x265 命令行参数教程精简版

欢迎阅读! 本教程精简了科普, 强烈建议先看懂有科普的完整版, 入门先看 x264 视频压缩教程综合版。有 什么不会的可以直接加群 691892901, 现在要压视频就去拿急用版吧 $(\cdot \cdot \omega \cdot \cdot)$ ゞ

ffmpeg, VapourSynth, avs2yuv 传递参数

ffmpeg -i 〈源〉-an -f yuv4mpegpipe -strict unofficial - | x265 --y4m - --output ffmpeg -i 〈源〉-an -f rawvideo - | x265.exe --input-res 〈宽 x 高〉--fps 〈輅/川/分数〉- --output -f 格式,-an 关音频,-strict unofficial 关格式限制,--y4m 对应"YUV for MPEG",两个"-"是 Unix pipe 串流 VSpipe 源.vpy --y4m - | x265.exe - --y4m --output avs2yuv 源.avs -csp〈色〉-depth〈深〉- | x265.exe --input-res〈宽 x 高〉--fps〈整/小/分数〉- --output avs2pipemod 源.avs -y4mp | x265.exe --y4m - --output

ffmpeg 查特定色度采样

ffmpeg -pix fmts | findstr 〈或 grep 关键字〉

检查/选择色深,版本,编译

x265.exe -V, -D 8/10/12 调整色深

多字体+艺术体+上下标.ass 字幕渲染 ffmpeg -filter complex "ass='F\:/字幕.ass'"滤镜

中途正常停止压制, 封装现有帧为视频 输入 Ctrl+C, x265. exe 自带功能

Bash 报错自动导出+命令窗里显示 x265. exe [参数] 2>&1 | tee C:\x265 报错. txt

8bit 还是 10bit 色深

首洗 10bit

分块

- --ctu<64/32/16, 默认64>编码树单元最大大小.大则有损压缩效率高,速度慢.一般建议保持默认,除 非片有类似 jpeg 边缘损失的老片设〈32〉, 分辨率特别小的老片设〈16〉
- --min-cu-size < 32/16, 默认 8 > 限制最小 cu 大小,简化计算步骤,因为使往后步骤 pu, tu 的划分也会 更大,用多一点码率换取编码速度的参数,建议日常环境使用 16 或快速编码环境使用 32
- --rect --amp〈开关,默认关,受 limit-modes 限制,开 amp 需 rect>pu 的对称与不对称划分,用更多编 码时间换取码率的参数. 只建议有比较充足时间, 分辨率大于 1440x810 或通篇颗粒的视频用

变换-量化

- --limit-tu<整数 0^4 默认关,tu-intra/inter-depth 大于 1>提前退出 tu 分块,以量化/残差编码质量为代价提速. <u>tu 大则易出现量化涂抹</u>,不利于暂停画质. 1 一般,画质编码,取分裂/跳过中花费最小的, 2 以同 ctu 内的首个 tu 分裂次数为上限,3 快速编码取帧内帧间附近 tu 分裂平均次数为上限,4 不推荐,将 3 作为未来 tu 的分裂上限,相比 0+20%速度
- --rdpenalty〈整数 0^2 2,默认关,tu-intra-depth=1 时失效;=2 则 32×32 帧内 cu 可用;=3 才支持 64×64 帧内 cu〉强制 tu 分块以提高细节保留降低涂抹.1 提高率失真代价而减少 32×32 tu,或设 2 强制 32×32 tu 分块.用途与 1 imit-tu 相反,但可理解为 tu 分块的下限,例如高 1 imit-tu,高 crf 时用 rdpenalty 2 避免 32×32 tu 造成涂抹太强画面糊掉的结果
- --tu-intra-depth; --tu-inter-depth \langle 整数 $1^{\sim}4$,配合 1imit-tu,默认 $1\rangle$ 空间域 tu 分裂次数上限,默认只在 cu 基础上分裂一次.决定量化质量所以建议开高.建议日常编码设在 2,提升画质设 $3^{\sim}4$
- --max-tu-size<32/16/8/4, 默认 32>大 tu 使压缩高而慢, 以及瑕疵检测能力越差. 码率换时间+画质. 编码已有边缘 损失的老片建议设 ctu 32, 而非 max-tu-size 16

帧间-动态搜索

于帧间逐块地找最小失真朝向 direction of minimal distortion/DMD, 组成一张张帧间矢量表的计算. 若找出的信息不足, 参考帧与分块的建立就欠缺基础.

- --me<hex~full,推荐 umh>选择简单~复杂的搜索滤镜,umh 平衡,star 之后收益递减.star <u>四角星搜</u>索,sea 是优化过的 esa 穷举,浪费性能
- --merange〈整数搜索范围,取决于动搜算法,建议 4 的倍数,最大 48 左右〉简单说 hex 选 16, umh-star 选>=32. 太大会同时降低画质和压缩率,因为找不到更好的,找到也是错的
- --analyze-src-pics〈开关,默认关〉允许动态搜索查找片源帧,用更多时间换取码率的参数
- --hme-search<hex~full, 关me, 待查>三份异分辨率原画分别宏-微观的搜索动态信息;
- --hme-range<三个整数,默认 16, 32, 48>对应 1/16, 1/4 和完整分辨率三个画面; 建议 16, 24, 40

帧间-基于块的子像素运动补偿

用于"允动画之移, 删静画所变"的智能压缩; 以及"将帧间矢量表中动态矢量的精度提高到¼像素"的保真处理

--subme〈整数默认 2,范围 1 $^{\sim}$ 7,24fps=4,48fps=5,60fps=6,+=7〉根据片源帧率用下表判断. 由于 x264 中 rdo 选项和 subme 并用,所以相比 x265 偏高. SATD 计算见 x264 教程

推荐范围	值	½像素迭代	½像素搜索方向	¼迭代	14搜索方向	算法
30fps 搭配 rdo	<3>	2次	4	1	4	SATD
48fps 搭配 rdo	<4>	2 次	4	2	4	SATD
60fps 搭配 rdo	<5>	1次	8	1	8	SATD
90fps 搭配 rdo	<6>	2 次	8	1	8	SATD
144fps 搭配 rdo	<7>	2 次	8	2	8	SATD

加权预测 weighted prediction

--weightb〈开关,默认关〉启用 B 条带的显,隐加权预测。条带所在 SPS 中可见 P, B 加权开关状态,及显加权模式下解码器须知的权重。光线变化和淡入淡出在低成本/旧动漫中少见,略提高压缩和画质

帧间-时域架网搜索

--mcstf<开关,默认关,会关闭多线程>mctf+双阈滤镜(作用于空间域),基础上增加了自动降噪能力

溯块向量搜索

与帧内编码并行, 给动态搜索提供溯块向量(cu 帧内/帧间朝向, 大小)的步骤.

