Noțiuni de geometrie afină

Martie 2018

Structura afină a unui spațiu vectorial

Fie V un spațiu vectorial cu scalarii într-un corp \mathbb{K} . O submulțime a lui $A \subset V$ de forma

$$A = a + U = \{a + u, u \in U\},\$$

unde $a \in V$ și U este un subspațiu vectorial al lui V, se numește *varietate liniară* în V. U poartă numele de subspațiu director al varietății A. Mulțimea varietăților liniare ale spațiului vectorial V, împreună cu mulțimea vidă, ordonată prin incluziune, se numește structura afină a lui V. Ea se notează cu $\mathcal{A}(V)$.

Multimea V are structură de spatiu vectorial, care induce o structură de ordine pe $(\mathcal{A}(V), \subseteq)$.

Propoziția 1. Fie $A = a + U \in \mathcal{A}(V)$ și $b \in A$. Atunci A = b + U.

Corolar: O varietate liniară A este un subspațiu vectorial dacă și numai dacă $0_V \in A$.

Propoziția 2. Dacă $a + U = a' + U' \in \mathcal{A}(V)$, atunci U = U'

Observație: În reprezentarea unei varietăți liniare nevide sub forma A = a + U, subspațiul vectorial U este unic determinat, el se notează cu D(A).

Definiții. Subspațiul vectorial care intră în reprezentarea lui A se numește *spațiul director* al varietății liniare A. Dimensiunea varietăți liniare se definește astfel: dim $A = \dim D(A)$ dacă $A \neq \emptyset$ și dim $\emptyset = -1$. Dacă dim A = 0, atunci multimea A este formată dintr-un singur vector a, numit punct. Dacă dim (A) = 1, 2, p, varietatea liniară A se numește respectiv dreaptă, plan, pplan. Dacă $0_V \in A$, atunci avem o dreaptă vectorială, un plan vectorial, s.a.m.d. Dacă U este un hiperplan vectorial, a+U se numeste *hiperplan*. Dacă V are dimensiunea finită n, un hiperplan are dimensiunea n-1.

Propoziția 3. Dacă $A_{\alpha} \in \mathscr{A}(V)$, pentru $\alpha \in I$, atunci $\bigcap_{\alpha \in I} A_{\alpha} \in \mathscr{A}(V)$ *Corolar:* Dacă varietățile liniare A_{α} , $\alpha \in A$, sunt finit dimensionale și au intersecție nevidă,

atunci

$$\dim \bigcap_{\alpha \in I} A_{\alpha} = \dim \bigcap_{\alpha \in I} D(A_{\alpha}).$$

Propoziția 4. Dacă a și b sunt puncte distincte în V, atunci există o singură dreaptă care conține pe a și b; o vom nota cu ab.

Observație: Dreapta ab se poate scrie sub forma următoare

$$ab = \{(1 - \lambda)a + \lambda b | \lambda \in \mathbb{C}\}.$$

Varietățile liniare pot fi caracterizate cu ajutorul dreptelor.

Proprietate 5. Fie *V* un spațiu cu scalari într-un corp *C*, care conține cel puțin 3 elemente. O submulțime L a lui Veste o varietate liniară dacă și numai dacă, odată cu două puncte distincte $a, b \in L$, dreapta ab este inclusă în L.

Propoziția 6. O submulțime $L \in V$ este o varietate liniară dacă și numai dacă următoarea condiție este satisfăcută:

$$\left(x_1,\ldots,x_m\in L,\lambda_1,\ldots,\lambda_m\in C,\sum_{i=1}^m\lambda_i=1\right)\Rightarrow\sum_{i=1}^m\lambda_ix_i\in L.$$

Definiții. Combinația liniară $\sum_{i=1}^{m} \lambda_i x_i$, în care coeficienții λ_i îndeplinesc condiția $\sum_{i=1}^{m} \lambda_i = 1$, se numește *combinație afină* a punctelor $x_1, \ldots, x_m \in V$.

