小小青蛙听风就是雨

Hiedano Akyuu、Oneman
233、KR12138 $2019 \ \hbox{\it ft} \ 10 \ \hbox{\it ft} \ 24 \ \hbox{\it ft}$

目录 4.4.2 边剖分										
_	2.66	- 14.	_	4.5		12				
1	字符		1		1	12				
	1.1		1		1 0	13				
	1.2	EX-KMP	1	4.6	2. = 1.4	13				
	1.3	Manacher	1	4.7	主席树	13				
	1.4	串的最小表示	2	4.8	11211	14				
	1.5	后缀数组	2		1	14				
		1.5.1 倍增 SA	2		4.8.2 树状数组套线段树	16				
		1.5.2 DC3	2	4.9	K-D Tree	17				
	1.6	回文自动机	2	4.10)分治	17				
	1.7	AC 自动机	2		4.10.1 CDQ	17				
		1.7.1 多模匹配	2		4.10.2 点分治	17				
		1.7.2 自动机上 DP	3		4.10.3 dsu on tree	17				
	1.8	后缀自动机	4		4.10.4 整体二分	17				
				4.11	. 分块	17				
2	计算		4		4.11.1 普通分块	17				
	2.1	二维几何	4		4.11.2 莫队	18				
	2.2	三维几何	5	4.12	9. 线性基	18				
_	Del NA			4.13	3 珂朵莉树	18				
3	图论		5	4.14	跳舞链	19				
	3.1	最短路	5							
		3.1.1 Dijkstra		动态	规划 1	19				
		3.1.2 SPFA	5	5.1	SOS	19				
		3.1.3 Floyd	5	5.2	动态 DP	20				
		3.1.4 负环	5	5.3	插头 DP	20				
		3.1.5 差分约束	5							
	3.2	最小生成树	5 6	数学		20				
		3.2.1 Prim	5		721170	20				
		3.2.2 Kruskal	5	6.2	0.000	20				
		3.2.3 最小生成树计数	5		304	20				
		3.2.4 次小生成树	5			20				
		3.2.5 最小乘积生成树	5	6.3	5130 NC	20				
		树的直径	5			20				
	3.4	LCA	5	6.4	23 1 20 2 7 9 1	20				
		3.4.1 Tarjan 离线	5			20				
		3.4.2 倍增 LCA	5	6.5	.9.	20				
	3.5	无向图与有向图联通性	6		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20				
		3.5.1 割点	6			20				
		3.5.2 桥	6		,,,,,,e,, -	20				
		3.5.3 e-DCC	7	6.6	70247	20				
		3.5.4 v-DCC	7			20				
		3.5.5 SCC	7		11 1 2007-01	20				
		3.5.6 2-SAT	7			20				
		3.5.7 支配树	8		White Man and the second secon	20				
	3.6	二分图	8	6.7		20				
		3.6.1 最大匹配-匈牙利	8	6.8		20				
		3.6.2	8	6.9	901331	20				
	3.7	网络流	8		20.37	20				
		3.7.1 最大流-Dinic	8	6.11	1,479111422	20				
		3.7.2 最小费用最大流-Dij+Dinic	9		1,01117.5	20				
		3.7.3 上下界流	9		21 2424 E-TH12	20				
	3.8	欧拉路	9	6.12	3000 3////0000	20				
	3.9	Prufer 序列	9		7771 A771	20				
					6.12.2 杜教筛	20				
4	数据		9		- 0.41.424	20				
		树状数组	9		- 7/1	20				
	4.2	线段树	9			20				
		4.2.1 带优先级线段树	9			20				
		4.2.2 吉司机线段树	9	6.15		20				
		4.2.3 线段树维护扫描线	10			20				
	4.3	RMQ	10	6.17	'数值计算	20				
		4.3.1 一维	10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20				
		4.3.2 两维	10			20				
	4.4	树链剖分	10	6.18	3 康拓展开	20				
		4.4.1 点剖分	10	6.19) 卢卡斯定理 :	20				

7	其他		2
	7.1	快读快写	2
	7.2	约瑟夫环	2
	7.3	悬线法	2
	7.4	蔡勒公式	2
	7.5	三角公式	2
	7.6	海伦公式	2
	7.7	匹克定理	2
	7.8	组合计数	2
		7.8.1 计数原理	2
		7.8.2 卡特兰数	2
		7.8.3 Polya	2
		7.8.4 二项式反演公式	2
		7.8.5 斯特林反演公式	2
		7.8.6 组合数恒等式	2

1 字符串

1.1 KMP

```
#include <bits/stdc++.h>
   using namespace std;
   const int MAXN=1000005;
   char s1[MAXN],s2[MAXN];
   int nxt[MAXN];
       nxt[i] s2[i-x..i-1]=s2[0..x-1]且x最大
       即s2[0..i]的真前缀与真后缀的最大匹配
10
       "ABAAB\0"=>[-1 0 0 1 1 2]
11
12
13
   void get_fail(char *s,int 1)
14
       int i=0,j;
       j=nxt[0]=-1;
17
       while(i<1)
19
          while(~j&&s[j]!=s[i]) j=nxt[j];
          nxt[++i]=++j;
23
24
   void kmp(char *s1,char *s2,int l1,int l2)
25
26
   {
       int i=0, j=0;
27
       get_fail(s2,12);
       while(i<l1)
30
          while(~j&&s1[i]!=s2[j]) j=nxt[j];
31
          i++,j++;
32
          if(j>=12); //匹配上了
       }
36
   int main()
37
38
       scanf("%s%s",s1,s2);
39
       int l1=strlen(s1),l2=strlen(s2);
40
       kmp(s1,s2,l1,l2);
41
       for(int i=0;i<=12;i++)</pre>
          printf("%d ",nxt[i]);
       return 0;
44
   }
```

1.2 EX-KMP

```
#include <bits/stdc++.h>
using namespace std;

/*
    ex[i]: s1[i..11-1]与s2的最大公共前缀长度
    exnext[i]: s2[i..12-1]与s2的最大公共前缀长度
    get_exnext(s2) 求exnext[]
    exkmp(s1,s2) 求ex[]

*/

const int N=50005;
char s1[N],s2[N];
```

```
int ex[N],exnext[N];
13
14
    void get_exnext(char s[N])
16
        int n=strlen(s),p=1,j,i;
17
        exnext[0]=n;
18
        for(i=0;i<n-1&&s[i]==s[i+1];i++);
19
20
        exnext[1]=i;
21
        for(i=2;i<n;i++)</pre>
           if(exnext[i-p]+i<p+exnext[p])</pre>
22
23
               exnext[i]=exnext[i-p];
24
           {
25
               j=exnext[p]+p-i;
26
27
               if(j<0) j=0;
               while(i+j<n&&s[j]==s[i+j]) j++;</pre>
28
               exnext[i]=j;
               p=i;
30
           }
31
32
33
    void exkmp(char s1[N],char s2[N])
34
35
        int l1=strlen(s1), l2=strlen(s2), p=0,i,j;
36
        get exnext(s2);
37
        for(i=0;i<l1&&i<l2&&s1[i]==s2[i];i++);</pre>
38
        ex[0]=i;
39
        for(int i=1;i<11;i++)</pre>
40
41
           if(exnext[i-p]+i<p+ex[p])</pre>
               ex[i]=exnext[i-p];
           else
44
45
               j=ex[p]+p-i;
46
               if(j<0) j=0;
47
               while(i+j<11&&s1[i+j]==s2[j]) j++;</pre>
               ex[i]=j;
49
               p=i;
50
           }
51
        }
52
```

1.3 Manacher

```
#include <bits/stdc++.h>
   using namespace std;
   const int N=1000005;
   int cnt,len,ans,p[N*2];
   char s[N],ss[N*2];
   void init() //将每两个字符中插入一个字符
8
9
       len=strlen(s),cnt=1;
10
       ss[0]='!',ss[cnt]='#';
11
       for(int i=0;i<len;i++)</pre>
12
          ss[++cnt]=s[i],ss[++cnt]='#';
13
14
15
   void manacher()
16
17
       int pos=0, mx=0;
18
       for(int i=1;i<=cnt;i++)</pre>
19
20
```

```
if(i<mx) p[i]=min(p[pos*2-i],mx-i);</pre>
21
           else p[i]=1;
22
           while(ss[i+p[i]]==ss[i-p[i]]) p[i]++;
           if(mx<i+p[i]) mx=i+p[i],pos=i;
           ans=max(ans,p[i]-1);
25
26
    }
27
   int main()
       scanf("%s",s);
31
       init();
32
       manacher();
33
       printf("%d\n",ans);
34
       return 0;
35
   }
```

