Билет 22. Логарифмический потенциал двойного слоя. Существование логарифмического потенциала двойного слоя на границе области. Пример Адамара.

1 Логарифмический потенциал двойного слоя

Основная функция Грина в ограниченной области $D \subset \mathbb{R}^2$ с достаточно гладкой границей S дает интегральное представление функции $u \in C^1(\overline{D}) \cap C^2(D)$ (3.33):

$$u(M) = \frac{1}{2\pi} \oint_{S} \left(ln \frac{1}{R_{PM}} \frac{\partial u(P)}{\partial n_{p}} - u(P) \frac{\partial}{\partial n_{p}} \left(ln \frac{1}{R_{PM}} \right) \right) dl_{p} - \frac{1}{2\pi} \iint_{D} \Delta u(P) ln \frac{1}{R_{PM}} dx_{p} dy_{p}$$
(3.33)

где параметрами являются координаты точки наблюдения $M \in D$, R_{PM} - расстояние между точками P и M. Формула (3.33) состоит из интегралов трех типов:

$$\oint_{S} \mu(P) ln \frac{1}{R_{PM}} \, dl_{p} \tag{3.34}$$

$$\oint_{S} \nu(P) \frac{\partial}{\partial n_{p}} \left(ln \frac{1}{R_{PM}} \right) dl_{p} \tag{3.35}$$

$$\iint\limits_{P} \rho(P) ln \frac{1}{R_{PM}} dx_p dy_p \tag{3.36}$$

Где (3.34) - логарифмический потенциал простого слоя.

(3.35) - логарифмический потенциал двойного слоя (который нас и интересует).

(3.36) - логарифмический потенциал.

Эти интегралы нам интересны, т.к. решением задачи Дирихле (3.37) является (3.35),плотность ν которого удовлетворяет интегральному уравнению Фредгольма второго рода.

$$\begin{cases} \Delta u(M) = 0, M \in D, \\ u|_{M \in S} = f(M); f \in C(S) \end{cases}$$

$$(3.37)$$

Рассмотрим подробнее формулу логарифмический потенциал двойного слоя:

$$w(M) = -\int_{S} \nu(P) \frac{\partial}{\partial n_{p}} \left(ln \frac{1}{R_{PM}} \right) dl_{p}$$
(3.35)

где:

 R_{PM} - расстояние от точки M до точки P,

производная берется по координатам точки P, в направлении оси n_p (нормаль к кривой S).

Заметим, что:

$$-\frac{\partial}{\partial n_p}\left(ln\frac{1}{R_{PM}}\right) \\ = \frac{1}{R_{PM}}*\frac{\partial}{\partial n_p}\left(R_{PM}\right) \\ = \frac{1}{R_{PM}}*\left(\overrightarrow{n_p},grad(R_{PM})\right) \\ = \frac{cos\phi}{R_{PM}}$$

откуда получаем следующее представление:

$$w(M) = \int_{S} \nu(P) \frac{\cos\phi}{R_{PM}} \, dl_p$$

где угол ϕ - угол между $\overrightarrow{n_p}$ и вектором \overrightarrow{MP} .

Теорема

Если граница S обладает гладкостью второго порядка в окрестности точки M, а ν ограничена и интегрируема, то логарифмический потенциал двойного слоя \exists в случае $M \in S$.

Док-во:

Фиксируем точку $M \in S$ и рассмотрим достаточно малую окрестность этой точки. Проведём через неё оси координат так, чтобы ось х была касательной к кривой, а ось у - нормалью к ней (так, чтобы график S образовывал выпуклую вниз функцию).

Пусть S задаётся формулой $\mathbf{y}(\mathbf{x})$. Т.к. S достаточно гладкая, рассмотрим представление $\mathbf{y}(\mathbf{x})$ по формуле Тейлора:

$$y(x) = y(0) + x * y(0)' + \frac{x^2}{2} * y''(x_1) = \frac{x^2}{2} * y''(x_1)$$
$$y(x)' = y(0)' + x * y''(x_2) = x * y''(x_2)$$

где $x_1, x_2 \in [0, x_P], (x_P$ - координата х точки P)

$$\overrightarrow{\tau} = \left\{ \frac{1}{\sqrt{1+y'^2(x)}}, \frac{y'(x)}{\sqrt{1+y'^2(x)}} \right\} - \text{ вектор касательной в точке P}$$

$$\overrightarrow{n_p} = \left\{ \frac{y'(x)}{\sqrt{1+y'^2(x)}}, -\frac{1}{\sqrt{1+y'^2(x)}} \right\} - \text{ вектор нормали в точке P}$$

$$\overrightarrow{MP} = \{x, y(x)\}$$

$$R_{MP} * \cos\phi = (\overrightarrow{n_p}, \overrightarrow{MP}) = \frac{xy'(x) - y(x)}{\sqrt{1+y'^2(x)}} = \frac{x^2y''(x_2) - \frac{1}{2}x^2y''(x_1)}{\sqrt{1+y'^2(x)}}$$

$$\frac{\cos\phi}{R_{MP}} = \frac{(\overrightarrow{n_p}, \overrightarrow{MP})}{R_{MP}^2} = \frac{x^2y''(x_2) - \frac{1}{2}x^2y''(x_1)}{(\sqrt{1+y'^2(x)}) * (x^2 + \frac{1}{4}x^4y''^2(x))} = \frac{y''(x_2) - \frac{1}{2}y''(x_1)}{(\sqrt{1+y'^2(x)}) * (1 + \frac{1}{4}x^2y''^2(x))}$$

При стремлении Р к М получаем, что $\frac{cos\phi}{R_{MP}}$ - непрерывная ограниченная функция. Т.к. ν ограничена и интегрируема, получаем, что исходный интеграл сходится \Rightarrow логарифмический потенциал второго слоя существует при $M \in S$.

2 Пример Адамара

Опр. Говорят, что математическая задача поставлена корректно, если:

- Решение существует;
- Решение единственно;
- Решение задачи непрерывно зависит от данных задачи (начальных и граничных условий, коэффициентов уравнений и тд.);

Пример Адамара некорректно поставленной классической задачи Коши.

Рассмотрим задачу Коши для уравнения Лапласа $\begin{cases} u_{tt}(x,t) = -u_{xx}(x,t), \ t>0, -\infty < x < \infty(1) \\ u(x,0) = 0, \\ u_t(x,0) = \frac{1}{n}\sin nx, n \in \mathbb{N} \end{cases}$

Легко проверить, что решением этой задачи буде

 $u(x,t)=\frac{1}{n^2}*sh(n*t)*sin(n*x);$ (2) Так как , $\mid u_t(x,0)\mid=\mid \frac{1}{n}*sin(n*x)\mid<=\frac{1}{n},$ то при достаточно большом п величина $\mid u_t(x,0)\mid$ является как угодно малой при любом х. Из решения (2) : |u(x,t)| будет иметь как угодно большое значение при произвольно малом t>0 и

Допустим мы нашли решение $u_0(x,t)$ задачи (1) при условиях :

$$u(x,0) = f_1(x),$$

$$u_t(x,0) = f_2(x);$$

Рассмотрим эту же задачу (1) При новых начальных условях (старые + малое возмущение):

$$u(x,0) = f_1(x),$$

$$u_t(x,0) = f_2(x) + \frac{1}{n}\sin nx;$$

Решение:

$$u(x,t) = u_0(x,t) + \frac{1}{n^2} * sh(n*t) * sin(n*x);$$

(это слагаемое очень большое ⇒ большое возмущение)

То есть при малом изменении начального условия произошло большое изменение решения задачи, следовательно эта задача является некорректно поставленной.