

Sistemas Digitais (SD)

Funções Lógicas

A	В	Saída
0	0	0
0	1	1
1	0	0
1	1	0

Aula Anterior

Na aula anterior:

- ► Elementos de Tecnologia
 - Circuitos integrados
 - Famílias lógicas
- ▶ Funções Lógicas
 - Circuitos com portas NAND
 - Circuitos com portas NOR

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

3

Sumário

Tema da aula de hoje:

- ▶ Funções lógicas:
 - Circuitos com portas NAND (revisão);
 - Circuitos com portas NOR (revisão);
- ▶ Representações normalizadas:
 - Soma de produtos;
 - Mintermos;
 - Produto de somas:
 - Maxtermos;
- ► Funções incompletamente especificadas.

Bibliografia:

- M. Mano, C. Kime: Secção 2.3
- G. Arroz, J. Monteiro, A. Oliveira: Secção 2.2

Circuitos com portas NAND:

- ► A porta NAND é considerada uma porta universal porque qualquer circuito digital pode ser realizado apenas com portas NAND.
- Qualquer função booleana é realizável apenas com portas NAND por substituição directa das operações NOT, AND e OR.
- ► A operação NOT é normalmente considerada em sentido lato, como uma NAND de 1 entrada.

Nalgumas tecnologias (p.ex. TTL) as portas NAND são as portas mais simples (portanto mais baratas), pelo que é vantajosa a realização de circuitos só com NANDs.

Circuitos com portas NAND (cont.):

▶ Uma função representada na forma de uma soma de produtos pode ser transformada numa forma directamente realizável apenas com portas NAND por simples aplicação da lei de DeMorgan.

$$f = x_1 \overline{x}_2 + \overline{x}_3 x_2 = \overline{x_1 \overline{x}_2 + \overline{x}_3 x_2} = \overline{x_1 \overline{x}_2} \cdot \overline{x}_3 x_2$$
$$= (x_1 \ nand \ \overline{x}_2) \ nand \ (\overline{x}_3 \ nand \ x_2)$$

Circuitos com portas NOR:

NOT -

Dual:

- Qualquer circuito pode ser realizado apenas com portas NOR.
- No caso de a função estar representada como um produto de somas, a transformação mantém a estrutura.

$$g = (x_1 + \overline{x}_2) \cdot (\overline{x}_3 + x_2) = \overline{(x_1 + \overline{x}_2) \cdot (\overline{x}_3 + x_2)} = \overline{(x_1 + \overline{x}_2) + (\overline{x}_3 + x_2)}$$
$$= (x_1 nor \overline{x}_2) nor (\overline{x}_3 nor x_2)$$

■ REPRESENTAÇÃO NORMALIZADA: SOMA DE PRODUTOS

- ▶ Designa-se por forma normal **disjuntiva** de uma função booleana simples completamente especificada, $y=f(x_1,x_2,...,x_N)$, uma expressão lógica representativa da função com a estrutura de uma soma de produtos.
- ▶ Por esta razão, designa-se habitualmente uma forma normal disjuntiva simplesmente por soma de produtos.
- Se cada parcela for constituída por um produto lógico envolvendo N literais distintos, diz-se que a função se encontra representada na primeira forma canónica ou forma canónica disjuntiva.

$$f(x_1, x_2, x_3) = x_1.x_2 + \overline{x_1.x_2.x_3}$$
 \leftarrow forma não canónica $f(x_1, x_2, x_3) = x_1.x_2.x_3 + x_1.x_2.\overline{x_3} + \overline{x_1.x_2.x_3}$ \leftarrow forma canónica

MINTERMOS:

Designa-se por mintermo (também produto canónico, implicante canónico ou termo minimal) um termo de produto em que todas as variáveis aparecem exactamente uma vez, complementadas ou não.

