

1691 Algebraic Inequalities

*Problem Solving
Old and New Problems for Mathematical Olympiads*

Panagiotis Ligouras

1691
ALGEBRAIC
INEQUALITIES

*Problem Solving
Old and New Problems for Mathematical Olympiads*

Panagiotis Ligouras
Via Col di Lana, 33
70011 Alberobello (Ba)

The book starts with a collection by Aassila M., Andreescu T., Barbeau E. J., Beckenbach E., Bourgade P., Bulajich Manfrino R., Cirtoaje V., Dorre H., Dospinescu G., Enescu B., Engel A., Feng Z., Gomez Ortega J.A., Hardy G.H., Klamkin M., Kolev E., Lascu M., Larson L., Littlewood J.E., Mitrinovic D., Mushkarov O., Negut A., Nikolov N., Panaitopol L., Pham Kim Hung, Pòlya G., Rabinowitz , reiman I., Shawyer B.L.R., Stergiou B., Soulami T., Todev R., Xiong Bin and of many other friends. Its intention is to bring together, in the successive editions, all significant algebraic inequalities. This will also be done by finding out the author, year in which it was created and grade of difficulty on a scale of 1 to 5 (banal, easy, medium, requiring effort and difficult).

We haven't classified the problems according to the techniques used to solve them, or by their difficulty, in order to avoid limiting the creativity and freedom of the person solving them.

In writing this book, the website www.mathlinks.ro has been very useful. It is created and maintained by Dr Valentin Vornicu, who is totally dedicated to all the kinds of mathematics that help in preparing for national mathematics competitions and the International Mathematics Olympics.

On the website's forum, these mathematical inequalities can be discussed much further. Alternative solutions can be suggested, along with new problems that may help to develop the knowledge of friends visiting the website. This also provides an opportunity to underline the importance of mathematics as a discipline, for the development of men and also of society. The problems that are marked t=329751 or similar are present on the forum of the website www.mathlinks.ro.

Preface	pg. 5
Contents	7
Part I	
Problems with 1 variable	11
Problems with 2 variables	11
Problems with 3 variables	11
Problems with 4 variables	11
Problems with 5 variables	11
Problems with 6 variables	11
Problems with $n > 6$ variables	11
Problems with find the maximum value	33
Problems with find the minimum value	33
Part II	
Glossary	159
Notations	165
Bibliography	169
Further reading	171
Index	173

Part I

AI1 - 1

Let a be real number ($a \in R$). Prove that:

$$a) \quad a + \frac{1}{a} \geq 2, \quad a > 0 \quad b) \quad a + \frac{1}{a} \leq -2, \quad a < 0$$

AI1 - 2

Let a be non-negative real number ($a \geq 0$). Prove that:

$$a^5 - a^2 + 3 \geq a^3 + 2$$

Titu Andreescu, 2004

AI1 - 3

Let a be non-negative real number ($a \geq 0$). Prove that:

$$5(a^2 - a + 1)^2 \geq 2(1 + a^4)$$

Panagiote Ligouras, 2009

AI1 - 3

Let a be non-negative real number ($a \geq 0$). Prove that:

$$2(a^2 + 1)^3 \geq (a^3 + 1)(a + 1)^3$$

AI1 - 4

Let a be non-negative real number ($a \geq 0$). Prove that:

$$4(a^3 + 1)^3 \geq (a^4 + 1)(a^2 + 1)(a + 1)^3, \quad a \geq 0$$

Panagiote Ligouras, 2009

AI1 - 5

Let a be non-negative real number ($a \geq 0$). Prove that:

$$2(a^3 + 1)^4 \geq (a^4 + 1)(a^2 + 1)^4$$

$$\left(1 + \frac{1}{\sqrt{a}}\right) \left(1 + \frac{1}{\sqrt{8-a}}\right) \geq \frac{9}{4}, \quad 8 > a > 0$$

Gazeta Matematica, 2002

AI1 - 12

Let a be real number ($a \in R$) such that $-1 < a < 1$. Prove that:

$$\sqrt[4]{1-a^2} + \sqrt[4]{1-a} + \sqrt[4]{1+a} \leq 3$$

The MathsScope, n.216.3

AI1 - 13

Let a be positive real number ($a > 0$). Prove that:

$$\frac{a^3+1}{a^2+1} \geq \sqrt{a^2-a+1} \geq \sqrt[4]{\frac{a^4+1}{2}}$$

CRUX, 35(4), p. 254, 2009

AI1 - 14

Let a be non-negative real number ($a \geq 0$). Prove that:

$$\sqrt{a} + \sqrt[3]{a} + \sqrt[6]{a} \leq a+2$$

The MathsScope, n.332.5

AI1 - 15

Let a be non-negative real number ($a \geq 0$). Prove that:

$$\sqrt{a} + \sqrt[3]{a^2} + \sqrt[6]{a^5} \leq 2a+1$$

Panagiote Ligouras, Mathlinks, 2009

AI1 - 16

Let a be real number such that $a \geq -2$. Prove that:

$$\sqrt{a+2} + \sqrt[3]{a+2} + \sqrt[6]{a+2} \leq a+4$$

Panagiote Ligouras, Mathlinks, 2009

AI1 - 17

Problems with 2 variables

----- **AI2 - 21** -----

Let a, b be non-negative real numbers ($a, b \geq 0$). Prove that:

$$a + b \geq 2\sqrt{ab}$$

----- **AI2 - 22** -----

Let a, b be real numbers ($a, b \in R$). Prove that:

$$a^2 + b^2 \geq 2ab$$

----- **AI2 - 23** -----

Let $a, b \geq 0$. Prove that:

$$a^3 + b^3 \geq ab(a + b)$$

----- **AI2 - 24** -----

Let $a, b \geq 0$. Prove that:

$$a^4 + b^4 \geq ab(a^2 + b^2)$$

----- **AI2 - 25** -----

Let $a, b \geq 0$. Prove that:

$$a^5 + b^5 \geq ab(a^3 + b^3) \geq a^2b^2(a + b)$$

----- **AI2 - 26** -----

Let $a, b \in R$. Prove that:

$$(a + b)^2 \geq 4ab$$

AI2 - 33

Let $a, b > 0$. Prove that:

$$\frac{a^2 + b^2}{a+b} \geq \frac{a+b}{2}$$

AI2 - 34

Let $a, b > 0$. Prove that:

$$\frac{a+b}{a^2 + b^2} \leq \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$$

AI2 - 35

Let $a, b > 0$. Prove that:

$$\frac{ab}{a+b} \leq \frac{a+b}{4}$$

AI2 - 36

Let $a, b > 0$. Prove that:

$$\frac{4}{a+b} \leq \frac{1}{a} + \frac{1}{b}$$

AI2 - 37

Let $a, b > 0$ such that $a+b=1$. Prove that:

$$\left(a + \frac{1}{a} \right)^2 + \left(b + \frac{1}{b} \right)^2 \geq \frac{25}{2}$$

AI2 - 38

Let $a, b \geq 0$ and $n \in N^*$. Prove that:

$$a+b \geq \sqrt[n]{a^{n-1}b} + \sqrt[n]{ab^{n-1}}$$

AI2 - 45

Let $a, b \in R^*$. Prove that:

$$\frac{2a^2 + 3b^2}{2a^3 + 3b^3} + \frac{2b^2 + 3a^2}{2b^3 + 3a^3} \leq \frac{4}{a+b}$$

The Mathscope, n 285.2

AI2 - 46

Let $a, b > 0$. Prove that:

$$\frac{1}{ab} \geq \frac{a}{a^4 + b^2} + \frac{b}{a^2 + b^4}$$

Russia, 1995

AI2 - 47

Let $a, b > 0$ and $k \geq 1$. Prove that:

$$\frac{a+kb}{(b+ka)^2} + \frac{b+ka}{(a+kb)^2} \geq \frac{a+b}{a^2 + (k-1)ab + b^2}$$

MathLinks, t=255035, 2009

AI2 - 48

Let $a, b > 0$, $a+b=1$. Prove that:

$$\frac{1}{1-\sqrt{a}} + \frac{1}{1-\sqrt{b}} \geq \frac{2\sqrt{2}}{\sqrt{2}-1}, \quad a+b=1, \quad a, b > 0$$

AI2 - 49

Let $a, b > 0$, $a+b=2$. Prove that:

$$a\sqrt{\frac{b}{a^2+1}} + b\sqrt{\frac{a}{b^2+1}} \leq \sqrt{2}$$

AI2 - 50

Let $a, b > 0$, $m \in N$, $m \geq 2$, $r \in R$, $rm \geq 1$, $ab = r^2$. Prove that:

$$\frac{1}{(1+a)^m} + \frac{1}{(1+b)^m} \geq \frac{2}{(1+r)^m}$$

Arkady Alt, CRUX, 34(2), n. 3319, 2008

AI2 - 57

Let $a, b > 0$. Prove that:

$$a^3 + b^3 \geq a + b + 2ab - 2$$

Norman Schaumberger, N.Y.S.M.T.J., n.153, 1984

AI2 - 58

Let $a, b > 0$. Prove that:

$$a^b + b^a > 1$$

Kálmán Szabó, T.M.G., n. 67.H, 1983

AI2 - 59

Let $a, b \in R$ such that $|a|, |b| < 1$. Prove that:

$$|ab+1| > |a+b|$$

PARABOLA, Q591, 1984

AI2 - 60

Let $a, b \geq 0$. Prove that:

$$\frac{1}{(1+a)^2} + \frac{1}{(1+b)^2} \geq \frac{1}{1+ab}$$

AI2 - 61

Let $0 \leq x, y \leq 1$. Prove that:

$$\sqrt{1+x^2} + \sqrt{1+y^2} + \sqrt{(1-x)^2 + (1-y)^2} \geq (1+\sqrt{5})(1-xy)$$

AI2 - 62

Let $a, b > 0$. Prove that:

$$\sqrt[3]{2(a+b)\left(\frac{1}{a} + \frac{1}{b}\right)} \geq \sqrt[3]{\frac{a}{b}} + \sqrt[3]{\frac{b}{a}}, \quad a, b > 0$$

Czech and Slovakia, 2000

AI2 - 69

Let $a+b \leq 1$, $a, b > 0$. Prove that:

$$\frac{1}{a^3+b^3} + \frac{1}{a^2b} + \frac{1}{ab^2} \geq 20$$

Cao Minh Quang

AI2 - 70

Let $ab = 1$, $a, b > 0$. Prove that:

$$\frac{a^3}{1+b} + \frac{b^3}{1+a} \geq 1$$

Le Thanh Hai

AI2 - 71

Let $a, b \geq 1$. Prove that:

$$3\left(\frac{a^2-b^2}{8}\right) + \frac{ab}{a+b} \geq \sqrt{\frac{a^2+b^2}{8}}$$

