CS186 Week 13 - ER & Functional Dependencies

ER to SQL

CREATE	TABLE	Employees(,		
			 , ,) ;		
		Departments(•		
			 , ,) ;		
CREATE		Locations(•		
	TARIF	Works In(,) ;		
		WOLKS_III(,		
			,		
			 •		
					١.

Functional Dependencies Review

Function Dependency: X→Y

- Given any two tuples in *r*, if the X values are the same, then the Y values must also be the same, but not vice versa.
- An FD is a statement about *all* allowable relations and is identified based on *application* semantics. Given some instance *r1* of R, we can check if *r1* violates some FD *f*, but we cannot determine if *f* holds over R.

FDs vs. Keys

- If "K→all attributes of R", then K is a *superkey* for R (does not require K to be *minimal*.)
- FDs are a generalization of keys.

FD Closure: F+ = closure of F = set of all FDs that are implied by F, including "trivial dependencies"

Armstrong's Axioms

- ullet Reflexivity: if $X \supseteq Y$, then $X \to Y$
- \bullet Augmentation: if X \rightarrow Y , then XZ \rightarrow Y Z for any Z
- \bullet Transitivity: if $X \to Y$ and $Y \to Z$, then $X \to Z$

Useful rules (can be derived from AA)

- \bullet Union: if $X \to Y$ and $X \to Z$, then $X \to YZ$
- Decomposition: if $X \to Y Z$, then $X \to Y$ and $X \to Z$

Common mistake (!): if $XA \rightarrow YA$, you CAN'T infer $X \rightarrow Y$

Attribute Closure X+: what attributes can X determine?

- initialize X+ := X
- Repeat until no change:
 - \circ if U \rightarrow V in F such that U is in X+, then add V to X+
- Example: R = ABCDE, F = { B \rightarrow CD, D \rightarrow E, B \rightarrow A, E \rightarrow C, AD \rightarrow B }
 - B -> B -> BCD -> BCDA -> BCDAE
 - B+ = {ABCDE}, which means B is a key of R!

Boyce-Codd Normal Form

- Definition: Relation R with FDs F is in BCNF if, for all $X \rightarrow A$ in F+
 - o A belongs to X (called a trivial FD), or
 - X is a superkey for R.
- i.e. R is in BCNF if the only non-trivial FDs over R are the key constraints.

Decomposing a schema into BCNF

- What is the motivation of decomposing a schema into BCNF?
- If $X \to A$ is a FD that violates BCNF, then decompose R into R A and XA
- Repeat if necessary.
- Example: R = ABCEG; F = {AB->C, AC->B, BC->A, E->G}.

Decompose R into BCNF.

- AB->C => Decompose ABCEG: ABEG, ABC
- E->G => Decompose ABEG: ABE, EG
- o Final relations: ABE, EG, ABC

Decomposition properties

- Lossless-join
- Dependency preserving

Consider the **Works_In(Ssn, Lot, Did, sInce)** relation from our previous example. If **S** (ssn) is a key for this relationship, what is the functional dependency we can infer from that? Abbreviate the attribute with the bolded/capitalized letter.

If employees in the same department are given the same parking lot, what additional functional dependency can we infer?

FD Problem 2

*Abbreviate attributes with the bolded/capitalized letter (e.g. F = Flight_no) Flight schema

```
Flights(<u>Flight_no, Date</u>, fRom, To, Plane_id), ForeignKey(Plane_id)
Planes(<u>Plane_id</u>, tYpe)
Seat(<u>Seat_no, Plane_id</u>, Legroom), ForeignKey(Plane_id)
```

1. Find the set of functional dependencies.

2. Expand the FDs found above using Armstrong's axioms (you can omit the trivial and non interesting dependencies).

FD Problem 3

- 1. Now consider the attribute set R = ABCDE and the FD set F = {AB \rightarrow C, A \rightarrow D, D \rightarrow E, AC \rightarrow B}. Compute the attribute closure for each of A, AB, B, and D.
 - *A:*
 - AB:
 - B:
 - D:
- 2. Decompose R = ABCDEFG into BCNF, given the functional dependency set F = {AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F}.