Insight into Health Indicators for Diabetes

Genevieve Ferguson Nitin Pagarani Cristian Biondi

Mentor: Giri Narasimhan

Overview & Background

- Diabetes body doesn't produce enough insulin or cannot regulate insulin produced
- > Chronic health condition when untreated, can affect the heart, kidneys, brain, eyes, etc.

Overview & Background

- ➤ Globally-1.5 Million deaths, 48% before age 70 (WHO, 2019)
- USA-38 Million adults have diabetes (CDC, 2022)
- ➤ USA-Of these cases, Estimated 91% (Type 2), 6% (Type 1), 3% (Gestational & Other)
- Known Risk Factors include: Age, Family History, Physical activity, Diet

Diabetes (who.int)

National Diabetes Statistics Report | Diabetes | CDC

Goals & Aims

- Problem Description: Leveraging data to understand and address diabetes
- > Aim: To create predictive models and use correlations to provide insight into diabetes
- Objectives:
 - > Build Classification Models.
 - Identify risk factors.
 - Make recommendations.
- > Goals:
 - Identify most salient features.
 - Find correlations between health indicators.
 - Recognize the distribution of diabetes across Florida.

Problem Motivation

- Very prevalent in US
- Causes serious health complications
- > Several **risk factors** (Ex: family history, lifestyle, nutrition, etc.)
- Key to a healthy life and wellbeing
- Increase awareness and prevent the risk of developing diabetes

Data Sources

- Description: Diabetes Health Indicators and their diagnosis
 - > Size: 253,680 x 22
 - Features: Diabetes_binary, Age, Income, Smoker, Education, Sex, High BP, Stroke
 - Weaknesses: Imbalanced Data
 - Source: UCI Machine Learning Repository
- Description: City Census Data & Health Indicators 18+
 - > Size: 29006 x 24
 - > Features: State, City Name, Geolocation, Data Value, Population Count
 - Weaknesses: Crude Data Values
 - Source: CDC

Methodology

- Data Preprocessing
 - Removing duplicates & null values
 - Missing value imputation
 - Inserting categorical values
- Exploratory Data Analysis:
 - Heatmaps, countplots, barplots, pointplots, US map using Folium Library

Methodology

- Balancing Dataset
 - Near Miss Undersampling the majority class

- Selecting Relevant Features
 - Correlations
 - Random Forest (Feature Importance)
 - Select K Best (16 Best Feature Scores)
 - Feature selection method using chi squared

Methodology

Classification Models:

- > KNN
- Random Forest
- Decision Tree
- > SVM
- XGBoost
- MLP Classifier
- Ridge Classifier
- Logistic Regression
- Passive Aggressive Classifier
- ANN

Packages used:

- Pandas
- NumPy
- > Sklearn
- > Keras
- Seaborn
- Matplotlib
- XGBoost

Results: People with diabetes are more likely to have High Cholesterol and High Blood Pressure

Results: Most people with diabetes have a BMI between 21-45

Results: People with diabetes with Lower Income have increased Mental Health Days

Results: People with diabetes are older in Age & have High Cholesterol

Results: People without diabetes have greater sources of income and are more educated

Results: Educated individuals consume more alcohol and are at risk of developing diabetes

Results: Smokers are not any more likely to have diabetes than non-smokers

Results: People with diabetes that have difficulty walking have less income than those who don't have difficulty walking

Results: People with diabetes who eat veggies tend to have higher physical activity

Results: City & State Analysis

Results: Correlation Analysis & Feature Selection

Results & Discussion: Classification Models

Predicting Diabetes/No Diabetes on a balanced Data Set

Classification Model	Accuracy
Decision Tree Classifier	80.6%
KNN	83.2%
Random Forest Classifier	86.4%
SVM	85.0%
XGBoost	85.2%
MLP Classifier	85.1%
ANN	86.5%
Ridge Classifier	84.7%
Logistic Regression	84.9%
Passive Aggressive Classifier	84.5%

Discussion: ANN Architecture

- Artificial neural network for binary classification
- Layer 1:
 - Neurons: 16
 - Activation Function: ReLU
 - Determined by the number of **features** in the input data
- Layer 2:
 - Neurons: 16
 - Activation Function: ReLU
 - Further refines learned features from the previous layer
- Output Layer:
 - Neurons: 1
 - Activation Function: Sigmoid
 - Classifies diabetes into 0 and 1

Discussion: ANN Fitting & Training

- Compiled using Adam Optimizer
- Implemented Early Stopping
- Batch Sizes of 10
- Validation split of 20%
- Monitoring Max Validation Accuracy

Discussion: ANN

Monitoring Training and Validation to Prevent Overfitting (Early Stopping)

ANN Evalutation

Confusion Matrix and Classification Report

	Precision	Recall	F1-score	Support
0	81%	96%	88%	10454
1	95%	77%	85%	10605
Accuracy			87%	21059
Weighted Avg	88%	87%	86%	21059

Discussion: Explainable AI Using SHAP Values

- "Shapley Additive Explanations"
- Originates from cooperative game theory
- How to distribute the "payout" (model prediction) to "players" (features)
 - Each feature's contribution to the model
- > Global feature importance mean absolute value SHAP values

Discussion: ANN Feature Importance

Explainable AI Using Shap

Feature Name	Mean Abs Importance Score
PhysHlth	0.13
Age	0.11
BMI	0.09
MentHlth	0.03
HighBP	0.02

Recommendations & Conclusions

- **Most** important features:
 - > Physical Health
 - > Age
 - > BMI
 - Mental Health
 - High Blood Pressure

- Least important features:
 - NoDocbcCost
 - Veggies
 - > Fruits
 - CholCheck
 - AnyHealthcare

Recommendation and Conclusions

- Improving physical health (1) Exercise daily & make health-conscious choices
- Increasing awareness of risk factors higher age (2), mental health (4), & high blood pressure (5)
 - Screen often if in a high-risk group
- Maintain a healthy BMI (3) via exercise, diet, & medical evaluations
- Public health initiatives such as National Diabetes Prevention Program | CDC
 - Focus on these five features
 - Locate events in high 'heat' areas from map tool

Contributions

- Genevieve Ferguson
 - Feature Selection & Importance
 - Classification Models & Evaluation
- Nitin Pagarani
 - Classification Models & Evaluation
 - Exploratory Analysis & Map
- Cristian Biondi
 - Exploratory Analysis
 - Correlations

Thank You! ©

Questions?