Episodio 14. Producto interno Complemento ortogonal-Proyección ortogonal

Departamento de Matemática FIUBA

Teorema de Pitágoras

Si $\mathbb V$ es un $\mathbb K$ -espacio vectorial con Producto Interno, se cumple:

$$u \perp v \Rightarrow ||u + v||^2 = ||u||^2 + ||v||^2$$

Demostración:

$$u \perp v \iff \langle u, v \rangle = 0$$

$$||u + v||^2 = \langle u + v, u + v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$
$$= ||u||^2 + \underbrace{\langle u, v \rangle}_{=0} + \underbrace{\langle v, u \rangle}_{\langle u, v \rangle = 0} + ||v||^2$$

$$||u+v||^2 = ||u||^2 + ||v||^2 \checkmark$$

Observaciones:

► El recíproco del teorema de Pitágoras sólo es valido si V es un R- espacio vectorial.

Si para un par de vectores se cumple:

$$||u + v||^{2} = ||u||^{2} + ||v||^{2} \iff$$

$$\iff \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle = \langle u, u \rangle + \langle v, v \rangle \iff$$

$$\iff \langle u, v \rangle + \underbrace{\langle v, u \rangle}_{=\overline{\langle u, v \rangle}} = 0$$

$$\langle u, v \rangle + \overline{\langle u, v \rangle} = 0$$

$$2\mathbb{R}e(\langle u, v \rangle) = 0$$

Si \mathbb{V} es un \mathbb{R} -espacio vectorial, $\langle u, v \rangle \in \mathbb{R} \Rightarrow \langle u, v \rangle = 0 \Rightarrow u \perp v$

Si \mathbb{V} es un \mathbb{C} -espacio vectorial, la única implicación es que $\mathbb{R}e(\langle u,v\rangle)=0$ y esto no significa que los vectores sean ortogonales, sólo implica que el producto interno entre los dos vectores es un complejo de la forma z=bi.

Como contraejemplo inmediato: Tomemos en \mathbb{C}^n el P.I. canónico, $\langle x, y \rangle = y^* x = \bar{y}^T x$. Si $x = \begin{pmatrix} 1 & 0 \end{pmatrix}^T$ e $y = \begin{pmatrix} 3i & 1 \end{pmatrix}^T$, entonces:

$$\langle (1 \ 0)^T (3i \ 1)^T \rangle = (\bar{3}i \ \bar{1}) \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$(-3i \ 1) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = -3i = -3i \neq 0$$

 $\therefore x \not\perp y$, pero:

$$||x + y||^2 = ||(1 + 3i \ 1)^T||^2 = |1 + 3i|^2 + 1^2 = 1 + 9 + 1 = 11$$

 $||x||^2 = 1$, $||y||^2 = 9 + 1 = 10$.

Entonces $||x + y||^2 = ||x||^2 + ||y||^2$ y $x \not\perp y$.

Descomposición Ortogonal

Existencia de la descomposición ortogonal

Sea \mathbb{V} - \mathbb{K} espacio vectorial con P.I.

Si u y $v \in \mathbb{V}$, $v \neq 0_{\mathbb{V}}$, queremos saber si existe $w \in V$, ortogonal a v tal que u = cv + w, con $c \in \mathbb{K}$.

Si suponemos
$$w \perp v \Rightarrow \langle u, v \rangle = \langle cv + w, v \rangle = c \langle v, v \rangle + \underbrace{\langle w, v \rangle}_{=0}$$

Entonces, $c = \frac{\langle u, v \rangle}{\|v\|^2}$ y despejamos w = u - cv.

Como $\forall u, v \in \mathbb{V}, u = cv + (u - cv)$ podemos afirmar que :

 $\forall u,v\in\mathbb{V},v\neq0_{\mathbb{V}}$, si tomamos $c=rac{\langle u,v
angle}{\|v\|^2}$, y $w=u-(rac{\langle u,v
angle}{\|v\|^2})v$, se cumple:

$$u = cv + w \operatorname{con} w \perp u$$

En todo este apunte siempre que hablamos de \mathbb{V} , estamos hablando de $\mathbb{V}-\mathbb{K}$ espacio vectorial con P.I.

