

PharmML – use of UncertML

Maciej Swat, Stuart Moodie, Niels R. Kristensen, Nicolas Le Novère EMBL-EBI, Novo Nordisk A/S, Babraham Institute

UncertML 3

Communicating Uncertainty: UncertML 3.0

Lucy Bastin¹, Dan Cornford¹, Stuart Moodie², and Maciej Swat²

¹Computer Science, Aston University, Birmingham B4 7ET, United Kingdom
²EMBL-EBI, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom

The purpose of UncertML

UncertML was designed to allow the unambiguous communication of uncertain values between applications. Originally an XML schema developed for environmental applications, it is now a dictionary and a set of associated encodings in XML schema and JSON. Version 3.0 is currently in development and is designed to make UncertML easier to use in a wide variety of scientific XML encodings.

Design principles

- Uncertainty is best represented by probabilistic approaches.
- The most complete description of uncertainty is the full distribution, from a predefined set of possible distributions.
- Sometimes only samples or summary statistics are available to describe uncertain quantities.
- It is useful to enable encoding of metrics which validate probabilistic beliefs using observations.
- We focus only on representing uncertainty UncertML is domainagnostic, and designed to be used within other schema which define units of measure, physical phenomena, etc.
- We avoid dependencies on other schema unless necessary for simplification.
- We allow for multiple encodings ,and for independent use of the dictionary.

Existing uses of UncertML

- To represent observational uncertainties in Earth observation data.
- To encode uncertainties propagated through environmental processing chains.
- To represent uncertainties arising from the replacement of complex simulators with surrogate statistical models (emulators).

Use case

Oncology model, Ribba et al. 2012

$$\frac{dC}{dt} = -KDE \times C$$

$$\frac{dP}{dt} = \lambda_p \times P\left(1 - \frac{P^*}{K}\right) + k_{Q_PP} \times Q_P - k_{PQ} \times P - \gamma_P \times C \times KDE \times P$$

$$\frac{dQ}{dt} = k_{PQ}P - \gamma_Q \times C \times KDE \times Q$$

$$\frac{dQ_P}{dt} = \gamma_Q \times C \times KDE \times Q - k_{Q_P P} Q_P - \delta_{QP} \times Q_P$$

$$P^* = P + Q + Q_P$$

Real data and model simulation for one subject

Model in PharmML

Model Definition extended

```
1 <?xml version="1.0" encoding="UTF-8"?>
 2 < < PharmML xmlns="http://www.pharmml.org/2013/03/PharmML"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 3
 4
         xsi:schemaLocation="http://www.pharmml.org/2013/03/PharmML http://www.pharmml.org/2013/03/PharmML"
 5
         xmlns:ct="http://www.pharmml.org/2013/03/CommonTypes"
 6
         writtenVersion="0.1">
        <ct:Name>Ribba et al. 2012 - growth tumor model</ct:Name>
 7
 8 🗢
         <ct:Description>based on A Tumor Growth Inhibition Model for Low-Grade Glioma Treated with Chemotherapy or Radiotherapy
             Benjamin Ribba, Gentian Kaloshi, Mathieu Peyre, et al. Clin Cancer Res Published OnlineFirst July 3, 2012.</ct:Description>
 9
10
11
         <IndependentVariable symbId="time"/>
12
         <ct:FunctionDefinition symbId="constantErrorModel" symbolType="real"> [5 lines]
13
19
         <ModelDefinition xmlns="http://www.pharmml.ora/2013/03/ModelDefinition">
20 🗢
21
22 >
             <VariabilityModel blkId="model" type="model"> [2 lines]
25
26
             <VariabilityModel blkId="obsErr" type="error"> [2 lines]
29
30 ▶
             <ParameterModel blkId="pm1"> [243 lines]
274
275
             <StructuralModel blkId="sm1"> [158 lines]
434
435
             <ObservationModel blkId="om1"> [38 lines]
474
475
         </ModelDefinition>
476
477
         <TrialDesign xmlns="http://www.pharmml.org/2013/03/TrialDesign"> [92 lines]
570
571 🗢
         <ModellingSteps xmlns="http://www.pharmml.org/2013/03/ModellingSteps">
572
573
             <EstimationStep oid="estTask1"> [204 lines]
778
779
             <StepDependencies> [4 lines]
784
         </ModellinaSteps>
785
     </PharmML>
```

