

Reconhecimento de Padrões

Teste de hipótese

Profa: Deborah Magalhães

44

Teste de hipótese consiste em tomar decisões sobre a distribuição desconhecida de uma **população** ou os parâmetros populacionais inerentes a essa distribuição a partir de uma **amostra**.

População

Fonte:

https://medium.com/@ruhandong/summary-for-neyman-pearson-classification-algorithms-a0c9595632a9

Amostra

Fonte:

https://medium.com/@ruhandong/summary-for-neyman-pearson-classification-algorithms-a0c9595632a9

Teste de Hipótese

OU

Teste de significância

OU

Regras de decisão

Hipótese nula: 5% dos pacientes com COVID-19
 vão para unidade intensiva de tratamento

$$H_0: p \ge 0.05$$

 Hipótese alternativa: < 5% dos paciente com COVID-19 vão para unidade intensiva de tratamento.

$$H_1 \ ou \ H_a : p < 0.05$$

Teste de Hipótese

OU

Teste de significância

OU

Região crítica

Variáveis aleatórias (features):

$$X = (X_1, \cdot \cdot \cdot, X_n)$$

Função de probabilidade conjunta:

$$f_{\theta}(x) \ para \ algum \ \theta \in \Theta$$

Observação sobre o espaço paramétrico:

$$\theta_0 \cup \theta_1 = \Theta \ e \ \theta_0 \cap \theta_1 = \phi$$

$$\begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta = \theta_1 \end{cases}$$

Região crítica

 Região crítica: um teste de hipótese divide o espaço amostral, definindo um subconjunto (C):

$$\begin{cases} Se \ X \in C, \ entao \ rejeita \ H_0 \\ Se \ X \notin C, \ entao \ aceita \ H_0 \end{cases}$$

Tipos de Erro

Tipo I: rejeitar H₀, sendo esta **verdadeira**.

Tipo II: aceitar H_0 , sendo esta **falsa**.

Decisão	Verdadeiro estado de H₀				
estatística	H₀ verdadeira	H₀ falsa			
Não Rejeita H₀	Correto	Tipo II			
Rejeita H₀	Tipo I	Correto			

Probabilidades dos Erros

Nível de significância (α):

probabilidade do erro do Tipo I

Perda (β): probabilidade do erro do **Tipo II**

Confiabilidade do teste (γ): 1 - α

Poder (*P*): $1 - \beta$

$$P(rejeita \ H_0|H_0 \ verdadeiro) = \alpha$$

$$P(nao \ rejeita \ H_0|H_0 \ falso) = \beta$$

$$n \to \infty \Rightarrow \downarrow \alpha \simeq \beta \downarrow \qquad \downarrow \alpha \Rightarrow \beta \uparrow$$

Decisão	Verdadeiro estado de H₀						
estatística	H₀ verdadeira	H₀ falsa					
Não Rejeita H₀	γ	β					
Rejeita H₀	α	Р					

Exemplo: uma loja de brinquedos afirma que pelo menos 80% das meninas com menos de 8 anos preferem bonecas a outros brinquedos. Depois de observar o padrão de compra de meninas com idade inferior a 8 anos, notou-se que essa afirmação é inflada. A fim de descartar esta afirmação, foi observado o padrão de compra de **20** meninas selecionadas aleatoriamente com menos de 8 anos, e observamos X que corresponde ao número de meninas que compram bonecas. Desse modo, a seguinte hipótese será avaliada: H_0 : p=0.8 e H_1 : p<0.8. Se X > 12, H_0 é aceita e, se X \leq 12, H_0 é rejeitada.

