

Tema 3 - Variables Aleatorias discretas multidimensionales

Ricardo Alberich, Juan Gabriel Gomila y Arnau Mir

Variables aleatorias bidimensionales discretas

Variables aleatorias bidimensionales discretas. Introducción

DEFINICIÓN DE VARIABLE ALEATORIA BIDIMENSIONAL.

Sea Ω es espacio muestral de un experimento. Diremos que (X,Y) es una **variable aleatoria bidimensional** cuando tanto X como Y toman valores reales para cada elemento del espacio Ω .

Diremos que es **discreta** cuando su conjunto de valores en \mathbb{R}^2 , $(X,Y)(\Omega)$ es un conjunto finito o numerable.

Diremos que es **continua** cuando su conjunto de valores en \mathbb{R}^2 , $(X,Y)(\Omega)$ es un producto de intervalos.

Diremos que es **heterogénea** cuando X e Y no compartan ser continuas o discretas.

Función de probabilidad conjunta

Definición de función de probabilidad conjunta: Dada una variable aleatoria bidimensional discreta (X,Y)

definimos la función de probabilidad discreta bidimensional como

$$egin{aligned} P_{XY}:\mathbb{R}^2 &\longrightarrow [0,1] \ (x,y) &\longrightarrow P_{XY}(x,y) = P(X=x,\ Y=y). \end{aligned}$$

Llamaremos dominio de la variable conjunta a

$$D_{XY} = \{(x,y) \in \mathbb{R}^2 | P_{XY}(x,y) = P(X=x, \ Y=y) > 0 \}.$$

Es decir es el conjunto de valores posibles que toma la v.a. (X,Y).

Función de probabilidad conjunta

Por tanto, de cara a calcular P_{XY} basta calcular $P_{XY}(x_i,y_j)$ para $(x_i,y_j)\in D_{XY}$:

X/Y	y_1	y_2		y_N
x_1	$P_{XY}(x_1,y_1)$	$P_{XY}(x_1,y_2)$	• • •	$P_{XY}(x_1,y_N)$
x_2	$P_{XY}(x_2,y_1)$	$P_{XY}(x_2,y_2)$	• • •	$P_{XY}(x_2,y_N)$
:	•	•	•	: :
x_M	$P_{XY}(x_M,y_1)$	$P_{XY}(x_M,y_2)$	• • •	$P_{XY}(x_M,y_N)$

Propiedades de la función de probabilidad conjunta

Sea (X,Y) una **variable aleatoria bidimensional discreta** con dominio $D_{XY}=\{(x_i,y_j)\,i=1,2,\ldots,\,j=1,2,\ldots\}.$

Su función de probabilidad conjunta verifica las siguientes propiedades:

La suma de todos los valores de la **función de probabilidad conjunta** sobre el conjunto de valores siempre vale 1:

$$\sum_i \sum_j P_{XY}(x_i,y_j) = 1.$$

Propiedades de la función de probabilidad conjunta

Sea B un subconjunto cualquiera del dominio D_{XY} . El valor de la probabilidad $P((X,Y)\in B)$ se puede calcular de la forma siguiente:

$$P((X,Y)\in B)=\sum_{(x_i,y_j)\in B}P_{XY}(x_i,y_j).$$

Es decir, la probabilidad de que la variable bidimensional tome valores en B es igual a la suma de todos aquellos valores de la función de probabilidad conjunta que están en B.

Función de distribución acumulada

DEFINICIÓN FUNCIÓN DE DISTRIBUCIÓN CONJUNTA

La función de distribución acumulada conjunto o simplemente distribución conjunta se define como

$$F_{XY}(x,y) = P(X \le x, Y \le y).$$

PROPIEDAD

La **función de distribución conjunta** se puede obtener conociendo la **función de probabilidad conjunta**

$$F_{XY}(x,y) = \sum_{x_i \leq x, y_j \leq y} P_{XY}(x_i,y_j).$$

Distribuciones marginales

Variables aleatorias marginales y su distribución

Consideremos una variable aleatoria bidimensional discreta (X,Y) con función de probabilidad conjunta $P_{XY}(x_i,y_j)$, para cada $(x_i,y_j)\in D_{XY}$.

