1.3.3 布尔代数与一阶逻辑的完全性

定义 1.3.7. 令 \mathcal{B} 是布尔代数, U 是 \mathcal{B} 上的超滤:

- (1) 令 $D \subseteq B$ 并且 $\sum D$ 存在。我们称 U 是D-完全的 ,或者称 U 保持 $\sum D$,如果 $\sum D \in U$ 蕴涵存在 $d \in D$, $d \in U$ 。
- (2) 如果 \mathcal{D} 是 B 的子集的族,对任意 $D \in \mathcal{D}$, $\sum D$ 都存在。我们称 U 是 \mathcal{D} -完全的,如果对任意 $D \in \mathcal{D}$, U 都是 D-完全的。
- **练习 1.3.8.** 定义1.3.7中的(1)可以替换为以下条件: $D \subseteq U$ 蕴涵 $\prod D \in U$ 。 **练习 1.3.9.** 对于任意偏序集 (P, <),我们也可以定义相应的概念:
 - (1) 如果 $D \subseteq P$ 满足:对任意 $p \in P$,总存在 $d \in D$ 使得 $d \leq p$,就称 D 是 P 的稠密子集。
 - (2) 如果 \mathcal{D} 是 P 的稠密子集的族,U 是 P 上的超滤,如果对任意 $D \in \mathcal{D}$, $U \cap D \neq \emptyset$,就称 U 是 \mathcal{D} -脱殊的。

证明:如果将 \mathcal{B} 看做偏序集,U 是 \mathcal{D} -完全的当且仅当 U 是 \mathcal{D} -脱殊的。

引理 **1.3.10** (Rasiowa-Sikorski 引理). 令 \mathcal{B} 为布尔代数, \mathcal{D} 是 \mathcal{B} 的子集的族, 并且 \mathcal{D} 是可数的,则存在 \mathcal{B} 上的滤 \mathcal{U} , \mathcal{U} 是 \mathcal{D} -完全的。

证明. 令 $\{D_0, D_1, \dots\}$ 为 \mathcal{D} 的一个枚举。我们如下递归定义 $G = \{g_0, g_1, \dots\} \subseteq B - \{0\}$:

- (1) $g_0 = 1$;
- (2) 假设 g_n 已定义,如果 $g_n \cdot \sum D_n = 0$,则令 $g_{n+1} = g_n$;否则,一定存在 $d \in D_n$, $g_n \cdot d > 0$,任取这样的一个 $d_n \in D$,令 $g_{n+1} = g_n \cdot d_n$ 。对任意 $g_i \in G$,都有 $g_{i+1} \leq g_i$,所以 G 有有穷交性质。最后,令 U 为 G 生成的超滤。我们以下证明 U 是 \mathfrak{D} -完全的。

对任意 $D_n \in \mathcal{D}$,如果 $\sum D_n \in U$,则 $g_n \cdot \sum D_n > 0$,所以存在 $d_n \in D$, $g_{n+1} = g_n \cdot d_n$ 。由于 $g_{n+1} \in U$ 并且 $g_{n+1} \leq d_n$,所以 $d_n \in U$ 。

注记 1.3.11. 引理1.3.10中,要求 \mathcal{D} 是可数的这一点是必须的。如果 \mathcal{D} 不可数,相应的命题在 ZFC 中不可证明,虽然它与 ZFC 是一致的。

为了证明一阶逻辑的完全性,我们给出以下定义,它是 \mathfrak{D} -完全的逻辑版本。

定义 1.3.12. $\mathcal{B}(T)$ 上的超滤 U 是 Henkin 的,如果对任意存在公式 $\exists x \psi$, $[\exists x \psi] \in U$ 蕴含存在变元 y, $[\psi_v^x] \in U$ 。

引理 **1.3.13.** 如果 T 是一阶逻辑的一致的理论, $\mathcal{B}(T)$ 是 Lindenbaum 代数。 如果 U 是 $\mathcal{B}(T)$ 上的 Henken 超滤,则存在一个模型 \mathfrak{A}_U ,和赋值函数 s, $(\mathfrak{A}_U,s) \models T$ 。

