## **UDAAN 2025**

## **TRIGONOMETRY (Level - 02)**

**Practice Sheet** 

#### Prove the following trigonometric identities:

$$\frac{1+\cos\theta+\sin\theta}{1+\cos\theta-\sin\theta} = \frac{1+\sin\theta}{\cos\theta}$$

$$\frac{\sin\theta - \cos\theta + 1}{\sin\theta + \cos\theta - 1} = \frac{1}{\sec\theta - \tan\theta}$$

[CBSE 2001, NCERT]

(
$$\sin \theta + \cos \theta$$
)( $\tan \theta + \cot \theta$ ) =  $\sec \theta + \csc \theta$ 

[NCERT Exemplar]

$$4 \qquad \frac{1}{\sec A + \tan A} - \frac{1}{\cos A} = \frac{1}{\cos A} - \frac{1}{\sec A - \tan A}$$
[CBSE 20]

[CBSE 2005]

$$\frac{\tan A}{1+\sec A} - \frac{\tan A}{1-\sec A} = 2\csc A$$

#### [NCERT Exemplar]

If 
$$\csc \theta = 2x$$
 and  $\cot \theta = \frac{2}{x}$ , find the value of  $2\left(x^2 - \frac{1}{x^2}\right)$ . [CBSE 2010]

If 
$$\csc \theta + \cot \theta = m$$
 and  $\csc \theta - \cot \theta = n$ , prove that  $mn = 1$ .

$$\frac{\tan^3 \theta}{1 + \tan^2 \theta} + \frac{\cot^3 \theta}{1 + \cot^2 \theta} = \sec \theta \csc \theta - 2\sin \theta \cos \theta$$

Ye If 
$$x = a\cos^3\theta$$
,  $y = b\sin^3\theta$ , prove that  $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$ .

19. If 
$$a\cos\theta + b\sin\theta = m$$
 and  $a\sin\theta - b\cos\theta = n$ ,  
prove that  $a^2 + b^2 = m^2 + n^2$ .

11. If 
$$\cos A + \cos^2 A = 1$$
, prove that  $\sin^2 A + \sin^4 A = 1$ 

$$42. \qquad \left(\tan\theta + \frac{1}{\cos\theta}\right)^2 + \left(\tan\theta - \frac{1}{\cos\theta}\right)^2 = 2\left(\frac{1+\sin^2\theta}{1-\sin^2\theta}\right)$$

13. 
$$(\sec A + \tan A - 1)(\sec A - \tan A + 1) = 2\tan A$$

14. 
$$(1 + \cot A - \csc A)(1 + \tan A + \sec A) = 2$$

$$\frac{\cos A \csc A - \sin A \sec A}{\cos A + \sin A} = \csc A - \sec A$$

$$\frac{\tan A}{\left(1 + \tan^2 A\right)^2} + \frac{\cot A}{\left(1 + \cot^2 A\right)^2} = \sin A \cos A$$

17. 
$$(1 + \cot A + \tan A)(\sin A - \cos A)$$

$$= \frac{\sec A}{\csc^2 A} - \frac{\csc A}{\sec^2 A} = \sin A \tan A - \cot A \cos A$$
[CBSE 2008]

18. If 
$$\tan \theta + \cot \theta = 2$$
, find the value of  $\tan^2 \theta + \cot^2 \theta$ .



# **Answer Key**

| 1. | (Prove) |
|----|---------|
|    |         |

**2.** (**Prove**)

**3.** (**Prove**)

**4.** (**Prove**)

**5.** (**Prove**)

**6.** (**Prove**)

**7.** (**Prove**)

**8.** (**Prove**)

**9.** (**Prove**)

**10.** (**Prove**)

**11.** (**Prove**)

**12.** (**Prove**)

**13.** (**Prove**)

**14.** (**Prove**)

**15.** (**Prove**)

**16.** (**Prove**)

**17.** (**Prove**)

**18.** (**Prove**)

