IE613: Online Machine Learning

Jan-Apr 2016

Lecture 17: Follow the Leader and Follow the Regularized Leader

Lecturer: M. K. Hanawal Scribes: Setu Hitesh Dave

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

17.1 Recap

Online Mirror Descent

- For each round t=1,2,3...T
- Player ω_t , Environment C_t
- Player update, $\nabla \Phi(\tilde{\omega}_{t+1}) \leftarrow \nabla \Phi(\omega_t) \eta \nabla \Phi(\omega_t)$
- $\omega_{t+1} \leftarrow Proj(\tilde{\omega}_{t+1})$

17.2 Fenchel - Legendre Conjugate

- If $f: \tau \to \mathbb{R}$, where C is a convex set and f is convex function , $C \subseteq \mathbb{R}^d$
- F-L conjugate is, $f^*(y) = \sup_{x \in C} \ (< u, x > -f(x))$
- Note: Supremum are not always defined.

$$f^*(\nabla f(x)) = \langle \nabla f(x), x \rangle - f(x)$$

Young Inequality,

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

$$a,b\geq 0, \frac{1}{p}+\frac{1}{q}=1; a,b\in \mathbb{R}$$

For p=q=2, it boils down to $AM \geq GM$.

$$i.e \ ab \le \frac{a^2}{2} + \frac{b^2}{2}$$

$$take, a^2 = c; b^2 = d$$

• Convex combination $: \lambda x + (1 - \lambda)y, (1 - \lambda)$ is conjugate of λ

17.3 Holder's Inequality

$$\sum_{i=1}^{\infty} x_i y_i \le ||x|| \, ||y|| \tag{17.1}$$

• Cauchy schwarz inequality can be obtained from this holder's inequality 17.1 Through the 17.1, we are trying to emphasis the norm of dual space V^* by: $f^*(x) = \sup_{x \in V/\{0\}} \frac{f(x)}{||x||}$

17.4 Follow the leader

17.4.1 Regret for generalized cost function

- For round t, player $\omega_t = \arg\min_{\omega \in K} \sum_{s=1}^{t-1} C_s(\omega)$.
- Regret bound after revealing C_t ,

$$Regret(u,T) = \sum_{t=1}^{T} C_t(\omega_t) - \sum_{t=1}^{T} C_t(u)$$
 (17.2)

Lemma 17.1 For any $u \in K$, $\sum_{t=1}^{T} (C_t(\omega_t) - C_t(u)) \leq \sum_{t=1}^{T} (C_t(\omega_t) - C_t(\omega_{t+1}))$, $\omega_{t+1} = \arg\min_{\omega} \sum_{s=1}^{t} C_s(\omega)$

- After rearranging the inequality in Lemma 17.1 $\sum_{t=1}^{T} C_t(\omega_{t+1}) \leq \sum_{t=1}^{T} C_t(u)$
- For T=1, $C_1(\omega_2) \leq C_1(u) \forall u, \omega_2 = \arg\min_{\omega} C_1(\omega)$.
- After induction on T, $\sum_{t=1}^{T-1} C_t(\omega_{t+1}) \leq \sum_{t=1}^{T-1} C_t(u)$.
- For a particular $u = \omega_{T+1}, \sum_{t=1}^{T-1} C_t(\omega_{t+1}) \leq \sum_{t=1}^{T-1} C_t(\omega_{T+1}).$
- Add $C_T(\omega_{T+1})$ on both side,

$$\sum_{t=1}^{T} C_{t}(\omega_{t+1}) \leq \sum_{t=1}^{T} C_{t}(\omega_{T+1})$$

$$\sum_{t=1}^{T} C_t(\omega_{t+1}) \leq \sum_{t=1}^{T} C_t(u) \forall u$$

• Hence, $\omega_{T+1} = \arg\min_{\omega} \sum_{t=1}^{T} C_t(\omega)$

17.4.2 Quadratic cost function

$$C_t(\omega) = \frac{1}{2(t-1)\omega} ||\omega - z_t||^2, \ z_t \in K, \ ||z_t|| \le B$$
 (17.3)

• By defination , $\omega_{T+1} = \arg\min_{\omega} \sum_{t=1}^{T} \frac{1}{1} ||\omega - z_t||^2$

Claim 17.2

$$\omega_t = \frac{1}{t-1} \sum_{s=1}^{t-1} z_s \tag{17.4}$$

Proof:followed by the given equations

$$\sum_{t=1}^{T} \frac{1}{1} ||\omega - z_t||^2 = 0$$

$$\sum_{s=1}^{t} (\omega - z_s) = 0, (t-1)\omega = \sum_{s} z_s$$

$$\omega = \frac{1}{t-1} \sum_{s} z_s$$

Using induction on T,

$$\Rightarrow \omega_{t+1} = \frac{1}{t} \sum_{s=1}^{t} z_s$$

$$= \frac{t-1}{t} \sum_{s=1}^{t} z_s$$

$$= \frac{t-1}{t} \frac{1}{t-1} \sum_{s=1}^{t-1} z_s + \frac{1}{t} z_t$$

$$\omega_{t+1} = \frac{t-1}{t} \omega_t + \frac{1}{t} z_t$$

Now for given cost function,

$$\begin{split} \sum_{t=1}^{T} (C_{t}(\omega_{t})) &- (C_{t}(\omega_{t+1})) = \frac{1}{2} \sum_{t=1}^{T} ||\omega_{t} - z_{t}||^{2} - \frac{1}{2} \sum_{t=1}^{T} ||\omega_{t+1} - z_{t}||^{2} \\ &= \frac{1}{2} \sum_{t=1}^{T} ||\omega_{t} - z_{t}||^{2} - \frac{1}{2} \sum_{t=1}^{T} ||(\frac{t-1}{t})\omega_{t} - z_{t} + \frac{1}{t} z_{t}||^{2} \\ &= \frac{1}{2} \sum_{t=1}^{T} ||\omega_{t} - z_{t}||^{2} - \frac{1}{2} \sum_{t=1}^{T} (1 - \frac{1}{t})^{2} ||\omega_{t} - z_{t}||^{2} - (1 - \frac{1}{t}) z_{t} \\ &= \frac{1}{2} \sum_{t=1}^{T} (1 - (1 - \frac{1}{t})^{2}) ||\omega_{t} - z_{t}||^{2} \end{split}$$

$$\sum_{t=1}^{T} (C_t(\omega_t)) - (C_t(\omega_{t+1})) = \frac{1}{2} \sum_{t=1}^{T} (1 - (1 - \frac{1}{t})^2) ||\omega_t - z_t||^2$$
(17.5)

17.4.3 Cauchy schwarz inequality

$$||\omega - z_t||^2 = ||\omega_t||^2 + ||z_t||^2 - 2 < \omega_t, z_t >$$

$$\leq ||\omega_t||^2 + ||z_t||^2 + 2||\omega_t|| ||z_t||$$

Using 17.5, schwarz inequality and $||z_t|| \leq B$,

$$||\omega - z_t||^2 \le \frac{1}{1} \sum_{t=1}^{T} (1 - 1 - \frac{1}{t} + \frac{2}{t}) (4B^2)$$

$$\le 2B^2 \sum_{t=1}^{T} \frac{2}{t}$$

$$\le 4B^2 (1 + \log(T))$$

Corollary 17.3 Consider running FTL on an Online Quadratic Optimization problem with $S = R^d$ and let $B = \max z_t$ Then, the regret of FTL with respect to all vectors $u \in R^d$ is at most $4B^2$ (log(T) + 1)

17.5 Follow the regularized leader(FTRL)

- Player at t round, $\omega_t = \arg\min_{\omega \in K} \sum_{s=1}^{T} C_s(\omega) + \Psi(\omega)$
- $\Psi(\omega)$ is regularized weighted scalar with η
- Environment chooses $C_t = <\omega_t, z_t>$
- Player chooses, $\Psi(\omega) = \frac{1}{2\eta} ||\omega||^2$.

