# Credit Card Fraud Detection

By Max Kim

## Agenda

- 1. Introduction
- Business problem and data questions
- 1. Data Processes
- EDA, Feature Engineering
- 1. Value Delivery
- Draw value out of model, accuracy/recall
- 1. Conclusion
- Summary, next steps and improvement

### 1. Introduction

#### Card Fraud Worldwide

- Lost \$28.58 billion to card fraud in 2020, equal to 6.8cents per \$100 in purchase volume



# Card Fraud Projected through 2030

|      | Total Volume | Fraud   | Cents per    |
|------|--------------|---------|--------------|
| YEAR | (TRIL.)      | (BIL.)  | \$100 VOLUME |
| 2020 | \$41.962     | \$28.58 | 6.81         |
| 2021 | \$47.229     | \$32.20 | 6.82         |
| 2022 | \$50.868     | \$34.36 | 6.75         |
| 2023 | \$54.061     | \$36.13 | 6.68         |
| 2024 | \$57.323     | \$38.07 | 6.64         |
| 2025 | \$60.583     | \$39.89 | 6.58         |
| 2026 | \$64.038     | \$41.73 | 6.52         |
| 2027 | \$67.570     | \$43.76 | 6.48         |
| 2028 | \$71.221     | \$45.54 | 6.39         |
| 2029 | \$75.111     | \$47.50 | 6.32         |
| 2030 | \$79.140     | \$49.32 | 6.23         |

# Questions

#### **Business Question:**

"How to **detect** as many **fraud transactions** as possible to reduce the time and cost invested in the transactions?"

#### **Data Question:**

"What model can be used to **predict fraud transaction** and what is the accuracy rate of it?

#### 2. Data Process

- Domain: Credit card company
- Stakeholder: Director of credit card company & Head of Fraud team

#### Process Workflow:



## Target Variable - Class

#### Summary:

- Total 284,807 transactions
- Class 1: 492 fraud transactions (0.17%)
- Class 0: 284,315 non-fraud transactions (99.83%)

#### Number of card transactions by Class 1 & 0



### Exploration



- Dataset has features V1 V28
- This features are numerical input variables from PCA transformation
- Due to confidentiality issues, the original features and background information are not revealed

## Exploration

#### - Amount

|       | non-fraud | fraud   |
|-------|-----------|---------|
| count | 284315.00 | 492.00  |
| mean  | 88.29     | 122.21  |
| std   | 250.11    | 256.68  |
| min   | 0.00      | 0.00    |
| 25%   | 5.65      | 1.00    |
| 50%   | 22.00     | 9.25    |
| 75%   | 77.05     | 105.89  |
| max   | 25691.16  | 2125.87 |

- For each transaction, average amount transacted for non-fraud is \$88.29 vs \$122.21 for fraud transactions
- There is reasonable difference in transaction amount between non-fraud and fraud transactions

# Feature Density Plot



## 3. Value Delivery

- Which metrics to be considered?
  - This dataset is imbalanced datasets. Thus, just high accuracy will not make a good model. There can be room for improvement by considering other metrics to improve the model performance.
  - It is critical not to predict actual fraud transaction as non-fraudulent transaction.
  - Reducing false negative as much as possible is critical:
    - For our main metric, we choose Recall rate

# 3. Value Delivery

| Model               | Accuracy | Recall |
|---------------------|----------|--------|
| Logistic Regression | 0.98     | 0.89   |
| KNN                 | 0.99     | 0.77   |
| Random Forest       | 0.99     | 0.78   |
| XGBoost             | 0.99     | 0.79   |
| AdaBoost            | 0.98     | 0.86   |

Binary Classification models that define 2 classes of segments using 31 columns

### Model Selection - Logistic Regression



### Logistic Regression Performance

```
Accuracy: 0.9793 [TP / N] Proportion of predicted labels that match the true labels. Best: 1, Worst: 0
Precision: 0.0618 [TP / (TP + FP)] Not to label a negative sample as positive. Best: 1, Worst: 0
Recall: 0.8851 [TP / (TP + FN)] Find all the positive samples. Best: 1, Worst: 0
ROC AUC: 0.9785
```

TP: True Positives, FP: False Positives, TN: True Negatives, FN: False Negatives, N: Number of samples



# Feature Importance



#### Top 5 Important Features

- 1. Amount
- 2. V1
- 3. V4
- 4. V5
- 5. V2

#### 4. Conclusion

- 1. Credit card company can focus on the amount of each transactions among with other key important features to detect fraud transaction more effectively
- 2. With large number of transaction dataset, company can deploy a machine learning model that has high focus on high recall will distinguish between non-fraud and fraud transactions
- 3. This model can be further improved from various aspects in the process workflow
  - Data Process:
    - Feature Engineering
  - Apply Deep Learning:
    - Conventional layer
    - Artificial Neural Network
  - Machine Learning:
    - Cat-Boost model

#### Reference

- <a href="https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud?datasetId=310&sortBy=voteCount">https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud?datasetId=310&sortBy=voteCount</a>
- <a href="https://nilsonreport.com/content\_promo.php?id\_promo=16">https://nilsonreport.com/content\_promo.php?id\_promo=16</a>
- <a href="https://dataspire.org/blog/what-is-exploratory-data-analysis-anyway">https://dataspire.org/blog/what-is-exploratory-data-analysis-anyway</a>
- <a href="https://www.istockphoto.com/photos/light-bulbs">https://www.istockphoto.com/photos/light-bulbs</a>
- https://www.dreamstime.com/illustration/modelling-icon.html
- <a href="https://www.vectorstock.com/royalty-free-vector/feature-engineering-turquoise-concept-icon-vector-42324394">https://www.vectorstock.com/royalty-free-vector/feature-engineering-turquoise-concept-icon-vector-42324394</a>