# Bölüm 4: Dosya Sistemleri

İşletim Sistemleri

- Birçok uygulama, bir sürecin sanal adres alanında sahip olduğundan daha fazla bilgi depolaması gerekir.
- Bilgiler, onu kullanan sürecin sona ermesinden sonra da hayatta kalmalıdır.
- Birden çok süreç aynı anda bilgilere erişebilmelidir.

- Diskler dosyaları depolamak için kullanılır
- Bilgiler disklerdeki bloklarda saklanır.
- Dosya sistemi blokları okuyabilir ve yazabilir
- Dosyalar, süreçler tarafından oluşturulan, adres uzayı türüne benzer, mantıksal bilgi birimleridir.
- Dosya sistemi dosyaları yönetir: nasıl yapılandırıldıkları, adlandırıldıkları, erişildikleri, kullanıldıkları, korundukları, uygulandıkları vb.

- Bir diskte bloklar halinde tutulan bilgilere erişimle başa çıkmak için dosya sistemi bir soyutlama olarak kullanılır
- Dosyalar bir süreç tarafından oluşturulur
- Bir diskte binlerce dosya bulunabilir
- İşletim sistemi tarafından yönetilir

- İşletim sistemi dosyaları yapılandırır, adlandırır, korur
- Dosya sistemine bakmanın iki yolu var
  - Kullanıcı bir dosyayı nasıl adlandırırız, koruruz, dosyaları nasıl düzenleriz
  - Uygulama bir diskte nasıl düzenlenirler? (organize)
- Kullanıcı bakış açısıyla
  - Adlandırma (naming)
  - Yapı (structure)
  - Dizinler (directories)

#### Adlandırma

- Mevcut tüm işletim sistemlerinde bir ila 8 harf
- Unix, MS-DOS (FAT16) dosya sistemleri ele alındı
- İlk Windows sistemlerde FAT16 ve FAT32 kullanılmıştır.
- Son Windows sistemler Yerel (native) dosya sistemi kullanır
- Tüm işletim sistemleri adın bir parçası olarak sonek (suffix) kullanır
- Unix sonekler 'in bir anlam ifade etmesini zorlamazken, DOS sistemde soneklerin bir anlamı vardır
- Sonek uzantı olarak da kullanılmaktadır.

#### Sonek Örnekleri

```
• Belgeler: .doc, .docx, .pdf, .txt, .rtf, .odt
```

```
• Görseller: .jpg, .jpeg, .png, .gif, .bmp, .tiff
```

- Ses: .mp3, .wav, .aiff, .m4a, .wma
- Video: .mp4, .avi, .mov, .wmv, .flv
- E-tablolar: .xls, .xlsx, .csv
- Sunumlar: .ppt, .pptx, .odp
- Web: .html, .css, .js
- Yürütülebilir: .exe, .msi
- Sıkıştırılmış: .zip, .rar, .tar, .gz, .7z

| doc  | Microsoft Word Document                |
|------|----------------------------------------|
| docx | Microsoft Word Open XML Document       |
| pdf  | Portable Document Format               |
| txt  | Plain Text File                        |
| rtf  | Rich Text Format                       |
| odt  | Open Document Text                     |
| jpg  | Joint Photographic Experts Group Image |
| jpeg | Joint Photographic Experts Group Image |
| png  | Portable Network Graphics              |
| gif  | Graphics Interchange Format            |

| bmp  | Bitmap Image                  |
|------|-------------------------------|
| tiff | Tagged Image File Format      |
| mp3  | MPEG-1 Audio Layer 3          |
| wav  | Waveform Audio Format         |
| aiff | Audio Interchange File Format |
| m4a  | MPEG-4 Audio                  |
| wma  | Windows Media Audio           |
| mp4  | MPEG-4 Part 14                |
| avi  | Audio Video Interleave        |
| mov  | Apple QuickTime Movie         |

| wmv  | Windows Media Video                        |
|------|--------------------------------------------|
| flv  | Flash Video                                |
| xls  | Microsoft Excel Spreadsheet                |
| xlsx | Microsoft Excel Open XML Spreadsheet       |
| CSV  | Comma Separated Values                     |
| ppt  | Microsoft PowerPoint Presentation          |
| pptx | Microsoft PowerPoint Open XML Presentation |
| odp  | Open Document Presentation                 |
| html | HyperText Markup Language                  |
| CSS  | Cascading Style Sheets                     |

| js  | JavaScript                |
|-----|---------------------------|
| exe | Executable File           |
| msi | Windows Installer Package |
| zip | Zipped File               |
| rar | RAR Archive               |
| tar | Tape Archive              |
| gz  | GZIP Compressed Archive   |
| 7z  | 7-Zip Compressed Archive  |
|     |                           |
|     |                           |

## Dosya Yapısı

- Bayt dizilerinden oluşur
- Maksimum esneklik içine her şey konabilir
- Unix ve Windows bu yaklaşımı kullanır
- Sabit uzunluklu kayıtlar (eskiden kart imajları)
- Kayıt ağacı ağaçtaki kayıtları bulmak için anahtar alanı (key field) kullanır

## Dosya Yapısı

(a) Bayt dizisi. (b) Kayıt dizisi. (c) Ağaç



## Dosya Tipleri

- Normal Kullanıcı bilgilerini içerir
- Dizinler Dosyaların izini tutan dosyalardır
- Karakter özel dosyaları seri (serial) model G/Ç cihazları (yazıcı)
- Blok özel dosyaları blok tabanlı modeller (disk)

## Normal (regular) Dosyalar

- ASCII veya ikili (binary)
- ASCII
  - Yazdırılabilir
  - Programları bağlamak için boru hattı (pipe) kullanılabilir (ASCII üretiyor/tüketiyorsa)

