Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/NL05/000434

International filing date: 14 June 2005 (14.06.2005)

Document type: Certified copy of priority document

Document details: Country/Office: NL

Number: 1026422 Filing date: 15 June 2004 (15,06,2004)

Date of receipt at the International Bureau: 29 September 2005 (29.09.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

PATENT COOPERATION TREATY

From the RECEIVING OFFICE PCT World Intellectual Property To: COMMUNICATION IN CASES FOR WHICH Organization NO OTHER FORM IS APPLICABLE 34, Chemin des Colombettes 1211 Genève Zwitserland Date of mailing (day/month/year) 22 September 2005 (22,09,2005) Applicant's or agent's file reference 215743/RV/jn REPLY DUE See paragraph 2 below International application No. International filing date (day/month/sear) 14 June 2005 (14.06,2005) PCT/NL2005/000434 Applicant Technische Universiteit Bindhoven et al. REPLY DUE within _____ months/days from the above date of mailing NO REPLY DUE, however, see below IMPORTANT COMMUNICATION (SEE ANNEX) INFORMATION ONLY COMMUNICATION: Due to an elericall error we furnished a priority document with a wrong application number. Hereby you receive a corrected document. Authorised officer Name and mailing address of the receiving Office Octrooicentrum Nederland M. van Miert P.O. Box 5820 2280 HV Rijswijk The Netherlands Telephone No. +31703986656 Facsimile No. +31703986507

PCT/NL 2005 7 0 0 0 4 3 4 octrodicentrum nederland

Koninkrijk der Nederlanden

210821/RV/jn

UITTREKSEL

De uitvinding heaft betrekking op een inrichting voor het creëren van een lokaal koud plasma ter plaatse van een object tenminste omvattende een hoog frequente voedingsbron, een plasma-kamer, een elektrisch met de hoog frequente voedingsbron verbonden en in de plasmakamer opgestelde plasma-ontladingselektrode, alsmede een in de plasmakamer nabij de plasma-ontladingselektrode eindigende toevoer voor een plasma-gas.

De uitvinding beoogt een verbeterde inrichting volgens bovengenoemde aanhef te verschaffen die het monelijk maakt het gecreëerde plasma ten opzichte van het object beter te beheersen. Hiertoe wordt de inrichting overeenkomstig de uitvinding gekenmerkt, doordat de inrichting is voorzien van stelmiddelen, welke zijn ingericht voor het automatisch oriënteren van de plasma-ontladingselektrode ten opzichte van het object.

1

Korte aanduiding: Inrichting voor het creëren van een lokaal koud plasma ter plaatse van een object.

BESCHRIJVING

5

- 10

15

20

25 .

30

De uitvinding heeft betrekking op een inrichting voor het creëren van een lokaal koud plasma ter plaatse van een object temminste omvattende een hoog frequente voedingsbron, een plasma-kamer, een elektrisch met de hoog frequente voedingsbron verbonden en in de plasma-kamer opgestelde plasma-ontladingselektrode, alsmede een in de plasma-kamer nabij de plasma-ontladingselektrode eindigende toevoer voor een plasma-gas.

Ean inrichting van bovengenoemde aanhef is bij voorbeeld bekend uit het Amerikaanse octrooischrift nr. 5,977,715. Uit dit octrooischrift is een met de hand bedienbare inrichting bekend, waarmee lokaal een (koud) plasma ter plaatse van een object kan worden aangebracht. De bekende inrichting wordt gekonmerkt door een beperkte hanteerbaar en derhalve beheersbaarheid van het gecreëerde plasma ter plaatse van het object.

De uitvinding beoogt derhalve een verbeterde inrichting volgens bovengenoemde aanhef te verschaffen die het mogelijk maakt het gecreëerde plasma ten opzichte van het object beter te beheersen. Hiertoe wordt de inrichting overeenkomstig de uitvinding gekenmerkt, doordat de inrichting is voorzien van stelmiddelen, welke zijn ingericht voor het automatisch oriënteren van de plasma-ontladingselektrode ten opzichte van het oblect.

