1

(2013 - ME)

2013-ME-14-26

EE24BTECH11001 - ADITYA TRIPATHY

14.	In simple exponential smoothing forecasting, to give higher weightage to recent demand information, the smoothing coefficient must be close to $(2013 - ME)$					
	a) -1	b) zero	c) 0.5	d) 6		
15.	A steel bar 200mm in diameter is turned at a feed of $0.25mm/rev$ with a depth of cut of 4mm. The rotational speed of the workpiece is $160rpm$. The material removal rate in mm^3/s is $(2013 - ME)$					
	a) 160	b) 167.6	c) 1600	d) 1.0		
16.	A cube shaped casting solidifies in 5 <i>min</i> . The solidification time in <i>min</i> for a cube of the sam material, which is 8 times heavier than the original casting, will be (2013 – <i>ME</i>)					
	a) 10	b) 20	c) 24	d) 40		
17.	17. For a ductile material, toughness is a measure of (2013 -					
) resistance to scratching		b) ability to absorb energy up to fracture			
	c) ability to absorb energy till elastic limit		d) resistance to indentation			
	item[18.] In order to have maximum power from Pelton turbine, the bucket speed must be (2013 – M					
	a) equal to jet speed		b) equal to half the jet s	peed		
	c) equal to twice the jet	speed	d) independent of the jet	t speed		
19.	Consider one-dimensional steady state heat conduction along x-axis $0 \le x \le L$, through a plane wall with the boundary surfaces $x = 0$ and $x = L$ maintained at temperatures of $0^{\circ}C$ and $100^{\circ}C$. Heat is generated uniformly throughout the wall. Choos the CORRECT statement.					
20.	 a) The direction of heat transfer will be from the surface at 100°C to the surface at 0°C. b) The maximum temperature inside the wall must be greater than 100°C. c) The temperature distribution is linear within the wall. d) The temperature distribution is symmetric about the mid-plane of the wall. e. A cylinder contains 5m³ of an ideal gas at a pressure of 1 bar. This gas is compressed in a reversible isothermal process till its pressure increases to 5 bar. The work in kJ required for this process is (2013 - ME) 					
	a) 804.7	b) 953.2	c) 981.7	d) 1012.2		
21.	•		both the ends, i ssubjected ess) to the longitudinal str	1		

is

d) 4.0

22.	If two nodes are observed at a frequency of $1800rpm$ during whirling of a simply supported long slender rotating shaft, the first critical speed of the shaft in rpm is $(2013 - ME)$					
	a) 200	b) 450	c) 600	d) 900		
23.	-	QR = 3.0m, $RS = 2.5m$ and ble rocker (rocker - rocker) (2013 – ME)				
	a) <i>PQ</i>	b) QR	c) RS	d) <i>SP</i>		
24.	Let X be a normal random by a riable with mean 1 and variance 4. The probability $Pr(X < 0)$ is $(2013 - ME)$					
	a) 0.5		b) greater than zero and	l less than		
	c) greater than 0.5 and	less than 1.0	d) 1.0			
25.	Choose The CORRECT set of functions, which are linearly dependent. (2013 – <i>M</i>					
	a) $\sin x$, $\sin^2 x$ and $\cos^2 x$		b) $\cos x$, $\sin x$ and $\tan x$			
	c) $\cos 2x$, $\sin^2 x$ and \cos^2	x	d) $\cos 2x$, $\sin x$ and $\cos x$			
	Q.26 to Q.55 carry two marks each.					
26.	The following surface integral is to be evaluated over a sphere for the given steady velocity vect field $F = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ defined with respect to a Cartesian corrdinate system having \mathbf{i} , \mathbf{j} and \mathbf{k} as unbase vectors.					
	$\iint_{S} \frac{1}{4} \left(\mathbf{F} \cdot \mathbf{n} \right) dA $					
	where S is the sphere, $x^2 + y^2 + z^2 = 1$ and n is the outward unit normal vector to the sphere. The value of the surface integral is (2013 – ME)					
	a) π	b) 2π	c) $\frac{3\pi}{4}$	d) 4π		

c) 2.0

a) 0.5

b) 1.0