La tabla de la **función de probabilidad conjunta** contiene suficiente información para obtener las **funciones de probabilidad** de las variables X e Y.

Dichas variables X e Y se denominan variables marginales y sus correspondientes funciones de probabilidad, funciones de probabilidad marginales P_X de la variable X y P_Y de la variable Y.

Veamos cómo obtener P_X y P_Y a partir de la tabla P_{XY} .

Funciones de probabilidad marginales

Proposición. Cálculo de las funciones de probabilidad marginales.

Sea (X,Y) una variable aleatoria bidimensional discreta con función de probabilidad conjunta $P_{XY}(x_i,y_j)$, con $(x_i,y_j)\in D_{XY}$.

Las **funciones de probabilidad marginales** $P_X(x_i)$ y $P_Y(y_j)$ se calculan usando las expresiones siguientes:

$$P_X(x_i) = \sum_j P_{XY}(x_i, y_j), \ i = 1, 2, \ldots,$$

$$P_Y(y_j) = \sum_i P_{XY}(x_i,y_j), \;\; j=1,2,\ldots$$

Variables aleatorias marginales

- · Podemos representar P_{XY} como una tabla bidimensional en la primera fila están los valores de la variable Y (y_1, y_2, \ldots) y en la primera columna están los valores de la variable X (x_1, x_2, \ldots)
- · Para obtener la función de probabilidad marginal de la variable X en el valor x_i , $P_X(x_i)$, hay que sumar todos los valores de $P_{XY}(x_i,y_j)$ correspondientes a la fila i-ésima
- · De forma análoga para obtener la función de probabilidad marginal de la variable Y en el valor y_j , $P_Y(y_j)$, hay que sumar todos los valores de $P_{XY}(x_i,y_j)$ correspondientes a la columna j-ésima.

Variables aleatorias marginales

$$X \setminus Y$$
 y_1 y_2 ... y_N $P_X(x_i) = \sum_j P_{XY}(x_i, y_j)$ x_1 $P_{XY}(x_1, y_1)$ $P_{XY}(x_1, y_2)$... $P_{XY}(x_1, y_N)$ $P_X(x_1)$ x_2 $P_{XY}(x_2, y_1)$ $P_{XY}(x_2, y_2)$... $P_{XY}(x_2, y_N)$ $P_X(x_2)$... $P_{XY}(x_2, y_N)$ $P_X(x_2)$... $P_{XY}(x_2, y_N)$ $P_X(x_2)$... $P_X(x_2)$..

Independencia de variables aleatorias discretas

Recordemos que dos sucesos A y B son independientes si

$$P(A \cap B) = P(A) \cdot P(B).$$

¿Cómo trasladar dicho concepto al caso de variables aleatorias?

Dada una variable aleatoria bidimensional discreta (X,Y) con $D_{XY}=\{(x_i,y_j),\ i=1,2,\ldots,j=1,2,\ldots\}$

Así que al menos todos los sucesos de la forma $\{X=x_i,\ Y=y_j\}$ deberán ser independientes.

Independencia de variables aleatorias discretas

DEFINICIÓN DE INDEPENDENCIA PARA VARIABLES ALEATORIAS BIDIMENSIONALES DISCRETAS.

Dada (X,Y) una variable aleatoria bidimensional discreta con función de probabilidad P_{XY} y funciones de probabilidad marginales P_X y P_Y .

Diremos que X e Y son independientes si:

$$P_{XY}(x_i, y_j) = P_X(x_i) \cdot P_Y(y_j), \ i = 1, 2, \dots, j = 1, 2, \dots$$

o dicho de otra forma:

$$P(X = x_i, Y = y_j) = P(X = x_i) \cdot P(Y = y_j), i = 1, 2, ..., j = 1, 2, ...$$

PROPIEDAD

Las v.a. X e Y son independientes si y solo si $F_{XY}(x,y) = F_X(x) \cdot F_Y(y)$.

