### 평가 지표 및 측정

## 1.1.1 이진 분류의 평가지표

- 1.1.2 임계값과 평가지표
- 1.1.3 평가지표 ROC 커브, AUC
- 1.1.4 다중 분류의 평가지표

### 학습 내용

- 이진 분류의 평가 지표에 대해 알아본다.
- 불균형 데이터 셋일때의 정확도에 대해 알아본다.
- 정밀도, 민감도, 특이도, FPRate, F-score에 대해 알아본다.
- 함수를 활용하여 각각의 모델별 정밀도, 민감도, F-score를 확인해 본다.

## 목차

01. 데이터 준비 및 라이브러리 임포트

02. 다양한 모델의 평가 수행

03. 오차행렬(confusion matrix)을 이용하기

<u>04. F1-score 확인</u>

## 01. 데이터 준비 및 라이브러리 임포트

목차로 이동하기

#### In [1]:

```
from IPython.display import display, Image
import warnings
warnings.filterwarnings(action='ignore')
```

#### In [2]:

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
```

## 데이터 셋

- 손글씨 데이터
- data: 1797장, 64개의 pixel 데이터
  - images: 1797, 8, 8

- target : 0~9까지의 손글씨 값
- pixel: 화소(텔레비전·컴퓨터 화면의 화상을 구성하는 최소 단위)
  - 화면 이미지들은 더 이상 쪼개지지 않는 사각형의 작은 점들이 모여 이뤄진다. 이때 이미지를 구성하는 최소 단위를 픽셀이라고 한다.

### In [3]:

## 머신러닝 작업 flow
display(Image(filename='img/model\_validation\_pixel01.png'))



#### In [4]:

```
from sklearn.datasets import load_digits

digits = load_digits()
print(digits.data.shape)
print(digits.keys(), digits.target)
print(np.unique( digits.target ) )
sns.countplot(digits.target)
```

```
(1797, 64)
dict_keys(['data', 'target', 'frame', 'feature_names', 'target_names',
'images', 'DESCR']) [0 1 2 ... 8 9 8]
[0 1 2 3 4 5 6 7 8 9]
```

#### Out[4]:

<AxesSubplot:ylabel='count'>



## Target 값을 이진값으로 만들기

# 데이터 셋의 Target(타깃)을 9:1의 비율로 나누기

- 9이면 True
- 9가 아니면 False

#### In [5]:

```
X = digits.data # 입력
y = digits.target == 9 # 출력
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
```

#### In [6]:

```
plt.figure(figsize=(15,6))
plt.subplot(1, 2, 1)
# y_train의 값 확인
sns.countplot(y_train)
plt.title("train")

plt.subplot(1, 2, 2)
# y_test의 값 확인
sns.countplot(y_test)
plt.title("test")
```

#### Out[6]:

Text(0.5, 1.0, 'test')





### 02. 다양한 모델의 평가 수행

#### 목차로 이동하기

• 정확도(accuracy) 확인

# 02-01 기본 모델 DummyClassifier

- 간단한 규칙을 사용하여 예측을 수행한다.
- 실제 프로젝트에서 사용하지 않으며, 간단한 베이스라인 모델로서 사용된다.
- DummyClassifier(strategy='most\_frequent'): 학습용 데이터 셋에서 가장 많이 있는 Label(라벨)을 예측한다.
  - most\_frequent : 가장 많이 있는 Label(라벨)을 예측
  - stratified : 클래스 분포를 존중하여 예측을 생성
  - uniform: 무작위로 균일하게 예측을 생성,

- 기타 : prior, constant
- 아래 모델은 가장 많은 레이블을 가진 False만 예측하게 된다.

#### In [7]:

```
from sklearn.dummy import DummyClassifier
dummy_model = DummyClassifier(strategy='most_frequent').fit(X_train, y_train)
pred_most_frequent = dummy_model.predict(X_test)

print("예측된 레이블의 고유값: {}".format(np.unique(pred_most_frequent)))
print("테스트 평가 정확도 : {:.2f}".format(dummy_model.score(X_test, y_test)))
```

예측된 레이블의 고유값: [False] 테스트 평가 정확도 : 0.90

## 02-02 DummyClassifier를 이용한 예측

- 매개변수 없을 때의 기본 동작
  - stratified : 클래스 분포를 고려하여 예측
- 클래스의 9:1 분포를 가만하여 예측

#### In [8]:

```
dummy = DummyClassifier(strategy='stratified').fit(X_train, y_train)
pred_dummy = dummy.predict(X_test)

print("예측된 레이블의 고유값: {}".format(np.unique(pred_dummy)))
print("테스트 평가 정확도 : {:.2f}".format(dummy.score(X_test, y_test)))
예측된 레이블의 고유값: [False True]
```

### 02-03 실제 모델 - DecisionTreeClassifier

#### In [9]:

```
from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(max_depth=2).fit(X_train, y_train)
pred_tree = tree.predict(X_test)

print("테스트 평가 정확도: {:.2f}".format(tree.score(X_test, y_test)))
```

테스트 평가 정확도: 0.92

테스트 평가 정확도 : 0.81

• DecisionTreeClassifier(의사결정트리)와 기본 모델 dummy 분류기(하나만 예측)와 성능차이가 거의 없다.

# 02-04 LogisticRegression(로지스틱 회귀) 모델

#### In [10]:

```
from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression(C=0.1).fit(X_train, y_train)

pred_logreg = logreg.predict(X_test)

print("logreg 점수: {:.2f}".format(logreg.score(X_test, y_test)))
```

logreg 점수: 0.98

## 하나만 예측하는 기본 모델도 90% 이상의 정확도를 갖는다.

- 값의 편중이 이루어져 하나만 예측하더라도 정확도가 높게 나오기에
  - 정확도는 때로는 평가지표로 사용하기에 부족한 부분이 있다.

## 정확도 대신에 사용할 지표가 무엇이 있을까?

## 03 오차행렬(confusion matrix)을 이용하기

목차로 이동하기

#### In [11]:

import mglearn

#### In [12]:

mglearn.plots.plot binary confusion matrix()



confusion matrix 를 이용한 오차(혼동) 행렬 구하기

#### In [13]:

```
from sklearn.metrics import confusion_matrix

confusion = confusion_matrix(y_test, pred_logreg)

print("오차 행렬:\n{}".format(confusion))
```

```
오차 행렬:
[[402 1]
[ 6 41]]
```

### In [14]:

mglearn.plots.plot\_confusion\_matrix\_illustration()



## 3-1 각각의 예측값에 대한 오차행렬을 확인해보기

• 행은 실제 클래스(1행:9가 아니다, 2행:9이다)에 해당하고, 열은 예측 클래스(1열:9가 아니다, 2열:9이다)에 해당

#### In [15]:

```
print("빈도 기반 더미 모델:")
print(confusion_matrix(y_test, pred_most_frequent))
print("\n무작위 더미 모델:")
print(confusion matrix(y test, pred dummy))
print("\n결정 트리:")
print(confusion_matrix(y_test, pred_tree))
print("\n로지스틱 회귀")
print(confusion_matrix(y_test, pred_logreg))
빈도 기반 더미 모델:
[[403
       0 ]
       0]]
 [ 47
무작위 더미 모델:
[[368 35]
 [ 43
      4]]
결정 트리:
[[390 13]
 [ 24 23]]
로지스틱 회귀
[[402
       1]
```

## 3-2 분류의 다양한 평가지표를 살펴보기

- 정확도(accuracy): 전체 값 중에 얼마나 예측을 정확하게 했는가?
  - (정확하게 예측한 개수)/(전체 개수)
- 정밀도(precision): 양성으로 예측한 것중(TP+FP), 진짜 양성(TP)
- 민감도(sensitivity), 재현율(recall): 전체 양성 샘플(TP + FN)중에서 얼마나 많은 샘플이 양성 클래스로 분류(TP)
- 특이도

[ 6 41]]

- Fprate
- F-score
- AUC

#### In [17]:

#### ## 호동 행렬

display(Image(filename='img/model\_validation01.png'))



Classification(분류)의 평가지표를 살펴보자.

정확도(accuracy): 정확하게 예측/전체 예측수

$$accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

정밀도(precision) : 예측을 양성(Positive)으로 한것 전체(TP+FP)중에 잘 예측한 것(TP)

정밀도(precision) = 
$$\frac{$$
 잘 예측(TP)  $}{$  예측을 양성으로 한 것 전체(TP+FP)

- 언제 사용하는가? : 거짓 양성(FP)의 수를 줄일 때 사용
  - 임상 실험을 통해 신약의 치료 효과를 예측하는 모델
  - 임상 실험은 가격이 매우 비싸, 제약회사는 한번의 임상실험으로 신약의 효과를 검증하기를 원함. 모델이 거짓 양성 (FP)을 많이 만들지 않는 것이 중요. 높은 정밀도가 필요. 이때 정밀도를 지표로 확인

# 민감도(sensitivity), 재현율(recall, TPRate), 진짜 양성 비율(TPR)

- 전체 실제 양성 데이터(TP + FN)중에 얼마나 많은 샘플을 양성으로 잘 분류했나?(TP)
- TP/(TP + FN)

민감도(recall, 재현율) = 
$$\frac{\text{잘 예측(TP)}}{\text{전체 양성 샘플 전체(TP+FN)}}$$

- 재현율이 높아지면 FP는 상대적으로 낮아짐.
- 언제 사용? FN(가짜 음성. 잘못 예측함.)을 줄일 때, 성능 지표로 사용합니다.
- 재현율의 최적화와 정밀도의 최적화는 상충한다. 하나의 성능이 좋아지면 다른 하나는 성능이 떨어진다.

- 다른 말로 **민감도(sensitivity), 적중률(hit rate), 진짜 양성 비율(TPR)**이라고 합니다.
- 따라서 병원의 암 예측 같은 경우는 FN를 최소화시켜 재현율을 줄이면. 상대적으로 정밀도를 최대화된다.

### 특이도

- 전체 실제 데이터의 음성 데이터(FP + TN)중에 제대로 예측한 샘플(음성 예측)?(TN)
- TN/(FP + TN)

특이도 
$$=$$
  $\frac{$  잘 예측 $(TN)$   $}{ 실제 값이 음성인것 전체 $(FP+TN)$$ 

#### **FPRate**

- 전체 실제 데이터의 음성 데이터(FP + TN)중에 예측을 실패(양성 예측), 잘 분류하지 못한 것?(FP)
- FP/(FP + TN)

## 다양한 분류 측정 방법

- https://en.wikipedia.org/wiki/Sensitivity and specificity (https://en.wikipedia.org/wiki/Sensitivity and specificity)
- 이진 분류에서는 정밀도와 재현율을 가장 많이 사용.
  - 분야마다 다른 지표를 사용할 수 있다.

### 04. f1-score를 확인해보기

목차로 이동하기

#### F-score

- 오차 행렬의 결과를 요약하는 여러 방법 중 가장 일반적인 것은 정밀도, 재현율이다.
- 정밀도와 재현율은 중요한 측정 방법이지만, 둘중의 하나의 방법으로 전체 그림을 보기가 어렵다.
- 정밀도와 민감도(recall,재현율)을 하나만 가지고 측정이 안된다. 정밀도(precision)와 재현율(recall)의 조화 평균인 f-점수 또는 f-측정은 이 둘을 하나로 요약을 해 줍니다.

$$F = 2 * {\frac{{\hbox{정밀도*재현율}}}{{\hbox{정밀도 + 재현율}}}}$$

위의 공식을 우리는  $f_1$  점수라고한다.

• 정밀도와 재현율을 함께 고려하므로 불균형한 이진 분류 데이터셋에서의 정확도보다 더 나은 지표가 될 수 있다.

## 각각의 모델 예측값을 f1-score로 예측

#### In [18]:

```
from sklearn.metrics import f1_score

# 빈도기반 모델 f1-score
print("무작위 더미 모델의 f1 score: {:.2f}".format(f1_score(y_test, pred_most_frequent))

# Dummy분류 f1-score
print("무작위 더미 모델의 f1 score: {:.2f}".format(f1_score(y_test, pred_dummy)))

# 의사결정트리
print("트리 모델의 f1 score: {:.2f}".format(f1_score(y_test, pred_tree)))

# 로지스틱
print("로지스틱 회귀 모델의 f1 score: {:.2f}".format(f1_score(y_test, pred_logreg)))
```

무작위 더미 모델의 f1 score: 0.00 무작위 더미 모델의 f1 score: 0.09 트리 모델의 f1 score: 0.55 로지스틱 회귀 모델의 f1 score: 0.92

• 로지스틱 회귀 모델이 가장 좋은 성능을 보여준다.

### f1-score를 요약해서 보여주기

- classification\_report(): 정밀도, 재현율, f1-score을 모두 한번에 계산
- support는 단순히 샘플의 수
- macro avg : 단순히 클래스별 점수의 평균 계산
   weighted avg : 클래스의 샘플수로 가중 평균

### In [19]:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| not 9        | 0.90      | 1.00   | 0.94     | 403     |
| is 9         | 0.00      | 0.00   | 0.00     | 47      |
|              |           |        |          |         |
| accuracy     |           |        | 0.90     | 450     |
| macro avg    | 0.45      | 0.50   | 0.47     | 450     |
| weighted avg | 0.80      | 0.90   | 0.85     | 450     |

# dummyClassifier 모델

### In [20]:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| not 9        | 0.90      | 0.91   | 0.90     | 403     |
| is 9         | 0.10      | 0.09   | 0.09     | 47      |
|              |           |        |          |         |
| accuracy     |           |        | 0.83     | 450     |
| macro avg    | 0.50      | 0.50   | 0.50     | 450     |
| weighted avg | 0.81      | 0.83   | 0.82     | 450     |

# 의사결정트리

### In [23]:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| not 9        | 0.94      | 0.97   | 0.95     | 403     |
| is 9         | 0.64      | 0.49   | 0.55     | 47      |
|              |           |        |          |         |
| accuracy     |           |        | 0.92     | 450     |
| macro avg    | 0.79      | 0.73   | 0.75     | 450     |
| weighted avg | 0.91      | 0.92   | 0.91     | 450     |

## 로지스틱 회귀

### In [24]:

|              | precision | recall | fl-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| not 9        | 0.99      | 1.00   | 0.99     | 403     |
| is 9         | 0.98      | 0.87   | 0.92     | 47      |
|              |           |        |          |         |
| accuracy     |           |        | 0.98     | 450     |
| macro avg    | 0.98      | 0.93   | 0.96     | 450     |
| weighted avg | 0.98      | 0.98   | 0.98     | 450     |