Optymalizacja hurtowni

Proces zakupu i wykorzystania karnetów przez klientów Krzysztof Nasuta 193328, Filip Dawidowski 193433

1. Wstęp

Celem raportu jest pokazanie wpływu różnych fizyczny modeli kostki oraz sposobu agregacji na wydajność.

2. Założenia wstępne

2.1. Wielkość hurtowni danych

- Rozmiar bazy danych: 136MB (+264MB log)
- Ilość wierszy w tabeli faktu zjazdu: 1 599 884
- Ilość wierszy w tabeli faktu sprzedaży karnetu: 40 000

2.2. Środowisko testowe

Maszyna wirtualna QEMU z systemem Windows 11, 16GB RAM, 8 vCPU (4 rdzenie, 8 wątków), procesor AMD Ryzen 5 3600, dysk SSD.

3. Testowanie

Sprawdzanie czasu wykonania zapytań i czasu procesowania kostki dla różnych modeli fizycznych kostki, z oraz bez agregacji.

3.1. Opis zapytań

```
3.1.1. Agregacja dat:
SELECT
      [Ride Date].[DateHierarchy].[Year]
    } ON ROWS,
        [Measures].[AverageRideCountPerCard], [Measures].[Ride Count]
    } ON COLUMNS
FR<sub>0</sub>M
    [Ski Center Data Warehouse]
3.1.2. Wymiar:
SELECT
    {
      [Pass].[Price].[Price].MEMBERS
  } ON ROWS,
        [Measures].[AverageRideCountPerCard], [Measures].[Ride Count]
    } ON COLUMNS
FR0M
    [Ski Center Data Warehouse]
```

3.1.3. Ogólne:

3.2. Wyniki

Czas podany w milisekundach, średnia z 10 pomiarów Agregacje utworzone z domyślnymi parametrami

	MOLAP		HOLAP		ROLAP	
	Agregacja	Bez agr.	Agregacja	Bez agr.	Agregacja	Bez agr.
Czas zapytania (3	106.5	192.67	101.375	362.4	353.71	350.6
zapytania)	123.375	198.33	170.33	172.75	164.5	159.75
	23.75	31	89.67	100.75	101.56	89.33
Czas procesowania	6652.25	6534,25	2715.33	2303.25	2450.83	2346.67
Łączny rozmiar	41,4 MB	41,1 MB	15,5 MB	15,2 MB	15,2 MB	15,2 MB

4. Wnioski

Model MOLAP - wszystkie dane przechowywane są w hurtowni - zawiera kopię tabeli faktów i wszystkich agregacji obliczonych podczas procesowania kostki. Pozwala to na szybkie wykonywanie zapytań.

Model ROLAP - dane z tabeli faktów oraz agregacje są pobierane z relacyjnej bazy danych co powoduje, że zapytania są wolniejsze.

Model HOLAP - jest hybrydą modeli MOLAP i ROLAP, agregacje są przetrzymywane w bazie hurtowni, natomiast dane z tabeli faktów są pobierane z relacyjnej bazy danych. W związku z tym czas wykonania zapytań jest pośredni, a czas procesowania kostki zbliżony do modelu ROLAP (nieznacznie dłuższy z powodu tworzenia agregacji na serwerze OLAP).

Dla testowanej hurtowni danych najlepsze wyniki czasowe dla zapytań osiągnięto generalnie dla modelu MOLAP. Model ROLAP okazał się najwolniejszy, co jest zgodne z oczekiwaniami, ponieważ dane pobierane są z relacyjnej bazy danych. Zastosowanie agregacji przyspieszyło czas zapytań - szczególnie w przypadku modelu MOLAP, natomiast dla ROLAP agregacje zwiększyły czas zapytań (jest to spowodowane przetwarzaniem agregacji przez serwer relacyjny). HOLAP jako hybryda modeli MOLAP i ROLAP zgodnie z teorią osiągnął we wszystkich operacjach wyniki pośrednie. Czas procesowania kostki jest wysoki dla MOLAP i niższy dla HOLAP i ROLAP, co jest zgodne z

oczekiwaniami. Łączny rozmiar kostki jest największy dla MOLAP i najmniejszy dla ROLAP, co potwierdza teorię modeli fizycznych kostki. Agregacje nie wpłynęły znacząco na rozmiar kostki, który zwiększył się o stały rozmiar dla MOLAP oraz HOLAP. W ROLAP rozmiar nie uległ zmianie, gdyż agregacje nie są przechowywane w OLAP. Przyspieszenie przy zastosowaniu agregacji mogłoby być większe, gdyby zastosowano bardziej zaawansowane techniki agregacji, które byłyby bardziej optymalne dla konkretnych zapytań. Zwiększyłoby to natomiast rozmiar kostki.