The AKS primality test explained

Kuba Perlin

Churchill College

23rd January 2019

The decision problem

PRIMES: Is *n* prime?

- 1975, Vaughan Pratt: PRIMES ∈ NP
- 2012, Agrawal, Kayal, Saxena: PRIMES ∈ P

The original paper

This talk is based on the 2002 paper PRIMES is in P by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena.

Also thanks to Dominick Reinhold for his answer math.stackexchange.com/a/284467.

Defining complexity

```
def is_prime(n): for i := 2, \ldots, \lfloor \sqrt{n} \rfloor: if i \mid n: return false return true
```

Complexity: $\Theta(\sqrt{n})$.

Defining complexity

```
def is_prime(n):
    for i := 2, \ldots, \lfloor \sqrt{n} \rfloor:
        if i | n:
        return false
    return true
```

Complexity: $\Theta(\sqrt{n})$.

The size of an input n is the number of bits it takes up: $\log n$.

 $\Theta(\sqrt{n})$ is $\Theta(e^{\frac{1}{2}\log n})$, which is **exponential** in $\log n$.

Modular algebra refresher

Modulo a number

$$a \equiv b \pmod{n} \iff a = b + kn \iff n|a - b|$$

Examples:

- $12 = 2 \cdot 5 + 2 \equiv 2 \pmod{5}$
- $-17 = -2 \cdot 10 + 3 \equiv 3 \pmod{10}$

Polynomials over fields

 $\mathbb{Z}_7[X]$ – polynomials of one variable over $\mathbb{Z}_7=\{0,1,\ldots,6\} \pmod 7$

$$f(X) = 6X^2 + X + 3$$

 $g(X) = 4X^2 + X + 4$

$$f(X) + g(X) = 3X^2 + 2X$$

Modulo a polynomial

$$f(X) = g(X) \pmod{h(X)}$$

$$\iff$$

$$f(X) = g(X) + k(X)h(X)$$

$$\iff$$

$$h(X)|f(X) - g(X)$$

Same principle as before but polynomials instead of integers!

Modulo a polynomial

$$f(X) = g(X) \pmod{h(X)}$$

$$\iff$$

$$f(X) = g(X) + k(X)h(X)$$

$$\iff$$

$$h(X)|f(X) - g(X)$$

Same principle as before but polynomials instead of integers!

•
$$X^2 + 2 \equiv 3 \pmod{X^2 - 1}$$

because $X^2 + 2 = 1(X^2 - 1) + 3$

Modulo a polynomial

$$f(X) = g(X) \pmod{h(X)}$$
 \iff
 $f(X) = g(X) + k(X)h(X)$
 \iff
 $h(X)|f(X) - g(X)$

Same principle as before but polynomials instead of integers!

- $X^2 + 2 \equiv 3 \pmod{X^2 1}$ because $X^2 + 2 = 1(X^2 - 1) + 3$
- $X^3 + X + 1 \equiv 2X + 1 \pmod{X^2 1}$ because $X^3 + X + 1 = X(X^2 - 1) + 2X + 1$

$$\gcd(n,r)=1$$

$$\langle n \rangle := \{1, n, n^2, n^3, \ldots\} \pmod{r}$$

$$\gcd(n,r)=1$$

$$\langle n \rangle := \{1, n, n^2, n^3, \ldots\} \pmod{r}$$

• All the elements are coprime with r.

$$\gcd(n,r)=1$$

$$\langle n \rangle := \{1, n, n^2, n^3, \ldots\} \pmod{r}$$

- All the elements are coprime with r.
- This is a group, meaning every element has an inverse: $a \cdot a^{-1} = 1$.

$$\gcd(n,r)=1$$

$$\langle n \rangle := \{1, n, n^2, n^3, \ldots\} \pmod{r}$$

- All the elements are coprime with r.
- This is a group, meaning every element has an inverse: $a \cdot a^{-1} = 1$.
- The smallest e such that $n^e \equiv 1 \pmod{r}$ is the order of $n \mod r$. Written as $o_r(n)$.

$$\gcd(n,r)=1$$

$$\langle n \rangle := \{1, n, n^2, n^3, \ldots\} \pmod{r}$$

- All the elements are coprime with r.
- This is a group, meaning every element has an inverse: $a \cdot a^{-1} = 1$.
- The smallest e such that $n^e \equiv 1 \pmod{r}$ is the order of $n \mod r$. Written as $o_r(n)$.
 - e.g. $o_7(3) = \mathbf{6}$, because: $3^1 = 3$, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1 \pmod{7}$

$$\gcd(n,r)=1$$

$$\langle n \rangle := \{1, n, n^2, n^3, \ldots\} \pmod{r}$$

- All the elements are coprime with r.
- This is a group, meaning every element has an inverse: $a \cdot a^{-1} = 1$.
- The smallest e such that $n^e \equiv 1 \pmod{r}$ is the order of $n \mod r$. Written as $o_r(n)$.
 - e.g. $o_7(3) = \mathbf{6}$, because: $3^1 = 3$, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1 \pmod{7}$
 - Corollary. The size of $\langle n \rangle$ is $o_r(n)$. (We loop after reaching 1.)

$$\gcd(n,r)=1$$

$$\langle n \rangle := \{1, n, n^2, n^3, \ldots\} \pmod{r}$$

- All the elements are coprime with r.
- This is a group, meaning every element has an inverse: $a \cdot a^{-1} = 1$.
- The smallest e such that $n^e \equiv 1 \pmod{r}$ is the order of $n \mod r$. Written as $o_r(n)$.
 - e.g. $o_7(3) = \mathbf{6}$, because: $3^1 = 3$, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1 \pmod{7}$
 - Corollary. The size of $\langle n \rangle$ is $o_r(n)$. (We loop after reaching 1.)
- We can have multiple generators: $\langle n, p \rangle = \{ n^i \cdot p^j \mid i, j \ge 0 \}.$

Preliminaries

Another inefficient primality test

For any $a \in \mathbb{Z}$ such that gcd(a, n) = 1:

$$X^n + a \equiv (X + a)^n \pmod{n} \iff n \text{ is prime}$$

 $X^n + a \equiv (X + a)^n$ is an equality of **polynomials**, not numbers!

$$X^{n} + a \equiv X^{n} + \binom{n}{1} X^{n-1} a^{1} + \ldots + \binom{n}{n-1} X^{1} a^{n-1} + a^{n} \pmod{n}$$

$$X^{n} + a \equiv X^{n} + {n \choose 1} X^{n-1} a^{1} + \ldots + {n \choose n-1} X^{1} a^{n-1} + a^{n} \pmod{n}$$

If n is prime:

- $a \equiv a^n$ by Fermat's Little Theorem.
- All the $\binom{n}{k} = \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k \cdot (k-1) \cdot \dots \cdot 1}$ are 0.

$$X^{n} + a \equiv X^{n} + {n \choose 1} X^{n-1} a^{1} + \ldots + {n \choose n-1} X^{1} a^{n-1} + a^{n} \pmod{n}$$

If n is prime:

- $a \equiv a^n$ by Fermat's Little Theorem.
- All the $\binom{n}{k} = \frac{n \cdot (n-1) \cdot ... \cdot (n-k+1)}{k \cdot (k-1) \cdot ... \cdot 1}$ are 0.

