Please amend the above-identified patent application, without prejudice, as follows:

IN THE CLAIMS:

Amend claims 1-3, 7, 12 and 13 by replacement as follows:

- 1. (twice amended) Electroluminescent device comprising in this order
- (a) an anode
- (b) a hole transporting layer
- (c) a light-emitting layer
- (d) optionally an electron transporting layer and
- (e) a cathode

and a light-emitting substance, wherein the light-emitting substance is a diketopyrrolopyrrole ("DPP") represented by formula I or formula III

$$Ar_{2}$$

$$Ar_{1}$$

$$R_{1}$$

$$Ar_{2}$$

$$Ar_{2}$$

$$R_{1}$$

$$Ar_{2}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{1}$$

$$R_{2}$$

$$R_{1}$$

$$R_{2}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{4}$$

$$R_{5}$$

wherein R_1 and R_2 , independently from each other, stand for C_1 - C_{25} -alkyl, allyl which can be substituted one to three times with C_1 - C_3 alkyl or Ar_3 , or $-CR_3R_4$ - $(CH_2)_m$ - Ar_3 , wherein R_3 and R_4 independently from each other stand for hydrogen, C_1 - C_4 alkyl, or phenyl which can be substituted one to three times with C_1 - C_3 alkyl,

 Ar_3 stands for phenyl or 1- or 2-naphthyl which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, halogen or phenyl, which can be substituted with C_1 - C_8 alkyl or C_1 - C_8 alkoxy one to three times, and m stands for 0, 1, 2, 3 or 4,

Ar, and Ar, independently from each other, stand for

09//657,738 - 2 - EL/2-22090/A

, which can be substituted one to four times with C_1 - C_4 alkyl, C_1 - C_4 alkoxy, or phenyl

wherein

 R_s , R_s and R_r , independently from each other, stand for hydrogen, cyano, halogen, C_1 - C_s alkyl, -NR₈R₉, -OR₁₀, -S(O)_nR₈, -Se(O)_nR₈, or phenyl, which can be substituted one to three times with C_1 - C_s alkyl or C_1 - C_s alkoxy,

 R_{ss} , R_{s6} and R_{s7} , independently from each other, stand for hydrogen, cyano, halogen, -NR₈R₉, -OR₁₀, -S(O)_nR₈, -Se(O)_nR₈, or phenyl, which can be substituted one to three times with C₁-C₈alkyl or C₁-C₈alkoxy,

with the proviso that R_{s6} and R_{s7} do not simultaneously stand for hydrogen, wherein R_{g} and R_{g} , independently from each other, stand for hydrogen, phenyl, C_{1} - C_{2s} -alkyl, C_{s} - C_{12} -cycloalkyl, $-CR_{3}R_{4}$ - $(CH_{2})_{m}$ -Ph, R_{10} , wherein R_{10} stands for C_{6} - C_{24} -aryl, or a saturated or unsaturated

heterocyclic radical comprising five to seven ring atoms,

wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein Ph, the aryl and heterocyclic radical can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen, or

 R_8 and R_9 stand for -C(O) R_{11} , wherein R_{11} can be C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, R_{10} , -O R_{12} or -N R_{13} R_{14} , wherein R_{12} , R_{13} , and R_{14} stand for C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, C_6 - C_{24} -aryl,

or

 R_s , R_s and R_r , independently of one another, stand for a saturated or unsaturated heterocyclic radical comprising five to seven ring atoms, wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein the aryl and heterocyclic radical can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy, or - NR_8 R₉

Cont

09//657,738 - 3 - EL/2-22090/A

stands for a five- or six-membered heterocyclic radical in which R₈ and R₉ together stand for tetramethylene, pentamethylene, -CH₂-CH₂-O-CH₂-CH₂-, or

-CH₂-CH₂-NR'₅-CH₂-CH₂-, wherein R'₅ independently from each other, stand for hydrogen, cyano, halogen, C_1 - C_6 alkyl, -NR₈R₉, -OR₁₀, -S(O)_nR₈, -Se(O)_nR₈, or phenyl, which can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy, and n stands for 0, 1, 2 or 3,

and wherein Z stands for a diradical selected from the group consisting of a single bond, C_2 - C_6 alkylene, which can be substituted one to three times with C_1 - C_4 alkyl, C_1 - C_4 alkoxy, or phenyl, phenylene or naphthylene, wherein in case of the DPP of formula III R_{ss} , R_{s6} and R_{s7} , independently from each other, can also stand for C_1 - C_6 alkyl and R_{s6} and R_{s7} can also stand simultaneously for hydrogen.

