Adopted Levels, Gammas

History

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	S. K. Basu, E. A. Mccutchan	NDS 165, 1 (2020)	1-Mar-2020

 α : Additional information 1.

90 Mo Levels

Cross Reference (XREF) Flags

Α	90 Tc ε decay (8.7 s)	F	92 Mo(p,t)
В	90 Tc ε decay (50.7 s)	G	90 Zr(3 He, 3 n γ)
C	58 Ni(36 Ar,4p γ),(35 Cl,3p γ)	Н	9 Be(124 Xe,X γ)
D	66 Zn(28 Si,2p2n γ)	I	$^{59}\text{Co}(^{35}\text{Cl},2\text{p2n}\gamma)$
E	58 Ni(40 Ca, α 4p γ)		

E(level)#	\mathbf{J}^{π}	$T_{1/2}^{@}$	XREF	Comments
0.0 [†]	0+	5.56 h 9	ABCDEFGHI	%ε+%β ⁺ =100 $T_{1/2}$: weighted average of 5.67 h 5 (1966Pe10), 5.60 h 15 (1965Gr29), 5.32 h 7 (1969Ol01), and 5.7 h 2 (1953Di08).
948.02 [†] 9 1896.53 <i>13</i> 1979 <i>5</i>	2 ⁺ 2 ⁺ 0 ⁺		ABCDEFGHI C FG F	J^{π} : from L(p,t)=2. J^{π} : from L(p,t)=2. J^{π} : from L(p,t)=0.
2002.12 [†] 11 2432.63 17 2450 5 2534.1 7	4 ⁺ 3 ⁻ 0 ⁺ (2 ⁺)		BCDEFGHI C FG F FG	J^{π} : from L(p,t)=4. J^{π} : from L(p,t)=3. J^{π} : from L(p,t)=0. XREF: F(2528). J^{π} : D(+Q) 1586.2 γ to 2 ⁺ , possible 2534 γ to 0 ⁺ .
2548.82 12	5-	16 ps <i>3</i>	BCDEFGH	μ =5.5 14 J^{π} : from L(p,t)=5. μ : From IMPAD (ion-implantation perturbed angular distribution) (1994We09,2014StZZ).
2613 <i>5</i> 2706 <i>5</i>	2+		F F	J^{π} : from L(p,t)=2.
2811.69 [†] <i>12</i>	6+		BCDE GHI	J^{π} : E2 809.6 γ to 4 ⁺ , assignment to ground state sequence.
2859.21 [‡] <i>13</i>	5-		BC FG	J^{π} : from L(p,t)=5.
2874.81 [†] <i>15</i>	8+	1.14 μs 5	CDEFGHI	Q=0.61 3; μ =-1.391 14 J^{π} : systematics of half-lives for J^{π} =8+ member of g.s. rotational band in ⁸⁸ Zr and ⁸⁶ Sr. L(p,t)=(6) is in disagreement. 63 γ to 6+. $T_{1/2}$: weighted average of 1.14 μ s 5 (1978Ha52), 1.05 μ s 10 (1971Is04) and 1.15 μ s 5 (2017Pa35), 1.14 μ s 5 (2019Ha26, and 1.17 μ s +11-7 (2004Ch35). μ : from TDPAD (time-differential perturbed angular distribution) (1978Ha52, 2014StZZ). Q: from TDPAD (time-differential perturbed angular distribution) (1985Ra09, 2016St14).
2901.23 <i>19</i> 2946.89 <i>14</i> 3037.6 <i>10</i> 3074 <i>7</i> 3106.20 <i>16</i> 3147.9 <i>10</i> 3150.0 <i>5</i>	(4 ⁻) (6 ⁺) 3 ⁻ 8 ⁺ 2 ⁺	4.9 ps <i>13</i>	C FG BC G B F CDE G I FG	J^{π} : 468.6 γ to 3 ⁻ . J^{π} : 944.8 γ to 4 ⁺ , 135.2 γ to 6 ⁺ . J^{π} : from L(p,t)=3. J^{π} : 231 γ M1+E2 ΔJ =0 transition to 8 ⁺ . J^{π} : from L(p,t)=2. E(level): possible ε + β ⁺ feeding from J^{π} =8 ⁺ suggests that this level is different from the 3148 level.

90 Mo Levels (continued)

E(level)#	${ m J}^{\pi}$	T _{1/2} @	XREF	Comments
3185 7			F	
3293.86 22			BC FG	J^{π} : feeding from 8 ⁺ parent in ⁹⁰ Tc ε decay would suggest J=7,8,9. However, 1291.4 γ to 4 ⁺ and 482.3 γ to 6 ⁺ suggests J=4 ⁺ ,5,6 ⁺ .
3355 7			F	However, 1291.4 γ to 4° and 482.5 γ to 0° suggests J=4°,5,0°.
3367.38 [‡] <i>13</i>	7-	<0.69 ps	CDE G	J^{π} : E2 818.6 γ to 5 ⁻ , assignment to negative parity sequence.
3446.22 19	(7^{-})	•	C G	J^{π} : (E2) 897.4 γ to 5 ⁻ .
3494 <i>7</i> 3514 <i>7</i>			F F	
3539.8 8			В	
3659.73 <i>16</i>	(7^{-})		C G	J^{π} : (E2) 800.5 γ to 5 ⁻ .
3683 <i>7</i> 3736 <i>7</i>			F F	
3834 7			F	
3936 7			F	
4078.91 [†] <i>16</i> 4094.8 <i>5</i>	10+	14.6 ps 28	CDE G I	J^{π} : E2 972.7 γ to 8 ⁺ , assignment to ground state sequence.
4175.4 8			B B	
4192.52 <i>15</i>	10 ⁺	<3.5 ps	CDE G I	J^{π} : E2 1317.7 γ to 8 ⁺ .
4297.75 [‡] 15	9-	9.7 ps 21	CDE G	J^{π} : E2 930.3 γ to 7 ⁻ .
4357.5 <i>10</i> 4555.86 [†] <i>15</i>	12 ⁺	526 mg 2	B CDE G I	607
4555.80 15	12	526 ps <i>3</i>	CDE G I	μ =6.0 7 μ : from g-factor=0.50 6, by IMPAD (ion-implantation perturbed angular
				distribution) (1994We09,2014StZZ).
4594.25 25	(9,10)		C G	J^{π} : E2 476.95 γ to 10^{+} . J^{π} : D(+Q) 296.5 γ to 9^{-} .
4789.37 18	10		C G C G	J^{π} : D+Q 491.7 γ to 9 ⁻ .
4842.02 [‡] <i>15</i>	11-	39 ps 2	CDE G	μ =+4.6 14
				μ: from g-factor=0.42 <i>13</i> , by IMPAD (ion-implantation perturbed angular distribution) (1994We09,2014StZZ).
				$T_{1/2}$: other: < 0.7 ps from (28 Si,2p2n γ). J^{π} : E2 544.2 γ to 9 $^{-}$.
4895.14 <i>18</i>	(11)		C G	J^{π} : 105.8 γ to (10).
5377.24 17	(13^{+})	1.8 ps <i>3</i>	CDE G I	J^{π} : D+Q 821.4 γ to 12 ⁺ .
				$T_{1/2}$: weighted average of 1.0 ps 3 from ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ) and 1.94 ps 13 from ⁵⁹ Co(³⁵ Cl,2p2n γ).
5499.42 16	(12)		С	J^{π} : D 657.4 γ to 11 ⁻ .
5621.6 3	(14^{+})		D	J^{π} : D 244.2 γ to (13 ⁺).
5625.02 [†] 17	14+	0.76 ps 7	CDE I	$T_{1/2}$: from ⁵⁹ Co(³⁵ Cl,2p2n γ), uncertainty increased by evaluators. Others:
				2.7 ps I from 58 Ni(36 Ar,4p γ),(35 Cl,3p γ) and 4.8 ps $I4$ from (28 Si,2p2n γ).
				J^{π} : E2 1069.1 γ to 12 ⁺ .
5699.65 [‡] 16	13-	1.4 ps 4	CDE	J^{π} : E2 857.7 γ to 11 ⁻ .
5062 55 16	(12)			$T_{1/2}$: other: $< 0.7 \text{ ps in } (^{28}\text{Si},2\text{p2ny}).$
5863.75 <i>16</i> 5903.74 <i>18</i>	(13) 14 ⁺	1.5 ps <i>3</i>	C C E I	J^{π} : 364.4 γ to (12). J^{π} : M1+E2 526.5 γ to 13 ⁺ .
2,001,110		The police	0 2 2	$T_{1/2}$: weighted average of 1.7 ps 4 from 58 Ni(36 Ar,4p γ),(35 Cl,3p γ) and
				1.39 ps 28 from 59 Co(35 Cl,2p2n γ).
6064.89 19	(13)	0.701 40	C	J^{π} : 565.5 γ to (12).
6148.16 <i>18</i>	15 ⁺	0.721 ps <i>49</i>	CDE I	$T_{1/2}$: from ⁵⁹ Co(³⁵ Cl,2p2n γ). Others: <0.3 ps from ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ) and <1.4 ps in (²⁸ Si,2p2n γ).
				J^{π} : M1+E2 244.5 γ to 14 ⁺ .
6475.91 <i>16</i>	14-	1.5 ps 10	CE	J^{π} : M1+E2 776.2 γ to 13 ⁻ .
6643.13 [‡] <i>16</i>	15-	1.3 ps <i>I</i>	CDE	J^{π} : E2 943.3 γ to 13 ⁻ .

E(level)#	J^{π}	$T_{1/2}^{@}$	XREF	Comments
				$T_{1/2}$: other: < 0.7 ps in (28 Si,2p2n γ).
6746.10 [†] <i>18</i>	16 ⁺	2.0 ps 3	CDE I	
				$T_{1/2}$: weighted average of 3.6 ps 7 from 58 Ni(36 Ar,4p γ),(35 Cl,3p γ) and 1.91
7027.00.4	17		_	ps 14 from 59 Co(35 Cl,2p2n γ).
7027.0? <i>4</i> 7170.98 <i>19</i>	17 (16 ⁺)		D C	J^{π} : D+Q 280.9 γ to 16 ⁺ . J^{π} : 1545.9 γ to 14 ⁺ .
7385.59 19	16	6.6 ps <i>15</i>	CE	J^{π} : M1+E2 742.5 γ to 15 ⁻ .
7515.01 [‡] <i>19</i>	17 ⁻	7.4 ps <i>3</i>	CDE	$T_{1/2}$: Other: 5.5 ps 7 from (28 Si,2p2n γ).
7515.01 17	1 /	7.4 ps 5	CDL	J^{π} : E2 872.0 γ to 15 ⁻ .
7629.61 <i>21</i>	(16)		С	J^{π} : (D+Q) 1481.4 γ to 15 ⁺ .
7682.4? <i>4</i>	(18)		D	J^{π} : (D+Q) 167.4 γ to 17 ⁻ .
8066.77 19	17 ⁺	0.60 ps 4	CE	J^{π} : E2 1918.6 γ to 15 ⁺ .
8123.55‡ 20	(18^{-})		CE	J^{π} : D+Q 608.5 γ to 17 ⁻ ; assignment to negative parity sequence.
8281.85 22	(17^{+})		С	J^{π} : 2133.7 γ to 15 ⁺ .
8525.30 [†] <i>19</i>	18+	0.16 ps 2	CE	J^{π} : E2 1779.2 γ to 16 ⁺ .
8616.84 20	(17^{+})		C	J^{π} : 1870.7 γ to 16 ⁺ , 2468.6 γ to 15 ⁺ .
8678.44 [‡] 23	(19^{-})		C E	J^{π} : D 554.9 γ to (18 ⁻), assignment to negative-parity sequence.
9079.18 <i>20</i> 9136.60 <i>19</i>	(18^{-}) (18^{+})		C C E	J^{π} : 1564.1 γ to 17 ⁻ , 1693.6 γ to 16 ⁻ . J^{π} : (E2) 2390.5 γ to 16 ⁺ .
9319.01 20	(19^{-})		CE	J^{π} : (E2) 1803.97 γ to 17 ⁻ .
9443.90 20	(19^+)		CE	J^{π} : D+Q 918.6 γ to 18 ⁺ , 1377.0 γ to 17 ⁺ .
9739.38 19	(19^+)		CE	J^{π} : (E2) 1672.5 γ to 17 ⁺ .
9787.96 [†] 21	(20^+)		CE	J^{π} : (E2) 1262.7 γ to 18 ⁺ .
9995.04 <i>21</i>	(20^{-})		CE	J^{π} : D+Q 676.0 γ to (19 ⁻), 1871.6 γ to (18 ⁻).
10235.14 20	20+	0.21 ps 6	CE	J^{π} : E2 1709.9 γ to 18 ⁺ .
10477.36 <i>21</i> 10537.91 <i>25</i>	(20^{+})		C E C E	J^{π} : 738.0 γ to (19 ⁺), 1952.0 γ to 18 ⁺ .
10357.91 25	(21) 21 ⁺	0.90 ps <i>14</i>	CE	J^{π} : D 542.9 γ to (20 ⁻). J^{π} : M1+E2 620.5 γ to 20 ⁺ .
11135.76 [†] 2 <i>1</i>	22 ⁺	<0.07 ps	C	J^{π} : M1+E2 280.2 γ to 21 ⁺ .
11133.70* 21	(21)	<0.07 ps	E	J^{π} : 2590 γ to (19).
11577.07 23	(22^{+})		CE	J^{π} : E2 1789.1 γ to (20 ⁺).
11735.5 5			E	
12016.61 23	23 ⁺	<1.2 ps	CE	J^{π} : E2 1161.0 γ to 21 ⁺ .
12257.7 10	(22)		E	II. (F2) 1945 7to (21)
12383.6 <i>3</i> 14279.8 <i>10</i>	(23)		C E E	J^{π} : (E2) 1845.7 γ to (21).
14412.1 10			E	
14486.6 <i>10</i>			E	

 $^{^{\}dagger}$ Seq.(A): Ground state sequence. ‡ Seq.(B): Negative-parity sequence. $^{\sharp}$ From a least-squares fit to E γ , by evaluators. $^{@}$ From recoil distance Doppler-shift and Doppler-shift attenuation methods in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), except where noted.

γ (90Mo)

								<u>/(1/10)</u>	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
948.02	2+	948.01 9	100	0.0	0+	E2		8.74×10 ⁻⁴	$\alpha(K)$ =0.000768 11; $\alpha(L)$ =8.74×10 ⁻⁵ 13; $\alpha(M)$ =1.559×10 ⁻⁵ 22; $\alpha(N)$ =2.37×10 ⁻⁶ 4 $\alpha(O)$ =1.317×10 ⁻⁷ 19 Mult.: Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ), $\Delta\pi$ =no from level scheme.
1896.53	2+	948.50 <i>10</i>		948.02	2+	[M1+E2]		8.87×10 ⁻⁴ 19	$\alpha(K)$ =0.000780 17; $\alpha(L)$ =8.79×10 ⁻⁵ 14; $\alpha(M)$ =1.569×10 ⁻⁵ 25; $\alpha(N)$ =2.39×10 ⁻⁶ 4; $\alpha(O)$ =1.35×10 ⁻⁷ 4
		1896.8		0.0	0+	[E2]		4.64×10^{-4}	$\alpha(K) = 0.000183 \ 3; \ \alpha(L) = 2.02 \times 10^{-5} \ 3; \ \alpha(M) = 3.60 \times 10^{-6} \ 5;$ $\alpha(N) = 5.49 \times 10^{-7} \ 8; \ \alpha(O) = 3.15 \times 10^{-8} \ 5$ E_{γ} : from (³ He,3n γ).
2002.12	4+	1054.10 7	100	948.02		E2		6.86×10^{-4}	$\alpha(K)=0.000603 \ 9; \ \alpha(L)=6.82\times10^{-5} \ I0; \ \alpha(M)=1.217\times10^{-5} \ I7; \ \alpha(N)=1.85\times10^{-6} \ 3; \ \alpha(O)=1.035\times10^{-7} \ I5$
2432.63	3-	536.10 <i>10</i> 1484.7	57 5 100 <i>16</i>	1896.53 948.02		E1+M2	-0.12 8	3.97×10 ⁻⁴ 11	I _γ : from (³ He,3nγ). α (K)=0.000151 <i>13</i> ; α (L)=1.66×10 ⁻⁵ <i>14</i> ; α (M)=2.96×10 ⁻⁶ <i>25</i> ; α (N)=4.5×10 ⁻⁷ 4; α (O)=2.59×10 ⁻⁸ 22 E _γ ,I _γ : from (³ He,3nγ). Mult.,δ: D+Q from $\gamma\gamma(\theta)$ in (³ He,3nγ), $\Delta\pi$ =yes from level scheme.
2534.1	(2 ⁺)	1586.2 2534	100 ≤5.6	948.02 0.0	2 ⁺ 0 ⁺	D(+Q)	-0.13 22		E _{γ} , I _{γ} , Mult., δ : from (3 He, 3 n γ). E _{γ} , I _{γ} : from (3 He, 3 n γ).
2548.82	5-	546.69 4	100	2002.12		E1		1.20×10 ⁻³	$\alpha(K)$ =0.001055 15; $\alpha(L)$ =0.0001178 17; $\alpha(M)$ =2.10×10 ⁻⁵ 3; $\alpha(N)$ =3.19×10 ⁻⁶ 5 $\alpha(O)$ =1.783×10 ⁻⁷ 25 B(E1)(W.u.)=1.29×10 ⁻⁴ +30-20 Mult.: D from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ), $\Delta\pi$ =yes
2811.69	6+	262.84 17	4.9 3	2548.82	5-	E1		0.00790	from level scheme. $\alpha(K)=0.00695\ 10;\ \alpha(L)=0.000785\ 11;\ \alpha(M)=0.0001397\ 20;\ \alpha(N)=2.11\times10^{-5}\ 3$ $\alpha(O)=1.145\times10^{-6}\ 17$ Mult.: D from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), $\Delta\pi=yes$ from level scheme. I $_{\gamma}$: weighted average of 3.8 12 from 90 Tc ε decay (50.7 s), 5.0 3 from 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), 12.5 5 from 66 Zn(28 Si,2p2n γ), 8.9 16 (40 Ca, α 4p γ), and 4.6 4 from (3 He,3n γ).
		809.57 6	100 3	2002.12		E2		1.28×10^{-3}	$\alpha(K)$ =0.001122 <i>16</i> ; $\alpha(L)$ =0.0001289 <i>18</i> ; $\alpha(M)$ =2.30×10 ⁻⁵ <i>4</i> ; $\alpha(N)$ =3.49×10 ⁻⁶ <i>5</i> ; $\alpha(O)$ =1.92×10 ⁻⁷ <i>3</i>
2859.21	5-	310.39 <i>6</i> 857.10 <i>12</i>	100 <i>11</i> ≈30	2548.82 2002.12					I_{γ} : from (³ He,3n γ). I_{γ} : from (³ He,3n γ). Other <125 in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ).
2874.81	8+	63.15 9	100	2811.69		[E2]		6.30	$\alpha(K)=4.64$ 7; $\alpha(L)=1.369$ 21; $\alpha(M)=0.250$ 4; $\alpha(N)=0.0343$ 6;

γ (90Mo) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
									α(O)=0.000618 9
2901.23	(4-)	468.60 <i>10</i>	100	2432.63	2-				B(E2)(W.u.)=2.84 <i>13</i>
2901.23	(4) (6 ⁺)	135.18 8	≈50	2811.69					I_{γ} : from (³ He,3n γ). Other 80 50 in
2710.07	(0)	133.10 0	7030	2011.07	O				⁵⁸ Ni(36 Ar,4p γ),(35 Cl,3p γ), 14.2 22 in 90 Tc ε decay (50.7 s).
		944.80 <i>14</i>	100 12	2002.12	4+				I_{γ} : from (³ He,3n γ).
3037.6		1035.5 [#] 10	100 [#]	2002.12	4+				
3106.20	8+	231.43 8	100	2874.81	8+	M1+E2	-0.04 +10-40	0.026 6	$\alpha(K)=0.023\ 5;\ \alpha(L)=0.00267\ 69;\ \alpha(M)=4.8\times10^{-4}\ 13;$ $\alpha(N)=7.3\times10^{-5}\ 18;\ \alpha(O)=4.1\times10^{-6}\ 7$ B(M1)(W.u.)=0.35 +9-12
3147.9	2+	715.3	100	2432.63	3-				E_{γ} : from (${}^{3}\text{He}, 3n\gamma$).
3150.0		1147.9 [#] 5	100 [#]	2002.12					Let the Market M
3293.86		482.26 20	100 7	2811.69					E _γ : weighted average of 481.7 $3 (^{90}\text{Tc } \varepsilon \text{ Decay } (50.7 \text{ s})),$ 482.40 $15 (^{58}\text{Ni}(^3\text{Ar},4\text{pγ}),(^{35}\text{Cl},3\text{pγ})),$ 482.4 $10 (^{90}\text{Zr}(^3\text{He},3\text{nγ})).$
		1291.4 5	54 5	2002.12	4+				E_{γ} , I_{γ} : from ⁹⁰ Tc ε decay (50.7 s).
3367.38	7-	508.20 <i>15</i>	≤13	2859.21	5-	[E2]		0.00452	$\alpha(K)=0.00395 \ 6; \ \alpha(L)=0.000473 \ 7; \ \alpha(M)=8.45\times10^{-5} \ 12;$ $\alpha(N)=1.271\times10^{-5} \ 18; \ \alpha(O)=6.65\times10^{-7} \ 10$
		555.65 9	30.8 21	2811.69	6 ⁺	E1		1.15×10 ⁻³	$\alpha(K)$ =0.001016 <i>15</i> ; $\alpha(L)$ =0.0001134 <i>16</i> ; $\alpha(M)$ =2.02×10 ⁻⁵ 3; $\alpha(N)$ =3.07×10 ⁻⁶ 5 $\alpha(O)$ =1.717×10 ⁻⁷ 24 I_{γ} : other: 15.5 <i>19</i> in (³ He,3n γ). Mult.: D from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ), $\Delta \pi$ =yes from level scheme.
		818.56 <i>10</i>	100 7	2548.82	5-	E2		1.24×10^{-3}	$\alpha(K)$ =0.001092 <i>16</i> ; $\alpha(L)$ =0.0001254 <i>18</i> ; $\alpha(M)$ =2.24×10 ⁻⁵ 4; $\alpha(N)$ =3.39×10 ⁻⁶ 5; $\alpha(O)$ =1.87×10 ⁻⁷ 3 Mult.: Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4py),(³⁵ Cl,3py), M2 excluded by comparison to RUL.
3446.22	(7-)	897.40 <i>15</i>	100	2548.82	5-	(E2) [@]		9.95×10 ⁻⁴	$\alpha(K)$ =0.000874 13; $\alpha(L)$ =9.98×10 ⁻⁵ 14; $\alpha(M)$ =1.780×10 ⁻⁵ 25; $\alpha(N)$ =2.70×10 ⁻⁶ 4 $\alpha(O)$ =1.497×10 ⁻⁷ 21
3539.8		592.9 [#] 8	100 [#]	2946.89					
3659.73	(7^{-})	292.30 24	100 8	3367.38	7-				
		800.52 15	60 4	2859.21	5-	(E2) [@]		1.31×10^{-3}	$\alpha(K)$ =0.001154 17; $\alpha(L)$ =0.0001327 19; $\alpha(M)$ =2.37×10 ⁻⁵ 4; $\alpha(N)$ =3.59×10 ⁻⁶ 5; $\alpha(O)$ =1.97×10 ⁻⁷ 3
4078.91	10+	972.73 8	100	3106.20	8+	E2		8.23×10 ⁻⁴	$\alpha(K)=0.000724 \ II; \ \alpha(L)=8.22\times10^{-5} \ I2; \ \alpha(M)=1.467\times10^{-5} \ 2I; \ \alpha(N)=2.23\times10^{-6} \ 4 \ \alpha(O)=1.241\times10^{-7} \ I8$

S

							γ(⁹⁰ Mo) (co	ntinued)		90Mo ₄₈ -6
	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	α	Comments	
									B(E2)(W.u.)=1.86 +45-29 Mult.: Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4pγ),(³⁵ Cl,3pγ), M2 excluded by comparison to RUL.	
	4094.8		801.2 [#] 5 2091.7 [#] 9	100 [#] 15 68 [#] 15	3293.86 2002.12 4 ⁺					
	4175.4		1363.7# 8	100#	2811.69 6 ⁺					
	4192.52	10 ⁺	113.64 8	1.8 <i>3</i>	4078.91 10 ⁺				I_{γ} : others: 5.7 6 in (40 Ca, α 4p γ), \approx 70 in (3 He, 3 n γ).	
			1086.37 12	1.36 <i>21</i>	3106.20 8+	[E2]		6.41×10^{-4}	$\alpha(K)=0.000564 \ 8; \ \alpha(L)=6.37\times10^{-5} \ 9;$ $\alpha(M)=1.136\times10^{-5} \ 16; \ \alpha(N)=1.726\times10^{-6} \ 25;$ $\alpha(O)=9.68\times10^{-8} \ 14$	
			1317.68 7	100 14	2874.81 8+	E2		4.54×10 ⁻⁴	$\alpha(K)$ =0.000373 6; $\alpha(L)$ =4.18×10 ⁻⁵ 6; $\alpha(M)$ =7.45×10 ⁻⁶ 11; $\alpha(N)$ =1.133×10 ⁻⁶ 16; $\alpha(O)$ =6.42×10 ⁻⁸ 9 Mult.: Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ), M2 excluded by comparison to RUL.	
\ \	4297.75	9-	638.00 <i>15</i>	3.12 23	3659.73 (7 ⁻)	(E2)		0.00237	$\alpha(K)$ =0.00208 3; $\alpha(L)$ =0.000243 4; $\alpha(M)$ =4.35×10 ⁻⁵ 6; $\alpha(N)$ =6.56×10 ⁻⁶ 10; $\alpha(O)$ =3.53×10 ⁻⁷ 5 B(E2)(W.u.)=0.70 +21-14 Mult.: Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ), M2 excluded by comparison to RUL.	From ENSDF
			930.34 9	100 7	3367.38 7-	E2		9.13×10 ⁻⁴	$\alpha(K)$ =0.000803 12; $\alpha(L)$ =9.14×10 ⁻⁵ 13; $\alpha(M)$ =1.631×10 ⁻⁵ 23; $\alpha(N)$ =2.48×10 ⁻⁶ 4 $\alpha(O)$ =1.376×10 ⁻⁷ 20 B(E2)(W.u.)=3.4 +10-6 Mult.: Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ), M2 excluded by comparison to RUL.	DF
	4357.5		2355.3 [#] 10	100 [#]	2002.12 4+				1412 excluded by comparison to RCE.	
	4555.86	12+	363.33# 4	58 4	4192.52 10+	E2		0.01282	$\alpha(K)$ =0.01114 16 ; $\alpha(L)$ =0.001390 20 ; $\alpha(M)$ =0.000249 4 ; $\alpha(N)$ =3.71×10 ⁻⁵ 6 ; $\alpha(O)$ =1.84×10 ⁻⁶ 3 B(E2)(W.u.)=2.57 12 Mult.: Q from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), M2 excluded by comparison to RUL. I γ : weighted average of 54 8 from 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), 64.3 11 from 66 Zn(28 Si,2p2n γ), 53.6 9 (40 Ca, 40 P γ). Other: 7.0 7	
			476.95# 10	100 I	4078.91 10+	E2		0.00546	from (3 He,3ny). $\alpha(K)$ =0.00477 7; $\alpha(L)$ =0.000575 8; $\alpha(M)$ =0.0001028 15 ; $\alpha(N)$ =1.543×10 ⁻⁵ 22 $\alpha(O)$ =8.00×10 ⁻⁷ 12 B(E2)(W.u.)=1.142 30 Mult.: Q from R(DCO) in 58 Ni(36 Ar,4py),(35 Cl,3py),	⁹⁰ ₄₂ Mo ₄₈ -6
1	4594.25	(9,10)	296.50 20	100	4297.75 9	D(+Q)	-0.2 +4-3	0.0143 18	M2 excluded by comparison to RUL.	6

γ (90Mo) (continued)

						/ \	, (
$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$		$\frac{\pi}{f}$ Mult. \ddagger	δ^{\ddagger}	α	Comments
4789.37	10	491.66 <i>14</i>	100	4297.75 9	•		0.0045 5	
4842.02	11-	544.22 9	100 2	4297.75 9	E2		0.00370	$\alpha(K)$ =0.00324 5; $\alpha(L)$ =0.000385 6; $\alpha(M)$ =6.88×10 ⁻⁵ 10; $\alpha(N)$ =1.036×10 ⁻⁵ 15; $\alpha(O)$ =5.47×10 ⁻⁷ 8 B(E2)(W.u.)=8.7 7 Mult.: Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ), M2 excluded by comparison to RUL.
		649.64 <i>16</i>	47 10	4192.52 10	+ E1		8.07×10 ⁻⁴	excluded by comparison to KOL. $\alpha(K) = 0.000712 \ 10; \ \alpha(L) = 7.92 \times 10^{-5} \ 11; \ \alpha(M) = 1.410 \times 10^{-5} $ $20; \ \alpha(N) = 2.14 \times 10^{-6} \ 3$ $\alpha(O) = 1.207 \times 10^{-7} \ 17$ $B(E1)(W.u.) = 1.00 \times 10^{-5} + 15 - 17$ $I_{\gamma}: \ \text{weighted average of } 63.9 \ 22 \ \text{from} $ $^{58} \text{Ni}(^{36}\text{Ar}, 4\text{p}\gamma), (^{35}\text{Cl}, 3\text{p}\gamma), \ 34.3 \ 19 \ (^{40}\text{Ca}, \alpha 4\text{p}\gamma), \ \text{and } 46$ $6 \ \text{from } (^{3}\text{He}, 3\text{n}\gamma).$ $\text{Mult.: D from R(DCO) in }^{58} \text{Ni}(^{36}\text{Ar}, 4\text{p}\gamma), (^{35}\text{Cl}, 3\text{p}\gamma), \ \Delta\pi = \text{yes from level scheme.}$
4895.14	(11)	105.78 9	100	4789.37 10				;
5377.24	(13+)	821.37 9	100	4555.86 12		0.09 4	1.24×10 ⁻³	$\alpha(K)$ =0.001088 16; $\alpha(L)$ =0.0001218 17; $\alpha(M)$ =2.17×10 ⁻⁵ 3; $\alpha(N)$ =3.32×10 ⁻⁶ 5; $\alpha(O)$ =1.90×10 ⁻⁷ 3 B(M1)(W.u.)=0.0219 +44-32; B(E2)(W.u.)=0.28 +33-19 Mult.: D+Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ), $\Delta\pi$ =no from level scheme.
5499.42	(12)	604.33 <i>15</i>	52 7	4895.14 (1	(D+Q)		0.00266 16	and from fever seneme.
0.,,,2	(12)	657.41 5	100 26	4842.02 11			0.0020010	
5621.6	(14^{+})	244.2 3	100	5377.24 (1:				
5625.02	14+	247.75 8	100 2	5377.24 (1)		0.04 5	0.0220 4	$\alpha(K)$ =0.0193 3; $\alpha(L)$ =0.00223 4; $\alpha(M)$ =0.000400 7; $\alpha(N)$ =6.08×10 ⁻⁵ 10; $\alpha(O)$ =3.41×10 ⁻⁶ 6 B(M1)(W.u.)=1.07 10 Mult.: D(+Q) from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), $\Delta\pi$ =no from level scheme.
		1069.12 <i>21</i>	77 2	4555.86 12	+ E2		6.64×10 ⁻⁴	$\alpha(K)$ =0.000585 9; $\alpha(L)$ =6.60×10 ⁻⁵ 10; $\alpha(M)$ =1.178×10 ⁻⁵ 17; $\alpha(N)$ =1.79×10 ⁻⁶ 3; $\alpha(O)$ =1.003×10 ⁻⁷ 14 B(E2)(W.u.)=9.6 +10-8 Mult.: Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ), M2 excluded by comparison to RUL. L $_{\gamma}$: from (⁴⁰ Ca, α 4p γ). Other: 95 14 from ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ).
5699.65	13-	857.52 15	100 3	4842.02 11	- E2		1.11×10 ⁻³	$\alpha(K)=0.000975\ 14;\ \alpha(L)=0.0001116\ 16;\ \alpha(M)=1.99\times10^{-5}\ 3;\ \alpha(N)=3.02\times10^{-6}\ 5$ $\alpha(O)=1.668\times10^{-7}\ 24$ B(E2)(W.u.)=23 +9-5 Mult.: Q from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), M2 excluded by comparison to RUL.

γ (90Mo) (continued)

E_i (level)	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	J_f^π	Mult.‡	δ^{\ddagger}	α	Comments
5699.65	13-	1143.78 10	55 2	4555.86		E1		2.73×10 ⁻⁴	$\alpha(K)$ =0.000227 4; $\alpha(L)$ =2.50×10 ⁻⁵ 4; $\alpha(M)$ =4.46×10 ⁻⁶ 7; $\alpha(N)$ =6.79×10 ⁻⁷ 10; $\alpha(O)$ =3.88×10 ⁻⁸ 6 B(E1)(W.u.)=5.7×10 ⁻⁵ +22-13 I _γ : weighted average of 54 8 from ⁵⁸ Ni(³⁶ Ar,4pγ),(³⁵ Cl,3pγ), 52 4 from (²⁸ Si,2p2nγ) and 57 3 from (⁴⁰ Ca,α4pγ). Mult.: D from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4pγ),(³⁵ Cl,3pγ), $\Delta \pi$ =yes from level scheme.
5863.75	(13)	364.36 8	100	5499.42	(12)				
5903.74	14+	526.53 8	100	5377.24	` '	M1+E2	0.13 5	0.00343	$\alpha(K)$ =0.00302 5; $\alpha(L)$ =0.000342 5; $\alpha(M)$ =6.11×10 ⁻⁵ 9; $\alpha(N)$ =9.30×10 ⁻⁶ 14; $\alpha(O)$ =5.29×10 ⁻⁷ 8 B(M1)(W.u.)=0.099 +25–17; B(E2)(W.u.)=6 +6–4 Mult.: D+Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ), E1+M2 excluded by comparison to RUL.
6064.89	(13)	365.20 20	100 25	5699.65					
		565.50 <i>30</i>	28.8 25	5499.42	. ,				
6148.16	15+	244.46 8	58 9	5903.74	14+	M1+E2	0.12 3	0.0231	$\alpha(K)$ =0.0203 4; $\alpha(L)$ =0.00236 5; $\alpha(M)$ =0.000422 8; $\alpha(N)$ =6.40×10 ⁻⁵ 12; $\alpha(O)$ =3.57×10 ⁻⁶ 6 B(M1)(W.u.)=0.46 6; B(E2)(W.u.)=1.2×10 ² +7-5 Mult.: D+Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ), E1+M2 excluded by comparison to RUL. I γ : weighted average of 44 3 from ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ) and 64 2 from (⁴⁰ Ca, α 4p γ).
		523.11 10	100 2	5625.02	14+	M1+E2	0.11 3	0.00348	$\alpha(K)=0.00306\ 5;\ \alpha(L)=0.000347\ 5;\ \alpha(M)=6.20\times10^{-5}\ 9;$ $\alpha(N)=9.44\times10^{-6}\ 14;\ \alpha(O)=5.37\times10^{-7}\ 8$ $B(M1)(W.u.)=0.081\ 7;\ B(E2)(W.u.)=3.8\ +24-18$ Mult.: D+Q from R(DCO) in 58 Ni(36 Ar,4py),(35 Cl,3py), E1+M2 excluded by comparison to RUL.
		526.4 3	100 2	5621.6	(14+)	(M1+E2)	0.11 3	0.00343	$\alpha(K)$ =0.00302 5; $\alpha(L)$ =0.000342 5; $\alpha(M)$ =6.10×10 ⁻⁵ 9; $\alpha(N)$ =9.30×10 ⁻⁶ 14; $\alpha(O)$ =5.29×10 ⁻⁷ 8 B(M1)(W.u.)=0.080 6; B(E2)(W.u.)=3.7 +22-18 I _γ : weighted average of 100 15 from 58 Ni(36 Ar,4pγ),(35 Cl,3pγ) and 100 2 from (40 Ca, α 4pγ). Other: 39 3 from (28 Si,2p2nγ). Mult.: (D+Q) from R(DCO) in 58 Ni(36 Ar,4pγ),(35 Cl,3pγ), E1+M2 excluded by comparison to RUL.
6475.91	14-	411.00 <i>13</i>	14 3	6064.89	(13)	D			
		612.10 8	4.3 3	5863.75	. ,			_	
		776.24 6	100 12	5699.65	13-	M1+E2	3.1 +10-7	1.42×10 ⁻³	$\alpha(K)$ =0.001245 18 ; $\alpha(L)$ =0.0001431 21 ; $\alpha(M)$ =2.56×10 ⁻⁵ 4 ; $\alpha(N)$ =3.87×10 ⁻⁶ 6 ; $\alpha(O)$ =2.13×10 ⁻⁷ 3 B(M1)(W.u.)=0.0025 +35–13; B(E2)(W.u.)=43 +47–19 Mult.: D+Q from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), E1+M2 excluded by comparison to RUL.

γ (90Mo) (continued)

							/(1410)	(continued)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
6643.13	15-	167.11 9	38 2	6475.91	14-	M1+E2		0.125 64	$\alpha(K)$ =0.107 53; $\alpha(L)$ =0.0151 88; $\alpha(M)$ =0.0027 16; $\alpha(N)$ =4.0×10 ⁻⁴ 23; $\alpha(O)$ =1.70×10 ⁻⁵ 75 I_{γ} : weighted average of 39 5 from ${}^{58}\text{Ni}({}^{36}\text{Ar},4\text{p}\gamma),({}^{35}\text{Cl},3\text{p}\gamma)$ and 37 2 from (${}^{40}\text{Ca},\alpha4\text{p}\gamma)$. Mult.: D+Q from R(DCO) in ${}^{58}\text{Ni}({}^{36}\text{Ar},4\text{p}\gamma),({}^{35}\text{Cl},3\text{p}\gamma)$, $\Delta\pi$ =no from level scheme.
		779.43 6	7 3	5863.75	(13)	E2		1.40×10 ⁻³	$\alpha(K)$ =0.001233 18; $\alpha(L)$ =0.0001421 20; $\alpha(M)$ =2.54×10 ⁻⁵ 4; $\alpha(N)$ =3.84×10 ⁻⁶ 6; $\alpha(O)$ =2.11×10 ⁻⁷ 3 B(E2)(W.u.)=2.1 9 Mult.: Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4py),(³⁵ Cl,3py), M2 excluded by comparison to RUL.
		943.5 2	100 3	5699.65	13-	E2		8.84×10 ⁻⁴	$\alpha(K)$ =0.000777 11; $\alpha(L)$ =8.84×10 ⁻⁵ 13; $\alpha(M)$ =1.577×10 ⁻⁵ 22; $\alpha(N)$ =2.39×10 ⁻⁶ 4 $\alpha(O)$ =1.332×10 ⁻⁷ 19 B(E2)(W.u.)=11.8 12 Mult.: Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4py),(³⁵ Cl,3py), M2 excluded by comparison to RUL.
		1018.10 12	58 11	5625.02	14+	E1		3.20×10 ⁻⁴	α(K)=0.000282 4; α(L)=3.12×10 ⁻⁵ 5; α(M)=5.55×10 ⁻⁶ 8; α(N)=8.45×10 ⁻⁷ 12; α(D)=4.81×10 ⁻⁸ 7 B(E1)(W.u.)=6.9×10 ⁻⁵ 11 Mult.: D from R(DCO) in 58 Ni(36 Ar,4pγ),(35 Cl,3pγ), $\Delta \pi$ =yes from level scheme. I _γ : weighted average of 42 6 from 58 Ni(36 Ar,4pγ),(35 Cl,3pγ), 41 4 from (28 Si,2p2nγ) and 72 3 from (40 Ca,α4pγ).
6746.10	16 ⁺	598.00 10	100	6148.16	15+	M1+E2	3.4 5	0.00281	$\alpha(K)$ =0.00246 4; $\alpha(L)$ =0.000289 5; $\alpha(M)$ =5.17×10 ⁻⁵ 8; $\alpha(N)$ =7.80×10 ⁻⁶ 12; $\alpha(O)$ =4.18×10 ⁻⁷ 6 B(M1)(W.u.)=0.0041 +17-10; B(E2)(W.u.)=142 +24-20 Mult.: D+Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ), E1+M2 excluded by comparison to RUL.
7027.0? 7170.98	17 (16 ⁺)	280.9 ^a 3 1267.15 <i>17</i> 1545.92 <i>18</i>	100 ^a 40 8 100 16	6746.10 5903.74 5625.02	14+	(D+Q)			in the second se
7385.59	16-	742.46 14	100	6643.13		M1+E2	3.1 8	1.59×10 ⁻³	$\alpha(K)$ =0.001392 20; $\alpha(L)$ =0.0001605 24; $\alpha(M)$ =2.87×10 ⁻⁵ 5; $\alpha(N)$ =4.34×10 ⁻⁶ 7; $\alpha(O)$ =2.38×10 ⁻⁷ 4 B(M1)(W.u.)=8×10 ⁻⁴ +7-3; B(E2)(W.u.)=14.3 +41-31 Mult.: D+Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ), E1+M2 excluded by comparison to RUL.
7515.01	17-	129.41 7	16.3 10	7385.59	16-	M1(+E2)	0.14 14	0.130 19	$\alpha(K)$ =0.113 16 ; $\alpha(L)$ =0.014 3 ; $\alpha(M)$ =0.0025 6 ; $\alpha(N)$ =0.00037 8 ; $\alpha(O)$ =1.99×10 ⁻⁵ 22 B(M1)(W.u.)=0.142 +9-14

γ (90Mo) (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$\mathrm{I}_{\gamma}^{\dagger}$	E_f	${\rm J}_f^\pi$	Mult.‡	α	Comments
7515.01	17-	768.89 10	36.0 15	6746.10	16 ⁺	E1	5.61×10 ⁻⁴	Mult.: D(+Q) from R(DCO) in 58 Ni(36 Ar,4pγ),(35 Cl,3pγ), $\Delta \pi$ =no from level scheme. I_{γ} : from (40 Ca, α 4pγ). Other: 15 4 from 58 Ni(36 Ar,4pγ),(35 Cl,3pγ). α (K)=0.000495 7; α (L)=5.49×10 ⁻⁵ 8; α (M)=9.77×10 ⁻⁶ 14; α (N)=1.486×10 ⁻⁶ 21; α (O)=8.41×10 ⁻⁸ 12 B(E1)(W.u.)=2.33×10 ⁻⁵ 13 Mult.: D from R(DCO) in 58 Ni(36 Ar,4pγ),(35 Cl,3pγ), $\Delta \pi$ =yes
		872.0 <i>3</i>	100 2	6643.13	15-	E2	1.07×10 ⁻³	from level scheme. I _γ : weighted average of 33.1 23 from ⁵⁸ Ni(³⁶ Ar,4pγ),(³⁵ Cl,3pγ), 38 3 from (²⁸ Si,2p2nγ) and 36.8 15 from (⁴⁰ Ca, α 4pγ). $\alpha(K)=0.000936$ 14; $\alpha(L)=0.0001070$ 15; $\alpha(M)=1.91\times10^{-5}$ 3; $\alpha(N)=2.90\times10^{-6}$ 4 $\alpha(O)=1.602\times10^{-7}$ 23 B(E2)(W.u.)=4.10 18 Mult.: Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4pγ),(³⁵ Cl,3pγ), M2 excluded by comparison to RUL.
7629.61	(16)	458.70 20	≈100	7170.98		(D : 0)		•
7682.4?	(18)	1481.40 <i>15</i> 167.4 ^a <i>3</i>	35 5 100 ^a	6148.16 7515.01		(D+Q) (D+Q)		
8066.77	17+	437.20 <i>31</i> 895.73 <i>8</i>	12 2 8.6 <i>13</i>	7629.61 7170.98	(16)	(D1Q)		
		1320.75 11	31 11	6746.10				I_{γ} : weighted average of 24 3 from ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ) and 49 5 from (⁴⁰ Ca, α 4p γ).
		1918.60 20	100 4	6148.16	15 ⁺	E2	4.70×10 ⁻⁴	$\alpha(K)=0.000179\ 3;\ \alpha(L)=1.98\times10^{-5}\ 3;\ \alpha(M)=3.52\times10^{-6}\ 5;$ $\alpha(N)=5.38\times10^{-7}\ 8;\ \alpha(O)=3.08\times10^{-8}\ 5$ B(E2)(W.u.)=1.00 +11-9 Mult.: Q from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), M2 excluded
8123.55 8281.85	(18 ⁻) (17 ⁺)	608.54 <i>9</i> 2133.70 <i>20</i>	100 100	7515.01 6148.16		D+Q	0.00261 15	by comparison to RUL.
8525.30	18+	458.59 9	100 17	8066.77		M1+E2	0.0055 7	$\alpha(K)$ =0.0048 6; $\alpha(L)$ =0.00056 9; $\alpha(M)$ =0.000101 16; $\alpha(N)$ =1.52×10 ⁻⁵ 23; $\alpha(O)$ =8.2×10 ⁻⁷ 9 Mult.: D+Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4p γ),(³⁵ Cl,3p γ), $\Delta\pi$ =no from level scheme.
		1779.20 <i>17</i>	16.7 22	6746.10	16 ⁺	E2	4.35×10 ⁻⁴	from level scheme. $\alpha(K)=0.000206\ 3;\ \alpha(L)=2.28\times10^{-5}\ 4;\ \alpha(M)=4.07\times10^{-6}\ 6;\ \alpha(N)=6.20\times10^{-7}\ 9;\ \alpha(O)=3.55\times10^{-8}\ 5$ B(E2)(W.u.)=1.18 +31-22 Mult.: Q from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), M2 excluded by comparison to RUL.
								by comparison to ROL. I_{γ} : other: 48 4 from (40 Ca, α 4p γ).
8616.84	(17+)	335.00 <i>15</i> 1446.0 <i>3</i>	100 <i>16</i> 40 <i>6</i>	8281.85 7170.98				1

γ (90Mo) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	α	Comments
8616.84	(17^+)	1870.70 <i>15</i>	100 16	6746.10 16+			
		2468.55 <i>19</i>	48 6	6148.16 15 ⁺			
8678.44	(19^{-})	554.90 20	100	8123.55 (18 ⁻)	D		
9079.18	(18^{-})	1564.10 20	<63	7515.01 17			
0.4.0.6.60	(4.0-1)	1693.60 <i>10</i>	100 25	7385.59 16	254 70	0.0000 4	gr
9136.60	(18^{+})	519.70 <i>30</i>	100 15	8616.84 (17 ⁺)	(M1+E2)	0.0039 4	$\alpha(K) = 0.0034 \ 3; \ \alpha(L) = 0.00040 \ 5; \ \alpha(M) = 7.1 \times 10^{-5} \ 9;$
							$\alpha(N)=1.07\times10^{-5} \ 12; \ \alpha(O)=5.8\times10^{-7} \ 4$
							Mult.: D+Q from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), $\Delta\pi$ =no from level scheme.
		2200 46 7	25.0	6746 10 16±	(E2) [@]	6 22 10-4	
		2390.46 7	35 8	6746.10 16 ⁺	(E2)	6.32×10^{-4}	$\alpha(K)$ =0.0001206 17; $\alpha(L)$ =1.324×10 ⁻⁵ 19; $\alpha(M)$ =2.36×10 ⁻⁶ 4; $\alpha(N)$ =3.60×10 ⁻⁷ 5; $\alpha(O)$ =2.07×10 ⁻⁸ 3
9319.01	(19^{-})	239.83 9	15 4	9079.18 (18 ⁻)			
		640.60 20	11 2	8678.44 (19 ⁻)	0.61	5 41 40-4 3 5	ary 0.000451 15 ay 5.00 40=5 14 ap 0.00 45 6 ==
		1195.45 10	13 4	8123.55 (18 ⁻)	(M1+E2)	5.41×10 ⁻⁴ 16	$\alpha(K)$ =0.000471 15; $\alpha(L)$ =5.26×10 ⁻⁵ 14; $\alpha(M)$ =9.38×10 ⁻⁶ 25; $\alpha(N)$ =1.43×10 ⁻⁶ 4; $\alpha(O)$ =8.1×10 ⁻⁸ 3
							Mult.: D+Q from R(DCO) in 58 Ni(36 Ar,4py),(35 Cl,3py), $\Delta\pi$ =no from level scheme.
		1803.97 <i>11</i>	100 24	7515.01 17-	(E2) [@]	4.41×10^{-4}	$\alpha(K)=0.000201 \ 3; \ \alpha(L)=2.22\times10^{-5} \ 4; \ \alpha(M)=3.96\times10^{-6} \ 6;$
					,		$\alpha(N)=6.04\times10^{-7} \ 9; \ \alpha(O)=3.46\times10^{-8} \ 5$
9443.90	(19^+)	918.59 7	100 15	8525.30 18 ⁺	(M1+E2)	9.53×10^{-4} 19	$\alpha(K)=0.000839\ 17;\ \alpha(L)=9.46\times10^{-5}\ 14;\ \alpha(M)=1.689\times10^{-5}\ 25;$
							$\alpha(N)=2.57\times10^{-6} \ 4; \ \alpha(O)=1.45\times10^{-7} \ 4$
							Mult.: D+Q from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), $\Delta \pi$ =no
							from level scheme.
		1377.00 20	2.4 9	8066.77 17+			
9739.38	(19^+)	602.77 10	100 4	9136.60 (18+)	(M1+E2)	0.00263 15	$\alpha(K)=0.00231 \ 13; \ \alpha(L)=0.000267 \ 20; \ \alpha(M)=4.8\times10^{-5} \ 4; \ \alpha(N)=7.2\times10^{-6} \ 5; \ \alpha(O)=3.98\times10^{-7} \ 15$
							Mult.: D+Q from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), $\Delta\pi$ =no from level scheme.
		1214.10 <i>10</i>	23 3	8525.30 18 ⁺			
		1672.52 <i>14</i>	25 <i>3</i>	8066.77 17+	(E2) [@]	4.17×10^{-4}	$\alpha(K)=0.000232 \ 4; \ \alpha(L)=2.57\times10^{-5} \ 4; \ \alpha(M)=4.59\times10^{-6} \ 7;$
					. ,		$\alpha(N)=6.99\times10^{-7}\ 10;\ \alpha(O)=3.99\times10^{-8}\ 6$
9787.96	(20^+)	344.00 12	100 15	9443.90 (19 ⁺)	(M1+E2)	0.012 3	$\alpha(K)=0.0109\ 25;\ \alpha(L)=0.00132\ 36;\ \alpha(M)=2.36\times10^{-4}\ 64;$
				. ,	. ,		$\alpha(N)=3.54\times10^{-5} \ 93; \ \alpha(O)=1.8\times10^{-6} \ 4$
							Mult.: D+Q from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), $\Delta \pi$ =no
							from level scheme.
		1262.70 <i>10</i>	42 6	8525.30 18 ⁺	(E2) [@]	4.82×10^{-4}	$\alpha(K)=0.000408 \ 6; \ \alpha(L)=4.57\times10^{-5} \ 7; \ \alpha(M)=8.15\times10^{-6} \ 12;$
							$\alpha(N)=1.240\times10^{-6}$ 18; $\alpha(O)=7.01\times10^{-8}$ 10
9995.04	(20^{-})	676.03 9	100 23	9319.01 (19-)	(M1+E2)	0.00197 7	$\alpha(K)=0.00173 \ 6; \ \alpha(L)=0.000198 \ 10; \ \alpha(M)=3.54\times10^{-5} \ 17;$
							$\alpha(N)=5.38\times10^{-6} \ 23; \ \alpha(O)=2.99\times10^{-7} \ 6$
							Mult.: D+Q from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), $\Delta \pi$ =no
							from level scheme.

γ (90Mo) (continued)

					<u> y(</u>	Wio) (continu	<u> </u>	
$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	$\mathrm{I}_{\gamma}{}^{\dagger}$	E_f J_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
9995.04 10235.14	(20 ⁻) 20 ⁺	1871.6 <i>5</i> 495.71 <i>11</i>	19 <i>6</i> 100 <i>14</i>	8123.55 (18 ⁻) 9739.38 (19 ⁺)	M1(+E2)	0.14 23	0.00396 11	$\alpha(K)$ =0.00348 10; $\alpha(L)$ =0.000396 13; $\alpha(M)$ =7.07×10 ⁻⁵ 24; $\alpha(N)$ =1.08×10 ⁻⁵ 4; $\alpha(O)$ =6.11×10 ⁻⁷ 14 B(M1)(W.u.)=0.43 +15-13; B(E2)(W.u.)=4×10 ¹ +26-3
		1709.86 <i>11</i>	96 <i>13</i>	8525.30 18 ⁺	E2		4.23×10 ⁻⁴	Mult.: D(+Q) from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), $\Delta\pi$ =no from level scheme. α (K)=0.000223 4; α (L)=2.47×10 ⁻⁵ 4;
								$\alpha(M)=4.39\times10^{-6}\ 7;\ \alpha(N)=6.70\times10^{-7}\ 10;$ $\alpha(O)=3.83\times10^{-8}\ 6$ B(E2)(W.u.)=3.8 +15-9 Mult.: D+Q from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), M2 excluded by comparison to RUL.
10477.36	(20^+)	738.00 <i>20</i> 1952.00 <i>20</i>	70 <i>30</i> 100 <i>13</i>	9739.38 (19 ⁺) 8525.30 18 ⁺				•
10537.91	(21)	542.9 2 1859.45 <i>15</i>	≤109 100 22	9995.04 (20 ⁻) 8678.44 (19 ⁻)	D			
10855.61	21+	378.25 <i>8</i> 620.47 <i>4</i>	6.9 <i>13</i> 100 <i>14</i>	10477.36 (20 ⁺) 10235.14 20 ⁺	M1+E2	0.16 9	0.00234	$\alpha(K)$ =0.00206 3; $\alpha(L)$ =0.000232 4; $\alpha(M)$ =4.14×10 ⁻⁵ 7; $\alpha(N)$ =6.32×10 ⁻⁶ 10; $\alpha(O)$ =3.60×10 ⁻⁷ 5
								B(M1)(W.u.)=0.093 +16-14; B(E2)(W.u.)=7 +10-5 Mult.: D+Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4pγ),(³⁵ Cl,3pγ), E1+M2 excluded from comparison to RUL.
11135.76	22+	280.15 3	100	10855.61 21+	M1+E2	0.12 +8-6	0.0162 5	$\alpha(K)$ =0.0143 4; $\alpha(L)$ =0.00165 5; $\alpha(M)$ =0.000295 9; $\alpha(N)$ =4.48×10 ⁻⁵ 13; $\alpha(O)$ =2.51×10 ⁻⁶ 6 Mult.: D+Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4pγ),(³⁵ Cl,3pγ), E1+M2 excluded from comparison to RUL.
11269.3 11577.07	(21) (22 ⁺)	2590.0 ^{&} 10 1789.12 20	100 & 100	8678.44 (19 ⁻) 9787.96 (20 ⁺)	E2		4.37×10^{-4}	$\alpha(K)=0.000204 \ 3; \ \alpha(L)=2.26\times10^{-5} \ 4;$
11377.07	(22)	1707.12 20	100	7101.70 (20)	1.2		T.J/AIU	$\alpha(R)$ =0.000204 3, $\alpha(L)$ =2.20x10 4, $\alpha(M)$ =4.03×10 ⁻⁶ 6; $\alpha(N)$ =6.14×10 ⁻⁷ 9; $\alpha(O)$ =3.51×10 ⁻⁸ 5 Mult.: Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4py),(³⁵ Cl,3py), M2 excluded from comparison to RUL.
11735.5	221	879.9 ^{&} 5	100&	10855.61 21+	&			
12016.61	23+	439.54 8	2.9 3	11577.07 (22+)				I_{γ} : other: 16 3 in (40 Ca, α 4p γ).

γ (90Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\rm I_{\gamma}}^{\dagger}$	E_f	J_f^{π} Mu	ult. [‡] α	Comments
12016.61	23+	880.80 <i>19</i>	100 14	11135.76	22 ⁺ M1	$+E2$ 1.05×10^{-3}	2 $\alpha(K)=0.000923\ 16;\ \alpha(L)=0.0001043\ 15;\ \alpha(M)=1.86\times10^{-5}\ 3;$ $\alpha(N)=2.83\times10^{-6}\ 4;\ \alpha(O)=1.60\times10^{-7}\ 4$
							Mult.: D+Q from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), $\Delta\pi$ =no from level scheme.
		1161.00 20	13 3	10855.61	21 ⁺ E2	5.58×10^{-4}	$\alpha(N)=1.488\times10^{-6}\ 21;\ \alpha(O)=8.38\times10^{-8}\ 12$
							Mult.: Q from R(DCO) in ⁵⁸ Ni(³⁶ Ar,4pγ),(³⁵ Cl,3pγ), M2 excluded from comparison to RUL.
12257.7		1719.8 <mark>&</mark> <i>10</i>	100 <mark>&</mark>	10537.91	(21) &		
12383.6	(23)	1113.5 <mark>&</mark> <i>10</i>	49 <mark>&</mark> 7	11269.3	(21) &		
		1845.68 <i>10</i>	100	10537.91	(21) (E2	4.50×10^{-4}	$\alpha(K)=0.000193\ 3;\ \alpha(L)=2.13\times10^{-5}\ 3;\ \alpha(M)=3.79\times10^{-6}\ 6;\ \alpha(N)=5.78\times10^{-7}\ 8;\ \alpha(O)=3.31\times10^{-8}\ 5$
14279.8		2263.2 ^{&} 10	100 <mark>&</mark>	12016.61	23+ &		
14412.1		2028.5 <mark>&</mark> 10	100 <mark>&</mark>	12383.6	(23) &		
14486.6		2470.0 ^{&} 10	100 <mark>&</mark>	12016.61	23+ &		

[†] From 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), except where noted. ‡ From $\gamma(\theta)$ and DCO ratios in 58 Ni(36 Ar,4p γ),(35 Cl, 3p γ), except where noted. # From 90 Tc ε decay (50.7 s). @ Stretched Q from R(DCO) in 58 Ni(36 Ar,4p γ),(35 Cl,3p γ), assumed E2. & From 58 Ni(40 Ca, α 4p γ). a From 66 Zn(28 Si,2p2n γ).

Adopted Levels, Gammas

Adopted Levels, Gammas

 $^{90}_{42}{
m Mo}_{48}$

Adopted Levels, Gammas

Seq.(A): Ground state sequence

22+ 11135.76

Adopted Levels, Gammas

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113,2187 (2012)	15-Sep-2012

 $Q(\beta^{-}) = -7882 \ 4$; $S(n) = 12670 \ 7$; $S(p) = 7458 \ 4$; $Q(\alpha) = -5604 \ 6$ 2012Wa38

Note: Current evaluation has used the following Q record -7885 5 12672 11 7459 5 -5605 6 2011AuZZ,2003Au03.

 $Q(\beta^-)$,S(p), $Q(\alpha)$: from 2011AuZZ; -7870 26, 7462 5, -5607 11, respectively, from 2003Au03.

A new, higher-precision ⁹²Mo mass measurement is available from 2012Ka13.

For theory or systematics see, e.g., 1972Bb08, 1974Gl01, 1977Ha44, 1992Si03, 1992Si14, 1993Ha37, 1999Zh32, 2009Zh11, 2009St05. Other Reactions.

(HI,xn γ) (1985Ra09): E(12 C, 13 C)=48 MeV, E(16 O)=56 MeV. Measured 148 γ (θ ,H,t) in single-crystal Zr; θ =0°, 90°. Determined Q=0.34 for 2760, 8⁺ level.

 64 Ni+ 28 Si, E=137 MeV (1990Gu20); 16 O+ 76 Se, E=50, 72.2 MeV (1992Ki01): measured high-energy γ spectra and $\gamma(\theta)$ from decay of GDR built on highly-excited high-spin states. Deduced Γ(GDR)=7.6 MeV 1 (1992Ki01), 8.6 MeV 2 (1992Ki01), 12.1 MeV 10 (1990Gu20) for average spins of $9\hbar$, $19.5\hbar$, $33\hbar$, respectively.

⁹²Mo Levels

Cross Reference (XREF) Flags

	92T 1	-	9214-(1) (11)	0	⁹⁰ Zr(¹² C, ¹⁰ Be), (¹⁶ O, ¹⁴ C)
Α	92 Τc ε decay	1	⁹² Mo(p,p'), (pol p,p')	Q	
В	64 Ni(32 S,2n2p γ),	J	92 Mo(d,d'), (pol d,d)	R	⁹² Mo(¹⁴ C, ¹⁴ C'), (¹⁴ N, ¹⁴ N')
C	90 Zr(α ,2n γ)	K	92 Mo(3 He,dp)	S	92 Mo(γ ,xn), (γ ,pn)
D	$^{92}\text{Mo}(\gamma,\gamma')$, (pol γ,γ')	L	$^{92}\mathrm{Mo}(\alpha,\alpha')$	T	92 Mo(3 He, 3 He')
E	$^{92}\text{Mo}(\alpha,\alpha'\gamma)$	M	⁹⁴ Mo(p,t), (pol p,t)	U	$^{92}\text{Mo}(^{16}\text{O}, ^{16}\text{O}')$
F	92 Mo(p,p' γ)	N	59 Co(37 Cl,2p2n γ),	V	⁹³ Ru εp decay
G	92 Mo(n,n'), (n,n' γ)	0	90 Zr(3 He,n)	W	74 Ge(28 Si, $2\alpha 2$ n γ)
H	⁹² Mo(e,e')	P	Coulomb excitation	X	82 Se(16 O,6n γ)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$	XREF			
0.0	0+	stable	ABCDEFGHIJKLMNOPOR TU WX			

Comments

 $T_{1/2}$: For $(0\nu+2\nu)$ double β decay, 1997Ba35 report (at 90% confidence level) lower limits of 1.9×10^{20} y, 8.9×10^{20} y and 8.1×10^{20} y, respectively, for $\beta^+\varepsilon$ (to Zr g.s.), $\varepsilon\varepsilon$ (to Zr 449 level) and $\varepsilon\varepsilon(\text{Zr }935 \text{ level})$; these data supersede earlier data from the same research group (1995Au09). For neutrinoless double β decay of 92 Mo, 2011Le23 report a lower limit of 2.3×10²⁰ y at 90% confidence level. Other lower limits on $T_{1/2}$: 3×10^{17} y, from nonobservation of $\beta^+, \varepsilon(2\nu)$ double β decay (1985No03); 2.7×10^{18} y for $\beta^+, \varepsilon(0\nu)$ (1987El13); 3×10^{18} y for double- ε decay (1982Be20).

1509.51[&] 3 2⁺ 0.35 ps 2 ABCDEFGHIJKLMNOPQR TU WX

 $\mu = +2.3 \ 3$

 μ : From g=+1.15 14, weighted average of +1.3 5 (2001Ma17, transient field) from Coulomb excitation and +1.14 14 from reevaluation by 2001Ma17 of g=1.07 19 (TDPAD) from 1978HaYJ. The g-factor is consistent with that expected for a $g_{9/2}^2$ configuration. J^{π} : E2 1509 γ to 0⁺ g.s.

 $\langle r^2 \rangle^{1/2}$ (charge)=4.3156 fm 11 (2004An14).

 $T_{1/2}$: weighted average of 0.344 ps 20 from Coulomb excitation, 0.331 ps 15 from (e,e') and 0.404 ps 25 (1977Me01) in (γ, γ') is 0.348 ps 19. Others: 0.36 ps +8-5 $(p,p'\gamma)$, 0.30 ps +15-10 $(\alpha,\alpha'\gamma)$.

Continued on next page (footnotes at end of table)

E(level) [†]	$_{\mathbf{J}^{\pi}}$	T _{1/2}	XREF		Comments
2282.61 ^{&} 5	4+	>3.4 ps	ABC FGHIJKLMN	WX	B(E4)↑=0.0034 9 (1987MiZL) J ^π : L=4 in (p,p'), (α , α'), (p,t). T _{1/2} : from (p,p' γ).
2519.53 <i>21</i>	0_{+}	>3.4 ps	D FG k M O		J^{π} : L=0 in (p,t), (³ He,n). $T_{1/2}$: from (p,p' γ).
2526.96 ^a 6	5-	1.55 ns 4	ABC FGHIJkL N	X	B(E5) \uparrow =0.00341 17 (1987MiZL) XREF: k(2530). J ^{π} : L=5 in (p,p'), (α , α '). T _{1/2} : from 1971Co08 in (p,p' γ).
2612.41 ^{&} 6	6+	1.53 ns 4	A C FGHI L N	WX	B(E6)↑=0.00027 5 (1987MiZL) J ^π : L=6 in (α , α '). T _{1/2} : from ⁹² Tc ε decay.
2634.2? [#] <i>15</i>	(1) [@]		D		1,2
2760.52 ^{&} 14	8+	190 ns <i>3</i>	A C GHI N	WX	Q=-0.34; μ =+11.30 5 Q: differential perturbed angular distribution (1989Ra17 from 1985Ra09). Sign of Q from 1991Ha04 (TDPAD) in ⁵⁹ Co(³⁷ Cl,2p2n γ)). μ : from (α ,2n γ); TDPAD (1977Ha49). Other: +11.35 8 (1989Ra17, recalculation of datum from 1977Ku22, TDPAD). μ calculation: 1998Jo17. J $^{\pi}$: E8 excitation in (e,e'). T _{1/2} : weighted average of 192 ns 7 (⁹² Tc decay), 206 ns 11 and 191 ns 7 and 219 ns 22 in (α ,2n γ), and 184 ns 5 and 195 ns 13 from (n,n' γ).
2838.6? [#] 5	(1) [@]		D		
2849.81 5	3-	0.27 ps +10-5	EFGHIJKLM R		B(E3) \uparrow =0.0760 25 (1987MiZL) J ^{π} : L=3 in (p,p'), (α , α '), (p,t), (14 C, 14 C'). T _{1/2} : weighted average from (α , α ' γ), (p,p' γ). For summary of B(E3) \uparrow data, see 1989Sp01; recommended value is 0.070 24 based on b ₃ from angular distribution in (p,p'). This corresponds to 5.3% 18 of energy-weighted E3 sum rule.
2922.6? [#] 6	(1) [@]		D		<i>.</i> , <i>.</i>
3006.96 8	(4,5)		C FG I		J^{π} : D+Q 480 γ to 5 ⁻ 2527; weak 157 γ to 3 ⁻ 2850; level population in (n,n' γ) rules out J=6 and favors J=4 (2010Go15). L=5 in (p,p') but level only weakly excited.
3063.63 7	(4-)		C FG I		J ^{π} : D+Q 537 γ to 5 ⁻ 2527; 214 γ to 3 ⁻ 2850; δ (537 γ)=14 3 makes π =+ unlikely; 1123 γ from (6 ⁺) 4187. However, B(M2)(W.u.) for 306 γ from 4 ⁺ 3369 exceeds RUL, unless T _{1/2} (3369) exceeds 80 ns (which seems far too large to have remained unobserved); alternatively, the 305 γ may be complex in (n,n' γ) making δ unreliable (see comment on 305 γ).
3091.35 6	2+@	27 fs <i>3</i>	DEFGHIJ LM		XREF: J(3120). $T_{1/2}$: unweighted average of 22 fs 12 (1971Yo02), 35 fs 3 (1973DoZB in (p,p' γ)), 30.3 fs 21 from B(E2) (1987MiZL in (e,e')), 27 fs 3 (1977Me01 in (γ , γ ')), and 21 fs 6 (1975Pa19 in (p,p' γ).
3368.68 7	(4 ⁺)	>3.4 ps	C FGHI		(γ, γ) , and 21 is δ (1973 at δ in (p,p γ). $B(E4)\uparrow=0.00037$ 11 (1987MiZL) J^{π} : E4 excitation of 3369 level in (e,e'). Also: Q 1859 γ to 2 ⁺ 1510, D+Q 362 γ to (4,5) ⁻ 3007 and

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XI	REF	Comments
					D+Q 1086 γ to 4 ⁺ 2283. However, $\delta(362\gamma)$ and $\delta(305\gamma)$ are too large for $\Delta\pi$ =yes transitions, unless the 3369 level has a significantly long half-life.
3380.4 8	(6-)			W	$T_{1/2}$: from $(p,p'\gamma)$. J^{π} : M2 1098 γ to 4 ⁺ 2283.
3384.5? [#] 8 3542.31 7	(1) [@] 2 ⁺	35 fs <i>16</i>	D D FGHI	М	J^{π} : L=2 in (p,t), (p,p'); E2 3542 γ to 0 ⁺ g.s. $T_{1/2}$: from B(E2)=0.0020 6 in (e,e') and adopted
					branching. Others: 90 fs $+40-30$ (1973DoZB), 61 fs $+24-17$ (1975Pa19) in $(p,p'\gamma)$.
3579.81 6	3-	>0.21 ps	FGHI I	<u>L</u>	B(E3)↑=0.0044 4 (1987MiZL) J ^{π} : L=3 in (α , α'), (p,p'). T _{1/2} : from (p,p' γ).
3621.06 7	(≤4)	>0.21 ps	FG i		J^{π} : 2112 γ to 2 ⁺ 1510. $T_{1/2}$: from (p,p' γ).
3624.13 ^a 17 3651.8? [#] 11	7 ⁻ (1) [@]		BC GHi D	N WX	
3688.77 7	1(-),2,3	>0.69 ps	FG		J^{π} : D(+Q) 2179 γ to 2 ⁺ 1510; 838 γ to 3 ⁻ 2850. $T_{1/2}$: from (p,p' γ).
3692 <i>7</i> 3753.2 <i>8</i>	4+		C		J^{π} : L(p,p')=4. J^{π} : 385 γ to 4 ⁺ 3369, 689 γ to (4 ⁻) 3064 so J^{π} =(3,4,5).
3757.25 10	2.2	. 0.49	C G I		XREF: I(3765). J^{π} : 1230y to 5 ⁻ 2527 suggests J=(3 to 7).
3814.58 <i>8</i> 3841.87 <i>12</i>	2,3 0 ⁺	>0.48 ps >0.21 ps	FG I FG I	M	J^{π} : D(+Q) 2305 γ to 2 ⁺ 1510; D(+Q) 965 γ to 3 ⁻ 2850. $T_{1/2}$: from (p,p' γ). J^{π} : L=0 in (p,t).
3871.5 10	(≤4)	>0.21 ps	C	П	T _{1/2} : from DSAM in (p,p' γ). J ^{π} : 2362 γ ray to 2 ⁺ 1510.
3876.62 9	4+		FGHI		B(E4) \uparrow =0.0015 3 (1987MiZL) J ^{π} : L(p,p')=4; Q 2367 γ to 2 ⁺ 1510.
3926.36 9	2 ⁺ [@]	10.6 fs <i>12</i>	D FGHI I	LM	$T_{1/2}$: weighted average of 10.7 fs 22 from (γ, γ') and 10.5 fs 13 from B(E2)=0.0188 20 in (e,e'), with uncertainty (1.1 fs) increased to that for most precise measurement. Others: 17 fs +17-10 (1973DoZB), 20 fs +20-12 (1975Pa19).
3944.92 <i>13</i>	1@	6 fs 4	D FG i		XREF: i(3952).
					$T_{1/2}$: from (γ, γ') ; value rises to 9.7 fs 14 if only the 3945 γ deexcites this level. Others: 10 fs +10-3 (1973DoZB), 21 fs +20-12 (1975Pa19) in $(p,p'\gamma)$.
3953.2? 4			Gi		XREF: i(3952). J^{π} : 1341 γ to 6 ⁺ 2612, so J=(4 to 8).
3963.19 <i>16</i>		>0.21 ps	FG I		J^{π} : L=4 in (p,p'). $T_{1/2}$: from DSAM in (p,p' γ).
3964.3? 13	(2) [@]		D		TI 1402 4 5- 2527 1 (2 4 7)
4019.31 <i>11</i> 4115.81 <i>10</i>	3 ⁽⁻⁾ ,4		GHI GHI		J ^{π} : 1492 γ to 5 ⁻ 2527, so J=(3 to 7). J ^{π} : D(+Q) 1833 γ to 4 ⁺ 2283; D+Q 1266 γ to 3 ⁻ 2850. 1589 γ to 5 ⁻ 2527 makes 3 ⁺ unlikely.
4140 5	4+			M	J^{π} : L(p,t)=4.
4148.08 <i>15</i>	1 ⁽⁻⁾		D Gi]	l	XREF: i(4159)I(4160). J ^{π} : D 2639 γ to 2 ⁺ 1509; D, $\Delta \pi$ =(yes) 4148 γ to 0 ⁺ g.s.
4150.36 9	4 ⁽⁺⁾ ,5 ⁽⁻⁾		G i	1	XREF: i(4159)l(4160). J ^{π} : D+Q 1623 γ to 5 ⁻ 2527; D(+Q) 1868 γ to 4 ⁺ 2283;

E(level) [†]	J^π	T _{1/2}		XREF		Comments
4159.47 15	5-		GH	i		1301 γ to 3 ⁻ 2850. L(p,p')=4+5 for E=4159 7; probably this is L=4 component. B(E5)↑=0.0048 4 (1987MiZL) XREF: i(4159). J ^{π} : L(p,p')=4+5 for E=4159 7 doublet. E5 excitation in
4187.20 <i>18</i> 4241.29 <i>16</i> 4251.0 ^a 3	(6 ⁺) 5,6,7 9 ⁻		GH G BC G	N N	WX	(e,e'). J ^π : L=(6) in (p,p'); Q 1905γ to 4 ⁺ 2283. J ^π : D(+Q) 1629γ to 6 ⁺ 2612. J ^π : stretched E2 627γ to 7 ⁻ 3624.
4280.73 <i>14</i> 4300 <i>5</i>	2+		G		WA	J^{π} : 1998 γ to 4 ⁺ 2283 so J=(2 to 6). XREF: 1(4310).
4307.44 10	2,3		G			J^{π} : L=2 in (p,t). J^{π} : D(+Q) 2798 γ to 2 ⁺ 1510; D(+Q) 1458 γ to 3 ⁻ 2850.
4315.2 4	5-		GH	II 1		B(E5)↑=0.00035 5 (1987MiZL) XREF: l(4310).
4328.5? 10			C G	1		J^{π} : E5 excitation in (e,e'). XREF: 1(4310). J^{π} : 1568γ to 8 ⁺ 2761, so J=(6 to 10); J=7,8 favored by level population in (n,n'γ).
4345.78 <i>19</i> 4429.51 <i>11</i>	3		GH G			J^{π} : 2063γ to 4 ⁺ 2283; 1339γ to (4,5) ⁻ 3007. J^{π} : D+Q 2147γ to 4 ⁺ 2283; D(+Q) 1579γ to 3 ⁻ 2850; 2920γ to 2 ⁺ 1510; $\gamma(\theta)$ in (n,n'γ) rules out J=4 (2010Go15).
4436.05 <i>13</i> 4436.42 <i>16</i> 4455.01 <i>15</i>	3,4,5		G G G			J^{π} : D+Q 2154 γ to 4 ⁺ 2283; 1372 γ to (4 ⁻) 3064. J^{π} : 1429 γ to (4,5) ⁻ 3007.
4477.80 18	(3,4,5) 3 ⁽⁻⁾ ,4 ⁽⁺⁾ ,5		G			J^{π} : 2173 γ to 4 ⁺ 2283, 1391 γ to (4 ⁻) 3064. J^{π} : D+Q 2195 γ to 4 ⁺ 2283 allows J=3,5, but makes J^{π} =4 ⁻ unlikely; 1951 γ to 5 ⁻ 2527; absence of level in (e,e') possibly suggests an unnatural parity state, thereby favoring J^{π} =5 ⁺ .
4483.36 22 4486.0 ^a 3	11-	8.74 ns <i>18</i>	G BC	N	WX	J ^π : 1956y to 5 ⁻ 2527, so J=(3 to 7). μ =+13.9 3 J ^π : E2 235y to 9 ⁻ 4251. T _{1/2} : weighted average of 8.7 ns 2 (1971Le19), 9.2 ns 5 (1977Ha49), 8.2 ns 8 (from (α ,2ny), (32 S,2n2py)
						and (¹⁶ O,6nγ), respectively). μ: differential perturbed angular distribution (1989Ra17 from 1977Ha49), if J=11, from (³² S,2n2pγ). Other: +14.17 <i>13</i> (1989Ra17, revision of datum from 1977Ku22), TDPAD.
4493.92 <i>17</i>	2+		D GH	II M		B(E2) \uparrow =0.0065 7 (1987MiZL) J π : L=2 in (p,t).
4509.6 <i>10</i>	4+		E	L		E(level): Δ E(level) assumes unstated Δ E for 3000 γ is 3 keV. J^{π} : $L(\alpha,\alpha')=4$.
4544.40 <i>17</i> 4554 <i>7</i>	7-		G H	II		J^{π} : 2262 γ to 4 ⁺ 2283, so J=(2 to 6). B(E7) \uparrow =0.000107 11 (1987MiZL) J^{π} : E7 excitation in (e,e').
4573.3 <i>3</i> 4589.64 <i>23</i>	(≤4) 2 ⁽⁺⁾		G D GH	II L		J ^π : 3064γ to 2 ⁺ 1510. B(E2)↑=0.052 <i>12</i> (1987MiZL) XREF: I(4598).
4630.65 19	$(2^+,3,4^+)$		G			J^{π} : (E2) excitation in (e,e'); Q 4590 γ to 0 ⁺ g.s. J^{π} : 3121 γ to 2 ⁺ 1510; 2349 γ to 4 ⁺ 2283.
4633.73 10	(1 ⁻) [@]	3.7 fs 6	D GH	I		$T_{1/2}$: from (γ, γ') , assuming only 2 gammas deexcite

