Designing, Visualizing and Understanding Deep Neural Networks

Lecture 8: CNN Applications

CS 194/294-129 Spring 2018 John Canny **Input:** Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \hspace{1cm} \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$
 // scale and shift

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Reduces need for dropout

Un-normalization!! Re-compute and apply the optimal scaling and bias for each neuron! Learn γ and β (same dims as μ and σ^2). It can (should?) learn the identity mapping!

Last Time: Gradient Clipping by Value or Norm

Last Time: Dropout

"randomly set some neurons to zero in the forward pass"

i.e. multiply by random bernoulli variables with parameter p.

Note, p is the probability of keeping a neuron

(b) After applying dropout.

[Srivastava et al., 2014]

Last Time: Ensembles (VGGNet and CIFAR 10)

Model	Prediction method	Test Accuracy
Baseline (10 epochs)	Single model	0.837
True ensemble of 10 models	Average predictions	0.855
True ensemble of 10 models	Voting	0.851
Snapshots (25) over 10 epochs	Average predictions	0.865
Snapshots (25) over 10 epochs	Voting	0.861
Snapshots (25) over 10 epochs	Parameter averaging	0.864

Last Time: Hyperparameter Optimization

Use Validation blocks to compare hyper-parameter choices

This Time: Localization and Detection

Results from Faster R-CNN, Ren et al 2015

Computer Vision Tasks

Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation

Classification + Localization: Task

Classification: C classes

Input: Image

Output: Class label

Evaluation metric: Accuracy

Localization:

Input: Image

Output: Box in the image (x, y, w, h)

Evaluation metric: Intersection over Union

(x, y, w, h)

Classification + Localization: Do both

Classification + Localization: ImageNet

1000 classes (same as classification)

Each image has 1 class, at least one bounding box

~800 training images per class

Algorithm produces 5 (class, box) guesses

Example is correct if at least one one guess has correct class AND bounding box at least 0.5 intersection over union (IoU)

Krizhevsky et. al. 2012

Idea #1: Localization as Regression

Step 1: Train (or download) a classification model (AlexNet, VGG, GoogLeNet)

Step 2: Attach new fully-connected "regression head" to the network

Step 3: Train the regression head only with SGD and L2 loss

Step 4: At test time use both heads

Per-class vs class agnostic regression

Where to attach the regression head?

Aside: Localizing multiple objects

Want to localize **exactly** K objects in each image

K x 4 numbers (one box per object)

Aside: Human Pose Estimation

Represent a person by K joints

Regress (x, y) for each joint from last fully-connected layer of AlexNet

(Details: Normalized coordinates, iterative refinement)

 $\begin{array}{c} 27 \times 520 \\ \hline \\ 250 \times 250 \\ \hline \\ 270 \times 25$

Toshev and Szegedy, "DeepPose: Human Pose Estimation via Deep Neural Networks", CVPR 2014

Idea #2: Sliding Window

 Run classification + regression network at multiple locations on a high-resolution image

 Convert fully-connected layers into convolutional layers for efficient computation

 Combine classifier and regressor predictions across all scales for final prediction

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Classification scores: P(cat)

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75

Classification scores: P(cat)

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75
0.6	

Classification scores: P(cat)

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75
0.6	0.8

Classification scores: P(cat)

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75
0.6	0.8

Classification scores: P(cat)

Greedily merge boxes and scores (details in paper)

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

8.0

Classification score: P(cat)

In practice use many sliding window locations and multiple scales

Window positions + score maps

Box regression outputs

Final Predictions

Sermanet et al, "Integrated Recognition, Localization and Detection using Convolutional Networks", ICLR 2014

Efficient Sliding Window: Overfeat

Efficient Sliding Window: Overfeat

Efficient sliding window by converting fullyconnected layers into convolutions Class scores: 1000 x 1 x 1 4096 x 1 x 1 1024 x 1 x 1 Convolution + pooling 1 x 1 conv 1 x 1 conv 5 x 5 conv 5 x 5 conv Feature map: 1 x 1 conv 1 x 1 conv 1024 x 5 x 5 Image: 3 x 221 x 221 4096 x 1 x 1 1024 x 1 x 1 Box coordinates: (4 x 1000) x 1 x 1

