Bab 1

PENDAHULUAN

1.1 Latar Belakang Masalah

Seiring dengan perkembangan teknologi yang semakin cepat, kecerdasan yang awalnya hanya dimiliki oleh makhluk hidup, sekarang mulai dikembangkan dan diimplementasikan ke dalam komputer. Hal tersebut biasa disebut dengan Kecerdasan Buatan. Kecerdasan Buatan atau dalam bahasa Inggris disebut *Artificial Intelligence* (AI) didefinisikan sebagai salah satu cabang ilmu pengetahuan yang berhubungan dengan pemanfaatan mesin untuk memecahkan persoalan yang rumit dengan cara yang lebih manusiawi. Teknologi kecerdasan buatan memiliki banyak kegunaan sehingga mampu membuat komputer dan perangkat selular untuk melakukan verifikasi wajah, pengenalan suara, pengenalan sidik jari, memberikan rekomendasi *video*, dan masih banyak lainnya. Selain diimplementasikan di ranah teknologi, kecerdasan buatan juga telah diimplementasikan di ranah lainnya, seperti kesehatan, otomotif, hingga permusikan.

Namun, meskipun implementasi kecerdasan buatan dalam dunia permusikan tergolong banyak, namun dalam hal akurasi masih kurang akurat seperti *Chord Recognition*. *Chord Recognition* adalah sebuah sistem atau aplikasi untuk mengetahui atau mengukur akor secara tepat. Untuk membangun sistem tersebut, dibutuhkan metode-metode agar akurasi yang dihasilkan tinggi. Metode yang sering digunakan adalah metode *Convolutional Neural Network* (CNN).

Convolutional Neural Network (CNN) adalah salah satu metode Machine Learning dari pengembangan Multi Layer Perceptron (MLP) yang didesain untuk mengolah data dua dimensi. CNN dikatakan pengembangan lebih lanjut dari MLP karena CNN menggunakan metode yang mirip dengan MLP, namun menggunakan dimensi yang lebih banyak. CNN juga sering digunakan sebagai ekstraktor fitur yang kuat dari data yang telah disatukan, seperti gambar. Metode ini dapat diperluas ke berbagai tugas klasifikasi sinyal audio dengan merepresentasikan sinyal input dalam domain frekuensi waktu.

Terdapat beberapa peneliti terdahulu yang telah melakukan penelitian serupa, seperti Filip Korzeniowski dan Gerhard Widmer telah melakukan penelitian tentang pengenalan akor. Penelitian tersebut berjudul FEATURE LE-ARNING FOR CHORD RECOGNITION: THE DEEP CHROMA EXTRACTOR. Pada penelitian tersebut, Filip dan Gerhard melakukan pelatihan data menggunakan *chromogram* terhadap *Short-Time Fourier Transform* (STFT) sebagai data latih. STFT merupakan sebuah metode yang mengubah data mentah audio ke bentuk satuan signal menjadi frekuensi dalam satuan waktu. Penelitian tersebut juga membandingkan hasil akurasi *chromogram* dengan *spectogram*. Tingkat akurasi yang didapat menggunakan *chromogram* yaitu sebesar 69.2%, sementara tingkat akurasi untuk model yang menggunakan *spectogram* adalah sebesar 78.8%.

Beberapa studi penelitian menggunakan metode CNN pada model arsitektur untuk melakukan klasifikasi terhadap data berupa suara. Penelitian tersebut menerapkan CNN asli yang diperluas secara fungsional untuk *input spectogram* suara dan menunjukkan bahwa arsitektur CNN mengungguli bentuk-bentuk dasar sebelumnya dari *Deep Learning Network* (DNN) yang terhubung penuh pada pengenalan telepon dan tugas-tugas besar pengenalan suara vokal. Adapun sebuah penelitian untuk melakukan klasifikasi kelaparan, kesakitan dan mengantuk pada suara bayi menangis menggunakan CNN terhadap *spectogram* MFCC dengan tingkat akurasi 78.5%.

Beberapa studi penelitian lainnya, seperti yang dilakukan oleh I Gede Harsemadi, Made Sudarman, dan Nyoman Pramaita yakni memanfaatkan algoritma KNN dalam mengelompokkan musik terhadap suasana hati. Sistem yang dibangun dalam penelitian tersebut akan menerima masukan data berupa *file* musik format mono *.wav, yang selanjutnya melakukan proses pengelompokan terhadap musik dengan menggunakan klasifikasi KNN.

Sistem tersebut akan menghasilkan keluaran berupa label jenis *mood* yaitu, *contentment*/kepuasan, *exuberance*/gembira, *depression*/depresi dan *anxious*/cemas; kalut. Secara umum hasil akurasi sistem dengan menggunakan algoritma klasifikasi K-NN cukup baik yaitu 86,55% pada nilai k = 3, serta waktu pemrosesan klasifikasi rata-rata 0,01021 detik per-file musik.

1.2 Identifikasi Masalah

Berdasarkan latar belakang telah diuraikan, maka penelitian ini akan menguji akurasi metode CNN dalam melakukan pengenalan terhadap data lagu yang dimainkan dengan menggunakan alat musik Piano. Data latih yang digunakan adalah suara instrumen piano dalam bentuk format mp3 dan wav. Data latih akan direkam dengan bantuan aplikasi Audacity dan akan dipisah menjadi potongan-potongan lagu berdasarkan jenis akor dan not pada piano.

1.3 Batasan Masalah

Hasil penelitian ini memiliki implikasi baik untuk penelitian dan pengembangan lebih lanjut. Agar pengerjaan lebih terarah, dalam penelitian ini terdapat beberapa batasan masalah, diantaranya:

- Jumlah instrumen yang digunakan adalah instrumen piano.
- Format file instrumen yang dapat diterima hanya file dengan format mp3 dan wav.
- Data yang diuji terdiri dari 12 kelas Major dan 12 kelas Minor.

1.4 Tujuan Penelitian

Adapun tujuan dari penelitian ini adalah untuk mengukur tingkat akurasi dari metode *Convolutional Neural Network* (CNN) dalam melakukan pengenalan terhadap data lagu yang dimainkan dengan menggunakan alat musik Piano.

1.5 Kegunaan Penelitian

Penelitian ini memiliki beberapa kegunaan yaitu sebagai berikut:

1.5.1 Kegunaan Teoritis

Kegunaan Teoritis pada penelitian ini di bagi menjadi dua, yaitu kegunaan penelitian untuk peneliti, dan kegunaan penelitian untuk peneliti selanjutnya.

1.5.1.1 Peneliti

Penelitian ini dapat digunakan sebagai tambahan pengetahuan tentang metode CNN dalam melakukan pengenalan otomatis. Selain itu, juga menambah pengetahuan peneliti tentang bahasa pemrograman Python.

1.5.1.2 Peneliti Selanjutnya

Penelitian ini dapat digunakan untuk sebagai referensi untuk penelitian selanjutnya bagi peneliti lain yang berminat untuk mempelajari Kecerdasan Buatan. Selain itu, penelitian ini juga dapat digunakan untuk mengimplementasikan metode *Machine Learning*.

1.5.2 Kegunaan Praktis

Kegunaan praktis pada penelitian ini adalah untuk pemusik amatir.

1.5.2.1 Pemusik Amatir

Penelitian ini dapat digunakan sebagai bahan acuan untuk menentukan akor dari sebuah lagu atau nada. Selain itu, penelitian ini juga sangat membantu para pemusik amatir yang masih buta dengan not nada.