Capitolo 3

Aritmetica per Elaboratori

- Operazioni sugli interi
 - Addizione e sottrazione
 - Moltiplicazione e divisione
 - Gestione dell'overflow
- Numeri reali in virgola mobile
 - Rappresentazione e operazioni

Addizione Intera

• Esempio: 7 + 6

- Overflow se il risultato è fuori dall'intervallo
 - Sommando operandi positivo e negativo, no overflow
 - Sommando operandi positivi, overflow se il bit del segno è 1
 - Sommando operandi negativi, overflow se il bit del segno è 0

Sottrazione Intera

- Sommare la negazione del secondo operando
- Esempio: 7 6 = 7 + (-6)

```
+7 0000 0000 ... 0000 0111
-6 1111 1111 ... 1111 1010
+1 0000 0000 ... 0000 0001
```

- Overflow se il risultato è fuori dall'intervallo
 - Sottraendo due operandi positivi o negativi, no overflow
 - Sottraendo un positivo da un negativo, overflow se il bit del segno è 0
 - Sottraendo un negativo da un positivo, overflow se il bit del segno è 1

Gestire l'overflow

- Alcuni linguaggi (per esempio, il C) ignorano l'overflow
 - Usano istruzioni MIPS addu, addui, subu
- Altri linguaggi (per esempio, Ada e Fortran) richiedono il sollevamento di un'eccezione
 - Usano istruzioni MIPS add, addi, sub
 - In caso di overflow, invocano il gestore dell'eccezione
 - Salvano PC nel registro EPC (exception program counter)
 - Saltano all'indirizzo predefinito del gestore
 - L'istruzione mfc0 (move from coprocessor register) può leggere il contenuto di EPC, per ritornare dopo le azioni correttive

Moltiplicazione

La lunghezza del prodotto è la somma della lunghezza degli operandi

Hardware per la moltiplicazione

Virgola mobile

- Rappresentazione per numeri non interi
 - Inclusi numero molto piccoli e molto grandi
- Simile alla notazione scientifica

•
$$+0.002 \times 10^{-4}$$

non normalizzato

- $+987.02 \times 10^9$
- In binario
 - $\pm 1.xxxxxxxx_2 \times 2$ уууу
- Tipi float e double in C

Standard virgola mobile

- Definito dallo standard IEEE Std 754-1985
- Sviluppato in risposta alla divergenza delle rappresentazioni
 - Problemi di portabilità nel codice scientifico
- Adesso adottato quasi universalmente
- Due rappresentazioni
 - Precisione singola (32-bit)
 - Precisione doppia (64-bit)

Formato IEEE

1 bit

Singola: 8 bit

Doppia: 11 bit

Singola: 23 bit

Doppia: 52 bit

S

esponente

mantissa

$$x = (-1)^s \times (1 + mantissa) \times 2^{(esponente - polarizzazione)}$$

- s: bit del segno (0 non-negativo, 1 negativo)
- Significando normalizzato: 1.0 ≤ |significando| < 2.0
 - Il bit prima del punto decimale è sempre uguale a 1, quindi non è necessario rappresentarlo esplicitamente
 - Il significando è la mantissa con "1." ripristinato
- Esponente: notazione polarizzata
 - esponente = esponente reale + polarizzazione
 - Assicura che l'esponente è senza segno
 - Polarizzazione 127 (precisione singola), 1023 (precisione doppia)

Intervallo precisione singola

- Esponenti 00000000 e 11111111 riservati
- Valore più piccolo
 - Esponente: $00000001 \rightarrow Esponente reale: 1 127 = -126$
 - Mantissa: 000...00 → Significando: 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Valore più grande
 - Esponente: $111111110 \rightarrow Esponente reale: 254 127 = +127$
 - Mantissa: 111...11 → Significando ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Intervallo precisione doppia

- Esponenti 000000...00 e 111111...11 riservati
- Valore più piccolo
 - Esponente: $00000000001 \rightarrow$ Esponente reale: 1 1023 = -1022
 - Mantissa: 000...00 → Significando: 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Valore più grande

 - Mantissa: 111...11 → Significando ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Somma in virgola mobile

- Si consideri un esempio su 4 cifre decimali
 - \bullet 9.999 \times 10¹ + 1.610 \times 10⁻¹
- 1. Allineare i punti decimali
 - Scorrere il numero con l'esponente più piccolo
 - $9.999 \times 10^1 + 0.016 \times 10^1$
- 2. Sommare i significandi
 - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalizzare il risultato e controllare over/underflow
 - 1.0015×10^2
- 4. Arrotondare e ri-normalizzare se necessario
 - 1.002×10^2

Somma in virgola mobile

- Adesso Si consideri un esempio su 4 cifre binarie
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Allineare i punti binari
 - Scorrere il numero con l'esponente più piccolo
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Sommare i significandi
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalizzare il risultato e controllare over/underflow
 - $1.000_2 \times 2^{-4}$, no over/underflow
- 4. Arrotondare e ri-normalizzare se necessario
 - $1.000_2 \times 2^{-4}$ (nessun cambiamento) = 0.0625

Istruzioni FP nel MIPS

- L'hardware FP è il coprocessore 1
 - Processore aggiuntivo che estende l'ISA
- Registri FP separati
 - Precisione singole a 32 bit: \$f0, \$f1, ... \$f31
 - Appaiati per precisione doppia: \$f0/\$f1, \$f2/\$f3, ...
 - La release 2 dell'ISA del MIPS supporta 32 × registri FP a 64 bit
- Le istruzioni FP operano sono su registri FP
 - I programmi generalmente non eseguono operazioni intere su dati FP o viceversa
 - Più registri con minimo impatto sulla dimensione del codice
- Istruzioni FP di lettura e scrittura
 - lwc1, ldc1, swc1, sdc1
 - Per esempio, ldc1 \$f8, 32(\$sp)

Parallelismo sui dati

- La applicazioni grafiche e audio possono sfruttare l'esecuzione simultanea di operazioni su vettori
 - Esempio: sommatore a 128 bit:
 - Sedici somme a 8 bit
 - Otto somme a 16 bit
 - Quattro somme a 32 bit
- Detto anche parallelismo a livello di parola, parallelismo vettoriale, o Single Instruction, Multiple Data (SIMD)

Note conclusive

- I bit non hanno un significato intrinseco
 - L'interpretazione dipende dalle istruzioni applicate
- Rappresentazione digitale dei numeri
 - Intervallo e precisione finiti
 - Bisogna tenerne conto nei programmi
- Aritmetica supportata nell'ISA
 - Interi con e senza segno
 - Approssimazioni in virgola mobile dei reali
- Intervallo e precisione limitati
 - Le operazioni possono causare overflow e underflow
- ISA del MIPS
 - Istruzioni principali: 54 più frequentemente usate
 - Altre istruzioni: meno frequenti