Меблева фабрика випускає столи, крісла, бюро і книжкові шафи, використовуючи два типи дощок. Фабрика має 1000 дощок типу 1 и 500 дощок типу 2. Трудові ресурси фабрики складають 800 чоловік на тиждень. Витрати кожного виду ресурсів на виготовлення одного виробу є нечіткими параметрами із функцією приналежності $\mu_{ij}(a_{ij})$ і наведені в таблиці 3.1(а). Прибуток від реалізації виробів C_i є нечіткою величиною із функцією приналежності $\gamma_i(C_i)$ (табл. 3.1(б)), де

$$\mu_{ij}(a_{ij}) = \frac{2}{2 + (a_{ij} - \overline{a}_{ij})^2}, \ \gamma_j(C_j) = \exp\left\{-\frac{(C_j - \overline{C}_j)^2}{2}\right\}$$

Визначити оптимальний асортимент випуску виробів, який забезпечується при умові реалізованості плану максимум очікуваного прибутку. Знайти множину не домінуючих альтернатив зі степенем $\alpha = 0.75$

1	аблиця	3.1	(a)
Γ			

	Стіл	Крісло	Бюро	Шафа
Дошки типу 1	4	2	8	12
Дошки типу 2	2	4	6	10
Трудові ресурси	5	3	6	12

Таблиця 3.1(б)

Two market bill (b)					
	Стіл	Крісло	Бюро	Шафа	
\overline{C}_{J}	12	5	15	20	

Математична модель: x_i продукт j

$$max \quad \sum_{j=1}^{4} C_{j}x_{j}$$
 Обмеження $\sum_{j=1}^{3} a_{ij}x_{j} \leqslant b_{j}$

$$\mu(a_{ij}) \geqslant 0.75$$

$$\frac{2}{2 + (a_{ij} - \overline{a}_{ij})^2} \geqslant 0.75$$

$$\frac{2}{0.75} \geqslant 2 + (a_{ij} - \overline{a}_{ij})^2$$

$$\frac{2}{0.75} - 2 \geqslant (a_{ij} - \overline{a}_{ij})^2$$

$$\frac{2}{3} \geqslant (a_{ij} - \overline{a}_{ij})^2$$

$$\sqrt{\frac{2}{3}} \geqslant |a_{ij} - \overline{a}_{ij}|$$

$$a_{ij} - \sqrt{\frac{2}{3}} \leqslant a_{ij} \leqslant a_{ij} + \sqrt{\frac{2}{3}}$$

$$\overline{C}_{ij} - \overline{C}_{ij} - \overline{C}_{ij}$$

Задача песиміста

$$max \quad \sum_{j=1}^{4} (\overline{C}_j - \sqrt{2\ln\frac{4}{3}})x_j$$

Обмеження

$$\sum_{i=1}^{3} (a_{ij} + \sqrt{\frac{2}{3}}) x_j \leqslant b_i$$

$$\gamma(C_{ij}) \geqslant 0.75$$

$$\exp\left\{-\frac{(C_{ij} - \overline{C}_{ij})^2}{2}\right\} \geqslant 0.75$$

$$-\frac{(C_{ij} - \overline{C}_{ij})^2}{2} \geqslant \ln 0.75$$

$$(C_{ij} - \overline{C}_{ij})^2 \leqslant -2\ln 0.75$$

$$(C_{ij} - \overline{C}_{ij})^2 \leqslant 2\ln \frac{1}{0.75}$$

$$|C_{ij} - \overline{C}_{ij}| \leqslant \sqrt{2\ln \frac{4}{3}}$$

$$\overline{C}_{ij} - \sqrt{2\ln \frac{4}{3}} \leqslant C_{ij} \leqslant \overline{C}_{ij} + \sqrt{2\ln \frac{4}{3}}$$

Задача оптиміста

$$max \quad \sum_{j=1}^{4} (\overline{C}_j + \sqrt{2\ln\frac{4}{3}})x_j$$

$$\sum_{i=1}^{3} (a_{ij} - \sqrt{\frac{2}{3}}) x_j \leqslant b_i$$

Підприємство володіє ресурсами сировини, робочої сили і обладнання, які необхідні для виробництва чотирьох видів виробів. Нехай питомі витрати ресурсів типу j при виробництві виробів типу i a_{ij} є нечіткими змінними на інтервалі $\left[\eta_{ij}, \delta_{ij}\right]$ з ф.п. $\mu_{ij}\left(a_{ij}\right)$, а прибуток одиниці виробу C_i — нечітка величина з ф.п. $\gamma_i\left(C_i\right)$, де

$$\mu_{ij}(a_{ij}) = \exp\left\{-\frac{(a_{ij} - \overline{a}_{ij})^2}{2}\right\}, \ \gamma_{j}(C_{j}) = \frac{1}{1 + (C_{j} - \overline{C}_{j})^2}$$

Початкові дані наводяться у табл. 3.2(а) и табл. 3.2(б). Визначити оптимальний асортимент випуску виробів, який забезпечує максимум очікуваного прибутку при умові реалізованості плану. Знайти підмножину не домінуючих альтернатив зі степенем $\alpha = 0.8$.

