a) Basta considerar a MT de duas fitzs seguinte, que reconhece a Inguagem LA.

A máquinz avança pela lista, garantindo que cada número é menor ou igual ao seguinte.

Começa (qin) por copiar o primeiro nº para a fita 2, em (back) regressa na fita 2 ao início desse nº, e em (cmp) garante que o nº seguinte é maior ou igual, substituindo por ele o nº da fita 2.

b) Basta considerar à HT 1800-deterministe de doss fits segunte, que reconhèce à languagem LB.

A méquinz coneça por escolber não-deterministicamente (nd1) um primeiro nº dz listz, que copiz parz a fitz 2 (som1), e depois (nd2) escolber não-deterministicmente un segundo nº dz listz, que compaz com o primeiro (somz), aceitondo se forem iguris.

Teoria da Computação

Março 2022 MAP30–2A.1 Duração: 30m

Nome:		Número:	
	-		

a) (2.0 valores) Mostre (construindo uma máquina de Turing determinista, possivelmente bidireccional, multifita e com movimentos-S) que é reconhecível a linguagem $L_A \subseteq \{1,\$\}^*$ constituída por todas as palavras da forma

$$1^{n_1} \$ 1^{n_2} \$ \dots \$ 1^{n_k}$$

em que $k, n_1, n_2, \ldots, n_k \in \mathbb{N}_0$ e $n_1 \leq n_2 \leq \cdots \leq n_k$. Note que L_A é portanto constituída pelas listas de naturais em notação unária que estão ordenadas por ordem crescente, e nomeadamente que 11\$11\$1111 $\in L_A$ mas 11\$1111\$111 $\notin L_A$.

b) (2.0 valores) Mostre (construindo uma máquina de Turing não-determinista, possivelmente bidireccional, multifita e com movimentos-S) que é reconhecível a linguagem $L_B \subseteq \{1,\$\}^*$ constituída por todas as palavras da forma

$$1^{n_1} \$ 1^{n_2} \$ \dots \$ 1^{n_k}$$

em que $k \in \mathbb{N}_0$ e existem $i \neq j$ tais que $n_i = n_j$. Note que L_B é portanto constituída pelas listas de naturais em notação unária que contêm algum valor repetido, e nomeadamente que 11\$1111\$11 $\in L_B$ mas 11\$1111\$111 $\notin L_B$.

Teoria da Computação

Março 2022	MAP30–2A.2	Duração: 30m

Nome:	Número:
-------	---------

a) (2.0 valores) Mostre (construindo uma máquina de Turing determinista, possivelmente bidireccional, multifita e com movimentos-S) que é reconhecível a linguagem $L_A \subseteq \{a, \#\}^*$ constituída por todas as palavras da forma

$$a^{m_1} \# a^{m_2} \# \dots \# a^{m_k}$$

em que $k, m_1, m_2, \ldots, m_k \in \mathbb{N}_0$ e $m_1 \leq m_2 \leq \cdots \leq m_k$. Note que L_A é portanto constituída pelas listas de naturais em notação unária que estão ordenadas por ordem crescente, e nomeadamente que $aa\#aa\#aaa \in L_A$ mas $aa\#aaa\#aa \notin L_A$.

b) (2.0 valores) Mostre (construindo uma máquina de Turing não-determinista, possivelmente bidireccional, multifita e com movimentos-S) que é reconhecível a linguagem $L_B \subseteq \{a, \#\}^*$ constituída por todas as palavras da forma

$$a^{m_1} \# a^{m_2} \# \dots \# a^{m_k}$$

em que $k \in \mathbb{N}_0$ e existem $i \neq j$ tais que $m_i = m_j$. Note que L_B é portanto constituída pelas listas de naturais em notação unária que contêm algum valor repetido, e nomeadamente que $aa\#aaa\#aa \in L_B$ mas $aa\#aaa\#aa \notin L_B$.

