

Cours: Programmation déclarative Chapitre 1: Rappelle sur la logique des prédicats

Réalisé par:

Dr. Sakka Rouis Taoufik

https://github.com/srtaoufik/Cours-Prog-Declarative/

Chapitre 1: Rappelle sur la logique des prédicats

I. Introduction

Définitions:

- > un prédicat est une formule logique qui dépend d'une variable libre.
- un prédicat c'est une affirmation qui porte sur des symboles représentant des éléments variables d'un ensemble fixe.
- Puisqu'un prédicat dépend d'une variable x, nous les noterons souvent P(x):
- C'est une application qui associe une proposition P(x) à chaque élément d'un ensemble E, cette ensemble s'appelle **l'univers** du prédicat
- Dans le cas de l'exemple précédent E = N

I. Introduction

- Le nombre des variables d'un prédicat s'appelle **poids** du prédicat.
- \triangleright Exemple: p (a,b) = { le couple d'entiers naturels (a,b) tel que a+b=10}
 - si l'univers du prédicat est N² alors son poids est égal à 2
 - si l'univers du prédicat est N alors son poids est égal à 1
- ➤ Dans un prédicat de poids n, si l'on affecte une valeur à l'une des variables, on obtient un prédicat de poids n-1.
- > Par conséquent, un prédicat de poids 0 est une proposition.
- Les prédicats qui portent sur le même univers peuvent être combinés entre eux à l'aide des connecteurs ¬, ∧, ∨, → , ↔ pour former de nouveau prédicat.

Chapitre 1: Rappelle sur la logique des prédicats

I. Introduction

Définitions:

- \triangleright Le prédicat \neg p (x) associe à x la négation du prédicat p(x)
- Le prédicat p∧q (x) associe à x la conjonction des prédicats p(x) et q(x) on notera aussi (p ∧ q) (x)
- Le prédicat p∨q (x) associe à x la disjonction des prédicats p(x) et q(x) on notera aussi (p ∨ q) (x)
- Exemple : même univers N
- $p(x) = \{l'entier naturel x est pair\}; q(x) = \{l'entier naturel x est divisible pas 5\}$
 - $-\neg p(x) = \{l'entier naturel x est impair\}$
 - $p \land q(x) = \{l'entier naturel x est pair, et il est divisible par 5\} (poids 1)$
 - $p \lor q(x) = \{l'entier naturel x est pair, ou il est divisible par 5\} (poids 1)$

Attention: si l'univers est N^2 (poids 2), il ne faut pas confondre $p \land q$ (n) avec $S(n,m) = \{l'entier naturel n est pair et l'entier naturel m est divisible par 5}$

II. Formalisation du langage naturel

Les quantificateurs :

- L'affirmation « l'ensemble des x pour lesquels P(x) est vraie est E tout entier » est une proposition ; on la note $\forall x P(x)$
 - → on lit : quelque soit x la proposition P(x) est vrai
 - ∀ : quantificateur universel
- L'affirmation « l'ensemble des x pour lesquels P(x) est vraie n'est pas vide » est une proposition ; on la note $\exists x \ P(x)$
 - → on lit : il existe x tel que P(x) est vraie
 - ∃ : quantificateur existentiel

5

Chapitre 1: Rappelle sur la logique des prédicats

II. Formalisation du langage naturel

Exemples:

- Soit le prédicat P(x) = { l'entier naturel x est pair }
- $\forall x P(x)$ est une proposition fausse car on lit : « tout entier naturel est pair »
- ∃x P(x) est une proposition vraie car on lit : « il existe un entier naturel pair »

Exercice d'application:

- Soit les prédicats : $H(x) = \{ x \text{ est un homme } \}$
 - $M(x) = \{ x \text{ est méchant } \}$

Formuler les affirmation suivantes:

- «C'est faux que tout les hommes sont méchants »: $\neg(\forall x (H(x) \rightarrow M(x)))$
- «Seulement les hommes sont méchants » : $\forall x (M(x) \rightarrow H(x))$
- « Il existe un homme méchant » : $\exists x \ (H(x) \land M(x))$
- « Il n'existe pas d'homme méchant » : \neg ($\exists x \ (H(x) \land M(x))$)

II. Formalisation du langage naturel

Remarques:

- Soit P un prédicat dont l'univers est E = { e₁, e₂, e₃,...., e_n}
 - La proposition $\forall x \ P(x)$ est vraie quand les propositions $P(e_1)$, $P(e_2), \ldots, P(e_n)$ sont toutes vraies.
 - \rightarrow $\forall x P(x)$ se confond avec la proposition $P(e_1) \land P(e_2) \land \dots \land P(e_n)$
 - La proposition $\exists x \ P(x)$ est vraie si l'une au moins des propositions $P(e_1)$, $P(e_2), \ldots, P(e_n)$ est vraie.
 - \Rightarrow $\exists x P(x)$ se confond avec la proposition $P(e_1) \lor P(e_2) \lor \ldots \lor P(e_n)$
- Soit P(x,y,z) un prédicat de poids 3
 - $Q(x,z) = \exists y P(x,y,z)$ est un prédicat de poids 2
 - $R(z) = \forall x Q(x,z) = \forall x \exists y P(x,y,z)$ est prédicat de poids 1

Chapitre 1: Rappelle sur la logique des prédicats

III. Syntaxe du calcul des prédicats

Alphabet du langage du premier ordre (prédicat)

Le langage du calcul des prédicats est formé de :

- --Les connecteurs \neg , \land , \lor , \rightarrow et \leftrightarrow
- Les quantificateurs
 - \exists : quantificateur existentiel (« il existe » : $\exists x \ P(x)$)
 - \forall : quantificateur universel (« pour tout »): $\forall x \ P(x)$)
- Des constantes logiques : V et F

III. Syntaxe du calcul des prédicats

Formules du langage :

– A est une formule atomique ssi A s'écrit sous la forme $P(t_1, t_2, t_3 \dots t_n)$ avec: P est un symbole de prédicat de poids n ($P \in \mathcal{P}_n$)

 $t_1, t_2, t_3 \dots t_n$ sont des termes

- Si A est une formule, alors (\neg A) est une formule.
- Si A et B sont deux formules, A \wedge B, A \vee B, A \rightarrow B et A \leftrightarrow B sont des formules.
- Si A est une formule et x est une variable, alors $\exists x$. A et $\forall x$. A sont des formules.

۵

Chapitre 1: Rappelle sur la logique des prédicats

III. Syntaxe du calcul des prédicats

Termes du langage :

- Les termes sont construits à partir de l'ensemble des variables et des symboles de fonctions F.
- Tout terme est engendré par l'application des lois suivantes:
 - Une constante est un terme (qui sera interprétée par un individus fixé)
 - ➤ Les symboles de fonctions ayant chacun un poids ≥ 1 sont des termes. (un nombre d'arguments fixé)
 - Une variable est un terme (qui varie dans l'ensemble des individus de l'interprétation)
 - ➤ Si f est un symbole fonctionnel d'arité (de poids) n et si t1, t2,t3 tn sont n termes, alors f (t1, t2,t3 tn) est un terme.

Un terme est dit clos s'il ne contient aucune variable

III. Syntaxe du calcul des prédicats

Termes du langage : Exemples

f (x, g (y , z)) est un terme si f et g sont des symboles de fonction de poids 2.

Arbre de décomposition :

- f (5, 3) est un terme clos
- f (x, g (y1, y2)) est un terme

11

Chapitre 1: Rappelle sur la logique des prédicats

III. Syntaxe du calcul des prédicats

Utilisation des quantificateurs :

Revenons au deux quantificateurs (existentiel et universel) développer précédemment. Nous rappelons les définitions de chacun:

- ∃: « existe au moins un sel »
- ∃!: « existe un et un seul »
- ∀: « quelque soit, ou pour tout »
- Quantificateurs imbriqués:

Notons que l'ordre des quantificateurs est important. En effet, « tout le monde aime quelqu'un » s'écrirait $\forall x.(\exists y. Aime(x,y))$, qui n'a pas exactement le même sens que « il y a quelqu'un qui est aimé par tout le monde » qui s'écrirait $\exists y.(\forall x. Aime(x,y))$.

