RICOH

R1162x SERIES

3-MODE 150mA LDO REGULATOR

NO.EA-110-0512

OUTLINE

The R1162x Series consist of CMOS-based voltage regulator ICs with high output voltage accuracy and low supply current. Each of these voltage regulator ICs consists of a voltage reference unit, an error amplifier, resistors for setting output voltage, a current limit circuit, and so on. The output voltage is internally fixed with high accuracy.

These ICs perform with the chip enable function and realize a standby mode with ultra low supply current. To prevent the destruction by over current, the current limit circuit is included. The R1162x Series have 3-mode. One is standby mode with CE or standby control pin. Other two modes are realized with ECO pin[™]. Fast Transient Mode (FT mode) and Low Power Mode (LP mode) are alternative with ECO pin[™]. Consumption current is reduced at Low Power Mode compared with Fast Transient Mode. The output voltage is maintained between FT mode and LP mode.

Since the packages for these ICs are SOT-23-5 and SON1612-6 packages, high density mounting of the ICs on boards is possible.

FEATURES

Ultra-Low Supply Current	Typ. 5.5μA (Low Power Mode),
	Typ. 70μA (Fast Transient Mode)
Standby Mode	Typ. 0.1μA
Low Dropout Voltage	Typ. 0.25V (lout=150mA Output Voltage=3.0V Type)
High Ripple Rejection	Typ. 70dB (f=1kHz, FT Mode)
	Typ. 60dB (f=10kHz, FT Mode)
• Low Temperature-Drift Coefficient of Output V	oltage Typ. ±100ppm/°C
Excellent Line Regulation	Typ. 0.02%/V
High Output Voltage Accuracy	±2.0%(±3.0% at LP Mode)
Small Package	SOT-23-5 (Super Mini-mold), SON1612-6
Output Voltage	Stepwise setting with a step of 0.1V
	in the range of 1.5V to 4.0V is possible
Built-in fold-back protection circuit	Typ. 40mA (Current at short mode)
Performs with Ceramic Capacitors	Cιn=1.0μF,Couτ=0.47μF

APPLICATIONS

- Precision Voltage References.
- Power source for electrical appliances such as cameras, VCRs and hand-held communication equipment.
- Power source for battery-powered equipment.

BLOCK DIAGRAM

SELECTION GUIDE

The output voltage, function of auto-discharge, package, and the packing type for the ICs can be selected at the user's request. The selection can be available by designating the part number as shown below;

$$\begin{array}{ccc} R1162x\underline{x}\underline{x}\underline{x}1\underline{x}\text{-}xx & \leftarrow \text{Part Number} \\ \uparrow \uparrow \uparrow \uparrow \uparrow \\ \text{a b } \text{c} \text{d} \end{array}$$

Code	Contents
а	Designation of Package Type : N:SOT-23-5 (Mini-mold) D:SON1612-6
b	Setting Output Voltage (Vout): Stepwise setting with a step of 0.1V in the range of 1.5V to 4.0V is possible. Exceptions: 1.85V=R1162x181x5, 2.85V=R1162x281x5
С	Designation of Chip Enable Option : B: "H" active type. D: "H" active type. With auto discharge function
d	Designation of Taping Type : Refer to Taping Specifications;TR type is the standard direction.

PIN CONFIGURATIONS

PIN DESCRIPTIONS

• R1116N (SOT-23-5)

Pin No.	Symbol	Description	
1	V_{DD}	Input Pin	
2	GND	Ground Pin	
3	CE	Chip Enable Pin	
4	ECO	MODE alternative pin	
5	Vout	Output pin	

• R1116D (SON1612-6)

Pin No. Symbol		Description
1	CE	Chip Enable Pin
2	GND	Ground Pin
3	V _{DD}	Input Pin
4	Vоит	Output Pin
5	GND	Ground Pin
6	ECO	MODE alternative pin

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
Vin	Input Voltage	6.5	V
VECO	Input Voltage (ECO Pin)	-0.3 to 6.5	V
Vce	Input Voltage (CE / CE Pin)	-0.3 to 6.5	V
Vоит	Output Voltage	-0.3 to V _{IN} +0.3	V
Іоит	Output Current	180	mA
Po	Power Dissipation (SOT-23-5)*1	420	mW
l D	Power Dissipation (SON1612-6)*1	500	MW
Topt	Operating Temperature Range	−40 ~ 85	°C
Tstg	Storage Temperature Range	−55 ~ 125	°C

^{*1} For Power Dissipation, please refer to PACKAGE INFORMATION to be described.

