Métodos Numéricos e Otimização Não Linear

LEI - Licenciatura em Engenharia Informática

Folhas de Exercícios

Maria Teresa Torres Monteiro

Departamento de Produção e Sistemas

Universidade do Minho 1^o semestre 2012/13

- 1. O resultado de uma operação não tem necessariamente o mesmo número de algarismos significativos do que as parcelas. Comprove a afirmação, calculando a expressão x+y com $x=0.123\times 10^4$ e $y=0.456\times 10^{-3}$.
- 2. Calcule um limite superior do erro absoluto no cálculo da expressão

$$f(x, y, z) = -x + y^2 + sen(z)$$

sabendo que são usados os seguintes valores aproximados:

$$x = 1.1 (\delta_x = 0.05); y = 2.04 (\delta_y = 0.005); z = 0.5 \text{ rad. } (\delta_z = 0.05).$$

Quantos algarismos significativos apresenta o valor calculado de f?

3. Com base no limite superior do erro absoluto do valor calculado da expressão

$$f(x,y,z) = \frac{2xy}{x^2 + z},$$

e sabendo que são usados os seguintes valores aproximados

$$x = 3.1416 \text{ de } \pi$$
; $y = 1.732 \text{ de } \sqrt{3}$; $z = 1.4142 \text{ de } \sqrt{2}$

quantos algarismos significativos tem o valor calculado de f?

- 4. Uma corrente eléctrica atravessa uma resistência (R) de 20Ω. A resistência foi medida com um erro relativo que não excede 0.01. A intensidade da corrente (I) é 3.00±0.01 A. Sabendo que a tensão da corrente é dada por V = RI, determine um limite superior do erro absoluto no cálculo da tensão da corrente. Quantos algarismos significativos garante para o valor calculado da tensão?
- 5. Considere a matriz A e o vector b:

$$A = \begin{pmatrix} 2.4 & 6.0 & -2.7 & 5.0 \\ -2.1 & -2.7 & 5.9 & -4.0 \\ 3.0 & 5.0 & -4.0 & 6.0 \\ 0.9 & 1.9 & 4.7 & 1.8 \end{pmatrix} \qquad b = \begin{pmatrix} 14.6 \\ -11.4 \\ 14.0 \\ -0.9 \end{pmatrix}$$

- (a) Resolva o sistema correspondente por um método directo e estável.
- (b) Calcule o determinante de A por um método directo e estável.
- (c) Calcule A^{-1} usando o método de eliminação de Gauss com pivotagem parcial.
- 6. Considere os três sistemas de equações lineares

$$A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 8 \\ 9 \end{pmatrix}, \quad A \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 9 \\ 1 \\ 8 \\ 4 \end{pmatrix} \quad \text{e} \quad A \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ -7 \\ 5 \end{pmatrix}$$

com

$$A = \left(\begin{array}{cccc} 4 & 2 & 1 & -3 \\ 1 & 2 & -1 & 0 \\ 3 & -1 & 2 & 4 \\ 0 & 2 & 4 & 3 \end{array}\right).$$

Calcule as três soluções de uma só vez, usando um método directo e estável.

7. Um engenheiro supervisiona a produção de 3 modelos de automóveis. Para a sua produção, são necessários 3 tipos de materiais: metal, tecido e plástico. As quantidades para produzir um carro de cada modelo são:

	metal (kg./carro)	tecido(kg./carro)	borracha(Kg./carro)
'Jeep'	2.71	4.11	2.69
'coupé'	1.63	2.44	1.64
'V6'	0.32	0.19	0.36

Existem em *stock*, respectivamente 38.48, 56.69, 38.54 kg. de metal, tecido e borracha. Quantos automóveis podem ser produzidos com a quantidade de *stock* existente? Resolva o sistema por um método direto e estável usando 4 casas decimais nos cálculos.

8. Considere a figura representando um sistema de 4 molas ligadas em série sujeito a uma força F de 2000 Kg.

Numa situação de equilíbrio, as equações força-balanço deduzidas definem interrelações entre as molas:

$$\begin{cases} k_2(x_2 - x_1) &= k_1 x_1 \\ k_3(x_3 - x_2) &= k_2(x_{2-} x_1) \\ k_4(x_4 - x_3) &= k_3(x_{3-} x_2) \\ F &= k_4(x_{4-} x_3) \end{cases}$$

em que $k_1=150,\ k_2=50,\ k_3=75$ e $k_4=225$ são as constantes das molas $(kg/s^2).$

9. Uma equipa de três paraquedistas ligados por uma corda de peso desprezável é lan-

Resolva o sistema por um método direto e estável.

çada em queda livre a uma velocidade v = 5 m/s conforme a figura.

Considere os seguintes dados:

Paraquedista	Massa	Coef. de resistência		
(i)	$(m_i) (Kg)$	$(c_i) (Kg/s)$		
1	70	10		
2	60	14		
3	40	17		

O sistema linear resultante permite calcular a tensão em cada secção da corda $(R \ e \ T)$ e a aceleração da equipa (a).

$$\begin{cases} m_1 g & -T & -c_1 v & = m_1 a \\ m_2 g & +T & -c_2 v & -R & = m_2 a \\ m_3 g & -c_3 v & +R & = m_3 a \end{cases}$$

(considere $g = 9.8 \ m/s^2$).

Resolva o sistema por um método direto e estável.

- 10. Localize através do método gráfico as raízes das equações não lineares em x:
 - (a) $f(x) \equiv x^3 3x + 1 = 0$.
 - (b) $f(x) \equiv sen(x) + x 2 = 0$.
 - (c) $f(x) \equiv e^x + x 1 = 0$.
 - (d) $f(x) \equiv x + ln(x) = 0$.
- 11. Baseado num trabalho de Frank-Kamenetski, em 1955, a temperatura no interior de um material, quando envolvido por uma fonte de calor, pode ser determinada se

resolvermos a seguinte equação não linear em x:

$$\frac{e^{-0.5x}}{\cosh(e^{0.5x})} = \sqrt{0.5L}$$

Para L=0.088, calcule a raiz da equação, usando um método que não recorra a derivadas.

