Bio-Tesseract

Optimizing Production at Chinese Biogas Plants

AKSHAT KHANDELWAL
ASHIS GHOSH
POL MOLINAS
ROHAN KULKARNI
SHILIN CHEN

project overview.

biogas in China.

- China is the second largest energy consumer
- Produces massive industrial organic waste
- 3 Resource per capita in shortage

potential users.

PLANT MANAGERS maximize biogas output and minimize auxiliary inputs and undesired outputs.

NEW PLANTS need for assessing the feasibility of new biogas plant.

HAINAN DATA

- Day level data
- 30 columFrom 05/01/14 to 02/28/17 (1,035 days)

DATA CLEANING

- Drop unused columns.
- Rename column titles
- Convert strings to numbers
- Fill NaN values with 0.

FEATURE ENGINEERING

- Carbon/hydrogen ratio composition
- 2. Combining inputs based on mass input

DATA MANIPULATION

- Time shifting
- Combining rows of data cumulatively and on rolling sum basis

ML MODELS

- Classification (XG Boost, RF, DT, LogReg)
- Linear Models (LinReg, Ridge, Lasso)
- Neural Networks

BEST MODEL

Classification

Random forest, time shift 21 days, rolling sum of 40 days, 10 buckets: 96.7%

Regression Model

 Linear Regression, time shift 29 days, rolling sum of 40 days: 97.5%

GUI

INPUTS

Pig Manure

Bagasse

Cassava

Waste Water

Kitchen Waste

Fecal Waste

Tea Waste

Chicken Waste

Alcowaste

Medicine Waste

Energy Grass

Banana Waste

Lemon Waste

Percolate

Other

FEATURE ENGINEERING

- Carbon/hydrogen ratio composition
- Combining inputs based on mass input

DATA MANIPULATION

- · Time shifting
- Combining rows of data cumulatively and on rolling sum basis

INPUTS Pig Manure Bagasse Cassava Waste Water Kitchen Waste Group 1 Fecal Waste Tea Waste Chicken Waste Alcowaste Medicine Waste **Energy Grass** Group 2 Banana Waste Lemon Waste ← Percolate Other

FEATURE ENGINEERING

- Carbon/hydrogen ratio composition
- 2. Combining inputs based on mass input

DATA MANIPULATION

- · Time shifting
- Combining rows of data cumulatively and on rolling sum basis

FEATURE ENGINEERING

- Carbon/hydrogen ratio composition
- 2. Combining inputs based on mass input

DATA MANIPULATION

- Time shifting
- Combining rows of data cumulatively and on rolling sum basis

results.

BEST MODEL

Classification

 Random forest, time shift 21 days, rolling sum of 40 days, 10 buckets: 96.7%

Regression Model

 Linear Regression, time shift 29 days, rolling sum of 40 days: 97.5%

- Time shifting
- Combining rows of data cumulatively and on rolling sum basis

ML MODELS

- Classification (XG Boost, RF, DT, LogReg)
- Linear Models (LinReg, Ridge, Lasso)
- Neural Networks

results.

BEST MODEL

Classification

 Random forest, time shift 21 days, rolling sum of 40 days, 10 buckets: 96.7%

Regression Model

 Linear Regression, time shift 29 days, rolling sum of 40 days: 97.5%

Approach + ui.

HAINAN DATA

- Day level data
- 30 columFrom 05/01/14 to 02/28/17 (1,035 days)

DATA CLEANING

- Drop unused columns.
- Rename column titles.
- Convert strings to numbers
- Fill NaN values with 0

FEATURE ENGINEERING

- 1. Carbon/hydrogen ratio composition
- 2. Combining inputs based on mass input

DATA MANIPULATION

- · Time shifting
- Combining rows of data cumulatively and on rolling sum basis

ML MODELS

- Classification (XG Boost, RF, DT, LogReg)
- Linear Models (LinReg, Ridge, Lasso)
- Neural Networks

BEST MODEL

Classification

Random forest, time shift 21 days, rolling sum of 40 days, 10 buckets: 96.7%

Regression Model

 Linear Regression, time shift 29 days, rolling sum of 40 days: 97.5%

GUI

UI.

UI.

UI.

UI demo.

main takeaways.

Classification models are not a good choice to model continuous data

- 2 Feature engineering has to have actual meaning for your data
- 3 It is important to work on one model at a time and move up as necessary

future work.

- Optimization of the raw inputs to achieve maximum biogas outputs.
 - → From a UX perspective the plant manager can set their desired biogas output and see how they must adjust their inputs to achieve that
- 2 Model other outputs other than BioGas (such as fertilizer)
- Include data from other plants for a more generalized model, or to develop models for various plant types
- 4 Modify UX/UI to allow for 'time-based' inputs.
 - → Allow for material inputs to be input as a varying amount over a change of time

Q&A