Customer Churn Prediction Project Documentation

Introduction

The objective of this project is to predict customer churn for a telecom company using machine learning and data analytics. Proactively identifying customers likely to churn empowers the business to take action and improve retention rates.

Dataset Overview

- Source: Public Telco Customer Churn dataset
- Samples: ~7,000 customer records
- Features: Customer demographics, account info, subscribed services, MonthlyCharges, TotalCharges, tenure, and churn label.

Data Preparation & Cleaning

- Dropped non-informative columns (e.g., customerID).
- Converted 'TotalCharges' from string to numeric format and imputed missing values with the median.
- Encoded categorical variables using label encoding.
- Target variable 'Churn' mapped as 0 (No churn) and 1 (Churn).

Exploratory Data Analysis (EDA)

- Churn Distribution: The majority of customers did not churn; about a quarter did. The bar plot clearly shows class imbalance.
- Correlation Heatmap: Strongest negative correlation with churn: tenure (-0.35) and contract type (-0.39), indicating long-term customers and those with long contracts are less likely to churn. Positive correlations include MonthlyCharges (+0.19) and TotalCharges (+0.20), suggesting higher charges relate to more churn.

Model Building & Evaluation

- Classifier Used: Logistic Regression (baseline model)
- Train/Test Split: 70/30 ratio.
- Results:
 - Accuracy: 81%
 - Confusion Matrix: Good at predicting non-churners (class 0), reasonable recall for churners (class 1).
 - Precision/Recall: Precision for churners = 0.68, recall = 0.57; better performance on non-churners.
 - F1 Scores: Overall balanced, indicating solid baseline modeling.

Feature Importance & Interpretation

- Top Factors increasing churn:
 - Higher MonthlyCharges, TotalCharges, PaperlessBilling, InternetService.
- Top Protective Factors:
 - Longer tenure, having a contract, PhoneService.

Business Insights & Recommendations

- Customers with short tenure or month-to-month contracts are significantly more likely to churn.
- Higher monthly bills increase the probability of churn, suggesting the need to review value offerings for high-bill customers.
- Strategies should target customers early in their tenure and those with flexible contracts to reduce churn rate.

Conclusion

The project demonstrates an end-to-end solution for churn prediction: from data wrangling and EDA to modeling and business interpretation. The logistic regression model yields solid results and pinpoints actionable drivers of churn, providing a foundation for business decision-making and further analytics work.

Results

Accuracy: 0.8106956933270232 Confusion Matrix: [[1386 153] [247 327]] Classification Report:					
210331112021011	precision	recall	f1-score	support	
0	0.85	0.90	0.87	1539	
1	0.68	0.57	0.62	574	
accuracy			0.81	2113	
macro avg	0.76	0.74	0.75	2113	
weighted avg	0.80	0.81	0.81	2113	

