

Rovinný test bod vs. mnohoúhelník

© 1996-2016 Josef Pelikán CGG MFF UK Praha

pepca@cgg.mff.cuni.cz
http://cgg.mff.cuni.cz/~pepca/

Leží daný bod uvnitř polygonu?

Různé definice vnitřku polygonu

Bod **P**leží uvnitř polygonu **V**₁, .. **V**_M, jestliže:

- jej od okolí (nekonečná komponenta roviny) odděluje lichý počet hranic ("odd-even rule", Jordanova věta)
- ² jej od okolí odděluje **alespoň jedna hranice** (neleží v nekonečné komponentě)
- jeho "stupeň ovinutí" hranicí polygonu **W** je **nenulový** (smyčka provázku + tužka)

Průsečíky polopřímky s hranicí

Definice **1** neorientované hrany

Definice **3** orientované hrany

Implementace

Implementace

- procházím postupně hrany V₁V₂, V₂V₃, .. V_MV₁
 - pro každý vrchol si pamatuji příznaky $\mathbf{x} > \mathbf{x}_0$, $\mathbf{y} \ge \mathbf{y}_0$
- triviálně nezajímavé jsou hrany, jejichž oba vrcholy splňují současně jednu z podmínek:
 - $x \le x_0, y \ge y_0 \text{ nebo } y < y_0$
- hrany triviálně protínající polopřímku splňují podmínky:
 - pro oba vrcholy platí $\mathbf{x} > \mathbf{x_0}$
 - právě pro jeden vrchol platí $\mathbf{y} \geq \mathbf{y_0}$

Implementace

- ostatní hrany jsou netriviální splňují podmínky:
 - právě pro jeden vrchol platí x > x₀
 - právě pro jeden vrchol platí y ≥ y₀
 - musím spočítat průsečík hrany s přímkou y = y₀
- u každé protínající hrany započítám její příspěvek:
 - +1 nebo -1 podle orientace (definice 3)
 - +1 v neorientovaném případě (definice •)

Speciální případy

Literatura

- A. Glassner: An Introduction to Ray Tracing,
 Academic Press, London 1989, 53-59
- J. Foley, A. van Dam, S. Feiner, J. Hughes: Computer Graphics, Principles and Practice, 34