III. Syntaxe du calcul des prédicats

Utilisation des quantificateurs :

Loi de Morgan entre les quantificateurs:

$$\exists x.F(x) \equiv \exists x. \exists F(x)$$

$$\exists x.F(x) \equiv \forall x. F(x)$$

$$\forall x.F(x) \equiv \exists x. F(x)$$

13

Chapitre 1: Rappelle sur la logique des prédicats

III. Syntaxe du calcul des prédicats

Formules du langage :

Illustration: soit le prédicat Aime (A, B) : « A aime B »

- « Tout le monde déteste les brocolis » revient au même que « Il n'existe personne qui aime les brocolis »:
 - $\forall x. \exists Aime(x,brocolis) \equiv \exists x. Aime(x,brocolis)$
- -« Tout le monde aime les glaces » et « il n'y a personne qui n'aime pas les glaces » sont équivalentes:
 - $\forall x. Aime(x,glaces) \equiv \exists x. \exists x. Aime(x,glaces)$

III. Syntaxe du calcul des prédicats

Utilisation des quantificateurs :

Exercice 1: Formuler en calcul des prédicats les phrases suivantes:

- 1 les baleines sont des mammifères
- 2. les entiers sont pairs ou impairs
- 3. Il existe un entier pair

Correction:

B(x): « x est un baleine »

M (x): « x est un mammifère »

Traduction: $\forall x. (B(x) \rightarrow M(x))$

E(x): « x est un entier»

P(x): « x est pair»

I(x): « x est impair»

Traduction : $\forall x (E(x) \rightarrow (P(x) \lor I(x)))$

46

Chapitre 1: Rappelle sur la logique des prédicats

III. Syntaxe du calcul des prédicats

Utilisation des quantificateurs :

Exercice 2: Exprimer les énoncés suivants en logique du premier ordre

- 1. « Tous les lions sont féroces. »
- 2. « Quelques femmes ne boivent pas du café »

Correction:

Lion (x): « x est un lion»

Femme (x): « x est une femme»

Feroce(x): « x est un féroce»

Cafe(x): « x boit du café»

Traduction : $\forall x.(Lion(x) \rightarrow Feroce(x))$

Traduction : $\exists x.(Femme(x) \land Cafe(x))$

III. Syntaxe du calcul des prédicats

Utilisation des quantificateurs :

Exercice 3: Utiliser les 3 prédicats suivants pour exprimer les énoncés suivants en logique du premier ordre

Etudiant (x): « x est un étudiant »; Assiste (x, y): « x assiste au cours y »

Interessant(y): « y est intéressant »

1. « Certains étudiants assistent à tous les cours »:

 $\exists x.(\mathsf{Etudiant}(x) \land (\forall y . \mathsf{Assiste}(x,y)))$

2. « Aucun étudiant n'assiste à un cours intéressant »:

 \forall x.(Etudiant(x) \rightarrow (Assiste(x,y) \land Interessant(y)))

Dans la seconde formule, on constate que la variable y n'est pas quantifiée: une telle variable est dite **libre**. Une variable quantifiée est dite **liée**.

Chapitre 1: Rappelle sur la logique des prédicats

IV. Règles d'inférences/Interprétation:

Une règle d'inférence est la représentation d'un procédé qu'à partir d'une ou plusieurs formules dériver d'autres formules.

Exemple:

- 1. La règle d'inférence appelée Modus Ponens, à partir de deux formules respectivement de la forme G et (G→H), dérivé la formule H.
- 2. La règle d'inférence spécialisation universelle, à partir d'une formule de la forme (∀X).G(X) et de n'importe quelle constante, soit : « a », dérive la formule G(a): toutes les occurrences de X dans G sont remplacées par « a ».
- 3. La règles d'inférence appelée Modus Tollens, à partir de deux formules respectivement de la forme $(_1 H)$ et $(G \rightarrow H)$, dérive la formule $(_1 G)$.

Les formules choisies initialement sont appelées **axiomes**. Les formules obtenus par application des règles d'inférences sont appelées **théorèmes**.

Une chaîne d'application de règles d'inférence conduisant, depuis les axiomes, à un théorème, constitue une preuve de théorème.

