Obaid Masih Assignment 10 - Time Series

Please complete the following questions found in your textbook.

Question 9.2 (p.382-383)

 $\widehat{SALES}_t = 25.34 + 1.842 \ ADV_t + 3.802 \ ADV_{t-1} + 2.265 \ ADV_{t-2}$

a) It is a distributed lag model with 2 lags.
 Increasing 1 million in ADV will have a sustained effect of (1.842 + 3.802 + 2.265) \$7.9MM.
 Impact is greatest at the 2nd week which is \$3.802 MM.

adv is impact multiplier = 1.842 adv + advt-1 is interim multiplier for 1 period = 5.644 adv + advt-1 + advt-2 is the interim multiplier for 2 periods = 7.909 adv + advt-1 + advt-2 is total multiplier for all period = 7.909

b)

				5% level	10 % level
	Estimate	var	Tvalue	Tc (0.95,101)	Tc(0.9,101)
adv	1.842	1.3946	1.559785201	1.645	1.282
adv(t-1)	3.802	2.1606	2.586574112	1.645	1.282
adv(t-2)	2.265	1.4214	1.899809481	1.645	1.282

Adv is significant at 10% level but not at 5% level Adv(t-1) is significant at both 5% & 10% level Adv (t-2) is significant at both 5% level and 10% level

c)

95% interval for impact multiplier tc = 1.96

se = sqrt(1.3946)

beta = 1.842

Lo = beta-(1.96*se) = -0.472

Hi = beta + (1.96*se) = 4.15

[-0.472 , 4.15]

95% interval for one period interim multiplier

tc = 1.96

se = sqrt(1.3946 + 2.1606 + 2*(-1.0406))

beta = 1.842 + 3.802

Lo = beta-(1.96*se) = 3.263

Hi = beta + (1.96*se) = 8.02

[3.262, 8.02]

95% interval for two period interim multiplier

tc = 1.96

se = $SQRT(var_ADV + var_ADV t-1 + var_ADVT-2 + 2 cov(ADV, ADV t-1) + 2 cov(ADV t-1, ADV t-2) + 2(ADV t-2, ADV)$

se = sqrt(1.3946 + 2.1606 + 1.414 + 2*(-1.0406) + 2*(-1.0367) + 2*(0.098))

beta = 1.842 + 3.802 + 2.265

Lo = beta-(1.96*se) # 5.9386

Hi= beta+ (1.96*se) # 9.8793

[5.938, 9.879]

Question 9.4 (p.383) - for part 9.4(b) please refer to equation 9.17 page 349

a)										
t	1	2	3	4	5	6	7	8	9	10
e	0.28	-0.31	-0.09	0.03	-0.37	-0.17	-0.39	-0.03	0.03	1.02
e^2	0.0784	0.0961	0.0081	0.0009	0.1369	0.0289	0.1521	0.0009	0.0009	1.0404
et * t-1		-0.0868	0.0279	-0.0027	-0.0111	0.0629	0.0663	0.0117	-0.0009	0.0306
et*t-2			-0.0252	-0.0093	0.0333	-0.0051	0.1443	0.0051	-0.0117	-0.0306

r1	0.063423
r2	0.065302

b)

$$Z = \frac{r_k - 0}{\sqrt{1/T}} = \sqrt{T}r_k \sim N(0, 1)$$
(9.17)

Test significance thru T test at 5% level

H0: r1 = 0

r1 is not equal to 0

T = 10 and Z for r1 = 0.200

Critical value for z = 1.9 (from the table)

Since 1.9 >> 0.2 so we CANNOT reject the null

Test significance thru T test at 5% level

H0: r2 = 0

R2 is not equal to 0

T = 10 and Z for r2 = 0.206

Critical value for z = 1.9 (from the table)

Since 1.9 >> 0.206 so we CANNOT reject the null

Question 9.6 (p. 384) Note: in part (b) use only the correlogram

$$\overline{DHOMES_t} = -2.077 - 53.51DIRATE_{t-1}$$
 obs = 218 (se) (3.498) (16.98)

(part a)

1 % change in Interest rate that happened in previous month is estimated to decrease Home sale numbers by 53,510 homes in the current month.

