

2022-2023 SPRING

CS201 – HOMEWORK 2

Section: 1

Full Name: Tolga Han Arslan

Student ID: 22003061

Data for algorithm 1: $O(N^3)$

Input Size (N)	Time (ms)	Input Size (N)	Time (ms)
1	0.00001	1500	1999.36920
10	0.00071	1750	3171.84170
50	0.08060	2000	4731.73410
120	1.03030	2500	9227.48090
150	1.99360	3000	16041.09100
200	5.02340	4000	37775.36290
500	74.83630	5000	74125.29030
750	251.71280	6000	127531.42170
1000	595.88170	7500	249637.75130
1250	1159.32690	10000	589872.53170

Data plot:

Figure 1: Theoretical and Experimental growth rates of algorithm 1

❖ Theoretical divided by 1800000

Data for algorithm 2: $O(N^2)$

Input Size (N)	Time (ms)	Input Size (N)	Time (ms)
1	0.00001	5000	42.80580
50	0.00499	7500	97.32160
300	0.15952	10000	172.87590
600	0.97380	12500	271.12330
750	1.02970	15000	390.31650
1000	2.03160	20000	694.15990
1500	3.99170	25000	1084.51200
2000	6.98540	50000	4343.72640
3000	15.03610	75000	9775.99000
4000	27.72390	100000	17406.51510

Data plot:

Figure 2: Theoretical and Experimental growth rates of algorithm 2

❖ Theoretical divided by 500000

Data for algorithm 3: O(N log N)

Input Size (N)	Time (ms)	Input Size (N)	Time (ms)
1	0.00001	1000000	131.90160
100	0.00378	1250000	165.74760
1000	0.06084	1500000	201.49920
10000	0.99770	2000000	270.27730
50000	5.95180	5000000	696.43890
100000	12.08200	7500000	1058.51500
150000	18.80360	10000000	1426.38580
200000	24.61560	20000000	2927.88520
500000	64.52990	50000000	7546.83940
750000	98.57570	100000000	15522.64550

Data plot:

Figure 3: Theoretical and Experimental growth rates of algorithm 3

Theoretical divided by 50000

Data for algorithm 4: O(N)

Input Size (N)	Time (ms)	Input Size (N)	Time (ms)
1	0.00001	2500000	7.89080
100	0.00034	5000000	17.01920
1000	0.00342	7500000	25.80930
10000	0.03664	10000000	33.90940
50000	0.16510	15000000	49.86690
100000	0.33536	25000000	83.12290
250000	0.82637	50000000	165.91660
500000	1.68324	100000000	330.24920
1000000	2.99200	500000000	1654.93110
1500000	4.98660	100000000	3656.65850

Data plot:

Figure 4: Theoretical and Experimental growth rates of algorithm 4

Theoretical divided by 270000

All algorithms comparison: (Experimental values)

Figure 5: Comparison between all four algorithms for input sizes less than 1000

Computer Specifications:

Processor: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz

RAM: 16,0 GB (available: 15,8 GB)

System: 64-bit operating system, x64 based-processor

Operating System: Windows 10 Pro

SSD: 512 GB

Discussion:

Four algorithms for the maximum subsequence sum problem are tested on the above computer. Their execution times in miliseconds are recorded with using different input values (size of the array). For small inputs, execution time cannot be measured precisely since the code code segment in the document rounds execution times of much less than 1 milliseconds to 0 milliseconds. Hence, to measure the execution times for small inputs, the algorithm is called a constant amount of time with using a loop and the is divided by the constant in order to get more precise results. Also, in order to plot theoretical growth rates, time complexity functions are divided by constants to get a more clear image between theoretical and experimental curves.

For algorithm 1, theoretical analysis shows that its time complexity is $O(N^3)$. In the data table, input size of 1 to 10000 is used since the growth rate of this algorithm makes it immeasurable to determine higher input sizes. Then, data values from the table and expected growth rate are plotted simultaneously in figure 1. Theoretical growth rate is plotted as a cubic function and experimental growth rate in the plot shows that if input size is getting larger, the resulting curve converges to the theoretical one.

For algorithm 2, theoretical analysis shows that its time complexity is $O(N^2)$. In the data table, input size of 1 to 100000 is used since this algorithm grows slower than algorithm 1 and allows to measure higher input sizes. Hence, data values from the table and expected growth rate are plotted simultanously in figure 2. Theoretical growth rate is plotted as a quadratic function this time and experimental results shows that for larger input sizes, the resulting curve converges to the theoretical one too.

Algorithm 3 is a involves a recursive approach to the maximum subsequence sum problem and theoretical analysis shows that its time complexity is O(N logN). This growth rate allows even much higher input sizes since it is almost linear because of the fact that logarithm function grows much slowly than other functions. So, input size of 1 to 100000000 is used fort his algorithm in the data table and similarly, experimental and theoretical growth rates are plotted in figure 3. This plot shows that the growth rate of this algorithm is almost a linear one and experimental growth is converging to theoretical one in higher input sizes too.

Lastly, algorithm 4 provides a linear solution for the maximum subsequence sum problem and hence its time complexity is O(N). Same as algorithm 3, this growth rate allows to measure much higher input sizes than cubic and quadratic growth rates and therefore, input

size of 1 to 1000000000 is used. Theoretical growth rate is plotted as a linear function and the plot shows that for high input sizes, experimental curve converges to theoretical curve in figure 4.

Finally, experimental results of all four algorithms are compared with input sizes of less than 1000 in figure 5. Low input sizes are used in this plot to get a clear image of the efficiency of algorithms. It shows that the algorithm 4 is the most efficient one and algorithm 1 is the least efficient one in terms of execution times. Recursive solution (algorithm 3) is almost like linear solution (algorithm 4) and can be a good solution to the maximum subsequence sum problem if there is no linear solution like algorithm 4.

In conclusion the time complexity and growth rate of the algorithms can be arranged as:

$$O(N^3) > O(N^2) > O(N \ log N) > O(N)$$

And execution time efficiency of algorithms:

Algorithm 4 > Algorithm 3 > Algorithm 2 > Algorithm 1