Non-ordinary states of consciousness

Joshua N. Pritikin

Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University

Oct 2017

Acknowledgment

Some collaborators

- ▶ Mike Neale
- ► Tim Brick (Penn State Univ)
- ► Steven Boker (Univ of Virginia)
- ► Karen Schmidt (Univ of Virginia)
- ► OpenMx development team

Historical context

Large-scale emergence

- ▶ 200k-100k BCE Homo sapiens
- ▶ 3400-3100 BCE Written language
- ▶ 1500-200 BCE Conscious thinking¹

Supported by latent semantic analysis²

¹ Jaynes (1976)

²Diuk, Slezak, Raskovsky, Sigman, and Cecchi (2012)

Conscious thinking: A modern status quo

Some features of conscious thinking

- spatialization of time
- ightharpoonup concept of me
- ► concept of *I* (i.e. the part of me that is conscious)
- narratization
- concentration (i.e. conscious attention)

Probably a "software" change, not an anatomical change³

Before conscious thinking

Bicameral mind⁴

- ▶ no metacognitive awareness
- ▶ no executive monitoring
- no autobiographical memory
- no experience of an introspectable "mind-space"

Internally communicated by hallucination

(Once an evolutionary innovation, schizophrenia is now often considered a psychopathology!)

Before conscious thinking

Bicameral mind⁴

- ▶ no metacognitive awareness
- ▶ no executive monitoring
- no autobiographical memory
- no experience of an introspectable "mind-space"

Internally communicated by hallucination

(Once an evolutionary innovation, schizophrenia is now often considered a psychopathology!)

Optimal performance

Conscious thinking has costs⁵

- ► maladaptive rumination
- ▶ jealousy, guilt
- ▶ negligent inattentiveness due to excessive planning

Optimal performance often involves non-ordinary consciousness

- ► running⁶
- ▶ jazz improvisation⁷

→ An emerging mode of consciousness?

⁵Leary (2007)

⁶Csikszentmihalyi, Latter, and Duranso (2017)

Braun (2008)

Optimal performance

Conscious thinking has costs⁵

- maladaptive rumination
- ▶ jealousy, guilt
- ▶ negligent inattentiveness due to excessive planning

Optimal performance often involves non-ordinary consciousness

- ► running⁶
- ▶ jazz improvisation⁷

→ An emerging mode of consciousness?

⁵Leary (2007)

⁶Csikszentmihalyi et al. (2017)

⁷Limb and Braun (2008)

Optimal performance

Conscious thinking has costs⁵

- maladaptive rumination
- ▶ jealousy, guilt
- ▶ negligent inattentiveness due to excessive planning

Optimal performance often involves non-ordinary consciousness

- ► running⁶
- ▶ jazz improvisation⁷
- → An emerging mode of consciousness?

⁵Leary (2007)

⁶Csikszentmihalyi et al. (2017)

⁷Limb and Braun (2008)

Non-ordinary means what?

Which phenomenology is important?

Non-ordinary means what?

Which phenomenology is important?

Clear neurological correlates. For example:

Transient hypofrontality⁸

Or dynamic connectivity⁹

THE PHENOMENOLOGY OF PERCEPTION: CHOCOLATE

⁸Dietrich (2003)

⁹Santosa et al. (2017)

Non-ordinary means what?

Which phenomenology is important?

Clear neurological correlates. For example:

Transient hypofrontality⁸

Or dynamic connectivity⁹

THE PHENOMENOLOGY OF PERCEPTION: CHOCOLATE

⁸Dietrich (2003)

⁹Santosa et al. (2017)

Intro RCPA fNIRS MQ MIDDLE Concl

Research focus

Non-ordinary states of consciousness that support

- psychological well-being
- ▶ optimal functioning
- ▶ mental and physical health
- ▶ fulfillment

Includes: flow, meditation, mindfulness

Excludes: dreaming, daydreaming, hypnosis

Research focus

Non-ordinary states of consciousness that support

- psychological well-being
- ▶ optimal functioning
- ▶ mental and physical health
- ▶ fulfillment

Includes: flow, meditation, mindfulness

Excludes: dreaming, daydreaming, hypnosis

Big challenges

Ephemeral, tricky to induce

Difficulty of studying non-ordinary states of consciousness is often underestimated.

