▼ Chapter 3 분류

MNIST

머신러닝의 hello world 데이터 셋..10만개의 이미지로 구성되어있음! openml에서 다운로드 받아야 한다. 픽셀 데이터이며 정수 값이 들어가 있다.

mnist dataset openml에서 내려받기 from sklearn.datasets import fetch_openml mnist = fetch_openml('mnist_784', version=1)

as_frame = True (데이터 프레임으로 받겠다~ 지금은 아니니 fra #mnist_784라는 아이디를 부여하며 버전1에 해당하는 것을 받겠다

keys 조회 (딕셔너리 스타일로 값을 가진 bunch 스타일 객체) mnist.keys()

- dict_keys(['data', 'target', 'frame', 'feature_names', 'target_names', 'DESCR', 'details', 'categories', 'url'])

사이킷 런에서 읽어들인 데이터 셋들은 비슷한 딕셔너리 구조를 가지고 있다.

- 데이터셋을 설명하는 DESCR키
- 샘플이 하나의 행, 특성이 하나의 열로 구성된 배열을 가진 DATA 키
- 레이블배열을 담은 TARGET 키

mnist["url"] # 얘 데려온 url

'https://www.openml.org/d/554'

배열 살피기 (2차원) # X와 y에 data와 target값을 받고 X먼저 조회하기

X, y = mnist["data"], mnist["target"] X.shape

행이 70000개고 열이 784개이다~ # 70000개 샘플이 있고 784개 특성이 있구나~(픽셀이 28*28이라..)

Г→ (70000, 784)

y.shape

이미지가 70000개 있고 이미지의 특성이 784개 있다는 뜻이다. # 이미지의 픽셀이 28*28픽셀이기 때문이다.

[→ (70000,)

import matplotlib as mpl import matplotlib.pyplot as plt

some_digit = X[0] # 이미지 한 놈을 some_digit에다 넣어주고...(얘가 numpy인데 바꿔줘야지) some_digit_image = some_digit.reshape(28, 28) # 샘플의 특성 벡터를 추출해 28*28 배열로 크기 바꾸기

plt.imshow(some_digit_image, cmap = "binary") # imshow로 조회하기 # binary(보기 편하게 흑백값 반전) plt avis("off")

```
plt.show()
```

₽


```
y[0]
# y이 첫번째 레이블(클래스 확인~)
# 실제 데이터 특성도 5 (레이블)
 [→ '5'
import numpy as np
y = y.astype(np.uint8) # 정수 배열로 바꿔서 확인할 것이다
def plot_digit(data):
  image = data.reshape(28, 28)
  plt. imshow(image, cmap=mpl.cm.binary,
         interpolation="nearest")
  plt. axis("off")
# 숫자 그림을 위한 추가 함수
def plot_digits(instances, images_per_row=10, **options):
  size=28
  images_per_row = min(len(instances), images_per_row)
  images = [instance.reshape(size, size) for instance in instances]
  n_rows = (len(instances) - 1) // images_per_row + 1
  row_images = []
  n_empty = n_rows * images_per_row - len(instances)
  images.append(np.zeros((size, size*n_empty)))
  for row in range(n_rows):
    rimages = images[row * images_per_row : (row + 1) * images_per_row]
    row_images.append(np.concatenate(rimages, axis=1))
  image = np.concatenate(row_images, axis=0)
  plt.imshow(image, cmap=mpl.cm.binary, **options)
  plt.axis("off")
plt.figure(figsize=(9,9))
example_images = X[:100]
plot_digits(example_images, images_per_row=10)
plt.show()
```

С→

y[0] # integer로 잘 바뀌었군~

□→ 5

훈련셋 확인해서 스플릿~

 $X_{\text{train}}, X_{\text{test}}, y_{\text{train}}, y_{\text{test}} = X[:60000], X[60000:], y[:60000], y[60000:]$

- # 훈련 세트는 이미 섞여 있기 때문에 모든 교차 검증 폴드가 비슷해진다.
- # 어떤 학습 알고리즘은 훈련 샘플 순서에 민감해서 많은 비슷한 샘플이 있을 경우 성능이 나빠진다.
- # 데이터셋을 섞으면 이런 문제를 방지할 수 있다.
- # 그러나 주식 가격 같은 시계열 데이터는 오히려 섞지 않는 것이 나을 수 있다.

#SGDClassifier, SGDRegressor는 기본적으로 에포크(max_iter)마다 데이터를 다시 섞는다.

▼ 3.2 이진 분류기 훈련

숫자 '5' 가 있다면 '5-감지기'와 '5 아님' 두 개의 클래스를 구분할 수 있는 것이 이진 분류기의 예이다.

y_train_5 = (y_train == 5) # 5만 true이고 나머지는 false (이진분류기 만들기~) y test 5 = (y test == 5)

▼ SGDClassifier

SGD: 확률적 경사 하강법 (Stochastic Gradient Descent)

- 매우 큰 데이터셋도 효율적으로 처리한다.
- 한번에 하나씩 훈련 샘플을 독립적으로 처리한다.
- 온라인 학습에 잘 들어맞는다.

