

NATIONAL INSTITUTE OF TECHNOLOGY, KURUKSHETRA B.TECH., 4th SEMESTER, MID-EXAM-2 (AY 2023-24)

SUBJECT: INFORMATION THEORY AND CODING COURSE CODE: ECPC-212

Maximum Marks: 20

Time: 50 MTS

		4000
1.	Consider a Systematic (8,4) Linear Block Code whose parity check equations are	6M
1	$v_0 = u_1 + u_2 + u_3$	1
	$v_1 = u_0 + u_1 + u_2$	1 7
	$\dot{v}_2 = u_0 + u_1 + u_3$	
	$v_3 = u_0 + u_2 + u_3$	
	Where u_0, u_1, u_2, u_3 are message digits, and v_0, v_1, v_2, v_3 are parity check digits.	
l	(i) Find the generator matrix of the code.	1 1
l	(ii)Find the parity check matrix of the code.	
	(iii)Construct the Encoder circuit for the given problem.	
,	[1\(\tau\) 1 [1 1 1]	6M
2.	Given the (7.4) Linear code with generator matrix $G = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	1
2.	Given the (7,4) Linear code with generator matrix $G = \begin{bmatrix} 0 & 1 & 1 & 10 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$	
	lo 0,0 1/0 1 1	
	(i) Determine the systematic form of generator matrix G.	
1	(ii) Find the parity check matrix H for the code.	
	(iii) Determine whether the received vector r = [1101101] contains an error or not.	
	and array for (n k) Linear Block Code with the help of an array land at the	
3.	Construct a standard array for (n,k) Linear Block Code with the help of an example. And also explain the	4M
	syndrome decoding operation using a standard array.	
1	Determine the (7,4) non-systematic and systematic cyclic codeword polynomials for message bits $m_0 = 1100$,	4M
4.	Determine the (7,4) non-system each expense codeword polynomials for message bits $m_0 = 1100$, $m_1 = 1101$, with generator polynomial $g(X) = X^3 + X + 1$.	-4101
	m1 - 1101, with 5011	

ALL THE BEST