

史妍妍

基于响应面法的隐式极限状态 函数可靠性灵敏度分析方法

史妍妍,孙志礼,闫 明

(东北大学 机械工程与自动化学院,沈阳 110004)

摘 要:针对工程中广泛存在的隐式极限状态函数可靠性灵敏度分析问题,提出用含有交叉项的二次多项式响应面函数代替结构的真实响应,从而得到极限状态函数的显式表达式,再用一次二阶矩法对结构进行可靠性灵敏度分析的方法,得到了基本随机变量分布参数的变化引起的可靠性的变化率信息。因为用响应面方法获取的极限状态函数的显式表达式具有统一的形式,故所推导的可靠性灵敏度计算公式具有通用性。

关键 词:可靠性灵敏度分析;响应面法;一次二阶矩法;极限状态函数

中图分类号: TB114.3 文献标识码: A 文章编号: 1003-8728 (2009) 05-0648-04

A Method for Reliability Sensitivity Analysis of Implicit L in it State Function Using Response Surface Method

Shi Yanyan, Sun Zhili, Yan Ming

(School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004)

Abstract: For reliability sensitivity analysis of implicit limit state function, a reliability sensitivity analysis method is proposed. In this method, quadric polynomial response surface function containing cross-term is used to replace the real response so that the explicit expression of the limit state function is obtained. Then, First Second Order Moment (FSOM) method is used in reliability sensitivity analysis and the information of reliability change rate caused by the change of the distribution parameters of basic random variables is obtained. The method is proved to be feasible by an example, and the relevant calculation formulae are given. Since the unified explicit expression of the limit state function obtained by Response Surface Method (RSM) is of generalized form, the calculation formulae for this reliability sensitivity analysis method are universal

Key words: reliability sensitivity analysis; response surface method (RSM); first second order moment (FSOM) method; limit state function

由于可靠性灵敏度分析可提供基本随机变量分布参数的变化引起的可靠性的变化率信息,因而对可靠性设计具有重要指导作用[1]。目前可靠性发展中重点需要解决的问题是隐式极限状态函数可靠性灵敏度分析问题,因为大部分结构的极限状态函数均是隐式的^[2]。可靠性灵敏度分析方法主要包括有限差分法、一次二阶矩法和基于 Monte Carlo法的快速可

收稿日期: 2008-07-10

基金项目:航空推进技术验证计划项目 (APTD-1001A-01)资助

士生导师,zhlsun@mail neu edu cn

作者简介:史妍妍 (1980 -),博士研究生,研究方向为传热、机械可 靠性设计, syysyy80@ yeah net, 孙志礼(联系人),教师,博 靠性灵敏度分析方法。有限差分法的步长较难确定,且重复计算工作量较大,更严重的是不合适的步长将会导致错误的结论;一次二阶矩法的主要缺陷是对极限状态函数的显式解析表达式有较强依赖性;基于Monte Carlo法的快速可靠性灵敏度分析方法适合于隐式极限状态函数,但是计算工作量太大^[3]。本文提出了用响应面法获取极限状态函数的显式表达式,再用一次二阶矩法对结构进行可靠性灵敏度分析的方法,从而方便、有效的解决了隐式极限状态函数的可靠性灵敏度分析问题。并以热疲劳斜裂纹为例,研究各基本随机变量的分布参数对其不发生失稳扩展的可靠性灵敏度,验证了该方法的可行性。

1 响应面方法

从几何角度看,结构的极限状态函数表示结构 可靠空间与失效空间的分界面,而可靠性指标 示 n维正则化空间中坐标原点到该分界面的最小距 离^[4]。因为一般函数在极值点附近常可用二次函 数很好地近似,且二次函数经过有限次迭代就能达 到函数的极值点,具有很好的收敛性,又因为二次交 叉项的存在可以使可靠性灵敏度的计算精度得到保 证,所以采用含有交叉项的二次多项式响应面函数 代替结构的真实响应。

