INTRODUCTION TO SHIMURA VARIETIES AND THEIR COHOMOLOGY

MICHAŁ MRUGAŁA

Plan:

- I) Siegel modular varieties
- II) General Shimura varieties
- III) (Étale) Cohomology: Kottwitz conjecture

(The cohomology gives a realization of the global Langlands correspondence for certain number fields.)

The main reference are Sophie Morel's notes from the IHES '22 summer school.

§1. SIEGEL MODULAR VARIETIES

Analytically: we want to parametrize complex tori. This is fairly simple. Let V be a **C**-vector space of dimension $m \ge 1$, $\Lambda \subset V$ a lattice (a discrete subgroup such that V/Λ is compact), then $X = V/\Lambda$ is a complex Lie group, which is a complex torus.

A morphism $f: X = V/\Lambda \to X' = V'/\Lambda'$ of complex Lie groups is given by a **C**-linear map $V \to V'$ mapping Λ to Λ' .

Question: Which complex tori are algebraizable, i.e. $X \hookrightarrow \mathbb{P}^n(\mathbb{C})$ (equivalent to $X \simeq \underline{X}^{an}$ for some projective \underline{X} by Chow). Can we find a parametrization?

Example 1.0.1. — Let n = 1 complex tori are always algebraic. There is the Weierstrass \wp -function

$$\wp: V/\Lambda \longrightarrow \mathbb{P}^1(\mathbf{C})$$

$$v \longmapsto \wp(v) = \frac{1}{v^2} + \sum_{\lambda \in \Lambda - 0} \frac{1}{(\lambda + v)^2} - \frac{1}{\lambda^2}.$$

It embeds V/Λ in $\mathbb{P}^2(\mathbb{C})$ via $[\wp : \wp' : 1]$ with image $y^2 = P_\Lambda(x)$ where $P_\Lambda \in \mathbb{C}[X]$ has degree 3. The coefficients of P_Λ are Eisenstein series (modular forms).

For n > 1, X is "almost never" algebraic.

Recall that X is algebraizable if and only if there exists $\mathscr{L} \in \operatorname{Pic}(X)$ which is ample (see Mumford's Abelian Varieties). Recall that $\operatorname{Pic}(X) \simeq H^1(X, \mathscr{O}_X^{\times})$. There is a short exact sequence

$$0 \longrightarrow \underline{\mathbb{Z}}_X \longrightarrow \mathscr{O}_X^{\exp(2\pi i -)} \mathscr{O}_X^{\times} \longrightarrow 0$$

so we get a long exact sequence. The map

$$H^0(X, \mathscr{O}_X) \simeq \mathbf{C} \longrightarrow \mathbf{C}^{\times} \simeq H^0(X, \mathscr{O}_X^{\times})$$

is surjective so we get

$$H^{1}(X,\mathbb{Z}) \longleftrightarrow H^{1}(X,\mathscr{O}_{X}) \longrightarrow H^{1}(X,\mathscr{O}_{X}) \xrightarrow{\delta} \ker(H^{2}(X,\mathbb{Z}) \to H^{2}(X,\mathscr{O}_{X}))$$

$$\downarrow^{\simeq} \qquad \qquad \downarrow^{\square} \qquad \qquad \downarrow^{\simeq} \qquad \qquad \downarrow^{\simeq}$$

$$H^{1}(\Lambda,\mathbb{Z}) \qquad \overline{T} \qquad \qquad H^{1}(\Lambda,\mathscr{O}(X)^{\times}) \qquad \qquad \text{Hom}\left(\bigwedge^{2}\Lambda,\mathbb{Z}\right)$$

$$\downarrow^{\circ} \qquad \qquad \downarrow^{\circ} \qquad \qquad \downarrow^{\circ}$$

$$\downarrow^{\circ} \qquad \qquad \downarrow^{\circ} \qquad \qquad \downarrow^{\circ} \qquad \qquad \downarrow^{\circ}$$

$$\downarrow^{\circ} \qquad \qquad \downarrow^{\circ} \qquad \qquad \downarrow^{\circ} \qquad \qquad \downarrow^{\circ} \qquad \qquad \downarrow^{\circ}$$

$$\downarrow^{\circ} \qquad \qquad \downarrow^{\circ} \qquad \qquad$$

We have $H^i(V, \mathbb{Z}) = 0$ for all i > 0 and $H^i(V, \mathcal{O}_V) = 0$ for all i > 0 so Pic(V) = 0. \overline{T} are the antilinear maps $V \to \mathbb{C}$ and $T = \text{Hom}_{\mathbb{C}}(V, \mathbb{C})$. Observe that

$$\operatorname{Pic}^0(X) = \ker \delta \simeq \frac{\overline{T}}{\operatorname{pr}_2(\operatorname{Hom}(\Lambda, \mathbb{Z}))}$$

is also a complex torus. The last term is the Neron-Severi group

$$NS(X) \simeq \{E : \Lambda \times \Lambda \longrightarrow \mathbb{Z} \text{ alt.} : E(iv_1, iv_2) = E(v_1, v_2), \forall v_1, v_2 \in V\}$$

= $\{\operatorname{Im} H : H : V \times V \longrightarrow \mathbb{C} \text{ Hermitian such that } (\operatorname{Im} H)(\Lambda \times \Lambda) \subset \mathbb{Z}\}.$

The Appel-Humbert theorem completely describes Pic(X) as $\{L(H, \alpha)\}$ with H as above and α an extra datum.

Theorem 1.0.1 (Lefschetz). — *The following are equivalent:*

- 1) H is positive definite.
- 2) $L(H, \alpha)$ is ample (in fact, $L(H, \alpha)^{\otimes 3}$ is enough to embed X).

Let $L \in Pic(X)$ then

$$\phi_L: X \longrightarrow \operatorname{Pic}^0(X) = \widehat{X}$$
$$x \longmapsto T_x^* L \otimes L^{-1}$$

is a morphism of Lie groups (here T_x is translation by x).

Theorem 1.0.2. — *The following are equivalent:*

- L is ample.
- $\ker \phi_L$ is finite.
- ϕ_L is surjective (i.e. an isogeny).

Check that phi_L is an isomorphism if and only if $E(\cdot, \cdot)$ is perfect $(\Lambda \simeq \operatorname{Hom}(\Lambda, \mathbb{Z}))$.

Definition. — Say that such ϕ_L is a *polarization*. If ϕ_L is an isomorphism, then it is called a *principal polarization*.

Remark. — Not every algebraic *X* admits a principal polarization, but is isogenous to one that does.

We can define the moduli problem

$$\mathscr{A}_n(\mathbf{C}) = \left\{ (X, \phi) : X = V/\Lambda \text{ of dimension } n, \phi : X \longrightarrow \widehat{X} \text{ a principal polarization} \right\}.$$

Let (V, Λ, H) be a principally polarized complex torus. Choose a symplectic basis (e_1, \dots, e_{2n}) of Λ , i.e.

$$(E(e_i,e_j))_{i,j}=J_n=\begin{pmatrix}0&I_n\\-I_n&0\end{pmatrix}.$$

 $L = L(H, \alpha)$ is ample if and only if e_{n+1}, \dots, e_{2n} is a basis of V over \mathbb{C} such that

$$\tau = \operatorname{Mat}_{e_{n+1}, \dots, e_{2n}}(e_1, \dots, e_n)$$

satisfies $\tau = t$ and $Im(\tau)$ is positive definite.

Definition. — \mathcal{H}_n^+ is the set of such $\tau \in M_n(\mathbb{C})$. There is an algebraic group

$$\mathbf{Sp}_{2n,\mathbb{Z}}: R \longmapsto \left\{g \in M_{2n}(R): {}^{t} gJ_{n}g = K_{n}\right\}.$$

There is an action of $\mathbf{Sp}_{2n}(\mathbb{Z})$ on \mathscr{H}_n^+ such that given

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

we have

$$\tau \gamma = (\tau b + d)^{-1}(\tau a + c)$$

(this corresponds to replacing $\underline{e} = (e_1, \dots, e_{2n})$ by $\underline{e}\gamma$).

