ع صنحان بخربه الثاني الثانية علوم رياضية مدة الإنجاز: 4 ساعات عدة الإنجاز: 4 ساعات

المفحة 4/

و ي التمريـــــن الأول

 $I_n = \int_0^1 x^n \ln(1+x) dx$ نضع $n \in \mathbb{N}$ لکل

. الحسب (1

 $(\forall n \in \mathbb{N}): I_n \geq 0$ بين أن (a (2)

ل) بين أن المتتالية (I_n) تناقصية واستنتج أنها متقاربة .

 $(\forall n \in \mathbb{N}): I_n \leq \frac{\ln{(2)}}{n+1}$ بين أن (a (3)

. $\lim I_n$ استنتج (b

 $I_n = \frac{\ln(2)}{n+1} - \frac{1}{n+1} \int_0^1 \frac{x^{n+1}}{1+x} dx$ if it is all it is all it is all it. (4)

 $(\forall n \in \mathbb{N}): 0 \leq \int_0^1 \frac{x^{n+1}}{1+x} dx \leq \frac{1}{n+2}$ بین ان (b

 $\lim n l_n$ استنتج (C

التمريــــن الثانــــر

و ن

لكل دالة متصلة على $]-1,+\infty[$ نعتبر الدالة T(f) المعرفة على $]-1,+\infty[$ بما يلي $T(f)(x)=\int_0^x \frac{f(t)}{1+t}dt$

. $(\forall t\epsilon]-1,+\infty[): f(t)=a$ حدد الدالة T(f) اذا كانت T(f) ثابتة يعني (1

. $(\forall t\epsilon]-1,+\infty[):f(t)=rac{t(t+1)}{(t+2)^2}$ عدد الدالة T(f) اذا كانت T(f) معرفة بـ (2

الجــــو النصاري

نفترض في هذا الجزء أن الدالة f معرفة بما يلي : $f(t) = e^{-t}$ نفترض في هذا الجزء أن الدالة f(t) قابلة للاشتقاق على f(t) واحسب f(t) قابلة للاشتقاق على f(t)

الصفحة وكا

.]
$$-1,+\infty$$
 على] ∞ على الدالة (b.

$$(\forall x \ge 0) : T(f)(x) \le 1 - e^{-x}$$
 بين أن (a (2)

ا استنتج أن الدالة
$$T(f)$$
 تقبل نهاية منتهية l في $+\infty$ وأن 1 الدالة (b)

$$(\forall -1 < x < 0) : T(f)(x) \le \ln(1+x)$$
 بين أن (a (3

استنتج
$$\lim_{x\to -1} T(f)(x)$$
 وأول هندسيا النتيجة المحصل عليها . .

.
$$(C_{T(f)})$$
 انشئ المنحنى (4

$$\lim_{x \to +\infty} \frac{\ln(1 + \ln(x))}{\ln(x)} = 0$$
 وأن
$$\lim_{x \to +\infty} \frac{\ln(1 + x)}{\ln(x)} = 1$$
 بين أن $\lim_{x \to +\infty} \frac{\ln(1 + x)}{\ln(x)} = 1$

$$(\forall \ x \ge 1): \ 0 \le T(f)(x) \le \int_0^{\ln(x)} \frac{1}{1+t} dt + \frac{1}{x} \int_{\ln(x)}^x \frac{1}{1+t} dt$$
 (b)

c) استنتج أن

$$(\forall x \ge 1): 0 \le T(f)(x) \le \ln(1 + \ln(x)) + \frac{1}{x}[\ln(1 + x) - \ln(1 + \ln(x))]$$

$$\lim_{x\to+\infty}\frac{T(f)(x)}{\ln(x)}$$
 (d)

الجـــــزء الثـــاك

 $n\in\mathbb{N}^*$ مع $\forall t\in]-1,+\infty[$) : $f_n(t)=t^n$ نعتبر في هذا الجزء الدالة f_n المعرفة بما يلي : x>-1 ليكن x>-1

$$(\forall \ n \in \mathbb{N}^*): \ T(f_n)(x) + T(f_{n+1})(x) = \frac{x^{n+1}}{n+1}$$
 بين أن (a