ELECTRICAL CHARACTERISTICS

• R1162xxx1B/D Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vоит	Output Voltage	$V_{\text{IN}} = \text{Set V}_{\text{OUT}} + 1V \text{ V}_{\text{ECO}} = V_{\text{IN}}$ $1\text{mA} \leq I_{\text{OUT}} \leq 30\text{mA}^{Note 1}$	V _{оит} ×0.98		V _{оит} ×1.02	V
V 001	Output Voltage	$V_{IN} = Set \ V_{OUT} + 1V \ V_{ECO} = GND$ $1mA \le I_{OUT} \le 30mA^{Note 2}$	V _{оит} ×0.97		V _{оит} ×1.03	V
ΔV оит	Output Voltage Deviation between FT Mode and LP	$V_{IN} = Set V_{OUT}+1V$, $I_{OUT} = 30mA$ $V_{OUT} \le 2.0V$	-1.2	0.0	1.2	%
	Mode	$V_{\text{OUT}} \ge 2.0 V$	(-24)	0.0	(24)	mV
louт	Output Current	$V_{IN} - V_{OUT} = 1.0V$	150			mA
ΔV оυт/	Load Regulation(FT Mode)	Vin =Set Vout+1V, Veco=Vin 1mA ≤ Iout ≤ 150mA		20	40	mV
Δl оит	Load Regulation(LP Mode)	$V_{IN} = Set V_{OUT}+1V, V_{ECO}=GND$ $1mA \le I_{OUT} \le 150mA$		20	45	mV
VDIF	Dropout Voltage	Refer to the ELECTRICAL CHARAC	TERISTIC	S by OU	TPUT VO	LTAGE
lss ₁	Supply Current(FT Mode)	VIN = Set VOUT+1V VECO = VIN, IOUT=0mA		70	100	μΑ
lss2	Supply Current(LP Mode)	VIN = Set Vout+1V VECO = GND, IOUT=0mA		5.5	9.0	μА
Istandby	Supply Current (Standby)	VIN = VCE = Set VOUT+1V		0.1	1.0	μА
Δ V ουτ/	Line Regulation(FT Mode)	Set Vout+0.5V \leq Vin \leq 6.0V IOUT = 30mA, VECO = Vin VOUT \leq 1.6V: 2.2V \leq Vin \leq 6.0V		0.02	0.10	%/V
ΔV in	Line Regulation(LP Mode)	$\label{eq:set_vout} \begin{split} & \text{Set Vout} + 0.5 \text{V} \leqq \text{Vin} \leqq 6.0 \text{V} \\ & \text{Iout} = 30 \text{mA}, \ \text{Veco} = G \text{ND} \\ & \text{Vout} \leqq 1.6 \text{V} \colon 2.2 \text{V} \leqq \text{Vin} \leqq 6.0 \text{V} \end{split}$		0.05	0.20	%/V
RR	Ripple Rejection(FT Mode)	$ f = 1 \text{kHz} $ $ f = 10 \text{kHz,Ripple 0.2Vp-p} $ $ V_{\text{IN}} = \text{Set V}_{\text{OUT}} + 1 \text{V} $ $ I_{\text{OUT}} = 30 \text{mA, V}_{\text{ECO}} = V_{\text{IN}} $		70 60		dB
VIN	Input Voltage		2.0		6.0	V
ΔVουτ/ ΔTopt	Output Voltage Temperature Coefficient	$I_{OUT} = 30 \text{mA}$ $-40^{\circ}\text{C} \le Topt \le 85^{\circ}\text{C}$		±100		ppm /°C
llim	Short Current Limit	Vout = 0V		40		mA
I PD	CE Pull-down Constant Current			0.3	0.6	μΑ
Rpd	ECO Pull-down Resistance		2	5	30	МΩ
Vceh	CE, ECO Input Voltage "H"		1.0		6.0	V
Vcel	CE, ECO Input Voltage "L"		0.00		0.35	V
en	Output Noise (Fast Mode)	BW = 10Hz to 100kHz		30		μVrms
en	Output Noise (Low Power Mode)	BW = 10Hz to 100kHz		40		μVrms
RLOW	Nch On resistance for auto-discharge (Applied to D version)	Vce=0V		60		Ω

ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE

 $Topt = 25^{\circ}C$

Outrot Valtage	Dropout Voltage (mV)				
Output Voltage Vουτ (V)	Condition	V _{DIF} (ECO=H)		V _{DIF} (ECO=L)	
155. (5)	Condition	Тур.	Max.	Тур.	Max.
1.5 ≤ Vouт ≤ 1.6		400	680	420	680
1.6 ≦ Vouт ≦ 1.7		380	550	390	550
1.7 ≦ Vo∪т ≦ 1.8	Тоит = 150mA	350	520	370	520
1.8 ≦ Vo∪т ≦ 2.0	1001 = 130111A	340	490	350	490
2.0 ≤ V _{OUT} ≤ 2.8		290	425	300	430
$2.8 \leq V_{\text{OUT}} \leq 4.0$		250	350	250	350

TYPICAL APPLICATION

(External Components)

 C_2 Ceramic $0.47\mu F$ Ex. Murata GRM40B474K Kyocera CM105B474K

 C_1 Ceramic $1.0 \mu F$

TYPICAL CHARACTERISTICS Unless otherwise provided, capacitors are ceramic type.

1) Output Voltage vs. Output Current

2) Output Voltage vs. Input Voltage

3) Supply Current vs. Input Voltage

4) Output Voltage vs. Temperature

5) Supply Current vs. Temperature

6) Dropout Voltage vs. Output Current R1162x15x (ECO=H)

7) Dropout Voltage vs. Set Output Voltage R1162x (ECO=H)

8) Ripple Rejection vs. Input Bias Voltage R1162x28x (ECO=H)

R1162x28x (ECO=H)

9) Ripple Rejection vs. Frequency R1162x15x (ECO=H)

R1162x15x (ECO=L)

R1162x28x (ECO=H)

R1162x28x (ECO=L)

R1162x40x (ECO=H)

R1162x40x (ECO=L)

10) Input Transient Response

R1162x15x (ECO=L)

11) Load Transient Response R1162x15x (ECO=H)

R1162x28x (ECO=L) VIN=3.8V, CIN=1 μ F, COUT=1 μ F 20 5.0 4.5 Output Voltage Vour(V) **Output Current** 4.0 3.5 3.0 2.5 **Output Voltage** 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Time t(ms)

12) Turn on speed with CE pin R1162x15x (ECO=H)

R1162x15x (ECO=L)

R1162x15x (ECO=H)

R1162x15x (ECO=L)

R1162x15x (ECO=H)

R1162x15x (ECO=L)

R1162x28x (ECO=H)

R1162x28x (ECO=L)

R1162x28x (ECO=H)

R1162x28x (ECO=L)

R1162x28x (ECO=H)

R1162x28x (ECO=L)

R1162x40x (ECO=H)

R1162x40x (ECO=L)

R1162x40x (ECO=H)

R1162x40x (ECO=L)

R1162x40x (ECO=H)

R1162x40x (ECO=L)

13) Turn off speed with CE pin

R1162x40xD

14) Output Voltage at Mode alternative point R1162x15x

R1162x28x

TECHNICAL NOTES

(External Components)

 C_2 Ceramic $0.47\mu F$ Ex. Murata GRM40B474K Kyocera CM105B474K

C₁ Ceramic 1.0µF

When using these ICs, consider the following points:

1.Mounting on PCB

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor with as much as $1.0\mu F$ capacitor between V_{DD} and GND pin as close as possible.

Set external components, especially the output capacitor as close as possible to the ICs and make wiring as short as possible.

2. Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, be sure to use a $0.47\mu F$ or more capacitor C_{OUT} with good frequency characteristics and ESR (Equivalent Series Resistance).

If you use a tantalum type capacitor and ESR value of the capacitor is large, output might be unstable. Evaluate your circuit with considering frequency characteristics.

Depending on the capacitor size, manufacturer, and part number, the bias characteristics and temperature characteristics are different. Evaluate the circuit with actual using capacitors.

ESR vs. Output Current

When using these ICs, consider the following points:

In these ICs, phase compensation is made for securing stable operation even if the load current is varied.

For this purpose, be sure to use a capacitor Cout with good frequency characteristics and ESR (Equivalent Series Resistance) in the range described as follows:

The relations between I_{OUT} (Output Current) and ESR of Output Capacitor are shown below. The conditions when the white noise level is under 40μV (Avg.) are marked as the hatched area in the graph.

<Test conditions>

(1) Frequency band: 10Hz to 2MHz

R1162x28x (ECO=H)

R1162x28x (ECO=L)

• SOT-23-5 (SC-74A)

Unit: mm

PACKAGE DIMENSIONS

TAPING SPECIFICATION

TAPING REEL DIMENSIONS

(1reel=3000pcs)

POWER DISSIPATION (SOT-23-5)

This specification is at mounted on board. Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: (Power Dissipation (SOT-23-5) is substitution of SOT-23-6.)

Measurement Conditions

Standard Land Pattern		
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plactic (Double sided)	
Board Dimensions	40mm × 40mm × 1.6mm	
Copper Ratio	Top side : Approx. 50% , Back side : Approx. 50%	
Through-hole	φ0.5mm × 44pcs	

Measurement Result

(Topt=25°C,Tjmax=125°C)

Standard Land Pattern		Free Air
Power Dissipation	420mW	250mW
Thermal Resistance	θja=(125–25°C)/0.42W=263°C/W	400°C/W

Power Dissipation

Measurement Board Pattern

() IC Mount Area Unit : mm

RECOMMENDED LAND PATTERN

• SON1612-6 Unit: mm

PACKAGE DIMENSIONS

TAPING SPECIFICATION

TAPING REEL DIMENSIONS

(1reel=4000pcs)

Power Dissipation (SON1612-6)

This specification is at mounted on board.

Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

	Standard Land Pattern		
Environment	Mounting on Board (Wind velocity=0m/s)		
Board Material	Glass cloth epoxy plactic (Double sided)		
Board Dimensions	40mm × 40mm × 1.6mm		
Copper Ratio	Top side : Approx. 50%, Back side : Approx.50%		
Through-hole	φ0.5mm × 24pcs		

Measurement Result

(Topt=25°C.Timax=125°C)

	(Topt 20 0,Tjmax 120 0)			
Standard Land Pattern				
Power Dissipation	500mW			
Thermal Resistance	θja=(125–25°C)/0.5W=200°C/W			

39

Power Dissipation

() IC Mount Area Unit : mm

RECOMMENDED LAND PATTERN

R1162N SERIES MARK SPECIFICATION

• SOT-23-5 (SC-74A)

①, ②, ③ : Product Code (refer to Part Number vs. Product Code)

④, ⑤ : Lot Number

• Part Number vs. Product Code

Part Number	Product Code			
Part Number	1	2	3	
R1162N151B	S	1	5	
R1162N161B	S	1	6	
R1162N171B	S	1	7	
R1162N181B	S	1	8	
R1162N191B	S	1	9	
R1162N201B	S	2	0	
R1162N211B	S	2	1	
R1162N221B	S	2	2	
R1162N231B	S	2	3	
R1162N241B	S	2	4	
R1162N251B	S	2	5	
R1162N261B	S	2	6	
R1162N271B	S	2	7	
R1162N281B	S	2	8	
R1162N291B	S	2	9	
R1162N301B	S	3	0	
R1162N311B	S	3	1	
R1162N321B	S	3	2	
R1162N331B	S	3	3	
R1162N341B	S	3	4	
R1162N351B	S	3	5	
R1162N361B	S	3	6	
R1162N371B	S	3	7	
R1162N381B	S	3	8	
R1162N391B	S	3	9	
R1162N401B	S	4	0	
R1162N181B5	S	4	1	
R1162N281B5	S	4	2	

