Rapporto Comparativo dei Modelli Predittivi

Questo rapporto presenta un'analisi comparativa di vari modelli predittivi addestrati per stimare il tempo di produzione.

Specifiche del Computer

CPU: Intel Core i7-11800H @ 2.30GHz

RAM: 16 GB DDR4

GPU: NVIDIA RTX 3060

Visualizzazioni dell'Analisi Esplorativa dei Dati (EDA)

Histograma de Producción

Distribución de Tiempo de Producción

Matriz de Correlación

Pre-elaborazione dei Dati

Sono state applicate tecniche di pulizia, codifica di variabili categoriali (One-Hot Encoding) e scalatura delle caratteristiche (StandardScaler) per preparare i dati prima dell'addestramento.

Metriche di Valutazione dei Modelli

Modello	MAE	MSE	R ²	Tempo (s)
Red Neuronal ANN	5.625	44.995	-0.052	15.20
Random Forest	5.561	43.346	-0.013	3.10
XGBoost	5.761	47.924	-0.120	2.50

Previsioni vs. Valori Reali

Red Neuronal ANN

Random Forest

Coefficiente U di Theil

Red Neuronal ANN: U = 0.2601

Random Forest: U = 0.2496

XGBoost: U = 0.2610

Test di Diebold-Mariano

Confronto	Statistica DM	Valore p
ANN vs RF	-1.441	0.150
ANN vs XGB	1.720	0.086
RF vs XGB	3.682	0.000

Conclusione

Dopo aver analizzato le metriche di performance, i test statistici e i tempi di addestramento, il modello con le migliori prestazioni complessive, considerando l'equilibrio tra accuratezza ed efficienza, è stato: Random Forest.