

PRISM WORLD

Std.: 9 (Marathi) <u>विज्ञान</u>

Chapter: 5

Q.1 गटातील न जुळणारा शब्द/ सकारण लिहा

कॅलिशअम ऑकसाइड, मॅग्रोशिअम ऑकसाइड, झिंक ऑकसाइड, सोडिअम ऑकसाइड

Ans झिंक ऑकसाइड कारण झिंक ऑक्साइड उभयधर्मी ऑक्साइड आहे बाकीची आम्लारीधर्मी ऑक्साइड आहेत.

2 क्लोराईड, नायट्रेट, हायड्राइड, अमोनिअम

Ans अमोनिअम कारण आमोनिअम हे आम्लरिधर्मी मूलक आहे तर बाकीची आम्लधर्मी मूलके आहेत.

3 अँसेटीक अँसिड, कार्बोनिक अँसिड, हायड्रोक्लोरिक अँसिड, नायट्रिक अँसिड

Ans कार्बोनिक आम्ल कारण या आम्लाच्या एका रेणूपासून दोन H⁺ मिळू शकतात. बाकीच्या आम्लांच्या एका रेणूपासून एक H⁺ मिळतो.

हायड्रोजन क्लोराइड, सोडीअम हायड्रॉक्साइड, कॅल्शिअम ऑक्साइड, अमोनिआ

Ans हायड्रोजन क्लोराइड कारण हायड्रोजन क्लोराइड आम्लधर्मी आहे. बाकी सर्व आम्लरिधर्मी आहेत

5 अमोनिअम क्लोराइड, पोटॅशिअम नायट्रेट, सोडीअम <mark>सल्फेट,</mark> सोडीअम क्लोराइड

Ans अमोनिअम क्लोराइड कारण अमोनिअम क्लोराइड आम्लधर्मी क्षार आहे तर बाकीचे उदासीन क्षार आहेत.

6 सोडिअम कलोराईड, पोटॉशिअम हायड्रोक्साइड, अँसेटीक अँसिड, सोडिअम अँसिटेट

Ans सोडिअम अँसिटेट कारण सोडिअम अँसिटेट सोडून बाकीचे सर्व विद्युत अपघटनी पदार्थ आहेत.

7 सोडिअम नायट्रेट, सोडिअम कार्बोनेट, सोडिअम सल्फेट, सोडिअ क्लोराइड

Ans सोडिअम कार्बोनेट कारण हे आम्लरिधर्मी क्षार आहे तर बाकीचे उदासीन क्षार आहेत.

स्फटिकरूप मोरचूद, स्फटिकरूप मीठ, स्फटिकरूप फेरससल्फेट स्फटिकरूप सोडिअम कार्बोनेट

Ans स्फटिकरूप मीठ कारण याच्या स्फटिकी रचनेत पाण्याच्या रेणूंचा समावेश नसतो. बाकीच्या स्फटिकी मांडणीत पाण्याच्या रेणूंचा सुद्धा समावेश झालेला असतो.

Q.2 उदाहरणांसह स्पष्टीकरण लिहिणे.

उदासिनीकरण म्हणजे काय? दैनंदिन जीवनातील उदासिनीकरणाची दोन उदाहरणे लिहा.

Ans आम्लाची आम्लारीशी अभिक्रिया केली असता, क्षार व पाणी तयार होते. या क्रियेला उदासिनीकरण म्हणतात.

g

आम्ल + आम्लारी \rightarrow क्षार + पाणी $HCl_{(aq)}$ + $NaOH_{(aq)}$ \rightarrow NaCl + H_2O हायड्रोक्लोरिक सोडिअम सोडिअम आम्ल हायड्रॉक्साइड क्लोराइड (क्षार)

आम्लातून H⁺ आयन तयार होतात आणि आम्लारीतून OH⁻ आयन तयार होतात.

 $H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_{2}O_{(1)}$

आम्लाँतील H⁺ आयन व अल्कलीतील OH⁻ आयन यांची परस्परांशी अभिक्रिया होऊन आयनीभवन न झालेले पाणी तयार होते. यालाच उदासिनीकरण म्हणतात.

