

Initiation et sensibilisation à la connaissance des sols

Matière organique du sol

Jean Marie VINATIER (CRARA)

Ont également participés à la réalisation de ce montage

Organisation de la formation

- Module 1/ Les sols : observation et fonctionnement
- Module 2/ constituants minéraux du sol
- Module 3/ Matière organique des sols
- Module 4/ Initiation à la pédogénèse
- Module 5/ Cartographie des sols et des paysages, gestion des informations
- Module 6/ : Évaluation du potentiel épurateur des sols

Matière Organique du sol

COMPOSITION QUANTITATIVE DE LA MO DU SOL (25cm; d=1,5; MO=2%)

ELEMENTS FIGURES ET SUBSTENSES CHIMIQUES DEFINIES	1,5t.	2%
BIOMASSE MICROBIENNE	1t.	1,2%
HUMUS	72,5t.	96,8%
TOTAL	75t.	100%

MO LIBRE ET LIEE

(Durr et al. 1979)

Matière organique du sol

Exemple d'horizon A.

Hauteur de la coupe : 15 cm.

MO Liée

Des ressources de matière organique fraîche

Matière Organique du sol

EVOLUTION DU C/N DU SOL

Matière Organique du sol

Bilan humique Modèle mono compartimental

Eléments Minéraux MO Fraiche Stock K2 **K**1 d'humus Coefficient Coefficient Minéralisation total Humification annuelle annuelle du sol

Quantité d'humus (MO Liée) produits par différents sous produits (d'après Rémy et al.

1975)

SOUS PRODUIT	% de MS	Quantité épandue standard	K1	Humus produit (kg)
Paille	<mark>85</mark>	6t	0.14	715
Fumiers	25 à 28	30t	0.30 à 0.4	2250 à 3360
Lisiers	10 à 13	30t (20m3)	0.2	600 à 780
Fientes	<mark>25</mark>	10t	0.2	500
Boues de STEP	<u>5</u>	10t	0.09	45
Ss produits de distilerie	<mark>66</mark>	20t	0.02	264
Compost urbains	<mark>60</mark>	10t	0.40	2400
Tourbes	50	20t	0.18	1800
Humus industriel	70	4t	0.6	1680

COEFFICIENT DE MINERALISATION DE L'HUMUS (K2)

(en fonction des teneurs en argile et en calcaire du sol)

d'après REMY et al. 1974

8					
CaCO	Argile (0/00)				
(0/00)	50 150 300				
0	2.4	1.7	1.2		
50	1.9	1.4	1.0		
150	1.4	1.0	0.7		
400	0.8	0.6	0.4		

K2 exprimé en %

EVOLUTION DU STATUT ORGANIQUE DU SOL

Exemple de calcul

Soit un sol de 15% d'argile, 5% deCaCO3, 2% de MO (humus) et 3500 t. de terre à l'ha.

K2= 1.4% => stock initial de MO du sol : 3500*2% = 70 t d'humus

Apports annuels:

Cas n° 1: on enlève les paille et on épand 30 t de fumier à 25% de MS (K1=0.3)

 $30*0.25*0.3 \implies 2.25 t d'humus$

Cas n° 2: on enfouit les 6t/ha pailles à 85% de MS (K1=0.14)

 $6*0.85*0.14 \implies 0.71 t d'humus$

Exports annuels:

Cas n° 1: $(70 + 2.25) * 0.014 \Rightarrow$ 1.01 t d'humus

Cas $n^{\circ} 2 \cdot (79 + 0.71) * 0.014 => 0.99 t$ d'humus

Bilan annuel:

Cas n° 1: 2.25 - 1.01 = 1.24 t. d'humus

=> enrichissement

Cas n° 2:0.71-0.99 = -0.27 t. d'humus

=> appauvrissement

JM VINATĪĒR

Résultat de l'essai QualiAgro – INRA

http://www6.inra.fr/qualiagro

Evolution des teneurs en C organique dans les sols des parcelles + N depuis le début de l'essai

- DVB: compost de boues urbaines
- BIO: composts de bio déchets
- OMR: composts d'ordures ménagères
- FUM: fumier de bovins
- TEM: témoin

Exemple de calcul

Soit un sol de 15% d'argile, 5% deCaCO3, 2% de MO (humus) et 3500 t. de terre à l'ha.

K2= 1.4% => stock initial de MO du sol : 3500*2% = 70 t d'humus

Quel équilibre?

dMO/dt = K1m-K2MO

•avec « MO » = teneur en MO du sol (ppl au taux d'humus)

•« t »= durée

•« m » = masse d'apports organiques frais annuelle (en MS)

MO= $(K1*m/K2) + [MO_o - (K1*m/K2)] e^{-K2t}$ Si t= ∞ => e-K2t=0 => MOequilibre=K1m/K2 Soit un équilibre à terme en cas d'apport constant.

.Cas n° 1: MOeq = 0.3/0.014 * 30*0.25 = 160t soit 4.5 % des 3500t de terre.
.Cas n° 2: MOeq = 0.14/0.014 * 6*0.85 = 51t soit 1.45 % des 3500t de terre.

Exemple de calcul

Soit un sol de 15% d'argile, 5% deCaCO3, 2% de MO (humus) et 3500 t. de terre à l'ha.

K2=1.4% => stock initial de MO du sol : 3500*2% = 70 t d'humus

Quelle « demie vie » pour l'humus du sol?

La durée de demi-vie de la MO du sol, sans aucun apport peut également être calculée : $MO = MO_0/2$ et m=0 $MO_0/2 = MO_0$ e^{-K2t}

Avec K2 = 0.014 il vient $0.5 = e^{-0.14 +} \Leftrightarrow Ln \ 0.5 = -0.014 + = -0.69$ soit t = 0.69/0.014 = 49 ans

Mais c'est en réalité plus compliqué que çà !!!!

Le modèle pluri compartimental de la matière organique des sols

Hoosfield et Broadbalk n° 1

Hoosfield et Broadbalk n° 2

LE MODELE PLURI COMPARTIMENTAL

L'outil de simulation : SIMEOS-AMG (Agro Transfert ST – INRA LAON - 2011)

D'après Carbone des sols en Poitou Charentes – CRAPC – RMT S&T (2012)

*AMG, du nom de ces auteurs : Abdriulo, Mary, Guérif - INRA de LAON

Système de culture	Caractéristiques ystème de culture permanentes du sol (sur la couche 0-30 cm)		Climat (moyennes annuelles)	
Cultures (rotation)	Argile vraie	Teneur de carbone	ETP	
Cultures intermédiaires	Calcaire total		Pluviométrie	
Rendements	Densité apparente	(SIMEOS-AMG calcule	Température	
Restitution des résidus	Eléments grossiers	ensuite le stock à		
Apports organiques		partir de l'ensemble		
Type et profondeur de		des caractéristiques du		
travail du sol		sol)		
Irrigation				

JM VINATIER

Matière Organique du sol

DETERMINATIONS DU TAUX DE MATIERE ORGANIQUE EN ANALYSE AGRONOMIQUE DE ROUTINE

Mark Dosage Du Carbone Total

⊗Oxydation énergétique par unmélange sulfochromique **⊗Dosage du carbone total par la**méthode de « ANNE » **⊗ MO= [C]*1.724**

nb: 1.5<K<2

↑DOSAGE DE L'AZOTE TOTAL

☑ Lors de l'attaque sulfochromique,
l'N de l'humus est minéralisé en NH3
☑ Dosage du N (NH3) total
☑ MO = [N]*20 <=> C/N = 11.6 (valeur standard)

nb:8<C/N<30

Analyse biochimique des MO du sol Méthode de Kononova

Disparition de la cellulose Il ne reste plus que la lignine

JM VINATIER

26

Représentation schématique d'un acide humique (Schintzer,

Processus d'évolution de la MO du sol en milieu naturel

	Milieu	Mode d'action	Produit	Dynamique
	Aérobie Rapide CO2 + CO2 + A.H.Gris			
dyse	Aérobie acide	Lente (champi.)	Glucides Uronides	Minéralisation rapide
Cellulolyse	Anaér <i>o</i> bie	Assez rapide (basidio)	CO2+ CH4+ alcools	Méthanisation & lessivage
æ	Aérobie basique	Lente (basidio)	A.H. BRUNS	Humification stable
Ligninolyse	Aérobie acide	Rapide (champi.)	ACIDES FULVI- QUES	Polyphénolstrès mobiles et agressifs
	Anaérobie	Lente	Tourbes	
Protéolys	Rapide (µorg. variés)		ACIDES AMINES	Synthèse microbienne, Acides or ga.
Pro	Acide	Très lente	AWITIVES	Solubles, NH4

NB: en milieu acide et anaérobie, la MO fraîches n'évolue pas, c'est la TOURBE

Caractérisation (fractionnement) biochimique des amendements organiques (SADEF 99)

Matière Organique du sol

LES DIFFERENTS HORIZONS ORGANIQUES DANS UN PROFIL PEDOLOGIQUE

	L ou O ₁	MO fraiche	
Ao	F ou Of	Fermentation cellulose	
	M ou Oh	Humification	
A1		Mélange humus et terre (zone de minéralisation)	

Hauteur de la

coupe : 20 cm.JM VINATIER

France, Vosges, climat tempéré froid

> Les horizons O, H et A

Brésil, centre-sud, climat tropical subhumide

Litière moyennement épaisse sous forêt : c'est un moder, avec ses deux couches OI et Of posé sur un horizon organo-minéral A.
Hauteur de la coupe : 20 cm.

France, Morvan, climat tempéré froid

Litière épaisse sous forêt:

c'est un MOT, avec ses trois couches Ol, Of, Oh, posé sur un horizon organo-minéral A. Hauteur de la coupe : 25 cm.

CARACTERISTIQUES DES TROIS PRINCIPAUX TYPES D'HUMUS

	MULL	MODER	MOR
HRZ	O1 A1 épais	O1 Of A1 épais	O1 Of Oh A1 mince
Composés	Acides humiques gris	Acides humiques bruns	Acides fulviques
pН	7	5.5	4
C/N	10	20	30
S/T	100%	20%	5%
CEC(meq/ 100g)	600	400	200

Matière Organique du sol

Relation entre Matière organique (MOS) et la capacité d'échange cationique (CEC) du sol

Types et quantité de minéraux produits par la minéralisation d'humus issus de différents sous produits (d'après Rémy

_ 4	_ 1	1075)
ΩT	al.	14/51
UU	aı.	$\mathbf{L} \mathcal{J} \mathbf{I} \mathcal{J} \mathbf{J}$

A CONTRACTOR OF THE PARTY OF TH	No. of Lot	· ·			
		N	P2O5	K2O	CaO
(t/ha)	Reh	(Kg/ha)			
Paille	6	23 (-26)	10	45	23
Fumier	30	172 (25)	100	260	300
Lisier porc	30	100 (40)	80	70	20
Fientes	10	150 (100)	163	75	300
Boues de STEP	10	50 (15)	15	8	400
Ss produits de distilerie	20	66 (23)	172	8	6200
Compost hurbain	10	65 (10)	30	50	700
Tourbes	20	90 (0)	15	15	
Humus industriel	4	173 (45)	22	5	

INTERPRETATION DU TAUX DE MO DANS L'HORIZON CULTUVE

TAUX D'HUMUS, ARGILE ET pH

0

рΗ

Le travail du sol et dilution de la matière organique

Au travail du sol simplifié

Voire le semis sous couvert