PSALTer results panel

 $0^+\mathcal{A}^{\parallel}$ 0^+f^{\parallel} 0^+f^{\perp} $0^-\mathcal{A}^{\parallel}$

$$S == \iiint \left(\mathcal{R}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau_{(\Delta+\mathcal{K})_{\alpha\beta}} - \frac{2}{3} r_{\mathbf{i}} \left(2 \, \partial_{\beta} \mathcal{R}_{\alpha_{i}\theta} - \partial_{\beta} \mathcal{R}_{\alpha\theta_{i}} + 4 \, \partial_{\beta} \mathcal{R}_{i\,\theta\alpha} + \partial_{i} \mathcal{R}_{\alpha\beta\theta} - \partial_{\theta} \mathcal{R}_{\alpha\beta_{i}} - \partial_{\theta} \mathcal{R}_{\alpha_{i}\beta_{i}} \right) \partial^{\theta} \mathcal{R}^{\alpha\beta_{i}} + \frac{1}{2} t_{\mathbf{i}} \left(2 \, \mathcal{R}^{\alpha_{i}}_{\ \alpha} \, \mathcal{R}_{i\,\theta}^{\ \theta} - 4 \, \mathcal{R}_{\alpha\,\theta}^{\ \theta} \, \partial_{i} f^{\alpha_{i}} + 4 \, \mathcal{R}_{i\,\theta}^{\ \theta} \, \partial^{i} f^{\alpha}_{\ \alpha} - 2 \, \partial_{i} f^{\theta}_{\ \theta} \, \partial^{i} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}}_{\ \alpha} + 4 \, \partial^{i} f^{\alpha}_{\ \alpha} \, \partial_{\theta} f^{\beta_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\beta_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\alpha_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\alpha_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\alpha_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\alpha_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\alpha_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\alpha_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha} f^{\alpha_{i}}_{\ \alpha} \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{\alpha}$$

Wave operator

_	· <i>9</i> 1"	• / "	• J	• 34"	_									
^{0⁺} ℋ [∥] †	-t • 1	$i \sqrt{2} kt$	0	0										
^{0⁺} f [∥] †	$-i \sqrt{2} kt$	$-2k^2t$	0	0										
${\overset{0^+}{\overset{\bullet}{\bullet}}}f^\perp$ †	Θ	0	0	Θ										
^{o-} ℋ [∥] †	Θ	0	0	-t. 1	${}^{1^{\scriptscriptstyle +}}_{}{\mathscr A}^{\parallel}{}_{lphaeta}$	${}^{1^+}_{}\mathcal{A}^{\perp}{}_{\alpha\beta}$	$\ 1^{+}_{\boldsymbol{i}}f\ _{\alpha\beta}$	${}^{1^{-}}_{\bullet}\mathcal{H}^{\parallel}_{\alpha}$	$^{1}_{\cdot}\mathcal{A}^{\perp}{}_{\alpha}$	$\frac{1}{\bullet}f^{\parallel}_{\alpha}$	$\int_{\bullet}^{1} f^{\perp}_{\alpha}$			
				$^{1^{+}}_{\bullet}\mathcal{A}^{\parallel}$ † lphaeta	$k^2 \left(2 r_{1} + r_{5}\right)$	$-\frac{t_{\cdot}}{2} - \frac{t_{\cdot}}{\sqrt{2}}$	$-\frac{i k t_{1}}{\sqrt{2}}$	0	0	0	Θ			
				${}^{1^+}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} {\mathcal R}^{\scriptscriptstyle \perp} {\dagger}^{\alpha\beta}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	0	0	0	0	0			
				$^{1^{+}}f^{\parallel}\uparrow^{lphaeta}$		0	0	0	0	0	0			
				$^{1}_{\cdot}\mathcal{A}^{\parallel}\dagger^{\alpha}$	0	0	0	$k^2\left(r_{\overset{\bullet}{1}}+r_{\overset{\bullet}{5}}\right)-\frac{t_{\overset{\bullet}{1}}}{2}$	$\frac{t_{i}}{\sqrt{2}}$	0	₫ k t . 1			
				$^{1}_{\bullet}\mathcal{A}^{\perp}\dagger^{\alpha}$	Θ	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0			
				$f^{\parallel} \uparrow^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	Θ	0			
				$^{1}_{\bullet}f^{\perp}\uparrow^{\alpha}$	0	0	0	- i k t . 1	0	Θ	0	$\mathcal{A}^{2^{+}}\mathcal{A}^{\parallel}_{\alpha\beta}$	$2^+_{\bullet}f^{\parallel}_{\alpha\beta}$	$^{2^{-}}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}_{\bullet}\mathcal{A}^{\parallel}$ † lphaeta		$-\frac{i k t_{\frac{1}{2}}}{\sqrt{2}}$	0
											$^{2^{+}}_{\bullet}f^{\parallel}$ † $^{\alpha\beta}$	$\frac{i k t}{\sqrt{2}}$	$k^2 t$	0
											2 \mathcal{A}^{\parallel} $\dagger^{\alpha\beta\chi}$		0	$k^2 r_{\bullet} + \frac{t_{\bullet}}{2}$

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities		
${\stackrel{\Theta^+}{\cdot}} \tau^{\perp} == \Theta$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta} == 0$	1		
$-2 i k \cdot \sigma^{\parallel} + \cdot \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1		
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3		
1- _τ ^α == Θ	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3		
$i k \stackrel{1^+}{\cdot} \sigma^{\perp}{}^{\alpha\beta} + \stackrel{1^+}{\cdot} \tau^{\parallel}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\sigma}\partial_{\chi}\partial^{\alpha}{}_{\sigma}^{\chi\beta\delta} + 2 \partial_{\sigma}\partial^{\delta}\partial_{\chi}{}_{\sigma}^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2 \partial_{\sigma}\partial_{\chi}\partial^{\beta}{}_{\sigma}^{\chi\alpha\delta}$	3		
$-2 i k \frac{2^+}{\cdot} \sigma \ ^{\alpha \beta} + \frac{2^+}{\cdot} \tau \ ^{\alpha \beta} = 0$	$-i\left(4\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\delta}+2\ \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi}_{\ \chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\beta\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\beta}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\ (\Delta+\mathcal{K})^{\alpha\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\ (\Delta+\mathcal{K})^{\chi\alpha}+2\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\alpha}+2\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\alpha}+2\ \partial_{\delta}\partial^{\alpha}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\alpha}+2\ \partial_{\delta}\partial^{\alpha}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\alpha}+2\ \partial_$	5		
	$3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+4\ i\ k^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}{}_{\delta}{}^{\epsilon}-6\ i\ k^{\chi}\ \partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon}-6\ i\ k^{\chi}\ \partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon}+$			
	$6 \ i \ k^X \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 \ i \ k^X \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \ \eta^{\alpha\beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi\tau} \left(\Delta + \mathcal{K} \right)^{X\delta} - 2 \ \eta^{\alpha\beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} \left(\Delta + \mathcal{K} \right)^{X} - 4 \ i \ \eta^{\alpha\beta} \ k^X \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$			
Total expected gauge generators:				

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{i}} > 0$
Square mass:	$-\frac{\frac{t_{\cdot}}{1}}{2r_{\cdot}} > 0$
Spin:	2
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

r. < 0 && t. > 0