วิชา Data Communication Laboratory ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

การทดลองที่ 4 Protocol Design (Bus Communication)

วัตถุประสงค์

- 1. เพื่อให้เข้าใจหลักการสื่อสารผ่านระหว่าง Arduino ด้วยโมคูล CAN Bus
- 2. สามารถเขียนโปรแกรมเพื่อติดต่อสื่อสารระหว่าง Arduino ด้วยการเชื่อมต่อแบบ Bus Communication
- 3. สามารถเขียนโปรแกรมประยุกต์เพื่อสร้างโปรโตคอลติดต่อสื่อสารระหว่างคอมพิวเตอร์ และ Arduino ได้

CAN Bus

CAN ย่อมาจาก Controller Area Network พัฒนาโดย Robert Bosch ในปี ค.ศ. 1983 เป็นสถาปัตยกรรม การสื่อสารผ่าน Serial Data Bus นิยมเรียกเป็น CAN Bus ใช้สำหรับสื่อสารระหว่างคอมพิวเตอร์ตั้งแต่ 2 เครื่องขึ้น ไป ถูกนำมาใช้ในอุตสาหกรรมต่างๆ ต่อมา International Organization for Standardization กำหนดเป็นมาตรฐาน ชุด IEEE 11898 ภายหลังเริ่มนำมาใช้งานในอุตสาหกรรมรถยนต์ จนเป็นระบบสื่อสารหลักของส่วนต่างๆ ภายใน รถยนต์

CAN Module

Module CAN Bus interface เป็น โมคูลสำหรับแปลงสัญญาณ UART เป็น สัญญาณ CAN bus โดยมี IC TJA1050 เป็นชิปที่ทำหน้าที่ในการแปลงสัญญาณ

CAN จะใช้คู่สัญญาณสองเส้นคือ CANH และ CANL เมื่อ CAN ส่ง Logic High ขา CANH และ CANL จะมีแรงคันไฟฟ้าอยู่ที่ 2.5V (ความต่างของระดับแรงคันฟ้าเป็น 0V) และเมื่อ CAN ส่ง Logic Low ขา CANH จะมี แรงคันไฟฟ้าอยู่ที่ 3.5V และ CANL จะมีแรงคันไฟฟ้าอยู่ที่ 1.5V เมื่อหาความต่างของระดับแรงคันไฟฟ้าทั้ง 2 ขา จะพบว่ามี Voltage อยู่ที่ 2.0V

ฐปที่ 4.1 CAN Module

การทดลองที่ 4.1 การสื่อสารอนุกรมระหว่าง Arduino ด้วยโมดูล CAN Bus

- 1. ทำการเชื่อมต่อ Arduino UNO R3 กับ CAN Bus ดังรูปที่ 4.3
- 2. โดยเชื่อมต่อขาระหว่าง Arduino UNO กับ โมคูล CAN Bus ดังตารางที่ 4.1 และ ขาระหว่าง โมคูล CAN Bus ด้วย CANH กับ CANH และ CANL กับ CANL
- 3. เปิดโปรแกรม Arduino แล้วพิมพ์โปรแกรมตามรูปที่ 4.4 แล้วเลือก Upload โปรแกรมลง Arduino UNO
- 4. เปิด Serial Monitor แล้วตั้งค่า baud rate เป็น 115200 baud
- 5. สังเกตผลที่ได้ และทำความความเข้าใจโปรแกรมตัวอย่าง

รูปที่ 4.3 การเชื่อมต่อระหว่าง Arduino UNO 2 บอร์ด ด้วยโมคูล CAN Bus

ตารางที่ 4.2 การเชื่อมต่อขาระหว่าง Arduino UNO กับ โมคูล CAN Bus

ขา Arduino	ขาโมดูล CAN Bus
5V	VCC
11 (TX)	TXD
10 (RX)	RXD
GND	GND

```
Lab_4_1_CANbus_Tx
                                                 Lab_4_1_CANbus_Rx
#include <SoftwareSerial.h>
                                                #include <SoftwareSerial.h>
SoftwareSerial mySerial (10, 11);
                                                SoftwareSerial mySerial (10, 11);
void setup()
                                                void setup()
{
                                                1
  //Serial.begin(115200);
                                                  Serial.begin(115200);
 mySerial.begin(57600);
                                                  mySerial.begin (57600);
void flushRx()
                                                void loop ()
  while (mySerial.available())
                                                  if (mySerial.available())
    uint8 t tmp = mySerial.read();
                                                    Serial.write(mySerial.read());
}
void loop()
 char myString [] = "Computer Engineering";
 for (int i=0; myString[i] != '\0'; i++)
    mySerial.write(myString[i]);
   delay(10);
   flushRx();
 delay (500);
  mySerial.write('\n');
```

รูปที่ 4.4 ตัวอย่างโปรแกรมการใช้งานโมคูล CAN Bus ผ่าน SoftwareSerial

เนื่องจาก การเขียนข้อมูลลงใน Bus มีโอกาสที่ Serial ของ Arduino จะได้รับค่าที่ตัวเองส่งได้ ดังนั้นหาก ต้องการเคลียร์ค่าใน Buffer ให้ทำการอ่านค่าจาก Hardware Buffer (ฟังก์ชัน flushRx())

