Patentanmeldung

"Verfahren zum Herstellen von Bohrungen"

Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen von Bohrungen mit großem Aspektverhältnis in metallischen Werkstoffen sowie von geschichteten, metallischen Werkstoffen und solchen, die mindestens eine keramische Schicht aufweisen, mittels Laserstrahlung, wobei die Intensität des Laserstrahls abhängig von der geforderten Änderung des Bohrungsradius mit der Bohrungstiefe eingestellt wird.

Laserstrahlung wird insbesondere zum Abtragen und Bohren von metallischen
Werkstoffen und von Verbundwerkstoffen aus dielektrischen (z. B. keramischen) und
metallischen Schichten eingesetzt. Insbesondere bei den Anwendungen in der Automobiltechnik, der Luftfahrttechnik (Fein- bzw. Mittelblech) und der Energietechnik
(Mittelblech) sind große Abtragsraten (große Produktivität) und große Aspektverhältnisse (Tiefe zu Durchmesser) erwünscht. Die geometrische Form der Bohrung (z. B.
zylindrisch, konisch) und die Morphologie der Bohrungswand (z. B. erstarrte Schmelze) sind wesentliche Qualitätsmerkmale und unterliegen vorgegebenen technischen
Anforderungen.

Die bekannten Techniken zum Bohren mit Laserstrahlung werden durch den dominanten Mechanismus zum Austreiben des Werkstoffes beim Bohren – Schmelzen, Verdampfen – in zwei Gruppen eingeteilt:

Bohrtechniken mit dominantem Schmelzaustrieb

Bohrtechniken mit dominantem Schmelzaustrieb sind das Einzelpulsbohren, das Perkussionsbohren (Mehrfachpulse) und das Trepanierbohren. Diese Techniken haben den Vorteil großer Abtragsraten (Produktivität) und den Nachteil mangelnder Qualität durch unvollständigen Schmelzaustrieb, Ablagerungen aus erstarrter

Schmelze an der Bohrungswand und/oder am Bohrungsein- und -austritt und geringer Präzision bezüglich des Bohrungsdurchmessers. Beim Trepanierbohren wird zunächst eine Perkussionsbohrung in den Werkstoff eingebracht und nachfolgend eine Bohrung mit definiertem Radius ausgeschnitten. Das Trepanierbohren hat den Nachteil, dass die größte Menge an entstehender Schmelze durch einen Prozessgasstrahl am Bohrungsaustritt ausgetrieben wird und so der Innenraum eines zu bohrenden Hohlkörpers verschmutzt wird.

Der Stand der Technik beschreibt eine Vielzahl von Maßnahmen, die darauf zielen, die Schmelze möglichst vollständig auszutreiben und eine definierte – meist zylindrische – Form der Bohrung zu erreichen. Diese Maßnahmen sind

- Vergrößern des räumlichen Mittelwertes oder des Maximalwertes der Intensität im Laserstrahl mit zunehmender Tiefe der Bohrung
- Zeitliche Modulation (Perkussion) der Intensität mit einer großen Anzahl was seine von Einzelpulsen während der gesamten Bohrzeit.

Das Perkussionsbohren wird industriell nur dann eingesetzt, wenn die mangelnde Qualität (unvollständiger Schmelzaustrieb, anhaftende erstarrte Schmelze, geringe Präzision der Bohrungsform) die Funktion des Produktes nicht einschränkt.

Nach dem Stand der Technik zum Einzelpuls- und Perkussionsbohren wird die Intensität mit zunehmender Tiefe der Bohrung vergrößert, um z. B. die Auswirkung einer Strahlaufweitung zu kompensieren. Die Modulation der Intensität wird durchgeführt, um z. B. durch Variation des Verhältnisses von Pulsdauer zu der Zeit zwischen zwei Pulsen den geforderten Durchmesser der Bohrung zu verändern.

Nach der EP 0 796 695 A1 kann der Austrittsdurchmesser der Bohrung, der üblicherweise kleiner ist als der Durchmesser des oberen Teils der Bohrung, vergrößert werden, wenn die Temperatur des Werkstückes um mindestens 25 °C über der Umgebungstemperatur liegt.

Bohrtechniken mit dominantem Verdampfen

Zum Bohren durch dominantes Verdampfen werden die Techniken Wendelbohren, Perkussionsbohren und Laser-Erodieren eingesetzt.

Ein gezieltes Erreichen der geforderten geometrischen Form der Bohrung ist bis heute nur mit dem Wendelbohren oder einer Kombination aus Perkussions- und Wendelbohren erreichbar.

Nach der DE 101 44 008 A1 kann eine mit überwiegendem Schmelzaustrieb hergestellte Perkussionsbohrung in einem zweiten Verfahrensschritt durch dominantes Abtragen als Dampf auf den gewünschten Durchmesser aufgeweitet werden, so dass keine Reste erstarrter Schmelze an der Bohrungswand zurückbleiben. Diese hochpräzise Bohrtechnik und auch die Verfahrensvarianten weisen den Nachteil zu großer Bohrdauer bzw. zu kleiner Produktivität auf.

