CE30 – Discussion 4

Rigid Body Equilibrium

Textbook: 4.2 – 4.3

Çağlar Tamur

caglar.tamur@berkeley.edu

Spring 2024

Instructor: Shaofan Li

Announcements

- No discussion next Monday 02/19 (Presidents Day)
 - Please attend Tue/Wed sections
- HW4 Problems from the textbook:

4.11, 4.12, 4.13, 4.43, 4.53, 4.61, and 4.66

Rigid Body Constraints

$$\sum F_x = 0$$
 $\sum F_y = 0$ $\sum M_A = 0$

- Support reactions are usually unknown.
- We should have (# Equations) = (# Unknowns) to find the unique solution.
- Depending on the constraints (supports), we have 3 possible systems:

Statically Determinate

(#Unknowns) = (#Eqns.)

Can find unique solution

Statically Indeterminate

(#Unknowns) > (#Eqns.)

Need extra equations to solve

Partially Constrained

(#Unknowns) < (#Eqns.)

Unstable structure

Practice – Similar to HW P4.13

Determine the reactions at A and B when $\alpha = 60^{\circ}$.

Two force members

Rigid body subjected to two forces:

- Forces should be same magnitude, opposite direction (force equilibrium)
- Forces should have same line of action (moment equilibrium)

Three force members

Rigid body subjected to three forces:

- Forces should be **concurrent** (all intersect at a single point) (moment equilibrium)
- Except if none of them intersect (parallel line of action)

Practice – Similar to HW P4.43

A slender rod BC of length L and weight W is held by two cables as shown. Knowing that cable AB is horizontal and that the rod forms an angle of 40° with the horizontal, determine (a) the angle θ that cable CD forms with the horizontal, (b) the tension in each cable.

Rigid Body Equilibrium in 3D

Six scalar equations to be satisfied

$$\sum F_{x} = 0 \qquad \sum F_{y} = 0 \qquad \sum F_{z} = 0$$

$$\sum M_{x} = 0 \qquad \sum M_{y} = 0 \qquad \sum M_{z} = 0$$

In vector notation

$$\sum \mathbf{F} = 0 \qquad \qquad \sum \mathbf{M}_O = \sum (\mathbf{r} \times \mathbf{F}) = 0$$

Supports in 3D

Depending on the type, there will be a combination of force and moment reactions at the support

Practice - Similar to HW P4.61

A 7-ft boom is held by a ball and socket at A and by two cables EBF and DC; cable EBF passes around a frictionless pulley at B. Determine the tension in each cable.