Wish to corroborate self-report by objective measures

Intensive data collection and advanced statistical methodology

- ▶ differences within and between people and environments
- deep vs shallow experience
- how do processes unfold over time
- ▶ highly personal data requires greater privacy protection

Projects, planned and ongoing

Overview

- ▶ RCPA: flow-related characteristics of physical activities
- ► fNIRS: objective physiological measures of non-ordinary states
- ▶ MQ: meditation quality self-report measure
- ► MIDDLE

Conclusion

Projects, planned and ongoing

Overview

- ▶ RCPA: flow-related characteristics of physical activities
- ▶ fNIRS: objective physiological measures of non-ordinary states
- ▶ MQ: meditation quality self-report measure
- ► MIDDLE

Conclusion

Exploratory survey

Are some physical activities more conducive to flow than others?

Sample item (template)

Participant picks: A, B

How predictable is the action?

- ▶ B is much more predictable than A. (-2)
- ▶ B is somewhat more predictable than A. (-1)
- ▶ Both offer roughly equal predictability. (0)
- ► A is somewhat more predictable than B. (1)
- ► A is much more predictable than B. (2)

Sample item

Participant picks: running, golf

How predictable is the action?

- ▶ Golf is much more predictable than running. (-2)
- ▶ Golf is somewhat more predictable than running. (-1)
- ▶ Both offer roughly equal predictability. (0)
- ▶ Running is somewhat more predictable than golf. (1)
- ▶ Running is much more predictable than golf. (2)

20 plausible flow preconditions were included¹⁰

RCPA

category	count	%
Female Male	5 145 72	2 65 32

category	count	%
	10	5
australia	6	3
austria	4	2
canada	4	2
germany	20	9
other	13	6
united kingdom	32	14
usa	133	60

Demographics, education

category	count	%
Less than high school degree	3	1
High school degree or equivalent (e.g., GED)	22	10
Some college but no degree	63	28
Associate degree	9	4
Bachelor degree	72	32
Graduate degree	48	22

Demographics, age

Data and parameters

$$i = 1 \dots I$$
 indexes participants (1)

$$j = 1 \dots J$$
 indexes facets (2)

$$k = 1 \dots K$$
 indexes physical activities (3)

$$y_{ij}|k_a, k_b \in \{-2, -1, 0, 1, 2\}$$
 $k_a \text{ vs } k_b \text{ by person } i \text{ on facet } j$ (4)

$$\theta_{kj}$$
 activity k's score on facet j (5)

$$\tau_1, \tau_2$$
 category thresholds (6)

$$\alpha_j$$
 slope for facet j (7)

$$\lambda_i$$
 factor loading for facet i (8)

$$\pi_k$$
 activity k's latent flow score (9)

Priors and model

$$\pi_k \sim \mathcal{N}(0,1) \tag{10}$$

$$\lambda_j \sim \mathcal{N}(0,5) \tag{11}$$

$$\theta_k \sim \mathcal{N}(\pi_k \lambda, 1)$$
 (12)

$$\tau_1, \tau_2 \sim \mathcal{N}(0, 5) \tag{13}$$

$$\log \alpha_i \sim \mathcal{N}(0, 1) \tag{14}$$

$$logit \left[\Pr(y_{ij}|k_a, k_b) \right] = \alpha_j \left[\theta_{k_a} - \theta_{k_b} + f(y_{ij}) \right]$$
 (15)

where
$$f(r) \equiv \begin{cases} -(\tau_1 + \tau_2) & r = -2\\ -\tau_1 & r = -1\\ 0 & r = 0\\ \tau_1 & r = 1\\ (\tau_1 + \tau_2) & r = 2 \end{cases}$$
 (16)

\hat{R} convergence diagnostic

Response curves

Response curves at 1.0

Discrimination

Discrimination, bodily involvement

How much of your body is involved?

