BHARAT VIRTUAL INTERNSHIP

PROJECT TWO

(TASK NAME: TITANIC CLASSIFICATION)

PROJECT OVERVIEW

• Objective: Build a Titanic Classification Model Using the Logistic Regression Model

• Dataset: Link to my dataset

• Submission Date: December 10, 2023

Author: SUNMOLA M.A

• Reference: Youtube Resource

STEP 1: DATA CLEANING & INITIAL EXPLORATION

- 1. Import necessary libraries
- 2. Load the dataset
- 3. Display a sample of the dataset
- 4. Explore the dataset's size and structure
- 5. Handle possible inconstencies with dataset structure accordingly
- 6. Check for data type consistency
- 7. Check for duplicates

1.1: Importing the necessary dependencies

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_ma
```

1.2: Loading the Dataset

```
In [2]: data = pd.read_csv("train.csv")
```

1.3: Previewing a sample of the dataset

In [3]:	data	sample(5)											
Out[3]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Er
	653	654	1	3	O'Leary, Miss. Hanora "Norah"	female	NaN	0	0	330919	7.8292	NaN	
	647	648	1	1	Simonius- Blumer, Col. Oberst Alfons	male	56.0	0	0	13213	35.5000	A26	
	114	115	0	3	Attalah, Miss. Malake	female	17.0	0	0	2627	14.4583	NaN	
	137	138	0	1	Futrelle, Mr. Jacques Heath	male	37.0	1	0	113803	53.1000	C123	
	125	126	1	3	Nicola- Yarred, Master. Elias	male	12.0	1	0	2651	11.2417	NaN	

1.4 Exploring the dataset's structure, size and contents

- Check the shape of the dataset
- Check general information about the structure of the dataset
- Check for missing values

```
In [4]: # Checking the shape of the data
data.shape
Out[4]: (891, 12)
In [5]: # Displaying information about the data
data.info()
```

```
# Checking for null values
In [6]:
         data.isnull().sum()
        PassengerId
Out[6]:
         Survived
                          0
         Pclass
                          0
        Name
         Sex
                          0
                        177
         Age
         SibSp
                          0
         Parch
                          0
         Ticket
         Fare
         Cabin
                        687
         Embarked
                          2
         dtype: int64
```

1.4 INFERENCE

- The train dataset contains 12 features with 891 records
- The 'Age', 'Cabin', and 'Embarked' columns contains two or more missing values

1.5. Handling the found inconsistencies (i.e. null values) with the dataset structure

- Drop the Cabin column
- Fill the Age column with mean value
- Fill the **Embarked** column with mode value
- Check for Null Values After Handling

```
In [7]: # Dropping the "Cabin" column
data.drop(columns="Cabin", inplace=True)
```

```
In [8]: # Handling missing values in "Age" by filling with mean
         data['Age'].fillna(data['Age'].mean(), inplace = True)
         # Handling missing values in "Embarked" by filling with mode
In [9]:
         data['Embarked'].fillna(data['Embarked'].mode()[0], inplace = True)
         #Checking for Null Values After Handling
In [10]:
         data.isnull().sum()
         PassengerId
Out[10]:
         Survived
                        0
         Pclass
         Name
                        0
         Sex
         Age
                      0
         SibSp
         Parch
         Ticket
         Fare
         Embarked
         dtype: int64
```

1.5 INFERENCE

10

Embarked [<class 'str'>]

• Now, we can be sure that our dataset no longer contains a null value

1.6. Checking for data type inconsistencies

