1. (15 pints: 5pts for (a), 10pts for (b)) The first order system is defined by:

$$x(k+1) = ax(k) + w(k) + c$$

x(0), c are RV's and w(k) is a white random process. Also, c remains constant once the experiments starts.

There are two methods to solve this problem,

• Method 1: Start with the definition of the variance:

$$\begin{split} m_x(k+1) &= E[x(k+1)] = E[ax(k)] + E[w(k)] + E[c] = aE[x(k)] = am_x(k) \\ \Longrightarrow m_x(k+1) &= a^{k+1}m_x(0) = 0; \\ X(k) &= E[x^2(k)] = E[(ax(k-1)+w(k-1)+c)^2] \\ &= a^2X(k-1) + 2aE[x(k-1)w(k-1)] + 2aE[x(k-1)c] \\ &\quad + E[w^2(k-1)] + E[c^2] \\ E[x(k-1)w(k-1)] &= aE[x(k-2)w(k-1)] + E[w(k-2)w(k-1)] + E[cw(k-1)] \\ &= aE[x(k-2)w(k-1)] = a^{k-1}E[x(0)w(k-1)] = 0 \\ E[x(k-1)c] &= aE[x(k-2)c] + E[w(k-2)c] + E[c^2] = aE[x(k-2)c] + C \\ \Longrightarrow E[x(k-1)c] &= a^{k-1}E[x(0)c] + \sum_{i=1}^{k-1}a^{k-1-i}C = \frac{1-a^{k-1}}{1-a}C \\ E[w^2(k-1)] &= W \\ E[c^2] &= C \\ \Longrightarrow X(k) &= a^2X(k-1) + (2a\frac{1-a^{k-1}}{1-a} + 1)C + W, X(0) = 4 \end{split}$$

Assume the system is aymptotically stable, i.e. |a| < 1, the steady state is when $k \to \infty$:

$$X_{ss} = a^2 X_{ss} + (2a \frac{1}{1-a} + 1)C + W$$

 $\implies X_{ss} = \frac{1}{(1-a)^2}C + \frac{1}{1-a^2}W$

• Method 2: Since c is a constant once the experiment starts, we can rewrite the system equations as:

$$\begin{bmatrix} x(k+1) \\ c(k+1) \end{bmatrix} \quad = \quad \begin{bmatrix} a & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x(k) \\ c(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} w(k)$$

Define
$$x_a(k) := \begin{bmatrix} x(k) & c(k) \end{bmatrix}^T$$
, $A := \begin{bmatrix} a & 1 \\ 0 & 1 \end{bmatrix}$, $B := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Then,
$$E[x_a(k+1)] = AE[x_a(k)] + BE[w(k)]$$

$$= AE[x_a(k)]$$

Define $E[x_a(k)] := m_{x_a}(k)$. Then, from the definition of $x_a(k)$,

$$\begin{split} X_{x_ax_a}(k) &= E\begin{bmatrix} x(k) - m_x(k) \\ c(k) - m_c(k) \end{bmatrix} \begin{bmatrix} x(k) - m_x(k) & c(k) - m_c(k) \end{bmatrix} \\ &= \begin{bmatrix} X_{xx}(k) & COV(x(k), c(k)) \\ COV(c(k), x(k)) & X_{cc}(k) \end{bmatrix} \end{split}$$

$$\begin{split} X_{x_ax_a}(k+1) &= &= E[(x_a(k+1) - m_{x_a}(k+1))(x_a(k+1) - m_{x_a}(k+1))^T] \\ &= E[(Ax_a(k) + Bw(k) - Am_{x_a}(k))(Ax_a(k) + Bw(k) - Am_{x_a}(k))^T] \\ &= E[(A(x_a(k) - m_{x_a}(k)) + Bw(k))(A(x_a(k) - m_{x_a}(k)) + Bw(k))^T] \\ &= AX_{x_ax_a}(k)A^T + BWB^T \end{split}$$

with the initial condition $X_{x_a x_a}(0) = \begin{bmatrix} 4 & 0 \\ 0 & C \end{bmatrix}$

