Performance of linking graduates to researchers

Flavio & Christoph

02 September, 2024

Contents

Overview	-
SQL example for sourcing number of authors with same name	
Which linking iterations to keep?	
Some histograms	
link score by field	,
Year between first pub and graduation	4
First and last name matches by cohort and field	(
How do fields of ProQuest map into fields in MAG?	8
Fraction matched by year and field	28
Checking non-linked entities that should be a link	29
Chemistry: first affiliation of MAG authors should be the graduating institution. paper	30
Place of first publication	32
If publishing during PhD, does so at least once at the PhD university?	

This document compares the links we obtain for all fields in the latest iteration. But it does not consider the further processing done in prep_linked_data.py. For better information about the final linked sample, see quality_linking_graduates_chemistry.Rmd.

Overview

SQL example for sourcing number of authors with same name

```
select *
from author_sample
inner join (
    select authorid, normalizedname, papercount, citationcount
    from authors
    where normalizedname = "lawrence b slobodkin"
) using (authorid)
inner join (
    select authorid, fieldofstudyid
    from author_fields
    where fieldclass = "first"
) using (authorid)
```

Which linking iterations to keep?

```
keep_iter_ids_base <- linking_info %>%
filter(date <= date_method_change</pre>
```

```
& keywords == "False"
keep_iter_ids_revise <- linking_info %>%
  filter(date > date_method_change
        & keywords == "True"
        ) %>%
  # keep only the latest iteration here
  group_by(field) %>%
  filter(iteration_id == max(iteration_id)) %>%
  ungroup()
stopifnot(nrow(keep_iter_ids_revise) == n_distinct(keep_iter_ids_revise$field))
keep_iter_ids <- list(</pre>
  base = keep_iter_ids_base,
 revise = keep_iter_ids_revise
keep_iter_ids <- map(</pre>
  .x = keep_iter_ids,
  .f = ~.x \%
    filter(field %in% select_fields) %>%
    pull(iteration_id)
linked_ids <- map(</pre>
  .x = keep_iter_ids,
  .f = ~linked_ids %>%
    filter(iteration_id %in% .x)
d links <- map(
  .x = linked_ids,
  .f = ~.x \%
    left_join(mag_authors %>%
                select(AuthorId,
                       year_mag = year,
                        firstname_mag = firstname,
                        lastname_mag = lastname,
                       field_mag = fieldofstudy,
                       field0_mag = mag_field0),
              by = "AuthorId") %>%
    left_join(pq_authors %>%
                select(goid,
                       year_pq = year,
                       firstname_pq = firstname,
                        lastname_pq = lastname,
                       field_pq = fieldofstudy,
                       field0_pq = mag_field0),
              by = "goid") %>%
    mutate(year_diff = year_mag - year_pq,
           same_firstname = ifelse(firstname_mag == firstname_pq, 1, 0),
           same_lastname = ifelse(lastname_mag == lastname_pq, 1, 0)) %>%
    left_join(field_names_id %>%
```

```
rename(main_field = NormalizedName),
    by = c("field0_pq" = "FieldOfStudyId")) %>%
filter(goid != 305107842) %>% # this is some author which was linked but should not have been in
filter(link_score > min_link_score
    & abs(year_diff) <= max_year_diff)
)
d_links$base <- d_links$base %>% filter(year_pq <= 2005)</pre>
```

Some histograms

link score by field

```
## $base
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## i Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```


\$revise

Year between first pub and graduation

- why are there other fields than maths/biology for the following two figures?
- this is because we sample persons whenever they are in any of the linking fields
 - thus, a graduate can be linked in a biology iteration if her first field is chemistry
 - compare this with the advisor links!
 - this also means the join above should take care of this, and indicate the multiplicity of the graduates!

\$base

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

\$revise

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

First and last name matches by cohort and field $\mbox{\tt ## \$base}$

##

\$revise

How do fields of ProQuest map into fields in MAG? ## [[1]]

Fraction of field ProQuest into field MAG Field: art

[[2]]

##

[[3]]

[[4]]

##

[[5]]

[[6]]

##

[[7]]

[[8]]

Field: environmental science

[[9]]

##

[[10]]

##

[[11]]

Fraction of field ProQuest into field MAG Field: history

[[12]]

Field: materials science

[[

[[13]]

Field: mathematics

[[14]]

[[15]]

[[16]]

[[17]]

Field: political science

[[18]]

##

[[19]]

Fraction matched by year and field

Checking non-linked entities that should be a link

```
d_chem <- pq_authors %>%
   left_join(field_names_id %>%
                   rename(main_field = NormalizedName),
               by = c("mag_field0" = "FieldOfStudyId")) %>%
      mutate(link = ifelse(goid %in% d_links$revise$goid, "linked", "not linked")) %>%
  filter(main_field == "chemistry")
pq_unis <- tbl(con, "pq_authors") %>%
  left_join(tbl(con, "pq_unis") %>%
               select(university_id, normalizedname),
             by = "university id") %>%
  select(goid, uni_name = "normalizedname") %>%
  collect()
d chem <- d chem %>%
  left_join(pq_unis, by = "goid")
d_chem %>%
  filter(year == 1995 & uni_name == "stanford university" & link == "not linked") %>% head(10)
## # A tibble: 10 x 11
##
            goid year firstname lastname middlename fieldofstudy mag_field0
##
         <int64> <int> <chr> <chr>
                                             <chr> <chr>
                                                                             <int>
## 1 304229925 1995 nancy
                                hansen
                                             fisher chemistry
                                                                        185592680
## 2 304229722 1995 mark
                                pavlosky alan
                                                      chemistry
                                                                       185592680
## 3 304228620 1995 kristin sannes ann
                                                       chemistry
                                                                        185592680
## 4 304218381 1995 glenn jones clark chemistry 185592680
## 5 304201950 1995 david offord alan chemistry 185592680
## 6 304238172 1995 robert guettler david chemistry 185592680
## 7 304202002 1995 eric remy david chemistry 185592680
## 8 304229882 1995 thomas schools k chemistry 185592680
## 4 304218381 1995 glenn jones
## 8 304229882 1995 thomas schoch
                                                        chemistry
                                             k
                                                                        185592680
## 9 304229838 1995 philip merrill bradley
                                                         chemistry
                                                                      185592680
## 10 304218488 1995 claude
                                  maechling ricketts chemistry
                                                                        185592680
## # i 4 more variables: university_id <int>, main_field <chr>, link <chr>,
## # uni_name <chr>
#unique(d_chem$fieldofstudy)
## comparing to candidates:
# harvard:
# weldon in materials science
# beltrame in chemistry
# mit:
# lapointe is chemistry
# duff is chemistry
# stanford:
# shear in chemistry
# marcus is in biology
# hansen is in biology
# tokmakoff is in materials science
# update, chemistry check 8/11/22
# - tokmakoff still not linked; b/c of year first pub? -- yes, the linking score is 0.66...
```

```
# - nancy fisher hansen (2649181519) is not linked (unclear if she should be linked)
# - hopefully the keywords from topic models would help us here?
# - maybe david h offord (304201950) would also be linked with the keywords?
```

Chemistry: first affiliation of MAG authors should be the graduating institution. paper

```
institution. paper
grads_chemistry <- d_links$revise |>
  filter(field0_mag == 185592680) |>
  group_by(AuthorId) |>
  filter(iteration_id == max(iteration_id)) |>
  ungroup() |>
  mutate(grp = case_when( # some people publish already way before the PhD
   year_mag > year_pq ~ "first pub after PhD",
   year_mag < year_pq - 6 ~ "first pub before PhD",</pre>
   TRUE ~ "first pub during PhD"
  )) |>
  select(AuthorId, goid, year_pq, grp)
head(grads_chemistry)
## # A tibble: 6 x 4
##
       AuthorId
                    goid year_pq grp
##
       <int64>
                 <int64> <int> <chr>
## 1 2227604972 303417360 1986 first pub during PhD
## 2 641051114 303352848 1985 first pub during PhD
## 3 2143303641 881747820
                            2011 first pub after PhD
## 4 2168717013 304427153 1998 first pub during PhD
## 5 2504958925 305369745
                            2006 first pub during PhD
## 6 2225265093 304664910
                            2000 first pub after PhD
grads_chemistry |>
  group_by(grp, year_pq) |>
  summarise(nb = n()) |>
  ungroup() |>
  group_by(year_pq) |>
 mutate(total = sum(nb)) |>
  ggplot(aes(x = year_pq, y = nb/total)) +
  geom_line(aes(linetype = grp)) +
```

`summarise()` has grouped output by 'grp'. You can override using the `.groups`
argument.

theme(legend.position = "bottom")

Gaule/Piacentini had 21154 graduates from 1999 to 2008; we have

```
grads_chemistry |>
  filter(year_pq >= 1999 & year_pq <= 2008) |>
  summarise(n())

## # A tibble: 1 x 1
## `n()`
## <int>
## 1 12992
```

• they had chemists and chemical engineers; we may miss the engineers in this sample.

```
grads_chemistry |>
  filter(year_pq >= 1990 & year_pq <= 2015) |>
  group_by(grp) |>
  summarise(nb = n()) |>
  ungroup() |>
  mutate(s = nb / sum(nb))
## # A tibble: 3 x 3
##
     grp
     <chr>
                           <int> <dbl>
                            4977 0.147
## 1 first pub after PhD
## 2 first pub before PhD 1967 0.0579
## 3 first pub during PhD 27011 0.795
query_authors <- unique(grads_chemistry$AuthorId)</pre>
query_authors <- paste0(query_authors, collapse = ", ")</pre>
```

```
q_authors_affil <- paste0(</pre>
  "SELECT AuthorId, AffiliationId, Year
  FROM AuthorAffiliation
  INNER JOIN (
   SELECT AuthorId, YearFirstPub
   FROM author_sample
 ) USING(AuthorId)
 WHERE AuthorId IN (", query authors, ")
 AND Year <= YearFirstPub + 20"
authors_affil <- tbl(con, sql(q_authors_affil)) |>
  collect()
authors_first_affil <- authors_affil |>
  group_by(AuthorId) |>
  filter(Year == min(Year)) |>
  filter(!duplicated(AuthorId)) |>
  ungroup()
links_to_cng <- tbl(con, "links_to_cng") |>
  collect()
```

Place of first publication

```
place_first_pub <- grads_chemistry |>
  left_join(pq_authors |>
              select(goid, university_id),
            by = "goid") |>
 left_join(links_to_cng |>
              filter(from_dataset == "pq") |>
              select(from_id, unitid_graduate = unitid),
            by = c("university_id" = "from_id")) |>
  left_join(authors_first_affil |>
              select(AuthorId, AffiliationId),
            by = "AuthorId") |>
  left_join(links_to_cng |>
              filter(from_dataset == "mag") |>
              select(from_id, unitid_author = unitid),
            by = c("AffiliationId" = "from_id"))
place_first_pub |>
```


If publishing during PhD, does so at least once at the PhD university?

```
publish_during_phd <- authors_affil |>
  left_join(grads_chemistry |>
              select(-grp),
            by = c("AuthorId")) |>
  filter(Year <= year_pq & Year >= year_pq - 6) |>
  left_join(links_to_cng |>
              filter(from_dataset == "mag") |>
              select(from_id, unitid_author = unitid),
            by = c("AffiliationId" = "from_id")) |>
  left_join(pq_authors |>
              select(goid, university_id),
            by = "goid") |>
  left_join(links_to_cng |>
              filter(from_dataset == "pq") |>
              select(from_id, unitid_graduate = unitid),
            by = c("university_id" = "from_id")) |>
  select(AuthorId, Year, year_pq, unitid_author, unitid_graduate, university_id) |>
  mutate(same_institution = ifelse(unitid_author == unitid_graduate, 1, 0),
         same_institution = ifelse(is.na(same_institution), 0, same_institution))
```

Fraction of students not publishing during PhD:

```
1 - n_distinct(publish_during_phd$AuthorId) / n_distinct(grads_chemistry$AuthorId)
```

[1] 0.2239471

summary(publish_during_phd)

```
##
       AuthorId
                               Year
                                                        unitid_author
                                            year_pq
                797101
##
    Min.
                                 :1980
                                         Min.
                                                        Min.
                                                                :100663
                         Min.
                                               :1985
    1st Qu.:2046494765
                         1st Qu.:1994
                                         1st Qu.:1996
                                                         1st Qu.:144050
##
    Median :2145361750
                         Median:2002
                                         Median:2004
                                                         Median :174066
    Mean
           :2104704648
                         Mean
                                 :2001
                                         Mean
                                               :2003
                                                        Mean
                                                                :181254
##
    3rd Qu.:2435561831
                         3rd Qu.:2008
                                         3rd Qu.:2010
##
                                                         3rd Qu.:212054
           :3163604571
                                 :2015
                                                :2015
                                                                :495767
##
    Max.
                         Max.
                                         Max.
                                                        Max.
##
                                                        NA's
                                                                :1793
   unitid_graduate university_id same_institution
```

```
##
    Min.
            :100663
                                      Min.
                                              :0.0000
                      Min.
                                  1
                                       1st Qu.:1.0000
##
                      1st Qu.:
    1st Qu.:144050
                                 31
##
    Median: 174066
                      Median:
                                 94
                                      Median :1.0000
            :180728
                              : 173
                                              :0.8701
##
    Mean
                      Mean
                                      Mean
##
    3rd Qu.:211440
                      3rd Qu.: 206
                                       3rd Qu.:1.0000
            :495767
                                               :1.0000
##
    Max.
                              :2849
                                      Max.
                      Max.
    NA's
##
            :982
head(publish during phd |> filter(same institution == 0))
## # A tibble: 6 x 7
## # Groups:
                AuthorId [6]
##
     AuthorId
                Year year_pq unitid_author unitid_graduate university_id
                       <int>
                                                                     <int64>
##
      <int64> <int>
                                       <int>
                                                        <int>
## 1
      2387360
                2004
                         2005
                                      236948
                                                       131496
                                                                         407
                         2005
## 2
      2683537
                2000
                                      122597
                                                                         219
                                                       141574
## 3
      4924916
                2001
                        2002
                                      151111
                                                       243780
                                                                          31
##
  4
      6283000
                1990
                         1990
                                          NA
                                                       131469
                                                                         312
## 5
      6395424
                         1999
                                      130943
                                                       176080
                                                                         356
                1999
## 6
      8227037
                2002
                         2005
                                                                         569
                                          ΝA
                                                           NΑ
## # i 1 more variable: same_institution <dbl>
```

notes - some may publish after phd with the phd affiliation – not captured here - misses research institutes that are not in Carnegie, ie scripps research institute - all in all, this is a lower bound on the precision in the sample of people publishing during their PhD - the lower bound on precision for the sample of chemists can be calculated as follows - 19% publish after PhD; assume they are all false positives - of the remaining 81%, 87% publish at their graduating university - thus, our precision is at least 0.81 * 0.87 = 0.70 - this calculation is more difficult in fields where graduates publish more often after graduating