Different interaction modalities for smart home

Fabian Hoffmann

University of Regensburg Regensburg, Bavaria, Germany fabian.hoffmann@stud.uniregensburg.de

Miriam Ida Tyroller

University of Regensburg Regensburg, Bavaria, Germany miriam-ida.tyroller@stud.uniregensburg.de

Felix Wende

University of Regensburg Regensburg, Bavaria, Germany felix.wende@stud.uni-regensburg.de

ABSTRACT

We present a study aimed to gain insight on users' perceptions and desires in the context of smart home interaction techniques. To achieve this, we conducted an elicitation study in which participants were asked to perform commands within a simulated smart home environment, facing three conditions: voice command, display interaction and mid-air gestures. Facing tasks of different areas in smart home that require user assistance, the participants suggested fitting commands and rated them on the grounds of goodness, ease, enjoyment and social acceptance, as well as their general preference of each technique. The collected measures allow us to present insights that can be used as possible future guidelines for smart home interaction techniques and future research in voice command, display interactions and mid-air gestures.

KEYWORDS

smart home, voice control, display control, mid-air gestures

ACM Reference Format:

Fabian Hoffmann, Miriam Ida Tyroller, and Felix Wende. 2018. Different interaction modalities for smart home. In *Woodstock '18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY*. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Smart homes and its interaction techniques are widely spread ... Existing work focuses on creating smart home interaction techniques considered desirable and enjoyable to use for its users, as developed by Hagensby Jensen et al. [7]. ... This is caused by different obstacles, such as the interaction

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Woodstock '18, June 03–05, 2018, Woodstock, NY © 2018 Association for Computing Machinery. ACM ISBN 978-1-4503-9999-9/18/06...\$15.00 https://doi.org/10.1145/1122445.1122456

techniques being too expensive to implement or too complex to understand. Interacting with a smart home requires techniques that are easy to perform by its user, but also techniques that are easily coming to mind, with user enjoyment and social acceptance as variables also important to consider. Our goal is ...

2 APPROACH AND METHODOLOGY

We followed a similar approach as Dingler et al. [5] by showing and explaining different smart home tasks to the participants and subsequently asking them to propose a voice command, a display interaction and a mid-air gesture, to fulfil the specific tasks in their preferred way. All eleven tasks are listed in section 'Tasks'. A within-subject design was chosen, so every participant gave suggestions for every modality and task. We used a latin-square on the order of the interaction modalities to reduce sequence effects [4] and fatigue. The tasks were shown to the participants in random order. We took video recordings of all sessions. We also collected feedback from participants through questionnaires, on preferences of interaction modalities for a specific task and on goodness, ease, enjoyment and social acceptance of their suggestions.

Interaction Modalities

We compared three different types of interaction modalities. The already commonly used voice and display control, as well as the existing but lacking development technique of mid-air gestures. Therefore, we were able to collect insights on the existing techniques and additionally gain a new set of mid-air gestures.

Tasks

The smart home market can be divided into six different categories [3]. Those are home entertainment, smart household appliances, energy management, networking and control, comfort and light and building security. We excluded the category networking and control for developing the tasks, because it does not include devices that can be controlled, but is rather the infrastructure of a smart home and would be responsible for the detection of performed commands. For all other categories we selected two common tasks [1] each, except

Table 1: Categories with their assigned tasks

Category	Task
Home Entertainment	 Increase the volume of the music. Turn on the next TV channel.
Smart household appliances	3. Start multi-colored wash at 60 degree.4. Turn off the oven.
Energy Management	5. Increase the room temperature.6. Open the shutters.
Comfort and light	7. Turn on the light.8. Dim the light.
Building security	9. Close the window.10. Lock the front door.11. Turn on the security camera.

for *building security* three because of its bigger market share. All categories with their assigned tasks are listed in table 1.

Participants

A total of 13 participants (7 female) took part in the study with an average age of 33.5 (SD = 15.1). We recruited the participants through social networks and personal contacts. The participants were mostly students from different departments of the University of Regensburg and OTH Regensburg. All of them at least heard of smart homes before and are familiar with interaction through displays. According to the pre-questionnaire, ten participants are familiar with both voice control and display interaction to control other devices, but only one performed mid-air gestures for interaction yet. Seven participants own smart home devices like Google Home, Amazon Alexa, smart TVs or lamps and use them frequently. None of the participants owns a fully integrated smart home system.

Apparatus

The study was carried out in a quiet room. The different tasks were illustrated through pictures, which showed the state before and after issuing the command. Mid-air gestures, voice commands and comments of the participants were recorded by a mounted camera. Display interaction was documented

through a sketch on paper. None of the interaction modalities were actually implemented.

