		INVERSE	FUNCTION	22	
		(Sec.	4.4)		
Let 9: 4	1-0B be	a functi	. NG		
	consider			ation	
					V A C R X A
	f-1 = f (4,=		_		
		40	(x) = 9		
			JE Kng (3)	
We have	· noticed	that g	on 2i 1.	+ a eways	a function.
Ex : 8	: IR - IR,	λ(α) = =	× ²		
<u> </u>				1 \ (2	7
	S = A(A)	ze) : (7,4) 6 1	4= 1 (22,2	e): x E 1Rq
	odn a ci	now word	an er de	st a func	rion
	(1,1) ef-	(1,-1)	€ 8-',	but 17-1	
			0	7	
westion	. When	(8)7-1	a funct	n'on'.	
Theorem	· Let 9.	A -D B	be o	function.	There
1110010100	7-1 =	Rna (3) x	A is a	function <=>	of is one-to-one.
					is a one-to-an
			'	A of lay	
Prod.					
Proof:	A - B	e a s	function.		
<-> \	e have to	to beco	ve that	wo zi f fi	- to-one than
			r Rng(1) to A.	
()	Dom (g-1)=	K100 (1)			

1) Dom (3-1) = Rng (3) y ∈ Dom f-1 (=> 3 x ∈ A such that (y,x) ∈ f-1 (=) \exists $x \in A$ Such that $(x,y) \in \{=\}$ {(x)=y ⇒ y ∈ Rng({}) 2) Lit x ∈ Rng ({), y, y, z ∈ A such that (x, y,), (x, y,) ∈ {) => 41= 42 $(x, y_1), (x, y_2) \in f^- = (y_1, x), (y_2, x) \in f =)$ $= f(y_1) = x = f(y_2) = f($ Assume that f' is a function from Rug (1) to <u>--></u>\ Let $x,y \in A$ s.t. f(x) = f(y) = z, with $z \in Rng(f)$. \Rightarrow (x,z), $(y,z) \in J \Rightarrow (z,x)$, $(z,y) \in J' \Rightarrow$ => x = y. Therefore f is one-to-one for a function Assume now that f": Rng (f) - A is a furction. Let us show that for is one-to-one and onto A · f-1 one-to-one Let 20, y & Rug ({) such that {-1 (20) = {-1 (4) = 2, with $z \in A$. Then (z_1,z) , $(y,z) \in f^{-1} = (z,z)$, $(z,y) \in f$ => 2=y. Therefore for some-to-one. of is a furction

· J' is onto A. Let $z \in A$. Since A = Don(y), $\exists y \in Rnog(y)$ such that (2,9) ∈ { => } ∃ y∈ Rng(3) such that (9,2)∈ {-1 => >c = Rng (g-1). Therefore g' is onto A. you have defined in calculus also the inverse of functions which our not one-to-one (ex. trigonometric functions)_ In this case you restrict the domain in a way that the function becomes one to one Def: Let f: A - B be a function and let DEA.

The restriction of f to D is the function $\frac{1}{2} := \frac{1}{2} (x, y) : y = \frac{1}{2} (x), x \in Dy$ Example: Sin: IR - IR > La sin(x) Sin (0) = 0 = Sin (2TT) => Sin is not one-to-one Nevertheles, if we restrict the down of sin to $-\frac{\pi}{2}$, $\frac{\pi}{2}$, the function $\frac{\sin\left[-\frac{\pi}{2},\frac{\pi}{2}\right]}{\left[-\frac{\pi}{2},\frac{\pi}{2}\right]} = \mathbb{R}$ becomes one-to-one and has rouge [-1,1]. Therefore the inverse relation $Sin^{-1}: \begin{bmatrix} -1,1 \end{bmatrix} \longrightarrow \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$ is a function which is defined as $\forall x \in [-1,1], g \in [-\frac{\pi}{2},\frac{\pi}{2}]$ $(x,y) \in \sin^{-1} \iff (y,z) \in \sin^{-1} (x) = y \iff \sin(y) = z$