Student Information

Full Name : Can Erdoğar Id Number : 1942069

Answer 1

a.

Table 1	
r_1	$-0.d_{11}d_{12}d_{13}d_{14}$
r_2	$-0.d_{21}d_{22}d_{23}d_{24}$
r_3	$-0.d_{31}d_{32}d_{33}d_{34}$
r_4	$-0.d_{41}d_{42}d_{43}d_{44}$
	•
•	•

Table 1 shows decimal representation of the numbers between 0 and -1. Then form a new number $r = 0.d_1d_2d_3...$ and make $d_i = 9 - d_{ii}$.

However, this new number will differ from first number in the table with its first digit, second number with its second digit and so on.

This shows that r is not in the set and numbers between 0 and -1 cannot be listed, so it is uncountable.

b.

L is regular because it's finite as stated. That's why L^* and L^+ will also be regular which makes D an empty set.

b)

a.

 w_1 doesn't belong to the language that NFA represents.

b.

 w_2 is in the language. One of the possible configuration is as follows: $(q_0, ababa) \vdash (q_1, baba) \vdash (q_3, ba$

Answer 4

a.

 $bab^* \cup [b(a \cup b)^*(e \cup bab^*)] \cup [bab^*(b \cup ab)(a \cup b)^*(e \cup bab^*)]$

b.

NFA with new initial and final state:

q1 eliminated:

q2 eliminated:

 $\operatorname{start} \longrightarrow \overbrace{q_s} \qquad bab^* \cup \left[b(a \cup b)^*(e \cup bab^*)\right] \cup \left[bab^*(b \cup ab)(a \cup b)^*(e \cup bab^*)\right] \longrightarrow \overbrace{q_f}$

 q_{00} is the set that includes q_0 , q_1 , q_2 . q_{01} is the set that includes q_1 . q_{02} is the set that includes q_1 , q_3 . q_{03} is the set that includes q_2 . q_{04} is the empty set.

b)

Answer 6

We know that regular languages are closed under intersection and complementation. Because $L1-L2=L1\cap\overline{L2}$ and every NFA has an equivalent DFA , regular languages are closed under set difference.

a.

Let's choose the pumping length as $\frac{p^2}{2}$ and get a string of length p^2 which is $a^{p^2}=s$ from the language and assume that L is a regular language. Then, it must satisfy the pumping lemma. Make s=xyz, $x=a^{p^2}$ and $y=a^{p^2}$. Then, xy^iz becomes $a^{\frac{p^2(i+2)}{2}}$. This xy^iz must be in the language for all i. However, it only satisfies for 1,7,17... So, L is not regular.

b.