

Exercice 3:

$$\int = \int_{A}^{\infty} \int \left(A_{3} \frac{T}{2} \right) = \mathbb{R} \left(?_{3} \frac{T}{2} \right)$$

$$\int = T \partial R \left(A, \frac{1}{2} \right) = R \left(D, \frac{1}{2} \right)$$

$$g = S_{c} \circ f \circ L$$

$$g = S_{c} \circ R(D, \frac{\pi}{2})$$

$$= \mathbb{R}_{(C_{3}\Pi)} \circ \mathbb{R}_{(D_{3}\frac{\Pi}{2})}$$

$$\mathcal{O} = \mathbb{R}(\mathbf{F}_{12}) \circ \mathbb{R}(\mathbf{F}_{12})$$

$$=) \quad \mathcal{C} = \mathcal{L}(\mathcal{I}, \mathcal{A} + \mathcal{E})$$

R(?)d+B)

 $g = S_c \circ R_{(D; \overline{1})}$

 $- \mathcal{Z}_{(C,T)} \circ \mathcal{Z}_{(D,\frac{T}{2})}$

T + T = 3T = -T (2T) = 0 (2T)

 $A \qquad \begin{array}{c} \left(D_{1} \overline{2} \right) \\ \end{array} \qquad \begin{array}{c} S_{C} \\ \end{array} \qquad \begin{array}{c} C \\ \end{array}$

 $\left\{ \begin{pmatrix} 2 & -\frac{1}{2} \\ 2 & 1 \end{pmatrix} \right\}$

NA = NC =) NE (med [AC]

3 ea le Centre de g

$$+ \int \partial = \mathbb{R} \left(\frac{1}{D}, \frac{1}{2} \right) \partial \mathbb{R} \left(\frac{1}{B}, -\frac{11}{2} \right)$$

$$900 \frac{\pi}{2} + \left(-\frac{\pi}{2}\right) \equiv 0 \left(2\pi\right)$$

donc fog set une Translation de Vect.

$$\begin{array}{c} \left(\begin{array}{c} DC \\ \overline{D} \end{array} \right) = \begin{array}{c} CDC \\ \overline{D} \end{array} \\ \left(\begin{array}{c} DC \\ \overline{D} \end{array} \right) = \begin{array}{c} CDC \\ \overline{D} \end{array} \\ \left(\begin{array}{c} DC \\ \overline{D} \end{array} \right) = \begin{array}{c} \overline{D} \\ \overline{D} \end{array} \\ \left(\begin{array}{c} DC \\ \overline{D} \end{array} \right) = \begin{array}{c} \overline{D} \\ \overline{D} \end{array} \\ \left(\begin{array}{c} 2\pi \\ \overline{D} \end{array} \right) = \begin{array}{c} \overline{D} \\ \overline{D} \end{array}$$

$$\mathbb{P}\left(\mathbb{P}_{1}-\frac{\mathbb{P}}{2}\right)=\mathbb{P}\left(\mathbb{P}_{1}\right)$$

$$\cos (BD) \cap (BA) = \{B\}$$

$$2(\overline{BA},\overline{BD}) = -\overline{2}$$

Lapple

$$A(I,d) = \sum_{\Delta} O(\Delta')$$

$$\Delta' = \mathbb{Q} \left(\frac{1}{2} \right)$$

$$\Delta = \mathcal{P}(\mathcal{I}, \frac{1}{2})^{(\Delta)}$$

$$f \circ g = S_{(DC)} \circ S_{(BD)} \circ S_{(BD)} \circ S_{(BD)} \circ S_{(BA)}$$

$$f \circ \hat{g} = \mathcal{S}_{(DC)} \circ \mathcal{S}_{(BA)}$$

2) Montrer qu'il existe un unique point M du plan vérifiant f(M) = g(M) = M'

$$f(M) = g(M) = M^{1}$$

$$M = g(M) = M^{1}$$

$$f^{-1} \circ g(M) = M$$

U et me rotation d'augle. 11

 $\begin{array}{ccc}
& & & & & & \\
& & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$

J M	tque	f(M) = g(M)
3 A	+9	$\int_{-1}^{-1} \circ g(A) = A$
		$\left(\int_{-1}^{-1} \left(g(A) \right) \right) = A$
		$ \begin{cases} $
		g(A) = f(A)

$$= \begin{cases} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases}$$

$$\begin{array}{ccc}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

$$=) \begin{array}{c} T \\ AB \end{array} \circ \begin{array}{c} C_{1} \overline{E} \\ C_{1} \overline{E} \end{array}) \circ \begin{array}{c} C_{1} \overline{E} \\ C_{1} \overline{E} \end{array}) \circ \begin{array}{c} C_{1} \overline{E} \\ C_{1} \overline{E} \end{array}) \circ \begin{array}{c} C_{1} \overline{E} \\ C_{1} \overline{E} \end{array})$$

$$\frac{1}{AB} = R(I, II) \circ R(c_1 - II)$$

$$X$$
 $S_{AB}(M) = N$

$$S_{O}S_{O}T_{AB}(M)=S_{O}(N)$$

$$T_{\overline{AB}}(M) = S_{D}(N)$$

- 3) Soient I = A * B et J = B * C.
 - a) Montrer qu'il existe un unique déplacement φ qui envoie A en C et B en D.

Cotes J'un Carré

ona AB = CD = 0 d'où l'existance et l'unicite de C

Laugle de C:

 $(\overrightarrow{AB}, \overrightarrow{CD}) = \overline{1} \qquad (2\overline{1})$

 $\neq 0$ (2T)

(2 - rot() = Sym. Centrale.

fuisque $\mathcal{C}(A) = C$ Centre de $\mathcal{C} = A \times C = 0$

$$C = S_{\theta} = R(\theta_1 \pi).$$

b) Soit Ψ l'antidéplacement qui envoie A en C et B en D. Déterminer $\psi \circ \varphi(C)$ et $\psi \circ \varphi(D)$.

mq

$$\gamma$$
 $(A) = C$

$$\alpha (\beta) - 1$$

 $\mathcal{C}(A) = C$

Si Y - S

$$S_{S}(A) - C \longrightarrow S = \text{med}[AC]$$

$$S_D(B) = D = D = Med[BD]$$

or (AC) et (BD) seconts of

=) $\psi + S_{\Delta}$

Not yet me sym. Phissonte

 $\begin{array}{cccc}
A & & & & & & & & \\
A & \longrightarrow & C & & & & & & & \\
\end{array}$

 $B \xrightarrow{\gamma} D$ $B \xrightarrow{C} D$.

 $h = \gamma \circ \zeta^{-1}$

 $C \longrightarrow A \longrightarrow C$

 $\mathbb{D} \xrightarrow{\mathcal{C}^{-1}} \mathbb{B} \xrightarrow{\mathcal{V}} \mathbb{D}$

 $h = \gamma \circ (e^{-1}) = autidep$ Anti dep

 $h = S_{CD}$

 $\gamma \circ \gamma = S_{(CD)}$

40 2-10 4 = Sco) °C

= > 0 CD) 0 C

-) / - Sco) ° So

 $(\vec{obj}) \gamma = \vec{J}_{\vec{u}} \circ \vec{S} \quad (\vec{u} \; \vec{J}_{\vec{v}} \; \vec{\Delta})$

T A I B

	7		1 BC	Sol,)
	BC	sA	direct	de (0.	L)
In		Ψ =	J → BC	o S (OI)	(Forme re dei
			•		