SGDClassifier 만들고 적용시켜보기 # 이거 쓰면서 여러가기 보르 모덴 마든 스 이따 from sklearn. linear_model import SGDClassifier

sgd_clf = SGDClassifier(random_state = 42) # sgd_clf는 SGDClassifier로 만들고 sgd_clf.fit(X_train, y_train_5) # .fit 적용해서 X_train, y_train_5를 사용하는 함수로 만들어줘

아까 만든 분류기 집어넣었다

SGDClassifier는 훈련하는데에 무작위성을 사용한다. 동일한 결과를 재현하고 싶다면 random_state매개변수를 지정한

SGDClassifier(alpha=0.0001, average=False, class_weight=None, early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', max_iter=1000, n_iter_no_change=5, n_jobs=None, penalty='l2', power_t=0.5, random_state=42, shuffle=True, tol=0.001, validation fraction=0.1, verbose=0, warm start=False)

sgd_clf.predict([some_digit])

아까 some_digit는 1차원 배열인데 기본적으로 함수가 2차원 배열로 돌아가므로 [리스트] 로 감싸준다. # 아까 샘플 넣고 돌리면 true라고 잘 예측 함 # true 값이 나오므로 분류기는 이 값이 5를 나타낸다고 추측한 것!

□ array([True])

퍼셉트론

퍼셉트론(perceptron)은 가장 오래되고 단순한 형태의 판별함수기반 분류모형 중 하나이다. 퍼셉트론은 입력 $x=(1,x1,\cdots,xm)$ 에 대해 1 또는 -1의 값을 가지는 y를 출력하는 비선형 함수이다. 1을 포함하는 입력 요소 xi 에 대해 가중치 wi를 곱한 값 a=wTx을 활성화값(activations)이라고 하며 이 값이 판별함수의 역할을 한다.

a=wTx

판별 함수 값이 활성화함수(activation function) h(a)를 지나면 분류 결과를 나타내는 출력 y^가 생성된다.

 $y^=h(wTx)$

퍼셉트론의 활성화 함수는 부호함수(sign function) 또는 단위계단함수(Heaviside step function)라고 부르는 함수이다. h(a)={(-1,1),(a<0,a≥0)

퍼셉트론 손실함수

x, y = 독립변수, 종속변수 w = 가중치(예측 오차 최소화하는) L = 전체 예측 오차 (가중치값에 따라 달라지는) 다음과 같이 N 개의 학습용 데이터가 있다고 하자.

(x1,y1),(x2,y2),...,(xi,yi),...,(xN,yN)

퍼셉트론은 독립변수 x 로부터 종속변수 y 를 예측하는 예측 모형이므로 모든 학습 데이터에 대해 예측 오차를 최소화하는 가중치 w 를 계산해야 한다. 가중치 w 에 따라 달라지는 전체 예측 오차 L 는 i 번째 개별 데이터에 대한 손실함수 $Li(y^{A}i,yi)$ 의 합으로 표현할 수 있다.

손실 Li(yi,y^i) 는 실제값 y 와 예측값 y^ 의 차이를 나타내는 함수이다. 회귀 분석에서는 L(y^,y)=−(y−y^)2 과 같은 손실함수를 많이 사용하였지만 퍼셉트론의 경우에는 다음과 같은 손실 함수를 사용한다. 이를 제로-원 손실함수(zero-one loss

function)이라고 한다.

zero one loss fun

제로-원 손실함수 Li 은 y^ 과 y 가 같으면 0이고 다르면 1이다. 다음처럼 서술할 수도 있다.

zero one loss fun2

그런데 제로-원 손실함수를 쓰면 $y^*(x)$ 가 x 에 대한 계단형 함수이므로 대부분의 영역에서 기울기가 0이 되어 미분값으로부터 최소점의 위치를 구할 수 없다. 따라서 퍼셉트론에서는 y^* 대신 활성화값 wTx 를 손실함수로 사용한다.

zero_one_loss_fun3

이를 퍼셉트론 손실함수(perceptron loss function) 또는 0-힌지 손실함수(zero-hinge loss function)라고 한다. 여기에서 손실값은 오분류된 표본에 대해서만 계산한다는 점에 주의하라. 이 때는 y 와 sgn(y^) 값이 다르면 오분류된 것이다.

zero_one_loss_fun4.png

https://datascienceschool.net/view-notebook/342b8e2ecf7a4911a727e6fe97f4ab6b/

퍼셉트론 손실함수는 다음처럼 표기할 수도 있다.

perloss.png

SGD

SGD(Stochastic Gradient Descent) 방법은 손실함수 자체가 아니라 손실함수의 기댓값을 최소하는 방법이다.

▼ 3.3 성능 측정

분류기 평가는 회귀모델보다 어렵다. 사용할 수 있는 성능 지표가 많으니 여유롭게 둘러보자

3.3.1 교차 검증을 사용한 정확도 측정

교차 검증 구현

사이킷런이 제공하는 기능보다 교차 검증 과정을 더 많이 제어해야 할 필요가 있다. 이때는 교차 검증 기능을 직접 구현하면 된다. 다음 코드는 사이킷 런의 cross_val_score() 함수와 비슷한 작업을 수행하고 동일한 결과를 출력한다. 잘 보자

from sklearn.model_selection import StratifiedKFold # 이친구는 클래스별 비율이 유지되도록 폴드를 만들기 위해 계 from sklearn.base import clone

skfolds = StratifiedKFold(n_splits = 3, random_state = 42) # 훈련 세트를 3개의 폴드로 나누자 # cross_val_score(gd_clf, X_train, y_train_5, cv=skfolds) # 이렇게 하면 skf사용해서 3겹 교차검증 사용 가능

for train_index, test_index in skfolds.split(X_train, y_train_5):

clone_clf = clone(sgd_clf)

X_train_folds = X_train[train_index]

y_train_folds = y_train_5[train_index]

X_test_fold = X_train[test_index]

y_test_fold = y_train_5[test_index]

clone_clf.fit(X_train_folds, y_train_folds)

y_pred = clone_clf.predict(X_test_fold)

n_correct = sum(y_pred == y_test_fold)

print(n_correct / len(y_pred))

```
□ /usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_split.py:296: FutureWarning: Setting a random_state has a
      FutureWarning
     0.95035
     0.96035
     0.9604
# cross_val_score() 함수로 폴드 3개인 k겹 교차 검증 사용해 SGDClassifier 모델 평가하기
from sklearn.model selection import cross val score
cross val score(sgd clf, X train, y train 5, cv=3, scoring="accuracy") #accuracy 정확도를 보겠다고 한건데 디폴트:
# 다 95%가 넘는 점수 ㄷㄷ 정확도가 95%라는 소리다
# 근데 전체 샘플 중 5가 아닌게 90%이므로 해당 점수는 딱히 좋은게 아니다
r→ array([0.95035, 0.96035, 0.9604])
from sklearn.base import BaseEstimator
class Never5Classifier(BaseEstimator):
  def fit(self, X, y=None):
    return self
  def predict(self, X):
    return np.zeros((len(X), 1), dtype=bool)
never 5 clf = Never5Classifier()
cross_val_score(never_5_clf, X_train, y_train_5, cv=3, scoring="accuracy")
#정확도만으로 모델의 좋고 나쁨을 파악하기는 어렵다(불균형한 데이터셋)
#5가 너무 적으니깐..
# 무조건 5 아님' 으로 예측하면 90% 이상의 정확도가 나온다는 이유
 □→ array([0.91125, 0.90855, 0.90915])
```

▼ 3.3.2 오차행렬

클래스A의 샘플이 클래스 B로 잘못 분류된 횟수를 세는 방법이다. 숫자 5가 3으로 잘못 분류된 횟수를 알고 싶다면 오차 행렬의 5행 3열을 조회하는 방식 오차 행렬을 만들려면..

- 실제 타깃과 비교할 수 있도록 예측값을 먼저 만든다
- 테스트 세트로 예측 만들 수 있어도 여기서 사용하지 않는다
- cross_val_predict() 함수는 사용 가능하다

from sklearn.model_selection import cross_val_predict
y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)

▼ cross_val_predict

이 함수는 cross_val_score함수처럼 k겹 교차검증을 진행하나 평가 점수를 반환하지는 않고 각 테스트 폴드의 예측을 반환한다. 훈련 세트의 모든 샘플에 대해 깨끗한 예측을 얻게 되는 것.(훈련 동안 보지 못한 데이터에 대해 예측)

confusion matrix() 함수를 이용해 오차 행렬을 만들자 타깃클래스(y train 5)와 예측 클래스(y train pred) 넣기

from sklearn.metrics import confusion_matrix confusion_matrix(y_train_5, y_train_pred)

□ array([[53892, 687], [1891, 3530]])

오차 행렬의 행은 실제 클래스를 나타내고, 열은 예측한 클래스를 나타낸다. 이 행렬의 첫 행은 '5가 아닌 숫자를 53892개를 5가 아닌 것으로 정확히 분류했고, 687개는 5가 아닌데 5라고 잘못 분류했다.

두 번째 행은 5인데 5아님으로 1891개로 잘못 분류했고, 나머지 3530개를 5인데 정확히 5라고 분류했다.

(찐음, 짭양) (짭음, 찐양)

y_train_perfect_predictions = y_train_5 #완벽한 분류기일 경우 confusion_matrix(y_train_5, y_train_perfect_predictions)

정밀도란?

TP(찐양)/(TP+FP), 즉 양성이라고 '예측한' 놈들 중에 진짜 양성이었던 친구들의 비율 가지고 정밀도라~하는 것이다..

재현율이란?

TP/(TP+FN), 즉 진짜양성이랑 거짓음성(그니까 실제로 양성인) 친구들 = '실제로'값이 양성인 애들 중에서 찐으로 판명 난 비율을 가지고 재현율이라~한다.

▼ 3.3.3 정밀도와 재현율

위의 친구들을 토대로 나가보자~ 이말이야~

정밀도

from sklearn.metrics import precision_score, recall_score

precision_score(y_train_5, y_train_pred) #3530/(3530+687) 정밀도!

□→ 0.8370879772350012

재현율

recall_score(y_train_5, y_train_pred) #3530/(3530+1892)

아까 90퍼라 그러더니 이거 뭐냐 # 여튼 정밀도와 재현율 2개의 지표가 있는데 F1이라는 다른 것도 있다.

□→ 0.6511713705958311

▼ F1 점수~

TP / [TP+{(FN+FP)/2}] 라고 계산해도 되고, 2(정밀도 * 재현율) / (정밀도+재현율) 해도 된다 # F1점수

from sklearn.metrics import f1_score
f1_score(y_train_5, y_train_pred)

□→ 0.7325171197343846

안타깝게도 정밀도와 재현율을 모두 높일 수는 없다..이런걸 정밀도/재현율 트레이트 오프라고 한다.

▼ 3.3.4 정밀도/재현율 트레이드 오프

SGDClassifier, 이 분류기는 결정함수를 사용해서 각 샘플의 점수를 계산한다. 이 점수가 임곗값보다 크다면, 샘플은 양성 클래스에 할당하고. 임곗값보다 크지 않다면 음성 클래스에 할당한다.

사이킷 런에서 임곗값을 직접 지정할 수는 없지만, 예측에 사용한 점수는 또 확인할 수 있다!

분휴기의 predict() 대신 decision_function()메서드를 호출해서 각 샘플의 점수를 얻어보자. 그리고 이 점수를 기반으로 원하는 임곗값을 정해 예측을 만들 수 있따.

```
y_scores = sgd_clf.decision_function([some_digit])
y_scores
 r→ array([2164.22030239])
threshold = 0
y_some_digit_pred = (y_scores > threshold)
y_some_digit_pred
# 아까 수가 2000이 넘는데 양수지? 0보다 크니까 true값이 나왔다
#8000으로 높이면 false 나오지 뭐
 □→ array([ True])
threshold = 8000
y_some_digit_pred = (y_scores > threshold)
y_some_digit_pred
# 당연히 8000이면 false 나오지..^^;;
# 임곗값을 높이면 재현율이 줄어드는거 보이니
# 적당한 임곗값은 어떻게 설정할까-> cross val predict로 모든 샘플 점수 구하기
 □→ array([False])
# cross val predict 로 모든 샘플 점수 구하기
# 이번엔, 예측결과가 아니라 결정 점수를 반환하도록!!
y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3,
              method="decision function")
# 이 점수로 precision recall curve()
# 함수를 사용해 가능한 모든 임곗값에 대해 정밀도와 재현율을 계산할 수 있다규!
```

from sklearn.metrics import precision_recall_curve

```
def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
    plt.plot(thresholds, precisions[:-1], "b--", label="Precision", linewidth=2)
    plt.plot(thresholds, recalls[:-1], "g-", label="Recall", linewidth=2)
    # 임곗값을 표시하고 범례, 축 이름, 그리드를 추가합니다
    plt.legend(loc="center right", fontsize=16)
    plt.xlabel("Threshold", fontsize=16)
    plt.grid(True)
    plt.axis([-50000,50000,0,1])
```

plot_precision_recall_vs_threshold(precisions, recalls, thresholds)
plt.show()

정밀도 재현율만 뽑는 곡선

```
def plot_precision_vs_recall(precisions, recalls):
    plt.plot(recalls, precisions, "b-", linewidth=2)
    plt.xlabel("Recall", fontsize=16)
    plt.ylabel("Precision", fontsize=16)
    plt.axis([0,1,0,1])
    plt.grid(True)

plt.figure(figsize=(8, 6))
plot_precision_vs_recall(precisions, recalls)
plt.show()

# from sklearn.metrics import average_precision_score
# average_precision_score(y_train_5, y_scores)
```

С→

#argmax() 최댓값의 첫 번째 인덱스 반환 # 90보다 큰 정밀도일 때, 인덱스값을 얻고, thredshold에서의 임곘값을 찾자능

 $threshold_90_precision = thresholds[np.argmax(precisions >= 0.90)] \\ threshold_90_precision$

이 점수면 90퍼 이상이구나아..재현율은 떨어지겠지만..^^

□→ 3370.0194991439557

__ |

훈련 세트에 대한 예측

y_train_pred_90 = (y_scores >= threshold_90_precision)

precision_score(y_train_5, y_train_pred_90)

€ 0.9000345901072293

recall_score(y_train_5, y_train_pred_90)

C→ 0.4799852425751706

▼ 3.3.5 ROC 곡선

ROC receiver operating chracteristic 곡선도 이진 분류에서 널리 사용하는 도구다. 정밀도/재현율 곡선과 매우 비슷하나, ROC곡선은 정밀도에 대한 재현율 곡선이 아니고!!

거짓양성비율(FPR 짭양비) 에 대한 진짜양성비율(TPR찐양비) 의 곡선이다. (재현율)

TNR = 특이도

ROC = 민감도(재현율) 에 대한 1-특이도 그래프

roc_curve 함수 사용해 임곗값에서 TPR, FPR 값 계산

from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc curve(y train 5, y scores)

def plot_roc_curve(fpr, tpr, label = None):
 plt.plot(fpr, tpr, linewidth=2, label=label)
 plt.plt=([0,1], [0,1], 'k--')
 plt.xlabel("FPR", fontsize=16)
 plt.ylabel("TPR", fontsize=16)
plot_roc_curve(fpr, tpr)
plt.show()

좋은 곡선은 우측상향 대각선에서 최대한 멀리 떨어져 있는 친구이다. 찐양율이 올라감에 따라 짭양율도 같이 증가를 해야 말이 맞는 것..

위 그래프의 곡선 아래 면적(AUC)을 측정하면 분류기들을 비교할 수 있다.

완벽한 분류기는 ROC의 AUC가 1이고, 완전한 랜덤분류기는 0.5이다.

사이킷런은 이 함수도 제공한다.

from sklearn.metrics import roc_auc_score
roc_auc_score(y_train_5, y_scores)

C→ 0.9604938554008616

▼ 잠깐만~

roc 곡선이 정밀도/재현율 곡선과 비슷하니까 뭘 사용해야 할지 모르겠다. 일반적으로는..

- 양성클래스가 드물거나 거짓음성(짭음)보다 거짓양성(짭양) 이 더 중요하면 PR
- 아니면 ROC 쓴다.

from sklearn, ensemble import Random Forest Classifier

predict_proba 메소드는 샘플이 행, 클래스가 열, 예측에 대한 확률값 제공 # 샘플이 주어진 클래스에 속활 확률을 담을 배열 반환 # roc_curve() 함수는 레이블과 점수를 기대...근데 점수 대신 클래스 확률 전달 가능

양성 클래스 확률을 점수로 사용해보자~

y_scores_forest = y_probas_forest[:, 1] # 양성 클래스에 대한 확률 점수로 써라!, # (행=샘플 개수) 1번째 열은 음성 클래스 확률, 2 번째 열은 양성클래스 확률 # 양성클래스 확률만 있으면 되니까 인덱스 1 fpr_forest, tpr_forest, thresholds_forest = roc_curve(y_train_5, y_scores_forest)

plt.plot(fpr, tpr, "b:", label="SGD")
plot_roc_curve(fpr_forest, tpr_forest, "RandomForest")
plt.legend(loc="lower right") # 우측 하단에 뭐가 뭔지 표시
plt.show()

ㅠ 렌리스네ㅡㅡ 군규기가 되 것ㅜ한 # 헷헷

roc_auc_score(y_train_5, y_scores_forest)

점수도 좋구만!

C→ 0.9983436731328145

y_train_pred_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3) precision_score(y_train_5, y_train_pred_forest) # 정밀도

recall_score(y_train_5, y_train_pred_forest) # 재현율

▼ 3.4 다중 분류

이진 분류가 두 개의 클래스를 구분한다구? 다중 분류기는 둘 이상의 클래스를 구별한다!

일부 알고리즘은 여러 개의 클래스를 직접 처리할 수 있다. 다른 것은 이진 분류만 가능하지만..

하지만 이진 분류기를 여러개 사용해 다중 클래스를 분류하는 기법도 많다.

