第1章 随机事件及其概率

(1)排列 组合公式	$P_m^n = \frac{m!}{(m-n)!}$ 从 m 个人中挑出 n 个人进行排列的可能数。
	$C_m^n = \frac{m!}{n!(m-n)!}$ 从 m 个人中挑出 n 个人进行组合的可能数。
	加法原理 (两种方法均能完成此事): m+n
	某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n
(2) 加法	种方法来完成,则这件事可由 m+n 种方法来完成。
和乘法原	乘法原理(两个步骤分别不能完成这件事): m×n
理	某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n
	种方法来完成,则这件事可由 m×n 种方法来完成。
	重复排列和非重复排列(有序)
(3) 一些	对立事件(至少有一个)
常见排列	顺序问题
	如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,
(4) 随机	但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试
试验和随	验。
机事件	试验的可能结果称为随机事件。
	在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有
	如下性质:
	①每进行一次试验,必须发生且只能发生这一组中的一个事件;
(5)基本	②任何事件,都是由这一组中的部分事件组成的。
事件、样本	这样一组事件中的每一个事件称为基本事件,用 ω 来表示。
空间和事	基本事件的全体,称为试验的样本空间,用Ω表示。
件	一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母
	A , B , C , …表示事件,它们是 Ω 的子集。
	Ω 为必然事件, \emptyset 为不可能事件。
	不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,
	必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
	①关系:
	如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
	$A \subset B$ 如果同时去 $A \subset B$, $B \subset A$, 则称重化 $A \vdash \equiv H$ D 体 A 或 A 或 A 或 A 。
	如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B :
(6) 事件 的关系与	$A=B$ 。 $A \setminus B$ 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。
	属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A – B ,也可
运算	两 $\int D \Pi \Pi' \Pi' \Pi' \Pi' \Pi' \Pi' \Pi$
	表示为 $A-AB$ 或者 \overline{AB} ,它表示 A 发生而 B 不发生的事件。
	A 、 B 同时发生: $A \cap B$, 或者 AB 。 $A \cap B=\emptyset$,则表示 $A 与 B$ 不可能同时发生,
	称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。

	Ω —A 称为事件 A 的逆事件,或称 A 的对立事件,记为 \overline{A} 。它表示 A 不发生的事件。互斥未必对立。 ②运算: 结合率:A (BC)=(AB) C A \cup (B \cup C)=(A \cup B) \cup C 分配率:(AB) \cup C=(A \cup C) \cap (B \cup C) (A \cup B) \cap C=(AC) \cup (BC) \overline{A} 德摩根率: \overline{A}
(7)概率的公理化定义	1° $0 \leq P(A) \leq 1$, 2° $P(\Omega) = 1$ 3° 对于两两互不相容的事件 A_{1} , A_{2} , …有 $P\left(\bigcup_{i=1}^{\infty} A_{i}\right) = \sum_{i=1}^{\infty} P(A_{i})$ 常称为可列(完全)可加性。
(8)古典概型	$1^{\circ} \Omega = \{\omega_{1}, \omega_{2} \cdots \omega_{n}\},$ $2^{\circ} P(\omega_{1}) = P(\omega_{2}) = \cdots P(\omega_{n}) = \frac{1}{n} \circ$ 设任一事件 A , 它是由 $\omega_{1}, \omega_{2} \cdots \omega_{m}$ 组成的,则有 $P(A) = \{(\omega_{1}) \cup (\omega_{2}) \cup \cdots \cup (\omega_{m})\} = P(\omega_{1}) + P(\omega_{2}) + \cdots + P(\omega_{m})$ $= \frac{m}{n} = \frac{A \text{所包含的基本事件数}}{\text{基本事件总数}}$
(9) 几何 概型	若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件 A, $P(A) = \frac{L(A)}{L(\Omega)} \text{ 。 其中 L 为几何度量(长度、面积、体积)。}$
(10) 加法 公式	P(A+B) = P(A) + P(B) - P(AB) 当 $P(AB) = 0$ 时, $P(A+B) = P(A) + P(B)$
(11) 减法公式	P(A-B)=P(A)-P(AB) 当 $B \subset A$ 时, $P(A-B)=P(A)-P(B)$ 当 $A=\Omega$ 时, $P(\overline{B})=1-P(B)$
(12)条件 概率	定义 设 A 、 B 是两个事件,且 $P(A)>0$,则称 $\frac{P(AB)}{P(A)}$ 为事件 A 发生条件下,事件 B 发生的条件概率,记为 $P(B/A)=\frac{P(AB)}{P(A)}$ 。 条件概率是概率的一种,所有概率的性质都适合于条件概率。

