DS n°7 : Fiche de calculs

Durée : 60 minutes, calculatrices et documents interdits

Nom et prénom :		Note:	
-----------------	--	-------	--

Porter directement les réponses sur la feuille, sans justification.

Analyse asymptotique.

Donner un équivalent simple de chacune des fonctions suivantes, au point indiqué.

$$\frac{x - \sqrt{x}}{\sqrt{x - \sqrt{x}}} \underset{x \to +\infty}{\sim} \tag{1}$$

$$e^{\sin x} - e \underset{x \to \pi/2}{\sim} \tag{2}$$

$$\frac{x^{(x^x)}}{x^x - 1} \underset{x \to 0}{\sim} \tag{3}$$

$$\cos(\sin x) + e^{\operatorname{ch} x - 1} - 2 \underset{x \to 0}{\sim} \tag{4}$$

Donner un développement limité de chacune des expressions suivantes, au point et à l'ordre indiqué.

En 0 et à l'ordre 3, $\frac{\operatorname{ch}(x)\ln(1+x)}{\cos(x)} =$

$$(5)$$

En
$$\frac{\pi}{4}$$
 et à l'ordre 2, $\cos(x)\sin\left(2x - \frac{\pi}{4}\right) =$

En 0 et à l'ordre 6,
$$\int_{x}^{x^{2}} \frac{1}{\sqrt{1+t^{4}}} dt =$$

Pour $n \in \mathbb{N}$, on considère l'équation $x + \sqrt[3]{x} = n$ (d'inconnue $x \in \mathbb{R}$) et l'on note x_n son unique solution. Un développement asymptotique à trois termes de $(x_n)_{n \in \mathbb{N}}$ est :

$$x_n = \boxed{ }$$
 (8)

Soit $h: x \mapsto \ln(1+x^3)\cos(x) \Big(e^{\sin(x)}\Big)$	$n^{2}x-1$). Alors:		
h^0	$^{7)}(0) =$		(9)
Soit $f: x \mapsto \ln\left(e^x + \sqrt{e^{2x} + 1}\right)$. U	ne équation de l'asymptote à la	courbe de f en $+\infty$ est :	
			(10)
et, au voisinage de $+\infty$, le graphe e	de f se trouve (remplir par au-c	dessus ou en-dessous)	
		de cette asymptote.	(11)
Algèbre linéaire.			
Répondre par \mathbf{OUI} ou \mathbf{NON} :			
$\begin{pmatrix} 5\\2\\-1\\3 \end{pmatrix} \text{ est-il dans Vect} \begin{pmatrix} \\2\\-1\\3 \end{pmatrix}, \begin{pmatrix} 4\\3\\1\\5 \end{pmatrix}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		(12)
Soit $f: \mathbb{R}^4 \to \mathbb{R}^4$, $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \mapsto \begin{pmatrix} -x \\ 4x \\ 4x \\ x \end{pmatrix}$	$ \begin{pmatrix} + & 4y & - & 2z & \\ + & 12y & - & 4z & + & 4t \\ - & 9y & + & 5z & + & t \\ + & 10y & - & 4z & + & 2t \end{pmatrix}. $		
Une base de $\operatorname{Ker} f$ est :			(14)
et une base de $\operatorname{Im} f$ est :			. (15)

— FIN —