Graph Drawing

COMP8503

Advanced Topics in Visual Analytics

Reference

- Isabel F. Cruz, Roberto Tamassia. Graph Drawing Tutorial.
- Jesper Nederlof, Roeland Luitwieler. Introduction to Graph Drawing.
- Ioannis G. Tollis, Giuseppe Di Battista, Peter Eades, Roberto Tamassia. Graph Drawing: Algorithms for the Visualization of Graphs
- Graph Drawing, Tom Germano
- Tamassia, R. 1998. Constraints in Graph Drawing Algorithms. Constraints 3, 1 (Apr. 1998), 87-120.
- Eades, P. (1984). A heuristic for graph drawing. Congressus Numerantium, 42:149–160.
- K. Sugiyama & K. Misue. (1995). Graph drawing by magnetic-spring model. J. Visual Lang. Comput. 6(3).
- T. Kamada & S. Kawai. (1989). An algorithm for drawing general undirected graphs. Inform. Process. Lett. 31: 7–15.
- T. Fruchterman & E. Reingold. (1991). Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11): 1129–1164.
- R. Davidson & D. Harel. (1996). Drawing graphics nicely using simulated annealing. ACM Trans. Graph. 15(4): 301–331.
- M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslovak Mathematical Journal, 25(100):619–633, 1975.
- Frishman, Y. and Tal, A. 2007. Multi-Level Graph Layout on the GPU. IEEE Transactions on Visualization and Computer Graphics 13, 6 (Nov. 2007), 1310-1319.
- Auber, Y. Chiricota, F. Jourdan, G. Melancon. Multiscale visualization of small world networks. INFOVIS 2003. pp. 75-81.
- Many slides and content are borrowed from those references

Graphs

- G = {V, E}, nodes, edges
- Undirected graph, di-graph, weighted graph
- Planar graph drawing

Graph Drawings

- Visualization of graphs/networks
 - Models, algorithms, systems
- Applications
 - Software engineering
 - Database systems
 - Project management
 - Knowledge representation
 - Telecommunications
 - WWW

Internet map from the Opte Project

Graph Drawings

- Readable to users
- Follow drawing conventions
- Satisfy as many aesthetic rules as possible
- Efficient running time

Outline

- Drawing Conventions
- Aesthetic Criteria
- Force-directed method
- Multiscale method

Drawing Conventions

Polyline drawings

Straight-line drawings

Orthogonal drawings

Drawing Conventions

- Planar drawings
 - No crossings allowed
- Upward drawings
 - Drawn as nondecreasing arcs
 - For hierarchical relationships
- Downward drawings
 - Drawn as nonincreasing arcs

Drawing Conventions

- Resolution
 - Smallest distance between vertices
 - Smallest distance between vertices and nonincident edges

- Angular resolution
 - Smallest angle formed by two incident edges at a vertex

Aesthetic Criteria

- Minimize edge crossings
- Minimize area
- Minimize bends (orthogonal drawing)
- Maximize angular resolution
- Symmetry
- Min. sum / maximum / variance of edge lengths

Aesthetic Criteria

 "In general, one cannot simultaneously optimize two aesthetic criteria"

- Complexity
 - Minimizing edge crossing is NP-hard
 - Computing optimal angular resolution is NP-hard

Aesthetic Criteria

Beyond aesthetic criteria

General Undirected Graph

- Planar straight-line drawings
 - Generates as few edge crossings as possible
- Force-directed method
- Multiscale method

- Define a system of forces acting on the vertices and edges
- Find a minimum energy state by
 - Solving differential equations or
 - Simulating the evolution of the system

- Spring embedder [Eades 1984]
- [Kamada and Kawai 89]
- [Fruchterman and Reingold 90]
- [Davidson and Harel 96]

Replace an edge with a spring of unit length

Connect nonadjacent nodes with springs of infinite rest length

Hooke's law

$$f = -\mathbf{k}(\mathbf{x} - \mathbf{x}_0)$$

- f is the force
- k is the factor
- x_0 is the nature length
- Force model deviates from Hooke's law

Replace an edge with a spring of unit length

- f_a is the attraction force
- c_a is the attraction factor
- r is the distance between nodes

Connect nonadjacent nodes with springs of infinite rest length

$$f_r = \frac{c_r}{r^2}$$

- f_r is the repulsive force
- c_r is the repulsive factor
- r is the distance between nodes

- Initial graph layout randomly
- Update layout iteratively
 - Apply spring forces to connected node pairs
 - Apply spring forces to unconnected node pairs
 - Update layout
 - Until the movements are small enough