95% confidence interval for DIRATE

Beta +/- se*tc tc =1.96 -53.51 + 16.98(1.96) = -20.22 -53.51 - 16.98(1.96) =- 86.79

[-86.79, -20.22]

B)

Use t test to see whether there is serial correlation present or not

Ho: B0 = 0 --- there is no serial correlation present H1 B0 is not equal to 0 --- there is serial correlation present

Critical value of t = 1.96

t = b3/se(b3)

T value for B3 = (-0.3306)/0.0649T value for B3 = -5.093

Since, $|t| \gg |tc|$, the coefficient is significantly different from zero

We reject the null hypothesis and there could be serial correlation present in the model

(c) The model with AR(1) errors was estimated as

$$\widehat{DHOMES_t} = -2.124 - 58.61 DIRATE_{t-1}$$
 $e_t = -0.3314e_{t-1} + \hat{v}_t$ (se) (2.497) (14.10) (0.0649) obs = 217

95% confidence interval

Beta +/- se*tc tc =1.96 -58.61 + 14.10(1.96) = -30.974 -58.61 - 14.10(1.96) = -86.246

[-86.24, -30.97]

After removing the autocorrelation error the confidence interval becomes smaller and more precise

Question 9.22 (p.391-392) Note: in part (b) use only the correlogram

(part a)

INCGWTH VS Time(quarters)

CONGWTH VS Time(Quarters)

It is evident that both graphs are stationary as Mean mostly passes thru all quarters.

```
(part b)
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.97384 0.09961 9.776 <2e-16 ***
L(incgwth, 0) 0.44958 0.04967 9.052 <2e-16 ***
```

Estimate is significantly different from 0 for L(incgwth, 0)

```
> AIC(model.dyn)
[1] 415.6031
> BIC(model.dyn)
[1] 425.4527
```

Increase of 1 unit in income growth is estimated to increases the consumption growth by 0.44 for the current month

At lag 2 there is significant serial correlation. There is also significant serial correlation at lag 16.

(part c)

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.67820 0.12083 5.613 6.84e-08 ***
L(congwth, 1) 0.26882 0.06413 4.192 4.22e-05 ***
L(incgwth, 0) 0.34953 0.05314 6.577 4.39e-10 ***
```

Estimate is significantly different from 0 for L(incgwth, 0) and L(congwth, 1)

```
> AIC(model.dyn)
[1] 398.7832
> BIC(model.dyn)
[1] 411.8957
```

AIC and BIC have decreased significantly indicating that this is better model

There is significant serial correlation at lag 1 ad lag 2. Even though AIC and BIC have decreased but this model has significant serial correlation

(part d)

```
Estimate Std. Error t value Pr(>|t|)
                                     3.606 0.000397 ***
(Intercept)
               0.46074
                          0.12776
               0.14905
                          0.06600
                                    2.258 0.025056 *
L(congwth, 1)
L(congwth, 2)
                                    4.430 1.58e-05 ***
               0.27521
                          0.06212
                                    6.301 2.00e-09 ***
L(incgwth, 0)
               0.32065
                          0.05089
```

All estimates are significantly different from 0

```
> AIC(model.dyn)
[1] 377.7218
> BIC(model.dyn)
[1] 394.0868
```


There is no serial correlation in the early lags. There is SC present at lag 14 and 16 but it is irrelevant to this model.

This is a much better model because AIC and BIC values are lower and there is no serial correlation present in the lags that we are using.

(part e)

