US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication

Kind Code

Al

Publication Date

Inventor(s)

August 21, 2025

Sweeney; Fiachra M. et al.

Wireless Resonant Circuit and Variable Inductance Vascular Monitoring Implants and Anchoring Structures Therefore

Abstract

Wireless, variable inductance and resonant circuit-based vascular monitoring devices, systems, methodologies, and techniques, including specifically configured anchoring structures for same, are disclosed that can be used to assist healthcare professionals in predicting, preventing, and diagnosing various heart-related and other health conditions.

Inventors: Sweeney; Fiachra M. (Dublin, IE), Gifford, III; Hanson S. (Woodside, CA),

Johnson; Jessi (Sunnyvale, CA), Martin; Pablo (Dublin, IE), Sheridan; Stephen (Co Cavan, IE), Sutton; Douglas S. (Pacifica, CA), Wetterling; Friedrich (Dublin, IE), Hanley; Conor M. (Dublin, IE), Raghunathan; Shriram (Menlo Park, CA),

Quinlan; Sean (Dublin, IE)

Applicant: Foundry Innovation & Research 1, Ltd. (Dublin, IE)

Family ID: 1000008586731

Appl. No.: 19/201589

Filed: May 07, 2025

Related U.S. Application Data

parent US continuation 17470777 20210909 parent-grant-document US 12310707 child US 19201589

parent US continuation 17018194 20200911 parent-grant-document US 11206992 child US 17470777

parent US continuation PCT/US2019/034657 20190530 PENDING child US 17018194

parent US continuation PCT/US2017/063749 20171129 PENDING child US 16177183

parent US continuation-in-part $16177183\ 20181031$ parent-grant-document US 10806352 child US 17018194

parent US continuation-in-part PCT/US2017/046204 20170810 PENDING child US 16177183 us-provisional-application US 62678237 20180530

us-provisional-application US 62534329 20170719 us-provisional-application US 62427631 20161129 us-provisional-application US 62373436 20160811

Publication Classification

Int. Cl.: A61B5/0265 (20060101); A61B5/00 (20060101); A61B5/0295 (20060101); A61B5/07 (20060101)

U.S. Cl.:

CPC **A61B5/0265** (20130101); **A61B5/0295** (20130101); **A61B5/6862** (20130101); A61B5/076 (20130101)

Background/Summary

RELATED APPLICATION DATA [0001] This application is a continuation of U.S. Nonprovisional patent application Ser. No. 17/470,777, filed on Sep. 9, 2021, which application was a continuation of U.S. Nonprovisional application Ser. No. 17/018,194, filed Sep. 11, 2020, now U.S. Pat. No. 11,206,992, issued Dec. 28, 2021; which application was a continuation of PCT/US2019/034657, filed May 30, 2019, which international application claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 62/678,237, filed May 30, 2018, and titled "Wireless Resonant Circuit and Variable Inductance Vascular Monitoring Implants and Anchoring Structures Therefore". U.S. Nonprovisional application Ser. No. 17/018,194 was also a continuation-in-part of U.S. Nonprovisional patent application Ser. No. 16/177,183, filed on Oct. 31, 2018, now U.S. Pat. No. 10,806,352, issued Oct. 20, 2020, and titled "Wireless Vascular Monitoring Implants". U.S. Nonprovisional patent application Ser. No. 16/177,183 was a continuation application of PCT/US2017/063749, filed Nov. 29, 2017, and which international application claims the benefit of priority of U.S. Provisional Application No. 62/534,329 filed Jul. 19, 2017, and U.S. Provisional Application No. 62/427,631, filed Nov. 29, 2016; U.S. Nonprovisional patent application Ser. No. 16/177,183 also was a continuation-in-part of PCT/US2017/046204, filed Aug. 10, 2017, which international application claims the benefit of priority to U.S. Provisional Patent Application No. 62/373,436, filed Aug. 11, 2016. Each of these applications is incorporated by reference herein in its entirety.

FIELD OF THE DISCLOSURE

[0002] The present invention generally relates to the field of vascular monitoring. In particular, the present invention is directed to wireless vascular monitoring implants, systems, methods, software and anchoring structures therefore. More specifically, embodiments disclosed herein relate to fluid volume sensing in the inferior vena cava (IVC) using wireless, remotely or automatically actuatable implants for monitoring or management of blood volume.

BACKGROUND

[0003] Others have attempted to develop vascular monitoring devices and techniques, including those directed at monitoring vessel arterial or venous pressure or vessel lumen dimensions. However, many such existing systems are catheter based (not wireless) and thus can only be utilized in a clinical setting for limited periods of times, and may carry risks associated with extended catheterization. For a wireless solution, the complexity of deployment, fixation and the interrelationship of those factors with detection and communication have led to, at best, inconsistent results with such previously developed devices and techniques.

[0004] Existing wireless systems focus on pressure measurements, which in the IVC can be less responsive to patient fluid state than IVC dimension measurements. However, systems designed to measure vessel dimensions also have a number of drawbacks with respect to monitoring in the IVC. Electrical impedance-based systems require electrodes that are specifically placed in opposition across the width of the vessel. Such devices present special difficulties when attempting to monitor IVC dimensions due to the fact that the IVC does not expand and contract symmetrically as do most other vessels where monitoring may be desired. Precise positioning of such position-dependent sensors is a problem that has not yet been adequately addressed. IVC monitoring presents a further challenge arising from the physiology of the IVC. The IVC wall is relatively compliant compared to other vessels and thus can be more easily distorted by forces applied by implants to maintain their position within the vessel. Thus devices that may perform satisfactorily in other vessels may not necessarily be capable of precise monitoring in the IVC due to distortions created by force of the implant acting on the IVC wall. As such, new developments in this field are desirable in order to provide doctors and patients with reliable and affordable wireless vascular monitoring implementation, particularly in the critical area of heart failure monitoring. SUMMARY OF THE DISCLOSURE

[0005] Embodiments disclosed herein comprise wireless vascular monitoring devices, circuits, methodologies, and related techniques for use in assisting healthcare professionals in predicting, preventing, and diagnosing various conditions whose indicators may include vascular fluid status. Using embodiments disclosed, metrics including, for example, relative fluid status, fluid responsiveness, fluid tolerance, or heart rate may be accurately estimated.

[0006] In one implementation, the present disclosure is directed to an implantable vessel monitoring device configured and dimensioned to be implanted in a patient blood vessel in contact with the vessel wall. The device includes an expandable and collapsible variable inductance coil comprising a plurality of adjacent wire strands formed around an open center to allow substantially unimpeded blood flow therethrough, the coil configured and dimensioned (i) to extend around an inner periphery of the vessel when implanted therein and (ii) to move with the vessel wall in response to expansion and collapse of the vessel; and a capacitance which together with the variable inductance coil forms a variable inductance resonant circuit having a variable characteristic frequency correlated to the diameter or area of the expandable and collapsible variable inductance coil.

[0007] In another implementation, the present disclosure is directed to an implantable vessel monitoring device configured and dimensioned to be implanted in a patient blood vessel in contact with the blood vessel wall. The device includes an expandable and collapsible variable inductance coil comprising at least about 150 adjacent wire strands formed around an open center, the coil configured and dimensioned (i) to extend around an inner periphery of the blood vessel when implanted therein and (ii) to move with the blood vessel wall in response to expansion and collapse of the blood vessel; a sensor frame formed in a single loop having a loop circumference on which the variable inductance coil is supported, the plurality of wire strands forming a wire coating over the sensor frame and being wrapped in at least one loop around the loop circumference of the sensor frame; and a capacitance which together with the variable inductance coil forms a variable inductance resonant circuit having a variable characteristic frequency correlated to the diameter or area of the expandable and collapsible variable inductance coil.

[0008] In still another implementation, the present disclosure is directed to an implantable vessel monitoring device configured and dimensioned to be implanted in a patient vena cava in contact with the vena cava wall. The device includes an expandable and collapsible variable inductance coil comprising a plurality of substantially parallel wire strands formed around an open center, the coil configured and dimensioned (i) to surround an inner periphery of the vena cava when implanted therein and (ii) to move with the vena cava wall in response to changes in fluid volume or movement of the vena cava wall over the respiratory and cardiac cycles; a flexible sensor frame

collapse of the vena cava wall over the respiratory and cardiac cycles, and (iii) to allow changes in shape of the variable inductance coil corresponding to a magnitude of collapse and expansion as the vena cava varies with changes in vascular fluid volume of the patient; a capacitance which together with the variable inductance coil forms a variable inductance resonant circuit having a variable characteristic frequency correlated to the diameter or area of the expandable and collapsible variable inductance coil; and at least one device anchor attached to the resilient loop frame by at least one anchor isolation section, the anchor isolation section being configured to allow relative motion between the at least one device anchor and the resilient loop frame. [0009] In still another implementation, the present disclosure is directed to an implantable vessel monitoring device configured and dimensioned to be implanted in a patient vena cava in contact with the vena cava wall. The device includes an expandable and collapsible variable inductance coil comprising at least about 150 adjacent wire strands formed around an open center to allow substantially unimpeded blood flow therethrough, the coil configured and dimensioned (i) to extend around an inner periphery of the vena cava when implanted therein and (ii) to move with the vena cava wall in response to changes in fluid volume or movement of the vena cava wall over the respiratory and cardiac cycles; a sensor frame formed in a single loop having a loop circumference with plural substantially straight sections connected by bends to form a resilient, open center, zigzag shaped loop structure supporting the expandable and collapsible variable inductance coil with the plurality of wire strands being wrapped in at least one loop around the loop circumference of the sensor frame to form a wire coating covering the sensor frame; an outer insulating layer covering the plurality of wires and sensor frame; a capacitance which together with the variable inductance coil forms a variable inductance resonant circuit having a variable characteristic frequency correlated to the diameter or area of the expandable and collapsible variable inductance coil; a zig-zag loop anchor frame formed by plural anchor sections joined by crown sections, with at least one anchor barb disposed in each the anchor section; and at least one anchor isolation section concentrically joining the zig-zag loop anchor frame with the zig-zag loop sensor frame, the anchor isolation section being configured to allow relative motion between the sensor frame and the anchor frame.

supporting the variable inductance coil and being configured and dimensioned (i) to maintain the

variable inductance coil in contact with the vena cava wall, (ii) to move with expansion and

[0010] These and other aspects and features of non-limiting embodiments of the present disclosure will become apparent to those skilled in the art upon review of the following description of specific non-limiting embodiments of the invention in conjunction with the accompanying drawings.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] For the purpose of illustrating the disclosure, the drawings show aspects of one or more embodiments of the disclosure. However, it should be understood that the present disclosure is not limited to the precise arrangements and instrumentalities shown in the drawings, wherein:

[0012] FIG. **1** schematically depicts an embodiment of a wireless resonant circuit-based vascular monitoring ("RC-WVM") system of the present disclosure;

[0013] FIG. **1**A schematically depicts a portion of an alternative embodiment of a RC-WVM system of the present disclosure;

[0014] FIGS. **2** and **2**A illustrate alternative embodiments of RC-WVM implants made in accordance with the teachings of the present disclosure;

[0015] FIG. **2**B is a schematic, detailed view of the capacitor section of the RC-WVM implant illustrated in FIG. **2**;

[0016] FIGS. 3, 3A, 3B, 3C and 3D illustrate an embodiment of a belt antenna as depicted

- schematically in the system of FIG. 1;
- [0017] FIG. **3**E schematically depicts the orientation of the antenna belt and magnetic field generated thereby with respect to an implanted RC-WVM implant;
- [0018] FIG. **4** is a block diagram illustrating an embodiment of system electronics;
- [0019] FIGS. 5A and 5B illustrate fixed frequency RF burst excitation signal wave forms;
- [0020] FIGS. **6**A and **6**B illustrate sweep frequency RF burst excitation signal wave forms;
- [0021] FIG. **7** is a block diagram depicting a multi-channel, direct digital synthesizer used in signal generation modules of control systems in embodiments disclosed herein;
- [0022] FIGS. 7A and 7B illustrate multi-frequency RF burst excitation signal wave forms;
- [0023] FIG. **8** illustrates waveform pulse shaping;
- [0024] FIGS. **9**A, **9**B, **9**C and **9**D schematically illustrate aspects of an embodiment of a delivery system for RC-WVM implants as disclosed herein, wherein FIG. **9**A shows an overall view of the delivery system and its sub-components, FIG. **9**B shows a detail of the distal end with the RC-WVM loaded, FIG. **9**C depicts a partial deployment of an RC-WVM implant from the delivery sheath into the IVC, and FIG. **9**D shows the distal end of an alternative embodiment of a delivery system for an alternative RC-WVM implant with an attached anchor frame as disclosed herein; [0025] FIGS. **10**A, **10**B, **10**C, **10**D and **10**E illustrate signals obtained in pre-clinical experiments using a prototype system and an RC-WVM implant as shown in FIGS. **1** and **2**;
- [0026] FIGS. **11**A and **11**B schematically depict components and possible arrangements of alternative clinical or home systems employing RC-WVM implants and control systems as disclosed herein;
- [0027] FIGS. **12**A, **12**B, **12**C, **13**A, **13**B, **13**C, **13**D, **14**A, **14**B, **15**A, **15**B, **16**A, **16**B, **17**A, **17**B, **18**, **19**A, and **19**B illustrate alternative embodiments of RC-WVM implants according to the present disclosure;
- [0028] FIGS. **20**A and **20**B illustrate alternative frame structures for use in an RC-WVM implant as disclosed herein;
- [0029] FIGS. **21**A and **21**B illustrate an example of a method of making an RC-WVM implant embodiment according to the present disclosure;
- [0030] FIG. **22**A illustrates an alternative system in accordance with the present disclosure for energizing and communicating with RC-WVM implants, including a planar antenna module with send and receive coils;
- [0031] FIG. **22**B schematically depicts a further alternative antenna module;
- [0032] FIGS. **23**A and **23**B illustrate signals obtained in pre-clinical experiments using the prototype implant shown in FIG. **12**A and antenna module configuration shown in FIG. **22**B;
- [0033] FIG. **24**A is a circuit diagram of an example excitation and feedback monitoring ("EFM") circuit that can be used with embodiments of RC-WVM implants and systems as described herein;
- [0034] FIG. **24**B is a circuit diagram of another example EFM circuit that can be used with embodiments of RC-WVM implants and systems as described herein;
- [0035] FIG. **25**A is a circuit diagram of an antenna module tuning and detuning network that can be used with an EFM circuit like that of FIG. **24**A or **24**B;
- [0036] FIG. **25**B schematically depicts a further embodiment of antenna module coils arranged to provide geometric decoupling of the transmit and receive signals;
- [0037] FIG. **26**A illustrates an alternative signal generation module for systems according to embodiments disclosed herein;
- [0038] FIG. **26**B illustrates an alternative receiver chain signal conditioning module for use in systems according to embodiments disclosed herein;
- [0039] FIG. **26**C illustrates an alternative data conversion module for use in systems according to embodiments disclosed herein;
- [0040] FIGS. **27**A and **27**B illustrate alternative belt antenna embodiments utilizing variable length of coil features;

- [0041] FIGS. **28**A and **28**B illustrate alternative active and passive diode switches for use in antenna element embodiments disclosed herein;
- [0042] FIGS. **29**A and **29**B illustrate alternative antenna belt embodiments;
- [0043] FIGS. **30**A and **30**B are block diagrams illustrating alternative control systems with an onboard, implanted, power supply;
- [0044] FIGS. **31**A and **31**B are perspective views of alternative embodiments of wireless implants with an on-board power supply and control electronics according to further embodiments disclosed herein;
- [0045] FIG. **32** is a schematic depiction of a wireless implant including on-board power and electronics communicating with an implanted cardiac monitoring device; and
- [0046] FIG. **33** is a block diagram depicting one possible embodiment of a computer-based implementation of aspects of an exemplary control system in the form of a specialized computing device or system.
- [0047] FIGS. **34**A, **34**B and **34**C illustrate a further alternative RC-WVM implant embodiment in accordance with the teachings of the present disclosure;
- [0048] FIG. **35** illustrates assembly of an alternative RC-WVM implant embodiment such as shown in FIGS. **34**A-C;
- [0049] FIG. **36** is a detailed view of an anchor structure mounted on an implant prior to encapsulation;
- [0050] FIGS. **37**A, **37**B and **37**C illustrate an alternative anchor structure for use with RC-WVM implant embodiments;
- [0051] FIGS. **38**A and **38**B illustrate an alternative embodiment of a belt antenna for use with RC-WVM implants and systems as described herein;
- [0052] FIGS. **39**A and **39**B illustrate recapture features to facilitate positioning and repositioning of RC-WVM implants during placement using a delivery catheter as disclosed herein;
- [0053] FIG. **40** is a perspective view of an alternative RC-WVM implant embodiment with an attached anchor frame and axial anchor barbs;
- [0054] FIG. **41** is a perspective view of an anchor frame as shown, for example in FIG. **40**;
- [0055] FIG. **42** is a detail view showing attachment of an anchor frame to a strut section of a RC-WVM implant;
- [0056] FIG. **43** is a detail view showing a split in the anchor frame to prevent magnetic field coupling with the anchor frame;
- [0057] FIG. **44** illustrates a further alternative embodiment in which anchor frames are disposed on both ends of a RC-WVM implant;
- [0058] FIGS. **45**A, **45**B and **45**C illustrate another embodiment of an anchor frame with anchor barbs oriented parallel to the anchor frame struts;
- [0059] FIGS. **46**A. **46**B and **46**C illustrate another embodiment of an anchor frame with anchor barbs oriented in the direction of flow in the vessel in which the RC-WVM is implanted;
- [0060] FIGS. **47**A and **47**B illustrate yet another embodiment of an anchor frame with anchor barbs positioned at the crowns of the anchor frames;
- [0061] FIG. **48**A illustrates a shape set anchor frame with adjacent anchor barbs on the same side of the frame strut, and FIG. **48**B shows an alternative with double anchors at each anchor location;
- [0062] FIGS. **49**A, **49**B, **49**C, **49**D, **49**E, **49**F, **49**G and **49**H each illustrate alternative embodiments of anchor barbs;
- [0063] FIG. **50** is a schematic cross-section showing a non-conducting connection of two anchor frame parts;
- [0064] FIG. **51** shows a perspective view of a further alternative anchor frame embodiment; and [0065] FIGS. **52**A, **52**B, **52**C and **52**D each show different alternative embodiments of anchor frame attachment arms.
- **DETAILED DESCRIPTION**

[0066] Aspects of the present disclosure are directed to wireless, resonant circuit-based vascular monitoring ("RC-WVM") implants, systems, methods, and software, including excitation and feedback monitoring ("EFM") circuits that can be used to energize an RC-WVM implant with an excitation signal and receive characteristic feedback signals produced by the RC-WVM implant. By automatically or manually analyzing the feedback produced by the RC-WVM implant, it is possible to assist healthcare professionals in predicting, preventing, and diagnosing various heart-related, kidney-related, or vascular-related health conditions. For example, the feedback produced by the RC-WVM implant at a particular time can be compared to feedback produced by the RC-WVM implant at other times and/or feedback produced by a baseline RC-WVM implant in order to understand vessel geometry and therefore estimate relative fluid status, fluid responsiveness, fluid tolerance, heart rate, respiration rate and/or other metrics. One or more of these estimations can be generated automatically or manually in order to monitor the status of a patient and provide feedback to a healthcare professional and/or the patient in case of any anomalies or relevant trends. System Overview

[0067] The unique physiology of the IVC presents some distinctive challenges in attempting to detect and interpret changes in its dimensions arising from changes in patient fluid state. For example, the IVC wall in a typical monitoring region (i.e., between the hepatic and renal veins) is relatively compliant compared to other vessels, which means that changes in vessel volume can result in different relative distance changes between the anterior-posterior walls as compared to the lateral-medial walls. Thus, it is quite typical that changes in fluid volume will lead to paradoxical changes in the geometry and motion of the vessel; that is, as the blood volume reduces the IVC tends to get smaller and collapses with respiration, and as the blood volume increases the IVC tends to get larger and the collapse with respiration is reduced. Systems and implants disclosed herein are uniquely configured to compensate for and interpret such paradoxical changes. [0068] As shown in FIG. 1, systems 10 according to the present disclosure may generally comprise RC-WVM implant **12** configured for placement in a patient's IVC, control system **14**, antenna module **16** and one or more remote systems **18** such as processing systems, user interface/displays, data storage, etc., communicating with the control and communications modules through one or more data links **26**, which may be wired or remote/wireless data links. In many implementations, remote system **18** may comprise a computing device and user interface, such as a laptop, tablet or smart phone, which serves as an external interface device.

