1 Definitions

You should be able to define each of the following terms

- field
- associative
- commutative
- distributive
- scalar
- vector
- vector addition
- scalar multiplication
- linear combination
- dot product
- matrix
- matrix addition
- matrix multiplication
- diagonal matrix
- identity matrix
- permutation matrix
- standard basis
- transpose
- upper triangular matrix
- lower triangular matrix
- linear equation
- system of linear equations
- solution to a system of linear equations

- Gaussian elimination
- row operation
- pivot (in Gaussian elimination)
- elimination matrix
- LU decomposition
- square matrix
- forward substitution
- back substitution
- invertible matrix/nonsingular matrix
- noninvertible matrix/singular matrix
- affine combination
- symmetric matrix
- block matrix
- inverse matrix
- vector space
- span
- subspace
- column space
- linear transformation
- linear independence
- basis
- null space
- Reduced row echelon form (RREF)
- rank of a matrix
- full row rank
- full column rank
- tall matrix
- wide matrix
- dimension

- row space
- left null space
- length of a vector
- unit vector
- orthogonal vectors
- orthogonal subspaces
- orthogonal complement
- projection of a vector onto a subspace
- best approximate solution to a linear system
- projection matrix
- line of best fit
- least squares approximation
- orthonormal set of vectors
- orthonormal basis
- orthogonal matrix
- QR decomposition

2 Computations

You should be able to

- Add vectors and multiply them by scalars (take linear combinations) and interpret geometrically.
- Compute dot products of vectors.
- Add matrices.
- Multiply matrices with vectors and other matrices.
- Multiply a scalar by a matrix.
- Use rules on page 73 to manipulate matrix expressions.
- Translate between a system of linear equations and a matrix equation of the form $A\mathbf{x} = \mathbf{b}$.
- Translate between the three row operations and multiplication on the left by appropriate elimination matrices.

- Perform Gaussian elimination to find the solution to a system of equations with n equations and n variables, or find that no solution exists.
- Use the steps of Gaussian elimination to give an *LU* decomposition for a square matrix.
- Interpret matrices as blocks of submatrices and compute products using block multiplication.
- Given an $n \times n$ matrix A, use Gauss-Jordan to find the inverse or verify that none exists.
- Check if a given set of vectors is a vector space.
- Use row operations to find RREF for any matrix.
- Use RREF to find a basis for the nullspace of a matrix.
- Use RREF to find a particular solution to $A\mathbf{x} = \mathbf{b}$ or determine that none exist.
- Use RREF to find a description of all solutions to $A\mathbf{x} = \mathbf{b}$ or determine that none exist.
- Use RREF to find a basis for the column space.
- Use RREF to find a basis for the row space.
- Use RREF of A^T to find a basis for the left null space.
- Compute the (Euclidean) length of a vector in \mathbb{R}^n using the dot product.
- Find the angle between two vectors in \mathbb{R}^n using the dot product. Determine if two vectors are orthogonal.
- Given a basis for a subspace $S \subseteq \mathbb{R}^n$, find the projection **p** of any vector $\mathbf{b} \in \mathbb{R}^n$ onto S.
- Given a basis for a subspace $S \subseteq \mathbb{R}^n$, find the projection matrix P so that the projection of any vector $\mathbf{b} \in \mathbb{R}^n$ onto S is $P\mathbf{b}$.
- Given an $m \times n$ matrix A and a vector $\mathbf{b} \in \mathbb{R}^m$, find the best approximate solution $\hat{\mathbf{x}} \in \mathbb{R}^n$ to the system $A\mathbf{x} = \mathbf{b}$.
- Find the line of best (least squares) fit for a set of data.
- Find the parabola of best fit for a set of data.
- Given a basis for a vector space V, use the Gram-Schmidt algorithm to find an orthonormal basis for V.
- Given an $m \times n$ matrix A, find an $m \times n$ matrix Q with orthogonal columns and an $n \times n$ upper triangular matrix R such that A = QR.

