Limites, continuité, suites : DS2

Nom)
Prénom	

Exercice 1 : Graphiquement : Limites et continuité (5 points)

Voici la courbe \mathcal{C}_f d'une fonction f définie sur $\mathcal{D}_f =]-\infty; -5[\cup]-5; +\infty[$

1. Graphiquement, déterminer les limites suivantes, et préciser dans chaque colonne «asymptote vericale/horizontale» aini que les équations de ces asymptotes.

$\lim_{x o -\infty} f(x) =$	$\lim_{x o -5^-} f(x) =$	$\lim_{x o -5^+} f(x) =$	$\lim_{x o +\infty} f(x) =$
asymptote d'équation=			

- 2. La fonction f est-elle continue en 0 ? Justifier.
- 3. On définit la fonction g sur $\mathcal{D}_g=\mathcal{D}_f$ par $g(x)=\dfrac{1}{f(x)}$. Donner les limites et valeurs suivantes :

$\lim_{x o -\infty} g(x) =$	$\lim_{x o -5^-} g(x) =$	$\lim_{x o -5^+} g(x) =$	$\lim_{x o +\infty} g(x) =$
$\lim_{x o 0^-}g(x)=$	$\lim_{x o 0^+} g(x) =$	g(0) =	

Tourner s.v.p.

Exercice 2 : Limites (7 points)

A. On note
$$f(x) = \sqrt{\frac{2x-1}{x+3}}$$
.

1. Étudier le signe de
$$\dfrac{2x-1}{x+3}$$
 pour x réel $eq 3$.

- 2. En déduire l'ensemble de définition \mathcal{D}_f de f.
- 3. Déterminer les limites de f en $+\infty$, 0.5^+ et -3^- .

B. On note
$$g(x)=rac{3x^2-x+1}{(2-x)(5x+4)}$$
 . Déterminer la limite de g en $+\infty$ et $-\infty$.

C. On note
$$h(x)=\dfrac{10}{x\sqrt{x^2+1}-x^2}$$
. Déterminer la limite de h en $+\infty$ et $-\infty$.

Exercice 3: Suites (8 points)

- On définit sur $\mathbb R$ la fonction f par f(x)=1,4x(1-x).
- ullet La suite $(u_n)_{n\in\mathbb{N}}$ est définie pour tout $n\in\mathbb{N}$ par $egin{cases} u_{n+1}=f(u_n)\ u_0=0,1 \end{cases}$
 - 1. De quel type est la fonction f (exemple de types possibles : affine, sinuso $\ddot{}$ dale, ...). Est-elle continue ?
 - 2. Résoudre l'équation f(x) = x dans $\mathbb R$ pour obtenir les points fixes r et s de f (on choisira r < s).
 - 3. Démontrer que f est croissante sur $]-\infty;0,5[$.
 - 4. Calculer u_1 et u_2 ; construire les termes de la suite jusqu'à n=4 sur la figure ci-dessous, et conjecturer le sens de variation ainsi que la limite de (u_n) .
 - 5. Démontrer par récurrence, que pour tout entier n, on a $H_n:u_n\leqslant u_{n+1}\leqslant s$
 - 6. En déduire que (u_n) converge vers un réel l.
 - 7. Démontrer que l=s.

Exercice 4: Bonus

Un automobiliste a parcouru la moitié de son trajet à 30km/h. On note, en km/h, v sa vitesse moyenne sur la seconde moitié du trajet et V sa vitesse moyenne sur la totalité du trajet. Que peut-on dire de $\lim_{v \to +\infty} V$? Interpréter.