IV. Règles d'inférences/Interprétation:

- Une interprétation I est la donnée :
 - d'un univers non vide D éventuellement infini
 - d'une évaluation dans D de chaque variable
 - d'un ensemble P de prédicats.
- La valeur de la formule A sous l'interprétation I est notée : [A] T

19

Chapitre 1: Rappelle sur la logique des prédicats

IV. Règles d'inférences/Interprétation:

- Exemples: Soient les formules suivantes:

G1: $(\forall x) P(X)$ et G2: $(\forall x) (\exists Y) Q(X,Y)$

Soit une interprétation de I1 de G1:

Soit une interprétation de l2 de G2:

I1: D1 ={1,2}

PI1={2}

οù

I1[(P(1)]=F

I1[(P(2)]=V

Donc on peut conclure que:

[G1] ₁₁ =F

Car c'est faux que $\forall X$ dans D1

on a P(X)=V

I2: D2={1,3}; QI2={(1,3), (3,3)}

I2[Q(1,1)]=F

I2[Q(1,3)]=V

I2[Q(3,1)]=F

I2[Q(3,3)]=V

Donc on peut conclure que:

 $[G2]_{T2} = V$

Car ∀X dans D2, on peut trouver un Y

dans D tq Q(X,Y) = V

21

Chapitre 1: Rappelle sur la logique des prédicats

IV. Règles d'inférences/Interprétation:

```
Exemple: A: \forall x \ (P(x) \rightarrow (Q(f(x), a))

soit l'interprétation I1 définie comme suite:

D_{I1} = \{1,2\}
a_{I1} = 1 \quad \text{(l'interprétation de la constante a dans I1 est égale 1)}
P_{I1} = \{2\} \ \text{(sig seulement } P(2) = V \text{)}
Q_{I1} = \{(1,1),(1,2)\}
\text{(sig seulement } Q(1,1) = \text{vrai et } Q(1,2) = \text{vrai } \text{)}
f_{I1}: 1 \rightarrow 2
2 \rightarrow 1
[A]_{I1}(x = 1) = P_{I1}(1) \rightarrow Q_{I}(2,1) = F \rightarrow F = V
[A]_{I1}(x = 2) = P_{I1}(2) \rightarrow Q_{I}(1,1) = V \rightarrow V = V
Donc pour x = 1 et x = 2, la formule est vraie, donc [A] x_{I1} = V
```

Chapitre 1: Rappelle sur la logique des prédicats

IV. Règles d'inférences/Interprétation:

```
Exemple: A: \forall x \ (P(x) \rightarrow (Q(f(x), a)))
D_{I2} = \{1,2,3\}
I2: a_{I2} = 1
P_{I2} = \{2\} \ (\text{sig seulement } P(2) = V)
Q_{I2} = \{(1,1),(1,2), (1,3)\}
(\text{sig seulement } Q(1,1) = \text{vrai}, Q(1,2) = \text{vrai et } Q(1,3) = \text{vrai})
f_{I2}: 1 \rightarrow 2
2 \rightarrow 1
3 \rightarrow 1
[A]_{I2}(x = 1) = P_{I}(1) \rightarrow Q_{I}(2,1) = F \rightarrow F = V
[A]_{I2}(x = 2) = P_{I}(2) \rightarrow Q_{I}(1,1) = V \rightarrow V = V
[A]_{I2}(x = 3) = P_{I}(3) \rightarrow Q_{I}(1,1) = F \rightarrow V = V
Donc pour x = 1, x = 2 et x = 3, la formule est toujours vraie, donc [A]_{I2} \stackrel{2}{=} V
```

IV. Règles d'inférences/Interprétation:

Exercice: Soit l'interprétation suivante du calcul des prédicats :

- Constantes : a : Adel : b : Basma; c : Chahira
- Prédicat : $P(x,y) = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, c \rangle, \langle c, c \rangle, \langle c, a \rangle \}$ Nous dirons que la relation « P(x,v) = x voit v ».
- 1/ Est-ce que Chahira voit Adel?
- 2/ Est-ce que Chahira voit Basma?
- 3/ Dites si les formules suivantes sont vraies dans cette interprétation :

```
a/ P(b,a)
b/ P(c,b) \lor P(c,c)
c/ P(b,a) \to P(c,c)
d/ (P(a,b) \to (P(b,a) \lor \neg P(c,b))) \to P(b,c)
e/ \exists x P(x,x)
```

f/ ∀x P(x,c) g/ ∀x P(a,x) h/ ∃x ∀y P(y,x) i/ ∃x ∀y P(x,y) j/ ∀x (P(x,x) → ∃y ¬P(x,y))

