By hypothesis

$$w^{\top}u_i - (b - \theta) = \eta + \theta$$
 for some $i \notin E_{\lambda}$,

and by the choice of θ ,

$$-w^{\mathsf{T}}v_j + b - \theta = \eta + \theta$$
 for some $j \notin E_{\mu}$.

The new value of the objective function is

$$\omega(\theta) = \frac{1}{2} w^{\top} w - \nu(\eta + \theta) + \frac{1}{p+q} \left(\sum_{i \in E_{\lambda}} \epsilon_i + \sum_{j \in E_{\mu}} (\xi_j + 2\theta) \right)$$
$$= \frac{1}{2} w^{\top} w - \nu \eta + \frac{1}{p+q} \left(\sum_{i \in E_{\lambda}} \epsilon_i + \sum_{j \in E_{\mu}} \xi_j \right) - \left(\nu - \frac{2q_{sf}}{p+q} \right) \theta.$$

The rest of the proof is similar to Case 1a with p_{sf} replaced by q_{sf} .

Case 2b. We have $w^{\top}u_i - b > \eta$ for all $i \notin E_{\lambda}$. Since by hypothesis $-w^{\top}v_j + b > \eta$ for all $j \notin E_{\mu}$, Case 2b is identical to Case 1b, and we are done.

A subtle point here is that Proposition 54.2 shows that if there is an optimal solution, then there is one with a blue and a red support vector, but it does not guarantee that these are support vectors of type 1. Since the dual program does not determine b and η unless these support vectors are of type 1, from a practical point of view this proposition is not helpful.

The proof of Proposition 54.2 reveals that there are three critical values for ν :

$$\frac{2p_{sf}}{p+q}$$
, $\frac{2q_{sf}}{p+q}$, $\frac{p_{sf}+q_{sf}}{p+q}$.

These values can be avoided by requiring the strict inequality

$$\max\left\{\frac{2p_{sf}}{p+q}, \frac{2q_{sf}}{p+q}\right\} < \nu.$$

Then the following corollary holds.

Theorem 54.3. For every optimal solution $(w, b, \eta, \epsilon, \xi)$ of Problem (SVM_{s2'}) with $w \neq 0$ and $\eta > 0$, if

$$\max\{2p_f/(p+q), 2q_f/(p+q)\} < \nu < \min\{2p/(p+q), 2q/(p+q)\},$$

then some u_{i_0} and some v_{j_0} is a support vector.

Proof. We proceed by contradiction. Suppose that for every optimal solution with $w \neq 0$ and $\eta > 0$ no u_i is a blue support vector or no v_j is a red support vector. Since $\nu < \min\{2p/(p+q), 2q/(p+q)\}$, Proposition 54.2 holds, so there is another optimal solution. But since the critical values of ν are avoided, the proof of Proposition 54.2 shows that the value of the objective function for this new optimal solution is strictly smaller than the original optimal value, a contradiction.