Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Физтех-школа аэрокосмических технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ – 3 Поиск численного решения краевой задачи

Выполнил: Алиев Артем Эльдарович Группа Б03-907

Долгопрудный

2021 г.

Содержание

1 Условие	3
2 Теория	
3 Решение	
3.1 Поиск матрицы	
3.2 Поиск решения ЗК методом непосредственной аппроксимации	
дифференциального уравнения с прогонкой	6
4 Результаты	7
5 Итог	12

1 Условие

Найти решение задачи Коши: $y'' - 2y' = exp(x)*(x^2 - 1)$, y(0) = 1, y(b) = -2, b = 1.5; 3.0, h = 0.02; 0.005, используя метод непосредственной аппроксимации дифференциального уравнения с прогонкой.

2 Теория

Непосредственная разностная аппроксимация их краевой задачи

$$y'' \longrightarrow \frac{y_{k+1} - 2y_k + y_{k-1}}{h^2}$$
$$y' \longrightarrow \frac{y_{k+1} - y_{k-1}}{2h}$$
$$p(x) \longrightarrow p_k, f(x) \longrightarrow f_k, q(x) \longrightarrow q_k$$

Далее с помощью метода трехдиагональной прогонки и домножения главного уравнения на h^2 задача решается.

Метод прогонки

Рассмотрим линейную задачу

$$\frac{d}{dx}\left[g(x)\frac{dy}{dx}\right] + q(x)\frac{dy}{dx} - p(x)y = f, \quad x \in [0,1],$$

с граничными условиями третьего рода (2.5).

Коэффициент g(x), вообще говоря, может не иметь первой производной. Такая задача возникает, например, в случае расчета установившегося распределения температуры в задаче стационарной теплопроводности с разрывом коэффициента теплопроводности. Чтобы получить разностную схему, пригодную и для этого случая, представим разностную задачу в виде

$$\begin{split} &\frac{1}{h} \left(g_{n+1/2} \, \frac{y_{n+1} - y_n}{h} - g_{n-1/2} \, \frac{y_n - y_{n-1}}{h} \right) + q_n \, \frac{y_{n+1} - y_{n-1}}{2h} - p_n y_n = f_n, \\ &n = 1, \dots, N-1, \\ &g_{n+1/2} = g \left(x_n + 0, 5h \right), \ q_n = q(x_n), \\ &A_1 \, \frac{y_1 - y_0}{h} + B_1 y_0 = U_1, \ x = 0, \\ &A_2 \, \frac{y_N - y_{N-1}}{h} + B_2 y_N = U_2, \ x = 1. \end{split}$$

Здесь для аппроксимации производных в граничных условиях использована формула первого порядка аппроксимации. О недостатках такого подхода и способах их преодоления смотри ниже.

Для определения значений сеточной функции получается СЛАУ с трехдиагональной матрицей:

$$-b_0y_0+c_0y_1=d_0,$$

$$a_ny_{n-1}-b_ny_n+c_ny_{n+1}=d_n,\ n=1,\dots,N-1,$$

$$a_Ny_{N-1}-b_Ny_N=d_N,$$
 где введены обозначения
$$a_n=g_{n-1/2}-\frac{q_nh}{2}, \qquad c_n=g_{n+1/2}+\frac{q_nh}{2},$$

$$b_n=a_n+c_n+h^2p_n, \qquad d_n=h^2f_n, \qquad b_0=\frac{A_1}{h}-B_1, \qquad c_0=\frac{A_1}{h}, \qquad d_0=U_1,$$

$$b_N=\frac{A_2}{h}+B_2,\ a_N=-\frac{A_2}{h},\ d_N=-U_2.$$

Эта СЛАУ записывается в матричном виде A'y = d, где A' — матрица специального вида (ленточная, трехдиагональная):

$$\mathbf{A'} = \begin{pmatrix} -b_0 & c_0 & 0 & \dots & 0 \\ a_1 & -b_1 & c_1 & \dots & 0 \\ 0 & a_2 & -b_2 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & -b_N \end{pmatrix},$$

у, d есть векторы-столбцы искомого сеточного решения и преобразованной правой части:

$$\mathbf{y} = (y_0, y_1, ..., y_N)^T, \quad \mathbf{d} = (d_0, d_1, ..., d_N)^T.$$

Трехдиагональные матрицы часто возникают при численном решении краевых задач как для обыкновенных дифференциальных уравнений, так и для уравнений в частных производных.

Рассмотрим экономичный вариант метода Гаусса, предназначенный для решения подобных систем. Решение ищется в виде прогоночного соотношения

$$y_{n-1} = P_n y_n + O_n, \quad n = 1,...,N,$$
 (4.1)

Левое краевое условие также записывается в виде прогоночного соотношения

$$y_0 = \frac{c_0}{b_0} y_1 - \frac{d_0}{b_0},$$

откуда сразу получаем $P_1 = c_0/b_0$, $Q_1 = -d_0/b_0$.

Получим рекуррентные формулы, позволяющие последовательно вычислить все прогоночные коэффициенты.

Подставив равенство $y_{n-1} = P_n y_n + O_n$ в уравнение

$$a_n y_{n-1} - b_n y_n + c_n y_{n+1} = d_n$$
,

получим

$$a_n(P_ny_n + Q_n) - b_ny_n + c_ny_{n+1} = d_n$$

или

$$y_n = \frac{c_n}{b_n - a_n P_n} y_{n+1} + \frac{a_n Q_n - d_n}{b_n - a_n P_n}.$$

Сравнивая эту запись с видом прогоночного соотношения (4.1), мы видим, что для прогоночных коэффициентов должны выполняться равенства

$$P_{n+1} = \frac{c_n}{b_n - a_n P_n}, \quad Q_{n+1} = \frac{a_n Q_n - d_n}{b_n - a_n P_n}.$$

Эти формулы определяют прямой ход прогонки, при этом последовательно слева направо определяются коэффициенты P_n и Q_n .

Из краевого условия на правом конце отрезка интегрирования

$$a_N y_{N-1} - b_N y_N = d_N$$

и прогоночного соотношения

$$y_{N-1} = P_N y_N + Q_N$$

находим

$$Q_{N+1} = \frac{a_N Q_N - d_N}{b_N - a_N P_N} \ \text{if} \ y_N = Q_{N+1} \,.$$

Далее последовательно справа налево вычисляются остальные неизвестные y_n n=N-1,...,1 с использованием прогоночных

соотношений и найденных при прямом ходе прогоночных коэффициентов. Это — обратный ход алгоритма прогонки.

Теорема. Пусть выполнены условия диагонального преобладания $|b_n| \ge |a_n| + |c_n|$ и хотя бы для одной строки матрицы системы имеет место строгое диагональное преобладание $(|b_n| > |a_n| + |c_n|)$. Пусть, кроме того, $0 < P_1 < 1$. Тогда алгоритм прогонки устойчив.

3 Решение

3.1 Поиск матрицы

```
# Пробные данные для уравнения A*X = B
a = [[ 10.8000, 0.0475, 0, 0 ], [ 0.0321, 9.9000, 0.0523, 0 ],
     Γ
              0, 0.0369, 9.0000, 0.0570],
                  0, 0.0416, 8.1000]]
     [
              0,
b = [12.1430, 13.0897, 13.6744, 13.8972]
def solution(a, b):
    n = len(a)
    x = [0 \text{ for } k \text{ in range}(0, n)] \# обнуление вектора решений
    print('Размерность матрицы: ',n,'x',n)
    # Прямой ход
    v = [0 \text{ for } k \text{ in range}(0, n)]
    u = [0 \text{ for } k \text{ in range}(0, n)]
    # для первой 0-й строки
    v[0] = a[0][1] / (-a[0][0])
    u[0] = (-b[0]) / (-a[0][0])
    for i in range(1, n - 1): # заполняем за исключением 1-й и (n-1)-
й строк матрицы
        v[i] = a[i][i+1] / (-a[i][i] - a[i][i-1]*v[i-1])
        u[i] = (a[i][i-1]*u[i-1] - b[i]) / (-a[i][i] - a[i][i-1]*v[i-1]
1])
    # для последней (n-1)-й строки
    v[n-1] = 0
    u[n-1] = (a[n-1][n-2]*u[n-2] - b[n-1]) / (-a[n-1][n-1] - a[n-1][n-1]
2]*v[n-2])
Размерность матрицы: 4 х 4
Решение:
x[0] =
        1.1186
x[1] = 1.3106
x[2] = 1.5032
x[3] = 1.7080
```

3.2 Поиск решения ЗК методом непосредственной аппроксимации дифференциального уравнения с прогонкой

```
for b el in b:
    y arrays = []
    x arrays = []
    length = b el - a
    for h el in h:
        N = int(length / h el)
        # Create matrix of zeros of given size (remember about already giv
en 2 dots)
        A = np.zeros([N + 1, N + 1])
        # Create respective vector of x (remember about already given 2 do
ts) with a step of h
        x = np.linspace(a, b el, num=N+1, endpoint=True)
        # Create vector of free coefficients
        d = [y_0] + [pow(h_el, 2) * np.exp(x[k]) * (x[k]**2 - 1) for k in
range(1, len(x)-1)] + [y b]
        1.1.1
        Straight move
        # Computing A matrix with 3 diagonals
        # e.g.
        # 1 0 0 0 0
        # 1 2 1 0 0
        # 0 1 5 1 0
        # 0 0 1 8 1
        # 0 0 0 0 1
        for i in range (N + 1):
            for j in range(N + 1):
                if i == j == 0 or i == j == N:
                    A[i][j] = 1
                elif i == j != 0 or i == j != N:
                    A[i][j] = 1 + h el
                    A[i][j - 1] = 1 - h_el
                    A[i][j + 1] = 5 * pow(h el, 2) - 2
```

