Notes FSML II*

Tobías Chavarría

DSTI | DSBD2-001

Contents

Introduction
Chapter 1: Estimation for one parameter
Introduction
Point estimation

Introduction

Statistics notation:

- 1. If $X_1, ..., X_n$ are random variables (r.v).
- 2. $x_1, ..., x_n$ are observations.
- 3. If we write *i.i.d* means that the r.v are independent and identically distributed.

First aim: To propose a model for a random variable.

Generalization to multi-dimensional case:

- Y: response variable.
- $X^{(1)},...,X^{(p)}$: explanatory variables.

 \mathbf{Aim} : To find a functional link between Y and the explanatory variables.

To find this functional link, the method to apply depends on the nature of the r.v's.

Y	Model
Numeric	Linear model
Qualitative (labels)	Classification

Linear model

A linear model is given by:

$$Y_i = \beta_0 + \beta_1 X_i^1 + \ldots + \beta_p X_i^p + \varepsilon_i$$

where:

- + $\beta_0,...,\beta_p$ are unknown fixed parameters that can be estimated by two methods:
 - Point estimation
 - Confidence interval
- + ε is the noise and also a random variable.

^{*}Replication files are available on the author's Github account (http://github.com/svmiller/svm-r-markdown-templates).

Chapter 1: Estimation for one parameter

Previous Knowledge

- Random Variable:
- The notion of distribution.
- The expectation and variance
- The distribution function
- The classical distributions (in particular the Gaussian)
- The Law of Large numbers and the Central Limit theorem

Introduction

Given $x_1,...,x_n$ numeric observations, to try to find a correct parametric model, we can use 2 graphs:

• Barplot for discrete variables.

density = count/n

```
max.temp <- c(22, 27, 26, 24, 23, 26, 28)

barplot(max.temp,
main = "Maximum Temperatures in a Week",
xlab = "Degree Celsius",
ylab = "Day",
names.arg = c("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"))</pre>
```

Maximum Temperatures in a Week

• Histogram for continuous variables

density = count for a bin/ n x length of the bin

```
A <- rnorm(500, 0, 1)
```

hist(A)

Histogram of A


```
hist(A, freq = FALSE)
hist(A, freq = FALSE, breaks = 20)
```

Histogram of A


```
hist(A, freq = FALSE, breaks = 100)
```

Histogram of A


```
# In order to create more breaks, you need to increase the
# numbers of observations

A <- rnorm(50000, 0, 1)
hist(A, freq = FALSE, breaks = 100)</pre>
```

Histogram of A

To propose a parametric model:

- 1. We make a graphical representation of the observations.
- 2. We guess a theoretical model by looking the previous graphic.

Question: with a representation, we can guess a parametric family of models, denoted by $\{P_{\Theta}, \theta \in \Theta\}$. How to guess a correct value for θ thanks to the observations?

Answer: Estimation.

Point estimation

 x_i an observation of a r.v X_i we assume that $x_1,...,x_n$ are i.i.d with common distribution P_Θ .

Def: Estimator An estimator of Θ is just a function of $X_1,...X_n$ that **does not depend onto others unknown parameters.**

Rk: An estimator is a random variable!

Def: Estimation An estimation is the value of an estimator computed thanks to the observations.

Example

Consider $X_1,...,X_n$ exponential distributed and i.i.d, an estimator of λ is $\hat{\lambda}_n = \frac{n}{\sum X_i}$ an estimation is $\hat{\lambda}_n = \frac{n}{\sum x_i}$.

5

Def: Bias (for univariate parameter)

Let consider $\hat{\Theta}_n$ an estimator of Θ .

The bias of $\hat{\Theta}_n$ is defined by:

$$b(\hat{\Theta}_n) := \mathbb{E}(\hat{\Theta}_n) - \Theta$$

We say that $\hat{\Theta}_n$ is an unbiased estimator if $\forall n \in \mathbb{N}^+ \quad b(\hat{\Theta}_n) = 0$

We say that $\hat{\Theta}_n$ is asymptotic unbiased estimator if:

$$b(\hat{\Theta}_n) \to 0$$
 as $n \to \infty +$

How to construct estimator?

- Method of moments
 - less computations
 - based on the Law of large numbers
- · Maximum likelihood

Method of moments Let Θ a parameter to estimated, parameter which is associate to $X_1,...,X_n$ *i.i.d* r.v.

Let consider $k \in \mathbb{N}^*$:

- the moment of order $k : \mathbb{E}[x^k]$
- the centered moment of order k: $\mathbb{E}[x-\mathbb{E}[x]]^k$

If there exist a value k such that:

- (a) $\mathbb{E}[x^k] = g(\Theta)$
- (b) $\mathbb{E}[x \mathbb{E}[x]]^k = h(\Theta)$

Applications

Let consider $X_1,...,X_n$ exponential distributed and $\emph{i.i.d}$

Solution:

```
• • •
```

```
A = rexp(500, 4)

1/mean(A)
```

```
## [1] 4.235346
```

```
m = c()
for (i in 1:50) {
    A = rexp(500, 4)
    m[i] <- 1/mean(A)
}
mean(m)</pre>
```

[1] 3.968988

The Maximum Likelihood Def: likelihood

Let $X_1,...,X_n$ independent random variables, whose distributions are all depending on the same parameter Θ .

Let $x_1,...,x_n$ observations of those r.v

$$\mathcal{L}(x_1,...,x_n,\Theta) = \begin{cases} \Pi \\ \Pi \end{cases}$$

Def: Estimator thanks to the maximum likelihood.

 $\hat{\Theta}_n$, an estimator for Θ , due to the maximum likelihood, is solution of:

$$\mathcal{L}(x_1,...,x_n,\Theta) = \max_{\theta} \mathcal{L}(x_1,...,x_n,\Theta)$$

Applications

Let consider $X_1,...,X_n$ $\xi(\lambda)$ i.i.d.

Compute the maximum likelihood estimator.

Solution:

```
n= 100

U = runif(n, 0, 4)

theta = max(U)

for (i in 1:50) {
    U = runif(n, 0, 4)
    theta = c(theta, max(U))
}
mean(theta)
```

[1] 3.964657

boxplot(theta)

```
3.98
3.94
3.90
                                          8
3.86
                                          0
## Adjust to make the estimator unbiased
thetab = (n+1)/n*theta
mean(thetab)
## [1] 4.004303
boxplot(thetab)
                                          8
                                          0
## With more observations
n=100
U = runif(n, 0, 4)
theta = max(U)
for (i in 1:5000) {
```

```
U = runif(n, 0, 4)
theta = c(theta, max(U))
}
mean(theta)
```

[1] 3.959796

boxplot(theta)

Property

Let $X_1,...,X_n$ i.i.d r.v. Let $\mu=\mathbb{E}[X_1]$ (unknown) Let $\sigma^2=V(X_1)$ (unknown)

A classical estimator is:

$$\begin{array}{l} \bullet \;\; \mu \text{ is } \widehat{\mu}_n = \overline{X}_n = \frac{1}{n} \sum X_i \\ \bullet \;\; \sigma^2 \text{ is } \widehat{\sigma}_n^2 = \frac{1}{n} \sum (X_i - \overline{X}_n)^2 \end{array}$$

Exercise

Show that:

- 1. $\hat{\mu}$ is unbiased.
- 2. $\hat{\sigma}_n^2$ is biased and that $\frac{n}{n-1}\hat{\sigma}_n^2$ is unbiased.