Examenul national de bacalaureat 2021 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.
 Timpul de lucru efectiv este de trei ore.

A. MECANICĂ Testul 3

Se consideră accelerația gravitațională $g = 10 \text{m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Unitatea de măsură a accelerației poate fi scrisă în forma:
- **b.** J·kg
- **d.** N·kg

(3p)

- **2.** Un corp mic și greu, eliberat din vârful unui plan înclinat care formează unghiul α cu orizontala, se deplasează fără frecare pe suprafața acestuia. Expresia forței de apăsare normală a corpului pe plan este:
- **a.** $N = mg\cos\alpha$
- **b.** $N = mq \sin \alpha$
- **c.** $N = mg tg \alpha$
- **d.** N = mg
- **3.** Un corp are energia cinetică $E_c = 10 \text{ J}$ și impulsul $p = 10 \text{ N} \cdot \text{s}$. Masa corpului este:
- **b.** 5 kg
- **c.** 10 kg

- (3p)
- 4. Dacă forta rezultantă care actionează asupra unui corp este nulă, atunci corpul:
- a. are accelerația constantă nenulă
- b. se află în miscare rectilinie si uniformă sau în repaus
- c. are o miscare rectilinie uniform variată
- d. poate fi numai în repaus.
- 5. Un corp se deplasează rectiliniu uniform pe o suprafață orizontală rugoasă, sub acțiunea unei forțe de tracțiune orizontale. În graficul alăturat este reprezentată dependența forței de tracțiune de coordonata la care se află corpul. Lucrul mecanic efectuat de forța de frecare pe cei trei metri este $L_r = -6 \text{ J}$. Valoarea fortei de tractiune este de:

- a. 2 N
- **b.** 3 N
- c. 6 N
- **d.** 18 N

(3p)

II. Rezolvaţi următoarea problemă:

Două corpuri cu masele M = 0.4kg si m = 0.1kg sunt legate prin intermediul unui fir inextensibil si de masă neglijabilă, trecut peste un scripete fără frecări, lipsit de inerție. Coeficientul de frecare la alunecare dintre corpul cu masa M și planul orizontal este $\mu = 0,25$. Când corpul de masă m se găsește la înălțimea h = 0.5 m față de sol, printr-un impuls scurt se imprimă sistemului celor două corpuri viteza v = 1m/s, orientată ca în figura alăturată. Determinati:

- a. valoarea accelerației sistemului înainte ca m să atingă solul;
- **b.** valoarea tensiunii din fir înainte ca *m* să atingă solul;
- c. durata mișcării sistemului din momentul imprimării vitezei V și până în momentul în care corpul cu masa m atinge solul;
- d. distanța totală parcursă de corpul cu masa M până la oprire, considerând că firul este suficient de lung pentru ca acest corp să se oprească înainte de a ajunge la scripete.

III. Rezolvati următoarea problemă:

(15 puncte)

Pe un igheab lucios este lăsat liber, de la înăltimea $H = 4.0 \,\mathrm{m}$, un mic corp cu masa $m = 250 \,\mathrm{g}$ (vezi figura alăturată). Corpul alunecă fără frecare și, în punctul B, părăsește jgheabul cu viteză orizontală, la înălțimea h=1,0m față de sol. Considerați că energia potențială gravitațională este nulă la nivelul solului. Determinați:

- a. energia potentială gravitatională în punctul A;
- **b.** lucrul mecanic efectuat de greutate în timpul coborârii din A în B:
- c. energia cinetică a corpului în punctul B;
- d. mărimea impulsului corpului imediat înainte de coliziunea cu solul.

Examenul național de bacalaureat 2021 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.
 Timpul de lucru efectiv este de trei ore.

B. ELEMENTE DE TERMODINAMICĂ

Testul 3

Se consideră: numărul lui Avogadro $N_A = 6,02 \cdot 10^{23} \text{mol}^{-1}$, constanta gazelor ideale $R = 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect.

