Notes

February 19, 2014

test

${\bf chess board}$

first part was just $\binom{8}{2}\binom{8}{2}5!$ white square part: think of odd and even columns. we have two different 4x4 boards. So can divide them up into (1,4),(2,3),(3,2),(4,1) so we have $2\cdot \left(\binom{4}{1}\binom{4}{1}4!+\binom{4}{2}\binom{4}{2}2!\binom{4}{3}\binom{4}{3}3!\right)$

$\mathbf{2}$

blah blah

3 dyck paths

picture wrong :-/