Таблиця	3.2	(a)
---------	-----	-----

1 40/10/1900 5.2 (4)					
Вид ресурсу		Об'єм			
	<i>i</i> =1	i=2	<i>i</i> =3	i=4	ресурсів
Сировина	4	6	2	5	80
Робоча сила	20	12	20	40	400
Обладнання	10	15	10	16	150

Таблиця 3. 2(б)

140/14491 5. 2(0)					
Вид виробу	1	2	3	4	
Прибуток	30	25	56	48	

Математична модель: x_i продукт j

$$max \quad \sum_{i=1}^{4} C_{j}x_{j}$$
 Обмеження $\sum_{j=1}^{3} a_{ij}x_{j} \leqslant b_{j}$

$$\mu(a_{ij}) \geqslant 0.8$$

$$\exp\left\{-\frac{(a_{ij} - \overline{a}_{ij})^2}{2}\right\} \geqslant 0.8$$

$$-\frac{(a_{ij} - \overline{a}_{ij})^2}{2} \geqslant \ln 0.8$$

$$(a_{ij} - \overline{a}_{ij})^2 \leqslant -2\ln 0.8$$

$$(a_{ij} - \overline{a}_{ij})^2 \leqslant 2\ln \frac{1}{0.8}$$

$$|a_{ij} - \overline{a}_{ij}| \leqslant \sqrt{2\ln \frac{5}{4}}$$

$$\overline{a}_{ij} - \sqrt{2\ln \frac{5}{4}} \leqslant a_{ij} \leqslant \overline{a}_{ij} + \sqrt{2\ln \frac{5}{4}}$$

Задача песиміста

$$max \quad \sum_{i=1}^{4} (\overline{C}_i - \frac{1}{2}) x_j$$

Обмеження

$$\sum_{j=1}^{3} (\overline{a}_{ij} + \sqrt{2 \ln \frac{5}{4}}) x_j \leqslant b_j$$

$$\frac{1}{1 + (C_{ij} - \overline{C}_{ij})^2} \geqslant 0.8$$

$$\frac{1}{0.8} \geqslant 1 + (C_{ij} - \overline{C}_{ij})^2$$

$$\frac{1}{0.8} - 1 \geqslant (C_{ij} - \overline{C}_{ij})^2$$

$$\frac{1}{4} \geqslant (C_{ij} - \overline{C}_{ij})^2$$

$$\frac{1}{2} \geqslant |C_{ij} - \overline{C}_{ij}|$$

 $\gamma(C_{ij}) \geqslant 0.8$

Задача оптиміста

 $C_{ij}-\frac{1}{2}\leqslant C_{ij}\leqslant C_{ij}+\frac{1}{2}$

$$max \quad \sum_{i=1}^{4} (\overline{C}_i + \frac{1}{2}) x_j$$

$$\sum_{j=1}^{3} (\overline{a}_{ij} - \sqrt{2\ln\frac{5}{4}}) x_j \leqslant b_j$$

В кормову суміш входять три продукти: сіно, силос і концентрати, які містять поживні речовини: білок, кальцій і вітаміни. Кількість поживних речовин (таблиця 3.3) є нечіткими величинами у інтервалі $\left[\delta_{ij},\sigma_{ij}\right]$ з ф.п. $\mu_{ij}\left(a_{ij}\right)$. Мінімально необхідні норми споживання білка — 2000 г., кальцію — 120 г., вітамінів — 40 г.

Визначити оптимальний раціон харчування мінімальної вартості, який забезпечує добової норми споживання всіх поживних речовин, якщо ціна 1 кг i-го продукту нечітка величина з ф.п. $\gamma_i(C_i)$. Знайти підмножину не домінуючих альтернатив зі степенем $\alpha = 0.75$.

$$\mu_{ij}(a_{ij}) = \exp\left\{-\frac{(a_{ij} - \overline{a}_{ij})^2}{2}\right\}, \ \gamma_{j}(C_{j}) = \frac{2}{2 + (C_{j} - \overline{C}_{j})^2}$$

Початкові дані наведені у таблиці.

