Proposition. If p is prime and $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof. We know that gcd(p, a) must be equal to 1 or p. If gcd(p, a) = 1, then our helpful theorem gives $p \mid b$. If gcd(p, a) = p, then we know that $p \mid a$. Hence either $p \mid a$ or $p \mid b$, as desired.

Proposition. The first p probed locations are unique.

Proof. Assume for the sake of contradiction that the first p probed locations are not unique. Then there are $0 \le i < j < p$ such that $h+ik \equiv h+jk \mod p$. Algebraic manipulation gives $(j-i)k \equiv 0 \mod p$, hence $p \mid (j-i)k$. From the previous exercise, this implies $p \mid (j-i)$ or $p \mid k$. But both j-i and k are strictly less than p! Thus we have contradiction.

Page 1