Yugoslavia, 1991

AI2 - 72

Let $x, y \in \left[1, \frac{3}{2}\right]$. Prove that:

$$x^2 + y^2 \geq x\sqrt{3-2y} + y\sqrt{3-2x}$$

Moldova, 2001

AI2 - 73

Let n be a positive integer, and let x and y be a positive real numbers such that $x^n + y^n = 1$. Prove that

$$\frac{1}{(1-x)(1-y)} > \left(\sum_{k=1}^n \frac{1+x^{2k}}{1+x^{4k}} \right) \cdot \left(\sum_{k=1}^n \frac{1+y^{2k}}{1+y^{4k}} \right)$$

IMO Shortlist 2007

Problems with 3 variables

----- **AI3 - 79** -----

Let a , b , and c be positive real numbers such that $a^2 + b^2 + c^2 = 1$. Prove that:

$$\frac{a}{1-a^2} + \frac{b}{1-b^2} + \frac{c}{1-c^2} \geq \frac{3\sqrt{3}}{2}$$

Sefket Arslanagic, CRUX, n. 2738

----- **AI3 - 80** -----

Let a , b , and c be positive real numbers such that $0 < a, b, c < 1$ and $ab + bc + ca = 1$. Prove that:

$$\frac{a}{1-a^2} + \frac{b}{1-b^2} + \frac{c}{1-c^2} \geq \frac{3\sqrt{3}}{2}$$

----- **AI3 - 81** -----

Let a , b , and c be positive real numbers such that $0 < a, b, c < 1$ and $ab + bc + ca = 1$. Prove that:

$$\frac{a}{1-a^2} + \frac{b}{1-b^2} + \frac{c}{1-c^2} \geq \frac{3}{4} \left(\frac{1-a^2}{a} + \frac{1-b^2}{b} + \frac{1-c^2}{c} \right)$$

----- **AI3 - 82** -----

Let a , b , and c be real numbers such that $ab + bc + ca = 1$ and $-1 < a, b, c < 1$. Prove that:

$$\sum_{cyc} \frac{a^2 + b^2}{(1-a^2)(1-b^2)} \geq \frac{9}{2}$$

MathLinks, t=259913, 2009

AI3 - 88

For positive real numbers a, b , and c with $a+b+c=1$, show that

$$\frac{1+a}{1-a} + \frac{1+b}{1-b} + \frac{1+c}{1-c} \leq 2\left(\frac{b}{a} + \frac{c}{b} + \frac{a}{c}\right)$$

You need not state when equality holds.

14th Japanese MO, 2004

AI3 - 89

- a) If a, b and c are three real numbers, all different from 1, such that $abc=1$, then prove that

$$\frac{a^2}{(a-1)^2} + \frac{b^2}{(b-1)^2} + \frac{c^2}{(c-1)^2} \geq 1.$$

- b) Prove that equality is achieved for infinity many triples of rational numbers a, b and c .

Walther Janous, IMO Shortlist, 2008 & EXCALIBUR, 13(3), 2008

AI3 - 90

Let a, b , and c be positive real numbers such that $a,b,c > 1$. Prove that:

$$\frac{a^4}{(b-1)^2} + \frac{b^4}{(c-1)^2} + \frac{c^4}{(a-1)^2} \geq 48$$

EXCALIBUR, 13(4) & 13(5), 2008

AI3 - 91

Let a, b , and c be positive real numbers such that $a,b,c > 1$ and $ab+bc+ca = abc$. Prove that:

$$\frac{c^4 + 4a - 4}{(a-1)^2} + \frac{a^4 + 4b - 4}{(b-1)^2} + \frac{b^4 + 4c - 4}{(c-1)^2} \geq 54$$

Panagiote Ligouras, MathLinks, t=298586, 2009

AI3 - 92

Let a, b , and c be non-negative real numbers such that $a+b+c=1$. Prove that:

$$3 \leq \frac{1}{1-ab} + \frac{1}{1-bc} + \frac{1}{1-ca} \leq \frac{27}{8}$$

Sefket Arslanagic, CRUX, n. 2786

AI3 - 99

Let a, b, c be non-negative real numbers, no two of which are zero. Prove that

$$\frac{a^3}{(2a^2+b^2)(2a^2+c^2)} + \frac{b^3}{(2b^2+c^2)(2b^2+a^2)} + \frac{c^3}{(2c^2+a^2)(2c^2+b^2)} \leq \frac{1}{a+b+c}$$

Vasile Cirtoaje, MathLinks, 2005

AI3 - 100

If a, b, c are non-negative real numbers, then

$$\frac{a^2-bc}{2a^2+b^2+c^2} + \frac{b^2-ca}{a^2+2b^2+c^2} + \frac{c^2-ab}{a^2+b^2+2c^2} \geq 0$$

Nguyen Anh Tuan, MathLinks, 2005

AI3 - 101

Let a, b, c be non-negative reals and let p, q be positive reals. Prove that

$$\sum_{cyc} \left[\frac{(a^2-bc)(p\sqrt{2a^2+b^2+c^2}+q)}{2a^2+b^2+c^2} \right] \geq 0$$

Panagiote Ligouras, 2009

AI3 - 102

If a, b, c are non-negative real numbers, then

$$\frac{a^2-bc}{\sqrt{2a^2+b^2+c^2}} + \frac{b^2-ca}{\sqrt{a^2+2b^2+c^2}} + \frac{c^2-ab}{\sqrt{a^2+b^2+2c^2}} \geq 0$$

Nguyen Anh Tuan, MathLinks, 2005

AI3 - 103

Let a, b, c be non-negative real numbers, no two of which are zero. Prove that

$$\frac{1}{2a^2+bc} + \frac{1}{2b^2+ca} + \frac{1}{2c^2+ab} \geq \frac{6}{a^2+b^2+c^2+ab+bc+ca}$$

AI3 - 109

Let a, b, c be positive reals such that $\sqrt{a} + \sqrt{b} + \sqrt{c} = 3$. Prove that

$$\frac{a^2}{2b^2+a} + \frac{b^2}{2c^2+b} + \frac{c^2}{2a^2+c} \geq 1$$

AI3 - 110

Let a, b, c be positive reals such that $a+b+c=3$. Prove that

$$\frac{a^2}{2b^3+a} + \frac{b^2}{2c^3+b} + \frac{c^2}{2a^3+c} \geq 1, \quad a+b+c=3$$

AI3 - 111

Let a, b, c be non-negative real numbers, no two of which are zero. Then

$$\frac{a^2}{2b^2-bc+2c^2} + \frac{b^2}{2c^2-ca+2a^2} + \frac{c^2}{2a^2-ab+2b^2} \geq 1$$

Vasile Cirtoaje

AI3 - 112

Let a, b, c be positive real numbers. Prove that

$$\frac{a^3}{2a^2-ab+2b^2} + \frac{b^3}{2b^2-bc+2c^2} + \frac{c^3}{2c^2-ca+2a^2} \geq \frac{a+b+c}{3}$$

Nguyen Viet Anh

AI3 - 113

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{2a+b} + \frac{b}{2b+c} + \frac{c}{2c+a} \leq 1$$

Gazeta Matematică, 2000

AI3 - 114

Let a, b, c be positive real numbers. Prove that

$$\frac{1}{2a+b} + \frac{1}{2b+c} + \frac{1}{2c+a} \geq \frac{3}{a+b+c}$$

AI3 - 121

Show that for all positive reals a, b, c ,

$$\left(\frac{a+2b}{a+2c}\right)^3 + \left(\frac{b+2c}{b+2a}\right)^3 + \left(\frac{c+2a}{c+2b}\right)^3 \geq 3$$

MOP, 2004

AI3 - 122

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{a+2b+c} + \frac{b}{a+b+2c} + \frac{c}{2a+b+c} \geq \frac{3}{4}$$

AI3 - 123

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{2a+b+c} + \frac{b}{a+2b+c} + \frac{c}{a+b+2c} \leq \frac{3}{4}$$

M&Y-9, 2004

AI3 - 124

Let a, b, c be positive real numbers. Prove that

$$\frac{ab}{a+b+2c} + \frac{ca}{a+2b+c} + \frac{bc}{2a+b+c} \leq \frac{a+b+c}{4}$$

M&Y-3, 2005

AI3 - 125

Given three variables a, b and c satisfying the following equality

$$a+b+c = 9a^{\frac{2}{3}}b^{\frac{2}{3}}c^{\frac{2}{3}}$$
 and $a, b, c \in R^+$, prove that

$$\frac{ab}{a+b+2c} + \frac{bc}{2a+b+c} + \frac{ca}{a+2b+c} \geq \frac{1}{4}$$

Shaastra Online Math Contest, 2009

AI3 - 126

Let a, b, c be positive real numbers. Prove that

$$\frac{ab+c}{a+b+2c} + \frac{ca+b}{a+2b+c} + \frac{bc+a}{2a+b+c} \leq \frac{a+b+c+3}{4}$$

AI3 - 133

Let a, b, c be positive real numbers. Prove that

$$\frac{c^2 + ab}{a+b+2c} + \frac{b^2 + ac}{a+2b+c} + \frac{a^2 + bc}{2a+b+c} \leq \frac{1}{2} \left(\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} + \frac{a+b+c}{2} \right)$$

Panagiotis Ligouras, MathLinks, t=259342, 2009

AI3 - 134

Let a, b, c be positive real numbers. Prove that

$$\frac{b(c+a)^2}{a+2b+c} + \frac{c(a+b)^2}{a+b+2c} + \frac{a(b+c)^2}{2a+b+c} \geq \sqrt{3abc(a+b+c)}$$

MathLinks, t=259361, 2009

AI3 - 135

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{(b+c)(2a+b+c)} + \frac{b}{(c+a)(2b+c+a)} + \frac{c}{(a+b)(2c+a+b)} \geq \frac{9}{8(a+b+c)}$$

AI3 - 136

Let a, b, c be positive real numbers. Prove that

$$\frac{a(a+b)}{(b+c)(2a+b+c)} + \frac{b(b+c)}{(c+a)(2b+c+a)} + \frac{c(c+a)}{(a+b)(2c+a+b)} \geq \frac{3}{4}$$

