DS7

Corrigé

Autour de ℓ^2

Partie I – Dualités.

- 1. Montrer que E' est un sous-espace vectoriel de E^* .
 - Déjà, 0_{E^*} vérifie bien la condition pour être dans E' (avec C := 0). Donc $E' \neq \emptyset$.
 - Soient $f, g \in E'$ et $\lambda \in \mathbb{R}$. Fixons C_f et C_g dans \mathbb{R}_+ tels que

$$\forall x \in E, \ \left(|f(x)| \leqslant C_f \|x\| \text{ et } |g(x)| \leqslant C_g \|x\| \right)$$

et posons $C := C_f + |\lambda| C_g$. On a bien $C \geqslant 0$.

• Soit $x \in E$. On a

$$|(f + \lambda g)(x)| = |f(x) + \lambda g(x)|$$

$$\leq |f(x)| + |\lambda| \cdot |g(x)|$$

$$\leq C_f ||x|| + |\lambda| \cdot C_g ||x|| = C ||x||.$$

• Ainsi, on a $f + \lambda g \in E'$.

Donc, E' est un sous-espace vectoriel de E^* .

2. Soit $a \in E$. Montrer que $q_a \in E'$.

C'est l'inégalité de Cauchy-Schwarz : si $x \in E$, on a

$$|q_a(x)| = |(x | a)| \le ||x|| \times ||a|| = ||a|| \times ||x||.$$

Ainsi, on a bien $q_a \in E'$.

DS7

3. Montrer que

E de dimension finie $\implies E' = E^*$.

On suppose que E est de dimension finie. Soit (e_1, \ldots, e_n) une base orthonormale de E. Soit $x \in E$ qu'on écrit

$$x = \sum_{i=1}^{n} x_i e_i$$

où $\forall i \in [1, n], x_i \in \mathbb{R}$. D'après le cours, on sait que

$$||x||^2 = \sum_{i=1}^n x_i^2.$$

En particulier, on a, pour tout $i \in [1, n]$:

$$x_i^2 \leqslant ||x||^2$$
 et donc $|x_i| \leqslant ||x||$.

Maintenant, notons $C := \max_{1 \le i \le n} |f(e_i)|$. On a

$$|f(x)| = \left| \sum_{i=1}^{n} x_i f(e_i) \right| \leq \sum_{i=1}^{n} |x_i| |f(e_i)|$$

$$\leq \sum_{i=1}^{n} C |x_i|$$

$$\leq \sum_{i=1}^{n} C ||x|| = nC ||x||.$$

Ainsi, $f \in E'$ et donc $E' = E^*$.

- **4.** Soit $n \in \mathbb{N}^*$ et soit $(e_1, \ldots, e_n) \in E^n$.
 - (a) Montrer que

$$(e_1,\ldots,e_n)$$
 base de $E \implies (q_{e_1},\ldots,q_{e_n})$ base de E' .

On suppose que (e_1, \ldots, e_n) est une base de E.

• On sait que E^* est de dimension finie et que $\dim E^* = \dim E \times \dim \mathbb{R} = \dim E$. Donc, E' est de dimension finie et $\dim E' = n$. Il suffit donc de montrer que la famille $(q_{e_1}, \ldots, q_{e_n})$ est libre.

• Soit
$$\lambda_1, \ldots, \lambda_n \in \mathbb{R}$$
 tels que $\sum_{i=1}^n \lambda_i q_{e_i} = 0_{E^*}$. On pose $x \coloneqq \sum_{j=1}^n \lambda_j e_j$. On calcule

$$0 = \left(\sum_{i=1}^{n} \lambda_{i} q_{e_{i}}\right)(x) = \sum_{i=1}^{n} \lambda_{i} q_{e_{i}}(x)$$

$$= \sum_{i=1}^{n} \lambda_{i} (x \mid e_{i})$$

$$= \sum_{i=1}^{n} (x \mid \lambda_{i} e_{i})$$

$$= \left(x \mid \sum_{i=1}^{n} \lambda_{i} e_{i}\right)$$

$$= (x \mid x) = ||x||^{2}.$$

- Donc $x = 0_E$. Comme (e_1, \ldots, e_n) est une base, on a $\forall i, \lambda_i = 0$.
- Ainsi, $(q_{e_1}, \ldots, q_{e_n})$ est libre et est donc une base de E'.

On a bien montré que (e_1,\ldots,e_n) base de $E\implies (q_{e_1},\ldots,q_{e_n})$ base de E'.

