Математическая логика и теория алгоритмов

Посов Илья Александрович

запись конспекта: Блюдин Андрей и Хаматов Вадим

Содержание

1	Ma	гемати	ческая логика	2
	1.1	Исчис	ление высказываний	2
		1.1.1	Основные понятия	2
		1.1.2	Функции от 1 переменной (их определения)	3
		1.1.3	Функции от 2 переменных (их определения)	3
		1.1.4	Приоритеты операций	5
		1.1.5	Алгебраические преобразования логических выра-	
			жений	5
		1.1.6	Таблица эквивалентных логических выражений	6
		1.1.7	Многочлены Жегалкина	8
		1.1.8	Получение многочлена Жегалкина через алгебраи-	
			ческие упрощения	11
		1.1.9	Дизъюнктивно-нормальная форма (ДНФ)	12
		1.1.10	Задача (не) выполнимости	14
		1.1.11	Запись таблиц истинности в виде графика	15
		1.1.12	Задача минимизации ДНФ	15
		1.1.13	Двойственная функция	19
		1.1.14	Конъюнктивно-нормальная форма КНФ	20
		1.1.15	Класс замкнутости	24
		1.1.16	Примеры замкнутых классов	26
		1.1.17	Теорема Поста	31

1 Математическая логика

1.1 Исчисление высказываний

1.1.1 Основные понятия

Определение. Логическая функция — это множество из 2 элементов. Также, логической функцией называют множество логических значений $B = \{0, 1\}$, где 0 — это ложь (false), а 1 — это истина (true)

Определение. Логическая функция от n переменных

$$f:B^n\to B$$

Замечание. Часто логические функции вводят как перечисление возможных аргументов и значений функции при этих аргументах

Пример. Введем функцию f(x, y)

X	у	f(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

Таблица 1: Таблица истинности для f(x,y)

Эту же функцию можно задать функцией f(x,y) = max(x,y)

Утверждение. Функция от п переменных может быть $f(x_1, x_2, x_3, \dots, x_n)$

x_1	x_2	 x_n	$f(x_1, x_2, \dots, x_n)$
0	0	 0	0 или 1
		 	0 или 1
1	1	 1	0 или 1

Таблица 2: Таблица истинности для $f(x_1, x_2, \dots, x_n)$

При этом количество всех возможных наборов аргументов равняется 2^n , а количество всех возможных функций при всех возможных наборах аргументов равняется 2^{2^n}

Следствие. Посчитаем количество таких функий для разных п

$$n=1$$
 $2^2=4$ функций $f(x)$
 $n=2$ $2^{2^2}=16$ функций $f(x,y)$
 $n=3$ $2^{2^3}=2^8=256$ функций $f(x,y,z)$

1.1.2 Функции от 1 переменной (их определения)

Пример. Перечислим все возможные функции от 1 переменной

x	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
0	0	0	1	1
1	0	1	0	1

Данные функции имеют значение:

 $f_1(x) = 0$ — функция 0

 $f_2(x) = x - функция x$

 $f_3(x) = !x, \bar{x}, \neg x, \text{ not } x - \varphi$ ункция отрицания (не x)

 $f_4(x) = 1 - функция 1$

1.1.3 Функции от 2 переменных (их определения)

Пример. Перечислим все возможные функции от 2 переменных

x	y	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	$f_6(x)$	$f_7(x)$	$f_8(x)$
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Таблица 3: Таблица истинности для f(x, y)

Продолжение:

x	y	$f_9(x)$	$f_{10}(x)$	$f_{11}(x)$	$f_{12}(x)$	$f_{13}(x)$	$f_{14}(x)$	$f_{15}(x)$	$f_{16}(x)$
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Таблица 4: Таблица истинности для f(x,y)

Перечислим основные значения функций:

 $f_2(x,y)$ — это конъюнкция или "лочическое и"или логическое умножение $(xy,x\&y,x\land y)$

 $f_7(x,y)$ — это исключающее или $(x+y,xXORy,x\oplus y)$, также данную функцию можно ассоциировать как (x+y)mod2

```
f_8(x,y) — это логическое или, но ее можно также записать как
max(x,y) (x|y, x \vee y)
    f_{10}(x,y) — это эквивалентность (x \Leftrightarrow y, x \equiv y, x == y)
    f_{14}(x,y) — это импликация (x \Rightarrow y, x \rightarrow y)
    Импликация работает так, что истина следует из чего угодно:
    лешия не существует \Rightarrow русалок не существует = 1 \ (1 \Rightarrow 1 = 1)
    допса скучная \Rightarrow русалок не существует = 1 \ (0 \Rightarrow 1 = 1)
    русалки существуют \Rightarrow драконы существуют = 1 \ (0 \Rightarrow 0 = 1)
    x \Rightarrow y = 0 только если x = 1, а y = 0
    f_{12}(x,y) — это обратная импликация (x \Leftarrow y = y \Rightarrow x)
    f_9(x,y) — стрелка Пирса (x \downarrow y = \overline{x \lor y})
    f_{15}(x,y) — штрих Шеффера (x|y=\overline{xy})
    f_3(x,y) — запрет по у (x>y=\overline{x\Rightarrow y})
    f_1(x,y) - 0
    f_4(x,y) - x
    f_5(x,y) — запрет по х (x < y = \overline{x \Leftarrow y})
    f_6(x,y) - y
    f_{11}(x,y) — не у (\neg y)
    f_{13}(x,y) — не х (\neg x)
    f_{16}(x,y) - 1
```

Определение. Логические выражения — способ задания логических функций с помощью переменных, цифр 0 или 1 и операций:

$$\cdot$$
 \vee \Rightarrow \Leftrightarrow $+$ \equiv $|$ \downarrow $<$ $>$

Пример. Примеры логических выражений:

$$(x \lor y) = (x \Rightarrow yz) \lor (y \equiv z) (0 \Rightarrow x) \lor (1 \Rightarrow y)$$

Определение. Значения логического выражения можно записать Таблицей истинности

Пример.
$$f(x, y, z) = (x \vee y)z$$

Замечание. Порядок строчек в таблеце истинности может быть любым, но лучше использовать как у двоичных чисел

Утверждение. Таблицы истинности часто считают постепенно

X	у	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

X	y	Z	$x \vee y$	$(x \vee y)z$

1.1.4 Приоритеты операций

 \Rightarrow \Leftarrow

| \ \ < >

Пример. Примеры приоритетов операций:

1.1.5 Алгебраические преобразования логических выражений

Определение. Алгебраические преобразования логических выражений — изменяем выражения по правилам, обычно в сторону упрощения

Пример.
$$(0 \Rightarrow x) \lor (1 \Rightarrow y) = 1 \lor (1 \Rightarrow y) = 1$$

Утверждение 1.

$$\overline{\overline{x}} = x$$

Доказательство:

x	\overline{x}	$\overline{\overline{x}}$
0	1	0
1	0	1

Утверждение 2. $\Pi pu \vee :$

$$1 \lor x = 1$$

$$0 \lor x = x$$

$$x \lor y = y \lor x$$

1.1.6 Таблица эквивалентных логических выражений

Утверждение. $x \lor y = y \lor x$ - симметричность

$$x \lor 0 = x$$

$$x \lor 1 = 1$$

$$x \lor x = x$$

$$x \vee \overline{x} = 1$$

Доказательство:

x	\overline{x}	$x \vee \overline{x}$
0	1	$0 \lor 1 = 1$
1	0	$1 \lor 0 = 1$

$$xy = yx$$

$$x * 0 = 0$$

$$x * 1 = x$$

$$x * x = x$$

$$x * \overline{x} = 0$$

$$x + y = y + x$$

$$x + 0 = x$$

$$x + 1 = \overline{x}$$

$$x + x = 0$$

$$x + \overline{x} = 1$$

Утверждение. $x \lor (y \lor z) = (x \lor y) \lor z$ - ассоциативность Accoquamusнocmь означает, что порядок скобок не важен

