqqccc tggggcccac cggggtgagc ctgcccccga agaccccccc 2340 aagcaqcgtt qccqqqcccc cqcctgtgat cattttggca atgccaagtg caacggctac 2400 tqcaacqaat qctttcaqtt caaqcagatq tatqqctaac cgqaaacagg tgggtcacct 2460 2520 cctqcaaqaa gtqqqqcctc qaqctqtcaq tcatcatqqt qctatcctct gaacccctca 2580 gctgccactg caacagtggg cttaagggtg tctgagcagg agaggaaaga taagctcttc gtggtgccca cgatgctcag gtttggtaac ccgggagtgt tcccaggtgg ccttagaaag 2640 caaagettgt aactggcaag ggatgatgtc agattcagcc caaggtteet ceteteetac 2700 2760 caagcaggag gccaggaact tetttggact tggaaggtgt gcggggactg gccgaggccc 2820 ctgcaccctg cgcatcagga ctgcttcatc gtcttggctg agaaagggaa aagacacaca agtegegtgg gttggagaag ceagageeat teeaceteec etececeage ateteteaga 2880 gatgtgaagc cagatcctca tggcagcgag gccctctgca agaagctcaa ggaagctcag 2940 ggaaaatgga cgtattcaga gagtgtttgt agttcatggt ttttccctac ctgcccggtt 3000 cettteetqa ggacceggca gaaatgcaga accatecatg gactgtgatt etgaggetge 3060 tgaqactgaa catgttcaca ttgacagaaa aacaagctgc tctttataat atgcaccttt 3120

| gaatatttta | ctgggaagac                                                                                                                                                                                                                | gtgtaactct                                                                                                                                                                                                                                                                                                                                                                                                                   | ttgggttatt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | actgtcttta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| agttagcttg | aactgaggag                                                                                                                                                                                                                | taaaagtgtg                                                                                                                                                                                                                                                                                                                                                                                                                   | tacatatata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | atataccctt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| tgagggattt | ttttaaatta                                                                                                                                                                                                                | tattgaaatg                                                                                                                                                                                                                                                                                                                                                                                                                   | ctgccctaga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | agtacaatag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| taataataac | ctgttttctg                                                                                                                                                                                                                | gttgttgttg                                                                                                                                                                                                                                                                                                                                                                                                                   | gggcatgagc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ttgtgtatac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| taaactcaac | cagctgcctt                                                                                                                                                                                                                | tttaaaggga                                                                                                                                                                                                                                                                                                                                                                                                                   | gctctagtcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tttttgtgta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| tttattttat | tacaaacttc                                                                                                                                                                                                                | aagattattt                                                                                                                                                                                                                                                                                                                                                                                                                   | aagtgaagat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | atttcttcag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| aatgccacag | tgttctcctg                                                                                                                                                                                                                | agagaacatc                                                                                                                                                                                                                                                                                                                                                                                                                   | cttgctttga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gtcaggctgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ctgaccacag | ggagtaaatt                                                                                                                                                                                                                | ggcctctttg                                                                                                                                                                                                                                                                                                                                                                                                                   | atacactttt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gcttgcctcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| aggaattgca | tccaaggtat                                                                                                                                                                                                                | acatacatat                                                                                                                                                                                                                                                                                                                                                                                                                   | tcatcgatgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ttcgtgcttc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| actccagcta | tgtaataaaa                                                                                                                                                                                                                | aactatactc                                                                                                                                                                                                                                                                                                                                                                                                                   | tgtgttctgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | taatgcctct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| cctccttgga | gatgagatag                                                                                                                                                                                                                | ggaaggagca                                                                                                                                                                                                                                                                                                                                                                                                                   | gggatgagac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tggcaatggt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| gatgtggcct | tttgtgatgg                                                                                                                                                                                                                | ttttattttc                                                                                                                                                                                                                                                                                                                                                                                                                   | tgttaacact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gtgtcctggg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| agteceetge | atcccatggt                                                                                                                                                                                                                | accctggtat                                                                                                                                                                                                                                                                                                                                                                                                                   | tgggacagca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aaagccagta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| tgaggaaatc | tetttetgtt                                                                                                                                                                                                                | gctggcttac                                                                                                                                                                                                                                                                                                                                                                                                                   | agtttctctg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tgtgctttgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| atatttgctc | tagaagaaaa                                                                                                                                                                                                                | aaaaaaagg                                                                                                                                                                                                                                                                                                                                                                                                                    | aggggaaatg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cattttcccc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| gctgccattt | tgggggtctg                                                                                                                                                                                                                | tacttatggc                                                                                                                                                                                                                                                                                                                                                                                                                   | ctgaaaatat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ttgtgatcca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| cagcctttac | tcatactatt                                                                                                                                                                                                                | aggcacactt                                                                                                                                                                                                                                                                                                                                                                                                                   | tccccttaga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gccccctaag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| acgaatcttt | ataatttctt                                                                                                                                                                                                                | tccaaagata                                                                                                                                                                                                                                                                                                                                                                                                                   | ccaaataaac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ttcagtgttt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ctcttaaagt | tgatatctta                                                                                                                                                                                                                | atattttgtg                                                                                                                                                                                                                                                                                                                                                                                                                   | ttgatcatta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tttccattct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| aaaagtaatt | atttatactt                                                                                                                                                                                                                | attataaaaa                                                                                                                                                                                                                                                                                                                                                                                                                   | gtatttgaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tttgcacatt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| taatagaaag | ccacctattc                                                                                                                                                                                                                | tttgttggat                                                                                                                                                                                                                                                                                                                                                                                                                   | ttcttcaagt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ttttctaaat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| tttcacaaga | gtcaacatta                                                                                                                                                                                                                | aaaaataaat                                                                                                                                                                                                                                                                                                                                                                                                                   | tatttaagaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | caaaaaaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | agttagcttg tgagggattt taataataac taaactcaac tttatttat aatgccacag ctgaccacag aggaattgca actccagcta cctccttgga gatgtggcct agtccctgc tgaggaaatc atatttgctc gctgccattt cagcctttac acgaatcttt ctcttaaagt aaaagtaatt taatagaaag | agttagettg aactgaggag tgagggattt tttaaatta taataataac etgittietg taaactcaac eagetgeett tttatttat tacaaactte aatgecacag tgiteteetg etgaceacag ggagtaaatt aggaattgea tecaaggtat actecatgga gatgagatag gatgigeet tttgtgatgg agtecettge ateceatggt tgaggaaate tetttetgit atattigete tagaagaaaa getgeeattt tgggggeteg eageetttae teataetatt acgaatettt ataattett etettaaagt tgatatetta aaaagaaat etettatett taatagaaag ceacetatte | agttagcttg aactgaggag taaaagtgtg tgagggattt ttttaaatta tattgaaatg taataataac ctgttttctg gttgttgttg taaactcaac cagctgcctt tttaaaggga tttattttat tacaaacttc aagatattt aatgccacag tgttctcctg agagaacatc ctgaccacag ggagtaaatt ggcctctttg aggaattgca tccaaggtat acatacatat actccagcta tgtaataaaa aactatactc cctccttgga gatgagatag ggaagggca gatgtggcct tttgtgatgg ttttattttc agtccctgc atccatggt acctggatat tgaggaaatc tctttctgtt gctggcttac atatttgctc tagaagaaaa aaaaaaagg gctgccattt tggggtctg tacttatggc cagcctttac tcatactatt aggcacactt acgaatcttt ataatttctt tccaaagata ctcttaaagt tgatatctta atattttgtg aaaagtaatt attatactt attataaaaa taatagaaag ccacctattc tttgtggtg | agttagcttg aactgaggag taaaagtgtg tacatatata tgagggattt ttttaaatta tattgaaatg ctgccctaga taataataaac ctgttttctg gttgttgttg gggcatgagc taaactcaac cagctgcctt tttaaaggga gctctagtcc tttattttat tacaaacttc aagattattt aagtgaagat aatgccacag tgttctcctg agagaacatc cttgctttga ctgaccacag ggagtaaatt ggcctctttg atacactttt aggaattgca tccaaggtat acatacatat tcatcgatgt actccagcta tgtaataaaa aactatactc tgtgttctgt cctccttgga gatgagatag ggaaggagca gggatgagac gatgtgcct tttgtgatgg ttttattttc tgttaacact agtccctgc atcccatggt acctcggtat tgggacagca tgaggaaatc tctttctgtt gctggcttac agttcctg atatttgctc tagaagaaaa aaaaaaaagg aggggaaatg gctgccattt tgggggtctg tacttatggc ctgaaaatat cagcctttac tcatactatt aggcacactt tccccttaga acgaatcttt ataatttct tcaaaagaa ccactataaac ctcttaaagt tgatactta atattttgtg ttgatcata aaaagtaatt atttaactt attataaaaa gtatttgaaa taatagaaag ccacctattc tttgttgggt ttctcagat | gaatatttta ctgggaagac gtgtaactet ttgggttatt actgtettta agttagettg aactgagggg taaaagtgtg tacatataa atataccett tgagggattt ttttaaatta tattgaaatg ctgccctaga agtacaatag taatataac ctgttttetg gttgtttgt gggcatgage ttgtgtatac taaactcaac cagctgcett tttaaaggga getetagtee tttttgtgta tttatttat tacaaactte aagattattt aagtgaagat atttetteag aatgccacag tgttetectg agagaacate ettgetttga gtcaggetgt etgagetgt etgagetga aatgccacag ggagtaaatt ggcetettg atacactttt gettgetee aggaatagaa tecaaggtat acatacata teategatgt ttegtgetee aggaattgea tecaaggtat acatacata teategatgt ttegtgetee actccatgga gatgagataa ggaagaacate etggtetetgt taatgcetet etcetettga gatgagatag ggaagaaga gggatgagae tggcaatggg gatgagget tttgtgatgg ttttattte tgtttetgt taatgcetet etcetettga gatgagatag ggaaggaga gggatgagae tggcaatggg agtgccettg atccatggg accetggtat tgggacagea aaagecagta tggaggaaate tetttetgtt getggettae agttetetg tgtgettgt atattteget tagaagaaaa aaaaaaaag aggggaaatg catttteee getgecattt tgggggtetg tacttatgge etgaaaatat ttgtgateca aggatettae teatactatt aggcacactt teceettaga gecceetaag acgaatettt ataattett tecaaagata ccaaataaac tteagtgttt etctaaagt tgatactta atatttgtg ttgateatta tttecatet aaaagtaatt atttatactt attataaaaa gtattetaag ttteteaaat ttatgaaaa tttgcacatt tataaagaaa ccacctatte tttgttggat ttetteaagt ttteteaaat ttteteaaat ttteteaaat ttteteaaat ttteteaaat ttteteaaaa ttteteaaat ttteteaaaat ttteteaaaaa gtatteteaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaa ttteteaaaaaaaa |

<210> 2841 <211> 1714

<212> DNA <213> Homo sapiens

<400> 2841

ggggcatttt gtgcctgcct agctatccag acagagcagc taccctcagc tctagctgat 60
actacagaca gtacaacaga tcaagaagta tggcagtgac aactcgtttg acacggttgc 120
acgaaaagat cctgcaaaat cattttggag ggaagcggct tagccttctc tataagggta ggtgccatgg attccgtaat ggagttttgc ttgacagatg ttgtaatcaa gggcctactc 240

| taacagtgat | ttatagtgaa | gatcatatta | ttggagcata | tgcggaagag | agttaccagg | 300  |
|------------|------------|------------|------------|------------|------------|------|
| aaggaaagta | tgcttccatc | atccttttg  | cacttcaaga | tactaaaatt | tcagaatgga | 360  |
| aactaggact | atgtacacca | gaaacactgt | tttgttgtga | tgttacaaaa | tataactccc | 420  |
| caactaattt | ccagatagat | ggaagaaata | gaaaagtgat | tatggactta | aagacaatgg | 480  |
| aaaatcttgg | acttgctcaa | aattgtacta | tctctattca | ggattatgaa | gtttttcgat | 540  |
| gcgaagattc | actggatgaa | agaaagataa | aaggggtcat | tgagctcagg | aagagcttac | 600  |
| tgtctgcctt | gagaacttat | gaaccatatg | gatccctggt | tcaacaaata | cgaattctgc | 660  |
| tgctgggtcc | aattggagct | gggaagtcca | gctttttcaa | ctcagtgagg | tctgttttcc | 720  |
| aagggcatgt | aacgcatcag | gctttggtgg | gcactaatac | aactgggata | tctgagaagt | 780  |
| ataggacata | ctctattaga | gacgggaaag | atggcaaata | cctgccgttt | attctgtgtg | 840  |
| actcactggg | gctgagtgag | aaagaaggcg | gcctgtgcag | ggatgacata | ttctatatct | 900  |
| tgaacggtaa | cattcgtgat | agataccagt | ttaatcccat | ggaatcaatc | aaattaaatc | 960  |
| atcatgacta | cattgattcc | ccatcgctga | aggacagaat | tcattgtgtg | gcatttgtat | 1020 |
| ttgatgccag | ctctattcaa | tacttctcct | ctcagatgat | agtaaagatc | aaaagaattc | 1080 |
| gaagggagtt | ggtaaacgct | ggtgtggtac | atgtggcttt | gctcactcat | gtggatagca | 1140 |
| tggatttgat | tacaaaaggt | gaccttatag | aaatagagag | atgtgagcct | gtgaggtcca | 1200 |
| agctagagga | agtccaaaga | aaacttggat | ttgctctttc | tgacatctcg | gtggttagca | 1260 |
| attattcctc | tgagtgggag | ctggaccctg | taaaggatgt | tctaattctt | tctgctctga | 1320 |
| gacgaatgct | atgggctgca | gatgacttct | tagaggattt | gccttttgag | caaataggga | 1380 |
| atctaaggga | ggaaattatc | aactgtgcac | aaggaaaaaa | atagatatgt | gaaaggttca | 1440 |
| cgtaaatttc | ctcacatcac | agaagattaa | aattcagaaa | ggagaaaaca | cagaccaaag | 1500 |
| agaagtatct | aagaccaaag | ggatgtgttt | tattaatgtc | taggatgaag | aaatgcatag | 1560 |
| aacattgtag | tacttgtaaa | taactagaaa | taacatgatt | tagtcataat | tgtgaaaaat | 1620 |
| agtaataatt | tttcttggat | ttatgttctg | tatctgtgaa | aaaataaatt | tcttataaaa | 1680 |
| ctcggaaaaa | aaaaaaaaa  | aaaaaaaaa  | aaaa       |            |            | 1714 |

<sup>&</sup>lt;210> 2842 <211> 2665 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 2842

ggctctgggc atcaccagcg gccccaggga aaaagaaaga aatgggaaac agcatgaaat 60 ccaccectge geetgeegag aggeeectge ecaaceegga gggaetggat agegaettee 120

| ttgccgtgct | aagtgactac | ccgtctcctg | acatcagccc | cccgatattc | cgccgagggg | 180  |
|------------|------------|------------|------------|------------|------------|------|
| agaaactgcg | tgtgatttct | gatgaagggg | gctggtggaa | agctatttct | cttagcactg | 240  |
| gtcgagagag | ttacatccct | ggaatatgtg | tggccagagt | ttaccatggc | tggctgtttg | 300  |
| agggcctggg | cagagacaag | gccgaggagc | tgctgcagct | gccagacaca | aaggtcggct | 360  |
| ccttcatgat | cagagagagt | gagaccaaga | aagggtttta | ctcactgtcg | gtgagacaca | 420  |
| ggcaggtaaa | gcattaccgc | attttccgtc | tgccgaacaa | ctggtactac | atttccccga | 480  |
| ggctcacctt | ccagtgcctg | gaggacctgg | tgaaccacta | ttctgaggtg | gctgatggcc | 540  |
| tgtgctgtgt | gctcaccacg | ccctgcctga | cacaaagcac | ggctgcccca | gcagtgaggg | 600  |
| cctccagctc | acctgtcacc | ttgcgtcaga | agactgtgga | ctggaggaga | gtgtccagac | 660  |
| tgcaggagga | ccccgaggga | acagagaacc | cgcttggggt | agacgagtcc | cttttcagct | 720  |
| atggccttcg | agagagcatt | gcctcttacc | tgtccctgac | cagtgaggac | aacacctcct | 780  |
| ttgatcgaaa | gaagaaaagc | atctccctga | tgtatggtgg | cagcaagaga | aagagctcat | 840  |
| tcttctcatc | accaccttac | tttgaggact | agccaagaac | agacacaatg | gttcatgccc | 900  |
| aaaaggaaca | gaagttccaa | ctattgcctg | ggatcttgcg | aaaagcgagg | ttccctgatc | 960  |
| cctgggagcc | tcacgtattt | tagaagccaa | gagaagccac | atggagactc | aaattcgcat | 1020 |
| cttctctatc | cacatcatga | ccaaaggaac | ccctccctgg | tgtctgatca | gggctgtggc | 1080 |
| atcacaaaac | attggatcat | gacatgtcgg | gcgatgcttg | gaaaagccca | gcatgtatgt | 1140 |
| atgcacacat | tgtgtgtgtg | ggaaggacaa | agccactctc | acaagaaagg | gcaccaggac | 1200 |
| tgctctccaa | ggaactggac | ctgtccagac | agttacactc | caaggtcatt | ggagagaact | 1260 |
| tctgtatggg | caagcctgag | agggagagga | aacaaaagct | gtgtcctggc | agaaggtctg | 1320 |
| ggtttgcaga | tgggtgccct | gaatggaact | actttaacta | atccataggg | acttctggta | 1380 |
| tgctttcctc | tctttttaaa | ggaacttcgt | gacactaaac | attagcccaa | aggacttctt | 1440 |
| agccttcaat | tgggagatac | ctttggtctg | ctcctgcacc | aaagccatat | gggtggaagt | 1500 |
| cagttggcct | ccctggttct | gcagagggcc | agaagaatga | gagagaggaa | gactgctggc | 1560 |
| agggaaatcg | aggaggcgag | actagaactg | caccagette | cctgatgtct | gcagccatgg | 1620 |
| ctttgcagcg | caaacagaac | ttctctggga | tgctgggatt | cttgcctgta | tgaatgcatc | 1680 |
| aagtattcat | ttattgcccg | aataggcatt | gcattaagtc | ctctgttagg | tgtcaggcaa | 1740 |
| gccaaaaaaa | aaaaaaagat | gctaagtcct | aacccccaac | agaagtgttc | acagtgtaga | 1800 |
| cgggaaaaaa | tgtataaaca | aatgtgtaaa | aagagaaatc | agctcatggc | ttaggatgga | 1860 |
| attagagaca | ggtgagggac | actcaggagc | tcattttcca | gctgctcttc | agagtggaag | 1920 |
| ggctggctgg | atcgggtagg | taagaatagc | tggattttt  | agaaaagaaa | tggatacagt | 1980 |

ctaaagaatt aactcacccg gtactttatt ctaagaaggg tctggcatcc atatgaggaa 2040 aaatgctcag ctccaggaaa gatggggagt ccaagtggat taatgatgtc atgcataatt 2100 ttaagagaca agggagaaaa cacaatgtat agccagagaa ggagaagctc ccatccaaat 2160 cctactagga agagagtggg ctgcagatga atctgtgact catgtttccc tgtttcaaag 2220 ggatcctggg gaaggaggg aacatgcttg cagtatctct ccctgtctgt ctgctcacat 2280 aagcattccg tccatctaag ctcatcgtgc tactggtatg tgtatgtgca gttacacagt 2340 ttcctgtatc ataaatccta gtgtgtttat acaaggagac atctgtggtt tccccaaccg 2400 ttccaaaagg ctatttcaaa ggaaccagcc cacgtatgag aaatgaatgt aacactgtgg 2460 acattgactt cccgcataag gcagggtgac cccctgaact ccagatgttt gcacagtatc 2520 ttatgtgttg ttttccgttg tgacgaatgt gattggaaca tttggggagc acccagaggg 2580 atttttcagt gggaagcatt acactttgct aaatcatgta tttattcctg attaaaacaa 2640 acctaataaa tatttaaccc ttggc 2665 <210> 2843 <211> 1061 <212> DNA <213> Homo sapiens <400> 2843 ctctgttttc tcaaagctga agtcggctag gtttgcaaag ctgtgggctg agcactcagg 60 caatcacact ctcagaaact geggeggete tggactgcag cctcccaagg ctccatgcca 120 gacaaagcat gcgtgtcaca cttgctacaa tagcctggat ggtttctttt gtctccaatt 180 attcacacac agcaaatatt ttgccagata tcgaaaatga agatttcatc aaagactgcg 240 ttcgaatcca taacaagttc cgatcagagg tgaaaccaac agccagtgat atgctataca 300 tgacttggga cccagcacta gcccaaattg caaaagcatg ggccagcaat tgccagtttt 360 cacataatac acggctgaag ccaccccaca agctgcaccc aaacttcact tcactgggag 420 agaacatctg gactgggtct gtgcccattt tttctgtgtc ttccgccatc acaaactggt 480 atgacgaaat ccaggactat gacttcaaga ctcggatatg caaaaaagtc tgtggccact 540 acactcaggt tgtttgggca gatagttaca aagttggctg cgcagttcaa ttttgcccta 600 aagtttctgg ctttgacgct ctttccaatg gagcacattt tatatgcaac tacggaccag 660 gagggaatta cccaacttgg ccatataaga gaggagccac ctgcagtgcc tgccccaata 720 atgacaagtg tttggacaat ctctgtgtta accgacagcg agaccaagtg aaacgttact 780 actotyttyt atatocaggo tygoccatat atocacytaa cagatacact totototto 840 tcattgttaa ttcagtaatt ctaatactgt ctgttataat taccattttg gtacagctca 900

aqtaccctaa tttagttctt ttggactaat acaattcagg aaagaaaaaa cccaaaaaacc 960 aacctcattc acatatggct tttttttaac caataacaat taggtgtact tctattttaa 1020 aacatttcaq aaaaaaatat atgttataqc aatactctta c 1061 <210> 2844 <211> 2088 <212> DNA <213> Homo sapiens <400> 2844 qaatteqqca egaqegegeg geqaatetea aegetgegee gtetgeggge getteeggge 60 caccagtttc totgetttec accetggege cocccagece tggetcccca getgegetge 120 180 cccgggcgtc cacqccctqc gggcttaqcq ggttcagtqg gctcaatctg cgcagcgcca 240 cctccatgtt qaccaaqcct ctacaggggc ctcccgcgcc ccccgggacc cccacgccgc 300 cqccaqqaqq caaqqatcqq gaagcgttcg aggccgagta tcgactcggc cccctcctgg qtaaqqqqq ctttqqcacc qtcttcqcaq gacaccqcct cacaqatcqa ctccaqgtgg 360 ccatcaaagt gattccccgg aatcgtgtgc tgggctggtc ccccttgtca gactcagtca 420 catgeceact egaagtegea etgetatgga aagtgggtge aggtggtggg caccetggeg 480 540 tgatccgcct gcttgactgg tttgagacac aggaaggctt catgctggtc ctcgagcggc 600 ctttgcccgc ccaggatctc tttgactata tcacagagaa gggcccactg ggtgaaggcc caageegetg ettetttgge caagtagtgg cageeateea geactgeeat teeegtggag 660 ttqtccatcg tqacatcaag gatgagaaca tcctgataga cctacgccgt ggctgtgcca 720 aactcattga ttttggttct ggtgccctgc ttcatgatga accctacact gactttgatg 780 qqacaaqqqt qtacagccc ccagagtgga tctctcgaca ccagtaccat gcactcccgg 840 ccactqtctq qtcactqgqc atcctcctct atgacatggt gtgtggggac attccctttg 900 agagggacca ggagattctg gaagctgagc tccacttccc agcccatgtc tccccagact 960 gctgtgccct aatccgccgg tgcctggccc ccaaaccttc ttcccgaccc tcactggaag 1020 agatectget ggaccectgg atgeaaacac cageegagga tgttaccect caaccectee 1080 1140 tggcccccaa tggtcagaag agccatccca tggccatgtc acagggatag atggacattt 1200 gttgacttgg ttttacaggt cattaccagt cattaaagtc cagtattact aaggtaaggg 1260 attgaggatc aggggttaga agacataaac caagtttgcc cagttccctt cccaatccta 1320 caaaggagcc ttcctcccag aacctgtggt ccctgatttt ggagggggaa cttcttgctt 1380

1440

ctcattttgc taaggaagtt tattttggtg aagttgttcc cattttgagc cccgggactc

ttattttgat gatgtgtcac cccacattgg cacctcctac taccaccaca caaacttagt 1500 tcatatgctt ttacttgggc aagggtgctt tccttccaat accccagtag cttttatttt 1560 agtaaaggga ccctttcccc tagcctaggg tcccatattg ggtcaagctg cttacctgcc 1620 tcagcccagg attttttatt ttgggggagg taatgccctg ttgttacccc aaggcttctt 1680 ttttttttt ttttttttg ggtgagggga ccctactttg ttatcccaag tgctcttatt 1740 ctggtgagaa gaaccttaat tccataattt gggaaggaat ggaagatgga caccaccgga 1800 caccaccaga caataggatg ggatggatgg ttttttgggg gatgggctag gggaaataag 1860 qcttgctqtt tgttttcctg gggcgctccc tccaattttg cagatttttg caacctcctc 1920 ctqagccggg attgtccaat tactaaaatg taaataatca cgtattgtgg ggaggggagt 1980 tccaagtgtg ccctcctttt ttttcctgcc tggattattt aaaaagccat gtgtggaaac 2040 2088 <210> 2845 <211> 1666 <212> DNA <213> Homo sapiens <400> 2845 atttgctttc tctttttcct ttcttccgga tgagaggcta agccataata gaaagaatgg 60 agaattattg attgaccgtc tttattctgt gggctctgat tctccaatgg gaataccaag 120 ggatggtttt ccatactgga acccaaaggt aaagacactc aaggacagac atttttggca 180 gagcatagat gaaaatggca agttccctgg ctttccttct gctcaacttt catgtctccc 240 teetettggt ceagetgete acteettget eageteagtt ttetgtgett ggaccetetg 300 ggcccatcct ggccatggtg ggtgaagacg ctgatctgcc ctgtcacctg ttcccgacca 360 tgagtgcaga gaccatggag ctgaagtggg taagttccag cctaaggcag gtggtgaacq 420 tgtatgcaga tggaaaggaa gtggaagaca ggcagagtgc accgtatcga gggagaactt 480 cgattctgcg ggatggcatc actgcaggga aggctgctct ccgaatacac aacgtcacag 540 cctctgacag tggaaagtac ttgtgttatt tccaagatgg tgacttctat gaaaaagccc 600 tggtggaget gaaggttgca gcactgggtt ctaatettca cgtcgaagtg aagggttatg 660 aggatggagg gatccatctg gagtgcaggt ccaccggctg gtacccccaa ccccaaatac 720 agtggagcaa cgccaaggga gagaacatcc cagctgtgga agcacctgtg gttgcagatg 780 gagtgggcct atatgaagta gcagcatctg tgatcatgag aggcggctcc ggggagggtg 840 tatcctgcat catcagaaat tecetecteg geetggaaaa gacagecage atttecateg 900

960

cagacccctt cttcaggagc gcccagccct ggatcgcagc cctggcaggg accctgccta

| tettgetget          | gcttctcgcc | ggagccagtt | acttcttgtg        | gagacaacag | aaggaaataa | 1020 |
|---------------------|------------|------------|-------------------|------------|------------|------|
| ctgctctgtc          | cagtgagata | gaaagtgagc | aagagatgaa        | agaaatggga | tatgctgcaa | 1080 |
| cagagcggga          | aataagccta | agagagagcc | tccaggagga        | actcaagagg | aaaaaatcca | 1140 |
| gtacttgact          | cgtggagagg | agtcttcgtc | cgataccaat        | aagtcagcct | gatgctctaa | 1200 |
| tggaaaaatg          | gccctcttca | agcctggtga | ggaaatgctt        | cagatgaggc | tccaccttgt | 1260 |
| taaata <b>a</b> att | ggatgtatgg | aaaaatagac | tgcagaaaag        | gggaactcat | ttagctcacg | 1320 |
| agtggtcgag          | tgaagattga | aaattaacct | ctgagggcca        | gcacagcagc | tcatgcctgt | 1380 |
| aatcctagca          | ctttggaagg | ctgaggaggg | cggatcacaa        | ggtcaggaga | tcaagaccat | 1440 |
| cctggctaac          | acggtgaaac | cccgtctcta | ctaaaaatac        | aaaaaataaa | aaattagccg | 1500 |
| ggcatggtga          | cgggcacctg | tagtcccagc | tactcgggag        | gctgaggcag | gagaatggca | 1560 |
| tgaacccgga          | aggcagaget | tgcagtgagc | cgagatcacg        | ccactgcact | ccagcctggg | 1620 |
| agacagagcg          | agactctgtc | tcaagaaaaa | <b>aa</b> aaaaaaa | aaaaaa     |            | 1666 |
|                     |            |            |                   |            |            |      |

<210> 2846 <211> 850

<211> 850 <212> DNA

<213> Homo sapiens

<400> 2846 qaattccqqc aaaatqcatq acagtaacaa tqtqqaqaaa gacattacac catctgaatt 60 gcctgcaaac ccaggttgtc tgcattcaaa agagcattct attaaagcta ccttaatttg 120 qcqcttattt ttcttaatca tqtttctqac aatcataqtg tqtgqaatgg ttqctgcttt 180 aagcqcaata agaqctaact qccatcaaga qccatcagta tqtcttcaag ctgcatgccc 240 agaaagctgg attggttttc aaagaaagtg tttctatttt tctgatgaca ccaagaactg 300 gacatcaagt cagaggtttt gtgactcaca agatgctgat cttgctcagg ttgaaagctt 360 ccaggaactg aattteetgt tgagatataa aggeecatet gateactgga ttgggetgag 420 cagagaacaa ggccaaccat ggaaatggat aaatggtact gaatggacaa gacagtttcc 480 tatcctqqqa qcaqqagaqt qtgcctattt gaatgacaaa ggtgccagta gtgccaggca 540 ctacacagag aggaagtgga tttgttccaa atcagatata catgtctaga tgttacagca 600 aagccccaac taatctttag aagcatattg gaactgataa ctccatttta aaatgagcaa 660 agaatttatt tettatacca acaggtatat gaaaatatge teaatateac taataactgg 720 gaaaatacaa atcaaaatca tagtaaaata ttacctgttt tcatggtgct aatattacct 780 qttctcccac tqctaatqac atacccqaqa atqagtaatt tataaataaa agagatttaa 840 850 ttgaaaaaaa

| <210> 2847                                                                      |     |  |  |  |  |  |  |
|---------------------------------------------------------------------------------|-----|--|--|--|--|--|--|
| <211> 761<br><212> DNA                                                          |     |  |  |  |  |  |  |
| <212> DNA<br><213> Homo sapiens                                                 |     |  |  |  |  |  |  |
| (213) Homo Baptens                                                              |     |  |  |  |  |  |  |
| <400> 2847                                                                      |     |  |  |  |  |  |  |
| atecceacce aaageetgat ggaceeegge tggeeatget gteeceteee tgtggegttt               | 60  |  |  |  |  |  |  |
| cttagcagat ggctgcagag cttcgttgat ggtcttttct gtactggagg cctcctgagg               | 120 |  |  |  |  |  |  |
| cagegaacgt gcaaatttgc aggtgctgca teccaageee etcatgetee tgcetteetg               | 180 |  |  |  |  |  |  |
| agggccagag gggagcccca ggacccatta agccaccccc gtgttcctgc cgtcagtgcc               | 240 |  |  |  |  |  |  |
| aactgccgca tgtggaagca tctacccgtt cactccagtc ccaccccacg cctgactccc               | 300 |  |  |  |  |  |  |
| ctctggaaac tgcaggccag atggttgctg ccacaacttg tgtaccttca gggatggggc               | 360 |  |  |  |  |  |  |
| tettactece teetgaggee agetgeteta atategatgg teetgettge cagagagtte               | 420 |  |  |  |  |  |  |
| ctctacccag caaaaatgag tgtctcagaa gtgtgctcct ctggcctcag ttctcctctt               | 480 |  |  |  |  |  |  |
| ttggaacaac ataaaacaaa tttaatttte tacgeetetg gggatatetg etcageeaat               | 540 |  |  |  |  |  |  |
| ggaaaatctg ggttcaacca gcccctgcca tttcttaaga ctttctgctc cactcacagg               | 600 |  |  |  |  |  |  |
| atcctgaget geacttacet gtgagagtet teaaaetttt aaacettgee agteaggaet               | 660 |  |  |  |  |  |  |
| tttgctattg caaatagaaa acccaactca acctgcttaa gcagaaaata aatttattga               | 720 |  |  |  |  |  |  |
| ttcaagtttg gagaaaaaaa aaaaaaaaaa aaaaaaaaaa                                     | 761 |  |  |  |  |  |  |
| <210> 2848<br><211> 5426<br><212> DNA<br><213> Homo sapiens                     |     |  |  |  |  |  |  |
| <400> 2848<br>ggggaggaag aaaggcgaag gcaaggcgaa ggggtggaga gtgatatgaa gagcgagaga | 60  |  |  |  |  |  |  |
| aaagagagga cagcggacga gcagatccgg tatctggaat cccggcgcct agaacgtgtt               | 120 |  |  |  |  |  |  |
| tttcgggaga gcaaaggctg tgtctacggc aggctgggga tatagcctct ccttccgatg               | 180 |  |  |  |  |  |  |
| aaaagagaaa ggaagaatgg actacagcca ccaaacgtcc ctagtcccat gtggacaaga               | 240 |  |  |  |  |  |  |
| taaatacatt teeaaaaatg aacttetett geatetgaag acetacaact tgtactatga               | 300 |  |  |  |  |  |  |
| aggccagaat ttacagctcc ggcaccggga ggaagaagac gagttcattg tggaggggct               | 360 |  |  |  |  |  |  |
| cctgaacatc tcctggggcc tgcgccggcc cattcgcctg cagatgcagg atgacaacga               | 420 |  |  |  |  |  |  |
| acgcattcga ccccctccat cctcctcctc ctggcactct ggctgtaacc tgggggctca               | 480 |  |  |  |  |  |  |
| gggaaccact ctgaagcccc tgactgtgcc caaagttcag atctcagagg tggatgcccc               | 540 |  |  |  |  |  |  |

gccggagggt gaccagatgc caagctccac agactccagg ggcctgaagc ccctgcagga 600

ggacacccca cagetgatge gcacacgcag tgatgttggg gtgcgtcgcc gtggcaatgt 660 gaggacgcct agtgaccagc ggcgaatcag acgccaccgc ttctccatca acggccattt 720 ctacaaccat aagacatccg tgttcacacc agcctatggc tctgtcacca acgtccgcat 780 caacagcacc atgaccaccc cacaggtect gaagetgetg ctcaacaaat ttaagattga 840 qaattcaqca qaqqaqtttg ccttgtacgt qgtccatacg agtggtgaga aacagaagct 900 qaaqqccacc qattacccqc tqattgcccq aatcctccag ggcccatgtg agcagatctc 960 caaaqtgttc ctaatggaga aggaccaggt ggaggaagtc acctacgacg tggcccaqta 1020 tataaagttc gagatgccgg tacttaaaag cttcattcag aagctccagg aggaagaaga 1080 teggqaaqta aaqaaqetqa tqeqcaaqta caccqtgete eggetaatga ttegacaqaq 1140 qctqqaqqaq ataqccqaqa ccccaqcaac aatctqaqcc atqaqaacqa qqqqatctgg 1200 qcaccccaqq aaccqccatt qcccataaqa cccccaqqaa gctagqcact ttctttccat 1260 qqaaacattt aqacacaaac ctccccagct ccggccaagc catcatttgc tacctggagc 1320 tggatgtaga agtcagcaga cagctcccta tccctggacc cctgccctcc ttttttctgc 1380 tcacaaggac ttttgatttt agttataagg aggacccaaa atgtgtgtgt gtacatgtgt 1440 1500 gtgcacacat ggtacgtgtc catgtgccta cctgatactt tcacatgtaa ttaaattcca 1560 ggcaaccagc acaagagccg tgagcttggc acatgtgctg ctcgtgagca ggaaaatcag aggagecact gatetgagtg gtatttaggt tgaaggaaag attteteete teaagtgeea 1620 gggagcagcc acacgtctgt ctgtgtttag agagggaaga gggttctcca ggttcaccat 1680 ttgggttgtt tatatgttgg tagaaattct ccctgtatgc ctagaaggat cagtgaatgt 1740 aaqaqccttq qaaattaaca aaataacagc cacataacct tgcggcaagt ctgatggaaa 1800 qaaaaaqata aaccatccqt qqqqtagatq caataagccc acgtattttt acactqqaaa 1860 cqttqattqt tttaaatqac aaagacatat qtqatqttct atqtqqaaac ctqtqaagag 1920 tggattctgc ctccatctct gcctccatgg ctacctttag gagacagaga agatcctgtg 1980 tgtttetetg tacceagetg acageetgte tetatggege tteettgagt ggaaggaaat 2040 qtctcaaqaa acaaaqatct cqctqqtqcq tacacaqtqc tqaccaqcta qtqtqqccaq 2100 qqcctqqtqq cctqqtqqcc aqqaaqtttc aqqttqaaqq qaaatqtcqa qqctacctqc 2160 agatatgaca ggtgccttga acgcagccca tcttcatgtc atcaaaggtc ttcctgcact 2220 tgaaqctggg gcgatgtttg cagtcaagac cattctttcc aacctctggg ttcttgcaag 2280 ttgccctcac cttgtgtgtg gagatgCatt ccaagaatga agcctcatct tgctactgag 2340 tgtggggttc agggaagetc tttaggccac ctggtgaagg tgcatgggga ggatggaget 2400 totoctcago toctotgago agocacctat gtgatettta aatecaacco caatgggaga 2460

aaagggcaag aacagtetgt geeetgggac teetateagg aagettgaca ggeagetggg 2520 catcagtgca gctgatatcg tttgaggagg gagacagatg cttggacctg ggtgcctggc 2580 tatggagatt gaccaagcaa gatcaggagc teetgatagc aggegtettt gagectaget 2640 ggggtagagg cactgcccat ctcttctcca ccttctctcc acagaatgtt tgcagagctg 2700 ggcagttgaq gaaaggacag cccctggttg gtgcctccaa aggaaggtgg acttttttgg 2760 tggagacgtt tetgecetgg geaccetect geecegatt catacetatg gettettgag 2820 aaggeteaca getgtggtet taacgtagae tgeagaaaga tggeatgegg eeeetggeat 2880 ttcgccaagg gttttatagc aagtctcctt cctccatagg gacagcagca ccagccctgt 2940 qqqgcatqga gtggaagccc agaagggctt ctgcaagctg cacagaactg gggtaagaag 3000 acaaagagta gccaccggga gaggcttcct ttgttacagc tgggaaagaa cagttctgtg 3060 aatgcaaaca cotcotgagt tttgcaattg agaaaatgat ttggagaact totottotgg 3120 taatttttat tttgaatgtt cagggcctta gttggcccca gtaattctcc ttggaggact 3180 tgggagaaga atttccacaa agcaaactac taaccactag ctcttactgg acagcgattt 3240 ctggcttata agagttctct ttgatttgca ctagcactac gatagtgtta gatggggaaa 3300 tactgcaaca tgtccagttg gccagatcac tttccaaggg agcgatacta aggcagactc 3360 agctttttaa agatgggagg tcaggaggtg gaagtgagag gagatcccat ctcacacaac 3420 acacttccac gtaatgcaga ccacactttt ccattttgtc ctgccctctt gagaggtcat 3480 ttctcacgtc ctaagaacct gatcagaaat tttggaaggg ttctttgaaa tagcagcagt 3540 tgaaacagag acactttgcc acagtgtgga gcagattttc tcactggtat cacatggtct 3600 tgcagttttg aactcttcga ccgatttgtg ggagtttatg taattgcgtg caatgaacct 3660 gaaattgtgt aaaggacaaa agaccagttt atagggttgg gttttttttc caacttgtga 3720 aaagcagttt agctgcatct gtctccccac cacccccacc ccgggagggg cttatgttac 3780 aaggtgatca agtgaaggaa aaacctgagc ctatctggct gggatggtgg aattaagcac 3840 aaggtcacat tetetgtgat cacatgagag ggaaggtgat gaettaaatg geagggggtg 3900 gggattatct tggggagagg ctgaaaagca caaaagatag tcttccctgt acgtattggt 3960 gaagaacgtg cacaaggctg gatggacttc aacttggagt tgagttgagg caagaggatt 4020 totggatatt agtcacccat ctgcaagaaa aatgctgagg cctcgggtca agattttgat 4080 ctgagacatg ctgatgcttc aaggagaaat attttcacaa tcctctcttc cctcaccaga 4140 agagaacagt actetetet agaaacetet aggtaaacac attttateet aatateggta 4200 gcatataatg cccccccaa aatatctgtt ttccatgcaa aaaagtctca acaagaagtc 4260

| tgtggagttg   | , agtggttact | tcaaagtgto   | aggagagtga   | agaaattggc   | cacagaagag | 4320 |
|--------------|--------------|--------------|--------------|--------------|------------|------|
|              |              |              |              | accaccacca   |            | 4380 |
|              |              |              |              | agaatgtggt   |            | 4440 |
|              |              |              |              | tgagacagag   |            | 4500 |
|              |              |              |              | gcaacatccg   |            | 4560 |
|              |              |              |              | ttacagggac   |            | 4620 |
|              |              |              |              | tttcaccatc   |            | 4680 |
|              |              |              |              | ctcccaaagt   |            | 4740 |
|              |              |              |              | acatgaacaa   |            | 4800 |
|              |              |              |              | aggagacagg   |            | 4860 |
|              |              |              |              | cttaaatcgt   |            | 4920 |
|              |              |              |              | agatgtaaaa   |            | 4980 |
|              |              |              |              | ccctatcaca   |            | 5040 |
|              |              |              |              | aagatgcaca   |            | 5100 |
|              |              |              |              | gcagacctgt   |            | 5160 |
|              |              |              |              | tcccaattgt 1 |            | 5220 |
|              |              |              |              | catgacttga t |            | 5280 |
| ggttctgaac   |              |              |              |              |            | 5340 |
| aagggagcca   | tacatttttg ( | taacattttg : | atatgtttta a | atgcatctga c | ttagatett  | 5400 |
| actgaaataa a | agcacttttc a | aaagag       |              |              |            | 5426 |
|              |              |              |              |              |            |      |

<210> 2849

<211> 2206

<212> DNA

<213> Homo sapiens

<400> 2849

cgcggggcca ggcggggcg ccccagggag ttggcaggat ggcaggggc aaggcaggcg 62 gcgcggccgg cctcttcgcc aagcaggtc agaagaagtt tagcagggcc cagggagaagg 120 tgctgcagaa attggggaaa gctgtagaaa ccaaagatga acgatttgaa caaagcgcta 240 acaacttcta ccaacaacag gcagaaggcc acaagactga agaacttc 240 ttagtgcagt caaagtgatg catgaaagt caaaaagag gtcagaaacc gtgcaggaga 300 c tctacagcag cgagtggat ggtcatgag agctgaaggc catcgtatgg aataatgatc 360 tctttggga agactacgag gagaaactgg ctgacaggc tgtaaggacc atggaaatct 420

480 atgttgccca gttcagtgaa attaaggaga gaattgccaa gcggggtcgg aaactcgtgg 540 actatgacag tgcccgacac cacctggagg cagtgcagaa tgccaagaag aaagatgagg ccaagactgc caaggcagag gaagagttca acaaagccca gactgtgttt gaagatctga 600 accaaqaact actagaggag ctgcctattc tttataatag tcgtattggc tgctatgtga 660 720 ccatcttcca aaacatttcc aacttgaggg atgtcttcta cagggaaatg agcaagctga accacaatot otacgaggtq atgagcaaac tggagaagca acattocaat aaaqtotttq 780 tgqtgaaggg actgtcaagc agcagcaggc gctctttagt catttctccc ccagttcgaa 840 900 caqctacaqt ctccaqtcct cttacctcac ctactagtcc ctctacactt tccttgaaga qtqaqaqtqa atctqtctca gcaactgaag atctggcacc tgatgcaqcc caaqqqqaaq 960 1020 acaattctqa qatcaaqqaq ctcttaqaaq aggaggaaat agagaaggaa ggatctgaag caageteete tqaqqaaqat gageetetac cageetgcaa tggeeegge caggeecage 1080 cetetectae caetqaaagg gecaagteee aggaggaagt tetececage tecacaacte 1140 catcaccagg eggageett agecetteag ggeageette atcatetgee acagaagtag 1200 tecteeqaac eeqcaceqca aqtqaaqqat etgaacaacc aaagaagaga geetetatee 1260 agaggaecte ageacceect agtaggeete etecaccag agecaetgea agecceagge 1320 cctcctcagg gaacatacct tccagcccta cagcctctgg agggggttca cccaccagcc 1380 1440 ctagggctc cttggggact gggactgcaa gtcctaggac ctccctagag gtctctccta atccagaacc accagagaag ccagtaagaa ctcctgaggc caaagaaaat gaaaacatcc 1500 1560 acaatcagaa ccctgaagaa ctttgtactt cccccacctt aatgacatct caggttgctt cagageetgg agaggeaaag aagatggaag acaaggaaaa ggataataag ettateteag 1620 ctgactcctc qqagggccaa gaccagcttc aagtctccat ggtaccagaa aacaacaacc 1680 tcacaqcacc tqaacctcaa gaagaggtat ccacaagtga aaatccacaa ctctqaaqaq 1740 aaactaccaa qactcctcct qccccaaacc tcgccaqaqa aqctcttcaa ccagagggta 1800 taggtcagag ggatataaga gccagcatcc atccctgggt tctcagtagg aatgctggtg 1860 ctgtctaaag acctggcatt aatggaggeg gaggagcagc cttacgggag ggatggaggg 1920 aggcaggctg gggagaagag aacattagac tcagggaata tttaattctg gttttagcat 1980 tattagaata agactttata cattaactaa agtggagctt taatcactat aaaaagcaaa 2040 agtatctata gacacagaca cttgcctata cagagacata accacacaca ctcagaggat 2100 agtgaacaaa tctgtctttg acttacgacc cattttgcaa gacttaaagc cggaagaaca 2160 cattttcaga ttgttaaata aagtctgatt ctgactaaaa aaaaaa 2206

60

<210> 2850

<211> 1/12 <212> DNA

<213> Homo sapiens

<400> 2850
caqttaqctt caaacaaaaa cgaaagttaq accaagggaa cgtattagat atqqaaqtaa

aqaaaaaqaa acatqataaa caaqaacaga aaqqaagtgt gggaqctaca ttcaaattaq 120 qtqactcttt qtcaaacca aacqaaaqaq ccattgttaa aqaaaaqatq qtatcaaata 180 ctaaqtctqt aqacacqaaa qcqaqttcat ctaaatttag taqaattcta actcctaaqq 240 aqtatttaca aaqqcaqaaq cataaaqaaq ctccqaqtaa taaaqcatcq aaqaaaatct 300 gtgtgaaaaa cgtgccatgt gattctgaac atatgagacc aagtaaactt gccgtgcagg 360 ttqaaaqttq tqqqaaatca aatqaqaaac acaqcaqcqq cqtqcaqacc tctaaaqaat 420 480 cattaaatqq cttqacaaqc catqqtaaaa acctcaaaat ccaccattct caqqaqtcta aaacatacaa cattctaaqq aatqttaaaq aaaaaqttqq tqqqaaqcaq cctqataaaa 540 tatggattga taagactaaa ttagacaaat taaccaatat aagcaacgaa gctcaattca 600 gccaaatgcc tccccaagta aaggatcaaa agaaattata tctgaataga gttgggttta 660 aatgcactga acgtgaaagc atttctctca ccaaattaga aagttcaccc aggaagcttc 720 780 ataaagataa gagacaggaa aataaacata agaccttttt accggtgaaa ggtaacacag aaaaatcaaa catgctggag tttaaattat gtccagatat cttactaaag aatacaaact 840 ctqtqqaaqa acqqaaqqat qtaaaqcctc atcctagqaa gqagcaaqcc cctctqcaaq 900 tttcaqqaat aaaaaqtaca aaaqaaqact qqttaaaatt tqttqctaca aaqaaaaqqa 960 cacaqaaaqa caqccaaqaq aqaqataatq ttaattcaaq actctcqaaq aqaaqcttca 1020 qtqcaqatqq atttqaqatq ctacaaaacc caqtaaaaqa ttcaaaaqaa atqtttcaaa 1080 cctacaaaca gatgtacctg gagaagagaa gcagaagcct tggtagcagt cctgtaaaat 1140 aattacaaga tgtggttttg taattgccac tgggaaattt ctttcctttt ctgttcaaaa 1200 tatttcgctg aaactaatga gaaatgccat gataaagatt tctcagagtt tggttcccac 1260 tttcattgta tttcattgaa agtgcttaat taaaatggct tgagaacttt gggtagccat 1320 gtgtaagaaa tggatggtat tcaccgggga aacaaggtat ttgaatttct actttattqa 1380 accagattta ccattatttt aaaaggaatg cttatacaaa tcaatttgaa attctaccca 1440 tcttgaggga ggaccgttcc tcagttaagg acttgtttat ttaaatggga ctgtaaatat 1500 gttttggttt ctaagctata ttagcaaaat ttatttttca aaaacgccca ctgtgatgtg 1560 aatgtcaaaa tatattctta agtgttttat aactaattgt aaactttttt tcagaagtct 1620 tattttatac ttgtgaaact gaacacaatt ttgggacaac gtttaaacat tacttttcat 1680

1197

acttgaaata aacatttatt ttttaaaaaaa ct

<210> 2851

<211> 1726 <212> DNA

<213> Homo sapiens

<400> 2851

tttttccagt gaaacaaaac gtaagaatct gagtttgttt ttcaaagatc actaaatttt 60 agttatgatt atatcacatt ttccaaaatg tgtggcagtt tttgccctcc ttgctctqaq 120 tgttggtgca ctggacactt ttattgctgc agtatatgag catgcggtga tattaccaaa 180 cagaacagaa acacctgttt caaaagaaga agctttgctc ctgatgaaca agaacataga 240 tgttttggag aaagcagtta agctggcagc gaagcagggt gcacatatca ttgtgacccc 300 agaagatgga atctatggtt ggatcttcac cagggagagc atttacccct atctagagga 360 tataccagac cctggagtga actggattcc atgtagagac ccctggagat tcggcaacac 420 accagigcaa caaagacica geigeeigge caaggacaac ictaictaig iegiggeiaa 480 tattggggac aagaagccat gcaatgctag tgactctcag tgtccccctg atggccgtta 540 ccaatacaac actgatgtgg tgtttgattc tcagggaaaa ctgttggcac gctaccataa 600 gtacaatctt tttgcacctg aaattcagtt tgatttcccc aaggattcag aacttgtgac 660 ttttgacact ccctttggga agtttggcat ttttacttgc tttgacattt tttctcatga 720 cccagctgcg gtggtggtgg atgaagtttc aattgacagc attctctacc ccacagcatg 780 gtacaacacg ctgcccctcc tctcggctgt tcccttccat tcagcatggg ccaaggccat 840 gggagtcaat ctacttgctg caaataccca caacaccagc atgcacatga cagggagtgg 900 aatctacgcc ccagaagcag tcaaggtgta ccactatgac atggaaacag agagtggtca 960 getgttgeta teagaactga agteteggee eegeegtgag eecacetace etgeagetgt 1020 tgactggcat gcgtatgcca gcagtgtcaa gccattttcc tctgaacagt cagatttct 1080 ggggatgatt tattttgatg agtttacctt caccaagctt aagagaaata caggaaatta 1140 cacagettge cagaaagate tgtgttgtea ettaaettae aagatgtetg agaagegaae 1200 agacgagatc tatgccctag gtgcttttga tggactgcac acagtagaag gccaatatta 1260 cttacagata tgtgcattac tgaagtgtca aaccactgac ctggaaacgt gtggagaacc 1320 tgtggggtca gcttttacca agtttgaaga cttctccctc agtggcacat ttggaacgcg 1380 ttatgttttc ccacagatca ttctaagtgg gagtcagctt gcccctgaaa gacattatga 1440 gatttcaaga gatggacgct tgaggagccg aagtggagcc cctttgcctg tcttagttat 1500 ggccctgtat ggaagagtgt ttgagaagga ccctccacgc ttagggcagg gatctgggaa 1560

| attccagtga tctcctt       |                |              |              |            | 1620 |
|--------------------------|----------------|--------------|--------------|------------|------|
| aaaaaagaga teegtta       | gtg tctgtttag  | a aaagatgtta | a taaacttaca | gaaacaaata | 1680 |
| taataaactg aagcaga       | ttt gaaaagcaa  | a aaaaaaaaa  | aaaaaa       |            | 1726 |
| <210> 2852<br><211> 7603 |                |              |              |            |      |
| <211> 7603<br><212> DNA  |                |              |              |            |      |
| <213> Homo sapiens       | 3              |              |              |            |      |
| <400> 2852               |                |              |              |            |      |
| ttttcttgct tttcttc       | ct tttttttcti  | t tttgcaaaca | aaacaaaaa    | cagcatagaa | 60   |
| gaaagagcaa aataaaga      |                |              |              |            | 120  |
| aaacaccaac ccgggcag      | gag gaggaggtgo | ggcggcggcg   | gcggcggcgg   | cagcggcggc | 180  |
| ageggegegg eggegget      |                |              |              |            | 240  |
| ggcgatgcca gaatagat      |                |              |              |            | 300  |
| ttgtcccaga gggagctc      | at caccccagag  | gctgaccatg   | tggaggccgc   | catcctcgaa | 360  |
| gaagacgagg gtctggag      | at agaggagcca  | agtggcctgg   | ggctgatggt   | gggtggcccc | 420  |
| gaccctgacc tgctcacc      | tg tggccagtgt  | caaatgaact   | tccccttggg   | ggacatcctg | 480  |
| gtttttatag agcacaaa      | ag gaagcagtgt  | ggcggcagct   | tgggtgcctg   | ctatgacaag | 540  |
| gccctggaca aggacagc      | cc gccaccctcc  | tcacgctccg   | agctcaggaa   | agtgtccgag | 600  |
| ccggtggaga tcgggatc      | ca agtcacccc   | gacgaagatg   | accacctgct   | ctcacccacg | 660  |
| aaaggcatct gtcccaag      |                |              |              |            | 720  |
| tgcacaacat gcaagcag      |                |              |              |            | 780  |
| acgcacggct tccgcatc      |                |              |              |            | 840  |
| ctcaccatcc cgccgccg      |                |              |              |            | 900  |
| ctgggcgaca gcaacccc      |                |              |              |            | 960  |
| ccgggcttcg gcgagggc      | eg cetgeeggge  | acgccgcctc   | tcttcagtcc   | cccgccgcgc | 1020 |
| caccacctgg acccgcace     |                |              |              |            | 1080 |
| agtgccttcg accgagtca     |                |              |              |            | 1140 |
| ttetegegge ggeteege      | ga getggeggge  | aacagctcca   | egeegeegee   | cgtgtccccg | 1200 |
| ggccgcggca accctatgo     |                |              |              |            | 1260 |
| ttcctgagca cgccgccgc     |                |              |              |            | 1320 |
| ccagccaaga gcaagtcgt     |                |              |              |            | 1380 |
| atcgtgcacc ggcgcagtc     | a cacgggcgag   | aagccctaca   | agtgccagct   | gtgcgaccac | 1440 |

qeqtqcteqe aqqecaqcaa qeteaaqeqe cacatgaaga egcacatgca caaggeeqqe 1500 tegetggeeg geegeteega egaegggete teggeegeea geteeecega geeeggeaee 1560 agcqagctqq cqqqcqaqqq cctcaaqqcq qccqacqqtq acttccgcca ccacqagaqc 1620 gacccgtcgc tgggccacga gccggaggag gaggacgagg aggaggagga ggaggaggag 1680 gagetgetae tggagaacga gageeggeee gagtegaget teageatgga eteggagetg 1740 1800 geggeeaagg egetggetga egagaaggeg etggtgetgg geaaggteat ggagaacgtg 1860 ggcctaggcg cactgccgca gtacggcgag ctcctggccg acaagcagaa gcgcggcgcc 1920 tteetgaage gtgeggeggg eggeggggae gegggegaeg acgaegaege gggeggetge 1980 qqqqacqcqq qcqcqqcqq cqcqtcaac qqqcqcqqqq qcqcttcqc qccaqqcacc 2040 gagecettee eegggetett eeegegeaag eeegegeege tgeecageee egggeteaac 2100 agegeegeea agegeateaa ggtggagaag gacetggage tgeegeeege egegeteate 2160 ccgtccgaga acgtgtactc gcagtggctg gtgggctacg cggcgtcgcg gcacttcatg 2220 aaggacccct tcctgggctt cacggacgca cgacagtcgc ccttcgccac gtcgtccgag 2280 cactogtocg agaacggcag cotgogotto tocacgcogo coggggacot gotggacggc 2340 ggcctctcgg gccgcagcgg cacggccagc ggaggcagca ccccgcacct gggcggcccg 2400 ggccccgggc ggcccagctc caaggagggc cgccgcagcg acacgtgcga gtactgcggc 2460 2520 aaggtgttca agaactgcag caacttgacg gtgcaccggc ggagccacac cggcgagcgg 2580 cettacaagt gegagetgtg caactacgeg tgegegeaga geageaaget caegegeeae 2640 atgaagacgc acgggcagat cggcaaggag gtgtaccgct gcgacatctg ccagatgccc ttcagcgtct acagcaccct ggagaaacac atgaaaaagt ggcacggcga gcacttgctg 2700 actaacgacg tcaaaatcga gcaggccgag aggagctaag cgcgcgggcc ccggcgcccc 2760 gcacctgtac agtggaaccg ttgccaaccg agagaatgct gacctgactt gcctccgtgt 2820 cacegocace eegcaceeeg egtgteeeeg gggcccaggg gaggeggcac tecaacetaa 2880 cctgtgtctg cgaagtccta tggaaacccg agggttgatt aaggcagtac aaattgtgga 2940 gccttttaac tqtqcaataa tttctqtatt tattqqqttt tqtaattttt ttqqcatqtq 3000 caggtacttt ttattattat tttttctqtt tqaattcctt taaqaqattt tqttqqqtat 3060 ccatccettc tttgtttttt ttttaacccg gtagtagcct gagcaatgac tcgcaagcaa 3120 3180 tgttagaggg gaagcatatc ttttaaatta taatttgggg ggaggggtgg tgctgctttt ttgaaattta aqctaaqcat qtqtaatttc ttqtqaaqaa qccaacactc aaatqacttt 3240

| taaagttgtt | tactttttca | ttccttcctt | ttttttgtcc | tgaaataaaa | agtggcatgc | 3300 |
|------------|------------|------------|------------|------------|------------|------|
| agttttttt  | ttaattattt | tttaatttt  | tttttggttt | ttgtttttgg | ggtggggggt | 3360 |
| gtggatgtac | agcggataac | aatctttcaa | gtcgtagcac | tttgtttcag | aactggaatg | 3420 |
| gagatgtagc | actcatgtcg | tcccgagtca | agcggccttt | tctgtgttga | tttcggcttt | 3480 |
| catattacat | aagggaaacc | ttgagtggtg | gtgctggggg | aggcacccca | cagactcagc | 3540 |
| gccgccagag | atagggtttt | tggagggete | ctctgggaaa | tggcccgaca | gcattctgag | 3600 |
| gttgtgcatg | accagcagat | actatcctgt | tggtgtgccc | tggggtgcca | tggctgctat | 3660 |
| tcgctgtaga | ttaggctaca | taaaatgggc | tgagggtacc | tttttgggga | gatggggtgg | 3720 |
| cctgcagtga | cacagaaagg | aagaaactag | cggtgttctt | ttaggcgttt | tctggcttga | 3780 |
| cggcttctct | cttttttaa  | atcaccccca | ccacataaat | ctcaaatcct | atgttgctac | 3840 |
| aaggggtcat | ccatcatttc | ccaagcagac | gaatgcccta | attaattgaa | gttagtgttc | 3900 |
| tctcatttaa | tgcacactga | tgatattgta | gggatgggtg | gggtggggat | cttgcaaatt | 3960 |
| tctattctct | tttactgaaa | aagcagggga | tgagttccat | cagaaggtgc | ccagcgctac | 4020 |
| ttcccaggtt | tttattttt  | ttttcctatc | tcattaggtt | ggaaggtact | aaatattgaa | 4080 |
| ctgttaagat | tagacatttg | aattctgttg | acccgcactt | taaagctttt | gtttgcattt | 4140 |
| aaattaaatg | gcttctaaac | aagaaattgc | agcatattct | tctctttggc | ccagaggtgg | 4200 |
| gttaaactgt | aagggacagc | tgagattgag | tgtcagtatt | gctaagcgtg | gcattcacaa | 4260 |
| tactggcact | ataaagaaca | aaataaaata | ataatttata | ggacagtttt | tctactgcca | 4320 |
| ttcaatttga | tgtgagtgcc | ttgaaaactg | atcttcctat | ttgagtctct | tgagacaaat | 4380 |
| gcaaaacttt | ttttttgaaa | tgaaaagact | ttttaaaaaa | gtaaaacaag | aaaagtacat | 4440 |
| tctttagaaa | ctaacaaagc | cacatttact | ttaagtaaaa | aaaaaaaaa  | ttctggttga | 4500 |
| agatagagga | tatgaaatgc | cataagaccc | aatcaaatga | agaaataaac | ccagcacaac | 4560 |
| cttggacatc | cattagctga | attatcctca | geceetttg  | tttttgggac | aacgctgctt | 4620 |
| agatatggag | tggaggtgat | ttactgctga | attaaaactc | aagtgacaca | agttacaagt | 4680 |
| tgatatcgtt | gaatgaaaag | caaaacaaaa | acaattcagg | aacaacggct | aattttttct | 4740 |
| aaagttaaat | ttagtgcact | ctgtcttaaa | aatacgttta | cagtattggg | tacatacaag | 4800 |
| ggtaaaaaaa | aaattgtgtg | tatgtgtgtt | ggagcgatct | tttttttca  | aagtttgctt | 4860 |
| aataggttat | acaaaaatgc | cacagtggcc | gcgtgtatat | tgttttcttt | tggtgacggg | 4920 |
| gttttagtat | atattatata | tattaaaatt | tcttgattac | tgtaaaagtg | gaccagtatt | 4980 |
| tgtaataatc | gagaatgcct | gggcatttta | caaaacaaga | aaaaaaatac | ccttttcttt | 5040 |
| tccttgaaaa | tgttgcagta | aaatttaaat | ggtgggtcta | taaatttgtt | cttgttacag | 5100 |

taactqtaaa qtcqqaqttt tagtaaattt ttttctgcct tgggtgttga atttttattt 5160 caaaaaaaat qtataqaaac ttqtatttqq qgattcaaag gggattqcta caccatqtaq 5220 5280 cacattictq acctqtactt attitictct tcccqcctcc ctctqqaatq qatatattqq 5340 ttggttcata tgatgtaggc acttgctgta tttttactgg agctcgtaat tttttaactg 5400 taagettgte ettttaaagg gatttaatgt acetttttgt tagtgaattt ggaaataaaa 5460 agaaaaaaa aacaaaaaca aacaggctgc cataatatat ttttttaatt tggcaggata 5520 aaatattgca aaaaaaacac atttgtatgt taagtcctat tgtacaggag aaaaagggtt 5580 qtttqacaac ctttgagaaa aagaaacaaa aggaagtagt taaatgcttt ggttcacaaa 5640 tcatttagtt gtatatattt tttgtcggaa ttggcctaca cagagaaccg ttcgtgttgg 5700 gettetetet gaacgeeceg aacettgeat caaggeteet tggtgtggee acagcagace 5760 agatqqqaaa ttatttgtgt tgagtggaaa aaaatcagtt tttgtaaaga tgtcagtaac 5820 attccacatc gtcctccctt tctctaagag gccatctcta agatgtcaga tgtagaggag 5880 agagaggag agaacatett cettetetac catcactect gtggcggtca ccaccaccac 5940 ctctcccqcc cttaccaqca gaaaqcaatq caaactgagc tgctttagtc cttgagaaat 6000 tqtqaaacaa acacaaatat cataaaaqqa qctqqtqatt caqctqqqtc caqqtqaaqt 6060 gacctgctgt tgagaccggt acaaattgga tttcaggaag gagactccat cacagccagg 6120 acctttcata ccatagagas tottagecte ttgtetttet tecetgettt getgetttge 6180 tetetgaaac etacatteeg teagttteeg aatgegaggg eetgggatga atttggtgee 6240 tttccatate tegttetete teetteeeet gegttteete tecateette ateeteeatt 6300 ggtccttttt ttttctttca ttttttattt aatttctttt cttcctgtct gttcctcccc 6360 taateeteta tittattitt attittigta aageeaagta gettiaagat aaagiggigg 6420 tcttttqqat qaqqqaataa tgcattttta aataaaatac caatatcagg aagccatttt 6480 ttatttcagg aaatgtaaga aaccattatt tcaggttatg aaagtataac caagcatcct 6540 tttgggcaat tccttaccaa atgcagaagc ttttctgttc gatgcactct ttcctccttg 6600 ccacttacct ttqcaaaqtt aaaaaaaaqq qqqqaqqqaa tqqqaqaqaa aqctqaqatt 6660 tcaqtttcct actgcaqttt cctacctqca qatccaqqqq ctqctqttqc ctttqqatqc 6720 cccactgagg tcctagagtg cctccagggt ggtcttcctg tagtcataac agctagccag 6780 tgctcaccaq cttaccaqat tgccaqqact aagccatccc aaagcacaaq cattgtgtgt 6840 ctctgtgact gcagagaaga gagaattttg cttctgtttt gtgtttaaaa aaccaacacg 6900

gaagcagatg atcccgagag agaggcctct aqcatgggtg acccagccga cctcaggcg 6960 gtttccqcac tgccacaact ttgttcaaaq ttqcccccaa ttggaacctg ccacttggca 7020 ttaqagggtc tttcatgggg agagaaggag actgaattac tctaagcaaa atgtgaaaag 7080 taaggaaatc agcctttcat cccggtccta agtaaccgtc agccgaaggt ctcgtggaac 7140 acaggcaaac ccgtgatttt ggtgctcctt gtaactcagc cctgcaaagc aaagtcccat 7200 tgatttaagt tgtttgcatt tgtactggca aggcaaaata tttttattac cttttctatt 7260 acttattgta tgagcttttg ttgtttactt ggaggttttg tcttttacta caagtttgga 7320 actatttatt attgcttggt atttgtgctc tgtttaagaa acaggcactt ttttttatta 7380 tqqataaaat qttqaqatga caggaqgtca tttcaatatg gcttagtaaa atatttattg 7440 ttcctttatt ctctgtacaa gattttgggc ctcttttttt ccttaatgtc acaatgttga 7500 gttcagcatg tgtctgccat ttcatttgta cgcttgttca aaaccaagtt tgttctggtt 7560 tcaagttata aaaataaatt ggacatttaa cttgatctcc aaa 7603 <210> 2853 <211> 3869 <212> DNA <213> Homo sapiens <400> 2853 gagccggtgg cgcaggtgtc ggggtcctcg agcgcccagc ctgggagcat gattqtqqac 60 aagctgctgg acgacagecg cggcggagag gggctgcggg acgcggcggg cqqctqcqqc 120 ctcatgacca geoegeteaa eetgagetae ttetaeggeg egtegeegee egeegeegee 180 ccgggcgcct gcgacgccag ctgctcggtc ttgggcccct cggcgcccgg ctcgcccggc 240 tecgaetect ecgaettete etetgeeteg teggtgteet eetgeggege egtggagtee 300 cggtcgagag gcggcgccg cgccgagcgc cagccagttg agccccatat gggggttggc 360

aggcagcaga gaggcccctt tcaaggtgtt cgggtaaaga actcagtgaa ggaactcctg 420 ttgcacatcc gaagtcataa acagaaggct tctggccaag ctgtggatga ttttaagaca 480 caaggtgtga acatagaaca gttcagagaa ttgaagaaca cagtatcata cagtgggaaa 540 aggaaagggc ccgattcgtt gtctgatgga cctgcttgca aaaggccagc tctgttgcat 600 tcccaatttt tgacaccacc tcaaacacca acgcccgggg agagcatgga agatgttcat 660 ctcaatgaac ccaaacagga gagcagtgct gatctgcttc agaacattat caacattaag 720 aatgaatgca gccccgtttc cctgaacaca gttcaagtta gctggctgaa ccccgtggtg 780 gtccctcaga gctcccccgc agagcagtgt caggacttcc atggagggca ggtcttttct 840

ccacctcaga aatgccaacc attccaagtc aggggctccc aacaaatgat agaccaggct

1203

900

| tecetgtace | agtattctcc | acagaaccag | catgtagagc | agcagccaca | ctacacccac | 960  |
|------------|------------|------------|------------|------------|------------|------|
| aaaccaactc | tggaatacag | tecttttccc | atacctcccc | agtcccccgc | ttatgaacca | 1020 |
| aacctctttg | atggtccaga | atcacagttt | tgcccaaacc | aaagcttagt | ttcccttctt | 1080 |
| ggtgatcaaa | gggaatctga | gaatattgct | aatcccatgc | agacttcctc | cagtgttcag | 1140 |
| cagcaaaatg | atgctcactt | gcacagcttc | agcatgatgc | ccagcagcgc | ctgtgaggcc | 1200 |
| atggtggggc | acgagatggc | ctctgactct | tcaaacactt | cactgccatt | ctcaaacatg | 1260 |
| ggaaatccaa | tgaacaccac | acagttaggg | aaatcacttt | ttcagtggca | ggtggagcag | 1320 |
| gaagaaagca | aattggcaaa | tatttcccaa | gaccagtttc | tttcaaagga | tgcagatggt | 1380 |
| gacacgttcc | ttcatattgc | tgttgcccaa | gggagaaggg | cactttccta | tgttcttgca | 1440 |
| agaaagatga | atgcacttca | catgctggat | attaaagagc | acaatggaca | gagtgccttt | 1500 |
| caggtggcag | tggctgccaa | tcagcatctc | attgtgcagg | atctggtgaa | catcggggca | 1560 |
| caggtgaaca | ccacagactg | ctggggaaga | acacctctgc | atgtgtgtgc | tgagaagggc | 1620 |
| cactcccagg | tgcttcaggc | gattcagaag | ggagcagtgg | gaagtaatca | gtttgtggat | 1680 |
| cttgaggcaa | ctaactatga | tggcctgact | ccccttcact | gtgcagtcat | agcccacaat | 1740 |
| gctgtggtcc | atgaactcca | gagaaatcaa | cagcctcatt | cacctgaagt | tcaggagctt | 1800 |
| ttactgaaga | ataagagtct | ggttgatacc | attaagtgcc | taattcaaat | gggagcagcg | 1860 |
| gtggaagcga | aggatcgcaa | aagtggccgc | acagccctgc | atttggcagc | tgaagaagca | 1920 |
| aatctggaac | tcattcgcct | ctttttggag | ctgcccagtt | gcctgtcttt | tgtgaatgca | 1980 |
| aaggcttaca | atggcaacac | tgccctccat | gttgctgcca | gcttgcagta | tcggttgaca | 2040 |
| caattagatg | ctgtccgcct | gttgatgagg | aagggagcag | acccaagtac | tcggaacttg | 2100 |
| gagaacgaac | agccagtgca | tttggttccc | gatggccctg | tgggagaaca | gatccgacgt | 2160 |
| atcctgaagg | gaaagtccat | tcagcagaga | gctccaccgt | attagctcca | ttagcttgga | 2220 |
| gcctggctag | caacactcac | tgtcagttag | gcagtcctga | tgtatctgta | catagaccat | 2280 |
| ttgccttata | ttggcaaatg | taagttgttt | ctatgaaaca | aacatattta | gttcactatt | 2340 |
| atatagtggg | ttatattaaa | agaaaagaag | aaaaatatct | aatttctctt | ggcagatttg | 2400 |
| catatttcat | acccaggtat | ctgggatcta | gacatctgaa | tttgatctca | atggtaacat | 2460 |
| tgccttcaat | taacagtagc | ttttgagtag | gaaaggactt | tgatttgtgg | cacaaaacat | 2520 |
| tattaatata | gctattgaca | gtttcaaagc | aggtaaattg | taaatgtttc | tttaagaaaa | 2580 |
| agcatgtgaa | aggaaaaagg | taaatacagc | attgaggctt | catttggcct | tagtccctgg | 2640 |
| gagttactgg | cgttggacag | gcttcagtca | ttggactaga | tgaaaggtgt | ccatggttag | 2700 |
| aatttgatct | ttgcaaactg | tatataattg | ttatttttgt | ccttaaaaat | attgtacata | 2760 |

| cttggttgtt | aacatggtca | tatttgaaat | gtataagtcc | ataaaataga | aaagaacaag | 2820 |
|------------|------------|------------|------------|------------|------------|------|
| tgaattgttg | ctatttaaaa | aaattttaca | attcttacta | aggagtttt  | attgtgtaat | 2880 |
| cactaagtct | ttgtagataa | agcagatggg | gagttacgga | gttgttcctt | tactggctga | 2940 |
| aagatatatt | cgaattgtaa | agatgctttt | tctcatgcat | tgaaattata | cattatttgt | 3000 |
| agggaattgc | atgcttttt  | tttttttct  | cccgagacag | ggtcttgctc | tggcgcccag | 3060 |
| gctggagtac | agtggcatga | tcttggctca | cttcagcctt | gacttgggct | caagtgatcc | 3120 |
| tectacetga | gccttctgag | taactgggac | tacaggtgtg | cactcctcgc | ctggctaatt | 3180 |
| ttttatttt  | tgtacaggca | ggatcttgcc | accttgccca | ggctggtctt | gaactcctga | 3240 |
| gctcatgcca | tctgcctgcc | ttagtctccc | aaaatgctgg | gattacagga | gtgagccacc | 3300 |
| atgcccggct | ggcagttgca | tggaagagaa | cacctcttta | tggcttaccc | tctagaattt | 3360 |
| ctaatttatg | tgttctgttg | aaatttttgt | ttttttacct | ttattgaaac | aacaaaaagt | 3420 |
| cagtattgaa | acatatcttc | ctgttttctg | ttgtcaaatg | atgataatgt | gccatgatgt | 3480 |
| tttatatata | tcattcagaa | aaagttttat | tttttaataa | cattctatta | acattatttt | 3540 |
| gcttgccgct | ggcatgcctg | aggaatgtat | ttggctttga | ttacacacta | agtttttgta | 3600 |
| ataaatttga | ctcattaaaa | acctttttt  | tttaaaaaaa | aaaaaaagaa | aatctcatta | 3660 |
| gtgaacttat | ctttgcagct | gagtacttaa | attcttttta | aaaagatacc | ctttggattg | 3720 |
| atcacattgt | ttgacccagt | atgtcttgta | gacacgttag | ttataatcac | cttgtatctc | 3780 |
| taaatatggt | gtgatatgaa | ccagtccatt | cacattggaa | aaactgatgg | ttttaaataa | 3840 |
| actaattcac | taataaaaaa | aaaaaaaa   |            |            |            | 3869 |
|            |            |            |            |            |            |      |

<210> 2854

<211> 3498

<212> DNA <213> Homo sapiens

<400> 2854

cgggagtage geagtegeca aageegeege tgecaaaget geegecaeta geeggeatg 60
gecatggegt eeeggeat egggagege eegtaceege tactettgga eeeggageeg
cegegetate tacagageet gageggeeee gagetaeege eggegeeeee egaeeggtee 180
tegegeetet gtgteeegge geecetetee aetgegeeeg gggegegega ggggegeage 240
geceggaggg etgeeegggg gaacetggag eeeeeeggege eeggeeeee eggeeteeeg 300
cegeteegge etggtetgea geagagaetg eggeggegge etggagegee eegaeeegg
gaeegtgegg geatettega geageegga gateeeaga teeeggegg geageggag 420
gggeaetget tegeegagtt ggtgetgeeg ggeggeeee getggtgtga eetgtgegga

cgagaggtgc tgcggcaggc gctgcgctgc actaactgta aattcacctg tcacccagaa 540 tgeegeagee tgatecagtt ggaetgeagt cageaggagg gtttateeeg ggaeagaeee 600 tetecagaaa geacceteac egtgaeette agecagaatg tetgtaaacc tgtggaggag 660 acacagegee egeceacact geaggagate aageagaaga tegacageta caacaegega 720 gagaagaact gcctgggcat gaaactgagt gaagacggca cctacacggg tttcatcaaa 780 gtgcatctga aactccggcg gcctgtgacg gtgcctgctg ggatccggcc ccagtccatc 840 tatgatgcca tcaaggaggt gaacctggcg gctaccacgg acaagcggac atcettctac 900 etgecectag atgecateaa geagetgeae ateageagea ceaecacegt cagtgaggte 960 atccaggggc tgctcaagaa gttcatggtt gtggacaatc cccagaagtt tgcacttttt 1020 aagoggatac acaaggacgg acaagtgete ttecagaaac tetecattge tgaccgeece 1080 ctctacctgc gcctgcttgc tgggcctgac acggaggtcc tcagctttgt gctaaaggag 1140 aatgaaactg gagaggtaga gtgggatgcc ttctccatcc ctgaacttca gaacttcctc 1200 tcctcctggt gcattcagat ttatttgtat tattaattat tattttgcaa cagacacttt 1260 ttctcaggac atctctggca ggtgcatttg tgcctgccca gcagttccag ctgtqqcaaa 1320 agtetettee atggacaagt gtttgeacga gggtteaget gtgeeegeee eeaggetgtg 1380 ccccaccaca gattctgcca aggatcagaa ctcatgtgaa acaaacagct gacgtcctct 1440 ctcgatctgc aagcetttca ccaaccaaat agttgcctct ctcgtcacca aactggaacc 1500 tcacaccage eggcaaagga aggaagaaag gttttagage tgtgtgttet ttetetggea 1560 ttgattcctc tttgagttct cttacttgcc acgtacagga ccattattta tgagtgaaaa 1620 gttgtagcac attccttttg caggtctgag ctaagcccct gaaagcaggg taatgctcat 1680 aaaaggactg ttcccgcggc cccaaggtgc ctgttgttca cacttaaggg aagtttataa 1740 agctactggc cccagatgct cagggtaagg agcaccaaag ctgaggctgg ctcagagatc 1800 tecagagaag etgeageetg ceetggeeet ggetetggee etggeeeaca ttgeacatgg 1860 aaacccaaag gcatatatct gcgtatgtgt ggtacttagt cacatctttg tcaacaaact 1920 gttcgttttt aagttacaaa tttgaattta atgttgtcat catcgtcatg tgtttcccca 1980 aagggaagcc agtcattgac catttaaaaa gtctcctgct aagtatggaa atcagacagt 2040 aagagaaagc caaaaagcaa tgcagagaaa ggtgtccaag ctgtcttcag ccttccccag 2100 ctaaagagca gaggaggcc tgggctactt gggttcccca tcggcctcca gcactgcctc 2160 cctcctccca ctgcgactct gggatctcca ggtgctgccc aaggagttgc cttgattaca 2220 gagaggggag cetecaatte ggecaacttg gagteettte tgttttgaag catgggecag 2280

|            | gcgctcggag   |            |            |            |            | 2340 |
|------------|--------------|------------|------------|------------|------------|------|
| ttgttttcag | g agagaaatag | gagtagggcg | agtttgcctg | aagctctgct | gctggcttct | 2400 |
| cctgccagga | a agtgaacaat | ggcggcggtg | tgggagacaa | ggccaggaga | gcccgcgttc | 2460 |
| agtatgggtt | gagggtcaca   | gacctccctc | ccatctgggt | gcctgagttt | tgactccaat | 2520 |
| cagtgataco | agaccacatt   | gacagggagg | atcaaattcc | tgacttacat | ttgcactggc | 2580 |
| ttcttgttta | ggctgaatcc   | taaaataaat | tagtcaaaaa | attccaacaa | gtagccagga | 2640 |
| ctgcagagac | actccagtgc   | agagggagaa | ggacttgtaa | ttttcaaagc | agggctggtt | 2700 |
| ttccaaccca | gcctctgaga   | aaccatttct | ttgctatcct | ctgccttccc | aagtccctct | 2760 |
| tgggtcggtt | caagcccaag   | cttgttcgtg | tagcttcaga | agttccctct | ctgacccagg | 2820 |
| ctgagtccat | actgcccctg   | atcccagaag | gaatgctgac | ccctcgtcgt | atgaactgtg | 2880 |
| catagtctcc | agagcttcaa   | aggcaacaca | agctcgcaac | tctaagattt | ttttaaacca | 2940 |
| caaaaaccct | ggttagccat   | ctcatgctca | gccttatcac | ttccctccct | ttagaaactc | 3000 |
| tctccctgct | gtatattaaa   | gggagcaggt | ggagagtcat | tttccttcgt | cctgcatgtc | 3060 |
| tctaacatta | atagaaggca   | tggctcctgc | tgcaaccgct | gtgaatgctg | ctgagaacct | 3120 |
| ccctctatgg | ggatggctat   | tttatttttg | agaaggaaaa | aaaaagtcat | gtatatatac | 3180 |
| acataaaggc | atatagctat   | atataaagag | ataagggtgt | ttatgaaatg | agaaaattat | 3240 |
|            | agactttact   |            |            |            |            | 3300 |
| ctctgaaaaa | agtatagtat   | cgagtacccg | ttccctccca | gaggtgggag | taactgctgg | 3360 |
|            | tttggttgtg   |            |            |            |            | 3420 |
|            | tttcttatat   |            |            |            |            | 3480 |
| aaaaaaaaa  |              |            |            |            |            | 3498 |
|            |              |            |            |            |            |      |

<210> 2855 <211> 1505

<212> DNA

<213> Homo sapiens

<400> 2855

getggtegga ggetegeag getgteggg agaageagte gggtttggag egettgggte 60
gegttggteg geggtggaac gegeceaggg accecagtte eeggageag eteeggeeg 120
egectgagag actaagetga aactgetget eagetecea gatggtgeea eccaaattge 180
atgtgetttt etgeectetge ggetgeetg etgtggtta teettttgae tggeaataca 240
taaateetgt tgeecatatg aaateateag eatgggteaa eaaaatacaa gtaetgatgg 300
etgetgeaag etttggeeaa actaaaatee eccggggaaa tgggeettat teegttggtt 360

| gtacagactt | aatgtttgat | cacactaata | agggcacctt | cttgcgttta | tattatccat | 420  |
|------------|------------|------------|------------|------------|------------|------|
| cccaagataa | tgatcgcctt | gacacccttt | ggatcccaaa | taaagaatat | ttttggggtc | 480  |
| ttagcaaatt | tcttggaaca | cactggctta | tgggcaacat | tttgaggtta | ctctttggtt | 540  |
| caatgacaac | tcctgcaaac | tggaattccc | ctctgaggcc | tggtgaaaaa | tatccacttg | 600  |
| ttgtttttc  | tcatggtctt | ggggcattca | ggacacttta | ttctgctatt | ggcattgacc | 660  |
| tggcatctca | tgggtttata | gttgctgctg | tagaacacag | agatagatct | gcatctgcaa | 720  |
| cttactattt | caaggaccaa | tctgctgcag | aaatagggga | caagtcttgg | ctctacctta | 780  |
| gaaccctgaa | acaagaggag | gagacacata | tacgaaatga | gcaggtacgg | caaagagcaa | 840  |
| aagaatgttc | ccaagctctc | agtctgattc | ttgacattga | tcatggaaag | ccagtgaaga | 900  |
| atgcattaga | tttaaagttt | gatatggaac | aactgaagga | ctctattgat | agggaaaaaa | 960  |
| tagcagtaat | tggacattct | tttggtggag | caacggttat | tcagactctt | agtgaagatc | 1020 |
| agagattcag | atgtggtatt | gccctggatg | catggatgtt | tccactgggt | gatgaagtat | 1080 |
| attccagaat | tcctcagccc | ctcttttta  | tcaactctga | atatttccaa | tatcctgcta | 1140 |
| atatcataaa | aatgaaaaaa | tgctactcac | ctgataaaga | aagaaagatg | attacaatca | 1200 |
| ggggttcagt | ccaccagaat | tttgctgact | tcacttttgc | aactggcaaa | ataattggac | 1260 |
| acatgctcaa | attaaaggga | gacatagatt | caaatgtagc | tattgatctt | agcaacaaag | 1320 |
| cttcattagc | attcttacaa | aagcatttag | gacttcataa | agattttgat | cagtgggact | 1380 |
| gcttgattga | aggagatgat | gagaatctta | ttccagggac | caacattaac | acaaccaatc | 1440 |
| aacacatcat | gttacagaac | tcttcaggaa | tagagaaata | caattaggat | taaaataggt | 1500 |
| ttttt      |            |            |            |            |            | 1505 |

<sup>&</sup>lt;210> 2856 <211> 5220 <212> DNA

<400> 2856

cagtogotice gageggeege gageagagee geceageert gleagetge eegggaegaat 60
aaggagteag gecagggegg gatgacacte attgatteta aagcatettt aatetgeeag 120
geggaggggg etttigetgge etteettgga etatteeaga gaggacaact gleatetggg 180
aagtaacaac geaggatgee eeelggggg gaetgeeee tggaattet gaecaaggag 240
gagaateaga gegttggg tgaetteetg elgeeeea gggtetaeet gaactteeet 300
gtgteeegea algeeaacet eageaceact aageagetge tgtggeaeeg egeeeagtat 360
gageegetet teeaacatget eagtggeeee gaggeetatg tgtteaeetg eateaaceag 420

<sup>&</sup>lt;213> Homo sapiens

acageggage agcaagaget ggaggaegag caaeggegte tgtgtgaegt geagecette 480 ctgcccqtcc tqcqcctqqt qqcccqtqaq qqcqaccqcg tgaagaagct catcaactca 540 600 cagatcagcc tectcategg caaaqqcete cacqagtttg actcettgtg cgacccagaa 660 gtgaacgact ttcgcgccaa gatgtgccaa ttctgcgagg aggcggccgc ccgccggcag cagetggget gggaggeetg getgeagtae agttteecce tgeagetgga gecetegget 720 caaacctggg ggcctggtac cctgcggctc ccgaaccggg cccttctggt caacgttaag 780 tttgagggca gcgaggagag ettcacette caggtgteca ccaaggacgt gccgctggcg 840 ctgatggcct.gtgccctgcg gaagaaggcc acagtgttcc ggcagccgct ggtggagcag 900 ccggaagact acacgctgca ggtgaacggc aggcatgagt acctgtatgg caactacccg 960 1020 ctetgecagt tecagtacat etgeagetge etgeacagtg ggttgacece teacetgace atggtccatt cctcctccat cctcgccatg cgggatgagc agagcaaccc tgcccccag 1080 gtccagaaac cgcgtgccaa accacctccc attcctgcga agaagccttc ctctgtgtcc 1140 ctgtggtccc tggagcagcc gttccgcatc gagctcatcc agggcagcaa agtgaacgcc 1200 qacqaqcqqa tgaaqctqqt ggtqcaggcc gggcttttcc acggcaacga gatgctgtgc 1260 aaqacqqtqt ccaqctcqqa qqtqaqcqtq tgctcqqagc ccqtqtqqaa gcaqcqqctq 1320 gagttegaca teaacatetg egacetgeee egeatggeee gtetetgett tgegetgtac 1380 1440 qccqtqatcq aqaaaqccaa qaaqqctcqc tccaccaaqa agaaqtccaa gaaggcggac tgccccattg cctgggccaa cctcatgctg tttgactaca aggaccagct taagaccggg 1500 1560 gaacgctgcc tctacatgtg gccctccgtc ccagatgaga agggcgagct gctgaacccc 1620 acgggcactg tgcgcagtaa ccccaacacg gatagcgccg ctgccctgct catctgcctg cccqaggtgg ccccgcaccc cgtgtactac cccgccctgg agaagatctt ggagctgggg 1680 cqacacagcg agtgtgtgca tgtcaccgag gaggagcagc tgcagctgcg ggaaatcctg 1740 qaqcggcqqq ggtctggqqa gctgtatgag cacgagaagg acctggtgtg gaagctgcgg 1800 catqaaqtcc aggaqcactt cccqqagqcq ctaqcccgqc tgctgctggt caccaagtgg 1860 aacaaqcatq aqqatqtqqc ccaqatqctc tacctqctqt qctcctggcc ggagctgccc 1920 qtcctqaqcq ccctqqaqct gctaqacttc agcttccccg attgccacgt aggctccttc 1980 qccatcaaqt cqctqcqqaa actqacqqac qatqaqctqt tccaqtacct qctqcaqctq 2040 qtqcaqqtqc tcaaqtacqa qtcctacctq qactqcqaqc tqaccaaatt cctgctggac egggeettgg ceaacegeaa qateggeeac tteettttet ggeaceteeg eteegagatg 2160 cacgtgccgt cggtggccct gcgcttcggc ctcatcctgg aggcctactg caggggcagc 2220 acccaccaca tgaaggtgct gatgaagcag ggggaagcac tgagcaaact gaaggccctg 2280

aatgacttcg tcaagctgag ctctcagaag acccccaagc cccagaccaa ggagctgatg 2340 cacttgtgca tgcggcagga ggcctaccta gaggccctct cccacctgca gtccccactc 2400 gaccccagca ccctgctggc tgaagtctgc gtggagcagt gcaccttcat ggactccaag 2460 atgaagcccc tgtggatcat gtacagcaac gaggaggcag gcagcggcgg cagcgtgggc 2520 atcatcttta agaacgggga tgacctccgg caggacatgc tgaccctgca gatgatccag 2580 ctcatggacg tcctgtggaa gcaggagggg ctggacctga ggatgacccc ctatggctgc 2640 ctccccaccg gggaccgcac aggcctcatt gaggtggtac tccgttcaga caccatcgcc 2700 aacatccaac tcaacaagag caacatggca gccacagccg ccttcaacaa ggatgccctg 2760 ctcaactggc tgaagtccaa gaacccgggg gaggccctgg atcgagccat tgaggagttc 2820 accetetect gtgctggcta ttgtgtggcc acatatgtgc tgggcattgg cgatcggcac 2880 agcgacaaca tcatgatccg agagagtggg cagctgttcc acattgattt tggccacttt 2940 ctggggaatt tcaagaccaa gtttggaatc aaccgcgagc gtgtcccatt catcctcacc 3000 tatgactttg tccatgtgat tcagcagggg aagactaata atagtgagaa atttgaacgg 3060 ttccggggct actgtgaaag ggcctacacc atcctgcggc gccacgggct tctcttcctc 3120 cacctetttg ceetgatgeg ggeggeagge etgeetgage teagetgete caaagacate 3180 cagtatetea aggacteect ggeactgggg aaaacagagg aggaggeact gaagcaette 3240 cgagtgaagt ttaacgaagc cctccgtgag agctggaaaa ccaaagtgaa ctggctggcc 3300 cacaacgtgt ccaaagacaa caggcagtag tggctcctcc cagccctggg cccaagagga 3360 ggcggctgcg ggtcgtgggg accaagcaca ttggtcctaa aggggctgaa gagcctgaac 3420 tgcacctaac gggaaagaac cgacatggct gccttttgtt tacactggtt atttatttat 3480 gacttgaaat agtttaagga gctaaacagc cataaacgga aacgcctcct tcattcagcg 3540 geggtgetgg geceeeegag getgeacetg getetegget gaggattgte acceeaagte 3600 ttccagctgg tggatctggg cccagcaaag actgttctcc tcccgaggga accttcttcc 3660 caggeeteee gecagactge etgggteetg gegeetggeg gteacetggt geetactgte 3720 cgacaggatg cctcgatcct cgtgcgaccc accctgtgta tcctccctag actgagttct 3780 ggcagctccc cgaggcagcc ggggtaccct ctagattcag ggatgcttgc tctccacttt 3840 tcaagtqggt cttgqgtacg agaattccct catctttctc tactgtaaag tgattttgtt 3900 tgcaggtaag aaaataatag atgactcacc acacctctac ggctggggag atcaggccca 3960 gccccataaa ggagaatcta cgctggtcct caggacgtgt taaagagatc tgggcctcat 4020 gtageteace eeggteaege atgaaggeaa aageaggtea gaagegaata etetgeeatt 4080

| atotoaaaaa tottttttt tttttttttg agatggggto ttoototgtt goocaggotg          | 4140 |
|---------------------------------------------------------------------------|------|
| gagtgcagtg gtgcaatett ggctcactgt aacctccgcc tcccaggttc aagtgattct         | 4200 |
| tettgeetea geeteetgag tagetgggat tacaggtgtg caccaccegt acccagetaa         | 4260 |
| tttttgtatt ttagtagaga cgggggtttc accatgttgg ctgggctggt ctcgaactcc         | 4320 |
| tgacctcagg tgatccaccc gcctgagcct cccaaagtgc tgggattaca ggcatgagcc         | 4380 |
| accaegeeeg geceaetetg ceattgteta agceaeetet gaaageaggt tttaacaaaa         | 4440 |
| ggatgaggcc agaactette cagaaccate acetttggga acetgetgtg agagtgetga         | 4500 |
| ggtaccagaa gtgtgagaac gaggggggt gctgggatct ttctctctga ctatacttag          | 4560 |
| tttgaaatgg tgcaggctta gtcttaagcc tccaaaggcc tggatttgag cagctttaga         | 4620 |
| aatgcaggtt ctagggcttc tcccagcctt cagaagccaa ctaactctgc agatggggct         | 4680 |
| aggactgtgg gcttttagca gcccacaggt gatcctaaca tatcaggcca tggactcagg         | 4740 |
| acctgcccgg tgatgctgtt gatttctcaa aggtcttcca aaactcaaca gagccagaag         | 4800 |
| tageogooog eteagogget caggtgocag etetgttetg attcaccagg ggtoogtcag         | 4860 |
| tagtcattgc caccegeggg gcacetecet ggccacaege etgtteecag caagtgetga         | 4920 |
| aactcactag accgtctgcc tgtttcgaaa tggggaaagc cgtgcgtgcg cgttatttat         | 4980 |
| ttaagtgege etgtgtgege gggtgtggga geacaetttg caaagceaca gegtttetgg         | 5040 |
| ttttgggtgt acagtottgt gtgootggog agaagaatat tttotatttt tttaagtoat         | 5100 |
| ttcatgtttc tgtctgggga aggcaagtta gttaagtatc actgatgtgg gttgagacca         | 5160 |
| gcactctgtg aaaccttgaa atgagaagta aaggcagatg aaaagaaaaa aaaaaaaaa          | 5220 |
| <210> 2857<br><211> 1158<br><212> DNA<br><213> Homo sapiens<br><400> 2857 |      |
| georgotget erggeeeerg greergreet effectedage arggregate tgaagereee        | 60   |
| tggaggetec agettggeag egttgaeagt gaeactgatg gtgetgaget ecegaetgge         | 120  |
| tttegetggg gacaceegae eaegtttett ggagetgegt aagtetgagt gteatttett         | 180  |
| caatgggacg gagcgggtgc ggtacctgga cagatacttc cataaccagg aggagttcct         | 240  |
| gegettegae agegaegtgg gggagtaeeg ggeggtgaeg gagetgggge ggeetgtege         | 300  |
| cgagtcctgg aacagccaga aggacctcct ggagcagaag cggggccggg tggacaatta         | 360  |
| ctgcagacac aactacgggg ttggtgagag cttcacagtg cagcggcgag tccatcctca         | 420  |

ggtgactgtg tatcctgcaa agacccagcc cctgcagcac cacaacctcc tggtctgctc 480

tgtgagtggt ttctatccag gcagcattga agtcaggtgg ttccggaacg gccaggaaga 540 gaaggetggg gtggtgteea egggeetgat ceagaatgga gaetggaeet teeagaeeet 600 ggtgatgcta gaaacagttc ctcggagtgg agaggtttac acttgccaag tggagcaccc 660 aagcgtaacg agcgctctca cagtggaatg gagagcacgg tctgaatctg cacagagcaa 720 gatgctgagt ggagtcgggg getttgtget gggcctgete tteettgggg cegggetgtt 780 catctacttc aggaatcaga aaggacactc tggacttcag ccaacaggat tcctgaqctq 840 aagtgcagat gacaatttaa ggaagaatct tctgccccag ctttgcagga tgaaaaqctt 900 tecegeetgg etgttattet tecaegagag agggetttet caggacetag ttgetaetgg 960 ticagcaact gcagaaaatg tecteeettg tggetteete agtteetgee ettggeetga 1020 agtcccagca ttgatggcag cgcctcatct tcaacttttg tgctcccctt tgcctaaacc 1080 ctatggcctc ctgtgcatct gtactcaccc tgtaccacaa acacattaca ttattaaatg 1140 tttctcaaag atggagtt 1158

