Basic Elements of Relational Databases

Keys Primary key:

- A specially designated candidate key.
- The primary key for a table cannot contain null values.
- Candidate key that is chosen by the database designer as the principal means of identifying tuples within a relation.
- Is the candidate key whose values are used to identify tuples in the relation.

Foreign key:

A column or combination of columns in which the values must match those of a candidate key.

Include among its attributes the primary key of another relation

Null value:

- A special value that represents the absence of an actual value.
- A null value can mean that the actual value is unknown or does not apply to the given row.

Database Normalization

Normalization is the process of organizing data in a database. This includes creating tables and establishing relationships between those tables according to rules designed both to protect the data and to make the database more flexible by eliminating redundancy and inconsistent dependency.

It is used to limit a table to one purpose you reduce the number of duplicate data that is contained within your database

Reasons for Normalization

- 1. To minimize duplicate data
- 2. To minimize or avoid data modification issues,
- 3. To simplify queries.

https://www.guru99.com/database-normalization.html

Forms of Normalization

1NF No Repeating Columns

					<u> </u>	•
LastName	FirstName	Address	Phone	Book1	Book2	Book3
Jones	Janet	First St. #4	(514)256-5878	Fifty Shades of Grey	Harry Potter and the Sorcerer's Stone	Angels & Demons
Phil	Robert	Third St. #34	(438)547-9896	Dracula	Steve Jobs	
Clark	Stan	Fifth St. #4	(514)547-9565	The Lord of the Rings		
Coburn	James	32th ST #14	(514)647-98-74	Gone with the Wind	On the Edge	

1. From the previous table, we create 2 tables. One with a Primary Key and another

with a foreign Key

Table: Personal

	UserCode	L	astName	FirstName	Address	Phone
	101)	pnes	Janet	First St. #4	(514)256-5878
	102	Р	hil	Robert	Third St. #34	(438)547-9896
	103	9	lark	Stan	Fifth St. #4	(514)547-9565
\setminus	104		Coburn	James	32th ST #14	(514)647-98-74

Table: Codes

UserCod	le/	Bookcode	Book
101		ISBN303	Fifty Shades of Grey
101		ISBN304	Harry Potter and the Sorcerer's Stone
101		ISBN305	Angels & Demons
102		ISBN451	Dracula
102		ISBN452	Steve Jobs
103		ISBN361	The Lord of the Rings
104	/	ISBN121	Gone with the Wind
104		ISBN122	On the Edge

Forms of Normalization

2NF All attributes Depedent on Full Primary Key

Example:

The company IT Best is planning to develop special projects in which employees will

participate. Here there is the list of employees and

Jones Janet, Networking and Database

Phil Robert, Website and Networking

Clark Stan, Database

Coburn James, Networking and Database

Create and normalise a database, according to this

			• •
	2849/19 465	AUSMASULE.	ProjectName
	Jones	Janet	Networking
	Jones	Janet	Database
	Phil	Robert	Website
	Phil	Robert	Networking
i	៨៛៚mati	Ste m	Database
	Coburn	James	Networking
	Coburn	James	Website

Table: Employee				
EmployeeId	LastName	FirstName		
101	Jones	Janet		
102	Phil	Robert		
103	Clark	Stan		
104	Coburn	James		

Table: Project		
ProyectId	ProjectName	
P001	Database	
P002	Networking	
P003	Website	

Table: ProjectAssignation			
EmployeeId	ProyectId		
101	P001		
101	P002		
102	P002		
102	P003		
103	P001		
104	P002		
104	P003		

Entity-Relationship Diagram (ERD)

An entity-relationship diagram (ERD) is a data modeling technique that graphically illustrates an information system's entities and the relationships between those entities.

The elements of an ERD are:

- Entities
- Relationships
- Attributes

Steps involved in creating an ERD include:

- Identifying and defining the entities
- Determining all interactions between the entities
- Analyzing the nature of interactions/determining the cardinality of the relationships
- Creating the ERD

Entity

Entities are represented by means of rectangles. Rectangles are named with the entity set they represent.

Attributes

- Attributes are the properties of entities.
- Attributes are represented by means of ellipses.

Every ellipse represents one attribute and is directly

Attributes

If the attributes are composite, they are further divided in a tree like structure.

Every node is then connected to its attribute.

That is, composite attributes are represented by ellipses that are connected with an ellipse.

LastName

Relationship

Relationships are represented by diamond-shaped box.

Name of the relationship is written inside the diamond-box.

All the entities (rectangles) participating in a relationship, are connected to it by a line.

One-to-one Relationship. When only one instance of an entity is associated with the relationship, it is marked as '1:1'. The following image reflects that only one instance of each entity should be associated with the relationship. It depicts one-to-one

One-to-many Relationship. When more than one instance of an entity is associated with a relationship, it is marked as '1:N'. The following image reflects that only one instance of entity on the left and more than one instance of an entity on the right can be associated with the relationship. It depicts one-to-many relationship.

Many-to-many Relationship. The following image reflects that more than one instance of an entity on the left and more than one instance of an entity on the right can be associated with the relationship. It depicts many-to-many relationship.

In a University database we might have entities for Students, Modules and Lecturers. Students might have attributes such as their ID, Name, and Course, and could have relationships with Modules (enrolment) and Lecturers (tutor/tutee)

We want to represent information about products in a database. Each product has a description, a price and a supplier. Suppliers have addresses, phone numbers, and names. Each address is made up of a street address, a city, and a postcode.

Example - E/R Diagram

Example - Relationships

- Each product has a supplier
 - Each product has a single supplier but there is nothing to stop a supplier supplying many products
 - A many to one relationship

- Each supplier has an address
 - A supplier has a single address
 - It does not seem sensible for two different suppliers to have the same address
 - A one to one relationship

Entity Relationship Modelling

Example - E/R Diagram

Example - E/R Diagram

Entity Relationship Modelling

Example - Relationships

Entity Relationship Modelling

- Each product has a supplier
 - Each product has a single supplier but there is nothing to stop a supplier supplying many products
 - A many to one relationship

- Each supplier has an address
 - A supplier has a single address
 - It does not seem sensible for two different suppliers to have the same address
 - A one to one relationship

Example - E/R Diagram

Entity Relationship Modelling

VIDEO RENTAL

A small video rental store offers its services to clients in its neighborhood. Its entities are Customer, Rental and Video. The rental entity has three attributes: dateDue, dateRented, and cost. These are the relationship sentences for the diagram:

- A customer may have many rentals.
- A video may have no more than one rental.

Draw a Entitiy-relation diagram to describe this process