21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University
Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B.
Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

36- Friday December 2, 2011.

Remark 36.1: The argument of EUCLID that there are infinitely many primes consists in assuming that there are only finitely many primes p_1, \ldots, p_k , and to consider $N = 1 + p_1 \cdots p_k$, which certainly has a prime factor (possibly itself) which is not in the list, since $N = 1 \pmod{p_j}$ for $j = 1, \ldots, k$.

There are simple variants for showing that in a particular arithmetic progression $a\,n+b$ with $a\geq 3$ and (a,b)=1 there are infinitely many primes, but it is limited to $\varphi(a)\leq 2$, i.e. a=3,4,6 for the value of $b\neq 1$; there is an improvement using quadratic residue theory, but it is limited to $\varphi(a)\leq 4$; then, using cyclotomic polynomials will give the case b=1.

It is useful to know that DIRICHLET proved the result for all cases, that for $a \ge 3$ and b relatively prime with a, there are infinitely many values of n for which $a \, n + b$ is prime; however, his proof belongs to analytic number theory, and not to algebraic number theory. Since there are $\varphi(a)$ families, it is natural to wonder in which of these families the primes fall, and each family has "asymptotic density" $\frac{1}{\varphi(a)}$ by a result of DE LA VALLÉE POUSSIN, who improved a previous result of DIRICHLET for another notion of density, related to Dirichlet series.

Lemma 36.2: There are infinitely many primes of the form 6n-1 (hence infinitely many primes of the form 3n-1), and there are infinitely many primes of the form 4n-1. More generally, for each $a \ge 3$ there are infinitely many primes of the form an+b for $some b \ne 1$, i.e. which are not of the form an+1.

Proof: If there was only finitely many primes $q_1 < \ldots < q_k$ not of the form $a \, n + 1$, then $N = a \, q_1 \cdots q_k - 1$ would be of the form $a \, n - 1$, so that the prime factors of N could not prime divisors of a, but they could not be all of the form $a \, n + 1$ since the product would also have this form (and $-1 \neq 1 \pmod{a}$) since a = 2 is excluded), so that N would have a prime divisor not of the form $a \, n + 1$, but it could not be any q_j , giving a contradiction.

If $\varphi(a) = 2$, i.e. $a \in \{3, 4, 6\}$, then it tells the form of the family in which these primes fall, i.e. 3n - 1, 4n - 1, 6n - 1.

Lemma 36.3: There are infinitely many primes of the form 4n + 1.

Proof. One has seen that -1 is a quadratic residue modulo an odd prime p if and only if p is of the form 4m+1, and one deduces that (whatever N is) all the (necessarily odd) prime divisors of $4N^2+1$ are of the form 4m+1, since if p is such a prime divisor one has $(2N)^2=-1\pmod{p}$, hence -1 is a quadratic residue modulo p. If the only primes of the form 4n+1 were $5=p_1,\ldots,p_k$, then one would take $N=p_1\cdots p_k$, and obtain a contradiction.

Remark 36.4: If a prime p has the form 4n+1, one can deduce that -1 is a quadratic residue by using a primitive root ξ modulo p: ξ has order 4n in \mathbb{Z}_p^* , so that $(\xi^{2n})^2 = 1$ and $\xi^{2n} \neq 1$ imply $\xi^{2n} = -1$, hence the solutions of $a^2 = -1 \pmod{p}$ are $a = \pm \xi^n \pmod{p}$.

Similarly, if a prime q is 4n+3, one can deduce that -1 is not a quadratic residue modulo q: one chooses a primitive root η modulo q, and if -1 was the square of b, b would be η^j for some j, so that $-1 = \eta^{2j}$, hence $1 = \eta^{4j}$, which implies that 4j would a multiple of q-1 but 2j would not be a multiple of q-1, and this is contradictory, since 4j = k(q-1) implies k even (because 2j = k(2n+1)), so that $k = 2\ell$, hence $2j = \ell(q-1)$.

Lemma 36.5: (Gauss's lemma)³ Let p = 2m + 1 be an odd prime. For a not a multiple of p, and for $j \in \{1, \ldots, m\}$ one writes $j = \alpha_j \pmod{p}$ with $\alpha_j \in \{1, \ldots, 2m\}$, and one defines g(a) as the number of α_j which belong to $\{m+1, \ldots, 2m\}$. Then, one has $\left(\frac{a}{p}\right) = (-1)^{g(a)}$.