- --max-merge $^{\circ}$ 整数 0° 5,默认 2 重设 merge mode 被选数量. 用更多时间换取质量的参数. 建议高压编码设 $^{\circ}$ 4),其它可设 $^{\circ}$ 2, $^{\circ}$ 3)(+_+)
- --early-skip〈开关默认关,暂无建议〉先查 2nx2n merge 被选,找不到就关 AMVP

初始化-Lookahead

过程见 x264 教程. 最先启动, 给视频帧分段并最终整合成 gop 内树叉状的参考结构后, 将其中的关键帧 递给下一步帧内编码. 一来冗余, 二来防止参考错误蔓延(照顾丢包人)

- **--scenecut**〈整数〉Lookahead 进程触发转场的阈值,或**--hist-scenecut**〈开关,默认关,推荐 8bit 下开,12bit 源会导致压制中途崩溃〉亮度平面边缘+颜色直方图 SAD 阈值触发转场. v3. 5+69 后编码彩色视频,尤其 $\frac{\text{HDR}}{\text{in}}$ 中超越传统转场近 20%,降低了正误判(设 I 帧,closed-gop 下帧间冗余效益降低)和负误判(不设 I 帧,分为多个带 I 块的 P 帧,帧内编码效益降低),因此除黑白视频外推荐. 目前以上推荐停留于理论. 注: hist-threshold于 v3. 5+69 被删
- --rc-lookahead<帧数量,范围 $1^{\circ}250$,推荐 keyint \div 2>指定 cutree 的检索帧数,通常设在帧率的 $2.5^{\circ}3$ 倍。高则占用内存增加延迟,低则降低压缩率和平均画质。cutree 会自动选择--rc-lookahead 和

max(--kevint, max(--vbv-maxrate, --bitrate) ÷ --vbv-bufsize×fps)中最小的值作为检索帧数

--no-cutree〈开关〉关闭少见 CTU 量化增强偏移. 只有近无损,可能 crf 小于 17 才用的到

P/B 帧推演: 算法见 x264 教程

- --b-adapt 2<所有情况,整数 0^2 , 建议 2>0 代表不设 B 帧
- --bframe-bias<整数-90²100,推荐默认>设立 B 帧判定偏移,增大的同时搭配低 pbratio 可增加 B 帧数量,用负值搭配高 pbratio 可以减少 B 帧数量

参数集

在网络抽象层单元/Network abstraction layer unit 中表现为含解码配置(profile, level)的数据包

- --opt-qp-pps<开关,默认关>据上个 GOP 改动当前 PPS 中默认的 qp 值.--opt-ref-list-length-pps<开关,默认关>据前 GOP 改当前 ref 值,而且是前后帧独立改动. 〈暂停推荐:播放器默认 PPS 跨 GOP 不变,造成解码兼容性错误. 应该用 hev1 而非 hvc1 封装进 ISO-BMFF?〉
- --repeat-headers〈开关,默认关〉在流未封装的情况下提供 SPS,PPS 等信息,正常播放 h. 265 源码

VBV - 基于缓冲条件的量化控制

手动指定网络/设备下所允许的缓冲速度 kbps 以控制 CRF/ABR 模式. 与 CRF 一并使用时叫 VBR

- --vbv-bufsize〈整数 kbps,默认关=0,小于 maxrate〉编码器解出原画后,最多可占的缓存每秒.bufsize÷maxrate = 编码与播放时解出每 gop 原画帧数的缓冲用时秒数. 值的大小相对于编完 GOP 平均大小.编码器用到是因为模式决策要解码出每个压缩步骤中的内容与原画作对比用
- --vbv-maxrate〈整数 kbps,默认关=0〉峰值红线. 用"出缓帧码率-入缓帧码率必须<maxrate"的要求,让编码器在 GOP 码率超 bufsize,即缓存用完时高压出缓帧的参数. 对画质的影响越小越好. 当入缓帧较小时,出缓帧就算超 maxrate 也会因缓存有空而不被压缩. 所以有四种状态,需经验判断
 - 大: GOP 大小=bufsize=2×maxrate, 超限后等缓存满再压,避开多数涨落,适合限平均率的串流
 - 小: GOP 大小=bufsize=1×maxrate, 超码率限制后直接压, 避开部分涨落, 适合限峰值的串流
 - 超:GOP 大小<bufsize=1~2×maxrate,超码率限制后直接压,但因视频小/crf 大所以没啥作用
 - 欠: GOP 大小>buf size=1~2×maxrate,超码率限制后直接压,但因视频大/crf 小所以全都糊掉
 - 由于 gop 多样, 4 种状态常会出现在同一视频中. buf/max 实际控制了这些状态的出现概率
- --crf-max \langle 整数 $0^{\sim}51\rangle$ 防止 vbv 把 crf 拉太高,可能适合商用视频但会导致码率失控

关键帧

IDR 刷新解码帧 instant decoder refresh

- 自身储存完整图片,但同时还负责 GOP 间划界分段,播完令解码器清理前 GOP 缓存的大写 I 帧 (¬_¬)/
- 清缓存是为了防止参考/内存错误传播,错误可能源自内存/主板/CPU/数据/解码器/网络/操作系统/电子战

RAP/随机访问点 random access point

- "访问"代表播出画面前获取数据的过程
- "任意"代表拖进度条,打开直播,使进度条上任意一点都要正常解码的目的,增加码率提升体验

CRA/DRA 净/脏任意访问 clean rand. access

- open-gop 状态下指定包括 GOP 间划界,GOP 内帧间参考,自身储存完整图片的 i 帧
- 附近的 ras1/rad1 帧与之相对应
- 「脏」指一组含 i 块的 P 帧,需要全部解码才能重建出 i 帧。压缩更高但相比 i 帧的解码更容易糊(脏)

BLA 断链访问帧 broken link access

- open-gop 间划界,访问不相关/不相连 GOP 的特殊 CRA 帧,用于不暂停播放的分辨率切换
- --no-open-gop〈开关,默认关,建议开〉不用 cra/bla,增加码率增加兼容,适合长 GOP 策略
- --min-keyint<整数>指定最小 IDR 间隔. 防止编码器在 closed-gop 里将两个 IDR 帧挨太近,导致 P 和 B 帧参考距离受限而设计的. 两种选择给出的画质一样
 - 设5或更高,省了设立一些IDR帧拖慢速度.快速编码/直播环境直接设=keyint
 - 设 1 来增加 IDR 帧,一帧被判做转场本来就意味着前后溯块的价值不高. 而 P/B 帧内可以放置 I 宏块,x264 会倾向插 P/B 帧. 好处是进度条落点在激烈的动作场面更密集
- --keyint〈整数〉指定最大的 IDR 帧间隔,单位为帧. 由于 min-keyint 有设立 IDR 帧的能力,建议照不精确索引下拖动进度条的偏移延迟 vs 码率设置. --keyint -1 即 infinite. 在长度短到不需要拖动进度条,或者用户一定不会拖动进度条的视频可以使用以降低码率
- --fades〈开关,默认关〉找流中的虚实渐变 fade-in,给小到帧间条带(slice,一组横向 ctu),整个帧间范围改用 I 条带,并根据渐变后最亮的帧重设码率控制历史记录,解决转场致模糊的问题

