Boston University Department of Electrical and Computer Engineering

ENG EC 414 Introduction to Machine Learning

HW₁

© 2015 – 2020 Prakash Ishwar © 2020 Francesco Orabona

Important: Before you proceed, please read the documents pertaining to *Homework formatting and sub-mission guidelines* in the Homeworks section of Blackboard.

Note: Problem difficulty = number of coffee cups **.**

Problem 1.1 (*Linear Algebra*) [22pts] Let $\mathbf{v}_1 = [1, 1, 0]^{\mathsf{T}}$, $\mathbf{v}_2 = [0, 1, 1]^{\mathsf{T}}$, and $\mathbf{v}_3 = [1, 1, 1]^{\mathsf{T}}$, be three column vectors. Note: $^{\mathsf{T}}$ means transpose.

- (a) [1pt] The dimension d of the Euclidean space \mathbb{R}^d containing \mathbf{v}_1 is:
- (b) [1pt] The length, i.e., norm $\|\mathbf{v}_1\|$, of \mathbf{v}_1 is:
- (c) [1pt] The dot product, i.e., inner product $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \mathbf{v}_2^{\mathsf{T}} \mathbf{v}_1$, of \mathbf{v}_1 and \mathbf{v}_2 is:
- (d) [1pt] Are \mathbf{v}_1 and \mathbf{v}_2 perpendicular (orthogonal)? Yes/No, Why?
- (e) [1pt] Are \mathbf{v}_1 and \mathbf{v}_2 linearly independent? Yes/No, Why?
- (f) [5pts] \clubsuit If $\text{Proj}_{\mathcal{S}}(\mathbf{v}_3) = a_1\mathbf{v}_1 + a_2\mathbf{v}_2$, where a_1, a_2 are scalars, denotes the orthogonal projection of \mathbf{v}_3 onto the subspace \mathcal{S} spanned by \mathbf{v}_1 and \mathbf{v}_2 , then $\mathbf{a} = (a_1, a_2)^{\top} =$
- (g) [5pts] Consider the following subset of \mathbb{R}^3 : $S := \{x : v_3^\top x 3 = 0\}$. Compute the Euclidean distance of v_1 from S and the point in S which is closest to v_1 .
- (h) [4pts] Let $B = \begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix}$. Compute: (i) its eigenvalues and (ii) a set of orthonormal eigenvectors.
- (i) [3pts] The trace tr(D) of a square matrix D is the sum of all its elements along the main diagonal. Let D = ABC, where the dimensions of A, B, and C are, respectively, $p \times q$, $q \times r$, and $r \times p$. What is the relationship between: tr(ABC), tr(BCA), and tr(CAB)? Explain.

Problem 1.2 (*Multivariate Calculus*) [9pts] Let A be a $d \times d$ matrix and $\mathbf{b}, \mathbf{x} \in \mathbb{R}^d$ be two $d \times 1$ column vectors. Let $f(\mathbf{x})$ denote a real-valued function of d variables (d components of \mathbf{x}).

- (a) [2pts] Compute the gradient vector $\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_d}(\mathbf{x})\right)^{\mathsf{T}}$ when $f(\mathbf{x}) = \mathbf{b}^{\mathsf{T}}\mathbf{x}$.
- (b) [3pts] Compute the gradient vector $\nabla f(\mathbf{x})$ when $f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} A \mathbf{x}$.
- (c) [4pts] \clubsuit Let A be symmetric and invertible. If $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} + \mathbf{b}^{\top}\mathbf{x}$, then find \mathbf{x} 's for which $f(\mathbf{x})$ is minimum or maximum.

Problem 1.3 (*Probability*) [21pts] Let W = Y + U, where label Y and additive noise U are independent random variables, $P(Y = +1) = \frac{3}{4}$, $P(Y = -1) = \frac{1}{4}$, and U is continuous with $U \sim \text{Uniform}[-3, 3]$.

Let observation (feature) $X = 2 \times 1(W > 0) - 1$. where 1(event) is the indicator function of the *event* and equals one if the *event* is true and equals zero if the *event* is false.

- (a) [2pts] Sketch the graph of p(w|Y = +1). Proper labeling of axes and key points is needed to receive full credit.
- (b) [2pts] Compute the joint pmf p(x, y) = P(X = x, Y = y) for all $x, y \in \{-1, +1\}$.
- (c) [1pt] Compute the marginal pmf p(x) = P(X = x), for x = -1, 1.
- (d) [2pts] Compute the mean/expectation: $\mu_X = E[X]$ and $\mu_Y = E[Y]$.
- (e) [2pts] Compute the variance: $\sigma_X^2 = \text{var}(X)$.
- (f) [2pts] Compute the correlation E[XY]. Are X and Y orthogonal? Explanation is needed to receive credit.
- (g) [2pts] Compute the covariance: $cov(X, Y) = E[(X \mu_X)(Y \mu_Y)]$. Are *X* and *Y* uncorrelated? Explanation is needed to receive credit.
- (h) [2pts] Compute the conditional pmf p(x|y) = P(X = x|Y = y) for all $x, y \in \{-1, +1\}$.
- (i) [2pts] Are X and Y independent? Explanation is needed to receive credit.
- (j) [4pts] Compute the conditional expectation/mean E[Y|X=x] as a function of x.

Problem 1.4 (Random Vectors) [10pts] Let Z_1, Z_2 be i.i.d. (scalar) standard Gaussians (normals) $\mathcal{N}(0, 1)$, i.e., independent and identically Gaussians with zero mean and unit variance. Let

$$\underbrace{\begin{bmatrix} X \\ Y \end{bmatrix}}_{\mathbf{I}} = \underbrace{\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix}}_{\mathbf{Z}} + \underbrace{\begin{bmatrix} -3 \\ 2 \end{bmatrix}}_{\mathbf{Y}}$$

- (a) [2pts] Compute the 2×1 mean vector $E[\mathbf{U}]$.
- (b) [4pts] Compute the 2×2 (auto- or self-) covariance matrix Cov(**U**) of the random vector $\mathbf{U} = (X, Y)^{\mathsf{T}}$.
- (c) [4pts] Compute the 2×2 cross-covariance matrix $Cov(\mathbf{U}, \mathbf{Z})$ of the random vector \mathbf{U} and the random vector $\mathbf{Z} = (Z_1, Z_2)^{\mathsf{T}}$.