2. (twice amended) Process for the preparation of a compound represented by formula I or III according to claim 7 comprising in a first step the DPP derivative of formula Va or formula Vb

wherein Ar₁ and Ar₂ are independently from each other,_

- 4 -

or
$$R_5$$
 or julodidyl,

09//657,738

EL/2-22090/A

wherein

 R_s , R_s and R_s , independently from each other, stand for hydrogen, cyano, halogen, C_1 - C_s alkyl, - NR_gR_g , - OR_{10} , - $S(O)_nR_g$, - $Se(O)_nR_g$, or phenyl, which can be substituted one to three times with C_1 - C_g alkyl or C_1 - C_g alkoxy,

wherein R_8 and R_9 , independently from each other, stand for hydrogen, phenyl, C_1 - C_{2s} -alkyl, C_5 - C_{12} -cycloalkyl, $-CR_3R_4$ - $(CH_2)_m$ -Ph, R_{10} , wherein R_{10} stands for C_6 - C_{24} -aryl, or a saturated or unsaturated heterocyclic radical comprising five to seven ring atoms,

wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein Ph, the aryl and heterocyclic radical can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen, or R_8 and R_9 stand for -C(O) R_{11} , wherein R_{11} can be C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, R_{10} , -OR $_{12}$ or -NR $_{13}$ R $_{14}$,

wherein

 R_{12} , R_{13} , and R_{14} stand for C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, C_6 - C_{24} -aryl,

01

 R_s , R_s and R_r , independently of one another, stand for a saturated or unsaturated heterocyclic radical comprising five to seven ring atoms, wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein the aryl and heterocyclic radical can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy, or - NR_8R_9 stands for a five- or six-membered heterocyclic radical in which R_8 and R_9 together stand for tetramethylene, pentamethylene, - CH_2 - CH_2 - CH_2 - CH_2 -, or

-CH₂-CH₂-NR'₅-CH₂-CH₂-, and n stands for 0, 1, 2 or 3, wherein R'₅ independently from each other, stand for hydrogen, cyano, halogen, C_1 - C_6 alkyl, -OR₁₀, -S(O)_nR₈, -Se(O)_nR₈, or phenyl, which can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy,

and wherein Z stands for a diradical selected from the group consisting of a single bond, C_2 - C_4 alkylene, which can be substituted one to three times with C_1 - C_4 alkyl, C_1 - C_4 alkoxy, or phenyl, phenylene or naphthylene, with the proviso that R_4 and R_7 do not stand simultaneously for hydrogen

CY

(put

 $- \left(\begin{array}{c} R_7 \\ R_6 \end{array} \right)$

wherein in case of the DPP represented by formula III Ar_1 and Ar_2 can also stand for hydrogen, cyano, halogen, C_1 - C_6 alkyl, $-NR_8R_9$, $-OR_{10}$, $-S(O)_nR_8$, $-Se(O)_nR_8$, or phenyl, which can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy,

with a base, then, in a second step, treating the reaction mixture obtained in the first step with an alkylating agent, wherein in the first step the base is a hydride, an alkali metal alkoxide or a carbonate, and the alkylating agent is a compound of the formula $(R_1)_{1 \text{ or } 2}X$, wherein X stands for SO_3 -, $(p\text{-Me-phenyl})SO_3$ -, (2,4,6-trimethyl-phenyl)-, SO_3 -, $-CO_3$ -, $-SO_4$ -, or halogen, or a mixture of $(R_1)_{1 \text{ or } 2}X$ and $(R_2)_{1 \text{ or } 2}X$, wherein R_1 and R_2 are independently from each other, C_1 - C_{25} -alkyl, allyl which can be substituted one to three times with C_1 - C_3 alkyl or Ar_3 , or $-CR_3R_4$ - $(CH_2)_m$ - Ar_3 , wherein R_3 and R_4 independently from each other stand for hydrogen or C_1 - C_4 alkyl, or phenyl which can be substituted one to three times with C_1 - C_3 alkyl,

