I CLAIM: 1 1. A method for delivering a medicine to a 2 patient's respiratory system, comprising: 3 positioning an endotracheal tube in the 4 patient's respiratory system; 5 positioning a nebulization catheter in the 6 patient's respiratory system; and 7 (8 operating the nebulization catheter to produce an aerosol of the medicine at a distal end of the 9 nebulization catheter while the endotracheal tube is 10 positioned in the patient's respiratory system. 11 2. The method of Claim 1 in which the step of 12 operating the nebulization catheter further comprises: 13 delivering a liquid medicine to a first orifice 14 located at the distal end of the nebulization catheter; 15 16 and delivering a pressurized gas to a second 17 orifice located at the distal end of the nebulization 18 catheter in proximity to the first orifice to aerosolize 19 the liquid medicine at the first orifice. 20 21 . 3. The method of Claim 1 in which the step of operating the nebulization catheter further comprises: 22 connecting a pressurized canister containing a 23 mixture of a medicine and a liquid propellant to a 24 proximal end of the nebulization catheter; 25 26 delivering the mixture of medicine and liquid propellant through a first lumen of the nebulization 27 catheter to a first distal orifice located at the distal 28 29 end of the nebulization catheter; and 30 delivering a pressurized gas through a second lumen of the nebulization catheter to a second orifice 31 located at the distal end of the nebulization catheter in 32 proximity to the first orifice to enhance the 33 aerosolization of the medicine emitted from the first 34 orifice. 35

1	4. The method of Claim 3 in which the							
2	pressurized gas from the second orifice is directed							
3	against the medicine and propellant delivered from the							
4	first distal orifice.							
5	5. The method of Claim 1 further comprising:							
6	centering the nebulization catheter in the							
7	endotracheal tube.							
8	6. The method of Claim 1 in which the step of							
9	positioning a nebulization catheter further comprises:							
10	positioning a nebulization catheter through an							
11	auxiliary lumen of the endotracheal tube.							
12	7. The method of Claim 1 further comprising:							
13	removing the nebulization catheter while							
14	leaving the endotracheal tube in position in the							
15	patient's respiratory system.							
16	8. The method of Claim 2 further comprising							
17	the step of:							
18	imparting pulsation to the liquid being							
19	delivered.							
	-							
20	9. The method of Claim 8 in which the							
21	pulsation is imparted at a frequency greater than 100							
22	hertz.							
23	10. The method of Claim 8 in which the							
24	pulsation is applied to a proximal reservoir from which							
25	the liquid medicine is supplied.							
26	11. The method of Claim 8 in which the							
27	pulsation is associated with the delivery of less than							
28	approximately 10 microliters of liquid medicine							

1	12. The method of Claim 1 in which the step of
2	operating a nebulization catheter further comprises the
3	step of:
4	applying an electric signal to the distal end
5	of the nebulization catheter to produce the aerosol from
6	said distal end.
7	13. The method of Claim 1 further comprising:
8	providing a coaxial airflow to said distal end
9	of said nebulization catheter to constrain aerosol
LO	therefrom.
11	14. The method of Claim 1 further comprising:
L2	providing humidification to the patient's
L3	respiratory system.
L4	15. The method of Claim 1 further comprising
L 5	the step of:
16	balancing airflow at the distal end of the
L7	nebulization catheter by withdrawing air through a vacuum
L8	lumen extending through the nebulization catheter.
19	16. The method of Claim 1 in which the step of
20	positioning the nebulization catheter further comprises:
21	receiving an indication of the position of the
22	nebulization catheter relative to the endotracheal tube.
23	17. The method of Claim 16 in which the
24	indication is a tactile indication.
25	18. The method of Claim 16 in which the step
26	of receiving an indication further comprises:
27	receiving a indication of a pressure variation
28	at a distal end of the endotracheal tube as the distal
29	end of the nebulization catheter is moved past.

1	19. A method for delivering a medicine to one
2	or both lungs of a patient who is not intubated,
3	comprising:
4,	positioning a nebulization catheter in the
5	patient's respiratory system; and
6	operating the nebulization catheter to produce
7	an aerosol of the medicine at a distal end of the
8	nebulization catheter.
9	20. A method of delivering an aerosol of
10	medication to a patient's lungs, comprising:
11	nebulizing the medication at a distal end of a
12	catheter located in the patient's respiratory tract, said
13	distal end of said catheter directed in a first
14	direction; and
15	directing a flow of gas at said nebulized
16	medication in a direction opposite to said first
17	direction.
18	21. The method of Claim 20 in which said first
19	direction in said nebulizing step is a distal direction.
20	22. The method of Claim 20 in which said first
21	direction in said nebulizing step is a proximal
22	direction.
23	23. The method of Claim 20 in which said
24	directing step is further characterized by:
25	directing a flow of gas from a distal end of ar
26	endotracheal tube.
27	24. The method of Claim 20 in which said flow
28	of gas is an inhalation of the patient through an
29	endotracheal tube.

1	25. A method of delivering a medicine
2	selectively to a bifurcated region of a patient's
3	respiratory system, comprising:
4	positioning a catheter into a branch of the
5	patient's respiratory system that leads to a region other
6	than the region to which the medicine is to be delivered;
7	delivering an airflow through the catheter; and
8	nebulizing the medicine in the respiratory
9	system proximal of where the airflow is delivered whereby
10	a plume of the nebulized medicine is delivered to the
11	region without the catheter.
12	26. A catheter for delivering an aerosol of
13	medicine to a patient's lungs comprising:
14	a catheter shaft having a proximal end and a
15	distal end;
16	a lumen through the catheter shaft and
17	communicating at the proximal end with a port for
18	receiving a medicine in a liquid form and communicating
19	at the distal end with a distal orifice from which the
20	medicine can be discharged;
21	means for nebulizing the medicine discharged at
22	the distal orifice into an aerosol plume of particles of
23	the medicine; and
24	means for modifying the aerosol plume of
25	particles of medicine.
26	27. The catheter of Claim 26 wherein the
27	modifying means comprises:
28	a vacuum orifice located close to the distal
29	orifice from which the medicine is discharged for
30	scavenging air from the nebulized aerosol.
31	28. The catheter of Claim 26 wherein the
32	modifying means comprises:
33	means for decreasing the velocity of the
34	particles.

1	29. The Catheter of Claim 20 wherein the
2	modifying means comprises:
3.	means for increasing the width of the aerosol
4	plume .
5	30. A catheter system for delivering an
6	aerosol of medicine to a patient's lungs comprising:
7	a catheter shaft having a proximal end and a
8	distal end;
9	a lumen through the catheter shaft and
10	communicating at the proximal end with a port for
11	receiving a medicine in a liquid form and communicating
12	at the distal end with a distal orifice from which the
13	medicine can be discharged;
14	means for nebulizing the medicine discharged at
15	the distal orifice;
16	a flow control apparatus connected to the port,
17	said flow control apparatus comprising:
18	a flow line communicating with the port, said flow
19	line occupied by the medicine; and
20	a valve associated with the flow line to cause
21	pulsed delivery of medicine through the flow line.
22	31. The catheter system of Claim 30 in which
23	said flow control apparatus further comprises:
24	a draw back area associated with the flow line,
25	said draw back area adapted to cause a reversal of flow
26	of medicine through the flow line controller synchronized
27	with the pulsed delivery.
28	32. A catheter for delivering an aerosol to a
29	patient's lungs comprising:
30	a shaft comprised of:
31	an outer tubular member defining a first lumen
32	and terminating at a distal end in a first distal
33	orifice;

