

Physik ET, TE

Egbert Zojer

Institut für Festkörperphysik Technische Universität Graz

Experimente: Dr. Roland Lammegger, Institut für Experimentalphysik

Die ausgegebenen Folien sind ausschließlich zusammen mit diesem Buch zu verwenden und dürfen nicht weitergegeben werden!

Foliendownload: Homepage der VL in TUG online

Aufzeichnung der Vorlesung erwünscht?

Ablehnung: bitte e-mail an egbert.zojer@tugraz.at

Egbert Zojer Physik ET / Physik TE

Prüfungen:

- > Schriftlich im Hörsaal P1; Dauer 1h
- Werde am Ende der Vorlesung einen exemplarischen Fragenkatalog schicken
- > Stoff ab Jännertermin entsprechend WS 2017/2018
- 20 kurze Fragen zum gesamten Stoff; kurze Rechenbeispiele ("Zweizeiler")
- > 3 Termine im Winter- und 3 im Sommersemester (in Zukunft keine Sondertermine)

Di 10.10.2017	18:00 bis 20:00
Di 5.12.2017	18:00 bis 20:00
Di 30.1.2018	18:00 bis 20:00
Di 6.3.2018	18:00 bis 20:00

Nach den Ferien, Anfang Dezember, Ende Jänner, vor den Sommerferien

Bei Nichtteilnahme abmelden!

Überblick:

- > Einführung (3h)
- > Mechanik (6h)
- > Thermodynamik (5h)
- ➤ Elektrizität und Magnetismus (9h)
- > Schwingungen, Wellen, Akustik und Optik
- Quantenmechanik, Atom- und Kernphysik (3h)
- > Festkörper- und Halbleiterphysik (6h)

Egbert Zojer Physik ET / Physik TE

1. Einführung in die Physik

- o Der physikalische Erkenntnisprozess
- o Physikalische Größen
- o Messgenauigkeit und Fehlerfortpflanzung

Der physikalische Erkenntnisprozess

I Anfang: Experiment

- Messung physikalischer Größen
- > Beobachtung gewisser Zusammenhänge

II Induktionsschluß

- o Wenn Zusammenhänge immer wieder beobachtet
- → Schluss: Zusammenhang zu jeder Zeit und an jedem Ort gültig
- o Analog zu Induktionsschluss (n \rightarrow n+1) in der Mathematik
- o Annahme der Konstanz der Naturereignisse

Egbert Zojer Physik ET / Physik TE

Aus Induktionsschluss abgeleitet:

III Physikalisches Gesetz

- Praktischerweise mathematisch formuliert
- o z.B.: F = m a
- Deshalb: Mathematische Gleichungen werden uns für den Rest der Vorlesung "verfolgen".

Physikalische Theorie

System aus einer Vielzahl physikalischer Gesetze, die zu widerspruchsfreien Aussagen führen.

IV Deduktion

- Treffen (exakter) Vorhersagen auf Basis von Theorien
- Beispiele: Zukünftiges Verhalten von Schaltungen, Maschinen, Materialien ...
- Erfolg der exakten Naturwissenschaften:
 Genauigkeit und Zuverlässigkeit der Vorhersagen

V Verifikation

Überprüfung der Vorhersagen durch ein Experiment

Einstein: Jedes physikalische Gesetzt muss zugleich eine Messvorschrift für eine reproduzierbare Messung darstellen

Egbert Zojer

Physik FT / Physik TF

Häufiges Missverständnis:

Aufgabe der Naturwissenschaften NICHT Suche nach Wahrheit, sondern systematische Beobachtung der Natur nach gewissen, vorgegebenen Regeln → Entwicklung von (hoffentlich allgemein gültigen) Theorien → daraus abgeleitet: Vorhersage

Eine wissenschaftliche Theorie kann NIE bewiesen, sondern höchstens widerlegt werden!

Such nach Wahrheit ist die Aufgabe von Religion und Philosophie!