[0069] RC-WVM implants 12 generally comprise a variable inductance, constant capacitance, resonant L-C circuit formed as a resiliently collapsible coil structure, which, when positioned at a monitoring position within the patient's IVC, moves with the IVC wall as it expands and contracts due to changes in fluid volume. The variable inductance is provided by the coil structure of the implant such that the inductance changes when the dimensions of the coil change with the IVC wall movement. The capacitive element of the circuit may be provided by a discrete capacitor or specifically designed inherent capacitance of the implant structure itself. Embodiments of RC-WVM implant **12** also may be provided with anchoring and isolation means inherently designed into the implant structure, or with distinct additional such structures, to ensure that the implant is securely and properly positioned in the IVC without unduly distorting the vessel wall so as to distort or otherwise negatively impact measurements determined by the implant. In general, RC-WVM implants **12** are configured to at least substantially permanently implant themselves in the vascular lumen wall where placed upon deployment and do not require a physical connection (for communications, power or otherwise) to devices outside the patient's body after implantation. "Substantially permanently implanted" as used herein means that in normal usage the implant will, throughout its useful, operational life, remain implanted in the vascular lumen wall and may to varying degrees become integrated into the vascular lumen wall by tissue ingrowth, but the implant may be intentionally removed as medically dictated by an intravascular interventional or surgical removal procedure specifically undertaken for the purpose of removing the implant. Details of

alternative embodiments of implant **12**, shown in FIGS. **2**, **2**A, **12**A, **12**B, **12**C **13**A, **13**B, **13**C, **13**D, **14**A, **14**B, **15**A, **15**B, **16**A, **16**B, **17**A, **17**B, **18**, **19**A, **19**B, and FIGS. **34**A-C are provided below. In particular, it should be noted that any of alternative RC-WVM implants described herein may be utilized in alternative systems **10** as described herein without further modification of the systems except as may be identified.

[0070] Control system 14 comprises, for example, functional modules for signal generation, signal processing and power supply (generally comprising the EFM circuits and indicated as module 20) and communications module 22 to facilitate communication and data transfer to various remote systems 18 through data links 26 and optionally other local or cloud-based networks 28. Details of alternative embodiments of control system 14, modules 20 and 22, and elements of alternative EFM circuits are described below and illustrated in FIGS. 4, 7, 24A, 24B, 25A, 25B, 26A, 26B and 26C. After analyzing signals received from RC-WVM implant 12 after being excited by a transmit coil of an EFM circuit, results may be communicated manually or automatically through remote system 18 to the patient, a caregiver, a medical professional, a health insurance company, and/or any other desired and authorized parties in any suitable fashion (e.g., verbally, by printing out a report, by sending a text message or e-mail, or otherwise).

[0071] Antenna module **16** is connected to control system **14** by power and communication link **24**, which may be a wired or wireless connection. Antenna module **16** creates an appropriately shaped and oriented magnetic field around RC-WVM implant **12** based on signals provided by the EFM circuitry of control system **14**. The magnetic field energizes the L-C circuit of RC-WVM implant **12** causing it to produce a "ring-back" signal indicative of its inductance value at that moment. Because the inductance value is dependent on the geometry of the implant, which changes as mentioned above based on dimensional changes of the IVC in response to fluid state heart rate etc., the ring-back signal can be interpreted by control system **14** to provide information as to the IVC geometry and therefore fluid state. Antenna module **16** thus also provides a receive function/antenna as well as a transmit function/antenna. In some embodiments the transmit and receive functionality are performed by a single antenna, in others each function is performed by a separate antenna. Antenna module **16** is schematically depicted in FIG. **1** as an antenna belt, which embodiment is described in more detail below and shown in FIGS. **3**A-D.

[0072] FIG. 1A illustrates one alternative embodiment of antenna module 16 as antenna pad 16a, in which transmit coil 32 and receive coil 34 are disposed in a pad or mattress 36 on which the patient lays on his/her back with RC-WVM implant 12 (implanted in the IVC) positioned over coils 32, 34. Antenna module 16 as shown in FIG. 1A is functionally equivalent to other alternative antenna modules disclosed herein; it is connected to control system 14 by power and communications link 24 as described above. Further alternative embodiments and components of antenna module 16 are also shown in FIGS. 22A, 22B, 27A, 27B, 28A, 28B, 29A and 29B and described in more detail below. Another alternative embodiment of a belt antenna module is shown in FIGS. 15A and 15B. Planar-type antenna modules also may be configured in wearable configurations, e.g., wherein the antenna coil is integrated into a wearable garment such as a backpack or vest. Antenna module 16 may also comprise a coil adapted to be fastened directly to the patient's skin by tape, glue or other means, e.g. over the abdomen or back, or integrated into furniture such as a chair back. As will be appreciated by persons skilled in the art, the various embodiments of antenna module 16 as described herein may be employed with system 10 as shown in FIG. 1 without further changes to the system or antenna module other than as specifically identified herein.

[0073] The variable inductance L-C circuit produces a resonant frequency that varies as the inductance is varied. With the implant securely fixed at a known monitoring position in the IVC, changes in geometry or dimension of the IVC cause a change in configuration of the variable inductor, which in turn cause changes in the resonant frequency of the circuit. These changes in the resonant frequency can be correlated to changes in the vessel geometry or dimension by the RC-WVM control and communication system. Thus, not only should the implant be securely

positioned at a monitoring position, but also, at least a variable coil/inductor portion of the implant should have a predetermined resilience and geometry. Thus, in general, the variable inductor is specifically configured to change shape and inductance in proportion to a change in the vessel geometry. In some embodiments, an anchoring and isolation means will comprise appropriately selected and configured shape and compliance in the sensor coil structure of the implant so as to move with the vessel wall while maintaining position. Such embodiments may or may not include additional anchoring features as discussed in more detail below. Alternatively, an anchoring and isolation means may comprise a separate structure spaced and/or mechanically isolated from a variable inductor coil structure such that the anchoring function is physically and/or functionally separated from the measuring/monitoring function such that any distortion or constraint on the vessel caused by the anchor is sufficiently distant and/or isolated from the variable inductor so as not to unduly affect measurements.

[0074] RC-WVM implant **12** as a variable inductor is configured to be remotely energized by an electric field delivered by one or more transmit coils within the antenna module positioned external to the patient. When energized, the L-C circuit produces a resonant frequency which is then detected by one or more receive coils of the antenna module. Because the resonant frequency is dependent upon the inductance of the variable inductor, changes in geometry or dimension of the inductor caused by changes in geometry or dimension of the vessel wall cause changes in the resonant frequency. The detected resonant frequency is then analyzed by the RC-WVM control and communication system to determine the change in the vessel geometry or dimension. Information derived from the detected resonant frequency is processed by various signal processing techniques as described herein and may be transmitted to various remote devices such as a healthcare provider system or patient system to provide status, or in appropriate instances, alerts or modifications in treatment. In order to facilitate measurement of the detected resonant frequency, it may be desirable to provide designs with a relatively higher Q factor, i.e. resonant circuit configurations that maintain signal/energy for relatively longer periods, especially when operating at lower frequencies. For example, to realize advantages of designs employing Litz wire as further described herein, it may be desirable to operate in a resonant frequency range of below 5 MHZ, typically between about 1 MHz and 3 MHz, in which case resonant circuit configuration with a Q factor of at least about 50 or greater may be desired.

An Example of a Complete System Embodiment

[0075] Details of one possible embodiment of a complete, exemplary system **10** are discussed hereinafter with reference to FIGS. **2-8**. Thereafter, details of further alternative embodiments of system components are described. However, it is to be understood that the exemplary system is not limited to use of the specific elements or components shown in FIGS. **1-9**C and that any alternative component thereafter described may be substituted without change in the overall system except as may be noted. For example, RC-WVM implant **12** or any of alternative RC-WVM implants **12***c-k*, *m*, *n* and *p* may be substituted for implants **12***a* or **12***b* as first described below. Similarly, control system **14** may be provided as shown in any of FIGS. **4**, **24**A, **24**B, **26**A, **26**B, **26**C, **28**A, **28**B, **29**A and **29**B and/or antenna module **16** may be provided, for example, as a pad or belt an antenna such as pad antenna **16***a*, with a single switched antenna coil or separate, decoupled transmit and receive coils, or belt antennas **16***b*, **16***c*, **16***d*, **16***e* or **16***f*.

[0076] FIG. **2** illustrates one example of RC-WVM implant **12** according to the present disclosure as may be used in exemplary system **10**. The enlarged detail in the box of FIG. **2** represents a cross-sectional view taken as indicated. (Note that in the cross-sectional view, individual ends of the very fine wires may not be distinctly visible due to their very small size). In general, RC-WVM implants **12** comprise a resilient sensor construct generally including an inductive coil formed around an open center to allow substantially unimpeded blood flow there through, wherein the inductive coil changes inductance with changes in the construct geometry as a result of forces applied to it. In this example, implant **12***a* is formed as a resilient, concentric zig-zag or linked "Z-shapes" structure

with a series of strut sections **38** joined at their ends by rounded crown sections **40** forming acute angles. The resultant structure may also be considered to be sinusoidal in appearance. This structure may be formed by wrapping conductive wires **42** onto a frame or core **44**. In this alternative, RC-WVM implant **12***a* has a shape set 0.010" nitinol wire frame **44** around which 300 strands of 0.04 mm diameter gold, individually insulated, Litz wire **42** are wrapped in a single loop. With a single loop wrap, the strands of wire **42** appear substantially parallel to the frame at any given point, as can be seen in the cross-sectional view of FIG. 2. Individual insulation on Litz wires **42** may be formed as a biocompatible polyurethane coating. Also in this particular example, discrete capacitor **46** is provided with a capacitance of approximately 47 nF (nano-Farads); however, the capacitance may be in the range of about 180 pico-Farads to about 10 micro-Farads, to cover all potential allowable frequency bands (from about 148.5 kHz to about 37.5 MHZ) for RC-WVM implants **12**. In one alternative, rather than a relatively large number of wire strands in a single loop, a relatively few number of strands, e.g. in the range of about 10-20 strands, or more particularly about 15 strands, may be arranged in a relatively larger number of loops, e.g. in the range of about 15-25 loops, or more particularly about 20 loops. In this alternative embodiment the discrete capacitor element is replaced with an inherent coil capacitance that arises based on spaces between the parallel strands of wire.

[0077] In a further alternative embodiment, implant **12***a* is configured to ensure strut sections **38** are straight strut sections between crown sections **40**. Straight strut sections can provide an advantage of the strut section always being in contact with the vessel wall over its entire length, irrespective of the size of vessel into which it is deployed. When the sensor construct frame is formed, for example, by laser cutting the construct from a nitinol tube, the straight configuration of the straight strut sections can be achieved by shape-setting the strut sections to maintain the desired straight configuration.

[0078] With reference also to FIG. 2B, Litz wire 42 is formed around a shape set nitinol frame 44. The two ends of Litz wire **42**, which may be covered with a layer of PET heat shrink tubing **60**, are joined together with a capacitor **46** to form a loop circuit. Capacitor **46** includes capacitor terminals **52** connected to Litz wires **42** by solder connection **54** to gold wire contacts **56**. Gold wire contacts **56** are formed by removing (or burning away) the individual insulation from a short section at the end of Litz wires 42 and joining those ends to form solid contacts, which then may be joined to capacitor terminals 52 by solder connections 54. The capacitor, capacitor terminals and gold wire contacts are encapsulated in an appropriate biocompatible insulating material **58** such as a reflowed polymer or epoxy. In alternative embodiments, the entire structure may then be covered by a layer of PET heat shrink insulation **60**. Alternatively, if determined that a short circuit through the frame should not be created, a gap may be provided in the frame at the capacitor or elsewhere. [0079] As shown in FIG. 2, RC-WVM implant **12***a* is also optionally provided with anchors **48** to help prevent migration of the implant after placement in the IVC. Anchors 48 also may be formed of nitinol laser cut sections or shape set wire and bonded to each strut section 38. Barbs 50 extend outwardly at the end of anchors 48 to engage the IVC wall. In one embodiment, anchors 48 are bidirectional in both the cranial and caudal directions; in other embodiments the anchors may be in one direction, a mixture of both directions or perpendicular to the vessel. [0080] The overall structure of RC-WVM implants **12** presents a balance of electrical and

[0080] The overall structure of RC-WVM implants **12** presents a balance of electrical and mechanical requirements. For example, an ideal electrical sensor is as close to a solenoid as possible with strut lengths as short as possible and ideally zero, whereas mechanical considerations of deployment and stability dictate that implant strut lengths be at least as long as the diameter of the vessel into which it is to be deployed to avoid deployment in the wrong orientation and maintain stability. Dimensions of elements of RC-WVM implant **12***a* are identified by letters A-F in FIG. **2**, and examples of typical values for those dimensions, suited for a range of patient anatomies, are provided below in Table I. In general, based on the teachings herein, persons skilled in the art will recognize that the uncompressed, free-state (overall) diameter of RC-WVM implants

12 should not significantly exceed the largest anticipated fully extended IVC diameter for the patient in which the RC-WVM implant is to be used. RC-WVM implant height generally should be selected to balance implant stability at the monitoring position with geometry/flexibility/resilience providing the ability to fit in the intended region of the IVC without impacting either the hepatic or renal veins in the majority of the population, which could compromise sensing data produced by the implant. Height and stability considerations will be influenced, among other factors, by specific RC-WVM implant design configuration and whether or not distinct anchor features are included. Thus, as will be appreciated by persons skilled in the art, primary design considerations for RC-WVM implants 12 according to the present disclosure are provision of structures forming variable inductance L-C circuits with the ability to perform the measuring or monitoring function described herein, and which are configured to securely anchor the structures within the IVC without distortion of the IVC wall by providing adequate but relatively low radial force against the IVC wall.

TABLE-US-00001 TABLE I RC-WVM Implant 12a & 12b Example Dimensions Element Approximate Size (in Dim. Name millimeters) A Height 10-100, typically about 20 B Strut length 10-100, typically about 25 C Strut diam. 0.1-2, typically about 1.5 F Anchor Length 1-10, typically about 5 (extending) E Anchor Length 0.25-3, typically about 1.8 (barb) D Overall Three Sizes: Diameter 20 mm/25 mm/32 mm +/-3 mm

[0081] Another alternative structure for RC-WVM implant **12** is illustrated by RC-WVM implant **12***b* as shown in FIG. **2**A. Once again, the enlarged detail in the box of FIG. **2**A represents a crosssectional view taken as indicated. In this embodiment, implant **12***b* has an overall structure that is similar to that of implant **12***a*, formed on a frame with straight strut sections **38** and curved crown sections **40**. In this embodiment, the discrete capacitor for the previous embodiment is replaced with distributed capacitance between the bundles of strands of wire. Multiple (for example, approximately fifteen) strands of wire **64** are laid parallel to each other and twisted into a bundle. This bundle is then wrapped, multiple times, around the entire circumference of wire frame **66** (which may be, for example, a 0.010" diameter nitinol wire) resulting in multiple turns of parallel bundles of strands. The insulation between the bundles results in a distributed capacitance that causes the RC-WVM to resonate as previously. Overall dimensions are similar and may be approximated as shown in Table I. An outer, insulation layer or coating **60** may be applied either as previously described or using a dipping or spraying process In this case, the L-C circuit is created without a discrete capacitor, but instead by tuning the inherent capacitance of the structure through selection of materials and length/configuration of the wire strands. In this case, 20 turns of 15 strands of wire are used along with an outer insulation layer **60** of silicone to achieve a capacitance inherent in implant 12b in the range of approximately $40-50 \, \eta F$.

[0082] Unlike implant **12***a*, frame **66** of implant **12***b* is non-continuous so as to not complete an electrical loop within the implant as this would negatively impact the performance. Any overlapping ends of frame **66** are separated with an insulating material such as heat shrink tubing, an insulating epoxy or reflowed polymer. RC-WVM implant **12***b* (may or) may not include anchors. Instead, the implant is configured to have a compliance/resilience to permit it to move with changes in the IVC wall geometry or dimension while maintaining its position with minimal distortion of the natural movement of the IVC wall. This configuration can be achieved by appropriate selection of materials, surface features and dimensions. For example, the strut section length of the frame must balance considerations of electrical performance versus stability, wherein shorter strut section length may tend to improve electrical performance but longer strut section length may increase stability.

[0083] In order to energize RC-WVM implant **12** and receive the signal back from the implant, antenna module **16** will functionally include a transmit and a receive antenna (or multiple antennas). Antenna module **16** thus may be provided with physically distinct transmit and receive antennas, or, as in the presently described exemplary system **10**, provided by a single antenna that

is switched between transmit and receive modes. Antenna belt **16***b*, shown FIGS. **3** and **3**A-D, illustrates an example of antenna module **16** employing a single, switched antenna. A single loop antenna is formed from a single wire and placed around the patient's abdomen. This wire antenna is connected directly to the control system **14**.

[0084] In terms of mechanical construction, antenna belt **16***b* generally comprises stretchable web section **72** and buckle **74** with a connection for power and data link **24**. In one embodiment, in order for the size of the antenna belt **16***b* to accommodate patients of different girths (e.g., a patient girth range of about 700-1200 cm), a multi-layer construction made up of a combination of high-stretch and low-stretch materials may be employed. In such an embodiment, base layer **76** is a combination of high-stretch sections **76***a* and low-stretch section **76***b*, which are joined such as by stitching. Outer layer **78**, with substantially the same profile as base layer **76**, may be comprised entirely of the high-stretch material, which may be a 3D mesh fabric. Within each section, antenna core wire **82** is provided in a serpentine configuration with an overall length sufficient to accommodate the total stretch of the section. Core wire **82** should not itself stretch. Thus, the stretchability of the fabric layers is paired with the core wire total length to meet the desired girth accommodation for a particular belt design. Outer layer **78** is joined along the edges to base layer **76**. Stitching covered by binding material **80** is one suitable means for joining the two layers. The layers may be further bonded together by a heat fusible bonding material placed between the layers. End portions **81** of web section **72** are configured for attachment to buckle **74**.

[0085] Core wire **82**, which forms the antenna element, is disposed between the layers and provided with an extendable, serpentine configuration so that it may expand and contract with the stretch of the belt. A mid-section **84** of core wire **82**, which corresponds to low-stretch section **76***b*, has a greater width. This section, intended to be placed in the middle of the patient's back with antenna belt **16***b* worn approximately at chest level at the bottom of the rib cage, provides greatest sensitivity for reading the signal from RC-WVM implant **12**. As one possible example, core wire **82** may be made up of 300 strands of twisted 46 AWG copper wire with a total length in the range of approximately 0.5-3 m. For an antenna belt configured to stretch to accommodate patient girths in the range of about 700 to 1200 mm, the total length of core wire **82** may be approximately 2 m. In some embodiments, it may be preferable to place the antenna belt more caudally, with the height approximately at the height of the patient's elbows when standing.

[0086] Many ways of providing a workable buckle for such an antenna belt may be derived by persons of ordinary skill based on the teachings contained herein. Factors to be considered in designing such a buckle include physical security, ease of manipulation by persons with reduced dexterity and protection from electrical shock by inadvertent contact with the electrical connectors. As an example, buckle 74 is comprised of two buckle halves, inner half 74a and outer half 74b as shown in FIG. 3D. Buckle 74 provides not only physical connection for the belt ends, but also electrical connection for the antenna circuit formed by core wire 82. With respect to the physical connection, buckle 74 is relatively large in size to facilitate manipulation by persons with reduced dexterity. A magnetic latch may be employed to assist closure, for example magnetic pads 86a on inner buckle half 74a connect to magnetic pads 86b correspondingly disposed on buckle outer half 74b. If desired, the system can be configured to monitor for completion of the belt circuit and therefore detect belt closure. Upon confirmation of belt closure, the system may be configured to evaluate the signal strength received from the implant and an assessment made if the received signal is sufficient for a reading to be completed. If the signal is insufficient, an instruction may be provided to reposition the belt to a more optimal location on the patient.

[0087] Electrical connection of core wire **82** may be provided by recessed connector pins disposed on opposed connector halves **88***a* and **88***b*. Connection of power and data link **24** may be provided, for example, through a coaxial RF cable with coaxial connectors (e.g., SMA plugs) on buckle **74** and control system **14**. As just one possible example, a convenient length for the power and data link, using a conventional, 50 Ohm coax cable, is about 3 m.