Definición: Se dice que $\{v_1, v_2, \dots, v_k\} \subset \mathbb{V}$ es un **conjunto ortogonal**, si $\langle v_i, v_i \rangle = 0 \ \forall \ i \neq j$.

Aclaración: Todo conjunto con un sólo elemento, $\{v_1\}$ se considera ortogonal.

Definición: Se dice que $\{v_1, v_2, \ldots, v_k\} \subset \mathbb{V}$ es un **conjunto ortonormal**, si $\langle v_i, v_j \rangle = 0 \ \forall \ i \neq j \ y \ \|v_i\|^2 = 1, \ \forall i = 1, \ldots, k.$

Observación

Si $\{v_1, v_2, ..., v_k\}$ es un **conjunto ortogonal que no contiene al vector nulo** $\Rightarrow \{v_1, v_2, ..., v_k\}$ es l.i. Para probarlo, igualamos una combinación lineal a $0_{\mathbb{V}}$:

$$\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_k v_k = 0_{\mathbb{V}} (1)$$

Si tomamos producto interno m. a m. "contra" v₁:

$$\langle \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k, v_1 \rangle = \langle 0_{\mathbb{V}}, v_1 \rangle = 0$$
$$\lambda_1 \langle v_1, v_1 \rangle + \lambda_2 \underbrace{\langle v_2, v_1 \rangle}_{=0} + \dots + \lambda_k \underbrace{\langle v_k, v_1 \rangle}_{=0} = 0$$

$$\lambda_1\|\nu_1\|^2=0, \text{ como por hipótesis } \nu_1\neq 0_{\mathbb{V}}\Rightarrow \boxed{\lambda_1=0}$$

Esto que hicimos con v_1 , podemos repetirlo para cada uno de los vectores del conjunto. Entonces, en (1) tomemos producto interno m. a m. "contra" v_i , para cada $i=1,\ldots,k$:

$$\langle \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k, v_i \rangle = \langle 0_{\mathbb{V}}, v_i \rangle = 0$$
$$\lambda_1 \langle v_1, v_i \rangle + \lambda_2 \langle v_2, v_i \rangle + \dots + \lambda_k \langle v_k, v_i \rangle = 0$$
(2)

Pero $\langle v_j, v_i \rangle = 0 \, \forall \, j \neq i$. Entonces el único término que no se anula a la izquierda de la igualdad es $\lambda_i ||v_i||^2$ y en (2) queda:

$$\lambda_i \|v_i\|^2 = 0$$
, como por hipótesis $v_i \neq 0_{\mathbb{V}} \Rightarrow \lambda_i = 0 \ \forall i = 1, \dots, k$.

 $\therefore \{v_1, v_2, \dots, v_k\}$ es linealmente independiente.

Bases ortogonales y ortonormales.

Definición:

Sea \mathbb{V} un \mathbb{K} -espacio vectorial con producto interno. Se dice que $B = \{v_1, v_2, \dots, v_n\}$ es una **base ortogonal de** \mathbb{V} si es una **base** de \mathbb{V} y es un conjunto ortogonal.

$$(\langle v_i, v_j \rangle = 0 \ \forall i \neq j.)$$

Definición:

Sea $\mathbb V$ un $\mathbb K$ -espacio vectorial con producto interno. Se dice que $B = \{v_1, v_2, \dots, v_n\}$ es una **base ortonormal** de $\mathbb V$ si es una base de $\mathbb V$ y es un conjunto ortonormal.

O sea,
$$\langle v_i, v_j \rangle = \begin{cases} 0 \text{ si } i \neq j \\ 1 \text{ si } i = j \end{cases}$$
.

