

M01 Physik für Mediziner

01.2 Teil 1 - Mechanik

| GK Physik 2.1 - 2.4

wikipedia.org

2.1 Bewegungen

| GK Physik 2.1

Ermittlung der Geschwindigkeit

gleichförmige Bewegung mit konstanter Geschwindigkeit

mittlere Geschwindigkeit

$$v = \frac{s_i - s_0}{t_i - t_0} = \frac{\Delta s}{\Delta t} \qquad \frac{m}{s}$$

Differenzquotient

Wie schnell war ich heute morgen?

$$v = \frac{\Delta s}{\Delta t} = \frac{7 \text{ km}}{21 \text{ min}} = \frac{1 \text{ km}}{3 \text{ min}} = 20 \frac{\text{km}}{h}$$

mittlere Geschwindigkeit

$$v = \frac{s_i - s_0}{t_i - t_0} = \frac{\Delta s}{\Delta t} \qquad \frac{m}{s}$$

Wir können die Strecke berechnen...

$$\Delta s = v \cdot \Delta t$$
 $\frac{\mathrm{m}}{\mathrm{s}} \cdot \mathrm{s}$

...oder die benötigte Zeit.

$$\Delta t = \frac{\Delta s}{v} \qquad \frac{m}{\frac{m}{s}} = m \cdot \frac{s}{m}$$

mittlere Geschwindigkeit

$$v = \frac{s_i - s_0}{t_i - t_0} = \frac{\Delta s}{\Delta t} \qquad \frac{m}{s}$$

Differenzquotient

mittlere Geschwindigkeit

$$v = \frac{s_i - s_0}{t_i - t_0} = \frac{\Delta s}{\Delta t} \qquad \frac{m}{s}$$

Differenzquotient

momentane Geschwindigkeit

$$v(t) = \frac{ds}{dt}$$

Differentialquotient

Momentane Geschwindigkeit - Beispiel

momentane Geschwindigkeit

$$v(t) = \frac{ds(t)}{dt}$$

Differentialquotient

Graphische Integration - Beispiel

Wie groß war die Strecke Δs_2 ?

$$s2 = 5 \min \cdot 60 \frac{km}{h}$$
$$= 5 \min \cdot 60 \frac{km}{60 \min}$$

= 5 km

Beschleunigung

Beschleunigung ist die Voraussetzung für Geschwindigkeitsänderungen.

$$\vec{a} = \frac{d\vec{v}}{dt}$$
 $\frac{\text{m/s}}{\text{s}}$

Sie besagt um wieviel sich \vec{v} pro t ändert.

Bremsen ist auch eine Beschleunigung!

Periodische Bewegungen

wikipedia.org

Ein Rad dreht sich. Die Umdrehungen pro Zeit sind proportional zur Geschwindigkeit.

Frequenz=Umdrehungen/Sekunde

$$f = \frac{\Delta N}{\Delta t}$$

Die Geschwindigkeit des Fahrrads ist das Produkt aus der Frequenz f und dem Umfang s_r .

$$v = f \cdot sr$$

Kreisfrequenz und Bahngeschwindigkeit

Kreisfrequenz = Winkelgeschwindigkeit:

$$\omega = \frac{2\pi}{T} = 2\pi \cdot f$$

Bahngeschwindigkeit:

$$|\vec{v}| = \frac{2\pi \cdot r}{T} = 2\pi \cdot r \cdot f = \omega \cdot r$$

Radialbeschleunigung und Zentripetalkraft

Radialbeschleunigung und Zentripetalkraft

Zentripetal-/Radialbeschleunigung:

$$\overrightarrow{|a_r|} = \frac{v^2}{r} = \omega^2 \cdot r$$

Zentripetalkraft:

$$\overrightarrow{F}_z = \overrightarrow{a_r} \cdot m$$

Hält die Masse auf der Kreisbahn.

2.2 Kraft und Impuls

| GK Physik 2.2

Newtons Apfel

akg/Johann Brandstetter

1665 beobachtet Isaac Newton einen fallenden Apfel.

Warum fällt der Apfel überhaupt runter?

wikipedia.org

Warum fällt der Flummi runter?

