Math 5110 Applied Linear Algebra -Fall 2020.

He Wang

he.wang@northeastern.edu

Homework 1. (Due: Monday, September 21)

1. Reading: [Gockenbach], Chapter 1 and Chapter 2.

Notations of **column** vectors: $\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = (v_1, v_2, v_3)$. The right-side used in our book is a point notation. It is different from 1×3 matrix $[v_1 \ v_2 \ v_3]$.

2. Questions:

Rules of answering the questions: (1.) Write reason or proof for each conclusion of your answer.

- (2.) For calculation "by hand" questions, write down all steps of calculations. For calculation by Matlab questions write down (copy) the input and useful output.
- (3.) You can scan and submit your handwriting answers. However, it is highly recommended that you use **LaTex** to write your answers. (At least for some homework.) You can either use the online version https://www.overleaf.com/ or download the local disc version https://www.latex-project.org/get/ on Mac or PC. Warning: Texmaker or Texworks are just editors. You need to download the full tex first. I recommend to use Texmaker.

A basic template can be (copy the following text and run tex.) There are many packages for tex. For example, using "tikz" you can draw many beautiful pictures. A template I used for lecture notes is also on Canvas.

```
\documentclass[11pt]{paper}
\usepackage{amssymb,amscd,amsmath}
\usepackage[all]{xy}

\textwidth=17cm \textheight=23cm
\voffset=-0.4in
\hoffset=-0.9in

\begin{document}
\begin{center}
\textbf{Math 5110- Applied Linear Algebra-Homework 1 }

\textbf{Name: Your name}
\end{center}

\write your answers Here. For example

\textbf{Answer of Question 1:}

If you don't know how to write formulas in Latex, just Google: ''Latex ...."

\end{document}
```

For all questions, if there is no particular instruction, the field is real number field \mathbb{R} .

Question 1. Write down the two operations on field \mathbb{Z}_3 .

+	[0]	[1]	[2]
[0]			
[1]			
[2]			

×	[0]	[1]	[2]
[0]			
[1]			
[2]			

Solution:

Question 2. Determine which of the matrices below are in reduced row-echelon form.

$$A = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 \\ 0 & 0 & 1 & 3 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & 5 \end{bmatrix}; D = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 \end{bmatrix}; E = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \\ 4 \end{bmatrix}$$

Solution: B, D

Question 3. We says that two $m \times n$ matrices in reduced row-echelon form are of the same type if they have the same number of leading 1's in the same position.

- (1) How many types of 3×2 matrices in reduced row-echelon form.
- (2) How many types of 2×3 matrices in reduced row-echelon form.
- (3) Find all 4×1 matrices in reduced row-echelon form.

List all of them. (Use * to denote any real number. Group them by rank)

Solution: (1)
$$3 \times 2$$
 rref:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & * \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

(2) 2×3 rref:

$$\begin{bmatrix} 1 & 0 & * \\ 0 & 1 & * \end{bmatrix}, \begin{bmatrix} 1 & * & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & * & * \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & * \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$(3)\begin{bmatrix}0\\0\\0\\0\end{bmatrix}; \text{ and } \begin{bmatrix}1\\0\\0\\0\end{bmatrix}$$

Question 4. For which values of a, b, c, d, and e is the following matrix in reduced row-echelon form?

$$A = \begin{bmatrix} 1 & a & b & 3 & 0 & -2 \\ 0 & 0 & c & 1 & d & 3 \\ 0 & e & 0 & 0 & 1 & 1 \end{bmatrix}$$

Solution:
$$e = 0$$
; $c = 1$; $d = 0$; $b = 0$; a any real number

Question 5. Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 2 \\ 2 & 0 & 1 & 2 \end{bmatrix}$$
.

