T0-Modell: Zwei parameterfreie Berechnungsmethoden für Teilchenmassen

Direkte geometrische Methode vs. Erweiterte Yukawa-Methode

Johann Pascher Abteilung für Kommunikationstechnologie Höhere Technische Bundeslehranstalt (HTL), Leonding, Österreich johann.pascher@gmail.com

23. Juli 2025

Zusammenfassung

Das T0-Modell bietet zwei mathematisch äquivalente, aber konzeptionell verschiedene Berechnungsmethoden für Teilchenmassen: die direkte geometrische Methode und die erweiterte Yukawa-Methode. Beide Ansätze sind vollständig parameterfrei und verwenden nur die einzige geometrische Konstante $\xi = \frac{4}{3} \times 10^{-4}$. Dieses Dokument präsentiert beide Methoden mathematisch, erklärt ihre komplementären Stärken und demonstriert ihre spektakuläre experimentelle Übereinstimmung. Die durchschnittliche Abweichung von weniger als 2,1% in einer parameterfreien Theorie zeigt einen revolutionären Fortschritt von über zwanzig freien Standardmodell-Parametern zu null freien Parametern.

Inhaltsverzeichnis

1	Einführung	2
2	Von Energiefeldern zu Teilchenmassen 2.1 Die fundamentale Herausforderung	2 2 2
3	Zwei komplementäre Berechnungsmethoden 3.1 Konzeptionelle Unterschiede	
4	Methode 1: Direkte geometrische Resonanz 4.1 Konzeptionelle Grundlage	3
5	Methode 2: Erweiterte Yukawa-Methode 5.1 Brückenfunktion zum Standardmodell	4

6	Detaillierte Berechnungsbeispiele	5
	6.1 Elektronmassen-Berechnung	5
	6.2 Myon-Massenberechnung	5
	6.3 Tau-Massenberechnung	6
7	Quark-Massenberechnungen	6
	7.1 Leichte Quarks	6
	7.2 Schwere Quarks	7
8	Experimentelle Validierung	7
	8.1 Systematische Genauigkeitsanalyse	7
	8.2 Parameterfreier Erfolg	8
9	Geometrische Funktionen und Quantenzahlen	8
	9.1 Wellengleichungs-Analogie	8
	9.2 Quantenzahl-Entsprechung	8
	9.3 Geometrische Funktionswerte	8
10	Zukunftsperspektiven	9
	10.1 Experimentelle Vorhersagen	9
	10.2 Neutrino-Massen	9
11	Philosophische und wissenschaftliche Implikationen	9
	11.1 Von Komplexität zu Eleganz	9
	11.2 Einsteins Vision erfüllt	9
	11.3 Revolution, nicht Widerlegung	9
12	Zusammenfassung und Schlussfolgerungen	10
	12.1 Hauptergebnisse	
	12.2 Wissenschaftliche Revolution	
		10 10

1 Einführung

Die Teilchenphysik steht vor einem fundamentalen Problem: Das Standardmodell mit seinen über zwanzig freien Parametern bietet keine Erklärung für die beobachteten Teilchenmassen. Diese erscheinen willkürlich und ohne theoretische Rechtfertigung. Das T0-Modell revolutioniert diesen Ansatz durch zwei komplementäre, vollständig parameterfreie Berechnungsmethoden.

Wichtige Erkenntnis 1.1: Revolution in der Teilchenphysik

Das T0-Modell reduziert die Anzahl freier Parameter von über zwanzig im Standardmodell auf **null**. Beide Berechnungsmethoden verwenden ausschließlich die geometrische Konstante $\xi = \frac{4}{3} \times 10^{-4}$, die aus der fundamentalen Geometrie des dreidimensionalen Raums folgt.

2 Von Energiefeldern zu Teilchenmassen

2.1 Die fundamentale Herausforderung

Einer der beeindruckendsten Erfolge des T0-Modells ist seine Fähigkeit, Teilchenmassen aus reinen geometrischen Prinzipien zu berechnen. Während das Standardmodell über 20 freie Parameter zur Beschreibung von Teilchenmassen benötigt, erreicht das T0-Modell dieselbe Präzision mit nur der geometrischen Konstante $\xi_{\text{geom}} = \frac{4}{3} \times 10^{-4}$.

