Lecture 20

· In the orbit diagram for -1.54<C<0.75, we expect to see a doubling of the diagram for -2<0<0.25

· The same behavior happens for all period-n windows.

HAPTER 9 SYMBOLIC DYNAMICS

Recall $Q_c(x)=x^2+c$ where we know about $Q_c(x)=x^2+c$ where we know about $Q_c(x)=x^2+c$ or $Q_c(x)=x^2+c$ and $Q_c(x)=x^2+c$ and $Q_c(x)=x^2+c$

② $I=[-P_+,P_+]$ ③ if $X_0 \notin I$, then $X_n \rightarrow \infty$ ④ $A = \{x \in I, Q_c(x) \in I \text{ for all } n \in [N] \}$ ⑤ $A_1 = (-\sqrt{-c-P_+}, \sqrt{-c-P_+})$

Xo whose orbit ac exits I in 1 iteration

As divides I in two disjoint closed intervals I. & I,

Definition: Let $x_0 \in \Lambda \subseteq I_0 \cup I_1$. the itinerary of x_0 is the sequence $S(x_0)$ of 0's and 1's, given of S(X₆)=(S₀S₁S₂····)

example: (11111...) b/c $X_n = P_4 \in I$, S(-P+)=(0[111...) b/c

x0=-P+ ∈ I0

X1=Q(-P+)=P+∈],

Xn=P+, n=1,2,...

S(2)=(0000...) be Xn= P-G-In

Exercise:

SOW)=(001011)

\$9.2 Sequence Space Definition: the sequence space on two symbols is the set $\Sigma = \{(S_0, S_1, \dots) \mid S_1 \in \{0,1\}\}$

Definition. The distance between S=(SoSiSz···) and f=(totitz···) is giren by $d[s,t] = \sum_{j=1}^{\infty} \frac{|S_i - t_j|}{2^j}$

Remark: the theory always converges by the distance between S_i and t_i is always 0 or 1, i.e. $|S_i-t_i| \in [0,1]$. So $d[S_i,t] \leq \sum_{i=0}^{\infty} \frac{1}{2^i} = 2$