Neural decoding of spike trains and local field potentials with machine learning in python

Omar Costilla-Reyes, PhD Miller Lab

Picower institute for learning and memory
Brain and Cognitive Sciences
MIT

Let's get started!

- Get Anaconda (30 min install approx.):
- https://www.anaconda.com/distribution/
- Get the LFP and spike data:
- http://bit.ly/spikes-lfp-decoding
- Notebooks on github as well
- If using your own Python distribution or older versions of Anaconda
 - Update scikit-learn to version 0.20.3
 - Update matplotlib to version 3.0.3

```
pip install scikit-learn -upgrade
pip install matplotlib --upgrade
```

Outline

- Intro and background
- Hands-on python tutorial
 - LFPs
 - Spikes
- If we have time:
 - Play with the notebooks: test suggested changes from you: changes in model, data, etc. it's ok to break the code ☺
- Feel free to ask questions

Spikes and local field potentials

- Spike: single neuron recording
- LFP: summed electric current flowing from multiple nearby neurons

Spike rate

Approximate firing rate using a Gaussian window of 50 ms

Spike rate

Approximate firing rate using a Gaussian window of 50 ms

Dataset's spike rate example

Dataset's LFP rate example

Neural encoding and decoding

Neural encoding and decoding

(Dataset stimulus Shown to a monkey)

Decoding analysis

Responses of two neurons to two stimuli.

Each **trial** is represented as a point in a 2-dimensional space.

Quiroga, Rodrigo Quian, and Stefano Panzeri. "Extracting information from neuronal populations: information theory and decoding approaches." Nature Reviews Neuroscience 10.3 (2009): 173.

Why neural decoding now?

Single neuron vs multiple neuron analysis (neuropixels)

741 neurons were recorded simultaneously

Decoding analysis pipeline

Preprocessing Model Model Data collection selection validation Dimensionality and reduction • LFP • Linear models evaluation • Average • Non-linear Spikes • Down-sampling models • Cross-validation • Ensemble models

Decoding analysis pipeline

Motion/color categorization dataset

• monkeys categorized motion or color of centrally presented stimuli.

Experiment rules

Modulation of the response

Two different cue shapes cued each task.

Stimuli systematically sampled motion direction (upward to downward) and color (green to red).

Experimental progression in spike trials (10 samples)

Recorded brain regions

Recorded brain regions

Tutorial objectives

• Spikes and LFPs decoding with Jupyter notebooks

- Decode color and motion in:
 - V4 and PFC
 - Single experimental session, small dataset (out of 44)
- Perform cross-validation

- Evaluate the accuracy of the model with f-score:
 - Considers both the precision and recall
 - https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

Why python?

(and many, many more)

xarray

NumPy

(and many, many more)

xarray

Free software machine learning library for Python

Machine learning model: linear

- sklearn.svm.LinearSVC
- Example: 2D data. Constructs a hyper-plane, which can be used for classification.
- The hyper-plane has the largest distance to the nearest training data points of any class (so-called functional margin)
- The larger the margin the lower the generalization error of the classifier.

Machine learning model: Ensemble

- sklearn.ensemble.ExtraTreesClassifier
 - Fast computational version of the random forest
- combines the predictions of several base estimators
- Prediction of the ensemble is given as the averaged prediction of the individual classifiers (decision trees)
- Improve generalizability / robustness over a single estimator.

cross_validate function

- sklearn.model_selection.cross_validate(estimator, X_window, y_motion_color_area, scoring=scoring, cv=cv, return_train_score=False, n_jobs=-1)
- Evaluate metric(s) by cross-validation and also record fit/score times.
- **X**: data
- y: labels
- **scoring:** *make_scorer a* callable object for f-score scoring in motion (label 0) and color (label 1)
- *cv*: cross-validation splitting strategy
- n_jobs: The number of CPUs to use to do the computation 1 means using all processors.

Demo

- Unzip LFP files and open:
 - BCS_decoding_tutorial-v5-lfp.ipynb
- Unzip Spikes files and open:
 - BCS_decoding_tutorial-v5-spikes.ipynb

Further resources

- MATLAB decoding toolbox
 - www.readout.info
- CBMM Tutorial: Using Decoding to Understand Neural Algorithms (MATLAB)
 - https://cbmm.mit.edu/learning-hub/tutorials/computational-tutorial/decoding-analyses-understand-neural-content-and-coding
- Data Analysis Baseline Library
- (Python higher level than scikit-learn)
 - https://amueller.github.io/dabl/index.html

