A SELF-ATTENTIVE SENTENCE EMBEDDING

Zhouhan Lin[‡]°,*Minwei Feng°, Cicero Nogueira dos Santos°, Mo Yu°, Bing Xiang°, Bowen Zhou° & Yoshua Bengio^{‡†}
°IBM Watson
[‡]Université de Montréal
[†]CIFAR Senior Fellow
lin.zhouhan@gmail.com
{mfeng, cicerons, yum, bingxia, zhou}@us.ibm.com

ABSTRACT

This paper proposes a new model for extracting an interpretable sentence embedding by introducing self-attention. Instead of using a vector, we use a 2-D matrix to represent the embedding, with each row of the matrix attending on a different part of the sentence. We also propose a self-attention mechanism and a special regularization term for the model. As a side effect, the embedding comes with an easy way of visualizing what specific parts of the sentence are encoded into the embedding. We evaluate our model on 3 different tasks: author profiling, sentiment classification and textual entailment. Results show that our model yields a significant performance gain compared to other sentence embedding methods in all of the 3 tasks.

1 Introduction

Much progress has been made in learning semantically meaningful distributed representations of individual words, also known as word embeddings (Bengio et al., 2001; Mikolov et al., 2013). On the other hand, much remains to be done to obtain satisfying representations of phrases and sentences. Those methods generally fall into two categories. The first consists of universal sentence embeddings usually trained by unsupervised learning (Hill et al., 2016a). This including SkipThought vectors (Kiros et al., 2015), the DBOW model (Le & Mikolov, 2014; Socher et al., 2013) etc. The other category consists of models trained specifically for a certain task. They are usually combined with downstream applications and trained by supervised learning. One generally finds that specifically trained sentence embeddings perform better than generic ones, although generic ones can be used in a semi-supervised setting, exploiting large unlabeled corpora.

By incorporating supervisions from a specific task, the quality of extracted sentence embeddings can be much higher. Several models have been proposed along this line, by using recurrent netowkrs (Hochreiter & Schmidhuber, 1997; Chung et al., 2014), recursive networks (Socher et al., 2013) and convolutional networks (Kalchbrenner et al., 2014; dos Santos & Gatti; Kim, 2014). as an intermediate step in creating sentence representations to solve a wide variety of tasks including classification and ranking (Yin & Schütze, 2015; Palangi et al., 2016; Tan et al., 2016). For some tasks people propose to use attention mechanism on top of the CNN or LSTM model to introduce extra source of information to guide the extraction of sentence embedding (dos Santos et al., 2016). However, for some other tasks like sentiment classification, this is not possible since there is no such extra information: the model is only given one single sentence as input. In those cases, the most common way is to add a max pooling or averaging step across all time steps (Lee & Dernoncourt, 2016), or just pick up the hidden representation at the last time step as the encoded embedding (Margarit & Subramaniam).

A common approach in many of the aforementioned methods consists of creating a simple vector representation by using the final hidden state of the RNN or the max (or average) pooling from either RNNs hidden states or convolved n-grams. We hypothesize that carrying the semantics along all time steps of a recurrent model is relatively hard and not necessary. We propose a self-attention

^{*}This work has been done during the 1st author's internship with IBM Watson.

mechanism for these sequential models to replace the max pooling or averaging step. Different from previous approaches, the proposed self-attention mechanism allows extracting different aspects of the sentence into multiple vector representations. It is performed on top of an LSTM in our sentence embedding model. This enables attention to be used in those cases when there are no extra inputs. In addition, due to its direct access to hidden representations from previous time steps, it reliefs some memorization burden from LSTM. As a side effect coming together with our proposed self-attentive sentence embedding, interpreting the extracted embedding becomes very easy and explicit.

Section 2 details on our proposed self-attentive sentence embedding model, as well as a regularization term we proposed for this model, which is described in Section 2.2. We also provide a visualization method for this sentence embedding in section 2.3. We then evaluate our model in author profiling, sentiment classification and textual entailment in Section 4.

2 Approach

2.1 Model

The model consists of two parts. The first part is a bidirectional LSTM, and the second part is the self-attention mechanism, which provides a set of summation weight vectors for the LSTM hidden states. These set of summation weight vectors are dotted with the LSTM hidden states, and the resulting weighted LSTM hidden states are considered as an embedding for the sentence.

Suppose we have a sentence, which has n tokens, represented in a sequence of word embeddings.

$$S = (\mathbf{w_1}, \mathbf{w_2}, \cdots \mathbf{w_n}) \tag{1}$$

Here w_i is a vector standing for a d dimentional word embedding for the i-th word in the sentence. S is thus a sequence represented as a 2-D matrix, which concatenates all the word embeddings together. S should have the shape n-by-d.

Now each entry in the sequence S are independent with each other. To gain some dependency between adjacent words within a single sentence, we use a bidirectional LSTM to process the sentence:

$$\overrightarrow{h_t} = \overrightarrow{LSTM}(w_t, \overrightarrow{h_{t-1}}) \tag{2}$$

$$\frac{\overleftarrow{h_t}}{h_t} = \overline{LSTM}(w_t, \overleftarrow{h_{t+1}})$$
(3)

And we concatenate each $\overrightarrow{h_t}$ with $\overleftarrow{h_t}$ to obtain a hidden state h_t . Let the hidden unit number for each unidirectional LSTM be u. For simplicity, we note all the n h_t s as H, who have the size n-by-2u.

$$H = (\mathbf{h_1}, \mathbf{h_2}, \cdots \mathbf{h_n}) \tag{4}$$

Our aim is to encode a variable length sentence into a fixed size embedding. We achieve that by choosing a linear combination of the n LSTM hidden vectors in H. Computing the linear combination requires the self-attention mechanism. The attention mechanism takes the whole LSTM hidden states H as input, and outputs a vector of weights \mathbf{a} :

$$\mathbf{a} = softmax\left(\mathbf{w_{s2}}tanh\left(W_{s1}H^{T}\right)\right) \tag{5}$$

Here W_{s1} is a weight matrix with a shape of d_a -by-2u. and $\mathbf{w_{s2}}$ is a vector of parameters with size d_a , where d_a is a hyperparameter we can set arbitrarily. Since H is sized n-by-2u, the annotation vector a will have a size n. the softmax() ensures all the computed weights sum up to 1. Then we sum up the LSTM hidden states H according to the weight provided by \mathbf{a} to get a vector representation \mathbf{m} .

This vector representation usually focuses on a specific component of the sentence, like a special set of related words or phrases. So it is expected to reflect an aspect, or component of the semantics in a sentence. However, there can be multiple components in a sentence that toghter forms the overall semantics of the whole sentence, especially for long sentences. (For example, two clauses linked together by an "and.") Thus, to represent the overall semantics of the sentence, we need multiple \mathbf{m} 's that focus on different parts of the sentence. Thus we need to perform multiple hops of attention. Say we want r different parts to be extracted from the sentence, with regard to this, we extend the

 $\mathbf{w_{s2}}$ into a r-by- d_a matrix, note it as W_{s2} , and the resulting annotation vector a becomes annotation matrix A. Formally,

$$A = softmax \left(W_{s2} tanh \left(W_{s1} H^T \right) \right) \tag{6}$$

Here the softmax() is performd along the second dimension of its input. We can deem Equation 6 as a 2 layer MLP without bias, whose hidden unit numbers is d_a , and parameters are $\{W_{s2}, W_{s1}\}$.

The embedding vector m then becomes an r-by-2u embedding matrix M. We compute the r weighted sums by multiplying the annotation matrix A and LSTM hidden states H, the resulting matrix is the sentence embedding:

$$M = AH \tag{7}$$

2.2 PENALIZATION TERM

The embedding matrix M can suffer from redundancy problems if the attention mechanism always provides similar summation weights for all the r hops. Thus we need a penalization term to encourage the diversity of summation weight vectors across different hops of attention. The best way to evaluate the diversity is definitely the Kullback Leibler divergence between any 2 of the summation weight vectors. However, that is too computationally expensive. Thus we use the dot product of A and its transpose, subtracted by an identity matrix, as a measure of redundancy.

$$P = \left\| \left(AA^T - I \right) \right\|_F^2 \tag{8}$$

Here $\| \bullet \|_F$ stands for the Frobenius norm of a matrix. Similar to adding an L2 regularization term, this penalization term P will be multiplied by a coefficient, and we minimize it together with the original loss, which is dependent on the downstream application.

Let's consider two different summation vectors $\mathbf{a^i}$ and $\mathbf{a^j}$ in A. Because of the softmax, all entries within any summation vector in A should sum up to 1. Thus they can be deemed as probability masses in a discrete probability distribution. For any non-diagonal elements $a_{ij} (i \neq j)$ in the AA^T matrix, it corresponds to a summation over elementwise product of two distributions:

$$0 < a_{ij} = \sum_{k=1}^{n} a_k^i a_k^j < 1 \tag{9}$$

where a_k^i and a_k^j are the k-th element in the $\mathbf{a^i}$ and $\mathbf{a^j}$ vectors, respectively. In the most extreme case, where there is no overlap between the two probability distributions $\mathbf{a^i}$ and $\mathbf{a^j}$, the correspond a_{ij} will be 0. Otherwise, it will have a positive value. On the other extreme end, if the two distributions are identical and all concentrates on one single word, it will have a maximum value of 1. We subtract an identity matrix from AA^T so that forces the elements on the diagonal of AA^T to approximate 1, which encourages each summation vector $\mathbf{a^i}$ to focus on as few number of words as possible, and all other elements to 0, which punishes redundancy between different summation vectors.

2.3 VISUALIZATION

The interpretation of the sentence embedding is quite straight forward because of the existence of annotation matrix A. For each row in the sentence embedding matrix M, we have its corresponding annotation vector $\mathbf{a^i}$. Each element in this vector corresponds to how much contribution the LSTM hidden state of a token on that position contributes to. We can thus draw a heat map for each row of the embedding matrix M This way of visualization gives hints on what is encoded in each part of the embedding, adding an extra layer of interpretation. (See Figure 2a and 2b).

The second way of visualization can be achieved by summing up over all the annotation vectors, and then normalizing the resulting weight vector to sum up to 1. Since it sums up all aspects of semantics of a sentence, it yields a general view of what the embedding mostly focuses on. We can figure out which words the embedding takes into account a lot, and which ones are skipped by the embedding. See Figure 2c and 2d.

3 RELATED WORK

Sentence Embeddings via Self-Prediction Following the auto-encoder idea, many works learn sentence embeddings with the goal of self-prediction, i.e. making the embedding of a sentence useful for predicting the sentence itself. For example, ParagraphVector (Le & Mikolov, 2014) optimizes the sentence embeddings to predict the bag-of-words in sentences. Sequential Denoising Autoencoders (SDAE) (Hill et al., 2016a) applies an LSTM-based encoder-decoder architecture (Cho et al., 2014). During training the encoder computes the embedding for (corrupted) sentences, and the decoder predicts the original sentences by taking the word orders into consideration. Another example belongs to this type is the recursive auto-encoder (Socher et al., 2011), which learns an embedding vector for each node on the syntactic tree of the sentence, and optimizes the vector by predicting its child nodes.

Sentence Embeddings via Predicting Adjacent Sentences Another stream of sentence embedding work makes use of context information of sentences. For example, SkipThought (Kiros et al., 2015) and FastSent (Hill et al., 2016a) train the sentence embeddings by predicting the adjacent sentences. A special case for this line of work is sentence embedding learned by predicting bilingual parallel sentences with the encoder-decoder architecture (Cho et al., 2014), which was evaluated in (Hill et al., 2016a).

In summary, all the previous work on unsupervised sentence embeddings construct the embeddings either by max/average pooling on the word representations in sentences, or by taking the end hidden state from a vanilla LSTM. Such methods restricted the expressive strength of the learned embeddings – the single vector representation faces the difficulty to cover and distinguish different aspects in the same sentence. Our work deals with the above problems by the combination of self-attention and matrix representation. Additional work have also been done in exploiting linguistic structures such as parse and dependence trees to improve sentence representations representations (Mou et al., 2015b; Tai et al., 2015). In our work we do not use linguistic structures to guide our sentence representation model.

4 EXPERIMENTAL RESULTS

We first evaluate our sentence embedding model by applying it to 3 different datasets: the Yelp dataset, the Age dataset, and the Stanford Natural Language Inference (SNLI) Corpus. These 3 datasets fall into 3 different tasks, corresponding to author profiling, sentiment analysis, and textual entailment, respectively. Then we also perform a set of exploratory experiments to validate the effect of the penalization term we proposed.

4.1 AUTHOR PROFILING

The Author Profiling dataset¹ consists of Twitter tweets in English, Spanish, and Dutch. For some of the tweets, it also provides an age and gender of the user when writing the tweet. The age range are split into 5 classes: 18-24, 25-34, 35-49, 50-64, 65+. We use English tweets as input, and use those tweets to predict the age range of the user. Since we are predicting the age of users, we refer to it as Age dataset in the rest of our paper. We randomly selected 68485 tweets as training set, 4000 for development set, and 4000 for test set. Performances are also chosen to be classification accuracy.

For the two baseline models. The biLSTM model uses a bidirectional LSTM with 300 dimensions in each direction, and use max pooling across all LSTM hidden states to get the sentence embedding vector, then use a 2-layer ReLU output MLP with 3000 hidden states to output the classification result. The CNN model uses the same scheme, but substituting biLSTM with 1 layer of 1-D convolutional network. During training we use 0.5 dropout on the MLP and 0.0001 L2 regularization. We use stochastic gradient descent as the optimizer, with a learning rate of 0.06, batch size 16. For biLSTM, we also clip the norm of gradients to be between -0.5 and 0.5. We searched hyperparameters in a wide range and find the aforementioned set of hyperparameters yields the highest accuracy.

For our model, we use the same settings as what we did in biLSTM. We also use a 2-layer ReLU output MLP, but with 2000 hidden units. In addition, our self-attention MLP has a hidden layer with

¹http://pan.webis.de/clef16/pan16-web/author-profiling.html

Table 1: Performance comparision of different models on Yelp and Age dataset

Models	Yelp	Age
BiLSTM + Max Pooling + MLP CNN + Max Pooling + MLP	61.99% 62.05%	77.40% 78.15%
Our Model	64.21%	80.45%

350 units (the d_a in Section 2), we choose the matrix embedding to have 30 rows (the r), and a coefficient of 1 for the penalization term.

We train all the three models until convergence and select the corresponding test set performance according to the best development set performance. Our results show that the model outperforms both of the biLSTM and CNN baselines by a significant margin.

4.2 Sentiment analysis

We choose the Yelp dataset² for sentiment analysis task. It consists of 2.7M yelp reviews, we take the review as input and predict the number of stars the user who wrote that review assigned to the corresponding business store. We randomly select 500K review-star pairs as training set, and 2000 for development set, 2000 for test set. We tokenize the review texts by Stanford tokenizer. We use 100 dimensional word2vec as initialization for word embeddings, and tune the embedding during training across all of our experiments. The target number of stars is an integer number in the range of [1,5], inclusive. We are treating the task as a classification task, i.e., classify a review text into one of the 5 classes. We use classification accuracy as a measurement.

For the two baseline models, we use the same setting as what we used for Author Profiling dataset, except that we are using a batch size of 32 instead. For our model, we are also using the same setting, except that we choose the hidden unit numbers in the output MLP to be 3000 instead. We also observe a significant performance gain comparining to the two baselines. (Table 1)

As an interpretation of the learned sentence embedding, we use the second way of visualization described in Section 2.3 to plot heat maps for some of the reviews in the dataset. We randomly select 5 examples of negative (1 star) and positive (5 stars) reviews from the test set, when the model has a high confidence (> 0.8) in predicting the label. As shown in Figure 1, we find that the model majorly learns to capture some key factors in the review that indicate strongly on the sentiment behind the sentence. For most of the short reviews, the model manages to capture all the key factors that contribute to an extreme score, but for longer reviews, the model is still not able to capture all related factors. For example, in the 3rd review in Figure 1b), it seems that a lot of focus is spent on one single factor, i.e., the "so much fun", and the model puts a little amount of attention on other key points like "highly recommend", "amazing food", etc.

4.3 TEXTUAL ENTAILMENT

We use the biggest dataset in textual entailment, the SNLI corpus (Bowman et al., 2015) for our evaluation on this task. SNLI is a collection of 570k human-written English sentence pairs manually labeled for balanced classification with the labels entailment, contradiction, and neutral. The model will be given a pair of sentences, called hypothesis and premise respectively, and asked to tell if the semantics in the two sentences are contradicting with each other or not. It is also a classification task, so we measure the performance by accuracy.

We process the hypothesis and premise independently, and then extract the relation between the two sentence embeddings by Gated Autoencoder (Memisevic, 2013), and use a 2-layer ReLU output MLP with 4000 hidden units to map the hidden representation into classification results. Parameters of biLSTM and attention MLP are shared across hypothesis and premise. The biLSTM is 300 dimension in each direction, the attention MLP has 150 hidden units instead, and both sentence embeddings for hypothesis and premise have 30 rows (the r). The penalization term coefficient is

²https://www.yelp.com/dataset_challenge

- if I can give this restaurant a 0 I will we be just ask our waitress leave because someone with a reservation be wait for our table my father and father-in-law be still finish up their coffee and we have not yet finish our dessert I have never be so humiliated do not go to this restaurant their food be mediocre at best if you want excellent Italian in a small intimate restaurant go to dish on the South Side I will not be go back
- this place suck the food be gross and taste like grease I will never go here again ever sure the entrance look cool
 and the waiter can be very nice but the food simply be gross taste like cheap 99cent food do not go here the food
 shot out of me quick then it go in
- everything be pre cook and dry its crazy most Filipino people be used to very cheap ingredient and they do not
 know quality the food be disgusting have eat at least 20 different Filipino family home this not even mediocre
- seriously f *** this place disgust food and shitty service ambience be great if you like dine in a hot cellar engulf in stagnate air truly it be over rate over price and they just under deliver forget try order a drink here it will take forever get and when it finally do arrive you will be ready pass out from heat exhaustion and lack of oxygen how be that a head change you do not even have pay for it I will not disgust you with the detailed review of everything I have try here but make it simple it all suck and after you get the bill you will be walk out with a sore ass save your money and spare your self the disappointment
- i be so angry about my horrible experience at Medusa today my previous visit be amaze 5/5 however my go to out of town and I land an appointment with Stephanie I go in with a picture of roughly what I want and come out look absolutely nothing like it my hair be a horrible ashy blonde not anywhere close to the platinum blonde I request she will not do any of the pop of colour I want and even after specifically tell her I do not like blunt cut my hair have lot of straight edge she do not listen to a single thing I want and when I tell her I be unhappy with the colour she basically tell me I be wrong and I have do it this way no no I do not if I can go from Little Mermaid red to golden blonde in 1 sitting that leave my hair fine I shall be able go from golden blonde to a shade of platinum blonde in 1 sitting thanks for ruin my New Year's with 1 the bad nair job I have ever have

(a) 1 star reviews

- <u>really enjoy</u> Ashley and Ami salon she do a great job be friendly and professional I usually get my hair do when I
 go to MI because of the quality of the highlight and the price the price be very affordable the highlight fantastic
 thank Ashley i highly recommend you and ill be back
- ove this place it really be my favorite restaurant in Charlotte they use charcoal for their grill and you can taste it
 steak with chimichurri be always perfect Fried yucca cilantro rice pork sandwich and the good tres lech I have
 had. The desert be all incredible if you do not like it you be a mutant if you will like diabeetus try the Inca Cola
- this place be so much fun! have never go at night because it seem a little too busy for my taste but that just prove how great this restaurant be they have amazing food and the staff definitely remember us every time we be in town I love when a waitress or waiter come over and ask if you want the cab or the Pinot even when there be a rush and the staff be run around like crazy whenever I grab someone they instantly smile acknowlegde us the food be also killer I love when everyone know the special and can tell you they have try them all and what they pair well with this be a first last stop whenever we be in Charlotte and I highly recommend them
- great food and good service what else can you ask for everything that I have ever try here have be great
- first off I hardly remember waiter name because its rare you have an unforgettable experience the day I go I be celebrate my birthday and let me say I leave feel extra special our waiter be the best ever Carlos and the staff as well I be with a party of 4 and we order the potato salad shrimp cocktail lobster amongst other thing and boy be the food great the lobster be the good lobster I have ever eat if you eat a dessert I will recommend the cheese cake that be also the good I have ever have it be expensive but so worth every penny I will definitely be back there go again for the second time in a week and it be even good this place be amazing

(b) 5 star reviews

Figure 1: Heatmap of Yelp reviews with the two extreme score.

set to 0.3. We use 300 dimensional GloVe (Pennington et al., 2014) word embedding to initialize word embeddings. We use AdaGrad as the optimizer, with a learning rate of 0.01. We don't use any extra regularization methods, like dropout or L2 normalization. Training converges after 4 epochs, which is relatively fast.

This task is a bit different from previous two tasks, in that it has 2 sentences as input. There are a bunch of ways to add inter-sentence level attention, and those attentions bring a lot of benefits. To make the comparison focused and fair, we only compare methods that fall into the sentence encoding-based models. i.e., there is no information exchanged between the hypothesis and premise before they are encoded into some distributed encoding.

We find that compared to other published approaches, our method shows a significant gain ($\geq 1\%$) to them, except for the 300D NSE encoders, which is the state-of-the-art in this category. However, the 0.2% different is relatively small compared to the differences between other methods.

4.4 EFFECT OF PENALIZATION TERM

In this subsection we are going to do a set of exploratory experiments concerning the effect of the penalization term P we proposed.

Table 2: Test set performance compared to other sentence encoding based methods in SNLI datset

Model	Test Accuracy	
300D LSTM encoders (Bowman et al., 2016)	80.6%	
600D (300+300) BiLSTM encoders (Liu et al., 2016)	83.3%	
300D Tree-based CNN encoders (Mou et al., 2015a)	82.1%	
300D SPINN-PI encoders (Bowman et al., 2016)	83.2%	
300D NTI-SLSTM-LSTM encoders (Munkhdalai & Yu, 2016a)	83.4%	
1024D GRU encoders with SkipThoughts pre-training (Vendrov et al., 2015)	81.4%	
300D NSE encoders (Munkhdalai & Yu, 2016b)	84.6%	
Our method	84.4%	

Since the purpose of introducing the penalization term is majorly to discourage the redundancy in the embedding, we first directly visualize the heat maps of each row when the model is presented with a sentence. We compare two identical models with the same size as detailed in Section 4.1 trained separately on Age dataset, one with this penalization term (where the penalization coefficient is set to 1.0) and the other with no penalty. We randomly select one tweet from the test set and compare the two models by plotting a heat map for each hop of attention on that single tweet. Since there are 30 hops of attention for each model, which makes plotting all of them quite redundant, we only plot 6 of them. These 6 hops already reflect the situation in all of the 30 hops.

From the figure we can tell that the model trained without the penalization term have lots of redundancies between different hops of attention (Figure 2a), resulting in putting lot of focus on the word "it" (Figure 2c), which is not so relevant to the age of the author. However in the right column, the model shows more variations between different hops, and as a result, the overall embedding focuses on "mail-replies spam" instead. (Figure 2d)

For the Yelp dataset, we also observe a similar phenomenon. To make the experiments more explorative, we choose to plot heat maps of overall attention heat maps for more samples, instead of plotting detailed heat maps for a single sample again. Figure 3 shows overall focus of the sentence embedding on three different reviews. We observe that with the penalization term, the model tends

Figure 2: Heat maps for 2 models trained on Age dataset. The left column is trained without the penalization term, and the right column is trained with 1.0 penalization. (a) and (b) shows detailed attentions taken by 6 out of 30 rows of the matrix embedding, while (c) and (d) shows the overall attention by summing up all 30 attention weight vectors.

we have a great work dinner here there be about 20 us and the staff do a great job time the course the food be nothing extraordinary. I order the New York strip the meat can have use a little more marbling the cornbread we get before the salad be the good thing I eat the whole night 1 annoying thing at this place be the butter be so hard / cold you can not use it on the soft bread get with it

this place be great for lunch / dinner happy hour too the staff be very nice and helpful my new spot

price reasonable staff - helpful attentive portion huge enough for 2 if you get the chimichanga plate food too salty as u know when you cook or add anything with cheese it have it own salt no need add more to the meat ... pls kill the salt and then you can taste the goodness of the food ... ty

(a) Yelp without penalization

we have a great work dinner here there be about 20 us and the staff do a great job time the course the food be nothing extraordinary. I order the New York strip the meat can have use a little more marbling the cornbread we get before the salad be the good thing I eat the whole night 1 annoying thing at this place be the butter be so hard / cold you can not use it on the soft bread get with it

this place be great for lunch / dinner happy hour too the staff be very nice and helpful my new spot

price reasonable staff - helpful attentive portion huge enough for 2 if you get the chimichanga plate food too salty as u know when you cook or add anything with cheese it have it own salt no need add more to the meat ... pls kill the salt and then you can taste the goodness of the food ... ty

(b) Yelp with penalization

Figure 3: Attention of sentence embedding on 3 different Yelp reviews. The left one is trained without penalization, and the right one is trained with 1.0 penalization.

to be more focused on important parts of the review. We think it is because that we are encouraging it to be focused, in the diagonals of matrix AA^T (Equation 8).

To validate if these differences result in performance difference, we evaluate four models trained on Yelp and Age datasets, both with and without the penalization term. Results are shown in Table 3. Consistent with what expected, models trained with the penalization term outperforms their counterpart trained without.

In SNLI dataset, although we observe that introducing the penalization term still contributes to encouraging the diversity of different rows in the matrix sentence embedding, and forcing the network to be more focused on the sentences, the quantitative effect of this penalization term is not so obvious on SNLI dataset. Both models yield similar test set accuracies.

5 CONCLUSION AND DISCUSSION

In this paper, we introduced a fixed size, matrix sentence embedding with a self-attention mechanism. Because of this attention mechanism, there is a way to interpret the sentence embedding in depth in our model. Experimental results over 3 different tasks show that the model outperforms other sentence embedding models by a significant margin.

The introduction of attention mechanism reliefs the burden of LSTM. Without the attention, all semantics of the sentence have to be kept in the hidden states of LSTM until it finishes iterating over the whole sentence. While in our model, the LSTM is only expected to provide some context information around each word, the semantics of a specific part of the sentence can be picked up directly by the attention mechanism. This design relaxes the requirement of long-term dependency for LSTM. However, the notion of summing up elements in the attention mechanism is very primitive, it can be something more complex than that, which will allow more operations on the hidden states of LSTM.

The model is able to encode any sequence with variable length into a fixed size representation, without suffering from long-term dependency problems. This brings a lot of scalability to the model: without any modification, it can be applied directly to longer contents like paragraphs, articles, etc. Though this is beyond the focus of this paper, it remains an interesting direction to explore as a future work.

Table 3: Performance comparision regarding the penalization term

Penalization coefficient	Yelp	Age
1.0	64.21%	80.45%
0.0	61.74%	79.27%

As a downside of our proposed model, the current training method heavily relies on downstream applications, thus we are not able to train it in an unsupervised way. The major obstacle towards enabling unsupervised learning in this model is that during decoding, we don't know as prior how the different rows in the embedding should be divided and reorganized. Exploring all those possible divisions by using a neural network could easily end up with overfitting. Although we can still do unsupervised learning on the proposed model by using a sequential decoder on top of the sentence embedding, it merits more to find some other structures as a decoder.

ACKNOWLEDGMENTS

The authors would like to acknowledge the developers of Theano (Theano Development Team, 2016) and Lasagne. The first author would also like to thank IBM Watson for providing resources, fundings and valuable discussions to make this project possible, and Caglar Gulcehre for helpful discussions.