Note: We have used the fact that $x_a(k)$ is uncorrelated with w(k) since $x_a(k)$ is a fn of $x(0), w(1), w(2), \dots, w(k-1)$ all of which are uncorrelated with w(k)

If the system is asymptoticall stable, then A is marginally stable since A has eigenvalues at a and 1. Howver, c remains constant. Therefore, $x_a(k)$ reaches a steady state value as $k \longrightarrow \infty$. $X_{ss} := \lim_{k \to \infty} X_{x_a x_a}(k)$ can be obtained by solving the Lyapunov equation:

$$X_{ss} = AX_{ss}A^T + BWB^T$$

Solution of this Lyapunov equation yields: $X_{ss} = \begin{bmatrix} \left(\frac{C}{(1-a)^2} + \frac{W}{1-a^2}\right) & \frac{C}{1-a} \\ \frac{C}{1-a} & C \end{bmatrix}$ Therefore, the steady state variance of x(k) is given by: $\lim_{k\to\infty} X_{xx}(k) = \frac{C}{(1-a)^2} + \frac{W}{1-a^2}$

- 2. (20 points: 10pts for each approach) Repeated Measurements

 There are also two methods to solve this problem: using Kalman Filter and using least square estimation directly.
 - We do the least-square approach first. Since x & v are Gaussian distributed, y (sum of two Gaussian RV) will be Gaussian. Define $Y_{vec} := \begin{bmatrix} y(0) & y(1) & \cdots & y(k) \end{bmatrix}^T$, $V_{vec} := \begin{bmatrix} v(0) & v(1) & \cdots & v(k) \end{bmatrix}^T$ and $X_{vec}^2 := \begin{bmatrix} x^2 & x^2 & \cdots & x^2 \end{bmatrix}$. Then,

$$\begin{array}{rcl} \hat{x}(k) & = & E[x|y(0),y(1),\cdots,y(k)] \\ & = & E[x] + X_{xY_{vec}}X_{Y_{vec}}^{-1}\left(Y_{vec} - E[Y_{vec}]\right)) \\ X_{\tilde{x}|Y_{vec}\tilde{x}|Y_{vec}} & = & X_{xx} - X_{xY_{vec}}X_{Y_{vec}}^{-1}X_{Y_{vec}}X_{Y_{vec}} \end{array}$$

We will now compute the quantities in the above expression.

$$E[Y_{vec}] = E\begin{bmatrix} y(0) \\ y(1) \\ \vdots \\ y(k) \end{bmatrix}] = \mathbf{0}$$

$$X_{xY_{vec}} : = E[(x - E[x])(Y_{vec} - E[Y_{vec}])^T]$$

$$= E[xY_{vec}] = E[X_{vec}^2 + xV_{vec}] = E[X_{vec}^2] + E[xV_{vec}] = [X_0 \quad X_0 \quad \cdots \quad X_0]$$

$$X_{Y_{vec}Y_{vec}} : = E[(Y_{vec} - E[Y_{vec}])(Y_{vec} - E[Y_{vec}])^T]$$

$$= E[Y_{vec}Y_{vec}^T]$$

$$= E[Y_{vec}Y_{vec}]$$

$$= E[\begin{cases} x + v(0) \\ x + v(1) \\ \vdots \\ x + v(k) \end{cases} [x + v(0) \quad x + v(1) \quad \cdots \quad x + v(k)]]$$

$$= \begin{bmatrix} X_0 + V \quad X_0 \quad \cdots \quad X_0 \\ X_0 \quad X_0 + V \quad \cdots \quad X_0 \\ \vdots \quad \vdots \quad \ddots \quad \vdots \\ X_0 \quad \cdots \quad X_0 \quad X_0 + V \end{bmatrix}$$

$$(1)$$

We provide two methods to do the remaining steps:

– Evaluating, $X_{Y_{vec}Y_{vec}}^{-1}$ for the $k \times k$ matrix case seems cumbersome. So we evaluate \hat{x} for simple cases.

