

M54/M74HC257 M54/M74HC258

HC257 QUAD 2 CHANNEL MULTIPLEXER (3-STATE) HC258 QUAD 2 CHANNEL MULTIPLEXER (3-STATE, INVERTING)

- HIGH SPEED
 - $t_{PD} = 10 \text{ ns} (TYP.) \text{ at } V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)}$ at $T_A = 25 \text{ °C}$
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- OUTPUT DRIVE CAPABILITY
 15 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE | IOH | = IoL = 6 mA (MIN.)
- BALANCED PROPAGATION DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE Vcc (OPR) = 2 V to 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS257/258

DESCRIPTION

The M54/74HC257 and the M54/74HC258 are high speed CMOS MULTIPLEXERs fabricated with silicon gate C²MOS technology.

They have the same high speed performance of LSTTL combined with true CMOS low power consumption.

These IC's are composed of an independent 2-channel multiplexer with common SELECT and ENABLE INPUT.

The M54/74HC258 is an inverting multiplexer while the M54/74HC257 is a non-inverting multiplexer. When the ENABLE INPUT is held "High", outputs of both IC's become high-impedance state. If SELECT INPUT is held "Low", "A" data is selected, when SELECT INPUT is high "H", "B" data is chosen.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

October 1992 1/12

INPUT AND OUTPUT EQUIVALENT CIRCUIT

CHIP CARRIER

PIN DESCRIPTION (HC257)

PIN No	SYMBOL	NAME AND FUNCTION
1	SELECT	Common Data Select Input
2, 5, 14, 11	1A to 4A	Data Input From Source A
3, 6, 13, 10	1B to 4B	Data Inputs from Source B
4, 7, 12, 9	1Y to 4Y	3 State Multiplexer Outputs
15	ŌE	3 State Output Enable Inputs (Active LOW)
8	GND	Ground (0V)
16	V_{CC}	Positive Supply Voltage

PIN DESCRIPTION (HC258)

PIN No	SYMBOL	NAME AND FUNCTION
1	SELECT	Common Data Select Input
2, 5, 14, 11	1A to 4A	Data Input From Source A
3, 6, 13, 10	1B to 4B	Data Inputs from Source B
4, 7, 12, 9	$1\overline{Y}$ to $4\overline{Y}$	3 State Multiplexer Outputs
15	ŌE	3 State Output Enable Inputs (Active LOW)
8	GND	Ground (0V)
16	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOL

LOGIC DIAGRAM

TRUTH TABLE

	INP	UTS		OUTI	PUTS
ŌĒ	SELECT	Α	В	Y (257)	<u>Y</u> (258)
Н	X	X	X	Z	Z
L	L	L	X	L	Н
L	L	Н	X	Н	L
L	Н	X	L	L	Н
L	Н	Х	Н	Н	L

X = DON'T CARE Z = HIGH IMPEDANCE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Ιο	DC Output Source Sink Current Per Output Pin	± 35	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V_{CC}	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	٧
T _{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	ဂိဂိ
t _r , t _f	Input Rise and Fall Time	$V_{CC} = 2 V$	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

		Test Conditions			Value							
Symbol Parameter	V _{CC}				_A = 25 ^o C and 7		1	85 °C HC	1	125 °C HC	Unit	
	(v)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	_{VI} =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	V _{IH}		4.4	4.5		4.4		4.4		\ /
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	VIL	I _O =-6.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-7.8 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	V _I =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VI =	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 6.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 7.8 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	V _I = '	V _{CC} or GND			±0.1		±1		±1	μΑ
loz	Output Leakage Current	6.0		V _{IH} or V _{IL}	_		±0.5		±5		±10	μΑ
Icc	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

		Te	est Co	nditions				Value				
Symbol	Parameter	Vcc	CL			A = 25 °C and 7		1	85 °C HC	l .	125 °C HC	Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0				25	60		75		90	
t_{THL}	Time	4.5	50			7	12		15		19	ns
		6.0				6	10		13		15	
t _{PLH}	Propagation	2.0				45	100		125		150	
t _{PHL}	Delay Time	4.5	50			13	20		25		30	ns
	(A, B - Y)	6.0				11	17		21		26	
		2.0				62	140		175		210	
		4.5	150			18	28		35		42	ns
		6.0				15	24		30		36	
t _{PLH}	Propagation	2.0 4.5 50				45	100		125		150	
t_{PHL}	Delay Time		50			13	20		25		30	ns
	(SELECT - Y)	6.0				11	17		21		26	
		2.0	2.0			62	140		175		210	
		4.5	150			18	28		35		42	ns
		6.0				15	24		30		36	
t _{PZL}	Output Enable	2.0				40	110		140		165	
tpzH	Time	4.5	50	$R_L = 1 K\Omega$		12	22		28		33	ns
		6.0				10	19		24		28	
		2.0				57	150		190		225	
		4.5	150	$R_L = 1 K\Omega$		17	30		38		45	ns
		6.0				14	26		32		38	
t_{PLZ}	Output Disable	2.0				28	140		175		210	
t _{PHZ}	Time	4.5	50	$R_L = 1 K\Omega$		14	28		35		42	ns
		6.0				13	24		30		36	
CIN	Input Capacitance					5	10		10		10	рF
C _{OUT}	Output Capacitance					10						pF
C _{PD} (*)	Power Dissipation Capacitance					47						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}/4$ (per Channel)

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT Icc (Opr.)

CPD CALCULATION

C_{PD} is to be calculated with the following formula by using the measured value of ICC (opr.) in the test circuit opposite.

$$C_{PD} = \frac{I_{CC}(opr)}{f_{IN} \times V_{CC}}$$

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm			inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
a1	0.51			0.020					
В	0.77		1.65	0.030		0.065			
b		0.5			0.020				
b1		0.25			0.010				
D			20			0.787			
E		8.5			0.335				
е		2.54			0.100				
e3		17.78			0.700				
F			7.1			0.280			
I			5.1			0.201			
L		3.3			0.130				
Z			1.27			0.050			

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch			
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	9.78		10.03	0.385		0.395		
В	8.89		9.04	0.350		0.356		
D	4.2		4.57	0.165		0.180		
d1		2.54			0.100			
d2		0.56			0.022			
E	7.37		8.38	0.290		0.330		
е		1.27			0.050			
e3		5.08			0.200			
F		0.38			0.015			
G			0.101			0.004		
М		1.27			0.050			
M1		1.14			0.045			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

