Part 1

```
i \cdot i \cdot i
In [1]:
         1. Identify each column as nominal, ordinal, interval, or ratio in the A
         uto mpg raw.csv data set.
                 Miles per gallon: ratio
                 Cylinders: ratio
         b.
         C.
                 Displacement: nominal
         d.
                 Horsepower: ratio
                 Weight: ratio
         e.
         f.
                 Acceleration: nominal
                 Model Year: interval
         g.
                 Origin: nominal
                 Car Name: nominal
         i.
```

Out[1]: '\n1. Identify each column as nominal, ordinal, interval, or ratio in t
 he Auto_mpg_raw.csv data set.\na.\tMiles per gallon: ratio\nb.\tCylinde
 rs: ratio\nc.\tDisplacement: nominal\nd.\tHorsepower: ratio\ne.\tWeigh
 t: ratio\nf.\tAcceleration: nominal\ng.\tModel Year: interval\nh.\tOrig
 in: nominal\ni.\tCar Name: nominal\n'

Part 2

```
In [2]: # Importing the necessary libraries
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        pd.set option('display.max rows', 500)
        # importing the Auto mpg raw.csv file using pandas
        auto Mpg = pd.read csv("Auto mpg raw.csv")
        # Plotting all the histograms
        # histogram for miles per gallon
        plt.figure()
        plt.hist(auto Mpg["Miles per gallon"])
        plt.title("Miles per gallon")
        #histogram for Cylinders
        plt.figure()
        plt.hist(auto_Mpg["Cylinders"])
        plt.title("Cylinders")
        #histogram for Displacement
        plt.figure()
        plt.hist(auto_Mpg["Displacement"])
        plt.title("Displacement")
        # histogram for Horsepower
        plt.figure()
        plt.hist(auto_Mpg["Horsepower"])
        plt.title("Horsepower")
        #histogram for Weight
        plt.figure()
        plt.hist(auto Mpg["Weight"])
        plt.title("Weight")
        #histogram for Acceleration
        plt.figure()
        plt.hist(auto Mpg["Acceleration"])
        plt.title("Acceleration")
        #histogram for Model Year
        plt.figure()
        plt.hist(auto Mpg["Model year"])
        plt.title("Model year")
        #histogram for origin
        plt.figure()
        plt.hist(auto Mpg["Origin"])
        plt.title("Origin")
```

""" Answer to question number 2

Here from seeing the distribution in the histograms, some misleading datapoints are observed.

The misleading data points are discussed below:

1. The first attribute Miles_per_gallon has an extreme value 1000 th at is an outlier in the distribution

and definately is a misleading data that needs some adjustment. Summary of Miles per gallon:

```
count
          406.000000
mean
           42.755665
std
          136.102120
min
            9.000000
25%
           17.500000
50%
           23.000000
75%
           29.800000
         1000.000000
max
```

Name: Miles per gallon, dtype: float64

2. The second attribute that requires attention is the "Horsepower". Since horsepower is a ratio,

O horsepower means absence of horsepower that does not make sens e in the real world. Therefore,

0's need some other relevant values.

```
count
        405.000000
        103.785185
mean
std
         40.241668
min
          0.000000
25%
         75.000000
50%
         94.000000
75%
         129.000000
         230.000000
max
```

Name: Horsepower, dtype: float64

Other than those two attributes, the rest of the attributes does not have misleading datapoints.

11 11 11

/Library/Python/3.7/site-packages/numpy/lib/histograms.py:839: RuntimeW
arning: invalid value encountered in greater_equal
 keep = (tmp_a >= first_edge)
/Library/Python/3.7/site-packages/numpy/lib/histograms.py:840: RuntimeW
arning: invalid value encountered in less_equal
 keep &= (tmp_a <= last_edge)</pre>