E(level) [†]	J^π	T _{1/2}		-	XREF		Comments
4652.7 3	(≤4)			GI			level. However, see comment on 3125 <i>γ</i> from this level. J ^π : 3143 <i>γ</i> to 2 ⁺ 1510; 1803 <i>γ</i> to 3 ⁻ 2850, so
	1@		ъ				$J^{\pi} = (1^-, 2, 3, 4^+).$
4663.2 <i>6</i> 4685.1 <i>3</i>	(6 ⁻)		D	GHI			J^{π} : (M6) excitation in (e,e'); D+Q 2158 γ to 5 ⁻ 2527.
4702.73 24	(o) (≤4)			G			J^{π} : 3193 γ to 2 ⁺ 1510.
4725.2 3	4+			GHI			B(E4)↑=0.0012 3 (1987MiZL)
							J^{π} : L=4 in (p,p').
4734.3? <i>4</i>	(0.04.44)			G			J^{π} : 1366 γ to 4 ⁺ 3369.
4781.51 <i>21</i>	$(2,3^+,4^+)$			GΙ			J ^π : 3272 $\gamma(\theta)$ to 2 ⁺ 1510 in (n,n' γ) allows J ^π =2,3 ⁺ ,4 ⁺ (2010Go15).
4848.3 10	(10^+)					W	J^{π} : stretched Q 2088 γ to 8 ⁺ 2760.
4874 <i>7</i> 4893.3 <i>3</i>	4+			HI GHI			$I\pi$: I = 4 in (p.p/)
4917.9 5	7 ⁺		Α	Н			J^{π} : L=4 in (p,p'). J^{π} : M7 excitation in (e,e').
4924 7	3-			I	1M		XREF: 1(4940).
							J^{π} : L=3 in (p,t).
4936.1 <i>6</i>	(1) [@]		D				
4944.7 10	(1) [@]		D				
4948.7 <i>3</i>	$(3,4^+)$			G			J^{π} : 3440 γ to 2 ⁺ 1510; 2666 γ to 4 ⁺ 2283; 1941 γ to
1070 7 5	(1.2+)		ъ	CHT	-		(4,5) ⁻ 3007; level population is not consistent with 2 ⁺ .
4970.7 <i>5</i>	$(1,2^+)$		D	GHI	1		XREF: $I(4964)I(4940)$. J^{π} : (D) 3462 γ to 2 ⁺ 1510; excitation in resonance
							fluorescence.
4979	4			H			J^{π} : E4,M4 excitation in (e,e').
5003.6 4	$(2)^{+}$ @	22 fs 15	D	Gi			$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
5007	(1-)			Hi			B(E1)↑=0.0005 4 (1987MiZL)
							XREF: H(5007).
5076.6 <i>3</i>	4+			GΙ	1m		J ^π : (E1) excitation in (e,e'). XREF: 1(5090)m(5090).
3070.0 3				0.1			J^{π} : L=4 in (p,p').
5088 6	4+			HI	1m		B(E4)↑=0.0032 4 (1987MiZL)
							XREF: 1(5090)m(5090).
							J^{π} : E4 excitation in (e,e').
510174	(10+)	.0.7	C		M	LIV	Predominant configuration= $((\pi \ 1g_{9/2})^{-1}(\pi \ 2d_{5/2}))$. T _{1/2} : from RDM in (30 Si,2p2n γ).
5121.7 4	(10^+)	<0.7 ps	С		N	WX	J^{π} : stretched Q 2361 γ to 8 ⁺ 2760.
5150 5	0^{+}				M		J^{π} : L=0 in (p,t).
5151.3 4	$(10^-,11^-,12^-)$		C				J^{π} : (M1) transition to (11 ⁻) level.
5174 7				I			
5190 7				I			
5271 7	(1) [@]		ъ	I			
5283.0 <i>21</i> 5289 <i>7</i>	(5^{-})		D	I			J^{π} : L=(5) in (p,p').
5312.6 10	(5)		С				J^{π} : γ to (8) ⁺ in (α ,2n γ), so J=(6 to 10).
5316 6	3-		_	I	LM		J^{π} : L=3 in (α,α') , (p,t) .
5331.7 9	(1) [@]		D				-
5353 7				I			
5388 7				I			E(level): doublet in (p,p') .
5432 7	(1) @		_	I			
5451.6 9	(1) [@]		D	I			J^{π} : log ft =5.7 for ε decay from (8) ⁺ 92 Tc. Feeds 6 ⁺
5462.9 <i>5</i>	$(7,8)^+$		A				J': $\log \pi = 3.7$ for ε decay from (8)' ~ 1 c. Feeds 6'

E(level) [†]	\mathbf{J}^{π}	T _{1/2}			XREF		Comments
							and 8 ⁺ levels.
5467 7	(4^{+})			I			L(p,p')=(4).
5517? 7				I			
5527.4 5	(1) [@]		D				
5601 7	. ,			I	m		XREF: m(5620).
							J^{π} : L(p,t)=3 for level with E=5620 25.
5611.2 <i>15</i>						W	J^{π} : 763 γ to (10 ⁺) 4848.
5623.8 10	(1) [@]		D				
5629.9 19	1@		D				
5631 7	$(2^+,3^-)$			I	lm		XREF: 1(5656)m(5620).
5650.7				-			J^{π} : L(p,p')=(2,3). L(p,t)=3 for level whose E=5620 25.
5658 <i>7</i> 5679 <i>7</i>				I	1 1		XREF: 1(5656). XREF: 1(5656).
5703.4 4	1 <mark>@</mark>		D	_	1		ARLI : 1(3030).
5710 <i>7</i>	1		ע	I			
5745 7				I	1		XREF: 1(5780).
5784 7	$(3^-,2^+)$			I	1		XREF: 1(5780).
							J^{π} : $L(p,p')=(3,2)$.
5789.1 <i>3</i>	1@		D				
5801.3 7	(1) [@]		D				
5806 7	(0^+)			I			J^{π} : $L(p,p')=(0)$.
5841.7 <i>11</i>	1 [@]		D				
5844 7	3-			I	M		E(level): doublet in (p,p') .
5061.0.4	(10±)	25 2					J^{π} : L=3 in (p,t).
5861.9 <i>4</i>	(12^{+})	35 ps <i>3</i>	C		N	WX	J^{π} : stretched E2 740 γ to (10 ⁺) 5122; 1374 γ to 11 ⁻ 4486.
5894 7	(2-)			I	L		$T_{1/2}$: from RDM in (30 Si,2p2n γ). J^{π} : L=(3) in (α , α').
5950 7	(3 ⁻) 5 ⁻			I	M		J^{π} : L(p,t)=5.
5981.4 <i>4</i>	1@		D	-			J. E(p,t)=3.
6100 25	$(2^+,4^+)$		D		M		J^{π} : L(2,4) in (p,t).
6125.92 20	1(-)@		D				- (-,·) (r ,·)·
6184.3 25	(2) [@]		D				
6191.52 20	1-@		D				
6300.2 3	1-@		D				
	(1) [@]						
6329.9 11	(1) (1)		D				
6362.7 6	(1) [@]		D				
6377.6 3	1-@		D			7.7	Iπ. 1552 to (10 [±]) 4949
6400.0 <i>15</i>	1-@		ъ.			W	J^{π} : 1552 γ to (10 ⁺) 4848.
6524.45 20		0.7	D				W. M. 2004 (11-) 4407
6550.3 [‡] <i>b</i> 4	(12^{-})	<0.7 ps	С		N	WX	J^{π} : M1 2064 γ to (11 ⁻) 4487.
	. @						$T_{1/2}$: from RDM in (30 Si,2p2n γ).
6566.2 6	1@		D				
6606.4 3	1-@		D				VT 0100 . 11- 4406
6608.5 11	·(-)@		_			W	J^{π} : 2122 γ to 11 ⁻ 4486.
6645.6 5	1(-)@		D				
6661.5 [‡] <i>b</i> 5	(13^{-})	22 ps <i>3</i>	С		N	WX	J^{π} : D 112 γ to (12 ⁻) 6550; D 800 γ to (12 ⁺) 5862.
	@						$T_{1/2}$: from RDM in (30 Si,2p2n γ).
6718.5 9	$(2^{-})^{\textcircled{0}}$		D				
6761.4 <i>4</i>	1(-)@		D				

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XREF		Comments
6787.3 4	1-@		D			
6818.1 4	1-@		D			
6883.1 4	1-@		D			
6995.89 20	1-@	0.38 fs 5	D			$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
7031.3 3	1-@	0.57 fs <i>12</i>	D			$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
7069.6 4	1-@	0.37 13 12	D			1 _{1/2} . Holli Dortwi III (p,p y).
7076.9 12	1@		D			
7134.1 10	(14^{+})		D		W	J^{π} : E1 472 γ to (13 ⁻) 6662.
7239.7 11	1(-)@		D			0 1 21 1127 to (10) 00021
7271.7 5	_@		D			
7279.0 11	(2) [@]		D			
$7312.4^{\ddagger b}$ 5	(14^{-})	<1.4 ps	C	N	WX	J^{π} : M1 651 γ to (13 ⁻) 6662.
7312.4	(14)	<1.4 ps	C	N	WA	$T_{1/2}$: from RDM in (30 Si,2p2n γ).
7384.3 6	1 @		D			1/2. Hom RDW in (51,2p2m/).
7394.4 4	1@		D			
7422.5 11	1		D			
7447.2 16			D			
7469.1 <i>4</i>	1(-)@	0.7 fs 3	D			$T_{1/2}$: from $(p,p'\gamma)$.
7486.6 5	1(-)@		D			
7518.4 6	1-@		D			
7573.6 7	1@		D			
7604.4 <i>7</i>	(1) [@]		D			
7619.5 9	(1) [@]		D			
7681.1 5	1 ^{-@}		D			
7711.3 5	1@		D			
7731.7 5	1-@		D			
7782.3 9	1 [@]		D			
7784.0 <i>6</i>	$(2)^{@}$		D			
7787.6 10	(1) [@]		D			
7808.1 <i>11</i>	1@		D			
7831.4 <i>13</i>			D			
7837.7 <i>15</i>	$(2)^{@}$		D			
7856.6 <i>5</i>	1- @		D			
7877.6 10	(1) [@]	0.34 fs 20	D			$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
7881.8 <i>5</i>	1@		D			
7894.3 7	1@		D			
7919.4 <i>10</i>	(1) [@]		D			
7931.4 9	1@		D			
7950.4 4	1(+)@	0.70 MeV 5	D	I		J ^π : D 7950 γ to 0 ⁺ g.s.; M1 resonance from (p,p'); possible conf=(ν g _{7/2})(ν g _{9/2}) ⁻¹ (1982Dj04). T _{1/2} : Γ from (p,p').
7963.3 7			D			-1- V.A. /
8007.0 14	1-@		D			
8042.0 12	1@	0.66 fs 18	D			$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
8063.4 11	1(-)@		D			

E(level) [†]	${ m J}^{\pi}$	T _{1/2}		XI	REF		Comments
8088.1 10	(2) [@]		D				
8096.4 10	<u>1</u> @		D				
8168.4 <i>5</i>	1-@		D				
8211.0 <i>11</i>	1 @	0.42 fs 12	D				$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
8220.8 10	(1) [@]		D				-7-
8221.2 [‡] <i>12</i>	(14)				N	W	J^{π} : D γ to (13 ⁻) 6662.
8229.9 7	1-@		D				•
8319.5 6	1 @		D				
8355.1 <i>16</i>	1 [@]		D				
8381.7 8	(1) [@]		D				
8387.4 [‡] 6	(15+)	<1.4 ps			N	WX	J^{π} : E1 1075 γ to (14 ⁻) 7312. T _{1/2} : from RDM (1994Da15) in (30 Si,2p2n γ).
8422.2 9	(⁻) [@]		D				,
8486.5 14	1@		D				
8501.0 <i>17</i>	1@		D				
8553.0 <i>13</i> 8594.7 <i>11</i>	1@		D			W	
8606.6 8	(1) [@]		D				
8660.4 <i>3</i>	1-@		D				
8695.2 14	1@		D				
8763.4 5	1 [@]		D				
8774.4 <i>4</i>	1-@		D				
8791.5 8	(1) [@]		D				
8819.8 <i>6</i>	1@		D				
8834.3 20	(1) [@]		D				
8902.5 9	1@		D				
8924.0 [‡] 7	(16 ⁺)	<1.4 ps			N	WX	J^{π} : (M1) 537 γ to (15 ⁺) 8387. $T_{1/2}$: from RDM in (³⁰ Si,2p2n γ).
8926.3 15	(1) [@]		D				1/2
8955.5 6	1(-)@		D				
9.00×10 ³ 10	(1 ⁺)	1.1 MeV <i>1</i>		Ι			J ^π : M1 resonance in (p,p'); possible conf=(ν g _{7/2})(ν g _{9/2}) ⁻¹ (1982Dj04). T _{1/2} : Γ from (p,p').
9022.1 8			D				-1= VL (L /
9096.6 <i>6</i>	1-@		D				
9126.5 10	1@		D				
9187.0 8	1@		D				
9206.4 8	1(-)@		D				
9237.4 8	1@		D				
9280.2 <i>23</i>	(2) [@]		D				
9296 <i>3</i>	$(2)^{@}$		D				
9337.6 8	1 @		D				
9359.3 10	(15^{+})					W	J^{π} : M1 2225 γ to (14 ⁺) 7134; D 2048 γ to (14 ⁻) 7312.
9360.9 7	1@		D				
9418.9 <i>12</i>	(⁻) [@]		D				

E(level) [†]	J^{π}	T _{1/2}		XREF			Comments
9443.2 8	1@		D				
9481.0 [‡] 8	(17^{+})	<1.4 ps		N		WX	J^{π} : M1 557 γ to (16 ⁺) 8924.
							$T_{1/2}$: from RDM in (30 Si,2p2n γ).
9502.8 8	1@		D				
9559.3 <i>13</i>	$(1)^{@}$		D				
9592.3 10	$(1^{-})^{@}$		D				
9646.7 13	$(1)^{@}$		D				
9691 <i>3</i>			D				
9710.6 <i>11</i>	1@		D				
9827.0 <i>17</i>	1@		D				
9843.0 10	$(1)^{@}$		D				
10020.3 14	(16^{+})					W	J^{π} : M1 661 γ to (15 ⁺) 9359.
10102.9 [‡] <i>13</i>	(18^{+})			N		W	J^{π} : M1 622 γ to (17 ⁺) 9481.
10579.2 <i>17</i>	(17^+)					W	J^{π} : M1 559 γ to (16 ⁺) 10020.
11215.5 20	(18^{+})					W	J^{π} : D 636 γ to (17 ⁺) 10579.
$14.13 \times 10^3 \ 20$	2+	4.6 MeV 3		L	T		J^{π} : $L(\alpha, \alpha')=2$.
							$T_{1/2}$: Γ from (α, α') .
							GQR; E=14550, Γ =5.0 MeV 4 in (³ He, ³ He').
$16.22 \times 10^3 \ 20$	0_{+}	4.8 MeV <i>3</i>		L			J^{π} : $L(\alpha, \alpha') = 0$.
							$T_{1/2}$: Γ from (α, α') .
16.65×10 ³ 5	1-	4.14 MeV			S		GMR. GDR; Γ from (γ, xn) . Not a discrete state.
10.05×10-5	1	4.14 IVIC V			3		ODK , I HOIH (γ, xii) . Not a discrete state.

[†] From least-squares fit to adopted $E\gamma$, except as noted, whenever deexciting gammas have been observed; from cross-referenced reactions otherwise.

 $^{^{\}ddagger}$ Note that E(level) here differs significantly from that deduced in source data set on account of the cumulative effect of apparently systematically low E γ values in that data set.

[#] Absence of level in $(n,n'\gamma)$ makes its existence highly questionable; possibly the γ observed in (γ,γ') was an inelastic one.

[@] From resonance fluorescence.

[&]amp; Band(A): π =+, Δ J=2 sequence.

^a Band(B): $\pi = -$, $\Delta J = 2$ sequence.

^b Band(C): sequence based on 12⁻.

γ (92Mo)

	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	$\mathrm{I}_{\gamma}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	$\alpha^{m{i}}$	Comments
	1509.51	2+	1509.50 3	100	0.0	0+	E2			B(E2)(W.u.)=8.4 5 E _{γ} : other E γ : 1509.58 13 in (α ,2n γ), 1509.47 3 in (p,p' γ), 1509.68 15 in (32 S,2p2n γ).
	2282.61	4+	773.09 3	100	1509.51	2+	E2 ^f			Mult.: from Coulomb excitation; Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$. B(E2)(W.u.)<24 E _{γ} : weighted average of 773.09 <i>3</i> in $(n,n'\gamma)$, 773.05 <i>12</i> in $(\alpha,2n\gamma)$, 773.10 <i>8</i> in $(p,p'\gamma)$, 772.97 <i>15</i> in $(^{32}S,2p2n\gamma)$.
	2519.53	0+	1010.02 20	100	1509.51	2+	[E2]			$\delta(Q,O) = -0.12 + 22 - 14$ from $(p,p'\gamma)$. B(E2)(W.u.)<6.4 E _{γ} : unweighted average of 1010.22 7 in $(p,p'\gamma)$ and 1009.82 3 in $(n,n'\gamma)$.
	2526.96	5-	244.39 9	100	2282.61	4+	(E1(+M2))	<0.05 [@]	0.0098	B(E1)(W.u.)=1.45×10 ⁻⁵ 4; B(M2)(W.u.)<2.9 E _{γ} : unweighted average of 244.30 5 in (n,n' γ) and 244.47 7 in (p,p' γ). Others: 244.5 2 in (α ,2n γ), 243.6 3 in (37 Cl,2p2n γ), 243.7 6 in ε decay. Mult.: D(+Q) from (n,n' γ); $\Delta \pi$ =yes from level scheme.
	2612.41	6+	85.38 14	13.5 16	2526.96	5-	(E1)		0.200	B(E1)(W.u.)= 4.0×10^{-5} 5 E _γ : weighted average of 85.25 20 in (n,n'γ), 85.5 2 in (α,2nγ). Others: 84.3 3 in (37 Cl,2p2nγ), 85.0 5 in ε decay, 84.6 from (16 O,6nγ). I _γ : unweighted average of 11.9 3 in (α,2nγ), 15.1 10 in ε decay.
			329.82 5	100.0 5	2282.61	4+	E2		0.01761	Mult.: E1 or M1 from RUL; adopted $\Delta \pi$ =yes. B(E2)(W.u.)=3.26 <i>11</i> E _{γ} : weighted average of 329.83 <i>5</i> in (n,n' γ), 329.76 <i>12</i> in (α ,2n γ). Others: 329.1 <i>3</i> in (37 Cl,2p2n γ), 329.3 <i>3</i> in ε decay, 330.9 <i>4</i> in (p,p' γ). I _{γ} : from (α ,2n γ). Mult.: Q from (α ,2n γ); not M2 from RUL.
١	2634.2?	(1)	2634.2 ^{hj} 15	100	0.0	0+	$(D)^{g}$			Mult.: Q from $(\alpha,2n\gamma)$; not M2 from RUL.
	2760.52	8 ⁺	148.14 <i>13</i>	100	2612.41		E2		0.291	B(E2)(W.u.)=1.311 22 Other Eγ: 148.0 2 in $(\alpha,2n\gamma)$, 147.3 3 in $(^{37}C1,2p2n\gamma)$. Mult.: stretched Q from $\gamma(\theta)$ in $(^{37}C1,2p2n\gamma)$; not M2 from $\alpha(\exp)=0.24$ 10 in $(\alpha,2n\gamma)$.
	2838.6? 2849.81	(1) 3 ⁻	2838.6 ^h j 5 567.3 2	100 3.3 5	0.0 2282.61	0 ⁺ 4 ⁺	(D) ^g [E1]			B(E1)(W.u.)=0.00022 +6-9 E _{γ} ,I _{γ} : from (n,n' γ). Other E γ (I γ): E γ =567.05 12 (19.0 24) from (p,p' γ).
			1340.26 4	100 5	1509.51	2+	(E1+M2)	-0.015 [@] 10		B(E1)(W.u.)=0.00049 +10-19; B(M2)(W.u.)=0.3 +4-3 Other δ : -0.09 +5-21 from $\gamma(\theta)$ in (p,p' γ); δ <0.04 from RUL. Mult.: D+Q from $\gamma(\theta)$ in (p,p' γ) and (n,n' γ); adopted $\Delta\pi$ =yes.

γ (92Mo) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π} Mu	llt. [†]	Comments
2922.6? 3006.96	(1) (4,5) ⁻	2922.6 ^h <i>j</i> 6 157.03 11	100 1.0 <i>5</i>	0.0 (2849.81 3	0 ⁺ (D) ⁸	,	
		480.01 8	100 6	2526.96	5- D+(-0.10 [@] 4	E _γ : weighted average of 479.95 11 from $(n,n'\gamma)$, 480.12 14 from $(p,p'\gamma)$ and 480.0 2 from $(\alpha,2n\gamma)$. δ: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$.
3063.63	(4^{-})	213.85 11	7.3 7	2849.81	3-		
		536.88 19	100 7	2526.96	5- D+(+14 [@] 3	E_{γ} : unweighted average of 537.07 4 in $(p,p'\gamma)$ and 536.69 2 in $(n,n'\gamma)$.
3091.35	2+	1581.83 7	21.6 19	1509.51 2	2 ⁺ (E2-	-M1) +0.63 <i>11</i>	B(M1)(W.u.)=0.026 5; B(E2)(W.u.)=4.3 13 I _{γ} : unweighted average of 19.7 11 in (n,n' γ) and 23.5 25 in (p,p' γ). Mult., δ : D+Q from $\gamma(\theta)$ in (p,p' γ); adopted $\Delta \pi$ =no. Other δ : +2.5 +6-4 or possibly -0.04 +7-6 from $\gamma(\theta)$ in (n,n' γ), neither
		2001 20 0	100 0 25	0.0	n± 52		of which is consistent with the $(p,p'\gamma)$ result.
		3091.30 8	100.0 25	0.0	0 ⁺ E2		B(E2)(W.u.)=2.5 3 I_{γ} : from $(p,p'\gamma)$.
							Mult.: Q to 0^+ from $\gamma(\theta)$ in $(p,p'\gamma)$; not M2, from RUL.
3368.68	(4^{+})	305.06 <i>3</i>	100 5	3063.63 ((4^{-}) D+0	@	Additional information 1. Other Ey: $304.8 \ 2$ in $(p,p'\gamma)$.
		241.45.11	27.5.21	2006.06	(45)= D.(0.44.15	Mult., δ : D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$. Adopted $\Delta \pi$ =yes; however, if δ =-0.73 10 as reported in $(n,n'\gamma)$, B(M2)(W.u.) will exceed RUL, unless $T_{1/2}(3369)$ exceeds 80 ns. Alternatively, 305 γ may be complex in $(n,n'\gamma)$, possibly making δ unreliable; the 305 γ branch is relatively stronger in $(n,n'\gamma)$ than in $(p,p'\gamma)$.
		361.65 11	27.5 21	3006.96 ((4,5) ⁻ D+(0.44 15	B(M1)(W.u.)<0.013; B(E2)(W.u.)<29 Other E γ (I γ): 362.3 2 (49 δ) in (p,p' γ). Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ); adopted $\Delta\pi$ =no.
		842.1 ^{<i>j</i>} 2	106 <i>6</i>	2526.96	5-		E_{γ} , I_{γ} : from $(p,p'\gamma)$. Placement is considered to be tentative since no evidence for this γ could be found from excit or $\gamma\gamma$ coin in $(n,n'\gamma)$.
		1085.88 11	23.2 21	2282.61	4 ⁺ (M1	+E2)	B(M1)(W.u.)<0.00052; B(E2)(W.u.)<0.12 Other Ey (Iy): 1086.4 2 (32 5) in (p,p' γ). Mult.: D+Q from $\gamma(\theta)$ in (p,p' γ) and (n,n' γ); adopted $\Delta \pi$ =no. δ : +0.27 +51-24 from (p,p' γ) but -0.6 2 or possibly +4 +4-2 from $\gamma(\theta)$ in (n,n' γ).
		1858.5 7	4.8 12	1509.51	2^{+} (E2)		B(E2)(W.u.)<0.0056 Mult.: Q from $(n,n'\gamma)$; adopted $\Delta\pi=no$.
3380.4	(6-)	1097.9 ^d	100 ^d	2282.61	4 ⁺ M2 ^J	•	2 (,n //), waspiece 2 110.
3384.5?	(1)	3384.4 ^h j 8	100	0.0	0^{+} (D)		
3542.31	2+	2032.80 6	100 4	1509.51			B(M1)(W.u.)=0.017 16; B(E2)(W.u.)=12 7 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta \pi$ =no from RUL.
		3541.96 <i>24</i>	14.1 15	0.0	0 ⁺ E2		δ: other δ: -0.80 7 or possibly -3.7 7 from $(n,n'\gamma)$. B(E2)(W.u.)= 0.15 7 Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$; E1, M1 or E2 from RUL.

γ (92Mo) (continued)

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}^{\dagger}$	E_f	${\rm J}_f^\pi$	Mult. [†]	$\alpha^{m{i}}$	Comments
3579.81	3-	1052.88 8	100 5	2526.96	5-	(E2)		B(E2)(W.u.)<38 Other E γ : 1053.4 2 from (p,p' γ).
								Mult.: Q from $\gamma(\theta)$ in $(p,p'\gamma)$; adopted $\Delta \pi$ =no.
								$\delta(Q,O) = -0.12 + 19 - 32$ from $(p,p'\gamma)$, adopted $2\lambda = 10$.
		1297.22 9	87 5	2282.61	4+	(E1)		B(E1)(W.u.)<0.00029
						()		Other Ey: 1297.6 2 from $(p,p'\gamma)$.
								Mult., δ : D, δ (D,Q)=0.00 δ from $\gamma(\theta)$ in (n,n' γ); $\Delta \pi$ =yes from level scheme.
		2070.21 9	≈33	1509.51				
3621.06	(≤4)	2111.53 6	100	1509.51				74
3624.13	7-	243.8		3380.4		(M1)	0.0229	E_{γ} , Mult.: from 74 Ge(28 Si, $2\alpha 2n\gamma$).
		1097.10 <i>16</i>	100	2526.96	5-	(E2)		Other Ey: 1097.7 2 in $(\alpha,2n\gamma)$, 1098 <i>I</i> in $(^{32}S,2p2n\gamma)$, 1096.8 <i>3</i> in
								(³⁷ Cl,2p2ny).
		7. :						Mult.: yrast cascade γ , mult=Q to 5 ⁻ , from $(\alpha,2n\gamma)$, $(^{32}S,2n2p\gamma)$.
3651.8?	(1)	3651.7 ^h j 11	100	0.0		$(D)^g$		
3688.77	$1^{(-)},2,3$	838.9 2	15.8 <i>15</i>	2849.81				Other Iy: 92 6 from $(p,p'\gamma)$.
		2179.24 <i>6</i>	100 4	1509.51	2+	D(+Q)		Other E γ : 2178.48 13 from (p,p' γ).
								δ : $-0.02 6$ or $+2.5 5$ if $J(3689)=2$; $+0.35 4$ if $J(3689)=3$ (2010Go15) in
		#						$(n,n'\gamma).$
3753.2		385 [#] 1		3368.68	` ′			
		689 [#] 1		3063.63				
3757.25		1230.28 8	100	2526.96				0.1. 7. 70.00 2000
3814.58	2,3	234.83 13	91 9	3579.81				Other Iy: 58 9 from 2000Ga30 in $(n,n'\gamma)$.
		750.8^{j}		3063.63	` /			E_{γ} : from $(p,p'\gamma)$.
		807.7 ^j	36.1 <i>12</i>	3006.96	(4,5)			E_{γ} : tentative placement from $(p,p'\gamma)$. $E_{\gamma}=807.7$ 3, branching=36.1 12 from $(n,n'\gamma)$ if correctly placed.
		964.59 11	94 9	2849.81	3-	D(+Q)		Other Iy: 82 5 in $(p,p'\gamma)$; 119 18 (2000Ga30) in $(n,n'\gamma)$.
		2205 52 12	100 -	1500 5:	2+	D/ 63		Mult., δ : δ (D,Q)=0.00 12 or -6 +2-15 if J(3815)=2; from (n,n' γ).
		2305.20 12	100 6	1509.51	2+	D(+Q)		Other Ey: 2304.3 3 in $(p,p'\gamma)$.
								Mult., δ : δ (D,Q)= $-0.01 + 15 - 11$ or $+2.3 + 9 - 7$ if J(3815)=2; from $\gamma(\theta)$ in (n,n' γ).
3841.87	0_{+}	2332.33 11	100	1509.51		[E2]		B(E2)(W.u.)<1.6
3871.5	(≤4)	2362 [#] 1	100	1509.51				
3876.62	4+	1593.76 <i>13</i>	33 3	2282.61				$I(1594\gamma):I(2367\gamma)=61 \ 11:100 \ 11 \ \text{in} \ (p,p'\gamma).$
202625	2+	2367.22 10	100 4	1509.51		(E2)		Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta \pi$ =no from level scheme.
3926.36	2+	1643.9 5	13.6 13	2282.61		D . C		Od E 0440051 / D 0445551 / L) Od T 40501 / D
		2416.86 <i>12</i>	54.8 24	1509.51	21	D+Q		Other Ey: 2416.9 5 in (γ, γ') , 2415.5 5 in $(p,p'\gamma)$. Other Iy: 49 24 in (γ, γ') for uncertain γ , 54 8 from $(p,p'\gamma)$.
		2026.22.12	100 11	0.0	0+	(E2)		Mult., δ : from $\gamma(\theta)$ in $(n,n'\gamma)$; δ =+0.30 +17-10 or +1.15 26.
		3926.22 <i>13</i>	100 11	0.0	O.	(E2)		B(E2)(W.u.)=1.38 24

 $\gamma(^{92}\text{Mo})$ (continued)

Comments

 I_{γ} : % photon branching=78 28 from (γ, γ') . However, no other γ is

Placement shown as uncertain because γ seen by 2000Ga30 was not

Other Ey: 3924.9 5 in $(p,p'\gamma)$, 3925.7 2 in (γ,γ') . Mult.: Q from (γ, γ') ; not M2 from RUL.

known to deexcite this level. Mult.: from (γ, γ') and $(n, n'\gamma)$.

Other Ey: 898.0 2 in $(p,p'\gamma)$.

 E_{ν} : from $(p,p'\gamma)$.

 I_{γ} : from $(p,p'\gamma)$.

 I_{ν} : from $(p,p'\gamma)$.

 I_{γ} : from $(p,p'\gamma)$.

reported by 2010Go15 in $(n,n'\gamma)$.

Mult.: D from $(n,n'\gamma)$; $\Delta \pi = (yes)$ from (γ,γ') .

Other Iy: 89 13 from 2000Ga30 in $(n,n'\gamma)$.

confirmed by 2010Go15 in that reaction.

from positive IPDCO in (28 Si, $2\alpha 2$ n γ).

Other Ey: 628.25 11 from 2000Ga30 in $(n,n'\gamma)$, but this γ was not

Mult.: Q yrast decay γ ray to 7⁻, from $(\alpha,2n\gamma)$, $(^{32}S,2n2p\gamma)$. Electric

Other Ey: 3943.96 17 in $(p,p'\gamma)$, 3944.1 3 in (γ,γ') .

 δ^{\ddagger}

+0.07 4

 $+0.4^{\circ}$ 5

 $-0.9^{\textcircled{0}} + 4 - 8$

+0.3 (0) +4-3

-0.08[@] 12

Mult.

D

 $(Q)^{g}$

D+O

D(+O)

D

(E1)

D+O

D(+O)

D(+O)

D(+Q)

E2

 \mathbf{E}_f

 $0.0 \quad 0^{+}$

2612.41 6+

3368.68 (4+)

3063.63 (4⁻)

2849.81 3-

1509.51 2⁺

2526.96 5-

2849.81 3

2526.96 5-

2282.61 4+

2282.61 4+

1509.51 2+

2849.81 3-

2526.96 5

2282.61 4+

2849.81 3-

2526.96 5

2612.41 6⁺

2282.61 4+

2612.41 6+

3624.13 7-

3368.68 (4+)

2282.61 4+

3091.35 2⁺

 $3063.63 (4^{-})$

 $0.0 0^{+}$

3368.68 (4⁺)

 $0.0 0^{+}$

 E_{γ}^{\dagger}

3944.83 *13*

1340.8^j 4

594.9*j*

899.3 5

1113.2 *3*

2453.77 20

3964.2^{hj} 13

1492.33 9

747.7 9

1266.06 13

1589.00 19

1832.99 15

1864.86^j 23

2638.53 16

1300.91 14

1623.15 17

1867.58 12

1632.49 14

1309.7 8

1122.9 9

1574.6 6

1904.61 18

1628.87 14

626.8^b 2

912.04 12

1998.3 5

1215.8 7

4148.0 4

100

100

100 8

55 6

49 6

100

100

19 5

100.8

23 4

45.5

67 14

808

100 14

13.3

30 4

100 6

16 5

100 9

27 11

24 7

100 7

100

100

100 8

15 5

27 8

 E_i (level)

3944.92

3953.2?

3963.19

3964.3?

4019.31

4115.81

4148.08

4150.36

4159.47

4187.20

4241.29

4251.0

4280.73

4307.44

13

4+

(2)

 $3^{(-)},4$

1(-)

5-

 (6^+)

5,6,7

9-

2.3

 $4^{(+)}.5^{(-)}$

γ (92Mo) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\ddagger}	$\alpha^{m{i}}$	Comments
4307.44	2,3	1457.57 13	≈96	2849.81 3-	D(+Q)			δ : -0.02 +9-11 or -5 +2-5 if J(4308)=2; +0.14 5 if J(4308)=4 (2010Go15) from (n,n' γ).
		2797.94 <i>13</i>	100 12	1509.51 2+	D(+Q)			δ : +0.1 +4-2 or +1.7 +11-9 if J(4308)=2 (2010Go15) from (n,n' γ).
4315.2	5-	1703.3 <i>4</i> 1787.3 <i>5</i>	100 <i>8</i> 86 <i>9</i>	2612.41 6 ⁺ 2526.96 5 ⁻				
4328.5?		1568 [#] <i>j</i> 1	100	2760.52 8+				
4345.78		1339.1 5		3006.96 (4,5)	_			Reported in $(n,n'\gamma)$ by 2000Ga30, but not by 2010Go15 (possibly unresolved from strong 1340 γ there).
		2063.1 2	100 10	2282.61 4+		6		
4429.51	3	1579.27 22	95 11	2849.81 3-	D(+Q)	+0.3 [@] +1-4		Other Iy: 80 12 from 2000Ga30 in $(n,n'\gamma)$.
		2147.08 14	100 11	2282.61 4+	D+Q			δ : +0.25 14 or +8 +70-4 from (n,n' γ).
1126.05	2.4.5	2919.84 23	42 9	1509.51 2+				Other I. 128 0 22 from 2000Co20 in (n n/s)
4436.05	3,4,5	1371.91 <i>24</i> 2153.59 <i>14</i>	47 <i>12</i> 100 <i>10</i>	3063.63 (4 ⁻) 2282.61 4 ⁺	D+Q			Other I γ : 28.9 22 from 2000Ga30 in (n,n' γ).
4436.42		1429.45 14	100 10	3006.96 (4,5)				
4455.01	(3,4,5)	1391.31 16	100 18	3063.63 (4 ⁻)				
	(-, ,-,	2172.50 23	75 10	2282.61 4+				Other Iy: 59 9 from 2000Ga30 in $(n,n'\gamma)$.
4477.80	$3^{(-)},4^{(+)},5$	1951.4 <i>10</i>	19 8	2526.96 5-				
		2195.15 <i>17</i>	100 7	2282.61 4+	D+Q			Mult.: $\gamma(\theta)$ in $(n,n'\gamma)$ excludes pure Q or pure D, $\Delta J=0$. Other Ey: 2195.54 <i>14</i> from 2000Ga30 in $(n,n'\gamma)$.
4483.36		1956.37 <i>21</i>	100	2526.96 5				
4486.0	11-	234.9 ^b 2	100	4251.0 9	$E2^{f}$		0.0562	B(E2)(W.u.)=3.47 8
4493.92	2+	2984.29 <i>17</i>	100 10	1509.51 2+	D+Q			Other E: 2983.6 6 in (γ, γ') .
		l _a			^			δ : +0.23 +24-15 or +1.3 +5-6 (2010Go15) from (n,n' γ).
4500 6	4.1	4494.7 ^h 6	≤43	$0.0 0^{+}$	$(E2)^g$			Mult.: Q from $\gamma(\theta)$ in (γ, γ') ; $\Delta \pi$ =no from level scheme.
4509.6	4+	3000	100	1509.51 2+				E_{γ} : from $(\alpha, \alpha' \gamma)$.
4544.40 4573.3	(≤4)	2261.76 <i>16</i> 3063.75 <i>25</i>	100 100	2282.61 4 ⁺ 1509.51 2 ⁺				
4589.64	2 ⁽⁺⁾	3080.05 24	92 13	1509.51 2 ⁺				$\delta(D,Q)=0.0 +6-12 \text{ or } 1/\delta=+0.3 +16-7 \text{ from } (n,n'\gamma).$
7307.07	2.	4589.7 7	100 19	$0.0 0^{+}$	Q			Other Ey: 4590.8 9 in (γ, γ') .
4630.65	$(2^+,3,4^+)$	2348.6 11	13 5	2282.61 4+	~			
	()- / /	3121.07 19	100 16	1509.51 2+				
4633.73	(1 ⁻)	3124.7 ^h 8	11 9	1509.51 2+	(E1) ^g			B(E1)(W.u.)= 2.9×10^{-4} 25 E _{γ} : from (γ , γ'). E γ =3121.07 19 from (n,n' γ) is too low for this placement, suggesting the presence of a second level near 4630 keV (as adopted here).
								I_{γ} : from (γ, γ') .
								Mult.: (D) from (γ, γ') ; $\Delta \pi = (yes)$ from level scheme.
		4633.6 ^h 1	100 9	$0.0 0^{+}$	$(E1)^{g}$			B(E1)(W.u.)=0.00081 18

γ (92Mo) (continued)

	E_i (level)	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
								Mult.: D, $\Delta \pi$ =(yes) from (γ, γ') . Other E γ : 4634.1 8 in $(n, n'\gamma)$.
	4652.7	(≤4)	1802.8 <i>6</i> 3143.1 <i>3</i>	29 <i>14</i> 100 <i>18</i>	2849.81 1509.51			
	4663.2	1	4663.1 ^h 6	100	0.0	0^{+}	D^g	
	4685.1	(6-)	1677.5 <i>13</i>	86 21	3006.96			
			2158.1 3	100 20	2526.96		D+Q	
١	4702.73	(≤4)	1612.5 <i>11</i>	31 <i>13</i>	3091.35			
	.====		3193.11 24	100 14	1509.51			
١	4725.2	4+	1661.4 3	≤291	3063.63			
			2443.8 10	100 16	2282.61			
	4734.3?	(2.2+.4+)	1365.6 ^j 3	100	3368.68			
	4781.51	$(2,3^+,4^+)$	3271.94 20	100	1509.51		f	
	4848.3	(10^{+})	2087.8 ^d	100 ^d	2760.52		Q^{f}	
١	4893.3	4 ⁺ 7 ⁺	3383.7 3	100 100 ^c 8	1509.51			
١	4917.9	7.	2157.0 ^c 6 2305.8 ^c 6	77° 7	2760.52 2612.41			
	1026 1	(1)	4936.0 ^h 6			0+	(D) <mark>g</mark>	
١	4936.1	(1)		100			. ,	
١	4944.7	(1)	4944.6 ^h 10	100	0.0	0+	(D) ^{g}	
١	4948.7	$(3,4^+)$	1940.8 6	100 21	3006.96			
١			2666.1 <i>5</i> 3439.8 <i>5</i>	41 <i>18</i> 22 <i>6</i>	2282.61 1509.51			
١	4970.7	$(1,2^+)$	3461.1 5	100	1509.51		(D)	E_{γ} : weighted average of 3461.3 7 in $(n,n'\gamma)$ and 3460.9 7 in (γ,γ') .
								Mult.: from (γ, γ') .
١	5003.6	$(2)^{+}$	3493.78 ^{<i>j</i>} 24	45 <i>33</i>	1509.51	2+	(M1)	B(M1)(W.u.)=0.007 +8-7
١								E_{γ} : weighted average of 3494.1 4 in (γ, γ') and 3493.6 3 in $(n, n'\gamma)$.
								I_{γ} : from (γ, γ') .
			5000 5h 4	100.22	0.0	0+	(EQ) 0	Mult.: (D) in (γ, γ') ; $\Delta \pi = \text{no}$ from level scheme.
			5003.5 ^h 4	100 33	0.0	0_{+}	$(E2)^g$	B(E2)(W.u.)=0.23 19
								I_{γ} : from (γ, γ') . Mult.: (Q), $\Delta \pi$ =no from (γ, γ') .
	5076.6	4+	2793.5 18	17 10	2282.61	4+		ividit (y) , $\triangle k$ -iio iioiii (y,y) .
	2010.0	•	3567.0 <i>3</i>	≈100	1509.51			
	5121.7	(10^+)	2361.4 ^a 3	100	2760.52		(E2)	B(E2)(W.u.)>0.45
	2.2	(/		100	3,00.02	-	(22)	Mult.: stretched Q, from $\gamma(\theta)$ in (37 Cl,2p2n γ).
	5151.3	$(10^-,11^-,12^-)$	665.3 ^b 2	100	4486.0	11-	(M1)	Mult.: from $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
	5283.0	(1) (1)	5282.8^{h} 21	100	0.0	0+	(N11) (D) ^g	$\mathbf{Mon} \ \gamma(0) \ \mathbf{m} \ (u, 2\mathbf{n} \gamma).$
		(1)					(D)°	
	5312.6		2552 [#] 1	100	2760.52	8		

γ (92Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
5331.7	(1)	5331.5 ^h 9	100	0.0	0+	(D) ^g	
5451.6	(1)	5451.4 <mark>h</mark> 9	100	0.0	0^{+}	(D) <mark>8</mark>	
5462.9	$(7,8)^{+}$	2702.4 ^c 6	100° 16	2760.52			
		2850.3 ^c 6	91 ^c 16	2612.41			
5527.4	(1)	5527.2 ^h 5	100	0.0	0_{+}	$(D)^g$	
5611.2		762.9 ^d	100 ^d	4848.3	(10^{+})		
5623.8	(1)	5623.6 ^h 10	100	0.0	0^{+}	(D) <mark>8</mark>	
5629.9	1	5629.7 ^h 19	100	0.0	0^{+}	$D_{\mathbf{g}}$	
5703.4	1	5703.2 ^h 4	100	0.0	0^{+}	D^g	
5789.1	1	5788.9 ^h 3	100	0.0	0^{+}	$D_{\mathbf{g}}$	
5801.3	(1)	5801.1 ^h 7	100	0.0	0+	$(D)^{g}$	
5841.7	1	5841.5 ^h 11	100	0.0	0+	$D_{\mathbf{g}}$	
5861.9	(12^{+})	740.3 2	100 14	5121.7	(10^{+})	E2	B(E2)(W.u.)=2.2 5
							E_{γ} : from $(\alpha, 2n\gamma)$.
							I_{γ} : from (16 O,6n γ).
						C	Mult.: stretched Q from $\gamma(\theta)$ in (37 Cl,2p2n γ); not M2 from RUL.
		1374.7 ^e	36 ^e 14	4486.0		$E1^f$	$B(E1)(W.u.)=1.0\times10^{-6} 4$
5981.4	1	4473.2 ^{hj} 11		1509.51		$(D)^g$	
		5981.2 ^h 4	100	0.0	0_{+}	D_{8}	
6125.92	1 ⁽⁻⁾	6125.7 ^h 2	100	0.0	0_{+}	$(E1)^g$	$\alpha(IPF) = 0.00232 \ 4$
							Mult.: D, $\Delta \pi = (yes)$ in (γ, γ') .
6184.3	(2)	6184.1 ^h 25	100	0.0	0_{+}	$(Q)^{g}$	
6191.52	1-	6191.3 ^h 2	100	0.0	0_{+}	E1 <mark>8</mark>	$\alpha(IPF)=0.00234 \ 4$
6300.2	1-	6300.0 ^h 3	100	0.0	0_{+}	E1 g	$\alpha(IPF) = 0.00236 \ 4$
6329.9	(1)	6329.7 ^h 11	100	0.0	0^{+}	$(D)^{g}$	
6362.7	(1)	6362.5 ^h 6	100	0.0	0^{+}	(D) <mark>8</mark>	
6377.6	1-	4868.8 <mark>hj</mark> 10		1509.51	2+	$(D)^g$	
		6377.4 <mark>h</mark> 3	100	0.0	0^{+}	E18	$\alpha(IPF)=0.00238 \ 4$
6400.0		1551.6 ^d	100 ^d	4848.3	(10^{+})		
6524.45	1-	6524.2 ^h 2	100	0.0	0+	E1 8	$\alpha(IPF)=0.00242 \ 4$
6550.3	(12^{-})	2064.1 ^a 3	100	4486.0	11-	$M1^f$	B(M1)(W.u.)>0.0036
0000.0	(12)	2001.1 5	100	1100.0	. 1	1411-	$E\gamma=2085.4$ 20 in $(\alpha,2n\gamma)$ is presumed to be erroneous. Other Ey: 2064.5 in $(^{28}\text{Si},2\alpha2n\gamma)$.
6566.2	1	6565.9 ^h 6	100	0.0		$D_{\mathbf{g}}$	•

γ (92Mo) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α^{i}	Comments
6606.4	1-	6606.1 ^h 3	100	0.0	0^{+}	E18		$\alpha(IPF)=0.00244 \ 4$
6608.5		2122.4 ^d	100 <mark>d</mark>	4486.0	11-			
6645.6	1(-)	6645.3 ^h 5	100	0.0	0^{+}	(E1) ⁸		$\alpha(IPF)=0.00244 \ 4$
		,						Mult.: D, $\Delta \pi = (yes)$ in (γ, γ') .
6661.5	(13^{-})	111.2 ^b 2	100 9	6550.3	(12^{-})	(M1+E2)	0.5 4	Other Ey: 110.4 from (16 O,6ny), 110.7 from (28 Si,2 α 2ny).
								I _y : from (28 Si,2 α 2ny).
								Mult.: D from $\gamma(\theta)$ and anisotropy in (37 Cl,2p2n γ); authors assume $\Delta J=1$ transitions are M1(+E2).
		800.7 ^d	9 <mark>d</mark> 4	5861.9	(12^{+})	\mathbf{D}^{f}		Other Iy: 118 27 from (¹⁶ O,6ny).
6718.5	(2^{-})	6718.2 ^h 9	100	0.0	0+	$(M2)^g$		$\alpha(\text{IPF})=0.001520\ 22$
	(-)	2.10.2	100	0.0	~	()		Mult.: $\Delta \pi$ =(yes) for (Q) transition in (γ, γ') .
6761.4	1(-)	6761.1 ^h 4	100	0.0	0^{+}	(E1) <mark>8</mark>		$\alpha(IPF) = 0.00246 \ 4$
		1						Mult.: D, $\Delta \pi = (yes)$ in (γ, γ') .
6787.3	1-	6787.0 ^h 4	100	0.0	0_{+}	E1 ⁸		$\alpha(IPF) = 0.00247 \ 4$
6818.1	1-	6817.8 ^h 4	100	0.0	0_{+}	E18		$\alpha(IPF) = 0.00248 \ 4$
6883.1	1-	6882.8 ^h 4	100	0.0	0_{+}	E18		$\alpha(IPF) = 0.00249 \ 4$
6995.89	1-	5487.0 ^{hj} 10	6 9	1509.51	2+	$(E1)^g$		B(E1)(W.u.)=0.0003 +5-3
								I_{γ} : from (γ, γ') . Mult.: (D) from (γ, γ') ; $\Delta \pi$ =yes from level scheme.
		6995.6 ^h 2	100 9	0.0	0^{+}	E18		$\alpha(\text{IPF})=0.00252 \ 4$
		0))3.0 2	100)	0.0	Ü	LI		B(E1)(W.u.)=0.0024 5
								I_{γ} : from (γ, γ') .
7031.3	1-	5519.8 ^{<i>j</i>} 17	8 11	1509.51	2+	(E1)		B(E1)(W.u.)=0.0003 +4-3
								I_{γ}, E_{γ} : from (γ, γ') .
		7031.0 ^h 3	100 11	0.0	0+	E18		Mult.: (D) from (γ, γ') ; $\Delta \pi$ =yes from level scheme. α (IPF)=0.00253 4
		1031.0 3	100 11	0.0	U	EIO		B(E1)(W.u.)=0.0016 5
								I_{γ} : from (γ, γ') .
7069.6	1-	7069.3 ^h 4	100	0.0	0^{+}	E18		α (IPF)=0.00254 4
7076.9	1	7076.6 ^h 12	100	0.0	0^{+}	D^g		
7134.1	(14^{+})	471.9 ^d	100 ^d	6661.5	(13^{-})	$\mathrm{E1}^{f}$		
7239.7	1 ⁽⁻⁾	7239.4 ^h 11	100	0.0	0_{+}	(E1) ^g		$\alpha(IPF) = 0.00257 \ 4$
7071 7	_	7071 4 5	100	0.0	0+			Mult.: D, $\Delta \pi = (yes)$ in (γ, γ') .
7271.7 7279.0	(2)	7271.4 <i>5</i> 7278.7 ^h 11	100 100	0.0	0 ⁺	$(Q)^g$		From (γ, γ') ; $\Delta \pi$ =yes.
7312.4	(2) (14^{-})	650.9^{b} 2	100	6661.5	(13-)	$M1^f$		B(M1)(W.u.)>0.057
7312.4	(14)	650.9 ^b 2 7384.0 ^h 6	100	0.0	(13) 0 ⁺	D_g^g		D(1V11)(w.u.)>U.U3/
1304.3	1	1304.0 0	100	0.0	U	טט		

γ (92Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f .	J_f^{π} Mu	alt. [†] Comments
7394.4	1	7394.1 ^h 4	100	0.0	D^+ D_8^g	
7422.5		7422.2 11	100	0.0		E_{γ} : from (γ, γ') .
7447.2		7446.9 <i>16</i>	100	0.0		E_{γ} : from (γ, γ') .
7469.1	1 ⁽⁻⁾	4950.7 ^{hj} 14	52 24	2519.53 ()+ (E1	1) ⁸ B(E1)(W.u.)=0.0013 9 Mult.: (D) from (γ, γ') ; $\Delta \pi$ =(yes) from level scheme.
		7468.8 ^h 4	100 24	0.0)+ (E1	B(E1)(W.u.)=0.0007 4
7486.6	1 ⁽⁻⁾	7486.3 ^h 5	100	0.0)+ (E1	Mult.: D, $\Delta \pi = (\text{yes})$ from (γ, γ') . 1)8 $\alpha(\text{IPF}) = 0.00261$ 4 Mult.: D, $\Delta \pi = (\text{yes})$ in (γ, γ') .
7518.4	1-	7518.1 <mark>h</mark> 6	100	0.0)+ E1	α (IPF)=0.00262 4
7573.6	1	7573.3 ^h 7	100	0.0	D^+ D_g^g	
7604.4	(1)	7604.1 ^h 7	100	0.0		
7619.5	(1)	7619.2 ^h 9	100	0.0		
7681.1	1-	7680.8 ^h 5	100	0.0	` '	
7711.3	1	7711.0 <mark>h</mark> 5	100	0.0)+ D8	
7731.7	1-	7731.4 <mark>h</mark> 5	100	0.0)+ E1	$\alpha (IPF) = 0.00266 \ 4$
7782.3	1	7781.9 <mark>h</mark> 9	100		D^+ D_g^g	
7784.0	(2)	7783.6 ^h 6	100	0.0) ⁺ (Q)	98
7787.6	(1)	7787.2 ^h 10	100	0.0		
7808.1	1	7807.7 ^h 11	100	0.0		
7831.4		7831.0 <i>13</i>	100	0.0)+	E_{γ} : from (γ, γ') .
7837.7	(2)	7837.3 ^h 15	100	0.0) ⁺ (Q)	98
7856.6	1-	7856.2 ^h 5	100	0.0)+ E1	g α (IPF)=0.00269 4
7877.6	(1)	4954.2 ^{hj} 12	100 14	2922.6? ((1) (D)	I_{γ} : from (γ, γ') .
		7877.2 ^h 10	43 14	0.0) ⁺ (D)	I_{γ} : from (γ, γ') .
7881.8	1	7881.4 ^h 5	100	0.0	D^+ D_8^g	
7894.3	1	7893.9 ^h 7	100	0.0		
7919.4	(1)	7919.0 ^h 10	100	0.0		
7931.4	1	7931.0 ^h 9	100	0.0	D^+ D_8^g	
7950.4	1(+)	7950.0 ^h 4	100	0.0		
7963.3		7962.9 7	100	0.0		E_{γ} : from (γ, γ') .
8007.0	1-	8006.6 ^h 14	100	0.0		
8042.0	1	6532.2 ^{hj} 8	33 19	1509.51 2		
		8041.6 ^h 12	100 19	0.0	D^+ D_8^8	I_{γ} : from (γ, γ') .

γ (92Mo) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
8063.4	1 ⁽⁻⁾	8063.0 ^h 11	100	0.0	0+	(E1) ^g	Mult.: D, $\Delta \pi = (yes)$ in (γ, γ') .
8088.1	(2)	8087.7 ^h 10	100	0.0	0^{+}	(Q) <mark>g</mark>	
8096.4	1	8096.0 ^h 10	100	0.0	0_{+}	D^g	
8168.4	1-	8168.0 ^h 5	100	0.0	0^{+}	E18	
8211.0	1	6701.2 ^{hj} 15	37 18	1509.51	2+	(D) <mark>8</mark>	I_{γ} : from (γ, γ') .
		8210.6 ^h 11	100 18	0.0	0_{+}	D^{g}	I_{γ} : from (γ, γ') .
8220.8	(1)	8220.4 ^h 10	100	0.0	0_{+}	(D) <mark>8</mark>	
8221.2	(14)	1559.7 <mark>a</mark>	100	6661.5	(13^{-})	D&	
8229.9	1-	8229.5 ^h 7	100	0.0	0_{+}	E18	
8319.5	1	8319.1 ^h 6	100	0.0	0_{+}	D^g	
8355.1	1	8354.7 ^h 16	100	0.0	0_{+}	D^g	
8381.7	(1)	8381.3 ^h 8	100	0.0	0_{+}	$(D)^{g}$	
8387.4	(15^+)	1075.0 ^a 3	100	7312.4	(14^{-})	$E1^{f}$	B(E1)(W.u.)>0.00019
8422.2	(-)	8421.8 9	100	0.0	0^+		From (γ, γ') ; $\Delta \pi = (yes)$.
8486.5	1	8486.1 ^h 14	100	0.0	0+	D_g^g	
8501.0	1	8500.6 ^h 17	100	0.0	0+	D^g	
8553.0	1	8552.6 ^h 13	100	0.0	0_{+}	D^g	
8594.7		1933.2^{d}	100 ^d	6661.5	(13 ⁻)		
8606.6	(1)	8606.2 ^h 8	100	0.0	0+	(D) ^g	
8660.4	1-	8660.0 ^h 3	100	0.0	0+	E18	
8695.2	1	8694.8 ^h 14	100	0.0	0+	D_{g}^{g}	
8763.4	1	8763.0 ^h 5	100	0.0	0+	D^g	
8774.4	1-	8774.0 ^h 4	100	0.0	0+	E18	
8791.5	(1)	8791.0 ^h 8	100	0.0	0+	(D) g	
8819.8	1	8819.3 ^h 6	100	0.0	0+	Dg	
8834.3	(1)	8833.8 ^h 20	100	0.0	0+	$(D)^{g}$	
8902.5	1	8902.0 ^h 9	100	0.0	0+	D^g	
8924.0	(16^+)	536.6 ^a 3	100	8387.4	(15^{+})	$(M1)^{f}$	B(M1)(W.u.)>0.10
8926.3	(1)	8925.8 ^h 15	100	0.0	0+	(D) ^g	
8955.5	1(-)	8955.0 ^h 6	100	0.0	0_{+}	(E1) ⁸	Mult.: D, $\Delta \pi = (\text{yes})$ in (γ, γ') .
9022.1	1-	9021.6 8 9096.1 ^h 6	100	0.0	0+	E1 8	E_{γ} : from (γ, γ') .
9096.6	_	9096.1 ^h 6 9126.0 ^h 10	100	0.0		E18 Dg	
9126.5	1	9120.0" 10	100	0.0	0_{+}	Ŋδ	

γ (92Mo) (continued)

$E_i(level)$	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
9187.0	1	9186.5 ^h 8	100	0.0	0+	$\overline{\mathrm{D}^{\mathbf{g}}}$	
9206.4	1 ⁽⁻⁾	9205.9 <mark>h</mark> 8	100	0.0	0^{+}	(E1) ⁸	Mult.: D, $\Delta \pi = (yes)$ in (γ, γ') .
9237.4	1	9236.9 <mark>h</mark> 8	100	0.0	0^{+}	D_{8}	
9280.2	(2)	9279.7 <mark>h</mark> 23	100	0.0	0^{+}	$(Q)^{g}$	
9296	(2)	9295 ^h 3	100	0.0	0^{+}	$(Q)^g$	
9337.6	1	9337.1 ^h 8	100	0.0	0^{+}	D_{8}	
9359.3	(15^{+})	2047.6 ^d	100 ^d 10	7312.4	(14^{-})	\mathbf{D}^{f}	
		2224.5 ^d	53 ^d 19	7134.1		$M1^f$	
9360.9	1	9360.4 ^h 7	100	0.0		D_{8}	
9418.9	(-)	9418.4 12	100	0.0			Eγ from (γ, γ') ; $\Delta \pi$ =(yes) in (γ, γ') .
9443.2	1	9442.7 <mark>h</mark> 8	100	0.0		D^g	
9481.0	(17^{+})	557.0 ^a 3	100	8924.0	(16^{+})	$M1^f$	
9502.8	1	9502.3 ^h 8	100	0.0	0_{+}	D_{8}	
9559.3	(1)	9558.8 ^h 13	100	0.0	0^{+}	(D) <mark>8</mark>	
9592.3	(1^{-})	9591.8 ^h 10	100	0.0		(E1) ^g	
9646.7	(1)	9646.2 ^h 13	100	0.0		(D) <mark>8</mark>	
9691		9690 <i>3</i>	100	0.0			E γ from (γ, γ') .
9710.6	1	9710.0 ^h 11	100	0.0	0_{+}	D^g	
9827.0	1	9826.4 ^h 17	100	0.0	0_{+}	D_8^{g}	
9843.0	(1)	9842.4 ^h 10	100	0.0	0_{+}	$(D)^g$	
10020.3	(16^{+})	660.7 ^d	100 ^d	9359.3	(15^{+})	$M1^f$	
10102.9	(18^{+})	621.9 ^d	100 ^d	9481.0	(17^{+})	$M1^f$	
10579.2	(17^+)	559.2 ^d	100 ^d	10020.3	(16^{+})	$M1^f$	
11215.5	(18^{+})	636.3 ^d	100 <i>d</i>	10579.2	(17^{+})	\mathbf{D}^{f}	

 $^{^{\}dagger}$ From $(n,n'\gamma)$, except as noted. Note, however, that stated I γ from 2000Ga30 may be subject to an additional uncertainty of as much as 15% due to angular distribution effects and, in this evaluation, this has been combined in quadrature with the statistical uncertainty in those data. The Iy(125°) data of 2010Go15 should not have been significantly influenced by such effects.

 $^{^{\}ddagger}$ From $\gamma(\theta)$ in $(p,p'\gamma)$, except as noted. # From $(\alpha,2n\gamma)$. ΔE_{γ} not stated by authors; uncertainty assigned by evaluator.

[@] From $\gamma(\theta)$ in $(n,n'\gamma)$.

[&]amp; D or (D) from $\gamma(\theta)$ in (37 Cl,2p2n γ), (30 Si,2p2n γ), (16 O,4n γ); $\Delta J=1$ transitions assumed by 1992Si03 to be M1(+E2).

^a From (37 Cl,2p2n γ); note that E γ values appear to be systematically low in this study.

γ (92Mo) (continued)

- ^b From $(\alpha, 2n\gamma)$. ^c From ⁹²Tc ε decay. ^d From ⁷⁴Ge(²⁸Si, 2α 2n γ).
- ^e From (¹⁶O,6nγ).
- ^f From DCO ratios and γ asymmetry parameters from polarization measurements in ⁷⁴Ge(²⁸Si,2 α 2n γ).
- ^g From (γ, γ') , (pol γ, γ'). $\Delta \pi$ (if given) is based on comparison between polarized and unpolarized photon data; ΔJ is from measured $\gamma(\theta)$.
- ^h From (γ, γ') .
- i Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^j Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

v Decay (Tincerta

History Literature Cutoff Date Author Citation Full Evaluation D. Abriola(a), A. A. Sonzogni NDS 107,2423 (2006) 1-Jan-2006

 $Q(\beta^{-})=-4256 \ 4$; $S(n)=9677.8 \ 9$; $S(p)=8488.8 \ 18$; $Q(\alpha)=-2064.2 \ 19$ 2012Wa38

Note: Current evaluation has used the following Q record -4256 4 9678 4 8490.4 20-2067.4 21 2003Au03.

⁹⁴Mo Levels

Cross Reference (XREF) Flags

	A E C I I I C I	94 Tc ε decay (2 94 Tc ε decay: n 94 Nb β^- decay (2 94 Nb β^- decay (2 94 Nb β^- decay (9 94 Mo(γ , γ') 94 Mo(η , γ') 94 Mo(η , η'), (n,n	93 min) nixed source (6.263 min) (2.03×10 ⁴ y)	J ${}^{96}\text{Mo(p,t)}$ K ${}^{93}\text{Nb(p,n),(p,p}$ L ${}^{91}\text{Zr}(\alpha, n\gamma)$ M ${}^{92}\text{Mo(t,p)}$ N ${}^{65}\text{Cu}({}^{36}\text{S}, \alpha p2\text{r}$ O ${}^{95}\text{Mo(d,t)}$ P ${}^{92}\text{Zr}(\alpha, 2n\gamma)$ Q ${}^{94}\text{Mo}(\alpha, \alpha')$ R ${}^{93}\text{Nb}({}^{3}\text{He,d})$	$egin{array}{lll} {\tt U} & ^{94}{\rm Mo}({\tt p},{\tt p}'\gamma) \\ {\tt V} & ^{94}{\rm Mo}({\tt d},{\tt d}') \end{array}$
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	X	KREF	Comments
0.0	0^{+}	stable	ABCDEFGHIJ	LMNOPQRSTUVWXY	$\langle r^2 \rangle^{1/2} = 4.3518$ fm 9 from 2004An14.
871.098 [@] 16	2+	2.77 ps 6	ABCDEFGHIJ	LMNOPQRSTUVWX	Q=-0.13 & (1989Ra17) J ^π : L(t,p)=2. Vector analyzing power (pol p,p') (1981P107). T _{1/2} : from B(E2)=0.203 4 (see Coulomb Excitation). Q: -0.13 & or +0.01 & (1989Ra17). Q=-0.13 & from Coulomb excitation if the excitation to higher excited states interferes constructively, as is usual in this mass region. Q=+0.01 & for destructive interference.
1573.76 [@] 4	4+	5.0 ps 7	BCDE GHIJ	LMNOPQRSTUVW	J ^π : L(t,p)=4. T _{1/2} : from B(E2)(2 ⁺ to 4 ⁺)=0.120 <i>18</i> (see Coulomb excitation).
1741.65 <i>15</i>	0_{+}		C FGHI	M O V	J^{π} : L(t,p)=0.
1864.31 5	2+	0.20 ps +5-3	A CD FGHIJ	LM O QRS UVW	J^{π} : L(t,p)=2. $T_{1/2}$: weighted average of 0.13 ps +7-3 (p,p'γ) and 0.28 ps +6-5 (n,n'γ).
2067.35 6	2+	35 fs <i>3</i>	A C FGHIJ	LM O QRS UVW	XREF: R(2080). $T_{1/2}$: from (n,n' γ), other: 32 fs +10-5 (p,p' γ). J^{π} : L(t,p)=2.
2121 <i>5</i> 2294.79 <i>16</i> 2322 2	4 ⁺ (6 ⁺) [#]	76 ^a fs 11	I C GHIJ I	LM OP R V	J^{π} : $L(t,p)=4$.
2393.02 6	2+	83^a fs $+12-10$		LM O RS V	$J^{\pi}: L(t,p)=2.$
2423.45 [@] 9	6 ⁺	0.72(1 0.0		LMNOPQRST V	J^{π} : L(t,p)=6.
2533.87 <i>12</i> 2564.98 <i>19</i>	3 ⁻ 4 ⁺	0.52^{a} ps +9-8 0.16^{a} ps +5-3		LM O QR UVW	$J^{\pi}: L(t,p)=3.$ $J^{\pi}: L(t,p)=4.$
2580 <i>5</i>	(3 ⁻)#	0.10 ps +5-5	I	N V	$J : L(t,p) - \tau$.
2610.57 ^{&} 16	$(5)^{-}$	$0.44^{a} \text{ ps } +11-8$		LMN P R V	J^{π} : L(³ He,d)=1 on 9/2 ⁺ target; E1 γ to 4 ⁺ .
2703 5	(3 ⁻)#		I	V	() / · · · · · · · · · · · · · · · · · ·
2739.91 7	1+	53 ^a fs 5	A C FGHI	PQ S V	J^{π} : observed in (γ, γ') , M1+E2 γ to 2 ⁺ .

94 Mo Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$		XREF		Comments
2767.61 19	4+	107 ^a fs 12		GHIJ LM R	V	J ^π : L(α , α')=4 for a level at 2740 30, E2 γ to 2 ⁺ .
2780.51 <i>21</i> 2805.04 <i>19</i> 2834.91 <i>24</i>	(0 ⁺) 3 ⁺ (4) ⁻	0.48^{a} ps $+12-9$ 0.35^{a} ps $+5-4$	С		٧	J^{π} : M1+E2 γ' s to 2 ⁺ and 4 ⁺ . J^{π} : M1+E2 γ to 3 ⁻ , E1 γ to 4 ⁺ .
2853 <i>5</i> 2869.90 <i>8</i> 2872.40 <i>11</i>	(4 ⁺) [#] 2 ⁺ 6 ⁺	91 ^a fs 10	A C BC	I GHIJ LM O Q G L PRT	V	J ^π : L=2 in (α, α') . J ^π : log ft =6.3 from 7 ⁺ , M1+E2 γ to 6 ⁺ , possible γ to (5) ⁻ .
2955.55 [@] 13	8+	98 ns 2	ВС	LNPRT		μ =+10.46 7 (1989Ra17) J ^π : log f_t =6.1 from 7 ⁺ , E2 to 6 ⁺ . T _{1/2} : from (α ,2n γ). Other: 104 ns 4 from (α ,4n γ).
2960 5	(4 ⁺)#			I	V	
2965.41 <i>6</i> 2993.10 <i>19</i>	3 ⁺ 2 ⁺	$52^a \text{ fs } 6$ $151^a \text{ fs } +19-17$	A C	GH L O G I L O	٧	J ^π : M1+E2 γ 's to 2 ⁺ and 4 ⁺ . J ^π : L(d,t)=0 on 5/2 ⁺ target, M1+E2 γ 's to 2 ⁺ , γ to 0 ⁺ .
3011.51 <i>16</i> 3026.90 <i>20</i>	3 ⁻ (3)	0.22^{a} ps +6-4		GH LM QR G R	٧	$J^{\pi} \colon L(t,p)=3.$
3032 <i>5</i> 3072.42 <i>17</i>	$(4^+)^{\#}$ $(2,3^+)$	0.35^{a}_{5} ps +7-6		I G	V	
3082.46 <i>24</i>	$(3)^+$ 1^+	0.70^{a} ps $+28-17$ 6.5^{a} fs 4	A C		V V	J^{π} : M1+E2 γ to 2 ⁺ , no γ to 0 ⁺ . J^{π} : observed in (γ, γ') , M1+E2 γ to 2 ⁺ .
3128.66 <i>7</i> 3163.29 <i>19</i>	(3) ⁺	63^{a} fs 7	A C	GH L	V	J^{π} : M1+E2 γ to 2 ⁺ ,3 ⁺ , no γ to 0 ⁺ .
3165.77 9	6+	322 ^a fs 35	BC	I LM Q	٧	J^{π} : log ft=5.9 from 7 ⁺ . γ to 4 ⁺ .
3171 10	2+,3+	110 5 . 6 5		0		J^{π} : L(d,t)=0 on 5/2 ⁺ target.
3201.11 <i>23</i> 3243.2 <i>5</i>	(4) (5) ⁺	44^{a} fs +6-5 92 ^a fs +16-15		G I LM G L	V	J^{π} : L(t,p)=4. J^{π} : M1+E2 γ to 4 ⁺ .
3243.2 <i>5</i> 3260.9 <i>5</i>	(3) 1 ⁻	$40^a \text{ fs } 4$			٧	J^{π} : $L(t,p)=1$.
3307.1 4	$(2)^{+}$	0.40^{a} ps $+14-9$			٧	
3320 5	0+			J M		J^{π} : a clear L=0 distribution was seen in (p,t), while in (t,p) an unresolved group was observed at this energy with no indication for an L=0 contribution.
3320.7 <i>3</i>				L P		
3331.74 17	3+	52 ^a fs 6	C	G L		J^{π} : M1+E2 γ' s to 2 ⁺ and 4 ⁺ .
3339.54 <i>17</i> 3359.8 <i>10</i>	6 ⁺ (8 ⁺)	126 ^a fs 21	BC	I LM P	V	J ^{π} : log <i>ft</i> =5.4 from 7 ⁺ , γ to 4 ⁺ . J ^{π} : (E2) γ to 6 ⁺ .
3366.5 <i>4</i>	$(3^+,4)$	0.61 ^a ps 7		L		J . (E2) y to 0 .
3368.1 ^{&} 3	(7^{-})	0.01 ps /		LNP		
3371.1 3	(2,3,4)	0.14^{a} ps $+7-4$		G		
3376 3	(4+)				٧	E(level): weighted average of 3375 5 from (p,t), 3376 5 from (p,p') and (d,d'), and 3378 10 from (d,t).
3380 20				M		J^{π} : $L(p,t)=(5)$; $J^{\pi}=(4^+)$ from analysis in (p,p') and (d,d') ; $L(d,t)=4$ gives $J^{\pi}=1^+$ to 7^+ . J^{π} : $L(t,p)=(5)$; however, (t,p) shows a group
3389.4 5	(5)-	0.49 ^a ps 12		I L	V	composed of several states partly resolved. XREF: I(3396)V(3396). J^{π} : E1 γ to 4 ⁺ .
3398.3 4	(3,4)	35^{a} fs +7-6		G L		· · · / · · · · · · · · · · · · · · · ·
3400.83 <i>17</i>	-	22.9 ^a fs 28	Α	GH J M O Q		

94 Mo Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
3429.1 8 3435 5 3447.6 4 3448.7 4 3456 5 3462 10	(2 ⁺) [#] (1,2 ⁺) 5 ⁺ 2 ⁺ (3) ⁻	$35^a \text{ fs } +5-4 \\ 0.45^a \text{ ps } 14$	G I V A C GHIJ LM V L V I O Q V	J^{π} : γ' s to 0^+ and 2^+ . J^{π} : $M1+E2 \ \gamma'$ s to 4^+ , 6^+ . J^{π} : from $\sigma(\theta)$ in (d,d') . XREF: $I(3465)Q(3.48E+3)$. J^{π} : $L(d,t)=1$ on $5/2^+$ target. $J^{\pi}=(3^-,5^-)$ from analysis in (p,p') and (d,d') .
3511.86 <i>14</i> 3531.5 <i>4</i> 3534.32 <i>9</i> 3539 <i>5</i>	1 ⁽⁺⁾ (1,2 ⁺) 2 ⁺ (1 ⁻) [#]	$9^a \text{ fs } +6-3$ $105^a \text{ fs } 28$	A C FGH G C LM V	J^{π} : observed in (γ, γ') , γ' s to 0^+ , 2^+ . J^{π} : $L(t,p)=2$.
3588 <i>5</i> 3588.6 <i>5</i> 3602 <i>11</i>	(2 ⁺) [#]		I V	J^{π} : L(d,t)=2 on 5/2 ⁺ target.
3604 <i>5</i> 3620 <i>12</i> 3627 <i>5</i>	(3 ⁻) [#] (5 ⁻)		I V	XREF: Q(3.68E+3). J^{π} : L(t,p)=5; L(α,α')=5 for level at 3680 keV 30.
3647 <i>5</i> 3693.4 <i>5</i>	$(2)^{+}$ $(3,4)$	0.105 ^a fs 35	I V V	J^{π} : (2) from analysis in (p,p') and (d,d'); π =+ from L(d,t)=2 on a 5/2 ⁺ target.
3700 <i>5</i> 3707 <i>5</i>	(3,1) 0 ⁺ (4 ⁺) [#]	0.105 13 35	IJ V	see comment on the 3714 level. J^{π} : $L(p,t)=0$.
3714 10			М	Complex group observed in (t,p) with no indication of $L=0$ contribution.
3730 <i>5</i> 3792.87 <i>15</i> 3800 <i>5</i> 3802 <i>5</i>	(4 ⁺) [#] 2 ⁺ 3 ⁻ (2 ⁺) [#]		I V AC M J I V	J^{π} : L(t,p)=2. J^{π} : L(p,t)=3.
3805.0 <i>6</i> 3847.3 <i>7</i> 3866.8? <i>4</i>	(8,10) 4 ⁺ (9 ⁺)	136 ^a fs 28	L P I LM V L P	$J^{\pi}: L(t,p)=4.$
3869 5 3892.16 7 3895 12 3897.1 [@] 6	$(5^{-})^{\#}$ $(1,2^{+})$ (10^{+})		A C M	II. (E2)
3897.1 - 6 3897.5 10 3901 5 3917 5	$(3^+,5^+)$ $(2^+)^{\#}$	78 ^a fs 28	NPT L I V I V	J^{π} : (E2) γ to (8 ⁺).
3928 <i>5</i> 3932.4 <i>7</i> 3995 <i>5</i>	(2 ⁺) [#] (7) ⁺ 2 ⁺	126 ^a fs 21	I V L IJ M V	J^{π} : M1+E2 γ to 6 ⁺ . XREF: M(3984). J^{π} : L(p,t)=2.
4004 <i>5</i> 4007.8 <i>8</i> 4024 <i>5</i>	(2 ⁺) [#] 5 ⁻		I V P I M V	J^{π} : L(t,p)=5; (5 ⁻ ,6 ⁺) from analysis in (p,p') and (d,d').
4062 <i>5</i> 4093 <i>5</i>	(3 ⁻) [#] 4 ⁺		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XREF: M(4079)Q(4.11E+3).

