1830

Министерство науки и высшего образования Российской Федерации Мытищинский филиал

Федерального государственного автономного образовательного учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	космический		
КАФЕДРА	K-2		
КАФЕДРА	<u>K-2</u>		

отчет

по домашней работе

№ 3 ПО КУРСУ

«Конструкторско-технологическое обеспечение производства ЭВМ» вариант № 21

Студент К3-66Б	<u> Чернов В.Д.</u>
Доцент К2, к.т.н.	Удалов М.Е.

- 1) Расположение элементов на печатной плате одностороннее;
- 2) Шаг установки компонентов по оси Xrx= 0.039 м;
- 3) Шаг установки компонентов по оси Yry= 0.047 м;
- 4) Расстояние от центра компонента до края печатной платы, M- такое, что kкомп- $\Pi\Pi=1.14$.
- 5) Коэффициент перфорации корпуса блока кперф=0.25;
- 6) Мощность, рассеиваемая блоком (ячейкой), Qбл= Qяч = 45 Вт;
- 7) Давление окружающей среды, Па, рО.С.=1.013·105 Па (нормальное);
- 8) Давление воздуха внутри блока, Па, рвн.бл. = 1.013·105 Па (нормальное);
- 9) Приведенная степень черноты всей поверхности прив. і= 0.5;
- 10) Мощность, рассеиваемая компонентом, Окомп ≤ 0.223 Вт;
- 11) Площадь поверхности компонента, Sпов.комп= 0.00031 м2;
- 12) Площадь основания компонента Soch.комп= 0.0000864 м2 (корпус 2148);
- 13) Толщина зазора между основанием компонента и печатной платы комп ПП=0.001 м; 14) Коэффициент теплопроводности материала, заполняющего зазор между основанием компонента и печатной платой λ м.заз.комп.-ПП= 0.01Вт м2*К (воздух);
- 15) Коэффициент теплопроводности материала печатной платы\(\lambda\). ПП=0,372 Вт м2*К (стеклотекстолит ВФТ-С);
- 16) Эквивалентный коэффициент теплопроводности модуля, в котором расположена микросхема, λ экв, при отсутствии теплоотвода λ экв= λ п= λ м.ПП=0,372 Вт м2*К;
- 17) Допустимая температура корпуса компонента (интегральная микросхема серии 155) Тдоп =70оС.

Таблица 1.

21 вариант ДЗ 3.

Расчет теплового режима блока ЭА при естественном охлаждении.

Методика расчета 1-го этапа теплового режима блока ЭА.

Расчет проводится в три этапа. На первом этапе расчет осуществляется методом итераций, в соответствии с которым на первой итерации задается температура корпуса.

1. Определяю площадь поверхностей блока:

для верхней и нижней —
$$S_{6\pi.B} = S_{6\pi.H} = l_{6\pi}b_{6\pi} = 0,19 * 0,11 = 0,0209 м^2;$$
 для боковой - $S_{6\pi.6} = 2(l_{6\pi} + b_{6\pi}) * h_{6\pi} = 2*(0,19+0,11)*0,3=0,18 м^2.$

- 2. Задаю перепад температур между корпусом и окружающей средой $\Delta \ t_{\text{корп-o.c.}} = 10^{\circ} \text{C}.$
 - 3. Определяю температуру корпуса блока:

$$t_{\text{корп.бл}} = t_{\text{o.c}} + t_{\text{корп-o.c}} = 20 + 10 = 30^{\circ}\text{C},$$

где t_{о.с}-максимальная температура окружающей среды, °С.

4. Нахожу среднюю температуру между корпусом и окружающей средой:

$$t_{\text{корп-o.c}} = (t_{\text{корп.бл}} + \text{to.c})/2 = (30 + 20)/2 = 25^{\circ}\text{C}.$$

5. Определяю закон теплообмена:

$$\Delta t_{\text{корп-o.c}} \le (0.84/l_{\text{опрi}})^3,$$

где $l_{\text{опрі}}$ - определяющий размер поверхности, м. Для верхней и нижней поверхностей блока $l_{\text{опрі}}$ =min($l_{\text{бл}}$, $b_{\text{бл}}$). Для боковой поверхности блока $l_{\text{опрі}}$ = $h_{\text{бл}}$.

Если данное условие удовлетворяется, теплообмен проходит по закону 1/4, в противном случае - по закону 1/3.

