A. ASSEMBLY DO ATMEGA

A.1 INSTRUÇÕES DO ATMEGA

Mnemô- nico	Operan -dos	Descrição	Operação	Flags	Clocks
INSTRUÇ	ÕES ARIT	MÉTICAS E LÓGICAS			
ADD	Rd, Rr	Soma dois registradores	Rd ← Rd + Rr	Z, C, N, V, H	1
ADC	Rd, Rr	Soma dois registradores com Carry	$Rd \leftarrow Rd + Rr + C$	Z, C, N, V, H	1
ADIW	Rdl, K	Soma o valor imediato à palavra (16 bits)	Rdh:Rdl ← Rdh:Rdl + K	Z, C, N, V, S	2
SUB	Rd, Rr	Subtrai dois registradores	Rd ← Rd - Rr	Z, C, N, V, H	1
SUBI	Rd, K	Subtrai uma constante do registrador	Rd ← Rd - K	Z, C, N, V, H	1
SBC	Rd, Rr	Subtrai dois registradores com Carry	Rd ← Rd - Rr - C	Z, C, N, V, H	1
SBCI	Rd, K	Subtrai constante de registrador com Carry	Rd ← Rd - K - C	Z, C, N, V, H	1
SBIW	Rdl, K	Subtrai valor imediato da palavra (16 bits)	Rdh:Rdl ← Rdh:Rdl - K	Z, C, N, V, S	2
AND	Rd, Rr	Lógica E entre registradores	$Rd \leftarrow Rd \bullet Rr$	Z, N, V	1
ANDI	Rd, K	Lógica E entre registrador e constante	$Rd \leftarrow Rd \bullet K$	Z, N, V	1
OR	Rd, Rr	Lógica OU entre registradores	Rd ← Rd v Rr	Z, N, V	1
ORI	Rd, K	Lógica OU entre registrador e constante	Rd ← Rd v K	Z, N, V	1
EOR	Rd, Rr	OU EXCLUSIVO entre registradores	Rd ← Rd ⊗ Rr	Z, N, V	1
COM	Rd	Complemento de um	Rd ← 0xFF - Rd	Z, C, N, V	1
NEG	Rd	Complemento de dois	Rd ← 0x00 - Rd	Z, C, N, V, H	1
SBR	Rd, K	Ativa bit(s) no registrador	Rd ← Rd v K	Z, N, V	1
CBR	Rd, K	Limpa bit(s) no registrador	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z, N, V	1
INC	Rd	Incrementa registrador	Rd ← Rd + 1	Z, N, V	1
DEC	Rd	Decrementa registrador	Rd ← Rd - 1	Z, N, V	1
TST	Rd	Teste de zero ou negativo	$Rd \leftarrow Rd \bullet Rr$	Z, N, V	1
CLR	Rd	Limpa registrador	$Rd \leftarrow Rd \otimes Rd$	Z, N, V	1
SER	Rd	Ativa registrador (todos os bits em 1)	Rd ← 0xFF	Nenhum	1
MUL	Rd, Rr	Multiplica sem sinal	R1:R0 ← Rd × Rr	Z, C	2
MULS	Rd, Rr	Multiplica com sinal	R1:R0 ← Rd × Rr	Z, C	2
MULSU	Rd, Rr	Multiplica registrador com sinal e sem sinal	R1:R0 ← Rd × Rr	Z, C	2
FMUL	Rd, Rr	Multiplicação fracionária sem sinal	R1:R0 ← (Rd × Rr) << 1	Z, C	2
FMULS	Rd, Rr	Multiplicação fracionária com sinal	$R1:R0 \leftarrow (Rd \times Rr) \ll 1$	Z, C	2
FMULSU	Rd, Rr	Multiplicação fracionária de registrador com sinal e sem sinal	R1:R0 ← (Rd × Rr) << 1	Z, C	2

