Survival Analyses

Kathleen Torkko November 18, 2019

Disruption of the beclin 1–BCL2 autophagy regulatory complex promotes longevity in mice

Álvaro F. Fernández^{1,2,9}, Salwa Sebti^{1,2,9}, Yongjie Wei^{1,2,3}, Zhongju Zou^{1,2,3}, Mingjun Shi⁴, Kathryn L. McMillan⁴, Congcong He⁵, Tabitha Ting^{1,2}, Yang Liu^{1,2,3}, Wei-Chung Chiang^{1,2}, Denise K. Marciano², Gabriele G. Schiattarella², Govind Bhagat⁶, Orson W. Moe^{2,4,7}, Ming Chang Hu^{2,4}* & Beth Levine^{1,2,3,8}*

Fig. 2 | Beclin 1(F121A) knock-in mutation extends lifespan in mice. a-c, Kaplan–Meier survival curves for $Becn1^{+/+}$ wild-type and $Becn1^{F121A/F121A}$ knock-in mice, showing the lifespan of all mice in the

cohort (a), females alone (b) or males alone (c). n denotes the number of mice per group. P values were determined by log-rank (Mantel-Cox) test.

Today's Objectives

Learn to construct and interpret a Kaplan-Meier survival curve

Understand censoring

Learn how to interpret a Log-rank test to compare curves

Learn to interpret a hazard ratio from a simple Cox proportional hazards model

An example of a study that will result in a survival analysis...

50% of patients treated for superficial (non-muscle invading) bladder cancer have their cancer recur within 5 years

You want to determine if your new drug bladimab can reduce recurrence.

You do a 5 year clinical trial and randomize people who were diagnosed with superficial bladder cancer into two groups: 1) unusual care or 2) usual care + bladimab. You follow each person over time to see if and when they have a recurrence

Are data categorical or continuous?

What about time to recurrence (AKA time to event)?

Your research questions are:

Is the *risk* of recurrence *in five years* different (lower or higher) in people who took bladimab compared to people who did not take it?

Is the *time* of recurrence in five years of observation different (earlier or later) in people who took bladimab compared to people who did not take it?

But what happens if you are not able to follow everybody for 5 years?

Loss to follow-up is a big problem in prospective studies.

This is why we have survival analyses

Survival Analysis Origins

In 1958, Edward L. Kaplan and Paul Meier published a paper on how to deal with incomplete observations from participants in prospective studies

Nonparametric Estimation from Incomplete Observations Author(s): E. L. Kaplan and Paul Meier Source: *Journal of the American Statistical Association*, Vol. 53, No. 282 (Jun., 1958), pp. 457-481

Kaplan-Meier curves deal with subjects having differing times spent in the study

An important concept of this analysis is censoring

What is survival analysis? Also known as a "time-to-event" analysis

Survival analysis gets its name from prospective studies that look at survival (but can be other "events") over *time*

Events include death, injury, onset of illness, or recovery from illness, etc.

Time is well defined

There is are specific start and end dates for your study period

Answers questions like:

Do people with high grade cancer develop metastases earlier that those with low grade disease?

Survival / Time-to-Event Analyses

People are observed over time until the *event* of interest occurs (or not)

1. People have the event during the study (observation) period Time to Event determined

= (Date of event) – (Date of start of follow-up)

2. People do not have the event during the study (observation) period Time in Study determined (aka Time in Model)

= (Date of last follow-up) - (Date of start of follow-up)

These people are *censored*

Because they did not have the event while you are observing them, doesn't mean they will not develop it later

But this information does not have an effect on your study

Censoring

Not everyone has the event

Loss to follow-up (so we don't know their current status)

Only have information that was observed while they were in the study Reach end of study period and did not have the event

Patients who did not have the event are considered censored

These patients can provide some information, but not maybe not complete information

Their "time in study" or "time in model" can still be used in the analyses

Because they did not have the event while you are observing them, doesn't mean they will not develop it later

But this information does not have an effect on your study

Survival analysis is done in several ways

To describe the time to event of members of a group (or groups)

Kaplan-Meier curves

To compare the survival times of two or more groups

Log-rank tests

Wilcoxon tests

To describe the combined effect of several different variables on survival Cox proportional hazards regression models and hazard ratios (HR)

Kaplan-Meier Curves

Plot the Time to Event or Time in Study

Starting with 100% survival (100% of people without the event)

Or 0% and follow the proportion of people who have no event

Y-axis: percent survival (0 to 100%) or survival proportion (0 to 1)

X-axis: time (0 to longest follow-up time)

Each "step" in the graph represents 1 or more events

Requirements for a Kaplan-Meier Analysis

Requirement 1: The event status should consist of two mutually exclusive states: "censored" or "event"

Requirement 2: The time to an event or censorship (known as the "survival time" or "time in model") should be clearly defined and precisely measured.

