Searching PAJ Page 1 of 2

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-009707

(43) Date of publication of application: 16.01.1998

(51)Int.Cl.

F25B 15/00

(21)Application number : **08-162143**

(71)Applicant: RINNAI CORP

(22)Date of filing:

21.06.1996

(72)Inventor: IKEDA KATSUTO

HAYASHI YASUHEI

(54) ABSORPTION TYPE REFRIGERATING DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain complete outputs with respect to the respective rated outputs of an absorption cycle, and suppress a loss and an operating cost without lowering an efficiency.

SOLUTION: A refrigerant passage L5 through which a refrigerant recovery tank 10 for recovering refrigerant steam separated from a high temperature regenerator 1 communicates with a condenser 5 is provided with a variable orifice mechanism 80 for changing a radial area depending on temperature and the pressure difference between the refrigerant recovery tank 10 and the condenser 5. When the output of an absorption cycle is small and the temperature and pressure of the refrigerant steam are low, if the radial area of the variable orifice mechanism 80 is small, the small quantity of the refrigerant steam passes through the refrigerant passage L5, the output of the absorption cycle becomes large and the temperature and pressure of the refrigerant steam become high, the radial area of the variable orifice mechanism 80 will be increased and the large quantity of the refrigerant stream

will pass through the refrigerant passage L5. Thus, a loss in the orifice can be decreased and an efficiency is not lowered regardless of the high or low output.

LEGAL STATUS

[Date of request for examination]

24.07.2001

[Date of sending the examiner's decision of

31.08.2004

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

BEST AVAILABLE CUPY

特阴平08-162143

1 1 ->'

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-162143

(43)公開日 平成8年(1996)6月21日

(51) Int.Cl.^e

識別配号

庁内整理番号

FΙ

技術表示箇所

H01M 8/24

S 9444-4K

審査請求 未請求 請求項の数3 FD (全 6 頁)

(21)出願番号

特願平6-331842

(22)出願日

平成6年(1994)12月8日

(71)出題人 000003207

トヨタ自動車株式会社

愛知県豊田市トヨタ町1番地

·(72)発明者 髙橋 剛

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(74)代理人 弁理士 下出 隆史 (外1名)

(54) 【発明の名称】 燃料電池

(57)【要約】

【目的】 燃料電池に形成された燃料の給排用流路から 燃料が外部へ漏れるのを防止する。

【構成】 積層体10は、電解質膜と、電解質膜を挟持するガス拡散電極と、このガス拡散電極をシール部材40と共に挟持する集電極20とを複数積層して構成される。集電極20には、積層方向に貫通する複数の貫通孔が形成されており、この貫通孔により積層体10内に積層方向の燃料の給排用流路が形成されている。積層体10の両積層端には、エンドプレート50が設置され、積層体10の積層方向に沿った4つの側面は、ゴムにより形成された被覆層60により覆われている。積層体10に衝撃荷重が作用し、燃料の給排用流路の形成部に割れ等が生じても、被覆層60が積層体10内と外部とを遮断するので、燃料の給排用流路から燃料が漏れるのを防止することができる。

特開平08-162143

2 ~ ->*

【特許請求の範囲】

【請求項1】 電解質層と電極とからなる単電池を複数 積層してなり内部に燃料の流路が形成された積層体を備 える燃料電池であって、

前記積層体は、該積層体の側面の少なくとも一部を複数 の単電池に亘って被覆する弾性体からなる被覆層を備え てなる燃料電池。

【請求項2】 電解質層と電極とを複数積層してなり内 部に燃料の流路が形成された積層体を備える燃料電池で あって

前記積層体は、前記燃料の流路の形成面の少なくとも一部を被覆する弾性体からなる被覆層を備えてなる燃料電池

【請求項3】 前記被殺層は、絶縁性材料により形成されてなる請求項1または請求項2記載の燃料電池。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、燃料電池に関し、詳し くは電解質層と電極とを複数積層してなり内部に燃料の 流路が形成された積層体を備える燃料電池に関する。

[0002]

【従来の技術】従来、この種の燃料電池としては、所定の位置に貫通孔が形成された単電池を複数積層することにより、燃料電池を構成する積層体の内部に燃料の給排用流路を形成するものが提案されている(例えば、特開昭62-136777号公報、特開平4-144069号公報、特開平5-174862号公報等)。

