

Trends of predictive breeding

Changes in the plant breeding landscape driven by more, better and different data

Alencar Xavier

Breeding Analyst at Corteva Agrisciences Adjunct professor at Purdue University

02/2024

Contributions from Radu Totir, Frank Technow, David Habier, David Bubeck, Abelardo de la Vega

- Rationale
- Breeding with ML

2. Modeling

- Approaches
- Correlated information

3. Analytics

- Breeding objectives
- Target G x E x M
- Validation

- Rationale
- Breeding with ML

2. Modeling

- Approaches
- Correlated information

3. Analytics

- Breeding objectives
- Target G x E x M
- Validation

What are some implications of continuous Corn Improvement?

Source: Totir 2021, ASTA

*Based on 2021 USDA NASS data

More Pheno

https://www.mdpi.com/2076-3417/12/5/2570

More Geno Growth of DNA Sequencing

The Cost of Sequencing a Human Genome. NIH. https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-genome/

Stephens, Z. D.et al. (2015). Big data: astronomical or genomical? *PLoS biology*, *13*(7), e1002195.

More Env ***

- UC Merced GridMET
- NWS NOAA
- NASA GISS, NASA power
- Harmonized SoilDB
- USDA SSURGO

More Computing

Machine learning in breeding processes

Enhancing databases, automating lab tasks field work

phenotyping

Disease, stress scoring

https://www.mdpi.com/2673-2688/2/3/26 https://www.biomedcentral.com/collections/phenomics

Phenotype automation

(e.g., plant height, identify new traits)

https://www.mdpi.com/2072-4292/8/12/1031 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706325/

environment

Mapping / zoning

https://www.publish.csiro.au/cp/CP14007

Latent weather, soil

biotech

SNP calls, genome assembly

https://doi.org/10.1186/1753-6561-3-s7-s58 https://www.nature.com/articles/s41467-022-29843-y

Embryo rescue DH production

https://doi.org/10.1093/bioinformatics/btab268

https://www.nature.com/articles/s41598-022-06336-y

- Rationale
- Breeding with ML

2. Modeling

- Challenges and opportunities
- Correlated information

3. Analytics

- Breeding objectives
- Target G x E x M
- Validation

Challenges in Corn Improvement

G = Genetics; **E** = Environment; **M** = Management

Source: Totir 2021, ASTA

Law of the minimum

End goal of GxExM characterization

Phenotypic data
Genomic data
Environmental data
Management data
Business data

Modeling & Analytics

(Predictive, Prescriptive)

1) SELECTION

2) CHARACTERIZATION

(3) PRODUCT PLACEMENT

4) SEED PRODUCTION

5) LOGISTICS OPTIMIZATION

Addressing yield limiting factors through breeding and agronomics

Addressing producibility and commercial questions

Linear models

Crop models

Linearly correlated phenotypes

Using machine learning to infer connections from data

flowering

maturity

A new approach fits multivariate genomic prediction models efficiently

Alencar Xavier^{1,2*†} and David Habier^{1*†}

Using unsupervised learning techniques to assess interactions among complex traits in soybeans

Alencar Xavier · Benjamin Hall · Shaun Casteel · William Muir · Katy Martin Rainey

size

NAWE2L1YRXS5T (R1 experiment 2020)

Leveraging information from secondary traits

Multi-trait analysis provided an average increase in accuracy of 0.03

Equivalent to adding ~1.7 locations

High-throughput phenotyping

More data, more information, more complexity, more opportunities...

Singh A.K. et al. (2021) High-Throughput Phenotyping in Soybean. https://doi-org/10.1007/978-3-030-73734-4

Correlation(HTP, main trait) 0.05 -0.17 CC_{tou} -0.59 0.61 Early vig t_{dCCmax} 0.61 -0.7 Intermediate traits $LAI_{t_{PH_1}}$ b) -0.470.61 -0.91 t_{dLA**I**...} 0.46 0.13 0.11 Time LAI_{max} -0.26 0.36 -0.93 t_{LAI}... 0.77 t_{LAL} 0.04 0.72 Protein Yield Early vigor Mid-season vigor Maturity

Roth et al. (2022) High-throughput field phenotyping of soybean: Spotting an ideotype. https://doi.org/10.1016/j.rse.2021.112797

Target traits

Correlation(HTP, main trait) with *large number of traits*

Runcie et al. (2021) Mega-scale linear mixed models for genomic predictions with thousands of traits. https://doi.org/10.1186/s13059-021-02416-w

- Rationale
- Breeding with ML

2. Modeling

- Approaches
- Correlated information

3. Analytics

- Breeding objectives
- Target G x E x M
- Validation

"Breeding objective"

f (market segment, farming systems)

• Set of traits of interest (**TOI**) bred into a WHAT

Yield, moisture, relative maturity, disease resistance, stability, trait package, producibility

• Target population of genetics (**TPG**) for a given

Corn 111-121, corn 122-130 white corn 118-123

 Target population of environments (TPE) and management (TPM) practices

HOW, WHEN

Drought, irrigation, early planting, varying levels of disease pressure, different soil types

 $\rho_{\mathrm{GxExM}} = \rho_{\mathrm{TPG}} \times \rho_{\mathrm{TPE}} \times \rho_{\mathrm{TPM}}$

Model testing and validation schemes

Prediction accuracy $\propto \sqrt{H^2} \times \rho_{\text{GxExM}}$

Technical nuances of machine learning: implementation and validation of supervised methods for genomic prediction in plant breeding

Alencar Xavier 1

Multiple factors play a role on the implementation of <u>predictive breeding</u> and <u>automated systems</u> beyond proof of concepts using cross-validations

Hidden Technical Debt in Machine Learning Systems

doi/10.5555/2969442.2969519

- Rationale
- Breeding with ML

2. Modeling

- Approaches
- Correlated information

3. Analytics

- Breeding objectives
- Target G x E x M
- Validation

With more data and better analytics, breeding can respond faster the new farming challenges and trends

- New & better management
- Changing environment
- New pests and diseases

 $Acc \propto GxExM \times h^2$

Performance Producibility Robustness

Thank you for your attention!

Final remarks:

- 1) Plant breeding relies on analytics for multiple processes and analytics
- 2) Harnessing GxExM information benefits accuracy, business impact
- 3) Modeling is contingent to the target genetics, environments and management

Questions??

Alencar Xavier

Alencar.Xavier@Corteva.com