	例如 $P(\Omega/B)=1 \Rightarrow P(\overline{B}/A)=1-P(B/A)$
	乘法公式: $P(AB) = P(A)P(B/A)$
(13) 乘法	更一般地,对事件 A ₁ , A ₂ , ····A _n , 若 P(A ₁ A ₂ ····A _{n-1})>0,则有
公式	$P(A_1A_2A_n) = P(A_1)P(A_2 A_1)P(A_3 A_1A_2)P(A_n A_1A_2$
	A_{n-1}
	①两个事件的独立性
	设事件 $A \setminus B$ 满足 $P(AB) = P(A)P(B)$,则称事件 $A \setminus B$ 是相互独立的。
	若事件 A 、 B 相互独立,且 $P(A) > 0$,则有
	$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$
(14)独立	石事件れ、D相互独立,则可得到れ 与 D、 A 与 D 、 A 与 D
性	$oxedsymbol{\square}$ $oxedsymbol{\square}$ 必然事件 $oldsymbol{\Omega}$ 和不可能事件 $oldsymbol{\emptyset}$ 与任何事件都相互独立。
المار	Ø 与任何事件都互斥。
	②多个事件的独立性
	设 ABC 是三个事件,如果满足两两独立的条件,
	P(AB) = P(A) P(B); P(BC) = P(B) P(C); P(CA) = P(C) P(A)
	并且同时满足 P(ABC)=P(A)P(B)P(C)
	那么A、B、C相互独立。
	对于 n 个事件类似。
	设事件 B_1,B_2,\cdots,B_n 满足
	1° B_1, B_2, \dots, B_n 两两互不相容, $P(B_i) > 0 (i = 1, 2, \dots, n)$
(15) 全概	$A \subset \bigcap_{i=1}^{n} B_i$
公式	$A \subset \bigcup_{i=1}^n B_i$,
	则有
	$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \dots + P(B_n)P(A \mid B_n)$
	设事件 B ₁ , B ₂ ,, B _n 及 A 满足
	1° B_1 , B_2 ,, B_n 两两互不相容, $P(Bi)_{>0}$, $i=1, 2,, n$,
	$A = \begin{bmatrix} n \\ D \end{bmatrix}$
	$ \begin{array}{ccc} A \subset \bigcup_{i=1} B_i & P(A) > 0, \end{array} $
	则
(16) 贝叶	$P(B_i A) = P(B_i)P(A/B_i)$
斯公式	$P(B_i/A) = \frac{P(B_i)P(A/B_i)}{\sum_{i=1}^{n} P(B_j)P(A/B_j)}, i=1, 2, \dots_n.$
	$\sum_{j=1}^{n} P(B_j) P(A/B_j)$
	此公式即为贝叶斯公式。
	$P(B_i)$, $(i=1, 2,, n)$, 通常叫先验概率。 $P(B_i/A)$, $(i=1, 2,, n)$
	n),通常称为后验概率。贝叶斯公式反映了"因果"的概率规律,并作出了
	"由果朔因"的推断。
(17) 岭坡	我们作了 n 次试验,且满足
(17)伯努 利概型	◆ 每次试验只有两种可能结果, A 发生或 A 不发生;
7117VE	◆ n 次试验是重复进行的,即 A 发生的概率每次均一样;

◆ 每次试验是独立的,即每次试验 *A* 发生与否与其他次试验 *A* 发生与 否是互不影响的。

这种试验称为伯努利概型,或称为n 重伯努利试验。

用 p 表示每次试验 A 发生的概率,则 $^{\overline{A}}$ 发生的概率为 $^{1-p=q}$,用 $^{P_{n}(k)}$ 表

示n 重伯努利试验中A 出现 $k(0 \le k \le n)$ 次的概率,

$$P_n(k) = C_n^k p^k q^{n-k}, \quad k = 0,1,2,\dots,n$$

第二章 随机变量及其分布

(1) 离散 型随机变 量的分布 律 设离散型随机变量 X 的可能取值为 $X_k(k=1,2,\cdots)$ 且取各个值的概率,即事件 $(X=X_k)$ 的概率为

 $P(X=X_k)=p_k, k=1, 2, \dots,$

则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出:

$$\frac{X}{P(X=x_k)} \left| \frac{x_1, x_2, \dots, x_k, \dots}{p_1, p_2, \dots, p_k, \dots} \right|$$

显然分布律应满足下列条件:

(1)
$$p_k \ge 0$$
, $k = 1, 2, \cdots$, (2) $\sum_{k=1}^{\infty} p_k = 1$

(2)连续型随机变量的分布密度

设F(x)是随机变量X的分布函数,若存在非负函数f(x),对任意实数x,有 $F(x) = \int_{-\infty}^{x} f(x) dx$

则称 X 为连续型随机变量。 f(x) 称为 X 的概率密度函数或密度函数,简称概率密度。

密度函数具有下面 4 个性质:

$$f(x) \ge 0$$

$$2^{\circ} \qquad \int_{-\infty}^{+\infty} f(x) dx = 1$$

(3) 离散 与连续型 随机变量 的关系

 $P(X = x) \approx P(x < X \le x + dx) \approx f(x)dx$

积分元 f(x)dx 在连续型随机变量理论中所起的作用与 $P(X = x_k) = p_k$ 在离散型随机变量理论中所起的作用相类似。

(4) 分布 设X为随机变量,x是任意实数,则函数 函数 $F(x) = P(X \le x)$ 称为随机变量 X 的分布函数,本质上是一个累积函数。 $P(a < X \le b) = F(b) - F(a)$ 可以得到 X 落入区间(a,b]的概率。分布 函数 F(x) 表示随机变量落入区间 (- ∞ , x] 内的概率。 分布函数具有如下性质: 1° $0 \le F(x) \le 1$, $-\infty < x < +\infty$; 2° F(x) 是单调不减的函数,即 $x_1 < x_2$ 时,有 $F(x_1) \le F(x_2)$; 3° $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$; 4° F(x+0) = F(x), 即 F(x) 是右连续的; 5° P(X = x) = F(x) - F(x - 0). 对于离散型随机变量, $F(x) = \sum_{x_k \le x} p_k$; 对于连续型随机变量, $F(x) = \int_{0}^{x} f(x) dx$ 。 (5) 八大 0-1 分布 P(X=1)=p, P(X=0)=q分布 二项分布 在n 重贝努里试验中,设事件A 发生的概率为p。事件A 发生 的次数是随机变量,设为X,则X可能取值为 $0,1,2,\dots,n$ 。 $P(X = k) = P_n(k) = C_n^k p^k q^{n-k}$, 其 中 q = 1 - p, 0 ,则称随机变量 X 服从参数为n, p 的二项分布。记为 $X \sim B(n, p)$.