参考帧

- RASL任访略前导,RADL任仿解前导 random access skipping/decoding lead
- 打开直播,用户拖动进度条落在 CRA 附近,找不到 I 帧时指定应该解码 decode 还是略过 skip 的标签化 P 帧
- --radl<整数默认 0,小于连续 B 帧,建议 $2^{\sim}3$ >原理见上
- **--ipratio**、--**pbratio**、浮点,默认 1.4, 1.3 P 帧相比 IDR/I 及 B/b 帧相比 P 帧的量化值递增. B 帧双向参考能从更多帧中找到参考源,因此量化强度最高
 - 真人录像片源中保持默认
 - 动漫片源中连续长 B 帧出现几率增多,有时会找不到合适的参考源导致画质损失,用<1.2>或更小来分配一定码率
 - 可据比例换算帧类型的 qp, 如 I-qp17, P-qp20, B-qp22 即--qp/crf 17 --ipratio 1.1765 --pbratio 1.1
- --bframes<整数 $0^{\sim}16$ >最多可连续插入的 B 帧数量. $<3^{\sim}5$ >快,<8>电影平衡,<12 左右〉正常,若播放设备配置偏高的话可放心的设在<13 左右〉 bframes 大于 8,同时 keyint 大于 250 会大增内存占用

帧内编码

组成参考源(I 帧)+参考帧的帧间结构后,数据会集中到 I 帧/I 块上. 故先使用单图无损压缩——补偿参考

源,平滑(3-tap/ss),和编码 PB(趋平/夹角/DC)三步. **补偿**解决 PB 位于边角,或等不到其它 CB 编码完成而缺失的参考源; **平滑预处理**即根据情况,选择 3-tap FIR 或强力平滑滤镜 strong intra smoothing,卷积插值出「纯预测 PU」

- --constrained-intra〈开关,默认关,不可备份+长期存档〉缺生成参考点的 CB 时用帧内块或默认值,不用帧间块生成参考点,降低参考错误传播距离,降低压缩率和速度换取数据寿命
- --fast-intra; --b-intra<开关, rd 大于 4 时关, 推荐开>先查夹角模式 2, 10, 18, 26, 34, 再加一倍精度到模式 5, 15, 21, 31, 最后解锁最高精度(共搜索 10 种), 关闭则逐一搜索全部 33 种夹角造成浪费, 推荐开. b-intra 代表 B 分片同样进行帧内编码压缩
- --no-strong-intra-smoothing<开关,建议不动>因筛选条件苛刻,同时平滑的是参考点而非 pu,而且能去色带,所以不动

量化-码率质量控制模式

CRF 上层模式

- --**crf**〈浮点范围 $0^{\circ}51$,默认 23〉据"cplxBlur,cutree,B 帧偏移"给每帧分配各自 qp 的固定目标质量模式,或简称质量呼应码率模式,统称 crf. 素材级画质设在 $16^{\circ}18$,收藏 高压画质设在 $19^{\circ}20.5$,YouTube 是 24.由于动画和录像的内容差距,动画比录像要给低点.理论上 crf 高=量化损失多,率失真优化也就越慢;但测试出来是 crf+2,4k4:4:4:12 12bit 会快 0.5fps
- --**qpmin**〈整数, $0^{\sim}51$ 〉最小量化值.由于画质和优质参考帧呈正比,所以仅高压环境建议设 $14^{\sim}18$
- --**qpmax**〈同上〉在要用到颜色键,颜色替换等需要清晰物件边缘的滤镜时,可以设--qpmax 26 防止录屏时物件的边缘被压缩的太厉害,其他情况永远不如关 cu/mbtree(*~▽^)
- --qcomp<浮点范围 $0.5^{\sim}1$,一般建议默认 0.6>cp1xBlur 迭代值每帧能迭代范围的曲线缩放. 越小则复杂度迭代越符合实际状况,crf,mb-cutree,bframes 越有用,搭配高 crf 能使直播环境可防止码率突增. 越大则 crf,mb-cutree,bframes 越没用,越接近 cqp. 曲线缩放原理见 <u>desmos 互动示例</u>
- --rc-grain〈开关,tune grain 时开启〉通过 cplxBlur 抑制 qp 判断被噪声带偏,胶片颗粒片源用
- --cplxblur<浮点 0~100,默认 20>第−1 帧不存在,无法算出第 0 帧的 cplxBlur 所以直接指定
- **×rceq**〈仅 x264, 字串, 默认 cplxBlur^(1-qComp)〉可以少算一步 qcomp, cplxBase 还需 qcomp, 但不写 qcomp 就是推荐的 0.6, 所以不用写也行

ABR 上层模式

编码器自行判断量化程度,尝试压缩到用户定义的平均码率 average bitrate 上,速度最快

--bitrate〈整数 kbps〉平均码率. 若视频易压缩且码率给高,就会得到码率更低的片子; 反过来低了会不照顾画质强行提高量化,使码率达标. 如果给太低则会得到码率不达标,同时画质差的片子. 平均码率模式, 除 2pass 分隔, 一般推流用的"码率选项"就是这个参数, 速度快但同时妥协了压缩

SBRC 下层模式 - 可搭配 CRF/ABR/CRF-VBR/ABR-VBR

--sbrc<启用分段式率控制 segment based rate control, 实现 DASH, M3U8 串流用的功能, 要求 min-keyint=keyint, no-open-gop>由于提高了初始 crf 值的利用率,所以建议搭配--cplxblur=crf 使用

CQP 双层模式

--**qp**〈整数,范围 0 $^{\sim}$ 69〉恒定量化。每±6 可以将输出的文件大小减倍/翻倍。直接指定 qp 会关 crf,影响其后的模式决策,综合画质下降或码率暴涨,所以除非 yuv4:4:4 情况下有既定目的,都不建议

2pass-ABR 双层模式

先用 crf 模式分析整个视频总结可压缩信息,后根据 abr 模式的码率限制统一分配量化值.有 pass 2 给特别高的平均码率,输出最小损失的最小体积近无损模式,以及 pass2 给码率硬限的全局整体压缩模式

- --pass **1** 〈导出 stats〉; --pass **2** 〈导入 stats〉; --stats 〈文件名〉默认在 x265 所在目录下导出/入的 qp 值逐帧分配文件,一般不用设
- --slow-firstpass<开关>pass1里不用 fast-intra no-rect no-amp early-skip ref 1 max-merge 1 me dia subme 2 rd 2,也可以手动覆盖掉

Analysis-2pass-ABR 双层模式

在普通 2pass 基础上让 pass1 的帧内帧间分析结果 pass 到 pass2, 减少计算量

- --analysis-save, --analysis-load<"文件名">指定导入/出 analysis 信息文件的路径,文件名
- --analysis-save-reuse-level, --analysis-load-reuse-level<整数 1~10, 默认 5>指定 analysis-save 和 load 的信息量,配合 pass1 的动态搜索,帧内搜索,参考帧等参数.建议 8/9
 - <1>储存 lookahead
 - 〈2==4〉+同时储存帧内/帧间向量格式+参考
 - <5==6>+rect/amp 分块
 - <7>+8x8cu 分块优化。
 - 〈8==9〉+完整 8x8cu 分块信息
 - 〈10〉+所有 cu 分析信息(^... ^)/
- --dynamic-refine<开关,默认关>自动调整 refine-inter, x265 官方建议搭配 refine-intra 4 使用,

