

Data Warehouse

Sirojul Munir S.SI, M.KOM – Semester Genap TA 20182

Pengantar Data Warehouse

Definisi Data:

- Navathe dan Elmasri, 2000: Data yaitu fakta yang dapat disimpan dan memiliki arti
- Hoffer, Prescott, dan McFadden, 2005: Data yaitu sesuatu yang mewakilkan objek dan peristiwaa yang memiliki arti dan sangat penting bagi pemakai atau user
- Data: fakta, teks, hasil pengukuran, gambar, suara, dan video yang bernilai informasi.

Jenis Data:

- Structured data
 - Tipe data yang dapat disimpan di database atau spreadsheet, diperlukan untuk dikelola sesuai dengan format penyimpanan standar dan ontologi, seperti : nama, alamat, telpon,
 - Contoh : Aplikasi sistem informasi akademik, aplikasi work flow, aplikasi SDM dll
 - Solusi Kelola: DBMS
- Unstructured data
 - text, audio, imagery, video
 - Contoh: data sistem email siswa, chat rooms, hasil questioner, video / audio di sistem e-elearning, RFID, barcode
 - Solusi Kelola: BIGDATA (4V: Volume, Velocity, Varieaty, Veracity)

Contoh data terstruktur:

Tabel Data Calon Ketua Kelas

No.	Nama	Turus	Banyak Pemilih	
1.	Andi	MI MI	10	
2.	Ika	I WA WAI WA	16	
3.	Santi	NJ III	8	
4.	Rudi	INI I	6	
50.		Jumlah	40	

Nama Toko Anda Jl. Abcdefghijkl No. 1234567890 Telp. 123456789 Kota Anda Sedia berbagai kebutuhan sehari-hari

Pelanggan : PLG0003

: Ida Ayu Setia

: Jl. Soekarno Hatta No 18

: 08000000000

No. Transaksi : PJL20130827-0003-MAS-192944

Kasir : Master

Tanggal : 27-08-2013 19:29:44

P. Nama Qty Harga Total

T Eskulin Gel 100ml Drea 5 6.468 32.340
Y Eskulin Gel 100ml Mond 6 6.600 39.600

Total--- 2 ---item(s). Rp. 71.940,-Pembulatan Rp. 60,-GrandTotal Rp. 72.000,-Tunai Rp. 80.000,-Kembali Rp. 8.000,-

Belanja produk trntu mndptkan 1 poin tiap klptn 100rb

Dapatkan poin sebanyak-banyaknya

Tukarkan poin dengan hadiah yang keren!

Barang yg sudah dibeli tdk dapat ditukar/dikembalikan

sold

Contoh data tidak terstruktur:

12+ TBs of tweet data every day

data every ? TBs of day

25+ TBs of log data every day

Definisi Informasi:

Informasi: data yang telah diproses sebagai bahan dalam proses pengambilan keputusan.

Informasi - dapat dimanfaatkan sebagai dasar untuk pengambilan keputusan dan memahami permasalahan/situasi

Knowledge: adalah informasi yang dilengkapi dengan pemahaman pola hubungan dari informasi disertai pengalaman, baik individu maupun kelompok dalam organisasi.

Fungsi Informasi: I = I(D, S, T)

!: Informasi

D: Data

• S : Pengetahuan awal

T: Waktu

Piramida: Data, Informasi, Knowledge, Wisdom

Piramida: Data, Informasi, Knowledge, Wisdom

Q?:

Berikan contoh keterkaitan data, informasi, knowledge dan wisdom. Dalam kehidupan sehari2 disekitar anda!

© 2011 Angus McDonald

Basis Data

Basis Data (Database): kumpulan data yang terorganisir berdasarkan suatu struktur hubungan (konsep entitas).

Metadata

Deskripsi tentang format dan karakteristik data, termasuk tipenya, ukurannya, nilainilai yang absah, dan dokumentasi lainnya.

