$$R_{xy} = \infty$$

$$i_{xy} = \frac{-3 \cdot 7 \vee}{\infty} = 0.4$$

Given
$$V = 0V, I = 5A \Rightarrow Current Source.$$

$$V = 20V, I = 3A \Rightarrow Resistive network.$$

$$V \rightarrow I$$

$$V \rightarrow I$$

$$V \rightarrow I$$

$$V \rightarrow I$$

$$V = 0$$
, $I = 5A$ =) $R_2 = 0$?

at $V = 20$, $I = 3A$ =) $R_2 = \frac{20}{3}$, $R_1 = \frac{20}{2} = 10$?

The required circuit is

at
$$R_2 = 0$$
 , $V = 0V$, $I = 5A$.

at $R_2 = 0$, $V = 50V$, $I = 0A$.

Problem - 3

$$V = i_3 (100 \text{ m s})$$

$$= 2e^{-3t} (100 \text{ m})$$

$$V = 0.2e^{-3t}$$

$$V = L \frac{di'}{dt} = \frac{1}{2} i_{L}(t) = \frac{1}{2} \int v \, dt$$

$$= \int i_{L}(t) = \frac{1}{2} \times 0.2 \int e^{-3t} \, dt$$

$$= \int i_{L}(t) = \frac{1}{0.1} \times 0.2 \times \frac{e^{-3t}}{-3} + C$$

$$= \int i_{L}(t) = \frac{-2}{3} e^{-3t} + C$$