Meer in het bijzonder omvatten overeenkomstig de uitvinding de stelmiddelen tenminste ëën sansor voor het vaststellen van de momentane oriëntatie van de plasma-ontladingselektrode ten opzichte van het object, waarbij de stelmiddelen zijn ingericht voor het oriënteren van de plasma-ontladingselektrode aan de hand van de vastgestelde momentane positie.

Daarbij kan de tenminste ene sensar zijn ingericht voor het meten van het door het gecreëerde plasma teruggeleid vermogen, welk teruggeleid vermogen een maat is voor de momentane oriëntatie van de plasma-ontladingselektrode ten opzichte van het object.

Daarbij zijn de stelmiddelen ingericht voor het oriënteren van de plasma-ontladingselektrode aan de hand van de vastgestelde momentane positie, terwijl bij een specifiek meetprincipe overeenkomstig de uitvinding de stelmiddelen zijn ingericht voor het oriënteren van de plasma-ontladingselektrode door de vergelijking van het teruggeleid vermogen met het door de hoog frequente voedingsbron naar de plasma-ontladingselektrode gevoerde vermogen.

Met deze aspecten van de inrichting overeenkomstig de uitvinding wordt het mogelijk om het gecreëerde plasma nauwkeurig te oriënteren ten opzichte van het object, waarmee het plasma dient te reageren.

Bij een eersta uitvoeringsvorm kunnen de stelmiddelen tenminste één stappen- of DC-motor omvatten. Anderzijds kunnen de stelmiddelen tenminste één geheugenmetaal of tenminste één spreekspoel (voicecoil) omvatten.

Bij een functionele uitvoeringsvorm die een adequate oriëntatie van het plasma ten opzichte van het object mogelijk maakt, zijn de stelmiddelen rondom de plasma-ontladingselektrode aangebracht.

Een bijzondere uitvoeringsvorm van de inrichting omvat overcenkomstig de uitvinding een katheter, welke is opgebouwd uit een buitemmantel, een proximaal einde en een distaal einde, welke katheter met het distale einde in een menselijk of dierlijk lichaem brengbaar is en waarbij althans de plasma-ontladingselektrode is opgenomen in het distale einde van de katheter.

Doordat verder het distale einde van het katheter de plasmakomer vormt kan met deze uitvoeringsvorm zeer effectiof en controleerbaar een plasma dichtbij een orgaan of weefsel in het menselijk

10

16

20

25

of dierlijk lichaam gecreëerd worden, hetgeen de inrichting meer veelzijdig inzetbaar maakt voor bijvoorbeeld medische behandelingen in het lichaam van een mens of dier.

Bij de uitvoeringsvorm, niet zijnde een katheter, is de inrichting met de plasmakamer buiten het lichaam van een mens of dier opgesteld in directe nabijneld van de huid of uitwendig orgaan, zodat die uitvoeringsvorm zeer geschikt is voor het toepassen van cosmetische behandelingen (littekenweefselverwijdering).

Tensinde het gecreëerde plasma voldoende dicht bij het object (orgaan of weefsel) to brengen is het distale einde van het katheter tenminste gedeelte open.

Meer specifiek is ten behoeve van de aansturing van de plasma-ontladingselektrode in het katheter een, uit een binnengeleider en een coaxiaal om de binnengeleider aangebrachte buitengeleider samengestelde, co-axiale transmissie-lijn opgenomen, waarbij de plasma-ontladingselektrode via de binnengeleider elaktrisch met de hoog frequente voedingsbron is verbonden.

Eveneens kan voor het effectief en gunstig opwekken van het plasma nabij het distale einde van het katheter de toevoer voor het plasma-gas binnen de buitengeleider gelegen in het katheter zijn opgenomen. Meer specifiek vormt de buitengeleider daarbij de omtreksmantel van het katheter.

Deze uitvoeringsvormen beogen een compacte constructie te verschaffen met voldgende geringe buitenste afmetingen, waardoor het inbrengen van het katheter in het menselijk of dierlijk lichaam niet wordt bemoeilijkt.

Bij een andere functionele uitvoeringsvorm is de toevoer voor het plasma-gas buiten de buitengeleider gelegen in het katheter opgenomen, waarbij de toevoer voor het plasma-gas coaxiaal om de buitengeleider is aangebracht. Ten behoeve van de stevigheid van deze uitvoeringsvorm kunnen tussen de buitenmantel en de buitengeleider sên of

5

10

15

20

25

meer afstandhouders zijn aangebracht.

