

CLAIMS

Please amend the claims as follows:

1. (currently amended) A system for encrypting/decrypting messages, comprising:
a public key cryptosystem further comprising a computer operable for generating keys for use
with messages that have been encrypted and/or decrypted wherein the public key cryptosystem
having a predetermined number of prime factors used for the generation of a modulus N and an
exponent e; wherein the modulus N is not a squareful number and is the product of the unraised
prime factors alone;

wherein a proper subset of the prime factors of the modulus N composed of less than all of the
distinct prime factors, along with the exponent e, are required to decrypt messages that are
encrypted using the public exponent e and the public modulus N, where e and N are calculated
using RSA methods, and encryption occurs using RSA methods.

2. (currently amended) A method for encrypting/decrypting messages comprising the steps of:
providing a public key cryptosystem including a computer operable to generate at least one key
for encrypting/decrypting at least one message, the public key cryptosystem having a
predetermined number of distinct prime factors used for the generation of a modulus N and an
exponent e; wherein the modulus N is not a squareful number and is the product of the unraised
prime factors alone;

wherein a proper subset of the prime factors of the modulus N composed of less than all of the
distinct prime factors are required to decrypt messages that are encrypted using the public
exponent e and the public modulus N, where e and N are calculated using RSA methods, and
encryption of the message occurs using RSA methods.

Application No.: 10/814,726
Attorney Docket No. 4023-001
Reply to Office Action of October 7, 2010

3. (currently amended) A method for encrypting/decrypting messages comprising the steps of:
Encrypting on a computer a plaintext message M into a ciphertext message C using any method
that produces a value equivalent to $C = M^e \text{ mod } N$, where $0 \leq M < N_d$, such that the ciphertext C
can be decrypted into the plaintext message M using only e and the prime factors of N_d

N being the product of all of the numbers in the set S and is the product of the unraised
prime factors alone;

N is not a squareful number;

S being a set of at least two distinct prime numbers, $p_1 \dots p_k$, where k is an integer greater
than 1;

e being a number;

S_d being a proper subset of S composed of less than all of the distinct prime factors in set
S;

N_d being the product of all of the numbers in the set S_d .

4. (original) The method of claim 3, wherein the step of generating the exponent e includes
calculating the exponent e as a number that is relatively prime to the product of each distinct
prime factor of N minus 1, $(N_1 - 1) * \dots * (N_j - 1)$ for distinct prime factors of N 1 to j, where j is
the number of distinct prime factors in N, or choosing the exponent e as a small prime number.

5. (previously amended) A method for decrypting encrypted messages comprising the steps of:
determining if a derived modulus N_d is a squarefree number, and if so,
decrypting on a computer ciphertext C into message M wherein message M was
originally an encrypted message that is transformed into electronic, decrypted message M using

Application No.: 10/814,726
Attorney Docket No. 4023-001
Reply to Office Action of October 7, 2010

any method that produces a value equivalent to $M = C^d \text{ mod } N_d$, where d is generated using the following steps:

calculating the number Z_d as the product of each prime factor of N_d minus 1, $(N_{d1} - 1)*...(N_{dj} - 1)$ for distinct prime factors of N_d 1 to j, where j is the number of distinct prime factors in N_d ;

generating the exponent d such that the following relationship is satisfied: $e*d = 1 \text{ mod } Z_d$.

6. (original) The method according to claim 5, further including the step of:
directly calculating $M = C^d \text{ mod } N_d$.

7. (original) The method according to claim 5, further including the steps of:

calculating separate decryption exponents $d_{nd1}...d_{ndj}$ for all prime factors of N_d 1 to j,
where j is the number of prime factors in N_d so that the following relationship is satisfied for
each member of N_d : $e*d_{ndi} = 1 \text{ mod } (N_{di} - 1)$; and
performing decryptions of the form $M_i = C^{d_{ndi}} \text{ mod } N_{di}$ for all prime factors of N_d from 1 to j,
where j is the number of prime factors in N_d , and then using the values of each M_i and N_{di} to
reconstruct M.

8. (original) The method of claim 7, wherein the values of each M_i and N_{di} restore the plaintext
message M using the Chinese Remainder Theorem and/or Garner's algorithm.

9. (previously cancelled)

10. (previously cancelled)

11. (previously cancelled)

12. (currently amended) A public key cryptosystem where messages are decrypted on a computer using a set of prime numbers S and the public exponent e, and messages are encrypted using a squarefree modulus N_p that is calculated as the product of a set of unraised distinct numbers alone that is a proper superset of S composed of distinct numbers, and encryption occurs with standard RSA methods using the public exponent e and the modulus N_p .