(b) On suppose que (e_1, \ldots, e_n) est une base orthonormée de E. Soit $f \in L(E)$. On note

$$f^*: \left\{ \begin{array}{ll} E^* & \longrightarrow E^* \\ \varphi & \longmapsto \varphi \circ f. \end{array} \right.$$

Montrer que

$$\operatorname{Mat}_{(q_{e_1},...,q_{e_n})}(f^*) = \operatorname{Mat}_{(e_1,...,e_n)}(f)^{\mathsf{T}}.$$

On écrit $\operatorname{Mat}_{(e_1,\ldots,e_n)}(f)=(a_{i,j})_{i,j}$, où les $a_{i,j}\in\mathbb{R}$ de sorte que

$$\forall j \in [1, n], \ f(e_j) = \sum_{i=1}^n a_{i,j} \cdot e_i.$$

Soit $i \in [1, n]$. On veut montrer que

$$f^*(q_{e_i}) = \sum_{j=1}^n a_{i,j} \cdot q_{e_j}.$$

Cette égalité a lieu dans E^* . Pour la montrer, il suffit donc de vérifier qu'elle est vraie sur la base $(e_\ell)_{1\leqslant \ell\leqslant n}$. Soit $\ell\in [\![1,n]\!]$. On calcule

$$f^*(q_{e_i})(e_{\ell}) = q_{e_i}(f(e_{\ell}))$$

$$= (f(e_{\ell}) | e_i)$$

$$= \left(\sum_{k=1}^n a_{k,\ell} \cdot e_k | e_i\right)$$

$$= (a_{i,\ell} \cdot e_i | e_i) \qquad \text{(car la base des } e_k \text{ est orthonormale)}$$

$$= a_{i,\ell}$$

De plus, on a

$$\left(\sum_{j=1}^{n} a_{i,j} \cdot q_{e_j}\right) (e_{\ell}) = \sum_{j=1}^{n} a_{i,j} (e_{\ell} \mid e_j) = a_{i,\ell},$$

pour la même raison.

On a donc bien $f^*(q_{e_i}) = \sum_{j=1}^n a_{i,j} \cdot q_{e_j}$, et ce pour tout i, ce qui signifie que

$$\operatorname{Mat}_{\left(q_{e_{1}},\dots,q_{e_{n}}\right)}\left(f^{*}\right) = \operatorname{Mat}_{\left(e_{1},\dots,e_{n}\right)}\left(f\right)^{\mathsf{T}}.$$

5. On note

$$\Phi_E: \left\{ \begin{array}{l} E \longrightarrow E' \\ a \longmapsto q_a. \end{array} \right.$$

Montrer que Φ_E est injective.

On montre que $\ker \Phi_E = \{0_E\}$. Soit $a \in E$ tel que $\Phi_E(a) = 0_{E'}$. On a donc

$$\forall x \in E, (x \mid a) = 0.$$

En particulier, on a $q_a(a) = ||a||^2 = 0$ et donc $a = 0_E$. Ainsi, Φ_E est injective.

Partie II – Premières propriétés de ℓ^2 .

6. Trouver une suite $a \in \ell^2 \setminus \ell^1$.

Soit $\alpha > 0$. On considère la suite $(a_n)_n$ définie par

$$a_0 := 1$$
 et $\forall n \geqslant 1, \ a_n = \frac{1}{n^{\alpha}}$

D'après le critère de Riemann, on sait que

$$(a_n)_n \in \ell^1 \iff \sum_n \frac{1}{n^{\alpha}} \text{ converge} \iff \alpha > 1$$

 $(a_n)_n \in \ell^2 \iff \sum_n \frac{1}{n^{2\alpha}} \text{ converge} \iff 2\alpha > 1 \iff \alpha > \frac{1}{2}.$

Par conséquent (pour $\alpha = 1$), a = 1 la suite $\left(0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots\right)$ est dans ℓ^2 mais pas dans ℓ^1 .

7. Montrer que $\ell^1 \subset \ell^2$.

Soit $(u_n)_n \in \ell^1$.

- Comme la série $\sum_{n} |u_n|$ converge, on a $|u_n| \longrightarrow 0$.
- Donc, on a $|u_n| \le 1$ APCR et donc $u_n^2 \le |u_n|$ APCR.
- Donc, $u_n^2 = O(|u_n|)$.
- Comme la série $\sum_{n} u_n$ est absolument convergente, il en est de même pour $\sum_{n} u_n^2$.

Ainsi, $(u_n)_n \in \ell^2$ et on a bien $\ell^1 \subset \ell^2$.

8. Une propriété de transfert.

Soient $a, b \in \mathbb{R}^{\mathbb{N}}$. Montrer que

$$\left. \begin{array}{l} a \in \ell^2 \\ b \in \ell^2 \end{array} \right\} \implies a \times b \in \ell^1.$$

On passera par les sommes partielles et on pourra utiliser des inégalités classiques.

On suppose que $a, b \in \ell^2$. Notons

$$S_a := \sum_{n=0}^{\infty} a_n^2$$
 et $S_b := \sum_{n=0}^{\infty} b_n^2$.

Soit $N \in \mathbb{N}$. On a $\sum_{n=0}^{N} a_n^2 \leqslant S_a$ et de même pour b. Grâce à l'inégalité de Cauchy-Schwarz, on a

$$\left(\sum_{k=0}^{N} |a_k| |b_k|\right)^2 \leqslant \left(\sum_{k=0}^{N} a_k^2\right) \times \left(\sum_{k=0}^{N} b_k^2\right) \leqslant S_a \times S_b.$$

Donc, on a $\sum_{k=0}^{N} |a_k| |b_k| \leqslant \sqrt{S_a S_b}$. Ainsi, les sommes partielles de la série $\sum_n |a_n b_n|$ sont majorées. Par conséquent, la série $\sum_n |a_n b_n|$ converge, $a \times b \in \ell^1$ et donc

$$\left[\begin{array}{c} a \in \ell^2 \\ b \in \ell^2 \end{array}\right] \implies a \times b \in \ell^1.$$

9. En déduire que ℓ^2 est un \mathbb{R} -espace vectoriel.

Soient $a, b \in \ell^2$ et $\lambda \in \mathbb{R}$.