5 (1)	Product Code			
Part Number	1	2	3	
R1162N151D	Т	1	5	
R1162N161D	Т	1	6	
R1162N171D	Т	1	7	
R1162N181D	Т	1	8	
R1162N191D	Т	1	9	
R1162N201D	Т	2	0	
R1162N211D	Т	2	1	
R1162N221D	Т	2	2	
R1162N231D	Т	2	3	
R1162N241D	Т	2	4	
R1162N251D	Т	2	5	
R1162N261D	Т	2	6	
R1162N271D	Т	2	7	
R1162N281D	Т	2	8	
R1162N291D	Т	2	9	
R1162N301D	Т	3	0	
R1162N311D	Т	3	1	
R1162N321D	Т	3	2	
R1162N331D	Т	3	3	
R1162N341D	Т	3	4	
R1162N351D	Т	3	5	
R1162N361D	Т	3	6	
R1162N371D	Т	3	7	
R1162N381D	Т	3	8	
R1162N391D	Т	3	9	
R1162N401D	Т	4	0	
R1162N181D5	Т	4	1	
R1162N281D5	Т	4	2	

R1162D SERIES MARK SPECIFICATION

• SON1612-6

① to ④: Product Code (refer to Part Number vs. Product Code)

5, 6: Lot Number

• Part Number vs. Product Code

Part Number	Product Code			
Part Number	1	2	3	4
R1162D151B	Н	1	5	В
R1162D161B	Н	1	6	В
R1162D171B	Н	1	7	В
R1162D181B	Н	1	8	В
R1162D191B	Н	1	9	В
R1162D201B	Н	2	0	В
R1162D211B	Н	2	1	В
R1162D221B	Н	2	2	В
R1162D231B	Н	2	3	В
R1162D241B	Н	2	4	В
R1162D251B	Н	2	5	В
R1162D261B	Н	2	6	В
R1162D271B	Н	2	7	В
R1162D281B	Н	2	8	В
R1162D291B	Н	2	9	В
R1162D301B	Н	3	0	В
R1162D311B	Н	3	1	В
R1162D321B	Н	3	2	В
R1162D331B	Н	3	3	В
R1162D341B	Н	3	4	В
R1162D351B	Н	3	5	В
R1162D361B	Н	3	6	В
R1162D371B	Н	3	7	В
R1162D381B	Н	3	8	В
R1162D391B	Н	3	9	В
R1162D401B	Н	4	0	В
R1162D181B5	Н	4	1	В
R1162D281B5	Н	4	2	В

	Product Code			
Part Number	1	2	3	4
R1162D151D	Н	1	5	D
R1162D161D	Н	1	6	D
R1162D171D	Н	1	7	D
R1162D181D	Н	1	8	D
R1162D191D	Н	1	9	D
R1162D201D	Н	2	0	D
R1162D211D	Н	2	1	D
R1162D221D	Ι	2	2	D
R1162D231D	Н	2	3	О
R1162D241D	Ι	2	4	D
R1162D251D	Η	2	5	О
R1162D261D	Ι	2	6	D
R1162D271D	Ι	2	7	D
R1162D281D	Ι	2	8	D
R1162D291D	Ι	2	9	D
R1162D301D	Ι	3	0	D
R1162D311D	Η	3	1	О
R1162D321D	Ι	3	2	D
R1162D331D	Ι	3	3	D
R1162D341D	Ι	З	4	D
R1162D351D	Ι	3	5	D
R1162D361D	Ι	3	6	D
R1162D371D	Η	3	7	О
R1162D381D	Ι	3	8	D
R1162D391D	Н	3	9	D
R1162D401D	Η	4	0	D
R1162D181D5	Н	4	1	D
R1162D281D5	Н	4	2	D

Part Number	Product Code			
	1	2	3	4
R1162D281E5	Н	4	1	Е