[0088] As mentioned above, use of a single coil antenna as in antenna belt **16***b* requires switching the antenna between transmit and receive modes. Such switching is executed within control system **14***a* in FIG. **4**. In this embodiment, control system **14***a* includes as functional modules **20** a signal generator module **20***a* and a receiver-amplifier module **20***b*. These functional modules, along with transmit/receive (T/R) switch **92** provide for the required switching of antenna belt **16***b* between the transmit and receive modes.

[0089] FIG. **3**E schematically illustrates the interaction of the magnetic field B created by antenna belt **16***b*, with RC-WVM implant **12**. Both antenna belt **16***b* and implant **12** are generally disposed around an axis (A). For best results with a belt-type antenna, the axes around which each are disposed will lie in a substantially parallel orientation and, to the extent practicable, will lie coincident as shown in FIG. **3**E. When properly oriented with respect to one another, current (I) in core wire **82** of antenna belt **16***b* generates magnetic field {right arrow over (B)}, which excites the coil of implant **12** to cause it to resonate at its resonant frequency corresponding to its size/geometry at the time of excitation. An orientation between the antenna belt **16***b* and implant **12** as shown in FIG. **3**E minimizes the power necessary to excite the implant coil and produce a readable resonant frequency response signal.

[0090] As with any RF coil antenna system, the antenna and system must be matched and tuned for optimum performance. Values for inductance, capacitance and resistance and their interrelationship should be carefully considered. For example, the coil inductance determines the tuning capacitance while the coil resistance (including the tuning capacitance) determines the matching capacitance and inductance. Given the relatively low power of the disclosed systems, special attention is given to these aspects to ensure that an adequately readable signal is generated by RC-WVM implant 12 upon actuation by the driving magnetic field. With an adjustable girth belt such as antenna belt **16***b* (or with different size antenna belts), additional considerations are presented because of the variable or different lengths of antenna coil controlled by the control system. To address these considerations, separate tuning-matching circuits 94, 96 (FIG. 4), as are understood in the art, are provided in signal generator module **20***a* and receiver-amplifier module **20***b*, respectively. [0091] Using conventional coax cable for RF-power transmission, as is described above in one embodiment of power and data link 24, optimal RF power transfer between the antenna and the control system is achieved when the system and antenna impedances are matched to 50 Ohm real resistance. However, in the embodiment described above, resistance of antenna belt **16***b* is generally far below 50 Ohm. Transformation circuits, as part of tuning-matching circuits **94**, **96** can be used to transform the antenna resistance to 50 Ohm. In the case of antenna belt **16***b* it has been found a parallel capacitor transformation circuit is efficient for this purpose. [0092] In one example of tuning using the system components heretofore described, a series capacitor was used, which, in conjunction with a matching capacitor, forms the total resonance. Using measured values as set forth below in Table II, a target resonance frequency was computed at 2.6 MHz based on the inductance and capacitance. Considering the inductance variation with stretching of antenna belt **16**b at 2.6 MHz, the resonance frequency was measured to vary only

from about 2.5 MHz to about 2.6 MHz for change in length between 1200 mm and 700 mm circumferences of antenna belt **16***b*, respectively. Considering the resistance of 11.1 Ohm, the Q-factor of the cable/belt assembly computes to be 3. Such a low Q-factor translates to a full width of the pulse at half maximum of 600 kHz. This is far less than the variation of the resonance frequency due to stretching of the belt from 700 mm to 1200 mm circumference. Tuning values for antenna belt **16***b* were thus determined at 2.6 MHz with C.sub.match=2.2 nF and C.sub.tune=2.2 nF.
TABLE-US-00002 TABLE II Example of measured values for antenna belt 16b Belt stretched to

28 cm dia. around water bottle Resistance Inductance Point of measurement [Ohm] [10.sup.-6H] Measured at buckle 0.3 1.69 terminals with no cable connected Measured at output of 11.1 3.03

T/R switch 92 with 3 m coax cable connected

[0093] While it could be expected that a variable length antenna, such as included in antenna belt **16***b* might present difficulties in tuning and maintaining the antenna tuning as the length changed, it was discovered that with the present configuration this was not the case. As described above, by intentionally employing a cable for power and data link **24** that has a relatively large inductance compared to the antenna inductance, the proportional change in the inductance due to changes in belt diameter are small enough not to degrade performance.

[0094] Referring again to FIG. **4**, in addition to tuning-matching circuit **94**, signal generator module **20***a* includes components that produce the signal needed for excitation of RC-WVM implant **12**. These components include direct digital synthesizer (DDS) **98**, anti-aliasing filter **100**, preamplifier **102** and output amplifier **104**. In one embodiment, the signal generator module **20***a* is configured to produce an RF burst excitation signal with a single, non-varying frequency tailored to a specific RC-WVM implant that is paired with the system (exemplary waveforms illustrated in FIGS. **5**A and **5**B). The RF burst comprises a predefined number of pulses of a sinusoidal waveform at the selected frequency with a set interval between bursts. The RF burst frequency value selected corresponds to the natural frequency of the paired RC-WVM implant **12** that would produce a lowest amplitude in the implant reader output. By doing this, optimum excitation is achieved for the worst case of implant response signal.

[0095] In an alternative implementation, control system **14** excites antenna module **16** at a predetermined frequency that is within an expected bandwidth of the paired RC-WVM implant **12**. The system then detects the response from the paired RC-WVM implant and determines the implant natural frequency. Control system **14** then adjusts the excitation frequency to match the natural frequency of the paired implant and continues to excite at this frequency for a complete reading cycle. As will be appreciated by persons of ordinary skill, frequency determination and adjustment as described for this embodiment may be implemented via software using digital signal processing and analysis.

[0096] In another alternative implementation, each individual RF burst comprises a continuous frequency sweep over a predefined range of frequencies equal to the potential bandwidth of the implant (FIG. **6**A). This creates a broadband pulse that can energize the implant at all possible natural frequencies (FIG. **6**B). The excitation signal can continue in this "within burst frequency sweep mode" or the control system can determine the natural frequency of the sensor and adjust to transmit solely at the natural frequency.

[0097] In a further alternative implementation, the excitation comprises a transitory frequency sweep over a set of discrete frequency values covering the potential bandwidth of the paired RC-WVM implant **12**. The frequency is sequentially incremented for each RF burst and the RMS value of the RC-WVM implant response is evaluated after each increment. Control system **14** then establishes the frequency that produces the maximum amplitude in RC-WVM implant response and continues exciting the paired RC-WVM implant at that frequency until a drop of a predefined magnitude is detected and the frequency sweep is re-started.

[0098] In yet another implementation, the excitation signal is composed of a pre-defined set of frequencies, wherein each remain constant. Control system **14** excites antenna module **16** (and hence the paired implant) by applying equal amplitude at all frequency components. The system detects the response from the paired implant and determines its natural frequency. Control system **14** then adjusts the relative amplitude of the excitation frequency set to maximize the amplitude of the excitation frequency that is closest to the natural frequency of the paired implant. The amplitude of the other frequencies are optimized to maximize the response of the paired implant while meeting the requirements of electro-magnetic emissions and transmission bandwidth limitations.

[0099] In another implementation, direct digital synthesizer (DDS) **98**, may be provided as a multichannel DDS system to generate a simultaneous pre-defined number of discrete frequencies

belonging to the estimated operational bandwidth of the paired RC-WVM implant 12 as shown in FIGS. 7A and 7B. The magnitude of each frequency component thus may be independently controlled to provide the optimum excitation to a specific RC-WVM implant 12 based on its individual coil characteristics. Additionally, the relative amplitude of each frequency component can be independently controlled to provide optimum excitation to the implant, i.e., the amplitude of the frequency component is selected in such a way that in the worst case for the paired implant to transmit a response signal (i.e., most compressed) the excitation signal is maximized. In this arrangement all outputs from the multi-channel DDS system 98 are summed together using summing amplifier based on a high speed operational amplifier.

[0100] In yet another implementation, signal generator module **20***a* can be configured to provide pulse shaping as illustrated in FIG. **8**. Arbitrary waveform generation based on direct digital synthesis **98** is employed to create a pulse of a predefined shape, the spectrum of which is optimized in order to maximize the response of the paired RC-WVM implant **12**. The magnitude of the frequency components that result in decreased ring back signal amplitude is maximized while the magnitude of the frequency components that result in increased ring back signal amplitude is reduced, in order to obtain an approximately constant output signal amplitude and thus improved response from RC-WVM implant **12**.

[0101] Referring again to FIG. 4, receiver-module **20***b*, in addition to tuning-matching circuit **96**, includes components, e.g., single end input to differential output circuit (SE to DIFF) **106**, variable gain amplifier (VGA) **108**, filter amplifier **110** and output filters **112**, for implant response detection, data conversion and acquisition for signal analysis. During the receive period, the T/R switch **92** connects the antenna belt **16***b* to the receiver-amplifier **20***b*, via the tuning and matching network **96**. The response signal induced by the implant **12** in the antenna belt **16***b* is applied to a unity-gain single ended to differential amplifier **106**. Converting from single-ended to differential mode contributes to eliminate common mode noise from the implant response signal. Since the amplitude of the implant response signal is in the microvolts range, the signal is fed, following conversion from single-ended to differential, into a variable gain differential amplifier 108 that is able to provide up to 80 dB (10000 times) voltage gain. The amplified signal is then applied to a active band-pass filter-amplifier 110 to eliminate out-of-band frequency components and provide an additional level of amplification. The resulting signal is applied to passive, high-order low pass filters 112 for further elimination of out-of-band high frequency components. The output of the filter is fed into the data conversion and communications module 22. The data conversion and communications module 22 includes components to provide data acquisition and transfer from the electronic system to the external processing unit. A high-speed analog-to-digital converter (ADC) **114** converts the output signal of the receiver module **20***b* into a digital signal of a predefined number of bits (e.g., 12 bits). This digital signal is transferred in parallel mode to microcontroller **116**. In one implementation, a level shifter circuit is used to match the logic levels of the ADC to the microcontroller. The data outputted by the ADC is sequentially stored in internal flash memory of the microcontroller. To maximize the data throughput, direct memory access (DMA) is used in this process. Microcontroller **116** is synced with the direct digital synthesizer **98**, so data acquisition starts when an RF burst is transmitted for excitation of implant 12. Once triggered, the microcontroller captures a predefined number of samples (e.g. 1024). The number of samples multiplied by the sampling period defines the observation window over which the response signal from implant **12** is assessed. This observation window is matched to the length of the response signal from implant **12**, which depends on the time constant of the signal decay. [0102] As a means of noise reduction, the response signal of the implant **12** is observed a predefined number of times (e.g., 256), and the average response is then computed. This approach greatly contributes to increasing the signal-to-noise ratio of the detected signal.

[0103] The average response is then transmitted to an external interface device **18** (e.g., laptop computer) by means of communications module **118**. Different approaches can be taken for this. In

one embodiment, the communication is performed using the UART interface from the microcontroller and external hardware is employed to convert from UART to USB. In a second embodiment, a microcontroller with USB driving capabilities is employed, and in this case connection with the external interface device is achieved by simply using a USB cable. In yet another implementation, the communication between the microcontroller and the external interface device is wireless (e.g. via Bluetooth).

[0104] The system is to be powered by a low voltage power supply unit (PSU), consisting of a AC-DC converter with insulation between mains input and output providing a minimum of 2 Means of Patient Protection (MOPP) as per Clause 8 of IEC 60601-1:2005+AMD1:2012. In this way, the power supply provides protection from electrocution to the user. The PSU is able to accommodate a wide range of mains voltages (e.g., from 90 to 264 VAC) and mains frequencies (e.g., 47 to 63 Hz) to allow operation of the system in different countries with different mains specifications. [0105] Control system **14***a* as described above utilizes a software-based frequency detection. Thus, in terms of signal transmission, once the excitation frequency is optimized, system 10 employing control system **14***a* with signal generator module **20***a* operates in open loop mode, i.e., frequency or frequencies and amplitude of the transmit signal are not affected by RC-WVM implant 12 response. On the receive side, using amplifier-receiver module **20***b*, control system **14***a* detects the response signal from RC-WVM implant 12 and such signal is digitized using a high-speed data converter. The raw digitized data is subsequently transferred to a processing unit (e.g., laptop computer or other equipment microcontroller) and digital signal analysis techniques (e.g. Fast Fourier Transform) are applied to establish the frequency content of the signal. Thus, one advantage of using these software-based techniques is that phased-lock loop (PLL) circuits or similar circuits are not used or required in control system **14***a*.

[0106] A further component of the overall RC-WVM system as described herein is the RC-WVM implant delivery system. FIGS. **9**A-D schematically illustrate aspects of intravascular delivery systems for placing RC-WVM implants **12** at a desired monitoring location within the IVC, which may generally comprise delivery catheter 122 including outer sheath 124 and pusher 126 configured to be received in the lumen of outer sheath **124**. In general, insertion of devices into the circulatory system of a human or other animal is well known in the art and so is not described in detail herein. Those of ordinary skill in the art will understand after reading this disclosure in its entirety that RC-WVM implants **12** can be delivered to a desired location in the circulatory system using, e.g., a loading tool to load a sterile RC-WVM implant into a sterile delivery system, which may be used to deliver an RC-WVM implant to the IVC via a femoral vein or other peripheral vascular access point, although other methods may be used. Typically RC-WVM implant 12 will be implanted using a delivery catheter, delivery catheter 122 being an illustrative example thereof, and the RC-WVM implant will be optimized for delivery through as small a catheter as possible. To facilitate this, bends at the implant crown sections **40** (elsewhere referred to as ears or collectively "sensor construct end portions") may be small-radius bends to facilitate a low profile when packed into the delivery catheter as shown. In one alternative, pusher **126** may be provided with a stepped distal end **128** having a reduced diameter end portion **130** configured to engage the inner perimeter of RC-WVM implant **12** when compressed for delivery. For implant embodiments employing anchors such as anchors **48** in FIG. **2** or anchors **48**s in FIG. **34**A et seq, end portion **130** may be configured to engage an inner perimeter defined by the anchors in the compressed configuration as illustrated in FIG. **9**B. Alternatively, pusher distal end **128** may be provided with a straight, flat end or other end shape configured to cooperate with a specific RC-WVM implant and anchor design. For example, as shown in FIG. **9**D, RC-WVM implant **12***t* with anchor frame **650** (see, e.g., FIGS. **40** and **41**) may be deployed with a flat distal end pusher **128**, which bears against crown sections **40** of implant **12***t*, with anchor frame **150** disposed opposite pusher **128**.

[0107] In one deployment option, an RC-WVM implant may be inserted from a peripheral vein such as the femoral or iliac vein into the IVC to be positioned at a monitoring location between the

hepatic and renal veins. It will be understood that the implant also may be introduced from other venous locations. Depending on implant configuration, when placed in the IVC for fluid status monitoring, specific orientation of RC-WVM implant 12 may be required to optimize communication with the belt reader antenna coil. To facilitate desired placement or positioning, the length and diameter of RC-WVM implant **12** may be designed so that it gradually expands ("flowers") as it is held in position with the pusher 126 and the sheath 124 is withdrawn, as schematically illustrated in FIG. **9**C. Here, RC-WVM implant **12** is shown partially deployed with the distal crowns already engaging the IVC wall while the proximal crowns are still contained within sheath **124**. Such a gradual, partial deployment helps ensure that RC-WVM implant **12** is properly positioned in the IVC. The sensor length to vessel diameter ratio (where the length is always greater than the vessel diameter) is also an important design factor to ensure that the sensor deploys in the correct orientation in the IVC. In a further alternative, distal end **128** of pusher **126** may be configured to releasably retain the anchors or a proximally oriented portion of the implant before it is fully deployed from outer sheath 124 so that it may be retracted for repositioning as needed. For example, small, radially extending studs may be provided near the end of end portion **130**, which engage behind the proximal crowns of implant **12** so long as it is compressed within outer sheath **124** whereby the implant may be pulled back in from a partially deployed position, but self-releases from the studs by expansion when fully deployed after positioning is confirmed. Conventional radiopaque markers may be provided at or near the distal ends of outer sheath **124** and/or pusher **126**, as well as on RC-WVM implant **12** to facilitate visualization during positioning and deployment of the implant. Typically, where anchor features are employed, the implant will be positioned with the anchor features proximally oriented so the anchors are the last portion deployed in order to facilitate correct orientation within the IVC and potentially allow for pull back and repositioning as may be needed. Once the implant is fully deployed, delivery catheter **122** may be withdrawn from the patient, leaving implant **12** as a discrete, self-contained unit in the vessel without attached wires, leads, or other structures extending away from the monitoring location. Example 1

[0108] Systems as described herein have been evaluated in pre-clinical testing using RC-WVM implant **12***a* (as in FIG. **2**), an antenna belt similar to antenna belt **16***b* (as in FIG. **3**) and control system **14***a* (as in FIG. **4**). The implants were deployed into ovine IVCs using delivery systems **122** (as in FIG. 9B) using standard interventional techniques. Deployment was confirmed angiographically, using intravascular ultrasound and using the antenna belt. [0109] FIGS. **10**A, **10**B and **10**C illustrate, respectively, the raw ring down signal, detection of the maximum frequency and conversion of this to an IVC area using a reference characterization curve. FIG. **10**A shows the raw ring down signal in the time domain with the resonant response of the RC-WVM implant decaying over time. Modulation of the implant geometry results in a change in the resonant frequency which can be seen as the difference between the two different plotted traces. FIG. 10B shows the RC-WVM implant signal as converted into the frequency domain and plotted over time. The maximum frequency from FIG. **10**A is determined (e.g., using fast Fourier transform) and plotted over time. The larger, slower modulation of the signal (i.e., the three broad peaks) indicate the respiration-induced motion of the IVC wall, while the faster, smaller modulation overlaid on this signal indicate motion of the IVC wall in response to the cardiac cycle. FIG. **10**C shows the frequency modulation plotted in FIG. **10**A converted to an IVC area versus time plot. (Conversion in this case was based on a characterization curve, which is determined through bench testing on a range of sample diameter lumens following standard lab/testing procedures.) FIG. **10**C thus shows variations in IVC area at the monitoring location in response to the respiration and cardiac cycles.

[0110] The ability of RC-WVM implant **12** (in this case, implant **12***a*) to detect IVC area changes as a result of fluid loading is demonstrated in FIGS. **10**D and **10**E. In one example, the results of which are shown in FIG. **10**D, after placement of RC-WVM implant **12** in the ovine IVC and

confirmation of receipt of the implant signal, a fluid bolus of 100 ml at 10 ml/s was added to the animal. The grey band in FIG. **10**D indicates the administration of the fluid bolus. As reflected by the decreasing frequency ring-back signal from RC-WVM implant **12**, the added fluid volume caused the IVC to expand, and with it the implant, which in turn causes a change in the inductance of the implant thus changing the frequency of its ring-back response to excitation. In another example, with results shown in FIG. **10**E, the operating table was tilted to shift fluid within the animal. Starting from the left in FIG. **10**E, the first grey band indicates the time when the table was initially tilted. Tilting of the table caused fluid to shift away from the IVC, causing the IVC to reduce in diameter, and thus increasing the frequency of the ring-back signal of RC-WVM implant **12** as it moved to a smaller diameter with the IVC. The second grey band indicates the time when the table was returned from tilted to flat. At this point, fluid shifts back into the IVC, causing it to increase in size with the added fluid volume and thus reduce the frequency of the ring-back signal as explained above.

[0111] These output signals thus demonstrate the detection of modulation of the IVC with respiration. In particular, it will be appreciated that embodiments of the present invention can thus provide an unexpectedly powerful diagnostic tool, not only capable of identifying gross trends in IVC geometry variations, but also capable of discriminating in real-time between changes in IVC geometry arising from respiration and cardiac function.

Alternative Patient Care Systems Based on RC-WVM Implants Disclosed Herein [0112] FIG. **11**A schematically illustrates an alternative system **10***a* configured to provide patient care based on fluid status monitoring using an RC-WVM implant **12** positioned at a monitoring location in the IVC as elsewhere described herein. Using RC-WVM implant **12**, measurements of IVC diameter or area by implant **12** may be made continuously over one or more respiratory cycles to determine the variation in patient fluid volume over this cycle. Further, these measurement periods may be taken continuously, at preselected periods and/or in response to a remotely provided prompt from a health care provider/patient.

