

OVP Guide to Using Processor Models

Model specific information for RISC-V_RV64G

Imperas Software Limited Imperas Buildings, North Weston Thame, Oxfordshire, OX9 2HA, U.K. docs@imperas.com

Author	Imperas Software Limited			
Version	20240902.0			
Filename	OVP_Model_Specific_Information_riscv_RV64G.pdf			
Created	2 September 2024			
Status	OVP Standard Release			

Copyright Notice

Copyright (c) 2024 Imperas Software Limited. All rights reserved. This software and documentation contain information that is the property of Imperas Software Limited. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Imperas Software Limited, or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Imperas permits licensee to make copies of the documentation for its internal use only. Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the readers responsibility to determine the applicable regulations and to comply with them.

Disclaimer

IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Model Release Status

This model is released as part of OVP releases and is included in OVPworld packages. Please visit OVPworld.org.

Contents

1	Ove	rerview 1			
	1.1	Description			
	1.2	Licensing			
	1.3	Extensions			
		1.3.1 Extensions Enabled by Default			
		1.3.2 Enabling Other Extensions			
		1.3.3 Disabling Extensions			
	1.4	General Features			
		1.4.1 mtvec CSR			
		1.4.2 stvec CSR			
		1.4.3 Reset			
		1.4.4 NMI			
		1.4.5 WFI			
		1.4.6 cycle CSR			
		1.4.7 instret CSR			
		1.4.8 hpmcounter CSR			
		1.4.9 time CSR			
		1.4.10 mcycle CSR			
		1.4.11 minstret CSR			
		1.4.12 mhpmcounter CSR			
		1.4.13 Virtual Memory			
		1.4.14 Unaligned Accesses			
		1.4.15 PMP			
		1.4.16 Time and Timers			
	1.5	Floating Point Features			
	1.6	Privileged Architecture			
		1.6.1 Legacy Version 1.10			
		1.6.2 Version 20190608			
		1.6.3 Version 20211203			
		1.6.4 Version 1.12			
		1.6.5 Version master			
	1.7	Unprivileged Architecture			
		1.7.1 Legacy Version 2.2			
		1.7.2 Version 20191213			
	1.8	Other Extensions			
		1.8.1 Zmmul			
		1 8 9 7 7 icer			

	1.8.3	Zifencei	10
	1.8.4	Zicbom	10
	1.8.5	Zicbop	10
	1.8.6	Zicboz	11
	1.8.7	Svnapot	11
	1.8.8	Sypbmt	11
	1.8.9	•	11
	1.8.10		11
	1.8.11	Smmpm	11
		Svinval	
		Svadu	
		Ssdbltrp	
		Smstateen	
		Sstc	
		Sscofpmf	
		Smentrpmf	
		Smcsrind	
		Smcdeleg	
	1.8.21		13
		•	13
			13
1.9	CLIC		14
			14
			14
		Atomic Operation Indication	
			15
		•	16
1.11			17
		Debug State Exit	
		Debug Registers	
		Debug Mode Execution	
		Debug Single Step	
		Debug Event Priorities	
		g .	19
			19
			19
			19
			19
			19
1 15			19
1.10			19 19
1 16		00	20
	_		21
1.17	_	11	21
			21
			22
			22
	1.11.4	CSR Register External Implementation	22

Imperas OVP Fast Processor Model Documentation for RISC-V_RV64G

		1.17.5 LR/SC Active Address	23
			23
		1.17.7 Page Table Walk Query	23
		1.17.8 Artifact Page Table Walks	24
		1.17.9 Page Table Walk Event	24
		1.17.10 Artifact Register "fflags_i"	24
		1.17.11 External Stimulation of Illegal Instruction Trap	24
	1.18	Instruction Disassembly	24
			25
	1.20	Verification	25
	1.21	References	25
2	Con	figuration 2	27
	2.1	Location	27
	2.2	GDB Path	27
	2.3	Semi-Host Library	27
	2.4	Processor Endian-ness	27
	2.5	QuantumLeap Support	27
	2.6	Processor ELF code	27
3	All	Variants in this model 2	28
4	Bus	Master Ports	30
	_		
5	Bus	Slave Ports	31
6	Net	Ports 3	32
7	FIF	O Ports	34
0	E	ual Danamatana	
8			35 41
	8.1	U I	41 41
			41 41
		8.1.2 Parameter priv_version	
		1	41 40
			42
			42
		1 1	42
		1	42
			42
		0	43
			43
			43
			43
			43
		1	14
		1	14
		1	14
		8.1.17 Parameter Zfinx_version	44

Imperas OVP Fast Processor Model Documentation for RISC-V_RV64G

	8.2 Parameter values and limits	44
9	Execution Modes	50
10) Exceptions	51
11	1 Hierarchy of the model	52
	11.1 Level 1: Hart	52
12	2 Model Commands	53
	12.1 Level 1: Hart	53
	12.1.1 debugflags	53
	12.1.2 dumpTLB	53
	12.1.2.1 Argument description	53
	12.1.3 getCSRIndex	53
	12.1.4 isync	53
	12.1.5 itrace	54
	12.1.6 listCSRs	54
	12.1.6.1 Argument description	54
	12.1.7 setPMA	
13	3 Registers	55
	13.1 Level 1: Hart	55
	13.1.1 Core	
	13.1.2 Floating-point	
	13.1.3 User_Control_and_Status	
	13.1.4 Supervisor_Control_and_Status	
	13.1.5 Machine_Control_and_Status	
	13.1.6 Integration support	co

Overview

This document provides the details of an OVP Fast Processor Model variant.

OVP Fast Processor Models are written in C and provide a C API for use in C based platforms. The models also provide a native interface for use in SystemC TLM2 platforms.

The models are written using the OVP VMI API that provides a Virtual Machine Interface that defines the behavior of the processor. The VMI API makes a clear line between model and simulator allowing very good optimization and world class high speed performance. Most models are provided as a binary shared object and also as source. This allows the download and use of the model binary or the use of the source to explore and modify the model.

The models are run through an extensive QA and regression testing process and most model families are validated using technology provided by the processor IP owners. There is a companion document (OVP Guide to Using Processor Models) which explains the general concepts of OVP Fast Processor Models and their use. It is downloadable from the OVPworld website documentation pages.

1.1 Description

RISC-V RV64G 64-bit processor model

1.2 Licensing

This Model is released under the Open Source Apache 2.0

1.3 Extensions

1.3.1 Extensions Enabled by Default

The model has the following architectural extensions enabled, and the corresponding bits in the misa CSR Extensions field will be set upon reset:

```
misa bit 0: extension A (atomic instructions)
```

misa bit 3: extension D (double-precision floating point)

misa bit 5: extension F (single-precision floating point)

misa bit 8: RV32I/RV64I/RV128I base integer instruction set

misa bit 12: extension M (integer multiply/divide instructions)

misa bit 18: extension S (Supervisor mode)

misa bit 20: extension U (User mode)

To specify features that can be dynamically enabled or disabled by writes to the misa register in addition to those listed above, use parameter "add_Extensions_mask". This is a string parameter containing the feature letters to add; for example, value "DV" indicates that double-precision floating point and the Vector Extension can be enabled or disabled by writes to the misa register, if supported on this variant. Parameter "sub_Extensions_mask" can be used to disable dynamic update of features in the same way.

Legacy parameter "misa_Extensions_mask" can also be used. This Uns32-valued parameter specifies all writable bits in the misa Extensions field, replacing any permitted bits defined in the base variant.

Note that any features that are indicated as present in the misa mask but absent in the misa will be ignored. See the next section.

1.3.2 Enabling Other Extensions

The following misa-visible extensions are supported by the model, but not enabled by default in this variant:

```
misa bit 2: extension C (compressed instructions)
```

misa bit 4: RV32E base integer instruction set (embedded)

misa bit 7: extension H (hypervisor)

misa bit 13: extension N (user-level interrupts)

misa bit 15: extension P (DSP instructions)

misa bit 21: extension V (vector extension)

misa bit 23: extension X (non-standard extensions present)

To add features from this list to the visible set in the misa register, use parameter "add_Extensions". This is a string containing identification letters of features to enable; for example, value "DV"

indicates that double-precision floating point and the Vector Extension should be enabled, if they are currently absent and are available on this variant.

Legacy parameter "misa_Extensions" can also be used. This Uns32-valued parameter specifies the reset value for the misa CSR Extensions field, replacing any permitted bits defined in the base variant.

The following implicit extensions are supported by the model, but not enabled by default in this variant:

implicit feature bit 1: extension B (bit manipulation extension)

implicit feature bit 10: extension K (cryptographic)

To add features from this list to the implicitly-enabled set (not visible in the misa register), use parameter "add_implicit_Extensions". This is a string parameter in the same format as the "add_Extensions" parameter described above.

1.3.3 Disabling Extensions

The following misa-visible extensions are enabled by default in the model and can be disabled:

misa bit 0: extension A (atomic instructions)

misa bit 3: extension D (double-precision floating point)

misa bit 5: extension F (single-precision floating point)

misa bit 12: extension M (integer multiply/divide instructions)

misa bit 18: extension S (Supervisor mode)

misa bit 20: extension U (User mode)

To disable features that are enabled by default, use parameter "sub_Extensions". This is a string containing identification letters of features to disable; for example, value "DF" indicates that double-precision and single-precision floating point extensions should be disabled, if they are enabled by default on this variant.

1.4 General Features

1.4.1 mtvec CSR

On this variant, the Machine trap-vector base-address register (mtvec) is writable. It can instead be configured as read-only using parameter "mtvec_is_ro".

Values written to "mtvec" are masked using the value 0xffffffffffff. A different mask of writable bits may be specified using parameter "mtvec_mask" if required. In addition, when Vectored interrupt mode is enabled, parameter "tvec_align" may be used to specify additional hardware-enforced base address alignment. In this variant, "tvec_align" defaults to 0, implying no alignment constraint.

If parameter "mtvec_sext" is True, values written to "mtvec" are sign-extended from the most-significant writable bit. In this variant, "mtvec_sext" is False, indicating that "mtvec" is not sign-extended.

The initial value of "mtvec" is 0x0. A different value may be specified using parameter "mtvec" if required.

1.4.2 stvec CSR

Values written to "stvec" are masked using the value 0xfffffffffffff. A different mask of writable bits may be specified using parameter "stvec_mask" if required. In addition, when Vectored interrupt mode is enabled, parameter "tvec_align" may be used to specify additional hardware-enforced base address alignment. In this variant, "tvec_align" defaults to 0, implying no alignment constraint.

If parameter "stvec_sext" is True, values written to "stvec" are sign-extended from the most-significant writable bit. In this variant, "stvec_sext" is False, indicating that "stvec" is not sign-extended.

1.4.3 Reset

On reset, the model will restart at address 0x0. A different reset address may be specified using parameter "reset_address" or applied using optional input port "reset_addr" if required.

1.4.4 NMI

An NMI input is implemented. To instead specify that NMI is not implemented, set parameter "nmi_absent" to True.

On an NMI, the model will restart at address 0x0; a different NMI address may be specified using parameter "nmi_address" or applied using optional input port "nmi_addr" if required. The cause reported on an NMI is 0x0 by default; a different cause may be specified using parameter "ecode_nmi" or applied using optional input port "nmi_cause" if required.

If parameter "rnmi_version" is not "none", resumable NMIs are supported, managed by additional CSRs "mnscratch", "mnepc", "mncause" and "mnstatus", following the indicated version of the Resumable NMI extension proposal. In this variant, "rnmi_version" is "none".

On taking an NMI exception, the mstatus CSR will not be updated. To instead specify that mstatus fields mie and mpie should be updated upon taking an NMI exception, set parameter "nmi_update_mstatus" to True.

On taking an NMI exception, the tcontrol CSR will not be updated. To instead specify that tcontrol fields mte and mpte should be updated upon taking an NMI exception, set parameter "nmi_update_tcontrol" to True.

On taking an NMI exception, the mtval CSR will not be updated. To instead specify that mtval should be written with zero upon taking an NMI exception, set parameter "nmi_zero_mtval" to True.

The NMI input is level-sensitive. To instead specify that the NMI input is latched on the rising edge of the NMI signal, set parameter "nmi_is_latched" to True.

NMI interrupts are lower priority than Debug and Trigger Module events. To instead specify that NMI interrupts are higher priority, set parameter "nmi_high_priority" to True.

1.4.5 WFI

WFI will halt the processor until an interrupt occurs. It can instead be configured as a NOP by setting parameter "wfi_is_nop" to True.

The nominal time limit for WFI instructions can be set by parameter "TW_time_limit". In this variant, the time limit is 0 cycles.

Output signal "core_wfi_mode" indicates whether the processor is currently in WFI state.

Input signal "restart_wfi" will cause the processor to restart from WFI state when high.

Parameter "wfi_resume_not_trap" is 0 on this variant, meaning that pending wakeup events when WFI is executed will not prevent a trap occurring. if "wfi_resume_not_trap" is set to 1 then pending wakeup events when WFI is executed will cause the WFI to be treated as a NOP.

1.4.6 cycle CSR

The "cycle" CSR is implemented in this variant. Set parameter "cycle_undefined" to True to instead specify that "cycle" is unimplemented and accesses should cause Illegal Instruction traps.

1.4.7 instret CSR

The "instret" CSR is implemented in this variant. Set parameter "instret_undefined" to True to instead specify that "instret" is unimplemented and accesses should cause Illegal Instruction traps.

1.4.8 hpmcounter CSR

The "hpmcounter" CSRs are implemented in this variant. Set parameter "hpmcounter_undefined" to True to instead specify that "hpmcounter" CSRs are unimplemented and accesses should cause Illegal Instruction traps.

1.4.9 time CSR

The "time" CSR is implemented in this variant. Set parameter "time_undefined" to True to instead specify that "time" is unimplemented and reads of it should cause Illegal Instruction traps. Usually, the value of the "time" CSR should be provided by the platform - see section "Time and Timers" for more information.

1.4.10 mcycle CSR

The "mcycle" CSR is implemented in this variant. Set parameter "mcycle_undefined" to True to instead specify that "mcycle" is unimplemented and accesses should cause Illegal Instruction traps.

1.4.11 minstret CSR

The "minstret" CSR is implemented in this variant. Set parameter "minstret_undefined" to True to instead specify that "minstret" is unimplemented and accesses should cause Illegal Instruction traps.

1.4.12 mhpmcounter CSR

The "mhpmcounter" CSRs are implemented in this variant. Set parameter "mhpmcounter_undefined" to True to instead specify that "mhpmcounter" CSRs are unimplemented and accesses should cause Illegal Instruction traps.

1.4.13 Virtual Memory

This variant supports address translation modes 0 (bare), 8 (Sv39), 9 (Sv48) and 10 (Sv57). Use parameter "Sv_modes" to specify a bit mask of different implemented modes if required; for example, setting "Sv_modes" to (1 << 0)+(1 << 8) indicates that mode 0 (bare) and mode 8 (Sv39) are implemented. These indices correspond to writable values in the satp.MODE CSR field.

A 16-bit ASID is implemented. Use parameter "ASID_bits" to specify a different implemented ASID size if required.

