

Atividade: Termo geral de uma P.A.

#### Habilidades

## Para o professor

### Objetivos específicos

OE1 Objetivos específicos

OE2 Introduzir a nomenclatura "termo geral" para uma P.A.

OE3 Identificar os elementos principais dessa fórmula:  $a_n, a_1, r$ 

## Observações e recomendações

- **E** Evite estimular a memorização dessa fórmula. Procure explorar o significado da relação entre  $a_n$  e  $a_1$ .
- $\blacksquare$  As expressões do termo geral podem ficar em função de n ou de n-1.
- Considere extrapolar a fórmula para a relação com outros termos diferentes do primeiro:

$$a_n = a_k + (n - k)r.$$

#### Atividade

A função afim que relaciona um termo genérico de uma progressão aritmética com o primeiro termo e a razão é comumente chamada de **fórmula do termo geral** da progressão. Ou seja, para a P.A.  $(a_1,a_2,a_3,...)$  de razão r a fórmula do termo geral é

$$a_n = a_1 + (n-1)r$$

Complete a tabela abaixo com as progressões ou as fórmulas dos termos gerais.



Patrocínio:

| P.A.                                                       | Primeiro<br>termo | Razão | Termo Geral                 |
|------------------------------------------------------------|-------------------|-------|-----------------------------|
| $(a_1, a_2, a_3)$                                          | $a_1$             | r     | $a_n = 1 + 2(n-1) = 2n - 1$ |
| (1, 3, 5, 7, 9,)                                           | 1                 | 2     | $a_n = 1 + 2(n-1) = 2n - 1$ |
| (2,4,6,8,10,)                                              |                   |       |                             |
|                                                            | 3                 | -1    |                             |
|                                                            |                   |       | $a_n = 10 - \frac{n}{5}$    |
| $\left(\pi, \frac{5\pi}{4}, \frac{9\pi}{4}, \ldots\right)$ |                   |       |                             |
|                                                            | 4                 |       | $a_n = 2 + 2n$              |

# Solução:

| P.A.                                                                                        | Primeiro<br>termo | Razão           | Termo Geral                                                        |
|---------------------------------------------------------------------------------------------|-------------------|-----------------|--------------------------------------------------------------------|
| $(a_1, a_2, a_3)$                                                                           | $a_1$             | r               | $a_n = 1 + 2(n-1) = 2n - 1$                                        |
| $(1, 3, 5, 7, 9, \ldots)$                                                                   | 1                 | 2               | $a_n = 1 + 2(n-1) = 2n - 1$                                        |
| (2,4,6,8,10,)                                                                               | 2                 | 2               | $a_n = 2 + 2(n-1) = 2n$                                            |
| (3, 2, 1, 0, -1,)                                                                           | 3                 | -1              | $a_n = 3 - (n - 1) = 4 - n$                                        |
| $\left(\frac{49}{5}, \frac{48}{5}, \frac{47}{5}, \frac{46}{5}, \frac{45}{5}, \ldots\right)$ | $\frac{49}{5}$    | $\frac{-1}{5}$  | $a_n = 10 - \frac{n}{5}$                                           |
| $\left(\pi, \frac{5\pi}{4}, \frac{9\pi}{4}, \ldots\right)$                                  | $\pi$             | $\frac{\pi}{4}$ | $a_n = \pi + \frac{\pi}{4}(n-1) = \frac{3\pi}{4} + \frac{\pi}{r}n$ |
| $(4, 6, 8, 10, 12, \ldots)$                                                                 | 4                 | 2               | $a_n = 2 + 2n$                                                     |