INSTRU	INSTRUÇÕES DE DESVIO						
RJMP	k	Desvio relativo	PC ← PC + k + 1	Nenhum	2		
IJMP		Desvio indireto para (Z)	PC ← Z	Nenhum	2		
RCALL	k	Chama de sub-rotina	PC ← PC + k + 1	Nenhum	3		
ICALL		Chamada indireta para (Z)	PC ← Z	Nenhum	3		
RET		Retorno de sub-rotina	PC ← STACK	Nenhum	4		
RETI		Retorno de interrupção	PC ← STACK	I	4		
CPSE	Rd, Rr	Compara, pula se igual	if(Rd=Rr) PC ← PC + 2 ou 3	Nenhum	1/2/3		
CP	Rd, Rr	Compara	Rd - Rr	Z,N,V,C,H	1		
CPC	Rd, Rr	Compara com <i>Carry</i>	Rd – Rr - C	Z,N,V,C,H	1		
СРІ	Rd, K	Compara registrador com valor imediato	Rd - K	Z,N,V,C,H	1		
SBRC	Rr, b	Pula se o bit do registrador estiver limpo (0)	if(Rr(b)=0) PC ← PC + 2 ou 3	Nenhum	1/2/3		
SBRS	Rr, b	Pula se o bit do registrador estiver ativo (1)	if(Rr(b)=1) PC ← PC + 2 ou 3	Nenhum	1/2/3		
SBIC	P, b	Pula se o bit do registrador de I/O estiver limpo (0)	if(P(b)=0) PC ← PC + 2 ou 3	Nenhum	1/2/3		
SBIS	P, b	Pula se o bit do registrador de I/O estiver ativo (1)	if(P(b)=1) PC ← PC + 2 ou 3	Nenhum	1/2/3		
BRBS	s, k	Desvia se o bit de sinalização de status estiver ativo (1)	if(SREG(s)=1) PC \leftarrow PC + k + 1	Nenhum	1/2		
BRBC	s, k	Desvia se o bit de sinalização de status estiver limpo (0)	if(SREG(s)=0) PC ← PC + k + 1	Nenhum	1/2		
BREQ	k	Desvia se igual	if(Z=1) PC ← PC + k + 1	Nenhum	1/2		
BRNE	k	Desvia se diferente	if(Z=0) PC ← PC + k + 1	Nenhum	1/2		
BRCS	k	Desvia se o bit de <i>Carry</i> estiver ativo (1)	if(C=1) PC ← PC + k + 1	Nenhum	1/2		
BRCC	k	Desvia se o bit de <i>Carry</i> estiver limpo (0)	if(C=0) PC ← PC + k + 1	Nenhum	1/2		
BRSH	k	Desvia se igual ou maior	if(C=0) PC ← PC + k + 1	Nenhum	1/2		
BRLO	k	Desvia se menor	if(C=1) PC ← PC + k + 1	Nenhum	1/2		
BRMI	k	Desvia se negativo	if(N=1) PC ← PC + k + 1	Nenhum	1/2		
BRPL	k	Desvia se positivo	if(N=0) PC ← PC + k + 1	Nenhum	1/2		
BRGE	k	Desvia se maior ou igual, com sinal	if(N ⊗ V = 0) PC ← PC + k + 1	Nenhum	1/2		
BRLT	k	Desvia se menor que zero, com sinal	if(N ⊗ V = 1) PC ← PC + k + 1	Nenhum	1/2		
BRHS	k	Desvia se o bit sinalizador de Carry auxiliar estiver ativo (1)	if(H=1) PC ← PC + k + 1	Nenhum	1/2		
BRHC	k	Desvia se o bit sinalizador de Carry auxiliar estiver limpo (0)	if(H=0) PC ← PC + k + 1	Nenhum	1/2		
BRTS	k	Desvia se o bit sinalizador T estiver ativo (1)	if(T=1) PC ← PC + k + 1	Nenhum	1/2		
BRTC	k	Desvia se o bit sinalizador T estiver limpo (0)	if(T=0) PC ← PC + k + 1	Nenhum	1/2		
BRVS	k	Desvia se o bit sinalizador de estouro estiver ativo (1)	if(V=1) PC ← PC + k + 1	Nenhum	1/2		
BRVC	k	Desvia se o bit sinalizador de estouro estiver limpo (0)	if(V=0) PC ← PC + k + 1	Nenhum	1/2		
BRIE	k	Desvia se a interrupção estiver habilitada	if(l=1) PC ← PC + k + 1	Nenhum	1/2		
BRID	k	Desvia se a interrupção estiver desabilitada	if(l=0) PC ← PC + k + 1	Nenhum	1/2		