1. Trei mase diferite din același gaz ideal sunt supuse unor transformări la aceeași valoare constantă a presiunii. Studiind dependența V-T din figura alăturată relația dintre masele celor trei gaze este:

- **a.** $m_1 = m_2 = m_3$
- **b.** $m_1 > m_2 > m_3$
- **c.** $m_2 > m_3 > m_1$
- **d.** $m_3 > m_2 > m_1$.
- 2. Aceeași căldură este necesară pentru a mări temperatura unei mase $m_1 = 1 \, \text{kg}$ de apă de la $t_1 = 25 \, ^{\circ}\text{C}$ la t_2 = 35°C ca și pentru a încălzi cu Δt = 100°C un corp. Căldura specifică a apei fiind egală cu c_a = 4200 J/(kg·K), capacitatea calorică a corpului este egală cu:
- **a.** 840 J/K
- **b.** 420 J/K
- **c.** 210J/K
- **d.** 150 J/K
- (3p)

(3p)

- 3. O butelie conține o masă $m_1 = 2 \, \text{kg}$ de heliu ($\mu_1 = 4 \, \text{g/mol}$). Numărul de molecule de heliu aflate în vas este aproximativ:
- **a.** $3 \cdot 10^{26}$
- **b.** $6 \cdot 10^{26}$
- **c.** $3 \cdot 10^{23}$
- **d.** $6 \cdot 10^{23}$
- (3p)
- **4.** Dacă o cantitate constantă v gaz ideal suferă o transformare descrisă de legea p = aV, a = ct, a > 0, atunci volumul gazului variază după legea:

- **a.** $V = \frac{vR}{a} \cdot T^{-1}$ **b.** $V = \frac{vR}{a} \cdot T^2$ **c.** $V = \sqrt{\frac{vR}{a}} \cdot T$ **d.** $V = \sqrt{\frac{vR}{a}} \cdot \sqrt{T}$ (3p)
- 5. Căldurile molare pentru gaze se pot exprima cu ajutorul exponentului adiabatic γ . Raportul $\frac{C_V}{R}$ este egal cu:
- a. $\gamma(\gamma-1)$
- **b**. $\gamma 1$
- **c**. $(\gamma 1)^{-1}$

II. Rezolvati următoarea problemă:

(15 puncte)

Un vas conține o masă $m_1 = 50\,\mathrm{g}$ de $H_2\left(\mu_1 = 2\,\mathrm{kg/kmol}\right)$, considerat gaz ideal, la presiunea $p_1 = 2.10^5 \,\text{N/m}^2$ și temperatura $t = 37^{\circ}\text{C}$.

- a. Determinați cantitatea de gaz din vas.
- b. Calculați numărul de molecule din unitatea de volum aflate în vas.
- **c.** Un alt vas, având volumul V_2 de trei ori mai mare decât primul, conține $He(\mu_2 = 4 \text{kg/kmol})$ la presiunea

 $p_2 = 10^5 \,\mathrm{N/m^2}$. Considerând că temperatura celor două gaze, considerate ideale, este aceeași și că se menține constantă, determinați valoarea presiunii amestecului obținut după ce vasele sunt puse în legătură printr-un tub de volum neglijabil.

d. Calculati masa molară a amestecului obtinut.

III. Rezolvați următoarea problemă:

(15 puncte)

O cantitate de oxigen cu masa m = 96 g se află inițial la temperatura $t_1 = 127$ °C. Gazul este supus unei succesiuni de transformări după cum urmează:

- 1 → 2 destindere izotermă în care volumul se dublează,
- $2 \rightarrow 3$ transformare izobară în care gazul revine la volumul inițial V_1 și
- $3 \rightarrow 1$ transformare izocoră în care gazul revine la presiunea inițială p_1 .

Se cunosc: ln 2 \cong 0,7 , $C_V=$ 2,5R și $\mu_{O_2}=$ 32 kg/kmol . Calculați:

- **a.** variația energiei interne a gazului în transformarea $3 \rightarrow 1$.
- b. valoarea lucrului mecanic schimbat de gaz cu mediul exterior în transformarea izotermă.
- c. căldura schimbată de gaz cu exteriorul în transformarea izobară.
- d. randamentul motorului termic care ar functiona după transformarea ciclică descrisă.

