Master M2 Data Science: 2023/2024

TRAVAUX DIRIGÉS Nº 4 : Convexification du risque

Stéphan Clémençon <stephan.clemencon@telecom-paristech.fr>

Ekhine IRUROZKI <irurozki@telecom-paris.fr>

EXERCICE 1. On se place dans le cadre de la classification binaire : on considère un descripteur aléatoire X de loi P_X à valeurs dans \mathbb{R}^d ($d \in \mathbb{N}^*$) muni de sa tribu des Boréliens, et un label aléatoire Y valant -1 ou 1.

La fonction de régression (probabilité a posteriori) est notée $\eta: x \in \mathbb{R}^d \mapsto \mathbb{P}(Y = 1 \mid X = x) \in [0, 1]$. On suppose que $0 < \eta(X) < 1$ presque-sûrement.

Soit $\mathcal{G} := \{g : \mathbb{R} \to \{-1,1\}\}$ l'ensemble des classifieurs adaptés à ce contexte. L'erreur de classification est définie comme l'application $\mathcal{L} : g \in \mathcal{G} \mapsto \mathbb{P} (\mathbf{Y} \neq g(\mathbf{X})) \in [0,1]$ et on note $\mathcal{L}^* := \inf_{g \in \mathcal{G}} \mathcal{L}(g)$.

On pose $\mathcal{F} \coloneqq \left\{ f : \mathbb{R}^d \to \mathbb{R} \right\}$ puis $\operatorname{sgn} : a \in \mathbb{R} \mapsto 2 \, \mathbbm{1}_{\{a \ge 0\}} - 1 \in \{-1, 1\}$. Dans cet exercice on s'intéresse spécifiquement à l'ensemble de classifieurs $\mathcal{G}_{\mathcal{F}} \coloneqq \left\{ \operatorname{sgn} \circ f : f \in \mathcal{F} \right\}$.

Soit enfin $\phi: \mathbb{R} \to \mathbb{R}_+$ une fonction dérivable, strictement convexe, croissante, satisfaisant $\lim_{x \to -\infty} \phi(x) = 0$ et $\phi(0) = 1$. Pour tout $f \in \mathcal{F}$ (et donc tout classifieur de $\mathcal{G}_{\mathcal{F}}$) on considère la version convexifiée du risque de classification :

$$A(f) := \mathbb{E}\left[\phi\left(-Yf(X)\right)\right].$$

1) Pour tout $u \in [0,1]$ on définit $h_u : a \in \mathbb{R} \mapsto u \, \phi(-a) + (1-u) \, \phi(a)$. Montrer que $\min_{f \in \mathcal{F}} A(f)$ est atteint en

$$f^*: x \in \mathbb{R}^d \mapsto \operatorname*{arg\,min}_{a \in \mathbb{R}} h_{\eta(x)}(a).$$
 (1)

Cette fonction est-elle bien définie pour tout $x \in \mathbb{R}^d$?

2) Dériver la fonction $h_{\eta(x)}$ pour $x \in \mathbb{R}^d$ quelconque, puis vérifier que sgn $\circ f^*$ coïncide avec classifieur de Bayes.

3) (Lemme de Zhang) On pose $H:u\in]0,1[\mapsto \min_{a\in \mathbb{R}}h_u(a)$ et on suppose qu'il existe des constantes s>1 et c>0 telles que

$$\forall u \in]0,1[, \quad \left|\frac{1}{2} - u\right|^s \le c^s (1 - H(u)).$$
 (2)

a) Soit
$$f \in \mathcal{F}$$
. Montrer que L $(\operatorname{sgn} \circ f) - L^* \le 2 \left(\mathbb{E} \left[|\eta(X) - 1/2|^s \, \mathbbm{1}_{\left\{ (2\eta(X) - 1) \, f(X) < 0 \right\}} \right] \right)^{1/s}$.

b) On pose $A^* := \inf_{f \in \mathcal{F}} A(f)$. Déduire de la question précédente que pour toute fonction $f \in \mathcal{F}$,

$$L(sgn \circ f) - L^* \le 2c (A(f) - A^*)^{1/s}.$$
 (3)

c) Que vaut H dans le cas où $\phi = \exp$? Pour quelles constantes s et c la condition (2) est-elle vérifiée?

