Tutorial 8

- 1. Give Turing machines (with full formal descriptions) for the following languages. Once you design a TM for one of the parts, you may use that as a subroutine in the subsequent parts of the question. (See for example the description of how to use TMs as subroutines in the textbook by Hopcroft and Ullman.)
 - (a) Given a word w on the first tape, copy the word on the second tape and make the first tape completely blank.
 - (b) Given a word $w \in \{a, b\}^*$ on the first tape, keep only every alternate letter of w on that tape. That is, suppose abbab is written on the tape, you should finally end up with abb on the same tape. You may design a 2-tape TM for this.
 - (c) Given a word $w = w_1 w_2 \dots w_{2n}$ over the alphabet $\{a, b\}$ on the tape, output the word $w_1 w_3 \dots w_{2n-1} w_2 w_4 \dots w_{2n}$ on the same tape. You may design a 2-tape TM for this.
 - (d) Given a word $w \in \{a, b, \overline{a}, \overline{b}\}^*$ design a single tape TM that accepts if and only if the following two conditions are satisfied:
 - exactly 3 positions in w come from $\{\overline{a}, \overline{b}\}$ and all the others are from $\{a, b\}$,
 - and the values at those positions are either $\bar{b}\bar{a}\bar{a}$ or $\bar{a}\bar{b}\bar{a}$.
 - (e) Given a word $w \in \{a, b, \overline{a}, \overline{b}, \#\}^*$ design a single tape TM that accepts if and only if the word satisfies all the following three conditions:
 - exactly 3 positions in w come from $\{\overline{a}, \overline{b}\}$ and all the others are from $\{a, b, \#\}$,
 - every 4th letter in the word w is #, i.e. $w = x_1 \# x_2 \# \dots x_n \#$, where $x_i = x_{i_1} x_{i_2} x_{i_3}$ (i.e. $|x_i| = 3$),
 - and if a letter with overline appears in a certain block, say x_i , at a position j, then in no other block, say $x_{i'}$ where $i' \neq i$, does the letter with overline appear in that position, i.e. if there exist $i \in [n]$ and $j \in \{1, 2, 3\}$ such that $x_{i_j} \in \{\overline{a}, \overline{b}\}$ then for any $i \neq i'$ $x_{i'_i} \in \{a, b\}$.
 - (f) Given a word $w \in \{a, b, \overline{a}, \overline{b}, \#\}^*$ design a single tape TM that does the following:
 - checks that the three conditions in part (1e) above are satisfied,
 - if they are not satisfied then rejects and halts,
 - if they are satisfied then updates the word as follows: (i) if $x_{i_j} = \overline{a}$ then changes $x_{i_j} = a$, (ii) if $(x_{i_j} = \overline{b} \text{ AND } i > 1)$ then overwrites $x_{(i-1)_j}$ with \overline{b} and x_{i_j} with b, (iii) makes no updates in all the other cases.
 - (g) Given 1^n on the first tape, output n in binary on the second tape.
 - (h) Given $w \in \{0,1\}^n$ on the first tape, output the number represented by w in unary on the second tape.
- 2. Prove that for any 3-tape TM there is an equivalent 1-tape TM. You may use various subparts from the Question 1 above as subroutines.