Verder kan bij een bijzondere uitvoeringsvorm het katheter een dilatatie-katheter zijn, hetgeen behandelingen in een lichaamlumen mogelijk maakt. zoals het behandelen van afzettingen in een bloedvat.

Meer specifieke kan de plasma-ontladingselektrode zijn vervaardigd van een hard metaal, bij voorbeeld W of Ti, waarbij de plasma-ontladingselektrode eventueel kan zijn voorzien van een brandspanningsverlagende laag, bijvoorbeeld AlOs.

Verder kan bij de inrichting overeenkomstig de uitvinding het plasma-gas een gasmengsel zijn, opgebouwd uit He/O₂, He/N₂ of N₂O.

De uitvinding zal aan de hand van een tekening nader worden toegelicht, welke tekening achtereenvolgens toont:

Figuren 2-7 verschillende uitvoeringsvormen van eer inrichting overeenkomstig de uitvinding.

Voor een beter begrip van de uitvinding worden in de navolgende figuurbeschrijving de overeenkomende onderdelen met identieke referentiecijfers aangeduid.

In Figuur 1 wordt een inrichting voor het creëren van een lokaal koud plasma ter plaatse van een object geopenbaard.

De inrichting voor het creëren van een lokaal koud plasma is hier verwerkt als de vorm van een katheter 10 voorzien van een proximaal einde 10a en een distaal einde 10b. Het katheter 10 is bedoeld voor medische toepassingen daar het ingebracht kan worden in een lumen in het lichaam van een mens of dier. Het lumen kan bijvoorbeeld de luchtpijp zijn, of de anale opening of een bloedvat. Bij deze uitvoeringsvorm is het katheter 10 met zijn distale einde 10b ingebracht in een bloedlumen 11 (bloedader of bloedslagader).

In het katheter 10 is een coaxiale transmissielijn 13 opgenomen samengesteld uit een binnengeleider 14 en een coaxiaal om deze binnengeleider 14 aangebrachte buitengeleider 15. De binnengeleider 14 verbindt een plasma-ontladingselektrods 16 elektrisch mat een hoog

5

10

15

20

25

Trequente voedingsbron 4. Tussen de binnengeleider 14 en de buitengeleider 15 is een diëlectricum 13a opgenomen, teneinde doorslag van spanning tussen de beide geleiders 14-15 te voorkomen. Tevens is de inrichting overeenkomstig de uitvinding voorzien van een toevoer 5 voor een plasmagas welk plasmagas via een geschikte (niet weergegeven) toevoerleiding toegevoerd kan worden in de richting van een plasmakamer 9, nabij de plasma-ontladingselektrode 16.

Verder is het katheter 10 uitgevoerd als een dilatatiekatheter daar het distale einde 10b is voorzien van een dilatatieballon 12 dat met behulp van geschikte niet weergegeven middelen met behulp van een medium opgeblazen kan worden, zodat de ballon 12 afsteunt tegen de binnenzijde van de wand 11a van het lumen 11. De wand 11a kan bijvoorbeeld de wand van een bloedvat zijn. Het medium voor het opblazen van de dilatatie-ballon 12 wordt via een toevoerleiding 20 in de coaxiale transmissielijn 13 vanuit de toevoersenheid 5 naar de ballon 12 toegevoerd.

Door de plasma-ontladingselektrode 16 door middel van de hoog frequente spanningsbron met goschikte voedings- of spanningspulsen via de binnengeleider 14 aan te sturen wordt ter plaatse van de plasma-ontladingselektrode 16 in het door de toevoereenheid 5 toegevoerde gasmengsel een plasma 17 gecreëerd dat lokaal resgeert met of in werkt op het te behandelen object, hier de binnenzijde van de wand 11a van het lumen 11. Met behulp van de energie die uit bet plasma 17 vrijkomt kunnen bijvoorbeeld kankercellen of andere aandoeningen worden behandeld of hestreden.