AI3 - 137

Let a, b, c be positive real numbers. Prove that

$$\sum_{cyc} \frac{ab(a+c)^2(b+c)^2}{(2a+b+c)(a+2b+c)} \geq abc(a+b+c)$$

MathLinks, t=259603, 2009

AI3 - 138

Let a, b, c be positive real numbers. Prove that

$$\frac{a+b}{b+c} \cdot \frac{a}{2a+b+c} + \frac{b+c}{c+a} \cdot \frac{a}{2b+c+a} + \frac{c+a}{a+b} \cdot \frac{c}{2c+a+b} \geq \frac{3}{4}$$

D. Olteanu, Gazeta Matematică

AI3 - 145

Let a, b , and c be positive real numbers such that $abc = 1$. Prove that

$$\frac{a(1+a+ab)}{(a+2b)^2} + \frac{b(1+b+bc)}{(b+2c)^2} + \frac{c(1+c+ca)}{(c+2a)^2} \geq 1$$

Panagiote Ligouras, MathLinks, t=258676, 2009

AI3 - 146

Let a, b , and c be positive real numbers such that $abc = 1$. Prove that

$$\frac{a(1+a+ab)(1+a+2b)}{(a+2b)^2} + \frac{b(1+b+bc)(1+b+2c)}{(b+2c)^2} + \frac{c(1+c+ca)(1+c+2a)}{(c+2a)^2} \geq 4$$

Panagiote Ligouras, MathLinks, t=307913, 2009

AI3 - 147

Let a, b , and c be positive real numbers. Prove that

$$\frac{2ac+ab+b^2}{(2c+b)^2} + \frac{2ab+bc+c^2}{(2a+c)^2} + \frac{2bc+ca+a^2}{(2b+a)^2} \geq \frac{4}{3}$$

Panagiote Ligouras, MathLinks, t=307910, 2009

AI3 - 148

Let a, b , and c be positive real numbers such that $abc = 1$. Prove that

$$\frac{a(1+c+a+ab)+2bc}{(a+2b)^2} + \frac{b(1+a+b+bc)+2ca}{(b+2c)^2} + \frac{c(1+b+c+ca)+2ab}{(c+2a)^2} \geq 2$$

Panagiote Ligouras, ML, t=313583, 2009

AI3 - 149

Let a, b , and c be positive real numbers such that $abc = 1$. Prove that

$$\sum_{cyc} \left[\frac{a(1+c+a+ab)+2bc}{(a+2b)^2} \right] + \frac{a^2+b^2+c^2}{ab+bc+ca} \geq 3$$

Panagiote Ligouras, MathLinks, t=258695, 2009

AI3 - 155

Let a, b , and c be positive real numbers. Prove that

$$\sum_{cyc} \frac{a^2 + b^2}{(2c+b)^2} + 2 \sum_{cyc} \frac{ab}{(2a+c)(2c+b)} \geq \frac{4}{3}$$

Panagiote Ligouras, MathLinks, t= 320116, 2009

AI3 - 156

Let a, b , and c be three arbitrary real numbers. Prove that

$$\frac{1}{(2a-b)^2} + \frac{1}{(2b-c)^2} + \frac{1}{(2c-a)^2} \geq \frac{11}{7(a^2 + b^2 + c^2)}$$

Pham Kim Hung

AI3 - 157

Let a, b , and c be positive real numbers such that $a^2 + b^2 + c^2 = 1$. Then

$$\frac{a^2}{1+2bc} + \frac{b^2}{1+2ca} + \frac{c^2}{1+2ab} \geq \frac{3}{5}$$

Raja Oktovin, MathLinks, t=248249, 2008

AI3 - 158

Let a, b, c be non-negative real numbers such that $a + b + c = 3$. Prove that

$$\sqrt{\frac{a}{1+2bc}} + \sqrt{\frac{b}{1+2ca}} + \sqrt{\frac{c}{1+2ab}} \geq \sqrt{3}$$

Pham Kim Hung

AI3 - 159

Let a, b, c be non-negative real numbers. Prove that

$$\frac{c}{\sqrt{4a^2 + ab + 4b^2}} + \frac{a}{\sqrt{4b^2 + bc + 4c^2}} + \frac{b}{\sqrt{4c^2 + ca + 4a^2}} \geq 1$$

Pham Kim Hung & Vo Quoc Ba Can

AI3 - 160

Let a, b , and c be positive real numbers. Prove that

$$\frac{a}{\sqrt{4a^2 + ab + 4b^2}} + \frac{b}{\sqrt{4b^2 + bc + 4c^2}} + \frac{c}{\sqrt{4c^2 + ca + 4a^2}} \leq 1$$

Bin Zhao, Mathematical Reflections, n. O32, 2006

AI3 - 167

Let a, b , and c be non-negative numbers such that $ab + bc + ac \neq 0$. Then

$$\frac{a+b}{4c^2+ab} + \frac{b+c}{4a^2+bc} + \frac{a+c}{4b^2+ca} \geq \frac{6(a+b+c)}{5(ab+bc+ac)}$$

Michael Rozenberg, MathLinks, t=262789, 2009

AI3 - 168

Let a, b , and c be positive real numbers such that $a + b + c = 3$. Prove that

$$\sum_{cyc} \frac{1}{\sqrt{4a^2 + bc + 7a + 8}} \geq \frac{2}{3}$$

Panagiotis Ligouras, MathLinks, t=310812, 2009

AI3 - 169

Let a, b , and c be positive real numbers. Prove that

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \geq \frac{a+b+c}{abc}$$

AI3 - 170

Let a, b, c be positive real numbers such that $a + b + c = 3$. Prove that

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \geq a^2 + b^2 + c^2$$

Romania-TST, Iasi & Bucharest, 2006

AI3 - 171

Suppose that a, b , and c are positive reals satisfying $a^2 + b^2 + c^2 = 1$. Prove that

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \geq 3 + \frac{2(a^3 + b^3 + c^3)}{abc}$$

Ho-joo Lee, CRUX, n. 2532

AI3 - 172

Let a, b, c be positive real numbers such that $a + b + c = 1$. Prove that

$$abc \left(1 + \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) \geq \frac{28}{27}$$

Walther Janous, CRUX, Klamkin-02

AI3 - 179

Let a, b , and c be positive real numbers. Prove that

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \geq \frac{9}{4} + \left(\frac{a+b}{c} + \frac{c+a}{b} + \frac{b+c}{a} \right) - \frac{9(ab+bc+ca)}{4(a^2+b^2+c^2)}$$

Panagiotis Ligouras, ML, t=313586, 2009

AI3 - 180

Let a, b , and c be positive real numbers. Prove that

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \geq \frac{10}{3} \cdot \frac{a^2+b^2+c^2}{ab+bc+ca} - 3 \cdot \frac{ab+bc+ca}{a^2+b^2+c^2} - 1$$

Panagiotis Ligouras, ML, t=320792, 2009

AI3 - 181

Let a, b , and c be positive real numbers. Prove that

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \geq 18 - \frac{120abc}{(a+b)(b+c)(c+a)}$$

Tran Quoc Anh, ML t=293216, 2009

AI3 - 182

Let a, b , and c be positive real numbers. Prove that

$$\frac{1}{2} \left(\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} + 9 \right) \geq \frac{a}{b} + 2 \cdot \sqrt{\frac{b}{c}} + 3 \cdot \sqrt[3]{\frac{c}{a}}$$

AI3 - 183

Let a, b , and c be positive real numbers. Prove that

$$\frac{3}{2} \left(\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} + 1 \right) \geq \frac{a}{b} + 2 \cdot \sqrt{\frac{b}{c}} + 3 \cdot \sqrt[3]{\frac{c}{a}} \geq 6$$

AI3 - 184

Let a, b , and c be positive real numbers. Prove that

$$\frac{a}{b^2} + \frac{b}{c^2} + \frac{c}{a^2} \leq \frac{a^2}{b^3} + \frac{b^2}{c^3} + \frac{c^2}{a^3}$$

AI3 - 191

Let a, b , and c be positive real numbers such that $abc = 1$. Prove that

$$\frac{c}{a^2(1+b)} + \frac{a}{b^2(1+c)} + \frac{b}{c^2(1+a)} \geq \frac{3}{2}$$

AI3 - 192

Let x, y , and z be positive real numbers. Prove that

$$\left(2 + \frac{xy}{z^2}\right)^2 + \left(2 + \frac{yz}{x^2}\right)^2 + \left(2 + \frac{zx}{y^2}\right)^2 \geq \frac{9(x^2z + z^2y + y^2x)^2}{xyz(x^2y + y^2z + z^2x)}$$

Panagiote Ligouras, MathLinks, t=310024, 2009

AI3 - 193

Let a, b , and c be positive real numbers such that $a + b + c = 1$. Prove that

$$\left(\frac{1}{a^2} - 1\right)\left(\frac{1}{b^2} - 1\right)\left(\frac{1}{c^2} - 1\right) \geq 2^9$$

AI3 - 194

Let a, b , and c be non-negative real numbers such that $ab + bc + ca = 3$.
Prove that

$$\frac{1}{1+a^2} + \frac{1}{1+b^2} + \frac{1}{1+c^2} \geq \frac{3}{2}$$

Vasile Cirtoaje, MathLinks, 2005

AI3 - 195

If $a, b, c \leq 1$ and $a + b + c = 1$. Prove that

$$\frac{1}{1+a^2} + \frac{1}{1+b^2} + \frac{1}{1+c^2} \leq \frac{27}{10}$$

Titu Andreescu & Gabriel Dospinescu

AI3 - 196

Let a, b , and c be positive real numbers such that $a^2 + b^2 + c^2 = 1$. Then

$$\frac{a}{b^2+1} + \frac{b}{c^2+1} + \frac{c}{a^2+1} \geq \frac{3}{4}(a\sqrt{a} + b\sqrt{b} + c\sqrt{c})^2$$

Hellenic-IMO-TST, 2002

AI3 - 203

Let a, b , and c be positive reals such that $ab + bc + ca = 1$. Prove that

$$\frac{ab}{a^2+1} + \frac{bc}{b^2+1} + \frac{ca}{c^2+1} \leq \frac{1}{16} \left[\frac{a}{b} + \frac{b}{c} + \frac{c}{a} + 2 \left(\frac{b}{a} + \frac{c}{b} + \frac{a}{c} \right) + 3 \right]$$

