Introduction to Statistical Method

Estimation

An **estimator** for a population parameter $m{ heta}$ is a statistic and donated by $\hat{m{ heta}}$.

Any given value of $\hat{\boldsymbol{\theta}}$ is an **estimate**.

Desirable Properties of a Point Estimator

- The expected value of $\hat{\boldsymbol{\theta}}$ should be $\boldsymbol{\theta}$.
- $\hat{\theta}$ should have **small variance** for **large sample size**.

Bias

- The difference $\theta E[\hat{\theta}]$ is the bias of an estimator $\hat{\theta}$ for a population parameter θ .
- $E[\hat{\theta}] = \theta$ means $\hat{\theta}$ is unbiased.

Mean Square Error of Estimator

- The **mean square error** of $\hat{\theta}$ is defined as $\mathrm{MSE}(\hat{\theta}) := E[(\hat{\theta} \theta)^2]$.
- The mean square error measures the **overall quality of an estimator**.
- we can derive MSE in another form:

$$\begin{split} \text{MSE}(\hat{\theta}) &= E[(\hat{\theta} - E[\hat{\theta}] + E[\hat{\theta}] - \theta)^2] \\ &= E[(\hat{\theta} - E[\hat{\theta}])^2 + (E[\hat{\theta}] - \theta)^2 + 2(\hat{\theta} - E[\hat{\theta}])(E[\hat{\theta}] - \theta)] \\ &= Var(\hat{\theta}) + (bias)^2 + 2E[(\hat{\theta} - E[\hat{\theta}])(E[\hat{\theta}] - \theta)] \\ &= Var(\hat{\theta}) + (bias)^2 + 2E[(\hat{\theta} - E[\hat{\theta}])](E[\hat{\theta}] - \theta) \\ &= Var(\hat{\theta}) + (bias)^2 + 2(E[\hat{\theta}] - E[\hat{\theta}])(E[\hat{\theta}] - \theta) \\ &= Var(\hat{\theta}) + (bias)^2 \end{split}$$