Fie $M \subset V$. Conform propoziției 3, intersecția tuturor varietăților liniare ale lui V care conțin M, este o varietate liniară. Ea se numește *varietatea liniară subîntinsă de M* sau *înfășurătoarea* (anvelopa) afină a lui M sau *închiderea afină a lui M* și se notează af M. Este evident că af M este elementul minim în $(\mathcal{A}(V), \subset)$ care conține pe M:

$$A \in \mathcal{A}(V), M \subset A \Rightarrow afM \subset A.$$

Propoziția 7. Înfășurătoarea afină a unei mulțimi $M \subset V$ este formată din toate combinațiile afine care se pot forma cu toate selecțiile finite de elemente din M:

$$af M = \left\{ \sum_{i=1}^{m} \lambda_i x_i | m \in \mathbb{N}, x_1, \dots, x_m \in M, \sum_{i=1}^{m} \lambda_i = 1 \right\}.$$

Proprietăți laticeale

Definiții. Fie (S, \leq) o mulțime ordonată oarecare și $M \subset S$. Dacă mulțimea majorantelor lui M admite un minim s (în mod necesar unic), atunci acest element s se numește supremum al mulțimii <math>M și se notează cu sup M. Așadar $s = \sup M$ înseamnă că

- 1) $x \in M \Rightarrow x \leq s$
- 2) $(\forall x \in M, x \le y) \Rightarrow s \le y$.

Analog $s' = \inf M$ (*infimum* al lui M), dacă

- 1) $x \in M \Rightarrow s' \leq x$
- 2) $(\forall x \in M, y \le x) \Rightarrow y \le s'$.

Dacă oricare două elemente din S admit un supremum și un infimum, atunci structura (S, \leq) se numește *latice*. În acest caz notăm, pentru $a, b \in S$

$$a \lor b = \sup\{a, b\}, \ a \land b = \inf\{a, b\}$$

unde $a \lor b$ se numește *uniunea*, iar $a \land b$ secțiunea elementelor a și b.

Rezultă ușor că orice mulțime finită a lui S are un supremum și un infimum. Dacă orice submulțime a lui S admite un supremum și un infimum, (S, \leq) se numește *latice completă*.

Exemple: 1) Multimea numerelor naturale (\mathbb{N}, \leq) cu ordonarea naturală este o latice.

2) Fie $(\mathcal{L}(V), \subset)$ mulţimea tuturor subspaţiilor vectoriale ale spaţiului vectorial V, ordonate prin inclusiune. $(\mathcal{L}(V), \subset)$ este o latice completă. Pentru $X_{\alpha} \in \mathcal{L}(V)$, $\alpha \in I$, avem

$$\inf_{\alpha \in I} X_{\alpha} = \inf\{X_{\alpha} | \alpha \in I\} = \bigcap_{\alpha \in I} X_{\alpha}$$

şi

$$\sup_{\alpha \in I} X_{\alpha} = \sum \{X_{\alpha} | \alpha \in I\} = \sum_{\alpha \in I} X_{\alpha}.$$

Teoremă. Structura afină $\mathscr{A}(V)$ este o latice completă. Pentru o familie oarecare $A_{\alpha} \in \mathscr{A}(V)$, $\alpha \in I$, avem

$$\inf_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} A_{\alpha}$$

şi

$$\sup_{\alpha\in I}A_{\alpha}=af\bigcup_{\alpha\in I}A_{\alpha}.$$

În particular, dacă $A, B \in \mathcal{A}(V)$

$$A \lor B = A \cap B$$
, $A \land B = af(A \cup B)$.

Propoziție Dacă spațiile vectoriale V și W, cu scalari în același corp C, sunt izomorfe, atunci și laticele $\mathscr{A}(V)$ și $\mathscr{A}(W)$ sunt izomorfe.