Tome como aproximação inicial o intervalo [-1,0] e pare o processo iterativo quando o critério de paragem for verificado para $\varepsilon_1 = 0.5$ e $\varepsilon_2 = 0.1$, ou ao fim de 2 iterações.

Nota:
$$cosh(y) = \frac{e^y + e^{-y}}{2}$$

12. O volume v de um líquido num tanque esférico de raio r está relacionado com a profundidade h do líquido da seguinte forma:

$$v(h) = \frac{\pi h^2 (3r - h)}{3}.$$

- (a) Calcule, utilizando um método que não recorre ao cálculo de derivadas, a profundidade h, num tanque de raio r=1 para um volume de 0.5. Utilize para aproximação inicial o intervalo [0.25, 0.5] e considere $\varepsilon_1 = \varepsilon_2 = 10^{-2}$ ou no máximo 3 iterações.
- (b) Repita os cálculos, nas mesmas condições da alínea anterior, mas utilizando para aproximação inicial o intervalo [2.5, 3]. Comente os resultados e analise a viabilidade da solução encontrada.
- 13. Pela aplicação do Princípio de Arquimedes para determinação do calado de embarcações, pretende determinar-se a profundidade h correspondente ao equilíbrio tal que

$$\gamma_s V_s = \gamma_l V_l(h)$$

com $\gamma_s = 918.35 \ kg/m^3$ (densidade do sólido), $V_s = 1700m^3$ (volume do sólido), $\gamma_l = 1.025kg/m^3$ (densidade do líquido) e $V_l(h)$ volume do líquido deslocado (ver figura).

Utilize o método de Newton para calcular o valor de h, supondo $V_l(h) = h(h-40)^2$. Utilize para aproximação inicial $h^{(1)} = 140$ e $\epsilon_1 = \epsilon_2 = 10^{-4}$, ou no máximo 3 iterações.

14. O valor de π pode ser obtido através da resolução das seguintes equações:

a)
$$sen(x) = 0;$$

b)
$$cos(x) + 1 = 0$$
.

Aplique o método de Newton com $x_1 = 3$ e $\varepsilon_2 = 10^{-4}$ em cada caso a) e b).

Compare os resultados obtidos e o número de iterações calculadas.

15. A concentração de uma bactéria c(t) num depósito decresce de acordo com a seguinte expressão

$$c(t) = 70e^{-1.5t} + 25e^{-0.075t}.$$

Utilize um método iterativo que recorre ao cálculo da derivada para determinar o tempo necessário até a concentração da bactéria ficar reduzida a 9. Use a seguinte aproximação inicial $t_1 = 5$. Para a paragem do processo iterativo use $\varepsilon_1 = \varepsilon_2 = 0.05$ ou $n_{\rm max} = 3$.

16. A figura representa um vulção em erupção.

A relação entre a distância y (milhas) percorrida pela lava e o tempo t (horas) é dada por:

$$y(t) = 7 (2 - 0.9^t).$$

Existe uma aldeia no sopé da montanha a uma distância de y=10. O gabinete de protecção civil advertiu os moradores da aldeia de que a lava chegaria às suas casas em menos de 6 horas. Calcule utilizando um método iterativo que recorre ao cálculo de derivadas o instante de tempo em que a lava do vulcão atinge a aldeia. Considere $\varepsilon_1 = \varepsilon_2 = 10^{-3}$ ou no máximo 3 iterações.

Nota: $(a^x)' = a^x \ln(a)$

17. Uma das soluções para os resíduos de material nuclear é colocá-los em barris especiais que serão mais tarde depositados no fundo do oceano. Se os recipientes permanecerem intactos, a contaminação do ambiente circundante é mínima. Resolvendo as equações de movimento para os barris à medida que eles descem na água, chega-se à seguinte relação entre a velocidade de impacto, v, e a profundidade da água, D:

$$D = \frac{1}{k^2 g} \left[W(W - B) \ln \left(1 + \frac{kv}{W - B} \right) - Wkv \right],$$

em que W é o peso dos barris, B é a sua flutuabilidade, g é a constante gravitacional e k é o coeficiente de atrito. A flutuabilidade dos barris pode ser determinada através do seu volume, sendo igual a 470. O coeficiente de atrito é determinado experimentalmente e é dado por k=0.08. A constante gravitacional é g=32 e o peso dos barris W=527.

- (a) Determine a velocidade de impacto v usando o método da secante, quando os barris são lançados numa zona cuja profundidade é D=-300. Utilize como aproximações iniciais $v_1=40$ e $v_2=45$, e no critério de paragem $\varepsilon_1=0.05$, $\varepsilon_2=0.05$ ou $n_{\rm max}=2$.
- (b) Através de experiências, mostrou-se que os barris se danificam se a velocidade de impacto com o fundo do oceano for superior a 40. Na situação da alínea anterior, haverá risco de contaminação?

18. Um certo equipamento de 20000 euros vai ser pago durante 6 anos. O pagamento anual é de 4000 euros. A relação entre o custo do equipamento P, o pagamento anual A, o número de anos n e a taxa de juro i é a seguinte:

$$A = P \frac{i(1+i)^n}{(1+i)^n - 1}.$$

Utilize o método iterativo mais adequado para determinar a taxa de juro utilizada nos cálculos. O valor da taxa de juro pertence ao intervalo [0.05, 0.15]. Para a paragem do processo iterativo use $\varepsilon_1 = \varepsilon_2 = 0.05$ ou $n_{max} = 3$.

