Variational informee: Reparametrization tricks

Setup: Bayesian informace for some model with parameters DER given some data D:

Idea: Approximate p (812) ~ 9,0 (9(2)

e.g. meon-field:
$$Q_{\theta}(\theta|D) = \frac{d}{dt} \mathcal{N}(\theta_i | \mu_i, \sigma_i^2)$$

 $\varphi_i = \{\mu_i, \sigma_i^2, \dots, \mu_i, \sigma_i^2\}$

Training:
$$\phi^* = \operatorname{arguin} \left[\left(\operatorname{KIL} \left[\left(\operatorname{Q}_{\rho}(\theta | \mathbb{D}) \right) \right] \right] := \mathcal{L}(\rho)$$

$$L(b) := - H \left[d^{b}(b|D) \right] - \left[\int_{a} \left[\log b(D|b) + \log b(b) \right] \right]$$

$$= - H \left[d^{b}(b|D) \right] - \left[\int_{a} \log b(D|b) + \log b(b) \right]$$

$$= - H \left[d^{b}(b|D) \right] - \left[\int_{a} \log b(D|b) + \log b(b) \right]$$

Compute To 2(6):

=
$$\nabla_{\varphi} \int \log p(D|\theta) \, \mathcal{Q}_{\varrho}(\theta|D) \, d\theta + \nabla_{\varphi} \int \log p(\theta) \, \mathcal{Q}_{\varrho}(\theta|D) \, d\theta$$

$$= \int \log p(D|\theta) |\nabla_{\xi} q_{\xi}(\theta|D)| d\theta + \int \log p(\theta) |\nabla_{\xi} q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(D|\theta) |\nabla_{\xi} q_{\xi}(\theta|D)| = \frac{f'(\pi)}{f(\pi)}$$

$$\Rightarrow \nabla_{\xi} q_{\xi}(\theta|D) = \nabla_{\xi} \log q_{\xi}(\theta|D) |Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int \log p(\theta) |\nabla_{\xi} \log q_{\xi}(\theta|D)| Q_{\xi}(\theta|D)| d\theta$$

$$= \int$$

The above Monte Corlo estimator of $\nabla_{\rho} L(\rho)$ depend on ρ and in practice tends to exhibit very high variance (i.e. it is very innaccourate unless a very large number of

Reparametrization trick:

Idea: Introduce a simple "change of variables" such the we compute expectations with respect to distributions that do n deport on 6.

If we can find a function $h:(\epsilon, \beta) \longrightarrow \emptyset$, where $E \sim p(E)$, then we can write:

 $\vartheta_{i} = h_{\varphi}(\varepsilon)$, $\varepsilon \sim p(\varepsilon)$, such that $\vartheta_{i} \sim Q_{\varphi}(\vartheta|D)$

e.g. re-parometrize a Gaussian: $\Theta_i \sim q_{\beta}(\theta(D) = \mathcal{N}(\theta_i | \mu_{\beta}, \epsilon_{\beta})$

In fact, we can generate samples of by sampling Empl $\theta = \mu + \varepsilon \sum_{p}^{\frac{1}{2}}$, where $\varepsilon \sim p(\varepsilon) = \mathcal{N}(0, T)$ 8 = hp(E)

Now recall the troublesaute grad; ent town:

=
$$V_{\varphi} \stackrel{\text{IL}}{=} V_{\varphi} \stackrel{\text{IL}}{=} V_{\varphi} \log P \left(D \mid \mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{i} \sum_{\xi} \frac{1}{\xi} \right) + V_{\varphi} \log P \left(\mu_{\varphi} + \epsilon_{$$