TD 12 : continuite

Entrainements

Étude de la continuité de fonctions numériques

Exercice 1. Étudier la continuité des deux fonctions suivantes :

$$f: x \mapsto (x^2 - 1)\sin\left(\frac{1}{x - 1}\right)$$
 et $g: x \mapsto \cos(\ln|x|)\ln(1 + x)$.

Exercice 2. Étudier la continuité des fonctions suivantes :

1.
$$f(x) = \begin{cases} e^{-x} & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases}$$
2. $g(x) = \begin{cases} \frac{\ln(1-4x)}{2x} & \text{si } x < 0 \\ 1 & \text{si } x = 0 \\ \frac{e^x - 1}{x} & \text{si } x > 0 \end{cases}$
3. $h(x) = \begin{cases} \frac{5x^2 + 4x}{1+x} & \text{si } x < 0 \\ 1 & \text{si } x = 0 \\ x \sin(\frac{1}{x}) & \text{si } x > 0 \end{cases}$

Exercice 3. Étudier la continuité des fonctions suivantes :

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{si } x > 0 \\ x^2 & \text{si } x \le 0 \end{cases} \quad \text{et} \quad g(x) = \begin{cases} \frac{\sin^2 x}{e^{x^2} - 1} & \text{si } x \ne 0 \\ 2 & \text{si } x = 0 \end{cases}$$

Exercice 4. On considère la fonction h définie par

$$h(x) = \sqrt{1 - x^2}$$
 si $|x| < 1$ et $h(x) = ax^2 + bx + c$ si $|x| \ge 1$.

Déterminer les réels a, b et c pour lesquels h est continue sur \mathbb{R} .

Exercice 5. Soient f et g deux fonctions continues sur \mathbb{R} .

- 1. Montrer que : $\forall x \in \mathbb{R}$, $\max(f(x), g(x)) = \frac{f(x) + g(x) + |f(x) g(x)|}{2}$.
- 2. En déduire que la fonction $\max(f, g)$ est continue sur \mathbb{R} .

Partie Entière

Exercice 6. On considère l'équation suivante d'inconnue $x \in \mathbb{R}$:

$$\left[2x - \sqrt{5x - 1}\right] = 0\tag{E}$$

- 1. Déterminer le domaine de définition de E.
- 2. Pour tout $a \in \mathbb{R}$, rappeler un encadrement de la partie entière de a en fonction de a.
- 3. Montrer que résoudre (E) revient à résoudre deux inéquations qu'on déterminera.
- 4. Résoudre les deux équations obtenues à la question précédente.
- 5. Résoudre (E).

Exercice 7. Montrer que la fonction partie entière est croissante, ie montrer que pour tout $x, y \in \mathbb{R}^2$, :

$$x \leq y \Longrightarrow |x| \leq |y|$$
.

Montrer que pour tout $x, y \in \mathbb{R}^2$, :

$$\lfloor x \rfloor + \lfloor y \rfloor \le \lfloor x + y \rfloor \le \lfloor x \rfloor + \lfloor y \rfloor + 1.$$

Exercice 8. Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}$,

$$\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor$$

et

$$\sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = \lfloor nx \rfloor.$$

Exercice 9. Montrer que pour tout $x \in \mathbb{R}_+$:

$$\lfloor x \rfloor = \left\lfloor \frac{x}{2} \right\rfloor + \left\lfloor \frac{x+1}{2} \right\rfloor.$$

Exercice 10. Soit f la fonction définie par : $f: x \mapsto |x| + \sqrt{x - |x|}$

- 1. Donner l'ensemble de définition de la fonction f.
- 2. Soit $n \in \mathbb{Z}$. Déterminer la limite de f en n à gauche et à droite.
- 3. En déduire l'ensemble de continuité de f.

Existence d'un éventuel prolongement par continuité

Exercice 11. Étudier la continuité des fonctions suivantes. Les fonctions suivantes admettent-elles un prolongement par continuité aux bornes finies de leur domaine de définition?

1.
$$f(x) = \cos\left(\frac{1}{x}\right)$$
.

8.
$$f(x) = \frac{1 - \cos(\sqrt{x})}{|x|}$$

2.
$$f(x) = \frac{|x|\ln(1+x)}{e^{2x^2}-1}$$
.

9.
$$f(x) = x \ln\left(\frac{x^2 - 1}{x}\right)$$

3.
$$f(x) = \ln(\sqrt{x} - 1) - \ln(x - 1)$$
.

$$10. \ f(x) = x^2 \cos\left(\frac{1}{x}\right)$$

4.
$$f(x) = \frac{x \ln x}{x^2 - 1}$$

11.
$$f(x) = \frac{6x^2 + 5x - 4}{2x - 1}$$
12.
$$f(x) = \frac{\sqrt{x^2 + 1} - 1}{x}$$
13.
$$f(x) = x^x$$

4.
$$f(x) = \frac{x \ln x}{x^2 - 1}$$
5.
$$f(x) = \frac{1}{1 - x} - \frac{2}{1 - x^2}$$

$$x^2 - 2x - 3$$

12.
$$f(x) = \frac{\sqrt{x^2 + 1} - 1}{x}$$

6.
$$f(x) = \frac{x^2 - 2x - 3}{\sqrt{1+x}}$$

13.
$$f(x) = x^x$$

7.
$$f(x) = \frac{\sin x}{\sqrt{1+x}-1}$$

Exercice 12. Pour tout x>0, on pose $f(x)=(e^x+2x)^{\frac{1}{x}}$. Étudier un éventuel prolongement par continuité de f.

Exercice 13. Peut-on prolonger par continuité en les fonctions suivantes :

1.
$$f(x) = \frac{\sqrt{x^2 + 1} - 1}{x}$$

2. $g(x) = x^x$

Exercice 14. Soit $n \in \mathbb{N}^*$. Étudier la continuité de $f_n : x \mapsto \frac{x^n}{e^x - 1}$.

L'application f admet-elle un prolongement par continuité aux bornes de son domaine de définition?

Exercice 15. Soit n un entier naturel non nul. On définit f_n par $f_n(x) = \frac{e^{x^2} - e}{x^{2n} - 1}$. Quel est son ensemble de définition? La fonction f_n admet-elle un prolongement par continuité définie sur \mathbb{R} ?

Exercice 16. Montrer que pour a > -1, la fonction f_a définie par $f_a(x) = |x|^a \sin x \sin \left(\frac{1}{x}\right)$ admet un prolongement par continuité sur \mathbb{R} .

Applications des théorèmes sur la continuité

Exercice 17. Soit l'équation $x^3 - 3x + 1 = 0$. Montrer qu'elle a trois racines dans \mathbb{R} .

Exercice 18. Étudier la fonction $f: x \mapsto x^3 - x + 1$. Montrer que l'équation f(x) = 0 admet une unique solution réelle $\alpha \in]-2, -1[$. Déterminer un encadrement de α à 10^{-2} près.

Exercice 19. Suites implicites, le retour!

Pour tout $n \in \mathbb{N}^*$, on considère la fonction f_n définie par : $\forall x \in \mathbb{R}, f_n(x) = x^3 + 3x - n$.

- 1. Soit $n \in \mathbb{N}^*$. Montrer que l'équation $f_n(x) = 0$ admet une unique solution sur \mathbb{R} . On note u_n cette solution.
- 2. Montrer que : $0 \le u_n \le n^{\frac{1}{3}}$ pour tout $n \in \mathbb{N}^*$.
- 3. Montrer que la suite est croissante.
- 4. Montrer que pour tout $n \in \mathbb{N}^*$ on a : $\left(\frac{u_n}{n^{\frac{1}{3}}}\right)^3 = 1 3\frac{u_n}{n}$. En déduire que : $u_n \underset{+\infty}{\sim} n^{\frac{1}{3}}$ ainsi que la limite de la suite.

Exercice 20. Soient $f:[0,1] \to \mathbb{R}$ et $g:[0,1] \to \mathbb{R}$ deux fonctions continues telles que f(0) = g(1) et f(1) = g(0). Démontrer que l'équation f(x) = g(x) possède au moins une solution dans [0,1].

Exercice 21. Étude des points fixes d'une fonction.

- 1. Montrer que si $f:[0,1] \to [0,1]$ est une fonction continue sur [0,1] alors f admet un point fixe dans [0,1].
- 2. Montrer que si f est continue et décroissante sur [0,1] à valeurs dans [0,1], f admet un unique point fixe dans [0,1].

Exercice 22. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue.

Montrer que si f possède des limites finies en $-\infty$ et en $+\infty$ alors elle est bornée.

