IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Docket No. 0390112

Examiner Helane Myers

In re application: PETER J. JESSUP ET AL.

PATENT

Serial No. 08/409,074 Filed: March 22, 1995

GASOLINE FUEL

Assistant Commissioner For Patents Washington, D. C. 20231

Dear Sir:

AFFIDAVIT UNDER 37 CFR 1.132

- I, Peter J. Jessup, being duly sworn, depose and say that:
- 1. I am by profession a Research Chemist, having earned the degree of Bachelor of Science in Chemistry in 1972 and the degree of Doctor of Philosophy in Chemistry in 1976, both from the Latrobe University, Melbourne, Australia;
- 2. I engaged in Post-Doctorate Research at the University of California at Irvine from 1976 to 1977 in the scientific field of natural product synthesis;
- 3. I have been employed by the Union Oil Company of California from 1978 to 1981 and, after being briefly employed with Exxon in 1981-1982, from 1982 to the present date. My current title is Principal Scientist and my professional responsibility is in the scientific field pertaining to research related to fuels, lubricant additives, fuel additives, synthetic chemistry, and fuel combustion chemistry, particularly as applied to diesel engines or internal combustion engines for motor vehicles;

- 4. I currently am the patentee or copatentee of
 26 United States patents, most of which patents relate to
 automotive engines, fuels, and lubricants;
- 5. I am one of the applicants of the above-identified patent application, i.e., Serial No. 08/409,074 filed March 22, 1995 entitled "Gasoline Fuel," and all references hereinafter to "our patent application" and "our specification" are to said application and its specification, respectively.
- 6. Prior to the end of June 1990, Dr. Michael C. Croudace and I had run the experiment described in Example 1 of our patent application and had developed the equations pertaining thereto (See our specification on page 11.), which equations establish, among other things, that reducing the T50 of an unleaded gasoline would, all other things being equal, reduce both CO and HC tailpipe emissions when combusted in an automobile with a catalytic converter. (See our specification on page 11, line 28 to page 12, line 26.)
- 7. On July 17, 1990 I attended a meeting at Unocal's research facility in Brea, California at which Jonathan Haines, a representative from Toyota Technical Center, USA, Inc., distributed a two-page document (attached herewith as Attachment T1) showing data pertaining to fuels for a Toyota experiment. At present, I can no longer remember if Mr. Haines told me if the Toyota experiment relating to the 10 fuels shown in Attachment T1 was one which had been done by Toyota, was then currently being done by Toyota, or then still in the planning stage.
- 8. At the meeting I made handwritten notes of some of Mr. Haines' statements on my copy of Attachment T1, which handwritten notes can be seen on said Attachment T1. My notes

indicate, among other things, that Mr. Haines' said that Toyota had data relating T50 to exhaust emissions, i.e., that increases in T50 caused increases in emissions, that Toyota wanted tight control on T50 for reformulated gasolines, and that Toyota was recommending an 85 - 100° C. (185 - 212° F.) T50 range. My notes also indicate that Toyota allegedly had data showing a 50% change in emissions by changing T50.

- 9. Subsequently, I received in the mail from Mr. Haines a 19 page document entitled "Effect of Gasoline Property on Exhaust Emissions and Driveability" by Toyota Motor Corporation, dated October, 1990 (a copy attached herewith as Attachment T2, with handwritten page numbers added in lower right hand corner). Accompanying the document was a memo from Mr. Haines dated October 28, 1990, a copy of said memo being attached herewith as Attachment T3.
- Upon review of this Attachment T2, I found no evidence therein that decreasing T50 yields reductions in HC and CO Although the bar chart on page 7 of Attachment T2 allegedly relates T50 to the emissions produced from three fuels A, B, and C, the data in the document do not support this conclusion. According to the figure on said page 7, Fuel A yielded more HC and CO than Fuel B, which in turn yielded more than Fuel C. From this information, it appeared to me that Toyota had assumed that T50 was the cause of this phenomenon because, as shown on page 8 of Attachment T2, the T50 of fuel A was higher than Fuel B, which in turn was higher than the T50 of Fuel C. But the same could be said for density, and for IBP, and for T10, and for aromatics, and for octane. Any one, or some combination thereof, or some other gasoline property or properties, or yet other factors, could have been responsible for the emissions results of Fuels A, B, and C.

