Reducibility

A way to show some languages are undecidable!

https://www.andrew.cmu.edu/user/ko/pdfs/lecture-16.pdf

THE LANDSCAPE OF THE CHOMSKY HIERARCHY

REDUCIBILITY

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
 - Finding the area of a rectangle, reduces to measuring its width and height
 - Solving a set of linear equations, reduces to inverting a matrix.

Problem A is reduced to problem B

If we can solve problem B then we can solve problem A.

A reduces to B

- $A \leq B$
- Find area of a rectangle ≤ find length and find width of rectangle.
- Solving B means you know how to solve the fundamental ingredients (which are needed to solve A).
- A solution to B can be used to solve A.
- Note, a solution to A may not be enough to solve B.
 - Knowing area of a rectangular is not enough to find its length and width!!

A reduces to B

- $A \leq B$
- Solving B means you know how to solve the fundamental ingredients (which are needed to solve A).
- A solution to B can be used to solve A.
- An algorithm that solves B can be converted to an algorithm that solves A

A reduces to B

- $A \leq B$
- If B is decidable, then so is A.
- Contrapositive, if A is undecidable then so is B.

Problem A is reduced to problem B

If B is decidable then A is decidable.

If A is undecidable then B is undecidable.

THEOREM 5.1

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \text{ is undecidable.}$

THEOREM 5.1

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \text{ is undecidable.}$

- We show that A_{TM} is reducible to $HALT_{TM}$
- Since A_{TM} is undecidable, so is $HALT_{TM}$

THEOREM 5.1

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \text{ is undecidable.}$

• Suppose $HALT_{TM}$ is decidable, this means

• Then A_{TM} is decidable.

• Then A_{TM} is decidable.

• Then A_{TM} is decidable.

Contradiction

THEOREM 5.2

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \} \text{ is undecidable.}$

- A decider for A_{TM} via E_{TM} is possible.
- We are given < M, w >, and asked to find whether $< M, w > \in A_{TM}$?
- For this, First create M_1

THEOREM 5.2

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \} \text{ is undecidable.}$

- A decider for A_{TM} via E_{TM} is possible.
- We are given < M, w >, and asked to find whether $< M, w > \in A_{TM}$?
- For this, First create M_1

Now, $L(M_1)$ is what?

- Now, $L(M_1)$ is what?
- $L(M_1)$ is either $\{w\}$ or is ϕ
- Now, if M_1 is in E_{TM}
 - This means, $L(M_1) = \phi$
 - This means, $< M, w > \notin A_{TM}$
- Now, if M_1 is not in E_{TM}
 - This means, $L(M_1) \neq \phi$
 - This means, $\langle M, w \rangle \in A_{TM}$

THEOREM 5.2

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \} \text{ is undecidable.}$

• A decider for A_{TM} via E_{TM} is possible.

- That is, A_{TM} can be reduced to E_{TM} .
- Contradiction

TESTING FOR LANGUAGE EQUALITY

THEOREM 5.4

 $EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$ is undecidable.

- Decider for A_{TM} via EQ_{TM}
- Following is the reduction of A_{TM} to EQ_{TM}

Alternate way to show EQ_{TM} is undecidable.

- Since, we know E_{TM} is undecidable,
- We can try to reduce E_{TM} to EQ_{TM}
- Let R be a decider for EQ_{TM}
- We can build a decider (call this S) for E_{TM} by using R

TESTING FOR REGULARITY

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language } \}$ is undecidable.

- If $REGULAR_{TM}$ is decidable, then this can be used to decide A_{TM} .
- Let R be a decider for REGULAR_{TM}.

How R can be used to decide $\langle M, w \rangle \in A_{TM}$?

• Build M_2 as shown

So $L(M_2)$ is = Σ^* if M accepts w $L(M_2)$ is = $\{a^nb^n\}$ otherwise

How R can be used to decide $\langle M, w \rangle \in A_{TM}$?

• Build M_2 as shown

So
$$L(M_2)$$
 is = Σ^* if M accepts w
 $L(M_2)$ is = $\{a^nb^n\}$ otherwise

- Similar to $REGULAR_{TM}$, we can show CFL_{TM} is undecidable.
 - That is, finding whether a TM's language is CFL or not is undecidable.
 - In fact, we can extend this. TM's language is finite or not is undecidable.
 - General theorem in this regard is called *The Rice's Theorem*.

More formal way of reductions

MAPPING REDUCTION

Computable function

DEFINITION 5.17

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just f(w) on its tape.

• For example,

we can make a machine that takes input $\langle m, n \rangle$ and returns m + n, the sum of m and n.