Egbert Zojer

Physik ET / Physik TE

Klassische Physik vs. Quantenphysik

Für Klassifikation relevant: Wirkung = Energie x Zeit

Planck'sches Wirkungsquantum: h = 6,626 10⁻³⁴ J s

Wirkungen >> h: klassiche Physik Wirkungen ~ h: Quantenphysik

Anschauliche Unterscheidung:

- Klassische Physik: bis zu Längenskalen, die mit dem Lichtmikroskop beobachtbar sind
- > Quantenphysik: atomarer und sub-atomarer Bereich relevant

Egbert Zojer Physik ET / Physik TE

Klassische Physik:

- o Mechanik
- Thermodynamik
- o Elektrizität und Magnetismus
- Akustik
- o Optik

Erweiterung: endliche Signalgeschwindigkeit → Relativitätstheorie

- anschaulich: Vorgänge unmittelbar erfahrbar
- streng kausal und deterministisch: streng vorherbestimmte Prozesse
- genaue Messungen möglich

Quantenphysik:

- o Atom- und Molekülphysik
- Festkörperphysik (großteils)
- Kern- und Elementarteilchenphysik
- abstrakt: Vorgänge nicht unmittelbar erfahrbar
- nicht deterministisch: statistische Gesetzmäßigkeiten = Wahrscheinlichkeitsaussagen (nicht chaotisch!) Konstanz statistischer Zusammenhänge
- gleichzeitige genaue Messung bestimmter Größen nur innerhalb einer gewissen Unschärfe möglich (z. B.: Ort und Geschwindigkeit, Energie und Zeit)

Messung einer Größe → andere nicht mehr exakt messbar

Egbert Zojer

Physik ET / Physik TE

Beispiel:

Ingenieure"

Egbert Zojer

Heisenberg'sche Unschärferelation:

$$\Delta x \, \Delta p_x \ge h$$

Aus: Hering et al., "Physik für

Abb. 6.139 Zur Ableitung der Heisenberg'schen Unschärferelation: Beugung von Elektronen an einem Spalt

Physikalische Größen

- Beschreibt Eigenschaften, Zustände von Objekten, Zustandsänderungen ...
- Muss messbar sein!

Zur Angabe einer Größe G immer: $G = \{G\} \bullet [G]$

Größe = Maßzahl x Maßeinheit

Auswahl der Maßeinheit bestimmt Wert der Maßzahl!

In AT für amtlichen und geschäftlichen Verkehr verpflichtend:

SI-Einheiten (Système International d'Unités)

Egbert Zojer

Physik ET / Physik TE

Beispiele für SI Einheiten: Kilogramm, Meter, Sekunden, Ampere ...

- > Leider nicht in allen Ländern der Welt verpflichtend
- Zweckmäßigerweise auch nicht in allen Bereichen der Physik verwendet (z.B. Quantenphysik)

Beispiel: Körpergewicht

100 kg (AT) = 220 lb (Pounds; USA) = 15 st (stone) and 10,46 lb (GB)

Beispiel: Bier in einem Lokal

USA: 1 US pint = 0,473 I oder 0,473 dm³

GB: 1 imperial pint = 0,568 l oder 0,568 dm³

Einheiten oft mit Präfix kombiniert:

Tabelle 1.1 Bezeichnung der dezimalen Vielfachen und Teile von Einheiten

Zehner- potenz	Vorsilbe	Kurz- zeichen	Beispiel
10 ¹⁸	Exa	Е	Em, EJ
1015	Peta	P	Pm, PJ
1012	Tera	T	Tm, TJ
109	Giga	G	Gm, GJ
10^{6}	Mega	M	Mm, MJ
10^{3}	Kilo	k	km, kJ
10 ²	Hekto	h	hPa, hJ
10^{1}	Deka	da	dam, da]
[3pt] 10 ⁻¹	Dezi	d	dm, dJ
10^{-2}	Zenti	C	cm, cJ
10^{-3}	Milli	m	mm, mJ
10^{-6}	Mikro	μ	μm, μJ
10-9	Nano	n	nm, nJ
10^{-12}	Piko	P	pm, pJ
10^{-15}	Femto	f	fm, fJ
10^{-18}	Atto	a	am, aJ

Aus: Hering et al., "Physik für Ingenieure"