Таблиця 3.3

Продукт i	Вартість \overline{C}_i	Склад поживних речовин $\stackrel{-}{a_{ij}}$ (г.)		а _{ij} (г.)		
	(коп за кг.)		Кальцій	Вітаміни		
Сіно	30	300	4	3		
Силос	20	20	6	1		
Концентрати	50	150	4	2		

Математична модель: x_{ij} вміст поживної речовини j в продукті i

$$min \quad \sum_{i=1}^{3} C_{j}x_{ij}$$
 Обмеження $\sum_{i=1}^{3} a_{ij}x_{ij} \geqslant b_{i}$

$$\sum_{j=3}^{3} (\overline{a}_{ij} + \sqrt{2\ln\frac{4}{3}}) x_{j} \geqslant b_{i}$$

$$\sum_{j=3}^{3} (\overline{a}_{ij} - \sqrt{2\ln\frac{4}{3}}) x_{j} \geqslant b_{j}$$

На трьох ділянках колгоспного поля можна вирощувати три культури: жито, пшеницю і ячмінь. Урожайність цих культур нечітка величина з ф.п. $\mu_{ij}(a_{ij})$. Очікувані затрати — нечітка величина з ф.п. $\gamma_{ii}(C_{ii})$.

Нехай планове завдання із зібрання урожаю кожної культури складає відповідно 500 ц., 600 ц. і 400 ц., а площі ділянок дорівнюють відповідно 30 га., 50 га., 20 га.

Визначити оптимальну структуру посівів, яка мінімізує сумарні очікувані витрати при умові виконання плану. Знайти підмножину не домінуючих альтернатив зі степенем $\alpha = 0.8$.

$$\mu_{ij}(a_{ij}) = \frac{1}{1 + (a_{ij} - \overline{a}_{ij})^2}, \ \gamma_{j}(C_{j}) = \exp\left\{-\frac{(C_{ij} - \overline{C}_{ij})^2}{4}\right\}$$

Початкові дані наведені в таблиці 3.4:

Таблиця 3.4

Ділянка	Урожайність <i>j</i> -тої культури (ц. з га.)			Середні витрати		
	\bar{a}_{ij}	\bar{a}_{ij}	\bar{a}_{ij}	\overline{C}_{I1}	\overline{C}_{i2}	\overline{C}_{i3}
1	10	12	8	2	3	4
2	12	14	18	3	6	8
3	20	16	24	4	7	10

Математична модель: x_{ij} площа дял засіву культури j на ділянкі i

$$min \quad \sum_{i=1}^{3} \sum_{j=1}^{3} C_{j} x_{ij}$$
 Обмеження $\sum_{i=1}^{3} a_{ij} x_{ij} \leqslant b_{i}$ $\sum_{i=1}^{3} x_{ij} \geqslant P_{i}$

$$\mu(a_{ij}) \geqslant 0.8$$

$$\frac{1}{1 + (a_{ij} - \overline{a}_{ij})^2} \geqslant 0.8$$

$$1 + (a_{ij} - \overline{a}_{ij})^2 \leqslant \frac{1}{0.8}$$

$$(a_{ij} - \overline{a}_{ij})^2 \leqslant \frac{1}{4}$$

$$|a_{ij} - \overline{a}_{ij}| \leqslant \frac{1}{2}$$

$$a_{ij} - \frac{1}{2} \leqslant a_{ij} \leqslant a_{ij} + \frac{1}{2}$$

$$(c_{ij} - \overline{C}_{ij})^2 \leqslant C_{ij} + 2\sqrt{\ln \frac{5}{4}}$$

$$|C_{ij} - 2\sqrt{\ln \frac{5}{4}} \leqslant C_{ij} \leqslant C_{ij} + 2\sqrt{\ln \frac{5}{4}}$$

Задача песиміста

$$min \quad \sum_{i=1}^{3} \sum_{j=1}^{3} (\overline{C}_{ij} + 2\sqrt{\ln\frac{5}{4}}) x_{ij}$$

