Cpt S 422: Software Engineering Principles II Black-box testing – Part 2

Dr. Venera Arnaoudova

Black-box testing methods

- ✓ Equivalence Class Partitioning
- ✓ Boundary-Value Analysis
- □ Category-Partition
- Decision tables
- Cause-Effect Graphs
- Logic Functions

Category-Partition Testing

Steps

- The system is divided into individual "functions" that can be independently tested
- ☐ The method identifies the *parameters* of each "function" and, for each parameter, identifies distinct *categories*
- Besides parameters, environment conditions, under which the function operates (characteristics of system state), can also be considered
- Categories are major properties or characteristics
- The categories are further subdivided into choices in the same way as equivalence partitioning is applied (possible "values")

Small Example

- □ Function: Sorting an array
- □ Characteristics:
 - Length of array (Len)
 - > Type of elements
 - Max value
 - ➤ Min value
 - Position of max value (Max pos)
 - > Position of min value
- □ Choices for Len:
 - > 0
 - > 1
 - > 2-100
 - > >100

Steps (cont.)

- □ The constraints operating between choices are then identified, i.e., how the occurrence of one choice can affect the existence of another
 - E.g., in the array sorting example, if Len = 0, then the rest does not matter
- □ *Test frames* are generated which consist of the allowable combinations of choices in the categories (test specifications)
- ☐ Test frames are then converted into test data

Constraints

□ *Properties, Selectors* associated with choices

```
Category A
ChoiceA1 [property X, Y, Z]
ChoiceA2
Category B
ChoiceB1
ChoiceB2 [if X and Z]
```

- □ Special annotation:
 - > [Error]
 - > [Single]

Complete Example

☐ Specification:

- ➤ The program prompts the user for a positive integer in the range 1 to 20 and then for a string of characters of that length.
- The program then prompts for a character and returns the position in the string at which the character was first found or a message indicating that the character was not present in the string.
- > The user has the option to search for more characters.

Parameters and Categories

- ☐ Three parameters: integer x (length), the string a, and the character c
- □ For x the categories are "in-range" (1-20) or "out-of-range"
- □ Categories for a: minimal, maximal, intermediate length
- Categories for c: character appears at the beginning, middle, end of string, or does not occur in the string

Choices

- □ Integer x, out-of-range: 0, 21
- □ Integer x, in-range: 1, 2-19, 20
- □ String a: 1, 2-19, 20
- ☐ Character c: first, middle, last, does not occur
- □ Note: sometimes only one choice in category

Formal Test Specifications

x:		
x1)	0	[error]
x2)	1	[property stringok, length1]
x3)	2-19	[property stringok, midlength]
x4)	20	[property stringok, length20]
x5)	21	[error]
a:		
a1)	Length 1	[if stringok and length1]
a2)	Length 2-19	[if stringok and midlength]
a3)	Length 20	[if stringok and length20]
c:		
c1)	At first position in string	[if stringok]
c2)	At last position in string	[if stringok and not length1]
c3)	In middle of string	[if stringok and not length1]
c4)	Not in string	[if stringok]

Test Frames and Cases

```
x 1
                      x = 0
x 2a1c1
                      x = 1, a = 'A', c = 'A'
                      x = 1, a = 'A', c = 'B'
x 2a1c4
                      x = 7, a = 'ABCDEFG', c = 'A'
x 3a2c1
                      x = 7, a = 'ABCDEFG', c = 'G'
x 3a2c2
                      x = 7, a = 'ABCDEFG', c = 'D'
x 3a2c3
                      x = 7, a = 'ABCDEFG', c = 'X'
x 3a2c4
                      x = 20, a = 'ABCDEFGHIJKLMNOPQRST', c = 'A'
x 4a3c1
x 4a3c2
                      x = 20, a = 'ABCDEFGHIJKLMNOPQRST', c = 'T'
                      x = 20, a = 'ABCDEFGHIJKLMNOPQRST', c = 'J'
x 4a3c3
                      x = 20, a = 'ABCDEFGHIJKLMNOPQRST', c = 'X'
x 4a3c4
x 5
                      x = 21
```

Criteria Using Choices

- All Combinations (AC): This is what was shown in the previous example, what is typically done when using category-partition. One value for every choice of every parameter must be used with one value of every (possible) choice of every other category.
- □ Each choice (EC): This is a weaker criterion. One value from each choice for each category must be used at least in one test case.
- Base Choice (BC): This criterion is a compromise. A base choice is chosen for each category, and a first base test is formed by using the base choice for each category. Subsequent tests are chosen by holding all but one base choice constant (i.e., we select a non-base choice for one category) and forming choice combinations by covering all non-base choices of the selected category. This procedure is repeated for each category.