Egbert Zojer

Physik ET / Physik TE

7 Basisgrößen und entsprechend 7 Basiseinheiten

Basisgröße	Basiseinheit	Symbol	Definition	relative Unsicherheit
Zeit	Sekunde	s	1 Sekunde ist das 9 192 631 770-fache der Periodendauer der dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustands von Atomen des Nuklids ¹³³ Cs entsprechenden Strahlung.	10 ⁻¹⁴
Länge	Meter	m	Meter ist die Länge der Strecke, die Licht im Vakuum während der Dauer von 1/299 792 458 Sekunden durchläuft.	10 ⁻¹⁴
Masse	Kilogramm	kg	1 Kilogramm ist die Masse des internationalen Kilogrammprototyps.	10-9
elektrische Stromstärke	Ampere	A	1 Ampere ist die Stärke eines zeitlich unveränderlichen Stroms, der, durch zwei im Vakuum parallel im Abstand von 1 Meter voneinander angeordnete, geradlinige, unendlich lange Leiter von vernachlässigbar kleinem kreisförmigem Querschnitt fließend, zwischen diesen Leitern je 1 Meter Leiterlänge die Kraft 2 · 10 ⁻⁷ Newton hervorruft.	10 ⁻⁶

Aus: Hering et al., "Physik für Ingenieure"

Institut für Festkörperphysik

Temperatur	Kelvin	K	1 Kelvin ist der 273,16-te Teil der thermodynamischen Temperatur des	10 ⁻⁶
Lichtstärke	Candela	cd	Tripelpunktes des Wassers. 1 Candela ist die Lichtstärke in einer bestimmten Richtung einer Strahlungsquelle, die monochromatische Strahlung der	5 · 10 ⁻³
Stoffmenge	Mol	mol	Frequenz 540 THz aussendet und deren Strahlstärke in dieser Richtung 1/683 W/sr beträgt. 1 Mol ist die Stoffmenge eines Systems, das aus ebenso viel Einzelteilchen besteht, wie Atome in 12/1 000 Kilogramm des Kohlenstoffnuklids ¹² C enthalten sind.	10 ⁻⁶

Aus: Hering et al., "Physik für Ingenieure"

Alle anderen Größen: abgeleitete Größen

Beispiel (Beachte: Dimension einer Größe):

[Energie] = [Kraft x Weg] = [Masse x Beschleunigung x Weg] = [Masse x Weg² / Zeit²]

[Energie] = kg m² / s² = J (Joule) ... abgeleitete Einheiten oft mit Namen

Egbert Zojer Physik ET / Physik TE

Grundregel für jedes Physikalische Gesetz:

Dimensionen (Einheiten) der Größen links und rechts des "=" müssen identisch sein!

Beziehung der eigentlichen Größen:

- o vom jeweiligen physikalischen Prozess abhängig
- o Proportionalitätskonstanten (incl. Naturkonstanten)

@ Beziehung zwischen Basiseinheiten bzw. Naturkonstanten:7 Definitionen sind "frei wählbar"

Beispiele:

SI: 6 x Einheitendefinition; 1 x Naturkonstante (Vakuumlichtgeschwindigkeit) atomic units (in der computational Quantenmechanik): Alle Naturkonstanten auf 1 gesetzt → keine Freie Wahl der Einheiten (z.B., Längen automatisch in Vielfachen der Bohrschen Radien)

Messgenauigkeit und Messfehler

Messungen sind unvermeidlicher fehlerbehaftet!

Systematische Fehler

- > für die Messmethode charakteristisch
- durch wiederholtes Messen nicht minimierbar
- Ursachen z.B.: falsche Kalibrierung der Messgeräte, falsche Justierung, Beeinflussung des Messergebnisses durch Messverfahren ...
- Charakterisierung: Genaue Angaben zur Messung (Institutsname, Datum, verwendete Messgeräte)

Egbert Zojer Physik ET / Physik TE

Zufällige oder statistische Fehler

- Vom Experimentator abhängig
- Durch wiederholtes Messen minimierbar
- Ursachen: Falsches Anlegen von Maßstäben, elektronische Triggerschwankungen ...
- Charakterisierung: Fehlerrechnung

Analyse der Messwertschwankungen:

Histogramm

Häufigkeit $h_i = N_i/N$, dass Messergebnis in einem bestimmten Bereich liegt

Bei rein zufälligem Messfehler für N→∞ häufig: Normalverteilung

Aus: Hering et al., "Physik für

0.30 0.25 relative Häufigkeit 0.20 0.15 0.10 0.05 0.00 1,16 1,18 1,20 1,24 1,26 1,28 $\overline{T} - \sigma$ $\overline{T} + \sigma$ $\bar{T} = 1,2116s$