Da	ta Item	Value			
Name	Туре	Length	Min	Max	Description
Course	Alphanumeric	30			Course ID and name
Section	Integer	1	1	9	Section number
Semester	Alphanumeric	10			Semester and year
Name	Alphanumeric	30			Student name
ID	Integer	9			Student ID (SSN)
Major	Alphanumeric	4			Student major
GPA	Decimal	3	0.0	4.0	Student grade point average

Sistem Berbasis File

Program-program aplikasi menyimpan data masing-masing dalam file

Kelemahan Sistem Berbasis File

Dependensi antara program & data

 Fungsi penyimpanan dan akses data merupakan bagian tak terpisahkan dari setiap program aplikasi.

Redundansi (duplikasi) data

Masing-masing aplikasi/program memiliki kopi sendiri untuk data yang sama.

Inkonsistensi data

Tidak ada pengawasan data secara terpusat.

Sulit berbagi (sharing) data

Format file antar program aplikasi dapat berbeda-beda.

Biaya pemeliharaan tinggi

Permasalahan Dependensi Data

- Setiap program aplikasi harus memiliki data sendiri memungkinkan duplikasi data.
 Setiap program aplikasi harus berurusan dengan metadata (format data) untuk setiap file yang digunakan.
- Setiap program aplikasi harus memiliki fungsi untuk membaca, menulis, mengubah dan menghapus data.
- ☐ Tidak ada **koordinasi pengelolaan data** yang sama antar aplikasi.
- Sulit membakukan format-format file.

Solusi BASIS DATA

Database

- Pusat repositori data bagi seluruh organisasi.
- Data dikelola oleh suatu sistem pengendali.
- Data disimpan dalam format yang baku dan mudah dimengerti.

Membutuhan suatu Database Management System (DBMS).

Database?

Database Management System (DBMS) adalah sistem penyimpanan dan pengambilan data yang memungkinkan data untuk disimpan secara tidak terduplikasi dan mengorganisasikan data dengan struktur yang dikehendaki penggunanya.

DBMS

Komponen Basis Data

Perkembangan Database

The Pioneers of the DBMS Trail

1989: Kognitio (in-memory

database)

1986: Gemstone (object

database)

1985: PC databases

1984: Teradata (database

applicance) 1983: IBM DB2

1981: IDEF1 (ICAM Definition) -

later to be IDEFIX1 (US Air

Force)

1979: Oracle and Ingres

1975; ANSI-SPARK 3-Schema Architecture

1976: Peter Chen Entity Relationship Modeling

1974: IBM System R prototype

1973: Cullinane IDMS (Integrated Database Management System)

1970: Dr. Ted Codd: A Relational Model of Data for Large Shared

Data Banks

1968: IBM IMS (Information Management System, hierarchical database)

1966: CODASYL (Conference on Data Systems Languages) standard for network databases

1964: General Electric IDS (Integrated Data Store)

1963: Charles Bachman Data Structure Diagram

1960: IBM DBOMP (Database Organization and Maintenance Processor)

1960_____1970 _____1980_____1990

http://graphdatamodeling.com/GraphDataModeling/History.html

Perkembangan Database

NoSQL The Relational Empire 2015: Apache Spark (inmemory) 2013: Relational Hadoop (Clouderal, Splice Machine) 2010: Hbase (column familiy store) 2009: Hadoop/Cloudera, MongoDB et al 2008: Hive (dev. by Facebook goes open source) 2007: Neo4J (property graph database 2005: Streambase (time-series database) 2003: Marklogic (document-/ graph database) 2002: Aduna Sesame (RDF database) 2001: Profium SIR (semantic router) 1999: W3C RDF (the Semantic Web Standards started) 1998: KDB (key/multi-value database) 1996:UML (Unified Modeling Language - object orient.) 1996: PC databases 1992: Essbase (multidimensional database) 1991: Berkeley DB (key/value database) 1990: RedBrick Warehouse (DW database) 1990 2000 2010

http://graphdatamodeling.com/GraphDataModeling/History.html

Database Relational

OPERIOR OF SET 1970:

Memperkenalkan model relasional data, pada saat itu sebagian besar sistem database berdasarkan dua model data: Model hirarki (hierarchical model) dan model jaringan (network model). Prototipe sistem database model relasional dikembangkan di IBM dan di UC-Berkeley pada pertengahan tahun 1974

