On cherche à prédire la chronique des demandes d'indémnité du chomage aux USA par les chroniques de popularité de recherches Google en liens avec le chômage. La chronique *initialia.claims* du package bsts contient ainsi 10 recherches Google. Nous aplliquons ainsi le modèle complet tel que décrit précédement.

```
library(lubridate)
library(bsts)
library(ggplot2)
library(reshape2)
library(zoo)
```

nous tirons 2000 échantillons avec un burn-in de 400 tirages. Pour la spicke and slab prior nous prenons une taille de modèle à priori de 5, soit $\pi_t = \pi = 5/10$

```
data(iclaims)
names(initial.claims)
    [1] "iclaimsNSA"
                                      "michigan.unemployment"
    [3] "idaho.unemployment"
                                      "pennsylvania.unemployment"
##
    [5] "unemployment.filing"
##
                                      "new.jersey.unemployment"
       "department.of.unemployment"
                                      "illinois.unemployment"
    [9] "rhode.island.unemployment"
                                      "unemployment.office"
## [11] "filing.unemployment"
plot(initial.claims$iclaimsNSA,main="US initial claims for unemployment per week",xlab = "time")
```

US initial claims for unemployment per week


```
# ajout au modèle de mu_t = mu_t-1 + delta_t-1 N(0, sigma.level).^2)
# dela_t = delta_t-1 + N(0, sigma.slope^2)
ss <- AddLocalLinearTrend(list(), initial.claims$iclaimsNSA)
# ajout au modèle d'une composante stationnaire annuelle
ss <- AddSeasonal(ss, initial.claims$iclaimsNSA, nseasons = 52)
# modele avec une regression avec une distribution à priori spike and slab
# avec les paramètres par defaut ici
# comme les recherches google sont similaire, on attend un taille de
# modèle inférieure à 10, on prend 5.</pre>
```

Observations et valeurs obtenues par le modèle bsts.reg


```
# on attend 400 tirage avant de les utiliser pour estimer les distributions
burn <- SuggestBurn(0.2, bsts.reg)
# on verifie ainsi que le modèle correspond bien à la serie à prédire.
```

On peut vérifier le caractère gaussien de la distribution des résidus du modèle.

```
r <- residuals(bsts.reg,burn = SuggestBurn(0.2, bsts.reg))
PlotBstsResiduals(bsts.reg,burn,main="distribution à postériori des résidus")
qqnorm(r)
qqline(r)</pre>
```

Après les tirages succéssifs, on peut estimer la probabilité à postérior des variables explicatives dans le modèle. plot(bsts.reg, "coef",burn = SuggestBurn(0.3, bsts.reg))

Les chroniques unemployment.office et idaho unemployment ont une probabilité à postériori trés forte d'être dans le modèle. Pour les estimations des coéfficients de la regression :

Les chroniques unemployment.office et idaho unemployment ont ainsi les probabilités estimées à postériori de contribuer au modèle les plus importantes.

On peut supposer que le modèle n'a que 3 composantes avec unemployment.office et idaho unemployment obligatoirement incluses. Nous pouvons essayer un modèle avec une telle distribution à priori en imposant à la distribition à priori de β de prendre en compte ces chroniques.

```
prior.spikes \leftarrow rep(0.1,11)
prior.spikes[3] <- 1</pre>
prior.spikes[11] <- 1</pre>
# on génère à partir de ces coééficient à priori la distribution spike and slab à priori
prior <- SpikeSlabPrior(x=model.matrix(iclaimsNSA ~ ., data=initial.claims),</pre>
                         y=initial.claims$iclaimsNSA,
                         expected.model.size = 5,
                         prior.inclusion.probabilities = prior.spikes)
bsts.reg.priors <- bsts(iclaimsNSA ~ ., state.specification = ss,</pre>
                         data = initial.claims,
                         niter = 2000,
                         prior=prior,
                         ping=0, seed=2016)
burn <- SuggestBurn(0.3, bsts.reg.priors)</pre>
# probabilité à postériori d'inclusion des variables
plot(bsts.reg.priors, "coef",burn = SuggestBurn(0.3, bsts.reg),
     main="probabilité à postériori des variables explicatives")
```

probabilité à postériori des variables ex

Inclusion Probability

Ainsi les 3 variable explicatives conservées à postériori sont sunemployment.office,idaho unemployment, et filing.unemployment. Les autres ont une probabilité trés faible de faire partie du modèle.

```
# coefficients
coeff <- data.frame(melt(apply(bsts.reg.priors$coefficients[-(1:burn),], 2, PositiveMean)))</pre>
coeff$Variable <- as.character(row.names(coeff))</pre>
ggplot(data=coeff, aes(x=Variable, y=value)) +
   geom_bar(stat="identity", position="identity") +
   theme(axis.text.x=element_text(angle = -90, hjust = 0)) +
   xlab("") + ylab("")
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -
                      department.of.unemployment
                                 filing.unemployment
                                              idaho.unemployment
                                                                      michigan.unemployment
                                                                                                                       unemployment.filing
          (Intercept)
                                                          illinois.unemployment
                                                                                   new.jersey.unemployment
                                                                                               pennsylvania.unemployment
                                                                                                           rhode.island.unemployment
                                                                                                                                   unemployment.office
```

Nous pouvons afficher les composantes du modèle.

```
# composantes du modèle
components.withreg <- cbind.data.frame(
  colMeans(bsts.reg.priors$state.contributions[-(1:burn),"trend",]),
  colMeans(bsts.reg.priors$state.contributions[-(1:burn),"seasonal.52.1",]),</pre>
```

```
colMeans(bsts.reg.priors$state.contributions[-(1:burn), "regression",]),
    as.Date(time(initial.claims)))
names(components.withreg) <- c("Trend", "Seasonality", "Regression", "Date")
components.withreg <- melt(components.withreg, id.vars="Date")
names(components.withreg) <- c("Date", "Component", "Value")

ggplot(data=components.withreg, aes(x=Date, y=Value)) + geom_line() +
    theme_bw() + theme(legend.title = element_blank()) + ylab("") + xlab("") +
    facet_grid(Component ~ ., scales="free") + guides(colour=FALSE)</pre>
```


plot(bsts.reg.priors,main="Observations et valeurs obtenues par le modèle bsts.reg")

Observations et valeurs obtenues par le modèle bsts.reg

On voit que les données subissent une rupture de tendance durant l'année 2009, probablement dues à la crise économique. Le modèle réussis s'adapter à cette rupture de tendance.

Nous allons considérer comme évaluation de l'erreur de prédiction la somme cumulative des erreurs de prédiction de t sachant t-1.

affichage prediction pour le prochain temps
PlotBstsForecastDistribution(bsts.reg.priors)

evolution de l'erreur au cours du temps
renvoit la distribution postérieure de l'erreur de prediction pour t sachant t-1
errors <- bsts.prediction.errors(bsts.reg.priors, burn = burn, standardize = TRUE)\$in.sample
PlotDynamicDistribution(errors)</pre>

NULL

L'erreur de prédiction pour les premier t est importante, nous pouvons nous intérresser également aux erreurs de prédiction pour le temps suivant cumulées.

Date

Nous pouvoir voir ainsi que le modèle a su bien s'adapter à la rupture de tendance de 2009.