Final Review

4b. Isometry

 $\text{dot product:} < \vec{u}, \vec{v} >= \vec{u}^T \vec{v}, \text{ length: } |\vec{v}| = < \vec{v}, \vec{v} >, \text{ distance: } |\vec{u} - \vec{v}|.$

isometry of \mathbb{R}^n : a distance preserving map $f:\mathbb{R}^n o\mathbb{R}^n$, $orall ec{u},ec{v}\in\mathbb{R}^n$, $|f(ec{u})-f(ec{v})|=|ec{u}-ec{v}|$

Lemma. If f,g are isometries on \mathbb{R}^n , then $f\circ g$ is also an isometry on \mathbb{R}^n .

Each $ec{a}\in\mathbb{R}^n$ induces a translation map: $t_{ec{a}}:\mathbb{R}^n o\mathbb{R}^n$, $ec{u}\mapstoec{u}+ec{a}$. It is an isometry.

 $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear operator if:

1.
$$orall ec{u}, ec{v} \in \mathbb{R}^n$$
, $T(ec{u} + ec{v}) = T(ec{u}) + T(ec{v})$

2.
$$\forall c \in \mathbb{R}, ec{u} \in \mathbb{R}^n, T(cec{u}) = cT(ec{u})$$

orthogonal linear operator if it is a linear operator s.t. $\forall ec{u}, ec{v} \in \mathbb{R}^n$, $< T(ec{u}), T(ec{v}) > = < ec{u}, ec{v} >$.

invertible A is orthogonal if $A^{-1} = A^T$.

orthogonal linear group $O_n(\mathbb{R})$: the set of all $n \times n$ orthogonal matrices, a subgroup of $GL_n(\mathbb{R})$.

T is an orthogonal linear operator $\iff A$ is an orthogonal matrix.

Lemma. The determinant of an orthogonal matrix is 1 or -1.

The kernel of
$$O_n(\mathbb{R})$$
: $SO_n(\mathbb{R}) = \{A \in O_n(\mathbb{R}) | \det(A) = 1\}$

 $M_n=T_n
ightharpoonup O_n$ where M_n is group of isometry on \mathbb{R}^n , T_n is group of translations, O_n is orthogonal linear group, $O_n(\mathbb{R})=SO_n(\mathbb{R})\cup SO_n(\mathbb{R})r$.

Every isometry $f=t_{\vec{a}}\cdot\phi$, where $t_{\vec{a}}$ is the translation along \vec{a},ϕ is an orthogonal linear operator.

When n=2, $f=t_{ec{a}}\cdot
ho_{ heta}$ or $f=t_{ec{a}}\cdot
ho_{ heta}\cdot r$,

where rotation
$$ho_{\theta} = SO_2(\mathbb{R}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
 — rotation of angle θ around origin

reflection
$$r = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$$
 — reflection with respect to x-axis

•
$$\phi \cdot t_{\vec{a}} = t_{\phi(\vec{a})} \cdot \phi$$

$$\circ$$
 In particular, for \mathbb{R}^2 , $ho_{ heta}t_{ec{a}}=t_{
ho_{ heta}(ec{a})}
ho_{ heta}$, $rt_{ec{a}}=t_{r(ec{a})}r$

$$ullet t_{ec{a}} + t_{ec{b}} = t_{ec{a} + ec{b}}, t_{ec{a}}^{-1} = t_{-ec{a}}$$

•
$$ho_{lpha} \cdot
ho_{eta} =
ho_{lpha + eta},
ho_{ heta}^{-1} =
ho_{- heta}$$

•
$$r^2=id$$
, $r^{-1}=r$

•
$$r
ho_{ heta}=
ho_{- heta}r$$
 and $ho_{- heta}=r
ho_{ heta}r=r
ho_{ heta}r^{-1}$

dihedral group:
$$D_n=\{\rho_{\theta}^ir^j\in O_2|0\leq i\leq n-1,0\leq j\leq 1\}$$
, where $\theta=\frac{2\pi}{n}$, finite subgroup of O_2 Properties: $|D_n|=2n, |\rho|=n, |r|=2, |<\rho>|=2$

4c. Groups Actions

A group action of G on a nonempty X is a function: $G \times X \to X$, $(g,x) \mapsto g.x$ satisfying:

1. 1.x = x for any $x \in X$

2.
$$g_1.(g_2.x)=(g_1g_2).x$$
 for any $g_1,g_2\in G, x\in X$

orbit of x: $O(x)=\{y\in X|g.x=y \text{ for some } g\in G\}$, distinct orbits form a partition of X stabilizer of x: $G_x=\{g\in G:g.x=x\}$, a subgroup of G

transitive action if there's only one orbit.

transitive action $\iff \forall x,y \in X$, there exists $g \in G$ such that y=g.x.

