Corso di Laurea in Matematica Geometria 2 - Esercizi settimanali A.A. 2023/24

Diego Monaco

Esercizi I settimana

Esercizio 1.

- (1) Si calcoli la cardinalità di $\mathbb{P}^n(\mathbb{F}_q)$, dove \mathbb{F}_q denota un campo finito con q elementi.
- (2) Siano r_0, r_1, r_2 tre rette non concorrenti (cioè tali che $r_0 \cap r_1 \cap r_2 = \emptyset$) in un piano proiettivo $\mathbb{P}(V)$ (quindi dim $\mathbb{P}(V) = 2$) su un campo \mathbb{K} . Si mostri che esiste:

$$P \in \mathbb{P}(V) \setminus (r_0 \cup r_1 \cup r_2)$$

Soluzione. Vediamo i due punti:

(1) Dalla definizione data di spazio proiettivo abbiamo che:

$$\#\mathbb{P}^n(\mathbb{F}_q) = \#\mathbb{P}(\mathbb{F}_q^{n+1}) = \#\left(\frac{\mathbb{F}_q^{n+1} \setminus \{0\}}{\sim}\right)$$

Osserviamo che le classi di equivalenza di \sim hanno la stessa cardinalità, data da q-1. Infatti $v \sim w \iff v = \lambda w, \ \lambda \in \mathbb{F}_q^*$, ovvero, fissato un rappresentante, le classi di equivalenza si ottengono tutte moltiplicando per gli scalari invertibili di \mathbb{F}_q , che sono q-1, pertanto tutte le classi di equivalenza di \sim hanno questa cardinalità e da sopra si ottiene:

$$\#\mathbb{P}^n(\mathbb{F}_q) = \frac{q^{n+1} - 1}{q - 1}$$

(2) Chiamiamo: $P_0 = r_0 \cap r_1, P_1 = r_1 \cap r_2, P_2 = r_2 \cap r_0$ (tali intersezioni esistono poiché stiamo considerando coppie di rette in un piano proiettivo, che per quanto visto a lezione si intersecano necessariamente in un punto), e siano $[v_0] = P_0, [v_1] = P_1, [v_2] = P_2, \text{ con } v_0, v_1, v_2 \in V$, le classi associate ai punti. Osserviamo che, essendo le rette non concorrenti, i punti P_0, P_1, P_2 sono necessariamente distinti, e per come definiti non allineati (quindi i vettori associati non stanno sullo stesso piano, pertanto sono indipendenti (essendo in uno spazio di dimensione 3)) per cui dei rappresentanti a loro associati sono linearmente indipendenti. Consideriamo:

$$v_0 + v_1 + v_2 \in V$$
 con $P := [v_0 + v_1 + v_2] \in \mathbb{P}(V)$

e verifichiamo che P è il punto di $\mathbb{P}(V)$ richiesto dalla traccia. Se fosse $P \in r_0 = L(P_0, P_2)$, avremmo:

$$[v_0 + v_1 + v_2] \in L(P_0, P_2) \iff v_0 + v_1 + v_2 \in \text{Span}(v_0, v_2)$$

e dalle proprietà di sottospazio vettoriale di $\mathrm{Span}(v_0, v_2)$ seguirebbe che $v_1 \in \mathrm{Span}(v_0, v_2)$, ma questo è assurdo poiché v_1 è linearmente indipendente con v_0, v_2 , pertanto $P \notin r_0$. Ragionando in maniera analoga nel caso di r_1 ed r_2 si ottiene che $P \in \mathbb{P}(V) \setminus (r_0 \cup r_1 \cup r_2)$, come richiesto.

Osserviamo che tale soluzione vale sia nel caso in cui \mathbb{K} sia un campo infinito, sia nel caso finito, tuttavia, in quest'ultimo caso si può fare direttamente il conto usando il punto (1) e ricordando che una retta proiettiva corrisponde ad un $\mathbb{P}^1(V)$ come segue:

$$\#\mathbb{P}(V) - \#(r_0 \cup r_1 \cup r_2) = \frac{q^3 - 1}{q - 1} - \#(r_0 \cup r_1 \cup r_2)$$

dove $\#(r_0 \cup r_1 \cup r_2)$ si ottiene usando il principio di inclusione-esclusione, con $\#r_i = \#\mathbb{P}^1(\mathbb{K}) = \frac{q^2-1}{q-1} = q+1, \ \#r_i \neq r_j = 1$ (dall'ipotesi) e $\#r_1 \cap r_2 \cap r_3 = 0$ (sempre per ipotesi), e quindi:

$$#\mathbb{P}(V) - #(r_0 \cup r_1 \cup r_2) = q^2 + q + 1 - 3q$$
$$= q^2 - 2q + 1$$

che è maggiore di 0 se e solo se $q \neq 1$ (che è sempre vero per un campo finito).