19. A velocidade ascendente, v, de um foguetão pode ser calculada pela seguinte expressão:

$$v(t) = u \ln(\frac{m_0}{m_0 - qt}) - gt$$

em que u é a velocidade relativa a que o combustível é expelido, m_0 é a massa inicial do foguetão no instante t=0, q é a taxa de consumo de combustível e g é a aceleração da gravidade. Considerando u=2200~m/s, $g=9.8m/s^2$, $m_0=1.6\times 10^5~Kg$ e q=2680~Kg/s, calcule o tempo para o qual o foguetão atinge a velocidade v=1000~m/s, sabendo que esse instante está entre 20~s e 30~s.

Utilize o método que achar mais adequado, com $\varepsilon_1=10^{-2}$ e $\varepsilon_2=10^{-1}$ ou no máximo 3 iterações.

20. Escreva o sistema das equações não lineares

$$\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$$

que surge quando se pretende calcular um dos pontos de intersecção da circunferência de centro em (0,0) e raio 3 com a recta que passa pelos pontos (0,1) e (1,0).

A partir da aproximação inicial (0,0), implemente o método iterativo de Newton para calcular uma solução do sistema. Comente o resultado. Recomece o processo iterativo com o ponto (2,0).

21. Usando o método iterativo de Newton, determine um dos pontos de intersecção da circunferência

$$x_1^2 + x_2^2 = 2$$

com a hipérbole

$$x_1^2 - x_2^2 = 1.$$

Considere os valores iniciais $(x_1, x_2)^{(1)} = (1.5, 0.5)$ e para a paragem do processo iterativo use $\varepsilon_1 = \varepsilon_2 = 0.05$ ou $n_{max} = 2$.

22. Considere o seguinte sistema

$$\begin{cases}
-x_2 + 2x_1^n = 4 \\
-x_2 - x_2^m - x_1 = 8
\end{cases}$$

em que m e n são parâmetros.

Considere m=3 e n=2. Resolva o sistema utilizando para aproximação inicial o ponto $x^{(1)}=(1,-2)^T$. Para o critério de paragem use $\varepsilon_1=\varepsilon_2=10^{-2}$ (ou no máximo 2 iterações).

- 23. Pensei em dois números x e y. O produto dos dois somado ao cubo do segundo é igual a 3 e o logaritmo neperiano do segundo adicionado à metade do primeiro é 1. Em que números pensei?
 - (a) Formule o problema como um sistema de equações.
 - (b) Resolva-o utilizando para aproximação inicial o ponto (1.9, 1.1). Apresente o resultado obtido no final de uma iteração e a correspondente estimativa do erro relativo.
- 24. Num colector solar, um balanço de energia na placa absorvente e na placa de vidro produz o seguinte sistema de equações não lineares nas temperaturas absolutas da placa absorvente (x_1) e da placa de vidro (x_2)

$$\begin{cases} x_1^4 + 0.068x_1 - x_2^4 - 0.058x_2 &= 0.015 \\ x_1^4 + 0.058x_1 - 2x_2^4 - 0.117x_2 &= 0 \end{cases}.$$

Considerando a seguinte aproximação inicial $(x_1, x_2)^{(1)} = (0.3, 0.3)$, implemente uma iteração do método de Newton. Apresente uma estimativa do erro relativo da aproximação calculada.

25. Use o método iterativo de Newton para determinar um ponto do espaço (x_1, x_2, x_3) que, pertence à esfera de raio 2 de equação

$$x_1^2 + x_2^2 + x_3^2 = 4,$$

está sobre o plano $x_3 = 1$ e dista uma unidade do ponto (0, 1, 1).

Tome como aproximação inicial o ponto (1, 1, 1). No critério de paragem use $\varepsilon_1 = 0.1$ e $\varepsilon_2 = 0.05$ (2 iterações).

26. A posição de um determinado objecto O_1 no plano xy é descrita em função do tempo (t) pelas seguintes equações:

$$x_1(t) = t$$
 $y_1(t) = 1 - e^{-t}$

A posição de um segundo objecto O_2 é descrita pelas seguintes equações:

$$x_2(t) = 1 - t\cos(\alpha)$$
 $y_2(t) = -0.1t^2 + tsen(\alpha)$

em que α representa o ângulo, como mostra a figura

Determine os valores de t e α na posição em que os dois objectos colidem, i.e., na posição em que se igualam as coordenadas x e y:

$$t = 1 - t\cos(\alpha)$$
$$1 - e^{-t} = -0.1t^2 + tsen(\alpha)$$

Considere os valores iniciais $(t, \alpha)^{(1)} = (4.3, 2.4)$ e $\varepsilon_1 = \varepsilon_2 = 0.015$ ou no máximo duas iterações.

27. Considere a seguinte figura de uma viga em balanço:

Um modelo de elementos finitos de uma viga em balanço sujeita a carga e momentos é obtido pela optimização de

$$f(x,y) = 5x^2 - 5xy + 2.5y^2 - x - 1.5y,$$

em que x e y são o deslocamento e o momento da extremidade, respectivamente. Calcule os valores de x e y que minimizam f(x,y), utilizando o método iterativo de Newton. Para aproximação inicial use (1,1) e $\epsilon_1 = \epsilon_2 = 10^{-6}$ ou no máximo duas iterações. Comente os resultados.

28. Duas estações eléctricas vão fornecer energia a uma certa região da forma mais económica possível. O custo total de operação das duas estações é dado por

$$f(x_1, x_2) = 0.1 + 0.01x_1x_2 + 0.15x_2^4 + 0.01x_1^4 - 0.25(x_1 + x_2 - 100)$$

em que x_1 é a energia fornecida pela primeira estação e x_2 é a energia fornecida pela segunda estação. Determine os valores de x_1 e x_2 por forma a minimizar o custo total de operação das duas estações. Utilize como aproximação inicial o ponto (2.0, 0.5) e $\varepsilon_1 = \varepsilon_2 = 0.2$ (uma iteração).

