

EA-87-02

Ontario

ENVIRONMENTAL ASSESSMENT BOARD

VOLUME: 283

DATE: Tuesday, January 29, 1991

BEFORE:

A. KOVEN Chairman

E. MARTEL Member

FOR HEARING UPDATES CALL (COLLECT CALLS ACCEPTED) (416)963-1249

FARR
ASSOCIATES &
REPORTING INC.

(416) 482-3277

2300 Yonge St., Suite 709, Toronto, Canada M4P 1E4

CARSON
EAB
- H26

Government
Publications

EA-87-02

ENVIRONMENTAL ASSESSMENT BOARD

VOLUME: 283

DATE: Tuesday, January 29, 1991

BEFORE:

A. KOVEN Chairman

E. MARTEL Member

FOR HEARING UPDATES CALL (COLLECT CALLS ACCEPTED) (416)963-1249

EARR
ASSOCIATES &
REPORTING INC.

(416) 482-3277

2300 Yonge St., Suite 709, Toronto, Canada M4P 1E4

Digitized by the Internet Archive
in 2023 with funding from
University of Toronto

<https://archive.org/details/31761116525528>

HEARING ON THE PROPOSAL BY THE MINISTRY OF NATURAL
RESOURCES FOR A CLASS ENVIRONMENTAL ASSESSMENT FOR
TIMBER MANAGEMENT ON CROWN LANDS IN ONTARIO

IN THE MATTER of the Environmental
Assessment Act, R.S.O. 1980, c.140;

- and -

IN THE MATTER of the Class Environmental
Assessment for Timber Management on Crown
Lands in Ontario;

- and -

IN THE MATTER OF a Notice by the
Honourable Jim Bradley, Minister of the
Environment, requiring the Environmental
Assessment Board to hold a hearing with
respect to a Class Environmental
Assessment (No. NR-AA-30) of an
undertaking by the Ministry of Natural
Resources for the activity of timber
management on Crown Lands in Ontario.

Hearing held at the offices of the Ontario
Highway Transport Commission, Britannica
Building, 151 Bloor Street West, 10th Floor,
Toronto, Ontario, on Tuesday, January 29,
1991, commencing at 9:00 a.m.

VOLUME 283

BEFORE:

MRS. ANNE KOVEN
MR. ELIE MARTEL

Chairman
Member

A P P E A R A N C E S

MR. V. FREIDIN, Q.C.)	
MS. C. BLASTORAH)	MINISTRY OF NATURAL
MS. K. MURPHY)	RESOURCES
MR. B. CAMPBELL)	
MS. J. SEABORN)	MINISTRY OF ENVIRONMENT
MS. B. HARVIE)	
MR. R. TUER, Q.C.)	ONTARIO FOREST INDUSTRIES
MR. R. COSMAN)	ASSOCIATION and ONTARIO
MS. E. CRONK)	LUMBER MANUFACTURERS'
MR. P.R. CASSIDY)	ASSOCIATION
MR. H. TURKSTRA	ENVIRONMENTAL ASSESSMENT BOARD
MR. E. HANNA)	ONTARIO FEDERATION OF
DR. T. QUINNEY)	ANGLERS & HUNTERS
MR. D. HUNTER)	NISHNAWBE-ASKI NATION
MS. N. KLEER)	and WINDIGO TRIBAL COUNCIL
MR. J.F. CASTRILLI)	
MS. M. SWENARCHUK)	FORESTS FOR TOMORROW
MR. R. LINDGREN)	
MR. P. SANFORD)	KIMBERLY-CLARK OF CANADA
MS. L. NICHOLLS)	LIMITED and SPRUCE FALLS
MR. D. WOOD)	POWER & PAPER COMPANY
MR. D. MacDONALD	ONTARIO FEDERATION OF LABOUR
MR. R. COTTON	BOISE CASCADE OF CANADA LTD.
MR. Y. GERVAIS)	ONTARIO TRAPPERS
MR. R. BARNES)	ASSOCIATION
MR. R. EDWARDS)	NORTHERN ONTARIO TOURIST
MR. B. MCKERCHER)	OUTFITTERS ASSOCIATION

APPEARANCES: (Cont'd)

MR. L. GREENSPOON)	NORTHWATCH
MS. B. LLOYD)	
MR. J.W. ERICKSON, Q.C.)		RED LAKE-EAR FALLS JOINT
MR. B. BABCOCK)	MUNICIPAL COMMITTEE
MR. D. SCOTT)	NORTHWESTERN ONTARIO
MR. J.S. TAYLOR)	ASSOCIATED CHAMBERS
		OF COMMERCE
MR. J.W. HARBELL)	GREAT LAKES FOREST
MR. S.M. MAKUCH)	
MR. J. EBBS		ONTARIO PROFESSIONAL
		FORESTERS ASSOCIATION
MR. D. KING		VENTURE TOURISM
		ASSOCIATION OF ONTARIO
MR. D. COLBORNE)	GRAND COUNCIL TREATY #3
MS. S.V. BAIR-MUIRHEAD)	
MR. R. REILLY		ONTARIO METIS &
		ABORIGINAL ASSOCIATION
MR. H. GRAHAM		CANADIAN INSTITUTE OF
		FORESTRY (CENTRAL
		ONTARIO SECTION)
MR. G.J. KINLIN		DEPARTMENT OF JUSTICE
MR. S.J. STEPINAC		MINISTRY OF NORTHERN
		DEVELOPMENT & MINES
MR. M. COATES		ONTARIO FORESTRY
		ASSOCIATION
MR. P. ODORIZZI		BEARDMORE-LAKE NIPIGON
		WATCHDOG SOCIETY

APPEARANCES: (Cont'd)

MR. R.L. AXFORD

CANADIAN ASSOCIATION OF
SINGLE INDUSTRY TOWNS

MR. M.O. EDWARDS

FORT FRANCES CHAMBER OF
COMMERCE

MR. P.D. McCUTCHEON

GEORGE NIXON

MR. C. BRUNETTA

NORTHWESTERN ONTARIO
TOURISM ASSOCIATION

I N D E X O F P R O C E E D I N G S

<u>Witness:</u>	<u>Page No.</u>
<u>CHRIS MASER, Resumed</u>	50498
Direct Examination by Mr. Lindgren (Cont'd)	50498

I N D E X O F E X H I B I T S

<u>Exhibit No.</u>	<u>Description</u>	<u>Page No.</u>
1674	Five-page document consisting of a press release from the U.S. Forest Service dated October 19, 1990, a one-page memo on old growth management, a one-page position statement on national forest old growth values and a generic definition and description of old growth forests.	50645
1675	Article by Gregory Aplet entitled Forestry and Conservation Biology found in Volume 89 of the Journal of Forestry, page 56.	50661

1 ----Upon commencing at 9:10 a.m.

2 MADAM CHAIR: Good morning.

3 Good morning, Mr. Lindgren.

4 MR. LINDGREN: Good morning, Madam Chair,

5 Mr. Martel.

6 MADAM CHAIR: Apparently Mr. Hanna called
7 this morning and he won't be cross-examining which
8 means, Ms. Cronk, you will be first one
9 cross-examining.

10 MS. CRONK: Life is never static, Madam
11 Chair.

12 MADAM CHAIR: Mr. Lindgren.

13 MR. LINDGREN: Thank you, Madam Chair.

14 CHRIS MASER, Resumed

15 CONTINUED CROSS-EXAMINATION BY MR. LINDGREN:

16 Q. Mr. Maser, when we left off yesterday
17 I believe you were at slide No. 70, and if you like we
18 can proceed with the slide show.

19 We are looking at slide No. 70, Madam
20 Chair.

21 A. I am going to back up one so we can
22 recap a little.

23 Q. This is No. 69.

24 A. When we left yesterday, it's probably
25 not the most pleasant subject for some people to start

1 the morning with, but these are the droppings of --

2 MR. MARTEL: Or when you are having
3 coffee.

4 THE WITNESS: There are the droppings of
5 the flying squirrel that have in them the mycorrhizal
6 spores, the nitrogen fixing bacteria in the yeast.
7 When you break them down under a microscope this is
8 what the spores look like. This is from the creeping
9 vole that we saw yesterday.

10 We have written a book - I believe it was
11 published in '88 or '89, I don't remember the date
12 anymore, it has been within the last few years - on the
13 synoptic key to these spores for North America and
14 Europe because as we studied these animals we went
15 through to do our studies roughly 6,000 stomach
16 analyses to understand how these animals feed and that
17 covered about 30 species of rodents, forest rodents
18 which occur across the United States.

19 Some of them just on the west coast, but
20 a lot of them up north to Alaska and then different
21 parts of the Canada and the lower United States. We
22 found so many similarities between the U.S. and Europe
23 that we were asked to put it together in a book which
24 we have since done because there is a lot of interest
25 in this type of study now coming about.

1 One of the things, before I go on with
2 this, I would like you in thinking about the
3 mycorrhizal, about the fungal relationships to try and
4 imagine when you look at a forest we see it as
5 individual trees; this is basically how we perceive it.

6 Our understanding in looking below
7 ground, particularly the work of Dr. David Perry and
8 Kermit Kromack and others at Oregon State, as well as
9 the forest service, were beginning to understand that
10 the mycorrhizal formed a net under the old growth
11 forest and they captured nutrients, but more than that,
12 were beginning to find out that this net of these
13 hyphae, these gassomer threads unite the tree's roots
14 so that one tree can actually feed another tree.

15 The material is shared, the hyphae is
16 shared between trees. So if he could gently pull the
17 forest up and wash the soil away, we would find it is
18 in fact acting as one organism. This is something that
19 we didn't even think about a decade when we started
20 doing this, a lot of the below ground -- well, a
21 decade, it has been more than now, about 15 ago years
22 ago when we started doing the below ground work.

23 That gave us a whole different concept of
24 the positive feedback loops which may be beneficial or
25 detrimental to the system, when we began to understand

1 how interdependent and interconnected this whole thing
2 is and the other thing it did for us was we realized
3 how little we knew about it.

4 MR. LINDGREN: Q. This is No. 71.

5 A. As I said before, mycorrhizal, myco
6 means fungus, and rhiza means root and this is an
7 obligatory symbiotic relationship. Obligatory means it
8 is necessary for the life of both parties, symbiotic
9 means marriage in essence. You will notice that it is
10 absolutely necessary for pines, hemlocks, spruce,
11 Douglas fir, larches and alders and those are all
12 commercial tree species.

13 Q. No. 72.

14 A. Things like sugar pine.

15 Q. No. 73.

16 A. --fir which was 73.

17 Q. That's correct. This is No. 74.

18 A. Oregon white oak, and the thing I
19 wuuld like you to keep in mind is that everything that
20 we have talked about revolves around this large, dead
21 organic material that's on the forest floor and it
22 becomes incorporated into the soil.

23 Now, this is an old growth stand, not an
24 old, old growth, but it is an old growth stand. It is
25 approaching that stage in the Pacific Northwest that

1 would have been there for roughly 300 to 400 years as
2 it reincorporates. That's the biological capital
3 that's being reinvested.

4 Note also that the old growth here has a
5 lot of different layers and it has a lot of cover
6 patches, so it forms a mosaic of habitats internally to
7 the system as opposed to plantations.

8 Q. No. 76.

9 A. This is in Bavaria in southern
10 Germany. This is a typical European plantation of
11 Norway spruce. The spruce is not growing where it
12 normally grew. These were originally 100 per cent
13 hardwood forests that the Europeans converted. This is
14 where the idea of species conversion of a site came
15 from.

16 They converted it to Norway spruce
17 because the wood grew faster and was better
18 structurally. In the meantime, they completely altered
19 the system and started the process of acidifying the
20 soil with the needles.

21 You will notice there is very little on
22 the ground and you see over here there are some little
23 branches. There is very little public land in Germany,
24 for example, so it is mostly farm plots, farm woods.
25 It is legal to glean wood by the peasantry on other

1 people's land provides it is less than an inch in
2 diameter. If it is an inch or over the land owner owns
3 it.

4 You will notice the trees are in rows.
5 You can see the rows here. This is the plantation mode
6 and there is very little cover in it. The last time we
7 were there I spent a month looking at these plantations
8 and out of the month I was out every day but four days
9 with foresters and researchers, and during that time we
10 saw a lot of deer - they have a deer problem. They
11 don't have the hunting control that we have; they shoot
12 them individually - and we saw a woodpecker working
13 ones. There were no squirrels and no birds. The
14 forests, the plantations are essentially silent.

15 The habitat for the wildlife is in the
16 cities and around the edges. I presented this to a
17 group of industrialists when I got back in Portland,
18 Oregon, and they were mostly corporate presidents and
19 vice-presidents, and they had one old German forester
20 with them. I found this very interesting.

21 I've got some colleagues at the
22 university of Munich and that is where -- we were out
23 with them in this instance, and when I was through the
24 old German forester jumped up on the stage, he was
25 really agitated, and he said: Now I know what

1 happened. When I was a student in 1936 there was a lot
2 of wildlife there, there were a lot of the bird songs.
3 He said: I went back in 1984 and it was silent and I
4 didn't know what happened to the wildlife.

5 We had another interesting experience
6 with a German gentlemen who who moved to LaGrande
7 Oregon. He had been in and around the plantations all
8 his life and the first thing he did when we bought his
9 40 acres was cut down all the dead snags and move all
10 the large dead wood and then he went to the Oregon
11 State Game Commission and asked what had happened to
12 all the wildlife, all the birds because his forest had
13 become relatively silent.

14 In the European frame of mind, they like
15 tidy forests. This is what they have been culturated
16 to because of the patterns of use. They come and look
17 at our forests in the northwest or in the Rocky
18 Mountains and they think they are sloppy, they're messy
19 and it is a different cultural mindset and they are
20 struggling very hard now to change that.

21 The Germans have instituted a copy of the
22 U.S. Federal Research Natural Area System and the first
23 one they have established was outside of Bonn. I went
24 and looked at it. They have a fence around it and in
25 the few years - it has been there about ten years -

1 there was more dead wood in that forest than I had seen
2 in any of them and there were very heavy fines for
3 anyone picking up dead wood for the fireplace.

4 The point that I would like to leave you
5 with is the concept of the plantation in the European
6 mindset in strictly utilization. From their point of
7 view this was right, they were repairing forests, but
8 what they did was convert them to something which has
9 not proven over time to be sustainable.

10 MR. MARTEL: Could I ask a question?

11 THE WITNESS: Certainly.

12 MR. MARTEL: I recently saw a film with
13 the same problem in Sweden. Is it your experience that
14 in the plantations in Sweden and in Finland that in
15 fact they are to a large degree similar to the ones we
16 were just looking at without a lot of wildlife and so
17 forth?

18 THE WITNESS: Yes. In fact, what happens
19 is I think we get trapped -- that's a good question.
20 I am glad you asked that.

21 I think we get trapped in our concept of
22 time. We think about sustainability in terms of years
23 rather than in terms of crops. If you think of a crop
24 of corn, if you have three crop of corn three years in
25 a row, but you want to be a corn farmer for 50 years,

1 that isn't going to make it on a sustainable basis, but
2 a crop of trees that grows to 80 years is 240 years for
3 three crops.

4 The sense that I get, and I lived in
5 Germany so I speak German, I can understand what they
6 are saying, and the sense that I get from all of this
7 is that they think selective logging of an area which
8 allows it to be taking stems out gradually is
9 sustainable, but what they do not understand is they
10 are sustaining the yield for some length of time.

11 Dr. Plochmann, one of the references that
12 I sent up, Dr. Plochmann spoke at Oregon State in '89
13 and one of the points he made I thought very clearly
14 was they have found only one place where they have
15 gotten three rotations. The third rotations that I
16 looked at they are having severe problems with. They
17 have a fungus called foamies and that fungus was not a
18 large part of the problem until they get to the third
19 rotation and then it kills it in about 20 years. It
20 weakens it to the point that snow does it in. The
21 trees break.

22 The other problem that they have, you
23 will notice that these logs are peeled. By law in the
24 Bavarian forest that I was in, in the plantations, they
25 had to peel the logs on site because of the bark

1 beetles. Bark beetles attack stressed forests,
2 stressed trees and the European plantations are
3 understand tremendous ecological strain.

4 So when I talked in Bann to the head
5 federal forester he said that it was illegal to leave
6 snags standing in the plantations, they call forests,
7 that were three inches or greater in diameter because
8 of the bark beetle threat.

9 You will also notice that these are piled
10 on the side and they have to be peeled or moved a
11 certain distance from the forest outside of the forest
12 into the fields by law to prevent the outbreak of bark
13 beetles. The only wood that is cut when they thin that
14 is allowed to be piled without peeling it, that is
15 Norway spruce, is pulp wood because it is removed
16 within two weeks.

17 MR. LINDGREN: Madam Chair, this is new
18 photograph. I would suggest that we mark it as No. 76A
19 and we will undertake to provide copies of it.

20 A. This is a new one?

21 Q. It didn't reproduced.

22 This is No. 77.

23 A. What is not used ends up here. The
24 way they log these days, particularly at the higher
25 elevations in the more naturally stressed sites -- you

1 will notice the larger wood over here. These are the
2 tops of trees and these are the twigs and the branches.
3 You will notice this dark strip here. These are very
4 small branches.

5 What they do is they climb the trees and
6 top them and limb them before they fell the trees
7 ...individually because they are afraid of crushing
8 seedlings. Seedlings in regeneration are a premium.
9 Dr. Pochmann said that he only knows of one rotation in
10 Germany that has reached the fourth growing stage and
11 that is a native pine on a good pine site.

12 All the rest of the plantation types are
13 not making the fourth rotation and part of the reason
14 is that they have removed all of the soil organic
15 material which is represented, a lot of it here, in
16 terms of wood. Woody material does ameliorate acidity
17 in the soil. So when that is removed, the processes
18 are therefore removed with it - some of those that we
19 went through - then we have the opportunity to alter
20 the way the soil functions often to the impairment of
21 the forest as a whole.

22 Thank you. That's the end of the slides.

23 Q. Now, Mr. Maser, having regard to the
24 biological interactions and processes that you have
25 described through your slides, would you characterize

1 the forest ecosystem as complex?

2 A. Yes. Excuse me a minute, I forgot
3 something here.

4 I have studied it for over 20 years and I
5 would say that I know virtually nothing about it. I
6 think the group of us who worked on it, there were 16
7 of us, we have all come to the conclusion that the
8 complexity of the forest goes way beyond anything we
9 ever imagined.

10 If I think of it in terms of a Nassau
11 space shot. Putting a person on the moon by comparison
12 is as simple as black or white; you hit it or miss it,
13 it's a soft landing or squish. If you take all of the
14 components of the Nassau program and put them in one
15 acre of ground, that acre of ground is more complex.

16 When we were trying to understand the
17 mycorrhizal fungi and the yeast we could find on one in
18 the bacteria to identify them. We ran into so many
19 species, genera, families of bacteria that we had no
20 idea what they were.

21 The same with the yeast. We finally got
22 the yeast identified by scouring the United States and
23 we found a man who is the head of a hospital in Seattle
24 whose hobby was the taxonomy of yeast. So we shipped
25 our yeast samples to him for identification.

1 One of the things -- I have given this
2 lecture over the years, improving it as we learn more,
3 a number of times and I gave it in Oregon State three
4 years ago I guess and a young man in forestry really
5 got upset and the teacher was concerned because he
6 thought the man was angry at me. He came up afterwards
7 and he said -- and this to me explains a lot of the
8 problems that I see in the U.S. I don't know about
9 Canada.

10 In our universities this man typifies
11 what's happened because the product orientation versus
12 the process or ecological side. He came up to me
13 afterwards red in the face shouting: I am graduating
14 in two weeks, I have wasted my whole career. How come
15 this is the first time I have heard any of this.

16 That is one of the problems that we face,
17 is that we are not integrating this new stuff into the
18 old way of thinking even in our universities.

19 Q. On that point, can I ask you to turn
20 to MNR statement of evidence No. 9 which has been
21 marked as Exhibit 14, Madam Chair.

22 Can I ask you to turn to page 17.

23 MADAM CHAIR: The diagram, Mr. Lindgren?

24 MR. LINDGREN: That is correct.

25 Q. Mr. Maser, this figure purports to

1 depict the major components of a forest ecosystem.
2 Having regard to the various processes and
3 relationships that you have described, would you say
4 that this was an adequate diagram of the major
5 components of a forest ecosystem?

6 A. With all respect to whoever drew
7 this, no. This remind me a heavily used city park.

8 Q. What's missing from this diagram?

9 A. Snags, dying trees, logs, organic
10 material in the ground, there is no habitat on the
11 ground, there is very little layering in terms of
12 shrubs and seedlings, there is very little ground
13 cover.

14 If you were drawing a forest, then at
15 some point the air and the sunlight in these various
16 components and the water also have to be in because
17 it's a cycle. It isn't it thing, it is a cycle of
18 things coming together to go form a dynamic whole and
19 this to me does not represent that.

20 Q. If I asked --

21 MR. MARTEL: What would you put below the
22 ground because you said 50 per cent -- we deal with 50
23 per cent above the ground and we forget about the 50
24 per cent below the ground. I think that's the term you
25 used yesterday.

1 THE WITNESS: We manage what he see above
2 ground.

3 MR. MARTEL: Right.

4 THE WITNESS: Below ground there would be
5 rodent burrows, for example, there would be a lot of
6 micro-organisms, plants and animals, there would be
7 mushrooms, the hyphae, there would be the truffles and
8 the hyphae, the gossamer threads and there are
9 thousands of them.

10 Douglas fir, for example, just over its
11 range has roughly 2,000 species of the mycorrhizal
12 fungus that is capable of operating with Douglas fir.
13 There are also different horizons in the soil. I see
14 no humus here, none of the duff that is incorporating
15 into the soil. There is a deciduous tree but no leaf
16 litter getting in and there are almost no roots.

17 If you pull up the forest floor, at least
18 the ones I have looked at in the Rockies and in the
19 northwest and in Alaska, if you pull it up there
20 frequently are big mats of white or yellow, they are
21 permeating the soil. When you pull it up you don't
22 just get a handful, you get a map. That is the
23 gossamer threads that I call the hyphal mat. That is
24 the extention of the tree's root system.

25 The soil is permeated with fungi and

1 roots and if you take it out and study it, as we have
2 attempted to do, we call it the placenta because it is
3 a seizing mask of living tissue, Most of which we can't
4 even identify beyond the crudest characterization such
5 as fungal hyphae.

6 We are trying desperately -- and there's
7 a whole research program in the forest service in
8 Corvallis, Oregon and has been trying to identify the
9 hyphae and connect them with the truffle fruiting
10 bodies so that we can study these things in the
11 non-fruiting season and understand what they do.

12 For example, we know that in a young
13 forest it has one set of fungi, but as the forest
14 changes and matures the fungi change, the species in
15 general change also. So as the plant community changes
16 above ground, so it changes below ground.

17 If you look at the grassy areas in this
18 photo, where there is grass there is a whole other
19 group of below ground fungi called indomycorrhiza
20 meaning inside fungus root rather than outside. They
21 are very often with hardwood trees. They are with
22 roughly 80 per cent or more of the world's plants.
23 They are eaten more frequently and moved around by
24 insects or washed around in rain water. They are
25 important in deserts, they are important in range

1 lands.

2 So as the plant community shifts from
3 early succession to later succession, the whole
4 below-ground dynamic shifts with it. It isn't a static
5 thing where the tree is the only variable we deal with.
6 This is the thing that has boggled our mind because we
7 don't even in research yet know how to ask the
8 questions.

9 The conclusion we have come to is that
10 the question is far more important than the answer
11 because how we frame the question determines how we see
12 the land, how we frame the question determines how we
13 understand the processes. If we ask a good scientific
14 question, to my way of thinking, it could easily last a
15 century or more and we could get a different answer
16 every decade and it will not be the right answer, but
17 it will be a little more right than the one before and
18 the next one will be a little more right than the one
19 before and the question then gives us the continuity
20 through time.

21 For example, a good question that will
22 take at least a century to work out is: How do you
23 define a sustainable forest? What is a sustainable
24 forest? We have never asked that question. What we
25 have asked is: What is sustained yield. How do we

1 space trees, fertilize trees, thin trees to make them
2 grow faster to sustain a given volume of wood fiber.
3 That's a fair question. I have no problem with that
4 question.

5 But unless that question is superimposed
6 by how do we have a sustainable forest, which means how
7 do we balance the inputs of nutrients and energy and
8 processes with the energy we take out in the terms of
9 products. We can only have the forest and the soil end
10 up in the decline which has happened over much of the
11 world. It is not done with malice, it is not done with
12 stupidity, it is done out of ignorance and looking at
13 only one piece of the system. We have to start asking
14 different questions.

15 I think one of the other things we have
16 to be aware of today is that we are redesigning the
17 world and so we have to ask some other questions in
18 terms of the future. We have to understand that we are
19 part of this whole creative process of change. So we
20 need to ask ourselves: How do we participate in this
21 process and to what extent.

22 We also have to ask: How can we design a
23 system that allows us to work within the rules laid
24 down by the system to affect the change we would like
25 to see in a way that is compatible with our existence.

1 If we do not today make a conscious choice of how we do
2 that we will continue taking unconscious pot luck and
3 the thing that concerns me is the children will pay the
4 price, we won't.

5 The other question we have to ask is:
6 How do we design a system so that at some point in time
7 the generations of the future that inherit our
8 decisions can look back and see why we made those
9 decisions, so they understand our thoughts so that they
10 can then say, yes or no, this is going along a
11 sustainable path; if not, how do we correct it.

12 These are questions that we have to ask
13 both in research and in management and research and
14 management must come much closer together than they are
15 today.

16 They are starting in the States, but I
17 think we have a ways to go. We are designing large
18 experiments on national forest land which is the public
19 land for harvesting that are designed to go -- some of
20 them 2- or 300 years.

21 Now, all we can do in our generation is
22 set them up. We have no control over which the next
23 generation will honour the experiment so four or five
24 generations from now they get an answer, but to me that
25 isn't my responsibility anyway. My responsibility is

1 to help set them up, to pass on the option, the choice
2 to those future generations. It is not my
3 responsibility to critique what the next generation
4 does with the gift of the choice we have given. That
5 is their responsibility to the next generation. Ours
6 is to set it up so they have the best chance.

7 MR. LINDGREN: Q. On the issue of
8 mycorrhiza, I would like to put a statement made by an
9 MNR witness in this proceeding earlier.

10 This is found at Volume 74 of the
11 transcript, Madam Chair, at page 12,563. I will just
12 read it into the record. This occurred during Ms.
13 Swenarchuk's cross-examination of Mr. Armson during MNR
14 Panel 9. At line 22 on page 12,563, Mr. Armson stated:

15 "Let's return to the situation with
16 mycorrhiza which we know in general
17 exists. They are ubiquitous in our
18 situation, so decisions concerning the
19 activity on forest trees can be made, I
20 believe, without really being concerned
21 about the individual and specific
22 relationships between the mycorrhizal
23 fungus and the root of the trees that we
24 are dealing with."

25 Stopping right there, Mr. Maser, do you

1 agree that timber management decision can be made
2 without really being concerned about mycorrhizae and
3 their relationship with roots?

4 A. Obviously they can be, but in my
5 opinion they are not wise decisions.

6 Q. Why is that?

7 A. -- Because we have learned -- what we
8 have learned about with the mycorrhizal component is so
9 much more complex. We have also learned, for example,
10 that if you spray an area with herbicides it has an
11 impact.

12 I spoke to a group of 600 Christmas tree
13 growers a few years ago and I came on following a man
14 from a chemical company and he didn't stay to hear what
15 was said. It was very interesting. He suggested to
16 them that a Christmas tree farm was one in which they
17 needed to herbicide and kill everything in the soil
18 down to seven inches for one year, so there were no
19 weeds out there, just Christmas trees.

20 What he didn't understand was that you
21 kill the mycorrhizae at the same time. The Christmas
22 tree farms in the Willamette Valley are having problems
23 at the end of the second or third eight-year rotation
24 because a lot of these relationships are being killed
25 out of the system.

1 The other thing is that if you have a
2 weed, what we call a "weed", to me personally there is
3 no such thing, but if you have a weed come in, the
4 European inplant, the transplant that survives -- like,
5 in our range lands we have cheat grass, Russian thistle
6 and we have a plant called tainty ragwort that came
7 from Europe which takes over clearcuts.

8 They tend to be non-mycorrhizal or at
9 best they can use mycorrhizae to enhance themselves,
10 but they don't need it. Unless there is a good
11 compliment of the mycorrhizae in the ground so that the
12 native plants get a foot hole, we have found that the
13 plants that are non-mycorrhizal actually take over the
14 ground faster and occupy the sites faster. In that
15 sense, out-compete the native plant populations.

16 So it is very difficult for those which
17 require mycorrhizae to reclaim sites as the sites
18 become open. Plants don't kick each other out of the
19 way, but if there is an opening, one which is
20 non-mycorrhizal can occupy that site regardless of the
21 mycorrhizal content.

22 In some parts of the system, range lands
23 for example, the work we did down there with small
24 mammals, fire and looking at the plant communities as a
25 whole, we found, for example, that if 50 per cent of

1 the native species were still in tact; in other words,
2 that the composition was at least 50 per cent or more
3 of the native species following a range fire, the
4 native species would come back. If it was less than
5 that, the foreign species came in right now because
6 they are non-mycorrhizal and the mycorrhizae are
7 frequently killed by hot fires in the surface of the
8 soil.

9 We don't know how long their spores
10 survive. That's one of the questions that needs to be
11 asked. We have no idea. We don't know how long it
12 takes for spores dispersed by mushrooms which are
13 mycorrhizal to infiltrate into the soil and what the
14 probability is that they will contact seedling roots.

15 As I said, we have had whole plantations
16 which have been outplanted from nurseries die out in
17 clearcuts. I mean whole plantations. This happened
18 for years. We blamed it on rodent damage until we
19 started looking at the roots and the trees did not have
20 attached to their root system mycorrhizae that were
21 site adapted and the sites were depauperated in
22 micorrhizae also because of management. We suspect
23 that was because of heavy herbicide use.

24 Q. Do we know much about spore survival
25 and clearcuts?

1 A. We know a lot about tree survival in
2 clearcuts, but not enough to predict. One of the
3 things about management which I think gets us in
4 trouble, and it isn't confined to management, I found
5 that as a culture of people we are absolutely trapped
6 in the need to predict the future because we are
7 terrified of the unknown.

8 I mean, we have weather predictions and I
9 find people who determine whether tomorrow will be a
10 good day based on the weather report. You know, if it
11 is cloudy it is no good.

12 We are constantly in management trying to
13 predict the results so that we can have a sure
14 outcome in terms of profits and with the least
15 amount of risk. I don't think in forestry you can do
16 that, anymore than you can do it farming or cattle
17 ranching, and I used to work in a cattle ranch. We
18 could never predict. We couldn't predict from one year
19 to the next. We took our lumps.

20 I see managing any "renewable" resource
21 such as forestry is the same. The only difference is
22 the time element that's involved in finding out whether
23 or not what you have set up here is actually going to
24 work because there are so many variables.

25 Q. Are mycorrhiza --

1 A. Excuse me one moment.

2 Q. Sure.

3 THE WITNESS: Am I going too fast
4 for you?

5 THE REPORTER: No, not at all.

6 MR. LINDGREN: Q. Are mycorrhizae
7 important on nutritionally poor sites?

8 A. Yes, they are important on all sites,
9 depending of course what you want out there.

10 Q. Can you advise me whether or not
11 mycorrhizae are sensitive to site acidification caused
12 by, for example, clearcutting or full tree logging?

13 A. Or air pollution. Yes, they are. In
14 fact, in Germany one of the things that I found
15 interesting, they are only now starting to look at
16 their management practices within the last two or three
17 years.

18 What they were looking for when I was
19 there in 1985 was trying to find acid resistant trees
20 and truffles, trees and mycorrhizae, rather than look
21 at what their management practices, what their
22 intensive practices over the years might have done to
23 acidify the soil because they started acidifying long
24 before air pollution. Air pollution subsequently
25 exacerbated the problem, but was not the initial cause

1 of the problem and they're also beginning to understand
2 that.

3 Q. And is the mycorrhizae component the
4 same in plantations and older forests?

5 A. No. Well, plantations or even young
6 regeneration forests. As the forest goes through what
7 is called succession from the grass forb stage to the
8 shrub/seedling to the young forest, to the mature
9 forest, old growth, et cetera, as that changes the
10 understory and associated plants change also above
11 ground and there's a simultaneous change of the
12 mycorrhizal component species in general below ground.

13 So it is a simultaneous change. We
14 cannot with this magic line of the surface of the soil,
15 by looking at the surface say we understand what is
16 going on beneath. It operates as one organism and the
17 change is above and below. As above so below in terms
18 of complexity. In fact, most of the energy that the
19 trees put in - I am going to get guess at this, I don't
20 remember the exact data - of all of the energy the
21 trees produce roughly 70 to 80 per cent of it, if I
22 remember the figures at all, actually goes below ground
23 to maintain the below ground part of the ecosystem.

24 Q. What are the implications of that for
25 forest management or forestry practices?

1 A... Well, to me that means that the
2 healthier we keep the soil the less energy the trees
3 are going to have to put in below ground because they
4 have a better supply of available nutrients. That is
5 why the first rotation does so well.

6 If you can imagine, you have got a
7 teenage kid and you have a savings account and your
8 your child gets into your savings account one weekend
9 while you are gone with no supervision and throws a
10 party. That first weekend it's is a wing-ding because
11 it is an unlimited supply of money, but the second
12 weekend it can't be so big because there hasn't been
13 enough time to recapitalize your saving account and the
14 third weekend it's a piddly thing because there is not
15 much left.

16 What happens is you are not just spending
17 the interest, you are spending the principal also and
18 then you come home and you in your lifetime cannot make
19 up at this job that has the same income you had when
20 you started saving. You can't make up those savings.
21 So the idea in having a sustainable forest is to
22 balance the inputs and the outputs, and I think in this
23 sense - as I was trying to demonstrate with this
24 yesterday about the pulp mill where the water comes in
25 from the top and goes out the bottom - what we tend to

1 do is manage the output and we take potluck with the
2 input.

3 If we are going to have sustainability,
4 you see, by taking the input and putting it below the
5 output to solve the problem, then that mill is forced
6 to manage both. That mill is forced to manage the
7 quality of the intake water as well because its output
8 affects it. The forest is the same. We must manage
9 the input in order to have a healthy system and if you
10 think of money -- I will talk about the States again
11 because I don't pretend to know Canadian forestry from
12 what I have come across at all as an expert or being
13 critical because I don't intend to be.

14 If I look at the money that is spent in
15 the United States in forestry and if you consider that
16 money is symbolic of the human value or the value we
17 place on something else, as I said about the dictionary
18 definition, resource is something to be converted to
19 money. We spend millions of dollars on road
20 construction and harvest, we spend zero on maintaining
21 the health of the soil to grow the trees in the first
22 place, and so we do not value the soil.

23 I don't know what it's like up here, but
24 I know that we place essentially no value on the soil
25 maintaining its health in the processes. We deal with

1 soil in the planning documents only in terms of
2 compaction and then only for two reasons. We know it
3 increases surface run-off and trees don't do well, but
4 we haven't asked, what does it do to the below-ground
5 processes.

6 Q. When you are referring to the need to
7 manage inputs in the forest, are you referring to the
8 need to manage the biological capital?

9 A. That is correct.

10 MR. LINDGREN: We will return to that
11 issue, Madam Chair, in a few moments.

12 Q. I would like to turn to page 6 of
13 your witness statement. This is Exhibit 1665.

14 A. Which page was it?

15 Q. Page 6 and following.

16 There you outline your view that forestry
17 management is based on five flawed assumptions. Can I
18 ask you at the outset, what do you mean by forest
19 management and is that something that's actually
20 carried out in the forest?

21 A. Well, you will notice that management
22 is in quotes, so what I am talking about is plantation
23 management.

24 Q. The second part of my question is, is
25 forest management something that's done in the forest

1 or is it does elsewhere?

2 A. Forest management and plantation
3 management actually is done in the planning rooms and
4 the boardrooms, it's not done in the forest.

5 What's done in the forest is simply the
6 manifestation of what we have already decided somewhere
7 else outside the forest. As I look at the land over
8 the years, I have come to realize that what we see in
9 the landscape is a mirror reflection of our social view
10 of the system. It is a reflection basically of how we
11 think about each other, of the care we take of each
12 other as human beings.

13 I say that because we compete for
14 resources, but in the game of life there are no rules
15 about the competition. There has been no agreement,
16 there has been no negotiation and what that is going to
17 be on the landscape, hence this hearing.

18 If you go to the Olympic games, there is
19 an agreement before the game is played of the
20 competitive process. So all of the actors, as it were,
21 the athletes know ahead of time what the rules are when
22 they compete for that gold medal. In the forest, we
23 are now struggling around the world to renegotiate the
24 rules so that we can have the game and have the
25 products and have an industry and have a forest for the

1 future.

2 It is a process of renegotiation and it
3 occurs to me that if we could renegotiate before we go
4 out on the land and we renegotiate with a spirit of
5 cooperation and coordination, that the surface of the
6 land and how we leave it would look very different
7 because we would not be competing. In competition, the
8 assumption is, one, there is not enough to go around
9 and, two, the way we do it, if I don't get my share
10 somebody else will get it. So I have to get mine
11 first.

12 The other assumption with renewal natural
13 resources, and this has been in industries across the
14 world from whaling to forestry, is that it is an
15 economic view, that it does not pay to save a whale or
16 an old growth tree; conservation does not pay because
17 if the tree dies, it rots and it loses its potential
18 economic value.

19 We simply have not understood that we
20 must reinvest some of the biological capital in order
21 to have sustainability and that in order to have
22 sustainability we have to stop this type of what I
23 would call destructive, almost rabid competition. The
24 system simply is not designed to take that. It has not
25 evolved to be able to adapt to hundreds of miles,

1 thousands of acres of clearcut done simultaneously very
2 rapidly over and over and over across the landscape.

3 There is nothing in evolutionary history
4 that has been similar to that, including fire, and that
5 is introducing a foreign practice which over time we
6 will find is very disruptive.

7 Q. In terms of planning, what's
8 occurring to the forest landscape is to have clearly
9 defined objectives?

10 A. Yes, in fact one of the biggest
11 challenges we are facing in the States is the forest
12 service having to redefine its vision, its utilitarian
13 vision and it was right in its time and place.

14 I mean, it set up the forest service to
15 be what it is today. It helped through very difficult
16 times, but we have now socially outgrown it, we have
17 evolved beyond that vision.

18 So I was asked to work with the forest
19 service and the supervisors to help them change. We
20 know we need to change, we want to change we say but we
21 don't know how far. My answer is, it isn't that you
22 don't know how, you don't know where to go. They
23 agreed to renegotiate their vision and they are
24 struggling with it.

25 Following vision is the goal, the goal is

1 what you want out there; why are we doing that.
2 Following that is the objective and the objective is
3 telling you what it is, where it is, when it is and how
4 long you want it and how are you going to achieve this.
5 Unless those are clearly defined, no one is accountable
6 and it isn't accountability just to let the people who
7 want to remove the product for a benefit, to those who
8 see another value in the land, but our generation is
9 not accountable to the forests' future.

10 The other thing with accountability is to
11 understand that we have a responsibility. I think we
12 have a moral responsibility to maintain the options
13 which we have to offer the future. All I can give my
14 son is choices. I have nothing else of value to give
15 him except my love, trust and respect. That's all I
16 have to give anyone. If we look at the options and
17 think of the word responsibility, if you break the word
18 down, whatever we leave is the future's and to respond
19 to the conditions that we have set up. Those are the
20 management decisions and those are made in the
21 boardrooms and not in the forest.

22 MR. MARTEL: How do you change what's
23 gone for the last 40, 50 years?

24 I'm not just talking about forestry, I am
25 ... talking about the world as a whole where we see it as -

1 I mean, you listen to the talk, you have to be
2 competitive against one another if you are going to
3 succeed, you have got to be competitive and competition
4 drives the wheel faster and faster and you build in
5 obsolescence in your products which require more taking
6 of natural resources which we are running out of and
7 the cycle continues all in the name of advancement and
8 change for the good. I am not sure where the good is
9 at times, but that's what's out there.

10 How do you get at that attitude? The
11 question I have been asking at this hearing is, is
12 sustainability for us a moving target because we are
13 looking at a forest product policy that was established
14 in '72 and while this hearing is going on we are in the
15 process of establishing a second forest product policy.
16 No one really knows whether we are trying to get from
17 here to here and if this point is going to remain
18 constant.

19 How can you make decisions if that is a
20 moving target all the time, that sustainability?

21 THE WITNESS: That's a good question, but
22 that means that we must define sustainability. You
23 see, what you are defining is sustained, not
24 sustainability, sustained yield on an increasing basis.

25 If I understand your question correctly,

1 this has been our struggle. In the States where we
2 have been starting to change laws in forestry,
3 industry's response is to put as many roads in as fast
4 as possible and to cut as fast as possible to get as
5 much of it as they can before they have to redesign,
6 which is costly, to be in fact compatible with what the
7 forest is capable of producing.

8 We have the notion in our capitalistic
9 society, and in the beginning I think it was right in
10 its time and place, that we had unlimited supply of
11 quality resources out there. The notion was, one, the
12 economic notion is that if it is not used today it is a
13 waste, it is an economic waste. So conservation
14 doesn't pay because we are not really looking at the
15 economics of the forest in terms of the biological
16 aspect also.

17 The other notion is that in order to be
18 healthy it must be always expanding. We must be
19 growing more profits. I think we are going to have to
20 to understand that sustainability means keeping it
21 within some level which is, in fact, sustainable. I
22 know this can be done there was a mill in California,
23 in Scotia California, Pacific lumber that did just
24 this. It caused a very interesting problem.

25 They had a mill that over the last 150

1 years has been in fact sustainable. They were cutting
2 redwood trees, the largest private holdings, and when
3 they replanted what they cut, by the time they got back
4 to it in terms of their rotational planning those trees
5 will be tree 300 years old. They were cutting with a
6 small crew on a sustainable basis. Not on a sustained
7 yield, on a sustainable basis based on what they could
8 grow based on 10-year projections of where they thought
9 weather, climate, everything was going.

10 They were so successful that they had
11 trust funds set up to send all of the kids of the
12 employees through college. They had good medical care
13 and they had such an incredibly valuable business that
14 there was a hostile takeover by a financer from Texas
15 and then he liquidated the forest to pay off the junk
16 bonds for the takeover, but I know it can be done
17 because it is being done gradually by some of the other
18 small timber companies who have a vested family
19 interest in an area and own some land, and they want
20 their kids to have the same option of being able to
21 take over. It is a matter of a point of view.

22 The other part of your question is a
23 little more difficult to answer. To my way of thinking
24 in the west, we stand on the brink of spiritual
25 bankruptcy. What I mean by that is, if you think of a

1 well, you can only draw water from a well if it is
2 filled from the bottom. If a well is empty and dry in
3 the bottom you cannot pour enough water in to get any
4 out.

5 As I have grown and changed over the
6 years, I have begun to understand that this tremendous
7 drive for materialism is a way of trying to fill up
8 that part of us that feels empty. I don't have an
9 answer to that paragraph of equation. I do know that
10 economically, I do know that ecologically, I do know in
11 terms of what we know about the system we can have a
12 sustainable forest, we can have sustainable forest
13 industry, but we cannot have an ever expanding one
14 without ultimately industry going broke because it
15 kills the forest. It is happening all over in all
16 kinds of resource.

17 The other point to this question which I
18 think needs to be brought up is that the industry is
19 far more than just the timber industry that goes from
20 the forest to the mill. Now, in Canada, again if you
21 are cutting in the far north, I don't know the drainage
22 patterns, so again I will go to the area that I am
23 familiar with.

24 In British Columbia, the Columbia River
25 that we inherit as a gift from Canada starts out in the

1 forested watersheds of what I would water catchments of
2 British Columbia. If those are altered substantially,
3 then we have a difference in the flow of the Columbia.
4 The Colorado River heads up in the Colorado Rockies.
5 By the time it gets to Mexico, we in the States have
6 made it so salty with dams that it has to have the salt
7 taken out by a plant before the Mexicans can use it.

8 Why is this important? It is important
9 because if you are in an area where you use
10 hydroelectric power, if your water for drinking comes
11 from forested watersheds, if you have commercial
12 fishing, people who fish for salmon and trout even in
13 the ocean, ours is particularly in the ocean, if you
14 buy beef from ranchers, if you buy vegetables from
15 farmers, those are all forest-dependent industries
16 because they depend on the water that is produced on
17 forested water slopes.

18 If we alter the dynamics of the forest
19 sufficiently, as we are doing in the west in the United
20 States, they cannot depend on it. See, they are
21 forest-dependent industries as much as the timber
22 industry is and they are dependent upon a sustainable
23 forest to produce something besides wood fiber.

24 I will submit that the most important
25 forest product in the future, in the very near future

1 is going to be water and not trees. We can maybe find
2 substitutes for trees, we cannot find substitutes for
3 water.

4 In the west where we have cut high
5 elevations to maintain the sustained yield, we have
6 gone from cutting this much acreage to this much
7 acreage for the same amount of volume, we have changed
8 the way the snow pack melts drastically.

9 Now, that does several things. Water is
10 stored in an L-shaped column, it's stored above ground
11 in snow and then the water that infiltrates moves
12 slowly down slope. If the forest watershed is in good
13 shape, the catchment is in good shape, our snow pack
14 will last through July into August in most years, very
15 often protected by old growth trees on north face
16 slopes or whatever.

17 Where it is clercut, the snow is all gone
18 by June. Now, there is the argument from some of the
19 folks: But it is the same amount of water. That may
20 be true, but it isn't the same flow regime. It goes
21 off in June rather than gradually into August.

22 This has two impacts. If we have acid
23 rain, the snow is an excellent scrubber of the
24 atmosphere and it cleans out the air in the winter and
25 all of the pollutants are stored in the snow column.

1 So if we have a peak flow in June, we end up with an
2 acid blip which, if it is extended to August, we don't
3 get, the acid is released slowly, but if we have an
4 acid peak it can kill the entire salmon hatch for that
5 year which then has an impact on the deep ocean of the
6 commercial fishing people.

7 On the other hand, if it all goes out in
8 June, the rancher doesn't have the water flow in August
9 and so we are changing the flow dynamics by having
10 clearcut so much of our high elevation and it's having
11 drastic impacts. The other things is, the peak is
12 causing tremendous erosional problems.

13 Now, again, I don't know the topography
14 you folks are dealing with, but those are some of the
15 problems we are facing.

16 Q. Mr. Maser, I would like to refer you
17 to page 7 of your witness statement and in the middle
18 of that page there is a reference to the greenhouse
19 effect.

20 Now, in source book Volume 3 you have
21 reproduced a paper by Shindler who did some work in the
22 experimental lakes area and he has observed what we
23 believe to be the preliminary impacts of global
24 warming.

25 In your opinion, will the coniferous

1 forests of Ontario be affected by global warming, and
2 if so, how?

3 A. If you just want to take that one
4 study which was done in your area, what they found was,
5 if I remember correctly, the temperature of the lakes
6 and the air temperature, the ambient air temperature
7 rose over a 20-year period by two degrees Centigrade.
8 If I remember correctly, the snow-free period was three
9 weeks longer.

10 Well, if you consider that, consider what
11 this does just to one thing, the amount of snow and the
12 length of time that the snow stays on the ground. That
13 can alter the entire dynamics of the hydrology of the
14 system. This will then alter how the forest functions
15 because the forest will have in terms less water, it
16 will grow sooner and you are simply beginning to alter
17 the dynamics.

18 Now, if this is done fast enough and
19 those trees do not have a chance to adapt to such
20 sudden changes, the chances are very likely that over
21 time you will start to lose the forest because it is
22 not adaptable. Something has been introduced, a very
23 rapid sudden change and if the temperature climbs to
24 the eight or ten degrees that are predicted, that is a
25 dramatic change.

1 Let me give you an example again from
2 Oregon. In the Great Basin, which is an area where all
3 of the water drainage is into the basin, there is no
4 water drainage out, during the last ice age, which
5 ended about 10,000 years ago, we had what we call
6 large Pleistocene lakes. Now, they were many hundreds
7 of miles, square miles in extent.

8 In the Great Basin, the difference
9 between our temperatures prior to the 1990's, prior to
10 the warming, in the last three years have been some of
11 the three warmest on record, if I remember correctly.
12 The difference between the ice age lakes and what is
13 there today is an average of three degrees Centigrade
14 lower annual temperature. That's the average
15 temperature.

16 Well, back in the late 80's, mid 80's I
17 guess, we had two years that were about three degrees
18 lower in the average annual temperature, and there is a
19 wildlife refuge out there called Malheur wildlife
20 refuge which is a big mud puddle. It's a marshy area
21 with ducks and all kinds of water fowl. During those
22 two winters, that extended from a puddle to a lake that
23 was 40 miles in diameter and deep enough to completely
24 cover two-story ranch houses. It ground out the
25 ranchers.

1 It took over five years for that water to
2 evaporate again, but that is how dynamic a very small
3 incremental change in temperature can be. What we saw
4 down there, no one has ever dealt with global warming,
5 not in the way we are doing it.

6 The thing to keep in mind here is that
7 these systems are all geared, as I think I said
8 yesterday, dissipative. To dissipate their energy they
9 balance the energy like a stream that meanders. It is
10 dissipating its energy in the meander. If you
11 straighten it out there is a lot of energy going down
12 the stream and it scours out its channel.

13 Global warming is the blocking of the
14 earth's ability to dissipate the excess heat out into
15 the atmosphere. So it is going to come back. When it
16 gets trapped it is going to alter the entire dynamics
17 of the earth and the soil, the plants, the animals are
18 all going to have to adjust to a new set of rules.

19 We don't know anything about that. We
20 have never done it. Our only insurance policy for the
21 future is to maintain absolutely the most resilient
22 ecosystem we can and as much of the stored available
23 genetic diversity that is absolutely possible to save.
24 So that as we learn more about it, we can adapt, as the
25 landscape adapts, which again gives the generations of

1 future the best chance. If we do not do this, in my
2 opinion we will foreclose the options. Then what?

3 Q. Mr. Maser, on the issue of strategies
4 for dealing with or responding to a climate change, you
5 have reproduced in Volume 3 of the source book an
6 article entitled Climate Change and Ecosystem Responses
7 by Perry and Borcherz. If I could, I would like to ask
8 you to turn to page 21 of that document.

9 Madam Chair, this is found in source book
10 Volume 3 which is Exhibit 1668C. It is in alphabetical
11 order and it is about halfway towards the back.

12 MS. BLASTORAH: What was the page number.

13 MR. LINDGREN: I am going to be putting
14 page 21 of that article to Mr. Maser.

15 MADAM CHAIR: And the author is...?

16 MR. LINDGREN: There are two authors,
17 Madam Chair, David Perry and Jeffery Borcherz.

18 MADAM CHAIR: Are you starting with
19 Perry?

20 MR. LINDGREN: No, they are co-authors of
21 the same article.

22 MADAM CHAIR: All right.

23 THE WITNESS: This article has since come
24 out.

25 MADAM CHAIR: Is this a three-page

1 article, Mr. Lindgren?

2 THE WITNESS: No, it's longer than that.

3 What are you looking at is the --

4 MADAM CHAIR: Perry and Borcherz?

5 MR. LINDGREN: That is correct.

6 MADAM CHAIR: All right.

7 MR. LINDGREN: I am referring to page 21.

8 THE WITNESS: This article has been
9 published in the Journal of Environmental Management
10 and it is now out in press -- out in print.

11 MR. LINDGREN: Q. Now, in the body of
12 the article, Mr. Maser, the authors discuss the impacts
13 of climate change on various components of the
14 environment, and on page 21 they set out some of the
15 implications for land management.

16 At the top of the page they write that:

17 "It is imperative that management of
18 forests, range lands and agricultural
19 lands include strategies for stabilizing
20 ecosystems and facilitating the
21 transition from one community type to
22 another. This may decrease some
23 short-term yield, but it will buy us and,
24 more important, our children some degree
25 of insurance in the face of a highly

1 uncertain future."

2 The first strategy they set out in `

3 paragraph No. 1 is that:

4 "Soils must be protected by maintaining a
5 cover of healthy perennial plants at all
6 times. This can be accomplished by
7 avoiding clearcutting in forestry..."

8 and then it goes on to talk about

9 agriculture and grazing as well.

10 Are you in general agreement with that
11 strategy?

12 A. Yes.

13 Q. Why is that?

14 A. Well, there are a couple of things --
15 three things really that come to mind with this.

16 One is, where we have clearcut on some of
17 the soils in Oregon the soils have been what we call
18 unravelled. We found out over a 20-year period of the
19 forest service trying to replant certain areas that the
20 seedlings simply do not do well or did not survival.

21 When Dave Perry and Susan Borcherz
22 started looking at this, they found that the
23 mycorrhizal fungus produces substances, some of them
24 called iron celates, that form a way of holding the
25 soil particles together and actually structure the soil

1 so that it had the appropriate pore spaces, the
2 appropriate fineness, diversity in particle sizes for
3 the trees to grow. They also then formed the
4 mycorrhizal relationship with the trees and they
5 allowed the soil to hold water.

6 What happened when these areas were not
7 planted immediately and when they had -- the forest
8 service had herbicided all the ground cover, the
9 mycorrhizae were killed with it and when that happened
10 the soil simply turned to -- is just fell apart, it
11 unravelled. There were just loose pieces there and it
12 held nothing.

13 The way they are new reforesting it is to
14 dig holes and they have to get soil from the
15 established healthy forest and put the soil in the
16 hole, then plant the seedling and that reinoculates
17 those sites and it gives the seedling a chance to pick
18 up the inoculum that's necessary.

19 Again, we are going to, through global
20 warming, be shifting entire plant and animal
21 communities around all over the world. The temperature
22 raise is rewriting the rules and we don't know how they
23 are going to migrate, but we have a very good idea that
24 it isn't just going to be individual plants because if
25 you think about the mycorrhizae, the plants -- some of

1 them are fairly specific. The plants above ground, the
2 mycorrhizae below ground must migrate together as they
3 have historically in geological time. The animals who
4 are the vectors who play a role in this whole thing
5 must migrate with them. The best way to make sure that
6 happens is not to have strips of "no biological lands",
7 sterile land in between because it forms barriers.

8 The other thing is a lot of carbon is
9 stored in the soil and when the plant cover is removed
10 that carbon simply goes out into the atmosphere and is
11 one of the areas, one of the places that the carbon is
12 released which then feeds up a negative feedback loop
13 to part of the original problem, which is the carbon
14 dioxide as a greenhouse gas.

15 But carbon dioxide is not the main
16 greenhouse gas in terms of its impacts. In an article
17 that came out recently - and unfortunately I don't
18 remember the citation - they found that nitrous oxide
19 has the capacity on a per molecule per molecule basis
20 to increase warming global 180 times more than one
21 molecule of carbon dioxide.

22 Chlorofluorocarbon-12 has the capacity to
23 warm the atmosphere one molecule 10,000 more than one
24 molecule of carbon dioxide, but it is the cumulative
25 impact of the amount of the carbon dioxide that gets

1 into the air that is also making up a lot of the
2 difference.

12 Q. Thank you. The next strategy that
13 the authors outline is found in paragraph No. 2 on page
14 21, and they write that:

1 regions. Preserving the legacy of
2 ecosystems such as old logs and snags is
3 also an important component of the
4 strategy because it may promote quicker
5 restoration of habitats and processes
6 that are buffers to disturbance."

7 Again, are you in general agreement with
8 that strategy?

9 A. Yes, this is what we worked on the
10 last 15 years.

11 Q. The next strategy outlined on page 22
12 indicates that:

13 "Excessive utilization stresses
14 eco-systems and must be avoided. In
15 managed forest, this means conserving
16 organic material and nutrients and
17 eschewing overly short rotations."

18 Do you agree with that strategy?

19 A. Yes.

20 Q. How would that be implemented in
21 terms of forest management or forestry practices?

22 A. That means as much as possible having
23 natural regeneration, as much as possible avoiding
24 plantations, and if you are going to put in
25 plantations, to have them on extended rotations.

1 We are having a challenge now on the west
2 coast because some of the agencies and some of the
3 timber companies want to cut on a 40-year rotation.
4 They want to maximize the wood fiber and what they are
5 doing is severely stressing the system for all the
6 reasons that we've talked about and they are keeping
7 the soil then exposed in the young stage of the forest
8 much longer.

9 What Perry is getting at and the way we
10 have looked at it is to maintain these soil conserving
11 organic material and nutrients means to make sure that
12 the input is balanced with the outtake. That means
13 reinvestment of biological capital. You cannot do that
14 in plantations if you have not maintained or do not on
15 purpose grow some longer rotations to produce the big
16 snags, the big trees and the large logs for the future.

17 If you remember the slides yesterday, I
18 said the heartwood was the most important part. Now,
19 if you think of a tree in its full length, the top of
20 the tree has a very small bit of heartwood and a lot of
21 sapwood. The heartwood/sapwood ratio is very different
22 than it is at the butt of the tree.

23 The top of tree the simulates a young
24 tree, the bud of a tree simulates an old tree. So the
25 tree does not rot the same. If you have a young forest

1 with no old trees, there is more sapwood to the
2 heartwood ratio and the trees rot much faster. They do
3 not have the volume to hold the water that performs the
4 function over the years. So what we are doing then is
5 changing the dynamics of the rotting process.

6 They are a couple of other things in this
7 that need to be taken into account in conserving these
8 things. An old growth tree renda at some point to die.
9 One of the things in diversity we found as we tried to
10 sanitize plantations, and I don't know if you can do
11 that up here, but in the States we even talk about
12 sanitary forestry which is deadly over time because the
13 thing that creates a tremendous amount of diversity in
14 the forest is how trees die, what kills them. That
15 determines how they rot, that in turn determines how
16 fast they incorporated into the soil, that in turn
17 determines what types of processes are ongoing in terms
18 of the biological reinvestment.

19 So no two trees die the same, but if we
20 get rid of the diseases and insects and so forth we are
21 putting the forest in a straightjacket when it comes to
22 diversity. We are stripping it of its diversity. That
23 is what a plantation does. It simplifies what was a
24 forest to the simplest, most common economic
25 denominator which is getting the wood fiber as fast as

1 possible to the least cost. That isn't good or bad it
2 and of itself, but over time it will not the effect
3 that we want.

4 The other thing that we are doing in the
5 States that is strictly economics is trying to wind
6 prood trees, make them wind firm. We do that by
7 liquidating the large old growth and we do that --
8 well, that's the main reason and then cutting the
9 stands when they stop their maximum growth before they
10 slow down, before disease hits, before windthrow can
11 hit, we cut them and start it over.

12 But if you think of a big tree blowing
13 down, its roots pull out of the soil and they are very
14 often weakened with root rot, but they mix the organic
15 and inorganic components of the soil. They also form a
16 pit and a mound topography. The pit is where the roots
17 were pulled out, the mound is where the roots are left.

18 If you have a slope like this or even a
19 very gentle slope, that pit and mound, because trees
20 then fall this way, they fall this way, they fall this
21 way, where we have dug up the soil in old growth, put
22 out lines and dug it on a grid to map the down wood, 30
23 to 50 per cent of our organic material is rotting wood
24 in the forest floor.

25 The logs are criss-crossed and this

1 hummocky appearance controls, defines the flow regime
2 of the water. It also creates patches, openings where
3 we have a lot of diversity then on the ground of
4 plants. We call them light gaps.

5 The other thing it does is when a fire
6 goes through these areas tend not to burn because they
7 are refuge from which the other organisms and
8 mycorrhize recolonize the burned areas. We have found,
9 as I showed you in that one slide, after the first
10 rotation was cut - do you remember that burn slide
11 where there was very little old large things left - if
12 you look at that slope it is very smooth. By the end
13 of the second or third rotation, the surface of the
14 soil is not hummocky, it is a smooth surface and this
15 increases the flow, it alters the dynamics of the
16 system completely.

17 The other thing is, in management all we
18 know how do to is compact the soil with equipment
19 unless you walk in, cut the tree and take it out with a
20 helicopter, which we have done. The root plowing of
21 the trees keeps the soil loose and frayable.

22 The problem with loosening the soil after
23 mechanical compaction is we invented a machine called a
24 ripper. It goes on rubber tires, but it has big teeth
25 and it goes through the soil and it loosens it by

1 ripping it loose. What are we doing to the roots and
2 the processes below ground? We have never asked that
3 question. The trees pluck is out over the centuries,
4 they plow out the whole soil. We do it very fast, but
5 we are extremely disruptive.

6 I saw the note and it must be time for me
7 to stop for a recess.

8 MADAM CHAIR: Shall we have our coffee
9 break now, Mr. Lindgren?

10 The Board is very interested actually in
11 the issue of compaction and what is done with respect
12 to surface damage on the soil and you are talking about
13 the other implications, but we would like to pick up on
14 that point after the break and if you can inform us if
15 you know of any research that's been done on that
16 topic.

17 THE WITNESS: There is research. I will
18 inform you right now. I know very little about the
19 surface part of the compaction. I know the questions
20 we need to ask about below.

21 MADAM CHAIR: All right, thank you.

22 Ms. Cronk, did you want to take a longer
23 lunch hour today since you are going to be...

24 MS. CRONK: Yes, Madam Chair, that might
25 be helpful, but if I could have some indication from

1 Mr. Lindgren when we anticipates, subject to any
2 questions from the Board, that he would be finished his
3 direction examination it would be helpful.

4 MR. LINDGREN: I would anticipate that we
5 are not going to finish everything before lunch and I
6 am going to require a bit of time between lunch and the
7 first afternoon break. So certainly by the afternoon
8 break we will be completed.

9 MS. CRONK: Madam Chair, I think candidly
10 I am in this position, I am certainly prepared to start
11 today; I anticipated that might be necessary. We tried
12 several times last week to reach Mr. Hanna and were
13 unable to do so.

14 I am certainly prepared to start and I
15 will go as long as I can today and I suspect I may, in
16 the normal course, go to four o'clock.

17 MADAM CHAIR: Yes.

18 MS. CRONK: So I am grateful for the
19 suggestion. Perhaps we should just see what time
20 normally we will be rising and I could speak to you
21 about that matter then.

22 MADAM CHAIR: All right, fine. In any
23 event, do you want to take two hours instead of an hour
24 and a half for lunch?

25 MS. CRONK: Well then, fine. Thank you.

1 MADAM CHAIR: Let's just do that.

2 MS. BLASTORAH: Just before you rise,
3 Madam Chair, I should just make the Board aware that I
4 had originally projected a day to a day and a half. I
5 did not have a good idea of how long I might be. I
6 should advise Ms. Swenarchuk in terms of Panel 7 that I
7 expect I will not be more than probably half a day, if
8 that.

9 MADAM CHAIR: For this panel?

10 MS. BLASTORAH: For Mr. Maser. So that
11 may affect the starting time of Panel 7 and I thought I
12 should make the Board aware of that.

13 MADAM CHAIR: It sounds like we will be
14 finished this week then, Mr. Lindgren.

15 MR. LINDGREN: That remains to be seen,
16 Madam Chair.

17 MADAM CHAIR: Well, we only have three
18 parties cross-examining.

19 MR. LINDGREN: Perhaps Ms. Cronk might be
20 in a better position to advise us how long she might be
21 in cross-examination.

22 MS. CRONK: My estimate hasn't changed
23 from what Mr. Cassidy had informed the Board, Madam
24 Chair, at least a day.

25 MADAM CHAIR: Okay, thank you.

1 ---Recess taken at 10:35 a.m.

2 ---On resuming at 12:00 p.m.

3 MADAM CHAIR: Please be seated.

4 MR. LINDGREN: Thank you, Madam Chair.

5 Q. Just before the break, Mr. Maser,

6 Mrs. Koven asked you a question regarding soil
7 compaction. Would you like to address that question
8 now?

9 A. Well, I was told that they were
10 interested in soil compaction. I don't think I had a
11 question yet.

12 MADAM CHAIR: You said just before the
13 break that your expertise is not so much in the
14 knowledge about the surface impacts of soil compaction,
15 but that you were concerned what soil compaction does
16 to below-ground processes. Could you just elaborate on
17 than that?

18 THE WITNESS: Yes. We have looked at
19 soil compaction from different point of view. We did
20 a study looking at compaction by livestock to get some
21 idea of what animals do because you have to understand
22 some of the whole thing. Compaction takes place
23 period.

24 One of the things we learned looking at
25 the food habits of a little mammal called a shrew that

1 feeds primarily on larval insects, in the area where
2 there were no livestock the shrew's food habits were
3 normal, largely the larva of moths and beetles and
4 things that were in the surface of the soil.

5 With very light livestock compaction;
6 that is the livestock cows were on the range, their
7 food habits began to shift and where there was moderate
8 to heavy compaction from the animals the shrew's food
9 habits shifted completely to organisms that had to fly
10 in and fly out, like grasshoppers, because the middle
11 layer was so squished down that the larval organisms,
12 like butterflies, the moths and the caterpillars and
13 the beetle larva could not live there. Those organisms
14 are part of the cycling process on this very rich
15 surface layer of the soil and the removal of those
16 completely alters the dynamics.

17 The other thing that we have been
18 concerned about with compaction is, what happens to the
19 processes below ground; the mycorrhizae, for example.
20 When you compact the soil you completely alter its
21 structure and you alter how water permeates through the
22 soil, you alter the pore spaces, the oxygen, so forth
23 and so on.

24 What does this compaction do to these
25 types of things over time because compaction is a

1 cumulative thing. We look at things in the -- what I
2 will refer to again as the invisible present. We do
3 something now and we don't see an impact from it, but
4 if we do it again and we do it again over time or --
5 when I was a kid we used to have glass milk bottles
6 with a little paper top. Sometime between the end of
7 the 40's and the beginning of the 60's those glass milk
8 bottles disappeared and were placed by cartons. All of
9 a sudden one day in the 50's I noticed: My God, the
10 glass milk bottles are gone.

11 The invisible present is that stretch in
12 which we pyscologically do not measure change, but if
13 you look at it from one end to the other you notice
14 that there has been a dramatic shift in something.

15 This is what we call cumulative effects
16 or cumulative impacts in the States in dealing with
17 forest management practices or range management
18 practices. What is happening with compaction is one of
19 those cumulative effects and we don't know yet what
20 happens below ground. We do know that when trees don't
21 grow on the surface there is more than simply squishing
22 down the soil. We are altering the below ground also
23 and these are the some questions that researchers are
24 trying to frame to figure out to how to ask.

25 So I guess if I were to voice a concern

1 about compaction or any of these things it's more as a
2 caution that we don't know the cumulative impact of
3 cumulative effects. From the German experience, as
4 Plochmann said in his 1968 article, I believe it was,
5 it took about a century for the biological impact of
6 their intensive management, plantation management in
7 Germany to show up. I don't think today humanity can
8 afford another hundred years before we see what the
9 mistakes are.

10 MR. LINDGREN: Madam Chair, the Plochmann
11 reference is reproduced in the source book.

12 Q. I do have a final question for you,
13 Mr. Maser, on the Perry and Borcherz article on climate
14 change and it has to do with the final paragraph on
15 page 22. In the final paragraph, the authors indicate
16 that:

17 "Historically soils disturbed by
18 intensive agriculture, forestry and
19 grazing have been significant sources of
20 carbon to the atmosphere. In fact,
21 forests store significant amounts of
22 carbon and, as we mentioned earlier,
23 conversion of old growth Douglas fir
24 forest to young plantations decreases
25 the carbon stored in the system even when

1 changes in the soil are not taken into
2 account."

3 Stopping right there, sir. Can you
4 advise the Board as to your views on the ability or
5 function of old growth and young plantations as carbon
6 sinks?

7 A. There is a notion in the United
8 States which has been put forth by industrialists
9 primarily and in a sense it is correct and on the
10 surface it appears absolutely logical, and that is that
11 by cutting old growth forests the young growth forests
12 grow faster, therefore, they absorb more carbon dioxide
13 from the atmosphere.

14 Basically I can agree with that. The
15 problem with the notion as a whole is that the young
16 tree is not a carbon sink to the same extent that the
17 oath growth is. A big old growth tree with a large
18 diameter trunk, that trunk is basically immobilized
19 carbon. We call it a carbon sink.

20 When those trees are cut, that carbon
21 becomes available to the atmosphere. That is one of
22 the reasons deforestation has been so -- I don't want
23 to say -- has altered the atmosphere as much as it has
24 because this carbon is suddenly available. As soon as
25 the tree dies under the chain saw or the axe or

1 whatever, it begins the decomposition process and that
2 is a release of the carbon, and it might not be fast.

3 I mean, you can't say: Well, geez, in a
4 year it is going to be gone. You build houses of it,
5 but wood gradually deteriorates and in that
6 deterioration process the carbon is released into the
7 atmosphere as carbon dioxide.

8 The flaw in the argument, according to
9 the paper in here which is Harmon et al 1990, which you
10 also have reference to I believe, is that the young
11 trees cannot absorb out of the atmosphere as much
12 carbon monoxide as is already stored in the trunks of
13 the old growth tree. Since there is already a surplus
14 of carbon dioxide in the atmosphere acting as a
15 greenhouse gas, then if you cut the old growth and you
16 planted all of the unplanted acres, there would not be
17 enough young forest to make up the difference in carbon
18 dioxide absorption versus that which is released by
19 cutting the old forest.

20 The problem with this is, you just can't
21 shut down industry. So I am not saying that no old
22 growth "should be cut". Ideally that would be my
23 preferred alternative provided something was done so
24 that industry didn't suffer from that, but there are
25 things that can be done in looking at alternatives.

1 We are going to continue to have an
2 impact. There are no two ways about that; we have to
3 accept that. We also have to look at that impact to
4 see what the most reasonable -- and I will not use the
5 word solution, because there is none. This is a human
6 problem, not an ecological one. How do we resolve the
7 differences between conservation and management in
8 using the forest. We can't solve it, but we have to
9 resolve it and that becomes a renegotiation between
10 human parties and how we are going to use and view the
11 land. That is the important part.

12 I would add something here which to me is
13 very important. That view came from industrialists in
14 the United States because they are terrified of losing
15 more than money; it is a way of life. A lot these
16 folks were loggers that are arguing very strenuously
17 not to lose that which is familiar, not to lose that
18 which gives them value.

19 I would suggest in all of this, I know
20 these debates get heated, but we must have mercy with
21 each other. People who have gone before us, as I may
22 have said and will reiterate, have made what we today
23 would call mistakes. In their day, in their time they
24 were on the cutting edge of knowledge and they were
25 right.

1 Today we have a different view of that
2 knowledge. We think we are on the cutting edge and a
3 generation from now we will find that we also made
4 mistakes, but it is based on these mistakes that causes
5 us to ask the questions that forwards our knowledge.
6 This cannot be a contest of beating each other up
7 because nothing can be resolved unless we come together
8 and look at the ecological system differently and ask
9 ourselves, how can we cohabit with the landscape on a
10 compatible basis because after all it will draw the
11 line, not us.

12 MR. MARTEL: I am just wondering, I am
13 thinking how much have we learned from the mistakes of
14 the past that apply to today?

15 THE WITNESS: Sir, I think we have
16 learned a lot. I think there are areas of the country
17 that are further behind than other areas of the country
18 and it may be because of the universities, it may have
19 to do with the system - meaning no disrespect because I
20 love come to Canada - but I spoke a few years in
21 Kamloops, B.C. when I was down and I went over some of
22 the things we learned then.

23 A gentlemen, Dr. Harry Smith from the
24 University of B.C. in Vancouver got up and he read the
25 Riot Act about everything we can't do, the courts are

1 making our decisions and he went on for about an hour.
2 It was an interesting tirade.

3 When he was done, the chairperson asked
4 if I would like to respond and I said yes. I said, you
5 know Dr. Smith is entirely correct, we have made these
6 mistakes and we are still not doing things correctly.
7 I suggest you Canadians are dumber than we are and the
8 room got deadly silent. You are watching us make the
9 mistake and you make the same mistake 10 years later.
10 Yours are dumb mistakes because you know the outcome
11 from looking at us. Your system is slightly different,
12 make some intelligent mistakes that we can learn from.
13 Learn from us and we can learn from you.

14 I suspect the reason that we all make
15 mistakes is that we are creatures that learn from
16 experience and if we have not experienced something it
17 is often difficult for us to translate someone else's
18 experience into our realm of knowledge.

19 So I think one of the things that would
20 help, sir, is that there be a much greater exchange of
21 scientific information and people visiting back and
22 forth and forget this magic line call the border.
23 Ultimately these forest blend, they have no respect for
24 political boundaries.

25 If we have and exchange information, if

1 we had an exchange of people I think we could have the
2 best and the hottest forestry program anywhere in the
3 world, across the U.S. and Canada, but somehow that
4 border is a restriction. I don't think that's
5 necessary.

6 MR. MARTEL: I was talking about change
7 in the context that we don't learn very much.

8 THE WITNESS: I think change -- this gets
9 down to what I said before, I think it is a very
10 difficult question. Change is an important thing. As
11 I grow my view changes and I think the greatest
12 blessing I have had is I have never had a forestry
13 class in my life, and the reason that's a blessing to
14 me is I did not come out with people telling me what
15 the right answer should be and what to think.

16 I started asking question when I saw
17 answers that didn't add up. I was working with some of
18 the best foresters, best researchers in the world and I
19 had the opportunity to learn from them. I have asked
20 different questions. The things that sparked those
21 questions have lifted the way some of these researchers
22 have thought over years and we are asking different
23 questions.

24 I think what we need to do collectively,
25 individually, which adds up to the collective, is have

1 the courage to change, but I also think in how we treat
2 each other by my not trying to convince you of a point
3 of view, giving us the space to change where it's safe.
4 We do not create a safe environment for each other to
5 deal with each other in, and I think that to me is the
6 basic answer.

7 We need to create an environment where it
8 is safe to disagree, where it is safe to express
9 different opinions and understand if we are willing to
10 renegotiate our concept of the landscape, if we are
11 willing to renegotiate instead of shutting down
12 industry. I would love to have industry sustainable.
13 It can only be sustainable if we have a sustainable
14 forest.

15 The question is, how do we do that? What
16 are industry's real needs, but this brings up another
17 question and maybe this is a good time because to me it
18 is part of the answer, sir. When we look at -- as I
19 look at world, I see the term want, need, demand and
20 desire. What I have heard for years by both our forest
21 service and the government agencies that deal with
22 resources is we must meet the public demands.

23 I have looked at our law and it says
24 nowhere that we must meet public demand. So I began to
25 ask what demands were. My wife and I moved and it took

1 a while for our first class mail to catch up with us
2 but the catalogues got there the next week. To me the
3 catalogues are torture books. You don't know until you
4 open it up and see the pictures that creates the
5 demand.

6 I think we need to ask a different
7 question. I think I said yesterday, it is what is
8 necessary. What is really necessary to have a
9 lifestyle of a reasonable level. If we can make this
10 shift, which again is a personal one, then we have a
11 lot greater flexibility in how we deal with each other.
12 We must also remember that constant expansion won't
13 work.

14 I think all of these ideas are possible,
15 but I think we need a safe environment with which to
16 deal with each other. To me that's the greatest
17 challenge. We are terrified of simply facing each
18 other; therefore, I see us also as the solution to the
19 problem. I have faith in human beings. I think we
20 will, we can do it. It is not going to be easy, but I
21 think we can do it.

22 I'm sorry I can't give you a better
23 answer than that.

24 MR. LINDGREN: Q. Mr. Maser, moving from
25 climate change to acid precipitation, on page 7 of your

1 witness statement you refer to air pollution and
2 potential impacts on ecological variables such as soil.

3 Can you briefly explain how the
4 coniferous forest can be affected by acid precipitation
5 and can you briefly indicate how land managers should
6 take that into account in the management of our
7 forests?

8 A. Well, acid air pollution is one of
9 the ways that the acidity is raised. In the Rocky
10 Mountains these days they are finding that the lakes
11 are turning acid way above any zone of management, any
12 zone of logging, which brings up one point which I
13 think is important here because I hear conservationists
14 frequently talk about pristine.

15 I would submit there is no such concept
16 left in the world as pristine. I don't think there is
17 a pristine acre anywhere. We have polluted the entire
18 continent and the oceans.

19 There is a fish - and I don't have how to
20 spell this, but I will try it later - called a
21 celocanth, there is no common name, whose fossil record
22 goes back 300 million years relatively unchanged. They
23 found it in 1938 living in the deep waters off of
24 Madagascar. Today it is on the verge of extinction
25 after 300 million years.. Its bodies, the ones they

1 have been able to get from the deep ocean, are laced
2 with PCBs and DDT, derivative DEE. We are now killing
3 it with pollution.

4 I think we need to ask ourselves if we
5 are polluting the air, of course that is one of the
6 four main elements of forestry, how do we clean up the
7 other industrial end of it so we do not have this
8 impact. It isn't simply going out to the landscape and
9 doing something. Everything is interdependent.

10 We cannot find a quick fix, there is no
11 such thing. I have never found a shortcut in my life
12 that didn't take longer than the path I should have
13 taken the first time ever. But there are things I
14 think that can be done and leaving a good biological
15 legacy out there, biological reinvestment is one of the
16 things that can be done. Making sure that there is
17 enough left after harvest to reinvest in the soil and
18 keep the soil absolutely as healthy and resilient as
19 possible.

20 If you are going to go into a plantation
21 mode, I would recommend things like going and not
22 clearcutting, do a selective cut, and then leave the
23 last -- do not remove the 20 per cent of the overstory
24 trees, leave them as the legacy for the next stand,
25 leave them to die and decompose because they buffer the

1 system in terms of the acidity.

2 There are a lot of things that we can do
3 if we ask different questions and the question that
4 needs to be asked is: How can we shift our management
5 to ameliorate the impact of industrial pollution on the
6 acidity of the environment.

7 That's a simple question. The answer
8 might not be comfortable, but it is a question I think
9 we need to ask. If we ask the right question, which to
10 me is why the question is so important, we have to ask
11 a fundamentally different question before we get a
12 fundamentally different answer. We ask the same
13 questions and we get the same answers and they are not
14 teaching us anything anymore. We need to ask new
15 questions.

16 MADAM CHAIR: Mr. Maser, the 20 per cent
17 figure you used for standing timber that's left after
18 harvesting, was that the same figure you were referring
19 to yesterday in the one management plan that you had
20 worked on in Oregon or was it the source of the 20 per
21 cent?

22 THE WITNESS: That is not derived from
23 anything except that in the States when they make a
24 shelterwood they normally remove 80 per cent and leave
25 20 per cent. We have found that the 20 per cent on the

1 stands we have looked at seems -- it feels right. We
2 have no data, but we have left some and they have now
3 become experimental to be tracked over time too see
4 what happens, was is the rate of the trees falling
5 down.

6 We have girdled some of the trees, we
7 have blasted the tops out of some of the trees with
8 prima cord to allow heart rot to get in, to see if we
9 can simulate in a shorter time some of the old growth
10 characteristics. If that is true, then we have some
11 options in managing for these things at an earlier age
12 perhaps in the forest structure than waiting 400 years.

13 MR. MARTEL: How do you translate,
14 though, that 20 per cent in select cutting to areas
15 where you will be clearcutting; in other words, so the
16 type of material you want for reinvestment and
17 everything else, what sort of pattern would you try to
18 utilize?

19 THE WITNESS: Assume you are going to
20 clearcut, in other words?

21 MR. MARTEL: Yes.

22 THE WITNESS: What we have done
23 initially -- that's a very interesting question because
24 it posed for us a very interesting problem.

25 It was okay with the industrial folks to

1 leave the slash, the non-merchantible material, but we
2 came to the conclusion that that really was not a
3 reinvestment in the thinking necessary. It was a
4 reinvestment of the material that was free, but to
5 really to reinvest something there's a cost in
6 reinvestment.

7 So what we did was start looking at the
8 prescription of leaving "x" numbers of merchantible
9 logs per acre scattered over the landscape, and then
10 looking at the landscapre, the biologist and the
11 silviculturalist would decide how those things should
12 be placed or felled and left, and these were marked
13 before the sale.

14 MADAM CHAIR: Excuse me, the idea that
15 you would use merchantible rather than unmerchantible
16 timber is what?

17 THE WITNESS: What we did was we would
18 leave as much unmerchantible as possible, but to start
19 learning to shift our thinking there was a requirement
20 to leave a few merchantible ones to understand that
21 reinvestment is an economic thing also. It just so
22 happens the forest does not run on money, it runs on
23 rotting wood a lot.

24 So to shift the consciousness, to get
25 used to the idea,-one must do it gently. We started by

1 leaving one or two merchantable logs per acre. When we
2 started working on the mycorrhizal component, our first
3 paper was published in 1978 and for the idea to really
4 catch on solidly took a decade. Understanding that
5 people come along at different speeds, we tried to
6 start this slowly, but to instill the idea that we must
7 be economically responsible, as well as biologically
8 responsible because you cannot separate the two.

9 If we only leave out there what is free,
10 which is the slash, which is not merchantable, then we
11 have learned nothing. We have come nowhere because we
12 have left nothing out. So we had them cut the trees
13 and then leave them to get the idea that in the future
14 part of the stands must be grown specifically to be
15 left as that reinvestment when we have liquidated all
16 of the free timber, and old growth is free. We have no
17 investment in it. That is simply there to be cut and
18 it has value when it is on the truck.

19 So we must make a conscious reinvestment
20 and that is what we were trying to help people slowly
21 to come to grips with because we must go in that
22 direction.

23 Did that answer your question?

24 MADAM CHAIR: Yes, thank you.

25 MR. LINDGREN: Q. Mr. Maser, on page 7

1 of your witness statement you make a reference to
2 simplification of forest eco-systems and you have
3 mentioned that concept throughout your evidence.

4 Can you explain briefly what happens when
5 you attempt to simplify a landscape, a forested
6 landscape?

7 A. We are not trying to simplify the
8 landscape, per se, but what was happening is we are
9 simplifying the landscape. This is a new way of
10 looking at the world, if you will. There is a new
11 field emerging called landscape ecology and we are
12 finding that one of the critical components of that is
13 the patterns on the landscape.

14 The patterns that nature has created on
15 the landscape defines the dynamics of how the landscape
16 functions with its pieces in relationship to each
17 other, and that is the critical component.

18 If we clearcut an area, and we have done
19 this in the States, we have islands of old growth
20 because we cut a few acres, we leave a few acres, then
21 we ended up all of a sudden -- again this invisible
22 present we hadn't counted on. We ended up with a lot
23 of clearcuts with a few islands of old growth that
24 completely altered the pattern of the landscape and it
25 had some very interesting effects.

1 One is we found that deer and elk use
2 increased dramatically than what was left because
3 scarcity builds in or breeds value. That's an economic
4 principle, but it is also a biological one. That which
5 become scarce takes on a disproportionate ecological
6 value. In this case a habitat value.

7 We also had a number of species,
8 salamanders and other things, which dispersed very
9 slowly because they are very small and they're
10 sedentary. If we isolate them on a bunch of islands
11 with no corridors in between, then they will gradually
12 die out because the old growth will gradually, just
13 through the natural process, fall apart and become
14 another type of community and there is no way then for
15 them to migrate and to exchange genetic material.

16 We have also found by creating the
17 islands that we have increased windthrow for those. So
18 while we have set some aside on purpose, they might not
19 be configured correctly and the wind flow patterns can
20 wipe out everything that we set out to do.

21 So we started looking from airplanes and
22 satellites at fire pattern on the landscape and we are
23 now trying to mimic in our management in laying out
24 sales based on large units to mimic the fire pattern,
25 and that often will preclude clearcutting. In fact,

1 clearcutting in the United States I think is on its way
2 out. I am not always sure that's necessarily good
3 because it is a tool. The challenge I have with
4 clearcutting is not the practice, it is the arrogance
5 with which it's done.

6 This was particularly -- it was brought
7 home to me very forcefully about three years ago after
8 I spoke on the southeastern United States. I was
9 deluged by letters from Texas and some of the southern
10 states if I would make a stand in court against
11 clearcutting and I said no. The tool is the tool; it
12 is neither positive or negative.

13 What you are folks are responding to,
14 speaking to the American public, is the attitude with
15 which clearcutting has been done and our companies and
16 the forest service said this is the way it is going to
17 be done period, you have no say in it, and it was the
18 arrogance with which it had been done which created the
19 problem, but it is now on its way out because of the
20 ecological factors, not because people didn't like it.

21 It is turning out, with global warming
22 having to keep the soil and vegetation, the tremendous
23 carbon stored in the trunk, that clearcutting is
24 probably not going to be seen within a very few years
25 as an ecologically viable alternative to management in

1 the States. I don't know about Alaska, I'm talking
2 about the lower 48, but it is definitely on its way
3 out.

4 I'm not sure that that is -- I don't know
5 if that is good or bad, but that's where the public and
6 science is gradually moving.

7 Q. We will return to the issue of
8 clearcutting in a few moments.

9 In the source book, Volume 3, you have
10 reproduced an article by Grumbine entitled Viable
11 Populations, Reserve Size and Federal Lands Management,
12 a Critique.

13 It is not necessary to turn to it, but in
14 the article the author suggested that in order to
15 maintain biological diversity landscape level
16 management is necessary in order to protect and
17 conserve eco-systems. Do you agree with that?

18 A. That's true because there is no
19 national park anywhere in the world large enough to
20 maintain the native mix of species when you have wide
21 ranging animals like caribou and cougars because they
22 actually integrate the landscape. They use such a
23 variety of habitats that they have no specific habitat.

24 I mean, a cougar -- I studied cougars for
25 nine years and their home range in Oregon and Idaho and

1 parts of Montana for a male maybe 125 square miles for
2 one animal. Now, there is no park that we can -- that
3 is large enough for us to have a viable population of
4 these animals in, but you can plan landscapes in a way
5 that you can have a viable population.

6 So landscapes -- the landscape is the
7 unit that we have to begin to deal with and then we can
8 place forestry practices, we can place grazing
9 practices in time and space over the landscape and
10 begin to mimic some of the large landscape patterns
11 which may help us to adapt to whatever happens with
12 global warming.

13 Those patterns will shift, but if we
14 start dealing with them now we will gain an
15 understanding of the pattern and we can then adapt with
16 them. Right now we have been fitting the patterns and
17 I think we need to alter our way of looking at the
18 system.

19 MR. MARTEL: What worries me is what
20 appears to be a contradiction.

21 THE WITNESS: Okay.

22 MR. MARTEL: You continue to talk about
23 global warming, you said we learn from our mistakes.
24 It is obvious that we are not learning from our
25 mistakes vis-a-vis global warming because we would do

1 something about it, therefore we keep talking about
2 projecting how we are going to adjust to global warming
3 rather than curtailing those things that are causing
4 global warming which, in fact, would result if we
5 learned from history in making change.

6 THE WITNESS: I agree with you. I don't
7 see that as a contradiction, however. What I am
8 suggesting is that we have always learned in hindsight.
9 I think we know enough now to do some things up front
10 such as changing the way we think about landscapes.

11 The reason that I say that, when I have
12 been in court in the past the argument has always been
13 in our data -- you have no idea how much I appreciate
14 being able to visit with you. Our data in the United
15 States courts have been summarily thrown out for years
16 because the issues are decided on procedure and not on
17 substance. I have never been able to deal with
18 substance in a court, nor have the other scientists
19 that I know of. So this is a decided honour for me.

20 But the point of it is, the arguments in
21 our courts are always we don't know enough, we don't
22 have the data, you can't prove it beyond a doubt;
23 therefore, we don't need to change. The impetus for no
24 change has always been on the side of economics, which
25 has been the comfortable aspect. That which we have

1 done historically. What we are saying is, what I am
2 saying and my colleagues are saying is we know this is
3 no longer viable.

4 Now, we have to assume that global
5 warming is a reality. That's the one thing that
6 probably more scientists to date agree on than any
7 single thing I can think of. That being the case, with
8 the understanding we have, how do we translate that
9 into something that is proactive rather than reactive.
10 That's what I am getting at.

11 MR. MARTEL: But what worries me is that
12 we know this is occurring. I don't think it's a
13 decision for the courts.

14 THE WITNESS: I don't either.

15 MR. MARTEL: I think it is a decision for
16 governments.

17 THE WITNESS: I agree.

18 MR. MARTEL: And governments are aware
19 that this is happening and yet governments don't
20 respond to change. That's the appearances out there.

21 Now, how do you put that in the context?

22 MS. CRONK: Excuse me, Mr. Martel. I am
23 hesitant to interrupt before the witness gives an
24 answer, but I know the Board would not want to suggest
25 that they had concluded as of this point in time that

1 in fact the evidence establishes that those conditions
2 are occurring because, of course, that's not the
3 evidence before the panel.

4 MR. MARTEL: I'm not talking about
5 forestry, I'm talking just about global warming.

6 MS. CRONK: So was I, sir. You have
7 conflicting evidence on that issue. It is not at all
8 established, in respectful submission, that that is in
9 fact occurring. Although it is clearly the witness'
10 view, it is not of others.

11 MR. MARTEL: Well, let me simply say, Ms.
12 Cronk, that out there there is a body of people who
13 think that's a problem.

14 MS. CRONK: I understand, sir.

15 MR. MARTEL: Okay? And if there is a
16 body out there that thinks it's a problem, I think the
17 witness has said the courts.

18 I am simply trying to get at, if it is a
19 problem it is not the courts that should resolve it, in
20 my opinion, should it not be those people who are
21 responsible for making laws of the land?

22 MS. CRONK: Sir, I suppose the problem --
23 and I will just make this submission on behalf of my
24 client and then sit down.

25 Our function is to do everything we can

1 assist you in considering these issues in arriving at a
2 determination. We have heard now this witness' view on
3 at least two occasions as to his experience in
4 courtroom and courtroom proceedings in the United
5 States and he is now, perhaps in response, being asked
6 to elicit a view, if you will, as to the appropriate
7 person to decide these questions here.

8 I take no objection, but, sir, I do raise
9 some caution of my own to the probative value of that
10 kind of evidence before you.

11 MADAM CHAIR: Thank you, Ms. Cronk.

12 Mr. Martel I think has been using global
13 warming as one of many examples that he might use with
14 respect to how change is made, and I think he is
15 exploring with Mr. Maser generally how Mr. Maser sees
16 changes being made in society.

17 I don't know if we can pursue it any
18 further other than your view is that change should be
19 made before -- well, I suppose your view, and you can
20 correct me if I am wrong, your view is that positive
21 change should be made before perhaps every piece of
22 scientific data is available to support that kind of
23 change.

24 THE WITNESS: What I'm saying is, getting
25 back to your question, if I may, one, we have to at

1 some point assume these things are real before they
2 happen because if we don't an theyd happen we are too
3 late, and this has happened to us before, forgetting
4 where the evidence comes from, the courts or whatever
5 else.

6 Governments can make changes, but at
7 least -- I don't know your system, but in our system we
8 are supposed to be the government. The industres lobby
9 the government for its interests, the conservationists
10 lobby the government for another interest. What I am
11 suggesting is, this is why I say we have to start
12 coming together in a safe arean to renegotiate some of
13 the realities that are facing humanity.

14 As I said yesterday, I do not see
15 individual winners or losers anymore. I've worked in a
16 number of countries and every place I have been I am
17 beginning to understand very thoroughly like the forest
18 is united by the fungi, we are united by a common need
19 and that means we need to have safe places, safe ways
20 of renegotiating the reality.

21 In the face of the worst possible case
22 scenario, for the sake of the generations to come, I
23 think it is incumbent on us as human beings to be
24 proactive based on the best data we have got and at
25 least have a contingency. Then if it is not necessary

1 we can go back to the way we were. If it means
2 altering forest management now, and that has anything
3 to do with the ability of the future to respond to the
4 conditions that we leave, I think that is our
5 obligation. I think it is mine as an individual, I
6 think it is society's collectively, I think it's
7 industries, I think it is the conservationists. I think
8 we human beings have an obligation to each other and to
9 the future. That's the best answer I can give.

10 MADAM CHAIR: Thank you, Mr. Maser.

11 MR. LINDGREN: Thank you.

12 Q. I would like to turn now to a
13 discussion of full tree logging, clearcuts and wild
14 fire. Now, on page 8 of your witness statement you
15 refer to whole tree harvesting which, as you know, is
16 referred to as full-tree logging here in Ontario.

17 First of all, can I ask you, to your
18 knowledge is full-tree logging carried out within the
19 Pacific Northwest?

20 A. No, not in the United States. There
21 some, if I remember correctly, on Vancouver Island, but
22 I do not know of any in the United states.

23 Q. Can you explain why that practice is
24 not carried out in that region?

25 A. Because of concern for depleting the

1 soil nutrient capital. It is carried out and has been,
2 at least in the past, in the northeastern United
3 States. We have found serious problems with it
4 ecologically. So, fortunately, that is not something
5 that, to my knowledge, has occurred in the Pacific
6 Northwest.

7 Q. In your opinion, can forest growth
8 and site productive be affected by the nutrient
9 depletion associated with full-tree logging?

10 A. Yes.

11 MADAM CHAIR: Excuse me. Let me get this
12 clear, Mr. Maser. By full-tree logging, you say it's
13 not being done in the northwest United States. You
14 mean logging isn't being done with respect to cutting
15 the tree off at some stump level and dragging it to a
16 roadside to be delimbed and processed?

17 THE WITNESS: Whole tree harvest, as I
18 understand it, what we call whole tree harvest means
19 the limbs and the whole thing from the stump up is
20 taken out and used.

21 MADAM CHAIR: Is taken off the cut-over?

22 THE WITNESS: Is taken off the site and
23 it is not left there scattered over the landscape.

24 MADAM CHAIR: You don't do that as far as
25 you know in the northwest?

1 THE WITNESS: No.

2 MADAM CHAIR: What is done with the
3 slash?

4 THE WITNESS: It used to be piled and
5 burned, which was about as bad, but we have gotten away
6 from that. It is now left -- there are a number of
7 things that can be done.

8 It is left scattered over the landscape
9 and the following year they may go in when it has dried
10 some and burn it. What we call a light broadcast
11 burn. I think, if I understand it correctly, you call
12 it a prescribed burn. To us, a prescribed burn is in
13 the living forest in the understory to stimulate fire
14 which we also do as a tool.

15 For us this would be a broadcast burn
16 which is slash burning, which is changing the site,
17 getting rid of the fine fuels, what are called one and
18 ten hour fuels. Those are fuels that dry out enough in
19 one and ten years hours to carry a fire. Some of that
20 is done.

21 More and more of it is being left in tact
22 to decompose. Our practices, based on the research we
23 have done over the last 15 years or so, are changing.
24 There is very little piling and burning compared to
25 what there used to be. There is very little windrowing

1 compared to what there used to be because we were not
2 only able to point out the detrimental impacts of that
3 practice because of the machinery that was used more
4 than necessary, but also the benefit to the system of
5 having this material become reinvested.

6 MR. LINDGREN: Q. In your opinion, Mr.
7 Maser, can the impacts of full-tree logging be offset
8 by forest fertilization?

9 A. No, not really.

10 MADAM CHAIR: Excuse me, what's forest
11 fertilization in this context?

12 THE WITNESS: Can the impacts of whole
13 tree harvest be offset with fertilization.

14 MADAM CHAIR: Fertilization being the
15 slash?

16 THE WITNESS: Putting fertilizer on the
17 site.

18 MADAM CHAIR: All right.

19 THE WITNESS: Fertilizer on the site
20 basically is functional so long as the soil mycorrhizal
21 component is healthy because that is the nutrient
22 uptake mechanism for the tree.

23 If the soils are not healthy, then the
24 nutrients that are put on, as they are finding out in
25 Germany, do not have the desired impact. We do not

1 understand this whole system, but what we do understand
2 is that the trees without the mycorrhizae do not live,
3 the mycorrhizae without the trees do not live. To the
4 extent that the soil component is altered to the
5 detriment of the mycorrhizal component, the trees reap
6 the consequences. Without healthy mycorrhizae, the
7 nutrients placed in the soil are virtually ineffective
8 as far as the trees are concerned.

9 Q. Do you have any concerns about the
10 potential of full-tree logging to cause or contribute
11 to site acidification?

12 A. The way it is done here, if you take
13 out all of that wood, then my answer over time would be
14 yes because the wood is one of the components that, so
15 far as we understand it, ameliorates part the acidity
16 through the processes.

17 My major concern with whole tree harvest
18 is not the act, it is the thought that is behind it.
19 It is the strict total utilization in seeing the forest
20 strictly as a product. To me the danger is far more
21 than in thought process that we employ than in the
22 actual act on the ground because the act will not
23 change until the thinking does. The thinking is the
24 cause of the act, so to me the thinking is the problem
25 far more so than the act.

1 Q. Now, if I were to suggest to you that
2 full-tree logging does not significantly affect the
3 nutrient cycle because, for example, there may still be
4 nitrogen in the mineral soil or there might be nitrogen
5 coming in from atmospheric input. Would you agree with
6 that suggestion?

7 A. Nitrogen is depleted with whole tree
8 logging. Some of it can be made up, but a lot of it
9 depends on what comes in with the rain, how long the
10 stand is there. But, again, that is all mute if the
11 soil micro-organisms are not healthy, the mycorrhizae
12 are not in good shape.

13 One go around of whole tree logging, from
14 the site point of view, probably is not going to do
15 unreparable damage, but the thought is the danger
16 again. Not what you do on the ground once, but if the
17 thinking is that we must utilize everything, this is
18 the most economical way and we will take whatever we
19 can at minimal cost, then I would say the act which is
20 symptomatic of the thinking on an accumulative basis
21 would be extremely hazardous to the site.

22 Q. Now, Forests for Tomorrow has
23 proposed that full-tree logging be restricted to highly
24 productive site with relative deep mineral soil. Would
25 you be in general agreement with that general

1 restriction?

2 A. Not the way it stands.

3 Q. Why not?

4 A. Because you don't say anything about
5 how many times that would be done.

6 Q. How many times would you recommend
7 that that be done?

8 A. My personal feeling is, I wouldn't do
9 it at all. I wouldn't do it because the thought
10 process behind it to me is not ecologically sound.

11 But if you did it in a practice, you
12 would have to layout some experiment plots that maybe
13 2- or 300 years from now when the cumulative effects
14 show up there will be answers for, but my intuitive
15 sense based on what I have seen over the years is, I
16 wouldn't do it to begin with.

17 Q. Okay. In terms of the nutrient
18 cycling, can you explain to the Board the value of
19 retaining or having old growth stumps on site?

20 A. Your land form is somewhat different
21 from yours, but there are some general things about the
22 large stumps which turned out to be very interesting.

23 In the publication, which I think I gave
24 you a copy of, we addressed this in the publication
25 from the Forest to the Sea. I believe I send that up.

1 They found in Germany when they converted
2 the hardwood forests to the softwood plantations that
3 as the old stumps of the hardwood trees died out they
4 left what we call a root collar. The root when it rots
5 becomes a hallow tube, like a pipe, and the roots of
6 young trees would grow down into those being able to
7 penetrate deeper into the soil and get a greater foot
8 hold or root hold on the nutrient capital.

9 As the large tree trunks -- the stumps
10 died, they were not replaced. Successive regeneration
11 of trees had more and more smaller root collars and so
12 the roots actually became shallower. So today the
13 spruce in Germany has very shallow roots and blows over
14 in the wind very readily.

15 A colleague of mine sent me, in Germany,
16 Professor at the University of Munich, a forest
17 researcher, sent me an article recently that translated
18 from the German said every wind storm -- today every
19 wind storm is a catastrophe.

20 Windthrow is a tremendous problem in
21 southern Germany and Bavaria. On our slopes, these
22 large old growth stumps act as plumbing systems. As
23 the roots die and hallow out, they allow the water from
24 our tremendous rains and snow melt to penetrate deeply
25 into the soil to get below this fluffing area and go

1 out deep down towards the riparian areas in the
2 streams.

3 When we liquidate the old growth, we
4 liquidate this plumbing system. If you can imagine a
5 five-story building, a home with a toilet on each
6 floor, a full bathroom, and let's assume you need a
7 five inch pipe just in case everybody flushes the
8 toilet at once to carry that volume of water down. If
9 the plumbing system erodes and needs to be mended, but
10 you get cheap so you put in a three inch plumbing
11 system, now if somebody flushes all the toilets one or
12 two of them will overflow. It is the same dynamic.

13 As we lose these big roots in our part of
14 the country where we have fairly steep terrain and we
15 have smaller and smaller roots collars, we are finding
16 that we are having more slumping in the soil; in other
17 words, the soil saturates and it slips.

18 The other thing that happens, we are
19 finding in clearcuts, is we are losing what is called
20 the shear strength of the soil and we are having some
21 very massive landslides and that is the roots are
22 smaller and they don't have the strength to these
23 massive mobile parts of the soil together.

24 In Switzerland, they have a problem in
25 meadows that once were forested of slumping and they

1 also have problems where they have taken out the trees.
2 In stringers, they have made strip cuts that when the
3 tree is removed and the soil is not so stable that they
4 are having avalanches which are bringing soil down with
5 them in little towns that had never had that problem
6 before. They are having to put up snow fences and
7 plant the trees back. These are all common type of
8 problems.

9 One of the things that I have noticed
10 over the years, which again to me is a critical point,
11 we tend to look for the opposites and I look for the
12 common denominators. We are finding that the stumps
13 are very important and the comment that is made to me
14 in a similar vein is: Well, you say you can't do this
15 and this, how about this tree plantation that's doing
16 well in Ireland.

17 There is always an exception to what
18 would be called the rule. I am not interested in the
19 exceptions. We have to look at the common
20 denominators. As I look around at what I see as the
21 common denominator and interpret them, I think we need
22 to look at some different answers.

23 Stumps are very important. The old
24 growth stumps in our part of the country serve a very
25 definite function below ground. You may not have

1 exactly the same circumstance, but I would suggest
2 -there is no portion of the ecosystem, no portion of the
3 tree that can be ignored in terms of its ecological
4 fuction. I would make no assumptions out there that
5 something is dispensible because every time in my
6 experience he have done that we have been wrong.

7 Q. - If I could, I would like to refer you
8 to the passage that we find in MNR witness statement
9 No. 9. Again, this is Exhibit 414.

10 A. Which one? That's this big one?

11 Q. Yes. I would like to refer you to
12 page 12 of that document. There is a statement at the
13 top of page 12 that:

14 "Fire, wind, insects and disease
15 separately and in combination have
16 determined the spacial and age-class
17 distribution of the existing forest.
18 Where man has intervened, particularly by
19 harvesting the resultant forest, the
20 results have most often been similar to
21 those resulting from natural forces."

22 Mr. Maser, my question to you is this:
23 Do you agree that harvesting in form of large area
24 clearcutting is similar to natural forces such as fire
25 in terms of impact on the forest?"

1 A. Not in any way.

2 Q. Perhaps you can elaborate on your
3 disagreement?

4 MR. MARTEL: Can I have the question
5 again, Mr. Lindgren?

6 MR. LINDGREN: Certainly.

7 Q. Do you agree that harvesting in the
8 area -- in the form of large area clearcutting is
9 similar to natural forces such as fire in terms of
10 impact on the forest?

11 A. No, not at all. Fire -- well, there
12 are two kinds of fire. One fire -- again I will speak
13 from the northwest because I don't know want to pretend
14 to know your boreal forest the same.

15 There are basically two kinds of fire.
16 One replaces the stand, it kills the trees. The other
17 creeps around under the trees sometimes for months and
18 eats up some wood, it tortures a tree here and there,
19 but the point is these fires in combination leave --
20 they may kill the forest, they may kill some of the
21 trees, they may kill the whole thing, but they leave
22 wood out there.

23 That wood, although it is charred - and
24 we have never been able to get the money to study what
25 charring does to decomposition in wood, we know it

1 changes it, but we don't know how - it leaves the wood
2 out there and that wood is recycled and some of the old
3 growth forest that we have studied, mapping the large
4 down trees, the deadwood, in digging trenches to see
5 where we could identify logs, we found we could age the
6 logs.

7 In one study by H.D. Andrews we could age
8 some of the wood in the class five which is just mushy
9 stuff to 470 years because it was completely ringed by
10 the charcoal from the fire that started the forest over
11 and the forest was roughly 470 years old.

12 So the wood that is left out there
13 becomes the biological reinvestment. This is one of
14 the reasons the concept of salvage to me is
15 ecologically probably one of the more unwise concepts I
16 can think of because that is viewed simply as an
17 economic loss if it is not taken all out now.
18 Clearcutting removes all of this material that
19 otherwise would go back in and in that way it is not
20 similar.

21 The other thing is, fire does not do a
22 uniform job in anything; it creeps around, it has
23 different intensities, it misses stringers, it misses
24 islands. It does things similar to shelterwood
25 cutting, scorches some trees which don't die and

1 comes back, it kills others. Fire is unpredictable and
2 and it is sloppy. Clearcuts are predictable, uniform
3 and very neat in that they remove anything. They are
4 not at all similar.

5 MADAM CHAIR: Excuse me, Mr. Maser. You
6 refer to salvage, was that with respect to salvage
7 logging after a fire?

12 MADAM CHAIR: So your view is that insect
13 infestation or fire are not a sufficient reason or do
14 not justify clearcutting?

15 THE WITNESS: Not in my view because --

16 MADAM CHAIR: You would see a shelterwood
17 cut following those events?

18 THE WITNESS: Not necessarily.

What causes the insect outbreak? In our country it has been suppression of fire. The question we need to ask is: How do we manage the system upfront so we don't have the massive outbreaks. They have been

1 . . . management created problems in our part of the country,
2 including pine beetles, and we have been able to
3 demonstrate that.

4 In terms of fire. If a fire burns, I
5 would suggest that there is some of the wood that of
6 course that can be taken out, but I would not do it by
7 felling and taking out everything. I would, again, to
8 the extent possible, mimic what the system has evolved
9 to deal with. That means ensuring some of that
10 material is left as a biological reinvestment because
11 when it is logged there essentially is no slash if they
12 burn the way our forests do because that gets burned
13 up. So if you then take it out, you have in fact
14 removed everything and there are ways to mitigate that.

15 I think I would always argue on the side
16 of prudence in these things and also leave a little bit
17 more than we think might be absolutely necessary. What
18 we do in the States is we harvest the maximum and we
19 leave the absolute minimum we can get away with and
20 that is not tenable over the long run I don't think.

21 MR. MARTEL: Would you not, in the case
22 of infestation, consider a portion of accelerated cut
23 so as to salvage that wood and still leave some before
24 it was damaged and not usable in the sense for a
25 product?

1 I mean, if you have a massive area that's
2 going to be devastated by the spruce budworm, would one
3 consider an accelerated cut to get a percentage of it
4 out so that it is usable in the sense of just seeing it
5 all fall over and serve no function?

6 THE WITNESS: Maybe I wasn't clear. All
7 I am saying is, to me that does not justify
8 clearcutting. It does -- there are ways to do it.

9 Clearcutting may be chosen, but I would
10 not use that as a blanket reason to go in and clearcut.
11 That's all I was saying.

12 MR. MARTEL: Can we straighten something
13 out?

14 THE WITNESS: Yes.

15 MR. MARTEL: Clearcutting here is
16 somewhat different -- it isn't different, but the type
17 of forests we have and what we are cutting for here is
18 somewhat different than the hardwoods that you are
19 cutting.

20 THE WITNESS: We are cutting softwoods,
21 not hardwoods.

22 MR. MARTEL: For pulp and paper?

23 THE WITNESS: Some of it.

24 MR. MARTEL: Ours is primarily here.

25 Would the same groundrules apply as far as you are

1 concerned, whether it is for lumber or whether it is
2 for pulp and paper use?

3 THE WITNESS: Yes.

4 MR. MARTEL: You would still apply the
5 same groundrules?

6 THE WITNESS: I would because you are
7 still dealing with the forest and the principles of
8 sustainability of forests doesn't make any difference
9 what they are being used for. I mean, the use is a
10 secondary human value superimposed on an ecological
11 system.

12 So the health of the system, if it is to
13 be sustainable, must be the first priority and
14 everything else comes second. A forest is a forest is
15 a forest in the principles. The species and the
16 specifics of course are very variable.

17 MADAM CHAIR: Mr. Lindgren, is this a
18 good place to stop for lunch?

19 MR. LINDGREN: I have one question that
20 might be able to be answered briefly and then we could
21 break perhaps.

22 Q. I am just wondering, Mr. Maser, if
23 you could briefly advise us if there is a difference
24 between native old growth forest and plantations in
25 terms of fire survivability?

1 A.... There has been in the area that we
2 have worked in, we had some severe fires in
3 southwestern Oregon in the last few years and the
4 plantations went that fast because they have even
5 canopy and our old growth has an uneven canopy and it
6 is fire proofed way up. Old growth stands survived the
7 fires and they were very intensive fires far better and
8 to a far better extent than our plantations because
9 what happens with a plantation is you create a unilevel
10 fuel ladder and it's close to the ground. Once it
11 goes, it just goes because there is absolutely nothing
12 to stop it.

13 MR. LINDGREN: Thank you.

14 MADAM CHAIR: All right. We will be back
15 at two o'clock.

16 THE WITNESS: Thank you.

17 ---Luncheon recess taken at 12:00 p.m.

18 ---on resuming at 2:05 p.m.

19 MADAM CHAIR: Please be seated.

20 MR. LINDGREN: Madam Chair, at the outset
21 I should indicate that I have a number of questions for
22 Mr. Maser and I also have a number of the Board's
23 questions to put to Mr. Maser. At this time I don't
24 know if it will take an hour or ninety minutes and I am
25 just going to go until we are finished.

1 MADAM CHAIR: Go ahead, Mr. Lindgren.

2 MR. LINDGREN: I would like to start by
3 referring to Exhibit 427, Madam Chair, that's the
4 one-page extract from the Regulations under the Natural
5 Forest Management Act. It it is a single page
6 document.

7 Madam Chair, I am reading from I guess
8 the right-hand page, left column, the one -- the
9 paragraph marked No. 2, Individual Cut Blocks and
10 Patches. I am referring to the paragraph that contains
11 the clearcut limits for various types of forests.

12 Q. Mr. Maser, we see that according to
13 these regulations there was a clearcut limit of 60
14 acres for the Douglas fir forest type of California,
15 Oregon and Washington. I assume that's the limit that
16 applies in the Pacific northwest; is that correct?

17 A. That is the limit they are working
18 under. It used to be 40 acres and they upped it a
19 little bit, yes.

20 Q. Okay. Now, in your document that you
21 have provided in source book No. 1, you see a document
22 entitled From the Forest to the Sea, a Story of Fallen
23 Trees. On page 119 of that document you state that:

24 "The staggered setting system of
25 clearcutting used widely on federal lands"

1 in the Douglas fir region intersperses 25
2 to 40 acre clearcuttings with live timber
3 and results in a patchwork that maximizes
4 the amount of high contrast edge within a
5 landscape."

6 Stopping right there --

7 MADAM CHAIR: Which document are you in,
8 Mr. Lindgren?

9 MR. LINDGREN: It is not necessary for
10 the Board to pull it out, but I am referring to From
11 the Forest to the Sea, a Story of Fallen Trees and it's
12 found in Volume I of the source book. I am referring
13 to page 119 of that document.

14 Q. Having regard to the 60 acre upper
15 limit for clearcut size in the Douglas fir region, Mr.
16 Maser, could you briefly explain how one would go
17 about planning or interspersing clearcuts in that
18 region?

19 A. The way it was done historically?

20 Q. Both historically and the way it is
21 done now.

22 A. Well, it is still done the way it was
23 done historically. We are looking at it differently
24 for the future.

25 The way it was done was a target was set

1 by Congress, what is called a hard target which is the
2 amount of timber to be cut. That was divided up then
3 amongst the national forests in the different areas and
4 in the districts and the idea in the earlier days was
5 to have what we call staggered setting or dispersed
6 cutting so that you didn't clearcut a whole slope or a
7 whole drainage. The original idea was that it was
8 easier and gentler on the landscape.

9 The problem with it in what I keep
10 referring to as the invisible present, is that that
11 decision, now some 20 years or so later, even more than
12 that, has suddenly shown up that when you have cut half
13 of the landscape it is all homogeneous, it's a
14 patchwork quilt.

15 If you look at edge as habitat, in the
16 National Resources Planning Act - what they call the
17 RPA as the acronym for the forest service - they are
18 directed to manage for diversity and edge is part of
19 that diversity, yet no one defined it which is part --
20 or characterized it which is part of the problem.

21 So it was thought for a long time that
22 the more edge between two habitat types, like an old
23 growth forest and a clearcut, the edge would like this
24 roughly, and that that was good. This is called a high
25 contrast edge. Where if you had mature forest growth

1 the edge would be like this and then if you had a
2 clearcut it would be down. So what we did was take the
3 six stages, grass/forb, shrub/seedling, pole sapling,
4 young forest, mature forest and old growth and we gave
5 them each a value; 1, 2, 3, 4, 5, 6.

6 A. If we clearcut next to an old growth
7 forest, if you had the early success of grass/forb
8 juxtaposed to old growth forest, that would be an edge
9 index of five in contrast. All we did was subtract one
10 from six. But if you had, let's say, a mature forest
11 and a young forest which would be four and five, that
12 would be a contrast of one. That's a low contrast
13 edge.

14 The staggered setting did three things.
15 It fragmented the forest terrifically. It actually did
16 four things. It gave the high contrast edge which
17 meant that particularly on the leeside of mountains
18 tops, as the wind comes over the mountain it gets into
19 these little pockets and we had tremendous blowdown.

20 It is not good wildlife habitat because
21 the clearcuts were not large enough for those species
22 that need the open area to maintain viable populations
23 for any length of time. More importantly, those
24 species of vertebrates that had evolved as interior
25 species, those that lived in the old growth forest like

1 marten, pileated woodpecker, those patches were too
2 small.

3 The only thing it was initially good for,
4 which is where the original saying in our country came
5 from, good timber management is good wildlife
6 management, was that as they started this the deer and
7 elk populations increased, but the reason they
8 increased was our forests were blanketed with trees and
9 so the forage, the ability to find feeding habitat was
10 limiting. As they were opened up, the forage balanced
11 with the necessary cover ratio until it reached the
12 optimum, and then as it went over the top the cover,
13 the thermal cover came the limiting factor.

14 What we have done is set up a patchwork
15 which is slowly unraveling. It's prone to windthrow
16 and it is not serving any of the purposes that the
17 folks who originally thought of it as a good idea and
18 being gentle on the landscape intended.

19 Q. In your view, how should cuts be
20 planned or dispersed across the forested landscape?

21 A. What we are looking at now and what
22 the forest service is trying to figure out how to do
23 is to mimic fire patterns and we would call those in a
24 sense big sloppy clearcuts. That wasn't descriptive
25 enough for everyone, but it is a sense of rather than

1 dispersing the cutting over a period of years across a
2 whole district, of aggregating it in one big area.

3 If clearcutting goes out, then there
4 would be let's say -- well, let's assume that
5 clearcutting is in. You would cut some of the acres
6 and they would be juxtaposed to a shelterwood which
7 would be juxtaposed to something else and we would try
8 and mimic the patterns that we have seen fire produce
9 over a large fire pattern scale.

10 Looking at the landscape patterns now is
11 the unit that we need to mimic, not the smaller units
12 because the landscape is unraveling in the States, too,
13 because we have not looked at the way we have set these
14 things up.

15 So we are in a period of transition and
16 I'm not sure how clearcuts in the future, if they are
17 still allowed, are going to be dispersed. All we have
18 learned is the way we have done it, with the best of
19 intentions, is not working.

20 The other thing is has done, it has --
21 that meant a tremendous road system. I mean, we have a
22 humungous road system. One of our national forests,
23 which is a very small one, and I can't give you the
24 acreage, has enough miles of road, 5,000 miles of road
25 to go from New York almost to Hawaii if you stretch it

1 **outta**. That's incredible. That type of thing is also
2 very expensive to maintain.

17 Q. A few moments ago you referred to the
18 concept of fragmenting the forest, what did you mean by
19 that?

20 A. Rather than having contiguous blocks
21 which have ecological integrity we are breaking it up
22 into little pieces. Depending on the position of the
23 slope or the configuration in relation to wind
24 direction, on a hot, dry day the wind can penetrate
25 into the heart of what's left to the old growth trees

1 which completely alters the microclimate and the stand
2 is simply not big enough to maintain its ecological
3 integrity.

4 It also, as I said this morning, is
5 disrupting totally the gene flow. It has disrupted
6 wildlife populations and it has made a lot of the
7 landscape untenable in term of its ecological
8 integrity -- the integrity of its ecological diversity.

9 I think one of the probably more serious
10 things we have done with this is it has committed every
11 single drainage to having a road because we had to find
12 places to disperse this. Having some drainage basins
13 with their ecological integrity in tact, again, will be
14 vital in the future for the potential and the options
15 of learning to understand the dynamics of the
16 stream/water relationships because water will
17 ultimately become the most important product of the
18 forest, at least in our part. I don't know about the
19 north.

20 Q. On the issue of clearcut size, this
21 Board has heard evidence in FFT Panel 5 that there are
22 large individual clearcuts in this province ranging up
23 to several thousand hectares in size. The Board has
24 also heard about some large contiguous cut-overs, one
25 in particular that may be up to 269,000 hectares.

1 From a wildlife, site productivity and
2 biodiversity perspective do you have any ecological
3 concerns about clearcuts of that magnitude?

4 A. If you have a clearcut that is that
5 size and that scale, the diversity has essentially been
6 eliminated. I mean, what you have done is take a
7 forest and convert it to an opening and that depends
8 whether there are islands and stringers.

9 If it is just a slick clearcut, then for
10 all intents and purposes, depending what's done with
11 it, the diversity has been eliminated, especially the
12 genetic diversity and that is the diversity of greatest
13 concern.

14 The other thing is the structural
15 diversity has also largely been eliminated over time
16 unless and until another forest grows to replace some
17 of that diversity.

18 Q. Now, Forests for Tomorrow has
19 proposed to the Board that certain clearcut limits be
20 imposed in Ontario.

21 Leaving aside the issue of what the
22 numerical limits should be, would you support the
23 recommendation that limits on clearcut size should be
24 developed in this province?

25 A. I would support it definitely because

1 that gives over time a way to in fact plan in time and
2 space. And based on the experiences we have had,
3 clearcutting is introducing a foreign practice into the
4 ecosystem that is simply not designed to deal with or
5 be able to adapt to.

6 When I look at the cutting from the
7 airplanes that we have done in the northwest, we have
8 large clearcuts done by industry. They cut square
9 miles and to us that's a large clearcut. We have three
10 or four miles cut square and everything is slicked off.

11 Again, we have very mountainous country
12 and it may have a different impact on erosion, but
13 those sites have proven to be, looked at from the air,
14 completely altered the landscape and over time have
15 proven to have some very serious consequence such as
16 soil erosions.

17 Q. I would like to turn briefly to a
18 discussion of biological capital which we find on page
19 11 of your witness statement. In the first sentence
20 under the heading Biological Capital Versus Economic
21 Capital, we see a statement that:

22 "The native old growth forest of the
23 Pacific northwest has three prominent
24 characteristics: large live trees, large
25 snags and large fallen trees."

1 Mr. Maser, are those three
2 characteristics of native old growth applicable to the
3 boreal or Great Lakes/St. Lawrence forest of Ontario?

4 A. Yes. I would add a fourth one. I
5 would add, large declining trees, trees which are
6 slowly dying. For some species of wildlife they are
7 very important.

8 Q. Is it correct to assume, Mr. Maser,
9 that the old growth issue is essentially a west coast
10 issue involving large 600 year old trees?

11 A. No, that issue is now going on in
12 Europe, too. They are trying to find old growth. That
13 poses an interesting question and I am going to project
14 into the future a little bit here.

15 In Germany, they don't know what their
16 original forests really were. What they have done to
17 try and recreate them is to go back to the paintings of
18 the artist of the 14- an 1500s, where the artists were
19 realistic enough to paint the individual plants, so
20 that they can reconstruct some of the species diversity
21 so they know how to manage and nudge their forests back
22 towards what is called the natural condition.

23 We have a lot of the blueprint left. I
24 think it would behoove us to maintain enough of it that
25 we do not put ourselves in the same position, but if we

1 clearcut in very large areas or if we clearcut
2 extensively and then at some point in the future for
3 the same sake of productivity or whatever errors we may
4 make, again not out of malice, but we may make because
5 we are bound to make errors, we would at least have
6 some of the living laboratory to go back to to see how
7 we might be able to correct the mistakes. That is
8 simple an insurance policy for the future.

9 Q. Can you briefly explain how a forest
10 ecosystem functions on biological capital represented
11 by large live trees, large snags, large fallen trees
12 and declining trees?

13 A. As the forest dies, speaking again
14 about Douglas fir because that's the one I know the
15 best, for the first 120 years most of the mortality in
16 the forest is what is called suppression. It grows in
17 very dense stands and the young trees in the stand
18 where they are competing amongst themselves for light,
19 water, nutrient and space, they die out. That tends to
20 space the stands some.

21 From the age of roughly 120 years on, the
22 trees are fairly good sized and they die individually.
23 As they now begin to die individually, they may die as
24 a snag. A snag starts to decompose before it ever
25 falls to the ground. So it falls in a different

1 decomposition state than a tree that blows over that is
2 sound or one that blows over when the snag is sound.

3 All of this diversity of how these trees die and
4 decompose is reincorporated into the soil. That is the
5 reinvestment of the biological capital.

6 The nutrient capital and the organic
7 material that they get into the soil is available for
8 the next stand and during the time it is going through
9 all of this, the heartwood, for example, has very high
10 amounts of nitrogen fixation ongoing. So there is a
11 lot of ecological input into the system which can then
12 be used again, but it is a continuous cycle unless we
13 disrupt it substantially.

14 One of the reasons that we suspect in the
15 northwest we have had problems with plantations is that
16 when we use up the stored available nutrients in the
17 soil from the previous old growth forests, which have
18 been invested over the millennium, we have not replaced
19 them sufficiently or given the sites a chance to heal
20 sufficiently to have the same type of productivity we
21 did before.

22 Q. If I could, I would like to ask you
23 to turn to the excerpt from Wildlife Habitats and
24 Managed Forests. This is marked as Exhibit 1671.

25 Can I ask you to turn to Chapter 5 which

1 we find at page 60, and the numbers are at the bottom
2 of the page. Can you explain very briefly why snags
3 are important for wildlife purposes as well as for
4 ecological processes.

5 A. Snags are important for wildlife
6 purposes because the cavity nesting birds and the bats,
7 for example, feed on forest insects. And while they do
8 not per se control all of the insects, what they do do
9 is dampen the oscillations in the insect populations and
10 keep them under a background level that we would call
11 an endemic stage as opposed to an epidemic stage or
12 outbreak.

13 We have studied the bats and found that
14 their feeding habits on insects is absolutely
15 phenomenal. The food habits of bats are incredible. A
16 lot of them roost in snags, in woodpecker cavities,
17 under loose bark.

18 The flying squirrel that we talked about
19 this morning or yesterday at some length, we have found
20 that they nest very interestingly. Where snags are
21 limited, become a limited commodity, the females take
22 over the nest cavities of the woodpeckers and the males
23 are relegated to less convenient cavities that are not
24 good or easily defended or to outside nests, where to
25 stay warm they aggregate in pairs, three or fours,

1 these all males, and they act as one body to keep the
2 heat.

3 The females, on the other hand, live in
4 the woodpecker holes where they raise their young
5 because the wood that surrounds them in the tree is an
6 excellent insulator of both heat and cold and to be
7 high up like the pileated woodpecker, roughly 40 feet
8 off the ground, they are much less prone to predation.

9 Now, again, if you look at it in this
10 sense, the flying squirrel is critical in the cycling,
11 the positive feedback loops within the forest. Our
12 chickory and your red squirrel where available use the
13 same types of habitats. We studied both chickory and
14 red squirrel food habits. They also feed on the
15 mycorrhizal fungus spring, summer and fall. They don't
16 in the winter and they do not hibernate. They collect
17 the cones in the fall and that is their winter diet,
18 but it is not their diet over the spring, summer and
19 fall when the below-ground fungus are available.

20 Everyone knows and it has been in the
21 literature for years that they eat the mushrooms. When
22 we studied their food habits we found out that 88 to 90
23 per cent of the mushroom content that they ate was not
24 the mushrooms you see stored in the trees, it was the
25 below-ground fruiting bodies and thereby they were

1 dispersing the spores.

2 If snags are eliminated, you eliminate
3 again that component that has an impact on the cycling
4 of nutrients via insects and the predator/prey
5 relationships in the forest.

6 In Germany where they do not snags, they
7 put up wooden boxes for woodpeckers at an extreme
8 expense to try and get the cavity nesting birds back to
9 help dampen the beetle outbreaks. We don't need to do
10 that.

11 However, it was proposed once by a timber
12 owner, a private person that in the States we could cut
13 all the snags and put up plastic bird boxes. That was
14 the thinking and he was serious, he wasn't being funny,
15 he wasn't being stupid, this was a solution to him.
16 That's why I made the point this morning that it isn't
17 the act on the ground to me that's important as it is
18 the thought process.

19 Q. In light of your answer, Mr. Maser,
20 is it your view that it is important for foresters to
21 retain and manage snags on cut-overs areas and/or in
22 riparian areas?

23 A. If we are going to practice forest
24 management, yes. If we want to have a sustainable
25 system in which we need to reinvest biological capital,

1 yes.. If we want to maintain viable populations of
2 vertebrate wildlife to perform their normal function in
3 the system, yes.

4 Q. Could I ask you to turn to the FFT
5 terms and conditions. I believe you have an excerpt.
6 I would like to refer you to proposed condition No. 29.
7 This conditions provides that:

8 "Within forests eligible for harvest
9 where snag dependent wildlife species are
10 or may be present the MNR shall ensure
11 that the habitat capability of the area
12 is maintained and managed for wildlife
13 species richness..." and then the
14 provision goes on to include various principles for
15 snag management.

16 Leaving aside the specific wording of
17 this particular provision, would you support in general
18 a term or a condition that would require the MNR to
19 retain, maintain and manage snags within forests
20 eligible for harvest?

21 A. If the intent is to have a
22 sustainable industry based on a sustainable forest, the
23 answer is yes.

24 Q. And the term wildlife species
25 richness has been used in this particular provision,

1 can you explain to the Board what species richness is
2 vis-a-vis featured species, and do you have any views
3 or preferences as to between those two concepts?

4 A. Featured species is to manage the
5 habitat to the benefit of one or more politically
6 important species. Species richness is to manage the
7 habitat in a way that all of the native species are
8 maintained in viable populations.

9 Now, obviously this cannot be done on all
10 acres all of the time. That is why the landscape
11 approach is vital because nature did not have all
12 species on all acres all of the time either. I mean,
13 that is simply not physically possible.

14 If we harvest timber in a way that over
15 time simulates the rotation, the successional stages,
16 simulates the fire pattern, we will have all species on
17 some acres all of the time, not all species on all
18 acres all of the time.

19 Superimposed on this, which in the United
20 states is a legal mandate in your forest management
21 today, superimposed on this you can manage habitat in
22 some areas to feature certain animals such as moose,
23 such as deer, such as grouse for people to consume in
24 sport or for other reasons. The two are compatible.

25 If one manages only for feature species,

1 that is no different than setting up a private hunting
2 preserve and that is simply not ecologically sound
3 because an elk or a moose has an impact on the
4 ecosystem, but if you look at the smaller organisms
5 like bacteria, the smaller the organism the greater the
6 number of those organisms per unit area of habitat or
7 ground. In the long-term they probably have a greater
8 ecological impact on the health of the system than the
9 one or two moose do based on their numbers. So the
10 more basic the ecological principle is the more
11 widespread that principle affects the forest.

12 My sense is from the years that I have
13 worked with these things, I would always manage for
14 species richness first and featured species second if I
15 had to pick a priority overall. That does not mean you
16 cannot feature some species on some acres specifically.

17 Q. In your opinion, is using the tool
18 known as habitat supply analysis for moose or some
19 other featured species, is that enough in terms of
20 providing quality habitat for all species that may be
21 found within the landscape?

22 A. No, no more than looking at the
23 spotted owl. But the other thing is, to me that smacks
24 of the concept we have of biological indicator or an
25 indicator species. I have not seen that work anywhere.

1 If you were going to do that or if that
2 is the thinking - and I think the concept is probably
3 viable in that it is impossible to monitor every single
4 creature out there and see how they are doing - I would
5 recommend a suite of species, a group of species that
6 represent the different components of the forest not
7 just one single thing and most of them will not be game
8 species.

9 MR. MARTEL: But if we are managing for
10 the featured species, in our case moose, the figure I
11 think that was used said by using moose we can in fact
12 guar -- I can't say guarantee is the right word, but we
13 can look after to some degree at least 70 per cent of
14 the rest of the species that are out there.

15 I think I am phrasing that correctly. I
16 look to Dr. Euler as I ask that question, I don't want
17 to misinterpret it.

18 Is that your perception? I worry about
19 the other 30 per cent that's missing as a given, but
20 will featured species protect up to 70 per cent of
21 what's there already and we have to look at several
22 others then to try to give some guarantee for the rest?

23 THE WITNESS: There are two parts to your
24 question, I think. Let me write down one of them here
25 before I forget.

1 MR. LINDGREN: While he does that, Mr.
2 Martel, I can advise that our wildlife panel will be
3 speaking to that very issue and the issue of whether or
4 not featured species for moose does in fact provide for
5 70 per cent of the other species.

6 THE WITNESS: I think I could say
7 comfortably I have found no species that I know of
8 looked at independently that would guarantee or take
9 care of 70 per cent because it depends on what you do
10 out in the habitat.

11 As I said this morning or yesterday, the
12 spotted owl was considered the indicator species for
13 old growth and yet there was the concept that
14 high-grading salvage could go on, not understanding
15 that that could have an impact on the flying squirrel
16 that would then have an impact on the spotted owl.

17 If one focused only on the spotted owl
18 and did not understand the other parts of this and we
19 reduced the prey base for the spotted owl, then we have
20 destroyed the whole thing and the owl is not indicating
21 anything that we can do anything about.

22 I have worked with wildlife for many
23 years, I have never been comfortable with a single
24 species management of anything, be it a species of tree
25 or a species of animal because that's looking at it and

1 saying: This is an independent variable that speaks
2 for all the other variables. I found nothing that I
3 could say that would work for.

4 But if you take a group of which moose is
5 one, now that's a different story. You see, then you
6 are saying that the only species that the moose would
7 speak for would be those that live in moose habitat.
8 And if you are managing for moose habitat, what
9 successional stage is that, and I don't pretend to be a
10 moose expert, but what stage is that and how about the
11 mix of other stages in plant communities stages in and
12 around that habitat. You see, are you then managing --
13 if you are managing for moose, you are managing for a
14 given habitat I would imagine. What about the other
15 habitats with the other species.

16 Whenever we single something out,
17 whenever I pick this up and I focus on this, everything
18 else goes out of focus and that's always been my
19 concern with single species management and it always
20 will be. The more I know about the systems the less I
21 know about the systems. I am much more cautious in
22 what I would do in managing systems now than I was 10
23 years ago.

24 Leopold said - and to me this is the rule
25 I think we need to follow to my mind - the first

1 precaution of intelligent tinkering is to save all of
2 the pieces. When we select one species to manage for,
3 we disregard the other species which are out of focus
4 and that has been one of our drastic mistakes in the
5 United States. I would hope you don't need to repeat
6 it.

7 MADAM CHAIR: So, Mr. Maser, are you
8 saying that you are in favour of - and we have had
9 evidence about it - is it called multi-species
10 indicator approach?

11 THE WITNESS: Yes, if you are going to
12 use that that is what I would use.

13 MADAM CHAIR: But what is your preferred?
14 Can you sum up what your preferred approach is to
15 wildlife management with respect to the forest?

16 THE WITNESS: My preferred would be to
17 manage the habitats. Not focus on the species, but
18 focus on the quantity and the quality of the habitats
19 as they are distributed in time and space over the
20 landscape.

21 MADAM CHAIR: And not worry about
22 populations or...

23 THE WITNESS: Populations cannot be
24 counted. You can count trees, they stand still. Even
25 ... flying in open country for farrel horses and antelope

1 ... in sage brush with airplanes I have tried counting
2 them. I defy anyone to get an accurate count, let
3 alone in a forest.

4 So what you can do is, if you manage the
5 habitat you can expect to have a healthy population. I
6 had asked the Oregon State Game Commission a number of
7 years ago -- we tried to get them to set herd limits so
8 we had something against which we could design habitat
9 management and they were uncomfortable doing that.

10 So when I asked them: How many do you
11 want out there, they said: As many as possible. I
12 can't manage for that. I don't know what that is.

13 Populations fluctuate. But I can manage
14 for habitat distributed in time and space on an acreage
15 over landscape. That I can do, that's planable and
16 that would be the preferred way that I would do it.

17 MR. LINDGREN: Q. Towards that end, Mr.
18 Maser, can I refer you to Appendix 12.

19 MR. MARTEL: Can I stop there?

20 MR. LINDGREN: Certainly.

21 MR. MARTEL: Why would people then -- if
22 that's the concept, what triggered the suggestion that
23 if we looked at a species or two we would do it at all?
24 Where does that come from?

25 THE WITNESS: If the United States that

1 came out of sheer frustration before we wrote this book
2 that came out in '79, recognizing that there are 300 or
3 400 in species and you can't manage for all of them.

4 How do you have some kind of an indicator
5 that you are doing the right thing and the habitat is
6 healthy. That concept was strictly a frustration
7 concept. In its time it was a good one because it put
8 us on to -- in this book we used a concept that was
9 borne in Finland called the Lifeform Concept
10 recognizing that species have two habitats: One for
11 feeding and one for reproduction.

12 They are seldom in the same plant
13 community or the same successional stage within the
14 community or maybe the same layer in the forest. The
15 habitat for reproduction is much more restrictive than
16 the habitat for feeding.

17 So the way we got around this is if you
18 will turn to Appendix 12 -- I don't know if that's
19 where you were headed, but...

20 Q. Exactly.

21 A. What we did was take all the data we
22 had on all the life forms and the life form is simply a
23 collection of species, vertebrate, birds, animals,
24 amphibians and reptiles that feed in a given suite of
25 communities and reproduce in a given suite of

1 communities and we put them together and said: If we
2 manipulate these communities we have an impact on these
3 species.

4 One of the ways of doing that is, it
5 feeds in the canopy and it nests in the shrubs.
6 Therefore, if we herbicide the shrubs we remove the
7 species, or it nests on the ground and it feeds some
8 place else. So if we have an impact on either its
9 feeding habitat or its habitat for rereproduction we
10 have an impact on the species.

11 We then tried to find a tool that the
12 managers could use that was as unbiased as possible and
13 so we counted all the succession stages within all the
14 plant communities or special conditions that a given
15 species reproduced in or would feed in.

16 What we did was set up on a scale of 1 to
17 40 divided in thirds what we called our vulnerability
18 or versatility index and that is simply the additive of
19 the plant communities that those species use.

20 The higher the number of plant species
21 they use for feeding the lower the vulnerability to
22 manipulation of their feeding habitat, but the lower
23 the numbers of plant communities that they use; in
24 other words, the more restricted they are the greater
25 their vulnerability is to habitat manipulation. It

1 turned out that this needs to be keyed primarily to
2 habitat for reproduction.

3 This is a viable tool because it is
4 unbiased, it is based on the data there are and we
5 found there were a lot of data on these species, and it
6 gives the manager a way of looking at the various types
7 of manipulations to see what the impact was going to be
8 on which life forms which had which representations in
9 term of species and what the number of species would --
10 what the effect would be on the number, and it has
11 worked out very well. This has been adopted across the
12 United States Forest Service.

13 We wrote one for range lands and this
14 book is now in Europe, it is in Japan and a number of
15 other countries.

16 What we tried to do was give the manager
17 the tool without having to know all of the species that
18 would allow wise decisions, prudent decisions without
19 telling him or her what to do, just how to look at the
20 consequences of the decision that he or she was going
21 to make which gives them some sense of whether or not
22 they would achieve that which they were trying to
23 achieve.

24 MR. LINDGREN: Q. Mr. Maser, FFT
25 condition No. 27(3) which is found, Madam Chair, on

1 page 25 of Exhibit 1610.

2 A. What is 1610?

3 Q. You don't have it.

4 A. Okay.

5 Q. But in any event, section 27(3) would
6 require the MNR to develop a species vulnerability
7 index presumably along these lines. Would you support
8 such a condition?

9 A. Yes, in that it is the most unbiased
10 economical tool to use for planning that we have been
11 able to devise.

12 Now, there are people obviously who
13 didn't care for it and we got a lot of criticism,
14 particularly from the universities, because we were
15 told we didn't have enough data to do this. We had two
16 responses. The first is, if you can produce a better
17 document we will be the first to tear ours up and the
18 first to applaud you. No one has done that.

19 The second is, we will never have all the
20 data, but in our opinion we have two options, too soon
21 or too late and I will always opt for too soon.

22 Q. I would like to turn briefly to the
23 discussion of the role of fallen trees in the forest
24 and briefly can you explain the role of fallen trees in
25 the nutrient cycle and in the hydrologic cycle?

1 MADAM CHAIR: Mr. Lindgren, we have heard
2 quite a bit of discussion from Mr. Maser with respect
3 to this his photographs.

4 THE WITNESS: Thank you.

5 MR. LINDGREN: Q. I will move directly
6 to another question, sir. What is the relationship
7 between streams and old growth and what are the
8 implications of that relationship for forest
9 management?

10 A. Streams and old growth has very
11 important implications. In fact, we just finished
12 writing a book on that.

13 The trees that fall into the stream
14 decompose very, very slowly and the reason they do,
15 which is the same reason in wetter parts of the
16 environment trees take so long to decompose, is that
17 the water soaks into the wood and it becomes
18 waterlogged which means it becomes anaerobic; there is
19 no oxygen. It limits the penetration of oxygen. That
20 determines which species of organisms can penetrate the
21 wood to decompose it.

22 In streams, wood decomposes very slowly.
23 About a quarter of an inch of the outside is softened
24 by aquatic fungi which then are eaten by insects,
25 aquatic insects, and it gouges it out.

What happens in a first-order watershed, which is the head waters, is when the wood gets in, be they twigs, needles or large wood, the organisms in the stream begin to process the wood, and as they process it and change it it flows down into bigger streams and bigger streams and the stream forms a continuum in which the material, as it goes down, is processed and refined and refined so no two reaches or stretches of the stream are the same as you go downstream.

10 So the wood is the primary nutrient input
11 with the twigs, the leaves and the needles. The wood,
12 on the other hand, when it is hooked to the bank,
13 particularly with a root wad if it is blown over and
14 the roots anchor it to the bank, it forms a dam across
15 the river, if it falls across the river, that creates
16 water falls, it dissipates the stream's energy. That
17 is how the stream dissipates its energy. It creates
18 pools and gravel beds where spawning takes place.

Now, the wood also in the winter in high
water floats up and then floats down again in low
water. So it is a balancing act over time. The wood
in the streams of the northwest, the biologists for
years told industry and the forest service to clean out
and what we found when we went back and looked at the
historical records was that prior to the 1860s when the

1 army corps of engineers started cleaning our rivers
2 with snag boats for navigation, some of the rivers were
3 so choked with wood that Peter Stein Ogden in 1926
4 could not get down to the water to set beaver traps,
5 but there were tremendous runs of salmon in steelhead.

6 Over time the corps of engineers started
7 cutting down the riparian forests to keep the wood out
8 of the rivers because of the river traffic in boats.
9 When they got inland a ways, between Corvallis and
10 Eugene in the Willamette valley, which is a stretch of
11 about 50 miles, in a 10-year period they pulled out
12 5,000 or so full length trees that ranged from 90 to
13 120 feet in length and five to nine feet in diameter
14 that were in the river and it had a braided system,
15 channels, many channels which were altered and switched
16 around by how the wood blocked this one or that one
17 over time.

18 They compressed the channels into one,
19 they got rid of the wood and we lost the salmon runs,
20 they went way down. We have learned that the habitat
21 that the wood builds into streams is critical to the
22 fish population. It's critical to the stability of the
23 banks, it's critical to dispersing or dissipating the
24 water's energy. Those are a few of the things that the
25 wood does.

1 ... Where we have clearcut and have removed
2 the slash, the riffle pool ratio has changed. There
3 are far greater pools and far less riffles and that
4 switches the population dynamics of the fish. If you
5 want to have coho salmon you have to have pools. If
6 you want some other fish you can have more riffles.

7 So, again, we have to determine, as I
8 said yesterday, what we want out there and then manage
9 the habitat accordingly. That is why I will always
10 favour habitat management because the quality of the
11 habitat determines the quality of the species
12 relationships.

13 MADAM CHAIR: Excuse me. I am surprised
14 to hear you say, Mr. Maser, that with respect to the
15 example of more riffles than pools depending on what we
16 want, I guess I have been taking from your evidence
17 that it is not necessarily what we want to produce but
18 what would be produced naturally.

19 In other words, to what extent would you
20 be willing to plan and carry out the production of
21 specific wildlife for recreation, for hunting, for
22 fishing?

23 THE WITNESS: Are you asking me for my
24 purview on that.

25 MADAM CHAIR: Yes.

1 THE WITNESS: You see this, Ma'am, is
2 where humanity is going to superimpose what it wants on
3 the landscape. The fire will alter the system, a
4 landslide will alter the system, so part of the natural
5 cycle is to have more pools part of the time over time
6 and more riffles. To the system, that makes no
7 difference. To me in that sense it makes no
8 difference.

9 What I am saying is, we are managing the
10 landscape because we want to create something out
11 there. We are negotiating what we want in goods and
12 services. If we want a particular thing, then we must
13 manage it accordingly. If we want something else, we
14 must manage it accordingly. That is why I said this
15 morning, we have to make conscious choices. Not only
16 what we want in the short term, but over the long run
17 and that is why I would manage for habitat quality and
18 a clearcut which goes from pools to riffles is not
19 habitat quality. I would go for the quality of the
20 habitat.

21 If, on the other hand, you what to manage
22 for a certain fish, that's fine, but you have an impact
23 on -- the trout, we have a lot of. Our featured
24 species are sometimes exotics which are not native to
25 that part of the system. We have even poisoned the

1 whole stream to get rid of the native fish.

2 That does a tremendous amount of damage
3 to the system as a whole as we simplify it. That kind
4 of thing I would not be in favour of regardless of what
5 kind of management we do, but manipulating habitat we
6 will do.

7 I have no problem with that. What I have
8 a problem with is the thought process that goes on
9 before we manipulate and the humility and sensitivity
10 with which we do it.

11 I guess I don't understand if you think
12 my answer is incongruous. I am just saying we are
13 going to manage. We do have choices and to me it is
14 the thoughtfulness and the humility of the choice that
15 makes the difference.

16 MADAM CHAIR: Thank you.

17 MR. LINDGRE: Q. Picking up on a comment
18 you just said, Mr. Maser, do you have any concerns
19 about the practice of clearcutting to water's edge, the
20 edge of lakes or rivers or streams or other riparian
21 areas?

22 A. Yes. We have had a long battle with
23 that because that removes the future wood supply from
24 the stream, the river or the lake and that has a
25 dramatic impact on the aquatic portion of the

1 ecosystem. That's why we have buffer zones.

2 But we are also changing how we look at
3 those. We use to have fixed zones, so many feet on
4 either side. That is not tenable. It is not tenable
5 because there are some areas on a stream we call a
6 biological hot spot. It is an area where there may be
7 a log jam and the stream has become widened and there
8 is a tremendous amount of fish production. Those areas
9 require more protection than if you had a stream going
10 through a canyon or going over a rocky area that did
11 not have much biological diversity in it naturally.

12 If it did not, then you don't need such a
13 wide buffer strip and you can have a narrower one
14 provided you leave enough wood to replace that in the
15 stream over the years.

16 The stream is dynamic. The riparian
17 interface with the upland is dynamic. Our management
18 should be provocative and dynamic also, not constrained
19 to a line here which means we don't have to think about
20 it beyond that. That gets back to, we want a cookbook
21 answer and we do whatever we do with the rest of it for
22 economic purposes. That's something the older I get
23 the less I can see as being a wide decision.

24 Q. On the issue of retaining dead and
25 down woody material on a site, can I ask you to turn to

1 FFT condition No. 30. Mr. Maser, No. 30 provides that:

2 "Within areas eligible for forest, the
3 MNR shall ensure that sufficient number
4 and distribution of fallen logs and dead
5 and down woody material, including
6 logging slash, is retained on the
7 cut-cover to provide for structural
8 diversity, wildlife habitat, nutrient
9 cycling and other natural conditions and
10 processes."

11 Again, leaving aside the particular
12 wording of that provision, are you in support of a
13 condition that would require the MNR to maintain and
14 manage dead and down woody material in cut-over areas?

15 A. I would support this in any forest
16 management anywhere.

17 Q. Why is that?

18 A. Because that is the dynamic part of
19 the system, as I have been going through, and it took
20 us about 10 years to get this built into our management
21 plans and and it is now throughout much of the forest
22 service. I might add is being done voluntarily.

23 Q. In terms of balancing biological
24 withdrawals and reinvestment, in your view is replacing
25 an old growth forest with a plantation tended with

1 herbicides, does that represent a sound biological
2 reinvestment?

3 A. That is no reinvestment. That is an
4 investment in the next crop.

5 Q. What is the impact of shortening
6 rotation ages on reinvestment?

7 A. If you deal with plantations, there
8 basically is no reinvestment in plantations the way
9 plantations are designed. The shorter and faster the
10 rotations the more one withdraws the capital from the
11 site without putting anymore in, the faster it is done.

12 Q. In your opinion is a plantation a
13 forest?

14 A. No, it is a plantation. It is a
15 crop. A forest is not a crop. A forest is a
16 ecological entity which has evolved in a
17 self-organizing system towards complexity.

18 A plantation is a purposefully simplified
19 system with an economic design to produce a crop.
20 That's fine, but it is not a forest.

21 Q. During the Panel 6 scoping session
22 the Board asked, on the continuum between biological
23 diverse managed forests and biological deserts where
24 does intensive plantation fit in in your view?

25 A. Far closer to the biological desert.

1 In fact, our young plantations we have looked in the
2 northwest, looking at species diversity of vertebrates,
3 that is the biological desert. I cannot speak for
4 yours.

5 Q. I would like to turn very briefly to
6 your discussion of native forests and ecological
7 sustainability and we find that at page 13 of the
8 witness statement.

9 First of all, can I ask you what you mean
10 by native forests and can you explain very quickly why
11 it might be important to set aside native forests,
12 either young or old, for research value or non-timber
13 values?

14 A. A native forest is one that has the
15 native species; it has not been planted. The trees are
16 not brought in from outside and native forests can be
17 managed. This does not mean virgin forest necessarily.

18 In the Rocky Mountains they have been
19 selectively logging for a number of years and have
20 natural regeneration. They are managing a native
21 forest. What they are doing is maintaining the
22 integrity of the gene pool and that is to me one of the
23 critical components of maintaining a native forest, is
24 so that we have the genetic diversity available.

25 Q. Now, yesterday afternoon you briefly

1 described research natural areas that are established
2 in the United States.

3 Can you explain briefly how those areas
4 are identified and managed, and could you also indicate
5 whether in your view portions of the Ontario forests
6 should be set aside for the same purposes?

7 A. What we did originally was just take
8 the best areas we could find, the most undisturbed and
9 set them aside. Then we got together and we looked
10 over the landscape of Oregon and Washington, the two
11 states, to see what we had, what was missing, what was
12 marginal and needed to be augmented.

13 We started a specific search throughout
14 those two states to identify those areas that needed to
15 be set aside to maintain in as undisturbed a state as
16 possible so that we could in the future monitor human
17 cause changes in the surrounding landscape, we could
18 study processes with non-destructive sampling. They
19 had education value and they had the potential of
20 unknown values as an insurance policy for the future.

21 It is not within my purview to say
22 Ontario should have natural areas, but based on my
23 experience I would certainly say it is a very wise
24 thing to do because it is an insurance policy and we
25 have learned an incredible amount about forest

1 processes and dynamics that have been translated into
2 management on our federal research natural areas. The
3 states has natural areas also and Alaska has instituted
4 one. So this is spreading throughout the United
5 States.

6 Q. During the Panel 6 scoping session
7 the Board asked how you will go about setting side an
8 ecologically adequate system of natural areas without,
9 for example, a definition of old growth and without
10 shutting down the forest industry completely, and two
11 of the options explored by the Board included the
12 establishment of no-cut reserves or the setting aside
13 of a fixed percentage of a management unit.

14 Let me ask you, how you go about setting
15 aside an adequate area -- a system of natural areas?

16 A. Including old growth?

17 Q. Correct.

18 A. Well, my first question would be
19 before I could answer that really adequately, why do
20 you want it because why you want something determines
21 how it is done.

22 If it is done to select just unique
23 areas, which is what we started out with, and then
24 expanded to the best representation of common areas, we
25 had to take it where we could find it because of the

1 extensive logging in the northwest.

2 If we had to do it over again and if we
3 were looking for old growth areas, we would look at
4 elevational gradients, moisture gradients, ingradients
5 of soil. One of the things we would ask is: Where do
6 we most want to grow trees on a commercial basis. That
7 is where we most need to understand the processes, that
8 is where we would pick some of the best areas to set
9 aside so we had a blueprint of what it is we may need
10 to recreate. We would then take those up on
11 elevational gradients and we would plan them on the
12 landscape.

13 Now, initially they would be "set asides"
14 simply because that is what we have and the old growth
15 is always going to be the finite resource. Ultimately,
16 we would include in that some young growth native
17 stands and as they grew up they would replace the old
18 growth as it fell apart.

19 Now, the way we looked at it, we should
20 be able to, still in the United States, have some old
21 growth probably for the next 1,400 years if we were
22 willing to plan it that way. We may not. But
23 ultimately as we learn how to recreate old growth, how
24 do we manage areas so we can harvest them, but not
25 alter them substantially and then allow them to become

1 old growth.

2 Gradually over the landscape in the
3 future, nature's old growth would be replaced with
4 humanities old growth of which we have managed for
5 those characteristics. So there could always be some
6 old growth built into the landscape management basis
7 over space and time and I think at that point I would
8 change the scenario.

9 I would have old growth where the soil
10 needs to rest and rehabilitate itself. At the end of
11 whatever rotation is appropriate, I would cut it and
12 have a good quality product because there are other
13 acres that would need to rest. So I would not take it
14 out of the cut, but I would plan it in the cut over
15 time on a sustainable basis to serve a particular
16 function. And that point the landscape would tell me
17 where it is needed.

18 Q. I have a few specific questions to
19 ask you about in terms of old growth, but I do have one
20 final statement from the MNR Panel 9 witness statement
21 that I would like to put to you and this is found on
22 page 14 of the green document.

23 A. The big green one?

24 Q. That's correct. In the second full
25 paragraph on page 14 the author writes that:

1 "Another characteristic of forests in
2 Ontario is that they are remarkably
3 resilient and capable of adjusting to
4 disturbances to which they are
5 subjected."

6 Then skipping down to the first sentence
7 of the third paragraph:

8 "These forest systems continue to exist
9 and show considerable adaptation to the
10 continuing disturbances of fire, wind,
11 insects, disease and man."

12 Stopping right there. Do you agree that
13 forests are resilient to or have adapted to the
14 man-made disturbance of large area clearcutting or
15 full-tree logging?

16 A. Based on your experience and what I
17 have seen and studied eco-systems I would say no in the
18 short term. Given a long enough time, which is beyond
19 the scope of our thinking, they probably could and they
20 would be different forests. They would alter to adapt,
21 but they would probably not produce that which humanity
22 would like to have.

23 Q. What about other man-made stresses or
24 disturbances such as global warming or acid
25 precipitation, have forests adapted to those kinds of

1 stresses?

