Exercise 3.1 Let $(X, \|\cdot\|)$ be an infinite-dimensional normed vector space an let $Z \subset X$ be a bounded subset with compact boundary. Prove that Z has empty interior.

Solution. If $Z \subset X$ has non-empty interior $Z^{\circ} \neq \emptyset$, then there exists $z \in Z$ and $\varepsilon > 0$ such that $B_{\varepsilon}(z) \subset Z^{\circ}$, where $B_{\varepsilon}(z)$ denotes the ball of radius ε around z in $(X, \|\cdot\|)$ and $\partial B_{\varepsilon}(z)$ its boundary. We consider the projection

$$P: Z \setminus \{z\} \to \partial B_{\varepsilon}(z)$$

$$x \mapsto z + \varepsilon \frac{x - z}{\|x - z\|}.$$

For every $y \in \partial B_{\varepsilon}$ the ray $\gamma = \{z + t(y - z) \mid t > 0\}$ must intersect ∂Z since Z is assumed to be bounded. Therefore, $P(\partial Z) = \partial B_{\varepsilon}(z)$. Being continuous, P maps compact sets onto compact sets. Since ∂Z is assumed to be compact, we have that the sphere $\partial B_{\varepsilon}(z)$ is compact. This however contradicts the assumption that the dimension of X is infinite.

Exercise 3.2 We consider the space $X = C^0([-1,1],\mathbb{R})$ with its usual norm $\|\cdot\|_{C^0([-1,1])}$ and let $\varphi: X \to \mathbb{R}$ be given by

$$\varphi(f) \mapsto \int_0^1 f(t) dt - \int_{-1}^0 f(t) dt.$$

- (i) Show that φ is a linear and continuous map with $\|\varphi\|_{L(X,\mathbb{R})} \leq 2$.
- (ii) Prove that the norm of φ is exactly 2 by finding a sequence $(f_n)_{n\in\mathbb{N}}$ in X such that $||f_n||_{C^0([-1,1])} = 1$ for every $n \in \mathbb{N}$ and such that $\varphi(f_n) \to 2$ as $n \to \infty$.
- (iii) Prove that there does not exist $f \in X$ with $||f||_{C^0([-1,1])} = 1$ and $|\varphi(f)| = 2$.

Solution. (i) Let $f \in X := C^0([-1,1])$ and $\|\cdot\|_X := \|\cdot\|_{C^0([-1,1])}$. The given map $\varphi \colon X \to \mathbb{R}$ is linear by linearity of the integral. Moreover,

$$|\varphi(f)| \le \int_0^1 |f(t)| \, \mathrm{d}t + \int_{-1}^0 |f(t)| \, \mathrm{d}t \le 2||f||_{C^0([-1,1])} = 2||f||_X$$

implies

$$\|\varphi\|_{L(X,\mathbb{R})} = \sup_{f \in X \setminus \{0\}} \frac{|\varphi(f)|}{\|f\|_X} \le 2.$$

Thus φ is also bounded and hence, by linearity, continuous.

Last modified: 21 October 2019

(ii) The sign function $f(x) = \frac{x}{|x|}$ is approximated pointwise by the sequence $(f_n)_{n \in \mathbb{N}}$ of functions $f_n \in X$ given by

$$f_n(t) = \begin{cases} -1, & \text{for } -1 \le t < -\frac{1}{n}, \\ nt, & \text{for } -\frac{1}{n} \le t < \frac{1}{n}, \\ 1, & \text{for } \frac{1}{n} \le t \le 1. \end{cases}$$

In particular, $||f_n||_X = 1$ for every $n \in \mathbb{N}$. Computing the integrals explicitly, or applying the dominated convergence theorem, we have

$$\lim_{n\to\infty}\varphi(f_n)=2.$$

(iii) Suppose there exists $f \in X$ with $||f||_X = 1$ and $|\varphi(f)| = 2$. Since φ is linear, we may assume $\varphi(f) = 2$, otherwise we replace f by -f. Then, the estimates

$$\left| \int_0^1 f(t) \, \mathrm{d}t \right| \leq \max_{x \in [-1,1]} |f(x)| = \|f\|_X = 1, \qquad \left| \int_{-1}^0 f(t) \, \mathrm{d}t \right| \leq 1,$$

imply by definition of φ that

$$\int_0^1 f(t) dt = -\int_{-1}^0 f(t) dt = 1. \tag{*}$$

Since f is bounded from above by 1 we can conclude from (*) that $f|_{[0,1]} \equiv 1$. In fact, if $f(t^*) < 1$ for some $t^* \in]0,1]$, then f < 1 in some neighbourhood of t^* by continuity of f which together with the uniform bound $f \leq 1$ contradicts (*).

Analogously, we conclude $f|_{[-1,0[} \equiv -1 \text{ which (combined with } f|_{]0,1]} \equiv 1)$ violates continuity of f at 0.