การทดลองที่ 4.2 การสื่อสารอนุกรมระหว่าง Arduino มากกว่า 2 บอร์ด ด้วยโมดูล CAN Bus

- 1. ทำการเชื่อมต่อ Arduino UNO R3 กับ CAN Bus ดังรูปที่ 4.5
- 2. โดยเชื่อมต่อขาระหว่าง Arduino UNO กับ โมคูล CAN Bus ดังตารางที่ 4.1 และ ขาระหว่างโมคูล CAN Bus ด้วย CANH กับ CANH และ CANL กับ CANL
- 3. พิมพ์โปรแกรมสำหรับส่งข้อมูล (CANbus_Tx) แล้ว Upload โปรแกรมลง Arduino UNO R3 บอร์คซ้าย / พิมพ์โปรแกรมสำหรับรับข้อมูล (CANbus_Rx) แล้ว Upload โปรแกรมลง Arduino Arduino UNO R3 บอร์คกลาง และบอร์คขวา
- 4. เปิด Serial Monitor แล้วตั้งค่า baud rate เป็น 115200 baud
- 5. สังเกตผลที่ใค้จาก Serial Monitor บอร์ดกลาง และบอร์ดขวา และทำความความเข้าใจการทำงานของ Bus
- 6. พิมพ์โปรแกรมสำหรับส่งข้อมูล (CANbus Tx) แล้ว Upload โปรแกรมลง Arduino UNO R3 บอร์ดกลาง
- 7. สังเกตผลที่ได้จาก Serial Monitor บอร์ดขวา และทำความความเข้าใจการทำงานของ Bus

รูปที่ 4.5 การเชื่อมต่อระหว่าง Arduino UNO 3 บอร์ค ด้วยโมดูล CAN Bus

การทดลองที่ 4.3

- 1. จากการทดลองที่ 4.2 ออกแบบโปรแกมในการรับ-ส่งข้อมูล โดยมีข้อกำหนดต่อไปนี้
 - 1.1. การสื่อสารลักษณะ Bus Comunication (ด้วยโมคูล CAN Bus)
 - 1.2. เฟรมข้อมูลที่ใช้สื่อสารมีลักษณะดังนี้
 - 1) ประกอบด้วย Flag (เปิด-ปิด) Header (ผู้รับ-ผู้ส่ง) และ Trailer (Error Checking) <u>เป็นอย่างน้อย</u>
 - 2) สามารถเลือกได้ระหว่าง Fixed-Size Framing กับ Variable-Size Framing หากกำหนดเป็น Variable-Size Framing ต้องมี Character-oriented protocol
 - 1.3. มี Flow & Error Control ในการความคุมการส่งข้อมูล (ต้องแสดงให้เห็นการทำงาน)
 - 1.4. เมื่อเริ่มต้น โปรแกรม Arduino ทุกตัวจะต้องกำหนด ID ผู้รับเป็นตัวอักษรภาษาอังกฤษ
 - 1.5. เลือกผู้รับ และข้อมูลที่จะส่งข้อมูล (ส่งไฟล์ผ่าน Tera term หรือ Input String)

- 1.6. บอร์คที่ไม่ได้เป็นผู้รับ หรือ ผู้ส่ง ให้แสคงข้อมูลจริงที่ได้รับแต่ละเฟรม
- 1.7. ตัวอย่างแสดงการทำงานของโปรแกรมในการรับ-ส่งไฟล์ข้อมูล (เครื่องส่ง-เครื่องรับ)

Sender (A)	Receiver (C)
Enter ID : //Type A	Enter ID : //Type C
My ID is : A	My ID is : C
//Type <u>C</u>	
Reciver is : C //Type Data Communication	
Send frame: 0	
Data : Data Com	Receive frame
	Header : CA
	Frame No. : 0
	Data : Data Com Checking : ??
	Received
	//Data received is : Data Com
Receive frame	Send ACK1
Header : AC	
ACK No. : 1	
Checking : ?? Received	
Received	
Send frame : 1	
Data : municati	Receive frame
	Header : CA
	Frame No. : 1
/*Disconnected Rx Cable*/	Data : municati Checking : ??
	Received
	//Data received is : Data Communicati
Timeout	Send ACK0
Retransmit frame 1	
Send frame : 1	
Data : municati	Receive frame Header : CA
	Frame No. : 1
	Data : municati
	Checking : ??
	Reject
Receive frame	//Data received is : Data Communicati Send ACKO
Header : AC	Send Acko
ACK No. : 0	
Checking : ??	
Received	
Cand frame . O	
Send frame: 0 Data: on	Receive frame
. 011	Header : CA
	Frame No. : 0
	Data : on
	Checking : ??
	Received //Data received is : Data Communication
Receive frame	Send ACK1
Header : AC	
ACK No. : 1	Data received is : Data Communication
Checking : ??	
Received	
Send completely	

1.8. ตัวอย่างแสคงการทำงานของโปรแกรม เครื่องที่ไม่ใช่ เครื่องส่ง หรือ เครื่องรับ)

- 1.10. ให้นักศึกษาเขียนผังงาน (Flow Chart) โปรแกมในการรับ-ส่งไฟล์ข้อมูล