Determine o nível de significância (α):

$$\alpha = P(rejeitar \ H_0 \ | \ H_0 \ verdadeira)$$

$$= P(X \le 12 \ | \ 0.8)$$

$$= \sum_{x=0}^{12} {20 \choose x} (0.8)^x (0.2)^{20-x}$$

Determine o nível de significância (α):

$$\alpha = P(rejeitar \ H_0 \ | \ H_0 \ verdadeira)$$

$$= P(X \le 12 \ | \ 0.8)$$

$$= \sum_{x=0}^{12} {20 \choose x} (0.8)^x (0.2)^{20-x}$$

$$= \mathbf{0.032142}$$

Determine a perda (β) com H₁: p=0.6

$$\beta = P(aceitar \ H_0 \mid H_0 \ falsa)$$

$$= P(X > 12 \mid 0.6)$$

$$= 1 - P(X \le 12 \mid 0.6)$$

$$= 1 - \sum_{x=0}^{12} {20 \choose x} (0.6)^x (0.4)^{20-x}$$

$$= 0.415892$$

Encontrar em C $\{X \le C\}$ e nível significância ($\infty = 0.01$):

$$\alpha = P\{X \le C \mid p = 0.8\} = 0.01$$

Binomial probabilities:	n	x	0.1	0.2	0.25	0.3	0.4	0.5	0.6	0.7	0.75	0.8	0.9
$\binom{n}{x} p^x (1-p)^{n-x}$	15	_	0.200	0.005	0.012	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1 1 1	15	0	0.206	0.035	0.013	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1	0.343	0.132	0.067	0.031	0.005	0.000	0.000	0.000	0.000	0.000	0.000
		2	0.267	0.231	0.156	0.092	0.022	0.003	0.000	0.000	0.000	0.000	0.000
		3	0.129	0.250	0.225	0.170	0.063	0.014	0.002	0.000	0.000	0.000	0.000
		4	0.043	0.188	0.225	0.219	0.127	0.042	0.007	0.001	0.000	0.000	0.000
		5	0.010	0.103	0.165	0.206	0.186	0.092	0.024	0.003	0.001	0.000	0.000
		6	0.002	0.043	0.092	0.147	0.207	0.153	0.061	0.012	0.003	0.001	0.000
		7	0.000	0.014	0.039	0.081	0.177	0.196	0.118	0.035	0.013	0.003	0.000
		8	0.000	0.003	0.013	0.035	0.118	0.196	0.177	0.081	0.039	0.014	0.00
		9	0.000	0.001	0.003	0.012	0.061	0.153	0.207	0.147	0.092	0.043	0.003
		10	0.000	0.000	0.001	0.003	0.024	0.092	0.186	0.206	0.165	0.103	0.01
		11	0.000	0.000	0.000	0.001	0.007	0.042	0.127	0.219	0.225	0.188	0.04
		12	0.000	0.000	0.000	0.000	0.002	0.014	0.063	0.170	0.225	0.250	0.12
		13	0.000	0.000	0.000	0.000	0.000	0.003	0.022	0.092	0.156	0.231	0.26
		14	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.031	0.067	0.132	0.34
		15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.013	0.035	0.20
	20	0	0.122	0.012	0.003	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.00
		1	0.270	0.058	0.021	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.00
		2	0.285	0.137	0.067	0.028	0.003	0.000	0.000	0.000	0.000	0.000	0.00
		3	0.190	0.205	0.134	0.072	0.012	0.001	0.000	0.000	0.000	0.000	0.00
		4	0.090	0.218	0.190	0.130	0.035	0.005	0.000	0.000	0.000	0.000	0.00
		5	0.032	0.175	0.202	0.179	0.075	0.015	0.001	0.000	0.000	0.000	0.00
		6	0.009	0.109	0.169	0.192	0.124	0.037	0.005	0.000	0.000	0.000	0.00
		7	0.002	0.055	0.112	0.164	0.166	0.074	0.015	0.001	0.000	0.000	0.00
		8	0.000	0.022	0.061	0.114	0.180	0.120	0.035	0.004	0.001	0.000	0.00
		9	0.000	0.007	0.027	0.065	0.160	0.160	0.071	0.012	0.003	0.000	0.00
		10	0.000	0.002	0.010	0.031	0.117	0.176	0.117	0.031	0.010	0.002	0.00
		11	0.000	0.000	0.003	0.012	0.071	0.160	0.160	0.065	0.027	0.007	0.00
		12	0.000	0.000	0.001	0.004	0.035	0.120	0.180	0.114	0.061	0.022	0.00
		13	0.000	0.000	0.000	0.001	0.015	0.074	0.166	0.164	0.112	0.055	0.00
		14	0.000	0.000	0.000	0.000	0.005	0.037	0.124	0.192	0.169	0.109	0.00
		15	0.000	0.000	0.000	0.000	0.001	0.015	0.075	0.179	0.202	0.175	0.03
		16	0.000	0.000	0.000	0.000	0.000	0.005	0.075	0.173	0.190	0.173	0.03
		17	0.000	0.000	0.000	0.000	0.000	0.003	0.033	0.130	0.134	0.205	0.09
		18	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.072	0.067	0.137	0.13
		27/2	0.000	0.000	0.000						0.007		0.27
		19 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.021	0.058	0.27