13. (currently amended) A method for encrypting/decrypting messages, comprising the steps of:

Encrypting on a computer a plaintext message M into a ciphertext message C using any method that produces a value equivalent to $C = M^e \text{ mod } N_p$, where $0 \leq M < N$, such that the ciphertext C can be decrypted into the plaintext message M using e and the distinct prime factors of N

N being the product of all of the unraised numbers alone in the set S;

N is not a squareful number;

S being a set of at least one prime number, $p_1 \dots p_k$, where k is an integer greater than 0;

S_p being a proper superset of S composed of distinct prime numbers;

N_p being the product of all of the numbers in the set S_p ;

e being a number.

14. (original) The method of claim 13, wherein the step of generating the exponent e includes calculating the exponent e as a number that is relatively prime to the product of each distinct prime factor of N_p minus 1, $(N_{p1} - 1) * \dots * (N_{pj} - 1)$ for distinct prime factors of N_p 1 to j, where j is the number of distinct prime factors in N_p .

15. (original) The method of claim 13, wherein the step of generating the exponent e includes choosing the exponent e as a small prime number.

16. (previously cancelled)
17. (previously cancelled)
18. (previously cancelled)
19. (previously amended) A method of decrypting encrypted messages, including the steps of:

Decrypting on a computer the ciphertext message C into the plaintext message M by:
determining if the modulus N is a squarefree number; and if so then,
decrypting ciphertext C into message M using any method that produces a value
equivalent to $M = C^d \text{ mod } N$, where d is generated using the following steps:

Calculating the number Z as the product of each prime factor of N minus 1, $(N_1 - 1) * ... * (N_j - 1)$ for prime factors of N 1 to j, where j is the number of distinct prime factors in N;
then generating the decryption exponent d such that the following relationship is
satisfied: $e * d = 1 \text{ mod } Z$.

20. (original) The method according to claim 19, further including the step of:
directly calculating $M = C^d \text{ mod } N$.

21. (original) The method according to claim 19, further including the steps of:
calculating separate decryption exponents $d_1, ..., d_j$ for all prime factors of N from 1 to j,
where j is the number of prime factors in N so that the following relationship is satisfied for each
member of N: $e * d_i = 1 \text{ mod } (N_i - 1)$; and performing decryptions of the form $M_i = C^{d_i} \text{ mod } N_i$
for all prime factors of N from 1 to j, where j is the number of prime factors in N, and then using
the values of each M_i and N_i to reconstruct M.

22. (original) The method of claim 21, wherein the values of each M_i and N_i reconstruct M
using the Chinese Remainder Theorem and/or Garner's algorithm.

23. (currently amended) A method for encrypting/decrypting messages comprising the steps of:

Encrypting on a computer a plaintext message M into a ciphertext message C using any method that produces a value equivalent to $C = M^e \text{ mod } N_p$, where $0 \leq M < N$, such that the ciphertext C can be decrypted into the plaintext message M using e and the prime factors of N.

N being the product of all of the unraised members alone of set S;

N is not a squareful number;

S being a set of at least two numbers, $p_1 \dots p_k$ where k is an integer greater than 1 and all members of S are equal to p_s , which is a prime number;

S_p being a superset of S composed of distinct prime numbers;

N_p being the product of all of the numbers in the set S_p ;

e being a number.

24. (original) The method of claim 23, wherein the step of generating the exponent e further includes: Calculating the exponent e as a number that is relatively prime to the product of all of the distinct prime factors of N_p minus 1, $(N_{p1} - 1) * \dots * (N_{pj} - 1)$ for distinct prime factors of N_p 1 to j, where j is the number of distinct prime factors in N_p .

25. (original) The method of claim 23, wherein the step of generating the exponent e includes choosing the exponent e as a small prime number.

26. (previously cancelled)

27. (currently amended) A method for encrypting/decrypting messages, comprising the steps of:

Encrypting on a computer a plaintext message M into a ciphertext message C using any method that produces a value equivalent to $C = M^e \text{ mod } N_p$, where $0 \leq M < p$, such that the ciphertext C can be decrypted into the plaintext message M using e and p

p being a prime number;

S being a set containing only the number p;

S_p being a superset of S consisting of distinct prime numbers;

N_p being the product of all unraised members alone of the set S_p ;

N_p is not a squareful number;

e being a number.

