

51. On donne la parabole d'équation $4x^2 + 4x + y - 3 = 0$. L'aire limitée par la parabole et comprise dans le deuxième quadrant ($x < 0$ et $y > 0$) vaut :

1. $9/2$ 2. $16/3$ 3. $8/3$ 4. $11/6$ 5. $5/6$ (MB. 86)

52. $\int_{\sqrt{3}}^3 \frac{x \, dx}{\sqrt{x^2 - 1}} =$

1. 2 2. $2 - \sqrt{3}$ 3. $2(\sqrt{2} - 1)$ 4. $\sqrt{3} - 1$ 5. $\sqrt{2} - 1$

53. Calculer le volume de révolution engendré par la rotation autour de l'axe Ox de la surface limitée par les courbes d'équation $2y^2 = x^3$; $y = 0$ et $x = 2$

1. $2\pi/3$ 2. $8\pi/3$ 3. $16\pi/3$ 4. 2π 5. $4\pi/3$ (B.-87)

54. Calculer l'aire de la surface limitée par l'ellipse d'équation

$$25x^2 + 9y^2 = 225$$

1. $20\pi/3$ 2. $12\pi/5$ 3. 60π 4. 225π 5. 15π (B. 87)

55. $\int_{2/3}^1 \frac{dx}{x(2-x)} =$ www.ecoles-rdc.net

1. $\ln 8/9$ 2. $1/2 \ln 4/3$ 3. $1/2 \ln 2$ 4. $1/2 \ln 8/9$ 5. $\ln 2$ (MB. 87)

56. L'aire de la surface limitée par les courbes d'équation $y = x^3$ et $y = 2x^2$ vaut :

1. 3 2. 2 3. $8/15$ 4. $2 + \sqrt{2} - \sqrt{3}$ 5. $4/3$ (MB.-87)

57. Calculer l'aire de la surface comprise entre la parabole d'équation $y = -3x^2 + 6x$ et la droite d'équation $y = 3x$

1. $1/3$ 2. $1/2$ 3. $2/3$ 4. 1 5. $4/3$ (B. 88)

58. Une primitive de la fonction $f(x) = x^2 e^x$ est de la forme $F(x) = e^x \cdot g(x) + C$ où $g(x)$ est un polynôme en x et où C est une constante. Calculer $g(1)$

1. 1 2. 2 3. 5 4. 10 5. 17 (B. 88)