DSE 2256 DESIGN & ANALYSIS OF ALGORITHMS

Lecture 39
Greedy Technique
Huffman Coding

Coding Problem

Coding: Assignment of bit strings to alphabet characters

• E.g. We can code {a,b,c,d} as {00,01,10,11}

Codewords: Bit strings assigned for characters of alphabet

Two types of coding:

- Fixed-length encoding (e.g., ASCII)
- Variable-length encoding (e,g., Morse code, Huffman Code)

Prefix-free codes (or prefix-codes): no codeword is a prefix of another codeword

It allows for efficient online decoding.

Huffman codes

• Any binary tree with edges labeled with 0's and 1's yields a prefix-free code of characters assigned to its leaves.

Huffman's algorithm:

- Initialize n one-node trees with alphabet characters and the tree weights with their frequencies.
- Repeat the following step n-1 times: join two binary trees with smallest weights into one
 (as left and right subtrees) and make its weight equal the sum of the weights of the two
 trees.
- Mark edges leading to left and right subtrees with 0's and 1's, respectively.

DSE 2256 Design & Analysis of Algorithms

3

Huffman codes: Example

symbol	Α	В	С	D	
frequency	0.35	0.1	0.2	0.2	0.15

Huffman codes: Example

Huffman codes : Example

Symbol: A B C D _

Frequency: 0.35 0.1 0.2 0.2 0.15

Codeword: 11 100 00 01 101

- Average bits per character: 2.25
- For fixed-length encoding: 3
 - Compression ratio: (3-2.25) / 3*100% = 25%

Thank you!

Any queries?