 Ar_3 stands for phenyl or 1- or 2-naphthyl which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, halogen or phenyl, which can be substituted with C_1 - C_8 alkyl or C_1 - C_8 alkoxy one to three times, and m stands for 0, 1, 2, 3 or 4.

3. (twice amended) Process for the preparation of compounds represented by formula Illa

comprising (a) treating in a first step the DPP derivative of formula VIa or formula VIb

wherein R_7 stand for $-NR_8R_9$, $-OR_{10}$, $-S(O)_nR_8$, $-Se(O)_nR_8$, or , wherein R_5 and R_6 , independently from each other, stand for hydrogen, cyano, halogen, C_1-C_6 alkyl, $-NR'_8R'_9$, $-OR_{10}$, $-S(O)_nR'_8$, $-Se(O)_nR'_8$, wherein

 R_8 and R_9 , independently from each other, stand for hydrogen, phenyl, C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, - C_8 - C_8 - C_8 - C_9 -aryl, or a saturated or unsaturated heterocyclic radical comprising five to seven ring atoms,

wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein Ph, the aryl and heterocyclic radical can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen, or

 R_8 and R_9 stand for -C(O) R_{11} , wherein R_{11} can be C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, R_{10} , -O R_{12} or -N R_{13} R_{14} , wherein R_{12} , R_{13} , and R_{14} stand for C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, C_6 - C_{24} -aryl,

 R'_8 and R'_9 , independently from each other, stand for hydrogen, phenyl, C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, $-CR_3R_4$ - $(CH_2)_m$ -Ph, R_{10} , wherein R_{10} stands for C_6 - C_{24} -aryl, or a saturated or unsaturated heterocyclic radical comprising five to seven ring atoms, wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein Ph, the aryl and heterocyclic radical can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen, or

or -NR₈R₉ stands for a five- or six-membered heterocyclic radical in which R₈ and R₉ together stand for tetramethylene, pentamethylene, -CH₂-CH₂-O-CH₂-CH₂-, or

Caro

-CH₂-CH₂-NR'₅-CH₂-CH₂-, wherein R'₅ independently from each other, stand for hydrogen, cyano, halogen, C_1 - C_6 alkyl, -OR₁₀, -S(O)_nR₈, -Se(O)_nR₈, or phenyl, which can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy, and n stands for 0, 1, 2 or 3,

 R'_{8} and R'_{9} , independently from each other, stand for hydrogen, phenyl, C_{1} - C_{25} -alkyl, C_{5} - C_{12} -cycloalkyl, $-CR_{3}R_{4}$ - $(CH_{2})_{m}$ -Ph, R_{10} , wherein R_{10} is as defined above, or

 R'_{s} and R'_{s} stand for -C(O) R_{11} , wherein R_{11} is as defined above,

or $-NR'_8R'_9$ stands for a five- or six-membered heterocyclic radical in which R'_8 and R'_9 together stand-for tetramethylene, pentamethylene, $-CH_2-CH_2-O-CH_2-CH_2-CH_2-O-CH_2-CH_2-CH_2-NR'_5-CH_2-CH_2-NR'_5$ stand for hydrogen, cyano, halogen, C_1-C_6 alkyl, $-OR_{10}$, $-S(O)_nR_8$, $-Se(O)_nR_8$, or phenyl, which can be substituted one to three times with C_1-C_8 alkyl or C_1-C_8 alkoxy, and n is as defined above,