Esercizio 2. Siano W_1, W_2, W_3 piani $\mathbb{P}^4(\mathbb{K})$ tali $W_i \cap W_j$ è un punto per ogni $i \neq j$ e che $W_1 \cap W_2 \cap W_3 = \emptyset$. Si mostri che esiste un unico piano $W_0 \subseteq \mathbb{P}^4(\mathbb{K})$ tale che per i = 1, 2, 3 l'insieme $W_0 \cap W_i$ sia una retta proiettiva.

Soluzione. Siano $P_1 = W_1 \cap W_2$, $P_2 = W_2 \cap W_3$, $P_3 = W_3 \cap W_1$ (sono distinti perché per ipotesi i tre piani non si intersecano contemporaneamente) e sia $W_0 = L(P_1, P_2, P_3)$. Si osserva che dim $W_0 = 2$, infatti essendo i tre punti distinti e non allineati (altrimenti i piani coinciderebbero), detti $v_1, v_2, v_3 \in V$ dei rappresentanti si ha che sono linearmente indipendenti e:

$$L(P_1, P_2, P_3) = \pi(\operatorname{Span}(v_1, v_2, v_3))$$

dove, dalla lineare indipendenza segue che $\dim(\mathrm{Span}(v_1,v_2,v_3))=3$ e nel proiettivo $\dim(L(P_1,P_2,P_3))=2 \implies W_0$ è un piano.

Verifichiamo che è quello richiesto dalla tesi. Consideriamo $W_0 \cap W_1$, poiché $P_1, P_2 \in W_1$ e $W_0 = L(P_1, P_2, P_3)$, allora:

$$P_1, P_2 \in W_0 \cap W_1 \implies L(P_1, P_2) \subseteq W_0 \cap W_1$$

e come segue da quanto osservato prima $\dim(L(P_1, P_2)) = 1$ (= è una retta proiettiva), inoltre $\dim(W_0 \cap W_1) \leq 1$, perché se fosse 2 i piani coinciderebbero, ma questo è assurdo perché $P_2 \notin W_1$, pertanto $W_0 \cap W_1 = L(P_1, P_2)$. Ragionando analogamente si verifica che W_0 è il piano richiesto dalla traccia.

Per l'unicità, sia W_0' un piano che soddisfa le ipotesi del problema, allora interseca W_i nella retta r_i' , per i=1,2,3. Sia $P_1'=\underbrace{r_1'}_{=W_0'\cap W_1}\cap\underbrace{r_2'}_{=W_0\cap W_2}\Longrightarrow P_1'\in W_1\cap W_2\stackrel{\text{ipotesi}}{\Longrightarrow}$

 $P_1'=P_1$, e analogamente $P_2'=P_2, P_3'=P_3$, da ciò segue $L(P_1,P_2,P_3)\subseteq W_0'$, ma allora per dimensione $W_0'=W_0$.

Esercizio 3. Siano r_1, r_2, r_3 rette di $\mathbb{P}^4(\mathbb{K})$ a due a due sghembe e non tutte contenute in un iperpiano (cioè un sottospazio 3-dimensionale di $\mathbb{P}^4(\mathbb{K})$). Si dimostri che esiste un'unica retta che interseca sia r_1 , sia r_2 , sia r_3 .

Soluzione. Siano $S_1 = L(r_1, r_2), S_2 = L(r_2, r_3), S_3 = L(r_3, r_1)$, essendo le rette sghembe segue che:

$$\dim(S_i) = \dim r_i + \dim r_i - \dim(r_i \cap r_i) = 1 + 1 - (-1) = 3$$

da cui segue che:

$$\dim(S_i \cap S_j) = \underbrace{\dim S_i}_{=3} + \underbrace{\dim S_j}_{=3} - \dim(L(S_i, S_j)) \qquad i \neq j$$

con dim $(L(S_i, S_j)) \leq \dim \mathbb{P}^4(\mathbb{K}) = 4$, inoltre, per definizione $L(S_i, S_j)$ è il più piccolo sottospazio che contiene 3 rette (sghembe), che quindi non stanno tutte in un iperpiano e quindi dim $(L(S_i, S_j)) \geq 4$ (cioè per ipotesi il più piccolo sottospazio che contiene le tre rette è proprio $P^4(\mathbb{K})$), pertanto dim $(L(S_i, S_j)) = 4 \implies \dim(S_i \cap S_j) = 2$. Consideriamo quindi $S_1 \cap S_2 \cap S_3 =: r$ (cioè l'intersezione tra i più piccoli sottospazi che contengono r_1, r_2, r_3) e osserviamo che:

$$\dim r = \underbrace{\dim(S_1)}_{=3} + \underbrace{\dim(S_2 \cap S_3)}_{=2} - \underbrace{\dim(L(S_1, L(S_2, S_3)))}_{\leq 4} \geq 1$$

inoltre $\dim r \leq 3$ (perché intersezione di sottospazi di dimensione 3), e in particolare non può essere 3 (altrimenti $S_1 = S_2 = S_3$, che è contro l'ipotesi perché staremmo dicendo che le tre rette sono contenute in un iperpiano) e analogamente non può essere 2 (altrimenti avremmo $S_i \cap S_j \subseteq S_k$, ma questo implicherebbe ancora l'avere le tre rette in uno stesso iperpiano), pertanto $\dim r = 1$, ed è proprio una retta proiettiva. Abbiamo che r è una retta cercata, infatti:

$$r \subseteq S_1 \cap S_2 = L(r_1, r_2) \cap L(r_2, r_3) (\supseteq r_2)$$

avendo dimostrato che la dimensione di $S_1 \cap S_2$ è 2, e ricordando che due rette si intersecano sempre su un piano proiettivo, abbiamo che $r \cap r_2 \neq \emptyset$, e analogamente per le altre due rette.

Per l'unicità, data r' che soddisfa le ipotesi del problema, ci basta verificare che $r' \subseteq S_1 \cap S_2 \cap S_3 = r$ (e poi si conclude per dimensione). Osserviamo che:

$$\dim(L(r', r_1)) = 2 - 0 = 2$$

e idem per $\dim(L(r',r_i)) = S'_i$, da questo segue che:

$$\dim(L(S_1', S_2')) = \dim(L(L(r', r_1), L(r', r_2))) = 2 + 2 - \dim(S_1' \cap S_2')$$

con $\dim(S'_1 \cap S'_2) \leq 2$ (perché intersezione di sottospazi di dimensione 2) e $\dim(S'_1 \cap S'_2) \geq 1$ (perché c'è almeno r' nell'intersezione), in particolare la dimensione non può essere 2 perché altrimenti $S'_1 = S'_2 \implies r_1 = r_2$, si conclude quindi che $\dim(L(S'_1, S'_2)) = 3$. Osservando che:

$$S_1 = L(r_1, r_2) \subseteq L(L(r', r_1), L(r', r_2)) = L(S'_1, S'_2)$$

dunque per dimensione $S_1 = L(S_1', S_2') \supseteq r'$, e ragionando analogamente per S_2 ed S_3 si ottiene $r' \subseteq S_1 \cap S_2 \cap S_3$.

Esercizio 4. Sia $f: \mathbb{P}^1(\mathbb{K}) \longrightarrow \mathbb{P}^1(\mathbb{K})$ una proiettività diversa dall'identità. Si mostri che $f^2 = \text{Id}$ se e solo se esistono punti distinti $P, Q \in \mathbb{P}^1(\mathbb{K})$ tali che f(P) = Q e f(Q) = P.

Soluzione. Verifichiamo le due implicazioni separatamente:

 \cong Se $f \neq \mathrm{Id}$, allora $\exists P \in \mathbb{P}^1(\mathbb{K})$ tale che f(P) = Q, con $Q \neq P$, e usando l'ipotesi si ottiene:

$$f^2(P) = P = f(Q)$$

e quindi abbiamo trovato i due punti richiesti dalla tesi.

Siano [v] = P e [w] = Q, con $v, w \in \mathbb{K}^2$ (essendo i punti distinti per ipotesi i vettori associati sono distinti e linearmente indipendenti) e sia φ l'applicazione lineare associata a f, l'ipotesi equivale a:

$$f(P) = Q, f(Q) = P \iff [\varphi(v)] = [w], [\varphi(w)] = [v]$$
$$\iff \varphi(v) = \lambda w, \varphi(w) = \mu v \qquad \lambda, \mu \in \mathbb{K}^*$$

da cui, usando $B = \{v, w\}$ come base di \mathbb{K}^2 , si ottiene:

$$M_B(\varphi) = \begin{pmatrix} 0 & \mu \\ \lambda & 0 \end{pmatrix} \implies (M_B(\varphi))^2 = \lambda \mu \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

che equivale a $\varphi^2 = \lambda \mu$ Id e passando al proiettivo si ottiene che $[\varphi^2] = [\text{Id}]$ ovvero la mappa proiettiva f^2 (indotta da φ^2) è uguale all'identità proiettiva Id, indotta dall'identità su \mathbb{K}^2 , pertanto $f^2 = \text{Id}$.