Efficient Sliding Window: Overfeat

Training time: Small image, 1 x 1 classifier output

Test time: Larger image, 2 x 2 classifier output, only extra compute at yellow regions

Sermanet et al, "Integrated Recognition, Localization and Detection using Convolutional Networks", ICLR 2014

ImageNet Classification + Localization

AlexNet: Localization method not published

Overfeat: Multiscale convolutional regression with box merging

VGG: Same as Overfeat, but fewer scales and locations; simpler method, gains all due to deeper features

ResNet: Different localization method (RPN) and much deeper features

Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation

Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation

Detection as Regression?

Detection as Regression?

Detection as Regression?

Need variable sized outputs

CAT? NO

DOG? NO

CAT? YES!

DOG? NO

CAT? NO

DOG? NO

Problem: Need to test many positions and scales

Solution: If your classifier is fast enough, just do it

Histogram of Oriented Gradients

Dalal and Triggs, "Histograms of Oriented Gradients for Human Detection", CVPR 2005 Slide credit: Ross Girshick

Deformable Parts Model (DPM)

Felzenszwalb et al, "Object Detection with Discriminatively Trained Part Based Models", PAMI 2010

Aside: Deformable Parts Models are CNNs?

Girschick et al, "Deformable Part Models are Convolutional Neural Networks", CVPR 2015

Problem: Need to test many positions and scales, and use a computationally demanding classifier (CNN)

Solution: Only look at a tiny subset of possible positions

Region Proposals

- Find "blobby" image regions that are likely to contain objects
- "Class-agnostic" object detector
- Look for "blob-like" regions

Region Proposals: Selective Search

Bottom-up segmentation, merging regions at multiple scales

Uijlings et al, "Selective Search for Object Recognition", IJCV 2013

Region Proposals: Many other choices

Method	Approach	Outputs Segments	Outputs Score	Control #proposals	Time (sec.)	Repea- tability	Recall Results	Detection Results
Bing [18]	Window scoring		√	✓	0.2	***	*	•
CPMC [19]	Grouping	\checkmark	\checkmark	\checkmark	250	-	**	*
EdgeBoxes [20]	Window scoring		\checkmark	\checkmark	0.3	**	***	***
Endres [21]	Grouping	\checkmark	\checkmark	\checkmark	100	-	***	**
Geodesic [22]	Grouping	\checkmark		\checkmark	1	*	***	**
MCG [23]	Grouping	\checkmark	\checkmark	\checkmark	30	*	***	***
Objectness [24]	Window scoring		\checkmark	\checkmark	3		*	
Rahtu [25]	Window scoring		\checkmark	\checkmark	3			*
RandomizedPrim's [26]	Grouping	\checkmark		\checkmark	1	*	*	**
Rantalankila [27]	Grouping	\checkmark		\checkmark	10	**	•	**
Rigor [28]	Grouping	\checkmark		\checkmark	10	*	**	**
SelectiveSearch [29]	Grouping	\checkmark	\checkmark	\checkmark	10	**	***	***
Gaussian				✓	0	•	•	*
SlidingWindow				\checkmark	0	***		
Superpixels		\checkmark			1	*		
Uniform				\checkmark	0			

Hosang et al, "What makes for effective detection proposals?", PAMI 2015

Region Proposals: Many other choices

Method	Approach	Outputs Segments	Outputs Score	Control #proposals	Time (sec.)	Repea- tability	Recall Results	Detection Results
Bing [18]	Window scoring		✓	✓	0.2	***	*	•
CPMC [19]	Grouping	\checkmark	✓	\checkmark	250	-	**	*
EdgeBoxes [20]	Window scoring		✓	✓	0.3	**	***	***
Endres [21]	Grouping	√	√	√	100	-	***	**
Geodesic [22]	Grouping	\checkmark		\checkmark	1	*	***	**
MCG [23]	Grouping	\checkmark	\checkmark	\checkmark	30	*	***	***
Objectness [24]	Window scoring		\checkmark	\checkmark	3		*	
Rahtu [25]	Window scoring		\checkmark	\checkmark	3			*
RandomizedPrim's [26]	Grouping	\checkmark		\checkmark	1	*	*	**
Rantalankila [27]	Grouping	\checkmark		\checkmark	10	**		**
Rigor [28]	Grouping	\checkmark		\checkmark	10	*	**	**
SelectiveSearch [29]	Grouping	\checkmark	\checkmark	\checkmark	10	**	***	***
Gaussian				✓	0	•	•	*
SlidingWindow				\checkmark	0	***		
Superpixels		\checkmark			1	*	•	
Uniform				\checkmark	0		•	