Requirement 3: Where possible, left-censoring should be minimized or avoided.

Right censoring is OK

Type of Censoring: Left vs. Right Example: cancer recurrence

Hollow diamonds show right censoring

Filled diamonds on the right end of the line means the event occurred at that time

Identifying Censored* People on Your Kaplan-Meier Graph

Are always right-censored

Censoring: the Beginning of Constructing a K-M Curve

Fig. 1 (a) Left and right censoring, (b) subjects ordered by available durations excluding person A with left censoring.

Censoring: Different Outcomes

Converting calendar time in the ovarian cancer study to a survival analysis format. Dashed vertical line is the date of the last follow-up, R=relapse, D=death from ovarian cancer, Do=death from other cause, A=attended last clinic visit (alive), L=loss to follow-up, X=death, D=censored.

Calculating a Kaplan-Meier Survival Curve

Date Date Last FU Censored=0 Patient ID Diagnosis or Event FU (years) Outcome Event=1 02/01/11 101 01/11/07 4.04 Alive 0 102 05/18/07 09/28/09 2.34 DIED 1 09/22/07 01/25/09 DIED 103 1.35 1 12/08/07 02/01/11 Alive 104 3.12 0 105 01/29/08 05/31/10 2.36 Lost to FU 0 06/18/08 05/31/10 1.95 DIED 106 1 107 10/12/08 05/31/10 1.62 Lost to FU 0 108 02/02/09 02/01/11 1.96 Alive 0 109 08/13/09 02/01/11 Alive 1.46 0 12/01/09 05/31/10 110 0.45 Lost to FU 0

Sort by follow-up time

Patient ID	FU (years)	Outcome	Censored=0 Event=1
110	0.45	Lost to FU	0
103	1.35	DIED	1
109	1.46	Alive	0
107	1.62	Lost to FU	0
106	1.95	DIED	1
108	1.96	Alive	0
102	2.34	DIED	1
105	2.36	Lost to FU	0
104	3.12	Alive	0
101	4.04	Alive	0

Calculating a Kaplan-Meier Survival Curve

Sorted by follow-up time

FU (years)	Outcome	Censored=0 Event=1
0.45	Lost to FU	0
1.35	DIED	1
1.46	Alive	0
1.62	Lost to FU	0
1.95	DIED	1
1.96	Alive	0
2.34	DIED	1
2.36	Lost to FU	0
3.12	Alive	0
4.04	Alive	0
	0.45 1.35 1.46 1.62 1.95 1.96 2.34 2.36 3.12	0.45 Lost to FU 1.35 DIED 1.46 Alive 1.62 Lost to FU 1.95 DIED 1.96 Alive 2.34 DIED 2.36 Lost to FU 3.12 Alive

Calculating a Kaplan-Meier Survival Curve

Rank the data and add a 0 at the top

Add a Column for "at risk"

Rank

10

Number At Risk

10 9

3

0

	Patient ID	FU (years)	Outcome	Censored=0 Event=1	Rank Number				Censored=0
		.,			0	Patient ID	FU (years)	Outcome	Event=1
	110	0.45	Lost to FU	0	1		0		
ě	103	1.35	DIED	1	2	110	0.45	Lost to FU	0
	109	1.46	Alive	0	3	103	1.35	DIED	1
ğ	107	1.62	Lost to FU	0	4	109	1.46	Alive	0
						107	1.62	Lost to FU	0
	106	1.95	DIED	1	5	106	1.95	DIED	1
	108	1.96	Alive	0	6	108	1.96	Alive	0
	102	2.34	DIED	1	7	102	2.34	DIED	1
	105	2.36	Lost to FU	0	8	105	2.36	Lost to FU	0
Ĭ	104	3.12	Alive	0	9	104	3.12	Alive	0
K	101	4.04	Alive	0	10	101	4.04	Alive	0

"At Risk" is the number of people at risk for the event just before the next follow-up time

At follow-up time = 0, 10 are at risk

At time 0.45, 10 are at risk but one person was lost to follow-up Between time 0.45 and 1.35, 9 people are at risk

At time 1.35, 9 are at risk but one person died

Between time 1.35 and 1.46, 8 people are at risk

Calculate the probability of the event (death) and 1-probability of the event (survival).