In the 2×2 case,

$$\begin{split} X_{Y_2Y_2}^{-1} &= \begin{bmatrix} X_0 + V & X_0 \\ X_0 & X_0 + V \end{bmatrix}^{-1} \\ &= \frac{1}{V(2X_0 + V)} \begin{bmatrix} X_0 + V & -X_0 \\ -X_0 & X_0 + V \end{bmatrix} \\ \hat{x}|_{y(0),y(1)} &= \frac{1}{V(2X_0 + V)} \begin{bmatrix} X_0 & X_0 \end{bmatrix} \begin{bmatrix} X_0 + V & -X_0 \\ -X_0 & X_0 + V \end{bmatrix} \begin{bmatrix} y(0) \\ y(1) \end{bmatrix} \\ &= \frac{X_0}{2X_0 + V} y(0) + \frac{VX_0}{2X_0 + V} y(1) \end{split}$$

$$\begin{array}{lll} X_{\tilde{x}_{2}\tilde{x}_{2}} & = & X_{0} - \frac{1}{V(2X_{0} + V)} \begin{bmatrix} X_{0} & X_{0} \end{bmatrix} \begin{bmatrix} X_{0} + V & -X_{0} \\ -X_{0} & X_{0} + V \end{bmatrix} \begin{bmatrix} X_{0} \\ X_{0} \end{bmatrix} \\ & = & X_{0} - \frac{2X_{0}^{2}}{2X_{0} + V} \\ & = & \frac{VX_{0}}{2X_{0} + V} \end{aligned}$$

In the 3×3 case,

$$\begin{split} X_{Y_3Y_3}^{-1} &= \begin{bmatrix} X_0 + V & X_0 & X_0 \\ X_0 & X_0 + V & X_0 \\ X_0 & X_0 & X_0 + V \end{bmatrix}^{-1} \\ &= \frac{1}{V(3X_0 + V)} \begin{bmatrix} 2X_0V + V^2 & -VX_0 & -VX_0 \\ -VX_0 & 2X_0V + V^2 & -VX_0 \\ -VX_0 & -VX_0 & 2X_0V + V^2 \end{bmatrix} \begin{bmatrix} y(0) \\ y(1) \\ y(1) \\ y(2) \end{bmatrix} \\ \hat{x}|_{y(0),y(1),y(2)} &= \frac{\begin{bmatrix} X_0 & X_0 & X_0 \end{bmatrix}}{V(3X_0 + V)} \begin{bmatrix} 2X_0V + V^2 & -VX_0 & -VX_0 \\ -VX_0 & 2X_0V + V^2 & -VX_0 \\ -VX_0 & -VX_0 & 2X_0V + V^2 \end{bmatrix} \begin{bmatrix} y(0) \\ y(1) \\ y(2) \end{bmatrix} \\ &= \frac{X_0}{3X_0 + V} y(0) + \frac{X_0}{3X_0 + V} y(1) + \frac{X_0}{3X_0 + V} y(2) \\ X_{\tilde{x}_3\tilde{x}_3} &= X_0 - \frac{\begin{bmatrix} X_0 & X_0 & X_0 \end{bmatrix}}{V(3X_0 + V)} \begin{bmatrix} 2X_0V + V^2 & -VX_0 & -VX_0 \\ -VX_0 & 2X_0V + V^2 & -VX_0 \\ -VX_0 & -VX_0 & 2X_0V + V^2 \end{bmatrix} \begin{bmatrix} X_0 \\ X_0 \\ X_0 \end{bmatrix} \\ &= X_0 - \frac{3X_0^2}{3X_0 + V} \\ &= \frac{VX_0}{3X_0 + V} \end{aligned}$$

Therefore, we can expect that (You can also prove this by induction):

$$\hat{x}|_{y(0),y(1),\cdots,y(k)} = \frac{X_0}{(k+1)X_0 + V}y(0) + \frac{X_0}{(k+1)X_0 + V}y(1) + \cdots + \frac{X_0}{(k+1)X_0 + V}y(k)$$

$$X_{\tilde{x}|_{Y_{vec}\tilde{x}|_{Y_{vec}}}} = \frac{VX_0}{(k+1)X_0 + V}$$

Also, from the above equations,

$$\lim_{X_0 \to \infty} \hat{x}|_{y(0), y(1), \dots, y(k)} = \frac{1}{k+1} (y(0) + y(1) + \dots + y(k))$$

$$\lim_{X_0 \to \infty} X_{\tilde{x}|_{Y_{vec}} \tilde{x}|_{Y_{vec}}} = \frac{V}{k+1}$$

