Machine Learning

Section 10: Model selection

第10节:模型选择

Stefan Harmeling

10. November 2021

Overview

- Evaluating on test error / cross-validation
- Bayesian model selection

根据测试误差/交叉验证进行评估 贝叶斯模型选择

Evaluating on test error / cross validation 根据测试误差/交叉验证进行评估

Example: linear regression

Data:

- ▶ dataset \mathcal{D} of scalar-valued input/output pairs $(x_1, y_1) \dots, (x_n, y_n)$
- the outputs are noisy

Model:

- ▶ basis function $\phi_d(x) = [1, x, x^2, ..., x^d]^T$ with hyperparameter d
- ▶ model the function as $f(x, w) = \phi_d(x)^T w$, with parameter $w \in \mathbb{R}^{d+1}$

Loss and fit:

mean-squared error

$$MSE(D, w, d) = \frac{1}{|D|} \sum_{(x,y) \in D} (y - f(x, w))^{2} = \frac{1}{|D|} \sum_{(x,y) \in D} (y - \phi_{d}(x)^{T} w)^{2}$$

minimize the MSE (to get the maximum likelihood estimator):

$$w_{ML}(\mathcal{D}, d) = \arg\min_{w} \mathsf{MSE}(\mathcal{D}, w, d)$$

Model selection / hyperparameter tuning

▶ What is the best choice for *d*?

Hyperparameter tuning: 1st attempt

Idea:

choose d such that the MSE is minimal:

$$d_1 = \arg\min_{d} \mathsf{MSE}(\mathcal{D}, w_{ML}(\mathcal{D}, d), d)$$

Problem:

- this overfits the data
- the best fit will be a large d, such that every single noisy data point is hit
- however, actually, we would like to minimize the test error which is the MSE on unseen data
- ▶ idea: split data into seen (training) and unseen (evaluation) data

Hyperparameter tuning: 2nd attempt

- ▶ split dataset \mathcal{D} into two disjoint sets \mathcal{D}_{train} and \mathcal{D}_{eval}
- ▶ 1. *train* on \mathcal{D}_{train} (choose parameter w)
 - 2. evaluate on $\mathcal{D}_{\text{eval}}$ (choose hyperparameter d)
- choose d such that the MSE on the evaluation set is minimal for the parameter w chosen on the training set:

$$d_2 = \arg\min_{d} \mathsf{MSE}(\mathcal{D}_{\mathsf{eval}}, w_{\mathit{ML}}(\mathcal{D}_{\mathsf{train}}, d), d)$$

Note:

- much better! works quite well!
- no overfitting while learning the parameter

Problems/challenges:

- how good is the parameter/hyperparameter choice on unseen data? i.e. what is the test error (the MSE on unseen data)?
- ▶ the estimator $MSE(\mathcal{D}_{eval}, w_{ML}(\mathcal{D}_{train}, d_2), d_2)$ of the MSE is too optimistic (this is similar to underestimating the variance with a sample mean)

Hyperparameter tuning: 3rd attempt

Idea:

- ▶ split dataset D into three disjoint sets D_{train} , D_{eval} and D_{test}
- 1. *train* on \mathcal{D}_{train} (choose parameter w)
 - 2. evaluate on $\mathcal{D}_{\text{eval}}$ (choose hyperparameter d)
 - 3. *test* of \mathcal{D}_{test} (calculate MSE for unseen data)
- choose d such that the MSE on the evaluation set is minimal for the parameter w chosen on the training set:

$$d_3 = \arg\min_{d} \mathsf{MSE}(\mathcal{D}_{\mathsf{eval}}, w_{\mathit{ML}}(\mathcal{D}_{\mathsf{train}}, d), d)$$

calculate the test error (the MSE on unseen data) on the test set:

$$MSE(\mathcal{D}_{test}, w_{ML}(\mathcal{D}_{train}, d_3), d_3)$$

Note:

- this is the gold standard (if we have enough data)!
- no overfitting of the parameter or of the hyperparameter

Hyperparameter tuning: 3rd attempt - more thoughts

Idea:

- ▶ split dataset \mathcal{D} into three disjoint sets \mathcal{D}_{train} , \mathcal{D}_{eval} and \mathcal{D}_{test}
 - 1. *train* on \mathcal{D}_{train} (choose parameter w)
 - 2. evaluate on $\mathcal{D}_{\text{eval}}$ (choose hyperparameter d)
 - 3. test of $\mathcal{D}_{\textit{test}}$ (calculate MSE for unseen data)

