What is Claimed:

2

3

1

2

3

1

3

1

2

1

2

2

5

6

7

2

3

5

White is claimed.		
	 A cradle motion unit for positioning a test head, comprising 	
2	a support structure which provides three degrees freedom;	
3	a first lock; and	
1	a second lock,	
5	wherein motion in the three degrees of freedom are prevented by actuation of	
5	the first lock and the second lock.	
1	The cradle motion unit of claim 1, wherein the three degrees of	

- 2. The cradle motion unit or claim 1, wherein the three degrees of freedom include a translation motion along a first axis, a first rotation motion about a second axis, and a second rotation motion about a third axis.
- 3. The cradle motion unit of claim 2, wherein actuation of the first and second locks prevents the first and second rotation motions and the translation motion.
- 4. The cradle motion unit of claim 2, wherein the support structure includes a first cradle side and a plate coupled to the first cradle side for providing the translation motion and the first axis that is substantially parallel to the first cradle side.
- 5. The cradle motion unit of claim 4, wherein the second axis is orthogonal to the first axis.
- 6. The cradle motion unit of claim 5, wherein the third axis is orthogonal to the first axis and the second axis.
 - 7. The cradle motion unit of claim 6, further comprising:

at least one guide block coupled to the load, the at least one guide block having a circular arc shaped slot, wherein

a center of the circular arc shaped slot is aligned with the third axis, and

the circular arc shaped slot is located on a circle that is orthogonal to the third axis.

- 8. The cradle motion unit of claim 4, further comprising:
- a least one guide block coupled to the load, the at least guide block having a circular arc shaped slot; and
- at least one cam follower attached to the plate for insertion into the circular arc shaped slot.

2

3

1	9. The cradle motion unit of claim 7, further comprising				
2	at least one cam follower attached to the plate for insertion into				
3	the circular arc shaped slot,				
4	wherein the circular arc shaped slot and the at least one cam follower are				
5	arranged so that rotation about the center is not at a center of gravity of the				
6	load.				
1	 A system having three degrees of freedom where the first degree 				
2	of freedom is rotation about a first axis, the second degree of freedom is				
3	rotation about a second axis which is orthogonal to the first axis, and the third				
4	degree of freedom is translation along a third axis that is orthogonal to both				
5	the first axis and the second axis, and having two locks such that motion in a				
6	three degrees of freedom is inhibited when both locks are activated.				
1	11. An apparatus for positioning a load, the system comprising:				
2	a vertical support structure;				
3	a plurality of horizontal surfaces including				
4	(a) at least one of a first upward surface and a first				
5	downward surface, and				
6	(b) at least one of a second upward surface and a second				
7	downward surface;				
8	a plurality of horizontal rails,				
9	wherein at least one of the plurality of horizontal rails is mounted to at least				
10	one of the plurality of horizontal surfaces.				
1	12. The apparatus of claim 11, wherein the plurality of horizontal rails				
2	includes a first rail projecting in a first vertical plane and a second rail				
3	projecting in a second vertical plane.				
1	13. The system of claim 12, wherein the first vertical plane is				
2	orthogonal to one of the plurality of horizontal surfaces.				
1	14. The system of claim 12, wherein the second vertical plane is				
2	orthogonal to one of the plurality of horizontal surfaces.				
1	15. The apparatus of claim 12, further comprising a horizontal support				

15. The apparatus of claim 12, further comprising a horizontal support structure for coupling to a load, the horizontal support structure being coupled to at least one of the plurality of horizontal rails for positioning relative to the vertical support structure.

1	An apparatus attached to a side of a cradle for positioning a load			
2	relative to the cradle, the apparatus comprising:			
3	a sliding arm structure between the side of the cradle and the load			
4	for translation motion along a first axis;			
5	an arm support block, also between the side of the cradle and the			
6	load, for rotating the load about a second axis orthogonal to the first axis;			
7	a guide block structure, at least a portion thereof being between			
8	the side of the cradle and the load, for rotating the load about a third axis			
9	orthogonal to the first axis and the second axis.			
1	17. The apparatus of claim 16, wherein the guide block structure			
2	includes at least one circular arc shaped slot that defines the second rotation			
3	motion, the third axis being located at a center of the at least one circular arc			
4	shaped slot.			
1	18. The apparatus of claim 16, wherein			
2	the sliding arm structure is attached to the side of the cradle,			
3	the arm support block is adjacent to the sliding arm structure and			
4	between the sliding arm structure and the guide block structure, and			
5	the guide block structure is coupled to the cradle.			
1	19. The apparatus of claim 16, further comprising			
2	a first lock coupled to the cradle; and			
3	a second lock coupled to the sliding arm structure,			
4	wherein actuation of the first and second locks prevents the translation motion			
5	the first rotation motion, and the second rotation motion.			
1	20. A method for positioning a test head in a cradle motion unit, the			
2	method comprising the steps of:			
3	positioning the test head on a first degree of freedom;			
4	positioning the test head on a second degree of freedom;			
5	positioning the test head on a third degree of freedom;			
6	actuating a first lock coupled to the cradle; and			
7	actuating a second lock coupled to the cradle,			
8	wherein actuation of the first and second locks prevents motion in the three			
۵	degrees of motion.			

1	21.	A method of positioning a test head relative to a cradle while said		
2	cradle is kept stationary, the method comprising the steps of:			
3	•	imparting linear motion relative to the cradle;		
4		imparting tumble motion relative to the cradle;		
5		imparting theta motion relative to the cradle;		
6		actuating a first lock coupled to the cradle; and		
7		actuating a second lock coupled to the cradle,		
8		wherein actuation of the first and second locks prevents motion in		
9	the t	hree degrees of motion.		