lycée Montaigne - mpi informatique

TD1 - Langages formels

Exercice 1

Question 1. Sur l'alphabet $\Sigma = \{a, b, c\}$, on considère les langages $L = \{\varepsilon, a, bc\}$ et $L' = \{abc, cb\}$. Pour chacun des mots ci-dessous, discuter son appartenance ou non aux langages $L \cdot L'$, $L^* \cdot L'$ et $(L \cdot L')^*$.

□ **1.1.** *abc*

□ **1.2.** *aacb*

□ **1.3.** *abccb*

□ **1.4.** *cba*

Question 2. Soient L et L' deux langages sur un alphabet Σ . Vérifier que l'on a toujours : $(L' \cdot L)^* \cdot L' = L' \cdot (L \cdot L')^*$.

Question 3. Soit L un langage sur un alphabet Σ . Discuter la véracité des affirmations suivantes.

```
\begin{array}{lll} \square \ \textbf{3.1.} & (L^{+} = L^{*}) \iff (\varepsilon \in L) \\ \square \ \textbf{3.2.} & L^{2} \cdot L^{+} = L^{+} \\ \square \ \textbf{3.3.} & \varnothing \cdot L = L \\ \square \ \textbf{3.4.} & L^{*} \cdot L^{*} = L^{*} \\ \square \ \textbf{3.5.} & (L = L^{*}) \implies (L = \{\varepsilon\}) \\ \end{array} \quad \begin{array}{ll} \square \ \textbf{3.6.} & \varnothing^{*} = \varnothing \\ \square \ \textbf{3.7.} & \varnothing^{+} = \varnothing \\ \square \ \textbf{3.8.} & L^{+} \cdot L^{+} = L^{+} \\ \square \ \textbf{3.9.} & L^{+} \cdot L^{*} = L^{+} \\ \square \ \textbf{3.10.} & \{\varepsilon\}^{*} = \{\varepsilon\} \end{array}
```

Question 4. Sur $\mathcal{P}(\Sigma^*)$, montrer que l'opération de concaténation \cdot distribue \cup mais ne distribue pas \cap .

Question 5. Soit Σ un alphabet et $w=a_1\dots a_n$ un mot sur Σ . On appelle *mot miroir* de w le mot $a_n\dots a_1$ noté w^{R} . On désigne par L^{R} l'ensemble des mots miroirs des mots du langage L. Peut-on affirmer que tout mot de $L\cdot L^{\mathsf{R}}$ est un palindrome?

Question 6. Soit L un langage. Est-il vrai que $L = L^R$ si et seulement si L ne contient que des palindromes?

Exercice 2

Sur l'alphabet $\Sigma=\{a,b\}$, les mots de Fibonacci sont définis par $f_0=\varepsilon,\, f_1=a,\, f_2=b$ et :

$$\forall n \in \mathbb{N}^* \quad f_{n+2} = f_{n+1} \cdot f_n$$

Question 1. Montrer que, pour tout entier $n \geqslant 3$, le suffixe de longueur 2 de f_n est ab si n est pair, ba si n est impair.

Question 2. Pour tout entier $n \geqslant 3$, on désigne par g_n le préfixe de f_n obtenu en supprimant les deux dernières lettres de ce mot. Montrer que g_n est un palindrome.

Exercice 3

On considère les mots construits sur l'alphabet $\Sigma = \{a,b\}$. Les *mots de Dyck* définissent l'ensemble $\mathcal D$ des expressions bien parenthésées sur Σ par les règles de construction suivantes : $\varepsilon \in \mathcal D$ et $(r,s) \in \mathcal D^2 \Rightarrow arbs \in \mathcal D$. La *valuation* d'un mot de Σ^* est définie par le morphisme additif $\sigma\colon \Sigma^* \to \mathbb Z$ tel que $\sigma(a) = 1$ et $\sigma(b) = -1$. On montre qu'un mot m de Σ^* appartient à $\mathcal D$ si et seulement si $\sigma(m) = 0$ et pour tout préfixe m' de m, $\sigma(m') \geqslant 0$. En pratique, les lettres a et b sont remplacées respectivement par les parenthèses ouvrante (et fermante). Une expression mathématique syntaxiquement correcte telle que $1 + ((2-x) - 5 \times (y-3)) \times (x-y)$ est une *expression bien parenthésée*; il lui correspond le mot de Dyck (()())() ou encore aababbab. Le mot () (est mal parenthésé et n'appartient pas à $\mathcal D$. Dans la suite, l'alphabet $\Sigma = \{a,b\}$ est représenté par le type alphabet et les mots sont représentés par le type words.

```
type alphabet = A | B
type words = alphabet list
```

Question 1. Écrire une fonction dyck: words \rightarrow bool qui détermine si un mot appartient à \mathcal{D} ou pas.

