## Geodesic Line

- Orthodrome or Geodesic Line เป็นเส้นบนทรงรีซึ่งมี ระยะทางที่สั้นสุดระหว่างจุดสองจุดบนผิวทรงรี
- การคำนวณมีความซับซ้อน ต้องใช้โปรแกรมช่วยคำนวณ เช่น Geographiclib





Boundary Value Problem ค่ากึ่งแกนเอก ค่าการแบน ตำแหน่งต้นทาง ตำแหน่งปลายทาง PS C:\Users\ASUS> GeodSolve(-i)-e 6378137 1/298.257223563 --input-string "13.69 100.7501 35.772 140.3929" 51.07518946 68.54860347 4649897.972 Lat1 Lat2 Lon2 Lon1 faz ต้นทาง faz ปลายทาง ระยะทาง

Initial Value Problem ตำแหน่งต้นทาง แอซิมัทต้นทาง ค่าการแบน PS C:\Users\ASUS> GeodSolve -e 6378137 1/298.257223563 --input-string "13.69 100.7501 51.07518946 4649897.972" 35.77200000 140.39290000 68.54860347 lat ปลายทาง lon ปลายทาง

ประเด็นที่พอศึกษาได้คือเรื่องของ จุดยอดที่เส้นจีออเดซิกไปถึง (Vertex on the Geodesic) ผ่านการคำนวณละติจูดของจุดยอด ด้วยสมการเชิงวิเคราะห์ของพ่อแฟนต้า

ระยะทาง

$$cos^2 \varphi_{max} = \frac{C_c^2 (1 - e^2)}{a^2 - C_c^2 e^2}$$

## Vertex on the Geodesic

ตำแหน่งทั้งหลายบนเส้นจืออเดซิกจะมีค่าคงตัวของแคร์โร (Clairaut's Constant) เท่ากัน

$$N(\varphi)cos\varphi sinlpha=CONSTANT=C_{c}$$
 Radius Curvature Latitude Forward In Prime Vertical Azimuth

$$N(\varphi) = \frac{a^{\text{Semi Major Axis}}}{\sqrt{1 - e^2 \sin^2 \varphi}}$$

First Eccentricity

- ณ จุดยอดของเส้นจีออเดซิก เป็นตำแหน่งซึ่ง Forward Azimuth เป็น 90 หรือ 270 องศา
- การคำนวณละติจูดของตำแหน่งของจุดยอด
  - การวนซ้ำ (Iteration)

$$\varphi_{i+1} = cos^{-1} \left( \frac{C_c}{N(\varphi_{max})_i} \right)$$

• การใช้สมการเชิงวิเคราะห์ของพ่อแฟนต้า (Analytical Formula) นักปรัชญาชาวสามย่านในตำนาน

$$cos^2 \varphi_{max} = \frac{C_c^2 (1 - e^2)}{a^2 - C_c^2 e^2}$$



## Geodetic Datum

- พื้นหลักฐาน (Datum) เป็นทรงรี (Ellipsoid) ที่ปรับให้เข้ากันได้กับพื้นโลก
  - Local Datum : INDIAN 1916, INDIAN 1954,

INDIAN 1975 (Everest 1830 Ellipsoid)

Global Datum : WGS84 (Global GPS)
 GRS80 (Global ITRS)



| $f = \frac{a-b}{a}$ | $e = \sqrt{2f - f^2}$ |
|---------------------|-----------------------|
| a                   |                       |

| Ellipse                | Semi-Major Axis | 1/Flattening  |
|------------------------|-----------------|---------------|
|                        | (meters)        |               |
| Airy 1830              | 6377563.396     | 299.3249646   |
| Bessel 1841            | 6377397.155     | 299.1528128   |
| Clarke 1866            | 6378206.4       | 294.9786982   |
| Clarke 1880            | 6378249.145     | 293.465       |
| Everest 1830           | 6377276.345     | 300.8017      |
| Fischer 1960 (Mercury) | 6378166.0       | 298.3         |
| Fischer 1968           | 6378150.0       | 298.3         |
| G R S 1967             | 6378160.0       | 298.247167427 |
| G R S 1975             | 6378140.0       | 298.257       |
| G R S 1980             | 6378137.0       | 298.257222101 |
| Hough 1956             | 6378270.0       | 297.0         |
| International          | 6378388.0       | 297.0         |
| Krassovsky 1940        | 6378245.0       | 298.3         |
| South American 1969    | 6378160.0       | 298.25        |
| WGS 60                 | 6378165.0       | 298.3         |
| WGS 66                 | 6378145.0       | 298.25        |
| WGS 72                 | 6378135.0       | 298.26        |
| WGS 84                 | 6378137.0       | 298.257223563 |

## **Datum Transformation**

ประเด็นศึกษาเกี่ยวกับพื้นหลักฐานคือการคำนวณแปลงพิกัดระหว่างพื้น หลักฐาน INDIAN 1975 กับ WGS 1984 โดยใช้แบบจำลอง BURSA – WOLF อย่างง่าย พิจารณาแค่ DATUM SHIFT (Translation)

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{WGS84} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{ID75} + \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix}_{to\_wgs84}$$









Survey Engineering - Chulalongkorn University

## Introduction to Geoid

- Gravity Acceleration = Gravitational Acceleration + Centrifugal Acceleration
- ศักย์ของ Gravity Acceleration เรียกว่า Gravity potential มีการรังวัดค่านี้ ไปสร้างแบบจำลองความโน้มถ่วงของโลกผ่าน Spherical Harmonics เพื่อนำ มาพัฒนาเป็น Geoid Model ของโลกต่อไป



Fig. 3.6: Gravitation, centrifugal acceleration, and gravity.



Geoid is equipotential surface of the earth's gravity field coinciding with the mean sea level of the oceans.



## Introduction to Geoid Undulation (N)

Normal Gravity on the Ellipsoid เป็นสมการคำนวณ Gravity ที่ Latitude ต่างๆ

$$\gamma = \gamma(\varphi)$$
  $\gamma = grad U$   $\gamma_0 = \frac{a\gamma_a \cos^2 \varphi + b\gamma_b \sin^2 \varphi}{\sqrt{a^2 \cos^2 \varphi + b^2 \sin^2 \varphi}}$ .

Somigliana (1929)

- lacktriangle Observed Gravity มาจากการรังวัด Gravity ในภาคสนาม  $g=grad\ W$
- lacktrianglesize T Disturbing potential T=W-U --> เมื่ออยู่บน Geoid  $N=rac{T_0}{\gamma_0}$  (Bruns Equation)
- Gravity anomaly  $\Delta g = g \gamma$  -->  $N = \frac{R}{4\pi\gamma} \iint S(\varphi) \Delta g d\sigma$  (Stokes Equations)
- Geoid Model
  - Local Geoid Model --> TGM2017, ...  $N_{EGM}(\phi, \lambda) = \frac{G\delta M}{r_e \gamma_0} \frac{\delta W}{\gamma_0} + \frac{GM}{r_e \gamma_0} \sum_{n=2}^{L} \left(\frac{a}{r_e}\right)^n \sum_{m=0}^{n} Y_{nm}(\phi, \lambda)$
  - Global Geoid Model --> EGM1996, EGM2008, ...



TGM-2017 acc. 42 mm

## Orthometric Height Accuracy

| TABLE 3.1 Accuracy Specifications for Vertical Control in Canada and the United States. |                            |                                                                                                         |
|-----------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------|
| Order of Accuracy<br>(Canada)                                                           | Order of Accuracy<br>(USA) | Allowable Discrepancy between Independent<br>Forward and Backward Leveling Runs<br>between Benchmarks   |
| Special order                                                                           | First-order, Class I       | $\pm 3 \mathrm{mm} \sqrt{L}$                                                                            |
| First order                                                                             | First-order, Class II      | $\pm 4 \mathrm{mm} \sqrt{L}$                                                                            |
| Second order                                                                            | Second-order, Class II     | $\pm 8 \text{mm} \sqrt{L} \left( \text{USA Class I: } \pm 6 \text{mm} \sqrt{L} \right)$                 |
| Third order                                                                             |                            | $\pm 24 \mathrm{mm} \sqrt{L} \left( \mathrm{USA \ third \ order} \ \pm 12 \mathrm{mm} \sqrt{L} \right)$ |
| Fourth order                                                                            |                            | +120 mm s/I                                                                                             |



PPP Height Accuracy

- ความสัมพันธ์ของความสูง (ค่าระดับ) จากการรังวัดสองเทคนิค
  - Orthometric Height (H) ค่าระดับเหนือระดับน้ำทะเลปานกลาง ได้จากการเดินระดับด้วยกล้องระดับ + ไม้ Staff
  - Ellipsoidal Height (h) ค่าระดับเหนือทรงรี ได้จากการรังวัด GNSS
  - สมการการแปลงระบบความสูงทำผ่าน Geoid Undulation (N) อาจได้จาก Geoid Model ภายในพื้นที่สำรวจ

$$h = H + N$$



Fig 1. Geoid - Ellipsoid Relationship

การเรียกใช้ GeoidEval เพื่อคำนวณค่า N กับ H จาก Geoid Model

ตำแหน่งที่สนใจ ชื่อ geoid model PS C:\Users\ASUS> GeoidEval -n tgm2017-1 --input-string "13.7 100.5"

-30.4559**Geoid Undulation** 

Height System

ชื่อ geoid model

ตำแหน่งที่สนใจ ค่าระดับเหนือทรงรี

PS C:\Users\ASUS> GeoidEval -n tgm2017-1 --haetomsl --input-string "13.7 100.5 -30" 13.7 100.5 0.4559

สั่งแปลง h --> H

ตำแหน่งที่สนใจ ค่าระดับเหนือระดับน้ำทะเลปานกลาง



#### **Mapping Equations**

# Map Projection: UTM

- การฉายแผนที่เป็นกระบวนการถ่ายทอดรายละเอียดบนผิวโลกลงไปยังระนาบแผนที่
- การฉายแผนที่ซึ่งเป็นที่นิยม คือ Universal Transverse Mercator (UTM)
  - Datum Surface Local Datum (แบ่งไปตาม Zone ต่างๆ 60 Zone)
  - Projection Surface Cylinder
  - Coincidence Secant (บริเวณรอยตัด ความผิดเพี้ยนไม่มี)
  - Orientation Transverse (กรณีขั้วโลกไปใช้ UPS)
  - Property Conformal
- การแปลงพิกัด UTM ทำได้จากโปรแกรม Geoconvert

แปลงไป UTM Lat Lon PS C:\Users\ASUS> Geoconvert -u -p 3 --input-string "14 100" 47n 607995.652 1547954.320 คำตอบทศนิยม 3 ตำแหน่ง

Zone ซีกโลก EASTING NORTHING

PS C:\Users\ASUS> Geoconvert -g --input-string "47n 607995.652 1547954.320" 14.00000 100.00000 แปลงไป Geodetic Zone ซีกโลก EASTING NORTHING





# Map Projection : UTM (ต่อ)

## การแบ่ง Zone จนเกิด Grid : Grid Zone Designator (GZD)



# Map Projection : UTM (ต่อ)

Scale Factor เป็นสัดส่วนของความยาวเส้นนั้นบนแผนที่ ต่อความยาวเส้นนั้นบนผิวโลก 0.9996 ... 1.00xx









UTM coordinates
- southern hemisphere

## Distance and Azimuth Calculation from UTM Coordinate

กำหนดพิกัดสองจุด

$$A(E_1, N_1)$$

$$A(E_1, N_1) \qquad B(E_2, N_2)$$

- Direction --> Azimuth
  - Grid Azimuth  $tan(\alpha_1) = \frac{E_2 E_1}{N_2 N_3}$

True Azimuth 
$$T_1=lpha_1+C_1+(t_1-T_1)$$
 หยวนๆ ช่างแม่งได้

Convergence of

Meridian



• Grid Distance 
$$d = \sqrt{(E_2 - E_1)^2 + (N_2 - N_1)^2}$$

True Distance

$$D = \frac{d}{k}$$
  $k = \frac{1}{2} \frac{\text{SF qn A}}{(k_1 + k_2)}$  Short Dist Scale Factor  $k = \frac{1}{6} (k_1 + 4k_{mid} + k_2)$  SF จุดกลาง Long Dist



Convergence Scale Factor

of Meridian

G.N.

## Introduction to LDP

- ค่ารังวัดที่ได้จากภาคสนาม จำเป็นต้องลดทอนลงมา สู่ระนาบแผนที่ UTM เพื่อทำการคำนวณต่อไป
  - UTM Distortion จะเยอะ เมื่อห่างจากแนวที่ ทรงกระบอกตัดผิวโลกไปมาก
  - ตัวที่ต้องลดทอนเป็นอย่างยิ่ง คือ ระยะทาง
- ทางออกหนึ่งคือเปลี่ยนการฉายแผนที่จาก UTM
   เป็น Low Distortion Projection ปรับ
   พารามิเตอร์การฉายให้เหมาะสมกับพื้นที่งาน
   SF ในแบบ ppm น้อยมากจนลืมได้

Combine Scale Factor  $R = \sqrt{MN}$ Scale Factor  $R = \sqrt{MN}$   $R = \sqrt{MN}$   $R = \sqrt{MN}$ Height Scale Factor  $R = \frac{R}{R + h}$   $R = \sqrt{MN}$   $R = \sqrt{MN}$ 



## Geodetic Traverse

- การปรับแก้วงรอบ ด้วยกฎเข็มทิศ เรานำค่ารังวัดในภาคสนามไปคำนวณบนพิกัดแผนที่เลย อาจสร้างความผิดเพี้ยนได้ ต้องปรับด้วย Scale Factor แล้วปรับแก้
- แนวทางอื่นมีเช่นการใช้ Low Distortion Projection

สำหรับวงรอบที่ความยาวมากแนะให้ลดทอนค่ารังวัดไปบนทรงรีแล้วคำนวณวงรอบบนทรงรี

วงรอบปิดแบบไม่บรรจบที่เดิม เริ่มจากหมุดคู่ ไล่รังวัดจนบรรจบที่หมุดคู่อีกฝั่ง

มุมราบที่วัดนำไปคำนวณแอซิมัทวงรอบ ประกอบกับระยะทางที่วัด สามารถคำนวณ พิกัดหมุดต่อไปได้ --> Direct Problem (IVP) Cr. Geodetic Surveying – Dr. Chaiyut Charoenphon



Coordinate Reduction แนวทางการลดการเขียนพิกัดยาวๆ ให้สั้นๆ เป็น CODE กระทัดรัด ละเอียดตามสั่ง

#### MGRS: MILLITARY GRID REFERENCE SYSTEM

แต่ละ Zone มีการสร้าง ช่องกริดเป็นจัตุรัสแสน เมตร มีอักษรประจำตัว แล้วทำการดึงค่าพิกัดมา รายงานตามความละเอียดที่ต้องการ



### **GEOHASH**