94 Mo Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
				$J^{\pi}: L(t,p)=4.$
4096.8 ^{&} 5 4105.5 <i>10</i>	(9-)	91 ^a fs 28	N L	
4113 <i>5</i> 4120 <i>12</i>	$(3^{-})^{\#}$ $2^{+},3^{-}$		I V J M	J^{π} : L(t,p)=2,3.
4128 5	$(3^{-})^{\#}$ 2^{+}		I V	
4139 5	2 ⁺ 6 ⁺		IJ V	
4174 <i>12</i> 4190.1 8	0.		M P	$J^{\pi}: L(t,p)=6.$
4191 5	$(2^+)^{\#}$		I V	
4191.5 [@] 6	(12^+)		n N	
4223 12	4+		M	J^{π} : L(t,p)=4.
4237.5 12		62 ^a fs 28	L	
4264.5 6			N	
4293 12	(2+)#		M	
4317 <i>5</i> 4388 <i>15</i>	$(2^+)^{\#}$		I M V M	
4436 12			M Q	
4475 12	(2^{+})		M	J^{π} : L(t,p)=(2).
4495.6 9			P	
4499.3 <i>6</i> 4565 <i>12</i>			N M	
4602 5			I M	
4636 12			M	
4729 15			M	
4749.9 <mark>&</mark> 5 4755 <i>12</i>	(11^{-})		N M	
4804 <i>12</i>			n M	
4833 12			M	
4886 12			M	
4921 <i>12</i> 4975 <i>12</i>			M M	
5059 15			M	
5734.2 <mark>&</mark> 6	(13^{-})		N	
5804.1 10	(13^{+})		N	
6397.3 ^{&} 8	(14^{-})		N	TT 0.1
6555.1 <i>5</i> 6580.3 <i>10</i>	$(1,2^+)$ (13^+)		F N	J^{π} : γ to 0^+ .
6962.7 9	(15^{-})		N	
7021.2 <mark>&</mark> 9	(15^{-})		N	
7067.6 <i>11</i>	(13^+)		N	
7518.0 9 7554.6 <i>10</i>	(16^{-}) (14^{+})		N N	
7795.7 11	(14°) (15^{+})		N N	
7899.9 <i>11</i>	(14^{+})		N	
8239.0 12	(16^{+})		N	
8452.6 <i>9</i> 8614.6 <i>11</i>	(15^{+})		N N	
9030.2 12	(17^+)		N N	
9162.8 <i>12</i>	(16^{+})		N	
9209.9 & <i>13</i>	(16^{-})		N	
9956.0 <i>11</i> 9979.1 <i>15</i>	(16^+)		N N	
77/7.1 13	(17^+)		N	

⁹⁴Mo Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
10052.3 14		N	
10272.4 <mark>&</mark> <i>14</i>	(17^{-})	N	
10275.2 <i>13</i>	(18^{+})	N	
11588.3 <i>18</i>	(18^{+})	N	
S(p)+4769	$(6)^{+}$	K	IAS: ⁹⁴ Nb g.s.
S(p)+4812	3+	K	IAS: 40.9 keV.
S(p)+4830	$(4)^{+}$	K	IAS: 58.7 keV.
S(p)+4848	$(5,6,7)^+$	K	IAS: 78.7 keV.
S(p)+4882	$(5)^{+}$	K	IAS: 113.4 keV.
S(p)+5083	$(4,5)^+$	K	IAS: 311.8 keV.
S(p)+5110	$(3)^{+}$	K	IAS: 334.1 keV.
S(p)+5738		K	
S(p)+5808		K	
S(p) + 5847	$(5)^{+}$	K	IAS: 957.4 keV (1972Ke32); however, E(res)=5738 gives better
			energy agreement as IAS of 957.4 level.
S(p)+5966		K	
S(p)+5986	$(2,3,4)^+$	K	IAS: 1232 keV.
S(p)+6085	$4^{+},5^{+}$	K	IAS: 1281 keV & 1321 keV.
S(p)+6292		K	IAS: 1499 keV & 1519 keV.
S(p)+6391		K	
S(p)+6441		K	
S(p)+6530		K	
S(p)+6619		K	
S(p)+6738		K	
S(p)+6856		K	

[†] Level energies with $\Delta E < 5$ keV are calculated from the adopted γ' s by a least-squares fit. The other are from (d,t), (t,p), and (p,t). Some of the high-energy levels are unresolved multiplets (see, *e.g.*, (t,p)).

 $^{^{\}ddagger}$ Arguments are given in comments for each level. For the IAR's at S(p)+4769 and higher energies, the J^{π} assigned are from the corresponding IAS's.

 $^{^{\#}}$ From coupled-channels analysis in (p,p') and (d,d').

[@] Band(A): Yrast band.

[&]amp; Band(B): Negative parity band.

^a From the ⁹⁴Tc ε decay: mixed source, ⁹¹Zr(α ,n γ), ⁹⁴Mo(n,n' γ) and ⁹⁴Mo(γ , γ ') datasets.

$\gamma(^{94}\text{Mo})$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_f .	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^{d}	Comments
871.098	2+	871.089 <i>17</i>	100	0.0	0+	E2		0.00108	$\alpha(K)$ =0.00094 3; $\alpha(L)$ =0.00011 B(E2)(W.u.)=16.0 4
1573.76	4+	702.65 4	100	871.098 2	2+	E2		0.00186	Mult.: Q from $\gamma(\theta)$ in $(p,p'\gamma)$; E2 from RUL. $\alpha(K)=0.00161$ 5; $\alpha(L)=0.00019$ 1 B(E2)(W.u.)=26 4 Mult.: from $\gamma\gamma(\theta)$ and polarization correlation in 94 Nb β^- decay.
1741.65	0^{+}	871.4 <mark>b</mark> 5	100	871.098	2+				
1864.31	2+	993.15 7	100.0 8	871.098 2	2+	M1+E2	-2.0 3	0.00080	$\alpha(K)$ =0.00070 B(E2)(W.u.)=85 5; B(M1)(W.u.)=0.021 5 Mult.: D+Q from $\gamma\gamma(\theta)$ in β^+ decay (52.0 min); M1+E2 from RUL. δ : -0.87 +9-17 or -3.2 +7-9 from $\gamma(\theta)$ in (p,p' γ).
		1864.3 ^b 2	8.9 11	0.0	0+	E2			B(E2)(W.u.)= $0.40 + 8 - 12$ Mult.: Q from $\gamma(\theta)$ in $(p,p'\gamma)$; E2 from RUL.
2067.35	2+	1196.2 ^a 1	100.0 7	871.098	2+	M1+E2	+0.15 4	0.00048	$\alpha(K)=0.00048$ B(E2)(W.u.)=5 3; B(M1)(W.u.)=0.31 3
		2067.4 ^a 1	15.1 7		0_{+}	E2			B(E2)(W.u.)=2.21 22
2294.79	4+	721.0 ^a 2	100.0 2		4+	M1(+E2)	+0.03 4	0.00168	α(K)=0.00146; α(L)=0.00016 B(M1)(W.u.)=0.68 10
		1423.7 ^a 3	13.3 2	871.098	2+	E2(+M3)	+0.08 8	0.00032 2	α(K)=0.00032 2 B(E2)(W.u.)=5.8 9
2393.02	2+	325.7 ^a 3	0.61 14	2067.35	2+				
		528.7 ^a 3	0.72 3		2+				
		1521.8 ^a 1	100.0 20	871.098		M1+E2	-0.12~3		B(E2)(W.u.)=0.42 21; B(M1)(W.u.)=0.0660 5
		2393.1 ^a 1	11.11 22	0.0	0_{+}				
2423.45	6+	849.7 <mark>b</mark> 1	100	1573.76	4 ⁺	E2(+M3)	-0.045	0.00116 4	$\alpha(K)=0.00100 \ 3; \ \alpha(L)=0.00011$
2533.87	3-	466.4 ^a 3	57.3 10	2067.35	2+	E1(+M2)	0.00 3	0.009 7	α(K)=0.008 6; α(L)=0.0009 8 B(E1)(W.u.)=0.00132
		669.6 ^a 2	31.9 <i>13</i>	1864.31	2+	E1(+M2)	-0.03 13	0.00077 12	
		960.1 ^a 3	81 3	1573.76	4+	E1(+M2)	0.00 2	0.0013 9	$\alpha(K)$ =0.0011 8; $\alpha(L)$ =0.00012 9 B(E1)(W.u.)=0.00021
		1662.7 ^a 3	100.0 22	871.098	2+	E1(+M2)	+0.03 7		$B(E1)(W.u.)=5.062\times10^{-5}$ 22
2564.98	4+	991.2 ^a 2	100.0 8	1573.76		M1(+E2)	+0.10 +25-17	0.00083	$\alpha(K)$ =0.00072 B(E2)(W.u.)=1.3; B(M1)(W.u.)=0.125 7
		1693.9 ^a 7	11.8 8	871.098	2+	E2(+M3)	-0.01 10		B(E2)(W.u.)=1.0543 21
2610.57	(5)	1036.8 ^a 2	100		4 ⁺	E1(+M2)	0.00 4	0.0009 7	$\alpha(K)=0.0009 7$ B(E1)(W.u.)=0.00067
2739.91	1+	672.0 ^a 7	3.0 5	2067.35	2+				()(()

γ (94Mo) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^d	Comments
2739.91	1+	875.5 ^a 2	24.4 5	1864.31	2+	M1+E2	-0.10 2	0.00109	$\alpha(K)=0.00095; \ \alpha(L)=0.00011$
					- 1				B(E2)(W.u.)=1.0 4; B(M1)(W.u.)=0.076 8
		998.2 ^a 2 1868.8 ^a 1	4.44 <i>10</i> 100.0 <i>20</i>	1741.65 871.098	0 ⁺	M1+E2	0.12.2		D/E2\/W\ 0.12 5. D/M1\/W\ 0.022 2
		2739.9 ^a 1	65.4 13		0+	MII+EZ	-0.12 2		B(E2)(W.u.)=0.13 5; B(M1)(W.u.)=0.032 3
2767.61	4+	1193.8 ^a 5	71 <i>4</i>		4 ⁺				
2707.01	•	1896.5 ^a 2	100 4	871.098		E2(+M3)	+0.02 3		B(E2)(W.u.)=5.0 7
2780.51	(0^+)	916.2 ^a 2	100	1864.31	2+	(- /			()()
2805.04	3+	940.7 ^a 4	63 4	1864.31	2+	M1+E2	+2.3 +7-5	0.00090	$\alpha(K) = 0.00079$
									B(E2)(W.u.)=19.2 19; B(M1)(W.u.)=0.0032 17
		1231.2 ^a 3	100 5	1573.76	4+	M1+E2	+8 +5-3	0.00043	$\alpha(K) = 0.00043$
		1000 00 4	5 6.2	071 000	2+) // E0			B(E2)(W.u.)=9.27 18; B(M1)(W.u.)=0.00022 +27-22
2024.01	(4)=	1933.9 ^a 4	76 3	871.098		M1+E2		0.040.20	(II) 0.041 1/2 (I) 0.0052 25 (AL.) 0.00017 0
2834.91	$(4)^{-}$	224.2 ^a 5 301.1 ^a 3	7.2 10	2610.57		M1+E2	. 0 12 10	0.048 20	$\alpha(K)=0.041 \ 16; \ \alpha(L)=0.0053 \ 25; \ \alpha(N+)=0.00017 \ 8$
		1261.1 ^a 5	13.1 <i>12</i> 100.0	2533.87 1573.76	3 ⁻	M1+E2	+0.12 10	0.0137 <i>4</i> 0.00019 <i>1</i>	$\alpha(K)$ =0.0119 3; $\alpha(L)$ =0.00136 5 $\alpha(K)$ =0.00019 1
2869.90	2+	802.6 ^a 2	26.2 <i>15</i>		2 ⁺	E1(+M2)	+0.06 7	0.00019 1	$\alpha(\mathbf{K}) = 0.00019 T$
2809.90	2	1005.5 ^a 1	100 4	1864.31		M1+E2	-0.05 4	0.00070	$\alpha(K)=0.00070$
		1005.5 1	100 7	1004.51	2	WII+L2	-0.03 4	0.00070	B(E2)(W.u.)=0.4 +6-4; B(M1)(W.u.)=0.152 19
		1998.9 <mark>a</mark> 2	13.1 6	871.098	2+	M1+E2	+1.3 +14-4		B(E2)(W.u.)=0.4 4; B(M1)(W.u.)=0.0009 9
		$2870.0^a 2$	17.3 5		0^{+}				2(22)(\(\text{Mai}\) \(\text{OIV}\)
2872.40	6+	261.7 ^e 10	4 2		$(5)^{-}$				E_{ν} : observed only in $^{92}Zr(\alpha,2n\gamma)$.
		449.0 ^b 1	100 8		6+	M1+E2	+0.14 9	0.00510 5	$\alpha(K)=0.00443 \ 4; \ \alpha(L)=0.00050 \ I$
2955.55	8+	83.6 10	9. 2	2872.40		E2	. 0.11 . >	2.32	$\alpha(K)=1.83$ 6; $\alpha(L)=0.408$ 13; $\alpha(M)=0.0738$ 23;
									α (N+)=0.0120 4
									B(E2)(W.u.)=4.6 12
									Mult.: from $\alpha(\exp)$ in $(\alpha,2n\gamma)$, $E\gamma$ from same dataset.
		532.1 ^b 1	100. 11	2423.45	6+	E2(+M3)	-0.035	0.00402 14	$\alpha(K)=0.00347 \ 13; \ \alpha(L)=0.00041 \ 2$
									B(E2)(W.u.)=0.0049 8
2965.41	3 ⁺	898.1 ^a 1	23.0 12	2067.35	2+	M1+E2		0.00102 <i>I</i>	$\alpha(K)=0.00088 \ I; \ \alpha(L)=9.9\times10^{-5} \ I$
		<i>a</i>							δ : +2.0 +12-6 or +0.39 25.
		1101.1 ^a 1	100.0 23	1864.31	2+	M1+E2	-0.09 6	0.00058	$\alpha(K) = 0.00058$
		1201 (0.1	(2.0.24	1572.76	4.4	M1 - F0	0.00.6	0.00025	B(E2)(W.u.)=1.0 +13-10; B(M1)(W.u.)=0.141 17
		1391.6 ^a 1	63.0 24	1573.76	4'	M1+E2	-0.08 6	0.00035	$\alpha(K)=0.00035$
		2094.3 ^a 1	36.9 14	871.098	2+	M1+E2	+1.1 +10-4		B(E2)(W.u.)=0.15 +22-15; B(M1)(W.u.)=0.044 6 B(E2)(W.u.)=1.0 8; B(M1)(W.u.)=0.003 3
2002.10	2+	925.8 ^{&} 3						0.00006	
2993.10	2.	925.8 3	45 <i>3</i>	2067.35	7.	M1(+E2)	-0.07 + 7 - 6	0.00096	α(K)=0.00084 B(M1)(W.u.)=0.0382 4
		1128.6 <mark>&</mark> 5	100.4	1064.21	2+	M1 . E2	24.70	0.00050	
		1128.6~ 3	100 4	1864.31	2'	M1+E2	-3.4 + 7 - 9	0.00052	$\alpha(K)=0.00052$
									B(E2)(W.u.)=34.4 <i>12</i> ; B(M1)(W.u.)=0.0037 <i>15</i>

γ (94Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^{d}	Comments
2993.10	2+	2122.0 ^{&} 3	63.7 15	871.098	2+	M1+E2	-2.6 +6-7		B(E2)(W.u.)=0.88 6; B(M1)(W.u.)=0.00058 24
		2993.0 <mark>&</mark> <i>10</i>	6.8 9	0.0	0^{+}				
3011.51	3-	477.5 ^{&} 5	50.9 17	2533.87	3-	M1(+E2)	-0.10 19	0.00439 8	$\alpha(K)$ =0.00382 7; $\alpha(L)$ =0.00043 <i>I</i> B(M1)(W.u.)=0.219 <i>9</i>
		944.3 <mark>&</mark> 6	11.9 <i>16</i>	2067.35	2+				
		1147.3 ^{&} 5	11.5 15	1864.31	2+	E1(+M2)	+0.01 6	0.00023 1	$\alpha(K)=0.00023 I$ B(E1)(W.u.)=5.359×10 ⁻⁵ 7
		1437.6 ^{&} 5	37 3	1573.76	4+	E1(+M2)	+0.04 6	0.00015 <i>1</i>	$\alpha(K)=0.00015 I$ B(E1)(W.u.)=8.75×10 ⁻⁵ 5
		2140.4 ^{&} 2	100.0 23	871.098	2+	E1(+M2)	+0.03 5		$B(E1)(W.u.)=7.172\times10^{-5}$ 22
3026.90	(3)	416.4 ^a 3 493.0 ^a 2	100 <i>4</i> 60 <i>4</i>	2610.57 2533.87	(5) ⁻ 3 ⁻				
3072.42	$(2,3^+)$	538.5 ^a 7	11.5 23	2533.87	3-				
		1208.1 ^a 2 2201.3 ^a 3	100 <i>5</i> 37.3 22	1864.31 871.098	2 ⁺ 2 ⁺				
3082.46	(3)+	1218.2 ^{&} 4	14.2 <i>21</i>	1864.31	2+	M1+E2	+0.09 5	0.00047	$\alpha(K)$ =0.00047 B(E2)(W.u.)=0.012 +13-12; B(M1)(W.u.)=0.002146 20
		2211.3 ^{&} 3	100.0 <i>21</i>	871.098	2+	M1(+E2)	-0.01 6		B(M1)(W.u.)=0.002547 3
3128.66	1+	1061.1 ^a 5	1.16 11	2067.35	2+	M1+E2		0.00061 2	$\alpha(K) = 0.00061 \ 2$
		1264.3 ^a 1	18.3 4	1864.31	2+	M1+E2	-0.08 3	0.00043	$\alpha(K) = 0.00043$
		2257 (4.1	4.20.10	071 000	2+	14. 50	0.74 01 17		B(E2)(W.u.)=1.0 8; B(M1)(W.u.)=0.246 17
		2257.6 ^a 1 3128.5 ^a 2	4.29 10	871.098	21 0+	M1+E2	+0.74 +21-17		B(E2)(W.u.)=0.7 3; B(M1)(W.u.)=0.0066 14
2162.20	(a) ±		100.0 3	0.0	-	M1 - F2	0.25.12	0.0002 4	(II) 0.0001 2 (I) 0.00004 5
3163.29	(3)+	358.0 ^{&} 5	16.7 <i>13</i>	2805.04	3+	M1+E2	-0.35 12	0.0093 4	α(K)=0.0081 3; α(L)=0.00094 5 B(E2)(W.u.)=9.E+2 6; B(M1)(W.u.)=0.97 16
		2292.2 <mark>&</mark> 2	100.0 13	871.098		M1+E2	+0.17 4		B(E2)(W.u.)=0.13 7; B(M1)(W.u.)=0.024 3
3165.77	6+	293.4 ^{&} 1	79.4 25	2872.40	6+	M1+E2	+0.18 5	0.0149 2	$\alpha(K)$ =0.0129 2; $\alpha(L)$ =0.00148 3 B(E2)(W.u.)=3.8×10 ² 21; B(M1)(W.u.)=1.00 12
		742.2 <mark>&</mark> 2	29.4 11	2423.45	6+	M1+E2	+0.15 7	0.00158	$\alpha(K)$ =0.00137; $\alpha(L)$ =0.00015 B(E2)(W.u.)=1.0 9; B(M1)(W.u.)=0.023 3
		1592.0 <mark>&</mark> 1	100 4	1573.76	4+	E2(+M3)	-0.01 6		B(E2)(W.u.)=3.24
3201.11	(4)	906.3 <mark>&</mark> 2	100.0 22	2294.79	4+	D(+Q)	0.00 6		
- · ·	` '	1627.4 <mark>&</mark> 5	29.4 22	1573.76	4+	D(+Q)	+0.2 2		
3243.2 3260.9	(5) ⁺ 1 ⁻	1669.4 ^{&} 5 2392.8 ^e 20 3260.7 ^a 5	100 67 <i>17</i> 100 <i>17</i>	1573.76 871.098 0.0	4+	M1+E2	+0.71 14		B(E2)(W.u.)=6.3 17; B(M1)(W.u.)=0.034 5 E _{γ} : not seen in (γ, γ') or $(n, n'\gamma)$.

 ∞

γ (94Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^{d}	Comments
3307.1	(2)+	2436.0 ^{&} 4	100	871.098	2+	M1+E2			
3320.7		365.2 ^{&} 3	100	2955.55	8+	(M1+E2)	+2.2 3	0.0120 2	$\alpha(K)=0.0103\ 2;\ \alpha(L)=0.00127\ 3$
3331.74	3+	1467.3 ^{&} 3	48 3	1864.31	2+	M1+E2	+0.3 +29-2	0.00032 2	α(K)=0.00032 2 B(E2)(W.u.)=2 +29-16; B(M1)(W.u.)=0.04 +6-4
		1758.0 <mark>&</mark> 2	100 6	1573.76	4+	M1+E2	-0.10 <i>3</i>		B(E2)(W.u.)=0.16 10; B(M1)(W.u.)=0.050 7
		2460.8 <mark>&</mark> 8	7.4 11	871.098	2+				
3339.54	6+	916.10 <i>15</i>	100 5	2423.45	6+	M1(+E2)#	-0.04 4	0.00099	α(K)=0.00086 B(M1)(W.u.)=0.22 4
		1765.6 7	3.8 7	1573.76	4+				
3359.8	(8^{+})	936.3 10	100	2423.45	6+	(E2) [@]		0.00091	$\alpha(K)=0.00079 \ 2$
3366.5	$(3^+,4)$	401.1 <mark>&</mark> 5	24 4	2965.41	3 ⁺				
		1071.6 <mark>&</mark> 5	100 4	2294.79	4+				
3368.1	(7^{-})	757.5 ^c 4	100	2610.57	$(5)^{-}$				
		944.7 ^c 4	50 <i>3</i>	2423.45	6+				
3371.1	(2,3,4)	405.8 ^a 5	83 7	2965.41	3 ⁺				
		806.1 ^a 5 1303.7 ^a 7	93 8	2564.98	4 ⁺ 2 ⁺				
		1303.74 / 1797.4 ^a 5	26 <i>4</i> 100 <i>7</i>	2067.35 1573.76	4 ⁺				
2290.4	(5)-	1094.6 ^{&} 5	100 /	2294.79	4 4 ⁺	E1(+M2)	-0.01 3	0.00025	$\alpha(K)=0.00025$
3389.4	. ,					E1(+M2)	-0.01 3	0.00023	a(K)=0.00025 B(E1)(W.u.)=0.00051 13
3398.3	(3,4)	1824.5 ^{&} 4	100		4 ⁺				
3400.83		1536.5 ^a 2 2529.7 ^a 3	4.2 8 100.0 8	1864.31 871.098	2 ⁺				
3429.1		$2529.7^{\circ}3$ $2558.0^{\circ}8$	100.0 8	871.098					
3447.6	$(1,2^+)$	2576.5 ^{&} 5	100.0 3	871.098		D+Q			
J-71.0	(1,2)	3447.5 ^{&} 10	5.1 3	0.0	0 ⁺	$D_{\perp}Q$			
3448.7	5 ⁺	576.7 & 5	3.1 3		6 ⁺	M1(+E2)	+0.03 5	0.00281	$\alpha(K)=0.00244; \alpha(L)=0.00027$
J 44 0./	3.	3/0./ 3	33 /	<i>4</i> 0 <i>1</i> 2.40	O.	WII(+E2)	+0.03 3	0.00281	$\alpha(K)=0.00244$; $\alpha(L)=0.00027$ B(M1)(W.u.)=0.063 25
		1874.6 <mark>&</mark> 5	100 7	1573.76	4+	M1+E2	-0.75 25		B(E2)(W.u.)=0.603 25 B(E2)(W.u.)=0.6 4; B(M1)(W.u.)=0.0036 15
3511.86	1(+)	1770.4^a 2	49 9		0^{+}	1711 1.2	0.13 23		D(D2)(11.0.)-0.0 7, D(M1)(11.0.)-0.0000 13
5511.00	1	2640.7 ^a 3	51.6 13	871.098					
		3511.6 ^a 2	100.0 11	0.0	0^{+}				
3531.5	$(1,2^+)$	1789.8 ^a 5	78 <i>5</i>	1741.65	0_{+}				
		2660.1 ^a 10	100 8	871.098					
		3532.0 ^a 10	19.8 25	0.0	0_{+}				
3534.32	2+	1670.0 <mark>&</mark> 1	56.1 20	1864.31	2+	M1(+E2)	+0.15 19		B(M1)(W.u.)=0.015 5

9

γ (94Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^{d}	Comments
3534.32	2+	2663.2 ^{&} 2	100.0 23	871.098	2+	M1+E2	-0.3 2		B(E2)(W.u.)=0.08 8; B(M1)(W.u.)=0.0063 19
		3534.0 ^{&} 4	5.1 6	0.0	0_{+}				
3588.6		978.0 ^a 5	100	2610.57	$(5)^{-}$				
3693.4	(3,4)	925.8 <mark>&</mark> 5	100 22	2767.61	4+				
		2822.1 ^{&} 15	95 22	871.098	2+				
3792.87	2+	1399.9 ^b 2	55 <i>3</i>	2393.02	2+				
		1928.5 ^b 2	100 4	1864.31	2+				
		3792.3 ^b 10	77.8 20	0.0	0^{+}				
3805.0	(8,10)	484.5 10	100	3320.7					
3847.3	4+	1552.5 <mark>&</mark> 7	100	2294.79	4+				
3866.8?	(9^+)	61.7 ^e 10	≈0.7	3805.0	(8,10)				E_{γ} : observed only in $(\alpha, 2n\gamma)$.
		911.3 <mark>&</mark> 4	100 17	2955.55	8+	(M1+E2)	+6.6 +33-16	0.00097	$\alpha(K)=0.00084$
3892.16	$(1,2^+)$	1499.1 <mark>b</mark> 1	79.4 22	2393.02	2+				
		1824.9 <mark>b</mark> 3	25.8 10	2067.35	2+				
		2027.9 ^b 2	22.3 10	1864.31	2+				
		3021.0 ^b 1	100.0 24	871.098	2+				
		3891.6 ^b 10	17.4 9	0.0	0^{+}				
3897.1	(10^{+})	941.3 10	100	2955.55	8+	(E2) [@]		0.00090	$\alpha(K)=0.00078\ 2$
3897.5	$(3^+,5^+)$	1602.7 <mark>&</mark> <i>10</i>	100.0	2294.79	4+				
3932.4	(7) ⁺	1508.9 <mark>&</mark> 7	100	2423.45	6+	M1+E2			
4007.8		202.8 10	14 6	3805.0	(8,10)				
		1052.3 10	100 14	2955.55	8+				
4096.8	(9-)	728.7 4	23.7	3368.1	(7-)				DCO=1.9 3.
4105.5		1810.7 ^{&} 10	100	2294.79	4 ⁺				
4190.1		292.8 <i>10</i> 385.4 ^e <i>10</i>	100 8 5 2	3897.1 3805.0	(10^+) $(8,10)$				
4191.5	(12^{+})	294.4 <i>4</i>	100	3897.1	(0.10) (10^+)				
4237.5	(12)	1942.7 <mark>&</mark> <i>12</i>	100	2294.79	4+				
4264.5		367.4 <i>4</i>	100	3897.1	(10^{+})				
4495.6		305.6 10	100 8	4190.1					
		598.4 10	71 17	3897.1	(10^{+})				
4499.3	(11=)	307.8 4	100	4191.5	(12^{+})				
4749.9	(11^{-})	250.6 <i>4</i> 485.4 <i>4</i>	20 <i>10</i> 29 <i>15</i>	4499.3 4264.5					
		653.1 <i>4</i>	100	4204.3	(9-)				

10

$\gamma(^{94}\text{Mo})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
5734.2	(13^{-})	1542.7 10	7 4	4191.5	(12^+)	7899.9	(14^{+})	2095.6 10	100	5804.1 (13+)
5804.1	(13^{+})	1612.3 <i>10</i>	100	4191.5	(12^{+})	8239.0	(16^{+})	443.3 <i>4</i>	100	7795.7 (15 ⁺)
6397.3	(14^{-})	663.1 4	27.6	5734.2	(13^{-})	8452.6		1431.3 <i>4</i>		7021.2 (15 ⁻)
6555.1	$(1,2^+)$	4487	79 15	2067.35	2+	8614.6	(15^{+})	714.7 <i>4</i>	$1.0 \times 10^2 \ 5$	7899.9 (14 ⁺)
		4692	15 7	1864.31	2+			1060.0 4	100 23	7554.6 (14 ⁺)
		5683	100 15	871.098	2+	9030.2	(17^+)	791.2 <i>4</i>	100	8239.0 (16 ⁺)
		6555	93	0.0	0_{+}	9162.8	(16^{+})	1367.1 <i>4</i>	100	7795.7 (15 ⁺)
6580.3	(13^{+})	2389.0 10	100	4191.5	(12^{+})	9209.9	(16^{-})	2188.6 <i>10</i>	4.0 10	7021.2 (15 ⁻)
6962.7	(15^{-})	565.4 <i>4</i>	100	6397.3	(14^{-})	9956.0	(16^{+})	1341.4 <i>4</i>	6.0 15	8614.6 (15 ⁺)
7021.2	(15^{-})	623.9 4	100	6397.3	(14^{-})	9979.1	(17^{+})	1740.1 <i>10</i>	3.0 10	8239.0 (16 ⁺)
7518.0	(16^{-})	555.3 4	100	6962.7	(15^{-})	10052.3		1599.7 <i>10</i>	1.0	8452.6
7554.6	(14^{+})	487.0 <i>4</i>	92 <i>23</i>	7067.6	(13^{+})	10272.4	(17^{-})	1062.5 <i>4</i>	11.0	9209.9 (16 ⁻)
		974.4 <i>4</i>	23 6	6580.3	(13^{+})	10275.2	(18^{+})	1245.0 <i>4</i>	≤1	9030.2 (17+)
		1750.3 <i>10</i>	100 23	5804.1	(13^{+})	11588.3	(18^{+})	1609.1 <i>10</i>	3.0 10	9979.1 (17+)
7795.7	(15^{+})	241.1 <i>4</i>	100	7554.6	(14^{+})					

[†] Weighted averages of all available data, unless otherwise indicated. [‡] From ⁹⁴Tc ε decay: mixed source, $\gamma\gamma(\theta)$ in ⁹⁴Nb β^- decay or ⁹⁴Tc β^+ decay datasets, unless stated otherwise.

[#] From $\gamma\gamma(\theta)$ and ΔJ^{π} of initial and final levels.

[@] Stretched E2 assumed on the basis of $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.

[&]amp; From 91 Zr(α ,n γ).

^a From 94 Mo(n,n' γ).

^b From ⁹⁴Tc ε decay: mixed source. ^c From ⁶⁵Cu(36 S,αp2nγ).

d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

____ → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

History

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 109,2501 (2008)	1-Apr-2008

 $Q(\beta^-)=-2973~6$; S(n)=9154.32~5; S(p)=9297.5~5; $Q(\alpha)=-2758.9~19$ 2012Wa38 Note: Current evaluation has used the following Q record -2973 5 9154.32 5 9297.6 5 -2761.5~20 2003Au03. α : Additional information 1.

96 Mo Levels

Cross Reference (XREF) Flags

Α	96 Nb β^- decay	H	95 Mo(n, γ) E=25 keV	0	⁹⁸ Mo(p,t), (pol p,t)
В	96 Tc ε decay (4.28 d)	I	96 Mo(n,n' γ)	P	100 Ru(d, 6 Li)
C	96 Tc ε decay (51.5 min)	J	⁹⁶ Mo(p,p')	Q	94 Mo(t,p)
D	94 Zr(3 He,n)	K	96 Mo(d,d')	R	82 Se(18 O,4n γ)
E	94 Zr(α ,2n γ)	L	$^{96}\text{Mo}(\alpha,\alpha')$	S	96 Mo(pol γ, γ')
F	95 Mo(n, γ) E=thermal	M	Coulomb excitation		
G	95 Mo(n $_{2}$) F=2 keV	N	97 Mo(p d)		

E(level)#	${ m J}^{\pi}$	T _{1/2}	XREF	Comments
0.0	0+	stable	ABCDEFGHIJKLMNOPQRS	$(r^2)^{1/2}$ (charge)=4.3841 8 (2004An14).
778.237 [†] 10	2+	3.67 ps 6	ABC EFGHIJKLMNOPQR	μ =+0.79 6 (2001Ma17) J^{π} : γ to 0 ⁺ is E2. $T_{1/2}$: from B(E2)=0.270 4 (Coul. ex). Q=-0.20 8 or +0.04 8 (1976Pa13). μ measured using transient field method following Coulomb excitation.
1148.13 7	0+	61 ps 8	F IJK MN PQ	$T_{1/2}$: from B(E2)(2 ⁺ to 0 ⁺)=0.0270 35 (Coul. ex). J^{π} : L=0 in (t,p).
1330? 50	0^{+}		D	J^{π} : L=0 in (3 He,n).
1497.787 <i>10</i>	2+	0.78 ps 7	ABC EFGHIJKLMNOPQR	J^{π} : L(p,p')=2. $T_{1/2}$: From B(E2)(0 ⁺ to 2 ⁺)=0.0156 <i>13</i> (Coul. ex), other 0.74 ps +63-25 from DSAM in (n,n' γ).
1625.905 <i>16</i>	2+	$>0.90^{\ddagger}$ ps	ABC F IKM OPR	J^{π} : $\gamma \gamma(\theta)$ in (n,γ) (1970He27); M1 γ from 3^+ ; γ to 0^+ .
1628.188 [†] <i>13</i>	4+	1.2 ps 2	ABC EFGHIJKLMN PQ	J^{π} : L(p,p')=4. T _{1/2} : from B(E2)(2 ⁺ to 4 ⁺)=0.190 36 (Coul. ex).
1869.576 12	4+	6.4 ps +28–15	ABC EFGHIJKLMNOPQR	J^{π} : L=4 in (t,p). $T_{1/2}$: from B(E2)(2 ⁺ to 4 ⁺)=0.0090 27 (Coul. ex).
1978.450 <i>14</i>	3 ⁺	$>2.29^{\ddagger}$ ps	ABC EFGHI R	J^{π} : $\gamma \gamma(\theta)$ in ε decay (1971Ba59); M1 γ to 2 ⁺ .
2095.77 4	2+	97 [‡] fs <i>11</i>	C F IJ NOP	J^{π} : L(p,t)=2.
2219.425 <i>14</i>	4+	$>0.38^{\ddagger}$ ps	ABC F I N	J^{π} : γ from 6^+ ; γ to 2^+ .
2234.63 <i>4</i> 2398.9 <i>10</i>	3-	>0.277‡ ps	FGHIJKLM OPQ C k	$J^{\pi} \colon L(d,d')=3.$
2426.14 <i>4</i>	2+	$0.19^{\ddagger} \text{ ps } +4-3$	F IJk Q	J^{π} : L=2 in (t,p).
2438.477 15	5 ⁺	$>0.139^{\ddagger}$ ps	ABC EF I R	J^{π} : $\gamma \gamma(\theta)$ in β^- decay (1971Ba59); M1+E2 γ to 4 ⁺ .
2440.76 [†] 3	6+	$>0.208^{\ddagger}$ ps	AB EF I R	J^{π} : stretched E2 cascade in $(\alpha,2n\gamma)$.
2476 8	4+		L Q	J^{π} : L=4 in (t,p) and (α,α') .
2481.06 <i>6</i>	$(4)^{+}$	>1.01 [‡] ps	C FG IJK OP	J^{π} : M1+E2 γ to 3 ⁺ , E2 γ to 2 ⁺ .
2501.58 5	(1)	97 [‡] fs <i>13</i>	FG I Q	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$, γ to 0^+ .
2540.46 5	(3^{+})	69 [‡] fs <i>10</i>	FG IJ	J^{π} : (2,3) from $\gamma(\theta)$ in $(n,n'\gamma)$, γ from 5^+ .
2594.39 <i>4</i>	3 ⁺	0.8^{\ddagger} ps $+43-4$	C F I	J^{π} : M1+E2 γ' s to 2 ⁺ and 4 ⁺ .

⁹⁶Mo Levels (continued)

E(level)#	J^{π}	T _{1/2}			XREF		Comments
2611.51 <i>10</i>		>0.194 [‡] ps	C		I	P	J^{π} : L=2 in (d, ⁶ Li) for E=2610 consistent with γ decay.
2622.51 10	$(0)^{+}$	$0.6^{\ddagger} \text{ ps } +6-2$			I		J^{π} : From $\sigma(E)$ in $(n,n'\gamma)$.
2625.19 <i>13</i>	4+	0.5^{\ddagger} ps +8-2	C	F	IJ L	0 Q	J^{π} : L(p,p')=4.
2700.21 6	2+	103 [‡] fs <i>14</i>		F	I		J^{π} : E2 γ to g.s., σ (E) in $(n,n'\gamma)$.
2712.68 10						R	
2734	(5 ⁻)	±			J	P	J^{π} : L=(5) in (p,p').
2734.57 6	$(4,5)^+$	>0.25 [‡] ps		EF	I	R	J^{π} : γ' s to 6 ⁺ and 4 ⁺ . A questionable gamma feeds a 2 ⁺ level. The 82 Se(18 O,4n γ) dataset assigns J=5 ⁺ , while the remaining datasets assign j=4 ⁺ .
2735.91 <i>9</i> 2742	3 ⁺ 0 ⁺	121 [‡] fs +18–17	C		Ι	OPQ	J^{π} : log ft =6.2 from 4 ⁺ ⁹⁶ Tc isomer; M1+E2 γ to 2 ⁺ . J^{π} : L=0 in (t,p), (p,t).
2748.65 7	(0^+)	0.17^{\ddagger} ps +4-3			I		J^{π} : $\sigma(E)$ in $(n,n'\gamma)$.
2755.08 <i>3</i>	6+	>0.194 [‡] ps	AB	EF	I L	O QR	J ^{π} : log ft =5.0 from 7 ⁺ ⁹⁶ Tc g.s.; E2 γ to 4 ⁺ ; however L=(5) in (α , α') and (t,p).
2787.12 5	2+	0.15^{\ddagger} ps +4-3		FG	I	Q	J^{π} : L=2 in (t,p).
2790.21 6	$(2,4)^{\textcircled{0}}$	>0.68 [‡] ps		F	IJK		
2794.50 6	1+	31 [‡] fs 3			I	S	J^{π} : M1 γ to 0^+ g.s.
2806.25 6	(1)	114^{\ddagger} fs $+21-18$			I		J^{π} : γ' s to 0^+ and 2^+ .
2818.49 8	4+	59 [‡] fs +16-12		F	IJ	Q	J^{π} : L=4 in (t,p); conflict with L=(3) in (p,p').
2875.48 <i>4</i>	7+,6+		AB	E	J	Q	J ^π : log ft =5.6 from 7 ⁺ ⁹⁶ Tc g.s.; M1 γ to 6 ⁺ ; L=(4,6) in (p,p').
2975.28 7	5+		A	F	Ι		J ^{π} : log ft =7.5 from 6 ⁺ ⁹⁶ Nb g.s., primary γ from 2 ⁺ ,3 ⁺ capture state.
2978.37 [†] 8	8+			E		R	J^{π} : stretched E2 cascade in $(\alpha,2n\gamma)$.
2986.80 5	2+	104^{\ddagger} fs $+15-14$		F	IJ		J^{π} : E2 γ to 0^+ g.s. and M1+E2 γ to 3^+ .
3006.45 <i>10</i> 3020 <i>5</i>	0+	90 [‡] fs +19–15			I J	Q Q	J^{π} : L=0 in (t,p). J L=5 in (t,p); L=4 in (p,p').
3024.58 5	2+	83^{\ddagger} fs $+13-12$		F	I KL		J^{π} : L=2 in (α, α') .
3053.23 8	(4^{+})	69 [‡] fs +14–11		F	I		J^{π} : primary γ from $2^+, 3^+$; γ to 6^+ .
3087.66 <i>6</i> 3088 <i>5</i>	3 ⁺ (4 ⁺ ,5 ⁻)	$0.33^{\ddagger} \text{ ps } +53-14$		F	I J		J^{π} : M1+E2 γ' s to 2 ⁺ and 4 ⁺ . J^{π} : L=(4,5) in (p,p').
3089.62 7	2,3 [@]	$66^{\ddagger} \text{ fs } +10-8$			I		
3134.29 8		76 [‡] fs <i>10</i>		F	IJ		
3154.15 <i>11</i>	1@	73^{\ddagger} fs $+10-9$			I		
3178.69 <i>6</i>	3-	142^{\ddagger} fs $+24-21$		F	IJ L	Q	J^{π} : E1 γ' s to 2^+ , L=3 in (p,p') and (α,α') .
3186.81 <i>19</i> 3202.85 <i>12</i>	4 ⁺			F F		Q	J^{π} : primary γ from $2^+, 3^+$; γ to 6^+ .
3211.40 5	3+	104^{\ddagger} fs $+22-18$			Ι		J^{π} : M1+E2 γ' s to 2 ⁺ and 4 ⁺ .
3232.56 <i>7</i> 3241 <i>12</i>	(3) [@] 4 ⁺	236 [‡] fs +10-62			I J	Q	J^{π} : L=4 in (t,p).
3255.63 7		0.4^{\ddagger} ps +9-2			I		
3284.97 9	2+	$0.13^{\ddagger} \text{ ps } +4-3$		F	IJ	Q	J^{π} : L=2 in (t,p).
3300.38 7	1+	8.3 [‡] fs <i>14</i>			I	S	J^{π} : M1 γ to 0^+ g.s.
3327.87 7	(1)	49^{\ddagger} fs $+12-10$			I		J^{π} : assigned 1 in $(n,n'\gamma)$, γ' s to 2^+ and 0^+ .
3335.30 <i>6</i>	(4^{+})	0.13^{\ddagger} ps +4-3		F	IJ	Q	J^{π} : L=4 in (t,p).
3351.67 <i>6</i>	2+	36^{\ddagger} fs +10-8			I		J^{π} : E2 γ to 0^+ g.s.
3364.0 <i>3</i>	@	$120^{\ddagger} \text{ fs } +5-3$			I		
3369.98 10	$(8)^{+}$			E		R	J^{π} : E2 cascade in $(\alpha,2n\gamma)$.

⁹⁶Mo Levels (continued)

E(level)#	J^π	T _{1/2}	XREF		Comments
3373.89 6	2+	23 [‡] fs 3	I	Q	J^{π} : M1+E2 γ' s to 2 ⁺ , L=2 in (t,p).
3416.82 <i>6</i>	4+	>0.61 [‡] ps	FI		J^{π} : γ' s to 2^+ and 6^+ .
3418 <i>12</i>	5-	1		Q	J^{π} : L=5 in (t,p).
3420 80	2+		L		J^{π} : L=2 in (α, α') .
3421.24 7	(1)	52 [‡] fs +9–8	I		J^{π} : assigned 1 in $(n,n'\gamma)$, γ' s to 2^+ and 0^+ .
3424.90 8	1+	8.3^{\ddagger} fs $+28-21$	I	S	J^{π} : M1 γ to 0 ⁺ g.s.
3433.60 10	$(4)^{+}$	97 [‡] fs +21–17	I	P	J^{π} : E2 γ to 2^{+} .
3441.92 9	4+		F IJ	Q	J^{π} : L=4 in (t,p), (p,p').
3444.8? <i>5</i>			E		
3464.65 7	(3)	44^{\ddagger} fs +7-6	I		J^{π} : assigned3 in $(n,n'\gamma)$, γ' s to 2^{+} and 4^{+} .
3472.20 10	2+	66 [‡] fs +19–14	IJ	Q	J^{π} : L=2 in (t,p).
3472.65? <i>14</i>	(7)+		E	R	J^{π} : E2 γ to $(4,5)^{+}$, M1 γ to 6^{+} .
3530.99 8	1,2,3	43 [‡] fs 6	I		
3540.88 7	$(3)^{@}$	83^{\ddagger} fs $+22-17$	I		
3551.4 <i>3</i>	3		F J		J^{π} : L=3 in (p,p'), but (M1+E2) γ to 4 ⁺ .
3556 10	5-	4		Q	J^{π} : L=5 in (t,p).
3573.28 7	(1)	87 [‡] fs +24–18	I	•	J^{π} : assigned 1 in $(n,n'\gamma)$, γ' s to 2^+ and 0^+ .
3597 <i>5</i>	2+	10.4	J -	Q	J^{π} : L=2 in (p,p').
3599.57 9	1-	10.4 [‡] fs 21	I	S	J^{π} : E1 γ to 0^+ g.s.
3610.48 7	2,3@	104^{\ddagger} fs $+21-17$	I		
3623.19 <i>10</i>	$(3^+)^{@}$	>0.236 [‡] ps	I		
3646 10	- 1	+		Q	E(level): complex state.
3668.82 8	3+	44^{\ddagger} fs +9-8	I	0	J^{π} : M1+E2 γ to 2 ⁺ , 4 ⁺ .
3683 <i>12</i> 3690 <i>80</i>	(2^{+})		L	Q	E(level): complex state. J^{π} : L=(2) in (α, α') .
3694 <i>5</i>	5-		j		J^{π} : L=5 in (p,p').
3709 12	2+			Q	J^{π} : L=2 in (t,p).
3736 5	4+		J	Q	J^{π} : L=4 in (t,p).
3786.93 <i>13</i>	$(10)^{+}$		E	R	J^{π} : stretched E2 cascade to 8 ⁺ .
3800 5			J	0	
3847 <i>12</i> 3866 <i>5</i>			J	Q Q	J^{π} : L=(5) in (t,p), L=(4) in (p,p').
3895.4 <i>10</i>	1-		,	Š	J^{π} : E1 γ to 0^+ g.s.
3915.69 12	$(9)^{+}$		E	R	J^{π} : E2 γ to (7) ⁺ , M1 γ to (8) ⁺ .
3965 5	(4^{+})		J	Q	J^{π} : L=(4) in (p,p').
4038 5	(3^{-})		J	•	J^{π} : L=(3) in (p,p').
4098 <i>5</i> 4215 <i>5</i>	4 ⁺		J J	Q	J^{π} : L=4 in (t,p).
4245.11 <i>16</i>	10 ⁺		J	Q R	J^{π} : L=4 in (t,p), L=(3) in (p,p'). J^{π} : E2 γ to 8 ⁺ .
4280 5	10		J		3. 112 / 10 0 .
4469 5			J	Q	
4532.84 <i>24</i>	$(11)^{+}$		E	R	J^{π} : M1+E2 γ to (10) ⁺ .
4583.55 15	$(12)^{+}$		E	R	J^{π} : E2 γ to (10) ⁺ .
4603 <i>5</i> 4714 <i>12</i>	1-		J	Q Q	J^{π} : L=1 in (t,p).
4714 <i>12</i> 4795.12 <i>14</i>	$(11)^{+}$		E	Q R	J^{π} : L=1 iii (t,p). J^{π} : M1 γ to 10 ⁺ , E2 γ to (9) ⁺ .
5132.20 18	$(11)^{+}$		-	R	J^{π} : E2 γ to 10^+ ,
5640.64 <i>21</i>	$(13)^{+}$			R	J^{π} : M1+E2 γ to (12) ⁺ .
5654.61 <i>16</i>	$(13)^{+}$			R	J^{π} : E2 γ to (11) ⁺ .
5811.43 22	$(14)^{+}$		_	R	J^{π} : M1 γ to (13) ⁺ , E2 γ to (12) ⁺ .
6300 50	0^{+}		D	n	J^{π} : L=0 in (³ He,n).
6414.52 19	$(15)^{+}$			R	J^{π} : E2 γ to $(13)^{+}$.

⁹⁶Mo Levels (continued)

E(level)#	J^{π}	XREF	Comments
6709.8 <i>4</i>	$(15)^{+}$	R	J^{π} : M1+E2 γ to (14) ⁺ .
7505.5 6	$(17)^{+}$	R	J^{π} : E2 γ to $(15)^{+}$.
7554.1 <i>4</i>		R	
8424.0 7	$(19)^{+}$	R	J^{π} : E2 γ to $(17)^{+}$.
9466.9 9	(20^{+})	R	J^{π} : (M1) γ to (19) ⁺ .
9882.4 <i>13</i>		R	

 $^{^{\}dagger}$ Band(A): g.s. sequence. ‡ From DSAM in $(n,n'\gamma)$. $^{\#}$ From least-squares fit to E γ when available. $^{@}$ From $(n,n'\gamma)$, tentative assignments based on γ' s to levels of known J^{π} , $\sigma(E)$.

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{oldsymbol{b}}$	$I_{\gamma}^{ b}$	\mathbf{E}_f \mathbf{J}_j^r	Mult.	δ^d	α	Comments
778.237	2+	778.223 14	100	0.0 0	E2 [†]		0.001410 20	$\alpha(K)$ =0.001238 18 ; $\alpha(L)$ =0.0001426 20 ; $\alpha(M)$ =2.55×10 ⁻⁵ 4 $\alpha(O)$ =2.11×10 ⁻⁷ 3 ; $\alpha(N+)$ =4.07×10 ⁻⁶ 6 B(E2)(W.u.)=20.7 4 E _{γ} : weighted average of 778.224 15 (96 Nb β^- decay), 778.22 4 (96 Tc ε decay (4.28 d)), 778.3 2 (94 Zr(α ,2n γ)), 778.26 10 (95 Mo(n, γ) E=thermal), 778.28 10 (96 Mo(n,n' γ)), 778.1 1 (82 Se(18 O,4n γ)).
1148.13	0+	369.80 11	100	778.237 2	+ E2 [†]		0.01210	$\alpha(K)$ =0.01052 15; $\alpha(L)$ =0.001310 19; $\alpha(M)$ =0.000234 4; $\alpha(N)$ =3.50×10 ⁻⁵ 5 $\alpha(O)$ =1.737×10 ⁻⁶ 25; $\alpha(N+)$ =3.67×10 ⁻⁵ 6 B(E2)(W.u.)=51 7 E _y : weighted average of 369.67 12 (95 Mo(n,y) E=th) and 369.89 10 (96 Mo(n,n'y)).
1497.787	2+	719.560 <i>16</i>	100.0 5	778.237 2	* M1+E2 [‡]	+0.44 +3-4	0.001672 24	$\alpha(K)$ =0.001471 21; $\alpha(L)$ =0.0001661 24; $\alpha(M)$ =2.97×10 ⁻⁵ 5 $\alpha(O)$ =2.56×10 ⁻⁷ 4; $\alpha(N+)$ =4.77×10 ⁻⁶ 7 B(E2)(W.u.)=16.4 24; B(M1)(W.u.)=0.045 5 E _γ : weighted average of 719.562 17 (⁹⁶ Nb β ⁻ decay), 719.5 2 (⁹⁶ Tc ε decay (4.28 d)), 719.55 5 (⁹⁶ Tc ε decay (51.5 min)), 719.9 5 (⁹⁴ Zr(α ,2nγ)), 719.53 11 (⁹⁵ Mo(n,γ) E=thermal), 719.55 10 (⁹⁶ Mo(n,n'γ)), 719.4 4 (⁸² Se(¹⁸ O,4nγ)). I _γ : weighted average of 100.0 13 (⁹⁶ Nb β ⁻ decay), 100.0 6 (⁹⁶ Mo(n,n'γ)). δ: from ⁹⁵ Mo(n,γ) E=thermal.
		1497.801 <i>14</i>	42.3 16	0.0 0	+ E2 [†]		0.000409 6	$\alpha(K)$ =0.000288 4; $\alpha(L)$ =3.20×10 ⁻⁵ 5; $\alpha(M)$ =5.71×10 ⁻⁶ 8; $\alpha(N)$ =8.70×10 ⁻⁷ 13 $\alpha(O)$ =4.95×10 ⁻⁸ 7; $\alpha(N+)$ =8.34×10 ⁻⁵ 12 B(E2)(W.u.)=1.10 11 E _γ : weighted average of 1497.807 15 (⁹⁶ Nb β ⁻ decay), 1497.72 10 (⁹⁶ Tc ε decay (4.28 d)), 1497.65 9 (⁹⁶ Tc ε decay (51.5 min)), 1497.84 11 (⁹⁵ Mo(n,γ) E=thermal), 1497.76 10 (⁹⁶ Mo(n,n'γ)). I _γ : weighted average of 47.9 10 (⁹⁶ Nb β ⁻ decay), 47 4 (⁹⁶ Tc ε decay (4.28 d)), 40.5 19 (⁹⁶ Tc ε decay (51.5 min)), 42.2 22 (⁹⁵ Mo(n,γ) E=thermal), 40.4 6 (⁹⁶ Mo(n,n'γ)).
1625.905	2+	128.0 4	1.4 8	1497.787 2	+			E_{γ} : observed only in ⁹⁶ Nb β^- decay.

S

γ (96Mo) (continued)

						/(1/10) (0.		
$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_{γ}^{b}	$I_{\gamma}^{ b}$	$E_f \qquad \underline{J_f^{\pi}}$	Mult.	δ^d	α	Comments
1625.905	2+	847.689 19	100.0 2	778.237 2+	M1+E2 [†]	-1.05 +9-10	0.001146 16	$\alpha(K)$ =0.001008 15; $\alpha(L)$ =0.0001142 16; $\alpha(M)$ =2.04×10 ⁻⁵ 3 $\alpha(O)$ =1.742×10 ⁻⁷ 25; $\alpha(N+)$ =3.27×10 ⁻⁶ 5 B(E2)(W.u.)<28; B(M1)(W.u.)<0.019 E _γ : weighted average of 847.69 2 (96 Nb β^- decay), 847.7 1 (96 Tc ε decay (4.28 d)), 847.6 3 (96 Tc ε decay (51.5 min)), 847.67 11 (95 Mo(n, γ) E=thermal), 849.7 1 (82 Se(18 O,4n γ)). δ: from 95 Mo(n, γ) E=thermal.
		1625.86 4	9.4 6	0.0 0+	E2 [†]		0.000412 6	$\alpha(K)=0.000245\ 4;\ \alpha(L)=2.72\times10^{-5}\ 4;\ \alpha(M)=4.85\times10^{-6}\ 7;\ \alpha(N)=7.39\times10^{-7}\ 11$ $\alpha(O)=4.22\times10^{-8}\ 6;\ \alpha(N+)=0.0001349\ 19$ B(E2)(W.u.)<0.18 E_{γ} : weighted average of 1625.90 5 (96 Nb β^- decay), 1625.7 1 (96 Tc ε decay (4.28 d)), 1625.8 4 (96 Tc ε decay (51.5 min)), 1625.7 3 (95 Mo(n, γ) E=thermal), 1625.88 10 (96 Mo(n, $^{\gamma}\gamma$)). I_{γ} : weighted average of 13.6 8 (96 Nb β^- decay), 10.6 11 (96 Tc ε decay (51.5 min)), 9.2 5 (95 Mo(n, $^{\gamma}\gamma$) E=thermal), 9.05 22 (96 Mo(n, $^{\gamma}\gamma$)).
1628.188	4+	849.922 12	100	778.237 2+	E2 [†]		0.001134 16	$\alpha(K)$ =0.000996 14 ; $\alpha(L)$ =0.0001141 16 ; $\alpha(M)$ =2.04×10 ⁻⁵ 3 $\alpha(O)$ =1.704×10 ⁻⁷ 24 ; $\alpha(N+)$ =3.26×10 ⁻⁶ 5 B(E2)(W.u.)=41 7 E _{γ} : weighted average of 849.929 13 (⁹⁶ Nb β ⁻ decay), 849.86 4 (⁹⁶ Tc ε decay (4.28 d)), 849.85 10 (⁹⁶ Tc ε decay (51.5 min)), 849.8 2 (⁹⁴ Zr(α ,2n γ)), 849.95 11 (⁹⁵ Mo(n, γ) E=thermal), 849.97 10 (⁹⁶ Mo(n,n' γ)).
1869.576	4+	241.377 15	8.4 5	1628.188 4+	M1+E2 [†]	+0.024 5	0.0235	$\alpha(\mathrm{K}) = 0.0206 \ 3; \ \alpha(\mathrm{L}) = 0.00239 \ 4; \ \alpha(\mathrm{M}) = 0.000427 \ 6; \\ \alpha(\mathrm{N}) = 6.50 \times 10^{-5} \ 9; \ \alpha(\mathrm{O}) = 3.64 \times 10^{-6} \ 6 \\ \alpha(\mathrm{N}+) = 0.00012 \ 5 \\ \mathrm{B(E2)(W.u.)} = 0.18 \ +9 -11; \ \mathrm{B(M1)(W.u.)} = 0.018 \ +5 -8 \\ \mathrm{E}_{\gamma} : \ \text{weighted average of } 241.377 \ 15 \ (^{96}\mathrm{Nb} \ \beta^{-} \ \text{decay}), \ 241.6 \ 2 \\ (^{96}\mathrm{Tc} \ \varepsilon \ \text{decay} \ (4.28 \ \text{d})), \ 241.4 \ 2 \ (^{96}\mathrm{Tc} \ \varepsilon \ \text{decay} \ (51.5 \ \text{min})), \ 241.6 \ 5 \ (^{94}\mathrm{Zr}(\alpha,2\mathrm{n}\gamma)), \ 241.2 \ 2 \ (^{95}\mathrm{Mo(n,\gamma)}) \\ \mathrm{E=thermal}), \ 241.36 \ 10 \ (^{96}\mathrm{Mo(n,n'}\gamma)), \ 242.0 \ 1 \\ (^{82}\mathrm{Se}(^{18}\mathrm{O},4\mathrm{n}\gamma)). \\ \mathrm{I}_{\gamma} : \ \text{weighted average of } 7.2 \ 8 \ (^{96}\mathrm{Nb} \ \beta^{-} \ \text{decay}), \ 12.6 \ 19 \ (^{96}\mathrm{Tc} \ \varepsilon \ \text{decay} \ (51.5 \ \text{min})), \ 8.5 \ 22 \ (^{94}\mathrm{Zr}(\alpha,2\mathrm{n}\gamma)), \ 8.8 \ 5$

6

γ (96Mo) (continued)

						/(1.10) (· ·	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{oldsymbol{b}}$	$I_{\gamma}{}^{b}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ^d	α	Comments
1869.576	4+	371.807 21	5.3 5	1497.787 2+	E2 [‡]		0.01189	(95Mo(n,γ) E=thermal), 8.23 22 (96Mo(n,n'γ)), 17.5 16 (82Se(18O,4nγ)). α(K)=0.01034 15; α(L)=0.001286 18; α(M)=0.000230 4; α(N)=3.44×10 ⁻⁵ 5 α(O)=1.708×10 ⁻⁶ 24; α(N+)=3.61×10 ⁻⁵ 5
								B(E2)(W.u.)=22 +6-10 E _γ : weighted average of 371.807 15 (96 Nb $β$ ⁻ decay), 371.8 2 (96 Tc $ε$ decay (4.28 d)), 371.5 2 (96 Tc $ε$ decay (51.5 min)), 371.63 13 (95 Mo(n,γ) E=thermal), 372.0 1 (82 Se(18 O,4nγ)). I _γ : weighted average of 5.41 18 (96 Nb $β$ ⁻ decay), 6.4 18 (96 Tc $ε$ decay (4.28 d)), 4.4 9 (96 Tc $ε$ decay (51.5 min)), 4.8 3 (95 Mo(n,γ) E=thermal), 25 3 (82 Se(18 O,4nγ)).
		1091.344 <i>11</i>	100.00 22	778.237 2+	E2(+M3) [†]	-0.05 5	0.000641 21	$\alpha(K)=0.000564\ 18;\ \alpha(L)=6.37\times10^{-5}\ 22;\ \alpha(M)=1.14\times10^{-5}\ 4;\ \alpha(N)=1.73\times10^{-6}\ 6$ $\alpha(O)=9.59\times10^{-8}\ 14;\ \alpha(N+)=1.80\times10^{-6}\ 3$ $B(E2)(W.u.)=1.9\ +5-9;\ B(M3)(W.u.)=3.E+4\ +6-3$ E_{γ} : weighted average of 1091.349 $I2\ (^{96}\text{Nb}\ \beta^{-1}\ decay),\ 1091.30\ 4\ (^{96}\text{Tc}\ \varepsilon\ decay\ (4.28\ d)),\ 1091.30\ 8\ (^{96}\text{Tc}\ \varepsilon\ decay\ (51.5\ min)),\ 1091.2\ 5\ (^{94}Zr(\alpha,2n\gamma)),\ 1091.30\ 11\ (^{95}Mo(n,\gamma)$ $E=\text{thermal}),\ 1091.38\ 10\ (^{96}Mo(n,n'\gamma)),\ 1091.4\ 6\ (^{82}Se(^{18}O,4n\gamma)).$
								I _γ : weighted average of 100 3 (96 Nb β^{-} decay), 100 7 (96 Tc ε decay (4.28 d)), 100 8 (96 Tc ε decay (51.5 min)), 100 10 (94 Zr(α ,2n γ)), 100 6 (95 Mo(n, γ) E=thermal), 100.00 22 (96 Mo(n, η' γ)), 100 10 (82 Se(18 O,4n γ)). δ: from 96 Tc ε decay (4.28 d).
1978.450	3 ⁺	108.94 <i>11</i>	0.22 7	1869.576 4+				E _γ : weighted average of 108.95 11 (96 Nb β^- decay), 108.8 5 (82 Se(18 O,4n γ)). I _γ : from 96 Nb β^- decay.
		350.06 3	8.2 23	1628.188 4+	M1+E2 [†]		0.012 3	$\alpha(K)$ =0.0103 23; $\alpha(L)$ =0.0012 4; $\alpha(M)$ =0.00022 6; $\alpha(N)$ =3.4×10 ⁻⁵ 9; $\alpha(O)$ =1.7×10 ⁻⁶ 4 $\alpha(N+)$ =3.5×10 ⁻⁵ 9 E _γ : weighted average of 350.053 19 (96 Nb β^- decay), 350.1 5 (96 Tc ε decay (4.28 d)), 350.32 15 (96 Tc ε decay (51.5 min)), 349.7 2 (95 Mo(n, γ) E=thermal), 350.05 10 (96 Mo(n, η' γ)), 350.6 2 (82 Se(18 O,4n γ)). I _γ : weighted average of 5.3 4 (96 Nb β^- decay), 5.3 3 (96 Tc ε

γ (96Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathbb{E}_{\gamma}{}^{\pmb{b}}$	$I_{\gamma}{}^{b}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ^{d}	α	Comments
1978.450	3+	352.56 <i>3</i>	4.74 22	1625.905 2+	M1+E2 [†]		0.012 3	decay (51.5 min)), 5.2 6 (95 Mo(n, γ) E=thermal), 13.6 3 (96 Mo(n,n' γ)). α (K)=0.0101 22; α (L)=0.0012 4; α (M)=0.00022 6 ; α (N)=3.3×10 ⁻⁵ 9; α (O)=1.7×10 ⁻⁶ 4 α (N+)=3.5×10 ⁻⁵ 9
								E _γ : weighted average of 352.56 <i>3</i> (96 Nb $β^-$ decay), 352.5 <i>3</i> (96 Tc $ε$ decay (4.28 d)), 352.50 <i>15</i> (96 Tc $ε$ decay (51.5 min)), 352.3 <i>2</i> (95 Mo(n, $γ$) E=thermal), 352.61 <i>10</i> (96 Mo(n,n' $γ$)). I _γ : weighted average of 4.15 <i>19</i> (96 Nb $β^-$ decay), 5.2 <i>3</i> (96 Tc $ε$ decay (51.5 min)), 5.5 <i>6</i> (95 Mo(n, $γ$) E=thermal), 4.97 <i>16</i> (96 Mo(n,n' $γ$)).
		480.696 24	30.2 18	1497.787 2+	M1+E2 [†]	+0.12 4	0.00426 6	$\alpha(K)$ =0.00374 6; $\alpha(L)$ =0.000425 7; $\alpha(M)$ =7.60×10 ⁻⁵ 11; $\alpha(N)$ =1.157×10 ⁻⁵ 17; $\alpha(O)$ =6.57×10 ⁻⁷ 10 $\alpha(N+)$ =1.223×10 ⁻⁵ 18 B(E2)(W.u.)<1.8; B(M1)(W.u.)<0.018
								E _γ : weighted average of 480.705 17 (96 Nb $β^-$ decay), 481.0 5 (96 Tc $ε$ decay (4.28 d)), 480.70 5 (96 Tc $ε$ decay (51.5 min)), 480.5 2 (95 Mo(n, $γ$) E=thermal), 480.42 10 (96 Mo(n,n' $γ$)). I _γ : weighted average of 29.23 24 (96 Nb $β^-$ decay), 22 8 (96 Tc $ε$ decay (4.28 d)), 28.9 14 (96 Tc $ε$ decay (51.5 min)), 25 4 (95 Mo(n, $γ$) E=thermal), 42.1 8 (96 Mo(n,n' $γ$)).
		1200.227 13	100.0 4	778.237 2+	M1+E2 [†]	+0.89 10	0.000539 8	$\alpha(K)$ =0.000469 7; $\alpha(L)$ =5.23×10 ⁻⁵ 8; $\alpha(M)$ =9.33×10 ⁻⁶ 14; $\alpha(N)$ =1.422×10 ⁻⁶ 21 $\alpha(O)$ =8.11×10 ⁻⁸ 12; $\alpha(N+)$ =8.37×10 ⁻⁶ 15 B(E2)(W.u.)<1.3; B(M1)(W.u.)<0.0024 E _{γ} : weighted average of 1200.231 13 (96 Nb β^- decay), 1200.17 8 (96 Tc ε decay (4.28 d)), 1200.15 8 (96 Tc ε decay (51.5 min)), 1200.1 5 (94 Zr(α ,2n γ)), 1200.1 4 (95 Mo(n, γ)
2095.77	2+	047.0.2	227	1148.13 0+				E=thermal), 1200.20 10 (96 Mo(n,n' γ)), 1200.1 3 (82 Se(18 O,4n γ)). I $_{\gamma}$: weighted average of 100.0 5 (96 Nb β^- decay), 100 8 (96 Tc ε decay (4.28 d)), 100 5 (96 Tc ε decay (51.5 min)), 100 9 (95 Mo(n, γ) E=thermal), 100.0 10 (96 Mo(n,n' γ)).
2093.11	2+	947.8 <i>3</i> 1317.43 <i>8</i>	3.2 <i>7</i> 100.0 <i>I</i>	778.237 2+	M1+E2 [†]	-0.09 2	0.000473 7	E _γ ,I _γ : from ⁹⁵ Mo(n,γ), E=th. α (K)=0.000395 6; α (L)=4.38×10 ⁻⁵ 7; α (M)=7.82×10 ⁻⁶ 11; α (N)=1.193×10 ⁻⁶ 17

 ∞

γ (96Mo) (continued)

$E_i(le$	evel)	\mathbf{J}_i^{π}	$E_{\gamma}^{ $	I_{γ}^{b}	E_f	\mathbf{J}_f^{π}	Mult.	α	Comments
									$\alpha(O)=6.88\times10^{-8}\ 10;\ \alpha(N+)=2.60\times10^{-5}\ 4$ B(E2)(W.u.)=0.43 20; B(M1)(W.u.)=0.094 11 E _{\gamma} : weighted average of 1317.4 4 (96 Tc ε decay (51.5 min)), 1317.33 12 (95 Mo(n, γ) E=thermal), 1317.50 10 (96 Mo(n,n' γ)). I _{\gamma} : from 96 Mo(n,n' γ).
2095	5.77	2+	2095.59 ^e 10	1.52 10	0.0	0+	E2 [†]	0.000525 8	$\alpha(K)=0.0001524\ 22;\ \alpha(L)=1.680\times10^{-5}\ 24;\ \alpha(M)=2.99\times10^{-6}\ 5$ $\alpha(O)=2.62\times10^{-8}\ 4;\ \alpha(N+)=0.000353\ 5$ $B(E2)(W.u.)=0.080\ II$ $E_{\gamma}I_{\gamma}$: from $^{96}Mo(n,n'\gamma)$.
2219	9.425	4+	241.2 2	71 4	1978.450	3+			$E_{\gamma}I_{\gamma}$: from $^{95}Mo(n,\gamma)$, E=th.
			350.05 3	64 10	1869.576	4+	(M1,E2) [‡]	0.012 3	$\alpha(K)$ =0.0103 23; $\alpha(L)$ =0.0013 4; $\alpha(M)$ =0.00022 6; $\alpha(N)$ =3.4×10 ⁻⁵ 9; $\alpha(O)$ =1.7×10 ⁻⁶ 4 $\alpha(N+)$ =3.5×10 ⁻⁵ 9 E_{γ} : weighted average of 350.053 19 (96 Nb β^{-} decay), 349.9 2 (96 Tc ε
			501.22.5	07.5	1/20 100	4+	041 EQ. [‡]	0.00277.17	decay (4.28 d)), 349.7 2 (95 Mo(n, γ) E=thermal). I_{γ} : weighted average of 47 9 (96 Nb β^- decay), 58 17 (96 Tc ε decay (4.28 d)), 78 8 (95 Mo(n, γ) E=thermal).
			591.23 5	97 5	1628.188	4'	(M1,E2) [‡]	0.00277 17	$\alpha(K)=0.00243$ 14; $\alpha(L)=0.000280$ 22; $\alpha(M)=5.0\times10^{-5}$ 4; $\alpha(N)=7.6\times10^{-6}$ 6; $\alpha(O)=4.18\times10^{-7}$ 17 $\alpha(N+)=8.0\times10^{-6}$ 6 E _{γ} : weighted average of 591.24 5 (96 Nb β^- decay), 591.3 6 (96 Tc ε decay (4.28 d)), 591.19 13 (95 Mo(n, γ) E=thermal). I _{γ} : weighted average of 92 8 (96 Nb β^- decay), 90 50 (96 Tc ε decay
									(4.28 d)), $100 6 ({}^{95}\text{Mo(n},\gamma) \text{ E=thermal}).$
			593.23 11	41 8	1625.905	2+			E _γ : weighted average of 593.25 14 (96 Nb $β^{-}$ decay), 593.2 2 (95 Mo(n, $γ$) E=thermal).
									I_{γ} : weighted average of 30 8 (96 Nb β^{-} decay), 47 6 (95 Mo(n, γ) E=thermal).
			721.632 18	100.0 9	1497.787	2+	E2 [†]	0.001710 24	$\alpha(K)$ =0.001500 21; $\alpha(L)$ =0.0001739 25; $\alpha(M)$ =3.11×10 ⁻⁵ 5 $\alpha(O)$ =2.56×10 ⁻⁷ 4; $\alpha(N+)$ =4.95×10 ⁻⁶ 7 B(E2)(W.u.)<72 E ₂ : weighted average of 721.629 19 (⁹⁶ Nb β ⁻ decay), 721.5 3 (⁹⁶ Tc ε
									decay (4.28 d)), 721.57 15 (95 Mo(n, γ) E=thermal), 721.77 10 (96 Mo(n,n' γ)). I _{γ} : weighted average of 100 6 (96 Nb β^- decay), 100 40 (96 Tc ε decay (4.28 d)), 99 10 (95 Mo(n, γ) E=thermal), 100.0 9 (96 Mo(n, $^{\gamma}\gamma$)).
			1441.123 <i>23</i>	32 4	778.237	2+	E2 [†]	0.000416 6	$\alpha(K)=0.000311\ 5;\ \alpha(L)=3.47\times10^{-5}\ 5;\ \alpha(M)=6.18\times10^{-6}\ 9;$

9

γ (96Mo) (continued)

							/(1.10) (0011	
$E_i(level)$	J_i^{π}	E_{γ}^{b}	I_{γ}^{b}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ^{d}	α	Comments
	_					_		$\alpha(N)=9.41\times10^{-7}$ 14 $\alpha(O)=5.35\times10^{-8}$ 8; $\alpha(N+)=6.41\times10^{-5}$ 9 B(E2)(W.u.)<0.72 E _{\gamma} : weighted average of 1441.129 24 (96Nb \beta^- decay), 1441.14 10 (96Tc
								ε decay (4.28 d)), 1440.9 2 (95 Mo(n, γ) E=thermal), 1441.05 10 (96 Mo(n,n' γ)). I _{γ} : weighted average of 43.4 19 (96 Nb β^- decay), 45 5 (96 Tc ε decay
2234.63	3-	365.04 11	9.3 4	1869.576 4 ⁺	E1 [†]		0.00326 5	(4.28 d)), 55 6 (95 Mo(n, γ) E=thermal), 28.0 9 (96 Mo(n, $^{\prime}\gamma$)). α (K)=0.00287 4; α (L)=0.000323 5; α (M)=5.75×10 ⁻⁵ 8; α (N)=8.71×10 ⁻⁶
								13; $\alpha(O)=4.80\times10^{-7}$ 7 $\alpha(N+)=9.19\times10^{-6}$ 13
								B(E1)(W.u.)<0.0010
								E _γ : weighted average of 364.90 <i>13</i> (95 Mo(n, $_{γ}$) E=thermal), 365.13 <i>10</i> (96 Mo(n, $_{γ}$ γ)).
								I_{γ} : weighted average of 9.4 8 (95 Mo(n, γ) E=thermal), 9.3 4 (96 Mo(n,n' γ))
		608.69 7	100.0 13	1625.905 2+	E1 [†]		0.000934 13	$\alpha(K)=0.000824 \ 12; \ \alpha(L)=9.18\times10^{-5} \ 13; \ \alpha(M)=1.634\times10^{-5} \ 23$ $\alpha(O)=1.395\times10^{-7} \ 20; \ \alpha(N+)=2.62\times10^{-6} \ 4$
								B(E1)(W.u.)<0.0024
								E _γ : weighted average of 608.67 11 (95 Mo(n,γ) E=thermal), 608.70 10 (96 Mo(n,n'γ)).
								I_γ : weighted average of 100 6 (95 Mo(n, γ) E=thermal), 100.0 13 (96 Mo(n,n' γ)).
		736.88 7	97.0 <i>13</i>	1497.787 2 ⁺	E1 [†]		0.000614 9	$\alpha(K)=0.000541$ 8; $\alpha(L)=6.01\times10^{-5}$ 9; $\alpha(M)=1.070\times10^{-5}$ 15; $\alpha(O)=9.19\times10^{-8}$ 13
								α(N+)=1.719×10 ⁻⁶ 24 B(E1)(W.u.)<0.0013
								E_{γ} : weighted average of 736.86 11 (95Mo(n,γ) E=thermal), 736.89 10 (96Mo(n,n'γ)).
								I_{γ} : weighted average of 97 6 (95 Mo(n, γ) E=thermal), 97.0 13 (96 Mo(n,n' γ)).
		1456.25 9	9.72 22	778.237 2+	E1 [†]		0.000376 6	$\alpha(K)=0.0001490\ 2I;\ \alpha(L)=1.633\times10^{-5}\ 23;\ \alpha(M)=2.91\times10^{-6}\ 4$ $\alpha(O)=2.54\times10^{-8}\ 4;\ \alpha(N+)=0.000208\ 3$
								$B(E1)(W.u.)<1.7\times10^{-5}$
								E _γ : weighted average of 1456.2 3 (95 Mo(n,γ) E=thermal), 1456.26 10 (96 Mo(n,n'γ)).
2205.2		1620 6	100	550 COT 51				I_{γ} : weighted average of 9 3 (95 Mo(n, γ) E=thermal), 9.72 22 (96 Mo(n,n' γ)).
2398.9		1620.6	100	778.237 2 ⁺				

10

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{oldsymbol{b}}$	$I_{\gamma}^{ b}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.	δ^d	α	Comments
2426.14	2+	447.62 10	4.71 19	1978.450 3+	M1+E2 [†]	-2.6 +8-16	0.00642 20	$\alpha(K)=0.00560\ 17;\ \alpha(L)=0.000676\ 24;\ \alpha(M)=0.000121\ 5;$ $\alpha(N)=1.82\times10^{-5}\ 6;\ \alpha(O)=9.41\times10^{-7}\ 24$ $\alpha(N+)=1.91\times10^{-5}\ 7$ B(E2)(W.u.)=1.4×10 ² +3-4; B(M1)(W.u.)=0.0042\ 24 E _{\gamma} , I _{\gamma} : observed only in (n,n'\gamma).
		800.27 8	67.1 <i>15</i>	1625.905 2+	M1+E2 [†]	-0.18 <i>17</i>	0.001309 19	$\alpha(K)$ =0.001153 17; $\alpha(L)$ =0.0001293 19; $\alpha(M)$ =2.31×10 ⁻⁵ 4 $\alpha(O)$ =2.01×10 ⁻⁷ 3; $\alpha(N+)$ =3.72×10 ⁻⁶ 6 B(E2)(W.u.)=4 +8-4; B(M1)(W.u.)=0.078 +14-18 E _{\gamma} : weighted average of 800.36 13 (95 Mo(n, γ) E=thermal), 800.22 10 (96 Mo(n,n' γ)). I _{\gamma} : weighted average of 59 5 (95 Mo(n, γ) E=thermal), 67.4 9 (96 Mo(n,n' γ)).
		928.25 10	7.35 19	1497.787 2+	M1+E2 [†]	+3.9 +18-10	0.000920 13	$\alpha(K)$ =0.000809 12; $\alpha(L)$ =9.20×10 ⁻⁵ 13; $\alpha(M)$ =1.641×10 ⁻⁵ 23 $\alpha(O)$ =1.387×10 ⁻⁷ 20; $\alpha(N+)$ =2.63×10 ⁻⁶ 4 B(E2)(W.u.)=6.1 +11-14; B(M1)(W.u.)=0.0003 +3-3 E _{\gamma} : weighted average of 928.4 5 (⁹⁵ Mo(n, γ) E=thermal), 928.24 10 (⁹⁶ Mo(n, $n'\gamma$)). I _{\gamma} : weighted average of 11 5 (⁹⁵ Mo(n, γ) E=thermal), 7.34 19 (⁹⁶ Mo(n, $n'\gamma$)).
		1647.80 9	100.0 9	778.237 2+	M1+E2 [†]	+1.2 3	0.000412 6	$\alpha(K)$ =0.000244 4; $\alpha(L)$ =2.70×10 ⁻⁵ 5; $\alpha(M)$ =4.82×10 ⁻⁶ 8; $\alpha(N)$ =7.34×10 ⁻⁷ 12 $\alpha(O)$ =4.21×10 ⁻⁸ 7; $\alpha(N+)$ =0.000136 4 B(E2)(W.u.)=2.9 +8-9; B(M1)(W.u.)=0.0056 +19-21 E _{γ} : weighted average of 1647.6 3 (95 Mo(n, γ) E=thermal), 1647.82 10 (96 Mo(n, $^{\prime}$ γ)). I _{γ} : weighted average of 100 9 (95 Mo(n, γ) E=thermal), 100.0 9 (96 Mo(n, $^{\prime}$ γ)).
		2426.28 10	9.0 4	0.0 0+	E2 [†]		0.000645 9	$\alpha(K)=0.0001175\ I7;\ \alpha(L)=1.290\times10^{-5}\ I8;$ $\alpha(M)=2.30\times10^{-6}\ 4$ $\alpha(O)=2.02\times10^{-8}\ 3;\ \alpha(N+)=0.000513\ 8$ B(E2)(W.u.)=0.065 +11-14 E _{\gamma} ,I _{\gamma} : observed only in (n,n'\gamma).
2438.477	5+	219.080 <i>18</i>	5.14 11	2219.425 4+	M1+E2 [‡]	-0.44 4	0.0369 12	$\alpha(K)$ =0.0322 10; $\alpha(L)$ =0.00395 15; $\alpha(M)$ =0.00071 3; $\alpha(N)$ =0.000106 4; $\alpha(O)$ =5.50×10 ⁻⁶ 15 $\alpha(N+)$ =0.00016 8 B(E2)(W.u.)<1.7×10 ³ ; B(M1)(W.u.)<0.39 E _{γ} : weighted average of 219.081 18 (96 Nb β^- decay), 219.4

γ (96Mo) (continued)

						/(-	(Communa)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{oldsymbol{b}}$	$I_{\gamma}^{ b}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ^d	α	Comments
	_							4 (96 Tc ε decay (4.28 d)), 218.98 13 (95 Mo(n, γ) E=thermal). I $_{\gamma}$: weighted average of 5.12 8 (96 Nb β^- decay), 4.3 11 (96 Tc ε decay (4.28 d)), 20 13 (96 Tc ε decay (51.5 min)), 6.6 7 (95 Mo(n, γ) E=thermal). δ: from 96 Nb β^- decay.
2438.477	5+	460.03 13	46.1 4	1978.450 3 ⁺	E2 [†]		0.00609 9	$\alpha(K)$ =0.00532 8; $\alpha(L)$ =0.000643 9; $\alpha(M)$ =0.0001151 17; $\alpha(N)$ =1.727×10 ⁻⁵ 25 $\alpha(O)$ =8.90×10 ⁻⁷ 13; $\alpha(N+)$ =1.82×10 ⁻⁵ 3 B(E2)(W.u.)<2.0×10 ³
								E _γ : weighted average of 460.040 $I2$ (96 Nb $β^-$ decay), 460.04 I (96 Tc $ε$ decay (4.28 d)), 460.0 I (96 Tc $ε$ decay (51.5 min)), 460.5 I (94 Zr(I (I (I (I)), 459.88 I (I (I (I (I)) (I (I (I)), 459.88 I (I (I (I (I (I))), 459.5 I (I))), 459.5 I (I))), 459.5 I (
		568.869 12	100.0 5	1869.576 4 ⁺	M1+E2 [†]	-0.24 3	0.00287 4	(94 Zr(α ,2n γ)), 49 3 (95 Mo(n, γ) E=thermal), 49.0 14 (96 Mo(n,n' γ)). α(K)=0.00253 4; α(L)=0.000286 4; α(M)=5.12×10 ⁻⁵ 8;
								$\alpha(N)=7.79\times10^{-6} II; \ \alpha(O)=4.42\times10^{-7} 7$ $\alpha(N+)=8.23\times10^{-6} I2$ B(E2)(W.u.)<1.0×10 ² ; B(M1)(W.u.)<0.48
								E _γ : weighted average of 568.871 12 (96 Nb $β^-$ decay), 568.88 7 (96 Tc $ε$ decay (4.28 d)), 568.8 2 (96 Tc $ε$ decay (51.5 min)), 569.1 5 (94 Zr($α$,2n $γ$)), 568.80 12 (95 Mo(n, $γ$) E=thermal), 568.79 10 (96 Mo(n,n γ γ)).
								I _γ : weighted average of 100.0 5 (96 Nb $β^-$ decay), 100 7 (96 Tc $ε$ decay (4.28 d)), 90 30 (96 Tc $ε$ decay (51.5 min)), 100 25 (94 Zr($α$,2n $γ$)), 100 7 (95 Mo(n, $γ$) E=thermal), 100.0 16 (96 Mo(n,n $'$ $γ$)).
		810.336 24	19.3 5	1628.188 4+	M1+E2 [†]		0.001274 18	$\alpha(K)$ =0.001120 <i>16</i> ; $\alpha(L)$ =0.0001271 <i>24</i> ; $\alpha(M)$ =2.27×10 ⁻⁵ <i>5</i> $\alpha(O)$ =1.94×10 ⁻⁷ <i>4</i> ; $\alpha(N+)$ =3.64×10 ⁻⁶ <i>6</i> $\alpha(O)$ =1.94×10 ⁻⁷ <i>4</i> ; $\alpha(O)$ =3.64×10 ⁻⁶ <i>6</i> $\alpha(O)$ =4.30 <i>15</i> (96Nb $\alpha(O)$ =6 decay), 810.3 <i>4</i> (96Tc $\alpha(O)$ decay), 810.8 <i>2</i> (95Mo($\alpha(O)$) E=6 thermal), 810.49 <i>10</i>
								$(^{96}\text{Mo}(n,n'\gamma))$. I_{γ} : weighted average of 19.13 17 (^{96}Nb β ⁻ decay), 70 30 (^{96}Tc ε decay (51.5 min)), 30 7 ($^{95}\text{Mo}(n,\gamma)$ E=thermal), 23.4 10 ($^{96}\text{Mo}(n,n'\gamma)$).