Question 2. Une factorisation d'un mot de \mathcal{D} est un découpage de ce dernier en produit d'expressions bien parenthésées, chacune étant appelée un facteur de ce mot. Par exemple, aababb = (()()) est composée d'un seul facteur, abaababb = (()()()) est composée de deux facteurs et aabbabaababb = (())()(()()) est composée de trois facteurs. Écrire une fonction $nb_fact : words \rightarrow int$ qui calcule le nombre de facteurs d'un mot de Dyck.

Question 3. En déduire une fonction affiche_fact : words -> unit qui affiche cette factorisation.

lycée Montaigne - mpi informatique

Exercice 4

Une feuille de papier rectangulaire est pliée n fois dans le sens vertical, en repliant à chaque fois la moitié droite sur la moitié gauche. Une fois la feuille dépliée, ses plis forment une suite de creux et de bosses.

Question 1. Combien y a-t-il de plis à l'étape n?

Question 2. Chaque étape du pliage est représentée par un mot. Un creux est codé par un 0 et une bosse par un 1. On pose $w_0 = \varepsilon$, mot vide.

- \square **2.1.** Déterminer w_1 , w_2 et w_3 .
- \square 2.2. Montrer que pour tout entier naturel i, w_i est toujours préfixe de w_{i+1} .

Question 3.

- \square 3.1. Pour tout entier naturel non nul n, proposer un algorithme de construction de w_n à partir de w_{n-1} .
- \square 3.2. Écrire une fonction de calcul de w_n .

Question 4.

- \square **4.1.** Écrire une fonction qui renvoie la représentation binaire d'un entier naturel n, poids fort en tête, et un entier donnant le nombre de bits.
- \square 4.2. Les mots de la suite de pliage étant préfixes les uns des autres, on peut considérer le *mot infini* w dont ils sont tous préfixes. Proposer un algorithme qui prend en entrée la représentation binaire d'un entier naturel n, son nombre de bits et qui renvoie le n-ième bit de w.

Exercice 5

Un mot sur un alphabet Σ contient un facteur carré s'il peut s'écrire sous la forme rs^2t où r,s,t sont des mots de Σ^* avec $|s| \ge 1$. s^2 est le facteur carré. L'objet de cet exercice est l'étude des mots sans facteurs carrés.

Question 1. Si Σ ne contient que deux lettres, montrer que tout mot d'au moins quatre lettres possède un facteur carré.

Question 2. On considère l'alphabet $\Sigma = \{a, b\}$ et le morphisme σ défini par $\sigma(a) = ab$ et $\sigma(b) = ba$. Montrer que pour tout entier naturel non nul n, $\sigma^{n-1}(a)$ est préfixe de $\sigma^n(a)$.

Question 3. Dans la suite, m désigne le mot de longueur infinie, appelé mot de Thue-Morse, tel que pour tout entier naturel n, $\sigma^n(a)$ est préfixe de m. On pose $\Sigma_1 = \{ab, ba\}$.

- \square 3.1. Montrer que si $s \in \Sigma_1^*$, alors asa et bsb n'appartiennent pas à Σ_1^* .
- $\ \square$ 3.2. Montrer que pour tout entier naturel n non nul, $\sigma^n(a) \in \Sigma_1^*$.
- \square 3.3. En déduire que m ne possède pas de facteur de la forme r^2x où r est un mot et x est la première lettre du mot r.

Question 4. Soit à présent le mot infini μ formé du nombre de b compris entre deux a consécutifs de m.

- \square **4.1.** Montrer que l'alphabet $\{0,1,2\}$ suffit pour l'écrire et que μ ne possède pas de facteurs carrés.
- □ 4.2. Avec le type type alphabet = A | B, écrire une fonction gen : int -> unit qui permet de le générer. On rappelle que la fonction iter du module List permet d'itérer sur une liste.

```
val iter : ('a -> unit) -> 'a list -> unit
  List.iter f [a1; ...; an] applies function f in turn to a1; ...; an.
  It is equivalent to begin f a1; f a2; ...; f an; () end.
```

Exercice 6

Question 1. Soit x, y, u, v quatre mots sur un alphabet Σ tels que xy = uv. Montrer qu'il existe un unique mot $t \in \Sigma^*$ tel que l'une des deux conditions suivantes soit réalisée :

- u = xt et y = tv;
- x = ut et v = ty.

Illustrer les situations décrites par les deux points précédents avant de faire la démonstration

Ce résultat de combinatoire sur les mots, appelé *lemme de Lévi*, est utilisé dans les questions suivantes pour établir deux propriétés liées à la non-commutativité de la concaténation.

Question 2. Soit x, y, z trois mots de Σ^* tels que xy = yz et $x \neq \varepsilon$. Montrer qu'il existe deux mots u et v de Σ^* et un entier naturel k tels que :

$$x = uv y = \begin{cases} (uv)^k u \\ u(vu)^k \end{cases} z = vu$$

Question 3. Soit x, y deux mots de Σ^* tels que xy = yx avec $x \neq \varepsilon$ et $y \neq \varepsilon$. Montrer qu'il existe un mot $u \in \Sigma^*$ et deux entiers naturels i et j tels que $x = u^i$ et $y = u^j$.