Mapping Reductions

Definition: Let A and B be two languages. We say that there is a mapping reduction from A to B, and denote

$$A \leq_{m} B$$

if there is a computable function

$$f: \Sigma^* \longrightarrow \Sigma^*$$

such that, for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the reduction from A to B.

Mapping Reductions

A mapping reduction converts questions about membership in A to membership in B

A mapping reduction converts questions about membership in A to membership in B

Notice that $A \leq_m B$ implies $\overline{A} \leq_m \overline{B}$.

Mapping Reductions

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: Let

- ullet M be the decider for B, and
- f the reduction from A to B.

Define N: On input w

- 1. compute f(w)
- 2. run M on input f(w) and output whatever M outputs.

Mapping Reductions

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable.

In fact, this has been our principal tool for proving undecidability of languages other than A_{TM} .

Example: Halting

Recall that

$$A_{\text{TM}} = \{\langle M, w \rangle | \text{TM } M \text{ accepts input } w \}$$

 $H_{\text{TM}} = \{\langle M, w \rangle | \text{TM } M \text{ halts on input } w \}$

Earlier we proved that

- \bullet H_{TM} undecidable
- by (de facto) reduction from A_{TM} .

Let's reformulate this.

Example: Halting

Define a computable function, f:

- input of form $\langle M, w \rangle$
- output of form $\langle M', w' \rangle$
- where $\langle M, w \rangle \in A_{TM} \iff \langle M', w' \rangle \in H_{TM}$.

Example: Halting

The following machine computes this function f.

```
F = on input \langle M, w \rangle:
```

- Construct the following machine M'.
 - M': on input x
 - ightharpoonup run M on x
 - If M accepts, accept.
 - if M rejects, enter a loop.
- output $\langle M', w \rangle$

A_{TM} = {<M,w> | M is a TM and M accepts w} \leq_m $HALT_{TM}$ = {<M,w> | M is a TM & M halts on input w}

$$A_{TM} \leq_m E_{TM}$$

- $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that accepts } w \}$
- $\overline{E_{TM}} = \{ \langle M \rangle | L(M) \neq \phi \}$
- $f: \Sigma^* \to \Sigma^*$ can be defined as

Create M': On input x,

if $x \neq w$, output "Reject";

if x = w, output the result of running

w on M.

Mapping Reductions: Reminders

Theorem 1:

If $A \leq_m B$ and B is decidable, then A is decidable.

Theorem2:

If $A \leq_m B$ and B is recursively enumerable, then A is recursively enumerable.

Mapping Reductions: Corollaries

Corollary 1: If $A \leq_m B$ and A is undecidable, then B is undecidable.

Corollary 2: If $A \leq_m B$ and A is not in \mathcal{RE} , then B is not in \mathcal{RE} .

Corollary 3: If $A \leq_m B$ and A is not in $co\mathcal{RE}$, then B is not in $co\mathcal{RE}$.

TM Equality

Theorem: Both EQ_{TM} and its complement, EQ_{TM}, are not enumerable. Stated differently, EQ_{TM} is neither enumerable nor co-enumerable.

- We show that A_{TM} is reducible to EQ_{TM}. The same function is also a mapping reduction from A_{TM} to EQ_{TM}, and thus EQ_{TM} is not enumerable.
- We then show that A_{TM} is reducible to $\overline{EQ_{TM}}$. The new function is also a mapping reduction from $\overline{A_{TM}}$ to $\overline{EQ_{TM}}$, and thus $\overline{EQ_{TM}}$ is not enumerable.

$A_{\mathsf{TM}} \leq_m \mathsf{EQ}_{\mathsf{TM}}$

Proof: The following TM computes the reduction:

 $F = ``On input \langle M, w \rangle$, where M is a TM and w is a string:

1. Construct TMs M', M''.

M' = `` On input x,

- 1. Ignore the input.
- 2. Run TM *M* on input w.
- 3. If it accepts, accept."

M'' = `Accept."

2. Output < M', M'' >."

$$A_{TM} \leq_m EQ_{TM}$$

Proof: We give a mapping reduction $A_{TM} \leq_m \overline{EQ}_{TM}$ The following TM computes the reduction:

 $F = ``On input \langle M, w \rangle$, where M is a TM and w is a string:

1. Construct TMs M', M".

M' = On input x,

- 1. Ignore the input.
- 2. Run TM *M* on input w.
- 3. If it accepts, accept."

2. Output <*M'*, *M''*>."

M'' = ``Reject."

