Structure Learning in Infrastructure Networks

Rajasekhar Anguluri

Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County (UMBC)
rajangul@umbc.edu

Summer Workshop, July 15 – 18, 2024 IIT, Bombay

Structure Learning: Recap

Network Structure = Laplacian's Sparsity Pattern

infrastructure network

sparsity (zero & non-zero) of *L* captures network connections

b linear model:

$$X = LY + E$$

matrix-valued

$$Vec(X) = H(Y) Ve(L) + Vec(E)$$
 vector-valued

to covariance models:

Today's lecture

- **measurables:** *p*-dim vectors *x* and *y*
- **full coverage:** access *x* or/and *y*
- * partial coverage: sub-vectors of x or/and y

Learning Sparse Infrastructure Networks

- Goals: learn structure in sparsely connected infrastructure networks using covariance models
 - **Goal 1:** structure learning from true full covariance matrix
 - **Goal 2:** structure learning from true partial covariance matrix
 - **Goal 3:** structure learning from sample covariance matrix

Structure Learning: True (full) Covariance

- * assumption 1: $p \times p$ -dimensional reduced-order Laplacian
- equilibrium equation: $y = L^{-1}x$
- injections: $x \sim \mathcal{N}(0, \Sigma_x)$
- potentials: $y \sim \mathcal{N}(0, \Sigma)$, where $\Sigma = L^{-1}\Sigma_x L^{-1}$
- **δω** *assumption 2*: Σ_x is diagonal but is UNKNOWN
- learning problem: estimate the sparsity (zero/non-zero pattern) of L from the covariance matrix Σ

Graphical Model Interpretation of $\Omega \triangleq \Sigma^{-1}$

- Gaussian vector: $y \sim \mathcal{N}(0, \Sigma)$ // parameterized by covariance
- \Leftrightarrow graphical model: $y \sim \mathcal{N}(0, \Omega^{-1})$ // parameterized by inverse covariance
- example: suppose that $\epsilon_i \sim \mathcal{N}(0,1)$ and let

$$y_1 = y_3 + \varepsilon_1$$

 $y_2 = y_3 + \varepsilon_2$
 $y_3 = \varepsilon_3$

$$\Omega = \Sigma^{-1} = \left[egin{array}{cccc} 1 & 0 & -1 \ 0 & 1 & -1 \ -1 & -1 & 3 \end{array}
ight]$$

partial covariance or conditional independence or graphical model

Graphical Model Interpretation of $\Omega \triangleq \Sigma^{-1}$

- Gaussian vector: $y \sim \mathcal{N}(0, \Sigma)$ // parameterized by covariance
- example: suppose that $\epsilon_i \sim \mathcal{N}(0,1)$ and let

$$y_1 = y_3 + \varepsilon_1$$

 $y_2 = y_3 + \varepsilon_2$
 $y_3 = \varepsilon_3$

$$\Sigma = \left[egin{array}{cccc} 2 & 1 & 1 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{array}
ight]$$

covariance or independence graph

Infrastructure Network → Graphical Model

infrastructure network

$$L_{
m org} = egin{bmatrix} 1 & -1 & 0 & 0 & 0 \ -1 & 2 & -1 & 0 & 0 \ 0 & -1 & 2 & -1 & 0 \ 0 & 0 & -1 & 2 & -1 \ \hline 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$L = \left[egin{array}{ccccc} 1 & -1 & 0 & 0 \ -1 & 2 & -1 & 0 \ 0 & -1 & 2 & -1 \ 0 & 0 & -1 & 2 \end{array}
ight]$$

(two-hop) graphical model

$$\Omega = L^2 = \left[egin{array}{ccccc} 2 & -3 & 1 & 0 \ -3 & 6 & -4 & 1 \ 1 & -4 & 6 & -4 \ 0 & 1 & -4 & 5 \end{array}
ight]$$

