Name: Jayesh Rajbhar Class: TE Comp A

Roll No: 626 Subject : DWDM

Experiment No: 10

Aim: Implementation of Logistic Regression in Python.

Implementation:

Applying Logistic Regression on suv dataset

Code:

1) Importing Libraries:

import pandas as pd import numpy as np from sklearn import preprocessing import matplotlib.pyplot as plt

from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split import seaborn as sns sns.set(style="white") sns.set(style="whitegrid", color_codes=True)

2) Loading the dataset:

from google.colab import files uploaded = files.upload() df = pd.read_csv('suv_data.csv') #Now let's view our dataset using head(): df.head(10)

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
5	15728773	Male	27	58000	0
6	15598044	Female	27	84000	0
7	15694829	Female	32	150000	1
8	15600575	Male	25	33000	0
9	15727311	Female	35	65000	0

3) Analysing the data:

df.shape (400, 5)

sns.pairplot(df,hue = 'Purchased', palette= 'Set2', vars = ['Age','EstimatedSalary'])

4) Slicing (Dependent and Independent Variable):

#Extracting Independent and dependent Variable x= df.iloc[:, [2,3]].values y= df.iloc[:, 4].values

5) Splitting (Training and Testing):

Splitting the dataset into training and test set.
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.25, random_state=0)
print('Shape of training data is: ', x_train.shape)
print('Shape of testing data is: ', x_test.shape)

Shape of training data is: (300, 2) Shape of testing data is: (100, 2)

6) Scaling:

from sklearn.preprocessing import StandardScaler st_x= StandardScaler() x_train= st_x.fit_transform(x_train) x_test= st_x.transform(x_test) print(x_train)

```
[[ 0.58164944 -0.88670699]
 [-0.60673761 1.46173768]
 [-0.01254409 -0.5677824 ]
 [-0.60673761 1.89663484]
 [ 1.37390747 -1.40858358]
 [ 1.47293972 0.99784738]
 [ 0.08648817 -0.79972756]
 [-0.01254409 -0.24885782]
 [-0.21060859 -0.5677824 ]
 [-0.21060859 -0.19087153]
 [-0.30964085 -1.29261101]
 [-0.30964085 -0.5677824 ]
 [ 0.38358493  0.09905991]
 [ 0.8787462 -0.59677555]
 [ 2.06713324 -1.17663843]
 [ 1.07681071 -0.13288524]
 [ 0.68068169 1.78066227]
 [-0.70576986 0.56295021]
 [ 0.77971394  0.35999821]
 [ 0.8787462 -0.53878926]
 [-1.20093113 -1.58254245]
 [ 2.1661655  0.93986109]
 [-0.01254409 1.22979253]
 [ 0.18552042    1.08482681]
 [ 0.38358493 -0.48080297]
```

7) Training:

from sklearn.linear_model import LogisticRegression model= LogisticRegression(random_state=0) model.fit(x train, y train)

LogisticRegression(random state=0)

8) Testing (Model Accuracy):

y_pred= model.predict(x_test)
from sklearn.metrics import confusion_matrix, accuracy_score y_pred = model.predict(x_test)
y_pred = (y_pred > 0.5)

9) Confusion Matrix:

Making the Confusion Matrix: from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test,y_pred) sns.heatmap(cm, annot = True) print(accuracy_score(y_test, y_pred))

Conclusion: Hence we successfully implemented Logistic Regression in Python.