Die DE 699 03 541 T2 beschreibt eine Vorrichtung und ein Verfahren zur Perforierung von sogenannten Mikrovia-Löchern in "Verpackungen von elektrischen Verbindungsstellen von elektrischen Schaltungen". Hierbei handelt es sich um sogenannte "-Microvia-Löcher", die in Leiterplatten mittels Laserstrahlung gebildet werden. Zweck dieser Löcher ist es, einzelne Leiterschichten in Leiterplatten über die Löcher zu kontaktieren. Bei diesen Löchern handelt es sich um solche, die ein sehr kleines Aspektverhältnis haben. Bei diesen Microvia-Bohrungen soll der Bohrungsdurchmesser gleich dem Laserstrahldurchmesser sein; auch wenn der Bohrungsdurchmesser geringfügig größer werden sollte, so ist dies nicht erwünscht. Nach dieser Druckschrift wird der Rand der Intensitätsverteilung als die die Bohrungskante definierende Größe, die wesentlich ist, angesehen, da die Intensitätsverteilung des Strahls ringförmig geformt wird.

Der vorliegenden Erfindung liegt nun die Aufgabe zugrunde, die vorstehend aufgeführten Unzulänglichkeiten des Stands der Technik zu beseitigen und das eingangs genannte Verfahren so weiterzubilden, dass insbesondere ein vollständiges Austreiben der Schmelze beim Bohren in Richtung der einfallenden Laserstrahlung aus dem Bohrungsschacht ohne Ablagerungen erstarrter Schmelze an dem Bohrungsrand gewährleistet wird.

Gelöst wird diese Aufgabe, ausgehend von dem Verfahren mit den eingangs genannten Merkmalen, dadurch, dass die räumliche Verteilung der Intensität im Laserstrahl, bezogen auf den sich ändernden Boden der Bohrung, so eingestellt wird, dass die Intensität I innerhalb der Strecke w₀ mit dem Abstand w von der Laserstrahlachse um den Wert ΔI abfällt, dieser Abfall monoton erfolgt, und für die räumliche Änderung ΔI der Intensität I und die Strecke w₀ so große Werte eingestellt werden, dass ein Bohrungsradius r_B (r_B > w₀) größer als die Strecke w₀ erreicht wird, wobei die Strecke w₀ der Radius des Laserstrahls ist. Die Strecke w₀ ist somit der Radius einer Fläche senkrecht zur Laserstrahlachse, die 86% der Laserleistung erfasst.

Mit dieser Verfahrensmaßnahme wird die herkömmliche Technik des Einzelpuls- und Perkussionsbohrens mit Laserstrahlung mit dominantem Schmelzaustrieb so gestaltet, dass ein vollständiges Austreiben der Schmelze aus der Bohrung möglich ist, ohne dass sich Schmelze an der Bohrungswand ablagert. Bei den bisher bekannten Verfahren wird der Schmelzaustrieb über ein laserinduziertes Plasma durch den räumlichen Mittelwert oder den Maximalwert der Intensität im Laserstrahl gesteuert, was eine gezielte Steuerung des Bohrungsdurchmessers und eine Vermeidung von Schmelzablagerungen nicht zulässt. Ein zweiter Verfahrensschritt zum Glätten der Bohrungswand durch Verdampfungsabtragen, wie dies in der DE 101 44 008 A1 beschrieben ist, ist nicht erforderlich.

Das erfindungsgemäße Verfahren wird dazu eingesetzt, Bohrungen, die sehr tief sind, herzustellen, d.h. solche mit einem "großem Aspektverhältnis". Dieses große Aspektverhältnis der Bohrungen sowie die Maßgabe, dass der Bohrungsdurchmesser wesentlich größer sein soll als der Laserstrahlradius, gewährleistet, dass die aufströmende Schmelze den Laserstrahl nicht abschattet. Für die räumliche Änderung ΔI der Intensität I und die Strecke w_0 werden so große Werte eingestellt, dass ein Bohrungsradius r_B ($r_B > w_0$) größer als die Strecke w_0 erreicht wird. ΔI und w_0 sind so groß zu wählen, dass die Bohrung weit genug wird, um den vorstehend angegebenen Effekt, den Laserstrahl nicht durch die aufströmende Schmelze abzuschatten, gewährleistet ist.

Die Bohrungen werden konisch ausgeführt und auch ist gewährleistet, dass in jeder Tiefe ein vordefinierter Bohrungsradius eingestellt werden kann.

Bevorzugte Ausgestaltungen des Verfahrens ergeben sich aus den Unteransprüchen.