MOV	Rd, Rr	Movimento entre registradores	Rd ← Rr	Nenhum	1
MOVW	Rd, Rr	Copia registrador de palavra	Rd + 1:Rd ← Rr + 1:Rr	Nenhum	1
LDI	Rd, K	Carrega valor imediato	$Rd \leftarrow K$	Nenhum	1
LD	Rd, X	Carrega indiretamente	$Rd \leftarrow (X)$	Nenhum	2
LD	Rd, X+	Carrega indiretamente com pós- incremento	$Rd \leftarrow (X), X \leftarrow X + 1$	Nenhum	2
LD	Rd, -X	Carrega indiretamente com pré- decremento	$X \leftarrow X - 1$, Rd $\leftarrow (X)$	Nenhum	2
LD	Rd, Y	Carrega indiretamente	$Rd \leftarrow (Y)$	Nenhum	2
LD	Rd, Y+	Carrega indiretamente com pós- incremento	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	Nenhum	2
LD	Rd, -Y	Carrega indiretamente com pré- decremento	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	Nenhum	2
LDD	Rd, Y+q	Carrega indiretamente com deslocamento	$Rd \leftarrow (Y + q)$	Nenhum	2
LD	Rd, Z	Carrega indiretamente	$Rd \leftarrow (Z)$	Nenhum	2
LD	Rd, Z+	Carrega indiretamente com pós- incremento	$Rd \leftarrow (Z), Z \leftarrow Z + 1$	Nenhum	2
LD	Rd, -Z	Carrega indiretamente com pré- decremento	$Z \leftarrow Z - 1$, Rd \leftarrow (Z)	Nenhum	2
LDD	Rd, Z+q	Carrega indiretamente com deslocamento	$Rd \leftarrow (Z + q)$	Nenhum	2
LDS	Rd, k	Carrega diretamente da SRAM	$Rd \leftarrow (k)$	Nenhum	2
ST	X, Rr	Armazena indiretamente	(X) ← Rr	Nenhum	2
ST	X+, Rr	Armazena indiretamente com pós- incremento	$(X) \leftarrow Rr, X \leftarrow X + 1$	Nenhum	2
ST	-X, Rr	Armazena indiretamente com pré- incremento	$X \leftarrow X - 1, (X) \leftarrow Rr$	Nenhum	2
ST	Y, Rr	Armazena indiretamente	(Y) ← Rr	Nenhum	2
ST	Y+, Rr	Armazena indiretamente com pós- incremento	(Y) ← Rr, Y ← Y + 1	Nenhum	2
ST	-Y, Rr	Armazena indiretamente com pré- incremento	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	Nenhum	2
STD	Y+q, Rr	Carrega indiretamente com deslocamento	$(Y + q) \leftarrow Rd$	Nenhum	2
ST	Z, Rr	Armazena indiretamente	(Z) ← Rr	Nenhum	2
ST	Z+, Rr	Armazena indiretamente com pós- incremento	(Z) ← Rr, Z ← Z + 1	Nenhum	2
ST	-Z, Rr	Armazena indiretamente com pré- incremento	Z ← Z - 1, (Z) ← Rr	Nenhum	2
STD	Z+q, Rr	Carrega indiretamente com deslocamento	(Z + q) ← Rd	Nenhum	2
STS	k, Rr	Carrega diretamente para SRAM	(k) ← Rd	Nenhum	2
LPM		Carrega a memória de programa	R0 ← (Z)	Nenhum	3
LPM	Rd, Z	Carrega a memória de programa	$Rd \leftarrow (Z)$	Nenhum	3
LPM	Rd, Z+	Carrega a memória de programa com pós-incremento	$Rd \leftarrow (Z), Z \leftarrow Z + 1$	Nenhum	3
SPM		Armazena a memória de programa	(Z) ← R1:R0	Nenhum	-
IN	Rd, P	Leitura de registrador de I/O	Rd ← P	Nenhum	1
OUT	P, Rr	Escrita de registrador de I/O	P ← Rr	Nenhum	1
PUSH	Rr Rd	Coloca registrador na pilha (<i>Stack</i>) Retira registrador da pilha (<i>Stack</i>)	STACK ← Rr Rd ← STACK	Nenhum Nenhum	2

