Quelques problèmes d'apprentissage dans le cadre de l'Internet des objets

Massinissa Hamidi

sous la direction de Aomar Osmani LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord

Contexte et motivations

Topologies des déploiements

 Privacy constraints according to the perspectives and their evolution over time;

Hétérogénéité des sources de données : impact de la sensibilité des capteurs sur les mesures

Famille d'espaces d'hypothèses $\;\mathbb{H}:=\{\mathcal{H}\}\;$

Spécificités des phénomènes

Spécificités des phénomènes

Modèles biomécaniques des mouvements

Modèles biomécaniques des mouvements qui décrivent la dynamique des mouvements dans le temps

- Reconnaissance des situations d'inconfort chez les nourrissons;
- Reconnaissance d'activités humaines ;
- Suivi du phénomène vibratoire des turbocompresseurs ;
- Synthèse de nouveaux matériaux en industrie

- Reconnaissance des situations d'inconfort chez les nourrissons;
- Reconnaissance d'activités humaines ;
- Suivi du phénomène vibratoire des turbocompresseurs ;
- Synthèse de nouveaux matériaux en industrie

- Reconnaissance des situations d'inconfort chez les nourrissons ;
- Reconnaissance d'activités humaines ;
- Suivi du phénomène vibratoire des turbocompresseurs ;
- Synthèse de nouveaux matériaux en industrie

- Reconnaissance des situations d'inconfort chez les nourrissons;
- Reconnaissance d'activités humaines ;
- Suivi du phénomène vibratoire des turbocompresseurs ;
- Synthèse de nouveaux matériaux en industrie

- Reconnaissance des situations d'inconfort chez les nourrissons ;
- Reconnaissance d'activités humaines ;
- Suivi du phénomène vibratoire des turbocompresseurs ;
- Synthèse de nouveaux matériaux en industrie

Abstraction de la position des capteurs

on considère des configuration où une collection \mathcal{S} de M capteurs, notée $\{s_1,\ldots,s_M\}$, sont positionnées sur l'objet d'intérêt aux positions $\{p_1,\ldots,p_M\}$.

on considère des configuration où une collection \mathcal{S} de M capteurs, notée $\{s_1,\ldots,s_M\}$, sont positionnées sur l'objet d'intérêt aux positions $\{p_1,\ldots,p_M\}$.

Chaque capteur s_i génère un flux $\mathbf{x}^i = (x_1^i, x_2^i, \dots)$ d'observations d'une certaine modalité comme l'accélération ou la gravité.

- Acc, Gyr, Mag, etc.;
- Séquences temporelles ;
- Segmentation (choix d'une taille de segment, d'un coefficient de chevauchement, etc.);
- Généralement, on se ramène à un problème de classification de séquences (avec des réseaux de neurones par exemple chargés d'extraire des caractéristiques pertinentes du signal, etc.;
- On utilise des LSTM afin de modéliser les dépendances temporelles du signal ;

- Mouvements translationnel et circulaire;
- Discriminer entre marcher et courir peut se baser simplement sur les composantes translationnelles vu qu'il y a un déplacement plus important par rapport à l'environnement;
- Discriminer entre courir et être à vélo peut se faire en utilisant les composantes cycliques vu que la main reste relativement statique à vélo.

Abstraction de la Position des Capteurs

Grâce à cette transformation chaque capteur $s \in \mathcal{S}$ démêlera les flux de données entrelacées entre le composant local et universel \mathbf{x} en les projetant dans deux représentations distinctes z_A et z_P .

Abstraction de la Position des Capteurs

Grâce à cette transformation chaque capteur $s \in \mathcal{S}$ démêlera les flux de données entrelacées entre le composant local et universel \mathbf{x} en les projetant dans deux représentations distinctes z_A et z_P .

Les représentations z_P ne seront utilisées qu'au niveau de l'apprenant local qui les a généré. Les représentations z_A peuvent être utilisées au niveau de l'apprenant local ou partagées (mutualisées) avec les représentations de même type provenant des autres apprenants.