						/(1.10) (continued)	
$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{b}	I_{γ}^{b}	\mathbf{E}_f J	$\frac{\pi}{f}$ Mult.	δ^d	α	Comments
2440.76	6+	812.56 3	100	1628.188 4	E2+M3 [†]	-0.036 8	0.001274 19	$\alpha(K)$ =0.001119 16 ; $\alpha(L)$ =0.0001286 19 ; $\alpha(M)$ =2.30×10 ⁻⁵ 4 $\alpha(O)$ =1.91×10 ⁻⁷ 3 ; $\alpha(N+)$ =3.64×10 ⁻⁶ 6 B(E2)(W.u.)<2.9×10 ² E _γ : weighted average of 812.581 15 (96 Nb β^- decay), 812.54 4 (96 Tc ε decay (4.28 d)), 812.6 2 (94 Zr(α ,2n γ)), 812.48 13 (95 Mo(n, γ) E=thermal), 812.19 10 (96 Mo(n,n' γ)), 812.4 1 (82 Se(18 O,4n γ)). δ : from 96 Tc ε decay (4.28 d).
2481.06	$(4)^{+}$	611.4 2	25 <i>3</i>	1869.576 4	+			$E_{\gamma}I_{\gamma}$: observed only in $^{95}Mo(n,\gamma)$, E=th.
2401.00	(4)	852.91 8	100 8	1628.188 4		-0.20 7	0.001136 <i>16</i>	$\alpha(K)$ =0.001001 14; $\alpha(L)$ =0.0001120 16; $\alpha(M)$ =2.00×10 ⁻⁵ 3 $\alpha(O)$ =1.745×10 ⁻⁷ 25; $\alpha(N+)$ =3.22×10 ⁻⁶ 5 B(E2)(W.u.)<1.8; B(M1)(W.u.)<0.020 E _y : weighted average of 853.0 10 (⁹⁶ Tc ε decay (51.5 min)), 853.03 15 (⁹⁵ Mo(n, γ) E=thermal), 852.86 10 (⁹⁶ Mo(n, $\gamma'\gamma$)).
								I _γ : weighted average of 100 40 (96 Tc ε decay (51.5 min)), 100 8 (95 Mo(n,γ) E=thermal), 100.0 8 (96 Mo(n,n'γ)).
		983.1 2	14 3	1497.787 2	;+			E_{γ},I_{γ} : observed only in $^{95}Mo(n,\gamma)$, E=th.
		1702.78 9	33.9 19	778.237 2	.+ E2 [†]		0.000422 6	$\alpha(K)=0.000224$ 4; $\alpha(L)=2.49\times10^{-5}$ 4; $\alpha(M)=4.43\times10^{-6}$ 7; $\alpha(N)=6.75\times10^{-7}$ 10 $\alpha(O)=3.86\times10^{-8}$ 6; $\alpha(N+)=0.0001681$ 24 B(E2)(W.u.)<0.29 E _{γ} : weighted average of 1702.5 5 (96 Tc ε decay (51.5 min)), 1702.8 3 (95 Mo(n, γ) E=thermal), 1702.79 10 (96 Mo(n,n' γ)). I _{γ} : weighted average of 40 8 (96 Tc ε decay (51.5 min)), 47 4 (95 Mo(n, γ) E=thermal), 33.3 8 (96 Mo(n,n' γ)).
2501.58	(1)	875.61 <i>10</i>	17.2 5	1625.905 2	+			E_{γ}, I_{γ} : observed only in ${}^{96}Mo(n, n'\gamma)$.
		1003.69 10	35.3 7	1497.787 2	·+			E _{γ} : weighted average of 1003.6 7 (95 Mo(n, γ) E=thermal), 1003.69 10 (96 Mo(n,n' γ)). I _{γ} : from 96 Mo(n,n' γ). Other: 29 18 (95 Mo(n, γ) E=thermal).
		1353.30 <i>13</i>	100.0 12	1148.13 0) +			\dot{E}_{γ} : weighted average of 1352.9 3 (95 Mo(n, γ) E=thermal), 1353.35 10 (96 Mo(n,n' γ)).
		1702 20 12	((7.0	770 227 2	.+			I_{γ} : from 96 Mo(n,n' γ). Other: 100 30 (95 Mo(n, γ) E=thermal).
		1723.29 10	66.7 9	778.237 2				E_{γ},I_{γ} : observed only in ${}^{96}Mo(n,n'\gamma)$.
2540.46	(3+)	2501.84 <i>10</i> 914.53 <i>9</i>	13.3 <i>5</i> 11.4 <i>5</i>	0.0 0 1625.905 2				$E_{\gamma}I_{\gamma}$: observed only in $^{96}Mo(n,n'\gamma)$. E_{γ} : weighted average of 914.6 3 ($^{95}Mo(n,\gamma)$ E=thermal), 914.52 10 ($^{96}Mo(n,n'\gamma)$).
								I_{γ} : weighted average of 20 5 (95 Mo(n, γ) E=thermal), 11.4 3 (96 Mo(n,n' γ)).

γ (96Mo) (continued)

E_i (level)	J_i^{π}	E_{γ}^{b}	I_{γ}^{b}	$E_f J_f^{\pi}$	Mult.	δ^d	α	Comments
2540.46	(3+)	1042.62 9	28.1 15	1497.787 2+				E _γ : weighted average of 1042.7 2 (95 Mo(n, γ) E=thermal), 1042.60 10 (96 Mo(n,n' γ)). I _γ : weighted average of 41 5 (95 Mo(n, γ) E=thermal), 27.9 6
								($^{96}\text{Mo}(\text{n,n'}\gamma)$).
		1762.06 9	100.0 7	778.237 2+				E _γ : weighted average of 1761.8 3 (95 Mo(n, γ) E=thermal), 1762.09 10 (96 Mo(n,n' γ)). from 96 Mo(n,n' γ). Other: 100 14 (95 Mo(n, γ) E=thermal).
2594.39	3+	374.9 <mark>e</mark> 2	6.3 7	2219.425 4+				From ${}^{5}Mo(n,n'\gamma)$. Other: 100 14 (${}^{5}Mo(n,\gamma)$ E=thermal). E_{γ},I_{γ} : observed only in ε Decay.
2371.37	3	615.73 18	100.0 19	1978.450 3+	M1+E2 [†]		0.00249 13	$\alpha(K)$ =0.00219 11; $\alpha(L)$ =0.000252 18; $\alpha(M)$ =4.5×10 ⁻⁵ 3; $\alpha(N)$ =6.8×10 ⁻⁶ 5; $\alpha(O)$ =3.77×10 ⁻⁷ 13 $\alpha(N+)$ =7.2×10 ⁻⁶ 5
								E _γ : weighted average of 615.90 7 (96 Tc ε decay (51.5 min)), 615.8 2 (95 Mo(n, γ) E=thermal), 615.35 10 (96 Mo(n,n' γ)). I _γ : from 96 Mo(n,n' γ). Other: 83 6 (96 Tc ε decay (51.5 min)), 25 3 (95 Mo(n, γ) E=thermal).
		966.31 8	62.3 19	1628.188 4+	M1+E2 [†]	-0.9 3	0.000852 13	$\alpha(K)$ =0.000750 12; $\alpha(L)$ =8.43×10 ⁻⁵ 13; $\alpha(M)$ =1.505×10 ⁻⁵ 22 $\alpha(O)$ =1.298×10 ⁻⁷ 23; $\alpha(N+)$ =2.42×10 ⁻⁶ 4 B(E2)(W.u.)=2.7 +17-27; B(M1)(W.u.)=0.0032 +19-32
								E _γ : weighted average of 966.4 2 (96 Tc ε decay (51.5 min)), 966.3 2 (95 Mo(n, γ) E=thermal), 966.29 10 (96 Mo(n,n' γ)). I _γ : from 96 Mo(n,n' γ). Other: 56 4 (96 Tc ε decay (51.5 min)), 29 5 (95 Mo(n, γ) E=thermal).
		968.42 11	98.7 19	1625.905 2+	M1+E2 [†]	-0.86 23	0.000848 13	$\alpha(K)$ =0.000747 12; $\alpha(L)$ =8.40×10 ⁻⁵ 12; $\alpha(M)$ =1.498×10 ⁻⁵ 22 $\alpha(O)$ =1.294×10 ⁻⁷ 21; $\alpha(N+)$ =2.41×10 ⁻⁶ 4 B(E2)(W.u.)=4.1 +24-41; B(M1)(W.u.)=0.005 +3-5
								E _γ : weighted average of 968.5 2 (96 Tc ε decay (51.5 min)), 968.21 12 (95 Mo(n,γ) E=thermal), 968.54 10 (96 Mo(n,n'γ)). I _γ : from 96 Mo(n,n'γ). Other: 100 7 (96 Tc ε decay (51.5 min)), 100 5 (95 Mo(n,γ).
		1096.58 8		1497.787 2+				E _γ : weighted average of 1096.58 8 (96 Tc ε decay (51.5 min)), 1096.7 5 (95 Mo(n,γ) E=thermal). I _γ : Not given in (n,n'γ), Other: 89 6 (96 Tc ε decay (51.5 min)),
								25 $10^{(95}\text{Mo(n},\gamma)$ E=thermal).
		1816.08 <i>14</i>	58.5 10	778.237 2+	M1+E2 [†]	+1.9 3	0.000440 7	$\alpha(K)=0.000200 \ 3; \ \alpha(L)=2.22\times10^{-5} \ 4; \ \alpha(M)=3.95\times10^{-6} \ 6; \ \alpha(N)=6.02\times10^{-7} \ 9 \ \alpha(O)=3.46\times10^{-8} \ 5; \ \alpha(N+)=0.000213 \ 4$
								$a(0)=3.40 \times 10^{-3}$, $a(10+)=0.0002134$ B(E2)(W.u.)=0.19 + 10-19; $B(M1)(W.u.)=0.00018 + 10-18$

γ (96Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{b}	I_{γ}^{b}	\mathbf{E}_f .	J_f^{π} Mult.	δ^d	α	Comments
								E _γ : weighted average of 1815.6 5 (96 Tc ε decay (51.5 min)), 1815.4 4 (95 Mo(n,γ) E=thermal), 1816.14 10 (96 Mo(n,n'γ)). I _γ : from 96 Mo(n,n'γ). Other: 49 4 (96 Tc ε decay (51.5 min)), 19 5 (95 Mo(n,γ) E=thermal).
2611.51		983.32 10	$1.0 \times 10^2 \ 4$	1628.188 4	+			E _{γ} : from ⁹⁶ Mo(n,n' γ). I _{γ} : from ⁹⁶ Tc ε Decay (51.5 min).
		985.7	9.×10 ¹ 4	1625.905 2	+			E _{γ} , Irom ⁹⁶ Tc ε Decay (51.5 min), not observed in (n,n' γ).
2622.51	(0)+	1844.25 10	100	778.237 2	+ E2 [†]		0.000450 7	$\alpha(K)=0.000193 \ 3; \ \alpha(L)=2.13\times10^{-5} \ 3; \ \alpha(M)=3.80\times10^{-6} \ 6; \ \alpha(N)=5.79\times10^{-7} \ 9 \ \alpha(O)=3.32\times10^{-8} \ 5; \ \alpha(N+)=0.000232 \ 4 \ B(E2)(W.u.)=1.7 \ +6-17$
2625.19	4+	405.9 <i>3</i>	16 5	2219.425 4	* M1+E2	†	0.0077 13	$\alpha(K)$ =0.0067 12; $\alpha(L)$ =0.00080 17; $\alpha(M)$ =0.00014 3; $\alpha(N)$ =2.2×10 ⁻⁵ 5; $\alpha(O)$ =1.14×10 ⁻⁶ 16 $\alpha(N+)$ =2.3×10 ⁻⁵ 5 E _{γ} : weighted average of 405.1 3 (95 Mo(n, γ) E=thermal), 405.95 10 (96 Mo(n, $^{\prime}$ γ)). I _{γ} : weighted average of 6.1 15 (95 Mo(n, γ) E=thermal), 19.0 8 (96 Mo(n, $^{\prime}$ γ)).
		1846.90 <i>15</i>	100.0 8	778.237 2	+ E2 [†]		0.000451 7	$\alpha(K)$ =0.000192 β ; $\alpha(L)$ =2.13×10 ⁻⁵ β ; $\alpha(M)$ =3.79×10 ⁻⁶ δ ; $\alpha(N)$ =5.78×10 ⁻⁷ δ $\alpha(O)$ =3.31×10 ⁻⁸ δ ; $\alpha(N+)$ =0.000233 δ B(E2)(W.u.)=1.7 +7-17 E _{γ} : weighted average of 1846.2 δ (δ
2700.21	2+	159.63 <i>14</i>	6.9 7	2540.46 (3	B ⁺)			E_{γ}, I_{γ} : observed only in $^{95}Mo(n, \gamma)$ E=thermal.
		1074.1 3	22 7	1625.905 2	+ M1+E2	Ť	0.000673 19	$\alpha(\text{K}) = 0.000593 \ 17; \ \alpha(\text{L}) = 6.65 \times 10^{-5} \ 15; \ \alpha(\text{M}) = 1.19 \times 10^{-5} \ 3; \ \alpha(\text{N}) = 1.81 \times 10^{-6} \ 5 \ \alpha(\text{O}) = 1.03 \times 10^{-7} \ 4; \ \alpha(\text{N}+) = 1.91 \times 10^{-6} \ 5 \ \text{E}_{\gamma}.\text{I}_{\gamma}\text{: from } ^{95}\text{Mo}(\text{n},\gamma) \ \text{E=thermal.}$
		1202.36 <i>13</i>	100.0 15	1497.787 2	+ M1+E2	-0.11 5	0.000549 8	$\alpha(K)=0.000478\ 7;\ \alpha(L)=5.31\times10^{-5}\ 8;\ \alpha(M)=9.47\times10^{-6}\ 14;$ $\alpha(N)=1.445\times10^{-6}\ 21$ $\alpha(O)=8.32\times10^{-8}\ 12;\ \alpha(N+)=7.96\times10^{-6}\ 12$ B(E2)(W.u.)=0.4 4; B(M1)(W.u.)=0.050 7

γ (96Mo) (continued)

						!	,() (-	ontinucu)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{oldsymbol{b}}$	I_{γ}^{b}	E_f	\mathbf{J}_f^{π}	Mult.	δ^{d}	α	Comments
									E _γ : weighted average of 1202.1 2 (95 Mo(n, γ) E=thermal), 1202.43 10 (96 Mo(n,n' γ)). I _γ : weighted average of 100 11 (95 Mo(n, γ) E=thermal), 100.0 15 (96 Mo(n,n' γ)).
2700.21	2+	1921.78 ^c 10	80.6 ^c 13	778.237	2+	M1+E2 [†]		0.000460 13	$\alpha(K)$ =0.000182 5; $\alpha(L)$ =2.01×10 ⁻⁵ 5; $\alpha(M)$ =3.58×10 ⁻⁶ 9; $\alpha(N)$ =5.47×10 ⁻⁷ 14
						4-			$\alpha(O)=3.15\times10^{-8} 9$; $\alpha(N+)=0.000254$ 16
		2700.88 ^c 16	32.3 ^c 17	0.0	0+	E2 [†]		0.000751 11	$\alpha(K)=9.76\times10^{-5}$ 14; $\alpha(L)=1.070\times10^{-5}$ 15; $\alpha(M)=1.91\times10^{-6}$ 3; $\alpha(N)=2.91\times10^{-7}$ 4
									α (O)=1.678×10 ⁻⁸ 24; α (N+)=0.000641 9 B(E2)(W.u.)=0.20 3
2712.68		271.9 <i>1</i>	100	2440.76					07
2734.57	$(4,5)^+$	293.9 4	1.6 5	2440.76					E_{γ}, I_{γ} : from ⁹⁵ Mo(n, γ), E=th.
		864.93 9	55.6 18	1869.576	4+				E _y : weighted average of 864.82 <i>12</i> (95 Mo(n, γ) E=thermal), 865.00 <i>10</i> (96 Mo(n,n' γ)).
									I_{γ} : weighted average of 54 3 (95 Mo(n, γ) E=thermal), 56.5 22 (96 Mo(n,n' γ)).
		1106.44 8	100 2	1628.188	4+				E _γ : weighted average of 1105.8 5 (94 Zr(α ,2nγ)), 1106.44 13 (95 Mo(n,γ) E=thermal), 1106.47 10 (96 Mo(n,n'γ)), 1106.2 5 (82 Se(18 O,4nγ)).
									I_{γ} : weighted average of 100 5 (95 Mo(n, γ) E=thermal), 100.0 22 (96 Mo(n,n' γ)).
		1109.1 ^e 5	13 5	1625.905	2+				E_{γ} : Only observed in $^{95}Mo(n,\gamma)$ thermal. If this gamma exists, J would be equal to 4.
2735.91	3 ⁺	1107.5 3		1628.188	4+				E_{γ} : from 96 Tc ε decay (51.5 min), not observed in $(n,n'\gamma)$.
		1109.8 <i>3</i>		1625.905					E_{γ} : from ⁹⁶ Tc ε decay (51.5 min), not observed in $(n,n'\gamma)$.
		1238.10 <i>15</i>	56.7 9	1497.787	2+	M1+E2 [†]	-0.34 4	0.000519 8	$\alpha(K)=0.000447 \ 7; \ \alpha(L)=4.97\times10^{-5} \ 7; \ \alpha(M)=8.86\times10^{-6} \ 13; \ \alpha(N)=1.353\times10^{-6} \ 19$
									$\alpha(O) = 7.78 \times 10^{-8} \ II; \ \alpha(N+) = 1.276 \times 10^{-5} \ I9$
									B(E2)(W.u.)=2.3 6; B(M1)(W.u.)=0.031 5
									E_{γ} : weighted average of 1237.8 2 (96 Tc ε decay (51.5 min)), 1238.17 10 (96 Mo(n,n' γ)).
									I_{γ} : from ⁹⁶ Mo(n,n' γ). Other: 100 10 (⁹⁶ Tc ε decay (51.5 min)).
		1957.75 <i>13</i>	100.0 9	778.237	2+	M1+E2 [†]	+0.02 4	0.000458 7	$\alpha(K)=0.000179 \ 3; \ \alpha(L)=1.98\times10^{-5} \ 3; \ \alpha(M)=3.52\times10^{-6} \ 5; \ \alpha(N)=5.38\times10^{-7} \ 8$
									$\alpha(N)=3.56\times10^{-6}$ $\alpha(N+)=0.000255$ 4

γ (96Mo) (continued)

						<i>y</i> (1410)	(continued)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathbb{E}_{\gamma}{}^{oldsymbol{b}}$	I_{γ}^{b}	E_f J	f Mult.	δ^d	α	Comments
2748.65	(0 ⁺)	1250.78 ^e 10 1970.47 10	32.5 <i>9</i> 100.0 <i>9</i>	1497.787 2 778.237 2				E _γ : weighted average of 1957.1 5 (96 Tc ε decay (51.5 min)), 1957.78 10 (96 Mo(n,n' γ)). I _γ : from 96 Mo(n,n' γ). Other: 74 6 (96 Tc ε decay (51.5 min)).
2755.08	6+	314.29 4	16.5 14	2440.76 6		-0.11 <i>I</i>	0.01210	$\alpha(K)$ =0.01063 15; $\alpha(L)$ =0.001224 18; $\alpha(M)$ =0.000219 3; $\alpha(N)$ =3.33×10 ⁻⁵ 5; $\alpha(O)$ =1.87×10 ⁻⁶ 3 $\alpha(N+)$ =3.68×10 ⁻⁵ 9 B(E2)(W.u.)<65; B(M1)(W.u.)<0.46 E _γ : weighted average of 314.34 7 (96 Nb β^- decay), 314.27 5 (96 Tc ε decay (4.28 d)), 314.3 2 (82 Se(18 O,4nγ)). I _γ : weighted average of 18 3 (96 Nb β^- decay), 16.1 16 (96 Tc ε decay (4.28 d)). δ: from 96 Tc ε decay (4.28 d).
		316.43 7	10.7 23	2438.477 5	+ M1+E2 [#]	-0.060 5	0.01183	α(K)=0.01039 15; α(L)=0.001194 17; α(M)=0.000213 3; α(N)=3.25×10 ⁻⁵ 5; α(O)=1.83×10 ⁻⁶ 3 α(N+)=3.44×10 ⁻⁵ 6 B(E2)(W.u.)<12; B(M1)(W.u.)<0.29 E _γ : weighted average of 316.27 9 (96 Nb β^- decay), 316.50 6 (96 Tc ε decay (4.28 d)), 316.4 2 (82 Se(18 O,4nγ)). I _γ : weighted average of 14.3 20 (96 Nb β^- decay), 9.2 13 (96 Tc ε decay (4.28 d)). δ: from 96 Tc ε decay (4.28 d).
		535.78 8	2.7 3	2219.425 4	+ E2+M3 [#]	-0.10 3	0.00412 18	$\alpha(K)=0.00360 \ 16; \ \alpha(L)=0.000432 \ 21; \ \alpha(M)=7.7\times10^{-5} \ 4;$ $\alpha(N)=1.16\times10^{-5} \ 6; \ \alpha(O)=6.1\times10^{-7} \ 3$ $\alpha(N+)=1.22\times10^{-5} \ 6$ $B(E2)(W.u.)<52; \ B(M3)(W.u.)<2.0\times10^{7}$ $E_{\gamma}I_{\gamma},\delta$: observed only in 96 Tc ε Decay (4.28 d).
		885.4 2	0.7 3	1869.576 4	+ E2+M3	-0.10 3	0.00107 4	$\alpha(K) = 0.00094 \ 3; \ \alpha(L) = 0.000108 \ 4; \ \alpha(M) = 1.93 \times 10^{-5} \ 7;$ $\alpha(N) = 2.93 \times 10^{-6} \ 11; \ \alpha(O) = 1.62 \times 10^{-7} \ 6$ $\alpha(N+) = 3.09 \times 10^{-6} \ 11$ B(E2)(W.u.)<1.1; B(M3)(W.u.)<1.5×10 ⁵ E _{\gamma} , \delta: observed only in \(^{96}\)Tc \(\varepsilon\) Decay (4.28 d).
		1126.94 4	100 4	1628.188 4	+ E2+M3 [†]	-0.037 5	0.000596 9	$\alpha(K)=0.000523$ 8; $\alpha(L)=5.90\times10^{-5}$ 9; $\alpha(M)=1.052\times10^{-5}$ 15; $\alpha(O)=8.99\times10^{-8}$ 13 $\alpha(N+)=3.09\times10^{-6}$ 5 B(E2)(W.u.)<47 E _y : weighted average of 1126.965 21 (⁹⁶ Nb β^- decay), 1126.85

(963.4.)	<i>(</i> , 1)
$\gamma(\text{MIO})$	(continued)

						/(1.10) (00.		
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{oldsymbol{b}}$	I_{γ}^{b}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ^d	α	Comments
	_							6 (96 Tc ε decay (4.28 d)), 1125.6 5 (94 Zr(α,2nγ)), 1126.3 2 (95 Mo(n,γ) E=thermal), 1126.91 10 (96 Mo(n,n'γ)), 1126.8 6 (82 Se(18 O,4nγ)). I _γ : weighted average of 100 5 (96 Nb β ⁻ decay), 100 8 (96 Tc ε decay (4.28 d)), 100 16 (82 Se(18 O,4nγ)).
2787.12	2+	192.7 2	3.8 9	2594.39 3 ⁺				E_{γ} : observed only in (n,γ) , $E=th$.
		1161.29 ^c 10	5.1 ^c 5	1625.905 2+	M1+E2 [†]	-0.4 +3-6	0.000582 14	$\alpha(K)=0.000511$ 13; $\alpha(L)=5.69\times10^{-5}$ 12; $\alpha(M)=1.014\times10^{-5}$ 21
					.			α (O)=8.88×10 ⁻⁸ 25; α (N+)=4.49×10 ⁻⁶ 25 B(E2)(W.u.)=0.4 +6-4; B(M1)(W.u.)=0.0035 +11-13
		1289.32 ^c 10	8.9 ^c 5	1497.787 2+	M1+E2 [†]	+1.1 10	0.000477 14	$\alpha(K)$ =0.000401 14; $\alpha(L)$ =4.47×10 ⁻⁵ 13; $\alpha(M)$ =7.97×10 ⁻⁶ 24; $\alpha(O)$ =6.9×10 ⁻⁸ 3 $\alpha(N+)$ =2.31×10 ⁻⁵ 24
								B(E2)(W.u.)=1.7 15; $B(M1)(W.u.)=0.0023 +24-23$
		2008.79 9	100.0 7	778.237 2+	M1+E2 [†]		0.000484 15	$\alpha(K)=0.000168 \ 4; \ \alpha(L)=1.85\times10^{-5} \ 5; \ \alpha(M)=3.29\times10^{-6} \ 8; \ \alpha(N)=5.03\times10^{-7} \ 12$
								$\alpha(O)=2.90\times10^{-8}$ 8; $\alpha(N+)=0.000295$ 17 E_{γ} : weighted average of 2008.5 3 ($^{95}Mo(n,\gamma)$ E=thermal), 2008 3 ($^{95}Mo(n,\gamma)$ E=2 keV), 2008.82 10 ($^{96}Mo(n,n'\gamma)$).
								I _{γ} : weighted average of 100 <i>15</i> (95 Mo(n, γ) E=thermal), 100.0 7 (96 Mo(n,n' γ)).
2790.21	(2,4)	555.48 9	11.8 <i>14</i>	2234.63 3				E _γ : weighted average of 555.5 2 (95 Mo(n, $_{γ}$) E=thermal), 555.48 10 (96 Mo(n, $_{γ}$ γ)).
								I_{γ} : weighted average of 18 4 (95 Mo(n, γ) E=thermal), 11.5 96 Mo(n,n' γ)).
		1164.50 <i>14</i>	60 3	1625.905 2+				E _{γ} : weighted average of 1164.50 <i>14</i> (95 Mo(n, γ) E=thermal), 1164.4 <i>3</i> (96 Mo(n,n' γ)).
								I_{γ} : weighted average of 84 9 (95 Mo(n, γ) E=thermal), 59.7 12 (96 Mo(n,n' γ)).
		1292.99		1497.787 2+				E_{γ} : observed only in $(n,n'\gamma)$, contaminated line.
		2011.96 9	100.0 14	778.237 2+				E _γ : weighted average of 2011.8 3 (95 Mo(n,γ) E=thermal), 2011.98 10 (96 Mo(n,n'γ)).
								I_{γ} : weighted average of 100 $I4$ (95 Mo(n, γ) E=thermal), 100.0 $I4$ (96 Mo(n,n' γ)).
2794.50	1+	1296.63 ^c 10	27.7 ^c 16	1497.787 2+	M1+E2 [†]		0.000474 13	$\alpha(K)$ =0.000397 13; $\alpha(L)$ =4.43×10 ⁻⁵ 13; $\alpha(M)$ =7.89×10 ⁻⁶ 22; $\alpha(O)$ =6.9×10 ⁻⁸ 3 $\alpha(N+)$ =2.44×10 ⁻⁵ 24
		2016.54 ^c 10	16.4 ^c 10	778.237 2+	M1+E2 [†]		0.000486 15	$\alpha(K)=0.000167 \ 4; \ \alpha(L)=1.83\times10^{-5} \ 4; \ \alpha(M)=3.27\times10^{-6} \ 8;$
		2010.54 10	10.7 10	710.231 2	1411 12		0.000-00 13	$u(\mathbf{n}) = 0.000107 \ \tau, \ u(\mathbf{n}) = 1.03 \land 10 \ \tau, \ u(\mathbf{n}) = 3.27 \land 10 \ 0,$

γ (96Mo) (continued)

$E_i(level)$	J_i^{π}	$E_{\gamma}^{ \nu$	I_{γ}^{b}	E_f	\mathbf{J}_f^{π}	Mult.	δ^{d}	α	Comments
									$\alpha(N)=4.99\times10^{-7}$ 12 $\alpha(O)=2.87\times10^{-8}$ 8; $\alpha(N+)=0.000298$ 17
2794.50	1+	2794.24 ^c 10	100.0° 23	0.0	0+	M1 [†]		0.000745 11	$\alpha(K) = 9.26 \times 10^{-5} \ I3; \ \alpha(L) = 1.014 \times 10^{-5} \ I5;$
2194.50	1	2794.24 10	100.0 23	0.0	U	IVII		0.000743 11	$\alpha(M) = 3.20 \times 10^{-1}$ 3; $\alpha(M) = 2.76 \times 10^{-7}$ 4
									$\alpha(O)=1.599\times10^{-8}$ 23; $\alpha(N+)=0.000641$ 9
									B(M1)(W.u.)=0.0226 23
2806.25	(1)	1180.42 <i>10</i>	11.2 4	1625.905					
		1308.39 10	18.9 7	1497.787					
		1658.10 <i>10</i>	100.0 8	1148.13	0+	+			
2818.49	4+	1190.29 8	100 7	1628.188	4+	M1+E2 [†]	-0.14 6	0.000559 8	$\alpha(K)$ =0.000488 7; $\alpha(L)$ =5.42×10 ⁻⁵ 8; $\alpha(M)$ =9.67×10 ⁻⁶ 14; $\alpha(N)$ =1.476×10 ⁻⁶ 21
									$\alpha(O)=8.49\times10^{-8} 12$; $\alpha(N+)=6.72\times10^{-6} 10$
									B(E2)(W.u.)=2.6 +23-24; B(M1)(W.u.)=0.19 +5-6
									E _y : weighted average of 1190.23 14 (95 Mo(n, γ)
									E=thermal), 1190.32 <i>10</i> (96 Mo(n,n' γ)).
		1320.9 5	12 7	1497.787		44			$E_{\gamma}I_{\gamma}$: from ⁹⁵ Mo(n, γ), E=th., not observed in (n,n' γ).
2875.48	7+,6+	120.3	5.4 12	2755.08	6+	(M1)#		0.1505	$\alpha(K)$ =0.1317 19; $\alpha(L)$ =0.01557 22; $\alpha(M)$ =0.00279 4; $\alpha(N)$ =0.000423 6; $\alpha(O)$ =2.34×10 ⁻⁵ 4
									$\alpha(N+)=0.000447.7$
									E _y : weighted average of 120.3 4 (96 Nb β^- decay), 120.3 5
									(96Tc ε decay (4.28 d)).
						щ			I_{γ} : weighted average of 6 3 (96 Nb $β^-$ decay), 5.3 13 (96 Tc $ε$ decay (4.28 d)).
		434.72 3	100 5	2440.76	6+	M1+E2#	+0.31 4	0.00556 9	$\alpha(K)$ =0.00489 8; $\alpha(L)$ =0.000560 10; $\alpha(M)$ =0.0001002 17; $\alpha(N)$ =1.522×10 ⁻⁵ 25
									$\alpha(O)=8.54\times10^{-7} \ 13; \ \alpha(N+)=1.61\times10^{-5} \ 3$
									I_{γ} : weighted average of 100 8 (⁹⁶ Nb β^- decay), 100 7 (⁹⁶ Tc ε decay (4.28 d)).
									δ : from 96 Tc ε decay (4.28 d).
2975.28	5 ⁺	434.6 <mark>e</mark> 2	24 3	2540.46	(3^{+})				E_{γ}, I_{γ} : observed only in 95 Mo(n, γ) thermal.
		740.61 ^e 9	85 <i>15</i>	2234.63	3-				E_{γ} : weighted average of 740.7 2 (95 Mo(n, γ) E=thermal),
									740.59 10 (96 Mo(n,n' γ)).
									I_{γ} : from 95 Mo(n, γ) thermal.
		755.6 2	94 6	2219.425	4+				E_{γ} , I_{γ} : observed only in 95 Mo(n, γ) thermal.
		997.3 2	85 9	1978.450					E_{γ}, I_{γ} : observed only in 95 Mo(n, γ) thermal.
		1347.15 <i>14</i>	100 15	1628.188					E _y : weighted average of 1346.9 3 (96 Nb β^- decay), 1346.8
									$^{'}$ 2 (95 Mo(n, γ) E=thermal), 1347.26 10 (96 Mo(n, $^{\prime}\gamma$)).
									I_{γ} : from 95 Mo(n, γ) thermal.

γ (96Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}^{ }$	$I_{\gamma}^{ b}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ^{d}	α	Comments
2978.37	8+	223.2 1	<7.5	2755.08	6 ⁺				E_{γ} : observed only in 82 Se(18 O,4n γ).
		537.72 24	100	2440.76	6+	E2 [@]		0.00383 6	$\alpha(K)$ =0.00335 5; $\alpha(L)$ =0.000399 6; $\alpha(M)$ =7.13×10 ⁻⁵ 10; $\alpha(N)$ =1.073×10 ⁻⁵ 15; $\alpha(O)$ =5.65×10 ⁻⁷ 8 $\alpha(N+)$ =1.130×10 ⁻⁵ 16
									E _γ : weighted average of 538.2 2 (94 Zr(α ,2nγ)), 537.6 <i>1</i> (82 Se(18 O,4nγ)).
2986.80	2+	891.12 <i>19</i>	57.8 22	2095.77	2+	M1+E2 [†]	-0.26 11	0.001031 <i>15</i>	$\alpha(K)$ =0.000908 <i>13</i> ; $\alpha(L)$ =0.0001016 <i>15</i> ; $\alpha(M)$ =1.81×10 ⁻⁵ <i>3</i> $\alpha(O)$ =1.582×10 ⁻⁷ <i>23</i> ; $\alpha(N+)$ =2.92×10 ⁻⁶ <i>4</i> B(E2)(W.u.)=4 <i>4</i> ; B(M1)(W.u.)=0.052 +8-9
									E_{γ} : weighted average of 891.5 2 (95 Mo(n, γ) E=thermal), 891.03 10 (96 Mo(n,n' γ)).
									I_{γ} : from $(n,n'\gamma)$, other: 56 13 ($^{95}Mo(n,\gamma)$ E=thermal).
		1008.30 10	31.4 16	1978.450	3+	M1+E2 [†]		0.000773 19	$\alpha(K)=0.000681$ 17; $\alpha(L)=7.65\times10^{-5}$ 15; $\alpha(M)=1.37\times10^{-5}$ 3; $\alpha(N)=2.08\times10^{-6}$ 5
									$\alpha(O)=1.18\times10^{-7}$ 4; $\alpha(N+)=2.20\times10^{-6}$ 5
		1260.00.12	100.0.25	1625.005	a +	M1 . E2 [†]		0.000445.11	$E_{\gamma}I_{\gamma}$: observed only in $(n,n'\gamma)$.
		1360.88 12	100.0 25	1625.905	2.	M1+E2 [†]		0.000445 11	$\alpha(K)=0.000360 \ 12; \ \alpha(L)=4.00\times10^{-5} \ 12; \ \alpha(M)=7.13\times10^{-6} \ 21$ $\alpha(O)=6.22\times10^{-8} \ 23; \ \alpha(N+)=3.8\times10^{-5} \ 4$
									E _γ : weighted average of 1360.4 4 (95 Mo(n,γ) E=thermal), 1360.91 $IO(^{96}$ Mo(n,n'γ)).
									I_{γ} : from $(n,n'\gamma)$, other: 80 30 ($^{95}Mo(n,\gamma)$ E=thermal).
		2208.55 10	83.2 25	778.237	2+	M1+E2 [†]		0.000548 18	$\alpha(K)=0.000141$ 3; $\alpha(L)=1.55\times10^{-5}$ 3; $\alpha(M)=2.76\times10^{-6}$ 6; $\alpha(N)=4.21\times10^{-7}$ 9
									$\alpha(O)=2.43\times10^{-8} \ 6; \ \alpha(N+)=0.000389 \ 19$
									E _γ : weighted average of 2208.6 7 (95 Mo(n,γ) E=thermal), 2208.55 10 (96 Mo(n,n'γ)).
						J.			I_{γ} : from $(n,n'\gamma)$, other: 100 60 (95 Mo (n,γ) E=thermal).
		2986.76 10	38 5	0.0	0+	E2 [†]		0.000861 12	$\alpha(K)=8.24\times10^{-5}$ 12; $\alpha(L)=9.01\times10^{-6}$ 13; $\alpha(M)=1.605\times10^{-6}$ 23 $\alpha(O)=1.416\times10^{-8}$ 20; $\alpha(N+)=0.000768$ 11 B(E2)(W.u.)=0.107 21
									E_{γ},I_{γ} : observed only in $(n,n'\gamma)$.
3006.45	0+	1508.65 <i>10</i>	100	1497.787	2+	E2 [†]		0.000409 6	$\alpha(K)=0.000284$ 4; $\alpha(L)=3.16\times10^{-5}$ 5; $\alpha(M)=5.63\times10^{-6}$ 8; $\alpha(N)=8.58\times10^{-7}$ 12
									α (O)=4.88×10 ⁻⁸ 7; α (N+)=8.74×10 ⁻⁵ 13 B(E2)(W.u.)=31 +6-31
3024.58	2+	1045.88 <i>16</i>	38.6 <i>16</i>	1978.450	2+	M1+E2 [†]		0.000713 19	$\alpha(K) = 0.000628 \ 17; \ \alpha(L) = 7.05 \times 10^{-5} \ 15; \ \alpha(M) = 1.26 \times 10^{-5} \ 3;$

Adopted Levels,	Gammas	(continued)
-----------------	--------	-------------

γ (96Mo) (continued)

							γ ⁽⁹⁶ Mo) (continued)	
	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbb{E}_{\gamma}{}^{oldsymbol{b}}$	$I_{\gamma}^{ b}$	\mathbf{E}_f	\mathbf{J}_f^{π} Mu	lt. δ^d	α	Comments
	2024 59	2+	1155 50 10	20.9.7	1869.576	4 ⁺ E2 [†]		0.000572.0	$\alpha(N)=1.91\times10^{-6}$ 5 $\alpha(O)=1.09\times10^{-7}$ 4; $\alpha(N+)=2.02\times10^{-6}$ 5 I_{γ} : from $(n,n'\gamma)$, other: 37 7 (95 Mo (n,γ) E=thermal). E _{γ} : weighted average of 1046.2 2 (95 Mo (n,γ) E=thermal), 1045.80 10 (96 Mo $(n,n'\gamma)$). $\alpha(K)=0.000493$ 7; $\alpha(L)=5.55\times10^{-5}$ 8; $\alpha(M)=9.89\times10^{-6}$ 14;
	3024.58	2.	1155.59 10	20.8 7	1809.370	4° E2'		0.000563 8	$\alpha(K)=0.000495 \ 7; \ \alpha(L)=3.53\times 10^{-6} \ 3; \ \alpha(M)=9.89\times 10^{-6} \ 14; \ \alpha(N)=1.504\times 10^{-6} \ 21 \ \alpha(O)=8.47\times 10^{-8} \ 12; \ \alpha(N+)=4.63\times 10^{-6} \ 7 \ B(E2)(W.u.)=11.3 + 17-19 \ I_{\gamma}: from (n,n'\gamma), other: 44 \ 12 \ (^{95}Mo(n,\gamma) \ E=thermal). \ E_{\gamma}: weighted average of 1155.4 2 \ (^{95}Mo(n,\gamma) \ E=thermal), \ 1155.64 \ 10 \ (^{96}Mo(n,n'\gamma)).$
2			1396.27 9	100.0 19	1628.188	4 ⁺ E2 [†]		0.000426 6	$\alpha(K)=0.000332\ 5;\ \alpha(L)=3.70\times10^{-5}\ 6;\ \alpha(M)=6.60\times10^{-6}\ 10;\ \alpha(N)=1.004\times10^{-6}\ 14$ $\alpha(O)=5.70\times10^{-8}\ 8;\ \alpha(N+)=5.09\times10^{-5}\ 8$ $B(E2)(W.u.)=21\ +3-4$ I_{γ} : from $(n,n'\gamma)$, other: 100 $I2\ (^{95}Mo(n,\gamma)\ E=thermal)$. E_{γ} : weighted average of 1396.3 $2\ (^{95}Mo(n,\gamma)\ E=thermal)$, 1396.26 $I0\ (^{96}Mo(n,n'\gamma))$.
			1398.36 9	74.1 <i>16</i>	1625.905	2 ⁺ M1+	E2 [†] -0.48 <i>10</i>	0.000436 7	$\alpha(K)=0.000346$ 5; $\alpha(L)=3.84\times10^{-5}$ 6; $\alpha(M)=6.85\times10^{-6}$ 10; $\alpha(N)=1.045\times10^{-6}$ 15 $\alpha(O)=6.01\times10^{-8}$ 9; $\alpha(N+)=4.46\times10^{-5}$ 9 B(E2)(W.u.)=2.9 11; B(M1)(W.u.)=0.025 5 Ly: from (n,n' γ), other: 77 12 (95 Mo(n, γ) E=thermal). Ey: weighted average of 1398.4 3 (95 Mo(n, γ) E=thermal), 1398.36 10 (96 Mo(n,n' γ)).
	3053.23	(4 ⁺)	298.7 <i>3</i> 626.8 <i>3</i> 1425.01 <i>9</i>	5.7 <i>14</i> 17 <i>6</i> 100 <i>14</i>		6 ⁺ 2 ⁺ 4 ⁺			E_{γ} , I_{γ} : observed only in 95 Mo(n, γ) E=thermal. E_{γ} , I_{γ} : observed only in 95 Mo(n, γ) E=thermal. E_{γ} : weighted average of 1425.1 2 (95 Mo(n, γ) E=thermal), 1424.99 10 (96 Mo(n,n' γ)). I_{γ} : from 95 Mo(n, γ) E=thermal.
	3087.66	3+	992.15 11	47 6	2095.77	2 ⁺ M1+1	E2 [†] +0.11 <i>10</i>	0.000816 12	$\alpha(K)$ =0.000719 II ; $\alpha(L)$ =8.02×10 ⁻⁵ $I2$; $\alpha(M)$ =1.431×10 ⁻⁵ 20 $\alpha(O)$ =1.254×10 ⁻⁷ $I8$; $\alpha(N+)$ =2.31×10 ⁻⁶ 4 B(E2)(W.u.)=0.1 +3– $I0$; B(M1)(W.u.)=0.012 +6– $I2$ E _{γ} : weighted average of 991.7 4 (95 Mo(n, γ) E=thermal), 992.18 $I0$ (96 Mo(n,n' γ)). I _{γ} : weighted average of 24 8 (95 Mo(n, γ) E=thermal), 48.4 23 (96 Mo(n,n' γ)).
			1109.1 5	32 14	1978.450	3 ⁺			$E_{\gamma}I_{\gamma}$: observed only in $^{95}Mo(n,\gamma)$ E=thermal.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{b}	I_{γ}^{b}	E_f	\mathbf{J}_f^{π}	Mult.	δ^{d}	α	Comments
3087.66	3+	1459.35 10	100.0 23	1628.188	4+	M1+E2 [†]		0.000417 8	$\alpha(K)$ =0.000312 10 ; $\alpha(L)$ =3.46×10 ⁻⁵ 10 ; $\alpha(M)$ =6.18×10 ⁻⁶ 18 ; $\alpha(N)$ =9.4×10 ⁻⁷ 3 $\alpha(O)$ =5.40×10 ⁻⁸ 20 ; $\alpha(N+)$ =6.4×10 ⁻⁵ 6 E_{γ} : weighted average of 1459.0 5 (95 Mo(n, γ) E=thermal), 1459.36 10 (96 Mo(n, $n'\gamma$)). I_{γ} : weighted average of 100 30 (95 Mo(n, γ) E=thermal), 100.0 23 (96 Mo(n, $n'\gamma$)).
		1461.63 <i>10</i>	82.4 23	1625.905	2+	M1+E2 [†]	-2.9 7	0.000414 6	$\alpha(K)$ =0.000304 5; $\alpha(L)$ =3.39×10 ⁻⁵ 5; $\alpha(M)$ =6.04×10 ⁻⁶ 9; $\alpha(N)$ =9.19×10 ⁻⁷ 14 $\alpha(O)$ =5.24×10 ⁻⁸ 8; $\alpha(N+)$ =6.96×10 ⁻⁵ 13 B(E2)(W.u.)=2.8 +12-3; B(M1)(W.u.)=0.0007 +5-7 E _{\gamma} : weighted average of 1461.1 8 (95 Mo(n, γ) E=thermal), 1461.64 10 (96 Mo(n, γ' γ)). I _{\gamma} : weighted average of 60 30 (95 Mo(n, γ) E=thermal), 82.5 23 (96 Mo(n, γ' γ)).
3089.62	2,3	1591.89 <i>10</i> 2311.29 <i>10</i>	100.0 <i>16</i> 49.9 <i>16</i>	1497.787 778.237					(115(13)1 ///
3134.29		593.2 2 914.6 <i>3</i>	100 <i>14</i> 30 8	2540.46 2219.425	(3 ⁺) 4 ⁺	M1+E2 [†]	.266	0.000400.6	E_{γ} , I_{γ} : observed only in 95 Mo(n, γ) E=thermal. E_{γ} , I_{γ} : observed only in 95 Mo(n, γ) E=thermal. $\alpha(K)=0.000286$ 5; $\alpha(L)=3.18\times10^{-5}$ 5; $\alpha(M)=5.67\times10^{-6}$ 9;
		1508.58 23	81 14	1625.905	2.	MI+E2	+2.6 6	0.000409 6	$\alpha(K)$ =0.000286 5; $\alpha(L)$ =3.18×10 ° 5; $\alpha(M)$ =5.67×10 ° 9; $\alpha(N)$ =8.63×10 ⁻⁷ 13 $\alpha(O)$ =4.93×10 ⁻⁸ 8; $\alpha(N+)$ =8.57×10 ⁻⁵ 16 B(E2)(W.u.)=8.8 25; B(M1)(W.u.)=0.0030 15 E _{γ} : weighted average of 1507.9 3 (95 Mo(n, γ) E=thermal), 1508.65 10 (96 Mo(n, γ)). $\alpha(M)$ I _{γ} : from $\alpha(M)$ 5 Tethermal.
		3134.50 10	≈81	0.0	0+	E2 [†]		0.000917 13	$\alpha(K)=7.60\times10^{-5}$ 11; $\alpha(L)=8.31\times10^{-6}$ 12; $\alpha(M)=1.480\times10^{-6}$ 21 $\alpha(O)=1.307\times10^{-8}$ 19; $\alpha(N+)=0.000831$ 12 E_{γ} : observed only in $(n,n'\gamma)$. I_{γ} : from $I_{\gamma}(3134\gamma)=I_{\gamma}(1508\gamma)$ in ${}^{96}Mo(n,n'\gamma)$.
3154.15	1	2375.88 11	100	778.237					, , , , , , , , , , , , , , , , , , , ,
3178.69	3-	944.10 <i>10</i>	20.6 9	2234.63	3-	M1+E2 [†]	-0.31 12	0.000907 13	$\alpha(K)$ =0.000799 12; $\alpha(L)$ =8.93×10 ⁻⁵ 13; $\alpha(M)$ =1.594×10 ⁻⁵ 23 $\alpha(O)$ =1.392×10 ⁻⁷ 20; $\alpha(N+)$ =2.57×10 ⁻⁶ 4 B(E2)(W.u.)=2.4 18; B(M1)(W.u.)=0.022 +4-5 E _{γ} ,I $_{\gamma}$: observed only in (n,n' γ).
		1082.81 <i>10</i>	8.2 8	2095.77	2+	E1 [†]		0.000285 4	$\alpha(K)=0.000252 \ 4; \ \alpha(L)=2.77\times10^{-5} \ 4; \ \alpha(M)=4.93\times10^{-6} \ 7; \ \alpha(N)=7.52\times10^{-7} \ 11 \ \alpha(O)=4.29\times10^{-8} \ 6; \ \alpha(N+)=7.95\times10^{-7} \ 12$

					_			
$E_i(level)$	J_i^{π}	$E_{\gamma}^{ \nu$	$I_{\gamma}{}^{b}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ^{d}	α	Comments
3178.69	3-	1680.87 10	25.3 9	1497.787 2+	E1 [†]		0.000516 8	B(E1)(W.u.)=9.5×10 ⁻⁵ +17-19 E _{γ} ,I _{γ} : observed only in (n,n' γ). α (K)=0.0001177 17; α (L)=1.288×10 ⁻⁵ 18; α (M)=2.29×10 ⁻⁶ 4 α (O)=2.01×10 ⁻⁸ 3; α (N+)=0.000383 6
		2400.55 13	100.0 15	778.237 2+	E1 [†]		0.000962 14	$\alpha(O)=2.01\times10^{-5}$ 3; $\alpha(N+)=0.000383$ 6 $B(E1)(W.u.)=7.9\times10^{-5}$ +12-14 $E_{\gamma}I_{\gamma}$: observed only in $(n,n'\gamma)$. $\alpha(K)=6.83\times10^{-5}$ 10; $\alpha(L)=7.44\times10^{-6}$ 11; $\alpha(M)=1.323\times10^{-6}$ 19 $\alpha(O)=1.165\times10^{-8}$ 17; $\alpha(N+)=0.000885$ 13
								B(E1)(W.u.)=0.000107 +16-19 I_{γ} : from (n,n' γ). E_{γ} : weighted average of 2401.9 10 (95 Mo(n, γ) E=thermal), 2400.54 10 (96 Mo(n,n' γ)).
3186.81 3202.85	4+	705.7 2 746.8 9 468.3 3	100 <i>11</i> 7.×10 ¹ 6 12 5	2481.06 (4) ⁺ 2440.76 6 ⁺ 2734.57 (4,5)	+			
3202.63		968.21 12	100 5	2234.63 3				
3211.40	3 ⁺	1232.94 10	100 4	1978.450 3+	M1+E2 [†]		0.000512 15	$\alpha(K)$ =0.000441 <i>14</i> ; $\alpha(L)$ =4.93×10 ⁻⁵ <i>14</i> ; $\alpha(M)$ =8.78×10 ⁻⁶ <i>24</i> ; $\alpha(O)$ =7.6×10 ⁻⁸ <i>3</i> $\alpha(N+)$ =1.30×10 ⁻⁵ <i>13</i>
		1341.70 <i>10</i>	83 4	1869.576 4+	M1+E2 [†]	+1.8 13	0.000448 12	$\alpha(K)$ =0.000365 13; $\alpha(L)$ =4.07×10 ⁻⁵ 13; $\alpha(M)$ =7.25×10 ⁻⁶ 23; $\alpha(O)$ =6.3×10 ⁻⁸ 3 $\alpha(N+)$ =3.5×10 ⁻⁵ 4
		1713.58 <i>10</i>	86 <i>3</i>	1497.787 2+	M1+E2 [†]	-5.2 +13-27	0.000423 6	B(E2)(W.u.)=10 4; B(M1)(W.u.)=0.005 +6-5 α (K)=0.000222 4; α (L)=2.46×10 ⁻⁵ 4; α (M)=4.38×10 ⁻⁶
								7; α (N)=6.68×10 ⁻⁷ 10 α (O)=3.82×10 ⁻⁸ 6; α (N+)=0.0001721 25 B(E2)(W.u.)=3.7 +7-8; B(M1)(W.u.)=0.00041 +21-22
		2433.27 10	49 3	778.237 2+	M1+E2 [†]		0.000629 21	$\alpha(K)=0.0001180\ 20;\ \alpha(L)=1.295\times10^{-5}\ 22;$ $\alpha(M)=2.31\times10^{-6}\ 4$
2222 56	(2)	1606 00 10	100.0.27	1625 005 2+				$\alpha(O)=2.03\times10^{-8} \ 4; \ \alpha(N+)=0.000496 \ 22$
3232.56	(3)	1606.80 <i>10</i> 2454.13 <i>10</i>	100.0 2 <i>1</i> 63.4 2 <i>1</i>	1625.905 2 ⁺ 778.237 2 ⁺				
3255.63		1629.66 10	100 4	1625.905 2+				
3233.03		2477.40 10	77 <i>4</i>	778.237 2+				
3284.97	2+	1049.6 5	19 <i>10</i>	2234.63 3				E_{γ}, I_{γ} : observed only in (n, γ) , E=th.

							/(1.10) (001111110		
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{oldsymbol{b}}$	I_{γ}^{b}	E_f	\mathbf{J}_f^{π}	Mult.	δ^d	α	Comments
3284.97	2+	2506.64 10	90 16	778.237	2+	M1+E2 [†]	-1.5 +6-16	0.000664 14	$\alpha(K)$ =0.0001115 17; $\alpha(L)$ =1.224×10 ⁻⁵ 18; $\alpha(M)$ =2.18×10 ⁻⁶ 4 $\alpha(O)$ =1.92×10 ⁻⁸ 3; $\alpha(N+)$ =0.000538 13 B(E2)(W.u.)=0.50 +20-23; B(M1)(W.u.)=0.0014 +9-10 I _γ : from (n,γ), E=th. E _γ : weighted average of 2507.6 15 (95 Mo(n,γ) E=thermal), 2506.64 10 (96 Mo(n,n'γ)).
3300.38	1+	1802.81 ^c 10	9.5 ^c 16	1497.787	2+	M1+E2		0.000433 10	$\alpha(K)$ =0.000206 6; $\alpha(L)$ =2.27×10 ⁻⁵ 6; $\alpha(M)$ =4.05×10 ⁻⁶ 11; $\alpha(N)$ =6.18×10 ⁻⁷ 17 $\alpha(O)$ =3.56×10 ⁻⁸ 11; $\alpha(N+)$ =0.000200 14
		3300.08 ^c 10	100.0 ^c 16	0.0	0+	M1		0.000935 13	$\alpha(K)=0.50010^{-11}$, $\alpha(K)=0.000200^{-14}$ $\alpha(K)=6.91\times10^{-5}$ 10; $\alpha(L)=7.55\times10^{-6}$ 11; $\alpha(M)=1.345\times10^{-6}$ 19 $\alpha(O)=1.191\times10^{-8}$ 17; $\alpha(N+)=0.000857$ 12 $\alpha(M)=0.007$ 12
3327.87	(1)	2549.70 <i>10</i> 3327.71 <i>10</i>	41 <i>6</i> 100 <i>6</i>	778.237 0.0	2 ⁺ 0 ⁺				B(M1)(W.a.)=0.007 12
3335.30	(4 ⁺)	1706.54 <i>10</i> 1709.72 <i>10</i>	46.3 <i>17</i> 97.3 22	1628.188 1625.905	4+				E_{γ} , I_{γ} : observed only in 96 Mo(n,n' γ). E_{γ} : weighted average of 1709.0 4 (95 Mo(n, γ) E =thermal), 1709.72 10 (96 Mo(n,n' γ)).
		2557.25 10	100.0 24	778.237	2+				I_{γ} : from 96 Mo(n,n' γ). E_{γ} , I_{γ} : observed only in 96 Mo(n,n' γ).
3351.67	2+	1255.75 10	98 5	2095.77		M1+E2 [†]	-0.10 +13-28	0.000509 8	$\alpha(K)$ =0.000437 7; $\alpha(L)$ =4.85×10 ⁻⁵ 8; $\alpha(M)$ =8.64×10 ⁻⁶ 13; $\alpha(N)$ =1.319×10 ⁻⁶ 20 $\alpha(O)$ =7.60×10 ⁻⁸ 13; $\alpha(N+)$ =1.52×10 ⁻⁵ 5
		1854.35 10	100 5	1497.787	2+	M1+E2 [†]	-1.5 +4-8	0.000447 7	B(E2)(W.u.)=0.7 +18-7; B(M1)(W.u.)=0.11 +3-4 α (K)=0.000193 3; α (L)=2.14×10 ⁻⁵ 4; α (M)=3.81×10 ⁻⁶ 6; α (N)=5.81×10 ⁻⁷ 9 α (O)=3.34×10 ⁻⁸ 6; α (N+)=0.000228 6 B(E2)(W.u.)=7.0 +20-23; B(M1)(W.u.)=0.011 5 E _{γ} : poor fit. Level-energy difference=1853.87.
		3351.04 <i>13</i>	72 5	0.0	0+	E2 [†]		0.000997 14	$\alpha(K)=6.81\times10^{-5}\ 10;\ \alpha(L)=7.44\times10^{-6}\ 11;\ \alpha(M)=1.325\times10^{-6}\ 19$ $\alpha(O)=1.171\times10^{-8}\ 17;\ \alpha(N+)=0.000920\ 13$ $B(E2)(W.u.)=0.38\ +9-11$
3364.0		2585.7 <i>3</i>	100	778.237					
3369.98	(8) ⁺	391.5 <i>1</i>	28.9 3	2978.37	8+	M1+E2 [@]	-0.8 +4-3	0.0082 8	$\alpha(K)$ =0.0072 7; $\alpha(L)$ =0.00085 10; $\alpha(M)$ =0.000152 18; $\alpha(N)$ =2.3×10 ⁻⁵ 3; $\alpha(O)$ =1.22×10 ⁻⁶ 10 $\alpha(N+)$ =2.4×10 ⁻⁵ 3 E_{γ} , I_{γ} , δ : observed only in 82 Se(18 O,4n γ).