22

Chapitre 1: Rappelle sur la logique des prédicats

V. Satisfiable/Valide:

<u>**Définition : Cas d'une formule Close**</u> ($Var(A) = \emptyset$) (pas de variable libre)

- A est **satisfaite** (ou satisfiable) par (D,I) ssi [A] _I = V, noté (D,I) _E A (D,I) est appelée un modèle de A
- Une formule A est satisfiable ssi elle admet un modèle
- Elle est insatisfiable dans le cas contraire (aucun modèle).
- Une formule A est dite ${f valide}$ (tautologie) ssi elle est satisfiable pour tout (D,I)

Notation : \models A

- Elle est invalide dans le cas contraire (antilogie).

V. Satisfiable/Valide:

Définition : Cas d'une formule non Close

Soient:

- A une formule non close
- $Var(A) = \{x_1, x_2, \dots, x_n\}$ les variables libres de A
- On appelle clôture universelle de A, la formule :

$$\forall x_1 \ \forall x_2 \dots \forall x_n \ A$$

- On appelle clôture existentielle de A, la formule :

$$\exists x_1 \exists x_2 \dots \exists x_n A$$

25

Chapitre 1: Rappelle sur la logique des prédicats

V. Satisfiable/Valide:

Définition : Cas d'une formule non Close

soit A une formule non close

- A est satisfiable ssi sa clôture existentielle est satisfiable
- A est valide dans (D,I) ssi sa clôture universelle est satisfaite par (D,I)

Notation : $(D,I) \models A$

 - A est valide universellement (tautologie) ssi sa clôture universelle est valide.
 Notation : ⊨ A

V. Satisfiable/Valide:

	formule Close Var(A) = ∅	formule non Close $Var(A) = \{x_1, x_2,,x_n\}$
Satisfiable	Il existe (D,I): I[A] = V	Il existe (D,I): $I[\exists x_1 \exists x_n A] = V$
		Valide dans / satisfiable par (D,I)
Valide	Pour tout (D,I): I[A] = V	Il existe (D,I): $I[\forall x_1 \forall x_n A] = V$
		Valide universellement Pout tout (D,I) = $I[\forall x_1 \forall x_n A] = V$

27

Chapitre 1: Rappelle sur la logique des prédicats

VI. Equivalence et conséquence sémantique:

Définition:

- A est une conséquence de B ssi tout modèle de B est un modèle de A ,

$$B \models A$$

• Dans le cas des formules non closes, on passe par la clôture universelle :

$$B \models A \ ssi \ (\forall \ Var(B) \ B) \models \ (\forall \ Var(A) \ A)$$

• On appelle équivalence sémantiquement la congruence associé au pré-ordre

c.a.d
$$A = B$$
 ssi $A \models B$ et $B \models A$

Propositions:

- B \models A ssi \models (B \rightarrow A) (signifie B \rightarrow A est une Tautologie)
- B = A ssi \models (B \leftrightarrow A)) (signifie B \leftrightarrow A est une Tautologie)

VI. Equivalence et conséquence sémantique:

Propriétés : Equivalence

- $\cdot \neg (\forall x A) = \exists x (\neg A)$
- $\cdot \forall x A = \neg (\exists x (\neg A))$
- $\cdot \neg (\exists x A) = \forall x (\neg A)$
- $\cdot \exists x \ A = \neg (\forall x (\neg A))$
- $\cdot \forall x (A \land B) = (\forall x (A)) \land (\forall x (B))$
- $\cdot \exists x (A \lor B) = (\exists x (A)) \lor (\exists x (B))$
- $\cdot \forall x \forall y A = \forall y \forall x A$
- ∃x ∃y A = ∃y ∃x A
- $\cdot \exists x (A \rightarrow B) = (\forall x A) \rightarrow (\exists x B)$

29

Chapitre 1: Rappelle sur la logique des prédicats

VI. Equivalence et conséquence sémantique:

Propriétés : Conséquence

• $\exists x \ \forall y \ A (x,y) \models \forall y \ \exists x \ A(x,y)$ (pas le contraire)

• $\exists y \ \forall x \ A \ (x,y) \models \forall x \ \exists y \ A(x,y)$ (pas le contraire)

 $\cdot \exists x (A \land B) \models (\exists x (A)) \land (\exists x (B))$ (pas le contraire)

