Fatigue Prediction Verification of Fiberglass Hulls

Paul H. Miller
Department of Naval
Architecture and
Ocean Engineering
U. S. Naval Academy

Why Study Fiberglass Fatigue?

- Approximately 30% of structural materials now used in the marine environment are fiberglass.
- Little long-term fatigue data exists.
- 1998 Coast
 Guard data
 shows 118
 fiberglass
 failures resulting
 in 6 fatalities

This Project's Goals

- Extend the standard fatigue methods used for metal vessels to composite vessels
- Verify the new method by testing coupons, panels and full-size vessels.

Background-Current ABS Composite Design Methods

- Semi-empirical, theory and <u>Factors of Safety</u> previous vessel@Working Stress Design)
- Quasi-static "head"
- Beam and isotropic plate equations
 - Conservative

- 2.33 for bulkheads
- 3 for interior decks
- e <u>4</u> for hull and exterior decks includes fatigue and uncertainties in

loads

Simplified <u>Metal</u> Ship Fatigue Design

- 1. Predict wave encounter ship "history"
- 2. Find hull pressures and accelerations using CFD for each condition
- 3. Find hull stresses using FEA
 - Wave pressure and surface elevation
 - Accelerations
- 4. Use Miner's Rule and S/N data to get fatigue life

Project Overview

- Material and Application Selection
- Testing (Dry, Wet/Dry, Wet)
 - ASTM Coupons, Panels, Full Size
 - Static and Fatigue
- Analysis

- Local/Global FEA
- Statistical and Probabilistic

Material & Application Selection Ideally they should represent a large fraction of current

- applications!Polyester Resin (65%)
- E-glass (73%)
- Balsa Core (30%)
- J/24 Class Sailboat
 - 5000+ built
 - Many available locally
 - Builder support
 - Small crews

Another day of research...

Target Structure Analysis

- Hull Shell Design
 - 35% of LWL aft of Fwd Perpendicular
 - 0 to 1' off CL
- Determine loss of stiffness vs. stress cycle history (microcracking)

 Requires knowing load effects and test method bias

Loads on Target Area

- Hydrostatic
- Hydrodynami
 - Slamming
 - Wave slap
 - Motion
 - Foil lift/drag
- Moisture

Quantified Material Properties Mostly linear stress/strain

- **Brittle (0.8-2.7% ultimate strain)**
- Stiffness and Strength Properties Needed

(ASTM tests - W

- Tensile
- Compressive
- Shear
- Flex
- **Fatigue**

E-glass Mat/Polyester Sample #1

Moisture Background and Tests

- Porous materials (up to 2% weight)
- Few documented moisture failures
- Test results ambiguous (Stanford vs. UCSD)
- Test methods suspect (long-term vs. boiling)
- Fickian Diffusion
- Tested for 1 year
- Dry, 100% relative humidity, submerged

Moisture Absorption

Recults

1.8% weight gain for submerged

1.3% for 100% relative humidity

Equilibrium in 4

These results were used for coupon and vessel test prepara

Finite Element Analysis

- Coupon, panel, global
- Element selection
 - Linear/nonlinear
 - Static/dynamic/quasi-static
 - CLT shell
 - Various shear deformation theories used (Mindlin and DiScuiva)
- COSMOS/M software
- Material property inputs from coupon tests

Coupon Test Results

- Tensile Mod: 1.2 msi dry, -12% wet, -13% boiled
- Shear Mod: 0.56 msi dry, -11% wet, -16% boiled
- Comp Mod: 0.92 msi dry, -6% wet, -12% boiled
- Tensile Str: 11.3 ksi dry, -20% wet, -24% boiled
- Shear Str: 5.5 ksi dry, -11% wet, -22% boiled
- Comp Str: 25.3 ksi dry, -16% wet, -25% boiled