Esperanza y varianza de las distribuciones marginales

$$^{\cdot}~~E(X)=\sum_{x\in D_X}x\cdot P_X(x)=\sum_{x\in D_X}x\cdot P(X=x).$$

$$^{\cdot}~~E(Y)=\sum_{y\in D_{Y}}y\cdot P_{Y}(y)=\sum_{y\in D_{Y}}y\cdot P(Y=y).$$

$$\sigma_X^2 = Var(X) = E(X - E(X)) = E(X) - E(X)^2.$$

$$\sigma_Y^2 = Var(Y) = E(Y - E(Y)) = E(Y) - E(Y)^2.$$

Distibuciones condicionales

· Dado un valor fijo $y \in D_Y$ definimos la distribución condicional de la v.a. X condicionada a que Y=y como

$$P(X=x|Y=y)=rac{P_{XY}(x,y)}{P_{Y}(y)}=rac{P(X=x,Y=y)}{P(Y=y)}, ext{ para todo } x\in D_{X}.$$

· Dado un valor fijo $y \in D_Y$ definimos la distribución condicional de la v.a. Y condicionada a que X=x como

$$P(Y=y|X=x)=rac{P_{XY}(x,y)}{P_X(x)}=rac{P(X=x,Y=y)}{P(X=x)}, ext{ para todo } y\in D_Y.$$

Distibuciones condicionales e independencia

PROPIEDAD

Si las variables X e Y son independientes se cumple que

1.
$$P(X = x | Y = y) = P(X = x)$$

2.
$$P(Y = y | X = x) = P(Y = y)$$
.

Esperanzas condicionales

$$E(X|Y=y) = \sum_{x \in D_X} x \cdot P(X=x|Y=y)$$

$$E(Y|X=x) = \sum_{y \in D_Y} y \cdot P(Y=y|X=x)$$

PROPIEDAD

Si las variables X e Y son independientes se cumple que

1.
$$E(X|Y = y) = E(X)$$

2.
$$E(Y|X = x) = E(Y)$$

Esperanzas de funciones de v.a. discretas bidimensionales. Covarianza y correlación

Esperanzas de funciones de v.a. discretas bidimensionales

DEFINICIÓN:

Sea (X,Y) una variable aleatoria bidimensional discreta y g(X,Y) una función de esa variable bidimensional entonces

$$E(g(X,Y)) = \sum_i \sum_j g(x_i,y_j) \cdot P(X=x_i,Y=y_j).$$

En particular:

$$oldsymbol{\cdot} \quad E(X+Y) = \sum_i \sum_j (x_i + y_j) \cdot P(X=x_i, Y=y_j) = \mu_X + \mu_Y.$$

$$Var(X+Y) = E\left((X+Y-E(X+Y))^{2}\right) = \sum_{i}\sum_{j}(x_{i}+y_{j}-(\mu_{X}+\mu_{Y}))^{2}\cdot P(X=x_{i},Y=y_{j}).$$

Esperanzas de funciones de v.a. discretas bidimensionales

Propiedad: Sea (X,Y) una variable aleatoria bidimensional entonces se cumple que:

$$E(X + Y) = E(X) + E(Y) = \mu_X + \mu_y$$

- · Si X e Y son independientes entonces $E(X \cdot Y) = E(X) \cdot E(Y) = \mu_X \cdot \mu_y$
- · Si X e Y son independientes entonces $Var(X+Y)=Var(X)+Var(Y)=\sigma_X^2+\sigma_y^2$

Covarianza y correlación

Medida de la variación conjunta: covarianza

El momento conjunto centrado en las medias para k=1 y l=1 se denomina covarianza entre las variables X e Y:

$$\sigma_{XY} = Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)).$$

La covarianza puede calcularse también con:

$$Cov(X,Y) = E(X \cdot Y) - E(X) \cdot E(Y) = E(X \cdot Y) - \mu_X \cdot \mu_Y,$$

Propiedad. Si las variables X e Y son **independientes**, entonces Cov(X,Y)=0.

Es una consecuencia de que si X e Y son independientes entonces que vimos que $E(X\cdot Y)=E(X)\cdot E(Y)=\mu_X\cdot \mu_y$.