证明. 首先,定义所有项上的等价关系: $t_1 \sim t_2$ 当且仅当 $[t_1 = t_2] \in U$ 。令 $|\mathfrak{A}_U| = \{[t] \mid t$ 是项}。接下来定义非逻辑符号的解释:

- 对任意 n-元谓词符号 P,任意项 t_1, \dots, t_n ,($[t_1], \dots, [t_n]$) $\in P^{\mathfrak{A}_U}$ 当且 仅当 $[Pt_1, \dots t_n] \in U$ 。
- 对任意函数符号 f,任意项 t_1, \dots, t_n , $f^{\mathfrak{A}_U}([t_1], \dots, [t_n]) = [t]$ 当且仅 当 $[ft_1, \dots, t_n = t] \in U$ 。
- 对任意常量符号 c , $c^{\mathfrak{A}_U} = [c]$ 。

最后,我们还需定义赋值函数 $s:V\to |\mathfrak{A}_U|$ 为: s(x)=[x]。

断言 1.3.14. 对任意公式 ϕ , $(\mathfrak{A}_U,s) \models \phi$ 当且仅当 $[\phi] \in U$ 。所以, $(\mathfrak{A}_U,s) \models T$.

断言的证明. 首先,验证对任意项 t , $\bar{s}(t) = [t]$ 。这需要对项做归纳,我们留给读者作为练习。

然后我们对公式做归纳证明断言。

如果 ϕ 是原子公式 $t_1 = t_2$,则 $(\mathfrak{A}_U, s) \models t_1 = t_2$ 当且仅当 $\bar{s}(t_1) = \bar{s}(t_2)$,当且仅当 $[t_1] = [t_2]$,当且仅当 $[t_1 = t_2] \in U$ 。

如果 ϕ 是 $Pt_1 \cdots t_n$, $(\mathfrak{A}_U, s) \models Pt_1 \cdots t_n$ 当且仅当 $([t_1], \cdots, [t_n]) \in P^{\mathfrak{A}_U}$ 当且仅当 $[Pt_1, \cdots t_n] \in U$ 。

关于命题连接词 ¬,→ 的验证留给读者。

如果 ϕ 是存在公式 $\exists x \psi_{\circ}(\mathfrak{A}_{U},s) \models \phi$ 当且仅当存在 [t], $(\mathfrak{A}_{U},s_{[t]}^{x}) \models \psi$,当且仅当存在 [t], $(\mathfrak{A}_{U},s) \models \psi_{t}^{x}$,当且仅当存在 [t], $[\psi_{t}^{x}] \in U_{\circ}$ 由于 $[\psi_{t}^{x}] \leq [\exists x \psi]$,所以 $[\exists x \psi] \in U_{\circ}$ 另一方面,由于 U 是 Henkin 的,所以 $[\exists x \psi] \in U$ 蕴含存在 [t], $[\psi_{t}^{x}] \in U_{\circ}$ 后者蕴含 $[\mathfrak{A}_{U},s] \models \psi_{y}^{x}$,这又蕴含 $[\mathfrak{A}_{U},s_{[y]}^{x}] \models \psi$,所以 $[\mathfrak{A}_{U},s] \models \exists x \psi_{\circ}$

定理 1.3.15 (一阶逻辑完全性定理). 如果一阶逻辑的公式集 Σ 是一致的,则 Σ 是可满足的。

1.3.4 超积与一阶逻辑的紧致性

令 S 为一集合,考虑语言 $\mathcal L$ 的模型族 $\{\mathfrak A_x\mid x\in S\}$ 。如果 U 是 S 上的超滤,则可以定义 $\prod_{x\in S}A_x$ 上的等价关系:

$$f =_U g \{x \in S \mid f(x) = g(x)\} \in U.$$

令 $A = \prod_{x \in S} A_x / =_U$ 为相应的等价类, 我们可以定义语言 \mathcal{L} 的模型 \mathfrak{A} 如下:

1. 如果 $P(x_1,...,x_n)$ 为谓词,则对任意 $[f_1],...,[f_n] \in A$,

$$P^{\mathfrak{A}}([f_1],...,[f_n])$$
 当且仅当 $\{x \in S \mid P^{\mathfrak{A}_x}(f_1(x),...,f_n(x))\} \in U$.

