Driven Random Dynamic Reservoir with Homeostatic Variance Control

1 Model Description

1.1 Dynamics

$$x_i^{t+1} = \tanh\left(g_i^t I_i^{t+1}\right) \tag{1}$$

$$I_i^{t+1} = \sum_{j=1}^{N_{\text{net}}} W_{ij} x_j^t + E_i^{t+1}$$
 (2)

$$g_i^{t+1} = \mu_g \left[\sigma_{\text{target}}^2 - \left(x_i^t - \langle x_i \rangle \right)^2 \right]$$
 (3)

1.2 Parameters / Settings

 W_{ij} is a sparse random matrix with connection probability cf_{net} . Nonzero entries were drawn from a Gaussian distribution $\mathcal{N}(\mu = 0, \sigma = \sigma_{conn}/\sqrt{N_{net}cf_{net}})$. Diagonal entries were always set to zero.

 E_i^t are random vectors of size $N_{\rm net}$ with independent entries drawn from a Gaussian distribution $\mathcal{N}(\mu = 0, \sigma = \sigma_{\rm ext})$. External input is turned off after $t_{\rm ext.off}$.

By changing individual gain values g_i , the homeostatic control tries to drive the activity standard deviation of every cell to the value given by $\sigma_{\rm target}$. However, this mechanism is also switched off after $t_{\rm ext.off}$. This is done because we can assume that homeostatic processes would biologically act on much slower timescales than changes in input. Before $t_{\rm ext.off}$, we can set μ_g to relatively high values to let homeostasis converge under external drive.

See all parameters in Table 1.

Table 1: Model Parameters

Parameter	Value
$N_{ m net}$	500
$\mathrm{cf}_{\mathrm{net}}$	0.1
$\sigma_{ m conn}$	1.0
$\sigma_{ m ext}$	1.0
μ_g	0.0005
$\sigma_{ m target}$	0.33
n_t (Sim. Steps)	200000
$t_{ m ext.off}$	100000

2 Results

Exemplary results are shown in Fig. 1.

Figure 1: **A**: Sample of activity within $[t_{\text{ext.off}} - 100, t_{\text{ext.off}} + 100]$. **B**: Gain dynamics of $N_{\text{net}}/10$ exemplary neurons. **C**: Population mean of squared activity. **D**: Log. of largest real part of eigenvalues of $g_i^t W_{ij}$. **E**: Sample of population activity for the last 100 steps.

3 Mean Field Approximation

We would like to find an approximate relation between the gain resulting from homeostasis and the input and target variance. In the following, we shall denote by $\langle \cdot \rangle_T$ an average over time and by $\langle \cdot \rangle_P$ over the population. If we linearize the neural activation function and take

an average over time, we get

$$\left\langle x_i^2 \right\rangle_T = g_i^2 \left\langle \left(\sum_{j=1}^{N_{\text{net}}} W_{ij} x_j + E_i \right)^2 \right\rangle_T$$
 (4)

$$= g_i^2 \left\langle \left(\sum_{j=1}^{N_{\text{net}}} W_{ij} x_j \right)^2 \right\rangle_T + g_i^2 E_i^2$$
 (5)

$$= g_i^2 \sum_{j,k=1}^{N_{\text{net}}} W_{ij} W_{ik} \left\langle x_j x_k \right\rangle_T + g_i^2 E_i^2 . \tag{6}$$

If we assume that the system is in a chaotic state we can set $\langle x_j x_k \rangle_T = 0$ for $j \neq k$. This leads to

$$\left\langle x_i^2 \right\rangle_T = g_i^2 \left(\sum_{j=1}^{N_{\text{net}}} W_{ij}^2 \left\langle x_j^2 \right\rangle_T + \sigma_{\text{ext}}^2 \right) \tag{7}$$

where we have assumed $\langle E_i \rangle_T = 0$ for all i.

By design, our homeostatic mechanism fixes all $\langle x_i^2 \rangle_T$ to σ_{target}^2 . Thus,

$$\sigma_{\text{target}}^2 = g_i^2 \left(\sigma_{\text{target}}^2 \sum_{j=1}^{N_{\text{net}}} W_{ij}^2 + \sigma_{\text{ext}}^2 \right)$$
 (8)

$$g_i = \left(\sum_{j=1}^{N_{\text{net}}} W_{ij}^2 + \sigma_{\text{ext}}^2 / \sigma_{\text{target}}^2\right)^{-1/2} . \tag{9}$$

Since W_{ij} is a random Gaussian matrix with variance $\sigma_{\text{conn}}^2/(N_{\text{net}}cf_{\text{net}})$, $\sum_{j=1}^{N_{\text{net}}}W_{ij}^2$ follows a χ^2 - distribution with variance $\frac{2N_{\text{net}}cf_{\text{net}}\sigma_{\text{conn}}^2}{N_{\text{net}}^2cf_{\text{net}}^2} = \frac{2\sigma_{\text{conn}}^2}{N_{\text{net}}cf_{\text{net}}}$. For $N_{\text{net}} \to \infty$, its variance vanishes and consequently, all g_i converge to the same value, namely

$$g = \left(\sigma_{\text{conn}}^2 + \sigma_{\text{ext}}^2 / \sigma_{\text{target}}^2\right)^{-1/2} . \tag{10}$$

This equation predicts that g should not change if the ratio between target and input variance remains constant. We ran a parameter sweep over $\sigma_{\rm ext}$ and $\sigma_{\rm target}$ with a network of $N_{\rm net}=1000$ neurons and looked at the resulting distribution of gains and the maximal Lyapunov exponent. Importantly, this approximation suggests that the network should tune into a subcritical configuration for any non-vanishing external input. Even though this is not strictly verified in the numerical simulation, see Fig. 2A, it holds for the majority of $\sigma_{\rm ext}/\sigma_{\rm target}$ combinations.

Figure 2: Parameter sweep, run on a network with $N_{\rm net}=1000$. A: Log of largest absolute value of eigenvalues of g_iW_{ij} . Red line marks the zero transition. B: $\langle g_i\rangle_P$. C: $\langle (g_i-\langle g_i\rangle_P)^2\rangle_P$. D: Prediction of (10) (blue) vs. numerical result (orange) of $\langle g_i\rangle_P$.