EE6367: Topics in Data Storage and Communications

2023

Lecture 6: 18 September 2023

Instructor: Shashank Vatedka Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Unbiased Quantization of Real Numbers

The deterministic encoding scheme discussed before is biased. We consider a randomized rounding scheme where

$$\operatorname{Enc}(x) = \operatorname{Ber}(x) \tag{6.1}$$

$$Dec(c) = c (6.2)$$

Here, the cost is

$$Cost = \max_{x \in [0,1]} \mathbb{E}\left[(x - c)^2 \right]$$
(6.3)

$$= \max_{x \in [0,1]} x (1-x) = \frac{1}{4}. \tag{6.4}$$

We claim that for any unbiased algorithm with no shared randomness, the cost is lower bounded by $\frac{1}{4}$.

6.2 Estimation Schemes With Shared Randomness

Consider an encoder and decoder which share a uniform random variable $U \in [0,1]$. The encoder and decoder are defined as follows.

$$\operatorname{Enc}(x) = c = \begin{cases} 1 & U \leqslant x \\ 0 & U > x \end{cases} \tag{6.5}$$

$$Dec(c) = \hat{X} = c + U - \frac{1}{2}.$$
(6.6)

Clearly, $\mathbb{E}\left[\hat{X}\right]=x,$ so the scheme is unbiased. The cost is

$$\mathbb{E}\left[\left(\hat{X} - x\right)^{2}\right] = \mathbb{E}\left[\left\{\left(c - x\right) + \left(U - \frac{1}{2}\right)\right\}^{2}\right] \tag{6.7}$$

$$= \operatorname{Var}(c) + \operatorname{Var}(U) + 2\mathbb{E}\left[\left(c - x\right)\left(U - \frac{1}{2}\right)\right] \tag{6.8}$$

$$=x\left(1-x\right)+\frac{1}{12}+2\left[\mathbb{E}\left[cU\right]-x\mathbb{E}\left[U-\frac{1}{2}\right]-\frac{1}{2}\mathbb{E}\left[c\right]\right] \tag{6.9}$$

$$= x(1-x) + \frac{1}{12} - x + 2 \int_{0}^{1} cuf_{U}(u) du$$
 (6.10)

$$= x(1-x) + \frac{1}{12} - x + 2\int_0^x u du = \frac{1}{12}$$
 (6.11)

and this scheme beats randomized rounding with a cost equal to the variance of $U \sim \text{Unif}[0,1]$. In summary,

Shared Randomness	Biased	Unbiased
No	$\frac{1}{16}$	$\frac{1}{4}$
Yes	0.0459	$\frac{1}{12}$

Table 6.1: Cost of using various estimation schemes.

6.3 Generalization To More Than One Bit

If we have k bits for quantization, then

- 1. For deterministic rounding, split [0,1] into 2^k equal sized intervals. The cost is $\left(\frac{1}{2^{k+1}}\right)^2$.
- 2. For randomized rounding, split into $2^k 1$ equal intervals, so that we have 2^k reconstruction points. If $x \in [l_i, r_i]$, then

$$\operatorname{Enc}(x) = c^{k} = \begin{cases} l_{i} & \operatorname{wp} \frac{x - l_{i}}{r_{i} - l_{i}} \\ r_{i} & \text{else} \end{cases}$$

$$(6.12)$$

$$Dec (c^k) = Real (c^k)$$
(6.13)