## DengAl: Predicting Disease Spread

HOSTED BY DRIVENDATA

HOME (/COMPETITIONS/44/DENGAI-PREDICTING-DISEASE-SPREAD/PAGE/80/)

ABOUT (/COMPETITIONS/44/DENGAI-PREDICTING-DISEASE-SPREAD/PAGE/81/)

PROBLEM DESCRIPTION (/COMPETITIONS/44/DENGAI-PREDICTING-DISEASE-SPREAD/PAGE/82/)



LEADERBOARD (/COMPETITIONS/44/DENGAI-PREDICTING-DISEASE SPREAD/LEADERBOARD/)

DATA DOWNLOAD (/COMPETITIONS/44/DENGAI-PREDICTING-DISEASE-SPREAD/DATA/)

SUBMISSIONS (/COMPETITIONS/44/DENGAI-PREDICTING-DISEASE-SPREAD/SUBMISSIONS/)

TEAM (/COMPETITIONS/44/DENGAI-PREDICTING-DISEASE-SPREAD/TEAM/)

DISCUSSION (HTTPS://COMMUNITY.DRIVENDATA.ORG/C/DENGUE-COMPETITION)

30

OFFICIAL RULES (/COMPETITIONS/44/DENGAI-PREDICTING-DISEASE-SPREAD/RULES/)

SHARE THIS:

Facebook

Twitter

LinkedIn

Email

## Problem description

Your goal is to predict the total\_cases label for each (city, year, weekofyear) in the test set. There are two cities, San Juan and Iquitos, with test data for each city spanning 5 and 3 years respectively. You will make one submission that contains predictions for both cities. The data for each city have been concatenated along with a city column indicating the source: sj for San Juan and iq for Iquitos. The test set is a pure future hold-out, meaning the test data are sequential and non-overlapping with any of the training data. Throughout, missing values have been filled as NaN s.

| Features   | Performance    | Submission |
|------------|----------------|------------|
| List of    | metric         | Format     |
| features   | Mean           | Format     |
| Example of | absolute error | example    |
| features   |                |            |

### The features in this dataset

You are provided the following set of information on a (year, weekofyear) timescale:

(Where appropriate, units are provided as a \_unit suffix on the feature name.)

#### City and date indicators

- city City abbreviations: sj for San Juan and iq for Iquitos
- week\_start\_date Date given in yyyy-mm-dd format

## NOAA's GHCN daily climate data (https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/) weather station measurements

- station\_max\_temp\_c Maximum temperature
- station\_min\_temp\_c Minimum temperature
- station\_avg\_temp\_c Average temperature
- station\_precip\_mm Total precipitation
- station\_diur\_temp\_rng\_c Diurnal temperature range

# PERSIANN satellite precipitation measurements (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html) (0.25x0.25 degree scale)

precipitation amt mm - Total precipitation

# NOAA's NCEP Climate Forecast System Reanalysis (http://rda.ucar.edu/datasets/ds093.0/#metadata/detail ed.html?\_do=y) measurements (0.5x0.5 degree scale)

- reanalysis\_sat\_precip\_amt\_mm Total precipitation
- reanalysis\_dew\_point\_temp\_k Mean dew point temperature
- reanalysis\_air\_temp\_k Mean air temperature
- reanalysis\_relative\_humidity\_percent Mean relative humidity
- reanalysis\_specific\_humidity\_g\_per\_kg Mean specific humidity
- reanalysis\_precip\_amt\_kg\_per\_m2 Total precipitation
- reanalysis\_max\_air\_temp\_k Maximum air temperature
- reanalysis\_min\_air\_temp\_k Minimum air temperature
- reanalysis\_avg\_temp\_k Average air temperature
- reanalysis\_tdtr\_k Diurnal temperature range

Satellite vegetation - Normalized difference vegetation index (NDVI) - NOAA's CDR Normalized Difference Vegetation Index (https://www.ncdc.noaa.gov/cdr) (0.5x0.5 degree scale) measurements