- OvR(OvA): n개의 모델 훈련, liblinear를 사용하는 LinearSVC/LogisticRegression(solver='liblinear') 클래스, 이렇게 이진 분류 여러개를 만들어서 활용할 때, 각 분류기의 결정 점수 중에서 가장 높은 것을 클래스로 선정하면 된다. 이를 OvR전략이라고 한다. (One versus the Rest) (OvA)
- OvO: n(n-1)/2개 푼련, libsvm을 사용하는 SVC 클래스. 또 다른 전략은 0과1 구별, 0과2 구별, 1과 2 구별 같이 각 숫자 조합마다 이진 분류기를 훈련시킬 수 도 있다. 이를 OvO라고 한다. 클래스가 n개 있다고 치면 n(n+1)/2 개가 필요하다.
- Multinomial: SGDClassifier, LogisticRegression(solver!='liblinear'), RandomForestClassifier 다중 클래스 분류 작업에 이진 분류 알고리즘 선택하면, 사이킷런이 알고리즘 따라 자동으로 OvR, OvO 실행한다.

from sklearn.svm import SVC svm_clf = SVC(gamma="auto", random_state=42) svm_clf.fit(X_train[:1000], y_train[:1000]) # y_train svm_clf.predict([some_digit])

 Γ array([5], dtype=uint8)

```
# 가장 높은 점수가 클래스 5에 해당하는 것
# 클래스마다 결정함수값이 출력, 인덱스 5가 가장 높은 점수이므로 5구나..하는 것
some digit scores = svm clf.decision function([some digit])
some_digit_scores
 ray([[ 2.81585438, 7.09167958, 3.82972099, 0.79365551, 5.8885703 .
         9.29718395, 1.79862509, 8.10392157, -0.228207 , 4.83753243]])
np.argmax(some_digit_scores)
 Γ⇒ 5
svm clf.classes
 r array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8)
svm_clf.classes_[5] # 인덱스랑 값이 같고, 인덱스만 뽑아서 쓸 수 있는. 인덱스 5의 값은 5다 라는게 결과임
□→ 5
분류기가 훈련될 때 classes_속성에 타깃 클래스의 리스트를 값으로 정렬해 저장한다. 위 예제에서는 classes_배열에 있
는 각 클래스의 인덱스가 클래스 값 자체와 같다. 근데 이런 경우는 드물다.
from sklearn.multiclass import OneVsRestClassifier
ovr_clf = OneVsRestClassifier(SVC(gamma="auto", random_state=42))
ovr_clf.fit(X_train[:1000], y_train[:1000])
ovr_clf.predict([some_digit])
# 강제로 OvR 방식을 쓰게끔 하는 클래스, OneVsRestClassifier
# OneVsOneClassifier는 OvO 쓰게 하는 클래스
□→ array([5], dtype=uint8)
len(ovr clf.estimators ) # 이 속성에는 만든 분류기 모델 수를 보여준다. 레이블이 10개라서 가각 1개씩 훈련
 Гэ
    10
sgd_clf.fit(X_train, y_train)
sgd_clf.predict([some_digit])
array([3], dtype=uint8)
# decision function() 은 클래스(레이블)마다 열 개의 결정 함수 값을 반환한다. (10개의 값이 출력 되겠지...)
# 인덱스 3이 높다고 나오는데 원래 5 간 높아야 한다...뭐징..
sgd_clf.decision_function([some_digit])
    array([[-31893.03095419, -34419.69069632, -9530.63950739,
          1823.73154031, -22320.14822878, -1385.80478895,
         -26188.91070951, -16147.51323997, -4604.35491274,
         -12050.767298 ]])
# 3개의 폴드로 나눠라. 하나=검증, 둘=훈련 검증세트 계산! 이렇게 총 3번 해라
```

cross_validate() 메소드가 추가! : 훈련 시간이 단축, 필드 검증에서 스코어 테스트하는 시간이 리턴!

```
# cross_val_score(sgd_clf, X_train, y_train, cv=3, scoring="accuracy") # 원래 있던 친구는 얘
from sklearn, model selection import cross validate
cross validate(sgd clf, X train, y train, cv=3, scoring="accuracy")
 ([117.40838313, 96.84333062, 95.83895564]),
      'score time': array([0.08325243, 0.05331612, 0.05944586]),
      'test_score': array([0.87365, 0.85835, 0.8689 ])}
# 2장에서 쓴 친구, StandardScaler, 점수가 더 좋게 나오는 친구
# 왜냐, SGDClassifier는 경사 하강법을 쓰며, 특성 간의 거리, Scale에 민감하게 반응한다. (이런 모델이 다 그래)
# 특성 간의 값을 가지고 거리를 계산하므로 특성의 Scale을 서로 맞춰야 한다
# 안그러면 특성에 편중되어 알고리즘이 수행되겠지..
# 랜덤포레스트는 거리에 전혀 반응하지 않으므로 스케일링 안하고 해도 무방하다.
from sklearn, preprocessing import StandardScaler
scaler = StandardScaler()
X train scaled = scaler, fit transform(X train, astype(np.float64))
cross val score(sgd clf, X train scaled, y train, cv=3, scoring="accuracy")
 Г⇒
     KeyboardInterrupt
                                    Traceback (most recent call last)
     <ipython-input-69-442544d102f8> in <module>()
     ----> 1 cross val score(sgd clf, X train scaled, y train, cv=3, scoring="accuracy")
                                          21 frames
     /usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_stochastic_gradient.py_in_fit_binary(est, i, X, y, alpha, C,
     learning_rate, max_iter, pos_weight, neg_weight, sample_weight, validation_mask, random_state)
       407
                           pos_weight, neg_weight,
       408
                           learning_rate_type, est.eta0,
     --> 409
                            est.power_t, est.t_, intercept_decay)
       410
       411
             else:
     KeyboardInterrupt:
      SEARCH STACK OVERFLOW
```