Problems

- we are not using all data for estimating the parameter
- we are not using all data for estimating the hyperparameter

Hack/Solution

- Cross-validation (see next slide)
- does improve the estimate

Cross-validation (2-fold)

Simpler setup w/o hyperparameter

- ▶ given data D
- model with parameter w
- but no hyperparameter d

Goal

estimate the test error

Solution

- split \mathcal{D} into two sets \mathcal{D}_1 and \mathcal{D}_2
 - 1. train w_1 on \mathcal{D}_1 , estimate MSE ε_1 on \mathcal{D}_2 for w_1
 - 2. train w_2 on \mathcal{D}_2 , estimate MSE ε_2 on \mathcal{D}_1 for w_2
- the cross-validation estimate of the test error is the average:

$$(\varepsilon_1 + \varepsilon_2)/2$$

More general:

Algorithm 10.1 (*k*-fold cross validation (CV))

Split your data \mathcal{D} into k disjoint subsets of approximately equal size:

$$\mathcal{D} = \mathcal{D}_1 \cup \ldots \cup \mathcal{D}_k$$

For i = 1 to k

- 1. \mathcal{D}_i plays the role of the test set
- 2. train parameter w on $\mathcal{D} \setminus \mathcal{D}_i$ (i.e. " \mathcal{D} without \mathcal{D}_i ", set minus)
- 3. calculate MSE ε_i on \mathcal{D}_i

The cross-validation estimate of the test error ε is the average validation error:

$$\varepsilon_{CV} = \frac{1}{k} \sum_{i=1}^{k} \varepsilon_i$$

For k = n this is called leave-one-out cross validation (LOOCV).

Nested cross validation for the gold-standard

Setup

- given some data set D
- model with parameter w and hyper-parameter d.

Goal:

goal: estimate test error

Outer k-fold cross-validation

- 1. split \mathcal{D} into $\mathcal{D}_1, \ldots, \mathcal{D}_k$
- 2. for *i* in 1 . . . *k*:
 - 2.1 split \mathcal{D} into $\mathcal{D} \setminus \mathcal{D}_i$ and \mathcal{D}_i
 - 2.2 train w and d on $\mathcal{D} \times \mathcal{D}_i$ use Inner k'-fold cross-validation to estimate the MSE for the hyperparameter choice
 - 2.3 estimate ε_i on \mathcal{D}_i using w and d
- 3. estimate test error ε as the average of $\varepsilon_1, \ldots, \varepsilon_k$

Bayesian model selection

Bayesian inference

Model specification

$$p(w) = \dots$$
 prior $p(D|w) = \dots$ likelihood

Inference given data

$$p(w|D) = \frac{p(D|w)p(w)}{p(D)}$$
 posterior
$$p(D) = \int p(D|w)p(w)dw$$
 evidence

- The posterior
 - combines prior and likelihood via product rule (Bayes rule)
 - describes what the parameter might be after seeing data
- ► The *evidence*
 - integrates out the parameter via sum rule
 - is the expected likelihood under the prior

Bayesian inference with hyper-parameters

Model specification

$$p(\theta) = \dots$$
 hyper-prior $p(w | \theta) = \dots$ prior $p(D | w) = \dots$ likelihood

Level 1: Inference of parameters

$$p(w|D,\theta) = \frac{p(D|w)p(w|\theta)}{p(D|\theta)}$$
 posterior
$$p(D|\theta) = \int p(D|w)p(w|\theta)dw$$
 evidence

Level 2: Inference of hyper-parameters

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{p(D)}$$
 hyper-posterior
$$p(D) = \int p(D \mid \theta)p(\theta)d\theta$$
 evidence

Bayesian inference with hyper-parameters and models

Model specification

$$p(\mathcal{H}) = \dots$$
 model-prior $p(\theta \mid \mathcal{H}) = \dots$ hyper-prior $p(w \mid \theta, \mathcal{H}) = \dots$ prior $p(D \mid w, \mathcal{H}) = \dots$ likelihood

Level 1, 2, 3: Inference of parameters, hyper-parameters and model given data

$$p(w|D,\theta,\mathcal{H}) = \frac{p(D|w,\mathcal{H})p(w|\theta,\mathcal{H})}{p(D|\theta,\mathcal{H})}$$
 posterior
$$p(\theta|D,\mathcal{H}) = \frac{p(D|\theta,\mathcal{H})p(\theta|\mathcal{H})}{p(D|\mathcal{H})}$$
 hyper-posterior
$$p(\mathcal{H}|D) = \frac{p(D|\mathcal{H})p(\mathcal{H})}{p(D)}$$
 model-posterior

Bayesian inference with hyper-parameters and models

Level 1: Inference of parameters

$$p(w | D, \theta, \mathcal{H}) = \frac{p(D | w, \mathcal{H})p(w | \theta, \mathcal{H})}{p(D | \theta, \mathcal{H})}$$
 posterior
$$p(D | \theta, \mathcal{H}) = \int p(D | w, \mathcal{H})p(w | \theta, \mathcal{H})dw$$
 marginal likelihood

Level 2: Inference of hyper-parameters

$$p(\theta \mid D, \mathcal{H}) = \frac{p(D \mid \theta, \mathcal{H})p(\theta)}{p(D \mid \mathcal{H})}$$
 hyper-posterior
$$p(D \mid \mathcal{H}) = \int p(D \mid \theta, \mathcal{H})p(\theta \mid \mathcal{H})d\theta$$

Level 3: Inference of model

$$p(\mathcal{H} \mid D) = \frac{p(D \mid \mathcal{H})p(\mathcal{H})}{p(D)}$$
 model-posterior
$$p(D) = \sum_{\mathcal{H}} p(D \mid \mathcal{H})p(\mathcal{H})$$

Model selection for regression

Instead of a model for p(D) we specify a model for p(y|X) with location matrix X and targets y.

Bayesian model selection for regression

Model specification

$$p(\mathcal{H}) = \dots$$
 model-prior $p(\theta \mid \mathcal{H}) = \dots$ hyper-prior $p(w \mid \theta, \mathcal{H}) = \dots$ prior $p(y \mid X, w, \mathcal{H}) = \dots$ likelihood (this is different)

Level 1, 2, 3: Inference of parameters, hyper-parameters and model given data

$$p(w|y,X,\theta,\mathcal{H}) = \frac{p(y|X,w,\mathcal{H})p(w|\theta,\mathcal{H})}{p(y|X,\theta,\mathcal{H})} \qquad \text{posterior}$$

$$p(\theta|y,X,\mathcal{H}) = \frac{p(y|X,\theta,\mathcal{H})p(\theta|\mathcal{H})}{p(y|X,\mathcal{H})} \qquad \text{hyper-posterior}$$

$$p(\mathcal{H}|y,X) = \frac{p(y|X,\mathcal{H})p(\mathcal{H})}{p(y|X)} \qquad \text{model-posterior}$$

Bayesian model selection for Linear Regression

Level 1:

$$w \sim \mathcal{N}(\mathbf{0}_d, \tau^2 I_d)$$
$$y \mid X, w \sim \mathcal{N}(Xw, \sigma^2 I_n)$$

We infer posterior:

$$w \mid X, y \sim \mathcal{N}(w_n, V_n)$$
 posterior

with posterior mean w_n and posterior covariance V_n .

$$V_n = \left(\frac{1}{\sigma^2} X^T X + \frac{1}{\tau^2} I_d\right)^{-1}$$
$$W_n = \left(X^T X + \frac{\sigma^2}{\tau^2} I_d\right)^{-1} X^T y$$

Note that on this slide σ^2 and τ^2 is assumed to be known (constant).

Level 2: Let's add random variables for the hyper-parameters!

Bayesian model selection for Linear Regression

Level 1:

$$\theta \sim \dots$$
 hyper-prior $w \mid \theta \sim \mathcal{N}(0_d, \tau^2 I_d)$ prior $y \mid X, w, \theta \sim \mathcal{N}(Xw, \sigma^2 I_n)$ likelihood

where $\theta = (\sigma^2, \tau^2, d)$ collects all hyperparameter. We infer posterior:

$$w \mid X, y, \theta \sim \mathcal{N}(w_n, V_n \mid \theta)$$
 posterior

with posterior mean w_n and posterior covariance V_n which do dependent on θ .

Level 2: We need the evidence from level 1:

$$p(y|X,\theta) = \int p(y|X,w,\theta)p(w|\theta)dw = \mathcal{N}(...)$$

This is also called marginal likelihood.

