Our brilliant masters project final report

John Brown*, James Smith^{†‡}

April 23, 2022

Abstract

In this report, we describe our final project

1 Current Progress

1.1 Local Vol models

The Local Vol model I am using is the parameterized SVI model provided by professor Gatheral. $\sigma_{SVI}(k,t)$ where k is the log strike and t is the current time. I modified it to take S_t and t to be used in the Monte-Carlo local vol pricer. $\sigma_{SVI}(k = log(\frac{S_t}{S_0}), t)$

1.2 Exotic Volga

Exotic Volga is computed in this way

$$P(\sigma_{KT} - \delta\sigma) - 2P(\sigma_{KT}) + P(\sigma_{KT} + x_{KT}^{Volga})$$

 $P(\sigma_{KT} - \delta \sigma)$ means the price of an exotic option using a local vol surface with a constant shift.

 $P(\sigma_{KT})$ means the price of an exotic under a local vol surface.

 $P(\sigma_{KT} + x_{KT}^{Volga})$ means the price of an exotic under a local vol surface with each $(S_t = K, t = T)$ has a different shift x_{KT}^{Volga}

^{*}Department of Mathematics, Baruch College, CUNY. john.brown@baruch.cuny.edu

Department of Mathematics, Baruch College, CUNY. James.Smith@baruch.cuny.edu

[‡]We wish to thank our hamsters Buster and Butch for their constant affection.

Average Exotic Greeks across K,T	Exotic Volga	Exotic Vanna
Vanilla Call	-1.8113e-05	-0.002063
Down and Out Call	0.0107	0.0590

Table 1: exotic greeks

 x_{KT}^{Volga} is obtained by solving the following equation for each strike price K and each time to maturity T.

$$0 = C(\sigma_{KT} - \delta\sigma) - 2C(\sigma_{KT}) + C(\sigma_{KT} + x_{KT}^{Volga})$$

 \Longrightarrow

$$\sigma_{BS} + x_{KT}^{Volga} \approx C^{-1}(-C(\sigma_{KT} - \delta\sigma) + 2C(\sigma_{KT}))$$

where σ_{BS} is the Black-Scholes implied vol when strike is K and time to maturity is T for the vanilla call options, using the local vol surface we have.

 C^{-1} is the Black-Scholes implied vol solver.

 $C(\sigma_{KT} - \delta \sigma)$ is the price of a vanilla call with strike K and time to maturity T, under the local vol surface we have with a constand drift $-\delta \sigma$.

 $C(\sigma_{KT})$ is the price of a vanilla call with strike K and time to maturity T, under the local vol surface we have.

1.3 Current result

With $S_0 = 1$, log strikes $k = log(K/S_0) \in (-0.6, 0.2)$, time to maturity $T \in (0, 1)$. The average exotic greeks are concluded in the table 1

References

- [1] Gatheral, J., The Volatility Surface: A Practitioner's Guide, Wiley Finance (2006).
- [2] Gatheral, J., Hsu, E.P., Laurence, P., Ouyang, C., and Wang, T.-H., Asymptotics of implied volatility in local volatility models, *Mathematical Finance* (2011) forthcoming.