Cognome	Nome	Matricola

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

 $2^{\rm o}$ Appello — 7 luglio 2009

Esercizio 1. Nello spazio vettoriale euclideo \mathbb{R}^4 , sia U il sottospazio di equazioni $2x_1 + x_2 - 3x_4 = 0$ e $x_1 - 2x_2 + x_3 = 0$. Si determini una base di U e una base del sottospazio U^{\perp} ortogonale a U. Dato il sottospazio W di equazione $x_1 + 3x_2 - x_3 + 2x_4 = 0$, si determini una base di $W \cap U^{\perp}$ e si completi tale base a una base ortogonale di W.

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita ponendo $f(v_1) = w_1$, $f(v_2) = w_2$ e $f(v_3) = w_3$, ove $v_1 = (1, 2, 3)$, $v_2 = (2, -1, 0)$, $v_3 = (0, -1, -1)$, $w_1 = (6, 4, 10)$, $w_2 = (5, -1, 4)$, $w_3 = (-1, -2, -3)$. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^3 . Si determini una base del nucleo e una base dell'immagine di f. Si determinino gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 3. Sia V uno spazio vettoriale reale con base $\{v_1, v_2, v_3\}$ dotato della forma bilineare simmetrica q la cui matrice, rispetto alla base data, è

$$G = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 4 \end{pmatrix}$$

Si stabilisca se g è non degenere e se essa è definita positiva, negativa o indefinita. Si determini (se esiste) una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^t PGP$.

Esercizio 4. Si trasformi la seguente matrice in una matrice triangolare (mediante operazioni elementari sulle righe o sulle colonne) e se ne determini il rango, in funzione dei parametri reali a e b:

$$A = \begin{pmatrix} 2 & 2a - 2 & -4 & -4b - 2 \\ -1 & 2 - 2a & 2 & 5b + 1 \\ 0 & 3a - 3 & 2a - 2 & -2b \\ 1 & 2a - 2 & 3a - 5 & 5b - 1 \end{pmatrix}$$

Esercizio 5. Nello spazio euclideo tridimensionale sono date le rette r e s di equazioni

$$r: \begin{cases} x = 2 - t \\ y = -1 + 2t \\ z = t \end{cases} \quad s: \begin{cases} x - y + 4z - 1 = 0 \\ 2x + y - 2 = 0 \end{cases}$$

Si verifichi che le rette r e s sono sghembe e se ne calcoli la loro reciproca distanza. Si determini la retta ℓ passante per il punto P=(2,0,1) e incidente alle rette r e s. Si calcolino le coordinate dei punti di intersezione $R=r\cap \ell$ e $S=s\cap \ell$.

Cognome	Nome	Matricola

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

2º Appello — 7 luglio 2009

Esercizio 1. Nello spazio vettoriale euclideo \mathbb{R}^4 , sia U il sottospazio di equazioni $3x_1 - x_2 + x_4 = 0$ e $x_1 - 2x_2 - x_3 = 0$. Si determini una base di U e una base del sottospazio U^{\perp} ortogonale a U. Dato il sottospazio W di equazione $x_1 + 2x_2 - x_3 + 2x_4 = 0$, si determini una base di $W \cap U^{\perp}$ e si completi tale base a una base ortogonale di W.

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita ponendo $f(v_1) = w_1$, $f(v_2) = w_2$ e $f(v_3) = w_3$, ove $v_1 = (1, -1, 3)$, $v_2 = (2, -1, 0)$, $v_3 = (0, 1, -5)$, $w_1 = (8, -8, 4)$, $w_2 = (3, -1, 4)$, $w_3 = (-11, 13, -3)$. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^3 . Si determini una base del nucleo e una base dell'immagine di f. Si determinino gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 3. Sia V uno spazio vettoriale reale con base $\{v_1, v_2, v_3\}$ dotato della forma bilineare simmetrica q la cui matrice, rispetto alla base data, è

$$G = \begin{pmatrix} 4 & -2 & -1 \\ -2 & 2 & 2 \\ -1 & 2 & 3 \end{pmatrix}$$

Si stabilisca se g è non degenere e se essa è definita positiva, negativa o indefinita. Si determini (se esiste) una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^tPGP$.

