前言

这个是针对于人工智能试验班期末考试的文档, **我们这次老师考题都是大题**, 基本都会从以下列出的部分来出题。

为了节省学弟们的复习时间,写出这份考纲。这门课上过的都知道,难度不大,但是实 验巨多!

第二章:基础文本处理

1.最小编辑距离:

N	9									
0	8									
I	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Х	Е	С	U	Т	I	0	N

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Х	Е	С	U	Т	I	0	N

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
L	7	6	7 '	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6 -	7 :	8	9	10	11	10
Е	4	3 -	4 -	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
L	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Х	Е	С	U	Т	L	0	N

第三章: 语言模型

1.n-gram: 参数估计

197302 close the window 191125 close the door 152500 close the gap 116451 close the thread 87298 close the deal

3785230 close the *

 $p(door|closethe) = \frac{191125}{3785230}$

3380 please close the door 1601 please close the window 1164 please close the new 1159 please close the gate 900 please close the

browser

13951 please close the *

$$p(door|the) = \frac{14112454}{23135851162}$$

 $p(door|pleaseclosethe) = \frac{3380}{13951}$

n-gram 计算概率:

s=they buy a new house

 \mathbb{N} : p(s) \approx p(they|"start") * p(buy|they) * p(a|buy) * p(new|a) * P(house|new) = .15 * .132 * .265 * .0 * .092 = 0

2.数据稀疏(Add-one/Delta): 处理是对于整个词表进行处理。

- 9332个句子
- 1446个不同的词

|V|(词表大小)=1446

- i want to eat chinese food lunch spend
- 每个词出现的次数如下:
- 2533 927 2417 746 158 1093 341 278

		i	want	to	eat	chinese	food	lunch	spend
	i	5	827	0	9	0	0	0	2
	want	2	0	608	1	6	6	5	1
_	to	2	0	4	686	2	0	6	211
原	eat	0	0	2	0	16	2	42	0
始	chinese	1	0	0	0	0	82	1	0
计	food	15	0	15	0	1	4	0	0
数	lunch	2	0	0	0	0	1	0	0
	spend	1	0	1	0	0	0	0	0
		i	want	to	eat	chinese	food	lunch	spend
						cillilese	1000	Idilicii	spend
	i	6	828	1	10	1	1	1	3
	i want	6	828 1						
ρο				1	10	1	1	1	3
ಶ ು 1	want	3	1	1 609	10 2	1 7	1 7	1 6	3 2
1 計	want to	3	1	1 609 5	10 2 687	1 7 3	1 7 1	1 6 7	3 2 212
1	want to eat	3 3 1	1 1 1	1 609 5 3	10 2 687 1	1 7 3 17	1 7 1 3	1 6 7 43	3 2 212 1
1 計	want to eat chinese	3 3 1 2	1 1 1	1 609 5 3	10 2 687 1	1 7 3 17	1 7 1 3 83	1 6 7 43 2	3 2 212 1

加一计数很好理解: 就是每个加一。

		i	want	to	eat	chinese	food	lunch	spend
	i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
	want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
<i>∱</i> □ 1	to	0.0007 8	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
概	eat	0.0004 6	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
率	chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
	food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
	lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
	spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

$$\sum p_{Laplace} = \sum_{w_i} \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + |V|} = 1$$

 $p(i,i) = \frac{5+1}{2533+1446} = 0.0015($ 这里进行处理都是对于整个大词表进行处理)

		i	want	to	eat	chinese	food	lunch	spend
	i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
⊅o	want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
1	to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
折	eat	0.34	0.34	1	0.34	5.8	1	15	0.34
扣	chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
计	food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
数	lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
	spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

$$count(i, i) = 2533 * 0.0015 = 3.8$$

2.数据稀疏(Good-Turing Smoothing):

出现 c 次的折扣为: $c^* = (c+1)\frac{N_{c+1}}{N_c}$

出现 c 次词的概率: $p_c = \frac{c^*}{N} = (c+1) \frac{N_{c+1}}{N-N}$

第四章:形式语言

1.用规范推导(最右推导:只改写最右边那个非终止符)

