WHAT IS CLAIMED IS:

1. A process for the preparation of a compound of the formula I:

5 wherein

is an insoluble solid support selected from the group consisting of:
poly(styrene-divinylbenzene), macroreticular poly(styrene-divinylbenzene),
polystyrene which is radiation grafted to polypropylene, polystyrene which is radiation
grafted to polyethylene, polystyrene which is radiation grafted to

poly(tetrafluoroethylene), and polystyrene which is radiation grafted to poly(ethylene-tetrafluoroethylene) wherein the insoluble solid support is in a shape selected from a bead, a tube, a rod, a ring, a disk, or a well; L is -CH₂-, -C(CH₃)₂-, -CH(CH₃)-, -(CH₂)_nCH(CN)-, -(CH₂)_nCH(CO₂Me)-, -(CH₂)_nCH(Ph)-, -(CH₂)_nC(CH₃, Ph)-, -CH(CH₂CH₂Ph)-, or

15

n is zero or an integer from 1 to 5;

m is zero or an integer from 1 to 100;

b is mMol content of initiator or solid-supported polymer per gram of insoluble solid support and is about 0.1 to about 5.0 mMol per gram;

20 R¹ is selected from:

wherein

X is H, F, $(CH_2)_nCl$, $(CH_2)_nBr$, $(CH_2)_nI$, $B(OH)_2$, $(CH_2)_nCH=CH_2$, NCO, CH_2NCO , CH(CH₃)NCO, C(CH₃)₂NCO, CO₂Me, CO₂Et, CO₂ (t-Bu), CO₂H, COC1, 5 CO₂CH(CF₃)₂, CO₂Ph, CO₂(pentafluorophenyl), CO₂ (pentachlorophenyl), CO₂ (N-succinimidyl), C(OMe)₃, C(OEt)₃, (CH₂)_nOH, (CH₂)_nCH(OH)CH₂OH, (CH₂)_nSH, CH₂NHCH₂CH₂SH, (CH₂)_nNHC(=S)NH₂, (CH₂)_nNH₂, $(CH_2)_nN(Me)_2$, $(CH_2)_nN(Et)_2$, $(CH_2)_n$ $(iPr)_2$, $CH(CH_3)NH_2$, $C(CH_3)_2NH_2$, CH₂NHCH₂CH₂NH₂, CH₂NHCH₂CH₂NHCH₂CH₂NH₂, 10 CH₂N(CH₂CH₂NH₂)₂, CH₂NHCH₂CH₂N(CH₂CH₂NH₂)₂, CH₂N(CH₂CH₂0H)₂, (CH₂)_n(morpholin-4-y1), (CH₂)_n(piperidin-1-yl), $(CH_2)_n(4-methypiperazin-1-yl), N(SO_2CF_3)_2, (CH_2)_nCHO, (CH_2)_nSi(Me)_2H,$ $(CH_2)_n Si(Et)_2 H, (CH_2) \, Si(iPr)_2 H, (CH_2)_n Si(tBu)_2 H, (CH_2)_n Si(Ph)_2 H, \\$ $(CH_2)_n Si(Ph)(tBu)H, (CH_2)_n Si(Me)_2 C1, (CH_2)_n Si(Et)_2 Cl, (CH_2)_n Si(i-Pr)_2 Cl, \\$ 15 (CH₂)_nSi(tBu)₂Cl, (CH₂)_nSi(Ph)₂Cl, (CH₂)_nSi(tBu)(Ph)Cl, P(Ph)₂, P(o-tolyl)₂,

$$(CH_2)_nO$$
 CHO $(CH_2)_nO$ CHO $(CH_2)_nO$ CHO $(CH_2)_nO$ CH_2OH

wherein n is zero or an integer from 1 to 5;

Y is H, C1, Br, F, OH, or OMe;

Z is NCO, CO₂Me, CO₂Et, CO₂(i-Pr), CO₂(n-Bu), CO₂(t-Bu), CN, CO₂H, COC1, CO₂CH(CF₃)₂, CO₂ (pentafluorophenyl), CO₂(pentachlorophenyl), CO₂Ph, CO₂(N—succinimidyl), C(OMe)₃, C(OEt)₂, CON(OCH₃)CH₃, CHO, CH₂OH, or C(CH₃)₂OH; and

R4 is

which comprises the step of microwave irradiating a mixture comprising a compound of the formula ${\rm I\hspace{-.1em}I}$

11

5 and a compound III selected from:

2. The process according to Claim 1 wherein R⁴ is

3. A process for the preparation of a compound of the formula IV:

$$[L-[(R^1)_w-R^2)_p]_m-R^4]_b$$
IV

wherein

5

is an insoluble solid support selected from the group consisting of:

poly(styrene-divinylbenzene), macroreticular poly(styrene-divinylbenzene), polystyrene which is radiation grafted to polypropylene, polystyrene which is radiation grafted to poly(tetrafluoroethylene), and polystyrene which is radiation grafted to poly (ethylene-tetrafluoroethylene) wherein the insoluble solid support is in a shape selected from a bead, a tube, a rod, a ring, a disk, or a well; L is -CH₂-, -C(CH₃)₂-, -CH(CH₃)-, -(CH₂)_nCH(CN)-, -(CH₂)_nCH(CO₂Me)-, -(CH₂)_nCH(Ph)-, -(CH₂)_nC(CH₃, Ph)-, -CH(CH₂CH₂Ph)-, or

n is zero or an integer from 1 to 5;