 $\cdot \forall x (A \lor B) \models (\forall x (A)) \lor (\forall x (B))$ (pas le contraire)

Exemple 1: $P(a,b) = \{ le couple d'entiers relatifs (a,b) est tel que a + b = 5 \}$

∀a ∀b P(a,b)	{Tout couple d'entiers relatifs (a,b) vérifie : a + b = 5 }	F
∃a∃b P(a,b)	{Il existe un couple d'entiers relatifs (a,b) tel que : a + b = 5}	٧
∃b ∀a P(a,b)	{Il existe un entier relatif b tel que pour tout entier relatif a on ait : $a + b = 5$ }	F
∀a ∃b P(a,b)	{Quelque soit l'entier relatif a il existe un entier relatif b tel que : $a + b = 5$ }	٧
∃a ∀b P(a,b)	{Il existe un entier relatif a tel que pour tout entier relatif b on ait : $a + b = 5$ }	F
∀b ∃a P(a,b)	{Quelque soit l'entier relatif b il existe un entier relatif a tel que : $a + b = 5$ }	٧

VI. Equivalence et conséquence sémantique:

 $\underline{\text{Propriétés}}$: Equivalence lorsque $x \notin \text{Var}(A)$

$$\cdot \forall x \ A = \exists x \ A = A$$

$$\cdot \forall x (A \land B) = A \land (\forall x (B))$$

$$\cdot \exists x (A \land B) = A \land (\exists x (B))$$

$$\cdot \forall x (A \lor B) = A \lor (\forall x (B))$$

$$\cdot \exists x (A \lor B) = A \lor (\exists x (B))$$

$$\cdot \exists x (A \rightarrow B) = A \rightarrow (\exists x B)$$

·
$$\forall x (A \rightarrow B) = A \rightarrow (\forall x B)$$

$$\cdot \exists x (B \rightarrow A) = (\forall x B) \rightarrow A$$

$$\cdot \forall x (B \rightarrow A) = (\exists x B) \rightarrow A$$

VII. Les formes normales

1) Forme Prénexe

- Une formule A est dite sous forme normale <u>prénexe</u> ou simplement forme prénexe, ssi
 - A est de la forme $\#x_1 \#x_2 \#x_3 \dots \#x_n \ B \ \# \in \{ \forall, \exists \}$
 - et la forme B ne contient aucun quantificateur.
- > Toute formule admet une forme prénexe qui lui est équivalente

Exemples: $1/ \forall x \exists y (P(x) \land P(y))$ est sous forme prénexe

 $2/(\forall x P(x)) \land (\exists y P(y))$ n'est pas sous forme prénexe

 $3/ \forall x (P(x) \rightarrow \exists y Q(y))$ n'est pas sous forme prénexe

→ par contre sa forme prénexe est $\forall x \exists y (\neg P(x) \lor Q(y))$

33

Chapitre 1: Rappelle sur la logique des prédicats

VII. Les formes normales

2) Forme Skolem

- ➤ A partir d'une formule sous forme prénexe, on construit une formule sous forme de *Skolem* en éliminant les quantificateurs existentiels et en introduisant des symboles de fonctions et de constantes dites de *Skolem*.
- > Soit A une formule sous forme prénexe

$$\#x_1 \#x_2 \#x_3 \dots \#x_n B \# \in \{ \forall, \exists \}$$

Une forme Skolem de A est obtenue en appliquant le processus suivant en commençant par la gauche de la formule jusqu'à l'élimination de tous les quantificateurs existentiels.

VII. Les formes normales

2) Forme Skolem

Cas 1: Si A est de la forme $\exists x_1, \dots, \# x_n$ B avec $\# \in \{ \forall, \exists \} \}$

c-à-d à gauche de ∃x; il n' y a aucun quantificateur universel, alors :

- On supprime ∃x_i
- On introduit un symbole de constante c; (constante de Skolem)
- \bullet On remplace partout dans la formule de B, la variable x_{i} par la constante c_{i}

Exemple:

$$\exists x \ \forall y \ \forall z \ \exists u \ \forall v \ \exists w \ P(x,y,z) \land Q(u,x,v,w)$$

 $\forall y \ \forall z \ \exists u \ \forall v \ \exists w \ P(a,y,z) \land Q(u,a,v,w)$

