Advanced Algorithms and Parallel Programming

Matteo Secco

February 25, 2021

Contents

1	Algorithm recap	3	
	1.1 Asymptotic notations	4	
2	Recurrence analysis	4	
	2.1 Recursion tree analysis	4	
	2.2 Analysis by substitution	5	
	2.3 Master theorem	5	
3	Divide and Conquer		
4	Parallel Random Access Machine	6	

1 Algorithm recap

Algorithm any well defined computational procedure that takes some values as input, and produces some values as output. It must terinate in a finite number of steps

Algorithm analysis Theoretical study of computer-program performance and resource usage Performance is not the only thing that matters. For example

- modularity
- maintainability
- user-friendlyness

are some important aspects as well

Why do we study algorithms and performance?

- to better understand scalability
- to understand what is feasible and what is not
- to have a formal language to talk about a program behaviour

```
Algorithm 1 Insertion sort
```

```
Require: A, n

Require: len(A) = n

Ensure: A is sorted

for j \leftarrow 2 to j \leq n do

key \leftarrow A[j]

i \leftarrow j - 1

while i > 0 A[i] > key do

A[i+1] \leftarrow A[i]

i \leftarrow i - 1

end while

A[i+1] = key

end for
```

Obvious observations

- Running time depends on the input
- Running time has to be parametrized on the length of the input
- We generally look for upper limits because those are more interesting in real world

Kind of analysis

Worst case T(n) =maximum time of the algorithm on any input of size n

Average case T(n) =expected time over all inputs of size n. Requires assumption on statistical distribution of the inputs

Best case Easy to be cheated with slow algorithms that works very well on specific inputs

Asympthotic Analysis Ignore machine-dependent constraints and look at the behaviour of T(n) as $n \to \infty$

1.1 Asymptotic notations

O-notation provides upper bounds to execution times

$$O(g(n)) = \{ f(n): \quad \exists c > 0, n_0 > 0 : 0 \le f(n) \le c \cdot g(n) \quad \forall n \ge n_0 \}$$

 Ω -notation provides lower bounds to execution times

$$\Omega(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 : 0 \le c \cdot g(n) \le f(n) \quad \forall n \ge n_0 \}$$

 Θ -notation provides tight bounds to execution times

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Algorithm 2 Merge-Sort

```
Require: A, n
Require: len(A) = n
if n = 1 then
return A
end if
L \leftarrow \text{Merge-Sort}\left(A\left[1..\left\lceil\frac{n}{2}\right\rceil\right]\right)
R \leftarrow \text{Merge-Sort}\left(A\left[\left\lceil\frac{n}{2}\right\rceil + 1..n\right]\right)
return \text{Merge}(L, R)
```

Merge sort

2 Recurrence analysis

2.1 Recursion tree analysis

applied to merge sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Recursion conplexity	Base case complexity	Total Complexity
$h = \log(n)$	#leaves = n	
each level adds up to cn	$\Theta(1)$ per leave	
$h \cdot cn = cn \log(n)$	n	$O(n\log(n)$

2.2 Analysis by substitution

Guess the form of the solution

Verify by induction

Solve for constraints

Example $T(n) = 4T(\frac{n}{2}) + n \text{ (and } T(1) = \Theta(1))$

- Guess $T(n) = O(n^3)$
- Find some k < n such that $T(k) \le ck^3$
- Prove $T(n) \le cn^3$ by induction

2.3 Master theorem

Applies to recurrencies of the form $T(n)=aT\left(\frac{n}{b}\right)+f(n)$ where $a\geq 1,b>1,f>0$ for $n\to\infty$

$$\begin{split} f(n) &= O(n^{\log_b a - \epsilon}) & \to T(n) = \Theta(n^{\log_b a}) \\ f(n) &= \Theta(n^{\log_b a} \log^k n) & \to T(n) = \Theta(n^{\log_b a} \log^{k+1} n) \\ f(n) &= \Omega(n^{\log_b a + \epsilon}) & \to T(n) = \Theta(f(n)) \end{split}$$

3 Divide and Conquer

Divide the problem into subproblems

Conquer the subproblems recursively

 ${\bf Combine}\ \ {\bf subproblem}\ \ {\bf solutions}$

Merge sort

Divide split in half

Conquer Sort the 2 subarrays

Combine Linear-time merge

Binary search

Divide Check middle element

Conquer Search 1 subarray

Combine Return result up

Compute a^n

$$a^n = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if n is even} \\ a \cdot a^{(n-1)/2} \cdot a^{(n-1)/2} & \text{if n is odd} \end{cases}$$

$$T(n) = T\left(\frac{n}{2}\right) + \Theta(1) = \Theta(\log n)$$

4 Parallel Random Access Machine

RAM: abstract device having

- Unbounded number of memory cells
- Unbounded size for each memory cell
- Instruction set including simple operations, data operations, comparations, branches
- All operations take unitary time
- Time complexity = # instructions executed
- Space complexity = # memory cells used

PRAM: abstract device for designing parallel algorithms. M' is a system $\langle M, x, y, A \rangle$ of infinitely many

- RAMs M_i called processors. Each is assumed to be itentical to the others and recognize its own index
- Input cells X_i
- Output cells Y_i
- Shared memory cells A_i

Computation step consists of 5 phases. In parallel, each processor:

- Reads a value from one of X_i
- Reads a value from one of A_i
- Performs some internal computation
- May write into one of the Y_i
- May write into one of the A_i

Some peculiarities to highlight:

- Some processors may remain idle
- More processor can safely read the same memory cell
- When more processor write the same cell at the same time a write conflict occours