Descomposición con respecto a una base ortonormal

Sea $B = \{v_1, v_2, \dots v_n\}$ es una base ortogonal de \mathbb{V} , si $u \in \mathbb{V}$ $u = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$, aplicando el teorema de Pitágoras sucesivamente en los n términos, tenemos:

$$||u||^{2} = ||\lambda_{1}v_{1} + \lambda_{2}v_{2} + \dots + \lambda_{n}v_{n}||^{2}$$

$$= |\lambda_{1}|^{2}||v_{1}||^{2} + |\lambda_{2}|^{2}||v_{2}||^{2} + \dots + |\lambda_{n}|^{2}||v_{n}||^{2}$$
(1)

Si,en particular, la base es ortonormal, tenemos:

$$||u||^2 = |\lambda_1|^2 + |\lambda_2|^2 + \dots + |\lambda_n|^2$$

Pero el resultado es más "sabroso todavía, porque los escalares, o sea las coordenadas de cualquier vector con respecto a una base ortonormal quedan explicitamente determinados por el vector *u* y su p.i. con respecto a los vectores de la base ortonormal.

Si $u = \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n$, tomemos m. a m. el producto interno "contra" v₁:

$$\langle u, v_1 \rangle = \langle \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k, v_1 \rangle$$

 $\langle u, v_1 \rangle = \lambda_1 \langle v_1, v_1 \rangle = \lambda_1$

Repetimos la misma operación con cada v_i de la base ortonormal:

$$\langle u, v_i \rangle = \langle \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k, v_i \rangle = \lambda_i \langle v_i, v_i \rangle = \lambda_i$$

B ortonormal

$$\lambda_i = \langle u, v_i \rangle$$

Si
$$B = \{v_1, v_2, \dots, v_n\}$$
 es una base ortonormal : $u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + \dots + \langle u, v_n \rangle v_n$
$$||u||^2 = |\langle u, v_1 \rangle|^2 + |\langle u, v_2 \rangle|^2 + \dots + |\langle u, v_n \rangle|^2$$

$$||u||^2 = |\langle u, v_1 \rangle|^2 + |\langle u, v_2 \rangle|^2 + \cdots + |\langle u, v_n \rangle|^2$$

Complemento ortogonal

Definición:

Si $A \subseteq \mathbb{V}, A \neq \emptyset$, se llama **complemento ortogonal de A** al conjunto $A^{\perp} = \{w \in \mathbb{V} : \langle w, v \rangle = 0 \ \forall v \in A\}$, el conjunto formado por todos los vectores de \mathbb{V} que son ortogonales a cada elemento de A.

- ► A^{\perp} es un subespacio de \mathbb{V} , $\forall A \subseteq \mathbb{V}$. Es inmediato, pues:
 - a $0_{\mathbb{V}} \in A^{\perp}$ pues $\langle 0_{\mathbb{V}}, v \rangle$ $v \in \mathbb{V}$, en particular entonces $\langle 0_{\mathbb{V}}, v \rangle$ $v \in A$
 - b si w_1 y w_2 son elementos de A^{\perp} $\langle w_1 + w_2, v \rangle = \langle w_1, v \rangle + \langle w_2, v \rangle = 0 + 0 = 0$
 - c Tarea para el hogar
- ▶ $\{0_{\mathbb{V}}\}^{\perp} = \mathbb{V}$. Sabemos que $\forall \langle .,. \rangle$ se cumple que $\langle 0_{\mathbb{V}}, \nu \rangle = 0 \ \forall \nu \in \mathbb{V} \Rightarrow \nu \in \{0_{\mathbb{V}}\}^{\perp} \ \forall \nu \in \mathbb{V} \Rightarrow \mathbb{V} = \{0_{\mathbb{V}}\}^{\perp}$.
- $\mathbb{V}^{\perp} = \{0_{\mathbb{V}}\}, \text{ pues si } v \in \mathbb{V}^{\perp} \Rightarrow \langle v, u \rangle = 0 \ \forall u \in \mathbb{V} \text{ en }$ particular $\langle v, v \rangle = 0 \Rightarrow v = 0_{\mathbb{V}} \Rightarrow \mathbb{V}^{\perp} = \{0_{\mathbb{V}}\}.$
- Si S y T son **subconjuntos** de \mathbb{V} , $S \subseteq T \Rightarrow T^{\perp} \subseteq S^{\perp}$. Pues si $v \in T^{\perp} \Rightarrow \langle v, v_t \rangle = 0 \ \forall \ v_t \in T \ \text{como} \ S \subseteq T \ \text{en particular}$, $\langle v, v_S \rangle = 0 \ \forall \ v_S \in S \ \Rightarrow v \in S^{\perp} \Rightarrow T^{\perp} \subseteq S^{\perp}$
- ▶ Si $S \subseteq \mathbb{V}$ es un subespacio $\Rightarrow S \cap S^{\perp} = \{0_{\mathbb{V}}\}$. Pues si $v \in S \cap S^{\perp}, \langle v, v \rangle = 0 \Rightarrow v = 0_{\mathbb{V}} \Rightarrow S \cap S^{\perp} = \{0_{\mathbb{V}}\}$