Solution.

1) Soit $f \in F$. On a

$$\begin{split} \mathbf{A}(f) &:= \mathbb{E}[\phi(-\mathbf{Y}f(\mathbf{X}))] \\ &= \mathbb{E}[\phi(-f(\mathbf{X}))\mathbb{1}_{\{\mathbf{Y}=\mathbf{1}\}} + \phi(f(\mathbf{X}))\mathbb{1}_{\{\mathbf{Y}=-\mathbf{1}\}}] \\ &= \mathbb{E}[\phi(-f(\mathbf{X}))\eta(\mathbf{X}) + \phi(f(\mathbf{X}))(1-\eta(\mathbf{X}))] \quad \text{(espérance totale)} \\ &= \mathbb{E}[h\eta(\mathbf{X})(f(\mathbf{X}))] = \int_{\mathbb{R}^d} h_{\eta(\mathbf{X})}(f(\mathbf{X})) \, \mathbf{P}_{\mathbf{X}}(d\mathbf{X}) \end{split}$$

Ainsi, par construction, si f^* est bien définie pour P_X -presque tout x, elle minimise effectivement le risque convexifié.

Vérifions maintenant cette condition. Pour cela, commençons par rappeler les hypothèses faites sur la fonction $\phi : \mathbb{R} \to \mathbb{R}^+$:

- (i) φ est dérivable,
- (ii) ϕ est strictement convexe,
- (iii) φ est croissante,
- (iv) $\lim_{x\to-\infty} \phi(x) = 0$,
- (v) $\phi(0) = 1$.

On pourra remarquer au passage que $x \in \mathbb{R} \mapsto e^x$ est un exemple de fonction qui satisfait toutes ces hypothèses. On en déduit un certain nombre de propriétés supplémentaires.

- (vi) φ est strictement croissante. Preuve : φ étant strictement convexe sur R, elle y est continue. Elle y est en outre croissante. Par conséquent, si elle n'était pas strictement croissante, elle admettrait au moins un palier, ce qui contredirait la stricte convexité.
- (vii) $\phi > 0$. **Preuve :** Conséquence immédiate des hypothèses (iv) et (vi).
- (viii) $\phi'(0) > 0$. **Preuve**: ϕ étant (strictement) convexe et dérivable, elle vérifie pour tout $x \in \mathbb{R}^*$ l'inégalité $\phi(x) > \phi(0) + \phi'(0)x$ (i.e., la courbe représentative de ϕ est au-dessus de toutes ses tangentes, en particulier de celle en 0). Comme ϕ est strictement croissante, sa dérivée est positive ou nulle. Par l'absurde, si on avait $\phi'(0) = 0$, alors pour tout x < 0, on obtiendrait $\phi(x) > \phi(0)$, ce qui contredirait la croissance de ϕ . On en conclut que $\phi'(0) > 0$.
 - (ix) $\lim_{x\to +\infty} \phi(x) = +\infty$. **Preuve :** Comme précédemment, par (i) et (ii), on a pour tout $x \in \mathbb{R}^*$ l'inégalité $\phi(x) > \phi(0) + \phi'(0)x$. En utilisant (viii), on obtient alors directement que $\lim_{x\to +\infty} \phi(x) = +\infty$.

Prenons maintenant $u \in [0, 1]$ et étudions la fonction h_u .

