Delayed Mode Quality Control of Argo float 6903549

Jan Even Øie Nilsen ORCID: 0000-0003-2516-6106

Institute of Marine Research (IMR) Strandgaten 196, Bergen, Norway

October 14, 2021

DMQC summary

Float number 6903549 was deployed on 19/05/2019 in the Norwegian Basin (NB) just off the Vøring Plateau and has traversed one full cyclonic circle around NB and entered the Lofoten Basin from the west, Hydrography is relatively stable below 1000 m in these areas.

Visual verification of in total 10 RTQC flags was done, while DMQC tests resulted in 1 further flag, all minor individual spikes. The initial comparison between Argo float data and reference data, shows that temperature and salinity data are within normal values. The comparison with satellite altimeter data shows less variability in the float derived DHA than altimetry data, but the two correlate well. The sea surface pressure data are not displaying values below 0 dbar and there are no indications of negative pressure drift.

The OWC analysis showed no noteworthy indications of drift or offset. Hence, no correction is done.

This float is still active and further monitoring is required.

Contents

1	Introduction	2
2	Quality Check of Argo Float Data2.1Delayed-mode procedures for coordinates2.2Visual verification of Real-time mode QC flags2.3Selected automated tests necessary for OWC2.3.1The double-pointed spike test2.4Visual DMQC of the variables2.5Satellite Altimeter Report2.6Time Series of Argo Float Temperature and Salinity2.7Sea Surface Pressure Adjustment	5 7
3	Correction of Salinity Data 3.1 Comparison between Argo Float and CTD and Argo Climatology	13 13 13 14
4	Discussion and conclusions	22
5	Appendix A: File information and notes	23
6	Appendix B: Reference data	24

Introduction 1

This report concerns the delayed mode analysis performed for Argo-float number 6903549. For more information about this float use, for instance, the following link:

http://www.ifremer.fr/argoMonitoring/float/6903549.

Before the analysis, real-time QC flags were visually inspected and modified if necessary. In addition, a few stricter tests necessary before the salinity calibration were applied (and flags modified if necessary). Then, the satellite altimeter comparison plot between the sea surface height and dynamic height anomaly, constructed for this float by Ifremer, was analysed. Part of this analysis are plots of temperature and salinity time series, and surface pressure.

The salinity calibration has been performed using the configuration and objective mapping parameters included in Section 3.1.1. The Argo float data were compared to nearby CTD and Argo profiles from the following reference databases:

ARGO_for_DMQC_2020V03, CTD_for_DMQC_2021V01_1, and CTD_for_DMQC_2021V01_7

Reference data are distributed by Ifremer. A simple visual check on the reference data is done prior to analysis (see Appendix B).

The OWC toolbox version 3.0.0 (https://github.com/ArgoDMQC/matlab_owc) was run to estimate a salinity offset and a salinity drift (Cabanes et al., 2016).

Note that only ascending profiles are included in this DMQC.

Technical info on the float is given in Table 1 and an overview of the float trajectory and T&S data is shown in Figure 1.

Table 1. Technical information about float 6002540

Table 1: Technical information about float 6903549.					
WMO float-number	6903549				
DAC	Coriolis				
Float SNR	P43208-18NO001				
Platform type	PROVOR-III				
Transmission system	IRIDIUM				

WMO float-number	6903549			
DAC Coriolis				
Float SNR	P43208-18NO001			
Platform type	PROVOR-III			
Transmission system	IRIDIUM			
CTD Sensor model SBE41CP				
CTD Sensor SNR 11159				
Other sensors	CTD-PRES, OPTODE-DOXY, RADIOMETER-DOWN-IRR380, RADIOMETER-DOWN-IRR412, RADIOMETER-DOWN-IRR490, RADIOMETER-PAR, FLUOROMETER-CHLA, BACKSCATTERINGMETER-BBP700, FLUOROMETER-CDOM, SPECTROPHOTOMETER-NITRATE, and TRANSISTOR-PH			
Other sensor models	SBE41CP, AANDERAA-OPTODE-4330, SATLANTIC-OCR504-ICSW, SATLANTIC-OCR504-ICSW, SATLANTIC-OCR504-ICSW, ECO-FLBBCD, ECO-FLBBCD, SUNA-V2, and SEAFET			
Other sensors SNR	10970102, 2981, 40568, 40568, 40568, 40568, 3314, 3314, 3314, 1203, and 10266			
Deployment	19/05/2019			
Dep. Lat	67.024			
Dep. Lon	0.551			
Park Depth	1000 m			
Profile depth	2000 m			
Cycle time	5 days			
Ship	R/V Johan Hjort			
PI	Kjell Arne Mork			
Float Status	Active			
Age	2.39 yrs			
Last Cycle	177			
Grey list				

Figure 1: Float 6903549. Map shows the locations of float profiles (numbers in black are every 10th profile number and numbers in blue with corresponding squares/lines show WMO-squares). The grey contours in map indicate bathymetry. The following plots are TS-diagram, temperature profiles, salinity profiles, and density profiles for all profiles. The profiles shown have undergone pre-OWC analysis DMQC (as described in Section 2). Colour shading in all panels indicate profile number (see colorbar under map).

