Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes' theorem with the "naive" assumption that the presence of a particular feature in a class is unrelated to the presence of any other feature. This algorithm is mostly used in text classification and problems having multiple classes.

1. Bayes Theorem

Given a hypothesis H and evidence E, Bayes theorem states that the relationship between the probability of the hypothesis H before getting the evidence E (P(H)) and the probability of the hypothesis H after getting the evidence E (P(H/E)) is:

$$P(H|E) = \frac{P(E|H)}{P(E)}P(H)$$

Here P(H/E) is posterior probability, P(H) is prior probability, P(E/H)/P(E) is likelihood ratio.

After calculating the posterior probability for a number of different hypotheses, you can select the hypothesis with the highest probability. This is the maximum probable hypothesis and may formally be called the maximum a posteriori (MAP) hypothesis.

$$MAP(h) = max(P(H|E)) = max(P(E|H) * P(H)/P(E)) \sim max(P(E|H) * P(H))$$

Here P(E) is a normalizing term which allows us to calculate the probability. We drop it when we are interested in the most probable hypothesis as it is constant and only used to normalize.

2. Naive Bayes Algorithm for Machine Learning

Naive Bayes uses a similar method to predict the probability of different class based on various attributes. Given a class variable y and a dependent feature vector $X(x_1 \text{ through } x_n)$, Bayes' theorem states the following relationship:

$$P(y|X) = P(y|x_1,...x_n) = \frac{P(y)P(x_1,...x_n|y)}{P(x_1,...x_n)}$$

Using the naïve independence assumption that

$$P(x_i | y, x_1,...x_{i-1}, x_{i+1},...x_n) = P(x_i | y)$$

For all i, this relationship is simplified to:

$$P(y|X) = P(y|x_1,...x_n) = \frac{P(y)\prod_{i=1}^n P(x_i|y)}{P(x_1,...x_n)}$$

Since $P(x_1,...x_n)$ is constant given the input, the following classification rule can be used for making prediction:

$$P(y | x_1,...x_n) \propto P(y) \prod_{i=1}^n P(x_i | y)$$

$$predicted y = \max P(y) \prod_{i=1}^n P(x_i | y)$$

Then we use MAP estimation to estimate $P(y|x_1,...x_n)$. The y classification with the maximum P value is the predicted classification for the testing data.

Different Naïve Bayes classifiers differ mainly by the assumption they make regarding the distribution of $P(y|x_1,...x_n)$.

Please see the following link for example of using NB algorithm for machine learning: http://dataaspirant.com/2017/02/06/naive-bayes-classifier-machine-learning/

3. Gaussian Naïve Bayes (Gaussian NB)

Gaussian NB implements the Gaussian Naïve Bayes algorithm for classification. The likelihood of the features is assumed to be Gaussian:

$$P(x_i \mid y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2})$$

4. Multinomial Naive Bayes (Multinomial NB)

MultinomialNB implements the naive Bayes algorithm for multinomially distributed data, and is one of the two classic naive Bayes variants used in **text classification** where the data are typically represented as word vector counts (tf-idf vectors is another popular method for text classification).

$$P(x_i | y) = \frac{N_{yi} + \alpha}{N_y + \alpha n}$$

where $N_{yi} = \sum_{x \in T} x_i$ is the number of times features i appear in a sample of class y in the training set T, and $N_y = \sum_{i=1}^{|T|} N_{yi}$ is the total count of all features for class y.

The smoothing priors $\alpha \ge 0$ accounts for features not present in the learning samples and prevents zero probabilities in further computations. Setting $\alpha = 1$ is called Laplace smoothing, while $\alpha < 1$ is called Lidstone smoothing.

5. Bernoulli Naive Bayes (BernoulliNB)

BernoulliNB implements the naive Bayes training and classification algorithms for data that is distributed according to multivariate Bernoulli distributions. Bernoulli distribution is the probability distribution of a random variable which takes the value 1 with probability p and the value 0 with probability 1-p.

$$P(x_i|y)$$
 is defined as

$$P(x_i|y) = P(i|y)x_i + (1-P(i|y))(1-x_i)$$

6. Pros and Cons of Naïve Bayes Algorithm

Naive Bayes is an eager and fast learning classifier. When assumption of independence holds, a Naive Bayes classifier performs better compared to other models like logistic regression and you need less training data.

However, it is known as a bad estimator, so the probability outputs from *predict_proba* are not to be taken too seriously. Another limitation of Naive Bayes is the assumption of independent predictors. In real life, it is almost impossible that we get a set of predictors which are completely independent.

Reference:

- 1, http://scikit-learn.org/stable/modules/naive_bayes.html
- 2, https://machinelearningmastery.com/naive-bayes-for-machine-learning/
- 3, http://dataaspirant.com/2017/02/06/naive-bayes-classifier-machine-learning/