MathLinks, t=259357, 2009

AI3 - 204

Let a, b , and c be positive real numbers with $ab + bc + ca = 3$. Prove that

$$\frac{ab}{c^2+1} + \frac{bc}{a^2+1} + \frac{ca}{b^2+1} \geq \frac{3}{2}$$

Titu Zvonaru, Mathematical Mayhem, 34(4) M299, 2008

AI3 - 205

Let a, b , and c be positive real numbers such that $a + b + c = 3$. Prove that

$$\frac{a^2}{b^2+1} + \frac{b^2}{c^2+1} + \frac{c^2}{a^2+1} \geq \frac{3}{2}$$

Faruk Zejnulah & Sefket Arslanagic, CRUX, n. 2994

AI3 - 206

Let a, b , and c be positive real numbers such that $a + b + c = 3$. Prove that

$$\frac{1+a}{1+b^2} + \frac{1+b}{1+c^2} + \frac{1+c}{1+a^2} \geq 3$$

AI3 - 207

Let a, b , and c be positive real numbers such that $a + b + c = 1$. Prove that

$$\frac{1+a^2}{1+b^2} + \frac{1+b^2}{1+c^2} + \frac{1+c^2}{1+a^2} \leq \frac{7}{2}$$

MathLinks, t=260118, 2009

AI3 - 208

Let a, b , and c be positive real numbers such that $ab + bc + ca = 1$. Prove that

$$\frac{1-a^2}{1+a^2} + \frac{1-b^2}{1+b^2} + \frac{1-c^2}{1+c^2} \leq \frac{3}{2}$$

Gazeta Matematică, 2003

AI3 - 215

Let a, b , and c be positive real numbers. Prove that

$$6 \prod_{\text{cyc}} \left(\frac{a^3 + 1}{a^2 + 1} \right) \geq \max \left\{ \sum_{\text{cyc}} \frac{a(1+bc)(a^2+1)}{a^3+1}, \sum_{\text{cyc}} \frac{ab(1+c)(a^2b^2+1)}{a^3b^3+1} \right\}$$

Mihály Bencze, CRUX, 34(4) n. 3349, 2008

AI3 - 216

Let a, b , and c be positive real numbers such that $a+b+c = abc$. Then

$$\frac{1}{\sqrt{a^2+1}} + \frac{1}{\sqrt{b^2+1}} + \frac{1}{\sqrt{c^2+1}} \leq \frac{3}{2}$$

EXCALIBUR, 6(2) & 6(3), 2001

AI3 - 217

Let r be a real number, $0 < r \leq 1$, and let a, b , and c be positive real numbers such that $abc = r^3$. Prove that

$$\frac{1}{\sqrt{a^2+1}} + \frac{1}{\sqrt{b^2+1}} + \frac{1}{\sqrt{c^2+1}} \leq \frac{3}{\sqrt{1+r^2}}$$

Arkady Alt, CRUX, 34(3), n. 3329, 2008

AI3 - 218

Let a, b , and c be positive reals such that $ab+bc+ca=1$. Prove that

$$\frac{a}{\sqrt{a^2+1}} + \frac{b}{\sqrt{b^2+1}} + \frac{c}{\sqrt{c^2+1}} \leq \frac{3}{2}$$

AI3 - 219

Let a, b , and c be positive real numbers such that $a+b+c = abc$. Then

$$\frac{a}{\sqrt{a^2+1}} + \frac{b}{\sqrt{b^2+1}} + \frac{c}{\sqrt{c^2+1}} \leq \frac{3\sqrt{3}}{2}$$

AI3 - 225

Let a, b , and c be non-negative reals such that $ab + bc + ca = 3$. Prove that

$$\frac{1}{a^2 + 2} + \frac{1}{b^2 + 2} + \frac{1}{c^2 + 2} \leq 1$$

AI3 - 226

Let a, b , and c be non-negative reals such that $abc = 1$. Prove that

$$\frac{7-6a}{a^2+2} + \frac{7-6b}{b^2+2} + \frac{7-6c}{c^2+2} \geq 1$$

Vasile Cirtoaje, MathLinks, t=245046, 2008

AI3 - 227

Let a, b , and c be positive real numbers. Prove that

$$\frac{1}{a^2 + 2bc} + \frac{1}{b^2 + 2ca} + \frac{1}{c^2 + 2ab} \geq \frac{2}{ab + bc + ca}$$

Vasile Cirtoaje, MathLinks, 2005

AI3 - 228

Let a, b , and c be positive real numbers. Prove that

$$\frac{a^2}{a^2 + 2bc} + \frac{b^2}{b^2 + 2ca} + \frac{c^2}{c^2 + 2ab} \geq 1$$

Romania, 1997

AI3 - 229

Let a, b , and c be positive real numbers. Prove that

$$\frac{bc}{a^2 + 2bc} + \frac{ca}{b^2 + 2ca} + \frac{ab}{c^2 + 2ab} \leq 1$$

Romania, 1997

AI3 - 230

Let a, b , and c be positive real numbers. Prove that

$$\frac{2a^2 - bc}{a^2 + 2bc} + \frac{2b^2 - ca}{b^2 + 2ca} + \frac{2c^2 - ab}{c^2 + 2ab} \geq 1$$

Panagiote Ligouras, MathLinks, t=310029, 2009

AI3 - 237

Let a, b , and c be positive real numbers. Prove that

$$\frac{a}{\sqrt{a^2 + 2bc}} + \frac{b}{\sqrt{b^2 + 2ca}} + \frac{c}{\sqrt{c^2 + 2ab}} \leq \frac{a+b+c}{\sqrt{ab+bc+ca}}$$

Ho Phu Thai & Da Nang, Mathematical Reflections, n. O39, 2007

AI3 - 238

Prove that for all non-negative real numbers a, b, c , we have

$$\sqrt{\frac{2a^2 + bc}{a^2 + 2bc}} + \sqrt{\frac{2b^2 + ca}{b^2 + 2ca}} + \sqrt{\frac{2c^2 + ab}{c^2 + 2ab}} \geq 2\sqrt{2}$$

Pham Kim Hung

AI3 - 239

Let a, b , and c be non-negative real numbers. Prove that

$$\frac{a}{a^2 + 2bc} + \frac{b}{b^2 + 2ca} + \frac{c}{c^2 + 2ab} \leq \frac{a+b+c}{ab+bc+ca}$$

Tran Quoc Anh, MathLinks, t=224981, 2008

AI3 - 240

Let a, b , and c be positive real numbers. Prove that

$$\frac{a-1}{a^2 + 2bc} + \frac{b-1}{b^2 + 2ca} + \frac{c-1}{c^2 + 2ab} \leq \frac{a+b+c-2}{ab+bc+ca}$$

Panagiotis Ligouras, ML, t=322098, 2010

AI3 - 241

Let a, b , and c be positive real numbers. Prove or disprove that

$$\sum_{cyc} \frac{a(\sqrt{a^2 + 2bc} + 1) - 1}{a^2 + 2bc} \leq \frac{(a+b+c)(\sqrt{ab+bc+ca} + 1) - 2}{ab+bc+ca}$$

Panagiotis Ligouras, MathLinks, t=251776, 2009

AI3 - 242

Let a, b , and c be positive real numbers. Prove that

$$\frac{1}{a^2 + 3} + \frac{1}{b^2 + 3} + \frac{1}{c^2 + 3} \leq \frac{a+b+c}{4\sqrt{abc}}$$

Romania, 2003

AI3 - 248

Let a, b , and c be positive real numbers such that $abc = 1$. Prove that

$$\frac{a^3}{a^2 + 4ab + b^2} + \frac{b^3}{b^2 + 4bc + c^2} + \frac{c^3}{c^2 + 4ca + a^2} \geq 1$$

José Luis Diaz-Barrero, SSMJ, n. 5054, 2009

AI3 - 249

Let a, b , and c be positive real numbers such that $abc \leq 1$. Prove that

$$\frac{a}{b^2 + b} + \frac{b}{c^2 + c} + \frac{c}{a^2 + a} \geq \frac{3}{2}$$

Cao Minh Quang, CRUX, 35(2), n. 3421, 2009

AI3 - 250

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\frac{1}{a^2 + ab + b^2} + \frac{1}{b^2 + bc + c^2} + \frac{1}{c^2 + ca + a^2} \geq \frac{9}{(a+b+c)^2}$$

Vasile Cirtoaje, Gazeta Matematică-B, 9, 2000

AI3 - 251

Let a, b , and c be positive real numbers such that $a+b+c = 3$. Prove that

$$\frac{1}{a^2 + ab + b^2} + \frac{1}{b^2 + bc + c^2} + \frac{1}{c^2 + ca + a^2} \leq \frac{1}{abc}$$

AI3 - 252

Let a, b , and c be positive real numbers. Prove that

$$\frac{a^2}{b(a^2 + ab + b^2)} + \frac{b^2}{c(b^2 + bc + c^2)} + \frac{c^2}{a(c^2 + ca + a^2)} \geq \frac{3}{a+b+c}$$

AI3 - 253

Let a, b , and c be positive real numbers such that $a+b+c = 3$. Prove that

$$\frac{a^2 + b}{b(a^2 + ab + b^2)} + \frac{b^2 + c}{c(b^2 + bc + c^2)} + \frac{c^2 + a}{a(c^2 + ca + a^2)} \geq 2$$

Panagiote Ligouras, ML, t=322100, 2010

AI3 - 260

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\frac{a(b+c)}{b^2+bc+c^2} + \frac{b(c+a)}{c^2+ca+a^2} + \frac{c(a+b)}{a^2+ab+b^2} \geq 2$$

AI3 - 261

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\frac{a^2+bc}{b^2+bc+c^2} + \frac{b^2+ca}{c^2+ca+a^2} + \frac{c^2+ab}{a^2+ab+b^2} \geq 2$$

Vasile Cirtoaje, ML, 2005

AI3 - 262

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\frac{2a^2+3bc}{b^2+bc+c^2} + \frac{2b^2+3ca}{c^2+ca+a^2} + \frac{2c^2+3ab}{a^2+ab+b^2} \geq 5$$

AI3 - 263

Let a, b , and c be positive real numbers. Prove that

$$\frac{5a^2+2bc}{b^2+bc+c^2} + \frac{5b^2+2ca}{c^2+ca+a^2} + \frac{5c^2+2ab}{a^2+ab+b^2} \geq 7$$

Panagiote Ligouras, ML, t=322104, 2010

AI3 - 264

Let a, b , and c be positive real numbers and $p, q > 0$. Prove that

$$\frac{pa^2+qbc}{b^2+bc+c^2} + \frac{pb^2+qca}{c^2+ca+a^2} + \frac{pc^2+qab}{a^2+ab+b^2} \geq p+q$$

Panagiote Ligouras, 2009

AI3 - 265

Let a, b , and c be positive real numbers. Prove that

$$\frac{a^2+b^2-3c^2}{a^2+ab+b^2} + \frac{b^2+c^2-3a^2}{b^2+bc+c^2} + \frac{c^2+a^2-3b^2}{c^2+ca+a^2} + \frac{4(ab+bc+ca)}{3(a^2+b^2+c^2)} \leq \frac{1}{3}$$

