ETC (Prof. De Felice - Zizza)

Anno Acc. 2020-2021

Prova scritta - 14 Febbraio 2022

- 1. Dimostrare o confutare le seguenti affermazioni.
 - (a) Il linguaggio $X = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\}$ è regolare.
 - (b) Il linguaggio $Y = \{w \in \{a, b\}^* \mid w = a^{2i}b^{2j+1}, i, j > 0\}$ è regolare.
 - (c) Ogni linguaggio non regolare ha un sottoinsieme che è un linguaggio regolare.
- 2. Fornire un DFA che riconosce tutte le stringhe su $\{a,b\}$ che hanno bab oppure bb come fattore. Fornire una espressione regolare che denota il linguaggio accettato dal DFA.
- 3. Fornire il diagramma di stato di una macchina di Turing deterministica M a due nastri che decide il linguaggio

$$\{wca^{|w|} \mid w \in \{a,b\}^*\}.$$

- 4. Una formula booleana ϕ è monotona se ϕ è una variabile booleana oppure ϕ si ottiene da due formule booleane monotone ϕ_1 , ϕ_2 , applicando l'operazione AND oppure OR, cioè $\phi = (\phi_1 \lor \phi_2)$ oppure $\phi = (\phi_1 \land \phi_2)$. Una formula booleana monotona ϕ è soddisfacibile se esiste un insieme di valori 0 o 1 per le variabili di ϕ che renda la formula uguale a 1.
 - (1) Definire il problema della soddisfacibilità di una formula booleana monotona. Definire il linguaggio SAT-MON associato a tale problema.
 - (2) Definire la classe P. Stabilire se SAT-MON appartiene alla classe P, giustificando la risposta.
 - (3) Definire la classe NP. Stabilire se SAT-MON appartiene alla classe NP, giustificando la risposta.