Articulation Point

Let G = (V,E) be a connected undirected graph.

Articulation Point: is any vertex of G whose removal results in a disconnected graph.

Articulation Point

Articulation Point: is any vertex of G whose removal results in a disconnected graph.

Biconnected Components

- Let G = (V, E) be a connected, undirected graph.
- An articulation point of G is a vertex whose removal disconnects G.
- A biconnected component of G is a maximal set of edges such that any two edges in the set lie on a common simple cycle.
- A biconnected component of a graph is a connected subgraph that cannot be broken into disconnected pieces by deleting any single node.
- We can say that a graph G is a bi-connected graph if it is
 - Connected (it is possible to reach every vertex from every other vertex, by a simple path)
 - 2. There are no articulation points.

Fig. 1

 Now try removing the vertices one by one and observe. Removing any of the vertices does not increase the number of connected components. So the given graph is Biconnected. • Now consider the following graph which is a slight modification in the previous graph.

Fig. 2

• In the above graph if the vertex 2 is removed, then here's how it will look:

- A directed graph is strongly connected if there is a path between all pairs of vertices.
- A strongly connected component (**SCC**) of a directed graph is a maximal strongly connected subgraph.
- For example, there are 3 SCCs in the following graph

SCC1-{0,1,2}

SCC2-{3}

SCC3-{4}

- ❖ A directed graph is strongly connected if there is a path between all pairs of vertices.
- ❖ A strongly connected component (SCC) of a directed graph is a maximal strongly connected subgraph.

a strongly connected component (SCC) of a directed graph G=(V,E) is a maximal set of vertices $U\subseteq V$ such that

- For each $u,v \in U$ we have both $u \mapsto v$ and $v \mapsto u$ i.e., u and v are mutually reachable from each other $(u \stackrel{\iota}{\hookrightarrow} v)$

Let $G^T = (V, E^T)$ be the *transpose* of G = (V, E) where $E^T = \{(u, v): (u, v) \in E\}$

– i.e., E^T consists of edges of G with their directions reversed Constructing G^T from G takes O(V+E) time (adjacency list rep) Note: G and G^T have the same SCCs ($u \hookrightarrow v$ in $G \Leftrightarrow u \hookrightarrow v$ in G^T)

Algorithm

- (1) Run DFS(G) to compute finishing times for all $u \in V$
- (2) Compute G^T
- (3) Call $DFS(G^T)$ processing vertices in main loop in decreasing f[u] computed in Step (1)
- (4) Output vertices of each DFT in DFF of Step (3) as a separate SCC

(1) Run DFS(G) to compute finishing times for all $u \in V$

(1) Run DFS(G) to compute finishing times for all $u \in V$

(1) Run DFS(G) to compute finishing times for all $u \in V$

Vertices sorted according to the finishing times:

$$\langle b, e, a, c, d, g, h, f \rangle$$

(2) Compute G^T

(4) Output vertices of each DFT in DFF as a separate SCC