Questão (0.5): Seja X uma variável aleatória que segue uma distribuição binomial. Queremos testar a hipótese H₀: p=0.8 e H₁: p=0.6 com nível de significância fixo ∝=0.01. Defina a perda (β) para n=10, n=20, n=30 e implemente a função em python e escreva uma conclusão do comportamento da perda à medida que o tamanho da amostra varia.

Lema de Neyman-Pearson

• Seja uma amostra aleatória $X=(X_1,\cdots,X_n)$ com função de distribuição de probabilidade $f_{\theta}(x) \ para \ algum \ \theta \in \Theta$, onde as hipóteses são:

$$H_0: \theta = \theta_0$$

$$H_1: \theta = \theta_1$$

A poder do teste de hipótese é definido por:

$$Poder(\theta_1) = P(rejeitar \ H_0 | \theta = \theta_1)$$
$$Poder(\theta_1) = 1 - \beta(\theta_1)$$

Lema de Neyman-Pearson

 Seja uma constante positiva K e um subconjunto C do espaço amostral, a verossimilhança da amostra, considerando o parâmetro θ, é dada por:

$$L(\theta) \equiv L(\theta; x_1, \cdot \cdot \cdot, x_n) > 0$$

De modo que:

$$\begin{cases} L(\theta_0)/L(\theta_1) < K & para(x_1, x_2, \dots, x_n) \in C \\ L(\theta_0)/L(\theta_1) \ge K & para(x_1, x_2, \dots, x_n) \notin C \\ \int L(\theta_0) = \alpha \end{cases}$$

Exemplo: Seja X uma observação única de uma variável aleatória que segue a função de densidade de probabilidade f(x), encontre o teste mais poderoso com o nível de significância α = 0.01. Considere H_0 : θ_0 =3 versus H_1 : θ_1 =4.

$$f(x) = \begin{cases} \theta x^{\theta - 1}, & 0 < x < 1 \\ 0, & caso\ contrario \end{cases}$$

Nível de significância (α =0.01) e H₀: θ ₀=3:

$$\alpha = P(rejeitar \ H_0|H_0verdadeira) = P(x < K|\theta_0 = 3)$$

$$\alpha = \int L(\theta_0)$$

$$= \int 3 \ x^2 dx$$

$$= 3\frac{x^3}{3}$$

$$x^3 = 0.01 \rightarrow x = \sqrt[3]{0.01} \rightarrow x = 0.2154$$

Nível de significância (α =0.01) e H₀: θ ₀=3:

$$\alpha = P(rejeitar \ H_0|H_0verdadeira) = P(x < K|\theta_0 = 3)$$

$$\alpha = \int L(\theta_0)$$

$$= \int 3 \ x^2 dx$$

$$= 3\frac{x^3}{3}$$

$$x^3 = 0.01 \rightarrow x = \sqrt[3]{0.01} \rightarrow x = 0.2154$$

Conclusão: o teste mais poderoso rejeita H₀ quando x < 0.2154

Questão (0.5): Seja X₁, ..., X \square uma amostra aleatória de uma população Normal com média (μ) e variância igual a 25. Encontre o teste mais poderoso para uma amostra de tamanho 20 e nível de significância α = 0.05. Considere H₀: μ ₀=5 versus H₁: μ ₁=10.

