ME 596 Spacecraft Attitude Dynamics and Control

Satellite Dynamics

Professor Christopher D. Hall Mechanical Engineering

University of New Mexico

December 3, 2021

Rigid Body / "Real" Body Spin Stability

- $I_{xx} > I_{yy} > I_{zz}$
- ► Major axis spin is stable
- ► Minor axis spin is stable
- Intermediate axis spin is unstable
- Energy dissipation changes these results
 - → Minor axis spin becomes unstable

This behavior is called the Major Axis Rule

Gyrostats and Dual-Spin Spacecraft

- The term "Gyrostat" denotes a body that has an internal source of angular momentum, but which has a constant moment of inertia tensor.
- A rigid body containing one or more axisymmetric flywheels is a gyrostat.
- A rigid body containing one or more completely filled propellant tanks is a gyrostat.
- ➤ The gyrostat model is useful for studying the attitude dynamics of dual-spin spacecraft, but energy dissipation must also be included using an energy-sink analysis (just as with the rigid body model)

Effect of Rotor on Spin Stability

- A spinning rotor can stabilize the intermediate axis, destabilize other axes
- Stability condition $I_R\omega_R > (I_{xx}-I_{yy})\omega_y$
- As with rigid body, energy dissipation changes stability results
 - \rightarrow some stable spins become unstable

Satellites with Reaction Wheels

- Typically a three-axis stabilized spacecraft will have 3 or 4 reaction wheels (or "reaction wheel assemblies" = RWAs)
- The terms RW and "Momentum Wheel" (MW) denote nearly identical functions, and certainly denote the same technological concept
- RWs spin with nearly zero angular momentum and "react" to external torques
- MWs spin with some nominal value of angular momentum and modify that momentum as needed

Reaction Wheel Lunar Reconnaissance Orbiter (from NASA Goddard's website)

Gravity Gradient Satellite Dynamics

Rotational equations of motion for a rigid body are:

$$\mathbf{I}\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega}^{\times}\mathbf{I}\boldsymbol{\omega} + \mathbf{g}$$

 $\dot{\boldsymbol{\omega}} = -\mathbf{I}^{-1}\boldsymbol{\omega}^{\times}\mathbf{I}\boldsymbol{\omega} + \mathbf{I}^{-1}\mathbf{g}$

Rewrite as Euler's Equations for principal axes:

$$\dot{\omega}_{1} = \frac{I_{2} - I_{3}}{I_{1}} \omega_{2} \omega_{3} + \frac{g_{1}}{I_{1}}$$

$$\dot{\omega}_{2} = \frac{I_{3} - I_{1}}{I_{2}} \omega_{1} \omega_{3} + \frac{g_{2}}{I_{2}}$$

$$\dot{\omega}_{3} = \frac{I_{1} - I_{2}}{I_{3}} \omega_{1} \omega_{2} + \frac{g_{3}}{I_{3}}$$

- We know how to derive moments of inertia
- Next we derive gravitational torques for a satellite in a circular orbit

Gravity Gradient Satellite Dynamics (2)

- Simple gravity-gradient satellite dumbbell model
- Rigid massless rod with two point masses
- As satellite moves in circular orbit, it swings like a pendulum
- Consider only the motion in the orbital plane
- Force f₁ on body > force f₂ on upper body
- Creates "restoring" torque

Is it clear why the restoring torque causes the dumbbell to swing like a pendulum?

Gravity Acting on Rigid Satellite In Circular Orbit

 Every differential mass element of the body subject to Newton's Universal Gravitational Law:

$$d\vec{\mathbf{f}}_g = -\frac{GM\,dm}{r^2}\hat{\mathbf{e}}_r$$

- $ightharpoonup \hat{\mathbf{e}}_r$ is unit vector in the negative $\vec{\mathbf{r}}$ direction
- ▶ For mass center $\hat{\mathbf{e}}_r = -\hat{\mathbf{o}}_3$ (recall \mathcal{F}_o vector definitions)
- Position vector from primary to differential mass element is sum of position vector from primary to mass center and position vector from mass center to differential mass element:

$$\vec{\mathbf{r}} = {}_O\vec{\mathbf{r}} = {}_O^c\vec{\mathbf{r}} + {}_c\vec{\mathbf{r}}$$

The r^2 in denominator of $d\vec{\mathbf{f}}_g$ is $\vec{\mathbf{r}}\cdot\vec{\mathbf{r}}$, which we develop in the next couple of slides, as we want to integrate

$$\vec{\mathbf{f}}_g = \int_{\mathcal{B}} d\vec{\mathbf{f}}_g$$

Gravity Acting on Rigid Satellite In Circular Orbit (2)

Integrate over the body:

$$\vec{\mathbf{f}}_g = -\int_{\mathcal{B}} \frac{GM}{r^2} \hat{\mathbf{e}}_r \, dm$$

which can be written as

$$\vec{\mathbf{f}}_g = -\int_{\mathcal{B}} \frac{GM}{r^3} \vec{\mathbf{r}} \, dm$$

Expanding the position vector

$$\vec{\mathbf{f}}_g = -\int_{\mathcal{B}} \frac{GM}{|\overset{c}{_{C}}\vec{\mathbf{r}} + {_{c}}\vec{\mathbf{r}}|^3} (\overset{c}{_{C}}\vec{\mathbf{r}} + {_{c}}\vec{\mathbf{r}}) dm$$

- Assume $|{}_{O}^{c}\vec{\mathbf{r}}| \gg |{}_{c}\vec{\mathbf{r}}|$
- Expand the integrand in

series

Gravity Acting on Rigid Satellite In Circular Orbit (3)

