EIC0010 — FÍSICA I — 1º ANO, 2º SEMESTRE

13-19 de abril de 2020

Nome:

Duração 90 minutos. Respostas certas, 1 ponto, erradas, -0.25. Pode consultar unicamente um formulário de uma folha A4 (frente e verso). Pode usar calculadora ou PC, mas unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $g = 9.8 \text{ m/s}^2$.

- 1. A expressão da posição de um ponto na sua trajetória, em fun- 6. Uma menina atira uma bola verticalmente para cima; a bola ção do tempo, é: $s = \frac{2}{9} (3t + e^{-3t})$. Encontre a expressão da aceleração tangencial, em função da velocidade.
 - (A) $2-9\nu$
- (C) $2-3\nu$

- **(B)** $3 3 \nu$
- **(D)** $9-2\nu$

Resposta:

- 2. A velocidade duma partícula, em função do tempo, é dada pela expressão: $2t^2 \hat{i} + (t^4 + 1) \hat{j}$ (unidades SI). Determine o valor da aceleração tangencial a_t em t = 1.
 - (A) $2^{3/2}$
- (C) $2^{5/2}$
- **(E)** 8

- **(B)** $2^{1/2}$
- **(D)** 4

Resposta:

- 3. Partindo da origem na sua trajetória e sem velocidade inicial, uma partícula fica sujeita à aceleração tangencial $4\sqrt{v^2+5}$, em unidades SI, onde v é o valor da velocidade. Determine a posição da partícula na trajetória quando v = 65 m/s.
 - (A) 10.9 m
- (C) 7.6 m
- **(E)** 9.1 m

- (**B**) 13.1 m
- (**D**) 15.7 m

Resposta:

4. A roda B, de raio $R_{\rm B}=6$ cm, está ligada a um motor que a faz rodar. A roda A, de raio $R_A = 7$ cm, roda graças à ação da correia, que se desloca com as rodas, sem deslizar sobre elas. A partir dum instante inicial, em que as rodas estão em repouso, o motor produz aceleração angular constante, $\alpha_B = 2.3 \text{ s}^{-2}$ na roda B. Determine o tempo que a roda A demora, a partir do repouso, até atingir velocidade angular $\omega_A = 30 \text{ s}^{-1}$.

- (**A**) 5.07 s
- (C) 2.54 s
- **(E)** 15.22 s

- (**B**) 1.9 s
- (**D**) 3.04 s

Resposta:

- 5. O vetor velocidade do objeto 1, em função do tempo, é: $\vec{v}_1 = (1-4t)\hat{i} + 8t\hat{j}$ (unidades SI) e o vetor velocidade do objeto 2, no mesmo referencial, é: $\vec{v}_2 = 3 t \hat{\imath} + (1 - 7 t) \hat{\jmath}$. Determine o vetor aceleração do objeto 1 em relação ao objeto 2.
 - (A) $7 \hat{i} 1 \hat{j}$
- **(D)** $1 \hat{i} + 1 \hat{j}$
- **(B)** $7 \hat{i} + 1 \hat{j}$
- **(E)** $-1 \hat{i} + 15 \hat{j}$
- (C) $-7\hat{i} + 15\hat{j}$

Resposta:

(A) Na subida, a velocidade da bola diminui devido a que a sua aceleração diminui. (B) A aceleração da bola aponta sempre no mesmo sentido. (C) A aceleração da bola é nula quando a altura é 3 m.

alcança uma altura máxima de 3 m e a seguir cai de volta até à mão da menina. Durante o percurso, a resistência do ar sobre a bola pode ser desprezada. Qual das seguintes afirmações é

- (D) A bola pára a 3 m de altura porque a aceleração muda de
- (E) A velocidade da bola aponta sempre no mesmo sentido.

Resposta:

correta?

7. O movimento de um ponto no plano xy é circular, não uniforme, com raio de 4 m. A expressão do vetor posição do ponto, em função do tempo, é (unidades SI):

$$\vec{r} = 4\cos(4t^2)\,\hat{\imath} + 4\sin(4t^2)\,\hat{\jmath}$$

Determine o tempo (em segundos) que o ponto demora, desde t = 0 até regressar à posição inicial, após uma volta completa.

- (A) 1.25
- (C) 5.01
- **(E)** 2.51

- **(B)** 11.28
- **(D)** 6.27

Resposta:

- 8. Para aumentar o momento de inércia dum corpo é necessário:
 - (A) Aumentar a aceleração angular.
 - (B) Compatá-lo, ocupando menor volume.
 - (C) Diminuir a velocidade angular.
 - (D) Afastar partes do corpo para mais longe do eixo.
 - (E) Aumentar a velocidade angular.