Schwingungsdauer T/s

Abb. 1.5 Histogramm der Häufigkeitsverteilung hi (T) bei einer Schwingungsdauermessung sowie die Normalverteilungskurve nach (1.3) für $\mu = \overline{T}$ und $\sigma^2 = s_T^2 \text{ mit } \overline{T} = 1,2116 \text{ s und } s_T = 0,0172 \text{ s}$

Ingenieure⁴

Egbert Zojer

Physik ET / Physik TE

Normalverteilungsfunktion (Gauß-Verteilung):

$$h(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- h(x)dx ... Wahrscheinlichkeit für Messwert zwischen x und x+dx
- μ ... Erwartungswert
- σ^2 ... Varianz (Halbwertsbreite ~ 2.4 σ)

68,3 % der Messwerte im Bereich $x = \mu \pm \sigma$

95,4 % der Messwerte im Bereich $x = \mu \pm 2\sigma$

99,7 % der Messwerte im Bereich $x = \mu \pm 3\sigma$

Physik ET / Physik TE Egbert Zojer

Wie bestimme ich nun den Schätzwert für mein Messergebnis und dessen (zufälligen) Fehler?

Annahme: Normalverteilung der Messergebnisse

bester Schätzwert für Erwartungswert: arithmetischer Mittelwert

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

bester Schätzwert für σ: Standardabweichung s

Von N praktisch unabhängig!

$$s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}}$$

Genauigkeit des Messverfahrens (durch Breite der Verteilungsfunktion gegeben) kann durch Wiederholungsmessung NICHT erhöht werden!

Egbert Zojer

Physik ET / Physik TE

ABER: Wiederholungsmessungen erhöhen die Genauigkeit der Bestimmung von $\overline{\mathcal{X}}$ als Näherung für μ !

Entsprechende Standardabweichung:

$$\Delta \overline{x} = \frac{s}{\sqrt{N}}$$

Angabe des Messergebnisses:

$$x_p = \overline{x} \pm t_p \frac{s}{\sqrt{N}}$$

 t_p : Faktor, der von Zahl der Messungen und der geforderten statistischen Sicherheit abhängt ! (für N > 100 t=1 für 68, 3% und 2 für 95,4%)

Zusätzlich systematische Fehler: zu statistischem Fehler addieren!

Egbert Zojer

Physik ET / Physik TE

Fehlerfortpflanzung

Fehler einer indirekt bestimmten physikalischen Größe, f, mit f = f(x,y,z)

Größtfehler:

$$\Delta f = \left| \frac{\partial f(x, y, z)}{\partial x} \right| |\Delta x| + \left| \frac{\partial f(x, y, z)}{\partial y} \right| |\Delta y| + \left| \frac{\partial f(x, y, z)}{\partial z} \right| |\Delta z|$$

Beispiele:

$$f = a x + b y + c z \implies \Delta f = |a||\Delta x| + |b||\Delta y| + |c||\Delta z|$$
$$f = x y z \implies \frac{\Delta f}{f} = \left|\frac{\Delta x}{x}\right| + \left|\frac{\Delta y}{y}\right| + \left|\frac{\Delta z}{z}\right|$$

Egbert Zojer Physik ET / Physik TE

Kurvenanpassung

Situation:

Messung von Wertepaaren $(f_i,x_i) \rightarrow$ bei bekanntem Zusammenhang f=f(x; a_1, a_2, a_3 ...) mit a_k = aus Messung zu bestimmende Parameter.

zB.: Kugelfallexperiment mit verschiedenen Fallhöhen, h_i, und Fallzeiten, t_i. Dazu:

$$t = \sqrt{\frac{2h}{a}}$$

Frage: Wie groß ist a ?

Wahrscheinlichste Werte für a_k die, für die gilt:

$$\sum_{i=1}^{N} [f_i - f(x_i; a_1, a_2, a_3, ...)]^2 \stackrel{!}{=} MIN$$

Annahme: Standardabweichung der Messungen fi für alle xi gleich!

Häufige Situation: linearer Zusammenhang (lineare Regression)

Entsprechende Gleichungen siehe z.B. Hering et al., "Physik für Ingenieure"

Frage: Macht der zugrunde gelegte physikalische **Zusammenhang Sinn?**

aus: Hering et al., "Physik für Ingenieure"

Physik ET / Physik TE

Abb. 1.10 Korrelationsanalyse der mittleren täglichen Heizleistung eines Wohnhauses

Maß für Wahrscheinlichkeit dafür: Korrelationskoeffizient, r

Egbert Zojer