

ÍNDICE

Índice

1.	Con	ceptos Preliminares 1
	1.1.	Teoría de Conjuntos
	1.2.	Operaciones de Conjuntos
		1.2.1. Propiedades de las Operaciones con Conjuntos
	1.3.	Cardinalidad de Conjuntos
		1.3.1. Propiedades de cardinalidad
	1.4.	Leyes de De Morgan
	1.5.	Imagen Directa e Imagen Inversa
	1.6.	
	1.7.	Funciones
	1.8.	Operaciones con funciones
	1.9.	Función Logarítmica y Exponencial
		1.9.1. Propiedades de logaritmo
		1.9.2. Propiedades de la exponencial
		1.9.3. Propiedades de la función a^x
	1.10.	Limites
		Operaciones con límites
		Derivadas
		1.12.1. Reglas de derivación
		1.12.2. Derivadas básicas
	1.13.	Integrales
		1.13.1. Teoremas fundamentales del cálculo
		1.13.2. Reglas de integración
		1.13.3. Integrales básicas
		1.13.4. Métodos de integración
		1.13.5. Integración por sustitución trigonométrica
		1.13.6. Integral impropia
		1.13.7. Integral impropia del tipo I
		1.13.8. Integral impropia de tipo II
		1.13.9. Criterios de convergencia
	1.14.	Función Gamma Generalizada
		1.14.1. Propiedades de la función gamma
	1.15.	Series
		1.15.1. Serie Geométrica
		1.15.2. Serie Aritmética
	1 16	Calculo Combinatorio
	1.10.	1.16.1. Ordenación con repetición
		1.16.2. Ordenación sin repetición
		1.16.3. Permutación
		1.16.4. Combinación
		1.16.5. Teorema del Binomio de Newton
		1.10.0. reoreina dei Binonno de Newton

ÍNDICE

2.	Unic	dad No 1	15
	2.1.	Experimento	15
	2.2.	Espacio Muestral	15
	2.3.	Evento	15
	2.4.	Sigma-Álgebra	15
		2.4.1. Propiedades de una σ -álgebra	16
	2.5.	Medida de Probabilidad	16
	2.6.	Espacio de Probabilidad	16
		2.6.1. Axiomas de Komolgorov	16
	2.7.	σ -Álgebra Generada	17
	2.8.	Álgebra	17
	2.9.	Conjuntos de Borel	17
	2.10.	. Función Indicadora	17
		2.10.1. Propiedades	18
	2.11.	Sucesiones de Eventos	18
	2.12.	. Continuidad	19
	2.13.	. Enfoques de la probabilidad	19
		2.13.1. Probabilidad clásica	19
		2.13.2. Características de la probabilidad clásica	
		2.13.3. Probabilidad frecuentista	
		2.13.4. Características de la probabilidad frecuentista	20
		2.13.5. Probabilidad subjetiva	
		Propiedades Elementales de probabilidad	
		Probabilidad Condicional	
		. Teorema de Probabilidad Total	
		. Teorema de Bayes	
	2.18.	Eventos Independientes	
		2.18.1. Propiedades de Eventos Independientes	
	2.19.	. Propiedad pérdida de memoria	22
3.	Unic	dad No 2	23
-	3.1.	Variable Aleatoria	23
	3.2.	Variable aleatoria discreta	23
	3.3.	Función de masa de probabilidad	23
		3.3.1. Propiedades de la función masa de probabilidad	23
	3.4.	Variable aleatoria continua	23
	3.5.	Función de densidad	24
		3.5.1. Propiedades de la función de densidad	24
		3.5.2. Otras propiedades de la función de densidad	24
	3.6.	Variable aleatoria mixta	24
	3.7.	Función de Distribución	24
	3.8.	Propiedades de $F_X(x)$	25
		3.8.1. Otras propiedades de la función de distribución	25
	3.9.	Pasar de una Función de Distribución a una Función de Densidad o Masa	25

ÍNDICE

4.	Unic	dad No 3	26
	4.1.	Esperanza	26
		4.1.1. Caso continuo	26
		4.1.2. Caso discreto	26
		4.1.3. Propiedades de la esperanza	26
	4.2.	Desigualdad de Markov	26
	4.3.	Desigualdad Chebyshev	27
		4.3.1. Formas alternativas de la desigualdad de Chebyshev	27
	4.4.	Varianza	27
		4.4.1. Propiedades de la varianza	27
	4.5.	Esperanza de una Función	28
	4.6.	Momentos de una variable aleatoria	28
5	Hnic	dad No 4	29
J .		Generadora de momentos	
	J.1.	5.1.1. Relación entre esperanza y generadora de momentos	
		5.1.2. Propiedades de la generadora de momentos	
		3.1.2. I ropiedades de la generadora de momentos	23
6.		ribuciones discretas	30
	6.1.	Uniforme discreta	
		6.1.1. Función de Probabilidad	
		6.1.2. Esperanza, varianza y generadora de momentos	
	6.2.		
		6.2.1. Función de Probabilidad	
		6.2.2. Esperanza, varianza y generadora de momentos	
	6.3.		
		6.3.1. Función de Probabilidad	
		6.3.2. Esperanza, varianza y generadora de momentos	
	6.4.		
		6.4.1. Función de Probabilidad	
		6.4.2. Esperanza, varianza y generadora de momentos	
	6.5.	Binomial negativa	
		6.5.1. Función de Probabilidad	
		6.5.2. Esperanza, varianza y generadora de momentos	
	6.6.	Hipergeométrica	
		6.6.1. Función de Probabilidad	
		6.6.2. Esperanza y varianza	33
	6.7.	Poisson	33
		6.7.1. Función de Probabilidad	33
		6.7.2. Esperanza, varianza y generadora de momentos	34
7.	Dist	ribuciones continuas	34
	7.1.	Uniforme continua	34
		7.1.1. Función de Probabilidad	34
		7.1.2. Esperanza, varianza y generadora de momentos	
	7.2.		

	7.2.1. Función de Probabilidad	35
	7.2.2. Esperanza, varianza y generadora de momentos	35
7.3.	Doble exponencial	35
	7.3.1. Función de Probabilidad	35
	7.3.2. Esperanza, varianza y generadora de momentos	35
7.4.	Gama	36
	7.4.1. Función de Probabilidad	36
	7.4.2. Esperanza, varianza y generadora de momentos	36
7.5.	Normal	36
	7.5.1. Función de Probabilidad	36
	7.5.2. Esperanza, varianza y generadora de momentos	37
7.6.	Normal estándar	37
	7.6.1. Función de Probabilidad	37
7.7.	Lognormal	37
	7.7.1. Función de Probabilidad	37
	7.7.2. Esperanza y varianza	38
7.8.	Beta	38
	7.8.1. Función de Probabilidad	38
	7.8.2. Esperanza y varianza	38
7.9.	Pareto	38
	7.9.1. Función de Probabilidad	39
	7.9.2. Esperanza y varianza	39
7.10.	Weibull	39
	7.10.1. Función de Probabilidad	39
	7.10.2. Esperanza y varianza	39
7.11.	Ji-cuadrada	39
	7.11.1. Función de Probabilidad	40
	7.11.2. Esperanza, varianza y generadora de momentos	40
7.12.	Distribución t	40
	7.12.1. Función de Probabilidad	40
	7.12.2. Esperanza y varianza	40
7.13.	Cauchy	41
	7.13.1. Función de Probabilidad	41

1 Conceptos Preliminares

1.1 Teoría de Conjuntos

Definición Conjunto 1.1.1. Se define a un conjunto como una colección de elementos. Para denotar que x pertenece al conjunto A se escribe $x \in A$ y cuando x no pertenece a este conjunto se denota como $x \notin A$

Definición Igualdad de Conjunto 1.1.2. Diremos que A y B son iguales si ambos tienen los mismos elementos exactamente. Lo denotaremos como:

$$A = B \iff \forall x \quad (x \in A \iff x \in B)$$

Definición Subconjunto 1.1.3. Dados dos conjuntos A y B, se dice que A es subconjunto de B si cada elemento de A es también elemento de B y se denota como

$$A \subseteq B \iff \forall x (x \in A \Rightarrow x \in B)$$

Definición Conjunto Universo 1.1.4. Al conjunto que contiene a todos los elementos de todos los conjuntos relacionados se le llama *universo* y se denota con la letra Ω .

Definición Conjunto Vació 1.1.5. Existe un único conjunto carente de elementos, el cual recibe el nombre de *conjunto vacío* y se le denotará como \varnothing . El conjunto vacío es el complemento del universo.

Definición Conjunto Complemento 1.1.6. Sea A un conjunto. Se le llama *complemento de A* al conjunto

$$A' = \{x | x \notin A\}$$

Definición Conjuntos Disjuntos 1.1.7. Sean A y B conjuntos se dice que son *conjuntos disjuntos* si $A \cap B = \emptyset$.

