Modéliser les systèmes asservis dans le but de prévoir leur comportement

Chapitre 1 - Stabilité des systèmes

Sciences

Industrielles de

l'Ingénieur

TD 01 – Corrigé

Drone quadri-rotor

Pole SII Chateaubriand - Joliot Curie

Savoirs et compétences :

- Res2.C6: stabilité des SLCI: position des pôles dans le plan complexe
- Res2.C7: stabilité des SLCI: marges de stabilité (de gain et de phase)

Présentation

• Étudier le comportement du quadrirotor lors du décollage.

 Vérifier les performances imposées par le cahier des charges.

Linéarisation du modèle de moteur

Question 1 Déterminer l'équation stationnaire liant ω_0 et u_0 .

Correction En vol stationnaire, dans les conditions idéales, la vitesse de rotation des hélices est constante; donc $\frac{\mathrm{d}\omega(t)}{\mathrm{d}t}=0$. De plus, il n'y a pas de variation de la vitesse de rotation des hélices et donc pas de variation de la tension d'alimentation. En conséquence, $\delta u=0$ et $\delta \omega=0$.

et $\delta \omega = 0$. On a donc $\frac{\mathrm{d}\omega(t)}{\mathrm{d}t} = -\frac{1}{\tau}\omega(t) - k_q\omega(t)^2 + \frac{k_v}{\tau}u$ En notant ω_0 et u_0 les vitesses en tensions à l'état stationnaire, on a $\frac{1}{\tau}\omega_0 + k_q\omega_0^2 = \frac{k_v}{\tau}u_0$.

Question 2 Montrer que l'équation différentielle liant $\delta \omega$ et δu est de la forme $\frac{d\delta \omega(t)}{dt} = -A\delta \omega(t) + B\delta u$. Exprimer A et B en fonction des paramètres τ , k_v , k_q et ω_0 .

 $\begin{array}{l} \textbf{Correction} \quad \text{On utilise le changement de variable proposé autour d'un point de fonctionnement et on a :} \\ \frac{\mathrm{d}\omega(t)}{\mathrm{d}t} = -\frac{1}{\tau}\omega(t) - k_q\omega(t)^2 + \frac{k_v}{\tau}u \\ \quad \Rightarrow \frac{\mathrm{d}(\omega_0 + \delta\omega)}{\mathrm{d}t} = -\frac{1}{\tau}(\omega_0 + \delta\omega) - k_q(\omega_0 + \delta\omega)^2 + \frac{k_v}{\tau}(u_0 + \delta u) \\ \quad \Rightarrow \frac{\mathrm{d}(\delta\omega)}{\mathrm{d}t} = -\frac{1}{\tau}\omega_0 - \frac{1}{\tau}\delta\omega - k_q\omega_0^2 - k_q(\delta\omega)^2 - k_q2\omega_0\delta\omega + \frac{k_v}{\tau}u_0 + \frac{k_v}{\tau}\delta u \\ \quad \text{Or } \frac{1}{\tau}\omega_0 + k_q\omega_0^2 = \frac{k_v}{\tau}u_0 \text{ (question précédente);} \\ \text{donc : } \frac{\mathrm{d}(\delta\omega)}{\mathrm{d}t} = -\frac{1}{\tau}\delta\omega - k_q(\delta\omega)^2 - k_q2\omega_0\delta\omega + \frac{k_v}{\tau}\delta u \\ \quad \text{En négligeant les termes d'ordre 2, on a donc :} \\ \frac{\mathrm{d}(\delta\omega)}{\mathrm{d}t} = -\frac{1}{\tau}\delta\omega - k_q2\omega_0\delta\omega + \frac{k_v}{\tau}\delta u \\ \quad \text{Au final, } A = \frac{1}{\tau} + k_q2\omega_0 \text{ et } B = \frac{k_v}{\tau}. \end{array}$

On note $\Delta\Omega(p)$ la transformée de Laplace de $\delta\,\omega$ et $\Delta U(p)$ celle de $\delta\,u$.

Question 3 Calculer la fonction de transfert $\frac{\Delta\Omega(s)}{\Delta U(s)}$ du moteur. Donner l'expression de ses paramètres caractéristiques K_m et T_m en fonction des paramètres τ , k_v , k_q et ω_0 .

Correction En utilisant la transformée de Laplace, on obtient $p\Delta\Omega(s) = -A\Delta\Omega(s) + B\Delta U(s)$ et donc $\frac{\Delta\Omega(s)}{\Delta U(s)} = \frac{B}{p+A} = \frac{B/A}{p/A+1}$. En conséquence, $K_m = \frac{k_v}{T} = \frac{k_v}{T} = \frac{k_v}{T} = \frac{T}{1+\tau k_q 2\omega_0}$. $\tau_m = \frac{\tau}{1+\tau k_q 2\omega_0}$

Recherche du point de fonctionnement

 ω_0

1

Question 4 Calculer numériquement la poussée F_0 que doit exercer chacun des quatre moteurs pour maintenir

l'appareil en vol stationnaire à l'altitude z_0 .