利用响应面法获取极限状态函数显式表达式的 步骤如下:

(1) 假定结构的真实响应 Y与影响结构的随机 参数向量 $X = [X_1, X_2, ..., X_{NR}]$ 的关系可用某含 有交叉项的二次函数描述,即

$$\hat{Y} = C_0 + \sum_{i=1}^{NR} C_i X_i + \sum_{i=1}^{NR} \sum_{j=i}^{NR} C_{ij} X_i X_j$$
 (1)

式中: C_0 、 C_i 、 C_{ij} (i = 1, ..., NR; j = i, ..., NR) 是待 定系数,共 n+1+n(n+1)/2个。

- (2) 采用某种取样方法得到随机参数向量的 NS个样本点。
- (3) 对这 NS个样本点进行试验或数值分析得 到结构响应的一组样本点 (y₁, y₂, ..., y_{Ns})。
- (4) 回归分析得到响应面函数中待定因子的最 小二乘估计,从而得到响应面函数。
- (5) 用响应面函数代替结构的真实响应从而得 到极限状态函数的显式表达式。

一种好的取样方法不 仅可减少样本点的数量, 且可提高响应面的精度。 本文采用一种高效的取样 方法——Box-Behnken 取 样。该方法对每个随机变 量取 3个概率水平点,然后 图 1 Box·Behnken样本点

按照一定的规则组合出中心点和边中点作为样本 点 $^{[5]}$ 。图 1表示 X_1 , X_2 , X_3 的 Box-Behnken样本点。

对于任意分布的随机变量概率水平点 x 的计 算公式为

$$f(x) dx = p_n \quad n = 1, 2, 3$$
 (2)

式中: f(x) 是随机变量的分布密度函数; p_x 表示概 率水平,取 $p_1 = 0.01$, $p_2 = 0.5$, $p_3 = 0.99$ 。

对随机参数的 NS个样本点进行数值计算,得到 NS个输出点(y₁, y₂, ..., y_{NS}), 对这些数据用最小二 乘法进行回归分析

$$s = \sum_{i=1}^{NS} {}^{2} = \sum_{i=1}^{NS} \left[y_{i} - \left(C_{0} + \sum_{i=1}^{NR} C_{i} x_{i} + \sum_{i=1}^{NR} C_{ij} x_{i} x \right) \right]^{2} (3)$$

式中: 为误差项。为使误差项最小,则有

$$\begin{cases} \frac{\partial s}{\partial C_0} = 0 \\ \frac{\partial s}{\partial C_i} = 0 \\ \frac{\partial s}{\partial C_i} = 0 \end{cases} = 1, 2, ..., NR$$

$$(4)$$

$$\frac{\partial s}{\partial C_i} = 0 \qquad i = 1, 2, ..., NR; j = i, ..., NR$$

求解式(4),可以得到式(1)中各系数的估计 值,从而得到响应面函数。

2 可靠度计算

假定式 (1) 中的 \hat{Y} 是裂纹体的应力强度因子, Kc 为材料的断裂韧性, 极限状态函数可以表示为

$$g(X) = K_{C} - \hat{Y} = K_{C} - \left(C_{0} + C_{i}X_{i} + C_{i}X_{i} + C_{i}X_{i}X_{i}X\right)$$
(5)

显然,式(5)是形式简单的二次函数,便于进行 方差和偏导的计算,同时,式(5)不只包括一次项、 二次项信息,而且含有二次交叉项信息,使可靠度和 可靠性灵敏度的计算精度得到保证。