- (1) Calculation $\mathbf{rref}(A)$ over \mathbb{R} by hand. Solve $A\vec{x} = \vec{0}$ and write all solutions in parametric vector forms.
- (2) Calculation $\mathbf{rref}(A)$ over field \mathbb{Z}_7 by hand.
- (3) Using Matlab verify your result and calculation $\mathbf{rref}(A)$ over field \mathbb{Z}_2 and \mathbb{Z}_3 . (Matlab function is uploaded on Canvas, put the rrefgf.m file in the same folder with your calculation file.)
- (4) Is it possible that a matrix M has different rank over different fields \mathbb{Z}_p ? (By calculation in (3))

Solution:
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 2 \\ 2 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 2R_1} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 \\ 0 & -4 & -5 & -6 \end{bmatrix} \xrightarrow{R_3 + 4R_2} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 7 & 2 \end{bmatrix} \xrightarrow{R_3/7} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 1 & 2/7 \end{bmatrix} \xrightarrow{R_2 - 3R_3} \begin{bmatrix} 1 & 2 & 0 & 0 & 6/7 \\ 0 & 1 & 0 & 8/7 \\ 0 & 0 & 1 & 2/7 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 0 & 6/7 \\ 0 & 1 & 0 & 8/7 \\ 0 & 0 & 1 & 2/7 \end{bmatrix} = \mathbf{rref}(A)$$

Solution

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{rref}(A)$$

- (3) See Matlab out put:
- (4) Compare Ar2 and Ar7, we can see that , the first three columns different rank. So $B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ has different rank over \mathbb{Z}_2 and \mathbb{Z}_7 .

Matlab Input

```
1 A=[1 2 3 4;
2 1 1 0 2;
3 2 0 1 2]
4 S=sym(A)
5 rref(S)
6 rref(A)
7 Ar2 = rrefgf(A,2)
8 Ar3 = rrefgf(A,3)
9 Ar7 = rrefgf(A,7)
```

Matlab Output

Question 6. (Use Matlab) Solve the linear system

$$\begin{cases} 3x_1 + 11x_2 + 19x_3 &= -2\\ 7x_1 + 23x_2 + 39x_3 &= 10\\ -4x_1 - 3x_2 - 2x_3 &= 6 \end{cases}$$

and write solutions in parametric vector forms.

Solution:
$$\mathbf{rref}(A) = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
. No solution.

Question 7. (Use Matlab) Solve the linear system

$$\begin{cases} 3x_1 + 6x_2 + 9x_3 + 5x_4 + 25x_5 &= 53 \\ 7x_1 + 14x_2 + 21x_3 + 9x_4 + 53x_5 &= 105 \\ -4x_1 - 8x_2 - 12x_3 + 5x_4 - 10x_5 &= 11 \end{cases}$$

and write solutions in parametric vector forms.

Solution: Let *A* be the augmented matrix.

$$\mathbf{rref}(A) = \begin{bmatrix} 1 & 2 & 3 & 0 & 5 & 6 \\ 0 & 0 & 0 & 1 & 2 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

So,
$$\begin{cases} x_1 = 6 - 2x_2 - 3x_3 - 5x_5 \\ x_4 = 7 - 2x_5 \end{cases}$$
 and
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 6 - 2x_2 - 3x_3 - 5x_5 \\ x_2 \\ x_3 \\ 7 - 2x_5 \\ x_5 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ 0 \\ 7 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -5 \\ 0 \\ 0 \\ -2 \\ 1 \end{bmatrix}, \text{ where } x_2, x_3, x_5 \text{ are any real numbers.}$$

Question 8. (Use Matlab) Solve the linear system

$$\begin{cases} 2x_1 + 4x_2 + 3x_3 + 5x_4 + 6x_5 &= 37 \\ 4x_1 + 8x_2 + 7x_3 + 5x_4 + 2x_5 &= 74 \\ -2x_1 - 4x_2 + 3x_3 + 4x_4 - 5x_5 &= 20 \\ x_1 + 2x_2 + 2x_3 - x_4 + 2x_5 &= 26 \\ 5x_1 - 10x_2 + 4x_3 + 6x_4 + 4x_5 &= 24 \end{cases}$$

and write solutions in parametric vector forms. (Hint: In Matlab, if you want precise value, use symbolic calculation A=sym(A))

Solution: Let *A* be the augmented matrix and calculate rref(A) in Matlab.

$$\begin{cases} x_1 = -8221/4340 \approx -1.89 \\ x_2 = 8591/8680 \approx 0.99 \\ x_3 = 4695/434 \approx 10.82 \\ x_4 = -459/434 \approx -1.06 \\ x_5 = 699/434 \approx 1.61 \end{cases}$$

Question 9. (1) If A, B and C are $n \times n$ matrices and $ABC = I_n$, is each of the matrices invertible? What are their inverses?

