

федеральное государственное бюджетное образовательное учреждение высшего образования

«Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова»

(БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова»)

Факультет	И	Информационные и управляющие системы	
	шифр	наименование	
Кафедра	И4	Радиоэлектронные системы управления	
	шифр	наименование	
Дисциплина	Математическая статистика и случайные величины		

Лабораторная работа №1

«Методы описательной статистики в пакете STATGRAPHICS»

ВЫПОЛНИЛ студент группы И465

Масюта А.А. Фамилия И.О.

ВАРИАНТ № 10

ПРЕПОДАВАТЕЛЬ

<u>Мартынова Т.Е.</u> Фамилия И.О.

Краткие сведения из теории

Случайная величина X называется числовая функция $X=X(\omega)$ от элементарного события, определенная на множестве элементарных исходов Ω , и такая, что при любом х множество тех ω , для которых $X(\omega) < x$, принадлежит алгебре событий.

Дискретной случайной величиной называют случайную величину с конечным или счетным множеством возможных значений.

Закон распределения случайной величины - любое правило, позволяющее находить вероятности всевозможных событий, связанных с этой случайной величиной.

Многоугольник распределения – графическое изображение ряда распределения.

Функция распределения случайной величины X называется вероятность неравенства X < x, рассматриваемая как функция параметра x,

$$F(x) = P(X < x)$$

Числовые характеристики дискретных случайных величин, их свойства

Математическое ожидание — среднее взвешенное из значений x_i , причем каждое x_i при осреднении должно учитываться с весом p_i .

$$m_X = M(X) = \frac{\sum_{i=1}^n x_i p_i}{\sum_{i=1}^n p_i} = \sum_{i=1}^n x_i p_i$$

Свойства математического ожидания

- 1) M(C) = C, где C константа
- 2) M(C*X) = C*M(X)
- 3) M(X + Y) = M(X) + M(Y)
- 4) Если $X \ge Y$, то $M(X) \ge M(Y)$
- 5) M(X * Y) = M(X) * M(Y)

Мода дискретной случайной величины — значение x_k , где k от 1 до n, для которого

$$P(X = d_X) = maxP(X = x_k)$$

Медиана дискретной случайной величины X называется число h_X , удовлетворяющее условию

$$P(X < h_X) = P(X \ge h_X) = 1/2$$

Дисперсия случайной величины X – это математическое ожидание квадрата соответствующей центрированной величины

$$D(x) = \sum_{i=1}^{n} (x_i - m_X)^2 p_i$$

Чаще используют формулу:

$$D(x) = \sum_{i=1}^{n} x_i^2 p_i - m_X^2$$

Стандартное отклонение: $\sigma_X = \sqrt{D_X}$

Непрерывная случайная величина - случайная величина, вероятность попадания которой в любую бесконечно малую область бесконечно мала и для которой при каждом х существует конечный и бесконечный предел.

Ход работы

Задание: отклонения длины валиков от номинального размера в миллиметрах, отобранных из текущей продукции прецизионного токарного автомата:

1.0, 1.5, -2.5,0.0,-1.5,1.0, 1.0, 15.0,-1.0,2.0, 2.0, 3.0, 11.0,-1.0,5.0, 4.5, 0.5, 3.5, 8.0, 5.0, 4.5, 3.5, 9.5, 12.5, 7.5, 7.5, 10.0, 8.5, 10.0,-3.0,5.0, 3.5,-3.0,- 14.0, 17.0,-9.0,-13.0,-12.5,8.5, 12.5, 6.0, 8.5, 0.0, 7.0,-1.0,-3.0,0.5, 0.0, - 2.0,-4.5,2.0,-10.0,-8.5,-3.5,-11.5,-11.5,-7.5,-11.5,-6.5,2.0.

Summary Statistics for dlina

or amna		
61		
0,934426		
1,0		
55,379		
7,4417		
796,393%		
0,952813		
-14,0		
17,0		
31,0		
-3,0		
6,0		
9,0		
16,0		
-0,197997		
-0,631319		
-0,465068		
-0,74144		
57,0		

Рисунок 1 – Суммарные статистики

Scatterplot

Рисунок 2 – Диаграмма рассеивания

Histogram

Рисунок 3 – Гистограмма переменной

Quantile Plot

Рисунок 4 – Квантильный график переменной

Frequency Tabulation for dlina

	Lower	Upper			Relative	Cumulative	Cum. Rel.
Class	Limit	Limit	Midpoint	Frequency	Frequency	Frequency	Frequency
	at or below	-16,0		0	0,0000	0	0,0000
1	-16,0	-13,7778	-14,8889	1	0,0164	1	0,0164
2	-13,7778	-11,5556	-12,6667	2	0,0328	3	0,0492
3	-11,5556	-9,33333	-10,4444	5	0,0820	8	0,1311
4	-9,33333	-7,11111	-8,22222	3	0,0492	11	0,1803
5	-7,11111	-4,88889	-6,0	1	0,0164	12	0,1967
6	-4,88889	-2,66667	-3,77778	5	0,0820	17	0,2787
7	-2,66667	-0,444444	-1,55556	6	0,0984	23	0,3770
8	-0,444444	1,77778	0,666667	9	0,1475	32	0,5246
9	1,77778	4,0	2,88889	8	0,1311	40	0,6557
10	4,0	6,22222	5,11111	6	0,0984	46	0,7541
11	6,22222	8,44444	7,33333	4	0,0656	50	0,8197
12	8,44444	10,6667	9,55556	6	0,0984	56	0,9180
13	10,6667	12,8889	11,7778	3	0,0492	59	0,9672
14	12,8889	15,1111	14,0	1	0,0164	60	0,9836
15	15,1111	17,3333	16,2222	1	0,0164	61	1,0000
16	17,3333	19,5556	18,4444	0	0,0000	61	1,0000
17	19,5556	21,7778	20,6667	0	0,0000	61	1,0000
18	21,7778	24,0	22,8889	0	0,0000	61	1,0000
	above	24,0		0	0,0000	61	1,0000

Mean = 0,934426 Standard deviation = 7,4417

Рисунок 5 – Результат анализа переменной

Вывод: в ходе лабораторной работы мы ознакомились с методами описательной статистики в пакете Statgaraphics. Данный пакет существенно ускоряет процесс подсчета и обработки результатов