1	an inner tubular member defining a second
2	lumen, said inner tubular member located in the first
3	lumen and terminating at a distal end in a second distal
4	orifice;
5	a manifold connected to a proximal portion of said
6	shaft, said manifold having:
7	a first port communicating with the first lumen
8	for conveyance of a pressurized gas in an annular region
9	between the inner and outer tubular members; and
10	a second port communicating with the second
11	lumen for conveyance of a medicine;
12	said second distal orifice aligned with said first distal
13	orifice to nebulize the medicine from a distal tip of the
14	catheter.
15	33. The catheter of Claim 32 further
16	comprising:
17	a retractable pin located in said second lumen.
18	34. A catheter for delivering an aerosol of
19	medicine to a patient's lungs comprising:
20	a catheter shaft having:
21	a first lumen centrally located in said shaft
22	and adapted for conveying a medicine in liquid form;
23	a plurality of lumens peripherally located
24	around said first lumen and adapted for conveying a gas;
25	a distal liquid orifice communicating with said
26	first lumen; and
27	a plurality of distal gas orifices
28	communicating with said plurality of lumens, said
29	plurality of distal gas orifices aligned with respect to
30	said distal liquid orifice so as to nebulize a liquid
31	medicine discharged from the liquid orifice.
32	35. A catheter system for delivering an

aerosol therapy to a patient's lungs comprising:

33

Т	a scand-atone nebulization cacheter having a
2	distal end for insertion into the respiratory system of a
3	patient and a proximal end, said nebulization catheter
4	having:
5	a catheter shaft;
6	a gas pressurization lumen extending through
7	said catheter shaft;
8	a distal gas exit orifice communicating with
9	said gas pressurization lumen, said distal gas exit
10	orifice located at the distal end of said nebulization
11	catheter;
12	a drug delivery lumen extending along at least
13	a portion of said catheter shaft; and
14	a distal drug delivery orifice communicating
15	with said drug delivery channel, said distal drug
16	delivery orifice located in proximity to the distal gas
17	exit orifice so that gas exiting from said distal gas
18	exit orifice nebulizes a drug delivered from said distal
19	drug delivery orifice.
20	36. The catheter system of Claim 35 further
21	comprising:
22	an endotracheal tube having a ventilation lumer
23	in which said nebulization catheter extends.
24	37. The catheter system of Claim 35 further
25	comprising:
25 26	an endotracheal tube having a ventilation lumer
27	and an auxiliary lumen located adjacent to said
28	ventilation lumen, said auxiliary lumen having a distal
29	aperture into said ventilation lumen such that a distal
30	end of said auxiliary lumen exits into the ventilation
31	lumen close to a distal end thereof, and further in which
32	said nebulization catheter extends through said auxiliary
33	lumen.

1	38.	The	catheter	system	of	Claim	35	further
2	comprising:							

a centering apparatus located on said catheter shaft close to the distal end.

- 5 39. The catheter system of Claim 35 in which 6 the centering apparatus has an expanded size and a 7 reduced size and the centering device assumes the 8 expanded size when deployed in an airway passage.
- 9 40. The catheter system of Claim 35 in which 10 the centering apparatus includes more than one expanded 11 size.
- 12 41. The catheter system of Claim 35 in which 13 the centering apparatus has an expanded size that can be 14 adjusted after deployment.
- 15 42. The catheter system of Claim 35 in which 16 said centering apparatus comprises gas centering jets.
- 17 43. The catheter system of Claim 35 in which 18 the nebulization catheter includes a valve located in at 19 least one of the lumens.
- 20 44. The catheter system of Claim 43 in which 21 the valve is located in at least one of the distal 22 orifices.
- 23 45. The catheter system of Claim 43 in which 24 the valve is controlled from the proximal end of the 25 nebulization catheter.
- 26 46. The catheter system of Claim 43 in which 27 the valve is actuated from the distal end of the 28 catheter.

1	47. The catheter system of Claim 43 in which
2	the valve is formed by an elastically closed tip.
3	48. The catheter system of Claim 35 further
4	comprising a safety stop on a proximal portion of the
5	catheter shaft.
6	49. The catheter system of Claim 35 further
7	comprising:
8	graduated markings on said catheter shaft.
9	50. The catheter system of Claim 35 further
10	comprising:
11	luer lock connectors on proximal ports
12	communicating with said gas pressurization lumen and said
13	drug delivery lumen.
14	51. The catheter system of Claim 35 further
15	comprising:
16	self-sealing proximal ports communicating with
17	said gas pressurization lumen and said drug delivery
18	lumen.
19	52. The catheter system of Claim 35 further
20	comprising:
21	means for clearing flow blockages at the dista
22	end of the catheter.
23	53. The catheter system of Claim 35 further
24	comprising:
25	a retractable pin located in at least one of
26	said lumens.
27	54. The catheter system of Claim 35 further
28	comprising:
29	a stripe on said catheter shaft.

