第五章 模型预测控制

1. 请举出一个采用模型预测控制的生活或工程应用实例。

模型预测控制在智能温室控制中得到了广泛的应用。模型预测控制可以根据温室内的温度、湿度、二氧化碳浓度等环境参数,以及作物长势等信息,建立温室环境的数学模型。然后,利用模型来预测未来一段时间内的温室环境变化,并计算出最优的控制策略,以实现温室环境的稳定和作物的最佳生长条件。

例如,在智能温室中,模型预测控制可以控制通风系统、加热系统和灌溉系统等设备,以调节温室内的温度、湿度和二氧化碳浓度。同时也可以根据作物的生长需求和温室内的环境参数,预测未来一段时间内的温室环境变化,并计算出最优的控制策略。例如,当温度过高时,模型预测控制会打开通风系统,并关闭加热系统,以降低温室内的温度;当湿度过低时,则会打开灌溉系统,以提高温室内的湿度。

2. 设某控制系统的实际运动方程为

$$y(k + 2) + y(k + 1) + 0.25y(k) = u(k),$$
 $y(0) = y(1) = 0.$

请采用动态矩阵法设计轨迹跟踪控制律,其中跟踪轨迹为 $w(k) \equiv 1$ 。

(1) 采用带有辨识误差的预测模型

$$y(k + 2) + 1.1y(k + 1) + 0.28y(k) = u(k)$$

计算阶跃响应序列s(k),请选择适当的序列长度N并说明理由。

得到的阶跃响应序列s(k)如下:

0.0000
0.0000
1.0000
-0.1000
0.8300
0.1150
0.6411
0.2626
0.5316
0.3417
0.4753

0.	3815
0.	4473
0.	4012
0.	4335
0.	4335
0.	4335
0.	4335
0.	4335
0.	4335
0.	4335
0.	4335
0.	4335
0.	4335
0.	4335
0.	4335
0.	4335
0.	4335
0.	4335
0.	4335

选取适当的序列长度N=15,据观测,当选择N=15时,采样能够基本覆盖整个暂态过程,使得预测较为准确。

(2) 选择适当的预测窗口宽度P和控制窗口L并说明理由;选择权重系数Q,R并利用 MATLAB 计算给出反馈增益d,绘制仿真响应曲线并说明控制效果(仿真程序可自行编写,也可运行附件提供的代码)。

选择预测窗口宽度P=20,控制窗口L=5,因为预测窗口需要大致 $20^{\sim}30$ 个采样,同时控制窗口应为预测窗口的 $20^{\sim}30\%$,至少有 $2^{\sim}3$ 步。选择权重系数为Q=eye(P), R=0.2*eye(L),得到最终反馈增益**d**为:

0.0000	
0.0000	0.0172
0.4037	0.0102
-0.0513	0.0152
0. 1261	0.0116
-0.0162	0.0233
0.0137	0.0149
0.0207	0.0160
0.0046	0.0135
0.0203	0.0135
0.0076	

最终得到的仿真响应曲线为:

可以看出,对于输出的控制效果较好,虽然中间由于刚结束暂态过程导致产生了一些浮动,但在稳态时与给定跟随曲线很接近。同时,由于给定预测模型存在辨识误差,在预测相应时产生了一些静差,但最终预测效果很好。