- Il est clair que λa est encore dans ℓ^2 .
- Il nous reste donc à montrer que $a+b \in \ell^2$. Soit $n \in \mathbb{N}$. On a

$$(a_n + b_n)^2 = a_n^2 + 2a_nb_n + b_n^2 \le a_n^2 + 2|a_nb_n| + b_n^2.$$

Comme les séries $\sum_{n} a_n^2$, $\sum_{n} b_n^2$ et $\sum_{n} |a_n b_n|$ sont convergentes, par majoration, il en est

de même pour la série à termes positifs $\sum_{n} (a_n + b_n)^2$.

• Ainsi, $a+b \in \ell^2$.

Comme de plus $\ell^2 \neq \emptyset$ (la suite nulle est dans ℓ^2), en tant que sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$,

 ℓ^2 est un \mathbb{R} -espace vectoriel.

10. Si $a, b \in \ell^2$, on note

$$(a \mid b) := \sum_{n=0}^{\infty} a_n b_n.$$

Justifier cette définition.

Soient $a,b \in \ell^2$. Comme $a \times b \in \ell^1$ (d'après la question 8.), la série $\sum_n a_n b_n$ est absolument

convergente donc convergente. Ainsi, la somme $\sum_{n=0}^{\infty} a_n b_n$ est bien définie.

Partie III – Un lemme sur les séries divergentes.

11. Montrer que $\sum_{n} \frac{u_n}{(S_n)^2}$ converge.

On pourra utiliser que $(S_n)^2 \geqslant S_n S_{n-1}$ et exprimer u_n en fonction de S_n .

On suppose que $\sum_{n} u_n$ diverge. Soit $N \geqslant 1$. On a

$$\sum_{n=0}^{N} \frac{u_n}{(S_n)^2} = \frac{u_0}{(S_0)^2} + \sum_{n=1}^{N} \frac{u_n}{(S_n)^2}$$

$$\leq \frac{1}{u_0} + \sum_{n=1}^{N} \frac{u_n}{S_n S_{n-1}}$$

car $\forall n \geq 1, (S_n)^2 \geq S_n S_{n-1}$. Or, si $n \geq 1$, on a

$$\frac{u_n}{S_n S_{n-1}} = \frac{S_n - S_{n-1}}{S_n S_{n-1}} = \frac{1}{S_{n-1}} - \frac{1}{S_n}.$$

Donc,

$$\sum_{n=0}^{N} \frac{u_n}{(S_n)^2} \leqslant \frac{1}{u_0} + \sum_{n=1}^{N} \left(\frac{1}{S_{n-1}} - \frac{1}{S_n} \right) = \frac{1}{u_0} + \frac{1}{S_0} - \frac{1}{S_N} \leqslant \frac{1}{u_0} + \frac{1}{S_0}.$$

Comme $\sum_{n} \frac{u_n}{(S_n)^2}$ est une série à termes positifs, elle est convergente. On a bien

$$\sum_{n} u_n \text{ diverge } \implies \sum_{n} \frac{u_n}{(S_n)^2} \text{ converge.}$$

- 12. On veut montrer que $\sum_{n} \frac{u_n}{S_n}$ diverge.
 - (a) On suppose que $\frac{u_n}{S_n} \longrightarrow 0$. Conclure.

Dans ce cas, la série $\sum_{n} \frac{u_n}{S_n}$ est grossièrement divergente.

- (b) On suppose que $\frac{u_n}{S_n} \longrightarrow 0$.
 - (i) Montrer que la série $\sum_{n} \ln \left(1 \frac{u_n}{S_n}\right)$ diverge.

Soit $N \in \mathbb{N}$. On calcule

$$\sum_{n=0}^{N} \ln\left(1 - \frac{u_n}{S_n}\right) = \sum_{n=1}^{N} \ln\left(1 - \frac{u_n}{S_n}\right)$$

$$= \sum_{n=1}^{N} \ln\left(\frac{S_n - u_n}{S_n}\right)$$

$$= \sum_{n=1}^{N} \ln\left(\frac{S_{n-1}}{S_n}\right)$$

$$= \sum_{n=1}^{N} \ln(S_{n-1}) - \ln(S_n)$$

$$= \ln(S_0) - \ln(S_N) \xrightarrow[N \to \infty]{} -\infty$$
(car $u_0 = S_0$)

 $\operatorname{car} S_N \xrightarrow[N \to \infty]{} +\infty$. Par conséquent,

la série
$$\sum_{n} \ln \left(1 - \frac{u_n}{S_n} \right)$$
 diverge.

(ii) Conclure.