# İkili Dosya Tipleri

- İki Unix örneği
  - Yürütülebilir (magical field, dosyayı yürütülebilir olarak tanımlar)
  - Arşiv olarak derlenmiş, bağlı (linked) kütüphane prosedürleri hariç
- Her işletim sistemi kendi yürütülebilir dosyasını tanımalıdır

# İkili Dosya Tipleri

- (a) Yürütülebilir dosya (.exe)
- (b) Derlenmiş ancak bağlanmamış arşiv kütüphanesi (.o)





## Dosya Erişimi

- Sıralı erişim okumaya baştan başlanır, atlama yapılmaz
  - Manyetik banda karşılık gelir
- Rastgele erişim okumak istenen yerden başlanır
  - Disklerle beraber devreye girdi
  - Birçok uygulama için gereklidir, (havayolu rezervasyon sistemi)
- Dosya tanımlayıcı
  - Bir dosya tanımlayıcı, bir işlemin okuyabileceği veya yazabileceği, çekirdek tarafından yönetilen bir nesneyi temsil eden küçük bir tamsayıdır.
  - Her işlemin, 0'dan başlayan özel bir dosya tanıtıcı alanı vardır.
  - Geleneksel olarak, 0 standart girdi, 1 standart çıktı ve 2 standart hatadır

# Dosya Öznitelikleri

| Read-only            | Dosya yalnızca okunabilir, değiştirilemez veya silinemez.                              |
|----------------------|----------------------------------------------------------------------------------------|
| Hidden               | Dosya, dosya gezgininin normal görünümünde görünmez.                                   |
| System               | Dosya işletim sistemi tarafından kullanılır ve değiştirilmemeli silinmemelidir.        |
| Archive              | Dosya, yedeklendikten sonra değiştirilmiş, sonraki yedeklemeye dahil edilmeli.         |
| Compressed           | Dosya, disk alanından tasarruf etmek için sıkıştırılmıştır.                            |
| Encrypted            | Yetkisiz erişimi önlemek için dosya şifrelenmiştir.                                    |
| Temporary            | Dosya geçici olarak kullanılır ve ihtiyaç kalmadığında otomatik olarak silinir.        |
| Executable           | Dosya çalıştırılabilen bir programdır.                                                 |
| Indexed              | Dosya, daha hızlı arama için indeksleme hizmetine dahil edilmiştir.                    |
| Offline              | Dosya anlık kullanım için değildir, çevrimdışı kullanım için hazır hale getirilebilir. |
| Not content indexed  | Dosya, aramayı hızlandırmak için indeksleme hizmetinden çıkarılır.                     |
| Reparse point Sercan | Dosya, başka bir dosyaya veya dizine bir bağlantı veya referans içerir.                |

# Dosya Öznitelikleri

| Sparse file      | Dosya, diskte depolanmayan büyük sıfır blokları içeren bir dosya türüdür.                           |
|------------------|-----------------------------------------------------------------------------------------------------|
| Symlink          | Dosya, başka bir dosya veya dizine sembolik bir bağlantıdır.                                        |
| Device           | Dosya, işletim sistemi tarafından kullanılan özel bir aygıt dosyasıdır.                             |
| Junction point   | Dosya, başka bir birimdeki bir dizine işaret eden bir tür sembolik bağlantıdır.                     |
| Creation time    | Dosyanın oluşturulduğu tarih ve saat                                                                |
| Last Access      | Dosyaya en son erişildiği tarih ve saat                                                             |
| Last change      | Dosyanın en son değiştirildiği tarih ve saat                                                        |
| Current size     | Dosyadaki bayt sayısı                                                                               |
| Max size         | Dosyanın büyüyebileceği bayt sayısı                                                                 |
| Owner            | Dosyayı sahibinin kimliği                                                                           |
| Creator          | Dosyayı oluşturan kişinin kimliği                                                                   |
| 1/20/2023 Sercan | KÜLCÜ, Tanenbaum, Modern Operating Systems 3e kitabından faydalanılmıştır. Tüm hakları saklıdır. 20 |

### Stat Veri Yapısı

```
struct stat {
               st mode; // file type and mode (permission)
     mode t
               st ino; // inode number
     ino t
               st dev; // device number
     dev t
    dev t
               st rdev; // device number (special)
    nlink t
               st nlink; // number of links
     uid t
               st uid; // user ID of owner
    gid t
               st gid; // group ID of owner
               st size; // size in bytes
     off t
     time t
               st atime; // time of last access
```

# Dosya Öznitelikleri

```
drwxr-xr-x 2 root root 4096 Sep 24 2008 Unit2
drwxr-xr-x 2 root root 4096 May 26 19:21 a
-rwxr-xr-x 1 root root 10930 Aug 5 22:49 a.out
-rwxrwx--T 1 root root 81 Aug 2 2008 a.txt
-rwxr-x--- 1 root root 81 May 26 19:20 b.txt
-rwx----- 1 root root 81 Jul 30 19:28 c.txt
-rwxr-xr-x 1 root root 11193 Jul 30 19:27 cp
```

# Dosya Öznitelikleri

• - rwx rw- r--

- Dosya türü: "-" bir dosya anlamına gelir. "d" bir dizin anlamına gelir.
- Dosyanın sahibi için okuma, yazma ve yürütme izinleri (rwx)
- Dosyanın sahibi olan grubun üyeleri için okuma, yazma ve yürütme izinleri (rw-)
- Diğer tüm kullanıcılar için okuma, yazma ve yürütme izinleri (r--)