TLB behavior is controlled by parameter "ASIDCacheSize". If this parameter is 0, then an unlimited number of TLB entries will be maintained concurrently. If this parameter is non-zero, then only TLB entries for up to "ASIDCacheSize" different ASIDs will be maintained concurrently initially; as new ASIDs are used, TLB entries for less-recently used ASIDs are deleted, which improves model performance in some cases. If the model detects that the TLB entry cache is too small (entry ejections are very frequent), it will increase the cache size automatically. In this variant, "ASIDCacheSize" is 8.

Boolean parameter "ignore_non_leaf_DAU" specifies how non-zero D, A and U fields in non-leaf PTE entries are handled. If "ignore_non_leaf_DAU" is False, then using such entries will trigger Page Fault traps. If "ignore_non_leaf_DAU" is True, then such entries will be handled as if D, A and U fields are all zero. In this variant, "ignore_non_leaf_DAU" is 0.

1.4.14 Unaligned Accesses

Unaligned memory accesses are not supported by this variant. Set parameter "unaligned" to "T" to enable such accesses.

Unaligned memory accesses are not supported for AMO instructions by this variant. Set parameter "Zam" to "T" to enable such accesses.

Address misaligned exceptions are higher priority than page fault or access fault exceptions on this variant. Set parameter "unaligned_low_pri" to "T" to specify that they are lower priority instead.

1.4.15 PMP

16 PMP entries are implemented by this variant. Use parameter "PMP_registers" to specify a different number of PMP entries; set the parameter to 0 to disable the PMP unit.

The PMP grain size (G) is 0, meaning that PMP regions as small as 4 bytes are implemented. Use parameter "PMP_grain" to specify a different grain size if required. (The grain size in bytes is a 64 bit value calculated using the formula 4<<PMP_grain.)

Unaligned PMP accesses are not decomposed into separate aligned accesses; use parameter "PMP_decompose" to modify this behavior if required.

Parameters to change the write masks for the PMP CSRs are not enabled; use parameter "PMP_maskparams" to modify this behavior if required.

Parameters to change the reset values for the PMP CSRs are not enabled; use parameter "PMP_initialparams" to modify this behavior if required

The total number of PMP registers present is 64, (this includes CSRs for unimplemented PMP regions), as determined by the requirements of the selected priv_version. Set parameter "PMP_csrs" to specify a different total number of PMP registers.

Accesses to unimplemented PMP registers are write-ignored and read as zero on this variant. Set parameter "PMP_undefined" to True to indicate that such accesses should cause Illegal Instruction exceptions instead.

1.4.16 Time and Timers

A RISC-V hart requires an incrementing time source to be available in any of the following cases:

- 1. The "time" CSR is implemented ("time_undefined" is False);
- 2. The "Sstc" extension is present ("Sstc" is True);
- 3. The internal CLINT model is enabled ("CLINT_address" is non-zero).

The time value in this model is implemented by an abstract counter object, which is shared with any other processor models or peripherals that use the same name to define the counter. The name of the counter is specified by the "mtime_counter" parameter ("mtime_counter" by default). The bit width of the counter is specified by the "mtime_bits" parameter (64 by default). The frequency of the counter is specified by the "mtime_Hz" parameter (1e+06Hz by default).

1.5 Floating Point Features

The D extension is enabled in this variant independently of the F extension. Set parameter "d_requires_f" to "T" to specify that the D extension requires the F extension to be enabled.

Additional floating point instructions are not implemented. Use parameter "Zfa" to enable these if required.

By default, the processor starts with floating-point instructions disabled (mstatus.FS=0). Use parameter "mstatus.FS" to force mstatus.FS to a non-zero value for floating-point to be enabled from the start.

The specification is imprecise regarding the conditions under which mstatus.FS is set to Dirty state (3). Parameter "mstatus_fs_mode" can be used to specify the required behavior in this model, as described below.

If "mstatus_fs_mode" is set to "always_dirty" then the model implements a simplified floating point status view in which mstatus.FS holds values 0 (Off) and 3 (Dirty) only; any write of values 1 (Initial) or 2 (Clean) from privileged code behave as if value 3 was written.

If "mstatus_fs_mode" is set to "write_1" then mstatus.FS will be set to 3 (Dirty) by any explicit write to the fflags, frm or fcsr control registers, or by any executed instruction that writes an FPR, or by any executed floating point compare or conversion to integer/unsigned that signals a floating point exception. Floating point compare or conversion to integer/unsigned instructions that do not signal an exception will not set mstatus.FS.

If "mstatus_fs_mode" is set to "write_any" then mstatus.FS will be set to 3 (Dirty) by any explicit write to the fflags, frm or fcsr control registers, or by any executed instruction that writes an FPR, or by any executed floating point compare or conversion even if those instructions do not signal a floating point exception.

If "mstatus_fs_mode" is set to "execute_not_store" then mstatus.FS will be set to 3 (Dirty) when any floating point instruction except a floating point store is executed. This includes all instructions selected by "write_any" mode, and also floating point moves targeting GPRs.

If "mstatus_fs_mode" is set to "execute_any" then mstatus.FS will be set to 3 (Dirty) when any floating point instruction is executed. This includes all instructions selected by "execute_not_store" mode, and also floating point stores.

In this variant, "mstatus_fs_mode" is set to "write_1".

Half precision floating point is not implemented. Use parameter "Zfh" to enable this if required.

1.6 Privileged Architecture

This variant implements the Privileged Architecture with version specified in the References section of this document. Note that parameter "priv_version" can be used to select the required architecture version; see the following sections for detailed information about differences between each supported version.

1.6.1 Legacy Version 1.10

1.10 version of May 7 2017.

1.6.2 Version 20190608

Stable 1.11 version of June 8 2019, with these changes compared to version 1.10:

- mcountinhibit CSR defined;
- pages are never executable in Supervisor mode if page table entry U bit is 1;
- mstatus.TW is writable if any lower-level privilege mode is implemented (previously, it was just if Supervisor mode was implemented);

1.6.3 Version 20211203

- 1.12 draft version of December 3 2021, with these changes compared to version 20190608:
- mstatush, mseccfg, mseccfgh, menvcfg, menvcfgh, senvcfg, henvcfgh and mconfigptr CSRs defined:
- xret instructions clear mstatus.MPRV when leaving Machine mode if new mode is less privileged than M-mode;
- maximum number of PMP registers increased to 64;
- data endian is now configurable.

1.6.4 Version 1.12

Official 1.12 version, identical to 20211203.

1.6.5 Version master

Unstable master version, currently identical to 1.12.

1.7 Unprivileged Architecture

This variant implements the Unprivileged Architecture with version specified in the References section of this document. Note that parameter "user_version" can be used to select the required architecture version; see the following sections for detailed information about differences between each supported version.

1.7.1 Legacy Version 2.2

2.2 version of May 7 2017.

1.7.2 Version 20191213

Stable 20191213-Base-Ratified version of December 13 2019, with these changes compared to version 2.2:

- floating point fmin/fmax instruction behavior modified to comply with IEEE 754-201x.
- numerous other optional behaviors can be separately enabled using Z-prefixed parameters.

1.8 Other Extensions

Other extensions that can be configured are described in this section.

1.8.1 Zmmul

Parameter "Zmmul" is 0 on this variant, meaning that all multiply and divide instructions are implemented. if "Zmmul" is set to 1 then multiply instructions are implemented but divide and remainder instructions are not implemented.

1.8.2 Zicsr

Parameter "Zicsr" is 1 on this variant, meaning that standard CSRs and CSR access instructions are implemented. if "Zicsr" is set to 0 then standard CSRs and CSR access instructions are not implemented and an alternative scheme must be provided as a processor extension.

1.8.3 Zifencei

Parameter "Zifencei" is 1 on this variant, meaning that the fence.i instruction is implemented (but treated as a NOP by the model). if "Zifencei" is set to 0 then the fence.i instruction is not implemented.

1.8.4 **Zicbom**

Parameter "Zicbom" is 0 on this variant, meaning that code block management instructions are undefined. if "Zicbom" is set to 1 then code block management instructions cbo.clean, cbo.flush and cbo.inval are defined.

If Zicbom is present, the cache block size is given by parameter "cmomp_bytes". The instructions may cause traps if used illegally but otherwise are NOPs in this model.

1.8.5 Zicbop

Parameter "Zicbop" is 0 on this variant, meaning that prefetch instructions are undefined. if "Zicbop" is set to 1 then prefetch instructions prefetch.i, prefetch.r and prefetch.w are defined (but

behave as NOPs in this model).

1.8.6 Zicboz

Parameter "Zicboz" is 0 on this variant, meaning that the cbo.zero instruction is undefined. if "Zicboz" is set to 1 then the cbo.zero instruction is defined.

If Zicboz is present, the cache block size is given by parameter "cmoz_bytes".

1.8.7 Synapot

Parameter "Svnapot_page_mask" is 0x0 on this variant, meaning that NAPOT Translation Contiguity is not implemented. if "Svnapot_page_mask" is non-zero then NAPOT Translation Contiguity is enabled for page sizes indicated by that mask value when page table entry bit 63 is set.

If Svnapot is present, "Svnapot_page_mask" is a mask of page sizes for which contiguous pages can be created. For example, a value of 0x10000 implies that 64KiB contiguous pages are supported.

1.8.8 Sypbmt

Parameter "Svpbmt" is 0 on this variant, meaning that page-based memory types are not implemented. if "Svpbmt" is set to 1 then page-based memory types are indicated by page table entry bits 62:61.

Note that except for their effect on Page Faults, the encoded memory types do not alter the behavior of this model, which always implements strongly-ordered non-cacheable semantics.

1.8.9 Ssnpm

Parameter "Ssnpm" is "none" on this variant, meaning Supervisor next level pointer masking not implemented.

1.8.10 Smnpm

Parameter "Smnpm" is "none" on this variant, meaning Machine next level pointer masking not implemented.

1.8.11 Smmpm

Parameter "Smmpm" is "none" on this variant, meaning Machine pointer masking not implemented.

1.8.12 Svinval

Parameter "Svinval" is 0 on this variant, meaning that fine-grained address-translation cache invalidation instructions are not implemented. if "Svinval" is set to 1 then fine-grained address-translation cache invalidation instructions sinval.vma, sfence.w.inval and sfence.inval.ir are implemented.

1.8.13 Svadu

Parameter "Svadu" is 0 on this variant, meaning that xenvcfg control of hardware update of PTE A and D bits is not implemented. if "Svadu" is set to 1 then xenvcfg control of hardware update of PTE A and D bits is implemented.

1.8.14 Ssdbltrp

Parameter "Ssdbltrp" is 0 on this variant, meaning that S-mode double trap extensions are not implemented. if "Ssdbltrp" is set to 1 then S-mode double trap extensions are implemented.

1.8.15 Smstateen

Parameter "Smstateen" is 0 on this variant, meaning that state enable CSRs are undefined. if "Smstateen" is set to 1 then state enable CSRs are defined.

These state enable bits are currently implemented:

bit 1: Zfinx extension enable

bit 2: Zcmt extension enable

bit 57: xcontext CSR access

bit 58: IMSIC CSR access

bit 59: AIA CSR access

bit 60: sireg CSR access

bit 62: xenvcfg CSR access

bit 63: lower-level state enable CSR access

1.8.16 Sstc

Parameter "Sstc" is 0 on this variant, meaning that stimecmp is not implemented. if "Sstc" is set to 1 then stimecmp is implemented.

1.8.17 Sscofpmf

Parameter "Sscofpmf" is 0 on this variant, meaning that count overflow and mode-based filtering extension CSRs are undefined. if "Sscofpmf" is set to 1 then count overflow and mode-based filtering extension CSRs are defined.

Note that this model implements CSR state only for this extension; hardware performance counters themselves are implementation-specific and not implemented.

1.8.18 Smcntrpmf

Parameter "Smcntrpmf" is 0 on this variant, meaning that cycle and instret mode-based filtering extension CSRs are undefined. if "Smcntrpmf" is set to 1 then cycle and instret mode-based filtering extension CSRs are defined.

1.8.19 Smcsrind

Parameter "Smcsrind" is 0 on this variant, meaning that indirect CSR access is not implemented. if "Smcsrind" is set to 1 then indirect CSR access is implemented. If Supervisor mode is implemented, this also implicitly enables Sscsrind.

1.8.20 Smcdeleg

Parameter "Smcdeleg" is 0 on this variant, meaning that supervisor counter delegation is not implemented. if "Smcdeleg" is set to 1 then supervisor counter delegation is implemented. This also implicitly enables Ssccfg.

1.8.21 Ssqosid

Parameter "Ssqosid" is 0 on this variant, meaning that CSR srmcfg is undefined. if "Ssqosid" is set to 1 then CSR srmcfg is defined.

1.8.22 Zawrs

Parameter "Zawrs" is 0 on this variant, meaning that wait-for-reservation-set instructions are not implemented. if "Zawrs" is set to 1 then wait-for-reservation-set instructions are implemented, in which case parameter "TW_time_limit" is used to specify the nominal cycle delay for wrs.nto, and parameter "STO_time_limit" is used to specify the nominal cycle delay for wrs.sto.

1.8.23 Zimop

Parameter "Zimop" is 0 on this variant, meaning that maybe operations are not implemented. if "Zimop" is set to 1 then maybe operations are implemented.

1.9 CLIC

The model can be configured to implement a Core Local Interrupt Controller (CLIC) using parameter "CLICLEVELS"; when non-zero, the CLIC is present with the specified number of interrupt levels (2-256), as described in the RISC-V Core-Local Interrupt Controller specification, and further parameters are made available to configure other aspects of the CLIC. "CLICLEVELS" is zero in this variant, indicating that a CLIC is not implemented.

1.10 Advanced Interrupt Architecture

The model can be configured to implement the Advanced Interrupt Architecture (AIA) interface using Boolean parameter "Smaia"; when True, the AIA interface is present as described in the RISC-V Advanced Interrupt Architecture specification, and further parameters are made available to configure other aspects of the interface. "Smaia" is False in this variant, indicating that the AIA interface is not implemented.

1.11 Load-Reserved/Store-Conditional Locking

By default, LR/SC locking is implemented automatically by the model and simulator, with a reservation granule defined by the "lr_sc_grain" parameter; this variant implements a 1-byte reservation granule. It is also possible to implement locking externally to the model in a platform component, using the "LR_address", "SC_address" and "SC_valid" net ports, as described below.

The "LR_address" output net port is written by the model with the address used by a load-reserved instruction as it executes. This port should be connected as an input to the external lock management component, which should record the address, and also that an LR/SC transaction is active.

The "SC_address" output net port is written by the model with the address used by a store-conditional instruction as it executes. This should be connected as an input to the external lock management component, which should compare the address with the previously-recorded load-reserved address, and determine from this (and other implementation-specific constraints) whether the store should succeed. It should then immediately write the Boolean success/fail code to the "SC_valid" input net port of the model. Finally, it should update state to indicate that an LR/SC transaction is no longer active.

It is also possible to write zero to the "SC_valid" input net port at any time outside the context of a store-conditional instruction, which will mark any active LR/SC transaction as invalid.