Expand and simplify the denominator

$$\begin{split} \frac{{}^{c}_{O}\vec{\mathbf{r}}+{}_{c}\vec{\mathbf{r}}}{|{}^{c}_{O}\vec{\mathbf{r}}+{}_{c}\vec{\mathbf{r}}|^{3}} &= \frac{{}^{c}_{O}\vec{\mathbf{r}}+{}_{c}\vec{\mathbf{r}}}{\left[({}^{c}_{O}\vec{\mathbf{r}}+{}^{c}\hat{\mathbf{r}}^{c})\cdot({}^{c}_{O}\vec{\mathbf{r}}+{}_{c}\vec{\mathbf{r}})\right]^{3/2}} \\ &= \frac{{}^{c}_{O}\vec{\mathbf{r}}+{}_{c}\vec{\mathbf{r}}}{\left[{}^{c}_{O}\vec{\mathbf{r}}\cdot{}^{c}_{O}\vec{\mathbf{r}}+{}^{c}_{O}\vec{\mathbf{r}}\cdot{}^{c}_{O}\vec{\mathbf{r}}+{}^{c}_{O}\vec{\mathbf{r}}\cdot{}^{c}_{O}\vec{\mathbf{r}}\right]^{3/2}} \\ &= \frac{{}^{c}_{O}\vec{\mathbf{r}}+{}_{c}\vec{\mathbf{r}}}{\left[{}^{c}_{O}r^{2}+{}^{2}_{O}\vec{\mathbf{r}}\cdot{}^{c}_{O}\vec{\mathbf{r}}+{}^{c}_{O}\vec{\mathbf{r}}\right]^{3/2}} \\ &= \frac{{}^{c}_{O}\vec{\mathbf{r}}+{}_{c}\vec{\mathbf{r}}}{\left[{}^{c}_{O}r^{2}+{}^{2}_{O}\vec{\mathbf{r}}\cdot{}^{c}_{O}\vec{\mathbf{r}}+{}^{c}_{O}\vec{\mathbf{r}}\right]^{3/2}} \end{split}$$

- ➤ So far, this expression is exact, and the next step is to assume that spacecraft is much smaller than the size of the orbit
- Assume orbit radius $|{}_{O}^{c}\vec{\mathbf{r}}|$ is \gg position vector from mass center to any differential element $|{}_{C}\vec{\mathbf{r}}|$, and expand in Taylor series

Gravity Acting on Rigid Satellite In Circular Orbit (4)

▶ Since $|{}_{O}^{c}\vec{\mathbf{r}}| \gg |{}_{c}\vec{\mathbf{r}}|$, Taylor series expansion leads to (Exercise!)

$$\begin{array}{lcl} \frac{{}^{c}_{O}\vec{\mathbf{r}}+{}_{c}\vec{\mathbf{r}}}{|{}^{c}_{O}\vec{\mathbf{r}}+{}_{c}\vec{\mathbf{r}}|^{3}} & = & \frac{{}^{c}_{O}\vec{\mathbf{r}}+{}_{c}\vec{\mathbf{r}}}{{}^{c}_{O}r^{3}}\left(1-3\frac{{}^{c}_{O}\vec{\mathbf{r}}\cdot{}_{c}\vec{\mathbf{r}}}{{}^{c}_{O}r^{2}}+H.O.T.\right) \\ & \approx & \frac{{}^{c}_{O}\vec{\mathbf{r}}+{}_{c}\vec{\mathbf{r}}}{{}^{c}_{O}r^{3}}\left(1-3\frac{{}^{c}_{O}\vec{\mathbf{r}}\cdot{}_{c}\vec{\mathbf{r}}}{{}^{c}_{O}r^{2}}\right) \\ & \approx & \frac{{}^{c}_{O}\vec{\mathbf{r}}+{}_{c}\vec{\mathbf{r}}}{{}^{c}_{O}r^{3}} \end{array}$$

ightharpoonup Substituting the last of these approximations into the volume integral for $\vec{\mathbf{f}}_a$ leads to

$$\vec{\mathbf{f}}_g = -\int_{\mathcal{B}} \frac{GM \left({}_O^c \vec{\mathbf{r}} + {}_c \vec{\mathbf{r}} \right)}{{}_O^c r^3} dm$$
$$= -\frac{GMm}{{}_O^c r^3} {}_O^c \vec{\mathbf{r}} = -\frac{GMm}{r^3} \vec{\mathbf{r}}$$

What happened to $_{c}\vec{\mathbf{r}}$?

Gravity Acting on Rigid Satellite In Circular Orbit (5)

ightharpoonup Using $ec{\mathbf{r}}$ to denote the position vector from primary to mass center of orbiting body, and applying Newton's Second Law, we obtain:

$$\ddot{\vec{\mathbf{r}}} + \frac{\mu}{r^3} \vec{\mathbf{r}} = \vec{\mathbf{0}}$$

which is the two-body problem eq. of motion from astrodynamics

- ► Two important facts:
 - 1) μ/r^3 is the mean motion squared, or n^2 , and for circular orbits we use ω_c to represent n
 - 2) $\vec{\mathbf{r}} = -r\vec{\mathbf{o}}_3$, where $\vec{\mathbf{o}}_3$ is the nadir vector, the Earth-pointing unit vector of the orbital frame \mathcal{F}_o
- Note that two-body problem equation is an approximation, based on the reasonable assumption that the dimension of the satellite is small compared with the dimension of the orbit
- ► The next step is to develop the torque about the mass center, and use it in Euler's equations:

$$\vec{\mathbf{g}}_g^c = \int_{\mathcal{B}} c\vec{\mathbf{r}} \times d\vec{\mathbf{f}}_g$$

Gravity Acting on Rigid Satellite In Circular Orbit (6)

▶ The torque due to gravity is

$$\vec{\mathbf{g}}_g^c = \int_{\mathcal{B}} c\vec{\mathbf{r}} \times d\vec{\mathbf{f}}_g$$