Latent flow score, loadings

Preliminary flow score

Comparisons per physical activity

Projects, planned and ongoing

Overview

- ▶ RCPA: flow-related characteristics of physical activities
- ▶ fNIRS: objective physiological measures of non-ordinary states
- ▶ MQ: meditation quality self-report measure
- ► MIDDLE

Conclusion

$2017~\mathrm{fNIRS}$ Workshop at Kingston, RI

ntro RCPA **fNIRS** MQ MIDDLE Conclusion References

Working principles of fNIRS

tro RCPA **fNIRS** MQ MIDDLE Conclusion References

fNIRS compared to fMRI

Both measure the blood oxygen level-dependent (BOLD) response¹¹

method	resolution		depth	mobility	cost
	temporal	spatial	pervasion		
fMRI fNIRS	1-2 s 100-400 ms	$64~\mathrm{mm}^3$ $100~\mathrm{mm}^3$	$\begin{array}{c} good \\ 23 \text{ cm} \end{array}$	poor good	$>$ \$1 million \sim \$20-100k

(Table from Min, Marzelli, & Yoo, 2010)

Simultaneous measurement of multiple subjects

How to define meditation/mindfulness?

Meditation may involve 1 or more of

- psychophysical relaxation
- self-focus skill or anchor
- ▶ altered state/mode of consciousness
- mystic experience
- ▶ enlightenment
- suspension of logical thought processes
- experience of mental silence

(Bond et al., 2009)

How to define meditation/mindfulness?

Meditation may involve 1 or more of

- psychophysical relaxation
- ▶ self-focus skill or anchor
- altered state/mode of consciousness
- mystic experience
- enlightenment
- suspension of logical thought processes
- experience of mental silence

(Bond et al., 2009)

Difficult, 12 but ask a different question...

¹²Farias and Wikholm (2016)

Triangulate

What neurological signature?

Neurology:

Explicit and implicit processing become entangled and, perhaps, integrated¹³

Phenomenology:

- ▶ selflessness (i.e., dissolution of the boundary dividing self from non-self)
- timelessness
- effortlessness (i.e., spontaneity)

involve brain regions near the surface of the neocortex¹⁴

¹⁴Goldberg, Harel, and Malach (2006); Andrews-Hanna, Smallwood, and Spreng (2014); Pagnoni, Cekic, and Guo (2008); Johnstone, Bodling, Cohen, Christ, and Wegrzyn (2012); Rammsayer (1999) 4 D > 4 A > 4 B > 4 B >

¹³Berkovich-Ohana and Glicksohn (2014)

ntro RCPA **fNIRS** MQ MIDDLE Conclusion Reference

Data analysis challenge

fNIRS produces dense, multivariate, multilevel time series data with intricate dynamics that evolve over a range of time scales.

Possible approaches: windowed cross correlation, autoregressive models, state space models, or novel methods.¹⁵

¹⁵Pritikin, Hunter, von Oertzen, Brick, and Boker (2017); Pritikin (2017)

tro RCPA fNIRS MQ MIDDLE Conclusion References

Projects, planned and ongoing

Overview

- ▶ RCPA: flow-related characteristics of physical activities
- ▶ fNIRS: objective physiological measures of non-ordinary states
- ▶ MQ: meditation quality self-report measure
- ► MIDDLE

Conclusion

ntro RCPA fNIRS MQ MIDDLE Conclusion References

A new self-report measure

For studies that aim to examine the effects of meditation, a valid manipulation check would reduce measurement error.