Examenul național de bacalaureat 2021 Proba E. d)

Filiera teoretică - profilul real, Filiera vocațională - profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.
 Timpul de lucru efectiv este de trei ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Testul 3

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Unitatea de măsură în S.I. a rezistivității electrice poate fi scrisă sub forma:
- **a.** $J \cdot m \cdot A^{-2} \cdot s^{-1}$
- **b.** $J \cdot m^2 \cdot A^{-1} \cdot s$
- c. $J \cdot m \cdot A \cdot s$
- $\mathbf{d.} \ \mathbf{J} \cdot \mathbf{m}^{-2} \cdot \mathbf{A}^{-2} \cdot \mathbf{s}^2$

(3p)

2. Montajul electric din figura alăturată conține conductorii ohmici cu rezistențele electrice $R_1=10\Omega$, $R_2=6\Omega$, $R_3=4\Omega$, $R_4=7.6\Omega$. Tensiunea aplicată între punctele A și B are valoarea $U_{AB}=10\,\mathrm{V}$. Intensitatea curentului electric din circuitul principal este egală cu:

- **b.** 1A
- **c.** 1,5 A
- **d.** 2A

3. În figura alăturată sunt reprezentate grafic caracteristicile curent-tensiune pentru trei rezistoare diferite. Între valorile rezistențelor electrice există relația:

- **b.** $R_2 < R_1 < R_3$
- **c.** $R_3 < R_2 < R_1$
- **d.** $R_1 < R_3 < R_2$

- (3p)
- **4.** Un receptor cu o rezistență electrică $R=50\Omega$ trebuie alimentat de la o rețea, prin intermediul unui cablu. Cablul este format din două fire identice de cupru si are lungimea $L=45\,\mathrm{m}$. Căderea de tensiune pe cablu este de 3% din tensiunea de alimentare. Aria secțiunii transversale a unui fir de cupru $\left(\rho_{Cu}=1,7\cdot10^{-8}\Omega\cdot\mathrm{m}\right)$

utilizat este de aproximativ:

- **a.** 0.56 mm²
- **b.** 0,99 mm²
- **c.** 49,47 mm²
- **d.** 50 mm²
- (gp)
- **5.** La capetele unui conductor metalic de rezistență R se aplică o tensiune electrică U. Dacă e este sarcina electrică elementară, numărul de electroni care trec prin secțiunea transversală a conductorului în intervalul de timp t este:

a.
$$N = \frac{Ut}{2R}$$

- **b**. $N = \frac{etR}{U}$
- **c.** $N = \frac{eR}{Ut}$
- $\mathbf{d.} \ N = \frac{Rt}{Ue}$

II. Rezolvați următoarea problemă:

Pentru circuitul electric din figura alăturată se cunosc tensiunile electromotoare ale generatoarelor $E_1=6\,\mathrm{V}$, $E_2=4\,\mathrm{V}$, $E_3=2\,\mathrm{V}$, rezistențele lor interioare $r_1=r_2=r_3=1\Omega$ precum și rezistențele electrice ale rezistorilor din circuit $R_1=R_2=R_3=2\Omega$. Determinați:

- **a.** intensitatea curentului prin rezistorul R_2 ;
- **b.** indicația unui voltmetru ideal $\left(R_{\scriptscriptstyle V} \to \infty\right)$ conectat între punctele
- A și B, cunoscând $I_1 = 0.2 \text{ A}$;

- **c.** căderea de tensiune pe circuitul interior al generatorului cu t.e.m. E_2 , cunoscând I_2 = 1,2 A;
- **d.** valoarea intensității curentului prin rezistorul R_3 dacă punctele A și C ale circuitului se leagă printr-un fir de rezistență neglijabilă

III. Rezolvați următoarea problemă:

(15 puncte)

- O baterie este formată prin legarea serie a n=20 generatoare identice. Tensiunea electromotoare a unui generator este $E_0=6$ V, iar rezistența interioară $r_0=0,5$ Ω . La bornele bateriei se conectează un consumator care dezvoltă puterea P=360 W. Determinați:
- a. rezistenta electrică a consumatorului;
- b. randamentul circuitului electric;
- **c.** valoarea puterii totale furnizate de baterie dacă în paralel cu rezistorul existent în circuit se conectează unul identic;
- **d.** intensitatea curentului prin ramura principală a circuitului, în condițiile punctului **c.**, dacă un sfert din numărul generatoarelor sunt montate cu polaritate inversă.

