Estructuras de Datos Avanzadas Tarea Examen 1

Profesora: Adriana Ramírez Vigueras*
Ayudantes:
Víctor Emiliano Cruz Hernández ** Carmen Paola Innes Barrón***

Actor Elimiano Craz Hernandez — Carmen i aoia linies Barron

Fecha de entrega: 23 de septiembre de 2024.

- 1. Una familia de árboles es balanceada, si todo árbol de la familia tiene altura $O(\log(n))$, donde n es el número de nodos en el árbol. Determina si las siguientes familias de árboles binarios, son familias balanceadas. Justifica tu respuesta.
 - a) Cada nodo del árbol es una hoja o tiene dos hijos.
 - b) Existe una constante c tal que, para cada nodo en el árbol, las alturas de sus sub-árboles difieren a lo más c.
 - c) La profundidad promedio de un nodo es $O(\log(n))$.
- 2. Muestra que dado un conjunto T de n nodos x_1, x_2, \ldots, x_n con valores y prioridades distintas, el árbol treap asociado a T es único.
- 3. Considera el treap T después de insertar x, con el algoritmo visto en clase. Sea C la longitud del camino derecho del subárbol izquierdo de x. Sea D la longitud del camino izquierdo del subárbol derecho de x. Demuestre que el número total de rotaciones que se realizaron durante la inserción de x es igual a C + D.
- 4. Describe una secuencia de accesos a un árbol splay T de n nodos, con $n \ge 5$ impar, que resulte en T siendo una sola cadena de nodos en la que el camino para bajar en el árbol alterne entre hijo izquierdo e hijo derecho.
- 5. Muestra cómo transformar una skip-list L en un árbol binario de búsqueda T(L). Y justifica por qué buscar en T(L) no es más rapido que en L.

^{*}adriana.rv@ciencias.unam.mx

^{**}v23ec02@ciencias.unam.mx

^{***} paoinnes@ciencias.unam.mx

- 6. Demuestra o da un contraejemplo:
 - a) Los nodos de cualquier árbol AVL pueden colorearse de rojo y negro para obtener un árbol rojo-negro válido.
 - b) Cualquier árbol rojo-negro satisface las propiedades de árbol AVL.
- 7. We say that a binary search tree T_1 can be right-converted to binary search tree T_2 if it is possible to obtain T_2 from T_1 via a series of calls to Right-Rotate. Give an example of two trees T_1 and T_2 such that T_1 cannot be right-converted to T_2 . Then show that if a tree T_1 can be right-converted to T_2 , it can be right-converted using $O(n^2)$ calls to Right-Rotate.
- 8. Suppose a 2-4 tree, T, has n_l leaves and n_i internal nodes.
 - a) What is the minimum value of n_i , as a function of n_l ?
 - b) What is the maximum value of n_i , as a function of n_l ?
 - c) If T' is a red-black tree that represents T , then how many red nodes does T' have?
- 9. Diseña e implementa un Treap que incluya al menos las siguientes operaciones:
 - insert(V,P): Agrega el valor V al Treap con su respectiva prioridad P
 - delete(V): Elimina la primera ocurrencia de V en el Treap, si existe.
 - get(V): Obtiene el nodo con valor V que se encuentra en el Treap, si existe
 - get(i): Obtiene el nodo cuyo valor sea el i-ésimo más grande en el Treap, si i está en el rango de elementos.
 - peek(): Regresa el nodo hasta el tope del Treap;
 - pop(): Elimina y regresa el primer elemento al tope del Treap;

Hint para get(i): Haz que cada nodo, mantenga un registro del tamaño del subárbol enraizado derecho e izquierdo.