Lista 13

Zadanie 1 (* Nie liczy się do podstawy). Przypomnijmy, że chińskie twierdzenie o resztach mówi, że gdy m_1, m_2, \ldots, m_k są parami względnie pierwsze, to naturalny homomorfizm z $\mathbb{Z}_{m_1 \cdots m_2 \cdots m_k}$ w $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_k}$ jest izomorfizmem.

Pokaż, że obrazem $\mathbb{Z}_{m_1 \cdots m_2 \cdots m_k}^*$ (czyli elementów odwracalnych w $\mathbb{Z}_{m_1 \cdots m_2 \cdots m_k}$) tego izomorfizmu jest $\mathbb{Z}_{m_1}^* \times \mathbb{Z}_{m_2}^* \times \cdots \times \mathbb{Z}_{m_k}^*$.

Zadanie 2. Podaj dowolne rozwiązanie w liczbach naturalnych poniższych układów równań.

$$\begin{cases} x \mod 7 &= 1 \\ x \mod 5 &= 4 \end{cases} \begin{cases} x \mod 9 &= 8 \\ x \mod 11 &= 3 \end{cases} \begin{cases} x \mod 13 &= 3 \\ x \mod 17 &= 11 \end{cases}.$$

Zadanie 3. Wyznacz najmniejszą liczbę naturalną, która przy dzieleniu przez 2, 3, 5, 7, 11 daje odpowiednio reszty 1, 2, 4, 6 i 10.

Zadanie 4. Wyznacz największy wspólny dzielnik par wielomianów (o ile nie jest napisane inaczej: w $\mathbb{R}[x]$)

- $x^4 2x^3 19x^2 + 8x + 60$ oraz $x^4 + 5x^3 + 5x^2 5x 6$;
- $x^4 + x^3 + 2x^2 + 2x$ oraz $x^4 + 2x^3 + 2x^2 + x$ (w $\mathbb{Z}_3[x]$)
- $f = x^p + 1$, g = x + 1 (w $\mathbb{Z}_p[X]$ dla p—pierwszego).

Wyraź nwd jako kombinację podanych wielomianów.

Wskazówka: Do ostatniego: policz, ile wynosi $(x+1)^p$ w \mathbb{Z}_p .

Zadanie 5. Udowodnij uogólnienia twierdzenia z wykładu:

Niech \mathbb{F} będzie ciałem, f będzie wielomianem nierozkładalnym a p_1, p_2, \ldots, p_ℓ wielomianami w pierścieniu wielomianów $\mathbb{F}[x]$ o współczynnikach z \mathbb{F} oraz $f^k|p_1p_2\ldots p_\ell$. Wtedy istnieją liczby n_1, n_2, \ldots, n_ℓ , takie że $\sum_i n_i \geq k$ oraz dla każdego i zachodzi $f^{n_i}|p_i$.

Zadanie 6. Niech \mathbb{F} będzie ciałem zaś $\mathbb{F}[x]$ pierścieniem wielomianów o współczynnikach z tego ciała. Udowodnij, że każdy wielomian $f \in \mathbb{F}[x]$ da się przedstawić jednoznacznie (z dokładnością do kolejności czynników) w postaci $f = c \cdot f_1 \cdot f_2 \cdots f_k$, gdzie $c \in \mathbb{F}$ jest stałą, a każde $f_i \in \mathbb{F}[x]$ jest wielomianem nierozkładalnym o wiodącym współczynniku równym 1.

Wskazówka: Założenie o współczynniku równym l jest tylko po to, by uniknąć arbitralności w wyborze współczynnika wiodącego, co prowadzi do "różnych" rozkładów.

Zadanie 7. Pokaż, że jeśli \mathbb{F} jest ciałem, to w pierścieniu wielomianów $\mathbb{F}[x]$ o współczynnikach z ciała \mathbb{F} zachodzi prawo skreśleń: dla $f, g, h \in \mathbb{F}[x]$, gdzie $f \neq 0$, zachodzi

$$fg = fh \implies g = h$$
.

Zadanie 8. Korzystając z tw. Bezout rozłóż poniższe wielomiany z $\mathbb{Z}_2[x]$ na czynniki nierozkładalne

$$x^5 + x^3 + x + 1$$
, $x^4 + x^3 + x^2 + 1$, $x^5 + x^2 + x$, $x^4 + x^2 + 1$, $x^4 + x^2 + x$.

Potraktuj powyższe wielomiany jako wielomiany z $\mathbb{Z}_3[x]$ i również rozłóż je na czynniki nierozkładalne.

nierozkładalne.

Wskazówka: Być może konieczne też będzie osobne zastanowienie się, które wielomiany drugiego stopnia są

Zadanie 9. Wielomian f ma resztę z dzielenia przez $x - c_1$ równą r_1 oraz resztę z dzielenia przez $x - c_2$ równą r_2 . Ile wynosi reszta z dzielenia f przez $(x - c_1)(x - c_2)$?

Wystarczy, że zapiszesz zależność na współczynniki tego wielomianu, nie musisz jej rozwiązywać.

Wskazówka: Skorzystaj z tw. Bezout.

Zadanie 10. Niech f, g, f', g', a będą niezerowymi wielomianami z pierścienia wielomianów $\mathbb{F}[x]$ o współczynnikach z ciała \mathbb{F} . Załóżmy, że f = af' oraz g = ag'.

• Jeśli h' = nwd(f', g'), to ile wynosi nwd(f, g)? Jeśli h' = a'f' + b'g' dla pewnych wielomianów $a', b' \in \mathbb{F}[x]$, to jak wyraża się nwd(f, g) poprzez wielomiany f, g?

• Jeśli h', r' są ilorazem oraz resztą z dzielenia f' przez g', to ile wynosi iloraz, a ile reszta z dzielenia f przez g?

Zadanie 11. Dane są dwa niezerowe wielomiany $f,g\in\mathbb{F}[x]$ z pierścienia wielomianów o współczynnikach z ciała \mathbb{F} . Załóżmy, że f=f'f'' oraz nwd(f',g)=1. Celem zadania jest pokazanie, jak odtworzyć reprezentację nwd(f,g) jako kombinacji wielomianów f,g z analogicznych reprezentacji dla f'',g oraz f',g.

- Pokaż, że nwd(f, g) = nwd(f'', g).
- Niech $\operatorname{nwd}(f'',g) = af'' + bg$ oraz $1 = \operatorname{nwd}(f',g) = cf' + dg$ dla odpowiednich wielomianów $a,b,c,d \in \mathbb{F}[x]$. Wyraź $\operatorname{nwd}(f,g)$ jako kombinację wielomianów f,g; kombinacja ta może używać kombinacji wielomianów spośród a,b,c,d,f',f'' jako współczynników.