$$f(x) = \begin{cases} \frac{x-\mu}{\sigma/\sqrt{n}}, & 0 < x \\ 0, & caso\ contrario \end{cases}$$

Valor-P ou P-value se refere ao **menor** nível de significância no qual H_o é **rejeitada.**

Distribuição Normal

Teste de hipótese para 1 parâmetro (µ)

$$Tamanho \ amostra \ (n > 30)$$

$$H_0: \mu = \mu_0$$

$$\{ \mu > \mu_0 \ unicaudal \ a \ dir.$$

$$H_1: \begin{cases} \mu > \mu_0 \ unicaudal \ a \ esq. \\ \mu \neq \mu_0 \ bicaudal \end{cases}$$

$$Teste\ estatistico: z = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$$

$$C: \begin{cases} z < z_{\alpha} & unicaudal\ a\ dir. \\ z < -z_{\alpha} & unicaudal\ a\ esq. \\ |z| > z_{\alpha/2} & bicaudal \end{cases}$$

Teste de hipótese para 1 parâmetro

$$Teste\ estatistico: z = \frac{x - \mu}{\sigma/\sqrt{n}}$$

$$Teste\ estatistico: z = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$$

$$C: \begin{cases} z < z_{\alpha} & unicaudal\ a\ dir. \\ z < -z_{\alpha} & unicaudal\ a\ esq. \\ |z| > z_{\alpha/2} & bicaudal \end{cases}$$

Teste de hipótese para 1 parâmetro (µ)

$$Teste\ estatistico: z = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$$

$$C: \begin{cases} z < z_{\alpha} & unicaudal\ a\ dir. \\ z < -z_{\alpha} & unicaudal\ a\ esq. \\ \hline |z| > z_{\alpha/2} & bicaudal \end{cases}$$

Teste de hipótese para 1 parâmetro

$$Teste\ estatistico: z = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$$

$$C: \begin{cases} z < z_{\alpha} & unicaudal\ a\ dir. \\ z < -z_{\alpha} & unicaudal\ a\ esq. \\ |z| > z_{\alpha/2} & bicaudal \end{cases}$$

Teste de hipótese para 1 parâmetro (µ)

$$Tamanho \ amostra \ (n < 30)$$

$$H_0: \mu = \mu_0$$

$$\{ \mu > \mu_0 \ unicaudal \ a \ dir.$$

$$H_1: \begin{cases} \mu > \mu_0 \ unicaudal \ a \ esq. \\ \mu \neq \mu_0 \ bicaudal \end{cases}$$

$$Teste\ estatistico: T = \frac{\overline{x} - \mu}{S/\sqrt{n}}$$

$$C: \begin{cases} t > t_{\alpha,n-1} & unicaudal\ a\ dir. \\ t < -t_{\alpha,n-1} & unicaudal\ a\ esq. \\ |t| > t_{\alpha/2,(n-1)} & bicaudal \end{cases}$$

Exemplo: motoristas de carros sport dirigem em média 18.000km por ano. No entanto, uma empresa acredita que essa quilometragem é menor. Para avaliar essa afirmação, a empresa capturou aleatoriamente a informação de 40 proprietários de carro, o que resultou em uma quilometragem anual média de 17463 km com um desvio padrão de 1348 km. O que podemos concluir sobre a hipótese nula? Considerando α =0.01, qual o valor-p?