Overeenkonstig de uitvinding is de inrichting voorzien van steimiddelen 6, welke zijn ingericht voor het oriënteren van de plasmaontladingselektrode 16 ten opzichte van het object, hier de wand 11a van het lumen 11. Meer specifiek omvatten deze stelmiddelen 6 ten minste één sensor 7 voor het vaststellen van de momentane oriëntatie van de plasmaontladingselektrode 16 ten opzichte van het object. Deze ten minste één

5

10

15

20

25

sensor 7 is bij voorkeur geplaatst nabij de plasma-ontladingselektrode 16 op het distale einde 10b van het katheter 10. Voor een meer nauwkeurige oriëntatie kunnen meerdere sensoren 7 toegepast worden, teneinde een

driedimensionele oriëntatie ten opzichte van het object te verkrijgen.

De stelmiddelen 6 2ijn bij voorkeur ingericht voor het oriënteren van de plasma-ontladingselektrode 16 op basis of aan de hand van de door de ten minste één sensor 7 vastgestelde momentane positie van de plasma-ontladingselektrode 16. Hiertoe wordt het door de sensor 7 gegenereerde signaal dat representatief is voor de momentane oriëntatie in het driedimensionale vlak van de plasma-ontladingselektrode 16 ten opzichte van het object (hier de wand 11a van het lumen 11) via een geschikte verbindingslijn terugkoppelt naar de stelmiddelen 6 al waar een vergelijking plaatsvindt met de gewenste oriëntatie van de plasma-ontladingselektrode 16.

Op basis van deze terugkoppeling en de eventueel geconstateerde afwijking tussen de gewenste oriëntatie en de momentane, door de sensor 7 vastgestelde oriëntatie zullen de stelmiddelen 6 bekrachtigt worden zodanig dat de plasma-ontladingselektrode 16 in de gewenste oriëntatie ten opzichte van het object wordt gepositioneerd.

Bij de uitvoeringsvorm zoals getoond in Figuur 1 omvatten de stelmiddelen 6 ten minste 66n stappenmotor of gelijkstroommotor (DC motor) welke aan het katheter 10 of aan de coaxiale transmissielijn 13 een translatie of rotatiebeweging opdringen. Met name de laatste uitvoeringsvorm, waarbij de transmissielijn 13 tezamen met de plasma-ontladingselektrode 16 wordt geroteerd c.q. getranslateerd ten opzichte van het katheter 10 verdient de voorkeur, omdat zo de dilatatieballon 12 van het lumen 11 gepositioneerd blijft. Een onverhoopt verplaatsen van het katheter 10 met de dilatatieballon 12 zou tot een pijnlijke wrijvingscontact tussen de dilatatieballon 12 en de wand 11a van het lumen 11 leiden, hetgeen eventueel tot beschadigingen c.q. verwondingen kan leiden.

10

15

20

25

+31 76 142 b 142 b 2-

Zoals de translatje- en rotatieptijlen in Figuur 1 tonen kan zodoende de plasma-ontladingselektrode 16 ten opzichte van het te behandelen object (hier de wand 11a van het lumen 11) worden georiënteerd (geroteerd c.q. getransleerd). Hierdoor is het mogelijk door met niet weergegeven afbeeldingstechnieken (bijvoorbeeld uitrageluid) in "realtime" afbeeldingen van het object en de plasma-ontladingselektrode 16 te verkrijgen op basis waarvan de heroriëntatie van de plasma-ontladingselektrode 16 kan worden gecontroleerd.

Bij een andere uitvoeringsvorm zoals getoond in Figuur 2 omvatten de stelmiddelen 6' één of meer elementen 18a, 18b bestaande uit geheugenmetaal, welke door middel van geschikte aanstuurlijnen 19a-19b met de stelmiddelen 6' zijn verbonden. Met behulp van de aanstuurelementen 18a-18b (geheugenmetaal) met een geschikt spanning- of stroomsignaal (door de stelmiddelen 6' is afgegeven) kan evenzeer een geschikte oriëntatie van de plasma-ontladingselektrode 16 ten opzichte van het te behandelen object 11a worden bewerkstelligd.

