1.4.1 Enunciados

1. Representar las siguientes secuencias en el intervalo indicado. Cuando una secuencia tome valores complejos, represente por separado la parte real y la parte imaginaria y también el módulo y la fase.

1.1.
$$x_1[n] = n_3[\mathbf{u}[n] - \mathbf{u}[n - n_1]] - N_1 \le n \le N_1$$

1.2.
$$x_2[n] = (-1)_{n+1} [u[n+n_3] - u[n-n_2]] - N_1 \le n \le N_1$$

1.3.
$$x_3[n] + n_5$$

$$= z_{0n} [u[n + n_4] \cdot u[-n -N_1 \le n \le N_1]$$

PARTE

MÓDULO

2. Representar las siguientes señales de tiempo continuo. Es preciso tomar las muestras lo suficientemente juntas de forma que se vean con la claridad suficiente los resultados esperados.

2.1

PARTE REAL

PARTE IMAGINARIA

3. A partir de las secuencias definidas en el ejercicio 1, representar las siguientes secuencias, obtenidas mediante operaciones entre ellas.

3.1.
$$x_7[n] = \alpha_1 \cdot x_1[n] + \alpha_2 \cdot x_2[n] - N_1 \le n \le N_1$$

3.2.
$$x_8[n] = x_1[n] \cdot x_2[n] - N_1 \le n \le N_1$$

4. Descomponer la señal las señales resultantes. $x_1 [n]$ del ejercicio 1 en sus partes par e impar. Representar gráficamente

PARTE PAR

PARTE IMPAR

5. A partir de las secuencias definidas en el ejercicio 1, representar las siguientes secuencias, obtenidas mediante transformaciones de la variable independiente

5.1.
$$x_4[n] = x_1[-n]$$
 $-N_1 \le n \le N_1$

5.2. $x_5[n] = x_2[\alpha_3 n] - N_1 \le n \le N_1$

 $5.3 x_6[n] = x_3[n + n_6] - N_1 \le n \le N_1$