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\pmb{b}}$	I_{γ}^{b}	E_f	\mathbf{J}_f^{π}	Mult.	δ^{d}	α	Comments
3369.98	(8)+	929.32 18	100.0 3	2440.76	6 ⁺	E2 [@]		0.000916 13	$\alpha(K)=0.000805 \ 12; \ \alpha(L)=9.17\times 10^{-5} \ 13; \ \alpha(M)=1.636\times 10^{-5} \ 23$ $\alpha(O)=1.379\times 10^{-7} \ 20; \ \alpha(N+)=2.62\times 10^{-6} \ 4$ E_{γ} : weighted average of 929.3 2 (94 Zr(α ,2n γ)), 929.4 4 (82 Se(18 O,4n γ)). I_{γ} : from 82 Se(18 O,4n γ).
3373.89	2+	1748.26 <i>10</i>	39.3 15	1625.905	2+	M1+E2 [†]		0.000423 9	$\alpha(K)=0.000218 \ 6; \ \alpha(L)=2.41\times10^{-5} \ 7; \ \alpha(M)=4.30\times10^{-6} \ 12;$ $\alpha(N)=6.57\times10^{-7} \ 18$ $\alpha(O)=3.77\times10^{-8} \ 12; \ \alpha(N+)=0.000176 \ 13$ δ : +3.4 +29-12 or -0.12 +14-38.
		2595.47 7	100.0 15	778.237	2+	M1+E2 [†]	-0.51 8	0.000679 10	$\alpha(K)$ =0.0001055 15; $\alpha(L)$ =1.157×10 ⁻⁵ 17; $\alpha(M)$ =2.06×10 ⁻⁶ 3 $\alpha(O)$ =1.82×10 ⁻⁸ 3; $\alpha(N+)$ =0.000559 9 B(E2)(W.u.)=1.2 4; B(M1)(W.u.)=0.031 5
3416.82	4+	229.9 6	10 5	3186.81	4+				E_{γ},I_{γ} : observed only in 95 Mo(n, γ) E=thermal.
		283.0 2	12.5 25	3134.29					E_{γ} , I_{γ} : observed only in 95 Mo(n, γ) E=thermal.
		976.2 <i>6</i>	25 15	2440.76	6+				E_{γ} , I_{γ} : observed only in 95 Mo(n, γ) E=thermal.
		1320.78 10	78 4	2095.77	2+	E2 [†]		0.000453 7	$\alpha(K)=0.000372\ 6;\ \alpha(L)=4.15\times10^{-5}\ 6;\ \alpha(M)=7.41\times10^{-6}\ 11;\ \alpha(N)=1.128\times10^{-6}\ 16$ $\alpha(O)=6.39\times10^{-8}\ 9;\ \alpha(N+)=3.20\times10^{-5}\ 5$ B(E2)(W.u.)<2.3 E _{\gamma} : weighted average of 1320.9 5 (95Mo(n,\gamma)) E=thermal), 1320.77 10 (96Mo(n,n'\gamma)). I _{\gamma} : weighted average of 45 25 (95Mo(n,\gamma)) E=thermal), 78 3
									$^{1}\gamma$. Weighted average of 43.23 (1 Mo(n, γ) E-merman), 78.3 (96 Mo(n, $^{1}\gamma$)).
		1919.33 <i>15</i>	100 3	1497.787	2+	E2 [†]		0.000470 7	$\alpha(K)$ =0.000179 3; $\alpha(L)$ =1.98×10 ⁻⁵ 3; $\alpha(M)$ =3.52×10 ⁻⁶ 5; $\alpha(N)$ =5.37×10 ⁻⁷ 8 $\alpha(O)$ =3.08×10 ⁻⁸ 5; $\alpha(N+)$ =0.000268 4 B(E2)(W.u.)<0.45 E _{γ} : weighted average of 1918.6 5 (95 Mo(n, γ) E=thermal), 1919.36 10 (96 Mo(n,n' γ)). I $_{\gamma}$: weighted average of 100 40 (95 Mo(n, γ) E=thermal), 100 3
						+			$(^{96}\text{Mo}(n,n'\gamma)).$
		2638.55 10	81 3	778.237	2+	E2 [†]		0.000727 11	$\alpha(K)$ =0.0001016 15; $\alpha(L)$ =1.114×10 ⁻⁵ 16; $\alpha(M)$ =1.98×10 ⁻⁶ 3 $\alpha(O)$ =1.746×10 ⁻⁸ 25; $\alpha(N+)$ =0.000612 9 B(E2)(W.u.)<0.073 E _{γ} ,I _{γ} : observed only in (n,n' γ).
3421.24	(1)	1795.49 <i>10</i>	49 6	1625.905	2+				L_{γ} , I_{γ} . Observed only in (ii,ii γ).
	()	3421.00 10	100 6		0+				

E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{ \nu$	I_{γ}^{b}	\mathbf{E}_f	J_f^π	Mult.	δ^{d}	α	Comments
3424.90	1+	2646.87 ^c 15	7.6 ^c 17	778.237	2+	M1+E2 [†]		0.000710 23	$\alpha(K)=0.0001016 \ I6; \ \alpha(L)=1.113\times10^{-5} \ I7; \ \alpha(M)=1.98\times10^{-6} \ 3$ $\alpha(O)=1.75\times10^{-8} \ 3; \ \alpha(N+)=0.000595 \ 23$
		3424.73 10	100.0 17	0.0	0+	M1 [†]		0.000980 14	$\alpha(K)=6.48\times10^{-5} 9$; $\alpha(L)=7.08\times10^{-6} 10$; $\alpha(M)=1.261\times10^{-6} 18$; $\alpha(N)=1.93\times10^{-7} 3$ $\alpha(O)=1.117\times10^{-8} 16$; $\alpha(N+)=0.000907 13$ $\alpha(M)=1.261\times10^{-6} 18$; $\alpha(M)=1.261\times10^{-6} 18$; α
3433.60	(4)+	2655.32 10	100	778.237	2+	E2		0.000733 11	$\alpha(K)$ =0.0001005 14; $\alpha(L)$ =1.102×10 ⁻⁵ 16; $\alpha(M)$ =1.96×10 ⁻⁶ 3 $\alpha(O)$ =1.727×10 ⁻⁸ 25; $\alpha(N+)$ =0.000620 9 B(E2)(W.u.)=1.7 +3-4
3441.92	4+	960.7 <i>3</i> 1463.3 <i>4</i> 1815.4 <i>4</i>	9.7 <i>24</i> 19 <i>8</i> 15 <i>4</i>	2481.06 1978.450 1625.905					$E_{\gamma}I_{\gamma}$: observed only in $^{95}Mo(n,\gamma)$ E=thermal. $E_{\gamma}I_{\gamma}$: observed only in $^{95}Mo(n,\gamma)$ E=thermal. $E_{\gamma}I_{\gamma}$: observed only in $^{95}Mo(n,\gamma)$ E=thermal.
		2663.71 10	100 16	778.237		E2 [†]		0.000736 11	$\alpha(K)$ =0.0001000 $I4$; $\alpha(L)$ =1.096×10 ⁻⁵ $I6$; $\alpha(M)$ =1.95×10 ⁻⁶ 3 $\alpha(O)$ =1.718×10 ⁻⁸ 24 ; $\alpha(N+)$ =0.000623 9 E _{γ} : weighted average of 2663.8 $I5$ (95 Mo(n, γ) E=thermal), 2663.71 $I0$ (96 Mo(n,n' γ)). I _{γ} : from 95 Mo(n, γ) E=thermal.
3444.8? 3464.65	(3)	1006.3 ^e 5 1595.09 10 1966.82 10	100 100.0 22 83.2 22	2438.477 1869.576 1497.787	4+				27. 11011 110(11,17) 2 1101111111
3472.20	2+	2693.92 ^c 10	100 ^c	778.237		M1+E2 [†]		0.000728 23	$\alpha(K)=9.85\times10^{-5}$ 15; $\alpha(L)=1.079\times10^{-5}$ 16; $\alpha(M)=1.92\times10^{-6}$ 3; $\alpha(N)=2.94\times10^{-7}$ 5 $\alpha(O)=1.70\times10^{-8}$ 3; $\alpha(N+)=0.000617$ 23
3472.65?	(7)+	738.5 ^e 3	100 3	2734.57	(4,5)+	E2 [@]		0.001611 23	$\alpha(K)=0.001414\ 20;\ \alpha(L)=0.0001635\ 23;\ \alpha(M)=2.92\times10^{-5}\ 5$ $\alpha(O)=2.41\times10^{-7}\ 4;\ \alpha(N+)=4.66\times10^{-6}\ 7$ E _y : weighted average of 738.7 5 ($^{94}Zr(\alpha,2n\gamma)$), 738.3 4 ($^{82}Se(^{18}O,4n\gamma)$). I _y : from $^{82}Se(^{18}O,4n\gamma)$, other: 80 30 $^{94}Zr(\alpha,2n\gamma)$.
		1032.2 ^e 5	44 5	2440.76	6+	M1 [@]		0.000750 11	$\alpha(K)$ =0.000661 10 ; $\alpha(L)$ =7.36×10 ⁻⁵ 11 ; $\alpha(M)$ =1.314×10 ⁻⁵ 19 $\alpha(O)$ =1.152×10 ⁻⁷ 17 ; $\alpha(N+)$ =2.12×10 ⁻⁶ 3 I_{γ} : from ${}^{82}Se({}^{18}O,4n\gamma)$, other: 100 30 ${}^{94}Zr(\alpha,2n\gamma)$.
3530.99	1,2,3	1904.72 <i>10</i> 2033.67 <i>12</i>	100.0 <i>21</i> 91.2 <i>21</i>	1625.905 1497.787					1y. 110111 36(0,411y), outer. 100 30 Z1(a,211y).
3540.88	(3)	1671.48 <i>10</i> 2762.40 <i>10</i>	58 <i>3</i> 100 <i>3</i>	1869.576 778.237	4+				

γ (96Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{b}	I_{γ}^{b}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ^{d}	α	Comments
3551.4	3	1923.2 3	100	1628.188	4+	(M1+E2)&	0.22 18	0.000450 7	$\alpha(K)$ =0.000185 3; $\alpha(L)$ =2.04×10 ⁻⁵ 3; $\alpha(M)$ =3.64×10 ⁻⁶ 6; $\alpha(N)$ =5.56×10 ⁻⁷ 8 $\alpha(O)$ =3.21×10 ⁻⁸ 5; $\alpha(N+)$ =0.000241 5
3573.28	(1)	1947.69 <i>10</i>	89 11	1625.905	2+				u(0)-3.21×10 3, $u(11+)$ -0.0002+1 3
	,	3572.88 10	100 11	0.0	0^{+}				
3599.57	1-	2821.30 ^c 10	28 ^c 8	778.237	2+	E1 [†]		0.001190 <i>17</i>	$\alpha(K)=5.43\times10^{-5}$ 8; $\alpha(L)=5.90\times10^{-6}$ 9; $\alpha(M)=1.049\times10^{-6}$ 15; $\alpha(O)=9.25\times10^{-9}$ 13 $\alpha(N+)=0.001129$ 16 B(E1)(W.u.)=0.00030 11
		3599.45 ^c 24	100 ^c 5	0.0	0+	E1 [†]		0.001551 22	$\alpha(K)=3.89\times10^{-5} 6$; $\alpha(L)=4.22\times10^{-6} 6$; $\alpha(M)=7.51\times10^{-7} 11$; $\alpha(N)=1.147\times10^{-7} 16$ $\alpha(O)=6.64\times10^{-9} 10$; $\alpha(N+)=0.001507 21$ B(E1)(W.u.)=0.00052 12
3610.48	2,3	2112.94 10	100.0 21	1497.787					
3623.19	(3 ⁺)	2831.93 <i>10</i> 2844.91 <i>10</i>	31.4 <i>21</i> 100	778.237 778.237					
3668.82	3+	2041.36 14	92 6	1628.188		M1+E2 [†]	-3.8 +15-52	0.000505 8	$\alpha(K)$ =0.0001602 23; $\alpha(L)$ =1.77×10 ⁻⁵ 3; $\alpha(M)$ =3.15×10 ⁻⁶ 5; $\alpha(N)$ =4.80×10 ⁻⁷ 7 $\alpha(O)$ =2.76×10 ⁻⁸ 4; $\alpha(N+)$ =0.000324 6 B(E2)(W.u.)=6.2 +12-14; B(M1)(W.u.)=0.0018 14
		2890.16 <i>10</i>	100 4	778.237	2+	M1+E2 [†]		0.000803 25	$\alpha(K)=8.71\times10^{-5}$ 13; $\alpha(L)=9.54\times10^{-6}$ 14; $\alpha(M)=1.698\times10^{-6}$ 24 $\alpha(O)=1.500\times10^{-8}$ 22; $\alpha(N+)=0.000704$ 24 δ : $-0.45 + 11 - 16$ or $-1.2 + 9 - 4$.
3786.93	(10)+	808.6 1	100	2978.37	8+	E2 [@]		0.001281 18	$\alpha(K)=0.001125\ 16;\ \alpha(L)=0.0001293\ 19;$ $\alpha(M)=2.31\times10^{-5}\ 4$ $\alpha(O)=1.92\times10^{-7}\ 3;\ \alpha(N+)=3.69\times10^{-6}\ 6$ E_{γ} : from 82 Se(18 O,4n $_{\gamma}$).
3895.4	1-	3895.3	100	0.0	0+	E1 ^a		0.001667 24	$\alpha(K)=3.51\times10^{-5} 5$; $\alpha(L)=3.81\times10^{-6} 6$; $\alpha(M)=6.77\times10^{-7} 10$; $\alpha(N)=1.034\times10^{-7} 15$ $\alpha(O)=5.98\times10^{-9} 9$; $\alpha(N+)=0.001627 23$
3915.69	(9)+	443.1 <i>I</i>	28.6 4	3472.65?	(7)+	E2 [@]		0.00684 10	$\alpha(K)$ =0.00596 9; $\alpha(L)$ =0.000725 11; $\alpha(M)$ =0.0001296 19; $\alpha(N)$ =1.94×10 ⁻⁵ 3 $\alpha(O)$ =9.95×10 ⁻⁷ 14; $\alpha(N+)$ =2.04×10 ⁻⁵ 3 $E_{\gamma}I_{\gamma}$: from ⁸² Se(¹⁸ O,4n γ).
		545.62 12	100.0 4	3369.98	(8)+	M1 [@]		0.00314 5	$\alpha(K)$ =0.00277 4; $\alpha(L)$ =0.000313 5; $\alpha(M)$ =5.59×10 ⁻⁵ 8; $\alpha(N)$ =8.51×10 ⁻⁶ 12; $\alpha(O)$ =4.85×10 ⁻⁷ 7 $\alpha(N+)$ =9.00×10 ⁻⁶ 13

						$\gamma(^{*}\text{IMO})$ (colli	nued)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\color{red} b}$	I_{γ}^{b}	$\mathbf{E}_f \qquad \mathbf{J}_f^n$	Mult.	δ^{d}	α	Comments
3915.69 4245.11	(9) ⁺ 10 ⁺	1202.8 <i>3</i> 875.0 <i>3</i>	<1.49 100.0 20	2712.68 3369.98 (8)				E _γ : weighted average of 546.2 5 (94 Zr(α ,2nγ)), 545.6 1 (82 Se(18 O,4nγ)). E _γ ,I _γ : from 82 Se(18 O,4nγ). E _γ ,I _γ : from 82 Se(18 O,4nγ).
4243.11	10	1266.6 6	39 6	2978.37 8+	E2 [@]		0.000479 7	$\alpha(K)$ =0.000405 6; $\alpha(L)$ =4.54×10 ⁻⁵ 7; $\alpha(M)$ =8.10×10 ⁻⁶ 12; $\alpha(N)$ =1.232×10 ⁻⁶ 18 $\alpha(O)$ =6.97×10 ⁻⁸ 10; $\alpha(N+)$ =2.05×10 ⁻⁵ 4
4532.84	(11)+	745.9 2	100	3786.93 (10) ⁺ M1+E2 [@]	+0.18 +5-4	0.001534 22	$\alpha(K)$ =0.001350 19; $\alpha(L)$ =0.0001517 22; $\alpha(M)$ =2.71×10 ⁻⁵ 4 $\alpha(O)$ =2.36×10 ⁻⁷ 4; $\alpha(N+)$ =4.36×10 ⁻⁶ 7 E _y : from ⁸² Se(¹⁸ O,4ny), other: 796.8 5 (⁹⁴ Zr(α ,2ny)). δ : from ⁸² Se(¹⁸ O,4ny).
4583.55	(12)+	796.61 <i>10</i>	100	3786.93 (10) ⁺ E2 [@]		0.001330 19	$\alpha(K)$ =0.001168 17; $\alpha(L)$ =0.0001343 19; $\alpha(M)$ =2.40×10 ⁻⁵ 4 $\alpha(O)$ =2.00×10 ⁻⁷ 3; $\alpha(N+)$ =3.83×10 ⁻⁶ 6 E _y : weighted average of 796.8 5 (94 Zr(α ,2ny)), 796.6 1 (82 Se(18 O,4ny)).
4795.12	(11)+	550.0 <i>I</i>	6.9 4	4245.11 10 ⁺	M1 [@]		0.00309 5	$\alpha(K)=0.00272\ 4;\ \alpha(L)=0.000307\ 5;\ \alpha(M)=5.48\times10^{-5}\ 8;$ $\alpha(N)=8.36\times10^{-6}\ 12;\ \alpha(O)=4.76\times10^{-7}\ 7$ $\alpha(N+)=8.83\times10^{-6}\ 13$ E_{γ},I_{γ} : observed only in $^{82}Se(^{18}O,4n\gamma)$.
		879.4 <i>I</i>	100.0 11	3915.69 (9)			0.001044 15	$\alpha(K)=0.000917\ 13;\ \alpha(L)=0.0001048\ 15;\ \alpha(M)=1.87\times10^{-5}\ 3$ $\alpha(O)=1.571\times10^{-7}\ 22;\ \alpha(N+)=2.99\times10^{-6}\ 5$ I_{γ} : observed only in $^{82}Se(^{18}O,4n\gamma)$. E_{γ} : from $^{82}Se(^{18}O,4n\gamma)$, other L 879.3 5 ($^{94}Zr(\alpha,2n\gamma)$).
5132.20	(12)+	1009.0 <i>5</i> 886.8 <i>4</i>	6.5 <i>11</i> 51 8	3786.93 (10 4245.11 10 ⁺			0.001023 15	E _{γ} ,I _{γ} : observed only in ⁸² Se(¹⁸ O,4n γ). α (K)=0.000899 <i>13</i> ; α (L)=0.0001027 <i>15</i> ; α (M)=1.83×10 ⁻⁵ <i>3</i> α (O)=1.540×10 ⁻⁷ 22; α (N+)=2.93×10 ⁻⁶ <i>5</i>
5640.64	(13) ⁺	1345.6 <i>7</i> 508.5 <i>3</i> 1057.1 <i>3</i>	100 <i>5</i> 19.4 <i>15</i> 100 <i>6</i>	3786.93 (10 5132.20 (12 4583.55 (12)+	+0.12 +8-6	0.000712 10	$\alpha(K)=0.000628$ 9; $\alpha(L)=6.99\times10^{-5}$ 10; $\alpha(M)=1.247\times10^{-5}$
				`		±0.12 ±0−0	0.000/12/10	18 $\alpha(O)=1.093\times10^{-7}$ 16 ; $\alpha(N+)=2.01\times10^{-6}$ 3
5654.61	(13)+	522.4 <i>1</i> 859.5 <i>1</i>	7.8 <i>11</i> 100.0 <i>7</i>	5132.20 (12 4795.12 (11	_		0.001103 16	$\alpha(K)$ =0.000969 14; $\alpha(L)$ =0.0001109 16; $\alpha(M)$ =1.98×10 ⁻⁵ 3 $\alpha(O)$ =1.659×10 ⁻⁷ 24; $\alpha(N+)$ =3.17×10 ⁻⁶ 5
5811.43	(14) ⁺	170.8 <i>I</i>	100 4	5640.64 (13) ⁺ M1 [@]		0.0582	$\alpha(K)$ =0.0510 8; $\alpha(L)$ =0.00597 9; $\alpha(M)$ =0.001069 15; $\alpha(N)$ =0.0001624 23; $\alpha(O)$ =9.05×10 ⁻⁶ 13 $\alpha(N+)$ =0.0001714 25

$\gamma(^{96}\text{Mo})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{b}	I_{γ}^{b}	E_f	J_f^{π}	Mult.	δ^{d}	α	Comments
5811.43	(14)+	679.2 2	37.3 15	5132.20	(12)+	E2 [@]		0.00201 3	$\alpha(K)$ =0.001758 25; $\alpha(L)$ =0.000205 3; $\alpha(M)$ =3.66×10 ⁻⁵ 6; $\alpha(N)$ =5.53×10 ⁻⁶ 8; $\alpha(O)$ =2.99×10 ⁻⁷ 5 $\alpha(N+)$ =5.83×10 ⁻⁶ 9
6414.52	$(15)^{+}$	759.9 1	100	5654.61	(13)+	E2 [@]		0.001498 <i>21</i>	$\alpha(K)$ =0.001315 19; $\alpha(L)$ =0.0001517 22; $\alpha(M)$ =2.71×10 ⁻⁵ 4 $\alpha(O)$ =2.24×10 ⁻⁷ 4; $\alpha(N+)$ =4.33×10 ⁻⁶ 6
6709.8	$(15)^{+}$	898.4 3	100	5811.43	(14)+	M1+E2 [@]	-0.18 7	0.001013 15	$\alpha(K)=0.000892\ 13;\ \alpha(L)=9.98\times10^{-5}\ 14;\ \alpha(M)=1.780\times10^{-5}\ 25$ $\alpha(O)=1.556\times10^{-7}\ 22;\ \alpha(N+)=2.87\times10^{-6}\ 4$
7505.5	(17) ⁺	1091.0 6	100	6414.52	(15)+	E2 [@]		0.000635 9	$\alpha(K)$ =0.000559 8; $\alpha(L)$ =6.31×10 ⁻⁵ 9; $\alpha(M)$ =1.125×10 ⁻⁵ 16; $\alpha(O)$ =9.59×10 ⁻⁸ 14 $\alpha(N+)$ =1.81×10 ⁻⁶ 3
7554.1		844.3 2	100	6709.8	$(15)^{+}$				
8424.0	(19)+	918.5 2	100	7505.5	(17)+	E2 [@]		0.000941 14	$\alpha(K)=0.000827$ 12; $\alpha(L)=9.43\times10^{-5}$ 14; $\alpha(M)=1.683\times10^{-5}$ 24 $\alpha(O)=1.417\times10^{-7}$ 20; $\alpha(N+)=2.69\times10^{-6}$ 4
9466.9	(20+)	1042.9 6	100	8424.0	(19)+	(M1) [@]		0.000734 11	$\alpha(K)=0.000647 \ 9; \ \alpha(L)=7.20\times10^{-5} \ 11; \ \alpha(M)=1.285\times10^{-5} \ 18$ $\alpha(O)=1.127\times10^{-7} \ 16; \ \alpha(N+)=2.07\times10^{-6} \ 3$
9882.4		1458.4 <i>11</i>	100	8424.0	$(19)^{+}$				

[†] From $(n,n'\gamma)$. ‡ From 96 Nb β^- decay. # From 96 Tc ε decay (4.28 d). @ From 82 Se(18 O,4n γ). & From 95 Mo(n, γ) E=thermal.

^a From 96 Mo(pol γ, γ').

^b Weighted average of available data. The resulting data are mostly based on the 96 Nb β^- decay and 96 Mo(n,n' γ) datasets.

^c From 96 Mo(n,n' γ).

^d From 96 Mo(n,n' γ), unless otherwise indicated in a comment or by the xref.

^e Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Intensities: Type not specified

Legend

Adopted Levels, Gammas Legend Level Scheme (continued) $I_{\gamma} < 2\%$

Adopted Levels, Gammas

Adopted Levels, Gammas

History

Type	Author	Citation	Literature Cutoff Date		
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020		

 $Q(\beta^{-})=-1684 \ 3; \ S(n)=8642.60 \ 6; \ S(p)=9799 \ 4; \ Q(\alpha)=-3271.57 \ 24$ 2017Wa10

S(2n)=15463.73 17, S(2p)=17255.07 18 (2017Wa10).

Corresponding values in 2021Wa16 are the same, except for slightly higher S(p)=9802 4.

Acknowledgement for modifications made May 06, 2021: evaluators are grateful to Professor H.T. Fortune (University of Pennsylvania) for pointing out mistake in B(E2)(W.u.) value of 52.6-keV transition from 787.4, 2⁺ to 734.8, 0⁺ level; and to Dr. Adam Hayes (NNDC, BNL) for discussion and advice about analysis of Coulomb excitation data in 2002Zi06 article.

No new experimental structure references as of May 5, 2021 for ⁹⁸Mo since the update in February, 2020.

Mass measurements: 2015Gu09, 2012Ka13, 2008De16.

In ⁹⁷Mo(n,γ):resonances dataset, a total of 116 resonances are listed with resonance parameters in the energy range E(n)=16 eV to 4 keV, taking most data from 2018MuZY evaluation. 2015Wa18 measured resonance data for 65 neutron resonances from 0.0162 to 1.7 keV. Except for nine resonances in this work, all the others are listed by 2018MuZY.

Other reactions:

 50 Ti(48 Ca,X): 2001Le37, measured E γ vs. Spin for compound nucleus.

94Zr(16O,12C) E=60 MeV: 1973Ch10.

Neutrino capture by ⁹⁸Mo: 1995Er08 and 1995Er05 (theory).

 98 Mo(e,e'): 1975Dr06; E=120, 200, 274 MeV. $\sigma(\theta)$ data, nuclear radii deduced.

⁹⁸Mo(antiproton,x): 1994Ha51, 1993Wy03, 1986Ka08. 1986Ka08: E=200, 300 MeV/c. X rays reported at energy (relative intensity): 76.0 (100), 102.8 (133), 144 (129), 210 (122) and 324 (15). E2 nuclear resonance effects are observed.

 98 Mo(γ,xn) GDR: 1974Ca05, 1974Be33. GDR at 15.52 MeV with σ =6.0 MeV. 1974Be33 deduced β_2 (787, 2⁺)=0.168. Theory: 1977Be11.

 12 C(78 Kr,X),(82 Kr,X),(86 Kr,X) E=6-13 MeV/nucleon: 1999Ji01: Measured fragment σ , deduced asymmetric fission barrier of 98 Mo compound nucleus.

 100 Mo(10 B, 12 B) E=67 MeV: 1984As02, measured polarization of 12 B by $\beta(\theta)$.

 100 Mo(32 S, 34 S) E=180 MeV: 1995He17, measured $\sigma(\theta)$.

 101 Ru(n,α) E<2 keV: 1978An01, measured α widths; E=thermal: 2009WaZW, measured Eγ, Iγ, σ for g.s. and 787 level.

Hyperfine measurements for g.s.: 2009Ch09, 1986Ol03, 1985Go10, 1984Br09, 1978Au05, 1972Pe02; deduced Isotope shifts and rms charge radius.

Additional information 1.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 114 primary references, 101 dealing with nuclear structure calculations and 13 with decay modes and half-lives.

⁹⁸Mo Levels

Cross Reference (XREF) Flags

	98 NIL 0= 1 (2.96 -)	_	97M-() E	_	⁹⁸ Mo(³ He, ³ He')
Α	98 Nb β^{-} decay (2.86 s)	1	97 Mo(n, γ) E=res	Q	
В	98 Nb β^{-} decay (51.1 min)	J	97 Mo(n, γ):resonances	R	98 Mo(α,α')
C	Muonic atom	K	97 Mo(d,p)	S	Coulomb excitation
D	96 Zr(α ,2n γ)	L	98 Mo(γ, γ')	T	100 Mo(p,t)
E	96 Zr(16 O, 14 C)	M	98 Mo(n,n'),(n,n)	U	100 Ru(14 C, 16 O)
F	96 Mo(pol t,p),(t,p)	N	98 Mo(n,n' γ)	V	¹⁰² Ru(d, ⁶ Li)
G	$^{96}\text{Mo}(^{18}\text{O}, ^{16}\text{O})$	0	98 Mo(p,p'),(p,p)	W	168 Er(30 Si,X γ)
H	97 Mo(n, γ) E=th	P	⁹⁸ Mo(d,d')		

 $\frac{\text{E}(\text{level})^{\dagger}}{0.0^a}$ $\frac{\text{J}^{\pi @}}{0^+}$ $\frac{\text{T}_{1/2}^{\&}}{\text{stable}}$ $\frac{\text{XREF}}{\text{AB DEFGHI KLMNOPQRSTUVW}}$

Evaluated rms charge radius=4.3847 fm *15* (2013An02). Evaluated $\delta < r^2 > (^{92}\text{Mo}, ^{98}\text{Mo}) = +0.834 \text{ fm}^2 I$ (2013An02).

 J^{π} : no hyperfine structure observed in optical spectroscopy (quoted by

Comments

Continued on next page (footnotes at end of table)

E(level) [†]	<u>J</u> π @	T _{1/2} &	XREF	Comments
				1969Fu11 as priv comm from Arroe (1951)). $T_{1/2}$: >1.0×10 ¹⁴ y (1952Fr23) from neutrino-less ββ decay. Additional information 2. $\Delta < r^2 > (^{98}Mo, ^{92}Mo) = +0.811 \text{ fm}^2$ 20 (2009Ch09), laser spectroscopic technique at ISOLDE-CERN facility. Isotope shift($^{98}Mo, ^{92}Mo) = -1842 \text{ MHz}$ 20 (2009Ch09). $\Delta < r^2 > (^{96}Mo, ^{98}Mo) = -0.210 \text{ fm}^2$ 5 (1985Go10); 0.150 fm² 12 (1978Au05); $\Delta < r^2 > (^{98}Mo, ^{100}Mo) = 0.227 \text{ fm}^2$ 19 (1978Au05). Others: 1980Sc01, 1965Ch05 (muonic data); 1975Dr06 ((e,e') data). Neutron occupancies deduced from neutron-removal reactions $^{98}Mo(d,p),(p,d),(^{3}He,\alpha)$ (2017Fr08): 0.17 1 for $v2s_{1/2}$ orbital, 3.34 17 for $v1d$ orbital, 1.13 6 for $v0g_{7/2}$ orbital, and 1.25 9 for $v0h_{11/2}$ orbital, to add to a total of 5.88 20, compared to expected value of 6.
	-1			Proton vacancies from proton-removal reaction $^{98}\text{Mo}(^3\text{He,d})$ (2017Fr08): 0.91 5 for π 1p orbital, 6.78 34 for ν 0g _{9/2} orbital, to add to a total of 7.69 34, compared to expected value of 8.
734.75 4	0+	21.8 ns 9	AB D F HI KLMNOP STUV	J^{π} : L(pol t,p)=L(p,t)=0. Also E0 to 0^{+} seen in (t,p ce). $T_{1/2}$: from ce(t) in (p,p' γ) (1972Bu18). Others: 22 ns 2 (1971AnZV), 1970Co01.
787.384 ^a 17	2+	3.47 ps <i>7</i>	AB DEFGHI K MNOPQRST VW	 μ=+0.97 6 (2011Ch23,2014StZZ) Q=-0.26 9 (1979Pa11,2016St14) Jπ: E2 787.4γ to 0+. μ: from Coulomb excitation. Others: +0.97 7 (2001Ma17), +0.7 4 (1969He11). Q: from Coul. ex., value applies to constructive interference of the higher excited 2+ states as for other nuclides in this mass region. Q=+0.09 9 for destructive interference. β₂(p,p')=0.180 14 (1992Ke07). Others: 1990Pi14, 1975Bu04, 1972Aw03, 1971Lu07. β₂(d,d')=0.167 4 (2001Uk01), 0.153 (1978Wa11), 0.155 (1977Pe18). β₂(α,α')=0.142 or 0.150 (1990Bu25). Others: 1975Bu04, 1972Ma56. β₂(Coul. ex.)=0.174 5 (1972Ba90). T_{1/2}: from B(E2)(from g.s.)=0.2692 54, weighted average of 0.277 8 (2002Zi06); 0.267 4 (1979Pa11, 0.266 5 in 1976Pa13); 0.286 14 (1972Ba90); 0.275 15 (1971WaZP);
1432.210 <i>19</i>	2+	1.53 ps <i>16</i>	AB DeF HI K MNOP RST V	 0.270 32 (1962Ga13); 0.26 4 (1962Er05); 0.270 32 (1958St32); 0.27 4 (1956Te26); and B(E2)↑=0.260 10 deduced from T_{1/2}=3.60 ps 14 (Doppler broadening,1972SiZP). Final uncertainty was adjusted to 2%. Value of B(E2) is 0.2695 57 in 2016Pr01 evaluation, without the inclusion of 2002Zi06 value. XREF: T(1435.9)V(1460). J^π: E2 1432.2γ to 0⁺. T_{1/2}: from B(E2) in Coul. ex. β₂=0.052 (1975Bu04,(p,p')); 0.046 (1977Pe18,(d,d')); 0.033
1510.047 ^a 21	4+	2.53 ps 5	B DeF HI K MNOP RST vW	(1975Bu04, (α,α')); 0.037 2 (1972Ba90,Coul. ex.). XREF: K(?)v(1460). E(level): possibly a doublet at 1460 in (d, ⁶ Li). J ^{π} : stretched E2 722.6 γ to 2 ⁺ ; L(p,p')=L(d,d')=4 from 0 ⁺ . β_4 =0.023 (1992Pi08,(p,p')); 0.021 (1992Pi08,(d,d')); 0.034 (1975Bu04, (α,α')).

E(level) [†]	Jπ @	T _{1/2} &	XREF	Comments
1758.49 3	2+	1.42 ps 6	AB D F HI K MNOP ST V	J ^π : E2 1023.7 γ to 0 ⁺ ; L(pol t,p)=L(p,t)=2. β_2 =0.03 (1972Aw03,(p,p')); 0.029 (1977Pe18,(d,d')); 0.11 5 (1972Ba90,Coul. ex.).
1871 [‡] 2 1880.86 <i>17</i> 1963.05 8	2 ⁺		OP H DF mNP T	J^{π} : $L(p,p')=L(d,d')=2$. J^{π} : 449.1 γ and 1093.2 γ to 2 ⁺ . XREF: $m(1960)P(1930)$. J^{π} : $L(pol\ t,p)=L(p,t)=0$.
2017.53 ^b 3	3-	65 ps 7	B D F HI K mNOP RST VW	XREF: m(1960)T(2013.0). J ^{π} : L(pol t,p)=L(p,t)=3. β_3 (p,p')=0.210 16 (1992Ke07). Others: 1990Pi14, 1975Bu04, 1972Aw03, 1971Lu07. β_3 (d,d')=0.191 4 (2001Uk01), 0.180 (1990Pi14). Others: 1978Wa11, 1977Pe18, 1966Ki04. β_3 (α , α ')=0.155 (1975Bu04), 0.160 12 (1972Ma56). β_3 (Coul. ex.)=0.220 11 (1972Ba90).
2037.52 7	0^{+}		A D N T	XREF: T(2034.7). J^{π} : from $\sigma(6^{\circ})/\sigma(15^{\circ})$ in (p,t).
2104.72 4	3+		B D HI K MN	XREF: K(2110?)M(2070). J ^{π} : spin=3 from $\gamma(\theta)$ in $(n,n'\gamma)$ and $\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$; 672.5 γ and 1317.4 γ M1+E2 to 2 ⁺ . log ft =9.0 from (5) ⁺ is in conflict with this assignment, but I β to this level may be overestimated (see 98 Nb β^{-} decay).
2206.61 6	2+	<0.257 ps	AB D F H k mN T V	XREF: k(2216)m(2200)T(2199.9)V(2210). J^{π} : L(pol t,p)=L(p,t)=2. $T_{1/2}$: upper limit from effective half-life=0.208 ps 49 from DSAM in $(\alpha,2n\gamma)$ (2016Th01).
2209 [‡] 2 2223.862 22	0 ⁺ 4 ⁺		OP B D F HI k mNOP R T	J^{π} : L(p,p') or L(d,d')=0. XREF: I(2226)k(2216)m(2200)T(2216.1). J^{π} : L(pol t,p)=L(p,p')=L(α , α ')=4.
2240 2	4+		МО	XREF: M(2250?).
2333.18 12	2+	<0.47 ps	DfH kmNOP T	J ^π : L(p,p')=4. XREF: f(2336)k(2340)m(2380)T(2328.2). E(level): This level is defined separately from the 2333.4 level based on $\gamma\gamma$ -coin evidence in (α ,2n γ) for the 900.85-keV transition, and Doppler shift shown by this γ ray, and not by the other γ rays from 2333.4,4 ⁺ level. Another evidence is provided by β^- (51.1 min), where 900.97 γ in 1984Me04 is very weak as compared to the 1546 γ , and there it is placed from a 3737 level. A 900.9 γ in (n, γ) E=th and a 900.96 γ in (n,n' γ), where this γ is placed from the 2333.4, 4 ⁺ level, is now placed here from the 2333.2, 2 ⁺ level by evaluators. J ^π : L(pol t,p)=L(p,t)=L(p,p')=2. T _{1/2} : upper limit from effective half-life=0.35 ps 12 from
2333.46 3	4+		B D HI k mNOP R	DSAM in $(\alpha,2n\gamma)$ (2016Th01). XREF: k(2340)m(2380)R(2360). E(level): see comment for 2333.1 level.
2343.62 ^a 3	6+	5.2 ps 2	BDfHkmN SVW	J ^π : L(p,p')=L(α,α')=4; spin=4 is also from $\gamma(\theta)$ in (n,n' γ). XREF: f(2336)k(2340)m(2380)V(2330). J ^π : $\gamma(\theta)$ in (α,2n γ) suggested stretched Q (E2) to 4 ⁺ , also L(d, ⁶ Li)=6; L(pol t,p)=2(+6). T _{1/2} : from B(E2) in Coul. ex.
2350‡ 2	(2+)		k m OP	XREF: k(2340)m(2380). J ^π : L(p,p') or L(d,d')=2 but L(p,p')=6 is also given by 1971Lu07 for a 2343 group.
2369 [‡] 2	2+		m OP	XREF: m(2380).

E(level) [†]	J^{π} @	T _{1/2} &	XREF	Comments
				J^{π} : $L(p,p')$ or $L(d,d')=2$.
2418.46 [‡] 11	2+		D F H k mNOP	XREF: H(?)k(2430)m(2380).
2419.63 <i>4</i>	4+		BD H k mN T	J^{π} : L(p,p') or L(d,d')=2. XREF: k(2430)m(2380)T(2417).
				J^{π} : L(α,α')=4; spin=4 from $\gamma\gamma(\theta)$ in (α ,2n γ). J^{π} =3 from
+-	- 1			L(p,t) are in disagreement.
2485.15 [‡] 7	3+		B D H K mNOP T	XREF: $K(2500)m(2500)T(2489)$. J^{π} : 1697.6 γ M1+E2 to 2 ⁺ and 975.0 γ M1+E2 to 2 ⁺ ; but
				$L(p,p')$ or $L(d,d')=3$ suggest 3^- .
2506.38 4	5 ⁺		BD H k mN T	XREF: k(2530)m(2500)T(2502.1).
				J^{π} : spin=5 from $\gamma \gamma(\theta)$ in $(\alpha, 2n\gamma)$, 996.3 γ M1+E2 to 4 ⁺ . L(p,t)=(3) is in disagreement.
2509 2	1-		k m OP	XREF: k(2530)m(2500).
#				J^{π} : $L(p,p')=1$.
2525.8 [#] 3	2+	<0.367 ps	D F k mNOP T	XREF: $F(2530)k(2530)m(2500)N(?)T(2520.4)$.
				J ^{π} : L(pol t,p)=2. L(p,p')=(1) is in disagreement. T _{1/2} : upper limit from effective half-life=0.326 ps 41 from DSAM in $(\alpha,2n\gamma)$ (2016Th01).
2537 [‡] 5	(1^{-})		OP	J^{π} : L(p,p') or L(d,d')=(1).
2562.23 [#] <i>16</i>	(2-)		D H NOP	J^{π} : 2 ⁻ suggested from cross section data in (p,p'), described
				as a 2-step process. In (n,γ) E=thermal, J=1 is suggested
2570.9? 5	(6,7,8)		D	from $\gamma \gamma(\theta)$ data. J^{π} : 227.3 γ to (6 ⁺).
2572.84 10	3		B D H k N	XREF: k(2585).
2574.86 7	4+		BDF k OPRT	J ^{π} : from $\gamma \gamma(\theta)$ in (α ,2n γ). XREF: k(2585)T(2568.7).
2374.60 /	4		DDF K OFKI	J^{π} : L(pol t,p)=L(p,t)=L(p,p')=L(d,d')=4 for a 2574 group;
				$\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$.
2612.4 5	0_{+}		A D F T V	XREF: $F(2617)T(2611.3)V(2620)$. J^{π} : $L(pol\ t,p)=L(p,t)=0$.
2620.01 <i>17</i>	3 ⁺		B D HI k N	XREF: I(2627)k(2630).
				J^{π} : spin=3 from $\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$; 1187.5 γ and 1832.7 γ
2620.78 ^b 5	5-		DD II I- NOD W	M1+E2 to 2 ⁺ .
2020.78	3		B D H k NOP W	XREF: k(2630). J^{π} : L(p,p')=L(d,d')=5; $\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$.
2644.7? <i>4</i>	$(1,2^+)$		N T	XREF: T(2646).
2670.00# 3	c±			J^{π} : possible 1909.6 γ to 0 ⁺ .
2678.88 [#] 3	6+		B D mNOP R T W	XREF: m(2700)N(?)R(2690)T(2678). J^{π} : L(α,α')=6 for 2690; $\gamma\gamma(\theta)$ in (α ,2n γ). L(p,p')=(4,5) disagrees.
2700.68 [‡] 16	2+	<0.208 ps	B D F H mNOP T	XREF: F(2695)m(2700)T(2699.6).
		1		J^{π} : $L(t,p)=L(p,t)=2$; $\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$. $L(p,p')=(4)$ is in disagreement.
				$T_{1/2}$: upper limit from effective half-life=0.173 ps 35 from DSAM in $(\alpha,2n\gamma)$ (2016Th01).
2733.4 [‡] <i>3</i>	2+		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XREF: m(2700)T(2731.6)V(2740).
				J^{π} : $L(p,p')$ or $L(d,d')=L(t,p)=L(p,t)=2$. $L(d,^6Li)=(2+0)$ indicates a doublet. $\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$ gives $J=2,3$.
2738.2 ^d 5	(6,7)		D W	
2767.68 <i>4</i>	4+		B D F H N	XREF: F(2791)N(?). J^{π} : spin=4 from $\gamma \gamma(\theta)$ in $(\alpha, 2n\gamma)$; 1980.4 γ (E2) to 2 ⁺ (M2
				is unlikely).
2795.61 <i>11</i>	4-		D H NO	J ^{π} : spin=4 from $\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$; 778.0 γ M1+E2 to 3 ⁻ .
				L(p,p')=5 suggests 5 ⁻ .

E(level) [†]	Jπ @	T _{1/2} &	XREF	Comments
2799.6 5	0+		Т	J^{π} : L(p,t)=0.
2813.3 [‡] <i>3</i>	2+		B D OP T	XREF: T(2811.1).
				J^{π} : L(p,p) or L(d,d')=2; $\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$.
2836.83 [‡] 6	6+		B D F K NOP T	XREF: F(2826)K(2829)N(?)T(2835.3).
				J^{π} : $\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$; L(t,p)=6 for a 2826 10 group and
				$L(p,p')$ or $L(d,d')=6$. $L(p,t)=L(\alpha,\alpha')=4$ is in disagreement.
2851 10	0_{+}		F	J^{π} : $L(t,p)=0$.
2854.15 <i>15</i>	(8^{+})		D W	J^{π} : proposed in (30 Si,x γ) based on 510.5 γ to 6 ⁺ .
2856.2 2	4 ⁺		B m OP R	XREF: B(?)m(2900)R(2870).
2071 1 4	2.2	0.25		J^{π} : $L(p,p')=L(d,d')=L(\alpha,\alpha')=4$.
2871.1 <i>4</i>	2,3	<0.35 ps	D K m T	XREF: K(2880)m(2900)T(2868).
				J^{π} : from $\gamma\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2896.79 <i>17</i>	5 ⁺		D	$T_{1/2}$: from DSAM in (α,2nγ) (2016Th01). J^{π} : spin=5 from $\gamma\gamma(\theta)$ in (α,2nγ); 1386.8γ M1+E2 to 4 ⁺ .
2905.2 7	4 ⁺	<0.166 ps	D m OP T	XREF: m(2900)T(2902.2).
2703.27		чо.100 рь	B 01 1	J^{π} : $L(p,p')=L(d,d')=4$.
				$T_{1/2}$: upper limit from effective half-life=0.152 ps 14 from
				DSAM in $(\alpha, 2n\gamma)$ (2016Th01).
2915.8 [‡] 4	2+	<0.138 ps	D F K mNOP T	XREF: F(2898)m(2900)T(2914.4).
		1		J^{π} : L(t,p)=2, L(p,p') or L(d,d')=2.
				$T_{1/2}$: upper limit from effective half-life=0.076 ps +62-42
				from DSAM in $(\alpha,2n\gamma)$ (2016Th01).
20/2 / 7/	-			E(level): doublet in (t,p).
2962.45 <i>16</i>	3-		D HI k OP T	XREF: k(2980)T(2963).
2976.89 10	4+	<0.67 ps	BDFH k OP T	J^{π} : L(p,p')=L(d,d')=3. XREF: F(2969)k(2980)T(2977.4).
2970.09 10	7	<0.07 ps	B D I II K OI I	J^{π} : L(t,p)=L(p,t)=4; $\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$.
				$T_{1/2}$: upper limit from effective half-life=0.44 ps 23 from
				DSAM in $(\alpha,2n\gamma)$ (2016Th01).
3010.91? 20			В	XREF: B(?).
3020.42 8	5-		B D OP	J^{π} : $L(p,p')=L(d,d')=5$.
3021.75 <i>3</i>	4+		B D F H R T	XREF: F(3013)H(?)R(3020)T(3021).
2026.2.2	~+		_	J^{π} : L(t,p)=L(p,t)=4.
3026.2 3	5 ⁺ 4 ⁺		D	J ^π : spin=5 from $\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$; 1516.2 γ M1+E2 to 4 ⁺ .
3045.89 <i>23</i>	4 '		f H op	XREF: $f(3044)o(3049)p(3049)$. J^{π} : $L(t,p)=4$ for 3044 group; $L(p,p')=L(d,d')=4$ for 3049
				group. $L(t,p)=4$ for 3044 group, $L(p,p)=L(u,u)=4$ for 3049 group.
3050.92 6	4+	<0.146 ps	BDfH k op T	XREF: f(3044)H(?)k(3066)o(3049)p(3049)T(3050).
3030.92 0	7	<0.140 ps	B D I II K OP I	J^{π} : L(t,p)=4 for 3044 group; 1618.8 γ to 2 ⁺ and 544.5 γ to
				5 ⁺ .
				$T_{1/2}$: upper limit from effective half-life=0.125 ps 21 from
				DSAM in $(\alpha, 2n\gamma)$ (2016Th01).
3067.70 8	(3^{-})		B D H k NOP T	XREF: H(?)k(3066)T(3067.8).
				J^{π} : L(p,t)=3; log ft=8.8 from (5) ⁺ . L(p,p')=5 for a 3060
				level (1972Aw03) and J=2 for a 3067 level (1990Pi14) are
2005 90 17	2+		D E	in conflict.
3095.80 <i>17</i>	2		B F	XREF: B(?)F(3093). J^{π} : L(t,p)=2.
3096.26 [‡] <i>b</i> 16	(7-)		עם מס מע	* **
3090.2012 10	(7)		B D OP W	J^{π} : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$, γ to (5^{-}) consistent with stretched E2, but $L(p,p')$ or $L(d,d')=(6)$ suggests 6^{+} .
3103.13 [‡] 20	(2± 2 4)		U le con de	
5105.15* 20	$(2^+,3,4)$		H k op t	XREF: k(3124). J^{π} : primary γ from (2 ⁺ ,3 ⁺) and γ to (4 ⁺). L(p,p') or
				L(d,d')=2 for a 3106 group suggests 2^+ for 3103 and/or
				$2 \log_{10} (a + 3) = 2 \log_{10} (a$
3108.80 [‡] <i>17</i>	$(2^+,3,4)$		D H k op t	XREF: k(3124).
5100.00 17	(= ,5,1)		z n n op c	

E(level) [†]	Jπ@	T _{1/2} &		X	REF		Comments
							J ^{π} : primary γ from (2 ⁺ ,3 ⁺) and γ to 4 ⁺ ; L(p,t)=2 for 3105.3. See also comment for 3103 level.
3125 [‡] 5	(3^{-})				OP		J^{π} : L(p,p') or L(d,d')=(3).
3152 [‡] 5	2+				OP	Т	XREF: T(3150).
							J^{π} : L(p,p') or L(d,d')=2.
3155.56 22	(4^{+})			H k			XREF: k(3168).
3165.89 <i>5</i>	4+		В	k	OP	Т	J^{π} : 811.5 γ to 6 ⁺ , 455.1 γ to 2 ⁺ . XREF: k(3168)T(3167).
3103.07 3					. 01	•	J^{π} : L(p,p')=L(d,d')=4; log ft=7.7 from (5) ⁺ .
3195.56 <i>17</i>	$(2^-,3,4)$			H		T	XREF: T(3197).
							J^{π} : 1193.1 γ to 3 ⁻ and 399.88 γ to 4 ⁻ ; primary γ from $2^{+},3^{+}$.
3208.99 <i>12</i> 3210.80 <i>25</i>	$(4^+,5^-)$ (4^+)		B D	Н	N	t	J^{π} : 530.4 γ to 6 ⁺ , 1190.8 γ to 3 ⁻ . XREF: t(3211.6).
3210.80 23	(4)		D	п	IN	L	J^{π} : 1193.2 γ to 3 ⁻ and possible 866.6 γ to 6 ⁺ . Primary
							γ from 2 ⁺ ,3 ⁺ . L(p,t)=4 for 3211.6 group.
3211.57 <i>3</i>	(4^{+})		В	H	N	t	XREF: t(3211.6).
							J^{π} : 590.9 γ to 5 ⁻ , 705.5 γ to 5 ⁺ , possible 2424.1 γ to
3214 5	3-		F		OP	R	2 ⁺ ; log <i>ft</i> =6.4 from (5) ⁺ ; L(p,t)=4 for 3211.6 group. XREF: F(3200)R(3220).
32113	5		-		01	•	J^{π} : L(t,p)=L(p,p')=L(d,d')=L(α , α ')=3.
3229.17 10	(4^{+})	<0.173 ps	B D				J^{π} : 415.5 γ to 2 ⁺ , 885.6 γ to 6 ⁺ , 1718.8 γ to 4 ⁺ .
							$T_{1/2}$: upper limit from effective half-life=0.152 ps 21
3241.2 10	$(4^+ \text{ to } 7)$		В	k		Т	from DSAM in $(\alpha,2n\gamma)$ (2016Th01). XREF: k(3270)T(3239.1).
3211.2 10	(1 10 7)			-		•	J^{π} : 562.3 γ to 6 ⁺ ; log ft =8.4 from (5) ⁺ .
3257.86 10	1	0.0041 eV 3			L		B(E1)(\uparrow)=0.34×10 ⁻⁵ 3, B(M1)(\uparrow)=0.031 3 (2006Ru06).
3263 5	1-			k	OP.		XREF: k(3270).
2264.0.5	0+			1.			J^{π} : L(p,p')=L(d,d')=1.
3264.9 5	0.		F	k		T	XREF: F(3259)k(3270). E(level): from (p,t).
							J^{π} : $L(t,p)=L(p,t)=0$.
3271.49 ^a 16	(8^{+})		D			V	() () () () () () () () () ()
2276 5	(2- 4+)				0		(6^+) .
3276 <i>5</i> 3302.9 <i>6</i>	$(3^-,4^+)$ 2^+		F	k	. 0	Т	J^{π} : L(p,p')=(3,4). XREF: F(3294)k(3270).
22021,	_		_	-		-	E(level): from (p,t) .
	_						J^{π} : L(t,p)=2.
3305 <i>5</i> 3323.58 <i>18</i>	5 ⁻ (7 ⁻)		D		OP		J^{π} : L(p,p')=L(d,d')=5. J^{π} : $\gamma\gamma(\theta)$ in (α,2nγ); (M1(+E2)) 227.4γ to (7 ⁻).
3326.41 <i>4</i>	(<i>t</i>)		В	k	NOP	Т	XREF: k(3340)N(?)T(3326).
							J^{π} : L(p,p')=L(d,d')=4; log ft=6.8 from (5) ⁺ .
3343 [‡] 2	2+			k	OP.	T	XREF: k(3340).
							E(level): from (p,t). Other: 3344 5 from (p,p') and
							(d,d'). J^{π} : $L(p,p')$ or $L(d,d')=2$.
3366.1? <i>3</i>			В				U: B(p,p) of $B(a,a)$ 2.
3386.2 [‡] <i>10</i>	2+				OP	T	E(level): from (p,t). Other: 3389 5 from (p,p') and
							(d,d').
3394.50 <i>5</i>	(4^{+})		В		N		J^{π} : L(p,p') or L(d,d')=2. XREF: N(?).
337 4 .30 3	(Ŧ)		ע		14		J^{π} : γ to 2^+ ; log ft =6.6 from $(5)^+$.
3400.92 14	4+		В		0		J^{π} : $L(p,p')=4$.
3403.95 <i>14</i>	$(5^-,6^+)$		В				J^{π} : 192.4 γ to (4 ⁺), possible 306.9 γ to (7 ⁻);

E(level) [†]	Jπ @	T _{1/2} &			XRE	EF			Comments
3405.06 <i>10</i> 3418.74 22	1 4 ⁺	0.044 eV 3	В		L k	NOP	Т		log f t=7.7 from (5) ⁺ . B(E1)(\uparrow)=3.2×10 ⁻⁵ 2, B(M1)(\uparrow)=0.289 19 (2006Ru06). XREF: k(3430)N(?)T(3421).
3455.17 6	(4^{+})		В	Н	k	N	T		J^{π} : L(p,p')=L(d,d')=4; log ft =8.3 from (5) ⁺ . XREF: H(?)k(3430)N(?)T(3457).
3457.07 10	1	0.035 eV 2			L				J ^π : γ to 2 ⁺ ; log ft =6.9 from (5) ⁺ . B(E1)(↑)=2.45×10 ⁻⁵ 16, B(M1)(↑)=0.222 15 (2006Ru06).
3465.95 <i>11</i> 3474 2	(4+)		В			0	Т		J^{π} : $L(p,p')=(4)$.
3489 [‡] 1	2+					OP	T		E(level): from (p,t). Other: 3485 5 from (p,p') and (d,d'). J^{π} : L(p,p') or L(d,d')=2.
3501.7 <i>3</i>	(4^{+})		В		k	0			XREF: k(3512). J^{π} : L(p,p')=(4); 2714.3 γ to 2 ⁺ ; log ft=8.9 from (5) ⁺ ;
3516.75 7	(4 ⁺)		В		k		T		XREF: $k(3512)T(3515.7)$. J^{π} : 1758.7 γ to 2 ⁺ , 679.7 γ to 6 ⁺ .
3524 [‡] 5	(6 ⁺)					OP			J^{π} : $L(p,p')=L(d,d')=(6)$.
3527.4 ^d 5 3541.28? <i>15</i>	(8,9-)		В					W	J^{π} : proposed in (30 Si,X γ); 431.5 γ to (7 $^{-}$).
3547.51 6	(4^{+})		В	Н					XREF: H(?). J^{π} : 2760.0 γ to 2 ⁺ , 1204.2 γ to 6 ⁺ ; log ft =7.2 from (5) ⁺ .
3551.35 9	1	0.035 eV <i>3</i>			L				E(level): this state decays to g.s. and the first excited 0 ⁺ state, indicative of two coexisting configurations are mixed in the 0 ⁺ states (2006Ru06). B(M1)(2817γ, to excited 0 ⁺)/B(M1)(3551γ, to
3554.87? 11			В		k				g.s.)=0.28 5 (2006Ru06), if $J^{\pi}=1^{+}$. XREF: k(3570).
3557.0 4	(4 ⁺)	<0.215 ps	D		k	op			XREF: k(3570). J^{π} : L(p,p')=L(d,d')=4 for a 3560 5 group. $T_{1/2}$: effective half-life=0.166 ps 49 from DSAM in $(\alpha,2n\gamma)$ (2016Th01).
3565.65 8	(4^{+})		В		k	op			XREF: $k(3570)$. J^{π} : $L(p,p')=L(d,d')=4$ for a 3560 5 group.
3598.29 <i>16</i>	(4^{+})		В	Н		0			XREF: H(?). J^{π} : L(p,p')=4 for a 3598 5 group.
3601.1 <i>4</i> 3617.12? <i>21</i>	$(4^+,5,6)$		В		1-				J^{π} : 922.3 γ and 1257.2 γ to 6^{+} ; log ft =7.8 from $(5)^{+}$.
3620.10 <i>19</i>	(3 ⁻ ,4)		B B		k k				XREF: k(3636). XREF: k(3636). J^{π} : 1515.5 γ to 3 ⁺ and 1602.0 γ to 3 ⁻ ; log ft =7.9 from
3623.57 6	4+		В		k	OP			(5) ⁺ . XREF: k(3636).
3639 5	4+				k	0	T		J^{π} : L(p,p')=L(d,d')=4 from 0 ⁺ . XREF: k(3636)T(3634).
3656.7 ^c 3	(9-)		D					W	J^{π} : L(p,p')=4. J^{π} : proposed in (30 Si,X γ); 560.5 γ to (7 ⁻), 385.1 γ to
3664 <i>5</i> 3682 <i>5</i>	4 ⁺ 4 ⁺				k	0P 0	Т		(8 ⁺). J ^π : L(p,p')=L(d,d')=4. XREF: k(3695)T(3685).
3703.98 20	1	0.0042 eV 6			L				J^{π} : L(p,p')=4. B(E1)(↑)=0.23×10 ⁻³ 16, B(M1)(↑)=0.021 3 in (γ,γ')
3711.9 7	5-		В		k	OP			(2006Ru06). XREF: k(3695).
3723.7 3	4+		В		k	0			J^{π} : L(p,p')=L(d,d')=5. XREF: k(3740). J^{π} : L(p,p')=4 from 0 ⁺ .

3737.79 9 4+ B H k NOP $XREF: H(?)k(3740)N(?).$ $J^{\pi}: L(p,p')=L(d,d')=4.$ 3757 5 5- 0 $J^{\pi}: L(p,p')=5.$ 3768.7 ^b 6 (9-) D W $J^{\pi}: proposed in (^{30}Si,Xy); 672.4y \text{ to } (7^{-}).$ 3777.88 11 4+ B k OP $XREF: k(3790).$ $J^{\pi}: L(p,p')=L(d,d')=4.$ 3793 5 5- k O T $XREF: k(3790)T(3796).$ $J^{\pi}: L(p,p')=5.$ 3806.08 20 1 L 3809.20 10 (4,5,6+) B k $XREF: k(3790).$ $J^{\pi}: log ft=7.5 \text{ from } (5)^{+}; 2299.1y \text{ to } 4^{+}.$ 3809.59 10 (4,5-) B k $XREF: k(3790).$ $J^{\pi}: 1792.1y \text{ to } 3^{-}; log ft=7.0 \text{ from } (5)^{+}.$ 3824 ‡ 5 OP T	E(level) [†]	J^{π}		XREF		Comments
3757 5 5 5 0 J ^{π} : L(p,p')=5. 3768.7 b 6 (9 $^{-}$) D W J ^{π} : proposed in (30 Si,X $_{7}$); 672.4 $_{7}$ to (7 $^{-}$). 3777.88 11 4 $^{+}$ B k OP XREF: k(3790). 3793 5 5	3737.79 9	4+	В Н	k NOP		
3777.88 11 4^{+} B k OP XREF: k(3790). J^{π} : L(p,p')=L(d,d')=4. 3793 5 5				0		J^{π} : $L(p,p')=5$.
3793 5 5				k OP	W	XREF: k(3790).
3806.08 20 1 L	3793 5	5-		k 0	T	XREF: k(3790)T(3796).
J^{π} : $\log ft=7.5$ from $(5)^{+}$; 2299.1γ to 4^{+} . XREF: $k(3790)$. J^{π} : 1792.1γ to 3^{-} ; $\log ft=7.0$ from $(5)^{+}$. 3824 ‡ 5 OP 3836.98 $I0$ 1 L 3842.77 ‡ 20 $(4,5,6^{+})$ B OP T XREF: B(?)T(3851).	3806.08 20					417
3809.59 10 (4,5 ⁻) B k XREF: k(3790). J^{π} : 1792.1 γ to 3 ⁻ ; log ft=7.0 from (5) ⁺ . 3824 [‡] 5 OP 3836.98 10 1 L 3842.77 [‡] 20 (4,5,6 ⁺) B OP T XREF: B(?)T(3851).	3809.20 <i>10</i>	$(4,5,6^+)$	В	k		
3824^{\ddagger} 5 OP 1 3836.98 10 1 L 1 3842.77 ‡ 20 (4,5,6 $^{+}$) B OP T XREF: B(?)T(3851).	3809.59 10	$(4,5^{-})$	В	k		XREF: k(3790).
3836.98 10 1 L 3842.77 ‡ 20 (4,5,6 $^{+}$) B OP T XREF: B(?)T(3851).	3824 [‡] 5			OP		, , , , , , , , , , , , , , , , , , , ,
		1				
$J = IOg II - I \cdot O IIOIII (J) , DUSSIDIE 2JJ2. I Y IU + .$	3842.77 [‡] 20	$(4,5,6^+)$	В	OP	T	XREF: B(?)T(3851). J^{π} : log ft =7.8 from (5)+; possible 2332.7 γ to 4+.
3857.68 <i>10</i> 1 L	3857.68 10			L		
3898 5 (4^+) P J^{π} : $L(d,d')=(4)$.		(4^{+})		P		J^{π} : L(d,d')=(4).
3937.08 <i>10</i> 1 L		_				
3944.09 <i>10</i> (1) L						VDEE D/2020/T/2051)
3947.5 3 (4 ⁺) B P T XREF: P(3939)T(3951). J^{π} : L(d,d')=(4); log ft =7.4 from (5) ⁺ .	3947.5 3	(41)	В	Р	1	
J^{π} : log $ft=6.9$ from $(5)^{+}$; 1285.4 γ and 1620.7 γ to 6^{+} .	3964.33 11	$(4^+, 5.6)$	В			
3981.81 IO 3 ⁻ B P J^{π} : L(d,d')=3.				P		
3998.62 ‡ 10 5 B OP XREF: O(3993)P(3993). J ^{π} : L(p,p') or L(d,d')=5.	3998.62 [‡] 10	5-	В	OP		XREF: O(3993)P(3993).
4020.6 5 (2) L	4020.6 5	(2)		L		v. E(p,p) of E(d,d) v.
4041.6 9 (1) L	4041.6 9					
4044 5 4^+ P J^{π} : $L(d,d')=4$.	4044 5			P		
4060.62? 13 $(4,5,6^+)$ B J^{π} : log $ft=7.5$ from $(5)^+$; possible 2550.5 γ to 4^+ .						
4076.43 11 (4,5,6 ⁺) B J^{π} : log ft =7.3 from (5) ⁺ ; 2566.4 γ to 4 ⁺ .			В			J^{n} : log $ft=7.3$ from $(5)^{+}$; 2566.4 γ to 4^{+} .
4079.8 4 1 L 4102.3 5 (2) L						
4103.35? 20 (4 ⁺) B J^{π} : possible 2671.1 γ to 2 ⁺ ; log ft =7.4 from (5) ⁺ .			В			I^{π} : possible 2671.1 γ to 2 ⁺ : log ft=7.4 from (5) ⁺ .
4117 [‡] 5 $(4^+,5^-)$ OP J^{π} : L(p,p') or L(d,d')=(4,5).	_		_	OΡ		The state of the s
4143 5 4^+ P J^{π} : L(d,d')=4.						
4149.2 ^a 4 (10 ⁺) D W J ^{π} : proposed in (³⁰ Si,X γ); 877.9 γ and 1294.9 γ to (8 ⁺).	4149.2 ^a 4		D		W	
4170.8 8 1 L 4177 5 3 P T XREF: T(4169).					Т	XREF: T(4169).
J^{π} : L(d,d')=3.						
4179.90 20 (1) L				L		20
4190.2 d 7 (10,11) W J^{π} : proposed in (30 Si, $X\gamma$); 662.7 γ to (8,9).				_	W	J^{π} : proposed in (30 Si, $X\gamma$); 662.7 γ to (8,9).
4231.1 4 1 L		_				VDEE T(4052)
4247 5 4 ⁺ P T XREF: T(4253). J^{π} : L(d,d')=4.				P	1	
4252.6 <i>12</i> (1) L						
4258.8 5 1 L		_				
4267.90 20 1 L 4295.40 10 (1) L						
4295.40 <i>10</i> (1) L 4356 <i>10</i> T		(1)		L	Т	
4361.80 <i>10</i> (1) L		(1)		L	-	
4391.21 <i>10</i> (1) L	4391.21 <i>10</i>			L		
4410.21 <i>10</i> 1 L	4410.21 <i>10</i>	1		L		

⁹⁸Mo Levels (continued)

E(level) [†]	J^{π}		XREF		Comments
4423.9 ^c 6	(11-)	D		W	J^{π} : proposed in (30 Si, $X\gamma$); member of negative-parity sequence; 767.2 γ to
4440.1? 7		D			(9 ⁻).
4537.7 ^b 8	(11^{-})	D		W	J^{π} : proposed in (30 Si, $X\gamma$); 769.0 γ to (9 $^{-}$).
4543.31 20	1	ע	L	VV	σ . proposed iii (51, xγ), 103.0γ to (>).
4581.6 <i>7</i>	(1)		L		
4590.62 10	1		Ĺ		
4599.3 <i>5</i>	1		Ĺ		
4609.5? 8	-	D	_		
4616.2 5	1		L		
4654.3 <i>4</i>	(1)		L		
4812.73 20	ì		L		
4837.53 10	1		L		
4902.83 10	1		L		
4993.6 <mark>d</mark> 9	(12,13)			W	J^{π} : proposed in (30 Si,X γ); 803.4 γ to (10,11); member of a sequence.
5008.6 3	1		L		1 1 2 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
5028.64 20	1		Ĺ		
5047.0 ^a 7	(12^{+})			W	J^{π} : proposed in (30 Si, $X\gamma$); 897.8 γ to ($^{10+}$); member of a sequence.
5050.34 10	1		L		· · · · · · · · · · · · · · · · · · ·
5081.74 20	1		L		
5121.4 <i>3</i>	1		L		
5134.1 <i>11</i>	(1)		L		
5147.6 <i>3</i>	1		L		
5165.15 20	1		L		
5174.6 <i>12</i>	(2)		L		
5195.5 <i>4</i>	1		L		
5215.0 <i>5</i>	(2)		L		
5225.5 7	(1)		L		
5236.1 9	1		L		
5244.55 20	(1)		L		
5267.7 6	(2)		L		
5312.6 3	1		L		20
5314.4 ^b 9	(13 ⁻)			W	J^{π} : proposed in ($^{30}Si,X\gamma$); 776.7 γ to (11 $^{-}$); member of a negative-parity sequence.
5315.3° 8	(13-)			W	J^{π} : proposed in (30 Si, $X\gamma$); 891.4 γ to (11 $^{-}$); member of a negative-parity sequence.
5324.0 5	(1)		L		
5346.66 20	1		L		
5354.66 20	1		L		
5362.7 8	(1)		L		
5386.26 20	1		L		
5397.46 10	1		L		
5412.6 <i>4</i>	1		L		
5432.9 6	1		L		
5442.2 <i>6</i>	1		L		
5450.5 <i>4</i> 5458.2 <i>5</i>	1		L L		
5482.36 <i>10</i>	1		L L		
5492.4 3	(1)		L		
5508.9 <i>3</i>	1		L		
5519.1 7	1		L		
5528.2 4	1		L		
5544.1 18	(1)		L		
5552.7 8	(1)		Ĺ		
5563.27 20	1		Ĺ		
5579.2 4	1		L		

Continued on next page (footnotes at end of table)

E(level) [†]	Jπ @	XREF	Comments
5588.4 15	(1)	L	
5595.6 10	1	L	
5615.3 12	1	_ L	
5626.1 4	1	L L	
5638.07 10	1	L L	
5654.38 20	1	L	
5664.6 3	1	L	
5678.8 14	(2)	L	
5686.88 20	1	L •	
5708.2 6	1	L	
5716.1 <i>4</i>	1	L	
5725.6 <i>5</i>	1	L	
5732.9 6	1	L	
5741.48 <i>10</i>	1	L	
5754.1 9	1	L	
5764.7 <i>3</i>	1	L	
5775.98 20	1	L	
5791.8 <i>5</i>	1	L	
5801.4 <i>3</i>	1	L	
5811.38 20	1	_ L	
5828.59 20	1	_ L	
5856.9 <i>3</i>	1	L	
5889.4 6	1	L	
5906.6 7	1	Ĺ	
5916.99 20	1	L	
			I_{μ}^{T}
5925.0 ^a 8	(14^{+})	W	J^{π} : proposed in (30 Si, $X\gamma$); 878.0 γ to (12 ⁺); member of a yrast sequence.
5959.79 20	1	L	
5972.80 20	1	L	
5984.10 20	1	L	
5993.0 8	(1)	L	
5999.7 8	(1)	L	
6022.10 20	1	L	
6031.90 <i>10</i>	1	L	
6046.3 <i>4</i>	1	L	
6065.70 10	1	L	
6076.7 <i>7</i>	(1)	L	
6101.6 <i>4</i>	1	L	
6110.20 <i>10</i>	(1)	L	
6120.51 20	(1)	L	
6133.0° 10	(15^{-})	_ W	J^{π} : proposed in (30 Si, $X\gamma$); 817.7 γ to (13 ⁻); member of a negative-parity
0133.0 10	(15)	"	sequence.
6145.1 <i>18</i>	1	T	ooquenee.
	1	L	
6172 3	1	L	
6183.2 8	(1)	L	
6220.1 11	(1)	L	
6234.5 10	(1)	L	
6247.1 3	(1)	L	
6266.0 7	(1)	L	
6315.9 <i>3</i>	1	L	
6330.32 20	1	L	
6367.4 <i>4</i>	1	L	
6379.2 8	1	L	
6388.3 7	1	L	
6397.9 5	1	L	
6419.9 <i>11</i>	1	L	
6438.7 10	1	L	
6451.23 20	(1)	L	
	. /		
		Conti	nued on next page (footnotes at end of table)

⁹⁸Mo Levels (continued)

E(level) [†]	J ^π @	XREF	E(level) [†]	J ^π @	XREF
6465.8 6	1	L	7428.3 <i>4</i>	1	L
6473.4 3	1	L	7434 15		K
6491.8 <i>6</i>	1	L	7447.0 9	1	L
6511.6 <i>11</i>	(1)	L	7461.3 7	1	_ L
6522.3 10	(1)	L	7473.7 3	1	Ĺ
6530.6 6	1	L	7498.0 <i>13</i>	(2)	Ĺ
6543.43 20	1	L	7513.2 5	(2)	Ĺ
6566.7 10	(1)	L	7543.3 20	(1)	Ĺ
6577.3 10	1	L	7543.3 20 7551.7 <i>17</i>	(2)	Ĺ
6586.2 <i>3</i>	1	L	7562.3 7	1	Ĺ
6596.4 3	1	L	7583.1 4	1	L
			7609.1 6		
6614.9 8	1	L		1	L
6631.3 12	(1)	L	7692.0 6	1	L
6636.7 18	(1)	L	7711.3 6	1	L
6648.1 8	(1)	L	7737.3 20	(1)	L
6680.2 20	(1)	L	7752.5 8	1	L
6698.7 <i>7</i>	1	L	7764.5 <i>4</i>	1	L
6756.35 20	1	L	7781.1 <i>4</i>	1	L
6765.7 <i>7</i>	1	L	7803.4 <i>5</i>	1	L
6815.9 <i>13</i>	(1)	L	7820.5 9	1	L
6824.2 <i>6</i>	1	L	7834.9 <i>13</i>	(1)	L
6836.6 <i>6</i>	(1)	L	7847.1 <i>6</i>	1	L
6847.4 <i>6</i>	1	L	7877.3 <i>6</i>	1	L
6853.7 <i>4</i>	2	L	7889.9 <i>7</i>	1	L
6866.0 <i>4</i>	(2)	L	7900.8 <i>15</i>	(2)	L
6888.6 <i>5</i>	1	L	7927.3 20	1	L
6900.3 <i>3</i>	(1)	L	7943.6 8	1	L
6950.8 8	ì	L	7965.3 20	(1)	L
6959.3 6	(2)	L	7986.3 20	(2)	L
6972.0 8	(1)	L	7996.1 <i>7</i>	1	L
6979.6 8	ì	L	8011.6 7	1	L
6995.1 5	1	L	8023.6 5	1	L
7008.77 20	1	L	8033.8 9	1	_ L
7035.4 <i>3</i>	1	L	8045.2 18	(1)	_ L
7050.8 6	1	L	8054.6 8	1	_ L
7061.8 4	1	L	8068.0 11	(1)	_ L
7073.5 6	1	L	8073 <i>4</i>	(2)	Ĺ
7087.3 11	1	L	8081.1 6	(1)	L L
7105.1 <i>13</i>	(1)	L	8096.26 20	(1)	L L
7103.1 13	1	L	8112.8 8	1	Ĺ
7117.2 7	1	L	8124.5 6	1	L
7142.38 20	1	L	8137.5 10	1	L
7142.38 20	1	L	8158.4 6	1	L
7169.6 5	1	L	8168.8 4	1	L
7182.1 3	1	L	8182.8 4	1	L
7192.3 8	1	L	8213.3 10	(2)	L
7204.6 5	1	L	8244.6 10	1	L
7258.4 7	1	Ļ	8255.5 11	(1)	L
7274.4 <i>4</i>	1	L	8266.2 19	(1)	L
7295.7 7	1	L	8277.0 <i>4</i>	1	L
7309.0 9	(1)	L	8289.5 <i>21</i>	1	L
7327.3 5	1	L	8298.4 <i>13</i>	(1)	L
7336.49 20	1	L	8310.1 9	1	L
7353.0 8	(1)	L	8331.2 9	(1)	L
7376.2 11	(1)	L	8357.5 11	(2)	L
7387.4 8	1	L	8370.5 <i>5</i>	1	L
7396.1 <i>3</i>	1	L	8393.4 20	1	L

⁹⁸Mo Levels (continued)

E(level) [†]	Jπ @	T _{1/2} &	XREF	Comments
8429.5 9	(2)		L	
8444.4 7	1		L	
8459.6 7	1		L	
8472.1 <i>4</i>	1		L	
8491.7 9	1		L	
8503.9 <i>5</i>	1		L	
8513.1 <i>11</i>	1		L	
8527.3 10	1		L	
8537.5 7	1		L	
8562.8 9	1		L	
8580.2 <i>15</i>	(2)		L	
8590.1 9	1		L	
8602.3 6	1		L	
8613.1 5	1		L	
8620.2 7	1		L	
8627.8 7	1		L	
8636.5 5	1		L	
(8642.58 <i>4</i>)	$2^{+},3^{+}$		HI	J^{π} : s-wave neutron capture on $5/2^{+}$.
8650.3 <i>6</i>	1		L	
8662.7 5	1		L	
8674.3 10	1		L	
≈8800			T	E(level): wide bump attributed to two-hole states.
$13.85 \times 10^3 \ 24$	2+	4.68 MeV 34	R	%E2 EWSR=85 14 for ISGQR (2015Yo04).
$14.2 \times 10^3 4$			Q	FWHM of the GQR=4.7 MeV 4 (1979Mo12).
				$d\sigma/d\Omega$ (at 6°)=22 mb/sr 6, %EWSR=87 (1979Mo12).
15.7×10^3	0^{+}	6.5 MeV	R	%E0 EWSR=83 for ISGMR (2015Yo04).
$16.0 \times 10^3 \ 3$	1-	10.9 MeV 11	R	%E1 EWSR=26 3 for ISGDR (2015Yo04).
$21.5 \times 10^3 4$	3-	4.2 MeV 3	R	%E3 EWSR=61 8 for ISGOR (2015Yo04).
24.2×10^3	0+	5.6 MeV	R	%E0 EWSR=14 for ISGMR (2015Yo04).
27.4×10^3 7	1-	10.8 MeV <i>30</i>	R	%E1 EWSR=49 8 for ISGDR (2015Yo04).
27.4710 /	1	10.0 IVIC V 50	IX.	/011 11 5K-7/ 0 101 100DK (2013 1007).

[†] From least squares fit to E γ data. For levels populated in (γ, γ') only, energies are from E γ values for transitions to the g.s.

[‡] In the XREF column this level is shown to be populated in both (p,p') and (d,d'), but from the data given by 1992Pi08 (see table 1 in 1992Pi08) it is not clear whether the level is populated in both the reactions or only one of these.

[#] In the XREF column this level is shown to be populated in both (p,p') and (d,d'). While population in (p,p') is certain, it is not clear (from table 1 in 1992Pi08) whether or not the level is populated in (d,d').

[@] For levels populated in (γ, γ') only, spin assignments are from $\gamma(\theta)$ of ground transitions (L=1 or 2), mostly consistent with spin=1.

[&]amp; Deduced from measured B(E2) or B(E3) in Coulomb excitation up to 2344 level and from DSAM in $(\alpha,2n\gamma)$ above that up to 3557, unless otherwise noted. Values of widths are from (γ,γ') or (α,α') where available.

^a Seq.(A): Yrast structure.

^b Seq.(B): γ cascade based on 3⁻. Possible octupole structure.

^c Seq.(C): γ cascade based on (9⁻).

^d Seq.(D): γ cascade based on (6,7).

Adopted Levels	, Gammas	(continued)
----------------	----------	-------------

γ(⁹⁸Mo)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α [@]	Comments
734.75	0+	734.75		0.0	0+	E0			E _γ : deduced from level difference. ce line observed in $(p,p'\gamma)$ and $(t,p\gamma)$ studies. Mult.: from observation in ce data only. Branching ratio for two photon emission: $\Gamma_{\gamma\gamma}/\Gamma < 0.0001$ at 95% confidence level (2014He12). Two methods were used, one based on direct population of 735, 0 ⁺ state, and the second based on population of 735, 0 ⁺ level through 1024γ from 1758,2 ⁺ level. Strength parameter $\rho^2(E0) = 0.0273$ 25 (1971AnZV,(p,p'γ)). 2005Ki02 evaluation gives $\rho^2(E0) = 0.0273$ 11.
787.384	2+	(52.63 5)	6.5×10 ⁻⁵ <i>12</i>	734.75	0+	[E2]		12.06 18	B(E2)(W.u.)=9.7 +10-25 α (K)=8.32 12; α (L)=3.09 5; α (M)=0.568 8 α (N)=0.0770 11; α (O)=0.001080 16 E _y : from level-energy difference. I _y : from B(E2)(735,0 ⁺ to 787,2 ⁺) in Coul. ex. B(E2)(W.u.) from B(E2)↑=0.130 +14-34 (2002Zi06). Other B(E2)(W.u.)=21.8 11 from B(E2)↑=0.293 14 (1978La17).
		787.372 20	100	0.0	0+	E2			B(E2)(W.u.)=20.1 4 E _γ : weighted average of 787.363 20 from ⁹⁸ Nb $β$ ⁻ decay (51.1 min) and 787.38 2 from (n,n' $γ$). Others: 787.4 3 from ⁹⁸ Nb $β$ ⁻ decay (2.86 s), 787.26 15 from ($α$,2n $γ$), 787.42 10 from (n, $γ$) E=th, 787.4 5 from ($β$ ³⁰ Si,X $γ$), and 787.5 3 from Coulomb excitation. Mult.: Q from $γγ(θ)$ in ($α$,2n $γ$) and $γ(θ)$ in (n,n' $γ$); M2 ruled out by RUL.
1432.210	2+	644.828 20	100 3	787.384	2+	E2+M1	+1.69 16		B(M1)(W.u.)=0.0073 +23-17; B(E2)(W.u.)=48 +9-8 E _γ : weighted average of 644.847 20 from ⁹⁸ Nb β ⁻ decay (51.1 min) and 644.81 2 from (n,n'γ). Others: 645.1 3 from ⁹⁸ Nb β ⁻ decay (2.86 s), 644.70 15 from (α,2nγ), 644.89 11 from (n,γ) E=th, and 644.9 3 from Coulomb excitation. δ: weighted average of +1.67 25 from γγ(θ) in (α,2nγ) and +1.70 16 from γ(θ) in (n,n'γ). Others: +0.58 5 from γγ(θ) in (n,γ)
		697.42 10	5.2 3	734.75	0+	(E2)			E=thermal; +0.27 2 from matrix elements in Coul. ex. B(E2)(W.u.)=2.3 +5-4 E _{\gamma} : weighted average of 697.38 10 from 98 Nb β^- decay (51.1 min), 697.10 46 from (α ,2n γ), 697.6 2 from (n, γ) E=th, and 697.6 5 from Coulomb excitation. I _{\gamma} : weighted average of 5.0 3 from 98 Nb β^- decay (51.1 min), 5.8 7 from (α ,2n γ), 5.9 17 from (n, γ) E=th, and 5.8 16 from Coulomb
		1432.22 3	84.2 13	0.0	0+	E2			excitation. B(E2)(W.u.)=1.02 +15-12 E _{γ} : weighted average of 1432.4 3 from 98 Nb β^- decay (2.86 s), 1432.175 20 from 98 Nb β^- decay (51.1 min), 1432.29 20 from (α ,2n γ), 1432.31 11 from (n, γ) E=th, 1432.30 3 from (n,n' γ), and

13

Coul. ex.