Пример. $x\Rightarrow y\neq y\Rightarrow x$ - не симметричная функция

Доказательство:

ху	$x \Rightarrow y$	$y \Rightarrow x$
0 0	1	1
0 1	1	0
1 0	0	1
1 1	1	1

3амечание. $x \Rightarrow y \neq y \Rightarrow x$

$$x \Rightarrow 0 = \overline{x}$$

$$0 \Rightarrow x = 1$$

Доказательство:

$$\begin{array}{|c|c|} \hline x & x \Rightarrow 0 \\ \hline 0 & 0 \Rightarrow 0 = 1 \\ \hline 1 & 1 \Rightarrow 0 = 0 \\ \hline \end{array}$$

$$x \Rightarrow 1 = 1$$

$$1 \Rightarrow x = x$$

$$x \Rightarrow x = 1$$

$$x \Rightarrow \overline{x} = \overline{x}$$

$$\overline{x} \Rightarrow x = x$$

$$\overline{x} \Rightarrow y \Rightarrow z$$
 договоримся, что это $x \Rightarrow y(y \Rightarrow z) \neq (x \Rightarrow y) \Rightarrow z$

$$x \Leftrightarrow y = y \Leftrightarrow x$$

$$x \Leftrightarrow 0 = \overline{x}$$

$$x \Leftrightarrow 1 = x$$

$$x \Leftrightarrow x = 1$$

$$x \Leftrightarrow \overline{x} = 0$$

$$x \Leftrightarrow (y \Leftrightarrow z) = (x \Leftrightarrow y) \Leftrightarrow z$$
 - ассоциативно

Утверждение. Дистрибутивность

$$(x \lor y)z = xz \lor yz$$

$$(x+y)z = xz + yz$$
 по таблице истинности

хух	$x \Rightarrow y$	$y \Rightarrow z$	$x \Rightarrow (y \Rightarrow z)$	$(x \Rightarrow y) \Rightarrow z$
0 0 0	1	1	1	0
0 0 1	1	1	1	1
0 1 0	1	0	1	0
0 1 1	1	1	1	1
1 0 0	0	1	1	1
1 0 1	0	1	1	1
1 1 0	1	0	0	0
1 1 1	1	1	1	1

$$(x\&y) \lor z \ (xy \lor z = (x \lor z)(y \lor z)$$
$$(x \lor y)\&z = (x\&z) \lor (y\&z)$$
$$(x\&y) \lor z = (x \lor z)\&(y \lor z)$$

Замечание. $(x_1 \lor x_2 \lor x_3)(y_1 \lor y_2) = (x_1 \lor x_2 \lor x_3)y_1 \lor (x_1 \lor x_2 \lor x_3)y_2 = x_1y_1 \lor x_2y_1 \lor x_3y_1 \lor x_1y_2 \lor x_2y_2 \lor x_3y_2$

$$xy \lor z = (x \lor z)(y \lor z) = xy \lor xz \lor zy \lor zz = xy \lor xz \lor zy \lor z = xy \lor xz \lor zy \lor z + 1 = xy \lor z(x \lor y \lor 1) = xy \lor z$$
 сошлось

$$x+y=\overline{x} \Longrightarrow y$$
 - смотри Таблицу истинности $(x\Rightarrow y)(y\Rightarrow x)=x\Rightarrow y$

1.1.7 Многочлены Жегалкина

Замечание. Одну и ту же функцию можно записать по разному.

В алгебре:
$$f(x) = 1 + x = x + 1 = x + 5 - 4 = \sin(x - x) + x = \dots$$

В логике: $f(x,y) = x \lor y = x \lor y \lor 0 = (x \lor y)(\overline{y} \lor y = x\overline{y} \lor y$ (= -дистрибутивность)

Многочлены Жегалкина для логической формулы

Определение. $f(x_1....x_n)$ - это многочлен с переменными хі, конспектами 0,1 и со степенями переменных ≤ 1 . Это многочлены от хі $\mathbf{Z_2}$

Пример.
$$f(x, y, z) = 1 + x + yz + xyz$$

 $1 + x$ $xy + xyz$
 $1 + xy$

Не многочлены

$$1 + x + (y \lor z)$$

 $1+x+z^2$ нельзя степень 2

3амечание. В общем случае многочлен от 1 переменной $(a_i=0 \text{ или } 1)$ a_0+a_1x

```
от 2yx: a_0 + a_1x + a_2y + a_3xy
```

OT 3ex:
$$a_0 + a_1x + a_2y + a_3z + a_4xy + a_5xz + a_6yz + a_7xyz$$

В общем случае $f(x_1, x_n)$ $a_0 + a_1x_1 + ... + a_nx_n + a_1x_2 + a_1x_3$ + ... (все пары переменных) + $ax_1x_2x_3$ + $ax_1x_3x_2$ \leftarrow все тройки $nep мeнны x + a x_1 x_2 x_3 ... x_n$

Определение. $\forall f(x_1...x_n)$ - логические функция $\exists !$ многочлен Жегалкина $g(x_1...x_n): f = g$

Замечание. Всего 4 функции от 1ой переменной

$$f(x) = 0 = \overline{x} = 0 + 0x$$

$$f(x) = 1 = 1 = 1 + 0x$$

$$f(x) = x = x = 0 + 1x$$

$$f(x) = \overline{x} = 1 + x = 1 + 1x$$

Докозательство:

Определение. Разные многочлены - это разные логические функции

т.е.
$$f(x_1...x_n = a_0 + ... + a_1x_1...x_n$$

 $g(x_1...x_n) = b_0 + ... + bx_1...x_n$
 $\exists !: a_i \neq b_i$ различающийся

Доказательство:

Возьмем индекс с самым большик количеством переменных

$$f(x, y, z) = 1 + x + xy + xyz = \dots + 1x + Dy + Dz + 1xy$$

$$g(x, y, z) = 1 + y + z + xyz... + Dx + 1y + 1z$$

для переменных этого слагаемого подставим 1 дху

 ∂ ля остальных переменных : θ

$$\int B \ npumepe \ x = 1, y = 0, z = 0 : f(1,0,0) \ u \ q(1,0,0) \ f(1,0,0)$$

u в f u в g все другие слагаемые равны θ

Tenepo f(...) u g(...)

$$f(...) = a_i x_1 x_2 x_3 \neq b_i x_1 x_2 x_3 \Rightarrow f(x_1 ... x_n) \neq y$$

Доказательство:

 \varPi роверим, что многочленов Xегалкина столько, сколько функций: Посчитаем

$$a_0 + a_1 x_1 + \dots + a_1 x_1 x_2 \dots x_n$$

Сколько слагаемых:

1) 1 слагаемых без переменных

п слагаемых с переменной

$$a_1x_1 + \ldots + a_nx_n$$

 C_n^2 - слагаемых с \mathcal{Z} - мя переменными C_n^3 - слагаемых с \mathcal{Z} - мя переменными

 C_n^n - слагаемых с n переменными

Bcero:
$$C_n^0 + C_n^1 + C_n^2 + ... + C_n^n = 2^n((1+1)^2)$$

Пример. $a_0 + a_1 x$ - 2 слагаемых

$$a_0 + a_1 x + a_2 y + a_3 x y - 2^2 = 4$$
 слагаемых

2) Все слагаемых имею вид: $x_1, x_2, x_3...x_n$ (0 или 1) - 2^n слагаемых Итого: многочлен Жегалкина от n переменных

Задача. Сколько разных многочленов?