## Dosyalar için Sistem Çağrıları

- Oluştur veri olmadan, bazı öznitelikleri ayarlar (create)
- Sil Disk alanını boşaltmak için (delete)
- Aç Oluşturduktan sonra, öznitelikleri ve disk adreslerini ana belleğe alır (open)
- Kapat Öznitelikler ve adresler tarafından kullanılan tablo alanını boşaltır (close)
- Okuma İşaretçinin geçerli konumundan okuma işlemi. Verilerin yerleştirileceği arabelleği belirtmek gerekir (read)
- Yazma genellikle işaretçinin geçerli konuma yazma işlemi (write)

# Dosyalar için Sistem Çağrıları

- Ekle dosyanın sonuna ekleme işlemi (append)
- Ara dosya işaretçisini dosyada belirli bir yere koyar. (seek) Bu konumdan okuma veya yazma yapılır.
- Öznitelikleri Al örneğin, derleme yapılacağında dosyaların en son değişiklik zamanlarını öğrenmek için.
- Öznitelikleri Ayarla örneğin, erişim koruma (r,w,x) ayarlama
- Yeniden adlandırmak (rename)

# Dosya Kopyalama Örneği – copy abc xyz

- abc dosyasını xyz'ye kopyalar
- Eğer xyz varsa üzerine yazılır
- Yok ise yaratılır
- Sistem çağrıları kullanılır (okuma, yazma)
- 4K boyutunda parçalar halinde okur ve yazar
- abc dosyasından bir tampon belleğe oku (read sistem çağrısı)
- Tampondan xyz dosyasına yaz (write sistem çağrısı)

#### Dizinler

- Bir dosya koleksiyonunu düzenlemek için kullanılan dosyalar
- Bazı işletim sistemlerinde klasörler (folder) olarak da adlandırılır
- Katı bağlama (hard link)
  - Bağlama, bir dosyanın birden fazla dizinde görünmesini sağlar; dosyanın idüğümündeki sayacı artırır
- Sembolik bağlama (symbolic link)
  - Başka bir dosyayı adlandıran küçük bir dosyaya işaret (point) eden bir ad oluşturulur.

# Dört Dosya İçeren Tek Düzeyli Dizin

•



# Hiyerarşik Dizin Sistemleri

•



# Yol (path) Adları

- Mutlak /usr/sercan/os/slaytlar
- Bağıl os/slaytlar
- . Geçerli (çalışan) dizini ifade eder
- .. Geçerli dizinin ebeveynini (bir üst klasör) ifade eder

# UNIX Dizin Ağacı

•



# Dizin İşlemleri

- Create, dizin oluşturur
- Delete, dizini siler, silmek için dizin boş olmalıdır
- Opendir, dizinde bir işlem yapılmadan önce yapılmalıdır.
- Closedir, tüm işlemlerden sonra yapılır
- Readdir, açılmış dizindeki bir sonraki girişi (elemanı) döndürür
- Rename, Yeniden adlandırır
- Link, Dosyayı başka bir dizine bağlar
- Unlink, Bağlantıyı Kaldırır, Dizin girişinden kurtulur

## Dosya Gerçekleme (implementation)

- Dosyalar disklerde saklanır.
- Diskler bir veya daha fazla bölümden (partition) oluşabilir.
- Her bölümde ayrı «dosya sistemi» olabilir
- Diskin O. sektörü, Ana Önyükleme Kaydıdır (master boot record)
- Bilgisayarın açılışı (boot) için kullanılır
- MBR'nin sonu bölüm tablosuna sahiptir.
- Tabloda her bölümün başlangıç ve bitiş adresleri bulunur.
- Bölümlerden biri, etkin (active) olarak işaretlenir

## Dosya Gerçekleme (implementation)

- Bilgisayarın açılışı => BIOS, MBR'yi okur/yürütür
- MBR aktif bölümü bulur ve ilk bloğu okur (önyükleme bloğu)
- Önyükleme bloğundaki program, o bölüm için işletim sistemini bulur ve okur.
- Tüm bölümler bir önyükleme bloğuyla başlar

# Dosya Sistemi Düzeni (layout)

•



# Dosya Sistemi Düzeni (layout)

- Boot block: Önyükleme yükleyici kodunu içeren diskin ilk bloğu. Çekirdeği belleğe yükleyerek işletim sistemini başlatmak için.
- Superblock: Dosya sistemi hakkında bilgi içeren veri yapısı. Dosya sisteminin boyutu, boş alan yönetimi ve blok boyutu gibi bilgileri depolar.
- Free Space Management: Boş blokları takip etme ve bunları yeni dosya ve dizinlere tahsis etme mekanizması. Dosya sistemini düzenli tutar, parçalanmayı azaltır ve disk alanı kullanımını en üst düzeye çıkarmak.

### Dosya Sistemi Düzeni (layout)

- i-nodes: Bir dosya veya dizin hakkında bilgi içeren bir veri yapısı. Boyut, izinler, sahiplik, zaman damgaları ve dosya verilerinin konumu gibi meta verileri depolar.
- Root directory: Dosya sistemi hiyerarşisinde en üstteki dizin. Dosya sistemindeki dosyalara ve dizinlere erişim için başlangıç noktasıdır.
- Files: Kalıcı olarak saklanması gereken bir programın, belgenin veya diğer verilerin içeriğini saklar.
- Directory: Daha kolay gezinme ve yönetim için dosyaları yapılandırır ve kategorilere ayırır.

### Dosya Sistemi Düzeni (layout)

- Dosya sistemi, bir diskteki verilerin düzenlenmesi ve işletim sistemi tarafından yönetilmesidir.
- Önyükleme bloğu, süper blok, i-düğümler ve dizinler gibi dosya sisteminin her bileşeni, diskte depolanan verilerin yönetilmesinde ve bunlara erişilmesinde belirli bir rol oynar.
- Dosya sistemi seçimi ve tasarımı, işletim sisteminin performansını, güvenilirliğini ve verimliliğini etkiler.
- Dosya sistemi, işletim sisteminin kritik bir bileşenidir ve tasarımı, diskin boyutu, depolanan veri türü ve verilere erişen kullanıcı sayısı gibi sistemin ihtiyaçlarını dikkate almalıdır.