例3-1:
$$G = (\{E, T, F\}, \{a, +, *, (,)\}, P, E)$$

P: $E \to E + T \mid T$ $T \to T*F \mid F$
 $F \to (E) \mid a$

字符串 a+a*a 的两种推导过程:

$$E \Rightarrow E+T \Rightarrow T+T \Rightarrow F+T \Rightarrow a+T \Rightarrow a+T*F$$

 $\Rightarrow a+F*F \Rightarrow a+a*F \Rightarrow a+a*a$ (最左推导)

 $E \Rightarrow E+T \Rightarrow E+T*F \Rightarrow E+T*a \Rightarrow E+F*a \Rightarrow E+a*a$

$$\Rightarrow$$
 T +a*a \Rightarrow F + a*a \Rightarrow a + a*a (最右推导)

2.区分:正则文法(3型文法)、上下文无关文法(2型文法)、上下文有关文法(1型文法)、 0型文法。

3 型: $A \rightarrow Bx$; $A \rightarrow x$:2 型: $A \rightarrow \alpha \in (N \cup \Sigma)^*$:1 型: $\alpha A\beta \rightarrow \alpha \gamma \beta \gamma \in \Sigma$ 3.短语派生语法树:

例: 给定文法 G(S):

- $\bigcirc S \rightarrow P NP \mid PP Aux NP$ $\bigcirc PP \rightarrow P NP$
- ③ NP→NN | NP Aux NP ④ P→关于

短语"关于鲁迅的文章"的推导。

- S ⇒ PP Aux NP ⇒ P NP Aux NP ⇒ 关于 NP Aux NP
 - ⇒ 关于 NN Aux NP ⇒ 关于鲁迅 Aux NP
 - ⇒ 关于鲁迅的 NP ⇒ 关于鲁迅的 NN
 - ⇒ 关于鲁迅的文章

短语的派生树一(1)

短语的派生树一(2)

第五章: 文本分类

1.用不同词权重, 计算向量空间模型

e.g.
$$tf - idf = f_{ik} * \log\left(\frac{N}{n_k}\right)$$

 f_{ik} 词条k 在文档i 中出现的次数

nk词条k在文档集合中出现次数总数

N文档集合中包含文档的个数

M 预处理后文档集合中包含词条个数【词条总数】

2.朴素贝叶斯分类:

$$\begin{split} \hat{c} &= \arg\max_{k} \left\{ P(c_k|x_i) \right\} &\qquad \qquad \text{ 假设每个文档只属于一个类别} \\ &= \arg\max_{k} \left\{ \frac{P(c_k)P(x_i|c_k)}{P(x_i)} \right\} &\qquad \qquad \text{Bayes 法则} \\ &= \arg\max_{k} \left\{ P(c_k)P(x_i|c_k) \right\} &\qquad \qquad \text{ 假设terms 服从多项式分布} \\ &= \arg\max_{k} \left\{ \log P(c_k) + \log P(x_i|c_k) \right\} &\qquad \qquad \text{ Ind 互独立} \\ &= \arg\max_{k} \left\{ \log P(c_k) + \log \prod_{j=1}^{M} P(t_j|c_k)^{m_j} \right\} &\qquad \qquad \text{where } n_y \text{ is the count of term } t_i \text{ in document } x_i. \end{split}$$

公式:

- 类别ck的先验概率:

$$\hat{P}(c_k) = rac{\# ext{ of training documents in } c_k}{N}$$
- 已知类别 c_k 时terms t_j 的出现概率:

$$\hat{P}(t_j \mid c_k) = \frac{\sum_{x_i \in c_k} n_{ij}}{\sum_{j=1}^{J} \sum_{x_i \in c_k} n_{ij}} \qquad j = 1, \dots, M$$

参数估计:

第六章: 词性标注

- 1.了解汉语分词基本方法。
- 2.计算评价指标:

F-**测度值**(F-Measure): 正确率与找回率的综合值。 计算公式为:

$$F - measure = \frac{(\beta^2 + 1) \times P \times R}{\beta^2 \times P + R} \times 100\%$$

一般地,取 $\beta=1$,即

$$F1 = \frac{2 \times P \times R}{P + R} \times 100\%$$

3.最大匹配算法: (贪心算法)

