

CS32: Introduction to Computer Science **Discussion Week 8**

Junheng Hao, Ramya Satish March 1, 2019

Announcement

- Homework 4 is due on next Tuesday, March 5.
- Homework 5 and Project 4 are both due on March 14.
- ... and Project 3 is due 11PM yesterday...

Outline

- Sorting
- Tree

Big-O Notation

Formal definition

Definition: Let **T(n)** be the function that measures the runtime of the program given n size of input. And let **g(n)** be another function defined on the real number field.

$$T(n) = O(g(n))$$
 iff $\exists M > 0$ and $\exists N > 0$ s.t. $\forall n > N$
: $T(n) \le M*g(n)$

Well, you can simply understand as how many operations given input size of n regardless of the constant.

No need to memorize definitions.

Example: if your program takes,

- about n steps $\rightarrow O(n)$
- about 2n steps $\rightarrow O(n)$
- about n^2 steps $\rightarrow 0(n^2)$
- about $3n^2+10n$ steps $\rightarrow 0(n^2)$
- about 2^n steps $\rightarrow 0(2^n)$

Question: What is the speed of growth for typical function?

```
f(n) = log(n) / n / n^2 / 2^n / n!
```

Big-O Arithmetic

How to determine the entire program?

Generally,

- If things happen sequentially, we add Big-Os;
- If one thing happen within another, then we multiply Big-Os.
- Simple rule: Watch the LOOPS in your programs!

Rules:

$$O(f(n)) + O(g(n)) = O(\max(f(n), g(n)))$$

$$O(f(n)) \times O(g(n)) = O(f(n) \times g(n))$$

SortingIntroduction

Most important algorithm ever!

Methods:

- Selection sort
- Bubble sort
- Insertion sort
- Merge sort
- Quick sort

Focus on:

- 1. Steps for each sorting algorithm
- 2. Runtime complexity for worst cases, best cases and average cases
- 3. Space complexity
- 4. How about additional assumptions, such as the array is "almost sorted" / "reversed" arrays

Selection sort

Steps:

- 4 3 1 5 2
- **1** 3 4 5 2
- **1 2 4 5 3**
- **1 2 3** 5 4
- 1 2 3 4 5

Idea: Find the smallest item in the unsorted portion and place it in the front.

Runtime complexity:

Average: $O(n^2)$

Worst: $O(n^2)$

Best: $O(n^2)$

Space complexity: O(1)

Insertion sort

Steps:

- **4 3 1** 5 **2**
- **3 4 1** 5 2
- **1 3 4 5** 2
- 1 3 4 5 2
- 1 2 3 4 5

Idea: Pick one from the unsorted part and place it in the right position.

Runtime complexity:

Average: $O(n^2)$

Worst: $O(n^2)$

Best: O(n)

Space complexity: O(1)

Bubble sort

UCLA Samueli Computer Science

Steps:

4 3 1 5 2

3 4 1 5 2

3 1 4 5 2

3 1 4 2 5

1 3 2 4 5

1 2 3 4 5

Idea: Well, just "bubble" as its name

Runtime complexity:

Average: $O(n^2)$

Worst: $O(n^2)$

Best: O(n)

Space complexity: O(1)

Merge sort

Steps:

Idea: Divide and conquer

Runtime complexity:

Average: $O(n \log n)$

Worst: $O(n \log n)$

Best: $O(n \log n)$

Space complexity: O(n)

Quicksort

Steps:

Idea: Set a pivot. Numbers less then pivot are placed to front while other to end.

Runtime complexity:

Average: $O(n \log n)$

Worst: $O(n^2)$

Best: $O(n \log n)$

Space complexity: $O(\log n)$

Other methods and complexity?

- O(n log n) is faster than $O(n^2) \rightarrow Merge$ sort is more efficient than selection, insertion and bubble sort in runtime.
- O(n log n) is best average complexity that a general sorting algorithm can achieve.
- With more information about the data provided, you can sometimes sort things almost linearly.

Question: What is the complexity of these sorting algorithms if you know the array is **reversed**? What if the array is **almost already sorted**?

Other methods and complexity?

There are many other sorting methods:

- Shell sort (shell 1959, Knuth 1973, Ciura 2001)
- Quicksort 3-way
- Heap sort
- Bucket sort

Why sorting is important?

Sorting is the most important and basic algorithm. Many other real-world problems are somewhat based on sorting, including:

Sorting Algorithms Animations: https://www.toptal.com/developers/sorting-algorithms
Other good demos:

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html http://sorting.at/

Sorting - Problem 1

Find the K-th largest

Question: How about get the *K-th* largest numbers in one array?

<u>Leetcode question #215</u>

Hint:

- 1. How to find the k-th largest numbers by merge sort and quicksort (or other sort methods)? What are the average and worst complexity?
- 2. What data structures is good to use?
- 3. What about *K* largest numbers (can be unordered) instead of the *K*-th largest number?

Sorting - Problem 2

Find the median of streaming data

How to find the median of the streaming data?