40 amostras (n>30), H_0 : μ_0 =18000 e H_1 = μ_1 < 18000, α = 0.01

Teste estatistico:
$$Z = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$$

= $\frac{17463 - 18000}{1348/\sqrt{40}}$
= $-2.5195 \approx -2.52$

40 amostras (n>30), H_0 : μ_0 =18000 e H_1 = μ_1 < 18000, α = 0.01

$$Teste\ estatistico: Z = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$$

$$= \frac{17463 - 18000}{1348/\sqrt{40}}$$

$$= -2.5195 \approx -2.52$$

$$Valor - p = P(z < -2.52)$$

$$= 0.0059$$
 Distribution of the property of the

Distribuição Normal Padrão Acumulada c/ Números Negativos

Z	0	1	2	3	4	5	6	7	8	9
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0 44	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.00	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064

40 amostras (n>30), H_0 : μ_0 =18000 e H_1 = μ_1 < 18000, α = 0.01

$$Teste\ estatistico: Z = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$$

$$= \frac{17463 - 18000}{1348/\sqrt{40}}$$
 Diet

$$Valor - p = P(z < -2.52)$$

= 0.0059

 $=-2.5195 \approx -2.52$

Conclusão: valor-p < α, portanto Z está dentro da região crítica, logo H_o é rejeitada

Distribuição Normal Padrão Acumulada c/ Números Negativos

Z	0	1	2	3	4	5	6	7	8	9
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0 44	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.00	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064

Exemplo: em um trecho da BR 116, onde o limite de velocidade é 70km/h, acredita-se que as pessoas transitem a uma velocidade média de pelo menos 70km/h. A fim de verificar essa crença, foram coletadas aleatoriamente 10 medidas do radar, conforme apresentado baixo. Os dados fornecem evidências suficientes para indicar que a velocidade média na qual as pessoas viajam neste trecho da rodovia está em acima do limite de velocidade? Teste a hipótese considerando α =0.01.

66 74 79 80 69 77 78 65 79 81

10 amostras (n<30), H_0 : μ_0 =70 e H_1 = μ_1 > 70, α = 0.01

Teste estatistico:
$$T = \frac{\overline{x} - \mu}{S/\sqrt{n}}$$
, onde $S = \sigma$, se $v = n - 1$

$$= \frac{74.8 - 70}{5.68/\sqrt{10}}$$

$$= 2.67$$

Se
$$\mu > \mu_0$$
, $t > t_{\alpha,n-1}$
 $t_{0.01.9} = 2.821$

Distribuição T-Student

	192			α			
\boldsymbol{v}	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	15.894	21.205	31.821	42.433	63.656	127.321	636.578
2	4.849	5.643	6.965	8.073	9.925	14.089	31.600
3	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	2.359	2.527	2.764	2.932	3.169	3.581	4.587

10 amostras (n<30), H_0 : μ_0 =70 e H_1 = μ_1 > 70, α = 0.01

Teste estatistico:
$$T = \frac{\overline{x} - \mu}{S/\sqrt{n}}$$
, onde $S = \sigma$, se $v = n - 1$

$$= \frac{74.8 - 70}{5.68/\sqrt{10}}$$

$$= 2.67$$

Se
$$\mu > \mu_0$$
, $t > t_{\alpha,n-1}$
 $t_{0.01,9} = 2.821$

Conclusão: 2.67 < 2.82, t ∉ C, logo não há evidências suficientes para rejeitar H₀. Desse modo, os motoristas transitam em média **dentro** do limite de velocidade.

Distribuição T-Student

\boldsymbol{v}	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	15.894	21.205	31.821	42.433	63.656	127.321	636.578
2	4.849	5.643	6.965	8.073	9.925	14.089	31.600
3	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	2.398	0.574	2.821	2.998	3.250	3.690	4.781
10	2.359	2.527	2.764	2.932	3.169	3.581	4.587

Questão (0.25): Um fabricante afirma que a vida média das baterias fabricadas por sua empresa é de 44 meses. Uma amostra aleatória de 40 dessas baterias foram testadas, resultando em uma vida média de 41 meses e desvio padrão de 16 meses. Teste se a afirmação do fabricante está correta, considerando $\infty = 0.01$.