Это столько же, сколько логический функций Итог:

Следствие: Любая логическая функция может быть представлена в виде многочлена Жегалкина

Пример.
$$f(x,y) = x \vee y$$

$$f(x,y) = x * y$$
 - уже многочлен Жегалкина

Метод неопределенных коэффициентов:

Подберем
$$x \lor y = a_0 + a_1 x + a_2 y + a_3 x y$$

$$f(0,0) = 0$$

$$f(0,0) = a_0 + a_1 * 0 + a_2 * 0 + a_3 \dots$$

$$f(1,0) = 1 \lor 0 = 1$$

$$f(1,0) = a_0 + a_1 = a_1 \ (a_0 = 0, \Rightarrow a_1 = 1)$$

$$f(0,1) =$$
 аналогично $\Rightarrow a_1 = 1$

$$f(x,y) = x + y + a_3 xy$$

$$f(1,1) = 1 \lor 1 = 1$$

$$f(1,1) = 1 + 1 + a_3 = 0 + a_3 = a_3, a_3 = 1$$

Otbet: $x \lor y = x + y + xy$

Многочлены Жегалкина от 1 переменной:

f(x)	Мн Ж
0	0
1	1
x	x
\bar{x}	1+x

Многочлены Жегалкина от 2 переменных:

f(x)	Мн Ж
0	0
1	1
xy	xy
x+y	x + y
$x \lor y$	x + y + xy

Формулы:

1.
$$\overline{xy} = \neg(xy) = \overline{x} \vee \overline{y}$$

2.
$$\overline{x \lor y} = \neg(x \lor y) = \overline{x} \cdot \overline{y} = \overline{x} \overline{y}$$

Замечание. $\overline{xy} \neq \overline{x} \cdot \overline{y} = \overline{x} \, \overline{y}$

Докозательство формул через таблицу истинности:

\boldsymbol{x}	y	$\overline{x \vee y}$	$\overline{x} \cdot \overline{y}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

1.1.8 Получение многочлена Жегалкина через алгебраические упрощения

1. Многочлен Жегалкина для ∨

$$x\vee y=(x=\overline{a},y=\overline{y})=\overline{ab}=\overline{\overline{x}\cdot\overline{y}}=\overline{(1+x)(1+y)}=1+(1+x)(1+y)=1+1+x+y+xy=x+y+xy$$

2. Многочлен Жегалкина для ⇔

$$x \Leftrightarrow y = \overline{x+y} = 1 + x + y$$

3. Многочлен Жегалкина для ⇒

$$x \Rightarrow y = \overline{x} \lor y = (1+x) \lor y = (1+x) + y + (1+x)y = 1+x+y+y+xy = \underline{1+x+xy}$$

Замечание. Если есть логическая формула, то ее можно приветси к форме многочлена Жегалкина двумя способами:

1. метод неопределенных коэффициентов:

$$a_0 + a_1x + a_2y + a_3z + \cdots + axyz$$

2. метод алгебраических преобразований

$$\Pi$$
ример. $x \vee y = \overline{\overline{x} \cdot \overline{y}} = \cdots = x + y + xy$

$$\Pi$$
ример. $x \Rightarrow y = \overline{x} \lor y = \cdots = 1 + x + xy$

Пример.
$$x \Rightarrow (y \lor \overline{z}) = x \Rightarrow (y + \overline{z} + y \cdot \overline{z}) = x \Rightarrow (y + (1+z) + y \cdot (1+z)) = x \Rightarrow (y + 1 + z + y + yz) = x \Rightarrow (1 + z + yz) = 1 + x + x(1 + z + yz) = 1 + x + x + xz + xyz = 1 + xz + xyz$$

Поймем, что:
$$(x \Leftrightarrow y) \Leftrightarrow z = x \Leftrightarrow (y \Leftrightarrow z)$$
 $x \Leftrightarrow y \Leftrightarrow z = (1+x+y) \Leftrightarrow z = 1+(1+x+y)+z = 1+1+x+y+z = x+y+z$ Вывод:

Заранее не ясно, сложно ли привести логическую формулу к многочлену Жегалкина

1.1.9 Дизъюнктивно-нормальная форма (ДНФ)

Определение. Литерал — это переменная или отрицание переменной

Пример. $x, \overline{x}, y, \overline{y}, z, \overline{z}$

Определение. Конъюнктор — конъюнкция литералов

Пример. $x\overline{y}, xyz, \overline{x} \overline{y} \overline{z}, \overline{x}z$, ноль (пустой конъюнкт).

Определение. Логическое выражение имеет ДНФ, если она является дизъюнкцией конъюнкторов

Пример.
$$x\overline{y} \vee \overline{x} \overline{z} \vee z \vee \overline{x} \overline{y}$$
 — ДНФ

Пример.
$$xy \vee \overline{x} \overline{y} - ДНФ$$

Пример.
$$x \vee y$$
 — ДНФ

Пример.
$$xy - ДНФ$$

Пример. не ДНФ
$$-\overline{xy} = \overline{x} \vee \overline{y} - ДНФ$$

Пример. не ДНФ
$$-x \Rightarrow yz = \overline{x} \lor yz$$
 — ДНФ

Построение ДНФ по таблице истинности функции:

алгоритм на примере трех переменных

x	y	z	f(x,y,z)	
0	0	0	0	
0	0	1	0	
0	1	0	1	$\overline{x} y \overline{z}$
0	1	1	1	$\overline{x} yz$
1	0	0	0	
1	0	1	0	
1	1	0	1	$xy \overline{z}$
1	1	1	0	

Берем строки из столбца f(x, y, z), где значения в столбце равны 1

Допустим есть строка: $x=a_1,y=a_2,z=a_3$ (a могут быть как 0, так и 1)

В ответ добавляется конъюнкт xyz (0 \Rightarrow отрицание, 1 \Rightarrow не отрицание)

Otbet: $f(x, y, z) = \overline{x} y \overline{z} \vee \overline{x} yz \vee xy \overline{z}$

Докозательство корректности алгоритма:

Когда полученный ДН $\Phi = 1$?