Examenul national de bacalaureat 2021 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu. • Timpul de lucru efectiv este de trei ore.

D. OPTICĂ Testul 3

Se consideră: viteza luminii în vid $c = 3.10^8$ m/s, constanta Planck $h = 6.6.10^{-34}$ J·s.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- **1.** O suprafața plană separă mediul (1) cu indicele de refracție n_1 de mediul (2) cu indicele de refracție n_2 . Considerați că ambele medii sunt transparente, că $n_2 < n_1$ și că o rază de lumină monocromatică trece din mediul (1) în mediul (2) sub un unghi de incidență nenul. În aceste condiții, despre unghiul de refracție se poate afirma că este:
- a. mai mare decât unghiul de incidentă
- b. mai mic decât unghiul de incidență
- c. egal cu unghiul de incidență
- d. nul
- 2. Energia cinetică maximă a electronilor extrași prin efect fotoelectric extern depinde de frecvența radiației incidente conform graficului din figura alăturată. Energia unui foton de frecvență v_1 , din radiația incidentă, este de aproximativ:

- **a.** $6.6 \cdot 10^{-19} \, \text{J}$
- **b.** 6.1·10⁻¹⁹ J
- **c.** $2.2 \cdot 10^{-19}$ J
- **d.** 1.5 · 10⁻¹⁹ J (3p)
- 3. Unitatea de măsură în S.I a mărimii fizice exprimate prin raportul dintre frecvență și viteza de propagare a luminii este:
- **a.** m⁻¹
- **b.** s
- **c.** J^{-1}

- (3p)
- 4. O lamă cu fețe plane și paralele este situată în aer. Lama are grosimea e = 3 cm și este confecționată dintr-un material transparent cu indice de refracție $n = 1,41 (\cong \sqrt{2})$. O rază de lumină se propagă prin aer și cade sub un unghi de incidență $i = 45^{\circ}$ pe fața superioară a lamei. Unghiul dintre raza emergentă (raza care iese din lamă prin fata inferioară) si raza incidentă este:
- a. 0°
- **b.** 30°
- **c.** 45°
- **d**. 60°

(3p)

(3p)

- 5. Un sistem optic centrat este alcătuit din două lentile subtiri alipite, având convergentele C, respectiv C'. Distanța focală echivalentă a sistemului de lentile este:
- a. C + C'
- **b.** $\frac{C+C'}{CC'}$
- c. $\frac{1}{C + C'}$
- d. $\frac{C+C'}{2CC'}$

(15 puncte)

II. Rezolvati următoarea problemă:

- O lentilă subțire are convergența $C = 2m^{-1}$. La distanța d = 75cm în fața lentilei se află un obiect luminos, așezat perpendicular pe axa optică principală. Imaginea clară a obiectului se formează pe un ecran așezat într-o poziție convenabilă.
- Calculati distanta dintre ecran si lentilă.
- b. Realizați un desen în care să evidențiați construcția imaginii prin lentilă, pentru obiectul considerat, în situatia descrisă de problemă.
- c. Calculati distanta focală a lentilei.
- d. Obiectul si ecranul rămân imobile. Determinați distanța pe care trebuie deplasată lentila, în lungul axei optice principale, pentru ca pe ecran să se obțină din nou o imagine clară a obiectului.

III. Rezolvati următoarea problemă:

(15 puncte)

Un dispozitiv Young are distanta dintre fante $2\ell = 0.2$ mm. Ecranul se află la D = 4m fată de paravanul cu fante, iar sursa emite lumină coerentă cu lungimea de undă $\lambda = 480$ nm . Determinați:

- a. valoarea interfranjei observate pe ecran;
- b. distanța dintre centrul maximului luminos de ordinul 2 și cel de ordin 6, situate de aceeași parte a maximului central;
- c. deplasarea franjei centrale dacă una din fantele dispozitivului este acoperită cu o lama transparentă cu grosimea $e = 10 \mu m$ confectionată dintr-un material cu indicele de refractie n = 1.48;
- **d.** noua valoare a interfranjei, dacă ecranul se va apropia la distanța $D' = \frac{D}{2}$ de sistemul de fante.