

Institut Riset dan Publikasi Indonesia (IRPI)

MALCOM: Indonesian Journal of Machine Learning and Computer Science

Journal Homepage: https://journal.irpi.or.id/index.php/malcom

Vol. 4 Iss. 2 April 2024, pp: 695-701

ISSN(P): 2797-2313 | ISSN(E): 2775-8575

Implementation of the K-Nearest Neighbor Algorithm to Predict Sales of Medical Devices in Medical Devices

Implementasi Algoritma K-Nearest Neighbor untuk Prediksi Penjualan Alat Kesehatan pada Media Alkes

Uktupi Nijunnihayah^{1*}, Shofa Shofiah Hilabi², Fitria Nurapriani³, Elfina Novalia⁴

^{1,2,3,4}Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Buana Perjuangan Karawang, Indonesia

E-Mail: ¹si20.uktupinijunnihayah@mhs.ubpkarawang.ac.id, ²shofa.hilabi@ubpkarawang.ac.id, ³fitria.apriani@ubpkarawang.ac.id, ⁴elfinanovalia@ubpkarawang.ac.id

Received Jan 15th 2024; Revised Apr 4th 2024; Accepted Apr 19th 2024 Corresponding Author: Uktupi Nijunnihayah

Abstract

Media Medical Devices This company operates in the Medical Equipment industry. This company provides various products such as wheelchair needles, infusion equipment, blood pressure monitoring equipment, and others. Media Alkes also actively implements business strategies to meet customer needs. However, stock shortages often occur and goods pile up within this company. Researchers have managed and analyzed existing sales data to understand customer needs for Medical Devices. In facing these challenges, researchers proposed the K-Nearest Neighbor (K-NN) algorithm to predict sales of Medical Devices in Medical Device Media. Information regarding the number of sales of Medical Devices with the criteria of Highly Sold, Fairly Sold and Not Sold Well can be seen through sales data from 2020 to 2022 on the Medical Device Sales Report Media. The research was carried out by applying the K-NN Algorithm both manually and using RapidMiner. Prediction results using RapidMiner show an accuracy level of 95.00% of the mentioned sales data. With the very good prediction results obtained, this method can be used as a reference in planning future sales. By implementing this prediction, companies can manage stock efficiently and avoid running out of stock and loading unwanted items.

Keyword: Data Mining, Medical Devices, Medical Equipment Media, K-Nearest Neighbor, Prediction

Abstrak

Media Alkes Perusahaan ini bergerak dalam bidang industri Alat Kesehatan. Perusahaan ini menyediakan berbagai produk seperti jarum kursi roda, alat infus, alat monitor tekanan darah, dan lain-lain. Media Alkes juga aktif menerapkan strategi bisnis untuk memenuhi kebutuhan pelanggan. Namun sering terjadi kekurangan stok dan barang menumpuk di dalam perusahaan ini. Peneliti telah mengelola dan menganalisis data penjualan yang ada untuk memahami kebutuhan pelanggan terhadap Alat Kesehatan. Dalam menghadapi tantangan tersebut, peneliti mengusulkan algoritma K-Nearest Neighbor (K-NN) untuk memprediksi penjualan Alat Kesehatan di Media Alat Kesehatan. Informasi mengenai jumlah penjualan Alat Kesehatan dengan kriteria Sangat laris, Cukup laris dan Kurang laris dapat dilihat melalui data penjualan tahun 2020 hingga tahun 2022 pada Media Laporan Penjualan Alat Kesehatan. Penelitian dilakukan dengan menerapkan Algoritma K-NN baik dengan perhitungan secara manual maupun menggunakan sistem RapidMiner. Hasil dari prediksi yang menggunakan sistem RapidMiner menunjukkan tingkat akurasi sebesar 95,00% dari data yang disebut penjualan. Dengan hasil prediksi yang didapat yang Sangat bagus tersebut, metode ini dapat dijadikan sebagai acuan dalam merencanakan penjualan di masa depan. Dengan menerapkan prediksi ini, perusahaan dapat mengelola stok barang dengan secara efisien dan menghindari kehabisan stok serta memuat barang yang tidak diinginkan.

Kata Kunci: Alat Kesehatan, Data Mining, K-Nearest Neighbor, Media Alkes, Prediksi

1. PENDAHULUAN

Pentingnya peralatan medis tidak hanya sekedar meningkatkan efisiensi dan efektivitas layanan Kesehatan. hal ini juga berperan penting dalam membantu banyak upaya yang bertujuan untuk pencegahan, diagnosis, pengobatan, dan pemulihan kondisi kesehatan. Beragam peralatan medis, termasuk stetoskop, alat

infus, dan berbagai alat lainnya, dapat diterapkan baik dalam praktik medis maupun penyediaan layanan Kesehatan [1].