3 Theorems and proofs

You should be able to prove or explain why

- Vector addition is associative and commutative (using axioms for a field)
- Scalar multiplication distributes over vector addition (using axioms for a field)
- The product of two lower (upper) triangular matrices is lower (upper) triangular
- Matrix multiplication is associative
- Matrix equations on Page 73 hold (e.g. A + B = B + A).
- Row operations do not change the set of solutions for a linear system of equations.
- Gaussian elimination either finds the solution to a square system of equations or shows that none exists.
- A square matrix A can be written as A = LU, or PA = LU.
- An $n \times n$ system of linear equations has exactly one solution if and only if all pivots in Gaussian elimination are nonzero.
- A system of linear equations (in \mathbb{R} or \mathbb{C}) always has 0, 1, or ∞ solutions.
- $A^T A$ is symmetric
- The product $A\mathbf{x}$ is a linear combination of the columns of A.
- If A is $n \times n$ and contains a nonzero vector in the nullspace, it is not invertible.
- The Gauss-Jordan algorithm works (i.e. it computes the inverse of a square matrix or determines that none exists).
- A square matrix has an inverse if and only if all pivots in Gaussian elimination are nonzero.
- If A and B are invertible, then $(AB)^{-1} = B^{-1}A^{-1}$
- If A has an inverse, it is unique
- Every subspace of \mathbb{R}^n is a hyperplane through the origin.
- The span of a set of vectors in V is a subspace of V.
- The matrix equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if $\mathbf{b} \in C(A)$.
- The column space is a subspace of \mathbb{R}^m .
- An $m \times n$ matrix is a linear transformation with domain \mathbb{R}^n and codomain \mathbb{R}^m .
- The column space of AB is a subspace of the column space of A.

- The intersection of two vector spaces is a vector space.
- The union of two vector spaces is not a vector space unless one contains the other.
- Given a basis for a vector space V, for any vector $\mathbf{v} \in V$ there is exactly one way to express \mathbf{v} as a linear combination of the vectors in the basis.
- The null space is a vector space.
- The null space of A is $\{0\}$ if and only if the columns of A are linearly independent.
- If $A\mathbf{x} = A\mathbf{y}$, then $(\mathbf{x} \mathbf{y}) \in N(A)$.
- An $n \times n$ matrix A is invertible if and only if $C(A) = \mathbb{R}^n$ and $N(A) = \{0\}$.
- An $n \times n$ matrix A is invertible if and only if its vectors form a basis for \mathbb{R}^n .
- If A has full column rank then $A\mathbf{x} = \mathbf{b}$ has zero solutions or one solution.
- If A has full row rank then $A\mathbf{x} = \mathbf{b}$ has ∞ solutions.
- An $n \times n$ matrix is invertible if and only if it has rank n.
- Every basis for a vector space has the same number of vectors.
- The dimension of the row space equals the rank of the matrix.
- The dimension of the column space equals the rank of the matrix.
- The dimension of the null space of an $m \times n$ matrix with rank r is n-r.
- The dimension of the left null space of an $m \times n$ matrix with rank r is m-r.
- For any $m \times n$ matrix A, N(A) and $C(A^T)$ are orthogonal complements in \mathbb{R}^n .
- For any $m \times n$ matrix A, any $\mathbf{x} \in \mathbb{R}^n$ can be written as $\mathbf{x} = \mathbf{x}_r + \mathbf{x}_n$, where $\mathbf{x}_r \in C(A^T)$ and $\mathbf{x}_n \in N(A)$.
- For any $m \times n$ matrix A, $N(A^T)$ and C(A) are orthogonal complements in \mathbb{R}^m .
- For any $m \times n$ matrix A, any $\mathbf{b} \in \mathbb{R}^m$ can be written (uniquely) as $\mathbf{b} = \mathbf{p} + \mathbf{e}$, where $\mathbf{p} \in C(A)$ and $\mathbf{e} \in N(A^T)$.
- If A has full column rank, then A^TA is invertible.
- For any $m \times n$ matrix A, the best approximate solution to $A\mathbf{x} = \mathbf{b}$ is given by $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$.
- For any $m \times n$ matrix A, then the projection of $\mathbf{b} \in \mathbb{R}^m$ onto C(A) is $\mathbf{p} = A(A^TA)^{-1}A^T\mathbf{b}$.
- For any $m \times n$ matrix A, the projection matrix for the projection onto C(A) is $P = A(A^TA)^{-1}A^T$.