<210> 2858

<211> 6807 <212> DNA

<213> Homo sapiens

<400> 2858

tctagagtaa gaaactagct gagcaacgtg gtgtcacact atacacccat taagacaaca 60 ggcacatgtg tcatgtccat tttgtggaaa agatatgtaa aataatttta agtaaaaaag 120 ataaatataa aaaagtgaat gcatacaaaa caatttcaca aaattgaatg ttactcaaaa 180 atcacagete attttaaget geacaaaata gteatttttt tetttataat tgeteaaatt 240 cataatcaaa cagaagaaag ttcctgtctt ggaagtagtg ctatgcccca attcttccag 300 agccagtact ttaaacaatt ccatttcatt attttcctgt agactaattc ttaggacatc 360 agcatatoto tottoaagoa ttaaaaaaaat ototttagag toagtggato aatagacagt 420 tcctgttttc cacacaactg aaagggtgga gcccccaaac cacaagggga agaaggaagt 480 taaaagatgt taaatactgg ggccagctca ccctggtcag cctagcactc tgacctagca 540 gtcaacatga aggeteteat tgttetgggg ettgteetee tttetgttac ggtecaggge 600 aaggtettig aaaggigtga gitggeeaga aetetgaaaa gattgggaat ggatggetae 660 aggggaatca gcctagcaaa ctgtaagtct actctccata attccagaga attagctacg 720 tatggaacag acactaggag agaaggaaga agaaggaaggg gctttgagtg aatagatgtt 780 ttatttcttt gtgggtttgt atacttacaa tggctaaaaa catcagtttg gttctttata 840 accagagata cccgataaag gaatacgggc atggcagggg aaaattccat tctaagtaaa 900

1212

| acaggacctg ttgtactgtt ctagtgctag gaagtttgct gggtgcctga gattcaatgg  | 960  |
|--------------------------------------------------------------------|------|
| cacatgtaag ctgactgaaa gatacatttg aggacctggc agagctctct caagtccttg  | 1020 |
| gtatgtgact ccagttattt cccattttga acttgggctc tgagagccta gagtgatgca  | 1080 |
| gtatttttct tgtcttcaag tcccctgccg tgatgtggga tttttatttt tatttttatt  | 1140 |
| ttattttatt ttatttttaa agacagtete aetgtgtgge eeaggetgga gtgeagtgge  | 1200 |
| atgateteag eteaetgeaa eetetgeett etgggeteaa gtgatteteg tgetteagee  | 1260 |
| ttctgagtag ctgtgactac aggtgtgtac caccacaccc agctaatttt ttgtattttc  | 1320 |
| agtagagatg gggtttcacc atgttggcca agctggtctt gaactcctgg cctcaaatga  | 1380 |
| totgoccace teagestess amagtggtag gattacaggt gtgaaccact gcacccages  | 1440 |
| gacatgggat ttttaacagt gatgttttta aagaatatat tgaattccct acacaagagc  | 1500 |
| agtaggaacc tagttccctt cagtcactct ttgtatagga tcccagaaac tcagcatgaa  | 1560 |
| atgitttatt attittatot actotactig attaactato titcattito toccacacaa  |      |
| ttcaagatgt gccatgagga aaagttattt tatagtttag tacatagttg tcgatgtaat  | 1620 |
| aatototgta gttttcagat tgaattcaga catttcccct caatagctat ttttgaatga  | 1680 |
| atgagtgaag ggatgaaatc acggaatagt cttgttttca agattctaac ttgatatcca  | 1740 |
| aattcacctt tagatattat aagaaaattt ctatcagaaa atccttatgt ttttctgatt  | 1800 |
| aaaaaaagca tttttccatc agcctatgta tctgctatga atttctacaaa tctactcaac | 1860 |
|                                                                    | 1920 |
| agctctgttg atttttctgt tcttggctga atgttgcctg agggatggga gcacgggaag  | 1980 |
| ggtaaaagca atggaagaaa catgtatttt aatattttaa aagtatgtta tattgttcgt  | 2040 |
| tggtgttaca agatgatttg cattacaaaa ggattctctt acaagtccct tatcttaaca  | 2100 |
| ctaaagtgct aagatatttt ataagtaaat ctttatactt ataaaacaaa tcagtaaaat  | 2160 |
| agaagtagct aagtagaact gattttgcta tagagtataa gtcacttagt gttgctgttt  | 2220 |
| attactaaaa ataagttott ttoagggatg tgtttggoca aatgggagag tggttacaac  | 2280 |
| acacgagcta caaactacaa tgctggagac agaagcactg attatgggat atttcagatc  | 2340 |
| aatagccgct actggtgtaa tgatggcaaa accccaggag cagttaatgc ctgtcattta  | 2400 |
| tcctgcagtg gtaagacaag ctaatatttg accaatctgg ttatacttac aagaattgag  | 2460 |
| actcaataca aatgaaaaag cettgaaagg ttcatgaggg acetagaaaa actacatete  | 2520 |
| aacttccaga aagtcattat tattttcctc ataattccct gagtaagaaa tttaaagaag  | 2580 |
| tggtatcata aaaggttgat gttttttaat atacagaagt ttctggaatg acctattaat  | 2640 |
| ttactgtcaa tggccttact gatgctttgt ccagaacaat gccattgctc ctgcttactt  | 2700 |
| tggggaggtt ttgggataat ttagttgtat ggtccttttt caattgtttt acttttttt   |      |
| SS                                                                 | 2760 |

ttatgaaatg ttctaaatgt atagaaaatt agagacatta gtataataaa cagccatatg 2820 cccattatgc actttaaaag ttgttaacat tttgccatag ttgcttcttc tatgcctttt 2880 ttttttttt tttttttt tgctqagagt tttttgtttg gttttgtttt gttttatttt 2940 gagacagggt ctcctgtccc caggctgtag tcagtggcac catcacagct cactgcaqct 3000 caaqtqatca toccaccaca qootoccaaq taqotgggac tacaggtgtg caccaccatg 3060 cctqqcaaat ttttqaaatt tttaqtacaq qcaaattctq tqttqcccag gctggtcttg 3120 aactcetqaq ttcaaqcaat cttcccacct cagcetcctt aagctgctgg aattacagge 3180 gttagcactg tacctggcta ctgctgagag acttttaagt gaattaggaa catgatgata 3240 ttccatttct aaattcttta qtttacatct tcaaaaaata caqttcctgt agaattatta 3300 ttqtaaataa caaattaact taaqqattta tttatttqqa qtgaaacaaa tattttactq 3360 aactcataaa aataqaaata ccatqtqqaa tcctcaqtqt caaaaatatt qcaqaaatct 3420 tqcaaaqttq atattattaa attqttaaat attaaaattc ccaataaaqa acattaatct 3480 3540 ataaaaatta qaaaatacaa ataaqaaaaa taacacccat aatcttacta cccaqaqqtt 3600 tataaccatg ggtaaattct ggtatatatt cttccagaat gtatatcaat catgtgtatg 3660 aatgttaaat tatatcatac acatataaac ccacatacaa acatgtaaat actgtgtgct 3720 tttgcaaaaa ttaaattgta ttatacacac ggctttacaa tttgcttctt atcacacaaa 3780 attatttqca tgtcaqcaaa tacaaatcgg tttttaatga tcttttgctc cattttccag 3840 atqaqaaaaa aatacaaatc tqtatcatca ttttaaaaaga atgactagaa ttttaatata 3900 tgaatattct ataatttact gatccaattg ttactattga gcacttaggt tgtttccatt 3960 tttccctcat aaattqctat qaataqcttt ttqtatacat ctttqqqtgc atttcttatt 4020 tottttqqat aaattttcaa taataqaact qotqaqtaaa atatcactaq gtgttttttt 4080 acagtgtcta gtgcaaagaa gacctttaat cattttgtta atacttccag agcttccaat 4140 4200 gactttggta aatgaagaa aaaatgcttc atttcatgct gaatgggaga gaatgaagag agttttcccc aacaattaca catatatgga ctcatagaaa ataatatctt accattcttt 4260 4320 tttttattcc ttaccacctg tctttcagct ttgctgcaag ataacatcgc tgatgctgta 4380 gcttgtgcaa agagggttgt ccgtgatcca caaggcatta gagcatggta tgttttaagt 4440 gttaaaaggq aaaactatct tactctactg ttgatatata caatgagagc agacttttaa 4500 agaccaaaqt atgctaatga cacctcaaaa ttgcagcttt tggcttatgc taaatgatgt 4560

| attacctaca | tccttgaaga                  | aacaatctac | tttaactgat                  | ccagaatctt | actcttttac | 4620 |
|------------|-----------------------------|------------|-----------------------------|------------|------------|------|
| tcctcaattt | attttagggg                  | atttctagag | ttttaagatg                  | cttcacactc | tatcagttcc | 4680 |
| ttgtcatatc | ttgaaattct                  | ttttagaata | agtaagtgtg                  | ggccgggcac | agtgctcacg | 4740 |
| cctgtaatcc | cagcactttg                  | ggagaccgag | gcagatggat                  | cacctgaggt | caggagttcg | 4800 |
| agaccagcct | gcctaacatg                  | gcaaaacccc | atctccacta                  | aaaatacaaa | aaattagctg | 4860 |
| ggtgtggtgc | aggtgcctgt                  | aatcccagcc | actcgggagg                  | ctgaggcagg | agacttgctt | 4920 |
| gaacccggga | ggtggaggtt                  | gcagaggatt | gcgccattgt                  | acttcagect | gggcgacaga | 4980 |
| gtgagactct | gtctcaaata                  | aatagcataa | aaaataaacg                  | tggaattcac | tttgcagttg | 5040 |
| ctgctgtaca | acgcacatta                  | ctcaatcttt | <b>at</b> gtt <b>cg</b> gca | ttctatgctc | tactgagaaa | 5100 |
| tttgggtagg | agtgaagtat                  | tttgtataca | tatcttcatt                  | taataaatag | caatagctgg | 5160 |
| gtctatctta | ctattttatc                  | tattgataaa | atattttgtt                  | tccccaagga | gtgcgaagta | 5220 |
| tgtatattac | aatgaagata                  | tgttttaacc | tttcaccatt                  | tgcttcatct | ttttctacag | 5280 |
| ggtggcatgg | agaaatcgtt                  | gtcaaaacag | agatgtccgt                  | cagtatgttc | aaggttgtgg | 5340 |
| agtgtaactc | cagaattttc                  | cttcttcagc | tcattttgtc                  | teteteacat | taagggagta | 5400 |
| ggaattaagt | gaaaggtcac                  | actaccatta | tttccccttc                  | aaacaaataa | tatttttaca | 5460 |
| gaagcaggag | caaaatatgg                  | cctttcttct | aagagatata                  | atgttcacta | atgtggttat | 5520 |
| tttatattaa | gcctacaaca                  | tttttcagtt | tgcaaataga                  | actaatactg | gtgaaaattt | 5580 |
| acctaaaacc | ttggttatca                  | aatacatctc | cagtacattc                  | cgttcttttt | tttttttt   | 5640 |
| ttttttttg  | agacagtete                  | gctctgtcgc | ccaggctgga                  | gtgcagtggc | gcaatctcgg | 5700 |
| ctcactgcaa | cctccacctc                  | ccgggttcac | gccattctcc                  | tgcctcagcc | tcccgagtag | 5760 |
| ctgggattac | gggcgcccgc                  | caccacgccc | ggctaatttt                  | ttgtatttt  | agtagagaca | 5820 |
| gggtttcacc | gtgttagcca                  | ggatggtctc | gatctcctga                  | ccttgtgatc | cacccacctc | 5880 |
| ggcctcccaa | agtgctggga                  | ttacaggcgt | gagccactgc                  | gcccggccac | attcagttct | 5940 |
| tatcaaagaa | <b>a</b> taacc <b>c</b> aga | cttaatcttg | aatgatacga                  | ttatgcccaa | tattaagtaa | 6000 |
| aaaatataag | aaaaggttat                  | cttaaataga | tcttaggcaa                  | aataccagct | gatgaaggca | 6060 |
| tetgatgcet | tcatctgttc                  | agtcatctcc | aaaaacagta                  | aaaataacca | ctttttgttg | 6120 |
| ggcaatatga | aattttt <b>aa</b> a         | ggagtagaat | accaaatgat                  | agaaacagac | tgcctgaatt | 6180 |
| gagaattttg | attttttaaa                  | gtgtgtttct | ttctaaattg                  | ctgttcctta | atttgattaa | 6240 |
| tttaattcat | gtattatgat                  | taaatctgag | gcagatgagc                  | ttacaagtat | tgaaataatt | 6300 |
| actaattaat | cacaaatgtg                  | aagttatgca | tgatgtaaaa                  | aatacaaaca | ttctaattaa | 6360 |
| aggctttgca | acacatgcct                  | tgtctgtttt | tatttagact                  | cctatagtgt | ctctgaagaa | 6420 |

| aagaatacag                                        | atatttgaaa     | aaatatgatt | tggtgctctt | aatatctctt | atatcgtcac | 6480 |
|---------------------------------------------------|----------------|------------|------------|------------|------------|------|
| ttacctcact                                        | taaatagtca     | gatattgctg | gagaaaaatt | cacaagcatg | ctgacaggtc | 6540 |
| tcactttaaa                                        | ttcataacca     | taaatctcaa | atgagccctc | aagtctgcct | gaccatttta | 6600 |
| gttacttctc                                        | tacaatcctt     | ccatttttat | gtccctagtc | tccaaaatga | ctgttactat | 6660 |
| tttacttttc                                        | ctcttctctc     | ttcaaagcct | caagacacac | attcagcctc | ctcctctgcc | 6720 |
| cccttatcct                                        | ccaccctcct     | ctgctctcag | cagataaact | ggcctcatat | tacacttcta | 6780 |
| aaacaaaagc                                        | aacttcatac     | caagctt    |            |            |            | 6807 |
| <210> 285 <211> 149 <212> DNA <213> Hom <400> 285 | 7<br>o sapiens |            |            |            |            |      |
|                                                   | ccagggaaag     | ccgagcggcc | accgagccgg | cagagaccca | ccgagcggcg | 60   |
| gcggagggag                                        | cagcgccggg     | gcgcacgagg | gcaccatggc | ccagacgccc | gccttcgaca | 120  |
| agcccaaagt                                        | agaactgcat     | gtccacctag | acggatccat | caagcctgaa | accatcttat | 180  |
| actatggcag                                        | gaggagaggg     | ategeeetee | cagctaacac | agcagagggg | ctgctgaacg | 240  |
| tcattggcat                                        | ggacaagccg     | ctcacccttc | cagacttcct | ggccaaattt | gactactaca | 300  |
| tgcctgctat                                        | cgcgggctgc     | cgggaggcta | tcaaaaggat | cgcctatgag | tttgtagaga | 360  |
| tgaaggccaa                                        | agagggcgtg     | gtgtatgtgg | aggtgcggta | cagtccgcac | ctgctggcca | 420  |
| actccaaagt                                        | ggagccaatc     | ccctggaacc | aggctgaagg | ggacctcacc | ccagacgagg | 480  |
| tggtggccct                                        | agtgggccag     | ggcctgcagg | agggggagcg | agacttcggg | gtcaaggccc | 540  |
| ggtccatcct                                        | gtgctgcatg     | cgccaccagc | ccaactggtc | ccccaaggtg | gtggagctgt | 600  |
| gtaagaacta                                        | ccagcagcag     | accgtggtag | ccattgacct | ggctggagat | gagaccatcc | 660  |
| caggaagcag                                        | cctcttgcct     | ggacatgtcc | aggcctacca | ggaggctgtg | aagagcggca | 720  |
| ttcaccgtac                                        | tgtccacgcc     | ggggaggtgg | gctcggccga | agtagtaaaa | gaggctgtgg | 780  |
| acatactcaa                                        | gacagagcgg     | ctgggacacg | gctaccacac | cctggaagac | caggcccttt | 840  |
| ataacaggct                                        | gcggcaggaa     | aacatgcact | tcgagatctg | cccctggtcc | agctacctca | 900  |
| ctggtgcctg                                        | gaagccggac     | acggagcatg | cagtcattcg | gctcaaaaat | gaccaggcta | 960  |
| actactcgct                                        | caacacagat     | gacccgctca | tcttcaagtc | caccctggac | actgattacc | 1020 |
| agatgaccaa                                        | acgggacatg     | ggctttactg | aagaggagtt | taaaaggetg | aacatcaatg | 1080 |
| cggccaaatc                                        | tagtttcctc     | ccagaagatg | aaaagaggga | gcttctcgac | ctgctctata | 1140 |
| aagcctatgg                                        | gatgccacct     | tcagcctctq | cagggcagaa | cctctgaaga | cgccactcc+ | 1200 |

ccaagcette accetgtgga gtcaccccaa ctctgtgggg ctgagcaaca tttttacatt 1260 tatteettee aagaagacca tgateteaat agteagttae tgatgeteet gaaccetatg 1320 tgtccatttc tgcacacacg tatacctcgg catggccgcg tcacttctct gattatgtgc 1380 cctggcaggg accagcgccc ttgcacatgg gcatggttga atctgaaacc ctccttctgt 1440 ggcaacttgt actgaaaatc tggtgctcaa taaagaagcc catggctggt ggcatgc 1497 <210> 2860 <211> 3151 <212> DNA <213> Homo sapiens <400> 2860 cccggccaga caccetcace tgcggtgccc agetgcccag gctgaggcaa gagaaggcca 60 gaaaccatgc ccatggggtc tctgcaaccg ctggccacct tgtacctgct ggggatgctg 120 gtcgcttcct gcctcggacg gctcagctgg tatgacccag atttccaggc aaggctcacc 180 cgttccaact cgaagtgcca gggccagctg gaggtctacc tcaaggacgg atggcacatg 240 gtttgcagcc agagctgggg ccggagctcc aagcagtggg aggaccccaq tcaaqcqtca 300 aaagtctgcc agcggctgaa ctgtggggtg cccttaagcc ttggcccctt ccttgtcacc 360 tacacacete agageteaat catetgetae ggacaactgg geteettete caactgeage 420 cacagcagaa atgacatgtg tcactctctg ggcctgacct gcttagaacc ccagaagaca 480 acacctecaa egacaaggee ecegeecace acaactecag ageceacage teeteecagg 540 ctgcagctgg tggcacagtc tggcggccag cactgtgccg gcgtggtgga gttctacagc 600 ggcagcctgg ggggtaccat cagctatgag gcccaggaca agacccagga cctggagaac 660 tteetetgea acaaceteea gtgtggetee ttettgaage atetgeeaga gaetgaggea 720 ggcagagccc aagacccagg ggagccacgg gaacaccagc ccttgccaat ccaatggaag 780 atccagaact caagctgtac ctccctggag cattgcttca ggaaaatcaa gccccagaaa 840 agtggccgag ttcttgccct cctttgctca ggtttccagc ccaaggtgca gagccgtctg 900 gtgggggca gcagcatctg tgaaggcacc gtggaggtgc gccagggggc tcagtgggca 960 gecetgtgtg acagetette agecaggage tegetgeggt gggaggaggt gtgeegggag 1020 cagcagtgtg gcagcgtcaa ctcctatcga gtgctggacg ctggtgaccc aacatcccgg 1080 gggctcttct gtccccatca gaagctgtcc cagtgccacg aactttggga gagaaattcc 1140 tactgcaaga aggtgtttgt cacatgccag gatccaaacc ccgcaggcct ggccgcaggc 1200 acggtggcaa gcatcatcct ggccctggtg ctcctggtgg tgctgctggt cgtgtgcggc 1260 ccccttgcct acaagaagct agtgaagaaa ttccgccaga agaagcagcg ccagtggatt 1320

gqcccaacgg gaatgaacca aaacatgtct ttccatcgca accacacggc aaccgtccga 1380 teccatgetg agaaccecac ageeteccac gtggataacg aatacageca accteccagg 1440 aactcccgcc tgtcagctta tccagctctg gaaggggttc tgcatcgctc ctccatqcag 1500 cctgacaact cctccgacag tgactatgat ctgcatgggg ctcagaggct gtaaagaact 1560 gggatccatg agcaaaaagc cgagagccag acctgtttgt cctgagaaaa ctgtccgctc 1620 ttcacttgaa atcatgtccc tatttctacc ccggccagaa catggacaga ggccagaagc 1680 cttccggaca ggcgctgctg ccccgagtgg caggccagct cacactctgc tgcacaacag 1740 ctcggccgcc cctccacttg tggaagctgt ggtgggcaga gccccaaaac aagcagcctt 1800 ccaactagag actegggggt gtetgaaggg ggccccettt ccetgeeege tggggagegg 1860 cgtctcagtg aaatcggctt tctcctcaga ctctgtccct ggtaaggagt gacaaggaag 1920 ctcacagctg ggcgagtgca ttttgaatag ttttttgtaa gtagtgcttt tcctccttcc 1980 tgacaaatcg agcgctttgg cetettetgt geageateca eeeetgegga teeetetggg 2040 gaggacagga aggggactee eggagacete tgeageegtg gtggteagag getgeteate 2100 tgagcacaaa gacagetetg cacatteace geagetgeea geeaggggte tgggtgggea 2160 ccaccetgae ccacagegte accecaetee etetgtetta tgacteccet ecceaacece 2220 ctcatctaaa gacaccttcc tttccactgg ctgtcaagcc cacagggcac caqtqccacc 2280 cagggccctg cacaaagggg cgcctagtaa accttaacca acttggtttt ttgcttcacc 2340 cagcaattaa aagtcccaag ctgaggtagt ttcagtccat cacagttcat cttctaaccc 2400 aagagtcaga gatggggctg gtcatgttcc tttggtttga ataactccct tgacgaaaac 2460 agacteetet agtaettgga gatettggae gtaeacetaa teecatgggg eeteggette 2520 cttaactgca agtgagaaga ggaggtctac ccaggagcct cgggtctgat caagggagag 2580 gccaggcgca gctcactgcg gcctctaaga aggtgaagca acatgggaac acatcctaag 2640 acacateeta agacaggtee tttetecaeg ceatttgatg etgtatetee tgggagcaca 2700 ggcatcaatg gtccaagccg cataataagt ctggaagagc aaaagggagt tactaggata 2760 tggggtgggc tgctcccaga atctgctcag ctttctgccc ccaccaacac cctccaacca 2820 ggccttgcct tctgagagcc cccgtggcca agcccaggtc acagatettc ccccqaccat 2880 gctgggaatc cagaaacagg gaccccattt gtcttcccat atctggtgga ggtgaggggg 2940 ctcctcaaaa gggaactgag aggctgctct tagggagggc aaaggttcgg gggcagccag 3000 tgtctcccat cagtgccttt tttaataaaa gctctttcat ctatagtttg gccaccatac 3060 agtggcctca aagcaaccat ggcctactta aaaaccaaac caaaaataaa gagtttagtt 3120

3151

<210> 2861

<211> 1653 <212> DNA

<213> Homo sapiens

<400> 2861

agcgatttca tettcaggee tggactacae caetcaceet eccagtgtge ttgagaaaca 60 aactgcaccc actgaactcc gcagctagca tccaaatcag cccttgagat ttgaggcctt 120 ggagactcag gagttttgag agcaaaatga caacacccag aaattcagta aatgggactt 180 tcccggcaga gccaatgaaa ggccctattg ctatgcaatc tggtccaaaa ccactcttca 240 ggaggatgtc ttcactggtg ggccccacgc aaagcttctt catgagggaa tctaagactt 300 tgggggctgt ccagattatg aatgggctct tccacattgc cctggggggt cttctgatga 360 tcccagcagg gatctatgca cccatctgtg tgactgtgtg gtaccctctc tggggaggca 420 ttatgtatat tatttccgga tcactcctgg cagcaacgga gaaaaactcc aggaagtgtt 480 tggtcaaagg aaaaatgata atgaattcat tgagcctctt tgctgccatt tctggaatga 540 ttctttcaat catggacata cttaatatta aaatttccca ttttttaaaa atggagagtc 600 tgaattttat tagageteae acaccatata ttaacatata caactgtgaa ecagetaate 660 cctctgagaa aaactcccca tctacccaat actgttacag catacaatct ctgttcttgg 720 gcattttgtc agtgatgctg atctttgcct tcttccagga acttgtaata gctggcatcq 780 ttgagaatga atggaaaaga acgtgctcca gacccaaatc taacatagtt ctcctgtcag 840 cagaagaaaa aaaagaacag actattgaaa taaaagaaga agtggttggg ctaactgaaa 900 960 aagaagaaac agagacgaac tttccagaac ctccccaaga tcaggaatcc tcaccaatag 1020 aaaatgacag ctctccttaa gtgatttctt ctgttttctg tttccttttt taaacattag 1080 tgttcatagc ttccaagaga catgctgact ttcatttctt gaggtactct gcacatacgc 1140 accacatete tatetggeet ttgcatggag tgaccatage teettetete ttacattgaa 1200 tgtagagaat gtagccattg tagcagcttg tgttgtcacg cttcttcttt tgagcaactt 1260 tettacactg aagaaaggca gaatgagtge tteagaatgt gattteetae taacetgtte 1320 cttggatagg ctttttagta tagtattttt ttttgtcatt ttctccatca acaaccaggg 1380 agactgcacc tgatggaaaa gatatatgac tgcttcatga cattcctaaa ctatctttt 1440 tttattccac atctacgttt ttggtggagt cccttttgca tcattgttt aaggatgata 1500 aaaaaaaaat aacaactagg gacaatacag aacccattcc atttatcttt ctacagggct 1560

| gacattgtgg                                       | cacattetta | gagttaccac | accccatgag | ggaagctcta | aatagccaac | 1620 |
|--------------------------------------------------|------------|------------|------------|------------|------------|------|
| acccatctgt                                       | tttttgtaaa | aacagcatag | ctt        |            |            | 1653 |
| <210> 286<br><211> 232<br><212> DNA<br><213> Hom | 5          |            |            |            |            |      |
| <400> 286                                        |            |            |            |            |            |      |
|                                                  |            |            | acagtettag |            |            | 60   |
|                                                  | _          | _          | cttcatgtga |            |            | 120  |
|                                                  |            |            | gagctgtgtt |            |            | 180  |
|                                                  |            |            | ctttgatatt |            |            | 240  |
| ttagtatttt                                       | tcaagaccac | ttttcaacta | ctcactttag | gataagtttt | aggtaaaatg | 300  |
| tgcatcatta                                       | tcctgaatta | tttcagttaa | gcatgttagt | tggtggcata | agagaaaact | 360  |
| caatcagata                                       | gtgctgagac | aggactgtgg | agacacctta | gaaggacaga | ttctgttccg | 420  |
| aatcaccgat                                       | gcggcgtcag | caggactggc | ctagcggagg | ctctgggagg | gtggctgcca | 480  |
| ggcccggcct                                       | gggctttggg | tctccccgga | ctacccagag | ctgggatgcg | tggcttctgc | 540  |
| tgccgggccg                                       | actggctgct | cagccccagc | ccttgttaat | ggacttggag | gaatgattcc | 600  |
| atgccaaagc                                       | tttgcaaggc | tcgcagtgac | caggcgcccg | acatgggagt | gcatccgccc | 660  |
| caaccctttt                                       | cccctcgtc  | tcctgtgaga | atteccegte | ggatacgagc | agcgtggccg | 720  |
| ttggctgcct                                       | cgcacaggac | ttccttcccg | actccatcac | tttctcctgg | aaatacaaga | 780  |
| acaactctga                                       | catcagcagc | acccggggct | tcccatcagt | cctgagaggg | ggcaagtacg | 840  |
| cagccacctc                                       | acaggtgctg | ctgccttcca | aggacgtcat | gcagggcaca | gacgaacacg | 900  |
| tggtgtgcaa                                       | agtccagcac | cccaacggca | acaaagaaaa | gaacgtgcct | cttccagtga | 960  |
|                                                  |            |            | tcgtcccacc |            |            | 1020 |
|                                                  |            |            | ccacgggttt |            |            | 1080 |
|                                                  |            |            | ggtctggcgt |            |            | 1140 |
|                                                  |            |            | acaaggtgac |            |            | 1200 |
|                                                  |            |            | cctgccgggt |            |            | 1260 |
|                                                  |            |            | ccgatcaaga |            |            | 1320 |
|                                                  |            |            | tcaccaagtc |            |            | 1380 |
|                                                  |            |            | ccatctcctg |            |            | 1440 |
|                                                  |            |            |            |            |            |      |
| ccycyaaaac                                       | ccacaccaac | acccccgaga | gccaccccaa | tgccactttc | agcgccgtgg | 1500 |

| gtgaggccag catctgcgag gatgactgga attccgggga gaggttcacg tgcaccgtga        | 1560 |
|--------------------------------------------------------------------------|------|
| cccacacaga cctgccctcg ccactgaagc agaccatetc ccggcccaaa ggggtggccc        | 1620 |
| tgcacaggcc cgatgtctac ttgctgccac cagcccggga gcagctgaac ttgcgggagt        | 1680 |
| cggccaccat cacgtgcctg gtgacgggct tctctcccgc ggacgtcttc gtgcagtgga        | 1740 |
| tgcagagggg gcagcccttg tccccggaga agtatgtgac cagcgcccca atgcctgagc        | 1800 |
| cccaggcccc aggccggtac ttcgcccaca gcatcctgac cgtgtccgaa gaggaatgga        | 1860 |
| acacggggga gacctacacc tgcgtggtgg cccatgaggc cctgcccaac agggtcaccg        | 1920 |
| agaggaccgt ggacaagtcc accgaggggg aggtgagcgc cgacgaggag ggctttgaga        | 1980 |
| acctgtggge caccgcctcc accttcatcg tectetteet cetgageete ttetacagta        | 2040 |
| ccaccgtcac cttgttcaag gtgaaatgat cccaacagaa gaacatcgga gaccagagag        | 2100 |
| aggaactcaa agggcgcagc tccgggtctg gggtcctgcc tgcgtggcct gttggcacgt        | 2160 |
| gtttetette eccgeccgge etccagttgt gtgeteteac acaggettee ttetegaccg        | 2220 |
| gcaggggctg gctggcttgc aggcacgagg tgggctctac cccacactgc tttgctgtgt        | 2280 |
| atacgettgt tgecetgaaa taaatatgea eattttatee atgaa                        | 2325 |
| <210> 2863<br><211> 430<br><212> DNA<br><213> Homo sapiens<br><400> 2863 |      |
| gacagecacg aagateetae caaaatgaag egetteetet teeteetaet caccateage        | 60   |
| ctcctggtta tggtacagat acaaactgga ctctcaggac aaaacgacac cagccaaacc        | 120  |
| agcagcccct cagcatccag cagcatgagc ggaggcattt tccttttctt cgtggccaat        | 180  |
| gccataatcc acctettetg etteagttga ggtgacaegt eteageetta gecetgtgee        | 240  |
| ccctgaaaca gctgccacca tcactcgcaa gagaatcccc tccatctttg ggaggggttg        | 300  |
| atgccagaca tcaccaggtt gtagaagttg acaggcagtg ccatgggggc aacagccaaa        | 360  |
| ataggggggt aatgatgtag gggccaagca gtgcccagct gggggagaat aaagttaccc        | 420  |
| ttgtactgca                                                               | 430  |
| <210> 2864<br><211> 1824<br><212 DNA<br><213> Homo sapiens<br><400> 2864 |      |
| cagetetetg teagaatgge caccatggta ceateegtgt tgtggeecag ggeetgetgg        | 60   |
| actotgetgg totgotgtot gotgaccoca ggtgtocagg ggcaggagtt cottttgcgg        | 120  |

| ç  | gtggagccc | c agaaccctg  | getetetget   | ggagggtcc   | c tgtttgtgaa | a ctgcagtact  | 180  |
|----|-----------|--------------|--------------|-------------|--------------|---------------|------|
| 9  | gattgtccc | a gctctgagaa | a aatcgcctt  | g gagacgtcc | c tatcaaagg  | a. gctggtggcc | 240  |
| ā  | gtggcatg  | g gctgggcag  | cttcaatctc   | agcaacgtg   | a ctggcaaca  | g teggateete  | 300  |
| t  | gctcagtgt | t actgcaatgo | g ctcccagata | acaggetee   | t ctaacatcac | cgtgtacggg    | 360  |
| c  | tcccggag  | gtgtggagct   | ggcacccctg   | cctccttgg   | agccggtggg   | g ccagaacttc  | 420  |
| а  | ccctgcgct | gccaagtgga   | gggtgggtcg   | ccccggacca  | a gcctcacggt | ggtgctgctt    | 480  |
| c  | gctgggagg | g aggagetgag | ccggcagccc   | gcagtggagg  | g agccagcgga | ggtcactgcc    | 540  |
| a  | ctgtgctgc | g ccagcagaga | cgaccacgga   | gcccctttct  | catgeegead   | agaactggac    | 600  |
| a  | tgcagcccc | aggggctggg   | actgttcgtg   | aacacctcac  | cccccgcca    | gctccgaacc    | 660  |
| t  | ttgtcctgc | ccgtgacccc   | cccgcgcctc   | gtggccccc   | ggttcttgga   | ggtggaaacg    | 720  |
| t  | cgtggccgg | tggactgcac   | cctagacggg   | ctttttccag  | cctcagagge   | ccaggtctac    | 780  |
| С  | tggcgctgg | gggaccagat   | gctgaatgcg   | acagtcatga  | accacgggga   | cacgctaacg    | 840  |
| g  | ccacagcca | cagccacggc   | gcgcgcggat   | caggagggtg  | cccgggagat   | cgtctgcaac    | 900  |
| g  | tgaccctag | ggggcgagag   | acgggaggcc   | cgggagaact  | tgacggtctt   | tagcttccta    | 960  |
| g  | gacccattg | tgaacctcag   | cgagcccacc   | gcccatgagg  | ggtccacagt   | gaccgtgagt    | 1020 |
| t  | gcatggctg | gggctcgagt   | ccaggtcacg   | ctggacggag  | ttccggccgc   | ggccccgggg    | 1080 |
| C  | agccagctc | aacttcagct   | aaatgctacc   | gagagtgacg  | acggacgcag   | cttcttctgc    | 1140 |
| a  | gtgccactc | tcgaggtgga   | cggcgagttc   | ttgcacagga  | acagtagcgt   | ccagctgcga    | 1200 |
| gt | cctgtatg  | gtcccaaaat   | tgaccgagcc   | acatgcccc   | agcacttgaa   | atggaaagat    | 1260 |
| aa | aaacgagac | acgtcctgca   | gtgccaagcc   | aggggcaacc  | cgtaccccga   | gctgcggtgt    | 1320 |
| tt | gaaggaag  | gctccagccg   | ggaggtgccg   | gtggggatcc  | cgttcttcgt   | caacgtaaca    | 1380 |
| Ca | taatggta  | cttatcagtg   | ccaagcgtcc   | agctcacgag  | gcaaatacac   | cctggtcgtg    | 1440 |
| gt | gatggaca  | ttgaggctgg   | gagctcccac   | tttgtccccg  | tcttcgtggc   | ggtgttactg    | 1500 |
| ac | cctgggcg  | tggtgactat   | cgtactggcc   | ttaatgtacg  | tcttcaggga   | gcaccaacgg    | 1560 |
| ag | cggcagtt  | accatgttag   | ggaggagagc   | acctatctgc  | ccctcacgtc   | tatgcagccg    | 1620 |
| ac | agaagcaa  | tgggggaaga   | accgtccaga   | gctgagtgac  | gctgggatcc   | gggatcaaag    | 1680 |
| tt | ggcggggg  | cttggctgtg   | ccctcagatt   | ccgcaccaat  | aaagccttca   | aactccctaa    | 1740 |
| aa | aaaaaaa   | aaaaaaaaa    | aaaaaaaaa    | aaaaaaaaa   | aaaaaaaaa    | aaaaaaaaa     | 1800 |
| aa | aaaaaaaa  | aaaaaaaaa    | aaaa         |             |              |               | 1824 |

<210> 2865

<211> 4882

<212> DNA

<213> Homo sapiens

<400> 2865

agaggaggaa attqttcctc qtctqataag acaacagtqq agaaaggacq catqctqttt 60 cttagggaca cggctgactt ccagatatga ccatgtattt gtggcttaaa ctcttggcat 120 ttggctttgc ctttctggac acagaagtat ttgtgacagg gcaaagccca acaccttccc 180 ccactggatt gactacagca aagatgccca gtgttccact ttcaagtgac cccttaccta 240 ctcacaccac tgcattctca cccqcaagca cctttgaaag agaaaatgac ttctcagaga 300 ccacaacttc tcttaqtcca gacaatactt ccacccaagt atccccggac tctttggata 360 atgctaqtqc ttttaatacc acaqqtqttt catcaqtaca qacqcctcac cttcccacqc 420 acquaqactc quaqacqccc tctqctqqaa ctqacacqca qacattcaqc qqctccqccq 480 ccaatgcaaa actcaaccct accccaggca gcaatgctat ctcagatgcc taccttaatg 540 cctctqaaac aaccactctq agcccttctq qaaqcqctqt catttcaacc acaacaataq 600 ctactactcc atctaaqcca acatqtqatq aaaaatatqc aaacatcact qtqqattact 660 tatataacaa ggaaactaaa ttatttacag caaagctaaa tgttaatgag aatgtggaat 720 qtqqaaacaa tacttqcaca aacaatqaqq tqcataacct tacaqaatqt aaaaatqcqt 780 ctgtttccat atctcataat tcatgtactg ctcctgataa gacattaata ttagatgtgc 840 caccaggggt tgaaaagttt cagttacatg attgtacaca agttgaaaaa gcagatacta 900 ctatttgttt aaaatggaaa aatattgaaa cctttacttg tgatacacag aatattacct 960 acagatttca gtgtggtaat atgatatttg ataataaaga aattaaatta gaaaaccttg 1020 aacccqaaca tqaqtataaq tqtgactcaq aaatactcta taataaccac aagtttacta 1080 acqcaaqtaa aattattaaa acaqattttq qqaqtccaqq aqaqcctcaq attattttt 1140 qtaqaaqtqa aqctqcacat caaqqaqtaa ttacctqqaa tccccctcaa aqatcatttc 1200 ataattttac cctctqttat ataaaaqaqa caqaaaaaqa ttqcctcaat ctqqataaaa 1260 acctgatcaa atatgatttg caaaatttaa aaccttatac gaaatatgtt ttatcattac 1320 atgcctacat cattgcaaaa gtgcaacgta atggaagtgc tgcaatgtgt catttcacaa 1380 ctaaaaqtqc tcctccaaqc caqqtctqqa acatqactqt ctccatqaca tcaqataata 1440 gtatgcatgt caagtgtagg cctcccaggg accgtaatgg cccccatgaa cgttaccatt 1500 tggaagttga agctggaaat actctggtta gaaatgagtc gcataagaat tgcgatttcc 1560 gtgtaaaaga tottcaatat toaacagact acacttttaa ggcctatttt cacaatggag 1620 actatoctgg agaaccottt attttacatc attcaacatc ttataattct aaggcactga 1680

| tagcatttet          | ggcarrery  | accaccycya | Catcaatage | congenigen | gttetetaca | 1740 |
|---------------------|------------|------------|------------|------------|------------|------|
| aaatctatga          | tctacataag | aaaagatcct | gcaatttaga | tgaacagcag | gagcttgttg | 1800 |
| aaagggatga          | tgaaaaacaa | ctgatgaatg | tggagccaat | ccatgcagat | attttgttgg | 1860 |
| aaacttataa          | gaggaagatt | gctgatgaag | gaagactttt | tctggctgaa | tttcagagca | 1920 |
| tcccgcgggt          | gttcagcaag | tttcctataa | aggaagctcg | aaagcccttt | aaccagaata | 1980 |
| aa <b>aa</b> ccgtta | tgttgacatt | cttccttatg | attataaccg | tgttgaactc | tctgagataa | 2040 |
| acggagatgc          | agggtcaaac | tacataaatg | ccagctatat | tgatggtttc | aaagaaccca | 2100 |
| ggaaatacat          | tgctgcacaa | ggtcccaggg | atgaaactgt | tgatgatttc | tggaggatga | 2160 |
| tttgggaaca          | gaaagccaca | gttattgtca | tggtcactcg | atgtgaagaa | ggaaacagga | 2220 |
| acaagtgtgc          | agaatactgg | ccgtcaatgg | aagagggcac | tegggetttt | ggagatgttg | 2280 |
| ttgtaaagat          | caaccagcac | aaaagatgtc | cagattacat | cattcagaaa | ttgaacattg | 2340 |
| taaataaaaa          | agaaaaagca | actggaagag | aggtgactca | cattcagttc | accagctggc | 2400 |
| cagaccacgg          | ggtgcctgag | gatcctcact | tgctcctcaa | actgagaagg | agagtgaatg | 2460 |
| ccttcagcaa          | tttcttcagt | ggtcccattg | tggtgcactg | cagtgctggt | gttgggcgca | 2520 |
| caggaaccta          | tatcggaatt | gatgccatgc | tagaaggcct | ggaagccgag | aacaaagtgg | 2580 |
| atgtttatgg          | ttatgttgtc | aagctaaggc | gacagagatg | cctgatggtt | caagtagagg | 2640 |
| cccagtacat          | cttgatccat | caggctttgg | tggaatacaa | tcagtttgga | gaaacagaag | 2700 |
| tgaatttgtc          | tgaattacat | ccatatctac | ataacatgaa | gaaaagggat | ccacccagtg | 2760 |
| agccgtctcc          | actagaggct | gaattccaga | gacttccttc | atataggagc | tggaggacac | 2820 |
| agcacattgg          | aaatcaagaa | gaaaataaaa | gtaaaaacag | gaattctaat | gtcatcccat | 2880 |
| atgactataa          | cagagtgcca | cttaaacatg | agctggaaat | gagtaaagag | agtgagcatg | 2940 |
| attcagatga          | atcctctgat | gatgacagtg | attcagagga | accaagcaaa | tacatcaatg | 3000 |
| catcttttat          | aatgagctac | tggaaacctg | aagtgatgat | tgctgctcag | ggaccactga | 3060 |
| aggagaccat          | tggtgacttt | tggcagatga | tcttccaaag | aaaagtcaaa | gttattgtta | 3120 |
| tgctgacaga          | actgaaacat | ggagaccagg | aaatctgtgc | tcagtactgg | ggagaaggaa | 3180 |
| agcaaacata          | tggagatatt | gaagttgacc | tgaaagacac | agacaaatct | tcaacttata | 3240 |
| cccttcgtgt          | ctttgaactg | agacattcca | agaggaaaga | ctctcgaact | gtgtaccagt | 3300 |
| accaatatac          | aaactggagt | gtggagcagc | ttcctgcaga | acccaaggaa | ttaatctcta | 3360 |
| tgattcaggt          | cgtcaaacaa | aaacttcccc | agaagaattc | ctctgaaggg | aacaagcatc | 3420 |
| acaagagtac          | acctctactc | attcactgca | gggatggatc | tcagcaaacg | ggaatatttt | 3480 |
| gtgctttgtt          | aaatctctta | gaaagtgcgg | aaacagaaga | ggtagtggat | atttttcaaq | 3540 |

| tggtaaaagc          | tctacgcaaa      | gctaggccag | gcatggtttc | cacattcgag | caatatcaat | 3600 |
|---------------------|-----------------|------------|------------|------------|------------|------|
| tcctatatga          | cgtcattgcc      | agcacctacc | ctgctcagaa | tggacaagta | aagaaaaaca | 3660 |
| accatcaaga          | agataaaatt      | gaatttgata | atgaagtgga | caaagtaaag | caggatgcta | 3720 |
| attgtgttaa          | tccacttggt      | gccccagaaa | agctccctga | agcaaaggaa | caggctgaag | 3780 |
| gttctgaacc          | cacgagtggc      | actgaggggc | cagaacattc | tgtcaatggt | cctgcaagtc | 3840 |
| cagctttaaa          | tcaaggttca      | taggaaaaga | cataaatgag | gaaactccaa | acctcctgtt | 3900 |
| agctgttatt          | tctatttttg      | tagaagtagg | aagtgaaaat | aggtatacag | tggattaatt | 3960 |
| aaatgcag <b>c</b> g | aaccaatatt      | tgtagaaggg | ttatatttta | ctactgtgga | aaaatattta | 4020 |
| agatagtttt          | gccagaacag      | tttgtacaga | cgtatgctta | ttttaaaatt | ttatctctta | 4080 |
| ttcagtaaaa          | aacaacttct      | ttgtaatcgt | tatgtgtgta | tatgtatgtg | tgtatgggtg | 4140 |
| tgtgtttgtg          | tgagagacag      | agaaagagag | agaattcttt | caagtgaatc | taaaagcttt | 4200 |
| tgcttttcct          | ttgtttttat      | gaagaaaaaa | tacattttat | attagaagtg | ttaacttagc | 4260 |
| ttgaaggatc          | tgtttttaaa      | aatcataaac | tgtgtgcaga | ctcaataaaa | tcatgtacat | 4320 |
| ttctgaaatg          | acctcaagat      | gtcctccttg | ttctactcat | atatatctat | cttatatact | 4380 |
| tactatttta          | cttctagaga<br>, | tagtacataa | aggtggtatg | tgtgtgtatg | ctactacaaa | 4440 |
| aaagttgtta          | actaaattaa      | cattgggaaa | tcttatattc | catatattag | catttagtcc | 4500 |
| aatgtctttt          | taagettatt      | taattaaaaa | atttccagtg | agcttatcat | gctgtcttta | 4560 |
| catggggttt          | tcaattttgc      | atgctcgatt | attccctgta | caatatttaa | aatttattgc | 4620 |
| ttgatacttt          | tgacaacaaa      | ttaggttttg | tacaattgaa | cttaaataaa | tgtcattaaa | 4680 |
| ataaataaat          | gcaatatgta      | ttaatattca | ttgtataaaa | atagaagaat | acaaacatat | 4740 |
| ttgttaaata          | tttacatatg      | aaatttaata | tagctatttt | tatggaattt | ttcattgata | 4800 |
| tgaaaaatat          | gatattgcat      | atgcatagtt | cccatgttaa | atcccattca | taactttcat | 4860 |
| taaagcattt          | actttgaatt      | tc         |            |            |            | 4882 |
|                     |                 |            |            |            |            |      |

<400> 2866

<sup>&</sup>lt;210> 2866

<sup>&</sup>lt;211> 1702 <212> DNA <213> Homo sapiens

agactcaaca agagctccag caaagacttt cactgtagct tgacttgacc tgagattaac 60 tagggaatet tgagaataaa gatgagetet gaaaattgtt tegtageaga gaacagetet 120 ttgcatccgg agagtggaca agaaaatgat gccaccagtc cccatttctc aacacgtcat 180 gaagggteet tecaagttee tgteetgtgt getgtaatga atgtggtett cateaceatt 240

| ttaatcatag | ctctcattgc | cttatcagtg | ggccaataca | attgtccagg | ccaatacaca | 300  |
|------------|------------|------------|------------|------------|------------|------|
| ttctcaatgc | catcagacag | ccatgtttct | tcatgctctg | aggactgggt | tggctaccag | 360  |
| aggaaatgct | actttatttc | tactgtgaag | aggagctgga | cttcagccca | aaatgcttgt | 420  |
| tetgaacatg | gtgctactct | tgctgtcatt | gattctgaaa | aggacatgaa | ctttctaaaa | 480  |
| cgatacgcag | gtagagagga | acactgggtt | ggactgaaaa | aggaacctgg | tcacccatgg | 540  |
| aagtggtcaa | atggcaaaga | atttaacaac | tggttcaacg | ttacagggtc | tgacaagtgt | 600  |
| gtttttctga | aaaacacaga | ggtcagcagc | atggaatgtg | agaagaattt | atactggata | 660  |
| tgtaacaaac | cttacaaata | ataaggaaac | atgttcactt | attgactatt | atagaatgga | 720  |
| actcaaggaa | atctgtgtca | gtggatgctg | ctctgtggtc | cgaagtcttc | catagagact | 780  |
| ttgtgaaaaa | aaattttata | gtgtcttggg | aattttcttc | caaacagaac | tatggaaaaa | 840  |
| aaggaagaaa | ttccaggaaa | atctgcactg | tgggctttta | ttgccatgag | ctagaagcat | 900  |
| cacaggttga | ccaataacca | tgcccaagaa | tgagaagaat | gactatgcaa | cctttggatg | 960  |
| cactttatat | tattttgaat | ccagaaataa | tgaaataact | aggcgtggac | ttactattta | 1020 |
| ttgctgaatg | actaccaaca | gtgagagece | ttcatgcatt | tgcactactg | gaaggagtta | 1080 |
| gatgttggta | ctagatactg | aatgtaaaca | aaggaattat | ggctggtaac | ataggttttt | 1140 |
| agtctaattg | aatcccttaa | actcagggag | catttataaa | tggacaaatg | cttatgaaac | 1200 |
| taagatttgt | aatatttctc | tetttttaga | gaaatttgcc | aatttacttt | gttattttc  | 1260 |
| cccaaaaaga | atgggatgat | cgtgtattta | ttttttact  | tcctcagctg | tagacaggtc | 1320 |
| cttttcgatg | gtacatattt | ctttgccttt | ataatctttt | atacagtgtc | ttacagagaa | 1380 |
| aagacataag | caaagactat | gaggaatatt | tgcaagacat | agaatagtgt | tggaaaatgt | 1440 |
| gcaatatgtg | atgtggcaaa | tctctattag | gaaatattct | gtaatcttca | gacctagaat | 1500 |
| aatactagtc | ttataatagg | tttgtgactt | tcctaaatca | attctattac | gtgcaatact | 1560 |
| tcaatacttc | atttaaaata | tttttatgtg | caataaaatg | tatttgtttg | tattttgtgt | 1620 |
| tcagtacaat | tataagctgt | ttttatatat | gtgaaataaa | agtagaataa | acacaaaaaa | 1680 |
| aaaaaaaaa  | aaaaaaaaa  | aa         |            |            |            | 1702 |

<sup>&</sup>lt;210> 2867

<sup>&</sup>lt;211> 563 <212> DNA <213> Homo sapiens

<sup>&</sup>lt;400> 2867

tgaagagtgg aagagacatt ccagaggagg attgccttcg tcagggtaac ggggtgggct 60

getcaggtgc cetaccettc accecettet gtatcagatt ggacetecca eteccatete 120

| actctgcgtg tacaatcttc                                                     | catatccgca | agttcactgg | cactcttctg | gcacctgggc | 180 |
|---------------------------------------------------------------------------|------------|------------|------------|------------|-----|
| aagatcccag aacagaggat                                                     | ggagtgactg | gcctcacaga | gcttagtgcc | cgactcaggg | 240 |
| gaaatgggac tggtgcatgg                                                     | gaaatggtca | gcctaggata | ggacacgaga | gtctgaaatt | 300 |
| caaagcaacc agcttgaagt                                                     | ggtttgagaa | gctggaagca | aacatgggct | agagagatag | 360 |
| ggcagaagtc aagacgagga                                                     | tctggactga | tgtggagaca | agtagccacg | gaagcatgaa | 420 |
| ctgtatcctg cacaaagtcc                                                     | ctcttccccg | cctcctaatt | cattatgccc | aaaagtgctt | 480 |
| acgtgaaatt ccagcccaga                                                     | gtactcatga | cttgagagac | gtggacggag | ccagcttcta | 540 |
| ccttgcttgg acgtctctcc                                                     | cct        |            |            |            | 563 |
| <210> 2868<br><211> 822<br><212> DNA<br><213> Homo sapiens                |            |            |            |            |     |
| <400> 2868<br>gatcctcttt ccctcttccc                                       | caccctcatt | ataggctgcg | aagcctcctc | tctgcacctg | 60  |
| ataacaaaac gtcatatgag                                                     | aagcatggta | gatccttagc | atcaaaggtt | gaggactctt | 120 |
| attctgatta taagtagtgg                                                     | ctcttgacta | caatcaagtc | tcaaataata | gtgtaagaga | 180 |
| ataaagcaga ataataagac                                                     | taagttaaca | gtttaggctt | ctttggaatc | atgcgggcct | 240 |
| agatgaaaat cccaacactg                                                     | tcctttacta | gctaagtgac | cttgagcaac | tgattacacc | 300 |
| ctttgatgcc tcagttttct                                                     | cctctgtgtt | gtggggtaat | agtaatatct | acttcctggg | 360 |
| gttgttcgtg aagattaatt                                                     | aacaattata | cttgtcaaag | ctttagcaca | gtgccctgta | 420 |
| tgttatttcc ttggccaaac                                                     | tttcttactc | tgccatttgt | tcaatgtcct | aatgagcatg | 480 |
| aacactacat taggtatcat                                                     | gcagaacact | ctaaagataa | gtattatgat | ctctatttca | 540 |
| cagataagga aatttaaact                                                     | gggagaggct | aaagggctga | cttgcccaag | gtcacttgaa | 600 |
| actaatatgc cagcagagac                                                     | agaattagga | gccaagtata | tttaagagcc | aagtgtattg | 660 |
| aacctaaaat ctgggctcct                                                     | aaataccaag | cttcactggc | tctctggtcc | cagtgagagt | 720 |
| tggtgctaaa aagtattccg                                                     | gaatgaaaag | ttctcttcca | gagaccctgg | ccttccaaag | 780 |
| cggtcacctg atagggaagt                                                     | cttacggcta | ggaagttaca | aa         |            | 822 |
| <210> 2869<br><211> 1182<br><212> DNA<br><213> Homo sapiens<br><400> 2869 |            |            |            |            |     |
| qaattccqct aqactaaqtt                                                     | ggtcatgatg | cagaagctac | tcaaatqcaq | tcqqcttqtc | 60  |

| etggetettg | ecettateet | ggttetggaa | teetcagtte | aaygctatcc | cacycayaga | 120  |
|------------|------------|------------|------------|------------|------------|------|
| gccaggtacc | aatgggtgcg | ctgcaatcca | gacagtaatt | ctgcaaactg | ccttgaagaa | 180  |
| aaaggaccaa | tgttcgaact | acttccaggt | gaatccaaca | agatcccccg | tctgaggact | 240  |
| gacctttttc | caaagacgag | aatccaggac | ttgaatcgta | tetteccact | ttctgaggac | 300  |
| tactctggat | caggcttcgg | ctccggctcc | ggctctggat | caggatctgg | gagtggcttc | 360  |
| ctaacggaaa | tggaacagga | ttaccaacta | gtagacgaaa | gtgatgcttt | ccatgacaac | 420  |
| cttaggtctc | ttgacaggaa | tetgecetea | gacagccagg | acttgggtca | acatggatta | 480  |
| gaagaggatt | ttatgttata | aaagaggatt | ttcccacctt | gacaccaggc | aatgtagtta | 540  |
| gcatatttta | tgtaccatgg | ttatatgatt | aatcttggga | caaagaattt | tatagaaatt | 600  |
| tttaaacatc | tgaaaaagaa | gcttaagttt | tatcatcctt | ttttttctca | tgaattctta | 660  |
| aaggattatg | ctttaatgct | gttatctatc | ttattgttct | tgaaaatacc | tgcattttt  | 720  |
| ggtatcatgt | tcaaccaaca | tcattatgaa | attaattaga | ttcccatggc | cataaaatgg | 780  |
| ctttaaagaa | tatatatata | tttttaaagt | agcttgagaa | gcaaattggc | aggtaatatt | 840  |
| tcatacctaa | attaagactc | tgacttggat | tgtgaattat | aatgatatgc | cccttttctt | 900  |
| ataaaaacaa | aaaaaaaata | atgaaacaca | gtgaatttgt | agagtggggg | tatttgacat | 960  |
| attttacagg | gtggagtgta | ctatatacta | ttacctttga | atgtgtttgc | agagctagtg | 1020 |
| gatgtgtttg | tctacaagta | tgattgctgt | tacataacac | cccaaattaa | ctcccaaatt | 1080 |
| aaaacacagt | tgtgctgtca | atacctcata | ctgctttacc | ttttttcct  | ggatatctgt | 1140 |
| gtattttcaa | atgttactat | atattaaagc | agaaatataa | cc         |            | 1182 |
| .010. 007  | •          |            |            |            |            |      |
| <210> 287  | U          |            |            |            |            |      |
| <211> 537  |            |            |            |            |            |      |
| <212> DNA  |            |            |            |            |            |      |
|            |            |            |            |            |            |      |

<213> Homo sapiens

<400> 2870

ttttttttt tttttttt tetttaaaca cacttcattt ttttttaaag agttattaca 60
tccacacacg gttcaaaaat caaattatga aaggtatata gttaagacta gctgttcaaa 120
acaaaagcag cctttcacga ttatgtgagg gaacaaaggg caacaccctt attagtgcca 180
gtttaaaacc ttccttcaca ccctggactc tgccctatgt gcgtcctggt tgatttaac 240
ctacatccta acatttaggc cagtttcctt tcatccttct tacaaatata aaatctctta 300
cccttctcta atattatttg gcattccaaa ataaggaagt gtcatggtta aaaccaaatc 360
aaaggcaatt ctgactgtgc acagctcagc ctccacccaa cctcagaacc actggatcag 420
accaqgtttt agttttttg tacatttact tgataactaa gacacaattt gcctacagtg 480

|                                                                                                                       | ttetgacacg                                                                                          | tatcgctcaa                                                                       | tccactgtca                                                                       | agaattcata                                                         | acaaagt                                                                          | 537                                    |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|
| <210> 2873<br><211> 503<br><212> DNA<br><213> Homo                                                                    | sapiens                                                                                             |                                                                                  |                                                                                  |                                                                    |                                                                                  |                                        |
| <400> 287                                                                                                             | 1                                                                                                   |                                                                                  |                                                                                  |                                                                    |                                                                                  |                                        |
| ttttttta                                                                                                              | gtataagcat                                                                                          | atcccatgca                                                                       | atttttggaa                                                                       | catatactga                                                         | aaaattatac                                                                       | 60                                     |
| tgaaagtcaa                                                                                                            | atcaaactga                                                                                          | tctggcaacc                                                                       | ctatctagtt                                                                       | acctacaatc                                                         | taccgtgttc                                                                       | 120                                    |
| ccataaaggc                                                                                                            | tttaagtaat                                                                                          | ttggaatccg                                                                       | ttaacacatt                                                                       | tagcttattc                                                         | tttccccatt                                                                       | 180                                    |
| ggttccctgg                                                                                                            | gcttagagca                                                                                          | gacagcaagc                                                                       | ctttcttca                                                                        | cttggccaag                                                         | aaggcacctc                                                                       | 240                                    |
| cttttcccat                                                                                                            | ctaacaggtt                                                                                          | gggatcacag                                                                       | ctagttggtg                                                                       | gcaaagcagt                                                         | ccacatgcat                                                                       | 300                                    |
| gttgtttatc                                                                                                            | tttttaagga                                                                                          | tatggtcata                                                                       | gtttccaccc                                                                       | ctccttacct                                                         | ctcctgactc                                                                       | 360                                    |
| accatctcta                                                                                                            | agccttccca                                                                                          | cacaggccct                                                                       | gctgcagccg                                                                       | ccggagaact                                                         | gaccgtgctt                                                                       | 420                                    |
| gtgggtccac                                                                                                            | tecetectec                                                                                          | cacatcttcc                                                                       | ttaagcctca                                                                       | atccatccca                                                         | gttcatccat                                                                       | 480                                    |
| gccctttcca                                                                                                            | aagtcctgtg                                                                                          | att                                                                              |                                                                                  |                                                                    |                                                                                  | 503                                    |
| <210> 287:<br><211> 448<br><212> DNA<br><213> Home                                                                    | o sapiens                                                                                           |                                                                                  |                                                                                  |                                                                    |                                                                                  |                                        |
| ttttttttc                                                                                                             | _                                                                                                   | agtggagatg                                                                       |                                                                                  | tettaattta                                                         | aaccacacaa                                                                       | 60                                     |
|                                                                                                                       | •                                                                                                   | actycagate                                                                       | taaaatactc                                                                       |                                                                    |                                                                                  |                                        |
| aaagcaattt                                                                                                            | aataggcaca                                                                                          |                                                                                  |                                                                                  |                                                                    |                                                                                  | 120                                    |
| _                                                                                                                     |                                                                                                     | atcctacagg                                                                       | ttttctgaga                                                                       | gaaataagga                                                         | agagatcaag                                                                       |                                        |
| tgtaagctac                                                                                                            | aataggcaca                                                                                          | atcctacagg<br>cgttttgcac                                                         | ttttctgaga<br>cttataaagc                                                         | gaaataagga<br>aaacttcaat                                           | agagatcaag<br>gttgttaaat                                                         | 120                                    |
| tgtaagctac<br>aaccagtaga                                                                                              | aataggcaca<br>gtaaaattca                                                                            | atcctacagg<br>cgttttgcac<br>aaaaatcaaa                                           | ttttctgaga<br>cttataaagc<br>ctaaacacct                                           | gaaataagga<br>aaacttcaat<br>gttcttataa                             | agagatcaag<br>gttgttaaat<br>gcagcagtcc                                           | 120<br>180                             |
| tgtaagctac<br>aaccagtaga<br>tctattttct                                                                                | aataggcaca<br>gtaaaattca<br>aaatatctac                                                              | atcctacagg<br>cgttttgcac<br>aaaaatcaaa<br>tatattccca                             | ttttctgaga<br>cttataaagc<br>ctaaacacct<br>actcagaccc                             | gaaataagga<br>aaacttcaat<br>gttcttataa<br>tctctgtgac               | agagatcaag<br>gttgttaaat<br>gcagcagtcc<br>ccactgttcc                             | 120<br>180<br>240                      |
| tgtaagctac<br>aaccagtaga<br>tctattttct<br>caaagcatag                                                                  | aataggcaca<br>gtaaaattca<br>aaatatctac<br>ctctaaacca                                                | atcctacagg<br>cgttttgcac<br>aaaaatcaaa<br>tatattccca<br>agaaatataa               | ttttctgaga<br>cttataaagc<br>ctaaacacct<br>actcagaccc<br>aacatttcgg               | gaaataagga<br>aaacttcaat<br>gttcttataa<br>tctctgtgac<br>acattcgttc | agagatcaag<br>gttgttaaat<br>gcagcagtcc<br>ccactgttcc<br>acaaaaccaa               | 120<br>180<br>240<br>300               |
| tgtaagctac<br>aaccagtaga<br>tctattttct<br>caaagcatag<br>attagacctt                                                    | aataggcaca<br>gtaaaattca<br>aaatatctac<br>ctctaaacca<br>agtctgaaga                                  | atcctacagg<br>cgttttgcac<br>aaaaatcaaa<br>tatattccca<br>agaaatataa<br>acaggagata | ttttctgaga<br>cttataaagc<br>ctaaacacct<br>actcagaccc<br>aacatttcgg               | gaaataagga<br>aaacttcaat<br>gttcttataa<br>tctctgtgac<br>acattcgttc | agagatcaag<br>gttgttaaat<br>gcagcagtcc<br>ccactgttcc<br>acaaaaccaa               | 120<br>180<br>240<br>300<br>360        |
| tgtaagctac aaccagtaga tctattttct caaagcatag attagacctt attggcaaata  <210> 287 <211> 449 <212> DNA                     | aataggcaca<br>gtaaaattca<br>aaatatctac<br>ctctaaacca<br>agtctgaaga<br>tccacaaagt<br>gttcaaggaa      | atcctacagg<br>cgttttgcac<br>aaaaatcaaa<br>tatattccca<br>agaaatataa<br>acaggagata | ttttctgaga<br>cttataaagc<br>ctaaacacct<br>actcagaccc<br>aacatttcgg               | gaaataagga<br>aaacttcaat<br>gttcttataa<br>tctctgtgac<br>acattcgttc | agagatcaag<br>gttgttaaat<br>gcagcagtcc<br>ccactgttcc<br>acaaaaccaa               | 120<br>180<br>240<br>300<br>360<br>420 |
| tgtaagctac aaccagtaga tctatttct caaagcatag attagacctt attggcaaata  <210> 287 <211> 449 <212> DNA <213> Hom <4400> 287 | aataggcaca<br>gtaaaattca<br>aaatatctac<br>ctctaaacca<br>agtctgaaga<br>tccacaaagt<br>gttcaaggaa<br>3 | atcctacagg cgttttgcac aaaaatcaaa tatattccca agaaatataa acaggagata tgcctatt       | ttttctgaga<br>cttataaagc<br>ctaaacacct<br>actcagaccc<br>aacatttcgg<br>aaacagaaac | gaaataagga<br>aaacttcaat<br>gttcttataa<br>tctctgtgac<br>acattcgttc | agagatcaag<br>gttgttaaat<br>gcagcagtcc<br>ccactgttcc<br>acaaaaccaa<br>tatctaattt | 120<br>180<br>240<br>300<br>360<br>420 |

| ctcggggatg ct                                          | ttttctga           | aggatgctgg   | cctggggaaa | acagaaccgg | aagggtaaca | 180  |
|--------------------------------------------------------|--------------------|--------------|------------|------------|------------|------|
| cctgccatac ct                                          | aataaaac           | caatgagaaa   | tacgaggccc | cgagatggag | tttctgggag | 240  |
| attcctgaag ag                                          | cacgetgt           | ggcgattgag   | atgatgacgc | gtggagctgc | cccctccct  | 300  |
| gtctcccaca to                                          | agggacct           | gtccctctac   | aggaggaatt | ctactcctga | ggccaccgtc | 360  |
| ccctgtcact ca                                          | ggtggcct           | gcatgcacag   | cacttctggc | tctgaaagcg | tcacctcatg | 420  |
| getgtttetg ee                                          | ttcttgct           | ggtgaattt    |            |            |            | 449  |
| <210> 2874<br><211> 3362<br><212> DNA<br><213> Homo sa | apiens             |              |            |            |            |      |
| agactccctg tct                                         | tttgcggt           | ttgggagatg   | atgagaaacc | acagaattgc | tagtagttta | 60   |
| tgtggagatc agg                                         | gtcttctc           | caagaaaaaa   | aaaaagaaaa | aaaaaaacaa | catggctgca | 120  |
| aaggagaaac tgg                                         | gaggcagt           | gttaaatgtg   | gccctgaggg | tgccaagcat | catgctgttg | 180  |
| gatgtcctgt aca                                         | agatggga           | tgtcagctcc   | tttttccagc | agatccaaag | aagtagcctt | 240  |
| agtaataacc cto                                         | ettttcca           | gtataagtat   | ttggctctta | atatgcatta | tgtaggttat | 300  |
| atcttaagtg tgg                                         | gtgctgct           | aacattgccc   | aggcagcatc | tggttcagct | ttatctatat | 360  |
| tttttgactg ctc                                         | tgctcct            | ctatgctgga   | catcaaattt | ccagggacta | tgttcggagt | 420  |
| gaactggagt ttg                                         | cctatga            | gggaccaatg   | tatttagaac | ctctctctat | gaatcggttt | 480  |
| accacageet taa                                         | taggtca            | gttggtggtg   | tgtactttat | gctcctgtgt | catgaaaaca | 540  |
| aagcagattt ggc                                         | tgttttc            | agctcacatg   | cttcctctgc | tagcacgact | ctgccttgtt | 600  |
| cctttggaga caa                                         | ttgttat            | catcaataaa   | tttgctatga | tttttactgg | attggaagtt | 660  |
| ctctattttc ttg                                         | ggtctaa            | tcttttggta   | ccttataacc | ttgctaaatc | tgcatacaga | 720  |
| gaattggttc agg                                         | ta <b>gt</b> gga ( | ggtatatggc   | cttctcgcct | tgggaatgtc | cctgtggaat | 780  |
| caactggtag tcc                                         | ctgttct            | tttcatggtt   | ttctggctcg | tcttatttgc | tcttcagatt | 840  |
| tactcctatt tca                                         | gtactcg a          | agatcagcct   | gcatcacgtg | agaggcttct | tttccttttt | 900  |
| ctgacaagta ttg                                         | cggaatg d          | ctgcagcact   | ccttactctc | ttttgggttt | ggtcttcacg | 960  |
| gtttcttttg ttg                                         | ccttggg (          | tgttctcaca   | ctctgcaagt | tttacttgca | gggttatcga | 1020 |
| gctttcatga atg                                         | atcctgc o          | catgaatcgg   | ggcatgacag | aaggagtaac | gctgttaatc | 1080 |
| ctggcagtgc aga                                         | ctgggct g          | gatagaactg   | caggttgttc | atcgggcatt | cttgctcagt | 1140 |
| attatccttt tca                                         | ttgtcgt a          | agcttctatc   | ctacagtcta | tgttagaaat | tgcagatcct | 1200 |
| attgttttgg cac                                         | tgggagc a          | atctagagac a | aagagcttgt | ggaaacactt | ccgtgctgta | 1260 |

| agcctttgt  | t tatttttat  | t ggtattccc  | t gcttatatg  | g cttatatga  | t ttgccagttt | 1320 |
|------------|--------------|--------------|--------------|--------------|--------------|------|
| ttccacatg  | g atttttggc  | t tcttatcat  | t atttccagc  | a gcattctta  | c ctctcttcag | 1380 |
| gttctggga  | a cactttta   | t ttatgtctt  | a tttatggtt  | g aggaattca  | g aaaagagcca | 1440 |
| gtggaaaac  | a tggatgatg  | t catctacta  | t gtgaatggc  | a cttaccgcc  | t gctggagttt | 1500 |
| cttgtggcc  | c tctgtgtgg  | t ggcctatgg  | c gtctcagag  | a ccatctttg  | g agaatggaca | 1560 |
| gtgatgggc  | t caatgatca  | t cttcattca  | t tectactat  | a acgtgtggc  | t tegggeeeag | 1620 |
| ctggggtgg  | a agagettte  | t tctccgcag  | g gatgctgtg: | a ataagatta  | a atcgttaccc | 1680 |
| attgctacg  | a aagagcagc  | t tgagaaaca  | c aatgatatt  | t gtgccatct  | g ttatcaggac | 1740 |
| atgaaatct  | g ctgtgatca  | c gccttgcag  | t cattttttc  | atgcaggct    | g tottaagaaa | 1800 |
| tggctgtate | g tecaggagad | c ctgccctctc | g tgccactgc  | atctgaaaaa   | a ctcctcccag | 1860 |
| cttccaggai | t taggaactga | a gccagttcta | a cagcctcate | g ctggagctga | gcaaaacgtc   | 1920 |
| atgtttcag  | g aaggtactga | accccaggo    | caggagcata   | ctccagggad   | : caggatacag | 1980 |
| gaaggttcca | a gggacaataa | tgagtacatt   | gccagacgac   | cagataacca   | ggaaggggct   | 2040 |
| tttgacccca | a aagaatatco | tcacagtgcg   | g aaagatgaag | cacatcctgt   | tgaatcagcc   | 2100 |
| tagaggagaa | a gcagcaggaa | tgatgctttg   | atactctgga   | ggagaagtta   | actcaagatg   | 2160 |
| gaattcatgt | : tctgatttga | ggaatgaaaa   | tgagatgatc   | aggcaggaaa   | ctgacattcc   | 2220 |
| aaggatctaa | tccaggaagt   | actctcagtg   | gggaccacct   | gctttcatcc   | cctgacattg   | 2280 |
| tgggagaaat | tttgcaatgt   | atgctaatca   | aaatgtattt   | atatgttctc   | tgctgatgtt   | 2340 |
| ttatagaggt | ttgtgaagaa   | aattcaacct   | cagcaacttc   | agaaactgcc   | cctgatacgt   | 2400 |
| gtgagagaga | aataaaatca   | gattttgagt   | gttgaaggga   | ctgaggaagt   | gaggataaag   | 2460 |
| agcatgagga | cagcatggaa   | agaaggaggc   | agaagtggaa   | ctgaactttc   | actctccatg   | 2520 |
| ggacagatca | atctcattat   | caagtctgaa   | tagcaaccag   | ccctctcctc   | caccccgttt   | 2580 |
| ctcctcagtt | aattggagct   | cagtcaggtg   | attattgagt   | cttgtacagc   | actgaaatga   | 2640 |
| aatcaaagat | gaagaagcat   | tgattgtatt   | cgaagattga   | agcacgctca   | tactttgtat   | 2700 |
| gtgctttagg | gaaggggtgg   | gtgggcactt   | gggccttgcg   | ggtgcattca   | tgtaatctga   | 2760 |
| gactcttgaa | ctttatgacg   | gagtcttcaa   | tattttgatg   | tatatgaaac   | ttttgttaaa   | 2820 |
| tatgttgtat | acttcgctgg   | ctgtgtgaag   | taaactaaaa   | ctctgatgaa   | cactttggag   | 2880 |
| tctgctttag | tgaaggagac   | caaagtggga   | agggctttag   | ggcactgata   | gaggccctgg   | 2940 |
| gtgtactttt | caatcctgtg   | taatgtttaa   | ttcttgcaac   | tgaatcaaaa   | cagtgttaaa   | 3000 |
| ttatggcaat | atttgcactt   | tgggaatgag   | tacataactg   | tatgatcaca   | ctctgcaaat   | 3060 |
| gccactttta | aagctgttaa   | tagactttgc   | accttttctt   | tgacaaggat   | gtgtcatatt   | 3120 |
|            |              |              |              |              |              |      |

| taaattttta cattcatcat ggctacaggt agaactgggg agggggggaat gtaatttttt        | 3180 |
|---------------------------------------------------------------------------|------|
| atgggaattt tgatatgaaa agaaactagt catttattta tacaataggc ttggctcaaa         | 3240 |
| aagtgttttt cagacctcgg tattcctaat gtgggatgtg actttatttt atttttagta         | 3300 |
| gcaaatttgg atgtagactg acagacatag ctgaatgtct taataaattt aaatttgaag         | 3360 |
| at                                                                        | 3362 |
| <210> 2875<br><211> 591<br><212> DNA<br><213> Homo sapiens                |      |
| ttttctgttt catcattaca aatagactca tagctcttta atttttccat ttaacacttt         | 60   |
| aattttccat aggcctagat tttcaagaag tccaatatct ctcacttgaa gtgtcttttc         | 120  |
| cctggagtag attgggagat ttgagggata tctgtccaaa gatgagacag tctgtttcta         | 180  |
| gtttcccatc cagcctgatg gggcgtctac agttgttacc acaaggtgtc gctgttgaac         | 240  |
| agattetggt geagtetagt geatagetgt ceaettetag agtgateaet tgetgggeea         | 300  |
| agtteetete ettaagtggt gteteacatt aaggtteeca aattacagae teattaatte         | 360  |
| accetaataa geteateeag geagtttagg tetteagggg etteeageet ceaacacaca         | 420  |
| ttgggccaaa accagcctgt accaccagct ccaagccctg tgttgaatct aggtcattgg         | 480  |
| tccagatgcc ccttcattct gggcctgtgg tgtcctttcc agacagcaga cctcagttaa         | 540  |
| gggcatccca gtccatcaga gaagttccag gatcacagac cctcaaaagg g                  | 591  |
| <210> 2876<br><211> 1437<br><212> DNA<br><213> Homo sapiens<br><400> 2876 |      |
| getteeteag acatgeeget getgetactg etgeceetge tgtgggcagg ggeeetgget         | 60   |
| atggatccaa atttctggct gcaagtgcag gagtcagtga cggtacagga gggtttgtgc         | 120  |
| gtcctcgtgc cctgcacttt cttccatccc ataccctact acgacaagaa ctccccagtt         | 180  |
| catggttact ggttccggga aggagccatt atatccgggg actctccagt ggccacaaac         | 240  |
| aagctagatc aagaagtaca ggaggagact cagggcagat tccgcctcct tggggatccc         | 300  |
| agtaggaaca actgctccct gagcatcgta gacgccagga ggagggataa tggttcatac         | 360  |
| ttetttegga tggagagagg aagtaccaaa tacagttaca aateteeeca getetetgtg         | 420  |
| catgtgacag acttgaccca caggcccaaa atcctcatcc ctggcactct agaacccggc         | 480  |

cactecaaaa acettacetg etetgtgtee tgggeetgtg ageagggaac acceegate 540 ttctcctggt tgtcagctgc ccccacctcc ctgggcccca ggactactca ctcctcggtg 600 ctcataatca ccccacggcc ccaggaccac ggcaccaacc tgacctgtca ggtgaagttc 660 gctggagctg gtgtgactac ggagagaacc atccagctca acgtcaccta tgttccacag 720 aacccaacaa ctggtatctt tccaggagat ggctcaggga aacaagagac cagagcagga 780 ctggttcatg gggccattgg aggagctggt gttacagccc tgctcgctct ttgtctctgc 840 ctcatcttct tcatagtgaa gacccacagg aggaaagcag ccaggacagc agtgggcagc 900 aatgacaccc accctaccac agggtcagcc tccccgaaac accagaagaa ctccaagtta 960 catggcccca ctgaaacctc aagctgttca ggtgccgccc ctactgtgga gatggatgag 1020 gagetgeatt atgetteeet caacttteat gggatgaate ettecaagga caceteeace 1080 gaatactcag aggtcaggac ccagtgagga accctcaaga gcatcaggct cagctagaag 1140 atccacatcc tctacaggtc ggggaccaaa ggctgattct tggagattta actccccaca 1200 ggcaatgggt ttatagacat tatgtgagtt tcctgctata ttaacatcat cttgagactt 1260 tgcaagcaga gagtcgtgga atcaaatctg tgctctttca tttgctaagt gtatgatgtc 1320 acacaagctc cttaaccttc catgtctcca ttttcttctc tgtgaagtag gtataagaag 1380 tectatetea tagggatget gtgagcatta aataaaggta cacatggaaa acaccag 1437 <210> 2877 <211> 1182 <212> DNA

<213> Homo sapiens

<400> 2877

tagttctccc tgagtgagac ttgcctgctt ctctggcccc tggtcctgtc ctgttctcca 60 gcatggtgtg tctgaagetc cctggagget cctgcatgac agegetgaca gtgacactga 120 tggtgctgag ctccccactg gctttggctg gggacacccg accacgtttc ttgtggcagc 180 ttaagtttga atgtcatttc ttcaatggga cggagcgggt gcggttgctg gaaagatgca 240 tctataacca agaggagtcc gtgcgcttcg acagcgacgt gggggagtac cgggcggtga 300 cggagctggg gcggcctgat gccgagtact ggaacagcca gaaggacctc ctggagcaga 360 ggcqggccgc qgtggacacc tactgcagac acaactacgg ggttggtgag agcttcacag 420 tgcagcggcg agttgagcct aaggtgactg tgtatccttc aaagacccag cccctgcagc 480 accacaacet cetggtetge tetgtgagtg gtttetatee aggeageatt gaagteaggt 540 ggttccggaa cggccaggaa gagaaggctg gggtggtgtc cacaggcctg atccagaatg 600 gagattggac cttccagacc ctggtgatgc tggaaacagt tcctcggagt ggagaggttt 660

acacetgeca agtggageae ecaagtgtga egageeetet cacagtggaa tggagageae 720 ggtctgaatc tgcacagagc aagatgctga gtggagtcgg gggcttcgtg ctgggcctgc 780 tetteettgg ggeegggetg tteatetaet teaggaatea gaaaggaeae tetggaette 840 agccaacagg attectgage tgaaatgcag atgaccacat tcaaggaaga acettetgte 900 ccagctttgc agaatgaaaa gctttcctgc ttggcagtta ttcttccaca agagaggct 960 ttetcaggae etggttgeta etggttegge aactgeagaa aatgteetee ettgtggett 1020 cctcagctcc tgcccttggc ctgaagtccc agcattgatg acagcgcctc atcttcaact 1080 tttgtgctcc cctttgccta aaccgtatgg cctcccgtgc atctgtactc accctgtacg 1140 acaaacacat tacattatta aatgtttctc aaagatggag tt 1182 <210> 2878 <211> 2412 <212> DNA <213> Homo sapiens <400> 2878 agtcccatgg ggaatgtcaa caggcaggqq caqcactqca gagatttcat catggtctcc 60 caggecetea ggeteetetg cettetgett gggetteagg getgeetgge tgeaqtette 120 gtaacccagg aggaagccca cggcgtcctg caccggcgcc ggcgcgccaa cgcgttcctg 180 gaggagetge ggeegggete cetggagagg gagtgeaagg aggageagtg eteettegag 240 gaggcccggg agatcttcaa ggacgcggag aggacgaagc tgttctggat ttcttacagt 300 gatggggacc agtgtgcctc aagtccatgc cagaatgggg gctcctgcaa ggaccagctc 360

cagtectata tetgettetg cetecetgee ttegagggee ggaactgtga gaegeacaag 420 gatgaccage tgatetgtgt gaacgagaac ggcggetgtg agcagtactg cagtgaccae 480 acgggcacca agcgctcctg tcggtgccac gaggggtact ctctgctggc agacggggtg 540 tcctgcacac ccacagttga atatccatgt ggaaaaatac ctattctaga aaaaagaaat 600 gccagcaaac cccaaggccg aattgtgggg ggcaaggtgt gccccaaagg ggagtgtcca 660 tggcaggtcc tgttgttggt gaatggagct cagttgtgtg gggggaccct gatcaacacc 720 atctgggtgg tctccgcggc ccactgtttc gacaaaatca agaactggag gaacctgatc 780 gcggtgctgg gcgagcacga cctcagcgag cacgacgggg atgagcagag ccqqcqqtq 840 gegeaggtea teatececag caegtaegte eegggeacea ecaaceaega categegetg 900 ctccgcctgc accagcccgt ggtcctcact gaccatgtgg tgcccctctg cctgcccgaa 960 cggacgttct ctgagaggac gctggccttc gtgcgcttct cattggtcag cggctggggc 1020

1080

cagetgetgg acceptgece caeggeeetg gageteatgg tgeteaacgt geeeeggetg

| atgacccagg | actg <b>cc</b> tgca | gcagtcacgg | aaggtgggag | actccccaaa | tatcacggag          | 1140 |
|------------|---------------------|------------|------------|------------|---------------------|------|
| tacatgttct | gtgccggcta          | ctcggatggc | agcaaggact | cctgcaaggg | ggacagtgga          | 1200 |
| ggcccacatg | ccacccacta          | ccggggcacg | tggtacctga | cgggcatcgt | cagctggggc          | 1260 |
| cagggctgcg | caaccgtggg          | ccactttggg | gtgtacacca | gggtctccca | gtacatcgag          | 1320 |
| tggctgcaaa | agctcatgcg          | ctcagagcca | cgcccaggag | tcctcctgcg | agccccattt          | 1380 |
| ccctagccca | gcagccctgg          | cctgtggaga | gaaagccaag | gctgcgtcga | actgtcctgg          | 1440 |
| caccaaatcc | catatattct          | tctgcagtta | atggggtaga | ggagggcatg | ggagggaggg          | 1500 |
| agaggtgggg | agggagacag          | agacagaaac | agagagagac | agagacagag | aga <b>gac</b> tgag | 1560 |
| ggagagactc | tgaggacatg          | gagagagact | caaagagact | ccaagattca | aagagactaa          | 1620 |
| tagagacaca | gagatggaat          | agaaaagatg | agaggcagag | gcagacaggc | gctggacaga          | 1680 |
| ggggcagggg | agtgccaagg          | ttgtcctgga | ggcagacagc | ccagctgagc | ctccttacct          | 1740 |
| cccttcagcc | aagccccacc          | tgcacgtgat | ctgctggccc | tcaggctgct | gctctgcctt          | 1800 |
| cattgctgga | gacagtagag          | gcatgaacac | acatggatgc | acacacacac | acgccaatgc          | 1860 |
| acacacacag | agatatgcac          | acacacggat | gcacacacag | atggtcacac | agagatacgc          | 1920 |
| aaacacaccg | atgcacacgc          | acatagagat | atgcacacac | agatgcacac | acagatatac          | 1980 |
| acatggatgc | acgcacatgc          | caatgcacgc | acacatcagt | gcacacggat | gcacagagat          | 2040 |
| atgcacacac | cgatgtgcgc          | acacacagat | atgcacacac | atggatgagc | acacacac            | 2100 |
| caagtgcgca | cacacaccga          | tgtacacaca | cagatgcaca | cacagatgca | cacacaccga          | 2160 |
| tgctgactcc | atgtgtgctg          | tcctctgaag | gcggttgttt | agctctcact | tttctggttc          | 2220 |
| ttatccatta | tcatcttcac          | ttcagacaat | tcagaagcat | caccatgcat | ggtggcgaat          | 2280 |
| gcccccaaac | tctcccccaa          | atgtatttct | cccttcgctg | ggtgccgggc | tgcacagact          | 2340 |
| attccccacc | tgcttcccag          | cttcacaata | aacggctgcg | tctcctccgc | acacctgtgg          | 2400 |
| tgcctgccac | cc                  |            |            |            |                     | 2412 |

<210> 2879

<211> 1257 <212> DNA

<213> Homo sapiens

<400> 2879

aagtetcaga ggetggagag cagagcacca agategttet ggeaggaaca gecagtggga 60 ggttecaget gagegeteec cagaggtgag etgatececa gecacageac acaggaccag 120 getgegagaa cagcateate ageateatge tattacaate ceaaaccatg ggggttete 180 acagetttac accaaaggge atcactatee etcaaaggag gaaacctgga cacatgtace 240

| aaaacgaaga ttacctgcag aacgggctgc caacagaaac caccgttctt gggactgtcc         | 300  |
|---------------------------------------------------------------------------|------|
| agatectgtg ttgeetgttg attteaagte tgggggeeat ettggttitt geteeetaee         | 360  |
| cctcccactt caatccagca atttccacca ctttgatgtc tgggtaccca tttttaggag         | 420  |
| ctctgtgttt tggcattact ggatccctct caattatctc tggaaaacaa tcaactaagc         | 480  |
| cetttgacet gageagettg aceteaaatg cagtgagtte tgttactgea ggageaggee         | 540  |
| tetteeteet tgetgacage atggtageee tgaggactge eteteaacat tgtggeteag         | 600  |
| aaatggatta totatootoa ttgoottatt oggagtaota ttatooaata tatgaaatoa         | 660  |
| aagattgtot ootgaccagt gtoagtttaa caggtgtoot agtggtgatg otcatottoa         | 720  |
| ctgtgctgga gctcttatta gctgcataca gttctgtctt ttggtggaaa cagctctact         | 780  |
| ccaacaaccc tgggagttca ttttcctcga cccagtcaca agatcatatc caacaggtca         | 840  |
| aaaagagtto ttcacggtot tggatataag taactottgg ootcagagga aggaaaagca         | 900  |
| actcaacact catggtcaag tgtgattaga ctttcctgaa atctctgcca ttttagatac         | 960  |
| tgtgaaacaa actaaaaaaa aaaaagcttt tgttttgtat ttgtttacta tgagtcgtta         | 1020 |
| tttaatttot ottgaaaata atttootoaa agoocaagto aataaatgtt atcagocagt         | 1080 |
| cttccaaaat ggtcataaac tttataaact gctttgggta aactgagcag aaggtgatac         | 1140 |
| acagaaggga aaatgtgcac tcatgctagt gtgaatttgg taagtcgcgt gactctgcag         | 1200 |
| gctgtttctg tattattttc acactcatat tgcttaaata ttacatatta gggattg            | 1257 |
| <210> 2880<br><211> 2216<br><212> DNA<br><213> Homo sapiens<br><400> 2880 |      |
| ggaageteag cagtgteeac tgtegeeatt cettggeeat agaaaacaat gtatttgaat         | 60   |
| tttgatgtaa gcatagcaaa ttgaagatga agatgacacg ttgatttctt gtttgaaatt         | 120  |
| aaccaagtoo ogagaaaaga aagtgaatag tgttagcaog aggaggaagg aagaaatgga         | 180  |
| gattagattg gatactettt etgeateact gggtagatee ageaetttaa atgaetgeaa         | 240  |
| cttggaagat aaattagctt ggtatgaagg tgaagcttac atgtggcatc actggaagcc         | 300  |
| ttttcctgaa aaccctctct ggacatgtct tgatttccaa atagcacaag ttggaccctg         | 360  |
| ggactactgc tcctcttgta ttcgccacac acgtctcaag tcttcctgct cagatatgga         | 420  |
| tctcctacat tcatggcgaa gcagcagttt tgggaatttc gatcgttttc ggaataattc         | 480  |
| tttatcaaaa ccagatgatt caactgaggc acatgaagga gatcccacaa atggaagtgg         | 540  |
| agaacaaagt aaaacttcaa ataatggagg cggtttgggt aaaaaaatga gagctatttc         | 600  |
|                                                                           |      |

PCT/US2003/012946 WO 2004/042346

| atggacaat  | g aagaaaaaag | tgggtaaaaa | gtacatcaaa | gccctttctg | aggaaaagga | 660  |
|------------|--------------|------------|------------|------------|------------|------|
| tgaggaaga  | t ggagagaatg | cccacccata | tagaaacagt | gaccctgtga | ttgggaccca | 720  |
| cacagagaa  | g gtgtccctca | aagccagtga | ctccatggat | agtototaca | gtggacagag | 780  |
| ctcatcaag  | t ggcataacaa | gctgttcaga | tggtacaagt | aaccgggaca | gctttcgact | 840  |
| ggatgacga  | ggcccctatt   | caggaccatt | ctgtggccgt | gccagagtgc | atacggattt | 900  |
| cacgccaag  | ccctatgaca   | ctgactccct | caaaatcaag | aaaggagaca | tcatagacat | 960  |
| tatttgcaa  | a acaccaatgg | ggatgtggac | aggaatgttg | aacaataaag | tgggaaactt | 1020 |
| caaattcati | tatgtggatg   | tcatctcaga | agaggaagca | gcccccaaga | aaataaaggc | 1080 |
| aaaccgaag  | g agtaacagca | aaaaatccaa | gactctgcag | gagttcctag | agaggattca | 1140 |
| tctgcaggaa | tacacctcaa   | cacttttgct | caatggttat | gagactctag | aagatttaaa | 1200 |
| agatataaa  | gagagtcacc   | tcattgaatt | aaatattgaa | aacccagatg | acagaagaag | 1260 |
| gttactatca | gctgctgaaa   | acttccttga | agaagaaatt | attcaagagc | aagaaaatga | 1320 |
| acctgagcc  | ctatccttga   | gctcagacat | ctccttaaat | aagtcacagt | tagatgactg | 1380 |
| cccaagggac | tctggttgct   | atatctcatc | aggaaattca | gataatggca | aagaggatct | 1440 |
| ggagtctgaa | aatctgtctg   | acatggtaca | taagattatt | atcacagagc | caagtgactg | 1500 |
| aacacgcatt | cccaactata   | tatctacaga | tgcattccat | tttaactctt | cttgagctaa | 1560 |
| aacgtcaaat | aggagaggaa   | gataagataa | atatttgtaa | ataaaaccta | aagtttaaat | 1620 |
| gttttaatct | gaataattgt   | acataaaatt | ttgtatctct | aacattccaa | attactgtca | 1680 |
| ataaaatata | tatttattat   | tttaaatgct | atgtgttaat | atttcacttg | cttgtattag | 1740 |
| aaaggcaaaa | tgtaagactt   | tggtatgtgt | gacatatgct | ttatttggct | ttattttaca | 1800 |
| agtacagtat | ctgcaaaaaa   | caaagtaacc | ttttttcata | cctgccagtt | ttgaatttat | 1860 |
| atatgttatt | gaacaaatag   | taatagagga | ttcgctgttg | aaacaagttg | tccaagcaat | 1920 |
| gttatattca | tttttatact   | tattgggaaa | gtgtgagtta | atattggaca | cattttatcc | 1980 |
| tgatccacag | tggagtttta   | gtaattatat | tttgttgatt | tcttcatttt | gttttctggt | 2040 |
| ataaaagtag | agataatgtg   | tagtcacttc | tgatttagtg | aaaccaattg | taataattgt | 2100 |
| ggaaatgttt | tgtctttaag   | tgtaaatatt | ttaaaatttg | acatacccta | atgttaataa | 2160 |
| taaaaagaac | tatttgcata   | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | aaaaaa     | 2216 |

<sup>&</sup>lt;210> 2881 <211> 1847 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 2881

| 60   | atcacgcaga | acttgactcc | gatccccagt          | cagagaggga                  | ccactgactc | ctcctgccct |
|------|------------|------------|---------------------|-----------------------------|------------|------------|
| 120  | cccatcctgc | ctccacatga | acagctgcgt          | ggagagggat                  | caccagctat | tgggagcagg |
| 180  | gggaagcgga | tgcaaaacct | tcggattcta          | agacagtgcc                  | agccaccgcc | atgacaccaa |
| 240  | gactggagtt | accgtctgag | tcttcagggg          | ggaagctagc                  | agccccggga | gacctacccc |
| 300  | tattcattcc | tcttcattca | ttttctctct          | gaggccttgc                  | acctggcttc | tgatccatga |
| 360  | gtcagtcatt | gcagcccaga | ttctagaaaa          | cttaatttat                  | gaaggtgttg | caacacctta |
| 420  | acattttgga | aaaactggac | aaaaaaaaa           | gccaaaaaaa                  | ccaccccctg | gaagccttcc |
| 480  | cagagaagaa | acattgggag | catagttgtc          | cagtggttgg                  | gcttggagtc | tetgttggga |
| 540  | acccaatggc | ccaggatggc | ccgtagagtc          | ggggactgag                  | gccctgatca | gcaaccaggg |
| 600  | cgtggtcctt | tcaccatcac | gcat <b>gc</b> aaga | ggactctacc                  | ccttttgcct | acagcctctt |
| 660  | cgtgggcttg | tctgtctggc | aatgtggtcg          | cgttgctggc                  | tcctcatcac | geggteetea |
| 720  | cactgacctg | ccttggctat | ttcatcgtgt          | gaccaattgt                  | tccgcaacct | aaccgccggc |
| 780  | caagtggagc | agctgtcctg | gccatctacc          | gcccttctct                  | tcctggtgct | ctcctcggcc |
| 840  | cacagcctcc | tgatgctctg | agcctggatg          | tatctacacc                  | tcttctgcaa | tttggcaagg |
| 900  | cccactgcgg | ctgtcatgga | cggtactgcg          | cagcctcgac                  | tcttcatgat | attcttaacc |
| 960  | ttgggtcatc | tggtcttaat | gccatctctc          | agttcgggtc                  | tggtcacccc | taccctgtgc |
| 1020 | cgagaccagc | acagcaggaa | ctggggtgga          | gtctatccac                  | tgtcctttct | tccattaccc |
| 1080 | cgggctggtg | atgaagtgta | gtccaggtca          | taagtgcaaa                  | ataccacctc | aagggcaatc |
| 1140 | ctaccgcatc | gcatcaccta | ctgatcatgt          | cctcccgcta                  | tcaccttcta | gatgggctgg |
| 1200 | gaaggcagcc | ttagctcctg | atcaatcaca          | ggccaagagg                  | cccgggatca | ttcaaggtcg |
| 1260 | cttcatcatc | tcatgggggc | ctggccgccg          | cacagtgaca                  | agcacaaagc | accatcaggg |
| 1320 | tgatgccatc | tgagagggga | taccgtgggc          | cgcgtttgtg                  | cctacttcac | tgctggtttc |
| 1380 | cctgaacccc | ccaactcagc | ctgggctatg          | <b>c</b> gttctgt <b>g</b> g | tagaagccat | aatgaggtgt |
| 1440 | cttctgctgc | accaacagct | cgcaccgggt          | cagagacttc                  | ctgcgctgaa | atcctgtatg |
| 1500 | tcagctgtcc | ccaacgcctc | tctctgaggt          | ccacaaaact                  | accgcaactc | aggctggcca |
| 1560 | ccaggtgtgg | ccctgaagct | gaagagaaac          | caggcaacag                  | gccgagaacc | aggacccaaa |
| 1620 | ctagccattg | ggtaatagcc | gccacagaca          | cccccaggga                  | aagtcacggc | agtgggacag |
| 1680 | agggagctgc | ggaatgatta | gctactgatg          | gggaggggat                  | tgggggcaat | gtgcacagga |
| 1740 | taaacaccct | gagcactttg | aactcttcat          | atgttctagg                  | gtgctggttt | tgtttaggtg |
| 1800 | aaaaggagca | gctccctttt | gtagaactta          | gcccccaaag                  | cctcccaacg | cttgcttaat |
| 1847 |            | ggggcat    | ccgcacagct          | ttggcaaggg                  | ctcagaggac | cattaaaatt |