Mit dem erfindungsgemäßen Verfahren ist somit eine gezielte Einstellung des Bohrungsdurchmessers auch während des Bohrprozesses möglich. Auch können unterhalb eines definierten Aspektverhältnisses von Bohrungstiefe zu Bohrungsdurchmesser in Abhängigkeit von der Tiefe beliebige Durchmesser mit hoher Präzision erzielt werden und zylindrische, konische und andere geometrische Formen der Bohrung können hergestellt werden.

Wesentliche Merkmale, die beim Schmelzbohren zuverlässig erreicht werden müssen, sind:

reproduzierbarer Durchmesser

Der kleinste Durchmesser einer Bohrung bestimmt den Volumenstrom. Das gesamte Durchflussvolumen von Kraftstofffiltern addiert sich aus den Durchflussvolumen der einzelnen Bohrungen, die durch die jeweils minimalen Durchmesser der Bohrungen begrenzt sind.

definierte Konizität

Das Strömungsverhalten beim Austreten von Gasen und Flüssigkeiten aus der Bohrung wird u. a. durch den Winkel der Bohrungswand zur Werkstoffoberfläche und die Aufweitung der Bohrung bestimmt. Die definierte Konizität ist z.B. entscheidend für die Verteilung von Kühlgasen auf Werkstoffoberflächen zum Schutz von Turbinenkomponenten.

definierte Konizität beim Bohren von Mehrschichtsystemen

Die zylindrische bzw. konische Bohrungsgeometrie ist Voraussetzung für die laminare Strömung von Flüssigkeiten und Gasen in der Bohrung. Der Durchmesser von Bohrungen in Turbinenkomponenten – z.B. Mehrschichtsysteme, bestehend aus

dem Substrat, der Haftvermittlerschicht und der Wärmedämmschicht – muss unabhängig von der Werkstoffschicht regelbar sein.

keine Reduzierung der Haft- und Scherfestigkeit von Coatings

Beim Bohren von Mehrschichtsystemen darf die Haftung zwischen den Schichten im Bereich der Bohrung nicht reduziert werden. Bei Beschädigung der Wärmedämmschicht von Turbinenkomponenten können sich die Schichten der im Betrieb thermisch und mechanisch hochbelasteten Komponenten vom Werkstoff lösen und ein Schutz ist nicht mehr gewährleistet.

keine Ablagerungen erstarrter Schmelze

Ein definierter Bohrungsdurchmesser kann nur erreicht werden, wenn die geometrische Form der Bohrung nicht durch unregelmäßige Ablagerungen erstarrter Schmelze an der Bohrungswand verändert wird. In der erstarrten Schmelze können Risse und Spannungen entstehen. Bei hochbelasteten Komponenten, wie Turbinenschaufeln und Kraftstofffiltern, erhöht das Vermeiden von Ablagerungen aus erstarrter Schmelze deren Lebensdauer.

keine Gratbildung

Ein Grat aus erstarrter Schmelze am Bohrungsaustritt vergrößert z.B. den Strömungswiderstand und vermindert so den Wirkungsgrad. Das Vermeiden der Gratbildung erfordert keine Nachbearbeitung und verkleinert die Produktionszeit beispielsweise von Turbinenkomponenten und Kraftstofffiltern.

- Austreiben der Schmelze in Richtung der einfallenden Laserstrahlung
- Das Ausströmen der Schmelze nach oben aus der Bohrung reduziert Verschmutzungen in Hohlkörpern. Beim Herstellen von Kraftstofffiltern und Turbinenschaufeln ist eine Nachbearbeitung (Reinigen) erforderlich, wenn sich während des Bohrens Werkstoffrückstände in den Hohlkörpern ablagern.
- große Krümmung der Austrittskante

Das Ablösen einer Flüssigkeitsströmung an der Bohrungsöffnung wird durch die Krümmung der Austrittskante bestimmt. Bei Einspritzdüsen ist die Krümmung der Austrittskante bestimmend für das Ablösen und das vollständige Abbrennen des Kraftstoffs im Brennraum.

Der Einzug von Umgebungsgasen in die Bohrung oder die Ablösung einer Kühlgasströmung vom Austritt einer Kühlbohrung in Turbinenschaufeln sind unerwünschte Eigenschaften der Strömung, deren Ausbildung von der geometrischen Form der Austrittskante abhängen.

Für die Erfindung ist von Bedeutung, dass als entscheidender Parameter für den vollständigen Schmelzaustrieb über eine vorgegebene Tiefe der Bohrung die räumliche Verteilung der Intensität im Laserstrahl am Bohrungsgrund geeignet eingestellt werden muss und nicht wie bisher bekannt der räumlich gemittelte Wert oder der Maximalwert der Intensität Iog im Laserstrahl. Kennzeichnend ist eine geeignete räumliche Verteilung der Laserstrahlung über eine genügend große Strecke wo im Laserstrahl, innerhalb derer die Intensität mit dem Abstand von der Laserstrahlachse abfällt und eine genügend große räumliche Änderung der Intensität (Intensitätsgradient) vorliegt.