Hosang et al, "What makes for effective detection proposals?", PAMI 2015

Putting it together: R-CNN

Girschick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014

Slide credit: Ross Girschick

Step 1: Train (or download) a classification model for ImageNet (AlexNet)

Step 2: Fine-tune model for detection

- Instead of 1000 ImageNet classes, want 20 object classes + background
- Throw away final fully-connected layer, reinitialize from scratch
- Keep training model using positive / negative regions from detection images

Step 3: Extract features

- Extract region proposals for all images
- For each region: warp to CNN input size, run forward through CNN, save pool5 features to disk
- Have a big hard drive: features are ~200GB for PASCAL dataset!

Step 4: Train one binary SVM per class to classify region features

Step 4: Train one binary SVM per class to classify region features

Step 5 (bbox regression): For each class, train a linear regression model to map from cached features to offsets to GT boxes to make up for "slightly wrong" proposals

Training image regions Cached region features (0, 0, -0.125, 0)(.25, 0, 0, 0)Regression targets (0, 0, 0, 0)Proposal too Proposal too (dx, dy, dw, dh) Proposal is good far to left wide Normalized coordinates

Object Detection: Datasets

	PASCAL VOC (2010)	ImageNet Detection (ILSVRC 2014)	MS-COCO (2014)
Number of classes	20	200	80
Number of images (train + val)	~20k	~470k	~120k
Mean objects per image	2.4	1.1	7.2

Object Detection: Evaluation

We use a metric called "mean average precision" (mAP)

Compute average precision (AP) separately for each class, then average over classes

A detection is a true positive if it has IoU (Intersection over Union) with a ground-truth box greater than some threshold (usually 0.5) (mAP@0.5)

Combine all detections from all test images to draw a precision / recall curve for each class; AP is area under the curve

TL;DR mAP is a number from 0 to 100; high is good

Wang et al, "Regionlets for Generic Object Detection", ICCV 2013

R-CNN Problems

- 1. Slow at test-time: need to run full forward pass of CNN for each region proposal
- 2. SVMs and regressors are post-hoc: CNN features not updated in response to SVMs and regressors
- 3. Complex multistage training pipeline

Fast R-CNN

Girschick, "Fast R-CNN", ICCV 2015

Slide credit: Ross Girschick

R-CNN Problem #1:

Slow at test-time due to independent forward passes of the CNN

Solution:

Share computation of convolutional layers between proposals for an image

R-CNN Problem #2:

Post-hoc training: CNN not updated in response to final classifiers and regressors

R-CNN Problem #3:

Complex training pipeline

Solution:

Just train the whole system end-to-end all at once!

Slide credit: Ross Girschick

Convolution and Pooling

Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal

Fully-connected layers

Problem: Fully-connected layers expect low-res conv features: C x h x w

Project region proposal onto conv feature map

Convolution and Pooling

Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal Fully-connected layers

Problem: Fully-connected layers expect low-res conv features: C x h x w

Fast R-CNN: Region of Interest Pooling

Fast R-CNN Results

Faster!

	R-CNN	Fast R-CNN
Training Time:	84 hours	9.5 hours
(Speedup)	1x	8.8x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Results

		R-CNN	Fast R-CNN
Faster!	Training Time:	84 hours	9.5 hours
i dotor:	(Speedup)	1x	8.8x
FASTER !	Test time per image	47 seconds	0.32 seconds
	(Speedup)	1x	146x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Results

		R-CNN	Fast R-CNN
	Training Time:	84 hours	9.5 hours
	(Speedup)	1x	8.8x
Faster!	Test time per image	47 seconds	0.32 seconds
FASTER!	(Speedup)	1x	146x
Better!	mAP (VOC 2007)	66.0	66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Problem:

Test-time speeds don't include region proposals

	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Fast R-CNN Problem Solution:

Test-time speeds don't include region proposals Just make the CNN do region proposals too!