Ook hier wordt de momentans positie of oriëntatie van de plasma-entladingselektrode 16 ten opzichte van het te behandelen object bepaald aan de hand van één of meer sensoren 7, die hiertoe geschikke signalen afgeven aan de stelmiddelen 6', op basis waarvan een eventuele afwilking wordt geconstateerd ten opzichte van de gewenste oriëntatie. Op grond van deze afwijking zullan de stelmiddelen 6' de aanstuurelementen 18a-18b-18c aansturen zodat een vervorming optreedt van het distale einde 10b van de coaxiale transmissielijn 15 en dientengevolge de plasmaontladingselektrode 16 en derhalve de locatie van het gecreëerde plasma 17 wordt ingesteld.

Zoals Figuur 2 ook toont verdient het de voorkeur om ten minste drie aanstuurelementen 182-18b-18c te gebruiken welke symmetrisch rondom de plasma-ontladingselektrode 16 op het distale einde 10b van de transmissielijn 13 zijn aangebracht. Door de afzonderlijke aansturing van de verschillende uit geheugenmetaal opgebouwde aanstuurelementen 18a-18c

5

10

15

20

25

kan het distale einde 10b en derhalve de plasma-ontladingselektrode 16 een willekeurige oriëntatie in het driedimensionale vlak ten opzichte van het object 11a worden opgedrongen.

In Figure 3 wordt nog een aanvellend aspect van de uitvinding geopenbaard waarbij het distale einde 10b van het katheter 10 de plasmakamer 9 vormt. Bij deze uitvoaringsvorm vormen de buitenste afmetingen van de coaxiale transmissielijn 13 tevens de buitenste afmetingen van het katheter 10. Door het distale einde 10b te voorzien van meerdere openingen 22 is het mogelijk om het in de plasmakamer 9 gecreëerde plasma 17 tot buiten het distale einde 10b van het katheter 10 kan ontwijken en zodoende zijn invloed op het nabligelegen of omliggende object (lichaamsweefsel) kan doen gelden.

Hierbij fungeert de buitenste manteloppervlak 15 van het katheter 10 tevens als een aarding voor de coaxiale transmissielijn 13. Hiertoe is het met referentiecijfer 13 aangeduide materiaal een diëlektrisch medium. De buitenste mantel 15 kan daarbij een aardingslaag vormen ten behoeve van de aansturing van de hoog frequente voedingsbron 4 (zoals getoond in de figuren 1 en 2).

In figur 4 wordt een andere uitvoeringsvorm getoond van de inrichting overeenkomstig de uitvinding waarbij de toevoer 20 voor het plasmagas zoals aangevoerd door de gastoevoereenheid 5 (figuren 1 en 2) coaxiaal is aangebracht om de coaxiale transmissie-lijn 13-14-15. Ten behoeve van een goede toevoer van het plasma-gas vanuit de toevoereenheid 5 in de richting van de plasmakemer 9 ter plaatse van de plasma-ontjadingselektrode 16 zijn maerdere afstandhouders 21 tussen de coaxiale buitengeleider 16 en de buitenmantel 10 van het katheter geplaatst.

Ook bij deze uitvoeringsvorm is het distale einde 10b van het katheter dat de plasmakamer 9 vormt voorzien van meerdere openingen 22 teneinde het plasma 17 ter plaatse van de plasma-ontladingseiektrode 16 werkzaam te laten zijn in de richting van het object dat behandelt dient te worden.

10

15

·· +31 * 1 1 1 1 1 2 2 2 2 2 7 2

۵

En nog een andere uitvoeringsvorm zoals getoond in de figuur 5 is de toevoerleiding 20 voor het plasmagas vanuit de gastoevoereenheid 5 opgenomen in het diëlektricum 13a van de transmissieliin 13.

Figuur 6 toont het algemene principe van de inrichting overeenkomstig de uitvinding de in de plasmakamer 9 opgenomen plasmaontladingselektrode 16 genereert een plasma en in het bijzonder een koud plasma ter plaatse van een (niet weergegeven) object.

De plasma-ontladingselektrode 16 wordt aangestuurd door een transmissielijn 13 welke de plasma-ontladingselektrode 16 slektrisch verbindt met een hoog frequente voedingsbron 4. Evenzo is de inrichting voorzien van een gastoevoereenheid 5 welke via een toevoerleiding 20 een plasmaaas tot in de plasmakamer 9 voert.