Questão (0.25): Uma amostra aleatória de 10 observações de uma população que segue a distribuição normal é apresentada a seguir:

44 31 52 48 46 39 43 36 41 49

Teste H₀: μ = 44 contra H₁: $\mu \neq$ 44, considerando ∞ = 0.10.

Teste de
hipótese para
2 amostras
distintas e
independentes

Tamanho amostra $(n_1 e n_2 \geq 30)$ $H_0: \mu_1 = \mu_2$ $H_1: \begin{cases} \mu_1 > \mu_2 & unicaudal \ a \ esq. \\ \mu_1 < \mu_2 & unicaudal \ a \ dir. \\ \mu_1 \neq \mu_2 & bicaudal \end{cases}$ $H_0: \mu_1 = \mu_2$ Teste estatistico: $Z = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $Se\ \sigma s\ sao\ desconhecidos,\ substitua\ por\ S$ $C: \begin{cases} z > z_{\sigma} & unicaudal \ a \ dir. \\ z < -z_{\sigma} & unicaudal \ a \ esq. \\ |z| > z_{\sigma/2} & bicaudal \end{cases}$

Teste de hipótese para 2 amostras distintas e independentes

 $Tamanho \ amostra \ (n_1 \ e \ n_2 < 30)$ $H_0: \mu_1 = \mu_2$ $\left\{ \begin{array}{ll} \mu_1 > \mu_2 & unicaudal \ a \ esq. \\ \mu_1 < \mu_2 & unicaudal \ a \ dir. \\ \mu_1 \neq \mu_2 & bicaudal \end{array} \right.$

$$Teste\ estatistico: T = \frac{\overline{x_1} - \overline{x_2}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$S_p:\ variancia\ combinada\ das\ amostras$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Teste de hipótese para 2 amostras distintas e independentes

$$C: \begin{cases} t > t_{\sigma,n-1} & unicaudal \ a \ dir. \\ t < -t_{\sigma,n-1} & unicaudal \ a \ esq. \\ |t| > t_{\sigma/2,(n-1)} & bicaudal \end{cases}$$

Exemplo: dois grupos de crianças da alfabetização foram ensinadas a ler através de métodos distintos. No fim do período letivo, um teste de leitura foi aplicado em dois grupos com 50 crianças cada, onde os grupos foram separados pelo método de aprendizado, resultando nos seguintes valores: μ_1 = 74 e μ_2 = 71 e S₁ = 9 e S₂ = 10. (a) qual nível de significância evidencia uma diferença entre as duas amostras? (b) qual a conclusão do experimento, considerando α =0.05?

50 amostras por grupo ($n_1>30$ e $n_2>30$) $H_0: \mu_1=\mu_2$ e $H_1: \mu_1\neq \mu_2$ (a) qual nível de significância?

$$Z = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

$$= \frac{74 - 71}{\sqrt{\frac{9^2}{50} + \frac{10^2}{50}}}$$

$$= 1.5767 \approx 1.58$$

$$Valor - p = P(Z < -1.58)$$
 ou $P(Z > 1.58)$
= $P(Z < -1.58) = 0.0571$
 $Teste\ bicaudal$:
 $\alpha = 2 \times 0.0571 = 0.1142$

Distribuição Normal Padrão Acumulada c/ Números Negativos

Z	0	1	2	3	4	5	6	7	8	9
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.00 66	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0:13	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0:46	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0:88	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0001	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0175	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0 65	0.0455
-1.5	0.0568	0.0655	0.0643	0.0630	0.0618	0.0606	0.0504	0.00	0.0571	0.0559

50 amostras por grupo ($n_1>30$ e $n_2>30$) $H_0: \mu_1=\mu_2$ e $H_1: \mu_1\neq\mu_2$ (b) qual a conclusão do teste ($\alpha=0.05$)?

```
Valor - p = 0.1142

Valor - p > \alpha

Falha\ em\ rejeitar\ H_0
```

Exemplo: os QIs de 17 estudantes de uma determinada área da cidade foram coletados, resultando em μ_1 = 106 e S₁=10. Enquanto em outra área da cidade, foram coletados independentemente QIs de 14 estudantes, resultando em μ_2 =109 e S₂=7. Há diferença estatística significativa entre os QIs dos grupos? Considere α =0.01 e assuma que as variâncias populacionais são iguais e desconhecidas.

