Lecture - 07. 09/21/2020 DGP: X, X, iid N(0,6;) Indep. of Now we don't assume we know 8, and 6,2 to be use the sample variances to estimate $S^{2} := \frac{1}{10-1} \sum_{i=1}^{n} (x_{i} - \overline{x}_{i}) S^{2} := 1 \sum_{i=1}^{n} (x_{i} - \overline{x}_{i})^{2}$ Under Ho: 1, - 42 =0. This was pointed by Behrens (1929) and Fisher (1935). Be they discovered this distriples called the Behrens-Fisher distriction this is called the Behrens-Fisher problem) A, - A; Behrens Pisher (-.) In 1946/7 Welch and Satterthwaite found still used today (p 314 CLB) good and

•	Midlerm R
	$X_1, \dots, X_n \stackrel{icd}{\sim} DGP(\theta_1, \theta_2, \dots, \theta_N)$ K is # parameters
	We've previously seen estimators. $\hat{\theta} = \omega.(x_1,, x_n) e.g.$
	$\hat{\theta} = \bar{x}, \hat{\theta}^{\circ} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^{\circ}$
	How did we get this function w? where did it come from? There are many strategies to create estimators () The first we'll study is called Method of moments" (MM) & it was used by Karl Pearson in the late 1890's.
	We know the DGP and we know which Dis; we want to estimate we now need an algorithm to generate w.)
	Det. The Kth moment of a russ E[Xt]
	The first moment is $\mu_{*}=E[X']$, the second. 15 $\mu_{*}=E[X^{*}]$ etc.
	We define the "sample moments" as:
	$\hat{A}_{k} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}$
9	The first sample moment is the "sample curiage" (sample mean),
	$\mathcal{U}_1 = \frac{1}{n} \sum_{k=1}^{n} X_k = \overline{X}$

	Pecison's idea is to "match moments to parameters" Il
	parameters" DI
	$\mathcal{U}_{1} = \alpha, (\theta_{1}, \dots, \theta_{N}), \theta_{1} = \delta, (g_{1}, \dots, g_{N})$
	$M_{\bullet} = \times, (\theta_{\bullet}, \dots, \theta_{K}), \text{ and } \theta_{\bullet} = \delta, (\mu_{\bullet}, \dots, \mu_{K})$
	A THE RESERVE OF THE PARTY OF T
	$M_{\kappa} = \propto_{\kappa} (\theta_1, \dots, \theta_{\kappa})$ $\theta_{\kappa} = \delta_{\kappa} (y_1, \dots, y_{\kappa})$
	a system of equations.
=>	a system of equations.
0	MH pretty much always gives you an estimator. But it is rarely a "great" estimator and sometimes produces totally wrong answers.
	X,, Xn i'd N(A, O) We want the MM
	estimators for both
	A, (mean) & A, (voriance) in
	the icid normal DGP.
	A, = E[x] = 0, (µ, y) = M, frue for all DGP's
=>	Q, MM = Q, = X
Vor[x]	$\theta_{2} = \Upsilon_{2}(\Omega_{1}, \Omega_{2}) = \Omega_{2} - \Omega_{1}^{2} \Longrightarrow \hat{\theta}_{1}^{MM} = \hat{\Omega}_{1} - \hat{\Omega}_{1}^{2}$
	$= /_{n} \sum_{i} X_{i} - \overline{X}^{a}.$
	= 62.

8° = 1/n 2 (x, -x) = 1/n 2 (x, - 2x, x + x°) 1/2 5x; - 1/2 2x (nx) + 1/2 x x2. 1/n & Xi - x2. Xn ud Bin (#, 0,) both 0, 0, unknown We want to estimate both of (n) and to (which is commonly denoted p). Ecologists love this estimation problem, because it's part of the "capture-recapture problem to estimate population size of wildlife. Each data point is the result of catching a certain number of fish in a time interval (e.g. I hr of fishing). Once you catch a fish you re-bait and re-cast. Every time a fish encounters the hook it's a Bern (A.) that it bites and you catch O, is the propensity to bite and I, is the # of individual, fish-hook encounters in the time period $\mu_{1} = Var[X] + \mu_{1}^{2} = \theta_{1}\theta_{2}(1-\theta_{2}) + \theta_{1}^{2}\theta_{3}^{2} = \alpha_{2}(\theta_{1},\theta_{2})$ $= \theta_{1}\theta_{2} - \theta_{1}\theta_{2}^{2} + \theta_{1}^{2}\theta_{2}^{2}$ $= \mu_{1}\theta_{2} - \mu_{1}\theta_{3}^{2} + \mu_{1}\theta_{2}^{2}$ $= \mu_{1} - \mu_{1}\theta_{3} + \mu_{2}^{2} = \mu_{2}$

И, - И, = - И, д. M, 2 + M, -M2. M, - (Л2 - M, 2) л. -(л.-v.²) 3,7,5,5,6) => X=5.2 6 $\vec{X} = \langle 3, 7, 5, 11, 6 \rangle = \rangle \vec{X} = 6.4, \vec{6}^2 = 10.56$ 6.4-10.56 = -0.65 6.4-10.56 Obviously, n can't be negative & p must be a prok So these estimates are nonsensical. MM estimates are sometimes really bad. but they make for a nice place to start.