Mata Kuliah :Sistem Digital

Abstract...

- Rangkaian kombinasional terbentuk dari sejumlah gerbang logika dimana nilai output pada suatu saat langsung ditentukan oleh kombinasi input yang ada tanpa memperhatikan kondisi input sebelumnya
- Rangkaian ini membentuk operasi pemrosesan informasi yang khusus dispesifikasikan dengan sejumlah fungsi boolean

Blok diagram

- Untuk n input, terdapat 2n kemungkinan kombinasi biner
- Untuk setiap kemungkinan kombinasi, terdapat satu dan hanya satu kemungkinan kombinasi output
- Satu rangkaian kombinasional dapat dinyatakan dengan m buah fungsi boolean yang masing-masing sebagai output, dimana setiap fungsi output dinyatakan dalam n literal input

Prosedur Desain

Ragam Rangkaian Kombinasional

- Adder
 - Half Adder
 - Full Adder
- Substractor
 - Half Substractor
 - Full Substractor
- Konversi Kode Biner

Rangkaian Half Adder (1)

Rumusan Masalah : Menjumlahkan 2 bit biner

Literal input = x,y

Literal output = S (sum), C (Carry)

Rangkaian Half Adder (2)

Membuat Tabel Kebenaran

X	У	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Rangkaian Half Adder (3)

Fungsi S
$$x/y = 0$$
 1 $x/y = 0$ 1 $x/y = 0$

Fungsi C
$$\begin{array}{c|cccc} x/y & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$
 $C = xy$

Rangkaian Half Adder (4)

S = x'y + xy' dan C = xy

S=(x+y)(x'+y') dan C=xy

S=x ⊕ y dan C=xy

Rangkaian Full Adder (1)

Rumusan : Menjumlahkan 3 bit biner
Literal input = x,y,z
Literal output = S, C

Rangkaian Full Adder (2)

Membuat Tabel Kebenaran

X	У	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Rangkaian Full Adder (3)

Fungsi S

x/yz	00	01	11	10
0	0	1	0	1
1	1	0	1	0

S=x'y'z+x'yz'+xy'z'+xyz

Fungsi C

x/yz	00	01	11	10
0	0	0	1	0
1	0	1	1	1

C=yz+xz+xy

Rangkaian Half Substractor (1)

- Rumusan Masalah : mengurangkan 2 bit biner
 - literal input : x,y
 - literal output : D (Differs), B (Borrow)

Rangkaian Half Substractor (2)

Tabel Kebenaran Half Substractors

X	У	В	D
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

Rangkaian Half Substractor (3)

Fungsi D

x/y	0	1
0	0	1
1	1	0

$$D = x'y + xy'$$

Fungsi B

x/y	0	1
0	0	1
1	0	0

$$B = x'y$$

Gambar rangkaiannya. Jika masih memungkinkan dilakukan penyederhanaan, sederhanakan dan gambarkan pula rangkaian hasil penyederhanaan!

Rangkaian Full Substractor (1)

- Rumusan Masalah : Mengurangkan 3 bit biner
 - Literal Input: x, y, z
 - Literal Output : D dan B

Rangkaian Full Substractor (2)

Tabel Kebenaran

X	у	Z	В	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Rangkaian Full Substractor (3)

Fungsi D

x/yz	00	01	11	10
0	0	1	0	1
1	1	0	1	0

S=x'y'z+x'yz'+xy'z'+xyz

Fungsi B

x/yz	00	01	11	10
0	0	1	1	1
1	0	0	1	0

C=yz+x'z+x'y

Gambar rangkaiannya. Jika masih memungkinkan dilakukan penyederhanaan, sederhanakan dan gambarkan pula rangkaian hasil penyederhanaan!

Rangkaian Konversi Kode Biner

- Contoh: Mengubah rangkaian konversi dari BCD ke kode X-3.
- Rumusan Masalah : Menambah setiap kode BCD dengan nilai 3

Konversi BCD → X-3 (1)

Tabel Kebenaran

Α	В	O	D
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	٦	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1

W	X	У	Z
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0

Konversi BCD → X-3 (2)

Fungsi w

AB/CD	00	01	11	10
00	0	0	0	0
01	0	1	1	1
11	X	Х	X	X
10	1	1	Х	X

Fungsi x

•	ı			
AB/CD	00	01	11	10
00	0	1	1	1
01	1	0	0	0
11	(x)	Х	х	х
10	0	1	X	Х

Konversi BCD → X-3 (3)

Fungsi y

AB/CD	00	00 01 11		10
00	1	0	1	0
01	1	0	1	0
11	х	х	х	Х
10	1	0	Х	Х

Fungsi z

AB/CD	00	01	11	10
00	<u></u>	0	0	1
01	1	0	0	1
11	х	х	х	х
10	1	0	х	Х

Rangkaian Decoder

- Rangkaian kombinasional yang mengkonversi informasi biner dari n input ke 2ⁿ jalur output yang berbeda
- Output decoder merupakan kumpulan minterm

Contoh: Decoder 2 input

X	Y	D0	D1	D2	D3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Tugas Praktikum Buatlah decoder 3 input

X	Y	Z	D0	D1	D2	D3	D4	D5	D6	D7
0	0	0	7	0	0	0	0	0	0	0
0	0	~	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	O	0	0	0	0	0	1	0	0	0
1	O	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Tugas Praktikum Buatlah decoder BCD-Desimal

W	×	Y	Z	DO	D1	D2	D3	D4	D5	D6	D 7	D8	D 9
0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	1	0	0	0
О	1	1	1	0	0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1
		V	VYV	/7 T		١	<u> </u>	1		11		10	

WX/YZ	00	01	11 /	10
00	D0	D1	D3	D2
01 _	D4	D5	D7	D6
11	X	X	Х	Х
10	D8	D9	X	X

WX/YZ	00	01	11	10
00	D0	D1	D3	D2
01 _	D4	D5	D7	D6
11	Х	X	Х	X
10	D8	D9	X	X

$$D0 = w'x'y'z'$$

$$D5 = xy'z$$

$$D1 = w'x'y'z$$

$$D6 = x'yz'$$

$$D2 = x'yz'$$

$$D7 = x'yz$$

$$D3 = x'yz$$

$$D8 = wz'$$

$$D4 = xy'z'$$

$$D9 = wz$$