Coupon FEA Results

Strains
were
within
2%,
strength
within
15%

Fatigue Analysis for Vessels

$$E[D] = T \cdot f \int_{0}^{\infty} \frac{p(s_i)ds}{N(s_i)}$$

E[D] = the expected accumulated damage ratio T =the time at frequency f

 $p(s_i)$ = the probabilistic distribution of the number of stress cycles at stress s,

$$N(\mathbf{s_i}) = \text{the number of cycles to failure at} \\ T \text{St} \text{fess} p(\varphi) \cdot p(m) \cdot p(U_{ws}) \cdot \mathbf{f}(U_{ws}) + \frac{U(\varphi, U_{ws}) \cdot \cos(\varphi)}{U_w(U_{ws}) \cdot T_s(U_{ws})} \mathbf{f}(U_{ws}) + \frac{U(\varphi, U_{ws}) \cdot T_s(U_{ws})}{U_w(U_{ws}) \cdot T_s(U_{ws})} \mathbf{f}(U_{ws}) \mathbf{f}(U$$

Fatigue Testing

Fatigue Results - S/N Data

Moisture decreased initial and final stiffness but the rate of loss was the same.

Specimens failed when stiffness dropped 15-25%
No stiffness loss for 12.5% of static failure load specimer
25% load specimens showed gradual stiffness loss

Panel Analysis

- Responds to USCG/SNAME studies
- Solves edgeeffect problems
- Hydromat test system
- More expensive
- Correlated with

Panel Test Results

Wet vs. Dry results were similar to those from coupons; the one-sided wet specimens were marginally less stiff.

Panel FEA Results

Impact Testing

• The newest boat had the lowest stiffness.

 Did the collisis microcracking

Yes, there
was
significant
microcrackin

Global FEA

- Created from plans and boat checks
- Accurately models vessel
 - 8424 quad shell elements
 - 7940 nodes
 - 46728 DOF
- Load balance with accelerations

Full-Size Testing - Boat History

- High Mileage J6
 - Daily records for 3 years
 - Annual records since new
 - NOAA wind records for the same period (daylight)
 - Course distribution

Velocity prediction program for speed

The Bottom Line for J6:

- 11,300 hours sailing
- 10,200,000 wave encounters
- The "low mileage" boat had 740 hours and 600,000 waves

On-The-Water Testing- Set Up

Instrument Locations for Boat Tests

Instrument Location

Strain Gage #1 Portside shroud chainplate

Strain Gage #2 Forestay chainplate

Strain Gage #3 Inside hull on centerline

Strain Gage #4 Inside hull off centerline

Strain Gage #5 Outside hull on centerline

Strain Gage #6 Outside hull off centerline

Accelerometer Bulkhead aft of strain gages

Data Records

Dockside String-Test FEA

Slamming FEA

Inner Skin WS=22.5 Outer Skin

Using measured accelerations and wave heights from pictures strains were 0.21% for inner and 0.17% for outer. (23% &

18% of ultimate strain)

12 April

Northern California

28

Slamming FEA

Comparison of Results

- Slamming (Low Mileage Boat-"Imajination")
 - Peak measured 0.136%
 - Ave. of measured peaks 0.117%

With all the fatigue systestion where stiffness

	Imajination	J 6
Predicted Stiff Reduction	-3%	-14%
Measured with Strain Gauges	-4%	-18%
Global "String Test"	-14%	-52%

The Most Useful Conclusions

- The Metal Ship Fatigue Design Process can be extended to composite vessels
- Current factors will lead to fatigue lives of 10-30 years

- Visual clues for fatigue failure are evident
- Stiffness loss may be a better method of prediction
- Good FEA
 accuracy requires
 a lot of work!

Thanks!

- Prof. Bob Bea
- Prof. Hari Dharan
- Prof. Alaa Mansour
- Prof. BenGerwick
- In Steve laughter

- ABS
- U. S. Naval Academy
- Prof. Ron Yeung
- Gerald Bellows
- Paul Jackson
- My wife, Dawn...

Go Bears!