

Università degli Studi di Ferrara

DEPARTMENT OF ENGINEERING Corso di Laurea Triennale in Ingegneria Elettronica e Infomatica

On the Design of Quantum Communication Systems with non-Gaussian States

Candidate:

Federico Forzano Matricola 143528 Supervisor:

Chiar.mo Prof. Andrea Conti

Co-Supervisor:

Dott.Ing Stefano Guerrini

Contents

1	Qua	ntum	Mechanics Abstract	5
	1.1	Postul	lates	5
		1.1.1	First Postulate	5
		1.1.2	Second Postulate	5
		1.1.3	Third Postulate	6
		1.1.4	Fourth Postulate	6

4 CONTENTS

Chapter 1

Quantum Mechanics Abstract

In this chapter, a bief overview of quantum mechanics postulates and of the notation used in this thesis is given. The target of that is to explain to the reader the essential concept [...]

1.1 Postulates

Like every phisics theory, quantum mechanics is builded from few essential postulates. In this section are briefly introduced the six Dirac-Von Newman postulates of Quantum Mechanics.

1.1.1 First Postulate

Postulate 1 (State Representation) The state of an isolated quantum system is represented by a complex unitary vector in an Hilbert space:

$$|\psi\rangle \in \mathcal{H}$$

The space of possible states of the system is called state space and is a separable complex Hilbert space.

Observation Differently to the classical physics, in quantum mechanics the concept of state of system is introduced. In classical mechanics a system is described by his observables, like position or four-wheeled.

1.1.2 Second Postulate

Postulate 2 (Observables) Every observables of the system is represented by an Hermitian operator acting on the state space:

$$\mathcal{M}:\mathcal{H}\to\mathcal{H}$$

The outcomes of the measurement can only be one of the eigenvalue of the operator \mathcal{M} .

Observation The possible outcomes of the measurement are real number because \mathcal{M} is self-andjoint.

1.1.3 Third Postulate

Postulate 3 (Born's Rule) The probability to get the measurement λ_i from the observable \mathcal{M} in the system in state $|\psi\rangle$ is:

$$\mathbb{P}(\lambda_i) = \langle \psi | \lambda_i \rangle \langle \lambda_i | \psi \rangle$$

where $\langle \psi |$ is the correspondent vector of $| \psi \rangle$ in the dual space of \mathcal{H} and $| \lambda_i \rangle$ is the eigenvector correspondent to the eigenvalue λ_i . Equivalently, it is possible to write:

$$\mathbb{P}(\lambda_i) = \langle \psi | \mathcal{P}_{\rangle} | \psi \rangle$$

where \mathcal{P}_{i} is the projection operator corresponding to λ_{i} .

1.1.4 Fourth Postulate

Postulate 4 (Wavefunction Collapse)