Irrespective of whether LR/SC locking is implemented internally or externally, taking any exception or interrupt or executing exception-return instructions (e.g. mret) will always mark any active LR/SC transaction as invalid.

Parameter "amo_aborts_lr_sc" is used to specify whether AMO operations abort any active LR/SC pair. In this variant, "amo_aborts_lr_sc" is 0.

Parameter "lr_sc_match_size" is used to specify whether data sizes of LR and SC instructions must match for the SC instruction to succeed. In this variant, "lr_sc_match_size" is False.

Parameter "Zacas" is used to specify whether atomic compare-and-swap instructions are implemneted. In this variant, "Zacas" is False.

1.12 Active Atomic Operation Indication

The "AMO_active" output net port is written by the model with a code indicating any current atomic memory operation while the instruction is active. The written codes are:

- 0: no atomic instruction active
- 1: AMOMIN active
- 2: AMOMAX active
- 3: AMOMINU active
- 4: AMOMAXU active
- 5: AMOADD active
- 6: AMOXOR active
- 7: AMOOR active
- 8: AMOAND active
- 9: AMOSWAP active
- 10: AMOCAS.W active (Zacas extension)
- 11: AMOCAS.D active (Zacas extension)
- 12: AMOCAS.Q active (Zacas extension)
- 13: LR active
- 14: SC active

1.13 Interrupts

The "reset" port is an active-high reset input. The processor is halted when "reset" goes high and resumes execution from the reset address specified using the "reset_address" parameter or "reset_addr" port when the signal goes low. The "mcause" register is cleared to zero.

The "nmi" port is an active-high NMI input. The processor resumes execution from the address specified using the "nmi_address" parameter or "nmi_addr" port when the NMI signal goes high. The "mcause" register is cleared to zero.

All other interrupt ports are active high. For each implemented privileged execution level, there are by default input ports for software interrupt, timer interrupt and external interrupt; for example, for Machine mode, these are called "MSWInterrupt", "MTimerInterrupt" and "MExternalInterrupt", respectively. When the N extension is implemented, ports are also present for User mode. Parameter "unimp_int_mask" allows the default behavior to be changed to exclude certain inter-

rupt ports. The parameter value is a mask in the same format as the "mip" CSR; any interrupt corresponding to a non-zero bit in this mask will be removed from the processor and read as zero in "mip", "mie" and "mideleg" CSRs (and Supervisor and User mode equivalents if implemented).

Parameter "external_int_id" can be used to enable extra interrupt ID input ports on each hart. If the parameter is True then when an external interrupt is taken the value on the ID port is sampled and used to fill the Exception Code field in the relevant "xcause" CSR. For Machine External interrupts, the extra interrupt ID port is called "MExternalInterruptID"; for Supervisor External interrupts, the extra interrupt ID port is called "SExternalInterruptID".

The "deferint" port is an active-high artifact input that, when written to 1, prevents any pendingand-enabled interrupt being taken (normally, such an interrupt would be taken on the next instruction after it becomes pending-and-enabled). The purpose of this signal is to enable alignment with hardware models in step-and-compare usage.

1.14 Debug Mode (Sdext)

The model can be configured to implement Debug mode using parameter "debug_mode". This implements features described in Chapter 4 of the RISC-V External Debug Support specification with version specified by parameter "debug_version" (see References). Some aspects of this mode are not defined in the specification because they are implementation-specific; the model provides infrastructure to allow implementation of a Debug Module using a custom harness. Features added are described below.

Parameter "debug_mode" can be used to specify four different behaviors, as follows:

- 1. If set to value "vector", then operations that would cause entry to Debug mode result in the processor jumping to the address specified by the "debug_address" parameter. It will execute at this address, in Debug mode, until a "dret" instruction causes return to non-Debug mode. Any exception generated during this execution will cause a jump to the address specified by the "dexc_address" parameter.
- 2. If set to value "interrupt", then operations that would cause entry to Debug mode result in the processor simulation call (e.g. opProcessorSimulate) returning, with a stop reason of OP_SR_INTERRUPT. In this usage scenario, the Debug Module is implemented in the simulation harness.
- 3. If set to value "halt", then operations that would cause entry to Debug mode result in the processor halting. Depending on the simulation environment, this might cause a return from the simulation call with a stop reason of OP_SR_HALT, or debug mode might be implemented by another platform component which then restarts the debugged processor again.
- 4. If set to value "inject", then operations that would cause entry to Debug mode result in the processor continuing to execute from the current address in Debug mode. The harness should detect that Debug mode has been entered by monitoring the "DM" integration support register, and inject Debug-mode instructions one at a time using function opProcessorSimulateInstruction. Debug mode is exited by either an explicit write of False to the "DM" register or by execution of an injected "dret" instruction, as described by "Debug State Exit" below.

Note that parameter "debug_mode" can be also be set to "none" to specify that Sdext is not

implemented.

1.14.1 Debug State Entry

The specification does not define how Debug mode is implemented. In this model, Debug mode is enabled by a Boolean pseudo-register, "DM". When "DM" is True, the processor is in Debug mode. When "DM" is False, mode is defined by "mstatus" in the usual way.

Entry to Debug mode can be performed in any of these ways:

- 1. By writing True to register "DM" (e.g. using opProcessorRegWrite) followed by simulation of at least one cycle (e.g. using opProcessorSimulate) in this case, dcsr.cause will report a cause of trigger (2);
- 2. By writing a 1 then 0 to net "haltreq" (using opNetWrite) followed by simulation of at least one cycle (e.g. using opProcessorSimulate) in this case, dcsr.cause will report a cause of haltreq (3);
- 3. By writing a 1 to net "resethaltreq" (using opNetWrite) while the "reset" signal undergoes a negedge transition, followed by simulation of at least one cycle (e.g. using opProcessorSimulate) in this case, dcsr.cause will report a cause of resethaltreq (5) or haltreq (3), depending on the value of parameter "no_resethaltreq";
- 4. By executing an "ebreak" instruction when Debug mode entry for the current processor mode is enabled by dcsr.ebreakm, dcsr.ebreaks or dcsr.ebreaku in this case, dcsr.cause will report a cause of ebreak (1);
- 5. By executing a single instruction when Debug mode entry for the current processor mode is enabled by dcsr.step in this case, dcsr.cause will report a cause of step (4);
- 6. By a Trigger Module trigger, when that trigger is configured to enter Debug mode in this case, dcsr.cause will report a cause of trigger (2).

In all cases, the processor will save required state in "dpc" and "dcsr" and then perform actions described above, depending in the value of the "debug_mode" parameter.

1.14.2 Debug State Exit

Exit from Debug mode can be performed in either of these ways:

- 1. By writing False to register "DM" (e.g. using opProcessorRegWrite) followed by simulation of at least one cycle (e.g. using opProcessorSimulate);
- 2. By executing an "dret" instruction when Debug mode.

In both cases, the processor will perform the steps described in section 4.6 (Resume) of the Debug specification.

1.14.3 Debug Registers

When Debug mode is enabled, registers "dcsr" and "dpc" are implemented as described in the specification. Registers "dscratch0" and "dscratch1" may also be implemented (see parameters

below). Implemented registers may be manipulated externally by a Debug Module using opProcessorRegRead or opProcessorRegWrite; for example, the Debug Module could write "dcsr" to enable "ebreak" instruction behavior as described above, or read and write "dpc" to emulate stepping over an "ebreak" instruction prior to resumption from Debug mode.

Parameter "dscratch0_undefined" is used to specify whether the "dscratch0" CSR is undefined, in which case accesses to it trap to Machine mode. In this variant, "dscratch0_undefined" is 0.

Parameter "dscratch1_undefined" is used to specify whether the "dscratch1" CSR is undefined, in which case accesses to it trap to Machine mode. In this variant, "dscratch1_undefined" is 0.

1.14.4 Debug Mode Execution

The specification allows execution of code fragments in Debug mode. A Debug Module implementation can cause execution in Debug mode by the following steps:

- 1. Write the address of a Program Buffer to the program counter using opProcessorPCSet;
- 2. If "debug_mode" is set to "halt", write 0 to pseudo-register "DMStall" (to leave halted state);
- 3. If entry to Debug mode was handled by exiting the simulation callback, call opProcessorSimulate or opRootModuleSimulate to resume simulation.

Debug mode will be re-entered in these cases:

- 1. By execution of an "ebreak" instruction; or:
- 2. By execution of an instruction that causes an exception.

In both cases, the processor will either jump to the debug exception address, or return control immediately to the harness, with stopReason of OP_SR_INTERRUPT, or perform a halt, depending on the value of the "debug_mode" parameter.

1.14.5 Debug Single Step

When in Debug mode, the processor or harness can cause a single instruction to be executed on return from that mode by setting dcsr.step. After one non-Debug-mode instruction has been executed, control will be returned to the harness. The processor will remain in single-step mode until dcsr.step is cleared.

1.14.6 Debug Event Priorities

The model supports three different models for determining which debug exception occurs when step, execute address, resethaltreq and haltreq events are all pending. These options are listed below, with highest-priority event first:

- 1. when parameter "debug_priority"="sxh": step ->execute address ->resethaltreq ->haltreq;
- 2. when parameter "debug_priority"="shx": step ->resethaltreq ->haltreq ->execute address;
- 3. when parameter "debug_priority"="hsx": resethaltreq ->haltreq ->step ->execute address.

1.14.7 Debug Ports

Port "DM" is an output signal that indicates whether the processor is in Debug mode

Port "haltreq" is a rising-edge-triggered signal that triggers entry to Debug mode (see above).

Port "resethaltreq" is a level-sensitive signal that triggers entry to Debug mode after reset (see above).

1.14.8 Debug Mode Versions

Debug mode specification has been under active development. To enable simulation of hardware that may be based on an older version of the specification, the model implements behavior for a number of versions of the specification. The differing features of these are listed below, in chronological order.

1.14.9 Version 0.13.2-DRAFT

0.13.2-DRAFT version of March 22 2019.

1.14.10 Version 0.14.0-DRAFT

0.14.0-DRAFT version of November 6 2020.

1.14.11 Version 1.0.0-STABLE

1.0.0-STABLE version of February 9 2022.

1.14.12 Version 1.0-STABLE

1.0-STABLE version of December 28 2022, with these changes compared to version 1.0.0-STABLE:

- nmi is moved from etrigger to itrigger and is now subject to the mode bits in that trigger.

1.15 Trigger Module (Sdtrig)

This model is configured with a trigger module, implementing a subset of the behavior described in Chapter 5 of the RISC-V External Debug Support specification with version specified by parameter "debug_version" (see References).

1.15.1 Trigger Module Restrictions

The model currently supports tdata1 of type 0, type 2 (mcontrol), type 3 (icount), type 4 (itrigger), type 5 (etrigger) and type 6 (mcontrol6). icount triggers are implemented for a single instruction

only, with count hard-wired to 1 and automatic zeroing of mode bits when the trigger fires.

1.15.2 Trigger Module Parameters

Parameter "trigger_num" is used to specify the number of implemented triggers. In this variant, "trigger_num" is 4. Set this parameter to 0 to specify that Sdtrig is not implemented.

Parameter "tinfo" is used to specify the value of the read-only "tinfo" register, which indicates the trigger types supported and also version information which controls the behavior of "mcontrol6". In this variant, "tinfo" is 0x100807c.

Parameter "trigger_match" is used to specify the legal "match" values for triggers of types 2 and 6. This parameter is a bitmask with 1 bits corresponding to legal values; for example, a "trigger_match" of 0xd, means that triggers of types 0, 2 and 3 are supported. In this variant, "trigger_match" is 0x333f.

Parameter "tdata2_undefined" is used to specify whether the "tdata2" register is undefined, in which case reads of it trap to Machine mode. In this variant, "tdata2_undefined" is 0.

Parameter "tdata3_undefined" is used to specify whether the "tdata3" register is undefined, in which case reads of it trap to Machine mode. In this variant, "tdata3_undefined" is 0.

Parameter "tinfo_undefined" is used to specify whether the "tinfo" register is undefined, in which case reads of it trap to Machine mode. In this variant, "tinfo_undefined" is 0.

Parameter "tcontrol_undefined" is used to specify whether the "tcontrol" register is undefined, in which case accesses to it trap to Machine mode. In this variant, "tcontrol_undefined" is 0.

Parameter "mcontext_undefined" is used to specify whether the "mcontext" register is undefined, in which case accesses to it trap to Machine mode. In this variant, "mcontext_undefined" is 0.

Parameter "scontext_undefined" is used to specify whether the "scontext" register is undefined, in which case accesses to it trap to Machine mode. In this variant, "scontext_undefined" is 0.

Parameter "mscontext_undefined" is used to specify whether the "mscontext" register is undefined, in which case accesses to it trap to Machine mode. In this variant, "mscontext_undefined" is 0.

Parameter "amo_trigger" is used to specify whether load/store triggers are activated for AMO instructions. In this variant, "amo_trigger" is 0.

Parameter "no_hit" is used to specify whether the "hit" bits in tdata1 are unimplemented. In this variant, "no_hit" is 0.

Parameter "no_sselect_2" is used to specify whether the "sselect" field in "textra32"/"textra64" registers is unable to hold value 2 (indicating match by ASID is not allowed). In this variant, "no_sselect_2" is 0.

Parameter "mcontext_bits" is used to specify the number of writable bits in the "mcontext" register. In this variant, "mcontext_bits" is 13.

Parameter "scontext_bits" is used to specify the number of writable bits in the "scontext" register. In this variant, "scontext_bits" is 34.

Parameter "mvalue_bits" is used to specify the number of writable bits in the "mvalue" field in "tex-

tra32"/"textra64" registers; if zero, the "mselect" field is tied to zero. In this variant, "mvalue_bits" is 13.

Parameter "svalue_bits" is used to specify the number of writable bits in the "svalue" field in "textra32"/"textra64" registers; if zero, the "sselect" is tied to zero. In this variant, "svalue_bits" is 34.

Parameter "mcontrol_maskmax" is used to specify the value of field "maskmax" in the "mcontrol" register. In this variant, "mcontrol_maskmax" is 63.

1.16 Debug Mask

It is possible to enable model debug messages in various categories. This can be done statically using the "debugflags" parameter, or dynamically using the "debugflags" command. Enabled messages are specified using a bitmask value, as follows:

Value 0x002: enable debugging of PMP and virtual memory state;

Value 0x004: enable debugging of interrupt state;

Value 0x008: enable TLB consistency checking (automatically detect inconsistencies between cached TLB entries and the page table in memory, if these would affect model behavior).

All other bits in the debug bitmask are reserved and must not be set to non-zero values.

1.17 Integration Support

This model implements a number of non-architectural pseudo-registers, commands, and other features to facilitate integration.