.
$$T(f_1)(x)$$
 احسب (b

$$(\forall n \in IN^*) : T(f_n)(x) = (-1)^n \left[\ln(1+x) + \sum_{k=1}^n (-1)^k \frac{x^k}{k} \right] : (C)$$

. $x\epsilon$] – 1,1] ليكن (2

$$\lim T(f_n)(x) = 0$$
 بین أن (a

$$\ln(1+x) = \lim_{n \to +\infty} \sum_{k=1}^{n} (-1)^{k+1} \frac{x^k}{k}$$
 (b)

مَمْنَدُو يَ النَّانِيهِ مِنْ سَلَّكُ الْبِكَالُورِ	
شعبة العلرم الرياضيرة	الامتحان التجريبي الموحد
مدة الإنجاز: 4 ساعات	2010
ي الصفحة: : ﴿ ﴿	مادة الرياصيات

و البحث للعلمي مفضاع التربية الوطنية ـ أكاديمية الدار البيضاء الكبرى-صار کسس

35

المستوى $m{\mathscr{P}}$ منسوب إلى معلم متعامد ممنظم ومباشر $m{\alpha}$. $m{A}$. $m{A}$. $m{A}$. $m{\alpha}$ نحو $m{\mathscr{P}}$ الذي $z' = \frac{3+\sqrt{3}i}{2}z + \frac{1-\sqrt{3}i}{2}$: حيث عند اللحق عبالنقطة 'M' ذات اللحق عبالنقطة 'M' ذات اللحق عبالنقطة 'M' دات اللحق 'M

- ١- بين أن Α هي النقطة الصامدة الوحيدة بالتطبيق φ.
- ω التكن M نقطة من ω تخالف A و M صور تها بالنطبيق ω

.
$$z'-2=\frac{\sqrt{3}}{2}\left(\frac{\sqrt{3}}{2}+\frac{1}{2}i\right)(z-2)$$
 بین آن (ا

- ب) استنتج 'AM بدلالة AM وحدد قياسا للزاوية (AM; AM).
 - ج) بين أن المثلث 'AMM قائم الزاوية في 'M'.
 - د) أنشى 'M في حالة إ + 2=4

3- أ) بين أن $\varphi = h$ حيث r هو الدوران ذو المركز A والزاوية $\frac{\pi}{8}$ و h هو التحاكي ذو المركز A والنسبة $\frac{\sqrt{3}}{8}$ ب) حدد صورة الدائرة (C) ذات المركز O والشعاع 1 بالتطبيق ω.

 $\forall n \in \mathbb{N}^*$ ونعتبر التطبيقات ϕ من \mathscr{D} نحو \mathscr{D} . المعرفة بما يلي : $\varphi_1 = \varphi \circ \varphi_1 = \varphi \circ \varphi_1$ -4 M_{\parallel} نضع $M_{\parallel} = 2$ لحق النقطة $\omega_{\parallel} = 0$

- ا) احسب رح.
- $(\forall n \in \mathbb{N}^*) \ z_{n+1} 2 = \frac{3 + \sqrt{3}i}{4}(z_n 2) :$ ب) تحقق آل $M_{n+1} = \varphi(M_n)$ واستنتج ان
- . $t_n = z_n 2$ بين بالنرجع ان : $t_n = -2 \left(\frac{3 + \sqrt{3}i}{4} \right)^n$: نامح $t_n = z_n 2$ بين بالنرجع ان : المح

د) اكتب العدد M_n تنتمي إلى المحور (0;1).

التمرين <u>3..</u>

 $N = ab(a^{30} - b^{30})$ عددان صحيحان طبيعيان بحيث a > b نعتبر العدد a > b

- p -1 ليكن p -ددا أوليا موجبا بحيث p يقسم العدد 30 .
- ا) بين أن العدد م يقسم N (يمكنك استعمال مبرهنة فيرما)
 - ب) حدد قيم p واستنتج أن N يقبل القسمة على 322 14.

$$\begin{cases} a^9 + b^9 = 1953637 \\ a^{13} - b^{13} = 1220694933 \end{cases}$$
: نفتر من ان

b < a < 10 ()

 $\chi^{13} = \chi[5]_{9}\chi^{9} = \chi[5] \quad (\forall x \in \mathbb{N}) \quad x^{19} = x[5]$ بین ان :

ج) استنتج آن