(1) 预处理

由于两个轨迹都可以在任意坐标系中指定,所以它们首先需要对齐。

参考文献: B. Horn, "Closed-form solution of absolute orientation using unit quaternions," Journal of the Optical Society of America A, vol. 4,pp. 629–642, 1987.

(2) TUM

A. 精度测试

将每个数据集进行五组实验求 ATE 的均方根误差,单位是米。与 PL-SLAM(mono)中的结果进行对比,PL-SLAM(mono)实验结果如下:

参考文献: Pumarola A, Vakhitov A, Agudo A, et al. PL-SLAM: Real-time monocular visual SLAM with points and lines[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 4503-4508.

TABLE I LOCALIZATION ACCURACY IN THE TUM RGB-D BENCHMARK [28]

Absolute KeyFrame Trajectory RMSE [cm]								
TUM RGB-D Sequence	PL-SLAM Classic Init	PL-SLAM Line Init	ORB-SLAM	PTAM [†]	LSD-SLAM [†]	RGBD-SLAM [†]		
f1_xyz	1.21	1.46	1.38	1.15	9.00	1.34		
f2_xyz	0.43	1.49	0.54	0.2	2.15	2.61		
f1_floor	7.59	9.42	8.71	-	38.07	3.51		
f2_360_kidnap	3.92	60.11	4.99	2.63	-	393.3		
f3_long_office	1.97	5.33	4.05	-	38.53	-		
f3_nstr_tex_far	ambiguity detected	37.60	ambiguity detected	34.74	18.31	-		
f3_nstr_tex_near	2.06	1.58	2.88	2.74	7.54	-		
f3_str_tex_far	0.89	1.25	0.98	0.93	7.95	-		
f3_str_tex_near	1.25	7.47	1.5451	1.04	-	-		
f2_desk_person	1.99	6.34	5.95	-	31.73	6.97		
f3_sit_xyz	0.066	9.03	0.08	0.83	7.73	-		
f3_sit_halfsph	1.31	9.05	1.48	-	5.87	-		
f3_walk_xyz	1.54	ambiguity detected	1.64	-	12.44	-		
f3_walk_halfsph	1.60	ambiguity detected	2.09	-	-	-		

Median over 5 executions for each sequence. All trajectories were aligned with 7DoF with the ground truth before computing the ATE error with the script provided by the benchmark [28]. Both ORB-SLAM and PL-SLAM were executed with the parametrization of the on-line open source ORB-SLAM package. †Result of PTAM, LSD-SLAM and RGBD-SLAM were extracted from [18].

本框架轨迹精度如下表1所示:

表1 SPL-SLAM 在 TUM 数据集下的 ATE

	1	2	3	4	5	ATE-RMSE
fr1 xyz	0.0091	0.0099	0.0079	0.0108	0.0087	0.0093
fr2 xyz	0.0026	0.0028	0.0027	0.0025	0.0024	0.0026
fr1 floor	0.0191	0.0192	0.0199	0.0150	0.0200	0.0186
fr2 360	0.0547	0.0577	0.0370	0.0461	0.0592	0.0509
fr3 long	0.0253	0.0339	0.0212	0.0187	0.0317	0.0262
fr3 ns te far	X	X	X	X	X	X
fr3 ns te ne	0.0321	0.0327	0.0358	0.0325	0.0242	0.0315
fr3 s te far	0.0152	0.0167	0.0151	0.0142	0.0142	0.0151
fr3 s te ne	0.0138	0.0121	0.0133	0.0135	0.0125	0.0131
fr2 desk	0.0108	0.0076	0.0093	0.0088	0.0091	0.0091
fr3 sit xyz	0.0103	0.0105	0.0105	0.0086	0.0114	0.0103
fr3 sit ha	0.0121	0.0152	0.0107	0.0124	0.0113	0.0123
fr3 wa xyz	0.0106	0.0104	0.0136	0.0094	0.0102	0.0108
fr3 wa ha	0.0178	0.0154	0.0134	0.0155	0.0130	0.0150

注:表中**红色**为本框架在几个框架中取得最优的 ATE 均方根误差。 **蓝色**为 PL-SLAM(mono)在几个框架中取得最优的 ATE 均方根误差。

B.时间测试

对 TUM 数据集中五组求平均, PL-SLAM(mono)各步骤运行时间如下:

参考文献: Pumarola A, Vakhitov A, Agudo A, et al. PL-SLAM: Real-time monocular visual SLAM with points and lines[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 4503-4508.

TABLE II
TRACKING AND MAPPING TIMES

			,							
	Mean execution time [ms]									
Thread	Operation	PL-SLAM	ORB-SLAM							
	KeyFrame Insertion	17.08	9.86							
Local	Map Feature Culling	1.18	1							
	Map Features Creation	74.64	8.39							
Mapping	Local BA	218.25	118.5							
	Key Frame Culling	12.7	2.86							
	Total	3Hz	7Hz							
	Features Extraction	31.32	10.76							
Tracking		7.16	7.16							
	Track Local Map	12.58	3.18							
	Total	20Hz	50Hz							

Mean execution time of 5 different sequences of the TUM RGB-D benchmark [28].