Meditation quality (MQ) instrument in development since 2012, ¹⁶ based on experience of non-ordinary states.

ntro RCPA fNIRS $oldsymbol{ ext{MQ}}$ MIDDLE Conclusion References

Mostly single-occasion measurements

- $ightharpoonup N \approx 3500$
- ▶ 7 items on preparation/training
- ▶ 18 items on non-ordinary consciousness
- ▶ Data analyzed with modular, open-source tool for Item Response Theory¹7

A mediation model

From experience of non-ordinary consciousness

Expect enhanced

- ► self-concept clarity¹⁸
- ▶ self-control
- \blacktriangleright alignment between implicit and explicit goals

Leading to psychological well-being, fulfillment

¹⁸Campbell et al. (1996)

Incarcerated inmates

Compared to students,

- ▶ lower baselines for self-concept clarity, self-control, and alignment between implicit and explicit goals
- more time and motivation to practice¹⁹

Goal:

▶ Reduction in recidivism and drug (ab)use

tro RCPA fNIRS **MQ** MIDDLE Conclusion References

Detailed research plan

Mindfulness RCT conducted in a prison,²⁰ replicate and extend

- ▶ intensive longitudinal measurement
 - helps minimize noise
 - ► can reveal time-varying, dynamic behavior.
- ► continuous time structural equation modeling²¹
 - can estimate autoregressive and cross-lag effects in time-independent units
 - permits investigation of the direction of causality

Gather evidence of longitudinal predictive validity for MQ as a $rac{1}{2}$

²⁰Malouf, Youman, Stuewig, Witt, and Tangney (2017)

^{·//} · ロト (周) (3) (3)

ntro RCPA fNIRS **MQ** MIDDLE Conclusion References

Detailed research plan

Mindfulness RCT conducted in a prison,²⁰ replicate and extend

- ▶ intensive longitudinal measurement
 - helps minimize noise
 - ► can reveal time-varying, dynamic behavior.
- ► continuous time structural equation modeling²¹
 - can estimate autoregressive and cross-lag effects in time-independent units
 - permits investigation of the direction of causality

Gather evidence of longitudinal predictive validity for MQ as a $rac{1}{2}$

²⁰Malouf et al. (2017)

²¹Driver et al. (2017)

tro RCPA fNIRS **MQ** MIDDLE Conclusion Reference

Detailed research plan

Mindfulness RCT conducted in a prison,²⁰ replicate and extend

- ▶ intensive longitudinal measurement
 - helps minimize noise
 - ▶ can reveal time-varying, dynamic behavior.
- ► continuous time structural equation modeling²¹
 - ► can estimate autoregressive and cross-lag effects in time-independent units
 - permits investigation of the direction of causality

Gather evidence of longitudinal predictive validity for MQ as a mediator

²⁰Malouf et al. (2017)

²¹Driver et al. (2017)

ntro RCPA fNIRS **MQ** MIDDLE Conclusion Reference

Detailed research plan

Mindfulness RCT conducted in a prison,²⁰ replicate and extend

- ▶ intensive longitudinal measurement
 - $\,\blacktriangleright\,$ helps minimize noise
 - ► can reveal time-varying, dynamic behavior.
- ► continuous time structural equation modeling²¹
 - ► can estimate autoregressive and cross-lag effects in time-independent units
 - permits investigation of the direction of causality

Gather evidence of longitudinal predictive validity for MQ as a mediator

²⁰Malouf et al. (2017)

²¹Driver et al. (2017)

tro RCPA fNIRS MQ MIDDLE Conclusion References

Projects, planned and ongoing

Overview

- ▶ RCPA: flow-related characteristics of physical activities
- ▶ fNIRS: objective physiological measures of non-ordinary states
- ▶ MQ: meditation quality self-report measure
- ► MIDDLE

Conclusion

MIDDLE

What if we could keep participant data private,

never revealed to researchers,

and still fit statistical models to data and test hypotheses?

ntro RCPA fNIRS MQ **MIDDLE** Conclusion References

Statistical models

Given

$$x_i$$
 row x of data from person i (17)

$$\theta$$
 parameter vector (18)

Full-information maximum likelihood often has the form

$$\sum_{i=1}^{I} L(x_i|\theta) = \dots$$
 (19)

and rows are assumed independent and identically distributed.

$$\sum_{i=1}^{I} L(x_i|\theta) = L(x_1|\theta)$$

$$L(x_2|\theta) +$$

$$L(x_3|\theta) +$$

$$L(x_4|\theta) +$$

$$\cdots +$$

$$L(x_I|\theta)$$
(20)

Maintained individual data (MID)

Your personal $L(x_i|\theta)$ runs on your smartphone

- ▶ Data remain private
- ► Can be encrypted and backed up
- ▶ Automatic data sharing across experiments
- ▶ Larger participant pool with more generalizable estimates

ntro RCPA fNIRS MQ **MIDDLE** Conclusion Reference

Status

Proof-of-concept stage²²

Will apply to federal health agencies for funding.