1	55. The catheter system of Claim 35 further
2	comprising:
3	a baffle located at the distal end of the
4	nebulization catheter in front of the orifices.
5	56. The catheter system of Claim 35 in which
6	said catheter shaft includes a third lumen extending
7	therethrough; and
8	a fiber optic scope extending through said
9	third lumen.
10	57. The catheter system of Claim 35 wherein at
11	least a portion of said shaft surrounding said drug
12	delivery lumen is formed of a low compliance material so
13	that flow control at said distal drug delivery orifice of
14	a fluid delivered through said drug delivery lumen is
15	more responsive to flow control at a location proximal
16	thereto.
17	58. The catheter system of Claim 35 further
18	comprising:
19	a vibrating material located close to said
20	distal orifices.
21	59. The catheter system of Claim 58 in which
22	said vibrating material is a piezoelectric material and
23	further in which said piezoelectric material is connected
24	to at least one electrical conductor that extends through
25	said catheter shaft.
26	60. A suction catheter for use with an
27	endotracheal tube, said suction catheter sized to be
28	received in a ventilation lumen of the endotracheal tube,
29	said suction catheter having an aspiration lumen for
30	removing mucous from the respiratory tract of an
31	intubated patient, said suction catheter further
32	including:

1	a gas pressurization lumen extending through a
2	wall of said suction catheter adjacent to said aspiration
3	lumen;
4	a distal gas exit orifice communicating with
5	said gas pressurization lumen, said distal gas exit
6	orifice located at the distal end of said suction
7	catheter;
8	a drug delivery lumen extending through the
9	wall of said suction catheter adjacent to said aspiration
10	lumen;
11	a distal drug delivery orifice communicating
12	with said drug delivery channel, said distal drug
L3	delivery orifice located in proximity to the distal gas
L4	exit orifice so that gas exiting from said distal gas
15	exit orifice nebulizes a drug delivered from said distal
L 6	drug delivery orifice.
L7	61. The suction catheter of Claim 60 in which
L8	said distal gas exit orifice and distal drug delivery
١9	orifice are oriented proximally toward a distal suction
20	opening communicating with said aspiration lumen.
21	62. The suction catheter of Claim 60 in which
22	said distal gas exit orifice and distal drug delivery
23	orifice are oriented radially relative to an axis of said
24	suction catheter.
25	63. A method of forming a catheter for
26	nebulizing a liquid with a gas, the catheter having
27	closely spaced distal orifices sized and spaced apart
28	with low tolerances, comprising the steps of:
29	providing a relatively large size multilumen
30	extruded polymer tubing;
31	heating a portion of the tubing to a transition
32	temperature of said tubing;
33	drawing down said portion of tubing to form a
34	tapered section with a draw down ratio in the range

1	between 2 to 1 and 20 to 1 such that the lumens are
2	increasingly closely spaced in said tapered region; and
3	forming a plurality of orifices at a distal end
4	of said tapered section, said plurality of orifices being
5	sized to nebulize a liquid delivered through one of said
6	lumens to form an aerosol with a gas delivered through
7	another of said lumens.
8	64. The method of Claim 63 the which the step
9	of forming a plurality of orifices further comprises:
10	cutting a distal end of the tapered section.
11	65. The method of Claim 63 further comprising:
12	cutting the tubing to size to form a shaft
13	portion of the nebulization catheter.
14	66. The method of Claim 63 further comprising:
15	exposing a portion of said tubing to high
16	energy radiation.
17	67. The method of Claim 63 in which said
18	catheter is for use in the respiratory system.
1.0	cacheter is for use in the respiratory system.
19	68. The method of Claim 63 in which the step
20	of heating further comprises:
21	heating the tubing to a temperature between a
22	melt state and a glass state of said tubing.
	man a grade of burn caping.