- If P is a projection matrix, then $P^2 = P$.
- If A is an invertible matrix, then the projection of any vector **b** onto C(A) is **b**. (Equivalently, the projection matrix P is I.)
- The coefficients for the line of best fit for a set of data is given by the best approximate solution to a corresponding linear system.
- If the $m \times n$ matrix Q has orthonormal columns, then $Q^T Q = I_n$.
- If Q has orthonormal columns, then $||Q\mathbf{x}|| = ||\mathbf{x}||$ (Q preserves lengths).
- If Q has orthonormal columns, then $(Q\mathbf{x})^TQ\mathbf{y} = \mathbf{x}^T\mathbf{y}$ (Q preserves dot products, hence angles).
- If the $m \times n$ matrix Q has orthonormal columns, then the best approximate solution to $Q\mathbf{x} = \mathbf{b}$ is given by $\hat{\mathbf{x}} = Q^T \mathbf{b}$.
- If the $m \times n$ matrix Q has orthonormal columns, then the projection of $\mathbf{b} \in \mathbb{R}^m$ onto C(Q) is $\mathbf{p} = QQ^T\mathbf{b}$.
- If the $m \times n$ matrix Q has orthonormal columns, then the projection matrix for the projection onto C(Q) is $P = QQ^T$.
- If $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$ is an orthonormal basis for \mathbb{R}^n , then any $\mathbf{x} \in \mathbb{R}^n$ can be uniquely expressed as

$$\mathbf{x} = c_1 \mathbf{q}_1 + \dots + c_n \mathbf{q}_n,$$

where $c_i = \mathbf{q}_i^T \mathbf{x}$.

4 Equivalent statements about square matrices

Suppose A is an $n \times n$ matrix. Then each column contains equivalent statements.

A ia nonsingular A is singular A is invertible A is not invertible

The columns are independent

The rows are independent

The rows are independent $A\mathbf{x} = \mathbf{0}$ has one solution, $\mathbf{x} = \mathbf{0}$ The columns are dependent

The rows are dependent $A\mathbf{x} = \mathbf{0}$ has many solutions

 $A\mathbf{x} = \mathbf{b}$ has one solution $\mathbf{x} = A^{-1}\mathbf{b}$ $A\mathbf{x} = \mathbf{b}$ has no solution or infinitely many

A has n (nonzero) pivots A has full rank r = n A has rank r < n

The reduced row echelon form is R = I R has at least one zero row

The column space is all of \mathbb{R}^n The column space has dimension r < n The row space is all of \mathbb{R}^n The row space has dimension r < n

5 Algorithms

Gaussian Elimination / LU decomposition

INPUT: An $n \times n$ matrix A, a vector $\mathbf{b} \in \mathbb{R}^n$.

OUTPUT (GE): A vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{b}$, or a certificate that none exists.

OUTPUT (LU): A lower triangular L and an upper triangular U (with a permutation matrix P, if necessary), such that A = LU (or PA = LU).

Procedure: Transform system $A\mathbf{x} = \mathbf{b}$ using 3 types of row operations until system is upper triangular, then solve using back substitution.

Why it works: Row operations do not change the set of solutions to a system of equations.

Theoretical insights:

• $A\mathbf{x} = \mathbf{b}$ has a unique solution for all $\mathbf{b} \in \mathbb{R}^n$ if and only if all pivots are nonzero (invertible/nonsingular case). Otherwise there may be 0 or ∞ solutions, depending on rows with zeros in pivot positions (noninvertible/singular case).

Why: Every step of back substitution gives a unique value for x_i if and only if all pivots are nonzero.

• By interpreting row operations as multiplication (on the left) by elimination matrices, we use their inverses to obtain an A = LU (or PA = LU if row swaps are required) decomposition.

This allows us to easily solve $A\mathbf{x} = \mathbf{b}$ for any \mathbf{b} using forward substitution $(L\mathbf{c} = \mathbf{b})$ then back substitution $(U\mathbf{x} = \mathbf{c})$.