Для верхней и нижней поверхности:

$$10^{\circ}\text{C} \le (0.84/(\min(0.19, 0.11)))^{3}$$

 $10^{\circ}\text{C} \le 445^{\circ}\text{C}$

Следовательно берем закон 1/4.

Для боковой поверхности:

$$10^{\circ}\text{C} \le (0.84/0.3)^3$$

 $10^{\circ}\text{C} \le 22^{\circ}\text{C}$

Следовательно берем закон 1/4.

6. Рассчитываю коэффициенты конвективного теплообмена для каждой поверхности блока:

$$a_{\text{конвi}} = k_{\text{пов.блі}} A_2 (t_{\text{корп.бл}} - t_{\text{o.clonpi}})^{1/4},$$

где $k_{\text{пов.блі}}$ - коэффициент, учитывающий положение поверхностей корпуса блока (для нижней поверхности 0,7, для боковой - 1, для верхней - 1,3);

 A_2 - коэффициент, зависящий от $t_{\text{корп-o.c}}$ (таб. 2).

Среда .	Значения A_2 при температуре $\overline{t}_{\text{корп-o.c.}}$, °C									
	10	20	30	40	60	80	100	120	140	150
Воздух	1,4	1,38	1,36	1,34	1,31	1,29	1,27	1,26	1,25	1,245
Вода	90	105	127	149	178	205	227	_	_	-

Таблица 2.

Значения коэффициента А2 для воздуха и воды

$$a_{\text{конв.н}} = 0.7*1,36(10/0,09)^{1/4} = 3.1;$$
 $a_{\text{конв.в}} = 1.3*1,36(10/0,09)^{1/4} = 5.74;$ $a_{\text{конв.6}} = 1*1,36(10/0,3)^{1/4} = 4.4;$

7.Определяю коэффициент лучистого теплообмена для каждой поверхности блока:

$$a_{\pi i} = \epsilon_{\text{корп.i}} * 5,67*((((t_{\text{корп.бл}} + 273)/100)^4 - ((t_{\text{o.c}} + 273)/100)^4) / (t_{\text{корп.бл}} - t_{\text{o.c}}))^{1/4},$$
 где $\epsilon_{\text{корп.i}}$ - коэффициент черноты корпуса блока.
$$a_{\pi.B} = a_{\pi.H} = 0,25*5,67*(((3,03)^4 - (2,93)^4) / 10)^{1/4} = 1,4;$$

$$a_{\pi.6} = 0,25*5,67*(((3,03)^4 - (2,93)^4) / 10)^{1/4} = 1,4;$$

8. Рассчитываю тепловую проводимость между поверхностью корпуса и окружающей средой:

$$\sigma_{\text{ \tiny T.KOPII-O.C}}\!\!=\!\!(a_{\text{конв.н}}\!\!+\!a_{\text{л.н}})S_{\text{бл.н}}\!\!+\!\!(a_{\text{конв.6}}\!\!+\!a_{\text{л.6}})S_{\text{бл.6}}\!\!+\!\!(a_{\text{конв.в}}\!\!+\!a_{\text{л.в}})S_{\text{бл.8}},$$

где аконв.н,аконв.б,аконв.в - коэффициенты конвективного теплообмена для нижней, боковой и верхней поверхности корпуса блока соответственно;

 $a_{\pi,H}, a_{\pi,0}, a_{\pi,B}$ - коэффициенты лучистого теплообмена для нижней, боковой и верхней поверхности блока соответственно.

$$\sigma_{\text{T.KODII-O.C}} = (3,1+1,4)*0,0209+(4,4+1,4)*0,18+(5,74+1,4)*0,0209=1,3$$

9. Рассчитываю перепад температур между корпусом и окружающей средой во втором приближении:

$$\Delta t^*_{\text{корп-o.c}} = Q_{\text{бл}} / \sigma_{\text{т.корп-o.c,}}$$

где $Q_{\text{бл}}$ - мощность, рассеиваемая блоком, B_{T} .

$$t^*_{\text{корп-o.c}} = 45/1,3 = 34,6 ^{\circ}\text{C}.$$

10.Определяем ошибку (точность) расчета:

$$\Delta_p = |t^*_{\text{корп-o.c}} - t_{\text{корп-o.c}}| = |34,6-10| = 24,6 \text{ °C}.$$

Если $\Delta_p \le 1$, перехожу к следующему этапу расчета, если $\Delta_p >= 1$ - к пункту 3, считая, что $\Delta t_{\text{корп-o.c}} = t^*_{\text{корп-o.c}}$.