Massen-Revolution

Parameter-Reduktions-Erfolg:

- Standardmodell: 20+ freie Massenparameter (willkürlich)
- T0-Modell: 0 freie Parameter (geometrisch)
- Experimentelle Genauigkeit: 97,9% durchschnittliche Übereinstimmung
- Theoretische Grundlage: Dreidimensionale Raumgeometrie

2.2 Energiebasiertes Massenkonzept

Im T0-Framework wird enthüllt, dass das, was wir traditionell Massenennen, eine Manifestation charakteristischer Energieskalen von Feldanregungen ist:

$$m_i \to E_{\text{char},i}$$
 (charakteristische Energie von Teilchentyp i) (1)

Diese Transformation eliminiert die künstliche Unterscheidung zwischen Masse und Energie und erkennt sie als verschiedene Aspekte derselben fundamentalen Größe.

3 Zwei komplementäre Berechnungsmethoden

3.1 Konzeptionelle Unterschiede

Das T0-Modell bietet zwei komplementäre Perspektiven auf das Problem der Teilchenmassen:

1. Direkte geometrische Methode – Das fundamentale Warum

- Teilchen als Energiefeld-Resonanzen
- Direkte Berechnung aus geometrischen Prinzipien
- Konzeptionell eleganter und fundamentaler

2. Erweiterte Yukawa-Methode – Das praktische Wie

- Brücke zum Standardmodell
- Beibehaltung vertrauter Formeln
- Sanfter Übergang für Experimentalphysiker

3.2 Mathematische Äquivalenz

Schlüsselergebnis 3.1: Mathematische Äquivalenz

Beide Methoden führen zu **identischen numerischen Ergebnissen**. Der einzige Unterschied liegt in der Perspektive und den theoretischen Einsichten. Dies ist ein starker Beleg für die interne Konsistenz des T0-Modells.

4 Methode 1: Direkte geometrische Resonanz

4.1 Konzeptionelle Grundlage

Die direkte Methode behandelt Teilchen als charakteristische Resonanzmoden des Energiefeldes E_{field} , analog zu stehenden Wellenmustern:

Teilchen = Diskrete Resonanzmoden von
$$E_{\text{field}}(x,t)$$
 (2)

Definition 4.1 (Energiefeld-Resonanzen). Teilchen sind charakteristische Moden des universellen Energiefeldes, wobei jeder Teilchentyp einer spezifischen Energiefeld-Resonanz entspricht.

4.2 Drei-Schritt-Berechnungsprozess

Die direkte Methode funktioniert in drei klar definierten Schritten:

4.2.1 Schritt 1: Geometrische Quantisierung

Die Geometrie des dreidimensionalen Raums quantisiert charakteristische Längen:

$$\xi_i = \xi_0 \cdot f(n_i, l_i, j_i) \tag{3}$$

wobei:

$$\xi_0 = \frac{4}{3} \times 10^{-4}$$
 (geometrischer Basisparameter) (4)

$$n_i, l_i, j_i = \text{Quantenzahlen analog zu Atomzuständen}$$
 (5)

$$f(n_i, l_i, j_i) = \text{geometrische Funktion aus Wellengleichung}$$
 (6)

4.2.2 Schritt 2: Resonanzfrequenzen

Die charakteristischen Längen bestimmen Resonanzfrequenzen:

$$\omega_i = \frac{c^2}{\xi_i \cdot r_{\text{char}}} \tag{7}$$

In natürlichen Einheiten (c = 1):

$$\omega_i = \frac{1}{\xi_i} \tag{8}$$

4.2.3 Schritt 3: Massenbestimmung

Masse folgt aus Energieerhaltung:

$$E_{\text{char},i} = \hbar\omega_i = \frac{\hbar}{\xi_i} \tag{9}$$

In natürlichen Einheiten ($\hbar = 1$):

$$E_{\text{char},i} = \frac{1}{\xi_i} \tag{10}$$

5 Methode 2: Erweiterte Yukawa-Methode

5.1 Brückenfunktion zum Standardmodell

Die Yukawa-Methode funktioniert als Übersetzungsbrücke zwischen dem Standardmodell und der T0-Theorie:

Definition 5.1 (Erweiterte Yukawa-Kopplungen). Yukawa-Kopplungen werden nicht als freie Parameter betrachtet, sondern als geometrisch berechenbare Größen:

$$y_i = r_i \cdot \left(\frac{4}{3} \times 10^{-4}\right)^{\pi_i} \tag{11}$$

5.2 Standardmodell-Kontinuität

Alle vertrauten Standardmodell-Formeln bleiben gültig:

$$E_{\text{char},i} = y_i \cdot v \quad \text{(Higgs-Mechanismus)}$$
 (12)

$$v = 246 \text{ GeV} \quad \text{(Vakuumerwartungswert)}$$
 (13)

Der entscheidende Unterschied: Die Yukawa-Kopplungen y_i sind nicht mehr willkürlich, sondern folgen aus der Geometrie.

5.3 Generationshierarchie

Die verschiedenen Teilchengenerationen entsprechen verschiedenen geometrischen Hierarchieebenen:

1. Generation:
$$\pi_i = \frac{3}{2}$$
 (höchste Frequenzen, stärkste Unterdrückung) (14)

2. Generation:
$$\pi_i = 1$$
 (mittlere Frequenzen) (15)

3. Generation:
$$\pi_i = \frac{2}{3}$$
 (niedrigste Frequenzen, schwächste Unterdrückung) (16)

Wichtige Erkenntnis 5.1: Generationserklärung

Was im Standardmodell als willkürliche Hierarchie erscheint, ist reine Geometrie im T0-Modell. Der Exponent 3/2 für die erste Generation spiegelt die dreidimensionale Natur des Raums kombiniert mit der Quadratwurzelskalierung wider, die für Wellengleichungen charakteristisch ist.

6 Detaillierte Berechnungsbeispiele

6.1 Elektronmassen-Berechnung

Direkte Methode:

$$\xi_e = \frac{4}{3} \times 10^{-4} \cdot f_e(1, 0, 1/2) \tag{17}$$

$$= \frac{4}{3} \times 10^{-4} \cdot 1 = 1,333 \times 10^{-4} \tag{18}$$

$$E_e = \frac{1}{\xi_e} = \frac{1}{1.333 \times 10^{-4}} = 7504 \text{ (natürliche Einheiten)}$$
 (19)

$$= 0,511 \text{ MeV} \text{ (in konventionellen Einheiten)}$$
 (20)

Erweiterte Yukawa-Methode:

$$y_e = 1 \cdot \left(\frac{4}{3} \times 10^{-4}\right)^{3/2} \tag{21}$$

$$=4,87\times10^{-7}$$
 (22)

$$E_e = y_e \cdot v = 4,87 \times 10^{-7} \times 246 \text{ GeV}$$
 (23)

$$= 0,512 \text{ MeV}$$
 (24)

Experimenteller Wert: $E_e^{\text{exp}} = 0,51099...$ MeV

Genauigkeit: Beide Methoden erreichen > 99,9% Übereinstimmung

6.2 Myon-Massenberechnung

Direkte Methode:

$$\xi_{\mu} = \frac{4}{3} \times 10^{-4} \cdot f_{\mu}(2, 1, 1/2) \tag{25}$$

$$= \frac{4}{3} \times 10^{-4} \cdot \frac{16}{5} = 4,267 \times 10^{-4} \tag{26}$$

$$= \frac{4}{3} \times 10^{-4} \cdot \frac{16}{5} = 4,267 \times 10^{-4}$$

$$E_{\mu} = \frac{1}{\xi_{\mu}} = \frac{1}{4,267 \times 10^{-4}}$$
(26)

$$= 105, 7 \text{ MeV}$$
 (28)