- 11. In sum, I found Toyota's apparent reasoning for concluding that decreasing T50 decreases HC and CO emissions to be seriously flawed and scientifically invalid, the conclusion being unsupported from the data and other information on pages 7 and 8. Essentially, from the information presented on pages 7 and 8 of Attachment T2, what Toyota did was prepare three fuels of widely varying properties and then, for unknown reasons, arbitrarily ascribe the emission results as a function of one of the properties.
- 12. Thus, while Toyota's conclusion that decreasing T50 decreases HC and CO emissions agreed with my own earlier finding, I could not, and did not, accept the work reflected in Attachment T2 as confirmation of my earlier finding.

FURTHER AFFIANT SAYS NOT.

Peter J. Jessup

Subscribed and sworn to me this 10th day of July, 1995.

PAT LANCE
COMM. #981656
UNITED TO STANDARY PUBLIC - CALIFORNIA DO STANGE COUNTY
My Comm. Expires Feb. 1, 1997

Notary public for and in State of California County of Orange
My Commission Expires

293 Chain own pering 108/409/0

Pressure Conversions

Enter the pressure in any of the following units: bar, dbar, mbar, Pascal, hPa, kPa, psi, at., mmHg, inHg, Torr, kg/cm^2, kg/m^2. Or press the Enter key for one atmosphere <e.g. 5kPa>... 1 kg/cm^2

The Pressure conversions for 1 kg/cm² are:

- 9.80661E-01 9.80661E+00 9.80661E+01 9.80661E+02 9.80661E+04 bar decibar kPa millibar(hPa) Pascal(N/m^2)
- 1.0000E+00 1.0000E+04 7.3556E+02 2.8959E+01 1.4223E+01 9.6784E-01 kg/cm^2 kg/m^2 mmHg (Torr) inch Hg psi atmospheres
- 9.8066E+05 9.8066E+05 1.0000E+03 3.2808E+01 1.0241E+00 9.8066E+00 barye dyne/cm^2 cmH20 ft H20 ton/ft^2 N/cm^2

Enter another pressure to convert (or just press Enter to finish) ... <e.g. 5kPa>...

The Pressure conversions for 700 mbar are:

- 7.00000E-01 7.00000E+00 7.00000E+01 7.00000E+02 7.00000E+04 bar decibar kPa millibar(hPa) Pascal(N/m^2)
- 7.1380E-01 7.1380E+03 5.2504E+02 2.0671E+01 1.0153E+01 6.9085E-01 kg/cm² kg/m² mmHg (Torr) inch Hg psi atmospheres
- 7.0000E+05 7.0000E+05 7.1380E+02 2.3419E+01 7.3099E-01 7.0000E+00 barye dyne/cm^2 cmH20 ft H20 ton/ft^2 N/cm^2

Enter another pressure to convert (or just press Enter to finish) ... <e.g. 5kPa>...

6. Wirzbicki 4-28-94 Nomerits - Amendment - canbeander stood u/c IDS C/m83 compression Richard 4VOI avorumns TAB MOST Pertinent TAB Blue less Pertinent CRC Papers - numerical crondlogical PMENTS DRed, Pilecopies things IDS Statement - Duplicates

GASOLINE

PUBLICATION NO: 05-179263

LAID-OPEN DATE: JUL. 20, 1993

INVENTOR: TAKASHI KANEKO, et al. (1) ASSIGNEE: NIPPON OIL CO LTD, et al. (40)

APPL NO: 03-358562

DATE FILED: Dec. 27, 1991

INFO RE PUBLICATION IN PERIODICAL Patent Abstracts of Japan

GROUP NO: C1126

VOLUME: Vol. 17, No. 594

DATE: Oct. 29, 1993

INTERNATIONAL CLASSIFICATION: C10L 1*18; C10L 1*04; C10L 1*16

RECEIVED
94 APR 28 PM 2: 3
GROUP: 110

ABSTRACT:

PURPOSE: To obtain the subject gasoline excellent in the accelerating ability at \widehat{low} temperatures and warming up and low in the amount of exhaust NO_X by blending a prescribed amount of methyl-t-butyl ether and light naphtha with a base gasoline having specified distillation properties and a composition.

CONSTITUTION: The objective gasoline containing olefin components and aromatic components respectively in a low amount is obtained by blending (A) a base gasoline having distillation properties specified by formulae I and II [T30(BASE), T70(BASE) and T90(BASE) are respectively 30% distillation temperature, 70% distillation temperature and 90% distillation temperature of the base gasoline] and a composition specified by formulae III, IV and V [VO(BASE) and VA(BASE) are respectively content of olefin components and content of aromatic components] with (B) 3 to 20vol% methyl-t-butyl ether and (C) light naphtha in an amount satisfying formula VI (VM is content of methyl-t-butyl ether and VL is content of light naphtha).