В моем случае, я провожу еще 4 итерации, чтоб p1, при котором Δ $t^*_{\text{корп-o.c}}$ = 29,86°C, и $\Delta t_{\text{корп-o.c}}$ = 30,44°C.

11.Определяю температуру корпуса с учетом перфорации и поправки на атмосферное давление окружающей среды:

$$\Delta t_{\text{корп-o.c}}\!\!=\!\!\Delta t_{\text{корп-o.c}} * k_{\text{kпер}\varphi} * k_{\text{po.c}},$$

где $k_{\text{кперф}}$ - коэффициент, зависящий от коэффициента перфорации блока $k_{\text{po.c}}(\text{рис. 1});$

 $k_{\text{po.c}}$ - коэффициент, зависящий от атмосферного давления окружающей среды $p_{\text{o.c}}$ (рис. 2).

 $Puc.\ 1.\ 3ависимость\ коэффициента\ k_{knep\phi}\ om\ коэффициента\ nepфорации\ корпуса\ блока\ k_{nep\phi}$

 $Puc.\ 2.\ 3 a в u c u мо c m в коэффициента <math>k_{po.c}$ om a m мо c ферного давления окружающей среды $p_{o.c}$

По графикам видно, что при $p_{o.c}$ =1.013·105 Па, $k_{kпер\varphi}$ =0,7, при $k_{пер\varphi}$ = 0,25, а $k_{po.c}$ = 1,2.

$$\Delta t_{\text{корп-o.c}} = 30,44 * 0,7 * 1,2 = 25,6 \, ^{\circ}\text{C}.$$

12.Определяю температуру корпуса блока:

$$t_{\text{корп.бл}} = t_{\text{o.c}} + \Delta t_{\text{корп-o.c}} = 20 + 25,6 = 45,6$$
°C.

Методика расчета 2-го этапа теплового режима блока ЭА.

2-й этап для тепловых схем ТС 4.

Расчет проводится на основе законов Ньютона и Стефана-Больцмана.

- 1. Задаю перепад температур между корпусом и МММ $t_{\text{заз.корп-МММ}} = 10^{\circ}\text{C}$.
- 2. Определяю площадь верхней, боковой и нижней поверхностей МММ:

$$\begin{split} &S_{\text{MMM B}} \!\!=\!\! S_{\text{MMM H}} \!\!=\!\! l_{\text{MMM}} \!\!*\! b_{\text{MMM}} \!\!=\!\! 0.183 \!\!*\! 0.082 \!\!=\!\! 0.015 \,\, \text{m}^2 \,; \\ &S_{\text{MMM 6}} \!\!=\!\! 2 (l_{\text{MMM}} \!\!+\! b_{\text{MMM}}) \!\!*\! h_{\text{MMM}} \!\!=\!\! 2 \,\!*\! (0.183 \!\!+\! 0.082) \,\!*\! 0.186 \!\!=\!\! 0.099 \,\, \text{m}^2 \,; \end{split}$$

3. Рассчитываю площади поверхности параллелепипеда, находящегося между микромодульным массивом и внутренней поверхностью корпуса и отстоящего на расстоянии, которое соответствует золотому сечению 0,67 от MMM:

$$\begin{split} & S'_{\text{100B.H}} \!\!=\!\! \sqrt{S_{\text{бл.H}}} * S_{\text{МММ H}} \!\!=\!\! \sqrt{0,0198*0,015} \!\!=\!\! 0,017 \text{ m}^2; \\ & S'_{\text{100B.B}} \!\!=\!\! \sqrt{S_{\text{бл.B}}} * S_{\text{МММ B}} \!\!=\!\! \sqrt{0,0198*0,015} \!\!=\!\! 0,017 \text{ m}^2; \\ & S'_{\text{100B.6}} \!\!=\!\! \sqrt{S_{\text{бл.6}}} * S_{\text{МММ 6}} \!\!=\!\! \sqrt{0,186*0,099} \!\!=\!\! 0,135 \text{ m}^2; \end{split}$$