FMM 算法描述

- (1) 令 i=0,当前指针 p_i 指向输入字串的初始位置,执行下面的操作:
- (2) 计算当前指针 p_i 到字串末端的字数(即未被切分字串的长度)n,如果n=1,转(4),结束算法。否则,令 m=词典中最长单词的字数,如果n < m,令 m=n;

- (3)从当前 p_i 起取m个汉字作为词 w_i ,判断:
 - (a) 如果 w_i 确实是词典中的词,则在 w_i 后添加一个切分标志,转(c);
 - (b) 如果 w_i 不是词典中的词且 w_i 的长度大于1,将 w_i 从右端去掉一个字,转(a)步;否则(w_i 的长度等于1),则在 w_i 后添加一个切分标志,将 w_i 作为单字词添加到词典中,执行(c)步;
 - (c) 根据 w_i 的长度修改指针 p_i 的位置,如果 p_i 指向字串末端,转(4),否则, i=i+1,返回 (2);
- (4)输出切分结果,结束分词程序。

4.最少分词法:

设待切分字串 $S=c_1 c_2...c_n$, 其中 $c_i(i=1,2,...,n)$ 为单个的字,n 为串的长度, $n\geq 1$ 。建立一个节点数 为n+1的切分有向无环图G,各节点编号依次为 V_0 , V_1 , V_2 , ..., V_n 。

$$\underbrace{(v_0)} \xrightarrow{c_1} \underbrace{(v_1)} \xrightarrow{c_2} \cdots \xrightarrow{c_{i-1}} \underbrace{(v_{i-1})} \xrightarrow{c_i} \cdots \xrightarrow{c_j} \underbrace{(v_j)} \xrightarrow{c_{j+1}} \cdots \xrightarrow{c_n} \underbrace{(v_n)} \xrightarrow{c_n} \cdots \underbrace{(v_n)} \cdots$$

例:(1)<u>输入字串</u>:他只会诊断一般的疾病。 可能输出:他/只会/诊断/一般/的/疾病/。 他/只/会诊/断/一般/的/疾病/。

最终结果:他/只会/诊断/一般/的/疾病/。

5.隐马尔科夫模型:

这个可以参考上学期的课程;前向(预测、滤波)、后向(平滑)、Viterbi 算法求路径

第七章: 句法分析

1.句法树的构建(很大一部分第四章说到过了):

R: 句法规则集合, 具有以下两种形式:

- $N^i \rightarrow N^j N^k$ for $N^i \in \mathbb{N}$, and N^j , $N^k \in \mathbb{N}$
- Ni → wi for Ni ∈ N, and wi ∈ T

Chomsky 范式:

CYK 算法:

(1) 汉语分词和词性标注以后:

他/P 喜欢/V 读/V 书/N

n=4

(2) 构造识别矩阵:

2.概率上下文无关文法 (PCFGs) (动态规划算法):

算法:

• 定义动态规划表:

 $\pi(i,j,X)$ =由非終結符X推导出子串 $w_i,...w_j$ 的最大概率

=子树Xpq最大的向内概率

• 目标是计算:

$$\max_{t \in \Gamma(s)} p(t) = \pi(1, n, S)$$

. Base case definition: for all i=1, ..., n, for X€N

$$\pi(i,i,X) = q(X \to \omega_i)$$

- Note define P(X→w_i) = 0 if P(X→w_i) is not in the grammar
- Recursive definition: for all i=1...n-1, j=(i+1)...n, for XEN

$$\pi\!\!\left(i,j,X\right) = \max_{\substack{X \to YZ \in \mathbb{R} \\ s \in \{i\dots(j-1)\}}} \left(q(X \to YZ) \times \pi\!\!\left(i,s,Y\right) \!\!\times \pi\!\!\left(s+1,j,Z\right)\right)$$

具体计算:

$$\pi(3,8,VP) = 0.05$$

计算两颗子树的概率分别如下:

 $P(t1) = S \times NP \times VP \times V \times NP \times NP \times PP \times P \times NP = 1.0 \times 0.1 \times 0.7 \times 1.0 \times 0.4 \times 0.18 \times 1.0 \times 1.0 \times 0.18 = 0.0009072$ $P(t2) = S \times NP \times VP \times VP \times V \times NP \times PP \times P \times NP = 1.0 \times 0.1 \times 0.3 \times 0.7 \times 1.0 \times 0.18 \times 1.0 \times 1.0 \times 0.18 = 0.0006804$