Massenmittelpunkt (Schwerpunkt) \overrightarrow{F}_G

Er wird beschleunigt!

Fallbeschleunigung g im Schwerefeld der Erde:

$$\vec{g} = 9.81 \frac{m}{s^2} \qquad \approx 10 \frac{m}{s^2} \qquad \frac{m/s}{s}$$

Gewicht/Gewichtskraft:

$$\overrightarrow{F_G} = m \cdot \overrightarrow{g}$$
 $\frac{kg \cdot m}{s^2} = N$ Newton

Vorsicht: Gewicht≠Masse!!!

$$\vec{F}_{Flummi} = 0.05 \ kg \cdot 10 \frac{m}{s^2} = 0.5 \ N$$

Warum fällt der Flummi runter?

Massenmittelpunkt (Schwerpunkt) \overrightarrow{F}_G

Gravitation:

$$|\overrightarrow{F_G}| = G \cdot \frac{m1 \cdot m2}{r^2}$$

Gravitationskonstante G:

$$G = 6,68 \cdot 10^{-11} \cdot \frac{Nm^2}{kg^2}$$

Warum fällt der Flummi runter?

Massenmittelpunkt (Schwerpunkt)

Gravitation:

$$\left|\overrightarrow{F_G}\right| = G \cdot \frac{m1 \cdot m2}{r^2}$$

$$\frac{\left|\overrightarrow{F_G}\right|}{m_{Flummi}} = G \cdot \frac{m_{Erde}}{r^2} = g$$

$$6.68 \cdot 10^{-11} \cdot \frac{Nm^2}{kg^2} \cdot \frac{5.97 \cdot 10^{24} \text{ kg}}{(6.37 \cdot 10^6 \text{ m})^2} = g = 9.81 \frac{m}{s^2}$$

Wie fällt der Flummi? / freier Fall

Geschwindigkeit-Zeit-Gesetz (Fallgeschwindigkeit):

$$\vec{v}(t) = \vec{g} \cdot \Delta t + \vec{v}_0$$

Weg-Zeit-Gesetz (zurückgelegte Strecke):

$$s(t) = \frac{1}{2}g \cdot t^2 \qquad t(s) = \sqrt{\frac{2s}{g}}$$

Falldauer:

$$\Delta t = \frac{\vec{v}(t) - \vec{v}_0}{\vec{g}}$$

Warum fällt der Flummi nicht runter?

Er wird beschleunigt aber es gibt eine Gegenkraft.

$$\overrightarrow{F_G} = -\overrightarrow{F_{Wim}}$$

Newtonsche Axiome

1. Ein kräftefreier Körper bleibt in Ruhe oder bewegt sich geradlinig mit konstanter Geschwindigkeit ("schwerelos").

Trägkeitsprinzip

2. Kraft gleich Masse mal Beschleunigung.

Aktionsprinzip

3. Kraft = Gegenkraft

Reaktionsprinzip

Impuls

Bei einem Stoß überträgt eine Kraft \vec{F} einen Impuls \vec{p} auf eine Masse m:

$$\vec{p} = m \cdot \vec{v} \qquad 1 \frac{kg \cdot m}{s} = 1 \, Ns$$

$$\vec{F}_1 = -\vec{F}_2$$

$$\vec{p}_1 = -\vec{p}_2 = m_1 \cdot \vec{v}_1 = -m_2 \cdot \vec{v}_2$$

Impulserhaltung

In einem mechanisch abgeschlossenen System ist der Gesamtimpuls konstant.

Elastischer Stoß

Elastischer Stoß

zentraler Stoß

nicht zentraler Stoß

Unelastischer Stoß

Unelastische Stöße mit elastischen Körpern! Kugeln mit Kaugummi

Reibung

Reibung begegnet Ihnen in Aufgaben meist nur im Sinne ihrer Abwesenheit. => "reibungsfreies System"

Die Reibung wirkt immer der Bewegung entgegen.

Reibung ist eine Kombination aus Formschluss (Rauheit) und molekularen Anziehungskräften.

2.3 Arbeit, Energie und Leistung

| GK Physik 2.4

Pendel

Das Pendel oszilliert um die Gleichgewichtslage mit einer Schwingdauer ${\cal T}$:

$$T = 2\pi \cdot \sqrt{\frac{l}{g}}$$

Unabhängig von Auslenkung und Masse!