Mintermos para 3 variáveis

x ₃	\mathbf{x}_2	\mathbf{x}_1	mintermo	
0	0	0	$\overline{x}_3.\overline{x}_2.\overline{x}_1$	m_0
0	0	1	$\overline{x}_3.\overline{x}_2.x_1$	m_1
0	1	0	$\bar{x}_3.x_2.\bar{x}_1$	m_2
0	1	1	$\overline{X}_3.X_2.X_1$	m_3
1	0	0	$x_3.\overline{x}_2.\overline{x}_1$	m_4
1	0	1	$x_3.\overline{x}_2.x_1$	m_5
1	1	0	$x_3.x_2.\overline{x}_1$	m_6
1	1	1	$x_3.x_2.x_1$	m_7

Um **mintermo** representa exactamente uma combinação das variáveis binárias na tabela de verdade da função.

Uma função de n variáveis tem até 2ⁿ mintermos.

Cada mintermo é também designado por m_i em que o índice i indica o número decimal equivalente à combinação binária por ele representada.

O mintermo vale 1 para a combinação representada e 0 para todas as outras.

■ REPRESENTAÇÃO NORMALIZADA: PRODUTO DE SOMAS

- ▶ Designa-se por forma normal **conjuntiva** de uma função booleana simples completamente especificada, $y=f(x_1,x_2,...,x_N)$, uma expressão lógica representativa da função com a estrutura de um produto de somas.
- ▶ Por esta razão designa-se habitualmente uma forma normal conjuntiva simplesmente por produto de somas.
- ▶ Se cada parcela for constituída por uma soma lógica envolvendo N literais distintos, diz-se que a função se encontra representada em segunda forma canónica ou forma canónica conjuntiva.

$$f(x_1, x_2, x_3) = (x_1 + x_2).(\overline{x_1} + \overline{x_2} + \overline{x_3}) \qquad \leftarrow \textbf{forma não canónica}$$

$$f(x_1, x_2, x_3) = (x_1 + x_2 + x_3).(x_1 + x_2 + \overline{x_3}).(\overline{x_1} + \overline{x_2} + \overline{x_3}) \qquad \leftarrow \textbf{forma canónica}$$

MAXTERMOS:

Designa-se por maxtermo (também soma canónica, implicado canónico ou termo maximal) um termo de soma em que todas as variáveis aparecem exactamente uma vez, complementadas ou não.

Maxtermos para 3 variáveis

x ₃	\mathbf{x}_2	\mathbf{x}_1	maxtermo	
0	0	0	$x_3 + x_2 + x_1$	M_0
0	0	1	$x_3 + x_2 + \overline{x}_1$	\mathbf{M}_1
0	1	0	$x_3 + \overline{x}_2 + x_1$	M_2
0	1	1	$x_3 + \overline{x}_2 + \overline{x}_1$	M_3
1	0	0	$\overline{x}_3 + x_2 + x_1$	M_4
1	0	1	$\overline{x}_3 + x_2 + \overline{x}_1$	M_5
1	1	0	$\overline{x}_3 + \overline{x}_2 + x_1$	M_6
1	1	1	$\overline{x}_3 + \overline{x}_2 + \overline{x}_1$	M_7

Um **maxtermo** representa exactamente uma combinação das variáveis binárias na tabela de verdade da função.

Uma função de n variáveis tem até 2ⁿ maxtermos.

Cada maxtermo é também designado por M_i em que o índice i indica o número decimal equivalente à combinação binária por ele representada.

O maxtermo vale 0 para a combinação representada e 1 para todas as outras.