Applying the same assumptions as those used to approximate the force, we obtain the approximate moment about the mass center:

$$\vec{\mathbf{g}}_g^c = 3 \frac{GM}{r^3} \hat{\mathbf{o}}_3 \times \vec{\mathbf{I}}^c \cdot \hat{\mathbf{o}}_3$$

► Expressed in a body-fixed reference frame, this gravity-gradient torque is

$$\mathbf{g}_{gb}^c = 3\frac{GM}{r^3} \mathbf{o}_{3b}^{\times} \mathbf{I}_b^c \mathbf{o}_{3b}$$

or, simply

$$\mathbf{g} = 3\frac{\mu}{r^3}\mathbf{o}_3^{\times}\mathbf{Io}_3 = 3\omega_c^2\mathbf{o}_3^{\times}\mathbf{Io}_3$$

Note that the $\hat{\mathbf{o}}_3$ terms arise from the fact that $\vec{\mathbf{r}} = -r\hat{\mathbf{o}}_3$

Gravity Acting on Rigid Satellite In Circular Orbit (7)

▶ So, the gravity gradient torque for a rigid spacecraft in a circular orbit, expressed in \mathcal{F}_b , is

$$\mathbf{g} = 3\omega_c^2 \mathbf{o}_3^{\times} \mathbf{Io}_3$$

This result is an **approximation** based on assumption that spacecraft size ≪ orbit radius; however it is a nonlinear function of attitude. Can you explain why?

Euler's equations for this system are

$$\mathbf{I}\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega}^{\times}\mathbf{I}\boldsymbol{\omega} + 3\omega_c^2\mathbf{o}_3^{\times}\mathbf{I}\mathbf{o}_3$$

- lacktriangle Recall that ${f o}_3$ is expressed in ${\cal F}_b$, and so it is the third column of ${f R}^{bo}$
- lacktriangle We need to keep track of the attitude of \mathcal{F}_b with respect to \mathcal{F}_o

What two frames are related by the angular velocity in Euler's equations?

Can you now explain how the torque acting on a satellite can depend on position?

Equilibrium Motion for Rigid Satellite In Circular Orbit

- lacktriangle We are interested in finding special solutions where $\dot{\omega}=0$.
- Euler's equations are

$$\mathbf{I}\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega}^{\times}\mathbf{I}\boldsymbol{\omega} + 3\omega_c^2\mathbf{o}_3^{\times}\mathbf{I}\mathbf{o}_3$$

- lacktriangle If $oldsymbol{\omega}$ is about a principal axis, then $oldsymbol{\omega}^{ imes} \mathbf{I} oldsymbol{\omega} = \mathbf{0}$ (Convince yourself!)
- ▶ If \mathcal{F}_b is aligned with \mathcal{F}_o , then the angular velocity of the body is about the "2" axis, $\boldsymbol{\omega} = \begin{bmatrix} 0 & -\omega_c & 0 \end{bmatrix}^T$ (Convince yourself!)
- ▶ If \mathcal{F}_b is aligned with \mathcal{F}_o , then $\mathbf{o}_3 = [0 \ 0 \ 1]^T$, and $\mathbf{o}_3^{\times} \mathbf{Io}_3 = \mathbf{0}$ (Convince yourself!)
- ▶ Thus, if \mathcal{F}_b is aligned with \mathcal{F}_o , then $\dot{\omega} = 0$, which means that this attitude is an equilibrium or steady motion.

But, is it a *stable* equilibrium motion?

What mathematical tools are used to determine stability?

Equilibrium Motion for Rigid Satellite In Circular Orbit (2)

- Body frame nearly aligned with orbital frame
- ▶ Use 1-2-3 Euler angle sequence (roll-pitch-yaw) to relate \mathcal{F}_b to \mathcal{F}_o

$$\mathbf{R}^{bo} = \begin{bmatrix} c_2c_3 & s_1s_2c_3 + c_1s_3 & s_1s_3 - c_1s_2c_3 \\ -s_2s_3 & c_1c_3 - s_1s_2s_3 & s_1c_3 + c_1s_2s_3 \\ s_2 & -s_1c_2 & c_1c_2 \end{bmatrix}$$

Linearize about $\theta_i = 0, i = 1, 2, 3$ (recall Roll, Pitch & Yaw material from Attitude Kinematics)

$$\mathbf{R}^{bo} \approx \mathbf{1} - \boldsymbol{\theta}^{\times} \Rightarrow \mathbf{o}_3 \approx \begin{bmatrix} -\theta_2 & \theta_1 & 1 \end{bmatrix}^T$$

► Thus the linear approximation for gravity gradient torque acting on a rigid body whose principal axes are "close" to being aligned with the orbital frame axes is

$$\mathbf{g}_{gg} = 3\omega_c^2 \mathbf{o}_3^{\times} \mathbf{Io}_3 \approx 3\omega_c^2 \begin{bmatrix} (I_3 - I_2)\theta_1 \\ (I_3 - I_1)\theta_2 \\ 0 \end{bmatrix}$$

► The next step is to put this torque into Euler's equations and linearize the equations of motion.

Linearize about Equilibrium Motion

Recall that Euler's equations are

$$\mathbf{I}\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega}^{\times}\mathbf{I}\boldsymbol{\omega} + 3\omega_c^2\mathbf{o}_3^{\times}\mathbf{I}\mathbf{o}_3$$

where the angular velocity ω is a 3×1 matrix of the elements of $\vec{\omega}^{bi}$ expressed in \mathcal{F}_b .