Overeenkomstig de uitvinding is de inrichting voor het creëren van een lokaal koud plasma ten opzichte van een object voorzien van stelmiddelen 6, 18a-18c welke ingericht zijn om de plasma-ontladingselektrode 16 ten opzichte van het (niet weergegeven) object te oriënteren. Hiertoe is de inrichting voorzien van ten minste één sensor 7 die de momentame oriëntatie van de plasma-ontladingselektrode 16 vaststelt en een hieraan gerelateerd signaal via een signaallijn 7' naar een verwerkingseenheid 6a stuurt dat deel uitmaakt van de stelmiddelen 6.

De verwerkingseenheid 6a vergelijkt de momentane positie zoals gemeten met de sensor 7 van de plasma-ontladingselektrode 16 met een gewonste positie en genereert op basis hiervan een stuursignaal waarmee de stelmiddelen 6 worden aangestuurd ten einde de geconstateerde afwijking te corrigeren en de plasma-outladingselektrode 16 een andere oriëntatie op te dringen ten opzichte van het object dat met het plasma behandeld dient te worden. De stelmiddelen 6 kunnen uitgevoerd zijn zoals hier voordaand in de oedetailleorde beschrijving besproken.

Bij een andere uitvoeringsvorm zoals getoond in Figuur 7 is de sensor 7 buiten de plasmakamer 9 opgesteld. De sensor 7 is gebaseerd

5

10

15

20

25

5

10

15

20

25

10

op het meten van het teruggeleid (of teruggekaatst) vermogen vanuit de plasmakamer 9. Dit teruggeleid vermogen wordt in de vorm van een elektrisch signaal via de verbinding 71 maar de sensor 7 geleid en is een maat voor de afstand van het plasma 17 tot het te behandelen object. De sensor 7 leidt het elektrisch signaal (dat een maat is voor het teruggeleid vermogen) naar de verwerkingseenheid 6-6a. 18a-18c, alwaar het signaal wordt vergeleken met het door de hoog frequente voedingsbron 4 aan de plasmakamer 9 afgegeven stuurvermogen.

Aldus kan op een snelle, nauwkeurige maar bovenal eenvoudige wijze de oriëntatie van de plasma-ontladingselektrode 16 (en het plasma 17) ten opzichte van het object worden vastgesteld en indien noodzakelijk de oriëntatie van de plasma-ontladingselektrode 16 worden gecorrigeerd.

Bij alle uitvoeringsvermen kan de plasma-ontladingselektrode 16 zijn verwaardigd van een hard metaal, bij voorbeeld W of Ti, waarbij eventueel de plasma-ontladingselektrode 16 kan zijn voorzien van een (niet weergegeven) brandspanningsverlagende laag, bijvoorbeeld Al₂O₂.

Bij een andere uitvoeringsvorm, niet zijnde een katheter, is de inrichting met de plasmakamer 9 buiten het lichaam van een mens of dier opgesteld in directe nabijheid van de huid of uitwendig orgaan, zodat die uitvoeringsvorm zeer geschikt is voor het toepassen van cosmetische behandelingen (littekonweefselvorwijdering). Bij die uitvoeringsvorm is het te behandelen object geen lichaamslumen maar de huid van een persoon, bijvoorbeeld om moedervlekken of littekenweefsel te verwijderen c.q. te behandelen. Ook kan de inrichting overeenkomstig de uitvinding ook ingezet worden voor het behandelen van cariës of tandplak bij het gebit van mens of dier.

CONCLUSTES

5

10

15

20

1. Inrichting voor het creëren van een lokaal koud plasma ter plaatse van een object tenminste omvattende

een hoog frequente voedingsbron,

een plasma-kamer.

een elektrisch met de hoog frequente voedingsbron verbonden en in de plasmakamer opgestelde plasma-ontladingselektrode, alsmade

een in de plasmakamer nabij de plasma-ontladingselektrode eindigende toevoer voor een plasma-gas, met het kemmerk, dat de inrichting is voorzien van stelmiddelen, welke zijn ingericht voor het priënteren van de plasma-ontladingselektrode ten opzichte van het object.

