Presentation · July 2019			
CITATIONS	TATIONS READS		
0	203		
1 author:			
	Alaa Tharwat		
	Fachhochschule Bielefeld		
	120 PUBLICATIONS 6,195 CITATIONS		
	SEE PROFILE		

Alaa Tharwat

- Review of Lecture 12
- Validation set
- Model selection
- Cross validation

Alaa Tharwat 2 / 27

- Review of Lecture 12
- Validation set
- Model selection
- Cross validation

Alaa Tharwat 3 / 27

 Regularization technique is used for solving the overfitting problem by adding an extra term to the cost function

$$C = C_0 + \text{regularization term} = C_0 + \frac{\lambda}{2n} \sum_w w^2$$

- The regularization term aims to make a balance between minimizing the original cost function and finding small weights
- \bullet With a small λ the original cost is minimized, but with a large λ the weights are minimized
- Increasing λ increases the bias (side effect) slightly and reduces the testing error dramatically. Hence, Large λ may lead to a simple model with high bias and high testing error

$$\begin{split} & \text{minimize: } \frac{1}{N} (\mathbf{Z}\mathbf{w} - Y)^T (\mathbf{Z}\mathbf{w} - Y) \\ & \text{subject to: } \mathbf{w}^T \mathbf{w} \leq C, \quad \Rightarrow \mathbf{w}_{req} \in H_C \text{ instead of } \mathbf{w}_{lin} \end{split}$$

Alaa Tharwat 4 / 27

- The parameter C puts a constraint on some weights to be small or zero (not exclude any order but gives it different weights)
- With large $C \Rightarrow \lambda \approx 0$, w_{lin} is the solution, just minimize E_{in} as if there is no constraint
- With small $C \Rightarrow \lambda \uparrow$ and the regularization is more severe
- If $C=0 \Rightarrow \lambda = \infty$ and $w \approx 0$
- ullet Use the validation to get the optimal λ

Alaa Tharwat

- Review of Lecture 12
- Validation set
- Model selection
- Cross validation

Alaa Tharwat 6 / 27

In the last lecture:

$$E_{out}(h) = E_{in}(h) + \text{overfit penalty}$$

Regularization reduces the overfitting to estimate E_{out} , or we can say Regularization estimates this penalty

$$E_{out}(h) = E_{in}(h) + \underbrace{ ext{overfit penalty} }_{ ext{regularization estimates this term}}$$

Validation: estimates the E_{out}

$$\underbrace{E_{out}(h)}_{\text{validation estimates this term}} = E_{in}(h) + \text{overfit penalty}$$

Alaa Tharwat 7 / 27

- Assume we have only one out-of-sample point (x, y), the error is e(h(x), y), where e is any error function¹, if we repeat this process many times we get many errors
- $E_{out}(h) = E[e(h(x), y)]$ (expectation of all errors)
- $Var[e(h(x), y)] = \sigma^2$ (variance of all errors)

Alaa Tharwat

¹Such as squared error function : $(h(x) - y)^2$ and binary error function : $(h(x) \neq y)$

- Instead of using one point, we use a set and we call it a *validation* set $D_{val} = (x_1, y_1), \dots, (x_K, y_K)$, the error is $E_{val}(h) = \frac{1}{K} \sum_{k=1}^{K} e(h(x_k), y_k)$
- $E_{out}(h) = \frac{1}{K} \sum_{k=1}^{K} E[e(h(x_k), y_k)] = E[E_{val}(h)]$
- $Var[E_{val}(h)] = \frac{1}{K^2} \sum_{k=1}^{K} E[e(h(x_k), y_k)] = \frac{\sigma^2}{K}$ where K^2 is the number of samples in the covariance matrix²
- Hence, $E_{val}(h) = E_{out}(h) \pm O(\frac{1}{\sqrt{K}})$; this means that E_{val} is deviated from E_{out} by amount with order $O(\frac{1}{\sqrt{K}})$ (dependency on K)

\overline{K} is not a free parameter because it is taken from N

Alaa Tharwat 9 / 27

²Here, one summation to add the diagonal terms (variances) because all covariances are zeros because we pick the points independently

- Given dataset $D = (x_1, y_1), \ldots, (x_N, y_N)$
- $\underbrace{K \text{ samples/points are used for validation}}_{D_{val}} \underbrace{(K \text{ points})}_{D_{val}}$
- N-K samples are used for training (N-K points)

 D_{train}

- With small $K\Rightarrow$ bad estimation. For example, we select two or three points, this will lead to a bad estimation and the validation error will not be reliable and the variance will be high. Also, with small $K\Rightarrow (N-K)\uparrow$ and $O(\frac{1}{\sqrt{K}})\uparrow$ and hence E_{val} will be far from E_{out}
- With large $K\Rightarrow$ the remain data for training the model is not enough \Rightarrow overfitting, but $O(\frac{1}{\sqrt{K}})\downarrow$ and hence $E_{val}\approx E_{out}$

Alaa Tharwat

- If we use the whole data for training $D\Rightarrow q$
- Practically, if we use the (N-K) points for training we get $g^ (D_{train} \Rightarrow g^-)$ and D_{val} is used for evaluating $g^ (E_{val} = E_{val}(g^-))$
- Can we put K back to training data to get better approximation of E_{out} . No, because this makes a difference between g and g^- , and hence the estimation is bad

Alaa Tharwat

With large K:

- The training data will be small
- After the evaluation we can add the K samples again to the training data to increase the number of training samples. But, if K is large the change of training data will be severe and hence the validation error will be significantly different than the given data
- Large $K \Rightarrow \mathsf{bad}$ estimation
- Practically, $K = \frac{N}{5}$

Alaa Tharwat 12 / 27

Why using validation?