```
In [11]: # Displaying Unique Data Types for Each Column
         # First, create an empty dataframe to store the results
         data type= pd.DataFrame(columns=['COLUMN NAMES', 'UNIQUE DATA TYPES'])
         # Secondly, iterate through columns and store unique data types in the new dataframe
         for column_name in data.columns:
             unique data types = data[column name].apply(type).unique()
             data type = pd.concat([data type, pd.DataFrame({'COLUMN NAMES': [column name], 'UN
         # Lastly, display the resulting table
         print(data_type)
            COLUMN NAMES UNIQUE DATA TYPES
            PassengerId [<class 'int'>]
               Survived [<class 'int'>]
         1
                 Pclass [<class 'int'>]
         2
         3
                   Name [<class 'str'>]
         4
                    Sex [<class 'str'>]
         5
                    Age [<class 'float'>]
         6
                  SibSp [<class 'int'>]
         7
                           [<class 'int'>]
                  Parch
         8
                 Ticket [<class 'str'>]
         9
                   Fare [<class 'float'>]
```

1.6 INFERENCE

- It is satisfactory to know that each column contains unique data type
- Hence, there would not be need for type casting

1.7 Check for and drop duplicates entries

In [12]: data[data.duplicated()]

Out[12]: Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Embarked

1.7 INFERENCE

• Good to know! The dataset has no duplicate rows

STEP 2: EXPLORATORY DATA ANALYSIS + DATA VISUALIZATION

- 1. Explore basic statistics of the data
- 2. Visually explore all of the dataset feature relationship
- 3. Visualize target distribution
- 4. Visualize Gender distribution
- 5. Visualize Social class distribution
- 6. Visualize Gender vs. Survival relationship
- 7. Visualize Social class vs. Survival relationship

2.1 Displaying descriptive statistics of the data

In [13]: data.describe()

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
coun	t 891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mea	n 446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
st	d 257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693429
mi	n 1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
259	6 223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910400
509	4 46.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200
759	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
ma	x 891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

2.1 INFERENCE

Out[13]:

- The mean age of passengers is approx 30yrs
- The mean fare amount is also 32
- The minimum and maximum values for the 'Passengerld', 'survived', and 'Pclass' is a correct indication that the features contain unique values as contained in the dataset metadata

2.2 Visually explore all of the dataset feature relationship

- With the aid of a pairplot
- With the aid of a heatmap


```
# Create a heatmap with annotated correlation values
plt.figure(figsize=(10, 8))
sns.heatmap(data.corr(), annot=True, cmap='coolwarm', fmt=".2f", linewidths=0.5)

# Set the title
plt.title('Correlation Heatmap with Annotations')

# Show the plot
plt.show()
```

C:\Users\msunmola\AppData\Local\Temp\ipykernel_32172\2997496438.py:5: FutureWarning:
The default value of numeric_only in DataFrame.corr is deprecated. In a future versio
n, it will default to False. Select only valid columns or specify the value of numeri
c_only to silence this warning.
 sns.heatmap(data.corr(), annot=True, cmap='coolwarm', fmt=".2f", linewidths=0.5)

2.2 INFERENCE

• 'PassengerID', 'Name', 'Ticket', and 'Cabin' seem not to have any causal relationship/effect with/to the chances of survival

2.3 Visualize target (i.e. Survival) distribution

- Display unique values for the 'Survival' column
- Using Pie Chart and Countplot

```
In [16]: data['Survived'].value_counts()

Out[16]: 0     549
     1     342
     Name: Survived, dtype: int64

In [17]: # Create a 1x2 subplot grid
     fig, axes = plt.subplots(1, 2, figsize=(12, 5))
     label_mapping = {data['Survived'].value_counts()[0]: 'Not Survived', data['Survived'].
     data['Survived_Label'] = data['Survived'].map(label_mapping)
```

```
# Pie chart
labels = ['Not Survived', 'Survived']
sizes = data['Survived'].value_counts()
axes[0].pie(sizes, labels=labels, autopct=lambda p: '{:.1f}%'.format(p), startangle=90
         labeldistance=1.1, textprops={'fontsize': 15})
axes[0].set title('Survival Distribution', fontweight='bold', fontsize=20)
# Countplot
sns.countplot(x='Survived', data=data, ax=axes[1])
axes[1].set_title('Survival Count')
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.xlabel('')
plt.ylabel('Count', fontsize=15, fontweight='bold')
# Annotate the bars with labels
for p in axes[1].patches:
    label = label_mapping[p.get_height()]
    axes[1].text(p.get_x() + p.get_width() / 2., p.get_height() / 2, label,
                 ha='center', va='center', fontweight='bold', color='black', fontsize=
data.drop(columns='Survived_Label', inplace=True)
axes[1].set title('Survival Count', fontweight='bold', fontsize=20)
# Adjust Layout
plt.tight_layout()
# Show the plots
plt.show()
```


2.4 Visualize Gender distribution

- Display unique values for the 'Sex' column
- Using Pie Chart and Countplot

