

Robotics - Großübung #1

Homogeneous transformations, Denavit-Hartenberg and forward kinematics

Main Problem

- Given a kinematic model of the robot and the robot's configuration – where is the end-effector?
- Defining a Kinematic Chain
- 2) Homogeneous transformation
- 3) Forward kinematics
- 4) Denavit-Hartenberg Parameters

Kinematic Schematic of a Robot

Frames

Translation

$$\vec{p} = \left(\begin{array}{c} p_x \\ p_y \end{array} \right)$$

$$\vec{p} = \begin{pmatrix} p_x \\ p_y \end{pmatrix}$$
 $\vec{t} = \begin{pmatrix} t_x \\ t_y \end{pmatrix}$

$$\vec{p}' = \vec{p} + \vec{t} = \begin{pmatrix} p_x + t_x \\ p_y + t_y \end{pmatrix}$$

ع الم

Rotation

$$\vec{p} = \begin{pmatrix} p_x \\ p_y \end{pmatrix}$$

$$\vec{p}' = ?$$

Deriving the Rotation Matrix

$$p_x = r \cdot \cos \phi$$

$$p_y = r \cdot \sin \phi$$

$$p'_{x} = r \cdot \cos(\theta + \phi)$$

$$= r \cdot \cos \phi \cdot \cos \theta - r \cdot \sin \phi \cdot \sin \theta$$

$$= p_{x} \cdot \cos \theta - p_{y} \cdot \sin \theta$$

$$p'_{y} = r \cdot \sin(\theta + \phi)$$

$$= r \cdot \cos \phi \cdot \sin \theta + r \cdot \sin \phi \cdot \cos \theta$$

$$= p_{x} \sin \theta + p_{y} \cos \theta$$

$$\vec{p}' = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \cdot \vec{p}$$

$$\vec{p}' = R(\theta) \cdot \vec{p}$$

Homogeneous Transformations

$$\vec{p}' = \vec{p} + \vec{t} \qquad \vec{p}' = R(\theta) \cdot \vec{p}$$

$$\vec{p}' = R(\theta) \cdot \vec{p} + \vec{t}$$
Rotation first!

$$\begin{pmatrix} p'_x \\ p'_y \\ 1 \end{pmatrix} = \begin{bmatrix} R(\theta) & t_x \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{pmatrix} p_x \\ p_y \\ 1 \end{pmatrix}$$

3D Homogeneous Transforms

$$\begin{pmatrix} p'_x \\ p'_y \\ p'_z \\ 1 \end{pmatrix} = \begin{bmatrix} R(\theta) & t_x \\ t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix}$$

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \qquad R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Kinematic Chains

Forward Kinematics

$${}_{n}^{0}T = {}_{1}^{0}T {}_{2}^{1}T {}_{3}^{2}T \cdots {}_{n}^{n-1}T$$

Glossary

- Frame
 - Coordinate system attached rigidly to a body
 - Examples: World frame, base frame, end-effector frame
- Link
 - A rigid body that is part of the robot (any object)
- Joint
 - Movable connection between two links
 - Most common: Revolute, prismatic
- Degrees of Freedom
 - Amount of independent position variables the robot has (Usually amount of joints)
- End-effector
 - Free end at the end of the robot manipulator (e.g. a hand)
- Forward kinematics
 - Position and orientation of the end-effector relative to the base frame

Link Description and Connections

 a_{i-1}

link length

perpendicular to both axes not unique for parallel axes

 α_{i-1}

link twist

Angle measured about vector a_{i-1}

 $heta_i$

joint angle

measured about axis i joint variable for revolute fixed for prismatic

 d_i

link offset

measured along axis i joint variable for prismatic fixed for revolute

Frame Attachment

Axis i-1 \widehat{Z}_{i-1}

- 1. Identify joint axes; consider *i* and *i*+1
- 2. Identify common perpendicular
- Label frame origin at perpendicular (or intersection)
- Assign Z axis i along joint axis
- 5. Assign X axis *i* along perpendicular; if joint axes intersect, orthogonal to the axes plane
- 6. Complete frame by adding Y axis (right-hand-rule)
- 7. Assign {0} to match {1}
- 8. Choose end-effector frame {*n*}

First and Last Link (0 and n)

- ► Frame 0 is reference (world) frame
 - Origin and Z axis coincide with frame 1
 - $\alpha_0 = a_0 = 0$
 - d_i or $\theta_i = 0$ depending on joint type
- Frame n is end-effector frame
 - X axis is aligned with X axis of frame n-1
 - $d_n = 0$
 - d_i or $\theta_i = 0$ depending on joint type
- Maximize zeros in DH parameters