Complemento ortogonal de un subespacio de dimensión finita.

Si
$$S$$
 es un subespacio de \mathbb{V} , $S = \text{gen}\{v_1, v_2, \dots, v_k\}$ $S^{\perp} = \{v \in \mathbb{V} / \langle v_i, v \rangle = 0 \mid i = 1, \dots k.\}$

Para demostrar esta igualdad entre subespacios vamos a demostrar la doble inclusión.

Si
$$w \in S^{\perp} \Rightarrow \langle w, v_S \rangle = 0 \ \forall v_S \in S \Rightarrow \langle w, v_i \rangle = 0, \ i = 1, \dots k$$
. Así demostramos que

$$w \in \{v \in \mathbb{V} / \langle v_i, v \rangle = 0 \text{ para cada } i = 1, \dots k.\} \Rightarrow$$

$$S^{\perp} \subseteq \{ v \in \mathbb{V} / \langle v_i, v \rangle = 0 \ \forall \ i = 1, \dots k. \}$$

La otra inclusión, también es directa:

Sea
$$w \in \{v \in \mathbb{V} / \langle v_i, v \rangle = 0 \; \forall \; i = 1, \dots k.\}$$

Si $v_S \in S \Rightarrow v_S = \alpha_1 v_1 + \cdots + \alpha_k v_k$. Entonces:

$$\langle w, v_{s} \rangle = \langle w, \alpha_{1}v_{1} + \dots + \alpha_{k}v_{k} \rangle$$

$$= \bar{\alpha_{1}} \underbrace{\langle w, v_{1} \rangle}_{=0} + \bar{\alpha_{2}} \underbrace{\langle w, v_{2} \rangle}_{=0} + \dots + \bar{\alpha_{k}} \underbrace{\langle w, v_{k} \rangle}_{=0}$$

$$= 0 \Rightarrow w \in S^{\perp}.$$

$$\{v \in \mathbb{V}/\langle v_i, v \rangle = 0 \ \forall \ i = 1, \dots k.\} \subseteq S^{\perp}$$

Luego:

$$S^{\perp} = \{ v \in \mathbb{V} / \langle v_i, v \rangle = 0 \mid i = 1, \dots k. \}$$

Proyección Ortogonal

Proyección Ortogonal

Sea $S \subseteq \mathbb{V}$ un subespacio de \mathbb{V} y $v \in \mathbb{V}$, se dice que v' es la **proyección ortogonal** de v sobre S si:

- 1. $v' \in S$.
- 2. $v v' S^{\perp}$.

Notación: Se escribe $P_S(v) = v'$

Dos observaciones importantes

a Sea
$$v \in \mathbb{V}$$
, $\underline{\mathbf{si}\ \mathbf{existe}}\ P_S(v) = v' \Rightarrow \mathrm{es}\ \mathrm{única}.$ Sea $v \in \mathbb{V}$ y supongamos que existen $v' = P_S(v)$ y $v_0 = P_S(v).$
$$v' \ \mathrm{cumple}\ \begin{cases} v' \in S. \\ v - v' \in S^\perp \end{cases}$$

$$v_0 \ \mathrm{cumple}\ \begin{cases} v_0 \in S. \\ v - v_0 \in S^\perp \end{cases}$$
 Entonces:
$$\begin{cases} v_0 - v' \in S, \mathrm{pues}\ S \ \mathrm{es}\ \mathrm{subespacio}. \\ (v - v') - (v - v_0) = v_0 - v' \in S^\perp, \ \mathrm{pues}\ S^\perp \ \mathrm{es}\ \mathrm{subespacio}.$$
 Entonces $v_0 - v' \in S \cap S^\perp = \{0_\mathbb{V}\} \Rightarrow v_0 - v' = 0_\mathbb{V} \Rightarrow v_0 = v' \end{cases}$

