

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr. IPLCO
 JEE ADVANCED
 DATE : 06-09-15

 TIME : 3:00
 2013_P1 MODEL
 MAX MARKS : 180

KEY & SOLUTIONS

PHYSICS

1	D	2	D	3	С	4	D	5	A	6	A
7	В	8	C	9	D	10	D	11	AC	12	ABCD
13	ABCD	14	AD	15	BD	16	5	17	2	18	5
19	3	20	4								

CHEMISTRY

21	С	22	D	23	A	24	C	25	C	26	A
27	D	28	D	29	В	30	D	31	AB	32	AB
33	ABCD	34	AC	35	ABCD	36	4	37	1	38	3
39	1	40	4								

MATHEMATICS

41	D	42	В	43	С	44	D	45	D	46	A
47	С	48	D	49	A	50	В	51	AC	52	ABD
53	AB	54	CD	55	ABCD	56	5	57	9	58	3
59	9	60	5								

Sec: Sr.IPLCO Page 1

CHEMISTRY

21.

22. H₂/Ni AND m.p.v reduction reduce it to alcohol

$$\begin{array}{c} \text{COCH}_3 \\ \hline \\ OH \end{array} \longrightarrow \begin{array}{c} \text{CH}_2\text{CH}_3 \\ \hline \\ OH \end{array}$$

Birch reduction is affected in the ring it is not correct answer.

- 23. Aldehydes and ketones give hemiacetal with alcohol. In presence of acid-hemiacetal interacts with excess alcohol and gives acetal
- 24. The carboxyl group is planar *CN*⁻ can attack on it from either side. So two product molecules with opposite configuration are formed. A racemic mixture is obtained.
- 25. Condensation reactions take place in acid medium. But the solution should not be very strongly acidic has H⁺ may be accepted by –NH₂ group and prevents condensation.
- 26. A base affects dihydrohalogenation. Ethane dithiol affects substitution. So only Clemmensen reduction is useful.
- 27. If is benzilic acid rearrangement.

$$\begin{array}{c|c} C_6H_5 - C - C - CH_3 \\ \hline \\ O & O \end{array} \longrightarrow \begin{array}{c} OH^- \\ \end{array}$$

Sec: Sr.IPLCO Page 10

Sri Chaitanya IIT Academy

$$C_{6}H_{5} - C - C - CH_{2}$$

$$C_{6}H_{5} - C - COO^{-1}Na^{+}$$

$$C_{6}H_{5} - C - COO^{-1}Na^{+}$$

$$C_{6}H_{5}CN \xrightarrow{CH_{3}MgBr} C_{6}H_{5} - C - CH_{3} \xrightarrow{H_{2}O} C_{6}H_{5} - C - CH_{3}$$

$$NMgBr$$

28.

- 29. NaBH₄ does not reduce so the products is $C_6H_5CH = CH = CH_2OH$
- 30. It is Tischenko reaction

31. Conversion of acetaldehyde to pentaerythritol involves both aldol and cannizzaro reactions

$$CH_{3}CHO + 3HCHO \xrightarrow{OH} CH_{2} - C - CHO \xrightarrow{HCHO} OH$$

$$CH_{2}OH$$

$$CH_{2}OH$$

$$CH_{2} - C - CH_{2}OH + HCOOH$$

$$OH CH_{2}OH$$

32. With Cl₂,NaOH – acetaldehyde gives chloroform HCHO cannot give K₂Cr₂O₇, H₂SO₄ oxidises HCHO to CO₂. CH₃ CHO is oxidized to CH₃COOH. HCHO is a reducing agent.

33.
$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{1.H^{-}} CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{1.H^{-}} CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{1.H^{-}} CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{1.H^{-}} CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{1.H^{-}} CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{1.H^{-}} CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{1.H^{-}} CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{1.H^{-}} CH_{3} \xrightarrow{0.3} CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{1.H^{-}} CH_{3} \xrightarrow{0.3} CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{1.H^{-}} CH_{3} \xrightarrow{0.3} 2CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{0.3} 2CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{0.3} 2CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{0.3} 2CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{0.3} 2CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{0.3} 2CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{0.3} 2CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{0.3} 2CH_{3} - C - H$$

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{0.3} 2CH_{3} - C - H$$

Sec: Sr.IPLCO

$$CH_3 - C \equiv N \xrightarrow{SnCl} CH_3 - CH = NH \xrightarrow{H_3O^+} CH_3CHO$$

34.

COOH
$$\begin{array}{c}
COOH \\
\hline
1.OH^{-} \\
\hline
2.H_{3}O^{+}
\end{array}$$
COOH
$$\begin{array}{c}
COOH \\
+ \\
CH_{2}OH \\
\end{array}$$
hydroxyacid

- 35. All these reagents give products with specific m.p and used to identify aldehydes and ketones.
- 36. Formaldehyde cyclopropanone, ninhydrine, hexafluroacetone form stable hydrates
- 37. only p-nitro benzaldehyde is more reactive than benzaldehyde. The other two with releasing groups are less reactive

38.
$$3CH_3CHO \xrightarrow{con.H_2SO_4} \xrightarrow{\text{CH}} \xrightarrow{\text{CH}}$$

39. CHO
$$(CHOH)_4$$
 CH_2OH
 $SHIO_4$
 $5HIO_4$
 $5HIO_4$
 $5HIO_4$

4 alcohols CH₃OH CD₃OH CD₂HOH CH₂DOH 40.

Sec: Sr.IPLCO **Page 12**