Logarithms

TOTAL POINTS 6

1. Introduction and Learning Outcomes

1 / 1 point

The goal of this assignment is to practice with logarithms that appear frequently in the analysis of algorithms.

Recall that $\log_a n$ is the power to which you need to raise a in order to obtain n.

The main rules for working with logarithms are the following:

1.
$$\log_a(n^k) = k \log_a n$$

2.
$$\log_a(nm) = \log_a n + \log_a m$$

3.
$$n^{\log_a b} = b^{\log_a n}$$

$$4.\log_a n \cdot \log_b a = \log_b n$$

Is it true that $(\log_5 n)^2 = 2\log_5 n$?

O Yes

No

Correct $(\log_5 n)^2$ is just $(\log_5 n)(\log_5 n)$

2. $\log_2 n \cdot \log_3 2 = \log_3 n$

1 / 1 point

Yes

O No

✓ Correct

 $3. \quad n^{\log_2 n} = n$

1/1 point

O Yes

No

✓ Correct

4. $\log_3(2n) = \log_3 2 \cdot \log_3 n$

1 / 1 point

O Yes

No

✓ Correct

5. $\log_{10}(n^2) = 2\log_{10} n$

1/1 point

Yes

O No

✓ Correct

6. $n^{\log_7 3} = 7^{\log_3 n}$

1/1 point

O Yes

No

 \checkmark Correct $n^{\log_7 3} = 3^{\log_7 n}$