Dengan memperhatikan peran penting alat Kesehatan dapat memperluas pasar dengan mengenalkan penjualan alat kesehatan. Penjualan adalah sebuah komponen krusial dalam bisnis, terutama dalam domain pemasaran, setiap perusahaan memiliki tujuan yang menyeluruh [2]. yang harus dicapai pada setiap tahapan dan prosesnya, yaitu mencapai target yang telah direncanakan dan meningkatkan pendapatan secara konsisten [3]. Selain itu, bisnis yang berkualitas juga memiliki tujuan jangka waktu panjang untuk mengalami perkembangan positif di masa depan.

Untuk meningkatkan efektivitas penjualan diperlukan prediksi atau peramalan [4]. Peramalan adalah proses meramalkan penjualan di masa depan dengan tujuan menentukan perkiraan volume dalam penjualan serta mengidentifikasi pasar potensial yang tersebut akan didominasi dimasa depan [5]. Selain itu, peramalan juga berperan penting dalam menentukan rencana ketersediaan stok [6]. Dengan memanfaatkan prediksi tersebut, output penjualan dapat diprediksi lebih baik sehingga dapat mengurangi kesalahan dalam perencanaan seefisien mungkin [7]. Hal ini penting untuk memastikan arah yang tepat dalam strategi pemasaran suatu bisnis, karena kebutuhan akan informasi yang akurat melalui data penjualan sangatlah penting.

Upaya untuk memperoleh informasi terkini yang tidak diketahui dari kumpulan data dikenal dengan istilah Data Mining. Dalam Data Mining berbagai teknik digunakan untuk mengungkap informasi dan pola dalam data, salah satunya adalah teknik klasifikasi K-Nearest Neighbor (K-NN) [8]. Algoritma K-NN digunakan untuk mengelompokkan objek dengan cara membandingkan data latih dengan jarak terdekat dengan objek yang diuji [9]. Prinsip kerja K-NN adalah membandingkan data latih dengan data uji untuk mencari data latih yang paling mendekati data yang diuji [10]. Dalam konteks penelitian ini K-NN digunakan untuk memprediksi penjualan alat kesehatan di Media Alkes.

Media alkes adalah Perusahaan yang fokus menjual alat Kesehatan ini menawarkan beragam produk seperti kursi roda, alat infus, dan lain-lain. Selain itu, Media Alkes juga menerapkan strategi bisnis untuk memenuhi kebutuhan pelanggan. Namun perusahaan ini menghadapi kendala dalam pengelolaan data persediaan dari banyak transaksi yang merupakan sumber informasi tambahan yang dapat mendukung pengambilan keputusan penjualan [11]. Salah satu tantangan yang dihadapi pemilik usaha adalah kurangnya informasi mengenai ketersediaan produk sehingga menyebabkan kelangkaan. Untuk mengatasi hal tersebut, peneliti mengelola dan menganalisis data penjualan yang ada untuk memahami kebutuhan pelanggan terhadap Alat Kesehatan. Hasil analisis data ini memberikan wawasan mengenai pembelian pelanggan terhadap produk yang dijual. Dari permasalahan tersebut, peneliti menyarankan untuk menggunakan teknik algoritma K-NN untuk memprediksi penjualan alat kesehatan. Hal ini bertujuan untuk membantu mengantisipasi kekurangan stok dan penumpukan barang di Media Alkes. Oleh karena itu, informasi mengenai jumlah penjualan alat kesehatan dengan kriteria terlaris, cukup laris, dan kurang laris dapat diperoleh melalui data penjualan tahun 2020, 2021, dan 2022 yang terdapat pada Media laporan penjualan Alat Kesehatan.

