Design And Analysis Of Algorithms Assignment: 4

Name: Avik Samanta Roll no.: 204101016

Submission Date: November 19, 2020

1 Ques. : 1

Proof of : A graph G and integer k, does G(V, E) have a cycle, with no repeated nodes, of length at least k - is a NP Complete problem.

- The given problem is in NP Class:-
 - If any problem is in NP, then, given a 'certificate', which is a solution to the problem and an instance of the problem, we will be able to verify whether the solution given is correct or not in polynomial time.
 - Certificate : A sequence of vertices A from the graph
 - Certifier :-
 - * First verify the length of the sequence is at least k
 - * Then verify vertices in the sequence belong to the graph $[\forall v \in A \implies v \in V]$
 - * Now verify for each pair of vertices $u, v \in A$, which are adjacent according to the sequence, have an edge between them in our graph $[(u, v) \in E]$ (Because that will make sure the cycle exists)
 - * This Certifier algorithm is a polynomial time algorithm [O(k): k = length of the sequence]. And also the Certificate is in the order of the no. of vertices (Polynomial size). So the problem is in NP.
- The Hamilton cycle problem [known NP-Complete problem] is polynomial time reducible to the given problem : HAMILTON-CYCLE \leq_p Given-Problem
 - Given a graph G(V, E), we will construct an instance of Given problem, that has a simple cycle of length at least k iff the graph has a Hamilton Cycle.
 - Construction: assume |V| = number of vertices in the graph. Now consider the k = |V|. That means we have find a cycle, with no vertices repeating, of length at least |V|
 - G has a simple cycle of length $\geq k \implies G$ has a Hamilton Cycle
 - G has a cycle of length $\geq k$
 - \implies G has a cycle of length $\geq |V|$ [as k = |V|]
 - ⇒ The cycle covers all the vertices [As no vertices are repeating]
 - \implies The cycle is a Hamilton Cycle
 - G has a Hamilton Cycle \implies G has a simple cycle of length $\geq k$
 - G has a Hamilton Cycle
 - ⇒ There is a simple cycle that visits all the vertices in the graph
 - \implies The cycle covers |V| vertices in the graph and none of the vertices are repeated
 - \implies There is a cycle (no vertices repeated) with length at least (k = |V|)
 - HAMILTON-CYCLE \leq_p Given-Problem
- So, The problem is in NP-Class and Hamilton Cycle Problem is polynomial time reducible to the given problem. So, the problem is **NP-Complete**. [proved]

2 Ques.: 2

Proof of: **HITTING SET Problem** - Given a family of sets $\{S_1, S_2, ..., S_n\}$ and an integer b, is there a set H with b or fewer elements such that H intersects all the sets in the family - is a NP-Complete problem.

- HITTING SET problem is in NP Class:-
 - If any problem is in NP, then, given a 'certificate', which is a solution to the problem and an instance of the problem, we will be able to verify whether the solution given is correct or not in polynomial time.
 - Certificate: A set of elements representing the set H
 - Certifier :-
 - * First verify the number of elements in H is at most $b, |H| \leq b$
 - * Then verify $\forall S_i \in \{S_1, S_2, ..., S_n\} \implies (H \cap S_i) \neq \phi$
 - * As we know that checking for intersection takes at most O(PQ) time, for sets of size P and Q, the whole process would take at most $O(NPQ) \approx O(N^3)$ time
 - * This Certifier algorithm is a polynomial time algorithm. And also the Certificate size is polynomial to the order of no. of elements (O(N)). So the problem is in NP.
- The VERTEX COVER problem [known NP-Complete problem] is polynomial time reducible to the HITTING SET Problem : VERTEX COVER \leq_p HITTING SET
 - Consider a graph $G(V, E), k^{'}$ be an instance of VERTEX COVER. We construct an instance of HITTING SET as follows :
 - Construction: For every edge $e(u,v) \in E$, we will construct a set $S_e = \{u,v\}$. In total we will have |E| sets, and we set k = k'. We claim that G has a Vertex Cover of size at max k' iff $\{S_e|e \in E\}$ has a Hitting Set H of size k = k' or less
 - G has Vertex Cover of size ≤ $k^{'}$ ⇒ $\{S_e | e \in E\}$ has a Hitting Set H of size ≤ $k^{'}$ G has a Vertex Cover (C) of size ≤ k
 - $\implies \forall \text{ edges } (u, v) \in E, \text{ either } u \in C \text{ or } v \in C$
 - $\implies \forall S_e = \{u, v\}, \text{ either } u \in C \text{ or } v \in C \ [\forall e(u, v) \in E \implies \exists S_e = \{u, v\}]$
 - $\implies \forall S_e : e \in E, (C \cap S_e) \neq \phi$, so C intersects with each S_e in the set family
 - \implies Hitting Set of size $\leq k'$, H = C [As C has size $\leq k'$ and C intersects with each S_e]
 - $-\{S_e|e\in E\}$ has a Hitting Set H of size $\leq k^{'} \implies G$ has Vertex Cover of size $\leq k^{'}$ $\{S_e|e\in E\}$ has a Hitting Set H of size $\leq k^{'}$
 - \implies H intersects with each $S_e \ [\forall e \in E, (H \cap S_e) \neq \phi]$
 - $\implies \forall S_e = \{u, v\}, \text{ either } u \in H \text{ or } v \in H \text{ (or both)}$
 - $\implies \forall e(u,v) \in E$, either $u \in H$ or $v \in H$ (or both) [as $S_e = \{u,v\} \implies e(u,v) \in E$]
 - \implies So, H is a Vertex Cover of graph G [with size $\leq k'$]
 - VERTEX COVER Problem \leq_p HITTING SET Problem
- So, The problem is in NP-Class and Vertex Cover Problem is polynomial time reducible to the given Hitting Set problem. So, the problem is **NP-Complete**. [proved]