Comme on a supposé $\frac{u_n}{S_n} \longrightarrow 0$, on a

$$\ln\left(1 - \frac{u_n}{S_n}\right) \sim -\frac{u_n}{S_n}$$
 quand $n \to \infty$.

Comme ces termes sont de signe constant, le théorème de comparaison des séries à terme équivalents s'applique : on a

$$\sum_{n} \ln \left(1 - \frac{u_n}{S_n} \right) \text{ diverge } \iff \sum_{n} - \frac{u_n}{S_n} \text{ diverge } \iff \sum_{n} \frac{u_n}{S_n} \text{ diverge.}$$

Ainsi, on a

la série
$$\sum_{n} \frac{u_n}{S_n}$$
 diverge.

Partie IV – Trois belles propriétés de ℓ^2 .

13. Réciproque de la propriété de transfert.

(a) Soit $a \in (\mathbb{R}_+^*)^{\mathbb{N}}$. Montrer que

$$\left(\forall b \in \ell^2, \ a \times b \in \ell^1\right) \implies a \in \ell^2.$$

• On suppose que

$$\forall b \in \ell^2, \ a \times b \in \ell^1. \tag{*}$$

Montrons que $a \in \ell^2$.

- On raisonne par l'absurde et on suppose que $a \notin \ell^2$. Ainsi, la série $\sum_n a_n^2$ est divergente.
- On note, pour $n \in \mathbb{N}$, $S_n := \sum_{k=0}^n a_k^2$.
- Comme on a $a_n^2 > 0$ pour $n \in \mathbb{N}$, la question 11. s'applique. Ainsi, la série $\sum_n \frac{a_n^2}{(S_n)^2}$ converge.
- Donc, la suite $\left(\frac{a_n}{S_n}\right)_n$ est dans ℓ^2 . Donc, d'après (*), la suite $\left(a_n \times \frac{a_n}{S_n}\right)_n$ est dans ℓ^1 .
- Autrement dit, la série $\sum_{n} \frac{a_n^2}{S_n}$ converge, ce qui contredit la question 12..

Ainsi, on a bien $(\forall b \in \ell^2, \ a \times b \in \ell^1) \implies a \in \ell^2$.

- (b) Montrer que le résultat est encore valable si $a \in \mathbb{R}^{\mathbb{N}}$.
- On suppose que la suite a vérifie $\forall b \in \ell^2, \ a \times b \in \ell^1$. Montrons que $a \in \ell^2$.
- \bullet On introduit les suites u et c définies par

$$\forall n \in \mathbb{N}, \ u_n = \frac{1}{n+1}$$
 et $\forall n \in \mathbb{N}, \ c_n = |a_n| + \frac{1}{n+1}$.

• Comme la suite u est dans ℓ^2 , on a

$$c \in \ell^2 \iff |a| + c \in \ell^2 \iff |a| \in \ell^2 \iff a \in \ell^2$$

(on laisse le lecteur le démontrer s'il en ressent le besoin). On va donc montrer que $c \in \ell^2$.

• Montrons que la suite c vérifie

$$\forall b \in \ell^2, \ c \times b \in \ell^1.$$

Soit $b \in \ell^2$. On a $a \times b \in \ell^1$, donc $|a| \times b \in \ell^1$. De plus, d'après la propriété de transfert rappelée en préambule et démontrée dans la question $\mathbf{8}$, on a $u \times b \in \ell^1$. Comme ℓ^1 est un espace vectoriel, on a $(|a| \times b + u \times b) \in \ell^1$, $ie \ c \times b \in \ell^1$, ce qu'on voulait démontrer.

• D'après la question précédente, on a donc $c \in \ell^2$; donc $a \in \ell^2$.

14. L'espace ℓ^2 n'a pas de borne supérieure.

Dans cette question, on veut montrer qu'il n'existe pas de suite $(M_n)_n$ telle que

$$\forall u \in \mathbb{R}^{\mathbb{N}}, \quad \left(u \in \ell^2 \iff u_n = \mathrm{o}(M_n) \text{ quand } n \to \infty\right).$$

On suppose l'existence d'une telle suite $(M_n)_n \in \mathbb{R}^{\mathbb{N}}$, qu'on fixe.

En utilisant la question 13.(b), aboutir à une contradiction et conclure.

On va montrer que

$$\forall b \in \ell^2, \ (b_n \times M_n)_n \in \ell^1.$$

Soit $b \in \ell^2$. On a donc $b_n = o(M_n)$. Donc, par propriété des relations de comparaison, on a

$$\sqrt{|b_n|} = o\left(\sqrt{|M_n|}\right).$$

Donc, en multipliant des deux côtés par $\sqrt{|M_n|}$, on a

$$\sqrt{|b_n| |M_n|} = o(|M_n|)$$
 ie $\sqrt{|b_n \times M_n|} = o(M_n)$.

Donc, la suite $\left(\sqrt{|b_n \times M_n|}\right)_n$ est dans ℓ^2 . Donc, $(|b_n \times M_n|)_n \in \ell^1$. Donc, $(b_n \times M_n)_n \in \ell^1$. Donc, on a bien prouvé

$$\forall b \in \ell^2, \ (b_n \times M_n)_n \in \ell^1.$$

Donc, d'après la question **13.**(b) : $(M_n)_n \in \ell^2$. Donc, $M_n = o(M_n)$, ce qui est absurde. Ainsi,

il n'existe pas de suite
$$(M_n)_n$$
 telle que $u \in \ell^2 \iff u_n = \mathrm{o}(M_n)$

pour toute suite $u \in \mathbb{R}^{\mathbb{N}}$.