	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Faster R-CNN:

Insert a Region Proposal
Network (RPN) after the last
convolutional layer

RPN trained to produce region proposals directly; no need for external region proposals!

After RPN, use Rol Pooling and an upstream classifier and bbox regressor just like Fast R-CNN

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

Slide credit: Ross Girschick

Faster R-CNN: Region Proposal Network

Slide a small window on the feature map

Build a small network for:

- · classifying object or not-object, and
- regressing bbox locations

Position of the sliding window provides localization information with reference to the image

Box regression provides finer localization information with reference to this sliding window

classify regress obj./not-obj. box locations coordinates scores 1 x 1 conv 256-d 1 x 1 conv sliding window convolutional feature map

Slide credit: Kaiming He

Faster R-CNN: Region Proposal Network

Use **N** anchor boxes at each location

Faster R-CNN: Training

In the paper: Ugly pipeline

- Use alternating optimization to train RPN then Fast R-CNN with RPN proposals, e
- More complex than it has to be

Since publication: Joint training! One network, four losses

- RPN classification (anchor good / bad)
- RPN regression (anchor -> proposal)
- Fast R-CNN classification (over classes)
- Fast R-CNN regression (proposal -> box

Slide credit: Ross Girschick

Faster R-CNN: Results

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

Object Detection State-of-the-art: ResNet 101 + Faster R-CNN + some extras

training data	COCO train		COCO trainval	
test data	COCO val		COCO test-dev	
mAP	@.5	@[.5, .95]	@.5	@[.5, .95]
baseline Faster R-CNN (VGG-16)	41.5	21.2		
baseline Faster R-CNN (ResNet-101)	48.4	27.2		
+box refinement	49.9	29.9		
+context	51.1	30.0	53.3	32.2
+multi-scale testing	53.8	32.5	55.7	34.9
ensemble			59.0	37.4

He et. al, "Deep Residual Learning for Image Recognition", arXiv 2015

ImageNet Detection 2013 - 2015

YOLO: You Only Look Once Detection as Regression

Divide image into S x S grid

Within each grid cell predict:

B Boxes: 4 coordinates +

confidence

Class scores: C numbers

Regression from image to $7 \times 7 \times (5 * B + C)$ tensor

Direct prediction using a CNN

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", arXiv 2015

YOLO: You Only Look Once Detection as Regression

Faster than Faster R-CNN, but not as good

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", arXiv 2015

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [30]	2007	16.0	100
30Hz DPM [30]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [37]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[27]	2007+2012	73.2	7
Faster R-CNN ZF [27]	2007+2012	62.1	18

Object Detection code links:

R-CNN

(Cafffe + MATLAB): https://github.com/rbgirshick/rcnn
Probably don't use this; too slow

Fast R-CNN

(Caffe + MATLAB): https://github.com/rbgirshick/fast-rcnn

Faster R-CNN

(Caffe + MATLAB): https://github.com/ShaoqingRen/faster_rcnn (Caffe + Python): https://github.com/rbgirshick/py-faster-rcnn

YOLO

http://pjreddie.com/darknet/yolo/

Recap

Localization:

- Find a fixed number of objects (one or many)
- L2 regression from CNN features to box coordinates
- Much simpler than detection; consider it for your projects!
- Overfeat: Regression + efficient sliding window with FC -> conv conversion
- Deeper networks do better

Object Detection:

- Find a variable number of objects by classifying image regions
- Before CNNs: dense multiscale sliding window (HoG, DPM)
- Avoid dense sliding window with region proposals
- R-CNN: Selective Search + CNN classification / regression
- Fast R-CNN: Swap order of convolutions and region extraction
- Faster R-CNN: Compute region proposals within the network
- Deeper networks do better