1.4 串的最小表示

1.5 后缀数组

1.5.1 倍增 SA

```
#include <bits/stdc++.h>
   using namespace std;
      str[0..len-1] 原串
       sa[1..len] 排名第i的后缀的下标[1..len]
       Rank[1..len] 从i开始的后缀的排名[1..len]
       height[1..len] 排名第i的后缀与排名第i-1的后缀的lcp
       i开始的后缀与j开始的后缀的lcp (Rank[i]<Rank[j])
      min{height[Rank[i]+1..Rank[j]]}
10
11
   const int MAXN=100005;
   const int inf=0x3f3f3f3f;
   int wa[MAXN],wb[MAXN],wv[MAXN],wz[MAXN],sa[MAXN],Rank
        [MAXN],height[MAXN];
   char str[MAXN];
16
17
   inline bool cmp(int *r,int a,int b,int 1){return r[a
18
       ]==r[b]&&r[a+1]==r[b+1];}
   void da(const char r[],int sa[],int n,int m)
   {
21
       int i,j,p,*x=wa,*y=wb,*t;
       for(i=0;i<m;i++) wz[i]=0;</pre>
       for(i=0;i<n;i++) wz[x[i]=r[i]]++;</pre>
       for(i=1;i<m;i++) wz[i]+=wz[i-1];</pre>
       for(i=n-1;i>=0;i--) sa[--wz[x[i]]]=i;
       for(j=1,p=1;p<n;j*=2,m=p)</pre>
28
          for(p=0,i=n-j;i<n;i++) y[p++]=i;</pre>
29
          for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
30
          for(i=0;i<n;i++) wv[i]=x[y[i]];</pre>
31
          for(i=0;i<m;i++) wz[i]=0;</pre>
          for(i=0;i<n;i++) wz[wv[i]]++;</pre>
          for(i=1;i<m;i++) wz[i]+=wz[i-1];</pre>
          for(i=n-1;i>=0;i--) sa[--wz[wv[i]]]=y[i];
          for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)</pre>
              x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
       }
   }
```

```
void calheight(const char *r,int *sa,int n)
41
42
       int i,j,k=0;
43
       for(i=1;i<=n;i++) Rank[sa[i]]=i;</pre>
       for(i=0;i<n;height[Rank[i++]]=k)</pre>
45
       for(k?k--:0,j=sa[Rank[i]-1];r[i+k]==r[j+k];k++);
46
       for(int i=n;i>=1;--i) sa[i]++,Rank[i]=Rank[i-1];
47
48
   int main()
50
51
       scanf("%s",str);
52
       int len=strlen(str);
53
       da(str,sa,len+1,130); //字符的值域
54
       calheight(str,sa,len);
55
       for(int i=1;i<=len;i++)</pre>
           printf("sa[%d] %d\n",i,sa[i]);
       for(int i=1;i<=len;i++)</pre>
           printf("Rank[%d] %d\n",i,Rank[i]);
       for(int i=1;i<=len;i++)</pre>
           printf("height[%d] %d\n",i,height[i]);
61
62
       return 0;
```

- 1.5.2 DC3
- 1.6 回文自动机
- 1.7 AC 自动机

1.7.1 多模匹配

```
#include <bits/stdc++.h>
   using namespace std;
       trie静态开点+trie图优化
   int sz,hd=1,nxt[1000005][26],fail[1000005],id
        [1000005],n;
   char s[1000005];
9
   void trie_clean()
13
       memset(nxt,0,sizeof(nxt));
14
       memset(fail,0,sizeof(fail));
15
       memset(id,0,sizeof(id));
16
   void trie_insert(int head,char s[],int len,int idx)
19
20
       int p=head;
21
       for(int i=0;i<len;i++)</pre>
22
23
          int c=s[i]-'a';
24
          if(!nxt[p][c]) nxt[p][c]=++sz;
          p=nxt[p][c];
26
27
       id[p]+=idx;
28
29
   void acatm_build(int head)
```

```
int p,tp;
       queue<int> q;
34
       q.push(head);
       fail[head]=0;
       while(!q.empty())
          p=q.front();
          q.pop();
          for(int i=0;i<26;i++)</pre>
              if(nxt[p][i])
                 fail[nxt[p][i]]=p==head?head:nxt[fail[p
                      ]][i];
                 q.push(nxt[p][i]);
45
              }
              else
                 nxt[p][i]=p==head?head:nxt[fail[p]][i];
       }
   }
   int acatm_match(int head,char s[],int len)
       int p=head,ret=0;
       for(int i=0;i<len;i++)</pre>
          int c=(int)s[i]-'a';
          p=nxt[p][c];
          for(int tp=p;tp;tp=fail[tp])
              if(id[tp]) ret++;
       return ret;
   }
```

29

30

34

35

36

40

41

42

43

52

55

60 61

66

67

75

1.7.2 自动机上 DP

```
#include <bits/stdc++.h>
   using namespace std;
3
      每个串有个权值
      求一个长度为n的串使得每个串的权值乘以出现次数之和最大
6
   int fail[2005],nxt[2005][26],cnt[2005],sz,hd,n,m,dp
       [55][2005],from[55][2005];
   char s[105][15];
   string dps[55][2005];
   void clear()
      sz=hd=1;
      memset(dp,0xc0,sizeof(dp));
16
      memset(fail,0,sizeof(fail));
17
      memset(nxt,0,sizeof(nxt));
      memset(cnt,0,sizeof(cnt));
19
   void trie_insert(int head,char s[],int len,int idx)
22
      int p=head;
      for(int i=0;i<len;i++)</pre>
          int c=s[i]-'a';
          if(!nxt[p][c]) nxt[p][c]=++sz;
```

```
p=nxt[p][c];
   cnt[p]+=idx;
void acatm_build(int head)
   queue<int> q;
   q.push(head);
   while(!q.empty())
       int p=q.front();
       q.pop();
       for(int i=0;i<26;i++)</pre>
          if(nxt[p][i])
              fail[nxt[p][i]]=p==head?head:nxt[fail[p
                  ]][i];
              cnt[nxt[p][i]]+=cnt[fail[nxt[p][i]]];
              q.push(nxt[p][i]);
          }
          else
              nxt[p][i]=p==head?head:nxt[fail[p]][i];
bool scmp(string a, string b)
   if(a.length()==b.length()) return a<b;</pre>
   else return a.length()<b.length();</pre>
void solve()
   clear();
   scanf("%d%d",&n,&m);
   for(int i=0;i<m;i++)</pre>
       scanf("%s",s[i]);
   for(int i=0;i<m;i++)</pre>
   {
       int x;
       scanf("%d",&x);
       trie_insert(hd,s[i],strlen(s[i]),x);
   acatm_build(hd);
   for(int i=0;i<=n;i++)</pre>
       for(int j=0;j<=sz;j++)</pre>
          dps[i][j]=string("");
   int ans=0;
   string anss;
   queue<pair<int,int> > q;
   dp[0][1]=0;
   for(int i=0;i<n;i++)</pre>
       for(int j=1;j<=sz;j++)</pre>
          for(int k=0;k<26;k++)</pre>
              if(dp[i][j]+cnt[nxt[j][k]]>dp[i+1][nxt[j
              ||dp[i][j]+cnt[nxt[j][k]]==dp[i+1][nxt[j
                  ][k]]&&scmp(dps[i][j]+char('a'+k),
                  dps[i+1][nxt[j][k]]))
                  dps[i+1][nxt[j][k]]=dps[i][j]+char('
                  dp[i+1][nxt[j][k]]=dp[i][j]+cnt[nxt[
```

```
j][k]];
89
        for(int i=0;i<=n;i++)</pre>
            for(int j=1;j<=sz;j++)</pre>
                if(dp[i][j]>ans||dp[i][j]==ans&&scmp(dps[i
                    ][j],anss))
93
                    ans=dp[i][j];
                    anss=dps[i][j];
        for(int i=0;i<anss.length();i++)</pre>
97
            printf("%c",anss[i]);
98
        printf("\n");
99
100
101
    int main()
102
    {
        int
104
        scanf("%d",&);
105
        while( --) solve();
106
        return 0:
107
    }
108
```

1.8 后缀自动机

2 计算几何

2.1 二维几何

```
#include<bits/stdc++.h>
   using namespace std;
   #define db double
   const db EPS=1e-9;
   inline int sign(db a){return a<-EPS?-1:a>EPS;}
   inline int cmp(db a,db b){return sign(a-b);}
   struct P
      db x,y;
10
      P(){}
11
      P(db x,db y):x(x),y(y){}
      P operator+(P p){return {x+p.x,y+p.y};}
      P operator-(P p){return {x-p.x,y-p.y};}
      P operator*(db d){return {x*d,y*d};}
       P operator/(db d){return {x/d,y/d};}
      bool operator<(P p) const</pre>
          int c=cmp(x,p.x);
          if(c) return c==-1;
          return cmp(y,p.y)==-1;
      bool operator==(P o) const
23
24
          return cmp(x,o.x)==0\&cmp(y,o.y)==0;
25
      db distTo(P p){return (*this-p).abs();}
      db alpha(){return atan2(y,x);}
      void read(){scanf("%lf%lf",&x,&y);}
      void write(){printf("(%.10f,%.10f)\n",x,y);}
      db abs(){return sqrt(abs2());}
      db abs2(){return x*x+y*y;}
      P rot90(){return P(-y,x);}
      P unit(){return *this/abs();}
```

```
int quad() const {return sign(y)==1||(sign(y)==0&&
35
           sign(x) >= 0);
       db dot(P p){return x*p.x+y*p.y;}
       db det(P p){return x*p.y-y*p.x;}
       P rot(db an){return {x*cos(an)-y*sin(an),x*sin(an)}
           +y*cos(an)};}
   };
39
   //For segment
   #define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.
        x-p1.x)*(p2.y-p1.y))
   #define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))
43
44
   bool chkLL(P p1,P p2,P q1,P q2) //0:parallel
45
46
       db a1=cross(q1,q2,p1),a2=-cross(q1,q2,p2);
47
       return sign(a1+a2)!=0;
49
50
   P isLL(P p1,P p2,P q1,P q2) //crossover point if
51
       chkLL()
52
       db a1=cross(q1,q2,p1),a2=-cross(q1,q2,p2);
       return (p1*a2+p2*a1)/(a1+a2);
54
55
56
   bool intersect(db l1,db r1,db l2,db r2)
57
58
       if(l1>r1) swap(l1,r1);if(l2>r2) swap(l2,r2);
       return !(cmp(r1,12)==-1||cmp(r2,11)==-1);
61
   bool isSS(P p1,P p2,P q1,P q2)
63
64
65
       return intersect(p1.x,p2.x,q1.x,q2.x)&&intersect(
           p1.y,p2.y,q1.y,q2.y)&&
       crossOp(p1,p2,q1)*crossOp(p1,p2,q2)<=0\&\&crossOp(q1
66
           ,q2,p1)*cross0p(q1,q2,p2)<=0;
67
68
   bool isSS_strict(P p1,P p2,P q1,P q2)
69
70
       return crossOp(p1,p2,q1)*crossOp(p1,p2,q2)<0</pre>
       &&crossOp(q1,q2,p1)*crossOp(q1,q2,p2)<0;
73
74
   bool isMiddle(db a,db m,db b)
75
76
       return sign(a-m)==0||sign(b-m)==0||(a < m!=b < m);
77
78
   bool isMiddle(P a,P m,P b)
80
81
       return isMiddle(a.x,m.x,b.x)&&isMiddle(a.y,m.y,b.y
82
           );
   bool onSeg(P p1,P p2,P q)
85
86
       return crossOp(p1,p2,q)==0&&isMiddle(p1,q,p2);
87
   bool onSeg_strict(P p1,P p2,P q)
90
91
       return crossOp(p1,p2,q)==0&&sign((q-p1).dot(p1-p2)
92
```