极限状态函数可表示结构的 3种状态 : g(X) >0表示安全状态; g(X) < 0表示失效状态; g(X) =0表示极限状态。式 (5) 中各随机参数相互独立,均 值矩阵 $\mu = /\mu_1, \mu_2, ..., \mu_{NR}$], 方差矩阵 $D = /D_1$, D_2, \ldots, D_{NR}], \mathbb{N}

$$E(X_i^2) = E^2(X_i) + D(X_i) = \mu_i^2 + D_i$$
 (6)

$$E(X_iX_i) = E(X_i)E(X_i) = \mu_i \mu_i$$
 (7)

$$D(X_{i}^{2}) = 4\mu_{i}^{2} D_{i} + 2D_{i}$$
 (8)

$$D(X_{i}X_{j}) = \mu_{i}^{2} D_{j} + \mu_{j}^{2} D_{i} + D_{i}D_{j}$$

由此可得

$$E[g(X)] = \mu_g(\mu_1, \mu_2, ..., \mu_{NR}, \mu_{K_c}, D_1, D_2, ..., D_{NR}, D_{K_c})$$
(10)

$$D[g(X)] = D_g(\mu_1, \mu_2, ..., \mu_{NR}, \mu_{K_c}, D_1, D_2, ..., D_{NR}, D_{K_c})$$
(11)

由此得到可靠性指标为

$$=\frac{\mu_g}{\sqrt{D_g}} \tag{12}$$

若 g(X) 服从正态分布, 可以得到可靠度

$$R = () \tag{13}$$

式中: (·) 为标准正态分布函数。对任意分布都 可用 Monte Carlo模拟法计算可靠度。

3 可靠性灵敏度计算

可靠度对其基本随机参数矢量的均值矩阵 µ和 方差矩阵 D的灵敏度为

$$\frac{\partial R}{\partial \mu^{T}} = \frac{\partial R}{\partial g} \left(\frac{\partial}{\partial \mu_{g}} \frac{\partial \mu_{g}}{\partial \mu_{g}} + \frac{\partial}{\partial \mu_{g}} \frac{\partial \mu_{g}}{\partial \mu_{g}} \right)$$
(14)

$$\frac{\partial R}{\partial D^{T}} = \frac{\partial R}{\partial Q} \left[\frac{\partial}{\partial Q_{g}} \frac{\partial Q_{g}}{\partial D^{T}} + \frac{\partial}{\partial Q_{g}} \frac{\partial Q_{g}}{\partial D^{T}} \right]$$
(15)

: 中た

$$\frac{\partial R}{\partial \theta} = ();$$

$$\frac{\partial}{\partial u_g} = \frac{1}{\sqrt{D_g}};$$

$$\frac{\partial}{\partial v_g} = -\frac{\mu_g}{2} D_g^{-\frac{3}{2}};$$

$$\frac{\partial \mu_g}{\partial v_g} = \left[\frac{\partial \mu_g}{\partial u_1}, \frac{\partial \mu_g}{\partial u_2}, ..., \frac{\partial \mu_g}{\partial u_{NR}} \right]^T;$$

$$\frac{\partial \mu_g}{\partial v_g} = \left[\frac{\partial \mu_g}{\partial v_1}, \frac{\partial \mu_g}{\partial v_2}, ..., \frac{\partial \mu_g}{\partial v_{NR}} \right]^T;$$

$$\frac{\partial \nu_g}{\partial v_g} = \left[\frac{\partial \nu_g}{\partial v_1}, \frac{\partial \nu_g}{\partial v_2}, ..., \frac{\partial \nu_g}{\partial v_{NR}} \right]^T;$$

$$\frac{\partial \mathcal{D}_{g}}{\partial \mathcal{D}^{T}} = \left[\frac{\partial \mathcal{D}_{g}}{\partial \mathcal{D}_{1}}, \frac{\partial \mathcal{D}_{g}}{\partial \mathcal{D}_{2}}, \dots, \frac{\partial \mathcal{D}_{g}}{\partial \mathcal{D}_{NR}} \right]^{T}.$$

4 计算实例

图 2所示的热疲劳斜裂纹模型^[6,7],两端约束,其温度按照 30 ~220 ~30 规律循环,假定裂纹倾斜角、加热的最高温度 T_{max} 、积积的最高温度 T_{max} 、和热的最高温度 T_{max} 和来的最高温度 T_{max} 和来的是一个专家和来的。

