Kérem e-mail-ben jelezze, ha hibát talál: (veanna@inf.elte.hu, vagy veanna@elte.hu)

1. feladat

Mivel a piramis tetején lévő kocka a mondatkezdő szimbólumot (S) nem tartalmazza, a szó nem vezethető le a grammatikában. (A-ból és C-ből igen.)

```
\begin{array}{l} \underline{2.\; feladat} \\ G{=}{<} \{a,b,c\}, \{S,A,B,C\}, \textbf{P},S{>} \\ \textbf{P}{=} \{\\ S \rightarrow aA \mid acS \\ A \rightarrow aS \mid bC \mid B \\ B \rightarrow aS \mid c \\ C \rightarrow bA \mid S \mid \epsilon \\ \end{array}
```

```
}
A 3-as normál forma kialakításának lépései:
Láncmentesítés
S \rightarrow aA \mid acS
A \rightarrow aS \mid bC \mid c
B \rightarrow aS \mid c
C \rightarrow bA \mid aA \mid acS \mid \epsilon
Vegyük észre, hogy B kiesik, mert nem
összefüggő (S-ből nem érhető el)!
Hosszúság redukció
 S \rightarrow aA \mid aD
 A \rightarrow aS \mid bC \mid c
 C \rightarrow bA \mid aA \mid aD \mid \epsilon
 D \rightarrow cS
 Univerzális epszilon szabály felvétele
 S \rightarrow aA \mid aD
 A \rightarrow aS \mid bC \mid cV
 C \rightarrow bA \mid aA \mid aD \mid \epsilon
 D \rightarrow cS
 V \rightarrow \epsilon
```

A 3 NF-ből kapott automata (NDA):

		a	b	c
→	S	A,D		
	A	S	C	V
←	С	A,D	A	
	D			S
←	V			

Az NDA-ból kapott VDA:

		a	b	c
→	{S}	{A,D}	{}	{}
	{A,D}	{S}	{C}	{S,V}
←	{C}	{A,D}	{A}	{}
←	{S,V}	{A,D}	{}	{}
	{A}	{S}	{C}	{V}
←	$\{\overline{V}\}$	{}	{}	{}
	{}	{}	{}	{}

3. feladat

		a	b
\rightarrow	1	2	3
	2	4	2
	3	2	1
\leftarrow	4	6	3
	5	10	6
	6	8	7
	7	9	7
\leftarrow	8	8	9
←	9	8	8
\leftarrow	10	5	1

I. Összefüggőség vizsgálat.

 $H_0 = \{1\}$

 $H_1 = \{1,2,3\}$

 $H_2 = \{1, 2, 3, 4\}$

 $H_3 = \{1, 2, 3, 4, 6\}$

 $H_4 = \{1, 2, 3, 4, 6, 8, 7\}$

 $H_5 = \{1,2,3,4,6,8,7,9\}$

 $H_6 = H_5$

5 és 10 kiesik, mert nem érhető el a kezdőállapotból.

Az összefüggő automata:

		a	b
\rightarrow	1	2	3
,	2	4	2
•	3	2	1
← 4	4	6	3
(6	8	7
,	7	9	7
	8	8	9
← 9	9	8	8

A redukálás (ekvivalens állapotok meghatározása):

0~: {1,2,3,6,7} {4,8,9}

1~: {1,3} {2,6,7} {4} {8,9}

2~: {1,3} {2} {6,7} {4} {8,9} 3~= 2~

A minimális automata:

		a	b
\rightarrow	{1,3}	{2}	{1,3}
	{2}	{4}	{2}
	{6,7}	{8,9}	{6,7}
\leftarrow	{4}	{6,7}	{1,3}
\leftarrow	{8,9}	{8,9}	{8,9}

4. feladat L=((ba)*c+ab)*

Az általánosított szekvenciális automata:

Lezártat finomítjuk:

Konkatenációkat finomítjuk:

Lezártat finomítjuk:

Konkatenációt finomítjuk:

Mely epszilon élek hagyhatók el?

A kapott automata:

Az epszilon mentesített automata:

		a	b	c
₹	S	В	D	S
•	В		S	
•	D	С		
•	С		D	S

Amikor S sorát számítjuk ki, akkor mindazon sorok unióját vesszük, amelyek az ε(S) halmazba bekerültek, tehát most az S és C sorok uniójából keletkezett S sora.

S->A igen, mert S-ből csak az epszilon él indul ki, és S nem végállapot. A->V igen mert V-be csak az epszilon él mutat, és V nem kezdőállapot.

C->E igen, mert E-be csak az epszilon él mutat, és E nem kezdőállapot.

A->C nem hagyható el, mert A-ból nemcsak az epszilon él indul, és C-be nemcsak az epszilon él fut be.

Az epszilon mentes rész táblázata

		a	b	c
\rightarrow	S	В		
	В		S	
•	С		D	S
•	D	С		

 $\varepsilon(S) = \{S,C\}$

Meghatározzuk, hogy hova lehet S-ből eljutni, úgy, hogy közben nem olvas az automata. Ezt a halmazt minden olyan csúcsra kiszámítjuk, amelyből epszilon él vezet ki. Ha a halmazban szerepel végállapot, az a csúcs is végállapottá válik, amelynek a halmazát éppen kiszámoltuk.