当n=1时, $P(X=k)=p^kq^{1-k}$,k=0.1,这就是(0-1)分

布, 所以(0-1)分布是二项分布的特例。

泊机	公分布	设随机变量 X 的分布律为
		$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k = 0, 1, 2 \cdots,$
	ļ	则称随机变量 X 服从参数为 λ 的泊松分布,记为 $X \sim \pi(\lambda)$ 或
		者 P(λ)。 泊松分布为二项分布的极限分布 (np=λ, n→∞)。
+n r	コケハナ	
超)	1.何分布 	$P(X = k) = \frac{C_M^k \bullet C_{N-M}^{n-k}}{C_N^n}, k = 0, 1, 2 \cdots, l$ $l = \min(M, n)$
		随机变量 X 服从参数为 n, N, M 的超几何分布,记为 H(n, N, M)。
几何	可分布	$P(X = k) = q^{k-1}p, k = 1,2,3,\dots$,其中 p≥0,q=1-p。
		随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
均匀	可分布 .	设随机变量 X 的值只落在 $[a,b]$ 内,其密度函数 $f^{(x)}$ 在 $[a,b]$
		上为常数 $\frac{1}{b-a}$,即
		$f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & \sharp \text{th}, \end{cases}$
		则称随机变量 X 在 $[a,b]$ 上服从均匀分布,记为 $X\sim U(a,b)$ 。 分布函数为
		$ \begin{pmatrix} 0, & x < a, \\ x - a \end{pmatrix} $
		$F(x) = \int_{-\infty}^{x} f(x)dx = \begin{cases} \frac{x-a}{b-a}, & a \leq x \leq b \\ 1, & x > b. \end{cases}$
		$F(x) = \int_{-\infty}^{\infty} f(x)dx = \begin{cases} 1, & x > b_{\circ} \end{cases}$
		当 $a \leq x_1 \leq x_2 \leq b$ 时, X 落在区间(x_1, x_2)内的概率为
		$P(x_1 < X < x_2) = \frac{x_2 - x_1}{b - a} .$

1.12. 3/21.	11	
指数	分	Æ

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

其中 $\lambda > 0$,则称随机变量 X 服从参数为 λ 的指数分布。 X的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

$$\int_{0}^{+\infty} x^{n} e^{-x} dx = n!$$

正态分布

设随机变量X的密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < +\infty,$$
 其中 μ 、 $\sigma > 0$ 为常数,则称随机变量 X 服从参数为 μ 、 σ

的正态分布或高斯(Gauss)分布,记为 $X \sim N(\mu, \sigma^2)$ 。

f(x) 具有如下性质:

f(x) 的图形是关于 $x = \mu$ 对称的;

若
$$X \sim N(\mu, \sigma^2)$$
 , 如 於 的 分 布 函 数 为 $F(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{\frac{2\sigma^2}{2\sigma^2}} dt$

参数 $\mu=0$ 、 $\sigma=1$ 时的正态分布称为标准正态分布, 记为

$$X \sim N(0,1)$$
 其密度函数记为
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-2}$$
 , $-\infty < x < +\infty$,

分布函数为

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

 $\Phi(x)$ 是不可求积函数,其函数值,已编制成表可供查用。

$$\Phi(-x) = 1 - \Phi(x) \coprod \Phi(0) = \frac{1}{2}$$
.

如果 $X^{\sim}N(\mu,\sigma^2)$,则 $\frac{X-\mu}{\mu}^{\sim}N(0,1)$ 。

$$P(x_1 < X \le x_2) = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right).$$

数	下分位表: $P(X \le \mu_{\alpha}) = \alpha$;			
上分位表: $P(X > \mu_{\alpha}) = \alpha$ 。 [7] 函数 分布 [2] 日知 X 的分布列为 $\frac{X}{P(X = x_i)} \frac{x_1, x_2, \cdots, x_n, \cdots}{p_1, p_2, \cdots, p_n, \cdots}, \dots$ $Y = g(X)$ 的分布列($y_i = g(x_i)$ 互为 $y_i = g(x_i)$ 五个 $y_i = g(x_i)$ 五个 $y_i = g(x_i)$ 五个 $y_i = g(x_i)$ 和等,则应将对应的 为 在有某些 $g(x_i)$ 和等,则应将对应的 为 在 $y_i = g(x_i)$ 和等,则应将对应的 $y_i = g(x_i)$ 和, $y_i =$	$\frac{p_i, \cdots}{p_i}$, $\frac{p_i}{1}$ 和加作为 $g(x_i)$ 的概率。 分布函数 $F_Y(y) = P(g(X) \leq x_i)$			

第三章 二维随机变量及其分布

		平 一维	翅机 多	と里及	. 丹分子	þ		
(1) 联合 分布	离散型	如果二维随机向量 ξ (X,Y)的所有可能取值为至多可列						
		个有序对(x,	y),则称	京ξ 为离	散型随机	星。		
		设 <i>ξ</i> = ()	(, Y) 的	所有可能	 能取值为($(x_i, y_j)(i$	$, j = 1, 2, \cdot$	···) ,
		且事件{ <i>ξ</i> = (<i>x</i>	(x_i, y_j)	的概率为	<i>p_{i,j,}</i> ,称			
		$P\{(X,Y) = (x_i, y_j)\} = p_{ij}(i, j = 1, 2, \dots)$						
		为 ξ =(X,Y)的分布律或称为 X 和 Y 的联合分布律。联合分						
		布有时也用下面的概率分布表来表示:						
		Y	\mathcal{Y}_1	y_2	•••	y_j		
		X_{I}	p_{II}	$p_{\scriptscriptstyle I2}$	•••	p_{Ij}	•••	
		X_2	<i>p</i> ₂₁	<i>p</i> ₂₂	•••	p_{2j}	•••	
		÷	:	:		:	į	
		X_i	p_{il}		•••	p_{ij}	•••	
		÷	÷	÷		:	:	
		这里 p _{ij} 具有了	「面两个	性质:				1
		(1) $p_{ij} \geqslant 0$ (,);				
		$(2) \sum_{i} \sum_{j}$	$p_{ij}=1.$					

