(DONNOT WRITE YOUR ANSWER IN THIS AREA)

WARNING: MISBEHAVIOR AT EXAM TIME WILL LEAD TO SERIOUS CONSEQUENCE.

SCUT Final Exam

Mathematical Analysis I Exam Paper B (2019-2020-1)

Notice:

- 1. Make sure that you have filled the form on the left side of seal line.
- 2. Write your answers on the exam paper.
- 3. This is a close-book exam.
- 4. The exam with full score of 100 points lasts 120 minutes.

Question No.	Ι	II	III	IV	Sum
Score					

I. Please fill the correct answers in the following blanks. ($4' \times 5 = 20'$)

Score

$$1.\lim_{n\to\infty}\left(1+\frac{1}{2n}\right)^n=\underline{\qquad}.$$

- 2. If $e^y \sin x = x + xy$, then $dy = \underline{}$
- 3. The inflection points of the curve $f(x) = \frac{1}{1+x^2}$ are ______.
- 4. Suppose f is continuous with the property that $|f(x)| \le |x| |\sin x|$ for all x, then $f'(0) = \underline{\qquad}$
- 5. If f(x) is continuous, and $f(x) = \sin^4 x + \frac{1}{\pi} \int_0^{\frac{\pi}{2}} f(x) dx$, then f(x) = ______

II. Finish the following calculations. (6-11: $6 \times 6 = 36$)

6.
$$\lim_{x \to 0} \frac{e^{x^3} - 1 - x^3}{(\sin 2x)^6}.$$

7.
$$\lim_{x \to 3} \left(\frac{x}{x-3} \int_3^x e^{-t^2} dt \right)$$

8. If $y = \arctan x$, find $y^{(n)}(0)$.

9. Evaluate the indefinite integral $\int \frac{1}{\sqrt{x^2 - a^2}} dx \ (a > 0)$

- 10. (a) Find the tangent to the cardioid $r = 1 + \sin \theta$ at the point where $\theta = \frac{\pi}{3}$.
 - (b) Find the length of cardioid.

III. Prove the following conclusions. ($8 \times 3 = 24$)

Score

11. Prove that $\lim_{x\to a} \frac{1}{x} = \frac{1}{a} (a > 0)$ by using the ε , δ definition of limit.

12. Let
$$f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
.

Find f'(x). Is f'(x) continuous at x = 0? Show your reasons.

13. If $ab > 0$. Use Cauchy's mean value theorem to prove that there exists	$\xi \in (a,b)$	such
that		

$$ae^b - be^a = (1 - \xi)e^{\xi}(a - b)$$

Score

IV. Finish the following questions. ($10 \times 2 = 20$)

14. Find the volume of the solid obtained by rotating the region bounded $y = x - x^2$ and y = 0 about x = 2.

15. A sequence $\{x_n\}$ is given by $a > 0, 0 < x_1 < \frac{1}{a}, x_{n+1} = x_n (2 - ax_n), (n = 1, 2, \cdots)$. Show that $\lim_{n \to +\infty} x_n$ exists and find it.