<210> 2882

<211> 1841 <212> DNA

<213> Homo sapiens

<400> 2882

catcaqqcac gaggcaggaa qtqcacaggc gtccggcgtg ctcctccctc cctqcagccc 60 cgggcagcat ctcccagagg ctccgcggcc caggctcctg gtgtgtctgc agtgcaggtg 120 qctcctqqaa qaccctcaqc ctqcctqctq aqqccatgtc qqactacqaq aacqatqacq 180 agtgctggag cgtcctggag ggcttccggg tgacgctcac ctcggtcatc gacccctcac 240 qcatcacacc ttacctqcqq caqtqcaaqq tcctqaaccc cqatqatqaq qaqcaqqtqc 300 tcaqcqaccc caacctqqtc atccqcaaac qqaaaqtqqq tqtqctcctq qacatcctqc 360 ageggacegg ceacaaggge tacgtggeet teetegagag cetggagete tactaceege 420 agctqtacaa qaaqqtcaca qqcaaqqaqc cqqccqqqt cttctccatq atcatcqacq 480 cqtccqqqqa qtcaqqcctq actcaqctqc tqatqactqa qqtcatqaaq ctqcaqaaqa 540 aggtgcagga cctgaccgcg ctgctgagct ccaaagatga cttcatcaag gagctgcggg 600 tgaaggacag cctgctgcgc aagcaccagg agcgtgtgca gaggctcaag gaggagtgcg 660 aggeoggeag cogegagete aagegetgea aggaggagaa etacgacetg gecatgegee 720 tggcgcacca gagtgaggag aagggcgccg cgctcatgcg gaaccgtgac ctgcagctgg 780 agattgacca qctcaagcac aqcctcatga aqqccqagga cgactqcaag gtqqaqcqca 840 900 agcacacget gaageteagg cacgecatgg agcageggee cagecaggag etgetgtggg agctqcaqca qqaqaaqqcc ctqctccaqq cccqqqtqca qqaqctqqaq qcctccqtcc 960 aggagggaa gctggacagg agcagccct acatccaggt actggaggag gactggcggc 1020 aggegetgeg ggaccaccag gagcaggeca acaccatett etecetgege aaggacetee 1080 qccaqqqcqa qqcccqacqc ctccqqtqca tqqaqaqaa qqaqatqttc qaqctqcaqt 1140 gcctggcact acgtaaggac tccaagatgt acaaggaccg catcgaggcc atcctgctgc 1200 agatggagga ggtcgccatt gagcgggacc aggccatagc cacgcgggag gagctgcacg 1260 cacagcacgc coggggcctg caggagaagg acgcgctgcg caagcaggtg cgggagctgg 1320 gcgagaaggc ggatgagctg cagctgcagg tgttccaqtg tgaggcgcag ctactggccg 1380 tggagggcag gctcaggcgg cagcagctgg agacgctcqt cctgagctcc gacctggaag 1440 atggeteacc caggaggtec caggagetet cactececca ggacetggag gacacccage 1500 totcagacaa aggotgoott googgoqqqq qqagoccqaa acagocottt gcagototgo 1560 accaggagea ggttttgegg aacceccatg acgeaggec ageeggactg eegggeattg 1620

qqqccgtttg ttaagcqqca ctcattttqc qqaggccatq cqqqtqctca ccacccccat 1680 qcacacgcca tctqtqtaac ttcaqqatct qttctqtttc accatqtaac acacaataca 1740 tgcatgcatt gtattagtgt tagaaaacac agctgcgtaa ataaacagca cgggtgaccc 1800 qcaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 1841 <210> 2883 <211> 2243 <212> DNA <213> Homo sapiens <220> <221> misc\_feature <222> (39)..(39) <223> n is a, c, g, t or u <400> 2883 cctcagcctq caaaqqatqt atqtatqcct atttctttnq ccataqcatt tqtaaqqaqa 60 ctgggacata taggtgagca atggaacata tacaaagtaa taatgtctct aagataaata 120 tttacaattc acaaatgtac aaagaatttt atagatgcat ccataattca cattttgtgt 180 240 atatttatca tttatcactg cctgctaatt ttcatcagga qcatcaatgg ctattcaata 300 tcctatttat gtaccatagt ttataaatgt attgacattt aagtgataat ttattatggt 360 ttttgctatt ataacttatt gaattgatga aatgacatac ttttattaac tgattttct 420 aatattaatt totagttoca tgaggottoc acttggatgg taaaaagggt agacagcatt 480 ctacttatat gcataaatta atctaggagt gaattttatt tatctgggaa taatttttag 540 atatggcaac tctcattcat ttgacaagaa aaatctaaag ctcataaacc ctgaatccta 600 tatgettaet etcacaaaaa tetetaaatg teetgetggg atttategae agtttagatt 660 agacctggaa tacatatggt catgcaacaa tgatcttaga acaggacttt aacttggctt 720 taggaactga ggctgagagt aatagaattg attttttgtg tgtgtgtgaa gctcctatta 780 taataatgag aatactttga ttcactcagt taaagttttc ccctqattta ttqtqtacat 840 acaatgaagg atcaagaaag agaaattttt aaatggaagc attaqccaqa caaqtttqac 900 ctcacagttt tactagggga tatatcacct agttttqqat ctatttctaa catcttaaca 960 ttgtqaaaag agtcttggga aactggttaa atcccaaaga atgctgcaat aggaggttgg 1020 cccttatgag ttatttaata tcttgagctg cttcggaaaa tgttgctgag caggcattga 1080 agaqtatcga taaaatttat tgagaatttg tttattatga ttaacagagg taaaagccag 1140 tatattactg attaatatag gtaaaagcca gttaagaaat tgggaatgct ttctcttctg 1200

ctttcttcta cgatgcacaa ggcgtttcac atttatgccc ctatgaaaat tactaggctg 1260 tectagteat tagatettte aggagtttgt agttttagag ettetaagtt gaettetgte 1320 ttttctattc atacaattac acattctqtq atqatatttt tqqctcttqa tttacattqq 1380 qtactttcac aacccactgc tcatgaaatt tgcttttgta ctactggttg tttttgcata 1440 qqcccctcca qqccacqacc aqqtqtttqq attttataaa cgggccgttt qcattqtqaa 1500 ctqaqctaca acaqqcaqqc aqqqqcaqca aqatqqtgtt gcagacccag gtcttcattt 1560 ctctqttqct ctggatctct qqtgaqgaat taaaaagtgc cacagtcttt tcagagtaat 1620 atctgtgtag aaataaaaaa aattaagata tagttggaaa taatgactat ttccaatatq 1680 gatccaatta tctqctqact tataatacta ctagaaagca aatttaaatg acatatttca 1740 attatatctq aqacaqcqtq tataaqttta tgtataatca ttgtccatta ctgactacag 1800 qtqcctacqq qqacatcqtq atgacccaqt ctccaqactc cctqgctgtg tctctgggcg 1860 agagggcac catcaactgc aagtccagcc agagtgtttt atacagctcc aacaataaga 1920 actacttagc ttggtaccag cagaaaccag gacagcctcc taagttgctc atttactggg 1980 catctacccq qqaatccqqq qtccctqacc qattcaqtqq caqcqqqtct qqqacaqatt 2040 tcactctcac catcagcagc ctgcaggctg aagatgtggc agtttattac tgtcagcaat 2100 atgatactat teccaettte ggeggaggga ceaaggtgga gateaaacgt aagtgeactt 2160 tcctaatact ttttcttata aggttttaaa tttggagcgt ttttgtgttt qagatattag 2220 2243 ctcaggtcaa ttccaaagag tac

```
<211> 374
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (91)..(91)
<223> n is a, c, q, t or u
<220>
<221> misc feature
<222> (151)..(151)
<223> n is a, c, q, t or u
<220>
<221> misc feature
<222> (155)..(155)
<223> n is a, c, g, t or u
<220>
```

<221> misc feature

<210> 2884

```
<222> (312)..(312)
 <223> n is a, c, q, t or u
 <220>
 <221> misc feature
 <222> (319)..(319)
 <223> n is a, c, g, t or u
 <400> 2884
 caaaaagttt gtactaaaca atcacctggg aagggtggec gacttcccaa tgcagattcc
                                                                   60
 tgggccccat ccccaaattg ggttattagg ntctcctcca gatagctcag cattccaqct
                                                                   120
 ttggctgaca agcctcactc agctgactct ntttnagttg cactattaaa cgtcttccat
                                                                   180
gcaggcttta tagggaagga caaggcaaag aacaaagcag tcaacaataa ggaaaccaag
                                                                   240
ccctcacagg aaagaaagcc tgattcaaga aaacaaagtt tgaaacaagg catatttata
                                                                   300
tttaaaaatg gnattaagnt tettaaagtg getteeataa teetteeett aattattatg
                                                                  360
ttaccattta tgat
                                                                  374
<210> 2885
<211> 580
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)..(1)
<223> n is a, c, g, t or u
<400> 2885
nccttttgcc catgttgtct ggaatgccct tcttctccct cttgtttaca tcaagcatca
                                                                   60
gactgaatat ccctcttgtg cggccttcta aaacctcccg tccaaagcga aatatattgc
                                                                  120
cctctattta tacttttaca gcatttggca cacaagtaca gagtagtagc tttttatcac
                                                                  180
attetetgat aattatatag atatggtatt tettagetet eteteeaact ggetaataag
                                                                  240
ttgctttttg tctgagtgcc taattttgtg ttttgtgtct gagtgcctca gttcctcaaa 300
aaaaggtttt ttgattagtt cattattcat ttgaacatgg aaattatgct cactagtggc
                                                                 360
aaatgccact aaccgtattc cagaagctag gtgtcatgtt tgcaataaga tatattatcc
                                                                 420
cttctacaag tcacctttta tttcaggcat ttgtaaatgc ccattaataa agtatggttc
                                                                  480
ataaatttta cettgtaagt geetaagaaa tgagaetaca ageteeattt cageaggaca
                                                                 540
580
<210> 2886
<211> 836
```

<212> DNA <213> Homo sapiens

| <400> 2886                                                               |     |
|--------------------------------------------------------------------------|-----|
| gatetettgg gateetgaaa gggggcagga aaggetgggg teecagteca ecetaatggt        | 60  |
| atotgagtgt cotagggott cagttttocc acctgtocaa tgggaccott totgtoctca        | 120 |
| ccctacaagg ggcacaaagg gatgacacca aacctggcag gaacttttca cgcaatcaag        | 180 |
| ggaaggaaag gcattcctgg cagagggaac agcatgccaa gcgtgagaag gctcagagta        | 240 |
| aggaggttaa gagcccaagt attggagcct acagttttgc cccttccatg cagtgtgaca        | 300 |
| gtgggcaagt teettteeet etetgggtet eagttetgte eeetgcaaaa tggteagage        | 360 |
| ttaccccttg gctgtgcagg gtcaactttc tgactggtga gagggattct catgcaggtt        | 420 |
| aagettetge tgeteeteet cacetgeaaa gettttetge cacttttgee teettggaaa        | 480 |
| actettatee ateteteaaa acteeageta ceacateett geageettee eteatatace        | 540 |
| cccactacta ctgtagecet gteetteeet ccageeccae tetggeeetg gggetgggga        | 600 |
| agtgtctgtg tccagctgtc tcccctgacc tcagggttcc ttgggggctg ggctgaggcc        | 660 |
| tcagtacaga gggggctctg gaagtgtttg ttgactgaat aaacggaatt cagtgcgaaa        | 720 |
| acaaaaaaat aggaaataaa agatctcgga aaatagcatt ttgttaaaac cttggggggt        | 780 |
| aaaaccccgg ggagttttaa cggaaaaatt ccagggaaca caacttgggg gccaaa            | 836 |
| <210> 2887<br><211> 742<br><212> DNA<br><213> Homo sapiens<br><400> 2887 |     |
| ttttgtttag ctaaagtcat ggggacaact cttcaattta gaacttaagt tgaattataa        | 60  |
| aaatgatgga tataagtggt agctgtatct agtgaagtgt ctgtcagtaa gtgaaacatt        | 120 |
| ttttggtggt ggcttatcca caaacagttt agttgtagaa taaaacttat gagtgacatc        | 180 |
| tggaaagtaa ccatgctaag atggcaagca cactggaaac aattaggcca cttggctttc        | 240 |
| ttttgctgta ttgttttata agcctacttt acctcccagt cttggaaaca agttttagtt        | 300 |
| ttttattggt ttggagacta gagccaatag tataatgttc tcaaaggaaa cagacttgag        | 360 |
| ttgttggatt agaggaacta acccaactta tatgattttg tttttggttt ttgtcgtgta        | 420 |
| gttatggcac tgtcttattt ggaacatttg caactaggga taatacaaca tttttaactc        | 480 |
| tcatttgaca acctactact aatcacagac cacaagggta atgaccaaat ttatgtggtt        | 540 |
| tttgcactcc atagttgtct tagcccaatc tttctatact cttacgatta ctggggttaa        | 600 |
| cgcttctgtg aggaccttct ggctcttgag ataccctaaa tatttacaga tacttagata        | 660 |
| tottgaagat agaataggat atogagattg taccaaatag gaatatcagg agtatggtag        | 720 |

| aaatgagcag atacctgttg aa                                                 |              |            |            | 742 |
|--------------------------------------------------------------------------|--------------|------------|------------|-----|
| <210> 2888<br><211> 440<br><212> DNA<br><213> Homo sapiens               |              |            |            |     |
| <400> 2888                                                               |              |            |            |     |
| ttttttgggt tttaaggagt ttattgcta                                          | a tctgtaaaac | agaaagagac | aggagataag | 60  |
| catgacaaaa tatagggaag aaatgactt                                          | t tgcctaaact | tccaaattgt | gtacaattga | 120 |
| agcototgot ttatagotot tagcacaco                                          | t ctcaaataag | aaggcagtac | tgggaaggct | 180 |
| ctgaacctgt ggcagaacca ctgatagct                                          | g tggagctatt | ccaaggagtc | tgggaatcag | 240 |
| ggggattatc aagatcattg ttagaataa                                          | a ttaatcttac | tgtatatata | gcagaagttt | 300 |
| tcaagcatat gtaaatgcta ctaataacc                                          | a aataattaca | ccttgtttt  | ctttaaactg | 360 |
| taactctcaa gtatgtctct acataattt                                          | t ttgatggtag | tgtctgcatg | ctcaaaaagc | 420 |
| ttgaaaacac tactggagaa                                                    |              |            |            | 440 |
| <210> 2889<br><211> 524<br><212> DNA<br><213> Homo sapiens<br><400> 2889 |              |            |            |     |
| tgcttattga aactgaaggg atgttggga                                          | a agacagactg | ggagctttct | ctaaatttta | 60  |
| atacagcatc agtgcttcct ataatgtcc                                          | a ggttaggaga | gaagcaaatg | gagctttact | 120 |
| aaggaagaga aagtgatcaa taccagtga                                          | g aaaggtgaaa | aaaaaaaaa  | acaaacaaaa | 180 |
| acgaaaaaaa aacctaagca aattcagtg                                          | a gaaaagaaaa | agcagaactt | agagtcctta | 240 |
| cccttcaatt taaggaagga gagttattg                                          | c ctagcagaat | cttgaaataa | aatttcctta | 300 |
| gaaagcccca gaaagttttg tgtgtattg                                          | c aagtccaaag | gataaggaga | acttctatat | 360 |
| gctttcttct tatttccact gggcaaagt                                          | a ctgctccatc | aagactcagc | ccgccatgag | 420 |
| getttecaat caacteteaa ecaceacaa                                          | c agttagggct | ttttcctcta | tgttgcaaag | 480 |
| cactttctgc ataactcaga atgcaaaat                                          | g tactcattca | tttg       |            | 524 |
| <210> 2890<br><211> 575<br><212> DNA<br><213> Homo sapiens               |              |            |            |     |
| <400> 2890<br>ttttttttt tttttttt ttttttt                                 | t ttttttttt  | tttttttt   | ttttttttt  | 60  |
| ttttttggac ccaaaaaaaa aaaactttt                                          | a aggaagggg  | acccagttaa | aaccccttcc | 120 |
|                                                                          |              |            |            |     |

aaatgeggee caaccetgee ccaeggaaac eggeeatgge aacceetaaa taaaaagggg tttttgaggc ggccggcccc cacccaaagg atgcccccaa tttttttttg ccaggggga 240 atgtccttgg acacggggcc ccaaaattcc ccatgccggg ggtttgtact ttaaaagggc 300 ttcctaacct cctccgggtg ttcctaaggg ccatgctgga gctaaaactt gtaaaaaaag 360 gcccaggett cccccaggtc cgagtaaatt ttcacagggg gggggaacca ccccctggcc 420 ttggggattt tccgttgact ccaaaacagt ttggccacgg ccagaaccac atgggggtaa 480 tgctcacact ttttaaggga atccacgctt tgggggcctcc tgtgggggcct tgcctggagg 540 aagatggcct cacaccaaag gataccggag ttggg 575 <210> 2891 <211> 467 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> (428)..(428) <223> n is a, c, g, t or u <400> 2891 tgatgccaag cccccaggag ggctttattt tttcttttca acatcctgga acgcggcttt 60 cctggccatt tttgcccgga tccccaagac cccggcgttg gcacggccca taccgaaact 120 atgcaagggt tegaaattat cettteeete aeggacaaet egagetttet eettattata 180 ctaccttccc taccggcatg accggaccgg tcacctgggg ggccacgcac atttctacag 240 gaaaactggc tecettettg ggggeegagg getteetgtg gaaaaggatg agtttggage 300 ggtactccct cagccggtgc acgttgatct ggagggactc cgcggacttg ctcctgctcc 360 tgggatccac aaaaatgcgc taaggtccgg cccaccttct tgggaatgcc gcccaccctg 420 agetectnea ggatgaatee geggeegaet egeacettet tgggtae 467 <210> 2892 <211> 473 <212> DNA <213> Homo sapiens <400> 2892 ttcatttaat ggcacatgat gatgcacaca aaacttcaac tctcagtctg gaatcagccc 60 acaggtetge agetataaaa atcatetega aaacatgaga tttcagagat ecagttetca 120 gtgttacctt gaagatgaca atttatgaag aaacaggtga ttttaatccg aaattgccag 180 gaaacaaatt actcctcaaa agcccttgga aagtaataag atagctaggc agaaaaaaaa 240 agattctgca aaactaaact taatgtgtat tcatctagac ctgaattaaa aataaaattc

300

| cactataaaa a                                        | agaattttc                        | aaaatgttag | gcccaagaat | atggccatat | tgttccatct | 360 |
|-----------------------------------------------------|----------------------------------|------------|------------|------------|------------|-----|
| tgaagaaccc                                          | agttgattca                       | gtttcattac | tggcctcccc | actcttctaa | gtaagteeet | 420 |
| cactataaac                                          | atttacgaat                       | tccatctcag | cattagtact | aaacaatatt | cat        | 473 |
| <210> 2893<br><211> 546<br><212> DNA<br><213> Homo  | sapiens                          |            |            |            |            |     |
| <222> (280                                          | _feature<br>)(280)<br>a, c, g, t | or u       |            |            |            |     |
| <222> (537                                          | _feature<br>)(537)<br>a, c, g, t | or u       |            |            |            |     |
| <400> 2893<br>cggtagtcaa                            |                                  | tttaatatta | aatgtctttt | tatcctagta | aactactccc | 60  |
| ttgcttaatg                                          | ggagaacttg                       | caaatgagat | ttaaaacatt | gtaatttta  | taaggtaaca | 120 |
| gaagctagat                                          | ccctttcact                       | gttcatctca | agctattgat | cttgtcagtg | ttgtacagat | 180 |
| ctagaatggg                                          | ttgtcaggga                       | taaggtcact | gatctgatgg | tgattgttga | catctgctga | 240 |
| ctccacacaa                                          | caaccctagg                       | ggaccggtgc | tttgagcatn | cttattttca | gatggtttgc | 300 |
| ccacttcatg                                          | cagttaacag                       | ctgttggtgt | tgggcttcaa | atccaggtct | ttcggacatc | 360 |
| aaatcccagc                                          | ctcttaacaa                       | ctcaccaagc | agtgattact | actccccaac | ataggggcag | 420 |
| tatgtacaag                                          | tcatgttgaa                       | ctaatacagt | ttctttcttt | gataggaata | ctaattttgt | 480 |
| tgaacaagaa                                          | aatatgtact                       | ggataagagt | aaggcatttg | acaaggcgtc | ctgtganatc | 540 |
| tgtgaa                                              |                                  |            |            |            |            | 546 |
| <210> 2894<br><211> 1993<br><212> DNA<br><213> Homo |                                  |            |            |            |            |     |
| <400> 2894                                          |                                  | 39393393   | 20220200== | gaggaaggaa | agacttetet | 60  |
|                                                     |                                  |            |            | gccgaagaca |            | 120 |
|                                                     |                                  |            |            | gaagaagaga |            |     |
|                                                     |                                  |            |            | actgatgtca |            | 180 |
|                                                     |                                  |            |            | gtctcccacg |            | 240 |
| caagtttcac                                          | ctgtgattcc                       | ctagataatt | accattcttt | tgaatgcggc | tecatagate | 300 |

| ccctgacagg | ctcccactat | acctgtcgcc | gaagtcccag | actcctcacc | aatggctact | 360  |
|------------|------------|------------|------------|------------|------------|------|
| atatttggac | tgaagacagc | ttcctgtgcg | acaaagatgg | caacataact | ctgaacccat | 420  |
| cccagaccag | cgttatgtat | aaggagaact | tagttagtac | ctccaaatct | tggctgcatg | 480  |
| gaagtatctt | tggtgacatc | aactcttctc | caagtgaaga | caactggttg | aaggggacca | 540  |
| ggaggttgga | cacagaccat | tgcaatggaa | atgcagatga | tttagactgt | tcttctctga | 600  |
| ctgatgactg | ggagtcaggg | aagatgaatg | cagagtctgt | gatcacctcc | tcttccagcc | 660  |
| acatcatatc | tcagcctcct | ggaggaaact | cccatagctt | gtctcttcag | tcccagttga | 720  |
| cagcttctga | acgtttccaa | gagaatagtt | cggatcattc | agaaaccagg | ttgttgcaag | 780  |
| aggtcttctt | tcaggcaatc | ctgcttgctg | tgtgcttaat | cacttctgca | tgtgcaagat | 840  |
| ggtttatggg | agaaatatta | gccagtgtct | tcacatgctc | attgatgata | actgtagctt | 900  |
| atgtgaaatc | attgtttctc | agccttgcca | gctatttcaa | aaccactgcc | tgtgctcggt | 960  |
| ttgtcaaaat | ttgacaacca | tttaggaatg | ccttcgatga | atgtcctcca | tctgaatatc | 1020 |
| tggaaattgt | ccaacttgca | gtctacttgg | aatcaagtgt | tttattggaa | gggagtaagc | 1080 |
| gagtaatgga | gaaaaagcca | ttttagtttg | actatgtgat | tttaaaatga | tctcagtttt | 1140 |
| tccatcaaaa | ttataatatg | ctcatgaaaa | taatattaat | ttgccttccc | tttgcaaaca | 1200 |
| ccggcagttg | aaaggaaaag | gacggggaat | gtgatggaaa | agagaccgcc | tggaataaat | 1260 |
| gtccccctat | gattctttaa | ggcagtggtt | ctcgagcttg | aattttcatt | aggaaattct | 1320 |
| gtgaggagct | tgtaaccaga | tttctgggtc | tgccacatgc | acctatctct | tgctgaattg | 1380 |
| ctttaataga | ataatgagag | caagtttgtc | taactaatac | caacctgaca | acttgaataa | 1440 |
| caataaatgc | aatttgtaca | taaaatataa | tgctgcaaaa | gtttgtcatt | cacctcagtg | 1500 |
| gagtgacttg | atattaggtg | gtaaccgtag | atgatggtta | atatgaaaat | ggacaggaaa | 1560 |
| gaagcatttt | ctgaaagtta | tattcttttg | aaccacgttc | taaaccaagt | ttttaatctt | 1620 |
| cttggggctc | gtaattacct | ttcactttaa | tgtcacttaa | agatataaca | cagaaaaatg | 1680 |
| ccttgagggc | aaaatatagg | caaaacacca | atgcgctttc | aaatgcatga | aaatggtgca | 1740 |
| gttgtaccct | tgagccttga | ctcaagggct | gtagatgttc | cctttccacc | ccccacactt | 1800 |
| ggtgcgtgtt | cacaaagcaa | atatggcctg | taattcaaat | ttgttctatg | tgatactctc | 1860 |
| tgagtaaaaa | ctcatacatg | cagaaaattg | tctttgctcg | aaatgataat | gccaaaatat | 1920 |
| aactttatat | ataatttgca | tttagtacat | ttttggttaa | aaaataaact | aataaataag | 1980 |
| tgaagtcatc | agc        |            |            |            |            | 1993 |

<210> 2895

<211> 521 <212> DNA <213> Homo sapiens <400> 2895 tqatqtttac ttaaqcttta tttatatata tagtgcgtag gttcctggag cacaaagaag 60 aaagttgctc agatttatcc agacctcaca taagtttata gatttcaagt agccactqta 120 ttttattaca qaaaatacat tcttcaaqaq qaaaatqtta aqqccataqc agctttcacc 180 ttagctatct aagcttgtat taggtcatca ttaaatagta tctgtatcat tcttatgtgt 240 tccqtaaqtt atqccacaaa taccaqacca aqtacactca qtctaqaaac aaaaaagtgq 300 360 gaaataaagg ttaaaacatt ctaataggtg taatgggctg atagatgact ttatattaca aagctactta agacaattct acttttctag aatacaacgc attaatataa acatttgaaa 420 ttcagaagat ttggcctgtg gatgctttgt ttctcaatgc aattcttgtt aatatgttag 480 521 taaqtaataa tttattaata ccaataataa aaaattaaca t <210> 2896 <211> 1679 <212> DNA <213> Homo sapiens <400> 2896 60 qtttqttqqc tqcqqcaqca qqtaqcaaaq tqacqccqaq qqcctqaqtq ctccaqtaqc 120 caccocatct ggagaaccag cgqttaccat ggaggggatc agtatataca cttcagataa ctacaccgag gaaatgggct caggggacta tgactccatg aaggaaccct gtttccgtga 180 agaaaatgct aatttcaata aaatcttcct gcccaccatc tactccatca tcttcttaac 240 tggcattgtg ggcaatggat tggtcatcct ggtcatgggt taccagaaga aactgagaag 300 catgacggac aagtacaggc tgcacctgtc agtggccgac ctcctctttg tcatcacgct 360 tecettetgg geagttgatg cegtggeaaa etggtaettt gggaaettee tatqeaaqqe 420 aqtccatqtc atctacacaq tcaacctcta caqcaqtgtc ctcatcctgg ccttcatcag 480 totgqaccqc tacctqqcca toqtccacqc caccaacaqt caqaqqccaa qqaaqctqtt 540 qqctqaaaaq qtqqtctatq ttqqcqtctq qatccctqcc ctcctqctqa ctattcccqa 600 cttcatcttt qccaacqtca qtqaqqcaqa tqacaqatat atctqtqacc qcttctaccc 660 caatgacttg tgggtggttg tgttccagtt tcagcacatc atggttggcc ttatcctgcc 720 tggtattgtc atcctgtcct gctattgcat tatcatctcc aagctgtcac actccaaggg 780

840

900

960

ccaccagaag cgcaaggccc tcaagaccac agtcatcctc atcctggctt tcttcgcctg

ttggctgcct tactacattg ggatcagcat cgactccttc atcctcctgg aaatcatcaa

gcaagggtgt gagtttgaga acactgtgca caagtggatt tecatcaccg aggccctage

| tttcttccac tgt                                                      | tgtctga  | accccatcct | ctatgctttc | cttggagcca | aatttaaaac | 1020 |
|---------------------------------------------------------------------|----------|------------|------------|------------|------------|------|
| ctctgcccag cac                                                      | gcactca  | cctctgtgag | cagagggtcc | agcctcaaga | tcctctccaa | 1080 |
| aggaaagcga ggt                                                      | ggacatt  | catctgtttc | cactgagtct | gagtetteaa | gttttcactc | 1140 |
| cagctaacac aga                                                      | itgtaaaa | gactttttt  | tatacgataa | ataactttt  | tttaagttac | 1200 |
| acatttttca gat                                                      | ataaaag  | actgaccaat | attgtacagt | ttttattgct | tgttggattt | 1260 |
| ttgtcttgtg ttt                                                      | ctttagt  | ttttgtgaag | tttaattgac | ttatttatat | aaatttttt  | 1320 |
| tgtttcatat tga                                                      | tgtgtgt  | ctaggcagga | cctgtggcca | agttcttagt | tgctgtatgt | 1380 |
| ctcgtggtag gad                                                      | tgtagaa  | aagggaactg | aacattccag | agcgtgtagt | gaatcacgta | 1440 |
| aagctagaaa tga                                                      | tccccag  | ctgtttatgc | atagataatc | tctccattcc | cgtggaacgt | 1500 |
| ttttcctgtt ctt                                                      | aagacgt  | gattttgctg | tagaagatgg | cacttataac | caaagcccaa | 1560 |
| agtggtatag aaa                                                      | tgctggt  | ttttcagttt | tcaggagtgg | gttgatttca | gcacctacag | 1620 |
| tgtacagtct tgt                                                      | attaagt  | tgttaataaa | agtacatgtt | aaacttactt | agtgttatg  | 1679 |
| <210> 2897<br><211> 450<br><212> DNA<br><213> Homo sa<br><400> 2897 | apiens   |            |            |            |            |      |
| <4005 2897<br>ttttggcggg gca                                        | aggggttg | gcgggggcag | tcctttgaac | taagattctc | tcaggaacca | 60   |
| ctgcaggaaa tga                                                      | agtgatt  | cagaactcac | caattatgaa | ctaaccttca | atgccagagg | 120  |
| ctttaacagt tto                                                      | ctaataaa | aattcagttc | agatctcaag | ttcagataag | tctgaaaaaa | 180  |
| cacttcaagg tca                                                      | atctgaac | gaacatattc | taccagtact | ttatataatt | gtatttacct | 240  |
| gttcctaaaa ctt                                                      | tccgtga  | aagaaatgtt | gaattttctt | cagaaatagt | tttgagcaaa | 300  |
| atgtcaaaac aat                                                      | tctccca  | tgctcagtgt | acttttgact | atactctgaa | aatatttctt | 360  |
| cttgttttcc tgc                                                      | cacttacc | tgttagtgtg | ctcacactcc | tgtattatgg | aacatgttca | 420  |
| gtaactcata cad                                                      | catgtaac | acagaagtct |            |            |            | 450  |
| <210> 2898<br><211> 260<br><212> DNA<br><213> Homo sa               | apiens   |            |            |            |            |      |
| <400> 2898<br>ggcatgacta gag                                        | ggtgtgac | taataataat | ccctcacatc | tctatagcct | aatacagttt | 60   |
| tccaagggtt ttc                                                      | ctcatcca | tgatctcatt | tgatccttgc | agcagtccta | tgaggaaggc | 120  |
| aqcacataca to                                                       | attagete | ccttttqcca | aaqaqqaaac | aaaaaacagg | tgaaagggac | 180  |

| ttgtctaagg gcacccagct ctaagggaca gagcaaagta acaggtcatt tettttte | 240 |
|-----------------------------------------------------------------|-----|
| atttattttt agagacagag                                           | 260 |
| x210> 2899<br>x211> 452<br>x212> DNA<br>x213> Homo sapiens      |     |
| <400> 2899                                                      |     |

<210> 2901 <211> 541

| <212> DNA<br><213> Homo sapiens                                                                        |     |
|--------------------------------------------------------------------------------------------------------|-----|
| <400> 2901                                                                                             |     |
| ttttttttt ttttttcct gacgtataca gatcatcctg gacagtttat ttctctaatt                                        | 60  |
| ctgttaatca aagcagagat cagaacggat taactgtggc aacgtcgtat caggagcaca                                      | 120 |
| aagagaagcc tgcctctttc agtttggtct tttctccagc aaaacagaaa tgcaatttag                                      | 180 |
| tcaaacacat acagaggccc cactgtactg cctcactgat ggagggaaat acttgggtgc                                      | 240 |
| aatcacacac agtgttagtg attggcaact gtccagtgct atttcgctaa aactggtaaa                                      | 300 |
| aacagtttcc ttgggcaagc agctgattgg ctacttcata ctgtgctgag ttgggctcag                                      | 360 |
| cttgtctgtc tctgggaggc cctaaggggc tcctctttt cagctaggga taaggggaga                                       | 420 |
| ctgtcaacca gtatcttagc gtgaactgtc aatcgctgag cccctgccaa ggactctctg                                      | 480 |
| gaagteeete aggtatgetg aaaataeett ataetgaaaa ggtagetete getgeateea                                      | 540 |
| c                                                                                                      | 541 |
| <210> 2902<br><211> 646<br><212> DNA<br><213> Homo sapiens                                             |     |
| gaattaaaaa taatactttt attgctggtt atgctttctt aaaagtaaaa attattcttg                                      | 60  |
| attgatgtga cttgccagaa tgtttgaaac accagtgacc aagggtcact atatctgccc                                      | 120 |
| ccaaacaatt ccaccatgtt tacttatata gcactcacca aaccagaaga gaggctggga                                      | 180 |
| tatteteagg ceactgeact gaacateaat atgaaagaac catgaatgat gegacaactg                                      | 240 |
| agttgatttt ctacctcctc tgcccaccat gactttgcac cccaaattct ttcagtgtct                                      | 300 |
| tttcaaggta caaccctcct tctgggcaca ggttggctgg gtcacctcaa ggtatgttcc                                      | 360 |
| ttcattctgc agtgatttcc tgcctctgct caattaagga agttgagaat acagataact                                      | 420 |
| caggatcatg tttaattatg taaaaaagct ctaaagtcag gtaatggttt tcatgtgctt                                      | 480 |
| ctcttgagca gtctgaggag agaatagaaa cagaaacccc ttggggcctg agtagacgca                                      | 540 |
| gctggccatg cacaggcaga ggctcttggt cagtgcagga agcagagtca cagccatcgc                                      | 600 |
| cttggggtgg ggatgaaatg agatgacctg ttggctgtat gacagc                                                     | 646 |
| <pre>&lt;210&gt; 2903 &lt;211&gt; 557 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 2903 </pre> |     |

| accttgcaga gaataggcat tgaaatatta tttaaacaat caaaccaaag atgttcttct               | 120 |
|---------------------------------------------------------------------------------|-----|
| atetteaget gteagtgate taatgeeete atetetetta teeteaggae eeagaatggt               | 180 |
| atattccaca taaaagatgc tttgtttatc aaatgaatca aaaagcacgc ctgaggcatt               | 240 |
| tatttttact cctttacttc tgtaggccag gtcaaggtgg gtctaattca cttttatcat               | 300 |
| cagcacttaa gaaactggat ggaagaccac aacaccttgt tttttgcaaa aattttccat               | 360 |
| ctcctcaatc aggccaggaa gcatgtatct tctggacagg actttatctc tctactcagc               | 420 |
| tragtacact goottatatt agtocatttg toocatgttt toatcactga ataaacttgt               | 480 |
| taaatgactt ttggtctgga tctcacacct atattacttc atttccttct gtgagcactc               | 540 |
| tataatgata acatcat                                                              | 557 |
| <210> 2904<br><211> 488<br><212> DNA<br><213> Homo sapiens                      |     |
| <220> <221> misc_feature <222> (223)(239) <223> n is a, c, g, t or u            |     |
| <400> 2904<br>geggeegegg aaactttgea ggeeegegge ategageaeg gegggeetag ggegggtgtg | 60  |
| tgcgcgtggg tcgcgaggtg acaggagccg gccctcgtcc ttaatggagc ggccagagct               | 120 |
| gggtgggggc ggcccgggag ctcggggttc ccggcactac ctgaatgcag cccgaagcca               | 180 |
| agttgtgcac gcgtttgtcc tataaaagcg aagtgagtgg attcccattt tggaatccnc               | 240 |
| ggtgtctcca acctcgagtt ggagaaccat gttgagtcag ttccccggaa ccttacaaat               | 300 |
| ggactccact tcccccgttc ccattctacc gtttttttta aaaaatgatt tttttgagtg               | 360 |
| geggttecag gattagteaa atagettete eegagaatge tetttaaaag attgteagae               | 420 |
| acctttgggt taagtctcag tttttgcatg ggcccgaatt gcagtcctat gaatttctga               | 480 |
| tttattca                                                                        | 488 |
| <210> 2905<br><211> 696<br><212> DNA<br><213> Homo sapiens                      |     |
| <400> 2905<br>tteeecece ecceccec eccegecega geacaggaca cagetgggtt etgaagette    | 60  |
| tgagttctgc agcctcacct ctgagaaaac ctcttttcca ccaataccat gaagctctgc               | 120 |

| gtgactgtcc tgtctctcc                                                     | catgctagta   | gctgccttct | getetecage   | gctctcagca | 180 |
|--------------------------------------------------------------------------|--------------|------------|--------------|------------|-----|
| ccaatgggct cagaccctc                                                     | caccgcctgc   | tgcttttctt | acaccgcgag   | gaagetteet | 240 |
| cgcaactttg tggtagatta                                                    | a ctatgagacc | agcagcctct | gctcccagco   | agctgtggta | 300 |
| ttccaaacca aaagaagcaa                                                    | gcaagtctgt   | gctgatccca | gtgaatcctg   | ggtccaggag | 360 |
| tacgtgtatg acctggaact                                                    | gaactgagct   | gctcagagac | : aggaagtctt | cagggaaggt | 420 |
| cacctgagec eggatgette                                                    | tccatgagac   | acateteete | : catactcagg | actectetee | 480 |
| gcagtteetg teeettetet                                                    | : taatttaatc | ttttttatgt | gccgtgttat   | tgtattaggt | 540 |
| gtcatttcca ttatttatat                                                    | tagtttagcc   | aaaggataag | tgtcctatgg   | ggatggtcca | 600 |
| ctgtcactgt ttctctgctg                                                    | ttgcaaatac   | atggataaca | catttgattc   | tgtgtgtttt | 660 |
| ccataataaa actttaaaat                                                    | aaaatgcaga   | cagtta     |              |            | 696 |
| <210> 2906<br><211> 347<br><212> DNA<br><213> Homo sapiens               |              |            |              |            |     |
| <400> 2906                                                               |              |            |              |            |     |
| tttttaagtc acccagtttg                                                    | tggtacttta   | ttacagcagc | tcaaggagaa   | ttacaaagtg | 60  |
| gatggattga gtacaagttc                                                    | cttcatcgta   | agtggaagca | gaagttccta   | actcttttag | 120 |
| tatttgtcat ctgaactact                                                    | tttctatctt   | ttacctcctc | caatagataa   | gttattagaa | 180 |
| ggcaaatatt gcttcttgat                                                    | tttttgtttt   | ccgtctatct | aagcttgaat   | tttatgtgca | 240 |
| cgtaaggtag atgtgaaatt                                                    | catgggcatc   | aaatatgggt | gggtaaaata   | taattttgtt | 300 |
| ttctataatt aaaattattc                                                    | tatatctaga   | tccttgttgc | attgggg      |            | 347 |
| <210> 2907<br><211> 549<br><212> DNA<br><213> Homo sapiens<br><400> 2907 |              |            |              |            |     |
| tttttgttt tcccttgact                                                     | ttatttatct   | tcataagtca | caaaatgtga   | gtgcagagat | 60  |
| aaatgtctgt gtgcatgtgc                                                    | cctgagcaca   | cagggtggca | taactcggca   | cactcataat | 120 |
| gacacagccg ttcacccagc                                                    | cacagatagt   | gacagggcac | acatggcgac   | acccacatgt | 180 |
| acggagataa atctccccca                                                    | ccatgacatg   | ggtagacaga | aaacacgccg   | cagtatactc | 240 |
| tagtatgttt acacaaacag                                                    | ggagacaggc   | ccgtgcaatg | catgtcacca   | acacccacac | 300 |
| tcagagtgac atctgctgga                                                    | ggtgctcaga   | cacagccacc | caccgtgaca   | tgccgagact | 360 |
| cacatatgtc acatgacaca                                                    | ggcatgcatg   | ccacattcac | tgtgactctc   | agtcctattc | 420 |
| attcatcacc tttctgggag                                                    | atacactoss   | etataaaaa  | +++~~~       |            |     |

| gegeaegeae                                       | acacgcacac      | acacgaacac | acgegeacae | acgcacacac | acgcacgcag | 540 |
|--------------------------------------------------|-----------------|------------|------------|------------|------------|-----|
| gtgtacaca                                        |                 |            |            |            |            | 549 |
| <210> 290<br><211> 400<br><212> DNA<br><213> Hom |                 |            |            |            |            |     |
| <400> 290                                        |                 |            |            |            |            |     |
| ctttctttc                                        | tcttcttct       | tcacgcaggt | acaaaggaca | gagtatattt | cttcactcag | 60  |
| gttcagagga                                       | cagaataatg      | aatcttcttt | ctttccttct | ttcttccttc | cttccttctt | 120 |
| teetteette                                       | cttccctttt      | cctatggaca | gctgagaatc | attttctaac | tttatcaaat | 180 |
| atgctccctc                                       | ctcttaagat      | agcctgccct | ggctgcttcc | tatgtctctt | gcagtctgac | 240 |
| caggcactgt                                       | agggaagagg      | cccaaatgca | cccacctggc | ccagatatcc | agaggccaag | 300 |
| gccacggtcc                                       | tgcaccacag      | cgtgagagtt | cttctttgca | gtgcctacaa | acctatgctt | 360 |
| gccccaaac                                        | tcgctcaggg      | gtaacggggt | tggggaaaga |            |            | 400 |
|                                                  | o sapiens       |            |            |            |            |     |
|                                                  | ttttggtttt      | gaacctttaa | taaaagtaaa | aaatgaatgc | aaaaagaaca | 60  |
| caatgttgaa                                       | aacttagtat      | gaatgtgaac | ctcactagat | gttcaaatct | ggtagagtgc | 120 |
| aaattttgtt                                       | catactattt      | tacattttta | caaactcaaa | tcactttggt | tcatatattt | 180 |
| tctataaact                                       | attggcaaaa      | aaatcctcaa | atttacattc | ttttggctac | attatttcta | 240 |
| acagatatag                                       | atttacttcc      | ggtttcggag | agaaagactt | attgtgtgtg | cgtgatcaag | 300 |
| tctgttttaa                                       | agattcactc      | gctgctttca | tctaataact | tctggttttt | cataaaatgc | 360 |
| tgacatette                                       | attggaaatt      | tttttcatgt | aactgttttc | attttcagaa | aatatataag | 420 |
| ggggtcattc                                       | caaagttcag      | aatgatccta | ttttttaaa  | aaacaaaatt | cctgtaaaac | 480 |
| aaattaactc                                       | caggaactta      | aaatttactc | caagacattt | ccctcaaaac | aaagcaaaaa | 540 |
| accccag                                          |                 |            |            |            |            | 547 |
|                                                  | o sapiens       |            |            |            |            |     |
| <400> 2910<br>attttggaaa                         | )<br>atgttaaaat | ttattaataa | tagttaacat | cacatagtta | attaaactag | 60  |

| ttatgtattg tacataatg                                                     | a caacatctto | actagactga   | gtgctcaagg | atttgagatg | 120 |
|--------------------------------------------------------------------------|--------------|--------------|------------|------------|-----|
| attegetatt cateacace                                                     | c cgaagattga | gatccactgt   | atttacacaa | agcaaagcca | 180 |
| tgtcagcaag ggactgtca                                                     | a cctgattctc | g agaacataaa | cattcaaaat | ttattttcca | 240 |
| gtgttccttt ttggaaacc                                                     | a acaacacato | tttaatacct   | acacacacac | acatctctac | 300 |
| ctttaaaaaa aaaaaaaaa                                                     | g tgtaacttca | cagatagtac   | ctaatcttca | agcttaaaat | 360 |
| ttaagttaaa attaatctc                                                     | t attttgtggg | caccctttag   | tgaactaaaa | tctacatgaa | 420 |
| accttttggc ttttgtgta                                                     | g caggaaatac | ccacgttttg   | ggtcaattag | tgcagatggg | 480 |
| agcagcagag gagctacac                                                     | c agacagcaaa | gcaagactag   | agcaaacgag | aaggaccagc | 540 |
| ccctagccc                                                                |              |              |            |            | 549 |
| <210> 2911<br><211> 408<br><212> DNA<br><213> Homo sapiens               |              |              |            |            |     |
| <400> 2911<br>tttttgcaat gtagttttg                                       | tggaggccat   | tttttattgc   | agacttgaag | agctattacg | 60  |
| ttcgcggcgt ggcgcccgg                                                     |              |              |            |            | 120 |
| gtgaccggag tctcctcag                                                     |              |              |            |            | 180 |
| aaccggactc cgcccactto                                                    |              |              |            |            | 240 |
| tgggggaggg ggagttggga                                                    |              |              |            |            | 300 |
| gaacteteet gtacaccage                                                    |              |              |            |            | 360 |
| gcgtgaacaa taatttgact                                                    |              |              |            |            | 408 |
| <210> 2912<br><211> 525<br><212> DNA<br><213> Homo sapiens<br><400> 2912 |              |              |            |            |     |
| taatctcaaa ggcaattgag                                                    | tgggtcttct   | gggccagacc   | tatttaattt | acgaaacata | 60  |
| gtaccttgca gagaataggc                                                    | attgaaatat   | tatttaaaca   | atcaaaccaa | agatgttett | 120 |
| ctatcttcag ctgtcagtga                                                    | tctaatgccc   | tcatctctct   | tatecteagg | acccagaatg | 180 |
| gtatattcca cataaaagat                                                    | gctttgttta   | tcaaatgaat   | caaaaagcac | gcctgaggca | 240 |
| tttattttta ctcctttact                                                    | tctgtaggcc   | aggtcaaggt   | gggtctaatt | cacttttatc | 300 |
| atcagcactt aagaaactgg                                                    | atggaagacc   | acaacacctt   | gttttttgca | aaaattttcc | 360 |
| atctcctcaa tcaggccagg                                                    | aagcatgtat   | cttctggaca   | ggactttatc | tctctactca | 420 |

|                                                     |            |            | rgececatge | · ccccaccac | guacaaactt | 480  |
|-----------------------------------------------------|------------|------------|------------|-------------|------------|------|
| gttaaatgac                                          | ttttggtctg | gatctcacac | ctatattact | tcatt       |            | 525  |
| <210> 2913<br><211> 1085<br><212> DNA<br><213> Homo |            |            |            |             |            |      |
| <400> 2913                                          | 3          |            |            |             |            |      |
|                                                     |            |            |            |             | gacattcatt | 60   |
|                                                     |            |            |            |             | ggtctgccat | 120  |
|                                                     |            |            |            |             | ggtcctctcc | 180  |
| tctattcgcc                                          | tgtgaactcc | atccacacgt | aaaggacctc | tgggtctgac  | tgtcccctcc | 240  |
| acaggcatgg                                          | tgctgggaaa | aggaaacagg | catatctggc | ttttcagatt  | ttaaaccgga | 300  |
| aactctcaca                                          | gtcacaaatc | caccatgaga | cttgggagat | tggatgagct  | gtctcccaaa | 360  |
| ccctaacacc                                          | ttccaccttc | tcaaaatgaa | ggctgccctt | tcactgggag  | gttctgaatg | 420  |
| cgggattggt                                          | gctgactcag | gctgggcaca | aaggagaaca | ggaggacatg  | gaaaatccga | 480  |
| caattcgaag                                          | tacaaatatt | tcaaacacat | gtgaaaacca | tttggaaaga  | agaaaagagg | 540  |
| tatctggaat                                          | gatttcatga | cagaaatgaa | aaaagataaa | tttagttcta  | atcttcctgg | 600  |
| caacaaagcc                                          | ccagaggaga | aggtttcatt | gtctgaagat | aaaaacacac  | ccgtttgcct | 660  |
| ggatatgaac                                          | acagtattcc | tgcaccaaat | tctagaaaga | atatactttc  | ttctaacaaa | 720  |
| gccaagagtt                                          | tttcttgtac | tcattacagg | gggcttttaa | tcctaacata  | ttttttaact | 780  |
| ccttatgaaa                                          | atgcataaaa | gttaaaaaga | tatttcacga | tagaatcaag  | cctatgaaat | 840  |
| cgtcaaatct                                          | attaactcct | taacgaaccg | aattaaggac | caaaaacaaa  | ccttgttttt | 900  |
| tcacaaaggt                                          | tggatgttgt | aaacgtccga | aagtgtcctt | ttatacgaaa  | gacagtaatc | 960  |
| tggggaaata                                          | tttactggaa | tgacacaggt | ctttggggga | aggaactatt  | taccggataa | 1020 |
| atgggaaaag                                          | aaatgttagc | gagactatgg | tataacacgg | gctaggagat  | aacaaataaa | 1080 |
| tatt <b>a</b>                                       |            |            |            |             |            | 1085 |
|                                                     | sapiens    |            |            |             |            |      |
| <400> 2914<br>cgctggttc                             | gtaacaaca  | tecegttgge | ttccctcagg | cggcgggacc  | agtgcagccg | 60   |
| ecgectecca o                                        |            |            |            |             |            | 120  |
| gccaccaacc o                                        |            |            |            |             |            |      |
|                                                     | 33-4       |            | ggcgccgc   | CHUCKECCC   | geegeageeg | 180  |

240 qqcqqcqcgg gtqcgggcgc cggggacccg cagctcgtgg ccatgatcgt gaaccacctc 300 aaqaqccagg ggctcttcga ccaqttccgc agagactgcc tggccgacgt ggacaccaag 360 cctqcqtatc aqaatctqaq acaqcqtqtt qacaactttg ttqcaaatca cttggcaact 420 cacacatgga gtccgcatct caataagaac cagctaagaa acaacattag acaacaagtc 480 ctcaaatcag gaatgttgga gtctggtatt gaccgaatta tttctcaggt tgtggaccca 540 aagatcaacc acacattcag acctcaggta gagaaagctg tgcatgagtt tttggccacg 600 ctaaatcaca aagaggaagg aagtggcaac acagctcccg atgatgagaa accagacact 660 tecettatta cacaaggtgt tectacteet gggeecagtg etaatgtage caatgatgee 720 atgtcgatat tggaaaccat aacttctctt aaccaagaag ccagtgctgc tagggcttca 780 acagaaacat caaatgccaa gaccagtgag agagcgtcaa aaaaacttcc atctcagcca 840 accactgata ctagtactga caaagaaaga acttcagagg acatggctga taaagaaaaa 900 tctacagctg actctggagg tgaaggactg gaaacagccc caaagtctga agagttcagc 960 1020 ctqctaaata aggatgttca acaggaaagc agtgagcaaa aaaataaatc aacagacaaa 1080 qqtqaaaaqa aqccaqacaq caatqaqaaa qqagaaaqaa agaaagaaaa gaaqgaaaaq 1140 actgaaaaga aatttgatca ctcaaaaaag agtgaagata cacagaaagt taaagatgaa 1200 aaacaaqcaa aqqaaaaaqa aqtaqaqaqt ttaaaacttc cttcaqaaaa qaacaqtaat 1260 aaaqctaaaa ctqttqaaqq qacaaaaqaa qatttctctt tqataqattc tqatqtqqat 1320 1380 qqacttacaq acatcacaqt taqctctqtt cataccaqtq acctttcatc ttttqaaqaa gatactgagg aggaagttgt aacgtctgat agcatggaag aaggagagat tacgtcagat 1440 gatgaagaga agaacaaaca gaataaaaca aaaactcaaa ctagtgattc tagtgaagga 1500 aaaacaaaaa gtgtacggca tgcgtatgtc cacaaaccat atctttactc aaaatactat 1560 agtgattctg atgatgaget tactgtagaa caacgacgac agtccattgg tattttgtgg 1620 ttttaggcca aagaaaaaga agagaggctt ttaagaaggc aaatcaatag agaaaaactt 1680 gaaqaaaaac qaaaacaqaa agcagaaaaq acaaaqtctt caaaaaccaa gggtcaaggc 1740 aggagtaqtq tqqacttaqa aqaatcatca acaaaqaqtt tqqaacctaa agccgccaqa 1800 1860 attaaaqaaq teettaaaqa aeqqaaaqtt ttaqaaaaaa aaqtaqeett aagcaaaaag aqaaaaaaq attcaaqqaa tqttqaaqaq aactccaaaa aqaaacaqca atatgaagaa 1920 gattccaaaq aaacccttaa aacaaqtqaq cattqtqaaa aqqaaaaaat ttcttcttca 1980

| aaggagetga agcatgttea tgcaaaaagt gaaccaagta aacetgeeeg gagaetttea                                                                                                                                  | 2040 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| gagtetttge atgtagttga egaaaacaaa aatgaateca aattagaaag agaacataaa                                                                                                                                  | 2100 |
| agacggacat ctacccctgt tatcatggag ggggtacagg aagagactga cacaagagat                                                                                                                                  | 2160 |
| gtaaaaaggc aagtagaacg ctcagaaatt tgcaccgaag agccccagaa acagaaaagc                                                                                                                                  | 2220 |
| acacttaaaa acgaaaagca tctaaagaaa gatgattctg aaacaccaca tttgaaaagc                                                                                                                                  | 2280 |
| ctacttaaga aagaggtgaa atcctccaag gagaagcctg aaagagagaa aactccatcg                                                                                                                                  | 2340 |
| gaagacaaat tgtctgtgaa acataaatat aaaggtgatt gtatgcataa aacaggtgat                                                                                                                                  | 2400 |
| gagactgagc ttcactcttc tgagaaaggt ttaaaagtag aggaaaatat tcaaaagcaa                                                                                                                                  | 2460 |
| agtcaacaaa caaagctttc ttcagatgat aaaaccgaac gaaaaagtaa acataggaat                                                                                                                                  | 2520 |
| gaaaggaaat tatcagtatt aggcaaagat ggaaagccag tttctgaata tattataaaa                                                                                                                                  | 2580 |
| acagatgaga atgttcgtaa agaaaaaaaa                                                                                                                                                                   | 2610 |
| <210> 2915 <211> 279 <212> DNA <213> Homo sapiens  <220> <221> misc_feature <222> (86)(118) <223> ni sa, c, g, t or u  <400> 2915 gcaggtacta gcttcaactc tctaaataaa tttcaaggct ttgtgaaaat aacctcttt |      |
| ctcattcaag ggtatgttta ctggtnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnac                                                                                                                                     | 60   |
| tgtaaaagga tagtgtttgc atctagagga ctagagacat gcctgcacat ccctcacctt                                                                                                                                  | 120  |
|                                                                                                                                                                                                    | 180  |
| caaaggtgaa ctctacacag gattettgte ctagteattg tggcaaccce atctgacacc                                                                                                                                  | 240  |
| ttgtgtagta cctcggccgc gaccacgcta atcactagt                                                                                                                                                         | 279  |
| <210> 2916<br><211> 1082<br><212> DNA<br><213> Homo sapiens                                                                                                                                        |      |
| <400> 2916                                                                                                                                                                                         |      |
| gatcccagac ctcggcttgc agtagtgtta gactgaagat aaagtaagtg ctgtttgggc                                                                                                                                  | 60   |
| taacaggatc teetettgea gtetgeagec caggacgetg attecageag egeettaceg                                                                                                                                  | 120  |
| cgcagcccga agattcacta tggtgaaaat cgccttcaat acccctaccg ccgtgcaaaa                                                                                                                                  | 180  |
| ggaggaggcg cggcaagacg tggaggccct cctgagccgc acggtcagaa ctcagatact                                                                                                                                  | 240  |
| gaccggcaag gagctccgag ttgccaccca ggaaaaagag ggctcctctg ggagatgtat                                                                                                                                  | 300  |

| gettactete ttaggeettt catteatett               | ggcaggactt | attgttggtg | gagcctgcat | 360  |
|------------------------------------------------|------------|------------|------------|------|
| ttacaagtac ttcatgccca agagcaccat               | ttaccgtgga | gagatgtgct | tttttgattc | 420  |
| tgaggateet geaaatteee ttegtggagg               | agagcctaac | ttcctgcctg | tgactgagga | 480  |
| ggctgacatt cgtgaggatg acaacattgc               | aatcattgat | gtgcctgtcc | ccagtttctc | 540  |
| tgatagtgac cctgcagcaa ttattcatga               | ctttgaaaag | ggaatgactg | cttacctgga | 600  |
| cttgttgctg gggaactgct atctgatgcc               | cctcaatact | tctattgtta | tgcctccaaa | 660  |
| aaatctggta gagctctttg gcaaactggc               | gagtggcaga | tatctgcctc | aaacttatgt | 720  |
| ggttcgagaa gacctagttg ctgtggagga               | aattcgtgat | gttagtaacc | ttggcatctt | 780  |
| tatttaccaa ctttgcaata acagaaagtc               | cttccgcctt | cgtcgcagag | acctcttgct | 840  |
| gggtttcaac aaacgtgcca ttgataaatg               | ctggaagatt | agacacttcc | ccaacgaatt | 900  |
| tattgttgag accaagatct gtcaagagta               | agaggcaaca | gatagagtgt | ccttggtaat | 960  |
| aagaagtcag agatttacaa tatgacttta               | acattaaggt | ttatgggata | ctcaagatat | 1020 |
| ttactcatgc atttactcta ttgcttatgc               | cgtaaaaaaa | aaaaaaaaa  | aaaaaaaaa  | 1080 |
| aa                                             |            |            |            | 1082 |
| <pre>&lt;210&gt; 2917 &lt;211&gt; 610</pre>    |            |            |            |      |
| <400> 2917<br>aattotnnaa otoaaataaa agcagggaaa | tatgtcagct | aattaaaaaa | aaacggcaac | 60   |
| ttgaacaata cttgtctctc agtaaatagt               | aaagaccatc | acaaaataaa | aggtattctt | 120  |
| atttgttatt atttaataga agacacattc               | tctggtccat | ttatatcctg | tatacaaatt | 180  |
| aacttatttt gattgtatcc atgcaatcta               | agacaataaa | aatagaagaa | aaaacagcca | 240  |
| Catagacado agadtottat tactoattta               | attgaattga | +++        | tanataanat | 300  |

| gatatatttc               | ctgagataaa | agttgccctt | agtattcatg | aatctgtagt | tcattcttag | 360  |
|--------------------------|------------|------------|------------|------------|------------|------|
| aattttaac                | atgaaaaatt | gatgtgttta | aattttcact | ttaatattca | tgttttctat | 420  |
| aaatattgt                | aaaattctaa | gatattatgg | ttatacatat | ttattactat | tattacatat | 480  |
| aatgtgaat                | tttgagaaac | tttcctttgc | atgattttct | caaattacaa | aatatattat | 540  |
| ctcttataa                | aggacagcaa | gtttaaaatg | gagcaaggag | cattggaaat | atatttaaag | 600  |
| ggaangangg               |            |            |            |            |            | 610  |
|                          | sapiens    |            |            |            |            |      |
| <400> 2918<br>gtttgttggc |            | ggtagcaaag | tgacgccgag | ggcctgagtg | ctccagtagc | 60   |
| caccgcatct               | ggagaaccag | cggttaccat | ggaggggatc | agtatataca | cttcagataa | 120  |
| ctacaccgag               | gaaatgggct | caggggacta | tgactccatg | aaggaaccct | gtttccgtga | 180  |
| agaaaatgct               | aatttcaata | aaatcttcct | gcccaccatc | tactccatca | tcttcttaac | 240  |
| tggcattgtg               | ggcaatggat | tggtcatcct | ggtcatgggt | taccagaaga | aactgagaag | 300  |
| catgacggac               | aagtacaggc | tgcacctgtc | agtggccgac | ctcctctttg | tcatcacgct | 360  |
| cccttctgg                | gcagttgatg | ccgtggcaaa | ctggtacttt | gggaacttcc | tatgcaaggc | 420  |
| agtccatgtc               | atctacacag | tcaacctcta | cagcagtgtc | ctcatcctgg | ccttcatcag | 480  |
| tctggaccgc               | tacctggcca | tcgtccacgc | caccaacagt | cagaggccaa | ggaagctgtt | 540  |
| ggctgaaaag               | gtggtctatg | ttggcgtctg | gatccctgcc | ctcctgctga | ctattcccga | 600  |
| cttcatcttt               | gccaacgtca | gtgaggcaga | tgacagatat | atctgtgacc | gcttctaccc | 660  |
| caatgacttg               | tgggtggttg | tgttccagtt | tcagcacatc | atggttggcc | ttatcctgcc | 720  |
| tggtattgtc               | atcctgtcct | gctattgcat | tatcatctcc | aagctgtcac | actccaaggg | 780  |
| ccaccagaag               | cgcaaggccc | tcaagaccac | agtcatcctc | atcctggctt | tcttcgcctg | 840  |
| ttggetgeet               | tactacattg | ggatcagcat | cgactccttc | atcctcctgg | aaatcatcaa | 900  |
| gcaagggtgt               | gagtttgaga | acactgtgca | caagtggatt | tccatcaccg | aggccctagc | 960  |
| tttcttccac               | tgttgtctga | accccatcct | ctatgctttc | cttggagcca | aatttaaaac | 1020 |
| ctctgcccag               | cacgcactca | cctctgtgag | cagagggtcc | agcctcaaga | tcctctccaa | 1080 |
| aggaaagcga               | ggtggacatt | catctgtttc | cactgagtct | gagtcttcaa | gttttcactc | 1140 |
| cagctaacac               | agatgtaaaa | gactttttt  | tatacgataa | ataactttt  | tttaagttac | 1200 |

acatttttca gatataaaag actgaccaat attgtacagt ttttattgct tgttggattt 1260

ttgtcttgtg tttctttagt ttttgtgaag tttaattgac ttatttatat aaatttttt 1320 tgtttcatat tgatgtgtgt ctaggcagga cctgtggcca agttcttagt tgctgtatgt 1380 ctcgtggtag gactgtagaa aagggaactg aacattccag agcgtgtagt gaatcacgta 1440 aagctagaaa tgatccccag ctgtttatgc atagataatc tctccattcc cgtggaacgt 1500 ttttcctgtt cttaagacgt gattttgctg tagaagatgg cacttataac caaagcccaa 1560 agtggtatag aaatgctggt ttttcagttt tcaggagtgg gttgatttca gcacctacag 1620 tgtacagtct tgtattaagt tgttaataaa agtacatgtt aaacttactt agtgttatg 1679 <210> 2919 <211> 2232 <212> DNA <213> Homo sapiens <400> 2919 etteccette tetgecetge tecaggeace aggetettte ceetteagtg teteagagga 60 ggggacggca gcaccatgga coccegettg tecactgtec gccagacetg etgetgette 120 aatgtccgca tcgcaaccac cgccctggcc atctaccatg tgatcatgag cgtcttgttg 180 ttcatcgagc actcagtaga ggtggcccat ggcaaggcgt cctgcaagct ctcccaqatq 240 ggctacctca ggatcgctga cctgatctcc agcttcctgc tcatcaccat gctcttcatc 300 atcageetga geetaetgat eggegtagte aagaaceggg agaagtaeet getgeeette 360 ctgtccctgc aaatcatgga ctatctcctg tgcctgctca ccctgctggg ctcctacatt 420 gagetgeeeg ectaceteaa gttggeetee eggageegtg etageteete caagtteeee 480 ctgatgacgc tgcagctgct ggacttctgc ctgagcatcc tgaccctctg cagctcctac 540 atggaagtge ccacctatct caacttcaag tecatgaace acatgaatta cetececage 600 caggaggata tgcctcataa ccagttcatc aagatgatga tcatcttttc catcgccttc 660 atcactgtcc ttatcttcaa ggtctacatg ttcaagtgcg tgtggcggtg ctacagattg 720 atcaagtgca tgaactcggt ggaggagaag agaaactcca agatgctcca gaaggtggtc 780 ctqccgtcct acgaggaagc cctgtctttg ccatcgaaga ccccagaggg gggcccagca 840 ccacccccat actcagaggt gtgaccctcg ccaggcccca gccccagtgc tgggaggggt 900 ggagetgeet cataatetge ttttttgett tggtggeece tgtggeetgg gtgggeeete 960 ecgecectee etggeaggae aatetgettg tgtetecete getggeetge teeteetgea 1020 gggcctgtga gctgctcaca actgggtcaa cgctttaggc tgagtcactc ctcgggtctc 1080 tccataattc agcccaacaa tgcttggttt atttcaatca gctctgacac ttgtttagac 1140 gattggccat tctaaagttg gtgagtttgt caagcaacta tcgacttgat cagttcagec 1200

| aagcaactga                                          | caaatcaaaa | acccacttgt | cagttcagta | aaacaacccg | gccaaacaac | 1260 |
|-----------------------------------------------------|------------|------------|------------|------------|------------|------|
| agtctattgc                                          | attgatttat | aaatagttgt | cagttcacat | agcaatttaa | tcaagtaatc | 1320 |
| attaattagt                                          | taccccctat | atataaatat | atgtaatcaa | tttcttcaaa | tagcttgctt | 1380 |
| acatgataat                                          | caattagcca | accatgagtc | atttagaata | gtgataaata | gaatacacag | 1440 |
| aatagtgatg                                          | aaattcaatt | taaaaaatca | cgttagcctc | caaaccattt | aattcaaatg | 1500 |
| aacccatcaa                                          | ctggatgcca | actctggcga | atgtaggacc | tctgagtggc | tgtataattg | 1560 |
| ttaattcaaa                                          | tgaaattcat | ttaaacagtt | gacaaactgt | cattcaacaa | ttagctccag | 1620 |
| gaaataacag                                          | ttatttcatc | ataaaacagt | cccttcaaac | acacaattgt | tctgctgaag | 1680 |
| agttgtcatc                                          | aacaatccaa | tgctcaccta | ttcagttgct | ctgtggtcag | tgtggctgca | 1740 |
| tagcagtgga                                          | ttccatgaaa | ggagtcattt | tagtgatgag | ctgccagtcc | attcccaggc | 1800 |
| caggctgtcg                                          | ctggccatcc | attcagtcga | ttcagtcata | ggcgaatctg | ttctgcccga | 1860 |
| ggcttgtggt                                          | caagcaaaaa | ttcagccctg | aaatcaggca | catctgttcg | ttggactaaa | 1920 |
| cccacaggtt                                          | agttcagtca | aagcaggcaa | ccccttgtg  | ggcactgacc | ctgccactgg | 1980 |
| ggtcatggcg                                          | gttgtggcag | ctggggaggt | ttggccccaa | cagccctcct | gtgcctgctt | 2040 |
| ccctgtgtgt                                          | cggggtcctc | cagggagctg | acccagaggt | ggaggccacg | gaggcagggt | 2100 |
| ctctggggac                                          | tgtcgggggg | tacagaggga | gaaggctctg | caagagctcc | ctggcaatac | 2160 |
| ccccttgtgt                                          | aattgctttg | tgtgcgacag | ggaggaagtt | tcaataaagc | aacaacaagc | 2220 |
| ttcaaggaat                                          | tc         |            |            |            |            | 2232 |
| <210> 2920<br><211> 1620<br><212> DNA<br><213> Home | o sapiens  |            |            |            |            |      |
|                                                     | -          | gtgaaaggca | gcggtggcca | cagaggcggc | ggagagatgg | 60   |
| ccttcagcgg                                          | ttcccaggct | ccctacctga | gtccagctgt | cccctttct  | gggactattc | 120  |
| aaggaggtct                                          | ccaggacgga | cttcagatca | ctgtcaatgg | gaccgttctc | agctccagtg | 180  |
| gaaccaggtt                                          | tgctgtgaac | tttcagactg | gcttcagtgg | aaatgacatt | gccttccact | 240  |
| tcaaccctcg                                          | gtttgaagat | ggagggtacg | tggtgtgcaa | cacgaggcag | aacggaagct | 300  |

1262

gggggcccga ggagaggagg acacacatgc ctttccagaa ggggatgccc tttgacctct 360
gcttcctggt gcagagctca gatttcaagg tgatggtgaa cgggatcctc ttcgtgcagt 420
acttccaccg cgtgcccttc caccgtgtgg acaccatctt cgtcaatggc tctgtgcagc 480
tgtcctacat cagcttccag cctcccggcg tgtggcctgc caaccggct cccattaccc 540

| agacagtcat                                           | ccacacagtg | cagagegeee | ctggacagat | gttctctact | cccgccatcc | 600  |
|------------------------------------------------------|------------|------------|------------|------------|------------|------|
| cacctatgat                                           | gtacccccac | cccgcctatc | cgatgccttt | catcaccacc | attctgggag | 660  |
| ggctgtaccc                                           | atccaagtcc | atcctcctgt | caggcactgt | cctgcccagt | gctcagaggt | 720  |
| tccacatcaa                                           | cctgtgctct | gggaaccaca | tegeetteca | cctgaacctc | cgttttgatg | 780  |
| agaatgctgt                                           | ggtccgcaac | acccagatcg | acaactcctg | ggggtctgag | gagcgaagtc | 840  |
| tgccccgaaa                                           | aatgcccttc | gtccgtggcc | agagettete | agtgtggatc | ttgtgtggag | 900  |
| ctcactgcct                                           | caaggtggcc | gtggatggtc | agcacctgtt | tgaatactac | categeetga | 960  |
| ggaacctgcc                                           | caccatcaac | agactggaag | tggggggcga | catccagctg | acccatgtgc | 1020 |
| agacataggc                                           | ggetteetgg | ccctggggcc | gggggctggg | gtgtggggca | gtctgggtcc | 1080 |
| tctcatcatc                                           | cccacttccc | aggcccagcc | tttccaaccc | tgcctgggat | ctgggcttta | 1140 |
| atgcagaggc                                           | catgtccttg | tctggtcctg | cttctggcta | cagccaccct | ggaacggaga | 1200 |
| aggcagctga                                           | cggggattgc | cttcctcagc | cgcagcagca | cctggggctc | cagctgctgg | 1260 |
| aatcctacca                                           | tcccaggagg | caggcacagc | cagggagagg | ggaggagtgg | gcagtgaaga | 1320 |
| tgaagcccca                                           | tgctcagtcc | cctcccatcc | cccacgcagc | tccaccccag | tcccaagcca | 1380 |
| ccagctgtct                                           | gctcctggtg | ggaggtggcc | tcctcagccc | ctcctctctg | acctttaacc | 1440 |
| tcactctcac                                           | cttgcaccgt | gcaccaaccc | ttcacccctc | ctggaaagca | ggcctgatgg | 1500 |
| cttcccactg                                           | gcctccacca | cctgaccaga | gtgttctctt | cagaggactg | gctcctttcc | 1560 |
| cagtgtcctt                                           | aaaataaaga | aatgaaaatg | cttgttggca | aaaaaaaaa  | aaaaaaaaa  | 1620 |
| <210> 2921 <211> 916 <212> DNA <213> Homo <400> 2921 | sapiens    |            |            |            |            |      |
|                                                      |            | agagctggag | gtgggtgccc | ggcacggagg | ggcctgcgga | 60   |
| ccaatggctc                                           | tgccctgcac | cttagggctc | gggatgctgc | tggccctgcc | aggggccttg | 120  |
| ggctcgggtg                                           | gcagcgcgga | ggacagcgtg | ggctccagct | ctgtcaccgt | tgtcctgctg | 180  |
| ctgctgctgc                                           | tcctactgct | ggccactggc | ctagcactgg | cctggcgccg | cctcagccgt | 240  |
| gactcagggg                                           | gctactacca | cccggcccgc | ctaggtgccg | cgctgtgggg | ccgcacgcgg | 300  |
| cgcctgctct                                           | gggccagccc | cccaggtcgc | tggctgcagg | cccgagctga | gctggggtcc | 360  |
| acagacaatg                                           | accttgagcg | acaggaggat | gagcaggaca | cagactatga | ccacgtcgcg | 420  |
| gatggtggcc                                           | tgcaggctqa | ccctqqqqaa | ggcgagcage | aatgtggaga | ggcgtccage | 480  |

ccagagcagg tccccgtgcg ggctgaggaa gccagagaca gtgacacgga gggcgacctg 540

| gtcctcggct               | ccccaggacc | agcgagcgca | gggggcagtg | ctgaggccct | gctgagtgac | 600  |
|--------------------------|------------|------------|------------|------------|------------|------|
| ctgcacgcct               | ttgctggcag | cgcagcctgg | gatgacagcg | ccagggcagc | tgggggccag | 660  |
| ggcctccatg               | tcaccgcact | gtagaggccg | gtcttggtgt | cccatccctg | tcacageege | 720  |
| tcactccccg               | tgcctctgct | tcccaagatg | ccatggctgg | actggacccc | cagcccacat | 780  |
| gaccatgcct               | cagactgtca | cccctaccag | ttcccaagtc | catgtgtacc | ccgctcacca | 840  |
| cgggaacggc               | ccccccaac  | cacaggcatc | aggcaaccat | ttgaaataaa | actccttcag | 900  |
| cctgtgaaaa               | aaaaaa     |            |            |            |            | 916  |
|                          | sapiens    |            |            |            |            |      |
| <400> 2922<br>gaattcggcc |            | atgcttctct | gaagacttgc | agcaaggctt | gctgaggctc | 60   |
| acagaagata               | gccccagtgt | tttggagtgg | ttttgaatgt | gattctgaga | tcagactgac | 120  |
| tgagctggaa               | tcctggcttt | atatcttacc | agctacacaa | ccttggagtc | ttagaaattt | 180  |
| tttcttttca               | ataagcagtc | atccttactt | tccctcaaga | tgacaaacag | ttcgttcttc | 240  |
| tgcccagttt               | ataaagatct | ggagccattc | acgtatttt  | tttatttagt | tttccttgtt | 300  |
| ggaattattg               | gaagttgttt | tgcaacctgg | gcttttatac | agaagaatac | gaatcacagg | 360  |
| tgtgtgagca               | tctacttaat | taatttgctt | acagccgatt | tectgettae | tctggcatta | 420  |
| ccagtgaaaa               | ttgttgttga | cttgggtgtg | gcaccttgga | agctgaagat | attccactgc | 480  |
| caagtaacag               | cctgcctcat | ctatatcaat | atgtatttat | caattatctt | cttagcattt | 540  |
| gtcagcattg               | accgctgtct | tcagctgaca | cacagetgca | agatctaccg | aatacaagaa | 600  |
| cccggatttg               | ccaaaatgat | atcaaccgtt | gtgtggctaa | tggtccttct | tataatggtg | 660  |
| ccaaatatga               | tgattcccat | caaagacatc | aaggaaaagt | caaatgtggg | ttgtatggag | 720  |
| tttaaaaagg               | aatttggaag | aaattggcat | ttgctgacaa | atttcatatg | tgtagcaata | 780  |
| tttttaaatt               | tctcagccat | cattttaata | tccaattgcc | ttgtaattcg | acagetetae | 840  |
| agaaacaaag               | ataatgaaaa | ttacccaaat | gtgaaaaagg | ctctcatcaa | catactttta | 900  |
| gtgaccacgg               | gctacatcat | atgctttgtt | ccttaccaca | ttgtccgaat | cccgtatacc | 960  |
| ctcagccaga               | cagaagtcat | aactgattgc | tcaaccagga | tttcactctt | caaagccaaa | 1020 |
| gaggctacac               | tgctcctggc | tgtgtcgaac | ctgtgctttg | atcctatcct | gtactatcac | 1080 |
| ctctcaaaag               | cattccgctc | aaaggtcact | gagacttttg | cctcacctaa | agagaccaag | 1140 |
| gctcagaaag               | aaaaattaag | atgtgaaaat | aatgcataaa | agacaggatt | ttttgtgcta | 1200 |

| ccaaccccgg                                         | ccctactgga         | ccacaaagcc | aaccacagec  | cegaaagaca | uuuuuuuu   | 1200 |
|----------------------------------------------------|--------------------|------------|-------------|------------|------------|------|
| aaaag <b>c</b> ggcc                                | gc                 |            |             |            |            | 1272 |
| <210> 2923<br><211> 413<br><212> DNA<br><213> Homo | sapiens            |            |             |            |            |      |
| <400> 2923                                         |                    |            |             |            |            |      |
| tttttttt                                           | tttttgtaga         | gggtcacatc | aatccatagg  | aaaggaaacc | tgcttcttct | 60   |
| cacaaaggga                                         | taacttttgt         | tttcctcatg | agtcaacttg  | aaggataact | ttaaaaaatt | 120  |
| ggtccatgca                                         | <b>gc</b> agagtgag | actccgtctc | aaaaaaaaa   | aaaaaaaaaa | aaaaaggtcc | 180  |
| atgcagaaga                                         | ctatctttt          | ccaatttgta | taagggaact  | atgtaagttc | actgtagctc | 240  |
| tgggtatcct                                         | caacccacag         | atctggcagg | cagcttgcag  | cccatcttca | gaggagggcc | 300  |
| aagtgtccat                                         | tcagactcgg         | gtatttccac | actagctgtc  | tttgagttcc | atcaagtaga | 360  |
| tagagaactt                                         | ctgatccaag         | ggattttata | gagattacaa  | cccctcgtg  | ccg        | 413  |
| <210> 2924<br><211> 474<br><212> DNA<br><213> Homo | sapiens            |            |             |            |            |      |
| <400> 2924                                         |                    | cctttctata | caaccataat  | tctcaaccag | gggtccttct | 60   |
|                                                    |                    | tggtgtctgg |             |            |            | 120  |
|                                                    |                    |            |             |            |            | 180  |
|                                                    |                    | ggaggccagg |             |            |            |      |
| acaaccccac                                         | cccagagaac         | gacccagccc | tgaatgccaa  | gggggagaga | ctctgcctta | 240  |
| attatttgga                                         | aaaatattgt         | atctgctccc | tgttgacacc  | agacactaga | aaaaattccc | 300  |
| gatggggtgg                                         | atggcagaaa         | ccaagggggg | ccccagctcc  | tgcgattctc | ctcctctctc | 360  |
| cctccccact                                         | cagggtgtgg         | attacaatgt | gtgcagcctc  | ctggaacctc | aggaggacag | 420  |
| aggatcatga                                         | gacacagagt         | ttettgggga | tctgtggaat  | cccctaaccc | ccgg       | 474  |
| <400> 2925                                         | sapiens            |            |             | D          |            |      |
| met ser Ser                                        | GIU ASN C          | ys Phe Val | ALA GIU ASD | ser ser Le | u mis Pro  |      |

Glu Ser Gly Glu Asn Asp Ala Thr Ser Pro His Phe Ser Thr Arg 20 25 30

His Glu Gly Ser Phe Gln Val Pro Val Leu Cys Ala Val Met Asn Val 35 40 45

Val Phe Ile Thr Ile Leu Ile Ile Ala Leu Ile Ala Leu Ser Val Gly 50 55 60

Gln Tyr Asn Cys Pro Gly Gln Tyr Thr Phe Ser Met Pro Ser Asp Ser 65 70 75 80

His Val Ser Ser Cys Ser Glu Asp Trp Val Gly Tyr Gln Arg Lys Cys 85 90 95

Tyr Phe Ile Ser Thr Val Lys Arg Ser Trp Thr Ser Ala Gln Asn Ala 100 105 110

Cys Ser Glu His Gly Ala Thr Leu Ala Val Ile Asp Ser Glu Lys Asp 115 120 125

Met Asn Phe Leu Lys Arg Tyr Ala Gly Arg Glu Glu His Trp Val Gly 130 135 140

Leu Lys Lys Glu Pro Gly His Pro Trp Lys Trp Ser Asn Gly Lys Glu 145 150 150 155

Phe Asn Asn Trp Phe Asn Val Thr Gly Ser Asp Lys Cys Val Phe Leu 165 170 175

Lys Asn Thr Glu Val Ser Ser Met Glu Cys Glu Lys Asn Leu Tyr Trp 180 185 190

Ile Cys Asn Lys Pro Tyr Lys 195

<210> 2926

<211> 326 <212> PRT

<213> Homo sapiens

<400> 2926

Met Asp Tyr Ser His Gln Thr Ser Leu Val Pro Cys Gly Gln Asp Lys 1  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Tyr Ile Ser Lys Asn Glu Leu Leu Leu His Leu Lys Thr Tyr Asn Leu 20 25 30

| Tyr        | Tyr        | Glu<br>35  | Gly        | Gln        | Asn        | Leu        | Gln<br>40  | Leu        | Arg        | His        | Arg        | Glu<br>45  | Glu        | Glu        | Asp        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Glu        | Phe<br>50  | Ile        | Val        | Glu        | Gly        | Leu<br>55  | Leu        | Asn        | Ile        | Ser        | Trp<br>60  | Gly        | Leu        | Arg        | Arg        |
| Pro<br>65  | Ile        | Arg        | Leu        | Gln        | Met<br>70  | Gln        | Asp        | Asp        | Asn        | Glu<br>75  | Arg        | Ile        | Arg        | Pro        | Pro<br>80  |
| Pro        | Ser        | Ser        | Ser        | Ser<br>85  | Trp        | His        | Ser        | Gly        | Cys<br>90  | Asn        | Leu        | Gly        | Ala        | Gln<br>95  | Gly        |
| Thr        | Thr        | Leu        | Lys<br>100 | Pro        | Leu        | Thr        | Val        | Pro<br>105 | Lys        | Val        | Gln        | Ile        | Ser<br>110 | Glu        | Val        |
| Asp        | Ala        | Pro<br>115 | Pro        | Glu        | Gly        | Asp        | Gln<br>120 | Met        | Pro        | Ser        | Ser        | Thr<br>125 | Asp        | Ser        | Arg        |
| Gly        | Leu<br>130 | Lys        | Pro        | Leu        | Gln        | Glu<br>135 | Asp        | Thr        | Pro        | Gln        | Leu<br>140 | Met        | Arg        | Thr        | Arg        |
| Ser<br>145 | Asp        | Val        | Gly        | Val        | Arg<br>150 | Arg        | Arg        | Gly        | Asn        | Val<br>155 | Arg        | Thr        | Pro        | Ser        | Asp<br>160 |
| Gln        | Arg        | Arg        | Ile        | Arg<br>165 | Arg        | His        | Arg        | Phe        | Ser<br>170 | Ile        | Asn        | Gly        | His        | Phe<br>175 | Tyr        |
| Asn        | His        | Lys        | Thr<br>180 | Ser        | Val        | Phe        | Thr        | Pro<br>185 | Ala        | Tyr        | Gly        | Ser        | Val<br>190 | Thr        | Asn        |
| Val        | Arg        | Ile<br>195 | Asn        | Ser        | Thr        | Met        | Thr<br>200 | Thr        | Pro        | Gln        | Val        | Leu<br>205 | Lys        | Leu        | Leu        |
| Leu        | Asn<br>210 | Lys        | Phe        | Lys        | Ile        | Glu<br>215 | Asn        | Ser        | Ala        | Glu        | Glu<br>220 | Phe        | Ala        | Leu        | Tyr        |
| Val<br>225 | Val        | His        | Thr        | Ser        | Gly<br>230 | Glu        | Lys        | Gln        | Lys        | Leu<br>235 | Lys        | Ala        | Thr        | Asp        | Tyr<br>240 |
| Pro        | Leu        | Ile        | Ala        | Arg<br>245 | Ile        | Leu        | Gln        | Gly        | Pro<br>250 | Cys        | Glu        | Gln        | Ile        | Ser<br>255 | Lys        |
| Va1        | Phe        | Leu        | Met        | Glu        | Lys        | Asp        |            | Val        |            | Glu        | Val        | Thr        | Tyr<br>270 |            | Val        |

Ala Gln Tyr Ile Lys Phe Glu Met Pro Val Leu Lys Ser Phe Ile Gln 275 280 285

Lys Leu Gln Glu Glu Glu Asp Arg Glu Val Lys Lys Leu Met Arg Lys 290 295 300

Tyr Thr Val Leu Arg Leu Met Ile Arg Gln Arg Leu Glu Glu Ile Ala 305 310 315 320

Glu Thr Pro Ala Thr Ile

<210> 2927

<211> 364 <212> PRT

<213> Homo sapiens

<400> 2927

Met Pro Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala

Met Asp Pro Asn Phe Trp Leu Gln Val Gln Glu Ser Val Thr Val Gln

Glu Gly Leu Cys Val Leu Val Pro Cys Thr Phe Phe His Pro Ile Pro 35 40 45

Tyr Tyr Asp Lys Asn Ser Pro Val His Gly Tyr Trp Phe Arg Glu Gly 50 55 60

Ala Ile Ile Ser Gly Asp Ser Pro Val Ala Thr Asn Lys Leu Asp Gln 65 70 75 80

Glu Val Gln Glu Glu Thr Gln Gly Arg Phe Arg Leu Leu Gly Asp Pro  $85 \hspace{0.5cm} 90 \hspace{0.5cm} 95 \hspace{0.5cm}$ 

Ser Arg Asn Asn Cys Ser Leu Ser Ile Val Asp Ala Arg Arg Asp 100 105 110

Asn Gly Ser Tyr Phe Phe Arg Met Glu Arg Gly Ser Thr Lys Tyr Ser

Tyr Lys Ser Pro Gln Leu Ser Val His Val Thr Asp Leu Thr His Arg 130 135 140

Pro Lys Ile Leu Ile Pro Gly Thr Leu Glu Pro Gly His Ser Lys Asn

145 150 155 160

Leu Thr Cys Ser Val Ser Trp Ala Cys Glu Gln Gly Thr Pro Pro Ile 165 170 175

Phe Ser Trp Leu Ser Ala Ala Pro Thr Ser Leu Gly Pro Arg Thr Thr 180 185 190

His Ser Ser Val Leu Ile Ile Thr Pro Arg Pro Gln Asp His Gly Thr

Asn Leu Thr Cys Gln Val Lys Phe Ala Gly Ala Gly Val Thr Thr Glu 210 215 220

Arg Thr Ile Gln Leu Asn Val Thr Tyr Val Pro Gln Asn Pro Thr Thr 225 230 235 240

Gly Ile Phe Pro Gly Asp Gly Ser Gly Lys Gln Glu Thr Arg Ala Gly 245 250 255

Leu Val His Gly Ala Ile Gly Gly Ala Gly Val Thr Ala Leu Leu Ala

Leu Cys Leu Cys Leu Ile Phe Phe Ile Val Lys Thr His Arg Arg Lys 275 280 285

Ala Ala Arg Thr Ala Val Gly Ser Asn Asp Thr His Pro Thr Thr Gly 290 295 300

Ser Ala Ser Pro Lys His Gln Lys Asn Ser Lys Leu His Gly Pro Thr 305 310 315

Glu Thr Ser Ser Cys Ser Gly Ala Ala Pro Thr Val Glu Met Asp Glu 325 330 335

Glu Leu His Tyr Ala Ser Leu Asn Phe His Gly Met Asn Pro Ser Lys

Asp Thr Ser Thr Glu Tyr Ser Glu Val Arg Thr Glu 355 360

<210> 2928 <211> 326

<211> 320 <212> PRT

<213> Homo sapiens

<400> 2928

| Met<br>1   | Asp        | Туг        | Ser        | His<br>5   | Gln        | Thr        | Ser        | Leu        | 1 Va]      | l Pro      | Сув        | Gly        | Gln        | Asp<br>15  | Lys        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Tyr        | Ile        | Ser        | Lys<br>20  | Asr        | Glu        | Leu        | l Leu      | Leu<br>25  | His        | Leu        | Lys        | Thr        | Tyr<br>30  | Asn        | Leu        |
| Tyr        | Tyr        | Glu<br>35  | Gly        | Gln        | Asn        | Leu        | Gln<br>40  | Leu        | Arg        | , His      | Arg        | Glu<br>45  | Glu        | Glu        | Asp        |
| Glu        | Phe<br>50  | Ile        | Val        | Glu        | Gly        | Leu<br>55  | Leu        | Asn        | Ile        | Ser        | Trp<br>60  | Gly        | Leu        | Arg        | Arg        |
| Pro<br>65  | Ile        | Arg        | Leu        | Gln        | Met<br>70  | Gln        | Asp        | Asp        | Asn        | Glu<br>75  | Arg        | Ile        | Arg        | Pro        | Pro<br>80  |
| Pro        | Ser        | Ser        | Ser        | Ser<br>85  | Trp        | His        | Ser        | Gly        | Cys<br>90  | Asn        | Leu        | Gly        | Ala        | Gln<br>95  | Gly        |
| Thr        | Thr        | Leu        | Lys<br>100 | Pro        | Leu        | Thr        | Val        | Pro<br>105 | Lys        | Val        | Gln        | Ile        | Ser<br>110 | Glu        | Val        |
| Asp        | Ala        | Pro<br>115 | Pro        | Glu        | Gly        | Asp        | Gln<br>120 | Met        | Pro        | Ser        | Ser        | Thr<br>125 | Asp        | Ser        | Arg        |
| Gly        | Leu<br>130 | Lys        | Pro        | Leu        | Gln        | Glu<br>135 | Asp        | Thr        | Pro        | Gln        | Leu<br>140 | Met        | Arg        | Thr        | Arg        |
| Ser<br>145 | Asp        | Val        | Gly        | Val        | Arg<br>150 | Arg        | Arg        | Gly        | Asn        | Val<br>155 | Arg        | Thr        | Pro        | Ser        | Asp<br>160 |
| Gln        | Arg        | Arg        | Ile        | Arg<br>165 | Arg        | His        | Arg        | Phe        | Ser<br>170 | Ile        | Asn        | Gly        | His        | Phe<br>175 | Tyr        |
| Asn        | His        | Lys        | Thr<br>180 | Ser        | Val        | Phe        | Thr        | Pro<br>185 | Ala        | Tyr        | Gly        | Ser        | Val<br>190 | Thr        | Asn        |
| Val        | Arg        | Ile<br>195 | Asn        | Ser        | Thr        | Met        | Thr<br>200 | Thr        | Pro        | Gln        | Val        | Leu<br>205 | Lys        | Leu        | Leu        |
| Leu        | Asn<br>210 | Lys        | Phe        | Lys        | Ile        | Glu<br>215 | Asn        | Ser        | Ala        | Glu        | Glu<br>220 | Phe        | Ala        | Leu        | Tyr        |
| Val<br>225 | Val        | His        | Thr        | Ser        | Gly<br>230 | Glu        | Lys        | Gln        | Lys        | Leu<br>235 | Lys        | Ala        | Thr        | Asp        | Tyr<br>240 |

Pro Leu Ile Ala Arg Ile Leu Gln Gly Pro Cys Glu Gln Ile Ser Lys 245 250 255

Val Phe Leu Met Glu Lys Asp Gln Val Glu Glu Val Thr Tyr Asp Val 260 265 270

Ala Gln Tyr Ile Lys Phe Glu Met Pro Val Leu Lys Ser Phe Ile Gln

Lys Leu Gln Glu Glu Glu Asp Arg Glu Val Lys Lys Leu Met Arg Lys 290 295 300

Tyr Thr Val Leu Arg Leu Met Ile Arg Gln Arg Leu Glu Glu Ile Ala 305 310 315 320

Glu Thr Pro Ala Thr Ile

<210> 2929

<211> 1842 <212> PRT

<213> Homo sapiens

<400> 2929

Leu Pro His Gly Arg Thr Arg Gly Pro Gly Pro Ala Met Ala Pro Trp 1 5 10 15

Arg Lys Ala Asp Lys Glu Arg His Gly Val Ala Ile Tyr Asn Phe Gln

Gly Ser Gly Ala Pro Gln Leu Ser Leu Gln Ile Gly Asp Val Val Arg 35 40 45

Ile Gln Glu Thr Cys Gly Asp Trp Tyr Arg Gly Tyr Leu Ile Lys His  $50 \ \ 55 \ \ 60$ 

