Redes de Computadores Introdução

Material baseado nas apresentações (*slides*) disponibilizados junto com o livro referência a seguir.

A note on the use of these Powerpoint slides: We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

<u>Bibliografia</u>:
Computer Networking:
A Top Down Approach

8th Edition, Global Edition Jim Kurose, Keith Ross Pearson 2020

Sumário

- O que é a Internet? O que é um protocolo?
- Borda da rede: hosts, acesso, meios físicos
- Núcleo da rede: comutação de circuitos e de pacotes; estrutura da Internet
- Questões de performance: perda, atraso, desempenho
- Segurança
- Camadas de protocolos, modelos de serviço
- História

O core da Internet

- Malha (mesh) de roteadores interconectados
- Chaveamento de pacotes (packet-switching): hosts quebram as mensagens das aplicações em pacotes (packets)
 - Encaminhamento de pacotes de um roteador para o próximo, através dos enlacers, da origem para o destino
 - Cada pacotes é transmitido usando a capacidade máxima da mesma

Packet-switching: store-and-forward

- Leva L/R s para transmitir um pacote de L-bit em um enlace de R bps
- Armazena e encaminha: o pacote inteiro precisa chegar no roteador antes de ser encaminhado para o próximo

Exemplo para um hop:

- L = 7.5 Mbits
- R = 1.5 Mbps
- Delay=5 s

Delay (atraso) fim a fim = 2L/R (sem atrasos na propagação)

Packet-switching: queueing delay, loss

Enfileiramento e perda:

- Se a razão (em bit) de chegada no enlace excede a capacidade (razão) de transmissão por um período de tempo:
 - Pacotes serão enfileirados, esperando para transmissão
 - Pacotes podem ser descartados (perda) se a memória (buffer) estiver cheia

Duas funções básicas do core

Roteamento:

determina a rota da origem para o destino para os pacotes

 Algoritmos de roteamento Encaminhamento (forwarding): move pacotes da entrada do roteador para uma determinada saída

Obs.: função também executada nos hosts.

Core alternativo: comutação de circuitos (circuit switching)

Recursos fim a fim alocados e reservados durante o estabelecimento do enlace de comuniação entre origem-destino:

- Recursos dedicados: sem compartilhamento
 - Circuito: garantia de performance
- Segmento de um circuito permanece ociosos se não usado
- Comumente usado nas redes de telefonia tradicionais

Comutação de circuitos: FDM versus TDM

Comutação de circuitos versus comutação de pacotes

A rede na comutação de pacotes suporta maior quantidade de usuários

Examplo:

- Enlace: 1 Mb/s
- Cada usuário:
 - 100 kb/s quando "ativo"
 - Ativo 10% do tempo
- circuit-switching:
 - 10 usuários
- packet switching:
 - Com 35 usuários, probabilidade de que mais de 10 ativos ao mesmo tempo: menor que 0,0004

Comutação de circuitos versus comutação de pacotes

Será a comutação de pacotes a melhor?

- Boa para dados em "rajadas"
 - Compartilhamento de recursos
 - Simples, n\u00e3o precisa da fase de estabelecimento do canal (call setup)
- Possibilidade de congestionamento excessivo: atraso e perda
 - Protocolos necessitam de transferência de dados com confiança e controle de congestionamento
- Q: Como prover comportamento circuit-like?
 - Garantia de largura de banda necessária para aplicações de áudio/vídeo
 - Ainda um problema n\u00e3o solucionado

Q: Reserva de recursos (circuit switching) versus alocação sob-demanda (packet-switching)?

- Sistemas finais conectados à Internet via acesso providos por ISPs (Internet Service Providers)
 - residencial, empresas e companhias
- Os ISPs precisam estar interconectados
- A rede das redes resultante é bastante complexa
 - Evolução foi ditada pela economia e por políticas nacionais

Questão: dado que existem muitos provedores ISP de acesso à rede, como conectar todos?

Opção: conectar todos os ISP entre eles?

Opção: conectar cada ISP em um único ISP global? Consumidor e provedor ISP devem ter um acordo

Mas se um único ISP global é viável encomicamente, pode haver competidores

Mas se um único ISP global é viável encomicamente, pode haver competidores, que precisam ser interconec tados.