Mengenai penelitian sebelumnya yang di gunakan metode K-NN seperti yang dilakukan oleh Rino Bakhtiar pada tahun 2023 "Implementasi Data Mining Untuk Prediksi Penjualan Kusen Terlaris Menggunakan Metode K-Nearest Neighbor" [12]. Dan penelitian yang dilakukan oleh Rara Iriane, Nurfaizah pada tahun 2023 "Penerapan Data Mining Untuk Prediksi Penjualan Produk Pangan Hewan Menggunakan Metode K-Nearest Neighbor" [13], pada kedua penelitian tersebut memberikan hasil yang dimana dalam penerapan metode K-Nearest Neighbor ini memberikan hasil prediksi yang cukup baik dan sangat cocok untuk digunakan dalam melakukan prediksi. Pada penelitian ini memberikan hasil yang dimana dalam penerapan metode K-Nearest Neighbor menghasilkan hasil peningkatan dalam prediksi sebelumnya yaitu menghasilkan prediksi Sangat baik dan cocok untuk melakukan untuk prediksi penjualan. Perbedaan penelitian terdahulu dengan penelitian ini merupakan sama sama memberikan hasil yang baik dan cocok dalam Penerapan algoritma K-NN. pada penelitian ini memberikan keuntungan dalam memprediksi penjualan alat kesehatan pada Media Alat Kesehatan. Melalui analisis data penjualan, K-NNyang dapat menghasilkan prediksi dengan tingkat akurasi yang sangat tinggi, mencapai akurasi 95,00% bila diterapkan melalui sistem RapidMiner. Akurasi yang luar biasa ini berfungsi sebagai panduan yang andal untuk perencanaan penjualan di masa depan [14]. memungkinkan perusahaan mengelola inventaris secara efisien, mencegah kekurangan, dan mengurangi akumulasi kelebihan stok. Hasilnya, integrasi K-NN dalam penelitian ini berperan penting dalam mengatasi tantangan pengelolaan inventaris dan memenuhi kebutuhan pelanggan Media Alat Kesehatan.

2. METODE PENELITIAN

Dalam penelitian ini, informasi tentang penjualan alat kesehatan di Cilamaya Wetan Karawang selama tiga tahun terakhir, yakni tahun 2020, 2021, dan 2022, digunakan. Data tersebut dibagi menjadi dua bagian, yaitu data training dan data testing. Data training terdiri dari data pada tahun 2020 dan 2022, sementara data testing hanya terdiri dari data tahun terakhir, yaitu 2022. Setelah dilakukan tahap pembersihan data, jumlah data training yang digunakan adalah 40 data, sedangkan data testing terdiri dari 10 data. Atribut yang digunakan dalam penelitian ini mencakup kode barang, bulan, dan kategori. Kategori yang ditetapkan mencakup Sangat Laris, Kurang Laris, dan Cukup Laris. Dari data yang digunakan mencakup total penjualan seluruh produk alat

kesehatan yang dibeli oleh konsumen. Data ini akan dianalisis menggunakan teknik K-Nearest Neighbor untuk memprediksi pola penjualan di masa lalu. Tujuannya adalah untuk menghasilkan informasi baru yang berguna dalam memahami kebutuhan konsumen terhadap alat kesehatan.

2.1. Pengumpulan Data

Gambar 1. alur penelitian

Berikut adalah penjelasan dari gambar 1, langkah-langkah dan alur dalam penelitian ini:

- 1. Tahap Pengumpulan Data: Data-data yang dibutuhkan akan diambil terlebih dahulu dan akan melalui proses seleksi. Pemilihan data ini penting untuk memastikan proses pengolahan data sesuai dengan tujuan penelitian. Peneliti menggunakan data penjualan tahun 2020, 2021 dan 2022.
- 2. Tahap Pra-Pemrosesan : Sebelum melanjutkan ke analisis data, langkah awal melibatkan melakukan pembersihan data yang mencakup menghilangkan duplikat, memastikan konsistensi, dan memperbaiki potensi kesalahan.
- 3. Tahap Pengolahan Data Setelah data bersih, langkah selanjutnya adalah mengolah data menggunakan algoritma yang sesuai, dalam hal ini menggunakan metode K-Nearest Neighbors (K-NN) sebagai algoritma data mining.
- 4. Tahap Pengujian Data: Setelah diolah Data tersebut diproses melalui platform RapidMiner menggunakan algoritma K-NN untuk memastikan hasilnya selaras dengan perhitungan manual.
- 5. Tahap Hasil: Hasil yang diperoleh dari pengujian RapidMiner akan mewakili kesimpulan dari proses penelitian ini, memberikan gambaran yang jelas tentang tren penjualan alat kesehatan yang diperoleh dari data yang telah diolah.