 Write the angular velocity components in terms of Euler angles and their rates

$$\begin{array}{lll} \boldsymbol{\omega} & = & \boldsymbol{\omega}_b^{bi} = \boldsymbol{\omega}^{bo} + \boldsymbol{\omega}^{oi} = \boldsymbol{\omega}_b^{bo} + \mathbf{R}^{bo} \boldsymbol{\omega}_o^{oi} \\ & = & \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 \end{bmatrix} + \begin{bmatrix} 1 & \theta_3 & -\theta_2 \\ -\theta_3 & 1 & \theta_1 \\ \theta_2 & -\theta_1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -\omega_c \\ 0 \end{bmatrix} \\ & = & \begin{bmatrix} \dot{\theta}_1 - \omega_c \theta_3 \\ \dot{\theta}_2 - \omega_c \\ \dot{\theta}_3 + \omega_c \theta_1 \end{bmatrix} \end{array}$$

- ightharpoonup This approximation for ω leads to a linearized version of Euler's equations written in terms of Euler angles
- Can you explain what approximations have been made here?

Substitute into Euler's Equations

Euler's equations:

$$\mathbf{I}\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega}^{\times}\mathbf{I}\boldsymbol{\omega} + 3\omega_c^2\mathbf{o}_3^{\times}\mathbf{I}\mathbf{o}_3$$

Angular velocity:

$$\boldsymbol{\omega} = \begin{bmatrix} \dot{\theta}_1 - \omega_c \theta_3 & \dot{\theta}_2 - \omega_c & \dot{\theta}_3 + \omega_c \theta_1 \end{bmatrix}^\mathsf{T}$$

▶ Orbital frame "3" vector in \mathcal{F}_b :

$$\mathbf{o}_3 = \begin{bmatrix} -\theta_2 & \theta_1 & 1 \end{bmatrix}^\mathsf{T}$$

(Remember that the Euler angles relate \mathcal{F}_b to \mathcal{F}_o)

▶ Make the substitution, neglect nonlinear terms (products of θ 's)

$$\begin{split} I_1 \ddot{\theta}_1 + (I_2 - I_3 - I_1) \omega_c \dot{\theta}_3 - 4(I_3 - I_2) \omega_c^2 \theta_1 &= 0 \\ I_2 \ddot{\theta}_2 + 3 \omega_c^2 (I_1 - I_3) \theta_2 &= 0 \\ I_3 \ddot{\theta}_3 + (I_3 + I_1 - I_2) \omega_c \dot{\theta}_1 + (I_2 - I_1) \omega_c^2 \theta_3 &= 0 \end{split}$$

This result is a system of 3 second-order coupled constant-coefficient linear differential equations.

Stability of Pitch Motion

Euler's equations after linearizing:

$$\begin{split} I_1 \ddot{\theta}_1 + (I_2 - I_3 - I_1) \omega_c \dot{\theta}_3 - 4(I_3 - I_2) \omega_c^2 \theta_1 &= 0 \\ I_2 \ddot{\theta}_2 + 3 \omega_c^2 (I_1 - I_3) \theta_2 &= 0 \\ I_3 \ddot{\theta}_3 + (I_3 + I_1 - I_2) \omega_c \dot{\theta}_1 + (I_2 - I_1) \omega_c^2 \theta_3 &= 0 \end{split}$$

- ▶ Note that the θ_2 equation is decoupled from the θ_1 and θ_3 equations.
- ▶ The "2" axis is the pitch axis and is in the orbit normal direction.
- ▶ The θ_2 equation is in the form $\ddot{x} + kx = 0$, which is the equation for a mass-on-a-spring, and is stable if k > 0, and unstable if k < 0.
- ▶ Thus the pitch axis motion is only stable if $I_1 > I_3$, or if the roll axis inertia is greater than the yaw axis inertia.
- ▶ However, if the coupled roll-yaw motion is unstable, then the pitch motion stability is suspect, since we assumed that *all* of the Euler angles are small when we did the linearization.

Stability of Coupled Roll-Yaw Motion

Coupled linearized roll-yaw equations:

$$\begin{split} I_1 \ddot{\theta}_1 + (I_2 - I_3 - I_1) \omega_c \dot{\theta}_3 - 4(I_3 - I_2) \omega_c^2 \theta_1 &= 0 \\ I_3 \ddot{\theta}_3 + (I_3 + I_1 - I_2) \omega_c \dot{\theta}_1 + (I_2 - I_1) \omega_c^2 \theta_3 &= 0 \end{split}$$

▶ We can rewrite these equations as a matrix system of linear constant-coefficient differential equations for $\mathbf{x} = \begin{bmatrix} \theta_1 & \theta_3 \end{bmatrix}^\mathsf{T}$:

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{G}\dot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{0}$$

where

$$\mathbf{M} = \begin{bmatrix} I_1 & 0 \\ 0 & I_3 \end{bmatrix}$$

$$\mathbf{G} = (I_1 + I_3 - I_2)\omega_c \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$\mathbf{K} = \omega_c^2 \begin{bmatrix} 4(I_2 - I_3) & 0 \\ 0 & (I_2 - I_1) \end{bmatrix}$$

Convince yourself!

Linear Stability Analysis

Coupled linearized roll-yaw equations in matrix form:

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{G}\dot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{0}$$

 Just as with scalar linear constant-coefficient differential equations, we can look for solutions in the form

$$\mathbf{x} = e^{\lambda t} \mathbf{c}$$

where λ is the eigenvalue, and c is the constant (2 \times 1 matrix) depending on the initial conditions.