+/-ve sign pattern is crucial for reconstruction

Exercises: Prove the following

- Theorem 1 (real-case [1]) Graphical model for node potentials in an infrastructure network includes edges between potentials at neighbors and two-hop neighbors.
- **Theorem 2** (complex-lifted-case [1]) Graphical model for real and imaginary potentials in infrastructure network includes edges between real and imaginary potentials (i) at the self nodes; (ii) neighbors; and (iii) two-hop neighbors

$$\begin{bmatrix} y_R(k) \\ y_I(k) \end{bmatrix} = \begin{bmatrix} L_{RR} & L_{RI} \\ L_{IR} & L_{II} \end{bmatrix}^{-1} \begin{bmatrix} x_R(k) \\ x_I(k) \end{bmatrix}$$

$$L_{\text{real-imag}}$$

- edge-connectivity by $L_{\rm real-imag}$: for every node associate an imaginary node (e.g., 1' for 1) this is not a graphical model
- draw the connections based on the sparsity pattern of $L_{\rm real-imag}$ (try this for line graph)

inverse problem: from graphical model $\Omega = L\Omega_x L$ learn sparsity of L

graphical model $\boldsymbol{\Omega}$

cycle or ring network *L*

inverse problem: from graphical model $\Omega = L\Omega_x L$ learn sparsity of L

graphical model $\boldsymbol{\Omega}$

line network
$$L_2$$

$$\Omega_1 = egin{bmatrix} + & - & + \ - & + & - \ + & - & + \end{bmatrix}$$

$$\Omega_2 = egin{bmatrix} + & + & - \ + & + & - \ - & - & + \ \end{pmatrix}$$

• numerical exercise: for L_1 and L_2 below and some positive diagonal Ω_x , verify the sparsity pattern of Ω_1 and Ω_2 shown on the right

$$\Omega_1 = egin{bmatrix} + & - & + \ - & + & - \ + & - & + \end{bmatrix}$$

$$L_2 = egin{bmatrix} 1 & 0 & -1 \ 0 & 1 & -1 \ -1 & -1 & 3 \end{bmatrix} \qquad \Omega_2 = egin{bmatrix} + & + & - \ + & + & - \ - & - & + \end{bmatrix}$$

sign-based algorithms: consider the infrastructure network \mathcal{G} with minimum cycle length greater than three. Then show that algorithms below work (exercise)

network reconstruction: real-case [1]

input: inverse covariance Ω and threshold $\tau > 0$

output: graph \mathcal{G}

- 1. for all nodes i and j do
- 2. if $\Omega(i,j) < -\tau$ then
- 3. insert edge (i, j) in G
- 4. end if
- 5. end for

network reconstruction: complex-lift-case [1]

input: block matrix
$$\Omega_{(R,I)} = \begin{bmatrix} J_{RR} & J_{RI} \\ J_{IR} & J_{II} \end{bmatrix}$$
 and $\tau > 0$,

output: graph *G*

- 1. for all nodes i and j do
- 2. if $J_{RR}(i,j) + J_{II}(i,j) < -\tau$ then
- 3. insert edge (i, j) in G
- 4. end if
- 5. end for

Open problems

- **Problem 1** Use complex-valued Gaussian graphical model theory [1] to obtain above theorems using complex-valued covariance matrices (no lifting)
- **Problem 2** (favorite) Provide a linear-time algorithm to determine "tree" network using the inverse covariance matrix $\Omega = L\Omega_{\chi}L$
 - The algorithms we described have second order complexity: $O(p^2)$
 - Ross and Harary (1959) considered problem 2 using adjacency matrices; they coined the terms square and square root of trees [2,3]
 - [1] J. K. Tugnait (2022) On sparse high-dimensional graphical model learning for dependent time series, Signal Processing, 197: 108539
 - [2] I. C. Ross and F. Harary (1959) The square of a tree, The Bell System Technical Journal, 39 (3): 641-647
 - [3] Y. L. Lin and S. S. Skiena (1995) Algorithms for square roots of graphs, SIAM Journal on Discrete Mathematics 8(1): 99-118

Structure Learning: True (partial) Covariance

- equilibrium equation (real-valued): $y = L^{-1}x$, where $x, y \in \mathbb{R}^p$
- partitioned equation: $(p_0 \text{ observed and } p_H \text{ hidden nodes})$

$$\begin{bmatrix} y_O \\ y_H \end{bmatrix} = \begin{bmatrix} L_{OO} & L_{OH} \\ L_{HO} & L_{HH} \end{bmatrix}^{-1} \begin{bmatrix} x_O \\ x_H \end{bmatrix}$$

 $L_{OO} \in \mathbb{R}^{p_o \times p_o}$ encodes structure of observed-observed nodes $L_{OH} \in \mathbb{R}^{p_o \times p_H}$ encodes structure of observed-hidden nodes $L_{HH} \in \mathbb{R}^{p_H \times p_H}$ encodes structure of hidden-hidden nodes

inverse problem: learn the sparsity pattern of L or equivalently the blocks (L_{OO}, L_{OH}, L_{HH}) from the covariance matrix (call it Σ_{OO}) of $y_O \in \mathbb{R}^{p_O}$

Partitioned Inverse Covariance Matrix

partitioned equation:
$$\begin{bmatrix} y_O \\ y_H \end{bmatrix} = \begin{bmatrix} L_{OO} & L_{OH} \\ L_{HO} & L_{HH} \end{bmatrix}^{-1} \begin{bmatrix} x_O \\ x_H \end{bmatrix}$$

full inverse covariance:

$$\Omega = egin{bmatrix} \Sigma_{OO} & \Sigma_{OH} \ \Sigma_{HO} & \Sigma_{HH} \end{bmatrix}^{-1} = egin{bmatrix} L_{OO} & L_{OH} \ L_{HO} & L_{HH} \end{bmatrix} egin{bmatrix} \Omega_{x,O} & 0 \ 0 & \Omega_{x,H} \end{bmatrix} egin{bmatrix} L_{OO} & L_{OH} \ L_{HO} & L_{HH} \end{bmatrix}$$

 $\Sigma_{OO} \in \mathbb{R}^{p_o \times p_o}$ is the covariance matrix of the vector $y_o \in \mathbb{R}^{p_o}$

 $\Sigma_{HH} \in \mathbb{R}^{p_H \times p_H}$ is the covariance matrix of the vector $y_H \in \mathbb{R}^{p_H}$

 $\Sigma_{OH} \in \mathbb{R}^{p_o \times p_H}$ is the cross-covariance matrix of y_O and y_H

•• Ω contains info of L (via the two-hop graphical model); what about Ω_{OO} ?

A formula for Observed Inverse Covariance

• observed inverse covariance:

$$\Omega_{OO} \stackrel{\triangle}{=} \Sigma_{OO}^{-1} = K_{OO} - K_{OH} K_{HH}^{-1} K_{HO}$$
 // Schur's complement (exercise)

where Ω_{OO} is the Schur's complement of the full inverse covariance matrix Ω

$$\Omega = egin{bmatrix} K_{OO} & K_{OH} \ K_{HO} & K_{HH} \end{bmatrix} riangleq egin{bmatrix} \Sigma_{OO} & \Sigma_{OH} \ \Sigma_{HO} & \Sigma_{HH} \end{bmatrix}^{-1}$$

- Ω is a graphical model for all node potentials; Ω_{OO} is such a model for observed nodes
- $\leftarrow K_{OO}$ is the conditional graphical model (write conditional density for the observed to see this)
- $K_{OH}K_{HH}^{-1}K_{HO}$ is called the marginal effects (no nice graphical model interpretation)

Summary of Graphical Models

full inverse covariance: (right-hand side expression of inverse covariance in slide 15)

$$\begin{bmatrix} K_{OO} & K_{OH} \\ K_{HH} \end{bmatrix} = \begin{bmatrix} L_{OO}\Omega_{x_O,x_O}L_{OO} + L_{OH}\Omega_{x_H,x_H}L_{HO} & L_{OO}\Omega_{x_O,x_O}L_{OH} + L_{OH}\Omega_{x_H,x_H}L_{HH} \\ L_{HO}\Omega_{x_O,x_O}L_{OH} + L_{HH}\Omega_{x_H,x_H}L_{HH} \end{bmatrix}$$