Panagiote Ligouras, MathLinks, t=322515, 2010

AI3 - 271

Let a, b , and c be positive real numbers. Prove that

$$\frac{a^3 + b^3}{a^2 + ab + b^2} + \frac{b^3 + c^3}{b^2 + bc + c^2} + \frac{c^3 + a^3}{c^2 + ca + a^2} \geq \frac{2}{3}(a + b + c)$$

AI3 - 272

Let a, b, c be positive real numbers and $k > 0$. Prove that

$$\frac{ka^3 + b^3}{a^2 + ab + b^2} + \frac{kb^3 + c^3}{b^2 + bc + c^2} + \frac{kc^3 + a^3}{c^2 + ca + a^2} \geq \frac{k+1}{3}(a + b + c)$$

Panagiote Ligouras, 2009

AI3 - 273

Let a, b , and c be positive real numbers such that $abc = 1$. Prove that

$$\frac{a^3 + b^3}{a^2 + ab + b^2} + \frac{b^3 + c^3}{b^2 + bc + c^2} + \frac{c^3 + a^3}{c^2 + ca + a^2} \geq 2$$

AI3 - 274

Let a, b , and c be positive real numbers such that $a + b + c = 3$. Prove that

$$\frac{a^3}{a^2 + ab + b^2} + \frac{b^3}{b^2 + bc + c^2} + \frac{c^3}{c^2 + ca + a^2} \geq 1$$

AI3 - 275

Let a, b , and c be positive real numbers such that $abc = 1$. Prove that

$$\frac{a^3}{a^2 + ab + b^2} + \frac{b^3}{b^2 + bc + c^2} + \frac{c^3}{c^2 + ca + a^2} \geq 1$$

José Luis Diaz-Barrero, SSMJ 2009(2) n. 5054

AI3 - 276

Let a, b, c be positive real numbers such that $abc = 1$ and $k > 0$. Prove that

$$\frac{ka^3 + b^3}{a^2 + ab + b^2} + \frac{kb^3 + c^3}{b^2 + bc + c^2} + \frac{kc^3 + a^3}{c^2 + ca + a^2} \geq k + 1$$

Panagiote Ligouras, 2009

AI3 - 282

Let a, b , and c be positive real numbers. Prove that

$$\sqrt{\frac{a^3}{a^2 + ab + b^2}} + \sqrt{\frac{b^3}{b^2 + bc + c^2}} + \sqrt{\frac{c^3}{c^2 + ca + a^2}} \geq \frac{\sqrt{a} + \sqrt{b} + \sqrt{c}}{\sqrt{3}}$$

Le Trung Kien

AI3 - 283

If $a, b, c > 0$, prove that

$$\frac{ab + bc + ca}{\sqrt{a^2 + ab + b^2} + \sqrt{b^2 + bc + c^2} + \sqrt{c^2 + ca + a^2}} \leq \frac{a + b + c}{3\sqrt{3}}$$

Murray S. Klamkin, CRUX n. 805

AI3 - 284

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} + \frac{1}{a^2 + b^2} \geq \frac{15}{2(a^2 + b^2 + c^2 + ab + ac + ca)}$$

AI3 - 285

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} + \frac{1}{a^2 + b^2} \geq \frac{10}{(a+b+c)^2}$$

AI3 - 286

Let a, b , and c be positive real numbers such that $a + b + c = 2$. Prove that

$$\frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} + \frac{1}{a^2 + b^2} \geq \frac{5}{2}$$

AI3 - 287

Let a, b, c be non-negative real numbers. Prove that

$$\frac{1}{a^2 + b^2} + \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} \geq \frac{6}{ab + bc + ca} - \frac{8}{a^2 + b^2 + c^2}$$

Pham Kim Hung

AI3 - 294

Let a, b , and c be positive real numbers such that $abc = 1$. Then

$$\frac{a}{a^2+b^2} + \frac{b}{b^2+c^2} + \frac{c}{c^2+a^2} \leq \frac{a^3+b^3+c^3+15}{12}$$

Panagiote Ligouras, ML, t=322517, 2010

AI3 - 295

Let a, b , and c be positive real numbers. Prove that

$$\frac{a+b}{a^2+b^2} + \frac{b+c}{b^2+c^2} + \frac{c+a}{c^2+a^2} \leq \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

AI3 - 296

Let a, b , and c be positive real numbers. Prove that

$$\frac{a-b}{b^2+c^2} + \frac{b-c}{c^2+a^2} + \frac{c-a}{a^2+b^2} \geq \frac{1}{10} \left(\frac{8a-5b-5c}{a(b+c)} + \frac{8b-5c-5a}{b(c+a)} + \frac{8c-5a-5b}{c(a+b)} \right)$$

Panagiote Ligouras, MathLinks, t=326767, 2010

AI3 - 297

If $c \geq b \geq a > 0$, then

$$\frac{ac}{a^2+b^2} + \frac{ba}{b^2+c^2} + \frac{cb}{c^2+a^2} \leq \frac{2}{3} \left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \right)^2$$

Panagiote Ligouras, MathLinks, t=322519, 2010

AI3 - 298

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\frac{a(2a+b+c)}{b^2+c^2} + \frac{b(a+2b+c)}{c^2+a^2} + \frac{c(a+b+2c)}{a^2+b^2} \geq 6$$

AI3 - 299

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\frac{(-a+b+c)^2}{b^2+c^2} + \frac{(a-b+c)^2}{c^2+a^2} + \frac{(a+b-c)^2}{a^2+b^2} \geq \frac{3}{2}$$

Vasile Cirtoaje, ML, t=259748, 2009

AI3 - 306

Let a, b , and c be positive real numbers. Prove that

$$\frac{a^3}{a^2 + b^2} + \frac{b^3}{b^2 + c^2} + \frac{c^3}{c^2 + a^2} \leq \frac{1}{2} \left(\frac{a^3}{b^2} + \frac{b^3}{c^2} + \frac{c^3}{a^2} \right)$$

Panagiote Ligouras, MathLinks, t=311797, 2009

AI3 - 307

Let a, b , and c be positive real numbers. Prove that

$$\left(\sum_{\text{cyc}} \frac{a^2}{b^2 + c^2} \right) \left(\prod_{\text{cyc}} \frac{a^2 + b^2}{b^2} \right) \geq \left(\sum_{\text{cyc}} \frac{a}{b + c} \right) \left(\prod_{\text{cyc}} \frac{a + b}{b} \right)$$

Panagiote Ligouras, ML, t=251794, 2009

AI3 - 308

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\frac{2a^2 + bc}{b^2 + c^2} + \frac{2b^2 + ac}{c^2 + a^2} + \frac{2c^2 + ab}{a^2 + b^2} \geq \frac{9}{2}$$

AI3 - 309

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\frac{a^2 + 16bc}{b^2 + c^2} + \frac{b^2 + 16ac}{c^2 + a^2} + \frac{c^2 + 16ab}{a^2 + b^2} \geq 10$$

Vasile Cirtoaje, ML, 2005

AI3 - 310

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\frac{ab - bc + ca}{b^2 + c^2} + \frac{bc - ca + ab}{c^2 + a^2} + \frac{ca - ab + bc}{a^2 + b^2} \geq \frac{3}{2}$$

AI3 - 311

Let a, b, c be non-negative reals, no two of which are zero. Then

$$\frac{ab + 4bc + ca}{b^2 + c^2} + \frac{bc + 4ca + ab}{c^2 + a^2} + \frac{ca + 4ab + bc}{a^2 + b^2} \geq 4$$

AI3 - 318

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\sqrt{\frac{a^2 + 2bc}{b^2 + c^2}} + \sqrt{\frac{b^2 + 2ac}{c^2 + a^2}} + \sqrt{\frac{c^2 + 2ab}{a^2 + b^2}} \geq 3$$

Vo Quoc Ba Can & Vu Dinh Quy

AI3 - 319

Let a, b, c be positive real numbers. Prove that

$$\sqrt{\frac{a^2 + 4bc}{b^2 + c^2}} + \sqrt{\frac{b^2 + 4ac}{c^2 + a^2}} + \sqrt{\frac{c^2 + 4ab}{a^2 + b^2}} \geq 2 + \sqrt{2}$$

Vo Quoc Ba Can, CRUX 35(4) n. 3419, 2009

AI3 - 320

Let a, b, c be positive real numbers. Prove that

$$\sum_{cyc} \left(\frac{2\sqrt{a^2 + 2bc} + \sqrt{a^2 + 4bc}}{\sqrt{b^2 + c^2}} \right) \geq 8 + \sqrt{2}$$

Panagiote Ligouras, 2009

AI3 - 321

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{\sqrt{(a^2 + b^2)(a^2 + c^2)}} + \frac{b}{\sqrt{(b^2 + a^2)(b^2 + c^2)}} + \frac{c}{\sqrt{(c^2 + a^2)(c^2 + b^2)}} \leq \frac{a^2 + b^2 + c^2}{2abc}$$

Romania, local MO, 1988

AI3 - 322

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\sqrt[3]{\frac{a^2 + bc}{b^2 + c^2}} + \sqrt[3]{\frac{b^2 + ac}{c^2 + a^2}} + \sqrt[3]{\frac{c^2 + ab}{a^2 + b^2}} \geq \frac{9\sqrt[3]{abc}}{a+b+c}$$

Pham Huu Duc, Mathematical Reflections, n S27, 2006

AI3 - 329

Let a, b, c be positive real numbers. Prove that

$$\frac{3(a^2 + b^2 + c^2)}{4abc} > \frac{1}{\sqrt{a^2 + b^2}} + \frac{1}{\sqrt{b^2 + c^2}} + \frac{1}{\sqrt{c^2 + a^2}} > \frac{2(a+b+c)}{a^2 + b^2 + c^2}$$

Zdravko F. Starc, RSME n.128, 2009

AI3 - 330

Let a, b, c be positive real numbers. Prove that

$$3\left(\frac{a^2 + b^2 + c^2}{4abc} + \sqrt{2}\right) > \frac{2a+1}{\sqrt{a^2 + b^2}} + \frac{2b+1}{\sqrt{b^2 + c^2}} + \frac{2c+1}{\sqrt{c^2 + a^2}} > 2\left(\frac{a+b+c}{a^2 + b^2 + c^2} + 1\right)$$

Panagiote Ligouras, MathLinks, t=326771, 2010

AI3 - 331

Let a, b, c be positive real numbers such that $a^2 + b^2 + c^2 = 3$. Prove that

$$\sqrt{\frac{a}{a^2 + b^2 + 1}} + \sqrt{\frac{b}{b^2 + c^2 + 1}} + \sqrt{\frac{c}{c^2 + a^2 + 1}} \leq \sqrt{3}$$