[0113] Antenna module **16** may be configured to communicate via wireless or wired connection **24** with control system 14, as elsewhere described herein. Data and information collected by control system **14** may be communicated ultimately to a healthcare provider device **131** via hard wired links such as telephone or local area networks **132** or through Internet or cloud-based systems **133**. Personal communication devices 134, such as smart phones or tablets, also may be used for communication with, or as alternatives to, other communications devices and modes described herein. Healthcare provider device **131** may be configured with an appropriate user interface, processing and communications modules for data input and handling, communications and processing, as well as treatment and control modules, which may include treatment algorithms as described herein for determining treatment protocols based on collected IVC diameter or area measurements, and systems for automated remote control of treatment devices based on determined treatment protocols as elsewhere described herein. Examples of such treatment devices include, but are not limited to, dialysis machine **135** and drug delivery devices **136**. Examples of treatments include, when measured dimensions fall within the hypovolemic warning zone, administration of fluids or vaso-constricting drugs, and when measured dimensions fall within the hypervolemic warning zone, dialysis or administration of diuretics or vasodilating drugs.

[0114] IVC physical dimension data and/or fluid volume state information derived therefrom may also be communicated directly to the patient themselves, along with therapy advice based on this data and using pre-determined algorithms/implanted medical devices. Communications protocols throughout the system may include bidirectional communications to permit a healthcare provider (or other appropriately trained operator at another point in the system) to alter overall monitoring protocols executed at the monitoring device or, for example, to request additional queries by the monitoring device outside the current operational protocol.

[0115] Other embodiments include systems for patient self-directed therapy, for example with IVC

volume metrics data utilized directly by the patient with or without clinician overview, e.g., for self-administration of drugs or other therapies. Such systems may also be implemented for home dialysis and/or peritoneal dialysis. Wireless communication between the IVC monitor and the patient's or healthcare provider's cell phone or computer would allow continuous or periodic transmission of IVC data and the use of software applications to provide alarms or reminders, graphically present trends, suggest patient actions, drug dosage options, or treatment system settings, and allow communication with physicians.

[0116] FIG. 11B schematically illustrates another exemplary system, which may, in one alternative, incorporate patient self-directed therapy. As shown in FIG. **11**B, system **10***b* provides for communication between the patient home system **137**, cloud storage **133**, a patient management system **138**, a physician alert system **139**, and optionally a hospital network **140**. Data transmission from the patient home system **137** to the cloud **133** for storage and access facilitates remote access for clinical and nursing teams. In patient self-directed therapy embodiments, patient's home may include home therapy devices **141**, which may independently access cloud storage **133**, and based on predetermined limits/treatment algorithms, indicate patient self-administration of medications or drug delivery **136** or home dialysis machines **135**. In such a system a patient with wireless implant **12** may receive prompts from a cell phone or other device in the home at specific time intervals or may utilize data (D) generated by other patient monitoring devices such as blood pressure, heart rate or respiration monitors that also communicate with the home device as inputs to decisionmaking algorithms, and may transmit data to cloud **133** for storage. System **10***b* may also include communication links (direct, networked or cloud-based) with such other monitoring devices to receive data (D) inputs used in setting warning zones and alert limits and assessing patient fluid state. Further inputs may be made by a user through a user interface, which may be, for example, configured as part of patient management system 138. User inputs may include additional patientspecific information such as patient age, sex, height, weight, activity level, or health history indicators.

[0117] In response to a prompt from system **10***b* to take a reading, the patient would position him/herself with respect to or on antenna module **16** as appropriate to communicate with selected RC-WVM **12**. A user interface of control system **14**, or, in one possible alternative, personal communication device **134** may provide sequential prompts and/or instructions to the patient. [0118] Varying levels of response may be generated by home system **137** depending on IVC measurements received from RC WVM implant 12 and as may be interpreted in light of other patient data (D). Minimal responses may be provided if the patient fluid status is within acceptable ranges and no action is required. Mid-level responses may include warnings or to contact healthcare providers or prompts for medication administration or changes in home drug delivery, or home dialysis. Consistently out-of-range or increasing readings would prompt response escalation to clinical intervention. Patient treatment protocols, in general, may be based on the applicable standards of care for disease state management as informed by diagnostic information reported by RC-WVM implant 12 and system 10. Specific examples of treatment protocols designed to take advantage of the unique capabilities of RC-WVM implant 12 are provided in Applicant's copending international application no. PCT/US2017/046204, filed Aug. 10, 2017, entitled "Systems And Methods For Patient Fluid Management", which is incorporated by reference herein. When home dialysis or drug delivery is prompted, it may be controlled directly in a closed-loop system as described above or may be controlled by the patient with prompts from the system. Patient data (D) and IVC measurements from RC-WVM implant 12 also may be communicated continuously or periodically by system **10***b* to cloud storage **133** and further communicated to a remote patient management system **138**. Functionality for system **10***b* may be largely contained in home system **137** or in patient management system **138** or appropriately distributed across the network. Optionally, patient-related data including sensor results and patient health and fluid states also may be communicated to or accessible by a hospital network **140**. System **10***b* also may receive patient[0119] When a patient condition is recognized by system **10***b* as outside acceptable limits, an alert may be generated by physician alert system **139**. Information supporting the alert condition may be communicated, for example, through patient management system **138** to physician alert system **139**. Physician alert system **139** may reside at a healthcare provider office and/or may include a mobile link accessible by the healthcare provider remotely to permit communication **142** between the healthcare provider and the patient. Communication 142 between healthcare provider and patient may be network, Internet or telephone-based and may include email, SMS (text) messaging or telephone/voice communication. Physician alert system **139** allows the healthcare provider to review logs of IVC measurements and medication changes over time and make decisions regarding therapy titration, and in critical cases, hospital admissions, remote from the patient. [0120] Exemplary system embodiments **10***a* and **10***b* are each illustrated, respectively, in FIGS. **11**A and **11**B with various system functions assigned to particular functional elements of the systems. For the sake of clarity of the disclosure, not all possible distributions or combinations of functions in functional elements across the system are described. As will be appreciated by persons of ordinary skill, other than the function of the RC-WVM implant itself, all functions may be distributed among functional elements in any number of arrangements as best suited to a home or clinical application and the intended location of sensor reading function, e.g., in a home or hospital setting. For example, all system functions (except implant-specific functions as mentioned) may be contained in a single functional unit in the form of a stand-alone patient management system. Alternatively, functions may be highly distributed among mobile devices networked with secure cloud computing solutions. For example, control system 14 may communicate directly with a patient-owned smart phone to receive signals indicating IVC physical dimension measurements and, in turn, transmit those signals via WiFi or cell network to the cloud for distribution to further mobile devices in the possession of healthcare providers. Hand-held devices 134, such as tablets or smart phones, may communicate directly with controlled-treatment delivery devices, or such devices may be controlled by a self-contained patient management system. Further, processing necessary for operation of the system also may be distributed or centralized as appropriate, or may be duplicated in multiple devices to provide safety and redundancy. Thus, the specific arrangement of the functional elements (blocks) in the schematic presentations of the illustrative examples in FIGS. **11**A and **11**B are not to be considered as limiting with respect to possible arrangements for distribution of disclosed functions across a network. [0121] As mentioned above, various care algorithms may be developed based on systems **10***a* and

related data, including for example, medical records related to past therapies and medical history.

10*b*. For example, in one scenario, a first, home-care algorithm governs interactions in the home system including periodic IVC diameter/area measurements using RC-WVM implant 12 and dictates whether to maintain current therapies or to change therapies within the scope of home-care team capabilities. As long as IVC volume metrics stay within predefined limits, the first, home-care algorithm continues to govern monitoring and treatment. However, if monitored parameters, for example IVC volume metrics, exceed the predefined limits, then an alert is generated that engages a second, healthcare-provider algorithm. Such an alert may be generated internally by home system **137**, or may be generated in patient management system **138** (or physician alert system **139**) based on monitored data communicated by home system 137 and received by the other systems either periodically or on a continuous basis. In one embodiment, an alert is received initially by a physician's assistant or heart failure nurse who can triage the situation through patient management system **138** locally or remotely. At this initial level the assistant or nurse may elect to generate a message for communication **142** to the patient through the network related to modulation of therapy or other parameters such as level of physical activity. However, if triage indicates the alert to represent a more critical event, the physician may be alerted through physician alert system **139**. Multiple layers of care and review based on measured IVC volume metrics are thus provided to efficiently manage patient fluid status and where possible avoid hospitalizations.

```
RC-WVM Implant Design Considerations and Alternative Implant Embodiments
[0122] It will be appreciated that the measurement of dimensional changes in the IVC presents
unique considerations and requirements arising from the unique anatomy of the IVC. For example,
the IVC is a relatively low pressure, thin-walled vessel, which changes not simply its diameter, but
its overall shape (cross-sectional profile) in correspondence to blood volume and pressure changes.
Rather than dilating and constricting symmetrically around its circumference, the IVC expands and
collapses primarily in the anterior-posterior direction, going from a relatively circular cross-section
at higher volumes to a flattened oval-shaped cross-section at lower volumes. Thus embodiments of
RC-WVM implants 12 must monitor this asymmetrical, low-pressure collapse and expansion in the
A-P direction without excessive radial constraint, yet must also engage the vessel walls with
sufficient force to anchor the implant securely and prevent migration. Accordingly, RC-WVM
implant 12 must be capable of collapsing with the vessel in the A-P direction from a generally
circular cross-section to an oval or flattened cross-section without excessive distortion of the
vessel's natural shape. These requirements are achieved according to various embodiments
described herein by appropriate selection of material compliance and configuration such that the
coil measurement section of RC-WVM implant 12 is maintained in contact against the IVC wall
without undue radial pressure that may cause distortion thereof. For example, RC-WVM implants
12 according to embodiments described herein may exert a radial force in the range of about 0.05
N-0.3 N at 50% compression. In another alternative, potentially increased security of positioning
may be achieved without compromising measurement response by physically separating anchoring
and measurement sections so as to move possible distortions of the vessel wall due to anchoring a
sufficient distance spaced from the measurement section so as not to affect measurements.
[0123] RC-WVM implants 12 as described may be configured in various structures such as
collapsible loops or tubes of formed wire with resilient sinusoidal or "Z-shaped" bends, or as more
complex collapsible shapes with more resilient regions such as "spines" joined by relatively less
resilient regions such as "ears." Each structure is configured based on size, shape and materials to
maintain its position and orientation through biasing between resilient elements of the implant to
ensure contact with the vessel walls. Additionally or alternatively, anchors, surface textures, barbs,
scales, pin-like spikes or other securement means may be placed on the structure to more securely
engage the vessel wall. Coatings or coverings also may be used to encourage tissue in-growth. In
some embodiments it may be preferable to configure specific portions of the structure, for example
the coil spines, as the position-maintaining engagement portion in order to reduce any effect of the
biasing force on movement of the vessel walls as sensed at the coil ears, or vice-versa. In yet other
embodiments, separate anchoring structures may be coupled to a coil-measurement portion of the
implant. Such anchoring structures may comprise hooks, expandable tubular elements, or other
tissue-engaging elements which engage the vessel upstream or downstream of the coil portion so as
to minimize any interference with the natural expansion or contraction of the vessel in the area of
the coil itself. Sensing modalities and positioning is described in more detail below.
[0124] When RC-WVM implant 12 is energized it must generate a signal of sufficient strength to
be received wirelessly by an external system. In the case of a variable induction circuit, the coil
which transmits the signal to the external receiver must maintain a tubular shape or central antenna
orifice of sufficient size, even when the vessel is collapsed, such that its inductance is sufficient to
generate a field strong enough to be detected by an external antenna. Thus, in some embodiments,
it may be desirable that the variable inductor have a collapsing portion which deforms with the
expansion and collapse of the vessel, and a non-collapsing portion which deforms relatively little as
the vessel collapses and expands. In this way, a substantial portion of the coil remains open even
when the vessel is collapsed. In other embodiments, the coil may be configured to deform in a first
plane containing the anterior-posterior axis while deflecting relatively little in a second orthogonal
plane containing the medial-lateral axis. In still other embodiments, a first inductive coil may be
provided to expand and collapse with the vessel, and a separate transmit coil, which deforms
```

substantially less, provided to transmit the signal to the external receiver. In some cases the transmit coil also may be used as an anchoring portion of the implant.

[0125] Turning to specific alternative RC-WVM implant embodiments disclosed herein, a first exemplary alternative embodiment is RC-WVM implant 12c, shown in FIG. 12A. Implant 12c may comprise a "dog-bone-like" shape as shown with coil portion **142** and capacitor portion **144**. Implant **12***c* may comprise an electrically conductive wire or bundle of wires that is wound or otherwise formed into a single continuous coil comprising multiple turns or loops having an oval or rounded rectangular shape. It may be advantageous to use "Litz" wire, which has multiple independently insulated strands of wire, for the coil, since that may enhance the inductance of the implant. The coil is configured to be oriented such that the longer dimension of the generally rectangular loops extend longitudinally in a cranial-caudal direction within the IVC. The wire or group of wires may be wound multiple times in a continuous overlapping manner such that the rectangular loops each are defined by two or more parallel strands or bundles of wire about their periphery. The rectangular loops have central regions bounded by two or more longitudinal wires **146** forming spines **148** approximately defining a central plane running longitudinally in a cranialcaudal direction. This central region is configured to be disposed in a plane generally perpendicular to the anterior-posterior axis of the vessel, and remains relatively un-deformed as the vessel collapses and expands in the anterior-posterior direction. The longitudinal elements may engage opposing walls of the vessel. At the caudal and cranial ends of the central regions of the rounded rectangles, the wire or wires form two lobes or a pair of coil ears **150** that flare outwardly away from each other and from the central plane of the implant in the anterior and posterior directions, as shown in FIG. **12**A. Coil ears **150** are configured to engage opposing anterior and posterior walls of the vessel and to leave the central lumen of the vessel completely unobstructed for flow of blood as indicated by the arrows.

[0126] As the IVC changes shape, the longitudinal wires may move closer together or farther apart, and coil ears **150** may also move closer together or farther apart, thereby changing the inductance of the coil. The ears may be separated by about 1 cm to about 5 cm at the apex of the curved ends of the ears. RC-WVM implant **12***c*, as adapted for an average IVC size, may be about 2.5 cm to 10 cm long. It may be appreciated that as the IVC collapses in the anterior-posterior direction, coil ears **150** deform inwardly thereby changing the inductance of the coil. However, the central region of the coil remains relatively un-deformed and maintains sufficient size that the inductance of the coil is high enough to produce a field sufficiently strong for external detection. Capacitor portion **144** in this embodiment includes discrete capacitor **152** to complete the L-C circuit. Capacitor portion **144** may be alternatively located in a number of locations, such as distal to coil ears **150**, or along one of spines **148**.

[0127] As described above, the IVC in a typical monitoring region between the hepatic and renal veins is relatively compliant, and tends to collapse into a non-circular oval-shaped cross-section, which is wider in the medial-lateral direction than it is in the anterior-posterior direction. A feature of "dog-bone" style implant such as RC-WVM implant 12c is that spines 148 create more stiffness in the plane of the central region of the coil which causes the device to rotationally auto-orient around the longitudinal axis of the vessel with the two spines along the medial and lateral walls, and coil ears 150 flaring anteriorly and posteriorly. Typically, a RC-WVM implant 12 thusly configured will assume an unbiased implanted configuration in which the distance between the spines preferably corresponds to the natural medial-lateral dimension of the IVC at current blood volume such that the implant does not distort the vessel from its natural shape. In one alternative, overall the diameter of RC-WVM implant 12 may be somewhat oversized as compared to the vessel diameter at its secured location so it is always relatively biased outward against the vessel walls. In such a case, when the IVC collapses, the A-P dimension reduces and the M-L dimension increases, although the M-L increase is generally much less than the A-P collapse, the oversizing maintains vessel wall contact and secure positioning. As elsewhere discussed, resiliency of the

coil/wires forming the implant must be selected in this case also so as to move with the vessel without distorting measurements based on vessel wall movement.

[0128] A further alternative embodiment of RC-WVM implant 12 is the "x-bow" shaped implant **12***d*, shown in FIG. **12**B. Like "dog-bone"-shaped RC-WVM implant **12***c*, "x-bow"-shaped RC-WVM implant 12d may comprise an electrically conductive wire or group of wires of types previously described formed into coil portion **154** and capacitor portion **156**. However, rather than being formed into a rounded rectangular shape as in RC-WVM implant 12c, "x-bow"-shaped RC-WVM implant **12***d* may be wound or otherwise formed into two ellipsoid shapes disposed in intersecting planes to form two sets of coil ears 158 as shown. In one implementation, an "x-bow"shaped RC-WVM implant **12***d* may be formed by winding on a mandrel or otherwise forming an ellipsoid shape with one or more wires in a single plane and then bending one or more turns of the one or more wires out of that plane into an ellipsoid shape in another plane to form an overall shape like that illustrated in FIG. **12**B. A capacitor element such as discrete capacitor **160** may be conveniently placed in capacitor portion **156** at one of the intersections of the "X" or at one of the ends of ears **158**. An implant configured as RC-WVM implant **12***d* might preferably be placed in the IVC with coil ears **158** oriented as described above (against the anterior-posterior walls of the IVC). Blood flow through the open central lumen of the implant would follow the direction of the large arrows in FIG. **12**B.

[0129] Similar to "dog-bone"-shaped RC-WVM implant **12***c*, "x-bow"-shaped RC-WVM implant **12***d* deforms with the vessel walls in the anterior-posterior direction while having relatively little deformation in the medial lateral direction. RC-WVM implant **12***d* is thus able to deform with the IVC as it collapses but retains an open coil shape in the medial-lateral direction to maintain a high level of inductance, thus being capable of producing a field of sufficient strength to be detected by an external receiver.

[0130] In other embodiments, a tether or stent-like structure may be used to anchor RC-WVM implant 12 in a predetermined location while allowing it to very gently press against the walls of the vessel desired to be monitored. An important issue that must be taken into consideration is the fact that implants in veins or arteries can modify the flexibility or resiliency of the vein or artery to the point that changes in the shape of the veins or arteries that may be expected to be measurable using such implants may not take place or may be severely attenuated due to the shape of, function of, or vascular response to the implant. Accordingly, it is important that the implant have sufficient stiffness to anchor itself in the vessel while simultaneously allowing natural expansion and contraction of the vessel walls at the location(s) where the implant is measuring vessel dimension. In the implants described above, for example, the wall-engaging ears of the coils must have sufficient compliance/flexibility and resilience to move in and out with the vessel walls without excessive distortion or attenuation of the natural wall motion.

[0131] As shown in FIG. 12C, RC-WVM implant 12e is an example of an alternative implant embodiment employing a stent-like structure for additional stability or anchoring security. RC-WVM implant 12e is formed as an "x-bow" type implant similar to RC-WVM implant 12d, discussed above, but with added sinusoidal, expandable and collapsible wire support 162 around the center of the implant and secured at the opposed coil wire crossing points 164. Wire support is insulated from the coil wires forming coil ears 158 so as not to interfere with the electrical performance of the implant. As one example, wire support 162 may be formed of a nitinol wire or laser cut shape as used for the frame of the implant itself (see, e.g. frame 44 in FIGS. 2 and 2B or frames 244 or 246 in FIG. 20A or 20B, respectively). The stent-like structure of wire support 162 allows it to expand and collapse with the implant and assists in uniform expansion and localization of anchoring force away from coil ears 158.

[0132] In another RC-WVM implant **12** alternative embodiment, an "x-bow"-shaped RC-WVM implant similar to RC-WVM implant **12***d* shown in FIG. **12**B may be formed with two separate coils in orthogonal planes to allow measurement of the vessel dimension in two axes, i.e. in both

the anterior-posterior direction and the medial-lateral direction. FIGS. 13A, 13B and 13C illustrate such an alternative embodiment. As shown therein, RC-WVM implant **12***f* is formed with two separate coils **166**, **168** to form two separate, independent resonant circuits tuned to two different frequencies. RC-WVM implant 12f thus includes two capacitors 170, 172, one for each circuit. With two separately tuned coils, RC-WVM implant **12***f* has the ability to discriminate between changes in dimension along two perpendicular axes, one through coil ears 174, indicated by arrows E in FIG. **13**A, and the other through coil spines **176**, indicated by arrows S in FIG. **13**C. The two separate resonant circuits can be separately energized so as to resonate independently. The two measurements may need to be taken using two input waveforms having different frequencies so that the outputs subsequently generated by RC-WVM implant 12f can be differentiated by the external receive antenna. Alternatively, coils of different geometry, or capacitors of different capacitance, could be used to produce different resonant frequencies for a given input waveform. An antenna module **16** with planar antenna coils, for example as shown in FIG. **22**A or **22**B may be preferred with such a two coil type implant such as RC-WVM implant **12***f*. With the implant shaped as shown in FIGS. 13A-C, coupling is anterior-posterior. Use of two separately tuned coils also provides an opportunity to exploit the mutual inductance of the coils. With two coils together as disclosed, the inductance of each coil may stay constant or equal compared to one another. Mutual inductance equals the first inductance multiplied by the second inductance and a coupling factor (M=L1*L2*k).