(2) Suppose A and B are $n \times n$ matrices. If AB is invertible, are both A and B are invertible?

Solution: (1) By invertible theorem, A and C are invertible and $A^{-1} = BC$ and $C^{-1} = AB$. Then $AB = C^{-1}$, then CAB = I. So, B is invertible and $B^{-1} = CA$.

(2) If AB is invertible, then there exist a matrix C such that ABC = I. Then by (1) each matrix is invertible.

Question 10. Provide a counter-example to the statement: For any 2×2 matrices A and B, $(AB)^2 = A^2B^2$.

Solution:
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
 $(AB)^2 = \begin{bmatrix} 0 & 0 \\ 12 & 16 \end{bmatrix}$
 $A^2B^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Question 11. Find an example of a 2×2 nonidentity matrix whose transpose is its inverse.

Solution: Suppose $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ Then, $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ and $A^{T} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$ We want $A^{-1} = A^{T}$. We may set ad - bc = 1, then we need a = d and b = -c.

So, examples will be $A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ such that $a^2 + b^2 = 1$.

For example $\begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$ or $\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$. Later, we will see more examples like this for $n \times n$ matrices, called orthogonal matrix.

Question 12. Here are a couple of new definitions: An $n \times n$ matrix A is symmetric provided $A^T = A$ and skew-symmetric provided $A^T = -A$.

- (1) Give examples of symmetric and skew-symmetric 2×2 , 3×3 , and 4×4 matrices.
- (2) What can you say about the main diagonal of a skew-symmetric matrix?
- (3) Give an example of a matrix that is both symmetric and skew-symmetric.
- (4) Prove that for any $n \times n$ matrix A, the matrices $A + A^T$, AA^T , and A^TA are symmetric and $A A^T$ is skew-symmetric.
- (5) Prove that any $n \times n$ can be written as the sum of a symmetric and skew-symmetric matrices. Hint: Did you do part (4) yet?

Solution:
$$(1)$$

- (2) All zeros. Since $a_{ii} = -a_{ii}$.
- (3) zero matrix.

(3) Zero matrix.

$$(4) (A + A^T)^T = A^T + (A^T)^T = A^T + A.$$

$$(AA^T)^T = (A^T)^T A^T = AA^T$$

$$A^T A^T A^T = AA^T$$

$$(AA^T)^T = (A^T)^T A^T = AA^T$$

$$(A^T A)^T = A^T (A^T)^T = A^T A.$$

$$(A - A^T)^T = A^T - (A^T)^{\tilde{T}} = A^T - A = -(A - A^T).$$

(A^T A)^T = A^T (A^T)^T = A^T A.
So, all above three are symmetric.

$$(A - A^T)^T = A^T - (A^T)^T = A^T - A = -(A - A^T).$$
(5) $A = \frac{(A + A^T)}{2} + \frac{(A - A^T)}{2}$

Question 13. Let V be a vector space over \mathbb{R} and let $\vec{v} \in V$ be a nonzero vector. Is the subset $\{0, \vec{v}\}$ is a subspace of *V*? Prove your result.

Solution: No. $2\vec{v}$ is not in the subset. So the set $\{0, \vec{v}\}$ is not closed under scalar product.

Question 14. Determine whether or not the following set a subspace of \mathbb{R}^2 . Prove your result.

(1)
$$S = {\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 \mid x_1 x_2 = 0}.$$

(2) $T = {\vec{x} \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \le 0}$ the unit disc in \mathbb{R}^2 .

