BUNDEREPUBLIK DEUTSCHLAND

REC'D 18 JUL 2003

WIPO

PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 27 184.4

Anmeldetag:

12. Juni 2002

Anmelder/Inhaber:

Fraunhofer-Gesellschaft zur Förderung der ange-

wandten Forschung e.V., München/DE

Bezeichnung:

Pflanzliche Proteinpräparate (Isolate und Konzentrate) mit verbesserten sensorischen Eigenschaften durch enzymatische Behandlung des Rohstoffs mit einer Lipase während des Isolierungsprozesses

IPC:

A 23 H 3/14

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 11. Dezember 2002

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b) Wenner

02F40196-IVV

Zusatzblatt zum Antrag auf Erteilung eines Patents

(6) Bezeichnung der Erfindung

Pflanzliche Proteinpräparate (Isolate und Konzentrate) mit verbesserten sensorischen Eigenschaften durch enzymatische Behandlung des Rohstoffs mit einer Lipase während des Isolierungsprozesses

02F40196-IVV

Pflanzliche Proteinpräparate (Isolate und Konzentrate) mit verbesserten sensorischen Eigenschaften durch enzymatische Behandlung des Rohstoffs mit einer Lipase während des Isolierungsprozesses

10 <u>Zusammenfassung:</u>

In der Lebensmittel- und Futtermittelindustrie werden in vielen Bereichen pflanzliche Proteinpräparate als Zutaten eingesetzt. Diese beeinflussen Produkte der Lebensmittelindustrie hinsichtlich ihrer funktionellen und sensorischen Eigenschaften. Hier sind Produktstabilität, Produkttextur oder Nährwert zu nennen.

Pflanzenproteine (z.B. Konzentrate oder Isolate aus Soja, Lupine u.a.) werden aus Saaten gewonnen, die einen Anteil von bis % an Fett und Fettbegleitstoffen enthalten. Durch Verfahren wie Pressen und/ oder Extraktion mit organischen Lösungsmitteln (n-Hexan, iso-Hexan oder CO₂) wird der überwiegende Teil der Lipidfraktion vor der Extraktion der Protein entfernt. Je nach Art der angewendeten Extraktion ist der verbleibende Anteil der Phospholipidfraktion im Proteinpräparat unterschiedlich hoch. Im Allgemeinen werden bei CO₂-extrahierten Saaten höhere Phospholipidwerte gefunden. Phospholipide neigen durch Oxidation während des Proteinisolierungs- und Trocknungsprozesses sowie bei der Lagerung zur Bildung von geruchs- und geschmacksbeeinträchtigenden Abbauprodukten (z.B. Hexanal).

Überraschenderweise konnte festgestellt werden, dass durch Einsatz einer Lipase (z. B. Lipopan F, Fa. Novozymes) während der Proteinextraktion Proteinpräparate hergestellt werden konnten, die deutlich bessere sensorische Eigenschaften aufwiesen als die vergleichbaren Produkte ohne Einsatz des Enzyms.

Die in der NMR- Spektroskopie gefundenen Werte für die geringeren Phospholipidgehalte dieser Proteinpräparate konnten durch eine sensorische Untersuchung bestätigt werden. Die Anwendung einer Lipase bei der Isolierung von Proteinisolaten führte zu deutlich besseren Produktqualitäten hinsichtlich des off- flavours.

Hintergrund:

Sensorische Eigenschaften pflanzlicher Proteinpräparate sind abhängig vom Restlipidgehalt, speziell von dem Anteil der Phospholipidfraktion. Durch Oxidation, Spaltung von Peroxiden und Hydroperoxiden zu Aldehyden, Ketonen und freien Fettsäuren, werden Geruch und Geschmack negativ beeinflusst (sog. off- flavour). Die Gewinnung von pflanzlichen Proteinpräparaten aus Ölsaaten erfolgt in der Regel durch Schälen und Flockieren sowie anschließender Entölung der Flocken mit organischem Lösungsmittel. Dadurch wird der Fettgehalt des Rohstoffes durch Anwendung thermisch schonender Verfahren (60-70°C; unterhalb der Denaturierungstemperaturen des Proteins) auf Werte von 1-2 % Restfett reduziert. Die verbleibenden Lipide reichern sich während der Proteinisolierung in der Proteinfraktion an und beeinflussen die sensorischen Eigenschaften negativ (bitterer, ranziger Geschmack und Geruch). Dieser off-flavour wird bei der Anwendung der Proteinpräparate in Lebensmittel übertragen und ist unerwünscht. In der einer Untersuchungsreihe wurde während der Proteinisolierung alternativ zur herkömmlichen Proteinisolierung eine Lipase eingesetzt. Das Proteinpräparat Lipopan F der Firma Novozymes ist ein Enzym, dass Aktivitäten gegenüber Phospholipiden, Glycolipiden und Triglyceriden aufweist (1,3-spezifische Aktivität am Glyceringerüst) und eine Umwandlung wasserlöslicher Produkte beschleunigt. Diese Abbauprodukte der Restlipidfraktion sollten theoretisch während der Proteinisolierung mit ausgewaschen werden und somit die Herstellung von Produkten mit gesteigerter sensorischer Qualität ermöglichen (Verringerung der oxidierbaren Restfettbestandteile).

30

25

5

15

35

45

40

50

55

<u>Ausführungsbeispiel:</u>

Material und Methode:

5

- 1. Rohstoffe
- white flakes aus Lupine albus Typ Top hexanentölt und CO2entölt
- 2. Enzym
- 10 Lipasepräparat Lipopan F, Fa. Novozymes
 - 3. Proteinisolierung
 - Vorextraktion, zwei Proteinextraktionen
 - Neutralisation, Sprühtrocknung
- 15 Trocknung (Büchi: Laborsprühtrockner)

Das Enzympräparat wurde zur ersten Proteinextraktion im Überschuss zugegeben. Vor der Trocknung wurde das neutralisierte Proteinpräparat thermisch behandelt (80°C, 10 min). Somit wurde das Enzym inaktiviert und eine lebensmittelrechtlich einwandfreie Anwendung gewährleistet.

20

Aus Vergleichbarkeitsgründen wurden sowohl die mittels Lipase- Einsatz hergestellten, als auch die herkömmlich isolierten Proteinisolate der thermischen Behandlung unterzogen.

25 4. Sensorik:

Mittels eines gemischt geschulten Panels (Zusammensetzung: 2 weiblich, 2 männlich, 2 Raucher, 2 Nichtraucher) wurden die Proteinisolate in einer Blindverkostung mit zufälliger Reihenfolge der Proben hinsichtlich der sensorischen Eigenschaften bewertet.

30 <u>Ergebnisse:</u>

Phospholipidgehalte:

Durch die NMR - Spektren Untersuchung konnte eine Reduktion der Phospholipide im Proteinisolat nachgewiesen werden.

35

50

Sensorik:

Aussehen/Farbe:

Farblich waren beide Rohstoffe (Hexan und CO₂entölt) weiß bis gelblich. Die Isolate mit und ohne Lipopan weiß.

Geruch:

Beide Rohstoffe hatten einen getreidigen, bohnigen Geruch. Isolate mit und ohne Lipopan waren geruchsneutral.

45 Geschmack:

Die Rohstoffe wurden unterschiedlich von süß bis bitter und bohnig bis metallisch beschrieben. Beide Rohstoffe hatte einen leicht ranzigen Nachgeschmack. Die herkömmlich extrahierten Isolate wurde beide als leicht ranzig und bitter beschrieben. Der Unterschied bestand darin, dass das hexanentölte Isolat zusätzlich als bohnig und grün bezeichnet wurde. Die mit Lipase-Einsatz hergestellten Isolate wurden gegenüber den herkömmlich extrahierten Isolaten deutlich bevorzugt. Das hexanentölte Isolat mit Lipopan wurde als leicht grün, etwas fruchtig und süß beschrieben und hatte einen deutlich kräftigeren Geschmack als das CO₂-entölte Isolat. Das CO₂-entölte Isolat mit Lipopan wurde durch Begriffe wie getreidig, bohnig grün, leicht bitter und metallisch beschrieben. Ein ranziger Nachgeschmack wurde für die mittels Lipase-Einsatz hergestellten Isolate nicht