	连续型 对于二维随机向量 $\xi = (X,Y)$, 如果存在非负函数				
	$f(x,y)$ ($-\infty$ < x < $+\infty$, $-\infty$ < y < $+\infty$),使对任意一个其邻边				
	分别平行于坐标轴的矩形区域 D, 即 D={(X,Y) a <x<b, c<y<d}<br="">有</x<b,>				
	$P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy,$				
	则称 ξ 为连续型随机向量;并称 $f(x,y)$ 为 $\xi=(X,Y)$ 的分布				
	密度或称为 X 和 Y 的联合分布密度。 分布密度 $f(x,y)$ 具有下面两个性质: (1) $f(x,y) \ge 0$;				
	(2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1.$				
(2) 二维 随机变量 的本质	$\xi(X = x, Y = y) = \xi(X = x \cap Y = y)$				
(3) 联合	设(X, Y)为二维随机变量,对于任意实数 x, y, 二元函数				
分布函数	$F(x, y) = P\{X \le x, Y \le y\}$				
	称为二维随机向量(X,Y)的分布函数,或称为随机变量 X 和 Y 的联合分布函数。				
	分布函数是一个以全平面为其定义域,以事件				
	$\{(\omega_1,\omega_2) -\infty < X(\omega_1) \le x,-\infty < Y(\omega_2) \le y\}$ 的概率为函数值的一个实值函				
	数。分布函数 F(x, y) 具有以下的基本性质:				
	(1) $0 \le F(x, y) \le 1$;				
	 (2) F(x,y) 分别对 x 和 y 是非减的,即 当 x₂>x₁时,有 F(x₂,y) ≥ F(x₁,y); 当 y₂>y₁时,有 F(x,y₂) ≥ F(x,y₁); (3) F(x,y) 分别对 x 和 y 是右连续的,即 				
	F(x, y) = F(x + 0, y), F(x, y) = F(x, y + 0);				
	(4) $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1.$				
	(5) 对于 $x_1 < x_2$, $y_1 < y_2$,				
	$F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0.$				
(4) 离散 型 与 连 续 型的关系	$P(X = x, Y = y) \approx P(x < X \le x + dx, y < Y \le y + dy) \approx f(x, y) dxdy$				

(5)边缘	离散型	X 的边缘分布为
分布		$P_{i\bullet} = P(X = x_i) = \sum_{i} p_{ij}(i, j = 1, 2, \dots);$
		Y 的边缘分布为
		$P_{\bullet j} = P(Y = y_j) = \sum_{i} p_{ij}(i, j = 1, 2, \dots)$
	连续型	X 的边缘分布密度为
		$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy;$
		Y的边缘分布密度为
		$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$
(6)条件	离散型	在已知 $X=x_i$ 的条件下, Y 取值的条件分布为
分布		$P(Y = y_j \mid X = x_i) = \frac{p_{ij}}{p_{i\bullet}};$
		在已知 Y=y,的条件下, X 取值的条件分布为
		$P(X = x_i \mid Y = y_j) = \frac{p_{ij}}{p_{\bullet j}},$
	连续型	在已知 Y=y 的条件下, X 的条件分布密度为
		$f(x \mid y) = \frac{f(x, y)}{f_Y(y)};$
		在已知 X=x 的条件下,Y 的条件分布密度为
		$f(y \mid x) = \frac{f(x, y)}{f_X(x)}$
(7) 独立	一般型	$F(X, Y) = F_X(x) F_Y(y)$
性	离散型	$p_{ij} = p_{i\bullet} p_{\bullet j}$
		有零不独立
	连续型	$f(x, y) = f_X(x) f_Y(y)$
		直接判断,充要条件:
		①可分离变量 ②正概率密度区间为矩形
	二维正态分	$1 \left[\left(x - \mu_1 \right)^2 2\rho(x - \mu_1)(y - \mu_2) \left(y - \mu_2 \right)^2 \right]$
	布	(2)正概学
		$\rho = 0$
	随机变量的	ž X ₁ , X ₂ , ····X _m , X _{m+1} , ····X _n 相互独立, h, g 为连续函数,则:
	函数	h (X ₁ , X ₂ , ···X _m) 和 g (X _{m+1} , ···X _n) 相互独立。
		特例:若X与Y独立,则:h(X)和g(Y)独立。
		例如: 若 X 与 Y 独立,则: 3X+1 和 5Y-2 独立。

(8) 二维 均匀分布

设随机向量(X,Y)的分布密度函数为

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D \\ 0, & 其他 \end{cases}$$

其中 S_D 为区域 D 的面积,则称 (X,Y) 服从 D 上的均匀分布,记为 (X,Y) \sim U (D)。

例如图 3.1、图 3.2 和图 3.3。

图 3.1

图 3.2

(9) 二维 │ 设随机向量(X, Y)的分布密度函数为 $f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\sigma^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-\frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]},$ 正态分布 其中 $\mu_1, \mu_2, \sigma_1 > 0, \sigma_2 > 0, |\rho| < 1$ 是 5 个参数,则称(X,Y)服从二维正态分 布, 记为 (X, Y) \sim N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$). 由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分 布, 即 X~N $(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$ 但是若 $X \sim N$ (μ_1, σ_1^2), $Y \sim N(\mu_2, \sigma_2^2)$, (X, Y)未必是二维正态分布。 (10) 函数 Z=X+Y根据定义计算: $F_Z(z) = P(Z \le z) = P(X + Y \le z)$ 分布 对于连续型, $f_{z}(z) = \int_{0}^{+\infty} f(x, z - x) dx$ 两个独立的正态分布的和仍为正态分布($\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2$)。 n 个相互独立的正态分布的线性组合, 仍服从正态分布。 $\mu = \sum_{i} C_{i} \mu_{i} , \qquad \sigma^{2} = \sum_{i} C_{i}^{2} \sigma_{i}^{2}$ Z=max,min(若 $X_1, X_2 \cdots X_n$ 相 互 独 立 , 其 分 布 函 数 分 别 为 $X_1, X_2, \cdots X_n$

 $F_{x_1}(x)$, $F_{x_2}(x)\cdots F_{x_n}(x)$,则 Z=max,min(X₁,X₂,···X_n)的分布函数为: $F_{\max}(x) = F_{x_1}(x) \bullet F_{x_2}(x) \cdots F_{x_n}(x)$

 $F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \bullet [1 - F_{x_2}(x)] \cdots [1 - F_{x_n}(x)]$

χ^2	分布
X	71 111

设 n 个随机变量 X_1, X_2, \cdots, X_n 相互独立,且服从标准正态分布,可以证明它们的平方和

$$W = \sum_{i=1}^{n} X_i^2$$

的分布密度为

$$f(u) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} u^{\frac{n}{2} - 1} e^{-\frac{u}{2}} & u \ge 0, \\ 0, & u < 0. \end{cases}$$