Teorema 1.1.1. Sean dos conjuntos A y B arbitrarios,

- \bullet $\varnothing \subset A$
- Si $A \subseteq B$ y $B \subseteq C \Rightarrow A \subseteq C$

1.2 Operaciones de Conjuntos

- \star Unión $A \cup B = \{x | x \in A \lor x \in B\}$
- ★ Intersección $A \cap B = \{x | x \in A \land x \in B\}$
- \star Diferencia $A B = \{x | x \in A \land x \notin B\}$
- **\star** Producto Cartesiano $A \times B = \{(a,b) | a \in A \land b \in B\}$
- **★** Diferencia Simétrica $A \triangle B = (A B) \cup (B A)$

1.2 Propiedades de las Operaciones con Conjuntos

Definición Unión de Conjuntos 1.2.1. Sean A y B conjuntos. La unión de A y B es el conjunto

$$A \cup B = \{x | x \in A \text{ o } x \in B\}$$

Teorema 1.2.0.1. Sean A, B y C conjuntos. Entonces:

- \bullet $A \subseteq A \cup B$; $B \subseteq A \cup B$
- $A = A \cup \emptyset$
- $\bullet (A \cup B) \cup C = A \cup (B \cup C)$
- $A \cup B = B \cup A$
- $A \cup B = B \iff A \subset B$

Definición Intersección de Conjuntos 1.2.2. Sean A y B conjuntos. La *intersección* de A y B es el conjunto

$$A \cap B = \{x | x \in A \text{ y } x \in B\}$$

Teorema 1.2.0.1. Sean A, B y C conjuntos. Entonces:

- $A \cap B \subseteq A$; $A \cap B \subseteq B$
- $A \cap \emptyset = \emptyset$
- $\bullet (A \cap B) \cap C = A \cap (B \cap C)$
- $A \cap B = B \cap A$
- $A \cap B = A \iff A \subset B$

Definición Diferencia de Conjuntos 1.2.3. Sean A y B conjuntos. La *diferencia* de A y B es el conjunto

$$A-B=\{x|x\in A \text{ y } x\notin B\}$$

Teorema 1.2.0.1. Sean A, B y C conjuntos. Entonces:

- $A A = \emptyset$
- $A B \subseteq A$
- $(A B) \cap B = \emptyset$
- $A B = A \iff A \cap B = \emptyset$

1.3 Cardinalidad de Conjuntos

Definición Cardinalidad de un Conjunto 1.3.1. Sea A un conjunto finito de elementos. Con $A \approx \{1, ..., n\}$. Se dice que su *cardinalidad o número de elementos* es n y se denota como |A| = card(A) = n.

1.3 Propiedades de cardinalidad

- $\blacksquare Card(\varnothing) = 0$
- $Card(A \cup B) = Card(A) + Card(B) Card(A \cap B)$
- $\quad \blacksquare \ Card(A) = Card(A \cap B) + Card(A \cup B^C)$
- Si A y B son disjuntos $\Rightarrow Card(A \cup B) = Card(A) + Card(B)$

1.4 Leyes de De Morgan

★ Unión

$$\left(\bigcup_{i\in N} A_i\right)^c = \bigcap_{i\in N} A_i^c$$

* Intersección

$$\left(\bigcap_{i\in N} A_i\right)^c = \bigcup_{i\in N} A_i^c$$

1.5 Imagen Directa e Imagen Inversa

Definición Función 1.5.1. Sea $f:A\to B$ una función con dominio A y codominio B

Definición Imagen Directa 1.5.2. Si $E\subseteq A\Rightarrow$ la imagen directa de E bajo F es el subconjunto de $f(E)\subseteq B$ donde

$$f(E) = \{ f(x | x \in E) \}$$

$$f^{-1}\left(\bigcup_{k=1}^{\infty} B_k\right) = \bigcup_{k=1}^{\infty} f^{-1}(B_k)$$

 \bigstar

$$f^{-1}\left(\bigcap_{k=1}^{\infty} B_k\right) = \bigcap_{k=1}^{\infty} f^{-1}(B_k)$$

1.6 Conjuntos Abiertos y Cerrados

- 1. La unión de conjuntos abiertos es abierta
- 2. La unión de conjuntos cerrados es cerrada
- 3. La intersección de un numero finito de conjuntos abiertos es abierto
- 4. La intersección de un numero finito de conjuntos cerrado es cerrado

1.7 Funciones

Definición Función 1.7.1. Sean X y Y conjuntos. Una función de X en Y es una relación f de X en Y que satisface las siguientes condiciones:

- 1. Dom(f) = X
- 2. Si $(x, y), (x, y') \in f$ entonces y = y'

Definición Dominio 1.7.2. El dominio de una función f es el conjunto de los x-elementos en los cuales la función está definida. Se denota como $Dom_f = \{x \in X | (x, y) \in f\}$.

Definición Codominio e Imagen 1.7.3. El codominio de una función f son todos los valores que puede tomar la función con los elementos del dominio, mientras que la *imagen* de una función f son todos los valores reales que toma la función con los elementos del dominio y se define como

$$Im(f) = \{ f(x) | x \in X \}$$

Definición Funcion Inyectiva 1.7.4. Se dice que una función $f: X \to Y$ es *inyectiva* si para cada pareja de elementos $x_1, x_2 \in X$ si $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$. Además, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

Definición Función Suprayectiva / Sobreyectiva 1.7.5. Una función $f:X\to Y$ es suprayectiva o sobreyectiva si Im(f)=Y.

Definición Función Biyectiva 1.7.6. Una función $f: X \to Y$ es *biyectiva* si es inyectiva y suprayectiva.

Definición Función Inversa 1.7.7. La función f tiene *inversa* si y sólo si es biyectiva y se denota como: f^{-1} . Es decir, la función inversa $f^{-1}(y)$ sólo existe si f es inyectiva y satisface que para y-elemento en el rango:

$$f^{-1}(y) = x$$

1.8 Operaciones con funciones

Definición Suma de Funciones 1.8.1. Dadas dos funciones f y q, su suma se define como:

$$(f+g)(x) = f(x) + g(x)$$

Definición Resta de Funciones 1.8.2. Dadas dos funciones f y g, su resta se define como:

$$(f-g)(x) = f(x) - g(x)$$

Definición Multiplicación de Funciones 1.8.3. Dadas dos funciones f y g, su **multiplicación** se define como:

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Definición División de Funciones 1.8.4. Dadas dos funciones f y g con $g \neq 0$, su *división* se define como:

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Definición Composicion de Funciones 1.8.5. Dadas dos funciones f y g, su composición se define como:

$$(f \circ g)(x) = f(g(x))$$

1.9 Función Logarítmica y Exponencial

Definición Función Logaritmo Natural 1.9.1. Se define al *logaritmo natural* como la función $ln:(0,\infty)\to\mathbb{R}$ dada por

$$ln(x) = \int_{1}^{x} \frac{dt}{t}$$

Definición Número Euler (e) 1.9.2. Se define al número de Euler e, como el único número tal que

$$ln(e) = \int_{1}^{e} \frac{dt}{t} = 1$$

1.9 Propiedades de logaritmo

- ln(1) = 0
- ln(e) = 1
- ln(xy) = ln(x) + ln(y)
- $ln(\frac{x}{y}) = ln(x) ln(y)$
- $ln(\frac{1}{y}) = -ln(y)$
- $ln(x^n) = nln(x)$

Definición Función Exponencial 1.9.3. Definimos a la función *exponencial*, $exp: \mathbb{R} \to (0, \infty)$, como la inversa del logaritmo natural. Es decir, si $x \in \mathbb{R}$ y $t \in (0, \infty)$ entonces:

$$exp(x) = t \iff ln(t) = x$$

1.9 Propiedades de la exponencial

- exp(1) = e
- exp(0) = 1
- $exp(x + y) = exp(x) \cdot exp(y)$
- $-exp(x-y) = \frac{exp(x)}{exp(y)}$
- $exp(-y) = \frac{1}{exp(y)}$
- $exp(rx) = (exp(x))^r$

Definición Función a^x **1.9.4.** Sea a > 0. Se define a la función a^x como:

$$a^x = e^{\ln(a^x)} = e^{x\ln(a)}$$

1.9 Propiedades de la función a^x

- $a^1 = a$
- $a^0 = 1$
- $a^{x+y} = a^x a^y$
- $(a^x)^y = a^{xy}$

1.10 Limites

Definición Limite 1.10.1. Sea $f:X\subseteq\mathbb{R}\to\mathbb{R}$ y sea x_0 un punto de acumulación. Se dice que

$$\lim_{x\to x_0} f(x) = L \iff \forall \varepsilon > 0 \quad \exists \delta > 0 \text{ tal que si } x \in Dom_f \text{ y } |x-x_0| < \delta \Rightarrow |f(x)-L| < \varepsilon$$