Lys Met Leu Gln Gly Ile Phe Pro Lys Ser Phe Ile His Ile Lys Glu 65 70 75 80

Val Thr Val Glu Lys Arg Arg Asn Thr Glu Asn Ile Ile Pro Ala Glu 85 90 95

Ile Pro Leu Ala Gln Glu Val Thr Thr Thr Leu Trp Glu Trp Gly Ser

Ile Trp Lys Gln Leu Tyr Val Ala Ser Lys Lys Glu Arg Phe Leu Gln 115 120 125

| Val        | Gln<br>130 | Ser        | Met        | Met        | Tyr        | Asp<br>135 | Leu        | Met        | Glu        | Trp        | Arg<br>140         | Ser        | Gln        | Leu        | Leu        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|
| Ser<br>145 | Gly        | Thr        | Leu        | Pro        | Lys<br>150 | Asp        | Glu        | Leu        | Lys        | Glu<br>155 | Leu                | Lys        | Gln        | Lys        | Val<br>160 |
| Thr        | Ser        | Lys        | Ile        | Asp<br>165 | Tyr        | Gly        | Asn        | Lys        | Ile<br>170 | Leu        | Glu                | Leu        | Asp        | Leu<br>175 | Ile        |
| Val        | Arg        | Asp        | Glu<br>180 | Asp        | Gly        | Asn        | Ile        | Leu<br>185 | Asp        | Pro        | Asp                | Asn        | Thr<br>190 | Ser        | Val        |
| Ile        | Ser        | Leu<br>195 | Phe        | His        | Ala        | His        | Glu<br>200 | Glu        | Ala        | Thr        | Asp                | Lys<br>205 | Ile        | Thr        | Glu        |
| Arg        | Ile<br>210 | Lys        | Glu        | Glu        | Met        | Ser<br>215 | Lys        | Asp        | Gln        | Pro        | Asp<br>220         | Tyr        | Ala        | Met        | Tyr        |
| Ser<br>225 | Arg        | Ile        | Ser        | Ser        | Ser<br>230 | Pro        | Thr        | His        | Ser        | Leu<br>235 | Tyr                | Val        | Phe        | Val        | Arg<br>240 |
| Asn        | Phe        | Val        | Сув        | Arg<br>245 | Ile        | Gly        | Glu        | Asp        | Ala<br>250 | Glu        | Leu                | Phe        | Met        | Ser<br>255 | Leu        |
| Tyr        | Asp        | Pro        | Asn<br>260 | Lys        | Gln        | Thr        | Val        | Ile<br>265 | Ser        | Glu        | Asn                | Tyr        | Leu<br>270 | Val        | Arg        |
| Trp        | Gly        | Ser<br>275 | Arg        | Gly        | Phe        | Pro        | Lys<br>280 | Glu        | Ile        | Glu        | Met                | Leu<br>285 | Asn        | Asn        | Leu        |
| Lys        | Val<br>290 | Val        | Phe        | Thr        | Asp        | Leu<br>295 | Gly        | Asn        | Lys        | Asp        | <b>Le</b> u<br>300 | Asn        | Arg        | Asp        | Lys        |
| Ile<br>305 | Tyr        | Leu        | Ile        | Cys        | Gln<br>310 | Ile        | Val        | Arg        | Val        | Gly<br>315 | Lys                | Met        | Asp        | Leu        | Lys<br>320 |
| Asp        | Thr        | Gly        | Ala        | Lys<br>325 | Lys        | Сув        | Thr        | Gln        | Gly<br>330 | Leu        | Arg                | Arg        | Pro        | Phe<br>335 | Gly        |
| Val        | Ala        | Val        | Met<br>340 | Asp        | Ile        | Thr        | Asp        | Ile<br>345 | Ile        | Lys        | Gly                | Lys        | Ala<br>350 | Glu        | Ser        |
| Asp        | Glu        | Glu<br>355 | Lys        | Gln        | His        | Phe        | Ile<br>360 | Pro        | Phe        | His        | Pro                | Val<br>365 | Thr        | Ala        | Glu        |

PCT/US2003/012946

|            | WO 2       | 004/0      | 42340      | )          |            |            |            |            |            |            |            |            |            |            | PC1/       |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asn        | Asp<br>370 | Phe        | Leu        | His        | Ser        | Leu<br>375 | Leu        | Gly        | Lys        | Val        | Ile<br>380 | Ala        | Ser        | Lys        | Gly        |
| Asp<br>385 | Ser        | Gly        | Gly        | Gln        | Gly<br>390 | Leu        | Trp        | Val        | Thr        | Met<br>395 |            | Met        | Leu        | Val        | Gly<br>400 |
| Asp        | Ile        | Ile        | Gln        | Ile<br>405 | Arg        | Lys        | Asp        | Tyr        | Pro<br>410 |            | Leu        | Val        | Asp        | Arg<br>415 | Thr        |
| Thr        | Val        | Val        | Ala<br>420 | Arg        | Lys        | Leu        | Gly        | Phe<br>425 | Pro        | Glu        | Ile        | Ile        | Met<br>430 | Pro        | Gly        |
| Asp        | Val        | Arg<br>435 | Asn        | Asp        | Ile        | Tyr        | Ile<br>440 | Thr        | Leu        | Leu        | Gln        | Gly<br>445 | Asp        | Phe        | Asp        |
| Lys        | Tyr<br>450 | Asn        | Lys        | Thr        | Thr        | Gln<br>455 | Arg        | Asn        | Val        | Glu        | Val<br>460 | Ile        | Met        | Cys        | Val        |
| Сув<br>465 | Ala        | Glu        | Asp        | Gly        | Lys<br>470 | Thr        | Leu        | Pro        | Asn        | Ala<br>475 | Ile        | Cys        | Val        | Gly        | Ala<br>480 |
| Gly        | Asp        | Lys        | Pro        | Met<br>485 | Asn        | Glu        | Tyr        | Arg        | Ser<br>490 | Val        | Val        | Tyr        | Tyr        | Gln<br>495 | Val        |
| Lys        | Gln        | Pro        | Arg<br>500 | Trp        | Met        | Glu        | Thr        | Val<br>505 | Lys        | Val        | Ala        | Val        | Pro<br>510 | Ile        | Glu        |
| Asp        | Met        | Gln<br>515 | Arg        | Ile        | His        | Leu        | Arg<br>520 | Phe        | Met        | Phe        | Arg        | His<br>525 | Arg        | Ser        | Ser        |
| Leu        | Glu<br>530 | Ser        | Lys        | Asp        | Lys        | Gly<br>535 | Glu        | Lys        | Asn        | Phe        | Ala<br>540 | Met        | Ser        | Tyr        | Val        |
| Lys<br>545 | Leu        | Met        | Lys        | Glu        | Asp<br>550 | Gly        | Thr        | Thr        | Leu        | His<br>555 | Asp        | Gly        | Phe        | His        | Asp<br>560 |
| Leu        | Val        | Val        | Leu        | Lys        | Gly        | Asp        | Ser        | Lys        | Lys        | Met        | Glu        | Asp        | Ala        | Ser        | Ala        |

Tyr Leu Thr Leu Pro Ser Tyr Arg His His Val Glu Asn Lys Gly Ala 

Thr Leu Ser Arg Ser Ser Ser Ser Val Gly Gly Leu Ser Val Ser Ser Ser 600 605

| Arg        | Asp<br>610 | Val        | Phe        | Ser        | Ile        | Ser<br>615 | Thr        | Leu        | Val        | Cys        | Ser<br>620 | Thr        | Lys        | Leu        | Thr        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gln<br>625 | Asn        | Val        | Gly        | Leu        | Leu<br>630 | Gly        | Leu        | Leu        | Lys        | Trp<br>635 | Arg        | Met        | Lys        | Pro        | Gln<br>640 |
| Leu        | Leu        | Gln        | Glu        | Asn<br>645 | Leu        | Glu        | Lys        | Leu        | Lys<br>650 | Ile        | Val        | Asp        | Gly        | Glu<br>655 | Glu        |
| Val        | Val        | Lys        | Phe<br>660 | Leu        | Gln        | Asp        | Thr        | Leu<br>665 | Asp        | Ala        | Leu        | Phe        | Asn<br>670 | Ile        | Met        |
| Met        | Glu        | His<br>675 | Ser        | Gln        | Ser        | Asp        | Glu<br>680 | Tyr        | Asp        | Ile        | Leu        | Val<br>685 | Phe        | Asp        | Ala        |
| Leu        | Ile<br>690 | Tyr        | Ile        | Ile        | Gly        | Leu<br>695 | Ile        | Ala        | Asp        | Arg        | Lys<br>700 | Phe        | Gln        | His        | Phe        |
| Asn<br>705 | Thr        | Val        | Leu        | Glu        | Ala<br>710 | Tyr        | Ile        | Gln        | Gln        | His<br>715 | Phe        | Ser        | Ala        | Thr        | Leu<br>720 |
| Ala        | Tyr        | Lys        | Lys        | Leu<br>725 | Met        | Thr        | Val        | Leu        | Lys<br>730 | Thr        | Tyr        | Leu        | Asp        | Thr<br>735 | Ser        |
| Ser        | Arg        | Gly        | Glu<br>740 | Gln        | Сув        | Glu        | Pro        | Ile<br>745 | Leu        | Arg        | Thr        | Leu        | Lys<br>750 | Ala        | Leu        |
| Glu        | Tyr        | Val<br>755 | Phe        | Lys        | Phe        | Ile        | Val<br>760 | Arg        | Ser        | Arg        | Thr        | Leu<br>765 | Phe        | Ser        | Gln        |
| Leu        | Tyr<br>770 | Glu        | Gly        | Lys        | Glu        | Gln<br>775 | Met        | Glu        | Phe        | Glu        | Glu<br>780 | Ser        | Met        | Arg        | Arg        |
| Leu<br>785 | Phe        | Glu        | Ser        | Ile        | Asn<br>790 | Asn        | Leu        | Met        | Lys        | Ser<br>795 | Gln        | Tyr        | Lys        | Thr        | Thr<br>800 |
| Ile        | Leu        | Leu        | Gln        | Val<br>805 | Ala        | Ala        | Leu        | Lys        | Tyr<br>810 | Ile        | Pro        | Ser        | Val        | Leu<br>815 | His        |
| Asp        | Val        | Glu        | Met<br>820 | Val        | Phe        | Asp        | Ala        | Lys<br>825 | Leu        | Leu        | Ser        | Gln        | Leu<br>830 | Leu        | Tyr        |
| Glu        | Phe        | Tyr<br>835 | Thr        | Cys        | Ile        | Pro        | Pro<br>840 | Val        | Lys        | Leu        | Gln        | Lys<br>845 | Gln        | Lys        | Val        |
| Gln        | Ser        | Met        | Asn        | Glu        | Ile        | Val        | Gln        | Ser        | Asn        | Leu        | Phe        | Lys        | Lys        | Gln        | Glu        |

850 855 860

Cys Arg Asp Ile Leu Leu Pro Val Ile Thr Lys Glu Leu Lys Glu Leu 865 870 875 880

Leu Glu Gln Lys Asp Asp Met Gln His Gln Val Leu Glu Arg Lys Tyr 885 890 895

Cys Val Glu Leu Leu Asn Ser Ile Leu Glu Val Leu Ser Tyr Gln Asp 900 905 910

Ala Ala Phe Thr Tyr His His Ile Gln Glu Ile Met Val Gln Leu Leu 915 920 925

Arg Thr Val Asn Arg Thr Val Ile Thr Met Gly Arg Asp His Ile Leu 930 935 940

Ile Ser His Phe Val Ala Cys Met Thr Ala Ile Leu Asn Gln Met Gly 945 950 950 955

Asp Gln His Tyr Ser Phe Tyr Ile Glu Thr Phe Gln Thr Ser Ser Glu 965 970 975

Leu Val Asp Phe Leu Met Glu Thr Phe Ile Met Phe Lys Asp Leu Ile 980 985 990

Gly Lys Asn Val Tyr Pro Gly Asp Trp Met Ala Met Ser Met Val Gln 995 1000 1005

Asn Arg Val Phe Leu Arg Ala Ile Asn Lys Phe Ala Glu Thr Met 1010 1015 1020

Asn Gln Lys Phe Leu Glu His Thr Asn Phe Glu Phe Gln Leu Trp 1025 1030 1035

Asn Asn Tyr Phe His Leu Ala Val Ala Phe Ile Thr Gln Asp Ser 1040 1045 1050

Leu Gln Leu Glu Gln Phe Ser His Ala Lys Tyr Asn Lys Ile Leu 1055 1060 1065

Asn Lys  $\,$  Tyr Gly Asp Met Arg Arg Leu Ile Gly Phe  $\,$  Ser Ile Arg 1070  $\,$  1080  $\,$ 

Asp Met Trp Tyr Lys Leu Gly Gln Asn Lys Ile Cys Phe Ile Pro 1085 1090 1095

| Gly | Met<br>1100 | Val | Gly | Pro |     | Leu<br>1105 | Glu | Met | Thr | Leu | Ile<br>1110         | Pro | Glu | Ala |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|---------------------|-----|-----|-----|
| Glu | Leu<br>1115 | Arg | Lys | Ala | Thr | Ile<br>1120 | Pro | Ile | Phe | Phe | Asp<br>1125         | Met | Met | Leu |
| Сув | Glu<br>1130 | Tyr | Gln | Arg |     | Gly<br>1135 | Asp | Phe | Lys |     | Phe<br>1140         | Glu | Asn | Glu |
| Ile | Ile<br>1145 | Leu | Lys | Leu | Asp | His<br>1150 |     | Val | Glu | Gly | Gly<br>1155         | Arg | Gly | Asp |
| Glu | Gln<br>1160 | Tyr | Met | Gln |     | Leu<br>1165 |     | Ser | Ile | Leu | Met<br>1170         | Glu | Сув | Ala |
| Ala | Glu<br>1175 | His | Pro | Thr |     | Ala<br>1180 |     | Ser | Val | Glu | Asn<br>1185         | Phe | Val | Asn |
| Leu | Val<br>1190 |     | Gly | Leu |     | Glu<br>1195 |     | Leu | Leu | Asp | Tyr<br>1200         | Arg | Gly | Val |
| Met | Thr<br>1205 |     | Glu | Ser |     | Asp<br>1210 |     | Arg | Met |     | Cys<br>1215         |     | Val | Asn |
| Leu | Leu<br>1220 | Asn | Phe | Tyr |     | Asp<br>1225 |     | Asn | Arg |     | Glu<br>1230         |     | Tyr | Ile |
| Arg | Tyr<br>1235 |     | Tyr | Lys | Leu | Arg<br>1240 |     | Leu | His | Leu | Asp<br>1245         |     | Asp | Asn |
| Tyr | Thr<br>1250 |     | Ala | Ala | Tyr | Thr<br>1255 |     | Leu | Leu | His | Thr<br>1260         |     | Leu | Leu |
| Lys | Trp<br>1265 |     | Asp | Glu | Gln | Cys<br>1270 |     | Ser | Gln | Val | Met<br>127 <b>5</b> |     | Thr | Gly |
| Gln | Gln<br>1280 |     | Pro | Gln | Thr | His<br>1285 |     | Gln | Leu | Lys | Glu<br>1290         |     | Leu | Tyr |
| Glu | Thr<br>1295 |     | Ile | Gly |     | Phe<br>1300 |     | Lys | Gly | Lys | Met<br>1305         |     | Glu | Glu |
| Ala | Ile<br>1310 |     | Leu | Cys |     | Glu<br>1315 |     | Ala | Glu | Gln | Tyr<br>1320         |     | Met | Glu |

| Ile | Phe<br>1325 |     | Tyr | Glu | Leu | Leu<br>1330 |     | Gln | Asn | Leu | Ile<br>1335 | Gln | Gln | Ala |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Lys | Phe<br>1340 |     | Glu | Ser | Ile | Met<br>1345 |     | Ile | Leu | Arg | Pro<br>1350 | Lys | Pro | Asp |
| Tyr | Phe<br>1355 | Ala | Val | Gly | Tyr | Tyr<br>1360 |     | Gln | Gly | Phe | Pro<br>1365 | Ser | Phe | Leu |
| Arg | Asn<br>1370 |     | Val | Phe | Ile | Tyr<br>1375 |     | Gly | Lys | Glu | Туг<br>1380 | Glu | Arg | Arg |
| Glu | Asp<br>1385 |     | Gln | Met | Gln | Leu<br>1390 | Met | Thr | Gln | Phe | Pro<br>1395 | Asn | Ala | Glu |
| Lys | Met<br>1400 |     | Thr | Thr | Ser | Ala<br>1405 |     | Gly | Asp | Asp | Val<br>1410 |     | Asn | Ala |
| Pro | Gly<br>1415 |     | Tyr | Ile |     | Cys<br>1420 |     | Thr | Val | Gln | Pro<br>1425 | Val | Leu | Asp |
| Glu | His<br>1430 |     | Arg | Phe | Lys | Asn<br>1435 |     | Pro | Val | Pro | Asp<br>1440 |     | Ile | Ile |
| Asn | Phe<br>1445 |     | Lys | Ser | Asn | Tyr<br>1450 |     | Gln | Arg |     | His<br>1455 |     | Ser | Arg |
| Pro | Val<br>1460 |     | Arg | Gly | Thr | Val<br>1465 |     | Pro | Glu | Asn | Glu<br>1470 |     | Ala | Ser |
| Met | Trp<br>1475 |     | Glu | Arg | Thr | Ser<br>1480 |     | Val | Thr | Ala | Tyr<br>1485 |     | Leu | Pro |
| Gly | Ile<br>1490 |     | Arg | Trp | Phe | Glu<br>1495 |     | Val | His | Met | Ser<br>1500 |     | Thr | Thr |
| Ile | Ser<br>1505 |     | Leu | Glu | Asn | Ala<br>1510 |     | Glu | Thr | Met | Ser<br>1515 |     | Ala | Asn |
| Glu | Lys<br>1520 |     | Leu | Met | Met | Ile<br>1525 |     | Gln | Tyr | Gln | Ser<br>1530 |     | Glu | Thr |
| Leu | Pro<br>1535 |     | Asn | Pro | Leu | Ser<br>1540 |     | Leu | Leu | Asn | Gly<br>1545 |     | Val | Asp |

| Pro | Ala<br>1550 |     | Met | Gly | Gly | Phe<br>1555 | Ala | Lys | Tyr |     | Lys<br>1560 | Ala | Phe | Phe |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Thr | Glu<br>1565 | Glu | Tyr | Val | Arg | Asp<br>1570 |     | Pro | Glu | Asp | Gln<br>1575 | Asp | Lys | Leu |
| Thr | His<br>1580 | Leu | Lys | Asp | Leu | Ile<br>1585 | Ala | Trp | Gln | Ile | Pro<br>1590 | Phe | Leu | Gly |
| Ala | Gly<br>1595 | Ile | Lys | Ile | His | Glu<br>1600 |     | Arg | Val | Ser | Asp<br>1605 |     | Leu | Arg |
| Pro | Phe<br>1610 | His | Asp | Arg | Met | Glu<br>1615 |     | Cys | Phe | Lys | Asn<br>1620 | Leu | Lys | Met |
| Lys | Val<br>1625 | Glu | Lys | Glu | Tyr | Gly<br>1630 | Val | Arg | Glu | Met | Pro<br>1635 | Asp | Phe | Asp |
| Asp | Arg<br>1640 | Arg | Val | Gly | Arg | Pro<br>1645 |     | ser | Met | Leu | Arg<br>1650 |     | Tyr | Arg |
| Gln | Met<br>1655 | Ser | Ile | Ile | Ser | Leu<br>1660 |     | Ser | Met | Asn | Ser<br>1665 | Asp | Сув | Ser |
| Thr | Pro<br>1670 |     | Lys | Pro | Thr | Ser<br>1675 |     | Ser | Phe | Asp | Leu<br>1680 | Glu | Leu | Ala |
| Ser | Pro<br>1685 | Lys | Thr | Pro | Arg | Val<br>1690 | Glu | Gln | Glu | Glu | Pro<br>1695 | Ile | Ser | Pro |
| Gly | Ser<br>1700 |     | Leu | Pro | Glu | Val<br>1705 |     | Leu | Arg | Arg | Ser<br>1710 |     | Lys | Arg |
| Thr | Lys<br>1715 |     | Ser | Ser | Val | Val<br>1720 |     | Ala | Asp | Glu | Lys<br>1725 | Ala | Ala | Ala |
| Glu | Ser<br>1730 | Asp | Leu | Lys | Arg | Leu<br>1735 | Ser | Arg | Lys | His | Glu<br>1740 | Phe | Met | Ser |
| Asp | Thr<br>1745 |     | Leu | Ser | Glu | His<br>1750 |     | Ala | Ile |     | Leu<br>1755 |     | Ala | Ser |
| Val | Leu<br>1760 |     | Gln | Met | Ser | Phe<br>1765 |     | Ser | Gln | Ser | Met<br>1770 |     | Thr | Ile |
| Pro | Ala         | Leu | Ala | Leu | Ser | Val         | Ala | Gly | Ile | Pro | Gly         | Leu | Asp | Glu |

1775 1780 1785

Ala Asn Thr Ser Pro Arg Leu Ser Gln Thr Phe Leu Gln Leu Ser 1790 1795 1800

Asp Gly Asp Lys Lys Thr Leu Thr Arg Lys Lys Val Asn Gln Phe 1805 1810 1815

Phe Lys Thr Met Leu Ala Ser Lys Ser Ala Glu Glu Gly Lys Gln 1820 1825 1830

Ile Pro Asp Ser Leu Ser Thr Asp Leu 1835 1840

<210> 2930

<211> 386 <212> PRT

<213> Homo sapiens

<400> 2930

Met Glu Glu Leu Asp Ala Leu Leu Glu Glu Leu Glu Arg Ser Thr Leu 1 5 10 15

Gln Asp Ser Asp Glu Tyr Ser Asn Pro Ala Pro Leu Pro Leu Asp Gln 20 25 30

His Ser Arg Lys Glu Thr Asn Leu Asp Glu Thr Ser Glu Ile Leu Ser 35 40 45

Ile Gln Asp Asn Thr Ser Pro Leu Pro Ala Gln Leu Val Tyr Thr Thr 50 55 60

Asn Ile Gln Glu Leu Asn Val Tyr Ser Glu Ala Gln Glu Pro Lys Glu 65 70 75 80

Ser Pro Pro Pro Ser Lys Thr Ser Ala Ala Ala Gln Leu Asp Glu Leu 85 90 95

Met Ala His Leu Thr Glu Met Gln Ala Lys Val Ala Val Arg Ala Asp 100 105 110

Ala Gly Lys Lys His Leu Pro Asp Lys Gln Asp His Lys Ala Ser Leu 115 120 125

Asp Ser Met Leu Gly Gly Leu Glu Glu Glu Leu Gln Asp Leu Gly Ile 130 135 140

| Ala<br>145 | Thr        | Val        | Pro        | Lys        | Gly<br>150 | His        | Сув        | Ala        | Ser        | Cys<br>155 | Gln        | Lys        | Pro        | Ile        | Ala<br>160 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly        | Lys        | Val        | Ile        | His<br>165 | Ala        | Leu        | Gly        | Gln        | Ser<br>170 | Trp        | His        | Pro        | Glu        | His<br>175 | Phe        |
| Val        | Cys        | Thr        | His<br>180 | Cys        | Lys        | Glu        | Glu        | Ile<br>185 | Gly        | Ser        | Ser        | Pro        | Phe<br>190 | Phe        | Glu        |
| Arg        | Ser        | Gly<br>195 | Leu        | Ala        | Tyr        | Cys        | Pro<br>200 | Asn        | Asp        | Tyr        | His        | Gln<br>205 | Leu        | Phe        | Ser        |
| Pro        | Arg<br>210 | Cys        | Ala        | Tyr        | Cys        | Ala<br>215 | Ala        | Pro        | Ile        | Leu        | Asp<br>220 | Lys        | Val        | Leu        | Thr        |
| Ala<br>225 | Met        | Asn        | Gln        | Thr        | Trp<br>230 | His        | Pro        | Glu        | His        | Phe<br>235 | Phe        | Сув        | Ser        | His        | Cys<br>240 |
| Gly        | Glu        | Val        | Phe        | Gly<br>245 | Ala        | Glu        | Gly        | Phe        | His<br>250 | Glu        | Lys        | Asp        | Lys        | Lys<br>255 | Pro        |
| Tyr        | Cys        | Arg        | Lys<br>260 | Asp        | Phe        | Leu        | Ala        | Met<br>265 | Phe        | Ser        | Pro        | Lys        | Cys<br>270 | Gly        | Gly        |
| Сув        | Asn        | Arg<br>275 | Pro        | Val        | Leu        | Glu        | Asn<br>280 | Tyr        | Leu        | Ser        | Ala        | Met<br>285 | Asp        | Thr        | Val        |
| Trp        | His<br>290 | Pro        | Glu        | Сув        | Phe        | Val<br>295 | Cys        | Gly        | Asp        | Cys        | Phe<br>300 | Thr        | Ser        | Phe        | Ser        |
| Thr<br>305 | Gly        | Ser        | Phe        | Phe        | Glu<br>310 | Leu        | Asp        | Gly        | Arg        | Pro<br>315 | Phe        | Сув        | Glu        | Leu        | His<br>320 |
| Tyr        | His        | His        | Arg        | Arg<br>325 | Gly        | Thr        | Leu        | Сув        | His<br>330 | Gly        | Cys        | Gly        | Gln        | Pro<br>335 | Ile        |
| Thr        | Gly        | Arg        | Cys<br>340 | Ile        | Ser        | Ala        | Met        | Gly<br>345 | Tyr        | Lys        | Phe        | His        | Pro<br>350 | Glu        | His        |
| Phe        | Val        | Cys<br>355 | Ala        | Phe        | Cys        | Leu        | Thr<br>360 | Gln        | Leu        | Ser        | Lys        | Gly<br>365 | Ile        | Phe        | Arg        |
|            | Gln<br>370 |            | Asp        | Lys        |            | Tyr<br>375 |            |            |            | Сув        |            |            | Lys        | Leu        | Phe        |

Pro Leu 385

<210> 2931 <211> 368

<212> PRT <213> Homo sapiens

<400> 2931

Met Val Leu Glu Val Ser Asp His Gln Val Leu Asn Asp Ala Glu Val

Ala Ala Leu Leu Glu Asn Phe Ser Ser Ser Tyr Asp Tyr Gly Glu Asn 20 25 30

Glu Ser Asp Ser Cys Cys Thr Ser Pro Pro Cys Pro Gln Asp Phe Ser 35 40 45

Leu Asn Phe Asp Arg Ala Phe Leu Pro Ala Leu Tyr Ser Leu Leu Phe 50 60

Leu Leu Gly Leu Eug Gly Asn Gly Ala Val Ala Ala Val Leu Leu Ser 65 70 75 80

Arg Arg Thr Ala Leu Ser Ser Thr Asp Thr Phe Leu Leu His Leu Ala 85 90 95

Val Ala Asp Thr Leu Leu Val Leu Thr Leu Pro Leu Trp Ala Val Asp  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Ala Ala Val Gln Trp Val Phe Gly Ser Gly Leu Cys Lys Val Ala Gly 115 \$120\$

Ala Leu Phe Asn Ile Asn Phe Tyr Ala Gly Ala Leu Leu Leu Ala Cys 130 135 140

Ile Ser Phe Asp Arg Tyr Leu Asn Ile Val His Ala Thr Gln Leu Tyr 145  $\phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}160\phantom{\bigg|}$ 

Arg Arg Gly Pro Pro Ala Arg Val Thr Leu Thr Cys Leu Ala Val Trp

Gly Leu Cys Leu Leu Phe Ala Leu Pro Asp Phe Ile Phe Leu Ser Ala 180 185 190

His His Asp Glu Arg Leu Asn Ala Thr His Cys Gln Tyr Asn Phe Pro 195  $\phantom{\bigg|}200\phantom{\bigg|}205\phantom{\bigg|}$ 

| Gln                      | Val<br>210 | Gly                        | Arg        | Thr        | Ala        | Leu<br>215 | Arg        | Val        | Leu        | Gln        | Leu<br>220 | Val        | Ala        | Gly        | Phe        |
|--------------------------|------------|----------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Leu<br>225               | Leu        | Pro                        | Leu        | Leu        | Val<br>230 | Met        | Ala        | Tyr        | Cys        | Tyr<br>235 | Ala        | His        | Ile        | Leu        | Ala<br>240 |
| Val                      | Leu        | Leu                        | Val        | Ser<br>245 | Arg        | Gly        | Gln        | Arg        | Arg<br>250 | Leu        | Arg        | Ala        | Met        | Arg<br>255 | Leu        |
| Val                      | Val        | Val                        | Val<br>260 | Val        | Val        | Ala        | Phe        | Ala<br>265 | Leu        | Cys        | Trp        | Thr        | Pro<br>270 | Tyr        | His        |
| Leu                      | Val        | Val<br>275                 | Leu        | Val        | Asp        | Ile        | Leu<br>280 | Met        | Asp        | Leu        | Gly        | Ala<br>285 | Leu        | Ala        | Arg        |
| Asn                      | Сув<br>290 | Gly                        | Arg        | Glu        | Ser        | Arg<br>295 | Val        | Asp        | Val        | Ala        | Lys<br>300 | Ser        | Val        | Thr        | Ser        |
| Gly<br>305               | Leu        | Gly                        | Tyr        | Met        | His<br>310 | Cys        | Cys        | Leu        | Asn        | Pro<br>315 | Leu        | Leu        | Tyr        | Ala        | Phe<br>320 |
| Val                      | Gly        | Val                        | Lys        | Phe<br>325 | Arg        | Glu        | Arg        | Met        | Trp<br>330 | Met        | Leu        | Leu        | Leu        | Arg<br>335 | Leu        |
| Gly                      | Cys        | Pro                        | Asn<br>340 | Gln        | Arg        | Gly        | Leu        | Gln<br>345 | Arg        | Gln        | Pro        | Ser        | Ser<br>350 | Ser        | Arg        |
| Arg                      | Asp        | Ser<br>355                 | Ser        | Trp        | Ser        | Glu        | Thr<br>360 | Ser        | Glu        | Ala        | Ser        | Tyr<br>365 | Ser        | Gly        | Leu        |
| <21<br><21<br><21<br><21 | 1><br>2>   | 2932<br>359<br>PRT<br>Homo | sap        | iens       |            |            |            |            |            |            |            |            |            |            |            |
| <40                      | 0 > :      | 2932                       |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1                 | Ala        | Glu                        | Ala        | Ile<br>5   | Thr        | Tyr        | Ala        | Asp        | Leu<br>10  | Arg        | Phe        | Val        | Lys        | Ala<br>15  | Pro        |
| Leu                      | Lys        | Lys                        | Ser<br>20  | Ile        | Ser        | Ser        | Arg        | Leu<br>25  | Gly        | Gln        | Asp        | Pro        | Gly<br>30  | Ala        | Asp        |
| Asp                      | Asp        | Gly<br>35                  | Glu        | Ile        | Thr        | Tyr        | Glu<br>40  | Asn        | Val        | Gln        | Val        | Pro<br>45  | Ala        | Val        | Leu        |

| Gly        | Val<br>50  | Pro        | Ser        | Ser        | Leu        | Ala<br>55  | Ser        | Ser        | Val        | Leu        | Gly<br>60  | Asp        | Lys        | Ala        | Ala        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Val<br>65  | Lys        | Ser        | Glu        | Gln        | Pro<br>70  | Thr        | Ala        | Ser        | Trp        | Arg<br>75  | Ala        | Val        | Thr        | Ser        | Pro<br>80  |
| Ala        | Val        | Gly        | Arg        | Ile<br>85  | Leu        | Pro        | Cys        | Arg        | Thr<br>90  | Thr        | Сув        | Leu        | Arg        | Tyr<br>95  | Leu        |
| Leu        | Leu        | Gly        | Leu<br>100 | Leu        | Leu        | Thr        | Cys        | Leu<br>105 | Leu        | Leu        | Gly        | val        | Thr<br>110 | Ala        | Ile        |
| Cys        | Leu        | Gly<br>115 | Val        | Arg        | Tyr        | Leu        | Gln<br>120 | Val        | ser        | Gln        | Gln        | Leu<br>125 | Gln        | Gln        | Thr        |
| Asn        | Arg<br>130 | Val        | Leu        | Glu        | Val        | Thr<br>135 | Asn        | Ser        | Ser        | Leu        | Arg<br>140 | Gln        | Gln        | Leu        | Arg        |
| Leu<br>145 | Lys        | Ile        | Thr        | Gln        | Leu<br>150 | Gly        | Gln        | Ser        | Ala        | Glu<br>155 | Asp        | Leu        | Gln        | Gly        | Ser<br>160 |
| Arg        | Arg        | Glu        | Leu        | Ala<br>165 | Gln        | Ser        | Gln        | Glu        | Ala<br>170 | Leu        | Gln        | Val        | Glu        | Gln<br>175 | Arg        |
| Ala        | His        | Gln        | Ala<br>180 | Ala        | Glu        | Gly        | Gln        | Leu<br>185 | Gln        | Ala        | Cys        | Gln        | Ala<br>190 | Asp        | Arg        |
| Gln        | Lys        | Thr<br>195 | Lys        | Glu        | Thr        | Leu        | Gln<br>200 | Ser        | Glu        | Glu        | Gln        | Gln<br>205 | Arg        | Arg        | Ala        |
| Leu        | Glu<br>210 | Gln        | Lys        | Leu        | Ser        | Asn<br>215 | Met        | Glu        | Asn        | Arg        | Leu<br>220 | Lys        | Pro        | Phe        | Phe        |
| Thr<br>225 |            | Gly        | Ser        | Ala        | Asp<br>230 | Thr        | Cys        | Сув        | Pro        | Ser<br>235 | Gly        | Trp        | Ile        | Met        | His<br>240 |
| Gln        | Lys        | Ser        | Cys        | Phe<br>245 | Tyr        | Ile        | Ser        | Leu        | Thr<br>250 | Ser        | Lys        | Asn        | Trp        | Gln<br>255 | Glu        |
| Ser        | Gln        | Lys        | Gln<br>260 | Cys        | Glu        | Thr        | Leu        | Ser<br>265 | Ser        | Lys        | Leu        | Ala        | Thr<br>270 | Phe        | Ser        |
| Glu        | Ile        | Tyr<br>275 | Pro        | Gln        | Ser        | His        | Ser<br>280 | Tyr        | Tyr        | Phe        | Leu        | Asn<br>285 | Ser        | Leu        | Leu        |

Pro Asn Gly Gly Ser Gly Asn Ser Tyr Trp Thr Gly Leu Ser Ser Asn

290 295 300

Lys Asp Trp Lys Leu Thr Asp Asp Thr Gln Arg Thr Arg Thr Tyr Ala 305 310 315 320

Gln Ser Ser Lys Cys Asn Lys Val His Lys Thr Trp Ser Trp Trp Thr 325 330 335

Leu Glu Ser Glu Ser Cys Arg Ser Ser Leu Pro Tyr Ile Cys Glu Met  $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$ 

Thr Ala Phe Arg Phe Pro Asp 355

<210> 2933

<211> 266 <212> PRT

<213> Homo sapiens

<400> 2933

Asn Tyr Ser His Thr Ala Asn Ile Leu Pro Asp Ile Glu Asn Glu Asp 20 25 30

Phe Ile Lys Asp Cys Val Arg Ile His Asn Lys Phe Arg Ser Glu Val 35 40 45

Lys Pro Thr Ala Ser Asp Met Leu Tyr Met Thr Trp Asp Pro Ala Leu 50 55 60

Ala Gln Ile Ala Lys Ala Trp Ala Ser Asn Cys Gln Phe Ser His Asn 65 70 75 80

Thr Arg Leu Lys Pro Pro His Lys Leu His Pro Asn Phe Thr Ser Leu 85 90 95

Gly Glu Asn Ile Trp Thr Gly Ser Val Pro Ile Phe Ser Val Ser Ser 100 105 110

Ala Ile Thr Asn Trp Tyr Asp Glu Ile Gln Asp Tyr Asp Phe Lys Thr 115  $$120\$ 

Arg Ile Cys Lys Lys Val Cys Gly His Tyr Thr Gln Val Val Trp Ala 130 \$135\$

Asp Ser Tyr Lys Val Gly Cys Ala Val Gln Phe Cys Pro Lys Val Ser 145 150 155 Gly Phe Asp Ala Leu Ser Asn Gly Ala His Phe Ile Cys Asn Tyr Gly 170 Pro Glv Glv Asn Tvr Pro Thr Trp Pro Tvr Lvs Arg Glv Ala Thr Cvs 185 Ser Ala Cys Pro Asn Asn Asp Lys Cys Leu Asp Asn Leu Cys Val Asn 195 200 Arg Gln Arg Asp Gln Val Lys Arg Tyr Tyr Ser Val Val Tyr Pro Gly 210 215 Trp Pro Ile Tyr Pro Arg Asn Arg Tyr Thr Ser Leu Phe Leu Ile Val 225 230 235 Asn Ser Val Ile Leu Ile Leu Ser Val Ile Ile Thr Ile Leu Val Gln 245 250 Leu Lys Tyr Pro Asn Leu Val Leu Leu Asp 260 265 <210> 2934 <211> 1429 <212> PRT <213> Homo sapiens <400> 2934 Met Ala Gly Gly Ala Trp Gly Arg Leu Ala Cys Tyr Leu Glu Phe Leu Lys Lys Glu Glu Leu Lys Glu Phe Gln Leu Leu Ala Asn Lys Ala 25 His Ser Arg Ser Ser Ser Gly Glu Thr Pro Ala Gln Pro Glu Lys Thr 35 Ser Gly Met Glu Val Ala Ser Tyr Leu Val Ala Gln Tyr Gly Glu Gln 50 55 Arg Ala Trp Asp Leu Ala Leu His Thr Trp Glu Gln Met Gly Leu Arg 70 75 65

Ser Leu Cys Ala Gln Ala Gln Glu Gly Ala Gly His Ser Pro Ser Phe

85 90 95

Pro Tyr Ser Pro Ser Glu Pro His Leu Gly Ser Pro Ser Gln Pro Thr 100 105 110

Ser Thr Ala Val Leu Met Pro Trp Ile His Glu Leu Pro Ala Gly Cys \$115\$ \$120\$ \$125\$

Thr Gln Gly Ser Glu Arg Arg Val Leu Arg Gln Leu Pro Asp Thr Ser 130 135

Gly Arg Arg Trp Arg Glu Ile Ser Ala Ser Leu Leu Tyr Gln Ala Leu 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Pro Ser Ser Pro Asp His Glu Ser Pro Ser Gln Glu Ser Pro Asn Ala 165  $\phantom{\bigg|}170\phantom{\bigg|}170\phantom{\bigg|}175\phantom{\bigg|}$ 

Pro Thr Ser Thr Ala Val Leu Gly Ser Trp Gly Ser Pro Pro Gln Pro 180 185 190

Ser Leu Ala Pro Arg Glu Glu Glu Ala Pro Gly Thr Gln Trp Pro Leu 195 200 205

Asp Glu Thr Ser Gly Ile Tyr Tyr Thr Glu Ile Arg Glu Arg Glu Arg 210 \$215\$

Glu Lys Ser Glu Lys Gly Arg Pro Pro Trp Ala Ala Val Val Gly Thr 225  $\phantom{\bigg|}$  230  $\phantom{\bigg|}$  235  $\phantom{\bigg|}$  240

Pro Pro Gln Ala His Thr Ser Leu Gln Pro His His His Pro Trp Glu \$245\$

Pro Ser Val Arg Glu Ser Leu Cys Ser Thr Trp Pro Trp Lys Asn Glu

Asp Phe Asn Gln Lys Phe Thr Gln Leu Leu Leu Leu Gln Arg Pro His 275  $\phantom{\bigg|}280\phantom{\bigg|}$  280 Leu Leu 225

Pro Arg Ser Gln Asp Pro Leu Val Lys Arg Ser Trp Pro Asp Tyr Val 290 295 300

Glu Glu Asn Arg Gly His Leu Ile Glu Ile Arg Asp Leu Phe Gly Pro 305  $\phantom{\bigg|}$  310  $\phantom{\bigg|}$  315  $\phantom{\bigg|}$  320

Gly Leu Asp Thr Gln Glu Pro Arg Ile Val Ile Leu Gln Gly Ala Ala 325 330 335

Gly Ile Gly Lys Ser Thr Leu Ala Arg Gln Val Lys Glu Ala Trp Gly Arg Gly Gln Leu Tyr Gly Asp Arg Phe Gln His Val Phe Tyr Phe Ser Cys Arg Glu Leu Ala Gln Ser Lys Val Val Ser Leu Ala Glu Leu Ile Gly Lys Asp Gly Thr Ala Thr Pro Ala Pro Ile Arg Gln Ile Leu Ser Arg Pro Glu Arg Leu Leu Phe Ile Leu Asp Gly Val Asp Glu Pro Gly Trp Val Leu Gln Glu Pro Ser Ser Glu Leu Cys Leu His Trp Ser Gln Pro Gln Pro Ala Asp Ala Leu Leu Gly Ser Leu Leu Gly Lys Thr Ile Leu Pro Glu Ala Ser Phe Leu Ile Thr Ala Arg Thr Thr Ala Leu Gln Asn Leu Ile Pro Ser Leu Glu Gln Ala Arg Trp Val Glu Val Leu Gly Phe Ser Glu Ser Ser Arg Lys Glu Tyr Phe Tyr Arg Tyr Phe Thr Asp Glu Arg Gln Ala Ile Arg Ala Phe Arg Leu Val Lys Ser Asn Lys Glu Leu Trp Ala Leu Cys Leu Val Pro Trp Val Ser Trp Leu Ala Cys Thr Cys Leu Met Gln Gln Met Lys Arg Lys Glu Lys Leu Thr Leu Thr Ser Lys Thr Thr Thr Leu Cys Leu His Tyr Leu Ala Gln Ala Leu Gln Ala Gln Pro Leu Gly Pro Gln Leu Arg Asp Leu Cys Ser Leu Ala Ala

Glu Glv Ile Trp Gln Lys Lys Thr Leu Phe Ser Pro Asp Asp Leu Arq Lvs His Gly Leu Asp Gly Ala Ile Ile Ser Thr Phe Leu Lys Met Gly Ile Leu Gln Glu His Pro Ile Pro Leu Ser Tyr Ser Phe Ile His Leu Cys Phe Gln Glu Phe Phe Ala Ala Met Ser Tyr Val Leu Glu Asp Glu Lys Gly Arq Gly Lys His Ser Asn Cys Ile Ile Asp Leu Glu Lys Thr Leu Glu Ala Tyr Gly Ile His Gly Leu Phe Gly Ala Ser Thr Thr Arg Phe Leu Leu Gly Leu Leu Ser Asp Glu Gly Glu Arg Glu Met Glu Asn Ile Phe His Cys Arg Leu Ser Gln Gly Arg Asn Leu Met Gln Trp Val Pro Ser Leu Gln Leu Leu Gln Pro His Ser Leu Glu Ser Leu His Cys Leu Tyr Glu Thr Arg Asn Lys Thr Phe Leu Thr Gln Val Met Ala His Phe Glu Glu Met Gly Met Cys Val Glu Thr Asp Met Glu Leu Leu Val Cys Thr Phe Cys Ile Lys Phe Ser Arg His Val Lys Lys Leu Gln Leu Ile Glu Gly Arg Gln His Arg Ser Thr Trp Ser Pro Thr Met Val Val Leu Phe Arg Trp Val Pro Val Thr Asp Ala Tyr Trp Gln Ile Leu Phe Ser Val Leu Lys Val Thr Arg Asn Leu Lys Glu Leu Asp Leu Ser 

Gly Asn Ser Leu Ser His Ser Ala Val Lys Ser Leu Cys Lys Thr Leu 820 825 830

- Arg Arg Pro Arg Cys Leu Leu Glu Thr Leu Arg Leu Ala Gly Cys Gly 835 840 845
- Leu Thr Ala Glu Asp Cys Lys Asp Leu Ala Phe Gly Leu Arg Ala Asn 850 855 860
- Gln Thr Leu Thr Glu Leu Asp Leu Ser Phe Asn Val Leu Thr Asp Ala 865 870 875 880
- Gly Ala Lys His Leu Cys Gln Arg Leu Arg Gln Pro Ser Cys Lys Leu 885 890 895
- Gln Arg Leu Gln Leu Val Ser Cys Gly Leu Thr Ser Asp Cys Cys Gln 900 905 910
- Asp Leu Ala Ser Val Leu Ser Ala Ser Pro Ser Leu Lys Glu Leu Asp 915 920 925
- Leu Gln Gln Asn Asn Leu Asp Asp Val Gly Val Arg Leu Leu Cys Glu 930 940
- Gly Leu Arg His Pro Ala Cys Lys Leu Ile Arg Leu Gly Leu Asp Gln 945 950 955 960
- Thr Thr Leu Ser Asp Glu Met Arg Gln Glu Leu Arg Ala Leu Glu Gln 965 970 975
- Glu Lys Pro Gln Leu Leu Ile Phe Ser Arg Arg Lys Pro Ser Val Met  $980 \hspace{1.5cm} 985 \hspace{1.5cm} 990 \hspace{1.5cm}$
- Thr Pro Thr Glu Gly Leu Asp Thr Gly Glu Met Ser Asn Ser Thr Ser 995  $\phantom{\bigg|}$  1000  $\phantom{\bigg|}$
- Ser Leu Lys Arg Gln Arg Leu Gly Ser Glu Arg Ala Ala Ser His 1010 1015 1020
- Val Ala Gln Ala Asn Leu Lys Leu Leu Asp Val Ser Lys Ile Phe 1025 1030 1035
- Pro Ile Ala Glu Ile Ala Glu Glu Ser Ser Pro Glu Val Val Pro 1040 1040 1050
- Val Glu Leu Leu Cys Val Pro Ser Pro Ala Ser Gln Gly Asp Leu

1055 1060 1065

His Thr Lys Pro Leu Gly Thr Asp Asp Asp Phe Trp Gly Pro Thr Gly Pro Val Ala Thr Glu Val Val Asp Lys Glu Lys Asn Leu Tyr Arg Val His Phe Pro Val Ala Gly Ser Tyr Arg Trp Pro Asn Thr Gly Leu Cys Phe Val Met Arg Glu Ala Val Thr Val Glu Ile Glu Phe Cys Val Trp Asp Gln Phe Leu Gly Glu Ile Asn Pro Gln His Ser Trp Met Val Ala Gly Pro Leu Leu Asp Ile Lys Ala Glu Pro Gly Ala Val Glu Ala Val His Leu Pro His Phe Val Ala Leu Gln Gly Gly His Val Asp Thr Ser Leu Phe Gln Met Ala His Phe Lys Glu Glu Gly Met Leu Leu Glu Lys Pro Ala Arg Val Glu Leu His His Ile Val Leu Glu Asn Pro Ser Phe Ser Pro Leu Gly Val Leu Leu Lys Met Ile His Asn Ala Leu Arg Phe Ile Pro Val Thr Ser Val Val Leu Leu Tyr His Arg Val His Pro Glu Glu Val Thr Phe His Leu Tyr Leu Ile Pro Ser Asp Cys Ser Ile Arg Lys Glu Leu Glu Leu Cys Tyr Arg Ser Pro Gly Glu Asp Gln Leu Phe Ser Glu 

Phe Tyr Val Gly His Leu Gly Ser Gly Ile Arg Leu Gln Val Lys

Asp Lys Lys Asp Glu Thr Leu Val Trp Glu Ala Leu Val Lys Pro 1300 1305 1295 Gly Asp Leu Met Pro Ala Thr Thr Leu Ile Pro Pro Ala Arg Ile 1315 1320 1310 Ala Val Pro Ser Pro Leu Asp Ala Pro Gln Leu Leu His Phe Val 1325 1330 Asp Gln Tyr Arg Glu Gln Leu Ile Ala Arg Val Thr Ser Val Glu 1345 1350 Val Val Leu Asp Lys Leu His Gly Gln Val Leu Ser Gln Glu Gln 1355 1360 Tyr Glu Arg Val Leu Ala Glu Asn Thr Arg Pro Ser Gln Met Arg 1375 1370 Lys Leu Phe Ser Leu Ser Gln Ser Trp Asp Arg Lys Cys Lys Asp 1385 1390 1395 Gly Leu Tyr Gln Ala Leu Lys Glu Thr His Pro His Leu Ile Met 1405 1400 1410 Glu Leu Trp Glu Lys Gly Ser Lys Lys Gly Leu Leu Pro Leu Ser 1420 1425 1415 Ser <210> 2935 <211> 352 <212> PRT <213> Homo sapiens <400> 2935 Met Glu Gly Ile Ser Ile Tyr Thr Ser Asp Asn Tyr Thr Glu Glu Met 5 10 Gly Ser Gly Asp Tyr Asp Ser Met Lys Glu Pro Cys Phe Arg Glu Glu

1291

Asn Ala Asn Phe Asn Lys Ile Phe Leu Pro Thr Ile Tyr Ser Ile Ile

40

/US2003/012946

|            | wo:        | 2004/0     | )42340     | 5          |            |            |            |            |            |            |            |            |            |            | PCT        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Phe        | Leu<br>50  | Thr        | Gly        | Ile        | Val        | Gly<br>55  | Asn        | Gly        | Leu        | Val        | Ile<br>60  | Leu        | Val        | Met        | Gly        |
| Tyr<br>65  | Gln        | Lys        | Lys        | Leu        | Arg<br>70  | Ser        | Met        | Thr        | Asp        | Lys<br>75  | Tyr        | Arg        | Leu        | His        | Leu<br>80  |
| Ser        | Val        | Ala        | Asp        | Leu<br>85  | Leu        | Phe        | Val        | Ile        | Thr<br>90  | Leu        | Pro        | Phe        | Trp        | Ala<br>95  | Val        |
| Asp        | Ala        | Val        | Ala<br>100 | Asn        | Trp        | Tyr        | Phe        | Gly<br>105 | Asn        | Phe        | Leu        | Сув        | Lys<br>110 | Ala        | Val        |
| His        | Val        | Ile<br>115 | Tyr        | Thr        | Val        | Asn        | Leu<br>120 | Tyr        | ser        | Ser        | Val        | Leu<br>125 | Ile        | Leu        | Ala        |
| Phe        | Ile<br>130 | Ser        | Leu        | Asp        | Arg        | Tyr<br>135 | Leu        | Ala        | Ile        | Val        | His<br>140 | Ala        | Thr        | Asn        | Ser        |
| Gln<br>145 | Arg        | Pro        | Arg        | Lys        | Leu<br>150 | Leu        | Ala        | Glu        | Lys        | Val<br>155 | Val        | Tyr        | Val        | Gly        | Val<br>160 |
| Trp        | Ile        | Pro        | Ala        | Leu<br>165 | Leu        | Leu        | Thr        | Ile        | Pro<br>170 | Asp        | Phe        | Ile        | Phe        | Ala<br>175 | Asn        |
| Val        | Ser        | Glu        | Ala<br>180 | Asp        | Asp        | Arg        | Tyr        | Ile<br>185 | Cys        | Asp        | Arg        | Phe        | Tyr<br>190 | Pro        | Asn        |
| Asp        | Leu        | Trp<br>195 | Val        | Val        | Val        | Phe        | Gln<br>200 | Phe        | Gln        | His        | Ile        | Met<br>205 | Val        | Gly        | Leu        |
| Ile        | Leu<br>210 | Pro        | Gly        | Ile        | Val        | Ile<br>215 | Leu        | Ser        | Cys        | Tyr        | Cys<br>220 | Ile        | Ile        | Ile        | Ser        |
| Lys<br>225 | Leu        | Ser        | His        | Ser        | Lys<br>230 | Gly        | His        | Gln        | Lys        | Arg<br>235 | Lys        | Ala        | Leu        | Lys        | Thr<br>240 |
| Thr        | Val        | Ile        | Leu        | Ile<br>245 | Leu        | Ala        | Phe        | Phe        | Ala<br>250 |            | Trp        | Leu        | Pro        | Tyr<br>255 | Tyr        |
| Ile        | Gly        | Ile        | Ser<br>260 | Ile        | Asp        | Ser        | Phe        | 11e<br>265 | Leu        | Leu        | Glu        | Ile        | Ile<br>270 | Lys        | Gln        |

Gly Cys Glu Phe Glu Asn Thr Val His Lys Trp Ile Ser Ile Thr Glu 280

275

Ala Leu Ala Phe Phe His Cys Cys Leu Asn Pro Ile Leu Tyr Ala Phe

290 295 300

Leu Gly Ala Lys Phe Lys Thr Ser Ala Gln His Ala Leu Thr Ser Val 305 310 315 320

Ser Arg Gly Ser Ser Leu Lys Ile Leu Ser Lys Gly Lys Arg Gly Gly 325 330 335

His Ser Ser Val Ser Thr Glu Ser Glu Ser Ser Ser Phe His Ser Ser Ser 340 345 350

<210> 2936

<211> 248 <212> PRT

<213> Homo sapiens

<400> 2936

Met Leu Ser Thr Val Gly Ser Phe Leu Gln Asp Leu Gln Asn Glu Asp 1 5 10 15

Lys Gly Ile Lys Thr Ala Ala Ile Phe Thr Ala Asp Gly Asn Met Ile 20 25 30

Ser Ala Ser Thr Leu Met Asp Ile Leu Leu Met Asn Asp Phe Lys Leu  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Val Ile Asn Lys Ile Ala Tyr Asp Val Gln Cys Pro Lys Arg Glu Lys  $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60 \hspace{1.5cm}$ 

Pro Ser Asn Glu His Thr Ala Glu Met Glu His Met Lys Ser Leu Val 65 70 75 80

His Arg Leu Phe Thr Ile Leu His Leu Glu Glu Ser Gln Lys Lys Arg 85 90 95

Glu His His Leu Leu Glu Lys Ile Asp His Leu Lys Glu Gln Leu Gln 100 105 110

Pro Leu Glu Gln Val Lys Ala Gly Ile Glu Ala His Ser Glu Ala Lys \$115\$ \$120\$ \$125\$

Thr Ser Gly Leu Leu Trp Ala Gly Leu Ala Leu Leu Ser Ile Gln Gly 130 135 140

Gly Ala Leu Ala Trp Leu Thr Trp Trp Val Tyr Ser Trp Asp Ile Met 145 150 155 160

Glu Pro Val Thr Tyr Phe Ile Thr Phe Ala Asn Ser Met Val Phe Phe 165 170 175

Ser Arg Gln Phe Leu Gln Phe Phe His Lys Lys Ser Lys Gln Gln His 195 200 205

Phe Asp Val Gln Gln Tyr Asn Lys Leu Lys Glu Asp Leu Ala Lys Ala 210  $\phantom{\bigg|}215\phantom{\bigg|}220\phantom{\bigg|}$ 

Lys Glu Ser Leu Lys Gln Ala Arg His Ser Leu Cys Leu Gln Met Gln 225 230 235 240

Val Glu Glu Leu Asn Glu Lys Asn 245

<210> 2937

<211> 790 <212> PRT

<213> Homo sapiens

<400> 2937

Met Ala Glu Gln Val Leu Pro Gln Ala Leu Tyr Leu Ser Asn Met Arg 1  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Lys Ala Val Lys Ile Arg Glu Arg Thr Pro Glu Asp Ile Phe Lys Pro 20 25 30

Thr Asn Gly Ile Ile His His Phe Lys Thr Met His Arg Tyr Thr Leu  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Glu Met Phe Arg Thr Cys Gln Phe Cys Pro Gln Phe Arg Glu Ile Ile 50  $\,$  55  $\,$  60

His Lys Ala Leu Ile Asp Arg Asn Ile Gln Ala Thr Leu Glu Ser Gln 65 70 75 80

Lys Lys Leu Asn Trp Cys Arg Glu Val Arg Lys Leu Val Ala Leu Lys 85 90 95

Thr Asn Gly Asp Gly Asn Cys Leu Met His Ala Thr Ser Gln Tyr Met
100 105 110

Trp Gly Val Gln Asp Thr Asp Leu Val Leu Arg Lys Ala Leu Phe Ser

115 120 125

Thr Leu Lys Glu Thr Asp Thr Arg Asn Phe Lys Phe Arg Trp Gln Leu 130 135 140

Glu Ser Leu Lys Ser Gln Glu Phe Val Glu Thr Gly Leu Cys Tyr Asp 145 150 155 160

Thr Arg Asn Trp Asn Asp Glu Trp Asp Asn Leu Ile Lys Met Ala Ser 165 170 175

Thr Asp Thr Pro Met Ala Arg Ser Gly Leu Gln Tyr Asn Ser Leu Glu 180  $$185\$ 

Glu Ile His Ile Phe Val Leu Cys Asn Ile Leu Arg Arg Pro Ile Ile 195 200 205

Val Ile Ser Asp Lys Met Leu Arg Ser Leu Glu Ser Gly Ser Asn Phe 210  $\,$  215  $\,$  220  $\,$ 

Ala Pro Leu Lys Val Gly Gly Ile Tyr Leu Pro Leu His Trp Pro Ala 225 230 235 240

Gln Glu Cys Tyr Arg Tyr Pro Ile Val Leu Gly Tyr Asp Ser His His 245  $\phantom{\bigg|}250\phantom{\bigg|}255\phantom{\bigg|}$ 

Phe Val Pro Leu Val Thr Leu Lys Asp Ser Gly Pro Glu Ile Arg Ala

Val Pro Leu Val Asn Arg Asp Arg Gly Arg Phe Glu Asp Leu Lys Val 275 280 285

His Phe Leu Thr Asp Pro Glu Asn Glu Met Lys Glu Lys Leu Leu Lys 290 295 300

Glu Tyr Leu Met Val Ile Glu Ile Pro Val Gln Gly Trp Asp His Gly 305  $\phantom{\bigg|}$  310  $\phantom{\bigg|}$  315  $\phantom{\bigg|}$  320

Thr Thr His Leu Ile Asn Ala Ala Lys Leu Asp Glu Ala Asn Leu Pro  $325 \hspace{1.5cm} 330 \hspace{1.5cm} 335 \hspace{1.5cm}$ 

Lys Glu Ile Asn Leu Val Asp Asp Tyr Phe Glu Leu Val Gln His Glu 340 345 350

Tyr Lys Lys Trp Gln Glu Asn Ser Glu Gln Gly Arg Arg Glu Gly His  $355 \hspace{1cm} 360 \hspace{1cm} 365 \hspace{1cm} 365 \hspace{1cm}$ 

Ala Gln Asn Pro Met Glu Pro Ser Val Pro Gln Leu Ser Leu Met Asp Val Lys Cys Glu Thr Pro Asn Cys Pro Phe Phe Met Ser Val Asn Thr Gln Pro Leu Cys His Glu Cys Ser Glu Arg Arg Gln Lys Asn Gln Asn Lys Leu Pro Lys Leu Asn Ser Lys Pro Gly Pro Glu Gly Leu Pro Gly Met Ala Leu Gly Ala Ser Arg Gly Glu Ala Tyr Glu Pro Leu Ala Trp Asn Pro Glu Glu Ser Thr Gly Gly Pro His Ser Ala Pro Pro Thr Ala Pro Ser Pro Phe Leu Phe Ser Glu Thr Thr Ala Met Lys Cys Arg Ser Pro Gly Cys Pro Phe Thr Leu Asn Val Gln His Asn Gly Phe Cys Glu Arg Cvs His Asn Ala Arg Gln Leu His Ala Ser His Ala Pro Asp His Thr Arg His Leu Asp Pro Gly Lys Cys Gln Ala Cys Leu Gln Asp Val Thr Arg Thr Phe Asn Gly Ile Cys Ser Thr Cys Phe Lys Arg Thr Thr Ala Glu Ala Ser Ser Ser Leu Ser Thr Ser Leu Pro Pro Ser Cys His Gln Arg Ser Lys Ser Asp Pro Ser Arg Leu Val Arg Ser Pro Ser Pro His Ser Cys His Arg Ala Gly Asn Asp Ala Pro Ala Gly Cys Leu Ser Gln Ala Ala Arg Thr Pro Gly Asp Arg Thr Gly Thr Ser Lys Cys Arg 

Lys Ala Gly Cys Val Tyr Phe Gly Thr Pro Glu Asn Lys Gly Phe Cys 610 615 620

Thr Leu Cys Phe Ile Glu Tyr Arg Glu Asn Lys His Phe Ala Ala Ala 625  $\phantom{\bigg|}$  630  $\phantom{\bigg|}$  635  $\phantom{\bigg|}$  640

Cys Leu Gly Arg Glu Cys Gly Thr Leu Gly Ser Thr Met Phe Glu Gly  $660 \hspace{1cm} 665 \hspace{1cm} 670 \hspace{1cm} 670 \hspace{1cm}$ 

Ala Lys Arg Thr Glu Glu Gln Leu Arg Ser Ser Gln Arg Arg Asp Val

Pro Arg Thr Thr Gln Ser Thr Ser Arg Pro Lys Cys Ala Arg Ala Ser 705 710 715 720

Cys Lys Asn Ile Leu Ala Cys Arg Ser Glu Glu Leu Cys Met Glu Cys 725 730 735

Gln His Pro Asn Gln Arg Met Gly Pro Gly Ala His Arg Gly Glu Pro 740 745 750

Ala Pro Glu Asp Pro Pro Lys Gln Arg Cys Arg Ala Pro Ala Cys Asp 755 760 765

His Phe Gly Asn Ala Lys Cys Asn Gly Tyr Cys Asn Glu Cys Phe Gln
770 780

Phe Lys Gln Met Tyr Gly 785 790

<210> 2938

<211> 206

<212> PRT <213> Homo sapiens

<400> 2938

Met Ala Leu Pro Cys Thr Leu Gly Leu Gly Met Leu Leu Ala Leu Pro 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Gly Ala Leu Gly Ser Gly Gly Ser Ala Glu Asp Ser Val Gly Ser Ser

20 25 30

Gly Leu Ala Leu Ala Trp Arg Arg Leu Ser Arg Asp Ser Gly Gly Tyr 50  $\,$  55  $\,$  60

Leu Leu Trp Ala Ser Pro Pro Gly Arg Trp Leu Gln Ala Arg Ala Glu 85 90 95

Leu Gly Ser Thr Asp Asn Asp Leu Glu Arg Gln Glu Asp Glu Gln Asp 100 105 110

Thr Asp Tyr Asp His Val Ala Asp Gly Gly Leu Gln Ala Asp Pro Gly 115 120 125

Glu Gly Glu Gln Gln Cys Gly Glu Ala Ser Ser Pro Glu Gln Val Pro 130 135 140

Val Arg Ala Glu Glu Ala Arg Asp Ser Asp Thr Glu Gly Asp Leu Val 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Leu Gly Ser Pro Gly Pro Ala Ser Ala Gly Gly Ser Ala Glu Ala Leu 165 170 175

Leu Ser Asp Leu His Ala Phe Ala Gly Ser Ala Ala Trp Asp Asp Ser 180 185 190

Ala Arg Ala Ala Gly Gly Gln Gly Leu His Val Thr Ala Leu 195 200 205

<210> 2939

<211> 718 <212> PRT

<213> Homo sapiens

<400> 2939

Met Ile Val Asp Lys Leu Leu Asp Asp Ser Arg Gly Gly Glu Gly Leu
1 5 10 15

Arg Asp Ala Ala Gly Gly Cys Gly Leu Met Thr Ser Pro Leu Asn Leu 20 25 30

Ser Tyr Phe Tyr Gly Ala Ser Pro Pro Ala Ala Ala Pro Gly Ala Cys

- Asp Ala Ser Cys Ser Val Leu Gly Pro Ser Ala Pro Gly Ser Pro Gly 50 60
- Ser Asp Ser Ser Asp Phe Ser Ser Ala Ser Ser Val Ser Ser Cys Gly 65 70 75 80
- Ala Val Glu Ser Arg Ser Arg Gly Gly Ala Arg Ala Glu Arg Gln Pro
- Val Glu Pro His Met Gly Val Gly Arg Gln Gln Arg Gly Pro Phe Gln 100 105 110
- Gly Val Arg Val Lys Asn Ser Val Lys Glu Leu Leu Leu His Ile Arg 115 120 125
- Ser His Lys Gln Lys Ala Ser Gly Gln Ala Val Asp Asp Phe Lys Thr 130 135
- Gln Gly Val Asn Ile Glu Gln Phe Arg Glu Leu Lys Asn Thr Val Ser 145 155 160
- Tyr Ser Gly Lys Arg Lys Gly Pro Asp Ser Leu Ser Asp Gly Pro Ala 165 170 175
- Cys Lys Arg Pro Ala Leu Leu His Ser Gln Phe Leu Thr Pro Pro Gln 180 185 190
- Thr Pro Thr Pro Gly Glu Ser Met Glu Asp Val His Leu Asn Glu Pro  $195 \hspace{1.5cm} 200 \hspace{1.5cm} 205 \hspace{1.5cm}$
- Lys Gln Glu Ser Ser Ala Asp Leu Leu Gln Asn Ile Ile Asn Ile Lys 210 215 220
- Asn Glu Cys Ser Pro Val Ser Leu Asn Thr Val Gln Val Ser Trp Leu 225  $\phantom{\bigg|}230\phantom{\bigg|}235\phantom{\bigg|}235\phantom{\bigg|}$
- Asn Pro Val Val Val Pro Gln Ser Ser Pro Ala Glu Gln Cys Gln Asp 245 250 255
- Phe His Gly Gln Val Phe Ser Pro Pro Gln Lys Cys Gln Pro Phe 260 265 270

Gln Val Arg Gly Ser Gln Gln Met Ile Asp Gln Ala Ser Leu Tyr Gln 275 280 285

Tyr Ser Pro Gln Asn Gln His Val Glu Gln Gln Pro His Tyr Thr His 290 295 300

Lys Pro Thr Leu Glu Tyr Ser Pro Phe Pro Ile Pro Pro Gln Ser Pro 305 310 315 320

Ala Tyr Glu Pro Asn Leu Phe Asp Gly Pro Glu Ser Gln Phe Cys Pro 325 330 335

Asn Gln Ser Leu Val Ser Leu Leu Gly Asp Gln Arg Glu Ser Glu Asn 340 345 350

Ile Ala Asn Pro Met Gln Thr Ser Ser Ser Val Gln Gln Gln Asn Asp 355  $360 \hspace{1.5cm} 365$ 

Ala His Leu His Ser Phe Ser Met Met Pro Ser Ser Ala Cys Glu Ala 370 375 380

Met Val Gly His Glu Met Ala Ser Asp Ser Ser Asn Thr Ser Leu Pro 385 390 395 400

Phe Ser Asn Met Gly Asn Pro Met Asn Thr Thr Gln Leu Gly Lys Ser 405 410 415

Leu Phe Gln Trp Gln Val Glu Gln Glu Glu Ser Lys Leu Ala Asn Ile 420 425 430

Ser Gln Asp Gln Phe Leu Ser Lys Asp Ala Asp Gly Asp Thr Phe Leu 435 440 445

His Ile Ala Val Ala Gln Gly Arg Arg Ala Leu Ser Tyr Val Leu Ala 450 455 460

Arg Lys Met Asn Ala Leu His Met Leu Asp Ile Lys Glu His Asn Gly 465 470 475

Gln Ser Ala Phe Gln Val Ala Val Ala Ala Asn Gln His Leu Ile Val 485 490 495

Gln Asp Leu Val Asn Ile Gly Ala Gln Val Asn Thr Thr Asp Cys Trp

Gly Arg Thr Pro Leu His Val Cys Ala Glu Lys Gly His Ser Gln Val

515 520 525

Leu Gln Ala Ile Gln Lys Gly Ala Val Gly Ser Asn Gln Phe Val Asp  $530 \hspace{1.5cm} 535 \hspace{1.5cm} 540 \hspace{1.5cm}$ 

Leu Glu Ala Thr Asn Tyr Asp Gly Leu Thr Pro Leu His Cys Ala Val 545 550 560

Ile Ala His Asn Ala Val Val His Glu Leu Gln Arg Asn Gln Gln Pro 565 570 575

His Ser Pro Glu Val Gln Glu Leu Leu Leu Lys Asn Lys Ser Leu Val 580 585 590

Asp Thr Ile Lys Cys Leu Ile Gln Met Gly Ala Ala Val Glu Ala Lys 595 600 605

Asp Arg Lys Ser Gly Arg Thr Ala Leu His Leu Ala Ala Glu Glu Ala 610 615 620

Asn Leu Glu Leu Ile Arg Leu Phe Leu Glu Leu Pro Ser Cys Leu Ser 625 630 635

Phe Val Asn Ala Lys Ala Tyr Asn Gly Asn Thr Ala Leu His Val Ala 645 650 655

Ala Ser Leu Gln Tyr Arg Leu Thr Gln Leu Asp Ala Val Arg Leu Leu 660 665 670

Met Arg Lys Gly Ala Asp Pro Ser Thr Arg Asn Leu Glu Asn Glu Gln 675 680 685

Pro Val His Leu Val Pro Asp Gly Pro Val Gly Glu Gln Ile Arg Arg 690 695 700

Ile Leu Lys Gly Lys Ser Ile Gln Gln Arg Ala Pro Pro Tyr

<210> 2940

<211> 247

<212> PRT

<213> Homo sapiens

<400> 2940

Met Gln Pro Ile Leu Leu Leu Leu Ala Phe Leu Leu Leu Pro Arg Ala 1 5 10 15

Asp Ala Gly Glu Ile Ile Gly Gly His Glu Ala Lys Pro His Ser Arg

- Pro Tyr Met Ala Tyr Leu Met Ile Trp Asp Gln Lys Ser Leu Lys Arg 35 40 45
- Cys Gly Gly Phe Leu Ile Gln Asp Asp Phe Val Leu Thr Ala Ala His 50  $\,$  55  $\,$  60  $\,$
- Cys Trp Gly Ser Ser Ile Asn Val Thr Leu Gly Ala His Asn Ile Lys 65 70 75 80
- Glu Gln Glu Pro Thr Gln Gln Phe Ile Pro Val Lys Arg Pro Ile Pro 85 90 95
- His Pro Ala Tyr Asn Pro Lys Asn Phe Ser Asn Asp Ile Met Leu Leu 100 105 110
- Gln Leu Glu Arg Lys Ala Lys Arg Thr Arg Ala Val Gln Pro Leu Arg 115 120 125
- Leu Pro Ser Asn Lys Ala Gln Val Lys Pro Gly Gln Thr Cys Ser Val 130 135
- Ala Gly Trp Gly Gln Thr Ala Pro Leu Gly Lys His Ser His Thr Leu 145 \$150\$
- Gln Glu Val Lys Met Thr Val Gln Glu Asp Arg Lys Cys Glu Ser Asp 165 170 175
- Leu Arg His Tyr Tyr Asp Ser Thr Ile Glu Leu Cys Val Gly Asp Pro 180 185 190
- Glu Ile Lys Lys Thr Ser Phe Lys Gly Asp Ser Gly Gly Pro Leu Val 195 200 205
- Cys Asn Lys Val Ala Gln Gly Ile Val Ser Tyr Gly Arg Asn Asn Gly 210 \$215\$
- Met Pro Pro Arg Ala Cys Thr Lys Val Ser Ser Phe Val His Trp Ile 225 230 235 240

Lys Lys Thr Met Lys Arg Tyr 245

<210> 2941

<211> 191 <212> PRT

<213> Homo sapiens

<400> 2941

Met His Asp Ser Asn Asn Val Glu Lys Asp Ile Thr Pro Ser Glu Leu 1 5 10 15

Pro Ala Asn Pro Gly Cys Leu His Ser Lys Glu His Ser Ile Lys Ala 20 25 30

Thr Leu Ile Trp Arg Leu Phe Phe Leu Ile Met Phe Leu Thr Ile Ile 35  $\phantom{\bigg|}40\phantom{\bigg|}$ 

Val Cys Gly Met Val Ala Ala Leu Ser Ala Ile Arg Ala Asn Cys His 50 55 60

Gln Glu Pro Ser Val Cys Leu Gln Ala Ala Cys Pro Glu Ser Trp Ile 65 70 75 80

Gly Phe Gln Arg Lys Cys Phe Tyr Phe Ser Asp Asp Thr Lys Asn Trp 85 90 95

Thr Ser Ser Gln Arg Phe Cys Asp Ser Gln Asp Ala Asp Leu Ala Gln

Val Glu Ser Phe Gln Glu Leu Asn Phe Leu Leu Arg Tyr Lys Gly Pro 115 120 125

Ser Asp His Trp Ile Gly Leu Ser Arg Glu Gln Gly Gln Pro Trp Lys  $130 \\ \hspace{1.5cm} 135 \\ \hspace{1.5cm} 140 \\ \hspace{1.5cm}$ 

Trp Ile Asn Gly Thr Glu Trp Thr Arg Gln Phe Pro Ile Leu Gly Ala 145  $\phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}$ 

Gly Glu Cys Ala Tyr Leu Asn Asp Lys Gly Ala Ser Ser Ala Arg His 165 170 175

Tyr Thr Glu Arg Lys Trp Ile Cys Ser Lys Ser Asp Ile His Val 180 \$185\$

<210> 2942 <211> 441

<212> PRT

<213> Homo sapiens

<400> 2942

PCT/US2003/012946

|            | wo         | 200-            | 1/04       | 2346                  | ,          |            |            |            |            |          |           |           |            |            |            |            | PCT        | r/US |
|------------|------------|-----------------|------------|-----------------------|------------|------------|------------|------------|------------|----------|-----------|-----------|------------|------------|------------|------------|------------|------|
| Me<br>1    | et G       | lu :            | Ile        | Ar                    | g Le<br>5  | u As       | p Tì       | ır L       | eu S       | er 1     | Ala<br>LO | Ser       | Le         | u Gl       | y Aı       | g Se       |            | er   |
| Th         | ır Le      | eu /            | Asn        | As <sub>l</sub><br>20 | э Су       | s As       | n Le       | eu G       | lu A       | sp I     | ys        | Leu       | Ala        | a Tr       | р Ту<br>30 |            | lu G       | ly   |
| G1         | u Al       | .a 1            | yr<br>5    | Met                   | Tr         | рHi        | s Hi       | s T1       | p Ly       | s F      | ro        | Phe       | Pro        | G1<br>45   | u As       | n Pr       | o L        | eu   |
| Tr         | p Th<br>50 | rc              | 'ys        | Leu                   | ı As       | p Ph       | e Gl<br>55 | n Il       | e Al       | a G      | ln        | Val       | Gly<br>60  | Pr         | o Tr       | p As       | рТ         | yr   |
| Су:<br>65  | s Se       | r s             | er         | Cys                   | Ile        | 70         | g Hi       | s Th       | r Ar       | g L      | eu        | Lys<br>75 | Ser        | Sei        | r Cy       | s Se       | r As       |      |
| Met        | : As       | o L             | eu         | Leu                   | His<br>85  | Sei        | Tr         | p Ar       | g Se       | r Se     | er<br>O   | Ser       | Phe        | Gly        | / Ası      | n Ph       | e As       | p    |
| Arg        | J Phe      | e A:            | rg         | Asn<br>100            | Asr        | Ser        | Lei        | ı Se       | r Ly<br>10 | s P1     | 0         | Asp       | Asp        | Ser        | Th:        |            | ı Al       | a    |
| His        | Glu        | 1 G             | Ly .<br>L5 | Asp                   | Pro        | Thr        | Asr        | 1 Gly      | y Se:      | r G]     | У         | Glu       | Gln        | Ser<br>125 | Lys        | Thr        | Se         | r    |
| Asn        | Asn<br>130 | G]              | ly (       | 3ly                   | Gly        | Leu        | Gly<br>135 | Lys        | Ly:        | 5 Me     | ti        | Arg       | Ala<br>140 | Ile        | Ser        | Trp        | Th:        | r    |
| Met<br>145 | Lys        | Ly              | s ]        | Lys                   | Val        | Gly<br>150 | Lys        | Lys        | туг        | 11       | e I       | 155       | Ala        | Leu        | Ser        | Glu        | Glu<br>160 |      |
| Lys        | Asp        | G1              | u C        | lu                    | Asp<br>165 | Gly        | Glu        | Asn        | Ala        | Hi<br>17 | s F<br>O  | ro !      | Fyr        | Arg        | Asn        | Ser<br>175 | Asp        | •    |
| Pro        | Val        | 11              | e G        | 1y<br>80              | Thr        | His        | Thr        | Glu        | Lys<br>185 | Va:      | l s       | er I      | Seu        | Lys        | Ala<br>190 | Ser        | Asp        | ,    |
| Ser        | Met        | As <sub>1</sub> | o S        | er :                  | Leu        | Tyr        | Ser        | Gly<br>200 | Gln        | Sei      | S         | er S      | er :       | Ser<br>205 | Gly        | Ile        | Thr        |      |
| Ser        | Cys<br>210 | Se              | c A        | sp (                  | 3ly        | Thr        | Ser<br>215 | Asn        | Arg        | Asp      | S         | er P      | he 1       | Arg        | Leu        | Asp        | Asp        |      |

Asp Gly Pro Tyr Ser Gly Pro Phe Cys Gly Arg Ala Arg Val His Thr 225  $\phantom{\bigg|}230\phantom{\bigg|}225\phantom{\bigg|}235\phantom{\bigg|}235\phantom{\bigg|}$ 

/US2003/012946

| Gly Asp Ile Ile Asp Ile Ile Cys Lys Thr Pro Met Gly Met Try 270  Gly Met Leu Asn Asn Lys Val Gly Asn Phe Lys Phe Ile Tyr Val 280  Val Ile Ser Glu Glu Glu Ala Ala Pro Lys Lys Ile Lys Ala Asn 290  Arg Ser Asn Ser Lys Lys Ser Lys Thr Leu Gln Glu Phe Leu Glu 315  Ile His Leu Gln Glu Tyr Thr Ser Thr Leu Leu Leu Asn Gly Tyr 325  Thr Leu Glu Asp Leu Lys Asp Ile Lys Glu Ser His Leu Ile Glu 345  Asn Ile Glu Asn Pro Asp Asp Arg Arg Arg Leu Leu Ser Ala Ala 355  Asn Phe Leu Glu Glu Glu IIe Ile Gln Glu Gln Glu Asn Glu Pro 370  Pro Leu Ser Leu Ser Ser Asp Ile Ser Leu Asn Lys Ser Gln Leu 385  Asp Cys Pro Arg Asp Ser Gly Cys Tyr Ile Ser Ser Gly Asn Ser 412  Asn Gly Lys Glu Asp Leu Glu Ser Glu Asn Leu Ser Asp Met Val 425  Lys Ile Ile Ile Thr Glu Pro Ser Asp |     | WO 2 | 2004/0 | 42346 | ,   |     |     |     |     |     |     |     |     |     |            | PCT/       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|--------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------|------------|
| 260 265 270  Gly Met Leu Asn Asn Lys Val Gly Asn Phe Lys Phe 11e Tyr Val 275  Val 11e Ser Glu Glu Glu Ala Ala Pro Lys Lys Ile Lys Ala Asn 290  Arg Ser Asn Ser Lys Lys Ser Lys Thr Leu Gln Glu Phe Leu Glt 310  Ile His Leu Gln Glu Tyr Thr Ser Thr Leu Leu Leu Asn Gly Tyr 325  Thr Leu Glu Asp Leu Lys Asp Ile Lys Glu Ser His Leu Ile Gln 345  Asn Ile Glu Asn Pro Asp Asp Arg Arg Arg Leu Leu Ser Ala Ala 355  Asn Phe Leu Glu Glu Glu Ile Ile Gln Glu Gln Glu Asn Glu Pro 370  Pro Leu Ser Leu Ser Ser Asp Ile Ser Leu Asn Lys Ser Gln Leu 385  Asp Cys Pro Arg Asp Ser Gly Cys Tyr Ile Ser Ser Gly Asn Ser 412  Asn Gly Lys Glu Asp Leu Glu Ser Glu Asn Leu Ser Asp Met Val 425  Lys Ile Ile Ile Thr Glu Pro Ser Asp                                                     | Asp | Phe  | Thr    | Pro   |     | Pro | Tyr | Asp | Thr |     | Ser | Leu | Lys | Ile | Lys<br>255 | Lys        |
| 275 280 285  Val Ile Ser Glu Glu Glu Ala Ala Pro Lys Lys Ile Lys Ala Asr 295  Arg Ser Asn Ser Lys Lys Ser Lys Thr Leu Gln Glu Phe Leu Gln 305  Ile His Leu Gln Glu Tyr Thr Ser Thr Leu Leu Leu Asn Gly Tyr 325  Thr Leu Glu Asp Leu Lys Asp Ile Lys Glu Ser His Leu Ile Glu 345  Asn Ile Glu Asn Pro Asp Asp Arg Arg Arg Leu Leu Ser Ala Ala 355  Asn Phe Leu Glu Glu Glu Ile Ile Gln Glu Gln Glu Asn Glu Pro 370  Pro Leu Ser Leu Ser Ser Asp Ile Ser Leu Asn Lys Ser Gln Leu 385  Asp Cys Pro Arg Asp Ser Gly Cys Tyr Ile Ser Ser Gly Asn Ser 412  Asn Gly Lys Glu Asp Leu Glu Ser Glu Ser Glu Asn Leu Ser Asp Met Val 425  Lys Ile Ile Ile Thr Glu Pro Ser Asp                                                                                                              | Gly | Asp  | Ile    |       | Asp | Ile | Ile | Cys |     | Thr | Pro | Met | Gly |     | Trp        | Thr        |
| 295  Arg Ser Asn Ser Lys Lys Ser Lys Thr Leu Gln Glu Phe Leu Gln 315  Ile His Leu Gln Glu Tyr Thr Ser Thr Leu Leu Leu Asn Gly Tyr 330  Thr Leu Glu Asp Leu Lys Asp Ile Lys Glu Ser His Leu Ile Glu 345  Asn Ile Glu Asn Pro Asp Asp Arg Arg Arg Leu Leu Ser Ala Ale 355  Asn Phe Leu Glu Glu Glu Glu IIe Ile Gln Glu Gln Glu Asn Glu Pro 370  Pro Leu Ser Leu Ser Ser Asp Ile Ser Leu Asn Lys Ser Gln Leu 385  Asp Cys Pro Arg Asp Ser Gly Cys Tyr Ile Ser Ser Gly Asn Ser Gla Leu 405  Asn Gly Lys Glu Asp Leu Glu Ser Glu Asn Leu Ser Asp Met Val 425  Lys Ile Ile Ile Thr Glu Pro Ser Asp                                                                                                                                                                                   | Gly | Met  |        | Asn   | Asn | Lys | Val |     | Asn | Phe | Lys | Phe |     | Tyr | Val        | Asp        |
| 310  315  Ile His Leu Gln Glu Tyr Thr Ser Thr Leu Leu Leu Asn Gly Tyr 330  Thr Leu Glu Asp Leu Lys Asp Ile Lys Glu Ser His Leu Ile Glu 340  Asn Ile Glu Asn Pro Asp Asp Arg Arg Arg Leu Leu Ser Ala Ala 355  Asn Phe Leu Glu Glu Glu Ile Ile Gln Glu Gln Glu Asn Glu Pro 370  Pro Leu Ser Leu Ser Ser Asp Ile Ser Leu Asn Lys Ser Gln Leu 385  Asp Cys Pro Arg Asp Ser Gly Cys Tyr Ile Ser Ser Gly Asn Ser 410  Asn Gly Lys Glu Asp Leu Glu Ser Glu Ser Glu Asn Leu Ser Asp Met Val 420  Lys Ile Ile Ile Thr Glu Pro Ser Asp                                                                                                                                                                                                                                                   | Val |      | Ser    | Glu   | Glu | Glu |     | Ala | Pro | Lys | Lys |     | Lys | Ala | Asn        | Arg        |
| Thr Leu Glu Asp Leu Lys Asp Ile Lys Glu Ser His Leu Ile Glu Asp Leu Lys Asp Ile Lys Glu Ser His Leu Ile Glu Asn Ile Glu Asn Pro Asp Asp Arg Arg Arg Leu Leu Ser Ala Ala 355  Asn Phe Leu Glu Glu Glu Ile Ile Gln Glu Gln Glu Asn Glu Pro 370  Pro Leu Ser Leu Ser Ser Asp Ile Ser Leu Asn Lys Ser Gln Leu 385  Asp Cys Pro Arg Asp Ser Gly Cys Tyr Ile Ser Ser Gly Asn Ser 410  Asn Gly Lys Glu Asp Leu Glu Ser Glu Asn Leu Ser Asp Met Val 420  Lys Ile Ile Ile Thr Glu Pro Ser Asp                                                                                                                                                                                                                                                                                           |     | Ser  | Asn    | Ser   | Lys |     | Ser | Lys | Thr | Leu |     | Glu | Phe | Leu | Glu        | Arg<br>320 |
| 340 345 350  Asn Ile Glu Asn Pro Asp Asp Arg Arg Arg Leu Leu Ser Ala Ala 355  Asn Phe Leu Glu Glu Glu Ile Ile Gln Glu Gln Glu Asn Glu Pro 370  Pro Leu Ser Leu Ser Ser Asp Ile Ser Leu Asn Lys Ser Gln Leu 395  Asp Cys Pro Arg Asp Ser Gly Cys Tyr Ile Ser Ser Gly Asn Ser 405  Asn Gly Lys Glu Asp Leu Glu Ser Glu Ser Glu Asn Leu Ser Asp Met Val 420  Lys Ile Ile Ile Thr Glu Pro Ser Asp                                                                                                                                                                                                                                                                                                                                                                                  | Ile | His  | Leu    | Gln   |     | Tyr | Thr | Ser | Thr |     | Leu | Leu | Asn | Gly | Tyr<br>335 | Glu        |
| Asn Phe Leu Glu Glu Glu Ile Ile Gln Glu Gln Glu Asn Glu Pro 370  Pro Leu Ser Leu Ser Ser Asp Ile Ser Leu Asn Lys Ser Gln Leu 385  Asp Cys Pro Arg Asp Ser Gly Cys Tyr Ile Ser Ser Gly Asn Ser 410  Asn Gly Lys Glu Asp Leu Glu Ser Glu Asn Leu Ser Asp Met Va. 420  Lys Ile Ile Ile Thr Glu Pro Ser Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Thr | Leu  | Glu    |       | Leu | Lys | Asp | Ile |     | Glu | Ser | His | Leu |     | Glu        | Leu        |
| 370 375 380  Pro Leu Ser Leu Ser Ser Asp Ile Ser Leu Asn Lys Ser Gln Leu 385 395 395  Asp Cys Pro Arg Asp Ser Gly Cys Tyr Ile Ser Ser Gly Asn Ser 405 410  Asn Gly Lys Glu Asp Leu Glu Ser Glu Asn Leu Ser Asp Met Vai 425 430  Lys Ile Ile Ile Thr Glu Pro Ser Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      | 355    |       |     |     |     | 360 |     |     |     |     | 365 |     |            |            |
| 385 390 395  Asp Cys Pro Arg Asp Ser Gly Cys Tyr Ile Ser Ser Gly Asn Ser 405 410  Asn Gly Lys Glu Asp Leu Glu Ser Glu Asn Leu Ser Asp Met Va. 420 430  Lys Ile Ile Ile Thr Glu Pro Ser Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 370  |        |       |     |     | 375 |     |     |     |     | 380 |     |     |            |            |
| Asn Gly Lys Glu Asp Leu Glu Ser Glu Asn Leu Ser Asp Met Va. 420 425 430  Lys Ile Ile Ile Thr Glu Pro Ser Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 385 |      |        |       |     | 390 |     |     |     |     | 395 |     |     |     |            | 400        |
| 420 425 430  Lys Ile Ile Thr Glu Pro Ser Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |       | 405 |     |     |     |     | 410 |     |     |     |     | 415        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |        | 420   |     |     |     |     | 425 | Asn | Leu | Ser | Asp |     | Val        | H1s        |
| ×210× 2942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      | 435    | ıle   | inr | GIU | Pro |     | ASP |     |     |     |     |     |            |            |

<210> 2943 <211> 564 <212> PRT <213> Homo sapiens

<400> 2943

Met Lys Glu His Gly Gly Thr Phe Ser Ser Thr Gly Ile Ser Gly Gly

Ser Gly Asp Ser Ala Met Asp Ser Leu Gln Pro Leu Gln Pro Asn Tyr  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Met Pro Val Cys Leu Phe Ala Glu Glu Ser Tyr Gln Lys Leu Ala Met 35 \$40\$

Glu Thr Leu Glu Glu Leu Asp Trp Cys Leu Asp Gln Leu Glu Thr Ile 50  $\phantom{\bigg|}$ 

Gln Thr Tyr Arg Ser Val Ser Glu Met Ala Ser Asn Lys Phe Lys Arg 65 70 75 80

Met Leu Asn Arg Glu Leu Thr His Leu Ser Glu Met Ser Arg Ser Gly 85 90 95

Asn Gln Val Ser Glu Tyr Ile Ser Asn Thr Phe Leu Asp Lys Gln Asn 100 105 110

Asp Val Glu Ile Pro Ser Pro Thr Gln Lys Asp Arg Glu Lys Lys Lys 115 120 125

Lys Gln Gln Leu Met Thr Gln Ile Ser Gly Val Lys Lys Leu Met His 135 140

Ser Ser Ser Leu Asn Asn Thr Ser Ile Ser Arg Phe Gly Val Asn Thr 145 150 150 155 160

Glu Asn Glu Asp His Leu Ala Lys Glu Leu Glu Asp Leu Asn Lys Trp \$165\$

Gly Leu Asn Ile Phe Asn Val Ala Gly Tyr Ser His Asn Arg Pro Leu 180  $$185\ \ \, 190$$ 

Thr Cys Ile Met Tyr Ala Ile Phe Gln Glu Arg Asp Leu Leu Lys Thr 195 200 205

Phe Arg Ile Ser Ser Asp Thr Phe Ile Thr Tyr Met Met Thr Leu Glu 210 220

Asp His Tyr His Ser Asp Val Ala Tyr His Asn Ser Leu His Ala Ala 225 230 230 235

Asp Val Ala Gln Ser Thr His Val Leu Leu Ser Thr Pro Ala Leu Asp 245 250 255

| Ala        | Val        | Phe        | Thr<br>260 | Asp        | Leu        | Glu        | Ile        | Leu<br>265 | Ala        | Ala        | Ile        | Phe        | Ala<br>270 | Ala        | Ala        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ile        | His        | Asp<br>275 | Val        | Asp        | His        | Pro        | Gly<br>280 | Val        | Ser        | Asn        | Gln        | Phe<br>285 | Leu        | Ile        | Asn        |
| Thr        | Asn<br>290 | Ser        | Glu        | Leu        | Ala        | Leu<br>295 | Met        | Tyr        | Asn        | Asp        | Glu<br>300 | Ser        | Val        | Leu        | Glu        |
| Asn<br>305 | His        | His        | Leu        | Ala        | Val<br>310 | Gly        | Phe        | Lys        | Leu        | Leu<br>315 | Gln        | Glu        | Glu        | His        | Cys<br>320 |
| Asp        | Ile        | Phe        | Met        | Asn<br>325 | Leu        | Thr        | Lys        | Lys        | Gln<br>330 | Arg        | Gln        | Thr        | Leu        | Arg<br>335 | Lys        |
| Met        | Val        | Ile        | Asp<br>340 | Met        | Val        | Leu        | Ala        | Thr<br>345 | Asp        | Met        | Ser        | Lys        | His<br>350 | Met        | Ser        |
| Leu        | Leu        | Ala<br>355 | Asp        | Leu        | Lys        | Thr        | Met<br>360 | Val        | Glu        | Thr        | Lys        | Lys<br>365 | Val        | Thr        | Ser        |
| Ser        | Gly<br>370 | Val        | Leu        | Leu        | Leu        | Asp<br>375 | Asn        | Tyr        | Thr        | Asp        | Arg<br>380 | Ile        | Gln        | Val        | Leu        |
| Arg<br>385 | Asn        | Met        | Val        | His        | Cys<br>390 | Ala        | Asp        | Leu        | Ser        | Asn<br>395 | Pro        | Thr        | Lys        | Ser        | Leu<br>400 |
| Glu        | Leu        | Tyr        | Arg        | Gln<br>405 | Trp        | Thr        | Asp        | Arg        | Ile<br>410 | Met        | Glu        | Glu        | Phe        | Phe<br>415 | Gln        |
| Gln        | Gly        | Asp        | Lys<br>420 | Glu        | Arg        | Glu        | Arg        | Gly<br>425 | Met        | Glu        | Ile        | Ser        | Pro<br>430 | Met        | Сув        |
| Asp        | Lys        | His<br>435 | Thr        | Ala        | Ser        | Val        | Glu<br>440 | Lys        | Ser        | Gln        | Val        | Gly<br>445 | Phe        | Ile        | Asp        |
| Tyr        | Ile<br>450 | Val        | His        | Pro        | Leu        | Trp<br>455 | Glu        | Thr        | Trp        | Ala        | Asp<br>460 | Leu        | Val        | Gln        | Pro        |
| Asp<br>465 | Ala        | Gln        | Asp        | Ile        | Leu<br>470 | Asp        | Thr        | Leu        | Glu        | Asp<br>475 | Asn        | Arg        | Asn        | Trp        | Tyr<br>480 |
| G1n        | Ser        | Met        |            | Pro        |            | Ser        | Pro        |            | Pro        |            | Leu        | Asp        | Glu        | Gln<br>495 |            |

Arg Asp Cys Gln Gly Leu Met Glu Lys Phe Gln Phe Glu Leu Thr Leu 500

Asp Glu Glu Asp Ser Glu Gly Pro Glu Lys Glu Gly Glu Gly His Ser 515

Tyr Phe Ser Ser Thr Lys Thr Leu Cys Val Ile Asp Pro Glu Asn Arg 530

Asp Ser Leu Gly Glu Thr Asp Ile Asp Ile Ala Thr Glu Asp Lys Ser 545 550 550 555

Pro Val Asp Thr

<210> 2944 <2211> 91 <212> PRT <213> Homo sapiens <400> 2944

Met Lys Val Ser Ala Ala Ala Leu Ala Val Ile Leu Ile Ala Thr Ala 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Leu Cys Ala Pro Ala Ser Ala Ser Pro Tyr Ser Ser Asp Thr Thr Pro 20 25 30

Cys Cys Phe Ala Tyr Ile Ala Arg Pro Leu Pro Arg Ala His Ile Lys

Glu Tyr Phe Tyr Thr Ser Gly Lys Cys Ser Asn Pro Ala Val Val Phe

Val Thr Arg Lys Asn Arg Gln Val Cys Ala Asn Pro Glu Lys Lys Trp 65 70 75 80

Val Arg Glu Tyr Ile Asn Ser Leu Glu Met Ser 85 90

<210> 2945 <211> 461 <212> PRT <213> Homo sapiens

<400> 2945

| rrp        | Ala        | Ala        | Ala<br>20  | His        | Ala        | Leu        | Pro        | Ala<br>25  | Gln        | Val        | Ala        | Phe        | Thr<br>30  | Pro        | Tyr        |  |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|
| Ala        | Pro        | Glu<br>35  | Pro        | Gly        | Ser        | Thr        | Cys<br>40  | Arg        | Leu        | Arg        | Glu        | Tyr<br>45  | Tyr        | Asp        | Gln        |  |
| Thr        | Ala<br>50  | Gln        | Met        | Cys        | Cys        | Ser<br>55  | Lys        | Cys        | Ser        | Pro        | Gly<br>60  | Gln        | His        | Ala        | Lys        |  |
| Val<br>65  | Phe        | Cys        | Thr        | Lys        | Thr<br>70  | Ser        | Asp        | Thr        | Val        | Cys<br>75  | Asp        | Ser        | Cys        | Glu        | Asp<br>80  |  |
| Ser        | Thr        | Tyr        | Thr        | Gln<br>85  | Leu        | Trp        | Asn        | Trp        | Val<br>90  | Pro        | Glu        | Cys        | Leu        | Ser<br>95  | Cys        |  |
| Gly        | Ser        | Arg        | Cys<br>100 | Ser        | Ser        | Asp        | Gln        | Val<br>105 | Glu        | Thr        | Gln        | Ala        | Сув<br>110 | Thr        | Arg        |  |
| Glu        | Gln        | Asn<br>115 | Arg        | Ile        | Cys        | Thr        | Cys<br>120 | Arg        | Pro        | Gly        | Trp        | Tyr<br>125 | Cys        | Ala        | Leu        |  |
| Ser        | Lys<br>130 | Gln        | Glu        | Gly        | Cys        | Arg<br>135 | Leu        | Cys        | Ala        | Pro        | Leu<br>140 | Arg        | Lys        | Сув        | Arg        |  |
| Pro<br>145 | Gly        | Phe        | Gly        | Val        | Ala<br>150 | Arg        | Pro        | Gly        | Thr        | Glu<br>155 | Thr        | Ser        | Asp        | Val        | Val<br>160 |  |
| Cys        | Lys        | Pro        | Cys        | Ala<br>165 | Pro        | Gly        | Thr        | Phe        | Ser<br>170 | Asn        | Thr        | Thr        | Ser        | Ser<br>175 | Thr        |  |
| Asp        | Ile        | Cys        | Arg<br>180 | Pro        | His        | Gln        | Ile        | Cys<br>185 | Asn        | Val        | Val        | Ala        | Ile<br>190 | Pro        | Gly        |  |
| Asn        | Ala        | Ser<br>195 | Met        | Asp        | Ala        | Val        | Cys<br>200 | Thr        | Ser        | Thr        | Ser        | Pro<br>205 | Thr        | Arg        | Ser        |  |
| Met        | Ala<br>210 | Pro        | Gly        | Ala        | Val        | His<br>215 | Leu        | Pro        | Gln        | Pro        | Val<br>220 | Ser        | Thr        | Arg        | Ser        |  |
| Gln<br>225 | His        | Thr        | Gln        | Pro        | Thr<br>230 | Pro        | Glu        | Pro        | Ser        | Thr<br>235 | Ala        | Pro        | Ser        | Thr        | Ser<br>240 |  |
| Phe        | Leu        | Leu        | Pro        | Met<br>245 | Gly        | Pro        | Ser        | Pro        | Pro<br>250 | Ala        | Glu        | Gly        | Ser        | Thr<br>255 | Gly        |  |

Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly 260 \$265\$

Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys 275 280 285

Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro 290 295 300

Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu 305 310 315 320

Ile Thr Ala Pro Ser Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser 325 330 335

Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly 340 345 350

Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser 355 360 365

Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile  $370 \ \ 375 \ \ 380$ 

Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln 385 390 395 400

Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro 405 410 415

Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser \$420\$ \$425\$ \$430

Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser 450 455 455

<210> 2946

<211> 823

<212> PRT

<213> Homo sapiens

<400> 2946

Met Ser Arg Arg Lys Gln Gly Asn Pro Gln His Leu Ser Gln Arg Glu 1 5 10 15

Leu Ile Thr Pro Glu Ala Asp His Val Glu Ala Ala Ile Leu Glu Glu Asp Glu Gly Leu Glu Ile Glu Glu Pro Ser Gly Leu Gly Leu Met Val Gly Gly Pro Asp Pro Asp Leu Leu Thr Cys Gly Gln Cys Gln Met Asn Phe Pro Leu Gly Asp Ile Leu Val Phe Ile Glu His Lys Arg Lys Gln Cys Gly Gly Ser Leu Gly Ala Cys Tyr Asp Lys Ala Leu Asp Lys Asp Ser Pro Pro Pro Ser Ser Arg Ser Glu Leu Arg Lys Val Ser Glu Pro Val Glu Ile Gly Ile Gln Val Thr Pro Asp Glu Asp Asp His Leu Leu Ser Pro Thr Lys Gly Ile Cys Pro Lys Gln Glu Asn Ile Ala Gly Lys Asp Glu Pro Ser Ser Tyr Ile Cys Thr Thr Cys Lys Gln Pro Phe Asn Ser Ala Trp Phe Leu Leu Gln His Ala Gln Asn Thr His Glv Phe Arq Ile Tyr Leu Glu Pro Gly Pro Ala Ser Ser Leu Thr Pro Arg Leu Thr Ile Pro Pro Pro Leu Gly Pro Glu Ala Val Ala Gln Ser Pro Leu Met Asn Phe Leu Gly Asp Ser Asn Pro Phe Asn Leu Leu Arg Met Thr Gly Pro Ile Leu Arg Asp His Pro Gly Phe Gly Glu Gly Arg Leu Pro Gly Thr Pro Pro Leu Phe Ser Pro Pro Pro Arg His His Leu Asp Pro 

His Arg Leu Ser Ala Glu Glu Met Gly Leu Val Ala Gln His Pro Ser 260 265 270

Ala Phe Asp Arg Val Met Arg Leu Asn Pro Met Ala Ile Asp Ser Pro 275 280 285

Ala Met Asp Phe Ser Arg Arg Leu Arg Glu Leu Ala Gly Asn Ser Ser 290 295 300

Thr Pro Pro Pro Val Ser Pro Gly Arg Gly Asn Pro Met His Arg Leu 305 310 310

Leu Asn Pro Phe Gln Pro Ser Pro Lys Ser Pro Phe Leu Ser Thr Pro \$325\$ \$330\$ \$335\$

Pro Leu Pro Pro Met Pro Pro Gly Gly Thr Pro Pro Pro Gln Pro Pro 340 345 350

Ser Asn Leu Ile Val His Arg Arg Ser His Thr Gly Glu Lys Pro Tyr 370 380

Lys Cys Gln Leu Cys Asp His Ala Cys Ser Gln Ala Ser Lys Leu Lys 385 390 395 400

Arg His Met Lys Thr His Met His Lys Ala Gly Ser Leu Ala Gly Arg 405 410 415

Ser Asp Asp Gly Leu Ser Ala Ala Ser Ser Pro Glu Pro Gly Thr Ser 420 430

Glu Leu Ala Gly Glu Gly Leu Lys Ala Ala Asp Gly Asp Phe Arg His 435 440 445

His Glu Ser Asp Pro Ser Leu Gly His Glu Pro Glu Glu Glu Asp Glu 450 460

Glu Glu Glu Glu Glu Glu Glu Leu Leu Leu Leu Glu Asn Glu Ser Arg 465 470 475 480

Pro Glu Ser Ser Phe Ser Met Asp Ser Glu Leu Ser Arg Asn Arg Glu 485 490 495

| Asn | Gly | Gly | Gly | Gly | Val | Pro | Gly | Val | Pro | Gly | Ala | Gly | Gly | Gly | Ala |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     | 500 |     |     |     |     | 505 |     |     |     |     | 510 |     |     |

- Ala Lys Ala Leu Ala Asp Glu Lys Ala Leu Val Leu Gly Lys Val Met 515 520 525
- Glu Asn Val Gly Leu Gly Ala Leu Pro Gln Tyr Gly Glu Leu Leu Ala 530 535 540
- Asp Lys Gln Lys Arg Gly Ala Phe Leu Lys Arg Ala Ala Gly Gly Gly 545 550 555
- Asp Ala Gly Asp Asp Asp Ala Gly Gly Cys Gly Asp Ala Gly Ala 565 570 575
- Gly Gly Ala Val Asn Gly Arg Gly Gly Gly Phe Ala Pro Gly Thr Glu 580 585 590
- Pro Phe Pro Gly Leu Phe Pro Arg Lys Pro Ala Pro Leu Pro Ser Pro
- Gly Leu Asn Ser Ala Ala Lys Arg Ile Lys Val Glu Lys Asp Leu Glu 610 615 620
- Leu Pro Pro Ala Ala Leu Ile Pro Ser Glu Asn Val Tyr Ser Gln Trp 625 630 635 640
- Leu Val Gly Tyr Ala Ala Ser Arg His Phe Met Lys Asp Pro Phe Leu 645 650 655
- Gly Phe Thr Asp Ala Arg Gln Ser Pro Phe Ala Thr Ser Ser Glu His  $_{660}$
- Ser Ser Glu Asn Gly Ser Leu Arg Phe Ser Thr Pro Pro Gly Asp Leu 675 680 685
- Leu Asp Gly Gly Leu Ser Gly Arg Ser Gly Thr Ala Ser Gly Gly Ser 690 695 700
- Thr Pro His Leu Gly Gly Pro Gly Pro Gly Arg Pro Ser Ser Lys Glu
  705 710 715 720
- Gly Arg Arg Ser Asp Thr Cys Glu Tyr Cys Gly Lys Val Phe Lys Asn 725 730 735
- Cys Ser Asn Leu Thr Val His Arg Arg Ser His Thr Gly Glu Arg Pro

> 745 750 740

Tyr Lys Cys Glu Leu Cys Asn Tyr Ala Cys Ala Gln Ser Ser Lys Leu

Thr Arg His Met Lys Thr His Gly Gln Ile Gly Lys Glu Val Tyr Arg 770 775

Cys Asp Ile Cys Gln Met Pro Phe Ser Val Tyr Ser Thr Leu Glu Lys 795 790

His Met Lys Lys Trp His Gly Glu His Leu Leu Thr Asn Asp Val Lys 810 805

Ile Glu Gln Ala Glu Arg Ser 820

<210> 2947 <211> 441

<212> PRT

<213> Homo sapiens

<400> 2947

Met Val Pro Pro Lys Leu His Val Leu Phe Cys Leu Cys Gly Cys Leu 5

Ala Val Val Tyr Pro Phe Asp Trp Gln Tyr Ile Asn Pro Val Ala His 20 25

Met Lys Ser Ser Ala Trp Val Asn Lys Ile Gln Val Leu Met Ala Ala

Ala Ser Phe Gly Gln Thr Lys Ile Pro Arg Gly Asn Gly Pro Tyr Ser 55

Val Gly Cys Thr Asp Leu Met Phe Asp His Thr Asn Lys Gly Thr Phe 70 75

Leu Arg Leu Tyr Tyr Pro Ser Gln Asp Asn Asp Arg Leu Asp Thr Leu 85 90

Trp Ile Pro Asn Lys Glu Tyr Phe Trp Gly Leu Ser Lys Phe Leu Gly 100

Thr His Trp Leu Met Gly Asn Ile Leu Arg Leu Leu Phe Gly Ser Met 115 120

Thr Thr Pro Ala Asn Trp Asn Ser Pro Leu Arg Pro Gly Glu Lys Tyr 130 135

Pro Leu Val Val Phe Ser His Gly Leu Gly Ala Phe Arg Thr Leu Tyr 145 \$150\$

Ser Ala Ile Gly Ile Asp Leu Ala Ser His Gly Phe Ile Val Ala Ala 165 \$170\$

Val Glu His Arg Asp Arg Ser Ala Ser Ala Thr Tyr Tyr Phe Lys Asp 180 185 190

Gln Ser Ala Ala Glu Ile Gly Asp Lys Ser Trp Leu Tyr Leu Arg Thr 195 200 205

Leu Lys Gln Glu Glu Glu Thr His Ile Arg Asn Glu Gln Val Arg Gln 210 215 220

Arg Ala Lys Glu Cys Ser Gln Ala Leu Ser Leu Ile Leu Asp Ile Asp 225 230 235

His Gly Lys Pro Val Lys Asn Ala Leu Asp Leu Lys Phe Asp Met Glu 245 250 255

Gln Leu Lys Asp Ser Ile Asp Arg Glu Lys Ile Ala Val Ile Gly His

Ser Phe Gly Gly Ala Thr Val Ile Gln Thr Leu Ser Glu Asp Gln Arg 275 280 285

Phe Arg Cys Gly Ile Ala Leu Asp Ala Trp Met Phe Pro Leu Gly Asp 290 295 300

Glu Val Tyr Ser Arg Ile Pro Gln Pro Leu Phe Phe Ile Asn Ser Glu 305 \$310\$ \$315\$

Tyr Phe Gln Tyr Pro Ala Asn Ile Ile Lys Met Lys Lys Cys Tyr Ser 325 330 335

Pro Asp Lys Glu Arg Lys Met Ile Thr Ile Arg Gly Ser Val His Gln 340 345 350

Asn Phe Ala Asp Phe Thr Phe Ala Thr Gly Lys Ile Ile Gly His Met 355 360 365

Leu Lys Leu Lys Gly Asp Ile Asp Ser Asn Val Ala Ile Asp Leu Ser 370 380

Asn Lys Ala Ser Leu Ala Phe Leu Gln Lys His Leu Gly Leu His Lys 385 390 395 400

Asp Phe Asp Gln Trp Asp Cys Leu Ile Glu Gly Asp Asp Glu Asn Leu 405 415

Asn Ser Ser Gly Ile Glu Lys Tyr Asn 435 440

<210> 2948 <211> 1044

<212> PRT <213> Homo sapiens

<400> 2948

Met Pro Pro Gly Val Asp Cys Pro Met Glu Phe Trp Thr Lys Glu Glu 1 5 10 15

Asn Gln Ser Val Val Val Asp Phe Leu Leu Pro Thr Gly Val Tyr Leu 20 25 30

Asn Phe Pro Val Ser Arg Asn Ala Asn Leu Ser Thr Ile Lys Gln Leu  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Leu Trp His Arg Ala Gln Tyr Glu Pro Leu Phe His Met Leu Ser Gly 50 60

Pro Glu Ala Tyr Val Phe Thr Cys Ile Asn Gln Thr Ala Glu Gln Gln 65  $\phantom{+}70\phantom{+}75\phantom{+}80\phantom{+}$ 

Glu Leu Glu Asp Glu Gln Arg Arg Leu Cys Asp Val Gln Pro Phe Leu 85 90 95

Pro Val Leu Arg Leu Val Ala Arg Glu Gly Asp Arg Val Lys Lys Leu 100 105 110

Ile Asn Ser Gln Ile Ser Leu Leu Ile Gly Lys Gly Leu His Glu Phe 115 120 125

Asp Ser Leu Cys Asp Pro Glu Val Asn Asp Phe Arg Ala Lys Met Cys 130 140

Gln Phe Cys Glu Glu Ala Ala Ala Arg Arg Gln Gln Leu Gly Trp Glu Ala Trp Leu Gln Tyr Ser Phe Pro Leu Gln Leu Glu Pro Ser Ala Gln Thr Trp Gly Pro Gly Thr Leu Arg Leu Pro Asn Arg Ala Leu Leu Val Asn Val Lys Phe Glu Gly Ser Glu Glu Ser Phe Thr Phe Gln Val Ser Thr Lys Asp Val Pro Leu Ala Leu Met Ala Cys Ala Leu Arg Lys Lys Ala Thr Val Phe Arg Gln Pro Leu Val Glu Gln Pro Glu Asp Tyr Thr Leu Gln Val Asn Gly Arg His Glu Tyr Leu Tyr Gly Asn Tyr Pro Leu Cys Gln Phe Gln Tyr Ile Cys Ser Cys Leu His Ser Gly Leu Thr Pro His Leu Thr Met Val His Ser Ser Ser Ile Leu Ala Met Arg Asp Glu Gln Ser Asn Pro Ala Pro Gln Val Gln Lys Pro Arg Ala Lys Pro Pro Pro Ile Pro Ala Lys Lys Pro Ser Ser Val Ser Leu Trp Ser Leu Glu Gln Pro Phe Arg Ile Glu Leu Ile Gln Gly Ser Lys Val Asn Ala Asp Glu Arg Met Lys Leu Val Val Gln Ala Gly Leu Phe His Gly Asn Glu Met Leu Cys Lys Thr Val Ser Ser Glu Val Ser Val Cys Ser Glu 

Pro Val Trp Lys Gln Arg Leu Glu Phe Asp Ile Asn Ile Cys Asp Leu 370 375 380

| Pro<br>385 | Arg        | Met        | Ala        | Arg        | 390        | Cys        | Pne        | Ala        | Leu        | 1yr<br>395 | Ala        | vaı        | 11e        | GIu        | Lys<br>400 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ala        | Lys        | Lys        | Ala        | Arg<br>405 | Ser        | Thr        | Lys        | Lys        | Lys<br>410 | Ser        | Lys        | Lys        | Ala        | Asp<br>415 | Cys        |
| Pro        | Ile        | Ala        | Trp<br>420 | Ala        | Asn        | Leu        | Met        | Leu<br>425 | Phe        | Asp        | Tyr        | Lys        | Asp<br>430 | Gln        | Leu        |
| Lys        |            | Gly<br>435 | Glu        | Arg        | Cys        | Leu        | Tyr<br>440 | Met        | Trp        | Pro        | Ser        | Val<br>445 | Pro        | Asp        | Glu        |
| Lys        | Gly<br>450 | Glu        | Leu        | Leu        | Asn        | Pro<br>455 | Thr        | Gly        | Thr        | Val        | Arg<br>460 | Ser        | Asn        | Pro        | Asn        |
| Thr<br>465 | Asp        | ser        | Ala        | Ala        | Ala<br>470 | Leu        | Leu        | Ile        | Cys        | Leu<br>475 | Pro        | Glu        | Val        | Ala        | Pro<br>480 |
| His        | Pro        | Val        | Tyr        | Tyr<br>485 | Pro        | Ala        | Leu        | Glu        | Lys<br>490 | Ile        | Leu        | Glu        | Leu        | Gly<br>495 | Arg        |
| His        | Ser        | Glu        | Cys<br>500 | Val        | His        | Val        | Thr        | Glu<br>505 | Glu        | Glu        | Gln        | Leu        | Gln<br>510 | Leu        | Arg        |
| Glu        | Ile        | Leu<br>515 | Glu        | Arg        | Arg        | Gly        | Ser<br>520 | Gly        | Glu        | Leu        | Tyr        | Glu<br>525 | His        | Glu        | Lys        |
| Asp        | Leu<br>530 | Val        | Trp        | Lys        | Leu        | Arg<br>535 | His        | Glu        | Val        | Gln        | Glu<br>540 | His        | Phe        | Pro        | Glu        |
| Ala<br>545 | Leu        | Ala        | Arg        | Leu        | Leu<br>550 | Leu        | Val        | Thr        | Lys        | Trp<br>555 | Asn        | Lys        | His        | Glu        | Asp<br>560 |
| Val        | Ala        | Gln        | Met        | Leu<br>565 | Tyr        | Leu        | Leu        | Cys        | Ser<br>570 | Trp        | Pro        | Glu        | Leu        | Pro<br>575 | Val        |
| Leu        | Ser        | Ala        | Leu<br>580 | Glu        | Leu        | Leu        | Asp        | Phe<br>585 | Ser        | Phe        | Pro        | Asp        | Cys<br>590 | His        | Val        |
| Gly        | Ser        | Phe<br>595 | Ala        | Ile        | Lys        | Ser        | Leu<br>600 | Arg        | Lys        | Leu        | Thr        | Asp<br>605 | Asp        | Glu        | Leu        |
| Phe        | Gln<br>610 | Tyr        | Leu        | Leu        | Gln        | Leu<br>615 | Val        | Gln        | Val        | Leu        | Lys<br>620 | Tyr        | Glu        | Ser        | Tyr        |

/US2003/012946

|            | wo 2       | 2004/0     | )42340     | 5          |            |            |            |            |            |                          |            |            |              |            | PCT/       |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------------|------------|------------|--------------|------------|------------|
| Leu<br>625 | ı Ası      | с Су       | s Gl       | ı Le       | 630        | r Ly:      | s Phe      | e Le       | u Le       | u As <sub>1</sub><br>63! | p Ar       | g Al       | a Le         | u Al       | a As:      |
| Arg        | Lys        | s Ile      | e Gly      | / His      | Phe        | e Lei      | ı Phe      | e Tr       | 650        |                          | ı Arç      | g Se       | r Gl         | и Ме<br>65 | t His      |
| Va1        | Pro        | Sei        | r Val      | l Ala      | ı Leı      | ı Arg      | g Phe      | G1;<br>66! | y Let      | ı Ile                    | e Lei      | ı Glı      | u Ala<br>670 |            | r Cys      |
| Arg        | Gly        | 675        | r Thr      | His        | His        | Met        | Lys<br>680 | val        | l Leu      | ı Met                    | : Lys      | 685        |              | / Gl       | u Ala      |
| Leu        | Ser<br>690 | Lys        | Leu        | Lys        | Ala        | Leu<br>695 | Asn        | ı Asr      | Phe        | e Val                    | Lys<br>700 | Let        | ı Sei        | Sei        | c Glr      |
| Lys<br>705 | Thr        | Pro        | Lys        | Pro        | Gln<br>710 | Thr        | Lys        | Glu        | Leu        | Met<br>715               | His        | Leu        | ı Cys        | Met        | : Arg      |
| Gln        | Glu        | Ala        | Tyr        | Leu<br>725 | Glu        | Ala        | Leu        | Ser        | His<br>730 | Leu                      | Gln        | Ser        | Pro          | Leu<br>735 | Asp        |
| Pro        | Ser        | Thr        | Leu<br>740 | Leu        | Ala        | Glu        | Val        | Cys<br>745 | Val        | Glu                      | Gln        | Cys        | Thr<br>750   |            | . Met      |
| Asp        | Ser        | Lys<br>755 | Met        | Lys        | Pro        | Leu        | Trp<br>760 | Ile        | Met        | Tyr                      | Ser        | Asn<br>765 | Glu          | Glu        | Ala        |
| Gly        | Ser<br>770 | Gly        | Gly        | Ser        | Val        | Gly<br>775 | Ile        | Ile        | Phe        | Lys                      | Asn<br>780 | Gly        | Asp          | Asp        | Leu        |
| Arg<br>785 | Gln        | Asp        | Met        | Leu        | Thr<br>790 | Leu        | Gln        | Met        | Ile        | Gln<br>795               | Leu        | Met        | Asp          | Val        | Leu<br>800 |
| Trp        | Lys        | Gln        | Glu        | Gly<br>805 | Leu        | Asp        | Leu        | Arg        | Met<br>810 | Thr                      | Pro        | Tyr        | Gly          | Cys<br>815 | Leu        |
| Pro        | Thr        | Gly        | Asp<br>820 | Arg        | Thr        | Gly        | Leu        | Ile<br>825 | Glu        | Val                      | Val        | Leu        | Arg<br>830   | Ser        | Asp        |
| Chr        | Ile        | Ala<br>835 | Asn        | Ile        | Gln        | Leu        | Asn<br>840 | Lys        | Ser        | Asn                      |            | Ala        | Ala          | Thr        | Ala        |

Ala Phe Asn Lys Asp Ala Leu Leu Asn Trp Leu Lys Ser Lys Asn Pro 850 855 860

Gly Glu Ala Leu Asp Arg Ala Ile Glu Glu Phe Thr Leu Ser Cys Ala

865 870 875 880

Gly Tyr Cys Val Ala Thr Tyr Val Leu Gly Ile Gly Asp Arg His Ser 885 890 895

Asp Asn Ile Met Ile Arg Glu Ser Gly Gln Leu Phe His Ile Asp Phe 900 905 910

Gly His Phe Leu Gly Asn Phe Lys Thr Lys Phe Gly Ile Asn Arg Glu 915 920 925

Arg Val Pro Phe Ile Leu Thr Tyr Asp Phe Val His Val Ile Gln Gln 930 935 940

Gly Lys Thr Asn Asn Ser Glu Lys Phe Glu Arg Phe Arg Gly Tyr Cys 945 950 955 960

Glu Arg Ala Tyr Thr Ile Leu Arg Arg His Gly Leu Leu Phe Leu His

Leu Phe Ala Leu Met Arg Ala Ala Gly Leu Pro Glu Leu Ser Cys Ser 980 985 990

Glu Glu Ala Leu Lys His Phe Arg Val Lys Phe Asn Glu Ala Leu 1010 1015 1020

Arg Glu Ser Trp Lys Thr Lys Val Asn Trp Leu Ala His Asn Val 1025 1030 1035

Ser Lys Asp Asn Arg Gln : 1040

<210> 2949 <211> 167

<211> 167 <212> PRT

<213> Homo sapiens

<400> 2949

Met Glu His Ile His Asp Ser Asp Gly Ser Ser Ser Ser Ser His Gln 1 5 10 15

Ser Leu Lys Ser Thr Ala Lys Trp Ala Ala Ser Leu Glu Asn Leu Leu 20 25 30

Glu Asp Pro Glu Gly Val Lys Arg Phe Arg Glu Phe Leu Lys Lys Glu 35 40 45

Lys Met Gln Asp Lys Thr Gln Met Gln Glu Lys Ala Lys Glu Ile Tyr 65 70 75 80

Met Thr Phe Leu Ser Ser Lys Ala Ser Ser Gln Val Asn Val Glu Gly 85 90 95

Gln Ser Arg Leu Asn Glu Lys Ile Leu Glu Glu Pro His Pro Leu Met 100 105 110

Phe Gln Lys Leu Gln Asp Gln Ile Phe Asn Leu Met Lys Tyr Asp Ser 115  $$120\$ 

Tyr Ser Arg Phe Leu Lys Ser Asp Leu Phe Leu Lys His Lys Arg Thr 130 135 140

Glu Glu Glu Glu Glu Asp Leu Pro Asp Ala Gln Thr Ala Ala Lys Arg 145  $\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}155\phantom{\bigg|}$ 

Ala Ser Arg Ile Tyr Asn Thr 165

<210> 2950

<211> 263

<212> PRT <213> Homo sapiens

<400> 2950

Met Val Lys Ile Ala Phe Asn Thr Pro Thr Ala Val Gln Lys Glu Glu 1 5 10 15

Ala Arg Gln Asp Val Glu Ala Leu Leu Ser Arg Thr Val Arg Thr Gln 20 25 30

Ile Leu Thr Gly Lys Glu Leu Arg Val Ala Thr Gln Glu Lys Glu Gly
35 40 45

Ser Ser Gly Arg Cys Met Leu Thr Leu Leu Gly Leu Ser Phe Ile Leu 50  $\,$ 

Ala Gly Leu Ile Val Gly Gly Ala Cys Ile Tyr Lys Tyr Phe Met Pro

65 70 75 80

Lys Ser Thr Ile Tyr Arg Gly Glu Met Cys Phe Phe Asp Ser Glu Asp 85 90 95

Pro Ala Asn Ser Leu Arg Gly Gly Glu Pro Asn Phe Leu Pro Val Thr 100  $$105\$ 

Glu Glu Ala Asp Ile Arg Glu Asp Asp Asp Ile Ala Ile Ile Asp Val 115 120 125

Pro Val Pro Ser Phe Ser Asp Ser Asp Pro Ala Ala Ile Ile His Asp 130 140

Phe Glu Lys Gly Met Thr Ala Tyr Leu Asp Leu Leu Leu Gly Asn Cys 145 150 155 160

Tyr Leu Met Pro Leu Asn Thr Ser Ile Val Met Pro Pro Lys Asn Leu

Val Glu Leu Phe Gly Lys Leu Ala Ser Gly Arg Tyr Leu Pro Gln Thr

Tyr Val Val Arg Glu Asp Leu Val Ala Val Glu Glu Ile Arg Asp Val

Ser Asn Leu Gly Ile Phe Ile Tyr Gln Leu Cys Asn Asn Arg Lys Ser 210 225

Phe Arg Leu Arg Arg Arg Asp Leu Leu Gly Phe Asn Lys Arg Ala 225 230 235 240

Ile Asp Lys Cys Trp Lys Ile Arg His Phe Pro Asn Glu Phe Ile Val

Glu Thr Lys Ile Cys Gln Glu 260

<210> 2951

<211> 201

<212> PRT <213> Homo sapiens

<400> 2951

Met Asp Pro Gly Trp Pro Cys Cys Pro Leu Pro Val Ala Phe Leu Ser 1 5 10 15

Arg Trp Leu Gln Ser Phe Val Asp Gly Leu Phe Cys Thr Gly Gly Leu 20 25 30

Leu Arg Gln Arg Thr Cys Lys Phe Ala Gly Ala Ala Ser Gln Ala Pro  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

His Ala Pro Ala Phe Leu Arg Ala Arg Gly Glu Pro Gln Asp Pro Leu 50 55 60

Ser His Pro Arg Val Pro Ala Val Ser Ala Asn Cys Arg Met Trp Lys 65 70 75 80

His Leu Pro Val His Ser Ser Pro Thr Pro Arg Leu Thr Pro Leu Trp 85 90 95

Trp Gly Ser Tyr Ser Leu Leu Arg Pro Ala Ala Leu Ile Ser Met Val 115 120 125

Leu Leu Ala Arg Glu Phe Leu Tyr Pro Ala Lys Met Ser Val Ser Glu 130  $$135\$ 

Val Cys Ser Ser Gly Leu Ser Ser Pro Leu Leu Glu Gln His Lys Thr 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Asn Leu Ile Phe Tyr Ala Ser Gly Asp Ile Cys Ser Ala Asn Gly Lys 165 170 175

Ser Gly Phe Asn Gln Pro Leu Pro Phe Leu Lys Thr Phe Cys Ser Thr 180  $$185\$ 

His Arg Ile Leu Ser Cys Thr Tyr Leu

<210> 2952

<211> 492

<212> PRT

<213> Homo sapiens

<400> 2952

Met Ser Asp Tyr Glu Asn Asp Asp Glu Cys Trp Ser Val Leu Glu Gly 1 5 10 15

Phe Arg Val Thr Leu Thr Ser Val Ile Asp Pro Ser Arg Ile Thr Pro

Tyr Leu Arg Gln Cys Lys Val Leu Asn Pro Asp Asp Glu Glu Gln Val 

Leu Ser Asp Pro Asn Leu Val Ile Arg Lys Arg Lys Val Gly Val Leu 

Leu Asp Ile Leu Gln Arg Thr Gly His Lys Gly Tyr Val Ala Phe Leu 

Glu Ser Leu Glu Leu Tyr Tyr Pro Gln Leu Tyr Lys Lys Val Thr Gly 

Lys Glu Pro Ala Arg Val Phe Ser Met Ile Ile Asp Ala Ser Gly Glu 

Ser Gly Leu Thr Gln Leu Leu Met Thr Glu Val Met Lys Leu Gln Lys 

Lys Val Gln Asp Leu Thr Ala Leu Leu Ser Ser Lys Asp Asp Phe Ile 

Lys Glu Leu Arg Val Lys Asp Ser Leu Leu Arg Lys His Gln Glu Arg 

Val Gln Arg Leu Lys Glu Glu Cys Glu Ala Gly Ser Arg Glu Leu Lys 

Arg Cys Lys Glu Glu Asn Tyr Asp Leu Ala Met Arg Leu Ala His Gln 

Ser Glu Glu Lys Gly Ala Ala Leu Met Arg Asn Arg Asp Leu Gln Leu 

Glu Ile Asp Gln Leu Lys His Ser Leu Met Lys Ala Glu Asp Asp Cys 

Lys Val Glu Arq Lys His Thr Leu Lys Leu Arq His Ala Met Glu Gln 

Arg Pro Ser Gln Glu Leu Leu Trp Glu Leu Gln Gln Glu Lys Ala Leu 

Leu Gln Ala Arg Val Gln Glu Leu Glu Ala Ser Val Gln Glu Gly Lys 

Leu Asp Arg Ser Ser Pro Tyr Ile Gln Val Leu Glu Glu Asp Trp Arg 

Gln Ala Leu Arg Asp His Gln Glu Gln Ala Asn Thr Ile Phe Ser Leu 

Arg Lys Asp Leu Arg Gln Gly Glu Ala Arg Arg Leu Arg Cys Met Glu 

Glu Lys Glu Met Phe Glu Leu Gln Cys Leu Ala Leu Arg Lys Asp Ser 

Lys Met Tyr Lys Asp Arg Ile Glu Ala Ile Leu Leu Gln Met Glu Glu 

Val Ala Ile Glu Arg Asp Gln Ala Ile Ala Thr Arg Glu Glu Leu His 

Ala Gln His Ala Arg Gly Leu Gln Glu Lys Asp Ala Leu Arg Lys Gln 

Val Arg Glu Leu Gly Glu Lys Ala Asp Glu Leu Gln Leu Gln Val Phe 

Gln Cys Glu Ala Gln Leu Leu Ala Val Glu Gly Arg Leu Arg Arg Gln 

Gln Leu Glu Thr Leu Val Leu Ser Ser Asp Leu Glu Asp Gly Ser Pro 

Arg Arg Ser Gln Glu Leu Ser Leu Pro Gln Asp Leu Glu Asp Thr Gln 

Leu Ser Asp Lys Gly Cys Leu Ala Gly Gly Gly Ser Pro Lys Gln Pro 

Phe Ala Ala Leu His Gln Glu Gln Val Leu Arg Asn Pro His Asp Ala 

Gly Pro Ala Gly Leu Pro Gly Ile Gly Ala Val Cys 

<210> 2953

<211> 92

<212> PRT

<213> Homo sapiens

<400> 2953

Met Lys Leu Cys Val Thr Val Leu Ser Leu Leu Met Leu Val Ala Ala 1 5 10 15

Phe Cys Ser Pro Ala Leu Ser Ala Pro Met Gly Ser Asp Pro Pro Thr

Ala Cys Cys Phe Ser Tyr Thr Ala Arg Lys Leu Pro Arg Asn Phe Val 35 40 45

Val Asp Tyr Tyr Glu Thr Ser Ser Leu Cys Ser Gln Pro Ala Val Val 50

Phe Gln Thr Lys Arg Ser Lys Gln Val Cys Ala Asp Pro Ser Glu Ser 65 70 75 80

Trp Val Gln Glu Tyr Val Tyr Asp Leu Glu Leu Asn 85 90

<210> 2954

<211> 266

<212> PRT <213> Homo sapiens

<400> 2954

Val Thr Leu Met Val Leu Ser Ser Pro Leu Ala Leu Ala Gly Asp Thr 20 25 30

Arg Pro Arg Phe Leu Trp Gln Leu Lys Phe Glu Cys His Phe Phe Asn 35  $\phantom{\bigg|}40\phantom{\bigg|}45\phantom{\bigg|}$ 

Gly Thr Glu Arg Val Arg Leu Leu Glu Arg Cys Ile Tyr Asn Gln Glu 50 55 60

Glu Ser Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr 65 70 75 80

Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu 85 90 95

Leu Glu Gln Arg Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr
100 105 110

Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Val Glu Pro Lys Val 115 120 Thr Val Tyr Pro Ser Lys Thr Gln Pro Leu Gln His His Asn Leu Leu 130 135 140 Val Cys Ser Val Ser Gly Phe Tyr Pro Gly Ser Ile Glu Val Arg Trp 145 150 160 Phe Arg Asn Gly Gln Glu Glu Lys Ala Gly Val Val Ser Thr Gly Leu 165 170 Ile Gln Asn Gly Asp Trp Thr Phe Gln Thr Leu Val Met Leu Glu Thr 180 185 Val Pro Arg Ser Gly Glu Val Tyr Thr Cys Gln Val Glu His Pro Ser 195 200 205 Val Thr Ser Pro Leu Thr Val Glu Trp Arg Ala Arg Ser Glu Ser Ala 215 220 Gln Ser Lys Met Leu Ser Gly Val Gly Gly Phe Val Leu Gly Leu Leu 225 230 235 240 Phe Leu Gly Ala Gly Leu Phe Ile Tyr Phe Arg Asn Gln Lys Gly His 250 255 245 Ser Gly Leu Gln Pro Thr Gly Phe Leu Ser 260 <210> 2955 <211> 359 <212> PRT <213> Homo sapiens <400> 2955 Met Ala Glu Ala Ile Thr Tyr Ala Asp Leu Arg Phe Val Lys Ala Pro 5 10

20 25 30

Asp Asp Gly Glu Ile Thr Tyr Glu Asn Val Gln Val Pro Ala Val Leu

Leu Lys Lys Ser Ile Ser Ser Arg Leu Gly Gln Asp Pro Gly Ala Asp

| Gly        | Val<br>50  | Pro        | Ser        | Ser        | Leu        | Ala<br>55  | Ser        | Ser        | Val        | Leu        | Gly<br>60  | Asp        | Lys        | Ala        | Ala        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Val<br>65  | Lys        | Ser        | Glu        | Gln        | Pro<br>70  | Thr        | Ala        | Ser        | Trp        | Arg<br>75  | Ala        | Val        | Thr        | Ser        | Pro<br>80  |
| Ala        | Val        | Gly        | Arg        | Ile<br>85  | Leu        | Pro        | Сув        | Arg        | Thr<br>90  | Thr        | Сув        | Leu        | Arg        | Tyr<br>95  | Leu        |
| Leu        | Leu        | Gly        | Leu<br>100 | Leu        | Leu        | Thr        | Сув        | Leu<br>105 | Leu        | Leu        | Gly        | Val        | Thr<br>110 | Ala        | Ile        |
| Cys        | Leu        | Gly<br>115 | Val        | Arg        | Tyr        | Leu        | Gln<br>120 | Val        | Ser        | Gln        | Gln        | Leu<br>125 | Gln        | Gln        | Thr        |
| Asn        | Arg<br>130 | Val        | Leu        | Glu        | Val        | Thr<br>135 | Asn        | Ser        | Ser        | Leu        | Arg<br>140 | Gln        | Gln        | Leu        | Arg        |
| Leu<br>145 | Lys        | Ile        | Thr        | Gln        | Leu<br>150 | Gly        | Ġln        | Ser        | Ala        | Glu<br>155 | Asp        | Leu        | Gln        | Gly        | Ser<br>160 |
| Arg        | Arg        | Glu        | Leu        | Ala<br>165 | Gln        | Ser        | Gln        | Glu        | Ala<br>170 | Leu        | Gln        | Val        | Glu        | Gln<br>175 | Arg        |
| Ala        | His        | Gln        | Ala<br>180 | Ala        | Glu        | Gly        | Gln        | Leu<br>185 | Gln        | Ala        | Суз        | Gln        | Ala<br>190 | Asp        | Arg        |
| Gln        | Lys        | Thr<br>195 | Lys        | Glu        | Thr        | Leu        | Gln<br>200 | Ser        | Glu        | Glu        | Gln        | Gln<br>205 | Arg        | Arg        | Ala        |
| Leu        | Glu<br>210 | Gln        | Lys        | Leu        | Ser        | Asn<br>215 | Met        | Glu        | Asn        | Arg        | Leu<br>220 | Lys        | Pro        | Phe        | Phe        |
| Thr<br>225 | Cys        | Gly        | Ser        | Ala        | Asp<br>230 | Thr        | Cys        | Cys        | Pro        | Ser<br>235 | Gly        | Trp        | Ile        | Met        | His<br>240 |
| Gln        | Lys        | Ser        | Cys        | Phe<br>245 | Tyr        | Ile        | Ser        | Leu        | Thr<br>250 | Ser        | Lys        | Asn        | Trp        | Gln<br>255 | Glu        |
| Ser        | Gln        | Lys        | Gln<br>260 | Сув        | Glu        | Thr        | Leu        | Ser<br>265 | Ser        | Lys        | Leu        | Ala        | Thr<br>270 | Phe        | Ser        |
| Glu        | Ile        | Tyr<br>275 | Pro        | Gln        | Ser        |            | Ser<br>280 | Tyr        | Tyr        | Phe        | Leu        | Asn<br>285 | Ser        | Leu        | Leu        |

Pro Asn Gly Gly Ser Gly Asn Ser Tyr Trp Thr Gly Leu Ser Ser Asn

290 295 300

Lys Asp Trp Lys Leu Thr Asp Asp Thr Gln Arg Thr Arg Thr Tyr Ala 305  $\phantom{\bigg|}310\phantom{\bigg|}310\phantom{\bigg|}315\phantom{\bigg|}315\phantom{\bigg|}$ 

Gln Ser Ser Lys Cys Asn Lys Val His Lys Thr Trp Ser Trp Trp Thr 325 330 335

Leu Glu Ser Glu Ser Cys Arg Ser Ser Leu Pro Tyr Ile Cys Glu Met 340 345 350

Thr Ala Phe Arg Phe Pro Asp 355

<210> 2956

<211> 643 <212> PRT

<213> Homo sapiens

<400> 2956

Met Gln Ala Pro Arg Glu Leu Ala Val Gly Ile Asp Leu Gly Thr Thr 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Tyr Ser Cys Val Gly Val Phe Gln Gln Gly Arg Val Glu Ile Leu Ala  $20 \\ \hspace{1.5cm} 25 \\ \hspace{1.5cm} 30 \\ \hspace{1.5cm}$ 

Asn Asp Gln Gly Asn Arg Thr Thr Pro Ser Tyr Val Ala Phe Thr Asp  $35 \ \ \, 40 \ \ \, 45$ 

Thr Glu Arg Leu Val Gly Asp Ala Ala Lys Ser Gln Ala Ala Leu Asn 50 55 60

Pro His Asn Thr Val Phe Asp Ala Lys Arg Leu Ile Gly Arg Lys Phe 65 70 75 80

Ala Asp Thr Thr Val Gln Ser Asp Met Lys His Trp Pro Phe Arg Val  $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$ 

Val Ser Glu Gly Gly Lys Pro Lys Val Pro Val Ser Tyr Arg Gly Glu
100 105 110

Asp Lys Thr Phe Tyr Pro Glu Glu Ile Ser Ser Met Val Leu Ser Lys 115 120 125

Met Lys Glu Thr Ala Glu Ala Tyr Leu Gly Gln Pro Val Lys His Ala 130 135 140

Val Ile Thr Val Pro Ala Tyr Phe Asn Asp Ser Gln Arg Gln Ala Thr 145 \$150\$ 155 160

- Lys Asp Ala Gly Ala Ile Ala Gly Leu Asn Val Leu Arg Ile Ile Asn 165 \$170\$ 175
- Glu Pro Thr Ala Ala Ala Ile Ala Tyr Gly Leu Asp Arg Gly Ala 180 \$180\$
- Gly Glu Arg Asn Val Leu Ile Phe Asp Leu Gly Gly Gly Thr Phe Asp 195 205
- Val Ser Val Leu Ser Ile Asp Ala Gly Val Phe Glu Val Lys Ala Thr 210 \$215\$
- Ala Gly Asp Thr His Leu Gly Gly Glu Asp Phe Asp Asn Arg Leu Val 225 230 235 240
- Asn His Phe Met Glu Glu Phe Arg Arg Lys His Gly Lys Asp Leu Ser \$250\$
- Gly Asn Lys Arg Ala Leu Gly Arg Leu Arg Thr Ala Cys Glu Arg Ala 260 270
- Lys Arg Thr Leu Ser Ser Ser Thr Gln Ala Thr Leu Glu Ile Asp Ser  $275 \\ 280 \\ 285$
- Glu Glu Leu Cys Ser Asp Leu Phe Arg Ser Thr Leu Glu Pro Val Glu 305 310 315 320
- Lys Ala Leu Arg Asp Ala Lys Leu Asp Lys Ala Gln Ile His Asp Val 325 330 335
- Val Leu Val Gly Gly Ser Thr Arg Ile Pro Lys Val Gln Lys Leu Leu 340 345 350
- Gln Asp Phe Phe Asn Gly Lys Glu Leu Asn Lys Ser Ile Asn Pro Asp 355 360 365
- Glu Ala Val Ala Tyr Gly Ala Ala Val Gln Ala Ala Val Leu Met Gly 370 380

| Asp<br>385 | Lys | Cys | Glu | Lys | Val<br>390 | Gln | Asp | Leu | Leu | Leu<br>395 | Leu | Asp | Val | Ala | Pro<br>400 |
|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|
|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|

- Leu Ser Leu Gly Leu Glu Thr Ala Gly Gly Val Met Thr Thr Leu Ile \$405\$ \$410\$
- Gln Arg Asn Ala Thr Ile Pro Thr Lys Gln Thr Gln Thr Phe Thr Thr 420 \$425\$
- Tyr Ser Asp Asn Gln Pro Gly Val Phe Ile Gln Val Tyr Glu Gly Glu 435 440 445
- Arg Ala Met Thr Lys Asp Asn Asn Leu Leu Gly Arg Phe Glu Leu Ser 450 460
- Gly Ile Pro Pro Ala Pro Arg Gly Val Pro Gln Ile Glu Val Thr Phe 465 470 470 475
- Asp Ile Asp Ala Asn Gly Ile Leu Ser Val Thr Ala Thr Asp Arg Ser 485 \$490\$
- Thr Gly Lys Ala Asn Lys Ile Thr Ile Thr Asn Asp Lys Gly Arg Leu  $500 \hspace{1cm} 505 \hspace{1cm} 510 \hspace{1cm}$
- Ser Lys Glu Glu Val Glu Arg Met Val His Glu Ala Glu Gln Tyr Lys 515 520 525
- Ala Glu Asp Glu Ala Gln Arg Asp Arg Val Ala Ala Lys Asn Ser Leu 530 540
- Glu Ala His Val Phe His Val Lys Gly Ser Leu Gln Glu Glu Ser Leu 545 550 560
- Arg Asp Lys Ile Pro Glu Glu Asp Arg Lys Met Gln Asp Lys Cys 575 575
- Arg Glu Val Leu Ala Trp Leu Glu His Asn Gln Leu Ala Glu Lys Glu 580 590 590
- Glu Tyr Glu His Gln Lys Arg Glu Leu Glu Gln Ile Cys Arg Pro Ile 595 600 605
- Phe Ser Arg Leu Tyr Gly Gly Pro Gly Val Pro Gly Gly Ser Ser Cys 610 620
- Gly Thr Gln Ala Arg Gln Gly Asp Pro Ser Thr Gly Pro Ile Ile Glu

625 630 635 640

Glu Val Asp

<210> 2957

<211> 565

<212> PRT <213> Homo sapiens

<400> 2957

Met Ala Glu Gly Lys Ala Gly Gly Ala Ala Gly Leu Phe Ala Lys Gln 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Val Gln Lys Lys Phe Ser Arg Ala Gln Glu Lys Val Leu Gln Lys Leu 20 25 30

Gly Lys Ala Val Glu Thr Lys Asp Glu Arg Phe Glu Gln Ser Ala Asn  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Asn Phe Tyr Gln Gln Gln Ala Glu Gly His Lys Leu Tyr Lys Asp Leu 50 60

Lys Asn Phe Leu Ser Ala Val Lys Val Met His Glu Ser Ser Lys Arg 65 70 75 80

Val Ser Glu Thr Leu Gln Glu Ile Tyr Ser Ser Glu Trp Asp Gly His 85 90 95

Glu Glu Leu Lys Ala Ile Val Trp Asn Asn Asp Leu Leu Trp Glu Asp 100 105 110

Tyr Glu Glu Lys Leu Ala Asp Gln Ala Val Arg Thr Met Glu Ile Tyr 115 120 125

Val Ala Gln Phe Ser Glu Ile Lys Glu Arg Ile Ala Lys Arg Gly Arg 130 135 140

Lys Leu Val Asp Tyr Asp Ser Ala Arg His His Leu Glu Ala Val Gln 145 150 155

Asn Ala Lys Lys Lys Asp Glu Ala Lys Thr Ala Lys Ala Glu Glu Glu 165 170 175

Phe Asn Lys Ala Gln Thr Val Phe Glu Asp Leu Asn Gln Glu Leu Leu 180 \$180\$

Glu Glu Leu Pro Ile Leu Tyr Asn Ser Arg Ile Gly Cys Tyr Val Thr Ile Phe Gln Asn Ile Ser Asn Leu Arg Asp Val Phe Tyr Arg Glu Met Ser Lys Leu Asn His Asn Leu Tyr Glu Val Met Ser Lys Leu Glu Lys Gln His Ser Asn Lys Val Phe Val Val Lys Gly Leu Ser Ser Ser Ser Arg Arg Ser Leu Val Ile Ser Pro Pro Val Arg Thr Ala Thr Val Ser Ser Pro Leu Thr Ser Pro Thr Ser Pro Ser Thr Leu Ser Leu Lys Ser Glu Ser Glu Ser Val Ser Ala Thr Glu Asp Leu Ala Pro Asp Ala Ala Gln Gly Glu Asp Asn Ser Glu Ile Lys Glu Leu Leu Glu Glu Glu Glu Ile Glu Lys Glu Gly Ser Glu Ala Ser Ser Ser Glu Glu Asp Glu Pro Leu Pro Ala Cvs Asn Glv Pro Ala Gln Ala Gln Pro Ser Pro Thr Thr Glu Arg Ala Lvs Ser Gln Glu Glu Val Leu Pro Ser Ser Thr Thr Pro Ser Pro Gly Gly Ala Leu Ser Pro Ser Gly Gln Pro Ser Ser Ser Ala Thr Glu Val Val Leu Arg Thr Arg Thr Ala Ser Glu Gly Ser Glu Gln Pro Lys Lys Arg Ala Ser Ile Gln Arg Thr Ser Ala Pro Pro Ser Arg 

Pro Pro Pro Pro Arg Ala Thr Ala Ser Pro Arg Pro Ser Ser Gly Asn
420
430

Ile Pro Ser Ser Pro Thr Ala Ser Gly Gly Gly Ser Pro Thr Ser Pro 435 440 445

Arg Ala Ser Leu Gly Thr Gly Thr Ala Ser Pro Arg Thr Ser Leu Glu 450 460

Val Ser Pro Asn Pro Glu Pro Pro Glu Lys Pro Val Arg Thr Pro Glu 465 470 475 480

Ala Lys Glu Asn Glu Asn Ile His Asn Gln Asn Pro Glu Glu Leu Cys 485 490 495

Thr Ser Pro Thr Leu Met Thr Ser Gln Val Ala Ser Glu Pro Gly Glu
500 505 510

Ala Lys Lys Met Glu Asp Lys Glu Lys Asp Asn Lys Leu Ile Ser Ala 515 520 525

Asp Ser Ser Glu Gly Gln Asp Gln Leu Gln Val Ser Met Val Pro Glu 530 535 540

Asn Asn Asn Leu Thr Ala Pro Glu Pro Glu Glu Glu Val Ser Thr Ser 545 550 555 560

Glu Asn Pro Gln Leu 565

<210> 2958

<211> 349

<212> PRT <213> Homo sapiens

<400> 2958

Met Glu Thr Pro Pro Val Asn Thr Ile Gly Glu Lys Asp Thr Ser Gln 1 5 10 15

Pro Gln Gln Glu Trp Glu Lys Asn Leu Arg Glu Asn Leu Asp Ser Val \$20\$

Leu Glu Val Ser Pro Asp Pro Ala Ser Gln Ile Leu Glu His Thr Gln 50 55 60

Gly Ala Glu Lys Leu Val Ala Glu Leu Glu Gly Asp Ser His Lys Ser 65 70 75 80

His Gly Ser Thr Ser Gln Met Pro Glu Ala Leu Gln Ala Ser Asp Leu Trp Tyr Cys Pro Asp Gly Ser Phe Val Lys Lys Ile Val Ile Arq Gly His Gly Leu Asp Lys Pro Lys Leu Gly Ser Cys Cys Arg Val Leu Ala Leu Gly Phe Pro Phe Gly Ser Gly Pro Pro Glu Gly Trp Thr Glu Leu Thr Met Gly Val Gly Pro Trp Arg Glu Glu Thr Trp Gly Glu Leu Ile Glu Lys Cys Leu Glu Ser Met Cys Gln Gly Glu Glu Ala Glu Leu Gln Leu Pro Gly His Ser Gly Pro Pro Val Arg Leu Thr Leu Ala Ser Phe Thr Gln Gly Arg Asp Ser Trp Glu Leu Glu Thr Ser Glu Lys Glu Ala Leu Ala Arg Glu Glu Arg Ala Arg Gly Thr Glu Leu Phe Arg Ala Gly Asn Pro Glu Gly Ala Ala Arg Cys Tyr Gly Arg Ala Leu Arg Leu Leu Leu Thr Leu Pro Pro Pro Gly Pro Pro Glu Arg Thr Val Leu His Ala Asn Leu Ala Ala Cys Gln Leu Leu Gly Gln Pro Gln Leu Ala Ala Gln Ser Cys Asp Arg Val Leu Glu Arg Glu Pro Gly His Leu Lys Ala Leu Tyr Arg Arg Gly Val Ala Gln Ala Ala Leu Gly Asn Leu Glu Lys Ala Thr Ala Asp Leu Lys Lys Val Leu Ala Ile Asp Pro Lys Asn Arg 

Ala Ala Gln Glu Glu Leu Gly Lys Val Val Ile Gln Gly Lys Asn Gln 325 330 335

Asp Ala Gly Leu Ala Gln Gly Leu Arg Lys Met Phe Gly

<210> 2959

<211> 620 <212> PRT

<213> Homo sapiens

<400> 2959

Gln Lys Arg Arg Thr Ser Pro Ser Asn Phe Lys Val Arg Phe Phe Val 20 25 30

Leu Thr Lys Ala Ser Leu Ala Tyr Phe Glu Asp Arg His Gly Lys Lys 35 40 45

Arg Thr Leu Lys Gly Ser Ile Glu Leu Ser Arg Ile Lys Cys Val Glu

Ile Val Lys Ser Asp Ile Ser Ile Pro Cys His Tyr Lys Tyr Pro Phe 65 70 75 80

Gln Val Val His Asp Asn Tyr Leu Leu Tyr Val Phe Ala Pro Asp Arg 85 90 95

Glu Ser Arg Gln Arg Trp Val Leu Ala Leu Lys Glu Glu Thr Arg Asn 100 105 110

Asn Asn Ser Leu Val Pro Lys Tyr His Pro Asn Phe Trp Met Asp Gly 115 120 125

Lys Trp Arg Cys Cys Ser Gln Leu Glu Lys Leu Ala Thr Gly Cys Ala

Gln Tyr Asp Pro Thr Lys Asn Ala Ser Lys Lys Pro Leu Pro Pro Thr 145 150 155 160

Pro Glu Asp Asn Arg Arg Pro Leu Trp Glu Pro Glu Glu Thr Val Val
165 170 175

Ile Ala Leu Tyr Asp Tyr Gln Thr Asn Asp Pro Gln Glu Leu Ala Leu

Arg Arg Asn Glu Glu Tyr Cys Leu Leu Asp Ser Ser Glu Ile His Trp Trp Arg Val Gln Asp Arg Asn Gly His Glu Gly Tyr Val Pro Ser Ser Tyr Leu Val Glu Lys Ser Pro Asn Asn Leu Glu Thr Tyr Glu Trp Tyr Asn Lys Ser Ile Ser Arg Asp Lys Ala Glu Lys Leu Leu Leu Asp Thr Gly Lys Glu Gly Ala Phe Met Val Arg Asp Ser Arg Thr Ala Gly Thr Tyr Thr Val Ser Val Phe Thr Lys Ala Val Val Ser Glu Asn Asn Pro Cys Ile Lys His Tyr His Ile Lys Glu Thr Asn Asp Asn Pro Lys Arg Tyr Tyr Val Ala Glu Lys Tyr Val Phe Asp Ser Ile Pro Leu Leu Ile 

Asn Tvr His Gln His Asn Glv Glv Glv Leu Val Thr Arg Leu Arg Tyr 

Pro Val Cys Phe Gly Arg Gln Lys Ala Pro Val Thr Ala Gly Leu Arg 

Tyr Gly Lys Trp Val Ile Asp Pro Ser Glu Leu Thr Phe Val Gln Glu 

Ile Gly Ser Gly Gln Phe Gly Leu Val His Leu Gly Tyr Trp Leu Asn 

Lys Asp Lys Val Ala Ile Lys Thr Ile Arg Glu Gly Ala Met Ser Glu 

Glu Asp Phe Ile Glu Glu Ala Glu Val Met Met Lys Leu Ser His Pro 

Lys Leu Val Gln Leu Tyr Gly Val Cys Leu Glu Gln Ala Pro Ile Cys 

| Leu                      | Val        | Phe<br>435         | Glu        | Phe        | Met        | Glu        | His<br>440 | Gly        | Cys        | Leu        | Ser        | Asp<br>445 | Tyr        | Leu        | Arg        |
|--------------------------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Thr                      | Gln<br>450 | Arg                | Gly        | Leu        | Phe        | Ala<br>455 | Ala        | Glu        | Thr        | Leu        | Leu<br>460 | Gly        | Met        | Cys        | Leu        |
| Asp<br>465               | Val        | Сув                | Glu        | Gly        | Met<br>470 | Ala        | Tyr        | Leu        | Glu        | Glu<br>475 | Ala        | Cys        | Val        | Ile        | His<br>480 |
| Arg                      | Asp        | Leu                | Ala        | Ala<br>485 | Arg        | Asn        | Сув        | Leu        | Val<br>490 | Gly        | Glu        | Asn        | Gln        | Val<br>495 | Ile        |
| Lys                      | Val        | Ser                | Asp<br>500 | Phe        | Gly        | Met        | Thr        | Arg<br>505 | Phe        | Val        | Leu        | Asp        | Asp<br>510 | Gln        | Tyr        |
| Thr                      | Ser        | Ser<br>515         | Thr        | Gly        | Thr        | Lys        | Phe<br>520 | Pro        | Val        | Lys        | Trp        | Ala<br>525 | Ser        | Pro        | Glu        |
| Val                      | Phe<br>530 |                    | Phe        | Ser        | Arg        | Tyr<br>535 | Ser        | Ser        | Lys        | Ser        | Asp<br>540 | Val        | Trp        | Ser        | Phe        |
| Gly<br>545               | Val        | Leu                | Met        | Trp        | Glu<br>550 | Val        | Phe        | Ser        | Glu        | Gly<br>555 | Lys        | Ile        | Pro        | Tyr        | Glu<br>560 |
| Asn                      | Arg        | Ser                | Asn        | Ser<br>565 | Glu        | Val        | Val        | Glu        | Asp<br>570 | Ile        | Ser        | Thr        | Gly        | Phe<br>575 | Arg        |
| Leu                      | Tyr        | Lys                | Pro<br>580 | Arg        | Leu        | Ala        | Ser        | Thr<br>585 | His        | Val        | Tyr        | Gln        | Ile<br>590 | Met        | Asn        |
| His                      | Сув        | Trp<br>595         | Lys        | Glu        | Arg        | Pro        | Glu<br>600 | Asp        | Arg        | Pro        | Ala        | Phe<br>605 | Ser        | Arg        | Leu        |
| Leu                      | Arg<br>610 |                    | Leu        | Ala        | Glu        | Ile<br>615 | Ala        | Glu        | Ser        | Gly        | Leu<br>620 |            |            |            |            |
| <21<br><21<br><21<br><21 | 1><br>2>   | 2960<br>262<br>PRT |            |            |            |            |            |            |            |            |            |            |            |            |            |
| <40                      |            | 2960               | sap        | ıens       |            |            |            |            |            |            |            |            |            |            |            |
|                          |            |                    |            |            |            |            | _          |            |            |            |            |            |            |            |            |

Met Asp Pro Arg Leu Ser Thr Val Arg Gln Thr Cys Cys Cys Phe Asn 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Val Arg Ile Ala Thr Thr Ala Leu Ala Ile Tyr His Val Ile Met Ser

Val Leu Phe Ile Glu His Ser Val Glu Val Ala His Gly Lys Ala 35 40 45

Ser Cys Lys Leu Ser Gln Met Gly Tyr Leu Arg Ile Ala Asp Leu Ile 50 55 60

Ser Ser Phe Leu Leu Ile Thr Met Leu Phe Ile Ile Ser Leu Ser Leu 65 70 75 80

Leu Ile Gly Val Val Lys Asn Arg Glu Lys Tyr Leu Leu Pro Phe Leu 85 90 95

Ser Leu Gln Ile Met Asp Tyr Leu Leu Cys Leu Leu Thr Leu Leu Gly

Ser Tyr Ile Glu Leu Pro Ala Tyr Leu Lys Leu Ala Ser Arg Ser Arg 115 120 125

Ala Ser Ser Ser Lys Phe Pro Leu Met Thr Leu Gln Leu Leu Asp Phe 130 135 140

Cys Leu Ser Ile Leu Thr Leu Cys Ser Ser Tyr Met Glu Val Pro Thr 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Tyr Leu Asn Phe Lys Ser Met Asn His Met Asn Tyr Leu Pro Ser Gln 165  $\phantom{0}170$   $\phantom{0}175$ 

Glu Asp Met Pro His Asn Gln Phe Ile Lys Met Met Ile Ile Phe Ser 180 \$180\$

Ile Ala Phe Ile Thr Val Leu Ile Phe Lys Val Tyr Met Phe Lys Cys 195 200 205

Val Trp Arg Cys Tyr Arg Leu Ile Lys Cys Met Asn Ser Val Glu Glu 210 215 220

Lys Arg Asn Ser Lys Met Leu Gln Lys Val Val Leu Pro Ser Tyr Glu 225 230 235 240

Glu Ala Leu Ser Leu Pro Ser Lys Thr Pro Glu Gly Gly Pro Ala Pro 245 250 255

Pro Pro Tyr Ser Glu Val

260

<210> 2961

<211> 467 <212> PRT

<213> Homo sapiens

<400> 2961

Met Gln Met Asp Asn Arg Leu Pro Pro Lys Lys Val Pro Gly Phe Cys 1 \$10\$

Ser Phe Arg Tyr Gly Leu Ser Phe Leu Val His Cys Cys Asn Val Ile 20 25 30

Ile Thr Ala Gln Arg Ala Cys Leu Asn Leu Thr Met Val Val Met Val 35 40 45

Asn Ser Thr Asp Pro His Gly Leu Pro Asn Thr Ser Thr Lys Lys Leu 50 60

Leu Asp Asn Ile Lys Asn Pro Met Tyr Asn Trp Ser Pro Asp Ile Gln 65 70 75 80

Gly Ile Ile Leu Ser Ser Thr Ser Tyr Gly Val Ile Ile Ile Gln Val 85  $90\ 95$ 

Pro Val Gly Tyr Phe Ser Gly Ile Tyr Ser Thr Lys Lys Met Ile Gly 100  $$105\ \ \, 100$$ 

Phe Ala Leu Cys Leu Ser Ser Val Leu Ser Leu Leu Ile Pro Pro Ala 115 120 125

Ala Gly Ile Gly Val Ala Trp Val Val Val Cys Arg Ala Val Gln Gly 130 135 140

Ala Ala Gln Gly Ile Val Ala Thr Ala Gln Phe Glu Ile Tyr Val Lys 145 150 150

Trp Ala Pro Pro Leu Glu Arg Gly Arg Leu Thr Ser Met Ser Thr Ser 165 170 175

Gly Phe Leu Leu Gly Pro Phe Ile Val Leu Leu Val Thr Gly Val Ile 180  $$180\$ 

Cys Glu Ser Leu Gly Trp Pro Met Val Phe Tyr Ile Phe Gly Ala Cys 195 200 205

Gly Cys Ala Val Cys Leu Leu Trp Phe Val Leu Phe Tyr Asp Asp Pro 210 \$215\$

Lys Asp His Pro Cys Ile Ser Ile Ser Glu Lys Glu Tyr Ile Thr Ser 225  $\phantom{\bigg|}230\phantom{\bigg|}235\phantom{\bigg|}235\phantom{\bigg|}$ 

Ser Leu Val Gln Gln Val Ser Ser Ser Arg Gln Ser Leu Pro Ile Lys 245 250 255

Thr Phe Phe Trp Ser His Asn Ile Met Thr Leu Tyr Thr Pro Met Phe 275 280 285

Ile Asn Ser Met Leu His Val Asn Ile Lys Glu Asn Gly Phe Leu Ser 290 300

Ser Leu Pro Tyr Leu Phe Ala Trp Ile Cys Gly Asn Leu Ala Gly Gln 305 \$310\$ \$310

Leu Ser Asp Phe Phe Leu Thr Arg Asn Ile Leu Ser Val Ile Ala Val 325 330 335

Arg Lys Leu Phe Thr Ala Ala Gly Phe Leu Leu Pro Ala Ile Phe Gly \$340\$

Val Cys Leu Pro Tyr Leu Ser Ser Thr Phe Tyr Ser Ile Val Ile Phe 355 360 365

Leu Ile Leu Ala Gly Ala Thr Gly Ser Phe Cys Leu Gly Gly Val Phe 370 380

Ile Asn Gly Leu Asp Ile Ala Pro Arg Tyr Phe Gly Phe Ile Lys Ala 385 390 395 400

Cys Ser Thr Leu Thr Gly Met Ile Gly Gly Leu Ile Ala Ser Thr Leu  $405 \hspace{1cm} 415$ 

Thr Gly Leu Ile Leu Lys Gln Asp Pro Glu Ser Ala Trp Phe Lys Thr 420 425 430

Phe Ile Leu Met Ala Ala Ile Asn Val Thr Gly Leu Ile Phe Tyr Leu 435 440 445

Ile Val Ala Thr Ala Glu Ile Gln Asp Trp Ala Lys Glu Lys Gln His 450 460

Thr Arg Leu 465

<210> 2962 <211> 444

<212> PRT

<213> Homo sapiens

<400> 2962

Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Leu Gly Leu Gln 1 5 10 15

Gly Cys Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Leu His Arg Arg Arg Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro 35 40 45

Gly Ser Leu Glu Arg Glu Cys Lys Glu Glu Gln Cys Ser Phe Glu Glu 50 \$50\$

Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile 65 75 80

Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly 85 90 95

Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro  $100 \hspace{1cm} 105$ 

Ala Phe Glu Gly Arg Asn Cys Glu Thr His Lys Asp Asp Gln Leu Ile 115 120 125

Cys Val Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr 130 140

Gly Thr Lys Arg Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala 145 150 155 160

Asp Gly Val Ser Cys Thr Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile 165 170 175

Pro Ile Leu Glu Lys Arg Asn Ala Ser Lys Pro Gln Gly Arg Ile Val 180 185 190

| Gly        | Gly        | Lys<br>195 |            | Cys        | Pro        | Lys        | Gly<br>200 |            | Cys        | Pro        | Trp        | Gln<br>205 |            | Leu        | Leu        |  |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|
| Leu        | Val<br>210 | Asn        | Gly        | Ala        | Gln        | Leu<br>215 | Cys        | Gly        | Gly        | Thr        | Leu<br>220 |            | Asn        | Thr        | Ile        |  |
| Trp<br>225 | Val        | Val        | Ser        | Ala        | Ala<br>230 |            | Cys        | Phe        | Asp        | Lys<br>235 |            | Lys        | Asn        | Trp        | Arg<br>240 |  |
| Asn        | Leu        | Ile        | Ala        | Val<br>245 | Leu        | Gly        | Glu        | His        | Asp<br>250 |            | Ser        | Glu        | His        | Asp<br>255 | Gly        |  |
| Asp        | Glu        | Gln        | Ser<br>260 | Arg        | Arg        | Val        | Ala        | Gln<br>265 | Val        | Ile        | Ile        | Pro        | Ser<br>270 | Thr        | Tyr        |  |
| Val        | Pro        | Gly<br>275 | Thr        | Thr        | Asn        | His        | Asp<br>280 | Ile        | Ala        | Leu        | Leu        | Arg<br>285 | Leu        | His        | Gln        |  |
| Pro        | Val<br>290 | Val        | Leu        | Thr        | Asp        | His<br>295 | Val        | Val        | Pro        | Leu        | Cys<br>300 | Leu        | Pro        | Glu        | Arg        |  |
| Thr<br>305 | Phe        | Ser        | Glu        | Arg        | Thr<br>310 | Leu        | Ala        | Phe        | Val        | Arg<br>315 | Phe        | Ser        | Leu        | Val        | Ser<br>320 |  |
| Gly        | Trp        | Gly        | Gln        | Leu<br>325 | Leu        | Asp        | Arg        | Gly        | Ala<br>330 | Thr        | Ala        | Leu        | Glu        | Leu<br>335 | Met        |  |
| Val        | Leu        | Asn        | Val<br>340 | Pro        | Arg        | Leu        | Met        | Thr<br>345 | Gln        | Asp        | Cys        | Leu        | Gln<br>350 | Gln        | Ser        |  |
| Arg        | Lys        | Val<br>355 | Gly        | Asp        | Ser        | Pro        | Asn<br>360 | Ile        | Thr        | Glu        | Tyr        | Met<br>365 | Phe        | Сув        | Ala        |  |
| Gly        | Tyr<br>370 | Ser        | Asp        | Gly        | Ser        | Lys<br>375 | Asp        | Ser        | Сув        | Lys        | Gly<br>380 | Asp        | Ser        | Gly        | Gly        |  |
| Pro<br>385 | His        | Ala        | Thr        | His        | Tyr<br>390 | Arg        | Gly        | Thr        | Trp        | Tyr<br>395 | Leu        | Thr        | Gly        | Ile        | Val<br>400 |  |
| Ser        | Trp        | Gly        | Gln        | Gly<br>405 | Cys        | Ala        | Thr        | Val        | Gly<br>410 | His        | Phe        | Gly        | Val        | Tyr<br>415 | Thr        |  |
| Arg        | Val        | Ser        | Gln<br>420 | Tyr        | Ile        | Glu        | Trp        | Leu<br>425 | Gln        | Lys        | Leu        | Met        | Arg<br>430 | Ser        | Glu        |  |

Pro Arg Pro Gly Val Leu Leu Arg Ala Pro Phe Pro  $^{435}$ 

<210> 2963

<211> 272 <212> PRT

<213> Homo sapiens

<400> 2963

Arg Cys Lys Pro Ile Ser Gly His Asn Ser Leu Phe Trp Tyr Arg Gln 1 10 15

Thr Met Met Arg Gly Leu Glu Leu Leu Ile Tyr Phe Asn Asn Asn Val \$20\$

Pro Ile Asp Asp Ser Gly Met Pro Glu Asp Arg Phe Ser Ala Lys Met 35 40 45

Pro Asn Ala Ser Phe Ser Thr Leu Lys Ile Gln Pro Ser Glu Pro Arg 50 55 60

Asp Ser Ala Val Tyr Phe Cys Ala Ser Ser Phe Ser Thr Cys Ser Ala 65 70 80 80

Asn Tyr Gly Tyr Thr Phe Gly Ser Gly Thr Arg Leu Thr Val Val Glu 85 \$90\$

Asp Leu Asn Lys Val Phe Pro Pro Glu Val Ala Val Phe Glu Pro Ser  $100 \\ 0 \\ 105 \\ 110$ 

Glu Ala Glu Ile Ser His Thr Gln Lys Ala Thr Leu Val Cys Leu Ala 115 120 125

Thr Gly Phe Phe Pro Asp His Val Glu Leu Ser Trp Trp Val Asn Gly 130 135 140

Lys Glu Val His Ser Gly Val Ser Thr Asp Pro Gln Pro Leu Lys Glu 145 150 155 160

Gln Pro Ala Leu Asn Asp Ser Arg Tyr Cys Leu Ser Ser Arg Leu Arg 165 170 175

Val Ser Ala Thr Phe Trp Gln Asn Pro Arg Asn His Phe Arg Cys Gln 180 185 190

Val Gln Phe Tyr Gly Leu Ser Glu Asn Asp Glu Trp Thr Gln Asp Arg

195 200 205

Ala Lys Pro Val Thr Gln Ile Val Ser Ala Glu Ala Trp Gly Arg Ala 210 215 220

Asp Cys Gly Phe Thr Ser Val Ser Tyr Gln Gln Gly Val Leu Ser Ala 225 230 235 240

Leu Val Ser Ala Leu Val Leu Met Ala Met Val Lys Arg Lys Asp Phe 260 265 270

<210> 2964

<211> 276 <212> PRT

<213> Homo sapiens

<400> 2964

Met Tyr Arg Ile Ser Gln Leu Met Ser Thr Pro Val Ala Ser Ser Ser 1

Arg Leu Glu Arg Glu Tyr Ala Gly Glu Leu Ser Pro Thr Cys Ile Phe

Pro Ser Phe Thr Cys Asp Ser Leu Asp Gly Tyr His Ser Phe Glu Cys 35 40 45

Gly Ser Ile Asp Pro Leu Thr Gly Ser His Tyr Thr Cys Arg Arg Ser 50  $\,$  60

Pro Arg Leu Leu Thr Asn Gly Tyr Tyr Ile Trp Thr Glu Asp Ser Phe 65 70 75 80

Leu Cys Asp Lys Asp Gly Asn Ile Thr Leu Asn Pro Ser Gln Thr Ser 85  $\phantom{\bigg|}90\phantom{\bigg|}$  95

Val Met Tyr Lys Glu Asn Leu Val Ser Thr Ser Lys Ser Trp Leu His

Gly Ser Ile Phe Gly Asp Ile Asn Ser Ser Pro Ser Glu Asp Asn Trp  $_{115}$   $_{120}$   $_{125}$ 

Leu Lys Gly Thr Arg Arg Leu Asp Thr Asp His Cys Asn Gly Asn Ala 130 135 140

Asp Asp Leu Asp Cys Ser Ser Leu Thr Asp Asp Trp Glu Ser Gly Lys 155 145 150 Met Asn Ala Glu Ser Val Ile Thr Ser Ser Ser His Ile Ile Ser 170 165 Gln Pro Pro Glv Glv Asn Ser His Ser Leu Ser Leu Gln Ser Gln Leu 185 Thr Ala Ser Glu Arg Phe Gln Glu Asn Ser Ser Asp His Ser Glu Thr 195 200 Arg Leu Leu Gln Glu Val Phe Phe Gln Ala Ile Leu Leu Ala Val Cys 210 215 Leu Ile Thr Ser Ala Cys Ala Arg Trp Phe Met Gly Glu Ile Leu Ala 225 230 235 240 Ser Val Phe Thr Cys Ser Leu Met Ile Thr Val Ala Tyr Val Lys Ser 245 250 Leu Phe Leu Ser Leu Ala Ser Tyr Phe Lys Thr Thr Ala Cys Ala Arg 260 265 270 Phe Val Lys Ile 275 <210> 2965 <211> 133 <212> PRT <213> Homo sapiens <400> 2965 Met Val Leu Gln Thr Gln Val Phe Ile Ser Leu Leu Leu Trp Ile Ser

10

Gly Ala Tyr Gly Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala 25

Val Ser Leu Gly Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser 35 40

Val Leu Tyr Ser Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln 55 60 50

Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg

65 70 75 80

Glu Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp  $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$ 

Phe Thr Leu Thr Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr \$100\$

Tyr Cys Gln Gln Tyr Asp Thr Ile Pro Thr Phe Gly Gly Gly Thr Lys 115 120 125

Val Glu Ile Lys Arg

<210> 2966

<211> 369 <212> PRT

<213> Homo sapiens

<400> 2966

Met Leu Lys Pro Ser Leu Pro Phe Thr Ser Leu Leu Phe Leu Gln Leu 1 5 10 15

Pro Leu Leu Gly Val Gly Leu Asn Thr Thr Ile Leu Thr Pro Asn Gly  $20 \\ 25 \\ 30$ 

Asn Glu Asp Thr Thr Ala Asp Phe Phe Leu Thr Thr Met Pro Thr Asp  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Ser Leu Ser Val Ser Thr Leu Pro Leu Pro Glu Val Gln Cys Phe Val 50 60

Phe Asn Val Glu Tyr Met Asn Cys Thr Trp Asn Ser Ser Ser Glu Pro 70 75 80

Gln Pro Thr Asn Leu Thr Leu His Tyr Trp Tyr Lys Asn Ser Asp Asn 85 90 95

Asp Lys Val Gln Lys Cys Ser His Tyr Leu Phe Ser Glu Glu Ile Thr  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Ser Gly Cys Gln Leu Gln Lys Lys Glu Ile His Leu Tyr Gln Thr Phe 115 120 125

Val Val Gln Leu Gln Asp Pro Arg Glu Pro Arg Arg Gln Ala Thr Gln 130 140

Met Leu Lys Leu Gln Asn Leu Val Ile Pro Trp Ala Pro Glu Asn Leu 145 150 155 160

Thr Leu His Lys Leu Ser Glu Ser Gln Leu Glu Leu Asn Trp Asn Asn 165 170 175

Arg Phe Leu Asn His Cys Leu Glu His Leu Val Gln Tyr Arg Thr Asp 180 185 190

Trp Asp His Ser Trp Thr Glu Gln Ser Val Asp Tyr Arg His Lys Phe 195 200 205

Ser Leu Pro Ser Val Asp Gly Gln Lys Arg Tyr Thr Phe Arg Val Arg 210 215 220

Ser Arg Phe Asn Pro Leu Cys Gly Ser Ala Gln His Trp Ser Glu Trp 225 235 240

Ser His Pro Ile His Trp Gly Ser Asn Thr Ser Lys Glu Asn Pro Phe 245 250 250

Leu Phe Ala Leu Glu Ala Val Val Ile Ser Val Gly Ser Met Gly Leu 260 265 270

Ile Ile Ser Leu Leu Cys Val Tyr Phe Trp Leu Glu Arg Thr Met Pro 275 280 285

Arg Ile Pro Thr Leu Lys Asn Leu Glu Asp Leu Val Thr Glu Tyr His 290 295 300

Gly Asn Phe Ser Ala Trp Ser Gly Val Ser Lys Gly Leu Ala Glu Ser 305 310 315 320

Leu Gln Pro Asp Tyr Ser Glu Arg Leu Cys Leu Val Ser Glu Ile Pro 325 330 335

Pro Lys Gly Gly Ala Leu Gly Glu Gly Pro Gly Ala Ser Pro Cys Asn \$340\$ \$345\$ \$350

Gln His Ser Pro Tyr Trp Ala Pro Pro Cys Tyr Thr Leu Lys Pro Glu 355 360 365

Thr

<210> 2967

<211> 323 <212> PRT

<213> Homo sapiens

<400> 2967

Met Ala Phe Ser Gly Ser Gln Ala Pro Tyr Leu Ser Pro Ala Val Pro 1 10 15

Phe Ser Gly Thr Ile Gln Gly Gly Leu Gln Asp Gly Leu Gln Ile Thr  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$ 

Val Asn Gly Thr Val Leu Ser Ser Ser Gly Thr Arg Phe Ala Val Asn 35 40 45

Phe Gln Thr Gly Phe Ser Gly Asn Asp Ile Ala Phe His Phe Asn Pro 50 55 60

Arg Phe Glu Asp Gly Gly Tyr Val Val Cys Asn Thr Arg Gln Asn Gly 65 70 75 80

Ser Trp Gly Pro Glu Glu Arg Arg Thr His Met Pro Phe Gln Lys Gly 85 90 95

Met Pro Phe Asp Leu Cys Phe Leu Val Gln Ser Ser Asp Phe Lys Val

Met Val Asn Gly Ile Leu Phe Val Gln Tyr Phe His Arg Val Pro Phe 115 120 125

His Arg Val Asp Thr Ile Phe Val Asn Gly Ser Val Gln Leu Ser Tyr 130 135 140

Ile Ser Phe Gln Pro Pro Gly Val Trp Pro Ala Asn Pro Ala Pro Ile 145  $\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}155\phantom{\bigg|}$ 

Thr Gln Thr Val Ile His Thr Val Gln Ser Ala Pro Gly Gln Met Phe 165 170 175

Ser Thr Pro Ala Ile Pro Pro Met Met Tyr Pro His Pro Ala Tyr Pro 180 185 190

Met Pro Phe Ile Thr Thr Ile Leu Gly Gly Leu Tyr Pro Ser Lys Ser 195 200 205

Ile Leu Leu Ser Gly Thr Val Leu Pro Ser Ala Gln Arg Phe His Ile 210 215 220

Asn Leu Cys Ser Gly Asn His Ile Ala Phe His Leu Asn Leu Arg Phe 225 230 235 240

Asp Glu Asn Ala Val Val Arg Asn Thr Gln Ile Asp Asn Ser Trp Gly 245 250 255

Ser Glu Glu Arg Ser Leu Pro Arg Lys Met Pro Phe Val Arg Gly Gln
260 265 270

Ser Phe Ser Val Trp Ile Leu Cys Gly Ala His Cys Leu Lys Val Ala 275 280 285

Val Asp Gly Gln His Leu Phe Glu Tyr Tyr His Arg Leu Arg Asn Leu 290 295 300

Pro Thr Ile Asn Arg Leu Glu Val Gly Gly Asp Ile Gln Leu Thr His 305 310 315 320

Val Gln Thr

<210> 2968 <211> 1866

<212> PRT <213> Homo sapiens

<400> 2968

Met Asp Pro Val Gly Leu Gln Leu Gly Asn Lys Asn Leu Trp Ser Cys 1 10 15

Leu Val Arg Leu Leu Thr Lys Asp Pro Glu Trp Leu Asn Ala Lys Met 20 25 30

Lys Phe Phe Leu Pro Asn Thr Asp Leu Asp Ser Arg Asn Glu Thr Leu  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Asp Pro Glu Gln Arg Val Ile Leu Gln Leu Asn Lys Leu His Val Gln 50 60

Gly Ser Asp Thr Trp Gln Ser Phe Ile His Cys Val Cys Met Gln Leu 65 75 80

Glu Val Pro Leu Asp Leu Glu Val Leu Leu Leu Ser Thr Phe Gly Tyr 85 90 95

| Asp | Asp | Gly | Phe | Thr | Ser | Gln | Leu | Gly | Ala | Glu | Gly | Lys | Ser | Gln | Pro |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     | 100 |     |     |     |     | 105 |     |     |     |     | 110 |     |     |

- Glu Ser Gln Leu His His Gly Leu Lys Arg Pro His Gln Ser Cys Gly 115 120 125
- Ser Ser Pro Arg Arg Lys Gln Cys Lys Lys Gln Gln Leu Glu Leu Ala
- Lys Lys Tyr Leu Gln Leu Leu Arg Thr Ser Ala Gln Gln Arg Tyr Arg 145 \$150\$
- Ser Gln Ile Pro Gly Ser Gly Gln Pro His Ala Phe His Gln Val Tyr 165 170 175
- Val Pro Pro Ile Leu Arg Arg Ala Thr Ala Ser Leu Asp Thr Pro Glu 180 185 190
- Gly Ala Ile Met Gly Asp Val Lys Val Glu Asp Gly Ala Asp Val Ser
- Ile Ser Asp Leu Phe Asn Thr Arg Val Asn Lys Gly Pro Arg Val Thr 210 215 220
- Val Leu Leu Gly Lys Ala Gly Met Gly Lys Thr Thr Leu Ala His Arg 225 230 235 240
- Leu Cys Gln Lys Trp Ala Glu Gly His Leu Asn Cys Phe Gln Ala Leu 245 250 255
- Phe Leu Phe Glu Phe Arg Gln Leu Asn Leu Ile Thr Arg Phe Leu Thr 260 265 270
- Pro Ser Glu Leu Leu Phe Asp Leu Tyr Leu Ser Pro Glu Ser Asp His 275 280 285
- Asp Thr Val Phe Gln Tyr Leu Glu Lys Asn Ala Asp Gln Val Leu Leu 290 295 300
- Ile Phe Asp Gly Leu Asp Glu Ala Leu Gln Pro Met Gly Pro Asp Gly 305 310 315 320
- Pro Gly Pro Val Leu Thr Leu Phe Ser His Leu Cys Asn Gly Thr Leu 325 330 335
- Leu Pro Gly Cys Arg Val Met Ala Thr Ser Arg Pro Gly Lys Leu Pro

Ala Cys Leu Pro Ala Glu Ala Ala Met Val His Met Leu Gly Phe Asp Gly Pro Arq Val Glu Glu Tyr Val Asn His Phe Phe Ser Ala Gln Pro Ser Arg Glu Gly Ala Leu Val Glu Leu Gln Thr Asn Gly Arg Leu Arg Ser Leu Cys Ala Val Pro Ala Leu Cys Gln Val Ala Cys Leu Cys Leu His His Leu Leu Pro Asp His Ala Pro Gly Gln Ser Val Ala Leu Leu Pro Asn Met Thr Gln Leu Tyr Met Gln Met Val Leu Ala Leu Ser Pro Pro Gly His Leu Pro Thr Ser Ser Leu Leu Asp Leu Gly Glu Val Ala Leu Arg Gly Leu Glu Thr Gly Lys Val Ile Phe Tyr Ala Lys Asp Ile Ala Pro Pro Leu Ile Ala Phe Gly Ala Thr His Ser Leu Leu Thr Ser Phe Cys Val Cys Thr Gly Pro Gly His Gln Gln Thr Gly Tyr Ala Phe Thr His Leu Ser Leu Gln Glu Phe Leu Ala Ala Leu His Leu Met Ala Ser Pro Lys Val Asn Lys Asp Thr Leu Thr Gln Tyr Val Thr Leu His Ser Arg Trp Val Gln Arg Thr Lys Ala Arg Leu Gly Leu Ser Asp His 

Leu Pro Thr Phe Leu Ala Gly Leu Ala Ser Cys Thr Cys Arg Pro Phe 565 570 575

Leu Ser His Leu Ala Gln Gly Asn Glu Asp Cys Val Gly Ala Lys Gln 580 585 590

| Ala        | Ala        | Va]        | l Val      | . Glr      | ı Val      | Leu        | 600        | Lys        | Leu        | Ala        | Thr        | 605        |            | Leu        | Thi        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly        | Pro<br>610 | Lys        | : Val      | Val        | Glu        | Leu<br>615 |            | His        | Cys        | Val        | Asp<br>620 |            | Thr        | Glr        | Glu        |
| Pro<br>625 | Glu        | Leu        | Ala        | Ser        | Leu<br>630 | Thr        | Ala        | Glr        | Ser        | Leu<br>635 | Pro        | Tyr        | Gln        | Leu        | Pro<br>640 |
| Phe        | His        | Asn        | Phe        | Pro<br>645 | Leu        | Thr        | Cys        | Thr        | Asp<br>650 |            | Ala        | Thr        | Leu        | Thr<br>655 |            |
| Ile        | Leu        | Glu        | His<br>660 | Arg        | Glu        | Ala        | Pro        | Ile<br>665 | His        | Leu        | Asp        | Phe        | Asp<br>670 |            | Cys        |
| Pro        | Leu        | Glu<br>675 | Pro        | His        | Cys        | Pro        | Glu<br>680 | Ala        | Leu        | Val        | Gly        | Cys<br>685 |            | Gln        | Ile        |
| Glu        | Asn<br>690 | Leu        | Ser        | Phe        | Lys        | Ser<br>695 | Arg        | Lys        | Сув        | Gly        | Asp<br>700 |            | Phe        | Ala        | Glu        |
| Ala<br>705 | Leu        | Ser        | Arg        | Ser        | Leu<br>710 | Pro        | Thr        | Met        | Gly        | Arg<br>715 | Leu        | Gln        | Met        | Leu        | Gly<br>720 |
| Leu        | Ala        | Gly        | Ser        | Lys<br>725 | Ile        | Thr        | Ala        | Arg        | Gly<br>730 | Ile        | Ser        | His        | Leu        | Val<br>735 |            |
| Ala        | Leu        | Pro        | Leu<br>740 | Cys        | Pro        | Gln        | Leu        | Lys<br>745 | Glu        | Val        | Ser        | Phe        | Arg<br>750 | Asp        | Asn        |
| Gln        | Leu        | Ser<br>755 | Asp        | Gln        | Val        | Val        | Leu<br>760 | Asn        | Ile        | Val        | Glu        | Val<br>765 | Leu        | Pro        | His        |
| Leu        | Pro<br>770 | Arg        | Leu        | Arg        | Lys        | Leu<br>775 | Asp        | Leu        | Ser        | Ser        | Asn<br>780 | Ser        | Ile        | Сув        | Val        |
| Ser<br>785 | Thr        | Leu        | Leu        | Cys        | Leu<br>790 | Ala        | Arg        | Val        | Ala        | Val<br>795 | Thr        | Cys        | Pro        | Thr        | Val<br>800 |
| Arg        | Met        | Leu        | Gln        | Ala<br>805 | Arg        | Glu        | Arg        | Thr        | Ile<br>810 | Ile        | Phe        | Leu        | Leu        | Ser<br>815 | Pro        |
| Pro        | Thr        | Glu        | Thr<br>820 | Thr        | Ala        | Glu        | Leu        | Gln<br>825 | Arg        | Ala        | Pro        | Asp        | Leu<br>830 | Gln        | Glu        |

Ser Asp Gly Gln Arg Lys Gly Ala Gln Ser Arg Ser Leu Thr Leu Arg 835 840 845

- Leu Gln Lys Cys Gln Leu Gln Val His Asp Ala Glu Ala Leu Ile Ala 850 860
- Leu Leu Gln Glu Gly Pro His Leu Glu Glu Val Asp Leu Ser Gly Asn 865 870 880
- Gln Leu Glu Asp Glu Gly Cys Arg Leu Met Ala Glu Ala Ala Ser Gln 885 895
- Leu His Ile Ala Arg Lys Leu Asp Leu Ser Asp Asn Gly Leu Ser Val 900 910
- Ala Gly Val His Cys Val Leu Arg Ala Val Ser Ala Cys Trp Thr Leu 915 920 925
- Ala Glu Leu His Ile Ser Leu Gln His Lys Thr Val Ile Phe Met Phe 930 \$935\$
- Ala Gln Glu Pro Glu Glu Gln Lys Gly Pro Gln Glu Arg Ala Ala Phe 945 955 960
- Leu Asp Ser Leu Met Leu Gln Met Pro Ser Glu Leu Pro Leu Ser Ser 965 970 975
- Arg Arg Met Arg Leu Thr His Cys Gly Leu Gln Glu Lys His Leu Glu 980 985 990
- Gln Leu Cys Lys Ala Leu Gly Gly Ser Cys His Leu Gly His Leu His 995 1000 1005
- Leu Asp Phe Ser Gly Asn Ala Leu Gly Asp Glu Gly Ala Ala Arg 1010 1020
- Leu Ala Gln Leu Leu Pro Gly Leu Gly Ala Leu Gln Ser Leu Asn 1025 1030 1035
- Leu Ser Glu Asn Gly Leu Ser Leu Asp Ala Val Leu Gly Leu Val 1040 1045 1050
- Arg Cys Phe Ser Thr Leu Gln Trp Leu Phe Arg Leu Asp Ile Ser 1055 1060 1065

| Phe | Glu<br>1070 | Ser | Gln | His |     | Leu<br>1075 |     | Arg | Gly |     | Lys<br>1080 | Thr | Ser | Arg |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Asp | Met<br>1085 | Trp | Ala | Thr |     | Ser<br>1090 | Leu | Pro | Asp | Phe | Pro<br>1095 | Ala | Ala | Ala |
| Lys | Phe<br>1100 | Leu | Gly | Phe | Arg | Gln<br>1105 |     | Cys | Ile | Pro | Arg<br>1110 | Ser | Leu | Cys |
| Leu | Ser<br>1115 | Glu | Cys | Pro | Leu | Glu<br>1120 |     | Pro | Ser | Leu | Thr<br>1125 | Arg | Leu | Cys |
| Ala | Thr<br>1130 | Leu | Lys | Asp |     | Pro<br>1135 |     | Pro | Leu | Glu | Leu<br>1140 | Gln | Leu | Ser |
| Сув | Glu<br>1145 | Phe | Leu | Ser |     | Gln<br>1150 | Ser | Leu | Glu | Thr | Leu<br>1155 | Leu | Asp | Сув |
| Leu | Pro<br>1160 | Gln | Leu | Pro | Gln | Leu<br>1165 | Ser | Leu | Leu | Gln | Leu<br>1170 | Ser | Gln | Thr |
| Gly | Leu<br>1175 | Ser | Pro | Lys | Ser | Pro<br>1180 | Phe | Leu | Leu | Ala | Asn<br>1185 | Thr | Leu | Ser |
| Leu | Суs<br>1190 | Pro | Arg | Val | Lys | Lys<br>1195 | Val | Asp | Leu | Arg | Ser<br>1200 | Leu | His | His |
| Ala | Thr<br>1205 | Leu | His | Phe | Arg | Ser<br>1210 |     | Glu | Glu | Glu | Glu<br>1215 | Gly | Val | Cys |
| Сув | Gly<br>1220 |     | Phe | Thr | Gly | Cys<br>1225 |     | Leu | Ser | Gln | Glu<br>1230 | His | Val | Glu |
| Ser | Leu<br>1235 |     | Trp | Leu |     | Ser<br>1240 |     | Cys | Lys | Asp | Leu<br>1245 | Ser | Gln | Val |
| Asp | Leu<br>1250 |     | Ala | Asn | Leu | Leu<br>1255 |     | Asp | Ser | Gly | Leu<br>1260 | Arg | Cys | Leu |
| Leu | Glu<br>1265 |     | Leu | Pro | Gln | Val<br>1270 |     | Ile | Ser | Gly | Leu<br>1275 |     | Asp | Leu |
| Ser | His<br>1280 |     | Ser | Ile | Ser | Gln<br>1285 | Glu | Ser | Ala | Leu | Tyr<br>1290 | Leu | Leu | Glu |
| Thr | Leu         | Pro | Ser | Cys | Pro | Arg         | Val | Arg | Glu | Ala | Ser         | Val | Asn | Let |

1355

Gly Ser Glu Gln Ser Phe Arg Ile His Phe Ser Arg Glu Asp Gln Ala Gly Lys Thr Leu Arg Leu Ser Glu Cys Ser Phe Arg Pro Glu His Val Ser Arg Leu Ala Thr Gly Leu Ser Lys Ser Leu Gln Leu Thr Glu Leu Thr Leu Thr Gln Cys Cys Leu Gly Gln Lys Gln Leu Ala Ile Leu Leu Ser Leu Val Gly Arg Pro Ala Gly Leu Phe Ser Leu Arg Val Gln Glu Pro Trp Ala Asp Arg Ala Arg Val Leu Ser Leu Leu Glu Val Cys Ala Gln Ala Ser Gly Ser Val Thr Glu Ile Ser Ile Ser Glu Thr Gln Gln Gln Leu Cys Val Gln Leu Glu Phe Pro Arg Gln Glu Glu Asn Pro Glu Ala Val Ala Leu Arg Leu Ala His Cys Asp Leu Gly Ala His His Ser Leu Leu Val Gly Gln Leu Met Glu Thr Cys Ala Arg Leu Gln Gln Leu Ser Leu Ser Gln Val Asn Leu Cys Glu Asp Asp Asp Ala Ser Ser Leu Leu Leu Gln Ser 1480 1485 Leu Leu Leu Ser Leu Ser Glu Leu Lys Thr Phe Arg Leu Thr Ser 

Gly His Cys His His Leu Glu Glu Leu Asp Leu Ser Asn Asn Gln 1520 1530

Ser Cys Val Ser Thr Glu Gly Leu Ala His Leu Ala Ser Gly Leu 1505 1510 1515

| Phe | Asp<br>1535 | Glu | Glu | Gly |     | Lys<br>1540 | Ala | Leu | Met | Arg      | Ala<br>1545 | Leu | Glu | Gly |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|----------|-------------|-----|-----|-----|
| Lys | Trp<br>1550 | Met | Leu | Lys | Arg | Leu<br>1555 | Asp | Leu | Ser | His      | Leu<br>1560 | Leu | Leu | Asn |
| Ser | Ser<br>1565 | Thr | Leu | Ala | Leu | Leu<br>1570 | Thr | His | Arg | Leu      | Ser<br>1575 | Gln | Met | Thr |
| Cys | Leu<br>1580 | Gln | Ser | Leu | Arg | Leu<br>1585 |     | Arg | Asn | Ser      | Ile<br>1590 | Gly | Asp | Val |
| Gly | Сув<br>1595 | Cys | His | Leu |     | Glu<br>1600 |     | Leu | Arg |          | Ala<br>1605 | Thr | Ser | Leu |
| Glu | Glu<br>1610 | Leu | Asp | Leu | Ser | His<br>1615 |     | Gln | Ile | Gly<br>` | Asp<br>1620 | Ala | Gly | Val |
| Gln | His<br>1625 | Leu | Ala | Thr |     | Leu<br>1630 |     | Gly | Leu |          | Glu<br>1635 | Leu | Arg | Lys |
| Ile | Asp<br>1640 |     | Ser | Gly |     | Ser<br>1645 |     | Ser | Ser | Ala      | Gly<br>1650 |     | Val | Gln |
| Leu | Ala<br>1655 | Glu | Ser | Leu |     | Leu<br>1660 |     | Arg | Arg |          | Glu<br>1665 | Glu | Leu | Met |
| Leu | Gly<br>1670 |     | Asn | Ala |     | Gly<br>1675 |     | Pro | Thr |          | Leu<br>1680 |     | Leu | Ala |
| Gln | Glu<br>1685 |     | Pro | Gln | His | Leu<br>1690 |     | Val | Leu | His      | Leu<br>1695 | Pro | Phe | Ser |
| His | Leu<br>1700 |     | Pro | Gly | Gly | Ala<br>1705 |     | Ser | Leu |          | Gln<br>1710 |     | Leu | Asp |
| Gly | Ser<br>1715 |     | His | Leu | Glu | Glu<br>1720 |     | Ser | Leu | Ala      | Glu<br>1725 | Asn | Asn | Leu |
| Ala | Gly<br>1730 |     | Val | Leu | Arg | Phe<br>1735 |     | Met | Glu | Leu      | Pro<br>1740 | Leu | Leu | Arg |
| Gln | Ile<br>1745 |     | Leu | Val | Ser | Cys<br>1750 |     | Ile | Asp | Asn      | Gln<br>1755 |     | Ala | Lys |