 R_1 and R_2 are independently from each other, hydrogen, C_1 - C_{25} -alkyl, allyl which can be substituted one to three times with C_1 - C_3 alkyl or Ar_3 , or $-CR_3R_4$ - $(CH_2)_m$ - Ar_3 , wherein R_3 and R_4 independently from each other stand for hydrogen, C_1 - C_4 alkyl, or phenyl which can be substituted one to three times with C_1 - C_3 , Hal stands for halogen, with a nucleophilic agent selected from $-NR_8R_9$, $-OR_{10}$, $-S(O)_nR_8$, -

Se(O)_nR₈, or , in a molar ratio of DPP VIa or VIb:nucleophilic agent in the range of 1.2:1 to 0.8:1, or, if R₂ has the same meaning as R₁ in the range of from 1:2.5 to 1:1, in the presence of an anhydrous dipolar aprotic solvent, and of an anhydrous base in an amount in the range of from 0.1 to 15 moles per mole of the nucleophilic agent, at a temperature in the range of from 100 to 220°C and under a pressure in the range of from 100 to 300 kPa, and optionally isolating the obtained compound

(b) then treating the obtained compound Va or Vb, wherein Ar₁ and Ar₂ are as defined in claim 7 independently from each other,

Cal

EL/2-22090/A

or
$$R_5$$
 or julodidyl,

, which can be substituted one to four times with C_1 - C_4 alkyl, C_1 - C_4 alkoxy, or phenyl

wherein

 R_s , R_a and R_7 , independently from each other, stand for hydrogen, cyano, halogen, C_1 - C_6 alkyl, -NR₈R₉, -OR₁₀, -S(O)_nR₈, -Se(O)_nR₈, or phenyl, which can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy,

wherein R_8 and R_9 , independently from each other, stand for hydrogen, phenyl, C_1 - C_{2s} -alkyl, C_5 - C_{12} -cycloalkyl, $-CR_3R_4$ - $(CH_2)_m$ -Ph, R_{10} , wherein R_{10} stands for C_6 - C_{24} -aryl, or a saturated or unsaturated heterocyclic radical comprising five to seven ring atoms,

wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein Ph, the aryl and heterocyclic radical can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen, or R_8 and R_9 stand for -C(O) R_{11} , wherein R_{11} can be C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, R_{10} , -OR $_{12}$ or -NR $_{13}$ R $_{14}$, wherein

 R_{12} , R_{13} , and R_{14} stand for C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, C_6 - C_{24} -aryl,

Cont

or

 R_s , R_s and R_r , independently of one another, stand for a saturated or unsaturated heterocyclic radical comprising five to seven ring atoms, wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein the aryl and heterocyclic radical can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy, or -NR₈R₉ stands for a five- or six-membered heterocyclic radical in which R_8 and R_9 together stand for tetramethylene, pentamethylene, -CH₂-CH₂-O-CH₂-CH₂-, or

-CH₂-CH₂-NR'_s-CH₂-CH₂-, and n stands for 0, 1, 2 or 3, wherein R'_s independently from each other, stand for hydrogen, cyano, halogen, C_1 - C_6 alkyl, -OR₁₀, -S(O)_nR₈, -Se(O)_nR₈, or phenyl, which can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy,

and wherein Z stands for a diradical selected from the group consisting of a single bond, C_2 - C_6 alkylene, which can be substituted one to three times with C_1 - C_4 alkyl, C_1 - C_4 alkoxy, or phenyl, phenylene or naphthylene, with the proviso that R_6 and R_7 do not stand simultaneously for hydrogen

wherein in case of the DPP represented by formula III Ar_1 and Ar_2 can also stand for R_7 , wherein R_5 , R_6 and R_7 , independently from each other, stand for hydrogen, cyano, halogen, C_1 - C_6 alkyl, $-NR_8R_9$, $-OR_{10}$, $-S(O)_nR_8$, $-Se(O)_nR_8$, or phenyl, which can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy,

with a base, thereafter in a second step, treating the reaction mixture obtained in the first step of (b) with an alkylating agent, wherein in the first step of (b) the base is a hydride, an alkali metal alkoxide or a carbonate, and the alkylating agent is a compound of the formula $(R_1)_{1 \text{ or } 2}X$, wherein X stands for SO_3 -, $(p-Me-phenyl)-SO_3$ -, $(2,4,6-trimethyl-phenyl)-SO_3$ -, $-SO_4$ -, or halogen, or a mixture of $(R_1)_{1 \text{ or } 2}X$ and $(R_2)_{1 \text{ or } 2}X$.