2 A. They have not adapted. My concern is
3 if we give up the genetic diversity they may also not
4 be adaptable. To the extent they can adapt, we simply
5 don't know. So we need to save all of the options as
6 an insurance policy.

7 Q. I have a number of questions I would
8 like to put to you about old growth and a number of
9 those questions come from the Board as well.

10 I would like to start by filing a five
11 page exhibit on a recently announced national policy on
12 old growth put out by the U.S. Forest Service.

13 MADAM CHAIR: Will you be finished by
14 four o'clock, Mr. Lindgren?

15 MR. LINDGREN: Yes, Madam Chair.

16 MADAM CHAIR: Do you want this to be an
17 exhibit, Mr. Lindgren?

18 MR. LINDGREN: Pardon me.

19 MADAM CHAIR: Do you want to make this an
20 exhibit?

21 MR. LINGREN: Yes. It is a five-page
22 document consisting of a press release from the United
23 States Forest Service dated October 19, 1990, as well
24 as a one-page memo on old growth management, a one-page
25 position statement on national forest old growth values

1 and a generic definition and description of old growth
2 forests.

3 MADAM CHAIR: That will be Exhibit 1674.

4 MR. LINDGREN: Thank you.

5 ---EXHIBIT NO. 1674: Five-page document consisting of
6 a press release from the U.S.
7 Forest Service dated October 19,
8 1990, a one-page memo on old
9 growth management, a one-page
position statement on national
forest old growth values and a
generic definition and
description of old growth
forests.

10

11 MR. LINDGREN: Q. I would like to begin
12 by looking at the first page and halfway down that
13 first page there is an indication that:

14 "Henceforth, old growth management will
15 require a reduction in the use of
16 traditional clearcutting methods.

17 Instead of clearcutting and burning in
18 preparation for regeneration, we will
19 increase retention of residual trees,
20 snags, dead and down material and logging
21 debris."

22 Are you in general agreement with that
23 direction for old growth management?

24 A. Yes because that is the direction
25 that came out of our research in the northwest. This

1 is tailored to the research we did over the last 15
2 years.

3 Q. I would like to ask you to turn to
4 the last page of this document which contains the
5 generic definition and description of old growth
6 forests. On that page we find both a definition and a
7 description of the ecological characteristics of old
8 growth.

9 Again I would ask you, are you in general
10 agreement with the generic description of those
11 ecological attributes?

12 A. Yes. I would change the wording,
13 however, based on experience. We cannot define old
14 growth because it means many things to many people. We
15 can characterize old growth.

16 So I would opt for characterizing it.
17 The description is a characterization, an ecological
18 one. The definition is going to have to build in human
19 values and that still is not going to -- there can be
20 no generic definition for old growth in my opinion.

21 There can be a generic characterization
22 of its attributes, but they will vary from forest type
23 to forest type, area to area. But an old growth
24 description or characterization takes on -- old growth
25 means something very different to the native Canadians

1 than it does to us. Old growth is something different
2 to industry than it might be to a conservationist.

3 We struggled with this in the Carson
4 National Forest. We had a week long workshop in which
5 we had the native Hispanics, the Pueblos, three Pueblo
6 tribes, conservationists, industry and the forest
7 service and we went through the technical look at how
8 the old growth system works, part of which I went
9 through here, but we looked at it in terms of streams
10 and all the other things also.

11 Then we had the native Americans tell us
12 what old growth meant to them culturally and then the
13 Hispanics did the same having been there since the
14 1950's, then the conservationist. Now, this was all
15 verbal, but we also had pictures lined up on the wall
16 with no names just numbers and they were to go along
17 and number the ones that to them were old growth.

18 Then we took them out to a number of
19 stands on different gradients and said -- and asked
20 them being out there, how does old growth feel to you,
21 what it is, how does it smell, how would you define it.

22 At the end of a week we sat down for that
23 national forest and we came up with some
24 characteristics of old growth. The idea was to get the
25 people involved in the definition, in the

1 characterization because old growth means many things
2 to many people.

3 The idea was also that the forest
4 supervisor was going to then over the next year plan
5 revise the forest plan which was already the final and
6 accepted and the public got so excited about it and the
7 natives and we had one industry representative, and
8 within one month they revised the entire plan and built
9 old growth into the management looking at it over time
10 and space on a sustainable basis.

11 It can be done and it is a beautiful
12 plan. They started with a beginner's mind; no one had
13 ever done this and it is now being done in other
14 forests across the country from the southeast to the
15 west.

16 Q. In Ontario we do not appear to have
17 any wildlife species such as the spotted owl which are
18 specifically adapted to old growth.

19 A. That you know of.

20 Q. That we know of. But Dr. Euler has
21 testified that there may be many species that have
22 referred habitat within old growth or late successional
23 forests.

24 Nevertheless, are there reasons why old
25 growth should be saved from liquidation?

1 A. I think we have discussed that quite
2 a bit, unless there is something I have missed.

3 Q. My next question, Mr. Maser is, do we
4 need to save all old growth in Ontario; if not, how
5 much should we set aside?

6 A. No, I can't say you need to save all
7 of it. I think one of the things I would do which
8 could be done fairly rapidly if you want to know about
9 the wildlife, I would do something like we have done
10 here which tells you which species find their preferred
11 habitat in old growth based on what is already known.

12 I would also then determine why old
13 growth would be set aside, and from there I would
14 commission a group of people, the best that you can
15 find, and we have done this in some things, to take a
16 year and synthesize everything that is known about your
17 forests, other forests and come up with a plan with
18 specific objectives for managing old growth now in
19 terms of the future.

20 This is what they did with the spotted
21 owl. They sequestered Jack and five other government
22 scientists for six months. That is the most
23 comprehensive thing on all of the data that has ever
24 been written. You can do exactly the same thing with
25 old growth and come up with an incredible management

1 document that would show you the pros and cons and the
2 levels of flexibility.

3 It is very difficult for a government
4 agency to do that, so I would tend -- for one thing,
5 when we have done it in the past we had to be relieved
6 of other duties and I haven't found a government agency
7 yet that wasn't underpaid, understaffed and overworked.
8 So one of the things that could be done is to get
9 university people contracted, however you want to do
10 it. I think the money invested up front is well spent
11 and much less expensive over time than if you wait
12 until dire problems show up and then you try to come up
13 with a quick fix. You have an opportunity to do
14 something we no longer have the opportunity to do. You
15 have much more of it left than we do.

16 Q. With respect to the ecological
17 characteristics of old growth forest eco-systems, I
18 would like to refer you to condition No. 28, Forests
19 for Tomorrow term and condition No. 28. You have an
20 excerpt.

21 A. What was that again?

22 Q. I am referring to Forests for
23 Tomorrow's proposed terms and conditions No. 28.

24 A. Okay.

25 Q. Again, leaving aside the specific

1 wording, in essence this provision would require the
2 MNR to identify and locate old growth based on those
3 structural, functional and compositional attributes set
4 out there.

5 Again, leaving side the specific wording,
6 would you be in support of a condition that would
7 require the MNR to engage in that sort of activity?

8 A. Let me put it this way. I understand
9 you have been saying what is in here. I am a little
10 disturbed by my saying, as somebody from the United
11 States, that the MNR should be required. I don't think
12 that's my purview. I think this is a wise thing to do
13 ecologically.

14 Q. Thank you.

15 A. I don't think I have a right to say
16 what should or should not be done in Canada.

17 Q. Thank you. Now, during the Panel 6
18 scoping session the Board asked a question about the
19 economics of cutting or conserving old growth and in
20 particular I believe the Board asked, what has been
21 impact of cutting or conserving old growth in terms of
22 resource dependent communities in the Pacific
23 northwest, and are you in a position to offer an answer
24 to that question?

25 A. Yes. Our timber companies cut out

1 and got out. Many of the small communities
2 disappeared, many of the small mills were gobbled up in
3 competition by the big companies. Georgia Pacific cut
4 out the northwest, it had its corporate headquarters in
5 Portland, Oregon. In my lifetime it cut out the
6 northwest, pulled its corporate headquarters out, went
7 on the south and whole flights of airlines closed down.
8 Communities were put out of business.

9 Today automation is putting a lot of
10 people out of work. Log exports have not helped, but
11 in the long-run the communities that are dependent
12 strictly on the timber are done when we run out of old
13 growth.

14 I think it is wiser -- this is my
15 opinion. I think it is wiser to save some, whatever is
16 necessary to have a sustainable forest, because those
17 communities that have maybe five years left are going
18 to go. If we have some old growth represented, the
19 future still has some ecological options. If we
20 forestall the closing of some of those small mills for
21 the sake of a few years, the options for the future are
22 for every foreclosed. That to me is not a viable
23 conscienable tradeoff.

24 I think, again, if we do not view the
25 world in an expansive mode, that we have to get more

1 and more and more or have a sustained yield which is
2 guaranteed, which is non-ecologically sound and some of
3 these small towns can find ways to diversity, I think
4 we can have both.

5 Now, we have communities, as I am sure
6 you do in Canada, that have been strictly set up based
7 on timber. As long as the old growth is there they
8 were fine, but they are closing because the old growth
9 is not there and that's not the main issue. The main
10 issue is automation; to get more wood fiber out with
11 fewer people. That has been the main reason our mills
12 have been closing down. It has not been timber supply,
13 it has been automation.

14 What has happened, unfortunately, is that
15 both the conservationists and the timber companies have
16 pitted loggers and mill workers against owls and other
17 people and people have -- I know what it is like to be
18 without a job.

19 When I resigned from the Bureau of Land
20 Management to retain my personal integrity I was
21 suddenly without a pay cheque and my wife freaked out
22 because I was the pay cheque. So I have a sense of
23 what it is like to be in a position of all of a sudden
24 going from a good paying job to zero at the signature
25 of a pen and have nothing coming in. I have empathy

1 for them. By the same token, I do not think we can rob
2 the future of its options when we have perhaps the
3 responsibility to take some risks to maintain those
4 options.

5 I think a lot of it can be forestalled
6 with some foresight, but our companies and our mill
7 people resisted change and it hurt me deeply to see the
8 industry and the conservationists using the mill
9 workers and the loggers as pawns in a squabble in which
10 both sides were wrong. The conservationists and
11 industry were wrong in their argument because we were
12 losing the forest for all people. The mill workers and
13 the loggers were caught in the middle and to me that is
14 not right. That was our scenario. I don't know what
15 yours is.

16 Q. Again, during the Panel 6 scoping
17 session the Board asked a question in relation to your
18 comment on page 21 of the witness statement that
19 plantations are failing over time in other parts of the
20 world, and if support of that statement you have cited
21 Kramer, Plochmann, Zang -- two Plochmann papers and
22 Zang.

23 The Board asked me to ask you to briefly
24 summarize the main finding of those studies?

25 A. Kramer and Plochmann are Europeans,

1 both of them Germans. What they have found is very
2 clearly stated in the Zang paper which is an interest
3 one. They found that the loss of diversity in the
4 forest has severely strained the forests in Europe.
5 The loss of organic material in the soil has had a
6 severe impact on the soil and that the intensive
7 management, the plantation mode which they are now
8 incidentally getting away from -- Switzerland has a law
9 that it is no longer legal to plant monocultures.
10 Germany is getting very close to that.

11 They have found that all of these
12 cumulative effects over time has caused the third
13 rotation to have trouble, the fourth one to fail and in
14 some areas they have severe problems getting seedlings
15 established and growing.

16 China I think has had the most courage.
17 During the cultural revolution when all the
18 intellectuals were either in turn killed or sent inner
19 Mongolia to work, we had scientists with us who
20 survived that who were foresters. Some of them were in
21 exile and came back, but the one thing that was
22 interesting was China realized during the cultural
23 revolution and the tremendous purges of Mao that they
24 were losing their forests.

25 They had a team during the whole Mao

1 regime studying deforestation and the loss of fertility
2 of the soil and they came up with a term for it, they
3 called it the Phenomenon of Soil Exhaustion in which
4 they found that their forests of Chinese fir grew a
5 mixed forest of hardwoods and they had been cultivating
6 pure plantations of Chinese fir and they were crashing
7 after the second or third rotation; they could not get
8 them to grow.

9 So they studied the soil in great detail
10 and found out that the soil had become toxic to the
11 growth of the trees. They did experiments to introduce
12 nitrogen fixing bacteria back into the system, but they
13 would not live 24 hours in the soil.

14 What they had done was changed the soil
15 characteristics by altering the plant community that
16 the soil was no longer compatible with the plantations.
17 So what they did was allowed the forest to grow back to
18 its native mixed state and they can now have a
19 plantation for one rotation and then they have to allow
20 it to heal. They have been struggling to reforest
21 China.

22 That is the same scenario which is where
23 the idea originally came from that we can have
24 plantations provided we allow the site to heal itself
25 or we may end up in similar straits. We have problems

1 in the northwest where we have had plantations and
2 maybe the second rotation. We don't know all of the
3 causes, but we do know that we have grossly altered the
4 site and that that undoubtedly has an impact.

5 So to my mind again, looking at what they
6 have learned in Europe, looking at what they have
7 learned in China, my counsel would be, let's not repeat
8 the same mistakes. Let's make some new mistakes, some
9 intelligent mistakes. We know what's going to happen
10 with this because the principles are the same. Why do
11 the same thing and end up most likely in the same boat.

12 Q. I would like to ask you a few
13 questions on the last section of your witness statement
14 and it begins on page 29 of the witness statement.

15 In particular I would like to refer you
16 to page 32 and at the bottom of the page you write
17 that:

18 "To accomplish ecological sustainability
19 we must shift our historical paradigm
20 from that of the exploitative colonial
21 mentality, use it until it collapses and
22 somebody else can deal with it to the
23 paradigm of trusteeship."

24 Can you explain very briefly what you
25 ... mean by the term trusteeship and what that might

1 require?

2 A. I use trusteeship rather than
3 stewardship because when you set up a trust it is set
4 up for a beneficiary and the principal of the trust is
5 protected and maintain so that the beneficiary has the
6 option of using the interest. You maintain the
7 capital, the principal, and they can spend the
8 interest.

9 To me, maintaining the health and vigor
10 of soil is maintaining the principle of the forest so
11 that we can spend the interest, which is the trees,
12 without impairing the soil's ability to produce trees
13 on a sustainable basis in and for the future.

14 We need to plan today for today in terms
15 of the future, not for today in terms of today. That
16 is what I mean by trusteeship, that we are cognizant in
17 everything we do about the legacy, the ongoing legacy
18 for the future that can be carried in perpetuity.

19 Q. Now, in the redesigned forest, which
20 has been marked as Exhibit 1670, you discuss the term
21 restoration forestry at pages 169 and following.

22 Can you explain what restoration means
23 and how that fits into the paradigm of trusteeship?

24 A. To restore something is to put it
25 back. A resource is to resource to put it back. It

1 - occurred to me, if I think of the term resource and I
2 think of it the way it was originally meant, to be a
3 reciprocal relationship between humanity and the earth,
4 and the way it is used today, which is the way a nation
5 measures its wealth, something to be converted to
6 money, I did not like the idea of being considered a
7 human resource, because that is not sustainable. That
8 means I am here to be used somehow, to be exploited.

9 When I translate that to the forest, what
10 we have done is exploit the forest. We saw no inherent
11 value in the forest, the value was in converting it to
12 money.

13 I have no basic problem in converting
14 things to money. I do have a concern thinking of the
15 future, though, if we do not maintain the system's
16 ability to continue to produce that so other people
17 have the option for two reasons.

18 One is in our short-term short-sided
19 paradigm we are saying that our plantation are going to
20 be the values that the future wants through time. I
21 know from my experience in the United States that the
22 cultural values of society have changed and if we do
23 not have a flexible sense of forestry that allows for
24 change, a different paradigm of values coming in the
25 future, then what we do in the landscape has committed

1 that landscape to a narrow blinker view of what the
2 options are in the future.

3 The other thing is harvesting. I think
4 humanity has a right, an obligation to manage with the
5 earth and not to manage the earth in domination. Not
6 to subdue and conquer, but to be interactive because
7 that's the way the system is designed. We cannot
8 really do otherwise, but we can do this cautiously.

9 The question of restoration forestry is
10 how can we use the forest and restore it so it can be
11 used again and reforested so it can be used again. How
12 do we allow the forest to heal itself so it can again
13 be cropped. I think that is a fair question and what I
14 have found as I struggled with that was in Japan
15 looking at Japanese gardens. It was very difficult for
16 me to tell where nature began in the sense that we use
17 it in the end. I think we can garden everything.

18 I think we need to become in tune with
19 the process. As I studied the process I began to
20 understand that I could heal the forest by working with
21 those processes and in understanding and healing the
22 forest I myself felt more in tune with the processes
23 and, therefore, felt the same type of healing. To me
24 this is restoration forestry.

25 ...As we restore the land we restore our

1 options, we restore the ability to have amenities, we
2 project and pass the options into the future and above
3 all we learn one very important thing, we simply cannot
4 separate ourselves from the land, particularly forests.
5 Humanity and the forests are one entity that are
6 interactive and non-separable. What we do to the
7 forest we will end up doing to yourselves.

8 Q. You have mentioned several times the
9 need for change and I want to ask you if you see any of
10 the changes and I would like to speak to a one-page
11 article on that issue.

12 Madam Chair, I would like to file that as
13 the next exhibit.

MADAM CHAIR: This will be Exhibit 1675.

15 MS. CRONK: May I ask what this is,
16 please.

17 MR. LINDGREN: It is an article by a
18 gentleman named Gregory Aplet. It is entitled Forestry
19 and Conservation Biology and it is found in Volume 89
20 of the Journal of Forestry, page 56.

24 MR. LINDGREN: Q. Perhaps as I
25 Undistribute this exhibit, Mr. Maser, you can speak to

1 this document.

2 A... Let me back up for a moment. When I
3 started working as a research scientist for the
4 government, I did not have the same view of where we
5 are going that I do today because we were fighting an
6 uphill battle, a tremendous uphill battle.

7 The book that was referred to before,
8 From the Forest to the Sea, I had a three-year uphill
9 political battle with the Washington D.C. office
10 forestry staff of the Bureau of Land Management to get
11 that published, even though it was the best work of 15
12 scientists from universities, me from the Bureau of
13 Land management and Forest Services.

14 Over the last few years, over the last
15 decade I have begun see some incredible rapid changes,
16 particularly in the forest service towards new ways of
17 looking at management.

18 The American Society of Foresters has
19 been reticent to change and it has been interesting
20 because all of a sudden within the last couple of years
21 there are more and more articles by foresters, young
22 foresters and older practicing foresters that are
23 indicating that we must inside change willingly.

24 If we do not, the public will demand the
25 change ultimately. But this to me-- the sweeping

1 changes to me are imminent, this is true. And the
2 thing is, I have seen more changes I think in the last
3 decade of my life than expected to see in my entire
4 lifetime.

5 The fact that you are having this hearing
6 is phenomenal to me. We went through the same thing.
7 When I started with the government something like this
8 wasn't even heard of and then in the few years we were
9 talking about change, we were bickering about change,
10 we were fighting about change and the more we talked
11 about it the more comfortable we came with the talking,
12 ultimately we went through some type of these
13 processes.

14 This is the beginning of change and it
15 comes and fits and starts, but I have seen more change
16 faster in the last three or four years than I ever
17 expected to see and it is exciting.

18 The forest service has a new thrust
19 called New Perspectives which is looking at some of the
20 good innovative things that were disallowed a few years
21 ago that people did bootleg in the districts. They are
22 validating them. They are looking at new innovative
23 ways to change the forest service and it is now a
24 national function, a national policy to do that.

25 I spend a lot of time travelling around

1 the United States and Alaska talking about how we
2 change our forestry practices to a very receptive
3 audience. I have no doubt that you will get to the
4 same place we did, albeit not without a struggle. This
5 is just one little piece of evidence of the revolution
6 that we are going through in the United States in
7 changing forestry and this is done by foresters. That
8 is the best part.

9 Q. You mentioned yesterday, Mr. Maser,
10 at the beginning of your testimony that what we do to
11 your forests in Ontario has an affect beyond the
12 Ontario borders and keeping that in mind my final
13 question to you is this: Do you have any final
14 thoughts on the future options for the management of
15 Ontario's forests and forests elsewhere?

16 A. The options for Ontario's forests,
17 other than global climbing, will be exactly what you
18 make of them. I think from what I have seen since I
19 spend a lot of time in British Columbia, I do not know
20 the provinces in between, I think in Ontario you
21 probably have a chance to lead the entire country in
22 innovative forestry if you will grasp the opportunity.

23 You do not have the entrenched battles
24 they have in British Columbia. I think you are in a
25 much more admirable position. There are forests in

1 regions in the United States that have grabbed this and
2 are going with it and are making big changes. You have
3 the same option, and whether or not you do it isn't can
4 or can't, it is simply a choice; yes or no, will or
5 won't. I think you have a golden opportunity.

6 It is also a crisis. You are in crisis
7 now or you wouldn't be here, but I like the Chinese
8 term of crisis, it is two symbols put together which
9 means dangerous opportunity and every crisis has a
10 positive and a negative and I think it is up to you in
11 Ontario to choose which one you opt for, the positive
12 or the negative. I think you have a marvelous
13 opportunity.

14 MR. LINDGREN: Thank you, Mr. Maser.

15 Madam Chair, those are my questions for
16 Mr. Maser.

17 MADAM CHAIR: Thank you, Mr. Maser.

18 THE WITNESS: Thank you, Ma'am.

19 MADAM CHAIR: Ms. Cronk, it is now 20
20 minutes to four. I think our court reporter is going
21 to need a break. We probably won't make the last 20
22 minutes. You can start tomorrow morning at nine
23 o'clock.

24 MS. CRONK: This will be fine. Thank
25 you, Madam Chair.

1 MADAM CHAIR: Thank you. We will see you
2 tomorrow morning at nine.

3 ---Whereupon the hearing was adjourned at 3:40 p.m., to
4 be reconvened January 30, 1991 commencing at 9:00
5 a.m.

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 MC [c. copyright 1985]