93 | }

)*sign((q-p2).dot(p1-p2))<0;

```
94
    Ρ
      proj(P p1,P p2,P q)
96
        P dir=p2-p1;
97
        return p1+dir*(dir.dot(q-p1)/dir.abs2());
99
    P reflect(P p1,P p2,P q)
101
102
        return proj(p1,p2,q)*2-q;
103
104
105
    db nearest(P p1,P p2,P q)
106
107
        P h=proj(p1,p2,q);
        if(isMiddle(p1,h,p2))
109
           return q.distTo(h);
110
        return min(p1.distTo(q),p2.distTo(q));
112
    }
    db disSS(P p1,P p2,P q1,P q2) //dist of 2 segments
114
        if(isSS(p1,p2,q1,q2)) return 0;
116
        return min(min(nearest(p1,p2,q1),nearest(p1,p2,q2)
117
            ),min(nearest(q1,q2,p1),nearest(q1,q2,p2)));
118
119
    db rad(P p1,P p2)
120
        return atan2l(p1.det(p2),p1.dot(p2));
    }
123
    db area(vector<P> ps)
125
        db ret=0;
        for(int i=0;i<ps.size();i++)</pre>
128
           ret+=ps[i].det(ps[(i+1)%ps.size()]);
129
        return ret/2;
130
131
    }
    int contain(vector<P> ps,P p) //2:inside,1:on seg,0:
        outside
134
        int n=ps.size(),ret=0;
135
        for(int i=0;i<n;i++)</pre>
136
           P u=ps[i], v=ps[(i+1)%n];
           if(onSeg(u,v,p)) return 1;
           if(cmp(u.y,v.y)<=0) swap(u,v);
140
           if(cmp(p.y,u.y)>0||cmp(p.y,v.y)<=0) continue;</pre>
141
           ret^=crossOp(p,u,v)>0;
142
143
        return ret*2;
144
    }
    vector<P> convexHull(vector<P> ps)
147
148
        int n=ps.size();if(n<=1) return ps;</pre>
149
        sort(ps.begin(),ps.end());
        vector<P> qs(n*2);int k=0;
        for(int i=0;i<n;qs[k++]=ps[i++])</pre>
           while(k>1&&crossOp(qs[k-2],qs[k-1],ps[i])<=0)</pre>
153
```

```
for(int i=n-2,t=k;i>=0;qs[k++]=ps[i--])
154
            while(k>t&&crossOp(qs[k-2],qs[k-1],ps[i])<=0)</pre>
155
                --k:
        qs.resize(k-1);
156
        return qs;
157
158
159
    db convexDiameter(vector<P> ps)
160
        int n=ps.size();if(n<=1) return 0;</pre>
162
        int is=0, js=0;
163
        for(int k=1;k<n;k++) is=ps[k]<ps[is]?k:is,js=ps[js</pre>
164
             ]<ps[k]?js:k;
        int i=is,j=js;
165
        db ret=ps[i].distTo(ps[j]);
166
        do{
167
            if((ps[(i+1)%n]-ps[i]).det(ps[(j+1)%n]-ps[j])
                >=0) (++j)%=n;
            else (++i)%=n;
169
            ret=max(ret,ps[i].distTo(ps[j]));
        }while(i!=is||j!=js);
171
172
        return ret;
```

2.2 三维几何

3 图论

- 3.1 最短路
- 3.1.1 Dijkstra
- 3.1.2 SPFA
- 3.1.3 Floyd
- 3.1.4 负环
- 3.1.5 差分约束
- 3.2 最小生成树
- 3.2.1 Prim
- 3.2.2 Kruskal
- 3.2.3 最小生成树计数
- 3.2.4 次小生成树
- 3.2.5 最小乘积生成树
- 3.3 树的直径
- 3.4 LCA
- 3.4.1 Tarjan 离线
- 3.4.2 倍增 LCA

```
#include <bits/stdc++.h>
using namespace std;

/*

预处理 O(nlogn)
单次查询 O(logn)

*/

const int MAXN=500005;
```

```
int n,q,dep[MAXN],s,lg[MAXN],fa[MAXN][32];
    vector<int> e[MAXN];
11
    void dfs(int now,int pa)
    {
14
       dep[now]=dep[pa]+1;
15
       fa[now][0]=pa;
16
       for(int i=1;(1<<i)<=dep[now];i++)</pre>
17
           fa[now][i]=fa[fa[now][i-1]][i-1];
       for(auto to:e[now])
19
           if(to!=pa) dfs(to,now);
20
21
22
    int lca(int x,int y)
23
24
       if(dep[x]<dep[y]) swap(x,y);</pre>
       while(dep[x]>dep[y]) x=fa[x][lg[dep[x]-dep[y]]-1];
       if(x==y) return x;
       for(int i=lg[dep[x]]-1;i>=0;i--)
           if(fa[x][i]!=fa[y][i])
29
              x=fa[x][i],y=fa[y][i];
30
       return fa[x][0];
    int main()
34
35
       for(int i=1;i<MAXN;i++)</pre>
36
           lg[i]=lg[i-1]+(1<<lg[i-1]==i);
37
       scanf("%d%d%d",&n,&q,&s);
       for(int i=0,x,y;i<n-1;i++)</pre>
           scanf("%d%d",&x,&y);
           e[x].push_back(y),e[y].push_back(x);
       dep[0]=0;
       dfs(s,0);
       for(int i=0,x,y;i<q;i++)</pre>
           scanf("%d%d",&x,&y);
48
           printf("%d\n",lca(x,y));
49
50
       return 0;
51
   }
```

3.5 无向图与有向图联通性

3.5.1 割点

```
#include <bits/stdc++.h>
#define int long long
//luogu P3469

/*

tarjan求割点的算法中,如果不保证连通性,应该使用被注释
掉的遍历方法
part数组储存了被这个割点分成的不同的几块各自的大小

*/

using namespace std;
const int N=100005;

int n,m,x,y;
vector<int> e[N],part[N];
bool is[N];
int dfn[N],low[N],timer=0;
```

```
int sz[N];
17
    void tarjan(int u,int f)
20
       dfn[u]=low[u]=++timer;
21
       sz[u]++;//
22
       int son=0,tmp=0;
       for(auto v:e[u])
           if(dfn[v]==0)
           {
27
              tarjan(v,u);
28
              sz[u]+=sz[v];//
29
              low[u]=min(low[u],low[v]);
30
              if(low[v]>=dfn[u]&&u!=f)
31
                  is[u]=1;
                  tmp+=sz[v];//
34
                  part[u].push_back(sz[v]);//
35
36
37
              if(u==f) son++;
           low[u]=min(low[u],dfn[v]);
       if(son>=2\&u==f) is[u]=1;//point on the top
41
       if(is[u]&&n-tmp-1!=0)
42
           part[u].push_back(n-tmp-1);//
43
44
45
    signed main()
       scanf("%11d%11d",&n,&m);
48
       for(int i=1;i<=m;++i)</pre>
49
50
           scanf("%11d%11d",&x,&y);
           e[x].push_back(y),e[y].push_back(x);
       }
53
       /*
54
       for(int i=1;i<=n;++i)</pre>
55
           if(!dfn[i]) tarjan(i,i);
56
57
       tarjan(1,0);
       for(int i=1;i<=n;++i)</pre>
           if(!is[i]) printf("%lld\n",2*(n-1));
           else{
              int tmp=0;
              for(auto j:part[i])
                  tmp+=j*(j-1);
              printf("%lld\n",n*(n-1)-tmp);
68
       return 0;
69
```