7. (twice amended) Fluorescent diketopyrrolopyrrole represented by formula I or formula III

Ŀ

wherein R_1 and R_2 , independently from each other, stand for C_1 - C_{25} -alkyl, allyl which can be substituted one to three times with C_1 - C_3 alkyl or Ar_3 , or $-CR_3R_4$ - $(CH_2)_m$ - Ar_3 , wherein R_3 and R_4 independently from each other stand for hydrogen or C_1 - C_4 alkyl, or phenyl which can be substituted one to three times with C_1 - C_3 alkyl,

 Ar_3 stands for phenyl or 1- or 2-naphthyl which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, halogen or phenyl, which can be substituted with C_1 - C_8 alkyl or C_1 - C_8 alkoxy one to three times, and m stands for 0, 1, 2, 3 or 4,

Ar, and Ar, independently from each other, stand for

or
$$R_5$$
 or julodidyl,

or
$$\longrightarrow$$
 \bigcap_{R_6} \bigcap_{A_6} \bigcap_{A_6}

wherein

 R_s , R_6 and R_7 , independently from each other, stand for hydrogen, cyano, halogen, C_1 - C_6 alkyl, -NR $_8$ R $_9$, -OR $_{10}$, -S(O) $_n$ R $_8$, -Se(O) $_n$ R $_8$, or phenyl, which can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy,

wherein R_8 and R_9 , independently from each other, stand for hydrogen, phenyl, C_1 - C_{2s} -alkyl, C_5 - C_{12} -cycloalkyl, $-CR_3R_4$ - $(CH_2)_m$ -Ph, R_{10} , wherein R_{10} stands for C_6 - C_{24} -aryl, or a saturated or unsaturated heterocyclic radical comprising five to seven ring atoms,

wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein Ph, the aryl and heterocyclic radical can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen, or R_8 and R_9 stand for -C(O) R_{11} , wherein R_{11} can be C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, R_{10} , -OR $_{12}$ or -NR $_{13}$ R $_{14}$, wherein

 R_{12} , R_{13} , and R_{14} stand for C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, C_6 - C_{24} -aryl,

or

 R_s , R_s and R_r , independently of one another, stand for a saturated or unsaturated heterocyclic radical comprising five to seven ring atoms, wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein the aryl and heterocyclic radical can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy, or - NR_8R_9 , stands for a five- or six-membered heterocyclic radical in which R_8 and R_9 together stand for tetramethylene, pentamethylene, - CH_2 -

-CH₂-CH₂-NR'₅-CH₂-CH₂-, and n stands for 0, 1, 2 or 3, wherein R'₅ independently from each other, stand for hydrogen, cyano, halogen, C_1 - C_6 alkyl, -OR₁₀, -S(O)_nR₈, -Se(O)_nR₈, or phenyl, which can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy,

and wherein Z stands for a diradical selected from the group consisting of a single bond, C_2 - C_4 alkylene, which can be substituted one to three times with C_1 - C_4 alkyl, C_1 - C_4 alkoxy, or phenyl, phenylene or naphthylene, with the proviso that R_4 and R_7 do not stand simultaneously for hydrogen,

wherein in case of the DPP represented by formula III Ar_1 and Ar_2 can also stand for R_7 , wherein R_5 , R_6 and R_7 , independently from each other, stand for hydrogen, cyano, halogen, C_1 - C_6 alkyl, $-NR_8R_9$, $-OR_{10}$, $-S(O)_nR_8$, $-Se(O)_nR_8$, or phenyl, which can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy.