- An alternative approach is as follows: with some manipulations, we can directly compute the inverse of (1). To do this, we need the matrix inversion lemma:

$$(A + BDC)^{-1} = A^{-1} + A^{-1}B (-D^{-1} - CA^{-1}B)^{-1} CA^{-1}$$

Now notice that (1) is equivalent to

$$VI_{(k+1)\times(k+1)} + \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}_{(k+1)\times1} X_o \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}_{(k+1)\times1}^T$$

Hence

$$\begin{bmatrix} X_0 + V & X_0 & \cdots & X_0 \\ X_0 & X_0 + V & \cdots & X_0 \\ \vdots & \vdots & \ddots & \vdots \\ X_0 & \cdots & X_0 & X_0 + V \end{bmatrix}_{(k+1)\times(k+1)}^{-1}$$

$$= \frac{1}{V}I_{k+1} + \frac{1}{V}\begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \left(-\frac{1}{X_o} - \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \frac{1}{V} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \frac{1}{V}$$

$$= \frac{1}{V}I_{k+1} + \frac{1}{V^2} \frac{1}{-\frac{1}{X_o} - \frac{1}{V}(k+1)} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}$$

The remaining steps are similar to the previous discussions and ommitted here.

• The Kalman-Filter approach: to use the results of Kalman Filter, we need to write the given process in the standard state space form:

$$x(k+1) = x(k), x(0) = x$$

$$y(k) = x(k) + y(k)$$

Kalman Filter gives:

$$\hat{x}(k|k-1) = \hat{x}(k-1|k-1)
\hat{x}(k|k) = \hat{x}(k|k-1) + F(k)(y(k) - \hat{x}(k|k-1))
\Rightarrow \hat{x}(k|k) = (1 - F(k))\hat{x}(k-1|k-1) + F(k)y(k)$$

And:

$$M(k+1) = Z(k), M(0) = X_0$$

$$Z(k+1) = M(k+1) - M(k+1)(M(k+1) + V(k+1))^{-1}M(k+1)$$

$$\Rightarrow Z(k+1) = Z(k) - \frac{Z^2(k)}{Z(k) + V(k+1)} = \frac{Z(k)V}{Z(k) + V}, Z(-1) = X_0$$

$$\Rightarrow Z(k) = \frac{X_0V}{(k+1)X_0 + V}$$

$$F(k) = M(k)(M(k) + V(k))^{-1} = \frac{Z(k-1)}{Z(k-1) + V} = Z(k) = \frac{X_0}{(k+1)X_0 + V}$$

$$1 - F(k) = \frac{kX_0 + V}{(k+1)X_0 + V}$$

$$\Rightarrow \hat{x}(k|k) = \frac{kX_0 + V}{(k+1)X_0 + V} \hat{x}(k-1|k-1) + \frac{X_0}{(k+1)X_0 + V} y(k)$$

$$= \frac{(k-1)X_0 + V}{(k+1)X_0 + V} \hat{x}(k-2|k-2) + \frac{X_0}{(k+1)X_0 + V} (y(k-1) + y(k))$$
...
$$= \frac{X_0}{(k+1)X_0 + V} (y(0) + y(1) + \dots + y(k))$$

When $X_0 \to \infty$,

$$Z(k) = \frac{X_0 V}{(k+1)X_0 + V} \to \frac{V}{k+1}$$

$$\hat{x}(k) = \frac{X_0}{(k+1)X_0 + V} (y(0) + y(1) + \dots + y(k)) \to \frac{1}{k+1} (y(0) + y(1) + \dots + y(k))$$