In der beigefügten Figur 1 sind die minimalen Werte für die Intensität $I_0 = I_{min}$ und die Strecke $w_0 = w_{min}$ skizziert, wobei für das Vorstehende Fall A gilt.

In einer bevorzugten Maßnahme wird die Strecke wo annähernd proportional zur Wurzel der vordefinierten und zu erreichenden Bohrungstiefe ℓ eingestellt.

Weiterhin sollte die räumliche Änderung ∆I der Intensität I innerhalb der Strecke wo annähernd proportional zu der vordefinierten bzw. zu erreichenden Bohrungstiefe ℓ so eingestellt werden, dass ein Bohrungsradius r_B (r_B> w₀) größer als die Strecke w₀ erreicht wird.

Das maximale Aspektverhältnis α von Bohrungstiefe ℓ zu Bohrungsdurchmesser d und der minimale Durchmesser $d_{min} > \ell / \alpha$ ($d_{min} = 2r_{Bmin}$) der Bohrung sollte nach folgender Vorschrift

α < const. Δl w₀

eingestellt werden, wobei die räumliche Änderung $\Delta I = I_0 - I_{w0}$ der Intensität I innerhalb der Strecke w_0 und I_0 die Intensität auf der Laserstrahlachse und I_{w0} die Intensität im Abstand w_0 von der Laserstrahlachse sind.

Zur Vergrößerung des Bohrungsdurchmessers d (= $2r_B$) während des Bohrens wird der Maximalwert $I_0 > I_{min}$ für die Intensität so gesteuert oder geregelt, dass der Bohrungsdurchmesser d (= $2r_B$) einen vorbestimmten von der Tiefe abhängigen Wert d > d_{min} erreicht, wobei I_0 die Intensität auf der Laserstrahlachse ist und I_{min} der minimale Wert der Intensität I_0 ist.

Weiterhin ist wesentlich, dass nach geeignetem Einstellen der räumlichen Verteilung der Intensität am Bohrungsgrund der minimale Bohrungsdurchmesser $2r_{Bmin}$ und das maximale Aspektverhältnis von Bohrungstiefe zu -durchmesser bestimmt werden; hierzu sind in der Figur 1, Fall A, die entsprechenden Werte ($l_0 = l_{min}$, $w_0 = w_{min}$) dargestellt.

Um eine Vergrößerung des Bohrungsdurchmessers $2r_B > 2r_{Bmin}$ auch während des Bohrprozesses zu erreichen, müssen der Maximalwert für die Intensität $I_0 > I_{min}$ und/oder die Strecke $w_0 > w_{min}$ gesteuert werden. Ein beliebiger größerer Durchmesser ist beispielsweise durch eine Vergrößerung der Intensität (siehe Figur 1, Fall B) oder der Strecke (siehe Figur 1, Fall C), über der die Schmelze am Bohrungsgrund beschleunigt wird, erreichbar.

Zylindrische und konische Bohrungsgeometrien sind bei reproduzierbarer Qualität durch das Einstellen der räumlichen Verteilung der Intensität am Bohrungsgrund und Steuern des Bohrungsdurchmessers, wie dies vorstehend angegeben ist, einstellbar.

Wie anhand der Figur 1 weiterhin zu erkennen ist, führen Abweichungen von den vorstehend angegebenen Vorschriften, z.B. dann, wenn der Intensitätsgradient zu klein ist (siehe Figur 1, Fall D) und/oder Strecke w_0 innerhalb derer die Intensität im Laserstrahl abfällt, zu klein ist (siehe Figur 1, Fall E), zu einem unvollständigem Schmelzaustrieb. Im Vergleich zu den vorstehend angegebenen Vorschriften können z.B. mit nahezu rechteckförmiger Verteilung der Intensität (siehe Figur 1, Fall E) klei-

nere Bohrungsdurchmesser erreicht werden. Allerdings wird hierbei die Vorschrift zur Einstellung der räumlichen Verteilung der Intensität am Bohrungsgrund verletzt und die Qualität der Bohrung wird kleiner, da die Schmelze nicht vollständig ausgetrieben werden kann.

Beim Bohren von Mehrschichtsystemen, d.h. beim Bohren unterschiedlicher Werkstoffschichten, werden zur Realisierung definierter Bohrungsdurchmesser die verschiedenen Werkstoffeigenschaften bei der Wahl der geeigneten Intensitätsverteilung berücksichtigt, so dass insbesondere beim Übergang von einer Werkstoffschicht zur nächsten Anpassungen in der Intensitätsverteilung vorgenommen werden müssen. Der Übergang zwischen zwei Schichten ist durch Änderungen in der Prozessemission (z. B. Plasmaleuchten) beobachtbar und kann durch koaxiale oder laterale Hochgeschwindigkeitsfotografie detektiert werden.