1.17.1 Command "setPMA -attributes <attrs>-lo <addr>-hi <addr>"

This command allows PMA attributes to be set for the address range lo:hi. The required attributes are described by the "attrs" string, which can contain any combination of these characters:

"r": allow read access

"w": allow write access

"x": allow execute access

"a": disallow unaligned accesses

"A": disallow RVMC_USER1 accesses (often AMO and LR/SC)

"P": disallow RVMC_USER2 accesses (often push/pop)

"1": allow 1-byte accesses (if none of 1248 are specified then all are allowed)

"2": allow 2-byte accesses

"4": allow 4-byte accesses

"8": allow 8-byte accesses

<space>, "-": ignored, use for formatting

The command may be used multiple times, in which case PMA attributes for later commands override those specified for earlier ones where ranges overlap. A common idiom is to deny all access to the entire memory range in the first command before adding back permissions for subregions with subsequent commands.

1.17.2 Command "getCSRIndex -name <name>"

This command returns the index number of a named CSR, or -1 if that CSR does not exist.

1.17.3 Command "listCSRs"

This command lists all implemented CSRs in index order.

1.17.4 CSR Register External Implementation

If parameter "enable_CSR_bus" is True, an artifact 16-bit bus "CSR" is enabled. Slave callbacks installed on this bus can be used to implement modified CSR behavior (use opBusSlaveNew or icmMapExternalMemory, depending on the client API). A CSR with index 0xABC is mapped on the bus at address 0xABC0; as a concrete example, implementing CSR "time" (number 0xC01) externally requires installation of a read callback at address 0xC010 on the CSR bus.

If both read and write callbacks are installed, or if a read callback is installed and the CSR is in the read-only address space, then the read callback will be used to provide the value for both true accesses and for trace and API register read (using opRegRead, etc). However, if only a read callback is installed and the CSR is in the CSR read/write address space then the callback will be used for true register reads *only*; in this case, the *model* CSR implementation will be used for trace and API register read. This idiom allows values to be injected for volatile CSRs without changing fundamental model behavior.

An artifact net, "readcsr", can also be used to override the value apparently read from a CSR without resorting to the CSR bus. When a CSR is read into a GPR that is not "x0", this net is written with a value encoding the CSR number (in bits 11:0) and destination GPR number (in bits 20:16). To use this net:

- 1. Install a net monitor callback on "readcsr" using opNetWriteMonitorAdd;
- 2. When the callback is activated, extract the encoded CSR and GPR numbers;
- 3. If the CSR number corresponds to a CSR of interest, find the OP register corresponding to the GPR using opProcessorRegByIndex;
- 4. Use opProcessorRegWrite to modify the GPR value.

1.17.5 LR/SC Active Address

Artifact register "LRSCAddress" shows the active LR/SC lock address. The register holds all-ones if there is no LR/SC operation active or if LR/SC locking is implemented externally as described above. When parameter "lr_sc_match_size" is True and this is a 64-bit access, the least-significant bit of "LRSCAddress" is one (to indicate a 64-bit access). If parameter "lr_sc_match_size" is False or this is a 32-bit access, the least-significant bit of "LRSCAddress" is zero.

1.17.6 Page Table Walk Introspection

Artifact register "PTWStage" shows the active page table translation stage (0 if no stage active, 1 if HS-stage active, 2 if VS-stage active and 3 if G-stage active). This register is visibly non-zero only in a memory access callback triggered by a page table walk event.

Artifact register "PTWInputAddr" shows the input address of active page table translation. This register is visibly non-zero only in a memory access callback triggered by a page table walk event.

Artifact register "PTWLevel" shows the active level of page table translation (corresponding to index variable "i" in the algorithm described by Virtual Address Translation Process in the RISC-V Privileged Architecture specification). This register is visibly non-zero only in a memory access callback triggered by a page table walk event.

1.17.7 Page Table Walk Query

A banked set of registers provides information about the most recently completed page table walk. There are up to seven banks of registers: bank 0 is for stage 1 walks, bank 1 is for stage 2 walks, and banks 2-6 are for stage 2 walks initiated by stage 1 level 0-4 entry lookups, respectively. Banks 1-6 are present only for processors with the Virtualization Extension. The currently active bank can be set using register "PTWBankSelect". Register "PTWBankValid" is a bitmask indicating which banks contain valid data: for example, the value 0xb indicates that banks 0, 1 and 3 contain valid data.

Within each bank, there are registers that record addresses and values read during that page table walk. Register "PTWBase" records the table base address, register "PTWInput" contains the input address that starts a walk, register "PTWOutput" contains the result address and register "PTWPgSize" contains the page size ("PTWOutput" and "PTWPgSize" are valid only if the page table walk completes). Registers "PTWAddressL0"-"PTWAddressL4" record the addresses of level 0 to level 4 entries read, respectively. Register "PTWAddressValid" is a bitmask indicating which address registers contain valid data: bits 0-4 indicate "PTWAddressL0"-"PTWAddressL4", respectively, bit 5 indicates "PTWBase", bit 6 indicates "PTWInput", bit 7 indicates both "PTWOutput" and "PTWPgSize". For example, the value 0xe3 indicates that "PTWBase", "PTWInput", "PTWOutput", "PTWPgSize" and "PTWAddressL0" and "PTWAddressL1" are valid but "PTWAddressL2"-"PTWAddressL4" are not. Registers "PTWValueL0"-"PTWValueL4" contain page table entry values read at level 0 to level 4. Register "PTWValueValid" is a bitmask indicating which value registers contain valid data: bits 0-4 indicate "PTWValueL0"-"PTWValueL4", respectively.

1.17.8 Artifact Page Table Walks

Registers are also available to enable a simulation environment to initiate an artifact page table walk (for example, to determine the ultimate PA corresponding to a given VA). Register PTWUD initiates a U/HU-mode walk for a load/store address. Register PTWUX initiates a U/HU-mode walk for a fetch address. Registers PTWSD and PTWSX perform corresponding walks for S/HS mode accesses. If Hypervisor mode is implemented, registers PTWVUD and PTWVUX perform corresponding walks for VU mode accesses, and registers PTWVSD and PTWVSX perform corresponding walks for VS mode accesses. Each walk fills the query registers described above.

1.17.9 Page Table Walk Event

Event "pageTableWalk" triggers on completion of any page table walk (including artifact walks). An event callback registered on this event can access the Page Table Walk Query artifact registers described in the previous section.

1.17.10 Artifact Register "fflags_i"

If parameter "enable_fflags_i" is True, an 8-bit artifact register "fflags_i" is added to the model. This register shows the floating point flags set by the current instruction (unlike the standard "fflags" CSR, in which the flag bits are sticky).

1.17.11 External Stimulation of Illegal Instruction Trap

Artifact input net port "illegalinstr" allows Illegal Instruction traps to be raised externally. On a rising edge of the signal connected to this port, the hart will immediately take an Illegal Instruction trap with "xepc" set to the current program counter.

As a special case, if the hart is currently stalled by a WFI instruction ("wfi_is_nop" is False), it will be restarted and take either an Illegal Instruction or Virtual Instruction trap, based on the current processor mode and the governing TW bit.

1.18 Instruction Disassembly

This model implements a number of parameters to control instruction disassembly, as shown in trace output.

If parameter "use_hw_reg_names" is True, instruction disassembly shows hardware names x0-x31. If "use_hw_reg_names" is False, ABI names are shown instead.

If parameter "no_pseudo_inst" is True, instruction disassembly always shows true instructions. If "no_pseudo_inst" is False, pseudo-instructions are shown instead where applicable.

If parameter "show_c_prefix" is True, instruction disassembly of 16-bit instructions will include a compressed prefix (e.g. "c." or "cm."). If "show_c_prefix" is False, the compressed prefix will be omitted.

1.19 Limitations

Instruction pipelines are not modeled in any way. All instructions are assumed to complete immediately. This means that instruction barrier instructions (e.g. fence.i) are treated as NOPs, with the exception of any Illegal Instruction behavior, which is modeled.

Caches and write buffers are not modeled in any way. All loads, fetches and stores complete immediately and in order, and are fully synchronous. Data barrier instructions (e.g. fence) are treated as NOPs, with the exception of any Illegal Instruction behavior, which is modeled.

Real-world timing effects are not modeled: all instructions are assumed to complete in a single cycle.

Hardware Performance Monitor registers are not implemented and hardwired to zero.

The TLB is architecturally-accurate but not device accurate. This means that all TLB maintenance and address translation operations are fully implemented but the cache is larger than in the real device.

1.20 Verification

All instructions have been extensively tested by Imperas, using tests generated specifically for this model and also reference tests from https://github.com/riscv/riscv-tests.

Also reference tests have been used from various sources including:

https://github.com/riscv/riscv-tests

https://github.com/ucb-bar/riscv-torture

The Imperas OVPsim RISC-V models are used in the RISC-V Foundation Compliance Framework as a functional Golden Reference:

https://github.com/riscv/riscv-compliance

where the simulated model is used to provide the reference signatures for compliance testing. The Imperas OVPsim RISC-V models are used as reference in both open source and commercial instruction stream test generators for hardware design verification, for example:

http://valtrix.in/sting from Valtrix

https://github.com/google/riscv-dv from Google

The Imperas OVPsim RISC-V models are also used by commercial and open source RISC-V Core RTL developers as a reference to ensure correct functionality of their IP.

1.21 References

The Model details are based upon the following specifications:

RISC-V Instruction Set Manual, Volume I: User-Level ISA (User Architecture Version 20191213)

RISC-V Instruction Set Manual, Volume II: Privileged Architecture (Privileged Architecture Version 1.12, equivalent to 20211203)

RISC-V External Debug Support (RISC-V External Debug Support Version 1.0-STABLE as of commit 83483b1 of 21 August 2023 (this is subject to change))

Configuration

2.1 Location

This model's VLNV is riscv.ovpworld.org/processor/riscv/1.0.

The model source is usually at:

\$IMPERAS_HOME/ImperasLib/source/riscv.ovpworld.org/processor/riscv/1.0

The model binary is usually at:

\$IMPERAS_HOME/lib/\$IMPERAS_ARCH/ImperasLib/riscv.ovpworld.org/processor/riscv/1.0

2.2 GDB Path

The default GDB for this model is: \$IMPERAS_HOME/lib/\$IMPERAS_ARCH/gdb/riscv-none-embed-gdb.

2.3 Semi-Host Library

The default semi-host library file is riscv.ovpworld.org/semihosting/pk/1.0

2.4 Processor Endian-ness

This is a LITTLE endian model.

2.5 QuantumLeap Support

This processor is qualified to run in a QuantumLeap enabled simulator.

2.6 Processor ELF code

The ELF code supported by this model is: 0xf3.

All Variants in this model

This model has these variants

Variant	Description
RV32I	
RV32IM	
RV32IMC	
RV32IMCZce	
RV32IMAC	
RV32G	
RV32GC	
RV32GCZfinx	
RV32GCB	
RV32GCH	
RV32GCK	
RV32GCN	
RV32GCP	
RV32GCV	
RV32E	
RV32EC	
RV32EM	
RV64I	
RV64IM	
RV64IMC	
RV64IMCZce	
RV64IMAC	
RV64G	(described in this document)
RV64GC	
RV64GCZfinx	
RV64GCB	
RV64GCH	
RV64GCK	
RV64GCN	
RV64GCP	
RV64GCV	

RVB32I	
RVB32E	
RVB64I	
RVI20U32	
RVI20U64	
RVA20U64	
RVA20S64	
RVA22U64	
RVA22S64	

Table 3.1: All Variants in this model

Bus Master Ports

This model has these bus master ports.

Name	min	max	Connect?	Description
INSTRUCTION	32	64	mandatory	Instruction bus
DATA	32	64	optional	Data bus

Table 4.1: Bus Master Ports

Bus Slave Ports

This model has no bus slave ports.

Net Ports

This model has these net ports.

Name	Type	Connect?	Description
reset	input	optional	Reset
reset_addr	input	optional	Externally-applied reset address
nmi	input	optional	NMI
nmi_cause	input	optional	Externally-applied NMI cause
nmi_addr	input	optional	Externally-applied NMI address
SSWInterrupt	input	optional	Supervisor software interrupt
MSWInterrupt	input	optional	Machine software interrupt
STimerInterrupt	input	optional	Supervisor timer interrupt
MTimerInterrupt	input	optional	Machine timer interrupt
SExternalInterrupt	input	optional	Supervisor external interrupt
MExternalInterrupt	input	optional	Machine external interrupt
irq_ack_o	output	optional	Interrupt acknowledge (pulse)
irq_id_o	output	optional	Acknowledged interrupt id (valid during
			irq_ack_o pulse)
sec_lvl_o	output	optional	Current privilege level
$LR_{-}address$	output	optional	Port written with effective address for LR
			instruction
SC_address	output	optional	Port written with effective address for SC
			instruction
SC_valid	input	optional	SC_address valid input signal
AMO_active	output	optional	Port written with code indicating active
			AMO
illegalinstr	input	optional	Artifact signal raising Illegal Instruction
			on rising edge
deferint	input	optional	Artifact signal causing interrupts to be
			held off when high
coverpoint	output	optional	Artifact port written with coverage point
			identifier
readcsr	output	optional	Artifact port written with CSR/GPR in-
			formation when CSR is read
core_wfi_mode	output	optional	WFI is active

restart_wfi	input	optional	Artifact signal causing restart from WFI
			state when high

Table 6.1: Net Ports

FIFO Ports

This model has no FIFO ports.

