Diseño experimental completamente aleatorizado (DCA): 1 solo factor con diferentes tratamientos.

DCA: Es el más simple de todos los diseños, solamente se estudia el efecto de un factor, el cual se varía en diferentes tratamientos o niveles.

Prueba de hipótesis en DCA

	Tratamientos				
	T ₁	T ₂	T ₃	T _k	
Replicas	Y ₁₁ Y ₁₂	Y ₂₁ Y ₂₂	Y ₃₁ Y ₃₂	Y _{k1} Y _{k2}	
	Y _{1n2}	Y _{2n2}	Y _{3n2}	Y _{knk}	

Prueba de hipótesis en DCA

$$Y_{kn} = \mu + T_k + \varepsilon_{kn}$$

 Y_{kn} =variable de respuesta μ = media global T_k = efecto del tratamiento ε_{kn} = error aleatorio

Prueba de hipótesis en DCA

Inferencia estadística sobre T_k

H_o=Hipótesis nula

$$\mu T_1 = \mu T_2$$
 ó $T_k = 0$ (El factor no tiene efecto)

H_a=Hipótesis alternativa

$$\mu T_1 \neq \mu T_2$$
 ó $T_k \neq 0$ (El factor tiene efecto)

Ejemplo

Un fabricante de calzado desea mejorar la calidad de las suelas, las cuales se pueden hacer con uno de los cuatro tipos de cuero A, B, C, y D disponibles en el mercado. Para hacer ello, prueba los cueros con una máquina que hace pasar los zapatos por una superficie abrasiva; la suela de los zapatos se desgasta al pasarla por dicha superficie. Como criterio de desgaste se usa la pérdida de peso después de un número fijo de ciclos. Se prueban en orden aleatorio 24 zapatos, seis de cada tipo de cuero.

Ejemplo

Planteamiento del experimento: Observar el efecto del tipo de cuero sobre la calidad de las suelas.

Factor: tipo de cuero

Niveles: cueros A, B, C, y D

Variable de respuesta: calidad de las suelas, medida como la pérdida de peso después de un número fijo de ciclos

Repeticiones: seis

Número de repeticiones por tratamiento

El número de repeticiones por tratamiento se escoge en función de:

- -la variabilidad que se espera observar (exactitud en la medición)
- -diferencia mínima detectable (la de interés por el experimentador)
- -nivel de confianza deseado (con que certeza)

Se recomienda n = 10 cuando hay poca dispersión y n = 30 cuando hay mucha dispersión.

Ejemplo

Después de realizar las pruebas estos fueron los resultados

Tipo de cuero	Perdida de peso				Promedio			
А	264	260	258	241	262	255		256.7
В	208	220	216	200	213	206		209.8
С	220	263	219	225	230	228		230.8
D	217	226	215	224	220	222		220.7

Para probar la hipótesis se tiene que realizar un análisis de varianza

Análisis de varianza (ANOVA) en DCA.

Consiste en analizar los cocientes de las varianzas para probar la hipótesis de igualdad o desigualdad entre las medias debidas a los tratamientos. Para lo cual se separa la variación total en las partes con que contribuye cada fuente de variación. En el caso de DCA las fuentes de variación principales son las debidas a los tratamientos y las debidas a el error.

$$Y=\mu+T+\epsilon$$
 error tratamiento

Con estas fuentes de variación se obtienen los cuadrados de las sumatorias de las desviaciones, tanto del tratamiento como del error y se construye una tabla de ANOVA

Tabla de ANOVA) en DCA.

FV	SC	GL	CM	Fo p-value
Factor	SC_F	k-1	$CM_F = SC_F / k-1$	CM _F / CM _E P (F>Fo)
Error	$SC_E = SC_T - SC_F$	N-k	$CM_E = SC_E/N-k$	
Total	SC _T	N-1		

<u>Eiemplo</u>

FV	SC	GL	СМ	Fo	p-value	
Factor Error Total	7072.33 2029.0 9 101.33	3 20 23	2357.44 101.45	23.24	0.0000	

Como p-value < 0.05, El factor tipo de cuero influye sobre la calidad de las suelas

Pruebas de rangos múltiples en DCA.

Una vez que se rechaza la hipótesis nula y se acepta la hipótesis alternativa, se debe investigar cuales tratamientos resultaron diferentes, o cuales tratamientos resultaron diferentes, lo cual se puede realizar con diferentes métodos:

-Método LSD (Diferencia mínima significativa)

$$[\overline{Y}_i - \overline{Y}_j] > t_{\alpha/2,N-k} \sqrt{CM_E \{1/n_i + 1/n_j\}}$$
 $t_{\alpha/2,N-k} = t$ Student (tablas)

LSD n=repeticiones

Significativo

i,j=tratamientos

Cuando el termino de la izquierda > derecha

Ejemplo

[Yi-Yj]	Diferencia muestral en valor absoluto	Decisión
μ_A - μ_B	1.25<2.42	No significativa
μ_A - μ_C	*5.50>2.42	Significativa
μ_A - μ_D	*3.25>2.42	Significativa
μ_{B} - μ_{C}	*4.25>2.42	Significativa
μ_{B} - μ_{D}	2.00<2.42	No significativa
μ_{C} - μ_{D}	2.25<2.42	No significativa

^{*} Estos datos no corresponden al ejemplo del desgaste de los zapatos. Realizar las pruebas de comparación múltiple para elegir el tipo de cuero mas adecuado.

Diseño experimental de bloques completos al azar (DBCA).

DBCA: Considera el efecto de un factor por bloques que a su vez están constituidos por tratamientos.