' Answer to question number 2\n Here from seeing the distribution in th e histograms, some misleading datapoints are observed.\n The mislead ing data points are discussed below:\n 1. The first attribute Miles per gallon has an extreme value 1000 that is an outlier in the distribu and definately is a misleading data that needs some adjus tion\n tment. Summary of Miles per gallon:\n \ncount 406.000000\nme 42.755665\nstd 136.102120\nmin 9.000000\n25% 17.500000\n50% 23.000000\n75% 29.800000\nmax 1000.00 0000\nName: Miles per gallon, dtype: float64\n\n\n\n 2. The second attribute that requires attention is the "Horsepower". Since horsepower O horsepower means absence of horsepower that does is a ratio,\n not make sense in the real world. Therefore, \n 0\'s need some o 405.000000\nmean ther relevant values.\n \ncount 103.7851 85\nstd 40.241668\nmin 0.000000\n25% 75.000000\n50% 94.000000\n75% 129.000000\nmax 230.000000\nName: Horsepower, dtype: float64\n\n \n Other than those two attributes, the rest o f the attributes does not have misleading datapoints. \n


```
In [3]: # Lets change all the values equal to 1000 for miles Per gallon to NaN
         auto Mpg["Miles per gallon"] = auto Mpg["Miles per gallon"].replace({100
         0:np.NaN})
         print(f" The new distribution of Miles Per Gallon is: ")
         auto Mpg["Miles per gallon"].describe()
         The new distribution of Miles Per Gallon is:
Out[3]: count
                  398,000000
        mean
                   23.514573
         std
                    7.815984
        min
                    9.000000
         25%
                   17.500000
         50%
                   23.000000
        75%
                   29.000000
                   46.600000
        max
        Name: Miles per gallon, dtype: float64
In [4]: # Again, lets change all the values equal to 0 for horsepower to NaN
         auto Mpg["Horsepower"] = auto Mpg["Horsepower"].replace({0:np.NaN})
         print(f" The new distribution of Horsepower is: ")
         auto_Mpg["Horsepower"].describe()
         The new distribution of Horsepower is:
Out[4]: count
                  400.000000
        mean
                  105.082500
        std
                   38.768779
        min
                   46.000000
         25%
                   75.750000
         50%
                   95.000000
         75%
                  130.000000
        max
                  230.000000
        Name: Horsepower, dtype: float64
In [5]: # Now lets create a table with only three attributes (miles per gallon,
          Cylinders, Horsepower)
         new Table = auto Mpg[["Miles per gallon","Cylinders","Horsepower"]]
         new Table.describe()
Out[5]:
               Miles per gallon
                              Cylinders Horsepower
                   398,000000 406,000000
                                       400.000000
         count
                   23.514573
                              5.475369
                                       105.082500
         mean
           std
                    7.815984
                              1.712160
                                        38.768779
                    9.000000
                              3.000000
                                        46.000000
           min
                   17.500000
                              4.000000
          25%
                                        75.750000
          50%
                   23.000000
                              4.000000
                                        95.000000
                   29.000000
                              000000.8
                                       130.000000
          75%
```

8.000000

230.000000

46.600000

max

In []:

In [6]: # Now lets find an appropriate value to replace the NaN's in the miles_p er_gallon column

""" One approach is to find cylinders for each cars is to find a mean to replace those NaNs.

We are going to take this approach to fill in the blanks or NaNs."""

All rows with NaN mileage

new_Table[new_Table['Miles per gallon'].isnull()]

Out[6]:

		Miles per gallon	Cylinders	Horsepower
_	10	NaN	4.0	115.0
	11	NaN	8.0	165.0
	12	NaN	8.0	153.0
	13	NaN	8.0	175.0
	14	NaN	8.0	175.0
	17	NaN	8.0	140.0
	39	NaN	4.0	48.0
	367	NaN	4.0	110.0

In [7]: # All rows with NaN horsepowers
new_Table[new_Table['Horsepower'].isnull()]

Out[7]:

	Miles per gallon	Cylinders	Horsepower
38	25.0	4.0	NaN
133	21.0	6.0	NaN
337	40.9	4.0	NaN
343	23.6	4.0	NaN
361	34.5	4.0	NaN
382	23.0	4.0	NaN

```
In [8]: # Calculating the mean mileage for different cars
        def meanOfMileage(numOfCylinders):
            num Cylinder Cars = new Table[new Table.Cylinders == numOfCylinders]
            meanOfMileage = (num_Cylinder_Cars['Miles per gallon']).mean()
            return meanOfMileage
        # Function to calculate the mean of horsepowers for different cars
        def meanOfHorsepower(numOfCylinders):
            num_Cylinder_Cars = new_Table[new_Table.Cylinders == numOfCylinders]
            meanOfHorsepower = (num Cylinder Cars['Horsepower']).mean()
            return meanOfHorsepower
        # Function to update the horsepowers
        def horsepowerUpdater(numOfCylinders):
            num Cylinder Cars = new Table[new Table.Cylinders == numOfCylinders]
            NaNHorsepower = num Cylinder Cars[num Cylinder Cars['Horsepower'].is
        null()]
            NaNHorsepower['Horsepower'] = meanOfHorsepower(numOfCylinders)
            return NaNHorsepower
        #function to update the mileage
        def mileageUpdater(numOfCylinders):
            num_Cylinder_Cars = new_Table[new_Table.Cylinders == numOfCylinders]
            NaNMileage = num Cylinder Cars[num Cylinder Cars['Miles per gallon']
        .isnull()]
            NaNMileage['Miles per gallon']= meanOfMileage(numOfCylinders)
            return NaNMileage
        updatedHorsepower4 = horsepowerUpdater(4)
        updatedHorsepower6 = horsepowerUpdater(6)
        updatedHorsepower8 = horsepowerUpdater(8)
        updatedHorsepower = pd.concat([updatedHorsepower4,updatedHorsepower6,upd
        atedHorsepower8])
        updatedHorsepower
```

/Library/Python/3.7/site-packages/ipykernel_launcher.py:19: SettingWith CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-d ocs/stable/user guide/indexing.html#returning-a-view-versus-a-copy

Out[8]:

	Miles per gallon	Cylinders	Horsepower
38	25.0	4.0	78.470297
337	40.9	4.0	78.470297
343	23.6	4.0	78.470297
361	34.5	4.0	78.470297
382	23.0	4.0	78.470297
133	21.0	6.0	101.506024

/Library/Python/3.7/site-packages/ipykernel_launcher.py:27: SettingWith CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy

Out[9]:

	Miles per gallon	Cylinders	Horsepower
10	29.286765	4.0	115.0
39	29.286765	4.0	48.0
367	29.286765	4.0	110.0
11	14.963107	8.0	165.0
12	14.963107	8.0	153.0
13	14.963107	8.0	175.0
14	14.963107	8.0	175.0
17	14.963107	8.0	140.0

```
In [10]: # Add two dataframes together
    updatedVals = pd.concat([updatedMileage,updatedHorsepower])
    print("The dataframe with updated values are: ")
    updatedVals
```

The dataframe with updated values are:

Out[10]:

	Miles per gallon	Cylinders	Horsepower
10	29.286765	4.0	115.000000
39	29.286765	4.0	48.000000
367	29.286765	4.0	110.000000
11	14.963107	8.0	165.000000
12	14.963107	8.0	153.000000
13	14.963107	8.0	175.000000
14	14.963107	8.0	175.000000
17	14.963107	8.0	140.000000
38	25.000000	4.0	78.470297
337	40.900000	4.0	78.470297
343	23.600000	4.0	78.470297
361	34.500000	4.0	78.470297
382	23.000000	4.0	78.470297
133	21.000000	6.0	101.506024

```
In [11]: # Updating the original dataset with the interpolated values
    auto_Mpg.update(updatedVals, join='left', overwrite=True, filter_func=No
    ne, errors='ignore')
    print("The new dataset is: ")
    auto_Mpg.head()
```

The new dataset is:

Out[11]:

	Miles per gallon	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model year	Origin	Car name
0	18.0	8.0	307.0	130.0	3504.0	12.0	70.0	1.0	chevrolet chevelle malibu
1	15.0	8.0	350.0	165.0	3693.0	11.5	70.0	1.0	buick skylark 320
2	18.0	8.0	318.0	150.0	3436.0	11.0	70.0	1.0	plymouth satellite
3	16.0	8.0	304.0	150.0	3433.0	12.0	70.0	1.0	amc rebel sst
4	17.0	8.0	302.0	140.0	3449.0	10.5	70.0	1.0	ford torino

```
In [12]: # Plotting histograms with cleaned dataset
         # Plotting all the histograms
         # histogram for miles per gallon
         plt.figure()
         plt.hist(auto_Mpg["Miles per gallon"])
         plt.title("Miles per gallon")
         #histogram for Cylinders
         plt.figure()
         plt.hist(auto_Mpg["Cylinders"])
         plt.title("Cylinders")
         #histogram for Displacement
         plt.figure()
         plt.hist(auto_Mpg["Displacement"])
         plt.title("Displacement")
         # histogram for Horsepower
         plt.figure()
         plt.hist(auto Mpg["Horsepower"])
         plt.title("Horsepower")
         #histogram for Weight
         plt.figure()
         plt.hist(auto_Mpg["Weight"])
         plt.title("Weight")
         #histogram for Acceleration
         plt.figure()
         plt.hist(auto Mpg["Acceleration"])
         plt.title("Acceleration")
         #histogram for Model Year
         plt.figure()
         plt.hist(auto_Mpg["Model year"])
         plt.title("Model year")
         #histogram for origin
         plt.figure()
         plt.hist(auto Mpg["Origin"])
         plt.title("Origin")
```

Out[12]: Text(0.5, 1.0, 'Origin')


```
In [13]: # Exporting the file as a .csv to local folder
auto_Mpg.to_csv("Auto_mpg_adjust.csv",index = False)
```

Part 3

```
In [14]: # Problem 3
    """ Using z values to check for outliers in the dataset """
    from scipy import stats
    auto_Mpg['milesPerGallon_Z'] = stats.zscore(auto_Mpg["Miles per gallon"
    ])
    # print(auto_Mpg['Miles per gallon_Z'])

# Looking for outliers in the dataset using z values
    MPGOutliers = auto_Mpg.query('milesPerGallon_Z >3 | milesPerGallon_Z <-3')
    numberOfMPGOutliers = len(MPGOutliers)
    print(f'There are %d outliers present in MPG data.' % numberOfMPGOutlier
    s)</pre>
```

There are 0 outliers present in MPG data.

```
In [15]: # Looking into Cylinder data
    auto_Mpg['cylinders_Z'] = stats.zscore(auto_Mpg["Cylinders"])
    # print(auto_Mpg['cylinders_Z'])
    cylindersOutliers = auto_Mpg.query('cylinders_Z >3 | cylinders_Z <-3')
    numberOfCylindersOutliers = len(cylindersOutliers)
    print(f'There are %d outliers present in Cylinders data.' % numberOfCyli
    ndersOutliers)</pre>
```

There are 0 outliers present in Cylinders data.

```
In [16]: # Looking into Displacement data
    auto_Mpg['displacement_Z'] = stats.zscore(auto_Mpg["Displacement"])
    # print(auto_Mpg['displacement_Z'])
    displacementOutliers = auto_Mpg.query('displacement_Z >3 | displacement_
        Z <-3')
    numberOfDisplacementOutliers = len(displacementOutliers)
    print(f'There are %d outliers present in Displacements data.' % numberOfDisplacementOutliers)</pre>
```

There are 0 outliers present in Displacements data.

```
In [17]: # Looking into Horsepower data
    auto_Mpg['horsepower_Z'] = stats.zscore(auto_Mpg["Horsepower"])
    # print(auto_Mpg['horsepower_Z'])
    horsepowerOutliers = auto_Mpg.query('horsepower_Z >3 | horsepower_Z <-3'
    )
    numberOfHorsepowerOutliers = len(horsepowerOutliers)
    print(f'There are %d outliers present in Horsepower data.' % numberOfHor
    sepowerOutliers)
    horsepowerSort = auto_Mpg.sort_values('horsepower_Z',ascending = False)
    horsepowerSort.head(n = 4)</pre>
```

There are 4 outliers present in Horsepower data.