Teoria da Computação

Março 2022	MAP30-2B.1	Duração: 30m

Nome: ______ Número: _____

a) (2.0 valores) Mostre (construindo uma máquina de Turing determinista, possivelmente bidireccional, multifita e com movimentos-S) que é reconhecível a linguagem $L_A \subseteq \{1,\$\}^*$ constituída por todas as palavras da forma

$$1^{n_1} \$ 1^{n_2} \$ \dots \$ 1^{n_k}$$

b) (2.0 valores) Mostre (construindo uma máquina de Turing não-determinista, possivelmente bidireccional, multifita e com movimentos-S) que é reconhecível a linguagem $L_B \subseteq \{1,\$\}^*$ constituída por todas as palavras da forma

$$1^{n_1} \$ 1^{n_2} \$ \dots \$ 1^{n_k}$$

em que $k \in \mathbb{N}_0$ e existem $i \neq j$ tais que $n_i \neq n_j$. Note que L_B é portanto constituída pelas listas de naturais em notação unária em que os valores não são todos iguais, e nomeadamente que 11\$1111\$11 $\in L_B$ mas 11\$11\$11 $\notin L_B$.

Teoria da Computação

Março 2022	MAP30-2B.2	Duração: 30m

a) (2.0 valores) Mostre (construindo uma máquina de Turing determinista, possivelmente bidireccional, multifita e com movimentos-S) que é reconhecível a linguagem $L_A \subseteq \{a, \#\}^*$ constituída por todas as palavras da forma

$$a^{m_1} \# a^{m_2} \# \dots \# a^{m_k}$$

em que $k, m_1, m_2, \ldots, m_k \in \mathbb{N}_0$ e $m_1 < m_2 < \cdots < m_k$. Note que L_A é portanto constituída pelas listas de naturais em notação unária que estão ordenadas por ordem estritamente crescente, e nomeadamente que $a\#aaa\#aaa \in L_A$ mas $aa\#aa#a \notin L_A$.

b) (2.0 valores) Mostre (construindo uma máquina de Turing não-determinista, possivelmente bidireccional, multifita e com movimentos-S) que é reconhecível a linguagem $L_B \subseteq \{a, \#\}^*$ constituída por todas as palavras da forma

$$a^{m_1} \# a^{m_2} \# \dots \# a^{m_k}$$

em que $k \in \mathbb{N}_0$ e existem $i \neq j$ tais que $m_i \neq m_j$. Note que L_B é portanto constituída pelas listas de naturais em notação unária em que os valores não são todos iguais, e nomeadamente que $aa\#aaa\#aa \in L_B$ mas $aa\#aa\#aa \notin L_B$.

Teoria da Computação

Março 2022	MAP30–2C.1	Duração: 30m
Nome:		Número:

- a) (2.0 valores) Mostre (construindo uma máquina de Turing determinista, possivelmente bidireccional, multifita e com movimentos-S) que é computável a função f_A que para cada palavra de input da forma $1^{n_1} \$ 1^{n_2} \$ \dots \$ 1^{n_k}$ (com $k, n_1, n_2, \dots, n_k \in \mathbb{N}_0$ e $k \ge 1$) devolve como output a palavra $1^{\max(n_1, n_2, \dots, n_k)}$.
 - Note que f_A calcula o valor máximo de uma lista não vazia de naturais, em notação unária, e nomeadamente que $f_A(1\$1111\$11)=1111$.
- b) (2.0 valores) Mostre (construindo uma máquina de Turing não-determinista, possivelmente bidireccional, multifita e com movimentos-S) que é reconhecível a linguagem $L_B \subseteq \{0, 1, \$\}^*$ constituída por todas as palavras da forma

$$w_1 \$ w_2 \$ \dots \$ w_k$$

em que $k \in \mathbb{N}_0$, cada $w_i \in \{0,1\}^*$ e existem $i \neq j$ tais que $|w_i| = |w_j|$. Note que L_B é portanto constituída pelas listas de palavras de $\{0,1\}^*$ em que há pelo menos duas palavras com o mesmo comprimento, e nomeadamente que $101\$11\$011 \in L_B$ mas $11\$0\$101 \notin L_B$.