TOYOTA

10/28/90

Memo from

Here is more information to follow - up on our discussions a few weeks ago. When we receive more data, I'll keep you informed.

AUTRACOMPRE TO

#58

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Docket No. 0390112

Examiner Helane Myers

In re application: PETER J. JESSUP ET AL.

PATENT

Serial No. 08/409,074 Filed: March 22, 1995

GASOLINE FUEL

7 : 1 1750

Assistant Commissioner For Patents Washington, D. C. 20231

Dear Sir:

APPIDAVIT UNDER 37 CFR 1.132

- I, Peter J. Jessup, being duly sworn, depose and say that:
- 1. I am by profession a Research Chemist, having earned the degree of Bachelor of Science in Chemistry in 1972 and the degree of Doctor of Philosophy in Chemistry in 1976, both from the Latrobe University, Melbourne, Australia;
- 2. I engaged in Post-Doctorate Research at the University of California at Irvine from 1976 to 1977 in the scientific field of natural product synthesis;
- 3. I have been employed by the Union Oil Company of California from 1978 to 1981 and, after being briefly employed with Exxon in 1981-1982, from 1982 to the present date. My current title is Principal Scientist and my professional responsibility is in the scientific field pertaining to research related to fuels, lubricant additives, fuel additives, synthetic chemistry, and fuel combustion chemistry, particularly as applied to diesel engines or internal combustion engines for motor vehicles;

- 4. I currently am the patentee or copatentee of

 26 United States patents, most of which patents relate to
 automotive engines, fuels, and lubricants;
- 5. I am one of the applicants of the above-identified patent application, i.e., Serial No. 08/409,074 filed March 22, 1995 entitled "Gasoline Fuel," and all references hereinafter to "our patent application" and "our specification" are to said application and its specification, respectively.
- 6. Prior to the end of June 1990, Dr. Michael C. Croudace and I had run the experiment described in Example 1 of our patent application and had developed the equations pertaining thereto (See our specification on page 11.), which equations establish, among other things, that reducing the T50 of an unleaded gasoline would, all other things being equal, reduce both CO and HC tailpipe emissions when combusted in an automobile with a catalytic converter. (See our specification on page 11, line 28 to page 12, line 26.)
- 7. On July 17, 1990 I attended a meeting at Unocal's research facility in Brea, California at which Jonathan Haines, a representative from Toyota Technical Center, USA, Inc., distributed a two-page document (attached herewith as Attachment T1) showing data pertaining to fuels for a Toyota experiment. At present, I can no longer remember if Mr. Haines told me if the Toyota experiment relating to the 10 fuels shown in Attachment T1 was one which had been done by Toyota, was then currently being done by Toyota, or then still in the planning stage.
- 8. At the meeting I made handwritten notes of some of Mr. Haines' statements on my copy of Attachment T1, which handwritten notes can be seen on said Attachment T1. My notes

indicate, among other things, that Mr. Haines' said that Toyota had data relating T50 to exhaust emissions, i.e., that increases in T50 caused increases in emissions, that Toyota wanted tight control on T50 for reformulated gasolines, and that Toyota was recommending an 85 - 100° C. (185 - 212° F.) T50 range. My notes also indicate that Toyota allegedly had data showing a 50% change in emissions by changing T50.

- 9. Subsequently, I received in the mail from Mr. Haines a 19 page document entitled "Effect of Gasoline Property on Exhaust Emissions and Driveability" by Toyota Motor Corporation, dated October, 1990 (a copy attached herewith as Attachment T2, with handwritten page numbers added in lower right hand corner). Accompanying the document was a memo from Mr. Haines dated October 28, 1990, a copy of said memo being attached herewith as Attachment T3.
- Upon review of this Attachment T2, I found no evidence therein that decreasing T50 yields reductions in HC and CO emissions. Although the bar chart on page 7 of Attachment T2 allegedly relates T50 to the emissions produced from three fuels A, B, and C, the data in the document do not support this conclusion. According to the figure on said page 7, Fuel A yielded more HC and CO than Fuel B, which in turn yielded more than Fuel C. From this information, it appeared to me that Toyota had assumed that T50 was the cause of this phenomenon because, as shown on page 8 of Attachment T2, the T50 of fuel A was higher than Fuel B, which in turn was higher than the T50 of Fuel C. But the same could be said for density, and for IBP, and for T10, and for aromatics, and for octane. Any one, or some combination thereof, or some other gasoline property or properties, or yet other factors, could have been responsible for the emissions results of Fuels A, B, and C.