29. A tabela seguinte apresenta a população dos Estados Unidos da América (em milhões) de 1940 a 1980.

Ano	1940	1950	1960	1970	1980
População	132.165	151.326	179.323	203.302	226.542

- (a) Construa o polinómio interpolador de Newton de grau 4 para estimar a população no ano 1965.
- (b) A população em 1930 foi 123.203. Qual a precisão do valor calculado na alínea a)?
- 30. Considere a seguinte tabela da função f(x)

Determine a de modo a que o polinómio interpolador de f(x) nos pontos da tabela dada seja de grau 3. Justifique.

31. A figura representa um reservatório com 2.1 metros de altura. Considere que, no início, o reservatório está cheio de água. Num certo instante abre-se a válvula e o reservatório começa a ser esvaziado.

A altura (em metros) de água do reservatório, t horas depois de este ter começado a ser esvaziado, é dada por h(t), de acordo com a tabela

Instante, t_i	0	1	4	7	8	10	14
Altura de água, $h(t_i)$	2.1	2.0	1.8	1.5	1.4	1.1	0

Use um polinómio interpolador de grau 2 para estimar a altura de água no reservatório ao fim de 5 horas.

32. A tabela seguinte apresenta a velocidade de queda de um paraquedista em função do tempo:

$tempo\ (seg)$	1	3	5	7	20
$vel\ (cm/seg)$	800	2310	3090	3940	8000

- (a) Estime o valor da velocidade no instante de tempo t=10seg, utilizando um polinómio interpolador de grau 3.
- (b) Calcule uma aproximação do erro cometido na alínea anterior.
- 33. Pretende-se construir um desvio entre duas linhas de caminho de ferro paralelas. O desvio deve corresponder a um polinómio de grau três que une os pontos (0,0) e (4,2), como mostra a figura

Com base nos quatro pontos da tabela

x_i	-1	0	4	5
$f_i = f(x_i)$	0.4375	0	2	1.5625

construa uma spline cúbica natural para definir a trajectória do desvio e calcular f(2).

34. A resistência de um certo fio de metal, f(x), varia com o diâmetro desse fio, x. Foram medidas as resistências de 6 fios de diversos diâmetros:

x_i	1.5	2.0	2.2	3.0	3.8	4.0
$f\left(x_{i}\right)$	4.9	3.3	3.0	2.0	1.75	1.5

Como se pretende estimar a resistência de um fio de diâmetro 1.75, use uma "spline" cúbica natural para calcular esta aproximação.

35. A distância requerida para parar um automobilista é função da velocidade a que ele se desloca. Os seguintes dados experimentais foram recolhidos para quantificar essa relação:

vel(Km/h)	15	20	25	30	40	50
distância (m)	16	20	34	40	60	90

Estime a distância necessária para parar um carro que se desloca a uma velocidade de $45 \ Km/h$, utilizando uma spline cúbica completa.

36. Num certo campeonato regional de futebol há 7 equipas. No fim da temporada, o número de pontos ganhos e o número de golos sofridos por 6 das equipas estão representados na tabela

Equipa	F.C.Sol	F.C.Lá	S.C.Gato	Nova F.C.	Vila F.C.	F.C.Chão
N^o de pontos, x_i	10	12	18	27	30	34
N^o de golos, $f(x_i)$	20	18	15	9	12	10

- (a) Use uma spline cúbica completa para descrever a relação entre o número de pontos e o número de golos sofridos pelas equipas no campeonato. Sabendo que a 7^a equipa terminou o campeonato com 29 pontos, estime o número de golos que terá sofrido.
- (b) Calcule uma estimativa do erro de truncatura cometido na alínea anterior.
- 37. Considere a função f(x) definida por

Sabendo que $s_3'''(-2) = 12$ e $s_3'''(2) = 20$ estime o valor de f(-1) através de uma 'spline' cúbica.

38. A seguinte função segmentada $s_3(x)$ no intervalo [0, 3], poderá representar uma spline cúbica? Justifique.

$$s_3(x) = \begin{cases} s_3^1(x) = 3x^3 - x^2 + x - 2, & 0 \le x \le 1\\ s_3^2(x) = 2x^3 + 2x - 3, & 1 \le x \le 3 \end{cases}$$

39. Considere as duas seguintes funções 'spline' cúbicas:

$$S_3(x) = \begin{cases} -x+5, & 0 \le x \le 1\\ 3.75x^3 - 11.25x^2 + 10.25x + 1.25, & 1 \le x \le 3\\ -3.75x^3 + 56.25x^2 - 192.25x + 203.75, & 3 \le x \le 5 \end{cases}$$

e

$$R_3(x) = 2x^3 - 3x^2 + 5, \qquad 0 \le x \le 5$$

e a tabela da função f(x):

Verifique se alguma das duas funções $S_3(x)$ e $R_3(x)$, corresponde à função 'spline' cúbica completa, interpoladora de f(x) nos pontos da tabela dada.

40. Um braço de um robô deve passar nos instantes t_0, t_1, t_2, t_3, t_4 e t_5 por posições prédefinidas $\theta(t_0), \theta(t_1), \theta(t_2), \theta(t_3), \theta(t_4)$ e $\theta(t_5)$, onde $\theta(t)$ é o ângulo (em radianos) que o braço do robô faz com o eixo dos X's.

- (a) Com base nos dados da tabela, aproxime a trajectória do robô por uma spline cúbica completa. Indique também uma aproximação da posição do robô no instante t=1.5.
- (b) Calcule uma aproximação à velocidade do robô no instante t = 1.5
- (c) Calcule um limite superior do erro de truncatura que se comete quando se usa a derivada da *spline* calculada para aproximar a velocidade do robô.

41. Foram registados os consumos, $f(x_i)$, de um aparelho em determinados instantes, x_i (em segundos):

x_i	0	0.1	0.2	0.3	0.4	0.5	0.6	3.6	6.6	9.6	9.8	10
$f\left(x_{i}\right)$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.6	0.6	0.6	0.7	0.8

- (a) Estime o consumo total ao fim de 10 segundos.
- (b) Estime o erro cometido no intervalo [0.6,9.6].
- 42. A função F(t) surge na determinação da tensão à superfície de um líquido que rodeia uma bolha esférica de gás:

$$F(t) = \int_0^t \frac{P(x)}{Q(x)} dx \quad \text{para } 0 \le t \le 1$$

em que

$$P(x) = 3 + 3x + x^{2}$$
$$Q(x) = 3 + 6x + 6x^{2} + 2x^{3}$$

Determine F(1) considerando apenas os seguintes valores de x no cálculo do integral

43. O comprimento do arco da curva y = f(x) ao longo do intervalo [a, b] é dado por

$$\int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^2} dx.$$

Calcule uma aproximação numérica ao comprimento do arco da curva $f(x) = e^{-x}$ no intervalo [0, 1], usando 5 pontos igualmente espaçados no intervalo.

44. A resposta de um transdutor a uma onda de choque causada por uma explosão é dada pela função $F(t)=8e^{-t}\frac{I(a)}{\pi}$ para $t\geq a,$ em que

$$I(a) = \int_{1}^{2} f(x, a)dx \qquad \text{com } f(x, a) = \frac{e^{ax}}{x}$$

Calcule I(1) usando a fórmula composta do trapézio com erro de truncatura inferior a 0.05.

45. O valor de π pode ser calculado através do seguinte integral:

$$\pi = \int_0^1 \frac{4}{1+x^2} dx.$$

Estime o valor de π utilizando a fórmula composta do trapézio com erro de truncatura inferior a 0.01.

46. Determine uma aproximação ao valor do integral definido

$$\int_0^1 \left(x^2 + \frac{1}{x+1} \right) dx$$

através da fórmula de Simpson, com um erro de truncatura, em valor absoluto, inferior a 0.0005

47. O tempo t (seg) para um carro acelerar desde 40 mph até a velocidade v (mph) é dado, para seis valores de v, pela seguinte tabela:

i	1	2	3	4	5	6
$v_i(mph)$	40	45	50	55	60	70
$t_i(seg)$	0.00	0.69	1.40	2.15	3.00	3.90

Estime a distância x (ft) que o carro percorre desde a aceleração de $40 \ mph$ até $70 \ mph$, através da seguinte expressão:

$$x = \frac{22}{15} \left[t_6 v_6 - \int_{40}^{70} t \ dv \right]$$

Estime o erro de truncatura cometido no período [60, 70].

48. O trabalho realizado por uma força F(x) cujo ângulo entre a direcção do movimento e a força é dado por $\theta(x)$, pode ser obtido pela seguinte fórmula:

$$W = \int_{x_0}^{x_n} F(x) \cos(\theta(x)) dx$$

em que x_0 e x_n são a posição inicial e final, respectivamente.

(a) Calcule a melhor aproximação ao trabalho realizado, W, ao puxar um bloco da posição $0\,ft$ até à posição $30\,ft$ sabendo que a força aplicada e o ângulo usado são dados na tabela seguinte.

x	0	2.5	5	15	20	25	30
F(x)	0.0	7.0	9.0	14.0	10.5	12.0	5.0
$\theta(x)$	0.5	0.9	1.4	0.9	1.3	1.48	1.5

- (b) Calcule uma estimativa do erro de truncatura cometido no intervalo [5, 15] ft.
- 49. O cálculo da entalpia, H ($J mol^{-1}$), para um determinado composto, pode ser realizado através do seguinte integral

$$H(T) = \int_{T_{ref}}^{T_f} C_p(T) \ dT$$

onde os limites inferior e superior do integral são, respectivamente, a temperatura de referência e a temperatura final para a qual se pretende calcular a entalpia. Para o Azoto (supondo comportamento de gás ideal), a variação da capacidade calorífica, $C_p(T)$ ($J \, mol^{-1} \, K^{-1}$), com a temperatura T (K), é dada por:

$$C_p(T) = 31.150 - 1.356 \times 10^{-2}T + 2.679 \times 10^{-5}T^2 - 1.168 \times 10^{-8}T^3.$$

Considere a temperatura de referência $T_{ref} = 273.0$.

- (a) Estime o valor da entalpia do Azoto para $T_f=278$, utilizando a fórmula composta do trapézio com erro de truncatura em valor absoluto inferior a 0.15×10^{-4} .
- (b) Considerando o mesmo espaçamento h usado na alínea anterior, calcule, usando a fórmula de integração numérica mais adequada, o seguinte integral:

$$\int_{T_{ref}}^{T_f - h} C_p(T) \ dT$$

NOTA: use h = 1 caso não tenha resolvido a alínea anterior.

(c) Comente a precisão do valor calculado na alínea anterior.

50. A velocidade de subida de um foguetão pode ser calculada com base na seguinte fórmula

$$v(t) = u \ln \left(\frac{m_0}{m_0 - qt}\right) - gt$$

onde v(t) é a velocidade de subida, u é a velocidade a que o combustível é expelido relativamente ao foguetão, m_0 é a massa inicial do foguetão no instante t=0, q é a taxa de consumo do combustível e g é a constante gravitacional (assuma $g=9.8ms^{-1}$). Se $u=2200ms^{-1}$, $m_0=160000kg$ e $q=2680kgs^{-1}$,

- (a) indique quantos pontos seriam necessários para determinar a altitude do foguetão, com erro inferior a 100m, após voar 30s se fosse aplicar uma regra do trapézio.
- (b) determine a altitude após 30s usando 15 pontos.
- 51. Pretende-se calcular

$$\int_{1}^{2} \frac{1}{x} dx$$

com erro, em valor absoluto, inferior a $\frac{1}{600}$ usando a fórmula composta do trapézio.