Model Relasional telah digunakan sebagaian besar sistem database saat ini

Relational Model

- Simple & Elegan
 - Database adalah kumpulan dari satu atau lebih dari relasi, dimana setiap relasi adalah berupa tabel, kolom dan baris
- Keuntungan
 - Tampilan data berbentuk tabular mudah dimengerti
 - Kemudahan tampilan data walaupun dengan query yang rumit

Tabel

column / field										
	No 🔺	NIM \$	Nama 🌲	Prodi 🌲	Thn Angkatan 🌲	IPK \$	Predikat 💠			
row / record	1	02011	Faiz Fikri	2012	TI	3.8	Cum Laude			
	2	02012	Alissa Khairunnisa	2012	TI	3.9	Cum Laude			
	3	01011	Rosalie Naurah	2010	SI	3.46	Memuaskan			
	4	01012	Defghi Muhammad	2010	SI	3.2	Memuaskan			

- □ Field/Column Satu jenis informasi/data yang Mempunyai Tipe Data Sama
- □ Record/Row Satu kesatuan informasi yang terdiri atas satu Field atau lebih
- □ **Character** Satuan terkecil dari data

SQL - RDBMS

- □SQL (Structure Query Language) adalah suatu bahasa query yang dikembangkan oleh IBM pada projek DBMS relasional system -R.
- Selama beberapa tahun SQL menjadi bahasa query yang digunakan untuk melakukan pendefinisian skema, manipulasi data dan query pada DBMS relasional.

Standarisasi SQL #1

- Banyak digunakan vendor pada produk RDBMS
- Dibutuhkan standar penulisan SQL.
- Produk RDBMS diharapkan mengacu pada suatu standar yang ditetapkan.
- Diharapkan tidak ada perbedaan perintah SQL pada produk yang dikeluarkan.

Standarisasi SQL #2

American National Standards Institute (ANSI) mengeluarkan Standard SQL

```
№ 1986: SQL-86
```

1989: SQL-89; perubahan minor

■ 1992: SQL-92 ; ANSI+ISO – perubahan besar

№ 1999: SQL-99

2003: SQL-2003

Perintah SQL

- Data Definition Language (DDL) Perintah SQL untuk mendefinisikan skema database atau table : CREATE, DROP, ALTER
- Data Manipulation Language (DML) Perintah SQL untuk manipulasi data dan pencarian data : INSERT,UPDATE,DELETE,SELECT
- Data Control Language (DCL) Perintah SQL untuk mengontrol database atau table : GRANT, REVOKE

Database -> Data Warehouse

ETL:: Data Warehouse

Definisi Data Warehouse

Data Warehouse adalah sekumpulan data yang memiliki enam buah sifat atau karakteristik: subject oriented, integrated, process oriented, time variant, accessible, dan non volatile. (W.H. Bill Inmon: 1991)

Data Warehouse merupakan sebuah system untuk pengumpulan data transaksional dari berbagai sumber data, yang mengutamakan Query dan Analisa Data. (Ralph Kimball: 1996)

Data Warehouse merupakan sebuah system untuk pengumpulan dan konsolidasi data secara periodik dari sebuah system sumber data menjadi sumber data yang bersifat dimensional atau dalam bentuk normalisasi data. (Vincent Rainardi: 2008)

Quiz!!

Apa manfaat dari data warehouse bagi organisasi bisnis (perusahaan) ?

Manfaat Data Warehouse

- Mempertahankan sejarah data, bahkan jika sistem transaksi sumber tidak beroperasi.
- Mengintegrasikan data dari beberapa sistem sumber, memungkinkan pandangan sentral di seluruh perusahaan.
- Meningkatkan kualitas data, dengan menyediakan kode konsisten dan deskripsi, bahkan memperbaiki data yang buruk.
- Menampilkan seluruh informasi organisasi secara konsisten.
- Memperbaiki data sehingga memberikan kinerja query yang sangat baik, bahkan untuk pertanyaan analitik kompleks, tanpa mempengaruhi sistem operasional.
- Peningkatan produktivitas perusahaan dalam pengambilan keputusan