Esercizio 4. Si trasformi la seguente matrice in una matrice triangolare (mediante operazioni elementari sulle righe o sulle colonne) e se ne determini il rango, in funzione dei parametri reali a e b:

$$A = \begin{pmatrix} 2 & 2a+4 & 6 & 4-2b \\ -1 & -2a-4 & -3 & 3b-4 \\ 0 & 3a+6 & 2a+4 & 1-b \\ 1 & 2a+4 & 3a+9 & 4b-3 \end{pmatrix}$$

Esercizio 5. Nello spazio euclideo tridimensionale sono date le rette r e s di equazioni

$$r: \begin{cases} x = t \\ y = -1 - 2t \\ z = 3 + 2t \end{cases} \quad s: \begin{cases} x + y + 2z - 2 = 0 \\ 2x - z - 1 = 0 \end{cases}$$

Si verifichi che le rette r e s sono sghembe e se ne calcoli la loro reciproca distanza. Si determini la retta ℓ passante per il punto P=(2,-1,0) e incidente alle rette r e s. Si calcolino le coordinate dei punti di intersezione $R=r\cap \ell$ e $S=s\cap \ell$.

Cognome	Nome	Matricola

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

 $2^{\rm o}$ Appello — 7 luglio 2009

Esercizio 1. Nello spazio vettoriale euclideo \mathbb{R}^4 , sia U il sottospazio di equazioni $2x_1 - 4x_2 - x_4 = 0$ e $x_1 - x_2 - 3x_3 = 0$. Si determini una base di U e una base del sottospazio U^{\perp} ortogonale a U. Dato il sottospazio W di equazione $x_1 + 2x_2 + 2x_3 + x_4 = 0$, si determini una base di $W \cap U^{\perp}$ e si completi tale base a una base ortogonale di W.

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita ponendo $f(v_1) = w_1$, $f(v_2) = w_2$ e $f(v_3) = w_3$, ove $v_1 = (1, -1, 1)$, $v_2 = (3, -1, 0)$, $v_3 = (0, 3, -4)$, $w_1 = (-4, 6, 2)$, $w_2 = (-3, 5, 2)$, $w_3 = (13, -18, -5)$. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^3 . Si determini una base del nucleo e una base dell'immagine di f. Si determinino gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 3. Sia V uno spazio vettoriale reale con base $\{v_1, v_2, v_3\}$ dotato della forma bilineare simmetrica q la cui matrice, rispetto alla base data, è

$$G = \begin{pmatrix} 3 & -3 & 1 \\ -3 & 5 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

Si stabilisca se g è non degenere e se essa è definita positiva, negativa o indefinita. Si determini (se esiste) una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^tPGP$.

Esercizio 4. Si trasformi la seguente matrice in una matrice triangolare (mediante operazioni elementari sulle righe o sulle colonne) e se ne determini il rango, in funzione dei parametri reali a e b:

$$A = \begin{pmatrix} 2 & -2a & -2 & 10 - 2b \\ -1 & 2a & 1 & 3b - 11 \\ 0 & 3a & 2a & 3 - b \\ 1 & 7a & 3a - 1 & 4b - 10 \end{pmatrix}$$

Esercizio 5. Nello spazio euclideo tridimensionale sono date le rette r e s di equazioni

$$r: \begin{cases} x = 1 \\ y = -1 - t \\ z = 1 + t \end{cases} \quad s: \begin{cases} 2x - y + 2z = 0 \\ 2x - y - z - 1 = 0 \end{cases}$$

Si verifichi che le rette r e s sono sghembe e se ne calcoli la loro reciproca distanza. Si determini la retta ℓ passante per il punto P=(4,-2,3) e incidente alle rette r e s. Si calcolino le coordinate dei punti di intersezione $R=r\cap \ell$ e $S=s\cap \ell$.

