

Adapted from material by Philipp Koehn

Machine Translation

Computational Linguistics: Jordan Boyd-Graber University of Maryland

das	
e	t(e f)
the that which who this	0.7 0.15 0.075 0.05 0.025

е	t(e f)
house	0.8
building	0.16
home	0.02
household	0.015
shell	0.005

Haus

	ist
e	t(e f)
is	0.8
's	0.16
exists	0.02
has	0.015
are	0.005

Kiein		
e	t(e f)	
small little short minor petty	0.4 0.4 0.1 0.06 0.04	

1.1 - 1 --

$$p(\mathbf{e}, a | \mathbf{f}) = \frac{\epsilon}{(I_f + 1)^{I_e}} \prod_{j=1}^{I_e} t(e_j | f_{a(j)})$$

$$\frac{1.0}{(4+1)^4}.7\cdot.8\cdot.8\cdot.4$$

B)

B)
$$\frac{1.0}{(4+1)^4}.7 \cdot .8 \cdot .8 \cdot .4 = 0.000287 \tag{1}$$

$$\frac{1.0}{(4+1)^4}.7 \cdot .8 \cdot .8 \cdot .4 = 0.000287 \tag{1}$$

D)

D)
$$\frac{1.0}{(4+1)}.7 \cdot .8 \cdot .8 \cdot .4 = 0.14 \tag{1}$$