Group Members

Tevin Achong - 816000026

Jimmel Greer - 816000045

Course Code: COMP3602

Course Title: Theory of Computing

Assignment: 1

October 24, 2019

1. (a) $\{0^n \vee 1^m \mid n \text{ is even, } m \text{ is odd}\}$

(b) Any string that does not contain the substring 01

2. (a) Strings ending in 1011

(b) $\{101x101 \mid x \in \Sigma^*\}$

- 3. Let us refer to the DFA in Question 1b as M. Then $M = \{\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_0, q_1\}\}$ where δ is given by:
 - $\delta(q_0, 0) = q_1$
 - $\delta(q_0, 1) = q_0$
 - $\delta(q_1,0) = q_1$
 - $\delta(q_1, 1) = q_2$
 - $\delta(q_2,0) = q_2$
 - $\delta(q_2, 1) = q_2$
- 4. Let us refer to the NFA in Question 2b as N. Then $N = \{\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, \{0, 1\}, \delta, q_0, \{q_6\}\}$ where δ is given by:
 - $\delta(q_0, 0) = \{\}$
 - $\delta(q_0, 1) = \{q_1\}$
 - $\delta(q_0,\epsilon)=\{\}$
 - $\delta(q_1,0) = \{q_2\}$
 - $\delta(q_1, 1) = \{\}$
 - $\delta(q_1, \epsilon) = \{\}$
 - $\delta(q_2,0) = \{\}$
 - $\delta(q_2, 1) = \{q_3\}$
 - $\delta(q_2, \epsilon) = \{\}$

 - $\delta(q_3,0) = \{q_3\}$
 - $\delta(q_3,1) = \{q_3,q_4\}$
 - $\delta(q_3, \epsilon) = \{\}$
 - $\delta(q_4,0) = \{q_5\}$
 - $\delta(q_4, 1) = \{\}$
 - $\delta(q_4,\epsilon) = \{\}$
 - $\delta(q_5,0) = \{\}$
 - $\delta(q_5, 1) = \{q_6\}$
 - $\delta(q_5, \epsilon) = \{\}$
 - $\delta(q_6,0) = \{\}$
 - $\delta(q_6, 1) = \{\}$
 - $\delta(q_6, \epsilon) = \{\}$

5.

Key/Legend: $\rightarrow \$0.05$

- $\rightarrow \$0.10$
- $\rightarrow \$0.25$
- $\rightarrow \$1.00$

6.

7.

8.

9.

Regular Expression	Recognized Strings	Non-Recognized Strings
a^*b^*		
$a(ba)^*bb$		
$a^+ \cup b^*$		
$(\epsilon \cup a)b$		