Sendow W2 - 917

Some Coloring & griph

(Sinorg) relation:
$$V = (A, B, R)$$

Soft $\subseteq A \times B$

So

1. Let r, s, t, v be the homogeneous relations defined on the set $M = \{2, 3, 4, 5, 6\}$ by

$$SM : \mathcal{R} = \{ (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,6), (5,6) \}$$

$$\mathcal{Y} = \{ (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (5,5), (6,6) \}$$

$$\mathcal{T} = \{ (2,2), (2,3), (2,5), (3,2), (5,2), (3,4), (5,5) \}$$

$$\mathcal{Y} = \{ (2,3), (2,3), (3,2), (3,5), (5,2), (3,4), (5,5) \}$$

$$\mathcal{Y} = \{ (2,3), (5,6), (6,5), (6,5), (2,2), (3,3), (4,4), (5,5), (6,6) \}$$

$$\mathcal{V} = \{ (2,5), (5,2), (3,6), (6,6), (2,2), (3,3), (4,4), (5,5), (6,6) \}$$

3. Give examples of relations having each one of the properties of reflexivity, transitivity and symmetry, but not the others.

Sol :

	refl., 7 sy-, 7 trans	7 refl., sym, 7 tras	7 refl , 7 sym, tras
	A= {1,2,3}	A= {1, 2}	*ry => *> y
		$\mathcal{I} = \left\{ (1,2), (2,1) \right\}$	A=R
	兄={(1,7), l34, (3水), (3水), (1,2), (2,3) {	(, , , ,	$A = \{1, 2\}$
			J= 5 (1, 1), (1, 2)
-		1	-

Dy: S set, P={A-|iEI| purtition of s if:

Prop : S set. We have a bijet...

Enotat set (" Shodulo r")

r shows that some elements here the S/r = the Ishne slie U the granslie U
the magnetor shie U the spllow skie
U the red slie

Hry (=) JA ∈ P: x,y ← A

5. Let $M = \{1, 2, 3, 4\}$, let r_1 , r_2 be homogeneous relations on M and let π_1 , π_2 , where $R_1 = \Delta_M \cup \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)\}$, $R_2 = \Delta_M \cup \{(1, 2), (1, 3)\}$, $\pi_1 = \{\{1\}, \{2\}, \{3, 4\}\}$, $\pi_2 = \{\{1\}, \{1, 2\}, \{3, 4\}\}$.

(i) Are r_1, r_2 equivalences on M? If yes, write the corresponding partition.

(ii) Are π_1, π_2 partitions on M? If yes, write the corresponding equivalence relation.

(i)
$$\Delta_{h} \subseteq R_{1} \Rightarrow r_{1} ref!$$
 $\Rightarrow r_{2} ref!$ $\Rightarrow r_{2} ref!$ $\Rightarrow r_{3} r_{4} ref!$ $\Rightarrow r_{2} ref!$ $\Rightarrow r_{3} r_{4} ref!$ $\Rightarrow r_{2} ref!$ $\Rightarrow r_{3} r_{4} ref!$ $\Rightarrow r_{2} ref!$ $\Rightarrow r_{3} ref!$ $\Rightarrow r_{4} ref!$ $\Rightarrow r_{5} ref!$ $\Rightarrow r_{5} ref!$ $\Rightarrow r_{6} ref.$ $\Rightarrow r_{7} ref.$

8. Determine all equivalence relations and all partitions on the set $M = \{1, 2, 3\}$.

1.6. Find shill solute of (R,1)

