Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Кафедра мікроелектроніки

3BIT

про виконання лабораторної роботи №2 з дисципліни: «Напівпровідникова електроніка» Тема роботи: «Дослідження випрямляючих напівпровідникових діодів»

Виконав студент 3-го курсу групи ДП-91		
Ремез Сергій Олександрович		
	(підпис)	(дата здачі)
Перевірив Королевич Любомир Миколайович		
•	(підпис)	(дата здачі)

1. МЕТА РОБОТИ

Теоретичне вивчення та експериментальне дослідження електричного пробою електронно- діркового переходу; дослідження вольт-амперних характеристик і параметрів напівпровідникових стабілітронів.

2. ЗАВДАННЯ

- 1. Вивчити принцип дії і структуру параметрів (паспортних даних) стабілітронів.
- 2. Зібрати схему дослідження напівпровідникових стабілітронів.
- 3. Виміряти вольт-амперні характеристики двох стабілітронів в прямому і зворотньому напрямках при кімнатній температурі.
- 4. Провести температурні дослідження ВАХ двох стабілітронів при температурі +70 °С (для прямої та зворотньої полярності напруги).
- 5. Визначити температурний коефіцієнт напруги стабілізації, а також температурний коефіцієнт прямої напруги стабілітронів при заданих струмах І st та І пр. (Значення струмів задаються викладачем).
- 6. *Виміряти температурний коефіцієнт двох зустрічно ввімкнених стабілітронів при тих же струмах і температурах. Порівняти отримані результати з розрахунковими ТКН і .
- 7. **Провести вимірювання коефіцієнта стабілізації вихідної напруги схеми на малюнку 1.
- 8. Побудувати графіки вольт-амперних характеристик досліджених стабілітронів.
- 9. За побудованими графіками характеристик визначити основні параметри стабілітронів: напругу стабілізації, диференційний опір r st , статичний опір стабілітрона R ST , та інші. Розрахувати коефіцієнт якості стабілітрона Q = R st /r st .

3. СХЕМА ВИМІРЮВАННЯ

Рис. 1. Схема експериментальної установки для дослідження вольт-амперної

характеристики стабілітронів.

Рис. 2. Графічне визначення окремих параметрів стабілітрона за його вольт-амперною характеристикою.

3. РЕЗУЛЬТАТИ ВИМІРЮВАНЬ

3.1. Результати вимірювань

Табл. №4.1. ВАХ стабілітрона №1. Умови досліджень: пряме зміщення, *T*₁=20°C

					r 1	F 1			1)		
I_D , MA	0	1	1,6	3	3,55	5,4	5,9	7,1	8,2	9	10
U_D , B	0	0,611	0,629	0,642	0,648	0,660	0,663	0,668	0,674	0,677	0,680

Табл. №4.2. ВАХ стабілітрона №1. Умови досліджень: зворотне зміщення, T_1 =20°C

 		F		M		I			
I_D , MA	0	1	2	3	4	5,6	7,5	8,6	10
U_D , B	0	8,61	8,62	8,63	8,64	8,65	8,66	8,66	8,67

Табл. №4.3. ВАХ стабілітрона №2 Умови досліджень: пряме зміщення, *T*₁=20°C

Ī	I_D , MA	0	1	2	3,4	4,1	5	5,9	7,4	7,6	8,5	9,5	10
	U_D , B	0	0,644	0,664	0,678	0,683	0,689	0,694	0,7	0,701	0,705	0,708	0,709

Табл. №4.4. ВАХ стабілітрона №2. Умови досліджень: зворотне зміщення, T_1 =20°C

			1			, ,,		1		1	, -	
I_D , MA	0	1	1,7	2,6	3,3	4,5	5,8	6,6	7,4	8,4	9,2	10
U_D , B	0	2,6	2,87	3,03	3,12	3,24	3,35	3,4	3,45	3,5	3,54	3,57

3.1.1. Пряма гілка ВАХ.

Пряма гілка ВАХ стабілітронів

Рис. 3. Графічна залежність для прямої гілки ВАХ стабілітронів.

3.1.2. Зворотня гілка ВАХ.

Рис. 4. Графічна залежність для зворотної гілки ВАХ стабілітронів.

4.РОЗРАХУНКИ

Важливо: За несправності термостату, за попереднім погодженням з викладачем, деякі завдання будуть упущені у зв'язку з відсутністю необхідних даних: температурні дослідження ВАХ стабілітронів зі завдань 4-5 включно.

4.1. Розрахунок опорів та інших параметрів діода-стабілітрона.

4.1.1. Знайдемо параметри для діода стабілітрона №1.

Для прямої гілки:

Виходячи з графіку Рис. 3. у пункті, визначимо параметри прямої гілки ВАХ стабілітрона в робочій точці 0_1 :

- Струм $I_{np1} = 5.5 \text{ мA};$
- Напруга $U_{\text{пр1}} = 0,66 \text{ B};$
- Потужність $P_{\rm np} = I_{\rm np1} \cdot U_{\rm np1} = 5.5 \cdot 10^{-3} \cdot 0.66 = 3.63$ мВт;
- За апроксимацією Шоклі випливає, що при $I_{np} \to 0$ спад напруги визначається лише висотою потенціального бар'єра, тобто:

$$\varphi_0 - \varphi_T = \frac{(U_2 - U_1) \cdot (-I_1)}{(I_2 - I_1)} + U_1;$$

$$\varphi_0 = \frac{(U_2 - U_1) \cdot (-I_1)}{(I_2 - I_1)} + U_1 + \varphi_T,$$

де φ_T – тепловий потенціал

$$\varphi_T = \frac{k \cdot T}{q},$$

де $k=1,381\cdot 10^{-23}\,\frac{\mbox{Дж}}{\mbox{K}}$ - стала Больцмана, $T=293,15\mbox{ K}$ (20°C) - температура, $q=1,602\cdot 10^{-19}\mbox{ K}$ л - електричний заряд.

$$\varphi_T = \frac{1,381 \cdot 10^{-23} \cdot 293,15}{1,602 \cdot 10^{-19}} = 25,27 \text{ MB};$$

Потенціал $\varphi_{01} = 0.616$ В;

Опір бази
$$r_b = \frac{U_{\rm пp} - \varphi_0}{I_{\rm np}} = \frac{0.66 - 0.616}{5.84} \cdot 10^3 = 7,53$$
 Ом;

Струм виродження
$$I_{\text{вир}} = \frac{\varphi_{\text{т}}}{r_b} = \frac{25,27 \cdot 10^{-3}}{7,53} = 3,36$$
 мА;

Для зворотньої гілки:

Виходячи з графіку Рис.4 у пункті:

- Мінімальна напруга стабілізації $U_{\text{ст }min1} = 8,61 B$;
- Максимальна напруга стабілізації $U_{\text{ст}\ max1} = 8,67\ B;$
- Напруга стабілізації знайдемо за наступною формулою:

$$U_{CT1} = \frac{U_{CT min1} + U_{CT max1}}{2} = \frac{8,61 + 8,67}{2} = 8,64 \text{ B};$$

 Маючи значення напруги стабілізації, можна графічно отримати струм стабілізації:

Струм $I_{\text{ст }min1} = 1$ мА;

Струм стабілізації $I_{\text{ст1}} = 4,15 \text{ мA}$;

 Скориставшись графіком ВАХ характеристики Рис.4, виберемо робочу точку 0₃, що знаходиться посеред діапазону стабілізації, тому ми можемо знайти параметри робочої точки:

Струм $I_{po6} = 4,15$ мА;

Напруга $U_{po6} = 8,65 B$;

Потужність $P_{\text{роб}} = I_{\text{роб}} \cdot U_{\text{роб}} = 4,15 \cdot 10^{-3} \cdot 8,65 = 35,856$ мВт;

Потужність $P_{\rm ct} = I_{\rm ct2} \cdot U_{\rm ct2} = 4,15 \cdot 10^{-3} \cdot 8,64 = 35,542$ мВт;

Диференційний опір $r_{\text{диф}} = \frac{dU}{dI} = \frac{\Delta U}{\Delta I} = \frac{8,64 - 8,6334}{4.1 - 4.0995} = \frac{0,0066}{0.0005} \approx 13,2 \text{ Ом};$

Статичний опір $R_{\rm ct}=rac{U_{
m po6}}{I_{
m po6}}=rac{8,65}{4,15}\cdot 10^3 pprox 2084,33~{
m Om}$;

Коефіцієнт якості стабілітрона $Q=\frac{R_{\rm cr}}{r_{\rm диф}}=\frac{2084,33}{13,2}=157,9;$

Параметр якості $\frac{U_{\text{CT }max2} - U_{\text{CT }min2}}{U_{\text{CT2}}} = \frac{8,67 - 8,61}{8,64} = 0,00694$;

4.2.2. Знайдемо параметри для діода стабілітрона №2

Для прямої гілки:

Виходячи з графіку Рис.3 у пункті, визначимо параметри прямої гілки ВАХ стабілітрона в робочій точці 0_2 :

- CTpym $I_{np} = 5.9 \text{ mA};$
- Напруга $U_{\rm np} = 0,685 \text{ B};$

- Потужність $P_{\rm np} = I_{\rm np} \cdot U_{\rm np} = 5.9 \cdot 10^{-3} \cdot 0.685 = 4.04$ мВт;
- За апроксимацією Шоклі випливає, що при $I_{np} \to 0$ спад напруги визначається лише висотою потенціального бар'єра, тобто:

$$arphi_0 - arphi_T = rac{(U_2 - U_1) \cdot (-I_1)}{(I_2 - I_1)} + U_1;$$
 $arphi_0 = rac{(U_2 - U_1) \cdot (-I_1)}{(I_2 - I_1)} + U_1 + arphi_T,$ де $arphi_T$ — тепловий потенціал $arphi_T = rac{k \cdot T}{q},$

де $k=1,381\cdot 10^{-23}\,\frac{\mbox{Дж}}{\mbox{K}}$ - стала Больцмана, $T=293,15\mbox{ K}$ (20°C) - температура, $q=1,602\cdot 10^{-19}\mbox{ K}$ л - електричний заряд.

$$\varphi_T = \frac{1,381 \cdot 10^{-23} \cdot 293,15}{1.602 \cdot 10^{-19}} = 25,27 \text{ MB};$$

Потенціал $\varphi_{01} = 0,633$ В;

Опір бази
$$r_b = \frac{U_{\rm пp} - \varphi_0}{I_{\rm np}} = \frac{0.685 - 0.633}{5.9} \cdot 10^3 = 8,81$$
 Ом;

Струм виродження
$$I_{\text{вир}} = \frac{\varphi_{\text{т}}}{r_h} = \frac{25,27 \cdot 10^{-3}}{8,81} = 2,868 \text{ мA};$$

Для зворотньої гілки:

Виходячи з графіку Рис.4 у пункті:

- Мінімальна напруга стабілізації $U_{\text{ст}\,min2} = 2,87\,B$;
- Максимальна напруга стабілізації $U_{\text{ст}\ max2} = 3,57B;$
- Напруга стабілізації знайдемо за наступною формулою:

$$U_{CT2} = \frac{U_{CT min2} + U_{CT max2}}{2} = \frac{2,87 + 3,57}{2} = 3,22 \text{ B};$$

• Маючи значення напруги стабілізації, можна графічно отримати струм стабілізації:

Струм $I_{\text{ст }min1} = 1,7$ мА;

Струм стабілізації $I_{\text{ст1}} = 4,47 \text{ мA}$;

• Скориставшись графіком ВАХ характеристики Рис.4, оберемо робочу точку О₄, що знаходиться посеред діапазону стабілізації, тому ми можемо знайти параметри робочої точки:

Струм $I_{po6} = 4,5$ мА;

Напруга $U_{po6} = 3,25 B$;

Потужність $P_{\text{poб}} = I_{\text{pof}} \cdot U_{\text{pof}} = 4.5 \cdot 10^{-3} \cdot 3.25 = 14.625$ мВт;

Потужність $P_{\rm ct} = I_{\rm ct2} \cdot U_{\rm ct2} = 4,47 \cdot 10^{-3} \cdot 3,22 = 14,439$ мВт;

Диференційний опір $r_{\text{диф}} = \frac{dU}{dI} = \frac{\Delta U}{\Delta I} = \frac{3,22-3,26}{4,47-4,476} = \frac{0,04}{0,006} \approx 66 \text{ Ом};$

Статичний опір $R_{\rm ct}=rac{U_{
m po6}}{I_{
m po6}}=rac{3,25}{4,5}\cdot 10^3pprox 772,2~{
m Om}$;

Коефіцієнт якості стабілітрона $Q=\frac{R_{\rm CT}}{r_{\rm диф}}=\frac{772,2}{6,6}=109,42;$

Параметр якості $\frac{U_{\text{cт }max2} - U_{\text{cт }min2}}{U_{\text{cr2}}} = \frac{3,57 - 2,87}{3,22} = 0,217$;

6.АНАЛІЗ РЕЗУЛЬТАТІВ ДОСЛІДЖЕНЬ

Табл. №6.1. Зведені дані.

Основні	для діода типу	для діода типу	для діода типу	для діода типу
параметри:	№ 1,	№ 1,	№ 2,	<i>№</i> 2,
(умовне познач.,	пряма гілка	зворотня гілка	пряма гілка	зворотня гілка
розмірність)	BAX	BAX	BAX	BAX
Струм $I_{\text{пр}}$, мА	5,84	-	5,9	-
Напруга $U_{\rm np}$, В	0,673	-	0,685	-
Потужність, Рпр,	3,93	-	4,04	-
мВт				
Потенціал φ , В	0,616	-	0,633	-
Опір бази r_6 , Ом	9,76	-	8,81	-
Струм		-		-
виродження $I_{\text{вир}}$,	2,589		2,868	
мА				
Мінімальна	-		-	
напруга		8,61		2,87
стабілізації				
$U_{ ext{ct }min}$, B				
Максимальна	-		-	
напруга		8,67		3,57
стабілізації				
$U_{\operatorname{cr} max}, \operatorname{B}$				
Напруга	-	8,64	-	3,22
стабілізації $U_{c^{\mathrm{T}}}$, В				
Струм $I_{\text{ст}min}$, мА	-	1	-	1,7
Струм стабілізації	-	4,1	-	4,47
$I_{\rm ct}$, мА				
Струм I_{po6} , мА	-	4,15	-	4,5
Напруга $U_{\text{роб}}$, В	-	8,65	-	3,25
Потужність $P_{\text{роб,}}$	-	35,856	-	14,625
мВт				
Диференційний	-	13,2	-	66

опір $r_{\rm диф}$, Ом				
Статичний опір	-	2084,33	-	722,2
$R_{\rm ct}$, Om				
Коефіцієнт якості	-	157,9	-	109,42
стабілітрона <i>Q</i>				
Параметр якості	-	0,00694	-	0,217

7. ВИСНОВОК

У ході виконання роботи було проведено дослідження електричного пробою p-n переходу та дослідження BAX характеристик і параметрів напівпровідникових стабілітронів.