¹ Of course, in an arithmetic progression a n + b where n varies, all the terms are multiple of d = (a, b), so that if a and b are not relatively prime one finds at most one prime in the arithmetic progression, if d is prime.

² Charles Jean Gustave Nicolas de la Vallée Poussin, Belgian mathematician, 1866–1962. He was made baron in 1928. He worked in Louvain, Belgium.

³ This is a different lemma of Gauss than the one on irreducibility in $\mathbb{Z}[x]$.

Proof: Since a is invertible modulo p, the elements j a are distinct modulo p, so that the α_j are distinct. For $j=1,\ldots,m$, one defines β_j as $\min\{\alpha_j,p-\alpha_j\}$ (so that $1\leq\beta_j\leq m$), and the number of indices j such that $\beta_j=p-\alpha_j$ is g(a), hence $\prod_j\beta_j=(-1)^{g(a)}\prod_j\alpha_j=(-1)^{g(a)}\prod_j(j\,a)=(-1)^{g(a)}a^mm!\pmod p$. The elements $\{\beta_j\mid j=1,\ldots,m\}$ are distinct, since one cannot have $\alpha_j=p-\alpha_k$, because one has $2\leq\alpha_j+\alpha_k\leq 2m=p-1$ for all $j,k\in\{1,\ldots,m\}$, so that $\{\beta_1,\ldots,\beta_m\}$ is a permutation of $\{1,\ldots,m\}$, and $\prod_j\beta_j=m!$, hence $(-1)^{g(a)}a^mm!=m!\pmod p$. Since m! is invertible modulo p, one deduces that $a^m=(-1)^{g(a)}\pmod p$, giving $\left(\frac{a}{p}\right)=(-1)^{g(a)}$.

Lemma 36.6: For p an odd prime, one has $\left(\frac{2}{p}\right) = +1$ if and only if p has the form $8n \pm 1$, and $\left(\frac{2}{p}\right) = -1$ if and only if p has the form $8n \pm 3$, which analytically means that $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$.

As a consequence, one has $\left(\frac{-2}{p}\right) = +1$ if and only if p has the form 8n + 1 or 8n + 3, and $\left(\frac{-2}{p}\right) = -1$ if and only if p has the form 8n + 5 or 8n + 7.

Proof. One applies Gauss's lemma (Lemma 36.5) to a=2, so that if p=2m+1 one has $\alpha_j=2j$ for $j=1,\ldots,m$, and $\alpha_j\geq m+1$ means $j\geq \frac{m+1}{2}$: if m=2r, it means $j\geq r+1$, so that g(a)=r and g(a) is even if and only if p has the form 8n+1, while if m=2r+1, it also means $j\geq r+1$, but g(a)=r+1, so that g(a) is even if r is odd, i.e. m has the form 4n+3 and p has the form 8n+7 (which is the same as the form 8n-1).

Then, one uses $\left(\frac{-2}{p}\right) = \left(\frac{2}{p}\right)\left(\frac{-1}{p}\right)$, together with the fact that -1 is a quadratic residue modulo p if and only if p has the form 4n+1.

Lemma 36.7: There are infinitely many primes of the form 8n + 7, and there are infinitely many primes of the form 8n + 3.

Proof: If there were only a finite number of primes $7 = p_1 < ... < p_k$ of the form 8n+7, then for $N = p_1 \cdots p_k$ any prime factor s of $8N^2 - 1$ would be either of the form 8n+1 or of the form 8n+7 by Lemma 36.6, since 2 is a quadratic residue modulo s, because $2(8N^2 - 1) = 0 \pmod{s}$ means $2 = (4N)^2 \pmod{s}$; since $8N^2 - 1$ is odd and its prime factors cannot all be of the form 8n+1, because their product would have this form, there would be at least one prime factor s of the form 8n+7, which could not belong to the list $\{p_1, \ldots, p_k\}$, made of divisors of N.

If there were only a finite number of primes $3 = q_1 < \ldots < q_k$ of the form 8n+3, then for $M = q_1 \cdots q_k$ any prime factor t of $2M^2+1$ would be either of the form 8n+1 or of the form 8n+3 by Lemma 36.6, since -2 is a quadratic residue modulo t, because $2(M^2+1)=0 \pmod{t}$ means $(2M)^2=-2 \pmod{t}$; since $2M^2+1$ is odd and its prime factors cannot all be of the form 8n+1, because their product would have this form (and M being odd implies $2M^2+1=3 \pmod{8}$), there would be at least one prime factor t of the form 8n+3, which could not belong to the list $\{q_1,\ldots,q_k\}$, made of divisors of M.

