Optimization Techniques

Laboratory 7

Genetics, evolution, and nature-inspired analogies

cc.rambaldimigliore@unitn.it elia.cunegatti@unitn.it mvincze@fbk.eu

UNIVERSITY OF TRENTO - Italy

Information Engineering and Computer Science Department

Evolutionary Computation

- Individual

Potential solution Has a fitness, measuring quality

Population

Set of individuals

Diversity

Measure of how different individuals are

- Selection

Based on fitness

Inheritance

Partially transmit the properties of a solution to another

Evolutionary Computation

A GENERIC EVOLUTIONARY ALGORITHM FLOW evaluation of fitness parents selection population CENSORED offspring reproduction slaughtering/replacement (new individuals) (genetic operators)

Swarm Intelligence

Swarm Intelligence

Collective behaviour of simple agents with emergent intelligence

Challenges

- Find simple but sufficient behavioral rules
- Make emergent behavior stable

Particle Swarm Optimization

- A swarm of particles is initialized with random positions and velocity
- At each step, each particle updates first its velocity:

$$\overline{v}' = w \cdot \overline{v} + \phi_1 U_1 \cdot (\overline{y} - \overline{x}) + \phi_2 U_2 \cdot (\overline{z} - \overline{x})$$

where:

x and v are the particle's current position and velocity, respectively

z and **y** are the neighborhood and focal particle's best position, respectively

 ω is the inertia (weighs the current velocity)

 Φ_{I} is the learning rate for the personal influence

 Φ_2 is the learning rate for the social influence

 U_1 and U_2 are uniform random numbers in [0,1]

- Then, each particle updates its position x' = x + v'
- In case of improvement, update y (and z)
- This loop is iterated until a given stop condition is met