Gramáticas regulares

DEFINIÇÃO

- linguagem gerada $G \rightarrow L(G)$ ou Gera(G)
- G = (V,T,P,S)
 - ∘ V → Conjunto finito de símbolos, variáveis ou não terminais (sempre letras maiúsculas)
 - ∘ T → Conjunto finito de símbolos, terminais (sempre letras minúsculas)
 - ∘ P → Conjunto finito de pares (regra de produção)
 - \circ S \rightarrow Elemento de V, variável inicial

GRAMÁTICA LINEAR À DIREITA (GLD)

$$A \rightarrow wB \mid w$$

GRAMÁTICA LINEAR À ESQUERDA (GLE)

$$A \rightarrow Bw \mid w$$

GRAMÁTICAS LINEARES UNITÁRIAS À DIREITA

• como na linear à direita adicionalmente, $|w| \le 1$

GRAMÁTICAS LINEARES UNITÁRIAS À ESQUERDA

• como na linear à esquerda adicionalmente, $|w| \le 1$

EXEMPLOS

- 1. a(ba)*
- GLD. $G = (\{S, A\}, \{a, b\}, P, S)$
 - \circ S \rightarrow aA
 - \circ A \rightarrow baA | ε
- GLE. $G = (\{S\}, \{a, b\}, P, S)$
 - \circ S \rightarrow Sba | a
- GLUD. $G = (\{S, A, B\}, \{a, b\}, P, S)$
 - \circ S \rightarrow aA
 - \circ A \rightarrow bB | ϵ
 - \circ B \rightarrow aA
- GLUE. $G = (\{S, A\}, \{a, b\}, P, S)$

$$\circ \quad S \, \rightarrow \, Aa \, | \, a$$

$$\circ$$
 A \rightarrow Sb

2. (a+b)*(aa+bb)

• GLD.
$$G = (\{S, A\}, \{a, b\}, P, S)$$

$$\circ$$
 S \rightarrow aS | bS | A

$$\circ \quad A \, \rightarrow \, aa \, | \, bb$$

• GLE.
$$G = (\{S, A\}, \{a, b\}, P, S)$$

$$\circ$$
 S \rightarrow Aaa | Abb

$$\circ$$
 A \rightarrow Aa | Ab | ϵ

CONSTRUINDO UM GRAFO A PARTIR DE UMA GRAMÁTICA

• seja AF
$$\xi$$
 M = (\sum , Q, δ , q, F) tal que

$$\circ \quad \sum = \mathbf{T}$$

$$\circ F = \{qf\}$$

$$\circ$$
 q0 = S

	Transição Gerada
$\begin{array}{c} A \to \epsilon \\ A \to a \\ A \to B \\ A \to a \\ A \to a \\ B \end{array}$	$\delta(A, \varepsilon) = q_f$ $\delta(A, a) = q_f$ $\delta(A, \varepsilon) = B$ $\delta(A, a) = B$

Exemplo:

•
$$G = (\{S, A, B\}, \{a, b\}, P, S)$$

$$\circ \quad S \ \to \ aA$$

$$\circ$$
 A \rightarrow bB | ϵ

$$\circ$$
 B \rightarrow aA

• AFE M = ({a, b}, {S, A, B, qf}, δ , S, {qf}), onde δ é tal que:

Produção	Transição
$\mathrm{S}\to\mathrm{aA}$	$\delta(S, a) = A$
$A\tobB$	$\delta(A, b) = B$
$A \to \epsilon$	$\delta(A, \epsilon) = q_f$
$B \rightarrow aA$	$\delta(B, a) = A$

CONSTRUINDO UMA GRAMÁTICA A PARTIR DE UM GRAFO

- Seja AFD M = (\sum, Q, δ, q, F)
- Seja um G = (V, T, P, S) uma GLUD tq
 - V = Q união com {S}
 - $\circ \quad \mathbf{T} = \mathbf{\Sigma}$

$$\begin{array}{c|c} Transição & Produção \\ \hline - & S \rightarrow q_0 \\ - & q_f \rightarrow \epsilon \\ \delta(q_i, \textbf{a}) = q_k & q_i \rightarrow \textbf{a}q_k \end{array}$$

Exemplo:

• AFD M = $({a, b, c}, {q0, q1, q2}, \delta, q0, {q0, q1, q2})$

 $G = ({q0, q1, q2, S}, {a, b, c}, S, P) \text{ onde } P \text{ \'e tq}$

Transição	Produção
-	$S \rightarrow q_0$
-	$q_0 \rightarrow \epsilon$
-	$q_1 \rightarrow \epsilon$
-	$q_2 \rightarrow \epsilon$
$\delta(q_0, a) = q_0$	$q_0 \rightarrow aq_0$
$\delta(q_0, b) = q_1$	$q_0 \rightarrow bq_1$
$\delta(q_1, b) = q_1$	$q_1 \rightarrow bq_1$
$\delta(q_1, c) = q_2$	$q_1 \rightarrow cq_2$
$\delta(q_2, c) = q_2$	$q_2 \rightarrow cq_2$

Gramáticas regulares 4