Parameter Model

All parameters are log-normally distributed, e.g.

```
\lambda_{P_i} = \lambda_{P_{pop}} e^{\eta_{\lambda_P}};
                       \log(\lambda_{P_i}) = \log(\lambda_{P_{nop}}) + \eta_{\lambda_P}; \quad \eta_{\lambda_P} \sim N(0, \omega_{\lambda_P})
<!-- LAMBDAP log-normal distributed -->
<RandomVariable symbId="eta_LAMBDAP">
    <ct:VariabilityReference>
        <ct:SymbRef blkIdRef="model" symbIdRef="indiv"/>
    </ct:VariabilityReference>
    <NormalDistribution xmlns="http://www.uncertml.org/3.0" definition="http://www.uncertml.org/distributions/normal">
        <mean>
             <rVal>0</rVal>
        </mean>
        <stddev>
             <var varId="omega_LAMBDAP"/>
        </stddev>
    </NormalDistribution>
</RandomVariable>
<IndividualParameter symbId="LAMBDAP">
    <GaussianModel>
        <Transformation>log</Transformation>
        <LinearCovariate>
             <PopulationParameter>
                 <ct:Assign>
                     <ct:SymbRef symbIdRef="pop_LAMBDAP"/>
                 </ct:Assign>
             </PopulationParameter>
        </LinearCovariate>
        <RandomEffects>
             <ct:SymbRef symbIdRef="eta_LAMBDA"/>
        </RandomEffects>
    </GaussianModel>
</IndividualParameter>
```

Basic comparison to SB

- The details are in the parameter model
 - Population/typical value of a parameter
 - Covariates
 - Continuous Age, Height, Body weight,...
 - Discrete Gender, Ethnicity, Pharmacogenomics, ...
 - Correlations
 - Variability, e.g. inter-individual variability
 - Explained e.g. by covariates
 - Random

Basic comparison to SB

Variability

- Explained e.g. by covariates
- Random

$$\underbrace{y_{ij}}_{\text{Experimental}} = \underbrace{f(x_{ij}, \psi_i)}_{\text{Model}} + \underbrace{g(x_{ij}, \psi_i, \xi) \; \epsilon_{ij}}_{\text{Error}} \qquad 1 \leq i \leq N, \quad 1 \leq j \leq n_i$$

- N subjects
- n_i measurements per subject i

Variability – nested hierarchy

Simple Variability Model

There is only one level of variability
- inter-individual variability (IIV)

$$\lambda_{P_i} = \lambda_{P_{pop}} e^{\eta_{\lambda_P}};$$

Complex hierarchy reduces to

Simple Variability Model


```
\lambda_{P_i} = \lambda_{P_{pop}} e^{\eta_{\lambda_P}};
<!-- LAMBDAP log-normal distributed -->
                                                                \log(\lambda_{P_i}) = \log(\lambda_{P_{non}}) + \eta_{\lambda_P}; \quad \eta_{\lambda_P} \sim N(0, \omega_{\lambda_P})
<RandomVariable symbId="eta_LAMBDAP">
    <ct:VariabilityReference>
         <ct:SymbRef blkIdRef="model" symbIdRef="indiv"/>
    </ct:VariabilityReference>
    <NormalDistribution xmlns="http://www.uncertml.org/3.0"</p>
         definition="http://www.uncertml.org/distributions/normal">
         <mean>
             <rVal>0</rVal>
         </mean>
         <stddev>
             <var varId="omega_LAMBDAP"/>
         </stddev>
    </NormalDistribution>
</RandomVariable>
<IndividualParameter symbId="LAMBDAP">
    <GaussianModel>
         <Transformation>log</Transformation>
         <LinearCovariate>
             <PopulationParameter>
                  <ct:Assign>
                      <ct:SymbRef symbIdRef="pop_LAMBDAP"/>
                  </ct:Assian>
             </PopulationParameter>
         </LinearCovariate>
         <RandomEffects>
             <ct:SymbRef symbIdRef="eta_LAMBDA"/>
         </RandomEffects>
    </GaussianModel>
                                                          COMBINE, Paris 2013
</IndividualParameter>
```


Complex Variability Model

Three levels of variability

- inter-center variability
- inter-individual within center variability
- inter-occasion within individual within center variability

Complex Variability Model

$$\underbrace{\log(V_{lik})}_{\text{transformed individual value}} = \underbrace{\log(V_{pop})}_{\text{transformed typical value}} + \underbrace{\beta_{V,1} 1_{Sex_i = F}}_{\text{categorical covariate model}} + \underbrace{\beta_{V,2} \log\left(\frac{W_i}{70}\right)}_{\text{continuous covariate model}} + \underbrace{\eta_{l,V}^{(1)}}_{\text{inter-centre variability}} + \underbrace{\eta_{li,V}^{(0)}}_{\text{inter-individual within centre variability}} + \underbrace{\eta_{lik,V}^{(-1)}}_{\text{within centre variability}} + \underbrace{\eta_{lik,V}^{(-1)}}_{\text{inter-occasion within individual within centre variability}}_{\text{variability}}$$

Three levels of variability

- inter-center variability
- inter-individual within center variability
- inter-occasion within individual within center variability