清华大学本科生考试试题专用纸
考试课程 《形式语言与自动机》 B卷 2023 年 1 月 4 日
学号: 姓名: 班级:
(注:解答请写在自己准备的答题纸上。)
一. (16 分) 判别下列各命题的真假性, 回答 true 或者 false: (每小题 2 分)
1. 存在一个判定两个正规语言之间存在包含关系(即集合包含⊆)的算法。
2. 对 CFG $G = (V, T, P, S)$,开始符号 S 到任意 $w \in T^*$ 的最左推导的唯一性是可判定的
4. 不存在可接受语言 $\{ww \mid w \in \{a,b\}^*\}$ 的可停机的确定的图灵机。
4. DFA 中,设状态 r 和 s 通过某个输入符号 a 可分别转移到 p 和 q ,即 $\delta(r,a) = p$ $\delta(s,a) = q$,则有:若 r 和 s 是不可区别的,则 p 和 q 也是不可区别的。
5. 若 L 为上下文无关语言, R 为正规语言,则 L – R 也是上下文无关语言;同时, R –也是上下文无关语言。
6. 固有二义的上下文无关语言不是任何 <i>DPDA</i> 的语言。
7. 对角语言 L_d 可以归约到通用语言 L_u 。
8. 任一 <i>NP</i> -完全(<i>NP-complete</i>)问题均存在可以接受它的非确定图灵机。
二.(12 分) 选择填空(单选) (每小题 2 分)
1. $\{0^n1^m \mid n \leq m\}$
2. $\{0^n 1^i 2^k 3^m \mid i+k \ge 100, n+m < 100\}$
3. $\{0^n1^m \mid m=n^2\}$
4. $\{0^n1^n2^m3^m \mid n\geq 1, m\geq 1\} \cup \{0^n1^m2^m3^n \mid n\geq 1, m\geq 1\}$

供以上 1~4 题选择的答案:

- A. 是某个有限自动机的语言,也是某个空栈接受方式的 DPDA 的语言。
- B. 是某个有限自动机的语言,但不是任何空栈接受方式的 DPDA 的语言。
- C. 既是某个终态接受方式的 DPDA 的语言,又是某个空栈接受方式的 DPDA 的语言,但不是任何有限自动机的语言。
- D. 是某个终态接受方式的 DPDA 的语言, 但不是任何空栈接受方式的 DPDA 的语言, 也不是任何有限自动机的语言。
- E. 是某个 PDA 的语言, 但不是任何 DPDA 的语言。
- F. 不是任何 PDA 的语言。
- 5. 下列问题中, ______ 是可判定的。

供选择的答案:

- A. Post 对应问题 PCP
- B. 一个图灵机的语言是否为正规语言
- C. 一个图灵机的语言是否为上下文无关语言
- D. 可满足性问题 SAT
- 6. 下列语言中, _____ 不是递归可枚举语言。

供选择的答案:

- A. 语言 L_u (课程中定义的通用语言)
- B. 语言 L_H (课程中图灵机停机问题所定义的语言)
- C. 语言 $L_e = \{M \mid M \text{ 为图灵机, 且 } L(M) = \emptyset\}$
- D. 语言 $L_{ne} = \{ M \mid M$ 为图灵机,且 $L(M) \neq \emptyset \}$

三.(32 分) 简答题:

1. (4 分) 设 CFG $G = (\{S, A, B, C, D\}, \{a, b, c\}, P, S)$, 其中 P 由下列产生式构成:

$$\begin{array}{c|c} S \rightarrow ABb \\ A \rightarrow DBa \mid B \\ B \rightarrow Bb \mid \varepsilon \\ C \rightarrow ABc \mid \varepsilon \\ D \rightarrow c \mid \varepsilon \end{array}$$

- (1) 消去P中的 ε -产生式得到产生式集合P1,构成 CFG G',使得 $L(G') = L(G) \{\varepsilon\}$. 给出 P1 = ?
- (2) 消去 P_1 中的Unit 产生式得到产生式集合 P_2 ,构成 CFG G",使得L(G") = L(G"). 给出 P_2 = ?
- (3) 消去 P_2 中的无用符号得到产生式集合 P_3 . 给出 P_3 =?