Обмеження

$$\sum_{i=1}^{3} (\overline{a}_{ij} - \frac{1}{2}) x_{ij} \leqslant b_{i}$$

$$\sum_{i=1}^{3} x_{ij} \geqslant P_{i}$$

Задача оптиміста

$$min \quad \sum_{i=1}^{3} \sum_{j=1}^{3} (\overline{C}_{ij} - 2\sqrt{\ln\frac{5}{4}}) x_{ij}$$

$$\sum_{i=1}^{3} (\overline{a}_{ij} + \frac{1}{2}) x_{ij} \leqslant b_{i}$$
$$\sum_{i=1}^{3} x_{ij} \geqslant P_{i}$$

Для виготовлення визначеного сплаву із свинцю, цинку і олова використовується сировина у вигляді наступних п'яти сплавів із тих же металів, які відрізняються складом і вартістю 1 кг. Допустимо, що процентний склад металу j у кожній сировині i є нечіткою величиною в інтервалі $\begin{bmatrix} a_{ij}, b_{ij} \end{bmatrix}$ з ф.п. $\mu_{ij} \begin{pmatrix} a_{ij} \end{pmatrix}$, а вартість сплаву C_i — нечітка величина з ф.п. $\gamma_j \begin{pmatrix} C_j \end{pmatrix}$, де

$$\mu_{ij}\left(a_{ij}\right) = \exp\left\{-\frac{\left(a_{ij} - \overline{a}_{ij}\right)^{2}}{4}\right\}, \quad \gamma_{j}\left(C_{j}\right) = \frac{5}{5 + \left(C_{j} - \overline{C}_{j}\right)^{2}}$$

Початкові дані наведені в таблицях 3.5(а) і 3.5(б).

Необхідно визначити скільки сировини кожного типу потрібно взяти, щоб виготовити з мінімальною собівартістю сплав, який міститиме не менше 20% свинцю, 30% цинку і 50% олова. Знайти підмножину не домінуючих альтернатив зі степенем $\alpha=0.7$.

1 аолиця 5.5(а)					
Матеріал <i>ј</i>	Місткість металу в сировині і, %				
	i=1 i=2 i=3 i=4				i=5
	\bar{a}_{ij}	\bar{a}_{ij}	\bar{a}_{ij}	\bar{a}_{ij}	\bar{a}_{ij}
Свинець	10	10	30	30	20
Цинк	5	20	40	20	10
Олово	60	40	50	10	20

Таблиця 3.5(б					
i	1	2	3	4	5
\overline{C}_i	4	5	6	8	7

Математична модель: x_{ij} частина вмісту матеріалу j отриманого з сплаву i

$$min \quad \sum_{i=1}^{3} C_{i}x_{ij}$$
 Обмеження $\sum_{i=1}^{5} a_{ij}x_{ij} \leqslant b_{i}$

$$\mu(a_{ij}) \geqslant 0.7 \qquad \gamma(C_j) \geqslant 0.7$$

$$\exp\{-\frac{(a_{ij} - \overline{a}_{ij})^2}{4}\} \geqslant 0.7 \qquad \frac{5}{5 + (C_j - \overline{C}_j)^2} \geqslant 0.7$$

$$-\frac{(a_{ij} - \overline{a}_{ij})^2}{4} \geqslant \ln 0.7 \qquad \frac{5}{0.7} \geqslant 5 + (C_j - \overline{C}_j)^2$$

$$(a_{ij} - \overline{a}_{ij})^2 \leqslant -4 \ln 0.7 \qquad \frac{5}{0.7} - 5 \geqslant (C_j - \overline{C}_j)^2$$

$$(a_{ij} - \overline{a}_{ij})^2 \leqslant 4 \ln \frac{1}{0.7} \qquad \frac{15}{7} \geqslant (C_j - \overline{C}_j)^2$$

$$|a_{ij} - \overline{a}_{ij}| \leqslant \sqrt{4 \ln \frac{10}{7}} \qquad \sqrt{\frac{15}{7}} \geqslant |C_j - \overline{C}_j|$$

$$a_{ij} - 2\sqrt{\ln \frac{10}{7}} \leqslant a_{ij} \leqslant a_{ij} + 2\sqrt{\ln \frac{10}{7}} \qquad C_j - \sqrt{\frac{15}{7}} \leqslant C_j \leqslant C_{ij} + \sqrt{\frac{15}{7}}$$

Задача песиміста

$$min \sum_{i}^{5} (\overline{C}_{j} + \sqrt{\frac{15}{7}}) x_{ij}$$

Обмеження

$$\sum_{j=0}^{3} (\overline{a}_{ij} + 2\sqrt{\ln\frac{10}{7}}) x_{ij} \geqslant b_{j}$$

Задача оптиміста

$$min \sum_{i}^{5} (\overline{C}_{j} - \sqrt{\frac{15}{7}}) x_{ij}$$

$$\sum_{j=0}^{3} (\overline{a}_{ij} - 2\sqrt{\ln\frac{10}{7}}) x_{ij} \geqslant b_{j}$$

На виробництво тканини трьох артикулів витрачаються ресурси двох типів: вовна і барвник. Витрати вовни і фарби (кг на 1 000 м) — нечіткі величини розподілені в інтервалі $[c_{ij}, d_{ij}]$ з ф.п. $\mu_{ij}(a_{ij})$.

