Ejemplo comparación de resultados predictores in sillico

Cambio de estudio ELMO2 c.1684C>T (chr20:46371588 C/T, COSV51682670 o NM_133171.5:c.1684C>T)

Exón 18 e intrones adyacentes:

El cambio se encuentra en la segunda línea del exón 7 (la segunda **c** en color rojo).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

Donor splice	sites, direct	strand			Donor splice s	sites, direct	strand		
	pos 5'->3' 223 228		d confidence 0.70 1.00	5' exon intron 3' ACCGCCGAAG^GCAAGGTGAG CGAAGGCAAG^GTGAGAGGAG		pos 5'->3' 216 223 228	phase strand 1 + 2 + 1 +	confidence 0.00 0.70 1.00	5' exon intron 3' ATTGGGAACC^GCTGAAGGCA ACCGCTGAAG^GCAAGGTGAG TGAAGGCAAG^GTGAGAGGAG H
Donor splice	sites, comple	ement strand			Donor splice s	sites, comple	ment strand		
pos 3'->5' 321	pos 5'->3' 26	phase stran	d confidence 0.00	5' exon intron 3' AGCCAAACAG^GTGAGCAACG	pos 3'->5' 321	pos 5'->3' 26	phase strand 	confidence 0.00	5' exon intron 3' AGCCAAACAG^GTGAGCAACG
Acceptor spli	ce sites, dir	rect strand			Acceptor splic	ce sites, dir	ect strand		
	pos 5'->3' 62 98 114 118 123 130 136 294	phase stran 0 + 1 + 2 + 0 + 2 + 0 + 0 +	d confidence 0.00 0.96 1.00 0.34 0.20 0.19 0.17 0.00	5' intron exon 3' TTCCTTCCAG^AGCTCCACTG CTCACTCCAG^TGTGTGTCCA H TCCACCCCAG^GGAGCTGAGG H CCCCAGGGAG^CTGAGGAGA GGGAGCTGAG^GGAGAAGATC GAGGGAGAGAGATCCGAGAGATCC TTGTGCCCAG^GCCTTTCCCA	1	pos 5'->3' 62 98 114 118 123 130 136 294	phase strand 0 + 1 + 2 + 0 + 2 + 0 + 0 + 0 +	confidence 0.00 0.96 1.00 0.34 0.20 0.19 0.07 0.00	5' intron exon 3' TTCCTTCCAG^AGCTCCACTG CTCACTCCAG^TGTGTGTCCA H TCCACCCCAG^GGAGCTGAGG H CCCCAGGGAG^CTGAGGAGA GGGAGCTGAG^GGAGAAGATC GAGGGAGAGAAGATC GAAGATCCAG^CCCGAGATCC TTGTGCCCCAG^GCCTTTCCCA
Acceptor spli	ce sites, con	nplement stra	nd		Acceptor splic	ce sites, com	plement strand	l	
pos 3'->5' 196 181 179		·		5' intron exon 3' CTTTCGGAAG^CTGCTGCCCT GCCCTCACAG^AGCCGGTTCA CCTCACAGAG^CCGGTTCAGG		pos 5'->3' 130 151 166 168	phase strand 0 - 1 - 1 - 0 -	confidence 0.55 0.32 0.30 0.18	TTGCCTTCAG^CGGTTCCCAA CTTTCGGAAG^CTGCTGCCCT GCCCTCACAG^AGCCGGTTCA CCTCACAGAG^CCGGTTCAGG

Aparece un nuevo sitio de accpetor en la secuencia mutante. Si se empleara este en vez del normal, se incluiría un exón críptico a partir del intrón 18.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for 85.53.81.31.8546.0:

Donor site predictions for 85.53.81.31.8535.0:

Start	End	Score	Exon Intron	Start	End	Score	Exon Intron
				221	225	0.00	aggcaag gt gagagg
221	235	0.98	aggcaag gt gagagg	221	255	0.90	aggcaag g c gagagg

Acceptor site predictions for 85.53.81.31.8546.0:

Acceptor site predictions for 85.53.81.31.8535.0:

Start	End	Score	Intron	Exon	Start	End	Score	Intron	Exon
42	82	0.98	ccagctctgctttccttcc	: ag agctccactgtccccatgac	42	82	0.98	ccagctctgctttcc	ttcc ag agctccactgtccccatgac
78	118	0.73	atgaccttccgctcactcc	: ag tgtgtgtccaccccagggag	78	118	0.73	atgaccttccgctca	ctcc ag tgtgtgtccaccccagggag
94	134	0.69	tccagtgtgtgtccacccc	a g ggagctgagggagaagatcc	94	134	0.69	tccagtgtgtgtcca	cccc ag ggagctgagggagaagatcc
274	314	0.52	gatggccccttttgtgccc	: ag gcctttcccagtactgtcgt	274	314	0.52	gatggccccttttgt	gccc ag gcctttcccagtactgtcgt
285	325	0.48	ttgtgcccaggcctttccc	: ag tactgtcgttgctcacctgt	285	325	0.48	ttgtgcccaggcctt	tccc ag tactgtcgttgctcacctgt

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)
accgc(c/t)gaagg	ccgaag	ctgaag	30176	75%

CRYP-SKIP

Results for sequence wt

Exon length (bp)	113
PESS (<=-2.62) density	0.00
NN 5'ss score density	0.09
SF2/ASF score density	17.60
FAS-ESS (hex2) density	0.00
EIE score density	536.44
Probability of cryptic splice site activation (PcR-E)	0.48

ocagtgtgtgtccaccccagGGAGCTGAGGGAGAAGATCCAGCCCGAGATCCTTGAGCTGATCAAGCAGCAGCGCCTGAA

Human Splicing Finder

New Acceptor splice site	Activat activati		eptor site. Potential alteration of splicing (cr	yptic exon
Algorithm/Mati	×	position	sequences	variation
MaxEnt Acceptor site		chr20:46371570	- REF : TCCTCTCACCTTGCCTTCGGCGG - ALT : TCCTCTCACCTTGCCTTCAGCGG	0.9 > 8.86 => 884.44%
HSF Acceptor site (mate	rix AG)	chr20:46371578	- REF : CCTTGCCTTCGGCG - ALT : CCTTGCCTTCAGCG	56.96 > 84.83 => 48.93%

Parece que hay un sitio críptico de *splicing* dentro del propio exón, pero el cambio de interés no lo toma en consideración, por lo que no debe considerar que tenga algún efecto en el *splicing*.

SVM-BPfinder

seq_id	agez	ss_dis	t bp_seq bp_scr	y_cont ppt_off	ppt_len ppt_scr	svm_scr				seq_id	agez	ss_dis	st bp_seq bp_scr	y_cont ppt_off	ppt_len ppt_scr	svm_scr			
wt	41	332	atctcaggg	-0.916442994094	0.507645259939	31	15	33	-1.4479234	mut	41	332	atctcaggg	-0.916442994094	0.507645259939	31	15	33	-1.4479234
wt	41	266	ccatgacct	1.9952750743	0.505747126437	1	15	26	1.5252775	mut	41	266	ccatgacct	1.9952750743	0.505747126437	1	15	26	1.5252775
wt	41	255	cgctcactc	2.9487092245	0.492 7	14	16	1.42126	938	mut	41	255	cgctcactc	2.9487092245	0.492 7	14	16	1.4212	038
wt	41	225	agctgaggg	-0.460375944066	0.486363636364	157	14	25	-9.3263402	mut	41	225	agctgaggg	-0.460375944066	0.486363636364	157	14	25	-9.3263402
wt	41	197	ccttgagct	-0.0812429870699	9 0.5	129	14	25	-7.4011346	mut	41	197	ccttgagct	-0.081242987069	9 0.5	129	14	25	-7.4011346
wt	41	192	agctgatca	0.985441492543	0.502673796791	124	14	25	-6.666122	mut	41	192	agctgatca	0.985441492543	0.502673796791	124	14	25	-6.666122
wt	41	189	tgatcaagc	-2.40363784403	0.5 121	14	25	-7.8046	754	mut	41	189	tgatcaagc	-2.40363784403	0.5 121	14	25	-7.804	0754
wt	41	174	gcctgaacc	1.574989329	0.508875739645	106	14	25	-5.2939134	mut	41	174	gcctgaacc	1.574989329	0.508875739645	106	14	25	-5.2939134
wt	41	161	ctgtgaggg	-1.31107154938	0.50641025641	93	14	25	-5.6018607	mut	41	161	ctgtgaggg	-1.31107154938	0.50641025641	93	14	25	-5.6018607
wt	41	116	aggtgagag	-1.62636937037	0.576576576577	48	14	25	-2.8542286	mut	41	127	cgctgaagg	1.47027699801	0.540983606557	59	14	25	-2.3495222
wt	41	27	tgctcacct	2.8622433933	0.772727272727	1	22	35	2.0348059	mut	41	116	aggtgagag	-1.62636937037	0.576576576577	48	14	25	-2.8542286
										mut	41	27	tgctcacct	2.8622433933	0.772727272727	1	22	35	2.0348059