2 Quality Check of Argo Float Data

The DMQC prior to OWC is performed in four phases, after each the found erroneous data are removed before the following phase:

- 1. Delayed-mode procedures for coordinates
- 2. Correction of pressure dependent conductivity bias (deep ARVOR only)
- 3. Visual verification of Real-time mode QC flags
- 4. Selected automated tests necessary for OWC
- 5. Visual DMQC of the variables

The tests are described in the following subsections and all results are shown in Table 2. No new flags were found necessary.

Table 2: Results for Float 6903549 in terms of number of flags for each variable, from both RTQC and DMQC.

Variable	RTQC flags ('4')	reversed flags ('1')	new flags ('4')	Affected cycles (cycle numbers)
POS	0	0	0	
JULD	0	0	0	
PRES	0	0	0	
PSAL	7	0	0	9, 90, 100, 104, and 134
TEMP	4	0	0	9 and 100

2.1 Delayed-mode procedures for coordinates

First the coordinates JULD, LATITUDE, LONGITUDE were checked as prescribed in Section 3.2 of Wong et al. (2021). Chronology of JULD was tested by a simple automated test and any missing or erroneous values replaced by linear interpolation. Position outliers were checked for visually in a map such as in Figure 1 but based on original data, and any positions replaced by 2D linear interpolation.

2.2 Visual verification of Real-time mode QC flags

In the case of RTQC flags in a profile, such profiles are compared to temporally close profiles from same float, as well as surrounding reference data. Each individual plot is inspected interactively in detail and flags are removed or new flags assigned when judged necessary (to both RTQC flagged data as well as any new findings). Examples are shown in Figure 2.

Figure 2: Float 6903549. Profiles flagged by RTQC (red) compared to float profiles before and after (blue) and nearby reference data (grey). Temperature in left and salinity in right panels. Flagged data are marked with magenta squares. If pressure is the flagged variable, the circle is put on both the temperature and salinity profile. The inlays in left panels show the piece of float track shown in blue and the areas of origin of reference data used, as grey enclosures. These are the first flagged profiles for this float (or all; see Table 2). For geography, refer to Figure 1 Panel 1.

2.3 Selected automated tests necessary for OWC

In addition to RTQC, the following automated tests are necessary before OWC as double checks using same critera as RTQC (see Wong et al., 2021) and in some aspects stricter based on experience in the region:

- Pressure increasing test / monotonically increasing pressure test in waters deeper than 400 m.
- Double-pointed spike tests on PSAL and TEMP (see Section 2.3.1).
- Spike tests on PSAL and TEMP (with 0.02 PSU criterion for pressures greater than or equal to 500 dbar, and 0.01 PSU deeper than 1000 dbar; and the addition of temperature criterion 1°C deeper than 1000 dbar).
- Gradient test on TEMP and PSAL (declared obsolete from RTQC in 2019, but implemented here nevertheless).
- Density inversion test.

2.3.1 The double-pointed spike test

The double-pointed spike tests the deviation of subsequent pairs of values instead of single points, from the neighbouring values in a profile, as this is not an uncommon form of spikes. The test values are formed according to

$$TV = \left| \frac{V_i + V_{i+1}}{2} - \frac{V_{i-1} + V_{i+2}}{2} \right| - \left| \frac{V_{i+2} - V_{i-1}}{2} \right|, \tag{1}$$

where TV is the test value and V_i are the subsequent points in a profile. As the test values are assigned to the *i*-th point in the profile (i.e., the upper point of the pair forming the spike), any testvalues exceeding the criteria results in flagging of both V_i and V_{i+1} . The double-pointed spike test uses the same criteria as the single-point spike test. It is applied before the single-point spike test, since the latter may remove one of the values in a double-point spike and render the double-pointed spike test useless.

