Homework 6

Proposition 4.30. For all $k, m \in \mathbb{N}$, where $m \geq 2$,

$$f_{m+k} = f_{m-1}f_k + f_m f_{k+1}.$$

Proof. Base case: et k = 1. We want to show that $f_{m+1} = f_{m-1}f_1 + f_mf_2$. Using the recursive definition of the sequence, $f_2 = f_1 + f_0$, we have:

$$f_{m-1}f_1 + f_m f_2 = f_{m-1}f_1 + f_m (f_1 + f_0)$$

$$= f_{m-1}f_1 + f_m f_1 + f_m f_0$$

$$= (f_{m-1} + f_m)f_1 + f_m f_0$$

$$= f_{m+1}f_1 + f_m f_0$$

$$= f_{m+1}$$

Thus, the base case holds.

Inductive step: Assume the statement holds for some $k \in \mathbb{N}$

$$f_{m+k} = f_{m-1}f_k + f_m f_{k+1}$$

We want to show that the statement holds for k+1

$$f_{m+(k+1)} = f_{m-1}f_{k+1} + f_m f_{k+2}$$

Using the recursive definition of the sequence, $f_{n+2} = f_{n+1} + f_n$, we have:

$$f_{m+(k+1)} = f_{(m+k)+1}$$

$$= f_{m+k} + f_{(m+k)-1}$$

$$= (f_{m-1}f_k + f_m f_{k+1}) + (f_{m-2}f_k + f_{m-1}f_{k+1})$$

$$= f_{m-1}(f_k + f_{k+1}) + f_m f_{k+1} + f_{m-2}f_k$$

$$= f_{m-1}f_{k+2} + f_m f_{k+1} + f_{m-2}f_k$$

$$= f_{m-1}f_{k+1} + (f_{m-1} + f_{m-2})f_k + f_m f_{k+1}$$

$$= f_{m-1}f_{k+1} + f_m f_k + f_m f_{k+1}$$

$$= f_{m-1}f_{k+1} + f_m (f_k + f_{k+1})$$

$$= f_{m-1}f_{k+1} + f_m f_{k+2}$$

Thus, the statement holds for k + 1. The (m + k)-th term of the sequence is equal to the product of the (m - 1)-th term and the k-th term, plus the product of the m-th term and the (k + 1)-th term.

Proposition 4.31. For all $k \in \mathbb{N}$, $f_{2k+1} = f_k^2 + f_{k+1}^2$.

Proof. Let f_n be a sequence defined by $f_{n+2} = f_{n+1} + f_n$ for $n \ge 0$, with initial values f_0 and f_1

Base case: Let k=1. We want to show that $f_3=f_1^2+f_2^2$. Using the recursive definition of the sequence, $f_2=f_1+f_0$ and $f_3=f_2+f_1$, we have:

$$f_1^2 + f_2^2 = f_1^2 + (f_1 + f_0)^2$$

$$= f_1^2 + f_1^2 + 2f_1f_0 + f_0^2$$

$$= 2f_1^2 + 2f_1f_0 + f_0^2$$

$$= (f_1 + f_0)(2f_1 + f_0)$$

$$= f_2(f_2 + f_1)$$

$$= f_2f_3$$

$$= f_3$$
Axiom 1.1 (iii)

Recursive Definition

Axiom 1.1 (iv)

Axiom 1.1 (iv)

Thus, the base case holds.

Inductive step: Assume the statement holds for some $k \in \mathbb{N}$,

$$f_{2k+1} = f_k^2 + f_{k+1}^2$$

We want to show that the statement holds for k+1,

$$f_{2(k+1)+1} = f_{k+1}^2 + f_{k+2}^2$$

Using the recursive definition of the sequence and the inductive hypothesis,

we have:

$$f_{2(k+1)+1} = f_{2k+3}$$

$$= f_{2k+2} + f_{2k+1}$$

$$= (f_{2k+1} + f_{2k}) + (f_k^2 + f_{k+1}^2)$$

$$= f_{2k+1} + f_{2k} + f_k^2 + f_{k+1}^2$$

$$= f_k^2 + f_{k+1}^2 + f_{2k+1} + f_{2k}$$

$$= f_k^2 + f_{k+1}^2 + (f_{k+1} + f_k)^2$$

$$= f_k^2 + f_{k+1}^2 + f_{k+1}^2 + 2f_{k+1}f_k + f_k^2$$

$$= f_k^2 + f_k^2 + f_{k+1}^2 + 2f_{k+1}f_k + f_k^2$$

$$= f_k^2 + f_k^2 + f_{k+1}^2 + 2f_{k+1}f_k$$

$$= f_k^2 + f_k^2 + f_{k+1}^2 + 2f_{k+1}f_k$$

$$= 2f_k^2 + 2f_{k+1}^2 + 2f_{k+1}f_k$$

$$= (f_k + f_{k+1})^2 + f_{k+1}^2$$

$$= (f_k + f_{k+1})^2 + f_{k+1}^2$$

$$= f_{k+2}^2 + f_{k+1}^2$$

$$= f_{k+2}^2 + f_{k+1}^2$$
Recursive definition
$$= f_{k+1}^2 + f_{k+1}^2$$
Axiom 1.1 (iii)
$$= f_{k+1}^2 + f_{k+1}^2$$
Recursive definition
$$= f_{k+1}^2 + f_{k+1}^2$$
Axiom 1.1 (iii)
$$= f_{k+1}^2 + f_{k+1}^2$$
Axiom 1.1 (iii)

