FPGA реализация нейронной сети прямого распространения для распознавания рукописных чисел

E.A. Кривальцевич М.И. Вашкевич krivalcevi4.egor@gmail.com, vashkevich@bsuir.by

Белорусский государственный университет информатики и радиоэлектроники Кафедра электронных вычислительных средств

XIV Международная научная конференции «Информационные технологии и системы» Минск, Республика Беларусь

Содержание

- 1. Прототипирование нейронных сетей на FPGA
- 2. Постановка задачи
- 3. Обучение нейронной сети
- 4. Аппаратная реализация нейронной сети
- 5. Использование PYNQ для прототипирования и тестирования нейронной сети
- 6. Описание эксперимента и результаты

Введение

Прототипирование нейронных сетей на FPGA

- Вычислительной платформой для обучения и эксплуатации нейросетевых моделей чаще всего выступают графические процессоры, которые содержат множество вычислительных ядер, способных обрабатывать потоки данных параллельно.
- FPGA (Field Programmable Gate Array) представляют собой реконфигурируемые вычислительные платформы, позволяющие реализовывать параллельно-поточные архитектуры HC.
- При реализации HC на базе FPGA появляется возможность использовать для представления параметров HC типов данных, обеспечивающих различную точность.

Постановка задачи

Цель исследования

- Получить аппаратно реализованную НС прямого распространения для распознавания рукописных цифр
- Выяснить влияние разрядности представления весовых коэффициентов НС на точность определения цифр и аппаратные затраты
- Оценить наиболее оптимальную реализацию НС

Обучение нейронной сети

Архитектура нейронной сети

Параметры для обучения

Параметры обучения

- Входные данные приводятся к диапазону [-1, 1] и устанавливается их среднеквадратическое отклонение(СКО) равным 0,5
- Оптимизация производилась с использованием метода стохастического градиентного спуска (SGD) (скорость обучения $\eta = 3 \cdot 10^{-3}$, число эпох 10000, моментум $\gamma = 0,9$)

График функции потерь

Аппаратная реализация нейронной сети

Структурная схема ІР-блока

Основные блоки

- Регистровый файл
- Счётчик
- Полносвязный слой
- Блок поиска индекса максимального элемента

Структурная схема ІР-блока

Использование PYNQ для прототипирования

и тестирования нейронной сети

Структурная схема проекта

• Подключение PL блока к PS осуществляется с помощью AXI4-Lite и uP интерфейсов.

7

Эксперимент и результаты

Описание эксперимента

- Набор данных MNIST (10 тыс. изображений рукописных цифр 28×28)
- Данные подаются последовательно из процессорной системы
- Результаты группируются в виде матриц спутывания
- Проведено 15 тестов с различными разрядностями весовых коэффициентов (от 2 до 16)
- Составлен график зависимости точности от разрядности
- Разложены классы весовых коэффициентов на битовые плоскости
- Проанализированы аппаратные затраты

Результаты

Матрица спутывания

Точность и затраты блоков LUT/FF

Аппаратные затраты

Таблица 1: Аппаратные затраты для 5 битного представления коэффициентов

Тип блока	Использовано	Доступно	Соотношение,
			%
LUT as logic	2180	17600	12.39
LUT as memory	60	6000	1
Flip Flop	862	35200	2.45
RAMB18	10	120	8.33
DSP	0	80	0

Разложение на битовые плоскости

Битовые плоскости

Beca W Плоскость 0 Плоскость 1 Плоскость 2 Плоскость 3 Плоскость 4 Плоскость 5 Плоскость 6 Плоскость 7

Зануление части битовых плоскостей

Выводы

- Рассмотренный эксперимент на основе НС прямого распространения с полносвязным слоем показывает, что формат представление весовых данных существенно влияет на точность определения до 5 битной разрядности. Дальнейшее увеличение разрядности не несет значительных изменений в точности.
- Предложенная структура HC показывает, что при увеличении разрядности наблюдается линейный рост в потреблении LUT и FF блоков FPGA.