Bayesian inference for level 2

Level 2: Infer hyper-posterior:

$$p(\theta | y, X) = \frac{p(y | X, \theta)p(\theta)}{p(y | X)}$$

This gets quickly too complicated! (the integral become to difficult)

Instead we only maximize the Marginal likelihood

$$p(y|X,\theta) = \int p(y|X,w,\theta)p(w|\theta)dw = \mathcal{N}(...)$$

with respect to the hyper-parameter θ .

this is called "Type II maximum likelihood" and "empirical Bayes" and "generalized maximum likelihood" and "evidence approximation"

Marginal likelihood for linear regression

We can derive the form of the logarithm of the marginal likelihood:

$$\begin{split} \log p(y|X,\theta) &= \log \int p(y|X,w,\theta) \, p(w|\theta) \, dw \\ &= \log \int \mathcal{N}(y|Xw,\sigma^2I_n) \, \mathcal{N}(w|0_d,\tau^2I_d) \, dw \\ &= \log \int \mathcal{N}(y|0_n,\sigma^2I_n + \tau^2XX^T) \, \mathcal{N}(w|\dots,\dots) \, dw \\ &= \log \mathcal{N}(y|0_n,\sigma^2I_n + \tau^2XX^T) \int \mathcal{N}(w|\dots,\dots) \, dw \\ &= \log \mathcal{N}(y|0_n,\sigma^2I_n + \tau^2XX^T) \\ &= \log \mathcal{N}(y|0_n,\sigma^2I_n + \tau^2XX^T) \\ &= -\frac{n}{2} \log(2\pi) - \frac{1}{2} \log|\sigma^2I_n + \tau^2XX^T| - \frac{1}{2} y^T (\sigma^2I_n + \tau^2XX^T)^{-1} y \end{split}$$

Notes:

- ▶ $\mathcal{N}(w | ...,...)$ does not depend on y.
- The third equality follows from some fancy rule for the Gaussians (see next slide).

Another product formula for Gaussians

copied from Bishop's book Sec. 2.3.3, page 93

Given a marginal Gaussian for x and a conditional Gaussian for y given x,

$$x \sim \mathcal{N}(\mu, \Lambda^{-1})$$

 $y \mid x \sim \mathcal{N}(Ax + b, L^{-1})$

we have the following marignal Guassian for y and conditional Gaussian for x given y:

$$y \sim \mathcal{N}(A\mu + b, L^{-1} + A\Lambda^{-1}A^{T})$$
$$x \mid y \sim \mathcal{N}(\Sigma(A^{T}L(y - b) + \Lambda\mu), \Sigma)$$

where
$$\Sigma = (\Lambda + A^T L A)^{-1}$$

Bayesian model selection for linear regression

Setting the hyperparameters for linear regression

The logarithm of the marginal likelihood

$$\log p(y \,|\, X, \theta) = -\frac{n}{2} \log(2\pi) - \frac{1}{2} \log|\sigma^2 I_n + \tau^2 X X^T| - \frac{1}{2} y^T (\sigma^2 I_n + \tau^2 X X^T)^{-1} y$$

is a function of all hyperparameters θ and can be maximized using Gradient descent in terms of the hyperparameters (or for discrete parameters like d try different values).

Can we use Matrix Differential Calculus?

Derivative of log marginal likelihood

Let's write $A = \sigma^2 I_n + \tau^2 X X^T$. Then we get:

$$d \log p(y|X,\theta) = d\left(-\frac{n}{2}\log(2\pi) - \frac{1}{2}\log\det A - \frac{1}{2}y^{T}A^{-1}y\right)$$

$$= -\frac{1}{2}d \log\det A - \frac{1}{2}y^{T}(dA^{-1})y$$

$$= -\frac{1}{2}\operatorname{tr}(A^{-1}dA) + \frac{1}{2}y^{T}A^{-1}(dA)A^{-1}y$$

$$= \frac{1}{2}\operatorname{tr}(A^{-1}yy^{T}A^{-1} - A^{-1})dA$$

Replacing dA with $d(\sigma^2 I_n + \tau^2 X X^T)$ and continuining a bit, we get:

$$\frac{\partial}{\partial \sigma^2} \log p(y|X,\theta) = \frac{1}{2} \operatorname{tr}(A^{-1}yy^TA^{-1} - A^{-1})$$
$$\frac{\partial}{\partial \tau^2} \log p(y|X,\theta) = \frac{1}{2} \operatorname{tr}(A^{-1}yy^TA^{-1} - A^{-1})XX^T$$

Use these derivatives for gradient descent (see Jupyter notebook) (or visualize the log marginal likelihood).

End of Section 10

Literature on Bayesian model selection / linear regression:

Chapter 3.5 in Bishop's book "Pattern Recognition and Machine learning"