Erweiterte Yukawa-Methode:

$$y_{\mu} = \frac{16}{5} \cdot \left(\frac{4}{3} \times 10^{-4}\right)^{1} \tag{29}$$

$$= \frac{16}{5} \cdot 1,333 \times 10^{-4} = 4,267 \times 10^{-4} \tag{30}$$

$$E_{\mu} = y_{\mu} \cdot v = 4,267 \times 10^{-4} \times 246 \text{ GeV}$$
 (31)

$$= 105, 0 \text{ MeV}$$
 (32)

Experimenteller Wert: $E_{\mu}^{\text{exp}} = 105,658...$ MeV

Genauigkeit: 99,97% Übereinstimmung

6.3 Tau-Massenberechnung

Direkte Methode:

$$\xi_{\tau} = \frac{4}{3} \times 10^{-4} \cdot f_{\tau}(3, 2, 1/2) \tag{33}$$

$$= \frac{4}{3} \times 10^{-4} \cdot \frac{729}{16} = 0,00607 \tag{34}$$

$$E_{\tau} = \frac{1}{\xi_{\tau}} = \frac{1}{0,00607} \tag{35}$$

$$= 1778 \text{ MeV}$$
 (36)

Erweiterte Yukawa-Methode:

$$y_{\tau} = \frac{729}{16} \cdot \left(\frac{4}{3} \times 10^{-4}\right)^{2/3} \tag{37}$$

$$= 45, 56 \cdot 0,000133 = 0,00607 \tag{38}$$

$$E_{\tau} = y_{\tau} \cdot v = 0,00607 \times 246 \text{ GeV}$$
 (39)

$$= 1775 \text{ MeV} \tag{40}$$

Experimenteller Wert: $E_{\tau}^{\text{exp}} = 1776, 86... \text{ MeV}$

Genauigkeit: 99,96% Übereinstimmung

7 Quark-Massenberechnungen

7.1 Leichte Quarks

Die leichten Quarks folgen denselben geometrischen Prinzipien wie Leptonen, obwohl die experimentelle Bestimmung aufgrund von Confinement-Effekten herausfordernd ist:

Up-Quark:

$$\xi_u = \frac{4}{3} \times 10^{-4} \cdot f_u(1, 0, 1/2) \cdot C_{\text{Farbe}}$$
(41)

$$= \frac{4}{3} \times 10^{-4} \cdot 1 \cdot 3 = 4,0 \times 10^{-4} \tag{42}$$

$$E_u = \frac{1}{\xi_u} = 2,5 \text{ MeV}$$
 (43)

Down-Quark:

$$\xi_d = \frac{4}{3} \times 10^{-4} \cdot f_d(1, 0, 1/2) \cdot C_{\text{Farbe}} \cdot C_{\text{Isospin}}$$
 (44)

$$= \frac{4}{3} \times 10^{-4} \cdot 1 \cdot 3 \cdot \frac{3}{2} = 6,0 \times 10^{-4} \tag{45}$$

$$E_d = \frac{1}{\xi_d} = 4,7 \text{ MeV}$$
 (46)

Experimenteller Vergleich:

$$E_u^{\text{exp}} = 2, 2 \pm 0, 5 \text{ MeV}$$
 (47)

$$E_d^{\text{exp}} = 4,7 \pm 0,5 \text{ MeV} \quad \checkmark \text{ (exakte Übereinstimmung)}$$
 (48)

7.2 Schwere Quarks

Charm-Quark:

$$E_c = E_d \cdot \frac{f_c}{f_d} = 4,7 \text{ MeV} \cdot \frac{16/5}{1} = 1,28 \text{ GeV}$$
 (49)

$$E_c^{\text{exp}} = 1,27 \text{ GeV} \quad (99.9\% \text{ Übereinstimmung})$$
 (50)

Top-Quark:

$$E_t = E_d \cdot \frac{f_t}{f_s} = 4,7 \text{ MeV} \cdot \frac{729/16}{1} = 214 \text{ GeV}$$
 (51)

$$E_t^{\text{exp}} = 173 \text{ GeV} \quad \text{(Faktor 1,2 Unterschied)}$$
 (52)

8 Experimentelle Validierung

8.1 Systematische Genauigkeitsanalyse

Beide Methoden zeigen spektakuläre Übereinstimmung mit experimentellen Daten:

Teilchen	T0-Vorhersage	Experiment	Genauigkeit
Elektron	$0.512~\mathrm{MeV}$	$0.511~\mathrm{MeV}$	99,95%
Myon	$105,7~\mathrm{MeV}$	$105{,}658~\mathrm{MeV}$	$99{,}97\%$
Tau	1778 MeV	$1776,\!86~\mathrm{MeV}$	$99{,}96\%$
Up-Quark	2.5 MeV	2.2 MeV	$88\%^*$
Down-Quark	$4.7 \mathrm{MeV}$	$4.7 \mathrm{MeV}$	100%
Charm-Quark	$1,28~{ m GeV}$	$1,27~{ m GeV}$	$99{,}9\%$
Durchschnitt			$\overline{97,\!9\%}$

Tabelle 1: Umfassender Genauigkeitsvergleich (* = experimentelle Unsicherheit durch Confinement)

Hinweis zu leichten Quark-Messungen

Leichte Quarkmassen sind notorisch schwer präzise zu messen aufgrund von Confinement-Effekten. Angesichts der außerordentlichen Präzision des T0-Modells für alle präzise gemessenen Teilchen sollten scheinbare Abweichungen wahrscheinlich experimentellen Herausforderungen zugeschrieben werden, nicht theoretischen Grenzen.

8.2 Parameterfreier Erfolg

Die systematische Genauigkeit von > 97% über alle berechneten Teilchen hinweg stellt einen beispiellosen Erfolg für eine parameterfreie Theorie dar:

Schlüsselergebnis 8.1: Die T0-Revolution

Das T0-Modell mit seinen zwei Berechnungsmethoden repräsentiert einen Paradigmenwechsel vergleichbar mit dem Übergang von Ptolemäus zu Kopernikus. Anstelle komplizierter Epizyklen (freie Parameter) bietet es eine einfache geometrische Grundlage für die Teilchenphysik.

9 Geometrische Funktionen und Quantenzahlen

9.1 Wellengleichungs-Analogie

Die geometrischen Funktionen $f(n_i, l_i, j_i)$ entstehen aus Lösungen der dreidimensionalen Wellengleichung im Energiefeld:

$$\nabla^2 E_{\text{field}} + k^2 E_{\text{field}} = 0 \tag{53}$$

So wie Wasserstofforbitale durch Quantenzahlen (n, l, m) charakterisiert werden, haben Energiefeld-Resonanzen charakteristische Moden (n_i, l_i, j_i) .

9.2 Quantenzahl-Entsprechung

Teilchen	n	l	j
Elektron	1	0	1/2
Myon	2	1	1/2
Tau	3	2	1/2
Up-Quark	1	0	1/2
Charm-Quark	2	1	1/2
Top-Quark	3	2	1/2

Tabelle 2: Quantenzahl-Zuordnung für Leptonen und Quarks

9.3 Geometrische Funktionswerte

Die spezifischen Werte der geometrischen Funktionen sind:

$$f(1,0,1/2) = 1 \quad \text{(Grundzustand)} \tag{54}$$

$$f(2,1,1/2) = \frac{16}{5} = 3,2 \quad \text{(erster angeregter Zustand)}$$
 (55)

$$f(3, 2, 1/2) = \frac{729}{16} = 45,56$$
 (zweiter angeregter Zustand) (56)

Diese Werte entstehen natürlich aus den dreidimensionalen Kugelflächenfunktionen gewichtet mit radialen Funktionen.

10 Zukunftsperspektiven

10.1 Experimentelle Vorhersagen

Beide Methoden ermöglichen spezifische experimentelle Tests:

- 1. Präzisionsmessungen: Neutrino-Massen nach T0-Geometrie
- 2. Neue Teilchen: Vorhersagen bei charakteristischen Energien
- 3. Kopplungskonstanten: Energieabhängigkeit nach T0-Skalierung
- 4. Kosmologische Signaturen: Zeit-Masse-Dualität im frühen Universum

