These questions are for practice, in preparation for Workshop 2.

- **1.** Let $E = \{a, b, c, d, e, f\}$, $A = \{a, b, c\}$, $B = \{d, e\}$, $C = \{\{a, b, c\}, \{d, e\}\}$. Are the following statements true or false? Explain your answers.
- (a) $A \subseteq E$. True. Every member of A is a member of E.
- (b) $B \subset E$. True. Every member of B is a member of E and $B \neq E$.
- (c) $C \subseteq E$. False. The members of C are not members of E; they are subsets of E.
- (d) $A \subseteq C$. False. A is a member of C, not a subset of C.
- **2.** Let $E = \{a, b, c, d, e, f\}$ be a universe of discourse. Let $A = \{a\}$, $B = \{b, c, d\}$, $C = \{f, a, d\}$. Compute the following.
- (a) $A \cup B$. $\{a, b, c, d\}$.
- (b) $B \cap C$ {d}.
- (c) B^c . $\{a, e, f\}$.
- (d) $A\Delta C$. $\{f, d\}$.
- (e) $C \setminus A$. $\{ \boldsymbol{f}, \boldsymbol{d} \}$.
- **3.** Let A, B, C be sets.

Prove that $(A \cap B)^c = A^c \cup B^c$.

LHS:
$$x \in (A \cap B)^c \iff x \notin A \cap B \iff \neg(x \in A \cap B) \iff \neg(x \in A \land x \in B) \iff \neg(x \in A) \lor \neg(x \in B) \iff (x \notin A) \lor (x \notin B)$$
.

RHS: $x \in A^c \cup B^c \iff (x \in A^c) \lor (x \in B^c) \iff (x \notin A) \lor (x \notin B)$.

So LHS = RHS. (A full proof would give a reason for each if-and-only-if; e.g. "def of complement" for the 1st; "negation" for 2nd; etc. c.f. answer to Q9.)

4. Is $0 \in \emptyset$? Is $\{\emptyset\} \in \emptyset$? No to both.

Explain why. By definition, \emptyset has no members.

- **5.** Let $A = \{a, b, c, d\}$, $B = \{c, d, e\}$. Compute the following:
- (a) P(A). $\{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{c,d\},$

$$\{a,b,c\},\{a,b,d\},\{a,c,d\},\{b,c,d\},A\}$$

- (b) $P(A \cap B)$. $P(\{c,d\} = \{\emptyset, \{c\}, \{d\}, \{c,d\}\})$
- **6.** Let $A = \{a, b\}, B = \{1, 2\}$. Compute the following:
- (a) $A \cap B$.
- (b) $P(A \cap B)$. $\{\emptyset\}$
- 7. Let $A = \{0,1\}$. Compute $A \times A \times A \times A$. = $\{(s,t,u,v) : s,t,u,v \in A\}$ = $\{(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,1,1,1),(1,0,0,0),(1,0,0,1),(1,0,1,0),(1,0,1,1),(1,1,0,0),(1,1,0,1),(1,1,1,1)\}$

- **8.** Let $A = \{0, 1\}$ and $B = \{a, b, c\}$. Are the following partitions of $A \times B$? Explain why or why not.
- (a) $\{A_1, A_2\}$ where $A_1 = \{(0, a), (0, b), (0, c)\}$. $A_2 = \{(1, a), (1, b), (1, c)\}$. Yes. $A_1 \cap A_2 = \emptyset$ and $A_1 \cup A_2 = A \times B$.
- (b) $\{A_1, A_2\}$ where $A_1 = \{(0, a), (0, b), (0, c), (0, 0)\}$. $A_2 = \{(1, a), (1, b), (1, c), (1, 1)\}$. No. $A_1 \notin A \times B$ since $(0, 0) \notin A \times B$.
- (c) $\{A_1, A_2, A_3\}$ where $A_1 = \{(0, a), (1, a)\}$. $A_2 = \{(0, b), (1, b)\}$. $A_3 = \{(0, c), (1, c)\}$. Yes. $A_1 \cap A_2 = A_1 \cap A_3 = A_2 \cap A_3 = \emptyset$ and $A_1 \cup A_2 \cup A_3 = A \times B$.
- (d) $\{A_1, A_2, A_3, A_4\}$ where $A_1 = \{(0, a), (0, b), (0, c)\}$. $A_2 = \{(0, a), (1, a)\}$. $A_3 = \{(0, b), (1, b)\}$. $A_4 = \{(0, c), (1, c)\}$. No. $A_1 \cap A_2 = \{(0, a)\} \neq \emptyset$ [i.e. A_1 and A_2 are not disjoint.]
- **9.** Prove that $A \cup (B \setminus A) = A \cup B$.

$$x \in A \cup (B \setminus A) \iff (x \in A) \vee (x \in B \setminus A) \text{ (definition of union)}$$
 $\iff (x \in A) \vee ((x \in B) \wedge (x \notin A)) \text{ (definition of set difference)}$
 $\iff ((x \in A) \vee (x \in B)) \wedge ((x \in A) \vee (x \notin A)) \text{ (distributive law)}$
 $\iff ((x \in A) \vee (x \in B)) \wedge T \text{ (since } p \vee \neg p \text{ is a tautology)}$
 $\iff (x \in A) \vee (x \in B) \text{ (since } p \wedge T \equiv p)$
 $\iff x \in A \cup B \text{ (definition of union)}$

- 10. Find counterexamples to the following statements.
- (a) $A \subseteq B \implies A^c \subseteq B^c$.

We need to find sets A and B such that $A \subseteq B$ but $A^c \not\in B^c$. The latter requires us to find an element $x \in A^c$ with $x \notin B^c$, *i.e.* an element x in B but not in A. An easy way to do this, and at the same time ensure that $A \subseteq B$, is just to take A empty and B non-empty.

So the simplest counterexample is: $A = \emptyset$, $B = \{b\}$.

(b) $(A \not\subseteq B) \land (B \not\subseteq C) \implies A \not\subseteq C$.

We need to find sets A, B, C such that $A \not\in B$ and $B \not\in C$ but $A \subseteq C$. To satisfy the first two of these conditions A needs and element $a \not\in B$ and B needs and element $b \not\in C$.

We can satisfy the third condition by choosing A = C provided this does not contradict the first two conditions.

The simplest counterexample is $A = \{a\} = C$, $B = \{b\}$, with $a \neq b$.

(c) $(A \subseteq B) \land (B \not\subseteq C) \implies A \not\subseteq C$

We need to find sets A, B, C such that $A \subseteq B$ and $A \subseteq C$ but $B \not\subset C$. By combining ideas from (a) and (b) we can soon see that we can get what we need by taking A and C empty but B non-empty.

The simplest counterexample is $A = C = \emptyset$, $B = \{b\}$.