Когда есть конъюнкт равный 1

- 1. Если первый конъюнкт равняется 1 (в примере \overline{x} у $\overline{z}=1$)
 - ⇒ все литералы конъюнкта равняются 1

$$\Rightarrow$$
 в примере $\overline{x}=1$ $y=1$ $\overline{z}=1$

$$x = 0$$
 $y = 1$ $z = 0$

- 2. Если второй конъюнкт равняется 1
 - \Rightarrow в примере x=0 y=1 z=1 строка из таблицы истинности
- 3. То же самое с третьим конъюнктом

Посмотрим таблицу с этими конъюнктами:

x	y	z	$\overline{x} y \overline{z}$	$\overline{x} yz$	$xy \overline{z}$	f(x,y,z)
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	1	0	0	1
0	1	1	0	1	0	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	1	1
1	1	1	0	0	0	0

Замечание. У одной функции могут быть разные ДНФ

Пример. $\underline{\overline{x}}$ \underline{y} \overline{z} \vee \overline{x} \underline{y} z \vee xy \overline{z} = \overline{x} y $(\overline{z} \vee z) \vee xy$ \overline{z} = \overline{x} $y \vee xy$ \overline{z} - подчеркнутые выражения являются ДНФ

Получить ДНФ для логической функции/формулы можно:

1. по таблице истинности

2. с помощью алгебраических преобразований

Пример. 1. $\overline{x} = \overline{x}$

$$2. \ x \lor y = x \lor y$$

3.
$$x \cdot y = x \cdot y$$

4.
$$x \Rightarrow y = \overline{x} \vee y$$

5.
$$x \Leftrightarrow y = (x \Rightarrow y)(y \Rightarrow x) = (\overline{x} \lor y)(\overline{y} \lor x) = \overline{x}\overline{y} \lor \overline{x}x \lor y\overline{y} \lor yx = \overline{x}\overline{y} \lor xy$$

x	y	$x \Leftrightarrow y$
0	0	1
0	1	0
1	0	0
1	1	1

6.
$$x + y = \overline{x \Leftrightarrow y} = \overline{\overline{x} \ \overline{y} \lor xy} \dots$$

= $\overline{\overline{x} \ y} \lor \overline{x \lor \overline{y}} = \overline{\overline{x}} \cdot \overline{y} \lor \overline{x} \cdot \overline{\overline{y}} = x \ \overline{y} \lor \overline{x} \ y$

7.
$$x \Rightarrow (y+z) = \overline{x} \lor (y+z) = \overline{x} \lor \overline{y} \ z \lor y \ \overline{z}$$

1.1.10 Задача (не) выполнимости

Дана логическая формала в ДНФ

Проверить, бывает ли она равна 0?

$$\overline{x}\,\overline{y}\vee x\vee y?=0$$

$$x = 0, y = 0 \Rightarrow \overline{x} \, \overline{y} = 1$$

 \Rightarrow данный ДНФ не может быть равным 0

Эта задача обладает особенностью:

- 1. если знать значения переменных (ответ), то их легко можно быстро проверить
- 2. подобрать значения переменных для 0 нет

Нет известного алгоритма, который "принципиально" быстрее полного перебора

У этой задачи класс NP выполнимости (ответ легко проверить, а найти его простым способом невозможно)

Следствие. То к чему сводится задача (не) выполнимости тоже сложна

- 1. упростить логическое выражение
- 2. nouck минимального ДНФ

1.1.11 Запись таблиц истинности в виде графика

Формула = f(x, y, z) = x + y

$$f(0,0) = 0$$

$$f(0,1) = 1$$

$$f(1,0) = 1$$

$$f(1,1) = 0$$

1.1.12 Задача минимизации ДНФ

Данная задача тоже является сложной, также как и задача (не) выполнимости

Дана логическая функция (в виде ДН Φ). Необходимо найти самую короткую ДН Φ эквивалентную данной.

Минимальной ДНФ считается та, где меньше количество литералов и дизъюнкций

Пример. $\overline{x} \overline{y} \lor z$ короче, чем $xy \lor yz$

 $\it 3$ амечание. Далее рассматриваться все будет для функции от 3 переменных f(x,y,z)

 $\it 3a$ ме
чание. Какова таблица истинности xyz=abc,где
 a=0или 1,b=0и 1,c=0или 1

 $0\Rightarrow$ надо поставить отрицание

 $1 \Rightarrow$ нет отрицания

Пример. $f(x, y, z) = \overline{x} y \overline{z}$

Если \overline{x} y $\overline{z} = 1$

$$\Rightarrow \overline{x}=1, y=1, \overline{z}=1$$

$$\Rightarrow x = 0, y = 1, z = 0$$

$$\Rightarrow x=a, y=b, z=c$$

$$\Rightarrow a=0, b=1, c=0$$

Пример. f(x, y, z) = xy

Если xy = 1

$$\Rightarrow x = 1, y = 1$$

$$\Rightarrow x = a, y = b$$

$$\Rightarrow a = 1, b = 1$$

Аналогично, $f(x, y, z) = \overline{y} \, \overline{z}$

ребро: y = 0, z = 0, x = ? — не важно

Последнее — конъюнкт из 1 литерала: $x, \overline{x}, y, \overline{y}, z, \overline{z}$

Пример. $f(x,y,z) = \overline{y}$

Если $\overline{y} = 1$

Или конъюнкт x, грань x = 1

Итого:

xyz — это вершина x=a,y=b,z=c xy — это ребро x=a,y=b

x — это грань x = a

Попробуем минимизировать ДНФ

Пример. $\overline{x} \overline{y} \overline{z} \lor x \overline{y} \overline{z} \lor xy \overline{z}$

Найти самый короткий ДНФ для данного выражения

Шаг 1: строим ТИ

$$\overline{x}\,\overline{y}\,\overline{z} = (0,0,0)$$

$$x\,\overline{y}\,\overline{z} = (1,0,0)$$

$$xy \, \overline{z} = (1, 1, 0)$$

Шаг 2: упрощаем

Чтобы упростить имеет смысл рассмотреть 2 ребра:

$$(0,0,0) - -(1,0,0) = \overline{y} \,\overline{z}$$

$$(1,0,0) - -(1,1,0) = x \overline{z}$$

$$\Rightarrow ДH\Phi = \overline{y} \, \overline{z} \lor x \, \overline{z} = \overline{x} \, \overline{y} \, \overline{z} \lor x \, \overline{z} = xy \, \overline{z} \lor \overline{y} \, \overline{z}$$

 \Rightarrow самое короткое ДН $\Phi = \overline{y}\,\overline{z} \lor x\,\overline{z}$

Пример. $\overline{x} \overline{y} \overline{z} \lor x \overline{y} \lor xy$

$$\Rightarrow \coprod H\Phi = x \vee \overline{x} \overline{y} \overline{z} = x \vee \overline{y} \overline{z}$$

 $\it Замечание.$ Данный метод позволяет наглядно перебрать все ДНФ и найти минимальный

С помощью алгебраических преобразований мы не сможем понять, что ответ самый оптимальный

Пример. Алгебраические преобразования

$$\overline{x}\ \overline{y}\ \overline{z} \lor x\ \overline{y}\ \overline{z} \lor xy\ \overline{z} = \overline{x}\ \overline{y}\ \overline{z} \lor x\ \overline{y}\ \overline{z} \lor x\ \overline{y}\ \overline{z} \lor xy\ \overline{z} = \overline{y}\ \overline{z} \lor x\ \overline{z}$$

Но тут непонятно, а вдруг можно сделать еще короче

1.1.13 Двойственная функция

Пусть есть логическая функция: $f=B^n \to B=\{0,1\}$ Двойственная функция: $f^*=B^n \to B=\{0,1\}$ $f^*(x_1,x_2,\ldots,x_n)=\overline{f(\overline{x_1},\overline{x_2},\ldots,\overline{x_n})}$