- 11. In sum, I found Toyota's apparent reasoning for concluding that decreasing T50 decreases HC and CO emissions to be seriously flawed and scientifically invalid, the conclusion being unsupported from the data and other information on pages 7 and 8. Essentially, from the information presented on pages 7 and 8 of Attachment T2, what Toyota did was prepare three fuels of widely varying properties and then, for unknown reasons, arbitrarily ascribe the emission results as a function of one of the properties.
- 12. Thus, while Toyota's conclusion that decreasing T50 decreases HC and CO emissions agreed with my own earlier finding, I could not, and did not, accept the work reflected in Attachment T2 as confirmation of my earlier finding.

FURTHER AFFIANT SAYS NOT.

Peter J. Jessap

Subscribed and sworn to me this 10th day of July, 1995.

PAT LANCE
COMM. #981656
I COMM. #981656
COMMODIANT PUBLIC - CALIFORNIA DI
COMODIANT PUBLIC - CALIFORNIA DI
COMMODIANT PUBLIC - CALIFORNIA DI
C

Notary public for and in State of California County of Orange

Tso T = emissions T

From Toyota 7-17-90

Test Gasoline Matrix

ATTACHMENT TI

UNOCAL PATENTS

TEST FUELS FOR REFORMULATED GASOLINE STUDY - LASACT SPECS.

	•		* **							•		. \		
Comments	Base Case	TS0 Reduction	750 Increase	RVP Reduction	RVP Increase	Arom. Contents Reduction	Olef. Contents Reduction	MTBE Blend (Medium Conc.)	MTBE Blend (Maximum-Conc.)	T90 Reduction	X= Variables,	2° 00/+28 07	- pushing of CHKD	Saw 50% change in
MTBE vol.§	•	•	•	0	0	0	0	7		0	×	tho		San 50
Olef.	2	12	2	13	13	2	•	21	1	12	K	建	ديده	
Arom.	30	30	30	30	30	15	30	30	8	30	*	Toyota wants tight contro.	of Tso in reformulated	
T90	320	320	320	320	320	320	320	320	320	293 (145)	*	ه جوع	٠٤	٠ د د
150 9 F	203 (95)	185 (85)	239	203	203	203	203	203	203	203	×	Toget	4.	gasolines.
RVP	8.0 (0.56)	9.0	0.0	7.0 (0.49)	10.0 (0.70)	8.0	8.0	8.0	8.0	8.0	یو			ر بر
(MOM)	87	48	87	87	87	87	87	87	. 0	97	= 92	$\frac{1}{2}$	driveabilit	FTP emission
RON	97	97	97	97	97	97	97	97	97	97	TE SE	-	Ari.	E .
Fuel No.	-	2	.es	•	. 5	9	7	∞	6	9				

EFFECT OF GASOLINE PROPERTY ON EXHAUST EMISSIONS AND DRIVEABILITY

UNOCAL PATENTS

TOYOTA MOTOR CORPORATION OCTOBER, 1990

ATTACHMENT T2

- Exhaust Emissions
- Driveability (during Warm-up)

1. Driveability Test

- * Hesitation during Warm-up Period
 - Engine Bench Test Engine Response Time
 - · Vehicle Test --- Field Evaluation
- * Engine Startability Test 20° C, -25° C · Low Temperature Test Cell --
- 2. Exhaust Emission Test Tailpipe Emissions,

Study of the Effect of Gasoline Property Engine Response

Gasoline No.		1	2	3		10	11	12
RVP	kPa	71.5	65.7	71.5		83.3	84.8	46.0
E70	% .	32.3	27.8	32.9		33.4	35.7	20.5
T10	°C	48.0	50.5	47.0	,	42.0	41.0	59,5
T 50	°C	91.5	99.0	91.0		100.0	94.0	110.0
T90	°C	152.0	159.0	152.0		162.5	163.0	161.0
Aron	า. %	28.5	28.0	38.5		47.0	38.0	32.8
							(no oxy	genate)

Test gasolines TOYOTA

1 page 31

No. 8

11 11 175		
Gasoline	1	. 2
RVP kPa	71.5	65.7
E 70 %	32.3	27.8
T 10 °C	48.0	50.5
T 50 °C	91.5	99.0
T 90 °C	152.0	159.0
Arom. %	28.5	28.0
Response time (sec.)	R1	R2

Response time and gasoline No. 9 characteristics

ATOYOTA

Comparison of correlation

No. 10

No. 20

Effect of MTBE blended gasoline

Results of Driveability Test

- The Middle Range of Gasoline Distillation Temperature Strongly Affects Warm-up Driveability.
 T₅₀ Can Be Used as One Indication of Warm-up Driveability.
- 2. RVP Has a Small Effect on Warm-up Driveability in the Range between 60~90 KPa (8.6—13.0 psi).
- 3. RVP Regulation Will not Deteriorate Vehicle
 Driveability, if T₅₀ is controlled in a proper range.

