

Tecnologia em Redes de Computadores

Introdução a Redes de Computadores – INF015 –

Parte 1: Introdução

Professor: André Peres andre.peres@poa.ifrs.edu.br

Instituto Federal do Rio Grande do Sul - IFRS Porto Alegre

- Objetivos da disciplina:
 - Habilidades a serem trabalhadas:
 - Utilização de serviços disponíveis em redes
 - Configuração de sistema operacional cliente para rede
 - Construção de rede de comp. (escala reduzida)
 - Bases tecnológicas:
 - Conceitos de redes de computadores
 - Redes IP
 - LANs
 - Tecnologias de redes
 - Disciplina de 2 créditos (30 horas)

Conteúdos:

- Histórico e arquiteturas de camadas
- Nível de aplicação
 - Protocolos HTTP, DNS e Proxy
- Nível de transporte
 - Multiplexação por portas de transporte
 - Protocolos TCP e UDP
- Nível de rede
 - Endereçamento e máscara de rede
 - Roteamento Estático

Conteúdos:

- Nível de enlace/físico
 - Tipos de enlaces (ethernet e wi-fi)
 - Controle de comunicação de enlace
- Protocolos auxiliares
 - ICMP e ARP
- Nível Físico
 - Meios de comunicação
 - Ondas
 - Características de propagação de sinais

- Transmissão de Informação através de sistemas de comunicação
 - passagem de sinais através de meios físicos de comunicação
- Comunicação
 - processo envolvendo transmissão de informação entre remetente e destinatário

- Processo de comunicação
 - Emissor
 - Geração de conhecimento na origem
 - Descrição do conhecimento com certa medida de precisão, por um conjunto de códigos (bits?)
 - Criação de símbolos de forma propícia à transmissão em um meio físico
 - Transmissão desses símbolos ao destino
 - Receptor
 - Decodificação e reprodução dos símbolos
 - Recriação do conhecimento

Analogia

 O emissor deve carregar os sinais enviados com informações suficientes para que o destinatário possa diferenciar os símbolos codificados com precisão

Exemplo

- Uma máquina capaz de representar dois símbolos: A e B
- Transmissão: reconhecimento preciso dos símbolos pelo destinatário
- Para o destinatário existe a mesma probabilidade de receber qualquer um dos símbolos
- A quantidade de informações que deve ser utilizada é a necessária para o destinatário diferenciar entre A e B

- Probabilidade
 - Zeros e uns são os símbolos do computador
 - Tabela ASCII
 - 256 elementos
 - Representada por um conjunto de 8 símbolos
 - Dependendo do contexto os caracteres da tabela ASCII possuem diferentes probabilidades de ocorrer.
 - Ex. probabilidade de ocorrência de algumas letras na língua portuguesa:

 A 13%

11%

10%

8%

- Entropia
 - Incerteza (quantidade de desordem) de um sistema:
 - Símbolos igualmente prováveis:
 - Exemplo: 0 a 9 em um conjunto de números aleatórios

$$H = \log_2(10)$$

- Símbolos com diferentes probabilidades
 - Exemplo: alfabeto $H = \sum_{i=1}^{n} P_i \log_2 Pi$

Entropia e Probabilidade

vc pd Ir iso?

- Redundância
 - Informação extra utilizada na transmissão de dados para aumentar a precisão
- Compactação
 - Remoção de informação redundante visando a redução do número de símbolos necessários para representar conhecimento

Elementos da Comunicação

- DTE
 - Data Terminal Equipment
 - Exemplo: computador
- Interface DTE ⇔ DCE
 - Exemplo: RS232

- DCE
 - Data Communication Equipment
 - Exemplo: Modem
- Meio de transmissão
 - Exemplo: cabo serial e par trançado

Objetivos das Redes

- Compartilhamento de Recursos
 - Programas
 - Equipamentos
 - Principalmente INFORMAÇÕES
- Redes como meio de comunicação
 - E-mail
 - Voz (ex. VoIP)
 - Vídeo
 - Comércio eletrônico
 - Entre periféricos

Modelos de Comunicação

- Cliente/Servidor
 - Papéis bem definidos
 - Ex. SMTP, HTTP, FTP
- Ponto-a-Ponto (P2P)
 - Sem hierarquia
 - Todos podem ser clientes e servidor
 - Ex. Kazaa, E-Mule, Skype