Approches de démêlement (disentanglement)

Approches de démêlement (disentanglement)

Séparation explicite des composantes de la représentation latente :

dSprites dataset

Séparation ou décomposition implicite des composantes de la représentation latente à l'aide du $\beta\text{-VAE}$

$$L(\theta, \varphi; x, z) = \mathbb{E}_{q_{\varphi}}(z|x)[\log p_{\theta}(x|z)] - \beta D_{KL}(q_{\varphi}(z|x)||p(z))$$

Imposition d'une structure particulière à l'espace latent :

$$L(\theta, \varphi; x, z) = \mathbb{E}_{q_{\varphi}}(z|x)[\log p_{\theta}(x|z)] - \beta D_{KL}(q_{\varphi}(z|x)||p(z)) - \alpha D_{KL}(q_{\varphi}(z)||p(z))$$

Imposition d'une structure particulière à l'espace latent :

 $L(\theta, \varphi; x, z) = \mathbb{E}_{q_{\varphi}}(z|x)[\log p_{\theta}(x|z)]$

 $-\beta D_{KL}(q_{\varphi}(z|x)||p(z))$

 $-\alpha D_{KL}(q_{\varphi}(z)||p(z))$

Divergence entre la distribution a posteriori et la structure cible

Contrainte imposant la parcimonie des représentations latentes

Erreur de reconstruction

Apprenants locaux

- spécifiques aux positions du déploiement
- décomposition du signal/données en composantes spécifiques aux positions et universelles (mutualisables)

Apprenants locaux

- spécifiques aux positions du déploiement
- décomposition du signal/données en composantes spécifiques aux positions et universelles (mutualisables)

L'objectif de l'apprenant local $\,L_p\,$ peut être formalisé comme le risque empirique sur la distribution des données de la position $\,p$:

$$f_p(w_p) = \mathbb{E}_{\xi_p}[\tilde{f}_p(w_p; \xi_p)]$$

où ξ_p est un échantillon de données aléatoires tiré selon la distribution de la position p et $\tilde{f}_p(w_p;\xi_p)$ est une fonction objective correspondant à cet échantillon. w_p l'ensemble des poids de l'apprenant.

Apprenants locaux

- spécifiques aux positions du déploiement
- décomposition du signal/données en composantes spécifiques aux positions et universelles (mutualisables)

Apprenant (central) référentiel

- conciliation des différentes perspectives

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) := \sum_{p=1}^M \alpha_p \times f_p(w_p) \right\} with \sum_{p=1}^M \alpha_p = 1$$

Apprenants locaux

- spécifiques aux positions du déploiement
- décomposition du signal/données en composantes spécifiques aux positions et universelles (mutualisables)

Apprenant (central) référentiel

- conciliation des différentes perspectives
- alignement des représentations universelles

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) := \sum_{p=1}^M \alpha_p \times f_p(w_p) \right\} with \sum_{p=1}^M \alpha_p = 1$$

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) = \frac{1}{M} \sum_{p=1}^M F_p(w_p) \right\}, \, F_p(w_p) = \min_{w \in \mathbb{R}^d} \left\{ f_p(w_p) + \lambda R(z_{iA}, z_A^{(t)}) \right\}$$

Abstraction de la Position des Capteurs

Initialisation des poids de l'apprenant référentiel et leur distribution aux apprenants locaux

Abstraction de la Position des Capteurs

A l'étape t du cycle de communication, chaque apprenant local exécute indépendamment τ_p itérations du solveur local basé sur la descente de gradient stochastique (SGD) à partir du modèle global courant $L_p^{(t,0)}$ jusqu'à l'étape $L_p^{(t,\tau_p)}$ afin d'optimiser sa propre fonction objective locale (flèches noires).

Abstraction de la Position des Capteurs

$$w^{(t+1,0)} - w^{(t,0)} = \sum_{p=1}^{M} \alpha_p \Delta_p^{(t)} = -\sum_{p=1}^{M} \alpha_p \cdot \eta \sum_{k=0}^{\tau_p - 1} g_p(w_p^{(t,k)})$$

où $w_p^{(t,k)}$ désigne le modèle du client p après la k-ième mise à jour locale dans le t-ième cycle de conciliation et $\Delta_p^{(t)} = w_p^{(t,\tau_p)} - w_p^{(t,0)}$ désigne la progression locale réalisée par le client p au cycle t. De plus, η est le taux d'apprentissage du client et g_p représente le gradient stochastique sur un mini-lot d'échantillons B.

