THE NUMBER OF GROUP HOMOMORPHISMS FROM D_m INTO D_n

JEREMIAH W. JOHNSON

ABSTRACT. We derive general formulæ for counting the number of homomorphisms between dihedral groups using only elementary group theory.

This note considers the problem of counting the number of group homomorphisms from D_m into D_n , where for a positive integer l, D_l denotes the finite group generated by two generators r_l and f_l subject to the relations $r_l^l = e = f_l^2$ and $r_l f_l = f_l r_l^{-1}$. We derive some general formulæ using only elementary group theory and a few basic facts about the dihedral groups. We will assume throughout that ϕ represents Euler's totient function.

Theorem 1. Let m and n be positive odd integers. The number of group homomorphisms from D_m into D_n is

(1)
$$1 + n \left(\sum_{k | \gcd(m, n)} \phi(k) \right).$$

Proof. Suppose that $\rho \colon D_m \to D_n$ is a group homomorphism, where m and n are positive odd integers. We consider all of the places that ρ could send the generators r_m and f_m of D_m which yield group homomorphisms. As m is odd, it must be the case that $\rho(r_m) = r_n^{\alpha}$, where r_n^{α} is an element of D_n whose order divides both m and n. Let k represent the order of this element. There are precisely $\phi(k)$ elements of order k in D_n . Since ρ can send r_m to any one of these elements, we have $\sum_{k|m,n} \phi(k)$ choices for $\rho(r_m)$.

Next, consider our choices for $\rho(f_m)$. Since $|\rho(f_m)|$ divides $|f_m|=2$, either $\rho(f_m)=r_n^\beta f_n,\ 0\leq \beta< n,\ {\rm or}\ \rho(f_m)=e_n.$ But not all of these choices for $\rho(f_m)$ yield homomorphisms, as can be seen when we consider where ρ sends the remaining elements in D_m of the form $r_m^k f_m$, where 0< k< m. If $\rho(f_m)=e_n$ and $\rho(r_m)=r_n^\alpha$, where $\alpha\neq 0$ or n, then $\rho(r_mf_m)=r_n^\alpha e_n=r_n^\alpha$, and $|r_n^\alpha|$ does not divide $|r_mf_m|$. Therefore, if $\rho(f_m)=e_n$, then ρ must be trivial. Conversely, when $\rho(f_m)=r_n^\beta f_n$, $\rho(r_m^kf_m)=r_n^{k\alpha+\beta} mod f_n$, and $|r_m^{k\alpha+\beta} mod f_n|$ divides $|r_m^kf_m|$. So, given any choice for r_m , we have n choices for f_m . Including the trivial homomorphism gives the result.

When m and n are positive odd integers and m|n, it follows from the fact that $\sum_{k|n} \phi(k) = n$ [1] that there are mn + 1 group homomorphisms from D_m into D_n , and furthermore, there are $n^2 + 1$ group endomorphisms of D_n .

When m is a positive odd integer and n is a positive even integer, $r_n^{n/2}$ is a possible choice for the image of f_m . However, if f_m is sent to $r_n^{n/2}$, then the image of r_m must be e_n ; otherwise the map fails to be a homomorphism. Again let $\rho: D_m \to D_n$ denote the map and suppose that $\rho(r_m f_m) = r_n^{\alpha} r_n^{n/2}$ for some $\alpha \neq 0$

or n This element necessarily has order not equal to 2 or 1; a contradiction. So in this case, we gain a single additional map sending r_m to e_n and f_m to $r_n^{n/2}$. Taking this additional consideration into account, a proof nearly identical to that used for Theorem 1 yields the following result.

Theorem 2. Let m be a positive odd integer and n a positive even integer. The number of group homomorphisms from D_m into D_n is

(2)
$$2 + n \left(\sum_{k | \gcd(m, n)} \phi(k) \right).$$

When m is a positive even integer, the number of choices that exist for the image of r_m includes all elements of the form $r_n^k f_n$, $0 \le k < n$. This creates a number of additional possibilities.