## Blokların Dosyalara Tahsisi

- En önemli uygulama sorunu
- Yöntemler
  - Bitişik yer tahsisi (contiguous)
  - Bağlı liste tahsisi (linked list)
  - Tablo (table) kullanılarak bağlı liste tahsisi
  - I-nodes

### Bitişik Yer Tahsisi

- Bir dosyaya bitişik disk sektörleri bloğu atayarak disk alanı ayırma yöntemi.
- Basit ve verimli bir yöntem, okuma performansı harika.
- Uygulaması kolay, verilere hızlı erişim.
- Dahili parçalanma nedeniyle disk alanını boşa harcar, daha büyük dosyalara yer tahsisi zordur ve disk kullanımını sınırlar.
- Dosyadaki ilk bloğu bulmak için yalnızca bir arama (seek) yeterli
- Disk zamanla parçalanır (fragmented)
- CD-ROM'lar, dosya sistemi boyutu sabit olduğundan bitişik yer tahsisi

### Bitişik Yer Tahsisi

(a) 7 dosya için bitişik disk alanı tahsisi. (b) D ve F dosyaları kaldırıldıktan sonra diskin durumu.



## Bağlı Liste Yer Tahsisi

- İşaretçiler kullanarak disk sektörü bloklarını birbirine bağlayarak disk alanı ayırma yöntemi.
- Disk alanının dinamik tahsisine izin verir, bitişik tahsisin sınırlamalarını kaldırır. Rastgele erişim yavaştır.
- Dahili parçalanmayı en aza indirir, disk alanının dinamik olarak tahsis edilmesini sağlar ve disk kullanımını geliştirir.
- Verilere daha yavaş erişim, uygulanması daha karmaşık ve işaretçileri depolamak için ek bellek gerektirir.

### Bağlı Liste Yer Tahsisi

• Bir dosyayı, disk bloklarından bağlı liste olarak saklamak.



## Tablo Kullanılarak Bağlı Liste Yer Tahsisi

- Disk sektörü bloklarına işaretçileri depolamak için bir tablo kullanarak disk alanı ayırma yöntemi.
- Verilere erişim hızını artırmak ve bağlantılı liste tahsisinin bellek gereksinimlerini azaltmak.
- Verilere daha hızlı erişim, daha düşük bellek gereksinimleri ve gelişmiş disk kullanımı.
- Uygulaması daha karmaşıktır ve dahili parçalanmaya neden olabilir.
- File Allocation Table (FAT)

### Tablo Kullanılarak Bağlı Liste Yer Tahsisi

- Tüm tabloyu bellekte tutar!
- Ölçeklenebilir değil!
- Tablonun boyutu gerçekten büyük oluyor
- Örneğin, 1 KB bloklu 200 GB disk, 600 MB'lık bir tabloya ihtiyaç duyar
- Tablo boyutunun büyümesi, disk boyutunun büyümesiyle doğru orantılıdır

# Tablo Kullanılarak Bağlı Liste Yer Tahsisi

Ana bellekte bir dosya tahsis tablosu kullanarak bağlantılı liste yer

tahsisi.



#### **I-nodes**

- Dosya sistemindeki dosyaları ve dizinleri temsil etmek için bir i-düğüm tablosu kullanarak disk alanı ayırma yöntemi.
- Disk alanı tahsis etmek ve her dosya ve dizin için meta verileri yönetmek için esnek ve verimli bir yöntem sağlar.
- Dahili parçalanmayı en aza indirir, disk alanının esnek bir şekilde tahsis edilmesini sağlar ve meta verilerin etkin yönetimini sağlar.
- Uygulanması daha karmaşıktır, i-düğümleri depolamak için ek bellek gerektirir ve disk kafasının daha fazla hareket etmesine neden olabilir.

#### **I-nodes**

- Veri yapısını yalnızca açık dosyalar için bellekte tutar
- Veri yapısı, blokların adreslerini ve dosyaların özniteliklerini listeler
- K aktif dosya, dosya başına N blok => en fazla K\*N blok
- Dosya tablosu disk boyu ile orantılıdır, Büyüme sorununu çözer
- N ne kadar büyük olabilir?
- Tablodaki son giriş, diğer disk bloklarına işaretçiler içeren disk bloğuna işaret eder.
- i-node büyüklüğü sabittir!

### Örnek I-node

•



- Open file, dizini bulmak için kullanılan yol adı (path)
- Dizin, aşağıdakileri bilgileri kullanarak blok adreslerini belirtir
  - İlk bloğun adresi (bitişik yer)
  - İlk bloğun sayısı (bağlı liste)
  - i-node sayısı

(a) disk adresleri ve nitelikleri ile sabit boyutlu girişler (DOS) (b) her giriş bir i-node ifade eder. Dizin girişi öznitelikleri içerir. (Unix)





- Değişken uzunluklu adlarla nasıl başa çıkarız?
- Çok uzun adlar problem
- İki yaklaşım
  - Sabit başlık ve ardından değişken uzunluklu adlar
  - Yığın işaretçisi adları işaret eder

• uzun dosya adlarını işleme. (a) Sıralı. (b) yığın içinde.