REFERENCES

- Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model. In *Advances in Neural Information Processing Systems*, pp. 932–938, 2001.
- Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large annotated corpus for learning natural language inference. *arXiv* preprint arXiv:1508.05326, 2015.
- Samuel R Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D Manning, and Christopher Potts. A fast unified model for parsing and sentence understanding. *arXiv* preprint *arXiv*:1603.06021, 2016.
- Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 1724–1734, Doha, Qatar, October 2014. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/D14-1179.
- Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. *arXiv* preprint arXiv:1412.3555, 2014.
- Cicero dos Santos, Ming Tan, Bing Xiang, and Bowen Zhou. Attentive pooling networks. *arXiv* preprint arXiv:1602.03609, 2016.
- Cícero Nogueira dos Santos and Maira Gatti. Deep convolutional neural networks for sentiment analysis of short texts.
- Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed representations of sentences from unlabelled data. In *Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 1367–1377, San Diego, California, June 2016a. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/N16-1162.
- Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed representations of sentences from unlabelled data. *arXiv preprint arXiv:1602.03483*, 2016b.
- Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8): 1735–1780, 1997.
- Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for modelling sentences. *arXiv preprint arXiv:1404.2188*, 2014.
- Yoon Kim. Convolutional neural networks for sentence classification. *arXiv* preprint *arXiv*:1408.5882, 2014.

- Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. Skip-thought vectors. In Advances in neural information processing systems, pp. 3294–3302, 2015.
- Quoc V Le and Tomas Mikolov. Distributed representations of sentences and documents. In *ICML*, volume 14, pp. 1188–1196, 2014.
- Ji Young Lee and Franck Dernoncourt. Sequential short-text classification with recurrent and convolutional neural networks. *arXiv preprint arXiv:1603.03827*, 2016.
- Yang Liu, Chengjie Sun, Lei Lin, and Xiaolong Wang. Learning natural language inference using bidirectional lstm model and inner-attention. *arXiv* preprint arXiv:1605.09090, 2016.
- Horia Margarit and Raghav Subramaniam. A batch-normalized recurrent network for sentiment classification.
- Roland Memisevic. Learning to relate images. *IEEE transactions on pattern analysis and machine intelligence*, 35(8):1829–1846, 2013.
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. *arXiv* preprint arXiv:1301.3781, 2013.
- Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, and Zhi Jin. Natural language inference by tree-based convolution and heuristic matching. *arXiv* preprint arXiv:1512.08422, 2015a.
- Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and Zhi Jin. Discriminative neural sentence modeling by tree-based convolution. *arXiv preprint arXiv:1504.01106*, 2015b.
- Tsendsuren Munkhdalai and Hong Yu. Neural tree indexers for text understanding. *arXiv preprint arXiv:1607.04492*, 2016a.
- Tsendsuren Munkhdalai and Hong Yu. Neural semantic encoders. arXiv preprint arXiv:1607.04315, 2016b.
- Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen, Xinying Song, and Rabab Ward. Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 24(4):694–707, 2016.
- Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representation. In *EMNLP*, volume 14, pp. 1532–43, 2014.
- Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and Christopher D. Manning. Semi-supervised recursive autoencoders for predicting sentiment distributions. In *Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing*, pp. 151–161, Edinburgh, Scotland, UK., July 2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/D11-1014.
- Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In *Proceedings of the conference on empirical methods in natural language processing (EMNLP)*, volume 1631, pp. 1642. Citeseer, 2013.
- Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representations from tree-structured long short-term memory networks. In *Proceedings of ACL*, pp. 1556–1566, 2015.
- Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen Zhou. Improved representation learning for question answer matching. In *Proceedings of ACL*, pp. 464–473, Berlin, Germany, August 2016. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P16-1044.
- Theano Development Team. Theano: A {Python} framework for fast computation of mathematical expressions. *arXiv e-prints*, abs/1605.0, 2016. URL http://arxiv.org/abs/1605.02688.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-embeddings of images and language. *arXiv preprint arXiv:1511.06361*, 2015.

Wenpeng Yin and Hinrich Schütze. Convolutional neural network for paraphrase identification. In *Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 901–911, 2015.