计算本框架中各步骤的平均运行时间。结果如下表2所示:

	1	2	3	4	5	TIME-AVE
Features Extraction	31.6141	26.0668	28.9188	27.9875	36.9457	30.3070
Initial Pose Tracking	4.7241	3.2012	3.6382	5.7184	2.5405	3.9645
Track Local Map	9.6205	6.2291	2.8974	10.7660	6.8122	7.2650
Total	45.9587	35.5572	35.4544	44.4721	46.2984	41.5365
KeyFrame Insertion	14.80724	10.87792	10.419798	15.66092	11.4282	12.6388
Map Feature Culling	0.3916	0.2205	0.2074	0.3622	0.1820	0.2728
Map Features Creation	36.58564	26.32764	25.60946	35.8521	21.7336	29.2219
Local BA	180.0404	130.244	86.05828	169.7708	128.2284	138.8683
KeyFrame Culling	6.51339	3.651322	3.04024	6.068444	5.49692	4.9540
Total	239.9777	171.2822	125.33514	227.7144	167.1591	185.9558

表2 SPL-SLAM 在 TUM 数据集下各步骤平均运行时间

(3) KITTI

如下图为 PL-SLAM(stereo)在 KITTI 数据集下各步骤时间运行结果:

参考文献: Gomez-Ojeda R, Moreno F A, Zuñiga-Noël D, et al. Pl-slam: a stereo slam system through the combination of points and line segments[J]. IEEE Transactions on Robotics, 2019.

Table IV
AVERAGE RUNTIME OF EACH PART OF THE ALGORITHM.

	KITTI	EuRoC MAV	Low-Textured
Resolution	1241×376	752×480	752×480
VO estimation	140.10 ms	79.42 ms	62.78 ms
VO estimation ORB-SLAM2	57.05 ms	37.48 ms	46.76 ms
Insert KF	$0.04~\mathrm{ms}$	$0.02~\mathrm{ms}$	$0.02~\mathrm{ms}$
Local Map	9.38 ms	3.81 ms	0.87 ms
LBA	45.53 ms	45.34 ms	9.49 ms
Visual Descriptor	24.18 ms	6.38 ms	1.57 ms
Search LC	0.19 ms	0.13 ms	$0.10 \mathrm{\ ms}$
Check $SE(3)$ LC	$7.81 \mathrm{\ ms}$	10.09 ms	$0.47 \mathrm{\ ms}$
Loop correction	210.37 ms	312.14 ms	46.44 ms

如下表为00-10每个序列运行5次,本框架各步骤的平均运行时间。

表3 SPL-SLAM 在 KITTI 数据集下各步骤平均运行时间

	00	01	02	03	04	05
Features					<u>-</u>	
Extraction	66.6668	52.3300	69.2862	64.7778	62.0448	65.6737
Initial Pose Tracking	2.3856	2.0076	1.82677	2.5331	1.8912	2.3251
Track Local Map	6.6344	7.6731	5.4474	7.0913	5.9895	6.5988
Total	75.6868	62.0108	76.5605	74.4034	69.9253	74.5976
KeyFrame Insertion	13.5861	14.8915	13.1318	14.1551	13.0202	13.6601
Map Feature Culling	0.2554	0.2481	0.2342	0.2221	0.2332	0.2405
Map Features Creation	50.1642	58.3961	47.6502	56.3346	57.4206	52.8127
Local BA	119.4145	162.1255	90.1372	154.0730	111.1375	125.8145
KeyFrame Culling	2.4896	4.4723	1.8846	3.8451	2.7012	2.78886
Total	185.9098	240.1335	153.0382	228.6350	186.5128	195.3166
	06	07	08	09	10	TIME-AVE
Features Extraction	60.4927	68.5595	68.4673	64.5300	66.6788	64.5006
Initial Pose Tracking	1.8758	2.80875	2.04454	1.911	2.33136	2.1764
Track Local Map	5.8232	6.8158	5.9684	5.1135	6.2647	6.3109
Total	68.1917	78.1841	76.3895	71.5852	75.2749	72.9879
KeyFrame Insertion	12.4606	13.2224	13.1455	12.7301	13.2098	13.3830
Map Feature Culling	0.2265	0.25181	0.222099	0.2334	0.23447	0.2365
Map Features Creation	44.3528	55.4684	50.4928	46.1019	50.7492	51.8130
Local BA	92.7828	128.032	103.739	92.8822	109.323	117.2237
KeyFrame Culling	1.9518	2.6421	2.24335	2.03221	2.43769	2.6808
Total	151.7749	199.6168	169.8542	153.4798	175.9542	185.337

如下图为 PL-SLAM(stereo)在 EuRoc 数据集下各步骤时间运行结果:

参考文献: Gomez-Ojeda R, Moreno F A, Zuñiga-Noël D, et al. Pl-slam: a stereo slam system through the combination of points and line segments[J]. IEEE Transactions on Robotics, 2019.

Table IV
AVERAGE RUNTIME OF EACH PART OF THE ALGORITHM.

