

Linear Algebra (MT-1004)

Lecture # 21

Definition 1

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is a set of two or more vectors in a vector space V, then S is said to be a *linearly independent set* if no vector in S can be expressed as a linear combination of the others. A set that is not linearly independent is said to be *linearly dependent*. If S has only one vector, we will agree that it is linearly independent if and only if that vector is nonzero.

OR

Theorem Based Definition

Linear Independence and Linear Dependence

Definitions :

If $S=\{v_1,v_2,\ldots,v_k\}$ is a nonempty set of vectors, then the vector equation

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k = 0$$

has at least one solution, namely $c_1=0$, $c_2=0$,..., $c_k=0$.

If this is the only solution, then S is called a linearly independent set. If there are other solutions, then S is called a linearly dependent set.

Ex Testing for linear independence

Determine whether the following set of vectors in \mathbb{R}^3 is L.I. or L.D.

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}$$

Sol:

$$c_1 - 2c_3 = 0$$

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = \mathbf{0} \implies 2c_1 + c_2 + c_3 = 0$$

 $3c_1 + 2c_2 + c_3 = 0$

$$3c_1 + 2c_2 + c_3 = 0$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{G.J.E.} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow c_1 = c_2 = c_3 = 0$$
 (only the trivial solution)

(or $det(A) = -1 \neq 0$, so there is only the trivial solution)

$$\Rightarrow$$
 S is (or $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are) linearly independent

• Ex : Testing for linear independence for polynomials

Determine whether the following set of vectors in P_2 is L.I. or L.D. $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \{1 + x - 2x^2, 2 + 5x - x^2, x + x^2\}$

Sol:

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = \mathbf{0}$$

i.e.,
$$c_1(1+x-2x^2) + c_2(2+5x-x^2) + c_3(x+x^2) = 0+0x+0x^2$$

- \Rightarrow This system has infinitely many solutions (i.e., this system has nontrivial solutions, e.g., c_1 =2, c_2 =-1, c_3 =3)
- \Rightarrow S is (or \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are) linearly dependent

Theorem 4.4.2

- (a) A set with finitely many vectors that contains **0** is linearly dependent.
- (b) A set with exactly two vectors is linearly independent if and only if neither vector is a scalar multiple of the other.

A Geometric Interpretation of Linear Independence

Linear independence has the following useful geometric interpretations in \mathbb{R}^2 and \mathbb{R}^3 :

 Two vectors in R² or R³ are linearly independent if and only if they do not lie on the same line when they have their initial points at the origin. Otherwise one would be a scalar multiple of the other (Figure 4.4.3).

FIGURE 4.4.3

• Three vectors in \mathbb{R}^3 are linearly independent if and only if they do not lie in the same plane when they have their initial points at the origin. Otherwise at least one would be a linear combination of the other two (**Figure 4.4.4**).

FIGURE 4.4.4

Theorem 4.4.3

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ be a set of vectors in \mathbb{R}^n . If r > n, then S is linearly dependent.

example

Explain why the following form linearly dependent sets of vectors. (Solve this problem by inspection.)

b.
$$\mathbf{u}_1 = (3, -1), \ \mathbf{u}_2 = (4, 5), \ \mathbf{u}_3 = (-4, 7) \text{ in } \mathbb{R}^2$$

Ans: A set of 3 vectors in \mathbb{R}^2 must be linearly dependent by Theorem 4.4.3.

Do Question # 1-15 from Ex # 4.4