Thursday June 9, 2016 Lecture 15

Number Theory

444

Notables

- Reach Chapter 4
- Homework #9
 - Page 229, Problems 2, and 16
 - □ Page 244, Problems 6, 10, and 14,
 - Page 245, Problems 28, and 32
 - Due, Tuesday June 14, 2016

Complexity of Algorithms

Complexity of Algorith	LE 1 Commonly Used Terminology for the elexity of Algorithms.				
Complexity	Terminology				
$\Theta(1)$	Constant complexity				
$\Theta(\log n)$	Logarithmic complexity				
$\Theta(n)$	Linear complexity				
$\Theta(n \log n)$	Linearithmic complexity				
$\Theta(n^b)$	Polynomial complexity				
$\Theta(b^n)$, where $b > 1$	Exponential complexity				
$\Theta(n!)$	Factorial complexity				

5

Complexity of Algorithms...

Problem Size n	Bit Operations Used						
	log n	n	$n \log n$	n^2	2"	n!	
10	$3 \times 10^{-11} \text{ s}$	10^{-10} s	$3 \times 10^{-10} \text{ s}$	10^{-9} s	10^{-8} s	3×10^{-7}	
10^{2}	$7 \times 10^{-11} \text{ s}$	10^{-9} s	$7 \times 10^{-9} \text{ s}$	10^{-7} s	$4 \times 10^{11} \text{ yr}$	*	
10^{3}	$1.0 \times 10^{-10} \text{ s}$	10^{-8} s	$1 \times 10^{-7} \text{ s}$	10^{-5} s	*	*	
10^{4}	$1.3 \times 10^{-10} \text{ s}$	10^{-7} s	$1 \times 10^{-6} \text{ s}$	10^{-3} s	*	*	
10 ⁵	$1.7 \times 10^{-10} \text{ s}$	10^{-6} s	$2 \times 10^{-5} \text{ s}$	0.1 s	*	*	
10 ⁶	$2 \times 10^{-10} \text{ s}$	10^{-5} s	$2 \times 10^{-4} \text{ s}$	0.17 min	*		

5

Complexity of Decision Problems

- Tractable Problem: There exists a polynomial time algorithm to solve this problem. These problems are said to belong to the Class P.
- Intractable Problem: There does not exist a polynomial time algorithm to solve this problem
- Unsolvable Problem: No algorithm exists to solve this problem, e.g., halting problem.
- Class NP: Solution can be checked in polynomial time.
 But no polynomial time algorithm has been found for finding a solution to ALL problems in this class. Note that a problem in Class P is also in Class NP
- NP Complete Class: If you find a polynomial time algorithm for one member of the class, it can be used to solve all the problems in the class.

P versus NP challenge

- The P versus NP problem asks whether the class P = NP? Are there problems whose solutions can be checked in polynomial time, but can not be solved in polynomial time?
 - Note that just because no one has found a polynomial time algorithm is different from showing that the problem can not be solved by a polynomial time algorithm.
- If a polynomial time algorithm for any of the problems in the NP complete class were found, then that algorithm could be used to obtain a polynomial time algorithm for every problem in the NP class
 - Satisfiability (in Section 1.3) is an NP complete problem.
- It is generally believed that P≠NP since no one has been able to find a polynomial time algorithm for any of the problems in the NP complete class.
- The problem of P versus NP remains one of the most famous unsolved problems in mathematics (including theoretical computer science). The Clay Mathematics Institute has offered a prize of \$1,000,000 for a solution.

Outline

- Division: Factors, multiples
- Primes: The Fundamental Theorem of Arithmetic.
- The Division Algorithm
- Greatest Common Divisors: Relatively prime
- Least Common Multiples
- Modular Arithmetic: Congruence
- Applications of Congruence

5

Division (review)

- Let a be an integer and m a positive integer. Then there are unique integers q and r, with $0 \le r < m$, such that a = dq + r
 - □ *a* is called the *dividend*,
 - \square *m* is called the *divisor*,

 - $rac{1}{2}$ r is called the *reminder*, $r = a \mod d$

5 453

Division

- Definition: Let a and b be integers with $a \ne 0$. Then, we say that a divides b, denoted $a \mid b$, if there is an integer c such that b = ac.
 - \Box *a* is called a *factor* of *b*, and *b* is a *multiple* of *a*.
 - We denote $a \nmid b$ when a does not divide b
 - □ $a \mid b$ is equivalent to $\exists c \ (b = ac)$ where the universe of discourse is Z.

5

Division Facts

- Theorem: Let a, b, c be integers with $a \ne 0$. Then,
 - \Box if $a \mid b$ and $a \mid c$ then $a \mid (b+c)$
 - \Box if $a \mid b$ then $a \mid bc$
 - \Box if $a \mid b$, and $b \mid c$ then $a \mid c$.
 - □ If $a \mid b$ and $a \mid c$ then $a \mid (mb + nc)$ whenever m and n are integers.

Primes

- Definition: A positive integer p > 1 is called *prime* if the only positive factors of p are 1 and p.
- □ A positive integer that is greater than 1 and is not prime is called *composite*.
- Note that number 1 is neither prime nor composite.
- Some primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47...
- $\ \square$ How many digits in the largest prime found to-date (2016)?
 - 22,338,618 digits
 - A Mersenne prime = 2^{74,207,281} 1

5

456

Prime Theorems

- Theorem 1: Every positive integer n > 1 has a prime factor $\leq n$. Why?
- Theorem 2: Every positive integer *n* > 1 can be written *uniquely* as a prime or as the product of primes, in non-decreasing order. (proof later)
- Theorem 3: If n is a composite integer, then n has a prime factor $\leq \sqrt{n}$. Why?
- Corollary: If *n* does not have a prime factor $\leq \sqrt{n}$ then it is prime. Why?
- Conjecture: Every even integer > 2 can be written as the sum of two primes.

5

457