Homework 2: set identification

Jordi Torres

October 2, 2025

Question 1

We know from the model

$$P_{01}^{0} = -\alpha_{1}(1 + \alpha_{2}) + u \alpha_{1}\alpha_{2},$$

$$P_{10}^{0} = -\alpha_{2}(1 + \alpha_{1}) + (1 - u) \alpha_{1}\alpha_{2}, \qquad (\alpha_{1}, \alpha_{2}) \in [-1, 0]^{2}, \ u \in [0, 1].$$

$$P_{11}^{0} = (1 + \alpha_{1})(1 + \alpha_{2}),$$

The third equation does not depend on u, so any feasible (α_1, α_2) must satisfy

$$(1 + \alpha_1)(1 + \alpha_2) = P_{11}^0$$
.

This immediately implies $1 + \alpha_i > 0$, so in fact $\alpha_i > -1$ and the boundary $\alpha_1 = -1$ is not allowed. Solving explicitly,

$$\alpha_2 = -1 + \frac{P_{11}^0}{1 + \alpha_1}, \quad \alpha_1 \in (-1, 0].$$

So all admissible parameters lie on this one-dimensional curve.

Now I need to check feasibility of $u \in [0,1]$. From the first equation,

$$u(\alpha_1, \alpha_2) = \frac{P_{01}^0 + \alpha_1(1 + \alpha_2)}{\alpha_1 \alpha_2},$$
 so I need $0 \le u(\alpha_1, \alpha_2) \le 1$.

Equivalently,

$$-\alpha_1(1+\alpha_2) \le P_{01}^0 \le -\alpha_1(1+\alpha_2) + \alpha_1\alpha_2.$$

Final Identified Set

$$\Theta_I = \left\{ (\alpha_1, \alpha_2) \in (-1, 0]^2 : (1 + \alpha_1)(1 + \alpha_2) = P_{11}^0, \ \frac{P_{01}^0 + \alpha_1(1 + \alpha_2)}{\alpha_1 \alpha_2} \in [0, 1] \right\}.$$

As expected, it is a curve in \mathbb{R}^2 , not an area.

Question 2

a)

We can create boxunds on the observed probabilities and then define moment inequalities. For y = (1,0) we have

$$\hat{P}_{01} = -\alpha_1(1 + \alpha_2) + u(\alpha_1\alpha_2), \quad u \in [0, 1].$$

Since $\alpha_1, \alpha_2 \in [-1, 0]$, we have $\alpha_1 \alpha_2 \ge 0$, so \hat{P}_{01} is (weakly) increasing in u. Hence

$$-\alpha_1(1+\alpha_2) \leq \hat{P}_{01} \leq -\alpha_1(1+\alpha_2) + \alpha_1\alpha_2,$$

which yields the two moment inequalities

$$-\alpha_1(1+\alpha_2) - \hat{P}_{01} \le 0, \qquad \hat{P}_{01} + \alpha_1 \le 0.$$

Analogously, for y = (0, 1):

$$\hat{P}_{10} = -\alpha_2(1+\alpha_1) + (1-u)(\alpha_1\alpha_2),$$

which is (weakly) decreasing in u, giving

$$-\alpha_2(1+\alpha_1) \leq \hat{P}_{10} \leq -\alpha_2(1+\alpha_1) + \alpha_1\alpha_2$$

and the two inequalities

$$-\alpha_2(1+\alpha_1) - \hat{P}_{10} \leq 0, \qquad \hat{P}_{10} + \alpha_2 \leq 0.$$

Finally, $P_{11} = (1 + \alpha_1)(1 + \alpha_2)$ provides the equality

$$(1+\alpha_1)(1+\alpha_2) - \hat{P}_{11} = 0.$$

Thus, in principle we obtain five (in)equalities. However, in the specific data configuration $\hat{P}_{01} = 0.35$, $\hat{P}_{10} = 0.15$, and $\hat{P}_{11} = 0.5$, the system reduces to the simpler set

$$\hat{P}_{01} \le -\alpha_1, \qquad \hat{P}_{10} \le -\alpha_2, \qquad (1+\alpha_1)(1+\alpha_2) = \hat{P}_{11},$$

since the lower bounds are automatically satisfied once the upper bounds and the equality are imposed.

b)

I propose the following test:

$$Tn(\theta) = max_j \sqrt{n} \frac{\bar{m}_j}{\sigma_i}$$

 $\mathbf{c})$

I will compute the critical value using GMS. The idea is to simulate a multivariate normal, that has the variance-covariance matrix of my observed data. Then I define

$$\xi_j(\theta) = \sqrt{n} \frac{\bar{m}_j}{\sigma_j} \frac{1}{\kappa}$$

Where $\kappa = \sqrt{2 \log(\log(n))}$. For every value of θ in the grid (or potential combination) I then compute this variable and add the initially simulated. Then I take the row maximum to have an asymptotic distribution of the test statistic and then I take the 95th percentile to define the critical value.

d)

My bounds are the following:

Table 1: GMS 95% confidence bounds for (α_1, α_2)

Parameter	Lower	Upper
$\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array}$	$-0.470 \\ -0.325$	-0.315 -0.125

The total number of points are 504.

e)

For each parameter value $\theta = (\alpha_1, \alpha_2)$ I do the following:

1. Compute the sample moment vector

$$m_n(\theta) = \begin{pmatrix} \hat{P}_{01} + \alpha_1 \\ \hat{P}_{10} + \alpha_2 \\ \hat{P}_{11} - (1 + \alpha_1)(1 + \alpha_2) \end{pmatrix},$$

where the first two are inequality moments (≤ 0) and the last one is an equality (= 0).

2. Estimate the covariance matrix $\hat{\Sigma}$ of $(\hat{P}_{01}, \hat{P}_{10}, \hat{P}_{11})$ using the usual multinomial formula

$$\hat{\Sigma} = \operatorname{diag}(\hat{p}) - \hat{p}\,\hat{p}', \qquad \hat{p} = (\hat{P}_{01}, \hat{P}_{10}, \hat{P}_{11})'.$$

This matrix is singular, so I use the Moore–Penrose inverse $\hat{\Sigma}^+$.

3. Project $m_n(\theta)$ onto the feasible set

$$\mathcal{M} = \{ \mu \in \mathbb{R}^3 : \mu_1 \le 0, \ \mu_2 \le 0, \ \mu_3 = 0 \}.$$

In other words, I solve numerically

$$\hat{\mu}(\theta) = \arg\min_{\mu \in \mathcal{M}} n \left(m_n(\theta) - \mu \right)' \hat{\Sigma}^+ \left(m_n(\theta) - \mu \right).$$

(In code this is just an optim() with box constraints.)

- 4. Count how many moments are "close to" binding at the solution $\hat{\mu}(\theta)$. The equality is always binding, and I add one more for each inequality with $\hat{\mu}_j \approx 0$.
- 5. Compute the critical value as $\chi^2_{r,\,1-\alpha}$ where r is the number of binding moments.
- 6. Keep θ if

$$T_n(\theta) := n \left(m_n(\theta) - \hat{\mu}(\theta) \right)' \hat{\Sigma}^+ \left(m_n(\theta) - \hat{\mu}(\theta) \right) \leq \chi_{r, 1-\alpha}^2.$$

The confidence set is just all grid points that survive this test. However, there seems to be an error in my code, as I am not able to generate correct bounds.