Initial layout and springs

Final configuration

- [Kamada and Kawai 89]
 - For a pair of nodes (u, v), the spring nature length is proportional to d(u, v) which is the distance from u to v
 - Define energy of the system

$$\sum k_{u,v}(|p_u - p_v| - d(u,v))^2$$

Reduce energy iteratively by solving PDE equations

- [Fruchterman and Reingold 90]
 - A complex system of forces

$$f_a = \frac{r^2}{k} \qquad f_r = -\frac{k^2}{r}$$

Where
$$k = C\sqrt{\frac{area}{\#nodes}}$$

- Control drawings within a boundary
- A "temperate" controlling scheme
 - Temperature from hot to cold and bounds vertex movement

- [Davidson and Harel 96]
 - Consider vertex distributions, edge lengths,
 crossing into a energy function instead of forces
 - Simulated annealing to find solutions
 - Computation costly

- Advantages
 - Simple implementations
 - Easy to add new heuristics, constraints
 - Smooth evolution of layout
 - Supports 3D
 - Often detects and shows symmetries
 - Works well with small graphs

- Add new constraints through means of forces
 - Position constraints with fixed positions or prescribed regions
 - Orientation constraints with "magnetic field"
 - [Sugiyama Misue 95]
 - Group constraints by adding dummy "attractors"

- Disadvantages
 - Slow, running time, convergence
 - Few theoretical supports of drawing quality
 - Difficult to support orthogonal and polyline drawings

- Motivation
 - Force directed method is slow on large graphs
 - The result is sensitive to the initial layout when dealing with large graphs

- Multi-Level Graph Layout on the GPU
 - [Frishman and Tel 07]

- Generate graphs at different spatial scales
 - Partitioning, clustering, coarsening
- Start from the coarsest scale and work back to finest scale
 - How to propagate results from one level to another

- Advantages
 - Reduce computation cost
 - Maintain good quality
 - Less sensitive to initial configurations
- Disadvantages
 - Growing inaccuracy when going from one level to another

- Graph spectral partitioning
- Multilevel scheme for graph layout
- Accelerate force-directed method

- Graph spectral partition
 - Partition a graph to parts with two properties
 - Similar size <-> balance in layout
 - Minimum cut <-> weakly coupled, independent
- An eigenvector problem [Fiedler 75]
 - Given a graph G, its Laplacian L is defined as

$$\ell_{i,j} := \begin{cases} \deg(v_i) & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \\ 0 & \text{otherwise.} \end{cases}$$

- Graph Laplacian L with eigenvalues $\lambda_0 \le \lambda_1 \le \cdots \le \lambda_{n-1}$
 - Positive semi-definite $\forall i, \lambda_i \geq 0, \quad \lambda_0 = 0$
 - # zero-eigenvalue = # connected component
 - Smallest non-zero eigenvalue => spectral gap, its eigenvector can be used to cluster the graph, namely "spectral clustering"

Spectral clustering, a simple example

Ulrike von Luxburg, A Tutorial on Spectral Clustering

- To compute the eigenvector
 - Power iterations
 - Efficient in computation and memory
 - Slow convergence

- Multilevel representation
 - First level partitioning

- Multilevel representation
 - Second level partitioning

- Multilevel representation
 - Combined

- Compute layout
 - Start from the coarsest level
 - Propagate to finer level, then refine

- Layout propagation
 - Each node in current level is placed at its parent's position in the coarser level
 - Scale positions

$$p_i(x,y) = \sqrt{\frac{|V(L^l)|}{|V(L^{l-1})|}} \cdot p_i(x,y),$$

Improve positions

$$p_i = \frac{1}{2} \left(p_i + \frac{1}{degree(i)} \sum_{j \in N(i)} p_j \right).$$

Accelerate Force-directed Method

- Bottlenecks
 - Repulsive forces between all pairs of nodes
 - N-body problem, O(|V|^2)

- Solutions
 - For nodes that are far away, use approximations

Accelerate Force-directed Method

- Kd-tree
 - Spatial partition of nodes
 - Give a particular node
 - Nodes out of a range or its cell are far away nodes
 - Use cell centers to approximate repulsive forces

Region query on a kdtree

Accelerate Force-directed Method

Parallel implementation

Pseudo code:
For all nodes in parallel
For all other nodes
compute and accumulate repulsive forces

- "Embarrassingly parallel"
- Suits GPU and multi-core architectures

Summary

- Graph drawing
 - Conventions
 - Aesthetic criteria
- Drawing algorithm for undirected graphs
 - Force directed methods
 - Multiscale methods

Summary

- Graph drawing
 - Conventions
 - Aesthetic criteria
- Drawing algorithm for undirected graphs
 - Force directed methods
 - Multiscale methods

Questions?