Correction On a $4F_0 = mg$. Le poids du drone est de $0,240 \times 9,81 = 2,3544$ N. Chaque moteur doit donc exercer $\frac{2,3544}{4} = 0,59$ N.

Question 5 Déterminer la fréquence de rotation ω_0 des moteurs en vol stationnaire.

Correction En lisant le graphe, on obtient $\omega_0=340\,\mathrm{rad}\,\mathrm{s}^{-1}$.

Question 6 Déterminer l'expression des coefficients k_v et k_q en fonction de a, b et τ . Préciser leur unité.

Correction Lorsque
$$\frac{\mathrm{d}\omega(t)}{\mathrm{d}(t)}=0$$
, on a $u=a\omega 0^2+b\omega_0$. Par ailleurs en régime stationnaire, on a $\frac{1}{\tau}\omega_0+k_q\omega_0^2=\frac{k_v}{\tau}u_0$. Il en résulte que $u_0=\frac{1}{k_v}\omega_0+\frac{k_q\tau}{k_v}\omega_0^2$. On a donc $a=\frac{k_q\tau}{k_v}$ et $b=\frac{1}{k_v}$. On a donc b tel que $[V]=[B][s^{-1}]$ et $[B]=[V][s]$. On a donc k_v en $[V^{-1}s^{-1}]$. Par ailleurs, $[V]=[k_q][s][Vs][s^{-2}]$ et k_q n'a pas d'unité

On peut ainsi déduire le modèle $\frac{\Delta\Omega(p)}{\Delta U(p)}$ du moteur linéarisé autour de son point de fonctionnement. Pour la suite, on retiendra le modèle suivant : $\frac{\Delta\Omega(p)}{\Delta U(p)} = \frac{37,5}{1+\frac{p}{77}}$.

Vérification des performances

Question 7 Déterminer la fonction de transfert $\frac{\Delta Z(p)}{\Delta F(p)}$ à partir de l'équation du principe fondamental de la dynamique. En déduire l'expression de la fonction de transfert en boucle ouverte.

$$\begin{array}{ll} \text{Correction On a vu que } 4_0F = mg. \\ \text{Par ailleurs, } m\ddot{z} &= 4F - mg \text{ et donc,} \\ m\frac{\mathrm{d}(z_0 + \delta z(t))}{\mathrm{d}t} = 4(F_0 + \delta F(t)) - mg \text{ et } m\frac{\mathrm{d}(\delta z(t))}{\mathrm{d}t} = \\ 4\delta F(t). \text{ Dans le domaine de Laplace, on a } mp^2\Delta Z(p) = \\ 4\Delta F(p). \text{ En conséquences, } \frac{\Delta Z(p)}{\Delta F(p)} = \frac{4}{mp^2}. \\ \text{La FTBO s'exprime alors par } H_{\mathrm{BO}}(p) = \\ \frac{2,5K}{p^2} \frac{1+Tp}{\left(1+\frac{p}{77}\right)\left(1+\frac{p}{30}\right)}. \end{array}$$

Question 8 Tracer le diagramme asymptotique de la courbe de gain avec le correcteur T = 0.2s et K = 1. Préciser les pentes et les pulsations de brisure. Le diagramme sera tracé entre 1 et $1000 \, \text{rad s}^{-1}$, le gain sera compris entre $-120 \, \text{dB}$ et $10 \, \text{dB}$.

Correction On a
$$H_{BO}(p) = \frac{2,5K}{p^2} \frac{1+Tp}{\left(1+\frac{p}{77}\right)\left(1+\frac{p}{30}\right)}$$

Les pulsations de cassure sont alors : $5 \, \text{rad} \, \text{s}^{-1}$ $30 \, \text{rad} \, \text{s}^{-1}$ et $77 \, \text{rad} \, \text{s}^{-1}$. Les pentes sont alors :

- pour $\omega < 5 \,\mathrm{rad}\,\mathrm{s}^{-1} : -40 \,\mathrm{dB/d\acute{e}cade};$
- pour $5 \operatorname{rad} s^{-1} < \omega < 30 \operatorname{rad} s^{-1} : -20 \operatorname{dB/décade}$;
- pour $30 \,\text{rad}\,\text{s}^{-1} < \omega < 77 \,\text{rad}\,\text{s}^{-1} : -40 \,\text{dB/décade}$
- pour $\omega > 77 \,\mathrm{rad}\,\mathrm{s}^{-1} : -60 \,\mathrm{dB/d\acute{e}cade}$.

Pour une pulsation de 10×10^{-2} rad s⁻¹, on a FTBO(p) $\simeq \frac{2.5}{p^2}$. On a donc un gain $\simeq 20 \log \left(\frac{2.5}{0.01^2}\right) \simeq 88$ dB. Reste à tracer...