我们称随机变量 \mathbb{W} 服从自由度为 \mathbb{N} 的 χ^2 分布, 记为 $\mathbb{W} \sim \chi^2(n)$, 其中

$$\Gamma\left(\frac{n}{2}\right) = \int_0^{+\infty} x^{\frac{n}{2}-1} e^{-x} dx.$$

所谓自由度是指独立正态随机变量的个数,它是随机变量 分布中的一个重要参数。

 χ^2 分布满足可加性: 设

$$Y_i - \chi^2(n_i),$$

则

$$Z = \sum_{i=1}^{k} Y_i \sim \chi^2 (n_1 + n_2 + \dots + n_k).$$

t分布

设 X, Y 是两个相互独立的随机变量,且

$$X \sim N(0,1), Y \sim \chi^{2}(n),$$

可以证明函数

$$T = \frac{X}{\sqrt{Y/n}}$$

的概率密度为

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad (-\infty < t < +\infty).$$

我们称随机变量 T 服从自由度为 n 的 t 分布,记为 $T \sim t(n)$ 。

$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$

F	7 分布	设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$, 且 X 与 Y 独立, 可以证明
		$F = \frac{X/n_1}{Y/n_2}$ 的概率密度函数为
		$f(y) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2}-1} \left(1 + \frac{n_1}{n_2}y\right)^{-\frac{n_1+n_2}{2}}, y \ge 0\\ 0, y < 0 \end{cases}$
		我们称随机变量 F 服从第一个自由度为 n_1 ,第二个自由度为 n_2 的 F 分布,记为 $F \sim f(n_1, n_2)$.
		$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$

第四章 随机变量的数字特征

(1)		离散型	连续型
一维	期望	设 X 是离散型随机变量,其分布	设 X 是连续型随机变量,其概率密
随机	期望就是平均值	律为 $P(X=x_k)=p_k$,	度为 f(x),
变量		$P_{K} = A_{K} = A_{K}$	+∞
的数		k=1, 2, ···, n,	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
字特		n	
征		$E(X) = \sum_{k=1}^{n} x_k p_k$	(要求绝对收敛)
	云. 粉. b. 知. 担. il	(要求绝对收敛)	V_ (V)
	函数的期望	Y=g(X)	Y=g(X)
		$E(Y) = \sum_{k=1}^{n} g(x_k) p_k$	$E(Y) = \int_{-\infty}^{+\infty} g(x)f(x)dx$
		$E(1) = \sum_{k=1}^{\infty} g(x_k) p_k$	$L(I) = \int_{-\infty}^{\infty} g(x) f(x) dx$
	方差		+∞
	$D(X) = E[X - E(X)]^{2}$	$D(X) = \sum_{k} [x_k - E(X)]^2 p_k$	$D(X) = \int [x - E(X)]^2 f(x) dx$
	标准差	k	_∞ -∞
	$\sigma(X) = \sqrt{D(X)} ,$		
	$O(\Lambda) - \sqrt{D(\Lambda)}$		

	切比雪夫不等式	阶原点矩,记为 v_k ,即 v_k =E (X^k) = $\sum_i x_i^k p_i$, k =1, 2, ····. ②对于正整数 k , 称随机变量 X 与 E (X) 差的 k 次幂的数学期望为 X 的 k 阶中心矩,记为 μ_k ,即 $\mu_k = E(X - E(X))^k$ · = $\sum_i (x_i - E(X))^k p_i$, k =1, 2, ····. 设随机变量 X 具有数学期望 E (任意正数 ε ,有下列切比雪夫不 $P(X - \mu \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$ 切比雪夫不等式给出了在未知 X	k 次幂的数学期望为 X 的 k 阶原点矩,记为 v_k ,即 v_k =E (X^k) = $\int_{-\infty}^{+\infty} x^k f(x) dx$, $k=1,2,\cdots$. ②对于正整数 k,称随机变量 X 与 E (X) 差的 k 次幂的数学期望为 X 的 k 阶中心矩,记为 μ_k ,即 $\mu_k = E(X - E(X))^k$. = $\int_{-\infty}^{+\infty} (x - E(X))^k f(x) dx$, $k=1,2,\cdots$. X) = μ ,方差 D (X) = σ^2 ,则对于等式
		P(X -	$-\mu \geq \varepsilon)$
		的一种估计,它在理论上有重要	意义。
(2) 期望 的性 质		$E(\sum_{i=1}^{n} C_{i}X_{i}) = \sum_{i=1}^{n} C_{i}E(X_{i})$ 充分条件: $X 和 Y 独立$; 充要条件: $X 和 Y 不相关$ 。	
(3) 方差 的性 质	(4) $D(X) = E(X^2) - E^2(X)$ (5) $D(X \pm Y) = D(X) + D(Y)$ $D(X \pm Y) = D(X) + D(X)$		E条件成立。
(4)	100 = (20 a) 44 (44) 1	期望	方差
常 见分 布	0-1 分布 B(1, p)	р	p(1-p)

的期望和	二项分布 B (n, p)	пр	np(1-p)
方差	泊松分布 P (λ)	λ	λ
	几何分布 $G(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
	超几何分布 $H(n,M,N)$	$\frac{nM}{N}$	$\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N-n}{N-1} \right)$
	均匀分布 $U(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
	指数分布 $e(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
	正态分布 $N(\mu, \sigma^2)$	μ	σ^2
	χ ² 分布	n	2n
	t 分布	0	$\frac{n}{n-2} \text{ (n>2)}$
(5) 二维 随机	期望	$E(X) = \sum_{i=1}^{n} x_i p_{i\bullet}$	$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$
变量的发生		$E(Y) = \sum_{j=1}^{n} y_{j} p_{\bullet j}$	$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy$
征	函数的期望	E[G(X,Y)] =	E[G(X,Y)] =
		$\sum_{i}\sum_{j}G(x_{i},y_{j})p_{ij}$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x, y) f(x, y) dx dy$
	方差	$D(X) = \sum_{i} [x_i - E(X)]^2 p_{i\bullet}$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$
		$D(Y) = \sum_{j} [x_{j} - E(Y)]^{2} p_{\bullet j}$	$D(Y) = \int_{-\infty}^{+\infty} [y - E(Y)]^2 f_Y(y) dy$

