INDIVIDUAL TEST S.-T YAU COLLEGE MATH CONTESTS 2012

Applied Math. and Computational Math.

Please solve 4 out of the following 5 problems, or highest scores of 4 problems will be counted.

1. In the numerical integration formula

(1)
$$\int_{-1}^{1} f(x)dx \approx af(-1) + bf(c),$$

if the constants a, b, c can be chosen arbitrarily, what is the highest degree k such that the formula is exact for all polynomials of degree up to k? Find the constants a, b, c for which the formula is exact for all polynomials of degree up to this k.

2. Here is the definition of a moving least square approximation of a function f(x) near a point \overline{x} given K points x_k around \overline{x} in \mathbb{R} , $k \in [1, \dots, K]$.

(2)
$$\min_{P_{\overline{x}} \in \Pi_m} \sum_{k=1}^K |P_{\overline{x}}(x_k) - f_k|^2$$

where $f_k = f(x_k)$, Π_m is the space of polynomials of degree less or equal to m, i.e.

$$P_{\overline{x}}(x) = \mathbf{b}_{\overline{x}}(x)^T \mathbf{c}(\overline{x}),$$

 $\mathbf{c}(\overline{x}) = [c_0, c_1, \dots, c_m]^T$ is the coefficient vector to be determined by (2), $\mathbf{b}_{\overline{x}}(x)$ is the polynomial basis vector, $\mathbf{b}_{\overline{x}}(x) = [1, x - \overline{x}, (x - \overline{x})^2, \dots, (x - \overline{x})^m]^T$. Assume that there are K > m different points x_k and f(x) is smooth,

- (a) prove that there is a unique solution $\overline{P}_{\overline{x}}(x)$ to (2)
- (b) denote $h = \max_k |x_k \overline{x}|$, prove

$$|c_i - \frac{1}{i!}f^{(i)}(\overline{x})| = C(f,i)h^{m+1-i}, \ i = 0, 1, \dots, m,$$

where $f^{(i)}(\cdot)$ is the *i*-th derivative of f and C(f,i) denote some constant depending on f,i.

(c) if $S = \{x_k | k = 1, 2, ..., K\}$ are symmetrically distributed around \overline{x} , that is, if $x_k \in S$ then $2\overline{x} - x_k \in S$, prove that

$$|c_i - \frac{1}{i!}f^{(i)}(\overline{x})| = C(f, i)h^{m+2-i}, \ i = 0, 1, \dots, m,$$

for $i \in \{0, 1, \dots, m\}$ with the same parity of m.

3. Describe the forward-in-time and center-in-space finite difference scheme for the one-wave wave equation:

$$u_t + u_x = 0.$$

- (i). Conduct the von Neumann stability analysis and comment on their stability property.
- (ii). Under what condition on Δt and Δx would this scheme be stable and convergent?
- (iii). How many ways you can modify this scheme to make it stable when the CFL condition is satisfied.
- **4.** Let C and D in $\mathbb{C}^{n\times n}$ be Hermitian matrices. Denote their eigenvalues by

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$$
 and $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$,

respectively. Then it is known that

$$\sum_{i=1}^{n} (\lambda_i - \mu_i)^2 \le ||C - D||_F^2.$$

1) Let A and B be in $\mathbb{C}^{n\times n}$. Denote their singular values by

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n$$
 and $\tau_1 \ge \tau_2 \ge \cdots \ge \tau_n$,

respectively. Prove that the following inequality holds:

$$\sum_{i=1}^{n} (\sigma_i - \tau_i)^2 \le ||A - B||_F^2.$$

2) Given $A \in \mathbb{R}^{n \times n}$ and its SVD is $A = U \Sigma V^T$, where $U = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$, $V = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ are orthogonal matrices, and

$$\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_n), \quad \sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n \ge 0.$$

Suppose rank(A) > k and denote by

 $U_k = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k), \quad V_k = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k), \quad \Sigma_k = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_k),$ and

$$A_k = U_k \Sigma_k V_k^T = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T.$$

Prove that

$$\min_{\text{rank}(B)=k} ||A - B||_F^2 = ||A - A_k||_F^2 = \sum_{i=k+1}^n \sigma_i^2.$$

3) Let the vectors $\mathbf{x}_i \in \mathbb{R}^n$, i = 1, 2, ..., n, be in the space \mathcal{W} with dimension d, where $d \ll n$. Let the orthonormal basis of \mathcal{W} be $W \in \mathbb{R}^{n \times d}$. Then we can represent \mathbf{x}_i by

$$\mathbf{x}_i = \mathbf{c} + W\mathbf{r}_i + \mathbf{e}_i, \ i = 1, 2, \dots, n,$$

where $\mathbf{c} \in \mathbb{R}^n$ is a constant vector, $\mathbf{r}_i \in \mathbb{R}^d$ is the coordinate of the point \mathbf{x}_i in the space \mathcal{W} , and \mathbf{e}_i is the error. Denote $R = (\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n)$ and $E = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$. Find W, R and \mathbf{c} such that the error $||E||_F$ is minimized.

(*Hint*: write
$$X = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n] = \mathbf{c}(1, 1, \dots, 1) + WR + E$$
.)

5. Two primes p and q are called *twin primes* if q = p + 2. For example, 5 and 7, 11 and 13, 29 and 31 are twin primes. There is a still unproven (but extensively numerically verified) conjecture that there are infinitely many twin primes and that they are rather common. Show how to factor an integer N which is a product of two twin primes.