[0133] FIG. 13D shows signal response of a prototype RC-WVM implant 12*f*. The prototype was constructed with two 0.010" Nitinol frames, each insulated with PET heatshrink material. The overall frame size was approximately 25-30 mm diameter and approximately 60 mm long. A first coil on one frame comprised three turns of 60 strand 46 AWG copper Litz wire, with a soldered connection to a 15 ηF capacitor. A second coil opposite frame comprised four turns of 60 strand 46 AWG copper Litz wire, with a soldered connection to a 5.6 ηF capacitor. PET heatshrink insulation was provided around each coil and the two coils joined together in the x-bow configuration shown in FIGS. 13A-C with epoxy. The three plots in FIG. 13D represent (from left to right) the signal response for the uncompressed implant, the signal response for compression along the spines (arrows S) where the two frequency peaks increase in unison, and the signal response for compression at the coil ears (arrows E) where the gap between the frequency peaks increases. The independent response from each of the two coils is clearly represented by the two distinct frequency peaks in each plot and therefore the A-P and M-L distensions of the IVC can be understood.

[0134] FIGS. **14**A and **14**B illustrate another alternative RC-WVM implant **12***g*, also with two separate coils that may be tuned to different frequencies. In this embodiment, coils **178** and **180** are mounted on resilient/compressible frame members **182** and **184**. Coils **178** and **180** may be formed on frames with multiple turns of fine Litz wire as with other RC-WVM implant embodiments described herein and are generally rectangular in shape with slightly upturned ends **186** and **188**. Coils **178** and **180** run perpendicular to loops in frame members **182** and **184**. Frame members **182** and **184** also have electrical breaks as described above with respect to, e.g., frame **44**. RC-WVM implant **12***g* as shown does not include discrete capacitors and hence relies on the inherent capacitance of the implant coils to complete the L-C circuit. However, discrete capacitors could be added in each coil as an alternative.

[0135] Other embodiments of RC-WVM implant 12 may be adapted to balance the anchoring and measuring requirements by providing separate, longitudinally spaced measurement and anchor sections. Such embodiments split the anchoring and measurement into two discrete regions longitudinally separated from each other a sufficient distance that the anchoring section does not distort or constrain the vessel in the region being measured. The radial force characteristics of the measurement and anchoring sections will determine the spacing required, in certain embodiments, where the radial force of both sections is relatively low, the spacing can be reduced to as little as 5

mm. Examples of RC-WVM implant embodiments with separate measurement and anchor sections are shown in FIGS. **15**A-B, **16**A-B and **17**A-B. One such alternative embodiment is RC-WVM implant **12**h, shown in FIG. **15**A. As shown therein, anchor section **190** (also an antenna section as explained below) can be stiffer, of different geometry, with its expanded shape set to a larger diameter than measurement section **192** to securely anchor RC-WVM implant **12**h. Anchor section **190** may be comprised of nitinol or other suitable material to increase resilience and/or stiffness while still allowing collapse for deployment. In some embodiments, a separate antenna coil may be integrated with or coupled to the anchor section, as described below, to enable separation of vessel measurement from signal transmission/reception.

[0136] As mentioned, embodiments of RC-WVM implant 12 with separate anchor and measurement sections also may employ the anchor section as an antenna coil. RC-WVM implant **12***h*, shown in FIG. **15**A, is an example of such an embodiment. Anchor section **190** and measurement section **192** are provided as two mechanically separate, but electrically continuous coils, one for vessel measurement and a second as an antenna for signal reception and/or transmission. Advantageously, separation of the measurement coil 194 from antenna coil 196 allows the antenna coil to be less affected by changes in vessel size and to have a shape and size selected to maximize the transmitted signal (i.e. magnetic field) generated by it. Moreover, antenna coil **196** may be configured to anchor the implant in the vessel, or may be integrated or coupled to an anchoring element, without affecting the performance of measurement coil **194**. Antenna coil **196** may thus have more turns of more strands of Litz wire and a different geometry and size than measurement coil **194** to optimize both anchoring and communication with the external antenna. In the RC-WVM implant **12***h* example, anchor section **190** is formed as multiple loops in a generally oval shape, shaped to engage the inner walls of the vessel. Measurement section 192 is formed, for example, as a sinusoidal "z" shape, which may comprise a thinner, lower radial force nitinol frame, with fewer turns of higher gauge (thinner) wire, or fewer strands of Litz wire than antenna coil 196. Measurement section **192**, forming measurement coil **196**, is highly compliant and minimizes distortion of the vessel's natural expansion and collapse so as to accurately perform the measurement function. Measurement coil **194** may have a variety of other geometries, such as sinusoidal, square wave, or other open-cell designs, but in general will not have closed-cells or other electrical connections between the successive loops of the coil, which could create problematic eddy currents. RC-WVM implant **12***h* is also provided with discrete capacitor **198** on strut section **200** joining the anchor/antenna section and measurement section/coil. [0137] A further alternative embodiment for RC-WVM implant 12 involves the use of two capacitors to "double tune" the device. One example of such an embodiment is RC-WVM implant **12***i*, shown in FIG. **15**B. In this embodiment, first capacitor (CT) **202** is associated with measurement coil (Ls) 204, while second capacitor (CA) 206 is associated with antenna coil (LA) **208**, allowing independent tuning of the measurement and antenna circuits to optimize dynamic range, field strength and signal duration. These capacitors can be selected such that the deflection of measurement coil **204**, which is a low percentage of the overall inductance of RC-WVM implant **12***i* and would normally result in only a small shift of the resonant frequency, can be made to have a larger dynamic range and therefore produce a more detectable shift in this frequency. At the same time, the resonant frequency of antenna coil **208** can be optimized for reception by the external antenna. With such an arrangement antenna coil **208** also may be configured as an anchor section as discussed above.

[0138] FIGS. **16**A-B illustrate further alternative RC-WVM implants **12***j* and **12***k*. RC-WVM implant **12***j*, in FIG. **16**A, includes sinusoid element sensor **210** composed as previously described with respect to other similarly shaped sensor coils. Sensor element **210** is attached via elongate isolation connector **212** to anchor section **213**. Sensor element **210** also communicates with antenna module **16**. Anchor section **213** is provided with a curved wire anchor element **214** configured to engage with the IVC wall and fix the implant at a monitoring location. Isolation connector **212**

isolates sensor element **210** from any distortions or irregularities that the IVC wall may be subjected to by anchor section **213**. Alternative RC-WVM implant **12**k, shown in FIG. **16**B, employs two separate sinusoid elements **216**, **217**, formed in one continuous coil using techniques as described herein. Sinusoid element **216** exerts a lower radial force in resistance to diameter changes and is thus designed to operate as the RC-WVM sensor coil. Sinusoid element **217** is configured to exert a higher radial force and thus forms an anchor section and also may be configured for communication with antenna module **16**. Anchor isolation means **218** may be formed as a wire connection portion between elements **216** and **217**.

[0139] FIGS. **17**A-B illustrate a further alternative RC-WVM implant **12***m*, wherein FIG. **17**A shows an oblique view and FIG. **17**B shows a normal view. Coil sensor element **220** is provided as elsewhere described herein; in this case having a somewhat wider cross-section as a result of coil wires formed around a rectangular cross-section laser cut frame. Anchor section **222** is displaced from sensor element **220** by anchor isolation means **223**. Both anchor section **222** and anchor isolation means **223** may be formed, for example, from nitinol wire. Locating anchor section **222** separately from sensor element **220** allows for the use of higher radial force in the anchor section without impacting the sensed region of the IVC. Anchor section **222** may rely on radial force alone for fixation or may incorporate individual, pointed anchors. Anchor section **222** may be configured as in many embodiments, including any other anchor/anchor section disclosed herein. As shown in FIGS. **17**A-B, anchor section **222** employs "ears" **224** that are self-biasing outward to widen and engage with the vessel wall.

[0140] FIG. **18** illustrates a further alternative RC-WVM implant **12***n*. In this embodiment, two sinusoidal, "Z"-shaped coils **226**, **228** are joined at connections **230** by two pairs of elongate members **232**. Coils **226**, **228** may be formed on different thicknesses frames of nitinol wire thus resulting in different radial forces, i.e., a lower force end for measurement and a higher force end for anchoring. Elongate members **232** thus also serve as anchor isolation means between sensor and anchor coils. The sensor coil may be a two turn coil, constructed from multi-strand Litz wire (as elsewhere described herein) and the anchor coil may also have a large area to further provide strong communication with antenna module **16**.

[0141] FIGS. **19**A and **19**B illustrate a further alternative RC-WVM implant **12***p*. In this embodiment, two turn coil **234**, which may be formed from wrapped Litz wire as elsewhere described, is separated from dual sinusoidal nitinol anchoring structure 236, 237. Outwardly curved "ears" **238** of coil **234** are configured to engage the IVC wall with less force to form the sensor or measurement element, and relatively, the large area of coil **234** optimizes communication with antenna module **16**. Dual nitinol anchoring structures **236**, **237**, provide a separated, higher radial force, anchoring portion. Thus, a flat portion **240** of coil **234** provides an anchor isolating function. [0142] In any embodiment of RC-WVM implant 12 described herein, it may be advantageous to form the coil portion of the implant with multi-stranded wire or cable comprising a plurality of separately insulated strands wound or braided together to optimize the performance with high frequency alternating current. In some embodiments, the electrically conductive wire or wires used in the implant may comprise Litz wire in which the separately insulated strands of wire are braided or wound together in a particular prescribed pattern to optimize AC current transmission by optimizing for the high frequency "skin effect". The individual wire insulation could be PTFE, polyester, polyurethane, nylon, or polyimide, among others. An additional insulated jacket may be provided around the entire multi-stranded wire or cable in order to provide electrical insulation from blood, which could otherwise render the implant suboptimal or unreliable under some circumstances, and to bind the Litz wire to the frame. Such additional insulation may be provided in the form of PET (polyethylene terephthalate), ETFE, FEP, PE/PP, TPE, polyurethane, silicone, polyimide, or other material, and may be provided on the wires of an RC-WVM implant and/or to encase RC-WVM implant **12** in its entirety. Due to the use of high frequency electromagnetic signals, more, or different, insulation may need to be provided for the electrical portions of RC-

```
WVM implant 12 than may be required for other types of implants or electrical devices.
[0143] In some embodiments, nitinol frame such as frames 244 and 246, shown in FIGS. 20A and
20B, respectively, may be used to provide structural support and enhanced anchoring, and to
facilitate the crimping or compression and deployment or expansion of RC-WVM implant 12
into/from the delivery sheath. For example, the nitinol frame may be formed in the desired shape of
the coil (using formed wire 244 or a laser cut tube or thin plate 246), and the conductive wire may
then be wound coextensively with the nitinol frame to form the coil. Alternatively, nitinol wire and
Litz wire may be co-wound or braided and then the composite cable used to form the coil, so that
the electrical inductance of the nitinol wire is added to that of the Litz wire. The structure may then
be insulated with, e.g., silicone tubing or moulding. In other embodiments, a nitinol tube with Litz
wire disposed coaxially within it (or vice versa) could be used; such a tube may have, for example,
about a 0.020" to 0.050" inner diameter with walls having a thickness of, for example, about 0.005"
to 0.020". In other embodiments, the coil may be formed with gold-coated nitinol wire and/or a
drawn-filled tube. Any exposed surfaces of any non-insulated portions of RC-WVM implant 12 are
preferably made from or plated with biocompatible polymers or metals such as gold, platinum,
palladium/molybdenum or plated in these materials to prevent undesirable effects or health issues.
Nitinol wire frame 244 includes strut sections 38 and crown sections 40 as previously described. As
a wire formed frame, frame 244 has a natural break 245 that occurs where the wire ends are
brought together. Where needed, to avoid creating an electrical loop through the frame, the break
can be bonded together with an insulating material such as epoxy to complete the frame structure.
[0144] Laser cut frame 246, as shown in FIG. 20B, is cut from a nitinol tube which is expanded
and shape set to size including integral anchor elements 250, formed by laser cutting orifices 254
and shape setting the anchor elements 250. Frame 246 is electro-polished after cutting, before coil
wires are wrapped as described below. When formed by cutting from a tube, frame 246 will be a
continuous member and thus must be cut at location 38 during a pre-coil wrapping stage to avoid
forming an electrical loop within the frame which could negatively impact the performance of the
coil. The cut section may then be re-joined by bonding with an insulating material such as epoxy or
over-moulding with a polymer. Anchors 250 may be located on extending posts 252 with openings
254 from which anchor elements 250 are formed. Such anchor elements may extend bi-
directionally as shown or only in a single direction. While relatively short compared to other frame
dimensions, anchor elements 250 should be long enough to protrude past wire and insulation when
added to frame 246 to engage with the vessel wall for fixation. Typically, when anchor elements
250 are formed only on one end of the fame, they will be on the proximal end of the frame so as to
deploy last when deployed from the delivery catheter as explained above. However, alternatively,
anchor elements 250 may be formed on both ends of the frame. As shown in FIG. 20B, anchor
attachment elements 250 are provided on each proximal crown section 40 joining strut sections 38
of frame 246. Alternatively, extending posts 252 or other anchor attachment points may be
provided on fewer than all crown sections, for example on every other crown section.
[0145] FIGS. 21A and 21B illustrate aspects of one example of a method for making an RC-WVM
implant using a wire frame such as wire frame 244 shown in FIG. 20A. After formation of the
frame, it is expanded on a fixture, such as by hooks 256, to approximately a maximum diameter.
The selected wire, such as Litz wire 42, is then wrapped around the frame. Multiple parallel wraps
may be made, which may have turns between crown sections 40 to distribute the wire evenly and
cover the frame. The wrapping objective is to achieve an evenly distributed wire, covering the strut
and crown sections 38, 40 with a consistent but thin wire coating. In one alternative technique, the
first and last wraps may be radial to bind wire 42 to the frame. After wrapping is complete, the
structure is insulated by a dip, spray or heatshrink process. Typical insulation materials may include
silicone, TPU, TPE or PET. The method steps heretofore described contemplate use of individually
insulated Litz wire strands. If uninsulated wire strands are to be used, then an additional pre-
wrapping step of insulating the frame itself before applying the wire may be desired. FIG. 21B
```

illustrates the wrapped frame **244** after it is removed from fixture hooks **256**. Another technique involves laying the multiple strands of thin wire next to each other in a continuous loop with as many turns as called for in the design. Such loops may be wrapped around the frame only a small number of times compared to the method above, e.g. as few as one or two times. The entire assembly may then be held together with a suitable external insulation as described. [0146] The number of turns of wire used to form a coil portion of RC-WVM implant 12 embodiments may be optimized to provide enough conductive material to allow the use of lower capacitance value capacitors in order to enable the use of a physically smaller capacitor, thereby minimizing implant size. The preferred number of turns will depend on various factors including the diameter of the coil, the size and number of strands of wire or cable, the strength of the field produced by the transmit antenna, the sensitivity of the receive antenna, the Q value of the capacitor, and other factors. Such coils could have anywhere from 1 to 10 or more turns (each turn being a complete 360 degree loop of the wire around the frame), and preferably have at least 2 such turns. For example, Litz wire used in an RC-WVM implant 12 embodiment may have 180 strands of 46 AWG (0.04 mm wire), but could include anywhere from 1 to 1000 strands, and the strands could be about 0.01 to 0.4 mm in diameter.

Alternative System Embodiments, Components and Modules

[0147] Alternative embodiments **16***c* and **16***d* for antenna module **16** are illustrated, respectively, in FIGS. 22A and 22B. As shown, in FIG. 22A, control system 14 generates input waveforms and receives signals back from RC-WVM implant **12** as elsewhere described herein. In particular, signal generator module within control system **14** drives figure-eight transmit coil **258**, which energizes RC-WVM implant 12. Due to the LC circuit formed by the wires of RC-WVM implant 12, the implant will then resonate and produce magnetic fields of its own as a consequence of the induced current. The magnetic fields produced by RC-WVM implant 12 can then be measured using receive coil **260**, which is monitored via amplifier-receiver module within control system **14**, which may then deliver data to remote system 18. In alternative antenna embodiment 16c, receive coil **260** comprises a single, square coil lying in the same general plane as the transmit coils so as to be properly oriented to generate a current when a magnetic field is generated by the implant. Under the well-known right-hand rule, when a current flows through the transmit coils, a magnetic field will be generated in a direction perpendicular to the plane of each coil. By causing the current to flow in opposite directions around each transmit coil, the magnetic field forms a toroidal shape flowing from one transmit coil into the patient's body, through the inductive coil of the implant, and back out of the patient through the other transmit coil. This arrangement produces a geometric decoupling of the transmit and receive coils, as is described in greater detail below in connection with FIG. **25**B. Also, as discussed elsewhere in more detail, it will be noted that the implant should be oriented such that the field produced by the transmit coils passes through the center of the implant's inductive coil. This generates a current flowing through the inductive coil which, due to the capacitor in the circuit, resonates at a specific frequency based upon the size and shape of the coil. This current in turn generates a field which passes out of the implant perpendicular to the plane of the inductive coil, and through the external receive coil, generating a current therein. The frequency of this current can be measured and correlated with vessel diameter. In alternative antenna embodiment **16***d*, transmit coil **262** also comprises two square coils, but in this case receive coil **264** comprises two round coils, one each disposed within a transmit coil. Again, the transmit and receive coils are disposed in the same plane as described above.

Example 2

[0148] Systems as described herein have been evaluated in pre-clinical testing using RC-WVM implant **12***c* as shown in FIG. **12**A, and antenna module **16***d* as schematically depicted in FIG. **22**B. The implants were deployed into porcine IVCs using femoral access and standard interventional technique. Deployment was confirmed angiographically and using intravascular ultrasound. External antenna module **16***d* was placed under the animal and ring-back signal obtained.

[0149] FIG. 23A illustrates the raw ring-back signal obtained in pre-clinical testing at multiple time points, and FIG. 23B illustrates how this signal can be converted from frequency to time domain using Fourier transform. The coil resonance modulation can then be converted to vessel dimension through calibration. In FIG. 23B, the frequency modulates between approximately 1.25 to 1.31 MHz. It was then possible to correlate this frequency shift to an IVC dimensional change by characterizing the compression of the coil under specific displacements (and their associated resonant frequencies) as described below. The step nature of the frequency signal may be improved by increasing the Q of the signal, providing longer ring-down and facilitating better resolution of the signal. The strength of the signal will also be optimized with iterations of Litz wire and insulation.

[0150] The raw voltage signal in FIG. **23**A is as received from the RC-WVM implant, which was positioned in an anterior-posterior orientation of the spines. An antenna module as depicted schematically in FIG. 22B, employing a figure-eight circular shape coil was used as transmit coil and a figure-eight square coil as receive coil "TX" and "RX", respectively. These were coupled and an Arduino controller (or any other microcontroller could be used) was used to switch the receive coil on and off resonance to improve transmit and receive decoupling. The decompressed resonance frequency of the implant coil was 1.24 MHz at 25 mm diameter. Fully compressed, the resonance frequency of the implant coil was 1.44 MHz. FIG. **23**B shows the resonance frequency as determined for each measurement as a function of time with a clear variation of frequencies in the expected compression range between 1.24 and 1.44 MHz-1.25 MHz being nearly fully decompressed (24 mm diameter=only 1 mm of compression) and 1.31 MHz being about 50% compressed (16.25 mm diameter=8.75 mm of compression). Based on these results, modulation of resonant frequency of the RC-WVM correlated with IVC diameter variation was observed. [0151] Further alternative examples of configurations and components for control system **14** and antenna module **16** are shown in FIGS. **24**A through **26**C. FIGS. **24**A and **24**B illustrate examples of excitation and feedback monitoring ("EFM") circuits that can be used to excite the L-C circuit in a RC-WVM implant and monitor the response of the RC-WVM implant to that excitation. These circuits may be used as components in alternative control systems **14**. After the receive coil in an EFM circuit receives signals corresponding to the response of the RC-WVM implant to the excitation previously generated using the EFM circuit, those signals may be processed digitally to convert the signal to the frequency domain using a Fast Fourier Transform ("FFT") algorithm, a zero-crossing algorithm, or other methods. After such processing is complete, the frequency having the highest magnitude within the calibration frequency range of the implant (i.e. all possible frequencies that the implant can contain such as for instance 1.4 to 1.6 Mhz) is determined and should correspond to the resonant frequency of the LC circuit in the RC-WVM implant. By continually monitoring the frequency having the highest magnitude in signals received from the LC circuit of the RC-WVM implant in response to discrete excitations of a transmit coil connected to the EFM circuit, the EFM circuit can be calibrated to translate a frequency shift in signals received from the L-C circuit of the RC-WVM implant into a dimension, area and/or collapsibility index of the vein or artery in which the RC-WVM implant is disposed. In some implementations, a heartbeat and/or other physiological signals (e.g. respiration, cardiac heart beat) can be derived from small variations in frequency or magnitude or shape of signals received from the RC-WVM implant after being excited by a transmit coil attached to an EFM circuit. In some embodiments, magnitude variations in the signals received from the RC-WVM implant can be used to validate frequency variations in the signals received from the RC-WVM implant through cross-correlation or other methods of correlating signals. FIG. 25A illustrates one example of a tuning and detuning network, which may be used in antenna module **16** in conjunction with excitation and feedback monitoring ("EFM") circuits as exemplified by FIGS. 24A and 24B, discussed. In an antenna module **16** with this configuration, TX coil transmits the excitation signal to RC-WVM implant **12** and RX coils receives the ring-back signal from the implant.