Si existe,
$$P_S(v)$$
 es única

b Para todo $v \in \mathbb{V}$, $P_S(v)$ es el punto de S más cercano a v: $\forall v \in \mathbb{V}$ se cumple $d(v, P_S(v)) \leq d(v, v_s)$ con $v_S \in S$.

$$\forall v \in \mathbb{V}$$
 se cumple $||v - P_S(v)||^2 \le ||v - v_S||^2$.

$$||v - v_{S}||^{2} = ||v - v_{S} + P_{S}(v) - P_{S}(v)||^{2}$$

$$= ||\underbrace{(v - P_{S}(v))}_{\in S^{\perp}} + \underbrace{(P_{S}(v) - v_{S})}_{\in S}||^{2}$$

$$= ||v - P_{S}(v)|^{2} + ||P_{S}(v) - v_{S}||^{2} \text{ (Pitágoras)}$$

Demostramos que $||v - P_S(v)||^2 \le ||v - v_S||^2$ y la igualdad sólo vale si $v_S = P_S(v)$.

$$\mathsf{d}(v,P_S(v)) \leq \mathsf{d}(v,v_S) \ \forall \ v_S \in S.$$

Si existe, $P_S(v) \forall v \in \mathbb{V}$:

- ▶ $v P_S(v) = P_{S^{\perp}}(v)$, $\forall v \in \mathbb{V}$. Basta con probar que cumple las condiciones de la derfinición de proyección ortogonal:
 - 1. $(v P_S(v)) \in S^{\perp}$, por la definición de $P_S(v)$
 - 2. $v-((v-P_S(v))=P_S(v)\in S$, por lo tanto $v-((v-P_S(v))\in (S^\perp)^\perp$ pues es ortogonal a todos los elementos de S^\perp

Entonces $v - P_S(v)$ cumple con la definición de proyección ortogonal sobre S^{\perp} . Luego $P_{S^{\perp}}(v) = v - P_S(v)$

- $ightharpoonup v = P_S(v) + P_{S^{\perp}}(v) \ \forall v \in \mathbb{V}.$
- $ightharpoonup \mathbb{V} = S \oplus S^{\perp}.$ Además, si \mathbb{V} es de dimensión finita $(S^{\perp})^{\perp} = S$
- ▶ Si $v \in \mathbb{V}$ y $v = v_S + v_{S^{\perp}}$ con $v_S \in S$ y $v_{S^{\perp}} \in S^{\perp}$. $v_S = P_S(v)$ y $v_{S^{\perp}} = P_{S^{\perp}}(v)$ (Tarea: ver que v_S y $v_{S^{\perp}}$ cumplen con la definición de proy. ortogonal sobre S y S^{\perp} respectivamente.)

Más propiedades

- a $P_S(v) = v \iff v \in S$. Si $P_S(v) = v \Rightarrow v \in S$. Si $v \in S$, cumple la definición de proyección ortogonal: $v \in S$ y $v - v = 0_{\mathbb{V}} \in S^{\perp} \Rightarrow P_S(v) = v$
- b $P_S(v) = 0_{\mathbb{V}} \iff v \in S^{\perp}$. (Tarea)
- c $P_S(\lambda v + w) = \lambda P_S(v) + P_S(w), \forall v, w \in V_Y \forall \lambda \in K.$
 - 1) $\lambda P_S(v) + P_S(w) \in S.\checkmark$
 - $2)\lambda v + w (\lambda P_S(v) + P_S(w)) = \\ = \lambda (v P_S(v)) + (w P_S(w)) \in S^{\perp}.\checkmark$

Por lo tanto, $P_S(\lambda v + w) = \lambda P_S(v) + P_S(w)$

- d Lo anterior demuestra que, $P_S : \mathbb{V} \to \mathbb{V}$ es t.l. y además por
 - a. y b. $| \operatorname{Im}(P_S) = S$, $\operatorname{Nu}(P_S) = S^{\perp}$.
- $P_S(P_S(v)) = P_S(v) \ \forall \ v \in \mathbb{V}$

Fórmula de la proyección ortogonal.