Theorem 3. Let m and n be positive even integers. The number of group homomorphisms from D_m into D_n is

(3)
$$4 + 4n + n \left(\sum_{k \mid \gcd(m,n)} \phi(k) \right).$$

Proof. Suppose that $\rho: D_m \to D_n$ is a group homomorphism, where m and n are positive even integers. When m is even, we have in addition to the $\sum_{k|m,n} \phi(k)$ possible choices for $\rho(r_m)$ that occur when m is odd the possibility of mapping r_m to those elements in D_n of the form $r_n^{\beta} f_n$. As there are n such elements of the latter type, we have $\sum_{k|m,n} \phi(k) + n$ possible choices for $\rho(r_m)$.

Next, suppose $\rho(r_m)=r_n^{\alpha}$ and consider $\rho(f_m)$. Since $|\rho(f_m)|$ divides $|f_m|=2$, it must be the case that either $\rho(f_m)=r_n^{\beta}f_n,\ 0\leq \beta< n,\ \rho(f_m)=r_n^{n/2},$ or $\rho(f_m)=e_n$. If $\alpha=0$ or n/2, any of these n+2 choices for $\rho(f_m)$ will yield a homomorphism. If $\alpha\neq 0$ or n/2, then $\rho(f_m)$ cannot equal e_n or $r_n^{n/2}$. So, there are $n\left(\sum_{k|\gcd(m,n)}\phi(k)\right)+4$ homomorphisms sending r_m to an element of the form r_n^{α} .

Assume next that $\rho(r_m) = r_n^{\alpha} f_n$. Since $|\rho(r_m)| = |\rho(f_m)| = 2$, it follows that if ρ is a homomorphism, then the size of the image of ρ is either 2 or 4. There is only one subgroup of each order containing $r_n^{\alpha} f_m$; the cyclic subgroup $\langle r_n^{\alpha} f_m \rangle$, and the subgroup $\langle r_n^{\alpha} f_m, r_n^{\alpha+n/2 \mod n} f_n \rangle$. There are two choices for f_m which result in the first case; namely, $\rho(f_m) = e_n$, or $\rho(f_m) = r_n^{\alpha}$. Similarly, there are two choices for f_m which result in the second case; $\rho(f_m) = r_n^{\alpha+n/2 \mod n} f_n$ or $\rho(f_m) = r^{n/2}$. A brief calculation shows that each of these four possibilities does in fact give a homomorphism, which leads to the conclusion.

When m and n are positive even integers and m|n, it follows that the number of group homomorphisms from D_m into D_n is 4 + 4n + mn, while the number of group endomorphisms of D_n is $(n+2)^2$.

The last case to consider is when m is even and n is odd.

Theorem 4. Let m be a positive even integer and n a positive odd integer. The number of group homomorphisms from D_m into D_n is

(4)
$$1 + 2n + n \left(\sum_{k | \gcd(m, n)} \phi(k) \right).$$

Proof. As in the proof of Theorem 1, there are $n\left(\sum_{k|\gcd(m,n)}\phi(k)\right)$ homomorphisms in which r_m is sent to an element of the form r_n^{α} , $0<\alpha< n$, plus the trivial homomorphism. In addition, we could send r_m to any of the n elements of the form $r_n^{\alpha}f_n$, $0\leq\alpha< n$. If $\rho(r_m)=r_n^{\alpha}f_n$, then the image of ρ is a subgroup of order 2, the cyclic subgroup $\langle\rho(r_m)\rangle$. That leaves two choices for $\rho(f_m)$; either $\rho(f_m)=e_n$ or $\rho(f_m)=r_n^{\alpha}f_n$, from which the result follows.

When gcd(m, n) = 1, Theorems 2 and 4 lead to the succinct formulæ that the number of group homomorphisms from D_m into D_n equals n + 2 when m is odd and n is even, and 3n + 1 when m is even and n is odd.

References

Department of Mathematics and Computer Science, Penn State Harrisburg, Middletown PA 17057

 $E ext{-}mail\ address:}$ jwj10@psu.edu