▼ 3.5 에러 분석

1. 오차 행렬 살펴보기 cross_val_predict() 함수를 사용해 예측을 만들고, confusion_matrix() 함수를 호출한다.

```
# 다중분류의 경우의 오차 행렬
# 타깃값(y_train)과 예측 값(y_train_pred) 두개를 넣어 conf_mx를 리턴받으면 된다.
y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3)
```

```
# 오른쪽(옆으로 갈 수록 값이 밑으로 많아짐)이 가짜일 경우이다.

conf_mx = confusion_matrix(y_train, y_train_pred)
```

매트릭스로 보면 좀 더 편리하게 볼 때가 있다. # 이미지가 우측 하향 대각선이므로(주대각선) 대부분의 이미지가 올바르게 분류된 것이다.

def plot_confusion_matrix(matrix):
 """If you prefer color and a colorbar"""
 fig = plt.figure(figsize=(8,8))
 ax = fig.add_subplot(111)
 cax = ax.matshow(matrix)
 fig.colorbar(cax)

plt.matshow(conf_mx, cmap=plt.cm.gray)
save_fig("confusion_matrix_plot", tight_layout=False)
plt.show()

gray로 설정: 배열에서 가장 큰 값은 흰 색, 작은 값은 검은색으로 그려진다. # 5가 좀 어두워보이는데, 데이터셋에 5의 이미지가 적거나, 분류기가 숫자 5를 다른 수처럼 잘 분류 못한다는 뜻 # 두개 다 확인해 봐야하는 부분...

Ľ→

```
NameError
```

Traceback (most recent call last)

row_sums = conf_mx.sum(axis=1, keepdims=True) # 각 행의 값을 더해줘, 그걸 norm_conf_mx에다가 나누셈 norm_conf_mx = conf_mx/row_sums # 비율

o pit.snow()

#8로 잘못 생각한게 되게 많은...

진짜 3인 수를 5로 착각

진짜 5를 3으로 착각

3과 5는 자주 혼돈이 되는 이미지라는 것을 확인가능

np.fill_diagonal(norm_conf_mx, 0)
plt.matshow(norm_conf_mx, cmap=plt.cm.gray)
save_fig("confusion_matrix_errors_plot", tight_layout=False)
plt.show()

С→

NameError Traceback (most recent call last)

<ipython-input-81-40f6d3d7dcfd> in <module>()

3 np.fill_diagonal(norm_conf_mx, 0)

4 plt.matshow(norm_conf_mx, cmap=plt.cm.gray)

----> 5 save_fig("confusion_matrix_errors_plot", tight_layout=False)

6 plt.show()

NameError: name 'save fig' is not defined


```
cl_a, cl_b = 3,5
```

X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)]

X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)]

X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)]

X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)]

plt.figure(figsize=(8, 8))

plt.subplot(221); plot_digits(X_aa[:25], images_per_row=5) plt.subplot(222); plot_digits(X_ab[:25], images_per_row=5) plt.subplot(223); plot_digits(X_ba[:25], images_per_row=5) plt.subplot(224); plot_digits(X_bb[:25], images_per_row=5)

plt.show()

좌측 상단 3을 잘 분류

우측 상단 3을 5로 잘못 분류

좌측 하단 5를 3으로 잘못 분류

우측 하단 5를 잘 분류

₽ 33*3333* **3** 3 3333 33**3**33 *33*3 3*3*3 33**3**3 3333 1555 55555 55555 55555 55555 55555 *5*5*5*55 55**5**55 55555 55555

▼ 3.6 다중 레이블 분류

출력하는 레이블이 하나가 아니라 여러개일 경우를 다중 레이블 분류라고 한다.

지금까지는 각 샘플이 하나의 클래스에만 할당되었으나, 분류기가 샘플마다 여러 개의 클래스를 출력해야 할 때도 있음. ex) 얼굴 인식 분류기..같은 사진에 여러 사람이 나온다.

