Calculus I Inverse of fractional linear transformation

Todor Milev

2019

Example

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer:
$$f^{-1}(x) = \frac{x+1}{x-1}$$
, $x \neq 1$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$
 mult. by $(x-1)$
 $y(x-1) = x+1$
 $x(y-1) = y+1$ div. by $(y-1)$
 $f^{-1}(y) = x = \frac{y+1}{y-1}$ relabel x, y
 $f^{-1}(x) = \frac{x+1}{x-1}$

We divided by $y - \hat{1}$ so $y \neq 1$. Therefore the domain of f^{-1} is all real numbers except 1.

Can a non-identity function be its own inverse? Yes, *f* is.

What does it mean for f to be its own inverse? Graph of f is symmetric across y = x.