MA211 – Problem Set 3

- Q13.1 Find general solutions to the following differential equations:
 - (a) y'' + y' 2y = 1.
 - (b) y'' 6y' + 9y = x.
 - (c) $y'' 2y' = x^2 + 4$.
 - (d) $y'' = 4x^3$.

......

- Q14.1 Find general solutions to the following non-homogeneous differential equations:
 - (a) $y'' + y' 2y = e^{-x}$.
 - (b) $y'' + y' 2y = 3e^x$.
 - (c) $y'' + 5y' + 6y = 4e^{-2x}$.
 - (d) $-3y'' + 3y' y = \frac{1}{2}e^{-x/2}$.
- Q14.2 Suppose the solution to $\mathfrak{ah}'' + \mathfrak{bh}' + \mathfrak{ch} = 0$, where $D = \mathfrak{b}^2 4\mathfrak{ac} > 0$, so h is of the form $h = A\mathfrak{e}^{R_1x} + B\mathfrak{e}^{R_2x}$.

Show that, if u is a particular solution to $au''+bu'+cu=Ke^{R_1x}, \ {\rm then} \ u=\frac{K}{\sqrt{D}}xe^{R_1x}.$

- Q14.3 Find general solutions to the following differential equations:
 - (a) $y'' y = \cos(x)$.
 - (b) $y'' + y' 2y = 5\sin(-2x)$.
- Q14.4 Here is an alternative approach to solving problems of the type in Q6. Recall the Euler Formula: $e^{ix} = \cos(x) + i\sin(x)$ where $i = \sqrt{-1}$. If the right-hand side of the equation involves a cos or a sin, choose the particular solution to be of the form $u = Ae^{ix}$, solve for A, and take the real or imaginary parts of u as appropriate.

Example: Find the particular solution to $u'' + u' - 2u = 5\sin(-2x)$.

Solution: Assume $u = Ae^{-2ix}$.

So
$$\mathfrak{u}' = -2iAe^{-2ix}$$
 and $\mathfrak{u}'' = -4Ae^{-2ix}$.

Substituting back into the DE we get

$$-4Ae^{-2ix} - 2iAe^{-2ix} - 2e^{-2ix} = Ae^{-2ix}$$

This gives $A = \frac{5}{-6-2i} = -\frac{3}{4} + \frac{1}{4}i$. Thus $u = Ae^{-2x} = \left(-\frac{3}{4} + \frac{1}{4}i\right)\left(\cos(2x) + i\sin(2x)\right)$. Since $\sin(2x)$ is the imaginary part of e^{2ix} , the particular solution we are looking for is the imaginary part of Ae^{-2x} , that is:

$$\frac{1}{4}\cos(-2x) - \frac{3}{4}\sin(-2x) = \frac{1}{4}\cos(2x) + \frac{3}{4}\sin(2x)$$

Use this approach to solve $y'' - y = \cos(x)$.

Q14.5 Find general solutions to the following differential equations:

- (a) $y'' + 4y' + y = e^x + \cos(x)$.
- (b) $y'' + y' 2y = 2 + 2\sin(x)$.

.....

- Q15.1 Find general solutions to the following differential equations:
 - (a) $y'' 2y' + y = x + 1 + \sin(x)$
 - (b) $y'' 4y = x \sin(2x)$.
 - (c) $y'' + 4y = 5xe^{-x}$.

HOMEWORK

1. Solve the initial value problem:

$$y'' + 4y' + 5y = 0;$$
 $y(0) = 0, y'(0) = 1.$

- 2. Find general solution to the following differential equations:
 - (i) $y'' 6y' + 9y = 3x^2$.
 - (ii) $2y'' + 5y' 3y = e^x + x$.

Submit your solutions to Questions 1 and 2 no later than noon, Friday 7th of Nov.

Solutions should be *carefully written*. If they are one more than one page, then the pages should be stappled together.