Out[17]:

	Miles per gallon	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model year	Origin	Car name
123	16.0	8.0	400.0	230.0	4278.0	9.5	73.0	1.0	pontiac grand prix
102	12.0	8.0	455.0	225.0	4951.0	11.0	73.0	1.0	buick electra 225 custom
19	14.0	8.0	455.0	225.0	3086.0	10.0	70.0	1.0	buick estate wagon (sw)
8	14.0	8.0	455.0	225.0	4425.0	10.0	70.0	1.0	pontiac catalina

```
In [18]: # Looking into Weight data
    auto_Mpg['weight_Z'] = stats.zscore(auto_Mpg["Weight"])
    # print(auto_Mpg['weight_Z'])
    weightOutliers = auto_Mpg.query('weight_Z >3 | weight_Z <-3')
    numberOfWeightOutliers = len(weightOutliers)
    print(f'There are %d outliers present in Weight data.' % numberOfWeightOutliers)
    utliers)</pre>
```

There are 0 outliers present in Weight data.

```
In [19]: # Looking into Acceleration data
    auto_Mpg['acceleration_Z'] = stats.zscore(auto_Mpg["Acceleration"])
# print(auto_Mpg['acceleration_Z'])
    accelerationOutliers = auto_Mpg.query('acceleration_Z >3 | acceleration_Z <-3')
    numberOfAccelerationOutliers = len(accelerationOutliers)
    print(f'There are %d outliers present in Acceleration data.' % numberOfA ccelerationOutliers)
    accelerationSort = auto_Mpg.sort_values('acceleration_Z',ascending = False)
    accelerationSort.head(n = 2)</pre>
```

There are 2 outliers present in Acceleration data.

Out[19]:

Car name	Origin	Model year	Acceleration	Weight	Horsepower	Displacement	Cylinders	Miles per gallon	
peugeot 504	2.0	79.0	24.8	3190.0	71.0	141.0	4.0	27.2	306
vw pickup	2.0	82.0	24.6	2130.0	52.0	97.0	4.0	44.0	402

```
In [20]: # Looking into modelYear data
    auto_Mpg['modelYear_Z'] = stats.zscore(auto_Mpg["Model year"])
    # print(auto_Mpg['modelYear_Z'])
    modelYearOutliers = auto_Mpg.query('modelYear_Z >3 | modelYear_Z <-3')
    numberOfModelYearOutliers = len(modelYearOutliers)
    print(f'There are %d outliers present in Model year data.' % numberOfMod elYearOutliers)</pre>
```

There are 0 outliers present in Model year data.

```
In [21]: # Looking into Origin data
    auto_Mpg['origin_Z'] = stats.zscore(auto_Mpg["Origin"])
    # print(auto_Mpg['origin_Z'])
    originOutliers = auto_Mpg.query('origin_Z >3 | origin_Z <-3')
    numberOfOriginOutliers = len(originOutliers)
    print(f'There are %d outliers present in Origin data.' % numberOfOriginOutliers)</pre>
```

There are 0 outliers present in Origin data.

Part 4

```
In [22]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   pd.set_option('display.max_rows', 500)

   cereals = pd.read_csv("cereals.csv")
   cereals.head()
```

Out[22]:

	Name	Manuf	Туре	Calories	Protein	Fat	Sodium	Fiber	Carbo	Sugars	
0	100%_Bran	N	С	70	4	1	130	10.0	5.0	6.0	
1	100%_Natural_Bran	Q	С	120	3	5	15	2.0	8.0	8.0	
2	All-Bran	K	С	70	4	1	260	9.0	7.0	5.0	
3	All- Bran_with_Extra_Fiber	K	С	50	4	0	140	14.0	8.0	0.0	
4	Almond_Delight	R	С	110	2	2	200	1.0	14.0	8.0	

5 rows × 23 columns

Part a

```
In [23]: # create a bar graph and normalized bar graph of the "Manuf" variable wi
    th "Type" overlay
    crosstab_01 = pd.crosstab(cereals["Manuf"],cereals['Type'])
    plt.figure()
    crosstab_01.plot(kind='bar', stacked=True)
    plt.title('Bar Graph of Manuf with Type Overlay')

# Normalized bar graph
    plt.figure()
    crosstab_norm = crosstab_01.div(crosstab_01.sum(1),axis=0)
    crosstab_norm.plot(kind='bar', stacked=True)
    plt.title('Normalized Bar Graph of Manuf with Type Overlay')
```

Out[23]: Text(0.5, 1.0, 'Normalized Bar Graph of Manuf with Type Overlay')