- ndvi\_se Pixel southeast of city centroid
- ndvi\_sw Pixel southwest of city centroid
- ndvi\_ne Pixel northeast of city centroid
- ndvi\_nw Pixel northwest of city centroid

#### Feature data example

For example, a single row in the dataset, indexed by (city, year, weekofyear): (sj, 1994, 18), has these values:

| week_start_date    | 1994-05-07    |
|--------------------|---------------|
| total_cases        | 22            |
| station_max_temp_c | 33.3          |
| station_avg_temp_c | 27.7571428571 |
| station_precip_mm  | 10.5          |

| station_min_temp_c                    | 22.8          |
|---------------------------------------|---------------|
| station_diur_temp_rng_c               | 7.7           |
| precipitation_amt_mm                  | 68.0          |
| reanalysis_sat_precip_amt_mm          | 68.0          |
| reanalysis_dew_point_temp_k           | 295.235714286 |
| reanalysis_air_temp_k                 | 298.927142857 |
| reanalysis_relative_humidity_percent  | 80.3528571429 |
| reanalysis_specific_humidity_g_per_kg | 16.6214285714 |
| reanalysis_precip_amt_kg_per_m2       | 14.1          |
| reanalysis_max_air_temp_k             | 301.1         |
| reanalysis_min_air_temp_k             | 297.0         |
| reanalysis_avg_temp_k                 | 299.092857143 |
| reanalysis_tdtr_k                     | 2.67142857143 |
| ndvi_location_1                       | 0.1644143     |
| ndvi_location_2                       | 0.0652        |
| ndvi_location_3                       | 0.1321429     |
| ndvi_location_4                       | 0.08175       |

### Performance metric

Performance is evaluated according to the mean absolute error (https://en.wikipedia.org/wiki/Mean\_absolute\_error).

## Submission format

The format for the submission file is simply the (city, year, weekofyear) and the predicted total\_cases for San Juan or Iquitos (for an example, see SubmissionFormat.csv on the data download page). The total\_cases should be represented as integer values.

For example, if you just predicted that there were 5 cases each week for 5 weeks in San Juan and 3 cases each week for 5 weeks in Iquitos, for a total of 10 weeks, you would have the following predictions:

| city | year | weekofyear | total_cases |
|------|------|------------|-------------|
| sj   | 2008 | 18         | 5           |
| sj   | 2008 | 19         | 5           |
| sj   | 2008 | 20         | 5           |
| sj   | 2008 | 21         | 5           |
| sj   | 2008 | 22         | 5           |
|      |      |            |             |
| iq   | 2013 | 22         | 3           |
| iq   | 2013 | 23         | 3           |
| iq   | 2013 | 24         | 3           |
| iq   | 2013 | 25         | 3           |
| iq   | 2013 | 26         | 3           |

Your .csv file that you submit would look like:

```
city,year,weekofyear,total_cases
sj,2008,18,5
sj,2008,20,5
sj,2008,21,5
sj,2008,22,5
...
iq,2013,22,3
iq,2013,23,3
iq,2013,24,3
iq,2013,25,3
iq,2013,26,3
```

**Keep in mind that you need to submit one csv with predictions for both cities!** Hence the requirement of the city column. Results will be parsed on our end and MAE scores will be given for each city's predictions.

## Good luck!

Looking for a great tutorial to get you started? Check out the benchmark walkthrough (https://www.drivendata.co/blog/dengue-benchmark/) created for this challenge.

Good luck and enjoy this problem! If you have any questions you can always visit the user forum (http://community.drivendata.org/)!



#### ABOUT DRIVENDATA

What we do (/about/)

Who we are (http://drivendata.co/#team)

Blog (http://www.drivendata.co/blog.html)

#### LEGAL

Terms of Use (/termsofuse/)

Copyright Policy (/copyrightpolicy/)

Privacy Policy (/privacypolicy/)

Copyright © 2022

#### **WORK WITH US**

As a partner (/partners/)

As a competitor (/competitors/)

Join a competition (/competitions/)

#### CONTACT

info@drivendata.org (mailto:info@drivendata.org)

DrivenData Inc.

1644 Platte St. Ste 400

Denver, CO 80202