MATH H53 MIDTERM 1 SOLUTION

1. (5 points) Find the length of the curve $x = e^{at} \cos bt$, $y = e^{at} \sin bt$, $0 \le t \le 2\pi$. Here both a and b are positive numbers.

We use the formula $L = \int_{\alpha}^{\beta} \sqrt{(x'(t))^2 + (y'(t))^2} dt$. $L = \int_{0}^{2\pi} \sqrt{((e^{at}\cos bt)')^2 + ((e^{at}\sin bt)')^2} dt$ $= \int_{0}^{2\pi} \sqrt{(ae^{at}\cos bt - be^{at}\sin bt)^2 + (ae^{at}\sin bt + be^{at}\cos bt)^2} dt$ $= \int_{0}^{2\pi} \sqrt{a^2e^{2at} + b^2e^{2at}} dt$ $= \int_{0}^{2\pi} \sqrt{a^2 + b^2} e^{at} dt$

 $=\frac{\sqrt{a^2+b^2}}{a}(e^{2\pi a}-1).$

- 2. (5 points)
- (1) (2 points) Find a polar equation for the curve represented by Cartesian equation $x^2 + y^2 = |x| + |y|$ and sketch the curve.
- (2) (3 points) Find the area of the region that lies inside this curve.
- (1) Use $x = r\cos\theta$ and $y = r\sin\theta$, we get that the polar equation is $r^2 = |r\cos\theta| + |\sin\theta|$. So we have $|r| = |\cos\theta| + |\sin\theta|$, which is the same curve as $r = |\cos\theta| + |\sin\theta|$. This curve is symmetric with respect to the reflection along x- and y-axes.
- (2) We need only to compute the area in the first quadrant, since the curve has the symmetric property. By using the formula $A = \int_a^b \frac{1}{2} r^2 d\theta$. The area is

$$A = 4 \int_0^{\frac{\pi}{2}} \frac{1}{2} r^2(\theta) d\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} (\cos \theta + \sin \theta)^2 d\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} (\cos^2 \theta + \sin^2 \theta + 2 \cos \theta \sin \theta) d\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} (1 + \sin 2\theta) d\theta$$

$$= 2(\theta - \frac{\cos 2\theta}{2})|_{\theta=0}^{\frac{\pi}{2}}$$

$$= \pi + 2.$$

3. (5 points) Let L_1 be the line of the intersection of two planes: x + y + z = 3 and x + 2y + 3z = 6, and L_2 be the line passing through (1, 0, -1) and perpendicular with the plane 3x + 4y + 5z = 0.

Find the distance between L_1 and L_2 .

The direction of L_1 is given by $\langle 1, 1, 1 \rangle \times \langle 1, 2, 3 \rangle = \langle 1, -2, 1 \rangle$, and an intersection point of these two planes is $\langle 1, 1, 1 \rangle$. So the equation of L_1 is $\langle 1, 1, 1 \rangle + t \langle 1, -2, 1 \rangle$.

The direction of L_2 is $\langle 3, 4, 5 \rangle$ and L_2 passes through $\langle 1, 0, -1 \rangle$. So the equation of L_2 is $\langle 1, 0, -1 \rangle + t \langle 3, 4, 5 \rangle$.

A vector which is perpendicular to both of L_1 and L_2 is $\langle 1, -2, 1 \rangle \times \langle 3, 4, 5 \rangle = \langle -14, -2, 10 \rangle$. Then the distance between L_1 and L_2 is the absolute value of the scalar project of $\langle 1, 1, 1 \rangle - \langle 1, 0, -1 \rangle = \langle 0, 1, 2 \rangle$ on $\langle -14, -2, 10 \rangle$. It is equal to

$$\left| \frac{\langle 0, 1, 2 \rangle \cdot \langle -14, -2, 10 \rangle}{\left| \langle -14, -2, 10 \rangle \right|} \right| = \left| \frac{18}{\sqrt{300}} \right| = \frac{3\sqrt{3}}{5}.$$

- 4. (5 points) For two vector-valued functions $\mathbf{r}_1(t) = \langle t, t^2, t^3 \rangle$ and $\mathbf{r}_2(s) = \langle 1 + 2s, 1 + 6s, 2 + 12s \rangle$,
 - (1) (1 points) Find the intersection point of these two space curves.
 - (2) (4 points) Let P be the plane that contains the tangent lines of \mathbf{r}_1 and \mathbf{r}_2 at the intersection point. Find an equation of P.
 - (1) We need to solve the equation

$$\begin{cases} t = 1 + 2s \\ t^2 = 1 + 6s \\ t^3 = 2 + 12s \end{cases}$$

The first two equations implies $1+6s=t^2=(1+2s)^2=1+4s+4s^2$. So s=0, t=1 or $s=\frac{1}{2}, t=2$. The first solution does not satisfy $t^3=2+12s$, while the second solution does. So the coordinate of the intersection point is (2,4,8). For this point t=2 and $s=\frac{1}{2}$.

(2) The tangent line of \mathbf{r}_1 at the intersection point has direction $\mathbf{r}'_1(2) = \mathbf{r}'_1(t)|_{t=2} = \langle 1, 2t, 3t^2 \rangle|_{t=2} = \langle 1, 4, 12 \rangle$.

The tangent line of \mathbf{r}_2 at the intersection point has direction $\mathbf{r}_2'(\frac{1}{2}) = \mathbf{r}_2'(s)|_{s=\frac{1}{2}} = \langle 2, 6, 12 \rangle|_{s=\frac{1}{2}} = \langle 2, 6, 12 \rangle$.

Since both of these tangent lines lie in P, the normal vector of P is $\langle 1, 4, 12 \rangle \times \langle 2, 6, 12 \rangle = \langle -24, 12, -2 \rangle$.

So the equation of P is -24(x-2)+12(y-4)-2(z-8)=0, i.e. 12x-6y+z-8=0.