• observed inverse covariance:

Exercises: Conditional Graphical Model

- **Theorem 3** (real-case [2]) the conditional graphical model for observed nodes in an infrastructure network includes edges between observed nodes at (ii) neighbors; and (iii) two-hop neighbors
- **Theorem 4** (complex-lifted-case [2]) the conditional graphical model for real and imaginary observed potentials in infrastructure network includes edges between real and imaginary potentials at (i) the self nodes; (ii) neighbors; and (iii) two-hop neighbors
- theorems give edge connections of conditional graphical model (K_{OO}) associated with the observed nodes.
- alert: conditional graphical model is not obtained by deleting edges between hidden-hidden and observed-hidden nodes in the full graphical model!
- similar theorems hold for the observed graphical model (Ω_{OO}) associated with the observed nodes (see [3])
- [2] R. Anguluri et. al. (2021) Grid topology identification with hidden nodes via structured norm minimization, IEEE Control Systems Letters, 6, 1244-1249

Infrastructure → Conditional Graphical Model

 $\bullet \bullet$ infrastructure \rightarrow full graphical model (Theorem 1)

infrastructure \rightarrow observed graphical model (see [3]; didn't discuss in our lecture)

Infrastructure → Conditional Graphical Model

infrastructure \rightarrow conditional model $K_{OO} = S + M$ (Theorem 3 on slide 18)

- if $L_{OH}=0$ (no hidden), then $\Omega=\Omega_{OO}$ (the graphical model coincide with the result in Thm 2)
- the conditional model $K_{OO} = S + M$ contains information about L_{OO} and L_{OH}

Conditional Graphical Model → **Infrastructure**

• problem: learn infrastructure from the conditional model

Ref [3] (see footnote on slide 18) proposed an algorithm using K_{OO}

Ref [2] (see footnote on slide 18) proposed an algorithm using S and M where $K_{OO} = S + M$

- **assumption** 1 we know matrices *S* and *M* (later on how to obtain these)
- assumption 2 hidden nodes in the infrastructure are not adjacent to each other (like a line) nor they are leaves (end nodes)

Conditional Graphical Model → **Infrastructure**

sign-based algorithms: consider the infrastructure network \mathcal{G} with minimum cycle length greater than three. Then show that algorithms below work (exercise)

network reconstruction : real-case [1]

input: matrices *S* and *M* and threshold $\tau > 0$ 5. if M(i, j)

output: graph \mathcal{G}

- 1. for all nodes i and j do
- 2. if $S(i,j) < -\tau$ then
- 3. insert edge (i, j) in G
- 4. end if

- 5. if $M(i,j) > \tau$ then
- 6. insert a node k in \mathcal{G}
- 7. insert path i k j in G
- 8. end if
- 9. end for

for complex-lift-case, similar algorithm holds; details in [2]

Structure Learning: Sample Covariance

- assumption 1: reduced-order Laplacian matrix
- equilibrium equation: $y = L^{-1}x$
- injections: $x \sim \mathcal{N}(0, \Sigma_x)$
- potentials: $y \sim \mathcal{N}(0, \Sigma)$, where $\Sigma = L^{-1}\Sigma_x L^{-1}$
- **δω** *assumption 2*: Σ_{x} is diagonal but UNKNOWN
- learning problems
 - (i) estimate the sparsity of L from finite i.i.d data y_1, \dots, y_K `
 - (ii) estimate the sparsity of L from finite observed i.i.d data $y_{0,1}, \dots, y_{0,K}$

zero potential

Maximum Likelihood Estimate of $\Omega = \Sigma^{-1}$

- let $\gamma \sim \mathcal{N}(0, \Omega^{-1})$, where Ω is the $p \times p$ inverse covariance matrix
- probability density function:

$$f(y) = rac{1}{\sqrt{(2\pi)^p \det\left(\Omega^{-1}
ight)}} \exp\left(-y^T \Omega y/2
ight)$$