3.5.2 桥

```
#include <bits/stdc++.h>
#define mkp make_pair
//uva796

using namespace std;
const int N=1000005;
typedef pair<int,int> pii;
inline int read(){
```

```
char ch=getchar();int s=0,w=1;
       while(ch<48||ch>57){if(ch=='-')w=-1;ch=getchar();}
9
       while(ch>=48\&ch<=57){s=(s<<1)+(s<<3)+ch-48;ch=
       return s*w;
11
    }
12
    inline void write(int x){
13
       if(x<0)putchar('-'),x=-x;</pre>
14
       if(x>9)write(x/10);
       putchar(x%10+48);
16
17
18
    int n;
19
    int dfn[N],low[N],timer=0;
20
21
    int fa[N];
   vector<int> e[N];
   vector<pii> ans;
    void tarjan(int u,int f)
25
26
27
       fa[u]=f;
       dfn[u]=low[u]=++timer;
       for(auto v:e[u])
           if(!dfn[v])
31
           {
32
              tarjan(v,u);
33
              low[u]=min(low[u],low[v]);
               //if(dfn[u]<low[v]) is[u][v]=1;
              //u is v's father
           }
           else if(v!=f) low[u]=min(low[u],dfn[v]);
38
39
    }
40
    void init()
43
44
       for(int i=0;i<n;++i) dfn[i]=low[i]=fa[i]=0;</pre>
45
       for(int i=0;i<n;++i) e[i].clear();</pre>
46
       ans.clear();
47
    }
48
    void gao()
51
       for(int i=0;i<n;++i)</pre>
52
           if(!dfn[i]) tarjan(i,-1);
       for(int i=0;i<n;++i)</pre>
           int F=fa[i];
           if(F!=-1&&dfn[F]<low[i])
              ans.emplace_back(min(F,i),max(F,i));
59
       sort(ans.begin(),ans.end());
60
       printf("%d critical links\n",(int)ans.size());
61
       for(auto i:ans)
           printf("%d - %d\n",i.first,i.second);
       puts("");
   }
   int main()
       while(~scanf("%d",&n))
70
           if(n==0)
71
```

```
72
               puts("0 critical links");
73
               puts("");
               continue;
           init();
           for(int i=0,x,y,z;i<n;++i)</pre>
               scanf("%d (%d)",&x,&y);
               for(int i=0;i<y;++i)</pre>
                   z=read(),
                  e[x].push_back(z),
                  e[z].push_back(x);
85
           gao();
86
       return 0;
```

```
3.5.3 e-DCC3.5.4 v-DCC3.5.5 SCC3.5.6 2-SAT
```

```
#include <bits/stdc++.h>
   using namespace std;
   //luogu P4782
      2-SAT用于求解有n个布尔变量x1-xn和m个需要满足的条件
      每个条件形式为xi=0(1)||xj=0(1), 是否有可行解
      注意要开两倍空间建反向边
   */
10
   const int N=2e6+5;
   int n,m,a,va,b,vb;
   int dfn[N],low[N],timer=0;
14
   stack<int> s;
15
   bool vis[N];
16
   vector<int> e[N];
   int co[N],color=0;
   void add(int x,int y)
20
21
      e[x].push_back(y);
22
   }
23
   void tarjan(int u)
25
26
      dfn[u]=low[u]=++timer;
27
      s.push(u);
28
      vis[u]=1;
29
      for(auto v:e[u])
30
31
          if(!dfn[v])
             tarjan(v),
33
             low[u]=min(low[u],low[v]);
          else if(vis[v])
35
             low[u]=min(low[u],dfn[v]);
      if(low[u]==dfn[u])
```

```
int v;
40
           color++;
41
           do
               v=s.top();
               s.pop();
               vis[v]=0;
46
               co[v]=color;
           while(u!=v);
49
50
51
52
    bool solve()
53
54
       for(int i=1;i<=2*n;++i)</pre>
           if(!dfn[i]) tarjan(i);
       for(int i=1;i<=n;++i)</pre>
57
           if(co[i]==co[i+n])
58
               return 0;
59
60
       return 1:
    }
61
   int main()
63
64
       scanf("%d%d",&n,&m);
65
       for(int i=1;i<=m;++i)</pre>
66
67
           scanf("%d%d%d%d",&a,&va,&b,&vb);
           int nota=va^1,notb=vb^1;
           add(a+nota*n,b+vb*n);//not a and b
           add(b+notb*n,a+va*n);//not b and a
71
       if(solve())
           puts("POSSIBLE");
           for(int i=1;i<=n;++i)</pre>
76
               printf("%d ",co[i]>co[i+n]);
77
78
       else puts("IMPOSSIBLE");
79
       return 0;
80
   }
```

```
3.5.7 支配树
```

- 3.6 二分图
- 3.6.1 最大匹配-匈牙利
- 3.6.2 帯权匹配-KM
- 3.7 网络流
- 3.7.1 最大流-Dinic

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

/*

s,t 超级源、超级汇
cur[] 当前弧优化
时间复杂度 O(n^2*m)

*/

const int MAXN=10005;
```

```
const 11 inf=0x3f3f3f3f3f3f3f3f3f11;
12
    int n,m,s,t,tot,dis[MAXN],cur[MAXN];
13
   struct edge
15
       int to,cap,rev;
16
       edge(){}
17
       edge(int to,int cap,int rev):to(to),cap(cap),rev(
18
            rev){}
19
   vector<edge> E[MAXN];
20
   inline void add edge(int x,int y,int f)
22
23
       E[x].emplace_back(y,f,E[y].size());
24
25
       E[y].emplace_back(x,0,E[x].size()-1);
26
   int bfs()
28
29
       for(int i=1;i<=n;i++) dis[i]=0x3f3f3f3f;</pre>
30
31
       dis[s]=0;
       queue<int> q;
       q.push(s);
       while(!q.empty())
35
           int now=q.front();q.pop();
36
           for(int i=0;i<E[now].size();i++)</pre>
37
38
               edge &e=E[now][i];
               if(dis[e.to]>dis[now]+1&&e.cap)
                  dis[e.to]=dis[now]+1;
42
                  if(e.to==t) return 1;
43
                  q.push(e.to);
44
45
47
       return 0;
48
49
50
   11 dfs(int now, 11 flow)
51
52
       if(now==t) return flow;
       11 rest=flow,k;
       for(int i=cur[now];i<E[now].size();i++)</pre>
55
           edge &e=E[now][i];
           if(e.cap&&dis[e.to]==dis[now]+1)
               cur[now]=i;
               k=dfs(e.to,min(rest,(long long)e.cap));
61
              e.cap-=k;
62
              E[e.to][e.rev].cap+=k;
63
              rest-=k;
64
65
       return flow-rest;
67
68
   11 dinic()
70
71
       11 ret=0,delta;
72
       while(bfs())
73
74
           for(int i=1;i<=n;i++) cur[i]=0;</pre>
75
```

第9页

```
while(delta=dfs(s,inf)) ret+=delta;

return ret;
}
```

3.7.2 最小费用最大流-Dij+Dinic

#include <bits/stdc++.h>

typedef pair<int,int> pii;

using namespace std;

```
5
       第一遍跑的spfa,然后是加上势函数的dij,玄学
6
       h[] 势函数
       cur[] 当前弧优化
       msmf 最大流时的最小费用
       s,t 超级源、超级汇
       时间复杂度 O(n^2*m)
   */
12
13
   const int MAXN=2005;
14
   const int inf=0x3f3f3f3f;
   int msmf,s,t,cur[MAXN],dis[MAXN],vis[MAXN],h[MAXN];
   struct edge
18
       int to,val,cap,rev;
19
       edge(){}
20
       edge(int to,int cap,int val,int rev):to(to),cap(
21
           cap),val(val),rev(rev){}
22
   };
   vector<edge> E[MAXN];
24
   inline void add_edge(int x,int y,int f,int cost)
25
   {
26
       E[x].emplace_back(y,f,cost,E[y].size());
27
       E[y].emplace_back(x,0,-cost,E[x].size()-1);
30
   int dij()
31
   {
32
       fill(dis,dis+t+1,inf);
33
       priority_queue<pii,vector<pii>,greater<pii>> q;
34
       q.emplace(0,s);dis[s]=0;
       while(!q.empty())
37
          pii p=q.top();q.pop();
38
          int now=p.second;
39
          if(dis[now]<p.first) continue;</pre>
          for(int i=0;i<E[now].size();i++)</pre>
              edge &e=E[now][i];
              if(e.cap>0&&dis[e.to]>p.first+e.val+h[now]-
44
                  h[e.to])
45
                 dis[e.to]=p.first+e.val+h[now]-h[e.to];
46
                 q.emplace(dis[e.to],e.to);
47
              }
          }
49
50
       return dis[t]!=inf;
51
   }
52
   int dfs(int now,int flow)
```

```
if(now==t) return flow;
56
       int rest=flow,k;
57
       vis[now]=1;
58
       for(int i=cur[now];i<E[now].size();i++)</pre>
60
           edge &e=E[now][i];
61
           if(e.cap&&dis[now]+e.val+h[now]-h[e.to]==dis[e
62
                .to]&&!vis[e.to])
               cur[now]=i;
               k=dfs(e.to,min(e.cap,rest));
65
               e.cap-=k;
66
               E[e.to][e.rev].cap+=k;
67
               rest-=k;
68
               msmf+=k*e.val;
69
           }
70
71
       vis[now]=0;
72
       return flow-rest;
73
74
75
   int dinic()
76
77
       int ret=0,delta;
78
       while(dij())
79
80
           for(int i=s;i<=t;i++) cur[i]=0;</pre>
81
           while(delta=dfs(s,inf)) ret+=delta;
82
           for(int i=s;i<=t;i++) h[i]+=(dis[i]==inf)?0:</pre>
                dis[i];
       return ret;
85
   }
86
```

- 3.7.3 上下界流
- 3.8 欧拉路
- 3.9 Prufer 序列
- 4 数据结构
- 4.1 树状数组
- 4.2 线段树
- 4.2.1 带优先级线段树
- 4.2.2 吉司机线段树

```
#include <bits/stdc++.h>
   using namespace std;
   typedef long long 11;
3
4
5
      modify 将区间大于x的数变成x
6
      query 询问区间和
       单次复杂度 O(log^2(n))
10
   const 11 INF=0xc0c0c0c0c0c0c0c0l1;
11
   const int MAXN=200005;
^{12}
   11 seg[MAXN<<2],m1[MAXN<<2],m2[MAXN<<2],cnt[MAXN<<2],</pre>
       tag[MAXN<<2],a[MAXN];
   int n,q;
```

```
void pushdown(int rt)
16
17
       if(!tag[rt]) return;
       ll y=m1[rt];
       if(y<m1[rt<<1])
20
          tag[rt<<1]=1;
           seg[rt<<1]-=(m1[rt<<1]-y)*cnt[rt<<1];
          m1[rt<<1]=y;
       if(y<m1[rt<<1|1])
26
27
           tag[rt<<1|1]=1;
28
           seg[rt<<1|1]-=(m1[rt<<1|1]-y)*cnt[rt<<1|1];
29
          m1[rt<<1|1]=y;
       tag[rt]=0;
32
   }
33
   void pushup(int rt)
       seg[rt]=seg[rt<<1]+seg[rt<<1|1];
       if(m1[rt<<1]==m1[rt<<1|1])
39
           m1[rt]=m1[rt<<1];</pre>
40
           cnt[rt]=cnt[rt<<1]+cnt[rt<<1|1];</pre>
41
           m2[rt]=max(m2[rt<<1],m2[rt<<1|1]);
42
       else if(m1[rt<<1]>m1[rt<<1|1])
          m1[rt]=m1[rt<<1];
           cnt[rt]=cnt[rt<<1];</pre>
          m2[rt]=max(m2[rt<<1],m1[rt<<1|1]);</pre>
       }
       else
           m1[rt]=m1[rt<<1|1];
52
           cnt[rt]=cnt[rt<<1|1];</pre>
53
          m2[rt]=max(m2[rt<<1|1],m1[rt<<1]);
54
55
   }
   void build(int rt,int l,int r)
59
       tag[rt]=0;
       if(l==r)
           seg[rt]=m1[rt]=a[1];
           cnt[rt]=1;
           m2[rt]=INF;
           return;
66
67
       int m=l+r>>1;
       if(l<=m) build(rt<<1,1,m);</pre>
       if(m<r) build(rt<<1|1,m+1,r);
       pushup(rt);
   }
72
   void modify(int rt,int l,int r,int L,int R,ll y)
       if(y>=m1[rt]) return;
       if(L<=1&&r<=R&&y>m2[rt])
78
           tag[rt]=1;
79
```

```
seg[rt]-=(m1[rt]-y)*cnt[rt];
80
           m1[rt]=y;
81
           return;
        pushdown(rt);
        int m=l+r>>1;
        if(L<=m) modify(rt<<1,1,m,L,R,y);</pre>
        if(m<R) modify(rt<<1|1,m+1,r,L,R,y);</pre>
        pushup(rt);
    11 query(int rt,int l,int r,int L,int R)
91
92
        if(L<=1&&r<=R) return seg[rt];</pre>
93
        int m=l+r>>1;
        pushdown(rt);
        ll ret=0;
        if(L<=m) ret+=query(rt<<1,1,m,L,R);
        if(m<R) ret+=query(rt<<1|1,m+1,r,L,R);</pre>
        pushup(rt);
        return ret;
100
101
```

4.2.3 线段树维护扫描线

4.3 RMQ

- 4.3.1 一维
- 4.3.2 两维
- 4.4 树链剖分

4.4.1 点剖分

```
#include <bits/stdc++.h>
   using namespace std;
   typedef long long 11;
      轻重链剖分 单次复杂度 O(log^2(n))
6
      a[i] 表示dfs标号为i的点的值,而非点i的值
      1 x y z 表示将树从x到y结点最短路径上所有节点值都加上z
      2 x y 表示求树从x到y结点最短路径上所有节点值之和
      3 x z 表示将以x为根节点的子树内所有节点值都加上z
      4 x 表示求以x为根节点的子树内所有节点值之和
12
   const int MAXN=100005;
   11 mod,lazy[MAXN<<2],seg[MAXN<<2],a[MAXN],tmp[MAXN];</pre>
   int n,q,r,cnt,tot,dep[MAXN],top[MAXN],id[MAXN],son[
      MAXN], num[MAXN], fa[MAXN];
   vector<int> e[MAXN];
18
   void dfs1(int now,int f)
19
20
      dep[now]=dep[f]+1;
21
      fa[now]=f;
      num[now]=1;
      son[now]=0;
      for(auto to:e[now])
26
         if(to==f) continue;
27
         dfs1(to,now);
28
         num[now]+=num[to];
         if(num[to]>num[son[now]]) son[now]=to;
```

```
}
31
    }
32
    void dfs2(int now,int f)
34
35
       id[now]=++cnt;
36
       top[now]=f;
37
       if(son[now]) dfs2(son[now],f);
       for(auto to:e[now])
           if(to!=fa[now]&&to!=son[now])
              dfs2(to,to);
42
43
    inline void pushdown(int rt,ll lnum,ll rnum)
44
45
       if(!lazy[rt]) return;
       seg[rt<<1]=(seg[rt<<1]+lazy[rt]*lnum%mod)%mod;</pre>
       seg[rt<<1|1]=(seg[rt<<1|1]+lazy[rt]*rnum%mod)%mod;</pre>
       lazy[rt<<1]=(lazy[rt<<1]+lazy[rt])%mod;</pre>
       lazy[rt<<1|1]=(lazy[rt<<1|1]+lazy[rt])%mod;
       lazy[rt]=0;
    }
53
   inline void pushup(int rt)
54
55
       seg[rt]=(seg[rt<<1]+seg[rt<<1|1])%mod;
56
57
    void build(int rt,int l,int r)
       lazy[rt]=0;
       if(l==r)
62
           seg[rt]=a[1]%mod;
           return;
       int m=l+r>>1;
       if(l<=m) build(rt<<1,1,m);
68
       if(m<r) build(rt<<1|1,m+1,r);
69
       pushup(rt);
70
    }
71
72
    void modify(int rt,int l,int r,int L,int R,ll x)
73
       if(L<=1&&r<=R)
75
           lazy[rt]=(lazy[rt]+x)%mod;
           seg[rt]=(seg[rt]+x*(r-l+1)%mod)%mod;
           return;
       int m=l+r>>1;
       pushdown(rt,m-l+1,r-m);
82
       if(L<=m) modify(rt<<1,1,m,L,R,x);
83
       if(m<R) modify(rt<<1|1,m+1,r,L,R,x);
84
       pushup(rt);
    }
    11 query(int rt,int l,int r,int L,int R)
88
89
       if(L<=l&&r<=R) return seg[rt];</pre>
90
       int m=l+r>>1;
       11 ret=0;
       pushdown(rt,m-l+1,r-m);
       if(L<=m) ret=(ret+query(rt<<1,1,m,L,R))%mod;
94
       if(m<R) ret=(ret+query(rt<<1|1,m+1,r,L,R))%mod;
95
```

```
pushup(rt);
96
        return ret;
97
    int main()
100
101
        scanf("%d%d%d%11d",&n,&q,&r,&mod);
102
        for(int i=1;i<=n;i++) scanf("%11d",&tmp[i]);</pre>
103
        for(int i=1,x,y;i<n;i++)</pre>
105
            scanf("%d%d",&x,&y);
106
            e[x].push_back(y),e[y].push_back(x);
107
108
        num[0]=0,dep[r]=0;
109
        dfs1(r,r);
110
        dfs2(r,r);
111
        for(int i=1;i<=n;i++) a[id[i]]=tmp[i];</pre>
        build(1,1,n);
113
114
        while(q--)
115
116
117
            int op,x,y;ll z;
            scanf("%d%d",&op,&x);
118
            if(op==4)
120
                printf("%1ld\n",query(1,1,n,id[x],id[x]+num])
121
                    [x]-1));
               continue;
122
123
            if(op==1)
124
125
               scanf("%d%11d",&y,&z);z%=mod;
126
               while(top[x]!=top[y])
127
128
                    if(dep[top[x]]<dep[top[y]]) swap(x,y);</pre>
130
                   modify(1,1,n,id[top[x]],id[x],z);
                   x=fa[top[x]];
131
132
                if(dep[x]>dep[y]) swap(x,y);
133
               modify(1,1,n,id[x],id[y],z);
134
135
            else if(op==2)
136
                scanf("%d",&y);
                ll ans=0:
139
               while(top[x]!=top[y])
140
141
                    if(dep[top[x]]<dep[top[y]]) swap(x,y);</pre>
142
                    ans=(ans+query(1,1,n,id[top[x]],id[x]))%
143
                        mod;
                    x=fa[top[x]];
144
145
                if(dep[x]>dep[y]) swap(x,y);
146
                ans=(ans+query(1,1,n,id[x],id[y]))%mod;
147
                printf("%11d\n",ans);
148
            }
            else
150
151
                scanf("%11d",&z);z%=mod;
152
               modify(1,1,n,id[x],id[x]+num[x]-1,z);
153
154
155
        return 0;
156
157
```

4.4.2 边剖分

4.5 平衡树