That is, implementing the following program:

```
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
```

```
class MedianFinder {
public:
 MedianFinder() {
    // construction
 void addNum(int num) {
    // add new integers from stream
  double findMedian() {
    // return the median
private:
    // define your private data member(s)
};
```

Big-O Notation

Big-O Complexity Chart

Big-O Complexity Chart

Array Sorting Algorithms

Algorithm	Time Complexity			Space Complexity
	Best	Average	Worst	Worst
Quicksort	$\Omega(n \log(n))$	$\theta(n \log(n))$	0(n^2)	0(log(n))
<u>Mergesort</u>	$\Omega(n \log(n))$	$\theta(n \log(n))$	0(n log(n))	0(n)
<u>Timsort</u>	$\Omega(n)$	$\theta(n \log(n))$	0(n log(n))	0(n)
<u>Heapsort</u>	$\Omega(n \log(n))$	$\theta(n \log(n))$	0(n log(n))	0(1)
Bubble Sort	$\Omega(n)$	θ(n^2)	0(n^2)	0(1)
Insertion Sort	$\Omega(n)$	θ(n^2)	0(n^2)	0(1)
Selection Sort	Ω(n^2)	θ(n^2)	0(n^2)	0(1)
Tree Sort	$\Omega(n \log(n))$	$\theta(n \log(n))$	0(n^2)	0(n)
Shell Sort	$\Omega(n \log(n))$	$\theta(n(\log(n))^2)$	0(n(log(n))^2)	0(1)
Bucket Sort	$\Omega(n+k)$	θ(n+k)	0(n^2)	0(n)
Radix Sort	$\Omega(nk)$	Θ(nk)	0(nk)	0(n+k)
Counting Sort	$\Omega(n+k)$	$\theta(n+k)$	0(n+k)	0(k)
<u>Cubesort</u>	$\Omega(n)$	$\theta(n \log(n))$	0(n log(n))	0(n)

Tree

Definition

- Terms: Node/edge, root node, leaf node, parent and child node, subtree, levels (height/depth).
- Features: No loop, no shared children
- Question: How many edges should there be in a tree with n nodes?
- Binary tree: no node has more than two children.
- Question: How many nodes can a binary tree of height h have? → Full binary tree

Tree

As a data structure

- Tree is a useful data structure!
- Basic functions: insert, remove, search, traverse
- How to traverse a tree?

```
struct Node{
  ItemType val;
  Node* leftChild;
  Node* rightChild;
} // a simple node
```

```
Class Tree{
public:
private:
}
```


Tree Traversal: Pre-order

Three methods of tree traversal


```
void preorder(const Node* node)
{
  if (node == nullptr) return;
  cout << node->val << ",";
  preorder(node->left);
  preorder(node->right);
}
```

```
Pre-order output:
F, B, A, D, C, E, G, I, H
```


Tree Traversal: In-order

Three methods of tree traversal


```
void inorder(const Node* node)
{
  if (node == nullptr) return;
  inorder(node->left);
  cout << node->val << ",";
  inorder(node->right);
}
```

```
In-order output:
A, B, C, D, E, F, G, H, I
```


Tree Traversal: Post-order

Three methods of tree traversal


```
void postorder(const Node* node)
{
  if (node == nullptr) return;
  postorder(node->left);
  postorder(node->right);
  cout << node->val << ",";
}</pre>
```

```
Post-order output:
```

```
A, C, E, D, B, H, I, G, F
```


Tree Traversal: Compare


```
void preorder(const Node* node)
{
  if (node == nullptr) return;
  cout << node->val << ",";
  preorder(node->left);
  preorder(node->right);
}
```

```
void postorder(const Node* node)
{
  if (node == nullptr) return;
  postorder(node->left);
  postorder(node->right);
  cout << node->val << ",";
}</pre>
```

```
void inorder(const Node* node)
{
  if (node == nullptr) return;
  inorder(node->left);
  cout << node->val << ",";
  inorder(node->right);
}
```

```
//Other ways?
Level-order or say
breadth-first search!
```


Tree

Recursion in trees

- It is easy and natural to apply recursion on trees!
- Pre-order / in-order / post-order are all recursive methods to traverse a tree.
- Question: How to calculate a height of a given tree?

```
int getTreeHeight(const Node* node)
  if (node == nullptr) return 0;
 int leftHeight = getTreeHeight(node->left);
 int rightHeight = getTreeHeight(node->right);
  if (leftHeight > rightHeight)
    return leftHeight + 1;
 else
    return rightHeight + 1;
```


Tree

Conclusions and applications

- Non-linear data structures unlike arrays or lists.
- Present hierarchy
- Optimized (like balanced) tree and variants can improve efficiency of search, sort and other typical problems.
- Other tree variants:
 - o B tree / B+ tree
 - Red-black tree
 - K-D Tree
 - Suffix Tree

Next week about tree

- Binary Search Tree
- Heap
- More interesting questions ...

6 5 3 1 8 7 2 4

Thank you!

Q & A