# Paylaşımlı Dosyalar

 Paylaşılan bir dosya içeren dosya sistemi. Dosya sistemleri Bir yönlendirilmiş döngüsüz ağaçtır (DAG)



# Paylaşımlı Dosyalar

- B veya C yeni bloklar eklerse, diğer sahip nasıl öğrenir?
- Paylaşılan dosyalar için özel i-node kullan dosyanın paylaşıldığını gösterir
- Sembolik bağlantı (symbolic link) kullanın sahibi C ise, B'nin dizinine konulan özel bir dosya. Bağlı (linked) olduğu dosyanın yol adını içerir

#### I-node Problem

- C dosyayı kaldırırsa, B'nin dizini paylaşılan dosya için hala i-node'u işaret eder.
- i-node başka bir dosya için yeniden kullanılırsa, B'nin girişi noktası yanlış i-node'u gösterir.
- Çözüm, i-node'dan çıkmak ve sahip sayısını azaltmaktır.

#### I-node Problem

(a) Bağlamadan önceki durum. (b) Bağlantı oluşturulduktan sonra. (c) Orijinal sahibi dosyayı kaldırdıktan sonra.



### Sembolik Bağlantı

- Sembolik bağlantı sorunu çözer
- Çok fazla sembolik bağlantıya sahip olabilir ve bunların takip edilmesi zaman alır.
- Büyük avantaj diğer makinelerdeki dosyalara işaret edebilir

## Günlük (log) Yapılandırılmış Dosya Sistemi

- Disk bloklarına bir günlük veya güncelleme dizisi olarak yazarak diskteki verileri düzenleme yöntemi.
- Rastgele disk erişiminden kaçınarak, büyük ölçekli depolama sistemleri için yüksek performanslı bir dosya sistemi sağlar.
- Geliştirilmiş yazma performansı, basitleştirilmiş disk alanı yönetimi ve verimli disk alanı kullanımı.
- Günlük kaydı işlemi, karmaşık tasarım ve günlük düzgün bir şekilde korunmadığı takdirde potansiyel veri kaybı nedeniyle daha yüksek ek yük.

## Günlük (log) Yapılandırılmış Dosya Sistemi

- İşlemciler daha hızlı, diskler ve bellekler daha büyük ancak disk arama süresi kısa değil
- Diskteki verilerin güncellenmesi gerektiğinden yazma işlemleri optimize edilmeli
- Daha büyük önbellekler kullanılarak, önbellekten okuma yapılabilir
- i-node haritası diskte tutulur ve i-node'ları bulmak için bellekte önbelleğe alınabilir
- Bu yöntemde, disk log-collect olarak yapılandırılır ve loglar periyodik olarak diskteki bir segmente gönderir.
- Segment, içerik özetine sahiptir (i-nodes, dizinler....).

## Günlük (log) Yapılandırılmış Dosya Sistemi

- Temizleyici iş parçacığı günlük dosyasını sıkıştırır.
- Segmenti mevcut i-düğümler için tarar, kullanılmayanları atar ve mevcut olanları belleğe gönderir.
- Yazıcı iş parçacığı, mevcut olanları yeni segmente yazar.
- Çoğu dosya sistemiyle uyumlu değil
- Kullanılmıyor

### Günlük (journaling) Dosya Sistemleri

- Diske kaydedilmeden önce dosya sistemindeki değişikliklerin günlüğünü veya günlüğünü tutarak diskteki verileri düzenleme yöntemi.
- Çökme veya sistem arızası durumunda dosya sisteminin kurtarılmasına izin vererek sağlam ve güvenilir bir dosya sistemi sağlar.
- Geliştirilmiş güvenilirlik, sistem arızalarından sonra daha hızlı kurtarma ve azaltılmış veri kaybı.
- Günlük tutma işlemi nedeniyle artan ek yük ve ek disk G/Ç nedeniyle potansiyel performans düşüşü.

### Günlük (journaling) Dosya Sistemleri

- Eylemleri gerçekleştirmeden önce bir günlük tut, günlüğü diske yaz
- NTFS (Windows) ve Linux günlük kaydı kullanır
- Bir dosyanın kaldırılması gerektiğinde neler olur
  - Dosyayı bulunduğu dizinden kaldır
  - i-node'u serbest i-node havuzuna bırak
  - Tüm disk bloklarını boş disk blokları havuzuna döndür
  - Bu süreçte bir yerde bir çökme olursa ortalık karışır

### Günlük (journaling) Dosya Sistemleri

- Eylemler eşgüçlü (idempotent) olmalı. Bunu yapmak için veri yapıları düzenlenmeli
- İdempotence: kaç kez gerçekleştirirseniz gerçekleştirin, aynı sonucu elde edersiniz.
- Blok n'yi serbest olarak işaretle, idempotent bir işlemdir.
- Bir listenin sonuna serbest bırakılmış bloklar eklemek idempotent değildir

- Altta yatan disk düzeninden bağımsız olarak farklı dosya sistemlerine erişim için ortak bir arabirim sağlayarak diskteki verileri düzenleme yöntemi.
- Birden çok dosya sisteminin aynı fiziksel disk üzerinde bir arada bulunmasına izin vererek ve bunlara erişim için ortak bir arabirim sağlayarak esnek ve ölçeklenebilir bir dosya sistemi sağlar.
- Geliştirilmiş esneklik, ölçeklenebilirlik ve uyumluluğun yanı sıra azaltılmış disk G/Ç.
- VFS'nin farklı disk düzenlerini ve dosya sistemi türlerini işleyebilmesi gerektiğinden artan karmaşıklık ve VFS ek bir soyutlama katmanı eklediğinden performans düşüşü.