Solution: (1) No, the set S is not closed under sum. For example, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are in S, but their sum is

- $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ which is not in S.
- (2) No. the set T is not closed under scalar product. For example, $3\begin{bmatrix} 0.5 \\ 0 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 0 \end{bmatrix}$ which is not in T.

Question 15. (1) Let $U_{3\times3}$ be the set of all 3×3 upper triangular matrices with real entries. Is $U_{3\times3}$ a subspace of $\mathbb{R}^{3\times 3}$? Prove your result.

- (2) Let $T_{3\times3}$ be the set of all 3×3 triangular matrices with real entries. Is $T_{3\times3}$ a subspace of $\mathbb{R}^{3\times3}$?
- (3) Let W be the set of all polynomials in the form $\{t + at^2\}$ where a is any real number. Is W a subspace of P the vector space of all polynomials.

Solution: (1) Yes. Verify three conditions.

- (2) No. Sum is not closed.
- (3) No. Not include zero.

Question 16. (Allow to use Matlab for **rref**) Let S be the following subspace of \mathbb{R}^4 :

$$S = \operatorname{Span} \left\{ \vec{b}_1 = \begin{bmatrix} -1 \\ -2 \\ 4 \\ -2 \end{bmatrix}, \ \vec{b}_2 = \begin{bmatrix} 0 \\ 1 \\ -5 \\ 4 \end{bmatrix} \right\}.$$

Determine if each vector belongs to *S*:

$$(1.) \ \vec{v} = \begin{bmatrix} -1\\0\\-6\\6 \end{bmatrix}; \quad (2.) \ \vec{w} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

Solution: It is the same question as whether or not $x_1\vec{b}_1 + x_2\vec{b}_2 = \vec{v}$ or $x_1\vec{b}_1 + x_2\vec{b}_2 = \vec{w}$ has a solution. Set up augmented matrix $[\vec{b}_1\ \vec{b}_2|\vec{v}]$ and $[\vec{b}_1\ \vec{b}_2|\vec{w}]$ and find their **rref**.

(1) Yes. (2) No.

Question 17. Show that $S = \text{Span}\{\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}\}$ and $T = \text{Span}\{\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}\}$ are the same subspace of \mathbb{R}^3 .

Solution: It is clear that $S \subset T$.

We only need to show that $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \in S$. That is show that $\vec{v}_3 = x_1 \vec{u}_1 + \vec{u}_2$ has a solution.

Question 18. Let S be the subspace of \mathbb{R}^3 defined by $S = \text{Span}\left\{\begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ -4 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 4 \end{bmatrix}\right\}$. Is S a **proper** subspace of \mathbb{R}^3 or not? In other words, do there exist vectors in \mathbb{R}^3 that do not belong to S, or is S all of \mathbb{R}^3 ?

Solution: For any $\vec{b} \in \mathbb{R}^3$, solve $\vec{b} = x_1\vec{u}_1 + x_2\vec{u}_2 + x_3\vec{u}_3$ Denote $A = \begin{bmatrix} -1 & -1 & -1 \\ -3 & -4 & -1 \\ 3 & 3 & 4 \end{bmatrix}$ then $\mathbf{rref}(A) = I_3$. $A\vec{x} = \vec{b}$ has a solution for any \vec{b} . So, $\vec{b} \in S$.

Question 19. Suppose U and V are two subspaces of a vector space W.

- (1) Is the union of two subspace $U \cup V$ a subspace?
- (2) Is the intersection $U \cap V$ is a subspace?

Solution: (1) No. Sum is not closed.

- (2) Yes. Verify three conditions:
- 1. $\vec{0} \in U$ and $\vec{0} \in V$, so $\vec{0} \in U \cap V$
- 2. If $\vec{u}, \vec{v} \in U \cap V$, then $\vec{u} + \vec{v} \in U$ and $\vec{u} + \vec{v} \in V$. So, $\vec{u} + \vec{v} \in U \cap V$.
- 2. If $\vec{u} \in U \cap V$, then $k\vec{u} \in U$ and $k\vec{v} \in V$ for any $k \in F$. So, $k\vec{u} \in U \cap V$.