

DOSSIER DOCUMENT REPONSES

✓ Ce dossier comporte 9 pages numérotées de 1 à 9 :

• Partie A – Analyse fonctionnelle : Page 1;

• Partie B – Mécanique : Pages 1 à 4 ;

• Partie C – Automatique : Pages 5 à 9;

- ✓ Un seul dossier document réponses est fourni au candidat et doit être rendu, en totalité, même sans réponses à la fin de l'épreuve.
- ✓ Le renouvellement de ce dossier est interdit.

PARTIE A – ANALYSE FONCTIONNELLE

A.1. Compléter l'actigramme niveau A-0 du manipulateur.

A.2. Indiquer pour chacun des actionneurs utilisés dans ce manipulateur, la fonction principale (FP), la matière d'œuvre entrante (MOE), la matière d'œuvre sortante (MOS) et les données de contrôle (DC):

Actionneur	FP	MOE	MOS	DC
Vérin électrique	Transformer	Energie électrique	Energie mécanique	Présence de
	l'W.E en W.M			l'énergie élect.
Moteur électrique	Transformer	Energic électrique	Energie mécanique	Présence de
	I'W.E en W.M		de rotation	l'énergie élect.
Vérin pneumatique	Transformer	Energie	Energie mécanique	Présence de
linéaire	l'W.P en W.M	Pneumatique	de translation	l'énergie pneum.

PARTIE B - MECANIQUE

B.1. Etude géométrique :

B.1.1. Ecrire les équations scalaires qui traduisent la fermeture géométrique de la chaine 0-1-2-3-4-0.

$$.... l_2 Cos\alpha - l_3 Sin\beta + l_4 Sin\theta = ... 0 ... (1)$$

$$.... ... l_2 Sin\alpha + l_3 Cos\beta + l_4 Cos\theta = ... \lambda ... (2)$$

B.1.2. Pour $\alpha = \frac{\pi}{2}$, Exprimer β et θ en fonction de λ .

... Théorème de Pythagore ou à partir des équations (1) et (2)

.....
$$l_3^2 = l_4^2 + (\lambda - l_2)^2 - 2l_4(\lambda - l_2)Cos\theta$$
.....

.....
$$l_4^2 = l_3^2 + (\lambda - l_2)^2 - 2l_3(\lambda - l_2)Cos\beta$$

$$\cos \beta = \dots \frac{l_3^2 + (\lambda - l_2)^2 - l_4^2}{2l_3(\lambda - l_2)} \dots$$

$$\cos \theta = \dots \frac{l_4^2 + (\lambda - l_2)^2 - l_3^2}{2l_4(\lambda - l_2)} \dots \dots \dots$$

$$\cos \theta = \dots \frac{l_4^2 + (\lambda - l_2)^2 - l_3^2}{2l_4(\lambda - l_2)} \dots \dots \dots$$

B.2. Etude cinématique :

B.2.1. Déterminer les torseurs cinématiques qui représentent :

a. le mouvement de (1) par rapport à (0) au point C;

 $\{\vartheta(1/0)\} = \left\{ \begin{array}{c} \dots \dots \vec{0} \dots \dots \\ \dots \dots - \lambda \vec{y}_0 \dots \dots \end{array} \right\}_C$

b. le mouvement de (2) par rapport à (0) au point C;

c. le mouvement de (3) par rapport à (0) au point B;

d. le mouvement de (4) par rapport à (0) au point O;

 $\{\vartheta(4/0)\} = \left\{ \begin{array}{c} \dots - \theta \vec{z}_0 \dots \dots \\ \vec{0} \end{array} \right\}_0$

B.2.2. Exprimer, dans la base B_0 du repère R_0 , le vecteur vitesse du point A appartenant à (4) en mouvement par rapport à (0).

 $\overrightarrow{V}(A \in 4/0) = \overrightarrow{V}(O \in 4/0) + \overrightarrow{\Omega}(4/0) \wedge \overrightarrow{OA} \dots$ $\overrightarrow{V}(A \in 4/0) = \begin{bmatrix} \dots - l_4 \dot{\theta} Cos\theta \dots \dots \\ \dots l_4 \dot{\theta} Sin\theta \dots \dots \\ \dots \dots 0 \dots \dots \dots \dots \end{bmatrix}$

B.2.3. Exprimer, dans la base B_0 du repère R_0 , le vecteur vitesse du point A appartenant à (3) en mouvement par rapport à (0). Les composantes seront exprimées en fonction de λ , α , β et de leurs dérivées.