Gleichgewichtslage

Potentielle und kinetische Energie

potentielle Energie $W_{\rm pot}$:

$$\Delta W_{pot} = m \cdot g \cdot \Delta h$$
 $1 \frac{kg \cdot m^2}{s^2} = 1 Nm = 1 J Joule$

Potentielle und kinetische Energie

potentielle Energie W_{pot} :

$$\Delta W_{pot} = m \cdot g \cdot \Delta h$$
 $1 \frac{kg \cdot m^2}{s^2} = 1 Nm = 1 J Joule$

Potentielle und kinetische Energie

potentielle Energie W_{pot} :

$$\Delta W_{pot} = m \cdot g \cdot \Delta h$$

$$\Delta W_{pot} = m \cdot g \cdot \Delta h$$
 $1 \frac{kg \cdot m^2}{s^2} = 1 Nm = 1 J Joule$

kinetische Energie W_{kin} :

$$\Delta W_{kin} = \frac{1}{2}m \cdot v^2$$

maximale $W_{\rm pot}$

 $\max.Wkin = \max.Wpot$

Energieerhaltung!

maximale W_{kin}

39

Arbeit

Arbeit W ist, wenn eine Kraft F über eine Strecke l ausgeübt wird.

$$W = F \cdot l$$

$$W = F \cdot l$$
 1 Nm = 1 J

Ioule

Beispiel Hubarbeit:

$$\vec{F}_G$$
 Δh

$$\vec{F}_G = g \cdot m = 10 \frac{m}{s^2} \cdot 0,05 \ kg = 0,5 \ N$$

$$W=F_{G} \cdot l = 0.5 N \cdot 0.2 m = 0.01 J$$

Arbeit

Arbeit W ist, wenn eine Kraft F über eine Strecke l ausgeübt wird.

$$W = F \cdot l$$

$$1 \text{ Nm} = 1 \text{ J}$$

Joule

Nur die horizontale Kraft F_h leistet Arbeit.

Keine Arbeit gegen die Schwerkraft!

Leistung

Die Leistung P ist der Quotient aus Energie W und Zeitspanne t.

$$P = \frac{W}{t}$$
 $1\frac{J}{s} = 1 \text{ W}$ Watt

Auch hier können wir eine mittlere Leistung bestimmen...

$$P = \frac{\Delta W}{\Delta t}$$

...und eine momentane Leistung.

$$P(t) = \frac{dW}{dt}$$

2.4 Drehmoment und Hebel

| GK Physik 2.3

Drehmoment

Das Drehmoment T für die Rotation eines Körpers ist das Produkt der Kraft \vec{F} mit der Länge des Hebelarms l.

Drehmoment:

$$T = \vec{F} \cdot l$$

Drehmoment und Hebelgesetz

Das Drehmoment T für die Rotation eines Körpers ist das Produkt der Kraft \vec{F} mit der Länge des Hebelarms l.

Drehmoment:

$$T = \vec{F} \cdot l$$

Hebelgesetz:

$$F_1 \cdot l_1 = F_2 \cdot l_2$$

Last mal Lastarm gleich Kraft mal Kraftarm.

Beispiel Hebelgesetz

Hebelgesetz:

$$F_1 \cdot l_1 = F_2 \cdot l_2$$

Last mal Lastarm gleich Kraft mal Kraftarm.

Beispiel Hebelgesetz

Muskelkraft = 10 · Gewichtskraft der Hantel

Gleichgewicht

Die Vektorsumme aller Kräfte und Drehmomente muss null sein.

Schwerpunkt im menschlichen Körper

Vielen Dank für Ihre Aufmerksamkeit.

Weitere Informationen und Seminarunterlagen finden Sie in der KuraCloud.

Prof. Wim Walter, PhDProf. Physiologie/Physik

wilhelm.walter @health-and-medical-university.de

Dr. Klaas BenteDozent Physik

klaas.bente @health-and-medical-university.de

Dr. Jan StelznerDozent Physik

jan.stelzner @health-and-medical-university.de