- Windows, dosya sistemi sürücüleri belirtir
- Unix, VFS'ye entegre olur
  - VFS sistem çağrıları kullanıcıdan
  - Alt seviye çağrılar gerçek dosya sistemine yapılır
- Ağ Dosya Sistemini destekler dosya uzak bir makinede olabilir

•



### Sanal Dosya Sistemi Nasıl Çalışır

- Dosya sistemi VFS'ye kaydolur (önyükleme sırasında)
- Kayıt sırasında fs, vfs'nin istediği fonksiyon çağrılarının adres listesini sağlar.
- Vfs, yeni fs i-node'dan bilgi alır ve onu bir v-node'a yerleştirir
- Süreç için fd (file descriptor) tablosuna giriş yapar
- Süreç bir çağrı yaptığında (örn. okuma), fonksiyon işaretçileri somut fonksiyon çağrılarına işaret eder

 VFS'nin kullandığı veri yapıları



### Dosya Sistemi Yönetimi ve Optimizasyonu

- Disk alanı yönetimi
- Dosya sistemi yedeklemeleri
- Dosya sistemi tutarlılığı
- Dosya sistemi performansi

#### Disk Alanı Yönetimi

- Bitişik olması gerekmeyen sabit boyutlu bloklar kullanılmalı
- Dosyalar ardışık bayt serisi olarak saklanırsa ve dosya büyüdüğünde taşınması gerekir!
- Optimum (iyi) blok boyutu nedir?
  - Dosya boyutu dağılımı hakkında bilgiye ihtiyaç var.
- Dosya sistemi tasarlarken genel (generic) düşünülmeli

### Disk Alanı Yönetimi

#### Verilen boyuttan daha küçük olan dosyaların yüzdesi

| Length | VU 1984 | VU 2005 | Web   |
|--------|---------|---------|-------|
| 1      | 1.79    | 1.38    | 6.67  |
| 2      | 1.88    | 1.53    | 7.67  |
| 4      | 2.01    | 1.65    | 8.33  |
| 8      | 2.31    | 1.80    | 11.30 |
| 16     | 3.32    | 2.15    | 11.46 |
| 32     | 5.13    | 3.15    | 12.33 |
| 64     | 8.71    | 4.98    | 26.10 |
| 128    | 14.73   | 8.03    | 28.49 |
| 256    | 23.09   | 13.29   | 32.10 |
| 512    | 34.44   | 20.62   | 39.94 |
| 1 KB   | 48.05   | 30.91   | 47.82 |
| 2 KB   | 60.87   | 46.09   | 59.44 |
| 4 KB   | 75.31   | 59.13   | 70.64 |
| 8 KB   | 84.97   | 69.96   | 79.69 |

| Length | VU 1984 | VU 2005 | Web    |
|--------|---------|---------|--------|
| 16 KB  | 92.53   | 78.92   | 86.79  |
| 32 KB  | 97.21   | 85.87   | 91.65  |
| 64 KB  | 99.18   | 90.84   | 94.80  |
| 128 KB | 99.84   | 93.73   | 96.93  |
| 256 KB | 99.96   | 96.12   | 98.48  |
| 512 KB | 100.00  | 97.73   | 98.99  |
| 1 MB   | 100.00  | 98.87   | 99.62  |
| 2 MB   | 100.00  | 99.44   | 99.80  |
| 4 MB   | 100.00  | 99.71   | 99.87  |
| 8 MB   | 100.00  | 99.86   | 99.94  |
| 16 MB  | 100.00  | 99.94   | 99.97  |
| 32 MB  | 100.00  | 99.97   | 99.99  |
| 64 MB  | 100.00  | 99.99   | 99.99  |
| 128 MB | 100.00  | 99.99   | 100.00 |

#### Disk Alanı Yönetimi

• Düz eğri diskin veri hızını, kesikli eğri disk alanı verimliliğini gösterir. Tüm dosyalar 4 KB'dir.



#### Disk Alanı Yönetimi

- Büyük blok boyutu, daha iyi alan kullanımına, ancak daha kötü aktarım (transfer) kullanımına neden olur
- Alan ve veri hızı birbiriyle ters orantı (trade-off)
- Kesin iyi bir çözüm yok (Nature wins this time)
- Disk yeterince büyükse, büyük blok boyutu (64 KB) kullan

## Boş Blokların İzini Tutma

#### (a) Bağlı liste halinde (b) biteşlem olarak



Free disk blocks: 16, 17, 18

# Boş Blokların İzini Tutma

- Bağlantı ihtiyacı ~1,9 milyon blok
- Biteşlem haritası ~60.000 bloğa ihtiyaç duyar
- Herhangi bir anda ana bellekte yalnızca bir işaretçi bloğuna ihtiyaç vardır. Doldur => bir tane daha al

## Boş Blokların İzini Tutma

• (a) Bellekte dolmaya yakın bir işaretçiler bloğu ve diskte üç işaretçi bloğu. (b) Üç bloklu bir dosyayı serbest bıraktıktan sonra. (c) Üç boş bloğu işlemek için alternatif bir strateji.



#### Disk Kotaları

- Açık dosyalar tablosundaki giriş (entry), kota tablosuna işaret eder
- Her açık dosya için bir giriş
- Kullanıcıların disk kotasına sınır koyar (soft, hard)

#### Disk Kotaları

• kota tablosunda kullanıcı bazında izlenir.



