Mathématiques I

Fonctions continues

Dr. Mucyo Karemera (enseignant), Prof. Stéphane Guerrier

Matériel disponible en ligne: https://mkaremera-math1.netlify.app/

Licence: CC BY-NC-SA 4.0

Retour sur les limites de fonctions

$$f_1(x)=2x$$

$$f_2(x) = \frac{2x^2 - 6x}{x - 3}$$

$$f_3(x) = \begin{cases} 2x & \text{si } x \neq 3 \\ 4 & \text{si } x = 3 \end{cases}$$

Bien que
$$\lim_{x\to 3} f_1(x) = \lim_{x\to 3} f_2(x) = \lim_{x\to 3} f_3(x) = 6$$
, ce qui distingue f_1 de f_2 et f_3 est le fait que

$$\lim_{x \to 3} f_1(x) = 6 = f_1(3)$$

alors que $f_2(3)$ n'est pas défini et $f_3(3) = 4 \neq 6$.

On dit que f_1 est continue en 3.

Continuité

Définition (Continuité).

Soit f une fonction. On dit que f **est continue en** $x_0 \in \mathbb{R}$ si

- 1) $x_0 \in \mathcal{D}_f \subset \mathbb{R}$
- 2) $\lim_{x \to x_0} f(x)$ existe
- 3) $\lim_{x \to x_0} f(x) = f(x_0)$.

En général, on dit que $f:A\to\mathbb{R}$ est continue sur A si elle est continue $\forall x_0\in A$.

Visuellement, la continuité d'une fonction sur $\mathbb R$ est facile à déterminer: il suffit de voir si le graphe peut être dessiné sans lever le crayon!!

Continuité

Bien que f_2 et f_3 ne soient pas continues sur \mathbb{R} , f_2 est continue sur son domaine de définition $\mathcal{D}_{f_2} = \mathbb{R} \setminus \{3\}$ alors que f_3 est discontinue sur son domaine de définition $\mathcal{D}_{f_3} = \mathbb{R}$

Exemples de fonctions continues

La plupart des fonctions usuelles sont continues sur leur domaine de définition. Pour les fonctions définies par morceaux, il faut vérifier aux points de passages.

Propriétés des fonctions continues

La continuité est préservée par les opérations élémentaires sur les fonctions.

Théorème (Continuité et opérations élémentaires).

Si f et g sont continues en $x_0 \in \mathbb{R}$ alors sont aussi continues en x_0 :

1) la somme (f + g)

3) le produit $(f \cdot g)$

2) la différence (f - g)

4) le quotient (f/g), si $g(x_0) \neq 0$

Exemples:

- 1) On déduit de ce théorème que $f(x) = x^2 \cdot (\sqrt{x} + 2)$ est continue sur \mathbb{R}_+ ou encore que $f(x) = \frac{x-2}{x+1}$ est continue sur $\mathbb{R} \setminus \{-1\}$.
- 2) Pour la fonction $f(x) = \begin{cases} 2x^2 + 4 & \text{si } x \leq 2 \\ 3x^3 7 & \text{si } x > 2 \end{cases}$, on déduit qu'elle est continue $\forall x_0 \in \mathbb{R} \setminus \{2\}$. Pour voir si elle est continue en 2 il faut **calculer les limites à gauche et à droite de 2**:

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} 2x^{2} + 4 = \lim_{x \to 2} 2x^{2} + 4 = 2 \cdot 2^{2} + 4 = 12$$
$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} 3x^{3} - 7 = \lim_{x \to 2} 3x^{3} - 7 = 3 \cdot 2^{3} - 7 = 17.$$

La fonction n'est donc pas continue en 2.

Propriétés des fonctions continues

La continuité est aussi préservée par la composition.

Théorème (Continuité et composition).

Si f est continue en $x_0 \in \mathbb{R}$ et si g est continue en $y_0 = f(x_0)$, alors la fonction composée $(g \circ f)$ est continue en x_0 et

$$\lim_{x\to x_0}g(f(x))=g(f(x_0)).$$

On déduit de ce théorème que $f(x) = \ln(\sqrt{x})$ est continue sur \mathbb{R}_+^* puisque le domaine de définition de ln est \mathbb{R}_+^* et celui de \sqrt{x} est \mathbb{R}_+ .

Théorème (Continuité de la fonction réciproque).

Si f est bijective et continue en $x_0 \in \mathbb{R}$, alors la réciproque f^{-1} est continue en $y_0 = f(x_0)$, i.e.

$$\lim_{y \to y_0} f^{-1}(y) = f^{-1}(y_0).$$

En quoi la continuité est-elle intéressante/utile?

Le fait qu'une fonction f est continue en $x_0 \in \mathbb{R}$ si

$$\lim_{x\to x_0}f(x)=f(x_0),$$

indique que la continuité est une propriété propice à l'approximation de $f(x_0)$. Cette égalité peut se comprendre comme suit:

$$x \approx x_0 \Rightarrow f(x) \approx f(x_0),$$

où \approx signifie "environ égal".

Par exemple, c'est elle qui justifie le calcul de l'aire d'un cercle de rayon r>0 avec $3.14\approx\pi$. En effet, la fonction $f(x)=x\cdot r^2$ est continue sur $\mathbb R$ donc

$$3.14 \approx \pi \Rightarrow f(3.14) \approx f(\pi)$$

et $f(\pi)$ correspond à l'aire d'un cercle de rayon r.

En pratique, cette propriété permet notamment de faire des prévisions (à court terme) lorsque l'on étudie des fonctions continues du temps.

En quoi la continuité est-elle intéressante/utile?

Théorème (Théorème des valeurs extrêmes).

Soit f une fonction définie sur un intervalle compact $[a,b] \subset \mathbb{R}$. Si f est continue alors $\exists c \in [a,b]$ et $\exists d \in [a,b]$ tels que $\forall x \in [a,b]$ on a

$$f(c) \leqslant f(x) \leqslant f(d)$$

Ce théorème dit qu'une fonction **continue** définie sur un **compact** atteint ses bornes (inférieure et supérieure). Ces bornes peuvent être atteintes plus d'une fois.

Ce théorème est utile pour la résolution de problèmes d'optimisation.

En quoi la continuité est-elle intéressante/utile?

Théorème (Théorème des valeurs extrêmes).

Soit f une fonction définie sur un **intervalle compact** $[a,b] \subset \mathbb{R}$. Si f est continue alors $\exists c \in [a,b]$ et $\exists d \in [a,b]$ tels que $\forall x \in [a,b]$ on a

$$f(c) \leqslant f(x) \leqslant f(d)$$

L'hypothèse de compacité est importante. En effet, la fonction

$$f: \mathbb{R}_+^* \to \mathbb{R}_+^*$$

$$x \mapsto \frac{1}{x}$$

est continue mais n'atteint ni sa borne supérieure qui est $+\infty$ ni sa borne inférieure qui 0.

