计算机组成

1 微机

微机结构

- Input 输入
- Output 输出
- Memory 存储器
- ALU 算术逻辑单元
- Control unit 控制单元

指令集: CISC(1-n个字), RISC(1个

字) 字: CPU一次可以处理的最大比特

数 **位扩展**:同一地址的位扩展,满足 一个字的输出

字扩展:增大字的量,选择不同的字,满足存储量需求

2 存储与I/O

内存特征

Location CPU,内部,外部 Capacity 字大小,字数目

Unit of transfer 内部(一字),外部(多字) — Addressable Unit: 内部(一字节),外部(簇)

Access method 访存方式

- Sequential 串行访问 (tape)
- Direct 直接访问 (disk)
- Random 随机访问 (RAM,ROM)
- Associative 关联访问 (cache)

Performance 评价指标

- Access time
- Memory Cycle time
- Transfer Rate

Physical type 物理类型

- Semiconductor (RAM)
- Magnetic (disk & tape)
- Optical (CD & DVD)
- Others (Bubble Hologram)

Organisation Physical arrangement of bits into words(存储字)

I/O数据传送方式

程序控制方式 Programmed I/O

CPU与外设之间的数据传送是在程序控制下完成的设立的数据的。交替制下完好的设计。 与外域的设计的 CPU要不断读不断读不好。 在查输入设备是不断。 由于许多对据的。 这种等分时间。 这大部分时间间。 是CPU的绝大部分时间间。 使CPU的利用率变得很低。

图 6.7 查询式输入流程图

图 6.9 查询式输出流程图

中断方式 Interrupt driven I/O 采用中断方式后, CPU平时可以执

行主程序,只有当输入设备将数据准备好了,或者输出端口CPU发备的数据缓冲器已空时,才向CPU发暂请求。CPU响应中断后,管理外设的中断服务程序(ISR)。等相入或输出停下,转会在CPU和外设之间进行一在出货据交换。等输入或输出操作完成之后,CPU又回去执行原来的程序。

Figure 7.6 Simple Interrupt Processing

直接存储器访问 DMA DMA控 制 器临时接管总线,控制外设计的和存储器之间进行高速的数据传送,快速完成交换一批数据的任务,而不要CPU进行干预。这的种位的一个方面,并且能够设定的种地地信息,并且能够设定和存储的字节数,还能够设定和存储号,也能够设定和存储。在DMA传送结束后,它能够交还给CPU。

Figure 7.12 DMA and Interrupt Breakpoints during an Instruction Cycle

3 80x86

8086 16-bit, 20-bit address.

8088 16-bit internal, 8-bit external. 只有两段:

BIU (Bus Interface Unit) 连接内存与 外设。

EU (Execution Unit) 执行之前获取的指令。

双工作模式

最小模式 $MN/\overline{MX} = 1$ 单 CPU。

最大模式 MN/MX = 0 多 CPU(8086+8087), 8288控 制 芯 片。

8086读周期时序: 在8086读周期内,有 关总线信号的变化如下:

1. M/IO在整个读周期保持有效,当 进行存储器读操作时,M/IO为 表 1: 微机概念差异

微处理器 Microprocessor	可以被微缩成集成电路规模的CPU电路,包
	含ALU,CU,寄存器
微型计算机 Mircrocomputer	微处理器,存储器,I/O,总线
微型计算机系统 Microcomputer system	以微型计算机为主体,配上I/O及系统软件就构成了
- '	微型计算机系统。
微控制器 Microcontrollers	A microcontroller has a CPU in addition to a fixed
	amount of RAM, ROM, I/O ports on one single chip
	(e.g. Cortex)
嵌入式系统 Embedded Systems	An embedded system uses a microcontroller or a mi-
	croprocessor to do one task and one task only

表 2: 总线类型

农 4: 心线天空					
类型	仲裁	时序			
单工	集中式	同步			
多工	分布式	异步			

表 3: 总线结构

	优点	缺点
单线结构	简单	吞吐量低
CPU-Central 双线结构	数据传输率高	I/O与内存需要经过CPU
Memory-Central 双线结构	CPU性能好 吞吐量高	

表 4: RAM 区别

	DRAM	\mathbf{SRAM}		
字节存储方式	电容电荷	开关状态		
电荷泄漏	有	无		
刷新	需要	不需要		
构造	简单	复杂		
每位规模	更小	更大		
价格	便宜	昂贵		
刷新电路	需要	不需要		
速度	更慢	更快		
用途	主存储器	高速缓存		

