		\leq			
1	ie	る <u> </u>			
l i	u,	w	l	<u> </u>	

13, 12. 2021 1300

Part III: Sequences & Series

M. Series of reals

Theme Infinite sums and sums of infinite sinuls

1 + (-1) + 1 + (-1) + ...

2 groupings: (1-1)+(1-1)+...=01+(-1+1)+(-1+1)+...=1

§ 11.1 Sequences of reals

What is a sequence?

A sequence is a map from the discrete set iN* to R lor some other space)

 $(a_n)_{n \in \mathbb{N}^+}$ $n \mapsto a_n$

Lazy notation: (an) (omit nEN*

Not: an nzol

Def: (an) converges to $l \in \mathbb{R}$ if $\forall \varepsilon > 0$ $\exists N(\varepsilon) \in \mathbb{N}^{*}$ s. f. $\forall n > N(\varepsilon)$ we have $|a_{n} - \ell| < \varepsilon$.

HB3-5

requences.).

Important INSIGHTS: 1. Regard sequences as infinite length versions of $(a_n, ..., a_n) \in \mathbb{R}^n$ 2. All the above defs. work also in Rd (not R) or some other, more general/abstract set X provided one can measure dist.

ni X. § 11.2 Sinies of reals Let (an) ne No seq. of reals (an e R) and define (sn) next sequence of partial sums by sp:= a, + a2 + --. + an Def A series is a pair ((an), (sn)) and is denoted as sign Def Zan is (CONV) if (sn) conv. If sn mit Zan = 5 and say that S is the sum of the series.

Lazy notation: Zan

Example: $a_n = 1 \quad \forall n = 1, 2, ...$ Const. seq. I generales a Div peries

511.3. Series of positive reals Standing assumption and o theN 173. (CAHCHY's Integral. crit.) f: [1, 0) -> PR, decreasing Define $(f_n)_{n \in \mathbb{N}^*}$ by $f_n := f(n)$ $\sum_{n=1}^{\infty} f_n \quad (CONV) \iff (DiV) \int_{n}^{\infty} f(x) dx$ Connection between series & improper integrals! Proof: In = fix... + fn, (In) f decreasing => fn+1 = f(n+1) < f(x) < f(n) = fn $\leq \int f(x) dx \leq f_n$ $S_{N+1} - f_1 \leq \int f(x) dx \leq S_N$ follows from (CONV)(DIV) of S.

sum is not easy to compute. (see Lecture 3. Jan)

1HR3-F

173. [diff-ability] In all diff-able and (i) $f_n \xrightarrow{p, w} f$ (ii) $f_n \xrightarrow{n} g$ Then f is diffable and f' = g. [D. Popa, Calculus] § 12.2. Power series Series of functions Zifn (notation) (fn)neN* a seg. of functions $S_n(x) = f_n(x) + \dots + f_n(x), (S_n)_{n \in \mathbb{N}^+}$ seg. of partial sums (again functions) $Def \sum_{n=1}^{\infty} f_n \left(pw CoNV \right) : \iff S_n \xrightarrow{f_n} f$ $(u CONV) : \iff S_n \xrightarrow{g_n} f$ Recull: Approx (motivales notation) Notation 2 fn = f on 21, m f (think of Taylor) [II 4. [WEIERSTRASS]

(fn) seg. of functions, fn: [a. 6] - R

(an) sig. of positive reals

and

Yn7, n (i) $\sum_{an} (CONV)$ (ii) $|f_n(x)| \leq a_n \forall x \in [a,b]$ Then $\sum_{b} f_n(CONV)$. HW: Proof?

Power min Sanx"	
h = 0	
Power series \(\sum_{n=0}^{\alpha_n} \times^n\) \[\int_{pecial interesting case of	1 Sfn
15 (ABEL I) Sanx"	powers.
JaRE [0,00] s.t. prover serve (radius of conv (u CONV) on	[O,R]
Proof (idea): If R=0 nothing to	prove
If R > 0 s.t. \(\sim a_n R'' \) (CONV) if it holds, Ethis implies Ian R	the M
For $ x < R$ rewrite (forcing $\frac{1}{R}$) $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x}{R}\right)^n$	
$\leq \sum_{n \in \mathbb{Z}} \frac{ a_n R^n }{ R } \frac{ X }{ R }$	
$\leq M \sum_{N=0}^{\infty} X ^{N}$	
and the desired result follows from	(CONV)
and the desired result follows from of the geometric series.	
So, a radius of convergence ess How can we compute it?	ist -

[T6. [J. HADAMARD] Sanx"
If lun Van exists, then
D = 1 (+1 1 - 1)
$R = \frac{1}{\lim_{n \to \infty} \sqrt{a_n}} \left(with \frac{1}{0} - \omega, \frac{1}{\infty} = 0 \right)$
Proof based on Candry's root crit. (which is part of the Additional material to Sec § 11.3)
(which is part of the Additional
material to Sec & M.3)
Rk if lim an exists, then R= lin and
n-sa anti
ITT7. (ABEL II) continuity of funct_approx. by power series
LIT. (HBEL III) approx. by power series
$f(x) = \sum_{n} a_n x^n$ is cont, at $x = R$
$f(x) = \sum_{n=0}^{\infty} a_n x^n \text{ is cont, at } x = R$ $if \sum_{n=0}^{\infty} a_n R^n \text{ (CONV)}$
1 -1 11 1h 1h 11200
generizes the result in 1930
[LI (STONE)-WEIERSTRASS 1885)
Any cont f: Ia bJ -> R
can be arbitrarily well approx
Jenerizes the result in the 1930s [STONE]-WEIERSTRASS 18P5] Any cont f: [4 6] -> IR can be arbitrarily well approx (unif) by polynomial functions.
· <u> </u>
Weierstrass' Proof = NOT constructive
1912 S.N. BERNSTEIN constructive
proof based on Bernstein Polynomials
moderalitika ina

requires knowledge of values $f(x_i)$ at many points s_i .