2. 如果 $F(x_1,...,x_n)$ 是函数, $[f_1],...,[f_n] \in A$, 则令:

$$F^{\mathfrak{A}}([f_1],\ldots,[f_n])=[f],$$

其中 f 是如下定义的函数:对任意 $x \in S$, $f(x) = F^{\mathfrak{A}_x}(f_1(x), \ldots, f_n(x))$ 。

3. 如果 c 是常量,则令

$$c^{\mathfrak{A}} = [f],$$

而 f 则是如下定义的函数: 对任意 $x \in S$, $f(x) = c^{\mathfrak{A}_x}$ 。

如上定义的模型 \mathfrak{A} 称为U 生成的 $\{\mathfrak{A}_x \mid x \in S\}$ 的超积,记为 $\mathrm{Ult}_U\{\mathfrak{A}_x \mid x \in S\}$ 。以下重要定理表明,对任意公式 φ ,超积 $\mathrm{Ult}_U\{\mathfrak{A}_x \mid x \in S\}$ 满足 φ 当且 仅当"几乎所有的 \mathfrak{A}_x "满足 φ 。

定理 1.3.16 (Łoś). 令 U 为集合 S 上的超滤,并且 $\mathfrak{A} = \mathrm{Ult}_U\{\mathfrak{A}_x \mid x \in S\}$ 为超积,则

- (1) 对任意公式 $\varphi(x_1,\ldots,x_n)$,任意 $f_1,\ldots,f_n\in\prod_{x\in S}A_x$, $\mathfrak{A}\models\varphi[[f_1],\ldots,[f_n]]$ 当且仅当 $\{x\in S\mid \mathfrak{A}_x\models\varphi[f_1(x),\ldots,f_n(x)]\}\in U$.
- (2) 如果σ是句子,则

 $\mathfrak{A} \models \sigma$ 当且仅当 $\{x \in S \mid \mathfrak{A}_x \models \sigma\} \in U$.

定理 1.3.17 (一阶逻辑紧致性). 对任意语句集 Σ , 如果 Σ 是有穷可满足的,则 Σ 可满足。

证明. 令 I 为 Σ 的所有有有穷子集的族。对任意 $i \in I$,令 \mathfrak{A}_i 为 i 的一个模型。对任意公式 $\sigma \in \Sigma$,令 $Y_{\sigma} = \{i \in I \mid \sigma \in i\}$,则 $\{Y_{\sigma} \mid \sigma \in \Sigma\}$ 有有穷交性质。令 U 为由它生成的超滤, Ult_U 为超积。对任意 $\sigma \in \Sigma$, $X_{\sigma} = \{i \mid \mathfrak{A}_i \models \sigma\} \subseteq Y_{\sigma}$,所以 $X_{\sigma} \in U$,由 Łoś 定理, $Ult_U \models \Sigma$ 。

如果对任意 $x \in S$, $\mathfrak{A}_x = \mathfrak{A}$ 都相等,则超积称为 \mathfrak{A} 的超幂,记为 Ult $_U$ \mathfrak{A} 。根据 Łoś 定理,模型 \mathfrak{A} 和它的超幂是初等等价的。不仅如此,我们还有以下结果:

推论 1.3.18. 对任意模型 \mathfrak{A} , 存在 \mathfrak{A} 到其超幂上的初等嵌入 $j:\mathfrak{A}\to \mathrm{Ult}_U\,\mathfrak{A}$ 。证明. 对任意 $a\in A$,定义 $c_a:S\to A$ 为常值函数:

$$\forall x \in S(c_a(x) = a).$$

由此, 定义 $j:\mathfrak{A}\to \mathrm{Ult}_U(\mathfrak{A})$ 为:

$$j(a) = [c_a].$$