12. (amended) An electroluminescent device according to claim 1 wherein R_8 and R_9 together stand for $-CH_2-CH_2-O-CH_2-CH_2-$.

13. A compound according to the formulae

(3

N N N	
Y O O O O O O O O O O O O O O O O O O O	CI C
H ₃ C·N N·CH ₃	

Cost

14. (new) A compound according to the formulae

15. (new) A compound of formula I

$$Ar_2$$
 Ar_1
 R_1

wherein R_1 and R_2 are C_1 - C_8 alkyl, Ar_1 and Ar_2 are a group of formula R_9 are C_1 - C_8 alkyl or phenyl.

$$R_9$$
 , wherein R_8 and

16. (new) A compound of formula I

$$Ar_2$$
 Ar_1
 R_1
, wherein

 R_1 and R_2 are C_1 - C_8 alkyl, or - $(CH_2)_m$ -Ph, Ar_1 and Ar_2 are a group of formula , wherein R_7 is - OR_{10} , - $N(R_8)_2$ or unsubstituted or substituted phenyl, wherein R_{10} stands for C_6 - C_{24} -aryl, or a saturated

or unsaturated heterocyclic radical comprising five to seven ring atoms, wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein Ph, the aryl and heterocyclic radical can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen and R_8 is C_1 - C_8 alkyl, phenyl or a heterocyclic radical, both unsubstituted or substituted, or C_5 - C_{12} -cycloalkyl.

17. (new) A compound of formula I

$$Ar_2$$
 Ar_3
 Ar_1
 R_1
 R_1
 R_1

, wherein

 R_1 and R_2 are -CH₂-Ph, wherein phenyl can be substituted with phenyl, naphthyl or C_1 - C_4 alkyl up to

two times, Ar_1 and Ar_2 are a group of formula

$$R_7$$
, wherein R_7 is C_1 - C_8 alkyl or phenyl, or a

group of formula

$$R_7$$
, or , wherein R_7 is hydrogen or OMe.

18. (new) Process for the preparation of compounds represented by formula la

comprising (a) treating in a first step the DPP derivative of formula VIa or formula VIb

H-N R₆

wherein R_7 stand for $-NR_8R_9$, $-OR_{10}$, $-S(O)_nR_8$, $-Se(O)_nR_8$, or , wherein R_5 and R_6 , independently from each other, stand for hydrogen, cyano, halogen, C_1 - C_6 alkyl, $-NR'_8R'_9$, $-OR_{10}$, $-S(O)_nR'_8$, $-Se(O)_nR'_8$, wherein

 R_8 and R_9 , independently from each other, stand for hydrogen, phenyl, C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, - CR_3R_4 - $(CH_2)_m$ -Ph, R_{10} , wherein R_{10} stands for C_6 - C_{24} -aryl, or a saturated or unsaturated heterocyclic radical comprising five to seven ring atoms,

wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein Ph, the aryl and heterocyclic radical can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen, or

 R_8 and R_9 stand for -C(O) R_{11} , wherein R_{11} can be C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, R_{10} , -O R_{12} or -N R_{13} R_{14} , wherein R_{12} , R_{13} , and R_{14} stand for C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, C_6 - C_{24} -aryl,

 R'_8 and R'_9 , independently from each other, stand for hydrogen, phenyl, C_1 - C_{2s} -alkyl, C_s - C_{12} -cycloalkyl, - CR_3R_4 - $(CH_2)_m$ -Ph, R_{10} , wherein R_{10} stands for C_6 - C_{24} -aryl, or a saturated or unsaturated heterocyclic radical comprising five to seven ring atoms, wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein Ph, the aryl and heterocyclic radical can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen, or

or -NR₈R₉ stands for a five- or six-membered heterocyclic radical in which R₈ and R₉ together stand for_ tetramethylene, pentamethylene, -CH₂-CH₂-O-CH₂-CH₂-, or