[0152] In some embodiments, where a single antenna-coil may be used for both the transmit and receive signals, antenna module **16** includes a switching mechanism to alternate between transmission and reception, thereby eliminating interference between the transmitted signal and the received signal. Examples of such switches are the passive and active diode switches shown in FIGS. **28**A and **28**B. In other embodiments, in which antenna module **16** employs separate transmit and receive coils, the receive coil may be geometrically decoupled from the transmit coil to eliminate interference between the two, even when operating simultaneously. In one such embodiment, shown in FIG. 25B, receive coil 278 forms a single square shape surrounding all or a portion of both transmit coils **280** resulting in a geometric decoupling of the coils. (A similar arrangement is also depicted schematically in FIG. 22A.) Use of a smaller antenna for transmit reduces emissions, while use of a larger receiver coil maximizes signal-to-noise ratio. Such an arrangement exploits the optimum geometry for transmitting from a planar, figure-eight loop into an orthogonally oriented RC-WVM implant while the receive function can be used to maximize the magnetic flux caught from the implant in the receive coil. This arrangement can be helpful where loop-to-loop coupling is not possible, e.g., when a belt antenna is not used. The coils are tuned to resonance frequency and matched to source impedance (e.g., 50 Ohm).

[0153] Advantageously, this allows simultaneous transmission and reception of fields to/from the implant to maximize signal strength and duration, and potentially eliminate complex switching for alternating between transmission and reception. Notably, in some implementations, single or plural circular or other-shaped transmit and/or receive coils may be used, the transmit and receive coils may be disposed in the same plane or different planes, and the area enclosed by the transmit coil may be larger or smaller than the area enclosed by the receive coil. The transmit and receive coils may be formed using copper tape or wire or could be implemented as a portion of a printed circuit board.

[0154] The transmit and receive coils used for exciting RC-WVM implant 12 and receiving the implant ring-back signal in response to that excitation, respectively, should be tuned (matched and centered) on the particular RC-WVM implant's L-C circuit resonant frequency range. In exemplary embodiments, a signal generator may be used to generate a sine wave burst of 3 to 10 cycles at 20 Vpp with a frequency selected to maximize the response of the RC-WVM implant L-C circuit. The signal generator may transmit a burst at whatever rate provides a clinically adequate measurement of the variation in the vessel dimensions; this could be every millisecond, every ten milliseconds, or every tenth of a second. It will be understood that a variety of waveforms may be used including pulse, sinusoidal, square, double sine wave, and others so long as the waveform contains the spectral component corresponding to the resonant frequency of the implant. Geometric decoupling, damping, detuning, and/or switching may be used to prevent the transmit pulse signals from being picked up by the receive coil while the transmit coil is transmitting.

[0155] FIG. **26**A schematically depicts an alternative signal generation module **20***a* as excitation waveform generator **282**, which generates the RF energizing signal transmitted to RC-WVM implant **12** (not shown) by antenna module **16** (not shown). In this embodiment, Direct Digital Synthesis (DDS) waveform synthesizer **284** (with clock signal from clock **285**) provides a low voltage RF burst signal the parameters of which are configurable by external input through microcontroller **286** using frequency adjustment control **288**. Microcontroller **286** also includes sync connection **289** to receiver-amplifier module **20***b*. LCD controller **290** communicates with microcontroller **286** to cause LCD display **292** to display the selected frequency. Microcontroller **286** thus initializes and programs the DDS **284** allowing configuration of output waveform parameters (e.g., frequency, number of cycles per RF burst, interval between burst, frequency sweep, etc.). Output from DDS **284** (low amplitude RF signal) is applied to high order, anti-aliasing low pass filter **294**. The filtered signal from filter **294** is applied to an amplification chain, which may comprise preamplifier **296** and output amplifier **298** in order to present a flat frequency response over the frequency band of interest.

[0156] FIG. **26**B schematically depicts an alternative receiver-amplifier module **20***b* as receiver chain **300**, which conditions the ring-back signal received from RC-WVM implant **12** (not shown) by antenna module **16** (not shown) after excitation by signal generation module **20***a*. In this example, a single-ended low-noise preamplifier (not shown) provides flat response over the frequency band of interest and input to low noise amplifier **302** is matched to the receiver antenna of antenna module **16** (not shown). Unity gain amplifier **304** provides single-ended to differential conversion of the signal into a programmable gain, differential to differential stage in order to provide a high level of amplification. Variable gain amplifier 306 is controlled by the Digital-toanalog (DAC) output **308** of microcontroller **310**, which is synced to signal generation module **20***a*, for example excitation wave form generator **282** shown in FIG. **26**A, at sync connection **312** so that the gain is minimized during the excitation period to minimize coupling of excitation signal in the receiver circuitry. A low-pass or band-pass differential filter/amplifier **314** of an order of at least four (4) provides rejection of noise and unwanted signals. Output differential amplifier 316, the gain of which is selectable so that the magnitude of the output signal covers as much dynamic range as possible of the data conversion stage communicates with hardware-based frequency detection **318** to assert the frequency of the response signal provided by the sensor. Frequency detection **318** provides an output to an analog-to-digital converter (not shown). [0157] FIG. **26**C schematically depicts an alternative communication module **22** as data converter **320**, which processes the signal from receiver-amplifier module **20***b* to allow for interpretation of the measurement signals from RC-WVM implant 12 (not shown). In this example, data conversion is achieved by means of high-speed, high-resolution, parallel output Analog-to-Digital converter (ADC) **322**. Coupling from receiver-amplifier module **20***a* to ADC **322** is performed by coupling transformer **324** to minimize noise. ADC **322** may be specified to provide LVCMOS or CMOS compatible output to easily interface with a wide range of commercially available microcontrollers. In one embodiment, low voltage CMOS (LVCMOS) to CMOS level shifter 326 is employed for interfacing purposes with microcontroller **328**. ADC **322** provides a conversion complete signal to

sync with the data capture stage. [0158] FIGS. 27A and 27B show further alternative embodiments for antenna module 16 as alternative belt antennas **16***c* and **16***d*, respectively. In order to accommodate patients of different girth, belt antenna **16***c* includes fixed portion **330** and one or more extension portions **332** of varying lengths. Fixed portion 330 includes male and female connectors 334, 336, which may connect directly to form a smallest size belt by both mechanically securing the belt and electrically completing the antenna coil. Extension portions also include male and female connectors **334**, **336** so they may be connected into a fixed belt portion thus providing different sizes and completing mechanical and electrical connections. In order to tune the antenna and match it to the RC-WVM implant and signal generation circuitry (e.g. modules **20***a*), one option is to provide fixed portion **330** and each different length extension portion **332** with a fixed inductance, resistance and capacitance such that total parameters for the completed belt antenna **16**c are known corresponding to each set length. Signal generation module **20***a* of control system **14** (not shown) can thus be adjusted as needed for a particular length belt and patient girth to provide necessary tuning and matching. Instead of different length extension portions, belt antenna **16***d* uses multiple connection points **340** for closure portion **342**. Each connection point **340** corresponds to a different length belt to accommodate a range of patient girths. At one end, main portion 344 and closure portion 342 include clasp **346** with male and female connectors to provide mechanical closure and electrical circuit completion. Closure portion 342 includes connector 348 opposite clasp 346, which is connectable to each connection point **340** to change the belt length. Each connection point **340** also includes fixed compensation inductor circuit **350** matched and tuned to the corresponding belt length to provide automatic tuning and matching without the need to compensate with control system 14.

[0159] FIGS. **28**A and **28**B illustrate diode switches suitable as transmit/receive (T/R) switch **92** of

control system **14** for use when an antenna module **16** is employed with a single coil antenna as discussed above. Passive diode switch **352** in FIG. **28**A comprises crossed diodes **354**, **356**. The diodes are automatically switched open by larger voltages applied during transmit and closed when smaller voltages are read during receive. In one example, the switch threshold is set at about 0.7V such that the switch is open at voltages above the threshold and closed at voltages below it. Active diode switch **360** in FIG. **28**B comprises PIN diode **362**, direct current (DC) blocking capacitors **364**, RF blocking choke coils **366**, and DC power supply **368**. Diode **362** is switched open and closed by externally controlled logic (not shown). The DC voltage change is confined to the PIN diode **362** and an RF choke path created by blocking capacitors **364**. As a result, the RF signal cannot penetrate the DC current path due to the RF chokes and the signal to antenna module is thus turned off during a receive mode.

[0160] FIGS. **29**A and **29**B illustrate further alternative belt antenna embodiments of antenna module **16**. FIG. **29**A shows an embodiment in which antenna module **16** does not employ a wired connection for power and comm link **24**, but instead wirelessly connects alternative belt antenna **16***e* to control system **14**. In this embodiment power and comm link **24** and antenna belt **16***e* utilize a second pair of coupling coils **370**, **372** to transmit the signals between the belt and the power and comm link. Apart from its second coupling coils **372** for communication with matched coil **370** on power and comm link **24**, antenna belt **16***e* may be configured as described for any previous antenna belt embodiment. FIG. **29**B describes a further alternative embodiment in which control system **14** is powered by battery and incorporated into belt antenna **16** to provide an overall system that is less restrictive for the patient. In this embodiment, control system 14 contains a wireless module which is used to communicate the required information to base station 374, which in turn communicates with a remote system (i.e. cloud data storage/wired network) as previously described. The belt-mounted battery in this embodiment may be charged via non-contact near field communication, wireless charging by being placed on charging pad 376, which in turn would receive its power directly from base station **374** or from AC power source **378**. Also in this embodiment other aspects of antenna belt **16***f* may be configured as described above for other antenna belt embodiments.

RC-WVM Embodiments with On-Board Power and Electronics and Related Control Systems [0161] In some situations it may be desirable to remove the necessity for external transmit and receive antennas, increase the communications distance of the RC-WVM implant and/or communicate with another implanted monitor/device. FIGS. **30**A and **30**B are block diagrams illustrating two alternative on-board electronics systems. FIGS. **31**A and **31**B depict alternative wireless implants **12***q* and **12***r*, including electronics modules, which may contain on-board electronics systems, for example, as shown in FIGS. **30**A and **30**B.

[0162] In one alternative, as exemplified by FIG. 30A, on-board electronics system 380 include primary battery 382 to increase communication distance. Other modules of electronics system 380 may include power management module 384, driver circuit 386 to drive the wireless implant coil at pre-programmed intervals and frequencies, and current amplifier/buffer 388 to interface with the wireless implant coil. In this case, battery 382 provides energy used to excite the implant coil and cause it to resonate at its resonant frequency (or to produce a measurable inductance change as explained below), but with higher power due to the power supply being on board (rather than using an external transmit coil/antenna). A stronger signal may allow a receive coil of an antenna module to be located further away (for example, under or beside the bed) from the primary coil of an RC-WVM implant, thus giving greater flexibility in positioning of patient and external device. In such an embodiment, there may be no need for the external transmit coil, only an external receive coil of the antenna module is used. In an optional alternative, RF power harvesting 390 may be employed to capture and harness an external RF signal, power a super capacitor and then perform as above. Further features possible in such an embodiment may include battery capacity and power budget estimation, or battery down select from available implant batteries.

[0163] In another alternative, as exemplified in FIG. **30**B, on-board electronics system **392** includes primary battery **394** to provide energy to excite or otherwise power the wireless implant coil. Excitation or power delivery may be manually initiated or in response to a signal from optional wake-up circuit **396**. Power management module **398** communicates with microcontroller **400**, which is interfaced with inductance measurement circuit **402** (which may include ADC and firmware to measure inductance), and serial data port **404** to send digital data, optionally through wireless transmitter **406** if required. In one option, microcontroller **400** interfaces to an analog to digital controller ("ADC") and inductance measurement circuit **402** digitizes the inductance and ports this data to a serial data port **404** for wireless transmission to a sub-cutaneous body implant (e.g., implant **420** in FIG. **32**). Additional features in such an embodiment may include battery capacity and power budget estimation.

[0164] Illustrative examples of wireless implants **12***q* and **12***r* employing on-board electronics systems are shown in FIGS. **31**A and **31**B. Both implants **12***q* and **12***r* include an electronics module **410** contained within a sealed capsule/container **412**, which is secured to the resilient sensor construct to electrically communicate with the implant coil. Wireless implant **12***q* is depicted as employing a sinusoidal or "zig-zag" coil **414** with a similar construction and function to the coils of implants **12***a* and **12***b*, shown in FIGS. **2** and **2**A. Wireless implant **12***r* is depicted as employing a "dog-bone" configured coil **416** with ears **417** having a similar construction and function to implant **12***c* shown in FIG. **12**A. Note that the arrow in FIG. **31**B illustrates direction of blood flow through the implant. Alternatively, any other implant **12** disclosed herein may be adapted with an electronics module such as module **410**.

[0165] Another advantage of on-board electronics systems, such as system **392**, is that the on-board system may be used to determine the resonant frequency and transmit a signal to a sub-cutaneous cardiac monitor/device (such as Medtronic LINQ or Biotronik BioMonitor). The subcutaneous cardiac monitor/device may be preexisting in the patient or may be implanted along with the RC-WVM implant. This architecture allows the device to potentially take multiple readings at pre-set time points or as indicated by triggers such as an accelerometer. FIG. **32** schematically depicts wireless implant **12***q* or **12***r* wirelessly communicating **418** with subcutaneous cardiac monitor/device **420**. In this depiction, the wireless implant may include within electronics module **410** an on-board electronics system such as system **392** as described above. The on-board electronics system may be configured to communicate directly with the communications interface of device **420** without necessitating changes in that interface.

[0166] In yet a further alternative embodiment, when utilized with an on-board power supply as a part of an on-board electronics system, such as systems **380** or **392**) wireless implants such as implants **12***q*, **12***r*, or other configurations disclosed herein, may be configured as a variable inductor without the necessity to include a specifically matched capacitance to create a tuned resonant circuit. In this case, the on-board electronics system applies a current to the implant sensor coil and then measures changes in inductance as a result of the coil-changing geometry in response to movement of the vascular lumen wall at the monitoring location where the implant is positioned. Signals based on the varying inductance measurements can then be transmitted by a communications module of the on-board electronics system, again, without the necessity of specially tuned antennas. Implants employing direct, variable inductance instead of a resonant circuit with a variable resonant frequency may be mechanically constructed as elsewhere described herein with respect to the exemplary embodiments of RC-WVM implants **12**, except that a specific capacitance or capacitor to produce a resonant circuit is not required.

Hardware and Software Examples for Computer-Implemented Components

[0167] It is to be noted that any one or more of the aspects and embodiments described herein, such as, for example, related to communications, monitoring, control or signal processing, may be conveniently implemented using one or more machines (e.g., one or more computing devices that are utilized as a user computing device for an electronic document, one or more server devices,

such as a document server, etc.) programmed according to the teachings of the present specification, as will be apparent to those of ordinary skill. Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those of ordinary skill in the software art. Aspects and implementations discussed above employing software and/or software modules may also include appropriate hardware for assisting in the implementation of the machine executable instructions of the software and/or software module. In general, the term "module" as used herein refers to a structure comprising a software or firmware implemented set of instructions for performing a stated module function, and, unless otherwise indicated, a non-transitory memory or storage device containing the instruction set, which memory or storage may be local or remote with respect to an associated processor. A module as such may also include a processor and/or other hardware devices as may be described necessary to execute the instruction set and perform the stated function of the module. [0168] Such software may be a computer program product that employs a machine-readable storage medium. A machine-readable storage medium may be any medium that is capable of storing and/or encoding a sequence of instructions in a non-transitory manner for execution by a machine (e.g., a computing device) and that causes the machine to perform any one of the methodologies and/or embodiments described herein. Examples of a machine-readable storage medium include, but are not limited to, a magnetic disk, an optical disc (e.g., CD, CD-R, DVD, DVD-R, etc.), a magneto-optical disk, a read-only memory "ROM" device, a random access memory "RAM" device, a magnetic card, an optical card, a solid-state memory device, an EPROM, an EEPROM, and any combinations thereof. A machine-readable medium, as used herein, is intended to include a single medium as well as a collection of physically separate media, such as, for example, a collection of compact discs or one or more hard disk drives in combination with a computer memory. As used herein, a machine-readable storage medium does not include transitory forms of signal transmission.

[0169] Such software may also include information (e.g., data) carried as a data signal on a data carrier, such as a carrier wave. For example, machine-executable information may be included as a data-carrying signal embodied in a data carrier in which the signal encodes a sequence of instruction, or portion thereof, for execution by a machine (e.g., a computing device) and any related information (e.g., data structures and data) that causes the machine to perform any one of the methodologies and/or embodiments described herein.

[0170] Examples of a computing device include, but are not limited to, an electronic book reading device, a computer workstation, a terminal computer, a server computer, a handheld device (e.g., a tablet computer, a smartphone, smart watch, etc.), a web appliance, a network router, a network switch, a network bridge, any machine capable of executing a sequence of instructions that specify an action to be taken by that machine, and any combinations thereof.

[0171] FIG. **33** shows a diagrammatic representation of one possible embodiment of a computer-based implementation of one or more aspects of control system **14** in the form of specialized computing device or system **500** within which a set of instructions for causing the various modules, such as signal generation module **20***a*, receiver-amplifier module **20***b* and communications module **22**, among other systems and devices disclosed herein, to perform any one or more of the aspects and/or methodologies of the present disclosure may be executed. It is also contemplated that multiple computing devices may be utilized to implement a specially configured set of instructions for causing one or more of the devices to perform any one or more of the aspects and/or methodologies of the present disclosure. Exemplary control system **500** includes processor **504** and memory **508** that communicate with each other, and with other components, via communication bus **512**. Communication bus **512** comprises all communications related hardware (e.g. wire, optical fiber, switches, etc.) and software components, including communication protocols. For example, communication bus **512** may include any of several types of bus structures including, but not limited to, a memory bus, a memory controller, a peripheral bus, a local bus, and any

combinations thereof, using any of a variety of bus architectures, and may comprise communications module **22**.

[0172] Memory **508** may include various components (e.g., machine-readable media) including, but not limited to, a random access memory component, a read only component, and any combinations thereof. In one example, a basic input/output system **516** (BIOS), including basic routines that help to transfer information between elements within control system **14**, **500**, such as during start-up, may be stored in memory **508**. Memory **508** may also include (e.g., stored on one or more machine-readable media) instructions (e.g., software) **520** embodying any one or more of the aspects and/or methodologies of the present disclosure. In another example, memory **508** may further include any number of program modules including, but not limited to, an operating system, one or more application programs, other program modules, program data, and any combinations thereof.

[0173] Exemplary control system **500** may also include a storage device **524**. Examples of a storage device (e.g., storage device **524**) include, but are not limited to, a hard disk drive, a magnetic disk drive, an optical disc drive in combination with an optical medium, a solid-state memory device, and any combinations thereof. Storage device **524** may be connected to bus **512** by an appropriate interface (not shown). Example interfaces include, but are not limited to, SCSI, advanced technology attachment (ATA), serial ATA, universal serial bus (USB), IEEE 1394 (FIREWIRE), and any combinations thereof. In one example, storage device **524** (or one or more components thereof) may be removably interfaced with control system **500** (e.g., via an external port connector (not shown)). Particularly, storage device **524** and an associated machine-readable medium **528** may provide nonvolatile and/or volatile storage of machine-readable instructions, data structures, program modules, and/or other data for RC-WVM control and communication system **500**. In one example, software **520** may reside, completely or partially, within machine-readable medium **528**. In another example, software **520** may reside, completely or partially, within processor **504**.