2.2. Algoritma K-Nearest Neighbor

Metode K-NN Merupakan salah satu pendekatan umum dalam klasifikasi data[15]. Algoritma ini digunakan untuk mengklasifikasikan objek berdasarkan data pembelajaran, di mana objek tersebut diklasifikasikan berdasarkan kedekatannya dengan tetangga terdekat atau memiliki nilai yang serupa dengan objek tersebut [16]. Tujuan dari algoritma ini adalah untuk mengkategorikan objek baru dengan mempertimbangkan atributnya dan sampel pelatihan. Prinsip inti dari algoritma ini melibatkan pencarian nilai k dalam data pelatihan untuk menentukan K tetangga terdekat menggunakan pengukuran jarak [17]. Selanjutnya nilai mayoritas diantara k tetangga terdekat akan dijadikan dasar penentuan kategori sampel berikutnya. Selanjutnya algoritma ini berfungsi untuk prediksi data [18].

Langkah-langkah dalam metode K-Nearest Neighbor diuraikan sebagai berikut:

- 1. Menentukan pararmeter K yang ingin digunakan pada perhitungan K-NN ini
- 2. Menghitung jarak antara data uji dengan data latih dengan menggunakan matriks jarak seperti Euclidean distance, dirumuskan pada persamaan 1.

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (1)

Keterangan:

d(x,y) = jarak antara data x ke data y x_i = nilai x_i pada data training y_i = nilai y_i pada data testing N = variable data

- I = dimensi data
- 3. Mengurutkan berdasarkan nilai Euclideandistance
- 4. Menentukan hasil dari Nilai K tetangga yang paling terdekatnya
- 5. Target output merupakan kelas yang mayoritas

3. HASIL DAN PEMBAHASAN

Data yang diuraikan dalam penelitian ini berkaitan dengan penjualan alat kesehatan melalui platform alat kesehatan selama tiga tahun terakhir, mulai tahun 2020 hingga 2022. Di bawah ini adalah kumpulan data awal dari tahun 2020-2022 yang dapat diakses dalam platform Media Alkes.

Tabel 1. DataSet Awal

No	Kode Barang	Satuan	Qty	Bulan
1	AK001	Pcs	5	Januari
2	MA001	Pcs	10	Januari
3	BC001	Pcs	3	Januari
4	MP001	Pcs	5	Januari
5	MP001	Pcs	3	Januari
330	BB001	Pcs	10	Desember

3.1. Dataset untuk Algoritma K-NN

Data penjualan Alat Kesehatan Pada media Alkes ini dikelompokan dan diolah menggunakan algoritma data mining K-NN untuk memprediksi penjualan pada Alat Kesehatan. Selanjutnya proses dilanjutkan dengan pembagian data menjadi dua segmen yang disebut dengan dataset pelatihan dan dataset pengujian. dataSet *Training* terdiri dari 40 data dari tahun 2020-2021 ditunjukkan pada tabel 2, sedangkan dataset *Testing* terdiri dari 10 data dari tahun terakhir ditahun 2023 ditunjukkan pada tabel 3. Atribut yang digunakan pada penelitian ini adalah kode barang, bulan dan kategori.

Tabel 2. Data training

No	Kode	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Agu	Sep	Okt	Nov	Des	Kategori
	Barang	Juli	100	17141	7 P	11101	3 (411	3 (11	7154	БСР	ORt	1101	Des	Hutegon
1	AK001	70	71	58	70	66	75	44	52	60	66	60	54	Sangat Laris
2	AC001	49	63	57	101	70	70	77	67	73	59	41	68	Sangat Laris
3	AE002	41	56	40	91	62	75	50	58	39	58	68	51	Sangat Laris
4	AE005	61	51	50	61	41	46	66	50	62	48	48	44	Sangat Laris
5	BK001	50	90	80	86	95	57	59	29	49	53	30	50	Sangat Laris
6	BC001	70	80	26	30	23	37	99	24	73	50	90	80	Sangat Laris
7	BB001	48	40	38	42	29	32	30	46	46	32	34	32	Cukup Laris
8	BA001	81	25	24	93	50	43	24	23	17	48	54	45	Cukup Laris
9	CK001	81	95	47	16	24	44	28	57	24	25	12	10	Cukup Laris
10	CD001	26	33	15	28	21	12	34	21	20	81	41	43	Cukup Laris
40	BN001	48	20	38	12	12	34	8	21	16	12	22	30	Kurang Laris