-CH₂-CH₂-NR'_s-CH₂-CH₂-, wherein R'_s independently from each other, stand for hydrogen, cyano, halogen, C_1 - C_6 alkyl, -OR₁₀, -S(O)_nR₈, -Se(O)_nR₈, or phenyl, which can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy, and n stands for 0, 1, 2 or 3,

Cont

 R'_{8} and R'_{9} , independently from each other, stand for hydrogen, phenyl, C_{1} - C_{25} -alkyl, C_{5} - C_{12} -cycloalkyl, $-CR_{3}R_{4}$ - $(CH_{2})_{m}$ -Ph, R_{10} , wherein R_{10} is as defined above, or

 R'_{8} and R'_{9} stand for -C(O) R_{11} , wherein R_{11} is as defined above,

each other stand for hydrogen, C_1 - C_4 alkyl, or phenyl which can be substituted one to three times with C_1 - C_3 , Hal stands for halogen, with a nucleophilic agent selected from a selected from -NR₈R₉, -OR₁₀, -

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

 $S(O)_{n}R_{g}$, $-Se(O)_{n}R_{g}$, or , in a molar ratio of DPP VIa or VIb:nucleophilic agent in the range of

1.2:1 to 0.8:1, or, if R_2 has the same meaning as R_1 in the range of from 1:2.5 to 1:1, in the presence of an anhydrous dipolar aprotic solvent, and of an anhydrous base in an amount in the range of from 0.1 to 15 moles per mole of the nucleophilic agent, at a temperature in the range of from 100 to 220°C and under a pressure in the range of from 100 to 300 kPa, and optionally isolating the obtained compound

(b) then treating the obtained compound Va, wherein R_7 is as defined above, with a base, thereafter in a second step, treating the reaction mixture obtained in the first step of (b) with an alkylating agent, wherein in the first step of (b) the base is a hydride, an alkali metal alkoxide or a carbonate, and the alkylating agent is a compound of the formula $(R_1)_{1 \text{ or } 2}X$, wherein X stands for SO_3 -, (p-Me-phenyl)- SO_3 -, (2,4,6-trimethyl-phenyl) SO_3 -, - CO_3 -, - SO_4 -, or halogen, or a mixture of $(R_1)_{1 \text{ or } 2}X$ and $(R_2)_{1 \text{ or } 2}X$.

CAl

09//657,738 - 19 - EL/2-22090/A

19. (new) Electroluminescent device according to claim 1, wherein, wherein the light-emitting substance is a diketopyrrolopyrrole ("DPP") represented by formula I

wherein R₁ and R₂, independently from each other, stand for C₁-C₂₅-alkyl, allyl which can be substituted one to three times with C₁-C₃alkyl or Ar₃, or -CR₃R₄-(CH₂)_m-Ar₃, wherein R₃ and R₄ independently from each other stand for hydrogen, C₁-C₄alkyl, or phenyl which can be substituted one to three times with C1-C3 alkyl,

Ar₃ stands for phenyl or 1- or 2-naphthyl which can be substituted one to three times with C₁-C₈alkyl, C,-C, alkoxy, halogen or phenyl, which can be substituted with C1-C, alkyl or C1-C, alkoxy one to three times, and m stands for 0, 1, 2, 3 or 4,

Ar, and Ar₂, independently from each other, stand for

$$Ar_1$$
 and Ar_2 , independently from each oth R_6 or R_7

, wherein

R₈ and R₇, independently from each other, stand for hydrogen, cyano, halogen, C₁-C₈alkyl, -NR₈R₉, - OR_{10} , $-S(O)_{0}R_{8}$, $-Se(O)_{0}R_{8}$, or phenyl, which can be substituted one to three times with $C_{1}-C_{8}$ alkyl or C_{1} -C_salkoxy,

wherein R_a and R_g , independently from each other, stand for hydrogen, phenyl, C_1 - C_{25} -alkyl, C_5 - C_{12} cycloalkyl, $-CR_3R_4-(CH_2)_m$ -Ph, R_{10} , wherein R_{10} stands for C_6-C_{24} -aryl, or a saturated or unsaturated heterocyclic radical comprising five to seven ring atoms,

wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein Ph, the aryl and heterocyclic radical can be substituted one to three times with C1-C3alkyl, C1-C3alkoxy, or halogen, or

