Análise de Neutralização

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Nível I

PROBLEMA 1.1

3101

Uma amostra de 15 mL de uma solução de hidróxido de bário foi titulada com 5 mL de uma solução 0,01 mol $\,{\rm L}^{-1}\,$ em ácido fosfórico

Assinale a alternativa que mais se aproxima da concentração da solução de hidróxido de bário.

- **A** $0.01 \, \text{mol} \, \text{L}^{-1}$
- **B** $0.02 \, \text{mol} \, \text{L}^{-1}$
- $0,03 \, \text{mol} \, L^{-1}$
- **D** $0.04 \, \text{mol} \, \text{L}^{-1}$
- **E** $0.05 \, \text{mol} \, \text{L}^{-1}$

PROBLEMA 1.2 3I02

Uma amostra de $10\,\mathrm{mL}$ de uma solução de ácido sulfúrico foi titulada com $40\,\mathrm{mL}$ de uma solução $2\,\mathrm{mol}\,\mathrm{L}^{-1}$ em hidróxido de sódio

Assinale a alternativa que mais se aproxima da concentração da solução de ácido sulfúrico.

- \mathbf{A} 1 mol L⁻¹
- \mathbf{B} 2 mol L⁻¹
- \mathbf{C} 3 mol L⁻¹
- \mathbf{D} 4 mol L⁻¹
- $E 5 \text{ mol } L^{-1}$

PROBLEMA 1.3 3103

Uma amostra de $50\,\mathrm{mL}$ de um vinho de mesa branco foi titulada com $20\,\mathrm{mL}$ de uma solução de $0,04\,\mathrm{mol}\,\mathrm{L}^{-1}$ em hidróxido de sódio para alcançar o ponto final com fenolftaleína. Considere que toda a acidez do vinho é devido ao ácido tartárico. **Assinale** a alternativa que mais se aproxima da massa de ácido

tartárico em 100 mL de vinho.

- **A** 120 mg
- **B** 180 mg
- **c** 240 mg
- **D** 300 mg
- **E** 360 mg

PROBLEMA 1.4

3104

Uma amostra de 700 mg de tetraborato de sódio $Na_2B_4O_7$ impuro foi titulada 30 mL de uma solução $0,1 \text{ mol } L^{-1}$ em ácido clorídrico, formando H_3BO_3 .

Assinale a alternativa que mais se aproxima da pureza da amostra de tetraborato de sódio.

- A 51%
- **B** 61%
- c 71%

- **D** 81%
- **E** 91%

PROBLEMA 1.5

3105

Uma amostra de 6,5 g de um ácido diprótico foi tiutulada com $100\,\mathrm{mL}$ de uma solução $1\,\mathrm{mol}\,\mathrm{L}^{-1}$ em hidróxido de sódio. **Assinale** a alternativa que mais se aproxima da massa molar do do ácido.

- $\mathbf{A} \quad 110 \,\mathrm{g}\,\mathrm{mol}^{-1}$
- **B** $120 \, \text{g mol}^{-1}$
- $130 \,\mathrm{g} \,\mathrm{mol}^{-1}$
- **D** $140 \,\mathrm{g} \,\mathrm{mol}^{-1}$
- \mathbf{E} 150 g mol⁻¹

PROBLEMA 1.6

3I06

Uma amostra de 0,192 g de ácido cítrico, $C_6H_8O_7$, foi dissolvida em 25 mL de água destilada. A solução foi tiutulada com 30 mL de uma solução 1 mol L^{-1} em hidróxido de sódio.

Assinale a alternativa com o número de hidrogênios ionizáveis no ácido cítrico.

- Α
- B 2
- **c** 3
- D
- **E** 5

PROBLEMA 1.7

3I07

Uma amostra de 0,177 g de um composto orgânico contento carbono, hidrogênio, nitrogênio e oxigênio sofreu combustão completa formando 0,264 g de CO_2 e 0,135 g de água. Em outro experimento, todo o nitrogênio em uma amostra de mesma massa foi integralmente convertido em amônia. A solução de amônia resultante foi titulada com 3 mL de uma solução 0,5 mol L^{-1} de ácido sulfúrico.

Determine a fórmula mínima do composto orgânico.