γ(⁹⁸Mo) (continued)

Adopted Levels, Gammas (continued)

						γ ⁽⁹⁸ Mo) (co	ntinued)	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	$\alpha^{@}$	Comments
1510.047	4+	77.83	0.00052 8	1432.210 2 ⁺	[E2]		2.98	1432.2 <i>3</i> from Coulomb excitation. I _{\gamma} : unweighted average of 88.7 <i>8</i> from 98 Nb β^- decay (51.1 min), 81.5 <i>16</i> from $(\alpha, 2n\gamma)$, 84 7 from (n, γ) E=th, 84.9 <i>10</i> from $(n, n'\gamma)$, and 82 7 from Coulomb excitation. Mult.: Q from $\gamma(\theta)$ in $(n, n'\gamma)$; M2 ruled out by RUL. B(E2)(W.u.)=15.2 +33-30 $\alpha(K)$ =2.31 4; $\alpha(L)$ =0.550 8; $\alpha(M)$ =0.1002 <i>14</i> $\alpha(N)$ =0.01390 <i>20</i> ; $\alpha(O)$ =0.000318 5 E _{\gamma} : from level-energy difference.
		722.643 20	100	787.384 2 ⁴	E2			I _y : from Coul. ex. B(E2)(W.u.)=42.3 +9-8 E _y : weighted average of 722.626 20 from ⁹⁸ Nb β^- decay (51.1 min) and 722.66 2 from (n,n'y). Others: 722.48 15 from (α ,2ny), 722.70 10 from (n, γ) E=th, 722.4 5 from (α), and 722.8 3 from Coulomb excitation.
1758.49	2+	248.45	0.16 3	1510.047 4 ⁺	[E2]		0.0462	Mult.: also supported by $\gamma\gamma(\theta)$ in (n,γ) E=thermal and $\gamma(\theta)$ in $(n,n'\gamma)$. Deduced $\delta(O/Q)=-0.05$ 11 $(n,n'\gamma)$; -0.04 3 (n,γ) . B(E2)(W.u.)=14 4 $\alpha(K)=0.0398$ 6; $\alpha(L)=0.00532$ 8; $\alpha(M)=0.000954$ 14 $\alpha(N)=0.0001406$ 20; $\alpha(O)=6.35\times10^{-6}$ 9
		326.29 12	6.4 4	1432.210 2+	(M1(+E2))	-0.17 22	0.0111 8	E _γ : from level-energy difference. I _γ : from Coul. ex. B(M1)(W.u.)=0.0157 +27-34; B(E2)(W.u.)<22 α (K)=0.0098 7; α (L)=0.00113 10; α (M)=0.000201 18 α (N)=3.06×10 ⁻⁵ 25; α (O)=1.72×10 ⁻⁶ 10 E _γ : weighted average of 326.7 6 from ⁹⁸ Nb β ⁻ decay (2.86 s), 326.43 13 from ⁹⁸ Nb β ⁻ decay (51.1 min), 326.05 25 from
		971.11 <i>4</i>	64 3	787.384 2 ⁴	M1+E2	-0.97 14		(α,2nγ), and 326.21 12 from (n,γ) E=th. I _γ : weighted average of 5.1 9 from ⁹⁸ Nb β^- decay (2.86 s), 4.6 9 from ⁹⁸ Nb β^- decay (51.1 min), 7.0 3 from (α,2nγ), 6.3 6 from (n,γ) E=th, and 5.7 5 from Coulomb excitation. B(M1)(W.u.)=0.0032 +8-7; B(E2)(W.u.)=3.0 7 E _γ : weighted average of 971.7 3 from ⁹⁸ Nb β^- decay (2.86 s), 970.86 10 from ⁹⁸ Nb β^- decay (51.1 min), 971.03 16 from (α,2nγ), 971.01 11 from (n,γ) E=th, 971.14 3 from (n,n'γ), and 971.3 5 from Coulomb excitation. I _γ : unweighted average of 53 6 from ⁹⁸ Nb β^- decay (2.86 s), 61 3 from ⁹⁸ Nb β^- decay (51.1 min), 65.9 10 from (α,2nγ), 60 6 from (n,γ) E=th, 72.9 10 from (n,n'γ), and 70 15 from Coulomb excitation. δ: others: -1.6 +7-15 from γ(θ) in (n,n'γ), -2.15 15 from γγ(θ) in (n,γ) E=thermal; +0.42 7 from matrix elements in

γ (98Mo) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
1758.49	2+	1023.73 3	100.0 13	734.75	0+	E2	B(E2)(W.u.)=7.5 +6-5
		1758.64 <i>12</i>	6.4 8	0.0	0+	[E2]	E _γ : weighted average of 1024.3 <i>3</i> from ⁹⁸ Nb $β$ ⁻ decay (2.86 s), 1023.7 <i>I</i> from ⁹⁸ Nb $β$ ⁻ decay (51.1 min), 1023.61 <i>I6</i> from ($α$,2n $γ$), 1023.60 <i>II</i> from (n, $γ$) E=th, 1023.74 <i>3</i> from (n,n' $γ$), and 1023.7 <i>5</i> from Coulomb excitation. I _γ : from (n,n' $γ$). Mult.: also supported by $γ(θ)$ in (n,n' $γ$). B(E2)(W.u.)=0.032 +7-6
							E _γ : weighted average of 1758.4 <i>6</i> from ⁹⁸ Nb β^- decay (2.86 s), 1758.46 <i>12</i> from ⁹⁸ Nb β^- decay (51.1 min), 1758.64 <i>14</i> from (α ,2n γ), 1758.9 <i>5</i> from (n, γ) E=th, 1759.1 2 from (n,n' γ), and 1758.8 <i>5</i> from Coulomb excitation. I _γ : weighted average of 10.6 <i>21</i> from ⁹⁸ Nb β^- decay (2.86 s), 5.5 <i>9</i> from ⁹⁸ Nb β^- decay (51.1 min), 5.4 <i>21</i> from (n, γ) E=th, and 6.7 <i>8</i> from (n,n' γ).
1880.86	≤4	449.1 3	9 4	1432.210	2+		E_{γ},I_{γ} : from (n,γ) E=thermal only.
1000.00		1093.2 2	100 12	787.384			E_{γ},I_{γ} : from (n,γ) E=thermal only.
1963.05	0^{+}	531.0 4	39 3	1432.210			E_{γ} : weighted average of 530.61 30 from $(\alpha, 2n\gamma)$ and 531.3 3 from $(n, n'\gamma)$.
							I_{γ} : weighted average of 39 3 from $(\alpha, 2n\gamma)$ and 42 6 from $(n, n'\gamma)$.
		1175.65 8	100 5	787.384	2+	E2	E_{γ} : weighted average of 1175.57 20 from $(\alpha,2n\gamma)$ and 1175.66 8 from $(n,n'\gamma)$. I_{γ} : from $(n,n'\gamma)$.
2017.53	3-	258.99 <i>4</i>	25.8 7	1758.49	2+	(E1)	B(E1)(W.u.)= $4.9 \times 10^{-5} + 9 - 7$
							E _γ : weighted average of 259.00 <i>10</i> from ⁹⁸ Nb $β^-$ decay (51.1 min), 258.96 <i>26</i> from (α ,2n γ), 259.01 <i>10</i> from (n, γ) E=th, 258.98 <i>4</i> from (n,n' γ), and 258.9 <i>5</i> from Coulomb excitation. I _γ : weighted average of 26.3 7 from ⁹⁸ Nb $β^-$ decay (51.1 min), 22.0 <i>19</i> from (α ,2n γ), 28 <i>3</i> from (n, γ) E=th, 25.5 8 from (n,n' γ), and 27.0 <i>20</i> from Coulomb excitation. Mult.: δ (Q/D)=+0.01 <i>6</i> from (α ,2n γ).
		507.8 2	4.1 5	1510.047	4+	[E1]	$B(E1)(W.u.)=1.02\times10^{-6} +3I-24$
							E_{γ} : from $(\alpha, 2n\gamma)$ and (n, γ) E=thermal. Other: 507.8 3 from ⁹⁸ Nb β^- decay (51.1 min). I_{γ} : from (n, γ) E=thermal. Other: 3.9 20 from ⁹⁸ Nb β^- decay (51.1 min).
		585.40 ^b	< 0.3	1432.210	2+	[E1]	B(E1)(W.u.) $< 5.7 \times 10^{-8}$
		505.70	VO.5	1 152,210	_	[12]	$E_{\gamma}I_{\gamma}$: from ⁹⁸ Nb β^- decay (51.1 min) only.
		1230.16 4	100 3	787.384	2+	(E1)	$B(E1)(W.u.)=1.76\times10^{-6} +28-22$
							E _γ : weighted average of 1230.15 5 from 98 Nb β^- decay (51.1 min), 1230.04 <i>15</i> from (α ,2n γ), 1230.23 <i>12</i> from (n, γ) E=th, 1230.17 <i>4</i> from (n,n' γ), 1230.3 5 from (30 Si,X γ), and 1230.1 <i>3</i> from Coulomb excitation. Mult.: δ (Q/D)= -0.04 7 ($\gamma\gamma(\theta)$ in (α ,2n γ); 0.00 2 ($\gamma\gamma(\theta)$ in (n, γ)); -0.04 1 ($\gamma(\theta)$ in (n,n' γ)).
		1282.78 <mark>b</mark>	<1.3	734.75	0^{+}	[E3]	B(E3)(W.u.)<58
		2017.46 10	18.7 12	0.0	0+	[E3]	$E_{\gamma}I_{\gamma}$: from ⁹⁸ Nb β^- decay (51.1 min) only. B(E3)(W.u.)=30 +7-5
		2017.40 10	10.7 12	0.0	Ü		E_{γ} : weighted average of 2017.48 <i>10</i> from ⁹⁸ Nb β^- decay (51.1 min), 2018.01 <i>53</i> from $(\alpha, 2n\gamma)$, 2017.4 <i>2</i> from (n, γ) E=th, 2017.3 <i>3</i> from $(n, n'\gamma)$, 2017.3 <i>5</i> from $(^{30}Si, X\gamma)$, and 2017.4 <i>5</i> from Coulomb excitation.

15

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	Comments
2037.52	0+	1250.13 6	100	787.384 2+	(E2)		I _γ : weighted average of 21.1 $I3$ from ⁹⁸ Nb β^- decay (51.1 min), 16.2 $I7$ from $(\alpha,2n\gamma)$, 19.2 $2I$ from (n,γ) E=th, 17.0 $I0$ from $(n,n'\gamma)$, and 23.0 20 from Coulomb excitation. Other: 58 $I4$ from (30 Si,X γ). E _γ : weighted average of 1250.00 $I9$ from $(\alpha,2n\gamma)$ and 1250.14 δ from $(n,n'\gamma)$.
2104.72	3+	594.65 12	9 4	1510.047 4+			Other: 1250.2 6 from 98 Nb β^- decay (2.86 s). E_{γ} : weighted average of 594.66 13 from 98 Nb β^- decay (51.1 min), 594.65 12 from $(\alpha, 2n\gamma)$, and 594.6 3 from (n, γ) E=th. I_{γ} : weighted average of 8.2 24 from 98 Nb β^- decay (51.1 min) and 21 8 from (n, γ) E=th.
		672.52 4	82 3	1432.210 2+	M1+E2	+5.8 [#] 9	E _{γ} : weighted average of 672.59 10 from 98 Nb β^- decay (51.1 min), 672.50 17 from $(\alpha,2n\gamma)$, 672.63 11 from (n,γ) E=th, and 672.50 4 from $(n,n'\gamma)$. I _{γ} : weighted average of 78 6 from 98 Nb β^- decay (51.1 min), 79 3 from $(\alpha,2n\gamma)$, 83 8 from (n,γ) E=th, and 89 4 from $(n,n'\gamma)$. Mult., δ : from $\gamma(\theta)$ in $(n,n'\gamma)$; E1+M2 ruled out by RUL due to large quadrupole mixing. Other: δ =+6.7 +34–17 from $\gamma\gamma(\theta)$ $(\alpha,2n\gamma)$ agrees well.
		1317.38 10	100 4	787.384 2+	M1+E2	+3.1# 6	E _γ : weighted average of 1317.33 <i>10</i> from 98 Nb β^- decay (51.1 min), 1317.37 <i>17</i> from $(\alpha,2n\gamma)$, 1317.40 <i>12</i> from (n,γ) E=th, and 1317.43 <i>11</i> from $(n,n'\gamma)$. Mult., δ : from $\gamma(\theta)$ in $(n,n'\gamma)$; E1+M2 ruled out by RUL due to large quadrupole mixing. Other: δ =+2.9 + δ -5 from $\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$ agrees well.
2206.61	2+	448.2 2 696.5 ^b 774.3 ^b	14 <i>6</i> <1.4 <6	1758.49 2 ⁺ 1510.047 4 ⁺ 1432.210 2 ⁺			mixing. Gulor. v 12.5 to 5 from //(v) in (u,2n/) agrees well.
		1419.36 7	100 14	787.384 2 ⁺	M1+E2	-0.33 11	B(M1)(W.u.)>0.019; B(E2)(W.u.)>0.49 E _γ : weighted average of 1419.7 3 from ⁹⁸ Nb β^- decay (2.86 s), 1419.07 10 from ⁹⁸ Nb β^- decay (51.1 min), 1419.48 22 from (α ,2nγ), 1419.39 13 from (n,γ) E=th, and 1419.41 5 from (n,n'γ).
2223.862	4+	2206.5 ^b 206.3 5 465.5 2	<3 0.6 4 0.6 2	0.0 0 ⁺ 2017.53 3 ⁻ 1758.49 2 ⁺			
		713.824 20	100.0 21	1510.047 4+	M1+E2	+1.13 17	E_{γ} : weighted average of 713.817 20 from ⁹⁸ Nb β^- decay (51.1 min) and 713.87 5 from (n,n' γ). Others: 713.80 16 from (α ,2n γ) and 713.88 15 from (n, γ) E=th. E_{γ} : other: 100 5 from (n,n' γ).
		791.646 20	85.4 5	1432.210 2+	(E2)		E' _{γ} : others: 791.58 <i>17</i> from $(\alpha,2n\gamma)$, 791.5 2 from (n,γ) E=th, and 792.0 2 from $(n,n'\gamma)$. I _{γ} : weighted average of 85.5 5 from ⁹⁸ Nb β^- decay (51.1 min), 83 4 from $(\alpha,2n\gamma)$, 78 9 from (n,γ) E=th. Other: 150 20 from $(n,n'\gamma)$.
		1436.45 6	27.4 6	787.384 2+	(E2)		Mult.: $\delta(\text{M3/E2})$ =+0.07 8 from $(\alpha,2\text{n}\gamma)$. E_{γ} : weighted average of 1436.42 5 from 98 Nb β^- decay (51.1 min), 1436.68 25 from $(\alpha,2\text{n}\gamma)$, 1436.6 3 from (n,γ) E=th, and 1437.0 3 from $(\text{n},\text{n}'\gamma)$. I_{γ} : weighted average of 27.6 4 from 98 Nb β^- decay (51.1 min), 23.4 19 from $(\alpha,2\text{n}\gamma)$, 29 6 from (n,γ) E=th, and 23 4 from $(\text{n},\text{n}'\gamma)$. Mult.: $\delta(\text{M3/E2})$ =-0.03 7 from $(\alpha,2\text{n}\gamma)$.

$\gamma(^{98}\text{Mo})$ (continued)

						/()/()	<u>··········</u>
$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	Comments
2333.18	2+	900.92 15	100	1432.210 2+	(M1(+E2))	-0.15 +19-29	B(M1)(W.u.)>0.054 E _{γ} : weighted average of 900.85 21 from (α ,2n γ), 900.9 2 from (n, γ) E=th and 900.96 15 from (n,n' γ). Placement from (α ,2n γ); it is placed from the 2333.4, 4 ⁺ level in (n, γ) E=th and (n,n' γ) and replaced from the 2333.2, 2 ⁺ level by evaluators Mult., δ : $\gamma\gamma(\theta)$ in (α ,2n γ).
2333.46	4+	109.53 10	0.95 24	2223.862 4+			I_{γ} : from β^- (51.1 min). Other: 11 4 in $(\alpha, 2n\gamma)$ is too large by a factor of almost 10.
		575.02 10	6.3 7	1758.49 2+			E _γ : weighted average of 575.06 10 from 98 Nb β^- decay (51.1 min), 575.06 10 from $(\alpha, 2n\gamma)$, 575.0 2 from (n, γ) E=th, and 574.4 3 from $(n, n'\gamma)$.
							I _γ : weighted average of 6.2 7 from 98 Nb β^- decay (51.1 min) and 7.1 21 from (n,γ) E=th. Value of 26 5 in (n,n'γ) is discrepant, not used in averaging.
		823.38 5	57 8	1510.047 4+	M1+E2	-0.388 7	E _γ : weighted average of 823.39 5 from 98 Nb β^{-} decay (51.1 min), 823.33 16 from (α ,2 α), 823.44 12 from (α , α) E=th, and 823.35 7 from (α , α).
							I _γ : unweighted average of 64.1 <i>14</i> from ⁹⁸ Nb β^- decay (51.1 min), 77 5 from (α ,2n γ), 45 4 from (n, γ) E=th, and 43.1 23 from (n,n' γ). δ : others: δ (Q/D)=-2.7 +11-21 or -0.24 20 from γ (θ) in (n,n' γ).
		1546.04 5	100.0 19	787.384 2+	(E2)		E _γ : weighted average of 1546.03 5 from ⁹⁸ Nb β^- decay (51.1 min), 1546.30 22 from (α ,2nγ), 1545.95 12 from (n, γ) E=th, and 1546.06 8 from (n, γ ' γ).
2343.62	6+	833.562 20	100	1510.047 4 ⁺	E2		δ (M3/E2)=-0.04 4 from (α,2nγ). B(E2)(W.u.)=10.1 4
							E _γ : weighted average of 833.556 20 from 98 Nb β^- decay (51.1 min), 833.61 13 from (n,γ) E=th, and 833.70 11 from (n,n'γ). Others: 833.52 15 from (α ,2nγ) and 833.6 5 from (30 Si,Xγ). Mult.: δ (M3/E2)=-0.01 7 from (α ,2nγ).
2418.46	2+	985.9 <i>3</i>	100	1432.210 2+	((M1+E2))	+0.01 7	E _{γ} : weighted average of 986.34 27 from $(\alpha,2n\gamma)$, 985.5 4 from (n,γ) E=th, and 985.8 2 from $(n,n'\gamma)$.
		1631.11 <i>11</i>	97 6	787.384 2 ⁺			E _{γ} : weighted average of 1631.26 50 from $(\alpha,2n\gamma)$, 1631.4 2 from (n,γ) E=th, and 1631.03 10 from $(n,n'\gamma)$. I _{γ} : from $(\alpha,2n\gamma)$.
2419.63	4+	195.66 <i>10</i>	5.1 7	2223.862 4+			iy. Hom (a,2117).
		314.9 2	2.9 7	2104.72 3+			E _γ : weighted average of 315.0 2 from 98 Nb β^- decay (51.1 min), 314.9 2 from (α ,2n γ), and 314.6 3 from (n, γ) E=th. I _γ : weighted average of 2.9 7 from 98 Nb β^- decay (51.1 min) and 2.8 19 from (n, γ) E=th.
		402.05 10	11.1 <i>14</i>	2017.53 3			E _γ : weighted average of 401.99 <i>10</i> from ⁹⁸ Nb β^- decay (51.1 min), 402.33 <i>39</i> from (α ,2n γ), and 402.2 <i>2</i> from (n, γ) E=th. I _γ : weighted average of 13.1 <i>15</i> from ⁹⁸ Nb β^- decay (51.1 min), 10.0 <i>14</i> from (α ,2n γ), and 8 <i>3</i> from (n, γ) E=th.

17

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	α [@]	Comments
2419.63	4+	661.12 19	19.2 21	1758.49 2+	(E2)			E _γ : weighted average of 661.15 19 from 98 Nb $β^-$ decay (51.1 min), 661.16 40 from (α ,2nγ), 661.5 5 from (n, γ) E=th, and 660.7 4 from (n, $n'\gamma$). I _γ : weighted average of 28 4 from 98 Nb $β^-$ decay (51.1 min), 17.8 13
		909.62 5	100.0 22	1510.047 4+	M1+E2	-0.64 10		from $(\alpha,2n\gamma)$, 19 9 from (n,γ) E=th, and 32 7 from $(n,n'\gamma)$. $\delta(M3/E2)=+0.09$ 10 from $(\alpha,2n\gamma)$. E _{γ} : weighted average of 909.67 5 from ⁹⁸ Nb β^- decay (51.1 min), 909.52 17 from $(\alpha,2n\gamma)$, 909.59 13 from (n,γ) E=th, and 909.54 8
								from $(n,n'\gamma)$.
		987.48 <i>10</i>	32 3	1432.210 2+				E_{γ} : weighted average of 987.47 10 from ⁹⁸ Nb β^- decay (51.1 min), 987.48 10 from (α,2nγ), 987.6 5 from (n,γ) E=th, and 987.6 8 from (n,n'γ).
								I _γ : weighted average of 32.8 22 from ⁹⁸ Nb β ⁻ decay (51.1 min), 20 9 from (n,γ) E=th, and 16 <i>13</i> from (n,n'γ).
		1631.8 <i>3</i>	54 5	787.384 2+				E _{γ} : unweighted average of 1632.17 <i>10</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 1632.46 <i>33</i> from $(\alpha, 2n\gamma)$, 1631.4 2 from (n, γ) E=th, and 1631.03 <i>10</i> from $(n, n'\gamma)$.
								I_{γ} : unweighted average of 59.9 22 from ⁹⁸ Nb β^- decay (51.1 min),
2485.15	3+	151.9 2	8 4	2333.46 4+				40.5 16 from $(\alpha, 2n\gamma)$, 57 9 from (n, γ) E=th, and 60 8 from $(n, n'\gamma)$. E _{γ} : weighted average of 151.8 2 from ⁹⁸ Nb β^- decay (51.1 min) and 151.9 2 from $(\alpha, 2n\gamma)$.
		380.3 2	20.8 25	2104.72 3+				E_{γ} : weighted average of 380.4 2 from ⁹⁸ Nb β^- decay (51.1 min) and 380.05 43 from $(\alpha, 2n\gamma)$.
								I_{γ} : weighted average of 15 4 from 98 Nb β^- decay (51.1 min) and 21.8 I_{γ} from $(\alpha, 2n\gamma)$.
		467.0 9	3 3	2017.53 3				08
		726.83 ^b 10	<4.6	1758.49 2+				I _γ : 38 12 from ⁹⁸ Nb β^- decay (51.1 min) but this γ is not confirmed in $(\alpha, 2n\gamma)$, only an upper limit is given.
		975.08 <i>14</i>	36.0 17	1510.047 4+	M1+E2	-0.9 +6-16		E_{γ} : weighted average of 975.02 14 from ⁹⁸ Nb β ⁻ decay (51.1 min), 975.25 32 from (α ,2n γ), and 975.2 3 from (n,n' γ).
								I_{γ} : weighted average of 38 4 from ⁹⁸ Nb β^- decay (51.1 min), 35.9 17 from (α ,2n γ), and 30 8 from (n,n' γ).
		1052.96 10	54 3	1432.210 2+	M1+E2	-0.97 +27-36		E_{γ} : weighted average of 1052.95 10 from ⁹⁸ Nb β^- decay (51.1 min), 1053.04 26 from (α,2n γ), and 1052.96 13 from (n,n' γ).
								I_{γ} : weighted average of 46 8 from ⁹⁸ Nb β^- decay (51.1 min), 55 3 from (α ,2n γ). Other: 104 7 from (n,n' γ) is discrepant.
		1697.6 2	100	787.384 2+	M1+E2	-0.52 13		I_{γ} : from $(n,n'\gamma)$.
2506.38	5 ⁺	86.64 10	19 <i>I</i>	2419.63 4+				E _γ : weighted average of 86.65 10 from ⁹⁸ Nb β^- decay (51.1 min) and 86.51 32 from (α ,2n γ). I _γ : other: 8 5 from (α ,2n γ).
		162.53 <i>15</i>	0.9 5	2343.62 6+				1y. outer. 0.5 from (a,2117).

γ (98Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	$\alpha^{@}$	Comments
2506.38	5+	172.95 5	71 4	2333.46	4+	(M1(+E2))	+0.05 11	0.057 3	$\alpha(K)$ =0.0495 22; $\alpha(L)$ =0.0058 4; $\alpha(M)$ =0.00104 7 $\alpha(N)$ =0.000158 9; $\alpha(O)$ =8.8×10 ⁻⁶ 4 E_{γ} : others: 172.89 16 from $(\alpha,2n\gamma)$, 171.9 7 from $(n,n'\gamma)$. I_{γ} : weighted average of 65 4 from ${}^{98}Nb$ β^- decay (51.1 min), 74 3 from $(\alpha,2n\gamma)$. Other: 25 14 from $(n,n'\gamma)$ is discrepant.
		282.52 10	1.9 <i>3</i>	2223.862	4+				
		299.6 ^b 2	1.4 5	2206.61	2+	[M3]		0.244	$\alpha(K)$ =0.207 3; $\alpha(L)$ =0.0309 5; $\alpha(M)$ =0.00566 8 $\alpha(N)$ =0.000847 12; $\alpha(O)$ =4.20×10 ⁻⁵ 6 Implied mult=M3 makes this low-energy transition questionable.
		401.61 ^b		2104.72	3 ⁺				
		996.32 5	100.0 18	1510.047		M1+E2	-0.96 10		E_{γ} : weighted average of 996.30 5 from ⁹⁸ Nb β^{-} decay (51.1 min), 996.33 16 from (α,2nγ), and 996.44 13 from (n,n'γ).
2525.8	2+	1093.6 <i>3</i>	100	1432.210	2+	(M1(+E2))	+0.01 17		B(M1)(W.u.)>0.044 E_{γ} : weighted average of 1093.32 26 from $(\alpha,2n\gamma)$ and 1093.9 3 from $(n,n'\gamma)$.
2562.23	(2-)	544.8 2	7.8 12	2017.53	3-				E _{γ} : weighted average of 544.52 39 from $(\alpha,2n\gamma)$, 545.0 2 from (n,γ) E=th, and 544.2 4 from $(n,n'\gamma)$.
		803.6 5	8 7		2+				I _{γ} : weighted average of 7.4 9 from $(\alpha, 2n\gamma)$, 13 4 from (n, γ) E=th, and 17 7 from $(n, n'\gamma)$. E _{γ} I _{γ} : from (n, γ) E=th.
		1774.8 <i>3</i>	100 5	787.384	2+	D(+Q)	+0.05 7		E _y : unweighted average of 1775.37 23 from $(\alpha,2n\gamma)$, 1774.7 2 from (n,γ) E=th, and 1774.31 11 from $(n,n'\gamma)$. I _y : from $(n,n'\gamma)$.
2570.9?	(6,7,8)	227.3 ^b 5	100	2343.62	6+				E_{γ} : from $(\alpha,2n\gamma)$ only.
2572.84	3	239.2 2	16 4	2333.46	4+				E_{γ},I_{γ} : from (n,γ) E=th.
		555.3 2	52 7	2017.53	3-				E _y : weighted average of 555.3 2 from 98 Nb β^{-} decay (51.1 min), 555.07 35 from (α ,2ny), 555.4 2 from (n, γ) E=th, and 555.4 3 from (n, $n'\gamma$).
									I _γ : weighted average of 38 25 from ⁹⁸ Nb β ⁻ decay (51.1 min), 47 7 from (α ,2n γ), 59 7 from (n, γ) E=th. Other: 161 30 from (n,n' γ) is discrepant.
		814.3 2	50 <i>3</i>	1758.49	2+	D(+Q)	+0.10 10		E _{γ} : weighted average of 814.8 3 from ⁹⁸ Nb β ⁻ decay (51.1 min), 814.46 26 from (α ,2n γ), 814.2 2 from (n, γ) E=th, and 814.1 2 from (n,n' γ).
									I_{γ} : weighted average of 50 25 from ⁹⁸ Nb β^- decay (51.1 min), 50 3 from (α ,2n γ), 62 15 from (n, γ) E=th. Other: 94 8 from (n,n' γ) is discrepant.
		1140.8 4	29 4	1432.210	2+				E _{γ} : weighted average of 1140.83 47 from $(\alpha,2n\gamma)$ and 1140.8 4 from (n,γ) E=th. I _{γ} : weighted average of 29 4 from $(\alpha,2n\gamma)$ and 32 15 from (n,γ)
									E=th.
		1785.54 <i>16</i>	100 13	787.384	2+	D(+Q)	+0.01 6		E_{γ} : weighted average of 1785.66 <i>14</i> from ⁹⁸ Nb β^- decay (51.1

19

γ (98Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	Comments
							min), 1785.90 24 from $(\alpha,2n\gamma)$, 1785.4 3 from (n,γ) E=th, and 1785.1 2 from $(n,n'\gamma)$.
2574.86	4+	350.79 12	100	2223.862 4+	(M1(+E2))	-0.13 24	E_{γ} : weighted average of 350.78 12 from ⁹⁸ Nb β^- decay (51.1 min) and 350.81 18 from (α ,2n γ).
							I _γ : from $(\alpha,2n\gamma)$. Other: I(350.8γ)/I(1063.7γ)=15 6/100 6 from ⁹⁸ Nb β^- decay (51.1 min), is discrepant.
		557.5 1	20 6	2017.53 3			E_{γ} : weighted average of 557.5 <i>I</i> from ⁹⁸ Nb β^- decay (51.1 min) and 557.08 <i>39</i> from (α ,2n γ).
							I _γ : from $(\alpha,2n\gamma)$. Other: I(557.5γ)/I(1063.7γ)=39 6/100 6 from ⁹⁸ Nb β ⁻ decay (51.1 min).
		1063.6 6	91 4	1510.047 4+	M1+E2	-2.7 +8-15	E_{γ} : unweighted average of 1063.0 2 from ⁹⁸ Nb β^- decay (51.1 min) and 1064.27 18 from (α ,2n γ).
2612.4	0+	1005.0.5	100	707.204.2+	(E2)		I_{γ} : from $(\alpha, 2n\gamma)$.
2612.4 2620.01	0 ⁺ 3 ⁺	1825.0 <i>5</i> 1187.5 <i>3</i>	100 50 9	787.384 2 ⁺ 1432.210 2 ⁺	(E2)	10.10.5	E_{γ} : from $(\alpha, 2n\gamma)$. Other: 1821.0 6 in β^- (2.86 s). E_{γ} : weighted average of 1187.1 5 from ⁹⁸ Nb β^- decay (51.1 min),
2020.01	3	1167.3 3	30 9	1432.210 2	M1+E2	-1.0 +10-5	E_{γ} : weighted average of 1187.1.3 from (No β) decay (31.1 film), 1187.50 43 from (α ,2n γ), 1187.6.3 from (n, γ) E=th, and 1187.6.3 from (n, $n'\gamma$).
							I _γ : weighted average of 80 50 from 98 Nb β^- decay (51.1 min), 49 18 from (n,γ) E=th, and 49 9 from (n,n'γ). Others: 9.7 7 from (α ,2nγ) is discrepant.
		1832.7 2	100 8	787.384 2+	M1+E2	-0.54 13	E _γ : weighted average of 1833.0 <i>3</i> from ⁹⁸ Nb $β$ ⁻ decay (51.1 min), 1832.93 <i>33</i> from ($α$,2n $γ$), 1833.0 <i>3</i> from (n, $γ$) E=th, and 1832.4 2 from (n,n' $γ$).
		1886.3 ^b 7	40 18	734.75 0+	[M3]		E_{γ},I_{γ} : from (n,γ) E=th. Implied M3 for this transition makes it questionable.
2620.78	5-	603.28 12	63.3 12	2017.53 3	(E2)		E _γ : weighted average of 603.28 <i>10</i> from ⁹⁸ Nb $β$ ⁻ decay (51.1 min), 603.25 <i>17</i> from (α ,2n γ), 603.33 <i>12</i> from (n, γ) E=th, 603.1 4 from (n,n' γ), and 603.1 5 from (³⁰ Si,X γ).
							I _γ : weighted average of 66 4 from ⁹⁸ Nb β^- decay (51.1 min), 63.3 12 from (α ,2nγ), 63 5 from (n,γ) E=th, 49 10 from (n,n'γ), and 55 11 from (30 Si,Xγ).
							Mult.: $\delta(M3/E2) = -0.08$ 11 from $(\alpha, 2n\gamma)$.
		1110.77 <i>7</i>	100.0 23	1510.047 4+	(E1)		E _γ : weighted average of 1110.76 <i>10</i> from 98 Nb β^- decay (51.1 min), 1110.75 <i>16</i> from (α ,2n γ), 1110.81 <i>14</i> from (n, γ) E=th, 1110.78 7 from (n,n' γ), and 1110.3 5 from (30 Si,X γ). Mult.: δ (M2/E1)= -0.05 <i>10</i> from (α ,2n γ); D also from γ (θ) in (n,n' γ).
2644.7?	$(1,2^+)$	1212.7 <mark>b</mark> 5	100 36	1432.210 2+			E _{γ} ,I _{γ} : from (n,n' γ) only.
2077.71	(1,2)	1909.6^{b} 6	<54	734.75 0 ⁺			
2678.88	6+	172.44 10	4.1 5	2506.38 5 ⁺			$E_{\gamma}I_{\gamma}$: from $(n,n'\gamma)$ only. E_{γ} : weighted average of 172.44 10 from ⁹⁸ Nb β^- decay (51.1 min) and 172.47 26 from $(\alpha,2n\gamma)$.
		335.255 <i>23</i>	53.0 8	2343.62 6+	(M1(+E2))	-0.01 <i>I</i>	I _γ : weighted average of 4.6 5 from ⁹⁸ Nb β^- decay (51.1 min) and 3.6 5 from (α ,2nγ). α (K)=0.00897 <i>13</i> ; α (L)=0.001029 <i>15</i> ; α (M)=0.000184 <i>3</i>
					//		$\alpha(N) = 2.80 \times 10^{-5} \ 4; \ \alpha(O) = 1.580 \times 10^{-6} \ 23$

20

γ (98Mo) (continued)

 $\mathbf{E}_i(\mathrm{level}) \quad \mathbf{J}_i^{\pi} \quad \mathbf{E}_{\gamma}^{\dagger} \quad \mathbf{I}_{\gamma}^{\dagger} \quad \mathbf{E}_f \quad \mathbf{J}_f^{\pi} \quad \mathrm{Mult.}^{\ddagger} \quad \delta^{\ddagger}$ Comments

E_γ: weighted average of 335.258 20 from 98 Nb $β^-$ decay (51.1 min), 335.15 16 from (α ,2n γ), and 334.5 5 from (30 Si,X γ). I_γ: weighted average of 53.4 11 from 98 Nb $β^-$ decay (51.1 min) and 52.8 8 from (α ,2n γ). Other: 180 70 from (30 Si,X γ).

345.53 *10* 0.5 *1* 2333.46 4⁺

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult. [‡]	δ^{\ddagger}	α@	Comments
2678.88	6+	455.04 10	4.6 2	$\frac{7}{2223.862}$ $\frac{7}{4^{+}}$				
		1168.826 20	100.0 21	1510.047 4+	(E2)			E _γ : weighted average of 1168.827 20 from ⁹⁸ Nb β^- decay (51.1 min), 1168.81 16 from (α ,2n γ), and 1168.5 5 from (30 Si,X γ). δ (M3/E2)=+0.01 4 from (α ,2n γ). I _γ : other: 100 21 from (30 Si,X γ).
2700.68	2+	493.4 6	8 6	2206.61 2+				E _{γ} , I _{γ} : from (n, γ) E=th.
		1190.8 ^{&b} 2	<467 <mark>&</mark>	1510.047 4 ⁺				E_{γ}, I_{γ} : from ⁹⁸ Nb β^- decay (51.1 min) only.
		1913.5 2	100 20	787.384 2+	(M1(+E2))	-0.14 14		B(M1)(W.u.)>0.002 E _γ : weighted average of 1913.4 4 from ⁹⁸ Nb β^- decay (51.1 min), 1913.60 33 from (α ,2nγ), 1913.1 3 from (n,γ) E=th, and
								1913.6 2 from $(n,n'\gamma)$. I_{γ} : from $(n,n'\gamma)$ E=th.
2733.4	2+	1946.0 <i>3</i>	100	787.384 2 ⁺	(M1(+E2))	-0.09 15		E_{γ} : from $(\alpha, 2n\gamma)$ only.
2738.2	(6,7)	394.3 5	100	2343.62 6+				E _{γ} : weighted average of 394.4 5 from (α ,2n γ) and 394.2 5 from (30 Si,X γ).
2767.68	4+	146.6 ^b 3	4.0 15	2620.78 5				
		347.94 <i>10</i>	6.9 <i>6</i>	2419.63 4+				00
		434.27 6	35 2	2333.46 4+				I_{γ} : weighted average of 34.9 9 from ⁹⁸ Nb β^- decay (51.1 min) and 25 5 from (n,γ) E=th.
ı		543.83 10	17 <i>I</i>	2223.862 4+				
		561.21	≈2 5 2 15	2206.61 2+				
		662.89 <i>15</i>	5.2 15	2104.72 3 ⁺ 2017.53 3 ⁻				
		750.1 2 1009.3 <i>I</i>	0.9 <i>3</i> 1.4 <i>12</i>	2017.53 3 ⁻ 1758.49 2 ⁺				
		1257.59 5	29 1	1510.047 4 ⁺				
		1335.45 5	38.3 6	1432.210 2+				
		1980.4 3	100 1	787.384 2+	(E2)			E _γ : unweighted average of 1980.17 5 from ⁹⁸ Nb β^- decay (51.1 min), 1981.20 32 from (α ,2nγ), 1979.9 3 from (n,γ) E=th, and 1980.3 3 from (n,n'γ). Only the 1980γ reported in (α ,2nγ), δ (M3/E2)=+0.01 11.
2795.61	4-	778.01 20	38 <i>3</i>	2017.53 3	M1+E2	-0.37 15		E _{γ} , I _{γ} : from $(\alpha, 2n\gamma)$.
2773.01	•	1285.53 14	100	1510.047 4+	(E1)	0.57 15		E _{γ} : weighted average of 1285.63 <i>16</i> from (α ,2n γ), 1285.42 <i>14</i>
								from (n,γ) E=th, and 1285.6 2 from $(n,n'\gamma)$. Mult.: $\delta(M2/E1)=-0.02$ 3 from $(\alpha,2n\gamma)$.
2813.3	2+	192.36 ^{ab} 14	a	2620.01 3 ⁺				
		306.89 ^{ab} 10	a	2506.38 5+	[M3]		0.222	$\alpha(K)$ =0.188 3; $\alpha(L)$ =0.0280 4; $\alpha(M)$ =0.00512 8 $\alpha(N)$ =0.000767 11; $\alpha(O)$ =3.82×10 ⁻⁵ 6 Implied mult=M3 makes this transition questionable or very weak.
		469.90 ^b 14		2343.62 6+	[E4]			This γ , seen in β^- decay (51.1 min), is questionable in view of unlikely mult=E4 involved.
		2025.5 4		787.384 2 ⁺	M1+E2	-4 +2-57		E_{γ} : γ from $(\alpha, 2n\gamma)$ only.

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	$\alpha^{\textcircled{@}}$	Comments
2836.83	6+	157.87 10	100.0 25	2678.88	6+				E _γ : weighted average of 157.88 10 from ⁹⁸ Nb β^- decay (51.1 min), 157.87 16 from (α ,2n γ), and 157.6 4 from (n,n' γ).
		330.34 10	28 3	2506.38	5+	M1+E2	-0.24 6	0.01097 25	$\alpha(K)$ =0.00963 22; $\alpha(L)$ =0.00111 3; $\alpha(M)$ =0.000199 6 $\alpha(N)$ =3.03×10 ⁻⁵ 8; $\alpha(O)$ =1.69×10 ⁻⁶ 4 $\alpha(O)$ =1.69×10 ⁻⁶ 4 $\alpha(O)$ =1.69×10 ⁻⁶ 4 $\alpha(O)$ =1.69×10 ⁻⁶ 4 $\alpha(O)$ =1.1 min) and 330.18 23 from $\alpha(O)$ =1.1 min) and 330.18 23 from $\alpha(O)$ =1.1 weighted average of 29.3 25 from $\alpha(O)$ =1.1 weighted average of 29.3 25 from $\alpha(O)$ =1.1 min) and 330.18 23 from $\alpha(O)$ min) and $\alpha(O)$ =1.2 min)
		493.16 10	26 6	2343.62		M1+E2	-0.29 15		(51.1 min) and 23 6 from $(\alpha,2n\gamma)$. E_{γ} : weighted average of 493.18 10 from 98 Nb β^- decay (51.1 min) and 493.09 20 from $(\alpha,2n\gamma)$. I_{γ} : weighted average of 29 7 from 98 Nb β^- decay (51.1 min) and 23 6 from $(\alpha,2n\gamma)$.
		1326.7	7 5	1510.047	4+				
2854.15	(8+)	282.2 ^b 5 510.47 <i>16</i>	4 2 100 <i>14</i>	2570.9? 2343.62	(6,7,8) 6 ⁺				$E_{\gamma}I_{\gamma}$: from $(\alpha,2n\gamma)$ only. E_{γ} : weighted average of 510.45 <i>16</i> from $(\alpha,2n\gamma)$ and 510.7 <i>5</i> from $(^{30}Si,X\gamma)$.
2856.2	4+	177.4 <mark>b</mark> 2	100	2678.88	6+				
2871.1	2,3	2083.7 4	100	787.384		D+Q			$\delta(Q/D) = +0.06 \ 10 \text{ for J} = 3, -3.7 +15-58 \text{ for J} = 2 \text{ from } \gamma \gamma(\theta) \text{ in } (\alpha, 2n\gamma).$
2896.79	5 ⁺	791.8 <i>3</i>	100	2104.72	3 ⁺				
		1386.84 <i>19</i>	96 <i>4</i>	1510.047	4+	M1+E2	+3.2 +8-5		
2905.2	4+	2117.8 7	100	787.384	2+	[E2]			B(E2)(W.u.)>3.0
2915.8	2+	2128.4 4	100	787.384	2+	M1+E2	-0.71 +37-57		E _{γ} : from $(\alpha,2n\gamma)$. B(M1)(W.u.)>0.0063; B(E2)(W.u.)>0.36 E _{γ} : weighted average of 2129.03 45 from $(\alpha,2n\gamma)$ and
2962.45	3-	944.7 2	19 5	2017.53	3-				2128.1 3 from $(n,n'\gamma)$. E_{γ} : weighted average of 944.39 44 from $(\alpha,2n\gamma)$ and 944.7 2 from (n,γ) E=th. I_{γ} : from $(\alpha,2n\gamma)$. Other: 118 30 from (n,γ) E=th.
		1452.4 3	100	1510.047	4+				E_{γ} : weighted average of 1452.69 42 from $(\alpha,2n\gamma)$ and 1452.3 3 from (n,γ) E=th. I_{γ} : from $(\alpha,2n\gamma)$. Other: 100 30 from (n,γ) E=th.
		2176.4 5	83 14	787.384	2+				E_{γ} . From $(\alpha,2\pi\gamma)$. Other. 100 30 from (π,γ) L=til. E_{γ} , I_{γ} : from $(\alpha,2\pi\gamma)$ only.
2976.89	4+	557.1 4	44 28	2419.63					$E_{\gamma}I_{\gamma}$: from $(\alpha,2n\gamma)$ only. $E_{\gamma}I_{\gamma}$: from (n,γ) E=th. γ also from $(\alpha,2n\gamma)$.
		753.0	1.1 6	2223.862					1, 1
		1466.84 10	100 3	1510.047		(M1(+E2))	+0.05 17		B(M1)(W.u.)>0.0056
									E_{γ} : weighted average of 1466.79 10 from ⁹⁸ Nb β ⁻ decay (51.1 min), 1466.96 24 from (α,2nγ), and 1467.1 3 from (n,γ) E=th.
		2189.4 5	1.1 6	787.384	2+	[E2]			B(E2)(W.u.)>0.0018
3010.91?		2223.5 ^b 2	100	787.384	2+	-			

$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
3020.42	5-	399.60 <i>10</i>	100 6	2620.78	5-	(M1(+E2))	+0.06 15	E_{γ} : weighted average of 399.65 10 from ⁹⁸ Nb β^- decay (51.1 min) and 399.43 18 from (α ,2n γ).
		676.84 10	33.6 24	2343.62	6+	(E1)		E_{γ} : weighted average of 676.87 10 from ⁹⁸ Nb β^- decay (51.1 min) and
								676.66 26 from $(\alpha,2n\gamma)$. I_{γ} : weighted average of 34 6 from ⁹⁸ Nb β^- decay (51.1 min) and 33.5 24 from $(\alpha,2n\gamma)$. $\delta(M2/E1)=-0.01$ 10 from $(\alpha,2n\gamma)$.
		1002.9 2	24.4 10	2017.53	3-	(E2)		E_{γ} : weighted average of 1002.9 2 from ⁹⁸ Nb β^- decay (51.1 min) and 1002.85 <i>31</i> from (α ,2n γ).
								I _γ : weighted average of 31 <i>13</i> from ⁹⁸ Nb β^- decay (51.1 min) and 24.4 <i>10</i> from (α ,2nγ). δ (M3/E2)=+0.03 5.
		1510.4	<94	1510.047				
3021.75	4+	254.05 14	0.4 2		4+			
		688.23 10	6.2 4		4 ⁺			
		797.88 10	12.4 6	2223.862				
		815.5 <i>3</i> 917.05 <i>13</i>	0.8 <i>4</i> 1.4 <i>4</i>		2 ⁺ 3 ⁺			
		1004.31 10	1.4 4		3-			
		1263.36 11	2.5 4		2 ⁺			
		1511.68 2	100 <i>I</i>	1510.047	_			E_{γ} : weighted average of 1511.68 2 from ⁹⁸ Nb β^- decay (51.1 min), 1511.65 34 from (α,2nγ), and 1512.0 3 from (n,γ) E=th.
		1589.62 <i>10</i>	2.9 2	1432.210	2+			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		2234.31 10	3.7 2	787.384	2+			
3026.2	5+	1516.19 25	100	1510.047		M1+E2	+0.27 6	
3045.89	4+	1287.2 3	100 30		2+			E_{γ}, I_{γ} : from (n, γ) E=th.
2050.02		2258.7 4	44 21	787.384				E_{γ}, I_{γ} : from (n, γ) E=th.
3050.92	4+	544.5 <i>4</i>	4.8 14		5 ⁺			
		631.4 2 717.5 <i>3</i>	2.4 10		4 ⁺ 2 ⁺	IEO1		D/E2\/W ₁₁ \> 61
		1540.93 8	14 <i>3</i> 100 <i>2</i>	2333.18 2 1510.047 4	2 ⁺ 4 ⁺	[E2] (M1(+E2))	-0.20 27	B(E2)(W.u.)>61 B(M1)(W.u.)>0.024
		1340.93 6	100 2	1310.047	+	(WII(+L2))	-0.20 27	E_{γ} : weighted average of 1540.92 5 from 98 Nb β^{-} decay (51.1 min), 1540.47 52 from $(\alpha, 2n\gamma)$, and 1541.6 3 from (n, γ) E=th.
		1618.75 <i>11</i>	11.4 14	1432.210	2+	[E2]		B(E2)(W.u.)>0.92
		2263.0 2	1.9 3	787.384		[E2]		B(E2)(W.u.)>0.027
3067.70	(3-)	446.93 10	100 7	2620.78	5-			E _γ : weighted average of 446.91 <i>10</i> from ⁹⁸ Nb β^- decay (51.1 min), 446.78 <i>17</i> from (α ,2nγ), 446.99 <i>13</i> from (n, γ) E=th, and 447.2 <i>3</i> from (n,n' γ).
		843.82 10	37 5	2223.862	4 ⁺			
3095.80	2+	1585.6 ^b 2	100	1510.047	4 ⁺			
3096.26	(7^{-})	241.7 ^b 5	11 5	2854.15	(8 ⁺)			E_{γ},I_{γ} : from $(\alpha,2n\gamma)$ only.
3.02.0.20	()	475.6 4	100 12		5-	(E2)		E _γ : unweighted average of 476.35 <i>10</i> from ⁹⁸ Nb β^- decay (51.1 min), 475.23 <i>17</i> from (α ,2nγ), and 475.3 <i>5</i> from (³⁰ Si,Xγ). Mult.: δ (M3/E2)=+0.01 <i>3</i> from (α ,2nγ).

E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	Comments
3096.26	(7-)	752.77 23	80.9 16	2343.62	6 ⁺	(E1)	E_{γ} : unweighted average of 753.19 <i>14</i> from ⁹⁸ Nb β^- decay (51.1 min), 752.41 <i>16</i> from
							$(\alpha,2n\gamma)$, and 752.7 5 from (30 Si,X γ).
							I_{γ} : weighted average of 73 9 from ⁹⁸ Nb β^- decay (51.1 min), and 81.2 16 from
							$(\alpha,2n\gamma)$. Other: 42 5 from $(^{30}Si,X\gamma)$ is discrepant.
							Mult.: $\delta(M2/E1) = -0.01 \ 4 \text{ from } (\alpha, 2n\gamma).$
3103.13	$(2^+,3,4)$	335.4 2	100	2767.68	4+		E_{γ} : from (n,γ) E=th only.
3108.80	$(2^+,3,4)$	1091.4 2	100		3-		E_{γ} : weighted average of 1091.52 20 from $(\alpha, 2n\gamma)$ and 1091.2 2 from (n, γ) E=th.
		1598.4 <i>3</i>	24 4	1510.047	4 ⁺		E_{γ} : weighted average of 1599.50 33 from $(\alpha,2n\gamma)$ and 1598.8 7 from (n,γ) E=th. I_{γ} : from $(\alpha,2n\gamma)$.
3155.56	(4^{+})	455.1 <i>3</i>	35 18	2700.68	2+		E_{γ},I_{γ} : from (n,γ) E=th only.
	` /	811.5 5	100 60	2343.62	6+		E_{γ},I_{γ} : from (n,γ) E=th only.
		1050.8 4	70 60	2104.72	3 ⁺		E_{γ},I_{γ} : from (n,γ) E=th only.
3165.89	4+	189.0 ^a 3	70 ^a 11	2976.89	4+		
		746.28 12	22 6	2419.63	4+		
		1061.25 ^a 13	30 ^a 3	2104.72	3 ⁺		
		1407.5 <i>1</i>	38 8	1758.49	2+		
		1655.87 <i>10</i>	100 6	1510.047	4+		
		2378.29 10	29 2	787.384	2+		
3195.56	$(2^-,3,4)$	399.88 <i>15</i>	87 13	2795.61	4-		E_{γ},I_{γ} : from (n,γ) E=th only.
		1178.1 5	100 40	2017.53	3-		E_{γ},I_{γ} : from (n,γ) E=th only.
3208.99	$(4^+,5^-)$	530.42 14	100 <i>31</i>	2678.88	6+		
		985.2 <i>4</i>	62 15	2223.862	4+		
		1190.8 2	<108 ^{&}	2017.53	3-		E_{γ} : poor fit, level-energy difference=1191.5.
3210.80	(4^{+})	866.6 ^b 5	31 30	2343.62	6^+		E_{γ},I_{γ} : from (n,γ) E=th only.
		1193.2 <i>3</i>	100 29	2017.53	3-		E_{γ} : weighted average of 1193.09 30 from $(\alpha, 2n\gamma)$, 1193.3 3 from (n, γ) E=th, and
							1193.1 4 from $(n,n'\gamma)$.
							I_{γ} : from (n,γ) E=th.
3211.57	(4^{+})	443.6 <i>3</i>	0.5 2	2767.68	4+		
		590.90 <i>10</i>	4.0 3	2620.78	5		
		705.5 2	0.4 2	2506.38	5+		
		791.98 <i>15</i>	2.7 5	2419.63	4+		
		878.07 10	8.1 3	2333.46	4+		
		1106.8 4	0.4 2	2104.72	3+		
		1194.02 10	5.6 3	2017.53	3-		08
		1701.505 20	100 <i>I</i>	1510.047	4+		E_{γ} : weighted average of 1701.503 20 from ⁹⁸ Nb β ⁻ decay (51.1 min), 1701.8 3 from (n,γ) E=th, and 1701.8 6 from (n,n'γ).
		2424.1 ^b 3	1.6 5	787.384	2+		
3229.17	(4+)	415.5 4	13 6	2813.3	2+	[E2]	B(E2)(W.u.)>420 B(E2)(W.u.)>RUL=300 for E2 makes this low-energy transition questionable.
		885.58 10	100 13	2343.62	6+	[E2]	B(E2)(W.u.)>130
		1718.8 <i>6</i>	38 6	1510.047		رككا	E_{γ} : from $(\alpha, 2n\gamma)$.
		1,10.00	30 0	1510.07/			I_{γ} : from ⁹⁸ Nb β^- decay (51.1 min).
							1_{γ} : Irom ~Nb β decay (51.1 min).

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α@	Comments
3241.2	$(4^+ \text{ to } 7)$	562.3	100	2678.88	6+				
3257.86	1	3257.8 1	100	0.0	0_{+}	D			E_{γ} : from (γ, γ') .
3271.49	(8^{+})	416.8 5	13.2 19	2854.15	(8^{+})				E_{γ}, I_{γ} : from (30 Si, X_{γ}) only.
		927.94 <i>17</i>	100 7	2343.62	6+	Q			E_{γ} : weighted average of 927.95 17 from $(\alpha, 2n\gamma)$ and
									927.9 5 from (30 Si,X γ).
3323.58	(7-)	227.37 18	100	3096.26	(7-)	(M1(+E2))	-0.08 10	0.0276 10	$\alpha(K)=0.0242 \ 9; \ \alpha(L)=0.00282 \ 13; \ \alpha(M)=0.000505 \ 22$ $\alpha(N)=7.7\times10^{-5} \ 4; \ \alpha(O)=4.28\times10^{-6} \ 13$
		979.87 23	100 7	2343.62	6+				
3326.41	4+	819.95 <i>10</i>	23.7 17	2506.38	5 ⁺				
		906.86 10	50.8 17	2419.63	4+				E_{γ} : other: 906.1 3 from (n,n' γ).
		992.88 5	100 <i>3</i>	2333.46	4+				E_{γ} : other: 903.6 9 from (n,n' γ).
		1102.66 <i>10</i>	43.2 17	2223.862					
		1221.75 <i>10</i>	21.2 17	2104.72	3+				
		1308.9 2	6.8 17	2017.53	3-				
		1568.17 <i>15</i>	8.5 17	1758.49	2+				
		1816.37 <i>10</i>	39.8 17	1510.047					
		2538.91 10	5.6 5	787.384					
3366.1?		1142.2 ^b 3	100	2223.862					
3394.50	(4^{+})	715.6 3	10 7	2678.88	6+				
		773.7 2	2.9 7	2620.78	5-				
		1061.25 ^a 13	3.6 ^a 3	2333.46	4+				
		1289.98 <i>15</i>	3.6 7	2104.72	3 ⁺				
		1377.6 ^b 7	1.0 7	2017.53	3-				
		1636.0 2	3.9 <i>3</i>	1758.49	2+				
		1884.40 5	100 <i>I</i>	1510.047	4+				E_{γ} : other: 1883.7 4 from $(n,n'\gamma)$.
		2607.03 10	3.6 2	787.384					
3400.92	4 ⁺	189.0 ^a 3	1.9 ^a 15	3211.57	(4^{+})				
		1057.62 ^b 10	100 8	2343.62	6+				
3403.95	$(5^-,6^+)$	192.36 ^a 14	9.1 ^a 3	3211.57	(4^{+})				
		306.89 ^{ab} 10	100 <mark>a</mark> 6	3096.26	(7^{-})				
3405.06	1	3405.0 <i>1</i>	100	0.0	0+	D			E_{γ} : from (γ, γ') .
3418.74	4+	1908.7 3	100 33	1510.047	4+				E_{γ} : weighted average of 1908.6 2 from ⁹⁸ Nb β ⁻ decay (51.1 min) and 1909.7 6 from (n,n' γ).
		2631.3 <i>3</i>	20 7	787.384	2+				
3455.17	(4^{+})	1035.5 <i>3</i>	2.7 14	2419.63	4+				
		1121.6 3	7 3	2333.46	4+				
		1945.03 8	100.0 14	1510.047	4+				E_{γ} : weighted average of 1945.01 5 from ⁹⁸ Nb β^- decay (51.1 min), 1945.1 4 from (n, γ) E=th, and 1945.7 3 from (n,n' γ).
		2023.05 10	10.8 7	1432.210	2+				E _{γ} : other: 2024.2 2 from $(n,n'\gamma)$. I _{γ} : other: 67 9 from $(n,n'\gamma)$ is discrepant.
		2667.75 10	4.7 4	787.384	2+				·

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	Comments
3457.07	1	3457.0 <i>1</i>	100	0.0 0+	D	
3465.95	(4^{+})	959.8 <i>5</i>	84 26	2506.38 5 ⁺		
	,	1122.32 10	100 26	2343.62 6 ⁺		
		1955.82 ^b 10	116 <i>11</i>	1510.047 4+		
3501.7	(4^{+})	2714.3 3	100	787.384 2 ⁺		
3516.75	(4^{+})	350.92 10	100 5	3165.89 4+		
3310.73	(1)	679.68 10	27 5	2836.83 6+		
		1097.2 2	5 3	2419.63 4+		
		1183.6 2	7 3	2333.18 2+		
		1310.1 2	32 5	2206.61 2+		
		1499.3 5	10 5	2017.53 3		
		1758.7	12 3	1758.49 2 ⁺		
		2006.6 3	29 5	1510.047 4+		
		2730.9 <i>3</i>	10 3	787.384 2 ⁺		E_{γ} : poor fit, level-energy difference=2729.3.
3527.4	$(8,9^{-})$	431.5 5	60 10	3096.26 (7 ⁻)		$E_{\gamma}I_{\gamma}$: from ($^{30}Si,X\gamma$) only.
	(~,- /	788.9 <i>5</i>	100 4	2738.2 (6,7)		E_{γ},I_{γ} : from ($^{30}Si,X\gamma$) only.
3541.28?		862.40 ^b 14	100 4	2678.88 6 ⁺		29,29. 11011 (Dista) only.
	(4^{+})					
3547.51	(41)	1204.15 16	32 <i>7</i> 36 <i>7</i>			E_{γ} : poor fit, level-energy difference=1214.04.
		1213.30 <i>15</i> 1323.99 <i>10</i>	100 7	2333.46 4 ⁺ 2223.862 4 ⁺		E_{γ} : poor fit, level-energy difference=1214.04. E_{γ} : poor fit, level-energy difference=1323.64. Other: 1323.9 4 from (n,γ) E=th.
		1442.6 <i>3</i>	21 7	2104.72 3+		E_{γ} : poor iii, level-energy difference=1323.04. Other: 1323.9 4 from (n, γ) E=iii.
		2037.39 10	29 3	1510.047 4 ⁺		
		2760.02 10	30 2	787.384 2 ⁺		
3551.35	1	2816.9 <i>2</i>	14.0 <i>16</i>	734.75 0 ⁺	D	
3331.33	1	3551.2 <i>I</i>	100.0 16	$0.0 0^{+}$	D	
2554.079					D	
3554.87?	(4+)	2767.45 ^b 11	100	787.384 2 ⁺		
3557.0	(4^+)	1213.4 4	100	2343.62 6+		
3565.65	(4^{+})	514.78 13	48 14	3050.92 4 ⁺		
		1341.74 10	100 5	2223.862 4+		
		1461.0 2 2055.5 <i>4</i>	14 <i>5</i> 19 <i>5</i>	2104.72 3 ⁺ 1510.047 4 ⁺		
3598.29	(4^{+})		25 13		`	
3398.29	(4)	194.1 <i>5</i> 1254.69 <i>16</i>	100 25	3403.95 (5 ⁻ ,6 ⁺ 2343.62 6 ⁺)	
3601.1	$(4^+,5,6)$	922.3 4	88 38	2678.88 6 ⁺		
3001.1	(4 ,5,0)	1257.2	100 25	2343.62 6+		
2617 120						
3617.12?	(2= 4)	1273.5 ^b 2	100	2343.62 6+		
3620.10	$(3^-,4)$	1515.5 2	100 25	2104.72 3+		
2622.57	4+	1602.0 4	25 13	2017.53 3-		
3623.57	4+	572.6 5	21 12	3050.92 4+		
		944.6 5	15 6	2678.88 6 ⁺		
		1048.70 10	76 9	2574.86 4 ⁺		
		1117.1 2	24 9	$2506.38 5^+$		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
3623.57	4+	1291.4 4	24 12	2333.46	4+		E_{ν} : poor fit, level-energy difference=1290.11.
		1399.83 <i>17</i>	24 3	2223.862	4+		
		1417.0 <i>4</i>	32 9	2206.61	2+		
		1518.79 <i>10</i>	56 6	2104.72	3 ⁺		
		2113.41 10	100 12	1510.047			
		2191.1 5	14 2	1432.210			
		2836.21 11	15 2	787.384			
3656.7	(9-)	385.1 5	69 14	3271.49	(8 ⁺)		E_{γ} : from $(\alpha, 2n\gamma)$ and $(^{30}Si, X\gamma)$.
		560.5 <i>5</i>	100 12	3096.26	(7-)		I_{γ} : from (30 Si,X γ). E_{γ} : weighted average of 560.7 5 from (α ,2n γ) and 560.2 5 from (30 Si,X γ).
							I_{γ} : from (30 Si, $X\gamma$).
		802.6 5	30 5	2854.15	(8^{+})		$E_{\gamma}I_{\gamma}$: from (³⁰ Si,X γ).
3703.98	1	3703.9 2	100	0.0	0_{+}	D	
3711.9	5-	2201.8 7	100	1510.047	4+		
3723.7	4+	512 <i>I</i>	100 33	3211.57	(4^{+})		
		887.0 <i>5</i>	5 3	2836.83	6+		
		1389.8 <i>4</i>	6.7 17	2333.46	4+		
		2936.8 5	1.0 3	787.384			
3737.79	4+	900.97 10	79 14	2836.83	6+		E_{γ} : other: 900.96 15 from $(n,n'\gamma)$. I_{γ} : other: <327 from $(n,n'\gamma)$.
		1394.15 <i>12</i>	100 14	2343.62	6+		E _γ : weighted average of 1394.07 <i>10</i> from ⁹⁸ Nb β^- decay (51.1 min), 1394.2 2 from (n,γ) E=th, and 1394.7 3 from (n,n'γ).
3768.7	(9-)	672.4 5	100	3096.26	(7^{-})		I_{γ} : other: 100 24 from $(n,n'\gamma)$.
3777.88	(9) 4 ⁺	2267.8 1	100	1510.047			
	-					D	
3806.08	1	3806.0 2	100	0.0	0+	D	I . f
3809.20	$(4,5,6^+)$	408.4 ^a 2	<23 ^a	3400.92	4+		I_{γ} : from relative I_{γ} of 408.4 γ from 3809.6 level and that only a small fraction of the intensity of the 408.4 γ doublet may belong here.
		2299.10 <i>10</i>	100 8	1510.047			
3809.59	$(4,5^{-})$	408.4 ^a 2	11 <mark>a</mark> 6	3400.92	4+		
		1189.3 <i>3</i>	40 12	2620.78	5-		
		1792.05 <i>10</i>	100 8	2017.53	3-		
3836.98	1	3836.9 <i>1</i>	100	0.0	0_{+}	D	
3842.77	$(4,5,6^+)$	2332.7 ^b 2	100	1510.047	4+		
3857.68	1	3857.6 1	100	0.0	0+	D	
3937.08	1	3937.0 <i>I</i>	100	0.0	0+	D	
3944.09	(1)	3944.0 <i>I</i>	100	0.0	0+	(D)	
3947.5	(4^{+})	1268.6 3	100	2678.88	6 ⁺	(1)	
3964.33	$(4^+,5,6)$	1285.4 <i>3</i>	25 10	2678.88	6 ⁺		
J90 1 ,JJ	(+,5,0)	1620.70 11	100 20	2343.62	6 ⁺		
3981.81	3-	1877.3 <i>4</i>	30 20	2104.72	3 ⁺		
3701.01	3	2471.72 <i>10</i>	100 10	1510.047			
3998.62	5-		30 20	2620.78	5-		
3770.02	J	1377.5 5	30 20	2020.78	J		

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.‡	Comments
3998.62	5-	2488.55 10	100 10	1510.047	4+		
4020.6	(2)	4020.5 5	100	0.0	0^{+}	(Q)	
4041.6	(1)	4041.5 9	100	0.0	0^{+}	(D)	
4060.62?	$(4,5,6^+)$	2550.54 ^b 12	100	1510.047		` /	
4076.43	$(4,5,6^+)$	2566.35 10	100	1510.047			
4079.8	1	4079.7 4	100	0.0	0+	D	
4102.3	(2)	4102.2 5	100	0.0	0+	(Q)	
4103.35?	(4 ⁺)	2671.1 ^b 2	100	1432.210			
4149.2	(10^{+})	877.9 5	100 13	3271.49	(8 ⁺)		E_{γ} : weighted average of 878.1 5 from $(\alpha, 2n\gamma)$ and 877.6 5 from $(^{30}Si, X\gamma)$.
4149.2	(10)						I_{γ} : from (30 Si, $X\gamma$).
		1294.9 5	23 3	2854.15	(8^{+})		E_{γ},I_{γ} : from (30 Si, X_{γ}).
4170.8	1	4170.7 8	100	0.0	0^{+}	D	
4179.90	(1)	4179.8 2	100	0.0	0^{+}	(D)	
4190.2	(10,11)	662.7 5	100	3527.4	$(8,9^{-})$	_	
4231.1	1	4231.0 4	100	0.0	0+	D	
4252.6	(1)	4252.5 12	100	0.0	0+	(D)	
4258.8	1	4258.7 5	100	0.0	0+	D	
4267.90	1	4267.8 2	100	0.0	0+	D	
4295.40	(1)	4295.3 <i>I</i>	100	0.0	0+	(D)	
4361.80	(1)	4361.7 <i>I</i>	100	0.0	0^{+}	(D)	
4391.21 4410.21	(1) 1	4391.1 <i>I</i> 4410.1 <i>I</i>	100 100	0.0 0.0	0+	(D) D	
4423.9	(11 ⁻)	767.2 5	100	3656.7	(9 ⁻)	D	
	(11)	290.8^{b} 5					
4440.1?	(11-)		100	4149.2	(10^+)		E_{γ} : from $(\alpha, 2n\gamma)$ only.
4537.7	(11 ⁻)	769.0 <i>5</i>	100	3768.7	(9 ⁻)	D	E_{γ} : weighted average of 769.1 5 from (α ,2n γ) and 768.9 5 from (30 Si, X_{γ}).
4543.31	1	4543.2 2 4581.5 7	100	0.0	0+	D (D)	
4581.6 4590.62	(1) 1	4581.5 / 4590.5 <i>1</i>	100 100	0.0	0+	(D) D	
4599.3	1	4599.2 <i>5</i>	100	0.0	0+	D D	
4609.5?	1	169.4^{b} 5			V	ט	E + from (a 2m) only
4609.3 <i>?</i> 4616.2	1	4616.1 5	100 100	4440.1? 0.0	0+	D	E_{γ} : from $(\alpha, 2n\gamma)$ only.
4654.3	(1)	4654.2 <i>4</i>	100	0.0	0+	(D)	
4812.73	1	4812.6 2	100	0.0	0+	D D	
4837.53	1	4837.4 <i>I</i>	100	0.0	0+	D	
4902.83	1	4902.7 1	100	0.0	0+	D	
4993.6	(12,13)	803.4 5	100	4190.2	(10,11)	-	
5008.6	1	5008.5 3	100	0.0	0+	D	
5028.64	1	5028.5 2	100	0.0	0+	D	
5047.0	(12^{+})	897.8 <i>5</i>	100	4149.2	(10^+)		
5050.34	ì	5050.2 1	100	0.0	0+	D	
5081.74	1	5081.6 2	100	0.0	0_{+}	D	
5121.4	1	5121.3 <i>3</i>	100	0.0	0^{+}		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡
5134.1	(1)	5134.0 <i>11</i>	100	$0.0 \ 0^{+}$	(D)	5716.1	1	5715.9 <i>4</i>	100	$0.0 \ 0^{+}$	D
5147.6	1	5147.5 <i>3</i>	100	$0.0 0^{+}$	D	5725.6	1	5725.4 5	100	$0.0 \ 0^{+}$	D
5165.15	1	5165.0 2	100	$0.0 0^{+}$	D	5732.9	1	5732.7 6	100	$0.0 \ 0^{+}$	D
5174.6	(2)	5174.5 12	100	$0.0 0^{+}$	(Q)	5741.48	1	5741.3 <i>1</i>	100	$0.0 \ 0^{+}$	D
5195.5	1	5195.4 <i>4</i>	100	$0.0 0^{+}$	D	5754.1	1	5753.9 9	100	$0.0 \ 0^{+}$	D
5215.0	(2)	5214.9 5	100	$0.0 \ 0^{+}$	(Q)	5764.7	1	5764.5 <i>3</i>	100	$0.0 \ 0^{+}$	D
5225.5	(1)	5225.4 7	100	$0.0 0^{+}$	(D)	5775.98	1	5775.8 2	100	$0.0 \ 0^{+}$	D
5236.1	1	5235.9 9	100	$0.0 \ 0^{+}$	D	5791.8	1	5791.6 <i>5</i>	100	$0.0 \ 0^{+}$	D
5244.55	(1)	5244.4 2	100	$0.0 0^{+}$	(D)	5801.4	1	5801.2 <i>3</i>	100	$0.0 \ 0^{+}$	D
5267.7	(2)	5267.5 6	100	$0.0 \ 0^{+}$	(Q)	5811.38	1	5811.2 2	100	$0.0 \ 0^{+}$	D
5312.6	1	5312.4 <i>3</i>	100	$0.0 0^{+}$	D	5828.59	1	5828.4 2	100	$0.0 \ 0^{+}$	D
5314.4	(13^{-})	776.7 5	100	4537.7 (11 ⁻)		5856.9	1	5856.7 <i>3</i>	100	$0.0 \ 0^{+}$	D
5315.3	(13^{-})	891.4 5	100	4423.9 (11-)		5889.4	1	5889.2 <i>6</i>	100	$0.0 \ 0^{+}$	D
5324.0	(1)	5323.8 5	100	$0.0 0^{+}$	(D)	5906.6	1	5906.4 <i>7</i>	100	$0.0 \ 0^{+}$	D
5346.66	1	5346.5 2	100	$0.0 \ 0^{+}$	D	5916.99	1	5916.8 2	100	$0.0 \ 0^{+}$	D
5354.66	1	5354.5 2	100	$0.0 0^{+}$	D	5925.0	(14^{+})	878.0 <i>5</i>		5047.0 (12+)	
5362.7	(1)	5362.5 8	100	$0.0 \ 0^{+}$	(D)	5959.79	1	5959.6 2	100	$0.0 \ 0^{+}$	D
5386.26	1	5386.1 2	100	$0.0 0^{+}$	D	5972.80	1	5972.6 2	100	$0.0 \ 0^{+}$	D
5397.46	1	5397.3 <i>1</i>	100	$0.0 0^{+}$	D	5984.10	1	5983.9 2	100	$0.0 \ 0^{+}$	D
5412.6	1	5412.4 <i>4</i>	100	$0.0 0^{+}$	D	5993.0	(1)	5992.8 8	100	$0.0 \ 0^{+}$	(D)
5432.9	1	5432.7 6	100	$0.0 0^{+}$	D	5999.7	(1)	5999.5 8	100	$0.0 \ 0^{+}$	(D)
5442.2	1	5442.0 6	100	$0.0 \ 0^{+}$	D	6022.10	1	6021.9 2	100	$0.0 \ 0^{+}$	D
5450.5	1	5450.3 <i>4</i>	100	$0.0 0^{+}$	D	6031.90	1	6031.7 <i>1</i>	100	$0.0 \ 0^{+}$	D
5458.2	1	5458.0 <i>5</i>	100	$0.0 \ 0^{+}$	D	6046.3	1	6046.1 <i>4</i>	100	$0.0 \ 0^{+}$	D
5482.36	1	5482.2 <i>1</i>	100	$0.0 0^{+}$	D	6065.70	1	6065.5 <i>1</i>	100	$0.0 \ 0^{+}$	D
5492.4	(1)	5492.2 <i>3</i>	100	$0.0 0^{+}$	(D)	6076.7	(1)	6076.5 <i>7</i>	100	$0.0 \ 0^{+}$	(D)
5508.9	1	5508.7 <i>3</i>	100	$0.0 0^{+}$	D	6101.6	1	6101.4 <i>4</i>	100	$0.0 \ 0^{+}$	D
5519.1	1	5518.9 7	100	$0.0 0^{+}$	D	6110.20	(1)	6110.0 <i>I</i>	100	$0.0 \ 0^{+}$	(D)
5528.2	1	5528.0 <i>4</i>	100	$0.0 0^{+}$	D	6120.51	(1)	6120.3 2	100	$0.0 \ 0^{+}$	(D)
5544.1	(1)	5543.9 18	100	$0.0 0^{+}$	(D)	6133.0	(15^{-})	817.7 5	100	5315.3 (13 ⁻)	
5552.7	(1)	5552.5 8	100	$0.0 0^{+}$	(D)	6145.1	1	6144.9 <i>18</i>	100	$0.0 0^{+}$	D
5563.27	1	5563.1 2	100	$0.0 0^{+}$	D	6172	1	6172 <i>3</i>	100	$0.0 0^{+}$	D
5579.2	1	5579.0 <i>4</i>	100	$0.0 0^{+}$	D	6183.2	(1)	6183.0 8	100	$0.0 0^{+}$	(D)
5588.4	(1)	5588.2 <i>15</i>	100	$0.0 \ 0^{+}$	(D)	6220.1	(1)	6219.9 <i>11</i>	100	$0.0 \ 0^{+}$	(D)
5595.6	1	5595.4 10	100	$0.0 0^{+}$	D	6234.5	(1)	6234.3 10	100	$0.0 0^{+}$	(D)
5615.3	1	5615.1 <i>12</i>	100	$0.0 \ 0^{+}$	D	6247.1	(1)	6246.9 <i>3</i>	100	$0.0 \ 0^{+}$	(D)
5626.1	1	5625.9 <i>4</i>	100	$0.0 0^{+}$	D	6266.0	(1)	6265.8 7	100	$0.0 0^{+}$	(D)
5638.07	1	5637.9 <i>1</i>	100	$0.0 \ 0^{+}$	D	6315.9	1	6315.7 <i>3</i>	100	$0.0 \ 0^{+}$	D
5654.38	1	5654.2 2	100	$0.0 0^{+}$	D	6330.32	1	6330.1 2	100	$0.0 0^{+}$	D
5664.6	1	5664.4 <i>3</i>	100	$0.0 0^{+}$	D	6367.4	1	6367.2 4	100	$0.0 0^{+}$	D
5678.8	(2)	5678.6 <i>14</i>	100	$0.0 \ 0^{+}$	(Q)	6379.2	1	6379.0 8	100	$0.0 \ 0^{+}$	D
5686.88	1	5686.7 2	100	$0.0 0^{+}$	D	6388.3	1	6388.1 7	100	$0.0 0^{+}$	D
5708.2	1	5708.0 <i>6</i>	100	$0.0 0^{+}$	D	6397.9	1	6397.7 <i>5</i>	100	$0.0 0^{+}$	D

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡
6419.9	1	6419.7 11	100	$0.0 \ 0^{+}$	D	7128.0	1	7127.7 7	100	$0.0 \ 0^{+}$	D
6438.7	1	6438.5 10	100	$0.0 0^{+}$	D	7142.38	1	7142.1 2	100	$0.0 0^{+}$	D
6451.23	(1)	6451.0 2	100	$0.0 0^{+}$	(D)	7156.8	1	7156.5 3	100	$0.0 0^{+}$	D
6465.8	1	6465.6 <i>6</i>	100	$0.0 0^{+}$	D D	7169.6	1	7169.3 5	100	$0.0 0^{+}$	D
6473.4	1	6473.2 <i>3</i>	100	$0.0 0^{+}$	D	7182.1	1	7181.8 3	100	$0.0 0^{+}$	D
6491.8	1	6491.6 6	100	$0.0 \ 0^{+}$	D	7192.3	1	7192.0 8	100	$0.0 0^{+}$	D
6511.6	(1)	6511.4 11	100	$0.0 \ 0^{+}$	(D)	7204.6	1	7204.3 5	100	$0.0 0^{+}$	D
6522.3	(1)	6522.1 10	100	$0.0 \ 0^{+}$	(D)	7258.4	1	7258.1 7	100	$0.0 0^{+}$	D
6530.6	1	6530.4 6	100	$0.0 0^{+}$	D	7274.4	1	7274.1 <i>4</i>	100	$0.0 0^{+}$	D
6543.43	1	6543.2 2	100	$0.0 0^{+}$	D	7295.7	1	7295.4 7	100	$0.0 0^{+}$	D
6566.7	(1)	6566.5 10	100	$0.0 \ 0^{+}$	(D)	7309.0	(1)	7308.7 9	100	$0.0 0^{+}$	(D)
6577.3	1	6577.1 10	100	$0.0 0^{+}$	D D	7327.3	1	7327.0 5	100	$0.0 0^{+}$	D D
6586.2	1	6586.0 <i>3</i>	100	$0.0 0^{+}$	D	7336.49	1	7336.2 2	100	$0.0 0^{+}$	D
6596.4	1	6596.2 <i>3</i>	100	$0.0 0^{+}$	D	7353.0	(1)	7352.7 8	100	$0.0 0^{+}$	(D)
6614.9	1	6614.7 8	100	$0.0 \ 0^{+}$	D	7376.2	(1)	7375.9 11	100	$0.0 0^{+}$	(D)
6631.3	(1)	6631.1 12	100	$0.0 0^{+}$	(D)	7387.4	1	7387.1 8	100	$0.0 0^{+}$	D D
6636.7	(1)	6636.5 18	100	$0.0 0^{+}$	(D)	7396.1	1	7395.8 3	100	$0.0 0^{+}$	D
6648.1	(1)	6647.9 8	100	$0.0 0^{+}$	(D)	7428.3	1	7428.0 4	100	$0.0 0^{+}$	D
6680.2	(1)	6680 2	100	$0.0 0^{+}$	(D)	7447.0	1	7446.7 9	100	$0.0 0^{+}$	D
6698.7	1	6698.5 7	100	$0.0 0^{+}$	D D	7461.3	1	7461.0 7	100	$0.0 0^{+}$	D
6756.35	1	6756.1 2	100	$0.0 \ 0^{+}$	D	7473.7	1	7473.4 3	100	$0.0 0^{+}$	D
6765.7	1	6765.4 7	100	$0.0 0^{+}$	D	7498.0	(2)	7497.7 13	100	$0.0 0^{+}$	(Q)
6815.9	(1)	6815.6 <i>13</i>	100	$0.0 0^{+}$	(D)	7513.2	(2)	7512.9 5	100	$0.0 0^{+}$	(Q) (Q)
6824.2	1	6823.9 6	100	$0.0 0^{+}$	D D	7543.3	(1)	7543 2	100	$0.0 0^{+}$	(D)
6836.6	(1)	6836.3 <i>6</i>	100	$0.0 \ 0^{+}$	(D)	7551.7	(2)	7551.4 <i>17</i>	100	$0.0 0^{+}$	(Q)
6847.4	1	6847.1 <i>6</i>	100	$0.0 0^{+}$	D D	7562.3	1	7562.0 7	100	$0.0 0^{+}$	D
6853.7	2	6853.4 <i>4</i>	100	$0.0 0^{+}$	Q	7583.1	1	7582.8 <i>4</i>	100	$0.0 0^{+}$	D
6866.0	(2)	6865.7 <i>4</i>	100	$0.0 \ 0^{+}$	(Q)	7609.1	1	7608.8 6	100	$0.0 0^{+}$	D
6888.6	1	6888.3 5	100	$0.0 \ 0^{+}$	D	7692.0	1	7691.7 6	100	$0.0 0^{+}$	D
6900.3	(1)	6900.0 <i>3</i>	100	$0.0 0^{+}$	(D)	7711.3	1	7711.0 6	100	$0.0 0^{+}$	D
6950.8	1	6950.5 8	100	$0.0 \ 0^{+}$	D	7737.3	(1)	7737 2	100	$0.0 0^{+}$	(D)
6959.3	(2)	6959.0 <i>6</i>	100	$0.0 \ 0^{+}$	(Q)	7752.5	1	7752.2 8	100	$0.0 0^{+}$	D
6972.0	(1)	6971.7 8	100	$0.0 0^{+}$	(D)	7764.5	1	7764.2 <i>4</i>	100	$0.0 0^{+}$	D
6979.6	1	6979.3 8	100	$0.0 \ 0^{+}$	D	7781.1	1	7780.8 <i>4</i>	100	$0.0 \ 0^{+}$	D
6995.1	1	6994.8 <i>5</i>	100	$0.0 \ 0^{+}$	D	7803.4	1	7803.1 5	100	$0.0 0^{+}$	D
7008.77	1	7008.5 2	100	$0.0 \ 0^{+}$	D	7820.5	1	7820.2 9	100	$0.0 0^{+}$	D
7035.4	1	7035.1 3	100	$0.0 0^{+}$	D	7834.9	(1)	7834.6 <i>13</i>	100	$0.0 0^{+}$	(D)
7050.8	1	7050.5 6	100	$0.0 \ 0^{+}$	D	7847.1	1	7846.8 <i>6</i>	100	$0.0 \ 0^{+}$	D D
7061.8	1	7061.5 4	100	$0.0 0^{+}$	D	7877.3	1	7877.0 <i>6</i>	100	$0.0 0^{+}$	D
7073.5	1	7073.2 6	100	$0.0 0^{+}$	D	7889.9	1	7889.6 7	100	$0.0 0^{+}$	D
7087.3	1	7087.0 11	100	$0.0 0^{+}$	D	7900.8	(2)	7900.5 15	100	$0.0 0^{+}$	(Q)
7105.1	(1)	7104.8 <i>13</i>	100	$0.0 \ 0^{+}$	(D)	7927.3	1	7927 2	100	$0.0 0^{+}$	D
7117.2	1	7116.9 4	100	$0.0 0^{+}$	D D	7943.6	1	7943.3 8	100	$0.0 0^{+}$	D
/11/.2		, 110.5	100	5.0 0	_	1		, , 15.5 0	100	3.0 0	~

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.
7965.3	(1)	7965 2	100	$0.0 \ 0^{+}$	(D)
7986.3	(2)	7986 2	100	$0.0 \ 0^{+}$	(Q)
7996.1	1	7995.7 <i>7</i>	100	$0.0 \ 0^{+}$	D
8011.6	1	8011.2 7	100	$0.0 \ 0^{+}$	D
8023.6	1	8023.2 5	100	$0.0 \ 0^{+}$	D
8033.8	1	8033.4 9	100	$0.0 \ 0^{+}$	D
8045.2	(1)	8044.8 18	100	$0.0 \ 0^{+}$	(D)
8054.6	1	8054.2 8	100	$0.0 \ 0^{+}$	D
8068.0	(1)	8067.6 11	100	$0.0 \ 0^{+}$	(D)
8073	(2)	8073 4	100	$0.0 \ 0^{+}$	(Q)
8081.1	(1)	8080.7 <i>6</i>	100	$0.0 \ 0^{+}$	(D)
8096.26	(1)	8095.9 2	100	$0.0 \ 0^{+}$	(D)
8112.8	1	8112.4 8	100	$0.0 \ 0^{+}$	D
8124.5	1	8124.1 6	100	$0.0 \ 0^{+}$	D
8137.5	1	8137.1 <i>10</i>	100	$0.0 \ 0^{+}$	D
8158.4	1	8158.0 <i>6</i>	100	$0.0 \ 0^{+}$	D
8168.8	1	8168.4 <i>4</i>	100	$0.0 \ 0^{+}$	D
8182.8	1	8182.4 <i>4</i>	100	$0.0 \ 0^{+}$	D
8213.3	(2)	8212.9 <i>10</i>	100	$0.0 0^{+}$	(Q)
8244.6	1	8244.2 <i>10</i>	100	$0.0 \ 0^{+}$	D
8255.5	(1)	8255.1 <i>11</i>	100	$0.0 0^{+}$	(D)
8266.2	(1)	8265.8 <i>19</i>	100	$0.0 \ 0^{+}$	(D)
8277.0	1	8276.6 <i>4</i>	100	$0.0 0^{+}$	D
8289.5	1	8289.1 <i>21</i>	100	$0.0 \ 0^{+}$	D
8298.4	(1)	8298.0 <i>13</i>	100	$0.0 0^{+}$	(D)
8310.1	1	8309.7 9	100	$0.0 0^{+}$	D
8331.2	(1)	8330.8 9	100	$0.0 0^{+}$	(D)
8357.5	(2)	8357.1 <i>11</i>	100	$0.0 0^{+}$	(Q)
8370.5	1	8370.1 5	100	$0.0 0^{+}$	D
8393.4	1	8393 2	100	$0.0 0^{+}$	D
8429.5	(2)	8429.1 9	100	$0.0 \ 0^{+}$	(Q)
8444.4	1	8444.0 7	100	$0.0 \ 0^{+}$	D
8459.6	1	8459.2 7	100	$0.0 \ 0^{+}$	D
8472.1	1	8471.7 4	100	$0.0 \ 0^{+}$	D
8491.7	1	8491.3 9	100	$0.0 \ 0^{+}$	D
8503.9	1	8503.5 5	100	$0.0 \ 0^{+}$	D
8513.1	1	8512.7 11	100	$0.0 \ 0^{+}$	D
8527.3	1	8526.9 <i>10</i>	100	$0.0 0^{+}$	D
8537.5	1	8537.1 7	100	$0.0 \ 0^{+}$	D
8562.8	1	8562.4 9	100	$0.0 \ 0^{+}$	D (O)
8580.2	(2)	8579.8 <i>15</i>	100	$0.0 0^{+} \\ 0.0 0^{+}$	(Q)
8590.1	1 1	8589.7 9	100		D
8602.3	1	8601.9 6	100	$0.0 \ 0^{+}$	D

 γ (98Mo) (continued)

Mult.: from radiation strength in (n,γ) E=th.