Замечание. Мир замены лжи на истину

$$0 \leftrightarrow 1$$

Пример. $f(x,y) = x \vee y$

\boldsymbol{x}	y	f
0	0	0
0	1	1
1	0	1
1	1	1

Новый мир: $1 \rightarrow 0, 0 \rightarrow 1$

x	y	f^*
1	1	1
1	0	0
0	1	0
0	0	0

Получилось, что $(x \lor y)^* = xy$

Пример.
$$(x \lor y)^* = \overline{\overline{x} \lor \overline{y}} = \overline{\overline{x}} \, \overline{\overline{y}} = xy$$

Пример. $(x+y)^*=\overline{\overline{x}+\overline{y}}=\overline{1+x+1+y}=1+x+1+y+1=1+x+y=x\Leftrightarrow y$

Замечание.
$$f^{**}(x_1,x_2\dots x_n)=\overline{f^*(\overline{x_1},\overline{x_2}\dots \overline{x_n})}=\overline{\overline{f(x_1,x_2\dots x_n)}}=f(x_1,x_2\dots x_n)$$

Следствие.

$$(xy)^* = x \vee y$$

$$(x \Leftrightarrow y)^* = x + y$$

Теорема о композиции:

$$f = f_0(f_1(x_1, \dots x_n), f_2(x_1, \dots x_n), \dots f_m(x_1, \dots x_n))$$
 $f_i \to \text{то функции от n переменных } (B^n \to B)(i = 1 \dots n)$
 $f_0 = B^m \to B$

Тогда $f^*(x_1, \dots x_n) = f_0^*(f_1^*(x_1, \dots x_n), f_2^*(x_1, \dots x_n), \dots f_m^*(x_1, \dots x_n))$

Доказательство:
$$f^* = \overline{f(\overline{x_1}, \dots \overline{x_n})} = \overline{f_0(f_1(\overline{x_1}, \dots \overline{x_n}), f_2(\overline{x_1}, \dots \overline{x_n}) \dots f_m(\overline{x_1}, \dots \overline{x_n}))} = f_0^*(f_1(\overline{x_1}, \dots \overline{x_n}), \overline{f_2(\overline{x_1}, \dots \overline{x_n})}, \dots \overline{f_m(\overline{x_1}, \dots \overline{x_n})})$$

Следствие. Если есть $f(x_1, ... x_n)$ — записано, как логическое выражение $c \cdot, \vee, \neg, +, \Leftrightarrow$, то f^* — также выражение, но связки заменяются на двойственные узлы

$$\lor \leftrightarrow *$$
 $+ \leftrightarrow \Leftrightarrow$
 $\neg \leftrightarrow \neg$

 $ma\kappa \ \kappa a\kappa \ (\overline{x})^* = \overline{x}$

Пример.

$$f(x, y, z) = \overline{x \vee \overline{y} z} \Leftrightarrow (x + y + z)$$

$$f^*(x,y,z) = (\overline{x \cdot (\overline{y} \ z)}) + (x \Leftrightarrow y \Leftrightarrow z)$$

Пример.

$$f(x_1, \dots x_n) = 1$$

$$\Rightarrow f^*(x_1, \dots x_n) = \overline{1} = 0$$

$$1^* = 0; 0^* = 1$$

1.1.14 Конъюнктивно-нормальная форма КНФ

Определение. Конъюнктивно-нормальная форма — еще одна нормальная форма, похожая на ДНФ

Определение. Литерал — это как и раньше, переменные или отрицательные переменные

$$x, y, \overline{x}, \overline{y}$$

Определение. Дизъюнкт — дизъюнкция литералов

$$x \lor y; \ x \lor y \lor \overline{z}; \ x \lor \overline{z}; \ \overline{x}$$

$$xy, x \vee yz$$

Определение. $KH\Phi$ — это конъюнкция нескольких дизъюнктов

$$(x \vee y)(y \vee \overline{z});$$

$$(x \vee \overline{y} \vee z)(\overline{y} \vee \overline{z})(\overline{x})$$

 $xy \forall z$

$$x \lor y \lor z$$

— 1 дизъюнкт

xyz

— 3 дизъюнкта

Определение. У любой логической функции есть $KH\Phi$, её можно построить по таблице истинности

Доказательство

Заметим,
что если вычислить (КНФ)* (двойственную к КНФ), то получим ДНФ

Пример.
$$[(x \lor y \lor z)(x \lor \bar{y})(\bar{y} \lor \bar{z})]^* = (xyz) \lor (x\bar{y}) \lor (\bar{y}\bar{z})$$
 И наоборот (ДНФ)* = КНФ

Итого, чтобы получить КНФ для функции f, надо построить двойственную функцию к ДНФ это функции. Отсюда следует, что КНФ всегда существует

Пример.
$$f(x,y,z)=xy\Leftrightarrow z$$

Выпишем значения хуz из строчек, где $f^*=1$
 $\bar{x}\bar{y}z$ $x\bar{y}\bar{z}$ $\bar{x}y\bar{z}$ $xy\bar{z}$

x	y	z	xy	f	f^*
0	0	0	0	1	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	0	1	1
1	0	1	0	0	0
1	1	0	1	0	1
1	1	1	1	1	0

Вспомним определение $f^*(x,y,z) = \overline{f(\bar x,\bar y,\bar z)}$

$$f^*(0,0,0) = \overline{f(1,1,1)}$$

Итого: $f^* = \underline{x}\overline{y}z \lor \overline{x}y\overline{z} \lor x\overline{y}\overline{z} \lor xy\overline{z}$

$$f^*(0,0,1) = \frac{\overline{f(1,1,0)}}{f(1,1,0)}$$

$$f^*(0,1,0) = \overline{f(1,0,1)}$$

По теореме о композиции

$$f = (\bar{x} \vee \bar{y} \vee z)(\bar{x} \vee y \vee \bar{z})(x \vee \bar{y} \vee \bar{z})(x \vee y \vee \bar{z})$$

Получение КНФ по таблице истинности без двойственной функции $f(x,y,z)=xy\Leftrightarrow z$

x	y	z	$f = xy \Leftrightarrow z$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

При x y z = 1 1 0, f= xy \Leftrightarrow z $\leftarrow \bar{x} \lor \bar{y} \lor z$ для 1 - отрицание, для 0 - нет отрицания Итого: Чтобы построить ДНФ:

- строки с 1, $0 \leftrightarrow \bar{x}\bar{y}\bar{z}$

$$1 \leftrightarrow xyz$$

Чтобы получить КНФ:

- строки с 0, $0 \leftrightarrow xyz$

$$1 \leftrightarrow \bar{x}\bar{y}\bar{z}$$

Пример. f = x+y

x	y	x + y
0	0	0
0	0	1
0	1	1
0	1	0

Нули в:
$$x \lor y$$
 $\bar{x} \lor \bar{y}$ $f = (x \lor y)(\bar{x} \lor \bar{y})$

3амечание. Для функции записанной в форме КНФ, можно поставить задачу "выполнимости".

Вопрос: может ли значение быть = 1

- не известно решений, принципиально эффективней полного перебора значений

Пример.
$$(x \lor y \lor z)(x \lor \bar{y})(y \lor \bar{z})(\bar{x} \lor \bar{z}) = 1$$

x = 1

y = 1 подходит

z = 0

Следовательно эта формула выполнима при таком наборе

Многие задачи, головоломки сводятся к задаче выполнимости

$\mathbf{\Pi}\mathbf{p}\mathbf{u}\mathbf{m}\mathbf{e}\mathbf{p}$. Прицнцип Дирихле

Если есть n клеток и в них n+1 заяц, то \exists клетка, где зайцев $\geqslant 2$.