Variant Effect Predictor tool

ENST00000290246.10:c.1684C>T <u>20:46371588-</u> A <u>46371588</u>	stop_gained	ELMO2	ENSG00000062598 Transcript	ENST00000290246.11	protein_coding	18/22	1877	1684	562	R/*	CGA/TGA	rs765582782, COSV51682670, COSV51685004
ENST00000290246.10:c.1684C>T <u>20:46371588-</u> A <u>46371588</u>	stop_gained	ELMO2	ENSG00000062598 Transcript	ENST00000352077.6	protein_coding	16/20	1678	1678	560	R/*	CGA/TGA	rs765582782, COSV51682670, COSV51685004
ENST00000290246.10:c.1684C>T <u>20:46371588-</u> A <u>46371588</u>	stop_gained	ELMO2	ENSG00000062598 Transcript	ENST00000372176.5	protein_coding	18/22	1889	1420	474	R/*	CGA/TGA	rs765582782, COSV51682670, COSV51685004
ENST00000290246.10:c.1684C>T <u>20:46371588-</u> A	stop_gained	ELMO2	ENSG00000062598 Transcript	ENST00000396391.5	protein_coding	17/21	1790	1684	562	R/*	CGA/TGA	rs765582782, COSV51682670, COSV51685004
ENST00000290246.10:c.1684C>T <u>20:46371588-</u> A <u>46371588</u>	downstream_gene_variant	ELMO2	ENSG00000062598 Transcript	ENST00000425546.5	protein_coding	-	-	-	-	-	-	rs765582782, COSV51682670, COSV51685004
ENST00000290246.10:c.1684C>T <u>20:46371588-</u> A <u>46371588</u>	downstream_gene_variant	ELMO2	ENSG00000062598 Transcript	ENST00000450812.5	protein_coding	-	-	-	-	-	-	rs765582782, COSV51682670, COSV51685004
ENST00000290246.10:c.1684C>T <u>20:46371588-</u> A <u>46371588</u>	stop_gained	ELMO2	ENSG00000062598 Transcript	ENST00000452857.5	protein_coding	3/7	385	385	129	R/*	CGA/TGA	rs765582782, COSV51682670, COSV51685004
ENST00000290246.10:c.1684C>T <u>20:46371588-</u> A <u>46371588</u>	downstream_gene_variant	ELMO2	ENSG00000062598 Transcript	ENST00000462491.5	processed_transcript	-	-	-	-	-	-	rs765582782, COSV51682670, COSV51685004
ENST00000290246.10:c.1684C>T <u>20:46371588-</u> A <u>46371588</u>	non_coding_transcript_exon_variant	ELMO2	ENSG00000062598 Transcript	ENST00000464448.1	processed_transcript	3/5	365	-	-	-	-	rs765582782, COSV51682670, COSV51685004
ENST00000290246.10:c.1684C>T <u>20:46371588-</u> A <u>46371588</u>	stop gained, NMD transcript variant	ELMO2	ENSG00000062598 Transcript	ENST00000467800.5	nonsense_mediated_decay	7/10	858	859	287	R/*	CGA/TGA	rs765582782, COSV51682670, COSV51685004
ENST00000290246.10:c.1684C>T <u>20:46371588-</u> A <u>46371588</u>	downstream_gene_variant	ELMO2	ENSG00000062598 Transcript	ENST00000481852.5	processed_transcript	-	-	-	-	-	-	rs765582782, COSV51682670, COSV51685004
ENST00000290246.10:c.1684C>T	downstream_gene_variant	ELMO2	ENSG00000062598 Transcript	ENST00000488853.5	processed_transcript	-	-	-	-	-	-	rs765582782, COSV51682670, COSV51685004

ESEfinder

Aparece un resultado positive en la secuencia wt para 5'SS:

Sin embargo, las puntuaciones en la secuencia mutante son prácticamente iguales, por lo que se descarta:

1 2081	111	208	- 1	208	111 2	208:	1 1
TGGGAACCGCCGAAGGCAAGgtgagaggag	5.18300	TGGGAACCGCCGAAGGCAAGgtgagaggag	-0.79050il	TGGGAACCGCCGAAGGCAAGgtgagaggag	4.93320	TGGGAACCGCCGAAGGCAAGgtgagaggag	i -0.95150i
(-139)		(-139)		(-139)	1-11	301	
(2007)		(100)		(-199)	\ -\	92/	l

En la búsqueda de ESE, se da un gran cambio en las puntuaciones para 214 y para 115, que descienden considerablemente, por lo que puede que se estén perdiendo ESE.

212	CC -2.29814	212	212	212
(-135) AACCG		(-135) AACCGCC -1.42027	(-135) AACCGCCG 2.79662	(-135) AACCGCC -3.09030
213	CG -3.85465	213	213	213
(-134) ACCGC		ACCGCCG -2.21730	ACCGCCGA -2.80453	ACCGCCG -0.88769
214	GA 3.62385	214	214	214
(-133) CCGCC		(-133) CCGCCGA 3.93380	(-133) CCGCCGAA -2.30883	CCGCCGA -0.75980
215	AA 1.96647	215	215	215
(-132) CGCCG		(-132) CGCCGAA 3.30575	(-132) CGCCGAAG 1.22556	(-132) CGCCGAA -2.75352
216	AG -5.45050	216	216	216
(-131) GCCGA		(-131) GCCGAAG -4.02641	(-131) GCCGAAGG -2.35178	GCCGAAG -0.86764
217	GG 1.36689	217	217	217
(-130) CCGAA		(-130) CCGAAGG 1.98992	(-130) CCGAAGGC -8.58655	CCGAAGG 1.78989
218 (-129) CGAAG	GC 1.02110	218 (-129) CGAAGGC 2.30179	218 CGAAGGCA -2.19300 (-129)	218 CGAAGGC 0.17994

112 (-235)	cagGGAG	-0.47435	112 (-235) cagGGAG 0	.87694	112 (-235)	cagGGAGC	-7.69807	112 (-235)	cagGGAG	-3.75452
113 (-234)	agGGAGC	-4.24849	113 (-234) agGGAGC -2	.87634	113 (-234)	agGGAGCT	-4.59846	113 (-234)	agGGAGC	-0.72252
114 (-233)	gGGAGCT	0.78324	114 (-233) gGGAGCT 0	.33674	114 (-233)	gGGAGCTG	0.54826	114 (-233)	gGGAGCT	-6.42122
115 (-232)	GGAGCTG	-3.50084	115 (-232) GGAGCTG -2	.66251	115 (-232)	GGAGCTGA	-1.75608	115 (-232)	GGAGCTG	-2.48533
116 (-231)	GAGCTGA	1.24828	116 (-231) GAGCTGA -0	.09615	116 (-231)	GAGCTGAG	1.08557	116 (-231)	GAGCTGA	-3.68291
117 (-230)	AGCTGAG	-2.72282	117 (-230) AGCTGAG -1	.52012	117 (-230)	AGCTGAGG	-0.02573	117 (-230)	AGCTGAG	-3.44934
118 (-229)	GCTGAGG	-5.18278	118 (-229) GCTGAGG -4	.31562	118 (-229)	GCTGAGGG	-2.55922	118 (-229)	GCTGAGG	1.04847

EX-SKIP

Seq	PESS	FAS-ESS hex2	FAS-ESS hex3	IIE	IIE	NI-ESS trusted	NI-ESS all	PESE	RESCUE -ESE	EIE	EIE	NI-ESE trusted	NI-ESE all	ESS	ESE	ESS/ESE
	(count)	(count)	(count)	(count)	(sum)	(count)	(sum)	(count)	(count)	(count)	(sum)	(count)	(sum)	(total)	(total)	(ratio)
wt	0	0	0	17	217.1112	0	-1.7113	11	11	49	578.7740	67	76.8733	17	138	0.12
mut	0	0	0	17	217.1112	0	-1.7113	13	13	52	599.5437	68	78.2483	17	146	0.12

Both alleles have a comparable chance of exon skipping.

HOT-SKIP

>wt

Mutation(s) E+71G>T, E+70T>G and E+110C>T have the highest probability of exon skipping.