Formal Parameters

Name	Type	Description
Fundamental		
user_version	Enumeration	Specify required User Architecture version
	2.2	User Architecture Version 2.2
	2.3	Deprecated and equivalent to 20191213
	20190305	Deprecated and equivalent to 20191213
	20191213	User Architecture Version 20191213
priv_version	Enumeration	Specify required Privileged Architecture version
-	1.10	Privileged Architecture Version 1.10
	1.11	Privileged Architecture Version 1.11, equivalent to 20190608
	20190405	Deprecated and equivalent to 20190608
	20190608	Privileged Architecture Version Ratified-IMFDQC-and-Priv-v1.11
	20211203	Privileged Architecture Version 20211203
	1.12	Privileged Architecture Version 1.12, equivalent to 20211203
	master	Privileged Architecture Master Branch as of commit 6bdeb58 (this is
		subject to change)
Smepmp_version	Enumeration	Specify required Smepmp Architecture version
	none	Smepmp not implemented
	0.9.5	Smepmp version 0.9.5 (deprecated and identical to 1.0)
	1.0	Smepmp version 1.0
numHarts	Uns32	Specify the number of hart contexts in a multiprocessor
enable_expanded	Boolean	Specify that 48-bit and 64-bit expanded instructions are supported
endianFixed	Boolean	Specify that data endianness is fixed (mstatus.{MBE,SBE,UBE} fields
		are read-only)
misa_MXL	Uns32	Override default value of misa.MXL
misa_Extensions	Uns32	Override default value of misa. Extensions
add_Extensions	String	Add extensions specified by letters to misa. Extensions (for example, spec-
		ify "VD" to add V and D features)
sub_Extensions	String	Remove extensions specified by letters from misa. Extensions (for example,
		specify "VD" to remove V and D features)
misa_Extensions_mask	Uns32	Override mask of writable bits in misa. Extensions
$add_Extensions_mask$	String	Add extensions specified by letters to mask of writable bits in
		misa.Extensions (for example, specify "VD" to add V and D features)
sub_Extensions_mask	String	Remove extensions specified by letters from mask of writable bits in
		misa.Extensions (for example, specify "VD" to remove V and D features)
$add_implicit_Extensions$	String	Add extensions specified by letters to implicitly-present extensions not
		visible in misa.Extensions
sub_implicit_Extensions	String	Remove extensions specified by letters from implicitly-present extensions
		not visible in misa.Extensions
Compressed_Extension	<u> </u>	
compress_version	Enumeration	Specify required Compressed Architecture version

	legacy	Compressed Architecture absent or legacy version
	0.70.1	Compressed Architecture Version 0.70.1
	0.70.5	Compressed Architecture Version 0.70.5
	1.0.0-RC5.7	Compressed Architecture Version 1.0.0-RC5.7
	1.0	Compressed Architecture Version 1.0
Debug_Extension	1.0	Compressed fremteedure version 1.0
debug_version	Enumeration	Specify required Debug Architecture version
debug_version	0.13.2-DRAFT	RISC-V External Debug Support Version 0.13.2-DRAFT
	0.13.2-DRAFT 0.14.0-DRAFT	RISC-V External Debug Support Version 0.14.0-DRAFT
	1.0.0-STABLE	RISC-V External Debug Support Version 1.0.0-STABLE
	1.0.0-STABLE 1.0-STABLE	RISC-V External Debug Support Version 1.0.0-STABLE as of commit
	1.0-STABLE	
1.1	T	83483b1 of 21 August 2023 (this is subject to change)
debug_mode	Enumeration	Specify how Debug mode is implemented (value 'none' implies Sdext is
		not implemented)
	none	Debug mode not implemented
	vector	Debug mode implemented by execution at vector
	interrupt	Debug mode implemented by interrupt
	halt	Debug mode implemented by halt
	inject	Debug mode implemented using injected instructions
$Interrupts_Exceptions$		
rnmi_version	Enumeration	Specify required RNMI Architecture version
	none	RNMI not implemented
	0.2.1	RNMI version 0.2.1
	0.4_nmie1	RNMI version 0.4, except mnstatus.nmie=1 at reset
	0.4	RNMI version 0.4
mtvec_is_ro	Boolean	Specify whether mtvec CSR is read-only
tvec_align	Uns32	Specify hardware-enforced alignment of mtvec/stvec/utvec when Vec-
		tored interrupt mode enabled
ecode_mask	Uns64	Specify hardware-enforced mask of writable bits in xcause. ExceptionCode
ecode_nmi	Uns64	Specify xcause.ExceptionCode for NMI
nmi_absent	Boolean	Specify whether NMI input is absent
nmi_is_latched	Boolean	Specify whether NMI input is latched on rising edge (if False, it is level-
		sensitive)
nmi_high_priority	Boolean	Specify whether NMI input is higher priority than Debug and Trigger
		Module events
nmi_update_mstatus	Boolean	Specify whether an NMI exception updates the mstatus CSR mie and
mm_ap adde_mstatas	Boolean	mpie fields
nmi_update_tcontrol	Boolean	Specify whether an NMI exception updates the tcontrol CSR mte and
iiiii apaate toolitioi	Boolean	mpte fields
nmi_zero_mtval	Boolean	Specify whether an NMI exception writes 0 to the mtval CSR
mtval_is_ro	Boolean	Specify whether mtval CSR is read-only
tval_zero	Boolean	Specify whether mival/stval/utval are hard wired to zero
tval_zero_ebreak	Boolean	Specify whether mtval/stval/utval are set to zero by an ebreak
		Specify whether mtval/stval contain faulting instruction bits on illegal
tval_ii_code	Boolean	
tuan muagamuag la	De-1	instruction exception Whether a transparence action LP/SC state
trap_preserves_lr	Boolean	Whether a trap preserves active LR/SC state
xret_preserves_lr	Boolean	Whether an xret instruction preserves active LR/SC state
reset_address	Uns64	Override reset vector address
nmi_address	Uns64	Override NMI vector address
CLINT_address	Uns64	Specify base address of internal CLINT model (or 0 for no CLINT)
local_int_num	Uns32	Specify number of local interrupts (excludes standard set 0 to 15 if basic
		interrupt mode is present)
$unimp_int_mask$	Uns64	Specify mask of unimplemented interrupts (e.g. 1<<9 indicates Supervi-
		sor external interrupt unimplemented)
force_mideleg	Uns64	Specify mask of interrupts always delegated to lower-priority execution
	1	level from Machine execution level

force_sideleg	Uns64	Specify mask of interrupts always delegated to User execution level from Supervisor execution level
no_ideleg	Uns64	Specify mask of interrupts that cannot be delegated to lower-priority execution levels
no_edeleg	Uns64	Specify mask of exceptions that cannot be delegated to lower-priority execution levels
external_int_id	Boolean	Whether to add nets allowing External Interrupt ID codes to be forced
Floating_Point		
fp16_version	Enumeration	Specify required 16-bit floating point format
	none	No 16-bit floating point implemented
	IEEE754	IEEE 754 half precision implemented
	BFLOAT16	BFLOAT16 implemented
	dynamic	Dynamic 16-bit floating point implemented
mstatus_fs_mode	Enumeration	Specify conditions causing update of mstatus.FS to dirty
	write_1	Any non-zero flag result sets mstatus.fs dirty
	write_any	Any write of flags sets mstatus.fs dirty
	execute_not_store	Any floating point non-store instruction sets mstatus.fs dirty
	execute_any	Any floating point instruction sets mstatus.fs dirty
	always_dirty	mstatus.fs is either off or dirty
	force_dirty	mstatus.fs is forced to dirty
d_requires_f	Boolean	If D and F extensions are separately enabled in the misa CSR, whether D is enabled only if F is enabled
enable_fflags_i	Boolean	Whether fflags_i artifact register present (shows per-instruction floating point flags)
enable_DAZ	Boolean	Whether subnormal floating point operands are flushed to zero (non-compliant option)
$enable_FZ$	Boolean	Whether subnormal floating point results are flushed to zero (non-compliant option)
mstatus_FS	Uns32	Override default value of mstatus.FS (initial state of floating point unit)
Zfa	Boolean	Specify that Zfa is implemented (additional floating point instructions)
Zfh	Boolean	Specify that Zfh is implemented (IEEE half-precision floating point is supported)
Zfhmin	Boolean	Specify that Zfhmin is implemented (restricted IEEE half-precision floating point is supported)
Zfbfmin	Boolean	Specify that Zfbfmin is implemented (restricted BFLOAT16 floating point is supported)
Zfinx_version	Enumeration	Specify version of Zfinx implemented (use integer register file for floating point instructions)
	none	Zfinx not implemented
	none 0.4	Zfinx version 0.4
	0.41	Zfinx version 0.41
	1.0	Zfinx version 1.0
Memory	1.0	Zinia version 1.0
lr_sc_constraint	Enumeration	Specify memory constraint for LR/SC instructions
11_5C_COH501 dHIU	none	Memory access not constrained
	user1	Memory access not constrained Memory access constrained by MEM_CONSTRAINT_USER1
	user1 user2	Memory access constrained by MEM_CONSTRAINT_USER1 Memory access constrained by MEM_CONSTRAINT_USER2
	user3	Memory access constrained by MEM_CONSTRAINT_USER3
	user4	Memory access constrained by MEM_CONSTRAINT_USER4
amo_constraint	Enumeration	Specify memory constraint for AMO instructions
anio_consulanii	none	Memory access not constrained
	user1	Memory access not constrained Memory access constrained by MEM_CONSTRAINT_USER1
	user1 user2	Memory access constrained by MEM_CONSTRAINT_USER1 Memory access constrained by MEM_CONSTRAINT_USER2
	user3	Memory access constrained by MEM_CONSTRAINT_USER3
	user4	Memory access constrained by MEM_CONSTRAINT_USER4

updatePTEA	Boolean	Specify whether hardware update of PTE A bit is supported (ignored
updatePTEA	Boolean	when parameter Svadu is True)
updatePTED	Boolean	Specify whether hardware update of PTE D bit is supported (ignored
apacier TDD	Boolean	when parameter Svadu is True)
unaligned_low_pri	Boolean	Specify whether address misaligned exceptions are lower priority than
		page or access fault exceptions
unaligned	Boolean	Specify whether the processor supports unaligned memory accesses
Zam	Boolean	Specify whether the processor supports unaligned memory accesses for
		AMO instructions
amo_aborts_lr_sc	Boolean	Specify whether AMO operations abort any active LR/SC pair
ASID_bits	Uns32	Specify the number of implemented ASID bits
lr_sc_grain	Uns32	Specify byte granularity of LR/SC lock region (constrained to a power of two)
lr_sc_match_size	Boolean	Whether LR/SC access sizes must match
ignore_non_leaf_DAU	Boolean	Whether non-zero D, A and U bits in non-leaf PTEs are ignored (if False,
		a trap is taken)
Sv_modes	Uns32	Specify bit mask of implemented address translation modes (e.g.
		(1 << 0)+(1 << 8) indicates "bare" and "Sv39" modes may be selected
		in satp.MODE)
Simulation_Artifact		,
leaf_hart_prefix	String	Specify string name prefix for harts in a cluster
mtime_counter	String	Specify name of shared mtime counter
mtime_Hz	Double	Specify mtime counter frequency
mtime_bits	Uns32	Specify mtime counter bit width
use_hw_reg_names	Boolean	Specify whether to use hardware register names x0-x31 and f0-f31 instead
		of ABI register names
no_pseudo_inst	Boolean	Specify whether pseudo-instructions should not be reported in trace and
		disassembly
ABI_d	Boolean	Specify whether D registers are used for parameters (ABI SemiHosting)
verbose	Boolean	Specify verbose output messages
traceVolatile	Boolean	Specify whether volatile registers (e.g. minstret) should be shown in
		change trace
wfi_restart	Boolean	Specify whether to automatically restart from WFI state when model is
		simulated
enable_CSR_bus	Boolean	Add artifact CSR bus port, allowing CSR registers to be externally im-
		plemented
CSR_remap	String	Comma-separated list of CSR number mappings, each of the form <csr-< td=""></csr-<>
		Name>= <number></number>
ASID_cache_size	Uns32	Specify the number of different ASIDs for which TLB entries are cached;
		a value of 0 implies no limit
Instruction_CSR_Behavior		
wfi_is_nop	Boolean	Specify whether WFI should be treated as a NOP (if not, halt while
C	D 1	waiting for interrupts)
wfi_resume_not_trap	Boolean	Specify whether pending wakeup events should cause WFI to be treated
TOWN Aires a 11. 14	TT 00	as a NOP instead of taking a trap
TW_time_limit	Uns32	Specify nominal cycle timeout for instructions controlled by mstatus.TW
counteren_mask	Uns32	Specify hardware-enforced mask of writable bits in mcounteren/scoun-
	II 90	teren registers
scounteren_zero_mask	Uns32	Specify hardware-enforced mask of always-zero bits in scounteren register
noinhibit_mask	Uns32	Specify hardware-enforced mask of always-zero bits in mcountinhibit register.
evale undefined	Boolean	ister Specify that the gyale CSP is undefined
cycle_undefined	Boolean	Specify that the cycle CSR is undefined Specify that the mcycle CSR is undefined
mcycle_undefined time_undefined		
instret_undefined	Boolean	Specify that the time CSR is undefined
	Boolean	Specify that the instret CSR is undefined
minstret_undefined	Boolean	Specify that the minstret CSR is undefined

hpmcounter_undefined	Boolean	Specify that the hpmcounter CSRs are undefined
mhpmcounter_undefined	Boolean	Specify that the mhpmcounter CSRs are undefined
CSR_Masks		T T T T T T T T T T T T T T T T T T T
mtvec_mask	Uns64	Specify hardware-enforced mask of writable bits in mtvec register
stvec_mask	Uns64	Specify hardware-enforced mask of writable bits in styec register
tdata1_mask	Uns64	Specify hardware-enforced mask of writable bits in Trigger Module tdata1
		register
mip_mask	Uns64	Specify hardware-enforced mask of writable bits in mip register
sip_mask	Uns64	Specify hardware-enforced mask of writable bits in sip register
envcfg_mask	Uns64	Specify hardware-enforced mask of writable bits in envcfg registers
mtvec_sext	Boolean	Specify whether mtvec is sign-extended from most-significant bit
stvec_sext	Boolean	Specify whether stvec is sign-extended from most-significant bit
MXL_writable	Boolean	Specify that misa.MXL is writable (feature under development)
SXL_writable	Boolean	Specify that mstatus.SXL is writable (feature under development)
UXL_writable	Boolean	Specify that mstatus.UXL is writable (feature under development)
Trigger		
tdata2_undefined	Boolean	Specify that the tdata2 CSR is undefined
tdata3_undefined	Boolean	Specify that the tdata3 CSR is undefined
tinfo_undefined	Boolean	Specify that the tinfo CSR is undefined
tcontrol_undefined	Boolean	Specify that the tcontrol CSR is undefined
$mcontext_undefined$	Boolean	Specify that the mcontext CSR is undefined
$scontext_undefined$	Boolean	Specify that the scontext CSR is undefined
$mscontext_undefined$	Boolean	Specify that the mscontext CSR is undefined (Debug Version 0.14.0 and
		later)
amo_trigger	Boolean	Specify whether AMO load/store operations activate triggers
no_hit	Boolean	Specify that tdata1.hit* bits are unimplemented
no_sselect_2	Boolean	Specify that textra.sselect=2 is not supported (no trigger match by ASID)
trigger_num	Uns32	Specify the number of implemented hardware triggers (0 implies Sdtrig
		is not implemented)
$mask_tselect$	Boolean	Whether values written to tselect are masked according to the trig-
	** **	ger_num setting
tinfo	Uns32	Override tinfo register (for all triggers)
trigger_match	Uns32	Specify legal "match" values for triggers of type 2 and 6 (bitmask)
mcontext_bits	Uns32	Specify the number of implemented bits in mcontext
scontext_bits	Uns32	Specify the number of implemented bits in scontext
$mvalue_bits$	Uns32	Specify the number of implemented bits in textra.mvalue (if zero, tex-
1 1:4	II 90	tra.mselect is tied to zero)
svalue_bits	Uns32	Specify the number of implemented bits in textra.svalue (if zero, tex-
moontuol moodemoor	Uns32	tra.sselect is tied to zero) Specify mcontrol.maskmax value
mcontrol_maskmax		
chain_tval	Enumeration	Specify which trigger provides xtval when triggers are chained first matching trigger provides xtval
	first	last matching trigger provides xtval
	first_non_epc	first matching trigger provides xtval (prefer non-epc) last matching trigger provides xtval (prefer non-epc)
PMP Configuration	last_non_epc	last matching trigger provides xtvai (prefer non-epc)
PMP_grain	Uns32	Specify PMP region granularity, G (0 =>4 bytes, 1 =>8 bytes, etc)
	Uns32	Specify the number of supported PMP regions
PMP_registers PMP_csrs	Uns32	Specify the number of supported PMP regions Specify the number of PMP address CSRs (are RAZ/WI if corresponding
1 IVIT _USIS	Ulisəz	region is not implemented)
PMP_max_page	Uns32	Specify the maximum size of PMP region to map if non-zero (may improve
i wii _max_page	Ulisoz	performance; constrained to a power of two)
PMP_decompose	Boolean	Whether unaligned PMP accesses are decomposed into separate aligned
i wii _decompose	Doolean	accesses
PMP_undefined	Boolean	Whether accesses to unimplemented PMP registers are undefined (if