Sea S un subespacio en \mathbb{V} , $v \in \mathbb{V}$, y $B_S = \{v_1, v_2, \dots, v_k\}$ una base ortogonal de S:

$$P_{S}(v) = \frac{\langle v, v_{1} \rangle}{\|v_{1}\|^{2}} v_{1} + \frac{\langle v, v_{2} \rangle}{\|v_{2}\|^{2}} v_{2} + \dots + \frac{\langle v, v_{k} \rangle}{\|v_{k}\|^{2}} v_{k}$$

$$P_S(v) \in S \Rightarrow P_S(v) = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k, \lambda_i \in \mathbb{K}, i = 1, \dots, k.$$
 (1)

$$v - P_S(v) \in S^{\perp} \iff v - P_S(v) \perp v_i \ \forall \ i = 1, \dots, k.(2)$$

Reemplazando (1) en (2), obtenemos que:

$$\langle v - (\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k), v_i \rangle = 0 \ \forall \ i = 1, \dots, k.$$

$$\langle v, v_i \rangle - \langle \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k, v_i \rangle = 0 \ \forall \ i = 1, \dots, k.$$

$$\langle v, v_i \rangle = \langle \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k, v_i \rangle \ \forall \ i = 1, \dots, k.$$

Como $\{v_1, v_2, \dots, v_k\}$ es un conjunto ortogonal:

$$\langle \mathbf{v}, \mathbf{v}_i \rangle = \lambda_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle \ \forall \ i = 1, \ldots, k.$$

Además $\langle v_i, v_i \rangle = \|v_i\|^2 \neq 0$ pues $v_i \neq 0_{\mathbb{V}} \ \forall \ i = 1, \dots, k$ porque forman parte de una base .

$$\lambda_i = \frac{\langle v, v_i \rangle}{\|v_i\|^2}$$
 y reemplazando en (1):

$$P_{S}(v) = \frac{\langle v, v_{1} \rangle}{\|v_{1}\|^{2}} v_{1} + \frac{\langle v, v_{2} \rangle}{\|v_{2}\|^{2}} v_{2} + \dots + \frac{\langle v, v_{k} \rangle}{\|v_{k}\|^{2}} v_{k} \checkmark$$

Antes de hacer algunos ejemplos, dos cosas:

- 1. Ya tenemos una fórmula para encontrar la proyección ortogonal si tenemos una base ortogonal del subespacio. Queda la pregunta ¿ siempre podré encontar una base ortogonal ? Con el procedimiento de Gram Scmidt, que vas a conocer en el próximo episodio vas a poder construir una base ortogonal para todo subespacio de dimensión finita. Entonces, cuando el subespacio sobre el que proyectamos es de dimensión finita, siempre vas a poder calcular la proyección ortogonal.
- Para un subespacio de dimensión 2 ya conocemos una manera de construir una base ortogonal, a través de la fórmula de descomposición ortogonal que probamos al inicio de este episodio.

Ejemplos.

▶ Sea $S \in \mathbb{R}^3$ con el P.I. canónico,

$$S = \{(x_1 \ x_2 \ x_3)^T \in \mathbb{R}^3 / x_1 - x_2 + 2x_3 = 0\}$$
, se pide:

- a Hallar S^{\perp} .
- b Hallar una base ortogonal de S.
- c Encuentre $P_S((123)^T)$
- d Encuentre $P_S((x_1x_2x_3)^T) \forall (x_1x_2x_3)^T \in \mathbb{R}^3$.

