AMAT583 (8433) Midterm II

Problem 1. (3 points) Over the alphabet $\{a, b\}$, find all the words with edit distance exactly 1 from the word aa.

Solution: a, ab, ba, aaa, baa, aba, aab.

Problem 2. (3 points) Compute the Wasserstein distance between (1, 0, 2, 0, 1) and (2, 0, 0, 0, 2). (You can also view these as functions $f, g: \{1, 2, 3, 4, 5\} \rightarrow [0, \infty)$ given by f(1) = 1, f(2) = 0, f(3) = 2, f(4) = 0, f(5) = 1 and g(1) = 2, g(2) = g(3) = g(4) = 0, g(5) = 2.)

Solution: We send 1 from the third position to the first position, and 1 from the third position to the fifth position. We are twice moving a weight of 1 a distance of 2, which gives a cost of $2 \cdot 1 \cdot 2 = 4$. This is the cheapest transport plan, so the Wasserstein distance is 4.

(We can also write the transport plan on matrix form: $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ We have two 1s with

distance 2 two the diagonal, which gives a cost of $2 \cdot 1 \cdot 2 = 4$.)

Problem 3. (5 points) Let $X = \{0, 1, 4, 5, 9\}$ be equipped with the standard metric.

- (a) Find the single linkage dendrogram of X.
- (b) Find the average linkage dendrogram of X.

Solution: (a) At 1, 0 merges with 1 and 4 with 5. At 3, $\{0,1\}$ merges with $\{4,5\}$ since d(1,4)=3, and at 4, $\{0,1,4,5\}$ merges with $\{9\}$. See Fig. 1a.

(b) At 1, 0 merges with 1 and 4 with 5. We get three clusters $C_1 = \{0, 1\}$, $C_2 = \{4, 5\}$ and $C_3 = \{9\}$.

$$\delta(C_1, C_2) = \frac{1}{2 \cdot 2} (4 + 3 + 5 + 4) = 4$$
$$\delta(C_2, C_3) = \frac{1}{2 \cdot 1} (5 + 4) = 4.5.$$

Thus, we merge C_1 and C_2 at 4. Finally, we merge $\{0, 1, 4, 5\}$ and $\{9\}$ at

$$\delta(\{0,1,4,5\},\{9\}) = \frac{1}{4 \cdot 1}(9+8+5+4) = 6.5.$$

See Fig. 1b.

Problem 4. (3 points) Suppose $C = \{C_1, C_2, C_3\}$ is the 3-means clustering of a set $X \subseteq \mathbb{R}^2$, where the mean of C_1 is $\mu_1 = (0,0)$, the mean of C_2 is $\mu_2 = (1,1)$ and the mean of C_3 is $\mu_3 = (2,0)$. Suppose $(1,2), (0.7,0) \in X$. To which cluster C_i does (1,2) belong? To which cluster C_i does (0.7,0) belong? Justify your answer.

Solution: We know that if a point $x \in X$ is closer to μ_i than any other μ_j , then $x \in C_i$. The μ_i closest to (1,2) is $\mu_2 = (1,1)$, and the μ_i closest to (0.7,0) is $\mu_1 = (0,0)$. Thus, (1,2) belongs to C_2 , and (0.7,0) belongs to C_1 .

Figure 1: Solution to Problem 3.

Problem 5. (4 points)

- (a) Find the barcode of the dendrogram in Fig. 2.
- (b) For each $h \in [0, \infty)$, one can read off a partition of a subset of $X = \{a, b, c, d, e\}$ from the dendrogram in Fig. 2. Write these partitions for h = 0, 1, 2, 3, 4.

Solution: (a)
$$\{[0,\infty),[0,2),[0,2),[1,4),[2,3)\}$$

(b)

h=0: $\{\{c\}, \{d\}, \{e\}\}$

h=1: $\{\{a\},\{c\},\{d\},\{e\}\}$

h=2: $\{\{a\}, \{b\}, \{c, d, e\}\}$

h=3: $\{\{a,b\},\{c,d,e\}\}$

h=4: $\{\{a, b, c, d, e\}\}$

Figure 2