Procedure

Before starting the session, the participants were asked to fill out a consent form and a demographic questionnaire. Then they had to fill out a questionnaire in terms of their previous knowledge and usage of smart home devices and the three interaction modalities. After that the tasks were presented to the participants in a random order. At first all tasks had to be fulfilled with a single interaction modality, then with the second and after that with the remaining modality. Additionally to the illustration through pictures, the tasks were explained verbally. The participants were allowed to talk, move and interact with a display in any way they wanted and were encouraged to explain their choices in a thinkingaloud approach. After each task the participants rated their specific suggestion on goodness, ease, enjoyment and social acceptance on four 7-point Likert scales. When all tasks were finished with each interaction modality the participants rated the three interaction modalities for each on 7-point Likert scales, on how good each modality is to perform the specific task. They were asked to do this independently of their own suggestions. At the end a semi-structured interview was conducted to explore the motivation of the participants for each choice and allow them to rate the different interaction modalities under the aspects of efficiency, simplicity, naturality, desirability and enjoyment. this is based on a similar approach in the elicitation study on foot gestures by Felberbaum et al. [6]. The study took about an hour, for which the participants were compensated with sweets.

3 RESULTS

With nine participants and eleven tasks, we collected for each of the three interaction modalities 143 suggestions and in total 13*11*3 = 429. Our results include the video recording, taxonomies for each interaction modality, user-defined sets of voice commands, display interactions and gestures, subjective ratings of the sets, qualitative observations and an assessment on the modalities for each task.

Classification of Voice Commands

Taxonomy of voice commands. The participants suggested 43 unique voice commands. The authors manually classified each voice command along five dimensions: nature, form, flow, context and complexity. Within each dimension are multiple categories, shown in Table 2. We adopted the dimensions from Wobbrock et al. [10] and Ruiz et al. [8] and adapted them to voice commands.

The *nature* dimension compromises *action* voice commands which state the action to perform. An example of this type of voice command is saying "increase temperature".

Table 2: Taxonomy of voice commands for smart home tasks

Taxonomy of voice commands			
Nature	Action	Voice command states the action to perform	
	State	Voice command describes the desired condition	
Form	Single word	Voice command consists out of a single word	
	Two words	Voice command consists out of two words	
	More words	Voice command consists out of more words without sentence structure	
	Sentence	Voice command uses sentence structure	
Flow	Discrete Continuous	Response occurs <i>after</i> the user acts Response occurs <i>while</i> the user acts	
Context	In-context	Voice command requires specific context	
	No-context	Voice command does not require specific context	
Complexity	Simple	Voice command consists of a single voice command	
	Compound	Voice command can be decomposed into simple voice commands	

State voice commands describe the desired condition of a device. For example, a *state* voice command is "cameras on" to start camera surveillance.

The *form* dimension describes how much words are used in the voice command and if they have the structure of a full sentence. A *single word* command can be "next" to get to the next TV channel. *Two words* voice commands mostly consist out of the mentioning of the device to be controlled and an action or state. *More words* commands are similar to *two words* but use additional filler words. Finally, voice commands that are correct sentences were classified with the category *sentence*.

The *flow* dimension categorizes the voice commands, if response of a device occurs after or while the user acts. A voice command is *discrete*, when device perform the command after the participant stopped talking. A *continuous* voice command would be starting an action with a command and stop the ongoing action with another command.

The *context* dimension describes, if the voice command requires a specific context or can be performed independently. For example saying "turn off" to turn off the oven is *in-context*, whereas "oven off" is considered *no-context*.

The *complexity* dimension describes if the voice command consists out of a single or a composition of more voice commands. A *compound* voice command can be decomposed into *simple* voice commands.

User-defined voice command set

We collected a total of 143 voice commands, which we used to create a user-defined voice command set for our specified tasks. For each task, we grouped identical voice commands together and the group with largest size was chosen to be the representative voice command for this corresponding task. To evaluate the degree of consensus among the participants, we computed the *agreement score* A_t (Equation 1), as proposed by Vatavu and Wobbrock [9], for each task.

$$A_t = \frac{|P_t|}{|P_t| - 1} \sum_{P_i \subseteq P_t} \left(\frac{|P_i|}{|P_t|} \right)^2 - \frac{1}{|P_t| - 1}$$
 (1)

In equation 1, t is a task in the set of all tasks T, P_t is the set of suggested voice commands for t and P_i is a subset of identical voice commands from P_t . As an example of calculation of an agreement score, consider the task *increase the volume of the music*. The task has four groups of identical voice commands with a size of 7, 4, 1 and 1. Therefore the agreement score for *increase the volume of the music* is:

$$A = \frac{13}{12} \left(\left(\frac{7}{13} \right)^2 + \left(\frac{4}{13} \right)^2 + \left(\frac{1}{13} \right)^2 + \left(\frac{1}{13} \right)^2 \right) - \frac{1}{12} = 0.346$$
(2)

Figure ?? illustrates the agreement scores for each task using voice commands. Participants had the least agreement on commands for the tasks *start multi-colored wash at 60 degree* (Task 3) and *increase the room temperature* (Task 5). This is attributable to the complexity of the tasks.