15. L'espace $\left(\ell^2\right)'$ est isomorphe à ℓ^2 .

Montrer que

$$\Phi: \left\{ \begin{array}{l} \ell^2 \longrightarrow (\ell^2)' \\ a \longmapsto q_a \end{array} \right.$$

est un isomorphisme.

- Compte tenu de la question 5, il nous reste à prouver que Φ est surjective.
- Soit $\varphi \in (\ell^2)'$. On cherche $a \in \ell^2$ tel que $\Phi(a) = \varphi$. On va raisonner par analyse-synthèse.
- Fixons donc a ∈ ℓ² tel que Φ(a) = φ ie telle que qa = φ.
 Si i ∈ N, notons ei := (δn,i)n∈N la suite dont tous les termes sont nuls sauf le terme d'indice i. On a bien ∀n, en ∈ ℓ². Et, pour tout n ∈ N,

$$q_a(e_n) = a_n$$
.

Ainsi, la suite $(a_n)_n$, si elle existe, est unique, ce qu'on savait déjà puisque Φ est injective.

DS 7 9/17

• Passons à la synthèse. On considère la suite $(a_n)_n$ définie par

$$\forall n \in \mathbb{N}, \ a_n = \varphi(e_n).$$

Il nous faut montrer deux choses : que $(a_n)_n \in \ell^2$ et que $\varphi = \Phi(a)$.

- Avant tout, on peut remarquer que la famille $(e_n)_{n\in\mathbb{N}}$ est orthonormale.
- On veut montrer que $(a_n)_n \in \ell^2$. Fixons $C \geqslant 0$ tel que

$$\forall x \in E, \ |\varphi(x)| \leqslant C \|x\|_2$$
.

Soit $N \in \mathbb{N}$. On a

$$\left| \varphi \left(\sum_{n=0}^{N} a_n e_n \right) \right| = \left| \sum_{n=0}^{N} a_n \varphi(e_n) \right|$$

$$= \left| \sum_{n=0}^{N} a_n^2 \right|$$

$$\leq C \left\| \sum_{n=0}^{N} a_n e_n \right\|_2. \tag{*}$$

Or, on a

$$\left(\left\| \sum_{n=0}^{N} a_n e_n \right\|_2 \right)^2 = \sum_{n=0}^{N} a_n^2$$

car la famille $(e_n)_{n\in\mathbb{N}}$ est orthonormale. Donc, l'inégalite (*) s'écrit aussi

$$\sum_{n=0}^{N} a_n^2 \leqslant C \sqrt{\sum_{n=0}^{N} a_n^2}.$$

Ainsi, on a

$$\sqrt{\sum_{n=0}^{N} a_n^2} \leqslant C \text{ et donc } \sum_{n=0}^{N} a_n^2 \leqslant C^2.$$

Ainsi, la série à termes positifs $\sum_{n} a_n^2$ est convergente : on a bien $(a_n)_n \in \ell^2$.

• Il nous reste à montrer que $q_a = \varphi$. Soit $(u_n)_n \in \ell^2$. Soit $f \in (\ell^2)'$; on fixe $C_f \geqslant 0$ tel que $\forall x \in E, |f(x)| \leqslant C_f ||x||_2$. On va montrer que

$$f\left(\sum_{n=0}^{N} u_n e_n\right) \longrightarrow f(u)$$
 quand $N \to \infty$.

Cela permettra de conclure car on peut prendre $f := q_a$ ou $f := \varphi$ et que φ et q_a coïncident en les e_i et donc en les combinaisons linéaires des e_i .

DS 7 10/17

On écrit

$$\left| f(u) - f\left(\sum_{n=0}^{N} u_n e_n\right) \right| = \left| f\left(u - \sum_{n=0}^{N} u_n e_n\right) \right|
= \left| f\left((0, \dots, 0, u_{N+1}, u_{N+2}, \dots)\right) \right|
\leqslant C_f \left\| (0, \dots, 0, u_{N+1}, u_{N+2}, \dots) \right\|_2
= C_f \sqrt{\sum_{n=N+1}^{\infty} u_n^2}.$$

Comme la série $\sum_n u_n^2$ converge, on sait que ses restes tendent vers 0 : on a

$$\sum_{n=N}^{\infty} u_n^{\,2} \longrightarrow 0 \quad \text{ quand } N \to \infty.$$

Ainsi, on a bien

$$f\left(\sum_{n=0}^{N} u_n e_n\right) \longrightarrow f(u)$$
 quand $N \to \infty$,

ce qui conclut la réponse.

Partie V – Un critère pour être ℓ^2 .

16. On suppose que

$$\exists \delta > 0 : \ \forall x \in [0, \delta[, \ f(x) \geqslant x.]$$

Montrer que $u_n \to 0$.