Covarianza entre las variables

La **covarianza** es una medida de lo relacionadas están las variables X e Y:

- · Si cuando $X \geq \mu_X$, también ocurre que $Y \geq \mu_Y$ o viceversa, cuando $X \leq \mu_X$, también ocurre que $Y \leq \mu_Y$, el valor $(X \mu_X)(Y \mu_Y)$ será positivo y la **covarianza** será positiva.
- · Si por el contrario, cuando $X \geq \mu_X$, también ocurre que $Y \leq \mu_Y$ o viceversa, cuando $X \leq \mu_X$, también ocurre que $Y \geq \mu_Y$, el valor $(X \mu_X)(Y \mu_Y)$ será negativo y la **covarianza** será negativa.
- En cambio, si a veces ocurre una cosa y a veces ocurre otra, la **covarianza** va cambiando de signo y puede tener un valor cercano a 0.

Propiedades de la covarianza

· Sea (X,Y) una variable aleatoria bidimensional. Entonces la varianza de la suma/resta se calcula usando la expresión siguiente:

$$Var(X \pm Y) = Var(X) + Var(Y) \pm 2 \cdot Cov(X, Y).$$

· Sea (X,Y) una variable aleatoria bidimensional donde las variables X e Y son **independientes**. Entonces:

$$Var(X + Y) = Var(X) + Var(Y).$$

Coeficiente de correlación

La **covarianza** depende de las unidades en las que se midan las variables X e Y ya que si a>0 y b>0, entonces:

$$Cov(a \cdot X, b \cdot Y) = a \cdot b \cdot Cov(X, Y).$$

Por tanto, si queremos "medir" la relación que existe entre las variables X e Y tendremos que "normalizar" la **covarianza** definiendo el **coeficiente de correlación** entre las variables X e Y:

Coeficiente de correlación entre las variables

Definición del coeficiente de correlación. Sea (X,Y) una variable aleatoria bidimensional. Se define el **coeficiente de correlación** entre las variables X e Y como:

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{Var(X)} \cdot \sqrt{Var(Y)}} = \frac{E(X \cdot Y) - \mu_X \cdot \mu_Y}{\sqrt{E(X^2) - \mu_X^2} \cdot \sqrt{E(Y^2) - \mu_Y^2}}.$$

Coeficiente de correlación entre las variables

Observación. Si las variables X e Y son independientes, su coeficiente de correlación $ho_{XY}=0$ es nulo ya que su covarianza lo es.

Notemos también que la **correlación** no tiene unidades y es invariante a cambios de escala.

Además, la covarianza de las variables tipificadas $\frac{X-\mu_X}{\sigma_X}$ y $\frac{Y-\mu_Y}{\sigma_Y}$ coincide con la correlación de X e Y.

El **coeficiente de correlación** es un valor normalizado ya que siempre está entre -1 y 1: $-1 \le \rho_{XY} \le 1$.

Coeficiente de correlación entre las variables

Observación. Si las variables X e Y tiene dependencia lineal, por ejemplo si $Y=a\cdot X+b$ para algunas constantes $a,b\in\mathbb{R}$, entonces su **coeficiente de correlación** $\rho_{XY}=\pm 1$, es decir toma el valor 1 si la pendiente a>0 y -1 si a<0.

De forma similar:

- · si $Cor(X,Y)=+1\ X$ e Y tienen relación lineal con pendiente positiva.
- · si $Cor(X,Y)=-1\ X$ e Y tienen relación lineal con pendiente negativa.

Matriz de varianzas-covarianzas y matriz de correlaciones

Sea (X,Y) una variable bidimensional Notemos que

$$Cov(X,X) = \sigma_{XX} = \sigma_X^2.$$

$$Cov(Y,Y) = \sigma_{YY} = \sigma_Y^2.$$

$$\sigma_{XY} = Cov(X,Y) = Cov(Y,X) = \sigma_{YX}.$$

Se denomina matriz de varianzas-covarianzas y se suele denotar como Σ a

$$\Sigma = egin{pmatrix} Cov(X,X) & Cov(X,Y) \ Cov(Y,X) & Cov(Y,Y) \end{pmatrix} = egin{pmatrix} \sigma_{XX} & \sigma_{XY} \ \sigma_{YX} & \sigma_{YY} \end{pmatrix} = egin{pmatrix} \sigma_{X}^2 & \sigma_{XY} \ \sigma_{YX} & \sigma_{Y}^2 \end{pmatrix}$$

