

What is a Tree

 In computer science, a tree is an abstract model of a hierarchical structure

 A tree consists of nodes with a parent-child relation

- Applications:
 - Organization charts
 - File systems
 - Programming environments

Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node
 without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

 Subtree: tree consisting of a node and its descendants

Tree ADT

- We use positions to abstract nodes
- Generic methods:
 - integer size()
 - boolean isEmpty()
 - Iterator iterator()
 - Iterable positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - Iterable children(p)

- Query methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)
- Update method:
 - element replace (p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: table of contents

Algorithm preOrder(v) visit(v)

for each child w of v
preorder (w)

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: table of contents

Algorithm preOrder(v)

visit(v)

for each child w of v

preorder (w)

Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v)

for each child w of v

postOrder (w)

visit(v)

Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)

Binary Trees

- A binary tree is a tree with the following properties:
 - Each internal node has at most two children (exactly two for proper binary trees)
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Children with same parent are siblings
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or empty
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- Applications:
 - arithmetic expressions
 - decision processes
 - searching

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- □ Example: arithmetic expression tree for the expression $(2 \times (a 1) + (3 \times b))$

Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Example: dining decision

Properties of **Proper Binary Trees**

- Notation
 - *n* number of nodes
 - e number of external nodes
 - i number of internal nodes

h height

Properties:

$$e = i + 1$$

$$n = 2e - 1$$

■
$$h \leq i$$

■
$$h \le (n-1)/2$$

$$e \le 2^h$$

■
$$h \ge \log_2 e$$

$$\bullet h \ge \log_2(n+1) - 1$$

BinaryTree ADT

- The BinaryTree ADT extends the Tree
 ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
 - position left(p)
 - position right(p)
 - boolean hasLeft(p)
 - boolean hasRight(p)

 Update methods may be defined by data structures implementing the BinaryTree ADT

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v
 - y(v) = depth of v

Algorithm *inOrder(v)*

if hasLeft (v)
inOrder (left (v))

visit(v)

if hasRight (v)

inOrder(right(v))

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v
 - y(v) = depth of v

Algorithm *inOrder(v)*

if hasLeft (v)

inOrder(left(v))

visit(v)

if hasRight (v)

inOrder(right(v))

Print Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree

Algorithm *printExpression(v)*

```
if hasLeft (v)
        print(``(''))
        inOrder (left(v))
        print(v.element ())
        if hasRight (v)
        inOrder (right(v))
        print (``)")
```

$$((2 \times (a - 1)) + (3 \times b))$$

Linked Structure for Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes
- Node objects implement the Position ADT

Linked Structure for Binary Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node
- Node objects implement the Position ADT

Array-Based Representation of Binary Trees

Nodes are stored in an array A

- □ Node v is stored at A[rank(v)]
 - rank(root) = 1
 - if node is the left child of parent(node), rank(node) = 2 · rank(parent(node))
 - if node is the right child of parent(node), rank(node) = 2 · rank(parent(node)) + 1

Euler Tour Traversal

- Generic traversal of a binary tree
- Includes a special cases the preorder, postorder and inorder traversals
- Walk around the tree and visit each node three times:
 - on the left (preorder)
 - from below (inorder)

Template Method Pattern

- □ Generic algorithm
- Implemented by abstract Java class
- Visit methods redefined by subclasses
- Template method eulerTour
 - Recursively called on left and right children
 - A TourResult object with fields left, right and out keeps track of the output of the recursive calls to eulerTour

```
public abstract class EulerTour <E, R> {
   protected BinaryTree<E> tree;
   public abstact R execute(BinaryTree<E> T);
   protected void init(BinaryTree<E> T) { tree = T; }
   protected R eulerTour(Position<E> v) {
     TourResult<R> r = new TourResult<R>();
     visitLeft(v, r);
     if (tree.hasLeft(p))
        { r.left=eulerTour(tree.left(v)); }
     visitBelow(v, r);
     if (tree.hasRight(p))
        { r.right=eulerTour(tree.right(v)); }
     visitRight(v, r);
     return r.out;
   protected void visitLeft(Position<E> v, TourResult<R> r) {}
  protected void visitBelow(Position<E> v, TourResult<R> r) {}
  protected void visitRight(Position<E> v, TourResult<R> r) {}
                                                          21
          Trees
```

Specializations of EulerTour

- Specialization of class
 EulerTour to evaluate
 arithmetic expressions
- Assumptions
 - Nodes store
 ExpressionTerm objects
 with method getValue
 - ExpressionVariable objects at external nodes
 - ExpressionOperator
 objects at internal
 nodes with method
 setOperands(Integer,
 Integer)

```
public class EvaluateExpressionTour
     extends EulerTour<ExpressionTerm, Integer> {
  public Integer execute
        (BinaryTree<ExpressionTerm> T) {
     init(T);
     return eulerTour(tree.root());
  protected void visitRight
        (Position<ExpressionTerm> v,
         TourResult<Integer> r) {
     ExpressionTerm term = v.element();
     if (tree.isInternal(v)) {
        ExpressionOperator op = (ExpressionOperator) term;
        op.setOperands(r.left, r.right); }
     r.out = term.getValue();
```

Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees


```
Algorithm evalExpr(v)
if isExternal (v)
return v.element ()
else
x \leftarrow evalExpr(leftChild (v))
y \leftarrow evalExpr(rightChild (v))
\Diamond \leftarrow operator stored at v
return x \Diamond y
```

Binary Search Tree

- Is a binary tree
 - where elements can be tottally ordered
 - E.g., Integers
- □ For each node v
 - All elements in its left subtree are < v</p>
 - All elements in its right subtree are > v
- Enables efficient search

http://www.cs.usfca.edu/~galle s/visualization/BST.html