1 Fondements probabilistes

Définition de la fonction $\Gamma(p)$. $\forall p > 0, \Gamma(p) = \int_0^\infty x^{p-1} e^x dx$.

Propriétés de la fonction $\Gamma(p)$.

- $\forall p > 0, \Gamma(p) = (p-1)\Gamma(p-1)$
- $\forall p \in \mathbb{N}^*, \Gamma(p) = (p-1)!$
- $\Gamma(1) = 1$
- $\Gamma(1/2) = \sqrt{\pi}$

Définition de la fonction bêta. $\forall x,y < 0, \beta(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$.

Fonction génératrice des moments (f.g.m.) $M_X(t) = \mathbb{E}\left[e^{tX}\right] \ \forall t \in \mathbb{R}$ t.q. l'espérance existe

Propriété de la f.g.m. $\mathbb{E}\left[X^k\right] = \frac{d^k}{dt^k} M_X(t)\Big|_{t=0}$

2 Lois échantillonnales

Génération de nombres aléatoires. Soit $X \sim F_X(x)$ une v.a. continue, et $U \sim \mathcal{U}(0,1)$. On simule une v.a. de distribution F(x) en utilisant tirant des observations u, puis $x = F_X^{-1}(u)$.

Exercice [VG]. Vérifier qu'on peut aussi résoudre numériquement F(x) - u = 0 pour obtenir les valeurs de x. Pourquoi voudrait-on procéder ainsi?

Théorème. Soient $\{X_i; i \in \{1, ..., n\}\}$ des variables aléatoires indépendantes avec $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$. Alors, $Y = a_0 + \sum_i a_i X_i \sim \mathcal{N}(a_0 + \sum_i a_i \mu_i, \sum_i a_i^2 \sigma_i^2)$.

2.1 Relations entre les différentes lois statistiques

Proposition. Soient $Z \sim \mathcal{N}(0,1)$ et $X = Z^2$. Alors, $X \sim \chi_1^2$.

Théorème. Soient $U \sim \chi_u^2$ et $V \sim \chi_v^2$. Alors, $U + V \sim \chi_{u+v}^2$.

Exemple. Soient $\{X_1,\ldots,X_n\} \stackrel{iid}{\sim} \mathcal{N}(\mu,\sigma^2)$ et $S_*^2 = \frac{1}{n} \sum_i (X_i - \mu)^2$. Alors, $nS_*^2/\sigma^2 \sim \chi_n^2$.

Proposition. Soient $W \perp V$ telles que $W \sim \mathcal{N}(0,1)$ et $V \sim \chi_r^2$. Alors, $T = W/\sqrt{V/r} \sim t_r$.

Théorème. Soient $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$. Alors,

- 1. $\bar{X}_n \sim \mathcal{N}(\mu, \sigma^2/n)$
- 2. $(n-1)S_n^2/\sigma^2 \sim \chi_{n-1}^2$
- 3. $\bar{X}_n \perp S_n^2$

Corollaire. Soient $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$. Alors, $T = \frac{\bar{X} - \mu}{\sqrt{S_n^2/n}} \sim t_{n-1}$.

Proposition. Soient $U \perp V$ telles que $U \sim \chi_n^2$ et $V \sim \chi_m^2$. Alors, $W = \frac{U/n}{V/m} \sim F_{n,m}$.

Théorème. Soient $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma_X^2)$ et $Y_1, \ldots, Y_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma_Y^2)$ deux échantillons indépendants. Soient S_X^2 et S_Y^2 leur variance échantillonnale respective. Alors, $F = \frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F_{n-1,m-1}$.

2.2 Autres résultats.

Proposition. Soient $X = (X_1, \dots, X_n)^{\top}$ un vecteur de variables aléatoire (iid) issues d'une loi quelconque avec $\mathbb{E}[X_i] = \mu, \mathbb{V}[X_i] = \sigma^2, m_3^* = \mathbb{E}[(X_i - \mu)^3] < \infty, m_4^* = \mathbb{E}[(X_i - \mu)^4] < \infty.$ Soient $V_n^2 = \frac{1}{n} \sum_i (X_i - \bar{X}_n)^2$ et $S_n^2 = \frac{1}{n-1} \sum_i (X_i - \bar{X}_n^2)^2$. Alors,

- $\mathbb{E}\left[\bar{X}_n\right] = \mu \text{ et } \mathbb{V}\left[\bar{X}_n = \sigma^2/n\right]$
- $\mathbb{E}\left[S_n^2\right] = \sigma^2$ et $\mathbb{V}\left[S_n^2\right] = m_4^*/n \frac{n-3}{n(n-1)}\sigma^4$
- $\mathbb{E}\left[V_n^2\right] = \frac{n-1}{n}\sigma^2$ et $\mathbb{V}\left[V_n^2\right] = \frac{m_4^*(n-1)^2}{n^3} \frac{\sigma^4(n-1)(n-3)}{n^2}$
- $\mathbb{C}\operatorname{ov}(\bar{X}_n, S_n^2) = m_3^*/n$
- $Cov(\bar{X}_n, V_n^2) = \frac{m_3^*(n-1)}{n^2}$

X	$f_X(x)$	$\mathbb{E}\left[X ight]$	$\mathbb{V}\left[X ight]$	$M_X(t)$
$\mathcal{N}(\mu, \sigma^2); \mu \in \mathbb{R}, \sigma^2 > 0$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \mathbb{1}_{\{x \in \mathbb{R}\}}$	μ	σ^2	$\exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$
$\mathcal{N}_p(\mathbf{m}, \sigma^2 \mathbf{\Sigma}); \mathbf{m} \in \mathbb{R}^p, \sigma^2 > 0$	$\frac{1}{(2\pi\sigma^2)^{p/2} \mathbf{\Sigma}^{1/2} }\sigma^{-p}\exp\left(-\frac{(\mathbf{x}-\mathbf{m})^{\top}\mathbf{\Sigma}^{-1}(\mathbf{x}-\mathbf{m})}{2\sigma^2}\right)\mathbb{1}_{\{\mathbf{x}\in\mathbb{R}^p\}}$	m	$\sigma^2 oldsymbol{\Sigma}$	$\exp\left(\mathbf{m}^{ op}oldsymbol{t} + rac{1}{2}\sigma^2oldsymbol{t}^{ op}oldsymbol{\Sigma}oldsymbol{t} ight)$
$t_r; r \in \mathbb{N}^*$	$\frac{\Gamma((r+1)/2)}{\Gamma(r/2)} \frac{1}{\sqrt{r\pi}} \frac{1}{(1+x^2/r)^{(r+1)/2}} \mathbb{1}_{\{x \in \mathbb{R}\}}$	0 si r > 1	$\frac{r}{r-2}$ si $r > 2$	-
Exponentielle(λ); $\lambda > 0$	$\lambda e^{-\lambda x} \mathbb{1}_{\{x>0\}}$	$\frac{1}{\lambda}$	$rac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}; t < \lambda$
$\operatorname{Gamma}(\alpha,\lambda); \alpha>0, \lambda>0$	$\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} \mathbb{1}_{\{x > 0\}}$	$\frac{lpha}{\lambda}$	$rac{lpha}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)^{\alpha}; t < \lambda$
$\chi_k^2; k \in \mathbb{N}^*$	$\frac{1}{\Gamma(k/2)2^{k/2}}x^{(k/2)-1}e^{-x/2}\mathbb{1}_{\{x>0\}}$	k	2k	$(1-2t)^{-k/2}; t < 1/2$
$F_{n,m}; n \in \mathbb{N}^* \in m \in \mathbb{N}^*$	$\frac{\Gamma((n+m)/2)(n/m)^{n/2}}{\Gamma(n/2)\Gamma(m/2)} \frac{x^{n/2-1}}{(1+nx/m)^{(n+m)/2}} \mathbb{1}_{\{x>0\}}$	$\frac{m}{m-2}$ si $m > 2$	$\frac{2m^2(n+m-2)}{n(m-2)^2(m-4)}$ si $m > 4$	-
$Beta(\alpha,\beta); \alpha > 0, \beta > 0$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}\mathbb{1}_{\{0< x< 1\}}$	$\frac{\alpha}{\alpha+eta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	_
Uniforme $(a,b);(a,b)\in\mathbb{R}^2$	$\frac{1}{b-a} \mathbb{1}_{\{a < x < b\}}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$

Tableau 1 – Distribution de certaines lois continues

X	$p_X(x)$	$\mathbb{E}\left[X ight]$	$\mathbb{V}\left[X ight]$	$\mathbb{E}\left[\exp(tX)\right]$
Bernoulli (p)	$p^x (1-p)^{1-x} \mathbb{1}_{\{x \in \{0,1\}\}}$	p	p(1-p)	$pe^t + 1 - p$
Binomiale(n, p)	$\binom{n}{x}(1-p)^{n-x}p^x\mathbb{1}_{\{x\in\mathbb{N}\}}$	np	np(1-p)	$pe^t + 1 - p)^n$
Géométrique (p) (échec)	$p(1-p)^x \mathbb{1}_{\{x \in \mathbb{N}\}}$	$\frac{1}{p} - 1$	$\frac{1-p}{p^2}$	$\frac{p}{1 - (1 - p)e^t}$
Géométrique (p) (succès)	$p(1-p)^{x-1} \mathbb{1}_{\{x \in \mathbb{N}^*\}}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
Uniforme(m)	$\frac{1}{m}\mathbb{1}_{\{x\in\{1,,m\}\}}$	$\frac{m+1}{2}$	$\frac{m^2-1}{12}$	$\frac{e^t(e^{mt}-1)}{e^t-1}$
$Poisson(\lambda)$	$e^{-\lambda}\lambda^x/x!\mathbb{1}_{\{x\in\mathbb{N}\}}$	λ	λ	$\exp(\lambda(e^t - 1))$

Tableau 2 – Distribution de certaines lois discrètes