```
Estimate Std. Error t value Pr(>|t|)
               0.36501
                                            0.00375 **
(Intercept)
                          0.12438
                                     2.935
               0.01609
                          0.07044
                                     0.228
                                            0.81953
L(congwth, 1)
L(congwth, 2)
               0.20535
                                     3.329 0.00105 **
                          0.06169
                                     7.085 2.64e-11 ***
L(incgwth, 0)
               0.34831
                          0.04916
                                     4.276 3.01e-05 ***
L(incgwth, 1)
               0.23080
                          0.05398
```

All estimates are significantly different from o

```
> AIC(model.dyn)
[1] 361.8067
> BIC(model.dyn)
[1] 381.4447
```


No serial correlation present. This is a better model because AIC & BIC have gone further down.

More importantly serial correlation has decreased significantly in first 3 lags.

(part f)

Add congwth(t-3) that is the 3rd lag

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
               0.331289
                           0.130596
                                       2.537
                                              0.01200 *
L(congwth, 1) 0.007871
                           0.073013
                                       0.108
                                              0.91426
                                              0.00318 **
L(congwth, 2) 0.192861
                           0.064534
                                       2.989
L(congwth, 3) 0.050735
                           0.064904
                                       0.782 0.43538
L(incgwth, 0) 0.338155
L(incgwth, 1) 0.229157
                                       6.666 2.83e-10 ***
                           0.050725
                                       4.224 3.73e-05 ***
                           0.054245
```

```
> AIC(model.dyn)
[1] 362.2206
> BIC(model.dyn)
[1] 385.0956
```


Adding 3rd lag of congwth increases AIC and BIC. Also serial correlation has increased at lag 3 but it's still within bounds.

Based on aforementioned analysis it is better to not add congwth(t-3) and leave model as in part (e)

(part g)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
               0.37149
                          0.12080
                                    3.075 0.002411 **
(Intercept)
                                    3.460 0.000666 ***
L(congwth, 2)
               0.20828
                          0.06019
                                    7.726 6.13e-13 ***
L(incgwth, 0)
               0.35244
                          0.04562
L(incgwth, 1)
                                    4.890 2.13e-06 ***
               0.23624
                          0.04831
```

```
> AIC(model.dyn)
[1] 359.8602
> BIC(model.dyn)
[1] 376.2252
```


AIC and BIC values are at their lowest. There is no sign of serial correlation in first 3 lags. However there is evidence of serial correlation at lag 4.

```
### QUESTION 9.2
rm(list=ls(all=TRUE))
library(multcomp)
library(data.table)
library(dplyr)
library(Imtest)
library(tseries)
library(dynlm)
context = fread('ex9.csv')
#table <- read.dta13("okun.dta")</pre>
#check.ts <- is.ts(table) # "is structured as time series?"</pre>
#okun.ts <- ts(table, start=c(1985,2), end=c(2009,3), frequency=4)
\#okunL3.dyn <- dynlm(d(u)~L(g, 0:3), data=okun.ts) \# g is explanotary variable and u is teh column we
tryin to preict
#summary(okunL3.dyn)
table <- context
check.ts <- is.ts(table) # "is structured as time series?"</pre>
table.ts <- ts(table, start=c(2008,1),frequency=7)
check.ts <- is.ts(table.ts)</pre>
```

```
model.dyn <- dynlm(sales~L(adv, 0:2), data=table.ts) # g is explanotary variable and u is teh column we
tryin to preict
summary(model.dyn)
apply(table.ts, MARGIN = 2, class)
## 95% interval for impact multiplier
# tc = 1.96
se = sqrt(1.3946)
beta = 1.842
Lo = beta-(1.96*se) # -0.472
Hi= beta+ (1.96*se) # 4.15
## 95% interval for one period interim multiplier
# tc = 1.96
se = sqrt(1.3946 + 2.1606 + 2*(-1.0406))
beta = 1.842 + 3.802
Lo = beta-(1.96*se) # 3.263
Hi= beta+ (1.96*se) # 8.02
## 95% interval for two period interim multiplier
# tc = 1.96
# = a2 + b2 + c2 + 2ab + 2bc + 2ca
# var. a + var b + var c + 2cov(a,b) + 2cov(b,c) + 2cov(c,a)
se = sqrt(1.3946 + 2.1606 + 1.414 + 2*(-1.0406) + 2*(-1.0367) + 2*(0.098))
```

```
beta = 1.842 + 3.802 + 2.265
Lo = beta-(1.96*se) # 5.9386
Hi= beta+ (1.96*se) # 9.8793
### QUESTION 9.22
rm(list=ls(all=TRUE))
library(multcomp)
library(data.table)
library(dplyr)
library(Imtest)
library(tseries)
library(dynlm)
library(forecast)
context = fread('consumption.csv')
# income growth
# consumption growth
context = context[ 4:200, c("incgwth","congwth")]
table <- context
check.ts <- is.ts(table) # "is structured as time series?"
table.ts <- ts(table, start=c(1960,4),frequency=4)
check.ts <- is.ts(table.ts)</pre>
model.dyn <- dynlm(congwth~L(incgwth, 0), data=table.ts)</pre>
```

```
summary(model.dyn)
plot <- ggAcf(model.dyn$residuals,lag.max = 20)</pre>
plot
AIC(model.dyn)
BIC(model.dyn)
# part c
table <- context
check.ts <- is.ts(table) # "is structured as time series?"
table.ts <- ts(table, start=c(1960,4),frequency=4)
check.ts <- is.ts(table.ts)</pre>
model.dyn <- dynlm(congwth~L(congwth, 1) + L(incgwth, 0), data=table.ts)
summary(model.dyn)
plot <- ggAcf(model.dyn$residuals,lag.max = 20)</pre>
plot
AIC(model.dyn)
BIC(model.dyn)
# part d
table <- context
check.ts <- is.ts(table) # "is structured as time series?"
table.ts <- ts(table, start=c(1960,4),frequency=4)
check.ts <- is.ts(table.ts)</pre>
model.dyn \leftarrow dynlm(congwth^{L}(congwth, 1) + L(congwth, 2) + L(incgwth, 0), data=table.ts)
summary(model.dyn)
plot <- ggAcf(model.dyn$residuals,lag.max = 20)</pre>
plot
AIC(model.dyn)
```

```
BIC(model.dyn)
# part e
table <- context
check.ts <- is.ts(table) # "is structured as time series?"</pre>
table.ts <- ts(table, start=c(1960,4),frequency=4)
check.ts <- is.ts(table.ts)</pre>
model.dyn <- dynlm(congwth~L(congwth, 1)+L(congwth, 2) + L(incgwth, 0) + L(incgwth, 1) ,
data=table.ts)
summary(model.dyn)
plot <- ggAcf(model.dyn$residuals,lag.max = 20)</pre>
plot
AIC(model.dyn)
BIC(model.dyn)
# part f add congwth at lag 3
table <- context
check.ts <- is.ts(table) # "is structured as time series?"
table.ts <- ts(table, start=c(1960,4),frequency=4)
check.ts <- is.ts(table.ts)</pre>
model.dyn \leftarrow dynlm(congwth^{L}(congwth, 1) + L(congwth, 2) + L(congwth, 3) + L(incgwth, 0) + L(incgwth, 1)
1) , data=table.ts)
summary(model.dyn)
plot <- ggAcf(model.dyn$residuals,lag.max = 20)</pre>
plot
AIC(model.dyn)
BIC(model.dyn)
```

part g drop congwth t-1 from part e

```
table <- context

check.ts <- is.ts(table) # "is structured as time series?"

table.ts <- ts(table, start=c(1960,4),frequency=4)

check.ts <- is.ts(table.ts)

model.dyn <- dynlm(congwth~ L(congwth, 2) + L(incgwth, 0) + L(incgwth, 1) , data=table.ts)

summary(model.dyn)

plot <- ggAcf(model.dyn$residuals,lag.max = 20)

plot

AlC(model.dyn)

BIC(model.dyn)
```