Resposta:

- 9. Para determinar o binário produzido pelo atrito no eixo de uma roda, foi encaixado na roda um volante, aumentando a massa da roda para 560 kg; o raio de giração da roda com o volante é 1.3 m. À roda com o volante foi comunicada uma velocidade angular correspondente à frequência de 220 r.p.m. e, abandonada a sua própria sorte, acabou por parar após 10 minutos. Determine o binário do atrito considerando-o constante.
 - (A) 12.1 N·m
- (C) 36.3 N·m
- (E) 4.5 N·m

- (B) 6.1 N·m
- (**D**) 7.3 N·m

Resposta:

10.	A força de resistência do ar sobre uma esfera (em unidades 16 SI) é aproximadamente $0.962R^2v^2$, onde R é o raio da esfera e v a sua velocidade. Calcule a velocidade limite (velocidade máxima) de uma esfera de $0.117\mathrm{kg}$, com raio igual a $0.0382\mathrm{m}$, em queda livre no ar.			16.	na posição horizontal (em repouso) com uma das suas mãos a 0.1 m do extremo e a outra mão a 1 m do extremo. A vara tem comprimento igual a 5.2 m, com centro de massa ao meio do seu comprimento, e massa igual a 2.7 kg. Determine os	
	(A) 142.9 m/s	(C) 5.7 m/s	(E) 257.2 m/s		módulos das duas forças verticais que o saltador deve exercer com as suas mãos.	
	(B) 9.5 m/s	(D) 28.6 m/s			com as suas maos.	
	Resposta:					
11.	Calcule o ângulo ent	ere os vetores $\vec{a} = 2 \hat{\imath} +$	$3\hat{j} e \vec{b} = -\hat{\imath} + 2\hat{\jmath}.$			
	(A) 82.9°	(C) 60.3°	(E) 7.13°			
	(B) 11.3°	(D) 97.1°			1 (2,3)	
	Resposta:					
12.	ajam no espaço à ve que as ondas emitid	l envia para a Terra si elocidade da luz (3 × as pela sonda demora distância da Terra es (D) 3.9 ×	10 ⁸ m/s). Sabendo am 36.1 minutos em tá a sonda espacial?		(A) 8.8 N e 17.6 N (D) 47.0 N e 73.5 N (B) 13.2 N e 13.2 N (E) 6.8 N e 19.7 N (C) 42.3 N e 68.8 N	
	(B) $6.5 \times 10^8 \text{ km}$	(E) 6.5 ×			Resposta:	
	(C) 3.9 × 10 ⁷ km	(E) 6.5×	10° KIII	17.	7. Lança-se um projétil desde uma janela a 2.5 m de altura, com velocidade de 14 m/s, inclinada 30° por cima da horizontal Desprezando a resistência do ar, calcule a altura máxima atin- gida pelo projétil.	
13.	Num objeto com m	assa de 0.4 kg atuar	n unicamente duas		(A) 7.5 m (C) 12.5 m (E) 3.8 m	
		$-6\hat{j} e 8\hat{i} + 11\hat{j}$ (amba			(B) 10.0 m (D) 5.0 m	
	termine o modulo da	a aceleração do centro	de massa do objeto.		Resposta:	
	(A) 20.1 m/s ² (B) 30.2 m/s ²	(C) 40.0 m/s^2 (D) 60.4 m/s^2	(E) 26.7 m/s^2	18.	3. No instante em que o bloco A desce com velocidade 36 cm/s, com que velocidade sobe o bloco B?	
	Resposta:					
14.	Uma pessoa com massa de 60 kg sobe um prédio num ascensor, demorando 20 segundos. O gráfico mostra a velocidade do ascensor, em metros por segundo, em função do tempo em segundos. Determine o módulo da reação normal nos pés da pessoa no instante $t=17$ s.				A B	
	§ 9 } /		-		(A) 72 cm/s (C) 12 cm/s (E) 108 cm/s	
	(s/m) <i>n</i> 6	1			(B) 18 cm/s (D) 36 cm/s	
					Resposta:	
	3 /	1		19.	A aceleração tangencial dum objeto verifica a expressão $a_{\rm t}$ =	
	0 0	5 10 t(s)	15 20		$2s^4$ (unidades SI), em que s é a posição na trajetória. Se o objeto parte do repouso em $s=1$ m, determine o valor absoluto da sua velocidade em $s=2$ m.	
	(A) 444.0 N	(C) 74.0 N	(E) 55.5 N		(A) 2.0 m/s (C) 8.0 m/s (E) 4.98 m/s	
	(B) 88.8 N	(D) 148.0 N			(B) 6.49 m/s (D) 3.49 m/s	
	Resposta:				Resposta:	
15.	módulos $F_1 = 40 \text{ N}$,	ruam unicamente 3 for $F_2 = 50 \text{ N}$ e $F_3 = 50 \text{ N}$ equilíbrio, calcule o ras, $ \vec{F}_1 + \vec{F}_2 $.	. Sabendo que o ob-	20.	Num instante, os pontos A e B num corpo rígido encontram- se nas posições (unidades SI) $\vec{r}_A = 3 \hat{\imath} + 2 \hat{\jmath}$ e $\vec{r}_B = \hat{\imath} - 2 \hat{\jmath}$, com velocidades (unidades SI) $\vec{v}_A = 2 \hat{\imath} + 2 \hat{\jmath}$ e $\vec{v}_B = -72.4 \hat{\imath} + 39.2 \hat{\jmath}$ Determine o valor da velocidade angular do corpo nesse ins- tante.	
	(B) 20 N	(D) 30 N	<u>_, _, _, .</u>		(A) $74.4 \mathrm{s}^{-1}$ (C) $167.4 \mathrm{s}^{-1}$ (E) $93.0 \mathrm{s}^{-1}$	
		(-) -0			(B) $18.6 \mathrm{s}^{-1}$ (D) $37.2 \mathrm{s}^{-1}$	
	Resposta:				Resposta:	

Respostas

1. C

6. B

11. C

16. D

2. C

7. A

12. B

17. D

3. D

8. D

13. B

18. B

4. E

9. C

5. C

10. D

14. A

19. E

15. E

20. B