DiffuSeq: Sequence to Sequence Text Generation With Diffusion Models

Shark-NLP Shanghai, China hisansas@gmail.com

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, Lingpeng Kong

https://github.com/Shark-NLP/DiffuSeq

Contents

- Preliminary and motivation
- DiffuSeq and beyond
- Experiments and analysis
- Conclusion and future work

Shark-NLP · ICLR 2023 Page. 2 / 11

1.1 Preliminary

Diffusion process in continuous space:

(applied in vision, audio, time series and etc....)

- 1. Noise-conditioned score network (NCSN; Yang & Ermon, 2019)
- 2. Denoising diffusion probabilistic models (DDPM; Ho et al. 2020)

Forward process:

- $\circ \quad \mathbf{x}_0 \sim q(\mathbf{x}) \rightarrow \mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$

△ Reverse process:

- $\circ \quad p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_t, t), \sigma_{\theta}(\mathbf{x}_t, t))$
- $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = q(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0) \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_0)}{q(\mathbf{x}_t|\mathbf{x}_0)}$

△ Training loss:

- $L_t = D_{KL}(q||p_\theta)$
- Parameterization of $L_t =$

$$\mathbb{E}_{\mathbf{x}_0}(||(\mathbf{x}_0 - f_{\theta}(\mathbf{x}_t, t))||^2)$$

Shark-NLP · ICLR 2023 Page. 3 / 11

1.2 Motivation

From unconditional models to conditional models:

Diffusion-LM (classifier-guided) v.s. DiffuSeq (classifier-free)

Seq2Seq tasks: $x \rightarrow y$

Shark-NLP · ICLR 2023 Page. 4 / 11

2.1 DiffuSeq

- △ Forward Process with Partial Noising:
 - $q(\mathbf{z}_0|\mathbf{w}^{x \oplus y}) = \mathcal{N}(EMB(\mathbf{w}^{x \oplus y}), \beta_0 \mathbf{I}); \mathbf{z}_t = \mathbf{x}_t \oplus \mathbf{y}_t$
- △ Reverse Process with Conditional Denoising:
 - $L_t = \mathbb{E}_{\mathbf{x}_0, \mathbf{y}_0} (||(\mathbf{y}_0 f_\theta^{\sim}(\mathbf{z}_t, t))||^2)$

- - importance sampling
- △ Inference:
 - Rounding to embeddings
 - Anchoring input signals

Shark-NLP · ICLR 2023 Page. 5 / 11

2.2 Connections of different models

AR/iter-NAR/DiffuSeq: Generation process is along with different dimensions:

$$p_{AR}(\mathbf{w}_{1:n}^y|\mathbf{w}^x) = p(w_1^y|\mathbf{w}^x) \prod_{i=1,\dots,n-1} p(w_{i+1}^y|\mathbf{w}_{1:i}^y,\mathbf{w}^x),$$
initial prediction progressive left-context prediction

$$p_{\text{iter-NAR}}(\mathbf{w}_{1:n}^y|\mathbf{w}^x) = \sum_{\mathbf{w}_1^y, \dots, \mathbf{w}_{K-1}^y} \underbrace{\prod_{i=1\dots n} p(w_{1,i}^y|\mathbf{w}^x)}_{\text{initial prediction}} \underbrace{\prod_{k=1\dots K-1} \prod_{i=1\dots n} p(w_{k+1,i}^y|\mathbf{w}_{k,1:n}^y, \mathbf{w}^x)}_{\text{progressive full-context prediction}}.$$

$$p_{\text{DIFFUSEQ}}(\mathbf{w}^y|\mathbf{w}^x) = \sum_{\substack{\mathbf{w}_T^y, \dots, \mathbf{w}_1^y \\ \mathbf{y}_T, \dots, \mathbf{y}_0}} p(\mathbf{w}^y|\mathbf{y}_0, \mathbf{w}^x) \prod_{t=T, \dots, 1} p(\mathbf{w}_t^y|\mathbf{y}_t, \mathbf{w}^x) p(\mathbf{y}_{t-1}|\mathbf{w}_t^y)$$

Shark-NLP · ICLR 2023 Page. 6 / 11

3.1 Experiments

Four tasks: Dialogue, QG, Text Simplification, Paraphrase

Three groups of baselines: Plain encoder-decoder, PLMs, NAR

Tasks	Methods	BLEU↑	R-L↑	Score↑ dist-1↑	selfB↓ / div-4↑	Len
Paraphrase	GRU-attention [⋄] Transformer-base [⋄]	0.1894 0.2722	0.5129 0.5748	$\begin{array}{c c} 0.7763 & 0.9423 \\ \underline{0.8381} & 0.9748 \end{array}$	0.9958/0.3287 0.4483/0.7345	8.30 11.2
	GPT2-base FT • GPT2-large FT • GPVAE-T5 •	0.1980 0.2059 0.2409	0.5212 0.5415 0.5886	0.8246 0.9798 0.8363 0.9819 0.8466 0.9688	0.5480/0.6245 0.7325/0.5020 0.5604/0.6169	9.67 9.53 9.60
	NAR-LevT [‡] DIFFUSEQ (Ours) [‡]	0.2268 0.2413	0.5795 0.5880	0.8344 0.9790 0.8365 0.9807	0.9995/0.3329 0.2732 / 0.8641	8.85 11.2

Comparable quality, better diversity

Shark-NLP · ICLR 2023 Page. 7 / 11

3.2 Analysis

Diversity Ensures Quality

Shark-NLP · ICLR 2023 Page. 8 / 11

3.2 Analysis

Diversity Ensures Quality

Step-wise Analysis against Iterative NAR

Shark-NLP · ICLR 2023 Page. 9 / 11

3.2 Analysis

Diversity Ensures Quality

Step-wise Analysis against Iterative NAR

Inference Speed

Shark-NLP · ICLR 2023 Page. 10 / 11

4 Conclusion and future work

- DiffuSeq: as a new generation paradigm
 - Potential: competitive results on Seq2Seq tasks
 - Analysis: diversity DiffuSeq v.s. iter-NAR
- Future work: inference speed and sentence fluency

Shark-NLP · ICLR 2023 Page. 11 / 11

Thank you for watching!

Shark-NLP Shanghai, China hisansas@gmail.com