5. feladat
$$L=b(a+\epsilon)(c+ac)^* = ba(c+ac)^* + b(c+ac)^*$$

A maradéknyelvek meghatározása:

0 hosszú "előtag" maradéknyelve:

$\frac{L_{e}}{L_{e}} = L$

1 hosszú "előtag"-hoz tartozó maradéknyelvek:

(a szó első betűje a, b, vagy c, mi lehet a folytatás)

$$L_a = \emptyset$$
 a-val nem kezdődhet szó

$$L_b = a(c+ac)^* + (c+ac)^*$$
 ezt számoljuk tovább

$$L_c = \emptyset$$
 c-vel nem kezdődhet szó

2 hosszú "előtag"-hoz tartozó maradéknyelvek:

(csak a b-vel kezdődő nyelvosztályokat kell kiszámolni, tehát meg kell nézni, mi a maradéknyelv ba, bb, és bc kezdet esetén)

$$L_{\text{ba}} = (c+ac)^*$$
 (új. tová

(új, tovább kell számolni)

$$L_{bb} = \emptyset$$

$$L_{bc} = (c+ac)^* = L_{ba}$$
 (ugyanaz, mint L_{ba})

3 hosszú "előtag"-hoz tartozó maradéknyelvek:

(csak az ba-val ás bc-vel kezdődők folytatásaival foglalkozunk)

$$L_{baa} = c(c+ac)*$$

(új, tovább kell számolni)

$$L_{bab} = \emptyset$$

$$L_{bac} = L_{ba}$$

4 hosszú "előtag"-hoz tartozó maradéknyelvek:

(csak az baa-val kezdődők folytatásaival foglalkozunk)

 $L_{baaa} = \emptyset$

 $L_{baab} = \emptyset$

$$L_{baac} = L_{ba}$$

Nem keletkezett új maradéknyelv, készen vagyunk. Sárgával és bíborral jelzettek a különböző maradék nyelvek. Bíbor színűek azok, amelyek az ε-t tartalmazzák, így végállapotok lesznek. Az automata gráffal ábrázolva (ez még csak PDA, a hibaállapot felvételével lesz VDA):

6. feladat Az L= $\{u \in \{a,b,c\}^* \mid la(u)=lb(u) \text{ és cb } \subset u\}$ nyelvhez kell verem automatát készíteni. Az automata gráfos megjelenítéssel:

$$V = \langle \{q_0, q_c, q_{cb}, q_v\}, \{a, b, c\}, \{a, b, \#\}, \delta, q_0, \#, \{q_v\} \rangle$$

Magyarázat:

- q₀ állapotban gyűjti és számlálja az 'a' és 'b' betűket, a veremben mindig a többlet 'a' vagy a többlet 'b' van, vagy #, ha épp egyensúly van.
- Ha jön egy 'c' átmegy q_c állapotba, ott tetszőleges számú 'c'-t olvashat. De ha jön egy
 'a' akkor visszatér q₀-ba, mert nem érkezett meg a helyes szóhoz szükséges 'cb'
 szótag.
- q_c-ből q_{cb}-be lép, ha 'b' érkezik, ilyenkor a helyes szóhoz megérkezett a szükséges 'cb' szótag. q_{cb} állapotban hasonlóan q₀ állapothoz az 'a' és 'b' betűket számolja, ha 'c' jönne, azzal nem foglalkozik.
- q_v -be léphet, ha a veremben megjelenik a '#'. Ha az input szalagot közben sikerült végigolvasni, akkor helyes volt a szó.

7. feladat Az L= $\{u \in \{a,b,c\}^* \mid l_a(u)=l_b(u)>0 \text{ és cb } \not\subset u\}$ nyelvhez kell verem automatát készíteni. Az automata gráfos megjelenítéssel:

 $V = <\{q_0,q_1,q_c,q_v\},\{a,b,c\},\{a,b,\#\},\delta,q_0,\#,\{q_v\}>$

Magyarázat:

- q₀ állapotban van mindaddig, amíg 'c' betűk vannak az inputon. Ha jön egy 'a' vagy 'b' átmegy q₁-be (az volt a helyes szó feltétele, hogy legalább egy 'a' és 'b' legyen benne.
- q₁ állapotban gyűjti és számlálja az 'a' és 'b' betűket, a veremben mindig a többlet 'a' vagy a többlet 'b' van, vagy #, ha épp egyensúly van.
- Ha jön egy 'c' átmegy q_c állapotba, ott tetszőleges számú 'c'-t olvashat. Csak 'a'-val térhet vissza q₁-be, mert nem lehet a helyes szóban 'cb' szótag.
- q_v-be léphet, ha a veremben megjelenik a '#'. Ez előfordulhat úgy, hogy 'c'-re végződik a szó, vagy úgy, hogy 'a' vagy 'b' betűre végződik. Ha az input szalagot közben sikerült végigolvasni, akkor helyes volt a szó.

Ha nincs kikötve, hogy $l_a(u)>0$ és $l_b(u)>0$, azaz az üres szó, vagy a csupa 'c' betűből álló szó is helyes, akkor egy egyszerűbb automatát kapunk:

