

MATHEMATICS DEPARTMENT

Year 12 Methods - Test Number 3 - 2016 Integration and the Binomial Distribution

Resource Free

Name	Teacher:

Marks: 21

Time Allowed: 15 minutes

Instructions: You are NOT allowed ANY Calculators or notes.

You have been supplied with a formula sheet.

1 Which statement is *not* true?

$$\int_a^b f(x)dx + \int_b^c f(x) = \int_a^c f(x)dx$$

$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$$

$$\int_{b}^{a} f(x)dx = \int_{a}^{b} f(x)dx$$

$$\int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx = \int_{a}^{b} [f(x) + g(x)]dx$$

$$\int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx = \int_{a}^{b} [f(x) - g(x)]dx$$

[2 marks]

2 An approximation to $\int_{-\infty}^{\infty} dx$ using 10 centred rectangles is given by:

A
$$0.2 \times [0^3 + 0.2^3 + 0.4^3 + 0.6^3 + 0.8^3 + 1^3 + 1.2^3 + 1.4^3 + 1.6^3 + 1.8^3]$$

B
$$0.2 \times [0.2^3 + 0.4^3 + 0.6^3 + 0.8^3 + 1^3 + 1.2^3 + 1.4^3 + 1.6^3 + 1.8^3 + 2^3]$$

C
$$0.1 \times [0.1^3 + 0.3^3 + 0.5^3 + 0.7^3 + 0.9^3 + 1.1^3 + 1.3^3 + 1.5^3 + 1.7^3 + 1.9^3]$$

D
$$0.2 \times [0.1^3 + 0.3^3 + 0.5^3 + 0.7^3 + 0.9^3 + 1.1^3 + 1.3^3 + 1.5^3 + 1.7^3 + 1.9^3]$$

E
$$0.2 \times [0.25^3 + 0.5^3 + 0.75^3 + 1^3 + 1.25^3 + 1.5^3 + 1.75^3 + 2^3]$$

[2 marks]

The area of the figure below is given by:

$$A \int_{-4}^{0} f(x)dx + \int_{0}^{1} f(x)dx$$

$$\mathsf{B} \int_{-4}^{1} f(x) dx$$

$$\int_{-4}^{0} f(x)dx - \int_{0}^{1} f(x)dx$$

$$\int_{-4}^{0} f(x)dx + \int_{0}^{1} f(x)dx$$

$$= -\int_{-4}^{1} f(x) dx$$

[2 marks]

4 Which statement would find the approximate area under the curve $y = 4 - x^2$ using the rectangles below.

A
$$0.5 \times [4 - 0^2 + 4 - 0.5^2 + 4 - 1^2 + 4 - 1.5^2]$$

B
$$0.5 \times [0^2 + 0.5^2 + 1^2 + 1.5^2]$$

C
$$0.5 \times [0.5^2 - 4 + 1^2 - 4 + 1.5^2 - 4 + 2^2 - 4]$$

D
$$0.5 \times [4 - 0.5^2 + 1^2 + 1.5^2 + 2^2]$$

E
$$0.5 \times [4 - 0.5^2 + 4 - 1^2 + 4 - 1.5^2 + 4 - 2^2]$$

[2 marks]

The value of the definite integral $\int_0^{\frac{\pi}{6}} \sin(x) dx$ is:

$$A = \frac{\sqrt{3}}{2}$$

B
$$\frac{2-\sqrt{3}}{2}$$

$$\frac{\sqrt{3}-2}{2}$$

$$\frac{1}{2}$$

[2 marks]

6 $\int_0^2 [5f(x) + 3]dx =$

$$\int_{A}^{2} f(x)dx + 3x$$

$$\int_0^2 f(x)dx + 3x$$

C
$$5f'(x) + 3$$

$$\int_{0}^{2} f(x)dx + 6$$

$$\int_0^2 f(x)dx + x$$

[2 marks]

7 The shaded area below can be written as:

A
$$\int_{0}^{5} f(x) - g(x)dx - \int_{5}^{8} g(x) - f(x)dx$$

$$\mathsf{B}^{-\int_{0}^{8} f(x) - g(x) dx}$$

$$\int_{0}^{5} f(x) - g(x)dx + \int_{5}^{8} g(x) - f(x)dx$$

$$\int_{1}^{3} f(x) - g(x) dx + \int_{3}^{4} g(x) - f(x) dx$$

$$\int_{1}^{3} f(x) - g(x) dx - \int_{3}^{4} g(x) - f(x) dx$$

[2 marks]

8
$$\int_0^4 (6\sqrt{x} - x) dx =$$

Page Number: 3

- 9 If the derivative of e^{x^2-6x} is $2(x-3)e^{x^2-6x}$, then the antiderivative of $(x-3)e^{x^2-6x}$ is:
 - A $2e^{x^2-6x}+c$
 - **B** $\frac{1}{2}(x-3) e^{x^2-6x}$
 - $\mathbf{C} e^{x^2 6x} + c$
 - **D** $2(x-3) e^{x^2-6x}$
 - $=\frac{1}{2}e^{x^2-6x}+c$

[2 marks]

10 Find the exact probability that when a six-sided die is rolled four times a number less than 5 occurs on exactly two occasions.

[3 marks]

Additional Working Space Below:

END OF RF TEST