Mult.: from radiation strength (1971He10) in (n,γ) E=th.

Comments

Mult.‡

D

D

D

D

(E1)

(E1)

D

D

D

[‡] From $\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$ and RUL up to 3323 level and from $\gamma(\theta)$ in (γ,γ') above that, unless otherwise stated. For large dipole+quadrupole admixtures,

[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies,

 E_{γ}^{\dagger}

8612.7 5

8619.8 7

8627.4 7

8636.1 5

5431.5 4

5446.4 4

5487.0 5

5533.4 8

5538.8 6

5596.3 6

5665.0 7

5680.0 6

5941.9 4

6021.9 7

6069.4 6

6080.6 5

6156.7 7

6308.4 5

6418.5 7

6537.4 4

6624.80 2

6760.7 7

7132.2 4

7210.7 4

7853.9 *4*

7907.4 8

8649.9 6

8662.3 5

8673.9 10

6883.48 16

6435.93 8

6222.92 12

5874.72 22

5592.1^b 7

 $E_i(level)$

8613.1

8620.2

8627.8

8636.5

8650.3

8662.7

8674.3

(8642.58)

 $2^{+},3^{+}$

 I_{γ}^{\dagger}

2.4 2

2.3 2

1.0 2

3.1 5

1.9 2

0.5 2

1.4 2

1.0 3

9.48

11.9 13

4.09

0.8 1

3.7 3

1.6 2

0.4 1

5.5 7

0.5 1

0.4 1

3.4 3

1.8 8

0.5 1

1.6 3

1.5 2

1.0 *I*

1.0 *I*

100

100

100

0.24 10

100 6

100

100

100

100

 \mathbf{E}_f

0.0

0.0

0.0

0.0

3210.80

3195.56

3155.56

3108.80

3050.92

3045.89

2976.89

2962.45

2767.68

2700.68

2620.01

2572.84

2562.23

2485.15

2419.63

2333.46

2206.61

2104.72

2017.53

1880.86

1758.49

734.75

0.0

0.0

0.0

[†] From ⁹⁸Nb β^- decay (51.1 min) up to 4103 level and from (γ, γ') above that, unless otherwise noted.

1510.047 4+

1432.210 2+

787.384 2⁺

2223.862 4+

 0^{+}

 0^{+}

 0^{+}

 0^{+}

 (4^{+})

 (4^{+})

4+

3-

4+

2+

3+

3

 (2^{-})

3+

3+

3-

≤4

2+

 0^{+}

0+

 0^{+}

 0^{+}

mult=M1+E2 is assigned in contrast to E1+M2, assuming that level half-lives are less than few ns if not given.

Large ($\delta(Q/D)$) mixing ratio favors mult=M1+E2 rather than E1+M2, assuming level half-lives are no longer than few ns.

 $3103.13 \quad (2^+,3,4)$

 $(2^{-},3,4)$

 $(2^+,3,4)$

γ (98Mo) (continued)

assigned multipolarities, and mixing ratios, unless otherwise specified.

- Multiply placed with undivided intensity.
 Multiply placed with intensity suitably divided.
 Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{98}_{42}\mathrm{Mo}_{56}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

____ γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

@ Multiply placed: intensity suitably divided

γ Decay (Uncertain)


```
History
                                                                      Author
                                                                                                                             Literature Cutoff Date
                                        Type
                                                                                                       Citation
                                 Full Evaluation
                                                        Balraj Singh and Jun Chen NDS 172, 1 (2021)
                                                                                                                                   31-Jan-2021
O(\beta^{-}) = -172.1 \ 14; S(n) = 8294.2 \ 4; S(p) = 11147 \ 12; O(\alpha) = -3179.1 \ 3
S(2n)=14219.7 \ 3, S(2p)=19484 \ 8, Q(2\beta^-)=3034.36 \ 17 \ (2017Wa10).
Other reactions:
Giant-dipole resonances, (\gamma, X) reactions: 1980St26, 1974Be33, 1974Ca05. (p, p') reaction at E(p)=200 MeV (1982Dj04).
Additional information 1.
Giant-quadrupole resonances, ^{100}Mo(\alpha,\alpha'), ^{100}Mo(^3He,^3He'): 1976Yo02, 1978Mo10, 1979Mo12. Resonance at 13.76 MeV with
Low energy octupole resonances, ^{100}\text{Mo}(\alpha,\alpha'): 1978Mo10.
<sup>100</sup>Mo(<sup>20</sup>Ne,F) E=146 MeV: 1984Na12.
<sup>100</sup>Mo(<sup>58</sup>Ni,<sup>58</sup>Ni) E=137.5 MeV: 1995Re06, measured \sigma(\theta).
<sup>100</sup>Mo(<sup>32</sup>S,<sup>32</sup>S): 1995He17, measured cross section.
^{100}\text{Mo}(^{14}\text{C}, ^{14}\text{C}') E=71 MeV: 1982Ma30, \sigma(\theta) for g.s. and first 2<sup>+</sup>.
<sup>100</sup>Mo(<sup>12</sup>C, <sup>12</sup>C') E=48 MeV: 1981Vi01, 1980Lo01.
<sup>100</sup>Mo(e,e') E=120, 200, 274 MeV: 1975Dr06, charge radii and charge distributions deduced. Other: 1972EhZZ.
^{100}Mo(t,t) E=12 MeV: 2006Ch64, measured \sigma(\theta), deduced optical model parameters.
Mesic atoms, {}^{100}\text{Mo}(\mu^-, X): 1978Du21, 1980Sc01. Theory: 1980Ba56, 1976Le08.
Antiprotonic atoms, <sup>100</sup>Mo(antiproton,x): 1999Sc35, 1994Ha51, 1986Ka08, 1985Kl02.
Isotope-shift measurements: 1986Ol03, 1985Go10, 1984Br09, 1978Au05.
Mass measurements: 2015Gu09, 2012Ka13, 2008Ra09, 2006Jo14, 2004Ko42, 1963Bi12, 1963Ri07.
Measurements of half-life of \beta\beta decay of <sup>100</sup>Mo:
T_{1/2}(2\nu\beta\beta)(to ^{100}Ru g.s.): 7.12\times10^{18} y +21-17 (2020Ar09, CUPID-Mo, Modane, earlier value of 6.90\times10^{18} y 15(stat) 37(syst)
     in 2017Ar18); 6.81 \times 10^{18} y I(\text{stat}) + 38 - 40(\text{syst}) (2019Ar04, earlier value: 7.17 \times 10^{18} y I(\text{stat}) 54(syst) in 2011Fl06, NEMO-3.
    also 2006Ar01,2005Ar27,2005Sa07, 2005Si06, 2004Ar29); 7.15\times10^{18} y 37(\text{stat}) 66(syst) (2014Ca46, NIIC, Russia); 2.1\times10^{18} y 3 (2004Hi19, geochemical); 7.6\times10^{18} y +22-14 (1997Al02); 11.5\times10^{18} y +30-20 (1991Ej05,1996Ej04, 1991Ej02); 9.5\times10^{18} y 4
     (stat) 9 (syst) (1995Da37, NEMO-2); 11.6 \times 10^{18} y +34-8 (1991El04, also 1987El13); 0.33 \times 10^{19} y +20-10 (1990Va10). A small
     contribution of \approx 1\% to total half-life is made by T_{1/2}(2\nu\beta\beta)(to 1130,0<sup>+</sup> level in ^{100}Ru)=7.5×10<sup>20</sup> y 6(stat) 6(syst) (2014Ar08);
     6.9 \times 10^{20} \text{ y} + 10 - 8(\text{stat}) 7(\text{syst}) (2010 \text{Be}34); 5.7 \times 10^{20} \text{ y} + 15 - 12 (2007 \text{Ar}02); 6.0 \times 10^{20} \text{ y} + 20 - 13 (2009 \text{Ki}04, 2006 \text{Ho}17, 2006 \text{Ba}35);
     6.1 \times 10^{20} \text{ y} + 18 - 11 \text{ (1995Ba29)}. Decay modes of 2\nu\beta\beta to other excited states in ^{100}Ru, and 0\nu\beta\beta modes make almost no
T_{1/2}(0\nu,\beta\beta) to g.s.): >2.6×10<sup>22</sup> y (2017Ar18); >1.1×10<sup>24</sup> y (2014Ar08,2011Ba55,NEMO-3, 90% CL; also >1.0×10<sup>24</sup> y in
     2012Si23 and 2011Fl06), >4.6\times10^{23} y (2005Ar27,NEMO-3); >5.5\times10^{22} y (2002Fu05,2001Ej03,ELEGANT-5); >4.9\times10^{21} y
     (2001\text{As}06, 2001\text{As}05); >2.2\times10^{22} \text{ y } (1997\text{Al}02); >5.2\times10^{22} \text{ y } (1996\text{Ej}04); >1.2\times10^{22} \text{ y } (1995\text{Da}37).
T_{1/2}(0\nu,\beta\beta, Majorana neutrino to g.s.)>5.4×10<sup>21</sup> y (1996Ej04,1991Ej02), >7.5×10<sup>20</sup> y (1995Da37).
Planned T_{1/2}(0\nu,\beta\beta) experiment: CROSS collaboration at Canfranc Underground Laboratory described in a review article by
     2020Ce04, and by I.C. Bandac et al., Jour. High Energy Physics 1, 18 (2020).
T_{1/2}(0\nu,\beta\beta,Majorana neutrino emission)>2.7\times10^{27} y (2006Ar01).
T_{1/2}(2\nu+0\nu,\beta\beta \text{ to } 539,2^+ \text{ level})>25\times10^{20} \text{ y } (2014\text{Ar}08).
T_{1/2}(2\nu,\beta\beta) to 539.5,2<sup>+</sup> level)>11×10<sup>20</sup> y (2007Ar02) (90% confidence limit); >16×10<sup>20</sup> y (1995Ba29); >5×10<sup>20</sup> y (1992B106).
T_{1/2}(0\nu,\beta\beta) to 539.5,2<sup>+</sup> level)>1.6×10<sup>23</sup> y (2007Ar02) (90% confidence limit); >1.1×10<sup>21</sup> y (1995Da37).
T_{1/2}(2\nu,\beta\beta) to 1130,0<sup>+</sup> level)=7.5×10<sup>20</sup> y \theta(stat) \theta(syst) (2014Ar08).
T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 1130,0^+ \text{ level}) = 6.9 \times 10^{20} \text{ y } + 10 - 8(\text{stat}) \text{ 7(syst) } (2010\text{Be}34).
T_{1/2}(0v+2v)=6.0\times10^{20} \text{ y } +20-13 \text{ (2009Ki04,2006Ho17)} for decay to the 1130, 0^+ state. The statistical uncertainty of +1.9-1.1 and
     systematic uncertainty of 0.6 have been combined in quadrature. Earlier value from the same group=5.9 \times 10^{20} y +18-13 in
T_{1/2}(2\nu,\beta\beta) to 1130,0<sup>+</sup> level)=5.7×10<sup>20</sup> y +15-12 (2007Ar02) (90% confidence limit); 6.1×10<sup>20</sup> y +18-11 (1995Ba29);
```

```
>12×10<sup>20</sup> y (1992Bl06). T_{1/2}(0\nu,\beta\beta \text{ to } 1130,0^{+} \text{ level}) > 8.9 \times 10^{22} \text{ y } (2007\text{Ar02}) \text{ (90\% confidence limit); } > 1.7 \times 10^{21} \text{ y } (1995\text{Da37}). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 1362,2^{+} \text{ level}) > 108 \times 10^{20} \text{ y } (2014\text{Ar08}). T_{1/2}(\beta\beta) > 44 \times 10^{20} \text{ y at } 90\% \text{ confidence level for decay to } 1362.2 \text{ keV } 2^{+} \text{ level } (2009\text{Ki}04,2006\text{Ho}17). T_{1/2}(2\nu,\beta\beta \text{ to } 1362,2^{+} \text{ level}) > 13 \times 10^{20} \text{ y } (1995\text{Ba}29); > 6 \times 10^{20} \text{ y } (1992\text{Bl}06). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 1741,0^{+} \text{ level}) > 40 \times 10^{20} \text{ y } (2014\text{Ar}08). T_{1/2}(2\nu,\beta\beta \text{ to } 1741,0^{+} \text{ level}) > 13 \times 10^{20} \text{ y } (1995\text{Ba}29). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 1741,0^{+} \text{ level}) > 13 \times 10^{20} \text{ y } (1995\text{Ba}29). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 1865,2^{+} \text{ level}) > 49 \times 10^{20} \text{ y } (2014\text{Ar}08). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 1865,2^{+} \text{ level}) > 49 \times 10^{20} \text{ y } (2014\text{Ar}08). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 2051,0^{+} \text{ level}) > 43 \times 10^{20} \text{ y } (2014\text{Ar}08). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 2051,0^{+} \text{ level}) > 43 \times 10^{20} \text{ y } (2014\text{Ar}08). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 2051,0^{+} \text{ level}) > 43 \times 10^{20} \text{ y } (2014\text{Ar}08). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 2051,0^{+} \text{ level}) > 43 \times 10^{20} \text{ y } (2014\text{Ar}08). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 2051,0^{+} \text{ level}) > 43 \times 10^{20} \text{ y } (2014\text{Ar}08). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 2051,0^{+} \text{ level}) > 43 \times 10^{20} \text{ y } (2014\text{Ar}08). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 2051,0^{+} \text{ level}) > 43 \times 10^{20} \text{ y } (2014\text{Ar}08). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 2051,0^{+} \text{ level}) > 43 \times 10^{20} \text{ y } (2014\text{Ar}08). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 2051,0^{+} \text{ level}) > 43 \times 10^{20} \text{ y } (2014\text{Ar}08). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 2051,0^{+} \text{ level}) > 43 \times 10^{20} \text{ y } (2014\text{Ar}08). T_{1/2}(2\nu + 0\nu,\beta\beta \text{ to } 2051,0^{+} \text{ level}) > 43 \times 10^{20} \text{ y } (2014\text{Ar}08).
```

 $T_{1/2}(\beta\beta) > 40 \times 10^{20} \text{ y at } 90\% \text{ confidence level for decay to } 2387.2 \text{ keV } 0^+ \text{ level } (2009\text{Ki}04,2006\text{Ho}17).$

Measurements of ββ decay of 100 Mo: 2020Ar09, 2019Ar04, 2017Ar18, 2014Ar05, 2014Ar08, 2014Ca46, 2012Si23, 2011Ba55, 2011Fl06, 2010Be34, 2010Si06, 2009Da25, 2009Ki04, 2009KoZY, 2008KoZV, 2007Ar02, 2006Ho17, 2006Ba35, 2006Ar01 (also 2005Ar27,2005Ba01,2005Ba33,2005Sa07,2005Si06, 2004Ar29,2004Ba27,2004Ba97,2004Ko61,2003Ba22,2003Oh07,2002As05, 2002Ba52,2001As05,2001As06,2001Va34,2000Ar16,1999As01,1999As09, 1999Bb18,1999Bb19,1999Pi08,1999Sa02,1998As04); 2004Hi19 (geochemical method); 2002Fu05 (also 2002Ej05,2001Ej01, 2001Ej03,2000Ej01,2000Ku21,1998Ku09,1997Ej01); 2001Be19 (also 2000Be57); 1997Al02 (also 1993Al11,1989Al20), 1996Ej04 (also 1996Ej06, 1992Ku18,1991Wa31,1991Ej05,1991Ej02,1988Ok01), 1995Ba29 (also 1996Bb02,1990Ba63,1990Ba52), 1995Da37 (also 1994La42,1992Bl06), 1991El04 (also 1987El13), 1990Va10. Others: 1997De40, 1993Ko28, 1984Fi16 (also 1982Be20), 1983Zd01, 1955Wi33, 1954Se93, 1952Fr23.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 342 primary references, 136 dealing with nuclear structure calculations and 206 with double-beta decay nuclear matrix elements and half-life for 100 Mo 2β decay.

¹⁰⁰Mo Levels

Cross Reference (XREF) Flags

1003.6

		A B C D E F	¹⁰⁰ Nb ¹⁰⁰ Tc ⁹ Be(¹⁰ ⁹⁶ Zr(⁷	β^- decay (1.4 s) β^- decay (2.99 s) ε decay (15.65 s) ε^0 Tc, $X\gamma$) Li, $p2n\gamma$) t, p), $(t,p\gamma)$	G H I J K L	100 Mo(γ, γ') 100 Mo(n, n') 100 Mo($n, n' \gamma$) 100 Mo(p, p') 100 Mo(α, α') 100 Mo(d, d')	M N O P Q R	Coulomb excitation $^{100}\text{Mo}(^{136}\text{Xe},X\gamma)$ $^{102}\text{Ru}(^{14}\text{C},^{16}\text{O})$ $^{104}\text{Ru}(d,^6\text{Li})$ $^{110}\text{Pd}(^{86}\text{Kr},X\gamma)$ $^{168}\text{Er}(^{30}\text{Si},X\gamma)$
$\frac{\text{E(level)}^{\dagger}}{0.0^{b}}$	$\frac{1^{\pi \#}}{0^+}$	$\frac{{\rm T}_{1/2}^{\ddagger}}{7.01\times10^{18}~{\rm y}~+}$	21–17	XREF ABCDEFGHIJKLMN	IOPQR	T _{1/2} : T _{1/2} =7.0 g.s. obtaine (2020Ar09, y 40 in 201 (2019Ar04, NEMO-3, s 7.15×10 ¹⁸	01×10 cd from CUP 7Ar1 earlie see als	Comments y optical method (1951Ar29). $0^{18} \text{ y } + 2I - 17 \text{ for } 2\nu\beta\beta \text{ decay to }^{100}\text{Ru}$ m weighted average of $7.05 \times 10^{18} \text{ y } + 2I - 17$ PID-MO, Modane, earlier value of 6.90×10^{18} 8); $6.81 \times 10^{18} \text{ y } I(\text{stat}) + 38 - 40(\text{syst})$ er value of $7.17 \times 10^{18} \text{ y } 54 \text{ in } 2011\text{Fl06}$, so previous papers e.g. 2005Ar27); (2014Ca46, NIIC, Russia); $7.2 \times 10^{18} \text{ y } 20$ a Sasso, see also $2002\text{As}05,2001\text{As}05$ and

¹⁰⁰Mo Levels (continued)

 $T_{1/2}^{\ddagger}$ E(level) **XREF** Comments

> previous papers); 7.6×10¹⁸ y 26 (1997Al02, Silver mine at Osburn, Idaho); 6.82×10¹⁸ y 86 (1997De40, Valve house, Hoover Dam, USA; note that value listed in 2015Ba11 evaluation from 1997De40 is for 150 Nd $2\nu\beta\beta$ decay, not for 100 Mo). Half-life in 2015Ball evaluation is: 7.1×10^{18} y 4, where some of the original values taken from literature seemed erroneous. About 1% $2\nu\beta\beta$ decay is found to proceed to the 1130, 0+ level in 100Ru with weighted averaged partial $T_{1/2}=6.9\times10^{20}$ y 9, obtained from 7.5×10^{20} y 9 (2014Ar08, NEMO-3); 6.9×10²⁰ y 12 (2010Be34, ARMONIA, Gran Sasso); $6.0 \times 10^{20} \text{ y} + 20 - 13 \text{ (2009Ki04, TUNL, ITEP); } 6.1 \times 10^{20} \text{ y} + 18 - 11$ (1995Ba29, Soudan mine, Minnesota). Value is 6.7×10^{20} y +5-4 in 2015Ba11 evaluation which included somewhat different set of measurements. Note that in all cases, evaluators combined statistical and systematic uncertainties in quadrature. Decays to other excited states of ¹⁰⁰Ru make almost no contribution, as suggested by recent measurements by 2014Ar08 (NEMO-3) and 2009Ki04 (TUNL, ITEP).

Additional information 2.

Evaluated rms charge radius $< r^2 > ^{1/2} = 4.4468$ fm 25 (2013An02). Evaluated $\delta r^2(^{100}\text{Mo}, ^{92}\text{Mo}) = +1.177 \text{ fm}^2 I (2013\text{An02}).$

Measured $\delta < r^2 > (^{100}\text{Mo}, ^{92}\text{Mo}) = +1.139 \text{ fm}^2 39 (2009\text{Ch}09); uncertainty}$ is systematic. Laser spectroscopy technique at JYFL.

Measured Isotope shift(100 Mo, 92 Mo)=-2645 MHz 33 (2009Ch09); total uncertainty is given; statistical uncertainty is 1. Laser spectroscopy technique at JYFL.

 $\delta < r^2 > (^{96}\text{Mo} - ^{100}\text{Mo}) = -0.525 \text{ fm}^2 6 (1985\text{Go}10).$

From experimental studies of one-neutron removal reactions (d,p), (p,d), (${}^{3}\text{He},\alpha$) and proton removing reaction (${}^{3}\text{He},\text{d}$) on ${}^{100}\text{Mo}$ target, 2017Fr08 deduced following values of neutron and proton vacancies in the g.s. of 100 Mo: 0.33 2 for $\nu 2s_{1/2}$, 3.40 7 for $\nu 1d$, 2.48 19 for $\nu 0g_{7/2}$, 1.89 13 for $\nu 0h_{11/2}$, 1.49 7 for $\pi 1p$, 0.47 2 for $\pi 0f_{5/2}$ and 5.94 30 for $\pi 0g_{9/2}$ orbitals, with a total vacancy of 8.09 29 for neutrons and 7.89 31 for protons, compared with expected value of 8 for each.

535.59^b 4 12.4 ps *3* AB DEFGHIJKLMNOPQR μ =+0.94 7 (2001Ma17,2014StZZ) Q=-0.25 7 (2011Wr01,2016St14)

 J^{π} : $L(t,p)=L(p,p')=L(\alpha,\alpha')=2$ from 0^+ .

T_{1/2}: weighted average of 13.6 ps 7 (recoil-distance Doppler-shift method in Coul. ex.,1975Bo39), and half-lives of 12.56 ps 22 (1976Pa13), 12.2 ps 6 (1972Ba90), 10.5 ps 12 (1962Ga13), 10.2 ps 16 (1962Er05), 10.5 ps 11 (1958St32) and 9.7 ps 15 (1956Te26), deduced from respective B(E2)↑ values determined in the measurement of Coulomb excitation yields. Others: 13.9 ps 4, deduced by evaluators from B(E2) in 2012Wr03, where 13.6 ps 7 (1975Bo39) was used as input data in their GOSIA analysis of Coul. Ex. data; 10.3 ps +51-35(DSAM in ${}^{9}\text{Be}({}^{109}\text{Tc},X\gamma)$, 2017Ra05); 16 ps 5 (2013RuZX, $\gamma\gamma(t)$ fast-timing technique in study of prompt γ rays from neutron-induced fission of actinides). 2016Pr01 evaluation gives $T_{1/2}$ =12.1 ps 5, from the same original data as here but using $\approx 5\%$ uncertainty in the value given by 1976Pa13.

μ: from g-factor=+0.471 33, value adopted by 2001Ma17 from weighted average of g=+0.515 42 (transient-field technique, 2001Ma17) and g=+0.404 52 (original g=+0.43 6 from 1978HaYJ re-evaluated by 2001Ma17 for consistent field parameters). Other: 0.34 18 (IMPAC

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
695.13 ^e 4	0+	1.62 ns 4	AB FGHIJ LM P	method, 1969He11, using $T_{1/2}(536 \text{ level})=10.3 \text{ ps } 10)$. Q: reorientation effect in Coul. ex. Other measurements: $-0.39 \ 8$ or $-0.13 \ 8 \ (1977\text{Na}06)$; $-0.42 \ 9$ or $-0.10 \ 9 \ (1976\text{Pa}13)$. $\beta_2=0.20 \ (\text{from } (\text{p,p'}) \ \text{and } (\alpha,\alpha'))$. J^{π} : $L(t,p)=L(p,p')=L(d,d')=0 \ \text{from } 0^+$; E0 transition to 0^+ . $T_{1/2}$: weighted average of 1.58 ns $4 \ (\beta\gamma\gamma(t) \ \text{in } \beta \ \text{decay of } 1.5\text{-s} \ 100 \ \text{Nb}, 1990\text{Ma}01$), 1.65 ns $4 \ (\beta\gamma(t) \ \text{quoted by } 1990\text{Ma}01 \ \text{from a } 1 \ \text{later report of } 1989\text{OhZY}$), 1.7 ns $2 \ (\text{p ce}(t) \ \text{in } (\text{p,p'}\gamma) \ 1972\text{AnZP})$, 2.2 ns $3 \ (\text{B}(\text{E2}) \ \text{in } \text{Coul. ex.}, 1972\text{Ba}90)$. Others: $1.52 \ \text{ns} + 5 - 8$, deduced by evaluators from $(\text{B}(\text{E2}) \ \text{in } 2012\text{Wr}03$, where $(\text{1.580 ns } 40 \ (\text{1990Ma}01) \ \text{was used as input data in their } \text{GOSIA } \text{analysis of } 1 \ \text{Coul. Ex. data}$; $1.53 \ \text{ns } 30 \ (2013\text{RuZX}, \gamma\gamma(t) \ \text{fast-timing technique}$ in study of prompt γ rays from neutron-induced fission of actinides). Value of $(\text{3.0 ns } 1 \ \text{from } (\text{proton})(\text{ce})(t) \ \text{in } (\text{p,t}) \ (1987\text{Es}01) \ \text{seems discrepant}$.
1063.82 ^d 4	2+	6.6 ps <i>6</i>	AB FGHIJKLM R	J^{π} : L(t,p)=L(p,p')=L(α,α')=2 from 0 ⁺ . $T_{1/2}$: others: 5.0 ps 5 from B(E2) value from 1972Ba90 in Coul. ex.; 5.3 ps +3-4, deduced by evaluators from B(E2) (from 536,2 ⁺ level) in 2012Wr03, where 6.45 ps 58 (1985Mu09) was used as input data in their GOSIA analysis of Coul. ex. data. $β_2$ =0.037 (from (p,p') and (α,α')).
1136.02 ^b 4	4+	3.8 ps <i>3</i>	AB DEF HIJKLMN QR	J ^π : L(t,p)=L(p,p')=4 from 0 ⁺ . $T_{1/2}$: others: 4.9 ps +19–14 (DSAM in 9 Be(109 Tc,Xγ), 2017Ra05); 3.67 ps +12–16, deduced by evaluators from B(E2) (from 536,2 ⁺ level) in 2012Wr03, where 3.83 ps 34 (1985Mu09) was used as input data in their GOSIA analysis of Coul. ex. data. $β_4$ =-0.027 (from (p,p')). B(E4)(W.u.)=0.99 21 (from (p,p') and (d,d') 1992Pi08).
1463.93 ^e 5	2+	2.9 ps 7	AB FGHIJ LM	J^{π} : L(t,p)=L(p,p')=2 from 0 ⁺ . $T_{1/2}$: other: 2.25 ps +9-10, deduced by evaluators from B(E2) (from 695, 0 ⁺ level) in 2012Wr03, where 2.93 ps 68 (1985Mu09) was used as input data in their GOSIA analysis of Coul. ex. data.
1504.66 <i>6</i>	0+		A F IJ L	XREF: J(1510)L(1510). E(level): in (p,p'), it may be a different level. J^{π} : $\gamma\gamma(\theta)$ in 100 Nb β^{-} and L(t,p)=0.
1607.37 ^d 5	(3+)		AB IJ L R	
1766.52 11	(2+)		hIJ 1	XREF: h(1770)J(1770)l(1768). J ^{π} : L(p,p')=(2); possible γ to 0 ⁺ . In (n,n' γ), 1997Ko62 propose (0 ⁺) based on the comparison of experimental and calculated populations of this state. In that case level in (p,p') must be different and possible γ to 0 ⁺ will not exist.
1771.44 5	(4 ⁺)	2.5 ps 4	B hI 1M	XREF: h(1770)l(1768). J ^π : γs to 2 ⁺ , 4 ⁺ and population in Coul. ex., probably through a two-step process from 2 ⁺ and 4 ⁺ states. T _{1/2} : other: 1.78 ps +17–19, deduced by evaluators from B(E2) in Coul. Ex.(from 1064,2 ⁺ level) in 2012Wr03, where 2.45 ps 41 (1985Mu09) was used as input data in their GOSIA analysis.
1847.17 ^b 8	6 ⁺ <i>a</i>	1.20 ps <i>17</i>	B E IJ MN QR	
1908.19 ^c 6	3-	14 ps <i>3</i>	F HIJKLM P R	

E(level) [†]	$J^{\pi \#}$		XREF		Comments
					(B(E3) values in Coul. ex.). 2012Wr03 in Coul. Ex. used 12.0 ps 30 (1985Mu09) in their GOSIA analysis to deduce several matrix elements. β_3 =0.17 ((p,p') and (α , α ')).
1977.34 7	$(1,2^+)$	A	GI		XREF: G(?). J^{π} : 1281.8 γ to 0 ⁺ ; 1 ⁺ favored by 1997Ko62 using comparison of experimental
2037.60 17	0+	A	FG IJKL		and calculated yields in $(n,n'\gamma)$ reaction. XREF: $F(2035)G(2033)I(?)J(2040)$.
2042.78 7	(2)+		G IJ		J^{π} : $\gamma \gamma(\theta)$ in 100 Nb β^{-} (1.5 s); $L(t,p)=0$. XREF: $G(2040)J(2046)$. J^{π} : $L(p,p')=2$ from 0^{+} ; 2042.9γ to 0^{+} .
2082 10			FHJ		XREF: $F(2082)H(2100)J(2070?)$. E(level): This group may correspond to the 2087 level but $L(t,p)=(0,1)$ and $L(p,p')=(3,5)$ are mutually inconsistent as well as inconsistent with $J^{\pi}(2086)=0^+$. If L-transfers are correct, there are two levels near 2082 in addition to the 2086 level. $L(t,p)=(0)$ could correspond to 2086, 0^+ level. In (n,n') , $J^{\pi}=2^+$ is deduced.
2086.33 15	0_{+}	A	I		J^{π} : $\gamma\gamma(\theta)$ in 100 Nb β^- (1.5 s). Parity from RUL. See also J^{π} comment for 2082 level.
2103.13 9	4+	В	F IJKL		XREF: K(2121). J^{π} : L(p,p')=L(α , α')=4 from 0 ⁺ .
2156 2 2189.56 <i>15</i>	1^{-} $(0^{+},1,2)$	A	J L f IJk		J^{π} : $L(p,p')$ = $L(d,d')$ =1 from 0 ⁺ . XREF: $f(2186)I(?)J(2192?)$.
2201.22 11	(2-)		f IJkL		J^{π} : 1125.8 γ and 1653.9 γ to 2 ⁺ ; β feeding (log ft =5.8) from 1 ⁺ parent. XREF: f(2186)J(2200). J^{π} : $\sigma(\theta)$ in (p,p') and (d,d'), but L(t,p)=2 for a group at 2186.
2286.47 <i>17</i> 2289.5 <i>4</i> 2310 2	2 ⁺ (4,5 ⁺) 6 ⁺	В	F IJ L	R	J^{π} : L(t,p)=L(p,p')=2 from 0 ⁺ . J^{π} : 682.1 γ to (3 ⁺); log ft =6.3 from (5) ⁺ . J^{π} : L(p,p')=L(d,d')=6 from 0 ⁺ .
2310.12 ^d 20 2320.3 3	(4^+) $(0^+,1,2)$	B A	F		J^{π} : log ft =5.9 from (5) ⁺ ; 1246.4 γ to 2 ⁺ . XREF: F(2312).
2339.8 ^c 4	(5 ⁻)		F H JKL	QR	J^{π} : 856.3 γ and 1257.0 γ to 2 ⁺ ; β feeding (log ft =5.8) from 1 ⁺ parent. XREF: F(2334)H(2330)K(2330). J^{π} : L(p,p')=5. But L(p,p')=2 is also reported. Also L(α , α')=2. E(level): The partially resolved group in (t,p) at 2334 with L=0 may be a different level.
2369.68 <i>11</i> 2397.0 <i>3</i>	3 ⁻ (1 ⁻)		F IJ L F IJKL		J^{π} : $L(t,p)=L(p,p')=3$. XREF: $F(2392)I(?)K(2384)$. E(level): from particle transfer reactions. J^{π} : from $L(p,p')=(1)$. However, $L(t,p)=2$ and $L(\alpha,\alpha')=5$ are inconsistent with
2416.58 22	(4 ⁺)	В	F IJKL		this assignments. It is possible that there are different levels near this energy. J^{π} : log ft =5.4 from (5) ⁺ ; γ to 2 ⁺ . Also $L(p,p')$ = $L(d,d')$ =(4). But $L(\alpha,\alpha')$ =3 and $L(p,p')$ =3 in one of the studies suggest 3 ⁻ also. (1280 γ)(600 γ)(θ) measurement in 100 Nb β^{-} decay (2.99 s) gives unrealistic δ (M2/E1)<-0.28 for J^{π} (2416)=3 ⁻ . There may be two closely spaced levels near this energy.
2432 2	1-		JK		XREF: K(2444). J^{π} : L(p,p')=1.
2464 <i>20</i> 2514 <i>5</i>	4 ⁺ (4 ⁺)		f JL		J^{π} : $L(\alpha, \alpha') = 4$. XREF: f(2518). J^{π} : $L(p,p') = 4$. Other: $L(t,p) = 2$ for a group at 2518 15, probably a doublet.
2527 5	(2+)		f JL		XREF: f(2518).
2564.20 14	(4) ⁺	В	F IJKL		J^{π} : L(p,p')=(2). Other: L(t,p)=2 for a group at 2518 15, probably a doublet. J^{π} : log ft =5.2 from (5) ⁺ ; L(p,p')=4, assuming the levels populated in (p,p') at 2563 5 and in β^- decay are the same.
2580.89 22 2607 5	$(1,2^+)$ $(4^+,5^-)$		I F JKL	P	J^{π} : 1886.0 γ to 0 ⁺ . XREF: F(2602)P(2600).

E(level) [†]	Jπ#	$T_{1/2}^{\ddagger}$		XREF		Comments
						J^{π} : L(α , α')=L(d, 6 Li)=L(t,p)=4. Although L(t,p)=5,6 also reported (1981Fl06) and L(p,p')=5.
2627.5 ^b 5 2628 5	8^{+a} (2^{+})	0.58 ps 9		E M	N QR	$T_{1/2}$: from B(E2)\$\\$\\$=0.34 5 (1985Mu09)\$ in Coul. ex. J^{π} : L(p,p')=(2).
2632.4 <i>3</i> 2652.87 <i>21</i> 2659 <i>5</i>	(1)& (4 ⁺ ,5 ⁺) (1 ⁻)	0.51 ps <i>10</i>	В	G F JKL		J ^{π} : log ft =5.5 from (5) ^{$+$} ; γ s to 4 ^{$+$} and (3 ^{$+$}). XREF: F(2652)K(2656). E(level): unresolved in (t,p). This level may correspond to 2663 from (n,n' γ). J ^{π} : in (p,p'), 1987Fr07 assign 4 ^{$-$} , treating this as an unnatural parity state. But L(t,p)=2 for a 2652 group is in disagreement. Also, L(α , α')=(4,5). L(p,p')=1.
2662.6? 3				I		7130, $L(u,u)=(+,0)$. $L(p,p)=1$.
2725 5	(2+)			JL		VDEE W/2707\D/2720\
2738.02 22	(2^{+})			F I K	P	XREF: $K(2707)P(2730)$. J^{π} : $L(t,p)=2$; however, $L(d,{}^{6}Li)=(4)$ is inconsistent.
2747 5	4+			J L		J^{π} : $L(p,p')=4$.
2791.3 <i>5</i> 2807 <i>5</i>	(4 ⁺)			F JKL	R	J^{π} : 944.1 γ to (6 ⁺). XREF: F(2803)K(2790).
2007 3	(4)			F JKL		J^{π} : L(t,p)=L(α,α')=(4).
2822.21 11	2+			IJ L		XREF: $I(?)$. J^{π} : $L(p,p')=2$.
2838 5				F ЈК	P	XREF: $F(2835)J(?)K(2852)P(2830)$. J^{π} : $L(\alpha,\alpha')=4$, $L(t,p)=(4)$ suggest (4^{+}) , but $L(p,p')=(5)$ suggests
2843.2 ^c 4 2858 5	(7 ⁻) (3 ⁻)			F JKL	QR	(5 ⁻). Also $L(d, {}^{6}Li) = (6)$. J^{π} : γ s to (5 ⁻) and (6 ⁺). XREF: $F(2873)K(2869)$.
2901 5	4+			ЈΚ		J^{π} : L(p,p')=3. But L(α,α')=(2) suggests (2 ⁺). XREF: K(2882).
	&r					J^{π} : $L(\alpha, \alpha')=4$.
2901.05 10	(1)& (1)&	0.32 ps 4		G		
2905.75 <i>10</i> 2924 <i>5</i>	(1) ⁴	0.37 ps 4		G J L		J^{π} : L(p,p')=4.
2928.7 5	(7^{-})			_	R	J^{π} : γ from (9 ⁻) and to (5 ⁻).
2934.8 10	(4^{+})		Α	F J		XREF: F(2923). J^{π} : L(t,p)=(4); L(p,p')=4. But L(p,p')=(3) is also reported.
2961.2 3	2+			IJ L		XREF: I(?).
2970.1 <i>4</i>	4+		A	FIK		J^{π} : L(p,p')=2. XREF: I(?)K(2970).
						J^{π} : $L(\alpha,\alpha')=4$.
2984 <i>5</i> 2996.31 <i>21</i>	(6^+)			J L Ij l		J^{π} : L(p,p')=(6). XREF: I(?).
2770.31 21	(+ ,5)			1) 1		J^{π} : L(p,p')=4 suggests 4+ for 2996 or 3004. But L(p,p')=3 is also
3004.4 10	$(4^+,3^-)$		A	F Ij l		reported. XREF: $F(2994)I(?)$. J^{π} : $L(p,p')=4$ suggests 4^+ for 2996 or 3004. But $L(p,p')=3$ is also
3021 5	(4+)			JK		reported. XREF: K(3029).
3039.4 10	(4+)		A	F K		J^{π} : $L(\alpha,\alpha')=(6)$ suggests (6^+) but $L(p,p')=(4)$. XREF: $F(3039)K(3041)$.
2041 5	(5-)			7.7		J^{π} : $L(\alpha, \alpha') = 4$.
3041 <i>5</i> 3042.2? <i>6</i>	(5 ⁻)			J L I		J^{π} : L(p,p')=5. E(level): possible γ to 2 ⁺ suggests that this level is different from 3041, (5 ⁻).

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡		KREF		Comments
3053.70 <i>21</i> 3062.60 <i>25</i>	$(\leq 4)^{@}$ $(0^+,1,2)$		f A f	I		XREF: I(?). J^{π} : 2527 γ to 2 ⁺ ; β feeding (log ft =5.8) from 1 ⁺ parent.
3066.25 <i>20</i> 3068 <i>5</i>	(1)& (5 ⁻)	0.207 ps 19	G	J L		J^{π} : L(p,p')=5.
3070.2 <i>4</i> 3085 <i>5</i>	$(0^+,1,2)$ (4^+)		A F	JKL		J^{π} : 2535 γ to 2 ⁺ ; β feeding (log ft =5.7) from 1 ⁺ parent. XREF: F(3106)K(3085).
3112 5	(3-)		F	JKL		J^{π} : L(p,p')=4 but L(α,α')=5. XREF: F(3119)K(3114).
3129.6 <i>4</i> 3140 <i>5</i>	$(0^+,1,2)$ (1^-)		A	J L		J^{π} : L(p,p')=3. J^{π} : 1666γ to 2 ⁺ ; β feeding (log ft =6.1) from 1 ⁺ parent. J^{π} : L(p,p')=1.
3143.0 8	(1)			J L	R	3 . E(p,p)−1.
3154 5	(3-)		F	JKL		XREF: $F(3148)K(3153)$. J^{π} : $L(p,p')=3$.
3172 5	(3-)			JL		E(level): multiplet in (t,p). J^{π} : L(p,p')=3. E(level): multiplet in (t,p).
3190 5	(4 ⁺)			JKL		XREF: K(3196). J^{π} : $L(\alpha,\alpha')=L(p,p')=4$.
3198.4 4	(1)&	0.23 ps 4	G			
3217 5	(1^{-})			J		J^{π} : $L(p,p')=1$.
3237 5	(3-)		F	JKL		XREF: $F(3235)K(3216)$. J^{π} : $L(\alpha,\alpha')=3$.
3242.76 10	1&	0.138 ps 7	G			
3265 5	(3-)		_	J L		J^{π} : L(p,p')=3.
3282 5	(3 ⁻)		F	JKL		XREF: $F(3263)K(3276)$. J^{π} : $L(p,p')=3$ but $L(\alpha,\alpha')=(5)$ suggests (5^{-}) .
3290.27 9	1(+)&	43 fs 6	G			J^{π} : parity from Alaga rule (2006Ru06).
3294 5	(2^{+})		F	J L		XREF: $F(3282)$. J^{π} : $L(p,p')=2$.
3299.2 ^c 6	(9-)				R	J^{π} : γ to (7^{-}) .
3311 5	())			J L	K	<i>3</i> . <i>y</i> to (<i>t</i>).
3324 5			F	JL		XREF: F(3306).
3342.06 10	(1)&	0.175 ps 20	G			
3354 15	(2^{+})	•	F			J^{π} : L(t,p)=2.
3367.0 <mark>b</mark> 8	$(10^+)^a$		E	N	QR	
3376 5	(3^{-})			J		J^{π} : L(p,p')=3.
3406 <i>5</i>	(4^{+})		F	JKL		XREF: F(3409)K(3398).
2427 5	(F=)			-		J^{π} : $L(p,p')=L(\alpha,\alpha')=4$.
3437 <i>5</i> 3448 <i>5</i>	(5 ⁻) (0 ⁺)		F	J J L		J^{π} : L(p,p')=5. XREF: F(3445).
3440 3	(0)		r	JL		J^{π} : L(p,p')=(0).
3468 5	(2^{+})			J L		J^{π} : L(p,p')=2.
3479 5	(2^{+})		F	J L		XREF: F(3475).
						J^{π} : L(p,p')=2.
3483.82 7	$(1^+)^{\&}$	8.3 fs 8	G			J^{π} : parity from Alaga rule (2006Ru06).
3529 <i>5</i>	(3-)			J		J^{π} : $L(p,p')=3$.
3537 <i>5</i> 3557 <i>5</i>	(2 ⁺) (3 ⁻)		F	J L J L		J^{π} : L(p,p')=2. XREF: F(3535). J^{π} : L(p,p')=3.
3557 15	(2^{+})		F			$E(\text{level}), J^{\pi}$: partially resolved. $L(t,p)=2$ for one component.
3570.77 10	(1) &	18.9 fs <i>15</i>	G			V427
3586 5	(-)		J	J L		

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$		X	REF		Comments
3595 5	(3-)				J L		$\overline{J^{\pi}\colon L(p,p')=3}.$
3599.87 20	(1) &	0.18 ps <i>3</i>		G			MALE TO THE
3606 5	(4^{+})	5.10 PS 5		F	JKL		XREF: F(3587)K(3603).
							J^{π} : $L(\alpha, \alpha') = 3$ and $L(t,p) = (3)$; but $L(p,p') = (4)$.
3615.57 20	1&	56 fs 6		G			
3626.5 5	$(4^+,5,6)$		В		J L		J^{π} : 1779 γ to 6 ⁺ ; β feeding (log ft =5.8) from (5) ⁺ .
3627.3 3	(1) &	32 fs <i>3</i>		G			VDEE. 1/2(52)1 /2(52)
3647.3 6	(5^{-})		В	F	J L		XREF: J(3652)L(3652). J^{π} : L(p,p')=5; γ to 6 ⁺ , assuming that the levels in (p,p') and in
							β^- decay are the same.
3658.96 22	1 ⁽⁺⁾ &	18 fs <i>3</i>		G			J^{π} : parity from Alaga rule (2006Ru06).
3682 5	(5-)	-		F	JKL		XREF: F(3674)K(3701).
							J^{π} : $L(\alpha, \alpha')=5$.
3718 <i>5</i> 3726 <i>5</i>	(4^+)				J J L		J^{π} : L(p,p')=4.
3743 <i>5</i>	(3^{-}) (4^{+})				J L		J^{π} : L(p,p')=3. J^{π} : L(p,p')=4.
3747 5	(5^{-})				JL		J^{π} : L(p,p')=5.
3773 5	(3^{-})			F	JL		XREF: F(3771).
2702.5.0						_	J^{π} : L(p,p')=3, but L(t,p)=5,6.
3783.5 <i>9</i> 3797 <i>5</i>	(4 ⁺)				J	R	$J^{\pi} \colon L(p,p')=4.$
3810 5	(4^{+}) (4^{+})				JL		J^{π} : $L(p,p')=4$. J^{π} : $L(p,p')=(4)$.
3823 5	(5^{-})				JL		J^{π} : $L(p,p')=(5)$.
3887.98 <i>10</i>	1 &			G			
3894 <i>5</i>	0				J L		
3896.68 10	$(1)^{\&}$			G			
3915 5 3025 5	(2+)				JL		I^{π} , $I(p, p') = (2)$
3925 5 3925 98 10	(2^+) $(1)^{\&}$			_	J L		J^{π} : $L(p,p')=(2)$.
3925.98 <i>10</i> 3947 <i>5</i>	(1)			G	J L		
4026 5	(3^{-})				JL		J^{π} : L(p,p')=(3).
4032.7° 8	(11^{-})					R	J^{π} : γ to (9^{-}) .
4043 5	(4 ⁺)				J L		J^{π} : L(p,p')=(4).
4062.6 ^b 9	$(12^{+})^{a}$			E	N	QR	
4081.59 10	1&			G			
4156.5 3	1&			G	7		III. I (A d/) = 2
4158 <i>5</i> 4205 <i>5</i>	(3^{-}) (2^{+})				L J L		J^{π} : L(d,d')=3. J^{π} : L(p,p')=(2).
4203 <i>3</i> 4217.60 <i>10</i>	1 <mark>&</mark>			G	JL		υ. Ε(γ, γ / - (Δ).
4232.10 20	(1)&			G			
4232.10 20	(1)			ď	J L		
4260 5	(3-)				L		J^{π} : L(d,d')=3.
4329.90 20	1 &			G			
4516.81 <i>10</i>	1 &			G			
4565.51 <i>10</i>	₁ &			G			
4583.11 <i>10</i>	₁ &			G			
4594.91 <i>10</i>	1 &			G			
4689.02 10	₁ &			G			
4730.32 20	₁ &			G			
4875.2 ^b 10	$(14^+)^a$				N	QR	
4939.8 ^c 9	(13^{-})					R	J^{π} : 907.1 γ to (11 ⁻).

$^{100}_{42}\mathrm{Mo}_{58}$ -9

Adopted Levels, Gammas (continued)

E(level) [†]	Jπ#	XREF	E(level) [†]	Jπ#	$T_{1/2}^{\ddagger}$	XREF	
4989.63 20	1 &	G	5732.9 <i>3</i>	1 &		G	
5007.33 20	1&	G	5742.6 7	1 &		G	
5034.54 20	1 ^{&}	G	5764.0 <i>15</i>	(1)&		G	
5062.9 <i>3</i>	$(2)^{\&}$	G	5770.4 <i>4</i>	1&		G	
5071.24 20	(1) &	G	5798.2 <i>3</i>	1 &		G	
5101.3 6	1&	G	5808.98 <i>10</i>	1 &		G	
5109.3 9	(1) &	G	5826.5 <i>6</i>	(2) &		G	
5136.04 10	(1)&	G	5840.2 ^b 15	$(16^+)^a$		N	R
5158.3 <i>3</i>	1&	G	5840.7 6	1&		G	
5169.6 <i>3</i>	1&	G	5879.39 20	1 &		G	
5181.8 <i>3</i>	1&	G	5901.0 6	1 &		G	
5186.9 <i>15</i>	1	G	5947.79 20	1&		G	
5190.4 5	1&	G	5957.2 6	1 &		G	
5204.6 <i>4</i>	(1) &	G	5964.0 <i>6</i>	1&		G	
5216.0 8	(1)&	G	5972.99 20	1 &		G	
5271.2 6	ì&	G	5988.9 <i>4</i>	1&		G	
5277.6 <i>3</i>	1&	G	6009.6 4	1&		G	
5310.5 4	1 &	G	6019.5 <i>11</i>	(1)&		G	
5335.65 20	1&	G	6035.5 8	1&		G	
5347.85 10	1 ^{&}	G	6061.3 9	(2) &		G	
5359.8 <i>3</i>	1 &	G	6065.9 7	1 <mark>&</mark>		G	
5369.6 6	1&	G	6082.9 <i>3</i>	1&		G	
5382.5 10	1 &	G	6089.3 4	1 &		G	
5390.3 6	1&	G	6122.5 5	1 &		G	
5402.26 10	1&	G	6133.6 7	1&		G	
5412.6 8	1 &	G	6147.1 9	1 &		G	
5435.5 6	1&	G	6174.0 5	1 &		G	
5442.9 6	1&	G	6194.51 <i>10</i>	(1)&		G	
5449.6 <i>6</i>	(1)&	G	6249.4 5	1&		G	
5502.7 4	1&	G	6257.61 20	1 &		G	
5519.4 <i>4</i>	1&	G	6270.5 8	1 &		G	
5532.2 5	₁ &	G	6278.71 <i>10</i>	1 &		G	
5547.9 <i>3</i>	1 ^{&}	G	6293.1 4	1 &		G	
5554.4 11	₁ &	G	6310.3 <i>15</i>	(1)&		G	
5584.9 <i>4</i>	1&	G	6321.2 9	1&		G	
5596.8 7	1&	G	6327.6 9	1 &		G	
5604.7 12	1&	G	6337.5 4	1&		G	
5612.67 10	1&	G	6354.32 20	1&		G	
5618.6 <i>3</i>	1&	G	6365.6 19	(1) ^{&}		G	
5656.5 5	(2) &	G	6375.6 5	1&		G	
5670.67 10	1&	G	6402.0 8	1&		G	
5680.9 7	(1)&	G	6414.3 <i>4</i>	1&		G	
5686.5 5	1&	G	6419.4 <i>18</i>	1-&	9 fs 6	G	
5715.9 <i>3</i>	1&	G	6421.4 6	1&		G	
5725.3 <i>3</i>	1&	G	6426.6 9	(1) ^{&}		G	
			•				

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF		E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡		XREF
6434.1 5	1 &		G		7103.5 7	(1) ^{&}		(3
6459.0 <i>6</i>	1 &		G		7115.3 3	<u>ì&</u>			3
6473.5 6	1 &		G		7136.6 5	₁ &			3
6483.2 20	(1) &		G		7171.7 7	(1) &			3
6497.6 <i>6</i>	1 &		G		7181.5 9	(1) &			3
6518.5 <i>13</i>	1 ^{-&}	2.5 fs 14	G		7194.4 3	<u>ì&</u>			3
6519.1 5	1 &		G		7204.0 7	1 &			3
6526.6 <i>3</i>	1 &		G		7219.4 9	$(2)^{\&}$			3
6570.2 4	₁ &		G		7225.4 13	(1) &			3
6597.0 <i>4</i>	$(2)^{\&}$		G		7299.6 5	1&		(3
6622.3 4	(1) ^{&}		G		7312.3 3	₁ &		(3
6628.3 5	(2) &		G		7330.8 <i>3</i>	₁ &		(
6641.0 <i>3</i>	1&		G		7357.7 6	1 &		(3
6658.2 <i>4</i>	1 &		G		7380.3 7	(1) &		(3
6669.14 20	₁ &		G		7403.3 8	1 &		(3
6685.3 4	1 &		G		7450.6 10	1 &		(3
6764.1 8	1 &		G		7471.0 <i>4</i>	1 &		(3
6772.7 8	1 &		G		7487.2 7	1 &		(3
6790.6 <i>10</i>	1 &		G		7494.8 11	(1) &		(3
6797.5 9	(1) ^{&}		G		7503.5 12	$(2)^{\&}$		(3
6807.9 <i>10</i>	(2) <mark>&</mark>		G		7526.1 6	1&		(3
6829.5 <i>3</i>	(1)&		G		7546.3 20	1 ^{&}		(3
6844.6 <i>11</i>	$(2)^{\&}$		G		7559.1 <i>15</i>	(1) &		(3
6851.3 <i>15</i>	1&		G		7577.2 9	1&		(3
6870.0 8	(1) &		G		7606.9 <i>4</i>	1&		(3
6886.5 8	1&		G		7638.6 10	1-&	3.3 fs 9	(3
6893.2 <i>4</i>	1&		G		7744.5 8	1&		(3
6906.1 <i>6</i>	1&		G		7758.4 10	(1) &		(3
6912.9 <i>11</i>	(1) &		G		7771.5 12	1&		(3
6919.5 <i>13</i>	1&		G		7796.9 <i>14</i>	1&		(3
6924.9 10	(1) &		G		7831.2 8	1&			3
6934.2 12	(1) &		G		7863.1 7	(1) &		(3
6949.2 ^b 18	$(18^{+})^{a}$			N	7875.4 6	1&			3
6949.9 <i>11</i>	1&		G		7887.2 10	1&			3
6957.7 11	(2) &		G		7935.7 10	1&		(3
6974.2 8	1&		G		7955.7 6	1&		(
6981.1 <i>12</i>	(2) &		G		7988.0 <i>7</i>	1&		(3
6994.5 5	(2)&		G		8002.0 6	1&		(3
7001.2 5	1&		G		8033.5 8	1&			3
7018.3 6	1&		G		8052.2 6	1&			3
7032.1 5	1&		G		8063.7 9	1&			3
7037.8 10	(1)&		G		8083.3 16	1&			3
7060.2 11	1&		G		8095.9 11	1&			3
7068.1 <i>3</i>	1&		G		8108.1 12	1&		(j
7095.4 5	1 &		G		8114.2 ^b 20	$(20^+)^a$			N

¹⁰⁰Mo Levels (continued)

E(level) [†]	$J^{\pi \#}$	${\rm T}_{1/2}$	XREF	Comments
8127.7 10	1&		G	
8194.4 9	1 ^{&}		G	
8208.8 <i>6</i>	1 ^{&}		G	
8218.2 6	(1) &		G	
8238.6 9	1&		G	
8257.1 <i>14</i>	1&		G	
8269.6 <i>6</i>	1&		G	
8283.6 6	1 ^{&}		G	
8294.5 <i>13</i>	(1) &		G	
$13.0 \times 10^3 \ 3$	1-	11.6 MeV <i>12</i>	K	J ^{π} : isoscalar giant-dipole resonance (ISGDR). %E1 EWSR=18 3 for ISGDR in (α, α') (2015Yo04).
$13.2 \times 10^3 \ 4$	0+	2.6 MeV <i>6</i>	K	J ^{π} : isoscalar giant-monopole resonance (ISGMR). %E0 EWSR=32 4 for ISGMR in (α, α') (2020Ho11).
$13.60 \times 10^3 \ 26$	2+	4.75 MeV <i>38</i>	K	J ^{π} : isoscalar giant-quadrupole resonance (ISGQR). %E2 EWSR=79 <i>14</i> for ISGQR in (α, α') (2015Yo04).
$16.8 \times 10^3 \ 4$	0+	2.5 MeV 5	K	J ^{π} : isoscalar giant-monopole resonance (ISGMR). %E0 EWSR=60 3 for ISGMR in (α, α') (2020Ho11).
$21.5 \times 10^3 \ 4$	3-	3.7 MeV <i>3</i>	K	J ^{π} : isoscalar giant-octupole resonance (ISGOR). %E3 EWSR=53 7 for ISGOR in (α, α') (2015Yo04).
$30.1 \times 10^3 7$	1-	12.5 MeV <i>38</i>	K	J ^{π} : isoscalar giant-dipole resonance (ISGDR). %E1 EWSR=47 10 for ISGDR in (α, α') (2015Yo04).

 $[\]dagger$ From least-squares fit to E γ data, for levels seen in γ -ray studies. In other cases weighted averages of available values.

[‡] For excited states, values are from recoil-distance Doppler-shift (RDDS) method and/or B(E2) values determined from excitation yields in Coulomb excitation unless otherwise stated. For levels populated in (γ, γ') , level half-lives are deduced (by evaluators) from total widths given in different experiments.

[#] Above≈3 MeV excitation, the assignments are generally from L(p,p'), L(d,d') or $L(\alpha,\alpha')$. These assignments are given in parentheses due to tentative level associations (in different reactions) and some possibility of S=1 transfer in (p,p') and (d,d') at higher excitation energies.

 $^{^{\}tiny @}$ γ to 2^+ .

[&]amp; Dipole γ to g.s. from $\gamma(\theta)$ measurements in (γ, γ') . Also in (γ, γ') nuclear resonance fluorescence reaction from 0^+ g.s., main population is expected via dipole (E1 or M1) transitions to J=1 states, through scissors mode (for M1) and pygmy dipole resonances (for E1).

^a Member of g.s. band from γ cascade in (7 Li,p2n γ), 100 Mo(136 Xe,X γ), 110 Pd(86 Kr,X γ) and 168 Er(30 Si,X γ).

^b Band(A): $J^{\pi}=0^{+}$ band. Backbend at 10^{+} .

^c Band(B): 3⁻ octupole band.

^d Band(C): Possible $K^{\pi}=2^{+}$, γ band.

^e Band(D): Possible $K^{\pi}=0^{+}$ band.

Adopted	Levels,	Gammas	(continued)

γ (100Mo)

						<u>y(</u>	WIO)		
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	$\alpha^{\mathbf{b}}$	$\mathrm{I}_{(\gamma+ce)}$	Comments
535.59	2+	535.61 6	100	0.0 0+	E2		0.004		B(E2)(W.u.)=37.6 9
									E _γ : unweighted average 535.666 <i>14</i> from ¹⁰⁰ Nb β^- decay and 535.547 <i>13</i> from (n,n'γ). Others: 535.3 <i>5</i> in (t,pγ), 535.6 <i>5</i> in (³⁰ Si,Xγ), 536 <i>1</i> in (¹³⁶ Xe,Xγ). Mult.: ΔJ =2, Q from $\gamma(\theta)$ in (n,n'γ); M2 ruled out by RUL.
695.13	0_{+}	159.547 <i>13</i>	100 <i>I</i>	535.59 2+	E2		0.223		B(E2)(W.u.)=89 3
									E _y : from $(n,n'\gamma)$. Others: 159.5 <i>I</i> in ¹⁰⁰ Nb β^- decay, 159.1 5 in $(t,p\gamma)$.
									I_{γ} : from Coulomb excitation. Mult.: ΔJ^{π} and $T_{1/2}$ (level) are consistent with only E2, not M2.
		695.1		0.0 0+	E0			15 2	E_{γ} : from level energy difference. Transition observed only in ce data.
									$I_{(\gamma+ce)}$: deduced from Ice(K)(695 γ)/Ice(K)(159 γ)=0.63 8 (unweighted average of 0.62 5 and 0.76 5 from (p,p' γ), and 0.50 3 from (t,p γ)).
									q_K^2 (E0/E2)=0.61 <i>10</i> , X(E0/E2)=0.014 2, ρ^2 (E0)=0.036 6 (2005Ki02, evaluation).
1063.82	2+	369.1 <i>I</i>	1.76 20	695.13 0 ⁺	[E2]		0.0122		B(E0)(Wilkinson units)=0.17 2. B(E2)(W.u.)=5.7 +14-11
									E_{γ} : weighted average of 368.6 5 from ¹⁰⁰ Nb β^- decay (1.5 s) and 369.1 <i>I</i> from (n,n' γ).
									I_{γ} : weighted average of 1.4 3 from ¹⁰⁰ Nb β^- decay (1.5 s), 2.01 21 from (n,n' γ), and 1.70 20 from Coulomb excitation.
		528.248 <i>18</i>	100.0 <i>16</i>	535.59 2+	E2+M1	+4.4 +15-9	0.004		B(E2)(W.u.)=52 7; B(M1)(W.u.)=0.0008 +6-4 E _γ : weighted average of 528.263 18 from 100 Nb β^- decay
									(1.5 s), 528.263 18 from ¹⁰⁰ Nb β^- decay (2.99 s), 528.4 5 from (t,p), 528.21 2 from (n,n' γ), and 528.4 5 from (30 Si,X γ).
									I_{γ} : from (n,n' γ). Others: 100.0 20 from Coul. ex., 100.0 22 from ¹⁰⁰ Nb β ⁻ decay (1.5 s), 100 13 from ¹⁰⁰ Nb β ⁻ decay (2.99 s).
									Mult.: from $\gamma \gamma(\theta)$ in ¹⁰⁰ Nb β^- decay, $\gamma(\theta)$ in (n,n' γ); M2 ruled out by RUL.
									δ: from $\gamma\gamma(\theta)$ in ¹⁰⁰ Nb β^- decay (1.5 s). Other: +3.4 4 from $\gamma(\theta)$ in (n,n' γ).
		1063.78 5	38.0 4	$0.0 0^{+}$	E2				B(E2)(W.u.)=0.62 6 E _{γ} : weighted average of 1063.7 <i>I</i> from ¹⁰⁰ Nb β ⁻ decay
									(1.5 s), 1063.7 2 from ¹⁰⁰ Nb β^- decay (2.99 s), 1064.1 1 from (γ, γ') , 1063.76 3 from $(n, n'\gamma)$, and 1064 1 from

12

E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.	δ	$\alpha^{m{b}}$	Comments
1136.02	4+	600.40 2	100	535.59 2+	(E2)		0.003	(30 Si,Xγ). I _γ : weighted average of 36.3 22 from 100 Nb $β^-$ decay (1.5 s), 42 9 from 100 Nb $β^-$ decay (2.99 s), 38.1 4 from (n,n'γ), 58 25 from (30 Si,Xγ), and 38.0 10 from Coulomb excitation. Mult.: Q from $γ(θ)$ in (n,n'γ) and $γγ(θ)$ in 100 Nb $β^-$ decay (1.5 s); M2 ruled out by RUL. B(E2)(W.u.)=69 6 E _γ : weighted average of 600.5 1 from 100 Nb $β^-$ decay (1.5 s), 600.5 1 from 100 Nb $β^-$ decay (2.99 s), and 600.39 2 from (n,n'γ). Others: 599.8 5 from (t,p), 601 1 from (136 Xe,Xγ), and 600.3 5 from (30 Si,Xγ).
1463.93	2+	327 1	3.5 15	1136.02 4+	[E2]		0.0181 4	Mult.: from $T_{1/2}$ (level), ΔJ^{π} and RUL. B(E2)(W.u.)=36 +34-20
1403.93	2	321 1	5.5 15	1130.02 4	[E2]		0.0161 4	E_{γ} : from ¹⁰⁰ Nb β^- decay (1.5 s).
		400.17 9	5.2 7	1063.82 2+				I _{γ} : from Coulomb excitation. E _{γ} : from (n,n' γ). Other: 400 <i>I</i> from ¹⁰⁰ Nb β ⁻ decay (1.5 s). I _{γ} : weighted average of 5 <i>3</i> from ¹⁰⁰ Nb β ⁻ decay (1.5 s), 4.9 7 from
		768.77 <i>3</i>	100.0 10	695.13 0 ⁺	E2			$(n,n'\gamma)$, and 5.8 11 from Coulomb excitation. B(E2)(W.u.)=15 +5-3
		928.34 3	72.9 9	535.59 2+	M1+E2	-0.27 2		E _γ : weighted average of 768.7 <i>I</i> from 100 Nb β^- decay (1.5 s), 768.8 2 from 100 Nb β^- decay (2.99 s), and 768.77 <i>3</i> from (n,n'γ). I _γ : from Coulomb excitation. Other: 100.0 <i>I3</i> from (n,n'γ), 100 9 from 100 Nb β^- decay (1.5 s). Mult.: Q from $\gamma(\theta)$ in (n,n'γ) and $\gamma\gamma(\theta)$ in 100 Nb β^- decay (1.5 s); M2 ruled out by RUL. B(M1)(W.u.)=0.0036 + <i>I3</i> -8; B(E2)(W.u.)=0.28 + <i>I5</i> -9 E _γ : weighted average of 928.3 <i>I</i> from 100 Nb β^- decay (1.5 s), 928.4 2 from 100 Nb β^- decay (2.99 s), and 928.34 <i>3</i> from (n,n'γ). I _γ : weighted average of 74 <i>3</i> from 100 Nb β^- decay (1.5 s), 71 8 from 100 Nb β^- decay (2.99 s), 72.8 9 from (n,n'γ), and 73.0 <i>10</i> from Coulomb excitation. Mult.,δ: from $\gamma\gamma(\theta)$ 100 Nb β^- decay (1.5 s) and RUL. Other: -0.36 7 from $\gamma(\theta)$ in (n,n'γ).
1504.66	0+	440.84 5	37 4	1063.82 2+				E_{γ} : weighted average of 440.9 <i>I</i> from ¹⁰⁰ Nb β^- decay (1.5 s) and 440.83 5 from (n,n' γ). I_{γ} : unweighted average of 41.2 <i>I9</i> from ¹⁰⁰ Nb β^- decay (1.5 s) and 33.6
		969.07 7	100 8	535.59 2+	(E2)			21 from $(n,n'\gamma)$. E_{γ} : weighted average of 969.1 I from 100 Nb β^- decay (1.5 s) and 969.06 7 from $(n,n'\gamma)$. Mult.: $\gamma\gamma(\theta)$ in 100 Nb β^- decay (1.5 s), ΔJ^{π} and RUL $(\beta\gamma)$ coin in
1607.37	(3 ⁺)	471.37 9	17 2	1136.02 4+				¹⁰⁰ Nb β ⁻ decay (1.5 s) suggests 1504.6 level has T _{1/2} <50 ns). E _γ : weighted average of 471 I from ¹⁰⁰ Nb β ⁻ decay (1.5 s), 471.2 J

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f J	$f^{\pi} = \mathbf{N}$	⁄Iult.	Comments
							from 100 Nb β^- decay (2.99 s), and 471.39 9 from (n,n' γ).
							I_{γ} : weighted average of 23 14 from ¹⁰⁰ Nb β^- decay (1.5 s), 18 7 from ¹⁰⁰ Nb β^- decay (2.99 s), and 16.8 20 from (n,n' γ).
1607.37	(3+)	543.58 8	100 7	1063.82 2	2+		E _γ : weighted average of 543.4 2 from 100 Nb β^- decay (1.5 s), 543.2 2 from 100 Nb β^- decay (2.99 s), 543.62 6 from (n,n'γ), and 544.1 5 from (30 Si,Xγ).
							I_{γ} : from ¹⁰⁰ Nb β^- decay (1.5 s). Others: 100 8 from (n,n' γ), 100 <i>I5</i> from ¹⁰⁰ Nb β^- decay (2.99 s).
		1071.77 ^c 3	74 <i>1</i>	535.59 2	2+		E_{γ} : weighted average of 1071.6 2 from ¹⁰⁰ Nb β^- decay (1.5 s) and 1071.77 3 from (n,n' γ). Others: 1071.6 3 from ¹⁰⁰ Nb β^- decay (2.99 s) and 1071.9 5 from (³⁰ Si,X γ).
							I _γ : weighted average of 69 13 from 100 Nb β^- decay (2.99 s), 74.0 12 from (n,n' γ), and 52 16 from (30 Si,X γ); the transition mainly deexcites the 1607 level. Other: 116 19 from
1766.52	(2^{+})	702.7 1	100	1063.82 2	+		¹⁰⁰ Nb β^- decay (1.5 s) is in disagreement. E _γ : from $(n,n'\gamma)$.
1,00.52	(2)	1071.77 ^{cd} 3	100	695.13			E_{γ} : from $(n,n'\gamma)$.
1771.44	(4^{+})	635.31 4	55 <i>3</i>	1136.02 4			E_{γ} : from $(n,n'\gamma)$. Other: 635.4 3 from ¹⁰⁰ Nb β^- decay (2.99 s).
	` '		-				I_{γ} : weighted average of 53 8 from ¹⁰⁰ Nb β^- decay (2.99 s), 55 3 from (n,n' γ), and 55 3 from Coulomb excitation.
		707.68 <i>3</i>	100 2	1063.82 2	2+ (I	E2)	B(E2)(W.u.)=30 +7-5
							E_{γ} : weighted average of 707.5 2 from 100 Nb β^- decay (2.99 s) and 707.68 3 from (n,n' γ). I_{γ} : from (n,n' γ) and Coulomb excitation. Other: 100 14 from 100 Nb β^- decay (2.99 s). Mult.: from $T_{1/2}$ (level), ΔJ^{π} and RUL.
1847.17	6+	711.15 6	100	1136.02 4	l+ (I	E2)	B(E2)(W.u.)=94 +16-12
							E _γ : weighted average of 711.0 2 from 100 Nb $β^-$ decay (2.99 s), 711.16 6 from (n,n'γ), 711 I from (136 Xe,Xγ), and 711.1 5 from (30 Si,Xγ). Mult.: from $T_{1/2}$, $ΔJ^{\pi}$ and RUL.
1908.19	3-	844.37 <i>4</i>	100.0 10	1063.82 2)+ гт	E1]	B(E1)(W.u.)= $2.5 \times 10^{-5} + 8 - 5$
1900.19	3	044.57 4	100.0 10	1005.02 2	. [1	LIJ	E_{γ} : from $(n,n'\gamma)$. Other: 844.5 5 from $(^{30}Si,X\gamma)$.
							I_{γ} : from Coulomb excitation. Others: 100 14 from (30 Si,X γ), \approx 100 in (n,n' γ).
		1372.1 7	46 <i>4</i>	535.59 2	2+ []	E1]	B(E1)(W.u.)= $2.7 \times 10^{-6} + 10 - 6$
						•	E_{γ} : unweighted average of 1372.73 4 from $(n,n'\gamma)$ and 1371.4 5 from $(^{30}Si,X\gamma)$.
							I_{γ} : from Coulomb excitation. Other: 20 6 in 168 Er(30 Si,X γ), 36.1 15 from (n,n' γ).
		1908.2 5	4.6 10	0.0) ⁺ [I	E3]	B(E3)(W.u.)=48 +29-18
							E_{γ} : from $(n,n'\gamma)$. I_{γ} : from Coulomb excitation. Other: 3.6 7 from $(n,n'\gamma)$.
1977.34	$(1,2^+)$	513.2 [‡] 2	74 19	1463.93 2) +		17. Hom Confolio excitation. Other. 3.0 / Hom (II,II 7).
17//.34	(1,4)	913.70 9	74 19 79 4	1063.82 2			E_{γ} : weighted average of 913.2 5 from ¹⁰⁰ Nb β^- decay (1.5 s) and 913.72 9 from (n,n' γ).
		715.10 9	127	1003.02 2	-		I_{γ} : from (n,n' γ). Other: 70 30 from 100 Nb β^- decay (1.5 s).
		1281.8 [‡] 5	52 15	695.13) ⁺		
		1441.67 7	100 5	535.59 2			E_{γ} : weighted average of 1441.5 2 from ¹⁰⁰ Nb β^- decay (1.5 s) and 1441.69 7 from (n,n' γ). I_{γ} : from (n,n' γ). Other: 100 22 from ¹⁰⁰ Nb β^- decay (1.5 s).
2037.60	0^{+}	573.6 [‡] 2	6.6 9	1463.93 2	2+		

$\gamma(^{100}\text{Mo})$ (continued)

$\frac{E_i(\text{level})}{2037.60} \frac{J_i^{\pi}}{0^+} \frac{1}{1}$	E_{γ}^{\dagger} 1502.2 3	$-I_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	$\alpha^{\color{red} b}$	Comments
2037.60 0+ 1	1502.2 3				а	Comments
		100 7	535.59 2+	(E2)		E _γ : unweighted average of 1501.9 <i>I</i> from ¹⁰⁰ Nb β^- decay (1.5 s) and 1502.4 2 from (n,n' γ).
						Mult.: $\gamma \gamma(\theta)$ in 100 Nb β^- decay (1.5 s), ΔJ^{π} and RUL ($\beta \gamma$ coin in 100 Nb β^- decay (1.5 s) suggests 1504.6 level has $T_{1/2} < 50$ ns).
$2042.78 (2)^{+}$	435.5 [@] 2	24 [@] 5	1607.37 (3 ⁺)			,
	578.8 [@] 1	100 [@] 10	1463.93 2+			
	978.95 [@] 9	71 [@] 5	1063.82 2+			
	1507.5 [@] 4	29 [@] 7	535.59 2 ⁺			
2	2042.9 [@] 2	68 [@] 10	$0.0 0^{+}$			
2086.33 0+	622.5 [‡] 2	31 6	1463.93 2+	(E2)	0.003	Mult.: see comment for 1022.5γ.
	1022.5 3	100 12	1063.82 2+	(E2)		Mult.: $\gamma \gamma(\theta)$ in ¹⁰⁰ Nb β^- decay (1.5 s), ΔJ^{π} and RUL ($\beta \gamma$ coin in ¹⁰⁰ Nb β^- decay (1.5 s) suggests 1504.6 level has $T_{1/2} < 50$ ns).
	1550.5 [‡] <i>3</i>	14 2	535.59 2 ⁺			
	495.4 ^{‡d} 9	3.5 23	1607.37 (3 ⁺)			
	639.1 2	25 3	1463.93 2+			E_{γ} : weighted average of 639.0 3 from ¹⁰⁰ Nb β^- decay (2.99 s) and 639.2 2 from (n,n' γ).
	967.1 <i>1</i>	100 4	1136.02 4+			I _γ : weighted average of 22 3 from 100 Nb β^- decay (2.99 s) and 29 4 from (n,n'γ) E _γ : weighted average of 966.9 2 from 100 Nb β^- decay (2.99 s) and 967.1 1 from (n,n'γ).
						I_{γ} : from $(n,n'\gamma)$. Other: 100 11 from ¹⁰⁰ Nb β^- decay (2.99 s).
1	1567.7 2	53 18	535.59 2+			E_{γ} : weighted average of 1567.4 3 from ¹⁰⁰ Nb β ⁻ decay (2.99 s) and 1567.8 2 from (n,n' γ).
						I_{γ} : unweighted average of 35 5 from ¹⁰⁰ Nb β^- decay (2.99 s) and 70 4 from (n,n' γ).
	1125.8 [‡] 2	25 5	1063.82 2 ⁺			
	1653.9 2	100 8	535.59 2+			
	1137.4 1	100 7	1063.82 2+			
	1665.4 ^d 1	84 7	535.59 2+			Placement uncertain since a transition of similar energy is assigned to the 3129 level in $^{100}{\rm Nb}\beta^-$ decay.
	822.7 [@] 3	32 [@] 4	1463.93 2+			
	1750.8 [@] 2	100 [@] 6	535.59 2+			100
	682.1 4	100	1607.37 (3 ⁺)			E_{γ} : weighted average of 681.8 4 from ¹⁰⁰ Nb β ⁻ decay (2.99 s) and 682.5 5 from (³⁰ Si,X γ).
	538.6 [‡] 4	27 9	1771.44 (4+)			
	702.7 [‡] <i>3</i>	100 14	1607.37 (3 ⁺)			
	1246.4 [‡] <i>3</i>	48 7	1063.82 2+			
	856.3 [‡] <i>3</i>	44 18	1463.93 2+			
	1257.0 [‡] 6	100 9	1063.82 2+			
2339.8 (5 ⁻)	431.5 5	100 14	1908.19 3-			E_{γ},I_{γ} : from (30 Si, X_{γ}) only.