Exercice 23. Soient $f:[0,1] \to [0,1]$ et $g:[0,1] \to [0,1]$ deux fonctions continues sur [0,1] et telles que $f \circ g = g \circ f$. Le but est de montrer qu'il existe $x_0 \in [0,1]$ tel que $f(x_0) = g(x_0)$. On va raisonner par l'absurde en supposant que

$$\forall x \in [0, 1], \quad f(x) \neq g(x).$$

- 1. Montrer que l'on peut se ramener au cas où : $\forall x \in [0,1], \quad f(x) > g(x)$.
- 2. Démontrer qu'il existe m > 0 tel que : $\forall x \in [0,1], \quad f(x) \ge g(x) + m$.
- 3. Montrer que pour tout $n \in \mathbb{N}$ et pour tout $x \in [0,1]$: $f^n(x) \in [0,1]$ et $g^n(x) \in [0,1]$.
- 4. Montrer que : $\forall n \in \mathbb{N}^*, \ \forall x \in [0,1], \quad f^n(x) \geq g^n(x) + nm.$
- 5. Conclure.

Exercice 24. Montrer que $f: x \mapsto \frac{e^x - e^{-x}}{2}$ est une bijection de \mathbb{R} dans \mathbb{R} . Expliciter f^{-1} .

Exercice 25. Soit la fonction
$$f$$
 définie par $f(x) = \begin{cases} \frac{x^2}{x^2 + 1} & \text{si } x \ge 0 \\ \frac{x^2}{x^2 - 1} & \text{si } x < 0 \end{cases}$

Montrer que f est une bijection de \mathcal{D}_f sur $f(\mathcal{D}_f)$, ensembles à préciser. Quelles sont les propriétés de f^{-1} ? Expliciter f^{-1} .

Exercice 26. Soient a et b deux nombres réels tels que a < b. On pose, $\forall x \in]a, b[$, $f(x) = \frac{1}{x-a} + \frac{1}{x-b}$.

- 1. Démontrer que f réalise une bijection de]a,b[sur un intervalle J que l'on précisera. Que peut-on dire de l'application f^{-1} ?
- 2. Déterminer f^{-1} dans le cas a = -1 et b = 1. Représenter graphiquement f et f^{-1} .

Exercice 27. On note f la fonction définie par $f(x) = e^{(1+\frac{1}{x})\ln(x)}$.

- 1. Montrer que f est prolongeable par continuité en 0. On notera encore f la fonction ainsi prolongée.
- 2. Étudier la fonction.
- 3. On définit alors la suite $(u_n)_{n\in\mathbb{N}}$ par : $u_0>0$ et $\forall n\in\mathbb{N},\ u_{n+1}=f(u_n)$. Déterminer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 28. On note f la fonction définie par $f(x) = \frac{x}{e^x - 1}$.

- 1. Montrer que f est prolongeable par continuité en 0. On notera encore f la fonction ainsi prolongée.
- 2. On définit alors la suite $(u_n)_{n\in\mathbb{N}}$ par : $u_0=0$ et $\forall n\in\mathbb{N},\ u_{n+1}=f(u_n)$. Déterminer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$.

Résolution d'équations fonctionnelles

Exercice 29. Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction continue en 0. On suppose que $\forall x \in \mathbb{R}$, $g(x) = g\left(\frac{x}{2}\right)$.

- 1. Montrer que : $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \quad g(x) = g\left(\frac{x}{2^n}\right)$.
- 2. En déduire que g est constante sur \mathbb{R} .

Exercice 30. Le but est de déterminer toutes les fonctions f continues sur \mathbb{R} telles que

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = f(x) + f(y).$$

On considère une telle fonction et on pose a = f(1).

- 1. Calculer f(0).
- 2. Montrer que la fonction f est impaire.
- 3. Soit $x \in \mathbb{R}$. Montrer que : $\forall n \in \mathbb{Z}$, f(nx) = nf(x). On pourra commencer à le montrer pour $n \in \mathbb{N}$.
- 4. Montrer que : $\forall (p,q) \in \mathbb{Z} \times \mathbb{N}^*, \quad f\left(\frac{p}{q}\right) = \frac{p}{q}a.$
- 5. En déduire que : $\forall x \in \mathbb{R}$, f(x) = xa (on pourra utiliser en l'admettant le fait que tout réel est limite d'une suite de rationnels).
- 6. Conclure.