- Déjà, remarquons que la suite $(u_n)_n$ est à valeurs ≥ 0 .
- On fixe un $\delta > 0$ tel que $\forall x \in [0, \delta[, f(x) \ge x]$.
- On raisonne par l'absurde et on suppose que $u_n \longrightarrow 0$. Fixons donc $N \in \mathbb{N}$ tel que

$$\forall n \geqslant N, |u_n| < \delta.$$

Plus précisément, on a $\forall n \geq N, \ 0 \leq u_n < \delta$.

- Soit $n \ge N$. On a $u_n \in [0, \delta[$ donc $f(u_n) \ge u_n$ ie $u_{n+1} \ge u_n$.
- Donc, $\forall n \geq N, u_n \geq u_N$. Donc, par passage à la limite, on a $0 \geq u_N$. Donc $u_N = 0$.
- Or, on pourrait montrer par récurrence immédiate que $\forall n \in \mathbb{N}, u_n > 0$. C'est absurde.
- Ainsi, on a $u_n \not\longrightarrow 0$.

17. Le critère pour être ℓ^2 .

Dans cette question, on suppose que

$$f(x) = x - Cx^{\alpha} + o(x^{\alpha})$$
 quand $x \to 0$,

où $C \in \mathbb{R}^*$ et $\alpha > 1$.

(a) Montrer que $C < 0 \implies u_n \not\to 0$.

On suppose que C < 0. Montrons que $\exists \delta > 0 : \ \forall x \in [0, \delta[, \ f(x) \geqslant x.$

On a $f(x) - x = -Cx^{\alpha} + o(x^{\alpha})$ quand $x \to 0$, donc

$$f(x) - x \sim -Cx^{\alpha}$$
.

Or, $\forall x \geqslant 0, -Cx^{\alpha} \leqslant 0.$

De plus, on sait que deux fonctions équivalentes ont localement le même signe. Donc, il existe $\delta > 0$ tel que $\forall x \in [0, \delta[, f(x) - x \geqslant 0$. La question précédente permet de conclure : $u_n \xrightarrow{} 0$.

- (b) On suppose que C > 0 et $u_n \longrightarrow 0$.
 - (i) Montrer que $u_n^{1-\alpha} \sim C(\alpha-1)n$.

On pourra utiliser le théorème de Cesàro.

Comme $u_n \longrightarrow 0$ par hypothèse, on peut remplacer x par u_n dans le développement asymptotique $f(x) = x - Cx^{\alpha} + o(x^{\alpha})$. On obtient

$$u_{n+1} = u_n - Cu_n^{\alpha} + o(u_n^{\alpha})$$

= $u_n (1 - Cu_n^{\alpha - 1} + o(u_n^{\alpha - 1}))$

Donc, en passant à la puissance $1 - \alpha$:

$$u_{n+1}^{1-\alpha} = u_n^{1-\alpha} \left(1 - Cu_n^{\alpha - 1} + o\left(u_n^{\alpha - 1}\right) \right)^{1-\alpha}$$
$$= u_n^{1-\alpha} \left(1 - C(1-\alpha)u_n^{\alpha - 1} + o\left(u_n^{\alpha - 1}\right) \right)$$

 $\operatorname{car} (1 + h + \operatorname{o}(h))^{1-\alpha} = 1 + (1 - \alpha)h + \operatorname{o}(h) \text{ quand } h \to 0.$

Donc, on a

$$u_{n+1}^{1-\alpha} = u_n^{1-\alpha} - C(1-\alpha) + o(1)$$
donc $u_{n+1}^{1-\alpha} - u_n^{1-\alpha} = C(\alpha-1) + o(1)$
donc $u_{n+1}^{1-\alpha} - u_n^{1-\alpha} \longrightarrow C(\alpha-1)$.

Donc, d'après le lemme de Cesàro, on a

$$u_n^{1-\alpha} \sim C(\alpha - 1)n.$$

DS 7 12/17

(ii) En déduire que

$$(u_n)_n \in \ell^2 \iff \alpha < 3.$$

D'après ce qui précède, on a

$$u_n \sim \left(C(\alpha - 1)\right)^{\frac{1}{1-\alpha}} \times n^{\frac{1}{1-\alpha}}$$
$$\sim \left(C(\alpha - 1)\right)^{\frac{1}{1-\alpha}} \times \frac{1}{n^{\frac{1}{\alpha - 1}}}.$$

Donc, on a

$$u_n^2 \sim \left(C(\alpha - 1)\right)^{\frac{2}{1 - \alpha}} \times \frac{1}{n^{\frac{2}{\alpha - 1}}}.$$

Donc

$$(u_n)_n \in \ell^2 \iff \frac{2}{\alpha - 1} > 1$$

 $\iff 2 > \alpha - 1$
 $\iff \boxed{\alpha < 3.}$

Partie VI – Application à une suite récurrente.

18. Montrer que f est \mathscr{C}^{∞} .

Montrons par récurrence sur $n \ge 1$ que $f \in \mathcal{D}^n(\mathbb{R}_+, \mathbb{R})$.

