Professor Manichaikul Rotation Presentation

Yogindra Raghav 08/10/2022

- Colocalization analysis
- Matching colocalized variants
- Some genes of interest
- Modeling COPD-related metrics with expression data and covariates
- Outputs from aforementioned model
- Future ideas
- GitHub Repository:

https://github.com/YogiOnBioinformatics/Manichaikul-PhD-Rotation

- Colocalization analysis
- Matching colocalized variants
- Some genes of interest
- Modeling COPD-related metrics with expression data and covariates
- Outputs from aforementioned model
- Future ideas
- GitHub Repository
 - https://github.com/YogiOnBioinformatics/Manichaikul-PhD-Rotation

Background: Colocalization Analysis

- Xiaowei ran colocalization analysis:
 - Understanding whether variants in linkage disequilibrium BOTH causally affect a COPD-related metric and some biological trait (e.g. expression of gene)

Background: Colocalization Analysis

- Xiaowei ran colocalization analysis:
 - Understanding whether variants in linkage disequilibrium BOTH causally affect a COPD-related metric and some biological trait (e.g. expression of gene)

 Analysis was ran for each of protein, expression, and methylation QTLs

- Colocalization analysis
- Matching colocalized variants
- Some genes of interest
- Modeling COPD-related metrics with expression data and covariates
- Outputs from aforementioned model
- Future ideas
- GitHub Repository:
 - https://github.com/YogiOnBioinformatics/Manichaikul-PhD-Rotation

Colocalized Variants Overlap Between Omics

- Colocalized variants that affected (ALL of the following):
 - gene's expression
 - methylation site
 - protein expression

Colocalized Variants Overlap Between Omics

- Colocalized variants that affected (ALL of the following):
 - gene's expression
 - methylation site
 - protein expression

- chr6_31896897_T_C_b38 affects:
 - HLA-DQA2
 - SL003680
 - Multiple CpG sites
 - Ani mentioned this is under active investigation.

Using Fuzzy Matching for Overlapping Between Omics

Simple algorithm:

```
1 extract all unique variants significant in each omic
2
3 for each {"p", "q", "m"}QTL variant:
4 for each {"p", "q", "m"}QTL variant:
5 if both variants are on the same chromosome:
6 if closer than distance_threshold (1 million):
7 hit between variants
```

Notebook source:

https://github.com/YogiOnBioinformatics/Manichaikul-PhD-Rotation/blob/main/qtl-association/notebooks/matching.ipynb

SCHOOL OF MEDICINE

- Colocalization analysis
- Matching colocalized variants
- Some genes of interest
- Modeling COPD-related metrics with expression data and covariates
- Outputs from aforementioned model
- Future ideas
- GitHub Repository:
 - https://github.com/YogiOnBioinformatics/Manichaikul-PhD-Rotation

GSTCD and ADAM19 as Potentially Interesting Genes

- GSTCD affects multiple pathways in airway biology
- Validated in independent studies as important COPD gene
 - https://doi.org/10.1164/rccm.201102-0192OC
 - https://doi.org/10.1371/journal.pone.0074630
 - https://doi.org/10.1007/s12041-019-1119-9
 - https://doi.org/10.1186/s12931-019-1146-3

GSTCD and ADAM19 as Potentially Interesting Genes

- ADAM19 is involved in early immune defense mechanisms in the lungs.
- Also validated as potentially interesting gene for COPD:
 - https://doi.org/10.3109/15412555.2016.1161017
 - https://doi.org/10.1183/13993003.congress-2021.PA2385
 - https://doi.org/10.1007/s12041-019-1119-9

- Colocalization analysis
- Matching colocalized variants
- Some genes of interest
- Modeling COPD-related metrics with expression data and covariates
- Outputs from aforementioned model
- Future ideas
- GitHub Repository:
 - https://github.com/YogiOnBioinformatics/Manichaikul-PhD-Rotation

Goal:

 Understand if expression of a particular gene can significantly predict a key COPD-related metric while accounting for covariates.

Goal:

 Understand if expression of a particular gene can significantly predict a key COPD-related metric while accounting for covariates.

Model:

 {insert COPD-related metric} ~ Gene "X" expression, sex, age, age^2, height, height^2, weight (FVC only), pack-years of smoking, current smoking, former smoking, first 10 principal components (PCs) of ancestry, race, PEERs factors

- Goal:
 - Understand if expression of a particular gene can significantly predict a key COPD-related metric while accounting for covariates.
- Model:

SCHOOL OF MEDICINE

Model:

- Only using Exam 5 data.
 - No lung data prior.

- Only using Exam 5 data.
 - No lung data prior.
- Post-bronchodilator ("post_") better than pre-bronchodilator ("pre_").
 - Yet, few patients have "post_" vs "pre_" measurements.
 - Hence, using "pre_" for target variables.

- Only using Exam 5 data.
 - No lung data prior.
- Post-bronchodilator ("post_") better than pre-bronchodilator ("pre_").
 - Yet, few patients have "post_" vs "pre_" measurements.
 - Hence, using "pre_" for target variables.
- Do not impute any missing values.
 - Drop participants missing data for any covariate.

- Only using Exam 5 data.
 - No lung data prior.
- Post-bronchodilator ("post_") better than pre-bronchodilator ("pre_").
 - Yet, few patients have "post_" vs "pre_" measurements.
 - Hence, using "pre_" for target variables.
- Do not impute any missing values.
 - Drop participants missing data for any covariate.
- Convert ENSEMBL Gene IDs to Gene Symbols for interpretability.
 - e.g. ENSGXXXXXX —> HLA-DQA2

Expression data already normalized using inverse normal transform.

$$Y_i^t = \Phi^{-1} \left(\frac{r_i - c}{N - 2c + 1} \right)$$
 SOURCE:
https://doi.org/10.1007/s10519-009-9281-0

Expression data already normalized using inverse normal transform.

$$Y_i^t = \Phi^{-1} \left(\frac{r_i - c}{N - 2c + 1} \right)$$
 SOURCE:
https://doi.org/10.1007/s10519-009-9281-0

- Take square of "age" and "height" features
 - Accounts for potential non-linear effects.

Expression data already normalized using inverse normal transform.

$$Y_i^t = \Phi^{-1} \left(\frac{r_i - c}{N - 2c + 1} \right)$$
 SOURCE:
https://doi.org/10.1007/s10519-009-9281-0

- Take square of "age" and "height" features
 - Accounts for potential non-linear effects.
- Use time-variant variables instead of baseline.

Notebook source:

https://github.com/YogiOnBioinformatics/Manichaikul-PhD-Rotation/blob/main/rna-seq-regression/notebooks/join_and_matrixize_data.ipynb

Exhaustive Modeling

Algorithm:

```
for each cell type:
    for each target variable:
        for each gene:
            perform Ordinary Least Squares (OLS) Regression
            extract raw p-value for gene

    bonferroni correction
    fdr correction
```

Notebook source:

https://github.com/YogiOnBioinformatics/Manichaikul-PhD-Rotation/blob/main/rna-seg-regression/notebooks/regression.ipvnb

- Colocalization analysis
- Matching colocalized variants
- Some genes of interest
- Modeling COPD-related metrics with expression data and covariates
- Outputs from aforementioned model
- Future ideas
- GitHub Repository:
 - https://github.com/YogiOnBioinformatics/Manichaikul-PhD-Rotation

Exhaustive Modeling Results

 When looking at corrected p-values for each gene per cell type per target variable:

Trait	# Participants	Cell Type	Gene	Raw P-val	FDR P-val	Bonferroni P-val
pre_fvc	270	T_cell_Exam_5	IFI44	0.000002	0.028980	0.037005
pre_fvc	270	T_cell_Exam_5	RSAD2	0.000003	0.028980	0.057960
pre_fev1	271	T_cell_Exam_5	HSD17B11	0.000003	0.065205	0.065205
post_fev1fvc	111	T_cell_Exam_5	NUDT18	0.000005	0.103568	0.103568

Exhaustive Modeling Results

- Only 1 of prior 4 genes overlapped with results from this pre-print.
 - https://www.medrxiv.org/content/10.1101/2022.05.11.22274314v2

	ENSGID	sentinel	PoPS_score	signal_id	gene_rank	prioritized
HSD17B11	ENSG00000198189	4_88016874_G_T	-0.038744522	289	2	FALSE

Seems to be a relatively unimportant gene in their analysis.

Modeling "Hit Genes"

- For a given trait and given gene that has 2 variants that causally affect both the trait and gene...
 - Can the trait be modelled successfully by the gene's expression level, accounting for covariates?
- eQTL analysis from Xiaowei:

trait	stratum	phenotype gene.name
FEV1FVC	All	ENSG0000(ADAM19
FEV1FVC	All	ENSG0000(HLA-DQA2
FEV1	All	ENSG0000(GSTCD

Modeling "Hit Genes" Yields Mostly Non-Significant Results

Trait	# Participants	Cell Type	Gene	Raw P-val
pre_fev1	271	T_cell_Exam_5	GSTCD	0.041905
pre_fev1fvc	631	PBMC_Exam_5	HLA-DQA2	0.157132
pre_fev1fvc	270	T_cell_Exam_5	HLA-DQA2	0.237175
pre_fev1fvc	259	Monocyte_Exam_5	HLA-DQA2	0.356288
pre_fev1fvc	270	T_cell_Exam_5	ADAM19	0.399053
pre_fev1	259	Monocyte_Exam_5	GSTCD	0.498476
pre_fev1fvc	259	Monocyte_Exam_5	ADAM19	0.641643
pre_fev1	632	PBMC_Exam_5	GSTCD	0.657157
pre_fev1fvc	631	PBMC_Exam_5	ADAM19	0.832049

- Colocalization analysis
- Matching colocalized variants
- Some genes of interest
- Modeling COPD-related metrics with expression data and covariates
- Outputs from aforementioned model
- Future ideas
- GitHub Repository
 - https://github.com/YogiOnBioinformatics/Manichaikul-PhD-Rotation

Future Directions & Acknowledgements

- Run same type of modeling but...
 - Replace gene expression vector with methylation vector
 - Ani has covariates for the methylation data.
 - If available, could do the same with protein expression vector

Future Directions & Acknowledgements

- Run same type of modeling but...
 - Replace gene expression vector with methylation vector
 - Ani has covariates for the methylation data.
 - If available, could do the same with protein expression vector
- If many proteins or methylation sites near genes turn up significant...
 - Gene Ontology enrichment analysis is worth a shot.

Future Directions & Acknowledgements

- Run same type of modeling but...
 - Replace gene expression vector with methylation vector
 - Ani has covariates for the methylation data.
 - If available, could do the same with protein expression vector
- If many proteins or methylation sites near genes turn up significant...
 - Gene Ontology enrichment analysis is worth a shot.
- Thanks to:
 - Ani
 - Jisu
 - Xiaowei
 - Catherine

