MPSI² 2023-24 Lvcée Berthollet

DS2 de mathématiques, partie calcul, vendredi 6 octobre 2023, (2h00)

Les documents, téléphones portables, ordinateurs et calculatrices sont interdits.

Exercice 1 Calculs sommatoires

- 1. Donner sans justification la valeur de $\sum_{i=1}^{n-1} k^3$, pour $n \in \mathbb{N}^*$.
- 2. Déterminer l'expression développée explicite de $(x+2y)^6$, pour $x,y \in \mathbb{C}$.
- 3. Montrer que la fonction $x \mapsto \frac{x^5 + 32}{x + 2}$ coïncide avec une fonction polynôme sur $\mathbb{R} \setminus \{-2\}$, qu'on explicitera.
- 4. Calculer **efficacement** un **seul** coefficient binomial pour trouver le coefficient de x^5 dans $\left(2^{1/5} \cdot x + \frac{1}{\sqrt{1/6}}\right)^9$.
- 5. Calculer, pour $n \in \mathbb{N}$, $\sum_{k=0}^{499} ((2k+2)^3 (2k)^3)$.
- 6. Calculer, pour $n \in \mathbb{N}$, $\sum_{i=1}^{n} \sum_{k=i}^{n} \frac{j}{k}$.
- 7. Est-ce que $2023^{2005} 1966^{2005}$ est un multiple de 19?

Exercice 2 Calculs complexes

- 1. Donner les formes algébrique et trigonométrique de $z_0 = \pi \frac{(1-i)^2}{(1+i)^5}$, puis faire de même avec e^{z_0} .
- 2. Linéariser l'expression $\sin^6(x)$ et en déduire une primitive de la fonction $x \mapsto \sin^6(x)$.
- 3. Donner la forme générale des suites $(u_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ qui vérifient $(\forall n\in\mathbb{N},\ 2u_{n+2}-(1+4i)u_{n+1}+2iu_n=0)$. On calculera explicitement les constantes dans le cas où $u_0 = 3$ et $u_1 = 1 + 2i$.
- 4. Soit $(v_n)_{n\in\mathbb{N}}$ la suite définie par $v_0=1+\mathrm{i}$ et $(\forall n\in\mathbb{N}, v_{n+1}=\sqrt{3}(1+\mathrm{i})+(1+\mathrm{i}\sqrt{3})v_n)$. Calculer le terme général de cette suite, puis la forme algébrique de v_{10} .

Exercice 3 Calculs avec les entiers de Gauss

On note $G = \mathbb{Z} + i \mathbb{Z}$ l'ensemble des nombres complexes dont les parties réelles et imaginaires sont entières.

- 1. Montrer que le produit de deux éléments de *G* est encore dans *G*.
- 2. Pour $(n,m) \in \mathbb{Z}^2$, exprimer $n^2 + m^2$ comme le produit de deux éléments de G.
- 3. En déduire que le produit de deux sommes de deux carrés d'entiers est encore une somme de deux carrés d'entiers.

Exercice 4 Calculs géométriques

On se place dans le plan affine euclidien orienté usuel, muni d'un ROND.

On dit qu'un triangle PQR est direct si l'angle \widehat{QPR} admet une mesure dans $]0,\pi[$. On note A_0,B_0,C_0,A,B,C les points d'affixes respectifs $1,j,j^2,\ a=1+i\sqrt{3},\ b=-2,\ c=1-i\sqrt{3}.$

- 1. Montrer que le triangle $A_0B_0C_0$ est équilatéral direct.
- 2. Déterminer **explicitement** l'unique similitude directe envoyant A_0 sur A et B_0 sur B. sous la forme d'une composée d'une rotation et d'une homothétie qui commutent.
- 3. Calculer $F(C_0)$ et en déduire que le triangle ABC est équilatéral direct.
- 4. Montrer que $a + jb + j^2c = 0$ et $(b-a)^2 + (c-b)^2 + (a-c)^2 = 0$.

Exercice 5 Calcul mixte

Montrer, pour
$$(n,x) \in \mathbb{N} \times \mathbb{R}$$
, que $\sum_{k=0}^{n} {n \choose k} \cos(kx) = \left(2\cos\left(\frac{x}{2}\right)\right)^n \cos\left(\frac{nx}{2}\right)$.

Exercice 6 Une fonction

Soit la fonction $f: x \longmapsto \sqrt{3x + \sqrt{2 + x^2}}$.

- 1. Déterminer soigneusement son domaine de définition.
- 2. En prouvant sa dérivabilité, puis calculant sa dérivée, sur un intervalle ouvert convenable, déterminer les variations de f.
- 3. Montrer que $\frac{\sqrt{3x+\sqrt{2+x^2}}}{2x+1}$ a une limite quand x tend vers $\left(-\frac{1}{2}\right)^+$, qu'on déterminera.
- 4. La fonction f est-elle dérivable en $-\frac{1}{2}$?