Instituto Federal de Educação Ciência e Tecnologia de São Paulo Curso de Graduação em Engenharia Eletrônica

Lei de Ohm e Potência Elétrica

Relatório da disciplina Laboratório de Eletrônica 1 com o Prof^o. Gilberto Cuarelli e o Prof^o. Haroldo Guibu.

Gustavo Senzaki Lucente Luís Otávio Lopes Amorim SP303724X SP3034178

SUMÁRIO

1	INTRODUÇÃO TEÓRICA!
2 2.1	PROCEDIMENTOS EXPERIMENTAIS
3 3.1	QUESTÕES
4	CONCLUSÃO
	REFERÊNCIAS

LISTA DE FIGURAS

Figura 1 –	Circuito 1	6
Figura 2 $$ –	V=f(I)	7
Figura 3 -	Circuito 2	7

LISTA DE TABELAS

Tabela 1 –	Tabela de Resistores	6
Tabela 2 –	Corrente em 1A	8
Tabela 3 –	Corrente em 0.1A	8

1 INTRODUÇÃO TEÓRICA

As leis postuladas pelo físico George Simnon Ohm, conhecidas como leis de ohm, determinam a resistência elétrica dos condutores.(MATERIA, 2020)

Suas leis foram divididas em duas.

A primeira lei de ohm postula que quando um condutor ôhmico estiver à uma temperatura constante, a intensidade de corrente elétrica sreá proporcional à diferença de potencial entre suas extremidades.

$$R = \frac{U}{I}$$
$$U = R \times I$$

Onde;

R: resistência (Ω)

U: diferença de potencial (V)

I: intensidade da corrente elétrica (A)

A segunda lei de ohm postula que, a resistência elétrica é diretamente proporcional ao seu comprimento, e inversamente proporcional à sua área de secção transversal.

A fórmula desta lei é dada por:

$$R = \frac{p.L}{A}$$

Onde;

R: resistência (Ω)

p: resistividade do condutor $(\Omega.m)$

L: comprimento (m)

A: área de secção transveral (mm²)

Portanto, esse experimento irá abrangir a aplicação da primeira lei de ohm e como obtemos os valores resistivos, de tensão, de corrente e de potência em circuitos e também em resistores individuais.

2 PROCEDIMENTOS EXPERIMENTAIS

2.1 Leitura do código de cores

O primeiro experimento é constituido por um voltímetro, um amperímetro, uma fonte de alimentação e o resistor que irá ser utilizado. Foi analizado os seis resistores, medindo em cada um sua respectiva corrente, e anotando em uma tabela. Com os valores obtidos, foi cosntruído um gráfico para tewr uma visualização mais clara do comportamento da corrente em cada resistor. Como demonstrado na figura 1 temos o circuito montado.

Figura 1 – Circuito 1

Fonte: Elaborada pelos autores

Em seguida, após todas as medições, foi criado a tabela 1 e um gráfico representado pela figura 2 da corrente em função da tensão para visualizarmos o comportamento da corrente em cada um dos resistores.

R = 220 Ω | R = 560 Ω | R = 1K Ω | R = 1,8K Ω | R = 3,3K Ω | R = 4,7K Ω Tensão (V) I(mA) I(mA) I(mA) I(mA) I(mA) I(mA) 0 0 0 2 9,09 3,57 2 1,11 0,606 0,426 4 18,2 7,14 4 2,22 1,21 0,851 6 27,3 10,7 3,33 1,28 6 1,62 8 36,4 14,3 8 4,44 2,42 1,7 3,03 10 45,5 17,9 10 5,56 2,13 12 54,5 21,4 12 6,67 3,64 2,55

Tabela 1 – Tabela de Resistores

Fonte: Elaborada pelos autores

Figura 2 - V = f(I)

Fonte: Elaborada pelos autores

Para o segundo experimento, foi solicitado que limitassemos a corrente em 1A e depois em 0,1A. Para esse cicuito, o resistor tem valor fixo de 10 Ω , e para efetuar o experimento, variou-se o valor de tensão, limitando os valores de corrente em 1 e 0,1 Ampére. Em determiando ponto do experimento os valores de corrente e potência eram os mesmos. Agora quando isso ocorria, os valores de tensão mudavam proporcinalmente à mudança de corrente.

Conforme a figura 3 e as tabelas 2 e 3 podemos observar o comportamento descrito anteriormente.

Figura 3 – Circuito 2

Fonte: Elaborada pelos autores

Tabela 2 – Corrente em 1A

Resistor	Valor (Ω)		
R1	10		
R2	220		
R3	33		
R4	470		
R5	1K		
R6	680		

Fonte: Elaborada pelos autores

Tabela 3 – Corrente em 0.1A

Valroes medidos nos pontos do circuito (mA)									
la	lb	lc	Id	le	If	lg			
4,97	4,97	4,97	4,97	4,97	4,97	4,97			

Fonte: Elaborada pelos autores

3 QUESTÕES

Além de efetuarmos os experimentos foi solicitado pelos professores que resolversemos dois exercícios sobre a lei de ohm e potência.

3.1 Questões

Questão 1: Um resistor de fio, quando percorrido por uma corrente elétrica de 200 mA, dissipa uma potência de 10 W. Determine a nova potência dissípada por este resistor quando for submetido a uma tensão elétrica igual ao dobro da plicada anteriormente.

Resolução
$$P=U\times I$$

$$10W=U\times 0, 2A$$

$$U=\frac{10W}{0,2A}$$

$$U=50V$$

$$2U=100V$$

$$P=100V\times 0, 2A$$

$$P=20W$$

Questão 2: Calcule o valor das resistências R1 e R2 de um chuveiro elétrico alimentado por 220V sabendo-se que na posição "verão" ele dissipa 2000W e na posição "inverno" ele dissipa 4000W. As resistências estão em série e, na posição "inverno", ocmente R1 é energizada, e na posição "verão" R1 e R2 são energizadas.

Resolução Sabendoque;

$$U = 220V$$

$$Verão: P = 2000W$$

$$Inverno: P = 4000W (somenteR1)$$

$$P = \frac{U^2}{R}$$

$$4000 = \frac{220^2}{R1}$$

$$R1 = 12, 1\Omega$$

$$R2:$$

$$2000 = \frac{220^2}{R1+R2}$$

$$2000 = \frac{220^2}{12,1+R2}$$

$$R2 = 12, 1\Omega$$

4 CONCLUSÃO

Nesse experimento foi medido os valores de tensão e corrente dos resistores em um circuito, além de calcularmos e observamos os comportamentos das potências relativas a cada um dos resistores medidos.

Com isso foi possível perceber o funcionamento das leis de ohm, e como a potência elétrica é afetada, caso a corrente do circuito seja alterada.

Com a finalização desse experimento, foi possível aos integrantes do grupo aprender sobre o funcionamento dos resistores, das leis de ohm e da potência elétrica.

REFERÊNCIAS

MATERIA, T. **Leis de Ohm**. 2020. Disponível em: https://www.todamateria.com.br/ leis-de-ohm/>. Acesso em: 16 de janeiro de 2021. Citado na página 5.