Section 6.7

Have been working almost exclusively in 1127
In chapter 6 we developed roles of orthogonality
which was core rencept for many releas / techniques
"Det product"
─
Gr theyonality
Prejections
V
Gram-Schmidt
Lens F Squares
_
Throughout it all, had idea of 12 in
background, that orthogonal = perpendrular
But have been alluding to more abstract
spaces throughout the course (spaces of
polynomicls, continuous functions, etc.)
Went to develop similar ideas for these
abstract spaces s. we have access to
these promotel touls
First stop, define an analog to det product
Second step is defining orthogonalite in

more abstract terms. Don't want to rely on I Jea of perpendicular Praviously, sould it, is were erthogonal when det product was zero, v. w=0 For more abstract spaces, have inner product. Definition: An inner product on vector space V is a function (, , > : VXV-> TR flut for each pair of vectors u, v in V associates a real number (ti), ti) and setisfies following properties for all 2, 7, 23 in V and nll e E IR / C < ~, v > = < v, ~> © 〈 \(\vec{v} + \vec{v}', \vec{u}' \rangle = \langle \vec{u}', \vec{u} \rangle + \langle \vec{v}', \vec{u} \rangle \rangle) ② 〈c記, ア〉= c〈ご,デ〉 (2,2) 20 and (2,2) =0 :4 2=0 Note: Consider dot pocodnet on 1127. Let ⟨\$\vec{v},\$\vec{v}\$ be \$\vec{v}\$. Check preperfores.

So we see that the dot product is an inner product. The dot product is gust a special case of the mere general idea "inner product" Definition: A vector space equipped with an inner product is called an inner product space. Note: 112 with inner product (Q, T)=Q, T 15 en inner product space A more abstract example: Let V be the space of polynomicle on internal [0,1] The vectors u, v in V are polynomials ~= a0+ 9, x + a2 x2+ ... anx1 v = b. + b, x + bex? -1 ... bk x k Zoro vector B is zero polynomial B= G+ Gx +Ox +... Define inner product as (and a, x + ... a x 1) (bo + b, x + ... by x) oly This is an inner product! Chech: ((i', -7 > = < v, 27 >) @ <u+u, w7 = < ~, w7 + (c, w) /

Recall in IR, dot product rould be used to frad "length".

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}}$$

Have very consider idea of what length" is

"Lingth" can again be generalized to more abstruct concept, norm

Idea is some. I vill is a measure of magnitude of vi. Calculated some way but replace dot product with inner product

If $\|\vec{v}\| = 1$, still refer to \vec{v} as unit vector

Ex: $\vec{v} = \sqrt{3} \times is$ vector in |P[0,1]Let $(\vec{v}) = \int_0^1 u \, dx$ be inner product on |P[0,1] $||\vec{v}|| = \sqrt{\langle \vec{v}^2, \vec{v}^2 \rangle}$

$$= \sqrt{\int_0^1 (\sqrt{3} \times) (\sqrt{3} \times)} dx$$

$$=\sqrt{x^3}$$

Most impostortly we can use inver product to define orthogonality, Just like with doct product in \mathbb{R}^{2} , \mathbb{R}^{2} , \mathbb{R}^{2} , \mathbb{R}^{2} , \mathbb{R}^{2} , \mathbb{R}^{2} or they are \mathbb{R}^{2} .

(degree ≤ 3) with inner product

(\vec{u}, \vec{v}) = $\int_{-1}^{1} \vec{u} \vec{v}' dx$

$$(\vec{v}_0, \vec{v}_1) = \int_{-1}^{1} |x^2| dx$$

$$= x^3 \int_{-1}^{1}$$

$$= \frac{z_3}{3} \quad \text{Not enther one}$$

GTOH Have orthogonal polynomes

Legender Polynomials:

$$\bar{L}_{0}^{2} = |\bar{L}_{1}^{2} = \chi |\bar{L}_{2}^{2} = |\bar{L}_{2}^{2} (3x^{2} - 1)|$$

$$\bar{L}_{3}^{2} = |\bar{L}_{5}^{2} = |\bar{L}_{5}^{2} (3x^{2} - 1)|$$

Basis for $P_3[-1,1]$ and orthogonal $\langle i_1^2, i_2^2 \rangle = \int_{-1}^{1} x \left(\frac{1}{2} \right) (3x^2 - 1) dx$ $= \frac{1}{2} \int_{-1}^{1} (3x^3 - x) dx$ $= \frac{1}{2} \left[\left(\frac{3}{4} x^4 - \lambda^2 \right) \right]_{-1}^{1}$ $= \frac{1}{2} \left(\frac{3}{4} \right) \frac{1}{2}$ $= \frac{1}{2} \left($

With general idea of arthogenality we can do projections, Gran-Schnidt, least squares directly. Just replace dot products

with whatever inner product we are given

If \vec{p} , \vec{q} polynomials and $\vec{p}'(x_i)$ is the polynomial eveluated at x_i^2 can alose to inner product: Pick finite \vec{q} of \vec{x} volume \vec{x} ... \vec{x} $(\vec{p}, \vec{q}) = \vec{p}'(x_0) \cdot \vec{q}'(x_0) + \vec{p}(x_1) \cdot \vec{q}(x_1) + \cdots + \vec{p}'(x_n) \cdot \vec{q}(x_n)$

(4) (enpade $\langle \vec{p}, \vec{q}^2 \rangle$ for $\vec{p}^2 = 3(-6^2 - \vec{q}^2 = 3 + 26^2$ evaluated at pants -1, C, 1

(8) Compate proj p q

Best Approximations

The best approximation of \vec{v} onto subspace $W=spent \vec{v}_1^2$, \vec{v}_2^2 ,... \vec{v}_n^2 into arthogonal basis is still projection of \vec{v}^2 onto basis vectors

Projw v = projv, v + projv, v + ... proje v

Big Inquelitios!

(anchy-Schwertz - Have seen before with

dat products

| u.v | = ||u| ||v||

Encliden norm - whot

Similarly for inner previous have

Triciple Inequality:

1271211 = 12711 + 1211

Equal Af < vi, 2> =0, in other words of u, i are arthogen.

C[ab] f, g & C [a, b 7 < f, g >

Safg dx (L'inner product)

$$C[0, \pi]$$
with L' inner product
$$f = \sin(x) \qquad g = \cos(x)$$

$$(f, g) = \int_{0}^{\pi} \frac{\sin(x) \cos(x)}{\sin(x) \cos(x)} dx$$

$$= \int_{0}^{\pi} \frac{1}{2} \sin(2x) dx$$

$$= -\frac{1}{4} \frac{\cos(2x)}{\cos(2\pi)} - \cos(6)$$

$$= -\frac{1}{4} \left(-\frac{1}{4} \right)$$

$$= -\frac{1}{4} \left(-\frac{1}{4} \right)$$

$$= -\frac{1}{4} \left(-\frac{1}{4} \right)$$

sin (k), cos (k) are orthogonal
on [G, TT] w. c. t the 1 inner product