NAME: JUWAIRIAH BIN MUHAMMAD SIN

MATRIK NUMBER: AI220365

LAB NAME: LAB 2

Assessment Questions:

1. What are the key differences between vectors and arrays in R?

Feature	Vectors	Arrays
Definition	A one-dimensional collection of elements of the same data type	A multi-dimensional data structure (2D, 3D, or more) containing elements of the
Dimensions	1D (single row or column)	same data type 2D (matrix) or more (3D,
		4D, etc.)
Data Type	Must contain elements of the same type (numeric, character, logical, etc.)	Must contain elements of the same type
Creation	c(1, 2, 3, 4, 5, 700, 1000)	array(1:9, dim = c(3,3))
Indexing	Uses single index []	Uses multi-dimensional index [,,]
Operations	Element-wise operations are simpler	Multi-dimensional calculations and slicing possible
Use Case	Used for simple lists of numbers, strings, or logical values	Used for multi-dimensional data like 2D tables (matrices) or 3D structures

Vectors:

```
# Creating a vector
v <- c(1, 2, 3, 4, 5, 700, 1000)
v
mean_v <- mean(v)
mean_v
sum_v <- sum (v)
sum_v
> # Creating a vector
> v <- c(1, 2, 3, 4, 5, 700, 1000)
> v
[1] 1 2 3 4 5 700 1000
> mean_v <- mean(v)
> mean_v
[1] 245
```

Arrays:

```
# Creating an array
arr1 <- array(1:9, dim = c(3,3))
arr2 <- array(10:18, dim = c(3,3))
# Performing operations
sum_arr <- arr1 + arr2</pre>
prod_arr <- arr1 * arr2</pre>
# Extracting rows and columns
row1 <- arr1[1, ]
col2 <- arr1[, 2]</pre>
# Printing results
arr1
arr2
> # Creating an array
> arr1 <- array(1:9, dim = c(3,3))
> arr2 <- array(10:18, dim = c(3,3))
> # Performing operations
> sum_arr <- arr1 + arr2</pre>
> prod_arr <- arr1 * arr2</pre>
> # Extracting rows and columns
> row1 <- arr1[1, ]
> col2 <- arr1[, 2]
> # Printing results
> arr1
    [,1] [,2] [,3]
[1,] 1 4 7
[2,]
            5
                  8
        3
[3,]
             6
                  9
```

2. How do loops help in data processing in R?

By iterating across datasets, applying transformations, and carrying out calculations without manually duplicating code, loops in R increase the efficiency of data processing by automating repetitive processes.

- 1. **Automate Repetitive Tasks** Apply the same operation to multiple rows or columns without manual repetition.
- 2. **Efficient Data Cleaning** Remove missing values, standardize data formats, or perform conditional modifications.
- 3. **Batch Processing** Process multiple files, datasets, or elements efficiently.
- 4. **Flexible Data Manipulation** Apply functions to subsets of data dynamically.

```
# Activity Two
# For loop example
for (i in 1:10) {
  print(i)
# While loop example
sum_val <- 0
i <- 1
while (i <= 50) {
  sum_val <- sum_val + i</pre>
  i < -i + 1
print(sum_val)
# Factorial using for loop
num <- 5
fact <- 1
for (i in 1:num) {
  fact <- fact * i
print(fact)
```

```
> # For loop example
> for (i in 1:10) {
+ print(i)
+ }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
> # While loop example
> sum_val <- 0
> i <- 1
> while (i <= 50) {</pre>
+ sum_val <- sum_val + i
+ i <- i + 1
+ }
> print(sum_val)
[1] 1275
> # Factorial using for loop
> num <- 5
> fact <- 1
> for (i in 1:num) {
+ fact <- fact * i
+ }
> print(fact)
[1] 120
```

3. Write an R script to create an array of size 2x3 and perform matrix multiplication.

```
# Creating a 2x3 array (acts as a matrix)
A \leftarrow array(c(1, 2, 3, 4, 5, 6), dim = c(2, 3))
print("Matrix A (2x3):")
print(A)
# Creating a 3x2 matrix (compatible for multiplication with A)
B \leftarrow matrix(c(7, 8, 9, 10, 11, 12), nrow = 3, ncol = 2)
print("Matrix B (3x2):")
print(B)
# Performing matrix multiplication (A %*% B)
C <- A %*% B
print("Result of A %*% B (2x2):")
print(C)
> # Creating a 2x3 array (acts as a matrix)
> A <- array(c(1, 2, 3, 4, 5, 6), dim = c(2, 3))
> print("Matrix A (2x3):")
[1] "Matrix A (2x3):"
> print(A)
   [,1] [,2] [,3]
[1,]
      1 3 5
2 4 6
[2,]
> # Creating a 3x2 matrix (compatible for multiplication with A)
> B <- matrix(c(7, 8, 9, 10, 11, 12), nrow = 3, ncol = 2)
> print("Matrix B (3x2):")
[1] "Matrix B (3x2):"
> print(B)
   [,1] [,2]
[1,]
      7 10
[2,]
      8 11
[3,]
       9 12
> # Performing matrix multiplication (A %*% B)
> C <- A %*% B
> print("Result of A %*% B (2x2):")
[1] "Result of A %*% B (2x2):"
> print(C)
    [,1] [,2]
[1,] 76 103
[2,] 100 136
>
```

4. How can you read and write CSV files in R?

```
# Reading CSV file
#data <- read.csv("Rdata.csv") #same directory</pre>
data <- read.csv("C:/Users/User/Desktop/DATA MINING/LAB/Lab2/data.csv")</pre>
print(data)
#file.exists("data.csv")(nak tau kalau file tu exist atau tidak)(false tak exist)(true exist)
#getwd() (nak tau current directory)
#list.files()(nak tau file yang ada dekat dalam directory)
> # Activity Four
> # Reading CSV file
> #data <- read.csv("Rdata.csv") #same directory</pre>
> data <- read.csv("C:/Users/User/Desktop/DATA MINING/LAB/Lab2/data.csv")</pre>
> print(data)
   Name Age Score
1 Ali
          22
                 85
                 90
2 Siti 21
3 John 23
                 78
```