Gesture Recognition - Deep learning Problem Statement:

We need to develop a cool feature in the smart-TV that can recognise five different gestures performed by the user which will help users control the TV without using a remote. The following table consists of the experiments done to build a model to predict the gestures from the given data set.

Exper iment	Model	Hyperparame	Result	Desicion
1	Con3D	Batch size = 128, Ablation = 20, Augmentation = False, LR = 0.01, Seq Length = 10, Epoch = 20, Dim = 120x120	Train Accuracy: 0.15, Validation Accuracy: 0.15	The Model is not learning anything throughout the epochs, the loss is not decreasing. Reducing the batch size further.
2	Conv3D	Batch size = 32	Train Accuracy: 0.15, Validation Accuracy: 0.20	No improvement in the model, lets add more layers to the model so that it can learn from data.
3	Conv3D		Negative Dimension Error	The new CNN kernel sizes are not compatible with the output of previous layers. Let's reduce the kernel size of new layers.
4	Conv3D		Train Accuracy: 0.20, Validation Accuracy: 0.20	Still there is no improvement in the model. Let's add Batch normalization layers after every CNN and dense layers
5	Conv3D		Train Accuracy: 0.9062, Validation Accuracy: 0.2708	Model is able to over-fit on less data (Ablation data set), Let's Training on full data and increasing epochs to 50.
6	Conv3D	Ablation = None, Epoch = 50	Train Accuracy: 0.9062, Validation Accuracy: 0.70	Mode is having over-fitting as there is huge gap between training and validation accuracies. Let's

				add some dropouts that the model can be generalized.
7	Conv3D	Dropout = 0.2	Train Accuracy: 0.9896, Validation	There is a bit of increase in the model validation
			Accuracy: 0.7734	accuracy and training
				accuracy also. Let's
				increase the drop out
				values from 0.2 to 0.5
8	Conv3d	Dropout = 0.5	Train Accuracy:	1 After increase the dropout
			0.9777, Validation	the model validation score
			Accuracy: 0.5391	further reduced and the
				model is over-fitted. Let's
				use 0.2 only remove a CNN
				layer to reduce the
				complexity of the model.
9	Time	Dropout = 0.2	Train Accuracy:	The model is working quite
	Distribute		0.9554, Validation	well on validation dataset
	d + GRU		Accuracy: 0.8203	with less trainable
				parameters(98,885), Lets
				add some drop outs after
				each layer, so that both
				train and validation
				accuracies will be closure.
10	Time	Drop out = 0.2	Train Accuracy:	The model accuracy further
	Distribute		0.8720, Validation	deteriorated; Let's replace
	d + GRU		Accuracy: 0.6016	GRU with a plain Dense
				Layer Network and some
4.4			- · ·	Global Avg Pooling.
11	Time		Train Accuracy:	This is the best model so far
	Distribute		0.9673, Validation	we can get. The validation
	d+		Accuracy: 0.9375	accuracy is good and the
	ConvLST			numbers of parameters are
	M 2D			13,589. The model size is
				also so small 226KB.

Conclusion:

The Model built with Time distributed Conv2D and ConvLSTM2D (Experiment #11) gave better results compared to all the other models and also the model has very least number of parameters compared to other models.