55 beschrieben

Zusammenfassung:

enthalten. Durch Verfahren wie Pressen und/ oder Extraktion mit organischen Lösungsmitteln (n-Hexan, iso-Hexan oder CO₂) wird der überwiegende Teil der Lipidfraktion während der Proteinextraktion konnten Proteinpräparate hergestellt werden, die deutlich bessere sensorische Eigenschaften aufwiesen als die vergleichbaren Produkte ohne Einsatz des Enzyms.Die in der NMR- Spektroskopie gefundenen Werte für die geringeren Phospholipidgehalte konnten durch eine sensorische Untersuchung Pflanzenproteine (z.B. Konzentrate oder Isolate aus Soja, Lupine u.a.) werden aus Saaten gewonnen, die einen Anteil von 5 bis 21 % an Fett und Fettbegleitstoffen entfernt. Je nach Art der angewendeten Extraktion ist der verblelbende Anteil der Phospholipidfraktion im Proteinpräparat unterschiedlich hoch. Im Allgemeinen werden bei CO2- extrahierten Saaten höhere Phospholipidwerte gefunden. Phospholipide neigen durch Oxidation während des Proteinisolierungs- und Trocknungsprozesses sowie bei der Lagerung zur Bildung von geruchs- und geschmacksbeeinträchtigenden Abbauprodukten (z.B. Hexanal). Durch Einsatz einer Lipase (Lipopan F, Novozymes) bestätigt werden. Die Anwendung einer Lipase bei der Isolierung von Proteinisolaten führte zu deutlich besseren Produktqualitäten hinsichtlich des off- flavours.

Hintergrund:

Sensorische Eigenschaften pflanzlicher Proteinpräparate sind abhängig vom Restlipidgehalt, speziell von dem Anteil der Phospholipidfraktion. Durch Oxidation, Spaltung von Peroxiden und Hydroperoxiden zu Aldehyden, Ketonen und freien Fettsäuren, werden Geruch und Geschmack negativ beeinflusst (sog. off- flavour). Die Gewinnung von pflanzlichen Proteinpräparaten aus Ölsaaten erfolgt in der Regel durch Schälen und Flockieren sowie anschließender Entölung der Flocken mit organischem Lösungsmittel. Dadurch wird der Fettgehalt des Rohstoffes durch Anwendung thermisch schonender Verfahren (60-70°C; unterhalb der Denaturierungstemperaturen des Proteins) auf Werte von 1-2 % Restfett reduziert. Die verbleibenden Lipide reichern sich während der Proteinisolierung in der Proteinfraktion an und beeinflussen die sensorischen Eigenschaften negativ (bitterer, ranziger Geschmack Geruch).Dieser off-flavour wird bei der Anwendung der Proteinpräparate in Lebensmittel übertragen und ist unerwünscht. In der hier vorgestellten Untersuchungsreihe wurde während der Proteinisolierung alternativ zur herkömmlichen Proteinisolierung eine Lipase eingesetzt. Proteinpräparat Lipopan F der Firma Novozymes ist ein Enzym, dass Aktivitäten gegenüber Phospholipiden, Glycolipiden und Triglyceriden (1,3-spezifische Aktivität am Glyceringerüst) und eine Umwandlung wasserlöslicher Produkte beschleunigt. Diese Abbauprodukte der Restlipidfraktion sollten theoretisch während der Proteinisolierung mit ausgewaschen werden und somit die Herstellung von Produkten mit gesteigerter sensorischer Qualität ermöglichen (Verringerung der oxidierbaren Restfettbestandteile).