Conclusions

- Makes testing decisions explicit (e.g., constraints), open for review
- Combine boundary analysis, robustness testing, and equivalence class partitioning
- Once the first step is completed, the technique is straightforward and can be automated
- The technique for test case reduction makes it useful for practical testing
- Identifying parameters and environments conditions, and categories, is heavily relying on the experience of the tester

Black-box testing methods

- ✓ Equivalence Class Partitioning
- ✓ Boundary-Value Analysis
- ✓ Category-Partition
- Decision tables
- Cause-Effect Graphs
- Logic Functions

Decision Table-Based Testing

Motivations

- ☐ Help express *test requirements* in a directly usable form
- Easy to understand and support the systematic derivation of tests
- □ Support automated or manual generation of test cases
- A particular response or response subset is to be selected by evaluating many related conditions
- □ Ideal for describing situations in which a number of combinations of actions are taken under varying sets of conditions, e.g., control systems

Structure

- Condition section lists conditions and combinations thereof
- Condition expressed relationship among decision variables
- □ Action section list *responses* to be produced when corresponding combinations of conditions are true
- Actions are independent of input order and the order in which conditions are evaluated
- Actions may appear more than once but each combination of conditions is unique

Table Structure

c1		Tr	ue		Fa	ılse
c2	Ti	rue	False	Tı	rue	False
c3	Т	F	_	T	F	_
	X	X		X		
a2	X			T 7	X	
a3		X		X	X	
a4			X			X
	c2 c3 a1 a2 a3	c2 Tr c3 T a1 X a2 X a3	c2 True c3 T F a1 X X a2 X a3 X	c2 True False c3 T F — a1 X X a2 X X a3 X X	c2 True False The c3 T F	c2 True False True c3 T F — T F a1 X X X X a2 X X X X a3 X X X X

Table Example

c1: a, b, c triangle? c2: a = b?		N Y Y N N N N N N N N N N N N N N N N N							
c3: $a = c$? c4: $b = c$?	_	Y	N	\mathbf{Y}	N	Y	Y N	Y	N
a1: not a triangle?a2: Scalenea3: Isoscelesa4: Equilaterala5: Impossible	X	X	X	X	X	X	X	X	X

Truth Table

conditions											
c1: a < b + c?	F	T	T	T	T	Т	T	T	T	T	T
c2: $b < a + c$?	-	F	T	T	T	T	T	T	T	T	T
c3: c < a + b?	-	-	F	T	T	T	T	T	T	T	T
c4: a = b?	-	-	-	T	T	T	T	F	F	F	F
c5: a = c?	-	-	-	T	T	F	F	T	T	F	F
c6: b = c?	_	-	-	T	F	T	F	T	F	T	F
a1: Not a triangle	X	X	X								
a2: Scalene											X
a3: Isosceles							X		X	X	
a4: Equilateral				X							
a5: Impossible					X	X		X			

Test Cases

Case ID	a	b	c	Expected Output
TC1	4	1	2	Not a triangle
TC 2	1	4	2	Not a triangle
TC 3	1	2	4	Not a triangle
TC 4	5	5	5	Equilateral
TC 5	?	?	?	Impossible
TC 6	?	?	?	Impossible
TC 7	2	2	3	Isosceles
TC 8	?	?	?	Impossible
TC 9	2	3	2	Isosceles
TC 10	3	2	2	Isosceles
TC 11	3	4	5	Scalene

Ideal Usage Conditions

- One of several distinct responses is to be selected according to distinct cases of input variables
- These cases can be modeled by mutually exclusive boolean expressions on the input variables
- The response to be produced does not depend on the order in which input variables are set or evaluated (e.g., events are received)
- ☐ The response does not depend on prior inputs or outputs

Scale

- For n conditions, there may be at most 2ⁿ variants (unique combinations of conditions and actions)
- But, fortunately, there are usually much fewer explicit variants ...
- "Don't care" values in decision tables help reduce the number of variants
- "Don't care" can correspond to several cases:
 - > The inputs are necessary but have no effect
 - > The inputs may be omitted