EL/2-22090/A - 20 -09//657.738

 R_8 and R_9 stand for -C(O) R_{11} , wherein R_{11} can be C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, R_{10} , -O R_{12} or -N R_{13} R_{14} , wherein R_{12} , R_{13} , and R_{14} stand for C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, C_6 - C_{24} -aryl,

 R_8 and R_7 , independently of one another, stand for a saturated or unsaturated heterocyclic radical comprising five to seven ring atoms, wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein the heterocyclic radical can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy, or -NR₈R₉ stands for a five- or six-membered heterocyclic radical in which R₈ and R₉ together stand for tetramethylene, pentamethylene, -CH₂-CH₂-O-CH₂-CH₂-, or

-CH₂-CH₂-NR'₅-CH₂-CH₂-, wherein R'₅ independently from each other, stand for hydrogen, cyano, halogen, C_1 - C_6 alkyl, -OR₁₀, -S(O)_nR₈, -Se(O)_nR₈, or phenyl, which can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy, and n stands for 0, 1, 2 or 3.

20. (new) Electroluminescent device according to claim 19, wherein the light-emitting substance is a diketopyrrolopyrrole ("DPP") represented by formula I

$$Ar_2$$
 Ar_1
 Ar_1

wherein R_1 and R_2 , independently from each other, stand for C_1 - C_{2s} -alkyl, or $-CR_3R_4$ - $(CH_2)_m$ - Ar_3 , wherein R_3 and R_4 independently from each other stand for hydrogen, C_1 - C_4 alkyl, or phenyl which can be substituted one to three times with C_1 - C_3 alkyl,

Ar₃ stands for phenyl which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, halogen or phenyl, which can be substituted with C_1 - C_8 alkyl or C_1 - C_8 alkoxy one to three times, and m stands for 0, 1, 2, 3 or 4,

Ar, and Ar₂, independently from each other, stand for

 R_{s} and R_{s} , independently from each other, stand for hydrogen, cyano, halogen, C_{1} - C_{s} alkyl, - $NR_{s}R_{s}$, - OR_{10} , or phenyl, which can be substituted one to three times with C_{1} - C_{8} alkyl or C_{1} - C_{8} alkoxy, wherein R_{s} and R_{s} , independently from each other, stand for hydrogen, phenyl, C_{1} - C_{2s} -alkyl, C_{5} - C_{12} -cycloalkyl, - $CR_{3}R_{4}$ -(CH_{2})_m-Ph, or

- -NR₈R₉ stands for a five- or six-membered heterocyclic radical in which R₈ and R₉ together stand for tetramethylene, pentamethylene, -CH₂-CH₂-O-CH₂-CH₂-, or
- -CH₂-CH₂-NR'₅-CH₂-CH₂-, wherein R'₅ stand for hydrogen, C_1 - C_6 alkyl, or phenyl, which can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy.
- 21. (new) Electroluminescent device according to claim 1, wherein the light-emitting substance is a diketopyrrolopyrrole ("DPP") represented by formula I

$$Ar_2$$
 Ar_1
 Ar_1

wherein R_1 and R_2 , independently from each other, stand for C_1-C_{25} -alkyl, allyl which can be substituted one to three times with C_1-C_3 alkyl or Ar_3 , or $-CR_3R_4-(CH_2)_m-Ar_3$, wherein R_3 and R_4 independently from each other stand for hydrogen, C_1-C_4 alkyl, or phenyl which can be substituted one to three times with C_1-C_3 alkyl,

Ar₃ stands for phenyl or 1- or 2-naphthyl which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, halogen or phenyl, which can be substituted with C_1 - C_8 alkyl or C_1 - C_8 alkoxy one to three times, and m stands for 0, 1, 2, 3 or 4,

Ar, and Ar₂, independently from each other, stand for

CAL

09//657,738