Module Interface Specification for 2D Localizer

Aliyah Jimoh

 $March\ 19,\ 2025$

1 Revision History

Date	Version	Notes
2025/03/19	1.0	Initial Draft

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at https://github.com/Aliyah Jimoh/2D-Localizer/blob/main/docs/SRS/SRS.pdf

[Also add any additional symbols, abbreviations or acronyms —SS]

Contents

1	Rev	vision History									
2	Symbols, Abbreviations and Acronyms										
3	Inti	roduction									
4	Not	cation									
5	Mo	dule Decomposition									
6	MIS	MIS of Control Module									
	6.1	Module									
	6.2	Uses									
		6.2.1 Exported Constants									
		6.2.2 Exported Access Programs									
	6.3	Semantics									
		6.3.1 State Variables									
		6.3.2 Environment Variables									
		6.3.3 Assumptions									
		6.3.4 Access Routine Semantics									
7	MIS	S of GTSAM Module									
	7.1	Module									
	7.2	Uses									
	7.3	Syntax									
		7.3.1 Exported Constants									
		7.3.2 Exported Access Programs									
	7.4	Semantics									
		7.4.1 State Variables									
		7.4.2 Environment Variables									
		7.4.3 Assumptions									
		7.4.4 Access Routine Semantics									
8	MIS	S of Input Format Module									
	8.1	Module									
	8.2	Uses									
	8.3	Syntax									
		8.3.1 Exported Constants									
		8.3.2 Exported Access Programs									
	8.4	Semantics									
		8.4.1 State Variables									
		8.4.2 Environment Variables									

		8.4.3	Assumptions			
		8.4.4	Access Routine Semantics			Ĝ
9	MIS	of Lo	ocalization Module			10
	9.1	Module	le			10
	9.2	Uses .				10
	9.3	Syntax	K			10
		9.3.1	Exported Constants			10
		9.3.2	Exported Access Programs			10
	9.4	Seman	atics			10
		9.4.1	State Variables			10
		9.4.2	Environment Variables			10
		9.4.3	Assumptions			10
		9.4.4	Access Routine Semantics			10
		9.4.5	Local Functions			10
		0.1.0	Local Fallottons	•	• •	10
10	MIS	of Ac	ccuracy Evaluation Module			11
	10.1	Module	le			11
	10.2	Uses .				11
	10.3	Syntax	K			11
		10.3.1	Exported Constants			11
			Exported Access Programs			11
	10.4		atics			11
			State Variables			11
			Environment Variables			11
			Assumptions			11
			Access Routine Semantics			11
			Local Functions			12
		101110				
11	MIS	of Ou	ıtput Module			13
	11.1	Module	le			13
	11.2	Uses .				13
	11.3	Syntax	· · · · · · · · · · · · · · · · · · ·			13
			Exported Constants			13
			Exported Access Programs			13
	11.4		atics			13
			State Variables			13
			Environment Variables			13
			Assumptions			13
			Access Routine Semantics			13
			Level Equations	•	• •	1/

12 MIS of Plotting Module	15
12.1 Module	15
12.2 Uses	15
12.3 Syntax	15
12.3.1 Exported Constants	15
12.3.2 Exported Access Programs	15
12.4 Semantics	15
12.4.1 State Variables	15
12.4.2 Environment Variables	15
12.4.3 Assumptions	15
12.4.4 Access Routine Semantics	15
12.4.5 Local Functions	15
13 Appendix	17

3 Introduction

The following document details the Module Interface Specifications for 2D Localizer, a program that implements various sensors to help localize mobile robots on a 2D plane in enclosed environments.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at https://github.com/AliyahJimoh/2D-Localizer.

4 Notation

[You should describe your notation. You can use what is below as a starting point. —SS]

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by 2D Localizer.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of 2D Localizer uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, 2D Localizer uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
	GTSAM Module Input Format Module Output Module
Behaviour-Hiding Module	Localization Module Control Module Accuracy Evaluation Module
Software Decision Module	Plotting Module

Table 1: Module Hierarchy

6 MIS of Control Module

6.1 Module

main

6.2 Uses

- Input Format Module (Section 8)
- Localization Module (Section 9)
- Accuracy Evaluation Module (Section 10)
- Plotting Module (Section 12)
- Output Module (Section 11)

6.2.1 Exported Constants

None

6.2.2 Exported Access Programs

Name	In	Out	Exceptions
main	-	-	-

6.3 Semantics

6.3.1 State Variables

None

6.3.2 Environment Variables

• data_queue: sequence of tuples Q[t] where Q[t] is the update at time t in the multiprocessing queue

6.3.3 Assumptions

6.3.4 Access Routine Semantics

main():

• transition: Modifying data_queue with each iteration of range measurements as the Plotting and Output modules get updated

```
\# Get Data
input = InputData()
# Start the Output Data
data_queue = Queue()
process = Process(target=run_gui, args=(data_queue,))
process.start()
m = np.size(\tilde{\mathbf{d}}, 0)
# Getting estimated pose for each set of measurements
for t in range(1,m):
    \hat{\mathbf{x}} := \text{localize}(\mathbf{a}, T_{mf}, T_{rf}, \tilde{\mathbf{d}}[t,:])
    \# Computing FIM \& CRLB
    fim = compute\_fim(\hat{\mathbf{x}}, \mathbf{a}, variances(\sigma^2))
    crlb = compute\_crlb(fim) \# Will be printed
    update_trajectory(\hat{\mathbf{x}})
    data_queue.put((t, \hat{\mathbf{x}}.x(), \hat{\mathbf{x}}.y(), \hat{\mathbf{x}}.theta()))
\# Plot on the map
plot_localization_live(\mathbf{a}, T_{mf}, \text{map})
```

7 MIS of GTSAM Module

7.1 Module

 $gtsam_wrapper$

7.2 Uses

None

7.3 Syntax

7.3.1 Exported Constants

None

7.3.2 Exported Access Programs

Name	In	Out	Exceptions
Pose2	$x: \mathbb{R}, y: \mathbb{R}, \theta: \mathbb{R}$	\mathbb{R}^3	=
Point2	$x: \mathbb{R}, y: \mathbb{R}$	\mathbb{R}^2	-
symbol	char: char, int: \mathbb{Z}	-	-
${\bf Nonlinear Factor Graph}$	-	Graph	-
PriorFactorPose2	$key: \mathbb{Z}, \mathbf{pose}: \mathbb{R}^3, noise: Model$	Factor	-
PriorFactorPoint2	$key: \mathbb{Z}, \mathbf{pose}: \mathbb{R}^2, noise: Model$	Factor	-
RangeFactor2D	$key1: \mathbb{Z}, key2: \mathbb{Z}, d: \mathbb{R}, noise:$	Factor	-
	Model		
$noise Model_I sotropic_Sigma$	$dim: \mathbb{Z}, \sigma: \mathbb{R}$	Model	-
${\bf Levenberg Marquardt Optimizer}$	graph: Graph, values: Values	Values	-
Values	-	Values	-
insert	$values: Values, key: \mathbb{Z}, value:$	-	-
	Any		
atPose2	$result: Values, key: \mathbb{Z}$	\mathbb{R}^3	-
compose	$T_1:\mathbb{R}^3,T_2:\mathbb{R}^3$	\mathbb{R}^3	-
inverse	$pose: \mathbb{R}^3$	\mathbb{R}^3	-

7.4 Semantics

7.4.1 State Variables

7.4.2 Environment Variables

None

7.4.3 Assumptions

• The module will call on a yaml file

7.4.4 Access Routine Semantics

Pose $2(x, y, \theta)$:

• output: \mathbb{R}^3 (A 2D pose with orientation)

Point2(x, y):

• output: \mathbb{R}^2 (A 2D point)

symbol(char, int):

• output: char (A GTSAM symbol key)

NonlinearFactorGraph():

• output: Graph (An empty nonlinear factor graph)

PriorFactorPose2(key, pose, noise_model):

• output: Factor (A prior factor on a 2D pose)

PriorFactorPoint2(key, point, noise_model):

• output: Factor (A prior factor on a 2D point)

RangeFactor2D($key_1, key_2, measured, noise_model$):

• output: Factor (A range factor between two keys)

noiseModel_Isotropic_Sigma (dim, σ) :

• output: Model (An isotropic noise model)

LevenbergMarquardtOptimizer(graph, values):

• output: Values (Optimized results from factor graph)

Values():

• output: Values (An empty values container)

insert(values, key, value):

• output: None (Modifies values in place)

atPose2(result, key):

 \bullet output: \mathbb{R}^3 (The retrieved pose from results)

compose (T_1, T_2) :

• output: \mathbb{R}^3 (The composition of two poses)

inverse(T):

• output: \mathbb{R}^3 (The inverse of a pose)

8 MIS of Input Format Module

8.1 Module

 $input_format$

8.2 Uses

• GTSAM Module (Section 7)

8.3 Syntax

8.3.1 Exported Constants

None

8.3.2 Exported Access Programs

Name	In	Out	Exceptions
load_input	-	-	${ m File Not Found Error}$
			ValueError
$get_beacons$	-	$\mathbb{R}^{N imes 2}$	-
get_fmMap	-	\mathbb{R}^3	-
$get_fmRobots$	-	\mathbb{R}^3	-
get _map	-	String	-
get_ranges	-	\mathbb{R}^N	-
$get_variances$	-	\mathbb{R}^N	-

8.4 Semantics

8.4.1 State Variables

• sensor_data(user_input):

– range_measurements: \mathbb{R}^N

– camera: \mathbb{R}^3

– variances: \mathbb{R}^N

8.4.2 Environment Variables

None

8.4.3 Assumptions

• The module will call on a yaml file

8.4.4 Access Routine Semantics

load_input():

- output: None
- ullet exception: FileNotFoundError, ValueError

$input.get_beacons():$

- \bullet output:= \mathbf{a}
- exception: None

get_fmMap():

- output: $T_{mf} = Pose2(\mathbb{R}^3)$
- exception: None

$get_fmRobot():$

- output: $T_{rf} = Pose2(\mathbb{R}^3)$
- exception: None

get_map():

- output:= 'Image.png'
- exception: None

get_ranges():

- \bullet output:= $\tilde{\mathbf{d}}$
- exception: None

get_variances():

- ullet output: $oldsymbol{\sigma^2}$
- exception: None

9 MIS of Localization Module

9.1 Module

localization

9.2 Uses

• Input Format Module (Section 8)

9.3 Syntax

9.3.1 Exported Constants

None

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
localize	User Data	\mathbb{R}^3	-

9.4 Semantics

9.4.1 State Variables

initial/current pose

9.4.2 Environment Variables

None

9.4.3 Assumptions

• GTSAM is installed

9.4.4 Access Routine Semantics

localize(beacons, fm_map, fm_robot, range_m):

- output: Estimated pose of the robot
 - estimated_pose: \mathbb{R}^3
- exception: Format errors

9.4.5 Local Functions

10 MIS of Accuracy Evaluation Module

10.1 Module

accuracy

10.2 Uses

• Localization Module (Section 9)

10.3 Syntax

10.3.1 Exported Constants

None

10.3.2 Exported Access Programs

Name	${ m In}$	Out	Exceptions
compute_fim	$(\mathbb{R}^2,\mathbb{R}^{N imes 2},\mathbb{R}^N)$	$\mathbb{R}^{2 imes2}$	-
$compute_crlb$	$\mathbb{R}^{2 imes2}$	$\mathbb{R}^{2 imes2}$	-

10.4 Semantics

10.4.1 State Variables

None

10.4.2 Environment Variables

None

10.4.3 Assumptions

• Noise variances are positive

10.4.4 Access Routine Semantics

compute_fim(estimated_pose, beacons, range_variances):

• output: A 2×2 Fisher Information Matrix (FIM), computed as:

$$\mathcal{I}(\hat{\mathbf{x}}) = \sum_{j=1}^{N} \frac{1}{\sigma_j^2} \frac{(\hat{\mathbf{x}} - \mathbf{a}_j)(\hat{\mathbf{x}} - \mathbf{a}_j)^T}{\|\hat{\mathbf{x}} - \mathbf{a}_j\|^2}$$

compute_fim(estimated_pose, beacons, range_variances):

 \bullet output: A 2×2 CRLB matrix, computed as:

$$\mathcal{C} = \mathcal{I}^{-1}$$

ullet exception: If $\mathcal I$ is singular, the function returns 'None'.

10.4.5 Local Functions

11 MIS of Output Module

11.1 Module

output

11.2 Uses

• Localization Module (Section 9)

11.3 Syntax

11.3.1 Exported Constants

None

11.3.2 Exported Access Programs

Name	In	Out	Exceptions
output_format	-	-	-
$output_pose$	_	-	-

11.4 Semantics

11.4.1 State Variables

None

11.4.2 Environment Variables

None

11.4.3 Assumptions

•

11.4.4 Access Routine Semantics

output_format():

• transition: [if appropriate —SS]

• output: [if appropriate —SS]

• exception: [if appropriate —SS]

output_pose():

- \bullet transition: [if appropriate —SS]
- $\bullet\,$ output: [if appropriate —SS]
- $\bullet \;$ exception: [if appropriate —SS]

11.4.5 Local Functions

12 MIS of Plotting Module

12.1 Module

plot

12.2 Uses

12.3 Syntax

12.3.1 Exported Constants

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
plot_localization_live	$R^{N\times 2}, R^2, \text{Image}$	Plot	-
update_trajectory	R^3	=	-

12.4 Semantics

12.4.1 State Variables

None

12.4.2 Environment Variables

None

12.4.3 Assumptions

None

12.4.4 Access Routine Semantics

plot_localization_live(beacons, fm_map_2D, map):

• output: A dynamic plot showing real-time robot localization.

update_trajectory(estimated_pose):

• transition: Changes the robot's position on the map

12.4.5 Local Functions

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

13 Appendix

 $[{\bf Extra~information~if~required~-\!SS}]$