```
In [18]: data['Sex'].value_counts()
```

```
Out[18]:
         female
                   314
         Name: Sex, dtype: int64
         # Map numeric values to labels for the "Sex" column
In [19]:
         label_mapping_sex = {'male': 'Male', 'female': 'Female'}
         data['Sex_Label'] = data['Sex'].map(label_mapping_sex)
         # Create a 1x2 subplot grid
         fig, axes = plt.subplots(1, 2, figsize=(12, 5))
         # Pie chart for "Sex" column
         labels_sex = ['Male', 'Female']
         sizes_sex = data['Sex'].value_counts()
         axes[0].pie(sizes_sex, labels=labels_sex, autopct=lambda p: '{:.1f}%'.format(p), start
         axes[0].set title('Gender Distribution', fontweight='bold', fontsize=20)
         # Countplot for "Sex" column with labels at the center of the bars
         sns.countplot(x='Sex', data=data, ax=axes[1])
         plt.xticks(fontsize=15)
         plt.yticks(fontsize=15)
         plt.xlabel('Sex', fontsize=15, fontweight='bold')
         plt.ylabel('Count', fontsize=15, fontweight='bold')
         # Annotate the bars with count labels at the center
         for p in axes[1].patches:
             label = f"{int(p.get_height())}" # Get the count as an integer
             axes[1].text(p.get x() + p.get width() / 2., p.get height() / 2, label,
                          ha='center', va='center', fontweight='bold', color='black', fontsize=
         data.drop(columns='Sex_Label',inplace=True)
         axes[1].set title('Gender Count', fontweight='bold', fontsize=20)
         # Adjust Layout
         plt.tight_layout()
         # Show the plots
         plt.show()
             Gender Distribution
```


Male

male

577

2.5 Visualize Social class distribution

- Display unique values for the 'Pclass' column
- Using Pie Chart and Countplot

```
In [20]: data['Pclass'].value_counts()
              491
Out[20]:
              216
              184
         Name: Pclass, dtype: int64
In [21]: # Map numeric values to labels for the "Pclass" column
         label_mapping_pclass = {1: 'Class 1', 2: 'Class 2', 3: 'Class 3'}
         data['Pclass Label'] = data['Pclass'].map(label mapping pclass)
         # Create a 1x2 subplot grid
         fig, axes = plt.subplots(1, 2, figsize=(12, 5))
         # Pie chart for 'Pclass'
         sizes_pclass = data['Pclass'].value_counts().sort_index().values
         explode_pclass = (0.1, 0, 0)
         axes[0].pie(sizes pclass, explode=explode pclass, labels=label mapping pclass, autopct
         axes[0].set_title('Social Class Distribution', fontweight='bold', fontsize=20)
         # Countplot for 'Pclass'
         sns.countplot(x='Pclass', data=data, ax=axes[1])
         axes[1].set title('Social Class Count', fontweight='bold', fontsize=20)
         plt.xticks(fontsize=15)
         plt.yticks(fontsize=15)
         plt.xlabel('PClass', fontsize=15, fontweight='bold')
         plt.ylabel('Count', fontsize=15, fontweight='bold')
         # Annotate the bars with count labels at the center
         for p in axes[1].patches:
              label = f"{int(p.get_height())}" # Get the count as an integer
              axes[1].text(p.get_x() + p.get_width() / 2., p.get_height() / 2, label,
                           ha='center', va='center', fontweight='bold', color='black', fontsize=
         data.drop(columns='Pclass_Label', inplace=True)
         # Adjust Layout
         plt.tight layout()
         # Show the plots
         plt.show()
```


55.1%

20.7%

2.6 Visualize Gender Vs. Survival relationship

```
In [22]: #Gender Vs. Survival relationship
    sns.countplot(x='Sex', hue='Survived', data=data)
    plt.xticks(fontsize=15)
    plt.yticks(fontsize=15)
    plt.xlabel('Gender', fontsize=15, fontweight='bold')
    plt.ylabel('Count', fontsize=15, fontweight='bold')
Out[22]:
Text(0, 0.5, 'Count')
```


2.6 INFERENCE

- Very few percentage of male who boarded the ship survived
- More female passagers tends to have survived the wreck.

2.7 Visualize Social Class Vs. Survival relationship

```
In [23]: sns.countplot(x='Pclass', hue='Survived', data=data)
         plt.xticks(fontsize=15)
         plt.yticks(fontsize=15)
         plt.xlabel('PClass', fontsize=15, fontweight='bold')
         plt.ylabel('Count', fontsize=15, fontweight='bold')
         Text(0, 0.5, 'Count')
```

Out[23]:

2.7 INFERENCE

- Passenger's social class status tends to have a direct correlation with their chances of survival
- A greater percentage of lower social class percentage did not make it alive from the ship wreck

STEP 3: DATA PREPROCESSING

- 1. Preview few samples of the data
- 2. Feature Engineering
- 3. Feature selection
- 4. Train Test Split

3.1 Preview Data

n [24]:	data	.sample(5)										
Out[24]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarl
	174	175	0	1	Smith, Mr. James Clinch	male	56.000000	0	0	17764	30.6958	
	29	30	0	3	Todoroff, Mr. Lalio	male	29.699118	0	0	349216	7.8958	
	788	789	1	3	Dean, Master. Bertram Vere	male	1.000000	1	2	C.A. 2315	20.5750	
	631	632	0	3	Lundahl, Mr. Johan Svensson	male	51.000000	0	0	347743	7.0542	
	209	210	1	1	Blank, Mr. Henry	male	40.000000	0	0	112277	31.0000	
												•

3.2 Feature Engineering

• Handling Categorical Variables