Leu Leu Thr Ser Ser Phe Thr Ser Cys Pro Ala Leu Glu Val Ile 1760 1765 1770

- Leu Leu Ser Trp Asn Leu Leu Gly Asp Glu Ala Ala Ala Glu Leu 1775 1780 1785
- Ala Gln Val Leu Pro Lys Met Gly Arg Leu Lys Arg Val Asp Leu 1790 1795 1800
- Glu Lys Asn Gln Ile Thr Ala Leu Gly Ala Trp Leu Leu Ala Glu 1805 1810 1815
- Gly Leu Ala Gln Gly Ser Ser Ile Gln Val Ile Arg Leu Trp Asn 1820 1825 1830
- Asn Pro Ile Pro Cys Asp Met Ala Gln His Leu Lys Ser Gln Glu 1835 1840 1845
- Pro Arg Leu Asp Phe Ala Phe Phe Asp Asn Gln Pro Gln Ala Pro 1850 1860

Trp Gly Thr

<210> 2969

<211> 547

<212> PRT <213> Homo sapiens

<400> 2969

- Met Ala Thr Met Val Pro Ser Val Leu Trp Pro Arg Ala Cys Trp Thr 1 5 10 15
- Leu Leu Val Cys Cys Leu Leu Thr Pro Gly Val Gln Gly Gln Glu Phe 20 25 30
- Leu Leu Arg Val Glu Pro Gln Asn Pro Val Leu Ser Ala Gly Gly Ser  $35 \hspace{1cm} 40 \hspace{1cm} 45$
- Leu Phe Val Asn Cys Ser Thr Asp Cys Pro Ser Ser Glu Lys Ile Ala 50  $$\rm 55$$
- Leu Glu Thr Ser Leu Ser Lys Glu Leu Val Ala Ser Gly Met Gly Trp 65 70 75 80
- Ala Ala Phe Asn Leu Ser Asn Val Thr Gly Asn Ser Arg Ile Leu Cys

Ser Val Tyr Cys Asn Gly Ser Gln Ile Thr Gly Ser Ser Asn Ile Thr 

- Val Tyr Gly Leu Pro Glu Arg Val Glu Leu Ala Pro Leu Pro Pro Trp
- Gln Pro Val Gly Gln Asn Phe Thr Leu Arg Cys Gln Val Glu Gly Gly
- Ser Pro Arg Thr Ser Leu Thr Val Val Leu Leu Arg Trp Glu Glu Glu
- Leu Ser Arg Gln Pro Ala Val Glu Glu Pro Ala Glu Val Thr Ala Thr
- Val Leu Ala Ser Arg Asp Asp His Gly Ala Pro Phe Ser Cys Arg Thr
- Glu Leu Asp Met Gln Pro Gln Gly Leu Gly Leu Phe Val Asn Thr Ser
- Ala Pro Arg Gln Leu Arg Thr Phe Val Leu Pro Val Thr Pro Pro Arg
- Leu Val Ala Pro Arg Phe Leu Glu Val Glu Thr Ser Trp Pro Val Asp
- Cys Thr Leu Asp Gly Leu Phe Pro Ala Ser Glu Ala Gln Val Tyr Leu
- Ala Leu Gly Asp Gln Met Leu Asn Ala Thr Val Met Asn His Gly Asp
- Thr Leu Thr Ala Thr Ala Thr Ala Thr Ala Arg Ala Asp Gln Glu Gly
- Ala Arg Glu Ile Val Cys Asn Val Thr Leu Gly Gly Glu Arg Arg Glu
- Ala Arg Glu Asn Leu Thr Val Phe Ser Phe Leu Gly Pro Ile Val Asn
- Leu Ser Glu Pro Thr Ala His Glu Gly Ser Thr Val Thr Val Ser Cys

Met Ala Gly Ala Arg Val Gln Val Thr Leu Asp Gly Val Pro Ala Ala

Ala Pro Gly Gln Pro Ala Gln Leu Gln Leu Asn Ala Thr Glu Ser Asp \$355\$

Asp Gly Arg Ser Phe Phe Cys Ser Ala Thr Leu Glu Val Asp Gly Glu 370 375 380

Phe Leu His Arg Asn Ser Ser Val Gln Leu Arg Val Leu Tyr Gly Pro 385 390 395 400

Lys Ile Asp Arg Ala Thr Cys Pro Gln His Leu Lys Trp Lys Asp Lys \$405\$ \$410\$

Thr Arg His Val Leu Gln Cys Gln Ala Arg Gly Asn Pro Tyr Pro Glu  $420 \hspace{1.5cm} 425 \hspace{1.5cm} 430$ 

Leu Arg Cys Leu Lys Glu Gly Ser Ser Arg Glu Val Pro Val Gly Ile 435 440 445

Pro Phe Phe Val Asn Val Thr His Asn Gly Thr Tyr Gln Cys Gln Ala 450 455 460

Ser Ser Ser Arg Gly Lys Tyr Thr Leu Val Val Val Met Asp Ile Glu 465 470 475 480

Ala Gly Ser Ser His Phe Val Pro Val Phe Val Ala Val Leu Leu Thr 485 490 490

Leu Gly Val Val Thr Ile Val Leu Ala Leu Met Tyr Val Phe Arg Glu 500 505 510

His Gln Arg Ser Gly Ser Tyr His Val Arg Glu Glu Ser Thr Tyr Leu 515 520 525

Pro Leu Thr Ser Met Gln Pro Thr Glu Ala Met Gly Glu Glu Pro Ser 530 535 540

Arg Ala Glu 545

<210> 2970 <211> 260 <212> PRT

<213> Homo sapiens

<400> 2970

Met Arg Pro Glu Asp Arg Met Phe His Ile Arg Ala Val Ile Leu Arg 1 10 15

Ala Leu Ser Leu Ala Phe Leu Leu Ser Leu Arg Gly Ala Gly Ala Ile 20 \$25\$

Lys Ala Asp His Val Ser Thr Tyr Ala Ala Phe Val Gln Thr His Arg  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Pro Thr Gly Glu Phe Met Phe Glu Phe Asp Glu Asp Glu Met Phe Tyr 50 60

Val Asp Leu Asp Lys Lys Glu Thr Val Trp His Leu Glu Glu Phe Gly 65 70 75 80

Gln Ala Phe Ser Phe Glu Ala Gln Gly Gly Leu Ala Asn Ile Ala Ile 85 90 95

Leu Asn Asn Asn Leu Asn Thr Leu Ile Gln Arg Ser Asn His Thr Gln \$100\$

Ala Thr Asn Asp Pro Pro Glu Val Thr Val Phe Pro Lys Glu Pro Val 115 120 125

Glu Leu Gly Gln Pro Asn Thr Leu Ile Cys His Ile Asp Lys Phe Phe 130 135 140

Pro Pro Val Leu Asn Val Thr Trp Leu Cys Asn Gly Glu Leu Val Thr 145  $\phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}$ 

Glu Gly Val Ala Glu Ser Leu Phe Leu Pro Arg Thr Asp Tyr Ser Phe 165 170 175

His Lys Phe His Tyr Leu Thr Phe Val Pro Ser Ala Glu Asp Phe Tyr 180 185 190

Asp Cys Arg Val Glu His Trp Gly Leu Asp Gln Pro Leu Leu Lys His 195 200 205

Trp Glu Ala Gln Glu Pro Ile Gln Met Pro Glu Thr Thr Glu Thr Val  $210 \\ 215 \\ 220$ 

Leu Cys Ala Leu Gly Leu Val Leu Gly Leu Val Gly Ile Ile Val Gly

225 230 235 240

Gln Gly Thr Leu 260

<210> 2971

<211> 495 <212> PRT

<213> Homo sapiens

<400> 2971

Met Pro Met Gly Ser Leu Gln Pro Leu Ala Thr Leu Tyr Leu Gly 1 5 10 15

Met Leu Val Ala Ser Cys Leu Gly Arg Leu Ser Trp Tyr Asp Pro Asp 20 25 30

Phe Gln Ala Arg Leu Thr Arg Ser Asn Ser Lys Cys Gln Gly Gln Leu 35 40 45

Glu Val Tyr Leu Lys Asp Gly Trp His Met Val Cys Ser Gln Ser Trp 50 60

Gly Arg Ser Ser Lys Gln Trp Glu Asp Pro Ser Gln Ala Ser Lys Val 65 70 75 80

Cys Gln Arg Leu Asn Cys Gly Val Pro Leu Ser Leu Gly Pro Phe Leu 85 90 95

Val Thr Tyr Thr Pro Gln Ser Ser Ile Ile Cys Tyr Gly Gln Leu Gly

Ser Phe Ser Asn Cys Ser His Ser Arg Asn Asp Met Cys His Ser Leu 115 120 125

Gly Leu Thr Cys Leu Glu Pro Gln Lys Thr Thr Pro Pro Thr Thr Arg 130 135 140

Pro Pro Pro Thr Thr Thr Pro Glu Pro Thr Ala Pro Pro Arg Leu Gln 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Leu Val Ala Gln Ser Gly Gly Gln His Cys Ala Gly Val Val Glu Phe \$165\$

- Thr Gln Asp Leu Glu Asn Phe Leu Cys Asn Asn Leu Gln Cys Gly Ser 195 200 205
- Phe Leu Lys His Leu Pro Glu Thr Glu Ala Gly Arg Ala Gln Asp Pro 210 220
- Gly Glu Pro Arg Glu His Gln Pro Leu Pro Ile Gln Trp Lys Ile Gln 225 230 235 240
- Asn Ser Ser Cys Thr Ser Leu Glu His Cys Phe Arg Lys Ile Lys Pro 245 250 255
- Gln Lys Ser Gly Arg Val Leu Ala Leu Leu Cys Ser Gly Phe Gln Pro 260 265 270
- Lys Val Gln Ser Arg Leu Val Gly Gly Ser Ser Ile Cys Glu Gly Thr \$275\$
- Val Glu Val Arg Gln Gly Ala Gln Trp Ala Ala Leu Cys Asp Ser Ser 290 300
- Ser Ala Arg Ser Ser Leu Arg Trp Glu Glu Val Cys Arg Glu Gln Gln 305 310 315 320
- Cys Gly Ser Val Asn Ser Tyr Arg Val Leu Asp Ala Gly Asp Pro Thr 325 330
- Ser Arg Gly Leu Phe Cys Pro His Gln Lys Leu Ser Gln Cys His Glu 340 345 350
- Leu Trp Glu Arg Asn Ser Tyr Cys Lys Lys Val Phe Val Thr Cys Gln 355 360 365
- Asp Pro Asn Pro Ala Gly Leu Ala Ala Gly Thr Val Ala Ser Ile Ile 370 380
- Leu Ala Leu Val Leu Leu Val Val Leu Leu Val Val Cys Gly Pro Leu 385 390 395 400
- Ala Tyr Lys Lys Leu Val Lys Lys Phe Arg Gln Lys Lys Gln Arg Gln 405 415

Trp Ile Gly Pro Thr Gly Met Asn Gln Asn Met Ser Phe His Arg Asn 420 425 430

His Thr Ala Thr Val Arg Ser His Ala Glu Asn Pro Thr Ala Ser His 435  $\phantom{\bigg|}440\phantom{\bigg|}$ 

Val Asp Asn Glu Tyr Ser Gln Pro Pro Arg Asn Ser Arg Leu Ser Ala 450 460

Tyr Pro Ala Leu Glu Gly Val Leu His Arg Ser Ser Met Gln Pro Asp 465  $\phantom{\bigg|}470\phantom{\bigg|}470\phantom{\bigg|}475\phantom{\bigg|}475\phantom{\bigg|}$ 

Asn Ser Ser Asp Ser Asp Tyr Asp Leu His Gly Ala Gln Arg Leu 485 490 495

<210> 2972

<211> 130 <212> PRT

<212> PR'

<213> Homo sapiens

<400> 2972

Lys Val Phe Glu Arg Cys Glu Leu Ala Arg Thr Leu Lys Arg Leu Gly 1 5 10 15

Met Asp Gly Tyr Arg Gly Ile Ser Leu Ala Asn Trp Met Cys Leu Ala 20 25 30

Lys Trp Glu Ser Gly Tyr Asn Thr Arg Ala Thr Asn Tyr Asn Ala Gly
35 40 45

Asp Arg Ser Thr Asp Tyr Gly Ile Phe Gln Ile Asn Ser Arg Tyr Trp 50 60

Cys Asn Asp Gly Lys Thr Pro Gly Ala Val Asn Ala Cys His Leu Ser 65 70 75 80

Cys Ser Ala Leu Leu Gln Asp Asn Ile Ala Asp Ala Val Ala Cys Ala 85 90 95

Lys Arg Val Val Arg Asp Pro Gln Gly Ile Arg Ala Trp Val Ala Trp 100 105 110

Arg Asn Arg Cys Gln Asn Arg Asp Val Arg Gln Tyr Val Gln Gly Cys 115 120 125

Gly Val

- <210> 2973
- <211> 491 <212> PRT
- <213> Homo sapiens
- <400> 2973

Met Asn Pro Ala Ala Glu Ala Glu Phe Asn Ile Leu Leu Ala Thr Asp 1  $\phantom{0}$  5  $\phantom{0}$  10  $\phantom{0}$  15

Ser Tyr Lys Val Thr His Tyr Lys Gln Tyr Pro Pro Asn Thr Ser Lys

Val Tyr Ser Tyr Phe Glu Cys Arg Glu Lys Lys Thr Glu Asn Ser Lys 35 40 45

Leu Arg Lys Val Lys Tyr Glu Glu Thr Val Phe Tyr Gly Leu Gln Tyr 50  $\,$  60

Ile Leu Asn Lys Tyr Leu Lys Gly Lys Val Val Thr Lys Glu Lys Ile 65 70 75 80

Gln Glu Ala Lys Asp Val Tyr Lys Glu His Phe Gln Asp Asp Val Phe 85 90 95

Asn Glu Lys Gly Trp Asn Tyr Ile Leu Glu Lys Tyr Asp Gly His Leu  $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$ 

Pro Ile Glu Ile Lys Ala Val Pro Glu Gly Phe Val Ile Pro Arg Gly 115 120 125

Asn Val Leu Phe Thr Val Glu Asn Thr Asp Pro Glu Cys Tyr Trp Leu 130 135 140

Thr Asn Trp Ile Glu Thr Ile Leu Val Gln Ser Trp Tyr Pro Ile Thr 145 150 155 160

Val Ala Thr Asn Ser Arg Glu Gln Lys Lys Ile Leu Ala Lys Tyr Leu 165 170 175

Leu Glu Thr Ser Gly Asn Leu Asp Gly Leu Glu Tyr Lys Leu His Asp 180 185 190

Phe Gly Tyr Arg Gly Val Ser Ser Gln Glu Thr Ala Gly Ile Gly Ala 195 200 205

| Ser        | Ala<br>210 | His        | Leu        | Val        | Asn        | Phe<br>215 | Lys        | G1y        | Thr        | Asp        | Thr<br>220 | Val        | Ala        | Gly        | Leu        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ala<br>225 | Leu        | Ile        | Lys        | Lys        | Tyr<br>230 | Tyr        | Gly        | Thr        | Lys        | Asp<br>235 | Pro        | Val        | Pro        | Gly        | Tyr<br>240 |
| Ser        | Val        | Pro        | Ala        | Ala<br>245 | Glu        | His        | Ser        | Thr        | Ile<br>250 | Thr        | Ala        | Trp        | Gly        | Lys<br>255 | Asp        |
| His        | Glu        | Lys        | Asp<br>260 | Ala        | Phe        | Glu        | His        | Ile<br>265 | Val        | Thr        | Gln        | Phe        | Ser<br>270 | Ser        | Val        |
| Pro        | Val        | Ser<br>275 | Val        | Val        | Ser        | Asp        | Ser<br>280 | Tyr        | Asp        | Ile        | Tyr        | Asn<br>285 | Ala        | Сув        | Glu        |
| Lys        | Ile<br>290 | Trp        | Gly        | Glu        | Asp        | Leu<br>295 | Arg        | His        | Leu        | Ile        | Val<br>300 | Ser        | Arg        | Ser        | Thr        |
| Gln<br>305 | Ala        | Pro        | Leu        | Ile        | Ile<br>310 | Arg        | Pro        | Asp        | Ser        | Gly<br>315 | Asn        | Pro        | Leu        | Asp        | Thr<br>320 |
| Val        | Leu        | Lys        | Val        | Leu<br>325 | Glu        | Ile        | Leu        | Gly        | Lys<br>330 | Lys        | Phe        | Pro        | Val        | Thr<br>335 | Glu        |
| Asn        | Ser        | Lys        | Gly<br>340 | Tyr        | Lys        | Leu        | Leu        | Pro<br>345 | Pro        | Tyr        | Leu        | Arg        | Val<br>350 | Ile        | Gln        |
| Gly        | Asp        | Gly<br>355 | Val        | Asp        | Ile        | Asn        | Thr<br>360 | Leu        | Gln        | Glu        | Ile        | Val<br>365 | Glu        | Gly        | Met        |
| Lys        | Gln<br>370 | Lys        | Met        | Trp        | Ser        | Ile<br>375 | Glu        | Asn        | Ile        | Ala        | Phe<br>380 | Gly        | Ser        | Gly        | Gly        |
| Gly<br>385 | Leu        | Leu        | Gln        | Lys        | Leu<br>390 | Thr        | Arg        | Asp        | Leu        | Leu<br>395 | Asn        | Cys        | Ser        | Phe        | Lys<br>400 |
| Сув        | Ser        | Tyr        | Val        | Val<br>405 | Thr        | Asn        | Gly        | Leu        | Gly<br>410 | Ile        | Asn        | Val        | Phe        | Lys<br>415 | Asp        |
| Pro        | Val        | Ala        | Asp<br>420 | Pro        | Asn        | Lys        | Arg        | Ser<br>425 | Lys        | Lys        | Gly        | Arg        | Leu<br>430 | Ser        | Leu        |
| His        | Arg        | Thr<br>435 | Pro        | Ala        | Gly        | Asn        | Phe<br>440 | Val        | Thr        | Leu        | Glu        | Glu<br>445 | Gly        | Lys        | Gly        |

Asp Leu Glu Glu Tyr Gly Gln Asp Leu Leu His Thr Val Phe Lys Asn

450 455 460

Gly Lys Val Thr Lys Ser Tyr Ser Phe Asp Glu Ile Arg Lys Asn Ala 465 470 475

Gln Leu Asn Ile Glu Leu Glu Ala Ala His His 485 490

<210> 2974

<211> 862 <212> PRT

<213> Homo sapiens

<400> 2974

Met Glu Arg Ala Glu Ser Ser Ser Thr Glu Pro Ala Lys Ala Ile Lys 1 5 10 15

Pro Ile Asp Arg Lys Ser Val His Gln Ile Cys Ser Gly Gln Val Val 20 25 30

Leu Ser Leu Ser Thr Ala Val Lys Glu Leu Val Glu As<br/>n Ser Leu Asp\$35\$ \$40\$ \$45\$

Ala Gly Ala Thr Asn Ile Asp Leu Lys Leu Lys Asp Tyr Gly Val Asp 50 55 60

Leu Ile Glu Val Ser Asp Asn Gly Cys Gly Val Glu Glu Glu Asn Phe 65 70 75 80

Glu Gly Leu Thr Leu Lys His His Thr Ser Lys Ile Gln Glu Phe Ala 85 90 95

Ser Leu Cys Ala Leu Ser Asp Val Thr Ile Ser Thr Cys His Ala Ser 115 120 125

Ala Lys Val Gly Thr Arg Leu Met Phe Asp His Asn Gly Lys Ile Ile 130 135 140

Gln Lys Thr Pro Tyr Pro Arg Pro Arg Gly Thr Thr Val Ser Val Gln 145 150 155 160

Gln Leu Phe Ser Thr Leu Pro Val Arg His Lys Glu Phe Gln Arg Asn 165 170 175

Ile Lys Lys Glu Tyr Ala Lys Met Val Gln Val Leu His Ala Tyr Cys

- Ile Ile Ser Ala Gly Ile Arg Val Ser Cys Thr Asn Gln Leu Gly Gln
  195 200 205
- Gly Lys Arg Gln Pro Val Val Cys Thr Gly Gly Ser Pro Ser Ile Lys 210 215 220
- Glu Asn Ile Gly Ser Val Phe Gly Gln Lys Gln Leu Gln Ser Leu Ile 225 230 235 240
- Pro Phe Val Gln Leu Pro Pro Ser Asp Ser Val Cys Glu Glu Tyr Gly 245 250 255
- Leu Ser Cys Ser Asp Ala Leu His Asn Leu Phe Tyr Ile Ser Gly Phe 260 265 270
- Ile Ser Gln Cys Thr His Gly Val Gly Arg Ser Ser Thr Asp Arg Gln 275 280 285
- Phe Phe Phe Ile Asn Arg Arg Pro Cys Asp Pro Ala Lys Val Cys Arg 290 295 300
- Leu Val Asn Glu Val Tyr His Met Tyr Asn Arg His Gln Tyr Pro Phe 305 310 315 320
- Val Val Leu Asn Ile Ser Val Asp Ser Glu Cys Val Asp Ile Asn Val 325 330 335
- Thr Pro Asp Lys Arg Gln Ile Leu Leu Gln Glu Glu Lys Leu Leu Leu 340 345 350
- Ala Val Leu Lys Thr Ser Leu Ile Gly Met Phe Asp Ser Asp Val Asn \$355\$
- Lys Leu Asn Val Ser Gln Gln Pro Leu Leu Asp Val Glu Gly Asn Leu 370 375 380
- Ile Lys Met His Ala Ala Asp Leu Glu Lys Pro Met Val Glu Lys Gln 385 390 395 400
- Asp Gln Ser Pro Ser Leu Arg Thr Gly Glu Glu Lys Lys Asp Val Ser 405 410 415

Ile Ser Arg Leu Arg Glu Ala Phe Ser Leu Arg His Thr Thr Glu Asn \$420\$

Gln Lys Arg Gly Met Leu Ser Ser Ser Thr Ser Gly Ala Ile Ser Asp 450 455 460

Lys Gly Val Leu Arg Pro Gln Lys Glu Ala Val Ser Ser Ser His Gly 465  $\phantom{\bigg|}470\phantom{\bigg|}470\phantom{\bigg|}475\phantom{\bigg|}475\phantom{\bigg|}$ 

Pro Ser Asp Pro Thr Asp Arg Ala Glu Val Glu Lys Asp Ser Gly His 485 490 495

Gly Ser Thr Ser Val Asp Ser Glu Gly Phe Ser Ile Pro Asp Thr Gly 500 505 510

Ser His Cys Ser Ser Glu Tyr Ala Ala Ser Ser Pro Gly Asp Arg Gly 515 520 525

Ser Gln Glu His Val Asp Ser Gln Glu Lys Ala Pro Glu Thr Asp Asp 530 540

Ser Phe Ser Asp Val Asp Cys His Ser Asn Gln Glu Asp Thr Gly Cys 545 550 555

Lys Phe Arg Val Leu Pro Gln Pro Thr Asn Leu Ala Thr Pro Asn Thr 565 570 575

Lys Arg Phe Lys Lys Glu Glu Ile Leu Ser Ser Ser Asp Ile Cys Gln 580 585 590

Lys Leu Val Asn Thr Gln Asp Met Ser Ala Ser Gln Val Asp Val Ala 595 600 605

Val Lys Ile Asn Lys Lys Val Val Pro Leu Asp Phe Ser Met Ser Ser 610 615 620

Leu Ala Lys Arg Ile Lys Gln Leu His His Glu Ala Gln Gln Ser Glu 625 630 635 640

Gly Glu Gln Asn Tyr Arg Lys Phe Arg Ala Lys Ile Cys Pro Gly Glu 645 650 655

Asn Gln Ala Ala Glu Asp Glu Leu Arg Lys Glu Ile Ser Lys Thr Met

660

665

670

Phe Ala Glu Met Glu Ile Ile Gly Gln Phe Asn Leu Gly Phe Ile Ile 675 680 685

Thr Lys Leu Asn Glu Asp Ile Phe Ile Val Asp Gln His Ala Thr Asp  $690 \hspace{1.5cm} 695 \hspace{1.5cm} 700 \hspace{1.5cm}$ 

Glu Lys Tyr Asn Phe Glu Met Leu Gln Gln His Thr Val Leu Gln Gly 705 710 715 720

Gln Arg Leu Ile Ala Pro Gln Thr Leu Asn Leu Thr Ala Val Asn Glu 725 735

Ala Val Leu Ile Glu Asn Leu Glu Ile Phe Arg Lys Asn Gly Phe Asp 740 745 750

Phe Val Ile Asp Glu Asn Ala Pro Val Thr Glu Arg Ala Lys Leu Ile 755 760 765

Ser Leu Pro Thr Ser Lys Asn Trp Thr Phe Gly Pro Gln Asp Val Asp 770 780

Glu Leu Ile Phe Met Leu Ser Asp Ser Pro Gly Val Met Cys Arg Pro 785 790 795 800

Ser Arg Val Lys Gln Met Phe Ala Ser Arg Ala Cys Arg Lys Ser Val 805 810 815

Met Ile Gly Thr Ala Leu Asn Thr Ser Glu Met Lys Lys Leu Ile Thr  $820 \ \ 825 \ \ 830$ 

His Met Gly Glu Met Asp His Pro Trp Asn Cys Pro His Gly Arg Pro 835 840 845

Thr Met Arg His Ile Ala Asn Leu Gly Val Ile Ser Gln Asn 850 855 860

<210> 2975

<211> 1256 <212> PRT

<213> Homo sapiens

<400> 2975

Met Tyr Leu Trp Leu Lys Leu Leu Ala Phe Gly Phe Ala Phe Leu Asp 1 5 10 15

Thr Glu Val Phe Val Thr Gly Gln Ser Pro Thr Pro Ser Pro Thr Gly

Leu Thr Thr Ala Lys Met Pro Ser Val Pro Leu Ser Ser Asp Pro Leu 35 40 45

Pro Thr His Thr Thr Ala Phe Ser Pro Ala Ser Thr Phe Glu Arg Glu 50 55 60

Asn Asp Phe Ser Glu Thr Thr Thr Ser Leu Ser Pro Asp Asn Thr Ser 65 70 75 80

Thr Gln Val Ser Pro Asp Ser Leu Asp Asn Ala Ser Ala Phe Asn Thr 85 90 95

Thr Gly Val Ser Ser Val Gln Thr Pro His Leu Pro Thr His Ala Asp 100 105 110

Ser Gln Thr Pro Ser Ala Gly Thr Asp Thr Gln Thr Phe Ser Gly Ser

Ala Ala Asn Ala Lys Leu Asn Pro Thr Pro Gly Ser Asn Ala Ile Ser 130 140

Asp Ala Tyr Leu Asn Ala Ser Glu Thr Thr Thr Leu Ser Pro Ser Gly 145 150 155 160

Ser Ala Val Ile Ser Thr Thr Thr Ile Ala Thr Thr Pro Ser Lys Pro 165 170 175

Thr Cys Asp Glu Lys Tyr Ala Asn Ile Thr Val Asp Tyr Leu Tyr Asn 180 185 190

Lys Glu Thr Lys Leu Phe Thr Ala Lys Leu Asn Val Asn Glu Asn Val 195 200 205

Glu Cys Gly Asn Asn Thr Cys Thr Asn Asn Glu Val His Asn Leu Thr 210 215 220

Glu Cys Lys Asn Ala Ser Val Ser Ile Ser His Asn Ser Cys Thr Ala 225 230 235 240

Pro Asp Lys Thr Leu Ile Leu Asp Val Pro Pro Gly Val Glu Lys Phe 245 250 255

Leu Lys Trp Lys Asn Ile Glu Thr Phe Thr Cys Asp Thr Gln Asn Ile 275 280 285

Thr Tyr Arg Phe Gln Cys Gly Asn Met Ile Phe Asp Asn Lys Glu Ile 290 295 300

Lys Leu Glu Asn Leu Glu Pro Glu His Glu Tyr Lys Cys Asp Ser Glu 305 310 315

Ile Leu Tyr Asn Asn His Lys Phe Thr Asn Ala Ser Lys Ile Ile Lys 325 330 335

Thr Asp Phe Gly Ser Pro Gly Glu Pro Gln Ile Ile Phe Cys Arg Ser 340 345 350

Glu Ala Ala His Gln Gly Val Ile Thr Trp Asn Pro Pro Gln Arg Ser 355 360 365

Phe His Asn Phe Thr Leu Cys Tyr Ile Lys Glu Thr Glu Lys Asp Cys 370 375 380

Leu Asn Leu Asp Lys Asn Leu Ile Lys Tyr Asp Leu Gln Asn Leu Lys 385 390 395 400

Pro Tyr Thr Lys Tyr Val Leu Ser Leu His Ala Tyr Ile Ile Ala Lys 405 410 415

Val Gln Arg Asn Gly Ser Ala Ala Met Cys His Phe Thr Thr Lys Ser 420 425 430

Ala Pro Pro Ser Gln Val Trp Asn Met Thr Val Ser Met Thr Ser Asp 435 440 445

Asn Ser Met His Val Lys Cys Arg Pro Pro Arg Asp Arg Asn Gly Pro 450 450 460

His Glu Arg Tyr His Leu Glu Val Glu Ala Gly Asn Thr Leu Val Arg 465 470 475 480

Asn Glu Ser His Lys Asn Cys Asp Phe Arg Val Lys Asp Leu Gln Tyr 485 490 495

Ser Thr Asp Tyr Thr Phe Lys Ala Tyr Phe His Asn Gly Asp Tyr Pro

Gly Glu Pro Phe Ile Leu His His Ser Thr Ser Tyr Asn Ser Lys Ala Leu Ile Ala Phe Leu Ala Phe Leu Ile Ile Val Thr Ser Ile Ala Leu Leu Val Val Leu Tyr Lys Ile Tyr Asp Leu His Lys Lys Arg Ser Cys Asn Leu Asp Glu Gln Gln Glu Leu Val Glu Arg Asp Asp Glu Lys Gln Leu Met Asn Val Glu Pro Ile His Ala Asp Ile Leu Leu Glu Thr Tyr Lys Arg Lys Ile Ala Asp Glu Gly Arg Leu Phe Leu Ala Glu Phe Gln Ser Ile Pro Arg Val Phe Ser Lys Phe Pro Ile Lys Glu Ala Arg Lys

Pro Phe Asn Gln Asn Lys Asn Arg Tyr Val Asp Ile Leu Pro Tyr Asp

Tyr Asn Arg Val Glu Leu Ser Glu Ile Asn Gly Asp Ala Gly Ser Asn

Tyr Ile Asn Ala Ser Tyr Ile Asp Gly Phe Lys Glu Pro Arg Lys Tyr 

Ile Ala Ala Gln Gly Pro Arg Asp Glu Thr Val Asp Asp Phe Trp Arg 

Met Ile Trp Glu Gln Lys Ala Thr Val Ile Val Met Val Thr Arg Cys 

Glu Glu Gly Asn Arq Asn Lys Cys Ala Glu Tyr Trp Pro Ser Met Glu 

Glu Gly Thr Arg Ala Phe Gly Asp Val Val Lys Ile Asn Gln His

Lys Arq Cys Pro Asp Tyr Ile Ile Gln Lys Leu Asn Ile Val Asn Lys 

Lys Glu Lys Ala Thr Gly Arg Glu Val Thr His Ile Gln Phe Thr Ser Trp Pro Asp His Gly Val Pro Glu Asp Pro His Leu Leu Lys Leu Arg Arg Arg Val Asn Ala Phe Ser Asn Phe Phe Ser Gly Pro Ile Val Val His Cys Ser Ala Gly Val Gly Arg Thr Gly Thr Tyr Ile Gly Ile Asp Ala Met Leu Glu Gly Leu Glu Ala Glu Asn Lys Val Asp Val Tyr Gly Tyr Val Val Lys Leu Arg Arg Gln Arg Cys Leu Met Val Gln Val Glu Ala Gln Tyr Ile Leu Ile His Gln Ala Leu Val Glu Tyr Asn Gln Phe Gly Glu Thr Glu Val Asn Leu Ser Glu Leu His Pro Tyr Leu His Asn Met Lys Lys Arg Asp Pro Pro Ser Glu Pro Ser Pro Leu Glu Ala Glu Phe Gln Arg Leu Pro Ser Tyr Arg Ser Trp Arg Thr Gln His Ile Gly Asn Gln Glu Glu Asn Lys Ser Lys Asn Arg Asn Ser Asn Val Ile Pro Tyr Asp Tyr Asn Arg Val Pro Leu Lys His Glu Leu Glu Met Ser 

Lys Glu Ser Glu His Asp Ser Asp Glu Ser Ser Asp Asp Ser Asp 

Ser Glu Glu Pro Ser Lys Tyr Ile Asn Ala Ser Phe Ile Met Ser Tyr 

Trp Lys Pro Glu Val Met Ile Ala Ala Gln Gly Pro Leu Lys Glu Thr 

Ile Gly Asp Phe Trp Gln Met Ile Phe Gln Arg Lys Val Lys Val Ile 995 1000 1005

- Val Met Leu Thr Glu Leu Lys His Gly Asp Gln Glu Ile Cys Ala 1010 1015 1020
- Gln Tyr Trp Gly Glu Gly Lys Gln Thr Tyr Gly Asp Ile Glu Val 1025 1030 1035
- Asp Leu Lys Asp Thr Asp Lys Ser Ser Thr Tyr Thr Leu Arg Val 1040 1045 1050
- Phe Glu Leu Arg His Ser Lys Arg Lys Asp Ser Arg Thr Val Tyr 1055 1060 1065
- Gln Tyr Gln Tyr Thr Asn Trp Ser Val Glu Gln Leu Pro Ala Glu 1070 1075
- Pro Lys Glu Leu Ile Ser Met Ile Gln Val Lys Gln Lys Leu 1085 1090 1095
- Pro Gln Lys Asn Ser Ser Glu Gly Asn Lys His His Lys Ser Thr 1100 1105 1110
- Pro Leu Leu Ile His Cys Arg Asp Gly Ser Gln Gln Thr Gly Ile 1115 1120 1125
- Phe Cys Ala Leu Leu Asn Leu Leu Glu Ser Ala Glu Thr Glu Glu
- Val Val Asp Ile Phe Gln Val Val Lys Ala Leu Arg Lys Ala Arg 1145 1150 1155
- Pro Gly Met Val Ser Thr Phe Glu Gln Tyr Gln Phe Leu Tyr Asp 1160 1165 1170
- Val Ile Ala Ser Thr Tyr Pro Ala Gln Asn Gly Gln Val Lys Lys 1175 1180 1185
- Asn Asn His Gln Glu Asp Lys Ile Glu Phe Asp Asn Glu Val Asp 1190 1195 1200
- Lys Val Lys Gln Asp Ala Asn Cys Val Asn Pro Leu Gly Ala Pro 1205 1210 1215

Glu Lys Leu Pro Glu Ala Lys Glu Gln Ala Glu Gly Ser Glu Pro 1220 1225 1230

Thr Ser Gly Thr Glu Gly Pro Glu His Ser Val Asn Gly Pro Ala 1235 1240 1245

Ser Pro Ala Leu Asn Gln Gly Ser 1250 1255

<210> 2976 <211> 319

<212> PRT <213> Homo sapiens

<400> 2976

Met Lys Met Ala Ser Ser Leu Ala Phe Leu Leu Leu Asn Phe His Val 1 5 10 15

Val Leu Gly Pro Ser Gly Pro Ile Leu Ala Met Val Gly Glu Asp Ala 35  ${\rm 40}$ 

Asp Leu Pro Cys His Leu Phe Pro Thr Met Ser Ala Glu Thr Met Glu 50 60

Leu Lys Trp Val Ser Ser Ser Leu Arg Gln Val Val Asn Val Tyr Ala 65 70 75 80

Asp Gly Lys Glu Val Glu Asp Arg Gln Ser Ala Pro Tyr Arg Gly Arg 85 90 95

Thr Ser Ile Leu Arg Asp Gly Ile Thr Ala Gly Lys Ala Ala Leu Arg  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Ile His Asn Val Thr Ala Ser Asp Ser Gly Lys Tyr Leu Cys Tyr Phe 115  $$\rm 120$$ 

Gln Asp Gly Asp Phe Tyr Glu Lys Ala Leu Val Glu Leu Lys Val Ala 130 135 140

Ala Leu Gly Ser Asn Leu His Val Glu Val Lys Gly Tyr Glu Asp Gly 145 150 155 160

Gly Ile His Leu Glu Cys Arg Ser Thr Gly Trp Tyr Pro Gln Pro Gln 165 170 175

Ile Gln Trp Ser Asn Ala Lys Gly Glu Asn Ile Pro Ala Val Glu Ala 180 185 190

Pro Val Val Ala Asp Gly Val Gly Leu Tyr Glu Val Ala Ala Ser Val 195 200 205

Ile Met Arg Gly Gly Ser Gly Glu Gly Val Ser Cys Ile Ile Arg Asn 210 215 220

Ser Leu Leu Gly Leu Glu Lys Thr Ala Ser IIe Ser Ile Ala Asp Pro 225 230 235 240

Phe Phe Arg Ser Ala Gln Pro Trp Ile Ala Ala Leu Ala Gly Thr Leu 245 250 255

Pro Ile Leu Leu Leu Leu Ala Gly Ala Ser Tyr Phe Leu Trp Arg 260 265 270

Gln Gln Lys Glu Ile Thr Ala Leu Ser Ser Glu Ile Glu Ser Glu Gln 275 280 285

Glu Met Lys Glu Met Gly Tyr Ala Ala Thr Glu Arg Glu Ile Ser Leu 290 295 300

Arg Glu Ser Leu Gln Glu Glu Leu Lys Arg Lys Lys Ser Ser Thr 305 315

<210> 2977

<211> 240

<212> PRT

<213> Homo sapiens

<400> 2977

Met Leu Leu Gln Ser Gln Thr Met Gly Val Ser His Ser Phe Thr Pro  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Lys Gly Ile Thr Ile Pro Gln Arg Glu Lys Pro Gly His Met Tyr Gln 20 25 30

As Glu Asp Tyr Leu Gln Asn Gly Leu Pro Thr Glu Thr Thr Val Leu  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Gly Thr Val Gln Ile Leu Cys Cys Leu Leu Ile Ser Ser Leu Gly Ala 50 55 60

| Ile Leu Val Phe Ala Pro Tyr Pro Ser His Phe Asn Pro Ala Ile Ser                    |   |
|------------------------------------------------------------------------------------|---|
| 65 /0 /3                                                                           |   |
| Thr Thr Leu Met Ser Gly Tyr Pro Phe Leu Gly Ala Leu Cys Phe Gly 85 90 95           |   |
| Ile Thr Gly Ser Leu Ser Ile Ile Ser Gly Lys Gln Ser Thr Lys Pro<br>100 105 110     |   |
| Phe Asp Leu Ser Ser Leu Thr Ser Asn Ala Val Ser Ser Val Thr Ala<br>115 120 125     | ı |
| Gly Ala Gly Leu Phe Leu Leu Ala Asp Ser Met Val Ala Leu Arg Thr<br>130 135 140     | , |
| Ala Ser Gln His Cys Gly Ser Glu Met Asp Tyr Leu Ser Ser Leu Pro<br>145 150 155 160 |   |
| Tyr Ser Glu Tyr Tyr Tyr Pro Ile Tyr Glu Ile Lys Asp Cys Leu Leu<br>165 170 175     | ι |
| Thr Ser Val Ser Leu Thr Gly Val Leu Val Val Met Leu Ile Phe Thr<br>180 185 190     |   |
| Val Leu Glu Leu Leu Leu Ala Ala Tyr Ser Ser Val Phe Trp Trp Lys<br>195 200 205     | : |
| Gln Leu Tyr Ser Asn Asn Pro Gly Ser Ser Phe Ser Ser Thr Gln Ser<br>210 215 220     |   |
| Gln Asp His Ile Gln Gln Val Lys Lys Ser Ser Ser Arg Ser Trp Ile<br>225 230 235 240 |   |
| <210> 2978<br><211> 266<br><212> PRT<br><213> Homo sapiens                         |   |
| -<br><400> 2978                                                                    |   |
| Met Val Cys Leu Lys Leu Pro Gly Gly Ser Ser Leu Ala Ala Leu Thr<br>1 5 10 15       | 5 |
| Val Thr Leu Met Val Leu Ser Ser Arg Leu Ala Phe Ala Gly Asp Thr<br>20 25 30        | : |
| Arg Pro Arg Phe Leu Glu Leu Arg Lys Ser Glu Cys His Phe Phe Asr<br>35 40 45        | 1 |

1378

Glu Phe Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr 80 Glu Leu Gly Arg Pro Val Ala Glu Ser Trp Asn Ser Gln Lys Asp Leu 90

Leu Glu Gln Lys Arg Gly Arg Val Asp Asn Tyr Cys Arg His Asn Tyr 100 105 110

Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Val His Pro Gln Val 115 120 125

Thr Val Tyr Pro Ala Lys Thr Gln Pro Leu Gln His His Asn Leu Leu 130 135 140

Val Cys Ser Val Ser Gly Phe Tyr Pro Gly Ser Ile Glu Val Arg Trp 145 150 155 160

Phe Arg Asn Gly Gln Glu Glu Lys Ala Gly Val Val Ser Thr Gly Leu 165 170 175

Ile Gln Asn Gly Asp Trp Thr Phe Gln Thr Leu Val Met Leu Glu Thr 180 \$185\$

Val Pro Arg Ser Gly Glu Val Tyr Thr Cys Gln Val Glu His Pro Ser 195 200 205

Val Thr Ser Ala Leu Thr Val Glu Trp Arg Ala Arg Ser Glu Ser Ala 210 215 220

Gln Ser Lys Met Leu Ser Gly Val Gly Gly Phe Val Leu Gly Leu Leu 225 230 235 240

Phe Leu Gly Ala Gly Leu Phe Ile Tyr Phe Arg Asn Gln Lys Gly His 245 250 25

Ser Gly Leu Gln Pro Thr Gly Phe Leu Ser 260 265

<210> 2979

<211> 325 <212> PRT

<213> Homo sapiens

<400> 2979

Met Pro Ile Thr Arg Met Arg Met Arg Pro Trp Leu Glu Met Gln Ile 1 10 15

Asn Ser Asn Gln Ile Pro Gly Leu Ile Trp Ile Asn Lys Glu Glu Met 20 25 30

Ile Phe Gln Ile Pro Trp Lys His Ala Ala Lys His Gly Trp Asp Ile  $^{35}$  40  $^{45}$ 

Tyr Lys Ala Gly Glu Lys Glu Pro Asp Pro Lys Thr Trp Lys Ala Asn 65  $\phantom{+}70\phantom{+}75\phantom{+}75\phantom{+}10\phantom{0}$ 

Phe Arg Cys Ala Met Asn Ser Leu Pro Asp Ile Glu Glu Val Lys Asp 85 90 95

Gln Ser Arg Asn Lys Gly Ser Ser Ala Val Arg Val Tyr Arg Met Leu  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Pro Pro Leu Thr Lys Asn Gln Arg Lys Glu Arg Lys Ser Lys Ser Ser 115 120 . 125

Arg Asp Ala Lys Ser Lys Ala Lys Arg Lys Ser Cys Gly Asp Ser Ser 130 140

Pro Asp Thr Phe Ser Asp Gly Leu Ser Ser Ser Thr Leu Pro Asp Asp 145 150 155 160

His Ser Ser Tyr Thr Val Pro Gly Tyr Met Gln Asp Leu Glu Val Glu 165 170 175

Gln Ala Leu Thr Pro Ala Leu Ser Pro Cys Ala Val Ser Ser Thr Leu 180 185 190

Pro Asp Trp His Ile Pro Val Glu Val Val Pro Asp Ser Thr Ser Asp 195 200 205

Leu Tyr Asn Phe Gln Val Ser Pro Met Pro Ser Thr Ser Glu Ala Thr 210 220

Thr Asp Glu Asp Glu Glu Gly Lys Leu Pro Glu Asp Ile Met Lys Leu

225 230 235 240

Leu Glu Gln Ser Glu Trp Gln Pro Thr Asn Val Asp Gly Lys Gly Tyr \$245\$

Leu Leu Asn Glu Pro Gly Val Gln Pro Thr Ser Val Tyr Gly Asp Phe  $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$ 

Ser Cys Lys Glu Glu Pro Glu Ile Asp Ser Pro Gly Gly Asp Ile Gly 275 280 285

Leu Ser Leu Gln Arg Val Phe Thr Asp Leu Lys Asn Met Asp Ala Thr 290 295 300

Trp Leu Asp Ser Leu Leu Thr Pro Val Arg Leu Pro Ser Ile Gln Ala 305 310 315 320

Ile Pro Cys Ala Pro

<210> 2980

<211> 132

<212> PRT <213> Homo sapiens

<400> 2980

Met Glu Phe Asp Leu Asn Gly Asn Gly Asp Ile Gly Glu Lys Arg Val 1  $\phantom{\Big|}$  5  $\phantom{\Big|}$  10 15

Ile Cys Gly Gly Arg Val Val Cys Arg Pro Lys Lys Thr Glu Val Ser  $\phantom{\bigg|}20\phantom{\bigg|}25\phantom{\bigg|}25\phantom{\bigg|}30\phantom{\bigg|}$ 

Pro Thr Cys Ser Ile Pro His Asp Leu Gly Gly Gly Pro Pro Thr Thr  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Val Gly Gly Arg Arg Met Gly Met Arg Lys Trp Glu Arg Arg Glu Arg 50  $\,$  55  $\,$  60  $\,$ 

Val Ser Pro Pro Ser Pro His Pro His Pro Leu Pro Pro Asp Ile Met 65 70 75 80

Ser Leu Lys Arg Met Leu Glu Lys Leu Gly Val Pro Lys Thr His Leu 85 90 95

Glu Leu Lys Lys Leu Ile Gly Glu Val Ser Ser Gly Ser Gly Glu Thr  $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$ 

Phe Ser Tyr Pro Asp Phe Leu Arg Met Met Leu Gly Lys Arg Ser Ala 115 120 125

Ile Leu Lys Met

<210> 2981

<211> 319 <212> PRT

<213> Homo sapiens

<400> 2981

Met Thr Asn Ser Ser Phe Phe Cys Pro Val Tyr Lys Asp Leu Glu Pro 1  $\phantom{\bigg|}$  15

Phe Thr Tyr Phe Phe Tyr Leu Val Phe Leu Val Gly Ile Ile Gly Ser 20 25 30

Cys Phe Ala Thr Trp Ala Phe Ile Gln Lys Asn Thr Asn His Arg Cys

Val Ser Ile Tyr Leu Ile Asn Leu Leu Thr Ala Asp Phe Leu Leu Thr 50 55 60

Leu Ala Leu Pro Val Lys Ile Val Val Asp Leu Gly Val Ala Pro Trp 65 70 75 80

Lys Leu Lys Ile Phe His Cys Gln Val Thr Ala Cys Leu Ile Tyr Ile 85 90 95

Asn Met Tyr Leu Ser Ile Ile Phe Leu Ala Phe Val Ser Ile Asp Arg

Cys Leu Gln Leu Thr His Ser Cys Lys Ile Tyr Arg Ile Gln Glu Pro  $115 \\ 120 \\ 125$ 

Gly Phe Ala Lys Met Ile Ser Thr Val Val Trp Leu Met Val Leu Leu 130 135 140

Ile Met Val Pro Asn Met Met Ile Pro Ile Lys Asp Ile Lys Glu Lys 145  $\phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}160\phantom{\bigg|}$ 

Ser Asn Val Gly Cys Met Glu Phe Lys Lys Glu Phe Gly Arg Asn Trp 165 170 170 175

His Leu Leu Thr Asn Phe Ile Cys Val Ala Ile Phe Leu Asn Phe Ser

Ala Ile Ile Leu Ile Ser Asn Cys Leu Val Ile Arg Gln Leu Tyr Arg 

Asn Lys Asp Asn Glu Asn Tyr Pro Asn Val Lys Lys Ala Leu Ile Asn 

Ile Leu Leu Val Thr Thr Gly Tyr Ile Ile Cys Phe Val Pro Tyr His 

Ile Val Arg Ile Pro Tyr Thr Leu Ser Gln Thr Glu Val Ile Thr Asp 

Cys Ser Thr Arg Ile Ser Leu Phe Lys Ala Lys Glu Ala Thr Leu Leu 

Leu Ala Val Ser Asn Leu Cys Phe Asp Pro Ile Leu Tyr Tyr His Leu 

Ser Lys Ala Phe Arg Ser Lys Val Thr Glu Thr Phe Ala Ser Pro Lys 

Glu Thr Lys Ala Gln Lys Glu Lys Leu Arg Cys Glu Asn Asn Ala 

<210> 2982

<211> 334 <212> PRT

<213> Homo sapiens

<400> 2982

Met Leu Thr Lys Pro Leu Gln Gly Pro Pro Ala Pro Pro Gly Thr Pro 

Thr Pro Pro Pro Gly Gly Lys Asp Arg Glu Ala Phe Glu Ala Glu Tyr 

Arg Leu Gly Pro Leu Leu Gly Lys Gly Gly Phe Gly Thr Val Phe Ala 

Gly His Arg Leu Thr Asp Arg Leu Gln Val Ala Ile Lys Val Ile Pro

Arg Asn Arg Val Leu Gly Trp Ser Pro Leu Ser Asp Ser Val Thr Cys 

| Pro        | Leu        | Glu        | Val        | Ala<br>85  | Leu        | Leu        | Trp        | Lys        | Val<br>90  | Gly        | Ala        | Gly        | Gly        | Gly<br>95  | His        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Pro        | Gly        | Val        | Ile<br>100 | Arg        | Leu        | Leu        | Asp        | Trp<br>105 | Phe        | Glu        | Thr        | Gln        | Glu<br>110 | Gly        | Phe        |
| Met        | Leu        | Val<br>115 | Leu        | Glu        | Arg        | Pro        | Leu<br>120 | Pro        | Ala        | Gln        | Asp        | Leu<br>125 | Phe        | Asp        | Tyr        |
| Ile        | Thr<br>130 | Glu        | Lys        | Gly        | Pro        | Leu<br>135 | Gly        | Glu        | Gly        | Pro        | Ser<br>140 | Arg        | Сув        | Phe        | Phe        |
| Gly<br>145 | Gln        | Val        | Val        | Ala        | Ala<br>150 | Ile        | Gln        | His        | Сув        | His<br>155 | ser        | Arg        | Gly        | Val        | Val<br>160 |
| His        | Arg        | Asp        | Ile        | Lys<br>165 | Asp        | Glu        | Asn        | Ile        | Leu<br>170 | Ile        | Asp        | Leu        | Arg        | Arg<br>175 | Gly        |
| Cys        | Ala        | Lys        | Leu<br>180 | Ile        | Asp        | Phe        | Gly        | Ser<br>185 | Gly        | Ala        | Leu        | Leu        | His<br>190 | Asp        | Glu        |
| Pro        | Tyr        | Thr<br>195 | Asp        | Phe        | Asp        | Gly        | Thr<br>200 | Arg        | Val        | Tyr        | Ser        | Pro<br>205 | Pro        | Glu        | Trp        |
| Ile        | Ser<br>210 | Arg        | His        | Gln        | Tyr        | His<br>215 | Ala        | Leu        | Pro        | Ala        | Thr<br>220 | Val        | Trp        | Ser        | Leu        |
| Gly<br>225 | Ile        | Leu        | Leu        | Tyr        | Asp<br>230 | Met        | Val        | Cys        | Gly        | Asp<br>235 | Ile        | Pro        | Phe        | Glu        | Arg<br>240 |
| Asp        | Gln        | Glu        | Ile        | Leu<br>245 | Glu        | Ala        | Glu        | Leu        | His<br>250 | Phe        | Pro        | Ala        | His        | Val<br>255 | Ser        |
| Pro        | Asp        | Cys        | Cys<br>260 | Ala        | Leu        | Ile        | Arg        | Arg<br>265 | Сув        | Leu        | Ala        | Pro        | Lys<br>270 | Pro        | Ser        |
| Ser        | Arg        | Pro<br>275 | Ser        | Leu        | Glu        | Glu        | 11e<br>280 | Leu        | Leu        | Asp        | Pro        | Trp<br>285 | Met        | Gln        | Thr        |
| Pro        | Ala<br>290 | Glu        | Asp        | Val        | Thr        | Pro<br>295 | Gln        | Pro        | Leu        | Gln        | Arg<br>300 | Arg        | Pro        | Cys        | Pro        |
| Phe<br>305 | Gly        | Leu        | Val        | Leu        | Ala<br>310 | Thr        | Leu        | Ser        | Leu        | Ala<br>315 | Trp        | Pro        | Gly        | Leu        | Ala<br>320 |

Pro Asn Gly Gln Lys Ser His Pro Met Ala Met Ser Gln Gly 325 330

<210> 2983

<211> 158 <212> PRT

<213> Homo sapiens

<400> 2983

Met Met Gln Lys Leu Leu Lys Cys Ser Arg Leu Val Leu Ala Leu Ala 1 5 10 15

Leu Ile Leu Val Leu Glu Ser Ser Val Gln Gly Tyr Pro Thr Gln Arg \$20\$

Ala Arg Tyr Gln Trp Val Arg Cys Asn Pro Asp Ser Asn Ser Ala Asn 35 40 45

Asn Lys Ile Pro Arg Leu Arg Thr Asp Leu Phe Pro Lys Thr Arg Ile 65 70 75 80

Gln Asp Leu Asn Arg Ile Phe Pro Leu Ser Glu Asp Tyr Ser Gly Ser 85 90 95

Gly Phe Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly Phe \$100\$

Leu Thr Glu Met Glu Gln Asp Tyr Gln Leu Val Asp Glu Ser Asp Ala 115 120 125

Phe His Asp Asn Leu Arg Ser Leu Asp Arg Asn Leu Pro Ser Asp Ser 130 135 140

Gln Asp Leu Gly Gln His Gly Leu Glu Glu Asp Phe Met Leu 145 150 155

<210> 2984

<211> 1019 <212> PRT

<213> Homo sapiens

<400> 2984

Ala Asp Pro Glu Ser Pro Ile Leu Asp Leu Asp Leu His Leu Pro Leu 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Leu Cys Phe Arg Pro Glu Lys Val Leu Gln Ile Leu Thr Cys Ile Leu Thr Glu Gln Arg Ile Val Phe Phe Ser Ser Asp Trp Ala Leu Leu Thr Leu Val Thr Glu Cys Phe Met Ala Tyr Leu Tyr Pro Leu Gln Trp Gln His Pro Phe Val Pro Ile Leu Ser Asp Gln Met Leu Asp Phe Val Met Ala Pro Thr Ser Phe Leu Met Gly Cys His Leu Asp His Phe Glu Glu Val Ser Lys Glu Ala Asp Gly Leu Val Leu Ile Asn Ile Asp His Gly Ser Ile Thr Tvr Ser Lvs Ser Thr Asp Asp Asn Val Asp Ile Pro Asp Val Pro Leu Leu Ala Ala Gln Thr Phe Ile Gln Arg Val Gln Ser Leu Gln Leu His His Glu Leu His Ala Ala His Leu Leu Ser Ser Thr Asp Leu Lys Glu Gly Arg Ala His Arg Arg Ser Trp Gln Gln Lys Leu Asn Cvs Gln Ile Gln Gln Thr Thr Leu Gln Leu Leu Val Ser Ile Phe Arg Asp Val Lvs Asn His Leu Asn Tvr Glu His Arg Val Phe Asn Ser Glu Glu Phe Leu Lys Thr Arg Ala Pro Gly Asp His Gln Phe Tyr Lys Gln Val Leu Asp Thr Tyr Met Phe His Ser Phe Leu Lys Ala Arq Leu Asn Arq Arq Met Asp Ala Phe Ala Gln Met Asp Leu Asp Thr Gln Ser Glu 

| Glu | Asp | Arg | Ile | Asn | Gly | Met | Leu | Leu | Ser | ${\tt Pro}$ | Arg | Arg | Pro | Thr | Val |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-----|
|     |     | 260 |     |     |     |     |     | 265 |     |             |     |     | 270 |     |     |

- Glu Lys Arg Ala Ser Arg Lys Ser Ser His Leu His Val Thr His Arg 275 280 285
- Arg Met Val Val Ser Met Pro Asn Leu Gln Asp Ile Ala Met Pro Glu 290 295 300
- Leu Ala Pro Arg Asn Ser Ser Leu Arg Leu Thr Asp Thr Ala Gly Cys 305 310 315 320
- Arg Gly Ser Ser Ala Val Leu Asn Val Thr Pro Lys Ser Pro Tyr Thr
- Phe Lys Ile Pro Glu Ile His Phe Pro Leu Glu Ser Lys Cys Val Gln
- Ala Tyr His Ala His Phe Val Ser Met Leu Ser Glu Ala Met Cys Phe 355 360 365
- Leu Ala Pro Asp Asn Ser Leu Leu Leu Ala Arg Tyr Leu Tyr Leu Arg
- Gly Leu Val Tyr Leu Met Gln Gly Gln Leu Leu Asn Ala Leu Leu Asp 385  $\phantom{\bigg|}390\phantom{\bigg|}390\phantom{\bigg|}395\phantom{\bigg|}395\phantom{\bigg|}$
- Phe Gln Asn Leu Tyr Lys Thr Asp Ile Arg Ile Phe Pro Thr Asp Leu 405 410 415
- Val Lys Arg Thr Val Glu Ser Met Ser Ala Pro Glu Trp Glu Gly Ala 420  $\phantom{\bigg|}425\phantom{\bigg|}430\phantom{\bigg|}$
- Glu Gln Ala Pro Glu Leu Met Arg Leu Ile Ser Glu Ile Leu Asp Lys \$435\$
- Pro His Glu Ala Ser Lys Leu Asp Asp His Val Lys Lys Phe Lys Leu 450 455 460
- Pro Lys Lys His Met Gln Leu Gly Asp Phe Met Lys Arg Val Gln Glu 465  $\phantom{\bigg|}$  470  $\phantom{\bigg|}$  475  $\phantom{\bigg|}$  480
- Ser Gly Ile Val Lys Asp Ala Ser Ile Ile His Arg Leu Phe Glu Ala 485 490 495
- Leu Thr Val Gly Gln Glu Lys Gln Ile Asp Pro Glu Thr Phe Lys Asp

500 505 510

Phe Tyr Asn Cys Trp Lys Glu Thr Glu Ala Glu Ala Glu Glu Val Ser 515 520 525

Leu Pro Trp Leu Val Met Glu His Leu Asp Lys Asn Glu Cys Val Cys 530 535

Lys Leu Ser Ser Ser Val Lys Thr Asn Leu Gly Val Gly Lys Ile Ala 545 550 555 560

Met Thr Gln Lys Arg Leu Phe Leu Leu Thr Glu Gly Arg Pro Gly Tyr 565 570 575

Leu Glu Ile Ser Thr Phe Arg Asn Ile Glu Glu Val Arg Arg Thr Thr  $580 \\ \hspace{1.5cm} 595 \\ \hspace{1.5cm} 590$ 

Thr Thr Phe Leu Leu Arg Arg Ile Pro Thr Leu Lys Ile Arg Val Ala 595  $\phantom{\bigg|}600\phantom{\bigg|}600\phantom{\bigg|}$ 

Ser Lys Lys Glu Val Phe Glu Ala Asn Leu Lys Thr Glu Cys Asp Leu 610 620

Trp His Leu Met Val Lys Glu Met Trp Ala Gly Lys Lys Leu Ala Asp 625 630 635 640

Asp His Lys Asp Pro His Tyr Val Gln Gln Ala Leu Thr Asn Val Leu 645 650 655

Leu Met Asp Ala Val Val Gly Thr Leu Gln Ser Pro Gly Ala Ile Tyr 660 665 670

Ala Ala Ser Lys Leu Ser Tyr Phe Asp Lys Met Ser Asn Glu Met Pro 675 680 685

Met Thr Leu Pro Glu Thr Thr Leu Glu Thr Leu Lys His Lys Ile Asn 690 700

Pro Ser Ala Gly Glu Ala Phe Pro Gln Ala Val Asp Val Leu Leu Tyr 705 710 720

Thr Pro Gly His Leu Asp Pro Ala Glu Lys Val Glu Asp Ala His Pro 725 730 735

Lys Leu Trp Cys Ala Leu Ser Glu Gly Lys Val Thr Val Phe Asn Ala 740 745 750

Ser Ser Trp Thr Ile His Gln His Ser Phe Lys Val Gly Thr Ala Lys  $755 \hspace{1.5cm} 760 \hspace{1.5cm} 765$ 

Val Asn Cys Met Val Met Ala Asp Gln Asn Gln Val Trp Val Gly Ser 770 780

Glu Asp Ser Val Ile Tyr Ile Ile Asn Val His Ser Met Ser Cys Asn 785 790 795 800

Lys Gln Leu Thr Ala His Cys Ser Ser Val Thr Asp Leu Ile Val Gln 805 810 815

Asp Gly Gln Glu Ala Pro Ser Asn Val Tyr Ser Cys Ser Met Asp Gly 820 825 830

Met Val Leu Val Trp Asn Val Ser Thr Leu Gln Val Thr Ser Arg Phe  $835 \\ 846 \\ 847 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\ 848 \\$ 

Gln Leu Pro Arg Gly Gly Leu Thr Ser Ile Arg Leu His Gly Gly Arg 850 855 860

Leu Trp Cys Cys Thr Gly Asn Ser Ile Met Val Met Lys Met Asn Gly 865 870 875 880

Ser Leu His Gln Glu Leu Lys Ile Glu Glu Asn Phe Lys Asp Thr Ser 885 890 895

Thr Ser Phe Leu Ala Phe Gln Leu Leu Pro Glu Glu Glu Gln Leu Trp 900 905 910

Ala Ala Cys Ala Gly Arg Ser Glu Val Tyr Ile Trp Ser Leu Lys Asp 915 920 925

Leu Ala Gln Pro Pro Gln Arg Val Pro Leu Glu Asp Cys Ser Glu Ile 930 935 940

Asn Cys Met Ile Arg Val Lys Lys Gln Val Trp Val Gly Ser Arg Gly 945 950 955 960

Leu Gly Gln Gly Thr Pro Lys Gly Lys Ile Tyr Val Ile Asp Ala Glu 965 970 975

Arg Lys Thr Val Glu Lys Glu Leu Val Ala His Met Asp Thr Val Arg 980 985 990

Thr Leu Cys Ser Ala Glu Asp Arg Tyr Val Leu Ser Gly Ser Gly Arg 995 1000 1005

Glu Glu Gly Lys Val Ala Ile Trp Lys Gly Glu 1010 1015

<210> 2985 <211> 783

<212> PRT

<213> Homo sapiens

<400> 2985

Met Ala Lys Tyr Asn Thr Gly Gly Asn Pro Thr Glu Asp Val Ser Val 1 5 10

Asn Ser Arg Pro Phe Arg Val Thr Gly Pro Asn Ser Ser Ser Gly Ile 20 25 30

Gln Ala Arg Lys Asn Leu Phe Asn Asn Gln Gly Asn Ala Ser Pro Pro 35 40 45

Ala Gly Pro Ser Asn Val Pro Lys Phe Gly Ser Pro Lys Pro Pro Val 50 55 60

Ala Val Lys Pro Ser Ser Glu Glu Lys Pro Asp Lys Glu Pro Lys Pro 65 70 75 80

Pro Phe Leu Lys Pro Thr Gly Ala Gly Gln Arg Phe Gly Thr Pro Ala  $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$ 

Ser Leu Thr Thr Arg Asp Pro Glu Ala Lys Val Gly Phe Leu Lys Pro 100 105 110

Val Gly Pro Lys Pro Ile Asn Leu Pro Lys Glu Asp Ser Lys Pro Thr 115 120 125

Phe Pro Trp Pro Pro Gly Asn Lys Pro Ser Leu His Ser Val Asn Gln 130 135 140

Asp His Asp Leu Lys Pro Leu Gly Pro Lys Ser Gly Pro Thr Pro Pro 145 150 155 160

Thr Ser Glu Asn Glu Gln Lys Gln Ala Phe Pro Lys Leu Thr Gly Val

Lys Gly Lys Phe Met Ser Ala Ser Gln Asp Leu Glu Pro Lys Pro Leu

180 185 190

Phe Pro Lys Pro Ala Phe Gly Gln Lys Pro Pro Leu Ser Thr Glu Asn

Ser His Glu Asp Glu Ser Pro Met Lys Asn Val Ser Ser Ser Lys Gly 210 215

Ser Pro Ala Pro Leu Gly Val Arg Ser Lys Ser Gly Pro Leu Lys Pro 225 235 240

Ala Arg Glu Asp Ser Glu Asn Lys Asp His Ala Gly Glu Ile Ser Ser 245 250 255

Leu Pro Phe Pro Gly Val Val Leu Lys Pro Ala Ala Ser Arg Gly Gly 260 265 270

Leu Gly Leu Ser Lys Asn Gly Glu Glu Lys Lys Glu Asp Arg Lys Ile 275 280 285

Asp Ala Ala Lys Asn Thr Phe Gln Ser Lys Ile Asn Gln Glu Glu Leu 290 295 300

Ala Ser Gly Thr Pro Pro Ala Arg Phe Pro Lys Ala Pro Ser Lys Leu 305 310 315 320

Thr Val Gly Gly Pro Trp Gly Gln Ser Gln Glu Lys Glu Lys Gly Asp 325 330 335

Lys Asn Ser Ala Thr Pro Lys Gln Lys Pro Leu Pro Pro Leu Phe Thr 340 345 350

Leu Gly Pro Pro Pro Pro Lys Pro Asn Arg Pro Pro Asn Val Asp Leu  $355 \ \ 360 \ \ 365$ 

Thr Lys Phe His Lys Thr Ser Ser Gly Asn Ser Thr Ser Lys Gly Gln 370 375 380

Thr Ser Tyr Ser Thr Thr Ser Leu Pro Pro Pro Pro Pro Ser His Pro 385 390 395 400

Ala Ser Gln Pro Pro Leu Pro Ala Ser His Pro Ser Gln Pro Pro Val 405 410 410

Pro Ser Leu Pro Pro Arg Asn Ile Lys Pro Pro Phe Asp Leu Lys Ser 420 425 430

Pro Val Asn Glu Asp Asn Gln Asp Gly Val Thr His Ser Asp Gly Ala Gly Asn Leu Asp Glu Glu Gln Asp Ser Glu Gly Glu Thr Tyr Glu Asp Ile Glu Ala Ser Lys Glu Arg Glu Lys Lys Arg Glu Lys Glu Glu Lys Lys Arg Leu Glu Leu Glu Lys Lys Glu Gln Lys Glu Lys Glu Lys Lys Glu Gln Glu Ile Lys Lys Phe Lys Leu Thr Gly Pro Ile Gln Val Ile His Leu Ala Lys Ala Cys Cys Asp Val Lys Gly Gly Lys Asn Glu Leu Ser Phe Lys Gln Gly Glu Gln Ile Glu Ile Ile Arg Ile Thr Asp Asn Pro Glu Gly Lys Trp Leu Gly Arg Thr Ala Arg Gly Ser Tyr Gly Tyr Ile Lys Thr Thr Ala Val Glu Ile Asp Tyr Asp Ser Leu Lys Leu Lys Lys Asp Ser Leu Gly Ala Pro Ser Arg Pro Ile Glu Asp Asp Gln Glu Val Tyr Asp Asp Val Ala Glu Gln Asp Asp Ile Ser Ser His Ser Gln Ser Gly Ser Gly Gly Ile Phe Pro Pro Pro Pro Asp Asp Ile Tyr Asp Gly Ile Glu Glu Glu Asp Ala Asp Asp Gly Phe Pro Ala Pro Pro Lys Gln Leu Asp Met Gly Asp Glu Val Tyr Asp Asp Val Asp Thr 

Ser Asp Phe Pro Val Ser Ser Ala Glu Met Ser Gln Gly Thr Asn Phe

Gly Lys Ala Lys Thr Glu Glu Lys Asp Leu Lys Lys Leu Lys Lys Gln 675 680 685

Glu Lys Glu Glu Lys Asp Phe Arg Lys Lys Phe Lys Tyr Asp Gly Glu 690 695 700

Ile Arg Val Leu Tyr Ser Thr Lys Val Thr Thr Ser Ile Thr Ser Lys 705 710 715 720

Lys Trp Gly Thr Arg Asp Leu Gln Val Lys Pro Gly Glu Ser Leu Glu 725 730 735

Val Ile Gln Thr Thr Asp Asp Thr Lys Val Leu Cys Arg Asn Glu Glu 740 745 750

Gly Lys Tyr Gly Tyr Val Leu Arg Ser Tyr Leu Ala Asp Asn Asp Gly 755 760 765

Glu Ile Tyr Asp Asp Ile Ala Asp Gly Cys Ile Tyr Asp Asn Asp 770 775 780

<210> 2986

<211> 266 <212> PRT

<213> Homo sapiens

<400> 2986

Met Val Cys Leu Lys Leu Pro Gly Gly Ser Ser Leu Ala Ala Leu Thr 1 5 10 15

Val Thr Leu Met Val Leu Ser Ser Arg Leu Ala Phe Ala Gly Asp Thr 20 25 30

Arg Pro Arg Phe Leu Glu Leu Arg Lys Ser Glu Cys His Phe Phe Asn  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Gly Thr Glu Arg Val Arg Tyr Leu Asp Arg Tyr Phe His Asn Gln Glu 50 55 60

Glu Phe Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr 65 70 75 80

Glu Leu Gly Arg Pro Val Ala Glu Ser Trp Asn Ser Gln Lys Asp Leu 85 90 95

Leu Glu Gln Lys Arg Gly Arg Val Asp Asn Tyr Cys Arg His Asn Tyr

100 105 110

Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Val His Pro Gln Val 115 120 125

Thr Val Tyr Pro Ala Lys Thr Gln Pro Leu Gln His His Asn Leu Leu 130 135 140

Val Cys Ser Val Ser Gly Phe Tyr Pro Gly Ser Ile Glu Val Arg Trp 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Phe Arg Asn Gly Glu Glu Lys Ala Gly Val Val Ser Thr Gly Leu 165 170 175

Ile Gln Asn Gly Asp Trp Thr Phe Gln Thr Leu Val Met Leu Glu Thr 180 185 190

Val Pro Arg Ser Gly Glu Val Tyr Thr Cys Gln Val Glu His Pro Ser 195 200 205

Val Thr Ser Ala Leu Thr Val Glu Trp Arg Ala Arg Ser Glu Ser Ala 210 215 220

Gln Ser Lys Met Leu Ser Gly Val Gly Gly Phe Val Leu Gly Leu Leu 225 230 235

Phe Leu Gly Ala Gly Leu Phe Ile Tyr Phe Arg Asn Gln Lys Gly His

Ser Gly Leu Gln Pro Thr Gly Phe Leu Ser 260 265

<210> 2987

<211> 363 <212> PRT

<213> Homo sapiens

<400> 2987

Met Glu Val Lys Lys Lys His Asp Lys Gln Glu Gln Lys Gly Ser

Val Gly Ala Thr Phe Lys Leu Gly Asp Ser Leu Ser Asn Pro Asn Glu 20 25 30

Arg Ala Ile Val Lys Glu Lys Met Val Ser Asn Thr Lys Ser Val Asp 35  $\phantom{\bigg|}40\phantom{\bigg|}45\phantom{\bigg|}$ 

Thr Lys Ala Ser Ser Ser Lys Phe Ser Arg Ile Leu Thr Pro Lys Glu 50 60

Tyr Leu Gln Arg Gln Lys His Lys Glu Ala Pro Ser Asn Lys Ala Ser 65 70 75 80

Lys Lys Ile Cys Val Lys Asn Val Pro Cys Asp Ser Glu His Met Arg 85 90 95

Pro Ser Lys Leu Ala Val Gln Val Glu Ser Cys Gly Lys Ser Asn Glu 100 \$105\$ 110

Lys His Ser Ser Gly Val Gln Thr Ser Lys Glu Ser Leu Asn Gly Leu 115 120 125

Thr Ser His Gly Lys Asn Leu Lys Ile His His Ser Gln Glu Ser Lys 130 140

Thr Tyr Asn Ile Leu Arg Asn Val Lys Glu Lys Val Gly Gly Lys Gln 145 150 155 160

Pro Asp Lys Ile Trp Ile Asp Lys Thr Lys Leu Asp Lys Leu Thr Asn 165 170 175

Ile Ser Asn Glu Ala Gln Phe Ser Gln Met Pro Pro Gln Val Lys Asp 180 185 190

Gln Lys Leu Tyr Leu Asn Arg Val Gly Phe Lys Cys Thr Glu Arg 195 200 205

Glu Ser Ile Ser Leu Thr Lys Leu Glu Ser Ser Pro Arg Lys Leu His 210 220

Lys Asp Lys Arg Gln Glu Asn Lys His Lys Thr Phe Leu Pro Val Lys 225 230 235 240

Gly Asn Thr Glu Lys Ser Asn Met Leu Glu Phe Lys Leu Cys Pro Asp 245 250 255

Ile Leu Leu Lys Asn Thr Asn Ser Val Glu Glu Arg Lys Asp Val Lys 260 265 270

Pro His Pro Arg Lys Glu Gln Ala Pro Leu Gln Val Ser Gly Ile Lys 275 280 285

Ser Thr Lys Glu Asp Trp Leu Lys Phe Val Ala Thr Lys Lys Arg Thr 290 300

Gln Lys Asp Ser Gln Glu Arg Asp Asn Val Asn Ser Arg Leu Ser Lys 305 310 315 320

Arg Ser Phe Ser Ala Asp Gly Phe Glu Met Leu Gln Asn Pro Val Lys 325 330 335

Asp Ser Lys Glu Met Phe Gln Thr Tyr Lys Gln Met Tyr Leu Glu Lys \$340\$ \$345 \$350

Arg Ser Arg Ser Leu Gly Ser Ser Pro Val Lys 355 360

<210> 2988 <211> 836

<212> PRT <213> Homo sapiens

<400> 2988

Met Ala Arg Leu Gly Asn Cys Ser Leu Thr Trp Ala Ala Leu Ile Ile 1  $\phantom{-}$  15

Leu Leu Pro Gly Ser Leu Glu Glu Cys Gly His Ile Ser Val Ser 20 25 30

Ala Pro Ile Val His Leu Gly Asp Pro Ile Thr Ala Ser Cys Ile Ile  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Lys Gln Asn Cys Ser His Leu Asp Pro Glu Pro Gln Ile Leu Trp Arg 50 60

Leu Gly Ala Glu Leu Gln Pro Gly Gly Arg Gln Gln Arg Leu Ser Asp 65 70 75 80

Gly Thr Gln Glu Ser Ile Ile Thr Leu Pro His Leu Asn His Thr Gln  $85 \\ 90 \\ 95$ 

Ala Phe Leu Ser Cys Cys Leu Asn Trp Gly Asn Ser Leu Gln Ile Leu 100 105 110

Asp Gln Val Glu Leu Arg Ala Gly Tyr Pro Pro Ala Ile Pro His Asn 115 120 125

Leu Ser Cys Leu Met Asn Leu Thr Thr Ser Ser Leu Ile Cys Gln Trp 130 140

| Glu<br>145 | Pro        | Gly        | Pro        | Glu        | Thr<br>150 | His        | Leu        | Pro        | Thr        | Ser<br>155 | Phe        | Thr        | Leu        | Lys        | Ser<br>160 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Phe        | Lys        | Ser        | Arg        | Gly<br>165 | Asn        | Cys        | Gln        | Thr        | Gln<br>170 | Gly        | Asp        | Ser        | Ile        | Leu<br>175 | Asp        |
| Сув        | Val        | Pro        | Lys<br>180 | Asp        | Gly        | Gln        | Ser        | His<br>185 | Сув        | Cys        | Ile        | Pro        | Arg<br>190 | Lys        | His        |
| Leu        | Leu        | Leu<br>195 | Tyr        | Gln        | Asn        | Met        | Gly<br>200 | Ile        | Trp        | Val        | Gln        | Ala<br>205 | Glu        | Asn        | Ala        |
| Leu        | Gly<br>210 | Thr        | Ser        | Met        | Ser        | Pro<br>215 | Gln        | Leu        | Cys        | Leu        | Asp<br>220 | Pro        | Met        | Asp        | Val        |
| Val<br>225 | Lys        | Leu        | Glu        | Pro        | Pro<br>230 | Met        | Leu        | Arg        | Thr        | Met<br>235 | Asp        | Pro        | Ser        | Pro        | Glu<br>240 |
| Ala        | Ala        | Pro        | Pro        | Gln<br>245 | Ala        | Gly        | Cys        | Leu        | Gln<br>250 | Leu        | Cys        | Trp        | Glu        | Pro<br>255 | Trp        |
| Gln        | Pro        | Gly        | Leu<br>260 | His        | Ile        | Asn        | Gln        | Lys<br>265 | Cys        | Glu        | Leu        | Arg        | His<br>270 | Lys        | Pro        |
| Gln        | Arg        | Gly<br>275 | Glu        | Ala        | Ser        | Trp        | Ala<br>280 | Leu        | Val        | Gly        | Pro        | Leu<br>285 | Pro        | Leu        | Glu        |
| Ala        | Leu<br>290 | Gln        | Tyr        | Glu        | Leu        | Cys<br>295 | Gly        | Leu        | Leu        | Pro        | Ala<br>300 | Thr        | Ala        | Tyr        | Thr        |
| Leu<br>305 | Gln        | Ile        | Arg        | Cys        | Ile<br>310 | Arg        | Trp        | Pro        | Leu        | Pro<br>315 | Gly        | His        | Trp        | Ser        | Asp<br>320 |
| Trp        | Ser        | Pro        | Ser        | Leu<br>325 | Glu        | Leu        | Arg        | Thr        | Thr<br>330 | Glu        | Arg        | Ala        | Pro        | Thr<br>335 | Val        |
| Arg        | Leu        | Asp        | Thr<br>340 | Trp        | Trp        | Arg        | Gln        | Arg<br>345 | Gln        | Leu        | Asp        | Pro        | Arg<br>350 | Thr        | Val        |
| Gln        | Leu        | Phe<br>355 | Trp        | Lys        | Pro        | Val        | Pro<br>360 | Leu        | Glu        | Glu        | Asp        | Ser<br>365 | Gly        | Arg        | Ile        |
| Gln        | Gly<br>370 |            | Val        | Val        | Ser        | Trp<br>375 | Arg        | Pro        | Ser        | Gly        | Gln<br>380 | Ala        | Gly        | Ala        | Ile        |

Leu Pro Leu Cys Asn Thr Thr Glu Leu Ser Cys Thr Phe His Leu Pro Ser Glu Ala Gln Glu Val Ala Leu Val Ala Tyr Asn Ser Ala Gly Thr Ser Arg Pro Thr Pro Val Val Phe Ser Glu Ser Arg Gly Pro Ala Leu Thr Arq Leu His Ala Met Ala Arq Asp Pro His Ser Leu Trp Val Gly Trp Glu Pro Pro Asn Pro Trp Pro Gln Gly Tyr Val Ile Glu Trp Gly Leu Gly Pro Pro Ser Ala Ser Asn Ser Asn Lys Thr Trp Arg Met Glu Gln Asn Gly Arg Ala Thr Gly Phe Leu Leu Lys Glu Asn Ile Arg Pro Phe Gln Leu Tyr Glu Ile Ile Val Thr Pro Leu Tyr Gln Asp Thr Met Gly Pro Ser Gln His Val Tyr Ala Tyr Ser Gln Glu Met Ala Pro Ser His Ala Pro Glu Leu His Leu Lys His Ile Gly Lys Thr Trp Ala Gln Leu Glu Trp Val Pro Glu Pro Pro Glu Leu Gly Lys Ser Pro Leu Thr His Tyr Thr Ile Phe Trp Thr Asn Ala Gln Asn Gln Ser Phe Ser Ala Ile Leu Asn Ala Ser Ser Arg Gly Phe Val Leu His Gly Leu Glu Pro Ala Ser Leu Tyr His Ile His Leu Met Ala Ala Ser Gln Ala Gly Ala 

Thr Asn Ser Thr Val Leu Thr Leu Met Thr Leu Thr Pro Glu Gly Ser 

Glu Leu His Ile Ile Leu Gly Leu Phe Gly Leu Leu Leu Leu Thr 625  $\phantom{\bigg|}630\phantom{\bigg|}635\phantom{\bigg|}635\phantom{\bigg|}$ 

- Cys Leu Cys Gly Thr Ala Trp Leu Cys Cys Ser Pro Asn Arg Lys Asn  $_{645}$   $_{655}$
- Pro Leu Trp Pro Ser Val Pro Asp Pro Ala His Ser Ser Leu Gly Ser 660 665 670
- Trp Val Pro Thr Ile Met Glu Glu Asp Ala Phe Gln Leu Pro Gly Leu 675 680 685
- Gly Thr Pro Pro Ile Thr Lys Leu Thr Val Leu Glu Glu Asp Glu Lys 690 695 700
- Lys Pro Val Pro Trp Glu Ser His Asn Ser Ser Glu Thr Cys Gly Leu 705  $\phantom{\bigg|}$  710  $\phantom{\bigg|}$  720
- Pro Thr Leu Val Gln Thr Tyr Val Leu Gln Gly Asp Pro Arg Ala Val 725 730 735
- Ser Thr Gln Pro Gln Ser Gln Ser Gly Thr Ser Asp Gln Val Leu Tyr  $740 \hspace{1cm} 745 \hspace{1cm} 750 \hspace{1cm}$
- Gly Gln Leu Leu Gly Ser Pro Thr Ser Pro Gly Pro Gly His Tyr Leu  $755 \hspace{1.5cm} 760 \hspace{1.5cm} 765$
- Arg Cys Asp Ser Thr Gln Pro Leu Leu Ala Gly Leu Thr Pro Ser Pro 770 780
- Lys Ser Tyr Glu Asn Leu Trp Phe Gln Ala Ser Pro Leu Gly Thr Leu 785 790 795 800
- Val Thr Pro Ala Pro Ser Gln Glu Asp Asp Cys Val Phe Gly Pro Leu 805 810 810
- Leu Asn Phe Pro Leu Leu Gln Gly Ile Arg Val His Gly Met Glu Ala 820 825 830

Leu Gly Ser Phe 835

<210> 2989 <211> 276

<212> PRT

<213> Homo sapiens

<400> 2989

Met Gly Asn Ser Met Lys Ser Thr Pro Ala Pro Ala Glu Arg Pro Leu 1 5 10 15

Pro Asn Pro Glu Gly Leu Asp Ser Asp Phe Leu Ala Val Leu Ser Asp 20 25 30

Tyr Pro Ser Pro Asp Ile Ser Pro Pro Ile Phe Arg Arg Gly Glu Lys 35 40 45

Leu Arg Val Ile Ser Asp Glu Gly Gly Trp Trp Lys Ala Ile Ser Leu  $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60 \hspace{1.5cm}$ 

Ser Thr Gly Arg Glu Ser Tyr Ile Pro Gly Ile Cys Val Ala Arg Val 65 70 75 80

Tyr His Gly Trp Leu Phe Glu Gly Leu Gly Arg Asp Lys Ala Glu Glu 85 90 95

Leu Leu Gln Leu Pro Asp Thr Lys Val Gly Ser Phe Met Ile Arg Glu  $100 \\ 105 \\ 110$ 

Ser Glu Thr Lys Lys Gly Phe Tyr Ser Leu Ser Val Arg His Arg Gln 115 120 125

Val Lys His Tyr Arg Ile Phe Arg Leu Pro Asn Asn Trp Tyr Tyr Ile 130 135 140

Ser Pro Arg Leu Thr Phe Gln Cys Leu Glu Asp Leu Val Asn His Tyr 145 150 150 160

Ser Glu Val Ala Asp Gly Leu Cys Cys Val Leu Thr Thr Pro Cys Leu 165  $$170\$ 

Thr Gln Ser Thr Ala Ala Pro Ala Val Arg Ala Ser Ser Ser Pro Val 180  $$180\,$ 

Thr Leu Arg Gln Lys Thr Val Asp Trp Arg Arg Val Ser Arg Leu Gln
195 200 205

Glu Asp Pro Glu Gly Thr Glu Asn Pro Leu Gly Val Asp Glu Ser Leu 210 215 220

Phe Ser Tyr Gly Leu Arg Glu Ser Ile Ala Ser Tyr Leu Ser Leu Thr 225 230 235 240

Ser Glu Asp Asn Thr Ser Phe Asp Arg Lys Lys Lys Ser Ile Ser Leu 245 250 255

Met Tyr Gly Gly Ser Lys Arg Lys Ser Ser Phe Phe Ser Ser Pro Pro 260 265 270

Tyr Phe Glu Asp 275

<210> 2990

<211> 359 <212> PRT

<213> Homo sapiens

<400> 2990

Met Ala Pro Asn Gly Thr Ala Ser Ser Phe Cys Leu Asp Ser Thr Ala 1 10 15

Cys Lys Ile Thr Ile Thr Val Val Leu Ala Val Leu Ile Leu Ile Thr 20 25 30

Val Ala Gly Asn Val Val Val Cys Leu Ala Val Gly Leu Asn Arg Arg

Leu Arg Asn Leu Thr Asn Cys Phe Ile Val Ser Leu Ala Ile Thr Asp 50 60

Leu Leu Leu Gly Leu Leu Val Leu Pro Phe Ser Ala Ile Tyr Gln Leu 65 70 75 80

Ser Cys Lys Trp Ser Phe Gly Lys Val Phe Cys Asn Ile Tyr Thr Ser 85 90 95

Leu Asp Val Met Leu Cys Thr Ala Ser Ile Leu Asn Leu Phe Met Ile 100 105 110

Ser Leu Asp Arg Tyr Cys Ala Val Met Asp Pro Leu Arg Tyr Pro Val

Leu Val Thr Pro Val Arg Val Ala Ile Ser Leu Val Leu Ile Trp Val 130 135 140

Ile Ser Ile Thr Leu Ser Phe Leu Ser Ile His Leu Gly Trp Asn Ser 145 150 155 160

Arg Asn Glu Thr Ser Lys Gly Asn His Thr Thr Ser Lys Cys Lys Val

175

165 170

Gln Val Asn Glu Val Tyr Gly Leu Val Asp Gly Leu Val Thr Phe Tyr 185

Leu Pro Leu Leu Ile Met Cys Ile Thr Tyr Tyr Arg Ile Phe Lys Val 195 200

Ala Arg Asp Gln Ala Lys Arg Ile Asn His Ile Ser Ser Trp Lys Ala 210

Ala Thr Ile Arg Glu His Lys Ala Thr Val Thr Leu Ala Ala Val Met 225 230 235

Gly Ala Phe Ile Ile Cys Trp Phe Pro Tyr Phe Thr Ala Phe Val Tyr 245 250

Arg Gly Leu Arg Gly Asp Asp Ala Ile Asn Glu Val Leu Glu Ala Ile 260 265

Val Leu Trp Leu Gly Tyr Ala Asn Ser Ala Leu Asn Pro Ile Leu Tyr 275 280

Ala Ala Leu Asn Arg Asp Phe Arg Thr Gly Tyr Gln Gln Leu Phe Cys 290 295 300

Cys Arg Leu Ala Asn Arg Asn Ser His Lys Thr Ser Leu Arg Ser Asn 305 310 315

Ala Ser Gln Leu Ser Arg Thr Gln Ser Arg Glu Pro Arg Gln Gln Glu 330

Glu Lys Pro Leu Lys Leu Gln Val Trp Ser Gly Thr Glu Val Thr Ala 345 350

Pro Gln Gly Ala Thr Asp Arg 355

<210> 2991

<211> 505 <212> PRT

<213> Homo sapiens

<400> 2991

Met Gly Ser Met Lys Ser Lys Phe Leu Gln Val Gly Gly Asn Thr Phe 10 15

| Ser        | Lys        | Thr        | Glu<br>20  | Thr        | Ser        | Ala        | Ser        | Pro<br>25  | His        | Cys        | Pro        | Val        | Tyr<br>30  | Val        | Pro        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asp        | Pro        | Thr<br>35  | Ser        | Thr        | Ile        | Lys        | Pro<br>40  | Gly        | Pro        | Asn        | Ser        | His<br>45  | Asn        | Ser        | Asn        |
| Thr        | Pro<br>50  | Gly        | Ile        | Arg        | Glu        | Ala<br>55  | Gly        | Ser        | Glu        | Asp        | Ile<br>60  | Ile        | Val        | Val        | Ala        |
| Leu<br>65  | Tyr        | Asp        | Tyr        | Glu        | Ala<br>70  | Ile        | His        | His        | Glu        | Asp<br>75  | Leu        | Ser        | Phe        | Gln        | Lys<br>80  |
| Gly        | Asp        | Gln        | Met        | Val<br>85  | Val        | Leu        | Glu        | Glu        | Ser<br>90  | Gly        | Glu        | Trp        | Trp        | Lys<br>95  | Ala        |
| Arg        | Ser        | Leu        | Ala<br>100 | Thr        | Arg        | Lys        | Glu        | Gly<br>105 | Tyr        | Ile        | Pro        | Ser        | Asn<br>110 | Tyr        | Val        |
| Ala        | Arg        | Val<br>115 | Asp        | Ser        | Leu        | Glu        | Thr<br>120 | Glu        | Glu        | Trp        | Phe        | Phe<br>125 | Lys        | Gly        | Ile        |
| Ser        | Arg<br>130 | Lys        | Asp        | Ala        | Glu        | Arg<br>135 | Gln        | Leu        | Leu        | Ala        | Pro<br>140 | Gly        | Asn        | Met        | Leu        |
| Gly<br>145 | Ser        | Phe        | Met        | Ile        | Arg<br>150 | Asp        | Ser        | Glu        | Thr        | Thr<br>155 | Lys        | Gly        | Ser        | Tyr        | Ser<br>160 |
| Leu        | Ser        | Val        | Arg        | Asp<br>165 | Tyr        | Asp        | Pro        | Arg        | Gln<br>170 | Gly        | Asp        | Thr        | Val        | Lys<br>175 | His        |
| Tyr        | Lys        | Ile        | Arg<br>180 | Thr        | Leu        | Asp        | Asn        | Gly<br>185 | Gly        | Phe        | Tyr        | Ile        | Ser<br>190 | Pro        | Arg        |
| Ser        | Thr        | Phe<br>195 | Ser        | Thr        | Leu        | Gln        | Glu<br>200 | Leu        | Val        | Asp        | His        | Tyr<br>205 | Lys        | Lys        | Gly        |
| Asn        | Asp<br>210 | Gly        | Leu        | Cys        | Gln        | Lys<br>215 | Leu        | Ser        | Val        | Pro        | Cys<br>220 | Met        | Ser        | Ser        | Lys        |
| Pro<br>225 | Gln        | Lys        | Pro        | Trp        | Glu<br>230 | Lys        | Asp        | Ala        | Trp        | Glu<br>235 | Ile        | Pro        | Arg        | Glu        | Ser<br>240 |
| Leu        | Lys        | Leu        | Glu        | Lys<br>245 | Lys        | Leu        | Gly        | Ala        | Gly<br>250 | Gln        | Phe        | Gly        | Glu        | Val<br>255 | Trp        |

1403

Met Ala Thr Tyr Asn Lys His Thr Lys Val Ala Val Lys Thr Met Lys 260 265 270

Pro Gly Ser Met Ser Val Glu Ala Phe Leu Ala Glu Ala Asn Val Met 275 280 285

Lys Thr Leu Gln His Asp Lys Leu Val Lys Leu His Ala Val Val Thr

Lys Glu Pro Ile Tyr Ile Ile Thr Glu Phe Met Ala Lys Gly Ser Leu 305 310 315 320

Leu Asp Phe Leu Lys Ser Asp Glu Gly Ser Lys Gln Pro Leu Pro Lys 325 \$330\$

Leu Ile Asp Phe Ser Ala Gln Ile Ala Glu Gly Met Ala Phe Ile Glu  $340 \hspace{1cm} 345 \hspace{1cm} 350 \hspace{1cm} 350 \hspace{1cm}$ 

Gln Arg Asn Tyr Ile His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val 355 360 365

Ser Ala Ser Leu Val Cys Lys Ile Ala Asp Phe Gly Leu Ala Arg Val

Ile Glu Asp Asn Glu Tyr Thr Ala Arg Glu Gly Ala Lys Phe Pro Ile 385  $\phantom{\bigg|}$  390  $\phantom{\bigg|}$  395  $\phantom{\bigg|}$  400

Lys Trp Thr Ala Pro Glu Ala Ile Asn Phe Gly Ser Phe Thr Ile Lys 405 410 415

Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Met Glu Ile Val Thr Tyr 420 425 430

Gly Arg Ile Pro Tyr Pro Gly Met Ser Asn Pro Glu Val Ile Arg Ala 435 440 445

Leu Glu Arg Gly Tyr Arg Met Pro Arg Pro Glu Asn Cys Pro Glu Glu 450 455 460

Leu Tyr Asn Ile Met Met Arg Cys Trp Lys Asn Arg Pro Glu Glu Arg 465 470 475 480

Pro Thr Phe Glu Tyr Ile Gln Ser Val Leu Asp Asp Phe Tyr Thr Ala 485 490 495

Thr Glu Ser Gln Tvr Gln Gln Gln Pro

WO 2004/042346 PC1/US2003/0129 500 505

<210> 2992 <211> 1333

<212> PRT <213> Homo sapiens

<400> 2992

Met Thr Ala Asp Lys Leu Val Phe Phe Val Asn Gly Arg Lys Val Val 1 5 10 15

Glu Lys Asn Ala Asp Pro Glu Thr Thr Leu Leu Ala Tyr Leu Arg Arg 20 25 30

Lys Leu Gly Leu Ser Gly Thr Lys Leu Gly Cys Gly Glu Gly Gly Cys 35 \$40\$

Gly Ala Cys Thr Val Met Leu Ser Lys Tyr Asp Arg Leu Gln Asn Lys 50 60

Ile Val His Phe Ser Ala Asn Ala Cys Leu Ala Pro Ile Cys Ser Leu 65 70 75 80

His His Val Ala Val Thr Thr Val Glu Gly Ile Gly Ser Thr Lys Thr 85 90 95

Arg Leu His Pro Val Gln Glu Arg Ile Ala Lys Ser His Gly Ser Gln  $100 \\ 105 \\ 110$ 