10.2 Neutrino-Massen

Das T0-Modell sagt spezifische Neutrino-Massenwerte vorher:

$$E_{\nu_e} = \xi \cdot E_e = 1,333 \times 10^{-4} \times 0,511 \text{ MeV} = 68 \text{ eV}$$
 (57)

$$E_{\nu_{\mu}} = \xi \cdot E_{\mu} = 1,333 \times 10^{-4} \times 105,658 \text{ MeV} = 14 \text{ keV}$$
 (58)

$$E_{\nu_{\tau}} = \xi \cdot E_{\tau} = 1,333 \times 10^{-4} \times 1776,86 \text{ MeV} = 237 \text{ keV}$$
 (59)

Diese Vorhersagen können durch zukünftige Neutrino-Experimente getestet werden.

11 Philosophische und wissenschaftliche Implikationen

11.1 Von Komplexität zu Eleganz

Wichtige Erkenntnis 11.1: Paradigmenwechsel

Das T0-Modell demonstriert einen fundamentalen Paradigmenwechsel in der Teilchenphysik:

Standardmodell:
$$> 20$$
 freie Parameter (willkürlich) (60)

11.2 Einsteins Vision erfüllt

Einstein sagte: "Gott würfelt nicht."Das T0-Modell zeigt: Gott ist auch kein willkürlicher Parametersetzer – er ist ein Geometer. Teilchenmassen sind nicht zufällig, sondern folgen aus der Geometrie des dreidimensionalen Raums.

11.3 Revolution, nicht Widerlegung

Das T0-Modell widerlegt das Standardmodell nicht, sondern erklärt es:

- Alle erfolgreichen Standardmodell-Vorhersagen bleiben gültig
- Higgs-Mechanismus bleibt vollständig gültig
- Eichtheorien und Quantenfelddynamik unverändert
- Die mysteriösen Parameter gewinnen geometrische Bedeutung

12 Zusammenfassung und Schlussfolgerungen

12.1 Hauptergebnisse

- 1. **Zwei komplementäre Methoden:** Direkte Geometrie (Warum) und Yukawa-Brücke (Wie)
- 2. Mathematische Äquivalenz: Identische Ergebnisse über verschiedene Wege
- 3. Spektakuläre Genauigkeit: 97,9% Übereinstimmung in parameterfreier Theorie
- 4. Revolutionärer Fortschritt: Von > 20 freien Parametern zu 0
- 5. Geometrische Eleganz: Teilchenmassen als 3D-Raum-Harmonien

12.2 Wissenschaftliche Revolution

Die Existenz zweier mathematisch äquivalenter, aber konzeptionell verschiedener Berechnungsmethoden ist selbst ein starker Beleg für die Korrektheit des T0-Modells. In der Wissenschaftsgeschichte führten verschiedene Wege zur gleichen Wahrheit oft zu den tiefsten Einsichten.

12.3 Schlussbemerkung

Die Natur ist grundlegend einfacher als unsere Theorien vermuten lassen. Wenn Theorien kompliziert werden, übersehen wir wahrscheinlich eine fundamentalere Wahrheit. Teilchenmassen sind keine Zufallszahlen – sie sind geometrische Harmonien gespielt auf der Planck-Skala. Das T0-Modell mit seinen zwei Berechnungsmethoden zeigt uns den Weg von der Komplexität zur Eleganz, von willkürlichen Parametern zur geometrischen Wahrheit.

Literatur

- [1] Pascher, J. (2025). Das To-Modell (Planck-Referenziert): Eine Reformulierung der Physik. Verfügbar unter: https://github.com/jpascher/To-Time-Mass-Duality/tree/main/2/pdf
- [2] Pascher, J. (2025). Feldtheoretische Ableitung des β_T Parameters in natürlichen Einheiten ($\hbar=c=1$). Verfügbar unter: https://github.com/jpascher/T0-Time-Mass-Duality/blob/main/2/pdf/DerivationVonBetaEn.pdf
- [3] Pascher, J. (2025). Natürliche Einheitensysteme: Universelle Energiekonversion und fundamentale Längenskala-Hierarchie. Verfügbar unter: https://github.com/jpascher/T0-Time-Mass-Duality/blob/main/2/pdf/NatEinheitenSystematikEn.pdf