2.4 Visual DMQC of the variables

As prescribed in Section 3.3–3.5 of Wong et al. (2021), PRES, TEMP, and PSAL were checked visually by comparing to other cycles from the float (using versions of Figures 1 and 6 from this stage), as well as in relation to reference data in the vicinity of the float (Figure 3). Trends in salinity in the same reference data are also compared to float data (Figure 4) in order to aid interpretation of the calibration results in Section 3.1.2.

Figure 3: Float 6903549 compared to nearby reference data. Float profiles (blue lines) are divided into clusters based on positions, and compared to nearby profiles from the reference data set (grey lines). Temperature in left and salinity in right panels, and one row per cluster. The inlay in first panel shows areas of origin of reference data used as grey enclosures around the clusters of positions on the blue float track. For geography, refer to Figure 1 Panel 1.

Figure 4: Temporal evolution of data from Float 6903549 and reference data (by cluster as in Figure 3). Time series of annual means of reference data in depth bins (see legend) are plotted as coloured lines with error bars representing the error of the mean (usually very small due to large ensembles), and annual bin means of float data by the same method plotted with asterisks. Annual bins are centered around new year (i.e., winter). The sketch under the legend shows areas of origin of reference data used as grey enclosures around the clusters of positions on the blue float track. For geography, refer to Figure 1 Panel 1.

2.5 Satellite Altimeter Report

Figure 5 shows the comparison with altimetry.

Figure 5: Float 6903549. The comparison between the sea level anomaly (SLA) from the satellite altimeter and dynamic height anomaly (DHA) extracted from the Argo float temperature and salinity. The figure is created by the CLS/Coriolis, distributed by Ifremer (ftp://ftp.ifremer.fr/ifremer/argo/etc/argo-ast9-item13-AltimeterComparison/figures/). If graphics are missing, an altimetry report is not available (yet).

2.6 Time Series of Argo Float Temperature and Salinity

Figure 6 shows Hov-Möller plots of temperature and salinty, respectively, disregarding flags but with flagged data marked.

Figure 6: Float 6903549. Time series of Argo float potential temperature (a; °C) and salinity (b; PSS-78). Any white squares and circles indicate data that has been flagged '4' by RTQC and DMQC, respectively. A point inside a square indicates the rare occurrence of reversal of an RTQC flag to '1'. Pressure flags are marked with the same symbols, in grey.

2.7 Sea Surface Pressure Adjustment

Sea surface pressure adjustments should be done for APEX floats (Wong et al., 2021). This is an PROVOR-III float. Instead, Figure 7 shows the surface pressure from the top of each profile.

Figure 7: Float 6903549. Top of profile pressure series. Blue circles indicate pressure value in the real-time.

3 Correction of Salinity Data

3.1 Comparison between Argo Float and CTD and Argo Climatology

The OWC-toolbox uses reference data in order to investigate potential salinity drift and calculate calibration offsets. Figure 8 shows the positions of reference data actually used in mapping. In Appendix B profile plots of reference data from the WMO squares (1600, 1700, and 7600) traversed by the float, can be found.

3.1.1 Configuration

The following are the mapping configuration parameters set in ow_config.txt file of the OWC toolbox with the parameters set for the final correction:

```
CONFIGURATION_FILE: ow_config.txt
    HISTORICAL_DIRECTORY: ~/Arkiv/data/matlab_owc/climatology
   HISTORICAL_CTD_PREFIX: /historical_ctd/ctd_
HISTORICAL_BOTTLE_PREFIX: /historical_bot/bot_
  HISTORICAL_ARGO_PREFIX: /argo_profiles/argo_
  FLOAT_SOURCE_DIRECTORY: ~/Arkiv/data/matlab_owc/float_source/
    FLOAT_SOURCE_POSTFIX: .mat
  FLOAT_MAPPED_DIRECTORY: ~/Arkiv/data/matlab_owc/float_mapped/
     FLOAT_MAPPED_PREFIX: map_
    FLOAT_MAPPED_POSTFIX: .mat
   FLOAT_CALIB_DIRECTORY: ~/Arkiv/data/matlab_owc/float_calib/
      FLOAT_CALIB_PREFIX: cal_
  FLOAT_CALSERIES_PREFIX: calseries_
     FLOAT_CALIB_POSTFIX: .mat
   FLOAT_PLOTS_DIRECTORY: ~/Arkiv/data/matlab_owc/float_plots/
        CONFIG_DIRECTORY: ~/Arkiv/data/matlab_owc/constants/
       CONFIG_COASTLINES: coastdat.mat
        CONFIG_WMO_BOXES: wmo_boxes.mat
              CONFIG_SAF: TypicalProfileAroundSAF.mat
        CONFIG_MAX_CASTS: 250
              MAP_USE_PV: 1
             MAP_USE_SAF: 0
MAPSCALE_LONGITUDE_LARGE: 1.6
MAPSCALE_LONGITUDE_SMALL: 0.4
 MAPSCALE_LATITUDE_LARGE: 1
 MAPSCALE_LATITUDE_SMALL: 0.3
      MAPSCALE_PHI_LARGE: 0.5
      MAPSCALE_PHI_SMALL: 0.1
      MAPSCALE_AGE_SMALL: 5
      MAPSCALE_AGE_LARGE: 10
           MAP_P_EXCLUDE: 400
             MAP_P_DELTA: 100
```

The scaling parameters are typical for use in the Lofoten Basin.

The calseries parameters are set in set_calseries.m file as follows:

```
breaks: []

max_breaks: -1

calseries: 1-177

calib_profile_no: [1x177 double]

use_theta_lt: []

use_theta_gt: []

use_pres_gt: []

use_pres_lt: []

use_percent_gt: 0.25
```

3.1.2 Results

Figures 8 through 15 show the results of the comparison and correction of the salinity data. Notes made about this float during the different rounds of DMQC, can be found in Appendix A.

Figure 8: Float 6903549. Location of the float profiles (red line with black numbers) and the reference data selected for mapping (blue dots).

Figure 9: Float 6903549. Evolution of the suggested adjustment with time. The top panel plots the potential conductivity multiplicative adjustment. The bottom panel plots the equivalent salinity additive adjustment. The red line denotes one-to-one profile fit that uses the vertically weighted mean of each profile. The red line can be used to check for anomalous profiles relative to the optimal fit.

Figure 10: Float 6903549. The original float salinity and the objectively estimated reference salinity at the 10 float theta levels that are used in calibration as errorbars. Lower panel is a zoom to the latter.

Figure 11: Float 6903549. Plots of calibrated float salinity and the objectively estimated reference salinity at the 10 float theta levels that are used in calibration as errorbars. Lower panel is a zoom to the latter.

Figure 12: Float 6903549. Salinity anomaly on theta levels.

Figure 13: Float 6903549. Calibrated salinity anomaly on theta levels.

Figure 14: Float 6903549. Plots of the evolution of salinity with time along with selected theta levels with minimum salinity variance.

Figure 15: Float 6903549. Plots include the theta levels chosen for calibration: Top left: Salinity variance at theta levels. Top right: T/S diagram of all profiles of Argo float. Bottom left: potential temperature plotted against pressure. Bottom right: salinity plotted against pressure.

4 Discussion and conclusions

Float number 6903549 was deployed on 19/05/2019 in the Norwegian Basin (NB) just off the Vøring Plateau and has traversed one full cyclonic circle around NB and entered the Lofoten Basin from the west, Hydrography is relatively stable below 1000 m in these areas.

Visual verification of in total 10 RTQC flags was done, while DMQC tests resulted in 1 further flag, all minor individual spikes. The initial comparison between Argo float data and reference data, shows that temperature and salinity data are within normal values. The comparison with satellite altimeter data shows less variability in the float derived DHA than altimetry data, but the two correlate well. The sea surface pressure data are not displaying values below 0 dbar and there are no indications of negative pressure drift.

The OWC analysis showed no noteworthy indications of drift or offset. Hence, no correction is done.

This float is still active and further monitoring is required.

Acknowledgments

This report is based on the template given in the DM-REPORT-TEMPLATE Matlab/LaTeX toolbox provided at https://github.com/euroargodev/dm-report-template.git and adapted to own needs (this version is provided in https://github.com/imab4bsh/DMQC-fun.git). Calibration of conductivity sensor drift was done using the Matlab OWC toolbox provided at https://github.com/ArgoDMQC/matlab_owc. The map in Figure 1 was made using the M_MAP toolbox (Pawlowicz, 2020; http://www.eoas.ubc.ca/~rich/map.html). Supporting functions can be found in the author's own distribution at https://github.com/evenrev1/evenmat.git.

References

Cabanes, C., Thierry, V., & Lagadec, C. (2016). Improvement of bias detection in Argo float conductivity sensors and its application in the North Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 114, 128–136. https://doi.org/10.1016/j.dsr.2016.05.007.

Johnson, G. C., Toole, J. M., & Larson, N. G. (2007). Sensor corrections for Sea-Bird SBE-41CP and SBE-41 CTDs. Journal of Atmospheric and Oceanic Technology, 24(6), 1117–1130. https://doi.org/10.1175/JTECH2016.1.

Pawlowicz, R., 2020. "M_Map: A mapping package for MATLAB", version 1.4m, [Computer software], available online at http://www.eoas.ubc.ca/~rich/map.html.

Wong, A., Keeley, R., Carval, T., and the Argo Data Management Team (2021). Argo Quality Control Manual for CTD and Trajectory Data. http://dx.doi.org/10.13155/33951.

5 Appendix A: File information and notes

Scientific calibration information

The scientific calibration information written to the D-files are summarized in Table 3.

Table 3: Information filled in the SCIENTIFIC_CALIB section for the variables, in the D-files.

Parameter	Field	Cycles/files	Text
PRES	EQUATION	1-177	$PRES_ADJUSTED = PRES$
	COEFFICIENT	1-177	none
	COMMENT	1-177	none
	DATE	1-177	20211014154111
TEMP	EQUATION	1-177	$TEMP_ADJUSTED = TEMP$
	COEFFICIENT	1-177	none
	COMMENT	1-177	The quoted error is manufacturer specified accuracy with
			respect to ITS-90 at time of laboratory calibration.
	DATE	1-177	20211014154111
PSAL	EQUATION	1-177	$PSAL_ADJUSTED = PSAL$
	COEFFICIENT	1-177	none
	COMMENT	1-177	No significant salinity offset or drift detected. The quoted
			error is max[0.01, statistical uncertainty] in PSS-78.
	DATE	1-177	20211014183214

Operator's notes

The following notes have been made about this float:

```
<sup>'</sup>6903549':
Norwegian Basin. BGC.
Trying with the small map scales again. Better. Now smallest phi
scales. Better, but still some data in Gr. Basin. But first try this on
The shift comes when it starts to stay in the southern part.
Trying with KAM phi and age scales, and LB map scales. Well confined. But
severe shift at p46, when it goes toward middle.
Trying with even larger phi. Broader area selection. But still a strong break.
Trying with short age. Less data. Larger errors. Worse variations in deviation.
Trying with long age. More data. Same spread. Small errors, linear fit! Same shift, though.
INCONCLUSIVE. Hard to believe both has an error when both floats do
this. Must be change in reference data in that region.
Then with the newfound mapping parameters, it went smoothly through.
Breakpoint. NO CORRECTION. Breaks off at the end. Same as 6903554.
```

-- 20200922: --

100 profiles. Almost full circle in the Norwegian Basin.

All profiles mapped w/o warning.

LBmap, KAMage, KAMphi.

A clear, square dip in the profile fit from p 45-85, in the SW part of the basin. Influenced by some EIW event?

Best fit with breakpoint, but caused by the dip. Forcing linear fit does not really hit the mark either, due to the dip.

Offset only is more reasonable throughout the series, and then negligible dS < 0.001 and uncal float is generally within errors of the mapped sal. Same result with LARGEphi.

NO CORRECTION.

-- 20210310: --

132 profiles. All profiles mapped w/o warning.

```
Now traversed full circle in NB.
Forced offset, dS ~ 0.0025. Lower dS level 100-120 (close to zero), near Svinøy Section. Nothing suspicious.

NO CORRECTION.
-- 20210915: --
-- 20210930: --
170/174 profiles. All profiles mapped w/o warning. Has now entered LB.
All levels below thermocline. No calibration warnings.
Forced offset, dS ~ 0.0025.

NO CORRECTION.

%%% Local Variables:
%%% mode: plain-tex
%%% TeX-master: "DMQCreport_float"
%%% End:
```

6 Appendix B: Reference data

Here follows overview plots of the reference data in the WMO-squares traversed by Float 6903549.

Figure 16: Overview of reference data in WMO square 1600 which is traversed by Float 6903549. Upper set of graphs are for CTD reference data, and lower set is for historical ARGO data. Colouring of positions in map pairs illustrate temporal coverage and latitude, respectively. The following TS and profile plots use the latter colormap.

Figure 17: Overview of reference data in WMO square 1700 which is traversed by Float 6903549. Upper set of graphs are for CTD reference data, and lower set is for historical ARGO data. Colouring of positions in map pairs illustrate temporal coverage and latitude, respectively. The following TS and profile plots use the latter colormap.

Figure 18: Overview of reference data in WMO square 7600 which is traversed by Float 6903549. Upper set of graphs are for CTD reference data, and lower set is for historical ARGO data. Colouring of positions in map pairs illustrate temporal coverage and latitude, respectively. The following TS and profile plots use the latter colormap.