第八章: 文本聚类

- 1. k-means 算法: (可能会考几个点的手算)
 - 先确定簇的个数、K
 - 假设每个簇都有一个中心点(centroid)
 - 将每个样本点划分到距离它最近的中心点所属的簇中
 - 迭代过程:

The basic algorithm:

- 1: select K points as the initial centroids
- 2: repeat
- Form K clusters by assigning all points to the closest centroid
- 4: Recompute the centroid of each cluster
- 5: until the centroids don't change

2.层次凝聚聚类算法:估计考不了,了解下算法机理就好 3.高斯混合模型:估计也考不了。

第九章: 机器翻译

1.IBM1 模型:

- 假设从e=e₁, e₂, ...e_i产生f的生成过程如下:
 - 选择长度为m的句子f: f=f1, f2, ...fm
 - 选择一个一到多的对齐方式A: A=a1, a2, ...am
 - 对于f中的词 f_j ,由e中相应的对齐词 e_{o_i} 生成

A.估计 p(f | a, e, m):

$$p(f \mid a, e, m) = \prod_{j=1}^{m} t(f_j \mid e_{a_j})$$

• $t(f_j|e_{a_j})$ 表示英文词 e_{a_j} 翻译为外文词 f_j 的概率

e.g., l = 6, m = 7

- e = And the program has been implemented

f = Le programme a ete mis en application

$$-a = \{2, 3, 4, 5, 6, 6, 6\}$$

p(f | a, e, 7) = t(Le | the)

X t(programme | program)

X t(a | has)

X t(ete | been)

X t(mis | implemented)

X t(en | implemented)

X t(application | implemented)

B.估计 p(f, a|, e, m): 这里假设每种对齐方式的概率都相同为 $\frac{1}{(l+1)^m}$

- 进而得到:

$$p(f, a \mid e, m) = p(a \mid e, m) \times p(f \mid a, e, m) = \frac{1}{(l+1)^m} \prod_{j=1}^m t(f_j \mid e_{a_j})$$

- 最后得到:

$$p(f|e,m) = \sum_{a \in A} p(f,a|e,m)$$

- C. 最优对齐的计算:
- 对于给定的<f, e>对, 可以计算某种对齐a的概率:

$$\begin{split} p(a \mid f, e, m) &= \frac{p(f, a \mid e, m)}{p(f \mid e, m)} \\ &= \frac{p(a \mid e, m)p(f \mid a, e, m)}{\sum\limits_{a \in A} p(f, a \mid e, m)} \end{split}$$

• 进而,给定<f,e>对,可以计算其最可能的对齐方式

a*=arg max_a p(a|f,e,m)

2.IBM2:

B.估计 p(f, al, e, m): 这里假设不同对齐方式概率由扭曲系数决定

q(i | j, l, m) =

给定e和f的长度分别为l和m时,第j个外文词和第i个英文词对齐的概率

定义:

$$p(a \mid e, m) = \prod_{j=1}^{m} \mathbf{q}(a_j \mid j, l, m)$$

則:

$$p(f, a \mid e, m) = \prod_{i=1}^{m} \mathbf{q}(a_j \mid j, l, m)\mathbf{t}(f_j \mid e_{a_j})$$

- E.g.,
 - -1 = 6

 - e = And the program has been implemented
 - f = Le programme a ete mis en application
 - $-a = \{2, 3, 4, 5, 6, 6, 6\}$

X q(5 | 4, 6, 7) X t(ete | been)

X q(6 | 5, 6, 7) X t(mis | implemented) X q(6 | 6, 6, 7)X t(en | implemented)

X q(6 | 7, 6, 7)X t(application | implemented)

C.最优对齐的计算:

如果已经得到参数q和t,则对于每个句对e1, e₂, ..., e_I, f₁, f₂, ..., f_m, 其最优对齐a_i (j=1, ..., m) 为:

$$a_j = \arg\max_{a \in \{0...l\}} q(a|j, l, m) \times t(f_j|e_a)$$

- E.g.,
 - e = And the program has been implemented
 - f = Le programme a ete mis en application

