Constraints in Universal Algebra

Ross Willard

University of Waterloo, CAN

SSAOS 2014 September 7, 2014 Lecture 1

Outline

Lecture 1: Intersection problems and congruence $SD(\land)$ varieties

Lecture 2: Constraint problems in ternary groups (and generalizations)

Lecture 3: Constraint problems in Taylor varieties

Almost all algebras will be finite.

Quiz!

Fix an algebra **A**. Suppose

- $\mathbf{C}, \mathbf{D} \leq \mathbf{A}^n$ for some $n \geq 3$
- $\operatorname{proj}_{i,j}(C) = \operatorname{proj}_{i,j}(D)$ for all $1 \le i < j \le n$.

Question: Does it follow that $C \cap D \neq \emptyset$?

Answer: No, of course not!

- Let **A** be the set $\{0,1\}$ (with no operations ha ha!).
- Let n = 3 and put

$$C = \{ \mathbf{x} \in \{0,1\}^3 : x_1 + x_2 + x_3 = 0 \pmod{2} \}$$

$$D = \{ \mathbf{x} \in \{0,1\}^3 : x_1 + x_2 + x_3 = 1 \pmod{2} \}$$

• $\mathbf{C}, \mathbf{D} \leq \mathbf{A}^3$ and $\operatorname{proj}_{i,j}(C) = \operatorname{proj}_{i,j}(D) = \{0,1\}^2$ for all i < j, yet $C \cap D = \emptyset$.

Apology

I'm sorry. Choosing A to be a set with no operations is pathetic.

Better example: $\mathbf{A} = (\{0,1\}; x+y+z \pmod{2})$ with the same $\mathbf{C}, \mathbf{D} \leq \mathbf{A}^3$.

More generally, for any R-module RA, take the associated **affine** R-module

$$A = (A; x-y+z, \{rx+(1-r)y : r \in R\})$$

and let C, D be different cosets of $\{(x, y, z) : x + y + z = 0\} \le \mathbf{A}^3$.

Harder Quiz

Bonus Problem: For which A is the answer "Yes"?

(The question: if $\mathbf{C}, \mathbf{D} \leq \mathbf{A}^n$ and $\operatorname{proj}_{i,j}(C) = \operatorname{proj}_{i,j}(D)$ for all i < j, does it follow that $C \cap D \neq \emptyset$?)

Subproblem: are there any A for which the answer is "Yes"?

Answer: Of course!

- Any algebra A having a constant term operation has this property.
 (So any group, ring, module, ...)
 - This is cheating.
 - We can forbid cheating by requiring that A be idempotent, i.e., all 1-element subsets must be subalgebras.

Problem: are there any idempotent A for which the the answer is "Yes"?

The *k*-intersection property

Definition (Valeriote). Let **A** be an algebra.

- If $C, D \subseteq A^n$ and $0 < k \le n$, we write $C \stackrel{k}{=} D$ to mean $\operatorname{proj}_J(C) = \operatorname{proj}_J(D)$ for all $J \subseteq \{1, \ldots, n\}$ satisfying |J| = k.
- ② For example:
 - $C \stackrel{1}{=} D$ iff $\operatorname{proj}_i(C) = \operatorname{proj}_i(D)$ for all i.
 - ▶ $C \stackrel{2}{=} D$ iff $\operatorname{proj}_{i,j}(C) = \operatorname{proj}_{i,j}(D)$ for all i < j.
 - $C \stackrel{n}{=} D \text{ iff } C = D.$
- **3** We say that **A** has the **k-intersection property** (or k-**IP**) if for all n > k and every family $\{C_t \le A^n : t \in T\}$,

$$\left(\mathit{C}_{\mathsf{s}} \overset{k}{=} \mathit{C}_{t} \text{ for all } \mathit{s}, t \in \mathit{T} \right) \ \Rightarrow \ \bigcap_{t \in \mathit{T}} \mathit{C}_{t} \neq \varnothing.$$

Note: 1-IP \Rightarrow 2-IP \Rightarrow 3-IP \Rightarrow 4-IP $\Rightarrow \cdots$

Problem (modified): are there any idempotent algebras with 2-IP? What about 1-IP? Or k-IP for some k?

Theorem

- Every lattice (or lattice expansion) has 2-IP.
- 2 Every finite semilattice (or expansion) has 1-IP.

Proof.

(1) Every lattice (or lattice expansion) L has a majority term

$$m(x,x,y)=m(x,y,x)=m(y,x,x)=x$$
 for all $x,y\in L$.

Hence for any $\mathbf{C} \leq \mathbf{L}^n$, C is <u>determined</u> by $(\operatorname{proj}_{i,j}(C) : 1 \leq i < j \leq n)$ (Baker-Pixley 1975).

