## CHEMICO-BIOLOGICAL INTERACTIONS

#### SUBJECT INDEX

## **VOLUME 68 (1988)**

- Acetaminophen, reactive drug metabolites, drug-protein covalent adducts, hemoglobin, 99
- Acetaminophen metabolism, thiol adducts, benzoquinone, 85
- Adrenodoxin, cytochrome P-450scc, second derivative spectroscopy, component interaction, functional linkage (stability and substrate turnover), 71
- Alkylation, 7-alkylguanine, depurination, imidazole ring-opening, DNA adduct, pK, 117
- 7-Alkylguanine, alkylation, depurination, imidazole ring-opening, DNA adduct, pK<sub>a</sub>, 117
- Ames test, food mutagens, streptozotocin, diabetes, cytochrome P-450, metabolic activation, 189
- 2-Amino-6-methyldipyrido[1, 2-a, 3', 2'-d]imidazole, thiol, sulfinamide, N-hydroxy-sulfonamide, glutathione conjugation, detoxification, 57
- Apurinic site, depurination, phosphodiester cleavage, strand break, dinucleotide, 153
- Autoxidation, α-hydroxyquinones, quinone epoxides, p-benzoquinone, glutathione, nucleophilic addition, semiquinones, 273
- Benzoquinone, acetaminophen metabolism, thiol adducts, 85
- p-Benzoquinone, a-hydroxyquinones, quinone epoxides, glutathione, nucleophilic addition, autoxidation, semiquinones, 273
- Benzo[a]pyrene, fluoranthene, cocarcinogenicity, DNA-binding, metabolism in vivo, 127
- Cocarcinogenicity, benzo[a]pyrene, fluoranthene, DNA-binding, metabolism in vivo, 127
- Component interaction, cytochrome P-450scc, adrenodoxin, second derivative spectroscopy, functional linkage (stability and substrate turnover), 71

- Covalent binding, 4-nitrobenzyl mercaptan Ssulfate, protein sulfhydryl group, mixed disulfide bond, glutathione, 27
- Cytochrome P-450, food mutagens, streptozotocin, diabetes, metabolic activation, Ames test, 189
- -, macrolide antibiotics, roxythromycin, erythromycin, troleandomycin, 179
- Cytochrome P-450scc, adrenodoxin, second derivative spectroscopy, component interaction, functional linkage (stability and substrate turnover), 71
- Cytosol, hexachlorobutadiene, glutathione Stransferase, liver, microsomes, 1
- Depurination, 7-alkylguanine, alkylation, imidazole ring-opening, DNA adduct, pK, 117
- -, apurinic site, phosphodiester cleavage, strand break, dinucleotide, 153
- Detoxification, thiol, sulfinamide,2-amino-6-methyldipyrido[1,2-a,3',2'-d]imidazole, Nhydroxy-sulfonamide, glutathione conjugation, 57
- Diabetes, food mutagens, streptozotocin, cytochrome P-450, metabolic activation, Ames test, 189
- Dimethylnitrosamine, DNA alkylation, neonatal carcinogenesis, O<sup>6</sup>-methylguanine, O<sup>6</sup>-methylguanine-DNA methyltransferase, 259
- Dinucleotide, depurination, apurinic site, phosphodiester cleavage, strand break, 153
- DNA-binding, benzo[a]pyrene, fluoranthene, cocarcinogenicity, metabolism in vivo, 127
- DNA adduct, 7-alkylguanine, alkylation, depurination, imidazole ring-opening, pK, 117
- DNA alkylation, neonatal carcinogenesis, O<sup>6</sup>-methylguanine-DNA methyltransferase, dimethylnitrosamine, 259

