

NHD-2.4-240320CF-CSXN#-F

TFT (Thin-Film Transistor) Liquid Crystal Display Module

NHD- Newhaven Display 2.4- 2.4" Diagonal

240320- 240 x 320 Pixels (Portrait Mode)

CF- Model

C- Built-in Controller S- Sunlight Readable

X- TFT

N- TN, 6:00 Optimal View, Wide Temperature

#- RoHS Compliant

F- FFC ZIF Connection Style

Newhaven Display International, Inc.

2661 Galvin Ct. Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

Document Revision History

Revision	Date	Description	Changed by
0	5/21/15	Initial Release	AK
1	6/22/15	Bezel design & Backlight circuit updated	AK
2	10/1/15	Mechanical Drawing, Supply Voltage, Supply Current and Brightness Updated	SB
3	2/17/16	Brightness Updated, Datasheet Reformat	SB
4	3/21/16	Updated Mechanical Drawing, Added Backlight Lifetime	SB
5	4/7/16	Viewing Angle Clarification, Brightness Updated	SB
6	7/8/16	Brightness Updated	SB
7	9/27/16	Brightness Updated	SB
8	2/2/17	Bezel Design & Supply Current Updated	SB
9	6/5/18	Updated for new controller	TM
10	6/18/18	Updated Backlight Characteristics	SB

Functions and Features

- 240 x 320 pixels
- White LED backlight
- 3.3V power supply
- 8-bit or 16-bit Parallel MPU interface
- FFC ZIF I/O connection
- Built-in ST7789Vi controller
- 262K colors
- Touch Panel available
- Sunlight readable

Pin Description

Pin No.	Symbol	External Connection	Function Description
1	GND	Power Supply	Ground
2	NC	-	No Connect
3	NC	-	No Connect
4	NC	-	No Connect
5	NC	-	No Connect
6	NC	-	No Connect
7	VDD	Power Supply	Supply Voltage for LCD (3.3V)
8	IOVDD	Power Supply	Supply Voltage for Logic (1.8V)
9	NC	-	No Connect
10	/CS	MPU	Active LOW Chip Select signal (can tie to GND)
11	D/C	MPU	Data / Command selection: '1' = Data; '0' = Command
12	/WR	MPU	Active LOW Write signal
13	/RD	MPU	Active LOW Read signal
14	DB0	MPU	Bi-directional data bus
15	DB1	MPU	
16	DB2	MPU	8-bit: use DB8-DB15
17	DB3	MPU	16-bit: use DB0-DB15
18	DB4	MPU	
19	DB5	MPU	
20	DB6	MPU	
21	DB7	MPU	
22	DB8	MPU	
23	DB9	MPU	
24	DB10	MPU	
25	DB11	MPU	
26	DB12	MPU	
27	DB13	MPU	
28	DB14	MPU	
29	DB15	MPU	
30	/RES	MPU	Active LOW Reset signal
31	IM0	MPU	IM0=0: 16-bit i80 IM0=1: 8-bit i80
32	NC	-	No Connect
33	GND	Power Supply	Ground
34	LED-K1	Power Supply	Backlight Cathode (Ground)
35	LED-K2	Power Supply	Backlight Cathode (Ground)
36	LED-K3	Power Supply	Backlight Cathode (Ground)
37	LED-K4	Power Supply	Backlight Cathode (Ground)
38	LED-A	Power Supply	Backlight Anode (100mA @ 3.1V)
39	GND	Power Supply	Ground
40	NC	-	No Connect

Recommended LCD connector: 40-pin, 0.5mm pitch FFC connector **Molex P/N**: 54132-4062 or similar

Wiring Diagram

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	T_OP	Absolute Max	-20	-	+70	°C
Storage Temperature Range	T _{ST}	Absolute Max	-30	•	+80	°C
Supply Voltage for LCD	V_{DD}	-	2.4	3.3	3.5	V
Supply Voltage for Logic	IOV_DD	-	1.65	1.8	3.3	V
Supply Current	I_{DD}	V _{DD} =3.3V	2	6	12	mA
"H" Level input	V_{IH}	-	0.7 * V _{DD}	-	V_{DD}	V
"L" Level input	VIL	-	Vss	-	0.3 * V _{DD}	V
"H" Level output	Voh	-	0.8 * V _{DD}	-	V_{DD}	V
"L" Level output	Vol	-	Vss	-	0.2 * V _{DD}	V
Backlight Supply Current	I _{LED}	-	-	100	125	mA
Backlight Supply Voltage	V_{LED}	I _{LED} = 100mA	2.8	3.1	3.5	V
Backlight Lifetime*	-	I _{LED} = 100 mA T _{OP} = 25°C	20,000	50,000	-	Hrs.