3. (20 points) Simulating Kalman Filter The discrete time system is described by:

$$\begin{bmatrix} x_{1}(k+1) \\ x_{2}(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0.7114 \end{bmatrix} \begin{bmatrix} x_{1}(k) \\ x_{2}(k) \end{bmatrix} + \begin{bmatrix} 0.0384 \\ 0.0722 \end{bmatrix} w(k)$$
$$y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1}(k) \\ x_{2}(k) \end{bmatrix} + v(k)$$

Define $X(k) := E[x(k)x(k)^T]$ where $x(k) := \begin{bmatrix} x_1(k) & x_2(k) \end{bmatrix}^T$. Then X(k) satisfies the Lyapunov difference equation below:

$$X(k+1) = AX(k)A^{T} + B_{w} \cdot 1 \cdot B_{w}^{T}$$

where A and B_w are obvious.

(a) (5pts) Since A, B_w are constant matrices, X(k) reaches a steady state. The steady-state solution therefore satisfies the algebraic Lyapunov equation:

$$X_{ss} = AX_{ss}A^T + B_w B_w^T$$

Solving the above using the matlab command: $X_{ss} = \mathtt{dlyap}(A, B_w * B_w^T)$, we get,

$$X_{ss} = \begin{bmatrix} 0.01203 & 0.0103 \\ 0.0103 & 0.0106 \end{bmatrix}$$

 $\Longrightarrow X_{11} = 0.01203$

(b) (5pts) To get the steady state Kalman filter gain, first solve the Ricatti Equation to get M_{ss} , and then use $F_{ss} = M_{ss}C^T(CM_{ss}C^T + V)^{-1}$ for F_{ss} . The results are:

$$r = 0.05, M_{ss} = \begin{bmatrix} 0.0022 & 0.0033 \\ 0.0033 & 0.0056 \end{bmatrix}, F_{ss} = \begin{bmatrix} 0.9866 \\ 1.4705 \end{bmatrix}$$

$$r = 0.5, M_{ss} = \begin{bmatrix} 0.0050 & 0.0053 \\ 0.0053 & 0.0070 \end{bmatrix}, F_{ss} = \begin{bmatrix} 0.6239 \\ 0.6594 \end{bmatrix}$$

(c) (5pts) Use **kalman** for Kalman filter design, and use either *Simulink* or *Matlab* command **dlsim** for simulation. The results are shown in Figure 3c and 3c.

Error covariance Z and the time average of the error covariance Z_t are:

(d) (5pts) From the Return Difference Equation, we have

$$[I + C(zI - A)^{-1}F_{ss}](CM_{ss}C^{T} + V)[I + C(z^{-1}I - A)^{-1}F_{ss}]^{T} = V + G(z)WG(z^{-1})^{T}$$

Figure 1: States and their estimation by Kalman filter (r=0.05)

$$\beta(z)\beta(z^{-1}) = \phi(z)\phi(z^{-1})\frac{V}{V + CM_{ss}C^{T} + V}\left(1 + G(z)\frac{W}{V}G\left(z^{-1}\right)\right)$$

$$= \frac{V}{V + CM_{ss}C^{T} + V}\left(\phi(z)\phi(z^{-1}) + \frac{W}{V}\psi(z)\psi\left(z^{-1}\right)\right)$$

with $\beta(z)$ the closed-loop characteristic equation, $\phi(z)$ the open-loop characteristic equation, and $G(z) = \frac{0.0384(z+1.169)}{z(z-0.7114)} = \frac{\psi(z)}{\phi(z)}$. The closed-loop poles satisfy $\phi(z)\phi(z^{-1}) + \frac{W}{V}\psi(z)\psi\left(z^{-1}\right) = 0$. The root locus plot should look like Figure 3. Keep in mind, however, that we always have a closed-loop pole at the origin.

4. (15 points) The innovation process is a white random sequence! (This fact is exploited in the solution of the LQG problem)

Two methods are given below, but only the first method is a complete answer. The second method, which is based on Return Difference Equation, only proves that the innovation process is a white random sequence in the steady-state case.