In einem bevorzugten Verfahrensablauf wird die ausströmende Schmelze zusätzlich entlang der Bohrungswand geeignet beheizt.

Hierzu ist in Figur 2 der beigefügten Zeichnung schematisch die Verteilung der Intensität im Laserstrahl und die Anordnung der zusätzlichen Heizquellen dargestellt.

Es ist zu beachten, dass, sobald der eingestellte Bohrungsdurchmesser $2r_B$ erreicht ist, das zusätzliche Heizen der Bohrungswand einsetzen muss, und die Heizleistung muss mit der Bohrtiefe zunehmen.

Es sollte darauf geachtet werden, dass die Heizquelle innerhalb der Bohrung wirkt, möglichst nur die strömende Schmelze erwärmt und dass die primäre Energiequelle (Bohrlaserstrahl) nicht beeinflusst wird (z.B. Absorption von Bohrlaserstrahlung im Bohrkanal) und der zentrale Bereich der Bohrung möglichst unbeeinflusst bleibt.

Wie anhand der Figur 2 ersichtlich ist, sollte die räumliche Wirkung der Energiequellen über den Bohrungsdurchmesser so verteilt sein, dass der Bohrungsgrund eine genügend große Breite 2r_B erreicht, die größer als die Breite 2w₀ des Bohrlaserstrahls ist, innerhalb derer die Intensität in radialer Richtung annähernd monoton abfällt, und dass die Bohrungswand beheizt wird.

In einer bevorzugten Maßnahme wird die Heizstrahlung über eine Strahlformung im Resonator erzeugt derart, dass die Intensität des Laserstrahls zur Beheizung der Bohrungswand ringförmig eingestrahlt wird. Hierbei kann die Erzeugung der Heizstrahlung durch Anregung höherer Moden mindestens nach Erreichen des vorbestimmten Bohrungsdurchmessers erfolgen. Es ist auch möglich, die Erzeugung der Heizstrahlung durch Blenden vorzunehmen, wobei dann der zentrale Bereich des Laserstrahls ausgeblendet wird.

Eine alternative Möglichkeit besteht darin, die Laserstrahlung zum Beheizen der aus der Bohrung ausströmenden Schmelze durch eine optische Komponente außerhalb des Resonators so zu formen, dass ein zentraler Bereich des Laserstrahls den vorbestimmten Bohrungsdurchmesser erzeugt und ein ringförmiger äußerer Bereich des Laserstrahls zur Beheizung der Bohrungswand eingestrahlt wird. Als optische Komponente kann außerhalb des Resonators ein Axikon eingesetzt werden.

Die Heizstrahlung zum Beheizen der aus der Bohrung ausströmenden Schmelze kann auch über eine zweite Energiequelle in Form thermischer Energie in das Bohrloch eingekoppelt werden. Die Heizstrahlung kann über mehrere ringförmig angeordnete Diodenlaser, über eine thermische Lichtquelle erfolgen, wobei als thermische Lichtquelle eine Halogenlampe, eine Bogenlampe oder eine Dampflampe eingesetzt werden kann.

Die Heizstrahlung kann auch über eine Laserstrahlquelle erzeugt werden, wobei das erzeugte Plasma als sekundäre Heizquelle an der Wand der Bohrung wirkt.

Zur Erzeugung der Heizstrahlung kann dieselbe Laserstrahlquelle wie für das Bohren eingesetzt werden.

Die Steuerung der Heizstrahlung kann durch Rückführung von Signalen aus einer koaxialen oder lateralen Hochgeschwindigkeitsfotografie erfolgen.

Von den vorstehend angegebenen Maßnahmen zum Beheizen der Bohrungswand sind insbesondere ringförmig angeordnete Diodenlaser oder thermsche Lichtquellen zu bevorzugen, da für die ringförmig angeordneten Diodenlaser die Heizwirkung und der Wirkbereich flexibel eingestellt werden können oder für die thermischen Licht-

quellen der technische Aufwand zur Realisierung der Vorrichtung zum Heizen klein ist.

Die Steuerung der Heizstrahlung, z. B. durch laserinduziertes Plasma, kann ebenso wie die Steuerung der abtragenden Laserstrahlung bei Mehrschichtsystemen, mit einer koaxialen bzw. lateralen Prozessüberwachung, z. B. durch Hochgeschwindigkeitsfotografie oder Kurzzeitspektroskopie, umgesetzt werden.

Die Erfindung ist immer dann einsetzbar, wenn beim Einzelpuls- oder Perkussionsbohren mit Laserstrahlung der überwiegende Anteil des Werkstoffes in der flüssigen Phase (Schmelze) ausgetrieben wird.