- Drug-protein covalent adducts, acetaminophen, reactive drug metabolites, hemoglobin, 99
- Epoxide hydrolase, peroxisome proliferation, induction, liver, mice, 219
- Erythromycin, macrolide antibiotics, cytochrome P-450, roxythromycin, troleandomycin, 179
- Fluoranthene, benzo[a]pyrene, cocarcinogenicity, DNA-binding, metabolism in vivo, 127
- Food mutagens, streptozotocin, diabetes, cytochrome P-450, metabolic activation, Ames test, 189
- Functional linkage (stability and substrate turnover), cytochrome P-450scc, adrenodoxin, second derivative spectroscopy, component interaction, 71
- Glutathione, covalent binding, 4-nitrobenzyl mercaptan S-sulfate, protein sulfhydryl group, mixed disulfide bond, 27
- --, α-hydroxyquinones, quinone epoxides, pbenzoquinone, nucleophilic addition, autoxidation, semiquinones, 273
- Glutathione conjugation, thiol, sulfinamide, 2-amino-6-methyldipyrido[1,2-a,3',2'-d]imidazole, N-hydroxy-sulfonamide, detoxification, 57
- Glutathione S-transferase, hexachlorobutadiene, liver, cytosol, microsomes, 1
- Glycine, hydroxyalkenals, pyridinium derivatives, lipid peroxidation, 165
- Hemoglobin, acetaminophen, reactive drug metabolites, drug-protein covalent adducts, 99
- Hexachlorobutadiene, glutathione S-transferase, liver, cytosol, microsomes, 1
- N-Hydroxy-sulfonamide, thiol, sulfinamide, 2-amino-6-methyldipyrido[1,2-a,3',2'-d]imidazole, glutathione conjugation, detoxification, 57
- Hydroxyalkenals, glycine, pyridinium derivatives, lipid peroxidation, 165
- α-Hydroxyquinones, quinone epoxides, p-benzoquinone, glutathione, nucleophilic addition, autoxidation, semiquinones, 273
- Imidazole ring-opening, 7-alkylguanine, alkylation, depurination, DNA adduct, pK, 117

- Induction, epoxide hydrolase, peroxisome proliferation, liver, mice, 219
- Inhibitor, lysinoalanine, protein synthesis, lysyl, tRNA, synthetase, 241
- Lipid peroxidation, hydroxyalkenals, glycine, pyridinium derivatives, 165
- Liver, epoxide hydrolase, peroxisome proliferation, induction, mice, 219
- -, hexachlorobutadiene, glutathione Stransferase, cytosol, microsomes, 1
- Lymphocyte activation, thiols, oxidative stress, 137
- Lysinoalanine, protein synthesis, lysyl, tRNA, synthetase, inhibitor, 241
- Lysyl, lysinoalanine, protein synthesis, tRNA, synthetase, inhibitor, 241
- Macrolide antibiotics, cytochrome P-450, roxythromycin, erythromycin, troleandomycin, 179
- Mechanism of interference, 3,4,3',4'-tetrachlorobiphenyl, retinol, plasma transport, rodents, 203
- Metabolic activation, food mutagens, streptozotocin, diabetes, cytochrome P-450, Ames test, 189
- Metabolism in vivo, benzo[a]pyrene, fluoranthene, cocarcinogenicity, DNA-binding, 127
- O<sup>6</sup>-Methylguanine, DNA alkylation, neonatal carcinogenesis, O<sup>6</sup>-methylguanine-DNA methyltransferase, dimethylnitrosamine, 250
- O<sup>6</sup>-Methylguanine-DNA methyltransferase, DNA alkylation, neonatal carcinogenesis, O<sup>6</sup>-methylguanine, dimethylnitrosamine, 259
- Mice, epoxide hydrolase, peroxisome proliferation, induction, liver, 219
- Microsomes, hexachlorobutadiene, glutathione S-transferase, liver, cytosol, 1
- Mixed disulfide bond, covalent binding, 4nitrobenzyl mercaptan S-sulfate, protein sulfhydryl group, glutathione, 27
- Model oxidation, oxoporphinatoiron, PAH oxidation, NIH shift, 39
- Neonatal carcinogenesis, DNA alkylation, O<sup>6</sup>-methylguanine, O<sup>6</sup>-methylguanine-DNA methyltransferase, dimethylnitrosamine, 259