²²Boker et al. (2015)

atro RCPA fNIRS MQ MIDDLE **Conclusion** References

Projects, planned and ongoing

Overview

- ▶ RCPA: flow-related characteristics of physical activities
- ▶ fNIRS: objective physiological measures of non-ordinary states
- ▶ MQ: meditation quality self-report measure
- ► MIDDLE

Conclusion

Advanced statistical methodology is key

The topic of non-ordinary states of consciousness spans at least

- neuroscience
- positive, clinical, cognitive, and sports psychology
- contemplative studies

To span so much ground, my strengths include

- expertise in applied statistics²³
- ▶ an affinity for interdisciplinary collaboration²⁴

²³Neale et al. (2016)

o RCPA fNIRS MQ MIDDLE **Conclusion** References

An emerging mode of consciousness?

Large-scale emergence

- ▶ 200k-100k BCE Homo sapiens
- ▶ 3400-3100 BCE Written language
- ► 1500-200 BCE Conscious thinking
- ▶ 1970-2050 CE Hypofrontality (flow, meditation, etc.

Thank you
jpritikin@pobox.com
http://exuberant-island.surge.sh/

- Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316(1), 29–52.
- Berkovich-Ohana, A., & Glicksohn, J. (2014). The consciousness state space (CSS)—a unifying model for consciousness and self. *Frontiers in Psychology*, 5.
- Boker, S. M., Brick, T. R., Pritikin, J. N., Wang, Y., von Oertzen, T., Brown, D., ... Neale, M. C. (2015). Maintained individual data distributed likelihood estimation. *Multivariate Behavioral Research*, 50(6), 706–720.
- Bond, K., Ospina, M., Hooton, N., Bialy, L., Dryden, D., Buscemi, N., ... Carlson, L. (2009). Defining a complex intervention:
 The development of demarcation criteria for "meditation".
 Psychology of Religion and Spirituality, 1(2), 129–137.
- Campbell, J. D., Trapnell, P. D., Heine, S. J., Katz, I. M., Lavallee, L. F., & Lehman, D. R. (1996). Self-concept clarity: Measurement, personality correlates, and cultural boundaries. Journal of Personality and Social Psychology, 70(1), 141.
- Csikszentmihalyi, M., Latter, P., & Duranso, C.W. (2017). Running

- Flow. Champaign, IL: Human Kinetics.
- Cui, X., Bray, S., Bryant, D. M., Glover, G. H., & Reiss, A. L. (2011). A quantitative comparison of nirs and fmri across multiple cognitive tasks. *Neuroimage*, 54(4), 2808–2821.
- Dennett, D. (1986). Julian Jaynes's software archeology. Canadian Psychology, 27(2), 149.
- Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Consciousness and Cognition, 12(2), 231–256.
- Diuk, C. G., Slezak, D. F., Raskovsky, I., Sigman, M., & Cecchi, G. A. (2012). A quantitative philology of introspection. Frontiers in Integrative Neuroscience, 6. doi: 10.3389/fnint.2012.00080
- Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous time structural equation modeling with R package ctsem. *Journal of Statistical Software*, 77(5), 1–35. doi: 10.18637/jss.v077.i05
- Farias, M., & Wikholm, C. (2016). Has the science of mindfulness lost its mind? *BJPsych Bull*, 40(6), 329–332.
- Goldberg, I. I., Harel, M., & Malach, R. (2006). When the brain loses its self: Prefrontal inactivation during sensorimetor processing

