Electrónica Analógica: Laboratorio 5

1st Hector Pereira

Ingeniería en Mecatrónica Universidad Tecnológica (UTEC) Fray Bentos, Uruguay hector.pereira@estudiantes.utec.edu.uy

2nd Mateo Lecuna

Ingeniería en Mecatrónica Universidad Tecnológica (UTEC) Fray Bentos, Uruguay mateo.lecuna@estudiantes.utec.edu.uy

Resumen— KEYWORDS

- I. Introducción
- II. MARCO TEÓRICO
- III. METODOLOGÍA

III-A. Materiales

IV. RESULTADOS

Cuadro I Voltaje de Salida Simulado Según Frecuencia (Adimensional)

Frecuencia (Hz)	Pasa bajos	Pasa altos	Pasa banda
30	1.00	0.02	_
60	1.00	0.04	0.52
120	1.00	0.08	0.83
240	0.99	0.15	0.88
480	0.96	0.29	0.90
960	0.86	0.52	0.92
1200	_	_	0.88
1500	_	_	0.87
1800	_	_	0.86
1900	0.64	0.77	_
2100	_	_	0.84
2500	_	_	0.82
3800	0.38	0.92	_
7500	0.21	0.98	_
15000	0.10	0.99	_

Cuadro II Voltaje de Salida práctico según frecuencia (adimensional)

Frecuencia (Hz)	Pasa bajos	Pasa altos	Pasa banda
50	_	_	0.6900
100	1.0240	0.1105	0.8225
200	_	_	0.8673
300	_	_	0.8750
500	1.0160	0.4070	0.8855
750	_	_	0.8800
900	1.0080	0.6110	_
1000	_	_	0.8400
1200	1.0080	0.7040	_
1500	1.0080	0.7720	_
2000	1.0080	0.8360	0.7600
2500	1.0080	0.8760	_
3000	0.9920	0.9000	_
4000	_	_	0.6000
5000	0.9760	0.9320	_
6000	0.9760	0.9440	_
8000	_	_	0.3600

Cuadro III
CIRCUITOS AMPLIFICADORES SIMULADOS

Circuito	Entrada 1	Entrada 2	Salida (Vpp)
Amplificador Inversor	Senoidal	_	1
Sumador Inversor	Senoidal	Triangular	2
Derivador	Senoidal	_	31.8
Integrador	Senoidal	_	7.8m

Cuadro IV CIRCUITOS AMPLIFICADORES PRÁCTICOS

Circuito	Entrada 1	Entrada 2	Salida (Vpp)
Amplificador Inversor	Senoidal	_	0.93
Sumador Inversor	Senoidal	Triangular	1.61
Derivador	Senoidal	_	7.47
Integrador	Senoidal	_	40.33m

V. CONCLUSIONES

VI. APENDICE

VI-A. Carpeta de laboratorio

Enlace de acceso a la carpeta de Google Drive con simulaciones y evidencias del laboratorio.