

Ahana Yelagar, Amelia Burnell, Grace Bero, Bridget Brombach

Introduction

- We were hired by the Durham County Police Department.
- Our goal is to see if there is any bias in issuing citations in the years 2014-2015.
- The dataset we used includes information about various aspects of a police encounter (e.g: the reason for the stop, demographic data, outcomes, etc.)

Data Cleaning Steps

01

Filtered out the data for the years 2014 & 2015 only

Created categories based on time of day

03

Added a column to indicate if the event happened in the first three weeks of the month.

Added a column for which day of the week the event happened

05

Cleaned the "age" column to exclude NA entries

Complete Separation Testing

O1 Made Table Between All Categorical Xs, and Binary V

No empty (zero) cells

Made a Scatterplot between numeric X and Binary Y

Looks evenly distributed/ no obvious separation

Checking Standard Error of Betas

None of the Beta Standard Errors > 0.5

O4 Conclusion

3 of 3 tests indicate no complete separation. We will be using maximum likelihood analysis

Our Model

$$Y \sim Bernoulli(\pi)$$

$$log\left(\frac{\pi_{i}}{1-\pi_{i}}\right) = \beta_{0} + \beta_{\text{age_numeric}} * (age_numeric) + \beta_{asian/pacific islander} * (asian/pacific islander) + \beta_{\text{black}} * (black) + ... + \beta_{\text{stop light/sign violation}} * (Stop Light/Sign Violation)$$

Why are we using a logit link function? Why not just use ORL?

- 1. Y is binary you can either get a ticket, or not
- 2. Least squares will not work
- 3. A linear model allows for probabilities <0 and >1.

Analysis of Maximum Likelihood Estimates					
Parameter		DF	Estimate	Standard Error	
Intercept		1	-0.5490	0.1544	
age_numeric		1	-0.0104	0.000762	
subject_race	asian/pacific islander	1	0.1192	0.0787	
subject_race	black	1	-0.00611	0.0232	
subject_race	hispanic	1	0.7542	0.0367	
subject_race	other	1	0.3179	0.1270	
subject_race	unknown	1	-0.0714	0.1424	
time_cat	Afternoon	1	0.3728	0.1481	
time_cat	Early Morn	1	0.5280	0.1514	
time_cat	Evening	1	0.4610	0.1488	
time_cat	Late Night	1	0.0264	0.1496	
time_cat	Morning	1	0.5647	0.1481	
time_cat	Night	1	0.1489	0.1481	
weekday	1	1	-0.0216	0.0465	
weekday	2	1	-0.0463	0.0429	
weekday	3	1	0.0285	0.0391	
weekday	4	1	0.1165	0.0372	
weekday	5	1	0.0730	0.0373	
weekday	6	1	0.0805	0.0381	
time_of_month	first3	1	-0.0397	0.0210	

Analysis of Maximum Likelihood Estimates Standard **Parameter** DF **Estimate** Error 0.0205 subject sex female 0.0189 1 Checkpoint 1 1.1999 0.0562 reason for stop reason_for_stop **Driving While Impaired** 1 -1.7033 0.2865 0.0522 reason_for_stop Investigation 1 -0.5295 1 Other Motor Vehicle Violation -0.2575 0.0717 reason for stop 1 reason_for_stop Safe Movement Violation -0.8535 0.0432 reason_for_stop **Seat Belt Violation** 1 1.2547 0.0571 **Speed Limit Violation** 1 0.8634 0.0267 reason for stop reason_for_stop Stop Light/Sign Violation 0.2722 1 0.0396 **Vehicle Equipment Violation** 1 -0.8794 0.0405 reason_for_stop

Testing the model as a whole

$$H_0$$
: $\beta_0 = \beta_{age} = \beta_{asian/pacific\ islander} = \beta_{black} = ... = \beta_{stop\ light/\ sign\ violation}$
 H_A : at least one β is not equal to 0

$$l_r = 6801.4883$$

$$p - value = < 0.0001$$
null distribution: $\chi^2(29)$

$$\alpha = 0.01$$

Our p-value < alpha. We reject the null hypothesis.
We do have evidence that at least one coefficient is not equal to 0.

Age bias

$$H_0$$
: $\beta_{age_numeric} = 0$
 H_A : $\beta_{age_numeric} \neq 0$

$$\omega = 186.8371$$
 $p - value = < 0.0001$
null distribution: $\chi^2(1)$
 $\alpha = 0.01$

Our p-value < alpha. We reject the null hypothesis.

We do have evidence that age is a significant predictor of a citation being issued.

