Project: Lending Club Loan Data Analysis

by SHAKTI NATH SAINI

1. Exploratory Data Analysis

```
In [252]:
```

In [253]:

In [254]:

```
data.shape
```

Out[254]:

(9578, 14)

```
In [255]:
```

```
data.head()
```

Out[255]:

	credit.policy	purpose	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.li
0	1	debt_consolidation	0.1189	829.10	11.350407	19.48	737	5639.9583
1	1	credit_card	0.1071	228.22	11.082143	14.29	707	2760.0000
2	1	debt_consolidation	0.1357	366.86	10.373491	11.63	682	4710.0000
3	1	debt_consolidation	0.1008	162.34	11.350407	8.10	712	2699.9583
4	1	credit_card	0.1426	102.92	11.299732	14.97	667	4066.0000

In [256]:

```
# Handling missing values
```

data.isnull().sum()

Out[256]:

0
0
0
0
0
0
0
0
0
0
0
0
0
0

In [257]:

#NO missing values

2: Exploratory data analysis of different factors of the dataset.

In [258]:

Out[258]:

	all_other	credit_card	debt_consolidation	educational	home_improvement	major_purchase
0	0	0	1	0	0	0
1	0	1	0	0	0	0
2	0	0	1	0	0	0
3	0	0	1	0	0	0
4	0	1	0	0	0	0
4						

In [259]:

In [260]:

```
df = pd.concat([data, dummy], axis=1)
```

In [261]:

df.head()

Out[261]:

	credit.policy	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revo
0	1	0.1189	829.10	11.350407	19.48	737	5639.958333	28854	
1	1	0.1071	228.22	11.082143	14.29	707	2760.000000	33623	
2	1	0.1357	366.86	10.373491	11.63	682	4710.000000	3511	
3	1	0.1008	162.34	11.350407	8.10	712	2699.958333	33667	
4	1	0.1426	102.92	11.299732	14.97	667	4066.000000	4740	
4									•

In [262]:

df.shape

Out[262]:

(9578, 20)

```
In [263]:

y = df['credit.policy']
X = df.drop(['credit.policy'], axis=1)
```

```
In [264]:
```

```
# Standardize features by removing the mean and scaling to unit variance
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

```
In [265]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_stat
```

3. Additional Feature Engineering

You will check the correlation between features and will drop those features which have a strong correlation

This will help reduce the number of features and will leave you with the most relevant features

```
In [266]:
```

```
# Check if the data is balanced
data['credit.policy'].value_counts(normalize=True)
```

```
Out[266]:
```

0.804970.19503

Name: credit.policy, dtype: float64

In [267]:

In [268]:

```
plt.figure(figsize = (12,10))
sns.heatmap(high_corr, cmap='gist_earth', annot=True, annot_kws={"size": 10})
```

Out[268]:

<AxesSubplot:>

Some of the features are correlated:

- revol.util & int.rate
- log.annual.inc & installment

But since the correlation is less than 0.5, there is no need to drop any of them.

4: Modelling

After applying EDA and feature engineering, you are now ready to build the predictive models

In this part, you will create a deep learning model using Keras with Tensorflow backend

In [269]:

In [270]:

In [271]:

In [272]:

```
'''Step 8: Fitting the Model'''
model.fit(X_train, y_train, epochs=1000, validation_data=(X_test,y_test), callbacks=[MyThre
Epoch 1/1000
240/240 [================ ] - 2s 3ms/step - loss: 0.3051 - ac
curacy: 0.8807 - val_loss: 0.2626 - val_accuracy: 0.8909
Epoch 2/1000
240/240 [============== ] - 1s 2ms/step - loss: 0.2717 - ac
curacy: 0.8923 - val_loss: 0.2396 - val_accuracy: 0.8987
Epoch 3/1000
curacy: 0.9042 - val_loss: 0.2119 - val_accuracy: 0.9175
Epoch 4/1000
240/240 [============== ] - 1s 2ms/step - loss: 0.2381 - ac
curacy: 0.9133 - val_loss: 0.2071 - val_accuracy: 0.9238
Epoch 5/1000
240/240 [=============== ] - 1s 2ms/step - loss: 0.2331 - ac
curacy: 0.9126 - val_loss: 0.2004 - val_accuracy: 0.9264
Epoch 6/1000
curacy: 0.9190 - val_loss: 0.1880 - val_accuracy: 0.9295
Epoch 7/1000
240/240 [================ ] - 1s 2ms/step - loss: 0.1969 - ac
curacy: 0.9304 - val_loss: 0.1808 - val_accuracy: 0.9332
Epoch 8/1000
240/240 [============== ] - 1s 2ms/step - loss: 0.1976 - ac
curacy: 0.9304 - val_loss: 0.1667 - val_accuracy: 0.9410
Epoch 9/1000
curacy: 0.9323 - val_loss: 0.1756 - val_accuracy: 0.9379
Epoch 10/1000
240/240 [============== ] - 1s 2ms/step - loss: 0.1938 - ac
curacy: 0.9358 - val_loss: 0.1978 - val_accuracy: 0.9374
Epoch 11/1000
curacy: 0.9392 - val_loss: 0.1581 - val_accuracy: 0.9426
Epoch 12/1000
240/240 [============== ] - 1s 2ms/step - loss: 0.1854 - ac
curacy: 0.9383 - val_loss: 0.1470 - val_accuracy: 0.9473
Epoch 13/1000
curacy: 0.9415 - val_loss: 0.1659 - val_accuracy: 0.9436
Epoch 14/1000
curacy: 0.9390 - val_loss: 0.1563 - val_accuracy: 0.9473
Epoch 15/1000
curacy: 0.9422 - val_loss: 0.2048 - val_accuracy: 0.9337
Epoch 16/1000
240/240 [============== ] - 1s 2ms/step - loss: 0.1748 - ac
curacy: 0.9421 - val_loss: 0.1591 - val_accuracy: 0.9452
Epoch 17/1000
curacy: 0.9478 - val_loss: 0.1601 - val_accuracy: 0.9478
Epoch 18/1000
```

<tensorflow.python.keras.callbacks.History at 0x2b0f77651f0>

In [273]:

Training Score 0.9691986441612244 Testing Score 0.9603340029716492

In [274]:

In [275]:

```
# Confusion Matrix
print(confusion_matrix(y_test, y_pred))
```

[[306 66] [10 1534]]

In [276]:

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.97	0.82	0.89	372
1	0.96	0.99	0.98	1544
accuracy			0.96	1916
macro avg	0.96	0.91	0.93	1916
weighted avg	0.96	0.96	0.96	1916

```
In [277]:
```

Out[277]:

' End '