Definición Igualdad de Limites 1.10.2. Sea $X \subseteq \mathbb{R}$ y sea x_0 un punto de acumulación. Si $f: X \to \mathbb{R}$ tal que

$$\lim_{x \to x_0} f(x) = L \text{ y } \lim_{x \to x_0} f(x) = M \Rightarrow L = M$$

Definición Limite lateral derecho 1.10.3. Sea $f:X\subseteq\mathbb{R}\to\mathbb{R}$ y sea x_0 un punto de acumulación. Se dice que

$$\lim_{x\to x_0^+} f(x) = L \iff \forall \varepsilon > 0 \quad \exists \delta > 0 \text{ tal que si } x \in Dom_f \text{ y } x - x_0 < \delta \Rightarrow |f(x) - L| < \varepsilon$$

Definición Límite lateral izquierdo 1.10.4. Sea $f:X\subseteq\mathbb{R}\to\mathbb{R}$ y sea x_0 un punto de acumulación. Se dice que

$$\lim_{x\to x_0^-} f(x) = L \iff \forall \varepsilon > 0 \quad \exists \delta > 0 \text{ tal que si } x \in Dom_f \text{ y } x_0 - x < \delta \Rightarrow |f(x) - L| < \varepsilon$$

Definición Existencia del Limite 1.10.5. El límite de f(x) existe si y sólo si existen los límites laterales y son iguales. Es decir,

$$\lim_{x \to x_0} f(x) = L \iff \lim_{x \to x_0^+} f(x) = L = \lim_{x \to x_0^-} f(x)$$

Definición Continuidad 1.10.6. Sea $f:X\subseteq\mathbb{R}\to\mathbb{R}$ y sea x_0 un punto de acumulación. Decimos que f(x) es *continua* en x_0 . Si se cumple que

- $a \in f(x)$ y $x \in Dom_f$
- Existe $\lim_{x \to x_0} f(x)$
- $\blacksquare \lim_{x \to x_0} f(x) = f(x_0)$

1.11 Operaciones con límites

Definición Suma y Resta de limites 1.11.1. Sea $X \subseteq \mathbb{R}$ y sea x_0 un punto de acumulación. Si $f,g:X\to\mathbb{R}$ tal que

$$\lim_{x\to x_0} f(x) = L \text{ y } \lim_{x\to x_0} g(x) = M \Rightarrow \text{ existe } \lim_{x\to x_0} (f\pm g)(x) = L \pm M$$

Definición Multiplicación de Limites 1.11.2. Sea $X \subseteq \mathbb{R}$ y sea x_0 un punto de acumulación. Si $f,g:X\to\mathbb{R}$ tal que

$$\lim_{x\to x_0} f(x) = L \text{ y } \lim_{x\to x_0} g(x) = M \Rightarrow \text{ existe } \lim_{x\to x_0} (f\cdot g)(x) = L\cdot M$$

Definición Reciproco del Limite 1.11.3. Sea $X\subseteq\mathbb{R}$ y sea x_0 un punto de acumulación. Si $f:X\to\mathbb{R}$ con $f\neq 0$ tal que

$$\lim_{x \to x_0} f(x) = L \neq 0$$
 entonces existe $\lim_{x \to x_0} \frac{1}{f(x)} = \frac{1}{L}$

Definición División del Limites 1.11.4. Sea $X\subseteq\mathbb{R}$ y sea x_0 un punto de acumulación. Si $f,g:X\to\mathbb{R}$ con $g\neq 0$ tal que

$$\lim_{x\to x_0} f(x) = L \text{ y } \lim_{x\to x_0} g(x) = M \neq 0 \text{ entonces existe } \lim_{x\to x_0} \frac{f(x)}{g(x)} = \frac{L}{M}$$

Definición Composición del Limite 1.11.5. Sea $X \subseteq \mathbb{R}$ y sea x_0 un punto de acumulación. Si $f,g:X\to\mathbb{R}$ tal que

$$\lim_{x\to x_0} f(x) = L \text{ y } \lim_{t\to T} g(t) = g(L) \Rightarrow \text{ existe } \lim_{x\to x_0} (g\circ f)(x) = g(L)$$

Definición Limite por una Constante 1.11.6. Sea $X \subseteq \mathbb{R}$ y sea $c \in \mathbb{R}$ una constante, con x_0 un punto de acumulación. Si $f: X \to \mathbb{R}$ tal que

$$\lim_{x\to x_0} cf(x) \text{ existe } \Rightarrow \lim_{x\to x_0} cf(x) = c \lim_{x\to x_0} f(x)$$

1.12 Derivadas

Definición Derivable 1.12.1. Sea f una función y sea $x_0 \in Dom_f$, si existe $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ se dice que f es *derivable* en a y se denota por

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Si f es derivable en $x_0 \Rightarrow f$ es continua en x_0 .

Teorema del Valor Medio 1.12.0.1. . Sea f una función continua en [a,b] y derivable en (a,b) entonces existe $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Teorema de Valor Medio de Cauchy 1.12.0.1. . Sea f y g funciones continuas en [a,b] y derivables en (a,b) entonces existe $c \in (a,b)$ tal que

$$\frac{f'(c)}{g'(x)} = \frac{f(b) - f(a)}{g(b) - g(a)} \text{ con } g'(x) \neq 0 \text{ y } g(b) - g(a) \neq 0$$

Teorema Regla de L'Hopital 1.12.0.1. Sean f y g ambas funciones derivables en (a,b) tales que

$$\lim_{x\to x_0^+}f(x)=0, \lim_{x\to x_0^+}g(x)=0 \text{ y } g'(x)\neq 0, \forall x\in (a,b)$$

Si existe

$$\lim_{x\to x_0^+}\frac{f'(x)}{g'(x)} \text{ entonces existe } \lim_{x\to x_0^+}\frac{f(x)}{g(x)} \Rightarrow \lim_{x\to x_0^+}\frac{f(x)}{g(x)} = \lim_{x\to x_0^+}\frac{f'(x)}{g'(x)}$$

Teorema de Taylor 1.12.0.1. . Sea f una función definida en un intervalo I, si es derivable hasta el orden n+1 en el intervalo y $x_0 \in I$ entonces, para cada $x \in I$ existe α entre x y x_0 tal que

$$f(x) = f(x_0) + \sum_{i=1}^{n+1} \frac{f^{(i)}(x - x_0)^i}{i!}$$

1.12 Reglas de derivación

★ Derivada de una constante:

$$(c)' = 0$$

★ Derivada de un producto de una constante por una función:

$$(cf(x))' = c \cdot f'(x)$$

★ Derivada de una suma de funciones:

$$(f+g)'(x) = f'(x) + g'(x)$$

★ Derivada de una *resta de funciones*:

$$(f-g)'(x) = f'(x) - g'(x)$$

★ Derivada de una multiplicación de funciones (Regla de Leibniz):

$$(f \cdot g)'(x) = f'(x)g(x) + g'(x)f(x)$$

* Derivada de una división de funciones:

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{g^2(x)}$$

★ Derivada de una composición de funciones (Regla de la cadena):

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

1.12 Derivadas básicas

Función	Derivada
x^n	nx^{n-1}
$\sqrt[n]{x}$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$
e^{nx}	ne^{nx}
a^x	$a^x ln(a)$
ln(x)	$\frac{1}{x}$
$log_a(x)$	$\frac{1}{xln(a)}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec^2 x$
$\sec x$	$\sec x \tan x$
$\csc x$	$-\cot x \csc x$
$\cot x$	$-\csc^2 x$

1.13 Integrales

Definición Función Integrable 1.13.1. Sea f una función integrable sobre [a,b] definimos a la función F(x) como

$$F(x) = \int_{a}^{x} f(t)dt$$

Teorema 1.13.0.1. Si f es integrable sobre [a,b] y F está definida sobre [a,b] entonces F es continua en [a,b].

Teorema 1.13.0.1. Si f es continua en [a, b] entonces f es integrable en [a, b].

