Monte Carlo Path Tracing

Today

- Path tracing starting from the eye
- Path tracing starting from the lights
- Which direction is best?
- Bidirectional ray tracing
- Random walks and Markov chains

Next

- **■** Irradiance caching
- **■** Photon mapping

CS348B Lecture 14

Pat Hanrahan, Spring 2010

The Rendering Equation

$$L(x,\omega) = L_e(x,\omega) + \int_{H^2} f_r(x,\omega') \to \omega L(x^*(x,\omega'), -\omega') \cos \theta' d\omega'$$

$$L = L_{e} + K \circ L$$

CS348B Lecture 14

Solving the Rendering Equation

Rendering Equation

$$L = L_e + K \circ L$$
$$(I - K) \circ L = L_e$$

Solution

$$L = (I - K)^{-1} \circ L_e$$

$$= (I + K + K^2 + K^3 + \cdots) \circ L_e$$

$$= (I + K(I + K(I + K \cdots))) \circ L_e$$

CS348B Lecture 14

Pat Hanrahan, Spring 2010

Successive Gathers

 $K \circ L_e$

 $K \circ K \circ L_{\rho}$

 $K \circ K \circ K \circ L_a$

 $L_e + K \circ L_e$ $L_e + \cdots K^2 \circ L_e$ $L_e + \cdots K^3 \circ L_e$

CS348B Lecture 14

Light Path

CS348B Lecture 14

Pat Hanrahan, Spring 2010

Light Path

$$S(x_{0},x_{1}) \qquad f_{r}(x_{1},x_{2},x_{3})$$

$$X_{0} \qquad X_{1} \qquad X_{2}$$

$$G(x_{0},x_{1}) \qquad X_{1} \qquad X_{1}$$

$$f_{r}(x_{0},x_{1},x_{2}) \qquad L_{S}(x_{0},x_{1},x_{2},x_{3})$$

$$L_{S}(x_{0}, x_{1}, x_{2}, x_{3}) = S(x_{0}, x_{1})G(x_{0}, x_{1})f_{r}(x_{0}, x_{1}, x_{2})G(x_{1}, x_{2})f_{r}(x_{1}, x_{2}, x_{3})$$

CS348B Lecture 14

Solving the Rendering Equation

One path

$$L_s(x_0, x_1, x_2, x_3) = S(x_0, x_1)G(x_0, x_1)f_r(x_0, x_1, x_2)G(x_1, x_2)f_r(x_1, x_2, x_3)$$

Solution is the integral over all paths

$$L(x_{k-1},x_k)$$

$$= \sum_{k=1}^{\infty} \int_{M^2} \cdots \int_{M^2} L_S(x_0, \dots, x_{k-2}, x_{k-1}, x_k) dA(x_0) \cdots dA(x_{k-2})$$

Solve using Monte Carlo Integration

Question: How to generate a random path?

CS348B Lecture 14

Pat Hanrahan, Spring 2010

Path Tracing from the Eye

Path Tracing: From Camera

```
Step 1. Choose a camera ray r given the
  (x, y, u, v, t) sample
    weight = 1;
Step 2. Find ray-surface intersection
Step 3.
  if hit light
    return weight * Le(r);
else
    weight *= reflectance(r)
    Choose new ray r' ~ BRDF(O|I)
    Go to Step 2.
```

CS348B Lecture 14

Pat Hanrahan, Spring 2010

Penumbra: Trees vs. Paths

4 eye rays per pixel 16 shadow rays per eye ray

64 eye rays per pixel 1 shadow ray per eye ray

CS348B Lecture 14

M. Fajardo Arnold Path Tracer

CS348B Lecture 14

Pat Hanrahan, Spring 2010

M. Fajardo Arnold Path Tracer

CS348B Lecture 14

M. Fajardo Arnold Path Tracer

CS348B Lecture 14

M. Fajardo Arnold Path Tracer

Street scene 1
1536x654, 16 paths/pixel, 2 bounces, 250,000 faces, 18 min., dual PIII-800
CS348B Lecture 14
Pat Hanrahan, Spring 2010

How Many Bounces?

Avoid paths that carry little energy

Terminate when the weight is low

Photons with similar power is a good thing Think of importance sampling Integrand is f(x)/p(x) which is constant

CS348B Lecture 14

Russian Roulette

Terminate photon with probability pAdjust weight of the result by 1/(1-p)

$$E(X) = p \cdot 0 + (1-p) \frac{E(X)}{1-p} = E(X)$$

Intuition:

Reflecting from a surface with R=.5

100 incoming photons with power 2 W

- 1. Reflect 100 photons with power 1 W
- 2 Reflect 50 photons with power 2 W

CS348B Lecture 14

Pat Hanrahan, Spring 2010

Path Tracing: Include Direct Lighting

```
Step 1. Choose a camera ray r given the
  (x,y,u,v,t) sample
  weight = 1;
  L = 0
Step 2. Find ray-surface intersection
Step 3.
  L += weight * Sum (fr * Le(light))
  weight *= reflectance(x)
  Choose new ray r' ~ BRDF pdf(r)
  Go to Step 2.
CS348B Lecture 14
Pat Hanrahan, Spring 2010
```

Variance Decreases with N

10 rays per pixel

100 rays per pixel

From Jensen, Realistic Image Synthesis Using Photon Maps

CS348B Lecture 14

Pat Hanrahan, Spring 2010

Fixed Sampling (Not Random Enough)

CS348B Lecture 14

Light Ray Tracing

Early Example [Arvo, 1986]