[0174] Exemplary control system **500** may also optionally include an input device **532**. In one example, a user of control system **500** may enter commands and/or other information into the via input device **532**. Examples of an input device **532** include, but are not limited to, frequency adjust **288** (FIG. **26**A), as well as other alpha-numeric input devices (e.g., a keyboard), pointing devices, audio input devices (e.g., a microphone, a voice response system, etc.), cursor control devices (e.g., a mouse), a touchpad, an optical scanner, video capture devices (e.g., a still camera, a video camera), a touchscreen, and any combinations thereof. Input device **532** may be interfaced to bus **512** via any of a variety of interfaces (not shown) including, but not limited to, a serial interface, a parallel interface, a game port, a USB interface, a FIREWIRE interface, a direct interface to bus **512**, and any combinations thereof. Input device **532** may include a touch screen interface that may be a part of or separate from display **536**, discussed further below. Input device **532** may be utilized as a user selection device for selecting one or more graphical representations in a graphical interface as described above.

[0175] A user may also input commands and/or other information to exemplary control system **500** via storage device **524** (e.g., a removable disk drive, a flash drive, etc.) and/or network interface device **540**. A network interface device, such as network interface device **540**, may be utilized for connecting control system **500** to one or more of a variety of networks, such as network or cloud **28**, and one or more remote devices **18** connected thereto. Examples of a network interface device include, but are not limited to, a network interface card (e.g., a mobile network include, but are not limited to, a wide area network (e.g., the Internet, an enterprise network), a local area network (e.g., a network associated with an office, a building, a campus or other relatively small geographic space), a telephone network, a data network associated with a telephone/voice provider (e.g., a mobile communications provider data and/or voice network), a direct connection between two

computing devices, and any combinations thereof. A network, such as network **28**, may employ a wired and/or a wireless mode of communication. In general, any network topology may be used. Information (e.g., data, software **520**, etc.) may be communicated to and/or control system **500** via network interface device **540**.

[0176] Exemplary control system **500** may further include display adapter **552** for communicating a displayable image to a display device, such as display device **536**. Examples of a display device include, but are not limited to, LCD frequency display **292** (FIG. **26**A), as well as other display types such as a cathode ray tube (CRT), a plasma display, a light emitting diode (LED) display, and any combinations thereof, which may display, for example, user prompts, alerts, or wave forms for excitation or response signals as shown in FIGS. **5**A-B, **6**A-B, **7**A-B, **8**, **10**A-C and **23**A-B. Display adapter **552** and display device **536** may be utilized in combination with processor **504** to provide graphical representations of aspects of the present disclosure. In addition to a display device, control system **500** may include one or more other peripheral output devices including, but not limited to, an audio speaker, a printer, and any combinations thereof. Such peripheral output devices may be connected to bus **512** via a peripheral interface **556**. Examples of a peripheral interface include, but are not limited to, a serial port, a USB connection, a FIREWIRE connection, a parallel connection, and any combinations thereof.

Disclosure Summary

[0177] The present disclosure describes plural embodiments of implantable wireless monitoring sensors configured to sense changes in a dimension of a body lumen within which the sensor is implanted, as well as systems and methods employing such sensors. Aspects of disclosed sensors, systems and methods include one or more of the following, which may be combined in multiple different combinations as described herein.

[0178] For example, wireless sensor implants may be optionally configured with any of the following aspects of resilient sensor constructs, coils, variable inductance or resonance, anchor elements or electrical characteristics: [0179] Resilient sensor constructs may [0180] Resilient metal frame [0181] Shaped wire [0182] Laser cut [0183] Nitinol [0184] Coil [0185] Plural Wire strands wrapped on frame [0186] Litz wire [0187] Bare wire Frame insulated [0188] A single wrap around frame [0189] Multiple wraps around frame [0190] D Coil shapes [0191] Rotationally symmetric shape Allows placement at any rotational orientation without effecting responsiveness [0192] Asymmetric shape to correspond to variations in collapse of IVC in A-P and M-L directions

Allows for discrimination between changes in A-P lumen dimension versus M-L lumen Different radial force in different directions to facilitate proper placement [0193] dimension Variable inductance [0194] Resonant circuit [0195] Variable inductance with fixed capacitance Discrete capacitor added to circuit Capacitance inherent in structure [0196] Anchor elements [0197] Barbs or Wires [0198] Cranially oriented [0199] Caudally oriented [0200] Bidirectionally oriented [0201] Coils as anchors [0202] Anchor isolation structures to separate anchoring aspects from sensing aspects to avoid distortion of lumen wall at sensing location [0203] Electrical characteristics of implant or resilient sensor construct configurations [0204] Capacitance selected with high Q [0205] Frequency [0206] Frequencies in range of 1 MHZ [0207] Frequency selected to Maximize Q [0208] Quality factor of signal related to length of ring back signal [0209] High frequencies [0210] Permit smaller antennas [0211] Require more insulation [0212] Wireless Implant sensors or resilient sensor construct configurations based on one of the above frame related aspects and one of the above coil related aspects to provide one of a variable inductance or a resonant circuit employing variable inductance and fixed capacitance, optionally with one of the above anchor element aspects may take any of the following configurations: [0213] Rotationally symmetric, sinusoidal or linked "Z-shape" configurations as shown in FIGS. 2 and **2**A. [0214] "Dog bone" shaped configurations as shown in any of FIGS. **12**A, **19**A and **19**B [0215] "X-bow" shaped configurations as shown in any of FIGS. **12**B and **12**C [0216] Separate coil configurations as shown in any of FIGS. 13A, 13B and 13C [0217] Configurations with decoupled

anchoring and sensing functions as shown in any of FIGS. 12C, 14A, 14B, 15A, 15B, 16A, 16B, **17**A, **17**B, **19**A, **19**B, [0218] Configurations employing separate coils for anchoring and sensing, wherein the anchoring coil may also serve as an antenna as shown in any of FIGS. **16**B and **18**A [0219] Systems and methods employing any of the above listed wireless sensor implants or resilient sensor constructs may further include any of the following antennas and/or deployment systems: [0220] Antennas [0221] Belt antenna systems [0222] Single coil switched between transmit and receive [0223] Diode switching [0224] Stretchable belt containing constant length antenna wire [0225] Orientation of axis of antenna coil aligned with or parallel to axis of sensor coil [0226] Planar antenna systems [0227] Separate transmit and receive coils [0228] Decoupling of transmit and receive coils to avoid interference [0229] Geometric decoupling [0230] Deployment [0231] Delivery catheter [0232] Delivery sheath [0233] Pusher element within sheath [0234] Gradual deployment of implant so as to partially contact lumen wall while partially contained within sheath [0235] Retraction of partially deployed implant so as to permit relocation [0236] Turning to specific alternative RC-WVM implant embodiments disclosed herein, a first exemplary alternative embodiment is RC-WVM implant 12s, shown in FIGS. 34A, 34B, 34C, and alternative anchor **48**s shown in FIGS. **37**A, **37**B and **37**C.

[0237] RC-WVM implant 12s utilizes PTFE coated gold Litz wire 42s wound on nitinol wire frame **44**s. PTFE has good heat resistance to withstand manufacturing processes while also being biocompatible. The overall configuration of implant **12**s includes strut sections **38** and crown sections **40** substantially as described above. Alternatively, anchors **48**s are secured adjacent crown sections **40** as described below. Sections of heat shrink tubing **61**s are used to help ensure compression of reflow material and may be removed in a later assembly step. A section of heatshrink tubing **60**s may be used to cover and insulate capacitor **46**s, which in one embodiment may be a 47 nF capacitor, or heat shrink tubing also may be removed as mentioned above. [0238] Capacitor **46**s may be comprised of any suitable structure to provide the desired capacitance, in one embodiment 47 nF, as mentioned. For example, the desired capacitance may be achieved with a specifically sized gap, different terminal materials (e.g., leads, etc.), overlapping wires, or it could be a gap in a tube with a certain dielectric value. In an exemplary embodiment as illustrated, surface mount capacitor **46**s is soldered between the two terminals **56**s, formed through the joining of the 300 strands of Litz wire 42s. Other electrical attachments such as crimped, or attached directly to the terminals of the cap brazed with no solder may also be employed. The capacitor section is then encapsulated using a reflow process comprising positioning polymer reflow tube **59**s over the capacitor, connection and terminals, followed by heat-shrink tubing **60**s positioned over the reflow tube. Reflow tube **59**s and heat shrink tube **60**s are placed over the Litz wire/nitinol frame assembly before the capacitor before the capacitor is soldered in place (FIG. **35**) illustrates the reflow and heat shrink tubes for the anchor, which are similarly positioned). The tolerances on the O.D.s of these tubes and their fit is selected to facilitate assembly, minimize overall profile of the final implant configuration, and optimize the flow of the material to increase bond strength. Heat is then applied to melt the polymer tube and shrink the heat-shrink, thus compressing the molten polymer over the capacitor forming a seal. The heat shrink tube is then removed. Alternative designs may employ over-moulding processes, a dipping process, epoxy potting or similar processes using appropriate biocompatible materials. [0239] Details of alternative anchors **48**s are shown in FIGS. **37**A-C. Anchors **48**s are generally

formed with at least two sections, an attachment section **49**s where the anchor is fixed to the implant and an anchor section **51**s, which provides fixation to the vessel wall. In some embodiments, as shown in FIGS. **37**A-C, an additional isolation section **53**s is interposed between the anchor and attachment sections to allow independent mechanical motion between the anchor section and the attachment section in order to help isolate effects of the anchors acting on the vessel wall from the sensing function of the implant. Multiple anchors **48**s may be used for an anchor system, wherein plural attachment sections **49**s form an anchor system attachment section and

plural anchors or anchor sections **48**s form an anchor system anchor section.

[0240] Anchor **48**s may be formed by laser cutting a pattern from a nitinol tube and shape setting the anchor barbs via a heat treatment process. Other embodiments can be formed using wire of various materials, shape set or bent using a standard process, or laser cut from other metals or bioabsorbable polymers. External surfaces of anchors may utilize different shapes of anchors or different surface finishes to engage the vessel wall and prevent migration of the implant. The overall length of anchors **48**s that extend beyond crowns sections **40** of implant **12**s is selected to facilitate the expansion of the implant upon deployment from delivery system **122** (FIG. **9**B) while minimizing the impact of the movement of the implant with the motion of the vessel. This occurs as described above when the distal end of the implant is partially ejected out of outer sheath **124** and engages with the vessel wall. Length of anchor protrusion is selected to allow the expansion to effectively occur. If the protrusion is too long, the implant may not deploy in an expanding, flowering manner as desired. In one embodiment the protrusion of the anchor beyond crown sections **40** (dimension D in FIG. **34**B) is less than the inner diameter of outer sheath **124** of the delivery catheter.

[0241] Attachment section **49**s may be formed using a tube laser cutting process to produce a spiral section of a tube. As indicated in FIG. **35**, each anchor **48**s is positioned by winding the spiral of the attachment section around the sensor strut. In one embodiment, the internal dimension of the spiral portion of the attachment section is less than the outer dimension of the implant strut **38** so that an interference fit is formed, thus securing the anchor in position. In another embodiment, the internal dimension of the spiral portion is less than the outer dimension of terminal **56**s, but greater than the outer dimension of implant strut **38** and can therefore be moved once wrapped into position on the strut. In one illustrative example, with an implant coil strut having a nominal diameter of approximately 1.143 mm, the inner diameter of the attachment section spiral may be about 1.156±0.05 mm (with an outer diameter of about 1.556±0.05 mm). In general, relative dimensions of the implant coil O.D. and anchor spiral I.D. may be selected so as to provide a locational interference fit.

[0242] After placement of the anchor on the implant strut, polymeric reflow tube **59**s is positioned over this assembly and further heat shrink tube **61**s placed over this. Heat is then applied to melt the polymer tube and shrink the heat shrink tube, thus forcing the polymer between spacing in the spiral of the anchor section and thereby reinforcing the fixation of the anchor to the implant assembly. Reflow tube **59**s also may be sized with a slight interference fit between the outer surface of the implant assembly and the inner surface of the anchor attachment section to provide some fixation, both longitudinal and rotational, during assembly. The spacing between the spirals is designed to allow the reflow material to flow into the spaces and form a bond. The width of the spirals is designed to allow the spiral section to be manipulated into position during assembly, while still providing sufficient rigidity when fully assembled. The thickness of the section is minimized to reduce the overall profile of the implant. One advantage of attachment section 49s employing a spiral portion as means of attachment is that it permits attachment of the anchor to any wire-based implant, including insulated wire implants without disturbing or penetrating the insulation layer. The spiral portion as described distributes the attachment force across space of the insulation layer to avoid compromise of the layer and the spaces between the spiral facilitate bonding attachment. Another advantage of attachment using a spiral portion as described is that the aspect ratio of the spiral section may be selected so as to allow the spiral to be slightly unwound to permit placement of the anchor in the middle of the implant strut section without needing to thread it over the end past the capacitor terminals. Alternative embodiments of attachment section 49s may employ other shapes, such as a T-shape rather than the spiral section, to prevent rotation and detachment from the sensor. Further alternatives may also include the replacement of polymer reflow tube **59**s with just heat-shrink that could be left in place, or use an adhesive or other bonding technology.

[0243] As shown in FIGS. **37**A-C, anchor section **51**s comprises two, laser cut and shape set anchor barbs **50**s. The barbs **50**s are positioned on the vessel facing surface of the anchor and are angled in some embodiments at between about 10 and 80 degrees to provide fixation with the vessel wall, resistance to cranial and caudal implant migration and to also facilitate collapse for loading and deployment of the implant through its delivery system. Barbs **50**s are shaped to point to engage with the vessel wall and have a length sufficient to penetrate into the vessel without perforating through it, typically between about 0.5 and 2.0 mm. The distal end of anchor section **51**s may have a flat end surface **47**s to engage with the pusher of the deployment system and may be filleted to avoid any sharp edges that may cause unnecessary vascular response or catch on the delivery system. Other alternative embodiments may include multiple barbs or different surface treatments or barb shapes to optimize vessel fixation.

[0244] Isolation section **53**s is designed to isolate or reduce transmission of mechanical motion of anchor section **51**s from or to attachment section **49**s and thus to the implant, to allow the implant to move freely and at least substantially free of distortions resulting from contact of the anchor section with the vessel wall. Isolation section **53**s thus may comprise a narrow cross-section area to provide flexibility while keeping thickness constant to provide adequate support. Fillets/curves surfaces as shown are maintained to avoid stress concentrations that could lead to fatigue or unwanted tissue damage. Alternative embodiments of isolation section **53**s may include varying tube thickness to provide more flexibility or varying the cross-section in a non-mirrored fashion to provide preferential flexibility in one direction.

[0245] FIGS. **38**A and **38**B show alternative embodiments for antenna belt module **16**s. In order to accommodate patients of different girth, belt antenna 16s employs a loop antenna wire 82s mounted on or within base layer **76**s, which is wrapped around the patient to form a noncontinuous circumferential loop. Communications link **24**s is provided substantially as described above. By using a loop core wire, the core wire forms a loop antenna without having to extend all the way around the patient. In this manner, the buckle or clasp (not shown) that closes the belt need not also provide electrical connections to complete the antenna loop. A simplified clasp may therefore use a variable connection method such as Velcro or other connection means, thus removing the need for multiple size belts. As shown in FIGS. 38A and 38B, antenna belt 16s utilizes a single (or multiple) loop core wire **82**s wrapped around the patient. Loop ends **83**s of core wire **82**s should be substantially adjacent when the base layer is wrapped around the patient, typically within about 2 cm to about 10 cm apart. Depending on specific design parameters the signal strength provided by discontinuous looped core wire 82s may be less than provided by continuous circumferential core wire **82** as described above. However, depending on application and specific clinical requirements, the simplified clasp and ease of use offered by antenna belt module **16**s may offer usability advantages that outweigh the signal requirements. [0246] Implant repositionability or even recapture with the deployment system can be facilitated through the addition of recapture features in the distal end of the anchor and the pusher tip, exemplary embodiments of which are shown in FIGS. **39**A and **39**B. Such recapture features allow the sensor to remain attached to the pusher while being partially deployed. From this point the sensor can be fully deployed using the mechanism, the device repositioned as the sensor is still attached to the pusher, or recaptured by advancing the sheath over the sensor and the removal of the sensor. These features can take many forms including interlocking elements, screws, or release bumps. In one embodiment, as illustrated in FIG. **39**A, recapture features **127**, **129** may include a "T shaped" extension 127 to the anchor, which engages with an appropriately shaped recess 129 in the distal end of pusher 126. In another alternative, shown in FIG. 39B, recapture features 127', **129**′ include through-hole **127**′ in the distal end of the anchor through which pin-shaped extension **129**' from pusher **126** engages to provide engagement while retained within outer sheath **124**. Such recapture features could be used to partially deploy the sensor, while retaining the ability to reposition or recapture it. The recapture features remain engaged while the distal end of the anchor

remains within the sheath. When the operator is satisfied with the final position, the sheath would be withdrawn fully, thus releasing the interlocking features and deploying the sensor.

[0247] While anchors **48**s are shown in FIGS. **34**A-C as attached only at one end of the implant (to facilitate flowering deployment as described), it is contemplated that anchors may be placed at both ends of an implant, with fewer or more anchors provided as compared to the four shown in the figures.

[0248] In other alternative embodiments, as illustrated in FIGS. **40**-**52**D, one or more anchor elements to help prevent migration may be provided as an integrated anchor frame, as opposed to individual anchor elements described hereinabove. In one example, as shown in FIG. **40**, an RC-WVM implant comprises anchor frame **650** is attached to RC-WVM sensor section **12**t. The RC-WVM sensor section (or just "sensor section") **12**t may comprise any previously described "Z-shaped" coils or similar RC-WVM implant **12** as described above generally comprising strut sections **38** joined by crown sections **40**. For the sake of clarity, hereinafter, with respect to embodiments described in reference to FIGS. **40**-**52**D, RC-WVM implant (or "implant" alone) refers to the combined RC-WVM sensor section and anchor frame **650**. Anchor frame **650** may be formed of nitinol wire or laser cut tubing whereby the tube is expanded to the equivalent diameter of the sensor section. Nitinol, or other materials with similar properties, is well-suited as material for anchor frame **650** because it allows the anchor frame to collapse to the same loaded configuration in the loader as the RC-WVM sensor section (see FIG. **9**D.)

[0249] FIG. **41** shows an example of anchor frame **650** before it is attached to a sensor section, such as RC-WVM sensor section **12***t*. Similar to RC-WVM sensor section **12***t*, anchor frame **650** comprises a series of straight strut sections **652** (also referred to as anchor sections) joined by curved crown sections **654** to form a resilient, concentric zig-zag or linked "Z-shapes" structure, which may also be considered to be sinusoidal in appearance. One or more anchor barbs **656** are disposed within the strut sections or anchor sections as described in more detail below. Anchor frame **650** as shown in FIGS. **40** and **41** includes only a single anchor barb **656** on each strut section **652**. Anchor frame **650** is attached to the sensor section by attachment arms **658** that overlap strut sections **652** of the sensor section. Note also that crown sections **654** on the end opposite attachment sections may be provided with recapture features such as recapture features **127**, **127**, as shown in FIGS. **39**A and **39**B, which mate with corresponding recapture features **129**, **129**′ formed on the distal end of deployment pusher **126**.

[0250] As best seen in detail in FIG. 42, polymeric reflow tube 660 is positioned over attachment arm 658 and further heat shrink tube 662 placed over the reflow tube. As illustrated in FIG. 42, attachment arm 658 is visible through transparent reflow and heat shrink tubes 660 and 662. Heat is then applied to melt polymer reflow tube 660 and shrink the heat shrink tube 662, thus forcing the polymer between and around attachment arm 658 and thereby fixing anchor frame 650 to the RC-WMV sensor section. Reflow tube 660 may be sized with a slight interference fit between the outer surface of strut section 38 and an inner surface of the reflow tube to provide some stability, both longitudinal and rotational, during assembly. Attachment arms 658 may be configured to include an anchor isolation section 659. Isolation section 659 is one form isolation means as previously described. Radial force requirements of anchor frame 650 and the function of isolation section 659 are also discussed in more detail below.