28. (original) The method of claim 27, wherein the step of generating the exponent e further includes: Calculating the exponent e as a number that is relatively prime to the product of each distinct prime factor of N_p minus 1, $(N_{p1} - 1)^{*} \dots (N_{pj} - 1)$ for distinct prime factors of N_p 1 to j, where j is the number of distinct prime factors in N_p .

29. (original) The method of claim 27, wherein the step of generating the exponent e includes choosing the exponent e as a small prime number.

30. (previously amended) A method for decrypting encrypted messages, comprising the steps of:

Decrypting on a computer using any method that produces a value equivalent to as $M = C^d \text{ mod } p$, where p is a not a squareful number and d is generated using the following step:

Calculating d such that the following equation is satisfied:

$e^*d = 1 \text{ mod } (p - 1)$.

31. (currently amended) A method for establishing cryptographic communications, comprising the steps of:

calculating a composite number N, which is formed from the product of unraised distinct prime numbers S alone, p_1, \dots, p_k where $k \geq 1$.

and N is not a squareful number;

on a computer Encoding a plaintext message M, to a ciphertext C, where M corresponds to a number representative of a message and $0 \leq M < S$;

generating an exponent e;

transforming on the computer said plaintext, M, into said ciphertext, C, where C is developed using any method that produces a value equivalent to $C = M^e \bmod N$, such that ciphertext C can be decrypted into plaintext M using only e and S.

32. (original) The method of claim 31, wherein the step of generating the exponent e further includes: Calculating the exponent e as a number that is relatively prime to the product of each distinct prime factor of N minus 1, $(N_1 - 1), \dots, (N_j - 1)$ for distinct prime factors of N 1 to j, where j is the number of distinct prime factors in N.

33. (original) The method of claim 31, wherein the step of generating the exponent e includes choosing the exponent e as a small prime number.

34. (previously amended) A method for decrypting encrypted messages, comprising the steps of:
decoding on a computer the ciphertext message C to the plaintext message M, wherein said decoding comprises the step of: transforming said ciphertext message C to plaintext M, using any method that produces a value equivalent to $M = C^d \bmod S$, where S is a not a squareful number and d is generated using the following step:
generating d such that $e * d = 1 \bmod (S - 1)$.

35. (currently amended) A system for encrypting and decrypting electronic communications including a network of computers and/or computer-type devices, such as personal data assistants (PDAs), mobile phones and other devices, in particular mobile devices capable of communicating on the network; generating at least one private key and at least one public key, wherein the at least one private key is determined based upon any one of a multiplicity of prime numbers that when unraised and multiplied together alone produce N, which is the modulus for at least one of the public keys, and wherein the modulus N is not a squareful number.

36. (previously amended) A method for public key decryption where less than all of the distinct prime factors of a number N are used to decrypt a ciphertext message C into plaintext message M, where encryption occurs on a computer with the public key {e, N} using any method that produces a value equivalent to $C = M^e \text{ mod } N$ and N is not a squareful number.

37. (previously amended) A method for public key encryption with a public key {e, N} where a plaintext message M is encrypted on a computer into a ciphertext message C using any method that produces a value equivalent to $C = M^e \text{ mod } (N^*X)$, where N is the public modulus, wherein N is not a squareful number; and X is any integer greater than 1.

38. (currently amended) A method for public key decryption of a message that has been encrypted with the public key {e, N} where a ciphertext message C is decrypted on a computer into a plaintext message M using any method that produces a value equivalent to $M = C^d \text{ mod } N_d$, where N_d is the product of less than all of the prime factors of the public modulus N and d satisfies the equation $e*d = 1 \text{ mod } Z$, where Z is the product of each of the k prime factors of N_d minus 1, $(p_1 - 1)*...(p_k - 1)$ and wherein the modulus N is not a squareful number and is the product of the unraised prime factors alone.

Application No.: 10/814,726
Attorney Docket No. 4023-001
Reply to Office Action of October 7, 2010

39. (currently amended) A method for public key decryption of a message that has been encrypted on a computer using any method that produces a value equivalent to $C = M^e \text{ mod } N$, where a ciphertext message C is decrypted into a plaintext message M using any method that produces a value equivalent to $M = C^d \text{ mod } N_d$, where N_d is the product of less than all of the prime factors of the public modulus N and d satisfies the equation $e*d = 1 \text{ mod } Z$, where Z is the product of each of the k prime factors of N_d minus 1, $(p_1 - 1)*...(p_k - 1)$ and where the modulus N is not a squareful number and is the product of the unraised prime factors alone.