In der Energie- und Luftfahrttechnik werden Kühlbohrungen in Turbinenkomponenten mit der Technik des Perkussionsbohrens eingebracht, um die Komponenten aus hochtemperaturbeständigen Werkstoffen mit keramischen Wärmedämmschichten (Mehrschichtsysteme) zusätzlich vor den großen thermischen Belastungen zu schützen. Um den Wirkungsgrad weiter steigern zu können, wird eine bessere Verteilung der Kühlluft auf den Oberflächen der Turbinenschaufeln und Brennkammerplatten gefordert. Diese kann nur durch eine definierte Bohrungsgeometrie (zylindrisch und/oder konisch) und eine größere Anzahl von Bohrungen pro cm² (bis zu 100 Bohrungen / cm² statt derzeit 0,75 Bohrungen / cm²) erreicht werden. Allerdings sind die Bohrdauer (z.B. Trepanieren) zu groß und das derzeit erreichte Aspektverhältnis bei schwankender Bohrungsgeometrie nicht ausreichend, um eine nennenswerte Steigerung des Wirkungsgrades nur durch die Erhöhung der Anzahl der Bohrungen pro cm² zu erlangen. Außerdem ist das Vermeiden von Ablagerungen aus erstarrter Schmelze im Bohrungsschacht und die Gratbildung von wesentlicher Bedeutung, um keine Veränderung der strömungstechnisch bevorzugten geometrischen Form der Bohrung zu verursachen.

In der Automobiltechnik werden Kraftstofffilter mit Laserstrahlung bei geringeren Anforderungen an die Präzision gebohrt. Bei den durchfluss- und spraybestimmenden Bohrungen in Einspritzventilen, -drosseln und –düsen sind Abweichungen von der Normgeometrie von wenigen µm und ebenso kleine Dicken der Schmelzablagerun-

gen, sowie scharfkantige Bohrungsein- bzw. -austritte mit sehr großen Krümmungen gefordert.

Den vorstehenden Forderungen kann mit dem Verfahren gemäß der Erfindung entsprochen werden.

WO 2005/092560 PCT/EP2005/003110

Patentansprüche

- 1. Verfahren zum Herstellen von Bohrungen mit großem Aspektverhältnis in metallischen Werkstoffen sowie von geschichteten, metallischen Werkstoffen und solchen, die mindestens eine keramische Schicht aufweisen, mittels Laserstrahlung, wobei die Intensität des Laserstrahls abhängig von der geforderten Änderung des Bohrungsradius mit der Bohrungstiefe eingestellt wird, dadurch gekennzeichnet, dass die räumliche Verteilung der Intensität im Laserstrahl, bezogen auf den sich ändernden Boden der Bohrung, so eingestellt wird, dass die Intensität I innerhalb der Strecke w₀ mit dem Abstand w von der Laserstrahlachse um den Wert ΔI abfällt, dieser Abfall monoton erfolgt, und für die räumliche Änderung ΔI der Intensität I und die Strecke w₀ so große Werte eingestellt werden, dass ein Bohrungsradius r_B (r_B > w₀) größer als die Strecke w₀ erreicht wird, wobei die Strecke w₀ der Radius des Laserstrahls ist.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Strecke wo annähernd proportional zur Wurzel der vordefinierten und zu erreichenden Bohrungstiefe \(\ell\) eingestellt wird.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die räumliche Änderung ΔI der Intensität I proportional zu der vordefinierten bzw. zu erreichenden Bohrungstiefe ℓ eingestellt wird.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das maximale Aspektverhältnis α von Bohrungstiefe ℓ zu Bohrungsdurchmesser d und der minimale Durchmesser $d_{min} > \ell / \alpha$ ($d_{min} = 2r_{Bmin}$) der Bohrung durch folgende Vorschrift

eingestellt wird, wobei die räumliche Änderung $\Delta I = I_0 - I_{w0}$ der Intensität I innerhalb der Strecke w_0 und I_0 die Intensität auf der Laserstrahlachse und I_{w0} die Intensität im Abstand w_0 von der Laserstrahlachse sind.

- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zur Vergrößerung des Bohrungsdurchmesser d (= $2r_B$) während des Bohrens der Maximalwert $l_0 > l_{min}$ für die Intensität so gesteuert oder geregelt wird, dass der Bohrungsdurchmessers d (= $2r_B$) einen vorbestimmten von der Tiefe abhängigen Wert d > d_{min} erreicht, wobei l_0 die Intensität auf der Laserstrahlachse ist und l_{min} der minimale Wert der Intensität l_0 ist.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zur Vergrößerung des Bohrungsdurchmessers d (=2r_B) während des Bohrens die Strecke w₀ > w_{min} so gesteuert oder geregelt wird, dass der Bohrungsdurchmesser d (=2r_B) einen vorbestimmten von der Tiefe abhängigen Wert d > d_{min} erreicht, wobei w₀ der radiale Abstand von der Laserstrahlachse ist und w_{min} der minimale Abstand von der Laserstrahlachse ist über der die räumliche Änderung ΔI erfolgt.
- 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass beim Bohren unterschiedlicher Werkstoffschichten beim Übergang von einer Werkstoffschicht zur nächsten eine Anpassung der Intensitätsverteilung der Laserstrahlung vorgenommen wird derart, dass in beiden Werkstoffschichten derselbe bzw. der vorbestimmte von der Tiefe abhängige Bohrungsdurchmesser erreicht wird.
- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Übergang zwischen zwei Werkstoffschichten durch Änderung der Prozessemissionen überwacht wird.
- Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Änderung der Prozessemissionen durch koaxiale oder laterale Hochgeschwindigkeitsfotografie detektiert wird.

- 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass bei Erreichen eines eingestellten Bohrungsdurchmesser d (=2r_B) eine zusätzliche Beheizung der Bohrungswand vorgenommen wird.
- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Heizleistung mit zunehmender Tiefe der Bohrung erhöht wird.
- 12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Beheizung auf die aus der Bohrung ausströmende Schmelze beschränkt wird.
- 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Heizstrahlung über eine Strahlformung im Resonator erzeugt wird derart, dass die Intensität des Laserstrahls zur Beheizung der Bohrungswand ringförmig eingestrahlt wird.
- 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Erzeugung ander winder Heizstrahlung durch Anregung höherer Moden mindestens nach Erreichen auch des vorbestimmten Bohrungsdurchmessers erfolgt.
- 15....Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Erzeugung der Heizstrahlung durch Blenden erfolgt, wobei der zentrale Bereich des Laserstrahls ausgeblendet wird.
 - Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Laserstrah-16. lung durch eine optische Komponente außerhalb des Resonators so geformt wird, dass ein zentraler Bereich des Laserstrahls den vorbestimmten Bohrungsdurchmesser erzeugt und ein ringförmiger äußerer Bereich des Laserstrahls zur Beheizung der Bohrungswand eingestrahlt wird.
 - 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass als optische Komponente außerhalb des Resonators ein Axikon eingesetzt wird.
 - 18. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Heizstrahlung über eine zweite Energiequelle in Form thermischer Energie in das Bohrloch eingekoppelt wird.

- 19. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Heizstrahlung über mehrere ringförmig angeordnete Diodenlaser erzeugt wird.
- 20. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Heizstrahlung über eine thermische Lichtquelle erzeugt wird.
- 21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass als thermische Lichtquelle eine Halogenlampe eingesetzt wird.
- 22. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass als thermische Lichtquelle eine Bogenlampe eingesetzt wird.
- 23. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass als thermische Lichtquelle eine Dampflampe eingesetzt wird.
- 24. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Heizstrahlung über eine Laserstrahlquelle erzeugt wird, wobei das erzeugte Plasma als
 sekundäre Heizquelle an der Wand der Bohrung wirkt.
- 25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass zur Erzeugung der Heizstrahlung dieselbe Laserstrahlquelle wie für das Bohren eingesetzt wird.
- 26. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Steuerung der Heizstrahlung durch koaxiale oder laterale Hochgeschwindigkeitsfotografie detektiert wird.

Figur 1

Figur 2

CLASSIFICATION OF SUBJECT MATTER
PC 7 B23K26/073 B23K26/38 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 **B23K** Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, PAJ, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to daim No. Citation of document, with indication, where appropriate, of the relevant passages PATENT ABSTRACTS OF JAPAN Α vol. 2003, no. 12, 5 December 2003 (2003-12-05) & JP 2004 066322 A (MATSUSHITA ELECTRIC IND CO LTD), 4 March 2004 (2004-03-04) abstract 1 EP 0 796 695 A (BRITISH AEROSPACE PUBLIC) A LIMITED COMPANY) 24 September 1997 (1997-09-24) 4 3 cited in the application --the whole document DE 101 44 008 A1 (SIEMENS AG; Α HYDRAULIK-RING GMBH) 27 March 2003 (2003-03-27) cited in the application the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance Invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docudocument referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the an. document published prior to the international filling date but later than the priority date claimed *&* document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 30/06/2005 21 June 2005 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.

Aran, D

Fax: (+31-70) 340-3016

1

Internation No
PCT/EP2005/003110

C.(Contimu	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/EP200		
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to cla	im No.
A	GB 2 337 720 A (* EXITECH LTD) 1 December 1999 (1999-12-01) cited in the application the whole document		1	
				·
:				:- -
		ŧ"		
				
	A part start year	·		
	·		-	
				·
				•
	•			

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internation No PCT/EP2005/003110

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
JP 2004066322	2 A	04-03-2004	NONE		
EP 0796695	Α	24-09-1997	GB EP	2311953 A 0796695 A1	15-10-1997 24-09-1997
DE 10144008	A1	27-03-2003	EP EP	1291117 A1 1520653 A1	12-03-2003 06-04-2005
GB 2337720		01-12-1999	AT DE DE EP WO JP	226385 T 69903541 D1 69903541 T2 1082883 A1 9963793 A1 2002517315 T	15-11-2002 21-11-2002 18-06-2003 14-03-2001 09-12-1999 18-06-2002

European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax. (+31-70) 340-3016

Telefaxnr.