Question 9 *Justifier que pour* K = 1, *on a* $\omega_{c0dB} = 1,5 \, \text{rad s}^{-1}$. *En déduire graphiquement la marge de phase pour* K = 1. *Commenter.*

Correction Si on considère que pour $\omega < 5 \, \mathrm{rad} \, \mathrm{s}^{-1}$, on a $H_{\mathrm{BO}}(p) \simeq \frac{2,5K}{p^2}$. Dans ces conditions, pour K=1, on a $\left|\frac{2,5}{-\omega^2}\right| = 1 \Rightarrow \omega = \sqrt{2,5} \simeq 1,58 \, \mathrm{rad} \, \mathrm{s}^{-1}$.

Question 10 Procéder au réglage du gain K du correcteur afin d'assurer le respect du critère de stabilité du cahier des charges.

Correction En raisonnant analytiquement, on cherche la pulsation ω_{-145} pour laquelle la phase est de $-180^{\circ}+35^{\circ}=-145^{\circ}$, soit arg FTBO($j\omega$)= -145° . (Résolution à faire à la calculatrice, sur Python ou autre. Il y asurement 2 solutions vu le profil de courbe de phase). On cherche ensuite K tel que $\left| \text{FTBO}(j\omega_{-145}) \right| = 1$. (Résolution à faire à la calculatrice, sur Python ou autre.)

Question 11 Le critère de précision du cahier des charges est-il vérifié? Justifier.

Correction La boucle ouverte comporte 2 intégrateurs. L'écart statique est donc nul. Le cahier des charges est vérifié.

Question 12 Repérer le(s) pôle(s) dominant(s) et donner sa (leur) valeur(s) numérique(s).

Correction Les pôles dominants sont $P2 \simeq -15$, $P3 \simeq -5 + 8i$, $P4 \simeq -5 - 8i$.

Question 13 À l'aide des droites d'iso-amortissement, indiquer la valeur du coefficient d'amortissement ξ de la fonction de transfert du deuxième ordre pouvant modéliser l'asservissement vertical du drone lorsque l'on néglige les autres pôles par rapport à ces pôles dominants.

Correction Dans ce cas, on ne prend que P3 et P4. $\xi = 0, 6$.

Question 14 En déduire la présence ou l'absence d'oscillations verticales du drone lors d'un décollage supposé modélisé par un échelon d'amplitude 1 mètre. Le critère de stabilité est-il intégralement vérifié?

Correction Le coefficient d'amortissement est inférieur à 0,69. Il y aura donc des oscillations verticales lors du drone. Le dépassement sera supérieur à 5 % de la valeur finale. En conséquence, le critère de stabilité n'est pas totalement respecté.

Question 15 Donner l'expression littérale des pôles d'un système du deuxième ordre de pulsation propre ω_n et de coefficient d'amortissement ξ < 1. En déduire une estimation de la pulsation propre ω_n de la fonction de transfert approchée de l'asservissement vertical du drone.

Correction

Question 16 Vérifier si le critère de rapidité du cahier des charges est vérifié.

Correction

Pour éventuellement vous aider....

1.
$$-\frac{1}{\tau}\omega_0 - k_q\omega_0^2 + \frac{k_v}{\tau}u_0 = 0$$
;

2.
$$A = \frac{1}{\tau} + 2k_q \omega_0$$
 et $B = \frac{k_v}{\tau}$.

2.
$$A = \frac{1}{\tau} + 2k_q \omega_0$$
 et $B = \frac{k_v}{\tau}$.
3. $K_m = \frac{k_v}{1 + 2\tau k_q \omega_0}$ et $T_m = \frac{\tau}{1 + 2\tau k_q \omega_0}$.
4. $F_0 = \frac{mg}{4} = 0.6 \text{ N}$.
5. $\omega_0 = 340 \text{ rad s}^{-1}$

4.
$$F_0 = \frac{mg}{4} = 0.6 \,\text{N}$$

5.
$$\omega_0 = 340 \,\mathrm{rad}\,\mathrm{s}^{-1}$$
.

6.
$$k_v = \frac{1}{h}$$
 (rad/s/V) et $k_b = \frac{a}{h\tau}$

6.
$$k_v = \frac{1}{b} (\text{rad/s/V}) \text{ et } k_b = \frac{a}{b\tau}.$$

7. $\frac{\Delta Z(p)}{\Delta F(p)} = \frac{4}{mp^2}.$ $H_{BO}(p) = \frac{2,5K}{p^2} \frac{1+Tp}{\left(1+\frac{p}{77}\right)\left(1+\frac{p}{30}\right)}.$

- 8. 9.
- 10. K = 17, 9.
- 11. La FTBO est de classe 2, l'erreur de position est donc
- 12. $p_2 = -15$, $p_3 = -5 + 8j$, $p_4 = -5 + 8j$.
- 13. $\xi = 0.6$
- 15. $p = -\xi \omega_n \pm j \omega_n \sqrt{1 \xi^2}$. $\omega_n \simeq 8.33 \,\text{rad s}^{-1}$
- 16. $t_{5\%} \simeq 0.61 \,\mathrm{s}$.