Bayesian Optimization over Sets

 $\label{eq:court2} Jungtaek\ Kim^1,\ Michael\ McCourt^2,\ Tackgeun\ You^1,\ Saehoon\ Kim^3,\ and\ Seungjin\ Choi^1$

¹Pohang University of Science and Technology, ²SigOpt, ³ AITRICS

Introduction

• Classic BO assumes that a search region $\mathcal{X} \subset \mathbb{R}^d$ is defined and that the function f can only produce scalar output:

$$y = f(\mathbf{x}) + \epsilon \text{ for } \mathbf{x} \in \mathcal{X}.$$

- Unlike this, assume that our search region is $\mathcal{X}_{\text{set}} = \{\{\mathbf{x}_1, \dots, \mathbf{x}_m\} \mid \mathbf{x}_i \in \mathbb{R}^d\}$ for a fixed positive integer m.
- For $\mathbf{X} \in \mathcal{X}_{\text{set}}$, f would take in a set containing m elements, all of length d, and return a noisy function value y:

$$y = f(\mathbf{X}) + \epsilon.$$

Motivating Example

- The soft k-means clustering algorithm over a dataset $\mathcal{P} = \{\mathbf{p}_1, \dots, \mathbf{p}_N\}$.
- We want to find the optimal initialization of such an algorithm.
- The function of k-means clustering is the converged clustering residual

$$f(\{\mathbf{x}_1,\ldots,\mathbf{x}_k\}) = \sum_{i=1}^{N} \sum_{j=1}^{k} w_{ij} ||\mathbf{p}_i - \mathbf{c}_j||_2^2.$$

Background

Bayesian Optimization

- A method to find global optimum for black-box function expensive to evaluate.
- It improves the current best solution as iterating the steps: modeling a surrogate function and acquiring a next best point.
- It optimizes an acquisition function instead of an original target function.

Set Kernel

- Denote that a set of m vectors is $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}.$
- A set kernel is defined as

$$k_{\text{set}} \left(\mathbf{X}^{(1)}, \mathbf{X}^{(2)} \right)$$

$$= \frac{1}{|\mathbf{X}^{(1)}||\mathbf{X}^{(2)}|} \sum_{i=1}^{|\mathbf{X}^{(1)}|} \sum_{j=1}^{|\mathbf{X}^{(2)}|} k \left(\mathbf{x}_i^{(1)}, \mathbf{x}_j^{(2)} \right).$$

Proposed Method

Lemma 1 Suppose we have a list \mathfrak{X} which contains distinct sets $\mathbf{X}^{(i)}$ for $1 \le i \le n$. We define the matrix $\mathbf{K} \in \mathbb{R}^{n \times n}$ as

$$(\mathbf{K})_{ij} = k_{set}\left(\mathbf{X}^{(i)}, \mathbf{X}^{(j)}\right),$$
 (1)

for k_{set} defined with a chosen inner kernel k.

Then, K is a symmetric positive-semidefinite matrix if k is a symmetric positive-definite kernel.

Approximation of the Set Kernel

- (1) requires a complexity $\mathcal{O}(n^2m^2d)$.
- To alleviate this cost, we propose to approximate the set kernel with $\tilde{k}_{\text{set}}\left(\mathbf{X}^{(1)}, \mathbf{X}^{(2)}; \pi, \mathbf{w}, L\right) = k_{\text{set}}\left(\tilde{\mathbf{X}}^{(1)}, \tilde{\mathbf{X}}^{(2)}\right)$ where $\pi: [1, \ldots, m] \to [1, \ldots, m],$ $\mathbf{w} \in \mathbb{R}^d, L \in \mathbb{Z}_+, \tilde{\mathbf{X}}^{(i)}$ is a subset of $\mathbf{X}^{(i)}$.

Theorem 1 Suppose that we are given two sets $\mathbf{X}, \mathbf{Y} \in \mathcal{X}_{set}$ and $L \in \mathbb{Z}_+$. Suppose, furthermore, that \mathbf{w} and π can be generated randomly to form subsets $\tilde{\mathbf{X}}$ and $\tilde{\mathbf{Y}}$. The value of $\tilde{k}_{set}(\mathbf{X}, \mathbf{Y}; \mathbf{w}, \pi, L)$ is an unbiased estimator of the value of $k_{set}(\mathbf{X}, \mathbf{Y})$.

Theorem 2 Suppose the same conditions as in Theorem 1. Suppose, furthermore, that $k(\mathbf{x}, \mathbf{x}') \geq 0$ for all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$. The variance of $\tilde{k}_{set}(\mathbf{X}, \mathbf{Y}; \mathbf{w}, \pi, L)$ is bounded by a function of m, L and $k_{set}(\mathbf{X}, \mathbf{Y})$:

$$Var\left[\tilde{k}_{set}(\mathbf{X}, \mathbf{Y}; \mathbf{w}, \pi, L)\right] \leq \left(\frac{m^4}{L^4} - 1\right) k_{set}(\mathbf{X}, \mathbf{Y})^2.$$

- The complexity of ours is $\mathcal{O}(n^2L^2d)$.
- We use either the set kernel or the approximated kernel in modeling Gaussian process regression.
- It can suggest the best candidate set.

Figure 1:Results on k-means clustering and MoG.

Figure 2: Results on synthetic functions.

Experiments

- We test our method in
- two synthetic functions
- initialization of two clustering methods.

Conclusion

- We propose a Bayesian optimization method over sets with set kernels.
- To reduce the complexity, we approximate the kernels to efficient kernels.
- We demonstrate that our method can be applied in some set-input examples.
- Our open repository: https://github.com/jungtaekkim/bayeso

Contact Information

• Homepage:

http://mlg.postech.ac.kr/~jtkim

• Email: jtkim@postech.ac.kr