Denavit-Hartenberg (DH) parameters

 $\begin{array}{lll} \alpha_i &=& \text{the angle between} & \widehat{Z}_i \text{ and } \widehat{Z}_{i+1} \text{ measured about } \widehat{X}_i \\ a_i &=& \text{the distance from } & \widehat{Z}_i \text{ to } \widehat{Z}_{i+1} \text{ measured along } & \widehat{X}_i \\ d_i &=& \text{the distance from } & \widehat{X}_{i-1} \text{ to } & \widehat{X}_i \text{ measured along } & \widehat{Z}_i \\ \theta_i &=& \text{the angle between } & \widehat{X}_{i-1} \text{ and } & \widehat{X}_i \text{ measured about } & \widehat{Z}_i \end{array}$

DH: Non-uniqueness

- Convention does not result in a unique frame assignment:
 - When aligning \widehat{Z}_i with axis i, there are two choices with respect to the direction (+ / -)
 - If joint axes intersect, there are two choices with respect to the direction of \widehat{X}_i
 - When {i} and {i+1} are parallel, the origin location for {i} is arbitrary (though usually chosen such that $d_i = 0$)
 - When prismatic joints are present, there is some freedom in frame assignment

Example with n=4

= the distance from \widehat{X}_{i-1} to \widehat{X}_i measured along \widehat{Z}_i

 $heta_i$ = the angle between \widehat{X}_{i-1} and \widehat{X}_i measured about \widehat{Z}_i

5

0

 $-l_{4}$

 l_5

0

Frame to Frame Transformation

$$i^{i-1}T = R_X(\alpha_{i-1}) D_X(a_{i-1}) R_Z(\theta_i) D_Z(d_i)$$

$$= \begin{bmatrix} c\theta_i & -s\theta_i & 0 & a_{i-1} \\ s\theta_i c\alpha_{i-1} & c\theta_i c\alpha_{i-1} & -s\alpha_{i-1} & -s\alpha_{i-1}d_i \\ s\theta_i s\alpha_{i-1} & c\theta_i s\alpha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1}d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

	α_{i-1}	a_{i-1}	d_i	$ heta_i$
1	0	0	0	θ_1
2	-90	0	d_2	-90
3	-90	l_2	0	θ_3
4	90	0	0	θ_4
5	0	$-l_4$	l_5	0

$$i^{-1}T = R_X(\alpha_{i-1}) D_X(a_{i-1}) R_Z(\theta_i) D_Z(d_i)$$

$$= \begin{bmatrix} c\theta_i & -s\theta_i & 0 & a_{i-1} \\ s\theta_i c\alpha_{i-1} & c\theta_i c\alpha_{i-1} & -s\alpha_{i-1} & -s\alpha_{i-1}d_i \\ s\theta_i s\alpha_{i-1} & c\theta_i s\alpha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1}d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{1}^{0}T = \left| \begin{array}{cccccc} \mathsf{c}_{1} & \mathsf{-s}_{1} & \mathsf{0} & \mathsf{0} \\ \mathsf{s}_{1} & \mathsf{c}_{1} & \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} & \mathsf{1} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{1} \end{array} \right|$$

$${}^{0}_{1}T = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \, {}^{1}_{2}T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \, {}^{2}_{3}T = \begin{bmatrix} c_{3} & -s_{1} & 0 & l_{2} \\ 0 & 0 & 1 & 0 \\ -s_{3} & -c_{3} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} c_{3} & -s_{1} & 0 & I_{2} \\ 0 & 0 & 1 & 0 \\ -s_{3} & -c_{3} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{4}^{3}T = \begin{bmatrix} c_{4} & -s_{4} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s_{4} & c_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}_{5}^{4}T = \begin{bmatrix} 1 & 0 & 0 & -I_{4} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & I_{5} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{5}^{4}T = \left[egin{array}{ccccccc} 1 & 0 & 0 & - \mathsf{I}_{4} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \mathsf{I}_{5} \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Summary

- ► Homogoneous transformation:
 - Describing positions and orientations in space and how to map between them
- Forward kinematics:
 - Where is the robot's i-th link or end-effector given the robots configuration
- Denavit-Hartenberg parameters
 - Uniform procedure for defining the robot's kinematics (in order to derive forward kinematics)