We prefer left actions: let ${}^t\gamma$ act so that $\gamma\tau = \tau * {}^t\gamma$, i.e.

$$(\tau^t c + d)^{-1} (\tau^t a + b) = (a\tau + b)(c\tau + d).$$

This extends to an action of $\mathbf{Sp}_{2n}(\mathbf{R})$ on \mathcal{H}_n^+ . This action is transitive and

$$\mathsf{Stab}_{\mathbf{Sp}_{2n}(\mathbf{R})}(iI_n) \longrightarrow U(n)$$

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \longmapsto a + ib$$

is an isomorphism (this is a maximal compact subgroup).

So
$$\mathscr{A}_n(\mathbf{C}) \simeq \Gamma_n \setminus \mathscr{H}_n^+$$
 wher $\Gamma_n \simeq \mathbf{Sp}_{2n}(\mathbb{Z})$.

Remark. — There exists $\gamma \in \Gamma_n \setminus \{\pm 1\}$ and $\tau \in \mathscr{H}_n^+$ such that $\gamma \tau = \tau$.

There is a universal object

$$\mathscr{X}_n(\mathbf{C}) = \mathbb{Z}^{2n} \rtimes \Gamma_n \setminus \mathbf{C}^n \times \mathscr{H}_n^+$$

where

$$\gamma(v,\tau) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} (v,\tau) = ((\tau^t c + t^t d)^{-1} v, \gamma \tau)$$

and

$$(\lambda_1, \lambda_2)(v, \tau) = (v + \lambda_1 + \tau \lambda_2, \tau)$$

for $\lambda_i \in \mathbb{Z}^n$.

There is a morphism $\pi: \mathscr{X}(\mathbf{C}) \to \mathscr{A}_n(\mathbf{C})$ which admits a section e. The fiber of τ is $[\tau] \simeq \mathbf{C}^n/\Lambda_{\tau}$ where $\Lambda_{\tau} = \mathbb{Z}^n \oplus \tau \mathbb{Z}^n$. We get the *Hodge bundle*: take $\Omega^1(V/\Lambda)$ which are translaton invariant 1-forms, which is isomorphic to V^* via e^* , then the Hodge bundle is

$$\mathscr{E}_n = e^* \Omega^1_{\mathscr{X}(\mathbf{C})/\mathscr{A}_n(\mathbf{C})} \simeq \Gamma_n \setminus \underline{C}^n \times \mathscr{H}_n^+$$

for action (??).

We can apply Schur functors (use the action of \mathfrak{S}_k on on $\mathscr{E}_n^{\otimes k}$ to act on subbundles, e.g. $\bigwedge^k \mathscr{E}_n$ for $0 \leq k \leq n$). (Equivalently see \mathscr{E}_n as a $\mathbf{GL}_n(\mathbf{C})$ -bundle on $\mathscr{A}_n(\mathbf{C})$ and apply a holomorphic representation $\rho: (\mathbf{GL}_n(\mathbf{C}) \to \mathbf{GL}(W).)$ Sections of such vector bundles on $\mathscr{A}_k(\mathbf{C})$ are (level Γ_n , weight ρ) Siegel modular forms on $\mathscr{A}_n(\mathbf{C})$.

Notation: Write

$$M_{\rho}(\Gamma_n) = \{ f \in \Gamma(A_n(\mathbf{C}), \rho(\mathscr{E}_n) : f \text{ is holomorphic at } \infty \}$$

(the last condition is automatic if n > 1). We write

$$S_{\rho}(\Gamma_n) = \{ f : \text{vanish at } \infty \} \subset M_{\rho}(\Gamma_n)$$

for the set of *cusp forms*.

We want a group theoretic description of the complex structure on $\mathcal{A}_n(\mathbf{C})$ and these vector bundles on $\mathcal{A}_m(\mathbf{C})$.

We have $Z(U(n)) \simeq U(1)$ and its centralizer in $\mathbf{Sp}_{2n}(\mathbf{R})$ is U(n) = K() where $K \hookrightarrow \mathbf{Sp}_{2n,\mathbf{R}}$ is an algebraic subgroup.

Over C we have

$$Z(K_{\mathbf{C}}) \simeq \mathbf{GL}_{1,\mathbf{C}}\mathbf{Sp}_{2n,\mathbf{C}}.$$

This determines two opposite parabolic subgroups $Q_+ = K_{\mathbb{C}} N_+$, $Q_- K_{\mathbb{C}} N_-$