Otherwise:

• Pick any prime q|n. Say that q appears in n 'z-many' times.

$$X^{n} + a \equiv X^{n} + \binom{n}{1} X^{n-1} a^{1} + \ldots + \binom{n}{n-1} X^{1} a^{n-1} + a^{n} \pmod{n}$$

If n is prime:

- $a \equiv a^n$ by Fermat's Little Theorem.
- All the $\binom{n}{k} = \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k \cdot (k-1) \cdot \dots \cdot 1}$ are 0.

Otherwise:

- Pick any prime q|n. Say that q appears in n 'z-many' times.
- $\binom{n}{q}a^q \not\equiv 0$ because $\binom{n}{q}$ contains q '(z-1)-many' times and a^q has no qs because of $\gcd(a,n)=1$.

Consider the polynomials modulo $X^r - 1$.

$$X^n + a \equiv (X + a)^n \pmod{X^r - 1, n} \stackrel{?}{\Longleftrightarrow} n \text{ is prime}$$

If r is small, the polynomial equality can be checked quickly!

Consider the polynomials modulo $X^r - 1$.

$$X^n + a \equiv (X + a)^n \pmod{X^r - 1, n} \iff n \text{ is prime}$$

If r is small, the polynomial equality can be checked quickly!

Consider the polynomials modulo $X^r - 1$.

$$X^n + a \equiv (X + a)^n \pmod{X^r - 1, n} \iff n \text{ is prime}$$

Careful! If n is composite, the two polynomials would be different, but might give the same residue modulo $X^r - 1$.

If r is small, the polynomial equality can be checked quickly!

Consider the polynomials modulo $X^r - 1$.

Consider the polynomials modulo $X^r - 1$.

A small number (ℓ) of equations with low degree (r) polynomials.

The algorithm

The **efficient** primality test

def AKS(n):

- 1. if $(n = a^b \text{ for } a, b \in \mathbb{N} \text{ and } b \ge 2)$, return COMPOSITE.
- 2. Find the smallest r such that $o_r(n) > \log^2 n$.
- 3. If some $a \le r$ is not coprime with n, return COMPOSITE.
- 4. If r > n, return PRIME.
- 5. For a=1 to $\ell:=\lfloor\sqrt{\varphi(r)}\log n\rfloor$ do: if $X^n+a\not\equiv (X+a)^n\pmod{X^r-1}$, return COMPOSITE.
- 6. Return PRIME.

Sketching the proof of correctness

def AKS(n):

- 1. if $(n=a^b \text{ for } a,b\in\mathbb{N} \text{ and } b\geq 2)$, return COMPOSITE.
- 2. Find the smallest r such that $o_r(n) > \log^2 n$.
- 3. If some $a \le r$ is not coprime with n, return COMPOSITE.
- 4. If r > n, return PRIME.
- 5. For a=1 to $\ell:=\lfloor\sqrt{\varphi(r)}\log n\rfloor$ do: if $X^n+a\not\equiv (X+a)^n\pmod{X^r-1}$, return COMPOSITE.
- 6. Return PRIME.

Main challenge: show that if Line 6. is reached, then n must be prime.

Sketching the proof of time complexity

def AKS(n):

- 1. if $(n = a^b \text{ for } a, b \in \mathbb{N} \text{ and } b \ge 2)$, return COMPOSITE.
- 2. Find the smallest r such that $o_r(n) > \log^2 n$.
- 3. If some $a \le r$ is not coprime with n, return COMPOSITE.
- 4. If $r \ge n$, return PRIME.
- 5. For a=1 to $\ell:=\lfloor\sqrt{\varphi(r)}\log n\rfloor$ do: if $X^n+a\not\equiv (X+a)^n\pmod{X^r-1}$, return COMPOSITE.
- Return PRIME.

Lemma 1. r chosen in line 2. satisfies $r \leq \lceil \log^5 n \rceil$.

Corollary. This means that $r \in \text{poly}(\log n)$ and thus the running time of AKS is polynomial in the input size.

Proving $r \leq \lceil \log^5 n \rceil$

Claim. Let r be the smallest number that **does not divide** L (defined below). Then $r \leq \lceil \log^5 n \rceil$ and $o_r(n) > \log^2 n$.

Define:
$$B := \lceil \log^5 n \rceil, \qquad L := n^{\lfloor \log B \rfloor} \cdot \prod_{i=1}^{\lfloor \log^2 n \rfloor} (n^i - 1)$$

Lemma A. $r \leq B = \lceil \log^5 n \rceil$.

Proving $r \leq \lceil \log^5 n \rceil$

Claim. Let r be the smallest number that **does not divide** L (defined below). Then $r \leq \lceil \log^5 n \rceil$ and $o_r(n) > \log^2 n$.

Define:
$$B := \lceil \log^5 n \rceil, \qquad L := n^{\lfloor \log B \rfloor} \cdot \prod_{i=1}^{\lfloor \log^2 n \rfloor} (n^i - 1)$$

Lemma A. $r \leq B = \lceil \log^5 n \rceil$. *Proof:*

$$n^{\lfloor \log B \rfloor} \cdot \prod_{i=1}^{\lfloor \log^2 n \rfloor} (n^i - 1) < n^{\lfloor \log B \rfloor + \frac{1}{2} \log^2 n \cdot (\log^2 n + 1)} \le n^{\log^4 n} = 2^{\log^5 n} \le 2^B$$

Proving $r \leq \lceil \log^5 n \rceil$

Claim. Let r be the smallest number that **does not divide** L (defined below). Then $r \leq \lceil \log^5 n \rceil$ and $o_r(n) > \log^2 n$.

Define:
$$B := \lceil \log^5 n \rceil, \qquad L := n^{\lfloor \log B \rfloor} \cdot \prod_{i=1}^{\lfloor \log^2 n \rfloor} (n^i - 1)$$

Lemma A. $r \leq B = \lceil \log^5 n \rceil$. *Proof:*

$$n^{\lfloor \log B \rfloor} \cdot \prod_{i=1}^{\lfloor \log^2 n \rfloor} (n^i - 1) < n^{\lfloor \log B \rfloor + \frac{1}{2} \log^2 n \cdot (\log^2 n + 1)} \le n^{\log^4 n} = 2^{\log^5 n} \le 2^B$$

$$L < 2^B \le \operatorname{lcm}\{1, 2, \dots, B\} \implies L \text{ is not a c.m. of } \{1, 2, \dots, B\}$$

$$\implies \text{ one of } \{1, 2, \dots, B\} \text{ does not divide } L$$

Claim. Let r be the smallest number that **does not divide** L (defined below). Then $r \leq \lceil \log^5 n \rceil$ and $o_r(n) > \log^2 n$.

Define:
$$B := \lceil \log^5 n \rceil$$
, $L := n^{\lfloor \log B \rfloor} \cdot \prod_{i=1}^{\lfloor \log^2 n \rfloor} (n^i - 1)$

Lemma A. $r \le B = \lceil \log^5 n \rceil$. **Lemma B.** gcd(r, n) = 1 *Proof:*

- •
- •
- •

Claim. Let r be the smallest number that **does not divide** L (defined below). Then $r \leq \lceil \log^5 n \rceil$ and $o_r(n) > \log^2 n$.

Define:
$$B := \lceil \log^5 n \rceil, \qquad L := n^{\lfloor \log B \rfloor} \cdot \prod_{i=1}^{\lfloor \log B \rfloor} (n^i - 1)$$

Lemma A. $r \le B = \lceil \log^5 n \rceil$. **Lemma B.** gcd(r, n) = 1. *Proof:*

Let
$$r = \underbrace{\prod_{i} p_i^{e_i}}_{a} \cdot \underbrace{\prod_{i} q_i^{f_i}}_{b} := ab.$$

- •
- •
- •

Claim. Let r be the smallest number that **does not divide** L (defined below). Then $r \leq \lceil \log^5 n \rceil$ and $o_r(n) > \log^2 n$.

Define:
$$B := \lceil \log^5 n \rceil, \qquad L := n^{\lfloor \log B \rfloor} \cdot \prod_{i=1}^{\lfloor \log B \rfloor} (n^i - 1)$$

Lemma A. $r \le B = \lceil \log^5 n \rceil$. **Lemma B.** gcd(r, n) = 1. *Proof:*

Let
$$r = \underbrace{\prod_{a} p_i^{e_i}}_{a} \cdot \underbrace{\prod_{b} q_i^{f_i}}_{b} := ab.$$

- Then $a|n^{\lfloor \log B \rfloor}$ because every $e_i \leq \lfloor \log B \rfloor$.
- •
- •

Claim. Let r be the smallest number that **does not divide** L (defined below). Then $r \leq \lceil \log^5 n \rceil$ and $o_r(n) > \log^2 n$.

Define:
$$B := \lceil \log^5 n \rceil, \qquad L := n^{\lfloor \log B \rfloor} \cdot \prod_{i=1}^{\lfloor \log B \rfloor} (n^i - 1)$$

Lemma A. $r \leq B = \lceil \log^5 n \rceil$. **Lemma B.** gcd(r, n) = 1. *Proof:*

Let
$$r = \underbrace{\prod_{a} p_i^{e_i}}_{a} \cdot \underbrace{\prod_{b} q_i^{f_i}}_{b} := ab.$$

- Then $a|n^{\lfloor \log B \rfloor}$ because every $e_i \leq \lfloor \log B \rfloor$.
- Therefore $b \not | \prod_{i=1}^{\lfloor \log^2 n \rfloor} (n^i 1)$, but b is coprime with $n^{\lfloor \log B \rfloor}$, so $b \not | L$.
- •

Claim. Let r be the smallest number that **does not divide** L (defined below). Then $r \leq \lceil \log^5 n \rceil$ and $o_r(n) > \log^2 n$.

Define:
$$B := \lceil \log^5 n \rceil, \qquad L := n^{\lfloor \log B \rfloor} \cdot \prod_{i=1}^{\lfloor \log B \rfloor} (n^i - 1)$$

Lemma A. $r \le B = \lceil \log^5 n \rceil$. **Lemma B.** gcd(r, n) = 1. *Proof:*

Let
$$r = \underbrace{\prod_{a} p_i^{e_i}}_{a} \cdot \underbrace{\prod_{b} q_i^{f_i}}_{b} := ab.$$

- Then $a|n^{\lfloor \log B \rfloor}$ because every $e_i \leq \lfloor \log B \rfloor$.
- Therefore $b \not | \prod_{i=1}^{\lfloor \log^2 n \rfloor} (n^i 1)$, but b is coprime with $n^{\lfloor \log B \rfloor}$, so $b \not | L$.
- Because of minimality of r, we get b = r and so gcd(r, n) = gcd(b, n) = 1.

Claim. Let r be the smallest number that **does not divide** L (defined below). Then $r \leq \lceil \log^5 n \rceil$ and $o_r(n) > \log^2 n$.

Define:
$$B := \lceil \log^5 n \rceil, \qquad L := n^{\lfloor \log B \rfloor} \cdot \prod_{i=1}^{\lfloor \log^2 n \rfloor} (n^i - 1)$$

Lemma A. $r \leq B = \lceil \log^5 n \rceil$.

Lemma B. gcd(r, n) = 1.

Lemma C. $o_r(n) > \log^2 n$. Proof by contradiction:

Claim. Let r be the smallest number that **does not divide** L (defined below). Then $r \leq \lceil \log^5 n \rceil$ and $o_r(n) > \log^2 n$.

Define:
$$B := \lceil \log^5 n \rceil, \qquad L := n^{\lfloor \log B \rfloor} \cdot \prod_{i=1}^{\lfloor \log^2 n \rfloor} (n^i - 1)$$

Lemma A. $r \leq B = \lceil \log^5 n \rceil$.

Lemma B. gcd(r, n) = 1.

Lemma C. $o_r(n) > \log^2 n$. Proof by contradiction:

If $o_r(n) \leq \log^2 n$, then $r \mid n^{o_r(n)} - 1 \mid L$, contradiction.

Proof of correctness

What we're working with

def AKS(n):

- 1. if $(n = a^b \text{ for } a, b \in \mathbb{N} \text{ and } b \ge 2)$, return COMPOSITE.
- 2. Find the smallest r such that $o_r(n) > \log^2 n$.
- 3. If some $a \le r$ is not coprime with n, return COMPOSITE.
- 4. If r > n, return PRIME.
 - Our *r* is coprime with *n*.
- 5. For a=1 to $\ell:=\lfloor\sqrt{\varphi(r)}\log n\rfloor$ do: if $X^n+a\not\equiv (X+a)^n\pmod{X^r-1,n}$, return COMPOSITE.
 - Our n passed all the ℓ checks above.
 - Let's fix a prime divisor p of n, with p > r.
- 6. Return PRIME.

- 1. Define a group \mathcal{G} of polynomials.
- 2.
- 3.
- 4.

- 1. Define a group $\mathcal G$ of polynomials.
- **2.** Prove that $|\mathcal{G}| \geq \text{LowerBound}$.
- 3.
- 4.

- 1. Define a group \mathcal{G} of polynomials.
- **2.** Prove that $|\mathcal{G}| \geq \text{LowerBound}$.
- **3.** Prove that if $n \neq p^k$, then $|\mathcal{G}| < \text{LowerBound}$.
- 4.

- 1. Define a group \mathcal{G} of polynomials.
- 2. Prove that $|\mathcal{G}| \geq \text{LowerBound}$.
- 3. Prove that if $n \neq p^k$, then $|\mathcal{G}| < \text{LowerBound}$.
- **4.** Deduce that $n = p^k$ for some k.

- 1. Define a group \mathcal{G} of polynomials.
- **2.** Prove that $|\mathcal{G}| \geq \text{LowerBound}$.
- 3. Prove that if $n \neq p^k$, then $|\mathcal{G}| < \text{LowerBound}$.
- **4.** Deduce that $n = p^k$ for some k.

- 1. if $(n=a^b \text{ for } a,b\in\mathbb{N} \text{ and } b\geq 2)$, return COMPOSITE.
- **5**.

- 1. Define a group \mathcal{G} of polynomials.
- **2.** Prove that $|\mathcal{G}| \geq$ LowerBound.
- **3.** Prove that if $n \neq p^k$, then $|\mathcal{G}| < \text{LowerBound}$.
- **4.** Deduce that $n = p^k$ for some k.

- 1. if $(n=a^b \text{ for } a,b\in\mathbb{N} \text{ and } b\geq 2)$, return COMPOSITE.
- **5.** Therefore k = 1... and we get that $n = p^1$ is prime. \square

- 1. Define a group \mathcal{G} of polynomials.
- **2.** Prove that $|\mathcal{G}| \geq \text{LowerBound}$.
- 3. Prove that if $n \neq p^k$, then $|\mathcal{G}| < \text{LowerBound}$.
- **4.** Deduce that $n = p^k$ for some k.

- 1. if $(n = a^b \text{ for } a, b \in \mathbb{N} \text{ and } b \ge 2)$, return COMPOSITE.
- **5.** Therefore k = 1... and we get that $n = p^1$ is prime. \square

Because our n got past line 5. of AKS, we know that:

For
$$a=1$$
 to $\ell:=\lfloor\sqrt{\varphi(r)}\log n\rfloor$:
$$X^n+a\equiv (X+a)^n\ (\mathrm{mod}\ X^r-1,n)$$

Because our n got past line 5. of AKS, we know that:

For
$$a=1$$
 to $\ell:=\lfloor\sqrt{\varphi(r)}\log n\rfloor$:
$$X^n+a\equiv (X+a)^n\ (\mathrm{mod}\ X^r-1,n)\text{, so also:} \\ X^n+a\equiv (X+a)^n\ (\mathrm{mod}\ X^r-1,p)$$

Because our n got past line 5. of AKS, we know that:

For
$$a=1$$
 to $\ell:=\lfloor\sqrt{\varphi(r)}\log n\rfloor$:
$$X^n+a\equiv (X+a)^n\ (\mathrm{mod}\ X^r-1,n), \ \mathrm{so\ also}\colon X^n+a\equiv (X+a)^n\ (\mathrm{mod}\ X^r-1,p)$$

Because p is prime, we know that (by the 'inefficient primality test'):

For
$$a=1$$
 to ℓ :

$$X^p + a \equiv (X + a)^p \pmod{X^r - 1, p}$$
.

Because our n got past line 5. of AKS, we know that:

For
$$a=1$$
 to $\ell:=\lfloor\sqrt{\varphi(r)}\log n\rfloor$:
$$X^n+a\equiv (X+a)^n\ (\mathrm{mod}\ X^r-1,n), \ \mathrm{so\ also}\colon X^n+a\equiv (X+a)^n\ (\mathrm{mod}\ X^r-1,p)$$

Because p is prime, we know that (by the 'inefficient primality test'):

For
$$a=1$$
 to ℓ :

$$X^p + a \equiv (X + a)^p \pmod{X^r - 1, p}$$
.

Definition. $m \in \mathbb{N}$ is introspective for $f(X) \iff$

$$f(X^m) \equiv [f(X)]^m \pmod{X^r - 1, p}$$

Because our n got past line 5. of AKS, we know that:

For
$$a=1$$
 to $\ell:=\lfloor\sqrt{\varphi(r)}\log n\rfloor$:
$$X^n+a\equiv (X+a)^n\ (\mathrm{mod}\ X^r-1,n)\text{, so also:} \\ X^n+a\equiv (X+a)^n\ (\mathrm{mod}\ X^r-1,p)$$

Because p is prime, we know that (by the 'inefficient primality test'):

For
$$a=1$$
 to ℓ :

$$X^p + a \equiv (X + a)^p \pmod{X^r - 1, p}$$
.

Definition. $m \in \mathbb{N}$ is introspective for $f(X) \iff$

$$f(X^m) \equiv [f(X)]^m \pmod{X^r - 1, p}$$

Corollary. n and p are introspective for X + a (for all $a \in \{0, 1, \dots, \ell\}$).

Introspective numbers – properties

Recall. $m \in \mathbb{N}$ is introspective for $f(X) \iff$

$$f(X^m) \equiv [f(X)]^m \pmod{X^r - 1, p}$$

Corollary. n and p are introspective for X + a (for all $a \in \{0, 1, \dots, \ell\}$).

Introspective numbers – properties

Recall. $m \in \mathbb{N}$ is introspective for $f(X) \iff$

$$f(X^m) \equiv [f(X)]^m \pmod{X^r - 1, p}$$

Corollary. n and p are introspective for X + a (for all $a \in \{0, 1, \dots, \ell\}$).

Property 1. If m and m' are introspective for f(X), then so is $m \cdot m'$.

Introspective numbers - properties

Recall. $m \in \mathbb{N}$ is introspective for $f(X) \iff$

$$f(X^m) \equiv [f(X)]^m \pmod{X^r - 1, p}$$

Corollary. n and p are introspective for X + a (for all $a \in \{0, 1, \dots, \ell\}$).

Property 1. If m and m' are introspective for f(X), then so is $m \cdot m'$.

Property 2. If m is introspective for f(X) and g(X), then so it is for $f(X) \cdot g(X)$.

The group G_1

Recall. $m \in \mathbb{N}$ is introspective for $f(X) \iff$

$$f(X^m) \equiv [f(X)]^m \pmod{X^r - 1, p}$$

Corollary. n and p are introspective for X + a (for all $a \in \{0, 1, \dots, \ell\}$).

Property 1. If m and m' are introspective for f(X), then so is $m \cdot m'$.

Property 2. If m is introspective for f(X) and g(X), then so it is for $f(X) \cdot g(X)$.

Definition.

• $G_1 := \{ n^i \cdot p^j \mid i, j \ge 0 \} \pmod{r}$ (a group generated by n and p) All elements of G_1 are introspective for X + a ($a \in \{0, 1, \dots, \ell\}$).

The group ${\mathcal G}$

Recall.

• $G_1 := \{n^i \cdot p^j \mid i, j \ge 0\} \pmod{r}$ (the group generated by n and p)

Definition.

•
$$\mathcal{G}:=\{\prod_{a=0}^{l}(X+a)^{e_a}\mid e_a\geq 0\}\pmod{\underline{h(X)},p}$$
 (the group generated by $X,X+1,\ldots,X+\ell$)

The group ${\mathcal G}$

Recall.

• $G_1 := \{ n^i \cdot p^j \mid i, j \ge 0 \} \pmod{r}$ (the group generated by n and p)

Definition.

•
$$\mathcal{G}:=\{\prod_{a=0}^{l}(X+a)^{e_a}\mid e_a\geq 0\}\pmod{\underline{h(X)},p}$$
 (the group generated by $X,X+1,\ldots,X+\ell$)

Corollary. Every element of G_1 is introspective for every element of G.

The group ${\mathcal G}$

Recall.

• $G_1 := \{n^i \cdot p^j \mid i, j \ge 0\} \pmod{r}$ (the group generated by n and p)

Definition.

•
$$\mathcal{G}:=\{\prod_{a=0}^{l}(X+a)^{e_a}\mid e_a\geq 0\}\pmod{h(X),p}$$
 (the group generated by $X,X+1,\ldots,X+\ell$)

Corollary. Every element of G_1 is introspective for every element of \mathcal{G} .

Claim. There exists¹ an irreducible polynomial h(X) that divides $X^r - 1$, does not divide any $X^q - 1$ for q < r, and has degree deg h > 1. For details, see cyclotomic polynomials.

¹The r^{th} cyclotomic polynomial Q_r over F_p divides $X^r - 1$ and factors into irreducible polynomials of degree $o_r(p)$. A p|n with $o_r(p) > 1$ exists and we assume we have chosen that one. We let h(X) to be any irreducible factor of Q_r .

- 1. Define a group \mathcal{G} of polynomials.
- 2. Prove that $|\mathcal{G}| \geq \text{LowerBound}$.
- **3.** Prove that if $n \neq p^k$, then $|\mathcal{G}| < \text{LowerBound}$.
- **4.** Deduce that $n = p^k$ for some k.

- 1. if $(n=a^b \text{ for } a,b\in\mathbb{N} \text{ and } b\geq 2)$, return COMPOSITE.
- **5.** Therefore k = 1... and we get that $n = p^1$ is prime. \square

• $G_1 := \{ n^i \cdot p^j \mid i, j \ge 0 \} \pmod{r}$

•
$$\mathcal{G} := \{ \prod_{a=0}^{l} (X+a)^{e_a} \mid e_a \geq 0 \} \pmod{h(X), p}$$

- 1.
- 2.
- 3.
- 4.
- 5.

- $\bullet \ \ \textit{G}_1 := \{\textit{n}^i \cdot \textit{p}^j \mid \textit{i}, \textit{j} \geq 0\} \ \big(\bmod \ \textit{r} \big)$
- $\mathcal{G} := \{ \prod_{a=0}^{l} (X+a)^{e_a} \mid e_a \geq 0 \} \pmod{h(X), p}$

Claim 1. Any two polynomials of degree < t in P are distinct in \mathcal{G} (i.e. distinct (mod h(X))). Proof by contradiction:

- 1.
- 2.
- 3.
- 4.
- 5.

- $\bullet \ \ \textit{G}_1 := \{\textit{n}^i \cdot \textit{p}^j \mid \textit{i}, \textit{j} \geq 0\} \ (\bmod \ \textit{r})$
- $\mathcal{G} := \{ \prod_{a=0}^{l} (X+a)^{e_a} \mid e_a \geq 0 \} \pmod{h(X), p}$

Claim 1. Any two polynomials of degree < t in P are distinct in \mathcal{G} (i.e. distinct (mod h(X))). Proof by contradiction:

- 1. Suppose that $f(X) = g(X) \pmod{h(X)}$ (where deg f, deg g < t).
- 2.
- 3.
- 4.
- 5.

- $\bullet \ \ \textit{G}_1 := \{\textit{n}^i \cdot \textit{p}^j \mid \textit{i}, \textit{j} \geq 0\} \ (\bmod \ \textit{r})$
- $\mathcal{G} := \{ \prod_{a=0}^{l} (X+a)^{e_a} \mid e_a \geq 0 \} \pmod{h(X), p}$

Claim 1. Any two polynomials of degree < t in P are distinct in \mathcal{G} (i.e. distinct (mod h(X))). *Proof by contradiction:*

- 1. Suppose that $f(X) = g(X) \pmod{h(X)}$ (where deg f, deg g < t).
- 2. Pick any $m \in G_1$. Because m is introspective for f and g, we have: $f(X^m) = [f(X)]^m = [g(X)]^m = g(X^m)$ in G.
- 3.
- 4.
- 5.

- $\bullet \ G_1:=\{n^i\cdot p^j\mid i,j\geq 0\}\ (\bmod\ r)$
- $\mathcal{G} := \{ \prod_{a=0}^{l} (X+a)^{e_a} \mid e_a \geq 0 \} \pmod{h(X), p}$

Claim 1. Any two polynomials of degree < t in P are distinct in \mathcal{G} (i.e. distinct (mod h(X))). *Proof by contradiction:*

- 1. Suppose that $f(X) = g(X) \pmod{h(X)}$ (where deg f, deg g < t).
- 2. Pick any $m \in G_1$. Because m is introspective for f and g, we have: $f(X^m) = [f(X)]^m = [g(X)]^m = g(X^m)$ in G.
- 3. So X^m is a root of Q(X) := f(X) g(X), where deg Q < t.
- 4.
- 5.

- $\bullet \ \ \textit{G}_1 := \{\textit{n}^i \cdot \textit{p}^j \mid \textit{i}, \textit{j} \geq 0\} \ \big(\bmod \ \textit{r} \big)$
- $\mathcal{G} := \{\prod_{a=0}^{l} (X+a)^{e_a} \mid e_a \geq 0\} \pmod{h(X), p}$

Claim 1. Any two polynomials of degree < t in P are distinct in \mathcal{G} (i.e. distinct (mod h(X))). *Proof by contradiction:*

- 1. Suppose that $f(X) = g(X) \pmod{h(X)}$ (where deg f, deg g < t).
- 2. Pick any $m \in G_1$. Because m is introspective for f and g, we have: $f(X^m) = [f(X)]^m = [g(X)]^m = g(X^m)$ in G.
- 3. So X^m is a root of Q(X) := f(X) g(X), where deg Q < t.
- **4.** But that holds for all $m \in G_1$ and there are t of them.

So some X^{m_1} must equal X^{m_2} in $\mathcal G$ for $m_1 \neq m_2$ in G_1 .

- $\bullet \ \ \textit{G}_1 := \{\textit{n}^i \cdot \textit{p}^j \mid \textit{i}, \textit{j} \geq 0\} \ \big(\bmod \ \textit{r} \big)$
- $\mathcal{G} := \{ \prod_{a=0}^{l} (X+a)^{e_a} \mid e_a \geq 0 \} \pmod{h(X), p}$

Claim 1. Any two polynomials of degree < t in P are distinct in \mathcal{G} (i.e. distinct (mod h(X))). *Proof by contradiction:*

- 1. Suppose that $f(X) = g(X) \pmod{h(X)}$ (where deg f, deg g < t).
- 2. Pick any $m \in G_1$. Because m is introspective for f and g, we have: $f(X^m) = [f(X)]^m = [g(X)]^m = g(X^m)$ in \mathcal{G} .
- 3. So X^m is a root of Q(X) := f(X) g(X), where deg Q < t.
- **4.** But that holds for all $m \in G_1$ and there are t of them.

So some X^{m_1} must equal X^{m_2} in \mathcal{G} for $m_1 \neq m_2$ in G_1 .

5. Continued on next slide...

From last slide:

4. For some $m_1 \neq m_2$ in G_1 we have $X^{m_1} = X^{m_2} \pmod{h(X), p}$.

Getting the contradiction:

i.

ii.

iii.

From last slide:

4. For some $m_1 \neq m_2$ in G_1 we have $X^{m_1} = X^{m_2} \pmod{h(X), p}$.

Getting the contradiction:

i.
$$h(X)|X^{m_1}-X^{m_2}=X^{m_2}(X^{m_1-m_2}-1)$$
.

ii.

iii.

From last slide:

4. For some $m_1 \neq m_2$ in G_1 we have $X^{m_1} = X^{m_2} \pmod{h(X), p}$.

Getting the contradiction:

- i. $h(X)|X^{m_1}-X^{m_2}=X^{m_2}(X^{m_1-m_2}-1)$.
- ii. h(X) is an irreducible factor of $X^r 1$ and does not divide X^{m_2} .

Therefore $h(X)|X^{m_1-m_2}-1$, i.e. $X^{m_1-m_2} \equiv 1 \pmod{h(X), p}$.

iii.

From last slide:

4. For some $m_1 \neq m_2$ in G_1 we have $X^{m_1} = X^{m_2} \pmod{h(X), p}$.

Getting the contradiction:

- i. $h(X)|X^{m_1}-X^{m_2}=X^{m_2}(X^{m_1-m_2}-1)$.
- ii. h(X) is an irreducible factor of $X^r 1$ and does not divide X^{m_2} .

Therefore $h(X)|X^{m_1-m_2}-1$, i.e. $X^{m_1-m_2} \equiv 1 \pmod{h(X), p}$.

iii. Recall that h(X) doesn't divide any $X^q - 1$ for q < r.

Look at $X, X^2, X^3, \ldots \pmod{h(X)}$.

From last slide:

4. For some $m_1 \neq m_2$ in G_1 we have $X^{m_1} = X^{m_2} \pmod{h(X), p}$.

Getting the contradiction:

- i. $h(X)|X^{m_1}-X^{m_2}=X^{m_2}(X^{m_1-m_2}-1)$.
- ii. h(X) is an irreducible factor of $X^r 1$ and does not divide X^{m_2} .

Therefore $h(X)|X^{m_1-m_2}-1$, i.e. $X^{m_1-m_2} \equiv 1 \pmod{h(X), p}$.

iii. Recall that h(X) doesn't divide any $X^q - 1$ for q < r.

Look at $X, X^2, X^3, \ldots \pmod{h(X)}$.

The first time we reach 1 is at X^r . The next one is X^{2r} . And so on.

From last slide:

4. For some $m_1 \neq m_2$ in G_1 we have $X^{m_1} = X^{m_2} \pmod{h(X), p}$.

Getting the contradiction:

- i. $h(X)|X^{m_1}-X^{m_2}=X^{m_2}(X^{m_1-m_2}-1)$.
- ii. h(X) is an irreducible factor of $X^r 1$ and does not divide X^{m_2} .

Therefore $h(X)|X^{m_1-m_2}-1$, i.e. $X^{m_1-m_2}\equiv 1 \pmod{h(X),p}$.

iii. Recall that h(X) doesn't divide any $X^q - 1$ for q < r.

Look at $X, X^2, X^3, \ldots \pmod{h(X)}$.

The first time we reach 1 is at X^r . The next one is X^{2r} . And so on.

Therefore $m_1 - m_2 = kr$ for some $k \in \mathbb{Z}$, i.e. $m_1 \equiv m_2 \pmod{r}$.

From last slide:

4. For some $m_1 \neq m_2$ in G_1 we have $X^{m_1} = X^{m_2} \pmod{h(X), p}$.

Getting the contradiction:

- i. $h(X)|X^{m_1}-X^{m_2}=X^{m_2}(X^{m_1-m_2}-1)$.
- ii. h(X) is an irreducible factor of $X^r 1$ and does not divide X^{m_2} .

Therefore $h(X)|X^{m_1-m_2}-1$, i.e. $X^{m_1-m_2}\equiv 1 \pmod{h(X),p}$.

iii. Recall that h(X) doesn't divide any $X^q - 1$ for q < r.

Look at $X, X^2, X^3, \ldots \pmod{h(X)}$.

The first time we reach 1 is at X^r . The next one is X^{2r} . And so on.

Therefore $m_1 - m_2 = kr$ for some $k \in \mathbb{Z}$, i.e. $m_1 \equiv m_2 \pmod{r}$.

The lower bound: $|\mathcal{G}| \geq {t+\ell \choose t-1}$, where $t:=|G_1|$

- $G_1 := \{ n^i \cdot p^j \mid i, j \ge 0 \} \pmod{r}$
- $\mathcal{G} := \{ \prod_{a=0}^{\ell} (X+a)^{e_a} \mid e_a \geq 0 \} \pmod{h(X), p}$

Claim 1. Any two polynomials of degree < t in P are distinct in \mathcal{G} .

- 1.
- 2.
- 3.

The lower bound: $|\mathcal{G}| \geq {t+\ell \choose t-1}$, where $t := |G_1|$

- $G_1 := \{ n^i \cdot p^j \mid i, j \ge 0 \} \pmod{r}$
- $\mathcal{G} := \{ \prod_{a=0}^{\ell} (X+a)^{e_a} \mid e_a \geq 0 \} \pmod{h(X), p}$

Claim 1. Any two polynomials of degree < t in P are distinct in \mathcal{G} .

- 1. We show that $p > \ell$ as follows:
- 2.
- 3.

The lower bound: $|\mathcal{G}| \geq {t+\ell \choose t-1}$, where $t:=|G_1|$

- $G_1 := \{ n^i \cdot p^j \mid i, j \ge 0 \} \pmod{r}$
- $\mathcal{G} := \{ \prod_{a=0}^{\ell} (X+a)^{e_a} \mid e_a \geq 0 \} \pmod{h(X), p}$

Claim 1. Any two polynomials of degree < t in P are distinct in \mathcal{G} .

- 1. We show that $p > \ell$ as follows:
- **2.** Firstly, $r > o_r(n) > \log^2 n$, so $\sqrt{r} > \log n$. Then:
- 3.

The lower bound: $|\mathcal{G}| \geq {t+\ell \choose t-1}$, where $t:=|G_1|$

- $G_1 := \{ n^i \cdot p^j \mid i, j \ge 0 \} \pmod{r}$
- $\mathcal{G} := \{ \prod_{a=0}^{\ell} (X+a)^{e_a} \mid e_a \geq 0 \} \pmod{h(X), p}$

Claim 1. Any two polynomials of degree < t in P are distinct in \mathcal{G} .

- **1.** We show that $p > \ell$ as follows:
- **2.** Firstly, $r > o_r(n) > \log^2 n$, so $\sqrt{r} > \log n$. Then:
- 3. $p > r = \sqrt{r}\sqrt{r} > \sqrt{r}\log n > \sqrt{\varphi(r)}\log n \ge |\sqrt{\varphi(r)}\log n| = \ell$

The lower bound: $|\mathcal{G}| \geq {t+\ell \choose t-1}$, where $t := |G_1|$

- $G_1 := \{ n^i \cdot p^j \mid i, j \ge 0 \} \pmod{r}$
- $\mathcal{G} := \{ \prod_{a=0}^{\ell} (X+a)^{e_a} \mid e_a \geq 0 \} \pmod{h(X), p}$
- **Claim 1.** Any two polynomials of degree < t in P are distinct in \mathcal{G} .
- **Claim 2.** $X, X + 1, \dots, X + \ell$ are all distinct in \mathcal{G} .
- **Claim 3.** There are $\binom{t+\ell}{t-1} = \binom{(t-1)+(\ell+1)}{t-1}$ different polynomials of degree < t in \mathcal{G} . *Proof:*

The lower bound: $|\mathcal{G}| \geq {t+\ell \choose t-1}$, where $t:=|G_1|$

- $G_1 := \{ n^i \cdot p^j \mid i, j \ge 0 \} \pmod{r}$
- $\bullet \ \mathcal{G} := \{ \prod_{a=0}^{l} (X+a)^{e_a} \mid e_a \geq 0 \} \pmod{h(X),p}$
- **Claim 1.** Any two polynomials of degree < t in P are distinct in G.
- **Claim 2.** $X, X + 1, \dots, X + \ell$ are all distinct in \mathcal{G} .
- **Claim 3.** There are $\binom{t+\ell}{t-1} = \binom{(t-1)+(\ell+1)}{t-1}$ different polynomials of degree < t in \mathcal{G} . *Proof:*

"Separate t-1 'degrees' with $\ell+1$ bars, assigning the degrees to polynomials $1, X, X+1, \ldots, X+\ell$."

What we're going to do now

- 1. Define a group \mathcal{G} of polynomials.
- **2.** Prove that $|\mathcal{G}| \geq \text{LowerBound}$.
- 3. Prove that if $n \neq p^k$, then $|\mathcal{G}| < \text{LowerBound}$.
- **4.** Deduce that $n = p^k$ for some k.

But recall Line 1. of AKS:

- 1. if $(n=a^b \text{ for } a,b\in\mathbb{N} \text{ and } b\geq 2)$, return COMPOSITE.
- **5.** Therefore k = 1... and we get that $n = p^1$ is prime. \square

The upper bound:
$$n \neq p^k \implies |\mathcal{G}| \leq n^{\sqrt{t}}$$
, where $t := |G_1|$

$$exttt{temp} := \left\{ \left(rac{n}{p}
ight)^i \cdot p^j \mid 0 \leq i, j \leq \lfloor \sqrt{t}
floor
ight\}$$

- 1.
- 2.
- 3.
- 4.
- **5**.
- 6.
- 7.
- 8.

The upper bound:
$$n \neq p^k \implies |\mathcal{G}| \leq n^{\sqrt{t}}$$
, where $t := |G_1|$

$$\texttt{temp} := \left\{ \left(\frac{n}{p}\right)^i \cdot p^j \mid 0 \leq i, j \leq \lfloor \sqrt{t} \rfloor \right\}$$

- 1. This set has $(|\sqrt{t}|+1)^2>t=|G_1|$ distinct elements.
- 2.
- 3.
- 4.
- **5**.
- 6.
- 7.
- 8.

The upper bound:
$$n \neq p^k \implies |\mathcal{G}| \leq n^{\sqrt{t}}$$
, where $t := |G_1|$

$$\texttt{temp} := \left\{ \left(\frac{n}{p}\right)^i \cdot p^j \mid 0 \leq i, j \leq \lfloor \sqrt{t} \rfloor \right\}$$

- 1. This set has $(\lfloor \sqrt{t} \rfloor + 1)^2 > t = |G_1|$ distinct elements.
- **2.** Consider their remainders mod r. All of them belong in G_1 .
- 3.
- 4.
- **5**.
- 6.
- 7.
- 8.

The upper bound:
$$n \neq p^k \implies |\mathcal{G}| \leq n^{\sqrt{t}}$$
, where $t := |G_1|$

$$\mathtt{temp} := \left\{ \left(\frac{n}{p}\right)^i \cdot p^j \mid 0 \leq i, j \leq \lfloor \sqrt{t} \rfloor \right\}$$

- 1. This set has $(\lfloor \sqrt{t} \rfloor + 1)^2 > t = |G_1|$ distinct elements.
- 2. Consider their remainders mod r. All of them belong in G_1 .
- **3.** Therefore some $m_1 > m_2 \in \text{temp}$ are equal mod r.
- 4.
- **5**.
- 6.
- 7.
- 8.

The upper bound:
$$n \neq p^k \implies |\mathcal{G}| \leq n^{\sqrt{t}}$$
, where $t := |G_1|$

$$\texttt{temp} := \left\{ \left(\frac{n}{p}\right)^i \cdot p^j \mid 0 \leq i, j \leq \lfloor \sqrt{t} \rfloor \right\}$$

- 1. This set has $(\lfloor \sqrt{t} \rfloor + 1)^2 > t = |G_1|$ distinct elements.
- 2. Consider their remainders mod r. All of them belong in G_1 .
- 3. Therefore some $m_1 > m_2 \in \text{temp}$ are equal mod r.
- 4. Then $X^{m_1} = X^{m_2+kr} = X^{m_2} \cdot (X^r)^k = X^{m_2} \pmod{X^r-1}$.
- **5**.
- 6.
- 7.
- 8.

The upper bound:
$$n \neq p^k \implies |\mathcal{G}| \leq n^{\sqrt{t}}$$
, where $t := |G_1|$

$$\texttt{temp} := \left\{ \left(\frac{n}{p} \right)^i \cdot p^j \mid 0 \le i, j \le \lfloor \sqrt{t} \rfloor \right\}$$

- 1. This set has $(\lfloor \sqrt{t} \rfloor + 1)^2 > t = |G_1|$ distinct elements.
- 2. Consider their remainders mod r. All of them belong in G_1 .
- 3. Therefore some $m_1 > m_2 \in \text{temp}$ are equal mod r.
- 4. Then $X^{m_1} = X^{m_2+kr} = X^{m_2} \cdot (X^r)^k = X^{m_2} \pmod{X^r-1}$.
- **5.** Pick an arbitrary $f(X) \in \mathcal{G}$. Recall: m_1, m_2 are introspective for f(X).
- 6.
- 7.
- 8.

The upper bound:
$$n \neq p^k \implies |\mathcal{G}| \leq n^{\sqrt{t}}$$
, where $t := |G_1|$

$$\mathtt{temp} := \left\{ \left(\frac{n}{p}\right)^i \cdot p^j \mid 0 \leq i, j \leq \lfloor \sqrt{t} \rfloor \right\}$$

- 1. This set has $(\lfloor \sqrt{t} \rfloor + 1)^2 > t = |G_1|$ distinct elements.
- 2. Consider their remainders mod r. All of them belong in G_1 .
- 3. Therefore some $m_1 > m_2 \in \text{temp}$ are equal mod r.
- 4. Then $X^{m_1} = X^{m_2+kr} = X^{m_2} \cdot (X^r)^k = X^{m_2} \pmod{X^r-1}$.
- **5.** Pick an arbitrary $f(X) \in \mathcal{G}$. Recall: m_1, m_2 are introspective for f(X).
- **6.** Therefore $[f(X)]^{m_1} = f(X^{m_1}) = f(X^{m_2}) = [f(X)]^{m_2}$.
- **7**.
- 8.

The upper bound:
$$n \neq p^k \implies |\mathcal{G}| \leq n^{\sqrt{t}}$$
, where $t := |G_1|$

$$\texttt{temp} := \left\{ \left(\frac{n}{p}\right)^i \cdot p^j \mid 0 \le i, j \le \lfloor \sqrt{t} \rfloor \right\}$$

- 1. This set has $(\lfloor \sqrt{t} \rfloor + 1)^2 > t = |G_1|$ distinct elements.
- 2. Consider their remainders mod r. All of them belong in G_1 .
- 3. Therefore some $m_1 > m_2 \in \text{temp}$ are equal mod r.
- 4. Then $X^{m_1} = X^{m_2+kr} = X^{m_2} \cdot (X^r)^k = X^{m_2} \pmod{X^r-1}$.
- **5.** Pick an arbitrary $f(X) \in \mathcal{G}$. Recall: m_1, m_2 are introspective for f(X).
- **6.** Therefore $[f(X)]^{m_1} = f(X^{m_1}) = f(X^{m_2}) = [f(X)]^{m_2}$.
- 7. f(X) is a root of $Q(Y) = Y^{m_1} Y^{m_2}$. But that holds for any $f(X) \in \mathcal{G}$, so $|\mathcal{G}| \leq \deg Q$.
- 8.

The upper bound:
$$n \neq p^k \implies |\mathcal{G}| \leq n^{\sqrt{t}}$$
, where $t := |G_1|$

$$exttt{temp} := \left\{ \left(rac{n}{p}
ight)^i \cdot p^j \mid 0 \leq i, j \leq \lfloor \sqrt{t}
floor
ight\}$$

- 1. This set has $(\lfloor \sqrt{t} \rfloor + 1)^2 > t = |G_1|$ distinct elements.
- 2. Consider their remainders mod r. All of them belong in G_1 .
- 3. Therefore some $m_1 > m_2 \in \text{temp}$ are equal mod r.
- 4. Then $X^{m_1} = X^{m_2+kr} = X^{m_2} \cdot (X^r)^k = X^{m_2} \pmod{X^r-1}$.
- **5.** Pick an arbitrary $f(X) \in \mathcal{G}$. Recall: m_1, m_2 are introspective for f(X).
- **6.** Therefore $[f(X)]^{m_1} = f(X^{m_1}) = f(X^{m_2}) = [f(X)]^{m_2}$.
- 7. f(X) is a root of $Q(Y) = Y^{m_1} Y^{m_2}$. But that holds for any $f(X) \in \mathcal{G}$, so $|\mathcal{G}| \leq \deg Q$.
- 8. $|\mathcal{G}| \leq \deg Q = m_1 \leq \max(\text{temp}) = \left(\frac{n}{p}\right)^{\lfloor \sqrt{t} \rfloor} \cdot p^{\lfloor \sqrt{t} \rfloor} = n^{\lfloor \sqrt{t} \rfloor} \leq n^{\sqrt{t}}$.