Pham Kim Hung

AI3 - 332

Let a, b, c be positive real numbers such that $abc = 1$. Prove that

$$\frac{a^2 + b^2}{a^2 + b^2 + 1} + \frac{b^2 + c^2}{b^2 + c^2 + 1} + \frac{c^2 + a^2}{c^2 + a^2 + 1} \geq \frac{a+b}{a^2 + b^2 + 1} + \frac{b+c}{b^2 + c^2 + 1} + \frac{c+a}{c^2 + a^2 + 1}$$

Jingjun Han, Mathematical Reflections n. J104, 2008

AI3 - 333

Let a, b, c be positive real numbers such that $a+b+c = 3$. Prove that

$$\frac{a}{b^2 + c} + \frac{b}{c^2 + a} + \frac{c}{a^2 + b} \geq \frac{3}{2}$$

Pham Kim Hung

AI3 - 334

Let a, b, c be positive reals such that $a+b+c = 3$ and $abc = 1$. Prove that

$$\frac{ab}{(a^2 + b)(a + b^2)} + \frac{bc}{(b^2 + c)(b + c^2)} + \frac{ca}{(c^2 + a)(c + a^2)} \leq \frac{3}{2}$$

AI3 - 341

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{a^2 + bc} + \frac{b}{b^2 + ca} + \frac{c}{c^2 + ab} \leq \frac{1}{2} \left(\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab} \right)$$

Baltic way, 2003

AI3 - 342

Let a, b, c be positive real numbers. Prove that

$$\frac{bc}{a^2 + bc} + \frac{ca}{b^2 + ca} + \frac{ab}{c^2 + ab} \leq \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}$$

Pham Huu Duc, Mathematical Reflections n. J60, 2007

AI3 - 343

Let a, b, c be positive real numbers. Prove that

$$\frac{a^2}{a^2 + bc} + \frac{b^2}{b^2 + ca} + \frac{c^2}{c^2 + ab} \leq 2$$

Canada

AI3 - 344

Let a, b , and c be positive real numbers. Prove that

$$\frac{a^2}{a^2 + bc} + \frac{b^2}{b^2 + ca} + \frac{c^2}{c^2 + ab} \leq \frac{a+b+c}{2\sqrt[3]{abc}}$$

Pham Huu Duc, CRUX 34(6) n. 3374, 2008

AI3 - 345

Suppose that a, b , and c are positive real numbers. Prove that

$$\frac{b+c}{a^2 + bc} + \frac{c+a}{b^2 + ca} + \frac{a+b}{c^2 + ab} \leq \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

Ho-Joo Lee, CRUX n. 2580

AI3 - 346

Let a, b , and c be positive real numbers. Prove that

$$\frac{a^2 + 3a}{a^2 + bc} + \frac{b^2 + 3b}{b^2 + ca} + \frac{c^2 + 3c}{c^2 + ab} \leq \frac{(a^2 + b^2 + c^2) + (a+b+c)^2 + 9(a+b+c)}{a^2 + b^2 + c^2 + ab + bc + ca}$$

Panagiote Ligouras, MathLinks, t=329754, 2010

AI3 - 353

Let a, b , and c be positive real numbers. Prove that

$$\frac{b^2 + bc + c^2}{a^2 + bc} + \frac{c^2 + ca + a^2}{b^2 + ca} + \frac{a^2 + ab + b^2}{c^2 + ab} \geq \frac{21}{4} - \frac{a^3 + b^3 + c^3}{4abc}$$

Panagiote Ligouras, ML, t=249913, 2009

AI3 - 354

Let a, b , and c be positive real numbers. Prove that

$$\sum_{cyc} \frac{3b^2 + 4bc + 3c^2}{a^2 + bc} \geq \frac{33}{2} - \frac{a^3 + b^3 + c^3}{2abc}$$

Panagiote Ligouras, ML, t=329755, 2010

AI3 - 355

Let a, b , and c be positive real numbers. Prove that

$$\frac{\sqrt{ab}}{c^2 + ab} + \frac{\sqrt{bc}}{a^2 + bc} + \frac{\sqrt{ca}}{b^2 + ca} \geq \frac{9(a^3 + b^3 + c^3)}{2(a+b+c)^4}$$

MIC Shortlist, ML, t=259607, 2009

AI3 - 356

Let a, b , and c be non-negative real numbers. Prove that

$$\frac{1}{\sqrt{a^2 + bc}} + \frac{1}{\sqrt{b^2 + ca}} + \frac{1}{\sqrt{c^2 + ab}} \geq \frac{6}{a+b+c}$$

Pham Kim Hung

AI3 - 357

Let a, b , and c be non-negative real numbers. Prove that

$$\frac{1}{\sqrt{a^2 + bc}} + \frac{1}{\sqrt{b^2 + ca}} + \frac{1}{\sqrt{c^2 + ab}} \geq \frac{2\sqrt{2}}{\sqrt{ab + bc + ca}}$$

Pham Kim Hung

AI3 - 358

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\frac{a^2 - bc}{\sqrt{a^2 + bc}} + \frac{b^2 - ca}{\sqrt{b^2 + ca}} + \frac{c^2 - ab}{\sqrt{c^2 + ab}} \geq 0$$

Vasile Cirtoaje, ML, 2005

AI3 - 365

Let a, b , and c be positive real numbers such that $a, b, c \geq -1$. Prove that

$$\frac{a^2+1}{c^2+b+1} + \frac{b^2+1}{a^2+c+1} + \frac{c^2+1}{b^2+a+1} \geq 2$$

Laurentiu Panaitopol, JBMO, 2003

AI3 - 366

Let a, b, c be real numbers such that $-1 \leq a, b, c \leq 1$ and $a+b+c=0$.
Prove that

$$\sqrt{a^2+c+1} + \sqrt{b^2+a+1} + \sqrt{c^2+b+1} \geq 3$$

Pham Thanh Nam

AI3 - 367

Prove that if the real numbers a, b and c satisfy $a^2+b^2+c^2=3$ then

$$\frac{a^2}{c^2+b+2} + \frac{b^2}{a^2+c+2} + \frac{c^2}{b^2+a+2} \geq \frac{(a+b+c)^2}{12}.$$

When does the equality hold?

Baltic Way, 2008

AI3 - 368

Let a, b, c be non-negative real numbers such that $a+b+c=3$. Prove that

$$(a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2) \leq 12$$

Pham Kim Hung, ML, 2006

AI3 - 369

Let a, b, c be non-negative real numbers such that $a^2+b^2+c^2=2$. Then

$$8(a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2) \leq 1$$

Pham Kim Hung

AI3 - 370

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\frac{1}{b^2-bc+c^2} + \frac{1}{c^2-ca+a^2} + \frac{1}{a^2-ab+b^2} \geq \frac{12}{(a+b+c)^2}$$

Vasile Cirtoaje, 2006

AI3 - 377

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\frac{3a^2 - bc}{b^2 - bc + c^2} + \frac{3b^2 - ca}{c^2 - ca + a^2} + \frac{3c^2 - ab}{a^2 - ab + b^2} \geq 5$$

Panagiote Ligouras, ML, t=319775, 2009

AI3 - 378

Let a, b , and c be positive real numbers such that $a^4 + b^4 + c^4 = 3$. Then

$$\frac{a^3}{b^2 - bc + c^2} + \frac{b^3}{c^2 - ca + a^2} + \frac{c^3}{a^2 - ab + b^2} \leq \frac{3}{abc}$$

AI3 - 379

Let a, b , and c be positive real numbers. Prove that

$$\frac{a^3}{b^2 - bc + c^2} + \frac{b^3}{c^2 - ca + a^2} + \frac{c^3}{a^2 - ab + b^2} \geq \frac{3(ab + bc + ca)}{a + b + c}$$

Sefket Arslanagic, CRUX n. 2927

AI3 - 380

Let a, b, c be non-negative reals, no two of which are zero. Prove that

$$\sum_{\text{cyc}} \frac{a^3}{b^2 - bc + c^2} \geq \sum_{\text{cyc}} a \geq 4 \sum_{\text{cyc}} \frac{ab}{a + b + 2c}$$

AI3 - 381

Let a, b , and c be positive real numbers such that $a^4 + b^4 + c^4 = 3$. Then

$$\frac{a^3 + b}{b^2 - bc + c^2} + \frac{b^3 + c}{c^2 - ca + a^2} + \frac{c^3 + a}{a^2 - ab + b^2} \leq \frac{3 + ab + bc + ca}{abc}$$

Panagiote Ligouras, MathLinks, t=329119, 2010

AI3 - 382

Let a, b, c be non-negative reals, no two of which are zero, such that $a + b + c = 2$. Prove that

$$\frac{a^3 + 8}{b^2 - bc + c^2} + \frac{b^3 + 8}{c^2 - ca + a^2} + \frac{c^3 + 8}{a^2 - ab + b^2} \geq 26$$

Panagiote Ligouras, ML, t=316360, 2009

AI3 - 389

Let a, b , and c be positive real numbers such that $abc = 1$. Then

$$\frac{1+ab^2}{c^3} + \frac{1+bc^2}{a^3} + \frac{1+ca^2}{b^3} \geq \frac{18}{a^3+b^3+c^3}$$

Hong Kong, 2000

AI3 - 390

Let a, b , and c be positive real numbers. Prove that

$$\frac{a}{b^3} + \frac{b}{c^3} + \frac{c}{a^3} \geq \frac{27}{(a+b+c)^2}$$

AI3 - 391

Let a, b , and c be positive real numbers such that $a^2 + b^2 + c^2 = 3$. Then

$$\frac{a^2}{b^3} + \frac{b^2}{c^3} + \frac{c^2}{a^3} \geq 3$$

MathLinks, t=259844, 2009

AI3 - 392

Let a, b, c be positive real numbers such that $a^k + b^k + c^k = 3$, $k > 0$. Then

$$\frac{a^2}{b^3} + \frac{b^2}{c^3} + \frac{c^2}{a^3} \geq 3$$

ML, t=259844, 2009

AI3 - 393

Let a, b, c be positive real numbers such that $a+b+c = 3$. Prove that

$$\frac{a}{b^3+1} + \frac{b}{c^3+1} + \frac{c}{a^3+1} \leq \frac{3}{2}$$

Bin Zhao, ML, 2006

AI3 - 394

Let a, b, c be positive real numbers such that $a^2 + b^2 + c^2 = 3$. Prove that

$$\frac{a^2}{b^3+1} + \frac{b^2}{c^3+1} + \frac{c^2}{a^3+1} \geq \frac{3}{2}$$

ML, t=259844, 2009

AI3 - 401

Let a, b, c be positive real numbers such that $a + b + c = 3$. Prove that

$$\frac{a}{b^3+2} + \frac{b}{c^3+2} + \frac{c}{a^3+2} \geq \frac{1}{6}(5 + abc)$$