^{*}Backlight lifetime is rated as Hours until half-brightness, under normal operating conditions. The LED of the backlight is driven by current drain; drive voltage is for reference only. Drive voltage must be selected to ensure backlight current drain is below MAX level stated.

Optical Characteristics

Item			Symbol	Condition	Min.	Тур.	Max.	Unit
0 11 1	Тор		φΥ+		-	50	-	0
Optimal	Bot	tom	φΥ-	CD > 10	-	55	-	0
Viewing	Left		θХ-	θX- CR ≥ 10		55	-	•
Angles	Righ	nt	θХ+		-	55	-	•
Contrast Rat	Contrast Ratio		CR	-	150	200	-	-
Luminance		L _V	$I_{LED} = 100 \text{mA}$	850	1000	1450	cd/m²	
Response Ti	ima	Rise	T_R	T _{op} = 25°C	-	4	8	ms
	ise rime	Fall	T _F		-	12	24	ms

Controller Information

Built-in ST7789Vi controller.

Please download specification at http://www.newhavendisplay.com/appnotes/datasheets/LCDs/ST7789V.pdf

Table of Commands

Please download specification at http://www.newhavendisplay.com/appnotes/datasheets/LCDs/ST7789V.pdf

Timing Characteristics

Parallel 18/16/9/8-bit Interface Timing Characteristics (8080-II system)

Signal	Symbol	Parameter	Min	Max	Unit	Description
D/CX	T _{AST}	Address setup time	0		ns	
DICX	T _{AHT}	Address hold time (Write/Read)	10		ns	-
	T _{CHW}	Chip select "H" pulse width	0		ns	
	T _{CS}	Chip select setup time (Write)	15		ns	
CSX	T _{RCS}	Chip select setup time (Read ID)	45		ns	
CSA	T _{RCSFM}	Chip select setup time (Read FM)	355		ns	-
	T _{CSF}	Chip select wait time (Write/Read)	10		ns	
	T _{CSH}	Chip select hold time	10		ns	
	T _{wc}	Write cycle	66		ns	
WRX	T _{WRH}	Control pulse "H" duration	15		ns	
	T _{WRL}	Control pulse "L" duration	15		ns	
	T _{RC}	Read cycle (ID)	160		ns	
RDX (ID)	T _{RDH}	Control pulse "H" duration (ID)	90		ns	When read ID data
	T _{RDL}	Control pulse "L" duration (ID)	45		ns	
RDX	T _{RCFM}	Read cycle (FM)	450		ns	When read from
(FM)	T _{RDHFM}	Control pulse "H" duration (FM)	90		ns	frame memory
(I-IVI)	T _{RDLFM}	Control pulse "L" duration (FM)	355		ns	maine memory
D[17:0]	T _{DST}	Data setup time	10		ns	For CL=30pF
	T _{DHT}	Data hold time	10		ns	
	T _{RAT}	Read access time (ID)		40	ns	
	T _{RATFM}	Read access time (FM)		340	ns	
	T _{ODH}	Output disable time	20	80	ns	

Reset Timing

Related Pins	Pins Symbol Paramete		MIN	MAX	Unit
RESX	TRW	Reset pulse duration	10	-	us
	TRT	Reset cancel	-	5 (Note 1, 5)	ms
				120 (Note 1, 6, 7)	ms