Classification of Display Interaction

The participants suggested 61 unique display interactions. Similar to the voice commands we manually classified each display interaction along three dimensions for graphical user interface (GUI) elements (form, elements, flow) and for touch gestures along four dimensions (form, nature, binding, flow). Within each dimension are multiple categories, shown in Table 3 for GUI elements and for touch gestures in Table 4. The dimensions and categories for GUI elements were inspired by the work from Wobbrock et al. [10] and Ruiz et al. [8]. As taxonomy for touch gestures we used Wobbrock et al. [10] taxonomy of surface gestures, witch is displayed in Table 4.

Taxonomy of display interaction (GUI elements): ToDo: Beschreibung Taxonomy

Taxonomy of display interaction (touch gestures): ToDo: Bschreibung Taxonomy

User-defined display interaction set

ToDo: Beschreibung + Tabelle set

Figure 1: Agreement scores for each task with voice commands

Table 3: Taxonomy of display interactions for smart home tasks (GUI elements)

Taxonomy of display interactions (GUI elements)				
Form	Direct Action	Single interaction that directly leads to the action		
	Selection & Confirmation	Selection of the action and starting through another element		
Elements	Single click- ables Slider More words Rotation Text & number entry Symbolic	The GUI includes one or more single clickables (button, checkbox, etc.) The GUI includes one or more sliders Voice command consists out of more words without sentence structure The GUI includes one or more rotational elements The GUI includes one or more options to enter text or numbers The GUI includes one or more special symbolic elements		
Flow	Discrete Continuous	Response occurs <i>after</i> the user acts Response occurs <i>while</i> the user acts		

Classification of Mid-Air Gestures

ToDo: Beschreibung Taxonomy ToDo: Tabelle Taxonomy

User-defined mid-air gestures set

ToDo: Beschreibung + Tabelle set

Qualitative Results

The qualitative data obtained through the semi-structured interview was analysed by splitting the participants opinions into six categories, obtained through an open-coding approach carried out by the three researchers individually.

Table 4: Taxonomy of display interactions for smart home tasks (touch gestures)

Taxonomy of display interactions (touch gestures)			
Nature	Symbolic Physical Metaphorical Abstract	Gesture visually depicts a symbol Gesture acts physically on objects Gesture indicates a metaphor Gesture-referent mapping is arbitrary	
Form	Static pose Dynamic pose Static pose and path Dynamic pose and path	Hand pose is held in one location Hand pose changes in one location Hand pose is held as hand moves Hand pose changes as hand moves	
	One-point touch One-point path	Static pose with one finger Static pose and path with one Finger	
Binding	Object-centric World-dependent	Location defined with respect to object features Location defined with respect to	
	World-independent Mixed dependencies	world features Location can ignore world features World-independent plus another	
Flow	Discrete Continuous	Response occurs <i>after</i> the user acts Response occurs <i>while</i> the user acts	

These are evaluation of the experiment, voice control, display control and mid-air gesture control, as well as possible mixtures of the modalities and further suggested interaction modalities. ... The participants mainly thought of the experiment as interesting and innovative. Participants stated it was "interesting to test new things IâĂŹve never done before" ... Looking into general opinions on the different interaction modalities, the participants voice mainly favourable opinions about voice control. They stated "...". Display control was regarded as ... as well ... On the other hand, participants

were not as convinced by gesture control, as is mirrored in the collected quantitative data. They stated that "..." and "...". The surveillance aspect also valued into those opinions, with participants stating that "...", which also influenced their view on voice control, even though not as much, as participants specified that "...". When asked about the possibilities of mixing two or three of the suggested interaction modalities in one smart home environment, participants were generally in favour of it ... Participants were also asked about other interaction modalities different from voice, display and gesture control that come to their mind, resulting in interesting approaches for possible future work such as "...".

4 DISCUSSION

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi malesuada, quam in pulvinar varius, metus nunc fermentum urna, id sollicitudin purus odio sit amet enim. Aliquam ullamcorper eu ipsum vel mollis. Curabitur quis dictum nisl. Phasellus vel semper risus, et lacinia dolor. Integer ultricies commodo sem nec semper.