5

15

m is zero or an integer from 1 to 100;

w is an integer from 1 to 10;

p is zero or an integer from 1 to 10;

b is mMol content of initiator or solid-supported polymer per gram of insoluble solid support and is about 0.1 to about 5.0 mMol per gram;

 R^1 and R^2 are each independently the same or different and are selected from

wherein

X is H, F, $(CH_2)_nCl$, $(CH_2)_nBr$, $(CH_2)_nI$, $B(OH)_2$, $(CH_2)_nCH=CH_2$, NCO, CH_2NCO , CH(CH₃)NCO, C(CH₃)₂NCO, CO₂Me, CO₂Et, CO₂(t-Bu), CO₂H, COC1, CO₂CH(CF₃)₂, CO₂Ph, CO₂(pentafluorophenyl), CO₂(pentachlorophenyl), 5 CO₂(N-succinimidyl), C(OMe)₃, C(OEt)₃, (CH₂) nOH, (CH₂) nCH(OH)CH₂0H, (CH₂)_nSH, CH₂NHCH₂CH₂SH, (CH₂)_nNHC(=S)NH₂, (CH₂)_nNH₂, $(CH_2)_nN(Me)_2$, $(CH_2)_nN(Et)_2$, $(CH_2)_n$ $(iPr)_2$, $CH(CH_3)NH_2$, $C(CH_3)_2NH_2$, CH2NHCH2CH2NH2, CH2NHCH2CH2NHCH2CH2NH2, 10 CH₂N(CH₂CH₂NH₂)₂, CH₂NHCH₂CH₂N(CH₂CH₂NH₂)₂, CH₂N(CH₂CH₂0H) 2, (CH₂)_n(morpholin-4-y1), (CH₂)_n(piperidin-1-yl), (CH₂)_n(4-methypiperazin-1-yl), $N(S0_2CF3)_2$, $(CH_2)_nCHO$, $(CH_2)_nSi(Me)_2H$, $(CH_2)_nSi(Et)_2H$, $(CH_2)_nCHO$, Si(iPr)₂H, (CH₂)_nSi(tBu)₂H, (CH₂)_nSi(Ph)₂H, (CH₂)_nSi(Ph)(tBu)H, (CH₂)_nSi(Me) ₂C1, (CH₂)_nSi(Et) ₂Cl, (CH₂)_nSi(i-Pr) ₂Cl, (CH₂)_nSi(tBu) ₂Cl, 15 (CH₂)_nSi(Ph) ₂Cl, (CH₂)_nSi(tBu)(Ph)Cl, P(Ph) ₂, P(o-tolyl) ₂,

$$OCH_3$$
 $(CH_2)_nO$
 CHO
 $(CH_2)_nO$
 CHO
 $(CH_2)_nO$
 CHO
 $(CH_2)_nO$
 CH_2OH

wherein n is zero or an integer from 1 to 5;

Y is H, C1, Br, F, OH, or OMe;

Z is NCO, CO₂Me, CO₂Et, CO₂ (i-Pr), CO₂(n-Bu), CO₂(t-Bu), CN, CO₂H, COC1, CO₂CH(CF₃)₂, CO₂(pentafluorophenyl), CO₂(pentachlorophenyl), CO₂Ph, CO₂(N-succinimidyl), C(OMe)₃, C(OEt)₂, CON(OCH₃)CH₃, CHO, CH₂OH, or C(CH₃)₂OH; and

R4 is

which comprises the step of microwave irradiating a mixture comprising a compound of the formula ${\rm I\hspace{-.1em}I}$

5 a compound III selected from:

and a compound V selected from:

4. The process according to Claim 3 wherein R⁴ is

5. A process for the preparation of a compound of the formula

5 VI:

$$[L-(R^1-R^2)_m-R^4]_b$$

VI

wherein

is an insoluble solid support selected from the group consisting of:

poly(styrene-divinylbenzene), macroreticular poly(styrene-divinylbenzene), polystyrene which is radiation grafted to polypropylene, polystyrene which is radiation grafted to poly(tetrafluoroethylene), and polystyrene which is radiation grafted to poly(ethylene-tetrafluoroethylene) wherein the insoluble solid support is in a shape selected from a bead, a tube, a rod, a ring, a disk, or a well; L is -CH₂-, -C(CH₃)₂-, -CH(CH₃)-, -(CH₂)_nCH(CN)-, -(CH₂)_nCH(CO₂Me)-, -(CH₂)_nCH(Ph)-, -(CH₂)_nC(CH₃, Ph)-, -CH(CH₂CH₂Ph)-, or

n is zero or an integer from 1 to 5;

m is zero or an integer from 1 to 100;

w is an integer from 1 to 10;

p is zero or an integer from 1 to 10;

b is mMol content of initiator or solid-supported polymer per gram of insoluble solid support and is about 0.1 to about 5.0 mMol per gram;