- Validation is used to make many learning choices
- The figure below shows training and testing errors. Hence, we cannot estimate the stopping point to prevent overfitting
- A validation set is used for (adjust the models' parameters such as regularization parameter) and select the stopping point

Alaa Tharwat 13 / 27

What is the difference between test set and validation set?

- Assume we have two hypotheses, h_1 and h_2 , and each has the same $E_{out} = 0.5$
- Using one point to estimates that error: e_1 and e_2 uniform in [0,1]
- Select one hypothesis $h \in \{h_1, h_2\}$ with $e = min(e_1, e_2)$; hence, E(e) < 0.5; thus, we can say the validation set obtains the minimum error and hence it has an optimistic bias

Alaa Tharwat 14 / 27

- Review of Lecture 12
- Validation set
- Model selection
- Cross validation

Alaa Tharwat 15 / 27

We can use D_{val} more than once

- Given M models H_1, \ldots, H_M
 - different learning algorithms such as SVM, NN, k-NN,...
 - one learning algorithm with different parameters (e.g. NN with different weights)
 - one model with different regularization parameters
- Use D_{train} to train g_m^- for each model $(g_1^-, g_2^-, \dots, g_M^-)$
- Validation set is used to evaluate all models $(E_m = E_{val}(g_m^-), \ m=1,2,\ldots,M)$ and select the best model (H_m^*) with the minimum error (E_m^*) (i.e. $m=m^*$)

Alaa Tharwat 16 / 27

- We selected the model H_m^* using the validation set (D_{val})
- ullet $E_{val}(g_{m*}^-)$ is a biased estimate of $E_{out}(g_{m*}^-)$
- ullet Increasing K reduces the training data and hence increases E_{out} and this makes E_{val} closer to E_{out}
- Small $K \Rightarrow D_{train} \uparrow \Rightarrow E_{out} \downarrow$
- E_{val} converges to E_{out} when K is large

Alaa Tharwat 17 / 27

- Given M models, H_1, H_2, \ldots, H_M
- D_{val} is used for training on the finalists model, $H_{val} = \{\bar{q}_1, \bar{q}_2, \dots, \bar{q}_M\}$ (theses models form a hypotheses set of finallists or trained models)
- From Hoeffding and VC,

$$E_{out}(g_{m*}^-) \le E_{val}(g_{m*}^-) + O(\sqrt{\frac{lnM}{K}})$$

- Hence, the regularization can be used for reducing the danger of overfitting and the validation can be used to find an early-stopping threshold
- We can say validation can be used for selecting the best regularization parameter

Alaa Tharwat 18 / 27

- ullet We have three types of errors E_{in} , E_{out} , and E_{val}
- Data is contaminated if you use the data to make choices you are contaminating it as far as its ability to estimate the real performance
- What about contamination
 - Training set: totally contaminated $(E_{in} \text{ is far from } E_{out})$
 - Testing set: totally clean (i.e. there is bias)
 - Validation set: slightly contaminated

Alaa Tharwat 19 / 27

- Review of Lecture 12
- Validation set
- Model selection
- Cross validation

Alaa Tharwat 20 / 27

The following chain of reasoning:

$$E_{out}(g) \approx E_{out}(g^-) \approx E_{val}(g^-) \label{eq:Eout}$$
 (large K)

So, how we can select K? small or large?

In leave-one-out algorithm

- N-1 points are used for training the model and only one point for validation, $D_n=(x_1,y_1),(x_2,y_2),\dots,(x_n,y_n),\dots,(x_N,y_N)$, and the final hypothesis from D_n is g_n^-
- The validation error for one points is

$$e_n = E_{val}(g_n^-) = e(g_n^-(x_n), y_n)$$

Cross-validation error is

$$E_{cv} = \frac{1}{N} \sum_{n=1}^{N} e_n$$

Illustration of cross-validation

$$E_{cv} = (e_1 + e_2 + e_3)$$

23 / 27

How CV can be used in model selection?

24 / 27 Alaa Tharwat

$$(1,x_1,x_2) \xrightarrow{mapping} (1,x_1,x_2,x_1^2,x_1x_2,\ldots,x_1^5,x_1^4x_2,x_1^3x_2^2,x_1^2x_2^3,x_1x_2^4,x_2^5)$$

Alaa Tharwat 25 / 27

(a) Without validation $E_{in} = 0.0015625\%$ and $E_{out} = 2.8\%$

(b) With validation $E_{in} = 0.0140625\%$ and $E_{out} = 1.7\%$

- Without validation (i.e. using full model with all features), the decision boundary is sharp and $E_{out} \uparrow$
- With validation, the decision boundary is smooth and the model avoids the overfitting

26 / 27

- In leave one out method, N-1 samples are used for training
- In K-fold cross validation, the data is partitioned into K sets and one set is used for validation and the other sets for training the model. Here, we need $\frac{N}{K}$ training sessions/runs, and each has N-K points

Alakie Thalicakat stats 27 / 27