Într-ucât fiecare spațiu vectorial, cu scalari în C, de dimensiune n este izomorf cu spațiul standard C^n , sturcturile afine finit dimensionale sunt (laticeal) izomorfe cu $\mathcal{A}(C^n)$. Cu alte cuvinte, proprietățile structurilor afine finit dimensionale pot fi studiate pe prototipul $\mathcal{A}(C^n)$.

Fie $a = x^0 + U \in \mathcal{A}(C^n)$, $\{d_1, ..., d_r\}$ o bază a lui U, $x_0 = (x_1, ..., x_n)$ și $d_j = (d_{1j}, ..., d_{nj})$, j = 1, ..., r. Avem

$$A = \left\{ (x_1, \dots, x_n) | x_i = x_i^0 + \sum_{j=1}^r d_{ij} \lambda_j, \lambda_j \in C \right\}.$$

Ecuațiile

$$x_i = x_i^0 + \sum_{j=1}^r d_{ij} \lambda_j, \ i = 1, ..., n$$

se numesc *ecuațiile parametrice ale varietății liniare A*. Dar, varietățiile liniare ale lui C^n coincid cu soluțiile sistemelor de ecuații liniare. Cu alte cuvinte, $A \in \mathcal{A}(C^n)$ poate fi caracterizat și astfel

$$A = \left\{ (x_1, \dots, x_n) | \sum_{j=1}^n a_{ij} x_j = b_i, \ i = 1, \dots, m \right\}.$$

Condițiile care figurează aici,

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, \ i = 1, ..., m,$$

formează sistemul de ecuații al varietății liniare A.

Intersecția a două varietăți liniare $A, B \in \mathcal{A}(V)$ se obține luând împreună ecuațiile lui A și B.

Teorema dimensiunii. Paralelism

Propoziția 1. Fie $A, B \in \mathcal{A}(V), a \in A, b \in B$, atunci

$$A \lor B = a + D(A) + D(B) + \langle b - a \rangle$$
.

Propoziția 2. Fie $A, B \in \mathcal{A}(V), a \in A, b \in B$, atunci

$$A \cap B \neq \emptyset \Leftrightarrow \langle b - a \rangle \subset D(A) + D(B)$$

Propoziția 3. Dacă varietătile liniare A și B au un punct în comun a, avem

$$A \vee B = a + D(A) + D(B)$$

$$A \wedge B = a + D(A) \cup D(B)$$

Teorema dimensiunii. Fie A și B două varietăti liniare nevide de dimensiuni finite din V.

a) Dacă $A \cup B \neq \emptyset$, are loc relația

$$\dim(A \vee B) = \dim A + \dim B - \dim(A \wedge B)$$

b) Dacă $A \cup B = \emptyset$, avem

$$A \wedge B = \dim(D(A) + D(B)) + 1$$

Observație: Varietatea liniară $L_1 \vee L_2$ subîntinsă de dreptele L_1 și L_2 , este un plan, dacă dreptele L_1 și L_2 se intersectează într-un singur punct; $L_1 \vee L_2$ este tot un plan dacă $L_1 \cup L_2 = \emptyset$ sau $D(L_1) = D(L_2)$; $L_1 \vee L_2$ are dimensiunea trei, dacă $L_1 \cup L_2 = \emptyset$ sau $D(L_1) \neq D(L_2)$

Definiție. Subspațiile afine A și B se numesc *paralele*, notate $A \parallel B$, dacă $D(A) \subset D(B)$ sau $D(B) \subset D(A)$.

Propoziția 4. Dacă pentru $A, B \in \mathcal{A}(V)$ avem $A \parallel B$, atunci $A \subset B$ sau $B \subset A$ sau $A \cup B = \emptyset$.

Propoziția 5. Fie dimV=n. Dacă subspațiul afin nevid A nu are punct comun cu hiperplanul H, atunci $A \parallel H$.

Propoziția 6. Dacă dreapta L intersectează hiperplanul H într-un punct, atunci o paralelă L' la L intersectează de asemenea pe H într-un punct.