Comomentum: Inferring Arbitrage Activity from Return Correlations

Lou and Polk

Journal of Political Economy, April 2013

R.R. Azevedo

Finance Hub Insper Instituto de Ensino e Pesquisa

January 29, 2019

Main Idea

Claim

Comomentum is a measure that capture the presence of arbitrage activity in the momentum strategy.

- No fundamental anchor for arbitrageurs ⇒ crowded traded ⇒ push prices away from fundamentals ⇒ To late!
- Too many arbitrageurs make the long-run buy-and-hold of a momentum strategy crash and revert.

Authors

Dong Lou

- Research Interests: Market inefficiency, the role of arbitrageurs in causing market inefficiency.
- Department of Finance LSE
- PhD, Yale.

Christopher Polk

- Research Interests: Asset Pricing and Hedge Funds.
- Department of Finance LSE
- PhD, University of Chicago.

Outline

- Introduction and Motivation
- ② Data and Methodology
- Results
- Conclusion.

Introduction and Motivation

- Are arbitrage activity stabilizing or destabilizing?
 - Stabilizing: Arbitrageurs ensures market efficiency.
 - ▶ **Destabilizing:** Introducing more speculators in markets with no anchor increase the asymmetry of information of all players.
- Problem: Arbitrage activity is extremely difficult to measure at any given point in time.
 - Many arbitrageurs use leverage, short-selling and other instruments unobservable to researchers.
 - ► The effect of arbitrage activity on prices depends on the liquidity of the assets which vary cross-sectionally and through time.

- Comomentum: degree of abnormal return correlation among those stocks that an arbitrageur would speculate on.
 - One of the few anomalies that are robust to virtually all asset classes and all geographic locations.
 - Classical example of unanchored arbitrage.
- Comomentum is a success measure of the momentum crowd.
 - Correlated with existing variables linked to the size of arbitrage activity in this market.
 - Out-of-sample analysis on firm-specific level and on International Market.
- Provide evidence of the destabilizing effect of arbitrage on non-anchored markets.
 - ▶ Placebo: different effect on the anchored value strategy.

Data and Methodology

Data

- CRSP: Stock return and monthly returns of actively-managed equity mutual funds.
- ► Thompson Financial: Institutional ownership in individual stocks.
- ► Federal Reserve Board: Total assets of the shadow banking sector.
- ▶ **Lipper TASS:** Assets under management of long-short equity hedge funds and monthly returns of long-short equity hedge funds.
- **Period:** 1964 2010
- Sort all stocks into deciles based on their previous 12-month return.

Comomentum measure

$$comon^{L} = \frac{1}{N^{L}} \sum_{i=1}^{N^{L}} partialCorr(r_{i}^{L}, r_{-i}^{L} | FF3)$$

$$comon^{W} = \frac{1}{N^{W}} \sum_{i=1}^{N^{W}} partialCorr(r_{i}^{W}, r_{-i}^{W} | FF3)$$

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (P

Data

- CRSP: Stock return and monthly returns of actively-managed equity mutual funds.
- ► Thompson Financial: Institutional ownership in individual stocks.
- ► Federal Reserve Board: Total assets of the shadow banking sector.
- ▶ **Lipper TASS:** Assets under management of long-short equity hedge funds and monthly returns of long-short equity hedge funds.
- Period: 1964 2010
- Sort all stocks into deciles based on their previous 12-month return.

Comomentum measure

$$comon^{L} = \frac{1}{N^{L}} \sum_{i=1}^{N^{L}} partialCorr(r_{i}^{L}, r_{-i}^{L} | FF3)$$

$$comon^W = \frac{1}{N^W} \sum_{i=1}^{N^W} partialCorr(r_i^W, r_{-i}^W | FF3)$$

4 D > 4 D > 4 E > 4 E > E 9000

Data

- CRSP: Stock return and monthly returns of actively-managed equity mutual funds.
- ► Thompson Financial: Institutional ownership in individual stocks.
- ► Federal Reserve Board: Total assets of the shadow banking sector.
- ▶ **Lipper TASS:** Assets under management of long-short equity hedge funds and monthly returns of long-short equity hedge funds.
- ▶ Period: 1964 2010
- Sort all stocks into deciles based on their previous 12-month return.