考察f₃=a的最优对齐时, 计算:

a<->NULL: q(0|3, 6, 7)*t(a|NULL) a<->the: q(1|3, 6, 7)*t(a|and)

a<->program: q(2|3, 6, 7)*t(a|program)

a<->implemented: q(6|3, 6, 7)*t(a|implemented)

从中选取一个概率最大的对齐方式

3.IBM1、IBM2 的参数估计:

$$t_{ML}(f|e) = \frac{\mathsf{Count}(e,\,f)}{\mathsf{Count}(e)} \quad q_{ML}(j|i,l,m) = \frac{\mathsf{Count}(j|i,l,m)}{\mathsf{Count}(i,l,m)}$$

4.基于短语的翻译:

- 一个基于短语的机器翻译系统包括:
 - 一个短语词典:包括若干互译的短语对(f,e)及 互译的概率t(f.e)
 - 一个语言模型: 一般采用trigram (u, v, w)
 - 具有参数q(w|u, v), e.g., q(also|we, must)
 - 一个排序模型d:
 - 可以简化为基于距离的排序: η X | start; end; 1 |
 - 其中η为扭曲参数, 通常为负值, e.g., η =-2

构成要素:

Today we shall be Heute werden wir uber die Wiedereronung des Mont-Blanc-Tunnels diskutieren

Score =
$$\underbrace{\log q(\mathsf{we}|^*,\,\mathsf{Today}) + \log q(\mathsf{shall}|\mathsf{Today},\,\mathsf{we}) + \log q(\mathsf{be}|\mathsf{we},\,\mathsf{shall})}_{\mathsf{Language}\,\,\mathsf{model}}$$

+
$$\underbrace{\log t(\text{werden wir} \mid \text{we shall be})}_{\text{Phrase model}}$$

+
$$\underbrace{\eta \times 0}_{\text{Distortion mode}}$$

数学形式:

- Y(x): 对于给定的输入句子 x = x₁ ... x_n, Y(x) 表 示x的所有合法导出构成的集合
 - 即: Y(x)是由所有的短语串 p₁p₂ ... p₁ 构成的集合
- 若Y(x)合法、则:

所有p_k, k ∈ {1...,L}都是x₁ ..., x_n的短语集合P中的元素
 x中的每个词都被且仅被翻译一次
 对于所有的k ∈ {1 ..., (L-1)}, |t(p_k) + 1 - s(p_{k+1})| ≤ d ,

其中d≥0表示模型的扭曲极限 •例如: d=4 (一个经验上的限定) •特殊的,需要满足: |1-s(p₁)|≤ d

合法的导出:

- y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously)
- y = (1, 3, we must also), (1, 2, we must), (4, 5, this criticism), (6, 6, seriously)
- y = (1, 2, we must), (7, 7, take), (3, 3, also), (4, 5, this criticism), (6, 6, seriously)

例句f: wir mussen auch diese kritik ernst nehmen

y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously)

f(y) = log p(we|*) + log p(must|*, we) + log p(also | we, must) + ...

+ g(1, 3, we must also) + g(7, 7, take) + g(4, 5, this criticism) + ...

 $+\eta |1-1|+\eta |3+1-7|+\eta |7+1-4|+...$

解码问题:这个我没看,考了就崩了

5.树翻译模型:这个类似之前的步骤: 1.串到树翻译规则抽取

2.确定满足词语对齐的树节点:两串都满足的词语对齐约束

第十章: 信息检索

1.倒排索引:

A.词条列表排序: 依字母顺序排序(最后依据文档顺序排序) **保存频率信息,这样可以加速算法。**

B.进行查询: 查找交集

- 交集:将两个位置指针同时在两个列表中后移 ,比较两个指针所指向的DocID
 - 如果一样,则输出DocID到结果列表,然后指针同时后移一位

算法 - 如果不一样,则较小DocID对应的指针后移

- 按照文档频率升序进行查询:
 - 从最短的倒排记录表开始,则所有中间结果的 大小都不会超过最短的倒排记录表

执行查询: (Caesar AND Brutus) AND Calpurnia.