Study of the Effect of Distillation Characteristics on Exhaust Emissions

UNOCAL PATENTS

Comparison of Fuel Characteristics(A)

Fue	l Characteristics	Fuel A	Fuel B	Fuel C						
Den	sity(g/ml@15°C)	0.766	0. 743	0.734						
RVP	(kgf/cm²)	0. 55	0. 62	0.845						
	RON	97. 2	91.5	91.4						
·	MON	88. 4	82. 5	82. 3						
(C)	IBP	34. 5	31.5	27. 5						
) no	10%	58. 5	53. 0	43.0						
lati	50%	121	104	90. 0						
Distillation (°C)	90%	170	157	161						
ä	EP	209	176	176						
Aromatics (vol%)		39. 3	31.8	30.5						
	Olefins (vol%)	9.0	5.1	14.5						

Driveability

HC Emission

Effect of Gasoline Distillation Characteristics on Exhaust Emmission and Driveability

page

2714

07/10/95

15:50

MECHANISM OF HC INCREASE WITH HIGH T 50 GASOLINE

Distribution

of

Gasoline Characteristics

in

the US Market

page 12

Study of the Effect

of

Intake Valve Deposit (IVD)

on

Exhaust Emissions and Driveability

Test I

Test II

Effect of IVD on Vehicle Driveability

pase 14

Effect of IVD on Exhaust Emissions

Results of Our Study on the Intake Valve Deposit

- (1) IVD Mainly Originates from Engine Oil.
- (2) Poor Quality Gasoline Detergents Accelerate
 Oil Deterioration, and This Increases IVD Formation.
- (3) Oil Quality Affects IVD Formation. (See Next Slide)

page 1

Effect of Oil Quality on Intake Valve Deposit

CONCLUSION

- (1) The middle Range of Gasoline Distillation Temperature affects Warm-up Driveability, and HC and CO Emissions.
- (2) A T₅₀ Decrease of 10-15° C Produces 15-25 % Reduction of HC and CO Emissions.
- (3) RVP Regulation may Encourage High T₅₀ Gasoline in the US Market and result in Increased HC and CO Emissions, IF the Distillation Temperatures Are Not Controlled.
- (4) It Is Hoped the Range of T₅₀ Distribution in the US Will Be Reduced. This Will Contribute to Improved Air Quality.
- (5) MTBE-Blended Gasoline Shows Poor Engine Response Characteristics Compared with HC-Type Gasolines.
- (6) IVD Deteriorates HC and CO Emissions. Engine Oil and Fuel Detergent Quality also Affect IVD.

00 ce 17

Survey of Driveability of

USA Cars

Test Vehicle

lixel	Year	arigil	Displace- ment (I)	likil System	Time -	Hi leage
T_1	187	1.4	2.0	FI	MT	1130
Ί'2	'8 9	L 6	3.0	FI	AT	3440
Α	87	V G	3.8]?]	AT	898
13	188	L4	2.3	I l	AT	2830
С	*88	L 4	2.2	FI	MT	869
D	*88	V G	2.7	1:1	H T	3230

۵,

															_			
Dri			9		د			ᅜ			A	T a			T ₁			Vehicle Nodel
Driveability Test Results	Heavy H		119	119	109	119	5	100	707	103	109	119	140	110	500	. 100	102	Casoline whter *
ity Tes	Moderato	• Nater Terrilles Ilesitation	18	5	1	9	30	Çī	18	5	17	7	30	9	30	7	9	Temp(C)
t Resu	īnae	later Terperature lesitation																
Its	S .	8 C										-						Test Cycle No.
	•	Ergine Start			Back Fire	Eigine S		Back Fire			Smoke		Back Fire	Back Fire				Comment
					a	Stall		8					8	g				

Summary of the Driveability Test

- * We believe Customers in the USA Suffer Poor Driveability:
 - · Caused by High Distillation Gasoline
 - Deteriorated by IVD Formation during warm-up Period
 - · Particularly in the West Coast Area

TOYOTA

10/28/80

Here is more information to follow-up on our discussions a yew weeks ago. When we receive more data, I'll keep you informed. Jonathan

ATTACHMENT T3