Comomentum measure

$$comon^L = \frac{1}{N^L} \sum_{i=1}^{N^L} partialCorr(r_i^L, r_{-i}^L | FF3)$$

$$comon^W = \frac{1}{N^W} \sum_{i=1}^{N^W} partialCorr(r_i^W, r_{-i}^W | FF3)$$

Results

Table I: Summary Statistics

	Panel A: Summary Statistics										
Variable	N	Mean	Std. Dev.	Min	Max						
$comom^L$	559	0.118	0.046	0.028	0.287						
$comom^W$	559	0.096	0.036	0.021	0.264						
mktret36	559	0.360	0.331	-0.419	1.231						
mktvol36	559	0.043	0.011	0.020	0.067						

Panel B: Correlation								
	$comom^L$	$comom^W$	mktret36	mktvol36				
comom ^L	1.000							
$comom^W$	0.524	1.000						
mktret36	-0.187	-0.350	1.000					
mktvol36	0.125	0.092	-0.393	1.000				

Figure 1: Time series of comomentum measure

Linking Comomentum to Arbitrage Capital

- See if comomentum capture the size of arbitrage activity in the momentum strategy.
 - Aggregate institutional ownership: pih_{t-1}^W
 - ► Flow to the shadow banking system: shadow_{t-1}
 - ▶ Total assets owned by longs-short equity hedge funds: AUM_{t-1}
 - ▶ Return to the momentum strategy: $mom12_{t-1}$

Table II: Determinants of Comomentum

Dependent Variable		$comom_t^W$			$comom_t^L$	
	[1]	[2]	[3]	[4]	[5]	[6]
pih_{t-1}^{W}	0.103***	0.117***	0.190***	0.112**	0.110**	0.095**
	[0.035]	[0.035]	[0.063]	[0.050]	[0.047]	[0.045]
$shadow_{t-1}$	0.151***	0.130***	0.093*	0.256***	0.285***	0.200**
	[0.044]	[0.044]	[0.055]	[0.083]	[0.082]	[0.094]
$mom12_{t-1}$	0.203**	0.228**	0.226**	0.438***	0.383***	0.409***
	[0.091]	[0.091]	[0.113]	[0.144]	[0.140]	[0.137]
AUM_{t-1}			0.058***			0.079***
			[0.018]			[0.017]
$mktret36_{t-1}$		-0.009*	-0.009		0.011	0.001
		[0.005]	[0.007]		[0.007]	[0.010]
$mktvol36_{t-1}$		0.120	0.215		0.218	-0.290
		[0.166]	[0.358]		[0.221]	[0.341]
TREND	YES	YES	YES	YES	YES	YES
Adj-R ²	0.34	0.34	0.38	0.18	0.19	0.47
No. Obs.	357	357	180	357	357	180

Forecasting Long-run Momentum Reversal

- Is comomentum able to capture the destabilizing effect of arbitrageurs in the stock market?
 - Momentum is an unanchored strategy.
- Vayanos and Woolley (2011): propose a rational theory of momentum and reversal.
 - Stock price fall ⇒ outflow ⇒ fund sell own assets ⇒ prices fall even more.
- Momentum: If outflow is gradual (few intermediaries)
- Reversal: If outflow is abrupt (many intermediaries)

Table III: Forecasting Momentum Returns with Comomentum

			Pa	nel A: Raw N	Aomentum	Returns			
	Yea	r 0	Yea	ır 1	Yea	r 2	Yea	r 3	
Rank	No Obs.	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
1	110	8.84%	(29.59)	0.69%	(4.56)	0.14%	(0.56)	-0.05%	(-0.21)
2	111	8.94%	(24.66)	1.05%	(6.67)	-0.27%	(-1.09)	-0.54%	(-2.64)
3	111	9.19%	(15.66)	0.73%	(3.15)	-0.51%	(-1.66)	-0.52%	(-2.89)
4	111	9.51%	(16.57)	0.44%	(1.54)	-0.58%	(-2.39)	-0.46%	(-1.81)
5	111	11.24%	(13.58)	-0.18%	(-0.35)	-1.05%	(-2.81)	0.16%	(0.45)
5-1		2.40%	(2.76)	-0.87%	(-2.11)	-1.20%	(-2.72)	0.21%	(0.61)
OLS		0.006	(2.83)	-0.002	(-2.02)	-0.003	(-2.81)	0.000	(0.45)

		F	anel B: Th	ree-Factor A	djusted Mo	omentum Ret	urns		
		Year 0		Yea	Year 1		Year 2		r 3
Rank	No Obs.	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
1	110	8.45%	(24.33)	0.70%	(3.63)	-0.03%	(-0.10)	-0.15%	(-1.07)
2	111	8.53%	(19.67)	1.06%	(5.00)	-0.44%	(-2.33)	-0.87%	(-3.46)
3	111	8.74%	(13.91)	0.61%	(3.22)	-0.67%	(-3.17)	-0.70%	(-2.74)
4	111	9.13%	(14.31)	0.35%	(1.53)	-0.61%	(-2.35)	-0.69%	(-2.28)
5	111	10.81%	(13.14)	-0.08%	(-0.18)	-0.80%	(-2.31)	0.14%	(0.90)
5-1		2.37%	(2.64)	-0.79%	(-2.22)	-0.78%	(-2.33)	0.28%	(0.95)
OLS		0.006	(2.65)	-0.002	(-2.09)	-0.002	(-2.38)	0.000	(0.64)

Figure 2: returns to the momentum strategy as a function of the lagged comomentum

Robustness of Key Result

	Yea	ar 0	Years	1 and 2
Full sample: 1963-2010	2.40%	(2.76)	-1.03%	(-2.67)
Subsample: 1963-1980	0.32%	(1.03)	-0.57%	(-1.55)
Subsample: 1981-2010	2.76%	(2.91)	-1.04%	(-2.60)
Pooling Winners and Losers	2.06%	(3.32)	-0.84%	(-2.96)
Controlling for MKT CORR	2.70%	(3.15)	-1.06%	(-2.78)
Controlling for STD(UMD)	1.58%	(2.09)	-0.71%	(-2.29)
DGTW-Adjusted Returns	2.61%	(2.79)	-1.00%	(-2.94)
Intra-Industry Returns	2.14%	(2.70)	-0.82%	(-2.39)
Sort on Months 2-7	2.07%	(2.45)	-1.10%	(-2.35)
Sort on Months 8-13	1.35%	(1.65)	-0.43%	(-1.68)

Robustness of Key Result

- Control for:
 - Market returns and market volatility.
 - Contemporaneous standard deviation of Ken Frenchs (volatility of momentum is predictable)
 - Industry-adjusted returns.
- Industry-neutral momentum strategy.
- Control for Echo effect.
 - Build a momentum strategies based on weekly stock returns in months 2-7 and 8-13.

Robustness of Key Result

- Control for:
 - Market returns and market volatility.
 - Contemporaneous standard deviation of Ken Frenchs (volatility of momentum is predictable)
 - Industry-adjusted returns.
- Industry-neutral momentum strategy.
- Control for Echo effect.
 - Build a momentum strategies based on weekly stock returns in months 2-7 and 8-13.

Table V: Robustness Checks

	Yea	ar 0	Years	1 and 2
Full sample: 1963-2010	2.40%	(2.76)	-1.03%	(-2.67)
Subsample: 1963-1980	0.32%	(1.03)	-0.57%	(-1.55)
Subsample: 1981-2010	2.76%	(2.91)	-1.04%	(-2.60)
Pooling Winners and Losers	2.06%	(3.32)	-0.84%	(-2.96)
Controlling for MKT CORR	2.70%	(3.15)	-1.06%	(-2.78)
Controlling for STD(UMD)	1.58%	(2.09)	-0.71%	(-2.29)
DGTW-Adjusted Returns	2.61%	(2.79)	-1.00%	(-2.94)
Intra-Industry Returns	2.14%	(2.70)	-0.82%	(-2.39)
Sort on Months 2-7	2.07%	(2.45)	-1.10%	(-2.35)
Sort on Months 8-13	1.35%	(1.65)	-0.43%	(-1.68)

Time-Varying Momentum Return Skewness

- Daniel and Moskowitz (2011): momentum crashes are forecastable.
 - Momentum return is negative skewed.
- Examine skewness of daily returns and weekly returns.

Table VI: Forecasting Momentum Return Skewness

			I	Panel A: Mon	nentum Ske	ewness			
	M		th 1	Month	ns 1-3	Month	ns 1-6	Months 1-12	
Rank	No Obs.	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
1	110	-0.039	(-1.18)	-0.069	(-1.30)	-0.126	(-1.80)	-0.123	(-1.79)
2	111	-0.180	(-2.73)	-0.183	(-3.72)	-0.339	(-3.91)	-0.359	(-5.28)
3	111	-0.164	(-2.88)	-0.209	(-4.81)	-0.249	(-3.44)	-0.282	(-4.50)
4	111	-0.212	(-3.61)	-0.319	(-5.23)	-0.363	(-6.05)	-0.355	(-4.00)
5	111	-0.300	(-3.42)	-0.391	(-5.96)	-0.536	(-5.31)	-0.510	(-3.54)
5-1		-0.261	(-2.40)	-0.322	(-3.81)	-0.409	(-3.40)	-0.388	(-2.44)
OLS		-0.049	(-2.41)	-0.078	(-4.19)	-0.084	(-3.13)	-0.077	(-2.28)

		Month	ns 1-6	Month	s 1-12
Rank	No Obs.	Estimate	t-stat	Estimate	t-stat
1	110	0.015	(3.02)	0.011	(3.68)
2	111	0.015	(4.95)	0.015	(6.01)
3	111	0.036	(3.91)	0.032	(2.90)
4	111	0.049	(3.66)	0.041	(3.25)
5	111	0.105	(4.89)	0.093	(4.18)
5-1		0.090	(4.06)	0.082	(3.66)
OLS		0.686	(4.13)	0.586	(3.78)

A Placebo Test: The Value Strategy and Covalue

- Show that arbitrage activity is stabilizing in anchored strategies, as the Value strategy
 - Value spread as anchor: cross-sectional spread in book-to-market equity ratios.
- Study the comomentum analogue for the value strategy: covalue.

Table VII: Covalue and Value Strategy Returns

	Panel A: Raw Value Strategy Returns											
		Yea	ar 0	Yea	r 1	Year	r 2	Year 3				
Rank	No Obs.	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat			
1	110	-3.52%	(-8.13)	0.09%	(0.39)	0.05%	(0.23)	0.46%	(1.89)			
2	111	-4.33%	(-14.60)	0.35%	(1.66)	0.30%	(1.03)	0.11%	(0.28)			
3	111	-4.00%	(-9.96)	0.30%	(1.06)	0.97%	(5.40)	0.83%	(5.29)			
4	111	-4.41%	(-7.98)	0.84%	(2.77)	1.29%	(5.29)	0.79%	(4.21)			
5	111	-5.67%	(-5.56)	1.61%	(3.82)	1.61%	(5.36)	0.69%	(1.98)			
5-1		-2.16%	(-1.94)	1.52%	(3.18)	1.57%	(4.22)	0.24%	(0.56)			
OLS		-0.004	(-1.86)	0.004	(3.35)	0.004	(4.92)	0.001	(1.21)			

		Pane	l B: Market	t- and Size- A	djusted V	alue Strategy	Returns			
		Yea	ır 0	Yea	Year 1		Year 2		Year 3	
Rank	No Obs.	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	
1	110	-3.12%	(-6.27)	0.26%	(0.92)	0.24%	(0.93)	0.56%	(2.10)	
2	111	-4.05%	(-12.77)	0.64%	(3.02)	0.43%	(1.40)	0.26%	(0.73)	
3	111	-3.75%	(-9.98)	0.57%	(1.95)	1.12%	(6.20)	1.03%	(6.23)	
4	111	-4.29%	(-8.13)	0.96%	(3.86)	1.25%	(4.00)	0.87%	(3.79)	
5	111	-5.43%	(-5.60)	1.65%	(3.90)	1.72%	(5.07)	0.55%	(1.20)	
5-1		-2.31%	(-2.11)	1.39%	(2.73)	1.48%	(3.46)	-0.01%	(-0.02)	
OLS		-0.005	(-2.10)	0.003	(2.86)	0.004	(3.97)	0.001	(0.52)	

Table VII: Covalue and Value Strategy Returns

	Panel C: Skewness in value returns											
		Month	ns 1-6	Month	s 1-12							
Rank	No Obs.	Estimate	t-stat	Estimate	t-stat							
1	110	0.199	(3.14)	0.264	(4.49)							
2	111	0.106	(1.28)	0.046	(0.93)							
3	111	-0.012	(-0.19)	0.071	(1.18)							
4	111	0.141	(1.09)	0.088	(0.77)							
5	111	0.293	(2.13)	0.112	(0.73)							
5-1		0.094	(0.62)	-0.152	(-0.92)							
OLS		0.024	(0.67)	-0.025	(-0.67)							

Cross-Sectional Tests

Table VIII: Institutional Ownership and the Comomentum Effect

	No Obs.	Year 0		Year 1		Year 2		Year 3	
Rank		Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
1	65	10.26%	(22.27)	0.54%	(2.18)	-0.20%	(-0.84)	-0.49%	(-2.09)
2	66	10.36%	(25.41)	0.94%	(4.00)	-0.58%	(-2.47)	-0.68%	(-1.56)
3	66	10.94%	(9.74)	0.35%	(1.09)	-0.74%	(-2.51)	-0.06%	(-0.10)
4	66	11.66%	(9.53)	-0.17%	(-0.39)	-0.26%	(-0.72)	-0.15%	(-0.28)
5	66	12.22%	(11.46)	-0.14%	(-0.24)	-0.59%	(-1.61)	0.01%	(0.02)
5-1		1.95%	(2.02)	-0.68%	(-1.09)	-0.39%	(-0.62)	0.50%	(0.90)
OLS		0.006	(2.10)	-0.002	(-1.57)	-0.001	(-0.35)	0.002	(1.02)

		Year 0			Year 1		Year 2		Year 3	
Rank	No Obs.	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	
1	65	8.91%	(21.87)	0.65%	(2.92)	0.23%	(0.66)	0.20%	(0.75)	
2	66	9.34%	(25.22)	0.90%	(4.61)	-0.08%	(-0.26)	-0.36%	(-1.71)	
3	66	9.71%	(10.80)	0.32%	(0.93)	-0.59%	(-1.66)	-0.69%	(-2.31)	
4	66	10.14%	(11.78)	-0.13%	(-0.29)	-0.43%	(-1.52)	-0.04%	(-0.13)	
5	66	11.82%	(14.09)	-0.29%	(-0.43)	-1.30%	(-2.89)	0.20%	(0.54)	
5-1		2.91%	(2.95)	-0.95%	(-2.32)	-1.53%	(-2.77)	0.00%	(0.01)	
OLS		0.007	(2.99)	-0.003	(-1.88)	-0.004	(-2.73)	0.000	(0.05)	

- Examine whether the metric can identify arbitrage activity in the cross section.
 - ► Stock comomentum: $comom_stockL^L = partialCorr(r_i, -r_{-i}^L | FF3)$
 - ▶ Different from the measure of momentum risk sensitivity.
- Do a Fama-MacBeth estimatation of cross-sectional regressions forecasting stock returns in month t+1.

Table IX: An Alternative Momentum Strategy

	Panel A: Fa	ama-MacBet	h Regressions	i	
Dependent Variable		Stock F	Returns in Mo	onth $t+1$	
$comom_stock_{t-1}^L$	[1] 0.023*** [0.005]	[2]	[3]	[4] 0.011*** [0.004]	[5] 0.009*** [0.003]
$beta_UMD_{t-1}$	[0.000]	0.001		0.000	0.000
$ret12_{t-1}$		[0.002]	0.007*** [0.002]	0.006***	0.007***
$mktcap_{t-1}$			[0.002]	[0.001]	-0.002** [0.001]
BM_{t-1}					0.002**
$IdioVol_{t-1}$					-0.005*** [0.001]
$turnover_{t-1}$					-0.001 [0.001]
Adj-R ²	0.02	0.02	0.04	0.06	0.10
No. Obs.	211,042	211,042	211,042	211,042	211,042

		Panel 1	B: Portfoli	o Returns I	Ranked by	comom_sto	ock ^L		
Decile	Excess	CAPM	FF	Excess	CAPM	FF	Excess	CAPM	FF
Declie	Return	Alpha	Alpha	Return	Alpha	Alpha	Return	Alpha	Alpha
	Months 1-6			Months 7-12			Year 2		
10 - 1	0.78%	0.88%	1.13%	0.01%	0.06%	0.36%	-0.48%	-0.45%	-0.42%
	(2.64)	(3.00)	(3.73)	(0.03)	(0.21)	(1.43)	(-2.16)	(-2.17)	(-2.08)

Out-of-sample analysis - International Evidence

- International Evidence:
 - Comomentum forecasts time-series variation in country-specific momentum.
 - Whether there is inter-country information in the international commentum measures.

Figure 3: Equal-weight averages of country-specific comomentum

Table X: International Evidence

Country	No months	CoefEst1	CoefEst2	Country	No months	CeofEst1	CeofEst2
AUS	302	-0.0494	-0.0351	GBR	300	-0.0501	-0.0402
		(-0.94)	(-0.48)			(-1.87)	(-2.11)
AUT	302	-0.0581	-0.0866	HKG	300	-0.0646	-0.0796
		(-1.76)	(-1.17)			(-3.77)	(-2.21)
BEL	300	-0.1025	-0.0946	ITA	300	-0.0108	-0.0239
		(-2.40)	(-1.95)			(-0.43)	(-0.73)
CAN	336	-0.1652	-0.1341	JPN	300	-0.0564	-0.0535
		(-2.70)	(-2.31)			(-1.63)	(-2.54)
CHE	300	-0.0347	-0.0753	NLD	300	-0.0801	-0.0805
		(-1.53)	(-2.35)			(-2.47)	(-2.02)
DEU	300	-0.0546	-0.0957	NOR	297	-0.0096	-0.1090
		(-1.72)	(-1.82)			(-0.16)	(-1.58)
DNK	300	-0.0248	-0.0200	NZL	271	-0.0879	-0.0462
		(-1.06)	(-0.63)			(-2.15)	(-1.67)
ESP	300	-0.0097	-0.0075	SGP	300	-0.0791	-0.1189
		(-0.28)	(-0.20)			(-2.36)	(-3.86)
FIN	300	-0.0110	-0.0046	SWE	300	-0.0107	-0.0091
		(-0.29)	(-0.12)			(-0.29)	(-0.11)
FRA	300	-0.0725	-0.0486	WLD	300	-0.0851	-0.0569
		(-2.06)	(-1.13)			(-2.60)	(-2.68)

	Panel B: Long-Short Portfolios of Country Momentum								
Quintile	No Months	Excess Return	CAPM Alpha	FF Alpha	Carhart Alpha				
S	300	0.24%	0.36%	0.68%	-0.20%				
		(0.94)	(1.49)	(2.98)	(-0.96)				
L	300	1.01%	1.07%	1.49%	0.46%				
		(3.74)	(4.34)	(6.00)	(3.87)				
L-S	300	0.77%	0.71%	0.81%	0.66%				
		(3.19)	(3.04)	(3.30)	(2.33)				

Conclusion

- Propose a novel approach to measure arbitrage activity.
- 2 Explore this new measure on the momentum strategy: **Comomentum**
- Showed the quality of this measure.
- Ontribute on the debate over existence of destabilizing arbitrage.

Thank you!

Lou and Polk (2013): Comomentum: Inferring Arbitrage Activity from Return Correlations