例子:

2.二元独立概率模型:

- 概率排序原理(Probability Ranking Principle, PRP)
 - p(R=1/d)-文档d与给定查询相关的概率
 - p(R=1), p(R=0) 检索到相关/不相关文档的先验概率
 - p(d/R=1), p(d/R=0) 检索到的相关/不相关文档为d的概率

$$p(R=1 \mid d) = \frac{p(d \mid R=1)p(R=1)}{p(d)}$$
$$p(R=0 \mid d) = \frac{p(d \mid R=0)p(R=0)}{p(d)}$$

- 贝叶斯最优决策原理:d是q的相关文档,当且仅当P(R=1/d,q)>P(R=0/d,q)
- 最终根据P(R=1/d, q)的大小,完成对文档的排序

原理:

重要参数:

- 对于给定的q, P(R=1|q)/P(R=0|q)是常量, 记为O(R|q)
- 另, 根据朴素贝叶斯条件独立性假设:

$$\frac{P(\vec{x}|R=1,\vec{q})}{P(\vec{x}|R=0,\vec{q})} = \prod_{t=1}^{M} \frac{P(x_t|R=1,\vec{q})}{P(x_t|R=0,\vec{q})}$$

•
$$\text{MI}$$
:
$$O(R|\vec{x}, \vec{q}) = O(R|\vec{q}) \cdot \prod_{t=1}^{M} \frac{P(x_t|R=1, \vec{q})}{P(x_t|R=0, \vec{q})}$$

$$\begin{split} p(\vec{x} \mid R = 1, \vec{q}) &= \prod_{\vec{x}_i \in \vec{d}} p(x_i \mid R = 1, \vec{q}) \prod_{\vec{x}_i \in \vec{d}} p(x_i \mid R = 1, \vec{q}) \\ &= \prod_{\vec{x}_i} p_i^{e_i} (1 - p_i)^{1 - e_i}, & \text{if } x_i \in d, \text{thene}_i = 1, \text{else } e_i = 0 \end{split}$$

$$\begin{split} p(\vec{x} \mid R=0, \vec{q}) &= \prod_{x_i \in D} p(x_i \mid R=0, \vec{q}) \prod_{x_i \in D} p(x_i \mid R=0, \vec{q}) \\ &= \prod_x u_i^{\epsilon_i} (1-u_i)^{1-\epsilon_i}, \text{if } x_i \in d, \text{then } e_i = 1, \text{else } e_i = 0 \end{split}$$

例题:查询->词项->判断文档 X 中是否出现,计算 O(R|x,q)

• 例子:

- 查询为: 信息 检索 教程

- 所有词项的在相关、不相关文档中出现的概率为p;、u;

词项	信息	检索	教材	教程	课件
R=1时的概率pi	0.8	0.9	0.3	0.32	0.15
R=0时的概率ui	0.3	0.1	0.35	0.33	0.10

文档x: 检索课件

則: P(x|R=1) = (1-0.8)*0.9*(1-0.3)*(1-0.32)*0.15P(x|R=0) = (1-0.3)*0.1*(1-0.35)*(1-0.33)*0.10

P(x|R=1) / P(x|R=0) = 4.216

第十一章:链接分析,每页评分

1.PR (PageRank 计算)

基本公式: 即所有 指向的 u 链接分数/u 的出链接个数 之和(这里默认都以均匀概率访问)

- 给每个网页一个分值,以衡量它在网页集合中的相对 重要程度
 - 将指向网页的超链接看成对网页的"投票"
 - 网页的PageRank值定义为一个递归的变量,取决于指向它的网页 (入链接)的PageRank值

$$PR(u) = \sum_{v \in B_u} rac{PR(v)}{L(v)}$$
 Bu: 指向u的链接 L(v): 页面v的出链接个数

· 随机行走模型:设想一个用户在浏览网页时,随机选择(equiprobably)一个链出的链接继续访问,永不休止......

- ·则足够长的时间后(稳态情况下),他会正在看哪一篇网页?
- · 稳态情况下:每个网页u都会有一个访问概率PR(u),即 PageRank值,作为网页重要程度的度量
- PR(u)依赖于上一个时刻到达"链向"u的网页的概率, 以及这些网页中出链接的个数

基本假设:

• 几轮迭代之后:

A)
0.125 0.2	5 0:Q83
B 0.125	,
V, 10083	0.083

	PR(A)	PR(B)	PR(C)	PR(D)
0	0.25	0.25	0.25	0.25
1	0.75	0	0	0
2	0	0	0	0

	PR(A)	PR(B)	PR(C)	PR(D)
0	0.25	0.25	0.25	0.25
1	0.4583	0.0833	0.2083	0
2	0.25	0	0.0417	0
3	0.0417	0	0	0
4	0	0	0	0

结束于 (0, 0, 0, 0)...