Theorem 17.4 Consider running FoReL on a sequence of linear functions, $f_t(\omega) = \langle \omega, z_t \rangle$ for all t with $S = R^d$, and with the regularizer $r(\omega) = \frac{1}{2\eta} ||\omega||^2$, which yields the predictions given in 17.6 Then, for all u we have

$$R_{FTRL}(u,T) \le \frac{1}{2\eta} ||u||^2 + \frac{\eta}{2} \sum_{t=1}^{T} ||z_t||^2, \ \eta = \frac{u}{\sqrt[2]{TB}}$$
 (17.6)

- When $\eta = \frac{u}{\sqrt[2]{T\,B}}$, Regret as per 17.6 will be bounded by $\sqrt[2]{T\,B}\,u$
- Trying to convert FTRL to FTL, for $t \geq 1$ and round t = 0 , $\omega_0 = \arg\min_{u} \Psi(u)$

- For $t \geq 1$, environement reveals C_t , $\omega_t = \arg\min_{\omega} \Psi(\omega) + \sum_{s=1}^{t-1} C_s(\omega)$
- For FTL, $\sum_{t=1}^{T} (C_t(\omega_t) C_t(u)) \leq \sum_{t=1}^{T} (C_t(\omega_t) C_t(\omega_{t+1}))$

For FTRL,

$$\Psi(\omega_0) - \Psi(u) + \sum_{t=1}^{T} (C_t(\omega_t) - C_t(u)) \leq \sum_{t=1}^{T} (C_t(\omega_t) - C_t(\omega_{t+1})) + \Psi(\omega_0) - \Psi(\omega_1) \\
\sum_{t=1}^{T} (C_t(\omega_t) - C_t(u)) \leq \sum_{t=1}^{T} (C_t(\omega_t) - C_t(\omega_{t+1})) + \Psi(u) - \Psi(\omega_1)$$

• Now $\Psi(\omega) = \frac{1}{2\eta} ||\omega_1||^2 \ge 0$

$$\sum_{t=1}^{T} \left(C_t(\omega_t) - C_t(\omega_{t+1}) \right) + \Psi(u) - \Psi(\omega_1) \le \frac{1}{2\eta} ||u||^2 + \sum_{t=1}^{T} \left(C_t(\omega_t) - C_t(\omega_{t+1}) \right)$$
 (17.7)

$$C_{t}(\omega_{t}) - C_{t}(\omega_{t+1}) = \langle \omega_{t}, z_{t} \rangle - \langle \omega_{t+1}, z_{t} \rangle$$

$$= \langle \omega_{t} - \omega_{t+1}, z_{t} \rangle$$

$$\leq ||\omega_{t} - \omega_{t+1}|| ||z_{t}||$$

$$\leq \eta ||z_{t}|| ||z_{t}||, \ \eta \ ||z_{t}|| = ||\omega_{t} - \omega_{t+1}||$$

• In FTL algorithm $C_t(\omega) = <\omega_t, z_t>$

$$\omega_t = \arg\min_{\omega} \sum_{s=1}^{t-1} C_s(\omega)$$
$$= \arg\min_{\omega} \sum_{s=1}^{t-1} \langle \omega_t, z_t \rangle$$

•
$$\omega_t = Proj_k \left[-\eta \sum_{s=1}^{t-1} z_s \right], \omega_{t+1} = Proj_k \left[-\eta \sum_{s=1}^t z_s \right]$$

• Using inequality ,
$$||Proj(u) - Proj(v)|| \le ||u - v||$$

$$\begin{aligned} ||\omega_{t} - \omega_{t+1}|| &= ||Proj[-\eta \sum_{s=1}^{t-1} z_{s}] + \eta \sum_{s=1}^{t-1} z_{s}|| \\ &\leq ||-\eta \sum_{s=1}^{t-1} z_{s} + \eta \sum_{s=1}^{t} z_{s}|| \\ &= \eta ||z_{t}|| \end{aligned}$$

Differentiate
$$\omega_t = \arg\min_{\omega \in K} \sum_{s=1}^T C_s(\omega) + \Psi(\omega)$$
 w.r.t ω ,
$$\frac{1}{\eta}\omega + \sum_{s=1}^{t-1} z_s = 0$$

$$\omega = -\eta \sum_{s=1}^{t-1} z_s$$

$$\omega = Proj[-\eta \sum_{s=1}^{t-1} z_s]$$

• This is called a lazy projection since we dont project the iterates t but only project when we need to make a prediction. This is also called Nesterovs Dual Averaging algorithm.