Counting Formula: $|G| < \infty$, $|G| = |O(x)| \cdot |G_x|$

i.e.
$$|O(x)| = |G:G_x|, |G_x| = |G:O(x)|$$

Class Equation: $|G| < \infty$, $|G| = |Z(G)| + \sum_{x \in S} |C_x| = |Z(G)| + \sum_{x \in S} \frac{|G|}{|N(x)|}$ where S is a set of representations of conjugacy classes with at least two elements. It decomposes G into the disjoint union of conjugacy classes C_x (orbits of G acting on itself by conjugation $g.x = gxg^{-1}$).

Examples:

- S_n acts on $X=\{1,2,...,n\}$ by $\sigma.k=\sigma(k)$
- $GL_n(\mathbb{R})$ acts on \mathbb{R}^n by matrix multiplication
- ullet G acts on G by left multiplication: g.x=gx
- G acts on G by conjugation: $g.x = gxg^{-1}$
 - \circ stabilizer in this case is called normalizer $G_x = N_x = \{g \in G | gxg^{-1} = x\}$
 - $\circ \ \ Z(G) \subseteq N_x, O(x) = C_x$

Property:

• Fix $g\in G$, we get a bijection map X o X, $x\mapsto g.x$ More generally, a group action corresponds to a homomorphism $G o\operatorname{Per}(X)$

More results:

- Cauchy's Theorem. $|G| < \infty$, $p \mid |G|$, then G has an element of order p.
- Fixed Point Theorem. G acts on X. $|G|=p^k$, k>0. If $p\nmid |X|$, then there exists a fixed point $x\in X$ under this action, i.e. g.x=x for any $g\in G$.
- H,K are subgroups of a finite group G. Then $|HK|=rac{|H| imes|K|}{|H\cap K|}$.
- Groups of order p^2 are abelian.

5. Classification of Groups

p-subgroup: $|G|=p^em$, p prime, $p\nmid m$. subgroup H s.t. $|H|=p^r$, r>0.

Sylow p-subgroup: $|G|=p^em$, p prime, $p\nmid m$. subgroup H s.t. $|H|=p^e$.

Sylow Theorem. $|G| = p^e m$, p prime, $p \nmid m$.

- 1. There exists a Sylow p-subgroup of G.
- 2. H is a Sylow p-subgroup of G, K is a p-subgroup of G, then $\exists g \in G$ s.t. $K \subset gHg^{-1}$.
- 3. $n_p \mid m, n_p \equiv 1 \pmod{p}$

Cor. There's unique Sylow p-subgroup $H \iff H$ is a normal subgroup of $G, H \triangleleft G$.

semidirect product with respect to $\phi:G'\to Aut(G)$: the group $G\rtimes_\phi G'$, composition: $(g_1,g_1')(g_2,g_2')=(g_1\phi_{g_1'}(g_2),g_1'g_2')$

G=H
times K. It means that $f:H
times_\phi K o G$ is an isomorphism, where $\phi:K o Aut(H)$, $\phi_k(h)=khk^{-1}$, f(h,k)=hk.

$$G=H imes K\iff H\cap K=\{1\}, HK=G, ext{ and } H, K\lhd G$$
 $G=H imes K\iff H\cap K=\{1\}, HK=G, ext{ and } H\lhd G$

Results for classification:

- $|G| = p, G \cong \mathbb{Z}/p\mathbb{Z}$
- |G|=2p, $G\cong \mathbb{Z}/2p\mathbb{Z}$ or $G\cong D_p$
- $|G|=p^2$, $G\cong \mathbb{Z}/p^2\mathbb{Z}$ or $G\cong \mathbb{Z}/p\mathbb{Z} imes \mathbb{Z}/p\mathbb{Z}$

6. Rings

ring $(R, +, \cdot)$: a set R with + and \cdot , that satisfy:

- 1. (R,+) forms an abelian group
- 2. "•" is associative and there is a multiplicative identity $1 \in R$ s.t. $1 \cdot r = r \cdot 1 = r, \forall r \in R$
- 3. $\forall a, b, c \in R, (a + b)c = ac + bc, c(a + b) = ca + cb$

commutative ring: if "×" is commutative

Prop.
$$\forall a, b \in R, 0 \cdot a = a \cdot 0 = 0, -a = (-1) \cdot a, -(ab) = (-a)b = a(-b).$$