- Pour n = 1 : f est dérivable par hypothèse.
- Soit $n \ge 1$ tel que $f \in \mathcal{D}^n(\mathbb{R}_+, \mathbb{R})$. Montons que $f \in \mathcal{D}^{n+1}(\mathbb{R}_+, \mathbb{R})$. Par opérations sur les fonctions dérivables n fois, la fonction

$$t \longmapsto f(t)^2 - t + 1$$

est aussi dérivable n fois. Donc, $f' \in \mathcal{D}^n(\mathbb{R}_+, \mathbb{R})$. Donc $f \in \mathcal{D}^{n+1}(\mathbb{R}_+, \mathbb{R})$.

Ainsi, on a

$$\forall n \in \mathbb{N}^*, f \in \mathcal{D}^n(\mathbb{R}_+, \mathbb{R}).$$

Donc, $f \in \mathscr{C}^{\infty}(\mathbb{R}_+, \mathbb{R})$.

19. Montrer que $f \ge 0$ et que f est croissante sur [0,1].

Soit $t \in [0, 1]$. On a $1 - t \ge 0$ donc $f(t)^2 - t + 1 \ge 0$ donc $f'(t) \ge 0$. Ainsi,

$$f$$
 est croissante sur $[0,1]$.

Comme par ailleurs f(0) = 0, on a $f \ge 0$ sur [0,1].

20. On veut montrer que $\forall x \in [0,1], f(x) < x$. On pose

$$A := \left\{ x \in \left] 0, 1 \right] \mid f(x) \geqslant x \right\}.$$

On raisonne par l'absurde et on suppose $A \neq \emptyset$. On pose $a := \inf A$.

(a) Montrer que $a \in A$.

Par caractérisation séquentielle de la borne inférieure, on fixe une suite $(a_n)_n \in A^{\mathbb{N}}$ d'éléments de A qui tend vers a. On a $\forall n \in \mathbb{N}$, $f(a_n) \geqslant a_n$. Comme f est continue en a, on a $f(a_n) \longrightarrow f(a)$. Par passage à la limite dans les inégalités larges, on a $f(a) \geqslant a$. Ainsi, $a \in A$.

- (b) Montrer que a > 0.
- Comme f est \mathscr{C}^{∞} , la formule de Taylor-Young est valable.
- On a f(0) = 0. Comme f est solution de l'équation différentielle $y' = y^2 t + 1$, on a $f'(0) = f(0)^2 0 + 1 = 1$. Enfin, si on dérive l'équation différentielle, comme f est \mathscr{C}^{∞} , on obtient que f satisfait l'équation y'' = 2yy' 1. Donc, on a f''(0) = -1.
- Donc, on a $f(x) = x \frac{x^2}{2} + o(x^2)$ quand $x \to 0$ et donc $f(x) x \sim -\frac{x^2}{2}$.
- Deux fonctions équivalentes ayant localement le même signe stricte, il existe donc $\delta > 0$, qu'on fixe, tel que

$$\forall x \in]0, \delta[, f(x) - x < 0.$$

- Ainsi, on a bien $\forall x \in A, x > \delta$. Donc $a \ge \delta > 0$.
 - (c) En utilisant le théorème des accroissements finis, aboutir à une contradiction.
- On a a > 0, $a \le 1$ et $f(a) \ge a$. Comme f est dérivable sur \mathbb{R}_+ , d'après le théorème des accroissement finis, il existe $b \in [0, a[$ tel que

$$\frac{f(a) - f(0)}{a - 0} = f'(b).$$

- On a donc $f'(b) \ge 1$ et donc $f(b)^2 b + 1 = f'(b) \ge 1$. Donc, on a $f(b)^2 \ge b$.
- Or, comme b < a, on a $f(b) < b < a \le 1$. Comme de plus on a $f(b) \ge 0$, on a $f(b)^2 \le f(b)$.
- Donc, on a $f(b) \ge b$, ce qui est absurde.
- Ainsi : $A = \emptyset$, ie

$$\forall x \in]0,1], \ f(x) < x.$$

21. On considère la suite $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ définie par

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n).$

(a) Montrer que $(u_n)_n$ est bien définie.

On va montrer par récurrence que $(u_n)_n$ est bien définie et décroissante. Pour $n \in \mathbb{N}$, on note

$$\mathscr{P}(n) := \langle \langle 0 \leqslant u_{n+1} \leqslant u_n \leqslant 1 \rangle \rangle$$
.

• Pour n = 0, on a $u_1 = f(u_0)$. Or, d'après ce qui précède, on a f(1) < 1. Donc, $u_1 \le u_0$. Comme f est ≥ 0 sur [0,1], on a bien $\mathcal{P}(0)$.

DS 7

• Soit $n \in \mathbb{N}$ tel que $\mathscr{P}(n)$ est vraie. On a $0 \leqslant u_{n+1} \leqslant u_n \leqslant 1$. Comme on a vue que f est croissante sur [0,1], on a immédiatement : $f(0) \leqslant f(u_{n+1}) \leqslant f(u_n) \leqslant f(1)$. Et comme f(0) = 0 et $f(1) \leqslant 1$, on a

$$0 \leqslant u_{n+2} \leqslant u_{n+1} \leqslant 1$$

$$ie \mathcal{P}(n+1)$$
.