15

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f .	\int_{f}^{π} Mult.	δ	Comments
2339.8	(5-)	1203.6 5	82 9	1136.02 4	+		E_{γ} , I_{γ} : from (30 Si, X_{γ}) only.
2369.68	3-	1305.9 [@] 1	100 [@] 12	1063.82 2	+		
		1833.7 [@] 3	56 [@] 9	535.59 2	+		
2397.0	(1^{-})	1861.4 [@] d 3	100 [@]	535.59 2	+		
2416.58	(4^{+})	952.5 [‡] 3	21 3	1463.93 2	+		
	. ,	1280.7 3	100 11	1136.02 4		-0.7 +10-13	E _{γ} : weighted average of 1280.4 2 from 100 Nb β^- decay (2.99 s) and 1280.9 2 from (n,n' γ). I _{γ} : from 100 Nb β^- decay (2.99 s). Mult., δ : from $\gamma\gamma(\theta)$ in 100 Nb β^- decay (2.99 s).
2564.20	(4) ⁺	461.1 2	100 6	2103.13 4	+		E _{γ} : weighted average of 461.2 2 from ¹⁰⁰ Nb β ⁻ decay (2.99 s) and 461.0 2 from (n,n' γ).
		.1.					I_{γ} : from ¹⁰⁰ Nb β^- decay (2.99 s). Other: 100 21 from (n,n' γ).
		792.8 [‡] 2	51 7	1771.44 (4			E 11427 0 2 6 10027 0 2 1 (2.22.)
		1428.0 3	51 6	1136.02 4	T		E _{γ} : weighted average of 1427.9 3 from ¹⁰⁰ Nb β^- decay (2.99 s) and 1428.1 3 from (n,n' γ). I _{γ} : from ¹⁰⁰ Nb β^- decay (2.99 s). Other: 120 20 in (n,n' γ).
		1500.2 ^{#@d} 3	50 [@] 17	1062.02.0	+		I_{γ} : from ¹⁰⁰ Nb β decay (2.99 s). Other: 120 20 in (n,n γ).
2500.00	(1.0+)	1500.2" © 4 3 1516.8 @ 3	100 [@] 20	1063.82 2			
2580.89	$(1,2^+)$		80 [@] 13	1063.82 2			
2627.5	8+	1886.0 [@] <i>3</i> 780.3 <i>5</i>	100	695.13 0° 1847.17 6°			B(E2)(W.u.)=122 +23-17
2027.3	6	760.3 3	100	1647.17 0	(E2)		E _{γ} : weighted average of 781 I from (136 Xe,X γ) and 780.1 S from (30 Si,X γ). Mult.: from T _{1/2} , ΔJ^{π} and RUL.
2632.4	(1)	2632.4 <i>3</i>	100	0.0	+ (D) <mark>a</mark>		white. Holli $\Gamma_{1/2}$, ΔJ and KOL .
2652.87	$(4^+,5^+)$	549.7 [‡] 3	50 10	2103.13 4	` '		
2032.07	(1,5)	1045.8‡ 6	25 10	1607.37 (3			
		1516.8 [‡] 3	100 15	1136.02 4			
2662.6?		1598.8 ^{@d} 3	100 13	1063.82 2			E_{γ} : placement considered uncertain since a transition of similar energy is assigned to the 3062 level in ¹⁰⁰ Nb β^- decay.
2738.02	(2^{+})	1674.3 [@] 3	53 [@] 11	1063.82 2	+		is assigned to the 2002 tover in The p decay.
2730.02	(2)	2202.3 [@] 3	100 [@] 11	535.59 2			
2791.3		944.1 5	100	1847.17 6			E_{γ} : from (30 Si, $X\gamma$) only.
2822.21	2+	1358.3 [@] d 1	100	1463.93 2			
2843.2	(7^{-})	503.2 5	100 14	2339.8 (5			E_{γ},I_{γ} : from (30 Si, X_{γ}).
	. /	996.3 5	88 8	1847.17 6	+		E_{γ},I_{γ} : from (³⁰ Si,X γ).
2901.05	(1)	2901.0 <i>I</i>	100	$0.0 0^{\circ}$			
2905.75	(1)	2905.7 <i>1</i>	100	0.0	` '		20
2928.7	(7^{-})	588.8 5	100	2339.8 (5			E_{γ} : from (30 Si, X_{γ}).
2934.8	(4^{+})	1871 [‡] <i>1</i>	100	1063.82 2	+		

 $\gamma(^{100}\text{Mo})$ (continued)

 E_{γ} : from (γ, γ') only.

 E_{γ} : from (³⁰Si,X γ) only.

 E_{γ} , I_{γ} : from (30 Si, X_{γ}) only.

 E_{γ} , I_{γ} : from (30 Si, X_{γ}) only.

 E_{ν} : from (³⁰Si,X γ). E'_{ν} , I_{ν} : from (γ, γ') only.

 E_{ν}, I_{ν} : from (γ, γ') only.

 E_{γ} , I_{γ} : from (γ, γ') only.

 E_{γ} : from (30 Si, X_{γ}) only.

 E_{γ} : from (γ, γ') only.

Comments

 E_{γ} : weighted average of 2434.6 5 from ¹⁰⁰Nb β^- decay (1.5 s) and 2434.0 2 from (n,n' γ).

 E_{γ}^{\dagger}

1897.4^{@d} 3

1362.5‡ 10

1906.6‡ 5

2434.1 5

1397[‡] *1*

1432[‡] 1

1532.4[@]d 2

1978.4[@]d 6

1989.9[@]d 2

1598.7[‡] 3

2526.9‡ 4

3066.2 2

2534.6[‡] 4

1665.7[‡] 4

351.7 5

3198.3 4

3242.7 1

2595.3 3

2755.4 3

3290.1 *I*

370.5 5

456.1 5

739.5 5

3342.0 1

2419.8 *I*

2948.2 *1*

3483.9 1

3570.7 1

3599.8 2

3615.5 2

1779.3[‡] 5

3627.2 3

1800.1[‡] 6

2595.3 3

3658.7 3

3887.9 1

3896.6 1

3925.9 *1*

640.5 5

 E_i (level)

2961.2

2970.1

2996.31

3004.4

3039.4

3042.2?

3053.70

3062.60

3066.25

3070.2

3129.6

3143.0

3198.4

3242.76

3290.27

3299.2

3342.06

3367.0

3483.82

3570.77

3599.87

3615.57

3626.5

3627.3

3647.3

3783.5

3887.98

3896.68

3925.98

3658.96

2+

4+

 $(4^+,3^-)$

 $(4^+,3^-)$

 (4^{+})

(≤4)

(1)

(1)

1

1(+)

 (9^{-})

(1)

 (10^+)

 (1^{+})

(1)

(1)

(1)

 (5^{-})

1(+)

1

(1)

(1)

 $(4^+,5,6)$

 $(0^+,1,2)$

 $(0^+,1,2)$

 $(0^+,1,2)$

 I_{γ}^{\dagger}

7 5

28 10

100 8

100[@]

100

100

100[@]

100[@]

62 15

100 15

100

100

100

100

100

100

21 6

21 4

100 6

66 13

100 17

11.1 12

12.4 12

100.0 20

100

100

100

100

100

100

100

100

20 5

100 5

100

100[@]

 J_f^{π}

Mult.

 $(D)^{a}$

 $(D)^{a}$

 $(D)^a$

 $(D)^{a}$

 $(D)^{a}$

 $(D)^{a}$

 D^a

 $(D)^{a}$

 D^a

 D^a

 D^a

 $(D)^a$

 $(D)^{a}$

 D^a

 D^a

 \mathbf{E}_f

1063.82 2+

1607.37 (3⁺)

1063.82 2+

535.59 2+

1463.93 2+

1607.37 (3⁺)

1607.37 (3⁺)

1063.82 2+

1063.82 2+

1463.93 2+

535.59 2+

535.59 2+

1463.93 2+

2791.3

2928.7

2843.2

0.0 0_{+}

2627.5 8+

1063.82 2+

535.59 2+

 $0.0 0^{+}$

 $0.0 0^{+}$

 $0.0 0^{+}$

 $0.0 0^{+}$

 $0.0 0^{+}$

 $0.0 0^{+}$

 $0.0 0^{+}$

 $0.0 0^{+}$

0.0 0^{+}

1847.17 6⁺

1847.17 6⁺

1063.82 2+

3143.0

 $0.0 0^{+}$

 $0.0 0^{+}$

 $0.0 0^{+}$

695.13 0+

535.59 2+

 $0.0 0^{+}$

 (7^{-})

 (7^{-})

 $^{100}_{42}\mathrm{Mo}_{58}$ -17

E d D	Τ .Τ.	- †	. †		***	36.1	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
4032.7	(11^{-})	733.5 5	100	3299.2	(9^{-})		E_{γ} : from (30 Si, X_{γ}) only.
4062.6	(12^+)	695.6 <i>5</i>	100	3367.0	(10^+)		E_{γ} : weighted average of 696 1 from (136 Xe,X γ) and 695.5 5 from (30 Si,X γ).
4081.59	1	4081.5 <i>1</i>		0.0	0^{+}	D^a	
4156.5	1	4156.4 <i>3</i>		0.0	0_{+}	D^a	
4217.60	1	4217.5 <i>1</i>		0.0	0_{+}	D^a	
4232.10	(1)	4232.0 2		0.0	0_{+}	(D) ^a	
4329.90	1	4329.8 2		0.0	0_{+}	D^a	
4516.81	1	4516.7 <i>1</i>		0.0	0_{+}	D^a	
4565.51	1	4565.4 <i>1</i>		0.0	0_{+}	D^a	
4583.11	1	4583.0 <i>1</i>		0.0	0_{+}	D^a	
4594.91	1	4594.8 <i>1</i>		0.0	0_{+}	D^a	
4689.02	1	4688.9 <i>1</i>		0.0	0_{+}	D^a	
4730.32	1	4730.2 2		0.0	0^{+}	D^a	
4875.2	(14^{+})	812.6 5	100	4062.6	(12^+)		E_{γ} : weighted average of 813 <i>I</i> from (136 Xe,X γ) and 812.5 5 from (30 Si,X γ).
4939.8	(13^{-})	907.1 5	100	4032.7	(11^{-})		E_{γ} : from (30 Si, X_{γ}) only.
4989.63	ì	4989.5 2		0.0	0+	D^a	
5007.33	1	5007.2 2		0.0	0^{+}	D^a	
5034.54	1	5034.4 2		0.0	0_{+}	D^a	
5062.9	(2)	5062.8 <i>3</i>		0.0	0_{+}	$(Q)^{a}$	
5071.24	(1)	5071.1 2		0.0	0_{+}	(D) ^a	
5101.3	1	5101.2 6		0.0	0_{+}	D^a	
5109.3	(1)	5109.2 9		0.0	0_{+}	(D) ^{<i>a</i>}	
5136.04	(1)	5135.9 <i>1</i>		0.0	0_{+}	(D) ^{<i>a</i>}	
5158.3	1	5158.2 <i>3</i>		0.0	0_{+}	D^a	
5169.6	1	5169.5 <i>3</i>		0.0	0_{+}	D^a	
5181.8	1	5181.7 <i>3</i>		0.0	0_{+}	D^a	
5186.9	1	4651 2	84 13	535.59			
		5187 2	100 <i>15</i>	0.0	0_{+}	D^a	
5190.4	1	5190.3 <i>5</i>		0.0	0_{+}	D^a	
5204.6	(1)	5204.5 <i>4</i>		0.0	0+	(D) ^a	
5216.0	(1)	5215.9 8		0.0	0+	(D) ^a	
5271.2	1	5271.1 6		0.0	0+	\mathbf{D}_{a}^{a}	
5277.6	1	5277.5 3		0.0	0+	\mathbf{D}_{a}^{a}	
5310.5	1	5310.3 4		0.0	0+	D_a^a	
5335.65	1	5335.5 2		0.0	0+	D_a^a	
5347.85	1	5347.7 1		0.0	0+	D_a^a	
5359.8	1	5359.6 3		0.0	0+	\mathbf{D}^{a}	
5369.6	1	5369.4 6		0.0	0+	\mathbf{D}^{a}	
5382.5	1	5382.3 10		0.0	0+	\mathbf{D}^{a}	
5390.3	1	5390.1 6		0.0	0+	\mathbf{D}^{a}	
5402.26	1	5402.1 <i>1</i>		0.0	0+	D^a	
5412.6	1	5412.4 8		0.0	0+	\mathbf{D}^{a}	
5435.5	1	5435.3 6		0.0	0_{+}	D^a	

	$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	Comments
	5442.9	1	5442.7 6	_	0.0 0+	$\overline{\mathrm{D}^{a}}$	
	5449.6	(1)	5449.4 6		0.0 0+	(D) <mark>a</mark>	
	5502.7	1	5502.5 4		$0.0 \ 0^{+}$	$\mathbf{\hat{D}}^{\hat{a}}$	
	5519.4	1	5519.2 <i>4</i>		$0.0 0^{+}$	D^a	
	5532.2	1	5532.0 5		$0.0 \ 0^{+}$	D^a	
	5547.9	1	5547.7 <i>3</i>		$0.0 \ 0^{+}$	D^a	
	5554.4	1	5554.2 11		$0.0 \ 0^{+}$	D^a	
	5584.9	1	5584.7 <i>4</i>		$0.0 \ 0^{+}$	D^a	
	5596.8	1	5596.6 7		$0.0 \ 0^{+}$	D^a	
	5604.7	1	5604.5 12		$0.0 0^{+}$	D^a	
	5612.67	1	5612.5 <i>1</i>		$0.0 0^{+}$	D^a	
	5618.6	1	5618.4 <i>3</i>		$0.0 0^{+}$	D^a	
	5656.5	(2)	5656.3 <i>5</i>		$0.0 0^{+}$	$(Q)^{a}$	
	5670.67	1	5670.5 1		$0.0 0^{+}$	D^a	
	5680.9	(1)	5680.7 7		$0.0 \ 0^{+}$	(D) ^{<i>a</i>}	
	5686.5	1	5686.3 5		$0.0 0^{+}$	D^a	
	5715.9	1	5715.7 <i>3</i>		$0.0 0^{+}$	D^a	
	5725.3	1	5725.1 <i>3</i>		$0.0 0^{+}$	D^a	
	5732.9	1	5732.7 <i>3</i>		$0.0 0^{+}$	D^a	
	5742.6	1	5742.4 7		$0.0 \ 0^{+}$	D^a	
	5764.0	(1)	5763.8 <i>15</i>		$0.0 0^{+}$	(D) ^a	
	5770.4	1	5770.2 <i>4</i>		$0.0 0^{+}$	D_a^a	
	5798.2	1	5798.0 <i>3</i>		$0.0 0^{+}$	D_a^a	
	5808.98	1	5808.8 <i>1</i>		$0.0 0^{+}$	D^a	
	5826.5	(2)	5826.3 6		0.0 0+	$(Q)^{a}$	20 127
	5840.2	(16^{+})	965 <i>1</i>	100	4875.2 (14+)		E_{γ} : from (30 Si, $X\gamma$) and (137 Xe, $X\gamma$).
	5840.7	1	5840.5 6		$0.0 0^{+}$	D_a^a	
	5879.39	1	5879.2 2		$0.0 0^{+}$	D^a	
	5901.0	1	5900.8 6		$0.0 \ 0^{+}$	\mathbf{D}^{a}	
	5947.79	1	5947.6 2		$0.0 \ 0^{+}$	\mathbf{D}^{a}	
	5957.2	1	5957.0 6		$0.0 0^{+}$	D^a	
	5964.0	1	5963.8 6		$0.0 \ 0^{+}$	\mathbf{D}^a	
	5972.99	1	5972.8 2		$0.0 0^{+}$	D^a	
	5988.9	1	5988.7 4		$0.0 \ 0^{+}$	D ^a D ^a	
	6009.6	1	6009.4 4		$0.0 \ 0^{+}$		
	6019.5	(1)	6019.3 11		$0.0 0^{+}$	(D) ^a D ^a	
	6035.5	1	6035.3 8		$0.0 0^{+}$		
	6061.3	(2)	6061.1 9		$0.0 0^{+}$	(Q) ^a D ^a	
	6065.9 6082.9	1	6065.7 7		$0.0 0^{+} \ 0.0 0^{+}$	D^a	
		1	6082.7 3		$0.0 \ 0^{+}$	D ^a	
	6089.3 6122.5	1 1	6089.1 <i>4</i> 6122.3 <i>5</i>		$0.0 0^{+}$	D^a	
	6122.5	1	6122.3 3 6133.4 7		$0.0 \ 0^{+}$	D ^a	
1	0133.0	1	0133.4 /		0.0	ש.	

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	δ		Comments	
6147.1	1	6146.9 9		0.0 0+	$\overline{\mathrm{D}^a}$				
6174.0	1	6173.8 <i>5</i>		$0.0 0^{+}$	D^a				
6194.51	(1)	6194.3 <i>1</i>		$0.0 0^{+}$	(D) ^{<i>a</i>}				
6249.4	1	6249.2 5		$0.0 0^{+}$	D^{a}				
6257.61	1	6257.4 2		$0.0 0^{+}$	D^a				
6270.5	1	6270.3 8		$0.0 0^{+}$	D^a				
6278.71	1	6278.5 <i>1</i>		$0.0 0^{+}$	D^a				
6293.1	1	6292.9 <i>4</i>		0.0 0+	D^a				
6310.3	(1)	6310.1 <i>15</i>		$0.0 0^{+}$	(D) ^a				
6321.2	1	6321.0 9		$0.0 0^{+}$	\mathbf{D}^{a}				
6327.6	1	6327.4 9		$0.0 0^{+}$	D^a				
6337.5	1	6337.3 4		$0.0 0^{+}$	\mathbf{D}^{a}				
6354.32	1	6354.1 2		$0.0 0^{+}$	D^a				
6365.6	(1)	6365.4 19		$0.0 0^{+} \ 0.0 0^{+}$	D^a				
6375.6 6402.0	1 1	6375.4 <i>5</i> 6401.8 <i>8</i>		$0.0 0^{+} \ 0.0 0^{+}$	D^a				
6414.3	1	6414.1 <i>4</i>		$0.0 0^{+}$	D ^a				
		$3788 \frac{d}{4}$	7.0		D				
6419.4	1-	3788 ⁴ 4 4385 <i>4</i>	7 2	2632.4 (1) 2037.60 0 ⁺					
			19 4						
		4444 ^d 4	6 2	1977.34 (1,2		0_			
		5355 4	11 3	1063.82 2+	$(E1+M2)^{\&}$	+0.21 ^{&} 12	$B(E1)(W.u.)=1.7\times10^{-6}+60-11$		
		5723 4	0.8 4	695.13 0 ⁺					
		5883 4	1.2 6	535.59 2+	0-		-		
		6418 <i>4</i>	100 15	0.0 0+	E1&		$B(E1)(W.u.)=9\times10^{-5} +22-4$		
6421.4	1	6421.2 6		$0.0 0^{+}$	D^a				
6426.6	(1)	6426.4 9		$0.0 0^{+}$	D^a				
6434.1	1	6433.9 5		$0.0 0^{+}$					
6459.0	1	6458.8 6		$0.0 0^{+} \ 0.0 0^{+}$	D ^a D ^a				
6473.5 6483.2	1 (1)	6473.3 <i>6</i> 6483 <i>2</i>		$0.0 0^{+} \ 0.0 0^{+}$	$(D)^a$				
6483.2 6497.6	(1) 1	6483 <i>2</i> 6497.4 <i>6</i>		$0.0 0^{+}$	D^a				
		3445^{d} 3	10.3		D				
6518.5	1-	3445 ^a 3 4477 3	18 3	3066.25 (1)					
		5055 3	23 <i>5</i> 28 <i>5</i>	2042.78 (2) ⁺ 1463.93 2 ⁺					
		5455 <i>3</i>	8 2	1063.82 2 ⁺					
		5823 3	10 2	695.13 0 ⁺					
		5982 3	32 5	535.59 2+					
		6517 3	100 15	$0.0 0^{+}$	E1 &		$B(E1)(W.u.)=21\times10^{-5}+35-10$		
6519.1	1	6518.9 5	100 13	0.0 0+	D^a		$D(E1)(W.u.)=21\times10^{-1}+33-10^{-1}$		
6526.6	1	6526.4 3		0.0 0 $0.0 0^{+}$	D^a				
6570.2	1	6570.0 4		0.0 0 $0.0 0^{+}$	D ^a				
6597.0	(2)	6596.8 4		$0.0 0^{+}$	$(Q)^a$				
0591.0	(4)	0390.0 4		0.0 0	(4)				

$\gamma(^{100}\text{Mo})$ (continued)

E_i (level)	J_i^π	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	E_f	${\rm J}_f^\pi$	Mult.
6622.3	(1)	6622.1 4		0.0	0+	$(D)^{a}$
6628.3	(2)	6628.1 5		0.0	0+	$(Q)^a$
6641.0	1	6640.8 <i>3</i>		0.0	0+	$\widetilde{\mathrm{D}^a}$
6658.2	1	6658.0 4		0.0	0^{+}	D^a
6669.14	1	6668.9 2		0.0	0+	D ^a
6685.3	1	6685.1 <i>4</i>		0.0	0^{+}	D^a
6764.1	1	6763.9 8		0.0	0^{+}	D^a
6772.7	1	6772.5 8		0.0	0^{+}	D^a
6790.6	1	6790.4 10		0.0	0^{+}	D^a
6797.5	(1)	6797.3 9		0.0	0^{+}	(D) ^a
6807.9	(2)	6807.7 10		0.0	0^{+}	$(Q)^a$
6829.5	(1)	6829.2 <i>3</i>		0.0	0^{+}	(D) ^{<i>a</i>}
6844.6	(2)	6844.3 <i>11</i>		0.0	0_{+}	$(Q)^a$
6851.3	1	6851.0 <i>15</i>		0.0	0_{+}	D^{a}
6870.0	(1)	6869.7 8		0.0	0_{+}	(D) <mark>a</mark>
6886.5	1	6886.2 8		0.0	0_{+}	D^a
6893.2	1	6892.9 <i>4</i>		0.0	0^{+}	D^a
6906.1	1	6905.8 <i>6</i>		0.0	0_{+}	D^a
6912.9	(1)	6912.6 <i>11</i>		0.0	0_{+}	(D) ^{<i>a</i>}
6919.5	1	6919.2 <i>13</i>		0.0	0_{+}	$\mathbf{\hat{D}}^{\hat{a}}$
6924.9	(1)	6924.6 <i>10</i>		0.0	0_{+}	(D) ^{<i>a</i>}
6934.2	(1)	6933.9 12		0.0	0_{+}	(D) ^a
6949.2	(18^{+})	1109 <i>1</i>	100	5840.2	(16^{+})	
6949.9	1	6949.6 <i>11</i>		0.0	0_{+}	D^a
6957.7	(2)	6957.4 11		0.0	0_{+}	$(Q)^a$
6974.2	1	6973.9 8		0.0	0+	D^{a}
6981.1	(2)	6980.8 <i>12</i>		0.0	0+	$(Q)^{a}$
6994.5	(2)	6994.2 5		0.0	0+	$(Q)^{a}$
7001.2	1	7000.9 5		0.0	0+	D_a^a
7018.3	1	7018.0 <i>6</i>		0.0	0+	D_a^a
7032.1	1	7031.8 5		0.0	0+	D^a
7037.8	(1)	7037.5 10		0.0	0+	$(D)^a$
7060.2	1	7059.9 11		0.0	0+	\mathbf{D}_{a}^{a}
7068.1	1	7067.8 <i>3</i>		0.0	0+	D_a^a
7095.4	1	7095.1 5		0.0	0+	D^a
7103.5	(1)	7103.2 7		0.0	0+	$(D)^a$
7115.3	1	7115.0 3		0.0	0+	\mathbf{D}^{a}
7136.6	1	7136.3 5		0.0	0+	D^a
7171.7	(1)	7171.4 7		0.0	0+	$(D)^{a}$
7181.5	(1)	7181.2 9		0.0	0+	$(D)^{a}$
7194.4	1	7194.1 3		0.0	0^{+}	\mathbf{D}^{a}
7204.0	1	7203.7 7		0.0	0+	D^a
7219.4	(2)	7219.1 9		0.0	0_{+}	$(Q)^{a}$

 $\gamma(^{100}\text{Mo})$ (continued)

Comments

 $B(E1)(W.u.)=11\times10^{-5} +7-4$; B(M2)(W.u.)=0.04 +7-3

 $B(E1)(W.u.)=9\times10^{-5}+6-3$

δ

-0.06 $^{\&}$ 2

 E_{γ}^{\dagger}

7225.1 13

7299.3 5

7312.0 3

7330.5 3

7357.4 6

7380.0 7

7403.0 8

7470.7 4

7486.9 7

7494.5 11

7503.2 12

7525.8 6

7558.8 *15*

7576.9 9

7606.6 4

4569^d 4

5007^d 2

5597 4

5604 4

6176 2

6574 2

7102 2

7637 2

7744.2 8

7758.1 10

7771.2 12

7796.6 14

7830.9 8

7862.8 7

7875.1 6

7886.9 10

7935.4 10 7955.4 6

7987.7 7

8001.7 6

8033.2 8

8051.9 6

8063.4 9

8082.9 16

8095.5 11

7546 2

7450.3 10

 $E_i(level)$

7225.4

7299.6

7312.3

7330.8

7357.7

7380.3

7403.3

7450.6

7471.0

7487.2

7494.8

7503.5

7526.1

7546.3

7559.1

7577.2

7606.9

7638.6

7744.5

7758.4

7771.5

7796.9

7831.2

7863.1

7875.4

7887.2

7935.7

7955.7

7988.0

8002.0

8033.5

8052.2

8063.7

8083.3

8095.9

(1)

(1)

(1)

(2)

1

(1)

1-

(1)

(1)

 I_{γ}^{\dagger}

4 1

6 2

5 1

5 1

4 1

15 *3*

101 *15*

100 15

 E_f

0.0

0.0

0.0 0+

0.0

0.0 0^{+}

0.0 0^{+}

0.0 0^{+}

0.0 0^{+}

0.0 0^{+}

0.0 0^{+}

0.0 0^{+}

0.0 $0.0 0^{+}$

0.0 0^{+}

0.0 0^{+}

0.0 0^{+}

3066.25 (1)

2632.4 (1)

 $2042.78 (2)^{+}$

2037.60 0+

1463.93 2+ 1063.82 2+

535.59 2+

0.0 0^{+}

0.0

0.0 0^{+}

0.0 0^{+} 0^{+}

0.0

0.0 0^{+}

0.0

0.0 0^{+}

0.0 0^{+}

0.0 0^{+}

0.0

0.0 0^{+}

0.0 0^{+}

0.0 0^{+}

0.0

0.0 0^{+}

0.0 0+

 $0.0 0^{+}$

 0^{+}

 0_{+}

 0^{+}

 0^{+}

 $0.0 0^{+}$

 \mathbf{J}_f^{π}

 0^{+}

 0^{+}

 0^{+}

 0^{+}

Mult.

 $(D)^a$

 D^a

 D^a

 D^a

 D^a

 $(D)^a$

 D^a D^a

 D^a

 D^a

 $(D)^a$

 $(Q)^{a}$

 $(D)^a$

 D^a

 D^a

 $(E1+M2)^{&}$

E1&

 D^a

 $(D)^{a}$

 \mathbf{D}^{a}

 D^a

 D^a

 $(D)^a$

 D^a

 D^{a}

 D^a

 D^a

 D^a

 D^a

 D^a

 D^a

 D^a

 D^a

 D^a

 D^a D^a

$\gamma(^{100}\text{Mo})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$E_f \underline{J_f^{\pi}}$	Mult.
8108.1	1	8107.7 12		0.0 0+	$\overline{\mathrm{D}^a}$	8238.6	1	8238.2 9	$0.0 \ 0^{+}$	$\overline{\mathrm{D}^a}$
8114.2	(20^+)	1165 <i>1</i>	100	6949.2 (18 ⁺)		8257.1	1	8256.7 <i>14</i>	$0.0 \ 0^{+}$	D^a
8127.7	1	8127.3 <i>10</i>		$0.0 0^{+}$	D^a	8269.6	1	8269.2 <i>6</i>	$0.0 \ 0^{+}$	D^a
8194.4	1	8194.0 9		$0.0 0^{+}$	D^a	8283.6	1	8283.2 6	$0.0 \ 0^{+}$	D^a
8208.8	1	8208.4 <i>6</i>		$0.0 0^{+}$	D^a	8294.5	(1)	8294.1 <i>13</i>	$0.0 \ 0^{+}$	(D) ^a
8218.2	(1)	8217.8 <i>6</i>		$0.0 0^{+}$	(D) ^{<i>a</i>}					

[†] For γ-rays from low-spin (J \leq 6 or so) up to 3647, values are from weighted averages of E γ and I γ branching ratios values available from 100 Nb β^- decay (1.5 s), $^{100}\text{Nb}\,\beta^-$ decay (2.99 s), and $^{100}\text{Mo}(n,n'\gamma)$, when values of comparable precision are available from more than one datasets. For γ rays from high-spin (J>6) levels, values are mainly from $^{168}\text{Er}(^{30}\text{Si},X\gamma)$. For levels above 3647, values are from (γ,γ') . Exceptions are noted. Intensities are photon branching ratios.

[‡] γ reported in ¹⁰⁰Nb β ⁻ decay, but not in $(n,n'\gamma)$.

[#] Placement considered uncertain by evaluators since no such transition is reported in 100 Nb β^- decay.

[@] From $(n,n'\gamma)$ only.

[&]amp; From $\gamma(\theta, \text{lin pol})$ in (γ, γ') .

^a From $\gamma(\theta)$ in (γ, γ') .

b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Multiply placed.

^d Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	D. De Frenne	NDS 110,1745 (2009)	31-Dec-2008

 $Q(\beta^-)=1000\ 13$; $S(n)=8125\ 9$; $S(p)=11971\ 10$; $Q(\alpha)=-4703\ 12$ Note: Current evaluation has used the following Q record 1008 $Q(\beta^-)=996\ 14\ (2006Ha32)$ with Penning trap setup at IGISOL.

2012Wa38 228116 2011904 27-4695 29 2003Au03.

¹⁰²Mo Levels

Cross Reference (XREF) Flags

E(level)@	$J^{\pi \ddagger \#}$	$T_{1/2}^{\dagger}$	XREF	Comments
0.0	0+	11.3 min 2	ABCDEFGHI	$\%\beta^{-}=100$
				T _{1/2} : weighted average of: 11.2 min 3 (1980De06), 11.8 min 4 (1976Ki11), 11.0 min 5 (1966Ga28), 11.0 min 3 (1954Wi32), 11.5 min 5 (1954Fl21).
296.610 ^{&} 4	2+	125 ps 4	ABCDEFGHI	$β_2$ = 0.311 5(2001Ra27) μ=+0.84 $I4$ (1985Me13,1987Bo17,2005St24,1989Ra17) $T_{1/2}$: from $βγ$ (t) on mass separated fission products (1991Li39). and time-integral perturbed angular correlations with Gammasphere (2005Sm08). Other: 114 ps $β$ from $β$ 0Mo($β$ 0, $β$ 0, $β$ 0, see also 2001Ra27. Other: 0.28 $β$ 1 deduced from $β$ 1/2 (1991Li39). β1/ $β$ 1. $β$ 1/ $β$ 2. $β$ 2. $β$ 3/ $β$ 3/ $β$ 4 deduced from $β$ 1/2 (1991Li39). β2/ $β$ 3/ $β$ 3/ $β$ 4 deduced from $β$ 1/2 (1991Li39). β3/ $β$ 5/ $β$ 6/ $β$ 7/ $β$ 7/ $β$ 8/ $β$ 9/ $β$ 9
698.26 ^d 12	0_{+}	28 ps 11	AB DEFGH	J^{π} : L(t,p)=0.
743.73 ^{&} 5	4+	12.5 ps 25	BCDE G I	$β_2$ =0.27 3 (1991Li39) $β_2$: Deduced from $T_{1/2}$ (1991Li39). J^{π} : L(t,p)=(4) and J=4 from $γγ(θ)$ in ¹⁰² Nb $β$ ⁻ decay (4.3 s).
847.89 ^c 6	2+		AB DEFGH	J^{π} : L(t,p)=2.
1144.5 <mark>d</mark> 10	(2^{+})		G	No detailed arguments given for J^{π} assignment (2004Hu02) but γ to 0 ⁺ .
1245.54 9	(3^+)		AB D	J^{π} =(3 ⁺) based on the γ decay pattern in ¹⁰² Nb β ⁻ decay (4.3 s) (1988GiZX).
1249.74 9	2+		H	J^{π} : L(t,p)=2.
1327.91 ^{&} <i>10</i>	6+		BCDE G I	
1334 5	0+		H	J^{π} : L(t,p)=0.
1398.39 ^c 8	(4 ⁺) 2 ⁺		B D G	J^{π} : from (t,p $\gamma\gamma$). Based on systematics and branching pattern.
1608 2 1616.89 <i>12</i>	2.		H B	J^{π} : $L(t,p)=2$.
1747.76 <i>12</i>			В	
1869.76 <i>13</i>			В	
1881 5	3-		Н	J^{π} : L(t,p)=3.
2010.4 ^c 10	(6^{+})		G	No detailed arguments given for J^{π} assignment by 2004Hu02 but γ to (4 ⁺).
2018.82 ^{&} <i>14</i>	8+	1.8 ps <i>3</i>	CD G I	
2108 3	1-		Н	$J_{\underline{-}}^{\pi}$: L(t,p)=1.
2122 5	0+		H_	$J^{\pi}: L(t,p)=0.$
2147.5 ^a 5	(5^{-})		I	

¹⁰²Mo Levels (continued)

E(level)@	$J^{\pi \ddagger \#}$	T _{1/2} †	XR	EF	Comments
2239 5	(4 ⁺)			Н	$\overline{J^{\pi}}: L(t,p)=(4).$
2248 7	2+			Н	J^{π} : L(t,p)=2.
2305 <i>3</i>	2+			Н	J^{π} : L(t,p)=2.
2321 8	2+			Н	J^{π} : L(t,p)=2.
2366 <i>I</i>	2+			Н	J^{π} : L(t,p)=2.
2412 <i>4</i>	_			Н	- · -(¬¬¬)
2418.12 25	(10^{+})		D		J^{π} : suggested from level at 2416 keV in (t,p) and (t,p $\gamma\gamma$) results in which a 399.3 γ from an observed γ -ray triplet at 400-keV decays to (8 ⁺) level.
2460.3 ^b 5	(6^{-})			I	J^{π} : $J^{\pi}=(5^{-})$ suggested in ²³⁸ U(α ,F γ).
2480.94 8	(3+)		B D		J^{π} : from $\gamma\gamma(\theta)$ in ¹⁰² Nb β^{-} decay (4.3 s). Absence in (t,p) suggests positive
2495 4	2+				parity.
2485 <i>4</i>				H	J^{π} : L(t,p)=2.
2502 <i>1</i>	4 ⁺			H	J^{π} : L(t,p)=4.
2522 2	3-			H	J^{π} : L(t,p)=3.
2547.8 ^a 5	(7^{-})			I	J^{π} : $J^{\pi}=(4^+)$ suggested in ²³⁸ U(α ,F γ).
2608 1	4.4			H	TT T () A
2659 <i>4</i>	4 ⁺			H	J^{π} : L(t,p)=4.
2684 7	3-			Н	J^{π} : L(t,p)=3.
2704 <i>4</i>	0+			H	J^{π} : L(t,p)=0.
2742 2				H	240
2790.3 <mark>&</mark> 6	(10^{+})	1.03 ps <i>18</i>	C	GΙ	J^{π} : from $\gamma\gamma$ and band structure in ²⁴⁸ Cm SF.
					$T_{1/2}$: from Doppler-profile method in ²⁴⁸ Cm SF (1996Sm04).
2797 <i>4</i>				H	
2828.8 ^b 8	(8^{-})			G	J^{π} : J^{π} =(7 ⁻) suggested in ²³⁸ U(α ,F γ).
2851 <i>1</i>	, ,			Н	· · · · · · · · · · · · · · · · · · ·
2872 <i>3</i>	2+			Н	J^{π} : L(t,p)=2.
2943 <i>4</i>	0^{+}			Н	J^{π} : L(t,p)=0.
2988 11	4+			Н	J^{π} : L(t,p)=4.
3005.9 ^a 11	(9^{-})			I	J^{π} : $J^{\pi} = (6^+)$ suggested in ²³⁸ U(α ,F γ).
3010 7	2+			Н	J^{π} : L(t,p)=2.
3063 2	4+			Н	J^{π} : $L(t,p)=4$.
3091 <i>3</i>	3-			Н	J^{π} : L(t,p)=3.
3125 <i>3</i>	2+			Н	J^{π} : L(t,p)=2.
3162 5	4+			Н	J^{π} : L(t,p)=4.
3193 7	2+			Н	J^{π} : L(t,p)=2.
3248 <i>1</i>				H	
3369.5 ^b 13	(10^{-})			G	J^{π} : $J^{\pi}=(9^{-})$ suggested in ²³⁸ U(α ,F γ).
3614.9 ^a 15	(11^{-})			I	J^{π} : $J^{\pi} = (8^+)$ suggested in $^{238}U(\alpha, F\gamma)$.
3625.2 ^{&} 12					$S: S \to (0)$ suggested in $O(a, i, \gamma)$.
	(12^+)	0.66		GΙ	748 G GE E II : 2007 02 207 I V
3632.3 8	(12+)	0.66 ps <i>12</i>	С		J^{π} : from $\gamma\gamma$ and band structure in ²⁴⁸ Cm SF. Following 2007La03 3625 keV level is member of ΔJ =2 g.s. Yrast band and not 3622.3 keV level.
4053.1 16	(11^{-})			G	
4363.7 18	(10^{+})			G	
4504.4 ^{&} 15	(14^{+})			G	
4856.8 <i>19</i>	(13^{-})			G	
5230.8 <i>21</i>	(12^{+})			G	
5470.9 <mark>&</mark> <i>18</i>	(16^+)			G	
5764.6 22	(15^{-})			G	
6200.5 23	(14^{+})			G	

[†] Unless noted otherwise, determined by the recoil-distance Doppler-shift method (1975Bo39) from 100 Mo(18 O, 16 O γ), except for g.s. and 296 level.

¹⁰²Mo Levels (continued)

- [‡] Unless noted otherwise, from observed band structure and systematics in $^{238}U(\alpha,F\gamma)$ and $^{168}Er(^{30}Si,x\gamma)$.
- [#] After contact with S.Lalkowski,(November 14, 2007), one of authors of the 168Er(30Si,X γ) experiment (2007La03), the evaluator got convincing evidence for the correctness of the level scheme and J^{π} assignments for members of band(β) presented by (2007La03) over these of (2004Hu02) in ²³⁸U(α ,F γ). The interpretation of the observed band structure given by (2007La03)is a.o. based on systematics of very reliable data on ^{98,100}Mo and ¹⁰⁴Ru. Nevertheless an experimental confirmation of the results of 2007La03 would be very welcome.
- [®] The level energies were calculated using a least-squares procedure using the Adopted Gammas.
- & Band(A): Probable member of a $\Delta J=2$ g.s. Yrast band. (2004Hu02,2007La03).
- ^a Band(B): γ sequence based on (5⁻) (2007La03).
- ^b Band(C): γ sequence based on (6⁻) (2007La03).
- ^c Band(D): γ band (2004Hu02).
- ^d Band(E): β band (2004Hu02).

$\gamma(^{102}Mo)$

296.610 2+ 296.611 4 100 0.0 0+ [E2] 0.0257 B(E2)(W.u.)=74 9 698.26 0+ 401.89 13 100 296.610 2+ [E2] B(E2)(W.u.)=70 30 696.6 0.0 0+ E0 I(696)/I(401)=4.2×10 ⁻³ (1989Es01). 743.73 4+ 447.13 6 100 296.610 2+ [E2] B(E2)(W.u.)=89 18 847.89 2+ 551.63 8 100 5 296.610 2+ 847.37 9 58 6 0.0 0+ 1144.5 (2+) 446.2 100 698.26 0+ 1245.54 (3+) 397.69 20 19. 4 847.89 2+ 948.85 11 100. 11 296.610 2+ 1249.74 2+ 401.7 3 25. 13 847.89 2+ 552.00 20 50. 13 698.26 0+ 953.20 20 100. 25 296.610 2+ 1249.10 20 75. 25 0.0 0+ 1249.10 20 75. 25	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{^{\ddag}}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	α [@]	Comments
698.26 0+ 401.89 13 100 296.610 2+ [E2] B(E2)(W.u.)=70 30 696.6 0.0 0+ E0 I(696)/I(401)=4.2×10 ⁻³ (1989Es01). 743.73 4+ 447.13 6 100 296.610 2+ [E2] 847.89 2+ 551.63 8 100 5 296.610 2+ 847.37 9 58 6 0.0 0+ 1144.5 (2+) 446.2 100 698.26 0+ 1245.54 (3+) 397.69 20 19. 4 847.89 2+ 948.85 11 100. 11 296.610 2+ 1249.74 2+ 401.7 3 25. 13 847.89 2+ 552.00 20 50. 13 698.26 0+ 953.20 20 100. 25 296.610 2+ 1249.10 20 75. 25 0.0 0+ 1327.91 6+ 584.19 8 100 743.73 4+ 1398.39 (4+) 550.25 15 94. 5 847.89 2+ 654.64 9 100. 7 743.73 4+ 1102.40 20 44. 11 296.610 2+ 1102.40 20 44. 11 296.610 2+ 1102.40 20 44. 11 296.610 2+ 1102.40 20 44. 11 296.610 2+ 1102.40 20 78. 22 1249.74 2+	296.610	2+	296.611 <i>4</i>	100	0.0	0+	[E2]	0.0257	B(E2)(W.u.)=74 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
743.73									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	743.73	4+	447.13 6	100	296.610	2+	[E2]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	847.89	2+	551.63 8	100 5	296.610	2+			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1144.5	(2^{+})	446.2		698.26	0^{+}			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					847.89	2+			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ,	948.85 11	100. <i>11</i>	296.610	2+			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1249.74	2+	401.7 3	25. 13	847.89	2+			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			506.10 20	25. 13	743.73	4+			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			552.00 20	50. <i>13</i>					
1327.91 6 ⁺ 584.19 8 100 743.73 4 ⁺ 1398.39 (4 ⁺) 550.25 15 94. 5 847.89 2 ⁺ 654.64 9 100. 7 743.73 4 ⁺ 1102.40 20 44. 11 296.610 2 ⁺ 1616.89 367.30 20 78. 22 1249.74 2 ⁺			953.20 20	100. 25	296.610	2+			
1398.39 (4 ⁺) 550.25 <i>I</i> 5 94. 5 847.89 2 ⁺ 654.64 9 100. 7 743.73 4 ⁺ 1102.40 20 44. <i>II</i> 296.610 2 ⁺ 1616.89 367.30 20 78. 22 1249.74 2 ⁺					0.0				
654.64 9 100. 7 743.73 4 ⁺ 1102.40 20 44. 11 296.610 2 ⁺ 1616.89 367.30 20 78. 22 1249.74 2 ⁺	1327.91		584.19 8						
1102.40 20 44. 11 296.610 2 ⁺ 1616.89 367.30 20 78. 22 1249.74 2 ⁺	1398.39	(4^{+})							
1616.89 367.30 20 78. 22 1249.74 2 ⁺									
	1616.89								
			873.5 <i>3</i>	22. 11	743.73	4+			
1320.20 20 100. 22 296.610 2 ⁺									
1747.76 1004.00 20 100. 21 743.73 4 ⁺	1747.76								
1451.10 20 37. 8 296.610 2 ⁺									
1869.76 $624.10 20$ $39. 9$ 1245.54 (3^+)	1869.76								
1021.90 20 100. 22 847.89 2+									
1126.10 20 30. 9 743.73 4+		(61)		30. 9					
$2010.4 (6^+) 612.0 1398.39 (4^+)$				100					
2018.82 8 ⁺ 690.90 10 100 1327.91 6 ⁺									
$2147.5 (5^-) 1403.6 5 100 743.73 4^+$									
$2418.12 (10^+) 399.30^{\&} 20 100 2018.82 8^+$. ,							
$2460.3 (6^-) 1132.45 100 1327.91 6^+$						6+			
$2480.94 (3^+) 733.10 20 3.6 7 1747.76$	2480.94	(3^{+})							
864.30 20 4.3 7 1616.89									
$1082.60 \ 20 \qquad 4.3 \ 7 \qquad 1398.39 (4^{+})$									
$1231.00 \ 20 \qquad 3.6 \ 7 \qquad 1249.74 2^{+}$									
$1235.30 \ 20 \qquad 33. \ 5 \qquad 1245.54 (3^{+})$									
1633.10 20 100 <i>I</i> 2 847.89 2 ⁺									
1737.20 20 5.0 <i>12</i> 743.73 4 ⁺			1737.20 20	5.0 12	743.73	4^{T}			

γ (102Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\ \sharp}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	δ	Comments
2480.94	(3 ⁺)	2184.3 2	15.0 21	296.610	2+	(M1+E2)	-0.5	δ : from $\gamma \gamma(\theta)$ in ¹⁰² Nb β ⁻ decay (4.3 s).
2547.8	(7^{-})	400.1 5	100 4	2147.5	(5^{-})	,		, , , , , , , , , , , , , , , , , , ,
	(.)	1220.1 5	50 5	1327.91	6+			
2790.3	(10^+)	771.5 5	100	2018.82	8+			
2828.8	(8-)	368.4		2460.3	(6^{-})			
	(-)	810.0		2018.82	8+			
3005.9	(9^{-})	458.1		2547.8	(7^{-})			
3369.5	(10^{-})	540.7		2828.8	(8-)			
3614.9	(11^{-})	609.0		3005.9	(9-)			
3625.2	(12^{+})	834.9		2790.3	(10^{+})			
3632.3	(12^{+})	842.0 5		2790.3	(10^{+})			
4053.1	(11^{-})	683.6		3369.5	(10^{-})			
4363.7	(10^{+})	748.8		3625.2	(12^{+})			
4504.4	(14^{+})	879.2		3625.2	(12^{+})			
4856.8	(13^{-})	803.7		4053.1	(11^{-})			
5230.8	(12^{+})	867.1		4363.7	(10^{+})			
5470.9	(16^{+})	966.5		4504.4	(14^{+})			
5764.6	(15^{-})	907.8		4856.8	(13^{-})			
6200.5	(14^{+})	969.7		5230.8	(12^{+})			
	` /				` /			

[†] The gamma energies were calculated using as a weighted average using gammas of 102 Nb $\beta\pm$ decay (1.3 s), 100 Mo(18 O, 16 O), 248 Cm, 252 Cf SF decay, 100 Mo(t,p γ), 238 U(α ,F γ) and 168 Er(30 Si,x γ). [‡] Relative branchings of each level were deduced as a weighted average of data from 102 Nb β^- decay (4.3 s),

 $^{^{100}}$ Mo(t,p $\gamma\gamma$), 168 Er(30 Si,X γ) and 100 Mo(18 O, 16 O).

[#] Unless noted otherwise, deduced from level scheme.

[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&]amp; Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend Level Scheme

Intensities: Type not specified

0.0

Band(C): γ sequence based on (6 $^-$) (2007La03)

Band(D): γ band (2004Hu02)

$$^{102}_{\ 42}\mathrm{Mo}_{60}$$

	Hist	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. De Frenne and A. Negret	NDS 109,943 (2008)	1-May-2007

 $Q(\beta^-)=3635\ 16;\ S(n)=6869\ 13;\ S(p)=13518\ 11;\ Q(\alpha)=-6972\ 13$ 2012Wa38

Note: Current evaluation has used the following Q record 3520 $126990 70 1.269e^{+}410-6.94\times10^{35}$ 2003Au03.

¹⁰⁶Mo <u>Levels</u>

Cross Reference (XREF) Flags

- A 106 Nb β^- decay
- B ²⁴⁸Cm SF decay
- C ²⁵²Cf SF decay
- D $^{238}U(\alpha,F)$

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
0.0	0+	8.73 s <i>12</i>	ABCD	$\%\beta^{-}=100$
				$T_{1/2}$: From $β$ ⁻ decay curves (1995Jo02) Others: 8.4 s 5 via (55,86,430,466,595,618 $γ$)-decay curves (1977Ti02); 8.2 s 10 (1976KaYO), 11 s 2 (1972Tr08), 9.5 s 5 (1969Ha59), 7.9 s 12 (1969WiZX).
171.549 [#] 8	2+	1.25 ns 3	ABCD	μ =0.42 4
				T _{1/2} : from recoil-distance Doppler shift in ²⁵² Cf SF decay (1974JaZN). Others: 0.75 ns <i>15</i> (1970Ch11); 1.2 ns <i>I</i> from ²⁵² Cf SF decay (2006Hw01). μ: Measured with Gammasphere using time-integral perturbed angular correlations (2004Sm04).
522.32 [#] 8	4+	25.4 ps <i>51</i>	ABCD	$T_{1/2}$: measured using recoil distance method in ²⁵² Cf SF decay (2003Hu07).
710.48 [@] 6	2+		ABCD	
885.17 [@] 7	3 ⁺		ABCD	
956.55 20	(0^{+})		A	J^{π} : Suggested from γ decay to 2^{+} level only.
1033.34 [#] <i>10</i>	6+	4.2 ps 18	ABCD	$T_{1/2}$: measured using the recoil distance method (2003Hu07).
1067.77 [@] 7	4+		ABCD	
1149.84 ^c 19	(2^{+})		С	
1279.9 <i>5</i> 1306.81 [@] <i>8</i>	~ ±		A	
1306.81 8 1434.73 8	5 ⁺		BCD	
1434.73° 8 1536.46° 17	4 ⁺ (4 ⁺)		ABCD C	
1563.25 [@] 10	6 ⁺		BCD	
1657.64 ^b 8	5 ⁺		BCD	
1688.26 [#] <i>12</i>	8 ⁺	1.77 ps 24	BCD	$T_{1/2}$: measured from Doppler-broadened line shapes analysis; value based on the
1000.20 12	0	1.77 ps 24	БСД	assumption that the transition quadrupole moment=2.85 13 for all members of the g.s. band with 8 <j<12 (1996sm04).<="" td=""></j<12>
1817.22 <mark>&</mark> <i>17</i>	(3^{-})		C	
1868.08 [@] 16	7+		BCD	
1910.30 ^b 9	6+		BCD	
1936.82 <mark>&</mark> 9	(4^{-})		BC	
1952.20 ^a 11	(5^{-})		BC	
2014.73 ^c 18	(6^{+})		BC	
2090.40 4 14	(5^{-})		C	050
2142.50^{a} 15	(6-)		BC	J^{π} : (5 ⁻) from 2002Ha46 in ²⁵² Cf SF decay.
2146.81 ^d 20	(5^{-})		C	

106 Mo Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
2194.27 [@] 13	8+		BCD	
2199.66 ^b 10	7+		BCD	
2276.32 ^{&} 10	· (6 ⁻)		BC	
2302.71 ^e 20	(5 ⁺)		C	
2368.89 ^a 14	(7^{-})		BC	J^{π} : (6 ⁻) from 2002Ha46 in ²⁵² Cf SF decay.
2472.4 [#] 4	10 ⁺	0.69 ps 9	BCD	$T_{1/2}$: measured from Doppler-broadened line shapes analysis; value based on the
				assumption that the transition quadrupole moment =2.85 <i>13</i> for all members of the g.s. band with 8 <j<12 (1996sm04).<="" td=""></j<12>
2498.84 <mark>&</mark> <i>12</i>	(7^{-})		BC	
2520.93 ^b 23	8+		CD	
2559.2 [@] 3	9+		CD	
2565.98 ^c 14	(8^{+})		BC	
2566.04 ^d 20	(7^{-})		C	
2629.14 ^a 17	(8-)		BC	J^{π} : (7 ⁻) from 2002Ha46 in ²⁵² Cf SF decay.
2713.15 ^e 20	(7^{+})		С	
2746.50 ^{&} 12	(8-)		BC	
2877.5 ^b 4	9+		CD	- 252
2921.37 ^a 16	(9-)		BC	J^{π} : (8 ⁻) from 2002Ha46 in ²⁵² Cf SF decay.
2950.72 [@] 24	10+		CD	
3041.5 ^{&} 3	(9-)		C	
3132.2 ^d 3	(9-)		C	
3184.8° 4	(10^+)		C	17 (CT) C 200011 46 : 252 CC CT 1
3238.35 ^a 23 3253.7 ^e 3	(10^{-}) (9^{+})		BC C	J^{π} : (9 ⁻) from 2002Ha46 in ²⁵² Cf SF decay.
3263.9 ^b 4	10+		C	
3203.9° 4 3349.7 <mark>&</mark> 3				
3369.1 [#] 6	(10 ⁻) 12 ⁺	0.37 ps 4	C	T massayad from Donalos broadened line shores analysis, value based on the
	12.	0.57 ps 4	CD	$T_{1/2}$: measured from Doppler-broadened line shapes analysis; value based on the assumption that the transition quadrupole moment =2.85 $I3$ for all members of the g.s. band with 8 <j<12 (1996sm04).="" 889.9<math="" assume="" evaluators="" that="" the="">\gamma of 1996Sm04 is the same as the adopted 896.7 keV gamma.</j<12>
3369.6 [@] 11	11+		C	
3591.9 <i>a</i> 4	(11^{-})		C	J^{π} : (10 ⁻) from 2002Ha46 in ²⁵² Cf SF decay.
3682.2^{b}_{0} 5	11+		CD	
3707.6 & 5	(11^{-})		C	
3810.5 [@] 11	12+		CD	
3843.6 ^d 4	(11^{-})		C	
3928.5 ^e 4	(11^+)		C	
3945.3 ^a 8 4049.3 ^{&} 11	(12^{-})		C	
4049.3×11 4132.5×5	(12-)		C	
	(12 ⁺)		C	
4291.9 [@] 15 4362.0 [#] 12	13 ⁺ 14 ⁺		CD	
4362.0" <i>12</i> 4371.8 ^{<i>a</i>} <i>11</i>	14^{+} (13^{-})		CD C	
4596.1 2 <i>I</i>	13+		D	
4751.4 [@] 23	14 ⁺		D	E(level): Taken from 238 U(α ,F γ) (2004Hu02).
4752.1 ^a 13	(14^{-})		c	E(level): from 2005Zh36 and 2006Jo05.
4756.3 12	14+		C	

¹⁰⁶Mo Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
5307.3 [@] 25	15 ⁺	D	E(level): Taken from 238 U(α ,F γ) (2004Hu02).
5412.8 [#] 24	16 ⁺	D	E(level): Taken from 238 U(α ,F γ) (2004Hu02).
5425.2 [#] 7	16 ⁺	C	
5766.8 [@] 24	16 ⁺	D	E(level): Taken from 238 U(α ,F γ) (2004Hu02).
6392? [@] <i>3</i>	17+	D	E(level): Taken from 238 U(α ,F γ) (2004Hu02).
6501 [#] 3	18 ⁺	D	
6867 [@] 3	18 ⁺	D	
7660 [#] 4	20^{+}	D	

[†] Calculated from adopted gammas using least-squares fit, unless noted otherwise. There are discrepancies of several kev between corresponding levels observed in different fission data sets. The level energies above 4.5 MeV were taken from 2004Hu02 from 238 U(α ,F), if available, but are considered by the evaluators as approximate.

$v(^{106}M_0)$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\ \ddagger}$	E_f .	\mathbf{J}_f^{π}	Mult.	Comments
171.549	2+	171.548 8	100 2	0.0	0+	[E2]	B(E2)(W.u.)=102.3 25
							Mult.: consistent with $(171.9\gamma)(\theta)$ (1972Wi15) being Q; E2
							from observed band structure.
							E_{γ} : from curved crystal spectrometer (1979Bo26); others: 171.57 10 (1969WiZX), 171.7 (1970Ch11), 172.2 2
							(1970Jo20), 171.6 2 (1974CIZX), 172.0 (1977YoZM).
522.32	4+	350.69 14	100	171.549	2+	[E2]	$B(E2)(W.u.)=1.4\times10^2 \ 3$
							The transition quadrupole moment calculated from the lifetime
=10.10		70 0 00 70	100.00				=3.82 50.
710.48	2+	538.88 12	100 20	171.549	2+ 0+		
885.17	3+	710.54 <i>9</i> 174.60 <i>10</i>	73 <i>27</i> 100		2+		
003.17	3	362.80 10	100	, 101.10	4 ⁺		
		713.60 14			2 ⁺		
956.55	(0^+)	785.00 20	100	171.549	2+		
1033.34	6+	511.20 25	100	522.32	4 ⁺	[E2]	$B(E2)(W.u.)=1.3\times10^2 6$
							The transition quadrupole moment calculated from the lifetime
1067.77	4+	182.60 <i>30</i>		005 17	3 ⁺		=3.39 50.
1007.77	4	357.40 20			3 2+		
		545.52 10	67 33		4 ⁺		
		896.23 10	100 56		2+		
1149.84	(2^{+})	978.2 <i>3</i>		171.549	2+		

[‡] From observed band structure and systematics in ²⁵²Cf SF decay based on well established data of g.s.-band, one-phonon and two-phonon gamma-vibrational bands and Nilsson model considerations. If not mentioned otherwise from 2002Xu03 because this paper has the most detailed discussion on the experimental data taken with Gammasphere.

[#] Band(A): g.s., Yrast band.

[@] Band(B): γ band.

[&]amp; Band(C): $v(3/2[411]\otimes v(3/2)[541])^{-1}$. Possible 'chiral' partner of $v(5/2[413]\otimes v(5/2[532])$ (2005Zh36).

^a Band(D): $v(5/2[413]\otimes v(5/2)[532]$). Possible 'chiral' partner of $v(3/2[411]\otimes v(3/2[541])^{-1}$ (2005Zh36).

^b Band(E): $\gamma \gamma$ phonon band.

^c Band(F): Band based on a (2⁺).

^d Band(G): $\pi(7/2[413]\otimes\pi(3/2[301])$.

^e Band(H): $\pi(1/2[420]\otimes\pi(9/2[404])$.

γ (106Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
1149.84	(2^{+})	1150.0 <i>3</i>		0.0	0+		
1279.9	(2)	1108.3 5	100	171.549	2+		
	5 ⁺		100	1/1.347	4 ⁺		
1306.81	3	239.1 1					
		273.5 3			6+		
		421.5 2			3+		
		784.4 1			4+		
1434.73	4+	367.0 <i>3</i>			4+		
		549.6 <i>1</i>	53 18		3 ⁺		
		724.5 2	100 35		2+		
		912.3 <i>3</i>			4+		
		1263.1 <i>3</i>			2+		
1536.46	(4^{+})	386.7 <i>3</i>		1149.84	(2^{+})		
		1014.1 <i>3</i>		522.32	4+		
		1364.9 <i>3</i>		171.549	2+		
1563.25	6+	256.4 <i>3</i>		1306.81	5 ⁺		
		495.6 2			4+		
		529.9 <i>1</i>			6+		
		1041.2 3			4+		
1657.64	5 ⁺	223.0 1			4+		
		350.7 <i>3</i>			5+		
		589.9 <i>1</i>			4+		
		772.4 1			3+		
1688.26	8+	654.9 <i>1</i>	100		6+	[E2]	B(E2)(W.u.)=89 12
1817.22	(3 ⁻)	931.6 3			3+	[]	_()(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1017.22	(5)	1107.0 3			2+		
1868.08	7+	305.5 [#]		1563.25	6 ⁺		
1000.00	,	561.2 2			5 ⁺		
		834.8 2			6 ⁺		
1910.30	6 ⁺	252.5 2			5 ⁺		
1910.30	O	475.4 2			4 ⁺		
		603.5 <i>1</i>			5 ⁺		
					3 4 ⁺		
1026 92	(4-)	842.5 <i>I</i>					
1936.82	(4^{-})	119.5 3			(3 ⁻) 4 ⁺		
		869.1 <i>I</i>			3 ⁺		
		1051.6 1					
1052.20	(F-)	1414.4 3			4 ⁺		
1952.20	(5^{-})	294.6 3			5 ⁺ 4 ⁺		
		517.5 1					
2014.72	(C+)	884.4 3			4 ⁺		
2014.73	(6^{+})	478.3 <i>3</i>			(4^{+})		
		981.3 3			6 ⁺		
2000 40	(5-)	1492.4 3			4+		
2090.40	(5^{-})	153.6 <i>3</i>		1936.82	(4^{-})		
		273.1 3			(3^{-})		
		783.6 <i>3</i>			5+		
		1022.6 3			4+		
0140.50	((-)	1057.1 3			6+		
2142.50	(6-)	190.4 2			(5^{-})		
		231.7 3			6 ⁺		
2146.01	(5-)	484.8 3			5 ⁺		
2146.81	(5^{-})	1113.5 3			6+		
2104.27	ο+	1624.4 3			4 ⁺		
2194.27	8+	326.1			7+		700000 200000 45 1 252
		506.2 4			8+		E_{γ} : 508.9 from 2002Ha46 in ²⁵² Cf SF decay.
		631.0 <i>I</i>		1563.25	6+		

γ (106Mo) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	Comments
2194.27	8+	1160.9 2		1033.34 6+		E_{γ} : 1162.6 from 2002Ha46 in ²⁵² Cf SF decay.
2199.66	7+	289.3 <i>1</i> 542.1 <i>1</i>		1910.30 6 ⁺ 1657.64 5 ⁺		
		636.4 3		1563.25 6 ⁺		
		892.8 <i>3</i>		1306.81 5+		
2276.32	(6-)	185.9 <i>3</i>		2090.40 (5-)		
		339.4 2		1936.82 (4-)		
		713.1 1		1563.25 6 ⁺ 1306.81 5 ⁺		
		969.5 <i>1</i> 1243.0 <i>1</i>		1033.34 6+		
2302.71	(5^+)	1269.4 3		1033.34 6+		
		1780.3 <i>3</i>		522.32 4+		
2368.89	(7^{-})	226.5 2		2142.50 (6-)		
		416.7 1		1952.20 (5 ⁻)		
2472.4	10 ⁺	458.6 <i>4</i> 784.1 <i>3</i>	100	1910.30 6 ⁺ 1688.26 8 ⁺	[E2]	B(E2)(W.u.)=93 13
2472.4	(7-)	222.5 1	100	2276.32 (6 ⁻)		B(E2)(W.u.)-33 13
2.70.0.	(,)	408.4 3		2090.40 (5 ⁻)		
		935.6 <i>1</i>		1563.25 6 ⁺		
2520.93	8+	321.3 3		2199.66 7+		
2550.2	9+	610.6 3		1910.30 6+		
2559.2	9.	690.9 <i>5</i> 871.0 <i>3</i>		1868.08 7 ⁺ 1688.26 8 ⁺		E_{γ} : 869.8 (2002Ha46) in ²⁵² Cf SF decay.
2565.98	(8 ⁺)	551.2 3		2014.73 (6 ⁺)		E _γ . 809.8 (2002Ha40) III CI SI decay.
2303.70	(0)	877.7 <i>1</i>		1688.26 8+		E_{γ} : 876.7 (2002Ha46) in ²⁵² Cf SF decay.
		1532.7 2		1033.34 6+		E_{y} : 1531.6 (2002Ha46) in ²⁵² Cf SF decay.
2566.04	(7^{-})	419.2 <i>3</i>		2146.81 (5-)		
		877.8 <i>3</i>		1688.26 8+		
2620.14	(0-)	1532.7 3		1033.34 6+		
2629.14	(8-)	260.4 3		2368.89 (7-)		E_{γ} : 429.7 from 2002Ha46 in ²⁵² Cf SF decay.
		430.3 <i>6</i> 486.4 2		2199.66 7 ⁺ 2142.50 (6 ⁻)		E_{γ} : 429.7 Holli 2002Ha40 III \sim CI SF decay.
2713.15	(7^{+})	410.4 3		2302.71 (5+)		
	()	1024.9 <i>3</i>		1688.26 8+		
		1679.8 <i>3</i>		1033.34 6 ⁺		
2746.50	(8^{-})	247.9 [#]		2498.84 (7-)		
		470.2 1		2276.32 (6 ⁻)		
		878.6 4		1868.08 7+		E_{γ} : 881.6 from 2002Ha46 in ²⁵² Cf SF decay.
2877.5	9+	1058.2 <i>1</i> 677.8 <i>3</i>		1688.26 8 ⁺ 2199.66 7 ⁺		
2921.37	(9 ⁻)	292.2 1		2629.14 (8 ⁻)		
	` /	552.5 1		2368.89 (7-)		E_{γ} : 552.8 from 2002Ha46 in ²⁵² Cf SF decay.
2950.72	10+	756.4 <i>3</i>		2194.27 8+		,
		1262.5 <i>3</i>		1688.26 8 ⁺		
3041.5	(9-)	295.0 [#]		2746.50 (8-)		
2122.0	(0-)	542.7 3		2498.84 (7-)		
3132.2	(9-)	566.1 <i>3</i> 1443.9 <i>3</i>		2566.04 (7 ⁻) 1688.26 8 ⁺		
3184.8	(10^{+})	618.8 3		2565.98 (8 ⁺)		
3238.35	(10^{-})	317.0 <i>3</i>		2921.37 (9-)		
		609.2 2		2629.14 (8-)		
3253.7	(9^{+})	540.5 3		2713.15 (7+)		
3263.9	10 ⁺	1565.4 <i>3</i> 743.0 <i>3</i>		1688.26 8 ⁺ 2520.93 8 ⁺		
3403.7	10	173.03		2320.73 0		

$\gamma(^{106}\text{Mo})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathtt{J}_f^{π}	Mult.	Comments
3349.7	(10^{-})	308 [#]	3041.5	(9-)		
	, ,	603.2 <i>3</i>	2746.50	(8-)		E_{γ} : 604.0 (2002Ha46) in ²⁵² Cf SF decay.
3369.1	12 ⁺	896.7 5	2472.4	10+	[E2]	B(E2)(W.u.)=89 10
3369.6	11+	810.4 10	2559.2	9+		
3591.9	(11^{-})	670.5 <i>3</i>	2921.37	(9^{-})		
3682.2	11+	804.7 <i>3</i>	2877.5	9+		
3707.6	(11^{-})	666.0 <i>3</i>	3041.5	(9^{-})		
3810.5	12 ⁺	859.8 10	2950.72	10 ⁺		
3843.6	(11^{-})	711.4 <i>3</i>	3132.2	(9-)		
3928.5	(11^{+})	674.8 <i>3</i>	3253.7	(9^{+})		
3945.3	(12^{-})	353.5 [#]	3591.9	(11^{-})		
		706.9	3238.35	(10^{-})		
4049.3	(12^{-})	699.6 [#]	3349.7	(10^{-})		
4132.5	(12^{+})	868.6 <i>3</i>	3263.9	10+		
4291.9	13 ⁺	922.3 10	3369.6	11+		
4362.0	14+	992.9 10	3369.1	12+		
4371.8	(13^{-})	779.9	3591.9	(11^{-})		
4596.1	13+	913.9 20	3682.2	11+		
4751.4	14 ⁺	941.8 20	3810.5	12 ⁺		
4752.1	(14^{-})	806.8 [#]	3945.3	(12^{-})		
4756.3	14 ⁺	945.8 <i>6</i>	3810.5	12 ⁺		
5307.3	15 ⁺	1017.3 20	4291.9	13 ⁺		
5412.8	16 ⁺	1051.5 20	4362.0	14+		
5425.2	16+	1064.2	4362.0	14+		
5766.8	16 ⁺	1015.4 20	4751.4	14 ⁺		
6392?	17 ⁺	1085.0 [@] 20	5307.3	15 ⁺		
6501	18 ⁺	1087.6 20	5412.8	16 ⁺		
6867	18+	1100.6 20	5766.8	16 ⁺		
7660	20 ⁺	1160.4 20	6501	18 ⁺		

 $^{^{\}dagger}$ γ energies calculated as weighted averages of values from 106 Nb β-decay, 248 Cm SF Decay and 252 Cf SF Decay. ‡ Branching ratios are from 106 Nb β- decay. $^{\sharp}$ From 252 Cf SF Decay (2006Jo05). $^{\textcircled{@}}$ Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Type not specified

---- γ Decay (Uncertain)

 $^{106}_{42}{
m Mo}_{64}$

Level Scheme (continued)

Intensities: Type not specified

Level Scheme (continued)

Intensities: Type not specified

 $^{106}_{42}\mathrm{Mo}_{64}$