Examples:

- 1. $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$, where $\mathbb{Z}/p\mathbb{Z}$, \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields
- 2. $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$, $ar{a}+ar{b}=\overline{a+b}$, $ar{a}ar{b}=\overline{ab}$
- 3. M_n , ring of $n \times n$ matrices (non-commutative when n > 1)

unit u: if $\exists u^{-1} \in R$, $uu^{-1} = 1$.

group of units, R^{\times} : the set of units of a ring R respect to multiplication

x is associated to y: $x,y \in R$ if $\exists u \in R^{\times}$ such that x=uy.

field: R with $R^{\times}=R\setminus\{0\}$, i.e., all the nonzero elements are units.

polynomial ring R[x]: the set of all polynomials with coefficients in R

A polynomial is monic if its leading coefficient is 1.

degree of a polynomial: the biggest power of x with nonzero coefficient.

Division Algorithm: If $f(x) \in R[x]$ is a monic polynomial, then for any $g(x) \in R[x]$, $\exists ! q(x) \in R[x]$, $r(x) \in R[x]$ such that g(x) = q(x)f(x) + r(x), with $\deg(r) < \deg(f)$.

ring homomorphism: $f:R\to R'$ s.t.

1.
$$\forall a, b \in R, f(a+b) = f(a) + f(b)$$

2.
$$\forall a,b \in R$$
, $f(ab) = f(a)f(b)$

3.
$$f(1) = 1'$$

$$\mathsf{kernel}\, \ker(f) = \{r \in R, f(r) = 0'\}$$

Substitution Principle. $f:R\to R'$ is a ring homomorphism, $\alpha\in R'$. Then there is a unique ring homomorphism $F:R[x]\to R'$ that agrees with f on constant polynomials and sends x to α .

ideal: nonempty subset I of a ring R if:

1.
$$\forall a, b \in I, a + b \in I$$

2.
$$\forall \alpha \in I . \forall r \in R . \alpha r \in I$$

Prop. The kernel of a ring homomorphism $f: R \to R'$ is an ideal of R.

Prop. (I, +) is a subgroup of (R, +)

$$\text{Prop. } I \neq R \iff I \cap R^{\times} = \emptyset \text{, } I = R \iff I \cap R^{\times} \neq \emptyset \iff 1 \in I$$

principal ideal generated by $a \in R$: $(a) = \{ar \in R | r \in R\}$

An ideal I is proper if $I \neq \{0\}$ and $I \neq R$.

Cor. principal ideal (a) is proper $\iff a \notin R^{\times} \cup \{0\}$

Cor. A nonzero ring is a field \iff it has no proper ideal

integral domain: R if $ab = 0 \rightarrow a = 0$ or b = 0.

e.g. All fields are integral domains. All finite integral domains are fields.

e.g. $\mathbb{Z}/n\mathbb{Z}$ is an integral domain $\iff n$ is prime.

Principle Ideal Domain (PID): an integral domain all of whose ideals are principal.

Prop. \mathbb{F} is a field. Then $\mathbb{F}[x]$ is a PID.

quotient ring:
$$R/I = \{r+I\}_{r \in R}$$
 , I is ideal, $r_1+I = r_2+I \iff r_2-r_1 \in I$

addition:
$$(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I$$

multiplication:
$$(r_1 + I)(r_2 + I) = r_1r_2 + I$$

e.g.
$$R=\mathbb{Z}$$
, $I=n\mathbb{Z}$, $R/I=\mathbb{Z}/n\mathbb{Z}$

First Isomorphism Theorem. $f:R\to R'$ is a surjective homomorphism. $I=\ker(f)$. Then there exists a unique ring isomorphism $F:R/I\to R'$ such that $f=F\circ\pi$.

Cor. $R/\ker(f)\cong \operatorname{Im}(f)$.

maximal ideal: proper ideal I if for any ideal J of R that $I\subseteq J$, either J=I or J=R.

Prop. I is a maximal ideal $\iff R/I$ is a field.

 $\mathbb F$ is a field. $p(x)\in\mathbb F[x]$ is irreducible if it is not constant or a product of two polynomials.

Prop. (p(x)) is maximal in $\mathbb{F}[x] \iff p(x)$ is irreducible

so $\mathbb{F}[x]/(p(x))$ is a field $\iff p(x)$ is irreducible

Example: $R[x]/(x^2+1)\cong \mathbb{C}$