Remark 36.8: One may expect the preceding idea to work for proving that there are infinitely many primes in some family of the form a n + b if $\varphi(a) = 4$, by finding a quadratic residue which only occurs for the form a n + 1 or $a n + \beta$ for a particular value of β (and not for the other two families). One has $\varphi(a) = 4$ for $a \in \{5, 8, 12\}$, and the argument does work for a = 5 and for a = 12, but it uses the law of quadratic reciprocity, which is then a more technical step: recall that it was conjectured by LEGENDRE, who could not prove it, and EULER could not prove it either, but GAUSS published six different proofs.

Lemma 36.9: If $P \in \mathbb{Z}[x]$ is a (non-constant) monic polynomial, then there are infinitely many prime divisors of the sequence $P(1), P(2), \dots, P(n), \dots$

Proof: Suppose that p_1,\ldots,p_k are the only prime divisors of the sequence, and let $N=p_1\cdots p_k$. Since P has at most deg(P) zeros, there exists $m\geq 1$ such that $P(m)=a\neq 0$, and then the Taylor expansion of $P(m+a\,N\,x)$ at m has all its coefficients multiple of a, since it is $\sum_j c_j x^j$ with $c_0=P(m)=a\in\mathbb{Z}$, and $c_j=\frac{P^{(j)}(m)}{j!}\,a^jN^j$ for $j\geq 1$, which is a multiple of a since $\frac{P^{(j)}(m)}{j!}\in\mathbb{Z}$. One deduces that $Q(x)=\frac{P^{(m+a\,N\,x)}}{a}\in\mathbb{Z}[x]$, but also that $Q(n)=1+\sum_{j\geq 1}\frac{P^{(j)}(m)}{j!}\,a^{j-1}N^jn^j=1\pmod{N}$ for all $n\geq 1$, and

⁴ This is more precise than the part of Lemma 36.2 which says that there are infinitely many primes of the form 4n + 3.

⁵ For $P = \sum_{i>0} \alpha_i x^i \in \mathbb{Z}[x]$, one has $\frac{P^{(j)}}{i!} = \sum_{i>j} \alpha_i \binom{i}{j} x^{i-j} \in \mathbb{Z}[x]$.

since there are only a finite number of n for which Q(n) = 1, there exists n with Q(n) > 1 and Q(n) = 1 (mod N), so that Q(n) must have a prime factor not in the list $\{p_1, \ldots, p_k\}$, hence P(m + a N n) = a Q(n) has a prime factor not in the list $\{p_1, \ldots, p_k\}$.

Lemma 36.10: For $m \geq 3$, let p be an odd prime not dividing m, and such that the cyclotomic polynomial Φ_m satisfies $\Phi_m(a) = 0 \pmod{p}$ for some $a \in \mathbb{Z}$. Then, a is not a multiple of p, and the order of a in \mathbb{Z}_p^* is exactly m, so that m divides p-1, i.e. $p=1 \pmod{m}$.

Proof: Since $x^m-1=\Phi_m\prod_{d|m,d\neq m}\Phi_d$, a^m-1 is a multiple of $\Phi_m(a)$, so that $a^m-1=0\pmod p$, hence a is not a multiple of p. If the order of a in \mathbb{Z}_p^* was d< m, d would be a divisor of m, and from $a^d=1\pmod p$ one would deduce that $\Phi_\delta(a)=0\pmod p$ for a divisor δ of d, hence a divisor of m (different from m), so that x^m-1 would have a as a (non-zero) repeated root in \mathbb{Z}_p (since Φ_m and Φ_δ would be divisible by (x-a)), contradicting the fact that $m\,x^{m-1}$, the derivative of x^m-1 , is $\neq 0$ on \mathbb{Z}_p^* (because p is not a divisor of m). The order of a is then m, and since $a^{p-1}=1\pmod p$ by Fermat's theorem, one deduces that p-1 is a multiple of m.

Lemma 36.11: For any integer $m \geq 3$, there are infinitely many primes equal to 1 modulo m. *Proof:* By Lemma 36.10, if p is a prime factor of $\Phi_m(a)$, then either p divides m or $p = 1 \pmod{m}$, but by Lemma 36.9 there are infinitely many prime divisors of $\Phi_m(1), \Phi_m(2), \ldots$, and one deduces that infinitely many of these primes are equal to 1 modulo m, since there are only a finite number of prime divisors of m.