计算机模拟实验报告

武子越 3170104155

1. 实验内容

模拟欧式期权定价的过程,并求出股票价格分布、讨论不同参数对期权价的影响等。

2. 股价在 T=90 天内的价格分布

设置增长率 μ = 0.1,波动率 σ = 0.3,在初始价格为 100,时间 T=90 时,模拟出的价格分布如下:

可以看到,到期时的股票价格总体来说分布 在 40-200 的区间内,近似于对数正态分布,最为 集中的在比初始价格 100 多一点的部分,这在直 观下也和自然增长率比较吻合。

3. 不同的 σ 和 T 值对于分布的影响

设置同上一题,改变不同的参数,将运行结果产生的分布的均值和标准差进行统计汇总,得到的结果如下:

T/sigma	0.1	0.3	0.5	0.7	0.9
10	100.2704	100.2792	100.2887	100.2419	100.3323
30	100.8154	100.8353	100.8158	100.6696	100.8482
50	101.395	101.3306	101.4395	101.5923	101.5293
70	101.945	101.9285	102.0437	101.9144	101.9052
90	102.4678	102.4951	102.4548	102.5857	102.6444
110	103.059	102.9708	103.235	103.0997	102.8761
130	103.6039	103.6031	103.6004	103.4843	103.3923
150	104.202	104.1184	104.1132	103.9954	104.477
170	104.7873	104.7678	104.7805	104.791	104.9562

T/sigma	0.1	0.3	0.5	0.7	0.9
10	1.6594	4.9756	8.3105	11.6619	14.9926
30	2.8874	8.6538	14.5202	20.4781	26.4768
50	3.758	11.2813	18.9346	26.8024	34.672
70	4.4497	13.4383	22.6594	31.9565	41.8496
90	5.0942	15.3769	25.8195	36.5149	48.2965
110	5.6382	17.1172	28.9744	41.3727	54.7513
130	6.1969	18.6588	31.6885	45.3573	59.9317
150	6.6786	20.2122	34.2002	49.3709	64.9479
170	7.1848	21.6384	36.8226	53.2862	70.8769

可以看到,分布均值受到波动率的影响不大,随着时间的增加在缓慢增加,而分布标准 差受到波动率的影响较大,波动率增加,分布的标准差增加,同时标准差也随着时间的增加 而增加。下方左图是分布标准差与时间和波动率的关系,右图是在 $\sigma=0.3$ 的情况下 T=10,60,110,160 的模拟结果,也可以直接看出标准差与时间和波动率的正相关关系。

4. 波动率、到期时间、无风险利率对期权价的影响

首先计算不同看涨期权初始价格从 90 到 115 元的定价,设无风险利率r=0.031,时间 T=90,同时设置敲定价 K=120,

计算定价,得到以下结果:

Т	90	91	92	93	94	95	96	97	98	99
р	0.1849	0.2159	0.2581	0.3201	0.375	0.4373	0.5178	0.6008	0.7077	0.8294
Т	100	101	102	103	104	105	106	107	108	109
р	0.9827	1.1117	1.2836	1.4446	1.6405	1.8258	2.0954	2.3302	2.6252	2.8784
Т	110	111	112	113	114	115				
р	3.174	3.5427	3.8821	4.2729	4.6273	5.1181				

可以看到,对于看涨期权,当期权的初始价格和敲定价较为接近的时候,其定价也应当更高一些。固定初始价格 S=100, 敲定价 K=110, 计算不同波动率、到期时间和无风险利率对于期权价的影响,结果如下:

从图上可以直观看出,期权价和距离到期时间的长度有正相关关系,距离到期时间越长,期权价越高。对于看涨期权而言,波动率越高,相应的期权价格也会越高,而无风险利率越高,相应的期权价格也会越高。

5. 看跌期权的情况

和上一题的处理相同,固定初始价格 S=100,由于是看跌期权,这里不妨设置敲定价 K=90, 计算模拟的结果如下:

可以看到,时间的长短和期权的价格同样也是正相关关系,波动率越大的情况下价格越高,这和看涨期权的结论相同,而对于无风险利率,利率越高,期权的价格反而越低,这和看涨期权的结论相反。