Escalas das Redes

Distância	Localização	Exemplo
1 a 10 m	Pessoa	Rede Pessoal (PAN)
10 a 100 m	Edifício	Rede Local (LAN)
100m a 1 km	Campus	
1 a 10 km	Cidade	Rede Metropolitana (MAN)
10 a 100 km	País	Rede Geograficamente Distribuída (WAN)
100 a 1.000 km	Continente	
> 1.000 km	Planeta	Internet

Escalas das Redes

- Links de difusão
 - Redes de pequena escala (em geral)
 - B ⇒ C

- Links ponto a ponto
 - Pode ter roteamento
 - Redes de grande escala

INSTITUTO FEDERAL RIO GRANDE DO SUL

- Tipos de endereçamento
 - Unicast
 - B ⇒ C

- Broadcast
 - B ⇒ Todas

- Multicast
 - B ⇒ C e A

- Topologias de rede: Estrela
 - Nó central responsável pela comutação das mensagens
 - Comunicações simultâneas
 - Pode realizar operações de gerência/compatibilização entre os dados da rede
 - Desvantagens
 - Ponto único de falha
 - Limite de expansão
 - Desempenho

- Topologias de rede: Anel
 - Geralmente unidirecionais

 A mensagem circula no anel até ser retirada pelo nó orgiem

- Controle de erros
- Desvantagens
 - Quebra do anel
 - Estação monitora

- Topologias de rede: Barra
 - Um nó transmite; todos escutam
 - Desvantagens
 - Necessidade de controle de colisões

- Histórico da internet:
 - Final da década de 50
 - Auge da Guerra Fria
 - Comunicação de dados através do sistema telefônico
 - Estrutura hierárquica
 - Comprometimento de alguns pontos interrompe a comunicação
 - Preocupação dos militares com ataques nucleares
 - Criação da ARPA (Advanced Research Projects Agency)

- Criação do TCP/IP
- Interconexão de redes com diferentes tecnologias de enlace

- Formação de uma inter-rede conectando diversas redes
- [vídeo a história da internet]...

- Estruturação em camadas
 - Idéia da isso após a definição do TCP/IP
 - Conceito fundamental para entender as redes!
- Funcionamento
 - Cada camada tem funções a desempenhar (serviços)
 - Cada camada fornece estes serviços para a camada superior
 - Cada camada objetiva conversar com "seu par" no destino

cliente

fornecedor

Como as camadas são independentes, é possível substituí-las

Desde que forneçam o mesmo serviço!

- Arquiteturas de camadas:
 - Modelo de referência ISO (MR-OSI)
 - ISO: International Standards Organization
 - OSI: Open Systems Interconnection
 - Criado em 1983 e revisado em 1995
 - Dividido em 7 camadas
 - TCP/IP
 - Surgiu nos primórdios da Internet (ARPANET) e foi financiado pelo DoD
 - Criado em 1974 e revisto em 1985
 - Dividido em 4 camadas (3+1)

Arquitetura de camadas MR-OSI

```
Aplicação
   Apresentação
6
      Sessão
5
     Transporte
4
3
       Rede
2
       Enlace
1
       Físico
```


Camadas OSI

- Física
 - Responsável pela transmissão de bits no meio
 - Define conectores (ex. quantos pinos)
 - Define quanto tempo dura um bit
 - Tudo que diz respeito ao modo como os bits serão fisicamente transmitidos

- Enlace

- Dados da camada superior são colocados em quadros
- Controle de acesso ao meio físico
- Controle de erros
- Controle de fluxo

Camadas OSI

- Rede
 - Dados recebidos da camada superior são colocados em datagramas
 - Responsável por fazer com que um pacote chegue ao seu destino (host ⇔ servidor)
 - Roteamento de pacotes caso seja necessário
 - Controle de congestionamento

Transporte

- Primeira camada fim-a-fim
- Divide, caso seja necessário, os dados recebidos da camada superior em unidades menores
- Controle de erros, fluxo e sequência

Camadas OSI

- Sessão
 - Gerenciamento de tokens de sessão
 - Sincronização entre aplicações
 - Recuperação de operações (checkpoint)
- Apresentação
 - Padronização de formatos de dados
 - Criptografia

Camadas OSI

- Aplicação
 - Protocolos que atendem diretamente as necessidades dos usuários
 - Definidos pelas aplicações
 - Apresenta para os usuários os dados no seu formato final (ex. http, smtp, ftp)

Arquiteturas OSI e TCP/IP

Funcionamento TCP/IP – visão geral

В

Funcionamento TCP/IP – visão geral

B

Α

Т

R

Е

Funcionamento TCP/IP – visão geral

R

- Exercício de captura de pacotes
 - Utilizar wireshark para identificar no pacote os cabeçalhos e dados de cada camada