【0003】これらの燃料電池は、電解質層と、この電解質層を挟持してサンドイッチ構造とするガス拡散電極と、このサンドイッチ構造を挟持しガス拡散電極とで燃料の流路を形成すると共に隣接する単電池の隔壁をなす集電極とからなる単電池を、複数積層することにより構成される。燃料電池内部に形成される燃料の給排用流路は、集電極の外縁部に形成された積層面を貫通する貫通孔により形成される。集電極の形成材料としては、集電極が燃料の流路を形成すると共に単電池の隔壁をなすことから、燃料に対して化学的に安定で、燃料を透過せず、導電性優れていることが要求される。上記の燃料電池では、これらの要求を満たす緻密質カーボン(カーボンを圧縮してガス不透過としたもの)が用いられている。

【0004】また、これらの燃料電池では、燃料の給排用流路から燃料が漏れるのを防止するため、集電極の外縁部に形成された貫通孔の外周にOリング等のシール部材を配置して積層している。

[0005]

【発明が解決しようとする課題】しかしながら、こうした緻密質カーボンで形成され外縁部に燃料の給排用流路を形成するための貫通孔が形成された集電極を複数積層してなる燃料電池では、緻密質カーボンが脆性材料であ

るため、衝撃等により割れ等が生じやすく、燃料が外部 に漏れやすいという問題があった。特に燃料電池を移動 車両等に搭載する場合、移動車両の不成の事故等によっ て生じる衝撃をも考慮する必要があり、この問題はクロ ーズアップされる。

【0006】こうした問題は、集電極を緻密質カーボンを材料として形成した場合に限られるものでなく、他の材料により形成した場合でも同様である。

【0007】本発明の燃料電池は、こうした問題を解決し、燃料電池に形成された燃料の給排用流路から燃料が外部へ漏れるのを防止することを目的とし、次の構成を採った。

[0008]

【課題を解決するための手段】本発明の第1の燃料電池は、電解質層と電極とからなる単電池を複数積層してなり内部に燃料の流路が形成された積層体を備える燃料電池であって、前記積層体は、該積層体の側面の少なくとも一部を複数の単電池に互って被覆する弾性体からなる被覆層を備えてなることを要旨とする。

【0009】本発明の第2の燃料電池は、電解質層と電極とを複数積層してなり内部に燃料の流路が形成された積層体を備える燃料電池であって、前記積層体は、前記燃料の流路の形成面の少なくとも一部を被覆する弾性体からなる被覆層を備えてなることを要旨とする。

【0010】ここで、前記第1または第2の燃料電池において、前記被覆層は、絶縁性材料により形成されてなる構成とすることもできる。

[0011]

【作用】以上のように構成された本発明の第1の燃料電池は、積層体の側面の少なくとも一部を複数の単電池に 国って被覆する弾性体からなる被覆層が、積層体と外部 とを遮断する。この結果、積層体の被覆層を備えた箇所 に衝撃等により割れ等が生じても、この割れ等から燃料 が外部に漏れるのを防止することができる。

【0012】本発明の第1の燃料電池において、被覆層を絶縁性材料とすれば、被覆層による単電池間の短絡を防止することが可能となると共に、燃料電池を移動車両に搭載する場合等に他の機器との絶縁が容易となる。

【0013】本発明の第2の燃料電池は、燃料の流路の 形成面の少なくとも一部を被覆する弾性体からなる被覆 層が、燃料の流路内と外部とを遮断する。この結果、被 覆層を備えた燃料の流路の形成面に衝撃等により割れ等 が生じても、この割れ等から燃料が外部に漏れるのを防 止することができる。

【0014】本発明の第2の燃料電池において、被罹層を絶縁性材料とすれば、被罹層による部材間の短絡を防止することができる。

[0015]

【実施例】以上説明した本発明の構成・作用を一層明らかにするために、以下本発明の好適な実施例について説

特別平08-162143

3 ページ

明する。図1は本発明の好適な一実施例である燃料電池を構成する積層体10の構成の概略を示す説明図、図2は積層体10を構成する単電池11の構成を例示する分解斜視図、図3は図1に示す積層体10の3-3平面(集電極20の積層面)における斯面図である。

【0016】図1および図2に示すように、積層体10 は、電解質膜12と、電解質膜12を挟持しサンドイッ チ構造とする2つのガス拡散電極14と、このサンドイ ッチ構造を挟持すると共に隣接する単電池の隔壁をなす 2つの集電極20と、サンドイッチ構造と共に集電極2 0に挟持されるシール部材40とを複数稍層して構成さ れる。積層体10の両積層端には、エンドプレート50 が取り付けられており、積層体10の積層方向に沿った 4つの側面には、全面に被覆層60が形成されている。 【0017】電解質膜12は、高分子材料、例えば、フ ッ素系樹脂により形成された厚さ100μmないし20 0μmのイオン交換膜であり、湿潤状態で良好な電気伝 導性を示す。2つのガス拡散電極14は、表面をポリ四 フッ化エチレンでコーティングした炭素繊維と何等処理 されていない炭素繊維とを1対1の割合とした糸で織成 したカーボンクロスにより形成されている。ガス拡散電 極14は、ポリ四フッ化エチレンが撥水性を呈するか ら、その表面が水で覆われてガスの透過を阻害すること はない。このカーボンクロスの電解質膜12側の表面お よび隙間には、触媒としての白金または白金と他の金属 からなる合金等を担持したカーボン粉が練り込まれてい る。この電解質膜12と2つのガス拡散電極14は、2 つのガス拡散電極14が電解質膜12を挟んでサンドイ ッチ構造とした状態で、100℃ないし160℃好まし くは110℃ないし130℃の温度で、1M·Pa {1 0. 2kgf/cm² ないし20MPa {102kgf/cm²} 好ましくは5MPa {51kgf/cm²} ないし10MPa 【102kgf/cm²】の圧力を作用させて接合するホット プレス法により接合されている。

【0018】集電極20は、カーボンを圧縮して緻密化しガス不透過とした緻密質カーボンにより形成されている。集電極20は、正方形の薄板状に形成されており、各辺の縁付近には、辺に平行で細長い二対の貫通孔22、24および32、34は、積層体が形成された際、積層体を積層方向に貫通する酸化ガス(空気等の酸素を含有するガス)の給排用流路22a、24aおよび燃料ガス(メタノール改質ガス等の水素を含有するガス)の給排用流路22a、24aおよび燃料ガス(メタノール改質ガス等の水素を含有するガス)の給排用流路32a、34aを形成する。集電極20のガス拡散電極14と接触する面(図2の表示

面)の一対の貫通孔22と24との間には、一対の貫通孔32,34の長手方向と平行に配置された複数のリブ26が形成されている。このリブ26は、ガス拡散電極14とで酸化ガスの通路28を形成する。また、集電極20のガス拡散電極14と接触する面(図2の裏面)の一対の貫通孔32と34との間には、一対の貫通孔22、24の長手方向と平行(リブ26と直交する方向)に配置された複数のリブ36が形成されている。このリブ36もリブ26と同様に、ガス拡散電極14とで燃料ガスの通路38を形成する。

【0019】エンドプレート50は、樹脂により正方形の板状に形成されており、4つの辺のうち隣接する2つの辺の縁付近の中央に円形の質通孔52,54が形成されている。図1中左側のエンドプレート50の質通孔52は積層体に形成される酸化ガスの給排用流路22aと連絡しており、質通孔54は燃料ガスの給排用流路32aと連絡している。図示しないが、図1中右側のエンドプレート50の質通孔52は、酸化ガスの給排用流路24aと連絡しており、質通孔54は燃料ガスの給排用流路2

【0020】被覆層60は、絶縁性材料であるゴム(例えば、ニトリルゴム、スチロールゴム、シリコーンゴム、フッ素ゴム、ポリアクリレートゴム、エチレンプロピレンゴム、ブチルゴム、ウレタンゴム等)により形成されいる。被覆層60は、電解質膜12、ガス拡散電極14、集電極20をシール部材40と共に複数積層し、両積層端にエンドプレート50を取り付けた後に、積層体10の積層方向に沿った4つの側面にシート状のゴムを接着固定することにより形成される。被覆層60は、図3に示すように、積層体10の側面を完全に覆うように形成される。

【0021】こうして構成された積層体10の両積層端に取り付けられたエンドプレート50の質通孔52,54に、酸化ガスおよび燃料ガスを給排する図示しない酸化ガス給排装置および燃料ガス給排装置を接続し、積層体10の酸化ガスの給排用流路22a,24aの一方から酸化ガスを供給すると共に燃料ガスの給排用流路32a,34aの一方から燃料ガスを供給すれば、酸化ガスの通路28および燃料ガスの通路38を介して電解質膜12を挟んで対峙する2つのガス拡散電極14にそれぞれ酸化ガスおよび燃料ガスが供給され、積層体10は、次式(1)および(2)に示す反応により、化学エネルギを直接電気エネルギに変換する。

[0022]

カソード反応 (酸素極) : 2 H⁺+ 2 e ⁻+ (1/2) O₂→H₂O ··· (1) アノード反応 (燃料極) : H₂→ 2 H⁺+ 2 e ⁻ ··· (2)

【0023】以上説明した実施例の燃料電池によれば、 ゴムにより形成された被覆層60により積層体10内部 と外部とを遮断することができる。このため、積層体1

0に衝撃荷重が作用し、積層体10の被覆層60が形成 された側面に割れ等が生じても、酸化ガスまたは燃料ガ スが、酸化ガスの給排用流路22a,24aまたは燃料 特開平08-162143

4 ~ ->'

ガスの給排用流路32a,34aから漏れるの防止することができる。また、被償屋60を絶縁性材料により形成したので、他の機器等との接触による短絡等の不都合を防止することができ、燃料電池の取扱を容易にすることができる。

【0024】実施例の燃料電池では、被覆層60をゴム により形成したが、樹脂(例えば、エポキシ系、アクリ ルウレタン系、シリコン系等の樹脂)や、ゴムまたは樹 脂を主成分とした接着剤により形成する構成も好適であ る。また、実施例の燃料電池では、被覆層60を絶縁性 材料により形成したが、集電極20の外周部を絶縁性材 料で形成した場合には、被覆層60を導電性材料で形成 することも可能である。実施例の燃料電池では、被覆層 60を積層体10の側面にシート状のゴムを接着固定す ることにより形成したが、ゴムまたは樹脂を主成分とす る液状の高分子材料を塗布または吹き付け等により被膜 を形成し乾燥して被覆層60とする構成も好適である。 【0025】実施例の燃料電池では、積層体10の4つ の側面のすべてを覆うように被覆層60を形成したが、 被覆層60を、積層体10の4つの側面の他エンドプレ ート50をも覆うように形成する構成も好適である。ま た、積層体10の2つの側面のみに被覆層60を形成す る構成でも差し支えない。この構成を図4および図5に 示す。図4は実施例の積層体10の変形例である積層体 110の斜視図、図5は図4に示す積層体110の5-5平面(集電極20の積層面)における断面図である。 図4および図5に示すように、積層体110は、その側 面のうち集電極20の貫通孔32、34の長手方向と平 行な2つの面にのみ被覆層160が形成されている。こ の構成の燃料電池とすれば、積層体110に衝撃荷重が 作用し、積層体110の被覆層160を形成した側面に 割れ等が生じても、被覆層160が燃料ガスの給排用流 路32a、34aと外部とを遮断するから、燃料ガスが 燃料ガスの給排用流路32a,34aから漏れるの防止 することができる。

【0026】実施例の燃料電池では、積層体10の4つの側面を1枚のシート状のゴムで覆うようにして被覆層60を形成したが、複数のシート状のゴムにより2以上に分離した被覆層60としてもよい。例えば、図6に示す積層体210のように、複数の単電池11からなるモジュール毎に被覆層260を形成し、このモジュールを積層し、その積層端にエンドプレート50を取り付けて積層体210としてもよい。この場合モジュールを構成する単電池11の数は幾つであってもかまわない。

【0027】次に本発明の第2の実施例である燃料電池について説明する。図7は、第2実施例の燃料電池を構成する積層体の断面(集電極20の積層面における断面)を示す断面図である。第2実施例の燃料電池は、被覆層60の形成箇所を除いて第1実施例の燃料電池と同一の構成をしている。したがって、第2実施例の燃料電

池の構成のうち、第1 実施例の燃料電池と同一の構成に ついては同一の符号を付し、その説明は省略する。

【0028】図示するように、第2実施例の燃料電池では、集電極20の貫通孔22,24,32,34の内間面のうち集電極20の緑側の面に第1実施例の被殺超60と同一の材料により形成された被殺菌360を備える。被殺菌360は、電解質膜12,ガス拡散電極14,集電極20およびシール部材40を積層し、その両積層端にエンドプレート50を取り付ける前に、集電極20の貫通孔22,24,32,34が形成する酸化ガスの給排用流路22a,24aおよび燃料ガスの給排用流路22a,24a,32a,34aの内側に管付きのノズルを挿入し、ノズルから液状のゴムを吹き付けて給排用流路22a,24a,32a,34aの内側に液状のゴムによる被膜を形成し、これを乾燥して形成される。

【0029】以上説明した第2実施例の燃料電池によれば、酸化ガスの給排用流路22a,24aおよび燃料ガスの給排用流路32a,34aの内側のうち集電極20の縁側に被罹層360を形成することにより、積層体に衝撃荷重が作用し、積層体を構成する集電極20の縁部等に割れ等が生じても、酸化ガスまたは燃料ガスが酸化ガスの給排用流路22a,24aおよび燃料ガスの給排用流路32a,34aから漏れるの防止することができる。また、被覆層360による単電池間の短絡を生じることがない。したがって、集電極20の貫通孔22,24,32,34の形成部を如何なる材料で形成してもよく、設計の自由度を高めることができる。

【0030】第2実施例の燃料電池では、酸化ガスの給排用流路22a,24aおよび燃料ガスの給排用流路32a,34aに被覆層360を形成したが、酸化ガスとして空気を用いる場合等では燃料ガスの給排用流路32a,34aにのみ被覆層360を形成する構成としてもよい。この構成とすれば、第2実施例の燃料電池に比して被覆層360を形成する手間が少なくなり製造工程を簡略化することができる。また、第2実施例の燃料電池では、集電極20等を積層した後に管付きノズルを挿入して液状のゴムを吹き付けて被覆層360を形成したが、複数の単電池により構成されるモジュール毎に被覆層360を形成し、このモジュールを積層して積層体を形成する構成してもよい。

【0031】以上本発明の実施例について説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる態様で実施し得ることは勿論である。

[0032]

【発明の効果】以上説明したように本発明の第1の燃料 電池によれば、積層体の側面の少なくとも一部を複数の 単電池に亘って被授する弾性体からなる被覆層が積層体 と外部とを遮断するので、積層体に衝撃等により割れ等 特期平08-162143

5 ページ

が生じても、この割れ等から燃料が外部に漏れるのを防 止することができる。

【0033】本発明の第1の燃料電池において、被閥層を絶録性材料とすれば、被覆層による単電池間の短絡を防止することができる。したがって、積層体の外周面を形成する部材は、如何なる材質によって形成してもよく、設計の自由度を高めることができる。また、移動車両へ搭載する場合等に、他の機器と容易に絶縁することができる。

【0034】本発明の第2の燃料電池によれば、燃料の流路の形成面の少なくとも一部を被覆する弾性体からなる被覆層が燃料の流路内と外部とを遮断するので、燃料の流路の形成面に衝撃等により割れ等が生じても、燃料の流路の形成面に生じた割れ等から燃料が外部に漏れるのを防止することができる。

【0035】本発明の第2の燃料電池において、被覆層を絶縁性材料とすれば、被覆層による部材間の短絡を防止することができる。したがって、燃料の流路を形成する部材は、如何なる材質によって形成してもよく、設計の自由度を高めることができる。

【図面の簡単な説明】

【図1】本発明の好適な一実施例である燃料電池を構成 する積層体10の構成の概略を示す説明図。

【図2】 積層体10を構成する単電池11の構成を例示する分解斜視図。

【図3】図1に示す積層体10の3-3平面の断面図。 【図4】実施例の積層体10の変形例である積層体11 0の斜視図。

【図6】実施例の積層体10の変形例である積層体21 0の斜視図。

【図7】第2実施例の燃料電池の積層体の断面図。 【符号の説明】

- 10…積層体
- 11…単電池
- 12…電解質膜
- 14…ガス拡散電極
- 20…集電極
- 22, 24, 32, 34…質通孔
- 22a, 24a…酸化ガスの給排用流路
- 26…リブ
- 28…通路
- 32a, 34a…燃料ガスの給排用流路
- 36…リブ
- 38…通路
- 40…シール部材
- 50…エンドプレート
- 52,54…貫通孔
- 60…被覆層
- 110…積層体
- 160…被覆層
- 210…積層体
- 260…被覆層
- 360…被覆層

【図1】

[図2]

特阴平08-162143

360

6 ベージ

BEST AVAILABLE COPY