E redes regionais (ISP regionais) se estabelecem para conectar usuários finais às redes dos ISP

Surgem as redes provedoras de conteúdo – CDN - (Google, Microsoft, Akamai) que podem estabelecer suas próprias redes para fornecer **serviços** e levar **conteúdo** aos usuários.

- No centro: poucas, mas bem conectadas grandes redes
 - "tier-1" commercial ISPs (Arelion(Telia), Level 3, Sprint, AT&T, NTT), cobertura nacional e internacional
 - Redes provedoras de conteúdo (Google): rede privada que conecta seus centros de dados à Internet

Tier-1 ISP nos EUA: Sprint

Sumário

- O que é a Internet? O que é um protocolo?
- Borda da rede: hosts, acesso, meios físicos
- Núcleo da rede: comutação de circuitos e de pacotes; estrutura da Internet
- Questões de performance: perda, atraso, desempenho
- Segurança
- Camadas de protocolos, modelos de serviço
- História

Como a perda de pacotes e o atraso (delay) ocorrem

Pacotes chegam ao roteador e entram em filas (armazenamento temporário em *buffers*)

 A taxa de recebimento (chegada) de pacotes excede (mesmo que temporariamente) a <u>capacidade</u> do enlace de saída.

Disponibilidade de *buffers:* pacotes são descartados (*loss*) se não há *buffers* livres

Analogia: caravana de carros

- Carros "propagam" na velocidade de 100 km/h
- Pedágio leva 12 s para atender um carro (tempo de transmissão do bit)
- carro ~ bit; caravana ~ pacote
- Q: Quanto tempo até o último carro chegar ao segundo pedágio?

- Tempo para "entregar" toda a caravana do pedágio para a rodovia = 12*10 = 120 s
- Tempo para o último carro "propagar" do primeiro para o segundo pedágio: 100km/(100km/h)= 1 h
- R: 62 minutos

Analogia: caravana de carros

- Supondo, agora, que os carros "propaguem" na velocidade de 1000 km/h
- E que o pedágio leve um minuto para atender um carro
- Q: Carros chegarão ao segundo pedágio antes que tenham passado completamente pelo primeiro pedágio?
- $d_{prop}=100 \text{ km/}1000 \text{ km/}hora=0,1 * 60min= 6min}$
- R: Sim, depois de 7 minutos, o primeiro carro chega ao segundo pedágio; três carros ainda estarão esperando no primeiro pedágio.

Filas e Atraso

- R: largura de banda do enlace (bps)
- L: tamanho do pacote (bits)
- a: razão média de chegada dos pacotes
- La/R: intensidade do tráfego

- La/R ~ 0: média de atraso devido fila pequeno
- La/R → 1: média de atraso devido fila é muito grande
- La/R > 1: mais chegadas do que podem ser tratadas; média de atraso tendendo ao infinito

La/R → 1

Internet: atrasos e rotas

- Como se obtém medidas de atrasos e de perda de pacotes na Internet?
- traceroute: provê medidas de atraso da origem até um roteador ao longo do caminho até o destino final dos pacotes. Para todos os roteadores i:
 - Envia três pacotes que alcançarão o roteador *i* no caminho até o destino final.
 - Roteador i retornará os pacotes até o emissor.
 - O emissor computará o tempo entre a transmissão e a chegada dos respectivos pacotes.

Internet: atrasos e rotas

traceroute: gaia.cs.umass.edu até www.eurecom.fr

Comandos: Linux: traceroute ou tracepath Windows: tracert

```
3 medidas de atraso (delay) da máquina
                                                 gaia.cs.umass.edu até cs-gw.cs.umass.edu
1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms 5 jn1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms
                                                                                      Enlace
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms 4 9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms 10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
                                                                                trans-oceânico
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renatèr.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms 16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
17 * * *
                       * indica sem resposta (probe lost, router not replying)
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
```

www.traceroute.org

Internet: perda de pacotes

- Fila (buffer) de entrada do roteador com capacidade limitada
- Pacotes que chegam a uma fila cheia são descartados (perda)
- Pacotes perdidos <u>podem</u> ser retransmitidos pelo nó de origem ou pelo emissor <u>ou</u> podem ser dados como perdidos.

Desempenho: vazão (throughput)

- Vazão (throughput): razão (bits/unidade tempo) na qual são transferidos entre emissor/receptor
 - instantânea: razão em um dado tempo
 - média: razão sobre um período de tempo mais longo

Servidor envia bits para dentro do *pipe* O *pipe* pode transportar a uma razão de R_s bits/s O *pipe* pode transportar a uma razão de *R_s* bits/s

Desempenho: vazão (throughput)

 $R_s < R_c$ Qual a média da vazão fim-a-fim?