- − Cas où $u \in \{0, 1\}$. Les propriétés (vi) et (vii) impliquent que φ n'admet pas de minimum, mais seulement un infimum en −∞. Il vient que lorsque $u \in \{0, 1\}$, les fonctions $h_0 : a \in \mathbb{R} \mapsto \varphi(a)$ et $h_1 : a \in \mathbb{R} \mapsto \varphi(-a)$ n'admettent pas de minimum. Ainsi, la fonction f^* n'est pas définie sur l'ensemble $X_0 := \{x \in \mathbb{R}^d : \eta(x) \in \{0, 1\}\}$.
- Cas où $u \in]0,1[$. Commençons par remarquer que
 - (x) $\lim_{a\to +\infty} h_u(a) = \lim_{a\to -\infty} h_u(a) = +\infty$ (d'après (iv) et (ix)),
- (xi) $h_u(0) = 1$, (d'après (v))
- (xii) h_u est continue car ϕ , donc h_u est dérivable. Les points précédents impliquent qu'il existe $\alpha > 0$ tel que pour tout $a \in]-\infty, -\alpha[\cup]\alpha, +\infty[$, on a $h_u(a) > 1 = h_u(0)$. Le point (xii) dit alors que h_u est continue sur $[-\alpha, \alpha]$. Elle y est donc bornée et atteint ses bornes (théorème des valeurs extrêmes), i.e. elle y admet au moins un minimum m_u . Or, ϕ étant strictement convexe, h_u l'est aussi, et m_u est unique sur cet interval
- 2) Soit $x \in \mathbb{R}^d$. Comme ϕ est dérivable (i), la fonction $h_{\eta(x)} : \mathbb{R} \to \mathbb{R}^+$ l'est aussi, et pour tout $a \in \mathbb{R}$, on a

$$h_{\eta(x)}'(a) = -\eta(x)\phi'(-a) + (1-\eta(x))\phi'(a).$$

Vérifions maintenant que la fonction sgn \circ f^* coïncide avec le classifieur de Bayes. Prenons pour cela $x \in \mathcal{X}_1$. Nous avons vu qu'alors $h_{\eta(x)}$ est dérivable, strictement convexe, admettant un minimum m en $f^*(x)$. Par conséquent, $h'_{\eta(x)}(a) = 0$ ssi $a = f^*(x)$. Or $h'_{\eta(x)}(a) = 0$ signifie

$$\frac{\eta(x)}{1-\eta(x)} = \frac{\phi'(a)}{\phi'(-a)}.$$

(comme on a pris $x \in X_1$, on a bien $1 - \eta(x) \neq 0$, puisque φ est strictement convexe et strictement croissante, sa dérivée est positive ou nulle et strictement croissante sur tout \mathbb{R} , donc strictement positive). On a donc l'égalité des rapports

$$\frac{\eta(x)}{1-\eta(x)} = \frac{\phi'(f^*(x))}{\phi'(-f^*(x))}.$$

ďoù

$$\eta(x) > \frac{1}{2} \Leftrightarrow frac\eta(x) 1 - \eta(x) > 1 \Leftrightarrow \frac{\varphi'(f^*(x))}{\varphi'(-f^*(x))} > 1 \Leftrightarrow \varphi(\varphi^*(x)) > \varphi(-\varphi^*(x)) \Leftrightarrow f^*(x) > 0.$$

 (ϕ') strictement croissante car ϕ strictement convexe)

Finalement, on a bien

$$\operatorname{sgn} \circ f^*(x) := 2\mathbb{1}\{f^*(x) > 0\} - 1 = 2\mathbb{1}\{\eta(x) > \frac{1}{2}\} - 1,$$

pour P_X -presque tout $x \in \mathbb{R}^d$. La fonction sgn $\circ f^*$ coïncide effectivement avec le classifieur de Bayes.

3) (a) Soit $f \in \mathcal{F}$. Nous avons vu à l'exercice 2 du TD 2 que l'on pouvait écrire dans le cas présent

$$L(\operatorname{sgn} \circ f) - L^* = 2\mathbb{E}\left[\left|\eta(X) - \frac{1}{2}\right| \left|\mathbb{1}\{f(X) \le 0\} - \mathbb{1}\{\eta(X) \le \frac{1}{2}\}\right|\right].$$