<Figure size 432x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

Part b

```
In [24]: # create a contingency table of "Manuf" and "Type"
          crosstab_02 = pd.crosstab(cereals["Type"],cereals['Manuf'])
          crosstab_norm_02 = round(crosstab_02.div(crosstab_02.sum(0),axis=1)* 100
           ,1)
          crosstab_02
Out[24]:
           Manuf A G K N P Q R
             Type
                  0
                     22 23 5 9
                                 7
                                     8
               С
                 1
                     0
                         0 1 0 1 0
In [25]:
          crosstab_norm_02
Out[25]:
           Manuf
                           G
                                 Κ
                                           Ρ
                                                Q
                                                      R
             Type
               С
                    0.0 \quad 100.0 \quad 100.0 \quad 83.3 \quad 100.0 \quad 87.5 \quad 100.0
               H 100.0
                          0.0
                               0.0 16.7
                                          0.0 12.5
                                                     0.0
```

Part c

```
In [26]: # create a histogram and normalized histogram of "Calories" with "Manuf"
         overlay
         crosstab_03 = pd.crosstab(cereals["Calories"],cereals['Manuf'])
         plt.figure()
         crosstab 03.plot(kind='bar', stacked=True)
         plt.title('Bar Graph of Calories with Manuf Overlay')
         # Normalized bar graph
         plt.figure()
         crosstab 03 norm = crosstab 03.div(crosstab 03.sum(1),axis=0)
         crosstab_03_norm.plot(kind='bar', stacked=True)
         plt.title('Normalized Bar Graph of Calories with Manuf Overlay')
         # Stacked histogram
         plt.figure()
         cerealCaloriesManuf_A = cereals[cereals.Manuf == 'A ']['Calories']
         cerealCaloriesManuf G = cereals[cereals.Manuf == "G "]['Calories']
         cerealCaloriesManuf_K = cereals[cereals.Manuf == "K "]['Calories']
         cerealCaloriesManuf N = cereals[cereals.Manuf == "N "]['Calories']
         cerealCaloriesManuf P = cereals[cereals.Manuf == "P "]['Calories']
         cerealCaloriesManuf_Q = cereals[cereals.Manuf == "Q "]['Calories']
         cerealCaloriesManuf_R = cereals[cereals.Manuf == "R "]['Calories']
         plt.hist([cerealCaloriesManuf A,cerealCaloriesManuf G,cerealCaloriesManu
         f K,
                   cerealCaloriesManuf_N,cerealCaloriesManuf_P,cerealCaloriesManu
         f Q,
                   cerealCaloriesManuf R],bins = 10, stacked = True)
         plt.legend(['Manuf A', 'Manuf G', 'Manuf K', 'Manuf N', 'Manuf P', 'Manu
         f Q', 'Manuf R'])
         plt.title('Histogram of Calories with Manuf Overlay')
         plt.ylabel('Frequency')
         plt.xlabel('Calories')
         # Normalized histogram of Calories with Manuf Overlay
         (n,bins,patches) = plt.hist([cerealCaloriesManuf A,cerealCaloriesManuf G,
         cerealCaloriesManuf K,
                   cerealCaloriesManuf N,cerealCaloriesManuf P,cerealCaloriesManu
         f_Q,
                   cerealCaloriesManuf R],bins = 10, stacked = True)
         # Creating a new plot
         plt.figure()
         n \text{ table} = np.column stack((n[0],n[1]))
         n norm = n table/n table.sum(axis = 1)[:,None]
         # creating an array of bin cuts
         our bins = np.column stack((bins[0:10],bins[1:11]))
         p1 = plt.bar(x = our bins[:,0],height = n norm[:,0],width = our bins[:,1
         1-our bins[:,0])
         p2 = plt.bar(x = our_bins[:,0],height = n_norm[:,1],width = our_bins[:,1
         ]-our bins[:,0],bottom = n norm[:,0])
```

''' I could not figure this out. '''

/Library/Python/3.7/site-packages/ipykernel_launcher.py:41: RuntimeWarn ing: invalid value encountered in true_divide

Out[26]: ' I could not figure this out. '

<Figure size 432x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

Part d

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x1229259e8>