- (a) Qual deve ser o passo escolhido?
- (b) Baseado na alínea a) calcule uma estimativa do integral.
- 52. A velocidade vertical (ms^{-1}) de um foguetão é dada por

$$v(t) = \begin{cases} 10t^2, & 0 \le t \le 10\\ 1000 - 5t, & 10 < t \le 20\\ 45t + 2(t - 20)^2, & 20 < t \le 30 \end{cases}$$

(a) Calcule a distância percorrida ao fim de 30s com base nos seguintes pontos:

(b) Calcule uma estimativa do erro de truncatura cometido no cálculo da distância. Comente o valor obtido. 53. A função distribuição normal acumulada é uma função importante em estatística. Sabendo que

$$F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^{2}/2} dx = \frac{1 + \frac{1}{\sqrt{2\pi}} \int_{-z}^{z} e^{-x^{2}/2} dx}{2}$$

Calcule uma estimativa de F(1), usando a fórmula composta do trapézio com 5 pontos no cálculo do integral.

54. Suponha que na construção de um templo egípcio com 150 m de altura foram necessários muitos anos, durante os quais cada operário realizou 1.742×10^6 Kg m de quantidade de trabalho. Sabe-se que a secção transversal horizontal do edifício, à altura x, é um quadrado cuja área é dada por $A(x) = \frac{9}{4}(200 - x)^2$.

Através da fórmula que dá a quantidade total de trabalho realizado

$$T = \rho \int_{a}^{b} x A(x) dx$$

em que $\rho = 2014 \text{ Kg/m}^3$ representa a densidade da rocha, calcule:

- (a) T, usando separadamente duas fórmulas compostas de integração, com base em 5 pontos;
- (b) os erros de truncatura cometidos na alínea a) e comente os resultados;
- (c) o número de operários utilizados na construção do templo.
- 55. Um carro inicia a sua marcha num dia frio de inverno e um aparelho mede o consumo de gasolina verificado no instante em que percorreu x Km. Os resultados obtidos foram:

$x \\ \text{distância em } Km$	0	1.25	2.5	3.75	5	6.25
$f(x)$ consumo em $\frac{l}{Km}$	0.260	0.208	0.172	0.145	0.126	0.113

- (a) Construa um *modelo quadrático*, para descrever o consumo de gasolina em função da distância percorrida, usando a técnica dos mínimos quadrados.
- (b) Avalie o modelo.
- 56. A docente responsável pela disciplina de Métodos Numéricos I registou para 8 alunos, os resultados obtidos nos mini-testes e a respectiva classificação final obtida na disciplina

- (a) Determine no sentido dos mínimos quadrados a recta que melhor aproxima os dados da tabela.
- (b) Qual será a estimativa do resultado a ter nos mini-testes para poder obter uma classificação final de 17?
- 57. A velocidade do som na água varia com a temperatura de acordo com a tabela abaixo:

Temperatura (${}^{o}C$)	86.0	93.3	98.9	104.4	110.0
Velocidade (m/s)	1552	1548	1544	1538	1532

Pretende-se estimar a velocidade do som na água a uma temperatura de $100^{\circ}C$, utilizando:

- (a) um polinómio interpolador de Newton de grau dois;
- (b) um polinómio de grau dois no sentido dos Mínimos Quadrados, usando os mesmos pontos que utilizou na alínea a).

Comente e justifique os resultados.

58. A resistência de um certo fio (de uma certa substância), f(x), varia com o diâmetro desse fio, x. A partir de uma experiência registaram-se os seguintes valores:

$$x_i$$
 1.5 2.0 3.0 4.0 $f(x_i)$ 4.9 3.3 2.0 1.5

Foram sugeridos os seguintes modelos para ajustar os valores de f(x), no sentido dos mínimos quadrados:

- uma recta
- o modelo linear: $M(x, c_1, c_2) = \frac{c_1}{x} + c_2 x$
- (a) Calcule a recta.
- (b) Calcule o modelo M(x).
- (c) Qual dos modelos escolheria? Justifique a sua escolha
- 59. Em sistemas de transportes urbanos, o preço das viagens depende da procura. Quanto maior é a procura, x, mais baixo é o preço, P(x) (em euros). Os registos obtidos nos últimos quatro meses foram:

x_i	30	35	45	50
$P(x_i)$	12	12	10	8

Pretende-se construir um modelo que descreva o comportamento de P em função de x. Com base no modelo M(x)

$$M(x; c_1, c_2) = c_1 x + c_2 e^{-x},$$

determine c_1 e $\ c_2$ de tal forma que

$$\min_{c_1, c_2} \sum_{i=1}^4 (P(x_i) - M(x_i))^2.$$

60. A tabela seguinte contém os registos efectuados dos valores médios da radiação solar numa região de Portugal:

mês (x_i)	J(1)	F(2)	M(3)	A(4)	M(5)	J(6)	J(7)	A(8)	S(9)	O(10)	N(11)	D(12)
Radiação	122	_	188	-	_	270	-	-	-	160	-	120

- (a) Ajuste o modelo $M(x) = c_1 x + c_2 sen(x)$ aos valores da tabela, no sentido dos mínimos quadrados;
- (b) Use o modelo encontrado para prever a radiação média no mês de Agosto;
- (c) Avalie o modelo.
- 61. O custo de investimento (C) em construção civil de um arejador num sistema de lamas activadas numa Estação de Tratamento de Águas Residuais depende do vo-lume (v) do tanque da seguinte forma

$$C(v; c_1, c_2) = c_1 v^{c_2}$$

em que c_1 e c_2 são parâmetros a estimar pela técnica dos mínimos quadrados a partir dos dados recolhidos de uma construtora

$v_i \text{ (em } mil m^3\text{)}$	0.4	0.6	1	1.3
C_i (em milhares de euros)	87	160	190	366

Estime os parâmetros c_1 e c_2 do modelo dado anteriormente, recorrendo à seguinte transformação que transforma o modelo dado num modelo polinomial de grau um:

$$\ln(C(v; c_1, c_2)) = \ln(c_1) + c_2 \ln(v)$$

$$\overline{C} = \overline{c_1} + c_2 \overline{v}$$

Comece por calcular os parâmetros $\overline{c_1}$ e c_2 do modelo polinomial usando a técnica dos mínimos quadrados, com base nos valores da tabela

$\overline{v_i} = \ln(v_i)$	-0.916	-0.511	0	0.262
$\overline{C}_i = \ln(C_i)$	4.466	5.075	5.247	5.903

e posteriormente apresente os valores solicitados.