▶ Differentiate the assumed solution twice:

$$\mathbf{x} = e^{\lambda t} \mathbf{c}$$

$$\dot{\mathbf{x}} = \lambda e^{\lambda t} \mathbf{c}$$

$$\ddot{\mathbf{x}} = \lambda^2 e^{\lambda t} \mathbf{c}$$

Substituting into the differential equations yields:

$$e^{\lambda t} \left[\lambda^2 \mathbf{M} + \lambda \mathbf{G} + \mathbf{K} \right] \mathbf{c} = \mathbf{0}$$

Solving the Eigenvalue Problem

Assuming a solution of the form

$$\mathbf{x} = e^{\lambda t} \mathbf{c}$$

leads to

$$e^{\lambda t} \left[\lambda^2 \mathbf{M} + \lambda \mathbf{G} + \mathbf{K} \right] \mathbf{c} = \mathbf{0}$$

- ▶ The value of $e^{\lambda t}$ is never zero, and we are not interested in the case where the initial state is $\mathbf{x}(0) = \mathbf{c} = \mathbf{0}$
- ▶ Thus, we require the 2×2 matrix in brackets to be *singular*, and that \mathbf{c} be in the null space of that matrix (i.e., $[\cdot]\mathbf{c} = \mathbf{0}$)
- ▶ For the matrix to be singular, its determinant has to be zero
- lacktriangle The characteristic polynomial that results from setting $\det[\cdot]=0$ is

$$\hat{\lambda}^4 + (1 + 3k_1 + k_1k_3)\hat{\lambda}^2 + 4k_1k_3 = 0$$

where
$$\hat{\lambda}=\lambda/\omega_c$$
, $k_1=(I_2-I_3)/I_1$, and $k_3=(I_2-I_1)/I_3$

Solving the Eigenvalue Problem (2)

► The characteristic polynomial is

$$\hat{\lambda}^4 + (1 + 3k_1 + k_1 k_3)\hat{\lambda}^2 + 4k_1 k_3 = 0$$

where
$$\hat{\lambda} = \lambda/\omega_c$$
, $k_1 = (I_2 - I_3)/I_1$, and $k_3 = (I_2 - I_1)/I_3$

This polynomial can be written as

$$s^2 + b_1 s + b_0 = 0$$

where
$$\hat{\lambda}^2 = s \Rightarrow \lambda = \pm \omega_c \sqrt{s}$$
.

- ▶ The condition for stability of the coupled roll-yaw motion is that the eigenvalues (λ) do not have positive real parts
- ► Thus the best we can do is to have both roots of the polynomial for s be negative and then all four eigenvalues will be of the form

$$\lambda = \pm \omega_c \sqrt{s}$$
$$= \pm \omega_c \sqrt{|s|} i$$

▶ If s is positive, then the roll-yaw motion will be unstable

Routh-Hurwitz Conditions

ightharpoonup The characteristic polynomial in terms of s is

$$s^2 + b_1 s + b_0 = 0$$

ightharpoonup The Routh-Hurwitz conditions for s to be negative are

$$b_0 > 0 \qquad b_1 > 0 \qquad b_1^2 - 4b_0 > 0$$

 These conditions, along with the pitch stability condition can be rearranged to be

$$\begin{array}{rcl} k_1 &>& k_3 \text{ (I)}^* \\ k_1k_3 &>& 0 \text{ (II)} \\ 1+3k_1+k_1k_3 &>& 0 \text{ (III)} \\ (1+3k_1+k_1k_3)^2-16k_1k_3 &>& 0 \text{ (IV)} \\ ^* \text{ I-IV denote region boundaries} \end{array}$$

▶ The parameters k_1 and k_3 are called the "Smelt" parameters (DeBra and Delp, *Journal of the Astronautical Sciences*, 1961)

in subsequent plot

Smelt Parameter Plane

Smelt Parameter Plane

In practice, the Lagrange region is the only region with practical application. In fact, the nonlinear stability of the DeBra-Delp region remains an open research problem.

Gyrostats and Dual-Spin Spacecraft

- A dual-spin spacecraft is a special case of the more general "gyrostat"
- A gyrostat is a rigid body with moving parts arranged so that the moment of inertia is constant
- A rigid body with axisymmetric spinning wheels is the most common gyrostat
- The spinning wheels provide an internal source of angular momentum, h

 s
- Can be used for attitude stabilization, or for performing attitude maneuvers
- Some spacecraft use one wheel, and some use four wheels
- Fourth wheel is typically for redundancy in the event of failure

Figure 1: Gyrostat with N momentum wheels

- GPS satellites use momentum wheels for attitude stabilization
- Hubble Space Telescope uses momentum wheels for attitude stabilization as well as for large attitude maneuvers

Gyrostat Equations of Motion

Angular momentum principle:

$$\vec{\mathbf{h}}^c = \vec{\mathbf{I}}^c \cdot \vec{\boldsymbol{\omega}}^{bi} + \vec{\mathbf{h}}_s$$
 $\dot{\vec{\mathbf{h}}^c} = \vec{\mathbf{g}}^c$

where $\vec{\mathbf{h}}_s$ is the spin angular momentum of the wheel(s) (not necessarily constant)

- ► How do we express these equations in a rotating reference frame?
- Recall formula for differentiating vector $\vec{\mathbf{a}}$ expressed in rotating frame \mathcal{F}_h :

$$\frac{d}{dt} \left[\left\{ \hat{\mathbf{b}} \right\}^{\!\!\mathsf{T}} \mathbf{a} \right] = \left\{ \hat{\mathbf{b}} \right\}^{\!\!\mathsf{T}} \left[\dot{\mathbf{a}} + \boldsymbol{\omega}^{\times} \mathbf{a} \right]$$

where $\omega = \omega^{bi}$

- Note that ω^{bi} plays two distinct roles in these equations:
 1) forms part (but not all) of angular momentum
 2) is angular velocity of rotating frame
- ▶ In the body frame, then,

$$\begin{array}{lcl} \mathbf{h}_b^c & = & \mathbf{I}_b^c \boldsymbol{\omega}_b^{bi} + \mathbf{h}_{sb} \\ \dot{\mathbf{h}}_b^c & = & - \left[\boldsymbol{\omega}_b^{bi} \right]^{\times} \left[\mathbf{I}_b^c \boldsymbol{\omega}_b^{bi} + \mathbf{h}_{sb} \right] \\ & & + \mathbf{g}_b^c \end{array}$$