Exercise 3.3 Let

$$c_c := \{(x_n)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \exists N \in \mathbb{N} \ \forall n \ge N : \ x_n = 0\}$$

be the space of compactly supported sequences endowed with the sup-norm $\|\cdot\|_{\ell^{\infty}}$. Consider the map $T: c_c \to c_c$ given by

$$T\left((x_n)_{n\in\mathbb{N}}\right) = (nx_n)_{n\in\mathbb{N}}.$$

- (i) Show that T is not continuous.
- (ii) Construct continuous linear maps $T_m: c_c \to c_c$ such that

$$\forall x \in c_c: \quad T_m x \xrightarrow{m \to \infty} Tx.$$

D-MATH Prof. M. Struwe

Solution. (i) The operation $T: (x_n)_{n \in \mathbb{N}} \mapsto (nx_n)_{n \in \mathbb{N}}$ is linear in each entry and therefore linear as map $T: c_c \to c_c$. For every $k \in \mathbb{N}$ we define the sequence $e_k = (e_{k,n})_{n \in \mathbb{N}} \in c_c$ by

$$e_{k,n} = \begin{cases} 1, & \text{if } n = k, \\ 0, & \text{otherwise.} \end{cases}$$

Then, $||e_k||_{\ell^{\infty}} = 1$ for every $k \in \mathbb{N}$ but $||Te_k||_{\ell^{\infty}} = k$ is unbounded for $k \in \mathbb{N}$. As unbounded linear map, T is not continuous.

(ii) For every $m \in \mathbb{N}$ we define

$$T_m : c_c \to c_c$$

 $(x_n)_{n \in \mathbb{N}} \mapsto (x_1, 2x_2, 3x_3, \dots, mx_m, 0, 0, \dots)$

Then T_m is linear. $T_m: (c_c, \|\cdot\|_{\ell}^{\infty}) \to (c_c, \|\cdot\|_{\ell}^{\infty})$ is also bounded for every (fixed) $m \in \mathbb{N}$ since for every $x = (x_n)_{n \in \mathbb{N}} \in c_c$

$$||T_m x|| = \sup_{n \in \mathbb{N}} |(T_m x)_n| = \max_{n \in \{1, \dots, m\}} |n x_n| \le m ||x||_{\ell^{\infty}}.$$

Hence, T_m is continuous.

Let $x = (x_n)_{n \in \mathbb{N}} \in c_c$ be fixed. Then there exists $N \in \mathbb{N}$ such that $x_n = 0$ for all $n \geq N$ which implies $T_m x = Tx$ for all $m \geq N$. In particular,

$$T_m x \xrightarrow{m \to \infty} Tx$$
.

Exercise 3.4 Let $k: [0,1] \times [0,1] \to \mathbb{R}$ be continuous. Show that for every $g \in C^0([0,1])$ there exists a unique $f \in C^0([0,1])$ satisfying

$$\forall t \in [0,1]: f(t) + \int_0^t k(t,s)f(s) \, ds = g(t).$$

Solution. Let $(X, \|\cdot\|_X) = (C^0([0,1]), \|\cdot\|_{C^0([0,1])})$. Since the function k is continuous in both variables, the integral operator $T \colon X \to X$ given by

$$(Tf)(t) = \int_0^t k(t, s) f(s) \, \mathrm{d}s$$

is well-defined. We claim that for every $n \in \mathbb{N}$ and every $f \in X$ and $t \in [0,1]$,

$$|(T^n f)(t)| \le \frac{t^n}{n!} ||k||_{C^0([0,1] \times [0,1])}^n ||f||_X.$$

We prove the claim by induction. For n = 1 we have

$$|(Tf)(t)| \le \int_0^t |k(t,s)||f(s)| \, \mathrm{d}s \le t ||k||_{C^0([0,1] \times [0,1])} ||f||_X.$$

Suppose the claim is true for some $n \in \mathbb{N}$. Then,

$$|(T^{n+1}f)(t)| \le \int_0^t |k(t,s)| |(T^nf)(s)| \, \mathrm{d}s$$

$$\le \frac{1}{n!} ||k||_{C^0}^{n+1} ||f||_X \int_0^t s^n \, \mathrm{d}s = \frac{t^{n+1}}{(n+1)!} ||k||_{C^0}^{n+1} ||f||_X$$

which proves the claim. Since $0 \le t \le 1$, the claim implies

$$r_T := \lim_{n \to \infty} ||T^n||^{\frac{1}{n}} \le \lim_{n \to \infty} \frac{||k||_{C^0}}{(n!)^{\frac{1}{n}}} = 0.$$

From $r_T = 0$ we conclude that the operator (1 + T) = (1 - (-T)) is invertible with bounded inverse (Satz 2.2.7). The solution to the Volterra equation f + Tf = g is then given by $f = (1 + T)^{-1}g$.

Hints to Exercises.

- **3.1** Assume that $Z^{\circ} \neq \emptyset$. Find a continuous functional that projects the boundary ∂Z to the boundary of a ball inside Z. This will contradict the fact that the unit sphere in an infinite-dimensional normed space is non-compact.
- **3.4** Begin by choosing a space $(X, \|\cdot\|_X)$ and show that the operator $T: X \to X$ given by $(Tf)(t) = \int_0^t k(t, s) f(s) ds$ has spectral radius $r_T = 0$.