| Lecture 1: Introductory remarks February 11, 2020 12:18 PM |
|------------------------------------------------------------|
| Goals of this course                                       |
|                                                            |
| Machine learning                                           |
| □ Descriptive ML                                           |
| [ Predictive ML                                            |
| [] Generative ML                                           |
|                                                            |
| ☐ Learning ☐ Notation                                      |
|                                                            |
|                                                            |
| Goals                                                      |
| · Learn to use basic ML techniques                         |
| - IN I I I                                                 |
| ■ Improve ML — New algorithms                              |
| New models                                                 |
| New metrics                                                |
|                                                            |
| New paradigms → Quantum ML                                 |



f(x): X is checked for { cond is and the proper action is implemented.

But how do we learn?

We see/observe

A) and try to fit with some known outcome

D Prediction

Instance 1 
$$\triangle D$$
 Output 1 Output i  $\in$  Set of outputs

2  $\longleftarrow$  Output 2  $\longrightarrow$  XIt is smaller than

i instance  $\mathcal{D}_{3}^{2}$ .

We infer the relation.

Example

Apple — 0

Orrange — 0

Snake — 1

Banana — 0

Elephant — 1

Input

This is known as "classification".



Regression

Both classification & regression come with

some target values and the goal is to estimate / predict

the outcome for some unseen instance.

B) try to recognize some pattern in the data.

Sometimes only the instances are given and the task is to draw some conclusion / describe the data.



C try to mimic the data we get: learning to speak
draw
sing
play music



C try to learn a procedure: how to play a game, ...

\* Learning ?!!



Example Minimite

Reward ~ - A loss

Charge in the



Policy go against the Jenivative

Notation -

$$X = \begin{bmatrix} x^{(1)} & \Rightarrow & Sample \\ x^{(2)} & \Rightarrow & Sample 2 \\ \vdots & \vdots & \vdots \\ x^{(n_s)} & \Rightarrow & Sample n_s \end{bmatrix}$$

$$X = \begin{bmatrix} x^{(1)} & \Rightarrow & Y^{(2)} \\ y^{(2)} & \vdots \\ y^{(n_s)} & \vdots \\ x^{(n_s)} & \Rightarrow & Target \end{bmatrix}$$

Measurement 1: 
$$(P^{(1)}, V^{(1)}, n^{(1)}) \longrightarrow T^{(1)}$$

$$_{1}$$
  $_{2}$   $_{2}$   $_{3}$   $_{4}$   $_{5}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{1}$   $_{1}$   $_{1}$   $_{1}$   $_{2}$   $_{3}$   $_{4}$   $_{5}$   $_{7}$   $_{7}$   $_{1}$   $_{1}$   $_{2}$   $_{3}$   $_{4}$   $_{5}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$ 

What's X & Y?

What's np & ns?