Lösungen SYT (ETE) 3AHIT SW 29 / 23. 03. 2020

Erstellt für: 30. 03.2020

1.

- 2. 16 siehe Excel-Datei!
- 3. siehe Excel-Datei!
- 4. siehe Excel-Datei!
- Sie wandelt ein digitales Signal in eine kontinuierliche (treppenförmige)
 Spannung. Dies ist ein Digital-Analog-Converter (DAC) oder Digital-Analog-Wandler
 - Nein, mindestens 8!
 - Datenbus

	Bitkom	bination		Zahl	U _{e3}	U _{e2}	Uei	U _{e0}	U _a	
D.M.O.I.DIIIddoii					V	V	V	V	V	Ströme
0	0	0	0	0	0	0	0	0	0,00	I ₃ = 1,000 mA Kt-Nr = 12 Bitte Katalognummer eingeben !!
0	0	0	1	1	0	0	0	3	0,19	I ₂ = 0,500 mA U = 3 V
0	0	1	0	2	0	0	3	0	0,38	I ₁ = 0,250 mA
0	0	1	1	3	0	0	3	3	0,56	I ₀ = 0,125 mA
0	1	0	0	4	0	3	0	0	0,75	
0	1	0	1	5	0	3	0	3	0,94	
0	1	1	0	6	0	3	3	0	1,13	Widerstände
0	1	1	1	7	0	3	3	3	1,31	R ₃ = 3 kΩ
1	0	0	0	8	3	0	0	0	1,50	$R_2 = 6 k\Omega$
1	0	0	1	9	3	0	0	3	1,69	R ₁ = 12 kΩ
1	0	1	0	10	3	0	3	0	1,88	R _o = 24 kΩ
1	0	1	1	11	3	0	3	3	2,06	R= 12 kΩ
1	1	0	0	12	3	3	0	0	2,25	Kennline des 4-Bit-DAC
1	1	0	1	13	3	3	0	3	2,44	
1	1	1	0	14	3	3	3	0	2,63	3,00
1	1	1	1	15	3	3	3	3	2,81	2,50
					-				-,	
										2,00
										1,50
										1
										1,00
										0,50
										0.00
										0,00

$$I_0 = \frac{U_{e0}}{R_0} = \cdots$$

$$I_1 = \frac{U_{e1}}{R_1} = \cdots$$

$$I_2 = \frac{U_{e2}}{R_2} = \cdots$$

$$I_3 = \frac{U_{e3}}{R_3} = \cdots$$

Knotenregel:

$$I = -(I_0 + I_1 + I_2 + I_3 = \frac{U_a}{R}$$

$$\frac{U_{e0}}{R_0} + \frac{U_{e1}}{R_1} + \frac{U_{e2}}{R_2} + \frac{U_{e3}}{R_3} = -\frac{U_a}{R}$$

$$\frac{U_{e0}}{16R} + \frac{U_{e1}}{8R} + \frac{U_{e2}}{4R} + \frac{U_{e3}}{2R} = -\frac{U_{a}}{R}$$

$$\frac{U_{e0}}{16} + \frac{U_{e1}}{8} + \frac{U_{e2}}{4} + \frac{U_{e3}}{2} = -U_a$$