# SPN Encryption/Decryption & Linear Cryptanalysis

## 1. 请实现 SPN (P. 59-60) 加解密算法

#### 密码体制 代换-置换网络

设  $\ell$ , m 和 Nr 都是正整数,  $\pi_s: \{0,1\}^\ell \to \{0,1\}^\ell$  和  $\pi_p: \{1,\cdots,\ell m\} \to \{1,\cdots,\ell m\}$  都是置换。 设  $\mathcal{P} = \mathcal{C} = \{0,1\}^{\ell m}$  ,  $\mathcal{K} \subseteq (\{0,1\}^{\ell m})^{Nr+1}$  是由初始密钥 K 用密钥编排算法生成的所有可能的密钥编排方案之集。对一个密钥编排方案  $(K^1,\cdots,K^{Nr+1})$  ,我们使用算法来加密明文 x 。

算法 SPN 
$$(x, \pi_S, \pi_P, (K^1, \dots, K^{Nr+1}))$$
 $w^0 \leftarrow x$ 

for  $r \leftarrow 1$  to  $Nr - 1$ 

$$\begin{cases} u' \leftarrow w'^{-1} \oplus K' \\ \text{for } i \leftarrow 1 \text{ to } m \\ \text{do } v'_{< i>>} \leftarrow \pi_S(u'_{< i>>}) \\ w' \leftarrow (v'_{\pi_P(1)}, \dots, v'_{\pi_P(\ell m)}) \end{cases}$$
 $u^{Nr} \leftarrow w^{Nr-1} \oplus K^{Nr}$ 

for  $i \leftarrow 1$  to  $m$ 

do  $v^{Nr}_{< i>>} \leftarrow \pi_S(u^{Nr}_{< i>>})$ 
 $y \leftarrow v^{Nr} \oplus K^{Nr+1}$ 

output(y)

设  $\ell = m = Nr = 4$ ,  $\pi_S$ ,  $\pi_P$ 如下定义:

| $\frac{z}{\pi_{\kappa}(z)}$ | $\perp$ | 0       | 1 | 2 | 3  | 4 | 5 | 6  | 7  | 8 | 9  | Α  | В  | $C \mid$ | D  | E  | F  |
|-----------------------------|---------|---------|---|---|----|---|---|----|----|---|----|----|----|----------|----|----|----|
| $\pi_{s}(z)$                |         | E       | 4 | D | 1  | 2 | F | В  | 8  | 3 | A  | 6  | C  | 5        | 9  | 0  | 7  |
| $\frac{z}{\pi_p(z)}$        | 1       | $\perp$ | 2 | 3 | 4  | 5 | 6 | 7  | 8  | 9 | 10 | 11 | 12 | 13       | 14 | 15 | 16 |
| $\pi_p(z)$                  | 1       |         | 5 | 9 | 13 | 2 | 6 | 10 | 14 | 3 | 7  | 11 | 15 | 4        | 8  | 12 | 16 |

### 密钥编排算法:

 $K = (k_1, \dots, k_{32})$  定义 K' 是由 K 中从  $k_{4r-3}$  开始的 16 个连续的比特

#### Sample:

Input: (明文 x, 密钥 K)

x = 0010 0110 1011 0111

 $K = 0011 \quad 1010 \quad 1001 \quad 0100 \quad 1101 \quad 0110 \quad 0011 \quad 1111$ 

Output: (密文 y)

y = 1011 1100 1101 0110

2. 要求大家实现线性攻击 (P. 68-69) 算法; 分析出 K⁵轮密钥···



SPN 网络示意图