CSE 555 HOMEWORK ONE

DUE 05 FEBRUARY 2016, START OF CLASS

Let $\Sigma = \{\sigma_1, \ldots, \sigma_n\}$ be a finite alphabet, and suppose that the symbols have a total ordering $\sigma_1 \prec \sigma_2 \prec \cdots \prec \sigma_n$. We say that a string $w_1 \cdots w_m$ is *sorted* if $w_i \leq w_{i+1}$ for all $1 \leq i < m$.

We say that a language $L \subseteq \Sigma^*$ is *sorted* if every string in L is sorted.

- (1) Regular languages:
 - (a) Let $\mathtt{SORTED}_{\mathsf{NFA}} = \{ \langle M \rangle : M \text{ is an NFA for which } L(M) \text{ is sorted} \}$. Prove or disprove: $\mathtt{SORTED}_{\mathsf{NFA}}$ is Turing decidable.
 - (b) Let ${\tt MOSTSORT}_{\sf NFA} = \{\langle M \rangle : M \text{ is an NFA for which } L(M) \text{ contains a finite number of unsorted strings}\}$. Prove or disprove: ${\tt MOSTSORT}_{\sf NFA}$ is Turing decidable.
- (2) Context-free languages:
 - (a) Let $SORTED_{PDA} = \{ \langle M \rangle : M \text{ is a PDA for which } L(M) \text{ is sorted} \}$. Prove or disprove: $SORTED_{PDA}$ is Turing decidable.
 - (b) Let $\texttt{MOSTSORT}_{\texttt{PDA}} = \{ \langle M \rangle : M \text{ is a PDA for which } L(M) \text{ contains a finite number of unsorted strings} \}$. Prove or disprove: $\texttt{MOSTSORT}_{\texttt{PDA}}$ is Turing decidable.
- (3) Suppose that L is sorted.
 - (a) Prove or disprove: L must be Turing decidable.
 - (b) Prove or disprove: L must be Turing recognizable.
- (4) Let $SORTED_{TM} = \{\langle M \rangle : M \text{ is an TM for which } L(M) \text{ is sorted} \}$. Prove or disprove: $SORTED_{TM}$ is Turing decidable.
- (5) Let $REVERSIBLE_{CFG} = \{\langle G \rangle : G \text{ is a context free grammar for which there exists a string } w \in L(G) \text{ for which } w = w^{rev} \}$. Prove or disprove that $REVERSIBLE_{CFG}$ is Turing decidable.