Tabel 3. Data testing

No	Nama Barang	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Agu	Sep	Okt	Nov	Des	Kategori
1	A004	50	28	90	34	52	44	52	60	46	50	39	71	?
2	A009	40	82	95	77	63	51	47	59	41	51	54	64	?
3	A007	50	25	77	53	46	74	59	64	61	45	73	55	?
4	A0017	54	51	52	34	31	15	36	24	36	53	42	26	?
5	A1009	20	24	13	6	22	24	10	21	29	12	24	17	?
6	CD003	70	80	76	80	83	67	85	64	83	87	98	88	?
7	OP0032	50	60	58	82	69	52	70	76	76	62	54	72	?
8	OL004	32	43	50	30	51	30	29	40	60	30	30	20	?
9	BK006	60	55	60	49	44	84	58	77	87	55	79	69	?
10	VH004	42	28	37	39	44	19	17	28	16	16	13	18	?

3.2. Perhitungan K-NN

Berikut langkah-langkah proses perhitungan menggunakan metode K-NN dengan memanfaatkan data latih (*training*) dan uji (*testing*) di atas.

- 1. Nilai K yang di gunakan pada penelitian ini adalah K=3.
- 2. Menghitung jarak antara data training dengan data testing dengan menggunakan perhitungan *euclidean distance*. Perhitungannya adalah sebagai berikut:

$$\sqrt{(70-50)^2 + (71+28)^2} + (58-90)^2 + (70-34)^2 + (66-52)^2 + (75-44)^2 + (44-52)^2 + (52-60)^2 + (60-46)^2 + (66-50)^2 + (60-39)^2 + (54-71)^2 = 83,8809$$
 (1)

Tabel 4 merupakan tabel hasil dari perhitungan jarak menggunakan Euqlidean Distance

Tabel 4. Hasil Perhitungan

No	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
1	83,8809	61,6766	67,439	97,5397	155	79,076	42,249	99,3126	60,1914	130
2	96,4417	71,4773	81,283	126,21	177,15	79,473	29,967	119,197	76,7333	149,33
3	95,0631	70,0214	70,164	104,091	147,98	98,214	55,353	103,015	78,1921	123,91
4	66,8581	74,2967	58,31	66,9328	123,76	105,45	52,048	70,1356	69,0435	101,03
5	101,074	58,4294	106,4	111,032	168,03	105,25	62,554	108,651	113,75	132,47
6	122,564	127,185	112,85	113,596	161,82	113,55	91,428	130,947	99,222	159,29
7	78,3518	100,434	86,793	43,2551	71,505	155,2	90,189	37,921	105,736	53,572
8	112,743	115,026	107,98	88,6059	126,02	150,82	90,62	105,962	128,499	93,467
9	120,628	124,318	134,31	84,5044	111,49	182,75	135,54	90,9395	139,42	94
10	111,879	135,081	127,27	62,9682	84,457	176,54	119,96	88,4647	144,278	86,325
40	112,48	146,58	129,274	74,8865	44,810	207,7618	138,379	77,3369	154,7804	49,426

3. Setelah perhitungan jarak antara data latih dan data uji selesai, kemudian data dari hasil tersebut akan di urutkan untuk dapat mencari nilai paling terkecil, ditunjukkan pada tabel 5.

Tabel 5. Urutan nilai hasil perhitungan

No	No	D1	No	D2	No D2	D3	 No D10	D10
Urut	D1		D2		D3			
1	8	83,8808679	2	61,67657578	3	67,438861	 36	130,0038
2	13	96,44169223	4	71,47726911	7	81,283455	 39	149,325148
3	12	95,06313691	3	70,02142529	4	70,164093	 35	123,911258
4	3	66,8580586	5	74,29670248	2	58,309519	 32	101,029698
5	17	101,0742301	1	58,42944463	16	106,39549	 37	132,465089
6	27	122,5642689	23	127,1849048	21	112,85389	 40	159,289045
7	6	78,35177088	9	100,434058	9	86,792857	 3	53,572380
8	24	112,7430707	16	115,026084	17	107,97685	 29	93,4665715
9	26	120,6275259	21	124,3181403	27	134,30934	 30	94
10	22	111,8793994	24	135,0814569	25	127,26743	 25	86,3249674
							 19	
40	23	112,48111	27	146,581036	26	129,2749	 2	49,4267134

4. Langkah selanjutnya adalah menentukan nilai K=3 dari hasil tabel di atas untuk mengidentifikasi jarak yang paling terdekat sesuai dengan data testing yang berjumlah 10 data, ditunjukkan pada tabel 6.