दैनंदिन जीवनातील उदाहरणे:

- ा. जठरात तयार होणारे हायड्रोक्लोरिक आम्ल अन्नाचे पचन करण्यास मदत करते. मात्र हे आम्लाचे प्रमाण जास्त झाल्यास पोट दुखते, मळमळते यामुळे अपचन होते. हे टाळण्यासाठी आम्ल प्रातिबंधकाचा वापर करतात. आम्लप्रातिबंधकामुळे जठरात तयार झालेल्या अधिक आम्लाचे उदासिनीकरण होते.
- ii.सकाळी दात घासण्यापूर्वी लाळेचे pH 7 पेक्षा कमी असते, म्हणजे आम्लधर्मी असते. म्हणून टूथपेस्ट ही आम्लारी असून दात स्वच्छ होऊन तोंडातल्या लाळेचे असलेल्या अधिक आम्लाचे उदासिनीकरण होते. यामुळे दातांची झीज थांबते.

Q.3 फरक स्पष्ट करा

1 ऋणाग्र व धनाग्र (कॅथोड व ॲंनोड)

Ans

3		ऋणाग्र (कॅथोड)	धनाग्र (अँनोड)
	i.	बॅटरीच्या ऋण टोकाला वाहक तारेने जोडलेले विदुयत अग्र म्हणजे ऋणाग्र होय.	बॅटरीच्या धन टोकाला वाहक तारेने जोडलेले विद्युत अग्र म्हणजे धनाग्र होय.
	ii.	द्रव/द्रावणातील धन आयन ऋणाग्राकडे आकर्षले जातात.	द्रव/ द्रावणातील ऋण आयन धनाग्राकडे आकर्षले जातात.

2 आम्ल व आम्लारी

Ans

	आम्ल	DIA	आम्लारी
i.	आम्ल जलीय द्रावणात H	+ मुक्त होतात	आम्लारी जलीय द्रावणात OH ⁻ मुक्त होतात
ii.	आम्लांचा सामू 0 ते 7 च्या	दरम्यान असतो	आम्लारींचा स्सामू ७ ते १४ च्या दरम्यान असतो.

3 कॅटायन व ॲनायन

Ans

	कॅटायन	अँनायन
i.	द्रव/ द्रावणातील धन प्रभारीत आयनांना कॅटायन म्हणतात.	द्रव/द्रावणातील ऋण प्रभारीत आयनांना ॲंनायन म्हणतात.
ii.	कॅटायन ऋण अग्राकडे (कॅथोडकडे) आकर्षले जातात.	अँनायन धन अग्राकडे (अँनोडकडे) आकर्षले जातात.

Q.4 खालील प्रश्नाची उत्तरे लिहा

पाण्याचे विद्युत अपघटन म्हणजे काय ते सांगून विद्युतअग्र आभिक्रिया लिहा.

Ans शुद्ध पाण्यातून विदयुत धारा वहात नाही म्हणून आम्लीकृत पाण्याचे किंवा क्षारयुक्त विरल द्रावणात विद्युत धारा जाऊ दिली असता. धनाग्रावर H2 व ऋणाग्रावर O2 वायू गोळा होतो. विद्युत प्रवाहामुळे होणाऱ्या पाण्याच्या अपघटनाला पाण्याचे विद्युत अपघटन असे म्हणतात.

ऋणाग अभिक्रिया : $2H_2O+2e \to H_{2(g)}+20H^-_{(aq)}$ धनाग्र अभिक्रिया : $2H_2O \to O_{2(g)}+4H^++4e^-$ मिळणाऱ्या H_2 व O_2 चे पमान 2:1 असते

Q.5 शास्त्रीय कारणे लिहा

1 हायड्रोनिएम आयन नेहमी H₃O⁺ च्या स्वरुपात असतात.

Ans शुद्ध पाण्याचे सुद्धा थोड्या प्रमाणात विचरण होऊन H⁺ व OH समप्रमाणत तयार होतात. पाण्याच्या विशिष्ट गुणधर्मामुळे धनप्रभारीत H⁺ व उदासिन H₂0 याच्या संयोगाने H₃0⁺ हायड्रोनिअम आयन तयार होतो.

2 तांब्याच्या किंवा पितळेच्या भांड्यांत ताक ठेवले तर ते कळकते.

Ans तांबे हा धातू आहे तर पितळ हे तांबे व जास्त या धांतूचे संमिश्र आहे. ताकामध्ये लॅक्टीक आम्ल असते. धातूबरोबर आम्लाची

Q.6 खालील कृतींसाठी रासायनिक समीकरणे लिहा

1 खालील संयुगे पाण्यात विरघळल्यास त्यांचे विचरण कसे होते ते रासायनिक समीकरणाने दाखवा व विचरणाचे प्रमाण कमी की जास्त ते लिहा.

अमोनिआ

2 खालील संयुगे पाण्यात विराघळल्यास त्यांचे विचरण कसे होते ते रासायनिक समीकरणाने दाखवा व विचरणाचे प्रमाण कमी की जास्त ते लिहा.

पोटॅशिअम हायड्रॉक्साइड

3 खालील संयुगे पाण्यात विराघळल्यास त्यांचे विचरण कसे होते ते रासायनिक समीकरणाने दाखवा व विचरणाचे प्रमाण कमी की जास्त ते लिहा.

अँसेटिक आम्ल

4 खालील संयुगे पाण्यात विराघळल्यास त्यांचे विचरण कसे होते ते रासायनिक समीकरणाने दाखवा व विचरणाचे प्रमाण कमी की जास्त ते लिहा. कॉपर सल्फेट

Ans
$$CuSO_4(s)$$
 $\frac{पाणी}{a^{\frac{1}{2}} = 2V} Cu^{+2} + SO_4^{-2}$

विचारणाचे प्रमाण कमी

5 खालील संयुगे पाण्यात विराघळल्यास त्यांचे विचरण क<mark>से होते ते रासायनिक समीकरणाने दाखवा व विचरणाचे प्रमाण कमी की जास्त ते लिहा.

Colours of your Dreams
हायड़ोक्लोरिक आम्ल</mark>

Ans
$$HCl_{(g)} \xrightarrow{q_{I} \cap I} H+_{(aq)} + Cl_{(aq)}$$

विचारणाचे प्रमाण जास्त

खालील संयुगे पाण्यात विराघळल्यास त्यांचे विचरण कसे होते ते रासायनिक समीकरणाने दाखवा व विचरणाचे प्रमाण कमी ते जास्त ते लिहा. सोडीअम क्लोराइड

Ans NaCl_(s) पाणी विचरण Na⁺_(az) + Cl⁻_(aq) विचारणाचे प्रमाण जास्त

खालील संयुगे पाण्यात विराघळल्यास त्यांचे विचरण कसे होते ते रासायनिक समीकरणाने दाखवा व विचरणाचे प्रमाण कमी की जास्त ते लिहा.

मॅग्नेशिअम क्लोराइड

Q.7 जास्तीचे प्रश्न (Not to be Use)

1 पुढील कृती केल्यावर काय बदल दिसतील ते लिहून त्यामागील कारण स्पष्ट करा. चुनखडीवर विरल HCI टाकले.

Ans चुनरवडी म्हणजेच CaCO3 वर विरल HCI ची अभिक्रिया झाली असता कॅलशिअम क्लोराइड, पाणी व कार्बनडायॉक्साइड तयार होते

पुढील कृती केल्यावर काय बदल दिसतील ते लिहून त्यामागील कारण स्पष्ट करा. 2 ml. विरल HCI लिटमस कागदाच्या तुकडा टाकला. त्यानंतर 2 ml. संहत NaOH मिळवून हलवले.

Ans 2ml विरल HCl मध्ये लिटमस लाल होईल

कारण लिटमस आम्लामध्ये लाल रंग दर्शवितो त्यानंतर त्यात 2ml. संहत NaOH टाकल्यास लिटमस लाल झालेला लिटमस निळा होईल कारण NaOH मुळे HCl चे उदासीनिकरण होईल परंतु NaOH संहत असल्यामुळे OH संख्या (प्रमाण) जास्त आहे त्यामुळे आताचे मिश्रण आम्लारीधर्मी असेल.

3 पुढील कृती केल्यावर काय बदल दिसतील ते लिहून त्यामागील कारण स्पष्ट करा. परिक्षानळीत मोरचुदाचे रवडे (स्फटिक) तापवले व थंड झाल्यावर त्यात पाणी मिळवले.

Ans मोरचुदाचे खडे तापवले असता त्यातील स्फटिकजल निघून जाते त्यामुळे निळे स्फटिक (मोरचुद) रंगहीन होते. त्यात पाणी मिसळले असता पुन्हा त्याला निळा रंग प्राप्त होतो.

पुढील कृती केल्यावर काय बदल दिसतील ते लिहून त्यामागील कारण स्पष्ट करा.
 सोडिअम हायड्रोक्साइड 10 मिलि द्रावणात फिनॉल फ्थॅलीन दर्शकाचे थेंब टाकले

Ans द्रावणाला गुलाबी रंग प्राप्त होईल कारण फिनॉलफ्थॅलीनला आम्लरिधर्मी माध्यमात गुलाबी रंग प्राप्त होतो व सोडिअम हायड्रोक्साइड आम्लरिधर्मी आहे.

5 पुढील कृती केल्यावर काय बदल दिसतील ते लिहून त्यामागील कारण स्पष्ट करा.
विरल HCI मध्ये मॅग्रोशिअम ऑक्साइड मिळवले तसेच विरल NaOH मध्ये मॅग्ग्रोशिअम ऑक्साइड मिळवले.

Ans मॅग्रोशिअम ऑक्साइडची HCI बरोबर क्रिया होऊन मॅग्रोशिअम क्लोराइड व पाणी तयार होते. कारण मॅग्रोशिअम ऑक्साइड आम्लारिधर्मी आहेत. परंतु मॅग्रोशिअम ऑक्साइडची NaOH बरोबर क्रिया होत नाही.

6 पुढील कृती केल्यावर काय बदल दिसतील ते लिहून त्यामागील कारण स्पष्ट करा.
विरल HCI मध्ये झिंक ऑक्साइड मिळवले तसेच विरल NaOH मध्ये झिंक ऑक्साइड मिळवले.

Ans झिंक ऑक्साइडची विरल HCI बोरबार अभिक्रिया होऊन झिंक क्लोराइड व पानी मिळते तसेच झिंक ऑक्साइडची विरल NaOH बरोबर क्रिया होऊन सोडिअम झिंकेट व पाणी मिळते. कारण झिंकऑक्साइड उभयधर्मी आहे.

7 पुढील कृती केल्यावर काय बदल दिसतील ते लिहून त्यामागील कारण स्पष्ट करा. कॉपार सल्फेटच्या 50 मिलि द्रावणाट 50 मिलि पाणी मिळवले.

Ans कॉपार सल्फेटच्या द्रावनाची संहाती कमी होईल कारण cu⁺⁺ व so_u आयनांची संख्या तेवढीच रहाते व पाण्याच्या रेणूंची संख्या वाढते. त्यामुळे द्रावण विरल होईल व द्रावणाचा रंग मूळ रंगापेक्षा फिकट होईल.

8 पुढील कृती केल्यावर काय बदल दिसतील ते लिहून त्यामागील कारण स्पष्ट करा. विदयुत अपघटनी घटात विरल H_2SO_4 घेऊन त्यातून विद्यत प्रवाह जाऊ दिला.

Ans विद्यूत अपघटनी घटातील विरल सल्फुरिक आम्लातुन विद्युतधारा जाऊ दिली असता पाण्याचे विद्युत अपघटन होते व ऋणाग्रावर H2 वायू धनाग्रावर O2 वायू 2:1 प्रमाणात मिळतात. कारण पाण्यात (H2O) H चे O शी प्रमाण 2:1 आहे

Q.8 उत्तरे स्पष्टीकरणासह लिहिणे ..

1 शुद्ध पाणी व पावसाचे पाणी यांच्या सामूमध्ये काय फरक असेल? असेल तर का? स्पष्ट करा.

Ans शुद्ध पाणी रंगहीन असते. त्यात वैश्विक दर्शकाचे काही थेंब टाकले असता, पाणी हिरवट रंगाचे होते. म्हणून शुद्ध पाण्याचा pH हा 7 आहे. शुद्ध पाणी उदासीन असते. पावसाचे पाणी रंगहीन असते. त्यात वैश्विक दर्शकाचे काही थेंब टाकले असता, पाणी हिरवट पिवळ्या रंगाचे होते. म्हणजेच पावसाचे पाणी आम्लधर्मी आहे व त्याच pH 7 पेक्षा थोडा कमी असतो. पावसाच्या पाण्यामध्ये कार्बन व नायटोजनची ऑक्साइडस थोड्याफार प्रमाणात विरघळल्याने पावसाचे पाणी आम्लधर्मी बनते.

2 द्रावणाचा साम् मोजण्यासाठी कोणत्या पद्धती वापरतात.

Ans द्रावणाचा सामू मोजण्यासाठी खालील पद्धती वापरतात.

- सोरेनसनची सामू मापन सामू श्रेणी या मापनश्रेणी नुसार 1 ते 7 पेक्षा कमी सामू म्हणजे आम्लधर्मी 7 सामू म्हणजे उदासीन तर 7 पेक्षा जास्त 14 पर्यंत सामू म्हणजे आम्लारीधर्मी.
- ii. वैश्विक द्रावकच्या साहाय्याने वेगवेगळ्या सामूला वैश्विक दर्शक वेगवेगळे रंग दर्शवते.
 उदा. सामू 7 हिरवा रंग उदासीन,1 सामू लाल तर 6 सामू पिवळा (आम्लधर्मी), सामू 8 निळसर रंग, सामू 14 जांभळा रंग धर्मी, म्हणजेच आम्लारीधर्मी.
- iii.अचूक सामू मोजण्यासाठी सामू मापक हे विद्युत साधन वापरतात.

Q.9 रासायनिक अभिक्रिया समीकरणांसह स्पष्ट करणे.

f 1 विरल $f H_2SO_4$ मध्ये जस्ताचे चूर्ण मिळवले.

Ans $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$

सल्फूरिक झिंक हायड्रोजन जस्त आम्ल सल्फेट वायू

2 खाण्याच्या सोड्यावर विरल HCI ओतले.

Ans $NaHCO_3 + HCI \rightarrow NaCI + H_2O + CO_2$ सोडीअमबाय हायड्रोक्लोरिक सोडीअम पाणी कार्बन कार्बोनेट आम्ल क्लोराइड (खाण्याचे सोडा)

3 KOH च्या द्रावणातून कार्बनडायक्साइड वायु जाऊ दिला.

Ans 2.KOH + $CO_2 \rightarrow K_2CO_3 H_2O$ पोटॅशिअम कार्बन पोटॅशिअम पाणी हायड्रॉक्साइड डायऑक्साइड कार्बोनेट

4 कॅलशिअम ऑकसाइड मध्ये नायटिक ॲसीड मिळवले.

Ans CaO + 2HNO₃ →Ca(NO₃)₂ +H₂O कॅल्शिअम नायट्रिक कॅल्शिअम ऑक्साइड आम्ल नायट्रेट

5 HCI च्या द्रावणात NaOH चे द्रावण मिळवले.

Q.10 उत्तरे स्पष्टीकरणासह लिहिणे ..

इलेक्ट्रोन संरूपण आकृती काढून स्पष्ट करा
 मॅग्रोशिअ व क्लोरीन पासून मॅग्रोशिअम क्लोराइडची निर्मिती

Ans मॅग्रोशिअम Mg e संरूपण (2,8,2) क्लोरीन CI e संरूपन (2,8,7) Mg, 2e देईल व हे 2ए CI चे 2 अणू घेतील व मॅग्रोशिअ<mark>म क्लो</mark>राइड (MgCI2) तयार होईल

;

Q.11 स्पष्टीकरणासहित उत्तरे लिहिणे.

 इलेक्ट्रोन संरूपण आकृती काढून स्पष्ट करा सोडीअम व क्लोरीन पासून सोडीअम क्लोराईडची निर्मिती.

सोडिअम Na चे Q संरूपन (2,8,1) क्लोरीन CI चे e संरूपन (2,8,7)

सोडिअम le देईल व Cl तो e घेईल व दोघांमध्ये आयनिक बंध तयार होऊन सोडिअम क्लोराइड तयार होईल.

Q.12 पुढील प्रश्नांची उत्तरे लिहा.

आम्लारी धर्मता या गुणधर्मानुसार आम्लांचे वर्गीकरण करा व प्रत्येकी एक उदाहरण लिहा.

Ans आम्लाच्या एका रेणूपासून विचारणाने जितके H⁺ मिळू शकतात ती संख्या म्हणजे त्या आम्लाची आम्लरिधर्माता होय उदा. HNO3, HCI पासून 1 H⁺ आयन मिळतो.

∴ HC। यांची आम्लरिधर्माता 1 आहे.

H₂SO₄ पासून 2 H⁺ आयन मिळतो.

∴ H₂SO₄ आमलारिधर्मता 2 आहे.

H₃PO₄ पासून 3 H⁺ आयन मिळतात

- ∴ H₃PO₄ ची आम्लिरधर्माता 3 आहे.
- 2 पुढील पदार्थांच्या जलीय द्रावणाचे वर्गीकरण सामू-प्रमाणे ७, ७ पेक्षा जास्त व ७ पेक्षा कमी या गटांत कराः मीठ, सोडिअम अँसिटेट, हायड्रोजन क्लोराइड, कार्बन डायऑक्साइड, पोटॅशिअम ब्रोमाइड, कॅल्शिअम हायड्रॉक्साइड, अमोनिअम क्लोराइड, व्हीनेगार, सोडिअम कार्बोनेट, अमोनिआ, सल्फर डायऑक्साइड.

Ans सामू पदार्थांचे द्रावण

7 मीठ 7 पेक्षा जास्त सोडिअम ॲसिटेट, पोटॅशिअम ब्रोमाइड, कॅल्शिअम हायड्ॉक्साइड, सोडिअम कार्बोनेट, अमोनिआ.

- 3 खालिल ऑक्साइडचे तीन गटांत वर्गीकरण करूण त्यांना नावे दर्या.
 - i. CaO
 - ii. MgO
 - iii. CO₂
 - iv. SO₃
 - v. Na₂O
 - vi. ZnO
 - vii. Al₂O₃
 - viii. Fe₂O₃

Ans i. CaO - कॅलशिअम ऑक्साइड. आम्लारिधर्मी ऑक्साइड

- ii. MgO मॅग्रोशिअम ऑक्साइड. आम्लारिधर्मी ऑक्साइड
- iii. CO2 कार्बनडायॉक्साइड. आम्लधर्मी ऑक्साइड
- iv. SO₂ सल्फडायॉक्साइड. आम्लधर्मी ऑक्साइड
- v. Na₂O सोडिअम ऑक्साइड. Na₂O आम्लारिधर्मी ऑक्साइड सोडिअम ऑक्साइड. आम्लारिधर्मी ऑक्साइड
- vi. ZnO झिंक ऑक्साइड . उभयधर्मी ऑक्साइड
- vii. Al₂O₃ ॲल्युमिनीअम ऑक्साइड. उभयधर्मी ऑक्साइड
- viii. Fe₂O₃ आयर्न (II) ऑक्साइड . आम्लधर्मी ऑक्साइड

Q.13 गणितीय उदाहरणे सोडवणे.

1 पुढील द्रावणांची संहती ग्रॅम/लीटर व मोल/लीटर या एककांमध्ये व्यक्त करा. 100 मिलि द्रावणात 3 ग्रा CH3 COOH

Ans CH₃ COOH च्या रेणुभर= 1 (C) + 3 (H) + 1 (C) + 2 (O)+ 1 H = 12+3×1+12+2×16+1

Colours of your Dreams

- ∴ 60 ग्रा. CH₃ COOH = 1mole
 100 मिलि द्रावणात 3 ग्रॅम . CH₃ COOH
- ∴ 1000 मिलि द्रावणात 30 ग्रा. CH₃ COOH = 0.5 mole

ग्राम/लीटर = 30 g/L

mole/ लीटर = 0.5 M

2 पुढील द्रावणांची संहती ग्रॅम/लीटर व मोल/लीटर या एककांमध्ये व्यक्त करा. 200 मिलि द्रावणात 4.9 ग्रा. H₂SO₄

Ans
$$H_2SO_4 = 2(H) + 1(S) + 4(O)$$

$$= 2 \times 1 + 32 + 4 \times 16$$

= 98

∴ 98 ग्राम H₂SO₄ = 1 mole

100 मिलि द्रावणात 4.9 ग्रा H₂SO₄
 ∴ 1000 मिलि द्रावणात 49 ग्रा H₂SO₄

49 ग्रा H₂SO₄ = 0.5 मोल

ग्रा/लीटर = 49 g/ लीटर

ग्रा/लीटर = 05 m

पुढील द्रावणांची संहती ग्रॅम/लीटर व मोल/लीटर या एककांमध्ये व्यक्त करा.
 100 मिलि द्रावणात 7.3 ग्रॅम HCI

Ans HCI चा रेणुभार = H + CI

= 36.5

∴ 36.5 ग्रॅम = 1 mole

100 मिलि द्रावणात 73g HCI

- ∴ 1000 मिलि 73g
- .. HCl 73 g = 2 mole

∴ HCI ग्रॅम/लीटर = 73g/L mol/लीटर = 2M

4 पुढील द्रावणांची संहती ग्रॅम/लीटर व मोल/लीटर या एककांमध्ये व्यक्त करा. 50 मिलि द्रावणात २ ग्रॅम NaoH

Ans ∴ 1000 मिलि द्रावणात 40 ग्रॅम NaOH NaoH च रेणुभर = 1(Na) + 1 (O) + 1 (H) = 23 + 16 +1 = 40

∴ 40 ग्रॅम NaOH = 1mole

∴ मोल/लीटर = 1 M ग्राम / लिटर = 40g / लिटर