Resolución:

a Para encontrar S^{\perp} , miremos la condición de S:

$$x_1 - x_2 + x_3 = 0 \Leftrightarrow \frac{(1-12)(x_1 x_2 x_3)^T}{(1-12)^T} = 0$$
. Entonces $S = (\text{gen}\{(1-12)^T\})^{\perp} \Rightarrow S^{\perp} = \text{gen}\{(1-12)^T\}$ Por lo tanto proponemos $B_{S^{\perp}} = \{(1-12)^T\}$

b Para hallar una base **ortogonal** de *S*, busquemos los generadores de *S*.

$$(x_1 \ x_2 \ x_3)^T \in S \Leftrightarrow x_1 - x_2 + 2x_3 = 0 \Leftrightarrow x_1 = x_2 - 2x_3.$$

 $(x_1 \ x_2 \ x_3)^T = (x_2 - 2x_3 \ x_2 \ x_3)^T = x_2(1 \ 1 \ 0)^T + x_3(-2 \ 0 \ 1)^T$

Entonces: $S = gen\{(1\ 1\ 0)^T, (-2\ 0\ 1)^T\}$

Estos vectores no son ortogonales, pero justamente en el comienzo de nuestra episodio hemos demostrado que si u y v eran dos vectores cualesquiera $(v \neq 0_{\mathbb{V}})$, tomando $c = \frac{\langle u,v \rangle}{\|v\|^2}$, obteníamos $w = u - cv = u - \frac{\langle u,v \rangle}{\|v\|^2}v$, de manera tal que $w \perp v$ y cv, ahora que hemos definido proyección ortogonal, sabemos que es la proyección ortogonal de u sobre el subespacio gen $\{v\}$. Entonces, llamando $u = (1\ 1\ 0)^T$ y $v = (-2\ 0\ 1)^T$, obtenemos:

$$w = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{\langle (1\ 1\ 0)^T, (-2\ 0\ 1)^T \rangle}{\|[(-2\ 0\ 1)^T]\|^2} \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{(-2)}{5} \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$$

$$w = \begin{pmatrix} \frac{1}{5} \\ 1 \\ \frac{2}{5} \end{pmatrix} \Rightarrow$$
 una base ortogonal de S es $B_s = \left\{ \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} \right\}$

c Nos piden encontrar $P_S((1\ 2\ 3)^T)$. Como dim $(S^{\perp})=1$ y $P_S(v)=v-P_{S^{\perp}(v)}$, calculamos primero $P_{S^{\perp}}((1\ 2\ 3)^T)$ con la fórmula de proyección ortogonal:

$$P_{S^{\perp}}((1\ 2\ 3)^{T}) = \frac{\langle (1\ 2\ 3)^{T}, (1\ -1\ 2)^{T} \rangle}{\|(\ 1-1\ 2)^{T}\|^{2}} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

$$P_{S^{\perp}}((1\ 2\ 3)^T) = \frac{5}{6} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} =$$

$$P_{S}((1\ 2\ 3)^{T}) = \begin{pmatrix} 1\\2\\3 \end{pmatrix} - \frac{5}{6} \begin{pmatrix} 1\\-1\\2 \end{pmatrix} = \begin{pmatrix} \frac{1}{6}\\\frac{17}{6}\\4 \end{pmatrix}.$$

d Para encontrar $P_S\left(\begin{pmatrix} x_1\\x_2\\x_3\end{pmatrix}\right)$ podemos repetir la estrategia ya

utilizada. Calculamos en primer lugar la proyección sobre S^{\perp} :

$$P_{S^{\perp}}((x_1 \ x_2 \ x_3)^T) = \frac{\langle (x_1 \ x_2 \ x_3)^T, (1 \ -1 \ 2)^T \rangle}{\|(\ 1 - 1 \ 2)^T\|^2} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

$$P_{S^{\perp}}((x_1 \ x_2 \ x_3)^T) = \frac{(x_1 - x_2 + 2x_3)}{6} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

$$P_{S}((x_1 \ x_2 \ x_3)^T) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - \frac{(x_1 - x_2 + 2x_3)}{6} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