```
In [25]: #Encode male and female values in the 'Sex' column as 0 and 1 respectively #Similarly, encode C, Q, & S values in the 'Embarked' column as 0, 1, and 2 respective data.replace({'Sex':{'male':0,'female':1}, 'Embarked':{'C': 0, 'Q':1, 'S':2}}, inplace data.sample(2)
```

Out[25]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
	724	725	1	1	Chambers, Mr. Norman Campbell	0	27.0	1	0	113806	53.1	2
	432	433	1	2	Louch, Mrs. Charles Alexander (Alice Adelaide	1	42.0	1	0	SC/AH 3085	26.0	2

3.3 Feature Selection

```
In [26]: #Split the dataset into target and features for model training purposes

X=data.drop(columns=['PassengerId','Survived', 'Name', 'Ticket'], axis=1) #feature
y=data['Survived'] #target
```

3.4 Train Test Split

```
In [27]: X_train,X_test,y_train,y_test = train_test_split(X,y, test_size=0.2, random_state=5)
```

STEP 4: MODEL BUILDING & EVALUATION

- 1. Develop a Logistic Regression Model
- 2. Train the model on the 'training' dataset
- 3. Evalaute the model performance on the training dataset
- 4. Train the model on the 'test' dataset
- 5. Evalaute the model performance on the testing dataset
- Finally, submit your predictions on the Kaggle dataset to evaluate model overall performance

4.1 Build the Model

```
In [28]: LR_model = LogisticRegression()
    LR_model.fit(X_train, y_train)

C:\Users\msunmola\AppData\Local\anaconda3\lib\site-packages\sklearn\linear_model\_log
    istic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
        n_iter_i = _check_optimize_result(
```

```
Out[28]: 

LogisticRegression()
```

4.2 Training the model on the Train dataset

4.3 Evaluating the model on the Train dataset

```
In [30]:
    LRmodel_accuracy = accuracy_score(y_test, y_hat)
    LRmodel_precision = precision_score(y_test, y_hat)
    LRmodel_ConfMatrix = confusion_matrix(y_test, y_hat)

Model_Evaluation=pd.DataFrame({'TrainingSet Accuracy':[LRmodel_accuracy], 'TrainingSet

Model_Evaluation = Model_Evaluation.style.format({
        'TrainingSet Accuracy': '{:.2%}',
        'TrainingSet Precision': '{:.2%}'
})

Model_Evaluation
```

Out[30]: TrainingSet Accuracy TrainingSet Precision

Linear Regression Model 82.12% 82.12%

4.4 & 4.5 Train & Evaluate model performance on the test dataset

```
In [31]: # Load the test data
    test_data = pd.read_csv("test.csv")

# Drop unnecessary columns
    test_data.drop(columns="Cabin", inplace=True)

# Fill missing values
    test_data['Age'].fillna(test_data['Age'].mean(), inplace=True)
    test_data['Fare'].fillna(test_data['Fare'].mean(), inplace=True)

# Map categorical values to numeric
```

```
test_data.replace({'Sex': {'male': 0, 'female': 1}, 'Embarked': {'C': 0, 'Q': 1, 'S':

# Extract features for prediction
X_test_data = test_data.drop(columns=['PassengerId', 'Name', 'Ticket'], axis=1)

# Use the trained model to make predictions
test_predictions = LR_model.predict(X_test_data)
```

4.6 Evaluate model overall performance via Kaggle metric score

- Create a prediction based on the test dataset
- Create a submission file in csv
- Submit your predictions on Kaggle competition

```
In [32]: # Create a DataFrame with PassengerId and corresponding predictions
submission_df = pd.DataFrame({'PassengerId': test_data['PassengerId'], 'Survived': tes

# Save the predictions to a CSV file
submission_df.to_csv('submission.csv', index=False)
submission_df.sample(7)
```

Out[32]:		PassengerId	Survived
	127	1019	0
	53	945	1
	43	935	1
	275	1167	1
	143	1035	0
	69	961	1
	391	1283	1

4.6 INFERENCE

- Upon submitting my submission.csv file on Kaggle competion, I got a metric score of 0.76555.
- This implies that my model got approximately **76.56%** predictions correctly
- THAT'S A BIT IMPRESSING