Or on peut remarquer que pour tout $x \in \mathbb{R}^d$,

$$\left|\mathbb{I}\{f(X) \le 0\} - \mathbb{I}\{\eta(X) \le \frac{1}{2}\}\right| = \begin{cases} 0 \text{ si } \mathrm{sgn}(\mathbf{f}(\mathbf{x})) = \mathrm{sgn}(2\eta(\mathbf{x}) - 1) \\ 1 \text{ sinon} \end{cases} \le \mathbb{I}\{(2\eta(\mathbf{x}) - 1)\mathbf{f}(\mathbf{x}) \le 0\}$$

d' ou

$$L(\operatorname{sgn} \circ f) - L^* \le 2\mathbb{E}\left[\left|\eta(X) - \frac{1}{2}\right| \mathbb{I}\{(2\eta(\mathbf{x}) - 1)\mathbf{f}(\mathbf{x}) \le 0\}\right]$$
$$= 2\mathbb{E}\left[\left(\left|\eta(X) - \frac{1}{2}\right| \mathbb{I}\{(2\eta(\mathbf{x}) - 1)\mathbf{f}(\mathbf{x}) \le 0\}\right)^{\frac{s}{s}}\right]$$

$$\leq \left(2\mathbb{E}\left(\left|\eta(X) - \frac{1}{2}\right|^{s} \mathbb{1}\left\{(2\eta(\mathbf{x}) - 1)\mathbf{f}(\mathbf{x}) \leq 0\right\}\right)\right)^{\frac{1}{s}}$$

en utilisant l'inégalité de Jensen pour la fonction concave $x \in \mathbb{R}_+^* \mapsto x^{\frac{1}{s}}$ qui, comme la fonction convexe intérieure $x \in \mathbb{R}_+^* \mapsto x^s$, peut être prolongée par continuité en 0 pour s > 1 (ainsi toutes les écritures ci-dessus ont bien du sens).

(b) Par hypothèse, il existe des réels s > 1 et c > 0 tels que pour tout $u \in]0,1[$ on a

$$\left|\frac{1}{2}-u\right|^s \le c^s(1-\mathrm{H}(u)).$$

Par conséquent, pour tout $x \in X_1$ on a

$$\left|\frac{1}{2} - u\right|^s \le c^s (1 - \mathrm{H}(\eta(x))).$$

avec $H(\eta(x)) := \min h_{\eta(x)}(a) = h_{\eta(x)}(f^*(x))$ d'après la question 1. Soit maintenant $f \in \mathcal{F}$. En repartant du résultat de la question 3.a, cette dernière inégalité

$$L(\operatorname{sgn} \circ \mathbf{f}) - L^* \le 2\mathbb{E}[c^s(1 - h_{\eta(X)}(\mathbf{f}^*(X)))\mathbb{1}\{(2\eta(X) - 1)\mathbf{f}(X) \le 0\})]^{\frac{1}{s}}$$
$$= 2c\mathbb{E}[(1 - h_{\eta(X)}(\mathbf{f}^*(X)))\mathbb{1}\{(2\eta(X) - 1)\mathbf{f}(X) \le 0\})]^{\frac{1}{s}}$$

Puisque la fonction $x \in \mathbb{R}_+^* \mapsto x^{\frac{1}{s}}$ prolongée par continuité en 0 est croissante pour s > 1 et puisque c > 0, il nous reste à vérifier que $A(\mathbf{f}) - A^*$ majore cette dernière espérance. Nous avons vu en question 1 que $A(\mathbf{f}) - A^* = \mathbb{E}[h_{\eta(X)}(\mathbf{f}(X)) - h_{\eta(X)}(\mathbf{f}^*(X))]$. Prenons maintenant $\mathbf{x} \in \mathcal{X}_1$.

- Si $(2\eta(x) - 1)f(x) > 0$, alors par définition de f^* on a

$$(1 - h_{\eta(\mathbf{x})}(\mathbf{f}^*(\mathbf{x})))\mathbb{1}\{(2\eta(\mathbf{x}) - 1)\mathbf{f}(\mathbf{x}) \le 0\} = 0 \le h_{\eta(\mathbf{x})}(\mathbf{f}(\mathbf{x})) - h_{\eta(\mathbf{x})}(\mathbf{f}^*(\mathbf{x})).$$