相比手动设定提高了压缩率

- --refine-inter<整数 0~3, 默认 0>限制帧间块的向量格式, 取决于 pass1 分析结果是否可信
 - <0>完全遵从 pass1 的分块深度和向量格式
 - 〈1〉分析所有 pass2 中与 pass1 相同分块的向量格式,除 2pass 中比 1pass 更大的分块
 - 〈2〉一旦找出最佳的动态向量格式就应用于全部的块,2Nx2N 块的 rect/amp 分块全部遵从 pass1,仅对 merge 和 2Nx2N 划分的块的动态向量信息进行分析
 - <3>保持使用 pass1 的分块程度,但搜索向量格式
- --refine-intra<整数 0~4, 默认 0>限制帧内块的向量格式,取决于 pass1 分析结果是否可信
 - <0~2>同上, <3>保持使用 pass1 的分块程度, 但优化动态向量; <4>=pass1 丢弃不用
- --refine-mv (1^3) 优化分辨率变化情况下 pass2 的最优动态向量,1 仅搜索动态向量周围的动态,2 增加 搜索 AMVP 的顶级候选块,3 再搜索更多 AMVP 候选($^\circ$ - $^\circ$;))
- --scale-factor<开关,要求 analysis-reuse-level 10>若 1pass 和 2pass 视频的分辨率不一致,就使用这个参数
- --refine-mv-type avc 读取 api 调用的动态信息,目前支持 avc 大小,使用 analyse-reuse 模块就用这个参数+avc (原文解释的太模糊,且未测试)
- --refine-ctu-distortion<0/1>0 储存/1 读取 ctu 失真(内容变化)信息,找出 pass2 中可避的失真

2pass 转场优化(内容已落后, 待更新)

- --scenecut-aware-qp〈整数默认关,2 仅转后,1 仅转前,推荐3 前后降低,仅 pass2 用〉转场前/后拉低默认5 qp 以增加画质,原理是转场本身就缺参考源,所以提高已有参考源的画质
- --masking-strength<逗号分隔整数>于 sct-awr-qp 基础上定制 qp 偏移量. 建议根据低~高成本动漫, 真人录像三种情况定制参数值. scenecut-aware-qp 的三种方向决定了 masking-strength 的三种方向. 所谓的非参考帧就是参考参考帧的帧,包括 B, b, P 三种帧...大概
 - sct-awr-qp=1 时写作〈转前毫秒(推 500)〉,〈参考±qp〉,〈非参±qp〉
 - sct-awr-qp=2 时写作〈转后毫秒(荐 500)〉,〈参考±qp〉,〈非参±qp〉
 - sct-awr-qp=3 时写作〈转前毫秒〉,〈参考±qp〉,〈非参±qp〉,〈转后毫秒〉,〈参考±qp〉,〈非参±qp〉
 - scenecut-window, max-qp-delta, qe-delta-ref, qp-delta-nonref<被 x265 v3.5 移除>
- --analysis-reuse-file<文件名, 默认 x265_analysis.dat>若使用了 2pass-ABR 调优, 则导入 multi-pass-opt-analysis/distortion 信息的路径,文件名

Analysis-Npass 间调优

在 Analysis-pass1~2 之间加一步优化计算. 实现比普通 2pass 更精细的码率控制, 1~N 也行

--multi-pass-opt-analysis〈开关,默认生成 x265_analysis.dat〉储存/导入每个 CTU 的参考帧/分块/

向量等信息. 将信息优化,细化并省去多余计算. 需关闭 pme/pmode/analysis-save load

- --multi-pass-opt-distortion<开关,进一步分析 qp>根据失真(编码前后画面差). 需关闭 pme/pmode/analysis-save|load
- --multi-pass-opt-rps<开关,默认关>将 pass1 常用的率参数集保存在序列参数集 SPS 里以加速

Analysis-pass2-ABR 天梯模式

--abr-ladder<实验性的苹果 TN2224/官方表示 bug 已修复,文件名. txt>编码器内部实现 analysis 模式 2pass abr 多规格压制输出. 方便平台布置多分辨率版本用. 可以把不变参数写进 pass1+2,变化的写进 txt. 格式为"[压制名:analysis-load-reuse-level:analysis-load] 〈参数 1+输出文件名〉"

x265.exe --abr-ladder 1440p8000_2160p11000_2160p16000.txt --fps 59.94 --input-depth 8 --input-csp i420 --min-keyint 60 --keyint 60 --no-open-gop --cutree

1440p8kb 2160p11kb 2160p16kb. txt {

[1440p:8:Anld 存档 1] --input 视频.yuv --input-res 2560x1440 --bitrate 8000 --ssim --psnr --csv 9.csv --csv-log-level 2 --output 1.hevc --scale-factor 2

[2160p1:0:ni1] --input 视频.yuv --input-res 3840x2160 --bitrate 11000 --ssim --psnr --csv 10.csv --csv-log-level 2 --output 2.hevc --scale-factor 2

[2160p2:10:Anld 存档 3] — input 视频.yuv — input—res 3840x2160 — bitrate 16000 — ssim — psnr — csv 11.csv — csv-log-level 2 — output 3.hevc — scale-factor 0 } analysis—load 填 nil(不是 nul)代表略过

近无损压缩, 真无损压缩双层模式

- --lossless<开关>跳过分块,动/帧/参搜索,量/自适量化等影响画质的步骤,保留率失真优化以增强参考性能。直接输出体积非常大的原画,相比锁定量化方法,这样能满足影业/科研用,而非个人和一般媒体所需,真无损导出有几率因为参考质量提升,会比近无损小
- --tskip<开关,默认关,需 rd>2>4x4 tu 上跳过 DCT 变换,可保留深度分块/纹理密集处的放大细节
- --cu-lossless<开关,默认关>将"给 cu 使用无损量化 (qp 4)"作为率失真优化的结果选项之一,只要码率管够 $(符合 \lambda = R/D)$ 则不量化.用更多码率换取原画相似度,无损源能提高参考冗余

自适应量化

CRF/ABR 设定每帧量化/qp 后,方差自适应量化 variance adaptive quantizer 再根据复杂度判断高低频信号,来实现精确到宏块的 qp 分配过程. 讨论时注意 aq 与 vaq 的混淆