при n = 2: i = 1 или 2 (клетка)
$$x_{ij}$$
 - в клетке і сидит заяц ј ј = 1 или 2 или 3 заяц

Попробуем записать, что в каждой клетке ≤ 1 зайца

а) каждый заяц ровно в одной клетке

 $x_{11} \oplus x_{21}$ - заяц 1

 $x_{12} \oplus x_{22}$ - заяц 2

 $x_{13} \oplus x_{23}$ - заяц 3

б) в каждой клетке не больше 1 зайца

КЛ	/3	1	2	3
1		x_{11}	x_{12}	x_{13}
2		x_{21}	x_{22}	x_{23}

если есть 2 зайца, то один из конъюнктов: =1

$$\overline{x_{11}x_{12} \lor x_{11}x_{13} \lor x_{12}x_{13}} \longleftarrow$$
 в кл $1 \leqslant 1$ зайца

 $\overline{x_{21}x_{22} \lor x_{21}x_{23} \lor x_{22}x_{23}} \longleftarrow$ в кл $2 \leqslant 1$ зайца

Соединяем все утверждения:

 $(x_{11}+x_{21})(x_{12}+x_{22})(x_{13}+x_{23})(\overline{x_{11}x_{12}\vee x_{11}x_{13}\vee x_{12}x_{13}})(\overline{x_{21}x_{22}\vee x_{21}x_{23}\vee x_{22}x_{23}})=0$ всегда из принципа Дерихле

$$(x_{11} \lor x_{21})(\overline{x_{11}} \lor \overline{x_{21}})(x_{12} \lor x_{22})(\overline{x_{12}} \lor \overline{x_{22}})(x_{13} \lor x_{23})(\overline{x_{13}} \lor \overline{x_{23}})(\overline{x_{11}} \lor \overline{x_{12}})(\overline{x_{11}} \lor \overline{x_{12}})(\overline{x_{21}} \lor \overline{x_{22}})(\overline{x_{21}} \lor \overline{x_{23}})(\overline{x_{22}} \lor \overline{x_{23}})$$

— Берем программу, которая решает КН Φ задачу выполнимости. Она скажет - невозможно.

1.1.15 Класс замкнутости

Повторим: Логическая функция: f: $\beta^n \to \beta$ $\beta = \{0, 1\}$

Определение. Класс – это множество логических функций.

Пример. $K_1 =$ класс функций: от двух переменных $K_2 =$ класс функций такой, что f(x,y) = f(y,x)

$$f(x,y) = x \lor y \in K_1, \in K_2$$

$$g(x,y) = x \Rightarrow y \in K_1 \notin K_2$$

 K_3 : класс функций $f(x,...) = f(\overline{x},...)$ функции, которые не зависят от первой переменной

$$f(x, y, z) = y \Rightarrow z \in K_3$$

$$f(x, y, z) = (x \Rightarrow y) \lor z \notin K_3$$

$$f(x, y, z) = x\bar{x} \lor y \lor z \in K_3 \quad (x\bar{x})$$

$$K_4 : \{f(x, y) = x \lor y; g(x, y) = x \Rightarrow y\}$$

Определение. Замыкание класса

$$K = \{f_1, f_2, \dots\}$$
 — класс функции

 K^* — замыкание класса - это класс состоящий из всех композиций функций из К

 $[f_1(f_2)(f_1(x,y),y,z),z)] \ -$ композиция

если есть функции, подставляем друг в друга, получаем композицию

Пример. :
$$1)K = \{0, \bar{x}\}$$
 (0 - $f()$ $\bar{x} - g(x)$)
 $K^* = \{f(), g(f()), g(g(f())), g(g(g(f())))\}$

Пример. $K = \{\bar{x}\}$ возьмем класс только из отрицательных

$$K^* = \{\bar{x}, x\}$$

$$K = \{g(x), g((g(x))), g(g(g(x \dots 1, \dots)))\}$$

Пример. $K^* = \{\bar{x}, x \vee y, xy\}$ $K^* = \{\dots, \forall, \text{ функция }\}$

Определение. Если К - класс:

 $K^*=lpha$, то $\overline{{\mathbb K}$ - полный, где lpha — все логические функции

Вывод: $K = \{\bar{x}, x \vee y, xy\}$ — полный

Пример. $K = \{\bar{x}, x \vee y\}$, где $f(x) = \bar{x}, g(x, y) = x \vee y$

$$xy = \overline{\overline{xy}} = \overline{\overline{x} \vee \overline{y}} = f(g(f(x), f(y)))$$

Значит K^* — тоже полный

Определение. Замкнутый класс - К замкнут, если $K^* = K$

Свойства замыкания:

1. $K_1 \subset K_2$, тогда $K_1^* \subset K_2^*$

Докозательство:

Если есть $\mathbf{f} \in K_1^* \Rightarrow f =$ композиция $f_1 \in K_1 \Rightarrow \mathbf{f}$ - композиция $(f_i \in K_2) \Rightarrow f \in K_2^*$ чтд.

2. Если $K_1 \subset K_2$ и K_1 - полный, то K_2 - полный

Докозательство:

$$K_1 \subset K_2 \Rightarrow K_1^* \subset K_2^* \Rightarrow \alpha \subset K_2^* \Rightarrow K_2^* = \alpha$$

3. Пусть K_1, K_2 - замкнутое, тогда $K_1 \cap K_2$ - тоже замкнутые

Докозательство:

Пусть есть $f = (K_1 \cap K_2)^*$ - композиция

$$f_i \in (K_1 \cap K_2)$$

 $(a)\Rightarrow f_i$ - композиция $f_i=K_1\Rightarrow f\in K_1^*$

б) $\Rightarrow f_i$ - композиция $f_i = K_2 \Rightarrow f \in K_2^*$

Из а и б следует, что $f \in K_1^* \cap K_2^* = K_1 \cap K_2$

Итог: $f \in (K_1 \cap K_2)^* \Rightarrow f \in K_1 \cap K_2$

 $\Rightarrow (K_1 \cap K_2)^* \subset K_1 \cap K_2$, no $K_1 \cap K_2 \subset (K_1 \cap K_2)^*$