Gauss-Jordan

INPUT: An $n \times n$ matrix A

OUTPUT: An $n \times n$ matrix A^{-1} such that $AA^{-1} = A^{-1}A = I$, or a certificate that A has no inverse.

Procedure: Beginning with [A|I], use row operations to transform to $[I|A^{-1}]$.

Why it works: If E is the product of elimination matrices that transforms A to I, then EA = I, so $E = A^{-1}$. By block multiplication, $E = A^{-1}$ appears on the right side of the augmented matrix at the end of the algorithm.

Theoretical insight:

A is invertible if and only if there are n nonzero pivots.
 (If there are fewer nonzero pivots, it is impossible to transform the left side of the matrix to I).

RREF

INPUT: An $m \times n$ matrix A.

OUTPUT: A matrix $R = \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix}$ (possibly with columns permuted).

Procedure: Use row operations.

Theoretical insights:

• A basis for the null space of A is given by the n-r columns of $N=\begin{bmatrix} -F\\I\end{bmatrix}$ (with rows permuted to match column permutation of R).

Why: Since each column has a 1 in a row where every other column has a 0, the columns are linearly independent. Since once the free variables are chosen, the pivot variables are uniquely determined, these columns span the null space.

• All solutions to $A\mathbf{x} = \mathbf{b}$ are given by $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_n$, where \mathbf{x}_p is a particular solution to $A\mathbf{x} = \mathbf{b}$, and \mathbf{x}_n is any element of the null space.

Why: $A(\mathbf{x}_p + \mathbf{x}_n) = A\mathbf{x}_p + A\mathbf{x}_n = \mathbf{b} + \mathbf{0} = \mathbf{b}$. Further, if $A\mathbf{x} = A\mathbf{y}$, then $(\mathbf{x} - \mathbf{y}) \in N(A)$.

- $\dim C(A) = \dim C(A^T) = r$, where r is the rank of A.

Why: The dimensions of the four fundamental subspaces are not altered by row operations.

- Characterization of solutions to $A\mathbf{x} = \mathbf{b}$ in four cases
 - -r = n < m (full column rank)
 - -r = m < n (full row rank)
 - -r = m = n (invertible)
 - -r < m, r < n

Gram-Schmidt / QR decomposition

INPUT (G-S): A basis $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ for a vector space V.

OUTPUT (G-S): An orthonormal basis $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$ for V.

INPUT (QR): An $m \times n$ matrix A with full column rank (linearly independent columns).

OUTPUT (QR): An $m \times n$ matrix Q with orthonormal columns and an $n \times n$ upper triangular matrix R such that A = QR.

Procedure (G-S): For each basis vector \mathbf{a}_i ,

- From \mathbf{a}_i , generate \mathbf{A}_i by subtracting the projection of \mathbf{a}_i onto \mathbf{A}_j for every j < i.
- Let $\mathbf{q}_i = \mathbf{A}_i / \|\mathbf{A}_i\|$.

Why it works: The first step produces vectors orthogonal to all previously produced vectors because $(\mathbf{w} - proj_{\mathbf{v}}\mathbf{w}) \perp \mathbf{v}$. The second step normalizes them to each have length 1.

Procedure (QR): Rewrite the system of equations generated by Gram-Schmidt to express each \mathbf{a}_i in terms of \mathbf{q}_i 's. Combine these into a matrix equation A = QR where \mathbf{a}_i is the *i*th column of A, \mathbf{q}_i is the *i*th column of Q, and $R_{ij} = \mathbf{q}_i^T \mathbf{a}_j$.

Theoretical insights:

- The projection of a vector \mathbf{w} onto a vector \mathbf{v} can be written as $\frac{\mathbf{v}^T \mathbf{w}}{\mathbf{v}^T \mathbf{v}} \mathbf{v}$.
- For all k, the span of $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is the same as the span of $\{\mathbf{q}_1, \ldots, \mathbf{q}_k\}$.
- Since R is upper triangular (i.e. $R_{ij} = 0$ if i > j) and $R_{ij} = \mathbf{q}_i^T \mathbf{a}_j$, the basis vector \mathbf{q}_i is orthogonal to every \mathbf{a}_j where j < i (i.e. all of the "previously considered vectors" in the basis $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$).