Alternativa per \sqsubseteq : Prendiamo $R \in \mathbb{P}^1(\mathbb{K})$ distinto da P e Q (esiste sempre indipendentemente da \mathbb{K}), allora (P,Q,R) è un riferimento proiettivo di $\mathbb{P}^1(\mathbb{K})$. Nelle coordinate omogenee indotte:

$$P = [0, 1]$$
 $Q = [0, 1]$ $R = [1, 1]^{1}$

Se $f = [\varphi]$, con $\varphi \in \text{End}(\mathbb{K}^2)$, allora in queste coordinate, dalle ipotesi, bisogna avere:

$$\varphi\begin{pmatrix}1\\0\end{pmatrix} = \lambda\begin{pmatrix}0\\1\end{pmatrix} \qquad \lambda \in \mathbb{K}^*$$

$$\varphi\begin{pmatrix}0\\1\end{pmatrix} = \mu\begin{pmatrix}1\\0\end{pmatrix} \qquad \mu \in \mathbb{K}^*$$

a questo punto:

$$\varphi^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \lambda \mu \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 e $\varphi^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \lambda \mu \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

quindi (avendo definito φ^2 su una base di \mathbb{K}^2) si ha $\varphi^2 = \lambda \mu \operatorname{Id} \implies f^2 = [\varphi^2] = [\lambda \mu \operatorname{Id}] = [\operatorname{Id}] \implies f^2 = \operatorname{Id}.$

 $^{^1}R$ è il punto unità del riferimento, e la scelta della base normalizzata è coerente con quella del punto unità (abbiamo visto a lezione che esiste sempre una proiettività che porta il riferimento \mathscr{R} in quello standard, quindi possiamo sempre prendere la base normalizzata associata a quest'ultimo, ovvero quella canonica, da cui le coordinate omogenee scelte).

Soluzione alternativa. Dall'ipotesi sappiamo che $f^2(P) = P$ e $f^2(Q) = Q$ (e sappiamo che $P \neq Q$), se riuscissimo a trovare $R \in \mathbb{P}^1(\mathbb{K})$, $R \neq P, Q$, con $f^2(R) = R$, allora potremmo concludere usando il teorema fondamentale delle trasformazioni proiettive con il riferimento proiettivo dato da (P,Q,R), infatti in questo caso sapremmo che f^2 è uguale alla trasformazione proiettiva che fissa i tre punti (cioè l'identità). In particolare, basterebbe trovare $R \in \mathbb{P}^1(\mathbb{K})$ tale che f(R) = R, perché poi (per l'iniettività di f) sarebbe distinto da P e Q e avremmo chiaramente $f^2(R) = R$. Non possiamo dire che esiste un punto fisso per f perché non sappiamo nulla su \mathbb{K} , possiamo tuttavia passare ad una sua chiusura algebrica $\mathbb{K} \subseteq \overline{\mathbb{K}}$. Si ha quindi che $\mathbb{P}^1(\mathbb{K}) \subseteq \mathbb{P}^1(\overline{\mathbb{K}})$ e che una proiettività di $\mathbb{P}^1(\mathbb{K})$ si estende naturalmente ad una proiettività di $\mathbb{P}^1(\overline{\mathbb{K}})$ (è data da una matrice in $\mathcal{M}(2,\mathbb{K})$). In $\mathbb{P}^1(\overline{\mathbb{K}})$ possiamo trovare l'R che mancava e segue che l'estensione di f a $\mathbb{P}^1(\overline{\mathbb{K}})$ è un'involuzione (cioè $f = f^{-1}$). Possiamo quindi dire che f(R) = R e che $f^2 = \mathrm{Id}$.

ESERCIZI II SETTIMANA

Esercizio 5. Siano P_1, P_2, P_3 punti di $\mathbb{P}^2(\mathbb{K})$ in posizione generale, e sia $r \subseteq \mathbb{P}^2(\mathbb{K})$ una retta tale che $P_i \not = 1, 2, 3$.

- (1) Si mostri che esiste un'unica proiettività $f: \mathbb{P}^2(\mathbb{K}) \longrightarrow \mathbb{P}^2(\mathbb{K})$ tale che $f(P_1) = P_1, f(P_2) = P_3, f(P_3) = P_2$ e f(r) = r.
- (2) Si mostri che l'insieme dei punti fissi di f è dato dall'unione di un punto $M \in r$ ed una retta s con $M \notin S$.