 $\Rightarrow K_1 \cap K_2 = (K_1 \cap K_2)^*$

 $\Rightarrow K_1 \cap K_2$ - замкнут

3амечание. K_1 и K_2 - замкнутые $\Rightarrow K_1 \cup K_2$ - замкнутый

4. $K^* = K^{**}$ для любого класса функций

1.1.16 Примеры замкнутых классов

```
1. T_0 - класс функций, "сохраняющих ноль" f \in T_0 \Leftrightarrow \text{если } f(0,....0) = 0
    x * y \in T_0
    x + y \in T_0
    \bar{x} \notin T_0
    x \Rightarrow y \notin T_0
    xy + xz + yz \in T_0
    Утверждение: T_0 - замкнут
    Докозательство:
    \Box f \in T_0^*, проверим, что f \in T_0
    \Rightarrow T_0^* \subset T_0 \\ \Rightarrow T_0^* = T
    f - комп f_i, f_i \in T_0
    f_1(f_2(...)f_3(f_4(...)),...) - композиция
    подставим все 0
    \Rightarrow f(0,....0) = 0 \Rightarrow f \in T_0 чтд
                                   f_1 \in T_0 f_2 \in T_0
Пример. f_1(x,y) = x * y
    f_2(x,y) = x + y f_1(f_2(f_1(x, f_2(y,y)), y)f_1(z,z))
    x(y+y)
    f(x, y, z) = (x(y + y) + y) * z * z
    f(0,0,0) = 0
    2. Класс T_1 - сохраняющие 1
    f \in T_1, если f(1,...1) = 1
    x * y \in T_1
    x + y \notin T_1
    x + y + z \in T_1
    \bar{x} \notin T_1
    x \Rightarrow y \in T_1
    xy + xz + yz \in T_1
Утверждение. T_1 - замкнут
    Докозательство: смотри T_0
    3. Класс 💹
    f \in \mathbb{Z}, если f можно записать как конъюнкцию нескольких перемен-
ных
    f(x, y, z) = yz
    g(x, y, z) = xyz
    h(x, y, z) = xz
    i(x, y, z) = z
```

по опревелению замыкант $\{f_1(x,y)=x*y \ f_2()=0 \ f_3()=1\}$

4. \square - дизъюнкция переменных и $0,\,1$ $\square=\{V,0,1\}^*$

Утверждение. \square - замкнут

Докозательство 1:

смотри докозательство 🖾

Докозательство 2:

Докозательство: $\Box f \in K^* \Rightarrow f$ – комп $f_i \Rightarrow f_i \in K^*$ $f = f_1(f_2(...)...) = g_1(g_2(h_1...)) \in k^*$ \uparrow \uparrow комп $g_1 \in K^*$ $g_i \in K \ h_i \in K$ $\Rightarrow f \in K^* \Rightarrow K^* = K^{**}$ Следствие: $\forall K$ - класс K^* - замкнут если класс замкнут он станет замкнутым 5. Класс u (unit): $0,1,f(x,...x_n)=x_i$ или $\overline{x_i}$ $f(x, y, z) = \bar{z}$ f(x, y, z, t) = x $f(x) = xf(x) = \bar{x}$ Все это $\in u$ 6. Класс $1^{\infty} f(x_1...x_n) \leqslant x_i$ $0^{\infty} f(x...x_n) \geqslant x_i$ $x * y \leqslant x \qquad xy \in 1^{\infty}$ $\leq y$

$$x \lor y \geqslant x$$
 $x \lor y \in 0^{\infty}$ $\geqslant y$ $x \Rightarrow y \geqslant y$ $x \Rightarrow y \in 0^{\infty}$ $x \Rightarrow y \leqslant y$ $x = 0$ $y = 0$ $x \Rightarrow y \notin 1^{\infty}$ 7. L - линейная функция $L = \{0, 1, +\}^*$ Все функции из констант и сложения $x + y \in L$ $x + y + z \in L$ $1 + x \in L$ $\bar{x} \in x * y \in L$ (L - линейные многочлены Жегалкина, степени $x \in X + y \in X$ (L - линейные многочлены Жегалкина $x \in X + y \in X$ он единственный $x \in X + y \in X$ имеет многочлены Жегалкина $x \in X + y \in X$ он единственный $x \in X + y \in X$ он единственный $x \in X + y \in X$ он единственный $x \in X$ он единственные функции $x \in X + y \in X$ ($x \in X + y \in X$ он единственные функции $x \in X + y \in X$ он единственные функции $x \in X + y \in X$ он единственные функции $x \in X + y \in X$ он единственные функции $x \in X + y \in X$ он единственные функции $x \in X + y \in X$ он единственные функции $x \in X + y \in X$ он единственные функции $x \in X + y \in X$ он единственные функции $x \in X + y \in X$ он единственные функции $x \in X + y \in X$ он единственные функции $x \in X + y \in X$ он единственные функции

Если функция равна своей двойственной, то она самодвойтсвенная

Пример. $x * y \notin S$

$$x \lor y \notin S$$
 $x \in S$ $x \in S$ $\bar{x} \in S$ $x \Rightarrow y \notin S$ т.к. $(x \Rightarrow y)^* = (\bar{x} \lor y)^* = \bar{x} * y \neq \bar{x} \lor y$ $x = 1$

Функция честного голосования y=1 от 3 ёх переменных. $0 \neq 1$ vote(x,y,z)=1, если 1 - иц больше $x+y+z \geq z$ 0, если 0 - ей больше $x+y+z \leq 1$

vote(x, y, z): Таблица истинности

xyz	vote	$vote^*$
000	0	0
001	0	0
010	0	0
011	1	1
100	0	0
101	1	1
110	1	1
111	1	1

Утверждение.
$$S$$
 - замкнут
$$\exists f \in S^* f = \kappa omnosuuus f_i \in S$$

$$f = f_i(f_2(...), f_3(...), f_4(...))$$

Определение. Высота композиции

$$f(x,y,z)$$
 - высота 1 (1 ф-ия) $f(g(x,y),y,z)$ - высота 2 $g(x,y)-1$ $f(g(x,y),y,z)-2$

Пример.
$$f(g(h(x), y), h((h(x)), y))$$

 $g(h(x), y)$ - 2

$$h(h(x))$$
 - 2

$$f(g(h(x), y), h((h(x)), y)) - 3$$

$$f^* = f_1^*(f_2^*(...), f_n^*(...))$$
 - теория о композиции но $f_i \in S \Rightarrow f_i^* = f_i$

HO
$$f_i \in S \Rightarrow f_i^* = f_i$$

= $f_i(f_2(...), ...f_n(...)) = f_i$

T.e
$$f^* = f \Rightarrow f \in S$$

$$f(x_1,\ldots,x_n)\in M$$
, если $\forall i\quad x_i\geq y_i$
 $\Rightarrow f(x_1,\ldots,x_n)\geq f(y_1,\ldots,y_n)$

Примеры:

- 1. $f_1(x)=\overline{x}$ $f_1\notin M$, так как $f_1(1)=0, f(0)=1$. 1 в аргументе функции ≥ 0 , но 0<1 в значение функции
- 2. $f_2(x,y)=x\Rightarrow y$ $f_2\notin M$, так как $f_2(1,0)=0, f(0,0)=1.$ 1,0 в аргументе функции $\geq 0,0,$ но 0<1 в значение функции
- 3. $f_3(x,y)=x+y$ $f_3\notin M$, так как $f_3(1,1)=0, f(1,0)=1$. 1,1 в аргументе функции $\geq 1,0$, но 0<1 в значение функции
- 4. $f_4(x,y) \in M$
- 5. $f_5(x,y) \in M$
- 6. $f_6(x,y,z) = xy \lor xz \lor yz \in M$ функция голосования

Наглядный способ проверки монотонности

Функция монотонна, когда все стрелки:

- 1. из 0 в 0
- 2. из 0 в 1
- 3. из 1 в 1

Пример. x * y

Данная функция монотонна

Пример. $x \vee y$

Данная функция тоже монотонна

Утверждение. M – замкнут

To есть если f_i – мотонна, то $f(x_1, \ldots x_n) = f_1(f_2(\ldots) \ldots f_m(\ldots))$

