Sheet 3

Discussion of the sheet: Th., 28.03.2019

- 1. Consider the damped Richardson method $x_{k+1} := x_k \omega(Ax_k b)$ with complex damping parameter $\omega \in \mathbb{C}$.
 - a) Show that: $\sigma(M^{Rich}) = \{1 \omega \lambda : \lambda \in \sigma(A)\}.$
 - b) Show that: the damped Richardson method converges for all damping parameters $\omega \in \mathbb{C}\setminus\{0\}$ with the following property: the open disc $B_{1/|\omega|}(1/\omega) \subset \mathbb{C}$ around $1/\omega$ of radius $1/|\omega|$ contains the spectrum $\sigma(A)$.
 - c) Let $\sigma(A) \subset \{z \in \mathbb{C} \mid \text{Re}z > 0\}$. Show that: the Richardson iteration converges for sufficiently small real damping parameters $\omega \in \mathbb{R}$.
 - d) Let $0 < \lambda_{\min}$ be the smallest eigenvalue of A and λ_{\max} be the largest eigenvalue of A. Show that the optimal damping parameter, i.e., the parameter ω that minimizes $\rho(M_{\omega}^{Rich})$ is given by $\omega_{opt} = \frac{2}{\lambda_{min} + \lambda_{max}}$.
- **2.** Let $A \in \mathbb{R}^{n \times n}$.
 - a) Give an example of a matrix A, for which no damping parameter $\omega \in \mathbb{C}$ exists, such that the Richardson iteration converges.
 - b) Show that: If A has at least one positive and one negative eigenvalue, than the Richardson method diverges for any damping parameter $\omega \in \mathbb{C}$.
- **3.** Consider the $n \times n$ tridiagonal matrix

$$A = \begin{pmatrix} \alpha & -1 \\ -1 & \alpha & -1 \\ & -1 & \alpha & \ddots \\ & & \ddots & \ddots & -1 \\ & & & -1 & \alpha \end{pmatrix}, \tag{1}$$

with a parameter $\alpha \in \mathbb{R}$.

a) Verify that the eigenvalues and eigenvectors of A are given by

$$\lambda_j = \alpha - 2\cos\left(\frac{\pi}{n+1}j\right)$$

$$v_j = \left(\sin\left(\frac{\pi}{n+1}j\right), \sin\left(2\frac{\pi}{n+1}j\right), \dots, \sin\left(n\frac{\pi}{n+1}j\right)\right)^T.$$

b) Let $\alpha = 2$ (as in model problem 1). Will the Jacobi and Gauß-Seidel iteration converge for this matrix? If it does, what is the corresponding convergence factor? For which $\omega \in \mathbb{R}$ will the SOR method converge?

4. The aim of this exercise is to implement and test the Jacobi, Gauß-Seidel and SOR-method (preferably in MATLAB) to solve the system

$$Ax = b (2)$$

with a given starting vector $x_0 \in \mathbb{R}^n$.

- a) Write functions jacobi(A,b,x0, k_{\max}), gaussseidel(A,b,x0, k_{\max}), SOR(A,b,x0, k_{\max} , ω) that realize k_{\max} -number of steps of the Jacobi, Gauß-Seidel and SOR-method (with parameter ω), i.e., they should return a vector $x_{k_{\max}}$ that approximates the exact solution x of (2).
- b) Compare the implemented methods (and choose different parameters ω for the SOR-method). For comparison, use the matrix A of (1) or matrices for our 2D-model problem (in MATLAB provided by gallery('poisson', N) with N^2 unknowns) and plot the errors of each method over the number of iteration steps (use a double logarthmic plot loglog). What do you observe?