例子:

2.带有随机跳转的马尔科夫链:

- 一个马尔科夫链 (Markov chains) 包含:
 - N个状态
 - N*N的转移概率矩阵P
- 在任一步, 马尔科夫链都处于N个状态中的一个
- 对于1≤i,j≤N,概率P_{ij}表示从当前状态i转移到下 一个状态j的条件转移概率

基本假设:

马尔科夫矩阵的构造:

- Web图的邻接矩阵A可定义为:如果页面i和j之间存在超链接,则A_{ii}=1,否则A_{ii}=0
- 从矩阵A可以推导出马尔科夫链的转移概率矩阵P:
 - 若A的某一行没有1(即该行对应的网页出链接个数为0),则用 1/N代替每个元素;
 - 对于其它行, 处理如下:
 - (1) 将1除以该行中1的个数(如果某行有3个1,则每个1用1/3 代替)
 - · (2)将(1)中得到的矩阵乘以系数1-α
 - (3)将(2)中得到的矩阵每个元素都加上 α/N
 - 得到矩阵P

举例: 原始
$$p = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 0 + 1 * \alpha \div 3 & 1 \div 1 * (1 - \alpha) + 1 * \alpha \div 3 & 0 + 1 * \alpha \div 3 \\ 1 \div 2 * (1 - \alpha) + 1 * \alpha \div 3 & 0 + 1 * \alpha \div 3 & 1 \div 2 * (1 - \alpha) + 1 * \alpha \div 3 \\ 0 + 1 * \alpha \div 3 & 1 \div 1 * (1 - \alpha) + 1 * \alpha \div 3 & 0 + 1 * \alpha \div 3 \end{pmatrix}$$

- 设α = 0.5
- 加入随机跳转后的转移概率矩阵为:

$$P = \left(\begin{array}{ccc} 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{array}\right)$$

$$\vec{x_0} = (1\ 0\ 0)$$
 $\vec{x_0}P = (\ 1/6\ \ 2/3\ \ 1/6\) = \vec{x_1}$

$\vec{x_0}$	1	0	0
$\vec{x_1}$	1/6	2/3	1/6
$\vec{x_2}$	1/3	1/3	1/3
$\vec{x_3}$	1/4	1/2	1/4
$\vec{x_4}$	7/24	5/12	7/24
\vec{X}	5/18	4/9	5/18

第十二章:推荐系统

1.User-user CF: 不会考

- Let r, be the vector of user x's ratings $-r_{x}=[*,_,*,***], r_{y}=[*,_,**,**,_]$
- · Jaccard similarity measure
 - r_v r_v as sets
- · Cosine similarity measure

$$- r_{x} r_{y} \text{ as points}$$

$$sim(\mathbf{x}, \mathbf{y}) = cos(\mathbf{r}_{x}, \mathbf{r}_{y}) = \frac{r_{x} r_{y}}{||\mathbf{r}_{x}|| \cdot ||\mathbf{r}_{y}||}$$

- Pearson correlation coefficient
 - S_{xy} = items rated by both users x and y \bar{r}_x , \bar{r}_y : avg. rating of x, y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$

用户之间的距离:

- · 设r, 为用户x的评级向量
- 设N为与x最相似的,对项目i评分的k个用户 的集合
- 用户x的物品s的预测:

$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$
$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

估计用户评分:

2.Item-item CF

- 对于项目i. 找到其他类似的项目
- 根据类似商品的评分估算商品;的评分
- 可以使用与用户-用户模型相同的相似性指 标和预测功能

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}} \quad \text{s_{y...} similarity of items i and j} \\ r_{xj...} rating of user x on item j} \\ N(i;x)... set items rated by x similar to i$$

