Chapitre 1 Programmation récursive

TD 1

Exercices d'application

TD d'informatique du Lycée Louis Legrand – Jean-Pierre Becirspahic http://info-llg.fr/

Savoirs et compétences :

Alg – C15 : Récursivité : avantages et inconvénients.

Exercice 1

On démontre que sur l'ensemble $\mathbb{N} \times \mathbb{N}$ est dénombrable en numérotant chaque couple $(x, y) \in \mathbb{N}^2$ suivant le procédé suggéré par la figure ci-dessous.

Question 1 Rédiger une fonction récursive qui retourne le numéro du point de coordonnées (x, y).

Question 2 Rédiger la fonction réciproque, là encore de façon récursive.

Exercice 2

Question 1 Écrire une fonction récursive qui calcule a^n en exploitant la relation : $a^n = a^{n/2} \times a^{n/2}$.

Question 2 Écrire une fonction qui utilise de plus la remarque suivante : $n/2 = \begin{cases} n/2 & \text{si } n \text{ est pair} \\ n/2+1 & \text{sinon} \end{cases}$

Question 3 Déterminer le nombre de multiplications effectuées dans chacun des deux cas.

Exercice 3 – Fonction 91 de McCarthy

On considère la fonction récursive suivante :

```
■ Pvthon
def f(n):
    if n>100:
       return n-10
   return f(f(n+11))
```

Ouestion Prouver sa terminaison lorsque $n \in \mathbb{N}$ et déterminer ce qu'elle calcule (sans utiliser l'interpréteur de commande).

Exercice 4

On suppose disposer d'une fonction polygon((xa, ya), (xb, yb), (xc, yc)) qui trace le triangle plein dont les sommets ont pour coordonnées $(x_a; y_a), (x_b; y_b), (x_c; y_c)$.

Question 1 Définir une fonction récursive permettant le tracé présenté figure suivante (tous les triangles sont équilatéraux).