- Inrichting volgens conclusie 1, met het kemmerk, dat de stelmiddelen tenminste één sensor omvat voor het vaststellen van de momentane criëntatie van de plasma-ontladingselektrode ten opzichte van het object.
- 3. Inrichting volgens conclusie 2, met het kemmerk, dat de tenminste ene sensor is ingericht voor het meten van het door het gecreëerde plasma teruggeleid vermogen, welk teruggeleid vermogen een maat is voor de momentane oriëntatie van de plasma-ontladingselektrode ten opzichte van het object.
- 4. Inrichting volgens conclusie 2 of 3, met het kemmerk, dat de steimiddelen zijn ingericht voor het oriënteren van de plasmaontladings-elektrode een de hand van de vastgestelde momentane positie.
- 25 5. _____Inrichting volgens concluste 4, met het kemmerk, dat de stelmiddelen zijn ingericht voor het oriënteren van de plasma-ontladings-elektrode door de vergelijking van het teruggeleid vermogen met het door de hoog frequente voedingsbron naar de plasma-ontladingselektrode gevoerde vermogen.
- Inrichting volgens êen of meer van de voorgaanda conclusies, mat het kemmerk, dat de stelmiddelen tenminste êen DC-motor

omvatten.

10

15

- Inrichting volgens \(\textit{\textit{e}}\) of meer van de voorguande conclusies, met het kemmerk, dat de stelmiddelen terminste \(\textit{\textit{e}}\) en geheugenmetaal omvatten.
- 5 6. Inrichting volgens één of mear van de voorgaande conclusies, met het kenmerk, dat de stolmiddelen terminste één spreekspoel (voicecoil) omvatten.
 - Inrichting volgens & of meer van de voorgaande conclusies, met het kenmerk, dat de stelmiddelen rondom de plasmaontladingselektrode zijn aangebracht.
 - 8. Inrichting volgens sen of meer van de voorgaande conclusies, met het kenmerk, dat de inrichting een katheter omvat opgebouwd uit een buitenmantel, een proximaal einde en een distaal einde, welk katheter met het distale einde in een menselijk of dierlijk lichaam brengbaar en waarbij althans de plasma-ontladingselektrode is opgenomen in het distale einde van de katheter.
 - Inrichting volgens conclusie 8, met het kemmerk, dat het distale einde van het kathetar de plasmakamer vormt.
 - 10. Inrichting volgens conclusie 9, met het kemmerk, dat het distale einde van het katheter tenminste gedeelte open is.
- 11. Inrichting volgens één of meor van de conclusies 7-10, met het kenmerk, dat in het katheter een, uit een binnengeleider en een coaxiaal om de binnengeleider aangebrachte buitengeleider samengestelde, co-axiale transmissie-lijn is opgenomen en waarbij de plasma-25. __ontladingselektrode via de binnengeleider elektrisch met de hoog frequente voedingsbron is verbonden.
 - 12. Inrichting volgens conclusie 11, not het kenmork, dat de toevoer voor het plasma-gas binnen de buitengeleider gelegen in het katheter is opgenomen.
- 30 13 Inrichting volgens conclusie 12, met het kenmerk, dat de buitengeleider de omtreksmantel van het katheter vormt.

- 14. Inrichting volgens conclusie 11, met het kenmerk, dat de tosvoer voor het plasma-gas buiten de buitengeleider gelegen in het katheter is opgenomen.
- 15. Inrichting volgens conclusie 14, met het kemmerk, dat de toevoer voor het plasma-gas coaxiaal om de buitengeleider is aangebracht.
- 16. Inrichting volgens conclusie 14 of 15, met het kenmerk, dat tussen de buitenmantel en de buitengeleider één of meer afstandhouders zijn aangebracht.
- Inrichting volgens één of meer van de conclusie 8-16, met
 het kenmerk, dat het katheter een dilatatie-katheter is,
 - 18. Inrichting volgens één of meer van de voorgaande conclusies, met het kemmerk, dat de plasma-ontladingselektrode is vervaardied van een hard metaal, bij voorbeeld W of Ti.
 - 19. Inrichting volgens één of meer van de voorgaande conclusies, met het kemmerk, dat de plasma-ontladingselektrode is voorzien van een brandspanningsvarlagende laag, bijvoorbeeld Al₂O₂.
 - 20. In richting volgens één of meer van de voorgaande conclusies, met het kenmerk, dat het plasma-gas een gasmongsel ts opgebouwd uit He/O_2 , He/N_2 of N_2O .

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7