R¹ is selected from

5

R² is selected from

wherein

X is H, F, (CH₂)_nCl, (CH₂)_nBr, (CH₂)_nI, B(OH)₂, (CH₂)_nCH=CH₂, NCO, CH₂NCO, CH(CH₃)NCO, C(CH₃)₂NCO, CO₂Me, CO₂Et, CO₂(t-Bu), CO₂H, COC1, CO₂CH(CF₃)₂, CO₂Ph, CO₂(pentafluorophenyl), CO₂(pentachlorophenyl), CO₂(N-succinimidyl), C(OMe)₃, C(OEt)₃, (CH₂)_nOH, (CH₂)_nCH(OH)CH₂OH, (CH₂)_nSH, CH₂NHCH₂CH₂SH, (CH₂)_nNHC(=S)NH₂, (CH₂)_nNH₂,
 (CH₂)_nN(Me)₂, (CH₂)_nN(Et)₂, (CH₂)_n (iPr)₂, CH(CH₃)NH₂, C(CH₃)₂NH₂,

WO 2004/089857

 $CH_{2}NHCH_{2}CH_{2}NH_{2},\ CH_{2}NHCH_{2}CH_{2}NHCH_{2}CH_{2}NH_{2},\ CH_{2}N(CH_{2}CH_{2}NH_{2})_{2},\ CH_{2}N(CH_{2}CH_{2}NH_{2})_{2},\ CH_{2}N(CH_{2}CH_{2}NH_{2})_{2},\ CH_{2}N(CH_{2}CH_{2}OH)_{2},\ (CH_{2})_{n}(morpholin-4-y1),\ (CH_{2})_{n}(piperidin-1-yl),\ (CH_{2})_{n}(4-methypiperazin-1-yl),\ N(S0_{2}CF3)_{2},\ (CH_{2})_{n}CHO,\ (CH_{2})_{n}Si(Me)_{2}H,\ (CH_{2})_{n}Si(Et)_{2}H,\ (CH_{2})_{n}Si(Et)_{2}H,\ (CH_{2})_{n}Si(Et)_{2}H,\ (CH_{2})_{n}Si(Ph)_{2}H,\ (CH_{2})_{n}Si(Ph)_{2}H,\ (CH_{2})_{n}Si(Ph)_{2}H,\ (CH_{2})_{n}Si(Et)_{2}Cl,\ (CH_{2})_{2}Cl,\ (CH_{2})_{2}Cl,\ (CH_{2})_{2}Cl,\ (CH_{2})_{2}Cl,\ (CH_{2})_{2}Cl,\ (CH_{2})_{2}Cl,\ (CH_{2})_{2}Cl,\ (CH_{2})_{2}Cl,\ (CH_{2})$

$$(CH_2)_nO$$
 CHO $(CH_2)_nO$ CHO $(CH_2)_nO$ CHO $(CH_2)_nO$ CH_2OH

wherein n is zero or an integer from 1 to 5;

- 10 Y is H, C1, Br, F, OH, or OMe;
 - Z is NCO, CO₂Me, CO₂Et, CO₂ (i-Pr), CO₂(n-Bu), CO₂(t-Bu), CN, CO₂H, COC1, CO₂CH(CF₃) ₂, CO₂(pentafluorophenyl), CO₂(pentachlorophenyl), CO₂Ph, CO₂(N-succinimidyl), C(OMe)₃, C(OEt)₂, CON(OCH₃)CH₃, CHO, CH₂OH, or C(CH₃) ₂OH; and
- $15 R^4$ is

which comprises the step of microwave irradiating a mixture comprising a compound of the formula II

5 a compound VII selected from:

and a compound VIII selected from:

- 5 wherein the ratio of the compound VII and the compound VIII is about 2:1.
 - 6. The process according to Claim 5 wherein R^4 is

7. A compound which is

wherein is a polystyrene resin, m is from 1 to 100 and the bromine content is from about 4 to about 6 mmol/gram of resin.

8. A compound which is

wherein is a polystyrene resin, m is from 1 to 100 and the chlorine content is from about 5 to about 7 mmol/gram of resin.

9. A compound which is

wherein is a polystyrene resin, m is from 1 to 100 and the pyridyl content is from about 5 to about 7 mmol/gram of resin.

10. A compound which is

5

wherein is a polystyrene resin, m is from 1 to 100, -NR^aR^b is selected from diethylamino, diisopropylamino, piperidinyl, morpholino and piperazinyl and the amine content is from about 4 to about 7 mmol/gram of resin.

10

11. A compound which is

wherein is a polystyrene resin, m is from 1 to 100, and the amine content is from about 3 to about 6 mmol/gram of resin.

15

12. A compound which is

wherein is a polystyrene resin, m is from 1 to 100, and the isocyanate content is from about 1 to about 4 mmol/gram of resin.