 Note the importance of subscripts and superscripts, and compare with equivalent equations for rigid body

Gyrostat Equations of Motion (2)

Dropping the b subscripts and c superscripts, we have

$$\mathbf{h} = \mathbf{I}\boldsymbol{\omega} + \mathbf{h}_s$$

 $\dot{\mathbf{h}} = -\boldsymbol{\omega}^{\times} [\mathbf{I}\boldsymbol{\omega} + \mathbf{h}_s] + \mathbf{g}$

- Now, let us consider the case of a single wheel, spinning about the principal axis $\hat{\mathbf{b}}_2$, with symmetry axis moment of inertia I_s and angular speed, relative to the body, Ω_s
- ▶ The term \mathbf{h}_s (in \mathcal{F}_b), can be written as

$$\mathbf{h}_s = \begin{bmatrix} 0 & I_s \Omega_s & 0 \end{bmatrix}^\mathsf{T}$$

And the total angular momentum can be written as

$$\mathbf{h} = \begin{bmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_3 \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} + \begin{bmatrix} 0 \\ I_s \Omega_s \\ 0 \end{bmatrix} = \begin{bmatrix} I_1 \omega_1 \\ I_2 \omega_2 + I_s \Omega_s \\ I_3 \omega_3 \end{bmatrix}$$

Again, compare with the similar rigid body angular momentum

Gyrostat Equations of Motion (3)

 \blacktriangleright Assuming that the relative spin rate of the wheel (as measured by a tachometer) is constant, the term $\dot{\bf h}$ is simply

$$\dot{\mathbf{h}} = \begin{bmatrix} I_1 \dot{\omega}_1 & I_2 \dot{\omega}_2 & I_3 \dot{\omega}_3 \end{bmatrix}^\mathsf{T}$$

Euler's equations for this case becomes

$$\begin{bmatrix} I_1\dot{\omega}_1\\I_2\dot{\omega}_2\\I_3\dot{\omega}_3 \end{bmatrix} = -\begin{bmatrix} 0 & -\omega_3 & \omega_2\\\omega_3 & 0 & -\omega_1\\-\omega_2 & \omega_1 & 0 \end{bmatrix} \begin{bmatrix} I_1\omega_1\\I_2\omega_2 + I_s\Omega_s\\I_3\omega_3 \end{bmatrix} + \begin{bmatrix} g_1\\g_2\\g_3 \end{bmatrix}$$

▶ This matrix equation expands to the three scalar equations:

$$\dot{\omega}_{1} = \frac{I_{2} - I_{3}}{I_{1}} \omega_{2} \omega_{3} + \frac{I_{s}}{I_{1}} \Omega_{s} \omega_{3} + \frac{g_{1}}{I_{1}}
\dot{\omega}_{2} = \frac{I_{3} - I_{1}}{I_{2}} \omega_{1} \omega_{3} + \frac{g_{2}}{I_{2}}
\dot{\omega}_{3} = \frac{I_{1} - I_{2}}{I_{2}} \omega_{1} \omega_{2} - \frac{I_{s}}{I_{2}} \Omega_{s} \omega_{1} + \frac{g_{3}}{I_{2}}$$

 As with rigid body, we can obtain useful results for the torque-free motion, as well as for the axisymmetric torque-free case

Gyrostat Torque-Free Motion

- In the case of $\mathbf{g}=\mathbf{0}$, the gyrostat equations can be integrated in the same way that the rigid body equations are integrated, in terms of elliptic functions
- Exercise: review the integration of the asymmetric rigid body case, and carry out the same steps for the gyrostat.
- ▶ Torque-free gyrostat with constant-speed rotor spinning parallel to $\hat{\mathbf{b}}_2$:

$$\begin{array}{rcl} \dot{\omega}_{1} & = & \frac{I_{2}-I_{3}}{I_{1}}\omega_{2}\omega_{3} + \frac{I_{s}}{I_{1}}\Omega_{s}\omega_{3} \\ \\ \dot{\omega}_{2} & = & \frac{I_{3}-I_{1}}{I_{2}}\omega_{1}\omega_{3} \\ \\ \dot{\omega}_{3} & = & \frac{I_{1}-I_{2}}{I_{3}}\omega_{1}\omega_{2} - \frac{I_{s}}{I_{3}}\Omega_{s}\omega_{1} \end{array}$$

- As with rigid body, let us look for special solutions, such as steady spins
- ▶ Thus, we set the "dots" equal to zero and see whether there are values of ω_i that satisfy all three equations
- ► Spoiler alert: There are!

Gyrostat Torque-Free Motion (2)

▶ Looking for equilibria, set $\dot{\omega}_i = 0$:

$$0 = \frac{I_2 - I_3}{I_1} \omega_2 \omega_3 + \frac{I_s}{I_1} \Omega_s \omega_3$$

$$0 = \frac{I_3 - I_1}{I_2} \omega_1 \omega_3$$

$$0 = \frac{I_1 - I_2}{I_3} \omega_1 \omega_2 - \frac{I_s}{I_3} \Omega_s \omega_1$$

- One possibility is $\omega_1 = \omega_3 = 0$, $\omega_2 = \Omega$
- ▶ That is, a steady spin about the same axis that $\hat{\mathbf{b}}_2$ axis, which is parallel to wheel spin axis
- ▶ Exercise: What are the other two possibilities? Hint: this is a simple algebra problem, which you can expect to see again.
- Determine whether this equilibrium is stable or unstable, and determine the relationship between inertias and wheel speed that stabilizes the motion (if possible)
- Whenever you are presented with a question such as "Is this equilibrium stable or unstable?" you should immediately think