The upper bound:
$$n \neq p^k \implies |\mathcal{G}| \leq n^{\sqrt{t}} < \binom{t+\ell}{t-1}$$

$$n^{\sqrt{t}} = 2^{\sqrt{t}\log n} \le 2^{\lfloor \sqrt{t}\log n\rfloor + 1}$$

[because
$$\sqrt{t} \log n \le \lfloor \sqrt{t} \log n \rfloor + 1$$
]

The upper bound: $n \neq p^k \implies |\mathcal{G}| \leq n^{\sqrt{t}} < \binom{t+\ell}{t-1}$

$$\begin{split} n^{\sqrt{t}} &= 2^{\sqrt{t}\log n} \leq 2^{\lfloor \sqrt{t}\log n\rfloor + 1} \\ &< \binom{2\lfloor \sqrt{t}\log n\rfloor + 1}{\lfloor \sqrt{t}\log n\rfloor} \end{split}$$

[because
$$\binom{2x+1}{x} > 2^{x+1}$$
 for $x > 1$]

The upper bound: $n \neq p^k \implies |\mathcal{G}| \leq n^{\sqrt{t}} < \binom{t+\ell}{t-1}$

$$\begin{split} n^{\sqrt{t}} &= 2^{\sqrt{t}\log n} \leq 2^{\lfloor \sqrt{t}\log n\rfloor + 1} \\ &< \binom{2\lfloor \sqrt{t}\log n\rfloor + 1}{\lfloor \sqrt{t}\log n\rfloor} \\ &\leq \binom{\ell + \lfloor \sqrt{t}\log n\rfloor + 1}{\ell} \\ &= \binom{\ell + \lfloor \sqrt{t}\log n\rfloor + 1}{\lfloor \sqrt{t}\log n\rfloor} \end{split}$$

[because
$$\binom{x}{y} \le \binom{x+a}{y+a}$$
 and $\lfloor \sqrt{t} \log n \rfloor \le \ell$]
[which holds because $\ell = \lfloor \sqrt{\varphi(r)} \log n \rfloor$ and $t = |G_1| \le \varphi(r)$]

The upper bound: $n \neq p^k \implies |\mathcal{G}| \leq n^{\sqrt{t}} < \binom{t+\ell}{t-1}$

$$\begin{split} n^{\sqrt{t}} &= 2^{\sqrt{t}\log n} \leq 2^{\lfloor \sqrt{t}\log n\rfloor + 1} \\ &< \binom{2\lfloor \sqrt{t}\log n\rfloor + 1}{\lfloor \sqrt{t}\log n\rfloor} \\ &\leq \binom{\ell + \lfloor \sqrt{t}\log n\rfloor + 1}{\ell} \\ &= \binom{\ell + \lfloor \sqrt{t}\log n\rfloor + 1}{\lfloor \sqrt{t}\log n\rfloor} \\ &\leq \binom{\ell + (t-1) + 1}{t-1} = \binom{t + \ell}{t-1} \end{split}$$

[because
$$\binom{x}{y} \le \binom{x+a}{y+a}$$
 and $\lfloor \sqrt{t} \log n \rfloor \le t-1 \iff t > \log^2 n$] [which holds because $t = |G_1| = |\langle n, p \rangle| \ge |\langle n \rangle| = o_r(n) > \log^2 n$]

What we've done now

- 1. Define a group \mathcal{G} of polynomials.
- **2.** Prove that $|\mathcal{G}| \geq$ LowerBound.
- 3. Prove that if $n \neq p^k$, then $|\mathcal{G}| < \text{LowerBound}$.
- **4.** Deduce that $n = p^k$ for some k.

But recall Line 1. of AKS:

- 1. if $(n=a^b \text{ for } a,b\in\mathbb{N} \text{ and } b\geq 2)$, return COMPOSITE.
- **5.** Therefore k = 1... and we get that $n = p^1$ is prime. \square

- 1. The inefficient primality test.
- 2.
- 3.

- 1. The inefficient primality test.
- 2. Remove the inefficiency but lose correctness.
- 3.

- **1.** The inefficient primality test.
- **2.** Remove the inefficiency but lose correctness.
- 3. Restore the correctness by repeating the test ℓ times. Prove that only prime numbers pass the repeated test:

- **1.** The inefficient primality test.
- **2.** Remove the inefficiency but lose correctness.
- 3. Restore the correctness by repeating the test ℓ times. Prove that only prime numbers pass the repeated test:

. . .

...

4. Identify **the introspective property** of n and p w.r.t. X + a polynomials.

5.

6.

7

8.

...

- **4.** Identify **the introspective property** of n and p w.r.t. X + a polynomials.
- 5. Prove the multiplicative-closure properties of introspectiveness.
- 6.
- 7.
- 8.

...

- 4. Identify the introspective property of n and p w.r.t. X + a polynomials.
- **5.** Prove the **multiplicative-closure properties** of introspectiveness.
- **6. Define** G_1 and G based directly on step **4**.
- 7.
- 8.

...

- **4.** Identify **the introspective property** of n and p w.r.t. X + a polynomials.
- 5. Prove the multiplicative-closure properties of introspectiveness.
- **6. Define** G_1 **and** G based directly on step **4**.
- 7. Prove that \mathcal{G} must have many elements by examining polynomials X^m and referring to introspectiveness between G_1 and \mathcal{G} .
- 8.

...

- 4. Identify the introspective property of n and p w.r.t. X + a polynomials.
- 5. Prove the multiplicative-closure properties of introspectiveness.
- **6. Define** G_1 **and** G based directly on step **4**.
- **7.** Prove that \mathcal{G} must have many elements by examining polynomials X^m and referring to introspectiveness between G_1 and \mathcal{G} .
- **8.** Prove that, if $n \neq p^k$, then \mathcal{G} can't have too many elements by examining polynomials X^m and referring to introspectiveness between G_1 and \mathcal{G} .
- 9.

...

- **4.** Identify **the introspective property** of n and p w.r.t. X + a polynomials.
- 5. Prove the multiplicative-closure properties of introspectiveness.
- **6. Define** G_1 **and** G based directly on step **4**.
- 7. Prove that \mathcal{G} must have many elements by examining polynomials X^m and referring to introspectiveness between G_1 and \mathcal{G} .
- **8.** Prove that, if $n \neq p^k$, then \mathcal{G} can't have too many elements by examining polynomials X^m and referring to introspectiveness between G_1 and \mathcal{G} .
- **9.** The required properties of *r* and *l* emerge from the proof.

1.

2

- 1. The break and repair pattern.
- 2.
- 3.

- 1. The break and repair pattern.
- 2. Groundbreaking algorithms can emerge directly from pure mathematics.
- 3.

- 1. The break and repair pattern.
- 2. Groundbreaking algorithms can emerge directly from pure mathematics.
- 3. Problems that went unsolved for decades can have elementary solutions.

Acknowledgements

Thanks to the mentor of this talk – **Matthew Ireland**, and all others involved in the organization of this event.

- 1. The break and repair pattern.
- 2. Groundbreaking algorithms can emerge directly from pure mathematics.
- 3. Problems that went unsolved for decades can have elementary solutions.