Definición Función Par 1.13.2. Sea f una función par, es decir, es simétrica respecto al origen, entonces cumple que f(x) = f(-x), si f es integrable sobre [-a, a], entonces:

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$$

Definición Función Impar 1.13.3. Sea f una **función impar**, es decir, es simétrica respecto al eje Y, entonces cumple que f(x) = -f(x), si f es integrable sobre [-a,a], entonces:

$$\int_{-a}^{a} f(x)dx = 0$$

1.13 Teoremas fundamentales del cálculo

Primer teorema fundamental del cálculo 1.13.0.1. Sea f integrable sobre [a,b] y defínase F sobre [a,b]. Si f es continua en todo $x \in [a,b]$ se tiene que

$$F'(x) = f(x)$$

Segundo teorema fundamental del cálculo 1.13.0.1. Si f es integrable sobre [a,b] y f(x)=g'(x) para alguna función g, entonces

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} g'(x)dx = g(b) - g(a)$$

1.13 Reglas de integración

Definición Integral de una suma 1.13.4. Si f y g son integrables en [a,b], entonces $f \pm g$ es integrable en [a,b] y,

$$\int_{a}^{b} (f \pm g)(x)dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$$

Definición Integral por un constante 1.13.5. Sea f integrable en [a,b] y $c \in \mathbb{R}$, entonces cf es integrable en [a,b] y,

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$

Definición Separación de Limites de Integración 1.13.6. Sea f integrable en [a,b] y sea $c \in [a,b]$, con a < c < b entonces

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

1.13 Integrales básicas

$$\bullet$$
 $\int adx = ax + c$

•
$$\int \cos x dx = \sin x + c$$

•
$$\int \tan x dx = \ln|\sec x| + c$$

•
$$\int \cot x dx = \ln|\sin x| + c$$

•
$$\int \sec x dx = \ln|\sec x + \tan x| + c$$

1.13 Métodos de integración

Definición Integración por Partes 1.13.7. Sean f y g dos funciones diferenciables y cuyas derivadas sean continuas para todo $x \in I$. Entonces

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

1.13 Integración por sustitución trigonométrica

Forma	Sustitución	Diferencial	Transformación
$\sqrt{a^2-x^2}$	$x = asen(\theta)$	$dx = a\cos(\theta)d\theta$	$\sqrt{a^2 - x^2} = a\cos(\theta)$
$\sqrt{x^2 + a^2}$	$x = atan(\theta)$	$dx = asec(\theta)d\theta$	$\sqrt{x^2 + a^2} = asec(\theta)$
$\sqrt{x^2-a^2}$	$x = asec(\theta)$	$dx = asec(\theta)tan(\theta)d\theta$	$\sqrt{x^2 - a^2} = atan(\theta)$

1.13 Integral impropia

1.13 Integral impropia del tipo I

Definición Integral Impropia Tipo I 1.13.8. Si $\int\limits_a^x f(t)dt$ existe para toda $x \geq a$ entonces

$$\int_{a}^{\infty} f(t)dt = \lim_{x \to \infty} \int_{a}^{x} f(t)dt$$

Si $\int_{x}^{b} f(t)dt$ existe para toda $x \leq b$ entonces

$$\int_{-\infty}^{b} f(t)dt = \lim_{x \to -\infty} \int_{x}^{b} f(t)dt$$

1.13 Integral impropia de tipo II

Definición Integral Impropia Tipo II 1.13.9. Si f es continua [a,b) entonces

$$\int_{a}^{b} f(t)dt = \lim_{x \to b} \int_{a}^{x} f(t)dt$$

Si f es continua (a, b] entonces

$$\int_{a}^{b} f(t)dt = \lim_{x \to a} \int_{x}^{b} f(t)dt$$

1.13 Criterios de convergencia

- 1. Si el límite de la integral impropia *existe* cómo número real, entonces se dice que *converge*.
- 2. Si el límite de la integral impropia *no existe* cómo número real, entonces se dice que *diverge*.

1.14 Función Gamma Generalizada

Definición Funcion Gamma 1.14.1. La *función Gamma*, también conocida como la integral impropia euleriana, está definida como:

$$\Gamma(x) = \int\limits_0^\infty e^{-t} t^{x-1} dt, \ \operatorname{con} \ x > 0$$

1.14 Propiedades de la función gamma

$$\Gamma(1) = 1$$

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

$$\Gamma(p+1) = (p)\Gamma(p)$$

$$\Rightarrow \text{ Si } p \in \mathbb{N} \Rightarrow \Gamma(p+1) = p!$$

1.15 Series

1.15 Serie Geométrica

Definición Serie Geométrica 1.15.1. Sea $\{a_n\}$ una sucesión tal que $a_n = ar^{n-1}$ donde r > 0 y $n \in \mathbb{N}$. La serie de $\{a_n\}$ está definida como:

Si
$$0 < r < 1 \Rightarrow$$

$$\sum_{i=1}^{\infty} a_i = a \frac{1 - r^n}{1 - r}$$

$$\bullet$$
 Si $r \geq 1 \Rightarrow$

$$\sum_{i=1}^{\infty} a_i = \frac{a}{1-r}$$

1.15 Serie Aritmética

Definición Serie Aritmética 1.15.2. Sea $\{a_n\}$ una sucesión tal que $a_n = a + rn$ donde $r \in \mathbb{R}$ y $n \in \mathbb{N}$. La serie de $\{a_n\}$ está definida como:

$$\sum_{i=1}^{\infty} a_i = na + r \frac{n(n-1)}{2}$$

1.16 Calculo Combinatorio

1.16 Ordenación con repetición

Definición Ordenación con repetición 1.16.1. Tengo n elementos y los acomodo en k lugares. Una vez que se escoge un elemento puedo elegirlo de nuevo

$$OR_k^n = n^k$$

1.16 Ordenación sin repetición

Definicion Ordenación sin repetición 1.16.2. Tengo n elementos y los acomodo en k lugares. Una vez que se escoge un elemento ya no puedo elegirlo de nuevo.

$$O_k^n = \frac{n!}{(n-k)!}$$

1.16 Permutación

Definición Permutación 1.16.3. Tengo n elementos y los acomodo en n lugares.

$$P_n = n!$$

1.16 Combinación

Definición Combinación 1.16.4. Tenemos n elementos. Se seleccionan k elementos sin reemplazo y sin importar el orden

$$C_n^k = \frac{n!}{(n-k)!k!}$$

1.16 Teorema del Binomio de Newton

Teorema del Binomio de Newton 1.16.0.1. Para todo $n \in \mathbb{N}$ y cualesquiera números $a,b \in \mathbb{R}$ se tiene que

$$\sum_{i=0}^{n} C_i^n a^{n-1} b^i = (a+b)^n$$

2 Unidad No 1

Introducción a la teoría de la probabilidad

2.1 Experimento

Definición Experimento 2.1.0.1. Definimos a un *experimento* como la prueba que realizada bajo ciertas condiciones arroja un resultado

Existen dos tipos de experimentos:

- **Determinísticos**: Bajo las mismas condiciones se obtendrá el mismo resultado.
- Aleatorios: Bajo las mismas condiciones se obtendrán resultados distintos.

2.2 Espacio Muestral

Definición Espacio Muestral 2.2.0.1. Definimos al *espacio muestral* como el conjunto que contiene todos los resultados posibles de un experimento aleatorio. Se denota como Ω

2.3 Evento

Definición Espacio Muestral 2.3.0.1. Se define al *evento* como un elemento de σ -álgebra, en particular un evento es simple o elemental si consta de a lo mas un elemento de Ω , u es compuesto cuando consta de 2 o mas elementos de Ω

2.4 Sigma-Álgebra

Definición Sigma-Álgebra 2.4.0.1. Una colección \mathbb{F} de subconjuntos de Ω es una σ -álgebra si cumple las siguientes condiciones:

- 1. $\Omega \in \mathbb{F}$
- 2. Si $A \in \mathbb{F}$, entonces

$$\bigcup_{n=1}^{\infty} A_n \in \mathbb{F}$$

3. Si $A_1, A_2, ... \in \mathbb{F}$ entonces

$$\bigcup_{n=1}^{\infty} A_n \in \mathbb{F}$$

Nota: La intersección de dos σ -álgebras es una σ -álgebra, pero en general no es cierto que la union de dos σ -álgebras produce una nueva σ -álgebra.

Nota: A la pareja (Ω, \mathbb{F}) se le llama espacio medible y a los elementos de \mathbb{F} se les llama eventos o conjuntos medibles.

2.4 Propiedades de una σ -álgebra

- $\emptyset \in \mathbb{F}$
- Si $A, B \in \mathbb{F} \Rightarrow (A B) \in \mathbb{F}$ y $(A \triangle B) \in \mathbb{F}$
- Si $A_1, A_2, ... \in \mathbb{F} \Rightarrow$

$$\bigcap_{i=1}^{\infty} A_i \in \mathbb{F}$$

2.5 Medida de Probabilidad

Definición Medida de Probabilidad 2.5.0.1. Una función $\mathbb P$ definida sobre una σ -algebra $\mathbb F$ y con valores en el intervalo [0,1] es una medida de probabilidad si $\mathbb P(\Omega)=1$ y es σ -aditiva, es decir, si cumple que:

$$\mathbb{P}: A \in \mathbb{F} \to [0, 1]$$

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

2.6 Espacio de Probabilidad

Definición Espacio de Probabilidad 2.6.0.1. El espacio de probabilidad consiste en una terna ordenada, denotada usualmente por (Ω, F, P) , en donde Ω es un conjunto arbitrario, F es una σ -álgebra de subconjuntos de Ω , y P es una medida de probabilidad.

Nota: Para que un espacio medible sea también un espacio de probabilidad debe cumplir con los *axiomas de Komolgorov*.