	协方差	对于随机变量 X 与 Y ,称它们的二阶混合中心矩 μ_{11} 为 X 与 Y 的协方
		差或相关矩,记为 $\sigma_{\scriptscriptstyle XY}$ 或 $\cot(X,Y)$,即
		$\sigma_{XY} = \mu_{11} = E[(X - E(X))(Y - E(Y))].$
		与记号 σ_{xy} 相对应, X 与 Y 的方差 $D(X)$ 与 $D(Y)$ 也可分别记为 σ_{xx}
		与 $\sigma_{\scriptscriptstyle YY}$ 。
	相关系数	对于随机变量 X 与 Y, 如果 D (X) >0, D(Y)>0, 则称
		$\frac{\sigma_{_{XY}}}{\sqrt{D(X)}\sqrt{D(Y)}}$
		为 X 与 Y 的相关系数,记作 $ ho_{XY}$ (有时可简记为 $ ho$)。
		$\mid \rho \mid \leq 1$,当 $\mid \rho \mid = 1$ 时,称 X 与 Y 完全相关: $P(X=aY+b)=1$
		$ egin{aligned} & $
		而当 $\rho=0$ 时,称 X 与 Y 不相关。
		以下五个命题是等价的:
		$ \bigcirc \rho_{XY} = 0; $
		2cov(X, Y) = 0;
	协方差矩阵	$egin{pmatrix} \sigma_{_{X\!X}} & \sigma_{_{X\!Y}} \ \sigma_{_{Y\!X}} & \sigma_{_{Y\!Y}} \end{pmatrix}$
	混合矩	对于随机变量 X 与 Y ,如果有 $E(X^kY^l)$ 存在,则称之为 X 与 Y 的
		$k+1$ 阶混合原点矩,记为 ν_{kl} ; $k+1$ 阶混合中心矩记为:
		$u_{kl} = E[(X - E(X))^{k} (Y - E(Y))^{l}].$
(6)	(i) cov (X, Y)=cov (Y,	
协 方 差 的	(iii) $cov(aX, bY) = ab cov(iii) cov(X1+X2, Y) = cov(X1+X2)$	
性质	(iv) $\operatorname{cov}(X_1 \cdot X_2, T) = \operatorname{E}(XY) - \operatorname{E}(XY)$	

第五章 大数定律和中心极限定理

(1) 大数定律 $\overline{X} \rightarrow \mu$	切夫定 伯大律	设随机变量 X_1 , X_2 , …相互独立,均具有有限方差,且被同一常数 C 所界: D (X_i) $< C$ ($i=1,2,\cdots$),则对于任意的正数 ε ,有 $\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right < \varepsilon\right) = 1.$ 特殊情形: 若 X_1 , X_2 , …具有相同的数学期望 E (X_1) $= \mu$,则上式成为 $\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right) = 1.$ 设 μ 是 μ 次独立试验中事件 μ 发生的次数, μ 是事件 μ 在每次试验中发生的概率,则对于任意的正数 μ ,有 $\lim_{n\to\infty} P\left(\left \frac{\mu}{n} - p\right < \varepsilon\right) = 1.$ 伯努利大数定律说明,当试验次数 μ 很大时,事件 μ 发生的频率与概率有较大判别的可能性很小,即
		的 $\lim_{n \to \infty} P\left(\left \frac{\mu}{n} - p\right \ge \varepsilon\right) = 0.$ 这 这 就 以
	辛钦大 数定律	设 X_1 , X_2 ,, X_n ,是相互独立同分布的随机变量序列,且 E (X_n) = μ , 则对于任意的正数 ϵ 有
		$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right) = 1.$

(2) 中心极限定	列维一	设随机变量 X1, X2, ···相互独立, 服从同一分布, 且具有
理	林德伯	相 同 的 数 学 期 望 和 方 差 :
$\overline{X} \to N(\mu, \frac{\sigma^2}{n})$	格定理	$E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \dots)$,则随机变量
n		$Y_n = \frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma}$
		的分布函数 F _s (x) 对任意的实数 x, 有
		$\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} P\left\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$
		此定理也称为 独立同分布 的中心极限定理。
	棣莫弗 一拉普	设随机变量 X_n 为具有参数 n, p(0 <p<1)的二项分布,则对于< th=""></p<1)的二项分布,则对于<>
		任意实数 x, 有
	理	$= \lim_{n \to \infty} P \left\{ \frac{X_n - np}{\sqrt{np(1-p)}} \le x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$
(3)二项定理	若当	$ in N \to \infty$ 时, $\frac{M}{N} \to p(n, k$ 不变),则
		$\frac{C_M^k C_{N-M}^{n-k}}{C_N^n} \to C_n^k p^k (1-p)^{n-k} \qquad (N \to \infty).$
	 超几何分布的极限分布为二项分布。	
(4) 泊松定理	若当 $n \to \infty$ 时, $np \to \lambda > 0$,则	
		$C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}$ $(n \to \infty).$
	其中 k=0), 1, 2,, n,
	二项分布	F的极限分布为泊松分布。

第六章 样本及抽样分布

(1) 数理	总体	在数理统计中,常把被考察对象的某一个(或多个)指标的全	
统计的基		体称为总体(或母体)。我们总是把总体看成一个具有分布的随	
本概念		机变量(或随机向量)。	
	个体	总体中的每一个单元称为样品(或个体)。	

样本

我们把从总体中抽取的部分样品 x_1, x_2, \dots, x_n 称为样本。样本 中所含的样品数称为样本容量,一般用 n 表示。在一般情况下, 总是把样本看成是 n 个相互独立的且与总体有相同分布的随机 变量,这样的样本称为简单随机样本。在泛指任一次抽取的结 果时, x_1, x_2, \dots, x_n 表示 n 个随机变量 (样本); 在具体的一次 抽取之后, x_1, x_2, \cdots, x_n 表示 n 个具体的数值 (样本值)。我们 称之为样本的两重性。

样本函数和 统计量

设 x_1, x_2, \dots, x_n 为总体的一个样本,称

$$\varphi = \varphi$$
 (x_1, x_2, \dots, x_n)