 $R_s > R_c$ Qual a média da vazão fim-a-fim?

Gargalo no enlace

Enlace que limita a vazão fim-a-fim

Desempenho: cenário da Internet

Vazão por conexão fim-afim:

 $min(R_c, R_s, R/10)$

Na prática: R_c ou R_s é geralmente o gargalo

10 conecções compartilham o enlace de backbone (*R* bits/s)

Sumário

- O que é a Internet? O que é um protocolo?
- Borda da rede: hosts, acesso, meios físicos
- Núcleo da rede: comutação de circuitos e de pacotes; estrutura da Internet
- Questões de performance: perda, atraso, desempenho
- Camadas de protocolos, modelos de serviço
- Segurança
- História

Camadas de protocolos

Redes são complexas, com muitas partes:

- hosts
- roteadores
- enlaces de diversos tipos
- aplicações
- protocolos
- hardware, software

Questão:

existe alguma "esperança" de organizar essa estrutura de rede?

.... ou ao menos na organização da discussão sobre redes?

Exemplo: como é uma viagem aérea

ticket (compra)

bagagem (check)

portões (load)

decolagem

rota de voo

Rota de voo

ticket (complain)

bagagem (claim)

portões (unload)

rota de voo

Uma série de passos

Funcionalidade da viagem aérea em camadas

Camadas: cada camada implementa um serviço

- Através de ações internas na camada
- Usando os serviços providos pela camada mais abaixo

Porquê camadas

Tratar com <u>sistemas complexos</u>:

- Estrutura explícita permite identificação e o estabelecimento da relação entre os elementos
 - modelo de referência de camadas para discussão
- Modularização facilita a manutenção e atualizações
 - Mudança na implementação em um serviço de uma camada é transparente ao resto do sistema

Pilha de Protocolos TCP/IP

- aplicação: supota as aplicações de rede
 - FTP, SMTP, HTTP
- transporte: transferência de dados entre processos
 - TCP, UDP
- rede: roteamento dos datagramas entre a origem e o destino
 - IP, protocolos de roteamento
- enlace: transferência de dados entre dois elementos "próximos"
 - Ethernet, 802.111 (WiFi), PPP
- físico: bits "on the wire"

Modelo de Referência ISO/OSI

- apresentação: permite aplicações interpretar o significado dos dados: compressão, criptografia, convenções específicas da máquina (endianess)
- sessão: sincronização, pontos de checagem, recuperação durante troca de dados
- Camadas "ausentes" da pilha Internet
 - Esses serviços, se necessários, deverão ser implementados pelas aplicações

aplicação apresentação sessão transporte rede enlace físico

Sumário

- O que é a Internet? O que é um protocolo?
- Borda da rede: hosts, acesso, meios físicos
- Núcleo da rede: comutação de circuitos e de pacotes; estrutura da Internet
- Questões de performance: perda, atraso, desempenho
- Camadas de protocolos, modelos de serviço
- Segurança
- História

Segurança de Rede (*Network Security*)

- Segurança de rede:
 - Como um computador é atacado pela através da rede
 - Como se defender desses tipos de ataques
 - Como projetar arquiteturas "imunes" a estes tipos de ataques
- A Internet não foi projetada originalmente visando segurança
 - Visão original: "a group of mutually trusting users attached to a transparent network"
 - A segurança deve ser considerada em todos os níveis.

"Infectando" hosts com malware

- Malware podem chegar num host a partir de:
 - virus: programa que se auto-replica e infecta hosts através do recebimento e execução de objetos (por exemplo, arquivos anexados em e-mail).
 - worm: infecção que se replica através do recebimento de forma passiva de um objeto que é autoexecutado. O objeto é um arquivo arquivo executável e o ataque ocorre via rede.
- spyware malware pode registrar e armazenar digitação, sítios visitados, obter e enviar dados pessoais.
- Um host infectado pode se tornar um membro de uma botnet, rede que é usada para diversas atividades, como gerar spam, realizar ataques DdoS.