MINTERMOS E MAXTERMOS:

D mintermo corresponde a uma função ≠ 0 com o número mínimo de 1's na tabela da verdade.

$$f = \overline{x}_3 \cdot x_2 \cdot x_1$$

x_3	\mathbf{x}_2	\mathbf{x}_1	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

MINTERMOS E MAXTERMOS:

► O maxtermo corresponde a uma função ≠ 1 com o número máximo de 1's na tabela da verdade.

$$f = x_3 + \overline{x}_2 + \overline{x}_1$$

x_3	\mathbf{x}_2	\mathbf{x}_1	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

MINTERMOS E MAXTERMOS:

▶ Um mintermo e um maxtermo com o mesmo índice são complementos um do outro:

$$m_j = \overline{M}_j$$

X ₃	\mathbf{x}_2	x ₁	minter	mo	maxterm	10
0	0	0	$\overline{x}_3.\overline{x}_2.\overline{x}_1$	m_0	$x_3 + x_2 + x_1$	\mathbf{M}_0
0	0	1	$\overline{X}_3.\overline{X}_2.X_1$	m_1	$x_3 + x_2 + \overline{x}_1$	\mathbf{M}_1
0	1	0	$\overline{X}_3.X_2.\overline{X}_1$	m_2	$x_3 + \overline{x}_2 + x_1$	\mathbf{M}_2
0	1	1	$\overline{x}_3.x_2.x_1$	m_3	$x_3 + \overline{x}_2 + \overline{x}_1$	M_3
1	0	0	$X_3.\overline{X}_2.\overline{X}_1$	m_4	$\overline{x}_3 + x_2 + x_1$	\mathbf{M}_4
1	0	1	$x_3.\overline{x}_2.x_1$	m ₅	$\overline{x}_3 + x_2 + \overline{x}_1$	M_5
1	1	0	$x_3.x_2.\overline{x}_1$	m_6	$\overline{x}_3 + \overline{x}_2 + x_1$	\mathbf{M}_6
1	1	1	$x_3.x_2.x_1$	m ₇	$\overline{x}_3 + \overline{x}_2 + \overline{x}_1$	\mathbf{M}_7

$$m_3 = \overline{x}_3.x_2.x_1$$

$$= \overline{\overline{x}_3.x_2.x_1}$$

$$= \overline{x}_3 + \overline{x}_2 + \overline{x}_1$$

$$= \overline{M}_3$$

■ TABELA DA VERDADE ↔ SOMA DE PRODUTOS

- Uma função booleana pode ser expressa algebricamente como uma soma de produtos directamente a partir da tabela de verdade.
- ► A soma inclui todos os mintermos para os quais a função vale 1.

$$f(x_{3}, x_{2}, x_{1}) = \sum m(0,1,3,5,7)$$

$$f(x_{3}, x_{2}, x_{1}) = \overline{x}_{3}.\overline{x}_{2}.\overline{x}_{1} \qquad \leftarrow m_{0}$$

$$+ \overline{x}_{3}.\overline{x}_{2}.x_{1} \qquad \leftarrow m_{1}$$

$$+ \overline{x}_{3}.x_{2}.x_{1} \qquad \leftarrow m_{3}$$

$$+ x_{3}.\overline{x}_{2}.x_{1} \qquad \leftarrow m_{5}$$

$$+ x_{3}.x_{2}.x_{1} \qquad \leftarrow m_{7}$$

			I
x_3	\mathbf{x}_2	\mathbf{x}_1	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

■ SOMA DE PRODUTOS ↔ PRODUTO DE SOMAS

- ► Conversão entre formas canónicas: o produto de somas utiliza os maxtermos correspondentes aos mintermos não utilizados na soma de produtos.
- ▶ É equivalente a aplicar a lei de DeMorgan ao complemento da função.