Internationales Aktenzeichen

	INTERNATIONALER RECHERCHENBE	RICHT	PCT/EP2005/00	3110		
A. KLASSI	IFIZIERUNG DES ANMELDUNGSGEGENSTANDES					
IPC 7	B23K26/073 B23K26/38					
Nach der Inte	ernationalen Patentklassifikation (IPK) oder nach der natio	nalen Klassifikation u	nd der IPK			
B. RECHE	RCHIERTE GEBIETE					
Recherchierte	er Mindestprüfstoff (Klassifikationssystem und Klassifikat	ionssymbole)				
IPC 7	B23K	·				
Recherchierte	e, aber nicht zum Mindestprüfstoff gehörende Veröffentlic	hungen, soweit diese t	unter die recherchierten	Gebiete fallen		
Während der	internationalen Recherche konsultierte elektronische Date	nbank (Name der Date	enbank und evtl. verwen	dete Suchbegriffe)		
EPO-Int	ernal, PAJ, WPI Data					
C. ALS WI	ESENTLICH ANGESEHENE UNTERLAGEN					
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich u	nter Angabe der in Be	etracht kommenden Teil	Betr. Anspruch N		
А	PATENT ABSTRACTS OF JAPAN			1		
	vol. 2003, no. 12, 5 December 2003 (2003-12-05) & JP 2004 066322 A (MATSUSHITA ELECTI IND CO LTD), 4 March 2004 (2004-03-04)					
Α	abstract					
	24 September 1997 (1997-09-24) cited in the application the whole document					
A	DE 101 44 008 A1 (SIEMENS AG; HYDRAULIK-RING GMBH) 27 March 2003 (2003-03-27)	· .		1		
	cited in the application					
M	the whole document		X Siehe			
Weitere Weitere	Veröffentlichungen sind der Fortsetzung von Feld C zu er	inehmen	Siehe	Anhang Patentfamil		
"A" Veröffentlich besonders b	hung, die den allgemeinen Stand der Technik definiert, aber nicht als edeutsam anzusehen ist	Prioritätsdamm veröffe sondern mu zum Verstä der ihr zugrundeliegend	g, die nach dem internationaler ndicht worden ist und mit der Æ indnis des der Erfindung zugru len Theorie angegeben ist	Anmeldung nicht kollidiert ndeliegenden Prinzips ode		
Anmeldedat	mai verottentnent worden st.	allein aufgrund dieser V	sonderer Bedeutung; die beam /eröffentlichung nicht als neu	spruchte Erfindung kann oder auf erfinderischer		
zu lassen, di Recherchen	hung, die geeignet ist, einen Prioritätsauspruch zweifelhaft erscheinen urch die das Veröffentlichungsdaum einer anderen im bericht genamten Veröffentlichung belegt werden soll oder die aus ren besonderen Grund angegeben ist (wie ausgeführt)	nicht als auf erfinderise	esonderer Bedeutung; die bean her Tätigkeit beruhend betrach	tet werden, wenn die		
	hung, die sich auf eine mündliche Offenbarung, eine Bemutzung, eine oder andere Maßnahmen bezieht		ner oder mehreren Veröffentlic ird und diese Verbindung für e			
"P" Veröffentlich			litglied derselben Patentfamilie	ist		
Datum des A	bschlusses der internationalen Recherche	Absendedatum des	internationalen Recherch	nenberichts		
2:	1 June 2005	30/06/2005	;			
Name und Po	ostanschrift der Internationalen Recherchenbehörde	Bevollmächtigter B	ediensteter			

Aram, D •

Telefonnr.

Internationales Aktenzeichen

PCT/EP2005/003110

INTERNATIONALER RECHERCHENBERICHT

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch	Nr.
A	GB 2 337 720 A (* EXITECH LTD) 1 December 1999 (1999-12-01) cited in the application the whole document	1	
	·		
	•		
		· ·	
			:
•		}	
•		•	•
•			
			•

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2005/003110

Im Recherchenbericht angeführtes Patentdokument		nt	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
JP	2004066322	Α	04-03-2004	NONE			,
EP	0796695	Α	24-09-1997	GB EP	2311953 0796695	* -	15-10-1997 24-09-1997
DE	10144008	A1	27-03-2003	EP EP	1291117 1520653		12-03-2003 06-04-2005
GB	2337720	A	01-12-1999	AT DE DE EP WO JP	226385 69903541 69903541 1082883 9963793 2002517315	D1 T2 A1 A1	15-11-2002 21-11-2002 18-06-2003 14-03-2001 09-12-1999 18-06-2002

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.