Figure 2: States and their estimation by Kalman filter (r=0.5)

Figure 3: Root Locus plot, Arrows point in the direction of decreasing r

(a) Method 1. The innovation process $e_y(k) = y(k) - C\hat{x}(k|k-1) = v(k) + C\tilde{x}(k|k-1)$, where $\tilde{x}(k|k-1) = x(k) - \hat{x}(k|k-1)$.

$$\begin{split} E[e_y(k)] &= E[v(k)] + CE[\tilde{x}(k|k-1)] = 0 \\ E[e_y(k)e_y^T(k)] &= E[(v(k) + C\tilde{x}(k|k-1))(v(k) + C\tilde{x}(k|k-1))^T] \\ &= E[v(k)v^T(k)] + CE[\tilde{x}(k|k-1)v^T(k)] + E[v(k)\tilde{x}^T(k|k-1)]C^T \\ &\quad + CE[\tilde{x}(k|k-1)\tilde{x}^T(k|k-1)]C^T \\ &= V + CM(k)C^T \end{split}$$

 $e_y(j)$, j > k is a linear function of $\tilde{x}(k|k) = x(k) - \hat{x}(k|k)$, v(k+1), v(k+2), \cdots , v(j), w(k), \cdots , w(j-1), which are all independent of $e_y(k)$. v(k+1), v(k+1), v(k+1), v(k+1), v(k+1), are obviously independent of $e_y(k)$. $\tilde{x}(k|k)$ and $e_y(k)$ are independent because:

$$\begin{split} E[e_y(k)(x(k) - \hat{x}(k|k))^T] &= E[(v(k) + c\tilde{x}(k|k-1))(\tilde{x}(k|k-1) - F(k)e_y(k))^T] \\ &= CE[\tilde{x}(k|k-1)\tilde{x}^T(k|k-1)] - E[e_y(k)e_y^T(k)F^T(k)] \\ &= CM(k) - (V + CM(k)C^T)F^T(k) \\ &= CM(k) - (V + CM(k)C^T)(V + CM(k)C^T)^{-1}CM(k) \\ &= 0 \end{split}$$

Hence, we have $E[e_y(k)e_y^T(j)] = 0$, and $E[e_y(j)e_y^T(k)] = 0$ for $j \neq k$, i.e. $e_y(k)$ is white noise.

(b) Method 2 (You get at most B if you did this way). The innovation sequence $e_y(k) := y(k) - C\hat{x}(k|k-1)$ (in the steady state) is Wide Sense Stationary .

To show that a WSS random process is white, it is enough if we show that the power spectral density of the process is a constant (over all frequencies). This is because the autocorrelation function of a WSS random process is a delta-function.

Since we are looking at the difference between y and \hat{x} both of which have the Bu term, we may

¹Extended concept: the same conclusion can be obtained by using the properties of the least square estimation, since $\tilde{x}(k|k)$ is the residual of estimation and $e_y(k)$ is the residual of the projection of y(k) onto $y(0), \ldots, y(k-1)$ (refer to the discussion note 4). Please come to see the GSI if you want to know more about this.

assume that u = 0. Then Y(s) may be written as:

$$\begin{array}{rcl} y(z) & = & C(zI-A)^{-1}B_w\,w(z) + v(z) \\ \Longrightarrow \Phi_{yy}(z) & = & C(zI-A)^{-1}B_w\,W\,B_w^T(z^{-1}I-A)^{-T}C^T + V \\ \text{i.e.}, \Phi_{yy}(z) & = & G(z)\,W\,G^T(z^{-1}) + V \end{array}$$

where $G(s) := C(zI - A)^{-1}B_w$

From the block diagram in page KF - 14, we get,

$$e_{y}(z) = [I + CA(zI - A)^{-1}F_{s}]y(z)$$

$$\Longrightarrow \Phi_{e_{y}e_{y}}(z) = (I + CA(zI - A)^{-1}F_{s}) \Phi_{yy}(z) (I + F_{s}^{T}(z^{-1}I - A) - A^{T}C^{T})$$

$$= CMC^{T} + V$$

The last equality stems from the Return Difference equality (KF - 53). Therefore, the innovation process e_y is white.