Atacando servidores de rede e infraestrutura de rede

Denial of Service (DoS): atacantes esgotam os recursos (servidores, largura de banda), tornando-os indisponíveis para usuários legítimos. DdoS: Distributed DoS

- 1. Seleção do alvo
- Ataca hosts tornando-os "escravos" (botnet)
- 3. O atacante envia comandos aos hosts comprometidos para que enviem pacotes ao alvo

Visualizando conteúdo dos pacotes na rede

Packet "sniffing": captura de dados de rede; no sentido geral, pacotes de rede, e em sentido restrito, frames de rede (unidade básica de dados da camada de enlace), a qual permite analisar todos os protocolos das diversas camadas que estejam sendo transportados. A palavra vem de "farejar" dados de rede.

Requisitos:

- Meios que usam broadcast (Ethernet compartilhada, wireless)
- Interface de rede deve estar modo promíscuo (promiscuous) para que ela receba e trate todos os frames (Ethernet) que passam pela mesma.

Obs.: programas mais conhecidos para realizar *packet-sniffer*: tcpdump (modo texto) e *Wireshark* (modo gráfico).

Uso de endereços falsos

IP spoofing: enviar um pacote com endereço falso de origem

Sumário

- O que é a Internet? O que é um protocolo?
- Borda da rede: hosts, acesso, meios físicos
- Núcleo da rede: comutação de circuitos e de pacotes; estrutura da Internet
- Questões de performance: perda, atraso, desempenho
- Camadas de protocolos, modelos de serviço
- Segurança
- História

1961-1972: princípios da comutação de pacotes

- 1961: Kleinrock teoria de filas mostra a efetividade da comutação de pacotes
- 1964: Baran comutação de pacotes em redes militares
- 1967: ARPAnet definida pela agência Advanced Research Projects Agency
- 1969: primeiro nó operacional da ARPAnet

1972:

- ARPAnet public demo
- NCP (Network Control Protocol) primeiro protocolo para comunicação host-host
- Primeiro programa de e-mail
- ARPAnet possui 15 nós

1972-1980: *Internetworking*: conexão entre redes; criação de redes; redes proprietárias

- 1970: ALOHAnet: rede por satélite no Hawaii
- 1974: Cerf e Kahn arquitetura para interconexão de redes
- 1976: Ethernet no Xerox PARC
- Final década 70: arquiteturas rede proprietárias: DECnet, SNA, XNA
- Final década 70: comutação de pacotes com tamanho fixo (precursos do ATM)
- 1979: ARPAnet registra 200 nós

Princípios de internetworking (Cerf e Kahn):

- Minimalismo, autonomia sem mudanças internas requeridas para interconectar redes
- Modelo de serviço melhor esforço (best effort)
- Roteadores sem estado (stateless)
- Controle descentralizado

Que definem a arquitetura da Internet atual

1980-1990: novos protocolos e proliferação das redes

- 1983: desenvolvimento doTCP/IP
- 1982: protocolo de email: SMTP
- 1983: protocolo para tradução nomes-paraendereços: DNS
- 1985: protocolo pra transferência arquivos: FTP
- 1988: controle de congestionamento TCP

- Novas redes nacionais: CSnet, BITnet, NSFnet, Minitel
- 100.000 hosts conectados às diversas redes

Décadas 1990 e 2000: comercialização na Web; novas aplicações

- Início 1990: ARPAnet foi decomissionada
- 1991: NSF retirou restrições ao uso comercial da rede NSFnet (1995)
- Década de 1990: Web
 - Hypertexto [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, depois Netscape
 - Final da década 1990: comercialização na Web

Entre 1990 e 2000:

- Mais "killer apps": mensagens instantâneas, compartilhamento arquivos P2P
- Segurança de rede
- Estimativas de 50 millões de hosts e mais de 100 millões de usuários
- Enlaces de backbone chegando a taxas de Gbps

2005-até o presente

- ~5B dispositivos conectados à Internet (2016)
 - Smartphones e tablets
- Desenvolvimento do acesso em banda larga (fibra óptica)
- Aumento e generalização do acesso a redes sem fio
- Redes sociais:
 - Facebook: ~ um bilhão de usuários
- Provedores de serviços (Google, Microsoft, Amazon, etc) criando suas próprias redes
 - "Bypassando" a Internet, de forma a prover acesso instantâneo à pesquisa, email, vídeo, serviços (computação em nuvem), etc.
- E-commerce, universidades, empresas executando seus serviços em nuvens públicas (Amazon EC2)

Uso do Wireshark www.wireshark.org