```
4.5.1 Treap
```

```
#include <bits/stdc++.h>
   using namespace std;
   const int MAXN=1e5+5;
   const int inf=0x7ffffffff;
5
   int n,op,x;
       树内初始化时有无穷大和无穷小两个结点
9
      _delete(root,x) 删除一个x
10
       _insert(root,x) 插入一个x
11
      getRank(root,x) 返回x的排名+1(包含了无穷小)
12
      getVal(root, x+1) 返回排名为x的数
      getPrev(x) x的前驱
      getNext(x) x的后继
15
   */
16
   namespace Treap
19
       int tot,root;
      struct node
22
          int cnt,val,dat,siz,lc,rc;
23
      }bst[MAXN];
24
25
      inline void pushup(int rt)
          bst[rt].siz=bst[rt].cnt;
          if(bst[rt].lc) bst[rt].siz+=bst[bst[rt].lc].
          if(bst[rt].rc) bst[rt].siz+=bst[bst[rt].rc].
30
              siz;
      }
      inline void zig(int &rt)
33
34
          int p=bst[rt].lc;
35
          bst[rt].lc=bst[p].rc;
36
          bst[p].rc=rt;
          rt=p;
          pushup(bst[rt].rc);pushup(rt);
39
40
41
      inline void zag(int &rt)
42
          int p=bst[rt].rc;
          bst[rt].rc=bst[p].lc;
          bst[p].lc=rt;
46
          rt=p;
47
          pushup(bst[rt].lc);pushup(rt);
48
      }
49
50
      int new_node(int val)
52
          bst[++tot].val=val;
53
          bst[tot].dat=rand();
54
          bst[tot].siz=bst[tot].cnt=1;
          bst[tot].lc=bst[tot].rc=0;
          return tot;
      }
```

```
void build()
   new_node(-inf);new_node(inf);
   root=1,bst[1].rc=2;
   pushup(1);
}
void _insert(int &rt,int val)
   if(rt==0)
   {
       rt=new node(val);
      return;
   if(bst[rt].val==val)
       bst[rt].cnt++;
      pushup(rt);
      return:
   if(val<bst[rt].val)</pre>
        _insert(bst[rt].lc,val);
      if(bst[rt].dat<bst[bst[rt].lc].dat) zig(rt)</pre>
   }
   else
       insert(bst[rt].rc,val);
      if(bst[rt].dat<bst[bst[rt].rc].dat) zag(rt)</pre>
   pushup(rt);
}
void _delete(int &rt,int val)
{
   if(rt==0) return;
   if(bst[rt].val==val)
       if(bst[rt].cnt>1)
          bst[rt].cnt--;
          pushup(rt);
          return;
      if(bst[rt].rc||bst[rt].lc)
          if(bst[rt].rc==0||bst[bst[rt].rc].dat<</pre>
              bst[bst[rt].lc].dat)
              zig(rt),_delete(bst[rt].rc,val);
              zag(rt),_delete(bst[rt].lc,val);
          pushup(rt);
      else rt=0;
      return;
   if(val<bst[rt].val) _delete(bst[rt].lc,val);</pre>
   else _delete(bst[rt].rc,val);
   pushup(rt);
}
```

59

60

61

63

64

65

66 67

69

70

71

72

73

74

76

77

78

79

80

83

84

85

89

90

91

93

94

95

96

97

98

101

102

103

104

105

106

107

108

109

110

111

113

114

115

116

117

118

119

120

```
int getPrev(int val)
121
122
           int ret=1,rt=root;
           while(rt)
               if(bst[rt].val==val)
               {
                  if(bst[rt].lc)
                      rt=bst[rt].lc;
130
                      while(bst[rt].rc) rt=bst[rt].rc;
131
                      ret=rt;
132
133
                  break;
134
135
               if(bst[rt].val<val&&bst[rt].val>bst[ret].
                   val) ret=rt;
               if(val<bst[rt].val) rt=bst[rt].lc;</pre>
137
               else rt=bst[rt].rc;
           }
139
           return bst[ret].val;
        }
        int getNext(int val)
144
           int ret=2,rt=root;
145
           while(rt)
146
147
               if(bst[rt].val==val)
               {
                  if(bst[rt].rc)
                   {
                      rt=bst[rt].rc;
152
                      while(bst[rt].lc) rt=bst[rt].lc;
                      ret=rt;
                  break;
156
157
               if(bst[rt].val>val&&bst[rt].val<bst[ret].</pre>
158
                   val) ret=rt;
               if(val<bst[rt].val) rt=bst[rt].lc;</pre>
159
               else rt=bst[rt].rc;
           }
           return bst[ret].val;
163
164
        int getRank(int rt,int val)
165
           if(rt==0) return 0;
           if(val==bst[rt].val) return bst[bst[rt].lc].
           if(val<bst[rt].val) return getRank(bst[rt].lc,</pre>
169
                val);
           else return bst[bst[rt].lc].siz+bst[rt].cnt+
170
                getRank(bst[rt].rc,val);
        }
        int getVal(int rt,int k)
173
           if(rt==0) return inf;
           if(bst[bst[rt].lc].siz>=k) return getVal(bst[
                rt].lc,k);
           if(bst[bst[rt].lc].siz+bst[rt].cnt>=k) return
                bst[rt].val;
           return getVal(bst[rt].rc,k-bst[bst[rt].lc].siz
178
```

```
-bst[rt].cnt);
        }
179
180
    int main()
182
183
        using namespace Treap;
184
        srand(time(0));
185
        build();
        scanf("%d",&n);
187
        while(n--)
188
189
           scanf("%d%d",&op,&x);
190
           if(op==1) _insert(root,x);
191
           else if(op==2) _delete(root,x);
192
           else if(op==3) printf("%d\n",getRank(root,x)
193
                -1);
           else if(op==4) printf("%d\n",getVal(root,x+1))
194
           else if(op==5) printf("%d\n",getPrev(x));
195
           else if(op==6) printf("%d\n",getNext(x));
        }
        return 0;
199
```

4.5.2 Splay

4.6 动态树

4.7 主席树

```
#include <bits/stdc++.h>
   using namespace std;
       离散化+区间k小
   const int MAXN=200005;
   int n,m,a[MAXN],tmp[MAXN],org[MAXN],root[MAXN],tot=0;
9
   struct tree
10
11
       int cnt,lc,rc;
12
   }seg[30*MAXN];
   int build(int l,int r)
15
16
       int p=tot++;
17
       if(l==r)
          seg[p].cnt=0;
          return p;
22
       int m=l+r>>1;
23
       seg[p].lc=build(1,m);
24
       seg[p].rc=build(m+1,r);
25
       seg[p].cnt=seg[seg[p].lc].cnt+seg[seg[p].rc].cnt;
26
       return p;
27
28
29
   int modify(int rt,int l,int r,int x)
30
31
       int p=tot++;
32
       seg[p]=seg[rt];
       if(l==r)
```

```
35
          seg[p].cnt++;
36
          return p;
      int m=l+r>>1;
      if(x<=m) seg[p].lc=modify(seg[rt].lc,l,m,x);</pre>
40
      else seg[p].rc=modify(seg[rt].rc,m+1,r,x);
      seg[p].cnt=seg[seg[p].lc].cnt+seg[seg[p].rc].cnt;
42
      return p;
   int query(int p,int q,int l,int r,int k)
46
47
      if(l==r) return 1;
48
      int m=l+r>>1;
49
      int lcnt=seg[seg[q].lc].cnt-seg[seg[p].lc].cnt;
       else return query(seg[p].rc,seg[q].rc,m+1,r,k-lcnt
52
          );
53
   }
55
   int main()
56
      scanf("%d%d",&n,&m);
57
       for(int i=1;i<=n;i++)</pre>
58
          scanf("%d",a+i),tmp[i]=a[i];
59
       sort(tmp+1,tmp+n+1);
      root[0]=build(1,n);
      for(int i=1;i<=n;i++)</pre>
          int k=lower_bound(tmp+1,tmp+n+1,a[i])-tmp;
          org[k]=a[i];
          a[i]=k;
          root[i]=modify(root[i-1],1,n,a[i]);
      while(m--)
70
          int x,y,k;
71
          scanf("%d%d%d",&x,&y,&k);
72
          printf("%d\n",org[query(root[x-1],root[y],1,n,
73
      return 0;
   }
```

15

16

17

19

20

21

22

25

26

27

28

40

41

46

47

52

53

65 66

67

75

76

77

4.8 树套树

4.8.1 线段树套 Treap

```
int tot;
struct node
   int lc,rc,dat,val,cnt,siz;
}bst[MAXN*4*20];
int newnode(int v)
   bst[++tot].val=v;
   bst[tot].dat=rand();
   bst[tot].siz=bst[tot].cnt=1;
   bst[tot].lc=bst[tot].rc=0;
   return tot;
void zig(int &rt)
   int p=bst[rt].lc;
   bst[rt].lc=bst[p].rc;
   bst[p].rc=rt;
   rt=p;
   pushup(bst[rt].rc);
   pushup(rt);
void zag(int &rt)
   int p=bst[rt].rc;
   bst[rt].rc=bst[p].lc;
   bst[p].lc=rt;
   pushup(bst[rt].lc);
   pushup(rt);
}
void pushup(int rt)
   bst[rt].siz=bst[rt].cnt;
   if(bst[rt].lc) bst[rt].siz+=bst[bst[rt].lc].
   if(bst[rt].rc) bst[rt].siz+=bst[bst[rt].rc].
}
int build()
   int rt=newnode(-inf);
   bst[rt].rc=newnode(inf);
   pushup(rt);
   return rt;
}
void delete(int &rt,int x)
   if(bst[rt].val==x)
      if(bst[rt].cnt>1)
          bst[rt].cnt--;
          pushup(rt);
          return;
      if(bst[rt].lc||bst[rt].rc)
          if(bst[rt].rc==0||bst[bst[rt].rc].dat<</pre>
```