DMD DOWN	F	Charify habayian of DMD DWV fold an illand with with D 0 - 1 W 1
PMP_R0W1	Enumeration RWX_00X	Specify behavior of PMP RWX field on illegal write with R=0 and W=1
	RWX_00P	set R=0 and W=0, modify X set R=0 and W=0, preserve X
	RWX_00P	set R=0 and W=0, preserve X set R=1 and W=1, modify X
	RWX_PPX	preserve previous R and W, modify X
	RWX_PPP	preserve previous R and W, modify A preserve previous RWX
	RWX_000	set RWX=000
DMDl	Boolean	Enable parameters to change the read-only masks for PMP CSRs
PMP_maskparams PMP_initialparams	Boolean	Enable parameters to change the read-only masks for PMP CSRs Enable parameters to change the reset values for PMP CSRs
Other_Extensions	Doolean	Enable parameters to change the reset values for PMP CSAS
Svnapot_page_mask	Uns64	Specify mask of implemented Svnapot intermediate page sizes (e.g.
Sviiapot_page_mask	011804	1<<16 means 64KiB contiguous regions are supported)
Smstateen	Boolean	Specify that Smstateen is implemented
Smcsrind	Boolean	Specify that Smssrind is implemented
Sstc	Boolean	Specify that Stress and is implemented Specify that Stress is implemented
Sscofpmf	Boolean	Specify that Sscofpmf is implemented
Ssdbltrp	Boolean	Specify that Ssebipini is implemented Specify that Ssebipini is implemented
Smentrpmf	Boolean	Specify that Smontrpmf is implemented
Smcdeleg	Boolean	Specify that Smedeleg is implemented
Sypbmt	Boolean	Specify that Superior is implemented Specify that Sypbmt is implemented
Ssnpm	Enumeration	Specify Ssnpm implemented modes
Бырш	none	pointer masking not implemented
	48	PM=XLEN-48 is implemented
	57	PM=XLEN-57 is implemented
	48_57	PM=XLEN-48 and PM=XLEN-57 are implemented
Smnpm	Enumeration	Specify Smnpm implemented modes
Simpin	none	pointer masking not implemented
	48	PM=XLEN-48 is implemented
	57	PM=XLEN-57 is implemented
	48_57	PM=XLEN-48 and PM=XLEN-57 are implemented
Smmpm	Enumeration	Specify Smmpm implemented modes
	none	pointer masking not implemented
	48	PM=XLEN-48 is implemented
	57	PM=XLEN-57 is implemented
	48_57	PM=XLEN-48 and PM=XLEN-57 are implemented
Svinval	Boolean	Specify that Svinval is implemented
Svadu	Boolean	Specify that Svadu is implemented
Ssqosid	Boolean	Specify that Ssqosid is implemented
Zihintntl	Boolean	Specify that Zihintntl is implemented (instruction decode only, imple-
		mented as NOP)
Zicond	Boolean	Specify that Zicond is implemented
Zicsr	Boolean	Specify that Zicsr is implemented
Zifencei	Boolean	Specify that Zifencei is implemented
Zicbom	Boolean	Specify that Zicbom is implemented
Zicbop	Boolean	Specify that Zicbop is implemented
Zicboz	Boolean	Specify that Zicboz is implemented
Zimop	Boolean	Specify that Zimop is implemented
Zicfiss	Boolean	Specify that Zicfiss is implemented
Zicfilp	Boolean	Specify that Zicfilp is implemented
Zaamo	Boolean	Specify that Zaamo is implemented
Zalrsc	Boolean	Specify that Zalrsc is implemented
Zacas	Boolean	Specify that Zacas is implemented
Zabha	Boolean	Specify that Zabha is implemented
Zawrs	Boolean	Specify that Zawrs is implemented
Zmmul	Boolean	Specify that Zmmul is implemented
CSR_Defaults		

mvendorid	Uns64	Override mvendorid register
marchid	Uns64	Override marchid register
mimpid	Uns64	Override mimpid register
mhartid	Uns64	Override mhartid register (or first mhartid of an incrementing sequence
		if this is an SMP variant)
mconfigptr	Uns64	Override mconfigptr register
mtvec	Uns64	Override mtvec register
mseccfg	Uns64	Override mseccfg register
Fast_Interrupt		
CLICLEVELS	Uns32	Specify number of interrupt levels implemented by CLIC, or 0 if CLIC
		absent
AIA_Interrupts		
Smaia	Boolean	Specify that Smaia CSRs are present

Table 8.1: Parameters that can be set in: Hart

8.1 Parameters with enumerated types

8.1.1 Parameter user_version

Set to this value	Description
2.2	User Architecture Version 2.2
2.3	Deprecated and equivalent to 20191213
20190305	Deprecated and equivalent to 20191213
20191213	User Architecture Version 20191213

Table 8.2: Values for Parameter user_version

8.1.2 Parameter priv_version

Set to this value	Description
1.10	Privileged Architecture Version 1.10
1.11	Privileged Architecture Version 1.11, equivalent to 20190608
20190405	Deprecated and equivalent to 20190608
20190608	Privileged Architecture Version Ratified-IMFDQC-and-Priv-v1.11
20211203	Privileged Architecture Version 20211203
1.12	Privileged Architecture Version 1.12, equivalent to 20211203
master	Privileged Architecture Master Branch as of commit 6bdeb58 (this is subject to change)

Table 8.3: Values for Parameter priv_version

8.1.3 Parameter compress_version

Set to this value	Description
legacy	Compressed Architecture absent or legacy version
0.70.1	Compressed Architecture Version 0.70.1
0.70.5	Compressed Architecture Version 0.70.5
1.0.0-RC5.7	Compressed Architecture Version 1.0.0-RC5.7
1.0	Compressed Architecture Version 1.0

Table 8.4: Values for Parameter compress_version

8.1.4 Parameter debug_version

Set to this value	Description
0.13.2-DRAFT	RISC-V External Debug Support Version 0.13.2-DRAFT
0.14.0-DRAFT	RISC-V External Debug Support Version 0.14.0-DRAFT
1.0.0-STABLE	RISC-V External Debug Support Version 1.0.0-STABLE
1.0-STABLE	RISC-V External Debug Support Version 1.0-STABLE as of commit 83483b1 of 21 August 2023
	(this is subject to change)

Table 8.5: Values for Parameter debug_version

8.1.5 Parameter rnmi_version

Set to this value	Description
none	RNMI not implemented
0.2.1	RNMI version 0.2.1
0.4_nmie1	RNMI version 0.4, except mnstatus.nmie=1 at reset
0.4	RNMI version 0.4

Table 8.6: Values for Parameter rnmi_version

8.1.6 Parameter Smepmp_version

Set to this value	Description
none	Smepmp not implemented
0.9.5	Smepmp version 0.9.5 (deprecated and identical to 1.0)
1.0	Smepmp version 1.0

Table 8.7: Values for Parameter Smepmp_version

8.1.7 Parameter fp16_version

Set to this value	Description
none	No 16-bit floating point implemented
IEEE754	IEEE 754 half precision implemented
BFLOAT16	BFLOAT16 implemented
dynamic	Dynamic 16-bit floating point implemented

Table 8.8: Values for Parameter fp16_version

8.1.8 Parameter mstatus_fs_mode

Set to this value	Description
write_1	Any non-zero flag result sets mstatus.fs dirty
write_any	Any write of flags sets mstatus.fs dirty
execute_not_store	Any floating point non-store instruction sets mstatus.fs dirty
execute_any	Any floating point instruction sets mstatus.fs dirty
always_dirty	mstatus.fs is either off or dirty
force_dirty	mstatus.fs is forced to dirty

Table 8.9: Values for Parameter mstatus_fs_mode

8.1.9 Parameter debug_mode

Set to this value	Description
none	Debug mode not implemented
vector	Debug mode implemented by execution at vector
interrupt	Debug mode implemented by interrupt
halt	Debug mode implemented by halt
inject	Debug mode implemented using injected instructions

Table 8.10: Values for Parameter debug_mode

8.1.10 Parameter lr_sc_constraint

Set to this value	Description
none	Memory access not constrained
user1	Memory access constrained by MEM_CONSTRAINT_USER1
user2	Memory access constrained by MEM_CONSTRAINT_USER2
user3	Memory access constrained by MEM_CONSTRAINT_USER3
user4	Memory access constrained by MEM_CONSTRAINT_USER4

Table 8.11: Values for Parameter lr_sc_constraint

8.1.11 Parameter amo_constraint

Set to this value	Description
none	Memory access not constrained
user1	Memory access constrained by MEM_CONSTRAINT_USER1
user2	Memory access constrained by MEM_CONSTRAINT_USER2
user3	Memory access constrained by MEM_CONSTRAINT_USER3
user4	Memory access constrained by MEM_CONSTRAINT_USER4

Table 8.12: Values for Parameter amo_constraint

8.1.12 Parameter chain_tval

Set to this value	Description
first	first matching trigger provides xtval
last	last matching trigger provides xtval
first_non_epc	first matching trigger provides xtval (prefer non-epc)
last_non_epc	last matching trigger provides xtval (prefer non-epc)

Table 8.13: Values for Parameter chain_tval

8.1.13 Parameter PMP_R0W1

Set to this value	Description
RWX_00X	set R=0 and W=0, modify X
RWX_00P	set R=0 and W=0, preserve X
RWX_11X	set R=1 and W=1, modify X
RWX_PPX	preserve previous R and W, modify X
RWX_PPP	preserve previous RWX
RWX_000	set RWX=000

Table 8.14: Values for Parameter PMP_R0W1

8.1.14 Parameter Ssnpm

Set to this value	Description
none	pointer masking not implemented
48	PM=XLEN-48 is implemented
57	PM=XLEN-57 is implemented
48_57	PM=XLEN-48 and PM=XLEN-57 are implemented

Table 8.15: Values for Parameter Ssnpm $\,$

8.1.15 Parameter Smnpm

Set to this value	Description
none	pointer masking not implemented
48	PM=XLEN-48 is implemented
57	PM=XLEN-57 is implemented
48_57	PM=XLEN-48 and PM=XLEN-57 are implemented

Table 8.16: Values for Parameter Smnpm

8.1.16 Parameter Smmpm

Set to this value	Description
none	pointer masking not implemented
48	PM=XLEN-48 is implemented
57	PM=XLEN-57 is implemented
48_57	PM=XLEN-48 and PM=XLEN-57 are implemented

Table 8.17: Values for Parameter Smmpm

8.1.17 Parameter Zfinx_version

Set to this value	Description
none	Zfinx not implemented
0.4	Zfinx version 0.4
0.41	Zfinx version 0.41
1.0	Zfinx version 1.0

Table 8.18: Values for Parameter Zfinx_version

8.2 Parameter values and limits

These are the formal parameter limits and actual parameter values

Name	Min	Max	Default	Actual
Fundamental				
variant				RV64G
user_version			20191213	20191213
priv_version			1.12	1.12
$Smepmp_version$			none	none
numHarts	0	32	0	0

endian			none	none
enable_expanded			f	f
endianFixed			f	f
$misa_MXL$	1	2	2	2
misa_Extensions	0	0x3ffffff	0x141129	0x141129
add_Extensions				
sub_Extensions				
misa_Extensions_mask	0	0x3ffffff	0x1129	0x1129
add_Extensions_mask				
sub_Extensions_mask				
add_implicit_Extensions				
sub_implicit_Extensions				
Compressed_Extension				
compress_version			1.0	1.0
Debug_Extension				
debug_version			1.0-STABLE	1.0-STABLE
debug_mode			none	none
Interrupts_Exceptions				
rnmi_version			none	none
mtvec_is_ro			f	f
tvec_align	0	0x10000	0	0
ecode_mask	0	0xffffffffffff	0x7fffffffffffff	0x7ffffffffffffff
ecode_nmi	0	0xfffffffffffff	0	0
nmi_absent			f	f
nmi_is_latched			f	f
nmi_high_priority			f	f
nmi_update_mstatus			f	f
nmi_update_tcontrol			f	f
nmi_zero_mtval			f	f
mtval_is_ro			f	f
tval_zero			f	f
tval_zero_ebreak			f	f
tval_ii_code			t	t
trap_preserves_lr			f	f
xret_preserves_lr			f	f
reset_address	0	0xffffffffffff	0	0
nmi_address	0	0xffffffffffff	0	0
CLINT_address	0	0xffffffffffff	0	0
local_int_num	0	48	0	0
unimp_int_mask	0	0xffffffffffff	0	0
force_mideleg	0	0xffffffffffff	0	0
force_sideleg	0	0xffffffffffff	0	0
no_ideleg	0	0xffffffffffff	0	0
no_edeleg	0	0xffffffffffff	0	0
external_int_id			f	f

Floating_Point				
fp16_version			none	none
mstatus_fs_mode			write_1	write_1
d_requires_f			f	f
enable_fflags_i			f	f
enable_DAZ			f	f
enable_FZ			f	f
mstatus_FS	0	3	0	0
Zfa		-	f	f
Zfh			f	f
Zfhmin			f	f
Zfbfmin			f	f
Zfinx_version			none	none
Memory				
lr_sc_constraint			user1	user1
amo_constraint			user1	user1
updatePTEA			f	f
updatePTED			f	f
unaligned_low_pri			f	f
unaligned			f	f
Zam			f	f
amo_aborts_lr_sc			f	f
ASID_bits	0	16	16	16
lr_sc_grain	1	0x10000	1	1
lr_sc_match_size			f	f
ignore_non_leaf_DAU			f	f
Sv_modes	0	0xffff	0x701	0x701
Simulation_Artifact				I
leaf_hart_prefix			hart	hart
mtime_counter			mtime_counter	mtime_counter
mtime_Hz	0.000000e+00	1.000000e+09	1.000000e + 06	1.000000e+06
mtime_bits	0	64	64	64
use_hw_reg_names			f	f
no_pseudo_inst			f	f
$\mathrm{ABI}_{-}\mathrm{d}$			t	t
verbose			f	f
traceVolatile			f	f
wfi_restart			f	f
enable_CSR_bus			f	f
CSR_remap				
ASID_cache_size	0	0x100	8	8
Instruction_CSR_Behavior				•
wfi_is_nop			f	f
wfi_resume_not_trap			f	f
TW_time_limit	0	0xfffffff	0	0

counteren_mask	0	0xfffffff	0xfffffff	0xfffffff
scounteren_zero_mask	0	0xfffffff	0	0
noinhibit_mask	0	0xfffffff	0	0
cycle_undefined			f	f
mcycle_undefined			f	f
time_undefined			f	f
instret_undefined			f	f
$minstret_undefined$			f	f
hpmcounter_undefined			f	f
mhpmcounter_undefined			f	f
CSR_Masks				
mtvec_mask	0	0xffffffffffffff	0	0
stvec_mask	0	0xffffffffffffff	0	0
tdata1_mask	0	0xffffffffffffff	0xfffffffffffff	0xffffffffffffff
mip_mask	0	0xffffffffffffff	0x337	0x337
sip_mask	0	0xffffffffffffff	0x103	0x103
envcfg_mask	0	0xffffffffffffff	0	0
mtvec_sext			f	f
stvec_sext			f	f
MXL_writable			f	f
SXL_writable			f	f
$UXL_{writable}$			f	f
Trigger				
tdata2_undefined			f	f
tdata3_undefined			f	f
tinfo_undefined			f	f
tcontrol_undefined			f	f
$mcontext_undefined$			f	f
$scontext_undefined$			f	f
$mscontext_undefined$			f	f
amo_trigger			f	f
no_hit			f	f
no_sselect_2			f	f
trigger_num	0	255	4	4
mask_tselect			f	f
tinfo	0	0x100ffff	0x100807c	0x100807c
trigger_match	1	0xffff	0x333f	0x333f
mcontext_bits	0	64	13	13
scontext_bits	0	64	34	34
mvalue_bits	0	13	13	13
svalue_bits	0	34	34	34
mcontrol_maskmax	0	63	63	63
chain_tval			first	first
PMP Configuration				
PMP_grain	0	29	0	0