35

Chapitre 1: Rappelle sur la logique des prédicats

VII. Les formes normales

2) Forme Skolem

<u>Cas 2:</u> Si A est de la forme $\forall x_1 \dots \forall x_m \exists x_i \dots \# x_n B \# \in \{ \forall, \exists \} \}$ c-à-d à gauche de $\exists x_i$ il y a m quantificateurs universels, alors :

- On supprime ∃x_i
- ullet On introduit un symbole de fonction f_i ayant m arguments (fonction de Skolem)
- On remplace partout dans la formule de B, la variable \boldsymbol{x}_i par la fonction $f_i(\boldsymbol{x}_1,$ \dots , $\boldsymbol{x}_m)$

Exemple:

 $\exists x \ \forall y \ \forall z \ \exists u \ \forall v \ \exists w \ P(x,y,z) \land Q(u,x,v,w)$

- $\forall y \ \forall z \ \exists u \ \forall v \ \exists w \ P(a,y,z) \land Q(u,a,v,w)$
- $\forall y \ \forall z \ \forall v \ \exists w \ P(a,y,z) \land Q(f(y,z), a, v, w)$
- $\forall y \ \forall z \ \forall v \ P(a,y,z) \land Q(f(y,z), a, v, g(y,z,v))$
- → forme skolem de A : $\forall y \ \forall z \ \forall v \ P(a,y,z) \land Q(f(y,z),a,v,g(y,z,v))^{36}$

VII. Les formes normales

2) Forme Skolem

Propriété

Soient A_p une formule sous forme de prénexe et A_s sa forme de skolem alors A_p est insatisfiable SSi A_s est insatisfiable

37

Chapitre 1: Rappelle sur la logique des prédicats

VII. Les formes normales

2) Forme Clausale

- ➤ La forme clausale (ou Standard) d'une formule A est obtenue comme suit :
 - 1/Mise de forme prénexe de A (on obtient A_p)
 - 2/ Mise de forme de Skolem de A_p (on obtient A_s)
 - 3/ Suppression des quantificateurs universels
 - 4/ Mise sous forme normale conjonctive de la formule restante

(on obtient $A_c: B_1 \wedge B_2 \wedge \ldots \wedge B_m$ Chaque B_i est une clause)

On note la formule A_c ainsi obtenue sous forme d'un ensemble de clauses $\{B_1$, B_2 , , B_m } $_{38}$

VII. Les formes normales

2) Forme Clausale

Exemple:

 $A_n : \exists x \forall y \forall z \exists u \forall v \exists w P(x,y,z) \rightarrow (Q(u,x,v,w) \land R(w,x))$

- \rightarrow $\forall y \forall z \exists u \forall v \exists w P(a,y,z) \rightarrow (Q(u,a,v,w) \land R(w,a))$
- \rightarrow $\forall y \forall z \forall v \exists w P(a,y,z) \rightarrow (Q(f(y,z), a, v, w) \land R(w,a))$

$$A_s : \forall y \ \forall z \ \forall v \ P(a,y,z) \rightarrow (Q(f(y,z),a,v,g(y,z,v)) \land R(g(y,z,v),a))$$

→Suppression des quantificateurs universelles, (soit substituer y, z et v par des des nouvelles constantes (b,c et d) soit supprimer les quantificateur univ et considerer y, z et v comme des nouvelles constantes)

$$P(a,y,z) \rightarrow (Q(f(y,z), a, v, g(y,z,v)) \land R(g(y,z,v),a))$$

=
$$\neg P(a,y,z) \lor (Q(f(y,z), a, v, g(y,z,v)) \land R(g(y,z,v),a))$$

$$A_{c=} (\neg P(a,y,z) \lor Q(f(y,z), a, v, g(y,z,v))) \land (\neg P(a,y,z) \lor R(g(y,z,v),a))$$

39

Chapitre 1: Rappelle sur la logique des prédicats

VII. Les formes normales

4) Théorèmes

Soient A une formule, A_p une forme prénexe équivalente a A, A_s sa forme de skolem et A_c sa forme clausale, alors

A est insatisfiable SSi A_n est insatisfiable

 A_p est insatisfiable SSi A_s est insatisfiable

A_s est insatisfiable SSi A_c est insatisfiable

→ A est insatisfiable SSi A_c est insatisfiable