- Si $(2\eta(\mathbf{x}) - 1)\mathbf{f}(\mathbf{x}) \le 0$, alors

$$\begin{split} h_{\eta(\mathbf{x})}(\mathbf{f}(\mathbf{x})) &= \eta(\mathbf{x}) \varphi(-\mathbf{f}(\mathbf{x})) + (1 - \eta(\mathbf{x})) \varphi(\mathbf{f}(\mathbf{x})) \text{ (par d\'efinition de } h_{\eta(\mathbf{x})} \\ &> \varphi(-\eta(\mathbf{x})\mathbf{f}(\mathbf{x}) + (1 - \eta(\mathbf{x}))\mathbf{f}(\mathbf{x})) \text{ (φ strictement convexe)} \\ &= \varphi(-\mathbf{f}(\mathbf{x})(2\eta(\mathbf{x}) - 1)) \\ &\geq \varphi(0) \text{ (φ croissante et } -\mathbf{f}(\mathbf{x})(2\eta(\mathbf{x}) - 1) \geq 0) \\ &= 1, \text{ par (v)} \end{split}$$

puis

$$\begin{split} h_{\eta(\mathbf{x})}(\mathbf{f}(\mathbf{x})) - h_{\eta(\mathbf{x})}(\mathbf{f}^*(\mathbf{x})) &\geq 1 - h_{\eta(\mathbf{x})}(\mathbf{f}^*(\mathbf{x})) \\ &= (1 - h_{\eta(\mathbf{x})}(\mathbf{f}^*(\mathbf{x}))) \mathbb{1}\{(2\eta(\mathbf{x}) - 1)\mathbf{f}(\mathbf{x}) \leq 0\}. \end{split}$$

Nous avons donc démontré que

$$h_{n(X)}(f(X)) - h_{n(X)}(f^{*}(X)) \ge (1 - h_{n(X)}(f^{*}(X)))\mathbb{1}\{(2\eta(X) - 1)f(X) \le 0\}$$

 P_X -p.s. et l'inégalité reste donc vraie en passant à l'espérance des deux côtés. In fine, nous avons bien montré que

$$L(\operatorname{sgn} \circ f) - L^* \le 2c(A(f) - A^*)^{\frac{1}{s}}$$

(c) Soient maintenant $\phi: x \in \mathbb{R} \mapsto e^x$ et $u \in]0,1[$. Alors pour tout $a \in \mathbb{R}$, on a $\phi(a) = ue^{-a} + (1-u)e^a$, qui atteint son minimum en $a_u \in \mathbb{R}$ tel que

$$\frac{u}{1-u} = \frac{e^{a_u}}{e^{-a_u}} = e^{2a_u}$$
 i.e., en $a_u = \frac{1}{2} \ln \left(\frac{u}{1-u} \right)$,

et

$$h_u(a_u) = u\sqrt{\frac{1-u}{u}} + (1-u)\sqrt{\frac{u}{1-u}} = 2\sqrt{u}\sqrt{1-u}$$

La fonction H s'écrit alors H : $u \in]0,1[\mapsto 2\sqrt{u}\sqrt{1-u}.$ Elle est dérivable, de dérivée H'(u) : $u \in]0,1[\mapsto \frac{1-2u}{\sqrt{u(1-u)}}$ et H'(u) = 0 \Leftrightarrow H(u) = 1 \Leftrightarrow u = $\frac{1}{2}$ for $u \in]0,1[$.

On remarque alors que pour tout $u \in]0,1[$, on a $\sqrt{u}\sqrt{1-u} \leq \frac{1}{2},$ d'où

$$1 - H(u) = 1 - 2\sqrt{u}\sqrt{1 - u} = 2\left(\frac{1}{2} - \sqrt{u}\sqrt{1 - u}\right)$$

$$\geq 2\left(\frac{1}{2} - \sqrt{u}\sqrt{1 - u}\right)\left(\frac{1}{2} + \sqrt{u}\sqrt{1 - u}\right) \quad \text{(la dernière parenthèse est } \leq 1\text{)}$$

$$\geq 2\left(\frac{1}{4} - u(1 - u)\right) = 2\left(\frac{1}{4} + u^2 - u\right)$$

$$= 2\left(\frac{1}{2} - u\right)^2$$

qui donne finalement

$$\left|\frac{1}{2} - u\right|^2 \le \frac{1}{2}(1 - H(u)).$$

Les constantes s=2 et $c=\sqrt{\frac{1}{2}}$ permettent donc de vérifier la condition (2).