为样本函数,其中 φ 为一个连续函数。如果 φ 中不包含任何未 知参数,则称 φ (x_1, x_2, \cdots, x_n) 为一个统计量。

常见统计量 及其性质

样本均值

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

样本方差

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$$

样本标准差
$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}.$$

样本k阶原点矩

$$M_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \cdots.$$

样本k阶中心矩

$$M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{k}, k = 2,3,\cdots.$$

$$E(\overline{X}) = \mu$$
, $D(\overline{X}) = \frac{\sigma^2}{n}$,

$$E(S^2) = \sigma^2, \quad E(S^{*2}) = \frac{n-1}{n}\sigma^2,$$

其中
$$S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
,为二阶中心矩。

(2) 正态 [i] 总体下的 [m大分布]	正态分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
四大分布		1, 2, , , , , , , , , , , , , , , , , ,
		本函数
		$u = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1).$
t	t 分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
		本函数
		$t^{\frac{def}{2}} \frac{x - \mu}{s / \sqrt{n}} \sim t(n-1),$
		其中 t (n-1)表示自由度为 n-1 的 t 分布。
	χ ² 分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
		本函数
		$w^{\frac{def}{}} \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$
		其中 $\chi^2(n-1)$ 表示自由度为 $n-1$ 的 χ^2 分布。
F	F分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而
		y_1, y_2, \cdots, y_n 为来自正态总体 $N(\mu, \sigma_2^2)$ 的一个样本,则样本
		函数
		$F = \frac{\frac{def}{2} \frac{S_1^2}{\sigma_1^2}}{S_2^2} \sim F(n_1 - 1, n_2 - 1),$
		其中
		$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \bar{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \bar{y})^2;$
		$F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 ,第二自由度为
		n_2 — 1 的 F 分布。
(3) 正态 · 总体下分 布的性质	$\frac{-}{X}$ 与 S^2 独立。	

第七章 参数估计

由上面的 m 个方程中,解出的 m 个未知参数 $(\hat{\theta_1},\hat{\theta_2},\cdots,\hat{\theta_m})$ 即为参数 $(\theta_1,\theta_2,\cdots,\theta_m)$ 的矩估计量。

若 $\overset{\wedge}{ heta}$ 为 θ 的矩估计,g(x)为连续函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的矩估计。

	极大似	当总体 X 为连续型随机变量时,设其分布密度为
	然估计	$f(x; \theta_1, \theta_2, \dots, \theta_m)$, 其中 $\theta_1, \theta_2, \dots, \theta_m$ 为未知参数。又设
		x_1, x_2, \dots, x_n 为总体的一个样本,称
		$L(\theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_m)$
		为样本的似然函数,简记为 L_n . 当 总 体 X 为 离 型 随 机 变 量 时 , 设 其 分 布 律 为
		$P\{X=x\}=p(x;\theta_1,\theta_2,\cdots,\theta_m), 则称$
		$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n p(x_i; \theta_1, \theta_2, \dots, \theta_m)$
		为样本的似然函数。
		若似然函数 $L(x_1,x_2,\cdots,x_n;\theta_1,\theta_2,\cdots,\theta_m)$ 在 $\hat{\theta}_1,\hat{\theta}_2,\cdots,\hat{\theta}_m$ 处取
		到最大值,则称 $\hat{\theta}_1,\hat{\theta}_2,\dots,\hat{\theta}_m$ 分别为 $\theta_1,\theta_2,\dots,\theta_m$ 的最大似然估计值,
		相应的统计量称为最大似然估计量。
		$\left. \frac{\partial \ln L_n}{\partial \theta_i} \right _{\theta_i = \hat{\theta}_i} = 0, i = 1, 2, \cdots, m$
		$\stackrel{\circ}{E}$ 为 θ 的极大似然估计, $g(x)$ 为单调函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的极大
(2) /4	一 / 山 加。	似然估计。
(2)估 计量的	无偏性	$\theta = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为未知参数 θ 的估计量。若 E $\theta = \hat{\theta}$,则称
评选标 准		$\stackrel{\wedge}{ heta}$ 为 $ heta$ 的无偏估计量。
		$E(\overline{X}) = E(X), E(S^2) = D(X)$
	有效性	设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_{,2}, \dots, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_{,2}, \dots, x_n)$ 是未知参数 θ
		的两个无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。

	一致性	设 $\overset{\wedge}{ heta}_n$ 是 $ heta$ 的一串估计量,如果对于任意的正数 $ heta$,都有
		$\lim_{n\to\infty}P(\stackrel{\circ}{\theta}_n-\theta >\varepsilon)=0,$
		则称 $\overset{\wedge}{ heta}_n$ 为 $ heta$ 的一致估计量(或相合估计量)。
		$\ddot{\theta}$ 为 θ 的无偏估计,且 $D(\hat{\theta}) \rightarrow 0 (n \rightarrow \infty)$,则 $\dot{\theta}$ 为 θ 的一致估计。 只要总体的 $E(X)$ 和 $D(X)$ 存在,一切样本矩和样本矩的连续函数都是相 应总体的一致估计量。
(3)区 间估计	置信区间和置	设总体 X 含有一个待估的未知参数 θ 。如果我们从样本 $x_1, x,_2, \cdots, x_n$ 出
	信度	发 , 找 出 两 个 统 计 量 $\theta_1 = \theta_1(x_1, x_{,2}, \cdots, x_n)$ 与
		$\theta_2 = \theta_2(x_1, x_{,_2}, \cdots, x_n)$ $(\theta_1 < \theta_2)$, 使 得 区 间 $[\theta_1, \theta_2]$ 以
		1-lpha(0 <lpha<1)< math="">的概率包含这个待估参数$heta$,即</lpha<1)<>
		$P\{\theta_1 \le \theta \le \theta_2\} = 1 - \alpha,$
		那么称区间 $[\theta_1, \theta_2]$ 为 θ 的置信区间, $1-\alpha$ 为该区间的置信度(或置
		信水平)。
	単 正 态 总 体 的	设 $x_1, x_{,2}, \cdots, x_n$ 为总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,在置信度为 $1-\alpha$
	期望和 方差的	下,我们来确定 μ 和 σ^2 的置信区间 $[\theta_1,\theta_2]$ 。具体步骤如下:
	区间估	
	计	(ii) 由置信度 1 -α, 查表找分位数;
		(iii) 导出置信区间[$ heta_1, heta_2$]。
		已知方差,估计均值
		$u = \frac{x - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1).$
		(ii) 查表找分位数
		$P\left(-\lambda \leq \frac{\bar{x} - \mu}{\sigma_0 / \sqrt{n}} \leq \lambda\right) = 1 - \alpha.$
		(iii)导出置信区间
		$\left[\bar{x} - \lambda \frac{\sigma_0}{\sqrt{n}}, \bar{x} + \lambda \frac{\sigma_0}{\sqrt{n}} \right]$