2. (4 分) 文法 G(S为开始符号) 的产生式集合为:

$$S \rightarrow SA \mid AB$$

$$A \rightarrow BA \mid a \mid b$$

$$B \rightarrow AA \mid b$$

$$X_{13}$$
 X_{12} X_{23}
 X_{11} X_{22} X_{33}
 a a b

上图表示对于文法 G 和字符串 aab 应用 CYK 算法时所构造的表。

- (1) 分别计算图中所有 X_{ij} (1 $\leq i, j \leq$ 3)
- (2) 是否有 $aab \in L(G)$?
- **3.** (4 分) 设 A 和 B 是字母表 Σ 上的 DFA,试给出判定 $L(A) \cap L(B)$ 是否为空语言的一个算法。
- **4. (4分)** 下图刻画了 PDA $P = (\{q_0\}, \{0,1\}, \{Z_0,X,A,B\}, \delta, q_0, Z_0\})$ 的转移规则,试严格利用课程中介绍的从空栈接受的 PDA 到 CFG 的转换算法,定义一个与该 PDA 等价的 CFG,开始符号设为 S:

$$\begin{array}{c} 0, \quad Z_0/AXAB \\ 1, \quad X/XB \\ 1, \quad X/A \\ 0, \quad A/\varepsilon \\ 0, \quad B/\varepsilon \\ \varepsilon, \quad Z_0/B \\ \varepsilon, \quad Z_0/\varepsilon \end{array}$$

5. (4 分) 对于语言

$$L \,=\, \left\{\, a^i b^j c^k \,\middle|\, i+j=2k\,\right\}$$

可以利用 Pumping 引理证明 L 不是正规语言,以下是一个证明概要:

对于任意的 $n \ge 1$,取 $w = \underline{1} \in \{a,b,c\}^*$,则有 $w \in L$ 。 对任意满足条件 $w = xyz \land y \ne \varepsilon \land |xy| \le n$ 的 x,y,z,取 $k = \underline{2}$,有 $xy^kz \notin L$ 。 试在其中 ① 和 ② 处填写适当的内容。如需分类讨论可自行添加填空。

- **6.** (4 分) 定义如下同态 $h: \{0,1,2\} \rightarrow \{a,b\}, h(0) = aba, h(1) = ab, h(2) = b.$
 - (1) 试写出正规表达式 R 使 $L(R) = h(L(0 + 12^*))$
 - (2) 试写出正规表达式 R 使 $L(R) = h^{-1}(L((ab)^*))$
- 7. (8 分) 对于语言

$$L = \left\{ a^n b^n c^i \mid i \le n \right\}$$

可以利用 Pumping 引理证明 L 不是上下文无关语言,以下是一个证明概要:

对于任意的 $n \geq 1$,取 $z = \underline{\mathbb{1}} \in \{a,b,c\}^*$,则有 $z \in L$ 。

对任意满足条件 $z=uvwxy \wedge vx \neq \varepsilon \wedge |vwx| \leq n$ 的 u,v,w,x,y,取 $k=\underline{2}$,有 $uv^kwx^ky \notin L$ 。

试在其中 ① 和 ② 处填写适当的内容。如需分类讨论可自行添加填空。

此外,试给出两个上下文无关语言 L_1, L_2 (不须证明) 使得 $L_1 \cap L_2 = L$,由此说明交运算 \cap 对于上下文无关语言不封闭。

四.(25 分)设计题: (必要时解释设计思路)

1. (5 分) 试构造接受下列语言的一个有限自动机(DFA, NFA, $\epsilon - NFA$ 均可),要求用 **状态转移图**的方式给出答案:

 $L = \{ w \mid w \in \{0, 1, 2, 3\}^*, w \text{ 的长度是 3 的倍数,且 } w \text{ 的后三位包含"22",} w \text{ 的头三位包含"23"} \}$

2. (5 分) 给出下列正规语言 L 的一个正规表达式:

 $L = \{ w \mid w \in \{a, b\}^*, 且 w 中不包含子串 abab \}$

3. (5 分) 试给出下列语言的一个上下文无关文法:

 $L = \{ a^n b^m \mid 2 \le n + m \le 2 + 3n \}$

4. (5 分) 试构造接受下列语言的一个 *PDA* (终态接受和空栈接受均可,必要时给出设计 思路),要求该 *PDA* 的堆栈符号数不超过 3,且用状态转移图描述你的设计,并简述 设计思路:

 $L = \{ w \mid w = a^i b^j c^k, \$ 其中 i=2i 或 $j\neq 2k \}$

- **5.** (**5** 分**)** 试设计一个可停机图灵机 $M = (Q, \{0,1\}, \{0,1...,B\}, \delta, q_0, B, \{q_f\})$ 可以将串 $w \in \{0,1\}^*$ 作为输入,当到达终态 q_f 时,带上的内容为将w循环右移1位的结果。例:如输入串为101010,则到达终态时,带上的内容应为010101。如输入串为10101,则到达终态时,带上的内容应为11010。如输入串长度 $n \leq 1$,到达终态时带上内容不变。该图灵机的状态数不超过 7。到达 q_f 时,对读写头在何处不作要求。要求该图灵机 M从开始执行至停机的移动步数与输入串长度 n 成线性关系,即时间复杂度为O(n)。用状态转移图描述你所设计的图灵机,并简述设计思路。
- 五.(15 分)证明题: (要求证明过程严谨,步骤明确。)
 - **1.** (5 分) 定义 $A/B = \{w \mid wx \in A \text{ 对于某个} x \in B\}$ 。试证明若 A 为正规语言,B 为任意语言,则 A/B 为正规语言。
 - **2.** (**5** 分) 对于课堂上讲授的空栈接受的 *PDA*: $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, 其栈的长度是无限的: 即,在 *PDA* 上的转移过程中,我们允许向其栈中压入的元素个数不设上限; 也即,*PDA* 上的推导过程中,任一时刻的当前格局(instantaneous descriptions, ID)的三元组 (q, w, γ) 中,当前栈中内容 γ 的长度是无限的。本题考虑一种新的情况: 当空栈接受的 *PDA* 的栈的长度最大为N,即,对于这一 *PDA* 的任意可能的 ID = (q, w, γ) ,总要求 γ 的长度 $|\gamma| \le N < +\infty$ 时,该 *PDA* 的性质将如何变化。

具体地,对于任意一个 栈的长度无限的 空栈接受的 PDA P,任意 $N \in \mathbb{Z}^+$,将 P 的 栈的长度限制为小于等于 N,得到 PDA P'_N ,命题

 $L(P'_N) \subseteq \{ w \mid w \in L(P), \exists |w| \leq 2N - 1 \}$

是否总是成立?若是,则给出证明过程;若不是,则说明理由。

提示: 默认初始 ID 中 $\gamma = Z_0$, 即开始时 PDA P 的栈中存在一个栈底元素 Z_0 。

3. (5 分) 设 Σ 和 T 为字母表,h: $\Sigma \to T^*$ 。若 S 为 Σ 上的正规语言,则 S 的反同态 $h^{-1}(S)$ 也是正规语言。

附加题(5分,直接加入总评成绩)

(**注意**: 附加题只有能呈现出核心思路才有可能得到部分分数,建议大家在前面题目已做完且进行充分检查之后,再看是否有时间考虑下列题目之一)

若字符串 y 可由字符串 x 重排序后生成,则我们称 y 为 x 的重排列。例如,011为101的一个重排列。定义 shuffle(L) 为 L 中的字符串的所有重排列所构成的集合。如 $L=\{0^n1^n \mid n\geq 0\}$,则 shuffle(L) 为所有 0、1 个数相等的字符串的集合。试证明:若 L 为大小为 2 的字母表 Σ 上的一个正规语言,则 shuffle(L) 一定是一个上下文无关语言。并举例说明当 $|\Sigma|>2$ 时如上结论不成立。