K 최근접, 결정트리 기반 모델이 다중 분류를 지원한다.

from sklearn.neighbors import KNeighborsClassifier

y_train_large = (y_train >= 7) # 타깃 값이 7보다 큰 것인지?
y_train_odd = (y_train % 2 == 1) # 타깃 값이 홀수인지..? 이 두개를 npc메소드로 열방향 합침 -> y_multilabel
y_multilabel = np.c_[y_train_large, y_train_odd]

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_multilabel)

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform')

knn_clf.predict([some_digit]) # 두 개의 레이블이 나오는 (5니까 잘 예측을 한 것이고)

□→ array([[False, True]])

y_train_knn_pred = cross_val_predict(knn_clf, X_train, y_multilabel, cv=3)
f1_score(y_multilabel, y_train_knn_pred, average="macro")

시간 많이 걸림 몇시간씩... # 두 레이블별로 따로 f1을 계산하기 위해..평균을 내면 이게 macro

▼ 3.7 다중 출력 분류

다중 레이블 분류에서 한 레이블이 다중 클래스가 될 수 있도록 일반화한 것으로, 값을 2개 이상 가질 수 있다. 이미지에서 잡음을 제거하는 시스템을 만들어보자.

noise = np.random.randint(0, 100, (len(X_train), 784)) # 784개의 레이블이 나오는 것이고, 0부터 255까지의 픽셀 값이 나온다. X_train_mod = X_train + noise # X_train에 noise 를 섞었다 noise = np.random.randint(0, 100, (len(X_test), 784)) X_test_mod = X_test + noise # X_test에 noise 를 섞었다

y_train_mod = X_train # 자기 자신을 타깃으로 두고 훈련 시작 y test mod = X test

some_index = 0
plt.subplot(121); plot_digit(X_test_mod[some_index])
plt.subplot(122); plot_digit(y_test_mod[some_index])

plt.show()

왼쪽이 만든 타깃 # 오른쪽이 원본

₽

분류기를 훈련 시켜 이미지를 깨끗하게 만들어보자

knn_clf.fit(X_train_mod, y_train_mod)
clean_digit = knn_clf.predict([X_test_mod[some_index]])
plot_digit(clean_digit)

가까운 이웃의 타깃값의 픽셀 평균을 내서 훈련 하는 것.

С→

▼ 추가 내용

더미 분류기

다른 모델과 비교하거나 베이스 모델로 비교하기 좋으므로 써보자!

from sklearn.dummy import DummyClassifier

dmy_clf = DummyClassifier(strategy = 'stratified') # prior로 하게 되면 음성클래스의 확률 출력 y_probas_dmy = cross_val_predict(dmy_clf, X_train, y_train_5, cv=3, method="predict_proba") y_scores_dmy = y_probas_dmy[:, 1]

fprr, tprr, thresholdsr = roc_curve(y_train_5, y_scores_dmy)
plot_roc_curve(fprr, tprr)

▼ KNN 분류기

from sklearn.neighbors import KNeighborsClassifier

knn_clf = KNeighborsClassifier(weights='distance', n_neighbors=4) # 가까이 있는 값에 가중치 두는 weight='distance', n_neighbors=4) # 가까이 있는 값에 가중치 두는 weight='distance', n_neighbors=4)

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=4, p=2, weights='distance')

y_knn_pred = knn_clf.predict(X_test)

from sklearn.metrics import accuracy_score accuracy_score(y_test, y_knn_pred)

□ 0.9714

from scipy.ndimage.interpolation import shift

def shift_digit(digit_array, dx, dy, new=0):
return shift(digit_array,reshane(28, 28), [dy, dx], cyal=new) reshane(784).

plot digit(shift digit(some digit, 5, 1, new=100))

이미지를 조금씩 이동하는 메소드 # 오차율, 위치에 덜 민감한 모델을 만들 수 있대

X_train_expanded = [X_train]

y_train_expanded = [y_train] # 훈련 세트 전체에다가 원본 세트 넣고 for dx, dy in ((1, 0), (-1, 0), (0, 1), (0, -1)): # 원본 세트를 4번 이동하기

shifted_images = np.apply_along_axis(shift_digit, axis=1, arr=X_train, dx=dx, dy=dy)

X_train_expanded.append(shifted_images)

y_train_expanded.append(y_train) # 60000개였는데 30만개로 늘어남

X_train_expanded = np.concatenate(X_train_expanded)

y_train_expanded = np.concatenate(y_train_expanded)

X_train_expanded.shape, y_train_expanded.shape

knn_clf.fit(X_train_expanded, y_train_expanded)

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=4, p=2, weights='distance')

y knn expanded pred = knn clf.predict(X test)

accuracy_score(y_test, Y_knn_expanded_pred)

점수도 뽑아보고

+ 코드 — + 텍스트

ambiguous_digit = X_test[2589]

knn_clf.predict_proba([ambiguous_digit]) # 애매한 숫자에 대한 확률값도 출력해보고

plot_digit(ambiguous_digit)