2.6 Axiomas de Komolgorov

- $\blacksquare \mathbb{P}(\Omega) = 1$
- Si $A_i \cap A_j = \emptyset$ con $i \neq j$

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$

2.7 σ -Álgebra Generada

Definición σ -**Álgebra Generada 2.7.0.1.** Sea ζ una colección no vacía de subconjuntos de Ω . La σ -álgebra generada por ζ , denotada por $\sigma(\zeta)$, es la colección

$$\sigma(\zeta) = \bigcap \{\mathbb{F} : \mathbb{F} \text{es una } \sigma\text{-\'algebra y } \zeta \subseteq \mathbb{F} \}$$

Es decir, la colección de $\sigma(\zeta)$ es la intersección de todas aquellas σ -álgebras que contienen a ζ .

Teorema 2.7.0.1. Sean ζ_1 y ζ_2 dos colecciones de subconjuntos de Ω tales que $\zeta_1 \subseteq \zeta_2$. Entonces $\sigma(\zeta_1) \subseteq \sigma(\zeta_2)$.

Teorema 2.7.0.1. Si $\mathbb F$ es una σ -álgebra, entonces $\sigma(\mathbb F)=\mathbb F$.

2.8 Álgebra

Definición Algebra 2.8.0.1. Una colección \mathbb{F} de subconjuntos de Ω es una álgebra si cumple las siguientes condiciones:

- 1. $\Omega \in \mathbb{A}$.
- 2. Si $A \in \mathbb{A}$, entonces $A^c \in \mathbb{A}$.
- 3. Si $A_1, A_2, ..., A_n \in \mathbb{A}$, entonces

$$\bigcup_{k=1}^{n} \mathsf{A}_k \in \mathbb{A}$$

2.9 Conjuntos de Borel

Definición Conjuntos de Borel 2.9.0.1. La colección de todos los intervalos abiertos (a,b) de $\mathbb R$, en donde $a\leq b$. A la mínima σ -álgebra generada por esta colección se le llama σ -álgebra de Borel de $\mathbb R$, y se denota por $B(\mathbb R)$

$$B(\mathbb{R}) = \sigma\{(a, b) \subseteq \mathbb{R} : a \le b\}$$

2.10 Función Indicadora

Sea $f:A \to R$ una función definida de la siguiente manera

$$I_A = \begin{cases} 1 \in A \\ 0 \notin A \end{cases}$$

2.10 Propiedades

- $I_{A \cup B} = max\{I_A, I_B\}$
- $I_{A \cap B} = min\{I_A, I_B\} = I_A \cdot I_B$
- $I_{AC} = 1 I_A$
- $I_{A-B} = I_A I_A \cdot I_B$
- $Si \ A \subset B \Rightarrow I_A \leq I_B$

2.11 Sucesiones de Eventos

Definición Convergencia de Eventos 2.11.0.1. Sea $\{A_n : n \in \mathbb{N}\}$ una sucesión de eventos. Si existe un evento A tal que:

$$\liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n = A$$

entonces se dice que la sucesión converge al evento A, y se escribe

$$\lim_{n \to \infty} A_n = A$$

Definición Limite Superior e Inferior 2.11.0.1.

$$\limsup_{n \to \infty} A_n = \bigcap_{n=a}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

$$\liminf_{n\to\infty} A_n \subseteq \limsup_{n\to\infty} A_n$$

Teorema 2.11.0.1. Sea $\{A_n : n \in \mathbb{N}\}$ una sucesión monota de eventos.

1. Si $A_1 \subseteq A_2 \subseteq ...$, entonces

$$\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$$

2. Si $A_1 \supseteq A_2...$, entonces

$$\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n$$

Teorema 2.11.0.1. Sea $\{A_n:n\in\mathbb{N}\}$ una sucesión de eventos. Defina.

$$B_1=A_1 \quad \text{y} \quad B_n=A_n-\bigcup_{k=1}^{n-1}A_k, \quad \text{para} \quad n\geq 2$$

Entonces la sucesión de eventos $\{B_n:n\in\mathbb{N}\}$ satisface las siguientes propiedades:

1. $B_n \subseteq A_n$.

2.
$$B_n \cap B_m = \emptyset$$
, si $n \neq m$.

3.

$$\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$$

2.12 Continuidad

Definición Continuidad de la Probabilidad 2.12.0.1. Sea $A_1, A_2, ...$ una sucesión infinita de eventos no decreciente, es decir, $A_1 \subseteq A_2 \subseteq ...$ Entonces:

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mathbb{P}(A_n)$$

2.13 Enfoques de la probabilidad

2.13 Probabilidad clásica

Definición Probabilidad Clásica 2.13.0.1. Sea $A \in \mathbb{F}$ la *probabilidad clásica* está definida como:

$$\mathbb{P}(A) = \frac{card(A)}{card(\Omega)}$$

2.13 Características de la probabilidad clásica

- Conocida también como probabilidad a priori.
- Únicamente aplica para espacios muestrales finitos.
- Predice el resultado con base en todos los resultados posibles que tenga el evento aleatorio.

2.13 Probabilidad frecuentista

Definición Probabilidad frecuentista 2.13.0.1. Sea $A \in \mathbb{F}$ la probabilidad frecuentista está definida como:

$$\mathbb{P}(A) = \lim_{n \to \infty} \frac{card(A)}{n}$$
 con $\mathbf{n} = \mathbf{no}$. de veces que se realizó el experimento

2.13 Características de la probabilidad frecuentista

- Conocida también como probabilidad posteriori o empírica.
- La información se obtiene registrándola.
- La probabilidad obtenida es una probabilidad estimada.
- Mientras más veces se realice el experimento entonces se acerca al resultado obtenido bajo la probabilidad clásica.

2.13 Probabilidad subjetiva

Definición Probabilidad subjetiva 2.13.0.1. Dado un experimento determinado, la probabilidad de un evento A es el grado de creencia. Este valor de ocurrencia se asigna basado en toda la evidencia disponible.

$$\mathbb{P}(A)=$$
 grado de creencia, tal que $0\leq \mathbb{P}(A)\leq 1$

2.14 Propiedades Elementales de probabilidad

Teorema 2.14.0.1. Sea $(\Omega, \mathbb{F}, \mathbb{P})$ un espacio de probabilidad entonces

- 1. $\mathbb{P}(\varnothing) = 0$
- 2. Si $A_1, \dots, A_n \in \mathbb{F}$ son ajenos dos a dos, entonces

$$\mathbb{P}\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mathbb{P}(A_k)$$

3.
$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$$

4. Si
$$A \subseteq B \Rightarrow \mathbb{P}(B - A) = \mathbb{P}(B) - \mathbb{P}(A)$$

5. Si
$$A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$$

6.
$$0 < \mathbb{P}(A) < 1$$

7.
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

8.
$$\mathbb{P}(A \cup B) < \mathbb{P}(A) + \mathbb{P}(B)$$

9.
$$\mathbb{P}(A-B) = \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

10. Si
$$A \cap B = \emptyset \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$$

11.
$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

2.15 Probabilidad Condicional

Definición Probabilidad condicional 2.15.0.1. Sean $A, B \in \mathbb{F}$ la probabilidad condicional A tal que B está definida como:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

- $P(A|B) + P(A^c|B) = 1$
- Si $B \subseteq A \Rightarrow \mathbb{P}(A|B) = 1$
- $\mathbb{P}(A) = \mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|B^c)\mathbb{P}(B^c)$ (Probabilidad total)
- $\mathbb{P}(A \cap B) = \mathbb{P}(A|B)\mathbb{P}(B)$ (Regla de la multiplicación)

2.16 Teorema de Probabilidad Total

Definición Probabilidad condicional generalizada 2.16.0.1. Sean $A, B_1, ..., B_n \in \mathbb{F}$ la probabilidad condicional generalizada está definida como:

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B_i)\mathbb{P}(B_i)$$

tal que

$$\bigcup_{i=1}^{n} B_i = \Omega; B_i \cap B_j = \emptyset$$

Teorema 2.16.0.1. Sea Ω el espacio muestral de un experimento aleatorio. Decimos que la colección de eventos $\{B_1,...,B_n\}$ es una partición finita de Ω si se cumplen las siguientes condiciones:

- $B_i \neq \emptyset, i = 1, 2, ..., n$
- $B_i \cap B_j = \emptyset$, para $i \neq j$

_

$$\bigcup_{i=1}^{n} B_i = \Omega$$

2.17 Teorema de Bayes

Teorema de Bayes 2.17.0.1. Sean $A,B\in\mathbb{F}$ y $\mathbb{P}(A)>0$. Entonces, el *teorema de Bayes* está definido como:

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|B^c)\mathbb{P}(B^c)}$$

Teorema de Bayes con Probabilidad Total 2.17.0.1. Sean $A, B_1, ..., B_n \in \mathbb{F}$ y $\mathbb{P}(A) > 0$. Entonces, el *teorema de Bayes generalizado* está definido como:

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i)\mathbb{P}(B_i)}{\sum_{i=1}^{n} \mathbb{P}(A|B_i)\mathbb{P}(B_i)}$$

2.18 Eventos Independientes

Definición Eventos Independientes 2.18.0.1. Sean $A, B \in \mathbb{F}$. Entonces se dice que A es independiente de B si se cumple que:

$$\mathbb{P}(A|B) = \mathbb{P}(A)$$
 y se denota como $A \perp B$

2.18 Propiedades de Eventos Independientes

Teorema 2.18.0.1. Sea A y B 2 eventos independientes entonces se cumple

- $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$
- B⊥A
- A⊥B^c
- $lacksquare A^c \bot B$
- \bullet $A^c \perp B^c$

2.19 Propiedad pérdida de memoria

Definición Perdida de Memoria 2.19.0.1. La probabilidad de que ocurra un evento futuro no se ve afectada por la ocurrencia de eventos pasados. Esta propiedad sólo aplica para funciones geométrica y exponencial y se define como:

$$\mathbb{P}(X \ge i + j | X \ge i) = \mathbb{P}(X \ge j)$$

3 Unidad No 2

Variable Aleatoria

3.1 Variable Aleatoria

Definición Variable Aleatoria 3.1.0.1. Dado un espacio de probabilidad una *variable aleatoria* es una función

$$X:\Omega\to\mathbb{R}$$

3.2 Variable aleatoria discreta

Definición Variable Aleatoria Dsicreta 3.2.0.1. Esta variable únicamente puede tomar valores de una sucesión finita o infinita numerable. Es decir una variable aleatoria X se llama discreta si su correspondiente función de distribución F(x) es una función constante por pedazos

3.3 Función de masa de probabilidad

Definición Función de masa de probabilidad 3.3.0.1. Esta función se define como:

$$F_X(x) = \mathbb{P}(X = x)$$

3.3 Propiedades de la función masa de probabilidad

- $0 \le F_X, \forall x \in \mathbb{R}$

3.4 Variable aleatoria continua

Definición Variable Aleatoria Continua 3.4.0.1. Esta variable solo puede tomar valores de un intervalo de los números reales. Es decir una variable aleatoria X se llama continua si su correspondiente función de distribución es una función continua

3.5 Función de densidad

Definición Función de densidad de probabilidad 3.5.0.1. Es la función que calcula la probabilidad de que X tome valores dentro de un intervalo (a, b). Está definida como:

$$f_X((a,b)) = \mathbb{P}(x \in (a,b)) = \mathbb{P}(a < x < b) = \int_a^b f_X(x) dx$$

3.5 Propiedades de la función de densidad

- $f_X \ge 0, \forall x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f_X(x) dx = 1$

3.5 Otras propiedades de la función de densidad

- $\mathbb{P}(X=c)=0$

3.6 Variable aleatoria mixta

Definición Variable Aleatoria Mixta 3.6.0.1. El espacio de probabilidad de una variable aleatoria mixta es una combinación del conjunto de puntos discretos de probabilidad para la parte discreta de la variable junto con los intervalos de densidad de su parte continua. En resumen una variable aleatoria que no es discreta ni continua se llama variable aleatoria mixta.

3.7 Función de Distribución

Definición Función de Distribución 3.7.0.1. Sea X una variable aleatoria. La función de distribución de X está definida como:

$$F_X(x) = \mathbb{P}(X \leq x) = \left\{ \begin{array}{ll} \sum_{u \leq X} F_X(u) & si \quad X \text{ es una v.a.d.} \\ \sum\limits_{-\infty}^X F_X(u) dx & si \quad X \text{ es una v.a.c.} \end{array} \right.$$

Nota: v.a.d. (Variable Aleatoria Discreta) y v.a.c. (Variable Aleatoria Continua)

3.8 Propiedades de $F_X(x)$

Teorema 3.8.0.1. Sea $F_X(x)$ la función de distribución de una variable aleatoria. Entonces

- $\bullet \quad \lim_{x \to \infty} F_X(x) = 1$
- $\bullet \quad \lim_{x \to -\infty} F_X(x) = 0$
- Monótona no decreciente ie Si $x_1 \le x_2$ entonces $F_X(x_1) \le F_X(x_2)$
- Continua por la derecha, es decir, $\lim_{\epsilon \to 0^+} F_X(x+\epsilon) = F_X(x)$

3.8 Otras propiedades de la función de distribución

Teorema 3.8.0.1. Sea X una variable aleatoria con función de distribución F(x) Para cualesquiera números reales a < b

- $P(X \le b) = F_X(b)$
- $\mathbb{P}(X > b) = 1 \mathbb{P}(X \le b) = 1 F_X(b)$
- $\mathbb{P}(a < X \le b) = \mathbb{P}(X \le b) \mathbb{P}(X \le a) = F_X(b) F_X(a)$
- $\mathbb{P}(a \le X < b) = \mathbb{P}(X < a) \mathbb{P}(X < b) = \lim_{x \to b^{-}} F_X(x) \lim_{x \to a^{-}} F_X(x)$
- $\mathbb{P}(a \le X \le b) = \mathbb{P}(X \le b) \mathbb{P}(X < a) = F_X(b) \lim_{x \to a^-} F_X(x)$
- $\mathbb{P}(a < X < b) = \mathbb{P}(X < b) \mathbb{P}(X \le a) = \lim_{x \to b^{-}} F_X(x) F_X(a)$

NOTA: Para las v.a.c. $F_X(x) = \lim_{x \to a^-} F_X(x)$

Lema 3.8.0.1. Una función de distribución puede ser escrita como una combinación lineal de funciones de distribución es decir

$$F_X(x) = \sum_{i=1}^n \alpha_i F_i(x)$$

donde

$$\sum_{i=1}^{n} \alpha_i = 1$$

3.9 Pasar de una Función de Distribución a una Función de Densidad o Masa

- Caso discreto. $f_X(x) = F_X(x) \lim_{h \to x} F_X(h)$
- Caso continuo. $f_X(x) = \frac{d}{dx}F(x)$

4 Unidad No 3

Esperanza

4.1 Esperanza

Definición Esperanza 4.1.0.1. Es el promedio de un conjunto de datos. Está definido según el tipo de variable aleatoria que se tenga.

4.1 Caso continuo

Definición Esperanza Caso continuo 4.1.0.1. Sea X una variable aleatoria continua, entonces

$$\mathbb{E}(x) = \int_{-\infty}^{\infty} x f_x(x) dx$$

4.1 Caso discreto

Definición Discreto 4.1.0.1. Sea X una variable aleatoria discreta, entonces

$$\mathbb{E}(x) = \sum_{\forall x} x f_x(x)$$

4.1 Propiedades de la esperanza

Teorema 4.1.0.1. Sean X y Y 2 variables aleatorias con esperanza finita, y sea c una constante. Entonces

- Si $X \ge 0 \Rightarrow \mathbb{E}(x) \ge 0$
- $\blacksquare \ \mathbb{E}(c) = c$
- $\mathbb{E}(ax) = a\mathbb{E}(x)$
- $\mathbb{E}(x+b) = \mathbb{E}(x) + b$
- $\mathbb{E}(x+y) = \mathbb{E}(x) + \mathbb{E}(y)$

4.2 Desigualdad de Markov

Definición Desigualdad de Markov 4.2.0.1. Sea X una variable aleatoria no negativa. Para cualquier a > 0 se cumple que:

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}(x)}{a}$$

4.3 Desigualdad Chebyshev

Definición Desigualdad Chebyshev 4.3.0.1. Sea X una variable aleatoria con $\mathbb{E}(x) = \mu$ y $Var(x) = \sigma^2$ para cualquier valor k > 0, se cumple que

$$\mathbb{P}(|X - \mu| \ge \mu) \le \frac{\sigma^2}{k^2}$$

$$\mathbb{P}(|X - \mu| \le k) \ge 1 - \frac{\sigma^2}{k^2}$$

4.3 Formas alternativas de la desigualdad de Chebyshev

$$\mathbb{P}(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

$$\mathbb{P}(|x - \mu| \le k\sigma) \ge 1 - \frac{1}{k^2}$$

4.4 Varianza

Definición Varianza 4.4.0.1. Representa la variabilidad de los valores que puede tomar una variable aleatoria respecto a su valor esperado. Sea X una variable aleatoria la varianza está definida como:

$$Var(x) = \mathbb{E}((x - \mathbb{E}(x))^2) = \mathbb{E}(x^2) - \mathbb{E}(x)^2$$

4.4 Propiedades de la varianza

Teorema 4.4.0.1. Sean X y Y 2 variables aleatorias con esperanza finita, y sea c una constante. Entonces

- $Var(x) \ge 0$
- Var(c) = 0
- $Var(ax) = a^2 Var(x)$
- Var(x+b) = Var(x)
- $Var(x) = E(x^2) E^2(x)$
- $Var(x+y) \neq Var(x) + Var(y)$