4. Рассчитываю конвективные составляющие теплообмена в зазоре:

$$a_{\text{конв.в}}$$
=0,453 * $^{4}\sqrt{(\Delta t_{\text{заз.корп-МММ}}/\sigma_{\text{корп-МММ в}})};$
 $a_{\text{конв.6}}$ =0,453 * $^{4}\sqrt{(\Delta t_{\text{заз.корп-МММ}}/\sigma_{\text{корп-МММ б}})};$

 $a_{\text{конв.н}} = \lambda_{\text{м.заз.корп-MMM}} / \delta_{\text{нкорп-MMM H}}$

где $\delta_{\text{корп-МММ}}$ в, $\sigma_{\text{корп-МММ 6}}$, $\sigma_{\text{корп-МММ H}}$ - зазоры между верхней, боковой и нижней поверхностями МММ и корпусом соответственно;

 $\lambda_{\text{м.заз.корп-МММ H}}$ коэффициент теплопроводности между нижней поверхностью МММ и корпусом.

$$\begin{split} \delta_{\text{корп-МММ 6}} &= (b_{\text{бл}}\text{-}b_{\text{МММ}})/2 = (0,11\text{-}0,082)/2 = 0,014 \text{ M}; \\ \delta_{\text{корп-МММ B}} &= \delta_{\text{корп-МММ H}} = (h_{\text{бл}}\text{-}h_{\text{МММ}})/2 = (0,3\text{-}0,186)/2 = 0,057 \text{ M}; \\ a_{\text{конв.B}} &= 0,453*^4\sqrt{10/0,057} = 1,65; \\ a_{\text{конв.6}} &= 0,453*^4\sqrt{10/0,014} = 2,34; \\ a_{\text{конв.H}} &= 0,01/0,057 = 0,17; \end{split}$$

5.Определяю коэффициент лучеиспускания поверхности МММ:

$$a_{\pi i} = \epsilon_{\kappa o p \pi. i} * 5,67* ((((t_{\kappa o p \pi. 6\pi} + 273)/100)^4 - ((t_{o.c} + 273)/100)^4) / (t_{\kappa o p \pi. 6\pi} - t_{o.c}))^{1/4} = 0,92 * 5,67 * (((3,186)^4 - (2,93)^4) / (25,6))^{1/4} = 5,39$$

6.Рассчитываю теплопроводность между поверхностью корпуса и микромодульным массивом:

$$\sigma_{\text{т.корп-MMM}} = (a_{\text{конв.в}} + a_{\text{л.в}}) S'_{\text{пов.в}} + (a_{\text{конв.6}} + a_{\text{л.6}}) S'_{\text{пов.6}} + (a_{\text{конв.н}} + a_{\text{л.н}}) S'_{\text{пов.н}} =$$

$$= (1,65 + 5,39) * 0,017 + (2,34 + 5,39) * 0,135 + (0,17 + 5,39) * 0,017 = 1,25$$

7.Определяю перепад температур между корпусом и МММ во втором приближении:

$$t^*_{_{_{_{_{_{_{_{_{_{3}3._{_{_{_{1}3}._{_{_{1}3}._{_{1}}}}}}}}}}=(k_{_{_{_{_{1}10}}...0}}Q_{_{_{_{_{1}1}}}})/\sigma_{_{_{_{_{_{1}._{_{1}}}}}}$$

где $k_{\text{пер.возд}}$ - коэффициент перемешивания воздуха. При естественном охлаждении $k_{\text{пер.возд}}$ =1.

$$t*_{333.KOP\Pi-MMM}=45/1,25=36^{\circ}C.$$

8. Определяю ошибку (точность) расчета:

$$\Delta_{p}\!\!=\!\!|t^{*}_{_{_{_{_{_{_{_{_{_{3}a_3.Kop_{II-MMM}}}}}}}}\!\!|t^{*}_{_{_{_{_{_{_{_{_{_{_{3}a_3.Kop_{II-MMM}}}}}}}}}|-|36\text{-}10|=26°C}.$$

Если Δ_p <=1, расчет завершается, если Δ_p >1, перехожу к п. 4 2-го этапа, считая, что $\Delta t_{\text{заз.корп-МММ}} = t^*_{\text{заз.корп-МММ}}$.