```
bst[bst[rt].lc].dat)
                      zig(rt),_delete(bst[rt].rc,x);
                      zag(rt),_delete(bst[rt].lc,x);
                  pushup(rt);
               }
               else rt=0;
               return;
           if(x<bst[rt].val) _delete(bst[rt].lc,x);</pre>
           else _delete(bst[rt].rc,x);
           pushup(rt);
88
        }
89
90
       void _insert(int &rt,int x)
91
           if(rt==0)
           {
               rt=newnode(x);
               return:
           if(bst[rt].val==x) bst[rt].cnt++;
           else if(x<bst[rt].val)</pre>
                insert(bst[rt].lc,x);
101
               if(bst[bst[rt].lc].dat>bst[rt].dat) zig(rt)
102
           }
103
           else
               _insert(bst[rt].rc,x);
               if(bst[bst[rt].rc].dat>bst[rt].dat) zag(rt)
107
108
           pushup(rt);
109
        }
        int get rank(int rt,int x)
112
113
           if(!rt) return 1;
114
           if(bst[rt].val==x) return bst[bst[rt].lc].siz
115
               +1;
           if(x<bst[rt].val) return get_rank(bst[rt].lc,x</pre>
               );
           else return get_rank(bst[rt].rc,x)+bst[bst[rt
117
                ].lc].siz+bst[rt].cnt;
        }
118
       int get_num(int rt,int x)
           if(!rt) return 0;
122
           if(bst[rt].val==x) return bst[bst[rt].lc].siz+
123
               bst[rt].cnt;
           if(x<bst[rt].val) return get_num(bst[rt].lc,x)</pre>
124
           else return get num(bst[rt].rc,x)+bst[bst[rt].
               lc].siz+bst[rt].cnt;
        }
126
        int get_prev(int rt,int x)
           int ret=-inf;
           while(rt)
131
132
               if(bst[rt].val==x)
133
```

```
{
                  if(bst[rt].lc)
                     rt=bst[rt].lc;
                     while(bst[rt].rc) rt=bst[rt].rc;
                     ret=bst[rt].val;
                  break;
               if(bst[rt].val<x&&bst[rt].val>ret) ret=bst[
                   rtl.val:
               if(x<bst[rt].val) rt=bst[rt].lc;</pre>
              else rt=bst[rt].rc;
           return ret;
        int get nxt(int rt,int x)
           int ret=inf;
           while(rt)
               if(bst[rt].val==x)
               {
                  if(bst[rt].rc)
                  {
                     rt=bst[rt].rc;
                     while(bst[rt].lc) rt=bst[rt].lc;
                     ret=bst[rt].val;
                  break;
               if(bst[rt].val>x&&bst[rt].val<ret) ret=bst[</pre>
                   rt].val;
               if(x<bst[rt].val) rt=bst[rt].lc;</pre>
              else rt=bst[rt].rc;
           return ret;
170
    }treap;
    void build(int rt,int l,int r)
        root[rt]=treap.build();
        if(l==r) return;
        int m=l+r>>1;
        build(rt<<1,1,m);
        build(rt<<1|1,m+1,r);
    }
    void modify(int rt,int l,int r,int x,int v,int y)
183
        if(y==-1) treap._delete(root[rt],v);
        else treap._insert(root[rt],v);
        if(l==r) return;
        int m=l+r>>1;
        if(x<=m) modify(rt<<1,1,m,x,v,y);
        else modify(rt<<1|1,m+1,r,x,v,y);</pre>
    int query(int rt,int l,int r,int op,int L,int R,int x
        if(L <= 1\&\&r <= R)
194
195
```

134

135 136

137

138

139

140

141

143

144

145

146

147

148

150

151

152

153

156

157

158

159

160

161 162

163

164

165

166

167

168

169

171

172

173

174

176

177

178

179

180 181

182

184

185

186

187

188

189 190

191

192

193

```
if(op==1) return treap.get_rank(root[rt],x)-2;
196
            if(op==2) return treap.get_num(root[rt],x)-1;
197
            if(op==4) return treap.get_prev(root[rt],x);
198
            if(op==5) return treap.get_nxt(root[rt],x);
199
200
        int m=l+r>>1,ret;
201
        if(op==1||op==2)
202
203
            ret=0:
            if(L<=m) ret+=query(rt<<1,1,m,op,L,R,x);
205
            if(m<R) ret+=query(rt<<1|1,m+1,r,op,L,R,x);
206
207
        if(op==4)
208
209
            ret=-inf;
210
            if(L<=m) ret=max(ret,query(rt<<1,1,m,op,L,R,x)</pre>
            if(m<R) ret=max(ret,query(rt<<1|1,m+1,r,op,L,R</pre>
212
                ,x));
213
        if(op==5)
214
            ret=inf;
            if(L<=m) ret=min(ret,query(rt<<1,1,m,op,L,R,x)</pre>
            if(m<R) ret=min(ret,query(rt<<1|1,m+1,r,op,L,R</pre>
218
                ,x));
219
220
        return ret;
    }
    int main()
223
224
        srand(time(0));
225
        scanf("%d%d",&n,&m);
226
        build(1,1,n);
        for(int i=1;i<=n;i++)</pre>
229
        {
            scanf("%d",a+i);
230
           modify(1,1,n,i,a[i],1);
231
232
        while(m--)
            int op,1,r,k,pos;
            scanf("%d",&op);
236
            if(op==1)
237
               scanf("%d%d%d",&1,&r,&k);
               printf("%d\n",query(1,1,n,op,l,r,k)+1);
            else if(op==2)
242
243
               scanf("%d%d%d",&1,&r,&k);
244
               int L=-inf,R=inf,mid;
245
               while(L<R)</pre>
                   mid=(L+R+1)>>1;
                   if(query(1,1,n,1,l,r,mid)+1>k) R=mid-1;
249
                       else L=mid;
250
               printf("%d\n",L);
            }
            else if(op==3)
253
254
               scanf("%d%d",&pos,&k);
255
```

```
modify(1,1,n,pos,a[pos],-1);
256
257
               a[pos]=k;
               modify(1,1,n,pos,k,1);
258
            }
259
            else
260
261
                scanf("%d%d%d",&1,&r,&k);
262
                printf("%d\n",query(1,1,n,op,l,r,k));
263
265
        return 0;
266
267
```

4.8.2 树状数组套线段树

```
#include <bits/stdc++.h>
   using namespace std;
3
4
       带单点修区间k小
5
       用的时候注意下空间 时空 O(nlog^2(n))
       外层 add(pos,x,y) 空间上为pos的点且值域上为x的点加上y
           query(1,r,k) 询问区间[1,r]里k小
       内层 modify 值域线段树动态开点
           query 值域线段树区间k小
10
       VAL 值域大小
11
   */
12
13
   const int MAXN=200005;
14
   int n,a[MAXN],X[MAXN],Y[MAXN],c1,c2,VAL;
   struct SEG
16
   {
17
       int root[MAXN],lc[MAXN*500],rc[MAXN*500],cnt[MAXN
18
           *500],tot;
       void modify(int &rt,int l,int r,int x,int y)
19
20
          if(rt==0) rt=++tot;
          cnt[rt]+=y;
          if(l==r) return;
23
          int m=l+r>>1;
24
          if(x<=m) modify(lc[rt],1,m,x,y);</pre>
25
          else modify(rc[rt],m+1,r,x,y);
26
27
       int query(int 1,int r,int k)
       {
29
          if(l==r) return 1;
30
          int sum=0, m=1+r>>1;
31
          for(int i=0;i<c1;i++) sum-=cnt[lc[X[i]]];</pre>
32
          for(int i=0;i<c2;i++) sum+=cnt[lc[Y[i]]];</pre>
33
          if(sum>=k)
          {
              for(int i=0;i<c1;i++) X[i]=lc[X[i]];</pre>
36
              for(int i=0;i<c2;i++) Y[i]=lc[Y[i]];</pre>
37
              return query(1,m,k);
38
          }
39
          else
40
              for(int i=0;i<c1;i++) X[i]=rc[X[i]];</pre>
42
              for(int i=0;i<c2;i++) Y[i]=rc[Y[i]];</pre>
43
              return query(m+1,r,k-sum);
44
          }
45
46
   }seg;
```

```
void add(int pos,int x,int y)
49
50
       for(;pos<=n;pos+=pos&-pos) seg.modify(seg.root[pos</pre>
            ],1,VAL,x,y);
    }
52
53
    int query(int 1,int r,int k)
54
       c1=c2=0:
       for(int i=1-1;i;i-=i&-i) X[c1++]=seg.root[i];
       for(int i=r;i;i-=i&-i) Y[c2++]=seg.root[i];
58
       return seg.query(1,VAL,k);
59
   }
60
```

4.9 K-D Tree 4.10 分治

4.10.1 CDQ

4.10.2 点分治

4.10.3 dsu on tree

```
#include <bits/stdc++.h>
   using namespace std;
   typedef long long 11;
       统计每颗子树内的出现次数最多的数(们)的和
       复杂度 O(nlogn)
   int n,c[100005],cnt[100005],mx,son[100005],siz
10
       [100005],hson;
   ll ans[100005],sum;
11
   vector<int> e[100005];
12
   void dfs1(int now,int fa)
14
15
       son[now]=0,siz[now]=1;
16
       for(auto to:e[now])
17
18
          if(to==fa) continue;
19
          dfs1(to,now);
          siz[now]+=siz[to];
          if(siz[to]>siz[son[now]]) son[now]=to;
       }
23
   }
24
   void cal(int now,int fa,int y)
26
27
       cnt[c[now]]+=y;
       if(cnt[c[now]]==mx) sum+=c[now];
29
       else if(cnt[c[now]]>mx) mx=cnt[c[now]],sum=c[now];
30
       for(auto to:e[now])
31
          if(to!=fa&&to!=hson) cal(to,now,y);
32
33
   void dfs2(int now,int fa,int keep)
35
36
       for(auto to:e[now])
37
          if(to==fa||to==son[now]) continue;
          dfs2(to,now,0);
       }
```