Language Hierarchy (revisited)

Set of Languages (= set of "set of strings")

Non Trivial Properties of \mathcal{RE} Languages

A few examples

- L is finite.
- L is infinite.
- L contains the empty string.
- L contains no prime number.
- L is co-finite.
- **.** . . .

All these are non-trivial properties of enumerable languages, since for each of them there is $L_1, L_2 \in \mathcal{RE}$ such that L_1 satisfies the property but L_2 does not.

Are there any trivial properties of RE languages?

Rice's Theorem

Theorem Let \mathcal{C} be a proper non-empty subset of the set of enumerable languages. Denote by $L_{\mathcal{C}}$ the set of all TMs encodings, $\langle M \rangle$, such that L(M) is in \mathcal{C} . Then $L_{\mathcal{C}}$ is undecidable.

(See problem 5.22 in Sipser's book)

Proof by reduction from A_{TM} .

Given M and w, we will construct M_0 such that:

- If M accepts w, then $\langle M_0 \rangle \in L_{\mathcal{C}}$.
- If M does not accept w, then $\langle M_0 \rangle \not\in L_{\mathcal{C}}$.

http://www.cs.tau.ac.il/~bchor/CM09/Compute9.pdf

Has (towards end) some good slides on Rice's theorem and its consequences.

- Undecidability is not just confined to problems concerning automata and languages.
- There are other "natural" problems which can be proved undecidable.
- The Post correspondence problem (PCP) is a tiling problem over strings.
- A tile or a domino contains two strings, t and b; e.g., $\left[\frac{ca}{a}\right]$.
- Suppose we have dominos

$$\left\{ \left[\frac{b}{ca} \right], \left[\frac{a}{ab} \right], \left[\frac{ca}{a} \right], \left[\frac{abc}{c} \right] \right\}$$

 A match is a list of these dominos so that when concatenated the top and the bottom strings are identical. For example,

$$\left[\frac{a}{ab}\right]\left[\frac{b}{ca}\right]\left[\frac{ca}{a}\right]\left[\frac{a}{ab}\right]\left[\frac{abc}{c}\right] = \frac{abcaaabc}{abcaaabc}$$

• The set of dominos $\left\{ \left[\frac{abc}{ab} \right], \left[\frac{ca}{a} \right], \left[\frac{acc}{ba} \right], \right\}$ does not have a solution.

AN INSTANCE OF THE PCP

A PCP instance over Σ is a finite collection P of dominos

$$P = \left\{ \left[\frac{t_1}{b_1} \right], \left[\frac{t_2}{b_2} \right], \cdots, \left[\frac{t_k}{b_k} \right] \right\}$$

where for all $i, 1 \leq i \leq k, t_i, b_i \in \Sigma^*$.

MATCH

Given a PCP instance P, a match is a nonempty sequence

$$i_1, i_2, \ldots, i_\ell$$

of numbers from $\{1, 2, ..., k\}$ (with repetition) such that $t_{i_1} t_{i_2} \cdots t_{i_\ell} = b_{i_1} b_{i_2} \cdots b_{i_\ell}$

AN INSTANCE OF THE PCP

A PCP instance over Σ is a finite collection P of dominos

$$P = \left\{ \left[\frac{t_1}{b_1} \right], \left[\frac{t_2}{b_2} \right], \cdots, \left[\frac{t_k}{b_k} \right] \right\}$$

where for all $i, 1 \leq i \leq k, t_i, b_i \in \Sigma^*$.

MATCH

Given a PCP instance P, a match is a nonempty sequence

$$i_1, i_2, \ldots, i_\ell$$

of numbers from $\{1, 2, ..., k\}$ (with repetition) such that $t_{i_1} t_{i_2} \cdots t_{i_\ell} = b_{i_1} b_{i_2} \cdots b_{i_\ell}$

QUESTION:

Does a given PCP instance P have a match?

QUESTION:

Does a given PCP instance P have a match?

LANGUAGE FORMULATION:

 $PCP = \{\langle P \rangle \mid P \text{ is a PCP instance and it has a match}\}$

THEOREM 5.15

PCP is undecidable.

QUESTION:

Does a given PCP instance P have a match?

Language formulation:

 $PCP = \{\langle P \rangle \mid P \text{ is a PCP instance and it has a match}\}$

THEOREM 5.15

PCP is undecidable.

Proof: By reduction using computation histories. If PCP is decidable then so is A_{TM} . That is, if PCP has a match, then M accepts w.

- That is, A_{TM} can be reduced to PCP.
- This reduction is via a simplified PCP called MPCP (modified PCP).

 Several undecidable properties of CFGs are obtained by reducing them (i.e., the corresponding languages) from PCP.