	KITTI	EuRoC MAV	Low-Textured
Resolution	1241×376	752×480	752×480
VO estimation	140.10 ms	79.42 ms	62.78 ms
VO estimation ORB-SLAM2	57.05 ms	37.48 ms	46.76 ms
Insert KF	$0.04~\mathrm{ms}$	$0.02~\mathrm{ms}$	$0.02~\mathrm{ms}$
Local Map	9.38 ms	3.81 ms	0.87 ms
LBA	45.53 ms	45.34 ms	9.49 ms
Visual Descriptor	24.18 ms	6.38 ms	1.57 ms
Search LC	0.19 ms	0.13 ms	$0.10 \mathrm{\ ms}$
Check $SE(3)$ LC	$7.81 \mathrm{\ ms}$	10.09 ms	$0.47 \mathrm{\ ms}$
Loop correction	210.37 ms	312.14 ms	46.44 ms

如下表4为 EuRoc 每个序列运行5次,本框架各步骤的平均运行时间。

表4 SPL-SLAM 在 EuRoc 数据集下各步骤平均运行时间

	MH-01	MH-02	MH-03	MH-04	MH-05	V1-01
Features Extraction	41.7893	42.3665	41.0065	37.1390	37.9195	35.6181
Initial Pose Tracking	3.5520	3.5384	3.2606	3.1164	3.3203	4.0714
Track Local Map	15.37335	13.8872	11.6475	10.4836	9.5560	16.4414
Total	60.7151	59.7923	55.9146	50.7391	50.7958	56.1310
KeyFrame Insertion	15.4452	15.0687	13.8485	11.2527	12.1541	16.5911
Map Feature Culling	0.2920	0.2861	0.2560	0.2344	0.2655	0.2849
Map Features Creation	35.9883	34.4865	28.0878	25.3580	30.2879	29.1478
Local BA	348.7345	319.1085	295.304	171.808	189.1245	437.111
KeyFrame Culling	14.7188	13.6029	11.6099	5.5200	6.70224	18.6833
Total	415.1789	382.5528	349.1062	214.1728	239.5343	501.6762
	V1-02	V1-03	V2-01	V2-02	V2-03	TIME- AVE
Features Extraction	32.0403	33.0935	35.9437	33.1819	35.4520	36.8682
Initial Pose Tracking	3.2898	2.6404	4.4424	3.0708	3.217	3.4108

Track Local Map	7.1358	8.61783	11.9975	12.0936	8.0708	11.3913
Total	42.466	44.3568	52.3837	48.3463	46.7399	51.6703
KeyFrame Insertion	12.238	11.1912	14.9325	12.6393	11.1135	13.3158
Map Feature Culling	0.2488	0.24472	0.3113	0.2390	0.2651	0.2661
Map Features Creation	21.4588	23.8691	30.6332	21.3805	26.2251	27.9021
Local BA	214.814	195.5225	252.5335	251.1615	157.0465	257.4789
KeyFrame Culling	6.63219	5.7512	9.39195	7.74919	4.70344	9.5513
Total	255.3918	237.5808	308.3025	283.1695	197.3536	308.5142

(5) 独立实验--初始化算法实验

对 KITTI 数据集中的01(弱线纹理场景)和 TUM 数据集中 f1_floor(弱点纹理场景),分别进行10次初始化实验。将本文提出的初始化算法与 ORB-SLAM 的单目初始化算法进行性能对比。表5记录如下:

系统	SPL-SLAM			ORB-SLAM		
实验结果	成功次数	算法时间	恢复信息	成功次数	算法时间	恢复信息
01	9	14.3967	123/65	10	12.9932	109
f1_floor	9	12.6010	86/88	1	10.7262	100

表5 单目初始化算法性能对比

通过f1_floor数据集初始化成功的次数也可以间接体现出本算法在弱纹理场景下的优势。这一点,也可以通过TUM中的精度实验得到直接证明。

(6) 独立实验—重定位算法实验

对 EuRoc 数据集中极易发生跟踪丢失的 V2_03_difficult 以及 TUM 数据集中出现镜头完全遮挡的 f2_360_kidnap 进行10次重定位实验。将本文提出的重定位算法与 ORB-SLAM 的 EPnP 算法进行性能对比。表6记录如下:

系统	SPL-SLAM			ORB-SLAM		
实验结果	成功次数	算法时间	恢复信息	成功次数	算法时间	恢复信息
V2_03_difficult	10	0.2001	126/25	10	0.5214	81
f2_360_kidnap	9	0.1898	115/23	10	0.4279	55

表6 重定位算法性能对比

通过表6的算法计算时间可以看出,本算法的重定位计算效率更高。另一方面,通过恢复信息可以看出,本算法在满足基本的线跟踪数量(20)的情况

下,往往会获得更多的点信息恢复。因此,本文提出的重定位算法更适宜在点线特征同时使用的 SLAM 框架下使用或者在仅点特征的 SLAM 框架中,作为优先执行的重定位算法,若该算法失效,再执行 EPnP 算法,进而使两种算法起到互补的效果。