Always start with rank number 1. The patient with rank number 1 was lost to follow-up (censored) after 0.45 years. Because this patient was alive at his last follow-up time, the probability of death for this patient is 0 out of 10 patients (0/10) equals 0; leaving 9 patients at risk

						Probability of Death		Probability of Survival (PS	
Patient	FU		Censored=0	Rank					
ID	(years)	Outcome	Event=1	Number	At Risk	Formula	Value	PS Formula	PS Value
	0			0	10		0	1	1
110	0.45	Lost to FU	0	1	9	=0/10	0	=10/10	1
103	1.35	DIED	1	2	8	=1/9	0.111	=8/9	0.889
109	1.46	Alive	0	3	7	=0/8	0	=8/8	1
107	1.62	Lost to FU	0	4	6	=0/7	0	=7/7	1
106	1.95	DIED	1	5	5	=1/6	0.167	=5/6	0.833
108	1.96	Alive	0	6	4	=0/5	0	=5/5	1
102	2.34	DIED	1	7	3	=1/4	0.250	=3/4	0.750
105	2.36	Lost to FU	0	8	2	=0/3	0	=3/3	1
104	3.12	Alive	0	9	1	=0/2	0	=2/2	1
101	4.04	Alive	0	10	0	=0/1	0	=1/1	1

The patient with rank number 2 died after a follow up of 1.35 years. So, the probability of death in the period between 0.45 and 1.35 years is 1 out of 9 patients (1/9 = 0.111); leaving 8 patients at risk.

Calculating Cumulative Survival

						- I I III								
						Probability of Death		Probability of Survival (PS)			Cumulative Survival (CS)			
Patient ID	FU (years)	Outcome	Censored=0 Event=1	Rank Number	At Risk	Formula	Value	PS Formula	PS Value	PS Value Cell ID	CS Formula	CS Formula with Data	CS value	CS Value Cell ID
	0			0	10		0	1	1	ps00			1	cs00
110	0.45	Lost to FU	0	1	9	=0/10	0	=10/10	1	ps01	=cs00 x ps01	=1 x 1	1	cs01
103	1.35	DIED	1	2	8	=1/9	0.111	=8/9	0.889	ps02	=cs01 x ps02	=1 x 0.889	0.889	cs02
109	1.46	Alive	0	3	7	=0/8	0	=8/8	1	ps03	=cs02 x ps03	=0.889 x 1	0.889	cs03
107	1.62	Lost to FU	0	4	6	=0/7	0	=7/7	1	ps04	=cs03 x ps04	=0.889 x 1	0.889	cs04
106	1.95	DIED	1	5	5	=1/6	0.167	=5/6	0.833	ps05	=cs04 x ps05	=0.889 x 0.833	0.741	cs05
108	1.96	Alive	0	6	4	=0/5	0	=5/5	1	ps06	=cs05 x ps06	=0.741 x 1	0.741	cs06
102	2.34	DIED	1	7	3	=1/4	0.250	=3/4	0.750	ps07	=cs06 x ps07	=0.741 x 0.750	0.556	cs07
105	2.36	Lost to FU	0	8	2	=0/3	0	=3/3	1	ps08	=cs07 x ps08	=0.556 x 1	0.556	cs08
104	3.12	Alive	0	9	1	=0/2	0	=2/2	1	ps09	=cs08 x ps09	=0.556 x 1	0.556	cs09
101	4.04	Alive	0	10	0	=0/1	0	=1/1	1	ps10	=cs09 x ps10	=0.556 x 1	0.556	cs10

The probability of surviving to 1.35 years is 0.889 or 88.9%

The probability of surviving to 4.04 years is 0.556 or 55.6%

						Probabil	Probability of Death		Probability of Survival		ve Survival
Patient	FU (******)	0	Censored=0	Rank	At Dial.	Dansant	Durantian	Danasat	Doggazzation	Damasant	Dunnantian
ID	(years)	Outcome	Event=1	Number	At RISK	Percent	Proportion	Percent	Proportion	Percent	Proportion
	0			0	10	0%	0	100%	1	100%	1
110	0.45	Lost to FU	0	1	9	0%	0	100%	1	100%	1
103	1.35	DIED	1	2	8	11.1%	0.111	88.9%	0.889	88.9%	0.889
109	1.46	Alive	0	3	7	0%	0	100%	1	88.9%	0.889
107	1.62	Lost to FU	0	4	6	0%	0	100%	1	88.9%	0.889
106	1.95	DIED	1	5	5	16.7%	0.167	88.3%	0.833	74.1%	0.741
108	1.96	Alive	0	6	4	0%	0	100%	1	74.1%	0.741
102	2.34	DIED	1	7	3	25.0%	0.250	75.0%	0.750	55.6%	0.556
105	2.36	Lost to FU	0	8	2	0%	0	100%	1	55.6%	0.556
104	3.12	Alive	0	9	1	0%	0	100%	1	55.6%	0.556
101	4.04	Alive	0	10	0	0%	0	100%	1	55.6%	0.556

Each drop in the curve represents an event (in this case, death)

Each tick represents a censored person

Sample size gets smaller as time increases

Kaplan-Meier Curves and Sample Sizes

Larger sample sizes

The steps are smaller Lines that appear "smoother"

Smaller sample sizes

The steps are larger Lines that appear disjointed

Different Kaplan-Meier Curves

Cumulative Incidence of Progression of Benign Prostatic Hyperplasia

McConnell JD et al. N Engl J Med 2003;349:2387-2398.

Kaplan-Meier Curve Milestones

Kaplan-Meier Curve: Determining Survival Rate at Different Times

Survival of 2,819 breast cancer patients from the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute, 1983–1998. Calculated by the life table method.

- 1. Median follow-up is the duration of time for which 50% of the population has been followed.
- 2. HR (hazard ratio) of <1 indicates reduced risk in the investigational arm.
- 3. The 95% CI of the HR. Lower limit=0.64; upper limit=0.88. (H_0 : HR=1.0)

- 4. Median survival in control arm=15.6 months.
- 5. Median survival in experimental arm=20.3 months.
- 6. Time difference between median survival points.

- 7. The p value indicates statistical significance. Log rank test; H_0 =survival curves are the same
- 8. Survival difference at a given point in time.

Kaplan-Meier curves may become unreliable when the number of patients available for analysis at particular time points falls below 1/10 of the original patient population.

When fewer patients are available for analysis, 1 event can result in a drastic drop in the curve

9. The steep drop in the curve could be due to the small number of patients available for analysis.

Comparing Kaplan-Meier Curves: The Log-rank test

Non-parametric test similar to the χ^2 test

The log-rank test creates 2x2 tables at each event time and combines across the tables. Provides a χ^2 statistic and a p-value

The analysis is based on the times of events

The p-value is based on comparing entire survival curves, not on comparing only the median survival.

Null hypothesis: there is no difference between the populations in the probability of an event at any time point.

Requirements and Assumptions of a Log-rank Test

Requirement 1: The event status should consist of two mutually exclusive states: "censored" or "event"

Requirement 2: The time to an event or censorship (known as the "survival time" or "time in model") should be clearly defined and precisely measured.

Requirement 3: Where possible, left-censoring should be minimized or avoided.

Assumption 1: Observations are independent.

Assumption 2: Survival probability should be fairly constant across time

Assumption 3: Censoring must be non-informative (randomly censored)

Censoring and outcome should be independent

There should be a similar amount and pattern of censorship per group.

Compare % of censored in each group

Do a univariate scatterplot of censoring times by group

An example of different survival probabilities over time

A study comparing autologous (obtained from the individual) and allogeneic (donor) bone marrow transplants for follicular lymphoma studied disease-free survival (DFS) curves (i.e., the probability a patient is alive and disease free) between the two treatment arms.

Differing Probabilities

Allogeneic transplants tend to have a higher mortality early due to toxicity of the higher chemotherapy doses to ablate the immune system. However, the donor cells may provide a graft-versus-lymphoma effect resulting in less relapse of the primary disease in long-term survivors.

Autologous transplants have lower early toxicity because patients do not experience graft-versus-host disease. However, these patients do not benefit from the protection against relapse from the graft-versus-lymphoma effect, so they tend to experience more relapses over time.

Assumptions of a Kaplan-Meier

Similar amount and pattern of censorship per group.

A plot of censored values against time should show no particular patterns, and the patterns should be similar across the various groups.

Non-informative censoring?

Choices for Curve Comparison in Prism: Logrank and Wilcoxon Tests

Logrank: Tests equality of survival curves by weighting all time points the same.

Gehan-Breslow-Wilcoxon: a version of the log-rank test that weights strata by their size (giving more weight to earlier time points). More sensitive to differences at earlier time points.

Which do I Use?

The **log-rank test** is the standard

Most powerful if the assumption of *proportional hazards* is true Common that PH is true in many biological situations

Should be your first choice

The <u>Gehan-Breslow-Wilcoxon</u> test does not require a consistent hazard ratio, but does require that one group consistently have a higher risk than the other.

Results can be misleading when a large fraction of patients are censored at early time points

Not as reliable with small sample sizes

Logrank vs. Gehan-Breslow-Wilcoxon

Early separation of curves at time when sample sizes are larger
Wilcoxon test more powerful

	Survival Curve comparison	
4		
1	Comparison of Survival Curves	
2		
3	Log-rank (Mantel-Cox) test	
4	Chi square	2.01
5	df	1
6	P value	0.1563
7	P value summary	ns
8	Are the survival curves sig different?	No
9		
10	Gehan-Breslow-Wilcoxon test	
11	Chi square	2.532
12	df	1
13	P value	0.1115
14	P value summary	ns
15	Are the survival curves sig different?	No
16		
17	Median survival	
18	Control	Undefined
19	Treated	75
20		

Log-rank vs. Gehan-Breslow-Wilcoxon

Curves don't separate until later in time (and sample sizes decreasing) Log-rank test more powerful

	Survival Curve comparison	
2		
1	Comparison of Survival Curves	
2		
3	Log-rank (Mantel-Cox) test	
4	Chi square	2.761
5	df	1
6	P value	0.0966
7	P value summary	ns
8	Are the survival curves sig different?	No
9		
10	Gehan-Breslow-Wilcoxon test	
11	Chi square	0.9379
12	df	1
13	P value	0.3328
14	P value summary	ns
15	Are the survival curves sig different?	No
16		
17	Median survival	
18	Control	95
19	Treated	71

Log-Rank vs. Gehan-Breslow-Wilcoxon

Later separation of curves

Curves that Cross

The Log-Rank and Wilcoxon tests may not be valid if the survival curves cross and may not be able to detect a difference between the groups even if one actually exists.

Curves that cross indicate that survival probabilities are not the same across time

Example of a Kaplan-Meier Survival Analysis:

Disruption of the beclin 1–BCL2 autophagy regulatory complex promotes longevity in mice

Álvaro F. Fernández^{1,2,9}, Salwa Sebti^{1,2,9}, Yongjie Wei^{1,2,3}, Zhongju Zou^{1,2,3}, Mingjun Shi⁴, Kathryn L. McMillan⁴, Congcong He⁵, Tabitha Ting^{1,2}, Yang Liu^{1,2,3}, Wei-Chung Chiang^{1,2}, Denise K. Marciano², Gabriele G. Schiattarella², Govind Bhagat⁶, Orson W. Moe^{2,4,7}, Ming Chang Hu^{2,4*} & Beth Levine^{1,2,3,8*}

Fig. 2 | Beclin 1(F121A) knock-in mutation extends lifespan in mice. a-c, Kaplan–Meier survival curves for $Becn1^{+/+}$ wild-type and $Becn1^{F121A/F121A}$ knock-in mice, showing the lifespan of all mice in the

cohort (a), females alone (b) or males alone (c). *n* denotes the number of mice per group. *P* values were determined by log-rank (Mantel–Cox) test.

You want to know if a knock-in mutation will increase survival in mice.

Variables:

group: Wild Type and Knock-In

months: number of months to death

All mice eventually died so there are no censored values

Assumptions

Observations are independent

Yes survival is measured in different mice

Risk is constant across each time internal (no secular trends)

Lines don't cross

Censoring is random

There is no censoring in this dataset (all mice met study event)

	# of subjects at risk × Curve comparison × Data summary × v				
1	Survival	А	В		
	Curve comparison				
4					
2					
3	Log-rank (Mantel-Cox) test				
4	Chi square	23.54			
5	df	1			
6	P value	<0.0001			
7	P value summary	***			
8	Are the survival curves sig different?	Yes			
9					
10	Gehan-Breslow-Wilcoxon test				
11	Chi square	19.33			
12	df	1			
13	P value	<0.0001			
14	P value summary	***			
15	Are the survival curves sig different?	Yes			
16					
17	Median survival				
18	WT	26.00			
19	KI	29.00			
20	Ratio (and its reciprocal)	0.8966	1.115		
21	95% CI of ratio	0.6596 to 1.219	0.8207 to 1.516		
22					
23	Hazard Ratio (Mantel-Haenszel)	A/B	B/A		
24	Ratio (and its reciprocal)	2.593	0.3857		
25	95% CI of ratio	1.764 to 3.810	0.2625 to 0.5668		
26			_		
27	Hazard Ratio (logrank)	A/B	B/A		
28	Ratio (and its reciprocal)	1.951	0.5125		
29	95% CI of ratio	1.382 to 2.755	0.3629 to 0.7236		

# of subjects at risk × E Curve co						
	X	A	В	_		
	months	WT	KI			
4	Х					
1	0.000	68	102			
2	13.000	68				
3	14.000	67				
4	17.000	66	102			
5	19.000	65	101			
6	21.000	60	100			
7	22.000		99			
8	23.000	58	98			
9	24.000	54	92			
10	25.000	44	82			
11	26.000	38	75			
12	27.000	30	71			
13	28.000	24	66			
14	29.000	20	56			
15	30.000	12	48			
16	31.000	5	38			
17	32.000	3	28			
18	33.000		23			
19	34.000	2	17			
20	35.000		13			
21	36.000	1	8			
22	37.000		7			
23	38.000		5			
24	39.000		3			
25						

# of subjects at risk × Curve comparison × Data summary ×						
1	Survival Data summary	A WT	B KI			
4						
1	Number of rows	170	170			
2	# of blank lines	102	68			
3	# rows with impossible data	0	0			
4	# censored subjects	0	0			
5	# deaths/events	68	102			
6						
7	Median survival	26	29			

To do a new analysis, or make changes to the analysis

				THE R. P. LEWIS CO., LANSING, MICH.
Table format:		X	Group A	Group B
Sur	vival	months	WT	KI
4	×	X	Υ	Υ
1	Title	13	1	
2	Title	14	1	
3	Title	17	1	
4	Title	17		1
5	Title	19	1	
6	Title	19		1
7	Title	19	1	
8	Title	19	1	
9	Title	19	1	
10	Title	19	1	
11	Title	21	1	
12	Title	21	1	
13	Title	21		1
14	Title	22		1
15	Title	23		1
16	Title	23	1	
17	Title	23		1
18	Title	23		1
19	Title	23		1
20	Title	23		1
21	Title	23	1	

3100		
1	Survival Curve comparison	А
4		
1	Comparison of Survival Curves	
2		
3	Log-rank (Mantel-Cox) test	
4	Chi square	23.54
5	df	1
6	P value	<0.0001
7	P value summary	***
8	Are the survival curves sig different?	Yes
9		
10	Gehan-Breslow-Wilcoxon test	
11	Chi square	19.33
12	df	1
13	P value	<0.0001
14	P value summary	***
15	Are the survival curves sig different?	Yes
16		
17	Median survival	
18	WT	26.00
19	KI	29.00

Drop-down menu to get survival proportions

	Survival proportions X = # of subjects at risk						
Shim	X	Α	В				
1	months	WT	KI				
	Х	Percentage	Percentage	Per			
1	0.000	100.000	100.000				
2	13.000	98.529					
3	14.000	97.059					
4	17.000	95.588	99.020				
5	19.000	88.235	98.039				
6	21.000	85.294	97.059				
7	22.000		96.078				
8	23.000	79.412	90.196				
9	24.000	64.706	80.392				
10	25.000	55.882	73.529				
11	26.000	44.118	69.608				
12	27.000	35.294	64.706				
13	28.000	29.412	54.902				
14	29.000	17.647	47.059				
15	30.000	7.353	37.255				
16	31.000	4.412	27.451				
17	32.000	2.941	22.549				
18	33.000		16.667				
19	34.000	1.471	12.745				
20	35.000		7.843				
21	36.000	0.000	6.863				
22	37.000		4.902				
23	38.000		2.941				
24	39.000		0.000				

When comparing 2 curves only

Survival Curve comparison			WT 2.	VT to KI 6 times more to die earlier
22				
23	Hazard Ratio (Mantel-Haenszel)	A/B		B/A
24	Ratio (and its reciprocal)	2.593		0.3857
25	95% CI of ratio	1.764 to	3.810	0.2625 to 0.5668
26				
27	Hazard Ratio (logrank)	A/B		B/A
28	Ratio (and its reciprocal)	1.951		0.5125
29	95% CI of ratio	1.382 to	2.755	0.3629 to 0.7236

The log-rank and Mantel-Haenszel methods are estimates of the HR
The methods usually give nearly identical results

Results differ when several subjects experience the event at the same time (ties in data)

The log-rank method usually underestimates the true Hazard Ratio, especially when the hazard ratio is large or the sample size is large.

The Mantel-Haenszel method, in contrast, reports hazard ratios that are too large.

	1000			A SHOW AND A SHARE	
Table	format:	Х	Group A	Group B	
Sur	vival	months	WT	KI	
- 4	×	X	Υ	Υ	
1	Title	13	1		Ī
2	Title	14	1		
3	Title	17	1		
4	Title	17		1	
5	Title	19	1		
6	Title	19		1	
7	Title	19	1		
8	Title	19	1		
9	Title	19	1		
10	Title	19	1		
11	Title	21	1		
12	Title	21	1		
13	Title	21		1	
14	Title	22		1	
15	Title	23		1	
16	Title	23	1		
17	Title	23		1	
18	Title	23		1	
19	Title	23		1	
20	Title	23		1	
21	Title	23	1		

Kaplan-Meier with 3 groups and trend test

Fig. 4 | Expression of beclin 1(F121A) prevents lethality of klotho-deficient mice.

Kaplan–Meier survival curves for mice of indicated genotype, showing the lifespan of all the mice in the cohort (e). P values were determined by log-rank Mantel–Cox test

Table format: Survival		X	Group A	Group B	Group C
		Days	KI	HM	KI/HM
4	×	Х	Υ	Υ	Υ
1	Title	31		1	
2	Title	38		1	
3	Title	42	0		0
4	Title	42	0		0
5	Title	42	0		0
6	Title	45		1	
7	Title	45		1	
8	Title	45		1	
9	Title	52		1	1
10	Title	52		1	
11	Title	56	0		0
12	Title	56	0		0
13	Title	56	0		0
14	Title	59		1	
15	Title	66		1	
16	Title	66		1	
17	Title	66		1	
18	Title	73		1	

Kaplan-Meier with 3 groups and trend test

E	# of subjects at risk × E Curve comparison ×	Data summary >
1	Survival	А
-	Curve comparison	
	1	
1	Comparison of Survival Curves	
2		
3	Log-rank (Mantel-Cox) test (recommended)	
4	Chi square	126.3
5	df	2
6	P value	<0.0001
7	P value summary	***
8	Are the survival curves sig different?	Yes
9		
10	Logrank test for trend (recommended)	
11	Chi square	0.6225
12	df	1
13	P value	0.4301
14	P value summary	ns
15	Sig. trend?	No
16		
17	Gehan-Breslow-Wilcoxon test	
18	Chi square	107.2
19	df	2
20	P value	<0.0001
21	P value summary	***
22	Are the survival curves sig different?	Yes

	Table format: Survival		X	Group A	Group B	Group C
			Days	KI	HM	KI/HM
	- 4	×	Х	Υ	Υ	Υ
	1	Title	31		1	
	2	Title	38		1	
	3	Title	42	0		0
	4	Title	42	0		0
	5	Title	42	0		0
	6	Title	45		1	
	7	Title	45		1	
	8	Title	45		1	
	9	Title	52		1	1
	10	Title	52		1	
	11	Title	56	0		0
	12	Title	56	0		0
	13	Title	56	0		0
	14	Title	59		1	
	15	Title	66		1	
	16	Title	66		1	
	17	Title	66		1	
	18	Title	73		1	

Multiple comparison tests

Prism does not offer.

Use Prism to compare two curves at a time.

Manually adjust the definition of 'significance' to account for multiple comparisons (like the Bonferroni method). Or place all the P values into a new column table, and then analyze that stack of P values.

	# of subjects at risk × Curve comparison × Data summary ×							
1		Survival Data summary	A KI	B HM	C KI/HM			
ľ	4							
	1	Number of rows	94	94	94			
	2	# of blank lines	50	57	43			
	3	# rows with impossible data	0	0	0			
	4	# censored subjects	42	0	42			
	5	# deaths/events	2	37	9			
	6							
	7	Median survival	Undefined	66	Undefined			

Median survival

Table format: Survival		Х	Group A	Group B	Group C
		Days	KI	KI/HM	HM
4	×	X	Υ	Υ	Υ
1	Title	31			1
2	Title	38			1
3	Title	42	0	0	
4	Title	42	0	0	
5	Title	42	0	0	
6	Title	45			1
7	Title	45			1
8	Title	45			1
9	Title	52		1	1
10	Title	52			1
11	Title	56	0	0	
12	Title	56	0	0	
13	Title	56	0	0	
14	Title	59			1
15	Title	66			1
16	Title	66			1
17	Title	66			1
18	Title	73			1
19	Title	73			1

Data organized for "Trend"

The logrank test for trend reports a chi-square value, which is always associated with one degree of freedom (no matter how many data sets are being compared). It uses that chi-square value to compute a p-value testing the null hypothesis that there is no linear trend between column order and median survival. If the P value is low, you can conclude that there is a significant trend.

# of subjects at risk × E Curve comparison ×	Data summary
Survival Curve comparison	А
4	
Comparison of Survival Curves	
Log-rank (Mantel-Cox) test (recommended)	
Chi square	126.3
df	2
P value	<0.0001
P value summary	***
Are the survival curves sig different?	Yes
Logrank test for trend (recommended)	
Chi square	0.6225
2 df	1
P value	0.4301
P value summary	ns
Sig. trend?	No
Gehan-Breslow-Wilcoxon test	
Chi square	107.2
df	2
P value	<0.0001
P value summary	****
Are the survival curves sig different?	Yes
	,

Let's Play (if we have time)

Week13_Fernandex beclin 2018 Fig2 survival.xlsx

Fig. 2 | Beclin 1(F121A) knock-in mutation extends lifespan in mice. \mathbf{a} - \mathbf{c} , Kaplan–Meier survival curves for $Becn1^{+/+}$ wild-type and $Becn1^{F121A/F121A}$ knock-in mice, showing the lifespan of all mice in the

cohort (a), females alone (b) or males alone (c). n denotes the number of mice per group. P values were determined by log-rank (Mantel-Cox) test.

Cox Proportional Hazards Regression Model Multiple regression technique

British statistician **Sir David Cox** is the inaugural recipient of the International Prize in Statistics!

Cox honored for Survival Analysis Model Applied in Medicine, Science, and Engineering

Cox is a giant in the field of statistics, but the International Prize in Statistics Foundation is recognizing him specifically for his 1972 paper in which he developed the proportional hazards model that today bears his name. The Cox Model is widely used in the analysis of survival data and enables researchers to more easily identify the risks of specific factors for mortality or other survival outcomes among groups of patients with disparate characteristics. From disease risk assessment and treatment evaluation to product liability, school dropout, reincarceration and AIDS surveillance systems, the Cox Model has been applied essentially in all fields of science, as well as in engineering.

The Hazard in Cox Proportional Hazards Regression

A hazard is the probability that an individual who is under observation at a time *t* has an event at that time

Cox PH models use hazard functions, defined as:

The instantaneous risk of event (i.e., death) in next time interval t, conditional on having survived to start of the interval t

This is rather technical and fully understanding it requires calculus

But the basic idea "how likely is the event to happen at time t, if it hasn't happened yet?"

Used to compare risk for the event in different groups and to calculate the hazard ratio

An example of different proportional hazards over time

The ratio of hazards for two curves should have the same relationship over time

Curves that cross indicate *non-proportional* hazards

PH is an important assumption for Cox proportional hazards models

a proportional hazard model

a non-proportional hazard model

J Evid Based Med.2018;11:208-215

Hazard Ratios, the Measure of Effect

The proportion of two hazards is the hazard ratio. The interpretation is similar to that of the relative risk.

The HR=1.1, meaning that smokers are at 1.1 times the risk for the event compared to non-smokers

The Null hypothesis for the Wald (chi-square) test:

HR_{population}= 1.0 (no difference in hazard between the groups)

Note that if the 95% CI for the HR includes 1.0, then we fail to reject the null hypothesis (p>0.05)

Interpretation of the Hazard Ratio

For a continuous variable such as age, HR represents the incremental increase in risk for the event *per unit increase* in age,

i.e., HR=1.024, a 2.4% increase in the event for a one year increase in age

For a categorical variable the HR represents the increase in risk for the event in one category *relative to the reference category*

i.e., HR = 6.66 for Stage B compared with A represents a 6.7 fold increase in B experiencing the event

Stage A would have a HR=1.0

Remember simple linear regression?

The Cox Proportional Hazards Regression Model

The Cox model with one predictor (<u>univariate analysis</u>) is typically expressed like so:

$$h(t) = h_0(t) \exp(x\beta)$$

where

 $h_0(t)$ = baseline hazard function of the reference group

x =predictor in the model

 β = regression coefficient

For a univariate model, this will reduce to hazard ratio = $exp(\beta)$

Example: Does IV drug use increase risk for death?

Coding: drug=1 (IV drug user); drug=0 (not a user)

Analysis of Maximum Likelihood Estimates						
Variable DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	
drug 1	0.77919 B	0.24226	10.3451	0.0013	2.180	

Displays model coefficients, tests of significance, and exponentiated coefficient as hazard ratio ($e^{\beta} = e^{0.77919} = 2.180$)

IV drug users are 2.18 times more likely to die than non-users

A 95% C.I. for β is provided with: $0.779 \pm 1.96 * 0.242 = [0.305, 1.25]$ The 95% C.I. for the hazard ratio is: $[\exp\{0.305\}, \exp\{1.25\}] = [1.36, 3.49]$

Survival Summary

Survival analyses use time-to-event measured in prospective studies

Survival analyses use the concept of censoring to allow the use of data from people who have incomplete follow-up

The Kaplan-Meier curve estimates the proportion of surviving patients at different times after start of observation period

The Log-rank test is a comparison of observed and expected death (or other event) over time in each group.

The p-value is measured by chi-square tests

Cox regression models usually yield better estimates of survival because of the ability to adjust for other variables

Important caveat: "risk" should remain constant over observation period