4.5 Esperanza de una Función

Definición Esperanza de una Función 4.5.0.1. Sea X una variable aleatoria y Y=g(x). Entonces

$$\mathbb{E}(y) \cdot \mathbb{E}(g(x)) = \left\{ \begin{array}{ll} \sum_{\forall x} g(x) f_x(x) & si \quad \text{x es una v.a.d.} \\ \\ \int_{-\infty}^{\infty} g(x) f_x(x) dx & si \quad \text{x es una v.a.c.} \end{array} \right.$$

4.6 Momentos de una variable aleatoria

Definición Momentos 4.6.0.1. Resumen propiedades de una variable aleatoria y se usan para analizar el comportamiento de dicha variable. Sea $n \in \mathbb{N}$ y X una variable aleatoria, el n-ésimo momento se define como:

$$\mathbb{E}(x^n) = \left\{ \begin{array}{ll} \sum_{\forall x} x^n f_x(x) & si \quad \text{x es una v.a.d.} \\ \\ \int_{-\infty}^{\infty} x^n f_x(x) dx & si \quad \text{x es una v.a.c.} \end{array} \right.$$

5 Unidad No 4

Función Generadora de Momentos

5.1 Generadora de momentos

Definición Momentos 5.1.0.1. Sea X una variable aleatoria, entonces su *generadora de momentos* está definida como:

$$\mathbb{M}_x(t) = \mathbb{E}(e^{tx})$$

5.1 Relación entre esperanza y generadora de momentos

Teorema 5.1.0.1. Si la función existe en t=0, entonces

$$\mathbb{M}_{x}^{(n)}(0) = \frac{d^{n}}{d^{n}t} \mathbb{M}_{x}(t)|_{t=0} = \mathbb{E}(x^{n})$$

5.1 Propiedades de la generadora de momentos

- $M_x(0) = 1$
- $\bullet \ \mathbb{M}_x^{(1)}(0) = \mathbb{E}(x)$
- $\mathbb{M}_r^{(2)}(0) = \mathbb{E}(x^2)$

6 Distribuciones discretas

6.1 Uniforme discreta

Distribución Uniforme Discreta 6.1.0.1. X toma valores de un conjunto de resultados $\{x_1, x_2, ..., x_n\}$ de algún experimento aleatorio, los cuales tienen la misma probabilidad de ocurrencia.

$$X \sim Unif(x_1, \cdots, x_n)$$
, donde $n \in \mathbb{N}$ y n = no. de resultados

6.1 Función de Probabilidad

Su función de probabilidad está definida como:

$$f_x(x) = \frac{1}{n} \mathbb{1}_{\{1,\dots,n\}}^{(x)}$$

6.1 Esperanza, varianza y generadora de momentos

Esperanza

$$\mathbb{E}(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Varianza

$$Var(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

Momentos

$$\mathbb{M}_x(t) = \frac{1}{n} \sum_{i=1}^n e^{x_i t}$$

6.2 Bernoulli

Distribución Bernoulli 6.2.0.1. X toma el valor de 1 si ocurre éxito o 0 si ocurre fracaso en un experimento aleatorio.

$$X \sim Ber(p)$$
 donde p = probabilidad de éxito

6.2 Función de Probabilidad

Su función de probabilidad está definida como:

$$f_x(x) = p^x (1-p)^{1-x} \mathbb{1}_{\{0,1\}}^{(x)}$$

6.2 Esperanza, varianza y generadora de momentos

Esperanza

$$\mathbb{E}(x) = p$$

Varianza

$$Var(x) = p(1-p)$$

Momentos

$$\mathbb{M}_x(t) = 1 - p + pe^t$$

6.3 Binomial

Distribución Binomial 6.3.0.1. X cuenta el número de éxitos en n-ensayos Bernoulli independientes.

 $X \sim Bin(n,p)$ donde n = no. de ensayos Bernoulli realizados y p = probabilidad de éxito

6.3 Función de Probabilidad

Su función de probabilidad está definida como:

$$f_x(x) = \binom{n}{x} p^x (1-p)^{n-x} \mathbb{1}_{\{0,\dots,n\}}^{(x)}$$

6.3 Esperanza, varianza y generadora de momentos

Esperanza

$$\mathbb{E}(x) = np$$

Varianza

$$Var(x) = np(1-p)$$

Momentos

$$\mathbb{M}_x(t) = (1 - p + pe^t)^n$$

6.4 Geométrica

Distribución Geométrica 6.4.0.1. X cuenta el número de fracasos antes del primer éxito.

 $X \sim Geo(p)$ donde p = probabilidad de que ocurra éxito

6.4 Función de Probabilidad

Su función de probabilidad está definida como:

$$f_x(x) = p(1-p)^x \mathbb{1}_{\{0,\ldots\}}^{(x)}$$

6.4 Esperanza, varianza y generadora de momentos

Esperanza

$$\mathbb{E}(x) = \frac{1-p}{p}$$

Varianza

$$Var(x) = \frac{1-p}{p^2}$$

Momentos

$$\mathbb{M}_x(t) = \frac{p}{1 - (1 - p)e^t}$$

6.5 Binomial negativa

Distribución Binomial negativa 6.5.0.1. X cuenta el número de fracasos antes del r-ésimo éxito.

 $X \sim BigNeg(r,p)$ donde r = no. de éxitos y p = probabilidad de éxito

6.5 Función de Probabilidad

Su función de probabilidad está definida como:

$$f_x(x) = {r+x-1 \choose x} p^r (1-p)^x \mathbb{1}_{\{0,\ldots\}}^{(x)}$$

6.5 Esperanza, varianza y generadora de momentos

Esperanza

$$\mathbb{E}(x) = \frac{r(1-p)}{p}$$

Varianza

$$Var(x) = \frac{r(1-p)}{p^2}$$

Momentos

$$\mathbb{M}_x(t) = \left(\frac{p}{1 - (1 - p)e^t}\right)^r$$

6.6 Hipergeométrica

Distribución Hipergeométrica 6.6.0.1. X cuenta el número de elementos de una categoría C seleccionados aleatoriamente de una muestra de n elementos. La muestra se toma al azar de una población de M elementos donde se sabe que k elementos son de categoría C.

$$X \sim HiperGeo(N, K, n)$$

Donde, n= tamaño de la muestra, k= no. de elementos de la categoría C y M= tamaño de la población.

6.6 Función de Probabilidad

Su función de probabilidad está definida como:

$$f_x(x) = \frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}} \mathbb{1}_{\{0,\dots,n\}}^{(x)}$$

6.6 Esperanza y varianza

Esperanza

$$\mathbb{E}(x) = \frac{nK}{M}$$

Varianza

$$Var(x) = \frac{nK(N-K)(N-n)}{N^2(N-1)}$$

6.7 Poisson

Distribución Poisson 6.7.0.1. X cuenta el número de eventos que ocurren en un intervalo de tiempo.

 $X \sim Poisson(\lambda)$ donde $\lambda = no.$ de veces que ocurre el evento durante un intervalo de tiempo

6.7 Función de Probabilidad

Su función de probabilidad está definida como:

$$f_x(x) = \frac{e^{-\lambda} \lambda^x}{x!} \mathbb{1}_{\{0,\dots\}}^{(x)}$$

6.7 Esperanza, varianza y generadora de momentos

Esperanza

$$\mathbb{E}(x) = \lambda$$

Varianza

$$Var(x) = \lambda$$

Momentos

$$\mathbb{M}_x(t) = e^{\lambda(e^t - 1)}$$

7 Distribuciones continuas

7.1 Uniforme continua

Distribución Uniforme Continua 7.1.0.1. X toma valores dentro de intervalos de misma longitud con la misma probabilidad.

 $X \sim Unif(a,b)$ con a = extremo izq. del intervalo y b = extremo der. del intervalo

7.1 Función de Probabilidad

Su función de densidad está definida como:

$$f_x(x) = \frac{1}{b-a} \mathbb{1}_{(a,b)}^{(x)}$$

7.1 Esperanza, varianza y generadora de momentos

Esperanza

$$\mathbb{E}(x) = \frac{a+b}{2}$$

Varianza

$$Var(x) = \frac{(b-a)^2}{12}$$

Momentos

$$\mathbb{M}_x(t) = \frac{e^{bt} - e^{at}}{(b-a)t}$$

7.2 Exponencial

Distribución Exponencial 7.2.0.1. X toma valores de tiempo de espera para la ocurrencia de un evento.