[0251] Attachment arm **658** may contain a saw tooth-like configuration as shown in FIG. **42** wherein spaces between teeth **664** allow the reflow material to flow in between and form a more secure bond. Other, alternative configurations for attachment arms **658**, which provide this increased surface are considered to increase the bond strength such as zig zags, T-connectors, S connectors, and voids in center of struts are shown, respectively, in FIGS. **52**A-D. Further alternatives include surface finishes or texturing on attachment arms **658**. In certain designs such alternative configurations may permit the thickness of the attachment arm to be minimized to reduce the overall profile of the implant.

[0252] In some embodiments, for example as shown in FIGS. **41** and **43**, it may be desirable to provide split **666** in anchor frame **650** so as to not produce a continuous ring of conductive material that could cause interference with sensor readings. Split **666** provides a break in the anchor frame to prevent the magnetic field from the external reader coupling into the anchor frame and potentially providing interference from the RC-WVM implant signal generated by the sensor section. Split **666** in anchor frame **650** advantageously is located at close to the sensor section, for example approximately at the center of an anchor frame crown **654** so that the split in the frame does not significantly compromise structural integrity of anchor frame **650**. In one such example, as shown in FIGS. **41** and **43**, split crown **654**S is provided with double attachment arms **658**, one securable to each strut section **38** on opposite sides of corresponding implant crown section **654**. In other embodiments, the split may be located elsewhere on the anchor frame as further described below. If desired, double attachment arms **658** may be provided for non-split anchor crowns **654** as well.

[0253] In other embodiments, the decoupling split **666** of the anchor frame may be located elsewhere on the frame and, in such cases, preferably structurally reinforced by bridging with an additional metallic or polymeric component that provides sufficient structural integrity to the anchor frame while maintaining the discontinuous configuration. Alternatively, a continuous anchor frame structure may be devised by carefully selecting the amount of metallic material of the frame and shape of the frame to minimize or control interference with the RC-WVM implant signal such that it may be otherwise compensated for in signal processing.

[0254] In some embodiments, anchor frame **650** may be attached to the RC-WVM sensor section and loaded in the deployment system with the orientation of the anchor frame exposed first during deployment. In this case, pusher **126** of delivery system **122** bears on crown sections **40** of the sensor section (see, e.g., FIG. **9**D). In other embodiments this configuration may be reversed, with the sensor section deployed first and the pusher of the deployment system bearing on crowns **654** of anchor frame **650**. The orientation may be varied depending on factors such as the access site for implantation, e.g. femoral vein versus jugular vein. In a further alternative, as shown in FIG. **44**, for increased anchoring an anchor frame **650** may be provided on each end of the RC-WVM implant (such as sensor section **12**t), in which case the anchor frame would be first deployed regardless of orientation of the RC-WVM implant in the delivery system.

[0255] Once an RC-WVM implant employing anchor frame **650** is deployed within a vessel, barbs **656** engage with the vessel wall in various orientations to prevent movement of the device. FIGS. **45**A, **45**B and **45**C show one embodiment of anchor frame **650** in which anchor barbs **656**a are set parallel with anchor frame struts **652**. Note also that anchor frame **650** may employ two attachment arms **658** at each implant facing crown, wherein some arms are provided with saw teeth **664** and some without. In another embodiment, the plane of the anchor barb direction can be offset such that it is in the axial direction of the flow of the blood within the IVC or any increment in between corresponding to axial direction over the indicated sizing range for the RC-WVM implant. FIG. **45**C depicts an anchor barb **656**a which in its final shape state lies parallel to the strut **650**a which it is attached to, but is shape set such that its pointed tip is out of plane defined through the strut and parallel barb, that is out of the plane of the page as shown in FIG. **45**C. This out of plane protrusion facilitates the anchor engaging with the vessel wall, preventing migration. The deployed configuration of this anchor is shown in FIG. **45**A, with the anchor parallel to the strut **650**a and therefore at an angle to the direction of blood flow in the vessel.

[0256] In another example, as shown in FIGS. **46**A, **46**B and **46**C, axially facing anchor barbs **656***b* are positioned such that when anchor frame **650***b* is deployed within a vessel, anchor barbs **656***b* run parallel (or close to parallel) to the vessel direction and to the flow within the vessel. In a further embodiment, shown in FIGS. **47**A and **47**B, anchor barbs **656***c* of anchor frame **650***c* are located at crowns **654** of the anchor frame and shape set outwardly so as to engage the vessel wall. FIGS. **47**A and **47**B also provide an example of possible, approximate dimensions for an

state lies at an angle to the strut **650***b* which it is attached to, and is shape set such that its pointed tip is also out of the plane defined between the anchor barb and the strut to which it is attached. This out of plane protrusion in two axes, facilitates the anchor engaging with the vessel wall in a more optimal, more axial orientation, potentially providing increased migration resistance. The deployed configuration of this anchor is shown in FIG. **46**A, with the anchor at an angle to the strut **650***b* and therefore generally parallel to direction of blood flow in the vessel. This final position of the anchor tip, out of plane from the strut in two axes can also be seen in FIG. **48**A. [0257] FIG. **48**A depicts an anchor frame embodiment **650***a*, which is formed with straight strut sections **652**s between crown sections **654**. Straight strut sections **652**s can provide an advantage of the strut section always being in contact with the vessel wall over its entire length, irrespective of the size of vessel into which it is deployed. When the frame is formed, for example, by laser cutting the construct from a nitinol tube, the straight configuration of straight strut sections **652**s can be achieved by shape-setting the strut sections to maintain the desired straight configuration. FIG. 48B shows an alternative anchor frame embodiment **650***b*, which is formed around the surface of a cylindrical shape setting mandrel resulting in curved strut sections **652***c*. Curved strut sections **652***c* can provide the advantage of increasing the local force urging anchor barbs **656** (shown as double barbs) into the vessel wall for fixation, but may be associated with a disadvantage of the crowns not being in contact with the vessel wall, especially when the device is implanted in a small vessel. [0258] Various orientations and configurations of anchor barbs **656** may be provided in different embodiments as illustrated in FIGS. **49**A-**49**G. For example, as shown in FIG. **49**A, anchor barb **656** may extend outwardly at the center of each strut **652** of anchor frame **650** at an angle (A) between about 10° and 90°. Anchor barbs **656** may alternately face in either or both the caudal or cranial direction in the plane of the shape set strut 652 or extend out of that plane. In another embodiment, as shown in FIG. **49**B, there may be multiple anchor barbs **656***a* on each strut **652** facing each direction. Multiple anchor barbs **656***a* as shown in FIG. **49**B are located on one side of strut **652** facing in opposite directions, whereas in FIG. **49**E, anchor barbs are on opposite sides of the strut, facing in the same direction. In another embodiment, shown in FIGS. **49**C and **49**D, anchor barbs **656***b* are contained within the thickness of strut **652**, as opposed to being located on the side of the strut as shown, for example, in FIGS. **49**A and **49**B. The anchor barb configuration shown in FIGS. **49**C-D may be formed in a similar manner to anchor barbs **50**s as shown in FIGS. **37**A-C and described above.

embodiment of an anchor frame. FIG. **46**C depicts an anchor barb **656***b* which in its final shape

[0259] In other embodiments, examples of which are shown in FIGS. **49**E-H, anchor barbs **656** may have overall shapes and/or points of different configurations, which may aid insertion and retention of the anchor barb within the vessel wall in various clinical situations. FIG. **49**E illustrates single pronged barb **656***c* and fish hook barb **656***d* positioned on opposite sides of strut **652**, facing in the same direction. FIGS. **49**F, **49**G and **49**H show further examples of anchor barb designs, in this case saw-teeth barb **656***e*, double edged barb **656***f*, and double sided, hooked barb **656***g*, respectively. These barbs also can be located on the side of the anchor frame strut and also within the thickness of the strut as previously described

[0260] As described above, it may be desirable to configure anchor frame **650** so that it does not form a coil that could interfere with the RC-WVM implant signal. One solution, as described above is split **666**. In other embodiments, for example where other design considerations may make a discontinuous structure less preferable such that anchor frame wire is mechanically and electrically joined (e.g. a crimped joint), the terminations of the wire ends where joined and in contact with each other may be electrically insulated so as to not form coil capable of coupling with a magnetic field. An example of such insulation is a polymer coating. In other embodiments, for example, where the anchor frame may be formed of nitinol laser cut tubing, for which a mechanical joint or bond may be required, the terminations of the nitinol frame can be physically and electrically separated by use of a non-conducting bonding agent such as a polymer, epoxy or ceramic material.

FIG. **50** illustrates such a non-conducting joint in cross-section. In this example, ends **670** of anchor frame **650** have interlocking portions which may be bonded with non-conducting bonding agent **672**, which also surrounds the joint for increased strength.

[0261] As previously discussed, the radial force exerted by the RC-WVM implant should be such that the sensor section moves with the natural motion of the IVC as it expands and contracts due to changes in fluid volume. Anchor frame **650** is configured to exert an outward radial force that is sufficient to ensure engagement of anchor barbs **656** into the vessel wall to help prevent migration along the vessel without interference with motion and electrical performance of the RC-WVM sensor section. Thus, the radial force exerted by anchor frame **650** typically may be equal to or higher than that exerted by the sensor section of the RC-WVM implant, so as to provide migration resistance while substantially isolated by isolation section **659** from the lower radial force sensor section, which, is configured to permit natural expansion and contraction of the IVC in response to varying fluid status.

[0262] Isolation section **659** allows attachment between the sensor section and anchor frame, but also permits the sensor section and anchor frame to act independently of each other. Thus, the RC-WVM sensor section can contract and expand at the monitoring location within the vessel independently of anchor frame expansion and contraction at the anchoring location in the vessel. One design consideration in selecting the configuration of the anchor frame is that the radial force exerted by the anchor frame should be sufficient to prevent migration of the RC-WVM implant, but low enough so as to not stent or prop open the vessel.

[0263] FIG. **51** illustrates one example of how the radial force of anchor frame **650** can be adjusted or modified to control the radial force exerted by altering the configuration, via changes in shape set diameter, strut width, strut thickness, strut shape, crown diameter, number of crowns, strut length, material properties, distance between the sensor section and anchor frame, and overall length. Another alternative to increase the fixation of the RC-WVM implant is to provide anchor frames on both ends of the sensor section, as shown in the example of FIG. **44**. FIG. **51** shows an alternative anchor frame **650***a* with relatively short strut **652** lengths, more crowns **654** (here 16 crowns instead of 8 as in earlier embodiments), and smaller crown diameters. Isolation sections **659** are also longer so that the distance between the anchor frame and sensor section is increased. [0264] The configuration of anchor frame **650***a* in FIG. **51** is selected for appropriate radial force while minimizing areas of high strain concentration that could lead to reduced fatigue life. Factors that affect the amount of radial force that can be exerted by the anchor frame without undue effect on the sensor section include the distance between anchor barbs **656** and the sensor section, which can be adjusted based on the position of the anchor barbs on strut **652** and/or by the length of isolation section **659** that also assists with isolation. In addition to varying the length of isolation section **659**, other adjustments include varying the thickness and/or straight versus curved sections. For example, a straight anchor isolation section **659** is shown in FIG. **51**, and in another example, a curved or s-shaped anchor isolation section **659** is shown FIG. **47**A.

[0265] In another alternative embodiment, the anchor frame may be configured so as to intentionally fracture and self-separate from the sensor section over time. In this embodiment, connection points between the anchor frame and sensor section, for example in isolation section **659**, are designed to deliberately fracture. The purpose of the deliberate fracture is to completely isolate the anchor frame from the sensor section after fracture. In such an embodiment, the anchor frame would secure the RC-WVM implant against migration when first deployed in the vessel. Over time, as the sensor section embeds into the tissue, the risk of migration diminishes. As a result, the anchor frame's function is no longer required. This embodiment allows for disconnection of the anchor frame from the device once it is no longer required without the need for surgical intervention.

[0266] The material and design of the isolation sections **659** may be selected to provide for different time periods for fracture to occur. For example, the geometry, design, movement and

material of the sensor section, isolation section and anchor frame can be tuned for a fatigue induced fracture to occur after/within a given time due to fatigue. Alternatively, fracture can be induced by external means. For example ultra sound/RF may be used to induce fracture by breaking down the material or bond between the anchor frame and sensor section at a pre-set frequency or energy. In a further alternative embodiment, chemically induced fracture of isolation sections **659** may be achieved with, for example, a biodegradable polymer such as PLA, PCL, PLGA, PLG or other as the bond/connection between the anchor frame and RC-WVM implant frame. Chemically induced fracture takes advantage of the material properties of biodegradable polymers, which can degrade at controlled rates including such as of pH, temperature, microorganisms present, and water etc. [0267] In another alternative embodiment, anchor frame **650** may be made of a bioabsorbable/biodegradable material such as commonly used for bioabsorbable stents. Similar to other embodiments of the anchor frame, the purpose of a bioabsorbable anchor frame is to help prevent migration. Once again, as the sensor section embeds into the tissue over time, the risk of migration diminishes. As a result, the anchor frame's function is no longer required. The material and design of a bioabsorbable anchor frame may be selected for different time periods for absorption.

[0268] The foregoing has been a detailed description of illustrative embodiments of the invention. It is noted that in the present specification and claims appended hereto, conjunctive language such as is used in the phrases "at least one of X, Y and Z" and "one or more of X, Y, and Z," unless specifically stated or indicated otherwise, shall be taken to mean that each item in the conjunctive list can be present in any number exclusive of every other item in the list or in any number in combination with any or all other item(s) in the conjunctive list, each of which may also be present in any number. Applying this general rule, the conjunctive phrases in the foregoing examples in which the conjunctive list consists of X, Y, and Z shall each encompass: one or more of X; one or more of Y; one or more of Y and one or more of Y; one or more of Y and one or more of Z; one or more of X and one or more of X, one or more of Y and one or more of Z.

[0269] Various modifications and additions can be made without departing from the spirit and scope of this invention. Features of each of the various embodiments described above may be combined with features of other described embodiments as appropriate in order to provide a multiplicity of feature combinations in associated new embodiments. Furthermore, while the foregoing describes a number of separate embodiments, what has been described herein is merely illustrative of the application of the principles of the present invention. Additionally, although particular methods herein may be illustrated and/or described as being performed in a specific order, the ordering is highly variable within ordinary skill to achieve aspects of the present disclosure. Accordingly, this description is meant to be taken only by way of example, and not to otherwise limit the scope of this invention.

[0270] Exemplary embodiments have been disclosed above and illustrated in the accompanying drawings. It will be understood by those skilled in the art that various changes, omissions and additions may be made to that which is specifically disclosed herein without departing from the spirit and scope of the present invention.

Claims

1. An implantable body lumen monitoring device with an open center configured and dimensioned to be implanted in a patient body lumen in contact with the lumen wall, said device comprising: an expandable and collapsible coil comprising a plurality of adjacent wire strands wrapped together in at least one loop around the open center, each said wire strand lying in contact with plural adjacent wire strands along their length and extending around an inner peripheral surface of said lumen when implanted therein.

- **2**. The implantable body lumen monitoring device of claim 1, wherein said plurality of wire strands comprise wire strands twisted together into plural bundles with said bundles wrapped together around the open center.
- **3**. The implantable body lumen monitoring device of claim 1, wherein said plurality of adjacent wire strands is formed by a single wire wrapped multiple times around the open center.
- **4.** The implantable body lumen monitoring device of claim 1, wherein said plurality of adjacent wire strands is formed by multiple wires wrapped one or more times around the open center.
- **5.** The implantable body lumen monitoring device of claim 1, wherein said plurality of wire strands are each individually insulated.
- **6.** The implantable body lumen monitoring device of claim 5, wherein said plurality of wire strands are covered by an outer layer.
- 7. The implantable body lumen monitoring device of claim 1, further comprising a flexible frame formed in an open center loop supporting said expandable and collapsible coil with the plurality of wire strands of said coil fully surrounding the flexible frame.
- **8**. The implantable body lumen monitoring device of claim 1, wherein said device is configured and dimensioned to be implanted within a patient Inferior Vena Cava (IVC) in contact with the IVC wall, and said expandable and collapsible coil is configured to collapse with the IVC in an anterior-posterior direction from a generally circular cross-section to an oval or flattened cross-section without distortion of the vessel shape.
- **9**. The implantable body lumen monitoring device of claim 1, wherein said device comprises a variable inductance resonant circuit formed by a variable inductance of said expandable and collapsible coil and a device capacitance, wherein said variable inductance of the expandable and collapsible coil varies in response to expansion and collapse of said coil.
- **10**. The implantable body lumen monitoring device of claim 9, wherein said device capacitance comprises a discrete capacitor in electrical communication with the expandable and collapsible coil.
- **11**. The implantable body lumen monitoring device of claim 9, wherein said device capacitance consists essentially of an inherent capacitance of the device structure tuned to a selected capacitance value.
- 12. The implantable body lumen monitoring device of claim 9, further comprising a flexible frame formed in an open center loop supporting said expandable and collapsible variable inductance coil, wherein: said device is configured and dimensioned to be implanted in a patient vena cava; and the flexible frame is configured and dimensioned to form a loop surrounding an inner periphery of the vena cava when implanted therein, said loop being radially collapsible and expandable when implanted and having a combination of flexibility and stiffness selected to (i) support and maintain said variable inductance coil in contact with the vena cava wall, (ii) allow the vena cava to collapse and expand over respiratory and cardiac cycles, and (iii) allow the variable inductance coil supported by said frame to change shape as a magnitude of collapse and expansion of the vena cava varies with vascular fluid volume of the patient.
- **13**. The implantable body lumen monitoring device of claim 12, wherein the variable inductance resonant circuit when energized produces a signal at a characteristic frequency having a known correlation to a diameter or area of the expandable and collapsible variable inductance coil.
- **14.** An implantable body lumen monitoring device with an open center configured to be implanted in a patient body lumen in contact with a lumen wall, said device comprising: an expandable and collapsible coil comprising a plurality of adjacent wire strands wrapped together in at least one loop around the open center, each said wire strand lying in contact with plural adjacent wire strands along their length and extending around an inner peripheral surface of said lumen when implanted therein, said expandable and collapsible coil forming a variable inductor wherein the inductance varies in proportion to the expansion and collapse of the coil; and a capacitor in electrical communication with said expandable and collapsible coil forming a variable inductance resonant

circuit having a variable characteristic frequency that changes with a known correlation to a diameter or area of the expandable and collapsible variable inductance coil.

- **15**. The implantable body lumen monitoring device of claim 14, further comprising a flexible frame formed in an open center loop supporting said expandable and collapsible variable inductance coil.
- **16**. The implantable body lumen monitoring device of claim 15, wherein said plurality of wire strands comprise wire strands twisted together into plural bundles with said bundles wrapped together on the flexible frame around the open center.
- 17. An implantable body lumen monitoring device with an open center configured and dimensioned to be implanted in a patient body lumen in contact with a lumen wall, said device comprising: a flexible frame comprising a flexible elongate member formed into a loop and joined together at opposite ends to form the open center; a resilient variable inductance coil wrapped on said flexible frame around the open center, said coil comprising a plurality of adjacent wire strands configured and dimensioned (i) to extend around an inner periphery of the vessel when implanted therein and (ii) to move with the vessel wall in response to expansion and collapse of the vessel; and a capacitance which together with said variable inductance coil forms a variable inductance resonant circuit having a variable characteristic frequency correlated to the diameter or area of the variable inductance coil.
- **18.** The implantable body lumen monitoring device of claim 17, wherein the flexible frame is configured as a single elongate member encompassing no open cells formed in said loop.
- **19**. The implantable body lumen monitoring device of claim 17, wherein said wire strands are wrapped on the flexible frame with each wire strand of said plurality of adjacent wire strands is in contact along a length direction with plural other strands of said plurality of adjacent wire strands.
- **20**. The implantable body lumen monitoring device of claim 19, wherein said plurality of adjacent wire strands is formed by a plurality of individual wires each wrapped a single time around the open center.
- **21**. The implantable body lumen monitoring device of claim 19, wherein said plurality of adjacent wire strands is formed by one or more individual wires each wrapped plural times around the open center.
- **22**. The implantable body lumen monitoring device of claim 17, wherein said device is configured and dimensioned to be implanted within a patient Inferior Vena Cava (IVC) in contact with the IVC wall, and said resilient coil and flexible frame are configured to collapse with the IVC in an anterior-posterior direction from a generally circular cross-section to an oval or flattened cross-section without distortion of the vessel shape.