SBI	P, b	Ativa o bit no registrador de I/O	I/O(P,b) ← 1	Nenhum	2
CBI	P, b	Limpa o bit do registrador de I/O	I/O(P,b) ← 0	Nenhum	2
LSL	Rd	Deslocamento lógico à esquerda	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z, C, N, V	1
LSR	Rd	Deslocamento lógico à direita	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z, C, N, V	1
ROL	Rd	Rotação à esquerda através do Carry	Rd(0)←C, Rd(n+1)←Rd(n), C←Rd(7)	Z, C, N, V	1
ROR	Rd	Rotação à direita através do Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z, C, N, V	1
ASR	Rd	Deslocamento aritmético à direita	Rd(n) ← Rd(n+1), n=06	Z, C, N, V	1
SWAP	Rd	Troca <i>nibbles</i> (4 bits)	Rd(30)←Rd(74), Rd(74)←Rd(30)	Nenhum	1
BSET	s	Ativa bit (flag)	SREG(s) ← 1	SREG(s)	1
BCLR	s	Limpa bit (flag)	SREG(s) ← 0	SREG(s)	1
BST	Rr, b	Armazenagem do bit do registrador para o T	T← Rr(b)	Т	1
BLD	Rd, b	Carga do bit T para o registrador	Rd(b) ← T	Nenhum	1
SEC		Ativa o Carry	C ← 1	С	1
CLC		Limpa o Carry	C ← 0	С	1
SEN		Ativa o bit de negativo	N ← 1	N	1
CLN		Limpa o bit de negativo	N ← 0	N	1
SEZ		Ativa o bit de zero	Z ← 1	Z	1
CLZ		Limpa o bit de zero	Z ← 0	Z	1
SEI		Habilita a interrupção global	I ← 1	I	1
CLI		Desabilita interrupção global	I ← 0	I	1
SES		Ativa o bit de teste de sinal	S ← 1	S	1
CLS		Desativa o bit de teste de sinal	S ← 0	S	1
SEV		Ativa o bit de estouro do complemento de dois	V ← 1	V	1
CLV		Limpa o bit de estouro do complemento de dois	V ← 0	V	1
SET		Ativa o bit T	T ← 1	Т	1
CLT		Limpa o bit T	T ← 0	Т	1
SEH		Ativa o bit de Carry auxiliar	H ← 1	Н	1
CLH		Limpa o bit de <i>Carry</i> auxiliar	H ← 0	Н	1
INSTRU	JÇÕES I	DE CONTROLE DA UNIDADE	MICROCONTROLADA		
NOP	<u> </u>	Nenhuma operação		Nenhum	1
SLEEP		Entra no modo sleep	Consultar manual do fabricante	Nenhum	1
WDR	+	Reset do Watchdog	Consultar manual do fabricante	Nenhum	1

- Ativação de bit significa colocá- lo em 1. Limpeza de bit significa colocá-lo em 0.

Legenda:

Rd = registrador de destino (e origem).

Rr = registrador de origem.

s, b = constante (0..7); pode ser uma expressão constante.

K = constante, faixa de valores depende da instrução; pode ser uma expressão constante.

P = constante (0..31/63), pode ser uma expressão constante ou um registrador de I/O.

q = constante (0..63), pode ser uma expressão constante.

Rdl = R24, R26, R28, R30, usado nas instruções ADIW e SBIW.

X, Y, Z = registradores de 16 bits para endereçamento indireto (X=R27:26, Y=R29:28 e Z=R31:30).

Todos as instruções que operam com registradores de uso geral tem acesso direto em um único ciclo a todos eles. As exceções são as cinco instruções lógicas e aritméticas entre uma constante e um registrador, SBCI, SUBI, CPI, ANDI e ORI, e a instrução para carga de constante imediata, LDI. Essas instruções se aplicam somente a metade superior dos registradores de uso geral (R16..R31). As instruções SBC, SUB, CP, AND, OR e as demais operações entre um ou dois registradores se aplicam a todo o banco de registradores.