1. 1	$()$ We let $(V, V, \to W)$
未知方差,估计均值	(i) 选择样本函数
	$-\frac{1}{x-\mu}$
	$t = \frac{x - \mu}{S / \sqrt{n}} \sim t(n - 1).$
	(ii)查表找分位数
	$P\left(-\lambda \le \frac{\bar{x} - \mu}{S / \sqrt{n}} \le \lambda\right) = 1 - \alpha.$
	(iii) 导出置信区间
	$\left[\bar{x} - \lambda \frac{S}{\sqrt{n}}, \bar{x} + \lambda \frac{S}{\sqrt{n}} \right]$
方差的区间估计	(i)选择样本函数
	$w = \frac{(n-1)S^2}{\sigma^2} \sim \kappa^2 (n-1).$
	(ii) 查表找分位数
	$P\left(\lambda_1 \le \frac{(n-1)S^2}{\sigma^2} \le \lambda_2\right) = 1 - \alpha.$
	(iii) 导出 σ 的置信区间
	$\left[\sqrt{\frac{n-1}{\lambda_2}}S, \sqrt{\frac{n-1}{\lambda_1}}S\right]$

第八章 假设检验

基本思想	假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是		
	不会发生的,即小概率原理。		
	为了检验一个假设 14是否成立。我们先假定 14是成立的。如果根据这个假		
	定导致了一个不合理的事件发生,那就表明原来的假定从是不正确的,我们拒		
	绝接受 Li; 如果由此没有导出不合理的现象,则不能拒绝接受 Li, 我们称 Li 是		
	相容的。与 L6相对的假设称为备择假设,用 L6表示。		
	这里所说的小概率事件就是事件 $\{K\in R_{\alpha}\}$,其概率就是检验水平 α ,通		
	常我们取 α =0.05,有时也取 0.01 或 0.10。		
基本步骤	假设检验的基本步骤如下:		
	(i) 提出零假设 <i>L</i> i;		
	(ii) 选择统计量 <i>K</i> ;		
	(iii) 对于检验水平 α 查表找分位数 λ;		
	(iv) 由样本值 x_1, x_2, \dots, x_n 计算统计量之值 K ;		
	将 $\overset{\circ}{K}$ 与 λ 进行比较,作出判断: 当 $ \overset{\circ}{K} >\lambda($ 或 $\overset{\circ}{K}>\lambda)$ 时否定 $^{\mathcal{H}}$,否则认为 $^{\mathcal{H}}$		
	相容。		

两类错误	第二类错误	当 H 为真时,而样本值却落入了否定域,按照我们规定的检验法则,应当否定 H。这时,我们把客观上 H 成立判为 H 为不成立(即否定了真实的假设),称这种错误为"以真 当假"的错误或第一类错误,记 A 为犯此类错误的概率,即 P {否定 H H 为真} = a; 此处的 a 恰好为检验水平。 当 H 为真时,而样本值却落入了相容域,按照我们规定的检验法则,应当接受 H。这时,我们把客观上 H。不成立判 为 H 成立(即接受了不真实的假设),称这种错误为"以假 当真"的错误或第二类错误,记 A 为犯此类错误的概率,
		即 P{接受 <i>H</i> <i>H</i> 为真} = β。
		,
	两类错误的关系 	人们当然希望犯两类错误的概率同时都很小。但是,当
		容量 n 一定时, α 变小,则 $oldsymbol{eta}$ 变大;相反地, $oldsymbol{eta}$ 变小,则 $oldsymbol{lpha}$
		变大。取定 α 要想使 β 变小,则必须增加样本容量。
		在实际使用时,通常人们只能控制犯第一类错误的概率,即给定显著性水平 a。 a 大小的选取应根据实际情况而定。当我们宁可"以假为真"、而不愿"以真当假"时,则应把 a 取得很小,如 0.01,甚至 0.001。反之,则应把 a 取得大些。

单正态总体均值和方差的假设检验

条件	零假设	统计量	对应样本 函数分布	否定域
已知 σ^2	$H_0: \mu = \mu_0$	$U = \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}$	N(0, 1)	$ u > u_{1-\frac{\alpha}{2}}$
	$H_0: \mu \leq \mu_0$			$u > u_{1-\alpha}$
	$H_0: \mu \geq \mu_0$			$u < -u_{1-\alpha}$
未知 σ^2	$H_0: \mu = \mu_0$	$T = \frac{\bar{x} - \mu_0}{S / \sqrt{n}}$	<i>t</i> (<i>n</i> – 1)	$ t > t_{1-\frac{\alpha}{2}}(n-1)$
	$H_0: \mu \leq \mu_0$			$t > t_{1-\alpha}(n-1)$
	$H_0: \mu \geq \mu_0$			$t < -t_{1-\alpha}(n-1)$
未知 σ^2	$H_0: \sigma^2 = \sigma^2$	$w = \frac{(n-1)S^2}{\sigma_0^2}$	$\kappa^2(n-1)$	$w < \kappa_{\frac{\alpha}{2}}^2 (n-1)$ \mathbb{Z}
				$w > \kappa^2_{1-\frac{\alpha}{2}}(n-1)$

$H_0: \sigma^2 \le \sigma_0^2$		$w > \kappa_{1-\alpha}^2 (n-1)$
$H_0: \sigma^2 \ge \sigma_0^2$		$w < \kappa_{\alpha}^2 (n-1)$