Teoria da Computação

Março 2022	MAP30-2C.2	Duraçao: 30m

Nome:	Número:	

a) (2.0 valores) Mostre (construindo uma máquina de Turing determinista, possivelmente bidireccional, multifita e com movimentos-S) que é computável a função f_A que para cada palavra de input da forma $a^{m_1} \# a^{m_2} \# \dots \# a^{m_k}$ (com $k, m_1, m_2, \dots, m_k \in \mathbb{N}_0$ e $k \geq 1$) devolve como output a palavra $a^{\max(m_1, m_2, \dots, m_k)}$.

Note que f_A calcula o valor máximo de uma lista não vazia de naturais, em notação unária, e nomeadamente que $f_A(a\#aaa\#aa) = aaaa$.

b) (2.0 valores) Mostre (construindo uma máquina de Turing não-determinista, possivelmente bidireccional, multifita e com movimentos-S) que é reconhecível a linguagem $L_B \subseteq \{a, b, \#\}^*$ constituída por todas as palavras da forma

$$v_1 \# v_2 \# \dots \# v_k$$

em que $k \in \mathbb{N}_0$, cada $v_i \in \{a,b\}^*$ e existem $i \neq j$ tais que $|v_i| = |v_j|$. Note que L_B é portanto constituída pelas listas de palavras de $\{a,b\}^*$ em que há pelo menos duas palavras com o mesmo comprimento, e nomeadamente que $bab\#b\#abb \in L_B$ mas $bb\#a\#abb \notin L_B$.

Teoria da Computação

Março 2022	MAP30-2D.1	Duração: 30m

Nome:

a) (2.0 valores) Mostre (construindo uma máquina de Turing determinista, possivelmente bidireccional, multifita e com movimentos-S) que é reconhecível a linguagem $L_A \subseteq \{1,\$\}^*$ constituída por todas as palavras da forma

Número: _____

$$1^{n_1} \$ 1^{n_2} \$ \dots \$ 1^{n_k}$$

b) (2.0 valores) Mostre (construindo uma máquina de Turing não-determinista, possivelmente bidireccional, multifita e com movimentos-S) que é reconhecível a linguagem $L_B \subseteq \{1,\$\}^*$ constituída por todas as palavras da forma

$$1^{n_1} \$ 1^{n_2} \$ \dots \$ 1^{n_k}$$

em que $k \in \mathbb{N}_0$ e existem $i \neq j$ tais que $n_i \neq n_j$. Note que L_B é portanto constituída pelas listas de naturais em notação unária em que os valores não são todos iguais, e nomeadamente que 11\$1111\$11 $\in L_B$ mas 11\$11\$11 $\notin L_B$.

Teoria da Computação

Março 2022	MAP30-2D.2	Duração: 30m

Nome:	 Número:	

a) (2.0 valores) Mostre (construindo uma máquina de Turing determinista, possivelmente bidireccional, multifita e com movimentos-S) que é reconhecível a linguagem $L_A \subseteq \{a, \#\}^*$ constituída por todas as palavras da forma

$$a^{m_1} \# a^{m_2} \# \dots \# a^{m_k}$$

em que $k, m_1, m_2, \ldots, m_k \in \mathbb{N}_0$ e $m_1 < m_2 < \cdots < m_k$. Note que L_A é portanto constituída pelas listas de naturais em notação unária que estão ordenadas por ordem estritamente crescente, e nomeadamente que $a\#aaa\#aaa \in L_A$ mas $aa\#aa#a \notin L_A$.

b) (2.0 valores) Mostre (construindo uma máquina de Turing não-determinista, possivelmente bidireccional, multifita e com movimentos-S) que é reconhecível a linguagem $L_B \subseteq \{a, \#\}^*$ constituída por todas as palavras da forma

$$a^{m_1} \# a^{m_2} \# \dots \# a^{m_k}$$

em que $k \in \mathbb{N}_0$ e existem $i \neq j$ tais que $m_i \neq m_j$. Note que L_B é portanto constituída pelas listas de naturais em notação unária em que os valores não são todos iguais, e nomeadamente que $aa\#aaa\#aa \in L_B$ mas $aa\#aa\#aa \notin L_B$.