Tabel 6. Urutan terkecil nilai K

No	Data	D1	Kategori	Data	D2	Kategori		Data	D10	Kategori
1	A13	53,18834	Sangat	В5	58.4294	Sangat		J36	45,61798	Cukup
1	AIS	33,10034	Laris	БЭ	36,4294	Laris	••••	130	45,01796	Laris
2	A26	63,39558	Sangat	В1	61.6766	Sangat		J40	49,42671	Kurang
2	A20	03,39336	Laris	DТ	01,0700	Laris	••••	J40	49,42071	Laris
2	A4	66.8581	Sangat	В3	70.0214	Sangat		17	52 5724	Cukup
3	A4	00,0381	Laris	ВЭ	70,0214	Laris	• • • • •	J7	53,5724	Laris

5. Langakah Selanjutnya yaitu Data akan di urutkan berdasarkan mayoritas yang ada diatas dengan menetapkan Kategori berdasarkan hasil Prediksi perhitungan secara manual yang telah didapat. Tabel 7 merupakan target output dari proses yang dilakukan.

Tabel 7. Hasil prediksi data

No	Kode Barang	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Agu	Sep	Okt	Nov	Des	Kategori
1	BD002	50	28	90	34	52	44	52	60	46	50	39	71	Sangat Laris
2	VA001	40	82	95	77	63	51	47	59	41	51	54	64	Sangat Laris
3	AK001	50	25	77	53	46	74	59	64	61	45	73	55	Sangat Laris
4	BA001	54	51	52	34	31	15	36	24	36	53	42	26	Cukup Laris
5	NM005	20	24	13	6	22	24	10	21	29	12	24	17	Kurang Laris
6	PL002	70	80	76	80	83	67	85	64	83	87	98	88	Sangat Laris
7	CH003	50	60	58	82	69	52	70	76	76	62	54	72	Sangat Laris

No	Kode Barang	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Agu	Sep	Okt	Nov	Des	Kategori
8	CO001	32	43	50	30	51	30	29	40	60	30	30	20	Cukup Laris
9	CL001	60	55	60	49	44	84	58	77	87	55	79	69	Sangat Laris
10	GH007	42	28	37	39	44	19	17	28	16	16	13	18	Kurang Laris

3.3. Pengujian

Dalam penelitian ini menggunakan platform pemrosesan data RapidMiner Dari penjelasan sebelumnya tentang langkah-langkah penggunaan dan output yang dihasilkan, langkah berikutnya adalah menjelaskan validasi data yang digunakan menggunakan sistem RapidMiner. RapidMiner merupakan sebuah platfrom sains data open-source yang dapat digunakan untuk melakukan analisis data mining, text mining dan dapat dilakukan dalam memprediksi[19]. Dengan menggunakan rapidMiner Pengguna dapat menggunakan dalam teknik deskriptif dan prediktif untuk dapat pemahaman mendalam dari data yang dimiliki[20]. RapidMiner berfungsi sebagai alat penting dalam menavigasi dan membentuk kembali data, memfasilitasi peneliti dalam melaksanakan tugas-tugas seperti pemodelan prediktif, pengelompokan data, dan visualisasi data yang lancar [21]. Dengan fitur-fiturnya yang ramah pengguna dan mudah beradaptasi, RapidMiner membantu dalam penelitian ini untuk mengekstraksi wawasan berharga dari kumpulan data yang rumit, mempercepat proses analisis, dan meningkatkan kualitas pengambilan keputusan melalui basis informasi yang lebih kuat. Tabel 8 merupakan hasil dari pengujian menggunakan sistem RapidMiner.

Tabel 8. Matrix Evaluasi

Parameter	Nilai
Precision	94.88%
Recall	95.54%
Accuracy	95.00%

Tabel 9. Cunfusion Matrix

	True Sangat Laris	True Cukup Laris	True Kurang Laris
Pred. Sangat Laris	10	1	0
Pred. Cukup Laris	0	15	1
Pred. Kurang Laris	0	0	13

Tabel 9 terdapat hasil dari pengujian yang didapatkan dari hasil menggunakan sistem RapidMiner untuk dapat diinterpretasikan ke dalam kategori berikut:

1. Pred.

- a. Untuk prediksi kategori sangat laris, dari 11 data uji, hasilnya menunjukkan 10 data sangat laris, 1 data cukup laris, dan 0 data tidak laris.
- b. Untuk prediksi kategori cukup laris, dari 16 data uji, hasilnya menunjukkan 0 data sangat laris, 15 data cukup laris, dan 1 data kurang laris.
- c. Untuk prediksi kategori kurang laris, dari 13 data uji, hasilnya menunjukkan 0 data kurang laris kurang, 0 data cukup laris, dan 13 data kurang laris.