Thus, the statement holds for k+1. By the principle of mathematical induction, the statement holds for all $k \in \mathbb{N}$, $f_{2k+1} = f_k^2 + f_{k+1}^2$.

Project 5.3. Define the following sets:

$$A = \{3x : x \in \mathbb{N}\},\$$

$$B = \{3x + 21 : x \in \mathbb{N}\},\$$

$$C = \{x + 7 : x \in \mathbb{N}\},\$$

$$D = \{3x : x \in \mathbb{N} \text{ and } x > 7\},\$$

$$E = \{x : x \in \mathbb{N}\},\$$

$$F = \{3x - 21 : x \in \mathbb{N}\},\$$

$$G = \{x : x \in \mathbb{N} \text{ and } x > 7\}.$$

Determine which of the following set equalities are true. If a statement is true, prove it. If it is false, explain why this set equality does not hold.

- (i) D = E.
- (ii) C = G.
- (iii) D = B.

Project 5.3. Proof:

(i) $D \neq E$

 $D = 3x : x \in \mathbb{N} \text{ and } x > 7 \text{ and } E = x : x \in \mathbb{N}$

The sets are not equal because D only contains multiples of 3 greater than 21, while E contains all natural numbers. For example, $1 \in E$ but $1 \notin D$.

(ii) C = G

To prove C = G, we need to show that $C \subseteq G$ and $G \subseteq C$.

Let $x \in C$. Then x = y + 7 for some $y \in \mathbb{N}$.

Since $y \in \mathbb{N}$, $y \ge 1$ (by Proposition 2.20).

So x = y + 7 > 7, and $x \in \mathbb{N}$ (by closure of addition in \mathbb{N} , Axiom 2.1(i)).

Thus, $x \in G$. This proves $C \subseteq G$.

Now let $x \in G$. Then $x \in \mathbb{N}$ and x > 7.

Let y = x - 7. Since x > 7, y > 0 and $y \in \mathbb{N}$ (by Proposition 2.13).

So x = y + 7 for some $y \in \mathbb{N}$. Thus, $x \in C$. This proves $G \subseteq C$.

Therefore, C = G.

(iii) D = B

To prove D = B, we need to show that $D \subseteq B$ and $B \subseteq D$.

Let $x \in D$. Then x = 3y for some $y \in \mathbb{N}$ with y > 7.

Since y > 7, $y \ge 8$ and $y - 7 \in \mathbb{N}$ (by Proposition 2.13).

Let z = y - 7. Then $z \in \mathbb{N}$ and x = 3y = 3(z + 7) = 3z + 21.

Thus, $x \in B$. This proves $D \subseteq B$.

Now let $x \in B$. Then x = 3y + 21 for some $y \in \mathbb{N}$.

Let z = y + 7. Since $y \in \mathbb{N}$, z > 7 and $z \in \mathbb{N}$ (by closure of addition in \mathbb{N} , Axiom 2.1(i)).

So x = 3y + 21 = 3(z - 7) + 21 = 3z - 21 + 21 = 3z for some $z \in \mathbb{N}$ with z > 7.

Thus, $x \in D$. This proves $B \subseteq D$.

Therefore, D = B.

Proposition 5.4. Let A, B, C be sets.

- (i) A = A.
- (ii) If A = B then B = A.
- (iii) If A = B and B = C then A = C.

Proposition 5.4. Proof.

- (i) A = ALet $x \in A$. Then $x \in A$. This proves $A \subseteq A$. Let $x \in A$. Then $x \in A$. This proves $A \subseteq A$. Therefore, A = A.
- (ii) If A = B then B = AAssume A = B. Let $x \in B$. Then $x \in A$ (since A = B). This proves $B \subseteq A$. Let $x \in A$. Then $x \in B$ (since A = B). This proves $A \subseteq B$. Therefore, B = A.
- (iii) If A=B and B=C then A=CAssume A=B and B=C. Let $x\in A$. Then $x\in B$ (since A=B). And $x\in C$ (since B=C). This proves $A\subseteq C$. Let $x\in C$. Then $x\in B$ (since B=C). And $x\in A$ (since A=B). This proves $C\subseteq A$. Therefore, A=C.