Obtenemos:

$$P_{S}((x_{1} \ x_{2} \ x_{3})^{T}) = \begin{pmatrix} \frac{5x_{1} + x_{2} - 2x_{3}}{6} \\ \frac{x_{1} + 5x_{2} + 2x_{3}}{6} \\ \frac{-2x_{1} + 2x_{2} + 2x_{3}}{6} \end{pmatrix} = \begin{pmatrix} \frac{5}{6} & \frac{1}{6} & \frac{-1}{3} \\ \frac{1}{6} & \frac{5}{6} & \frac{1}{3} \\ \frac{-1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

Donde

$$[P_S]_E^E = \begin{pmatrix} \frac{5}{6} & \frac{1}{6} & \frac{-1}{3} \\ \frac{1}{6} & \frac{5}{6} & \frac{1}{3} \\ \frac{-1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

- ► Sea $S = gen\{1, sen(x), cos(x)\} \subseteq C([-\pi \pi])$ con el P.I. $\langle f, g \rangle = \int_{-\pi}^{\pi} f(t)g(t)dt$.
 - a Verifique que $B_S = \{1, sen(x), cos(x)\}$ es una base ortogonal de S.
 - b ¿Cuál es el elemento de S más cercano a p(x) = x + 3?

Resolución:

a Antes de hacer cuentas con las integrales recordemos que si f es una función impar $\int_{-a}^{a} f(t)dt = 0$ y si f es una función par $\int_{-a}^{a} f(t)dt = 2 \int_{0}^{a} f(t)dt$. Así que $\langle 1, \operatorname{sen}(x) \rangle = \langle \cos(x), \operatorname{sen}(x) \rangle = 0$ Pues estos productos internos corresponden a integrar en un

intervalo simétrico del 0 una función impar. Además $\langle 1, \cos(x) \rangle = \int_{-\pi}^{\pi} \cos(x) dt = 0$ Por lo tanto el conjunto B_S es ortogonal, como no contiene al vector nulo es l.i y como por hipótesis genera S es una base ortogonal de S.

b El elemento más cercano de S al polinomio p es la proyección ortogonal de p sobre S.

Como ya tenemos una base ortogonal, sólo necesitamos aplicar la fórmula y, con paciencia, calcular las integrales involucradas.

$$P_S(x+3) = \frac{\langle x+3,1\rangle}{\|1\|^2} 1 + \frac{\langle x+3,\operatorname{sen}(x)\rangle}{\|\operatorname{sen}(x)\|^2} \operatorname{sen}(x) + \frac{\langle x+3,\cos(x)\rangle}{\|\cos(x)\|^2} \cos(x)$$
Calculamos:

$$\begin{split} &\|1\|^2 = \int_{-\pi}^{\pi} 1 dt = [t]_{-\pi}^{\pi} = 2\pi. \\ &\|\cos(x)\|^2 = \int_{-\pi}^{\pi} \cos(t) \cos(t) dt = \frac{1}{2} [t]_{-\pi}^{\pi} = \pi. \\ &\|\sin(x)\|^2 = \int_{-\pi}^{\pi} \sin(t) \sin(t) dt = \frac{1}{2} [t]_{-\pi}^{\pi} = \pi. \\ &\langle x+3,1\rangle = \int_{-\pi}^{\pi} (t+3) dt = [t^2+3t]_{-\pi}^{\pi} = 6\pi. \\ &\langle x+3,\cos x\rangle = \int_{-\pi}^{\pi} (t+3)\cos(t) dt = \int_{-\pi}^{\pi} 3\cos(t) dt = 0 \\ &\langle x+3,\sin(x)\rangle = \int_{-\pi}^{\pi} (t+3)\sin(t) dt = \int_{-\pi}^{\pi} t\sin(t) dt = 2\pi. \end{split}$$

Reemplazando en la fórmula los resultados de los cálculos auxiliares:

$$P_S(x+3) = \frac{6\pi}{2\pi} 1 + \frac{2\pi}{\pi} sen(x) + \frac{0}{2\pi} cos(x)$$
$$P_S(x+3) = 3 + 2sen(x)$$