1. a) Smoonial distribution:
$$f(k, n, \rho) = \binom{n}{k} \rho^{k} (1-\rho)^{n-k}$$

K=0 $n = 10$
 $m = 1$
 $m = 1$
 $m = 1000$
 $m = 1000$

4)
$$a = \hat{\Sigma}^{-1} (\hat{M}_0 - \hat{M}_1)$$
 $b = -\frac{1}{2} \hat{M}_0^T \hat{\Sigma}^{-1} \hat{M}_0 + \frac{1}{2} \hat{M}_1^T \hat{\Sigma}^{-1} \hat{M}_1 + \log \frac{\hat{\pi}_E}{\hat{\pi}_1}$

$$f(x) = \arg \max_{k} \log \hat{\pi}_k - \frac{1}{2} (x - \hat{M}_k)^T \hat{\Sigma}^{-1} (x - \hat{M}_k)$$

$$= \arg \max_{k} \log \hat{\pi}_k - \frac{1}{2} \hat{M}_k^T \hat{\Sigma}^{-1} \hat{M}_k - \frac{1}{2} x^T \hat{\Sigma}^{-1} x + x^T \hat{\Sigma}^{-1} \hat{M}_k$$

$$= \arg_{k} \max_{k} \log \hat{\pi}_k - \frac{1}{2} \hat{M}_k^T \hat{\Sigma}^{-1} \hat{M}_k - \frac{1}{2} x^T \hat{\Sigma}^{-1} x + x^T \hat{\Sigma}^{-1} \hat{M}_k$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision rule becomes$$

$$\lim_{k \to \infty} (a \circ e \quad K = 2 , decision$$

basinary of light

明年上 1000

Le we want the state of

一大学の大学

1. b)

3. a)

5.

	Synthetic 1	Synthetic 2	Synthetic 3	Synthetic 4	Real
Normal	0.995	0.99	0.78	0.75	0.7
Modified	1	0.99	0.7	0.75	0.67

The modified co-variance strategies has a beneficial effect on some, but not all, of the data sets. The performance of LDA is strongly coupled with the separability of the data. Groupings with tight co-variance and strong inter group variance perform best. The diagrams bellow help shed light on the performance statistics shown above.

Plots of data sets and decision rules:

2.

4.