Cognome	Nome	Matricola

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

 $2^{\rm o}$ Appello — 7 luglio 2009

Esercizio 1. Nello spazio vettoriale euclideo \mathbb{R}^4 , sia U il sottospazio di equazioni $x_1 + 4x_2 - 2x_4 = 0$ e $x_1 - 2x_2 + 2x_3 = 0$. Si determini una base di U e una base del sottospazio U^{\perp} ortogonale a U. Dato il sottospazio W di equazione $x_1 + 2x_2 - 2x_3 + 3x_4 = 0$, si determini una base di $W \cap U^{\perp}$ e si completi tale base a una base ortogonale di W.

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita ponendo $f(v_1) = w_1$, $f(v_2) = w_2$ e $f(v_3) = w_3$, ove $v_1 = (1, -1, 2)$, $v_2 = (2, -1, 0)$, $v_3 = (0, -1, 3)$, $w_1 = (-5, 5, 0)$, $w_2 = (0, -3, -3)$, $w_3 = (-8, 10, 2)$. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^3 . Si determini una base del nucleo e una base dell'immagine di f. Si determinino gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 3. Sia V uno spazio vettoriale reale con base $\{v_1, v_2, v_3\}$ dotato della forma bilineare simmetrica q la cui matrice, rispetto alla base data, è

$$G = \begin{pmatrix} 4 & 1 & -3 \\ 1 & 3 & 2 \\ -3 & 2 & 4 \end{pmatrix}$$

Si stabilisca se g è non degenere e se essa è definita positiva, negativa o indefinita. Si determini (se esiste) una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^tPGP$.

Esercizio 4. Si trasformi la seguente matrice in una matrice triangolare (mediante operazioni elementari sulle righe o sulle colonne) e se ne determini il rango, in funzione dei parametri reali a e b:

$$A = \begin{pmatrix} 2 & -2a - 2 & 4 & -2b - 2 \\ -1 & 2a + 2 & -2 & 3b - 1 \\ 0 & 3a + 3 & 2a + 2 & 1 - b \\ 1 & 7a + 7 & 3a + 5 & 4b - 6 \end{pmatrix}$$

Esercizio 5. Nello spazio euclideo tridimensionale sono date le rette r e s di equazioni

$$r: \begin{cases} x = 3 + 2t \\ y = -t \\ z = -1 + t \end{cases} \quad s: \begin{cases} x + 2y - z = 0 \\ 2x + y - 2z - 1 = 0 \end{cases}$$

Si verifichi che le rette r e s sono sghembe e se ne calcoli la loro reciproca distanza. Si determini la retta ℓ passante per il punto P=(1,-2,0) e incidente alle rette r e s. Si calcolino le coordinate dei punti di intersezione $R=r\cap \ell$ e $S=s\cap \ell$.

Cognome	Nome	Matricola

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

 $2^{\rm o}$ Appello — 7 luglio 2009

Esercizio 1. Nello spazio vettoriale euclideo \mathbb{R}^4 , sia U il sottospazio di equazioni $x_1 + x_2 + 2x_4 = 0$ e $x_1 - 3x_2 - x_3 = 0$. Si determini una base di U e una base del sottospazio U^{\perp} ortogonale a U. Dato il sottospazio W di equazione $x_1 + 2x_2 - x_3 - 2x_4 = 0$, si determini una base di $W \cap U^{\perp}$ e si completi tale base a una base ortogonale di W.

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita ponendo $f(v_1) = w_1$, $f(v_2) = w_2$ e $f(v_3) = w_3$, ove $v_1 = (3, -1, 1)$, $v_2 = (2, 1, 0)$, $v_3 = (0, -2, 1)$, $w_1 = (3, 0, 3)$, $w_2 = (5, -2, 3)$, $w_3 = (-4, 3, -1)$. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^3 . Si determini una base del nucleo e una base dell'immagine di f. Si determinino gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 3. Sia V uno spazio vettoriale reale con base $\{v_1, v_2, v_3\}$ dotato della forma bilineare simmetrica q la cui matrice, rispetto alla base data, è

$$G = \begin{pmatrix} 2 & 2 & -1 \\ 2 & 5 & 1 \\ -1 & 1 & 3 \end{pmatrix}$$

Si stabilisca se g è non degenere e se essa è definita positiva, negativa o indefinita. Si determini (se esiste) una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^t PGP$.