2. True

- a. Untuk prediksi *True* sangat laris, dari total 10 data, terdapat 10 data yang sangat laris, 0 data yang cukup laris, dan 0 data yang kurang laris.
- b. Untuk prediksi *True* cukup laris, dari total 16 data, terdapat 1 data yang sangat laris, 15 data yang cukup laris, dan 0 data yang kurang laris.
- c. Untuk prediksi *True* kurang laris dari total 16 data, terdapat 1 data yang sangat laris, 15 data yang cukup laris, dan 0 data yang tidak laris.

4. KESIMPULAN

Dengan menggunakan penerapan data mining ini dengan pendekatan K-Nearest Neighbor untuk meramalkan penjualan alat kesehatan melalui platform alat kesehatan ini, maka tingkat akurasi yang dicapai adalah. 95,00% menggunakan RapidMiner pada data alat kesehatan yang benar-benar dibutuhkan. Dengan tingkat akurasi yang signifikan tersebut, metode K-Nearest Neighbor dapat dianggap sebagai alat yang efektif untuk membuat prediksi dalam konteks penjualan peralatan medis. Hasil prediksi yang diperoleh menunjukkan bahwa metode ini layak digunakan untuk perencanaan penjualan di masa yang akan dataang. Dengan menerapkan prediksi tersebut, perusahaan dapat memperoleh penjualan produk secara efisien, menargetkan penjualan yang paling banyak diminati konsumen, dan mengelola stok alat kesehatan agar informasi tidak habis.