PMP_registers	0	64	16	16
PMP_csrs	0	64	0	0
PMP_max_page	0	0xfffffff	0	0
PMP_decompose			f	f
PMP_undefined			f	f
PMP_R0W1			RWX_00X	RWX_00X
PMP_maskparams			f	f
PMP_initialparams			f	f
Other_Extensions				I
Svnapot_page_mask	0	0xffffffffffffff	0	0
Smstateen			f	f
Smcsrind			f	f
Sstc			f	f
Sscofpmf			f	f
Ssdbltrp			f	f
Smcntrpmf			f	f
Smcdeleg			f	f
Svpbmt			f	f
Ssnpm			none	none
Smnpm			none	none
Smmpm			none	none
Svinval			f	f
Svadu			f	f
Ssqosid			f	f
Zihintntl			f	f
Zicond			f	f
Zicsr			t	t
Zifencei			t	t
Zicbom			f	f
Zicbop			f	f
Zicboz			f	f
Zimop			f	f
Zicfiss			f	f
Zicfilp			f	f
Zaamo			t	t
Zalrsc			t	t
Zacas			f	f
Zabha			f	f
Zawrs			f	f
Zmmul			f	f
CSR_Defaults				
mvendorid	0	0xffffffffffffff	0	0
marchid	0	0xffffffffffffff	0	0
mimpid	0	0xfffffffffffff	0	0
mhartid	0	0xffffffffffffff	0	0

mconfigptr	0	0xfffffffffffff	0	0
mtvec	0	0xfffffffffffff	0	0
mseccfg	0	0xfffffffffffff	0	0
Fast_Interrupt				
CLICLEVELS	0	0x100	0	0
AIA_Interrupts		•	•	
Smaia			f	f

Table 8.19: Parameter values and limits

Execution Modes

Mode	Code	Description
User	0	User mode
Supervisor	1	Supervisor mode
Machine	3	Machine mode

Table 9.1: Modes implemented in: Hart

Exceptions

Exception	Code	Description
InstructionAddressMisaligned	0	Fetch from unaligned address
InstructionAccessFault	1	No access permission for fetch
IllegalInstruction	2	Undecoded, unimplemented or disabled instruc-
		tion
Breakpoint	3	EBREAK instruction executed
LoadAddressMisaligned	4	Load from unaligned address
LoadAccessFault	5	No access permission for load
StoreAMOAddressMisaligned	6	Store/atomic memory operation at unaligned
		address
StoreAMOAccessFault	7	No access permission for store/atomic memory
		operation
EnvironmentCallFromUMode	8	ECALL instruction executed in User mode
EnvironmentCallFromSMode	9	ECALL instruction executed in Supervisor
		mode
EnvironmentCallFromMMode	11	ECALL instruction executed in Machine mode
InstructionPageFault	12	Page fault at fetch address
LoadPageFault	13	Page fault at load address
StoreAMOPageFault	15	Page fault at store/atomic memory operation
		address
SSWInterrupt	65	Supervisor software interrupt
MSWInterrupt	67	Machine software interrupt
STimerInterrupt	69	Supervisor timer interrupt
MTimerInterrupt	71	Machine timer interrupt
SExternalInterrupt	73	Supervisor external interrupt
MExternalInterrupt	75	Machine external interrupt
GenericNMI	4294967295	Generic NMI

Table 10.1: Exceptions implemented in: Hart

Hierarchy of the model

A CPU core may be configured to instance many processors of a Symmetrical Multi Processor (SMP). A CPU core may also have sub elements within a processor, for example hardware threading blocks.

OVP processor models can be written to include SMP blocks and to have many levels of hierarchy. Some OVP CPU models may have a fixed hierarchy, and some may be configured by settings in a configuration register. Please see the register definitions of this model.

This model documentation shows the settings and hierarchy of the default settings for this model variant.

11.1 Level 1: Hart

This level in the model hierarchy has 7 commands.

This level in the model hierarchy has 6 register groups:

Group name	Registers
Core	33
Floating_point	32
User_Control_and_Status	35
Supervisor_Control_and_Status	13
Machine_Control_and_Status	158
Integration_support	62

Table 11.1: Register groups

This level in the model hierarchy has no children.

Model Commands

A Processor model can implement one or more **Model Commands** available to be invoked from the simulator command line, from the OP API or from the Imperas Multiprocessor Debugger.

12.1 Level 1: Hart

12.1.1 debugflags

show or modify the processor debug flags

Argument	Type	Description
-get	Boolean	print current processor flags value
-mask	Boolean	print valid debug flag bits
-set	Int32	new processor flags (only flags 0x00000006 can
		be modified)

Table 12.1: debugflags command arguments

12.1.2 dumpTLB

12.1.2.1 Argument description

Show TLB contents

12.1.3 getCSRIndex

Return index for a named CSR (or -1 if no matching CSR)

Argument	Type	Description
-name	String	CSR name

Table 12.2: getCSRIndex command arguments

12.1.4 isync

specify instruction address range for synchronous execution

Argument	Type	Description
----------	------	-------------

-addresshi	Uns64	end address of synchronous execution range
-addresslo	Uns64	start address of synchronous execution range

Table 12.3: isync command arguments

12.1.5 itrace

enable or disable instruction tracing

Argument	Type	Description
-access	String	show memory accesses by this instruction. Ar-
		gument can be any combination of X (execute),
		A (load or store access) and S (system)
-after	Uns64	apply after this many instructions
-enable	Boolean	enable instruction tracing
-full	Boolean	turn on all trace features
-instructioncount	Boolean	include the instruction number in each trace
-memory	String	(Alias for access). show memory accesses by this
		instruction. Argument can be any combination
		of X (execute), A (load or store access) and S
		(system)
-mode	Boolean	show processor mode changes
-off	Boolean	disable instruction tracing
-on	Boolean	enable instruction tracing
-processorname	Boolean	Include processor name in all trace lines
-registerchange	Boolean	show registers changed by this instruction
-registers	Boolean	show registers after each trace

Table 12.4: itrace command arguments

12.1.6 listCSRs

12.1.6.1 Argument description

List all CSRs in index order

12.1.7 setPMA

Set PMA region permissions and legal access sizes

Argument	Type	Description			
-attributes	String	region attributes (string containing r, w, x, a,			
		A, P, 1, 2, 4 or 8)			
-hi	Uns64	high address			
-lo	Uns64	low address			

Table 12.5: setPMA command arguments

Registers

13.1 Level 1: Hart

13.1.1 Core

Registers at level:1, type:Hart group:Core

Name	Bits	Initial-Hex	RW	Description
zero	64	0	r-	
ra	64	0	rw	
sp	64	0	rw	stack pointer
gp	64	0	rw	
tp	64	0	rw	
t0	64	0	rw	
t1	64	0	rw	
t2	64	0	rw	
s0	64	0	rw	
s1	64	0	rw	
a0	64	0	rw	
a1	64	0	rw	
a2	64	0	rw	
a3	64	0	rw	
a4	64	0	rw	
a5	64	0	rw	
a6	64	0	rw	
a7	64	0	rw	
s2	64	0	rw	
s3	64	0	rw	
s4	64	0	rw	
s5	64	0	rw	
s6	64	0	rw	
s7	64	0	rw	
s8	64	0	rw	
s9	64	0	rw	
s10	64	0	rw	
s11	64	0	rw	
t3	64	0	rw	
t4	64	0	rw	
t5	64	0	rw	
t6	64	0	rw	
pc	64	0	rw	program counter

Table 13.1: Registers at level 1, type:Hart group:Core

13.1.2 Floating_point

Registers at level:1, type:Hart group:Floating_point

Name	Bits	Initial-Hex	RW	Description
ft0	64	0	rw	
ft1	64	0	rw	
ft2	64	0	rw	
ft3	64	0	rw	
ft4	64	0	rw	
ft5	64	0	rw	
ft6	64	0	rw	
ft7	64	0	rw	
fs0	64	0	rw	
fs1	64	0	rw	
fa0	64	0	rw	
fa1	64	0	rw	
fa2	64	0	rw	
fa3	64	0	rw	
fa4	64	0	rw	
fa5	64	0	rw	
fa6	64	0	rw	
fa7	64	0	rw	
fs2	64	0	rw	
fs3	64	0	rw	
fs4	64	0	rw	
fs5	64	0	rw	
fs6	64	0	rw	
fs7	64	0	rw	
fs8	64	0	rw	
fs9	64	0	rw	
fs10	64	0	rw	
fs11	64	0	rw	
ft8	64	0	rw	
ft9	64	0	rw	
ft10	64	0	rw	
ft11	64	0	rw	

Table 13.2: Registers at level 1, type:Hart group:Floating_point

13.1.3 User_Control_and_Status

Registers at level:1, type:Hart group:User_Control_and_Status

Name	Bits	Initial-Hex	RW	Description
fflags	64	0	rw	Floating-Point Flags
frm	64	0	rw	Floating-Point Rounding Mode
fcsr	64	0	rw	Floating-Point Control and Status
cycle	64	0	r-	Cycle Counter
time	64	0	r-	Timer
instret	64	0	r-	Instructions Retired
hpmcounter3	64	0	r-	Performance Monitor Counter 3

hpmcounter4	64	0	r-	Performance Monitor Counter 4
hpmcounter5	64	0	r-	Performance Monitor Counter 5
hpmcounter6	64	0	r-	Performance Monitor Counter 6
hpmcounter7	64	0	r-	Performance Monitor Counter 7
hpmcounter8	64	0	r-	Performance Monitor Counter 8
hpmcounter9	64	0	r-	Performance Monitor Counter 9
hpmcounter10	64	0	r-	Performance Monitor Counter 10
hpmcounter11	64	0	r-	Performance Monitor Counter 11
hpmcounter12	64	0	r-	Performance Monitor Counter 12
hpmcounter13	64	0	r-	Performance Monitor Counter 13
hpmcounter14	64	0	r-	Performance Monitor Counter 14
hpmcounter15	64	0	r-	Performance Monitor Counter 15
hpmcounter16	64	0	r-	Performance Monitor Counter 16
hpmcounter17	64	0	r-	Performance Monitor Counter 17
hpmcounter18	64	0	r-	Performance Monitor Counter 18
hpmcounter19	64	0	r-	Performance Monitor Counter 19
hpmcounter20	64	0	r-	Performance Monitor Counter 20
hpmcounter21	64	0	r-	Performance Monitor Counter 21
hpmcounter22	64	0	r-	Performance Monitor Counter 22
hpmcounter23	64	0	r-	Performance Monitor Counter 23
hpmcounter24	64	0	r-	Performance Monitor Counter 24
hpmcounter25	64	0	r-	Performance Monitor Counter 25
hpmcounter26	64	0	r-	Performance Monitor Counter 26
hpmcounter27	64	0	r-	Performance Monitor Counter 27
hpmcounter28	64	0	r-	Performance Monitor Counter 28
hpmcounter29	64	0	r-	Performance Monitor Counter 29
hpmcounter30	64	0	r-	Performance Monitor Counter 30
hpmcounter31	64	0	r-	Performance Monitor Counter 31

Table 13.3: Registers at level 1, type:Hart group:User_Control_and_Status

$13.1.4 \quad Supervisor_Control_and_Status$

Registers at level:1, type:Hart group:Supervisor_Control_and_Status

Name	Bits	Initial-Hex	RW	Description
sstatus	64	2 00000000	rw	Supervisor Status
sie	64	0	rw	Supervisor Interrupt Enable
stvec	64	0	rw	Supervisor Trap-Vector Base-Address
scounteren	64	0	rw	Supervisor Counter Enable
senvcfg	64	0	rw	Supervisor Environment Configuration
sscratch	64	0	rw	Supervisor Scratch
sepc	64	0	rw	Supervisor Exception Program Counter
scause	64	0	rw	Supervisor Cause
stval	64	0	rw	Supervisor Trap Value
sip	64	0	rw	Supervisor Interrupt Pending
satp	64	0	rw	Supervisor Address Translation and Protection
scontext	64	0	rw	Trigger Supervisor Context
mscontext	64	0	rw	Trigger Machine Context Alias