Esercizio 4. Si trasformi la seguente matrice in una matrice triangolare (mediante operazioni elementari sulle righe o sulle colonne) e se ne determini il rango, in funzione dei parametri reali a e b:

$$A = \begin{pmatrix} 2 & 2a - 4 & 8 & -2b - 6 \\ -1 & 4 - 2a & -4 & 3b + 7 \\ 0 & 3a - 6 & 2a - 4 & -b - 2 \\ 1 & 2a - 4 & 3a - 2 & 4b + 7 \end{pmatrix}$$

Esercizio 5. Nello spazio euclideo tridimensionale sono date le rette r e s di equazioni

$$r: \begin{cases} x = -2 - t \\ y = 1 + 3t \\ z = t \end{cases} \quad s: \begin{cases} -x + 3y - z - 1 = 0 \\ x + y - z - 3 = 0 \end{cases}$$

Si verifichi che le rette r e s sono sghembe e se ne calcoli la loro reciproca distanza. Si determini la retta ℓ passante per il punto P=(1,-2,1) e incidente alle rette r e s. Si calcolino le coordinate dei punti di intersezione $R=r\cap \ell$ e $S=s\cap \ell$.

Cognome	Nome	Matricola

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

2º Appello — 7 luglio 2009

Esercizio 1. Nello spazio vettoriale euclideo \mathbb{R}^4 , sia U il sottospazio di equazioni $x_1 - 2x_2 + 4x_4 = 0$ e $x_1 + x_2 - 2x_3 = 0$. Si determini una base di U e una base del sottospazio U^{\perp} ortogonale a U. Dato il sottospazio W di equazione $2x_1 + x_2 + x_3 - 2x_4 = 0$, si determini una base di $W \cap U^{\perp}$ e si completi tale base a una base ortogonale di W.

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita ponendo $f(v_1) = w_1$, $f(v_2) = w_2$ e $f(v_3) = w_3$, ove $v_1 = (1, 2, -1)$, $v_2 = (2, 3, 0)$, $v_3 = (0, -1, 1)$, $w_1 = (7, 0, 7)$, $w_2 = (8, -1, 7)$, $w_3 = (-4, 0, -4)$. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^3 . Si determini una base del nucleo e una base dell'immagine di f. Si determinino gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 3. Sia V uno spazio vettoriale reale con base $\{v_1, v_2, v_3\}$ dotato della forma bilineare simmetrica q la cui matrice, rispetto alla base data, è

$$G = \begin{pmatrix} 3 & 1 & -3 \\ 1 & 2 & -4 \\ -3 & -4 & 4 \end{pmatrix}$$

Si stabilisca se g è non degenere e se essa è definita positiva, negativa o indefinita. Si determini (se esiste) una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^tPGP$.

Esercizio 4. Si trasformi la seguente matrice in una matrice triangolare (mediante operazioni elementari sulle righe o sulle colonne) e se ne determini il rango, in funzione dei parametri reali a e b:

$$A = \begin{pmatrix} 2 & 2a+6 & -6 & 4-2b \\ -1 & -2a-6 & 3 & 3b \\ 0 & 3a+9 & 2a+6 & -b-1 \\ 1 & 2a+6 & 3a+6 & 4b+7 \end{pmatrix}$$

Esercizio 5. Nello spazio euclideo tridimensionale sono date le rette r e s di equazioni

$$r: \begin{cases} x = -1 \\ y = 1 - 3t \\ z = 2 + t \end{cases} \quad s: \begin{cases} x + y - 2z + 1 = 0 \\ x + 3y - z = 0 \end{cases}$$

Si verifichi che le rette r e s sono sghembe e se ne calcoli la loro reciproca distanza. Si determini la retta ℓ passante per il punto P=(0,-2,2) e incidente alle rette r e s. Si calcolino le coordinate dei punti di intersezione $R=r\cap \ell$ e $S=s\cap \ell$.