On ainsi montré que $(u_n)_n$ est bien définie, décroissante et ≥ 0 .

(b) Montrer que $u_n \longrightarrow 0$ et $(u_n)_n \in \ell^2$.

D'après le théorème de la limite montone, $(u_n)_n$ converge vers une limite $\ell \in [0,1]$. Comme f est continue, cette limite ℓ est un point fixe de f. Or, on a vu que $\forall x \in]0,1]$, f(x) < x. Donc, $\ell = 0$. Donc, $u_n \longrightarrow 0$.

On peut alors appliquer le résulat du préambule, avec $C = \frac{1}{2}$ et $\alpha = 2$. En effet, on a vu plus haut que

$$f(x) = x - \frac{x^2}{2} + o(x^2)$$
 quand $x \to 0$.

Donc
$$(u_n)_n \in \ell^2$$
.

Partie VII – Application à une intégrale imbriquée à l'infini.

- **22.** Montrer que $(x_n)_n$ est décroissante.
 - La suite $(x_n)_n$ est définie par

$$x_0 := 1$$
 et $\forall n \in \mathbb{N}, \ x_{n+1} = \int_{-x_n}^{x_n} g(t) \, dt.$

Comme la fonction g est paire, on a

$$\forall n \in \mathbb{N}, \ x_{n+1} = 2 \int_0^{x_n} g(t) \, \mathrm{d}t.$$

Posons $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ la fonction définie par

$$f: \left\{ \begin{array}{l} \mathbb{R}_+ \longrightarrow \mathbb{R} \\ x \longmapsto 2 \int_0^x g(t) \, \mathrm{d}t. \end{array} \right.$$

Comme $g \ge 0$ et qu'on intègre « dans la bonne direction » si $x \ge 0$, la fonction f est ≥ 0 . De plus, la fonction f est croissante. En effet, si $0 \le y \le x$, alors $[0, y] \subset [0, x]$; comme $g \ge 0$, on a bien $f(x) \ge f(y)$.

• Ainsi, on sait (cela se montre par récurrence) que

$$x_1 \leqslant x_0 \implies (x_n)_n$$
 décroissante.

DS 7 15/17

• Soit $x \ge 0$. On calcule

$$\begin{split} f(x) &= 2 \int_0^x g(t) \, \mathrm{d}t \\ &= \int_0^x e^{1-e^t - e^{-t}} \, \mathrm{d}t \\ &\leqslant \int_0^x e^{1-e^t} \, \mathrm{d}t. \end{split} \qquad (\operatorname{car} \, \forall t, \, \exp(-e^{-t}) \leqslant 1) \end{split}$$

Or, on sait que si $t \in \mathbb{R}$, on a $e^t \ge 1 + t$ et donc $(1 - e^t) \le -t$. Ainsi, on a

$$f(x) \le \int_0^x e^{-t} dt = 1 - e^{-x}.$$

Or, si x > 0, on a $(1 - e^{-x}) < x$, pour des raisons similaires à ce qu'on vient de dire.

- On a donc montré que $\forall x > 0, \ f(x) < x$.
- En particulier, on a $x_1 = f(1) < 1 = x_0$. Ainsi, $(x_n)_n$ est décroissante.

23. Montrer que $x_n \longrightarrow 0$.

Comme par ailleurs, on a $f \ge 0$, on a $\forall n \in \mathbb{N}, x_n \ge 0$. D'après le théorème de la limite monotone : la suite $(x_n)_n$ est convergente ; comme f est continue, la limite de $(x_n)_n$ est un point fixe de f, qui est compris entre 0 et 1.

Or, on a $\forall x > 0$, f(x) < x. Ainsi, le seul point fixe de f est 0.

Donc, on a bien $x_n \longrightarrow 0$.

- **24.** (a) Montrer que $(x_n)_n \notin \ell^2$.
 - La fonction f, en tant que primitive d'une fonction \mathscr{C}^{∞} est \mathscr{C}^{∞} .
 - Soit $x \ge 0$. On calcule

$$f'(x) = e^{1-\cosh(x)}$$

$$f''(x) = -\sinh(x)e^{1-\cosh(x)}$$

$$f'''(x) = \sinh^2(x)e^{1-\cosh(x)} - \cosh(x)e^{1-\cosh(x)}$$

• On a donc

$$f(0) = 0$$
, $f'(0) = e^0 = 1$, $f''(0) = 0$ et $f'''(0) = -1$

et donc, d'après la formule de Taylor-Young :

$$f(x) = x - \frac{x^3}{6} + o(x^3).$$

• On est donc dans le cas défini dans le préambule de la partie précédente, avec $C = \frac{1}{6}$ et $\alpha = 3$. Donc, $(x_n)_n \notin \ell^2$.

DS 7

(b) Donner un équivalent de x_n .

La question 17.(b)(i) donne $x_n^{1-\alpha} \sim C(\alpha-1)n = \frac{n}{3}$. Donc,

$$x_n \sim \sqrt{\frac{3}{n}}.$$

FIN DU CORRIGÉ.