Power ON/OFF Sequence

Example Initialization Code

```
void TFT 24 7789 Write Command(unsigned int command)
GPIO ResetBits (GPIOC, CS1);
GPIO ResetBits(GPIOC, RS);
GPIO SetBits(GPIOC, nRD);
GPIO ResetBits(GPIOC, nWR);
GPIO Write (GPIOB, command);
TFT delay(10);
GPIO SetBits (GPIOC, nWR);
TFT delay(1);
void TFT 24 7789 Write Data(unsigned int data1)
GPIO Write (GPIOB, data1);
GPIO SetBits (GPIOC, RS);
GPIO ResetBits (GPIOC, nWR);
TFT delay(1);
GPIO SetBits (GPIOC, nWR);
void TFT 24 7789 Init(void)
int n;
GPIO ResetBits (GPIOC, CS1);
GPIO SetBits (GPIOC, nRD);
GPIO ResetBits (GPIOC, nWR);
GPIO WriteBit (GPIOC, RES, Bit RESET);
TFT delay(100);
GPIO WriteBit (GPIOC, RES, Bit SET);
TFT delay(100);
TFT 24 7789 Write Command(0x0011);//exit SLEEP mode
TFT delay(100);
TFT 24 7789 Write Command(0x0036);
TFT 24 7789 Write Data(0x0080);//MADCTL: memory data access control
TFT 24 7789 Write Command(0x003A);
TFT 24 7789 Write Data(0x0066);//COLMOD: Interface Pixel format
TFT 24 7789_Write_Command(0x00B2);
TFT_24_7789_Write_Data(0x000C);
TFT_24_7789_Write_Data(0x0C);
TFT_24_7789 Write Data(0x00);
TFT 24 7789 Write Data(0x33);
TFT 24 7789 Write Data(0x33);//PORCTRK: Porch setting
TFT 24 7789 Write Command(0x00B7);
TFT 24 7789 Write Data(0x0035);//GCTRL: Gate Control
   24 7789 Write_Command(0x00BB);
   24 7789 Write Data(0x002B);//VCOMS: VCOM setting
TFT 24 7789 Write Command(0x00C0);
TFT 24 7789 Write Data(0x002C);//LCMCTRL: LCM Control
TFT 24 7789 Write Command (0x00C2);
TFT 24 7789 Write Data(0x0001);
   24 7789 Write Data(0xFF);//VDVVRHEN: VDV and VRH Command Enable
      7789_Write_Command(0x00C3);
   24
TFT 24 7789 Write Data(0x0011);//VRHS: VRH Set
TFT 24 7789 Write Command(0x00C4);
TFT 24 7789 Write Data(0x0020);//VDVS: VDV Set
```

```
TFT 24 7789 Write Command(0x00C6);
   24 7789 Write Data(0x000F);//FRCTRL2: Frame Rate control in normal mode
TFT 24 7789 Write Command(0x00D0);
TFT 24 7789 Write Data(0x00A4);
TFT 24 7789 Write Data(0xA1);//PWCTRL1: Power Control 1
TFT 24 7789 Write Command (0x00E0);
TFT 24 7789 Write Data(0x00D0);
TFT 24 7789 Write_Data(0x0000);
TFT_24_7789_Write_Data(0x0005);
TFT 24 7789 Write Data(0x000E);
TFT 24 7789 Write Data(0x0015);
TFT 24 7789 Write Data(0x000D);
TFT 24 7789 Write Data(0x0037);
TFT 24 7789 Write Data(0x0043);
   24 7789 Write Data(0x0047);
   24_7789_Write_Data(0x0009);
TFT 24 7789 Write Data(0x0015);
TFT 24 7789 Write Data(0x0012);
TFT 24 7789 Write Data(0x0016);
TFT 24 7789 Write Data(0x0019);//PVGAMCTRL: Positive Voltage Gamma control
TFT 24 7789 Write Command(0x00E1);
TFT 24 7789 Write Data(0x00D0);
TFT_24_7789_Write_Data(0x0000);
TFT_24_7789 Write Data(0x0005);
TFT 24 7789 Write Data(0x000D);
TFT 24 7789 Write Data(0x000C);
TFT 24 7789 Write_Data(0x0006);
TFT 24 7789 Write Data(0x002D);
   24
      7789 Write Data(0x0040);
TFT 24 7789 Write Data(0x000E);
TFT 24 7789 Write Data(0x001C);
TFT 24 7789 Write Data(0x0018);
TFT 24 7789 Write Data(0x0016);
TFT 24 7789_Write_Data(0x0019);//NVGAMCTRL: Negative Voltage Gamma control
   24 7789 Write Command(0x002A);
TFT 24 7789 Write Data(0x0000);
TFT 24 7789 Write Data(0x0000);
TFT 24 7789 Write Data(0x0000);
TFT 24 7789 Write Data(0x00EF);//X address set
TFT 24 7789 Write Command (0x002B);
   7789 Write Data(0x0000);
   24
TFT 24 7789 Write Data(0x0001);
TFT 24 7789 Write Data(0x003F);//Y address set
TFT delay(10);
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature Storage	Endurance test applying the high storage temperature for a long time.	+80°C, 96hrs	2
Low Temperature Storage	Endurance test applying the low storage temperature for a long time.	-30°C, 96hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage & current) and the high thermal stress for a long time.	+70°C, 96hrs	2
Low Temperature Operation	Endurance test applying the electric stress (voltage & current) and the low thermal stress for a long time.	-20°C, 96hrs	1,2
High Temperature / Humidity Operation	Endurance test applying the electric stress (voltage & current) and the high thermal with high humidity stress for a long time.	+40°C, 90-95% RH, 96hrs	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage & current) during a cycle of low and high thermal stress.	-20°C 30min -> 25°C 5min -> 70°C 30min -> 25°C 5min = 1 cycle. For 10 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	10Hz-55Hz, 1.5mm amplitude. 2hrs in each of 3 directions X,Y,Z	3
Static electricity test	Endurance test applying electric static discharge.	VS=8KV, RS=330k Ω , CS=150pF Ten times	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information

See Terms & Conditions at http://www.newhavendisplay.com/index.php?main_page=terms

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Newhaven Display:

NHD-2.4-240320CF-CSXN#-F