- NIH shift, model oxidation, oxoporphinatoiron, PAH oxidation, 39
- 4-Nitrobenzyl mercaptan S-sulfate, covalent binding, protein sulfhydryl group, mixed disulfide bond, glutathione, 27
- Nucleophilic addition, α-hydroxyquinones, quinone epoxides, p-benzoquinone, glutathione, autoxidation, semiquinones, 273
- Oxidative stress, thiols, lymphocyte activation, 137
- Oxoporphinatoiron, model oxidation, PAH oxidation, NIH shift, 39
- PAH oxidation, model oxidation, oxoporphinatoiron, NIH shift, 39
- Peroxisome proliferation, epoxide hydrolase, induction, liver, mice, 219
- Phosphodiester cleavage, depurination, apurinic site, strand break, dinucleotide, 153
- pK, 7-alkylguanine, alkylation, depurination, imidazole ring-opening, DNA adduct, 117
- Plasma transport, mechanism of interference, 3,4,3',4'-tetrachlorobiphenyl, retinol, rodents, 203
- Protein sulfhydryl group, covalent binding, 4-nitrobenzyl mercaptan S-sulfate, mixed disulfide bond, glutathione, 27
- Protein synthesis, lysinoalanine, lysyl, tRNA, synthetase, inhibitor, 241
- Pyridinium derivatives, hydroxyalkenals, glycine, lipid peroxidation, 165
- Quantitative structure activity relationships, trypsin, serine and cysteine proteases, through resonance, Rho values, 13
- Quinone epoxides, α-hydroxyquinones, pbenzoquinone, glutathione, nucleophilic addition, autoxidation, semiquinones, 273
- Reactive drug metabolites, acetaminophen, drug-protein covalent adducts, hemoglobin, 99
- Retinol, mechanism of interference, 3,4,3',4'tetrachlorobiphenyl, plasma transport, rodents, 203
- Rho values, trypsin, quantitative structure activity relationships, serine and cysteine proteases, through resonance, 13
- tRNA, lysinoalanine, protein synthesis, lysyl, synthetase, inhibitor, 241

- Rodents, mechanism of interference, 3,4,3',4'tetrachlorobiphenyl, retinol, plasma transport, 203
- Roxythromycin, macrolide antibiotics, cytochrome P-450, erythromycin, troleandomycin, 179
- Second derivative spectroscopy, cytochrome P-450scc, adrenodoxin, component interaction, functional linkage (stability and substrate turnover), 71
- Semiquinones, a-hydroxyquinones, quinone epoxides, p-benzoquinone, glutathione, nucleophilic addition, autoxidation, 273
- Serine and cysteine proteases, trypsin, quantitative structure activity relationships, through resonance, Rho values, 13
- Strand break, depurination, apurinic site, phosphodiester cleavage, dinucleotide, 153
- Streptozotocin, food mutagens, diabetes, cytochrome P-450, metabolic activation, Ames test, 189
- Sulfinamide, thiol, 2-amino-6-methyldipyrido[1,2-a,3',2'-d]imidazole, N-hydroxysulfonamide, glutathione conjugation, detoxification, 57
- Synthetase, lysinoalanine, protein synthesis, lysyl, tRNA, inhibitor, 241
- 3,4,3',4'-Tetrachlorobiphenyl, mechanism of interference, retinol, plasma transport, rodents, 203
- Thiol, sulfinamide, 2-amino-6-methyldipyrido[1,2-a,3',2'-d]imidazole, N-hydroxysulfonamide, glutathione conjugation, detoxification, 57
- Thiols, lymphocyte activation, oxidative stress, 137
- Thiol adducts, acetaminophen metabolism, benzoquinone, 85
- Through resonance, trypsin, quantitative structure activity relationships, serine and cysteine proteases, Rho values, 13
- Troleandomycin, macrolide antibiotics, cytochrome P-450, roxythromycin, erythromycin, 179
- Trypsin, quantitative structure activity relationships, serine and cysteine proteases, through resonance, Rho values, 13