#### Dosya Sistemi Yedeklemeler

- Yedeklemeler genellikle iki olası sorundan dolayı yapılır
  - Felaketten kurtulmak için (disk çökmesi)
  - Dikkatsizlik sonucu (yanlışlıkla silinen dosya)
- Moral
  - dikkatli ol
  - yedekle
- Teypler yüzlerce gigabayt tutar ve çok ucuzdur

#### Dosya Sistemi Yedeklemeler

- Tüm dosyaları yedeklemeye gerek yok
- Üreticinin CD'lerinden, internet'den ikili dosyalar bulunabilir
- Geçici dosyaların yedeklenmesi gerekmez
- Özel dosyaların (G/Ç) yedeklenmeye ihtiyacı yoktur

#### Kademeli Olarak Yedekleme

- Son dökümden (dump) bu yana değiştirilen dosyaların haftalık/aylık ve günlük dökümünü tamamla
- fs'yi geri yüklemek için tam döküm gerekli
- Değiştirilmiş dosyaları dahil etmek için iyi algoritmalara ihtiyaç var
- Problem verileri dökümden önce sıkıştırmak istiyorum, ancak bandın bir kısmı kötüyse...
- Problem sistem kullanılırken döküm performans açısından zor. Anlık görüntü (snapshot) algoritmaları mevcut

### Döküm Stratejileri - Fiziksel

- Fiziksel olarak tüm her şey dökülür.
- Uygulaması basit
- Dökülmek istenmeyenler
  - kullanılmayan bloklar: programın kullanılmayan blok listesine erişmesi ve kullanılan bloklar için blok numarasını teybe yazması gerekir
  - kötü bloklar Disk denetleyicisi kötü blokları algılamalı ve değiştirmelidir veya nerede olduklarını bilmelidir (işletim sistemi tarafından kötü blok alanında tutulurlar)

### Döküm Stratejileri - Fiziksel

- Uygulaması kolay
- Belirli bir dizini atlayamaz (skip)
- Kademeli dökümler yapamaz (incremental)
- Dosyalar tek tek geri yüklenemez
- Mantıksal döküm stratejisi daha yaygın kullanılır

### Döküm Stratejileri - Mantıksal

- Bir dizinden başlar ve verilen zamandan bu yana değişen tüm dosyaları/dizinleri özyinelemeli olarak döker.
- Dosyaları/dizinleri değiştirilmiş dosya/dizine giden yola döker
- Bu sayede yolu (path) farklı bir bilgisayarda geri yükleyebilir
- Tek bir dosyayı geri yükleyebilir

#### Dosya Sistemi Yedekleme

• Kareler dizinleri, daireler dosyaları gösterir. Gölgeli öğeler, son dökümden bu yana değiştirilenler. Her dizin ve dosya, i-node

numarasıyla etiketlenir.



### Mantıksal Döküm Algoritması

- i-node tarafından indekslenmiş biteşlem kullanır
- 4 aşamadan oluşur
- Aşama 1 kökte başlar ve değiştirilen tüm dosyalar ve dizinler için bitleri işaretler (a)
- Aşama 2 ağacı gezer, içinde değiştirilmiş dosya olmayan dizinlerin işaretini kaldırır (b)
- Aşama 3 i-node'ları gözden geçirir ve işaretli dizinlerin dökümünü alır (c)
- Aşama 4 döküm dosyaları (d)

### Mantıksal Döküm Algoritması



#### Diskteki Dosyayı Geri Yükleme

- Diskte boş fs ile başlanır
- Son tam döküm geri yüklenir.
- Önce dizinler, sonra dosyalar.
- Ardından kademeli olarak dökümler geri yüklenir (kaset, teyp üzerinde sıralıdırlar)

## Dosya Sistemi Tutarlılığı

- Blokların tümü yazılmadan önce kilitlenme/kaza (crash), dosya sistemini tutarsız bir durumda bırakır
- Bloklarda ve dosyalarda tutarlılığı kontrol etmek için yardımcı programlara ihtiyaç var. Unix'te fsck, Windows'ta scandisk
- İki tablo kullanılır
- Bir dosyada bir blok kaç kez bulunur?
- Bir blok boş alanların tutulduğu listede kaç kez var?
- Cihaz tüm i-node'ları okur, sayaçları artırır

### Dosya Sistemi Tutarlılığı

• Dosya sistemi durumları. (a) Tutarlı. (b) Eksik blok. (c) Serbest listede yinelenen blok. (d) Yinelenen veri bloğu.



#### Çözüm

- Eksik blok (b) serbest listeye koy
- Serbest listede yinelenen blok (c) serbest listeyi yeniden oluştur
- Yinelenen veri bloğu (d) kullanıcıyı bilgilendir. Bir dosya kaldırılırsa blok her iki listede de görünür.

### Dosya Sistemi Tutarlılığı

- Bloklar yerine dosyalara bak
- Dosya başına bir sayaç tablosu kullan
- Kök dizinde başla, aşağı in, dosya bir dizinde her göründüğünde sayacı artır
- Sayaçları i-node'lardan gelen bağlantı (link) sayılarıyla karşılaştırır.
  - Tutarlı olmak için aynı olmak zorunda

#### Dosya Sistemi Performansı

- Bellekten sözcük okuma: 32 ns.
- Disk: 5-10 ms arama + 100 MB/sn aktarım
- Bellekte önbellek blokları
- Yönetmek için hash tablosu (cihaz, disk adresi)
- Önbellek bloklarını değiştirmek için algoritmaya ihtiyaç var sayfalama algoritmaları kullanılır, örneğin LRU

# Tampon Önbellek Veri Yapıları

• Buffer cache



### Yer Değiştirme

- LRU ile ilgili bir problem bazı bloklar nadiren kullanılıyor, ancak bellekte olmaları gerekiyor
- i-node değişiklik olduğunda diske yeniden yazılması gerekir. Çökme durumunda, sistem tutarsız bir durumda kalabilir
- LRU'yu değiştir
  - Blok tekrar kullanılabilir mi?
  - Blok, dosya sisteminin tutarlılığı için önemli mi?