PROBLEMA 2.6

3I13

PROBLEMA 2.1

3I08

Uma amostra de 50 g de uma solução 4% em hidróxido de sódio é misturada com 50 g de uma solução 1,82% em ácido clorídrico em um calorímetro adiabático a 20 °C. A temperatura da solução aumenta para 23,4 °C. Em seguida, 70 g de uma solução 3,5% em ácido sulfúrico são adicionados à solução.

Determine a temperatura da solução após a adição do ácido sulfúrico.

PROBLEMA 2.2

3109

Duas buretas, **A** e **B**, são drenadas simultaneamente em um béquer contendo 275 mL de uma solução 0, 3molL1 em ácido clorídrico. A bureta **A** contem hidróxido de sódio 0, 15molL1 e a bureta B contem hidróxido de potássio 0, 25molL1. O ponto estequiométrico é atingido 60,25 min após o início da drenagem. Neste instante, o volume do béquer é de 655 mL

Assinale a alternativa que mais se aproxima da vazão volumétrica da bureta **B**.

- \mathbf{A} 1,2 mL min⁻¹
- \mathbf{B} 2,6 mL min⁻¹
- \mathbf{C} 4,2 mL min⁻¹
- \mathbf{D} 6,1 mL min⁻¹
- \mathbf{E} 8,4 mL min⁻¹

3T1

PROBLEMA 2.3

Uma amostra com $0.3\,\mathrm{g}$ de carbonato de sódio foi tratada com $40\,\mathrm{mL}$ de ácido perclórico diluído. A solução foi fervida para remover o CO_2 . O excesso de HClO_4 foi retrotitulado com $10\,\mathrm{mL}$ de uma solução de hidróxido de sódio. Em um experimento separado, $30\,\mathrm{mL}$ do da solução de ácido perclórico foram titulados com $25\,\mathrm{mL}$ da solução de hidróxido de sódio.

- a. **Determine** a concentração da solução de ácido perclórico.
- Determine a concentração da solução de hidróxido de sódio.

PROBLEMA 2.4

I11

Uma massa de 0,14 g de uma amostra de carbonato purificado foi dissolvida em 50 mL de uma solução 0,1 mol L^{-1} em ácido clorídrico e aquecida para eliminar o CO_2 . O excesso de ácido clorídrico foi retrotitulado com 24 mL de hidróxido de sódio 0,1 mol L^{-1} .

Identifique o carbonato.

PROBLEMA 2.5

3I12

Uma amostra de $500\,\mathrm{mL}$ de uma solução de ácido sulfúrico foi tratada com $50\,\mathrm{mL}$ de uma solução $0,2\,\mathrm{mol}\,\mathrm{L}^{-1}$ em hidróxido de sódio. O excesso de NaOH foi retrotitulado com $13\,\mathrm{mL}$ de uma solução $0,1\,\mathrm{mol}\,\mathrm{L}^{-1}$ de ácido clorídrico.

Determine a concentração da solução de ácido sulfúrico.

Uma amostra de 700 mg de farinha de trigo foi analisada pelo método Kjeldahl. Neste método, a amostra é decomposta em meio de ácido sulfúrico concentrado a quente para converter o nitrogênio das proteínas em íons amônio. A amônia formada pela adição de uma base concentrada após a digestão com H²SO⁴ foi destilada em 25 mL de uma solução 0,05moldm3 em HCl. O excesso de HCl foi retrotitulado com 5 mL de uma solução 0,05 mol·L—1 em hidróxido de sódio. Considere que o nitrogênio representa 20% da massa da proteína.

Determine fração de proteína na farinha.

PROBLEMA 2.7

3I14

O *Index Merck* indica que $10\,\mathrm{mg}$ de guanidina, $\mathrm{CH}_5\mathrm{N}_3$, pode ser administrada para cada quilograma de peso corporal no tratamento da miastenia grave. O nitrogênio em uma amostra de quatro tabletes, que pesou um total de 7,5 g, foi convertido em amônia, seguida por destilação em $100\,\mathrm{mL}$ de uma solução 0, $175\,\mathrm{mol}\,\mathrm{L}-1$ em HCl. O excesso de ácido foi retrotitulado com $12\,\mathrm{mL}$ de uma solução 0, $1\,\mathrm{mol}\,\mathrm{L}^{-1}$ em hidróxido de sódio. **Determine** o número de tabletes que representam uma dose apropriada para um paciente de $70\,\mathrm{kg}$.