"Backward" ray tracing

CS348B Lecture 14

Path Tracing: From Lights

```
Step 1. Choose a light ray.
  Choose a ray from the light source
  distribution function
  x ~ p(x)
  d ~ p(d|x)
  r = (x, d)
  weight = Φ;
```

CS348B Lecture 14

Pat Hanrahan, Spring 2010

Path Tracing: From Lights

```
Step 1. Choose a light ray

Step 2. Find ray-surface intersection

Step 3. Reflect or transmit

u = Uniform()

if u < reflectance(x)

Choose new direction d ~ BRDF(O|I)

goto Step 2

else u < reflectance(x)+transmittance(x)

Choose new direction d ~ BTDF(O|I)

goto Step 2

else // absorption=1-reflectance-transmittance

terminate on surface; deposit energy

CS348B Lecture 14

Pat Hanrahan, Spring 2010
```

Bidirectional Path Tracing

Symmetric Light Path

$$M = S(x_0, x_1)G(x_0, x_1)f_r(x_0, x_1, x_2)G(x_1, x_2)f_r(x_1, x_2, x_3)G(x_2, x_3)R(x_2, x_3)$$

CS348B Lecture 14

Symmetric Light Path

$$M = S(x_0, x_1)G(x_0, x_1)f_r(x_0, x_1, x_2)G(x_1, x_2)f_r(x_1, x_2, x_3)G(x_2, x_3)R(x_2, x_3)$$

CS348B Lecture 14

Pat Hanrahan, Spring 2010

Symmetric Light Path

$$M = R(x_3, x_2)G(x_3, x_2)f_r(x_3, x_2, x_1)G(x_2, x_1)f_r(x_2, x_1, x_0)G(x_1, x_0)S(x_1, x_0)$$

CS348B Lecture 14

Bidirectional Ray Tracing

$$k = l + e$$

$$l = 0, e = 3$$

$$l = 1, e = 2$$

$$l = 3, e = 0$$

$$k = 3$$

CS348B Lecture 14

Comparison

Same amount of time

Path tracing 56 rays per pixel

From Veach and Guibas

CS348B Lecture 14

Pat Hanrahan, Spring 2010

Which Direction?

Solve a linear system Mx = b

Solve for a single x_i ?

Solve the reverse equation

Source χ

Estimator $\langle (x_i + Mx_i + M^2x_i + \cdots), b \rangle$

More efficient than solving for all the unknowns [von Neumann and Ulam]

CS348B Lecture 14

Discrete Random Walk

Discrete Random Process

Transition

Assign probabilities to each process

 p_i^0 : probability of creation in state i

 $p_{i,j}$: probability of transition from state $i \rightarrow j$

 p_i^* : probability of termination in state i $p_i^* = 1 - \sum_j p_{i,j}$

CS348B Lecture 14

Discrete Random Process

Transition

Equilibrium number of particles in each state

$$P_i = \sum_j p_{i,j} P_j + p_i^0 \qquad M_{i,j} = p_{i,j}$$

$$P = MP + p^0$$

CS348B Lecture 14

Pat Hanrahan, Spring 2010

Equilibrium Distribution of States

Total probability of being in states P

Solve this equation

$$(I - M)P = p^{0}$$

$$P = (I - M)^{-1} p^{0}$$

$$= (I + M + M^{2} + \cdots)p^{0}$$

CS348B Lecture 14

Discrete Random Walk

- 1. Generate random particles from sources.
- 2. Undertake a discrete random walk.
- 3. Count how many terminate in state i

[von Neumann and Ulam; Forsythe and Leibler; 1950s]

CS348B Lecture 14

Pat Hanrahan, Spring 2010

Monte Carlo Algorithm

Define a random variable on the space of paths

Path: $\alpha_{k} = (i_{1}, i_{2}, ..., i_{k})$

Probability: $P(\alpha_k)$

Estimator: $W(\alpha_k)$

Expectation:

$$E[W] = \sum_{k=1}^{\infty} \sum_{\alpha_k} P(\alpha_k) W(\alpha_k)$$

CS348B Lecture 14

Monte Carlo Algorithm

Define a random variable on the space of paths

Probability:
$$P(\alpha_{\scriptscriptstyle k}) = p_{\scriptscriptstyle i_1}^{\scriptscriptstyle 0} \times p_{\scriptscriptstyle i_1,i_2} \cdots p_{\scriptscriptstyle i_{k-1},i_k} \times p_{\scriptscriptstyle i_k}^*$$

Estimator:
$$W_{j}(\alpha_{k}) = \frac{\delta_{i_{k},j}}{p_{i_{k}}^{*}}$$

CS348B Lecture 14

Pat Hanrahan, Spring 2010

Estimator

Count the number of particles terminating in state j

$$E[W_{j}] = \sum_{k=1}^{\infty} \sum_{i_{k}} \cdots \sum_{i_{1}} (p_{i_{1}}^{0} p_{i_{1}, i_{2}} \cdots p_{i_{k-1}, i_{k}} p_{i_{k}}^{*}) \frac{\delta_{i_{k}, j}}{p_{j}^{*}}$$

$$= \left[p^{0} \right]_{j} + \left[M p^{0} \right]_{j} + \left[M^{2} p^{0} \right]_{j} \cdots$$

CS348B Lecture 14

Equilibrium Distribution of States

Total probability of being in states P

$$P = (I + M + M^2 + \cdots)p^0$$

Note that this is the solution of the equation

$$(I - M)P = p^0$$

Thus, the discrete random walk is an unbiased estimate of the equilibrium number of particles in each state

CS348B Lecture 14