

Esercitazione 03 – Stati bifase

Esercizio 01 (link registrazione, min 50 in poi)

Corso di Fisica Tecnica a.a. 2019-2020

*Prof. Gaël R. Guédon*Dipartimento di Energia, Politecnico di Milano

E03: Stati bifase Esercizio 01

3.1. [base] Utilizzando la tabella dell'acqua satura e del vapore surriscaldato, determinare lo stato dell'acqua (liquido sottoraffreddato, bifase, liquido saturo, vapore surriscaldato) e la grandezza indicata tra parentesi, per tutti i casi seguenti:

1. $P = 10,561 \text{ MPa}$	s = 8.4521 kJ/kgK	(stato dell'acqua)
2. $T = 250 ^{\circ}\text{C}$	$v = 0.04276 \text{ m}^3/\text{kg}$	(h)
3. $v = 0.12 \text{ m}^3/\text{kg}$	P = 400 mbar	(s)
4. $T = 160 ^{\circ}C$	P = 2 bar	(h)
5. $P = 60 \text{ bar}$	h = 3600 kJ/kg	(T)
6. $P = 80 \text{ bar}$	h = 1200 kJ/kg	(T)
7. $T = 80 ^{\circ}C$	P = 10 kPa	(h)
8. $P = 2 \text{ bar}$	s = 5.5967 kJ/kg	(v)
9. $T = 250 ^{\circ}\text{C}$	$v = 0.27 \text{ m}^3/\text{kg}$	(P)
10. P = 1000 kPa	h = 650 kJ/kg	(T)
11. $P = 2 MPa$	x = 0.5	(s)
12. $T = 200 ^{\circ}C$	$v = 25 \text{ m}^3/\text{kg}$	(h)
13. $P = 2500 \text{ kPa}$	h = 1800 kJ/kg	(s)
14. $T = 60 ^{\circ}C$	P = 50 kPa	(h)
15. T = 140 °C	x = 1	(P)
16. $P = 70 \text{ kPa}$	s = 5.3 kJ/kgK	(v)

2.
$$T = 250 \, ^{\circ}\text{C}$$
 $v = 0.04276 \, \text{m}^3/\text{kg}$ (h)

 $v_{LS} \left(T_{SAT} = 250 \, ^{\circ}\text{C} \right) = 0,00.4251 \, m^3/\text{kg}$
 $v_{LS} \left(T_{SAT} = 250 \, ^{\circ}\text{C} \right) = 0,050037 \, m^3/\text{kg}$
 $v_{LS} \left(v_{LS} = v_{LS} \right) = v_{LS} + v_{LS}$
 $v_{LS} \left(v_{LS} + v_{LS} \right) = v_{LS} + v_{LS}$
 $v_{LS} + v_{LS} = v_{LS} + v_{LS}$
 $v_{LS} + v_{LS} = v_{LS} = v_{LS} + v_{LS}$
 $v_{LS} + v_{LS} = v_{LS} = v_{LS} + v_{LS}$
 $v_{LS} + v_{LS} = v_{LS} = v_{LS} + v_{LS}$
 $v_{LS} + v_{LS} = v_{LS} + v_{LS}$
 $v_{LS} + v_{LS} = v_{LS} + v_{LS}$
 $v_{LS} + v_{LS} + v_{LS} = v_{LS} + v_{LS}$
 $v_{LS} + v_{LS} + v_{LS} = v_{LS} + v_{LS}$
 $v_{LS} + v_{LS} + v_{LS} = v_{LS} + v_{LS}$
 $v_{LS} + v_{LS} + v_{LS} = v_{LS} + v_{LS}$
 $v_{LS} + v_{LS} + v_{LS} = v_{LS} + v_{LS}$
 $v_{LS} + v_{LS} + v_{LS} = v_{LS} + v_{LS}$
 $v_{LS} + v_{LS} + + v_$

$$h_{LS}(P_{SAT} = 80 \text{ bar}) = 1311, 2 \text{ LT/hag} \quad h \in h_{LS} \Rightarrow \text{ 21001D0}$$

$$h_{LS}(P_{SAT} = 80 \text{ bar}) = 1311, 2 \text{ LT/hag} \quad h \in h_{LS} \Rightarrow \text{ 50TTORAFF}.$$

$$h_{LS}(P_{SAT}(T)) + v_{LS}(P_{SAT}(T))$$

$$+ \text{Rascurabile solitanate}$$

$$h_{LS}(P_{SAT}(T)) \Rightarrow h_{LS}(P_{SAT}(T))$$

$$v_{LS}(P_{SAT}(T)) \approx 0,00134 (80 - 55) \times \frac{100000}{1000}$$

$$v_{LS}(P_{SAT}(T)) = h_{LS}(P_{SAT}(T)) - v_{LS}(P_{SAT}(T)) = 1200 - 3,35 = 1194,65 \text{ LT/hag}$$

$$h_{LS}(P_{SAT}(T)) = h_{LS}(P_{SAT}(T)) - v_{LS}(P_{SAT}(T)) = 1200 - 3,35 = 1194,65 \text{ LT/hag}$$

E03: Stati bifase Esercizio 01

A: $T_A = 769,94$ °C hLS,A = 1184,9 /25/Ag his = 1213,7 & 1/kg B: TB= 275,56 °C T=TA+ TB-TA (lus - hisa) $T = 269,94 + \frac{275,56 - 269,94}{1213,4 - 1184,9} (1196,65 - 1184,9)$ T = 272,73 °C

E03: Stati bifase Esercizio 01

$$Z^{\circ}$$
 APPROCCIO (SCONSIGLIATO)

 $h(P,T) = h_{LS} (T_{SAT}(P)) + C(T - T_{SAT}(P))$
 $13M,2$ bJ/kg
 $Z_{S4,S8}$
 Z_{S

https://webbook.nist.gov/chemistry/