	Recognition Performances±std.				
Config.	Bag	Hand	Hips	Torso	
Baseline (no sep.)	$63.79 \pm .0089$	$63.86 \pm .0014$	$65.70 \pm .0126$	$60.61 \pm .0072$	
Universal comp.					
w/o conciliation	$66.17 \pm .0224$	$65.26 \pm .0147$	$66.12 \pm .0035$	$62.47 \pm .013$	
w/ conciliation	$66.97 \pm .016$	$67.8 \pm .0015$	$67.84 \pm .0354$	$63.12 \pm .01$	
Posspecific comp.					
w/o conciliation	$64.2 \pm .3$	$66.17 \pm .007$	$67.9 \pm .0026$	$61.32 \pm .087$	
w/ conciliation	$65.66 \pm .029$	$68.94 \pm .03$	$70.45 \pm .07$	$61.15 \pm .029$	

(b) $z_A; z_{Hand}$

(c) $z_A; z_{Bag}$

(d) $z_A; z_{Hips}$

	Recognition Performances±std.				
Config.	Bag	Hand	Hips	Torso	
Baseline (no sep.)	$63.79 \pm .0089$	$63.86 \pm .0014$	$65.70 \pm .0126$	$60.61 \pm .0072$	
Universal comp.					
w/o conciliation	$66.17 \pm .0224$	$65.26 \pm .0147$	$66.12 \pm .0035$	$62.47 \pm .013$	
w/ conciliation	$66.97 \pm .016$	$67.8 \pm .0015$	$67.84 \pm .0354$	$63.12 \pm .01$	
Posspecific comp.					
w/o conciliation	$64.2 \pm .3$	$66.17 \pm .007$	$67.9 \pm .0026$	$61.32 \pm .087$	
w/ conciliation	$65.66 \pm .029$	$68.94 \pm .03$	$70.45 \pm .07$	$61.15 \pm .029$	

(a) $z_A; z_{Torso}$

(b) $z_A; z_{Hand}$

(c) $z_A; z_{Bag}$

(d) $z_A; z_{Hips}$

Quelques résultats : configurations d'inférence

Config.	Best Config.	$Recogn.\ Perf. \pm std.$	$mean \pm std.$
Baselines			
Concat. fusion	-	-	$60.24 \pm .014$
Corr. Alignment	-	-	$63.79 \pm .032$
Activities			
Still	$z_{hi};z_t$	85.77 ± 0.016	83.26 ± 0.7
Walk	$z_A;z_{ha}$	88.54 ± 0.07	86.74 ± 0.058
Run	z_{ha}	90.51 ± 0.016	89.46 ± 0.03
Bike	$z_A;z_{hi}$	85.62 ± 0.2	83.22 ± 0.086
Car	$z_A; z_{ha}$	78.24 ± 0.058	77.14 ± 0.2
Bus	z_{ha}	78.08 ± 0.022	75.17 ± 0.004
Train	$z_{hi};z_{hi}$	76.13 ± 0.175	74.88 ± 0.08
Subway	$z_A; z_{ha}; z_t$	75.89 ± 0.009	74.07 ± 0.006

Axes d'amélioration

Modélisation et incorporation des dynamiques du mouvement

Un contrôle plus fin du processus d'apprentissage de représentations avec l'incorporation des primitives de mouvement pour chaque activité.

Les transitions entre les états du système dynamique sont explicitement encodées dans l'espace latent.

Axes d'amélioration

Apprentissage selon les regroupements de concepts

Un contrôle plus fin du processus d'apprentissage de représentations avec l'incorporation des primitives de mouvement pour chaque activité.

Les transitions entre les états du système dynamique sont explicitement encodées dans l'espace latent.

Massinissa Hamidi

LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord

