

Numerical Methods 1 Gaussian Elimination

Calculating the determinate of a matrix using GE and GE with complete pivoting

Piotr Możeluk 313122

1 Title of a task

29. Computing $\det(A)$ and the growth factor using GE and GECP methods, where $A \in \mathbb{R}^{n \times n}$. Perform tests for various matrices, strictly dominant (row-wise, column-wise) and other.

2 Gaussian Elimination

Gaussian elimination (GE) is a method for solving systems of linear equations. The goal is to transform the matrix into an upper triangular form where all elements below the main diagonal are zeros. Here's a detailed explanation of how GE is performed:

First Column Elimination:

Use the first row to eliminate all elements below the main diagonal in the first column. For each row i (where i > 1), update the row as:

$$r_i := r_i - l_{i1}r_1$$

where

$$l_{i1} = \frac{a_{i1}}{a_{11}}$$

After this step, the matrix will look like:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} & b_2^{(1)} \\ 0 & a_{32}^{(1)} & \cdots & a_{3n}^{(1)} & b_3^{(1)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & a_{n2}^{(1)} & \cdots & a_{nn}^{(1)} & b_n^{(1)} \end{pmatrix}$$

Second Column Elimination:

Move to the second column and use the second row to eliminate all elements below the main diagonal in this column. For each row i (where i > 2), update the row as:

$$r_i := r_i - l_{i2}r_2$$

where

$$l_{i2} = \frac{a_{i2}^{(1)}}{a_{22}^{(1)}}$$

After this step, the matrix will look like:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} & b_2^{(1)} \\ 0 & 0 & \cdots & a_{3n}^{(2)} & b_3^{(2)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn}^{(2)} & b_n^{(2)} \end{pmatrix}$$

General Step k:

For the k-th step, focus on the k-th column. Use the k-th row to eliminate all elements below the main diagonal in this column. For each row i (where i > k), update the row as:

$$r_i := r_i - l_{ik}r_k$$

where

$$l_{ik} = \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}}$$

After the k-th step, the matrix will have zeros below the main diagonal in the k-th column.

3 Gaussian Elimination with complete pivoting

The goal of Gaussian Elimination with complete pivoting is the same as Gaussian Elimination however each iteration includes additional steps.

Pivot Selection

At each step k of the elimination, the pivot element is chosen as the largest absolute value element in the submatrix $A_{k:n,k:n}^{(k-1)}$.

Finding the Pivot

Before the first step, the largest element in the entire matrix $A^{(0)}$ is found. Indices p and q are determined such that:

$$\left|a_{pq}^{(0)}\right| = \max_{i=1,\dots,n;j=1,\dots,n} \left|a_{ij}^{(0)}\right|$$

Before the k-th step, the largest element in the submatrix $A_{k:n,k:n}^{(k-1)}$ is found. Indices p and q are determined such that:

$$\left| a_{pq}^{(k-1)} \right| = \max_{i=k,\dots,n:j=k,\dots,n} \left| a_{ij}^{(k-1)} \right|$$

Row and Column Swapping

Once the pivot $a_{pq}^{(k-1)}$ is identified, swap the p-th row with the k-th row and the q-th column with the k-th column. This brings the pivot element to the k-th position on the main diagonal.

Elimination Phase

After selecting and positioning the pivot, perform the Gaussian elimination step as usual: For each row i (where i > k), update the row as:

$$r_i := r_i - l_{ik}r_k$$

where

$$l_{ik} = \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}}$$

This creates zeros below the pivot in column k.

4 Calculating the determinate

After transforming the matrix into upper triangular form, the determinant can be simply calculated by multiplying the elements located on the main diagonal as:

$$\det(A) = \prod_{i=1}^{n} a_{ii}$$

where a_{ii} are the elements on the main diagonal of the upper triangular matrix. However, in GECP we need to keep track of the number of swaps during GECP to adjust the sign. If the number of swaps is odd the determinate must be multiplied by -1. Otherwise, the determinant sign remains unchanged if the number of swaps is even.

5 Calculating the Growth Factor

The growth factor for Gaussian Elimination (GE) and Gaussian Elimination with Complete Pivoting (GECP) is a measure of the stability of these methods. It is defined as the ratio of the largest element in the matrix after applying GE or GECP to the largest element in the original matrix. To calculate the growth factor, we follow these steps:

- 1. Identify the largest absolute value in the original matrix A, denoted as $\max_{i,j} |a_{ij}|$.
- 2. Perform GE or GECP on A and after each iteration find the largest element.
- 3. Then the formula of growth factor can be calculated using this formula:

$$\rho_n = \frac{\max_{i,j,k} |a_{ij}^{(k)}|}{\max_{i,j} |a_{ij}|}$$

where the $a_{ij}^{(k)}$ are the elements at the start of the k-th stage of Gaussian elimination.

6 Testing

Figure 1. shows the errors in the computation for a random matrix of size n.

Figure 2. shows the errors for the specific matrices, for example, a row or a column dominate matrices.

Figure 3. shows the time the function takes to compute GE and GECP for a matrix of size n.

We are confident that our algorithm computes the determinate correctly, as it has a very low error rate. We also performed a test to see if the function return correct errors. To do that, a not-square matrix was used and matrices for which there would be division by zero during iterations.

N	error_detGE	error_detGECP	N	$\operatorname{error}_{\operatorname{det}GE}$	$\operatorname{error_detGECP}$
1	0	0	21	4.92661467177413e-16	2.35922392732846e-16
2	2.77555756156289e-17	0	22	1.58761892521397e-14	4.85722573273506e-17
3	0	5.55111512312578e-17	23	1.70835567914196e-14	1.94289029309402e-16
4	3.46944695195361e-18	1.04083408558608e-17	24	2.77174116991574e-14	1.26634813746307e-16
5	3.46944695195361e-18	6.93889390390723e-18	25	4.01761957036229e-15	1.38777878078145e-17
6	3.05311331771918e-16	5.55111512312578e-17	26	6.81676937119846e-14	2.22044604925031e-15
7	1.04083408558608e-17	8.67361737988404e-18	27	1.1518563880486e-15	6.93889390390723e-17
8	3.81639164714898e-17	1.73472347597681e-18	28	1.34225963677181e-13	4.32986979603811e-15
9	1.12757025938492e-17	7.37257477290143e-18	29	1.04916075827077e-14	6.43929354282591e-15
10	3.46944695195361e-18	1.04083408558608e-17	30	$4.66293670342566 \mathrm{e}\text{-}15$	3.5527136788005e-15
11	5.55111512312578e-17	0	31	1.85185200507476e-13	1.11022302462516e-15
12	1.38777878078145e-16	6.93889390390723e-18	32	1.18571819029967e-13	5.87307980026708e-14
13	5.96311194867027e-19	3.79470760369927e-19	33	7.13384906703141e-12	7.105427357601e-15
14	3.46944695195361e-17	1.38777878078145e-17	34	1.09423581307055e-12	5.6843418860808e-14
15	1.69135538907739e-16	8.67361737988404e-18	35	9.49018641449584e-13	1.33226762955019e-15
16	$4.5102810375397\mathrm{e}\text{-}17$	1.38777878078145e-17	36	2.54907206453936e-13	7.90478793533111e-14
17	4.61436444609831e-16	4.16333634234434e-17	37	5.40012479177676e-13	5.11590769747272e-13
18	$7.0082828429463\mathrm{e}\text{-}16$	9.71445146547012e-17	38	3.29691829392686e-12	2.27373675443232e-13
19	1.52980926537705e-15	7.68699340292223e-17	39	1.70075509231538e-10	2.27373675443232e-12
20	2.20309881449055e-16	2.25514051876985e-17	40	6.96420698886868e-12	3.66395802586794e-12