--aq-mode<整数 0~3>据原画和 crf/abr 设定,以及码率不足时(crf<18/低码 abr)如何分配 qp

- 〈1〉标准自适应量化(急用,简单平面)
- <2>+启用 aq-variance,自动调整 aq-strength 强度(录像-电影以及 crf<17 推荐)
- (3)+码率不够用时倾向保暗场(接受更明显的涂抹失真,慎用)
- 〈4〉+码率不够用时更加倾向保纹理(接受平面上的涂抹失真,实验性,慎用)
- --aq-strength<浮点>自适应量化强度. 搭配 aq-mode, 如动漫 1:0.8, 2:0.9, 3:0.7 用. 录像上可加 $0.1^{\sim}0.2$, 画面混乱/观众难以注意平面时可再增加. 注意低成本动漫的平面居多,因此码率不足时反而要妥协纹理
- **--hevc-aq**〈开关〉以¼tile 而非 aq 的边缘高频信息实现自适应. 据结论 $\underline{\alpha}$, $\underline{\beta}$: hevc-aq 比 aq 4 快且适合 动漫,而 aq 4 更适合录播(?)目前学术方-官方-第三方间信息割裂,所以暂无适解
- --aq-motion〈开关,实验性〉根据动态信息微调自适应量化的效果 mode 和强度 strength
- --qg-size<64/32/16/8, 需≥min-cu-size>最小支持自适应量化的 cu. 默认 64 可换取更多速度. 高画质/平衡都建议设在 32[~]16
- --cbqpoffs, --crqpoffs〈整数〉调整蓝,红色平面相比亮度平面的 qp 值差异,负值降低量化。若当前版本 x265 的算法把色度平面的量化变高,可以用这两个参数补偿回来。由于编码器一直不擅长处理红色,而人眼又对红光敏感所以为了画质建议比 cb 面设更低(\triangle -3 左右)的值

x265 jpsdr-mod 参数:

--aq-auto<对应下表 8bit 四开关的十进制,默认 0 关>. --aq-mode 5<开关>启用 aq-auto 的条件值

值	逐帧 aq	延迟逐帧 aq(hysteresis)	HDR 兼容	aq-mode 5
1	√			
2, 3	_	\checkmark		
4	√		√	
8	√			√
6	√	\checkmark	√	
10	~	\checkmark		√
12	~		√	√
14	~	\checkmark	√	√

- --aq-fast-edge〈开关,需 aq-mode4, 5〉边缘检测跳过高斯模糊过滤,不适合脏片源
- --aq-bias-strength<浮点,默认 1,需 aq-mode3, 5>aq-strength 偏给暗场的程度
- --aq-strength-edge<浮点 0~3,默认=aq-strength,需 aq-mode4, 5>偏给纹理的 aq-strength
- --aq-bias-strength-edge<浮点,默认=aq-bias-str., 需 aq-mode5>aq-s-edge 偏给暗场的程度

模式决策

mode decision 整合搜来的信息,宏观地定制分块参考量化等细分方案. 因为选码率最小的压缩方案不平

衡, 画质容易崩坏. 注意片源含明显边缘失真时反而要减少决策优化

- --rd<1/2/3/5,默认 3,大则慢>优化模式决策 md 的程度. 建议快速用 1, 2; 高压用 3; 片源数据无损 (非视觉无损) 时用 5
 - 〈1〉优化帧内参考, 并块/跳过决策, 含明显边缘失真时用
 - 〈2〉+分块决策, 含明显边缘失真时用
 - 〈3〉+帧间决策, 高压高量化时可平衡
 - 〈5〉+向量/帧间方向预测决策, 比3慢一倍, 片源含边缘失真时会强化失真
- --limit-modes<开关>用附近的 4 个子 CU 以判断用 merge 还是 AMVP, 会大幅减少 rect/amp 的效果,明显提速. 会增大或减少体积,微降画质但难以察觉
- --limit-refs<整数 0~3, 默认 3>限制分块用信息可参考性. <0 不限>压缩高且慢; <1>用 cu 分裂后的信息+差异信息描述自身(推荐); <2>据单个 cb 的差异信息建立 pu; <3=1+2>
- --rskip〈整数 $0^{\sim}2$ 〉前 cu 分块被跳过时,判断后 cu 接着搜索分块还是提前退出的参数. 画面越接近录屏/低成本动漫就用得越多
 - <0>继续分析. 适合信噪比差, 噪声高的源. 原画很干净则不如<1>
 - <1>rd0~4 下据临 cu 是否细分而定;rd5~6 下看附近 2Nx2N cu 分块难度而定,高压和一般情况推荐
 - 〈2〉直接对比 cu 纹理密度 edge density,快且不比前者差,但存在对源的画质要求及客观判断"画质"能力的要求

- --rskip-edge-threshold<0~100 默认 5: 趋向于分块,需 rskip 大于 1>用 Sobe1 算法获取 cu 纹理密度,除以块所占面积的百分比值.纹理密度>阈值=分块.量化强度越高越关键,与 x264 deadzone 略像.8×8 或 16×16 块下默认 5%即含 3 或 12 个系子就分
- 〈像素风〉据像素变大的程度决定. 如画面除以2回到1x1像素大小,则使默认值乘以2以提速
- 〈抗涂抹〉rskip 2 rskip-edge-threshold 3,即"有一点不平就分块". 比 rskip 0 快,用于已知要保留雪景等全屏大量动态信息的源的情况下,节省传统分块计算时间用. 可以在不添噪点的情况下达成抗涂抹的目的
- --tskip-fast<开关,默认关>跳过 4x4 tu 的变换,忽略部分系子 coefficients 来加速,CbCr-tu 也取决于 Y 块是否被跳过,在全屏小细节的视频中有显著加速效果,建议除高压以外的任何环境使用

率失真优化控制

优化量化

- --rdoq-level<整数, 范围 0 关²>abr/crf 分配量化值的宏观调控强度, 大则慢
 - 〈1〉逐分块进行率失真优化量化,psy-rdog 开启则倾向低量化
 - 〈2〉对比 4x4 块高频信息/残差是否有利于整个编码组(CTU 内分块)画质,同时对所有系子进行同类分析,大量减少4x4 块,降低 psy-rdoq 效果,适合一般及高压缩用途
- --psy-rdoq<浮点 0~50,默认 0 关>心理视觉往高影响量化块的能量 J, 改量化偏好为保留细节. 值随分辨率增加而增加,随片源边缘失真增加而降低,并随量化强度增加而增加

- <0~0.1>片源有明显边缘失真,优化则降低画质
- 〈2.3~2.8〉电脑录屏,中低成本动漫等几乎没有动态背景变化的情况
- <3~4.8>分辨率从 1280x720 到 3840x2160 的高成本电影动漫,要求片源无明显边缘失真
- <7~12+psy-rd 3, tskip, tskip-fast, ipratio 1.2, no-sao>留噪. 保留的细节面积越小设得越高

--nr-intra, --nr-inter<整数 0 关 $^{\sim}2000$,默认 0, 1920×1080 不建议超 250>基于 mc,给量化前变换完的 i 帧降噪. 其中 nr-intra 不如第三方降噪滤镜. 但帧间/时域上降噪的 nr-inter 和 x264 的 hqdn3d 类似,可以拉近参考源和参考帧的差距/残差,实现在 rc-grain 上进一步稳定 qp 计算,且在噪点源中相比模糊掉纹理更容易破坏噪点,结果类似低配双阈滤镜

优化模式决策

随片源边缘失真增加而降低,并随量化强度增加而增加

- <0~0.1>片源有明显边缘失真,优化则降低画质
- <0.2>高压或片源暗场有一点点边缘失真
- <0.5~2>根据要保留的边缘峭度以及文件大小,VBR 模式的峰值码率决定
- <1.5~2.5>至少2k的录像片源,根据分辨率和边缘损失程度决定