5 FUTURE WORK

The research offers a groundwork for future work in the surroundings of smart home development. Additionally, it also provides the base of producing even more insights on the examined interaction modalities through extending and improving the existing study. To achieve this, future work can build on the qualitative research that showed participants stating they mostly prefer display and voice control, with a possible combination of these two interaction modalities. Further work needs to focus on this approach, while also testing a combination of interaction modalities within a setting including more actual implemented parts of a smart home system. Although simulations offer research that is faster to develop and perform, they can not guarantee with an absolute certainty users would act the same way in a real smart home environment. To achieve a higher transferability and generalizability of the research, the number of participants and population to draw from needs to be significantly extended.

Leaving the approach to interact with user's short-time desires leads to us to future work centering around smart home-user interaction for long-time settings. Many of the participants stated their wish to interact with the smart home as little as possible. Instead, they preferred a scenario of setting their needs and demands at an early point in the implementation and rely on the smart home system working autonomous from that moment on. This could lead to a drastic change in participants' viewpoints on goodness, ease and social acceptance of interaction techniques. Performing a command only once compared to multiple times could lead to more lenient opinions on complex voice commands

or mid-air gestures, or highly detailed structures of display commands.

Safety issues mentioned in the qualitative research concerning the need to monitor users' in order to implement voice and mid-air gesture control can also lead to further research. In the time of highly demanded data security and privacy, smart homes can not pose as threats to this. Future work can focus studies developing interaction modalities that are free from such concerns or improve existing techniques to no longer rely on constant user supervision. For this, it's necessary to collaborate with experts of other fields.

REFERENCES

- [1] [n.d.]. Home SmartHome Hilfe. https://service.startsmarthome.de/de/
- [2] [n.d.]. Infografik: Smart Home: Was spricht dafür, was dagegen? https://de.statista.com/infografik/15254/argumente-fuer-undgegen-die-nutzung-von-smart-home-produkten/
- [3] [n.d.]. Smart Home weltweit | Statista Marktprognose. https://de.statista.com/outlook/279/100/smart-home/weltweit#market-revenue
- [4] 2017. Latin Square Design: Definition and Balanced Latin Square Algorithm. https://www.statisticshowto.datasciencecentral.com/latin-square-design/
- [5] Tilman Dingler, Rufat Rzayev, Alireza Sahami Shirazi, and Niels Henze. 2018. Designing Consistent Gestures Across Device Types. In *Engage with CHI*, Regan Mandryk and Mark Hancock (Eds.). The Association for Computing Machinery, New York, New York, 1–12. https://doi.org/10.1145/3173574.3173993
- [6] Yasmin Felberbaum and Joel Lanir. 2018. Better Understanding of Foot Gestures. In Engage with CHI, Regan Mandryk and Mark Hancock (Eds.). The Association for Computing Machinery, New York, New York, 1–12. https://doi.org/10.1145/3173574.3173908
- [7] Rikke Hagensby Jensen, Yolande Strengers, Jesper Kjeldskov, Larissa Nicholls, and Mikael B. Skov. 2018. Designing the Desirable Smart Home. In *Engage with CHI*, Regan Mandryk and Mark Hancock (Eds.). The Association for Computing Machinery, New York, New York, 1–14. https://doi.org/10.1145/3173574.3173578
- [8] Jaime Ruiz, Yang Li, and Edward Lank. 2011. User-defined motion gestures for mobile interaction. In Conference proceedings and extended abstracts / the 29th Annual CHI Conference on Human Factors in Computing Systems, Desney Tan, Geraldine Fitzpatrick, Carl Gutwin, Bo Begole, and Wendy A. Kellogg (Eds.). ACM, New York, NY, 197. https://doi.org/10.1145/1978942.1978971
- [9] Radu-Daniel Vatavu and Jacob O. Wobbrock. 2015. Formalizing Agreement Analysis for Elicitation Studies. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems - CHI '15, Bo Begole, Jinwoo Kim, Kori Inkpen, and Woontack Woo (Eds.). ACM Press, New York, New York, USA, 1325–1334. https://doi.org/10.1145/2702123.2702223
- [10] Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D. Wilson. 2009. User-defined gestures for surface computing. In CHI 2009 digital life, new world, Dan R. Olsen, Richard B. Arthur, Ken Hinckley, Meredith Ringel Morris, Scott Hudson, and Saul Greenberg (Eds.). ACM, New York, NY, 1083. https://doi.org/10.1145/1518701.1518866