Chapter 5 Multivariable Calculus

Arthur Chen

September 20, 2022

Problem 1

Let $T:V\to W$ be a linear transformation, and let $p\in V$ be given. Prove that the following are equivalent:

- (a) T is continuous at the origin.
- (b) T is continuous at p.
- (c) T is continuous at at least one point of V.

For (a) to (b), let $p_n \in V$ be an arbitrary sequence such that $p_n \to p$. I claim that this implies $T(p_n) \to T(p)$ in W, meaning that T is continuous at p.

Although we can not use the translation invariance of the norm, we can derive a similar property for sequences when X is a vector space.

Lemma 1 Let V be a vector space. Translation is a continuous function.

Proof: Let $T: V \to V$ be defined such that T(x) = x + y, $x, y \in V$ are arbitrary, y is fixed. Let $\epsilon > 0$ be arbitrary, and let $\delta = \frac{\epsilon}{2}$. Then the translation of the δ -ball around x to the δ -ball around x + y lies inside the ϵ -ball around x + y.

Specifically, $B(x, \delta)$ is defined as

TO FINISH

Lemma 2 Let V be a vector space and d be a metric. Let $p_n \to p$ and $x \in X$ be arbitrary. Then $p_n + x \to p + x$.

Proof: Translation is continuous, and the product of continuous functions is continuous. All metrics are continuous, and the composition of continuous functions is continuous. Thus $p_n \to p$ implies

$$\lim_{n \to \infty} d(p_n + x, p + x) = d(p + x, p + x) = 0$$

by continuity.

Letting d_W be the metric on W, we have

$$d_W(T(x_n+p),T(p)) = d_W(T(x_n)+T(p))$$