Matriz de varianzas-covarianzas y matriz de correlaciones

Sea (X,Y) una variable bidimensional Notemos que

·
$$Cor(X,X) = \rho_{XX} = 1$$
.

$$Cor(Y,Y) = \rho_{YY} = 1.$$

$$ho_{XY} = Cor(X,Y) = Cor(Y,X) =
ho_{YX}.$$

Se denomina matriz de correlaciones a

$$R = \begin{pmatrix} Cor(X,X) & Cor(X,Y) \\ Cor(Y,X) & Cor(Y,Y) \end{pmatrix} = \begin{pmatrix} 1 & \rho_{XY} \\ \rho_{YX} & 1 \end{pmatrix} = \begin{pmatrix} 1 & \rho_{XY} \\ \rho_{XY} & 1 \end{pmatrix}.$$

Distribuciones multidimensionales

Conceptos básicos. Función de probabilidad y de distribución.

Consideremos un vector compuesto de n variables aleatorias discretas (X_1, X_2, \ldots, X_n)

Su **función de probabilidad** es

$$egin{aligned} P_{X_1,X_2,\ldots,X_n}(x_1,x_2,\ldots,x_n) &= Pig((X_1,X_2,\ldots,X_n) = (x_1,x_2,\ldots,x_n)ig) \ &= P(X_1 = x_1,X_2 = x_2,\ldots,X_n = x_n). \end{aligned}$$

Su función de distribución de probabilidad es

$$F_{X_1,X_2,\ldots,X_n}(x_1,x_2,\ldots,x_n) = P(X_1 \leq x_1,X_2 \leq x_2,\ldots,X_n \leq x_n).$$

Independencia

DEFINICIÓN INDEPENDENCIA

Diremos que la variables X_1, X_2, \ldots, X_n son **INDEPENDIENTES** cuando

$$P_{X_1,X_2,\ldots,X_n}(x_1,x_2,\ldots,x_n) = P_{X_1}(x_1)\cdot P_{X_2}(x_2)\cdot \ldots \cdot P_{X_n}(x_n).$$

PROPIEDAD

Las variables X_1, X_2, \ldots, X_n son **INDEPENDIENTES** si y solo si

$$F_{X_1,X_2,\ldots,X_n}(x_1,x_2,\ldots,x_n) = F_{X_1}(x_1)\cdot F_{X_2}(x_2)\cdot \ldots \cdot F_{X_n}(x_n).$$

Conceptos básicos

VECTOR DE MEDIAS

Si denotamos $E(X_i) = \mu_i$ para $i = 1, 2, \ldots, n$ el **vector de medias** es

$$E(X_1, X_2, \dots, X_n) = (E(X_1), E(X_2), \dots, E(X_n)) = (\mu_1, \mu_2, \dots, \mu_n).$$

COVARIANZA Y VARIANZAS

Si denotamos $\sigma_{ij} = Cov(X_i, X_j)$ para todo i, j en $1, 2, \ldots n$ entonces tenemos que

- $: \; \sigma_{ii} = Cov(X_i, X_i) = \sigma_{ii} = \sigma_i^2.$
- $: \; \sigma_{ij} = Cov(X_i, X_j) = Cov(X_j, X_i) = \sigma_{ji}.$

Conceptos básicos

Si denotamos $ho_{ij} = Cor(X_i, X_j)$ para todo i, j en $1, 2, \ldots n$ entonces tenemos que

- $\rho_{ii} = Cor(X_i, X_i) = 1.$
- $\cdot \
 ho_{ij} = Cor(X_i, X_j) = Cor(X_j, X_i) =
 ho_{ji}.$

Matrices de varianzas-covarianzas y de correlaciones

$$\Sigma = egin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n} \ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2n} \ dots & dots & \ddots & dots \ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_n^2 \end{pmatrix}, \qquad R = egin{pmatrix} 1 &
ho_{12} & \dots &
ho_{1n} \
ho_{21} & 1 & \dots &
ho_{2n} \ dots & dots & \ddots & dots \
ho_{n1} &
ho_{n2} & \dots & 1 \end{pmatrix}.$$