Thus if $\{\mathbf{C}_t \leq \mathbf{L}^n : t \in T\}$ satisfies $C_s \stackrel{?}{=} C_t \ \forall s, t$, then $C_s = C_t \ \forall s, t$. So $\bigcap C_t \neq \emptyset$.

Generalization. If **A** has a (k+1)-ary **near unanimity** (**NU**) term, then **A** has k-IP. (Again by Baker-Pixley)

Theorem

- Every lattice (or lattice expansion) has 2-IP.
- 2 Every <u>finite</u> semilattice (or expansion) has 1-IP.

Proof.

(2) Suppose L is finite and has a semilattice term \wedge .

For any $\mathbf{C} \leq \mathbf{L}^n$, the \wedge -least element of \mathbf{C} is determined by $(\operatorname{proj}_i(C): 1 \leq i \leq n)$.

Thus if $\{\mathbf{C}_t \leq \mathbf{L}^n : t \in T\}$ satisfies $C_s \stackrel{1}{=} C_t \ \forall s, t$, then all the \mathbf{C}_s have the same \land -least element.

So
$$\bigcap C_t \neq \emptyset$$
.

Summary

Idempotent algebras that $\underline{\text{have}}\ k\text{-IP}$ for some k:

- Lattices
- NU algebras
- Finite semilattices

Idempotent algebras that do not have k-IP for any k:

- Sets (pathetic, but true)
- Affine R-modules

Question: What *algebraic* property separates "lattices, NU algebras and semilattices" from "sets and affine *R*-modules"?

Answer: Congruence meet semi-distributivity

Meet Semi-Distributivity $(SD(\wedge))$

Definition. A lattice **L** is **meet semi-distributive** (or $SD(\land)$) if it satisfies the implication

$$x \wedge y = x \wedge z =: u \implies x \wedge (y \vee z) = u.$$

Basic facts:

- Every distributive lattice is SD(∧).
- ② There exist $SD(\land)$ lattices that are not modular. E.g.,
- **3** M_3 is **not** $SD(\wedge)$:

Congruence $SD(\land)$

Definition.

- **1** An algebra is **congruence SD(** \land **)** if its congruence lattice is SD(\land).
- **2** A variety is **congruence SD(** \land **)** if every algebra in the variety is congruence SD(\land).

Theorem (Lipparini 1998; Kearnes, Szendrei 1998; Kearnes, Kiss 2013; cf. Hobby, McKenzie 1988)

For a variety V, the following are equivalent:

- **1** \mathcal{V} is congruence $SD(\wedge)$.
- **2** M_3 does not embed into Con(B), for any $B \in \mathcal{V}$.

If $\mathcal V$ is idempotent, then we can add

3 No nontrivial algebra $\mathbf{B} \in \mathcal{V}$ is a term reduct of an affine R-module.

Congruence $SD(\land)$ varieties

Valeriote's observation

Theorem (Valeriote 2009)

Assume **A** is finite and idempotent.

If **A** has k-IP for some k, then **HSP**(**A**) is CSD(\wedge).

Proof.

- Assume **HSP(A)** is <u>not</u> $CSD(\land)$.
- By the previous theorem, there exists a nontrivial $\mathbf{B} \in \mathcal{V}$ which is a term reduct of an affine R-module \mathbf{M} .
- We can assume $B \in \mathsf{HSP}_{fin}(A)$.
- Assume **A** has k-IP; then so does every algebra in $\mathsf{HSP}_{fin}(\mathbf{A})$.
- Hence B has k-IP.
- Hence M has k-IP, but we can show this is impossible.

Valeriote's conjecture

Conjecture (Valeriote 2009)

And conversely.

That is, if **A** is finite, idempotent, and HSP(A) is $CSD(\land)$, then **A** has k-IP for some k.

Theorem (Barto 2014 ms)

Valeriote's conjecture is true.

In fact, if **A** is finite and HSP(A) is $CSD(\land)$, then **A** has 2-IP.

This is a surprising result with a beautiful proof.

Constraint Satisfaction Problem (CSP)

Let **A** be a finite algebra.

An **instance of CSP(A)** of degree n is a list

$$(s_1, C_1), (s_2, C_2), \ldots, (s_p, C_p)$$

of "specifications" of subalgebras of \mathbf{A}^n (of a certain kind).

- Each s_i is a non-empty subset of $\{1, 2, \dots, n\}$.
- Each C_i is a non-empty subuniverse of \mathbf{A}^{s_i} .
- (s_i, C_i) "specifies" the subalgebra $\{\mathbf{a} \in A^n : \operatorname{proj}_{s_i}(\mathbf{a}) \in C_i\}$ of \mathbf{A}^n .
 - ▶ I denote this subalgebra by $[s_i, C_i]$.

Computer Science jargon:

- $\{1, 2, \ldots, n\}$ is the **set of variables**.
- Each (s_i, C_i) is a **constraint**.
- s_i is the **scope** of (s_i, C_i) . C_i is the **constraint relation**.

Example

Let
$$\mathbf{A} = (\{0,1\}, \wedge)$$
. (The 2-element semilattice)

With n = 4, define

$$\begin{array}{rcl} s_1 & = & \{2,3,4\} \\ C_1 & = & \{\mathbf{a} \in A^{\{2,3,4\}} : a_2 \leq a_3 \leq a_4\} \\ & = & \{(0,0,0),(0,0,1),(0,1,1),(1,1,1)\}. \end{array}$$

The subalgebra of A^4 "specified" by (s_1, C_1) is

$$\llbracket s_1, C_1 \rrbracket := \{(a_1, a_2, a_3, a_4) \in A^4 : a_2 \le a_3 \le a_4\}.$$

Similarly define $(s_2, C_2), (s_3, C_3)$ by

$$s_2 = \{1,3,4\}, \qquad C_2 = \{\mathbf{a} \in A^{\{1,3,4\}} : a_3 \le a_4 \le a_1\}$$

$$s_3 = \{1,2,4\}, \qquad C_3 = \{\mathbf{a} \in A^{\{1,2,4\}} : a_4 \le a_1 \le a_2\}.$$

 $(s_1, C_1), (s_2, C_2), (s_3, C_3)$ is an instance of CSP(**A**).

Solutions

In general, given a CSP(**A**) instance $(s_1, C_1), \ldots, (s_p, C_p)$, we ask whether

$$\llbracket s_1, C_1 \rrbracket \cap \cdots \cap \llbracket s_p, C_p \rrbracket \neq \varnothing.$$

The elements of $[s_1, C_1] \cap \cdots \cap [s_p, C_p]$ (if any) are called **solutions**.

In the previous example, the subalgebras of $(\{0,1\},\wedge)^4$ "specified" by the constraints are:

$$\begin{bmatrix} s_1, C_1 \end{bmatrix} := \{ \mathbf{a} \in \{0, 1\}^4 : a_2 \le a_3 \le a_4 \} \\
 [s_2, C_2] := \{ \mathbf{a} \in \{0, 1\}^4 : a_3 \le a_4 \le a_1 \} \\
 [s_3, C_3] := \{ \mathbf{a} \in \{0, 1\}^4 : a_4 \le a_1 \le a_2 \}$$

This instance has two solutions, since

$$[s_1, C_1] \cap [s_2, C_2] \cap [s_3, C_3] = \{ \mathbf{a} \in \{0, 1\}^4 : a_1 = a_2 = a_3 = a_4 \}.$$

(2,3)-minimal instances

Definition

An instance $(s_1, C_1), \ldots, (s_p, C_p)$ of CSP(**A**) (say of degree n) is **(2,3)-minimal** if:

• For any two constraints $(s_i, C_i), (s_j, C_j)$, if

$$J \subseteq s_i \cap s_j$$
 and $1 \le |J| \le 2$

then $\operatorname{proj}_{J}(C_{i}) = \operatorname{proj}_{J}(C_{j}).$

• For every 3-element subset $J \subseteq \{1, ..., n\}$ there exists a constraint (s_i, C_i) such that $J \subseteq s_i$.

Remark. The first requirement is like $[s_i, C_i] \stackrel{?}{=} [s_j, C_j]$, but only requiring it on coordinates in their common scopes.

With $\mathbf{A} = (\{0,1\}, \wedge)$, recall the instance with three constraints:

$$s_1 = \{2,3,4\},$$
 $C_1 = \{\mathbf{a} \in A^{\{2,3,4\}} : a_2 \le a_3 \le a_4\}$
 $s_2 = \{1,3,4\},$ $C_2 = \{\mathbf{a} \in A^{\{1,3,4\}} : a_3 \le a_4 \le a_1\}$
 $s_3 = \{1,2,4\},$ $C_3 = \{\mathbf{a} \in A^{\{1,2,4\}} : a_4 \le a_1 \le a_2\}.$

Surprise Quiz: is this instance (2,3)-minimal?

- For any two constraints $(s_i, C_i), (s_j, C_j)$, if $J \subseteq s_i \cap s_j$ and $|J| \le 2$, then $\text{proj}_J(C_i) = \text{proj}_J(C_j)$.
- For every 3-element subset $J \subseteq \{1, ..., n\}$ there exists a constraint (s_i, C_i) such that $J \subseteq s_i$.