Figure 1: Errors of a random matrix of size n

Matrix	$\operatorname{error_detGE}$	error_detGECP
$\begin{pmatrix} 4 & 1 & 1 \\ 2 & 6 & 2 \\ 1 & 1 & 3 \end{pmatrix}$	0	0
$\begin{pmatrix} 2 & -1 & 0 \\ -2 & 3 & -1 \\ 1 & -1 & 4 \end{pmatrix}$	0	1.77635683940025e - 15
$ \begin{pmatrix} 1 & 1 & 2 & 3 \\ 5 & 8 & -1 & -7 \\ -10 & -10 & 2 & 4 \\ 6 & 8 & 9 & 9 \end{pmatrix} $	2.41584530158434e - 13	9.9475983006414e - 14

Figure 2: Errors

N	time_GE (seconds)	time_GECP (seconds)	N	time_GE (seconds)	time_GECP (seconds)
1	0.000138	0.000129	51	0.000509	0.0011
2	8.7e-05	8e-05	52	0.000601	0.000939
3	7.6e-05	9e-05	53	0.000556	0.000961
4	8.3e-05	0.000115	54	0.00059	0.001019
5	0.000218	0.000259	55	0.000624	0.00105
6	6.1e-05	9.9e-05	56	0.000627	0.001091
7	5.2e-05	0.000112	57	0.000681	0.00113
8	6.3e-05	0.000121	58	0.000682	0.001175
9	6.8e-05	0.000142	59	0.000721	0.001201
10	8e-05	0.000158	60	0.000724	0.001269
11	8.6e-05	0.000172	61	0.000899	0.001292
12	9.8e-05	0.000199	62	0.000784	0.001365
13	0.000129	0.00022	63	0.000813	0.001394
14	0.000117	0.000241	64	0.000855	0.001453
15	0.000132	0.000303	65	0.000917	0.001604
16	0.000146	0.000282	66	0.001045	0.001511
17	0.000152	0.00031	67	0.000935	0.001589
18	0.000158	0.000312	68	0.00097	0.001712
19	0.000167	0.000345	69	0.001136	0.001903
20	0.000183	0.000371	70	0.001055	0.001848
21	0.000198	0.000443	71	0.001147	0.001998
22	0.000214	0.000435	72	0.00118	0.0021
23	0.000252	0.000436	73	0.001329	0.001932
24	0.000239	0.000464	74	0.001205	0.001962
25	0.00025	0.000485	75	0.001258	0.002209
26	0.000266	0.000534	76	0.00128	0.00228
27	0.000291	0.000549	77	0.0013	0.002176
28	0.000335	0.000587	78	0.001571	0.002251
29	0.000315	0.000574	79	0.001385	0.002277
30	0.000336	0.000682	80	0.001583	0.002308
31	0.000357	0.000684	81	0.001577	0.002507
32	0.000401	0.000722	82	0.001574	0.002703
33	0.000394	0.000745	83	0.001842	0.002534
34	0.000416	0.000801	84	0.001898	0.002573
35	0.000432	0.000853	85	0.001671	0.002639
36	0.000451	0.000856	86	0.001979	0.002703
37	0.000476	0.000897	87	0.001855	0.00288
38	0.00049	0.000649	88	0.00183	0.003083
39	0.000312	0.000563	89	0.002138	0.003143
$\frac{30}{40}$	0.000319	0.000574	90	0.002236	0.00314
41	0.000319	0.000614	91	0.002230	0.003483
42	0.000347	0.000684	92	0.002113	0.00339
43	0.000317	0.000645	93	0.002542	0.003275
44	0.00039	0.000681	94	0.002162	0.003764
45	0.000393	0.000723	95	0.002102	0.003447
46	0.000353	0.000744	96	0.002271	0.003447
47	0.000431	0.000775	97	0.002492 0.002517	0.003753
48	0.00044	0.000813	98	0.002414	0.003035
49	0.000477	0.000853	99	0.002414	0.003804
$\frac{49}{50}$	0.000477	0.000851	$5\frac{99}{100}$	0.002738	0.003804

Figure 3: Time of computing GE and GECP for a random matrix of size $\mathbf n$