REFERENCES

- [1] A. Munawar, E. H. Budi R, und G. Meirlana, "Perancangan Sistem Informasi Penjualan Alat Kesehatan Berbasis Web Pada PT. Anugrah Tiga Berlian Jakarta", *J. Ilm. Ilk. Ilmu Komput. Inform.*, Bd. 6, Nr. 2, S. 144–157, 2023, doi: 10.47324/ilkominfo.v6i2.201.
- [2] A. A. Putri, "Penerapan Data Mining Untuk Memprediksi Penjualan Buah Dan Sayur Menggunakan Metode K-NN (Studi Kasus: PT. Central Brastagi Utama)", Bd. 1, Nr. 6, S. 354–361, 2021.
- [3] V. No, J. Hal, A. K. Neighbor, A. Azis, A. Turmudi, und A. S. Sunge, "Prediksi Penjualan Obat Dan Alat Kesehatan Terlaris Menggunakan", Bd. 6, Nr. 1, S. 117–124, 2024.
- [4] H. P. Herlambang, F. Saputra, M. H. Prasetiyo, D. Puspitasari, und D. Nurlaela, "Perbandingan Klasifikasi Tingkat Penjualan Buah di Supermarket dengan Pendekatan Algoritma Decision Tree, Naive Bayes dan K-Nearest Neighbor", *J. Insa. J. Inf. Syst. Manag. Innov.*, Bd. 3, Nr. 1, S. 21–28, 2023, doi: 10.31294/jinsan.v3i1.2097.
- [5] M. Angga Sabda, "Implementasi Data Mining Dalam Memprediksi Penjualan Parfum Terlaris Menggunakan Metode K-Nearest Neighbor", *J. Sist. Komput. dan Inform. Hal 415*–, Bd. 422, Nr. 2, S. 415–422, 2023, doi: 10.30865/json.v5i2.7194.
- [6] A. Sanjaya und T. Wahyana, "Penerapan Metode K-NN Untuk Sistem Prediksi Kelulusan Siswa MTs Nurul Muslimin Berbasis Website", ... *e-ISSN 2745-5882 p ...*, Bd. 3, Nr. 1, S. 31–47, 2022.
- [7] S. P. Dewi, N. Nurwati, und E. Rahayu, "Penerapan Data Mining Untuk Prediksi Penjualan Produk Terlaris Menggunakan Metode K-Nearest Neighbor", *Build. Informatics, Technol. Sci.*, Bd. 3, Nr. 4, S. 639–648, 2022, doi: 10.47065/bits.v3i4.1408.
- [8] H. Andriana, S. Shofia Hilabi, und A. Hananto, "Penerapan Metode K-Nearest Neighbor pada Sentimen Analisis Pengguna Twitter terhadap KTT G20 di Indonesia", *JURIKOM (Jurnal Ris. Komputer)*, Bd. 10, Nr. 1, S. 60–67, 2023, doi: 10.30865/jurikom.v10i1.5427.
- [9] F. M. Delta Maharani, A. Lia Hananto, S. Shofia Hilabi, F. Nur Apriani, A. Hananto, und B. Huda, "Perbandingan Metode Klasifikasi Sentimen Analisis Penggunaan E-Wallet Menggunakan Algoritma Naïve Bayes dan K-Nearest Neighbor", *Metik J.*, Bd. 6, Nr. 2, S. 97–103, 2022, doi: 10.47002/metik.v6i2.372.
- [10] Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, und Fitri Nurapriani, "Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan K-NN ", *J. KomtekInfo*, Bd. 10, S. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.
- [11] D. Handoko, H. S. Tambunan, und J. T. Hardinata, "Analisis Penjualan Produk Paket Kuota Internet Dengan Metode K-Nearest Neighbor", *Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform.*, Bd. 6, Nr. 1, S. 111, 2021, doi: 10.30645/jurasik.v6i1.275.
- [12] R. Bahtiar, "Implementasi Data Mining Untuk Prediksi Penjualan Kusen Terlaris Menggunakan Metode K-Nearest Neighbor", *J. Inform. MULTI*, Bd. 1, Nr. 3, S. 203–214, 2023.
- [13] R. Iriane, "KLIK: Kajian Ilmiah Informatika dan Komputer Penerapan Data Mining Untuk Prediksi Penjualan Produk Pangan Hewan Menggunakan Metode K-Nearest Neighbor", *Media Online*, Bd. 3, Nr. 5, S. 509–515, 2023.
- [14] E. Sachlos und D. Auguste, "Jurnal Ilmu Komputer", Biomaterials, Bd. 29, Nr. 34, S. 4471–4480, 2022.
- [15] S. Abdy, E. R. Br Gultom, S. Ramadhany, und A. Afifudin, "Prediksi Penjualan Sparepart Mobil Terlaris Menggunakan Metode K-Nearest Neighbor", *JURIKOM (Jurnal Ris. Komputer)*, Bd. 9, Nr. 6, S. 2003, 2022, doi: 10.30865/jurikom.v9i6.5189.
- [16] R. N. Sukmana, Abdurrahman, und Y. Wicaksono, "Implementasi K-Nearest Neighbor Untuk Menentukan Prediksi Penjualan (Studi Kasus: PT Maksiplus Utama Indonesia)", *J. Teknol. Inf. dan Komun. Vol. 8 No. 2, Desember 2020*, Bd. 8, Nr. 2, S. 31–38, 2020.
- [17] I. Yolanda und H. Fahmi, "Penerapan Data Mining Untuk Prediksi Penjualan Produk Roti Terlaris Pada PT . Nippon Indosari Corpindo Tbk Menggunakan Metode K-NN", Bd. 3, Nr. 3, S. 9–15, 2021.
- [18] R. Rismala, I. Ali, und A. Rizki Rinaldi, "Penerapan Metode K-Nearest Neighbor Untuk Prediksi Penjualan Sepeda Motor Terlaris", *JATI (Jurnal Mhs. Tek. Inform.*, Bd. 7, Nr. 1, S. 585–590, 2023, doi: 10.36040/jati.v7i1.6419.
- [19] W. Yusuf, R. Witri, und C. Juliane, "Model Prediksi Penjualan Jenis Produk Tekstil Menggunakan Algoritma K-Nearest Neighbor (K-NN)", *IJCIT* (*Indonesian J. Comput. Inf. Technol.*, Bd. 7, Nr. 1, S. 1–6, 2022, doi: 10.31294/ijcit.v7i1.11973.
- [20] D. M. Meliala und P. Hasugian, "Perbandingan Algoritma K-Nearest Neighbor Dengan Decision Tree Dalam Memprediksi Penjualan Makanan Hewan Peliharaan Di Petshop Dore Vet Clinic", *Respati*, Bd. 15, Nr. 3, S. 35, 2020, doi: 10.35842/jtir.v15i3.369.
- [21] T. Widyanti, S. S. Hilabi, A. Hananto, Tukino, und E. Novalia, "Implementasi K-Means dan K-Nearest Neighborspada Kategori Siswa Berprestasi", *J. Inf. dan Teknol.*, Bd. 5, Nr. 1, S. 75–82, 2023, doi: 10.37034/jidt.v5i1.255.