MathLinks, t=264216, 2009

AI3 - 402

For positive real numbers x, y, z holds $\frac{1}{x^2+1} + \frac{1}{y^2+1} + \frac{1}{z^2+1} = \frac{1}{2}$. Prove the inequality:

$$\frac{1}{x^3+2} + \frac{1}{y^3+2} + \frac{1}{z^3+2} < \frac{1}{3}$$

Serbia, Junior Balkan Team Selection Test, 2009

AI3 - 403

Let $x, y, z \in R^+$ and $x + y + z = 3$. Prove that:

$$\frac{x^3}{y^3+8} + \frac{y^3}{z^3+8} + \frac{z^3}{x^3+8} \geq \frac{1}{9} + \frac{2}{27}(xy + yz + zx)$$

Iran, National Math Olympiad, 2008

AI3 - 404

Let a, b, c be positive real numbers such that $a + b + c \leq 1$. Prove that

$$\frac{a}{a^3+a^2+1} + \frac{b}{b^3+b^2+1} + \frac{c}{c^3+c^2+1} \leq \frac{27}{31}$$

Cao Minh Quang, CRUX 35(2) n. 3421, 2009

AI3 - 405

Let a, b, c be non-negative real numbers such that $a + b + c = 2$ and $k \geq 1$. Prove that

$$\frac{\sqrt[k]{a}}{b^3+c^3} + \frac{\sqrt[k]{b}}{c^3+a^3} + \frac{\sqrt[k]{c}}{a^3+b^3} \geq 2$$

Tran Quoc Anh, ML, t=292594, 2009

AI3 - 411

If $a \geq b \geq c > 0$, then

$$\frac{a^3b}{a^3+b^3} + \frac{b^3c}{b^3+c^3} + \frac{c^3a}{c^3+a^3} \geq \frac{ab^3}{a^3+b^3} + \frac{bc^3}{b^3+c^3} + \frac{ca^3}{c^3+a^3}$$

AI3 - 412

Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$\frac{a^5+a^4+b^5}{a^3+b^3} + \frac{b^5+b^4+c^5}{b^3+c^3} + \frac{c^5+c^4+a^5}{c^3+a^3} \geq \frac{5}{6}$$

Panagiote Ligouras, ML, t=318005, 2009

AI3 - 413

Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$\frac{3a^5+2a^4+3b^5}{a^3+b^3} + \frac{3b^5+2b^4+3c^5}{b^3+c^3} + \frac{3c^5+2c^4+3a^5}{c^3+a^3} \geq 2$$

Panagiote Ligouras, MathLinks, t=250356, 2009

AI3 - 414

Let a, b, c be positive real numbers. Prove that

$$\frac{3a^3+abc}{b^3+c^3} + \frac{3b^3+abc}{c^3+a^3} + \frac{3c^3+abc}{a^3+b^3} \geq 6$$

Tran Quoc Anh, ML, t=262924, 2009

AI3 - 415

Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$\frac{b^5+3a^3+c^5+abc}{b^3+c^3} + \frac{a^5+3b^3+c^5+abc}{c^3+a^3} + \frac{b^5+3c^3+a^5+abc}{a^3+b^3} \geq \frac{19}{3}$$

Panagiote Ligouras, ML, t=297732, 2009

AI3 - 416

Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$\frac{3b^5+3a^3+3c^5+abc}{b^3+c^3} + \frac{3a^5+3b^3+3c^5+abc}{c^3+a^3} + \frac{3b^5+3c^3+3a^5+abc}{a^3+b^3} \geq 7$$

Panagiote Ligouras, MathLinks, t= 315857, 2009

AI3 - 423

If $a, b, c > 0$ with $a+b+c=1$, prove that

$$\frac{a^7+b^7}{a^5+b^5} + \frac{b^7+c^7}{b^5+c^5} + \frac{c^7+a^7}{c^5+a^5} \geq \frac{1}{3}$$

AI3 - 424

Let $a, b, c > 0$ and $abc = 1$

$$\frac{ab}{a^5+b^5+ab} + \frac{bc}{b^5+c^5+bc} + \frac{ca}{c^5+a^5+ca} \leq 1$$

Unused problem in IMO 1996, EXC 2(4)+2(5), 1996

AI3 - 425

Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 9$$

AI3 - 426

Let a, b, c be positive real numbers. Prove that

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 2 \left(\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \right)$$

AI3 - 427

Let a, b, c be positive real numbers. Prove that

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 4 \left(\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \right) - \frac{9}{a+b+c}$$

AI3 - 428

If $a, b, c > 0$, prove that

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq \frac{a^8+b^8+c^8}{a^3b^3c^3}$$

G. C. Giri, CRUX n. 413

AI3 - 435

Let a, b, c be positive real numbers. Prove that

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 6 \left(\frac{a}{3a^2 + 2b^2 + c^2} + \frac{b}{3b^2 + 2c^2 + a^2} + \frac{c}{3c^2 + 2a^2 + b^2} \right)$$

AI3 - 436

Let a, b, c be positive real numbers. Prove that

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 6 \left(\frac{1}{a^3 + b^3 + 4} + \frac{1}{b^3 + c^3 + 4} + \frac{1}{c^3 + a^3 + 4} \right)$$

AI3 - 437

Let a, b, c be positive real numbers. Prove that

$$\frac{1}{a} + \frac{4}{b} + \frac{9}{c} \geq \frac{36}{a+b+c}$$

AI3 - 438

Let a, b, c be positive real numbers such that $12 \geq 21ab + 2bc + 8ca$. Then

$$\frac{1}{a} + \frac{2}{b} + \frac{3}{c} \geq \frac{15}{2}$$

Tran Nam Dung, Vietnam TST, 2001

AI3 - 439

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{b} + \frac{a}{c} \geq 4 \frac{a}{b+c}$$

AI3 - 440

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{b} + \frac{b}{a} \geq \frac{a+c}{b+c} + \frac{b+c}{a+c}$$

AI3 - 447

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq \frac{a+b}{b+c} + \frac{b+c}{a+b} + 1$$

AI3 - 448

Let a, b, c be positive real numbers such that $c \geq b \geq a$. Prove that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq \frac{b}{a} + \frac{c}{b} + \frac{a}{c}$$

AI3 - 449

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq \frac{a+b}{a+c} + \frac{b+c}{b+a} + \frac{c+a}{c+b}$$

Indian-TST to the IMO 2002

AI3 - 450

Let a, b, c, k be positive real numbers. Prove that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq \frac{a+kb}{a+kc} + \frac{b+kc}{b+ka} + \frac{c+ka}{c+kb}$$

Nguyen Viet Anh

AI3 - 451

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq \frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} + \frac{3}{2}$$

MathLinks, t=262433, 2009

AI3 - 452

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq \frac{1}{2} \left(\frac{b}{a+c} + \frac{b+2a}{b+c} + \frac{b+2c}{a+b} + \frac{5}{2} \right)$$

Panagiote Ligouras, MathLinks, t=302100, 2009

AI3 - 459

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq 2 \cdot \sqrt{\frac{a^2 + b^2 + c^2}{ab + bc + ca}} + \frac{5}{4}$$

Panagiotis Ligouras, MathLinks, t=315855, 2009

AI3 - 460

Let a, b, c be positive real numbers such that $abc \leq 1$. Prove that

$$\frac{a}{c} + \frac{b}{a} + \frac{c}{b} \geq a + b + c$$

EXCALIBUR, 5(4), 2000

AI3 - 461

Let a, b, c be positive real numbers such that $abc = 1$. Prove that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq (a+1)(b+1)(c+1) - 5$$

Aaron Pixton

AI3 - 462

Let a, b, c be positive real numbers such that $abc = 1$. Prove that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq \frac{1}{2} \left[(a+b+c) + \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \right]$$

AI3 - 463

Let a, b, c be positive real numbers. Prove that

$$\left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \right)^2 \geq (a+b+c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$$

Great Britain Olympiad, 2005

AI3 - 464

Let a, b, c be positive real numbers. Prove that

$$\left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \right)^2 \geq \frac{3}{2} \left(\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} \right)$$

Romania-JTST, 2006

AI3 - 471

Let a, b, c be positive real numbers, show that

$$\frac{ab}{c} + \frac{bc}{a} + \frac{ca}{b} > 2 \cdot \sqrt[3]{a^3 + b^3 + c^3}$$

China-TST, 2008

AI3 - 472

Let a, b, c be positive real numbers such that $a^2 + b^2 + c^2 = 3$. Prove that

$$\frac{ab}{c} + \frac{bc}{a} + \frac{ca}{b} > 1 + \frac{a+b+c}{3} + \frac{2}{3} \cdot \sqrt[3]{a^3 + b^3 + c^3}$$

Panagiotis Ligouras, MathLinks, t=310241, 2009

AI3 - 473

Let a, b, c be positive real numbers such that $a+b+c = 8$. Prove that

$$\frac{ab}{c} + \frac{bc}{a} + \frac{ca}{b} > 4 \cdot \sqrt[6]{a^3 + b^3 + c^3}$$

Panagiotis Ligouras, ML, t=311790, 2009

AI3 - 474

If $a, b, c > 0$ and $a+b+c + \sqrt{abc} = 4$, then

$$\sqrt{\frac{ab}{c}} + \sqrt{\frac{bc}{a}} + \sqrt{\frac{ca}{b}} > a+b+c$$

China-TST, 2007

AI3 - 475

Let a, b, c be positive real numbers. Prove that

$$\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \geq a+b+c + \frac{4(a-b)^2}{a+b+c}$$

BMO, 2005

AI3 - 476

Let a, b, c be positive real numbers. Prove that

$$\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \geq \frac{(a+b+c)(a^2 + b^2 + c^2)}{ab + bc + ca}$$

MathLinks, t=249523, 2009

AI3 - 483

Let $a, b, c > 0$ such that $a+b+c=1$. Prove:

$$\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \geq 3(a^2 + b^2 + c^2)$$

Croatia TST 2007

AI3 - 484

Given positive real numbers a, b, c , prove that

$$\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \geq \frac{37(a^2 + b^2 + c^2) - 19(ab + bc + ca)}{6(a+b+c)}$$