公式:

					us	ers							
	1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
1	1		3		?	5			5		4		1.00
2			5	4			4			2	1	3	-0.18
3	2	4		1	2		3		4	3	5		<u>0.41</u>
4		2	4		5			4			2		-0.10
5			4	3	4	2					2	5	-0.31
6	1		3		3			2			4		0.59
	2 3 4 5	1 1 2 3 2 4 5 5	1 1 2 3 2 4 4 4 5 5	1 1 3 5 5 3 2 4 4 5 4	1 1 3 5 4 3 1 4 2 4 5 4 3	1 2 3 4 5 1 1 3 ? 2 5 4 3 2 4 1 2 4 2 4 5 5 4 3 4	1 1 3 ? 5 2 5 4 3 2 4 1 2 4 2 4 5 5 4 3 4 2	1 2 3 4 5 6 7 1 1 3 ? 5 2 5 4 4 3 2 4 1 2 3 4 2 4 5 5 4 3 4 2	1 2 3 4 5 6 7 8 1 1 3 ? 5 5 2 5 4 4 4 3 2 4 1 2 3 4 2 4 5 4 5 4 3 4 2	1 2 3 4 5 6 7 8 9 1 1 3 ? 5 5 2 5 4 4 3 2 4 1 2 3 4 4 2 4 5 4 5 4 3 4 2	1 2 3 4 5 6 7 8 9 10 1 1 3 ? 5 5 5 2 5 4 4 2 3 2 4 1 2 3 4 3 4 2 4 5 4 5 4 3 4 2	1 2 3 4 5 6 7 8 9 10 11 1 1 3 ? 5 5 4 2 5 4 4 2 1 3 2 4 1 2 3 4 3 5 4 2 4 5 4 2 2 5 4 3 4 2 2	1 2 3 4 5 6 7 8 9 10 11 12 1 1 3 ? 5 5 4 2 5 4 4 2 1 3 3 2 4 1 2 3 4 3 5 4 2 4 5 4 2 2 5 5 4 3 4 2 2 5

举例:

Predict by taking weighted average:
$$r_{15} = (0.41^*2 + 0.59^*3) / (0.41 + 0.59) = 2.6$$
 $r_{ix} = \frac{\sum_{j \in N(i,x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

sim(1,2)

$$= \frac{\left(\left[3 \quad 4\right] - \frac{\left(1+3+5+5+4\right)}{5}\right) * \left(\left[\frac{5}{1}\right] - \frac{5+4+4+2+1+3}{6}\right)}{\sqrt{\sum \left\{\left[1 \quad 3 \quad 4 \quad 5 \quad 4\right] - \frac{\left(1+3+5+5+4\right)}{5}\right\}^{2}} * \sqrt{\sum \left\{\left[5 \quad 4 \quad 4 \quad 2 \quad 1 \quad 3\right] - \frac{5+4+4+2+1+3}{6}\right\}^{2}}} = -0.18$$

理解为两个向量的皮尔逊相关系数。

- 3. 因式分解模型
 - 矩阵分解及矩阵分解的方法
 - 三角分解、满秩分解、QR分解、Jordan分解、 SVD (Singular Value Decomposition)
 - SVD:
 - 任意一个M*N的矩阵A(M行*N列, M>N), 可以被写成三个矩阵的乘积: A=U*S*VT
 - U: M*M列正交矩阵
 - •S: M*N的对角线矩阵, 矩阵元素非负
 - VT: N*N的列正交矩阵的转置

思想: 举例:

- 寻找相似用户:
 - 假设,新用户Bob对season的评分向量为: [55 0.0051^{T}
 - 则如何寻找Bob的相似用户?

$$Bob_2^T = Bob^T * U_2 * S_2^{-1}$$

$$Bob_{2}^{T} = \begin{bmatrix} 5 & 5 & 0 & 0 & 0 & 5 \end{bmatrix} \times \begin{bmatrix} -0.4472 & 0.5373 \\ -0.3586 & -0.2461 \\ -0.2925 & -0.4033 \\ -0.2078 & -0.6700 \\ -0.5099 & -0.0597 \\ -0.5316 & 0.1187 \end{bmatrix} \times \begin{bmatrix} 17.7139 & 0 \\ 0 & 6.3917 \end{bmatrix}^{-1}$$

$Bob_2^T = [-0.3775 \ 0.0802]$

• 找出最相似的用户, 即Ben