### Yer Değiştirme

- Kategorileri kullan: i-nodes, dolaylı (indirect) bloklar, dizin blokları, tam veri blokları, kısmi veri blokları
- İhtiyaç duyulacak olanları arkaya koy
- Blok ihtiyaç duyulup ve sonra değiştirilmişse, en kısa zamanda diske yazılır

### Yer Değiştirme

- Değiştirilmiş blokları bir an önce diske koymak için
- UNIX senkronizasyon: değiştirilmiş tüm blokları diske yazılmaya zorlar.
- Güncelleme programı her 30 saniyede bir kontrol eder
- Windows: blok değiştiğinde hemen diske yaz (Write through cache)

# İleriyi Okuma (read ahead)

- Önbelleğe almak için k bloğu okunduğunda, k+1 bloğu önbellekte değilse onu da oku
- Yalnızca sıralı dosyalar için geçerlidir
- Dosyanın sıralı mı yoksa rastgele mi olduğunu belirlemek için bir bit kullanılır. Bir arama yap, bitin değerini çevir (flip).

#### Kol Hareketini Azaltmak

- Sıralı olarak erişilecek blokları birbirine yakın yerleştirmeye çalış.
- Bellekte bir biteşlem tutarak yapmak kolaydır, blokları boş liste ile arka arkaya yerleştirmek gerekir
- Önbellek blokları 1 KB ise, yer tahsisini boş (free) listeden 2 KB parçalar halinde yap
- Ardışık blokları aynı silindire koymaya çalış
- i-node'ları arama süresini azaltmak amacıyla yerleştir

#### Kol Hareketini Azaltmak

(a) Diskin başına yerleştirilen I-düğümleri. (b) Disk, her biri kendi blokları ve i-düğümleri olan silindir gruplarına bölünmüştür.



## Diskleri Birleştirme (defrag)

- Başlangıçta, dosyalar diske bitişik olarak yerleştirilir.
- Zamanla delikler (hole) oluşur
- Windows defrag programı, bir dosyanın farklı bloklarını bir araya getirir
- Linux defrag işlemini desteklemez. Farklı dosyalar birbirine uzak yerleştirilir.

### The ISO 9660 Dosya Sistemi

• Dizin girişi.



## Rock Ridge Interchange Protokolü (RRIP)

- CD-ROM'larda kullanılan, dosya sisteminin yeteneklerini artıran ve diskte depolanan dosyalar hakkında ek bilgi sağlayan ISO 9660 dosya sistemi biçiminin bir uzantısı.
- Dosya sahipliği, izinler ve sembolik bağlantılar hakkında ek bilgiler sağlayarak CD-ROM'ların Unix tabanlı sistemlerle uyumluluğunu geliştirir.
- Unix tabanlı sistemlerle geliştirilmiş uyumluluk, uzun dosya adları için destek ve Unix tarzı sembolik bağlantılar için destek.
- Unix olmayan sistemlerde sınırlı destek ve daha eski CD-ROM sürücüleriyle olası uyumluluk sorunları.

## Rock Ridge Interchange Protokolü (RRIP)

- PX POSIX attributes. POSIX öznitelikleri
- PN Major ve minor cihaz numaraları
- SL Symbolic link. Sembolik bağ
- NM Alternative name. Seçenek adı
- CL Child location. Çocuk konumu
- PL Parent location. Ebeveyn konumu
- RE Relocation. Yer değiştirme
- TF Time stamps. Zaman damgaları

### Joliet Uzantısı (extension)

- CD-ROM'larda kullanılan, dosya sisteminin yeteneklerini artıran ve Unicode karakterlerini destekleyen ISO 9660 dosya sistemi biçiminin bir uzantısı.
- Unicode karakterleri ve uzun dosya adları için destek sağlayarak CD-ROM'ların Windows tabanlı sistemlerle uyumluluğunu geliştirir.
- Windows tabanlı sistemlerle geliştirilmiş uyumluluk, uzun dosya adları için destek ve Unicode karakterler için destek.
- Windows olmayan sistemlerde sınırlı destek ve daha eski CD-ROM sürücüleriyle olası uyumluluk sorunları.
- Dizin, sekiz seviyeden daha derine inebilir. Uzantıları olan dizin adları

### MS-DOS Dosya Sistemi – Dizin Girdisi



## Blok Boyutları için Maksimum Bölüm Boyutu

| Block size | FAT-12 | FAT-16  | FAT-32 |
|------------|--------|---------|--------|
| 0.5 KB     | 2 MB   |         |        |
| 1 KB       | 4 MB   |         |        |
| 2 KB       | 8 MB   | 128 MB  |        |
| 4 KB       | 16 MB  | 256 MB  | 1 TB   |
| 8 KB       |        | 512 MB  | 2 TB   |
| 16 KB      |        | 1024 MB | 2 TB   |
| 32 KB      |        | 2048 MB | 2 TB   |

#### UNIX Version 7 — Dizin Girdisi



#### **UNIX** i-node



#### /usr/ast/mbox.conf arama adımları

• Root directory

| · · · · · · · · · · · · · · · · · · · |     |  |
|---------------------------------------|-----|--|
| 1                                     |     |  |
| 1                                     |     |  |
| 4                                     | bin |  |
| 7                                     | dev |  |
| 14                                    | lib |  |
| 9                                     | etc |  |
| 6                                     | usr |  |
| 8                                     | tmp |  |

Looking up usr yields i-node 6 I-node 6 is for /usr

Mode size times

I-node 6 says that /usr is in block 132 Block 132 is /usr directory

6 • 1 • • 19 dick 30 erik 51 jim 26 ast 45 bal

/usr/ast is i-node 26 I-node 26 is for /usr/ast

Mode size times 406

I-node 26 says that /usr/ast is in block 406 Block 406 is /usr/ast directory

26 •
6 ••
64 grants
92 books
60 mbox
81 minix
17 src

/usr/ast/mbox is i-node 60

#### SON