Gyrostat Torque-Free Motion (3)

Linearize about $\boldsymbol{\omega} = \begin{bmatrix} 0 & \Omega & 0 \end{bmatrix}^T$, by setting $\omega_1 = 0 + \delta \omega_1$, $\omega_2 = \Omega + \delta \omega_2$, and $\omega_3 = 0 + \delta \omega_3$:

$$\begin{split} \dot{\delta\omega}_1 &= \frac{I_2 - I_3}{I_1} \left(\Omega + \delta\omega_2\right) \delta\omega_3 + \frac{I_s}{I_1} \Omega_s \,\delta\omega_3 \\ \dot{\delta\omega}_2 &= \frac{I_3 - I_1}{I_2} \delta\omega_1 \,\delta\omega_3 \\ \dot{\delta\omega}_3 &= \frac{I_1 - I_2}{I_3} \delta\omega_1 \left(\Omega + \delta\omega_2\right) - \frac{I_s}{I_3} \Omega_s \,\delta\omega_1 \end{split}$$

▶ IF the $\delta\omega_i$'s are small, then their products are negligible, and we drop them as "higher order terms"

$$\begin{array}{lll} \dot{\delta\dot{\omega}}_1 & = & \frac{I_2-I_3}{I_1}\Omega\delta\omega_3 + \frac{I_s}{I_1}\Omega_s\,\delta\omega_3 \\ \dot{\delta\dot{\omega}}_2 & = & 0 \\ \dot{\delta\dot{\omega}}_3 & = & \frac{I_1-I_2}{I_3}\Omega\delta\omega_1 - \frac{I_s}{I_3}\Omega_s\,\delta\omega_1 \end{array}$$

- Compare these equations to the linearization of Euler's equations for the torque-free rigid body
- Keep in mind that IF we determine the motion to be unstable, then that means the $\delta\omega_i$'s do not remain small, and these equations are no longer valid

Gyrostat Torque-Free Motion (4)

The linearized equations simplify to:

$$\begin{array}{lcl} \dot{\delta\omega}_1 & = & \left(\frac{I_2-I_3}{I_1}\Omega+\frac{I_s}{I_1}\Omega_s\right)\delta\omega_3 \\ \dot{\delta\omega}_3 & = & \left(\frac{I_1-I_2}{I_3}\Omega-\frac{I_s}{I_3}\Omega_s\right)\delta\omega_1 \end{array}$$

- ▶ Recall that the inertias, the rotor spin rate relative to the body, Ω_s , and the platform angular velocity about $\hat{\mathbf{b}}_2$ are all constant
- ► As we did with the asymmetric, torque-free rigid body, we can differentiate the first equation and substitute in the second equation to obtain:

$$\ddot{\delta\omega}_1 + \left(\frac{I_2 - I_3}{I_1}\Omega + \frac{I_s}{I_1}\Omega_s\right) \left(\frac{I_2 - I_1}{I_3}\Omega + \frac{I_s}{I_3}\Omega_s\right) \delta\omega_1 \quad = \quad 0$$

- ▶ This equation is in the form $\ddot{x} + kx = 0$, so k > 0 is required for marginal stability, and if k < 0, the motion is unstable.
- ▶ Where have you seen $\ddot{x} + kx = 0$ before?
- Now we need to determine the conditions for k > 0

Gyrostat Torque-Free Motion (5)

▶ The linear second-order ODE is:

$$\ddot{\delta\omega}_1 + \left(\frac{I_2 - I_3}{I_1}\Omega + \frac{I_s}{I_1}\Omega_s\right) \left(\frac{I_2 - I_1}{I_3}\Omega + \frac{I_s}{I_3}\Omega_s\right) \delta\omega_1 = 0$$

- $lackbox{ Evidently, the relationship between the inertias, }\Omega$ and Ω_s is pretty complicated, so let us consider the simple case where we know that $\hat{\mathbf{b}}_2$ is the intermediate axis, and choose the other two inertias so that $I_1 > I_2 > I_3$
- ▶ If Ω and Ω_s are both positive, then the first term in k is positive, so we can try to pick the wheel speed to make the second term positive:

$$\left(\frac{I_2 - I_1}{I_3}\Omega + \frac{I_s}{I_3}\Omega_s\right) > 0 \Rightarrow \Omega_s > \frac{I_1 - I_2}{I_s}\Omega$$

► Compare this result with the stability condition presented at the beginning of the Satellite Dynamics module, and repeated on the next slide.

Effect of Rotor on Spin Stability

- A spinning rotor can stabilize the intermediate axis, destabilize other axes
- Stability condition $I_R\omega_R > (I_{xx}-I_{yy})\omega_y$
- As with rigid body, energy dissipation changes stability results
 - ightarrow some stable spins become unstable

What are your ideas on how energy dissipation might affect these conditions?

Yo-Yo Despin Device

- Many spacecraft use an "upper stage" rocket motor to transfer from initial parking orbit to higher operational orbit
- ▶ Spin-stabilization makes steering of the thrust trajectory possible
- Despinning of the satellite in its operational orbit may be necessary
- ▶ The yo-yo concept makes despin easy
- ▶ Angular momentum is transferred from spacecraft to yo-yo masses

See, for example, Section 5.7 of *Spaceflight Dynamics*, by W. E. Wiesel, McGraw-Hill, 2nd edition, 1997, as well as the Wikipedia article https://en.wikipedia.org/wiki/Yo-yo_de-spin

Yo-Yo Despin Mathematical Model

Simple model for despin analysis

- Axisymmetric rigid body with radius R, angular velocity ω
- Yo-yo consists of cord attached at "hinge," which can detach after deployment, and mass m initially attached