 $f(y_1,\ldots y_n)=f_1(f_2(\ldots)\ldots f_m(\ldots))$

 $x_1 \dots x_n \ge y_1 \dots y_n$

То где-то в глубине x_i будут $\geq y_i \Rightarrow$ внутри будут получаться значения функции $f_i(x\dots) \geq f_i(y\dots)$

Замечание. Классы из примеров выше все неполные

Пример. $L = L^* \quad x \cdot y$

Всегда были примеры функций не из классов

 $xy \notin L$

 $xy \notin S$

 $\overline{x} \notin T_0$

 $\overline{x} \notin T_1$

 $\overline{x} \notin M$

1.1.17 Теорема Поста

Теорема. Поста

(Позволяет понять, полный класс или нет)

K – полный тогда и только тогда, когда

 $\exists f_1 \in K : f_1 \notin T_0$

 $\exists f_2 \in K: \quad f_2 \notin T_1$

 $\exists f_3 \in K : f_3 \notin L$

 $\exists f_4 \in K : \quad f_4 \notin M$

 $\exists f_5 \in K : f_5 \notin S$

Пример. $K = {\overline{x}; x + y}$ $\overline{x} \notin T_0, T_1$

но
$$\overline{x} \in L$$
 и $x+y \in L \Rightarrow$ K – не полный

$$\begin{array}{l} \mathbf{\Pi}\mathbf{pимер.}\ K=\{\overline{x};x\vee y\}\\ \overline{x}\notin T_0,T_1,M\\ \overline{x}\in S,L\quad \text{ но }x\vee y\notin L,S\Rightarrow\\ K\quad \text{- полный по теореме Поста} \end{array}$$

Доказательство в одну сторону:

 \Rightarrow если K полный, от противного ???????????????? Пусть все $f \in K$ отличе, что $f \in T_0$ $\Rightarrow K \subset T_0$ $\Rightarrow K^* \subset T_0^*$ $\Rightarrow K^* \subset T_0 \nleq \alpha$, где α – все функции $\Rightarrow \leq \alpha$???

Доказательство в другую сторону:

Будем выражать через f_1 ; f_2 ; f_3 ; f_4 ; f_5 все другие возможные ??????? Достаточно будет выразить только $\{\overline{x},x\cdot y\}$ (тогда есть $x\vee y=\overline{\overline{x}\cdot \overline{y}}$) \Rightarrow есть все ДНФ.

$$egin{align*} & egin{align*} egin{align$$

Пояснение:

$$f(x,y,z)=x\Rightarrow yz$$
 $f(x,x,x)=1$ $f(0,0,0)=1, f\notin T_0$????? $f_4(x,y,z,t)=xy+zt\notin M$ $f_4(1,1,1,1)=0$ $f_4(1,0,1,1)=1$ $1,1,1,1\geq 1,0,1,1$ $\Rightarrow f_4(1,x,1,1)=\begin{bmatrix} 1,x=0\\0;x=1\end{bmatrix}=\overline{x}$???? Выражены $f_1(x_1,x_2\dots x_n)=\overline{x}$ $f_2(x_1,x_2,\dots x_n)=\overline{x}$ $f_5\notin S$ получим с ней 1 и 0 Найдем нарушение S

$$\begin{split} &\frac{f^*(x_1\ldots x_n)}{f(\overline{x_1},\ldots\overline{x_n})}\neq f(x_1\ldots x_n)\\ &f(\overline{x_1},\overline{x_2},\ldots\overline{x_n})\neq f(x_1,\ldots x_n)\\ &f(\overline{x_1},\overline{x_2},\ldots\overline{x_n})=f(x_1,\ldots x_n)\\ &\operatorname{Рассмотрим}\ f_5(x;\overline{x};x;\ldots\overline{x})=\\ &(\text{если}\ x_i=0\Rightarrow x\quad x_i=1\Rightarrow\overline{x})\\ &=\begin{bmatrix} f(x_1,x_2\ldots x_n)\ when\ x=0\\ f(\overline{x_1},\ldots\overline{x_n})\ when\ x=1 \end{bmatrix}=0$$
 или 1

Пример. $f(x,y,z) = x \vee yz \notin S$ нужно найти f(1,0,0) = f(0,1,1) (нарушение S) Рассмотрим $f(\overline{x},x,x) = \begin{bmatrix} f(1,0,0) = 1 & x = 0 \\ f(0,1,1) = 1 & x = 1 \end{bmatrix} = 1$ $f(\overline{x},x,x) = \overline{x} \vee xx = \overline{x} \vee x = 1$ если получили 0, то $\overline{0} = 1$ и наоборот

Шаг 2:

Имеем $0, 1, \overline{x}$ Надо $x \cdot y$ выразить Берем $f_3 \in L$ $f_3(x_1,\ldots x_n) = \cdots + \cdots + x_i y_j + \ldots$ Подставим $0; 1; x_i; x_j$ Возьмем самое короткое слагаемое с x_i x_j Для определенности \exists это $x_1 \cdot x_2$ $f_3(x_1 \dots x_n) = 1 + x_1 + x_2 + x_1 x_2 x_3 \dots x_k + \dots$ подставим $x_3 \dots x_k = 1$ остальные $x_{k+1...} = 0$ $f(x_1, x_2, 1, 1, 1, 0, 0, 0, \dots 0) = C_1 + x_1 x_2 + C_2 x_1 + C_3 x_2 + 0 \cdot x_1 x_2 =$ $g(x_1, x_2) = \begin{cases} 1 + x_1 x_2 \\ 1 + x_1 + x_1 x_2 \\ 1 + x_2 + x_1 x_2 \\ x_1 + x_1 x_2 \\ x_2 + x_1 x_2 \end{cases}$ если $g(x_1, x_2) = 1 + x_1 x_2$ $g(x_1, x_2) = x_1 x_2$ – отрицание уже есть если $g(x_1, x_2) = 1 + x_1 + x_1 x_2 = 1 + x_2 (1 + x_2)$ тогда $g(x_1, \overline{x_2}) = 1 + (1 + x_1(1 + 1 + x_2)) = x_1x_2$

все случаи: $g(x_1, x_2) = C_1 + (x_1 + C_2) \cdot (x_2 + C_3)$

```
Пример. f_3(x, y, z) = x + yz
    f_3(0, x, y) = 0 + xy = xy
Пример. f_3(x,y,z) = x \Rightarrow yz = 1 + x + xyz
    f_3(x, y, 1) = 1 + x + xy = 1 + x(1 + y)
    \overline{f_3(x,\overline{y},1)} = xy
    можно было
    f(1, x, y) = 1 + 1 + xy = xy
Пример. f(x, y, z) = x \Rightarrow yz
    g(x,y) = x + y
    \notin T_0, T_1, L, M, S
    Выражаем
    f(x, x, x) = x \Rightarrow xx = 1
    g(x,x) = x + x = 0
    Случай 0, 1, надо \overline{x}
    Выражаем \overline{x}
    g(x,y) \notin M
    g(1,0) = 1
    g(1,1) = 0
    \Rightarrow g(1,x) = \overline{x}
    \Rightarrow \overline{x} = g(f(x, x, x), x)
    Выражаем x \cdot y
    f(x, y, z) = xx \Rightarrow yz = 1 + x + xyz
    Догадаемся, что f(1, x, y) = x \cdot y
    Ответы: \overline{x} = g(f(x, x, x), x) x \cdot y = f(1, x, y)
```