Ціна 1 м тканини — нечітка величина з ф.п. $\gamma_j(C_j)$.

Визначити оптимальний асортимент, який максимізує прибуток при умові реалізованості плану, якщо середня собівартість 1 м тканини дорівнює відповідно 8, 5 і 15 гр. Знайти підмножину не домінуючих альтернатив зі степенем $\alpha = 0.6$.

$$\mu_{ij}(a_{ij}) = \frac{3}{3 + (a_{ij} - \overline{a}_{ij})^2}, \ \gamma_{j}(C_{j}) = \frac{1}{1 + (C_{j} - \overline{C}_{j})^2}$$

Початкові дані наведені в таблицях 3.6(а) і 3.6(б)

Таблиця 3.6(a)

Tuoning 510(u)				
Вид ресурсу ј	Об'єм ресурса	Норми витрат на тканину (кг. на 1 000 м)		
	(тис. кг.)	<i>i</i> =1	<i>i</i> =2	<i>i</i> =3
		_	-	_
		a_{ij}	a_{ij}	a_{ij}
Вовна	30	100	160	180
Барвник	10	5	3	6

Таблиия 3.6(б)

1 tionings 5.0(0)					
	Тип тканини	<i>i</i> =1	<i>i</i> =2	i=3	
	Ціна (гр.)	16	18	20	

Математична модель: x_{ij} метр тканини артикулу j з сировини i

$$min \sum_{j=1}^{3} C_j x_{ij}$$
 Обмеження $\sum_{i=1}^{2} a_{ij}^{(k)} x_{ij} \leqslant b_i^{(k)}$

$$\mu(a_{ij}) \geqslant 0.6$$

$$\frac{3}{3 + (a_{ij} - \overline{a}_{ij})^2} \geqslant 0.6$$

$$\frac{3}{0.6} \geqslant 3 + (a_{ij} - \overline{a}_{ij})^2$$

$$5 - 3 \geqslant (a_{ij} - \overline{a}_{ij})^2$$

$$2 \geqslant (a_{ij} - \overline{a}_{ij})^2$$

$$\sqrt{2} \geqslant |a_{ij} - \overline{a}_{ij}|$$

$$a_{ij} - \sqrt{2} \leqslant a_{ij} \leqslant a_{ij} + \sqrt{2}$$

$$\gamma(C_j) \geqslant 0.6$$

$$\frac{1}{1 + (C_j - \overline{C}_j)^2} \geqslant 0.6$$

$$\frac{1}{0.6} \geqslant 1 + (C_j - \overline{C}_j)^2$$

$$\frac{5}{3} - 1 \geqslant (C_j - \overline{C}_j)^2$$

$$\frac{2}{3} \geqslant (C_j - \overline{C}_j)^2$$

$$\sqrt{\frac{2}{3}} \geqslant |C_j - \overline{C}_{ij}|$$

$$C_j - \sqrt{\frac{2}{3}} \leqslant C_j \leqslant C_j + \sqrt{\frac{2}{3}}$$

Задача песиміста

$$min \sum_{i}^{3} (\overline{C}_{j} - \sqrt{\frac{2}{3}}) x_{ij}$$

Обмеження

$$\sum_{i}^{2} (\overline{a}_{ij} + \sqrt{2}) x_{ij} \leqslant b_{i}$$

Задача оптиміста

$$min \sum_{i}^{3} (\overline{C}_{j} + \sqrt{\frac{2}{3}}) x_{ij}$$

$$\sum_{i=1}^{2} (\overline{a}_{ij} - \sqrt{2}) x_{ij} \leqslant b_{i}$$

Три сотри взаємозамінної сировини (i=1, 2, 3) у кількості 200, 100 і 300 кг використовується при виробництві чотирьох продуктів $(j=1,\ 2,\ 3,\ 4)$. Норми витрат a_{ij} сировини i на виробництво продукту j нечіткі величини з ф.п. $\mu_{ij}(a_{ij})$, а виробничі витрати нечіткі величини в інтервалі $[\gamma_{ij}, \delta_{ij}]$ з ф.п. $\gamma_{ij}(C_{ij})$. Плановий обсяг виробництва продуктів становить відповідно 25, 60, 30 і