Only one yo-yo device shown for simplicity

- Despin maneuver begins when mass is released from spacecraft
- ▶ Yo-yo frame, \mathcal{F}_y is defined so that $\hat{\mathbf{y}}_1$ is parallel to deployed segment of cord, and $\hat{\mathbf{y}}_2$ points to where cord is tangent to spacecraft

Yo-Yo Despin Analysis

▶ Length of deployed yo-yo cord:

$$L=R\psi \ \Rightarrow \ \dot{L}=R\dot{\psi}$$

Position vector of yo-yo mass:

$$\vec{\mathbf{r}} = L\,\hat{\mathbf{y}}_1 + R\,\hat{\mathbf{y}}_2 = \mathbf{r}^\mathsf{T}\!\{\hat{\mathbf{y}}\}\$$

▶ Expressed in rotating \mathcal{F}_y :

$$\mathbf{r} = \begin{bmatrix} L & R & 0 \end{bmatrix}^\mathsf{T}$$

▶ Angular velocity of \mathcal{F}_y with respect to \mathcal{F}_i :

$$\Omega = \begin{bmatrix} 0 & 0 & \omega + \dot{\psi} \end{bmatrix}^{\mathsf{T}}$$
$$= \begin{bmatrix} 0 & 0 & \omega + \dot{L}/R \end{bmatrix}^{\mathsf{T}}$$

▶ Differentiate with respect to \mathcal{F}_i :

$$\mathbf{v} = \dot{\mathbf{r}} + \mathbf{\Omega}^{\times} \mathbf{r}$$

- ▶ Matrix $\dot{\mathbf{r}} + \mathbf{\Omega}^{\times} \mathbf{r}$ contains elements of $\vec{\mathbf{v}} = \dot{\vec{\mathbf{r}}}$ expressed in rotating \mathcal{F}_y
- Simplify this expression and use it in the expressions for energy and angular momentum

Yo-Yo Despin Analysis (2)

▶ Velocity of mass with respect to \mathcal{F}_i expressed in rotating \mathcal{F}_y :

$$\frac{d}{dt} \left[\left\{ \hat{\mathbf{y}} \right\}^{\mathsf{T}} \mathbf{r} \right] = \left\{ \hat{\mathbf{y}} \right\}^{\mathsf{T}} \left[\dot{\mathbf{r}} + \mathbf{\Omega}^{\times} \mathbf{r} \right]$$

► Simplify the matrix (Exercise):

$$\dot{\mathbf{r}} + \mathbf{\Omega}^{\times} \mathbf{r} = \begin{bmatrix} -R\omega & L(\omega + \dot{L}/R) & 0 \end{bmatrix}^{\mathsf{T}}$$

► Kinetic energy of two yo-yo masses is $T_m = 2 \times \frac{1}{2} m v^2$:

$$T_m = m \left(R^2 \omega^2 + L^2 (\omega + \dot{L}/R)^2 \right)$$

Angular momentum of two yo-yo masses is $\vec{\mathbf{h}}_m = 2m\,\vec{\mathbf{r}}\times\vec{\mathbf{v}}$

$$\vec{\mathbf{h}}_m = 2m \left(R^2 \omega + L^2 (\omega + \dot{L}/R) \right) \hat{\mathbf{y}}_3$$

Add T_m and $\vec{\mathbf{h}}_m$ to T_s and $\vec{\mathbf{h}}_s$ for spacecraft body

Spacecraft rotational kinetic energy:

$$T_s = \frac{1}{2}C\omega^2$$

Total kinetic energy:

$$T = \frac{1}{2}C\omega^{2} + m\left(R^{2}\omega^{2} + L^{2}(\omega + \dot{L}/R)^{2}\right)$$

 Total kinetic energy is conserved, so

$$T = \left(\frac{1}{2}C + mR^2\right)\omega_0^2$$

 We will use the fact that the two total kinetic energy expressions must be equal

Yo-Yo Despin Analysis (3)

- $lackbox{ }$ Spacecraft angular momentum: $\vec{\mathbf{h}}_s = C\omega\,\hat{\mathbf{y}}_3$
- Total angular momentum magnitude:

$$h = C\omega + 2m\left(R^2\omega + L^2(\omega + \dot{L}/R)\right)$$

Angular momentum is conserved, so

$$h = \left(C + 2mR^2\right)\omega_0$$

- ► The next few steps are not "obvious," and I recommend you write them out
- ▶ Divide T by mR^2 and h_m by $2mR^2$
- Define $K = (C/2 + mR^2)/(mR^2)$
- ightharpoonup Set the two $T/(mR^2)$ expressions equal to each other and simplify

$$K(\omega_0^2 - \omega^2) = \frac{L^2}{R^2} (\omega + \dot{L}/R)^2$$

▶ Set the two $h/(2mR^2)$ expressions equal and obtain

$$K(\omega_0 - \omega) = \frac{L^2}{R^2} (\omega + \dot{L}/R)$$

Yo-Yo Despin Analysis (4)

▶ Factor $(\omega_0^2 - \omega^2) = (\omega_0 - \omega)(\omega_0 + \omega)$, and divide the T and h expressions to obtain

$$\dot{L}=R\omega_0={
m constant}$$

lacktriangle Substitute this result into the expression for T to obtain

$$\omega = \omega_0 \frac{K - L^2/R^2}{K + L^2/R^2}$$

▶ Despin implies that we want $\omega \to 0$, which happens if

$$L = R\sqrt{K} = \sqrt{R^2 + C/(2m)}$$

- Note that this result for the length of the yo-yo cords for despin is independent of the initial angular velocity
- That means that a slight error in the spin rate won't affect the peformance of the despin mechanism
- Also, note that if the cord length is $L > R\sqrt{K}$, then the final angular velocity will be negative, thus reversing the spacecraft's spin direction
- ▶ Finally, note that in the lim $L \to \infty$, the final angular velocity is $\omega = -\omega_0$