Выбрал 17 значений с шагом кратному h = 0.02 при b = 1.5:

Method: b = 1.5, h = 0.02		Exact value	Error
			Method - Exact
X	у	у	value
0,00	1,000000000	0,999996000	0,000004000
0,08	-1,738427225	1,005829084	2,744256309
0,18	-1,916302201	1,003873892	2,920176093
0,28	-1,917058741	0,988694597	2,905753338
0,38	-1,922812367	0,956691296	2,879503662
0,48	-1,928433369	0,903790659	2,832224029
0,58	-1,934097500	0,825450644	2,759548144
0,68	-1,939839509	0,716689270	2,656528778
0,78	-1,945709089	0,572146826	2,517855915
0,88	-1,951768633	0,386193528	2,337962162
0,98	-1,958095815	0,153098056	2,111193871
1,08	-1,964786465	-0,132723368	1,832063098
1,18	-1,971957923	-0,476352392	1,495605531
1,28	-1,979752926	-0,881876887	1,097876038
1,38	-1,988344131	-1,351722429	0,636621703
1,48	-1,997939358	-1,885756908	0,112182449
1,50	-2,000000000	-2,000007435	0,000007435
Max Error	4	,326596344	

Выбрал 17 значений с шагом кратному h = 0.01 при b = 1.5:

Method: b = 1.5, h =	0.01			Exact value		Error
х		у		у		Method - Exact value
	0,00		000000000		996000	0,000004000
	0,09	-1,	958035380	1,0061	L35676	2,964171056
	0,19	-1,	955664279	1,0030	006769	2,958671048
	0,29	-1,	958532764	0,9863	314831	2,944847595
	0,39	-1,	961395755	0,9524	112933	2,913808688
	0,49	-1,	964260261	0,8971	180329	2,861440590
	0,59	-1,	967141656	0,8160	029215	2,783170871
	0,69	-1,	970059826	0,7039	936394	2,673996220
	0,79	-1,	973040064	0,5555	509432	2,528549496
	0,89	-1,	976114135	0,3650	099647	2,341213782
	0,99	-1,	979321511	0,1269	977739	2,106299250
	1,09	-1,	982710819	-0,1644	107802	1,818303018
	1,19	-1,	986341522	-0,5140	063948	1,472277574
	1,29	-1,	990285869	-0,9259	945738	1,064340131
	1,39	-1,	994631167	-1,4022	267510	0,592363657
	1,49	-1,	999482407	-1,9425	81616	0,056900791
	1,50	-2,	000000000	-2,0000	007435	0,000007435
Max Error			4	411906874		

Выбрал 17 значений с шагом кратному h = 0.005 при b = 1.5:

Method: b = 1.5, h = 0.005			Exact value		Error	
х	у		у		Method value	- Exact
0,000	1,00	00000000	0,9999	96000		0,000004000
0,095	-1,97	76342798	1,0062	50371		2,982593170
0,195	-1,97	77799299	1,0025	22703		2,980322002
0,295	-1,97	79250643	0,9850	60801		2,964311444
0,395	-1,98	30696040	0,9501	94180		2,930890219
0,495	-1,98	32141402	0,8937	78407		2,875919808
0,595	-1,98	33594523	0,8112	02912		2,794797435
0,695	-1,98	35065460	0,6974	24132		2,682489592
0,795	-1,98	36566989	0,5470	33686		2,533600675
0,895	-1,98	88115138	0,3543	74093		2,342489231
0,995	-1,98	39729806	0,1137	18016		2,103447822
1,095	-1,99	91435490	-0,1804	68563		1,810966927
1,195	-1,99	93262121	-0,5331	.53398		1,460108724
1,295	-1,99	95246052	-0,9482	22555		1,047023497
1,395	-1,99	97431186	-1,4277	81337		0,569649848
1,495	-1,99	99870293	-1,9712	19804		0,028650489
1,500	-2,00	0000000	-2,0000	07435		0,000007435
Max Error		4	,455594449			

Графически представленные результаты при b = 1.5:

Выбрал 17 значений с шагом кратному h = 0.02 при b = 3.0:

Method: b = 3.0, h = 0.02		Exact value	Error	
			Method - Exact	
X	У	у	value	
0,00	1,00000000	1,00000000	0,00	
0,18	-1,33401212	0,97596368	0,18	
0,38	-1,33754833	0,88336982	0,38	
0,58	-1,34489086	0,68438352	0,58	
0,78	-1,35253253	0,33001508	0,78	
0,98	-1,36092258	-0,23980439	0,98	
1,18	-1,37076109	-1,09417830	1,18	
1,38	-1,38309659	-2,30509471	1,38	
1,58	-1,39946210	-3,93405423	1,58	
1,78	-1,42205787	-6,00647067	1,78	
1,98	-1,45399554	-8,46591536	1,98	
2,18	-1,49962312	-11,09577419	2,18	
2,38	-1,56495561	-13,38899157	2,38	
2,58	-1,65824350	-14,33605819	2,58	
2,78	-1,79072109	-12,08541324	2,78	
2,98	-1,97758824	-3,40620232	2,98	
3,00	-2,00000000	-2,00008118	3,00	
Max Error	12	,698685625		

Выбрал 17 значений с шагом кратному h = 0.01 при b = 3.0:

Method: b = 3.0, h = 0.01		Exact value	Error
х	у	у	Method - Exact value
0,00	1,0000000	1,0000000	0,000000000
0,19	-1,6534488	0,9732313	2,626680121
0,39	-1,6581682	0,8763089	2,534477020
0,59	-1,6628981	0,6708109	2,333709027
0,79	-1,6677771	0,3071849	1,974962004
0,99	-1,6730358	-0,2751633	1,397872486
1,19	-1,6790296	-1,1456722	0,533357369
1,39	-1,6862895	-2,3762006	0,689911069
1,59	-1,6955906	-4,0271823	2,331591698
1,79	-1,7080429	-6,1212369	4,413194026
1,99	-1,7252145	-8,5961264	6,870911952
2,19	-1,7492939	-11,2243456	9,475051708
2,39	-1,7833058	-13,4795940	11,696288196
2,59	-1,8313954	-14,3196352	12,488239832
2,79	-1,8992028	-11,8387268	9,939524020
2,99	-1,9943539	-2,7180665	0,723712605
3,00	-2,0000000	-2,0000812	0,000081177
Max Error	12	,522967080	

Выбрал 17 значений с шагом кратному h = 0.005 при b = 3.0:

Method: b = 3.0, h = 0.005		Exact value	Error
х	У	V	Method - Exact value
0,000	1,0000000	1,0000000	0,00000000
0,195	-1,8237475	0,9718006	2,795548096
0,395	-1,8263869	0,8726778	2,699064666
0,595	-1,8290275	0,6638777	2,492905240
0,795	-1,8317417	0,2955660	2,127307713
0,995	-1,8346458	-0,2931120	1,541533807
1,195	-1,8379190	-1,1717569	0,666162179
1,395	-1,8418285	-2,4121501	0,570321540
1,595	-1,8467639	-4,0741680	2,227404077
1,795	-1,8532828	-6,1789903	4,325707511
1,995	-1,8621724	-8,6614008	6,799228373
2,195	-1,8745307	-11,2883262	9,413795513
2,395	-1,8918744	-13,5236444	11,631770067
2,595	-1,9162813	-14,3084365	12,392155181
2,795	-1,9505776	-11,7093640	9,758786461
2,995	-1,9985831	-2,3628598	0,364276764
3,000	-2,0000000	-2,0000812	0,000081177
Max Error	12	2,434662232	

Графически представленные результаты при b = 1.5:

Точное решение:

$$y(x) = \frac{1}{2} c_1 e^{2x} + c_2 - e^x x^2 - e^x$$

Итоговая таблица со всеми погрешностями при различных b и h:

Max Error						
b = 1.5 b = 3.0						
h = 0.02	h = 0.01	h = 0.005	h = 0.02			
4,32659634	4,411907	4,455594	12,69869	12,52297	12,43466	

5 Итог

В данной задаче мы воспользовались методом непосредственной аппроксимации дифференциального уравнения с прогонкой. Для b = 3.0 от уменьшения h погрешность уменьшается, хоть и по-прежнему остается достаточно большой, как мы видим графически точное решение и наш метод значительно отличаются, однако для b = 1.5 от уменьшения h погрешность только возрастает, так как точное решение на графике находится выше, чем наше решение методом непосредственной аппроксимации дифференциального уравнения с прогонкой. Судя по всему данный метод не подходит для данной задачи.Ы

Ссылка на GitHub кода