\mathbf{x}_3	\mathbf{x}_2	\mathbf{x}_1	f	$\overline{\mathbf{f}}$	$f(x_3, x_2, x_1) = m_0 + m_1 + m_3 + m_5 + m_7$
0	0	0	1	0	
0	0	1	1	0	$\overline{f(x_3, x_2, x_1)} = m_2 + m_4 + m_6$
0	1	0	0	1	$f(x_3, x_2, x_1) = \overline{m_2 + m_4 + m_6} = \overline{m}_2 . \overline{m}_4 . \overline{m}_6$
0	1	1	1	0	$=M_2.M_4.M_6$
1	0	0	0	1	2 4 0
1	0	1	1	0	$f = \overline{\overline{x}_3.x_2.\overline{x}_1 + x_3.\overline{x}_2.\overline{x}_1 + x_3.x_2.\overline{x}_1}$
1	1	0	0	1	$=\overline{(\overline{x}_3.x_2.\overline{x}_1)}.\overline{(x_3.\overline{x}_2.\overline{x}_1)}.\overline{(x_3.x_2.\overline{x}_1)}$
1	1	1	1 1 0 1 0 1 0	0	$= (x_3 + \overline{x}_2 + x_1).(\overline{x}_3 + x_2 + x_1).(\overline{x}_3 + \overline{x}_2 + x_1)$

■ TABELA DA VERDADE ↔ PRODUTO DE SOMAS

- ▶ Uma função booleana pode ser expressa algebricamente, como um produto de somas, directamente a partir da tabela de verdade.
- ▶ O produto inclui todos os maxtermos para os quais a função vale 0.

$$f(x_3, x_2, x_1) = \prod M(2,4,6)$$

$$f(x_3, x_2, x_1) = (x_3 + \bar{x}_2 + x_1) \qquad \leftarrow M_2$$

$$.(\bar{x}_3 + x_2 + x_1) \qquad \leftarrow M_4$$

$$.(\bar{x}_3 + \bar{x}_2 + x_1) \qquad \leftarrow M_6$$

			ı
\mathbf{x}_3	\mathbf{x}_2	\mathbf{x}_1	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

■ FUNÇÕES INCOMPLETAMENTE ESPECIFICADAS

Exemplo: Função que detecta se um número, no intervalo [1,6], é múltiplo de 3.

			ı
x_3	\mathbf{x}_2	\mathbf{x}_1	f
0	0	0	X
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	X

A função toma o valor 'X' (às vezes também representado por '-') para cada uma das combinações das entradas que nunca ocorrerão.

Realidade Física: 'X' não existe, apenas existem '0' ou '1'.

X – "don't care": não nos preocupamos com o comportamento do circuito para os valores fora do intervalo, portanto podemos escolher para cada 'X' o valor mais adequado entre '0' ou '1'.

Representação:

$$f(x_3, x_2, x_1) = \sum m(3,6) + \sum m_d(0,7)$$

$$= m_3 + m_6 + m_{d0} + m_{d7}$$

$$f(x_3, x_2, x_1) = \prod M(1,2,4,5) \cdot \prod M_d(0,7)$$

$$= M_1 M_2 M_4 M_5 M_{d0} M_{d7}$$

FUNÇÕES INCOMPLETAMENTE ESPECIFICADAS (cont.) Exemplo:

			I *	
x_3	\mathbf{x}_2	\mathbf{x}_1	f	\rightarrow g
0	0	0	X	$\rightarrow 0$
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	X	$\rightarrow 1$

Estratégia: para cada 'X' escolhemos '0' ou '1' de acordo com os objectivos do projecto (habitualmente, maior simplificação).

Neste caso, a solução mais simples corresponde a substituir o primeiro 'X' por '0' e o segundo por '1'.

$$f \to g(x_3, x_2, x_1) = \sum m(3,6,7) = \prod M(0,1,2,4,5)$$
$$= x_2 x_1 + x_3 x_2$$
$$= x_2 (x_1 + x_3)$$

PRÓXIMA AULA

Próxima Aula

Tema da Próxima Aula:

- Minimização algébrica
- Minimização de Karnaugh:
 - Representação de funções de n variáveis:
 - Quadros de 3 e 4 variáveis;
 - Quadros de n variáveis;
 - Agrupamentos de uns e zeros:
 - Eixos de simetria;
 - Implicantes e implicados;
 - Implicantes e implicados primos;
 - Implicantes e implicados primos essenciais.

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás