Grado en Ingeniería del Software Doble Grado en Matemática Computacional e Ingeniería del Software Doble Grado en Física Computacional e Ingeniería del Software

Redes de Ordenadores Tema 1

Dr. Constantino Malagón Luque Dr. Rafael Socas Gutiérrez

Septiembre 2024

Redes de Ordenadores e Internet

Desarrollo de la asignatura

Redes de Ordenadores: Conceptos Generales Acceso e ISP

Redes de Ordenadores: Estructura de Internet

Tier 1: redes de los grandes operadores globales (*Global Carriers*) que tienen tendidos de fibra óptica por al menos dos continentes. Todas las redes Tier 1 tienen que estar conectadas entre sí. Forman el actual *backbone* ó troncal de Internet.

- AOL a través de ATDN (AOL Transit Data Network)
- AT&T
- Verizon
- Inteliquent
- NTT Communications
- Telefónica International Wholesale Services (TIWS)

Tier 2: son operadores de ámbito más regional que no pueden alcanzar todos los puntos de Internet y que necesitan conectarse a una red Tier 1 para ello. Su principal función es ofrecer servicios de conectividad a los operadores Tier 3.

- Cable&Wireless
- British Telecom
- SingTel (Singapore Telecommunications Limited)

Tier 3: ofrecen servicio de conexión a Internet a los usuarios residenciales y empresas, los que conocemos como **ISP** (*Internet Service Provider*) o Proveedores de acceso a Internet. Algunos ejemplos son:

- En España: Movistar, Vodafone, Orange, Ono ...
- En Latinoamérica: Movistar, TELMEX, AXTEL, Claro...

Tráfico de Internet: Principales Áreas

Thu, Aug 8

IPv6

38%

HTTPS

97%

Fuente: https://radar.cloudflare.com/

Fri, Aug 2

Sat, Aug 3

Mon, Aug 5

Tue, Aug 6

Tráfico de Internet: Datos Interesantes

https://www.broadbandsearch.net/blog/internet-statistics

Global Internet Usage Trends

Overall Growth of Internet Users

Internet Connection Technologies

Mobile Internet Usage

Social Media and Online Communication

Fuente: https://www.broadbandsearch.net/blog/internet-statistics

Redes de Ordenadores: Clasificación

 Redes de área metropolitana (MAN Metropolitan Area Network): Su extensión suele ser una ciudad o una provincia/comunidad autónoma.

 Redes de área extensa (WAN Wide Area Network): Son redes que abarcan una gran zona geográfica que puede ser un país o incluso un continente. Internet podemos considerarla como una red WAN.

Redes de Ordenadores: Componentes Hardware

Como **elementos de comunicaciones** tenemos:

- **Hub:** Se trata de un dispositivo simple de comunicaciones de una red local. Su función básica es recoger un paquete de información que le entra por uno de sus puertos y replicarlo y enviarlo por el resto de puertos que posee.
- **Switch:** Es también un elemento básico de comunicaciones para una LAN pero en este caso analiza el tráfico que le entra y sólo lo saca por el puerto hacia el elemento que va dirigido. Son elementos que analizan el tráfico a nivel 2 (direcciones MAC).
- Router: Es el elemento que se usa para interconectar las LAN con las MAN y a su vez con las WAN. Por otro lado, es el elemento básico de las redes MAN y WAN. Analiza el tráfico que le entra por cada uno de sus puertos y lo saca por el puerto correspondiente una vez ha hecho una vez que ha chequeado ese tráfico a nivel 3 (direcciones IP).

Como **medios de transmisión** tenemos los siguientes:

- Cables de cobre.
- Cables de fibra óptica.
- El aire por donde se envían las ondas de radio en las redes inalámbricas (p.e WiFi)

Modelo de Capas: Modelo OSI y TCP/IP

Modelo OSI¹

Modelo TCP/IP

Application

Presentation

Session

Transport

Network

Link

Physical

(1) Open Systems Interconnection

Application

Transport

Internet

Link

Physical

Modelo OSI

Сара	Nombre	Funciones	
7	Aplicación	Se compone de los servicios y aplicaciones de comunicación estándar que pueden utilizar los usuarios.	
6	Presentación	Se asegura de que la información se transfiera al sistema receptor de un modo comprensible para el sistema.	
5	Sesión	Administra las conexiones y terminaciones entre los sistemas que cooperan.	
4	Transporte	Administra la transferencia de datos. Asimismo, garantiza que los datos recibidos sean idénticos a los transmitidos.	
3	Red	Administra las direcciones y la transferencia de información entre redes, entre nodo origen y nodo final de la comunicación	
2	Enlace	Administra la transferencia hacia el medio físico y garantiza la comunicación con el siguiente nodo en la comunicación	
1	Físico	Define las características del hardware de red.	

Modelo TCP/IP

Capa TCP/IP	Capa OSI	Equivalencia con capa OSI	Ejemplo de Protocolo
Aplicación	7,6,5	Aplicación, Presentación, Sesión	HTTPS, SSH, DNS, DHCP
Transporte	4	Transporte	TCP, UDP
Internet	3	Red	IP, ICMP, OSPF, BGP
Enlace	2	Enlace	ARP, ETHERNET, WiFi, 4G/5G
Físico	1	Físico	Manchester, NRZ

Modelo de Capas: Modelos de Referencia

El modelo OSI

- Modelo OSI (Open System Interconnection).
- El modelo de referencia OSI es una normativa formada por siete capas que define las diferentes fases por las que deben pasar los datos para viajar de un dispositivo a otro sobre una red de comunicaciones.
- Creado por la Organización Internacional para la Estandarización (ISO) en el año 1980.

El modelo TCP/IP fue creado por los padres de Internet

Modelo TCP/IP

Application

Transport

Internet

Link

Physical

Robert Kahn, desarrollando un proyecto de comunicaciones por satélite, elaboró las ideas iniciales de lo que más tarde se llamaría Protocolo de Control de Transmisión (TCP), cuyo propósito era sustituir a otro protocolo de red existente, el NCP, utilizado en ARPANET.

Vinton Cerf se unió al proyecto en la primavera de 1973, y juntos completaron una versión inicial de TCP. Posteriormente se dividiría en dos capas, y las funciones más básicas se trasladaron al Protocolo de Internet (IP).

Las dos capas juntas se conocen comúnmente como TCP/IP, y son la base de la Internet moderna.

Robert Kahn (1938-)

Vinton Cerf (1943-)

Aunque estrictamente hablando TCP/IP sólo cubre las capas de transporte e Internet, **en este curso consideraremos el modelo TCP/IP como las 5 capas** desde la capa de aplicación hasta la capa física.

Modelo de Capas Software: Modelos de Referencia

El modelo TCP/IP tiene 5 niveles o capas, resultado de agrupar los tres niveles superiores del modelo OSI:

- Vamos a seguir los 5 niveles desde arriba hacia abajo
- Tenemos que saber para cada nivel:
 - 1. Función de ofrecen.
 - 2. Protocolo que se utiliza en ese nivel.
 - 3. Cómo se llaman los paquetes de maneja PDU (Protocol Data Unit).
- Se llama PDU a la información intercambiada entre entidades pares, es decir, dos entidades pertenecientes a la misma capa pero en dos sistemas diferentes.
- Hay dos tipos de PDUs: PDU de datos y PDU de control.
 - **1. PDU de datos**, contiene los datos de la capa de aplicación o la PDU del nivel inmediatamente superior (N+1). Aquí por ejemplo estaría el código html de la página web que el servidor web le envía al cliente.
 - **2. PDU de control**, sirven para gobernar el comportamiento completo del protocolo en sus funciones de establecimiento y unión de la conexión, control de flujo, control de errores, etc. No contienen información alguna proveniente del nivel N+1. Aquí por ejemplo estarían los valores del sequence number y del ACK que veremos en el tema dedicado a la comunicación cliente-servidor.

Modelo de Capas TCP/IP: Concepto de Capa y Protocolo

Modelo de Capas: Nivel de Aplicación

the application layer contains the applications with all their individual logic

Aplicación	
Presentación	Aplicación
Sesión	
Modelo OSI	Modelo TCP/IP

- Nivel o capa de Aplicación (Application layer)
- Los paquetes de información (PDU) de la capa de aplicación se llaman mensajes.
- <Protocolos>:<servicio>

HTTP: publicación de páginas web

HTTPS: publicación de páginas web de forma segura

FTP: transferencia de ficheros

Telnet: acceso remoto

SSH: acceso remoto seguro

DNS: resolución de nombres de Internet

DHCP: asignación de direcciones IP de forma automática

SMTP: correo electrónico saliente

IMAP / POP3: correo electrónico entrante

Modelo de Capas: Nivel de Transporte (1/2)

the **Transport Layer** provides application-to-application communication

Aplicación Presentación	Aplicación
Sesión Transporte Red	Transporte
Enlace Físico	Enlace
Modelo OSI	Modelo TCP/IP

- Capa de Transporte (Transport layer)
- Servicio: transporta mensajes de la capa de aplicación entre diferentes hosts.
- Protocolos: TCP y UDP
- Los paquetes de transporte (PDU) se llaman segmentos/datagramas.
- TCP (Transport Control Protocol): protocolo orientado a la conexión y confiable
 - 1. Utiliza el Three-way handhake y Four-way handshake para establecer y finalizar la conexión
 - 2. Los flags junto con el sequence number y el ACK number como PDUs de control para regular esta conexión
- UDP (User Datagram Protocol): protocolo no orientado a la conexión y no confiable (pero más rápido)
 - 1. No utiliza el Three-way handhake ni el Four-way handshake para establecer y finalizar la conexión.
 - 2. Ejemplo DNS y DHCP.

Modelo de Capas: Nivel de Transporte (2/2)

the **Transport Layer** provides application-to-application communication

Aplicación Presentación **Aplicación** Sesión **Transporte Transporte** Red Internet Enlace **Enlace Físico Físico** Modelo OSI Modelo TCP/IP

Capa de Transporte (Transport layer)

• En función de los protocolos de la capa de aplicación se utiliza TCP o UDP y un puerto determinado:

<Protocolo Aplicación>:<Protoloco Transporte>:<Puerto>

HTTP: TCP: 80

HTTPS: TCP: 443

FTP: TCP: 20/21

Telnet: TCP: 23

SSH: TCP: 22

DNS: UDP: 53

Modelo de Capas: Nivel de Red

the **Network Layer**, is responsible for forwarding packets over multiple hosts.

- Capa de Red (Network layer)
- Servicio: **transporta los segmentos de la capa de transporte** de un host a otro.
- **Protocolos: IP** y protocolos de enrutamiento (**RIP y OSPF**), utilizan algoritmos de búsqueda para determinar la ruta más corta entre dos hosts.
- Las PDU de la capa de red se llaman datagramas o paquetes.
- También tenemos los protocolos ICMP (Internet Control Message Protocol), usado en la aplicación ping, y el IGMP (Internet Group Management Protocol), utilizado para aplicaciones que necesitan comunicación multicast como servicios de streaming o envío de diapositivas en aulas, por ejemplo.
- Diferentes modos de envío: Unicast, Multicast y Broadcast.

Modelo de Capas: Nivel de Enlace

the **Data-Link Layer**, is responsible for exchanging data via so called frames between directly connected devices

- Capa de Enlace (Link layer)
- Protocolos: Ethernet, WiFi, PPP, PPTP
- En estrecha relación con el hardware o tarjeta de red utilizado.
- Las PDU de la capa de enlace se llaman frames o tramas

Modelo de Capas: Nivel de Físico

It is the link between the networking hardware of a device and the **physical medium** connecting two devices

- Capa física (Physical layer)
- Si la capa de enlace mueve frames o tramas de un punto a otro, la capa física mueve los bits individuales de un punto a otro.
- Diferentes medios físicos: radio, cables cobre (par trenzado, coaxial) y fibra óptica.

Resumen Modelo de Capas: PDUs e Identidades TCP/IP

Resumen Modelo de Capas: Arquitectura de Protocolos TCP/IP U-Tad

Modelo de Capas: Concepto Encapsulamiento TCP/IP

- Si un host (A) desea enviar datos a otro host (B) los datos deben empaquetarse a través de un proceso denominado encapsulamiento.
- A medida que los datos se desplazan a través de las capas del modelo TCP/IP, se incluyen cabeceras y otro tipo de información como códigos de detección de errores.
- En el proceso de envío, el transmisor encapsula la información, una vez llega al receptor se realiza el proceso contrario.

Modelo de Capas: Tratamiento nodos intermedios TCP/IP

- Los equipos finales (hosts) implementan los 5 niveles del modelo TCP/IP.
- Los nodos intermedios (routers, switches, hubs) sólo tratan hasta el nivel 3 (internet/red).
- Si existe un **Firewall** en el camino de la comunicación, éste **puede llegar a tratar todos los niveles** de la del modelo TCP/IP, aunque en nuestro caso llegaremos **hasta el nivel 4** (transporte)

Análisis de Tráfico: Wireshark

Análisis de Tráfico: Encapsulación en Wireshark


```
Wireshark Packet 3447 · Wi-Fi

Frame 3447: 407 bytes on wire (3256 bits), 407 bytes captured (3256 bits) on interface \Device\NPF_{0CE9BA78-F7DF-4067-BA23-41A6C0E2DE9F}, id 0

Ethernet II, Src: IntelCor_e7:5c:6b (a0:af:bd:e7:5c:6b), Dst: AskeyCom_9f:fb:70 (78:29:ed:9f:fb:70)

Internet Protocol Version 4, Src: 192.168.1.39, Dst: 62.22.171.50

Transmission Control Protocol, Src Port: 63922, Dst Port: 80, Seq: 1, Ack: 1, Len: 353

Hypertext Transfer Protocol
```

Si nos fijamos en el **panel de detalles del paquete**, tenemos los diferentes encapsulamientos que corresponden a las diferentes capas del modelo TCP/IP:

- 1. Empezamos por el **Frame** (todo el paquete).
- 2. Después tenemos **Ethernet**, correspondiente a la **capa de enlace**. Aquí podemos ver las **direcciones MAC** de los hosts.
- 3. Internet protocol (IP), corresponde a la capa de red, aquí podemos ver las direcciones IP.
- **4. Transmision Control Protocol (TCP)**, corresponde a la **capa de transporte**, aquí podemos ver los **puertos** que se usan en esta conexión.
 - Podemos filtrar por:
 - tcp.dstport==80
 - tcp.port==80
- 5. HTTP (por ejemplo), corresponde a la capa de aplicación
 - Aquí podemos ver los hosts que están comunicándose
 - Y dentro quizás también veamos el código html (GET y POST)

Análisis de Tráfico: Wireshark Filtrado

English	C-like	Description and example	
eq	==	Equal ip.src==10.0.0.5	
ne	!=	Not equal. ip.src!=10.0.0.5	
gt	>	Greater than. frame.len > 10	
1t	<	Less than. frame.len < 128	
ge	>=	Greater than or equal to. frame.len ge 0x100	
le	<=	Less than or equal to. frame.len <= 0x20	

Calle Playa de Liencres, 2 bis (entrada por calle Rozabella) Parque Europa Empresarial Edificio Madrid 28290 Las Rozas, Madrid

CENTRO ADSCRITO A:

PROYECTO COFINANCIADO POR:

