SDSC3001 Tutorial 6

Count-Min Sketch

2024.11.7

Background

• Stream Data: Element x_t arrives at time t.

• Task: Count the number of times elements appear in a stream of data.

Background

- A naive solution: maintain a count array that maps elements to their frequencies.
- There are n data points, which are numbers ranging from 1 to m.

Space complexity is O(m), Time complexity is O(n)

Data are tel-numbers with 8 digits.

- Space complexity is O(m). $m=10^8$.
- Not every number in the range [1, 10^8] is a valid telephone number! We're wasting memory!

Data are email addresses.

- m=? (An email address can be arbitrarily long, and we may not know the whole set of address)
- ["Alice@cityu.edu.hk" , "Bob@cityu.edu.hk" ,]

Approximate Counts with Hashing: given that we only have limited space availability.

- i = hash("Alice@cityu.edu.hk"), where hash() represents a hash function.
- Count[i] = Count[i] + 1.
- Always O(1) time to search where we count.
- Time complexity is O(n).

Approximate Counts with Hashing: given that we only have limited space availability.

Drawback: hash conflicts.

Solution: use more hash functions

Use k hash functions

- Initialization: count $[i, j] = 0 \quad \forall i \in [k], \forall j \in [d]$
- Increment count (of element **a**): count $[i,h_i(\mathbf{a})]+=1$, $\forall i \in [k]$
- Retrieve count (of element **a**): $min_{i \in [k]}$ count $[i,h_i(\mathbf{a})]$
- Sketch: use relatively finite statistics information to represent the all stream data.

0

1

2

$$h_1(x) = x \mod 3$$

 $h_2(x) = 2x \mod 3$

 $h_3(x) = x^2 \mod 3$

1 2

$$h_1(x) = x \mod 3$$

$$h_2(x) = 2x \mod 3$$

h_{α}	(x)) =	χ^2	mod	3
しつ	(Λ)	<i>,</i> —	x	HIUU	J

0 1 2

 $h_1(x) = x \mod 3$

1 1

 $h_2(x) = 2x \mod 3$

1

 $h_3(x) = x^2 \mod 3$

1 1

...

4

2

3

0 1 2

 $h_1(x) = x \mod 3$

1 3 2

 $h_2(x) = 2x \mod 3$

3 2

 $h_3(x) = x^2 \mod 3$

1 5 0

...

4

2

1

5

3

1 2 0 3 2 $h_1(x) = x \mod 3$ 1 A= 3 $h_2(x) = 2x \mod 3$ 1 2 1 $h_3(x) = x^2 \mod 3$ 5 0

If we want to know the frequency of number 5:

- $h_1(5)=2$, $h_2(5)=h_3(5)=1$.
- Count(5)=min{A[i, $h_i(5)$]}=min{2, 3, 5}=2

Algorithm

Count-Min Sketch

- We sample hash functions h_1, h_2, \ldots, h_k independently and uniformly at random from a universal hashing family
 - $h_i: [m] \to [d], \Pr\{h_i(s_1) = h_i(s_2)\} \leq \frac{1}{d} \text{ for } s_1 \neq s_2$
 - We will figure out k and d later
- ▶ When a_t comes, count_i[$h_i(a_t)$]++ for all i = 1, ..., k
- When estimating f_s^t , return $est_s^t = min\{count_1[h_1(s)], \dots, count_k[h_k(s)]\}$

Algorithm

- ightharpoonup est $_s^t \ge f_s^t$ is trivial
- $ightharpoonup h_1, \ldots, h_k$ are independent to each other
- ▶ Set $k = 2/\epsilon$ and $d = \log \frac{1}{\delta} \Rightarrow (\frac{1}{\epsilon d})^k = \delta$
 - ▶ With probability at least 1δ , $f_s^t \le \text{est}_s^t \le f_s^t + \epsilon t$