.5 Other metrics

· CPU fim - recommended => real execution line	
* MiPS, MFLORS hisharding Court 36	Clock ratio
. MiPS- Millim Instructions Per Second MiPS = Execution time × 106 JC × CPI × Clock cycle time × 106	CPJ × 10
1200 for MIPS in word stone	
1) thips is dependent of the instruction set	
(2) MIPS defineds on the magnan all MiPS A > MIPS R	
3 Sometimes thips raises jurusely mith performance (CPU times > CPU times	
Example We counter a readine mit the following Perfux < Perf B) Characteristics when runing a workload:	
Operation Frequency Clock cycle of control of control of control of anithmetic operations	
Loady 21% & I she compiler optimization in restment good or not?	
Stones 12% 2 MiPS = Clock rate Clock rate = 1 = 1 = 10 Hz Porandus 24% 2 MiPS = CPT x 126	Ξ
MiPSoriginal = 50.40 Hz = 50 MHz = 0.43 × 1 + 0.57 × 2 = 0.43 + 1.14 = 1.57 c.c.	
MiPS original = $\frac{50}{1.57} = \frac{31.85}{1.57}$ CPU him original = I Coniginal × 1.57 × 20 us = I Coniginal × 31.4 us	
I Coptimized = IConiginal (1 - 0.43)	
(9] optimized = $\frac{0.13 \times 1 + 0.21 \times 2 + 0.12 \times 2 + 0.21 \times 2}{2} \times \text{ICourinal}$ (1.355) = 1.73	
(1 - 0.43) I Confined 0.785	
Original is better	
MiPS optimized = (30.10 12 = 2.8.5)	
MiPS optimize $d = \frac{50.10^{\circ} Hz}{1.73.10^{\circ}} = \frac{28.5}{28.5}$ CPU fine optimized = $\frac{1}{2}$ Congrical (1 - 0.43). $\frac{(0.43 \times 1 + 0.21 \times 2 + 0.12 \times 2 + 0.24 \times 2)}{2} \times 20 \text{ us} = \frac{1}{2}$	
CPU sime ortinated = TC (2) 1 (1 - 0.45) (- 23 × 1 + 0.21 × 2 + 0.12 × 2 + 0.24 × 2)	
(x - 0.42)	
= IConiginal. 1.355 × 20 us = 27.2 us & IConiginal	
· Until nour voi dissussed Haline MIPS = Time reference × MIPS reference Time merated × MIPS reference	
Time merated	
VTIX AT / 750 - of MITS (me aum	
· Exhimicantian shew analyzing performance rol M'175	
MFLOPS - Million Floating Point Operations Per Second	
MFLORS = lo of FRoquetions	
Pus and cons Execution time × 10°	
(2) MFLOPS is more bling than thiPS (less raidtion in FP OPS)	
1 Relevant outre retien the computing system operates in FP (1) MFLORS is more "fair" than MiPS (less sociation in FP Ops) (3) Different madisus have different FP instruction (instruction)	

CPJ × 106

(2) MFLOPS is more "fair" than MiPS (less raviation in FP OPS)

(3) Different madiens have different FP lushedion Kinsh set?

6 Different FP/Fixed Point Ratios in Instruction sets.

Station - Normalized FLOPS

Livermore Loops Mª Mahon from Lanrence Livermon Laboratory

Real FP op	Normalized FP opnation
+, *, com?	1
1, Sort	4
Exp, Siu	8