Universidad de Granada. Ecuaciones Diferenciales I. Grupo B $17\ {\rm de\ Marzo\ de\ 2016}$

NOMBRE:

1. Dadas las funciones $F: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto F(x,y)$ y $\varphi: \mathbb{R} \to \mathbb{R}$, $x \mapsto \varphi(x)$ se define $\phi: \mathbb{R} \to \mathbb{R}$, $\phi(x) = F(x,\varphi(x))$. Se supone que F y φ son de clase C^2 . Expresa $\phi''(x)$ en términos de las derivadas sucesivas de F y φ .

$$\phi'(c\times) = \frac{\partial F}{\partial x} C \times_{i} \psi(c\times) + \frac{\partial F}{\partial y} C \times_{i} \psi(c\times) \psi'(c\times) \qquad \forall x \in \mathbb{R}$$

$$\phi''(c\times) = \frac{\partial^{2}F}{\partial x^{2}} C \times_{i} \psi(c\times) + \frac{\partial^{2}F}{\partial x^{2}} C \times_{i} \psi(c\times) + \psi'(c\times) + \psi'(c\times) + \frac{\partial^{2}F}{\partial y^{2}} C \times_{i} \psi(c\times) + \frac{\partial^{2}F}{\partial y^{2}} C \times_{i} \psi(c\times) + \psi'(c\times) + \frac{\partial^{2}F}{\partial y^{2}} C \times_{i} \psi(c\times) + \frac{\partial^{2}F}{\partial y^{2}} C \times_{i} \psi(c\times)$$

2. Encuentra la solución de

$$x' = e^{t+x}, \ x(0) = 0$$

y precisa el intervalo ${\cal I}$ donde está definida.

$$x' = e^{t \times} = e^{t} e^{t} \implies \frac{dx}{dt} = e^{t} e^{t} \implies \int e^{t} dx = \int e^{t} dt$$

$$-e^{-x} = e^{t} + c$$

$$-x = \ln(-e^{t} - c)$$

$$x = -\ln(-e^{t} - c)$$

Por lo que
$$x(t) = -\ln C - e^t + 2$$
) $\forall t \in IR \ t_q = -e^t + 270$
 $\exists t \in IR \ con \ T = I - \omega, \ln C \ge I$ $= -e^t > -2$
 $= -e^t > -2$

- 3. Encuentra una ecuación diferencial para las funciones y=y(x) cuyas gráficas tienen la siguiente propiedad: la distancia al origen desde cada punto (x,y(x)) coincide con la primera coordenada del punto de corte de la recta tangente y el eje de abscisas.
 - de abscisas.

 Dist al origen = $\sqrt{x^2 + y^2}$ $y v = y^1 C x u y$ $y = y^1 C x u$

4. Se considera el cambio de variables $\varphi: s=e^t, \ y=e^{-t}x$. Demuestra que φ define un difeomorfismo entre \mathbb{R}^2 y un dominio Ω del plano. Determina Ω . Comprueba que se trata de un cambio admisible para la ecuación

$$\frac{dx}{dt} = tx^2$$

y encuentra la nueva ecuación en las variables (s, y).

U difeomorfismo si

· Clase C', lo es por serlo sus componentes

· $t = \ln s$ $\wedge \times = y e^t = y s \implies \exists \psi = \psi^{-1} : \Omega \rightarrow IR$ de clase C',

luego es biyectura y, por lo tanto difeomorfismo

Calculo Ω : $(1, C+, \times) = e^t \implies (1, C+, \times) = + as$ $(1, C+, \times) = 0$ $\forall x \in IR$ $(1, C+, \times) \implies Con + c \mid R$ f : o

Será admisible si, $\frac{\partial \psi_{i}}{\partial t} Ct_{i}(x) + \frac{\partial \psi_{i}}{\partial x} Ct_{i}(x) \times 1 = e^{t} \neq 0 \quad \forall ct_{i}(x) \in \mathbb{R}^{2}$ Juego ex admisible $\frac{dy}{ds} = \frac{dy/dt}{ds/dt} = \frac{\frac{\partial \psi_{i}}{\partial t} Ct_{i}(x) + \frac{\partial \psi_{i}}{\partial x} Ct_{i}(x) \times 1}{\frac{\partial \psi_{i}}{\partial t} Ct_{i}(x) \times 1} = \frac{-e^{t}x}{e^{t}} + \frac{e^{t}t^{2}x^{2}}{e^{t}} = e^{t}x + \frac{t^{2}x^{2}}{e^{t}} = e^{t}x +$

5. Se considera la función seno hiperbólico $f: \mathbb{R} \to \mathbb{R}, x = f(t) = \text{sh } t = \frac{e^t - e^{-t}}{2}$. Demuestra que f tiene una inversa¹ $g: \mathbb{R} \to \mathbb{R}, t = g(x)$ y calcula g'(x).

$$f'ct > = \frac{e^{t} + e^{t}}{2} = chct > 70 \quad \forall te |R =) f \text{ inyective}$$

$$= \int_{-\infty}^{\infty} f(t) = +\infty \quad \text{ for } f(t) = -\infty =) \xrightarrow{-\infty} f \text{ Bolizano} =) f \text{ solerenective}$$

$$= \int_{-\infty}^{\infty} f(t) = +\infty \quad \text{ for } f(t) = -\infty =) \xrightarrow{-\infty} f \text{ Bolizano} =) f \text{ solerenective}$$

$$= \int_{-\infty}^{\infty} f(t) = +\infty \quad \text{ for } f(t) = \int_{-\infty}^{\infty} f$$

 $^{^{1}\}mathrm{Es}$ costumbre emplear la notación $g(x) = \mathrm{arg} \ \mathrm{sh} \ x,$ $argumento \ del \ seno \ hiperbólico$