As equações para montar o projeto em Simulink podem ser obtidas manipulando as equações que descrevem a parte elétrica e a parte mecânica do motor CC. As equações são:

$$e(t) = ke\omega(t)$$

Equação que descreve a tensão induzida nos terminais da armadura do motor.

$$v(t) - vr(t) - vL(t) - e(t) = 0$$

Equação que descreve o circuito elétrico do motor ligado em CC.

$$\tau b(t) = kb\omega(t)$$

Equação do momento binário associado ao atrito.

$$\tau m(t) = kmi(t)$$

Equação do momento binário desenvolvido pelo motor.

$$\tau m(t) - \tau b(t) = J\alpha$$

Equação do movimento rotacional do motor.

Manipulando estas equações se pode chegar em:

$$\frac{di(t)}{dt} = \frac{V(t) - Ri(t) - k_e w(t)}{L}$$

Equação elétrica do motor.

$$\frac{dw(t)}{dt} = \frac{k_m i(t) - k_b w(t)}{I}$$

Equação mecânica do motor.

Com essas equações escritas se pode montar o circuito equivalente no software Simulink, utilizando blocos de ganho, soma e integradores. Se pode observar o circuito montado na Figura abaixo:

Montagem em Simulink das Equações

Se aplicado um sinal degrau na entrada, o sistema responde da seguinte maneira:

Resposta da velocidade angular do sistema a um degrau

Resposta da posição angular do sistema a um degrau

Para controlar a saída de posição angular do sistema, se adicionou um controlador, resultando na seguinte saída:

Resposta controlada da velocidade angular

Variando os parâmetros do motor dos seus valores máximos aos seus valores mínimos se tem essa tabela abaixo, descrevendo a performance do sistema em cada caso.

Parâmetro	Valor	Tempo de Pico (s)	Overshoot (%)	Tempo de Estabelecimento (s)
Atrito Viscoso	Máximo	0.8	6	3
	Mínimo	3	0	2
Constante Mecânica	Máximo	2.5	0	2.5
	Mínimo	0.9	37	10
Constante Elétrica	Máximo	3	0	3
	Mínimo	3	0	3
Momento de Inércia	Máximo	0.9	53	36
	Mínimo	2	0	2
Resistência Elétrica	Máximo	0.9	37	10
	Mínimo	3	0	3
Indutância Elétrica	Máximo	2.5	0	2.5
	Mínimo	3	0	3

Se considerado um sistema com três entradas com velocidades distintas, se pode utilizar este controlador para controlar a velocidade angular em níveis diferentes de tensão.

Abaixo se tem a entrada com 3 níveis diferentes de tensão e a resposta controlada.

Entrada com 3 níveis distintos de tensão

Saída controlada com 3 níveis de tensão de entrada

União das duas curvas

Se pode perceber que o controlador consegue manter os índices de desempenho, pois o sinal não tem erro em regime permanente e o tempo de estabelecimento é de cerca de um segundo para todos os três casos.

Se pode fazer também com que o sistema tenha retroalimentação na posição angular, para que esta possa ser controlada também. Isso se torna útil para aplicações como esteiras. Após adicionado o controlador, a saída da posição angular controlada obtida é a seguinte:

Saída de posição angular controlada

Saída controlada de velocidade angular (roxo) e posição angular (amarelo) com atrito viscoso em 0.01

Saída de velocidade angular (roxo) e posição angular (amarelo) com atrito viscoso em 0.07

Para um controlador de avanço de fase para o controle da posição, se deve ter um setpoint nulo, pois, o motor deve parar para que a posição desejada seja atingida.

Se pode perceber com a figura que demonstra ambos os sinais de saída (velocidade e posição), que a variável secundária (velocidade) reage mais rapidamente que a variável primária (posição) a distúrbios no sistema. Se percebe também que o setpoint de ambas é atingido praticamente ao mesmo tempo.

Este sistema pode ser utilizado para controlar um braço robótico industrial. A simulação foi realizada utilizando um modelo de braço robótico criado por meio de VRML. Se programou o braço para realizar movimentos de rotação para valores distintos de setpoint de posição angular, como na figura abaixo:

Valores de setpoint para o braço mecânico

Se pode observar a resposta do sistema pela figura abaixo:

Resposta do sistema controlado

Se pode perceber que os valores de setpoint se encaixam com a amplitude do sinal degrau antes de sua próxima atualização, concluindo que o controlador é capaz de controlar o braço mecânico, apesar do alto tempo de estabelecimento.