 $X \sim exp(p)$ con p = tasa de ocurrencia del evento por unidad de tiempo

7.2 Función de Probabilidad

Su función de densidad está definida como:

$$f_x(x) = pe^{-px} \mathbb{1}_{(0,\infty)}^{(x)}$$

7.2 Esperanza, varianza y generadora de momentos

Esperanza

$$\mathbb{E}(x) = \frac{1}{p}$$

Varianza

$$Var(x) = \frac{1}{p^2}$$

Momentos

$$\mathbb{M}_x(t) = \frac{p}{p-t}, \text{ con } t < p$$

7.3 Doble exponencial

Distribución Doble Exponencial 7.3.0.1. La distribución Doble Exponencial también es conocida como Distribución de Laplace. Es la diferencia de dos variables exponenciales aleatorias, independientes e idénticamente distribuidas. Se escribe

$$X \sim Laplace(\mu, \sigma)$$

7.3 Función de Probabilidad

Su función de densidad está dada por

$$f_x(x) = \frac{1}{2\sigma} e^{-\frac{|x-\mu|}{\sigma}} \mathbb{1}_{(-\infty,\infty)}^{(x)}$$

7.3 Esperanza, varianza y generadora de momentos

Esperanza

$$\mathbb{E}(x) = \mu$$

Varianza

$$Var(x) = 2\sigma^2$$

Momentos

$$\mathbb{M}_x(t) = \frac{e^{\mu t}}{1 - (\sigma t)^2}, \text{ con } |t| < \frac{1}{\sigma}$$

7.4 Gama

Distribución Gamma 7.4.0.1. X toma valores de tiempo de espera para la ocurrencia de varios eventos.

 $X \sim Gam(n,\lambda)$ con n = no. de eventos y p = tasa de ocurrencia del evento po unidad de tiempo

7.4 Función de Probabilidad

Su función de densidad está definida como:

$$f_x(x) = \frac{(\lambda x)^{n-1} \lambda e^{-\lambda x}}{\Gamma(n)} \mathbb{1}_{(0,\infty)}^{(x)}$$

donde

$$\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx = (n-1)!$$

7.4 Esperanza, varianza y generadora de momentos

Esperanza

$$\mathbb{E}(x) = \frac{n}{\lambda}$$

Varianza

$$Var(x) = \frac{n}{\lambda^2}$$

Momentos

$$\mathbb{M}_x(t) = (\frac{\lambda}{\lambda - t})^n, \text{ con } t < p$$

7.5 Normal

Distribución Normal 7.5.0.1. Se dice que muchos fenómenos se distribuyen normalmente. Esto significa que si uno toma al azar un número suficientemente grande de casos y construye un polígono de frecuencias con alguna variable continua, se obtendrá una curva de características particulares, llamada distribución normal.

 $X \sim N(\mu, \sigma^2)$ donde μ es la media con los datos y σ^2 la varianza de los datos

7.5 Función de Probabilidad

Su función de densidad está definida como:

$$f_x(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \mathbb{1}_{(-\infty,\infty)}^{(x)}$$

7.5 Esperanza, varianza y generadora de momentos

Esperanza

$$\mathbb{E}(x) = \mu$$

Varianza

$$Var(x) = \sigma^2$$

Momentos

$$\mathbb{M}_x(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$$

7.6 Normal estándar

Distribución Normal Estandar 7.6.0.1. Es el caso cuando una variable se distribuye N(0,1), con $\mu=0$ y $\sigma^2=1$. Sea $\mathbb Z$ una variable aleatoria, la cual se define como:

$$\mathbb{Z} = \frac{x - \mu}{\sigma}$$
 con σ la desviación estándar de los datos

Tenemos entonces que

$$\mathbb{Z} \sim N(0,1)$$

7.6 Función de Probabilidad

Su función densidad está definida como:

$$f_z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \mathbb{1}_{(-\infty,\infty)}^{(z)}$$

7.7 Lognormal

Distribución LogNormal 7.7.0.1. La distribución lognormal, a veces llamada distribución de Galton, es una distribución de probabilidad cuyo logaritmo tiene una distribución normal. Se escribe

$$X \sim LogNormal(\mu, \sigma^2)$$

7.7 Función de Probabilidad

Su función de densidad está dada por

$$f_x(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-\frac{(\ln(x)-\mu)^2}{2\sigma^2}} \mathbb{1}_{(0,\infty)}^{(x)}$$

7.7 Esperanza y varianza

Esperanza

$$\mathbb{E}(x) = e^{\frac{\mu + \sigma^2}{2}}$$

Varianza

$$Var(x) = e^{2\mu + 2\sigma^2} - e^{2\mu + \sigma^2}$$

7.8 Beta

Distribución Beta 7.8.0.1. Decimos que la variable aleatoria continua X tiene una distribución beta con a,b>0 y se escribe

$$X \sim Beta(a, b)$$

7.8 Función de Probabilidad

Y su función de densidad es

$$f_x(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} \mathbb{1}_{(0,1)}^{(x)}$$

donde

$$B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$$

7.8 Esperanza y varianza

Esperanza

$$\mathbb{E}(x) = \frac{a}{a+b}$$

Varianza

$$Var(x) = \frac{ab}{(a+b+1)(a+b)^2}$$

7.9 Pareto

Distribución Pareto 7.9.0.1. Se trata de una distribución biparamétrica con a>0 y b>0. Se escribe

$$X \sim Pareto(a, b)$$

7.9 Función de Probabilidad

Su función de densidad está dada como

$$f_x(x) = \frac{ab^a}{(b+x)^{a+1}} \mathbb{1}_{(0,\infty)}^{(x)}$$

7.9 Esperanza y varianza

Esperanza

$$\mathbb{E}(x) = \frac{b}{a-1}, \text{ para } a > 1$$

Varianza

$$Var(x)=\frac{ab^2}{(a-1)^2(a-2)}, \text{ para } a>2$$

7.10 Weibull

Distribución Weibull 7.10.0.1. Decimos que la variable aleatoria continua X tiene una distribución Weibull con parámetros $\alpha, \lambda > 0$. A la constante α se le llama parámetro de forma y a λ se le llama parámetro de escala. Se escribe

$$X \sim Weibull(\alpha, \lambda)$$

7.10 Función de Probabilidad

Su función de densidad está dada por

$$f_x(x) = \lambda \alpha (\lambda x)^{\alpha - 1} e^{-(\lambda x)^{\alpha}} \mathbb{1}_{(0,\infty)}(x)$$

7.10 Esperanza y varianza

Esperanza

$$\mathbb{E}(x) = \frac{1}{\lambda}\Gamma(1 + \frac{1}{\alpha})$$

Varianza

$$Var(x) = \frac{1}{\lambda^2} \left(\Gamma(1 + \frac{2}{\alpha}) - \Gamma^2(1 + \frac{1}{\alpha})\right)$$

7.11 Ji-cuadrada

Distribución Ji-Cuadrada 7.11.0.1. Se dice que la variable aleatoria continua X tiene una distribución ji-cuadrada con n grados de libertad (n > 0) y se escribe

$$X \sim \chi^2(n)$$

7.11 Función de Probabilidad

Su función de densidad está dada por

$$f_x(x) = \frac{1}{\Gamma(\frac{n}{2})} \left(\frac{1}{2}\right)^{\frac{n}{2}} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}} \mathbb{1}_{(0,\infty)}^{(x)}$$

7.11 Esperanza, varianza y generadora de momentos

Esperanza

$$\mathbb{E}(x) = n$$

Varianza

$$Var(x) = 2n$$

Momentos

$$\mathbb{M}_x(t) = \left(rac{1}{1-2t}
ight)^{-rac{n}{2}}, ext{ para } t < rac{1}{2}$$

7.12 Distribución t

Distribución t 7.12.0.1. Se dice que la variable aleatoria continua X tiene una distribución t con n > 0 grados de libertad y se escribe

$$X \sim t(n)$$

7.12 Función de Probabilidad

Su función de densidad está dada por

$$f_x(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}} \mathbb{1}_{(-\infty,\infty)}^{(x)}$$

7.12 Esperanza y varianza

Esperanza

$$\mathbb{E}(x) = 0$$

Varianza

$$Var(x) = \frac{n}{n-2}, \text{ para } n > 2$$

7.13 Cauchy

Distribución Cauchy 7.13.0.1. Decimos que una variable aleatoria continua es de Cauchy, con parámetros a>0 y b>0 y se escribe

$$X \sim Cauchy(a, b)$$

7.13 Función de Probabilidad

Su función de densidad está dada por

$$f_x(x) = \frac{1}{b\pi(1 + (\frac{x-a}{b})^2)} \mathbb{1}_{(-\infty,\infty)}^{(x)}$$

Nota: La esperanza, varianza y cualquier momento no existen.

REFERENCIAS

Referencias

- [1] Rincón. L. (2007). Curso Intermedio de Probabilidad. México. C.U. UNAM
- [2] Domínguez Martínez, J.I. (2001). Diseño y análisis de modelos de probabilidad. México D.F: Grupo Editorial Iberoamérica.
- [3] Mood, A.M.; Graybill, F.A., Boes, D.C. (1974). Introduction to the theory of statistics. Nueva York: McGraw-Hill.