PROBLEMA 2.8

3I15

O ingrediente ativo na Antabuse, uma droga usada no tratamento de alcoolismo crônico, é o dissulfeto de tetraetiltiuram, $C_{10}H_{20}N_2S_4$. O enxofre em 600 mg de uma amostra para preparação de Antabuse foi oxidado a SO_2 , o qual foi absorvido em H_2O_2 para gerar H_2SO_4 . O ácido foi titulado com $20\,\text{mL}$ de hidróxido de sódio $0.04\,\text{molL}^{-1}$.

Assinale a alternativa que mais se aproxima da fração mássica do princípio ativo na preparação.

A 5%

B 10%

c 15%

D 20%

E 25%

PROBLEMA 2.9

3I16

Foi borbulhado ar em CNTP a $30,0\,\mathrm{L\,min^{-1}}$ por uma solução com $75\,\mathrm{mL}$ de uma solução a 1% de peróxido de hidrogênio. O $\mathrm{H_2O_2}$ converte o $\mathrm{SO_2}$ do ar em ácido sulfúrico. Após dez minutos o $\mathrm{H_2SO_4}$ foi titulado com $10\,\mathrm{mL}$ de uma solução $0,002\,\mathrm{molL^{-1}}$ em hidróxido de sódio

a. $\mbox{\bf Determine}$ a concentração de \mbox{SO}_2 no ar em partes por milhão.

PROBLEMA 2.10

3I17

2

Uma amostra de 0,8 g de dimetilftalato foi colocada em refluxo comn 50 mL de uma solução 0,1 mol $\rm L^{-1}$ em hidróxido de sódio, hidrolisando os grupos éster. O excesso de hidróxido de sódio foi retrotilulado com 30 mL de uma solução 0,1 mol $\rm L^{-1}$ em ácido clorídrico.

Determine a pureza da amostra de dimetilftalato.

PROBLEMA 2.11 3I18

Uma mistura sólida é composta de carbonato de sódio e bicarbonato de sódio. A dissolução completa de 2 g dessa mistura requer 60 mL de uma solução aquosa 0,5 mol $\rm L^{-1}$ de ácido clorídrico.

Assinale a alternativa que mais se aproxima da massa de carbonato de sódio na amostra.

- **A** 0,4 g
- **B** 0,7 g
- **c** 0,9 g

- **D** 1,1 g
- **E** 1,3 g

PROBLEMA 2.12

3I19

Uma amostra com 1,22 g de hidróxido de potássio comercial contaminado com $K_2 \text{CO}_3$ foi dissolvida em água e a solução resultante foi diluída a 500 mL. Uma alíquota de 50 mL dessa solução foi tratada com 40 mL de uma solução 0,05 mol · L-1 em ácido clorídrico e aquecida para remover o CO $_2$. O excesso de ácido foi retrotitulado com 5 mL de uma solução 0,05 mol L $^{-1}$ em hidróxido de sódio até o ponto final, com o indicador fenolftaleína. Em outro experimento, um excesso de cloreto de bário foi adicionado em outra alíquota de 50 mL da solução, formando um precipitado. A solução resultante foi então titulada com 30 mL de ácido até o ponto final, com o indicador fenolftaleína.

- a. **Determine** a fração de hidróxido de potássio na amostra.
- b. **Determine** a fração de carbonato de potássio na amostra.

PROBLEMA 2.13

3I20

Uma amostra de 3 L de ar em CNTP de um ambiente urbano foi borbulhada em 50 mL uma solução 0,0116 mol $\rm L^{-1}$ em hidróxido de bário, formando um precipitado. O excesso de base foi retrotitulado até o ponto final da fenolftaleína com 24 mL de ácido clorídrico 0,01 mol $\rm L^{-1}$.

a. **Determine** a concentração de CO₂ no ar em partes por milhão.

Gabarito

Nível I

- 1. E
- 2. D
- 3. C
- 4. -
- 5. C
- 6. C
- 7. -

Nível II

- **1.** 24 ° C
- 2. C
- 3. -
- 4. CrCO₃
- 5 -
- **6.** 10%
- 7. -
- 8. B
- 9. -
- 10. -
- 11. C
- 12. -
- 13. -