ACMA 320 Actuarial Mathematics I Computing Assignment 1 Due by 2:30 pm on Tuesday, January 28, 2020

Assume mortality follows Makeham's Law with parameters A, B and c. Use R to do the following:

- Write a function MakehamSurv that:
 - takes as inputs A, B, c, x and t, and
 - returns the value $_tp_x$.
- Write a function tPxFiller that:
 - takes as inputs the parameters A, B, c, x, ω and an increment inc, and
 - returns a matrix whose first column contains the values *inc*, 2*inc, 3*inc, ... etc. and whose second column contains the corresponding probabilities of survival from age x to age x+inc, x+2*inc, ... etc., all the way to ω .

The final probability of survival should be zero, forcing the distribution to end at ω . The length of your matrix should adjust automatically to the choice of increment: it should be longer when the increment is smaller. You can use MakehamSurv to fill the second column of your matrix.

- Write a function pmf that:
 - takes as inputs the parameters A, B, c, x, and ω , and
 - returns a vector containing the values of $t \mid q_x$ for $t=0, 1, ..., \omega$ -x-1.

Set A = 0.0005, B = 0.0006, c = 1.055, $\omega = 120$.

- 1. a. Plot the survival function of (35). Use the command plot(a, b, type='1'), where a and b are vectors containing the x- and y-coordinates of the points to be plotted.
 - b. Plot the probability mass function of (35). Use the command plot(x, y, type='h').
- 2. Write code to calculate, for any given integer x and integer $0 \le n \le \omega x$:
 - a. The n-year temporary curtate expectation of life of x.
 - b. The standard deviation of $K^*(x) = \min[K(x), n]$
- 3. Write code to estimate, for any given integer x and integer $0 \le n \le \omega x$:
 - a. The *n*-year temporary complete expectation of life of (x).
 - b. The standard deviation of $T^*(x) = \min[T(x), n]$.

Use numerical integration with an appropriate step size to achieve convergence to at least 3 decimal points.

INSTRUCTIONS:

Your code must work for any reasonable value of the input parameters.

Upload the following files to Canvas:

- Your complete R code, which Vivian will run.
- A writeup showing your plots for Question 1 and your specific results for Questions 2 and 3 with x = 35 and n = 10.