表 5: ROM 区别

掩膜型 ROM	无法修改
可编程只读存储器	一旦写入, 不可改
PROM	变
可擦除可编程只读存	可写, 用紫外光擦
储器 EPROM	除,重新写入
点可擦除的可编程只	通电擦除, 重新写
读存储器 EEPROM	入
闪存 Flash	对芯片编程,通电
	擦除再写入

表 6· DMA 架构

次 0. DMA 未刊				
	使用总线次数	CPU暂停次数		
Single Bus, Detached	2	2		
Single Bus, Intergrated	1	1		
Seperate I/O	1	1		

表 7:8086 寄存器

仪 7. 0000 刊行			
Category	Bits	Register Names	
General	16	AX(Accumulator), BX(Base), CX(Count), DX(Data)	
	8	AH, AL, BH, BL, CH, CL, DH, DL	
Pointer	16	SP(Stack Pointer), BP(Base Pointer)	
Segment	16	CS(Code Segment), DS(Data Segment), SS(Stack Segment), ES(Extra Segment)	
Instruction	16	IP(Instruction Pointer)	
Flag	16	FR(Flag Register)	

表 8: 段偏移寄存器

Segment register	CS	DS	ES	SS
Offset register	IP	SI,DI,BX	SI,DI,BX	SP,BP

表 9: 8086 接脚

Signal	Description	0	1
ALE	Address Latch Enabled		Latched
BHE	Bank High Enabled	$AD_8 \sim AD_{15}$ Enabled	$AD_8 \sim AD_{15}$ Disabled
$\overline{\mathrm{DT}/\overline{\mathrm{R}}}$	direction of Data Transfer	sending data	receiving data
DEN	Data transceiver ENabled	enabled	disabled
WR	WRiting to Mem/IO	writing	
RD	ReaDing from mem/IO	reading	
M/\overline{IO}	CPU accessing Memory / IO	IO	Memory
INTR	INTerrupt Request, maskable		Requesting
	by clearing IF		
INTA	INTerrupt Acknowledge		Acknowledge
NMI	Non-Maskable Interrupt,		will be interrupted
	CPU is interrupted after fin-		
	ishing the current instruction;		
	cannot be masked by software		
HOLD	HOLD the bus request		hold
HLDA	HoLD request acknowledge		hold req ack
TEST	for debug	test	
READY	mem/IO is READY for trans-		ready
	fer		
RESET	reset the CPU, IP, DS, SS, ES		CS=0FFFFH
	and 6 inst in instruction queue		
	are cleared		

高电平;当进行I/O端口读操作时,M/IO为低电平.

- 2. A19/S6~A16/S3是 在T1期 间,输出CPU要读取的存储单元的地址高4位.T2~T4期间输出状态信息S6~S3.
- 3. BHE/S7在T1期间输出BHE有效信号(BHE为低电平),表示高8位数据总线上的信息可以使用,BHE信号通常作为奇地址存储体的选择信号(偶地址存储体的选择信号是最低地址位A0).T2~T4期间输出高电平.
- 4. ADI5~AD0在T1期间输出CPU要读取的存储单元或I/O端口的地址A15~A0.T2期间为高阻态,T3~T4期间,存储单元或I/O端口将数据送上数据总

线.CPU从ADl5~AD0上 接 收 数据.

- 5. ALE:在T1期间地址锁存有效信号,为一正脉冲,系统中的地址锁存器正是利用该脉冲的下降沿来锁存A19/S6~A16/S3,ADl5~AD0中的20位地址信息以及BHE.
- 6. RD在T2期间输出低电平,送到被选中的存储器或I/O接口.要注意的是,只有被地址信号选中的存储单元或I/O端口,才会被RD信号从中读出数据(数据送上数据总线ADI5~AD0).
- 7. DT/R在整个总线周期内保持低电平,表示本总线周期为读周期.在接有数据总线收发器的系统中,用来控制数据传输的方向.
- 8. DEN在T2~T3期间输出有效低电

平,表示数据有效.在接有数据总线 收发器的系统中,用来实现数据的 选通.

8086写周期时序总线写操作的时序 与读操作时序相似,其不同处在于:

- 1. AD15~AD0在T2~T4期间送上 欲输出的数据,而无高阻态.
- 2. WR在T2~T4期间输出有效低电平,该信号送到所有的存储器和I/O接口.要注意的是,只有被地址信号选中的存储单元或I/O端口才会被WR信号写入数据.
- 3. DT/R在整个总线周期内保持高电平,表示本总线周期为写周期.在接有数据总线收发器的系统中,用来控制数据传输方向.