Cys Gly Phe Cys Thr Pro Gly Ile Val Met Ser Met Tyr Thr Leu Leu 115 120 125

Arg Asn Gln Pro Glu Pro Thr Met Glu Glu Ile Glu Asn Ala Phe Gln 130 135 140

Gly Asn Leu Cys Arg Cys Thr Gly Tyr Arg Pro Ile Leu Gln Gly Phe 145 150 155 160

Arg Thr Phe Ala Arg Asp Gly Gly Cys Cys Gly Gly Asp Gly Asn Asn 165 170 175

Pro Asn Cys Cys Met Asn Gln Lys Lys Asp His Ser Val Ser His Ser 180 185 190

Pro Ser Leu Phe Lys Pro Glu Glu Phe Thr Pro Leu Asp Pro Thr Gln 195 200 205

| Glu        | Pro<br>210 | Ile        | Phe        | Pro        | Pro        | Glu<br>215 | Leu        | Leu        | Arg        | Leu        | Lys<br>220 | Asp        | Thr        | Pro        | Arg        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Lys<br>225 | Gln        | Leu        | Arg        | Phe        | Glu<br>230 | Arg        | Glu        | Arg        | Val        | Thr<br>235 | Trp        | Ile        | Gln        | Ala        | Ser<br>240 |
| Thr        | Leu        | Lys        | Glu        | Leu<br>245 | Leu        | Asp        | Leu        | Lys        | Ala<br>250 | Gln        | His        | Pro        | Asp        | Ala<br>255 | Lys        |
| Leu        | Val        | Val        | Gly<br>260 | Asn        | Thr        | Glu        | Ile        | Gly<br>265 | Ile        | Glu        | Met        | Lys        | Phe<br>270 | Lys        | Asn        |
| Met        | Leu        | Phe<br>275 | Pro        | Met        | Ile        | Val        | Cys<br>280 | Pro        | Ala        | Trp        | Ile        | Pro<br>285 | Glu        | Leu        | Asn        |
| Ser        | Val<br>290 | Glu        | His        | Gly        | Pro        | Asp<br>295 | Gly        | Ile        | Ser        | Phe        | Gly<br>300 | Ala        | Ala        | Cys        | Pro        |
| Leu<br>305 | Ser        | Ile        | Val        | Glu        | Lys<br>310 | Thr        | Leu        | Val        | Asp        | Ala<br>315 | Val        | Ala        | Lys        | Leu        | Pro<br>320 |
| Ala        | Gln        | Lys        | Thr        | Glu<br>325 | Val        | Phe        | Arg        | Gly        | Val<br>330 | Leu        | Glu        | Gln        | Leu        | Arg<br>335 | Trp        |
| Phe        | Ala        | Gly        | Lys<br>340 | Gln        | Val        | Lys        | Ser        | Val<br>345 | Ala        | Ser        | Val        | Gly        | Gly<br>350 | Asn        | Ile        |
| Ile        | Thr        | Ala<br>355 | Ser        | Pro        | Ile        | ser        | Asp<br>360 | Leu        | Asn        | Pro        | Val        | Phe<br>365 | Met        | Ala        | Ser        |
| Gly        | Ala<br>370 | Lys        | Leu        | Thr        | Leu        | Val<br>375 | Ser        | Arg        | Gly        | Thr        | Arg<br>380 | Arg        | Thr        | Val        | Gln        |
| Met<br>385 | Asp        | His        | Thr        | Phe        | Phe<br>390 | Pro        | Gly        | Tyr        | Arg        | Lys<br>395 | Thr        | Leu        | Leu        | Ser        | Pro<br>400 |
| Glu        | Glu        | Ile        | Leu        | Leu<br>405 | Ser        | Ile        | Glu        | Ile        | Pro<br>410 | Tyr        | Ser        | Arg        | Glu        | Gly<br>415 | Glu        |
| Tyr        | Phe        | Ser        | Ala<br>420 | Phe        | Lys        | Gln        | Ala        | Ser<br>425 | Arg        | Arg        | Glu        | Asp        | Asp<br>430 | Ile        | Ala        |
| Lys        | Val        | Thr        | Ser        | Gly        | Met        | Arg        | Val        | Leu        | Phe        | Lys        | Pro        | Gly<br>445 | Thr        | Thr        | Glu        |

| Val        | Gln<br>450 | Glu        | Leu        | Ala        | Leu        | Cys<br>455 | Tyr        | Gly        | Gly        | Met        | Ala<br>460 | Asn                | Arg        | Thr        | Ile        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|
| Ser<br>465 | Ala        | Leu        | Lys        | Thr        | Thr<br>470 | Gln        | Arg        | Gln        | Leu        | Ser<br>475 | Lys        | Leu                | Trp        | Lys        | Glu<br>480 |
| Glu        | Leu        | Leu        | Gln        | Asp<br>485 | Val        | Cys        | Ala        | Gly        | Leu<br>490 | Ala        | Glu        | Glu                | Leu        | His<br>495 | Leu        |
| Pro        | Pro        | Asp        | Ala<br>500 | Pro        | Gly        | Gly        | Met        | Val<br>505 | Asp        | Phe        | Arg        | Cys                | Thr<br>510 | Leu        | Thr        |
| Leu        | Ser        | Phe<br>515 | Phe        | Phe        | Lys        | Phe        | Tyr<br>520 | Leu        | Thr        | Val        | Leu        | Gln<br><b>52</b> 5 | Lys        | Leu        | Gly        |
| Gln        | Glu<br>530 | Asn        | Leu        | Glu        | Asp        | Lys<br>535 | Cys        | Gly        | Lys        | Leu        | Asp<br>540 | Pro                | Thr        | Phe        | Ala        |
| Ser<br>545 | Ala        | Thr        | Leu        | Leu        | Phe<br>550 | Gln        | Lys        | Asp        | Pro        | Pro<br>555 | Ala        | Asp                | Val        | Gln        | Leu<br>560 |
| Phe        | Gln        | Glu        | Val        | Pro<br>565 | Lys        | Gly        | Gln        | Ser        | Glu<br>570 | Glu        | Asp        | Met                | Val        | Gly<br>575 | Arg        |
| Pro        | Leu        | Pro        | His<br>580 | Leu        | Ala        | Ala        | Asp        | Met<br>585 | Gln        | Ala        | Ser        | Gly                | Glu<br>590 | Ala        | Va]        |
| Tyr        | Cys        | Asp<br>595 | Asp        | Ile        | Pro        | Arg        | Tyr<br>600 | Glu        | Asn        | Glu        | Leu        | Ser<br>605         | Leu        | Arg        | Lev        |
| Val        | Thr<br>610 | Ser        | Thr        | Arg        | Ala        | His<br>615 | Ala        | Lys        | Ile        | Lys        | Ser<br>620 | Ile                | Asp        | Thr        | Ser        |
| Glu<br>625 | Ala        | Lys        | Lys        | Val        | Pro<br>630 | Gly        | Phe        | Val        | Cys        | Phe<br>635 | Ile        | Ser                | Ala        | Asp        | Asp<br>640 |
| Val        | Pro        | Gly        | Ser        | Asn<br>645 | Ile        | Thr        | Gly        | Ile        | Cys<br>650 | Asn        | Asp        | Glu                | Thr        | Val<br>655 | Ph∈        |
| Ala        | Lys        | Asp        | Lys<br>660 |            | Thr        | Cys        | Val        | Gly<br>665 | His        | Ile        | Ile        | Gly                | Ala<br>670 | Val        | Va]        |
| Ala        | Asp        | Thr<br>675 | Pro        | Glu        | His        | Thr        | Gln<br>680 | Arg        | Ala        | Ala        | Gln        | Gly<br>685         | Val        | Lys        | Ile        |
|            |            |            |            |            |            |            |            |            |            |            |            |                    |            |            |            |

Thr Tyr Glu Glu Leu Pro Ala Ile Ile Thr Ile Glu Asp Ala Ile Lys

1407

690 695 700

Asn Asn Ser Phe Tyr Gly Pro Glu Leu Lys Ile Glu Lys Gly Asp Leu 705 710 715 720

Lys Lys Gly Phe Ser Glu Ala Asp Asm Val Val Ser Gly Glu Ile Tyr 725 730 735

Ile Gly Gly Glu His Phe Tyr Leu Glu Thr His Cys Thr Ile Ala  $^{740}$   $^{745}$   $^{750}$ 

Val Pro Lys Gly Glu Ala Gly Glu Met Glu Leu Phe Val Ser Thr Gln 755  $\phantom{\bigg|}760\phantom{\bigg|}$ 

Asn Thr Met Lys Thr Gln Ser Phe Val Ala Lys Met Leu Gly Val Pro 770 780

Ala Asn Arg Ile Val Val Arg Val Lys Arg Met Gly Gly Gly Phe Gly 785 790 795 800

Gly Lys Glu Thr Arg Ser Thr Val Val Ser Thr Ala Val Ala Leu Ala 805 810 815

Ala Tyr Lys Thr Gly Arg Pro Val Arg Cys Met Leu Asp Arg Asp Glu 820 825 830

Asp Met Leu Ile Thr Gly Gly Arg His Pro Phe Leu Ala Arg Tyr Lys 835 840 845

Val Gly Phe Met Lys Thr Gly Thr Val Val Ala Leu Glu Val Asp His 850 855 860

Phe Ser Asn Val Gly Asn Thr Gln Asp Leu Ser Gln Ser Ile Met Glu 865 870 875 880

Arg Ala Leu Phe His Met Asp Asn Cys Tyr Lys Ile Pro Asn Ile Arg 885 890 895

Gly Thr Gly Arg Leu Cys Lys Thr Asn Leu Pro Ser Asn Thr Ala Phe  $900 \hspace{1.5cm} 905 \hspace{1.5cm} 910$ 

Arg Gly Phe Gly Gly Pro Gln Gly Met Leu Ile Ala Glu Cys Trp Met 915 920 925

Ser Glu Val Ala Val Thr Cys Gly Met Pro Ala Glu Glu Val Arg Arg 930 935 940

Lys Asn Leu Tyr Lys Glu Gly Asp Leu Thr His Phe Asn Gln Lys Leu 945 950 950 950 955

- Glu Gly Phe Thr Leu Pro Arg Cys Trp Glu Glu Cys Leu Ala Ser Ser 975 975 975
- Gln Tyr His Ala Arg Lys Ser Glu Val Asp Lys Phe Asn Lys Glu Asn 980 985 990
- Ser Phe Thr Val Pro Phe Leu Asn Gln Ala Gly Ala Leu Leu His 1010 1015 1020
- Val Tyr Thr Asp Gly Ser Val Leu Leu Thr His Gly Gly Thr Glu 1025 1030 1035
- Met Gly Gln Gly Leu His Thr Lys Met Val Gln Val Ala Ser Arg 1040 1045 1050
- Ala Leu Lys Ile Pro Thr Ser Lys Ile Tyr Ile Ser Glu Thr Ser 1055 1060 1065
- Thr Asn Thr Val Pro Asn Thr Ser Pro Thr Ala Ala Ser Val Ser 1070 1080
- Ala Asp Leu Asn Gly Gln Ala Val Tyr Ala Ala Cys Gln Thr Ile 1085 \$1090\$
- Leu Lys Arg Leu Glu Pro Tyr Lys Lys Lys Asn Pro Ser Gly Ser 1100 1105 1110
- Trp Glu  $\,$  Asp Trp Val Thr Ala  $\,$  Ala Tyr Met Asp Thr  $\,$  Val Ser Leu 1115  $\,$  1120  $\,$  1125
- Ser Ala Thr Gly Phe Tyr Arg Thr Pro Asn Leu Gly Tyr Ser Phe 1130 1140
- Glu Thr Asn Ser Gly Asn Arg Phe His Tyr Phe Ser Tyr Gly Val 1145 1150 1155
- Ala Cys Ser Glu Val Glu Ile Asp Cys Leu Thr Gly Asp His Lys 1160 1170

Asn Leu Arg Thr Asp Ile Val Met Asp Val Gly Ser Ser Leu Asn 1175 1180 Pro Ala Ile Asp Ile Gly Gln Val Glu Gly Ala Phe Val Gln Gly 1190 1195 Leu Gly Leu Phe Thr Leu Glu Glu Leu His Tyr Ser Pro Glu Gly 1205 1210 1215 Ser Leu His Thr Arg Gly Pro Ser Thr Tyr Lys Ile Pro Ala Phe 1225 Gly Ser Ile Pro Ile Glu Phe Arg Val Ser Leu Leu Arg Asp Cys 1235 1240 Pro Asn Lys Lys Ala Ile Tyr Ala Ser Lys Ala Val Gly Glu Pro 1250 1255 Pro Leu Phe Leu Ala Ala Ser Ile Phe Phe Ala Ile Lys Asp Ala 1270 1265 Ile Arg Ala Ala Arg Ala Gln His Thr Gly Asn Asn Val Lys Glu 1280 1285 Leu Phe Arg Leu Asp Ser Pro Ala Thr Pro Glu Lys Ile Arg Asn 1295 1300 1305 Ala Cys Val Asp Lys Phe Thr Thr Leu Cys Val Thr Gly Val Pro 1310 1315 1320 Glu Asn Cys Lys Pro Trp Ser Val Arg Val 1325 1330 <210> 2993 <211> 415 <212> PRT <213> Homo sapiens <400> 2993 Met Glu Gly Lys Ala Ile Ala Thr Ser Leu Gly Gly Asp Arg Val Leu

Met Glu Gly Lys Ala Ile Ala Thr Ser Leu Gly Gly Asp Arg Val Leu 1 5 10 15

Ile Phe Pro Cys Ser Pro Arg Ser Ser Phe Val Phe Thr Ser Arg Leu 20 25 30

Ser Ser Leu Pro Leu Lys Arg Ala Ser Ile Gly Gly Ala Val Ser Cys

Ser Gly Val Asn Gly Leu Thr Arg Trp Asn Ser Ile Val Ser Thr Arg 

Arg Leu Val Pro Val Arg Ser Ile Asn Ser Glu Ser Asp Ser Asp Ser 

Asp Phe Pro His Glu Asn Gln Gln Gly Asn Pro Gly Leu Gly Lys Phe 

Lys Glu Tyr Gln Glu Trp Asp Ser Trp Thr Ala Lys Phe Ser Gly Gly 

Ala Asn Ile Pro Phe Leu Met Leu Gln Leu Pro Gln Ile Ile Leu Asn 

Thr Gln Asn Leu Leu Ala Gly Asn Asn Thr Ala Leu Ser Ala Val Pro 

Trp Leu Gly Met Leu Thr Gly Leu Leu Gly Asn Leu Ser Leu Leu Ser 

Tyr Phe Ala Lys Lys Arg Glu Lys Glu Ala Ala Val Val Gln Thr Leu 

Gly Val Val Ser Thr His Ile Val Leu Ala Gln Leu Thr Met Ala Glu 

Ala Met Pro Ile Gln Tyr Phe Val Ala Thr Ser Ala Val Val Thr Ile 

Gly Leu Ile Val Asn Cys Leu Tyr Tyr Phe Gly Lys Leu Ser Lys Thr 

Val Trp Gln Leu Trp Glu Asp Val Ile Thr Ile Gly Gly Leu Ser Val 

Leu Pro Gln Ile Met Trp Ser Thr Phe Val Pro Leu Val Pro Asn Ser 

Ile Leu Pro Gly Thr Thr Ala Phe Gly Ile Ala Val Ala Ala Ile Ile 

Met Ala Arg Thr Gly Lys Leu Ser Glu Lys Gly Val Arg Phe Val Gly 

Ser Leu Ser Gly Trp Thr Ala Thr Leu Met Phe Met Trp Met Pro Val 300 Ser Gln Met Trp Thr Asn Phe Leu Asn Pro Asp Asn Ile Lys Gly Leu 310 315 320 Ser Ser Ile Thr Met Leu Leu Ser Met Met Gly Asn Gly Leu Met Ile 325 335 Pro Arg Ala Leu Phe Ile Arg Asp Leu Met Trp Leu Thr Gly Ser Leu 340 345 350 Trp Ala Thr Leu Phe Tyr Gly Tyr Gly Asn Ile Leu Cys Leu Tyr Leu 355 360 Val Asn Cys Thr Ser Gln Ser Phe Phe Val Ala Ala Thr Ile Gly Leu 370 Ile Ser Trp Ile Gly Leu Ala Leu Trp Arg Asp Ala Val Ala Tyr Gly 385 390 395 400 His Asn Ser Pro Phe Arg Ser Leu Lys Glu Leu Val Phe Gly Pro 405 410 415 <210> 2994 <211> 363 <212> PRT <213> Homo sapiens <400> 2994 Met Ala Gln Thr Pro Ala Phe Asp Lys Pro Lys Val Glu Leu His Val 10 His Leu Asp Gly Ser Ile Lys Pro Glu Thr Ile Leu Tyr Tyr Gly Arg 20 25 Arg Arg Gly Ile Ala Leu Pro Ala Asn Thr Ala Glu Gly Leu Leu Asn 35 40 45

Val Ile Gly Met Asp Lys Pro Leu Thr Leu Pro Asp Phe Leu Ala Lys 50 55 60

Phe Asp Tyr Tyr Met Pro Ala Ile Ala Gly Cys Arg Glu Ala Ile Lys 65 70 75 80 US2003/012946

|            | WO 2       | 2004/0     | 42346      | •          |            |            |            |            |            |            |            |            |            |            | PCT/       |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Arg        | Ile        | Ala        | Tyr        | Glu<br>85  | Phe        | Val        | Glu        | Met        | Lys<br>90  | Ala        | Lys        | Glu        | Gly        | Val<br>95  | Val        |
| Tyr        | Val        | Glu        | Val<br>100 | Arg        | Tyr        | Ser        | Pro        | His<br>105 | Leu        | Leu        | Ala        | Asn        | Ser<br>110 | Lys        | Val        |
| Glu        | Pro        | Ile<br>115 | Pro        | Trp        | Asn        | Gln        | Ala<br>120 | Glu        | Gly        | Asp        | Leu        | Thr<br>125 | Pro        | Asp        | Glu        |
| Val        | Val<br>130 | Ala        | Leu        | Val        | Gly        | Gln<br>135 | Gly        | Leu        | Gln        | Glu        | Gly<br>140 | Glu        | Arg        | Asp        | Phe        |
| Gly<br>145 | Val        | Lys        | Ala        | Arg        | Ser<br>150 | Ile        | Leu        | Сув        | Сув        | Met<br>155 | Arg        | His        | Gln        | Pro        | Asn<br>160 |
| Trp        | Ser        | Pro        | Lys        | Val<br>165 | Val        | Glu        | Leu        | Сув        | Lys<br>170 | Asn        | Tyr        | Gln        | Gln        | Gln<br>175 | Thr        |
| Val        | Val        | Ala        | Ile<br>180 | Asp        | Leu        | Ala        | Gly        | Asp<br>185 | Glu        | Thr        | Ile        | Pro        | Gly<br>190 | Ser        | Ser        |
| Leu        | Leu        | Pro<br>195 | Gly        | His        | Val        | Gln        | Ala<br>200 | Tyr        | Gln        | Glu        | Ala        | Val<br>205 | Lys        | Ser        | Gly        |
| Ile        | His<br>210 | Arg        | Thr        | Val        | His        | Ala<br>215 | Gly        | Glu        | Val        | Gly        | Ser<br>220 | Ala        | Glu        | Val        | Val        |
| Lys<br>225 | Glu        | Ala        | Val        | Asp        | Ile<br>230 | Leu        | Lys        | Thr        | Glu        | Arg<br>235 | Leu        | Gly        | His        | Gly        | Tyr<br>240 |
| His        | Thr        | Leu        | Glu        | Asp<br>245 | Gln        | Ala        | Leu        | Tyr        | Asn<br>250 | Arg        | Leu        | Arg        | Gln        | Glu<br>255 | Asn        |

Met His Phe Glu Ile Cys Pro Trp Ser Ser Tyr Leu Thr Gly Ala Trp 

Lys Pro Asp Thr Glu His Ala Val Ile Arg Leu Lys Asn Asp Gln Ala 

Asn Tyr Ser Leu Asn Thr Asp Asp Pro Leu Ile Phe Lys Ser Thr Leu 

Asp Thr Asp Tyr Gln Met Thr Lys Arg Asp Met Gly Phe Thr Glu Glu 

Glu Phe Lys Arg Leu Asn Ile Asn Ala Ala Lys Ser Ser Phe Leu Pro

325 330 335

Glu Asp Glu Lys Arg Glu Leu Leu Asp Leu Leu Tyr Lys Ala Tyr Gly 340 345 350

Met Pro Pro Ser Ala Ser Ala Gly Gln Asn Leu 355 360

<210> 2995

<211> 691 <212> PRT

<213> Homo sapiens

<400> 2995

Met Met Arg Asn His Arg Ile Ala Ser Ser Leu Cys Gly Asp Gln Val 1 5 10 10 15

Phe Ser Lys Lys Lys Lys Lys Lys Lys Lys Asn Asn Met Ala Ala Lys 20 25 30

Glu Lys Leu Glu Ala Val Leu Asn Val Ala Leu Asg Val Pro Ser Ile  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Met Leu Leu Asp Val Leu Tyr Arg Trp Asp Val Ser Ser Phe Phe Gln 50 60

Gln Ile Gln Arg Ser Ser Leu Ser Asn Asn Pro Leu Phe Gln Tyr Lys 65 70 70 75

Tyr Leu Ala Leu Asn Met His Tyr Val Gly Tyr Ile Leu Ser Val Val 85 90 95

Leu Leu Thr Leu Pro Arg Gln His Leu Val Gln Leu Tyr Leu Tyr Phe  $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$ 

Leu Thr Ala Leu Leu Tyr Ala Gly His Gln Ile Ser Arg Asp Tyr 115 120 125

Val Arg Ser Glu Leu Glu Phe Ala Tyr Glu Gly Pro Met Tyr Leu Glu 130 135 140

Pro Leu Ser Met Asn Arg Phe Thr Thr Ala Leu Ile Gly Gln Leu Val 145 150 155 160

Val Cys Thr Leu Cys Ser Cys Val Met Lys Thr Lys Gln Ile Trp Leu 165 170 170 175

Phe Ser Ala His Met Leu Pro Leu Leu Ala Arg Leu Cys Leu Val Pro 180 185 190

- Leu Glu Thr Ile Val Ile Ile Asn Lys Phe Ala Met Ile Phe Thr Gly 195 200 205
- Leu Glu Val Leu Tyr Phe Leu Gly Ser Asn Leu Leu Val Pro Tyr Asn 210 215 220
- Leu Ala Lys Ser Ala Tyr Arg Glu Leu Val Gln Val Val Glu Val Tyr 225 230 235 240
- Gly Leu Leu Ala Leu Gly Met Ser Leu Trp Asn Gln Leu Val Val Pro \$255\$
- Val Leu Phe Met Val Phe Trp Leu Val Leu Phe Ala Leu Gln Ile Tyr 260 265 270
- Ser Tyr Phe Ser Thr Arg Asp Gln Pro Ala Ser Arg Glu Arg Leu Leu 275 280 285
- Phe Leu Phe Leu Thr Ser Ile Ala Glu Cys Cys Ser Thr Pro Tyr Ser 290 295, 300
- Leu Leu Gly Leu Val Phe Thr Val Ser Phe Val Ala Leu Gly Val Leu 305 \$310\$
- Thr Leu Cys Lys Phe Tyr Leu Gln Gly Tyr Arg Ala Phe Met Asn Asp 325 330 335
- Pro Ala Met Asn Arg Gly Met Thr Glu Gly Val Thr Leu Leu Ile Leu  $340 \hspace{1cm} 345 \hspace{1cm} 350$
- Ala Val Gln Thr Gly Leu Ile Glu Leu Gln Val Val His Arg Ala Phe 355 \$360\$
- Leu Leu Ser Ile Ile Leu Phe Ile Val Val Ala Ser Ile Leu Gln Ser 370 380
- Met Leu Glu Ile Ala Asp Pro Ile Val Leu Ala Leu Gly Ala Ser Arg 385 390 395 400
- Asp Lys Ser Leu Trp Lys His Phe Arg Ala Val Ser Leu Cys Leu Phe 405 410 415

Leu Leu Val Phe Pro Ala Tyr Met Ala Tyr Met Ile Cys Gln Phe Phe 420 \$420\$

His Met Asp Phe Trp Leu Leu Ile Ile Ile Ser Ser Ser Ile Leu Thr  $435 \ \ \, 440 \ \ \, 445$ 

Glu Glu Phe Arg Lys Glu Pro Val Glu Asn Met Asp Asp Val Ile Tyr 465 470 475 480

Tyr Val Asn Gly Thr Tyr Arg Leu Leu Glu Phe Leu Val Ala Leu Cys 485 490 495

Val Val Ala Tyr Gly Val Ser Glu Thr Ile Phe Gly Glu Trp Thr Val \$500\$

Met Gly Ser Met Ile Ile Phe Ile His Ser Tyr Tyr Asn Val Trp Leu 515 520 525

Arg Ala Gln Leu Gly Trp Lys Ser Phe Leu Leu Arg Arg Asp Ala Val

Asn Lys Ile Lys Ser Leu Pro Ile Ala Thr Lys Glu Gln Leu Glu Lys 545 550 560

His Asn Asp Ile Cys Ala Ile Cys Tyr Gln Asp Met Lys Ser Ala Val 565 575

Ile Thr Pro Cys Ser His Phe Phe His Ala Gly Cys Leu Lys Lys Trp 580 585 590

Leu Tyr Val Gln Glu Thr Cys Pro Leu Cys His Cys His Leu Lys Asn 595 600 605

Ser Ser Gln Leu Pro Gly Leu Gly Thr Glu Pro Val Leu Gln Pro His 610 615 620

Ala Gly Ala Glu Gln Asn Val Met Phe Gln Glu Gly Thr Glu Pro Pro 625 630 635 640

Asn Asn Glu Tyr Ile Ala Arg Arg Pro Asp Asn Gln Glu Gly Ala Phe

660 665 670

Asp Pro Lys Glu Tyr Pro His Ser Ala Lys Asp Glu Ala His Pro Val

Glu Ser Ala 690

<210> 2996 <211> 390

<212> PRT <213> Homo sapiens

<400> 2996

Met Ala Ser Pro Ala Ile Gly Gln Arg Pro Tyr Pro Leu Leu Asp 1 5 10 15

Pro Glu Pro Pro Arg Tyr Leu Gln Ser Leu Ser Gly Pro Glu Leu Pro 20 25 30

Pro Pro Pro Asp Arg Ser Ser Arg Leu Cys Val Pro Ala Pro Leu 35 40 45

Ser Thr Ala Pro Gly Ala Arg Glu Gly Arg Ser Ala Arg Arg Ala Ala  $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60$ 

Arg Gly Asn Leu Glu Pro Pro Pro Arg Ala Ser Arg Pro Ala Arg Pro 65 70 75 75

Leu Arg Pro Gly Leu Gln Gln Arg Leu Arg Arg Arg Pro Gly Ala Pro 85 90 95

Arg Pro Arg Asp Val Arg Ser Ile Phe Glu Gln Pro Gln Asp Pro Arg 100 105 110

Val Pro Ala Glu Arg Gly Glu Gly His Cys Phe Ala Glu Leu Val Leu 115 120 125

Pro Gly Gly Pro Gly Trp Cys Asp Leu Cys Gly Arg Glu Val Leu Arg 130 140

Gln Ala Leu Arg Cys Thr Asn Cys Lys Phe Thr Cys His Pro Glu Cys 145 150 155 160

Arg Ser Leu Ile Gln Leu Asp Cys Ser Gln Gln Glu Gly Leu Ser Arg 165 170 175

Asp Arg Pro Ser Pro Glu Ser Thr Leu Thr Val Thr Phe Ser Gln Asn Val Cys Lys Pro Val Glu Glu Thr Gln Arg Pro Pro Thr Leu Gln Glu Ile Lys Gln Lys Ile Asp Ser Tyr Asn Thr Arq Glu Lys Asn Cys Leu Gly Met Lys Leu Ser Glu Asp Gly Thr Tyr Thr Gly Phe Ile Lys Val His Leu Lys Leu Arg Arg Pro Val Thr Val Pro Ala Gly Ile Arg Pro Gln Ser Ile Tvr Asp Ala Ile Lvs Glu Val Asn Leu Ala Ala Thr Thr Asp Lys Arg Thr Ser Phe Tyr Leu Pro Leu Asp Ala Ile Lys Gln Leu His Ile Ser Ser Thr Thr Val Ser Glu Val Ile Gln Gly Leu Leu Lys Lys Phe Met Val Val Asp Asn Pro Gln Lys Phe Ala Leu Phe Lys Arg Ile His Lys Asp Gly Gln Val Leu Phe Gln Lys Leu Ser Ile Ala Asp Arg Pro Leu Tyr Leu Arg Leu Leu Ala Gly Pro Asp Thr Glu Val Leu Ser Phe Val Leu Lys Glu Asn Glu Thr Gly Glu Val Glu Trp Asp Ala Phe Ser Ile Pro Glu Leu Gln Asn Phe Leu Ser Ser Trp Cys Ile Gln Ile Tyr Leu Tyr Tyr <210> 2997

<sup>&</sup>lt;210> 299

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Homo sapiens

<400> 2997

Met Thr Thr Pro Arg Asn Ser Val Asn Gly Thr Phe Pro Ala Glu Pro 1 10 15

Met Lys Gly Pro Ile Ala Met Gln Ser Gly Pro Lys Pro Leu Phe Arg  $20 \\ 25 \\ 30$ 

Arg Met Ser Ser Leu Val Gly Pro Thr Gln Ser Phe Phe Met Arg Glu \$35\$ \$40\$

Ser Lys Thr Leu Gly Ala Val Gln Ile Met Asn Gly Leu Phe His Ile 50 60

Ala Leu Gly Gly Leu Leu Met Ile Pro Ala Gly Ile Tyr Ala Pro Ile 65 70 75 80

Cys Val Thr Val Trp Tyr Pro Leu Trp Gly Gly Ile Met Tyr Ile Ile 85 90 95

Ser Gly Ser Leu Leu Ala Ala Thr Glu Lys Asn Ser Arg Lys Cys Leu 100 105 110

Val Lys Gly Lys Met Ile Met Asn Ser Leu Ser Leu Phe Ala Ala Ile 115 120 125

Ser Gly Met Ile Leu Ser Ile Met Asp Ile Leu Asn Ile Lys Ile Ser 130 135 140

His Phe Leu Lys Met Glu Ser Leu Asn Phe Ile Arg Ala His Thr Pro 145 155 160

Tyr Ile Asn Ile Tyr Asn Cys Glu Pro Ala Asn Pro Ser Glu Lys Asn 165 170 175

Ser Pro Ser Thr Gln Tyr Cys Tyr Ser Ile Gln Ser Leu Phe Leu Gly 180 185 190

Ile Leu Ser Val Met Leu Ile Phe Ala Phe Phe Gln Glu Leu Val Ile 195 200 205

Ala Gly Ile Val Glu Asn Glu Trp Lys Arg Thr Cys Ser Arg Pro Lys 210 215 220

Ser Asn Ile Val Leu Leu Ser Ala Glu Glu Lys Lys Glu Gln Thr Ile 225 230 235 240

Glu Ile Lys Glu Glu Val Val Gly Leu Thr Glu Thr Ser Ser Gln Pro 245 250 Lvs Asn Glu Glu Asp Ile Glu Ile Ile Pro Ile Gln Glu Glu Glu Glu 260 265 Glu Glu Thr Glu Thr Asn Phe Pro Glu Pro Pro Gln Asp Gln Glu Ser Ser Pro Ile Glu Asn Asp Ser Ser Pro 295 <210> 2998 <211> 261 <212> PRT <213> Homo sapiens <400> 2998 Met Ser Trp Lys Lys Ala Leu Arg Ile Pro Gly Gly Leu Arg Ala Ala Thr Val Thr Leu Met Leu Ser Met Leu Ser Thr Pro Val Ala Glu Gly

25 Arg Asp Ser Pro Glu Asp Phe Val Tyr Gln Phe Lys Gly Met Cys Tyr 40

20

Phe Thr Asn Gly Thr Glu Arg Val Arg Leu Val Ser Arg Ser Ile Tyr 50 55

Asn Arg Glu Glu Ile Val Arg Phe Asp Ser Asp Val Gly Glu Phe Arg

Ala Val Thr Leu Leu Gly Leu Pro Ala Ala Glu Tyr Trp Asn Ser Gln 85

Lys Asp Ile Leu Glu Arg Lys Arg Ala Ala Val Asp Arg Val Cys Arg 100 105 110

His Asn Tyr Gln Leu Glu Leu Arg Thr Thr Leu Gln Arg Arg Val Glu 115 120

Pro Thr Val Thr Ile Ser Pro Ser Arg Thr Glu Ala Leu Asn His His 140 130 135

Asn Leu Leu Val Cys Ser Val Thr Asp Phe Tyr Pro Ala Gln Ile Lys 145 150 155 160

Val Arg Trp Phe Arg Asn Asp Gln Glu Glu Thr Ala Gly Val Val Ser \$165\$ \$170\$

Thr Pro Leu Ile Arg Asn Gly Asp Trp Thr Phe Gln Ile Leu Val Met 180 185 190

Leu Glu Met Thr Pro Gln Arg Gly Asp Val Tyr Thr Cys His Val Glu 195 200 205

His Pro Ser Leu Gln Ser Pro Ile Thr Val Glu Trp Arg Ala Gln Ser 210 220

Glu Ser Ala Gln Ser Lys Met Leu Ser Gly Ile Gly Gly Phe Val Leu 225 230 240

Gly Leu Ile Phe Leu Gly Leu Gly Leu Ile Ile His His Arg Ser Gln \$245\$ \$250\$

Lys Gly Leu Leu His

<210> 2999

<211> 258

<212> PRT <213> Homo sapiens

<400> 2999

Met Met Val Leu Gln Val Ser Ala Ala Pro Arg Thr Val Ala Leu Thr 1  $\phantom{\Big|}$  10  $\phantom{\Big|}$  15

Ala Leu Leu Met Val Leu Leu Thr Ser Val Val Gln Gly Arg Ala Thr 20 30

Pro Glu Asn Tyr Leu Phe Gln Gly Arg Gln Glu Cys Tyr Ala Phe Asn  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Gly Thr Gln Arg Phe Leu Glu Arg Tyr Ile Tyr Asn Arg Glu Glu Phe 50 60

Ala Arg Phe Asp Ser Asp Val Gly Glu Phe Arg Ala Val Thr Glu Leu 65 70 80

Gly Arg Pro Ala Ala Glu Tyr Trp Asn Ser Gln Lys Asp Ile Leu Glu 85 90 95

Glu Lys Arg Ala Val Pro Asp Arg Met Cys Arg His Asn Tyr Glu Leu  $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$ 

Gly Gly Pro Met Thr Leu Gln Arg Arg Val Gln Pro Arg Val Asn Val 115 120 125

Ser Pro Ser Lys Lys Gly Pro Leu Gln His His Asn Leu Leu Val Cys 130 140

His Val Thr Asp Phe Tyr Pro Gly Ser Ile Gln Val Arg Trp Phe Leu 145 150 155 160

As Gly Gln Glu Glu Thr Ala Gly Val Val Ser Thr As Leu Ile Arg 165 170 170 175

Asn Gly Asp Trp Thr Phe Gln Ile Leu Val Met Leu Glu Met Thr Pro \$180\$

Gln Gln Gly Asp Val Tyr Thr Cys Gln Val Glu His Thr Ser Leu Asp \$195\$

Ser Pro Val Thr Val Glu Trp Lys Ala Gln Ser Asp Ser Ala Arg Ser 210 215 220

Lys Thr Leu Thr Gly Ala Gly Gly Phe Val Leu Gly Leu Ile Ile Cys 225 230 235 240

Gly Val Gly Ile Phe Met His Arg Arg Ser Lys Lys Val Gln Arg Gly 245 250 255

Ser Ala

<210> 3000

<211> 175

<212> PRT

<213> Homo sapiens

<400> 3000

Met Thr Asp Cys Glu Phe Gly Tyr Ile Tyr Arg Leu Ala Gln Asp Tyr 1 5 10 15

Thr Ser Arg Val Leu Gln Asn Val Ala Phe Ser Val Gln Lys Glu Val 35 40 45

- Glu Lys Asn Leu Lys Ser Cys Leu Asp Asn Val Asn Val Val Ser Val 50 60
- Asp Thr Ala Arg Thr Leu Phe Asn Gln Val Met Glu Lys Glu Phe Glu 65  $\phantom{\bigg|}70\phantom{\bigg|}70\phantom{\bigg|}75\phantom{\bigg|}75\phantom{\bigg|}$
- Asp Gly Ile Ile Asn Trp Gly Arg Ile Val Thr Ile Phe Ala Phe Glu 85 90 95
- Gly Ile Leu Ile Lys Lys Leu Leu Arg Gln Gln Ile Ala Pro Asp Val \$100\$
- Asp Thr Tyr Lys Glu Ile Ser Tyr Phe Val Ala Glu Phe Ile Met Asn 115 120 125
- Val Lys Lys Phe Glu Pro Lys Ser Gly Trp Met Thr Phe Leu Glu Val 145 150 155 160
- Thr Gly Lys Ile Cys Glu Met Leu Ser Leu Leu Lys Gln Tyr Cys 165 170 175
- <210> 3001
- <211> 825
- <212> PRT <213> Homo sapiens
- <400> 3001
- Met Gly Trp Leu Cys Ser Gly Leu Leu Phe Pro Val Ser Cys Leu Val 1 5 10 15
- Leu Gln Val Ala Ser Ser Gly Asn Met Lys Val Leu Gln Glu Pro  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$
- Thr Cys Val Ser Asp Tyr Met Ser Ile Ser Thr Cys Glu Trp Lys Met  $35 \hspace{1cm} 40 \hspace{1cm} 45$
- Asn Gly Pro Thr Asn Cys Ser Thr Glu Leu Arg Leu Leu Tyr Gln Leu 50 55 60
- Val Phe Leu Leu Ser Glu Ala His Thr Cys Ile Pro Glu Asn Asn Gly 65 70 75 80

Gly Ala Gly Cys Val Cys His Leu Leu Met Asp Asp Val Val Ser Ala Asp Asn Tyr Thr Leu Asp Leu Trp Ala Gly Gln Gln Leu Leu Trp Lys Gly Ser Phe Lys Pro Ser Glu His Val Lys Pro Arg Ala Pro Gly Asn Leu Thr Val His Thr Asn Val Ser Asp Thr Leu Leu Leu Thr Trp Ser Asn Pro Tyr Pro Pro Asp Asn Tyr Leu Tyr Asn His Leu Thr Tyr Ala Val Asn Ile Trp Ser Glu Asn Asp Pro Ala Asp Phe Arg Ile Tyr Asn Val Thr Tyr Leu Glu Pro Ser Leu Arg Ile Ala Ala Ser Thr Leu Lys Ser Gly Ile Ser Tyr Arg Ala Arg Val Arg Ala Trp Ala Gln Cys Tyr Asn Thr Thr Trp Ser Glu Trp Ser Pro Ser Thr Lys Trp His Asn Ser Tyr Arg Glu Pro Phe Glu Gln His Leu Leu Gly Val Ser Val Ser Cys Ile Val Ile Leu Ala Val Cys Leu Leu Cys Tyr Val Ser Ile Thr Lys Ile Lys Lys Glu Trp Trp Asp Gln Ile Pro Asn Pro Ala Arg Ser Arg Leu Val Ala Ile Ile Ile Gln Asp Ala Gln Gly Ser Gln Trp Glu Lys Arg Ser Arg Gly Gln Glu Pro Ala Lys Cys Pro His Trp Lys Asn 

Cys Leu Thr Lys Leu Leu Pro Cys Phe Leu Glu His Asn Met Lys Arg

| Asp        | Glu        | Asp        | Pro        | His<br>325 | Lys        | Ala        | Ala        | Lys        | Glu<br>330 | Met        | Pro        | Phe        | Gln        | Gly<br>335 | Ser        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly        | Lys        | Ser        | Ala<br>340 | Trp        | Cys        | Pro        | Val        | Glu<br>345 | Ile        | Ser        | Lys        | Thr        | Val<br>350 | Leu        | Trp        |
| Pro        | Glu        | Ser<br>355 | Ile        | Ser        | Val        | Val        | Arg<br>360 | Сув        | Val        | Glu        | Leu        | Phe<br>365 | Glu        | Ala        | Pro        |
| Val        | Glu<br>370 | Сув        | Glu        | Glu        | Glu        | Glu<br>375 | Glu        | Val        | Glu        | Glu        | Glu<br>380 | Lys        | Gly        | Ser        | Phe        |
| Сув<br>385 | Ala        | Ser        | Pro        | Glu        | Ser<br>390 | Ser        | Arg        | Asp        | Asp        | Phe<br>395 | Gln        | Glu        | Gly        | Arg        | Glu<br>400 |
| Gly        | Ile        | Val        | Ala        | Arg<br>405 | Leu        | Thr        | Glu        | Ser        | Leu<br>410 | Phe        | Leu        | Asp        | Leu        | Leu<br>415 | Gly        |
| Glu        | Glu        | Asn        | Gly<br>420 | Gly        | Phe        | Сув        | Gln        | Gln<br>425 | Asp        | Met        | Gly        | Glu        | Ser<br>430 | Сув        | Leu        |
| Leu        | Pro        | Pro<br>435 | Ser        | Gly        | Ser        | Thr        | Ser<br>440 | Ala        | His        | Met        | Pro        | Trp<br>445 | Asp        | Glu        | Phe        |
| Pro        | Ser<br>450 | Ala        | Gly        | Pro        | Lys        | Glu<br>455 | Ala        | Pro        | Pro        | Trp        | Gly<br>460 | Lys        | Glu        | Gln        | Pro        |
| Leu<br>465 | His        | Leu        | Glu        | Pro        | Ser<br>470 | Pro        | Pro        | Ala        | Ser        | Pro<br>475 | Thr        | Gln        | Ser        | Pro        | Asp<br>480 |
| Asn        | Leu        | Thr        | Cys        | Thr<br>485 | Glu        | Thr        | Pro        | Leu        | Val<br>490 | Ile        | Ala        | Gly        | Asn        | Pro<br>495 | Ala        |
| Tyr        | Arg        | Ser        | Phe<br>500 | Ser        | Asn        | Ser        | Leu        | Ser<br>505 | Gln        | Ser        | Pro        | Сув        | Pro<br>510 | Arg        | Glu        |
| Leu        | Gly        | Pro<br>515 | Asp        | Pro        | Leu        | Leu        | Ala<br>520 | Arg        | His        | Leu        | Glu        | Glu<br>525 | Val        | Glu        | Pro        |
| Glu        | Met<br>530 | Pro        | Суз        | Val        | Pro        | Gln<br>535 | Leu        | Ser        | Glu        | Pro        | Thr<br>540 | Thr        | Val        | Pro        | Gln        |
| Pro<br>545 | Glu        | Pro        | Glu        | Thr        | Trp<br>550 | Glu        | Gln        | Ile        | Leu        | Arg<br>555 | Arg        | Asn        | Val        | Leu        | Gln<br>560 |

His Gly Ala Ala Ala Ala Pro Val Ser Ala Pro Thr Ser Gly Tyr Gln  $\,$  575  $\,$ 

Glu Phe Val His Ala Val Glu Gln Gly Gly Thr Gln Ala Ser Ala Val 580 585 590

Val Gly Leu Gly Pro Pro Gly Glu Ala Gly Tyr Lys Ala Phe Ser Ser 595 600 605

Leu Leu Ala Ser Ser Ala Val Ser Pro Glu Lys Cys Gly Phe Gly Ala 610 615 620

Ser Ser Gly Glu Glu Gly Tyr Lys Pro Phe Gln Asp Leu Ile Pro Gly 625 630 635 640

Cys Pro Gly Asp Pro Ala Pro Val Pro Val Pro Leu Phe Thr Phe Gly 645 650 655

Leu Asp Arg Glu Pro Pro Arg Ser Pro Gln Ser Ser His Leu Pro Ser

Ser Ser Pro Glu His Leu Gly Leu Glu Pro Gly Glu Lys Val Glu Asp 675 680 685

Met Pro Lys Pro Pro Leu Pro Gln Glu Gln Ala Thr Asp Pro Leu Val 690 695 700

Asp Ser Leu Gly Ser Gly Ile Val Tyr Ser Ala Leu Thr Cys His Leu 705 710 715 720

Cys Gly His Leu Lys Gln Cys His Gly Gln Glu Asp Gly Gly Gln Thr  $725 \hspace{1cm} 730 \hspace{1cm} 735$ 

Pro Val Met Ala Ser Pro Cys Cys Gly Cys Cys Cys Gly Asp Arg Ser 740 745 750

Ser Pro Pro Thr Thr Pro Leu Arg Ala Pro Asp Pro Ser Pro Gly Gly 755 760 765

Val Pro Leu Glu Ala Ser Leu Cys Pro Ala Ser Leu Ala Pro Ser Gly 770 775 780

Ile Ser Glu Lys Ser Lys Ser Ser Ser Ser Phe His Pro Ala Pro Gly 785 790 795 800

Asn Ala Gln Ser Ser Ser Gln Thr Pro Lys Ile Val Asn Phe Val Ser

815

805 810

Val Gly Pro Thr Tyr Met Arg Val Ser 820 825

<210> 3002

<211> 285 <212> PRT

<213> Homo sapiens

<400> 3002

Met Asp Asp Ser Thr Glu Arg Glu Gln Ser Arg Leu Thr Ser Cys Leu 1 5 10 15

Lys Lys Arg Glu Glu Met Lys Leu Lys Glu Cys Val Ser Ile Leu Pro  $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$ 

Arg Lys Glu Ser Pro Ser Val Arg Ser Ser Lys Asp Gly Lys Leu Leu  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}$ 

Ala Ala Thr Leu Leu Leu Ala Leu Leu Ser Cys Cys Leu Thr Val Val 50 60 .

Ala Glu Leu Gln Gly His His Ala Glu Lys Leu Pro Ala Gly Ala Gly 85 90 95

Ala Pro Lys Ala Gly Leu Glu Glu Ala Pro Ala Val Thr Ala Gly Leu 100 105 110

Lys Ile Phe Glu Pro Pro Ala Pro Gly Glu Gly Asn Ser Ser Gln Asn 115 120 125

Ser Arg Asn Lys Arg Ala Val Gln Gly Pro Glu Glu Thr Val Thr Gln 130 135 140

Asp Cys Leu Gln Leu Ile Ala Asp Ser Glu Thr Pro Thr Ile Gln Lys 145 150 155 160

Gly Ser Tyr Thr Phe Val Pro Trp Leu Leu Ser Phe Lys Arg Gly Ser 165 170 175

Ala Leu Glu Glu Lys Glu Asn Lys Ile Leu Val Lys Glu Thr Gly Tyr 180 185 190

Phe Phe Ile Tyr Gly Gln Val Leu Tyr Thr Asp Lys Thr Tyr Ala Met 195 \$200\$

Gly His Leu Ile Gln Arg Lys Lys Val His Val Phe Gly Asp Glu Leu 210 220

Ser Leu Val Thr Leu Phe Arg Cys Ile Gln Asn Met Pro Glu Thr Leu 225 230 235 240

Pro Asn Asn Ser Cys Tyr Ser Ala Gly Ile Ala Lys Leu Glu Gly Gly 245 250 255

Asp Glu Leu Gln Leu Ala Ile Pro Arg Glu Asn Ala Gln Ile Ser Leu  $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$ 

Asp Gly Asp Val Thr Phe Phe Gly Ala Leu Lys Leu Leu 275 280 285

<210> 3003

<211> 444 <212> PRT

<213> Homo sapiens

<400> 3003

Met Ala Val Thr Thr Arg Leu Thr Arg Leu His Glu Lys Ile Leu Gln 1 5 10 15

His Gly Phe Arg Asn Gly Val Leu Leu Asp Arg Cys Cys Asn Gln Gly 35 40 45

Pro Thr Leu Thr Val Ile Tyr Ser Glu Asp His Ile Ile Gly Ala Tyr 50 60

Ala Glu Glu Ser Tyr Gln Glu Gly Lys Tyr Ala Ser Ile Ile Leu Phe 65 70 75 80

Ala Leu Gln Asp Thr Lys Ile Ser Glu Trp Lys Leu Gly Leu Cys Thr 85 90 95

Pro Glu Thr Leu Phe Cys Cys Asp Val Thr Lys Tyr Asn Ser Pro Thr 100 105 110

Asn Phe Gln Ile Asp Gly Arg Asn Arg Lys Val Ile Met Asp Leu Lys

PCT/US2003/012946 

Thr Met Glu Asn Leu Gly Leu Ala Gln Asn Cys Thr Ile Ser Ile Gln 

Asp Tyr Glu Val Phe Arg Cys Glu Asp Ser Leu Asp Glu Arg Lys Ile 

Lys Gly Val Ile Glu Leu Arg Lys Ser Leu Leu Ser Ala Leu Arg Thr 

Tyr Glu Pro Tyr Gly Ser Leu Val Gln Gln Ile Arg Ile Leu Leu Leu 

Gly Pro Ile Gly Ala Gly Lys Ser Ser Phe Phe Asn Ser Val Arg Ser 

Val Phe Gln Gly His Val Thr His Gln Ala Leu Val Gly Thr Asn Thr 

Thr Gly Ile Ser Glu Lys Tyr Arg Thr Tyr Ser Ile Arg Asp Gly Lys 

Asp Gly Lys Tyr Leu Pro Phe Ile Leu Cys Asp Ser Leu Gly Leu Ser 

Glu Lys Glu Gly Gly Leu Cys Arg Asp Asp Ile Phe Tyr Ile Leu Asn 

Gly Asn Ile Arg Asp Arg Tyr Gln Phe Asn Pro Met Glu Ser Ile Lys 

Leu Asn His His Asp Tyr Ile Asp Ser Pro Ser Leu Lys Asp Arg Ile 

His Cys Val Ala Phe Val Phe Asp Ala Ser Ser Ile Gln Tyr Phe Ser 

Ser Gln Met Ile Val Lys Ile Lys Arg Ile Arg Arg Glu Leu Val Asn 

Ala Gly Val Val His Val Ala Leu Leu Thr His Val Asp Ser Met Asp 

Leu Ile Thr Lys Gly Asp Leu Ile Glu Ile Glu Arg Cys Glu Pro Val 

Arg Ser Lys Leu Glu Glu Val Gln Arg Lys Leu Gly Phe Ala Leu Ser 370 380

Asp Ile Ser Val Val Ser Asn Tyr Ser Ser Glu Trp Glu Leu Asp Pro 385 390 395 400

Val Lys Asp Val Leu Ile Leu Ser Ala Leu Arg Arg Met Leu Trp Ala 405 410 415

Ala Asp Asp Phe Leu Glu Asp Leu Pro Phe Glu Gln Ile Gly Asn Leu
420 425 430

Arg Glu Glu Ile Ile Asn Cys Ala Gln Gly Lys Lys 435 440

<210> 3004 <211> 432

<212> PRT <213> Homo sapiens

<400> 3004

Met Gly Pro Ala Gly Ser Leu Leu Gly Ser Gly Gln Met Gln Ile Thr 1  $\phantom{\Big|}$  5  $\phantom{\Big|}$  10  $\phantom{\Big|}$  15

Leu Trp Gly Ser Leu Ala Ala Val Ala Ile Phe Phe Val Ile Thr Phe  $20 \\ 25 \\ 30$ 

Leu Ile Phe Pro Cys Ser Ser Cys Asp Arg Glu Lys Lys Pro Arg Gln 35 40 45

His Ser Gly Asp His Glu Asn Leu Met Asn Val Pro Ser Asp Lys Glu 50 60

Met Phe Ser Arg Ser Val Thr Ser Leu Ala Thr Asp Ala Pro Ala Ser 65 70 70 80

Ser Glu Gln Asn Gly Ala Leu Thr Asn Gly Asp Ile Leu Ser Glu Asp 85 90 95

Ser Thr Leu Thr Cys Met Gln His Tyr Glu Glu Val Gln Thr Ser Ala 100 105 110

Ser Asp Leu Leu Asp Ser Gln Asp Ser Thr Gly Lys Pro Lys Cys His 115 120 125

| Gln | Ser | Arg | Glu | Leu | Pro | Arg | Ile | Pro | Pro | Glu | Ser | Ala | Val | Asp | Thr |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     | 130 |     |     |     |     | 135 |     |     |     |     | 140 |     |     | •   |     |

- Met Leu Thr Ala Arg Ser Val Asp Gly Asp Gln Gly Leu Gly Met Glu 145 \$150\$ 155 \$160\$
- Gly Pro Tyr Glu Val Leu Lys Asp Ser Ser Ser Gln Glu Asn Met Val
- Glu Asp Cys Leu Tyr Glu Thr Val Lys Glu Ile Lys Glu Val Ala Ala 180 185 190
- Ala Ala His Leu Glu Lys Gly His Ser Gly Lys Ala Lys Ser Thr Ser  $195 \\ 200 \\ 205$
- Ala Ser Lys Glu Leu Pro Gly Pro Gln Thr Glu Gly Lys Ala Glu Phe 210 215 220
- Ala Glu Tyr Ala Ser Val Asp Arg Asn Lys Lys Cys Arg Gln Ser Val 225 230 235 240
- Asn Val Glu Ser Ile Leu Gly Asn Ser Cys Asp Pro Glu Glu Glu Ala 245  $\phantom{\bigg|}255\phantom{\bigg|}$
- Pro Pro Pro Val Pro Val Lys Leu Leu Asp Glu Asn Glu Asn Leu Gln 260 265 270
- Glu Lys Glu Gly Gly Glu Ala Glu Glu Ser Ala Thr Asp Thr Thr Ser  $275 \\ 280 \\ 285$
- Glu Thr Asn Lys Arg Phe Ser Ser Leu Ser Tyr Lys Ser Arg Glu Glu 290 295 300
- Asp Pro Thr Leu Thr Glu Glu Glu Ile Ser Ala Met Tyr Ser Ser Val 305 310 315 320
- Asn Lys Pro Gly Gln Leu Val Asn Lys Ser Gly Gln Ser Leu Thr Val 325 330 335
- Ser Ser Cys Asn Asp Leu Tyr Ala Thr Val Lys Asp Phe Glu Lys Thr 355 360 365
- Pro Asn Ser Thr Leu Pro Pro Ala Gly Arg Pro Ser Glu Glu Pro Glu

370 375 380

Pro Asp Tyr Glu Ala Ile Gln Thr Leu Asn Arg Glu Glu Glu Lys Ala 385 390 395

Thr Leu Gly Thr Asn Gly His His Gly Leu Val Pro Lys Glu Asn Asp 405 410 415

Tyr Glu Ser Ile Ser Asp Leu Gln Gln Gly Arg Asp Ile Thr Arg Leu 420 425 430

<210> 3005

<211> 501 <212> PRT

<213> Homo sapiens .

<400> 3005

Met Ile Ile Ser His Phe Pro Lys Cys Val Ala Val Phe Ala Leu Leu 1 5 10

Ala Leu Ser Val Gly Ala Leu Asp Thr Phe Ile Ala Ala Val Tyr Glu 20 25 30

His Ala Val Ile Leu Pro Asn Arg Thr Glu Thr Pro Val Ser Lys Glu 35 40 45

Glu Ala Leu Leu Leu Met Asn Lys Asn Ile Asp Val Leu Glu Lys Ala 50 60

Val Lys Leu Ala Ala Lys Gln Gly Ala His Ile Ile Val Thr Pro Glu 65 70 75 80

Asp Gly Ile Tyr Gly Trp Ile Phe Thr Arg Glu Ser Ile Tyr Pro Tyr 85 90 95

Leu Glu Asp Ile Pro Asp Pro Gly Val Asn Trp Ile Pro Cys Arg Asp 100 105 110

Pro Trp Arg Phe Gly Asn Thr Pro Val Gln Gln Arg Leu Ser Cys Leu 115 120 125

Ala Lys Asp Asn Ser Ile Tyr Val Val Ala Asn Ile Gly Asp Lys Lys 130 135 140

Pro Cys Asn Ala Ser Asp Ser Gln Cys Pro Pro Asp Gly Arg Tyr Gln 145 150 155 160

PCT/US2003/012946

WO 2004/042346 Tyr Asn Thr Asp Val Val Phe Asp Ser Gln Gly Lys Leu Leu Ala Arg Tyr His Lys Tyr Asn Leu Phe Ala Pro Glu Ile Gln Phe Asp Phe Pro Lys Asp Ser Glu Leu Val Thr Phe Asp Thr Pro Phe Gly Lys Phe Gly Ile Phe Thr Cys Phe Asp Ile Phe Ser His Asp Pro Ala Ala Val Val Val Asp Glu Val Ser Ile Asp Ser Ile Leu Tyr Pro Thr Ala Trp Tyr Asn Thr Leu Pro Leu Leu Ser Ala Val Pro Phe His Ser Ala Trp Ala Lys Ala Met Gly Val Asn Leu Leu Ala Ala Asn Thr His Asn Thr Ser Met His Met Thr Gly Ser Gly Ile Tyr Ala Pro Glu Ala Val Lys Val Tyr His Tyr Asp Met Glu Thr Glu Ser Gly Gln Leu Leu Leu Ser Glu Leu Lys Ser Arg Pro Arg Arg Glu Pro Thr Tyr Pro Ala Ala Val Asp Trp His Ala Tyr Ala Ser Ser Val Lys Pro Phe Ser Ser Glu Gln Ser 

Asp Phe Leu Gly Met Ile Tyr Phe Asp Glu Phe Thr Phe Thr Lys Leu 

Lys Arg Asn Thr Gly Asn Tyr Thr Ala Cys Gln Lys Asp Leu Cys Cys 

His Leu Thr Tyr Lys Met Ser Glu Lys Arg Thr Asp Glu Ile Tyr Ala 

Leu Gly Ala Phe Asp Gly Leu His Thr Val Glu Gly Gln Tyr Tyr Leu 

Gln Ile Cys Ala Leu Leu Lys Cys Gln Thr Thr Asp Leu Glu Thr Cys \$405\$ \$410\$

Gly Glu Pro Val Gly Ser Ala Phe Thr Lys Phe Glu Asp Phe Ser Leu  $420 \hspace{1cm} 425 \hspace{1cm} 425 \hspace{1cm} 430 \hspace{1cm}$ 

Ser Gly Thr Phe Gly Thr Arg Tyr Val Phe Pro Gln Ile Ile Leu Ser 435 440 445

Gly Ser Gln Leu Ala Pro Glu Arg His Tyr Glu Ile Ser Arg Asp Gly
450 460

Arg Leu Arg Ser Arg Ser Gly Ala Pro Leu Pro Val Leu Val Met Ala 465 470 475 480

Leu Tyr Gly Arg Val Phe Glu Lys Asp Pro Pro Arg Leu Gly Gln Gly
485 490 495

Ser Gly Lys Phe Gln 500

<210> 3006

<211> 329 <212> PRT

<213> Homo sapiens

<400> 3006

Met Trp Gly Leu Lys Val Leu Leu Leu Pro Val Val Ser Phe Ala Leu 1 5 10 15

His Arg Lys Gln Tyr Asn Asn Lys Val Asp Glu Ile Ser Arg Arg Leu 35 40 45

Ile Trp Glu Lys Asn Leu Lys Tyr Ile Ser Ile His Asn Leu Glu Ala 50 55 60

Ser Leu Gly Val His Thr Tyr Glu Leu Ala Met Asn His Leu Gly Asp 65 70 75 80

Met Thr Ser Glu Glu Val Val Gln Lys Met Thr Gly Leu Lys Val Pro 85 90 95

Leu Ser His Ser Arg Ser Asn Asp Thr Leu Tyr Ile Pro Glu Trp Glu 100 105 110

Gly Arg Ala Pro Asp Ser Val Asp Tyr Arg Lys Lys Gly Tyr Val Thr

Pro Val Lys Asn Gln Gly Gln Cys Gly Ser Cys Trp Ala Phe Ser Ser 130 135 140

Val Gly Ala Leu Glu Gly Gln Leu Lys Lys Lys Thr Gly Lys Leu Leu 145 \$150\$

Asn Leu Ser Pro Gln Asn Leu Val Asp Cys Val Ser Glu Asn Asp Gly 165 170 175

Cys Gly Gly Gly Tyr Met Thr Asn Ala Phe Gln Tyr Val Gln Lys Asn 180  $$185\$ 

Arg Gly Ile Asp Ser Glu Asp Ala Tyr Pro Tyr Val Gly Gln Glu Glu 195  $\phantom{\bigg|}200\phantom{\bigg|}$  205

Arg Glu Ile Pro Glu Gly Asn Glu Lys Ala Leu Lys Arg Ala Val Ala 225  $\phantom{\bigg|}230\phantom{\bigg|}235\phantom{\bigg|}235\phantom{\bigg|}$ 

Arg Val Gly Pro Val Ser Val Ala Ile Asp Ala Ser Leu Thr Ser Phe \$245\$ \$250\$

Gln Phe Tyr Ser Lys Gly Val Tyr Tyr Asp Glu Ser Cys Asn Ser Asp 260 265 270

Asn Leu Asn His Ala Val Leu Ala Val Gly Tyr Gly Ile Gln Lys Gly 275 280 285

Asn Lys His Trp Ile Ile Lys Asn Ser Trp Gly Glu Asn Trp Gly Asn 290 295 300

Lys Gly Tyr Ile Leu Met Ala Arg Asn Lys Asn Asn Ala Cys Gly Ile 305  $\phantom{\bigg|}310\phantom{\bigg|}315\phantom{\bigg|}320\phantom{\bigg|}$ 

Ala Asn Leu Ala Ser Phe Pro Lys Met 325

<210> 3007

<211> 1170

<212> PRT

<213> Homo sapiens

<400> 3007

Met Lys Asp Ser Cys Ile Thr Val Met Ala Met Ala Leu Leu Ser Gly 1 5 10 15

Phe Phe Phe Ala Pro Ala Ser Ser Tyr Asn Leu Asp Val Arg Gly 20 25 30

Ala Arg Ser Phe Ser Pro Pro Arg Ala Gly Arg His Phe Gly Tyr Arg 35 40 45

Val Leu Gln Val Gly Asn Gly Val Ile Val Gly Ala Pro Gly Glu Gly 50 55 60

As Ser Thr Gly Ser Leu Tyr Gln Cys Gln Ser Gly Thr Gly His Cys G5 70 70 75 80

Leu Pro Val Thr Leu Arg Gly Ser Asn Tyr Thr Ser Lys Tyr Leu Gly 85 90 95

Met Thr Leu Ala Thr Asp Pro Thr Asp Gly Ser Ile Leu Ala Cys Asp 100 105 110

Pro Gly Leu Ser Arg Thr Cys Asp Gln Asn Thr Tyr Leu Ser Gly Leu 115 120 125

Cys Tyr Leu Phe Arg Gln Asn Leu Gln Gly Pro Met Leu Gln Gly Arg 130 \$135\$

Pro Gly Phe Glu Cys Ile Lys Gly Asn Val Asp Leu Val Phe Leu 145 \$150\$

Phe Asp Gly Ser Met Ser Leu Gln Pro Asp Glu Phe Gln Lys Ile Leu 165 170 175

Asp Phe Met Lys Asp Val Met Lys Lys Leu Ser Asn Thr Ser Tyr Gln 180 185 190

Phe Ala Ala Val Gln Phe Ser Thr Ser Tyr Lys Thr Glu Phe Asp Phe 195 200 205

Ser Asp Tyr Val Lys Trp Lys Asp Pro Asp Ala Leu Leu Lys His Val

Lys His Met Leu Leu Leu Thr Asn Thr Phe Gly Ala Ile Asn Tyr Val

| 225 | 0.2.0 |     |  |
|-----|-------|-----|--|
|     | 230   | 235 |  |
|     |       |     |  |

Ala Thr Glu Val Phe Arg Glu Glu Leu Gly Ala Arg Pro Asp Ala Thr 245 250 25

Lys Val Leu Ile Ile Ile Thr Asp Gly Glu Ala Thr Asp Ser Gly Asn 260 265 270

Ile Asp Ala Ala Lys Asp Ile Ile Arg Tyr Ile Ile Gly Ile Gly Lys \$275\$

His Phe Gln Thr Lys Glu Ser Gln Glu Thr Leu His Lys Phe Ala Ser 290 295 300

Lys Pro Ala Ser Glu Phe Val Lys Ile Leu Asp Thr Phe Glu Lys Leu 305 310 315 320

Lys Asp Leu Phe Thr Glu Leu Gln Lys Lys Ile Tyr Val Ile Glu Gly 325 330 335

Thr Ser Lys Gln Asp Leu Thr Ser Phe Asn Met Glu Leu Ser Ser Ser 340 345 350

Gly Ile Ser Ala Asp Leu Ser Arg Gly His Ala Val Val Gly Ala Val 355 365

Gly Ala Lys Asp Trp Ala Gly Gly Phe Leu Asp Leu Lys Ala Asp Leu 370 380

Gln Asp Asp Thr Phe Ile Gly Asn Glu Pro Leu Thr Pro Glu Val Arg 385 390 395 400

Ala Gly Tyr Leu Gly Tyr Thr Val Thr Trp Leu Pro Ser Arg Gln Lys \$405\$

Thr Ser Leu Leu Ala Ser Gly Ala Pro Arg Tyr Gln His Met Gly Arg 420 425 430

Val Leu Leu Phe Gln Glu Pro Gln Gly Gly Gly His Trp Ser Gln Val 435 440 445

Gln Thr Ile His Gly Thr Gln Ile Gly Ser Tyr Phe Gly Gly Glu Leu 450 460

Cys Gly Val Asp Val Asp Gln Asp Gly Glu Thr Glu Leu Leu Ile 465 470 475 480

Gly Ala Pro Leu Phe Tyr Gly Glu Gln Arg Gly Gly Arg Val Phe Ile \$485\$

Tyr Gln Arg Arg Gln Leu Gly Phe Glu Glu Val Ser Glu Leu Gln Gly 500 505 510

Asp Pro Gly Tyr Pro Leu Gly Arg Phe Gly Glu Ala Ile Thr Ala Leu 515 520 525

Thr Asp Ile Asn Gly Asp Gly Leu Val Asp Val Ala Val Gly Ala Pro 530 535 540

Leu Glu Glu Gln Gly Ala Val Tyr Ile Phe Asn Gly Arg His Gly Gly 545 550 555 560

Leu Ser Pro Gln Pro Ser Gln Arg Ile Glu Gly Thr Gln Val Leu Ser 565 570 575

Gly Ile Gln Trp Phe Gly Arg Ser Ile His Gly Val Lys Asp Leu Glu 580 585 590

Gly Asp Gly Leu Ala Asp Val Ala Val Gly Ala Glu Ser Gln Met Ile 595 600 605

Val Leu Ser Ser Arg Pro Val Val Asp Met Val Thr Leu Met Ser Phe 610 620

Ser Pro Ala Glu Ile Pro Val His Glu Val Glu Cys Ser Tyr Ser Thr 625 630 635 640

Ser Asn Lys Met Lys Glu Gly Val Asn Ile Thr Ile Cys Phe Gln Ile 645 650 655

Lys Ser Leu Tyr Pro Gln Phe Gln Gly Arg Leu Val Ala Asn Leu Thr 660 665 670

Tyr Thr Leu Gln Leu Asp Gly His Arg Thr Arg Arg Arg Gly Leu Phe 675 680 685

Pro Gly Gly Arg His Glu Leu Arg Arg Asn Ile Ala Val Thr Thr Ser 690 695 700

Met Ser Cys Thr Asp Phe Ser Phe His Phe Pro Val Cys Val Gln Asp 705 710 720

Leu Ile Ser Pro Ile Asn Val Ser Leu Asn Phe Ser Leu Trp Glu Glu 725 730 Glu Gly Thr Pro Arg Asp Gln Arg Ala Gln Gly Lys Asp Ile Pro Pro 740 Ile Leu Arg Pro Ser Leu His Ser Glu Thr Trp Glu Ile Pro Phe Glu 755 Lys Asn Cys Gly Glu Asp Lys Lys Cys Glu Ala Asn Leu Arg Val Ser Phe Ser Pro Ala Arg Ser Arg Ala Leu Arg Leu Thr Ala Phe Ala Ser 785 795 Leu Ser Val Glu Leu Ser Leu Ser Asn Leu Glu Glu Asp Ala Tyr Trp 805 810 815 Val Gln Leu Asp Leu His Phe Pro Pro Gly Leu Ser Phe Arg Lys Val 820 825 830

Glu Met Leu Lys Pro His Ser Gln Ile Pro Val Ser Cys Glu Glu Leu 835 840 845

Pro Glu Glu Ser Arg Leu Leu Ser Arg Ala Leu Ser Cys Asn Val Ser 850 855 860

Ser Pro Ile Phe Lys Ala Gly His Ser Val Ala Leu Gln Met Met Phe 865. 870 875 880

Asn Thr Leu Val Asn Ser Ser Trp Gly Asp Ser Val Glu Leu His Ala 885 890 895

Asn Val Thr Cys Asn Asn Glu Asp Ser Asp Leu Leu Glu Asp Asn Ser 900 905 910

Ala Thr Thr Ile Ile Pro Ile Leu Tyr Pro Ile Asn Ile Leu Ile Gln 915 920 925

Asp Gln Glu Asp Ser Thr Leu Tyr Val Ser Phe Thr Pro Lys Gly Pro 930 935 940

Lys Ile His Gln Val Lys His Met Tyr Gln Val Arg Ile Gln Pro Ser 945 950 955 960

Ile His Asp His Asn Ile Pro Thr Leu Glu Ala Val Val Gly Val Pro 965 970 970 975

- Gln Pro Pro Ser Glu Gly Pro Ile Thr His Gln Trp Ser Val Gln Met 980 985 990
- Glu Pro Pro Val Pro Cys His Tyr Glu Asp Leu Glu Arg Leu Pro Asp 995  $1000 ext{ floor}$
- Ala Ala Glu Pro Cys Leu Pro Gly Ala Leu Phe Arg Cys Pro Val 1010 1015 1020
- Val Phe Arg Gln Glu Ile Leu Val Gln Val Ile Gly Thr Leu Glu 1025 1030 1035
- Leu Val Gly Glu Ile Glu Ala Ser Ser Met Phe Ser Leu Cys Ser 1040 1050
- Ser Leu Ser Ile Ser Phe Asn Ser Ser Lys His Phe His Leu Tyr
- Gly Ser Asn Ala Ser Leu Ala Gln Val Val Met Lys Val Asp Val 1070 1075 1080
- Val Tyr Glu Lys Gln Met Leu Tyr Leu Tyr Val Leu Ser Gly Ile 1085 1090 1095
- Val Gly Phe Phe Lys Arg Asn Leu Lys Glu Lys Met Glu Ala Gly 1115 1120 1125
- Arg Gly Val Pro Asn Gly Ile Pro Ala Glu Asp Ser Glu Gln Leu 1130  $$\rm 1135$  1140
- Ala Ser Gly Gln Glu Ala Gly Asp Pro Gly Cys Leu Lys Pro Leu 1145 1150 1155
- His Glu Lys Asp Ser Glu Ser Gly Gly Gly Lys Asp 1160 1165 1170

<sup>&</sup>lt;210> 3008 <211> 502

<sup>&</sup>lt;211> 502 <212> PRT

<sup>&</sup>lt;213> Homo sapiens

<400> 3008

Met Ala Thr Asn Pro Gln Pro Gln Pro Pro Pro Pro Ala Pro Pro 1 10 15

Pro Pro Pro Gln Pro Gln Pro Gln Pro Pro Pro Pro Pro Pro Gly Pro 20 25 30

Gly Ala Gly Pro Gly Ala Gly Gly Ala Gly Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly A

Gly Asp Pro Gln Leu Val Ala Met Ile Val Asn His Leu Lys Ser Gln 50 60

Gly Leu Phe Asp Gln Phe Arg Arg Asp Cys Leu Ala Asp Val Asp Thr 65 70 75 80

Lys Pro Ala Tyr Gln Asn Leu Arg Gln Arg Val Asp Asn Phe Val Ala 85 90 95

Asn His Leu Ala Thr His Thr Trp Ser Pro His Leu Asn Lys Asn Gln  $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$ 

Leu Arg Asn Asn Ile Arg Gln Gln Val Leu Lys Ser Gly Met Leu Glu 115 120 125

Ser Gly Ile Asp Arg Ile Ile Ser Gln Val Val Asp Pro Lys Ile Asn 130 135 140

His Thr Phe Arg Pro Gln Val Glu Lys Ala Val His Glu Phe Leu Ala 145 150 155 160

Thr Leu Asn His Lys Glu Glu Gly Ser Gly Asn Thr Ala Pro Asp Asp 165 170 175

Glu Lys Pro Asp Thr Ser Leu Ile Thr Gln Gly Val Pro Thr Pro Gly 180 185 190

Pro Ser Ala Asn Val Ala Asn Asp Ala Met Ser Ile Leu Glu Thr Ile 195 200 205

Thr Ser Leu Asn Gln Glu Ala Ser Ala Ala Arg Ala Ser Thr Glu Thr 210 215 220

Ser Asn Ala Lys Thr Ser Glu Arg Ala Ser Lys Leu Pro Ser Gln 225 230 235 240

| Pro        | Thr        | Thr        | Asp        | Thr<br>245 | ser        | Thr        | Asp        | гÀЗ        | 250        | Arg        | Thr        | ser        | GIU        | 255        | мет        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ala        | Asp        | Lys        | Glu<br>260 | Lys        | Ser        | Thr        | Ala        | Asp<br>265 | Ser        | Gly        | Gly        | Glu        | Gly<br>270 | Leu        | Glu        |
| Thr        | Ala        | Pro<br>275 | Lys        | Ser        | Glu        | Glu        | Phe<br>280 | Ser        | Asp        | Leu        | Pro        | Cys<br>285 | Pro        | Val        | Glu        |
| Glu        | Ile<br>290 | Lys        | Asn        | Tyr        | Thr        | Lys<br>295 | Glu        | His        | Asn        | Asn        | Leu<br>300 | Ile        | Leu        | Leu        | Asn        |
| Lys<br>305 | Asp        | Val        | Gln        | Gln        | Glu<br>310 | Ser        | Ser        | Glu        | Gln        | Lys<br>315 | Asn        | Lys        | Ser        | Thr        | Asp<br>320 |
| Lys        | Gly        | Glu        | Lys        | Lys<br>325 | Pro        | Asp        | Ser        | Asn        | Glu<br>330 | Lys        | Gly        | Glu        | Arg        | Lys<br>335 | Lys        |
| Glu        | Lys        | Lys        | Glu<br>340 | Lys        | Thr        | Glu        | Lys        | Lys<br>345 | Phe        | Asp        | His        | Ser        | Lys<br>350 | Lys        | Ser        |
| Glu        | Asp        | Thr<br>355 | Gln        | Lys        | Val        | Lys        | Asp<br>360 | Glu        | Lys        | Gln        | Ala        | Lys<br>365 | Glu        | Lys        | Glu        |
|            | 370        |            |            | •          |            | 375        |            |            | •          |            | 380        |            |            |            | Lys        |
| 385        |            |            | Gly        |            | 390        |            | -          |            |            | 395        |            |            |            | -          | 400        |
|            | _          |            |            | 405        |            |            |            |            | 410        |            |            |            |            | 415        | Leu        |
|            |            |            | 420        |            | ·          |            |            | 425        |            |            |            |            | 430        | -          | Ser        |
|            |            | 435        | Ī          |            |            |            | 440        | _          | _          |            |            | 445        |            | -          | Gln        |
|            | 450        |            | Lys        |            |            | 455        |            |            |            |            | 460        |            |            |            |            |
| Ser<br>465 | Val        | Arg        | His        | Ala        | Tyr<br>470 | Va1        | His        | Lys        | Pro        | Tyr<br>475 | Leu        | Tyr        | Ser        | гуs        | Tyr<br>480 |

Tyr Ser Asp Ser Asp Glu Leu Thr Val Glu Gln Arg Arg Gln Ser 485 490 495

Ile Gly Ile Leu Trp Phe 500

<210> 3009

<211> 61 <212> PRT

<213> Homo sapiens

<400> 3009

Met Lys Arg Phe Leu Phe Leu Leu Leu Thr Ile Ser Leu Leu Val Met 1 5 10 15

Val Gln Ile Gln Thr Gly Leu Ser Gly Gln Asn Asp Thr Ser Gln Thr 20 25 30

Ser Ser Pro Ser Ala Ser Ser Ser Met Ser Gly Gly Ile Phe Leu Phe 35 40 45

Phe Val Ala Asn Ala Ile Ile His Leu Phe Cys Phe Ser 50 60

<210> 3010

<211> 352 <212> PRT

<213> Homo sapiens

<400> 3010

Gly Ser Gly Asp Tyr Asp Ser Met Lys Glu Pro Cys Phe Arg Glu Glu 20 25 30

Asn Ala Asn Phe Asn Lys Ile Phe Leu Pro Thr Ile Tyr Ser Ile Ile

Phe Leu Thr Gly Ile Val Gly Asn Gly Leu Val Ile Leu Val Met Gly 50 55 60

Tyr Gln Lys Lys Leu Arg Ser Met Thr Asp Lys Tyr Arg Leu His Leu 65 70 75 80

Ser Val Ala Asp Leu Leu Phe Val Ile Thr Leu Pro Phe Trp Ala Val 85 90 95

| Asp        | Ala        | Val        | Ala<br>100 | Asn        | Trp        | Tyr        | Phe        | Gly<br>105 | Asn        | Phe        | Leu        | Cys        | Lys<br>110 | Ala        | Val        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| His        | Val        | Ile<br>115 | Tyr        | Thr        | Val        | Asn        | Leu<br>120 | Tyr        | Ser        | Ser        | Val        | Leu<br>125 | Ile        | Leu        | Ala        |
| Phe        | Ile<br>130 | Ser        | Leu        | Asp        | Arg        | Tyr<br>135 | Leu        | Ala        | Ile        | Val        | His<br>140 | Ala        | Thr        | Asn        | Ser        |
| Gln<br>145 | Arg        | Pro        | Arg        | Lys        | Leu<br>150 | Leu        | Ala        | Glu        | Lys        | Val<br>155 | Val        | Tyr        | Val        | Gly        | Val<br>160 |
| Trp        | Ile        | Pro        | Ala        | Leu<br>165 | Leu        | Leu        | Thr        | Ile        | Pro<br>170 | Asp        | Phe        | Ile        | Phe        | Ala<br>175 | Asn        |
| Val        | Ser        | Glu        | Ala<br>180 | Asp        | Asp        | Arg        | Tyr        | Ile<br>185 | Cys        | Asp        | Arg        | Phe        | Tyr<br>190 | Pro        | Asn        |
| Asp        | Leu        | Trp<br>195 | Val        | Val        | Val        | Phe        | Gln<br>200 | Phe        | Gln        | His        | Ile        | Met<br>205 | Val        | Gly        | Leu        |
| Ile        | Leu<br>210 | Pro        | Gly        | Ile        | Val        | Ile<br>215 | Leu        | Ser        | Сув        | Tyr        | Cys<br>220 | Ile        | Ile        | Ile        | Ser        |
| Lys<br>225 | Leu        | Ser        | His        | Ser        | Lys<br>230 | Gly        | His        | Gln        | Lys        | Arg<br>235 | Lys        | Ala        | Leu        | Lys        | Thr<br>240 |
| Thr        | Val        | Ile        | Leu        | Ile<br>245 | Leu        | Ala        | Phe        | Phe        | Ala<br>250 | Сув        | Trp        | Leu        | Pro        | Tyr<br>255 | Tyr        |
| Ile        | Gly        | Ile        | Ser<br>260 | Ile        | Asp        | Ser        | Phe        | Ile<br>265 | Leu        | Leu        | Glu        | Ile        | Ile<br>270 | Lys        | Gln        |
| Gly        | Сув        | Glu<br>275 | Phe        | Glu        | Asn        | Thr        | Val<br>280 | His        | Lys        | Trp        | Ile        | Ser<br>285 | Ile        | Thr        | Glu        |
| Ala        | Leu<br>290 | Ala        | Phe        | Phe        | His        | Cys<br>295 | Cys        | Leu        | Asn        | Pro        | Ile<br>300 | Leu        | Tyr        | Ala        | Phe        |
| Leu<br>305 | Gly        | Ala        | Lys        | Phe        | Lys<br>310 | Thr        | Ser        | Ala        | Gln        | His<br>315 | Ala        | Leu        | Thr        | Ser        | Val<br>320 |
| Ser        | Arg        | Gly        | Ser        | Ser<br>325 | Leu        | Lys        | Ile        | Leu        | Ser<br>330 | Lys        | Gly        | Lys        | Arg        | Gly<br>335 | Gly        |

His Ser Ser Val Ser Thr Glu Ser Glu Ser Ser Ser Phe His Ser Ser Ser 340 345 350

<210> 3011

<211> 94 <212> PRT

<213> Homo sapiens

<400> 3011

Met Ala Pro Leu Lys Met Leu Ala Leu Val Thr Leu Leu Cly Ala 1 5 10 15

Ser Leu Gln His Ile His Ala Ala Arg Gly Thr Asn Val Gly Arg Glu \$20\$

Cys Cys Leu Glu Tyr Phe Lys Gly Ala Ile Pro Leu Arg Lys Leu Lys 35 40 45

Thr Trp Tyr Gln Thr Ser Glu Asp Cys Ser Arg Asp Ala Ile Val Phe 50 60

Val Lys Asn Ala Val Lys Tyr Leu Gln Ser Leu Glu Arg Ser 85 90

<210> 3012

<211> 748

<212> PRT <213> Homo sapiens

<400> 3012

Met Ser Gln Trp Asn Gln Val Gln Gln Leu Glu Ile Lys Phe Leu Glu 1 10 15

Gln Val Asp Gln Phe Tyr Asp Asp Asn Phe Pro Met Glu Ile Arg His

Leu Leu Ala Gln Trp Ile Glu Asn Gln Asp Trp Glu Ala Ala Ser Asn 35 40 45

Asn Glu Thr Met Ala Thr Ile Leu Leu Gln Asn Leu Leu Ile Gln Leu 50 60

Asp Glu Gln Leu Gly Arg Val Ser Lys Glu Lys Asn Leu Leu Leu Ile 65 70 75 80

His Asn Leu Lys Arq Ile Arg Lys Val Leu Gln Gly Lys Phe His Gly Asn Pro Met His Val Ala Val Val Ile Ser Asn Cys Leu Arq Glu Glu Arg Arg Ile Leu Ala Ala Ala Asn Met Pro Val Gln Gly Pro Leu Glu Lys Ser Leu Gln Ser Ser Ser Val Ser Glu Arg Gln Arg Asn Val Glu His Lys Val Ala Ala Ile Lys Asn Ser Val Gln Met Thr Glu Gln Asp Thr Lys Tyr Leu Glu Asp Leu Gln Asp Glu Phe Asp Tyr Arg Tyr Lys Thr Ile Gln Thr Met Asp Gln Ser Asp Lys Asn Ser Ala Met Val Asn Gln Glu Val Leu Thr Leu Gln Glu Met Leu Asn Ser Leu Asp Phe Lys Arg Lys Glu Ala Leu Ser Lys Met Thr Gln Ile Ile His Glu Thr Asp Leu Leu Met Asn Thr Met Leu Ile Glu Glu Leu Gln Asp Trp Lys Arg Arg Gln Gln Ile Ala Cvs Ile Glv Glv Pro Leu His Asn Glv Leu Asp Gln Leu Gln Asn Cys Phe Thr Leu Leu Ala Glu Ser Leu Phe Gln Leu Arg Arg Gln Leu Glu Lys Leu Glu Glu Gln Ser Thr Lys Met Thr Tyr 280 -Glu Gly Asp Pro Ile Pro Met Gln Arg Thr His Met Leu Glu Arg Val Thr Phe Leu Ile Tyr Asn Leu Phe Lys Asn Ser Phe Val Val Glu Arq 

Gln Pro Cys Met Pro Thr His Pro Gln Arg Pro Leu Val Leu Lys Thr 325 330 335

Leu Ile Gln Phe Thr Val Lys Leu Arg Leu Leu Ile Lys Leu Pro Glu 340 345 350

Leu Asn Tyr Gln Val Lys Val Lys Ala Ser Ile Asp Lys Asn Val Ser 355 360 365

Thr Leu Ser Asn Arg Arg Phe Val Leu Cys Gly Thr Asn Val Lys Ala 370 375 380

Met Ser Ile Glu Glu Ser Ser Asn Gly Ser Leu Ser Val Glu Phe Arg 385 390 395 400

His Leu Gln Pro Lys Glu Met Lys Ser Ser Ala Gly Gly Lys Gly Asn 405 410 415

Glu Gly Cys His Met Val Thr Glu Glu Leu His Ser Ile Thr Phe Glu
420 425 430

Thr Gln Ile Cys Leu Tyr Gly Leu Thr Ile Asp Leu Glu Thr Ser Ser 435 440 445

Leu Pro Val Val Met Ile Ser Asn Val Ser Gln Leu Pro Asn Ala Trp 450 460

Ala Ser Ile Ile Trp Tyr Asn Val Ser Thr Asn Asp Ser Gln Asn Leu 465  $\phantom{\bigg|}470\phantom{\bigg|}470\phantom{\bigg|}475\phantom{\bigg|}$ 

Val Phe Phe Asn Asn Pro Pro Pro Ala Thr Leu Ser Gln Leu Leu Glu
485 490 495

Val Met Ser Trp Gln Phe Ser Ser Tyr Val Gly Arg Gly Leu Asn Ser 500 505 510

Asp Gln Leu His Met Leu Ala Glu Lys Leu Thr Val Gln Ser Ser Tyr 515 520 525

Ser Asp Gly His Leu Thr Trp Ala Lys Phe Cys Lys Glu His Leu Pro 530 540

Gly Lys Ser Phe Thr Phe Trp Thr Trp Leu Glu Ala Ile Leu Asp Leu 545 550 555 560

Ile Lys Lys His Ile Leu Pro Leu Trp Ile Asp Gly Tyr Val Met Gly

565 570 575

Phe Val Ser Lys Glu Lys Glu Arg Leu Leu Lys Asp Lys Met Pro 580 585 590

Gly Thr Phe Leu Leu Arg Phe Ser Glu Ser His Leu Gly Gly Ile Thr 595 600 605

Phe Thr Trp Val Asp His Ser Glu Ser Gly Glu Val Arg Phe His Ser 610 615 620

Val Glu Pro Tyr Asn Lys Gly Arg Leu Ser Ala Leu Pro Phe Ala Asp 625 630 635

Ile Leu Arg Asp Tyr Lys Val Ile Met Ala Glu Asn Ile Pro Glu Asn 645 650 655

Pro Leu Lys Tyr Leu Tyr Pro Asp Ile Pro Lys Asp Lys Ala Phe Gly 660 665 670

Lys His Tyr Ser Ser Gln Pro Cys Glu Val Ser Arg Pro Thr Glu Arg 675 680 685

Gly Asp Lys Gly Tyr Val Pro Ser Val Phe Ile Pro Ile Ser Thr Ile 690 695 700

Arg Ser Asp Ser Thr Glu Pro His Ser Pro Ser Asp Leu Leu Pro Met 705 710 715 720

Ser Pro Ser Val Tyr Ala Val Leu Arg Glu Asn Leu Ser Pro Thr Thr 725 730 735

Ile Glu Thr Ala Met Lys Ser Pro Tyr Ser Ala Glu 740 745

<210> 3013

<211> 92

<212> PRT <213> Homo sapiens

<400> 3013

Met Lys Leu Cys Val Thr Val Leu Ser Leu Leu Met Leu Val Ala Ala 1 5 10 15

Phe Cys Ser Pro Ala Leu Ser Ala Pro Met Gly Ser Asp Pro Pro Thr 20 25 30

Ala Cys Cys Phe Ser Tyr Thr Ala Arg Lys Leu Pro Arg Asn Phe Val

Val Asp Tyr Tyr Glu Thr Ser Ser Leu Cys Ser Gln Pro Ala Val Val 50 60

Phe Gln Thr Lys Arg Ser Lys Gln Val Cys Ala Asp Pro Ser Glu Ser 65 70 75 80

Trp Val Gln Glu Tyr Val Tyr Asp Leu Glu Leu Asn 85 90

<210> 3014

<211> 444 <212> PRT

<213> Homo sapiens

<400> 3014

Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Leu Gly Leu Gln

Gly Cys Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val

Leu His Arg Arg Arg Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro 35 40 45

Gly Ser Leu Glu Arg Glu Cys Lys Glu Glu Glu Cys Ser Phe Glu Glu 50  $\,$  55  $\,$  60  $\,$ 

Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile 65 70 75 80

Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly 85 90 95

Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro 100 105 110

Ala Phe Glu Gly Arg Asn Cys Glu Thr His Lys Asp Asp Gln Leu Ile 115 120 125

Cys Val Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr 130 135 140

Gly Thr Lys Arg Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala

| 145                | 150                |                   | 155                    | 160                    |
|--------------------|--------------------|-------------------|------------------------|------------------------|
| Asp Gly Val        | Ser Cys Thr<br>165 | Pro Thr Va        | l Glu Tyr Pro 0        | Cys Gly Lys Ile<br>175 |
| Pro Ile Leu        | Glu Lys Arg<br>180 | Asn Ala Se        | r Lys Pro Gln (<br>5   | Gly Arg Ile Val        |
| Gly Gly Lys<br>195 |                    | Lys Gly Gl        |                        | Gln Val Leu Leu<br>205 |
| Leu Val Asn<br>210 | Gly Ala Gln        | Leu Cys Gl<br>215 | y Gly Thr Leu 1<br>220 | [le Asn Thr Ile        |
| Trp Val Val<br>225 | Ser Ala Ala<br>230 | His Cys Ph        | e Asp Lys Ile I<br>235 | Lys Asn Trp Arg<br>240 |
| Asn Leu Ile        | Ala Val Leu<br>245 | Gly Glu Hi        | s Asp Leu Ser (<br>250 | Glu His Asp Gly<br>255 |
| Asp Glu Gln        | Ser Arg Arg<br>260 | Val Ala Gl<br>26  |                        | Pro Ser Thr Tyr<br>270 |
| Val Pro Gly<br>275 |                    | His Asp Il<br>280 |                        | Arg Leu His Gln<br>285 |
| Pro Val Val<br>290 | Leu Thr Asp        | His Val Va<br>295 | l Pro Leu Cys I<br>300 | Leu Pro Glu Arg        |
| Thr Phe Ser        | Glu Arg Thr<br>310 | Leu Ala Ph        | e Val Arg Phe 8<br>315 | Ser Leu Val Ser<br>320 |
| Gly Trp Gly        | Gln Leu Leu<br>325 | Asp Arg Gl        | y Ala Thr Ala I<br>330 | Leu Glu Leu Met<br>335 |
| Val Leu Asn        | Val Pro Arg<br>340 | Leu Met Th        |                        | Leu Gln Gln Ser<br>350 |
| Arg Lys Val<br>355 |                    | Pro Asn Il<br>360 |                        | Met Phe Cys Ala<br>365 |
| Gly Tyr Ser<br>370 | Asp Gly Ser        | Lys Asp Se<br>375 | r Cys Lys Gly 3        | Asp Ser Gly Gly        |
| Pro His Ala<br>385 | Thr His Tyr<br>390 | Arg Gly Th        | r Trp Tyr Leu '        | Thr Gly Ile Val<br>400 |

Ser Trp Gly Gln Gly Cys Ala Thr Val Gly His Phe Gly Val Tyr Thr \$405\$

Arg Val Ser Gln Tyr Ile Glu Trp Leu Gln Lys Leu Met Arg Ser Glu 420 425 430

Pro Arg Pro Gly Val Leu Leu Arg Ala Pro Phe Pro 435 440

<210> 3015

<211> 769 <212> PRT

<213> Homo sapiens

<400> 3015

Met Leu Gly Leu Arg Pro Pro Leu Leu Ala Leu Val Gly Leu Leu Ser 1 5 10 15

Leu Gly Cys Val Leu Ser Gln Glu Cys Thr Lys Phe Lys Val Ser Ser 20 25 30

Cys Arg Glu Cys Ile Glu Ser Gly Pro Gly Cys Thr Trp Cys Gln Lys 35 40 45

Leu Asn Phe Thr Gly Pro Gly Asp Pro Asp Ser Ile Arg Cys Asp Thr 50

Arg Pro Gln Leu Leu Met Arg Gly Cys Ala Ala Asp Asp Ile Met Asp 65 70 75 80

Gln Leu Ser Pro Gln Lys Val Thr Leu Tyr Leu Arg Pro Gly Gln Ala

Ala Ala Phe Asn Val Thr Phe Arg Arg Ala Lys Gly Tyr Pro Ile Asp 115 120 125

Leu Tyr Tyr Leu Met Asp Leu Ser Tyr Ser Met Leu Asp Asp Leu Arg 130 135 140

Asn Val Lys Lys Leu Gly Gly Asp Leu Leu Arg Ala Leu Asn Glu Ile 145  $\phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}155\phantom{\bigg|}$ 

Thr Glu Ser Gly Arg Ile Gly Phe Gly Ser Phe Val Asp Lys Thr Val 165 170 175

Leu Pro Phe Val Asn Thr His Pro Asp Lys Leu Arg Asn Pro Cys Pro 180 185 190

Asn Lys Glu Lys Glu Cys Gln Pro Pro Phe Ala Phe Arg His Val Leu 195 200 205

Lys Leu Thr Asn Asn Ser Asn Gln Phe Gln Thr Glu Val Gly Lys Gln 210 215 220

Leu Ile Ser Gly Asn Leu Asp Ala Pro Glu Gly Gly Leu Asp Ala Met 225 230 235 240

Met Gln Val Ala Ala Cys Pro Glu Glu Ile Gly Trp Arg Asn Val Thr \$245\$

Arg Leu Leu Val Phe Ala Thr Asp Asp Gly Phe His Phe Ala Gly Asp  $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$ 

Gly Lys Leu Gly Ala Ile Leu Thr Pro Asn Asp Gly Arg Cys His Leu 275 280 285

Glu Asp Asn Leu Tyr Lys Arg Ser Asn Glu Phe Asp Tyr Pro Ser Val 290 295 300

Gly Gln Leu Ala His Lys Leu Ala Glu Asn Asn Ile Gln Pro Ile Phe 305 310 315 320

Ala Val Thr Ser Arg Met Val Lys Thr Tyr Glu Lys Leu Thr Glu Ile \$325\$ \$330\$ \$335