Table 13.4: Registers at level 1, type:Hart group:Supervisor_Control_and_Status

13.1.5 Machine_Control_and_Status

Registers at level:1, type:Hart group:Machine_Control_and_Status

Name	Bits	Initial-Hex	RW	Description
mstatus	64	a 00000000	rw	Machine Status
misa	64	80000000	rw	ISA and Extensions
IIIISG	01	00141129	1 **	1011 tilled Extensions
medeleg	64	0	rw	Machine Exception Delegation
mideleg	64	0	rw	Machine Interrupt Delegation
mie	64	0	rw	Machine Interrupt Enable
mtvec	64	0	rw	Machine Trap-Vector Base-Address
mcounteren	64	0	rw	Machine Counter Enable
menvcfg	64	0	rw	Machine Environment Configuration
mcountinhibit	64	0	rw	Machine Counter Inhibit
mhpmevent3	64	0	rw	Machine Performance Monitor Event Select 3
mhpmevent4	64	0	rw	Machine Performance Monitor Event Select 4
mhpmevent5	64	0	rw	Machine Performance Monitor Event Select 5
mhpmevent6	64	0	rw	Machine Performance Monitor Event Select 6
mhpmevent7	64	0	rw	Machine Performance Monitor Event Select 7
mhpmevent8	64	0	rw	Machine Performance Monitor Event Select 8
mhpmevent9	64	0	rw	Machine Performance Monitor Event Select 9
mhpmevent10	64	0	rw	Machine Performance Monitor Event Select 10
mhpmevent11	64	0	rw	Machine Performance Monitor Event Select 11
mhpmevent12	64	0	rw	Machine Performance Monitor Event Select 12
mhpmevent13	64	0	rw	Machine Performance Monitor Event Select 13
mhpmevent14	64	0	rw	Machine Performance Monitor Event Select 14
mhpmevent15	64	0	rw	Machine Performance Monitor Event Select 15
mhpmevent16	64	0	rw	Machine Performance Monitor Event Select 16
mhpmevent17	64	0	rw	Machine Performance Monitor Event Select 17
mhpmevent18	64	0	rw	Machine Performance Monitor Event Select 18
mhpmevent19	64	0	rw	Machine Performance Monitor Event Select 19
mhpmevent20	64	0	rw	Machine Performance Monitor Event Select 20
mhpmevent21	64	0	rw	Machine Performance Monitor Event Select 21
mhpmevent22	64	0	rw	Machine Performance Monitor Event Select 22
mhpmevent23	64	0	rw	Machine Performance Monitor Event Select 23
mhpmevent24	64	0	rw	Machine Performance Monitor Event Select 24
mhpmevent25	64	0	rw	Machine Performance Monitor Event Select 25
mhpmevent26	64	0	rw	Machine Performance Monitor Event Select 26
mhpmevent27	64	0	rw	Machine Performance Monitor Event Select 27
mhpmevent28	64	0	rw	Machine Performance Monitor Event Select 28
mhpmevent29	64	0	rw	Machine Performance Monitor Event Select 29
mhpmevent30	64	0	rw	Machine Performance Monitor Event Select 30
mhpmevent31	64	0	rw	Machine Performance Monitor Event Select 31
mscratch	64	0	rw	Machine Scratch
mepc	64	0	rw	Machine Exception Program Counter
mcause	64	0	rw	Machine Cause
mtval	64	0	rw	Machine Trap Value
mip	64	0	rw	Machine Interrupt Pending
pmpcfg0	64	0	rw	Physical Memory Protection Configuration 0
pmpcfg2	64	0	rw	Physical Memory Protection Configuration 2
pmpcfg4	64	0	rw	Physical Memory Protection Configuration 4
pmpcfg6	64	0	rw	Physical Memory Protection Configuration 6
pmpcfg8	64	0	rw	Physical Memory Protection Configuration 8
pmpcfg10	64	0	rw	Physical Memory Protection Configuration 10
pmpcfg12	64	0	rw	Physical Memory Protection Configuration 12
pmpcfg14	64	0	rw	Physical Memory Protection Configuration 14
pmpaddr0	64	0	rw	Physical Memory Protection Address 0
pmpaddr1	64	0	rw	Physical Memory Protection Address 1
pmpaddr2	64	0	rw	Physical Memory Protection Address 2

11.0	0.4		1	
pmpaddr3	64	0	rw	Physical Memory Protection Address 3
pmpaddr4	64	0	rw	Physical Memory Protection Address 4
pmpaddr5	64	0	rw	Physical Memory Protection Address 5
pmpaddr6	64	0	rw	Physical Memory Protection Address 6
pmpaddr7	64	0	rw	Physical Memory Protection Address 7
pmpaddr8	64	0	rw	Physical Memory Protection Address 8
pmpaddr9	64	0	rw	Physical Memory Protection Address 9
pmpaddr10	64	0	rw	Physical Memory Protection Address 10
pmpaddr11	64	0	rw	Physical Memory Protection Address 11
pmpaddr12	64	0	rw	Physical Memory Protection Address 12
pmpaddr13	64	0	rw	Physical Memory Protection Address 13
pmpaddr14	64	0	rw	Physical Memory Protection Address 14
pmpaddr15	64	0	rw	Physical Memory Protection Address 15
pmpaddr16	64	0	rw	Physical Memory Protection Address 16
pmpaddr17	64	0	rw	Physical Memory Protection Address 17
pmpaddr18	64	0	rw	Physical Memory Protection Address 18
pmpaddr19	64	0	rw	Physical Memory Protection Address 19
pmpaddr20	64	0	rw	Physical Memory Protection Address 20
pmpaddr21	64	0	rw	Physical Memory Protection Address 21
pmpaddr22	64	0	rw	Physical Memory Protection Address 22
pmpaddr23	64	0	rw	Physical Memory Protection Address 23
pmpaddr24	64	0	rw	Physical Memory Protection Address 24
pmpaddr25	64	0	rw	Physical Memory Protection Address 25
pmpaddr26	64	0	rw	Physical Memory Protection Address 26
pmpaddr27	64	0	rw	Physical Memory Protection Address 27
pmpaddr28	64	0	rw	Physical Memory Protection Address 28
pmpaddr29	64	0	rw	Physical Memory Protection Address 29
pmpaddr30	64	0	rw	Physical Memory Protection Address 30
pmpaddr31	64	0	rw	Physical Memory Protection Address 31
pmpaddr32	64	0	rw	Physical Memory Protection Address 32
pmpaddr33	64	0	rw	Physical Memory Protection Address 33
pmpaddr34	64	0	rw	Physical Memory Protection Address 34
pmpaddr35	64	0	rw	Physical Memory Protection Address 35
pmpaddr36	64	0	rw	Physical Memory Protection Address 36
pmpaddr37	64	0	rw	Physical Memory Protection Address 37
pmpaddr38	64	0	-	Physical Memory Protection Address 38
pmpaddr39	64	0	rw	Physical Memory Protection Address 39
pmpaddr40	64	0	rw	Physical Memory Protection Address 40
	64	0	rw	
pmpaddr41	64	0	rw	Physical Memory Protection Address 41
pmpaddr42	64		rw	Physical Memory Protection Address 42 Physical Memory Protection Address 43
pmpaddr44		0	rw	Physical Memory Protection Address 44 Physical Memory Protection Address 44
pmpaddr44	64		rw	
pmpaddr45	64	0	rw	Physical Memory Protection Address 45
pmpaddr46	64	0	rw	Physical Memory Protection Address 46 Physical Memory Protection Address 47
pmpaddr47	64	0	rw	Physical Memory Protection Address 47
pmpaddr48	64	0	rw	Physical Memory Protection Address 48
pmpaddr49	64	0	rw	Physical Memory Protection Address 49
pmpaddr50	64	0	rw	Physical Memory Protection Address 50
pmpaddr51	64	0	rw	Physical Memory Protection Address 51
pmpaddr52	64	0	rw	Physical Memory Protection Address 52
pmpaddr53	64	0	rw	Physical Memory Protection Address 53
pmpaddr54	64	0	rw	Physical Memory Protection Address 54
pmpaddr55	64	0	rw	Physical Memory Protection Address 55
pmpaddr56	64	0	rw	Physical Memory Protection Address 56
pmpaddr57	64	0	rw	Physical Memory Protection Address 57
pmpaddr58	64	0	rw	Physical Memory Protection Address 58

pmpaddr59	64	0	rw	Physical Memory Protection Address 59
pmpaddr60	64	0	rw	Physical Memory Protection Address 60
pmpaddr61	64	0	rw	Physical Memory Protection Address 60 Physical Memory Protection Address 61
pmpaddr62	64	0	rw	Physical Memory Protection Address 62
pmpaddr63	64	0		Physical Memory Protection Address 63
tselect	64	0	rw	Trigger Register Select
tdata1	64	f0000000	rw	Trigger Data 1
		00000000	rw	
tdata2	64	0	rw	Trigger Data 2
tdata3	64	0	rw	Trigger Data 3
tinfo	64	100807c	rw	Trigger Info
tcontrol	64	0	rw	Trigger Control
mcontext	64	0	rw	Trigger Machine Context
mcycle	64	0	rw	Machine Cycle Counter
minstret	64	0	rw	Machine Instructions Retired
mhpmcounter3	64	0	rw	Machine Performance Monitor Counter 3
mhpmcounter4	64	0	rw	Machine Performance Monitor Counter 4
mhpmcounter5	64	0	rw	Machine Performance Monitor Counter 5
mhpmcounter6	64	0	rw	Machine Performance Monitor Counter 6
mhpmcounter7	64	0	rw	Machine Performance Monitor Counter 7
mhpmcounter8	64	0	rw	Machine Performance Monitor Counter 8
mhpmcounter9	64	0	rw	Machine Performance Monitor Counter 9
mhpmcounter10	64	0	rw	Machine Performance Monitor Counter 10
mhpmcounter11	64	0	rw	Machine Performance Monitor Counter 11
mhpmcounter12	64	0	rw	Machine Performance Monitor Counter 12
mhpmcounter13	64	0	rw	Machine Performance Monitor Counter 13
mhpmcounter14	64	0	rw	Machine Performance Monitor Counter 14
mhpmcounter15	64	0	rw	Machine Performance Monitor Counter 15
mhpmcounter16	64	0	rw	Machine Performance Monitor Counter 16
mhpmcounter17	64	0	rw	Machine Performance Monitor Counter 17
mhpmcounter18	64	0	rw	Machine Performance Monitor Counter 18
mhpmcounter19	64	0	rw	Machine Performance Monitor Counter 19
mhpmcounter20	64	0	rw	Machine Performance Monitor Counter 20
mhpmcounter21	64	0	rw	Machine Performance Monitor Counter 21
mhpmcounter22	64	0	rw	Machine Performance Monitor Counter 22
mhpmcounter23	64	0	rw	Machine Performance Monitor Counter 23
mhpmcounter24	64	0	rw	Machine Performance Monitor Counter 24
mhpmcounter25	64	0	rw	Machine Performance Monitor Counter 25
mhpmcounter26	64	0	rw	Machine Performance Monitor Counter 26
mhpmcounter27	64	0	rw	Machine Performance Monitor Counter 27
mhpmcounter28	64	0	rw	Machine Performance Monitor Counter 28
mhpmcounter29	64	0	rw	Machine Performance Monitor Counter 29
mhpmcounter30	64	0	rw	Machine Performance Monitor Counter 30
mhpmcounter31	64	0	rw	Machine Performance Monitor Counter 31
mvendorid	64	0	r-	Vendor ID
marchid	64	0	r-	Architecture ID
mimpid	64	0	r-	Implementation ID
mhartid	64	0	r-	Hardware Thread ID
mconfigptr	64	0	r-	Configuration Data Structure
псониври	04	U	1-	Conniguration Data Structure

Table 13.5: Registers at level 1, type:Hart group:Machine_Control_and_Status

13.1.6 Integration_support

Registers at level:1, type:Hart group:Integration_support

78.T	Div	T ::: 1 TT	DIII	
Name	Bits	Initial-Hex	RW	Description
LRSCAddress	64	ffffff fffffff	rw	LR/SC active lock address
commercial	8	0	r-	Commercial feature in use
PTWStage	8	0	r-	PTW active stage from memory callback context (0:none 1:HS
		_		2:VS 3:G)
PTWInputAddr	64	0	r-	PTW input address from memory callback context
PTWLevel	8	0	r-	PTW active level from memory callback context
ASYNCPE	8	0	r-	Asynchronous Event Pending & Enabled
mask_pmpcfg0	64	THTTT THTTT	r-	Write mask for pmpcfg0
mask_pmpcfg2	64	THTTT THTTT	r-	Write mask for pmpcfg2
mask_pmpaddr0	64	THTTT THTTT	r-	Write mask for pmpaddr0
mask_pmpaddr1	64	THTTT THTTT	r-	Write mask for pmpaddr1
mask_pmpaddr2	64	THTTH THTTH	r-	Write mask for pmpaddr2
mask_pmpaddr3	64	THTTH THTTH	r-	Write mask for pmpaddr3
mask_pmpaddr4	64	THTTH THTTH	r-	Write mask for pmpaddr4
mask_pmpaddr5	64	TITHTH THTTH	r-	Write mask for pmpaddr5
mask_pmpaddr6	64	THTTT THTTT	r-	Write mask for pmpaddr6
mask_pmpaddr7	64	THTTT THTTT	r-	Write mask for pmpaddr7
mask_pmpaddr8	64	THTTT THTTT	r-	Write mask for pmpaddr8
mask_pmpaddr9	64	THTTT THTTT	r-	Write mask for pmpaddr9
mask_pmpaddr10	64	TITHTH TITHTH	r-	Write mask for pmpaddr10
mask_pmpaddr11	64	TITHTH THTTH	r-	Write mask for pmpaddr11
mask_pmpaddr12	64	TITHTH TITHTH	r-	Write mask for pmpaddr12
mask_pmpaddr13	64	THTTT THTTT	r-	Write mask for pmpaddr13
mask_pmpaddr14	64	THTTT THTTT	r-	Write mask for pmpaddr14
mask_pmpaddr15	64	HHHH HHHH	r-	Write mask for pmpaddr15
PTWBankSelect	8	0	rw	select PTW bank (0 is stage 1, 1 is stage 2, 2-6 are stage 2 walks
				initiated by stage 1 level 0-4 entry lookups, respectively)
PTWBankValid	8	0	r-	bitmask of valid banks (0x01 is stage 1, 0x02 is stage 2, 0x04-
				0x40 are stage 2 walks initiated by stage 1 level 0-4 entry lookups,
				respectively)
PTWAddressValid	8	0	r-	bitmask of valid bits for each of PTWAd-
				dressL0PTWAddressL4, PTWBase, PTWInput and PT-
				WOutput in current bank
PTWValueValid	8	0	r-	bitmask of valid bits for each of PTWValueL0PTWValueL4 in
				current bank
PTWAddressL0	64	0	r-	current bank PTW address, level 0
PTWAddressL1	64	0	r-	current bank PTW address, level 1
PTWAddressL2	64	0	r-	current bank PTW address, level 2
PTWAddressL3	64	0	r-	current bank PTW address, level 3
PTWAddressL4	64	0	r-	current bank PTW address, level 4
PTWValueL0	64	0	r-	current bank PTW value, level 0
PTWValueL1	64	0	r-	current bank PTW value, level 1
PTWValueL2	64	0	r-	current bank PTW value, level 2
PTWValueL3	64	0	r-	current bank PTW value, level 3
PTWValueL4	64	0	r-	current bank PTW value, level 4
PTWBase	64	0	r-	current bank PTW table base address
PTWInput	64	0	r-	current bank PTW input address
PTWOutput	64	0	r-	current bank PTW output address
PTWPgSize	64	0	r-	current bank PTW page size (Valid only when PTWOutput is
				valid)
PTWUD	64	0	-w	perform [H]U-mode page table walk for the given data address
PTWUX	64	0	-w	perform [H]U-mode page table walk for the given execute address
PTWSD	64	0	-w	perform [H]S-mode page table walk for the given data address
PTWSX	64	0	-w	perform [H]S-mode page table walk for the given execute address
pmp0cfg0	8	0	r-	-

		T _	1	
pmp1cfg0	8	0	r-	
pmp2cfg0	8	0	r-	
pmp3cfg0	8	0	r-	
pmp4cfg0	8	0	r-	
pmp5cfg0	8	0	r-	
pmp6cfg0	8	0	r-	
pmp7cfg0	8	0	r-	
pmp8cfg2	8	0	r-	
pmp9cfg2	8	0	r-	
pmp10cfg2	8	0	r-	
pmp11cfg2	8	0	r-	
pmp12cfg2	8	0	r-	
pmp13cfg2	8	0	r-	
pmp14cfg2	8	0	r-	
pmp15cfg2	8	0	r-	

Table 13.6: Registers at level 1, type:Hart group:Integration_support