62. Dada a função $f(x) = x^3 - 6x^2 + 9x + 4$ calcule os seus pontos estacionários e classifique-os.

63. Na cidade de Ulam Bator surgiu uma epidemia de gripe asiática. A evolução da doença foi descrita pela fórmula

$$P(t) = e^{0.4t - 0.01t^2}$$

onde P(t) representa a percentagem de pessoas doentes e t é o tempo em dias.

Usando o método DSC (baseado em interpolação quadrática), calcule o pior momento da epidemia identificando a percentagem de doentes nesse momento. Inicie o processo iterativo com $t_1 = 30$ dias. Considere ainda $\delta = 2$, M = 0.05 e $\varepsilon = 0.1$ (duas iterações). Use 4 casas decimais nos cálculos.

64. Uma empresa precisa de usar x_1 horas de equipamento ao preço (unitário) de 6 unidades monetárias (u.m.) e x_2 horas de mão-de-obra ao preço (unitário) de 4 u.m. para colocar no mercado um certo número fixo de produtos. As horas utilizadas de equipamento e mão-de-obra verificam a relação

$$x_1^2 + x_1 x_2 = 2500.$$

Calcule x_1 e x_2 de modo a minimizar os custos da empresa.

- a) Comece por formular esta situação como um problema de otimização sem restrições de uma só variável (por exemplo, em função de x_1).
- b) Resolva o problema resultante usando o método DSC (baseado em interpolação quadrática). Na implementação do DSC inicie o processo iterativo com a aproximação inicial $x_1 = 50$. Use $\delta = 5$, $\varepsilon = 0.05$ e M = 0.1.

Com a aproximação calculada identifique os valores obtidos para as duas variáveis e o custo mínimo.

65. [ABCD] representa uma cartolina quadrada de lado 60 cm. Pretende-se montar uma caixa de volume máximo cortando em cada canto um quadrado de lado x, como mostra a figura.

Usando o método DSC (baseado em interpolação quadrática), calcule x. Use duas casas decimais nos cálculos e inicie o processo iterativo com $x_1 = 5$. Considere ainda $\delta = 1$, M = 0.5 e $\varepsilon = 0.5$ (duas iterações).

66. A função

$$f(t) = 10 + 3\sin(\frac{2\pi}{365}(t - 80))$$

dá o número de horas com luz do dia numa certa região do país.

O dia 1 de Janeiro corresponde a t=0. Determine o dia do ano (t) em que o número de horas com luz do dia é máximo, usando o método DSC (baseado em interpolação quadrática). Use 2 casas decimais nos cálculos, $\pi=3.14$ e inicie o processo iterativo com $t_1=200$. Considere ainda $\delta=10$, M=0.1 e $\varepsilon=2$ (duas iterações). Use radianos nos cálculos.

67. Dada a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x_1, x_2) = x_1^2 (1 - x_1)^2 + x_1 x_2$$

verifique se tem maximizantes, minimizantes e/ou pontos sela.

68. Considere a função

$$f(x,y) = 3x^2 - y^2 + x^3$$

Mostre que a função dada tem um máximo local em (-2,0), tem um ponto sela em (0,0); e não tem mínimos.

69. Dada a função $f: \mathbb{R}^3 \to \mathbb{R}$ definida por

$$f(x_1, x_2, x_3) = 5x_1^2 + 2x_2^2 + x_3^4 - 32x_3 + 6x_1x_2 + 5x_2$$

verifique que ela tem apenas um ponto estacionário. Classifique-o.

70. Mostre que qualquer ponto da linha $x_2-2x_1=0$ é um mínimo de $f:\mathbb{R}^2\to\mathbb{R}$ definida por

$$f(x_1, x_2) = 4x_1^2 - 4x_1x_2 + x_2^2.$$

71. Considere a função

$$f(x_1, x_2) = -\sin(x_1 - 1) - x_2^4.$$

Implemente, no máximo, duas iterações do método de segurança de Newton para determinar o máximo da função $f(x_1, x_2)$. Considere $\eta = 10^{-6}$, $\mu = 10^{-6}$, $\varepsilon = 1$ e $x^{(1)} = (1, 1)^T$.

72. A soma de três números $(x_1, x_2 e x_3)$ positivos é igual a 40. Determine esses números de modo que a soma dos seus quadrados seja mínima.

Use a relação da soma para colocar x_3 em função das outras 2 variáveis. Formule o problema como um problema de otimização sem restrições.

A partir da aproximação inicial $(x_1, x_2)^{(1)} = (10, 10)$, use o método de Segurança de Newton (com $\eta = 0.00001$) para calcular esses números, considerando no critério de paragem $\varepsilon = 0.001$. Na condição de Armijo tome $\mu = 0.001$.

73. Uma empresa fabrica e comercializa dois tipos de computadores portáteis. O custo de fabrico de cada um deles decresce à medida que o número de unidades produzidas aumenta e é dado pelas seguintes relações empíricas:

$$c_1 = 5 + \frac{1500}{x_1}$$
 $c_2 = 7 + \frac{2500}{x_2}$,

em que x_1 e x_2 são o número de unidades de cada um dos portáteis produzidos. O preço de venda dos computadores é tanto menor quanto maior for o número de unidades produzidas, de acordo com as seguintes relações:

$$p_1 = 15 - 0.001x_1$$
 e $p_2 = 25 - 0.0015x_2$.

- a) Formule o problema de otimização que consiste em determinar quantas unidades de cada computador a firma deve produzir de modo a maximizar os lucros.
- b) Resolva o problema usando o método de Segurança de Newton (com $\eta = 0.00001$). Considere a seguinte aproximação inicial $(x_1, x_2)^{(1)} = (20, 30)$ e $\varepsilon = 0.001$. Na condição de Armijo tome $\mu = 0.001$.
- c) Com base na aproximação calculada na alínea anterior ao número de computadores produzidos, a empresa terá lucro?
- 74. Três estações elétricas vão fornecer energia a uma certa região da forma mais económica possível. Os custos individuais de operação de cada uma das estações são dados

por

$$f_1 = 0.1 + 0.25x$$

$$f_2 = 0.08 + 0.12y + 0.00125y^2$$

$$f_3 = 0.05 + 0.09z + 0.001z^2 + 0.0001z^3$$

em que x, y e z são as energias fornecidas pelas três estações (em MWatt). Determine os valores de x, y e z que minimizam o custo total, se a energia a ser fornecida for de 100 MWatt, recorrendo ao método de segurança de Newton.

Como valores iniciais use $(x, y)^{(1)} = (30, 50)$, no critério de paragem considere $\varepsilon = 0.05$ e tome $\eta = 0.0001$. Como estratégia de procura unidimensional utilize o critério de Armijo com $\mu = 0.01$. Use a relação relacionada com a energia a fornecer para eliminar uma das variáveis, por exemplo, x = 100 - y - z.

75. Numa situação monopolista, o rendimento de uma empresa face à venda de um produto ou serviço depende do nível de produção z. O rendimento é uma função crescente de z mas tende em direção a uma assímtota assim que o mercado fica saturado.

Considere a seguinte função rendimento

$$R(z) = z^2/(1+z^2)$$

que depende da produção z dada por $z=x_1^{1/2}x_2^{1/2}$, em que x_1 representa o capital e x_2 o trabalho.

Supondo que a função lucro é dada por

$$\pi(x_1, x_2) = R(z) - 0.04x_1 - 0.06x_2$$

calcule o lucro máximo que a empresa pode ter. Use o método quasi-Newton (com fórmula BFGS). Como aproximação inicial considere o ponto (2,1). Use na paragem do processo iterativo $\varepsilon = 0.1$. No critério de Armijo use $\mu = 0.001$.

76. Suponha que pretendia representar um número A positivo na forma de um produto de quatro fatores positivos x_1, x_2, x_3 e x_4 . Para A = 2401, determine esses fatores de tal forma que a sua soma seja a menor possível.

Formule o problema como um problema de otimização sem restrições em função das 3 variáveis x_1, x_2 e x_3 .

A partir da aproximação inicial $(x_1, x_2, x_3)^{(1)} = (6, 7, 5)$, use o método quasi-Newton (com fórmula DFP), para calcular esses fatores. Na paragem do processo iterativo use $\varepsilon = 0.1$. No critério de Armijo use $\mu = 0.001$.

77. O lucro, em milhares de euros, da colocação de um sistema elétrico é dado por

$$\mathcal{L}(x_1, x_2) = 20x_1 + 26x_2 + 4x_1x_2 - 4x_1^2 - 3x_2^2$$

em que x_1 e x_2 designam, respectivamente, o custo da mão de obra e do material. Calcule o lucro máximo usando o método quasi-Newton baseado na fórmula DFP, considerando na paragem do processo iterativo $\varepsilon = 0.0001$. Tome a seguinte aproximação inicial (0,0). No critério de Armijo use $\mu = 0.001$.

78. Considere um sistema de duas molas em que é aplicada uma força de deformação P com duas componentes P_1 e P_2 . Pretende-se determinar os deslocamentos x_1 e x_2 das molas que minimizam a energia potencial total EP, definida pela seguinte expressão:

$$EP(x_1, x_2) = \frac{1}{2}K_1\left(\sqrt{x_1^2 + (l_1 - x_2)^2} - l_1\right)^2 + \frac{1}{2}K_2\left(\sqrt{x_1^2 + (l_2 + x_2)^2} - l_2\right)^2 - P_1x_1 - P_2x_2.$$

Sabendo que as caraterísticas do sistema são: $l_1 = 10$, $l_2 = 10$, $K_1 = 8$, $K_2 = 1$, $P_1 = 5$ e $P_2 = 5$, resolva o problema através do método de Nelder-Mead com $\varepsilon = 0.5$ (ou duas iterações). Considere os seguintes pontos iniciais: (5,2), (3.25,2.5) e (0,0).

79. Calcule o mínimo da função f(x) definida por

$$f(x_1, x_2) = \max((x_1 - 1)^2, x_1^2 + 4(x_2 - 1)^2)$$

implementando o método de Nelder-Mead, tomando para conjunto inicial os vetores

$$\left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle$$
.

e $\varepsilon = 0.5$.

80. Calcule o mínimo da função f(x) definida por

$$f(x_1, x_2) = \max(|x_1|, |x_2 - 1|)$$

implementando o método de Nelder-Mead, tomando para conjunto inicial os vetores

$$\left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0.5 \\ 0 \end{pmatrix} \right\rangle.$$

e $\varepsilon = 0.5$.

81. Calcule o máximo da seguinte função não diferenciável

$$f(x_1, x_2) = -|x_1x_2| - x_2^2$$

usando o método de Nelder-Mead. Inicie o processo iterativo com o seguinte simplex:

$$\left\langle \begin{pmatrix} -1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} -1\\-1 \end{pmatrix} \right\rangle.$$

Para a paragem do processo iterativo use $\varepsilon = 0.5$ ou $n_{\rm max} = 4$.