DIGITAL IMAGE FILTERING

Digital Image Processing

- * Application of various algorithms/filters on image data
 - * Example: Image smoothing
 - * Reducing noise from the image.
 - * Noise: random changes in brightness and color levels within the image data

"SALT AND PEPPER" IMAGE NOISE

Image smoothing (cont.)

- Good filtering/enhancement method should
 - * remove image noise
 - * maintain the edge information

Fundamentals of Color Imaging

- * Tristimulus theory of color representation
 - Human retina has three kinds of color sensors called cones
 - * Red, green, and blue are in the peak response range of each of the cones.
- * Each pixel in a Red-Green-Blue image can be viewed as a three-tuple consisting of the red, green and blue values
 - * non-negative integers, e.g., green as (0,255,0)

Pixel coordinates

- * With JES, we saw how to add an oval to an image.
- * To add lines, shapes, text, we provide coordinates on the image
- * The pixel coordinate system starts in the upper-left corner.

Two-dimensional matrix of of pixel values

Goal of Project One

Combine pictures of the same location at different times and remove *undesirable* parts.

How can we remove that guy from those images?

Bad pixels?

- * Think pixel by pixel
- * We don't want bad pixels to bleed over into our final image

Image filtering

- * Two major noise reduction techniques
 - * Linear
 - * linear combinations of the input
 - * Nonlinear
 - * discretely choose at each step what value we want

Completely unrelated picture

Advantages of non-linear filtering

- * Outliers (extreme values) are eliminated
 - * Given a list of values, e.g., 1, 1, 1, 1, 1, 1, 9000, 1
 - * the average (linear filter) results in the value 1001
 - * the median (non-linear filter) results in the value 1

Spatial vs. Temporal filtering

* Spatial

- * Analyzing one image.
- * Forces a pixel to be like its neighbors

* Temporal

- * Analyze a series of images taken at different times.
- * Potentially have full image information.

Project 1 Details

- * Download 9 images
- * Write a median filter program using JES to create a new image from the 9 images without the pesky tourist.
- * Due February 12