- --dynamic-rd〈整数 $0^{\sim}4$,rd 小于 5〉给 VBR 限码画面调高 rd 止损. $1^{\sim}4$ 为 rd 搜索面积倍数, 大则慢
- --splitrd-skip〈开关,默认关〉在"所有当前 CU 分割致失真程度之总和"大于"同帧 CU 分割致失真程度之总和"时,不独立计算 rd 值以加速
- --qp-adaptation-range<浮点 1~6,默认 1>psy 参数改动 qp 的最大范围,宏观影响大,片源含明显边缘失真时会强化失真

优化策略-随量化强度增加而增加

图: 左1源有微量边缘 失真以及颗粒.2⁴是高 量化导致的 worm 失真, 蚊噪, 块失真. 5 对应失 真用 psy-rd(oq), (limit) sao, deblock, aq, 降 crf 实现抑制

crf 25
rd 1
psy-rd 0
psy-rdoq 0
deblock -3:0
aq-mode 3
aq-strength 1
qg-size 8
max-tu-size 4
no-cutree
no-sao

crf 25
rd 1
psy-rd 0
psy-rdoq 0
deblock -3:0
aq-mode 3
aq-strength 1
qg-size 8
max-tu-size 32
no-cutree
no-sao

crf 25
rd 1
psy-rd 0
psy-rdoq 0
deblock -3:0
aq-mode 3
aq-strength 1
qg-size 64
max-tu-size 32
no-cutree
no-sao

crf 22 rd 3 psy-rd 1.5 psy-rdoq 2.3 deblock 0:-1 hevc-aq aq-strength 0.9 qg-size 8 max-tu-size 16 cutree limit-sao

signal-to-noise ratio

峰值信噪比 peak

PSNR 信号强度用分贝 dB 表示. 信噪比 SNR 即信号÷其中噪声,用于测量软硬件处理,传输,变换信号的所剩. dB 用对数线 $y=\log(x)$ 显示. \log 同样是为了突出重点范围内的变化,不管信噪比太好/差的情况. 指数增长应用于信噪比中,如信号增长 1dB=音量/光压×2. 峰值更适合有实际最大值的数字信号. 转 dB 的算式即 $PSNR(8bit)=10\log_{10}\frac{2^{8bit}-1}{MSE}(dB)$. -1 代表从 0 开始数, \log_{10} 对齐十进制

环路滤波-去块滤镜

- 平滑 4: a 与 1 皆为帧内块,且边界位于 CTU/宏块间,最强滤镜值
- 平滑 3: a 或 1 皆为帧内块,但边界不在 CTU/宏块间
- 平滑 2: a 与 1 皆非帧内块, 含一参考源/已编码系子
- 平滑1: a 与 1 皆非帧内块,皆无参考源/已编码系子,溯异帧或动态向量相异
- 平滑 0: a 与 1 皆非帧内块,皆无参考源/已编码系子,溯同帧或动态向量相同,滤镜关
- --deblock〈平滑强度:搜索精度,默认 1:0,推荐 0:0,-1:-1,-2:-1〉两值于原有强度上增减
 - 平滑〈≥1〉时用以压缩,〈0~1〉时略微降低锐度,适合串流
 - 平滑<-2~-1>适合锐利视频源, 4k 电影, 游戏录屏. 提高码率且会出现块失真
 - 平滑<-3~-2>适合高码,高锐动画源和高画质的桌面录屏. 高码率,增块失真,但高码动漫观感还是比1好

• 搜索〈大于 2〉易误判, 〈小于-1〉会遗漏, 建议保持〈0~-1〉, 除非 gp>26 时设〈1〉

环路滤波-取样迁就偏移

--no-sao<关闭--sao,默认开 sao>由于针对的是强量化环境, 所以高画质源+crf<17 的情况下可以关

- --sao-non-deblock〈开关〉启用后,未经由 deblock 分析的内容会被 sao 分析 ●. ●
- --no-sao-non-deblock<默认>sao 分析跳过视频右边和下边边界(/)u(\)
- **--limit-sao**〈开关,默认关〉对一些计算采用提前退出策略,不是改善画质的,但 crf ≈ 18,cutree 和 bframes 16 下可以开,以保留一定影响
- **--selective-sao** $<0^{\sim}4$,默认 0>从条带(横向一组 CTU)角度调整 sao 参数,1 启用 I 条带 sao,2 增加 P 条带,3 增加 B 条带,4 所有条带.可看作新的 sao 控制方式,或搭配 1 imit-sao 的新方法

熵编码/残差编码/文本压缩-CABAC

游程编码将降维后的块/条带丢给熵编码,是最后的文本压缩(率失真优化要解码检查每道压缩,所以要经历多次熵编码). x264/5 中使用了 context adapt. binary arithmetic coding. 相比于 cavlc 与霍夫曼编码, cabac 是现代编码器(压缩包到音视频)的核心算法之一

SEI 补充与优化消息

supplemental enhance info 记录每帧的补充信息.

- --hrd〈开关,默认关,开 vbv〉将假设对照解码参数 hypothetical ref. decoder param. 估计不丢包无延迟的瞬间码率,写在每段 sps 及 sei 里,对专门配置了网络串流,NAS 播放自动缓冲的播放器有好处?但应该没啥用
- --hash<整数 $0^{\sim}3$ 分别代表默认的关,checksum,crc 和 md5>sei 里加效验码,播放时可用以对图像重建纠错来减少失真,md5 播放所需算力较高,checksum 最快但有忽略概率,crc 平衡
- --single-sei〈开关〉只写一个装全部 sei 信息的大 NALU 而非每 gop 都写,提高很小一点压缩率
- --film-grain<文件名>将如 <u>libfgm</u>提取的纹理细节模型 film grain model 写进 SEI,将编码压缩掉的细节另存档,兼容解码器播放时恢复的功能
- --idr-recovery-sei<开关>sei 里写进 idr 帧,串流时防止整个 gop 都找不到参考帧而崩坏的机制
- --frame-dup〈开关默认关,必须开 vbr 和 hrd,有 bug〉将 2^3 面近似的连续帧换成同一帧

--dup-threshold〈整数 $1^{\sim}99$,默认 70〉相似度判定值,默认达 70%重复就判为相似

线程节点控制

参考自 pugetsystems: Cinebench,虚幻 5 上 5800X 比 X3D 快近 10%反映了持续计算下 5800X 频率高的优势; Lightrooms 等单图处理上 5800X3D 跑过了 5800X, Photoshop 2022 上 5900X, X3D, X 打平; 剪辑视频并非持续高负载,因此 Ae, Pr, DaVinci 上 X3D 和 X 平手. 所以选择时首先看生产力软件的优化,其次看任务类型. 3D 缓存处理器比同型号更慢的原因是目前视频编码更需要算力;若程序有大量内存读写间歇, X3D 就能用读写赢回速度,但优化烂又是另一回事了...