- Neuron, 50(2), 329-339.
- Jaynes, J. (1976). The origin of consciousness in the breakdown of the bicameral mind. Boston, MA: Houghton Mifflin Company.
- Johnson, A. (2017). If I give my soul: Faith behind bars in Rio de Janeiro. Oxford University Press.
- Johnstone, B., Bodling, A., Cohen, D., Christ, S. E., & Wegrzyn, A. (2012). Right parietal lobe-related "selflessness" as the neuropsychological basis of spiritual transcendence. International Journal for the Psychology of Religion, 22(4), 267 - 284.
- Kelly, G., Mobbs, S., Pritikin, J. N., Mayston, M., Mather, M., Rosenbaum, P., ... Forsyth, R. (2015). Gross motor function measure-66 trajectories in children recovering after severe acquired brain injury. Developmental Medicine and Child Neurology, 57(3), 241–247. Retrieved from http://dx.doi.org/10.1111/dmcn.12592 doi: 10.1111/dmcn.12592
- Kotler, S. (2014). The rise of superman: Decoding the science of ultimate human performance. Houghton Mifflin Harcourt.
- Leary, M. R. (2007). The curse of the self: Self-awareness, egotism,

- and the quality of human life. Oxford University Press.
- Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. *PLoS ONE*, 3(2), 1–9. doi: 10.1371/journal.pone.0001679
- Malouf, E. T., Youman, K., Stuewig, J., Witt, E. A., & Tangney, J. P. (2017). A pilot RCT of a values-based mindfulness group intervention with jail inmates: Evidence for reduction in post-release risk behavior. *Mindfulness*, 8(3), 603–614. doi: 10.1007/s12671-016-0636-3
- Min, B.-K., Marzelli, M. J., & Yoo, S.-S. (2010). Neuroimaging-based approaches in the brain–computer interface. *Trends in Biotechnology*, 28(11), 552–560.
- Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R., ... Boker, S. M. (2016). OpenMx 2.0:
 Extended structural equation and statistical modeling.
 Psychometrika, 81(2), 535-549. doi: 10.1007/s11336-014-9435-8
- Pagnoni, G., Cekic, M., & Guo, Y. (2008). "Thinking about not-thinking": Neural correlates of conceptual processing during Zen meditation. *PLOS ONE*, 3(9), 1-10. doi:

- Pritikin, J. N. (2017, May). Toward multilevel variance decomposition of interactions in non-linear structural equation models. (Talk presented at Modern Modeling Methods)
- Pritikin, J. N., Hunter, M. D., & Boker, S. M. (2015). Modular open-source software for Item Factor Analysis. *Educational and Psychological Measurement*, 75(3), 458-474. doi: 10.1177/0013164414554615
- Pritikin, J. N., Hunter, M. D., von Oertzen, T., Brick, T. R., & Boker, S. M. (2017). Many-level multilevel structural equation modeling: An efficient evaluation strategy. Structural Equation Modeling: A Multidisciplinary Journal, 24(5), 684-698. doi: 10.1080/10705511.2017.1293542
- Pritikin, J. N., & Schmidt, K. (2013). A self-report measure for familiarity with mental silence. In W. v. Moer, D. A. Çelik, & J. L. Hochheimer (Eds.), Spirituality in the 21st century:

 Journeys beyond Entrenched Boundaries (pp. 23–31). Oxford, United Kingdom: Inter-Disciplinary Press.
- Rammsayer, T. H. (1999). Neuropharmacological evidence for different timing mechanisms in humans. *The Quarterly Journal*

- of Experimental Psychology: Section B, 52(3), 273–286.
- Santosa, H., Aarabi, A., Perlman, S. B., & Huppert, T. J. (2017). Characterization and correction of the false-discovery rates in resting state connectivity using functional near-infrared spectroscopy. *Journal of Biomedical Optics*, 22(5), 055002–055002. doi: 10.1117/1.JBO.22.5.055002
- Sawyer, K. (2007). Group genius: The creative power of collaboration. Basic Books.
- Wegner, D. M. (2002). The illusion of conscious will. MIT press.
- Williams, G. (2011). What is it like to be nonconscious? A defense of Julian Jaynes. *Phenomenology and the Cognitive Sciences*, 10(2), 217–239. doi: 10.1007/s11097-010-9181-z