Michael Rozenberg, ML, t=296853, 2009

AI3 - 485

Let a, b, c be positive real numbers. Prove that

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \geq \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$$

1st Nordic Mathematical Olympiad

AI3 - 486

Given positive real numbers a, b, c , prove that

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \geq 12 - \frac{9(ab + bc + ca)}{a^2 + b^2 + c^2}$$

AI3 - 487

Let a, b, c be positive real numbers. Prove that

$$\left(\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \right) + \left(\frac{b^2}{a^2} + \frac{c^2}{b^2} + \frac{a^2}{c^2} \right) \geq \frac{1}{2} \left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \right) + \frac{1}{2} \left(\frac{b}{a} + \frac{c}{b} + \frac{a}{c} \right) + 3$$

AI3 - 488

Let a, b, c be positive real numbers. Prove that

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \geq \frac{2}{3}(a+b+c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) - \sqrt{(a^2 + b^2 + c^2) \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \right)}$$

Panagiote Ligouras, MathLinks, t=310240, 2009

AI3 - 495

Let a, b, c be positive real numbers. Prove that

$$\frac{a^3}{b^3} + \frac{b^3}{c^3} + \frac{c^3}{a^3} \geq \frac{a}{b} + \frac{b}{c} + \frac{c}{a}, \quad a, b, c > 0$$

AI3 - 496

Let a, b, c be positive real numbers. Prove that

$$\frac{(-a+b+c)^3}{a} + \frac{(a-b+c)^3}{b} + \frac{(a+b-c)^3}{c} \geq a^2 + b^2 + c^2$$

AI3 - 497

Suppose that a, b, c are positive real numbers and $a^5 + b^5 + c^5 = 3$. Then

$$\frac{a^4}{b^3} + \frac{b^4}{c^3} + \frac{c^4}{a^3} \geq 3$$

AI3 - 498

Prove that for all positive real numbers a, b, c

$$\frac{a^5}{b} + \frac{b^5}{c} + \frac{c^5}{a} \geq 3 \cdot \sqrt[3]{\left(\frac{a^6 + b^6 + c^6}{3} \right)^2}$$

Nguyen Thuc Vu Hoang, MathLinks, t=298305, 2009

AI3 - 499

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{b} + \sqrt{\frac{b}{c}} + \sqrt[3]{\frac{c}{a}} \geq \frac{3}{2}$$

AI3 - 500

Let a, b, c be positive real numbers. Prove that

$$\frac{a}{b} + 2 \cdot \sqrt{\frac{b}{c}} + 3 \cdot \sqrt[3]{\frac{c}{a}} \geq 6$$

AI3 - 507

Prove that

$$\sqrt{\frac{a+b}{c}} + \sqrt{\frac{b+c}{a}} + \sqrt{\frac{c+a}{b}} \geq 3\sqrt{2}$$

where a, b, c are positive real numbers.

Šefket Arslanagić, Die WURZEL, n. 50

AI3 - 508

Let a, b, c be positive real numbers. Prove that

$$\sqrt{\frac{a+b}{c}} + \sqrt{\frac{b+c}{a}} + \sqrt{\frac{c+a}{b}} \geq \sqrt{6 \cdot \frac{a+b+c}{\sqrt[3]{abc}}}$$

Pham Huu Duc, Mathematical Reflections n. S41, 2007

AI3 - 509

Let a, b, c be positive real numbers. Prove that

$$\sqrt{\frac{a+b}{c}} + \sqrt{\frac{b+c}{a}} + \sqrt{\frac{c+a}{b}} \geq \sqrt{\frac{16(a+b+c)^3}{3(a+b)(b+c)(c+a)}}$$

Vo Quoc Ba Can, Mathematical Reflections n. O43, 2007

AI3 - 510

Let a, b, c be positive real numbers. Prove that

$$\sqrt{\frac{a+b}{c}} + \sqrt{\frac{b+c}{a}} + \sqrt{\frac{c+a}{b}} \geq 2(a+b+c) \cdot \sqrt[4]{\frac{2}{\sqrt[3]{abc}(a+b)(b+c)(c+a)}}$$

Panagiotis Ligouras, MathLinks, t=252271, 2009

AI3 - 511

Let a, b, c be positive real numbers. Prove that

$$\sqrt{\frac{a+b}{c}} + \sqrt{\frac{b+c}{a}} + \sqrt{\frac{c+a}{b}} \geq 2 \cdot \sqrt[4]{\frac{6(a+b+c)^3}{(a+b)(b+c)(c+a)}}$$

Panagiotis Ligouras, MathLinks, t=308751, 2009

AI3 - 512

Let a, b, c be positive real numbers. Prove that

$$\sqrt{\frac{a+b}{c}} + \sqrt{\frac{b+c}{a}} + \sqrt{\frac{c+a}{b}} \geq 2 \cdot \sqrt[6]{\frac{9(a+b+c)^4}{\sqrt[3]{abc}(a+b)(b+c)(c+a)}}$$

Panagiotis Ligouras, MathLinks, t=297725, 2009

AI3 - 519

Let a, b, c be positive real numbers, prove that

$$\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} - 4 \left(\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \right) \geq 1 - \frac{8abc}{(a+b)(b+c)(c+a)}$$

Cezar Lupu & Cosmin Pohoata, RSME, 11(1), n. 97, 2008

AI3 - 520

For $a, b, c > 0$, if $abc = 1$, then show that

$$\frac{b+c}{\sqrt{a}} + \frac{c+a}{\sqrt{b}} + \frac{a+b}{\sqrt{c}} \geq \sqrt{a} + \sqrt{b} + \sqrt{c} + 3$$

EXCALIBUR, 5(3) & 5(4), 2000

AI3 - 521

Let a, b, c be positive real numbers, prove that

$$\frac{(a+b)^3}{c} + \frac{(b+c)^3}{a} + \frac{(c+a)^3}{b} \geq 8(ab+bc+ca)$$

AI3 - 522

Let a, b, c be positive real numbers, prove that

$$\frac{(a+b)^3}{c} + \frac{(b+c)^3}{a} + \frac{(c+a)^3}{b} \geq 8(a^2 + b^2 + c^2)$$

Romania, order 8, 2003

AI3 - 523

Let a, b, c be positive real numbers, prove that

$$\frac{(a+b)^3}{c} + \frac{(b+c)^3}{a} + \frac{(c+a)^3}{b} \geq 2(a^2 + b^2 + c^2) + 2(a+b+c)^2$$

Panagiota Ligouras, MathLinks, t=297731, 2009

AI3 - 524

Let a, b, c be positive real numbers such that $abc = 1$, prove that

$$\frac{a^2 + b^2}{c} + \frac{b^2 + c^2}{a} + \frac{c^2 + a^2}{b} \geq 6$$

Gazeta Matematică, 2002

AI3 - 531

If a, b, c are positive numbers, then

$$a+b+c + \frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \geq \frac{6(a^2 + b^2 + c^2)}{a+b+c}$$

Pham Huu Duc, MathLinks, 2006

AI3 - 532

Let a, b, c be positive real numbers. Prove that

$$\frac{a^3b+ab^3}{c} + \frac{b^3c+bc^3}{a} + \frac{c^3a+ca^3}{b} \geq 6abc$$

AI3 - 533

Let a, b, c be positive real numbers. Prove that

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 2\left(\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a}\right)$$

AI3 - 534

Let a, b, c be positive real numbers such that $a \geq b \geq c$. Prove that

$$\frac{a^2b}{c} + \frac{b^2c}{a} + \frac{c^2a}{b} \geq a^2 + b^2 + c^2$$

Vietnam, 29ts MO, 1991

AI3 - 535

Let a, b, c be positive real numbers such that $a+b+c = 6$. Prove that

$$\left(a + \frac{1}{b}\right)^2 + \left(b + \frac{1}{c}\right)^2 + \left(c + \frac{1}{a}\right)^2 \geq \frac{75}{4}$$

ARML, 1987

AI3 - 536

Let a, b, c be positive real numbers such that $ab + bc + ca = 1$. Then

$$\left(a + \frac{1}{b}\right)^2 + \left(b + \frac{1}{c}\right)^2 + \left(c + \frac{1}{a}\right)^2 \geq 16$$

Mircea Becheanu, Mathematical Reflections, n. J57, 2007

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{4}{3}(a+b+c) \geq 7$$

----- **AI3 - 543** -----

Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$\frac{a+b^2}{c} + \frac{b+c^2}{a} + \frac{c+a^2}{b} \geq 4$$

----- **AI3 - 544** -----

Let a, b, c be positive real numbers. Prove that

$$\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right) \geq \left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)$$

----- **AI3 - 545** -----

Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right) \geq 64$$

Yugoslavia, 30th MO, 1989

----- **AI3 - 546** -----

Let a, b, c be arbitrary positive real numbers. Prove that

$$\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right) \geq 2 + \frac{2(a+b+c)}{\sqrt[3]{abc}}$$

APMO, 1998

----- **AI3 - 547** -----

Let a, b, c be arbitrary positive real numbers. Prove that

$$\left(1+\frac{a^2}{b}\right)\left(1+\frac{b^2}{c}\right)\left(1+\frac{c^2}{a}\right) \geq (1+a)(1+b)(1+c)$$

APMO

----- **AI3 - 548** -----

Let a, b, c be arbitrary positive real numbers. Prove that

$$a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq 3 + \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$$

Todor Mitev, CRUX, n. 3236

AI3 - 555Let a, b, c be positive real numbers such that $abc = 1$. Prove that

$$a^2 + b^2 + c^2 + 6 \geq \frac{3}{2} \left(a + b + c + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$$

Vasile Cirtoaje, ML, 2006

AI3 - 556Let a, b, c be positive real numbers such that $abc = 1$. Prove that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq (a + b + c) + \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) - 3$$

EXCALIBUR, 12(4), 2007

AI3 - 557Let a, b, c be positive real numbers such that $abc = 1$. Prove that

$$a^2 + b^2 + c^2 + \frac{a}{b} + \frac{b}{c} + \frac{c}{a} + 9 \geq 2 \left(a + b + c + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$$

Panagiotis Ligouras, MathLinks, t=252656, 2009

AI3 - 558Let a, b, c be positive real numbers such that $abc = 1$. Prove that

$$a + b + c + \frac{2}{3} \left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \right) \geq 2 + \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$$

AI3 - 559Let a, b, c be positive real numbers. Prove that

$$(a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \geq 9$$

AI3 - 560Let a, b, c be positive real numbers. Prove that

If $y \geq a, b, c \geq x > 0$, then

$$\frac{(2x+y)(x+2y)}{xy} \geq (a+b+c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \geq 9$$