Скласти план виробництва виробів, який мінімізує очікувані сумарні витрати при умові реалізованості плану. Знайти підмножину не домінуючих альтернатив зі степенем $\alpha = 0.85$.

$$\mu_{y}(a_{y}) = \exp\left\{-\frac{\left(a_{y} - \overline{a}_{y}\right)^{2}}{2}\right\}, \ \gamma_{y}(C_{y}) = \frac{1}{1 + \left(C_{y} - \overline{C}_{y}\right)^{2}}$$

Початкові дані наведені в таблицях 3.7(а) і 3.7(б *Таблиця* 3.7(а)

140/14pt 5.7(a)					
Сорт сировини і	Норми витрат на продукт <i>j</i>				
	j=1	j=2	j=3	j=4	
	\bar{a}_{ij}	\bar{a}_{ij}	\bar{a}_{ij}	\bar{a}_{ij}	
1	2	0.5	3	1	
2	1	2	2	2	
3	2	1	2	2	

Таблиия 3.7(б)

Tuoming 5.7(0)						
Сорт сировини <i>i</i>	Виробничі витрати на одиницю продукції \overline{C}_{ij}					
	j=1	j=2	j=3	j=4		
1	20	15	10	20		
2	15	20	40	30		
3	10	30	10	25		

Математична модель: x_{ij} продукт j з сировини i

$$min \qquad \sum_{i}^{3} \sum_{j}^{4} C_{ij} x_{ij}$$

$$\sum_{i=1}^{3} a_{ij} x_{ij} \leqslant b_{i} \qquad \sum_{j=1}^{4} x_{ij} \geqslant P_{j}$$

$$\mu(a_{ij}) \geqslant 0.85 \qquad \gamma(C_{ij}) \geqslant 0.85$$

$$\exp\{-\frac{(a_{ij} - \overline{a}_{ij})^2}{2}\} \geqslant 0.85 \qquad \frac{1}{1 + (C_{ij} - \overline{C}_{ij})^2} \geqslant 0.85$$

$$-\frac{(a_{ij} - \overline{a}_{ij})^2}{2} \geqslant \ln 0.85 \qquad \frac{1}{0.85} \geqslant 1 + (C_{ij} - \overline{C}_{ij})^2$$

$$(a_{ij} - \overline{a}_{ij})^2 \leqslant -2 \ln 0.85 \qquad \frac{1}{0.85} - 1 \geqslant (C_{ij} - \overline{C}_{ij})^2$$

$$(a_{ij} - \overline{a}_{ij})^2 \leqslant 2 \ln \frac{20}{17} \qquad \frac{3}{17} \geqslant (C_{ij} - \overline{C}_{ij})^2$$

$$|a_{ij} - \overline{a}_{ij}| \leqslant \sqrt{2 \ln \frac{20}{17}} \qquad \sqrt{\frac{3}{17}} \geqslant |C_{ij} - \overline{C}_{ij}|$$

$$a_{ij} - \sqrt{2 \ln \frac{20}{17}} \leqslant a_{ij} \leqslant a_{ij} + \sqrt{2 \ln \frac{20}{17}} \qquad C_{ij} - \sqrt{\frac{3}{17}} \leqslant C_{ij} \leqslant C_{ij} + \sqrt{\frac{3}{17}}$$

Задача песиміста

$$min \quad \sum_{i}^{3} \sum_{j}^{4} (\overline{C}_{ij} + \sqrt{\frac{3}{17}}) x_{ij}$$

Обмеження

$$\sum_{i=1}^{3} (\overline{a}_{ij} + \sqrt{2 \ln \frac{20}{17}}) x_{ij} \leqslant b_{i}$$
$$\sum_{j=1}^{4} x_{ij} \geqslant P_{j}$$

Задача оптиміста

$$min \quad \sum_{i}^{3} \sum_{j}^{4} (\overline{C}_{ij} - \sqrt{\frac{3}{17}}) x_{ij}$$

$$\sum_{i}^{3} (\overline{a}_{ij} - \sqrt{2 \ln \frac{20}{17}}) x_{ij} \leqslant b_{i}$$
$$\sum_{j}^{4} x_{ij} \geqslant P_{j}$$