# CHEMICO-BIOLOGICAL INTERACTIONS

# **AUTHOR INDEX**

# **VOLUME 68 (1988)**

| Akhrem, A.A.    | 71       | Lavoie, E.J.                | 127      |
|-----------------|----------|-----------------------------|----------|
| Axworthy, D.B.  | 99       | Lawrence, D.A.              | 137      |
| Ayrton, A.D.    | 189      | Lifsey, B.J., Jr.           | 241      |
|                 |          | Lundgren, B.                | 219      |
| Baillie, T.A.   | 85, 99   |                             |          |
| Ball, L.M.      | 39       |                             |          |
| Bass, S.L.      | 189      | Mansuy, D.                  | 179      |
| Birberg, W.     | 219      | Mariani, L.                 | 259      |
| Blaner, W.S.    | 203      | Meijer, J.                  | 219      |
| Brouwer, A.     | 203      | Miwa, K.                    | 27       |
| Brunmark, A.    | 273      | Morgenstern, R.             | 1        |
| Cadenas, E.     | 273      | Napetschnig, S.             | 165      |
| Calleman, C.J.  | 85, 99   |                             |          |
| Chashchin, V.L. | 71       |                             |          |
| Chow, M.        | 13       | Okuda, H.                   | 27       |
| Citti, L.       | 259      | Ormstad, K.                 | 1        |
| Coccia, P.      | 259      |                             |          |
| DeFloria, M.C.  | 127      | Pascoe, G.A.                | 85, 99   |
| Delaforge, M.   | 179      | Pilotti, A.                 | 219      |
| DePierre, J.W.  | 219      |                             |          |
| Diomede, L.     | 259      | Rein, H.                    | 71       |
| Duncan, D.D.    | 137      | Reyniers, J.P.              | 241      |
|                 | 101      | Rice, J.E.                  | 127      |
| Esterbauer, H.  | 165      | Ristau, O.                  | 71       |
|                 | 100      | Romano, M.                  | 259      |
| Farkas, W.R.    | 241      | Ruckpaul, K.                | 71       |
| Flatt, P.R.     | 189      |                             |          |
| riatt, F.K.     | 109      | 0.1 W                       | 050      |
|                 |          | Salmona, M.                 | 259      |
| Gerdes, R.G.    | 1        | Sangaiah, R.                | 39       |
| Gold, A.        | 39       | Sartori, E.                 | 179      |
| Grivas, S.      | 57       | Sato, S.                    | 57       |
|                 |          | Schauenstein, E.            | 165      |
| Hansch, C.      | 13       | Selassie, C.D.              | 13       |
| Hemminki, K.    | 117, 153 | Sensenhauser, C.            | 127      |
| Hoffmann, KJ.   | 99       | Shkumatov, V.M.             | 71       |
|                 |          | Smettan, G.                 | 71       |
| Ioannides, C.   | 189      | Streeter, A.J. Sugimura, T. | 99<br>57 |
| Javanaj K       | 20       |                             |          |
| Jayaraj, K.     | 39       | Trinick, J.                 | 189      |
| Jones, T.W.     | 1        |                             |          |
| Kukler, A.      | 203      | Umemoto, A.                 | 57       |

| van den Berg, K.J. | 203      | Watabe, T.    | 27 |
|--------------------|----------|---------------|----|
| Vodička, P.        | 117, 153 |               |    |
| Walker, R.         | 189      | Yamaizumi, Z. | 57 |
| Wallin, A.         | 1        | Yoshioka, S.  | 27 |