100%

Recurrent Neural Networks

Congratulations! You passed!

100%

LATEST SUBMISSION GRADE

TO PASS 80% or higher

to the j^{th} word in the i^{th} training example?

1. Suppose your training examples are sentences (sequences of words). Which of the following refers

 $\bigcirc x^{(i) < j >}$

- $\bigcirc x^{< i > (j)}$
- $\bigcirc x^{(j) < i >}$
- $\bigcirc x^{< j > (i)}$
- We index into the i^{th} row first to get the i^{th} training example (represented by parentheses),

then the j^{th} column to get the j^{th} word (represented by the brackets).

2. Consider this RNN:

✓ Correct

 $\bigcap T_x > T_y$

 \bullet $T_x = T_y$

 $\bigcap T_x < T_y$

- $\bigcap T_x = 1$
- ✓ Correct
- It is appropriate when every input should be matched to an output.

✓ Correct

Correct!

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

- Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's

gender) ✓ Correct Correct!

4. You are training this RNN language model.

Consisting $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>})$

✓ Correct Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

follows:

5. You have finished training a language model RNN and are using it to sample random sentences, as

x<1>

 $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

 $\hat{y}^{<1>}$

ŷ<2>

Sigmoid activation function g(.) used to compute g(z), where z is too large. ✓ Correct

6. You are training an RNN, and find that your weights and activations are all taking on the value of

NaN ("Not a Number"). Which of these is the most likely cause of this problem?

7. Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time step?

Vanishing gradient problem.

Exploding gradient problem.

Correct

Yes!

100

ReLU activation function g(.) used to compute g(z), where z is too large.

✓ Correct Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.

300

0 10000

8. Here're the update equations for the GRU.

 $\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$ $\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$

 $c^{<t>} = \Gamma_u * \tilde{c}^{<t>} + (1 - \Gamma_u) * c^{<t-1>}$

 $a^{<t>} = c^{<t>}$

 $\tilde{c}^{<t>} = \tanh(W_c[\Gamma_r * c^{<t-1>}, x^{<t>}] + b_c)$

GRU

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences? \bigcirc Alice's model (removing Γ_u), because if $\Gamma_rpprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay. \bigcirc Alice's model (removing Γ_u), because if $\Gamma_rpprox 1$ for a timestep, the gradient can propagate back through that timestep without much decay. $igorup Betty's model (removing <math>\Gamma_r$), because if $\Gamma_upprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

through that timestep without much decay.

✓ Correct Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$.

igcup Betty's model (removing Γ_r), because if $\Gamma_upprox 1$ for a timestep, the gradient can propagate back

9. Here are the equations for the GRU and the LSTM: GRU LSTM $\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$ $\tilde{c}^{<t>} = \tanh(W_c[a^{<t-1>}, x^{<t>}] + b_c)$

 $a^{< t>} = c^{< t>}$

 $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t - 1>}$

 $\Gamma_u = \sigma(W_u[\,c^{< t-1>},x^{< t>}] + b_u)$

 $\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to and _____ in the GRU. What should go in the the blanks? $igotimes \Gamma_u$ and $1-\Gamma_u$ $igcap \Gamma_u$ and Γ_r $\bigcirc \ 1 - \Gamma_u$ and Γ_u \bigcirc Γ_r and Γ_u ✓ Correct Yes, correct!

You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\dots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\dots,y^{<365>}$. You'd like to build a model to map from x o y . Should you use a Unidirectional RNN or Bidirectional RNN for this problem? Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.

10. You have a pet dog whose mood is heavily dependent on the current and past few days' weather.

Bidirectional RNN, because this allows backpropagation to compute more accurate gradients. O Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>}, \ldots, x^{< t>}$, but not on $x^{< t+1>}, \dots, x^{< 365>}$

Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather. ✓ Correct

1 / 1 point

1/1 point

1 / 1 point

1 / 1 point

1 / 1 point

1 / 1 point

1/1 point

1/1 point

1 / 1 point

 $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$

 $\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$

 $\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$

 $\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$

 $a^{<t>} = \Gamma_o * c^{<t>}$

1/1 point