Ile Pro Lys Ser Ala Val Gly Glu Leu Ser Glu Asp Ser Ser Asn Val 340 345 350

Val His Leu Ile Lys Asn Ala Tyr Asn Lys Leu Ser Ser Arg Val Phe 355 360 365

Leu Asp His Asn Ala Leu Pro Asp Thr Leu Lys Val Thr Tyr Asp Ser 370 380

Phe Cys Ser Asn Gly Val Thr His Arg Asn Gln Pro Arg Gly Asp Cys 385 390 395 400

Asp Gly Val Gln Ile Asn Val Pro Ile Thr Phe Gln Val Lys Val Thr

405 410 415

Ala Thr Glu Cys Ile Gln Glu Gln Ser Phe Val Ile Arg Ala Leu Gly
420 425 430

Phe Thr Asp Ile Val Thr Val Gln Val Leu Pro Gln Cys Glu Cys Arg 435 445

Cys Arg Asp Gln Ser Arg Asp Arg Ser Leu Cys His Gly Lys Gly Phe 450 455

Leu Glu Cys Gly Ile Cys Arg Cys Asp Thr Gly Tyr Ile Gly Lys Asn 465 470 475

Cys Glu Cys Gln Thr Gln Gly Arg Ser Ser Gln Glu Leu Glu Gly Ser 485 490 495

Cys Arg Lys Asp Asn Asn Ser Ile Ile Cys Ser Gly Leu Gly Asp Cys 500 505 510

Val Cys Gly Gln Cys Leu Cys His Thr Ser Asp Val Pro Gly Lys Leu 515 520 525

Ile Tyr Gly Gln Tyr Cys Glu Cys Asp Thr Ile Asn Cys Glu Arg Tyr 530 540

Asn Gly Gln Val Cys Gly Gly Pro Gly Arg Gly Leu Cys Phe Cys Gly 545 550 555

Lys Cys Arg Cys His Pro Gly Phe Glu Gly Ser Ala Cys Gln Cys Glu 565 570 575

Arg Gly Arg Cys Arg Cys Asn Val Cys Glu Cys His Ser Gly Tyr Gln 595 600 605

Leu Pro Leu Cys Gln Glu Cys Pro Gly Cys Pro Ser Pro Cys Gly Lys 610 615 620

Tyr Ile Ser Cys Ala Glu Cys Leu Lys Phe Glu Lys Gly Pro Phe Gly 625 630 635

Lys Asn Cys Ser Ala Ala Cys Pro Gly Leu Gln Leu Ser Asn Asn Pro 645 650 655

| Val                              | Lys        | Gly          | Arg<br>660 | Thr        | Cys        | Lys        | Glu        | Arg<br>665 | Asp        | Ser        | Glu        | Gly        | Cys<br>670 |            | Val        |    |
|----------------------------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
| Ala                              | Tyr        | Thr<br>675   | Leu        | Glu        | Gln        | Gln        | Asp<br>680 | Gly        | Met        | Asp        | Arg        | Tyr<br>685 | Leu        | Ile        | Tyr        |    |
| Val                              | Asp<br>690 | Glu          | Ser        | Arg        | Glu        | Cys<br>695 | Val        | Ala        | Gly        | Pro        | Asn<br>700 | Ile        | Ala        | Ala        | Ile        |    |
| Val<br>705                       | Gly        | Gly          | Thr        | Val        | Ala<br>710 | Gly        | Ile        | Val        | Leu        | Ile<br>715 | Gly        | Ile        | Leu        | Leu        | Leu<br>720 |    |
| Val                              | Ile        | Trp          | Lys        | Ala<br>725 | Leu        | Ile        | His        | Leu        | Ser<br>730 | Asp        | Leu        | Arg        | Glu        | Tyr<br>735 | Arg        |    |
| Arg                              | Phe        | Glu          | Lys<br>740 | Glu        | Lys        | Leu        | Lys        | Ser<br>745 | Gln        | Trp        | Asn        | Asn        | Asp<br>750 | Asn        | Pro        |    |
| Leu                              | Phe        | Lys<br>755   | Ser        | Ala        | Thr        | Thr        | Thr<br>760 | Val        | Met        | Asn        |            | Lys<br>765 | Phe        | Ala        | Glu        |    |
| Ser                              |            |              |            |            |            |            |            |            |            |            |            |            |            |            |            |    |
| <210<br><211<br><212<br><213     | > 5<br>> D | 0<br>NA      | sapi       | ens        |            |            |            |            |            |            |            |            |            |            |            |    |
| <400<br>ggga                     |            | 016<br>ca c  | tgca       | ctct       | t aa       | gctt       | ccgc       | çgt        | ctca       | acc        | cctc       | acag       | ga         |            |            | 50 |
| <210:<br><211:<br><212:<br><213: | > 5<br>> D | NA           | sapi       | ens        |            |            |            |            |            |            |            |            |            |            |            |    |
| <400:<br>agga                    |            | 017<br>tt ta | accc       | ggtgi      | t gc       | tttg       | ccgc       | agt        | catc       | caa a      | aataa      | aatt       | ca         |            |            | 50 |
| <210:<br><211:<br><212:<br><213: | 5 DI       | NA.          | sapie      | ens        |            |            |            |            |            |            |            |            |            |            |            |    |
| 400:<br>acct                     |            | 018<br>CC CC | eccto      | ettge      | cca        | ıcagg      | gact       | ctg        | etgtt      | gt t       | ttca       | ittet      | g:g        |            |            | 50 |

| <210>   | 3019           |            |            |              |    |
|---------|----------------|------------|------------|--------------|----|
| <211>   | 50             |            |            |              |    |
| <212>   |                |            |            |              |    |
|         | Homo sapiens   |            |            |              |    |
| 12257   | nomo baprono   |            |            |              |    |
| <400>   | 3019           |            |            |              |    |
|         | ttg tccctatcag | aateetegaa | tecetageag | ccagtccctg   | 50 |
|         |                |            |            |              |    |
|         |                |            |            |              |    |
| <210>   | 3020           |            |            |              |    |
| <211>   |                |            |            |              |    |
| <212>   |                |            |            |              |    |
|         | Homo sapiens   |            |            |              |    |
| (213)   | nomo sapiens   |            |            |              |    |
| <400>   | 2020           |            |            |              |    |
|         | agg ggagggagag | ttataatatt | taaccacaat | at accet cae | 50 |
| geecee  | agg ggagggagag | cegeceeeee | tgcccacage | ccaccccag    | 50 |
|         |                |            |            |              |    |
| <210>   | 2021           |            |            |              |    |
|         |                |            |            |              |    |
| <211>   |                |            |            |              |    |
| <212>   |                |            |            |              |    |
| <213>   | Homo sapiens   |            |            |              |    |
|         |                |            |            |              |    |
| <400>   |                |            |            |              |    |
| cttgggc | cag actgtcaggg | ttcaaggagg | gcatcaggag | cagacggaga   | 50 |
|         |                |            |            |              |    |
|         |                |            |            |              |    |
| <210>   |                |            |            |              |    |
| <211>   |                |            |            |              |    |
| <212>   |                |            |            |              |    |
| <213>   | Homo sapiens   |            |            |              |    |
|         |                |            |            |              |    |
| <400>   |                |            |            |              |    |
| ctcttca | agg ggtctacatg | gcaactgtga | ggagggaga  | ttcagtgtgg   | 50 |
|         |                |            |            |              |    |
|         |                |            |            |              |    |
| <210>   |                |            |            |              |    |
| <211>   |                |            |            |              |    |
| <212>   |                |            |            |              |    |
| <213>   | Homo sapiens   |            |            |              |    |
|         |                |            |            |              |    |
| <400>   |                |            |            |              |    |
| taagcat | aaa acctgacacg | ttaaaatccc | tgccctttgg | tgagcccact   | 50 |
|         |                |            |            |              |    |
|         |                |            |            |              |    |
| <210>   |                |            |            |              |    |
| <211>   |                |            |            |              |    |
| <212>   |                |            |            |              |    |
| <213>   | Homo sapiens   |            |            |              |    |
|         |                |            |            |              |    |
| <400>   |                |            |            |              |    |
| tgctggt | att ctcactgcca | catttttgga | aacctgtatt | acaccttaaa   | 50 |
|         |                |            |            |              |    |
|         |                |            |            |              |    |
| <210>   |                |            |            |              |    |
| <211>   |                |            |            |              |    |
| <212>   |                |            |            |              |    |
| <213>   | Homo sapiens   |            |            |              |    |
|         |                |            |            |              |    |
| <400>   | 3025           |            |            |              |    |
| cagtcad | tgg gtctatatta | aacagcaacc | agagcaacaa | atggcaaaca   | 50 |

| <210>   | 3026                                             |    |
|---------|--------------------------------------------------|----|
| <211>   | 50                                               |    |
| <212>   |                                                  |    |
| <213>   | Homo sapiens                                     |    |
|         |                                                  |    |
| <400>   | 3026                                             |    |
| tctagco | ccag cattgatcta gaagcagagg aatcccagcg ccttttaaaa | 50 |
|         |                                                  |    |
|         |                                                  |    |
| <210>   | 3027                                             |    |
| <211>   |                                                  |    |
| <212>   |                                                  |    |
| <213>   | Homo sapiens                                     |    |
|         |                                                  |    |
| <400>   |                                                  |    |
| tgggcaa | agac atgattaatg aatcagaatc ctgtttcatt ggtgacttgg | 50 |
|         |                                                  |    |
| <210>   | 3028                                             |    |
|         |                                                  |    |
| <211>   |                                                  |    |
| <212>   |                                                  |    |
| <213>   | Homo sapiens                                     |    |
| <400>   | 2028                                             |    |
|         | ttcc tagtagcatg cettacetae ageactatgt geatttgetg | 50 |
| cgcaga  | ceee eageageacy ecceaocae ageaecaege geaecagong  | -  |
|         |                                                  |    |
| <210>   | 3029                                             |    |
| <211>   |                                                  |    |
| <212>   |                                                  |    |
|         | Homo sapiens                                     |    |
|         |                                                  |    |
| <400>   | 3029                                             |    |
|         | agag totgtgaaga tggcccagto ttotatocco cacotaaaaa | 50 |
|         |                                                  |    |
|         |                                                  |    |
| <210>   | 3030                                             |    |
| <211>   | 50                                               |    |
| <212>   | DNA                                              |    |
| <213>   | Homo sapiens                                     |    |
|         |                                                  |    |
| <400>   | 3030                                             |    |
| cttgac  | caaa cccacagcct gtctcttctc ttgtttagtt acttacggca | 50 |
|         |                                                  |    |
| -210-   | 2021                                             |    |
| <210>   |                                                  |    |
| <211>   |                                                  |    |
| <212>   |                                                  |    |
| <213>   | Homo sapiens                                     |    |
| <400>   | 2021                                             |    |
|         | teac tgtttctctg ctgttgcaaa tacatggata acacatttga | 50 |
| ccaccg  | ceae egeneency degregoada tadatggata adadatetga  | اد |
|         |                                                  |    |
| <210>   | 3032                                             |    |
| <211>   | 50                                               |    |
|         | DNA                                              |    |
|         | Homo sapiens                                     |    |

| <400><br>tgcago                  | 3032<br>cact attgttagtc | tcttgattca | taatgactta | agcacacttg | 50 |
|----------------------------------|-------------------------|------------|------------|------------|----|
| <210><211><211><212><213>        |                         |            |            |            |    |
| <400>                            | 3033                    |            |            |            |    |
| cetgat                           | ggag agaagaaggc         | atatgttcga | ctggctcctg | attacgatgc | 50 |
| <210><br><211><br><212><br><213> | 50                      |            |            |            |    |
| <400>                            | 3034                    |            |            |            |    |
| gccgaa                           | ttgt ctttggtgct         | tttcacttgt | gttttaaaat | aaggattttt | 50 |
| <210><br><211><br><212><br><213> |                         |            |            |            |    |
| <400>                            | 3035                    |            |            |            |    |
|                                  | gacc tgttgatgct         | agttcagagt | atcaccaaga | gctggagagg | 50 |
| <210><211><211><212><213>        |                         |            |            |            |    |
| <400>                            | 3036                    |            |            |            |    |
| accato                           | caat cggacaagct         | ttcagaacct | tattgaagga | tttgaagcac | 50 |
| <210><211><211><212><213>        | 50                      |            |            |            |    |
|                                  |                         |            |            |            |    |
|                                  | 3037<br>gttc agtaatgaaa | aaatatatcc | aatcagagcc | atcccgaaaa | 50 |
| •                                | _ 5 5                   |            |            | J          |    |
| <210><br><211><br><212><br><213> |                         |            |            |            |    |
| <400>                            | 3038                    |            |            |            |    |
| agcgga                           | ctca ggctccagct         | gtggctacaa | catagggttt | ttatacaaga | 50 |
|                                  |                         |            |            |            |    |
| <210><br><211>                   | 3039<br>50              |            |            |            |    |
| <212>                            | DNA                     |            |            |            |    |

1457

WO 2004/042346 PCT/US2003/012946 <213> Homo sapiens <400> 3039 accagactga caaatgtgta tcggatgctt ttgttcaggg ctgtgatcgg 50 <210> 3040 <211> 50 <212> DNA <213> Homo sapiens <400> 3040 ccactgtcac tgtttctctg ctgttgcaaa tacatggata acacatttga 50 <210> 3041 <211> 50 <212> DNA <213> Homo sapiens <400> 3041 aagtgaacaa aataagcaac taaatgagac ctaataattg gccttcgatt 50 <210> 3042 <211> 50 <212> DNA <213> Homo sapiens <400> 3042 tctgttgata gctggagaac tttagtttca agtactacat tgtgaaagca 50 <210> 3043 <211> 50 <212> DNA <213> Homo sapiens <400> 3043 gacctcatct ccaagatgga gaagatctga cctccacgga gccgctgtcc 50 <210> 3044 <211> 50 <212> DNA <213> Homo sapiens <400> 3044 ctgaccgcca ctctcacatt tgggctcttc gctggccttg gtggagctgg 50 <210> 3045 <211> 50 <212> DNA <213> Homo sapiens <400> 3045 atacagecee ggeagaaaac geetaaagte agatgagaga eeagtacata 50

1458

<210> 3046

WO 2004/042346 PCT/US2003/012946 <211> 50 <212> DNA <213> Homo sapiens <400> 3046 aacagaagtc aagagaacat agaccaactt gctgcatgag taaggtggct 50 <210> 3047 <211> 50 <212> DNA <213> Homo sapiens <400> 3047 agaggactat agtggaagtg aaagcattct gtgtttactc tttgcattaa 50 <210> 3048 <211> 50 <212> DNA <213> Homo sapiens <400> 3048 caggicaacc cccaccggac ctacaacccg cagtcccaca tcatctcagg 50 <210> 3049 <211> 50 <212> DNA <213> Homo sapiens <400> 3049 ccttccagaa gctacgaaaa agggagctgt ttaaatttaa taaatctctg 5.0 <210> 3050 <211> 50 <212> DNA <213> Homo sapiens <400> 3050 ccaatggata tttctgtatt actagggagg catttacagt cctctaatgt 50 <210> 3051 <211> 50 <212> DNA <213> Homo sapiens <400> 3051 atctgacatt attgtaacta ccgtgtgatc agtaagattc ctgtaagaaa 50 <210> 3052 <211> 50 <212> DNA

1459

50

tccaatgcag tcccattctt tatggcctat agtctcactc ccaactaccc

<213> Homo sapiens

| <210><211><211><212><213>        | 3053<br>50<br>DNA<br>Homo sapiens |            |            |            |    |
|----------------------------------|-----------------------------------|------------|------------|------------|----|
| <400>                            |                                   | ccagtaaaat | tgccatattg | cacatgtctt | 50 |
|                                  | 3054<br>50<br>DNA<br>Homo sapiens |            |            |            |    |
| <400>                            | -                                 | tggggaaatt | tagtagcctt | cattttagca | 50 |
| <210><211><211><212>             |                                   |            |            |            |    |
| <213><br><400><br>aaaggg         | =                                 | atttcaattg | gataacattt | tgtcaagttt | 50 |
| <210><211><211>                  | 50                                |            |            |            |    |
| <213><br><400>                   |                                   | accttctqtc | agtccatcat | ctccaccctq | 50 |
| <210><br><211>                   | 3057                              |            |            |            |    |
| <212><br><213>                   | Homo sapiens                      |            |            |            |    |
| ggcagg                           | aggt tctcactgtt                   | gtgaaggttg | tagacgttgt | gtaatgtgtt | 50 |
| <211><br><212>                   | 50                                |            |            |            |    |
| <400><br>gtgggt                  | 3058<br>aagg ggeteaaget           | gtgatgctgc | tggttttatc | tctagtgaaa | 50 |
| <210><br><211><br><212><br><213> |                                   |            |            |            |    |
| <400>                            | 3059                              |            |            |            |    |

| agacaa         | agag agcataaata          | tagctctact | catgggtacc | ataccagtgt | 50 |
|----------------|--------------------------|------------|------------|------------|----|
| 210            | 2000                     |            |            |            |    |
| <210><br><211> |                          |            |            |            |    |
| <212>          |                          |            |            |            |    |
|                | Homo sapiens             |            |            |            |    |
| 10207          | nome suprame             |            |            |            |    |
| <400>          | 3060                     |            |            |            |    |
| cttcag         | gccc aagttcaacg          | ggttaaagag | gtccgctccc | aaattattct | 50 |
|                |                          |            |            |            |    |
|                |                          |            |            |            |    |
| <210>          | 3061                     |            |            |            |    |
| <211>          |                          |            | *          |            |    |
| <212>          |                          |            |            |            |    |
| <213>          | Homo sapiens             |            |            |            |    |
| <400>          | 3061                     |            |            |            |    |
|                | ccat gtttgcccta          | gtccaggatt | gcctcacttg | agacttgcta | 50 |
|                | 33                       | 3          | 3          |            |    |
|                |                          |            |            |            |    |
| <210>          | 3062                     |            |            |            |    |
| <211>          | 50                       |            |            |            |    |
| <212>          |                          |            |            |            |    |
| <213>          | Homo sapiens             |            |            |            |    |
|                |                          |            |            |            |    |
| <400>          | 3062                     |            |            |            | 50 |
| LCLLCC         | tggg aat <b>gtga</b> tgt | getteteact | ggttttaatt | cigectece  | 30 |
|                |                          |            |            |            |    |
| <210>          | 3063                     |            |            |            |    |
| <211>          | 50                       |            |            |            |    |
| <212>          | DNA                      |            |            |            |    |
| <213>          | Homo sapiens             |            |            |            |    |
|                |                          |            |            |            |    |
| <400>          | 3063                     |            |            |            | 50 |
| tgatct         | gact ggaaaacaat          | cctgtatccc | ctcccaaaga | atcatgggct | 50 |
|                |                          |            |            |            |    |
| <210>          | 3064                     |            |            |            |    |
| <211>          |                          |            |            |            |    |
| <212>          | DNA                      |            |            |            |    |
| <213>          | Homo sapiens             |            |            |            |    |
|                |                          |            |            |            |    |
| <400>          | 3064                     |            |            |            |    |
| aacaag         | ccat gtttgcccta          | gtccaggatt | gcctcacttg | agacttgcta | 50 |
|                |                          |            |            |            |    |
| <210>          | 3065                     |            |            |            |    |
| <211>          | 50                       |            |            |            |    |
| <212>          | DNA                      |            |            |            |    |
|                | Homo sapiens             |            |            |            |    |
|                |                          |            |            |            |    |
| <400>          |                          |            |            |            |    |
| acagca         | tgag aaactgttag          | tacgcatacc | tcagttcaaa | cctttaggga | 50 |
|                |                          |            |            |            |    |
| -210           | 2066                     |            |            |            |    |
| <210><br><211> | 3066<br>50               |            |            |            |    |
| <211>          | DNA                      |            |            |            |    |
|                | Homo sapiens             |            |            |            |    |

|                                  | 3066<br>actt cttattacca           | aggacactct | atctgttgcc | tettaetett | 50 |
|----------------------------------|-----------------------------------|------------|------------|------------|----|
| <210><211><212><212><213>        | 3067<br>50<br>DNA<br>Homo sapiens |            |            |            |    |
| <400>                            |                                   |            |            |            |    |
| gagaget                          | ttc tccccgcctt                    | cagtttctga | tggatetage | catgttgaaa | 50 |
| <210><br><211><br><212><br><213> | 3068<br>50<br>DNA<br>Homo sapiens |            |            |            |    |
| <400>                            | 3068                              |            |            |            |    |
| ggaggaa                          | tgg ctgtgcccgt                    | cccctccact | taagcgacct | gagtctccag | 50 |
| <210><br><211>                   | 3069<br>50                        |            |            |            |    |
| <212>                            | DNA                               |            |            |            |    |
| <213>                            | Homo sapiens                      |            |            |            |    |
| <400>                            | 3069                              |            |            |            |    |
| ggaaat                           | gttg ctgtggggga                   | ttcattgtaa | ctctccttgt | gaactgetea | 50 |
| <210>                            | 3070                              |            |            |            |    |
| <211>                            | 50                                |            |            |            |    |
|                                  | DNA                               |            |            |            |    |
| <213>                            | Homo sapiens                      |            |            |            |    |
| <400>                            | 3070                              |            |            |            |    |
| aggtgg                           | gctg gacttctacc                   | tgccctcaag | ggtgtgtata | ttgtataggg | 50 |
|                                  |                                   |            |            |            |    |
| <210>                            |                                   |            |            |            |    |
| <211><br><212>                   | 50<br>DNA                         |            |            |            |    |
|                                  | Homo sapiens                      |            |            |            |    |
| <400>                            | 3071                              |            |            |            |    |
|                                  | etcc agtgctgccg                   | aggttagtgt | gtttattaga | cctgaaatga | 50 |
|                                  |                                   |            |            |            |    |
| <210>                            | 3072                              |            |            |            |    |
| <211>                            | 50                                |            |            |            |    |
| <212>                            | DNA                               |            |            |            |    |
| <213>                            | Homo sapiens                      |            |            |            |    |
| <400>                            | 3072                              |            |            |            |    |
| ccttgg                           | gctg agtttgctgg                   | tcctgaagat | tacagttttg | gttagagaga | 50 |
| <210>                            | 3073                              |            |            |            |    |
| <210><br><211>                   | 50                                |            |            |            |    |

1462

|                | DNA<br>Homo sapiens |            |            |            |    |
|----------------|---------------------|------------|------------|------------|----|
| <400>          | 3073                |            |            |            |    |
| tctcggt        | tta cctttttgct      | gttgtggttc | tttgttcttg | ctggtttgct | 50 |
| <210>          | 3074                |            |            |            |    |
| <211>          |                     |            |            |            |    |
| <212>          |                     |            |            |            |    |
|                | Homo sapiens        |            |            |            |    |
| <400>          |                     |            |            |            |    |
| tgtgcta        | agc ctgatgaaat      | gtgctccttc | aatctccatg | aaaccatcgt | 50 |
|                |                     |            |            |            |    |
| <210><br><211> | 3075                |            |            |            |    |
| <211>          |                     |            |            |            |    |
|                | Homo sapiens        |            |            |            |    |
|                |                     |            |            |            |    |
| <400>          |                     |            |            |            | 50 |
| ttcctg         | ctc catgttgtgg      | tcaagattgc | catttgette | etgagtttea | 50 |
| <210>          | 3076                |            |            |            |    |
| <211>          | 50                  |            |            |            |    |
| <212>          | DNA                 |            |            |            |    |
| <213>          | Homo sapiens        |            |            |            |    |
| <400>          |                     |            |            |            |    |
| ataaca         | gact ccagctcctg     | gtccacccgg | catgtcagtc | agcactctgg | 50 |
|                |                     |            |            |            |    |
|                | 3077                |            |            |            |    |
| <211>          | 50                  |            |            |            |    |
| <212>          |                     |            |            |            |    |
|                | Homo sapiens        |            |            |            |    |
| <400>          | 3077                |            |            |            |    |
| gggagc         | cate cetetetace     | aaggtggcaa | tgatggaggg | aacttgcatg | 50 |
| <210>          | 3078                |            |            |            |    |
| <211>          |                     |            |            |            |    |
| <212>          |                     |            |            |            |    |
| <213>          | Homo sapiens        |            |            |            |    |
| <400>          | 3078                |            |            |            |    |
| ttgacc         | tece atttttaeta     | tttgccaata | cctttttcta | ggaatgtgct | 50 |
| -210-          | 2070                |            |            |            |    |
| <210><br><211> | 3079<br>50          |            |            |            |    |
| <211>          |                     |            |            |            |    |
|                | Homo sapiens        |            |            |            |    |
| <400>          | 3079                |            |            |            |    |
|                | agec agggettace     | tgtacactga | cttgagacca | gttgaataaa | 50 |

| <210>   | 3080            |            |               |            |            |     |
|---------|-----------------|------------|---------------|------------|------------|-----|
|         | 50              |            |               |            |            |     |
| <212>   | DNA             |            |               |            |            |     |
| <213>   | Homo sapiens    |            |               |            |            |     |
|         |                 |            |               |            |            |     |
|         | 3080            |            |               |            |            |     |
| tagttag | agt ccaagacatg  | gttcctcccc | ctttgtctgt    | acatcctggc |            | 50  |
|         |                 |            |               |            |            |     |
|         |                 |            |               |            |            |     |
| <210>   | 3081            |            |               |            |            |     |
|         | 50              |            |               |            |            |     |
|         | DNA             |            |               |            |            |     |
| <213>   | Homo sapiens    |            |               |            |            |     |
|         |                 |            |               |            |            |     |
| <400>   | 3081            |            |               |            |            | 50  |
| tttgcat | ccc gagttttgta  | ttccaagaaa | atcaaagggg    | gccaatttgt |            | 50  |
|         |                 |            |               |            |            |     |
| <210>   | 3082            |            |               |            |            |     |
|         | 3002            |            |               |            |            |     |
| <211>   | 63              |            |               |            |            |     |
|         | DNA             |            |               |            |            |     |
| <213>   | Homo sapiens    |            |               |            |            |     |
| <400>   | 3082            |            |               |            |            |     |
|         | gaa ttgtaatacg  | 2010201212 | aaaaaaaat     |            | ******     | 60  |
| ggccagt | gaa tigtaatacg  | acteactata | gggaggeggt    |            |            | 00  |
| ttt     |                 |            |               |            |            | 63  |
|         |                 |            |               |            |            | 0.5 |
|         |                 |            |               |            |            |     |
| <210>   | 3083            |            |               |            |            |     |
| <211>   | 463             |            |               |            |            |     |
|         | DNA             |            |               |            |            |     |
|         | Homo sapiens    |            |               |            |            |     |
| (213)   | nomo suprens    |            |               |            |            |     |
| <400>   | 3083            |            |               |            |            |     |
|         | gac tcaggattta  | aaaactggaa | caataaaaat    | gacagcagtc | ggttggacga | 60  |
| 55      | JJ.             |            | - 55 - 5 55 - | 3          | 3333       |     |
| gcatcc  | cca aagttcacaa  | tataaccaaa | qactttqatt    | gcacattgtt | qttttttaat | 120 |
| •       | 3               | 3 33 3 3   |               |            | -          |     |
| agtcatt | cca aatatgagat  | gcattgttac | aggaagtccc    | ttgccatcct | aaaagcaccc | 180 |
| -       |                 |            |               |            |            |     |
| cacttct | ctc taaggagaat  | ggcccagtcc | tctcccaagt    | ccacacaggg | gagggatagc | 240 |
|         |                 |            |               |            |            |     |
| attgctt | tcg tgtaaattat  | gtaatgcaaa | atttttttaa    | tcttcgcctt | aatcttttt  | 300 |
|         |                 |            |               |            |            |     |
| attttgt | ttt attttgaatg  | atgagccttc | gtgcccccc     | ttcccccttt | tttcccccaa | 360 |
|         |                 |            |               |            |            |     |
| cttgaga | atgt atgaaggett | ttggtctccc | tgggagtggg    | tggaggcagc | cgggcttacc | 420 |
|         |                 |            |               |            |            |     |
| tgtacad | ctga cttgagacca | gttgaataaa | agtgcacacc    | tta        |            | 463 |
|         |                 |            |               |            |            |     |
|         |                 |            |               |            |            |     |
| <210>   | 3084            |            |               |            |            |     |
| <211>   | 491             |            |               |            |            |     |
|         | DNA .           |            |               |            |            |     |
| <213>   | Homo sapiens    |            |               |            |            |     |
|         |                 |            |               |            |            |     |
| <400>   | 3084            |            |               |            |            |     |
| gaagagt | tacc agaaaagtct | gctagagcag | taccatctgg    | gtctggatca | aaaacgcaga | 60  |
|         |                 |            |               | h          |            | 120 |
| adatate | gtgg ttggagagct | catttggaat | LLEGCCGATT    | ccacgaccga | acayttaccg | 120 |

| acgagag        | gtgc | tggggaataa | aaaggggatc | ttcactcggc | agagacaacc | aaaaagtgca | 180  |
|----------------|------|------------|------------|------------|------------|------------|------|
| gegtte         | ettt | tgcgagagag | atactggaag | attgccaatg | aaaccaggta | tccccactca | 240  |
| gtagcca        | aagt | cacaatgttt | ggaaaacagc | ccgtttactt | gagcaagact | gataccacct | 300  |
| gcgtgt         | ccct | tcctccccga | gtcagggcga | cttccacagc | agcagaacaa | gtgcctcctg | 360  |
| gactgtt        | cac  | ggcagaccag | aacgtttctg | gcctgggttt | tgtggtcatc | tattctagca | 420  |
| gggaaca        | acta | aaggtggaaa | taaaagattt | tctattatgg | aaataaagag | ttggcatgaa | 480  |
| agtcgct        | tact | g          |            |            |            |            | 491  |
|                |      |            |            |            |            |            |      |
| <210><br><211> | 3085 | 5          |            |            |            |            |      |
| <212>          | DNA  |            |            |            |            |            |      |
|                | Homo | sapiens    |            |            |            |            |      |
| <400>          | 3085 |            |            |            |            |            | 20   |
| cacaat         | gegg | ccgaggactt |            |            |            |            | 20   |
|                |      |            |            |            |            |            |      |
| <210>          | 3086 | 5          |            |            |            |            |      |
| <211>          | 20   |            |            |            |            |            |      |
| <212>          | DNA  |            |            |            |            |            |      |
| <213>          | Homo | sapiens    |            |            |            |            |      |
| <400>          | 3086 | 5          |            |            |            |            |      |
| tgtggc         | cgag | gactttgatt |            |            |            |            | _ 20 |
|                |      |            |            |            |            |            |      |
| -210-          | 308  | ,          |            |            |            |            |      |
| <210><br><211> | 20   | ,          |            |            |            |            |      |
| <212>          | DNA  |            |            |            |            |            |      |
| <213>          |      | sapiens    |            |            |            |            |      |
|                |      | -          |            |            |            |            |      |
| <400>          | 308  |            |            |            |            |            | 20   |
| Lggett         | ttag | gatggcaagg |            |            |            |            | 20   |
|                |      |            |            |            |            |            |      |
| <210>          | 308  | 8          |            |            |            |            |      |
| <211>          | 20   |            |            |            |            |            |      |
| <212>          | DNA  |            |            |            |            |            |      |
| <213>          | Home | o sapiens  |            |            |            |            |      |
| <400>          | 308  | В          |            |            |            |            |      |
| gggggc         | ttag | tttgcttcct |            |            |            |            | 20   |
|                |      |            |            |            |            |            |      |
| <210>          | 308  | 9          |            |            |            |            |      |
| <211>          | 20   |            |            |            |            |            |      |
| <212>          | DNA  |            |            |            |            |            |      |
| <213>          | Hom  | o sapiens  |            |            |            |            |      |
| <400>          | 308  | 9          |            |            |            |            |      |
|                |      | ttccttttgc |            |            |            |            | 20   |
|                |      |            |            |            |            |            |      |

| <210><br><211><br><212> | 20                                                         |    |
|-------------------------|------------------------------------------------------------|----|
| <213>                   | Homo sapiens                                               |    |
| <400><br>agcgtte        | 3090<br>cett ttgcgagaga                                    | 20 |
| <210>                   | 3091                                                       |    |
| <211>                   | 20                                                         |    |
| <212>                   |                                                            |    |
| <213>                   | Homo sapiens                                               |    |
| <400>                   |                                                            |    |
| cgggct                  | gttt tccaaacatt                                            | 20 |
| .010                    | 2002                                                       |    |
| <210><br><211>          | 3092                                                       |    |
| <212>                   |                                                            |    |
|                         | Homo sapiens                                               |    |
| <400>                   | 3092                                                       |    |
| gaaggg                  | acac gcaggtggta                                            | 20 |
|                         |                                                            |    |
| <210>                   |                                                            |    |
| <211>                   |                                                            |    |
| <212>                   |                                                            |    |
| <213>                   | Homo sapiens                                               |    |
| <400>                   |                                                            |    |
| taccac                  | etge gtgteeette                                            | 20 |
| <210>                   | 2094                                                       |    |
| <211>                   |                                                            |    |
| <212>                   |                                                            |    |
|                         | Homo sapiens                                               |    |
| <400>                   | 3094                                                       |    |
|                         | cttg ttctgctgct g                                          | 21 |
|                         |                                                            |    |
| <210>                   |                                                            |    |
| <211>                   |                                                            |    |
| <212>                   |                                                            |    |
| (213)                   | Homo sapiens                                               |    |
| <400>                   |                                                            |    |
| tgtggc                  | cgag gactttgatt                                            | 20 |
| <210>                   | 2006                                                       |    |
| <211>                   |                                                            |    |
| <212>                   |                                                            |    |
|                         | Homo sapiens                                               |    |
| <400>                   | 3096                                                       |    |
|                         | totg gaggoodet tgtgtgtaac aaggtggood agggoattgt otoctatgga | 60 |

| cgaaacaatg gcat       | gcetee acg          | gagcctgc | accaaagtct | caagctttgt | acactggata | 120 |
|-----------------------|---------------------|----------|------------|------------|------------|-----|
| aagaaaacca tgaa       | a <b>c</b> gcta cta | actacag  | gaagcaaact | aagcccccgc | tgtaatgaaa | 180 |
| caccttctct ggag       | ccaagt cca          | agatttac | actgggagag | gtgccagcaa | ctgaataaat | 240 |
| acctctccca gtgt       | aaatct gga          | agccaagt | ccagatttac | actgggagag | gtgccagcaa | 300 |
| ctgaataaat acct       | cttage tga          | agtgg    |            |            |            | 327 |
| <210> 3097            |                     |          |            |            |            |     |
| <211> 20              |                     |          |            |            |            |     |
| <212> DNA             |                     |          |            |            |            |     |
| <213> Homo sag        | oiens               |          |            |            |            |     |
| <400> 3097            |                     |          |            |            |            |     |
| acgageetge acca       | aagtct              |          |            |            |            | 20  |
|                       |                     |          |            |            |            |     |
| <210> 3098            |                     |          |            |            |            |     |
| <211> 20              |                     |          |            |            |            |     |
| <212> DNA             |                     |          |            |            |            |     |
| <213> Homo sap        | oiens               |          |            |            |            |     |
| <400> 3098            |                     |          |            |            |            |     |
| aaacaatggc atg        | ctccac              |          |            |            |            | 20  |
| 33 3                  |                     |          |            |            |            |     |
| <210> 3099            |                     |          |            |            |            |     |
| <211> 20              |                     |          |            |            |            |     |
| <211> 20<br><212> DNA |                     |          |            |            |            |     |
| <213> Homo say        | iona                |          |            |            |            |     |
|                       | Telle               |          |            |            |            |     |
| <400> 3099            |                     |          |            |            |            |     |
| tcattacage ggg        | gcttag              |          |            |            |            | 20  |
| <210> 3100            |                     |          |            |            |            |     |
| <211> 20              |                     |          |            |            |            |     |
| <212> DNA             |                     |          |            |            |            |     |
| <213> Homo saj        | iene                |          |            |            |            |     |
|                       | Jiens               |          |            |            |            |     |
| <400> 3100            |                     |          |            |            |            |     |
| gggggcttag ttt        | getteet             |          |            |            |            | 20  |
| <210> 3101            |                     |          |            |            |            |     |
| <211> 5252            |                     |          |            |            |            |     |
| <212> DNA             |                     |          |            |            |            |     |
| <213> Homo say        | piens               |          |            |            |            |     |
| <400> 3101            |                     |          |            |            |            |     |
| ctctctccca gaa        | catatet ete         | actacaea | acaccaaacc | ctttcgctct | gcagaactee | 60  |
|                       |                     |          |            |            |            |     |
| acttgcaaga cca        | tatcaa cto          | cctaatcc | cagctcagaa | agggagcctc | tgcgactcat | 120 |
| tcatcgccct cca        | ggactga ct          | gcattgca | cagatgatgg | atatttacgt | atgtttgaaa | 180 |
| cgaccat.cct gga       | tggtgga caa         | ataaaaga | atgaggactg | cttcaaattt | ccagtggctg | 240 |

ttatcaacat ttattcttct atatctaatg aatcaagtaa atagccagaa aaagggggct 300 cctcatgatt tgaaqtqtqt aactaacaat ttqcaaqtqt qqaactqttc ttqqaaaqca 360 ccctctqqaa caggccgtgg tactgattat gaagtttgca ttgaaaacag gtcccgttct 420 tqttatcaqt tqqaqaaaac caqtattaaa attccaqctc tttcacatgg tgattatgaa 480 ataacaataa attototaca tqattttqqa agttotacaa gtaaattcac actaaatgaa 540 caaaacqttt ccttaattcc aqatactcca qagatcttga atttgtctgc tgatttctca 600 acctctacat tatacctaaa qtqqaacqac aqggqttcaq tttttccaca ccgctcaaat 660 qttatctqqq aaattaaaqt tctacqtaaa qaqaqtatgg aqctcqtaaa attagtgacc 720 cacaacacaa ctctqaatqq caaaqataca cttcatcact qqaqttqqgc ctcaqatatq 780 cccttqqaat qtqccattca ttttqtqqaa attaqatqct acattqacaa tcttcatttt 840 tctqqtctcq aaqaqtqqaq tqactqqaqc cctqtqaaqa acatttcttq qatacctgat 900 tctcaqacta aqqtttttcc tcaaqataaa qtqatacttq taqqctcaqa cataacattt 960 tqttqtqtq qtcaaqaaaa aqtqttatca qcactqattq qccatacaaa ctqccccttq 1020 atccatcttg atggggaaaa tgttgcaatc aagattcgta atatttctgt ttctgcaagt 1080 agtggaacaa atgtagtttt tacaaccgaa gataacatat ttggaaccgt tatttttgct 1140 ggatatccac cagatactcc tcaacaactg aattgtgaga cacatgattt aaaagaaatt 1200 atatgtagtt ggaatccagg aagggtgaca gcgttggtgg gcccacgtgc tacaagctac 1260 actttagttg aaaqtttttc aggaaaatat qttagactta aaagagctga agcacctaca 1320 aacqaaaqct atcaattatt atttcaaatq cttccaaatc aagaaatata taattttact 1380 ttgaatgctc acaatccgct gggtcgatca caatcaacaa ttttagttaa tataactgaa 1440 1500 aaaqtttatc cccatactcc tacttcattc aaaqtqaaqq atattaattc aacaqctqtt 1560 aaactttctt ggcatttacc aggcaacttt gcaaagatta attttttatg tgaaattgaa 1620 attaaqaaat ctaattcaqt acaaqaqcaq cqqaatqtca caatcaaaqq aqtaqaaaat tcaagttatc ttgttgctct ggacaagtta aatccataca ctctatatac ttttcggatt 1680 cgttgttcta ctgaaacttt ctggaaatgg agcaaatgga gcaataaaaa acaacattta 1740 acaacagaag ccagtccttc aaaggggcct gatacttgga gagagtggag ttctgatgga 1800 aaaaatttaa taatctattg gaagccttta cccattaatg aagctaatgg aaaaatactt 1860 tectacaatg tategtgtte atcagatgag gaaacacagt ceetttetga aatceetgat 1920 cctcaqcaca aagcagagat acgacttgat aagaatgact acatcatcag cgtagtggct 1980 aaaaattctg tgggctcatc accaccttcc aaaatagcga gtatggaaat tccaaatgat 2040

gatctcaaaa tagaacaagt tgttgggatg ggaaagggga ttctcctcac ctggcattac 2100 gaccccaaca tgacttgcga ctacgtcatt aagtggtgta actcgtctcg gtcggaacca 2160 2220 tgccttatgg actggagaaa agttccctca aacagcactg aaactgtaat agaatctgat gagtttcgac caggtataag atataatttt ttcctgtatg gatgcagaaa tcaaggatat 2280 caattattac gctccatgat tggatatata gaagaattgg ctcccattgt tgcaccaaat 2340 tttactqttq aggatacttc tgcagattcg atattagtaa aatgggaaga cattcctgtg 2400 2460 gaagaactta gaggcttttt aagaggatat ttgttttact ttggaaaagg agaaagagac acatctaaga tgagggtttt agaatcaggt cgttctqaca taaaagttaa gaatattact 2520 gacatatece agaaqacaet qagaattqet gatetteaaq qtaaaacaag ttaccaeetg 2580 qtcttqcqaq cctatacaqa tqqtqqaqtq qqcccqqaga agagtatgta tgtggtgaca 2640 aaqqaaaatt ctqtqqqatt aattattqcc attctcatcc cagtggcagt ggctgtcatt 2700 qttqqaqtqq tqacaaqtat cctttqctat cggaaacgag aatggattaa agaaaccttc 2760 taccctgata ttccaaatcc agaaaactgt aaagcattac agtttcaaaa gagtgtctgt 2820 2880 qaqqqaaqca qtqctcttaa aacattqqaa atqaatcctt qtaccccaaa taatqttqaq 2940 gttctggaaa ctcgatcagc atttcctaaa atagaagata cagaaataat ttccccagta gctgagcgtc ctgaagatcg ctctgatgca gagcctgaaa accatgtggt tgtgtcctat 3000 3060 tgtccaccca tcattgagga agaaatacca aacccagccg cagatgaagc tggagggact gcacaggtta tttacattga tgttcagtcg atgtatcagc ctcaagcaaa accagaagaa 3120 qaacaaqaaa atqaccctgt aqqaqgggca ggctataagc cacagatgca cctccccatt 3180 aattetactq tqqaaqatat aqctqcaqaa qaggacttag ataaaactgc gggttacaga 3240 cctcaqqcca atqtaaatac atggaattta qtqtctccag actctcctag atccatagac 3300 agcaacaqtq agattqtctc atttqqaaqt ccatqctcca ttaattcccg acaatttttq 3360 3420 attectecta aaqatqaaqa eteteetaaa tetaatqqaq qaqqqtgqte etttacaaac ttttttcaga acaaaccaaa cgattaacag tgtcaccgtg tcacttcagt cagccatctc 3480 3540 aataagetet tactgetagt gttgetacat cagcactggg cattettgga gggateetgt gaagtattgt taggaggtga acttcactac atgttaagtt acactgaaag ttcatgtgct 3600 tttaatgtag tctaaaagcc aaagtatagt gactcagaat cctcaatcca caaaactcaa 3660 3720 gattgggagg tetttgtgat caagccaaag aattetcatg tactetacet teaagaagca tttcaagget aatacetact tgtacgtaca tgtaaaacaa atcccgccgc aactgttttc 3780 tgttctgttg tttgtggttt tctcatatgt atacttggtg gaattgtaag tggatttgca 3840 ggccagggag aaaatgtcca agtaacaggt gaagtttatt tgcctgacgt ttactccttt 3900

| ctagatgaaa | accaagcaca | gattttaaaa | cttctaagat | tattctcctc | tatccacagc | 3960 |
|------------|------------|------------|------------|------------|------------|------|
| attcacaaaa | attaatataa | tttttaatgt | agtgacagcg | atttagtgtt | ttgtttgata | 4020 |
| aagtatgctt | atttctgtgc | ctactgtata | atggttatca | aacagttgtc | tcaggggtac | 4080 |
| aaactttgaa | aacaagtgtg | acactgacca | gcccaaatca | taatcatgtt | ttcttgctgt | 4140 |
| gataggtttt | gcttgccttt | tcattattt  | ttagctttta | tgcttgcttc | cattatttca | 4200 |
| gttggttgcc | ctaatattta | aaatttacac | ttctaagact | agagacccac | attttttaaa | 4260 |
| aatcatttta | ttttgtgata | cagtgacagc | tttatatgag | caaattcaat | attattcata | 4320 |
| agcatgtaat | tccagtgact | tactatgtga | gatgactact | aagcaatatc | tagcagcgtt | 4380 |
| agttccatat | agttctgatt | ggatttcgtt | cctcctgagg | agaccatgcc | gttgagcttg | 4440 |
| gctacccagg | cagtggtgat | ctttgacacc | ttctggtgga | tgttcctccc | actcatgagt | 4500 |
| cttttcatca | tgccacatta | tctgatccag | tcctcacatt | tttaaatata | aaactaaaga | 4560 |
| gagaatgctt | cttacaggaa | cagttaccca | agggctgttt | cttagtaact | gtcataaact | 4620 |
| gatctggatc | catgggcata | cctgtgttcg | aggtgcagca | attgcttggt | gagctgtgca | 4680 |
| gaattgattg | ccttcagcac | agcatcctct | gcccaccctt | gtttctcata | agcgatgtct | 4740 |
| ggagtgattg | tggttcttgg | aaaagcagaa | ggaaaaacta | aaaagtgtat | cttgtatttt | 4800 |
| ccctgccctc | aggttgccta | tgtattttac | cttttcatat | ttaaggcaaa | agtacttgaa | 4860 |
| aattttaagt | gtccgaataa | gatatgtctt | ttttgtttgt | tttttttggt | tggttgtttg | 4920 |
| ttttttatca | tctgagattc | tgtaatgtat | ttgcaaataa | tggatcaatt | aattttttt  | 4980 |
| gaagctcata | ttgtatcttt | ttaaaaacca | tgttgtggaa | aaaagccaga | gtgacaagtg | 5040 |
| acaaaatcta | tttaggaact | ctgtgtatga | atcctgattt | taactgctag | gattcagcta | 5100 |
| aatttctgag | ctttatgatc | tgtggaaatt | tggaatgaaa | tcgaattcat | tttgtacata | 5160 |
| catagtatat | taaaactata | taatagttca | tagaaatgtt | cagtaatgaa | aaaatatatc | 5220 |
| caatcagagc | catcccgaaa | aaaaaaaaa  | aa         |            |            | 5252 |

<sup>&</sup>lt;210> 3102 <211> 5252 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;220>

<sup>&</sup>lt;221> misc feature

<sup>&</sup>lt;222> (3967)..(3988) <223> n is a, c, g, t or u

<sup>&</sup>lt;400> 3102

ctetetecea gaacgtgtet etgetgeaag geacegggee etttegetet geagaactge 60

120 acttqcaaqa ccattatcaa ctcctaatcc caqctcagaa agggagcctc tgcgactcat tcatcqccct ccaqqactga ctqcattgca cagatgatgg atatttacgt atgtttgaaa 180 cgaccatect ggatggtgga caataaaaga atgaggactg etteaaattt ecagtggetg 240 ttatcaacat ttattcttct atatctaatq aatcaaqtaa atagccagaa aaagggggct 300 cctcatqatt tqaaqtqtqt aactaacaat ttqcaaqtqt qqaactqttc ttggaaaqca 360 ccctctqqaa caqqccqtqq tactqattat qaaqtttqca ttqaaaacag qtcccqttct 420 tqttatcaqt tqqaqaaaac caqtattaaa attccaqctc tttcacatqq tgattatgaa 480 ataacaataa attototaca tgattttgga agttotacaa gtaaattcac actaaatgaa 540 caaaacqttt ccttaattcc aqatactcca qaqatcttqa atttqtctqc tqatttctca 600 acctetacat tatacetaaa qtqqaacqac aqqqqttcaq tttttccaca ccgctcaaat 660 gttatctqqq aaattaaaqt tctacqtaaa qaqaqtatqq aqctcqtaaa attaqtqacc 720 cacaacacaa ctctqaatqq caaaqataca cttcatcact qqaqttqqqc ctcaqatatq 780 cccttggaat gtgccattca ttttgtggaa attagatgct acattgacaa tcttcatttt 840 totggtotog aagagtggag tgactggago cotgtgaaga acatttottg gatacotgat 900 tctcagacta aggtttttcc tcaagataaa gtgatacttg taggctcaga cataacattt 960 tgttqtqtqa gtcaaqaaaa agtqttatca gcactgattg gccatacaaa ctgccccttg 1020 atccatcttq atqqqqaaaa tgttqcaatc aaqattcqta atatttctgt ttctgcaagt 1080 aqtqqaacaa atqtaqtttt tacaaccqaa qataacatat ttqqaaccgt tatttttgct 1140 qqatatccac caqatactcc tcaacaactq aattqtqaqa cacatqattt aaaagaaatt 1200 atatqtaqtt qqaatccaqq aaqqqtqaca qcqttqqtqq qcccacqtqc tacaaqctac 1260 1320 actttagttq aaaqtttttc aqqaaaatat qttagactta aaaqaqctqa aqcacctaca 1380 aacgaaagct atcaattatt atttcaaatg cttccaaatc aagaaatata taattttact ttgaatgete acaateeget gggtegatea caateaacaa ttttagttaa tataactgaa 1440 aaagtttatc cccatactcc tacttcattc aaagtgaagg atattaattc aacagctgtt 1500 aaactttctt ggcatttacc aggcaacttt gcaaagatta attttttatg tgaaattgaa 1560 1620 attaaqaaat ctaattcaqt acaagagcag cggaatgtca caatcaaagg agtagaaaat tcaaqttatc ttqttqctct qqacaaqtta aatccataca ctctatatac ttttcggatt 1680 cqttqttcta ctqaaacttt ctggaaatqq agcaaatgga gcaataaaaa acaacattta 1740 acaacagaag ccagtccttc aaaggggcct gatacttgga gagagtggag ttctgatgga 1800 aaaaatttaa taatctattg qaaqccttta cccattaatg aaqctaatgg aaaaatactt 1860

tectacaatq tateqtqttc atcaqatqaq qaaacacagt ccctttctga aatccctqat 1920 cctcagcaca aagcagagat acqacttgat aagaatgact acatcatcag cgtagtggct 1980 aaaaattctg tgggctcatc accaccttcc aaaatagcga gtatggaaat tccaaatgat 2040 gateteaaaa tagaacaagt tgttgggatg ggaaagggga tteteeteac etggcattac 2100 qaccccaaca tgacttgcga ctacgtcatt aagtggtgta actcgtctcg gtcggaacca 2160 tgccttatgg actggagaaa agttccctca aacagcactg aaactgtaat agaatctgat 2220 2280 gagtttcgac caggtataag atataatttt ttcctgtatg gatgcagaaa tcaaggatat 2340 caattattac gctccatgat tggatatata gaagaattgg ctcccattgt tgcaccaaat 2400 tttactqttq aggatacttc tgcagattcg atattagtaa aatgggaaga cattcctgtg qaaqaactta qaqqcttttt aaqaqqatat ttgttttact ttggaaaagg agaaagagac 2460 2520 acatctaaqa tgaqqqtttt agaatcaqqt cgttctgaca taaaagttaa gaatattact qacatatece agaaqacaet gagaattget gatetteaag gtaaaacaag ttaccaeetg 2580 qtcttqcqaq cctatacaqa tqqtqqaqtg qgcccggaga agagtatgta tgtggtgaca 2640 aaqqaaaatt ctqtqqqatt aattattqcc attctcatcc cagtqqcagt ggctgtcatt 2700 2760 gttggagtgg tgacaagtat cctttgctat cggaaacgag aatggattaa agaaaccttc taccctgata ttccaaatcc agaaaactgt aaagcattac agtttcaaaa gagtgtctgt 2820 2880 gagggaagca gtgctcttaa aacattggaa atgaatcctt gtaccccaaa taatgttgag 2940 gttctggaaa ctcgatcagc atttcctaaa atagaagata cagaaataat ttccccagta 3000 getgagegte etgaagateg etetgatgea gageetgaaa accatgtggt tgtgteetat tqtccaccca tcattqaqqa agaaatacca aacccagccg cagatgaagc tggagggact 3060 qcacaqqtta tttacattqa tgttcagtcg atgtatcagc ctcaagcaaa accagaagaa 3120 qaacaaqaaa atqaccctqt aqqaqqqqca qqctataagc cacagatgca cctccccatt 3180 aattctactq tqqaaqatat aqctqcaqaa qaqqacttag ataaaactgc gggttacaga 3240 cctcaggcca atgtaaatac atggaattta gtgtctccag actctcctag atccatagac 3300 agcaacagtg agattgtctc atttggaagt ccatgctcca ttaattcccg acaatttttg 3360 attectecta aagatgaaga eteteetaaa tetaatggag gagggtggte etttacaaac 3420 3480 ttttttcaga acaaaccaaa cgattaacag tgtcaccgtg tcacttcagt cagccatctc 3540 aataagetet tactgetagt gttgetacat cagcactggg cattettgga gggateetgt gaagtattgt taggaggtga acttcactac atgttaagtt acactgaaag ttcatgtgct 3600 3660 tttaatgtag tctaaaagcc aaagtatagt gactcagaat cctcaatcca caaaactcaa gattgggage tetttgtgat caagecaaag aatteteatg tactetacet teaagaagea 3720

| tttcaaggct | aatacctact | tgtacgtaca | tgtaaaacaa | atcccgccgc | aactgttttc | 3780 |
|------------|------------|------------|------------|------------|------------|------|
| tgttctgttg | tttgtggttt | tctcatatgt | atacttggtg | gaattgtaag | tggatttgca | 3840 |
| ggccagggag | aaaatgtcca | agtaacaggt | gaagtttatt | tgcctgacgt | ttactccttt | 3900 |
| ctagatgaaa | accaagcaca | gattttaaaa | cttctaagat | tattctcctc | tatccacage | 3960 |
| attcacnnnn | nnnnnnnnn  | nnnnnnngt  | agtgacagcg | atttagtgtt | ttgtttgata | 4020 |
| aagtatgctt | atttctgtgc | ctactgtata | atggttatca | aacagttgtc | tcaggggtac | 4080 |
| aaactttgaa | aacaagtgtg | acactgacca | gcccaaatca | taatcatgtt | ttcttgctgt | 4140 |
| gataggtttt | gettgeettt | tcattatttt | ttagctttta | tgcttgcttc | cattatttca | 4200 |
| gttggttgcc | ctaatattta | aaatttacac | ttctaagact | agagacccac | attttttaaa | 4260 |
| aatcatttta | ttttgtgata | cagtgacagc | tttatatgag | caaattcaat | attattcata | 4320 |
| agcatgtaat | tccagtgact | tactatgtga | gatgactact | aagcaatatc | tagcagcgtt | 4380 |
| agttccatat | agttctgatt | ggatttcgtt | cctcctgagg | agaccatgcc | gttgagcttg | 4440 |
| gctacccagg | cagtggtgat | ctttgacacc | ttctggtgga | tgttcctccc | actcatgagt | 4500 |
| cttttcatca | tgccacatta | tctgatccag | tcctcacatt | tttaaatata | aaactaaaga | 4560 |
| gagaatgctt | cttacaggaa | cagttaccca | agggctgttt | cttagtaact | gtcataaact | 4620 |
| gatctggatc | catgggcata | cctgtgttcg | aggtgcagca | attgcttggt | gagetgtgca | 4680 |
| gaattgattg | ccttcagcac | agcatcctct | gcccaccctt | gtttctcata | agcgatgtct | 4740 |
| ggagtgattg | tggttcttgg | aaaagcagaa | ggaaaaacta | aaaagtgtat | cttgtatttt | 4800 |
| ccctgccctc | aggttgccta | tgtattttac | cttttcatat | ttaaggcaaa | agtacttgaa | 4860 |
| aattttaagt | gtccgaataa | gatatgtctt | ttttgtttgt | tttttttggt | tggttgtttg | 4920 |
| ttttttatca | tctgagattc | tgtaatgtat | ttgcaaataa | tggatcaatt | aattttttt  | 4980 |
| gaagctcata | ttgtatcttt | ttaaaaacca | tgttgtggaa | aaaagccaga | gtgacaagtg | 5040 |
| acaaaatcta | tttaggaact | ctgtgtatga | atcctgattt | taactgctag | gattcagcta | 5100 |
| aatttctgag | ctttatgatc | tgtggaaatt | tggaatgaaa | tcgaattcat | tttgtacata | 5160 |
| catagtatat | taaaactata | taatagttca | tagaaatgtt | cagtaatgaa | aaaatatatc | 5220 |
| caatcagagc | catcccgaaa | aaaaaaaaa  | aa         |            |            | 5252 |

1473

<sup>&</sup>lt;210> 3103

<sup>&</sup>lt;211> 841

<sup>&</sup>lt;212> DNA <213> Homo sapiens

<sup>&</sup>lt;400> 3103

tttttttttt ttttcttaaa tagcatttat tttctctcaa aaagcctatt atgtactaac 60

| aagtgttoot otaaattaga aaggoatoao taotaaaatt ttatacatat tttttatata 1                                                                                                                                            | 120 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| agagaaggaa tattgggtta caatctgaat ttctctttat gatttctctt aaagtataga 1                                                                                                                                            | 180 |
| acagctatta aaatgactaa tattgotaaa atgaaggota ctaaatttcc ccaagaattt 2                                                                                                                                            | 240 |
| cggtggaatg cccaaaaatg gtgttaagat atgcagaagg gcccatttca agcaaagcaa                                                                                                                                              | 300 |
| tctctccacc ccttcataaa agatttaagc taaaaaaaaaa                                                                                                                                                                   | 360 |
| cagetgaaga cattgggeta tttataaate tteteecagt eecceagaca geeteacatg 4                                                                                                                                            | 120 |
| ggggctgtaa acagctaact aaaatatett tgagactett atgtecacac ecaetgacac 4                                                                                                                                            | 180 |
| aaggagagct gtaaccacag tgaaactaga ctttgctttc ctttagcaag tatgtgccta                                                                                                                                              | 540 |
| tgatagtaaa ctggagtaaa tgtaacagta ataaaacaaa ttttttttaa aaataaaaat 6                                                                                                                                            | 500 |
| tatacctttt tctccaacaa acggtaaaga ccacgtgaag acatccataa aattaggcaa                                                                                                                                              | 660 |
| ccagtaaaga tgtggagaac cagtaaactg tcgaaattca tcacattatt ttcatacttt  7                                                                                                                                           | 720 |
| aatacagcag ctttaattat tggagaacat caaagtaatt aggtgccgaa aaacattgtt                                                                                                                                              | 780 |
| attaatgaag ggaacccctg acgtttgacc ttttctgtac catctatagc cctggacttg                                                                                                                                              | B40 |
| a 8                                                                                                                                                                                                            | 841 |
| <210> 3104 <211> 841 <212> DNA <213> Homo sapiens  <220> <221> misc_feature <222> (94)(121) <223> n is a, c, g, t or u  <220> <221- misc_feature <222> (36)(604) <321- misc_feature <323- n is a, c, g, t or u |     |
| <400> 3104<br>tttttttttt ttttcttaaa tagcatttat tttctctcaa aaagcctatt atgtactaac                                                                                                                                | 60  |
|                                                                                                                                                                                                                | 120 |
| ngagaaggaa tattgggtta caatctgaat ttctctttat gatttctctt aaagtataga                                                                                                                                              | 180 |
| acagctatta aaatgactaa tattgctaaa atgaaggcta ctaaatttcc ccaagaattt 2                                                                                                                                            | 240 |
| cggtggaatg cccaaaaatg gtgttaagat atgcagaagg gcccatttca agcaaagcaa                                                                                                                                              | 300 |
| tototocaco cottoataaa agatttaago taaaaaaaaa aaaaaaagaa gaaaatccaa                                                                                                                                              | 360 |
|                                                                                                                                                                                                                | 420 |

| ggggctgtaa acagctaact aaaatatctt tgagactctt atgtccacac ccactgacac                                                                     | 480 |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|
| aaggagaget gtaaccacag tgaaactaga etttgettte etttagcaag tatgtgeeta                                                                     | 540 |
| tgatagtaaa ctggagtaaa tgtaacagnn nnnnnnnnn nnnnnnnnn nnnnnnnnn                                                                        | 600 |
| nnnncctttt tetecaacaa aeggtaaaga ceaegtgaag acatecataa aattaggeaa                                                                     | 660 |
| ccagtaaaga tgtggagaac cagtaaactg tcgaaattca tcacattatt ttcatacttt                                                                     | 720 |
| aatacagcag ctttaattat tggagaacat caaagtaatt aggtgccgaa aaacattgtt                                                                     | 780 |
| attaatgaag ggaacccctg acgtttgacc ttttctgtac catctatagc cctggacttg                                                                     | 840 |
| a                                                                                                                                     | 841 |
| <210> 3105<br><211> 63<br><212> DNA<br><213> Homo sapiens<br><400> 3105                                                               | 60  |
| ggccagtgaa ttgtaatacg actcactata gggaggcggt ttttttttt tttttttt                                                                        |     |
| ttt                                                                                                                                   | 63  |
| <210> 3106 <211> 609 <212> DNA <213> Homo sapiens  <220> <221> misc_feature <222> (303) . (304) <223> nis a, c, g, t or u <4400> 3106 |     |
| acatcagtgg ctacatgtga gctcagacct gggtctgctg ctgtctgtct tcccaatatc                                                                     | 60  |
| catgacettg actgatgcag gtgtctaggg atacaggtca cacageegte cateceegte                                                                     | 120 |
| ctgctggagc ccagagcacg gaagcctggc cctccgagga gacagaaggg agtgtcggac                                                                     | 180 |
| accatgacga gagcttggca gaataaataa cttctttaaa caattttacg gcatgaagaa                                                                     | 240 |
| atctggacca gtttattaaa tgggatttct gccacaaacc ttggaagaat cacatcatct                                                                     | 300 |
| tanneccaag tgaaaactgt gttgegtaac aaagaacatg actgegetee acacatacat                                                                     | 360 |
| cattgcccgg cgaggcggga cacaagtcaa cgacggaaca cttgagacag gcctacaact                                                                     | 420 |
| gtgcacgggt cagaagcaag tttaagccat acttgctgca gtgagactac atttctgtct                                                                     | 480 |
| atagaagata cctgacttga tctgtttttc agctccagtt cccagatgtg cgtgttgtgg                                                                     | 540 |
| tccccaagta tcaccttcca atttctggga gcagtgctct ggccggatcc ttgccgcgcg                                                                     | 600 |
| gataaaaac                                                                                                                             | 609 |

| <210>   | 3107 |            |            |            |            |            |     |
|---------|------|------------|------------|------------|------------|------------|-----|
| <211>   | 50   |            |            |            |            |            |     |
|         | DNA  |            |            |            |            |            |     |
| <213>   | Homo | sapiens    |            |            |            |            |     |
| <400>   | 3107 |            |            |            |            |            |     |
|         |      |            | ggggaccaca | acacqcacat | ctqqqaactq |            | 50  |
| J       | _    | 33 3       | 3333       | _          | 335        |            |     |
| <210>   | 3108 | ı          |            |            |            |            |     |
| <211>   | 738  |            |            |            |            |            |     |
|         | DNA  |            |            |            |            |            |     |
|         |      | sapiens    |            |            |            |            |     |
|         |      | _          |            |            |            |            |     |
|         | 3108 |            | ttcttacaca | caagtttaat | accaccttcc | tetatetace | 60  |
| uuugcug | Juuc | cgagageeeg | ccccacaca  | caageeeaae | 9000000000 | ,          |     |
| atggaco | aac  | aagcaatata | tgctgagtta | aacttaccca | cagactcagg | cccagaaagt | 120 |
| tcttcac | ctt  | catctcttcc | tcgggatgtc | tgtcagggtt | caccttggca | tcaatttgcc | 180 |
| ctgaaac | tta  | gctgtgctgg | gattattctc | cttgtcttgg | ttgttactgg | gttgagtgtt | 240 |
| tragtga | cat  | ccttaataca | gaaatcatca | atagaaaaat | acaatataaa | cattcaacag | 300 |
|         |      |            |            |            |            |            |     |
| agcagga | ata  | aaacaacaga | gagaccgggt | ctcttaaact | gcccaatata | ttggcagcaa | 360 |
| ctccgag | aga  | aatgcttgtt | attttctcac | actgtcaacc | cttggaataa | cagtctagct | 420 |
| gattgtt | cca  | ccaaagaatc | cagcctgctg | cttattcgag | ataaggatga | attgatacac | 480 |
| acacaga | acc  | tgatacgtga | caaagcaatt | ctgttttgga | ttggattaaa | tttttcatta | 540 |
| tcagaaa | aga  | actggaagtg | gataaacggc | tctttttaa  | attctaatga | cttagaaatt | 600 |
| agaggtg | gatg | ctaaagaaaa | cagctgtatt | tccatctcac | agacatctgt | gtattctgag | 660 |
| tactgta | igta | cagaaatcag | atggatctgc | caaaaagaac | taacacctgt | gagaaataaa | 720 |
| atatata | cta  | actcttga   |            |            |            |            | 738 |
| 303000  | ,    |            |            |            |            |            |     |
| <210>   | 3109 |            |            |            |            |            |     |
| <211>   | 3809 |            |            |            |            |            |     |
| <211>   | DNA  | ,          |            |            |            |            |     |
| <213>   |      | sapiens    |            |            |            |            |     |
|         |      |            |            |            |            |            |     |
| <400>   | 3109 |            | cgtagaccca | 2002002000 | accacttcac | acctccctcc | 60  |
| geegeeg | jeca | cgcgcacccc | cgtagaccca | agcaccagcc | geegeeeede | acceccec   | 00  |
| ccggcct | tcc  | cctgcggcgg | cggcggcggc | aagatgggcg | agaacagcgg | cgcgctgagc | 120 |
| gcgcagg | gcgg | ccgtggggcc | cggagggcgc | gcccggcccg | aggtgcgctc | gatggtggac | 180 |
| gtgctgg | gegg | accacgcagg | cgagctcgtg | cgcaccgaca | gccccaactt | cctctgctcc | 240 |
| gtgctg  | cct  | cgcactggcg | ctgcaacaag | acgctgcccg | tegeetteaa | ggtggtggca | 300 |
| ttggggg | gacg | tgccggatgg | tacggtggtg | actgtgatgg | caggcaatga | cgagaactac | 360 |
| ttggggg | gacg | tgccggatgg | tacggtggtg | actgtgatgg | caggcaatga | cgagaactac | 36  |

tecqetgaqe tgcgcaatge etcggccgtc atgaagaacc aggtggccag gttcaacgac 420 cttcqcttcq tgggccgcag tgggcgaggg aagagtttca ccctgaccat cactgtgttc 480 accaacccca cccaagtggc gacctaccac cgagccatca aggtgaccgt ggacggaccc 540 cgggagccca gacggcaccg gcagaagctg gaggaccaga ccaagccgtt ccctgaccgc 600 tttqqqqacc tqqaacqqct qcqcatqcqq qtqacaccga gcacacccag cccccgaggc 660 tcactcagca ccacaagcca cttcagcagc cagccccaga ccccaatcca aggcacctcg 720 gaactgaacc cattotocga coccogocag tttgaccgct cottocccac gotgocaacc 780 ctcacggaga gccgcttccc agaccccagg atgcattatc ccggggccat gtcagctgcc 840 tteccetaca gegecacqce etegggcacq agcateagca geeteagcqt ggegggcatg 900 coggocacca googetteca coatacetac etcocqccac ectaccoggq ggccccqcag 960 aaccagagog ggcccttcca ggccaaccog tccccctacc acctctacta cgggacatcc 1020 totageteet accapttete catagtagee agcageagea gtagagagea cegeteacet 1080 acceptatge typectetty caccageage getgeetety tegeogeogy caaceteaty 1140 aaccccagcc tgggcggcca gagtgatggc gtggaggccg acggcagcca cagcaactca 1200 cccaeggccc tgagcaegcc aggcegcatg gatgaggccg tgtggeggcc ctactgaecg 1260 ccctggtgga ctcctcccgc tggaggcggg gaccctaaca accttcaaga ccagtgatgg 1320 geeggeteeg aggeteeggg egggaatggg acetgegete eagggtggte teggteecag 1380 qqtqqtccca qctqqtqqqa qcctctqqct qcatctqtgc agccacatcc ttgtacagag 1440 quataqqtta ccaccccac ccqqccqq qatactqccc ccqqcccaga tcctggccgt 1500 1560 ctcatcccat acttctqtqq qqaatcaqcc tcctqccacc ccccqqaag gacctcactq 1620 totocageta tgcccagtgc tgcatgggac ccatgtctcc tgggacagag gccatctctc 1680 ttccagagag aggcagcatt ggcccacagg ataagcctca ggccctggga aacctcccga 1740 cccctgcacc ttcgttggag cccctgcatc ccctgggtcc agccccctct gcatttacac 1800 agatttgagt cagaactgga aagtgtcccc caccccacc accctcgagc ggggttcccc 1860 tcattgtaca gatggggcag gacccagcac gctgctggca gagatggttt gagaacacat 1920 ccaaqccaqt cccccagcc cagcttcccc tccgttccta actgttggct ttcccccagc cgcacqqtcc caqqcccaqa qaaqatqaqt ctatqqcatc aggttcttaa accaggaaag 1980 cacctacaga cogqctcctc catgcacttt accagctcaa cgcatccact ctctgttctc 2040 ttqqcaqqqc qqqqqaqqqq qqataqgaqq tcccctttcc cctaggtggt ctcataattc 2100 2160 catttqtqqa qaqaacaqqa qqqccaqata gataqqtcct agcagaaggc attgaggtga

| gggatcattt | tgggtcagac | atcaatgtcc | ctgtccccc  | tgggtccagc | caagetgtge | 2220 |
|------------|------------|------------|------------|------------|------------|------|
| cccatccccc | aagcctcctg | ggaggatcca | gccaaatctt | gcgactcctg | gcacacacct | 2280 |
| gtctgtaacc | tgttttgtgc | tctgaaagca | aatagtcctg | agcaaaaaaa | aaaaaaaaa  | 2340 |
| acaaaaaaac | aaaaaaaaa  | caaaacagtt | tttaaaactg | attttagaaa | aagaagctta | 2400 |
| atctaacgtt | ttcaaacaca | aggtctctta | caggtatagt | tccgtgatta | tgatagctct | 2460 |
| gtgattataa | gcaacatccc | cgcccctct  | ccccccgcg  | gacccccagc | tgcctcctga | 2520 |
| gggtgtgggg | ttattagggt | ctcaatactt | tctcaagggg | ctacactccc | catcaggcag | 2580 |
| catcccacca | gcctgcacca | caggctcccc | tgggaggacg | agggaaacgc | tgatgagacg | 2640 |
| ctgggcatct | ctcctctgtg | gctctaggac | atctgtccag | gaggctgggc | ggaggtgggc | 2700 |
| aggatgtgag | aggtgggag  | tactggctgt | gcgtggcagg | acagaagcac | tgtaaagggc | 2760 |
| tetecagege | agctcagctg | cactgcgttc | cgaggtgaag | tettgecect | gaattttgca | 2820 |
| aaatgggaaa | gtgggcgctt | gccaagggcc | aggctgcatg | gattctcaca | tcagagttct | 2880 |
| ctggccctag | aaaggcttag | aaaaggcgta | agggaactca | taaaggctag | cagcatgcgg | 2940 |
| tattttaact | ttctgcctcg | gcctctgtgg | atgcagaaat | ctgccctaca | aaatgctctt | 3000 |
| cattggttgt | ctctgtgaga | gcactgtccc | cacccaacct | gtcacaacgg | ccagaaccat | 3060 |
| acaccagaga | cacactggca | ggttaggcag | tccttctggt | gatcctattc | cattccctcc | 3120 |
| tgctgcggtt | tctcttggcc | tgtcctcact | ggaaaaacag | tctccatctc | ctcaaaatag | 3180 |
| ttgctgactc | cctgcaccca | aggggcctct | ccatgccttc | ttaggaagca | gctatgaatc | 3240 |
| cattgtcctt | gtagtttctt | ccctcctgtt | ctctggttat | agctggtccc | aggtcagcgt | 3300 |
| gggaggcacc | tttgggttcc | cagtgcccag | cactttgtag | tctcatccca | gattactaac | 3360 |
| ccttcctgat | cctggagagg | cagggatagt | aaataaattg | ctcttcctac | cccatccccc | 3420 |
| atcccctgac | aaaaagtgac | ggcagccgta | ctgagtctgt | aaggcccaaa | gtgggtacag | 3480 |
| acagcctggg | ctggtaaaag | taggtcctta | tttacaaggc | tgcgttaaag | ttgtactagg | 3540 |
| caaacacact | gatgtaggaa | gcacgaggaa | aggaagacgt | tttgatatag | tgttactgtg | 3600 |
| agcctgtcag | tagtgggtac | caatcttttg | tgacatattg | tcatgctgag | gtgtgacacc | 3660 |
| tgctgcactc | atctgatgta | aaaccatccc | agagctggcg | agaggatgga | gctgggtgga | 3720 |
| aactgctttg | cactatcgtt | tgcttggtgt | ttgtttttaa | cgcacaactt | gcttgtacag | 3780 |
| taaactgtct | tctqtactat | ttaactgta  |            |            |            | 3809 |

<sup>&</sup>lt;210> 3110 <211> 1161 <212> DNA <213> Homo sapiens

<400> 3110 caaagageta catgecacat getgttetee ageetgetgt gtgtatttgt ggeetteage 60 tactctggat caagtgtggc ccagaaggtt actcaagccc agtcatcagt atccatgcca 120 180 ttttqqtaca aqcaacttcc cagcaaagag atgattttcc ttattcgcca qggttctgat 240 qaacaqaatq caaaaagtgg tcgctattct gtcaacttca agaaagcagc gaaatccgtc 300 gccttaacca tttcagcctt acagctagaa gattcagcaa agtacttttg tgctcttggg 360 acqqqqqtqa qqqqactcca qgacaccqat aaactcatct ttggaaaaqg aacccgtgtg 420 actqtqqaac caaqaagtca qcctcatacc aaaccatccg tttttqtcat gaaaaatgga 480 acaaatgtcg cttgtctggt gaaggaattc taccccaagg atataagaat aaatctcgtg 540 600 tcatccaaqa aqataacaga qtttgatcct gctattgtca tctctcccag tgggaagtac aatqctqtca aqcttqqtaa atatqaaqat tcaaattcaq tgacatgttc agttcaacac 660 720 qacaataaaa ctqtqcactc cactqacttt qaagtqaaga caqattctac agatcacqta 780 aaaccaaaqq aaactqaaaa cacaaaqcaa ccttcaaaqa qctqccataa acccaaaqcc ataqttcata ccqaqaaqqt qaacatqatq tccctcacaq tqcttqqqct acqaatqctq 840 900 tttgcaaaga ctgttgccgt caattttctc ttgactgcca agttattttt cttgtaaggc 960 tgactggcat gaggaagcta cactcctgaa gaaaccaaag gcttacaaaa atgcatctcc ttggcttctq acttctttgt gattcaagtt gacctgtcat agccttgtta aaatggctgc 1020 taqccaaacc actttttctt caaagacaac aaacccagct catcctccag cttgatggga 1080 agacaaaagt cctggggaag gggggtttat gtcctaactg ctttgtatgc tgttttataa 1140 1161 aqqqataqaa qqatataaaa a <210> 3111 <211> 611

ttttttatqq qtttccttaa atqtttttat qqttaaaatc tqtacaaaca qatatattta

60

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;220>

<sup>&</sup>lt;221> misc feature

<sup>&</sup>lt;222> (543)..(543)

<sup>&</sup>lt;223> n is a, c, g, t or u

<sup>&</sup>lt;400> 3111

<sup>120</sup> tataaqttac atattttaaq aaaaatcaqt catttttcat atataattqc aaaqaattaa 180

| cattatatgg catteettat                                                     | accacatatt | tataagatct | aaaggattat | aaacatatta | 240 |
|---------------------------------------------------------------------------|------------|------------|------------|------------|-----|
| cacataataa ttaagtccaa                                                     | tataaattgt | gttcaggtta | taaaatgccc | tatttaagtt | 300 |
| gtgctcttgg tgagggtgaa                                                     | cagaaaagaa | aaggcttctt | ctttagccct | taagcctatg | 360 |
| acacaatttc catgctggta                                                     | attcctttca | tcttctgaag | aatctctatt | ttattataac | 420 |
| attattgget tteagettgg                                                     | aatttctcta | cgcagattgt | ctattgacag | tgccaaggaa | 480 |
| acateteact gtecacagaa                                                     | tagcagcctc | cacccagttg | aaagctgcac | attgtttcca | 540 |
| ctntaccatt ggtacttccc                                                     | tctgatggca | tccagcacac | gaccattagc | ctgagtgatg | 600 |
| cccaactgag c                                                              |            |            |            |            | 611 |
| <210> 3112<br><211> 572<br><212> DNA<br><213> Homo sapiens                |            |            |            |            |     |
| <400> 3112<br>ttttggggac ttcttagctt                                       | gctctctcct | gagtcccact | ggccacccca | gcacacagca | 60  |
| gaggcctagc aagtctcaag                                                     | tgaggcaatc | ctggactagg | gcaaacatgg | cttgttccaa | 120 |
| aagccggggg ttaaggaatc                                                     | aaagtcaggt | gaaactatca | ctttcacaaa | agcttttctt | 180 |
| gactcctggg cctagtatct                                                     | tttgcccctg | gcagaatgta | acagcaaaat | gtctccttct | 240 |
| gaaacggaag gcacagccct                                                     | ctttcagaag | caaaacacct | taacactcgg | cttctatttg | 300 |
| cttaagaatt tacaaataga                                                     | aatgagaatc | aaaggtttta | actcatctga | tagcactggg | 360 |
| cacccaatgt tcacagcctg                                                     | cttctttgaa | ttgttagtgt | ctccccaata | aataaataca | 420 |
| gaaccttgga tacccttcga                                                     | attttaaaat | accttaaagt | cttccattaa | tcttattttt | 480 |
| taaaaatgct aggtttgttt                                                     | cagttacctg | cagcaatcaa | aaagctttgg | caccttcttt | 540 |
| tagagaattg cacaaaacag                                                     | gatgcatcaa | gg         |            |            | 572 |
| <210> 3113<br><211> 1026<br><212> DNA<br><213> Homo sapiens<br><400> 3113 |            |            |            |            |     |
| cagcatgttg agccgggcag                                                     | tgtgcggcac | cagcaggcag | ctgcctccgg | ttttggggta | 60  |
| tetgggetee aggeagaage                                                     | acageetece | cgacctgccc | tacgactacg | gcgccctgga | 120 |
| acctcacatc aacgcgcaga                                                     | tcatgcagct | gcaccacagc | aagcaccacg | cggcctacgt | 180 |
| gaacaacctg aacgtcaccg                                                     | aggagaagta | ccaggaggcg | ttggccaagg | gagatgttac | 240 |
| ageceagata getetteage                                                     | ctgcactgaa | gttcaatggt | ggtggtcata | tcaatcatag | 300 |
| cattttctgg acaaacctca                                                     | gccctaacgg | tggtggagaa | cccaaagggg | agttgctgga | 360 |

| agccatcaaa ctggactttg gttcctttga caagtt                                                                                                                                                                                                                                     | taag gagaagetga eggetgeate 420                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tgttggtgtc caaggetcag gttggggttg gettgg                                                                                                                                                                                                                                     | tttc aataaggaac ggggacactt 480                                                                                                                                   |
| acaaattget gettgteeaa ateaggatee aetgea                                                                                                                                                                                                                                     | agga acaacaggcc ttattccact 540                                                                                                                                   |
| gctggggatt gatgtgtggg agcacgctta ctacct                                                                                                                                                                                                                                     | tcag tataaaaatg tcaggcctga 600                                                                                                                                   |
| ttatctaaaa gctatttgga atgtaatcaa ctggga                                                                                                                                                                                                                                     | gaat gtaactgaaa gatacatggc 660                                                                                                                                   |
| ttgcaaaaag taaaccacga tcgttatgct gagtat                                                                                                                                                                                                                                     | gtta agctctttat gactgttttt 720                                                                                                                                   |
| gtagtggtat agagtactgc agaatacagt aagctg                                                                                                                                                                                                                                     | ctct attgtagcat ttcttgatgt 780                                                                                                                                   |
| tgcttagtca cttatttcat aaacaactta atgtto                                                                                                                                                                                                                                     | tgaa taatttotta otaaacattt 840                                                                                                                                   |
| tgttattggg caagtgattg aaaatagtaa atgctt                                                                                                                                                                                                                                     | tgtg tgattgaatc tgattggaca 900                                                                                                                                   |
| ttttcttcag agagctaaat tacaattgtc atttat                                                                                                                                                                                                                                     | aaaa ccatcaaaaa tattccatcc 960                                                                                                                                   |
| atatactttg gggacttgta gggatgcctt tctagt                                                                                                                                                                                                                                     | ccta ttctattgca gttatagaaa 1020                                                                                                                                  |
| atotag                                                                                                                                                                                                                                                                      | 1026                                                                                                                                                             |
| <210> 3114<br><211> 1271<br><212> DNA                                                                                                                                                                                                                                       |                                                                                                                                                                  |
| <213> Homo sapiens                                                                                                                                                                                                                                                          |                                                                                                                                                                  |
| <213> Homo sapiens  <400> 3114 ctgtattgtg gttcctggaa cactttagag gcttgt                                                                                                                                                                                                      | gatt ctactgcttc ttattcacac 60                                                                                                                                    |
| <400> 3114                                                                                                                                                                                                                                                                  | -                                                                                                                                                                |
| <pre>- &lt;400&gt; 3114 ctgtattgtg gttcctggaa cactttagag gcttgt</pre>                                                                                                                                                                                                       | atca tttaaataca caatttttca 120                                                                                                                                   |
| <400> 3114<br>ctgtattgtg gttcctggaa cactttagag gcttgt<br>tataatacat gtctcaccaa tagatgattc aagaac                                                                                                                                                                            | atca tttaaataca caatttttca 120                                                                                                                                   |
| <pre>&lt;400&gt; 3114 ctgtattgtg gttcctggaa cactttagag gcttgt tataatacat gtctcaccaa tagatgattc aagaac ttctctattt ttgctaaatt tcttcatact caactt</pre>                                                                                                                         | satca tttaaataca caatttttca 120 ttoag attetttaat eteeagetea 180 acaca ategtgeett etetaetteg 240                                                                  |
| <pre>&lt;400&gt; 3114 ctgtattgtg gttcctggaa cactttagag gcttgt tataatacat gtctcaccaa tagatgattc aagaac ttctctattt ttgctaaatt tcttcatact caactt gcttcaacaa ttcaacgctg ttctttctga aaaagt</pre>                                                                                 | ratca tttaaataca caatttttca 120 steag attetttaat eteeagetea 180 sacac ategtgeett etetaetteg 240 sacac gagtattgag ceageattta 300                                  |
| <pre>&lt;400&gt; 3114 ctgtattgtg gttcctggaa cactttagag gcttgt tataatacat gtctcaccaa tagatgattc aagaac ttctctattt ttgctaaatt tcttcatact caactt gcttcaacaa ttcaacgctg ttctttctga aaaagt ctcttggaac ataatttctc atggcagctt ttacta</pre>                                         | ratea tttaaataca caatttttaa 120 ttaag attetttaat eteeagetea 180 racac ategtgeett etetaetteg 240 racat gagtattgag eeageattta 300 ractg etgtteettge eaagaaaaat 360 |
| <pre>&lt;400&gt; 3114 ctgtattgtg gttcctggaa cactttagag gcttgt tataatacat gtctcaccaa tagatgattc aagaac ttctctattt ttgctaaatt tcttcatact caactt gcttcaacaa ttcaacgctg ttctttctga aaaagt ctcttggaac ataatttctc atggcagctt ttacta ctccaggaac caacatagaa ctccagaaag actctg</pre> | eatea tttaaataca caatttttaa 120 etcag attetttaat etceagetea 180 eacac ategtgeett etetaetteg 240 eacat gagtattgag ecageattta 360 egtga acagaaaact tggaacgaaa 420  |

acaccgcctg gttgtgggag aatggctctg cactctccca gtatctattt ccatcatttg 600
aaacttttaa tacaaagaac tgcatagcgt ataatccaaa tggaaatgct ttagatgaat 660
cctgtgaaga taaaaatcgt tatatctgta agcacagct catttaaatg tttcttgggg 720
cagagaaggt ggagagtaaa gacccaacat tactaacaat gatacagttg catgttatat 780
tattactaat tgtctacttc tggagtctat aaaatgttt taaacagtgt catatacaat 840
tgtcatgtat gtgaaacaat gtgttttaaa attgatgaaa ttcgttcacc tacatttgag 900

| aattataaaa                                          | ttaacataaa         | gaattttgta          | ttttcattta | atgtatataa | tgttaaattc | 960  |
|-----------------------------------------------------|--------------------|---------------------|------------|------------|------------|------|
| aatgtagttt                                          | tattacacat         | ttatgtaatt          | ttatttacat | tcttgctaat | tctcagcaga | 1020 |
| aatttaa <b>a</b> t <b>a</b>                         | agatttaat <b>t</b> | cacatcaaat          | aaaatttaga | aaataaaatt | taactcacac | 1080 |
| tgcccaggct                                          | ggagcatagt         | ggcaagatca          | tagctcattg | caagctcaag | tgatcctcct | 1140 |
| gactcagcct                                          | cccaagtagc         | taggactgca          | ggcaccatgt | cactatgccc | gactaatttt | 1200 |
| taatttttaa                                          | ttttttgtca         | agacaaggtc          | ttgctatgtt | gcccaggctg | gtcttgaact | 1260 |
| cctggcctca                                          | a                  |                     |            |            |            | 1271 |
|                                                     | sapiens            |                     |            |            |            |      |
| <400> 3119<br>gggtttatcc                            |                    | attgatagaa          | aattaaagga | gtaatttata | aaatcactac | 60   |
| atgaacaagt                                          | aaaaacacac         | acagcaaaat          | ttacatcaaa | attattacgt | ggtacagaat | 120  |
| ccaaaagtca                                          | taaaaagcaa         | aagctatctt          | ttttcactc  | tggcacccat | ctgttcttcc | 180  |
| ctggagtcaa                                          | acactattac         | caatttt <b>t</b> ag | gtatacttcc | aaagatactt | actgcattta | 240  |
| caagcacaga                                          | cttatattga         | ttctaaaaga          | ataagagaca | ttttcagcat | gttgctttgt | 300  |
| tcaacaccac                                          | agtatatctt         | aaagatggtc          | ccccatcaat | acatatagag | atctctct   | 358  |
| <210> 3116<br><211> 4045<br><212> DNA<br><213> Homo |                    |                     |            |            |            | •    |
| <400> 3116<br>gcagccagag                            |                    | ccctggagag          | atggccacgg | teccageace | ggggaggact | 60   |
| ggagagcgcg                                          | cgctgccacc         | gccccatgtc          | tcagccaggg | cttccttcct | cggctccacc | 120  |
| ctgtggatgt                                          | aatggcggcc         | cctgctctgt          | cctggcgtct | gcccctcctc | atcctcctcc | 180  |
| tgcccctggc                                          | tacctcttgg         | gcatctgcag          | cggtgaatgg | cacttcccag | ttcacatgct | 240  |
| tctacaactc                                          | gagagccaac         | atctcctgtg          | tctggagcca | agatggggct | ctgcaggaca | 300  |
| cttcctgcca                                          | agtccatgcc         | tggccggaca          | gacggcggtg | gaaccaaacc | tgtgagctgc | 360  |
| tccccgtgag                                          | tcaagcatcc         | tgggcctgca          | acctgatcct | cggagcccca | gattctcaga | 420  |
| aactgaccac                                          | agttgacatc         | gtcaccctga          | gggtgctgtg | ccgtgagggg | gtgcgatgga | 480  |
| gggtgatggc                                          | catccaggac         | ttcaagccct          | ttgagaacct | tcgcctgatg | gececcatet | 540  |
| ccctccaagt                                          | tgtccacgtg         | gagacccaca          | gatgcaacat | aagctgggaa | atctcccaag | 600  |

cctcccacta ctttgaaaga cacctggagt tcgaggcccg gacgctgtcc ccaggccaca 660 cctqqqagga ggccccctg ctgactctca aqcaqaagca ggaatggatc tqcctggaga 720 cqctcacccc agacacccag tatgagtttc agqtgcgggt caagcctctg caagccgagt 780 teacqueetq quqeecetqq agecageeee tqqeetteag gacaaageet qeaqeeettq 840 qqaaqqacac cattccqtqq ctcqqccacc tcctcqtqqq cctcaqcqqq qcttttqqct 900 960 tcatcatctt agtgtacttg ctgatcaact gcaggaacac cgggccatgg ctgaagaagg 1020 tectgaagtg taacacccca gaccctcga agttcttttc ccagctgagc tcagagcatg 1080 gaggagacqt ccagaagtgg ctctcttcqc ccttcccctc atcqtccttc agccctgqcg gcctggcacc tgagatctcg ccactagaag tgctggagag ggacaaggtg acgcagctgc 1140 tcctgcagca ggacaaggtg cctgagcccg catccttaag cagcaaccac tcgctgacca 1200 gctgcttcac caaccagggt tacttcttct tccacctccc ggatgccttg gagatagagg 1260 cctqccaqqt qtactttact tacqaccct actcaqaqqa aqaccctqat qaqqqtqtqq 1320 1380 ccqqqqcacc cacaqqqtct tcccccaac ccctqcaqcc tctqtcaqqq qaqqacqacq cctactgcac cttcccctcc agggatgacc tgctgctctt ctcccccagt ctcctcggtg 1440 gccccagccc cccaagcact gcccctgggg gcagtggggc cggtgaagag aggatgcccc 1500 cttctttgca aqaaagagtc cccagagact gggaccccca gcccctgggg cctcccaccc 1560 caggagtece agacetggtg gattttcage cacecetga getggtgetg egagaggetg 1620 gggaggaggt ccctgacgct ggccccaggg agggagtcag tttcccctgg tccaggcctc 1680 ctgggcaggg ggagttcagg gcccttaatg ctcgcctgcc cctgaacact gatgcctact 1740 tqtccctcca/aqaactccaq qqtcaqqacc caactcactt qqtqtaqaca qatqqccaqq 1800 1860 qtqqqqqca qqcaqctqcc tqctctqcqc cqaqcctcaq aaqqaccctq ttqaqqqtcc tragtreact grtgaggaca ctragtgtcc agttgraget ggactteter accequatgg 1920 cccccacca gtcctgcaca cttggtccat ccatttccaa acctccactg ctgctcccgg 1980 gtectgetge cegagecagg aactgtgtgt gttgcagggg ggcagtaact ceccaactec 2040 ctcgttaatc acaggatccc acgaatttag gctcagaagc atcgctcctc tccagccctg 2100 cagetattea ccaatateag teetegegge tetecaggge teeetgeeet gacetettee 2160 ctgggttttc tgcccagcc tcctccttcc ctccctccc cgtccacagg gcagcctgag 2220 cqtqctttcc aaaacccaaa tatqqccacq ctcccctcq qttcaaaacc ttgcacaqqt 2280 cccactgccc tcagccccac ttctcagcct ggtacttgta cctccggtgt cgtgtgggga 2340 catecectte tgcaatecte cetacegtee teetgageea etcagagete ceteacacee 2400 cctctqttqc acatgctatt ccctqqqqct qctqtqcqct ccccctcatc taggtgacaa 2460

| acttccctga | ctcttcaagt | gccggttttg | cttctcctgg | agggaagcac | tgcctccctt | 2520 |
|------------|------------|------------|------------|------------|------------|------|
| aatctgccag | aaacttctag | cgtcagtgct | ggagggagaa | gctgtcaggg | acccagggcg | 2580 |
| cctggagaaa | gaggccctgt | tactattcct | ttgggatctc | tgaggcctca | gagtgcttgg | 2640 |
| ctgctgtatc | tttaatgctg | gggcccaagt | aagggcacag | atccccccac | aaagtggatg | 2700 |
| cctgctgcat | cttcccacag | tggcttcaca | gacccacaag | agaagctgat | ggggagtaaa | 2760 |
| ccctggagtc | cgaggcccag | gcagcagccc | cgcctagtgg | tgggccctga | tgctgccagg | 2820 |
| cctgggacct | cccactgccc | cctccactgg | aggggtctcc | tctgcagctc | agggactggc | 2880 |
| acactggcct | ccagaagggc | agctccacag | ggcagggcct | cattatttt  | cactgcccca | 2940 |
| gacacagtgc | ccaacacccc | gtcgtatacc | ctggatgaac | gaattaatta | cctggcacca | 3000 |
| cctcgtctgg | gctccctgcg | cctgacattc | acacagagag | gcagagtccc | gtgcccatta | 3060 |
| ggtctggcat | gccccctcct | gcaaggggct | caacccccta | ccccgacccc | tccacgtatc | 3120 |
| tttcctaggc | agatcacgtt | gcaatggctc | aaacaacatt | ccaccccagc | aggacagtga | 3180 |
| ccccagtccc | agctaactct | gacctgggag | ccctcaggca | cctgcactta | caggccttgc | 3240 |
| tcacagctga | ttgggcacct | gaccacacgc | ccccacaggc | tctgaccagc | agcctatgag | 3300 |
| ggggtttggc | accaagctct | gtccaatcag | gtaggctggg | cctgaactag | ccaatcagat | 3360 |
| caactctgtc | ttgggcgttt | gaactcaggg | agggaggccc | ttgggagcag | gtgcttgtgg | 3420 |
| acaaggetee | acaagcgttg | agccttggaa | aggtagacaa | gcgttgagcc | actaagcaga | 3480 |
| ggaccttggg | ttcccaatac | aaaaatacct | actgctgaga | gggctgctga | ccatttggtc | 3540 |
| aggattcctg | ttgcctttat | atccaaaata | aactcccctt | tcttgaggtt | gtctgagtct | 3600 |
| tgggtctatg | ccttgaaaaa | agctgaatta | ttggacagtc | tcacctcctg | ccatagggtc | 3660 |
| ctgaatgttt | cagaccacaa | ggggctccac | acctttgctg | tgtgttctgg | ggcaacctac | 3720 |
| taatcctctc | tgcaagtcgg | teteettate | ccccaaatg  | gaaattgtat | ttgccttctc | 3780 |
| cactttggga | ggctcccact | tcttgggagg | gttacatttt | ttaagtotta | atcatttgtg | 3840 |
| acatatgtat | ctatacatcc | gtatctttta | atgatccgtg | tgtaccatct | ttgtgattat | 3900 |
| ttccttaata | ttttttcttt | aagtcagttc | attttcgttg | aaatacattt | atttaaagaa | 3960 |
| aaatctttgt | tactctgtaa | atgaaaaaac | ccattttcgc | tataaataaa | aggtaactgt | 4020 |
| acaaaataag | tacaatgcaa | caaaa      |            |            |            | 4045 |

<sup>&</sup>lt;210> 3117 <211> 573 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

| <220>        |             |             |            |            |            |     |
|--------------|-------------|-------------|------------|------------|------------|-----|
| <221> misc   | feature     |             |            |            |            |     |
| <222> (521)  | )(521)      |             |            |            |            |     |
| <223> n is   | a, c, g, t  | or u        |            |            |            |     |
|              |             |             |            |            |            |     |
| <400> 3117   |             |             |            |            |            |     |
| gattgtataa a | ataatttatt  | tctgttcaca  | gcatcatata | tgcattataa | aaggctatgg | 60  |
|              |             |             |            |            |            |     |
| aaacaaaaga 🤉 | gaaggatgat  | gagacagaga  | attacagcag | tagaaaggaa | aacagaaacc | 120 |
|              |             |             |            |            |            |     |
| agggcacaca q | gttccaacac  | cagaacagag  | aatttgggaa | gataattgct | ctgaaacaga | 180 |
|              |             |             |            |            |            | 240 |
| actggcctcc   | elgigietat  | cagaaaacac  | LLCCaaagct | cacggaggga | ggecaaette | 240 |
| ccctatggga   | aacacattca  | ctcaccaaaa  | aacsassaac | atcataaatc | acceptreat | 300 |
| ccccacggga . | adoq -accou | occaoodadaa | 9904944990 | accacaacc  | aoooaoogac |     |
| acattggtgg   | aaaactccta  | teccetaat   | gaccactcca | aggtgatttg | atctgtgctt | 360 |
|              | 33333       |             | J          |            |            |     |
| cctctgttgg   | gtcagagacg  | aaacgggcta  | ttattaggtc | aaacattaca | gaaatcaact | 420 |
|              |             |             |            |            | _          |     |
| gagactctta : | actagtagtt  | gatacaccac  | agggctttac | tttactgcac | aattactaac | 480 |
|              |             |             |            |            |            |     |
| agttgattgc : | acccttaagt  | attgattatg  | caaaaaacaa | natcatctcg | catcagtttt | 540 |
|              |             |             |            |            |            |     |
| aaagcatgac   | agggtttgaa  | cagtgatctt  | gaa        |            |            | 573 |