--pools<整数/加减符,,,, 默认+,+,+,*x264 中--threads 的升级版. 如--pools +,-,-,-表明 pc 有 4 个节点,仅占用第一个. +代表全部处理器线程. 这样能防止多处理器系统上跑一个 x265 时,所有处理器访问第一个节点的内存而造成延迟等待. 应该是跑和节点一样多的 x265,每个节点各自运行. 单 cpu 系统直接作--threads 用,如--pools 8 指该 pc 有 1 个节点,占用该节点上处理器的 8 个线程

不要企图设置大于实际线程数的 pools/threads 提速. 会因为处理器随机并发的特性从任务数量上冲淡参考帧建立等要之前的步骤算完才能开始的时间窗口. 否则编码器只能跳过参考压缩, 造成处理器占用降低, 码率增加以及压制变慢的副作用

TR1000~2000 系处理器是用多个节点拼出来的,所以单处理器的内部要按多个节点分开算,特例是2990WX,2970WX,核心组1和3没有内存控制器,0和2有内存控制器,所以1,3不能用

- --pmode〈开关,官方建议 rd 3/5 占不满算力的情况下开〉多线程模式决策,有难以应付噪点的问题
- --asm<avx512>avx512 was a mistake Intel engineer

多线程 vs 多参考

用多线程一次编码多帧来占满算力, 还是一次只编一帧, 确保所有参考画面可用的决策. 确保所有帧同时

- --pme〈开关,默认关. <u>任意年代〉=16 核处理器</u>〉使用平行动态搜索 parallel ME. 解决了单核性能不足导致 me 后的编码步骤等待,占用降低速度变慢的问题. 让旧服务器超多核中低频处理器变得更有编码性价比. 而达到 16 核的处理器也能提速
- **--frame-threads**〈整数 $0^{\sim}16^{\sim}$ 线程数 /2,默认 0 自动〉同时压多少帧,设 1 能让前后整帧可参考,非 1 就只给 ctu 下方的一行 ctu. 设 1 的代价是 cpu 占用显著降低,压制减速 (-,-)
- --lookahead-threads〈整数 0~16~线程数 ÷ 2,默认 0 (关闭) > 分出多少线程专门找参考,而非与帧编码 一同占线程,可能只有开 frame-threads 1 时手动启用以增加 cpu 占用,pme 和 pmode 同理

色彩空间转换, VUI 信息, HDR 视频, 黑边跳过

纯元数据,写错或忘写也可以改.HDR 电视只读取 maxcll 和 maxfall,所以 master-display 可略.光强/ 光压单位 Candela 等于尼特, 即 1cd=1nit. 因 bt601, 709, HDR-PQ, HLG 标准重视的亮度范围, 曲线所 异(偏亮或偏暗), 故需编码, 心理学优化, 模式决策的重适配; 否则即错适配源的诞生

HDR 与"不手动干预, 噪声小的情况下可发出极大, 极小声的音响"所同, 即「重硬件轻软件」. 色彩格式的 具体转换变量与算法标准见 T-Rec 建议的 Table E.3 所在处, 2015 版为 p347~353 的 5~6 页

--max-cll<最大内容光强,最大平均光强>压 HDR 一定照源视频信息设,找不到不要用,例子见图

: 10 bits Bit depth Bits/(Pixel*Frame) : 0.120 Stream size : 21.3 GiB (84%) Default : Yes Forced : No Color range : Limited Color primaries : BT.2020 Transfer characteristics: PO Matrix coefficients : BT.2020 non-constant Mastering display color primaries: R: x=0.680000 y=0.320000, Maximum Content Light Level: 1000 cd/m2 Maximum Frame-Average Light Level: 640 cd/m2 White point: x=0.312700 y=0.329000

数据密度【码率/(像素×帧率)】: 0.251

流大小: 41.0 GiB (90%)

位深: **10** 位

编码函数库: ATEME Titan File 3.8.3 (4.8.3.0)

Default: 是 Forced: 否 色彩范围: Limited 基色: BT.2020 传输特质: PQ

矩阵系数: BT.2020 non-constant 控制显示基色: Display P3

控制显示亮度: min: 0.0050 cd/m2, max: 4000 cd/m2

最大内容亮度等级: 1655 cd/m2 最大帧平均亮度等级: 117 cd/m2

图 1: cll 1000,640. master-display 由 G(13250… 开头, L(10000000, 1)结尾

--colorprim<字符>播放用基色,指定给和播放器默 认所不同的源, 查看视频信息可知: bt470m,

图 2: cll 1655,117/L(40000000,50)/colorprim bt2020/colormatrix bt2020nc/transfer smpte2084

--colormatrix<字符>播放用矩阵格式/系数: fcc, bt470bg, smpte170m, smpte240m, GBR, YCgCo, bt2020nc, bt2020c, smpte2085, chroma-derived-nc, chromaderived-c, ICtCp, 不支持 bt2020nc

--transfer< 字符>传输特质: bt470m, bt470bg, smpte170m, smpte240m, linear, log100.log316,

iec61966-2-4, bt1361e, iec61966-2-1, bt2020-10, bt2020-12, smpte2084, smpte428, arib-std-b67, 上图 PQ 即 st. 2084 的标准, 所以参数值为 smpte 2084

--master-display<G(x, y)B(,)R(,)WP(,)L(,)>写进 SEI 信息里, 告诉解码端色彩空间/色域信息用, 搞 得这么麻烦是因为 HDR 作为新标准不敢确定播放硬件需要什么信息, 所以就把 master-display 写成必须 参数了. 绿蓝红 GBR 和白点 WP 指马蹄形色域的三角+白点 4 个位置的值×50000. 光强 L 单位是 candela $\times 10000$

SDR 视频的 L 是 1000, 1. 压 HDR 视频前一定要看视频信息再设 L,见下

DCI-P3 电影业内: G(13250, 34500) B(7500, 3000) R(34000, 16000) WP(15635, 16450) L(?, 1) G(15000, 30000)B(7500, 3000)R(32000, 16500)WP(15635, 16450)L(?, 1) bt709: bt2020 超清: G(8500, 39850)B(6550, 2300)R(35400, 14600)WP(15635, 16450)L(?, 1)

RGB 原信息(对照//数格式的视频信息,然后选择上面对应的参数):

DCI-P3: G(x0. 265, y0. 690), B(x0. 150, y0. 060), R(x0. 680, y0. 320), WP(x0. 3127, y0. 329)

- bt709: G(x0.30, y0.60), B(x0.150, y0.060), R(x0.640, y0.330), WP(x0.3127, y0.329)
- bt2020: G(x0.170, y0.797), B(x0.131, y0.046), R(x0.708, y0.292), WP(x0.3127, y0.329)
- --display-window〈←, ↑, →, ↓〉指定黑边宽度以跳过加速编码,或者用--overscan crop 直接裁掉

IO(input-output, 输入输出)