```
if(son[now]) dfs2(son[now],now,1);
42
       hson=son[now];
43
       cal(now,fa,1);
       hson=0;
       ans[now]=sum;
46
       if(!keep) cal(now,fa,-1),sum=0,mx=0;
47
48
49
   int main()
51
       scanf("%d",&n);
52
       for(int i=1;i<=n;i++) scanf("%d",c+i);</pre>
53
       for(int i=1,x,y;i<n;i++)</pre>
54
55
           scanf("%d%d",&x,&y);
56
           e[x].push_back(y),e[y].push_back(x);
       dfs1(1,1);
       dfs2(1,1,1);
       for(int i=1;i<=n;i++) printf("%lld ",ans[i]);</pre>
62
       return 0:
   }
63
```

4.10.4 整体二分

4.11 分块

4.11.1 普通分块

```
#include <bits/stdc++.h>
    //luogu P3203
   using namespace std;
    const int N=500005;
   int n,m,tot;
   int a[N],cnt[N],pos[N];
   int id[N],from[N],to[N];
   int o,x,y;
    void modify(int i)
11
12
       if(i+a[i]>n)
13
14
       {
           pos[i]=i;
           cnt[i]=0;
           return;
17
       if(id[i]==id[i+a[i]])
19
           pos[i]=pos[i+a[i]];
           cnt[i]=cnt[i+a[i]]+1;
       }
       else
25
           pos[i]=i+a[i];
26
           cnt[i]=1;
27
28
30
   void ask(int x)
31
32
       int p=x,res=0;
33
       while(p!=pos[p])
34
           res+=cnt[p],
35
           p=pos[p];
```

```
printf("%d\n", res+1);
37
    }
38
    int main()
    {
41
        scanf("%d",&n);
42
        tot=(int)sqrt(n);
43
        for(int i=1;i<=tot;++i)</pre>
44
            from[i]=(i-1)*tot+1;
           to[i]=i*tot;
48
        if(to[tot]<n)</pre>
49
50
           tot++;
51
           from[tot]=to[tot-1];
52
           to[tot]=n;
54
       for(int i=1;i<=tot;++i)</pre>
55
56
           for(int j=from[i];j<=to[i];++j)</pre>
               id[j]=i;
        for(int i=1;i<=n;++i)</pre>
            scanf("%d",&a[i]);
61
        for(int i=n;i>=1;--i)
62
           modify(i);
63
        scanf("%d",&m);
64
       while(m--)
65
            scanf("%d",&o);
           if(o==2)
68
69
               scanf("%d%d",&x,&y);
70
               X++;
               a[x]=y;
               for(int i=x;i>=from[id[x]];--i)
                   modify(i);
74
75
           else if(o==1)
76
77
               scanf("%d",&x);
78
               X++;;
               ask(x);
            }
        }
82
       return 0;
83
    }
```

4.11.2 莫队

4.12 线性基

4.13 珂朵莉树

```
#include <bits/stdc++.h>
#define int long long //be careful
//CF896C
using namespace std;

/*

河朵莉树的左右split顺序很重要,并且set集合一开始不要为空,否则会RE

*/
```

```
const int N=1000005;
10
11
   int qpow(int a,int b,int mod)
12
13
       int res=1,tmp=a%mod;
14
       while(b)
15
16
           if(b&1) res=res*tmp%mod;
17
           tmp=tmp*tmp%mod;
           b>>=1;
19
20
       return res;
21
22
23
   struct node
24
25
   {
26
       int l,r;
27
       mutable int v;
       node(int L, int R=-1, int V=0):1(L), r(R), v(V)
28
       bool operator < (const node& o)const{return l<o.1</pre>
29
30
31
    set<node> s;
   typedef set<node>::iterator it;
32
33
   it split(int pos)
34
35
       it i=s.lower_bound(node(pos));
36
       if(i!=s.end()&&i->l==pos) return i;
37
       --i;
38
       int L=i->1,R=i->r,V=i->v;
       s.erase(i);
40
       s.insert(node(L,pos-1,V));
41
       return s.insert(node(pos,R,V)).first;
42
43
   void assign(int l,int r,int val)
45
46
       it ir=split(r+1),il=split(l);
47
       s.erase(il,ir);
48
       s.insert(node(1,r,val));
49
50
   void add(int l,int r,int val)
53
       it ir=split(r+1),il=split(l);
54
       for(;il!=ir;il++)
55
           il->v+=val;
56
57
58
   int rk(int l,int r,int k)
59
60
       vector<pair<int,int>> v;
61
       it ir=split(r+1),il=split(1);
62
       for(;il!=ir;il++)
63
           v.emplace back(il->v,il->r-il->l+1);
       sort(v.begin(),v.end());
       for(int i=0;i<v.size();++i)</pre>
66
67
           k-=v[i].second;
68
           if(k<=0) return v[i].first;</pre>
69
       return -1; //can't find
71
72
   }
73
```

```
int sum(int l,int r,int ex,int mod)
74
75
        it ir=split(r+1),il=split(l);
76
        int res=0;
        for(;il!=ir;il++)
78
            res=(res+qpow(il->v,ex,mod)*(il->r-il->l+1)%
79
                mod)%mod;
80
        return res;
    }
83
    inline int read(){
        char ch=getchar();int s=0,w=1;
84
        while(ch<48||ch>57){if(ch=='-')w=-1;ch=getchar();}
85
        while(ch>=48\&ch<=57){s=(s<<1)+(s<<3)+ch-48;ch=
86
            getchar();}
87
        return s*w;
    }
    inline void write(int x){
89
        if(x<0)putchar('-'),x=-x;</pre>
90
        if(x>9)write(x/10);
91
        putchar(x%10+48);
92
93
    //Fast I/O
    int n,m,seed,vmax,a[N];
96
    int rnd()
97
98
        int ret=seed;
99
        seed=(seed*7+13)%1000000007;
100
        return ret;
    }
102
103
    signed main()
104
105
        n=read(),m=read(),seed=read(),vmax=read();
106
        for(int i=1;i<=n;++i)</pre>
108
            a[i]=(rnd()%vmax)+1;
109
            s.insert(node(i,i,a[i]));
110
111
        for(int i=1;i<=m;++i)</pre>
112
113
            int op=(rnd()%4)+1;
           int l=(rnd()%n)+1;
           int r=(rnd()%n)+1;
116
           if(1>r) swap(1,r);
117
           int x,y;
118
           if(op==3) x=(rnd()%(r-l+1))+1;
119
           else x=(rnd()%vmax)+1;
120
           if(op==4) y=(rnd()%vmax)+1;
           switch(op)
122
123
               case 1:
124
                   add(1,r,x);break;
125
               case 2:
                   assign(l,r,x);break;
               case 3:
                   write(rk(1,r,x)),puts("");break;
129
130
                   write(sum(l,r,x,y)),puts("");break;
131
           }
132
133
        return 0;
135
136
```

4.14 跳舞链

5 动态规划

5.1 SOS

```
for(int i=0;i<(1<<N);i++) dp[i]=a[i];
for(int i=0;i<N;i++)

for(int mask=0;mask<(1<<N);mask++)

if(mask&(1<<ii))

dp[mask]+=dp[mask^(1<<ii)];</pre>
```

- 5.2 动态 DP
- 5.3 插头 DP
- 6 数学
- 6.1 矩阵类
- 6.2 质数筛
- 6.2.1 埃筛
- 6.2.2 线筛
- 6.3 质数判定
- 6.3.1 Miller Rabin
- 6.4 质因数分解
- 6.4.1 Pollard-Rho
- 6.5 逆元
- 6.5.1 EX-GCD 求逆元
- 6.5.2 线性筛逆元
- 6.5.3 阶乘逆元
- 6.6 欧拉函数
- 6.6.1 欧拉线筛
- 6.6.2 求单个数的欧拉函数
- 6.6.3 欧拉降幂
- 6.6.4 一般积性函数求法
- 6.7 EX-GCD
- 6.8 CRT
- 6.9 N 次剩余
- 6.10 数论分块
- 6.11 高斯消元
- 6.11.1 普通消元
- 6.11.2 异或方程组消元
- 6.12 莫比乌斯反演
- 6.12.1 莫比乌斯函数
- 6.12.2 杜教筛
- 6.12.3 洲阁筛
- 6.12.4 min25 筛
- 6.13 BSGS
- 6.14 FFT
- 6.15 FWT
- 6.16 NTT
- 6.17 数值计算
- 6.17.1 辛普森
- 6.17.2 自适应辛普森

```
#include <bits/stdc++.h>
   using namespace std;
   const double eps=1e-12;
6
       调用 asr(l,r,simpson(l,r))
   inline double f(double x)
       return x; //被积函数
   }
12
13
   double simpson(double l,double r)
14
15
       double mid=(l+r)/2;
16
       return (f(1)+4*f(mid)+f(r))*(r-1)/6;
17
18
19
   double asr(double 1,double r,double ans)
20
21
       double mid=(1+r)/2;
22
       double l1=simpson(l,mid),r1=simpson(mid,r);
23
       if(fabs(l1+r1-ans)<eps) return l1+r1;</pre>
       return asr(l,mid,l1)+asr(mid,r,r1);
25
   }
26
27
   int main()
29
       return 0;
31
```

- 6.18 康拓展开
- 6.19 卢卡斯定理
- 7 其他
- 7.1 快读快写
- 7.2 约瑟夫环
- 7.3 悬线法
- 7.4 蔡勒公式
- 7.5 三角公式
- 7.6 海伦公式
- 7.7 匹克定理
- 7.8 组合计数
- 7.8.1 计数原理
- 7.8.2 卡特兰数
- 7.8.3 Polya
- 7.8.4 二项式反演公式
- 7.8.5 斯特林反演公式
- 7.8.6 组合数恒等式