Filtre actif de second ordre

On étudie le montage suivant :

Étude du schéma

- 1. Que vaut v_- ? Justifiez votre réponse.
- 2. Exprimer Z_{eq1} , l'impédance équivalente à la mise en série de R et C.
- 3. Exprimer Z_{eq2} , l'impédance équivalente à la mise en parallèle de R et C.
- 4. Exprimer v_{-} en fonction de v_{in} , v_{out} , Z_{eq1} et Z_{eq2} .
- 5. Montrer que la fonction de transfert du montage peut s'écrire sous la forme

$$H(j\omega) = -\frac{j\frac{\omega}{\omega_0}}{\left(1 + j\frac{\omega}{\omega_0}\right)^2}$$

1/2

et exprimer ω_0 en fonction de R et C.

Étude de la fonction de transfert

- 1. On s'intéresse au gain de H.
 - (a) exprimer le gain de H en décibel.
 - (b) que vaut le gain en dB lorsque $f \to 0$?
 - (c) que vaut le gain en dB lorsque $f \to +\infty$?
 - (d) que vaut le gain en dB lorsque $f = f_0$?
 - (e) pour $f < f_0$, que vaut la pente du gain en décibels par décade?
 - (f) pour $f > f_0$, que vaut la pente du gain en décibels par décade?
 - (g) quel est le type de filtre réalisé?
- 2. On s'intéresse à la phase de H.
 - (a) exprimer la phase de H en degrés.
 - (b) que vaut la phase en degrés lorsque $f \to 0$?
 - (c) que vaut la phase en degrés lorsque $f \to +\infty$?
 - (d) que vaut la phase en degrés lorsque $f = f_0$?

Tracé du diagramme de Bode

1. On donne : $R=330k\Omega$ et C=100nF. Tracer sur la figure suivante le diagramme de Bode asymptotique et réel du filtre étudié.