В моем случае, надо провести еще 3 итерации, и тогда будет $\Delta_p <= 1$, при $\Delta t^*_{_{_{_{_{_{_{_{_{_{_{3аз, корп-МММ}}}}}}}}}=31,03$ °C.

9. По окончании 2-го этапа определяю температуру поверхности Н3 МММ с учетом поправки на давление (для закрытых перфорированных блоков):

$$t_{\text{пов MMM}} = t_{\text{корп.бл}} + \Delta t_{\text{заз.корп-ММM}} k_{\text{рвн.бл}},$$

где $k_{\text{рвн.бл}}$ - коэффициент, зависящий от давления внутри блока рвн.бл(рис. 3).

Рис. 3. Зависимость коэффициента $k_{\text{рвн.бл}}$ от атмосферного давления внутри блока ЭА.

По графику видно, что при $p_{\text{вн.бл}}=1.013\cdot105$, $k_{\text{рвн.бл}}=1,2$.

$$t_{\text{пов MMM}} = 45,6 + 31,03 * 1,2 = 83^{\circ}\text{C}.$$

Расчет передачи теплоты с учетом топологии.

Методика расчета 3-го этапа теплового режима блоков ЭА.

Теплоотводящими компонентами являются интегральные микросхемы, транзисторы, резисторы, диоды.

При расчете необходимо учитывать взаимное расположение компонентов на плате. Необходимо также учитывать положение компонента относительно края ПП и расположение компонентов относительно края ПП и расположение компонентов с одной или с двух ее сторон.

1. Рассчитываю эквивалентные радиусы компонентов:

$$r_{\text{компі}} = \sqrt{S_{\text{осн.компі}}} / \pi = \sqrt{(0,0000864/3,14)} = 0,00525 \text{ м},$$
 где $S_{\text{осн.компі}}$ - площадь основания і-го компонента, м².

2. Определяю приведенный коэффициент теплоотдачи:

$$k_{\text{г.прив}} = 17/(h_{\text{пп}} * \lambda_{\text{пп}}) = \sqrt{(17/(0,0019*0,372))} = 155.$$

3. Вычисляю переменные, зависящие от расстояния между рассчитываемым и остальными компонентами:

$$\chi_i = k_{\text{т.прив}} * l_{\text{ц.ан-компі}},$$

где $l_{\text{ц.ан-компі}}$ - расстояние между центром анализируемого компонента и центрами i-х компонентов.

По оси X: $l_{\text{п.ан-компіх}} = r_x = 0.039 \text{ м};$

По оси Y: $l_{\text{ц.ан-компу}}=r_y=0,047$ м;

По оси диагонали Z: $l_{\text{ц.ан-компz}} = (\sqrt{r_x^2 + r_y^2}) + r_{\text{компi}} = 0,0663 \text{ м.}$

Переменные по осям:

По горизонтали $\chi_x=155*0,039=6,05$.

 $\chi_{x} <= 10$, отсюда два компонента, расположенных по горизонтали оказывают тепловое влияние друг на друга.

По вертикали $\chi_y=155*0,047=7,29$.

 $\chi_{y} <= 10$, отсюда два компонента, расположенных по вертикали оказывают тепловое влияние друг на друга.

По диагонали $\chi_z=155*0,0663=10,28$.

 $\chi_z >= 10$, отсюда четыре компонента, расположенных по диагонали не оказывают тепловое влияние друг на центральный компонент.

4. Определяю перепад температур между компонентом и МММ, т.е Н3:

$$\Delta t_{\text{комп-MMM}} =$$

$$=k_{\text{комп-пп}} \left(\frac{Q_{\text{комп}}}{a_{\text{коне}}(S_{\text{пов.комп}} - S_{\text{осн.комп}}) + \frac{1}{\frac{\delta_{\text{комп-пп}}}{\lambda_{\text{и.заз.комп-пп}}rr_{\text{комп}}^2 + \frac{1}{k_{\text{расп1}} + \pi k_{\text{расп2}}r_{\text{комп}} \frac{K_1(k_{\text{т.прип}}r_{\text{комп}})}{k_0(k_{\text{т.прип}}r_{\text{комп}})}} \right) + \frac{n_{\text{комп.т.ел}}}{a_{\text{коне}}(S_{\text{пов.компі}} - S_{\text{осн.компі}}) \left(1 + \left(\frac{\delta_{\text{комп-пп}}}{\lambda_{\text{и.заз.комп-пп}} \pi r_{\text{компі}}^2} + \frac{1}{S_{\text{пов.компі}} - S_{\text{осн.компі}}} \right) \right) \cdot \frac{K_1(\chi)}{K_0(k_{\text{т.прив}}r_{\text{компі}})} - \frac{K_1(\chi)}{k_{\text{расп1}} + \pi k_{\text{расп2}}r_{\text{компі}}} - S_{\text{осн.компі}}} = \frac{25,93 \text{ °C}}$$