Material und Methode:

- 1.Rohstoffe
- white flakes aus Lupine albus Typ Top hexanentölt und CO,entölt
- Die Rohstoffe wurden vom Fraunhofer IVV zur Abb. 1: Phospholipidgehalte NMR- Spektroskopie Verfügung gestellt.
- .Enzym
- Lipasepräparat Lipopan F, Fa. Novozymes

Das Enzympräparat wurde von der Firma Novozymes zur Verfügung gestellt.

- 3. Proteinisolieruna
- Vorextraktion, zwei Proteinextraktionen
- Neutralisation, Sprühtrocknung (Büchi: Laborsprühtrockner)

Das Enzympräparat wurde zur ersten Proteinextraktion im Überschuss zugegeben. Vor der Trocknung wurde das neutralisierte Proteinpräparat thermisch behandelt (80°C, 10 min).

Somit wurde das Enzym inaktiviert und eine lebensmittelrechtlich einwandfreie Anwendung gewährleistet.

Aus Vergleichbarkeitsgründen wurden sowohl die mittels Lipase- Einsatz hergestellten, als auch die herkömmlich isolierten Proteinisolate der thermischen Behandlung unterzogen.

4.Sensorik:

aeschulten Mittels gemischt eines **Panels** (Zusammensetzung: 2 weiblich, 2 männlich, 2 Raucher. 2 Nichtraucher) wurden die Proteinisolate in einer Blindverkostung mit zufälliger Reihenfolge der Proben hinsichtlich der sensorischen Eigenschaften bewertet.

Ergebnisse:

Phospholipidgehalte:

Durch die NMR - Spektren Untersuchung konnte eine Reduktion der Phospholipide im Proteinisolat nachgewiesen werden.

1 Rohstoff, 2 Isolat, 3 Isolat mit Lipase Einsatz

BEST AVAILABLE COPY

BEST AVAILABLE COPY

BEST AVAILABLE COPY

Abb. 1: Phospholipidgehalt von Rohstoff und Isolater aus hexanentölten Lupinen flakes

Abb. 2: Phospholipidgehalt von Rohstoff und Isolaten aus CO2-entölten Lupinen flakes

Sensorik:

Aussehen/Farbe:

Farblich waren beide Rohstoffe (Hexan und COzentölt) weiß bis gelblich. Die Isolate mit und ohne Lipopan weiß.

Geruch:

Beide Rohstoffe hatten einen getreidigen, bohnigen Geruch. Isolate mit und ohne Lipopan waren geruchsneutral.

Geschmack:

Die Rohstoffe wurden unterschiedlich von süß bis bitter und bohnig bis metallisch beschrieben. Beide Rohstoffe hatte einen leicht ranzigen Nachgeschmack.

Die herkömmlich extrahierten Isolate wurde beide als leicht ranzig und bitter beschrieben.

Der Unterschied bestand darin, dass das hexanentölte Isolat zusätzlich als bohnig und grün bezeichnet wurde.

Die mit Lipase-Einsatz hergestellten Isolate wurden gegenüber den herkömmlich extrahierten Isolaten deutlich bevorzugt.

Das hexanentölte Isolat mit Lipopan wurde als leicht grün, etwas fruchtig und süß beschrieben und hatte einen deutlich kräftigeren Geschmack CO₂-entölte Isolat.

Das CO2-entölte Isolat mit Lipopan wurde durch Begriffe wie getreidig, bohnig grün, leicht bitter und metallisch beschrieben.

Ein ranziger Nachgeschmack wurde für die mittels Lipase-Einsatz hergestellten Isolate nicht beschrieben.

Literatur:

[1] Cheftel, J.C.;Cuq.J.L.;Lorient,D.: Lebensmittelproteine, Behr's Verlag

[2] Bokisch, M., Nahrungsfette und- Öle, Eugen Ulmer Verlag

[3] Bremer, P., Eiweißwunder Lupine, fit fürs Leben Verlag

<u>PATENTANSPRÜCHE</u>

5