图 2 热疲劳斜裂纹模型的轮廓图

表 1 各变量的平均值和标准差

变量	(9	$T_{\rm max}$ ()	s(%)	K_c (MPa $\sqrt{\text{mm}}$)			
均值	0	220	80	460			
标准差	2.5	4	2	18			

根据 Box·Behnken取样方法和式 (2)计算出样本点数值列入表 2中。

表 2 Box-Behnken取样样本点及响应值

++	()		T_{\max} ()		s(%)		样本点	输出			
样本点 	水平	取值	水平	取值	水平	取值	类型	$y_i (M Pa \sqrt{mm})$			
1	p_2	0	p_2	220.0	p_2	80.00	中心点	275.9			
2	p_1	- 5.816	p_1	210.7	p_2	80.00	\http://doi.org/10.1001/10.100	224 0			
3	p_3	5. 816	p_1	210.7	p_2	80.00		224 0			
4	p_1	- 5.816	p_3	229.3	p_2	80.00		376 8			
5	p_3	5. 816	p_3	229.3	p_2	80.00		376 8			
6	p_1	- 5.816	p_2	220.0	p_1	68. 37		254. 7			
7	p_3	5. 816	p_2	220.0	p_1	68. 37		254. 7			
8	p_1	- 5.816	p_2	220.0	p_3	91.63	边中点	341. 4			
9	p_3	5. 816	p_2	220.0	p_3	91.63		341. 4			
10	p_2	0	p_1	210.7	p_1	68.37		170 4			
11	p_2	0	p_3	229.3	p_1	68.37		303 4			
12	p_2	0	p_1	210.7	p_3	91.63		228 3			
13	p_2	0	p_3	229.3	p_3	91.63		406 5			

根据表 2中的样本点经过 13次有限元模拟得到 13个响应值,列入表 2的最后一列。根据表 2中数据和式 (4)得到应力强度因子的响应面函数

$$\hat{Y} = 985.7459 - 9.2560 T_{\text{max}} - 18.6835 s + 0.6711^{2} + 0.1042 T_{\text{max}} \cdot s + 0.0209 T_{\text{max}}^{2} - 0.0041 s^{2}$$

因此,应用响应面方法得到的极限状态函数的 显式表达式为

$$g(X) = K_C - \hat{Y} = K_C - 985.7459 + 9.2560T_{\text{max}} + 18.6835s - 0.6711^2 - 0.1042T_{\text{max}} \cdot s - 0.0209T_{\text{max}}^2 + 0.0041s^2$$

对上式应用 Monte Carlo模拟得到 g(X) 的频率直方图 (图 3),在正态概率纸上作出 g(X)分布图 (图 4),呈直线分布,因此 g(X) 服从正态分布。此外通过对上式的 Monte Carlo模拟还得到以下数据

 $u_e = 181.832, \quad _e = 87.109$

图 3 g(X) 的频率直方图

图 4 g(X) 正态分布检验图

由式 (6)、式 (7)、式 (10)得到 $\mu_{g} = E[g(X)] = -985.7459 + \mu_{\kappa_{C}} + 9.2560\mu_{T_{\max}} + 18.6835\mu_{s} - 0.6711(\mu^{2} + D) - 0.1042\mu_{T_{\max}} \cdot \mu_{s} - 0.0209(\mu_{T_{\max}}^{2} + D_{T_{\max}}) + 0.0041(\mu_{s}^{2} + D)$ 由式 (8)、式 (9)、式 (11)得到 $D_{g} = D[g(X)] = D_{\kappa_{C}} + 9.2560^{2}D_{T_{\max}} + 18.6835^{2}D_{s} + 0.6711^{2}(4\mu^{2}D + 2D) + 0.1042^{2}(\mu_{T_{\max}}^{2}D_{s} + \mu_{s}^{2}D_{T_{\max}} + D_{T_{\max}}D_{s}) + 0.0209^{2}(4\mu_{T_{\max}}^{2}D_{T_{\max}} + 2D_{T_{\max}}) + 0.0041^{2}(4\mu_{s}^{2}D_{s} + 2D_{s})$ 于是 $\mu_{g} = 181.502$, g = 87.556与 Monte Carlo 模拟所得数据相近。

