Contents

Ι	Logic	3
1	Introduction	5
	1.1 Inference rules	5

Part I

Logic

Chapter 1

Introduction

some stuff on propositional logic, induction, well-formed formula. – need to be completed. For all proposition A we can define the set of all its sub-proposition, SPA, and it can be defined inductively. Order of operation. A meaning is a function $I: PR \to \{0, 1\}$ such that;

- 1. $I(\bot) = 0$.
- 2. $I(A \wedge B) = I(A)I(B)$.
- 3. $I(\neg A) = 1 I(A)$. (a book on negation)
- 4. $I(A \vee B) = \max\{I(A), I(B)\}.$
- 5. $I(A \to B) = I(\neg A \lor B)$. A point of contention among logician.

An evaluation is a meaning function restricted to the atomes, $\nu: P \to \{0, 1\}$.

Theorem 1.1. For each evaluation function there is unique extension to a meaning function.

 $I \models A \text{ if } I(A) = 1. \models A \text{ means } I \models A \text{ for all } I, \text{ a tautology. } \not\models A \text{ if } I(A) = 0 \text{ for all } I. \text{ If } \Gamma \text{ is a subset of proposition then, } \Gamma \models A \text{ when for all } I \models \Gamma \text{ then } I \models A. \text{ some propositions regarding meaning and evaluation.}$ A[P|b] substituition theorem.

1.1 Inference rules

- Hilbert's method

1.1.1 Natural Deduction

Everything is a rule. Two types of rules, introduction rules and elimination rules.