Parametric Line-Clipping Algorithm

- Introduced by Cyrud and Beck in 1978
- Efficiently improved by Liang and Barsky
- Essentially find the parameter t from $P(t) = P_0 + (P_1 P_0)t$

$$N_{i} \square P(t) - P_{Ei}] = 0$$

$$N_{i} \square P_{0} + (P_{1} - P_{0})t - P_{Ei}] = 0$$

$$N_{i} \square P_{0} - P_{Ei}] + N_{i} \square P_{1} - P_{0}]t = 0$$

$$t = -\frac{N_{i} \square P_{0} - P_{Ei}}{N_{i} \square D}$$

$$where D = (P_{1} - P_{0})$$

Parametric Line-Clipping Algorithm (cont.)

- Formally, intersections can be classified as PE (potentially entering) and PL (potentially leaving) on the basis of the angle between P_0P_1 and N_i
- Determine t_F or t_I for each intersection
- Select the line segment that has maximum t_F and minimum t_I
- If $t_F > t_I$, then trivially rejected

Parametric Line-Clipping Algorithm (cont.)

Clip edge _i	Normal N _i	P_{E_i}	$P_0 - P_{E_i}$	$t = \frac{N_i \cdot (P_0 - P_{E_i})}{-N_i \cdot D}$
left: $x = x_{min}$	(-1, 0)	(x_{\min}, y)	(x_0-x_{\min},y_0-y)	$\frac{-(x_0 - x_{\min})}{(x_1 - x_0)}$
right: $x = x_{\text{max}}$	(1, 0)	(x_{max}, y)	(x_0-x_{\max},y_0-y)	$\frac{(x_0 - x_{\text{max}})}{-(x_1 - x_0)}$
bottom: $y = y_{\min}$			(x_0-x,y_0-y_{\min})	$\frac{-(y_0 - y_{\min})}{(y_1 - y_0)}$
top: $y = y_{\text{max}}$	(0, 1)	(x, y_{max})	$(x_0 - x, y_0 - y_{\text{max}})$	$\frac{(y_0 - y_{\text{max}})}{-(y_1 - y_0)}$

Cyrus-Beck Algorithm (Pseudocode)

precalculate N_i and select a P_{E_i} for each edge;

```
for (each line segment to be clipped) {
   if (P_1 == P_0)
       line is degenerate so clip as a point;
   else {
       t_E = 0; t_L = 1;
       for (each condidate intersection with a clip edge) {
           if (N_i \bullet D != 0) { '/* Ignore edges parallel to line for now */
               calculate t;
               use sign of N_i \bullet D to categorize as PE or PL;
               if (PE) t_E = \max(t_E, t);
               if (PL) t_L = \min(t_L, t);
       if (t_E > t_L)
           return NULL;
       else
           return P(t_E) and P(t_L) as true clip intersections;
```