 μ_{s} 和 D_{s} 对均值矩阵 μ 和方差矩阵 D的偏导过程略去,得到

$$\frac{\partial R}{\partial \mu^{T}} = \begin{bmatrix}
\frac{\partial R}{\partial \mu_{K_{C}}} \\
\frac{\partial R}{\partial \mu_{T_{\text{max}}}} \\
\frac{\partial R}{\partial \mu_{s}} \\
\frac{\partial R}{\partial \mu}
\end{bmatrix} = \begin{bmatrix}
0.0112 \\
-0.0968 \\
-0.0438 \\
0
\end{bmatrix}$$

$$\frac{\partial \mathbf{R}}{\partial \mathbf{D}^{\mathrm{T}}} = \begin{bmatrix} \frac{\partial \mathbf{R}}{\partial D_{\kappa_{C}}} \\ \frac{\partial \mathbf{R}}{\partial D_{\tau_{\max}}} \\ \frac{\partial \mathbf{R}}{\partial D_{s}} \\ \frac{\partial \mathbf{R}}{\partial D} \end{bmatrix} = \begin{bmatrix} -0.0001 \\ -0.0320 \\ -0.1161 \\ -0.0076 \end{bmatrix}$$

从可靠度对随机参数矢量均值的灵敏度矩阵 $\frac{\partial R}{\partial \mu^T}$ 可以看出, K_C 的均值增加可靠度增加; K_C 的均值增加可靠度增加; K_C 的均值增加可靠度降低;而 的均值无论增加还是降低可靠度都降低。可靠度对 K_{max} 均值的灵敏度较大。从可靠度对随机参数矢量方差的灵敏度矩阵 $\frac{\partial R}{\partial \mu^T}$ 可以看出, K_C 、 K_{max} 、 K_C 的方差增加可靠度都降低,其中可靠度对 K_C 0 的方差的灵敏度较大。对可靠度敏感的参数在设计中应该严格控制。

5 结论

本文提出了一种应用响应面法解决隐式极限状态函数可靠性灵敏度分析问题的方法,推导了可靠度及可靠度对其基本随机变量分布参数的灵敏度计算公式,并用算例验证了所提方法的可行性。因为用响应面法获取的极限状态函数的显式表达式具有统一的形式,故所推导的计算公式具有通用性。此外,该显式表达式是形式简单的二次函数,便于进行方差和偏导的计算,同时又包括二次交叉项的信息,使可靠度和可靠性灵敏度的计算精度得到保证。

/参考文献 /

- [1] 宋述芳,吕震宙,傅霖.基于线抽样的可靠性灵敏度分析方法 [J].力学学报,2007,39(4):564~569
- [2] 刘成立,吕震宙.结构体系隐式极限状态方程概率分析的改进响应面法[J].机械强度,2006,28(3):358~362
- [3] 宋军,吕震宙.非正态变量可靠性灵敏度分析方法[J].机械强度,2008,30(1):52~57
- [4] 蒋友宝,冯健,孟少平.基于状态空间响应面方法的结构系统 可靠度分析[J].工程力学,2007,24(1):27~32
- [5] Long H, et al Operating temperatures of oil-lubricated mediumspeed gears: numerical models and experimental results [J]. Journal of Aerospace Engineering, 2003, 21 (2): 87 ~106
- [6] Alredo H, Wilson H. Probability Concepts in Engineering Planning and Design [M]. New York: John Wiley & Sons, 1984
- [7] 闫明,孙志礼. 热疲劳裂纹开裂过程的有限元模拟 [J]. 东北大学学报,2007,28(12):1741~1744