- --seek〈整数,默认 0〉从第 x 帧开始压缩--frames〈整数,默认全部〉一共压缩 x 帧
- --output〈字符串,两边带双引号〉例:--output "输出文件地址+文件名" "输入文件地址+文件名"
- --input-csp<i400/i422/i444/nv12/nv16>在输入非默认 i420 视频时需要的参数,rgb 空间需转换
- --dither<开关>使用抖动功能以高质量的降低色深(比如 10bit 片源降 8bit),避免出现斑点和方块
- --allow-non-conformance〈开关〉不写入 profile 和 level,绕过 h. 265 标准的规定,只要不是按照 h. 265 规定写的命令行参数值就必须使用这个参数♥(-^_^*)♪
- **--force-flush**〈整数 0^2 2,默认 0〉录像,录屏和损坏源用。当输入帧速度慢日常迸发很多帧时的措施:
 - <0>等全部帧输入再编码
 - <1>不等全部帧输入完就编码
 - <2>取决于条带种类,调整 slicetype 才能用
- --field〈开关〉输入分行扫描视频时用,自动获取分场视频的帧率+优先场,替代了--interlaced参数
- --input-res〈宽 x 高〉在使用 x265 时必须指定源视频的分辨率,例如 1920x1080
- --fps〈整数/浮点/分数〉在使用 x265 时必须指定源视频的帧率,小数帧填小数,勿四舍五入
- **--chunk-start**, **--chunk-end**〈开关,no-open-gop〉chunk-start 允许跨 GOP 制作数据包(?),改由 chunk-end 参数将数据包结尾和剩下的视频帧断开(?). 据描述看,由于数据包接收顺序一定会被打乱,所以只可参考其之前,而不可参考之后的内容,跟 http 的数据包编码协议有关 Σ (-) \circ \circ
- --temporal-layers<开关,默认关>使 x265 更兼容 svc 标准,将非参考 b 帧 (相当于空信息) 分离到另一层视频流中,解码器可以选择跳过而降低性能损耗,可能会造成兼容性问题

编解码图像序列: 见 x264 教程完整版

下载 附录与操作技巧

LigH

jpsdr

Rigaya

Patman

ShortKatz

DJATOM-aMod

MeteorRain-yuuki

.hevc GCC12.2+MSVC_llvm 1928 [8-10-12bit] 附 Broadwell 版 支持 aq-mode 5

.hevc GCC 9.3 [8-10-12bit] 附 x86 版

.hevc GCC 11+MSVC1925 [8-10-12bit]

arm64~64e 加 x86 版 [?] 需 macOS 运行编译命令文件 ?

opt-Intel 架构与 zen1~2 优化 [10bit], opt-znver3 代表 zen3 优化 [10-12bit] GCC 10.2.1+GCC10.3

Ismash.mkv/mp4 或.hevc [能封装, 但传说 lavf 不如 pipe 可靠] GCC 9.3+ICC 1900+MSVC 1916 [8][10][12bit]+[8-10-12bit]

ffmpeg 多系统兼容,备用地址 ottverse.com/ffmpeg-builds

mpv 播放器 比 Potplayer 好在没有音频滤镜,不用手动关;没有颜色偏差,文件体积小

x265GuiEx (Rigaya) 日本語, auto-setup 安装, 教程点此

Voukoder; V-Connector 免费 Premiere/Vegas/AE 插件,直接用 ffmpeg 内置编码器,不用帧服务器/导无损再压/找破解.只要下两个压缩包,放 Plug-Ins\Common文件夹就行了

gcc 是什么,为什么同版同参的编码器速度不同

把源码编成程序的软件即编译器. x265 有 mingw(gcc 套件),套件版本新旧影响编出程序的效率, msvc 体积更小,但需要 VCRUNTIME140_1.dll;icc 需要 libmmd.dll;Clang 需要...?

速度不一样还可能源自内建函数. 函数即等待变量输入的算式. 由于 8bit x265 中有大量开发组手动编写的内建函数, 所以不同编译者给出的程序速度也不等. 而 10bit x265 完全没有手动编写的内建函数, 所以编译者只有优化源码. 同样, 速度测试应以 10bit x265 为基准(-_-)*)

rc指 release candidate

有的 x265 编译的文件名上有 rc, 指已修复所有被提出的问题 且编译者认为 ok 的版本 $\cdot (\cdot \omega \cdot \Sigma)$

杜比视界 dolby vision/DV

有两种格式,单流/DV-MEL 和双流/DV-FEL, 两者都带有 RPU, 双视频流有 base layer 视频层和 enhance layer 强化层, EL 可被一般的 hevc 解码器丢弃而正常播放,单视频流就只有私有解码器/有特定 芯片+固件的设备能播放,如果开源播放器能播放 DV-MEL 则是假源;如果支持 DV-FEL 的设备丢弃 EL,只播放 BL 则是假设备.参考单元 reference picture unit 是含有动态元数据的特殊 NALU,类似(到现在还没几个播放器能正常解码的)--opt-qp-pps, opt-ref-list-length-pps 的功能

样式	编码	BL:EL 分辨率	x265 支持	伽马	色彩空间	
4	lubit nevc	1:1/4		SDR	YCbCr	
5		仅 BL (DV-MEL)	√		ICtCp	
7		4K=1:1/4; 1920x1080=1:1		UHD 蓝光		
8. 1			√	HDR10	YCbCr	
8.2		仅 BL (DV-MEL)	√	SDR	TCDCF	
8.4				HLG		
9	8bit avc	仅 BL (DV-MEL)		SDR	YCbCr	

- --dolby-vision-profile<选择 5/8.1 (HDR10)/8.2 (SDR)>8.1 需要写 master-display 和 hdr10-opt
- --dolby-vision-rpu <路径>导入 rpu 二进制文件 (. bin) 用

CMD 操作技巧 color 08

将原本黑景白字改成黑景灰字的单行命令, 降低视疲劳

cmd 窗口操作技巧%~dp0

"%~"是填充字的命令(不能直接用于 CMD). d/p/0 分别表示 drive 盘/path 路径/当前的第 n 号文件/盘符/路径,数字范围是 0~9 所以即使输入 "%~dp01.mp4" 也会被理解为命令 dp0 和 1.mp4

这个填充展开后可能是"C:\"+"...\"+1.mp4, 路径取决于当前.bat 所处的位置, 这样只要.bat 和视频在同一目录下就可以省去写路径的功夫了. 若懒得改文件名参数, 可以用%~dpn0, 然后直接重命名这个.bat, n 会将输出的视频, 例子: 文件名=S.bat \rightarrow 命令=--output %~dpn01.mp4 \rightarrow 结果=1.mp4 转输出 "S.mp4" $(/\cdot\omega\cdot)/$

ffmpeg 批量压 mp4,音频拷到新文件: chcp 65001

@ for %%3 in ('*.mp4') do (ffmpeg -i '%%3' -c:v copy -i '%%^n3.aac' -c:a copy '%%^n3.mp4')

chcp 65001 会让 cmd 以 unicode 形式读取, @是不打出输了什么命令进去, %%~n1 是%%1 去掉了文件后缀 o(-_^)

LSMASHWorks 崩溃 0xc0000005 可能是内存问题

Worm effect 瑕疵 原因未知, x265 低码+no-sao 可复现的噪点横向拉伸效