B.2.4. En se basant sur la composition de mouvement, déduire deux relations scalaires entre $\dot{\lambda}$, $\dot{\alpha}$, $\dot{\beta}$ et $\dot{\theta}$ (on peut vérifier qu'il s'agit de la dérivée temporelle des équations (1) et (2) de la question B.1.1).

...... $\vec{V}(A \in 3/0) = \vec{V}(A \in 4/0)$ $l_{A}\dot{\theta}\cos\theta - l_{2}\dot{\alpha}\sin\alpha - l_{3}\dot{\beta}\cos\beta$ = ... 0 ... $\dots l_2 \dot{\alpha} Cos\alpha - l_3 \dot{\beta} Sin\beta - l_4 \dot{\theta} Sin\theta \dots \dots \dots = \dots \dot{\lambda} \dots$

B.3. Géométrie des masses : Voir figure B.2

B.3.1. Déterminer la position du centre d'inertie G de l'équerre (2).

$$\overrightarrow{CG} = M_{T1}\overrightarrow{CG}_{T1} + M_{T2}\overrightarrow{CG}_{T2} \dots \overrightarrow{\overline{CG}}_{T2} \dots \overrightarrow{\overline{CG}}_{T1} + M_{T2}\overrightarrow{CG}_{T2} \dots \overrightarrow{\overline{CG}}_{T2} \dots \overrightarrow{\overline{CG}}_{T1} + M_{T2}\overrightarrow{\overline{CG}}_{T2} \dots \overrightarrow{\overline{CG}}_{T2} \dots \overrightarrow{\overline{CG}}_{T3} \dots \overrightarrow{\overline{CG}}_{T4} + M_{T2}\overrightarrow{\overline{CG}}_{T2} \dots \overrightarrow{\overline{CG}}_{T4} \dots \overrightarrow{\overline{CG}}_{T5} \dots$$

B.3.2. Déterminer le moment d'inertie de l'équerre (2) par rapport à l'axe (C, \vec{z}_0) .

B.3.3. On considère le système (S) composé de l'équerre (2) et d'une masse ponctuelle m concentrée en un point E. Déterminer les coordonnées de E pour que le centre d'inertie G_S de (S) soit confondu avec le point C: $\overrightarrow{CG}_S = \overrightarrow{0}$.

$$\overrightarrow{CE} = \cdots - \frac{Ml_2}{4m}(\vec{x}_2 + \vec{y}_2) \cdots$$

B.3.4. On pose $\overrightarrow{CE} = X_E \vec{x}_2 + Y_E \vec{y}_2$. Déterminer le moment d'inertie de (S) par rapport à l'axe (C, \vec{z}_0) .

.....
$$I_{C\vec{z}_0}(S) = I_{C\vec{z}_0}(2) + md^2$$
...... $I_{C\vec{z}_0}(S) = I_{C\vec{z}_0}(S) = I_{C$

B.4. Etude Dynamique:

B.4.1. Faire le bilan des actions mécaniques extérieures exercées sur le coulisseau (1). En déduire, dans la base B_0 du repère R_0 , le torseur associé à ces actions au point $C: \{\mathcal{T}(\overline{1} \to 1)\}_C$.

Action du (VL) sur (1):
$$\{T(VL \to 1)\} = \begin{cases} 0 & 0 \\ F & 0 \\ 0 & 0 \end{cases}_D = \begin{cases} 0 & 0 \\ F & 0 \\ 0 & aF \end{cases}_C$$
.....

$$\Rightarrow \text{ Action du (2) sur (1) : } \{ \mathcal{T}(2 \to 1) \} = \begin{cases} X_C | L_C \\ Y_C | M_C \\ Z_C | 0 \end{cases}_C \begin{cases} \{ \mathcal{T}(\bar{1} \to 1) \} = \begin{cases} X_C + X_D | L_C + L_D + \lambda Z_D \\ Y_C + F | M_C + M_D - a Z_D \\ Z_C + Z_D | N_D - \lambda X_D + a F \end{cases}_C$$

B.4.2. Ecrire les équations scalaires qui découlent du PFD appliqué à (1) en mouvement par rapport à R₀ (On rappelle que (1) est de masse négligeable).

$$\begin{cases} X_C + X_D &= 0 \ (1) \\ Y_C + F &= 0 \ (2) \\ Z_C + Z_D &= 0 \ (3) \end{cases} \begin{cases} L_C + L_D + \lambda Z_D &= 0 \ (4) \\ M_C + M_D - \alpha Z_D &= 0 \ (5) \\ N_D - \lambda X_D + \alpha F &= 0 \ (6) \end{cases}$$

B.4.3: Exprimer, dans la base B_0 du repère R_0 , le torseur cinétique de (2) par rapport à (0) au point C.

4.3. Exprimer, dans la base
$$B_0$$
 du repère R_0 , le torseur cinétique de (2) par rapport à (0) au point C.

$$\vec{Q}(2/0) = M\vec{V}(G \in 2/0) = M\left(-\dot{\lambda}\vec{y}_0 + \frac{l_2}{4}\dot{\alpha}(\vec{y}_2 - \vec{x}_2)\right) \dots \left\{ C(2/0) \right\} = \begin{cases} Q_x\vec{x}_0 + Q_y\vec{y}_0 \\ \sigma_z\vec{z}_0 \end{cases}$$

$$\vec{Q}(2/0) = [I_C(2)] \cdot \vec{\Omega}(2/0) + M\vec{C}\vec{G} \wedge \vec{V}(C \in 2/0) \dots \left\{ C(2/0) \right\} = \begin{cases} Q_x\vec{x}_0 + Q_y\vec{y}_0 \\ \sigma_z\vec{z}_0 \end{cases}$$

$$Qx = -M\frac{l_2}{4}\dot{\alpha}(C\alpha + S\alpha), Qy = M\frac{l_2}{4}\dot{\alpha}(C\alpha - S\alpha) - M\dot{\lambda} \text{ et } \sigma_z = I\dot{\alpha} - \frac{Ml_2}{4}\dot{\lambda}(C\alpha - S\alpha) \dots \dots \dots$$

B.4.4. Exprimer, dans la base B_0 du repère R_0 , le torseur dynamique de (2) par rapport à (0) au point C.

$$\vec{K}(2/0) = M\vec{\Gamma}(G \in 2/0) = \frac{d\vec{Q}(2/0)}{dt}\Big|_{R_0} \dots \left\{ \mathcal{D}(2/0) = \frac{d\vec{\sigma}_C(2/0)}{dt}\Big|_{R_0} + M\vec{V}(C/0) \wedge \vec{V}(G/0) = \left(I\ddot{\alpha} - \frac{Ml_2}{4}\ddot{\lambda}(C\alpha - S\alpha)\right)\vec{z}_0 \dots \right\} \left\{ \mathcal{D}(2/0) = \left\{ K_x\vec{x}_0 + K_y\vec{y}_0 \right\}_C + K_x = -M\frac{l_2}{4}(\ddot{\alpha}(C\alpha + S\alpha) + \dot{\alpha}^2(C\alpha - S\alpha)), K_y = M\left[\frac{l_2}{4}(\ddot{\alpha}(C\alpha - S\alpha) - \dot{\alpha}^2(C\alpha + S\alpha) - \ddot{\lambda})\right] \dots \right\}$$

B.4.5. L'action de (3) sur (2) au point B est définie par $\vec{R}(3 \to 2) = X_B \vec{x}_0 + Y_B \vec{y}_0$. Montrer, en se basant sur l'équilibre statique de (3), que $X_B = -Y_B \cdot tan\beta$.

......(3) est en équilibre statique sous l'effet de deux actions appliquées en A et en B; elles sont alors égales, opposées et portées par la droite (A, B)donc $tan\beta = -\frac{x_B}{y_B}$

B.4.6. Faire le bilan des actions mécaniques extérieures exercées sur l'équerre (2). En déduire, dans la base du repère R_0 , le torseur associé à ces actions au point $C: \{\mathcal{T}(\bar{2} \to 2)\}_C$.

$$\begin{split} & \{T(3 \to 2)\} = \begin{cases} X_B & 0 \\ Y_B & 0 \\ 0 & 0 \end{cases} = \begin{cases} X_B & 0 \\ Y_B & 0 \\ 0 & l_2(Y_B Cos\alpha - X_B Sin\alpha) \end{cases}_C \\ & \{T(\vec{g} \to 2)\} = \begin{cases} 0 & 0 \\ 0 & 0 \\ -Mg & 0 \end{cases}_G = \begin{cases} 0 & -Mg \frac{l_2}{4}(C\alpha + S\alpha) \\ 0 & -Mg & \frac{l_2}{4}(C\alpha - S\alpha) \\ 0 & 0 \end{cases}_C \\ & \{T(mot \to 2)\} = \begin{cases} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ -Kg & 0 \end{cases} \dots \\ & \{T(\vec{2} \to 2)\} = \begin{cases} X_B - X_C & -L_C - Mg \frac{l_2}{4}(C\alpha + S\alpha) \\ Y_B - Y_C & Mg \frac{l_2}{4}(C\alpha - S\alpha) - M_C \\ -Z_C - Mg & C_M + l_2(Y_B Cos\alpha - X_B Sin\alpha) \end{cases}_C \end{split}$$

B.4.7. Ecrire les équations scalaires qui découlent du PFD appliqué à (2) en mouvement par rapport à R₀.

$$\begin{cases} \dots \dots X_B - X_C \dots \dots \dots &= K_x (7) \\ \dots \dots Y_B - Y_C \dots \dots \dots &= K_y (8) \\ \dots \dots - Z_C - Mg \dots \dots &= O (9) \end{cases} \begin{cases} \dots - L_C - Mg \frac{l_2}{4} (C\alpha + S\alpha) \dots \dots &= 0 (10) \\ \dots Mg \frac{l_2}{4} (C\alpha - S\alpha) - M_C \dots \dots \dots &= 0 (11) \\ \dots C_m + l_2 (Y_B Cos\alpha - X_B Sin\alpha) \dots &= \delta_z (12) \end{cases}$$

B.4.8. En utilisant les équations établies dans les questions B.4.2 et B.4.7 et la relation donnée dans la question B.4.5, exprimer l'équation du mouvement de l'équerre (2) par rapport à R₀.

....(2)
$$\Rightarrow Y_C = -F \text{ et } (8) \Rightarrow Y_B = K_y - F \text{ et on à } X_B = -Y_B \cdot \tan\beta \dots$$

...(12) $\Rightarrow C_m + l_2 Y_B (\tan\beta \sin\alpha + Cos\alpha) = \delta_z \dots C_m + l_2 (K_y - F) (\tan\beta \sin\alpha + Cos\alpha) = \delta_z$

C.1.2. Modifier, sur la figure C.6 suivante, le Grafcet du point de vue commande G1 (de la figure C. afin d'assurer l'évacuation automatisée des récipients défectueux.

Figure C.6 : Grafcet du point de vue commande G1 modifié permettant l'évacuation automatisée de récipients défectueux.

C.2: Asservissement de position du testeur

C.2.1. Détermination des paramètres du moteur (voir dossier Présentation, données et hypothèses)

C.2.1.1. Ecrire les équations de (1) à (7) du comportement électromécanique du système dans le domaine de Laplace puis Compléter le schéma fonctionnel donné par la figure C.7 :

$$V_{M}(p) = (R + L p)I(p) + E(p)$$
(1)

$$C_M(p) = (f + J p)\Omega_M(p) + C_r(p)$$
 (2)

$$E(p) = K_e \cdot \Omega_{\mathsf{M}}(p) \tag{3}$$

$$C_M(p) = K_i \cdot I(p) \tag{4}$$

$$\Omega(p) = p \,\theta(p) \tag{5}$$

$$\Omega(p) = \rho. \, \Omega_M(p) \tag{6}$$

$$V_M(p) = K_a.U(p) \tag{7}$$

Figure C.7 : Schéma fonctionnel du dispositif de déplacement vertical à base d'un moteur à courant continu.

C.2.1.2. Préciser les expressions du gain statique K_1 et de la constante de temps électrique τ_e de $G_1(p)$ ainsi que les expressions du gain statique K_2 et de la constante de temps mécanique τ_m de $G_2(p)$ (Figure C.7).

$$G_{1}(p) = \frac{I(p)}{V_{M}(p) - E(p)} = \frac{1}{R + Lp} = \frac{K_{1}}{1 + \tau_{e} p};$$

$$G_{2}(p) = \frac{\Omega_{M}(p)}{C_{M}(p) - C_{r}(p)} = \frac{1}{f + Jp} = \frac{K_{2}}{1 + \tau_{m} p};$$

$$K_{1} = \frac{1}{R} , \quad \tau_{e} = \frac{L}{R}$$

$$K_{2} = \frac{1}{f} , \quad \tau_{m} = \frac{J}{f}$$

C.2.1.3. Déterminer la fonction de transfert $G(p) = \frac{\Omega(p)}{U(p)}$ en supposant que $C_r(t)$ est nul.

$$G(p) = \frac{\Omega(p)}{U(p)} = K_a. \rho. \frac{K_i.G_1(p).G_2(p)}{1 + K_i.K_e.G_1(p).G_2(p)}...$$

$$G(p) = \frac{K_1.K_2.K_iK_a.\rho.}{(1 + \tau_e p)(1 + \tau_m p) + K_1.K_2.K_i.K_e}$$

Dans la suite du problème, on néglige τ_e et on suppose que $C_r(t)$ est nul.

C.2.1.5. Exprimer la fonction de transfert approchée de G(p), soit $G_a(p)$ sous la forme $G_a(p) = \frac{K}{1+\tau p}$. En déduire les expressions de K et τ en fonction de K_i , K_a , R, f, J et ρ .

C.2.1.6. La réponse indicielle $\omega(t)$ de $G_a(p)$, pour une entrée u(t)=0.01V, est représentée par la figure C.4. **Déterminer** les valeurs de K et τ . En déduire les paramètres J et f.

$$K = 8,1 \qquad \tau = 4 \text{ ms}$$

$$\dots f = \frac{I}{\tau} - \frac{K_i^2}{R} \qquad J = 1,185. \, 10^{-6} \, \text{K}_g m^2 \qquad f = 8. \, 10^{-6} \, \text{N. m. s/rd}$$

C.2.2. Etude du système en boucle fermée

On considère l'asservissement de position du moteur décrit par le schéma fonctionnel de la figure C.2.

La fonction de transfert approchée du moteur $G_a(p) = \frac{\Omega(p)}{U(p)} = \frac{K}{1+\tau p}$ avec K = 8,1 et $\tau = 0,004$ s.

Le correcteur étant du type proportionnel $C(p) = K_r$ avec $K_r > 0$.

C.2.2.1. Déterminer K_r pour obtenir une marge de phase de 45° .

C.2.2.2. Pour cette valeur de K_r , **Déterminer** la fonction de transfert du système en boucle fermée sous la forme canonique : $H(p) = \frac{\theta(p)}{\theta_{réf}(p)} = \frac{K_0 \, \omega_0^2}{p^2 + 2 \, m \omega_0 \, p + \omega_0^2}$. En déduire les valeurs de K_0 , m et ω_0 .

$$H(p) = \frac{\theta(p)}{\theta_{r\acute{e}f}(p)} = \frac{C(p).G_a(p)}{p + C(p).G_a(p)}...$$

$$K_0 = 1$$
; $m = \frac{1}{2.\tau.\omega_0}$; $\omega_0 = \sqrt{\frac{K_{\gamma}.K}{\tau}}$

....

$$H(p) = \frac{\frac{K_r \cdot K}{\tau}}{p^2 + \frac{1}{\tau}p + \frac{K_r \cdot K}{\tau}}$$

$$K_0 = 1$$
 ; $m = 0.42$; $\omega_0 = 297.3 \, rd/s$

C.2.2.3. Calculer les valeurs du temps de pic, du dépassement en % et de l'erreur statique $\varepsilon(\infty)$ pour une consigne en échelon unitaire.

C.2.2.4. Conclure quant aux performances (stabilité et précision) obtenues par ce correcteur.

- Degré de stabilité suffisant : $m\varphi = \frac{\pi}{4}$
- Précision : 100%.....