Pontificia Universidad Católica del Perú

Escuela de Posgrado

Análisis Complejo (semana 8)

FUNCIONES ANALÍTICAS Y SINGULARIDADES

1. Cada una de las siguientes funciones admite una singularidad en z=0. Si es removible, determine la extensión. En el caso de ser un polo, halle la parte singular. Cuando sea una singularidad esencial, describa $\{f(z): 0 < |z-a| < \delta\}$ para $\delta > 0$, arbitrariamente pequeño.

describa $\{f(z): 0 < |z-a| < 0\}$ para 0 > 0, arbitrariamente pequeno. $f(z) = \frac{\sin(z)}{z}, \quad f(z) = \frac{\cos(z)}{z}, \quad f(z) = \frac{\cos(z)-1}{z}, \quad f(z) = \exp(\frac{1}{z}), \quad f(z) = \frac{z^2+1}{z(z-1)}, \quad f(z) = \frac{1}{1-e^z}.$ 2. Sea f(z) una función analítica en una region U, con algún $a \in U$ tal que $f'(a) \neq 0$. Probar que

$$\frac{2\pi i}{f'(a)} = \int_C \frac{1}{f(z) - f(a)} dz,$$

donde C es una pequeña circunferencia centrada en $a \in U$.

- 3. Sea U la región que se obiene al omitir el punto $a \in D$ de un disco abierto D y f(z) una función analitica en U. Analizar la equivalencia de las siguientes afirmaciones
 - a) $a \in D$ es una singularidad removible para f(z)
 - b) f(z) es límitada en alguna vecindad abierta de a
- 4. Sea R>0 y $U=\{z\colon |z|>R\}$. Se dice que $f\colon U\to\mathbb{C}$ tiene una singularidad removible, polo o esencial en el infinito si $g(z) = f(\frac{1}{z})$ tiene en z = 0 una singulariad removible, un polo on una singularidad esencial. Si ∞ es un polo para f(w), su orden es el orden del polo z=0 para $f(\frac{1}{z})$.
 - a) Una función entera tiene una singularidad removible en el infinito si y solo si es constante.
 - b) La función entera tiene un polo de orden m en ∞ si y solo si es un polinomio de grado m.
 - c) Caracterizar las funciones racionales que tienen una singularidad removible en el infinito.
 - d) Caracterizar las funciones racionales que tienen un polo de orden m en el infinito.
- 5. Describir los ceros de la función sen $\left(\frac{1+z}{1-z}\right)$.
- 6. Probar que las funciones e^z , sen(z) y cos(z) tienen singularidades esenciales en el infinito.
- 7. Considere una función analítica en un abierto conexo U. Probar que por cada $a \in U$ existe R > 0de modo que $\{z: |z-a| < R\} \subset U$ y esta subconjunto se cumple la siguiente igualdad

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^n.$$

Además, el radio de convergencia de la serie es $\geq R$.

8. Sea f(z) un polinomio en un disco abierto $B(a,R) = \{z : |z-a| < R\}$, cuyas raies son a_1, a_2, \ldots, a_m . Suponga que la curva cerrada γ no contiene ninguna raiz, analizar el valor de verdad de la siguiente afirmación

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i \sum_{j=1}^{m} \eta(\gamma, a_j)$$

 $(\eta(\gamma, a)$ denota el indice de a respecto a la curva γ).

- 9. Considere el problema 8 cuando todas las raices tienen multiplicidad uno y f(z) sea una función analítica. ¿Qué se puede afirmar en caso que alguna de las raices de la función analítica tenga multiplicidad > 1?
- 10. Probar que si z=a es una singularidad esencial para f(z), entonces para cada $\delta>0$ la clausura del conjunto $\{f(z): 0 < |z-a| < \delta\}$ es todo el plano \mathbb{C} (Casorati-Weierstrass).
- 11. Probar que una singularidad aislada de f(z) no puede ser un polo de exp(f(z)).
 12. Determinar las regiones donde $f(z) = \frac{1}{sen(\frac{1}{z})}$ es analítica.
- 13. Un automorfismo del abierto U es una biyección analitica $f:U\to U$ cuya inversa es analítica. Probar que los autormorfismos de \mathbb{C} tienen la forma f(z) = az + b, donde a, b son constantes, $a \neq 0$.