• unconstrained MLE of Ω based on i.i.d $y_1, ..., y_K$

$$\max_{\Omega \succ 0} \underbrace{f(y_1)f(y_2)\dots f(y_K)}_{\ell(S_K;\Omega)}$$

Exercise problems

- (K ≥ p) MLE: Ω = S_K⁻¹
 (K < p) MLE does not exist

Maximum Likelihood Estimate of $\Omega = \Sigma^{-1}$

the rescaled log-likelihood is

$$\log \ell(\Omega; S_K) = rac{1}{K} \sum_{k=1}^K \log f(y_i) = \log \det(\Omega) - \operatorname{Tr}(S_K \Omega_y)$$

 S_K is the sample covariance matrix; and

$$\log \det(\Omega) = egin{cases} \sum_{j=1}^p \log \left(\lambda_j(\Omega)
ight) & ext{if } \Omega \succ 0 \ -\infty; & ext{otherwise} \end{cases}$$

 $\lambda_i(\Omega)$ is the *j*-th eigenvalue of Ω

Constrained Maximum Likelihood Estimator

constrained MLE:

$$\operatorname{arg\,max}_{\Omega\succ 0}\{\operatorname{log\,det}(\Omega) - \operatorname{trace}(S\Omega)\}$$
subject to $\mathcal{C}(\Omega) \leq t$

regularized MLE:

$$\operatorname{arg\,max}_{\Omega\succ 0}\{\operatorname{log\,det}(\Omega)-\operatorname{trace}(S\Omega)\}+\lambda(t)\mathcal{R}(\Omega)$$

- the constraints $C(\Omega)$ and regularization $R(\Omega)$ depends on what type of estimate we want to obtain
- similar optimization problem could be written for observed inverse covariance matrix (next lecture)

Structure Learning Problems: Models

Network Structure = Laplacian's Sparsity Pattern

infrastructure network

sparsity (zero & non-zero) of *L* captures network connections

b linear model:

$$X = LY + E$$

matrix-valued

$$Vec(X) = H(Y) Ve(L) + Vec(E)$$
 vector-valued

to covariance models:

$$\Omega = L\Omega_{x}L$$

full coverage

$$\Omega_{OO} = K_{OO} - K_{OH} K_{HH}^{-1} K_{HO}$$
 partial coverage

measurables: *p*-dim vectors *x* and *y*

full coverage: access *x* or/and *y*

* partial coverage: sub-vectors of x or/and y

Structure Learning Problems: Wrap up

- full coverage models (linear or covariance) are easy to deal
- partial coverage models are difficult and needs more assumptions
- **60** covariance models (recipe)
 - start with the infrastructure network and obtain graphical models (inv. cov)
 - make assumptions to recover network structure from graphical models
 - use optimization techniques to obtain graphical models from samples
- next lecture estimating inverse covariance matrices using MLE theory

To learn more...

Contact: rangulur@asu.edu https://rajanguluri.github.io (lecture notes: coming soon)

Selective Papers:

- Y. Yuan et. al. (2022) Inverse power flow problem, IEEE Trans on Control of Network Systems, 10(1)
- 6 O. Ardakanian et. al. (2019) On Identification of Distribution Grids, IEEE Trans on Control of Network Systems, 6(3)
- *D. Deka et. al. (2023) Learning distribution grid topologies, IEEE Trans on Smart Grid, 15(1)
- *G. Cavraro et. al. (2021) Learning power grid topologies, in Advanced Data Analytics in Power Systems, Cambridge (link: click)
- F. Dorfler and F. Bullo (2012) Kron reduction of graphs with applications to electrical networks, IEEE Trans on Circuits on Systems, 60(1)
- S. Bolognani (2013) Identification of power distribution network topology via voltage correlation analysis, IEEE CDC, 2013
- R. Anguluri (2023) Grid topology identification with hidden nodes via structured norm minimization, IEEE CSS Letters, 6: 1244-1249

^{*}tutorial papers