где $a_{\text{конв}}$, $a_{\text{конв}}$ - коэффициенты конвективного теплообмена рассчитываемого и расположенного рядом компонентов соответственно (рис. 4);

 $S_{\text{пов.комп}},\ S_{\text{пов.комп}}$ - площади поверхности рассчитываемого и расположенного рядом компонентов соответственно, м 2 ;

 $S_{\text{осн.комп}}$, $S_{\text{осн.компi}}$ - площади основания рассчитываемого и расположенного рядом компонентов соответственно, M^2 ;

 $\delta_{\text{комп-ПП}},\delta_{\text{комп-ПП}}$ - зазор между компонентом и ПП, м;

 $\lambda_{\text{м.заз.комп-ПП}}$, $\lambda_{\text{м.заз.комп-ПП}i}$ - коэффициент теплопроводности материала зазора между компонентом и ПП, $\text{Bt/m}^2*\text{K}$;

 $k_{\text{комп-ПП}}$ - коэффициент, учитывающий расположение компонента относительно края ПП;

 $k_{\text{расп1}}$ и $k_{\text{расп2}}$ - коэффициенты, учитывающие одно- или двустороннее расположение компонентов ($k_{\text{расп1}}=1$, $k_{\text{расп2}}=0$ - для двустороннего расположения элементов; $k_{\text{расп1}}=2$, $k_{\text{расп2}}=2,5\pi r_{\text{компі}}^2$ - для одностороннее расположения элементов);

 $n_{\text{комп.т.вл}}$ - число компонентов, оказывающих тепловое влияние на рассчитываемый компонент;

 $K_0(i), K_1(i)$ - модифицированные функции Бесселя.

Рис. 4. Определение коэффициента конвективного теплообмена

По графику видно, что при S = 0.00031, $a_{\text{конв}} = a_{\text{конв}i} = 40$.

Используя wolfram

 $K1(k_{\text{т.прив}}r_{\text{комп}})=0,8396$ (рис. 5);

 $K0(k_{\text{т.прив}}r_{\text{комп}})=0,5537$ (рис. 6);

 $K1(\chi_x)=0,0013$ (рис. 7);

 $K1(\chi_y)=0,00033$ (рис. 8);

Рис. 5. Значение модифицированной функции Бесселя для $K_1(k_{\text{т.прив}}r_{\text{комп}})$

Рис. 6. Значение модифицированной функции Бесселя для $K_0(k_{\text{т.прив}}r_{\text{комп}})$

Рис. 7. Значение модифицированной функции Бесселя для $K_1(\chi_x)$

Рис. 8. Значение модифицированной функции Бесселя для $K_1(\chi_y)$

5.Вычисляю температуру элемента:

$$t_{\text{комп}} \!\!=\!\! t_{\text{o.c}} \!\!+\! t_{\text{корп-o.c}} \!\!+\! t_{\text{заз.корп-MMM}} \!\!+\! t_{\text{корп-MMM}} \!\!=\!\! 20 \!\!+\! 45,\! 6 \!\!+\! 31,\! 03 \!\!+\! 25,\! 93 \!\!=\! 122,\! 56^{\circ}\text{C}.$$

Результаты

Температура элемента $t_{\text{комп}} = 122,56^{\circ}\text{C},$ что превышает допустимую температуру 70°C .

Вывод: температура элемента превышает допустимую, следовательно необходимо использовать систему принудительного охлаждения для того, чтобы предотвратить перегрев и поломку элемента.

Список источников

1. Конструкторско-технологические расчеты электронной аппаратуры [Текст]: учебное пособие / Э. Н. Камышная, В. В. Маркелов, В. А Соловьев. - Москва: Изд-во МГТУ им. Н. Э Баумана, 2014. - 165 с.: ил., табл.; 21 см.; ISBN 978-5 7038-3943-0