Race Bias

$$H_0$$
: $\beta_{Asian/Pacific\ Islander} = \beta_{Black} = \beta_{Hispanic} = \beta_{Other} = \beta_{Unknown} = 0$
 H_a : At least one $\beta \neq 0$

Test Statistic:
$$\omega = 539.5991$$

Null Distibution: $\chi^2(5)$
 $p - value$: $< .0001$
 $\alpha = 0.01$

Our p-value < alpha. We **reject** the null hypothesis. We **do** have evidence that **race is a significant predictor of a citation being issued.**

Significance of Variables: Summary

Variable	Categories	Significance
age_numeric	Quantitative	Significant
subject_sex	Female, male	Significant
subject_race	asian/pacific islander, black, hispanic, other, unknown, white	Significant
time_cat	Afternoon, early morn, evening, late night, morning, night, other	Significant
weekday	1, 2, 3, 4, 5, 6, 7	Significant
time_of_month	First, Last Week of Month	Not Significant
reason_for_stop	Checkpoint, Driving while impaired, investigation, other motor vehicle violation, safe movement violation, seat belt violation, speed limit violation, stop light/sign violation, vehicle equipment violation, vehicle regulatory violation	Significant

Personas - black female

Consider a black female, named Jane Doe, who is 20 years old and was stopped on a saturday in the last week of the month, at an unknown time. What is the estimated probability that she gets a ticket?

Linear Predictor

$$\eta = -0.5490 - 0.0104(20) - 0.00611(1) + 0.0189(1)$$

= -0.7992

Estimated Probability

$$P = \frac{e^{-0.7992}}{1 + e^{-0.7992}} = 0.3102$$

Conclusion: The estimated probability of a 20-year-old black female getting a ticket, is approximately 0.3102, or 31.02%.

JANE DOE

XX DRIVER LICENSE XX

 $eta_{
m black} = 1 \ eta_{
m age_numeric} = 20 \ eta_{
m female} = 1 \
m all \ other \ eta \ are \ equal \ to \ 0$

Personas - white male

Consider a white male, named John Smith, who is also 20 years old and was stopped on a Saturday in the last week of the month, at an unknown time. What is the estimated probability that he gets a ticket?

Linear Predictor

$$\eta = -0.5490 - 0.0104(20)$$

= -0.757

Estimated Probability

$$P = \frac{e^{-0.757}}{1 + e^{-0.757}} = 0.3129$$

Conclusion: The estimated probability of a 20-year-old white male getting a ticket, is approximately 0.3129, or 31.29%.

JOHN SMITH

XX DRIVER LICENSE XX

$$\begin{array}{c} \beta_{white} = 0 \\ \beta_{age_numeric} = 20 \\ \beta_{male} = 0 \end{array}$$
 all other β are equal to 0

Calculating the odds ratio of a black female receiving a ticket over a white male -

$$odds \ ratio = \frac{odds \ for \ a \ black \ female}{odds \ for \ white \ male} = \frac{e^{\beta o + \beta black + \beta age(Age) + \beta female}}{e^{\beta o + \beta age(Age)}}$$
$$= \frac{e^{-0.5547 - 0.00628 - 0.0104(20) + 0.0188}}{e^{-0.5547 - 0.0104(20)}} = \frac{0.4724}{0.4664} = 1.012$$

Holding all other explanatory variables constant, being a black female is associated with an increase by 1.2% in odds of receiving a ticket over a white male.

Jane Doe has slightly higher odds of receiving a ticket over John Smith

Odds Ratio - Subject Age

How would the **odds** of receiving a citation change for a **decrease** in age of 10 years?

$$e^{-10*\beta_{age_numeric}} = e^{-10*-0.0104} = 1.1096$$

A person who is 20 has 10% increase in odds of being issued a citation compared to someone of the same profile who is 30.

Older is better if you don't want to get a citation!

Confidence intervals

- We are 95% confident that the odds of receiving a citation change by a factor between 0.9496 and 1.039 for a person identifying as female over a person who identifies as male, holding all other variables constant. In other words, we are 95% sure that the odds don't change that much.
- by a factor between 1.978 and 2.285 for a person identifying as hispanic over a person identifying as white, holding all other variables constant. In other words, we are 95% sure that the odds almost double.

Conclusions

01

The only variable that is not significant is the time of month

The older the subject, the lower the odds of them getting a ticket

bias for a white identifying individual compared to a hispanic identifying individual, odds of

receiving citation approx. doubled

There is significant

02

Based on our two personas, there looks to be only a slight bias in odds of receiving a citation based on gender and identifying as black vs white

05 cc

04

There does appear to be racial bias, based on our evaluation of the data

Thank you!