Answers

- **No**: $\operatorname{proj}_{2.4}(C_1) \neq \operatorname{proj}_{2.4}(C_3)$.
- No: $\{1,2,3\}$ is not contained in the scope of any constraint.

Main Theorem

Theorem (Barto 2014 ms, improving Barto, Kozik 2009; Bulatov ms)

Suppose **A** is finite and HSP(A) is $CSD(\land)$. Then every (2,3)-minimal instance of CSP(A) has a solution.

Proof: Prague absorption.

Corollary (Barto)

If **A** is finite and HSP(A) is $CSD(\land)$, then **A** has 2-IP.

Proof. Given $\{C_t \leq A^n : 1 \leq t \leq p\}$ with $C_s \stackrel{2}{=} C_t$ for all s, t, consider the CSP(A) instance

$$(\{1,\ldots,n\},C_1), (\{1,\ldots,n\},C_2),\ldots, (\{1,\ldots,n\},C_p).$$

It is (2,3)-minimal.

Application (if time)

Definition. Let **A** be an algebra. A **weak majority term** for **A** is a term t(x, y, z) satisfying the idempotent law t(x, x, x) = x and

$$t(x,x,y) = t(x,y,x) = t(y,x,x)$$
 for all $x,y \in A$.

Similarly, for any $k \ge 2$ we can define a k-ary **weak NU** term (**WNU**).

Examples of WNUs

- For semilattices (or lattices) we can take $t(x_1, \ldots, x_n) = x_1 \wedge \cdots \wedge x_n$.
- For $(\mathbb{Z}_2,+)$ we have $t(x_1,\ldots,x_n)=x_1+\cdots+x_n$ (for any **odd** $n\geq 3$).

Theorem (Kozik; in Kozik et al 2014?)

Let **A** be a finite algebra. The following are equivalent:

- **1** HSP(**A**) is congruence SD(\wedge).
- **2 A** has 3-ary and 4-ary WNU terms $t_1(x, y, z)$ and $t_2(x, y, z, w)$ satisfying $t_1(x, x, y) = t_2(x, x, x, y)$ for all $x, y \in A$.

Let **A** be a finite algebra. The following are equivalent:

- **1** HSP(**A**) is congruence SD(\wedge).
- **2** A has 3-ary and 4-ary WNU terms $t_1(x, y, z)$ and $t_2(x, y, z, w)$ satisfying $t_1(x, x, y) = t_2(x, x, x, y)$ for all $x, y \in A$.

Proof sketch. We can assume **A** is idempotent.

 $(2) \Rightarrow (1)$. Assume **A** has such WNUs but CSP(**A**) is **not** CSD(\wedge).

Then $\exists \mathbf{B} \in \mathbf{HSP}(\mathbf{A})$ such that |B| > 1 and \mathbf{B} is a term reduct of an affine R-module \mathbf{M} .

 ${f B}$ also has such WNUs, so ${f M}$ has such WNUs, contradiction.

 $(1) \Rightarrow (2)$. (Variation of an argument due to E. W. Kiss)

Let \mathbf{F}_2 be the free algebra of rank 2 in $\mathbf{HSP}(\mathbf{A})$. Let $n=3|F_2|+1$.

One can define a (2,3)-minimal instance of $CSP(\mathbf{F}_2)$ of degree n, any solution of which will give the desired WNUs. (Details in Kozik *et al.*)

By Barto's theorem, a solution to the instance exists.

Bibliography

- K. A. Baker and A. F. Pixley, Polynomial interpolation and the Chinese remainder theorem for algebraic systems, *Math. Z.* **143** (1975), 165–174.
- A. A. Bulatov, Bounded relational width, manuscript, 2009.
- L. Barto, The collapse of the bounded width hierarchy, manuscript, 2014.
- L. Barto and M. Kozik, Constraint satisfaction problems of bounded width, *FOCS 2009*, IEEE, 595–603.
- D. Hobby and R. McKenzie, *The Structure of Finite Algebras*, Contemporary Mathematics **76**, Amer. Math. Soc., 1988.
- K. A. Kearnes and E. W. Kiss, The shape of congruence lattices, *Mem. Amer. Math. Soc.* **222** (2013), no. 1046.
- K. A. Kearnes and Á. Szendrei, The relationship between two commutators, *Internat. J. Algebra Comput.* **8** (1998), 497–531.
- M. Kozik, A. Krokhin, M. Valeriote and R. Willard, Characterizations of several Maltsev conditions, *Algebra Universalis*, to appear.
- P. Lipparini, A characterization of varieties with a difference term, II: neutral = meet semi-distributive, *Canad. Math. Bull.* **41** (1998), 318–327.
- M. Valeriote, A subalgebra intersection property for congruence distributive varieties, *Canad. J. Math.* **61** (2009), 451–464.