G_1 : 17 amostras e G_2 : 14 amostras (n_1 < 30 e n_2 < 30) $H_0: \mu_1 = \mu_2 \in H_1: \mu_1 \neq \mu_2$

$$S_p^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2} \\ S_p^2 = \frac{(17-1)10^2 + (14-1)7^2}{17 + 14 - 2} = 77.1375$$

$$T_{0.005,29} = 2.756$$

$$t < -2.756 \ ou \ t > 2.756,$$

$$condicao \ nao \ aceita, \ portanto,$$

$$falha \ em \ rejeitar \ H_0$$

$$Distribuição T-Student$$

$$T = \frac{\overline{x_1} - \overline{x_2}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
$$T = \frac{106 - 109}{8.78 \sqrt{\frac{1}{17} + \frac{1}{14}}} = -0.9464$$

$$t_{0.005,29} = 2.756$$

 $t < -2.756$ ou $t > 2.756$,
condicao nao aceita, portanto
falha em rejeitar H_0

Distribuição T-Student

	α										
v	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005				
28	2.154	2.286	2.467	2.592	2.763	3.047	3.674				
29	2.150	2.282	2.462	2.580	2.756	3.038	3.660				
30	2.147	2.278	2.457	2.581	2.750	3.030	3.646				
40	2.123	2.250	2.423	2.542	2.704	2.971	3.551				
60	2.099	2.223	2.390	2.504	2.660	2.915	3.460				
120	2.076	2.196	2.358	2.468	2.617	2.860	3.373				
∞	2.054	2.170	2.326	2.432	2.576	2.807	3.290				

Questão (0.5): as amostras independentes apresentadas abaixo, foram selecionadas de 2 populações normalmente distribuídas com variâncias desconhecidas mas iguais. Teste se μ₁ < μ₂, considerando ∞=0.02.

Teste de
hipótese para
2 amostras
distintas e
dependentes

Apenas amostras pequenas $(n_1 e n_2 < 30)$ $H_0: \mu_D = 0$ $H_1: \begin{cases} \mu_D > 0 & unicaudal \ a \ esq. \\ \mu_D < 0 & unicaudal \ a \ dir. \\ \mu_D \neq 0 & bicaudal \end{cases}$ $Teste \ estatistico: T = \frac{\overline{D}}{S_D \sqrt{n}}$ $C: \begin{cases} t > t_{\sigma,n-1} & unicaudal \ a \ dir. \\ t < -t_{\sigma,n-1} & unicaudal \ a \ esq. \\ |t| > t_{\sigma/2,(n-1)} & bicaudal \end{cases}$

Exemplo: um programa de dieta e exercícios é utilizado para reduzir os níveis de glicose no sangue em pacientes diabéticos. Dez pacientes diabéticos foram selecionados aleatoriamente para participar do programa, os níveis de glicose são coletados antes (A) e depois (D) de 1 mês no programa e são apresentados abaixo. Os dados fornecem evidências suficientes para apoiar a alegação de que o novo programa reduz o nível de glicose no sangue em diabéticos pacientes? Considerar α = 0.05.

A	268	225	252	192	307	228	246	298	213	185
D	106	186	223	110	203	101	211	176	194	203

$H_0: \mu D = 0 e H_1: \mu D < 0 e \alpha = 0.05$

$$T = \frac{\overline{D}}{S_D \sqrt{n}} = \frac{-71.9}{53.27\sqrt{10}} = -4.26$$

$$t_{0.05,9} = 1.83$$

- $4.26 < -1.83$, rejeita H_0

Distribuição T-Student

				α			
v	0.40	0.30	0.20	0.15	0.10	0.05	0.025
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306
9	0.201	0.543	0.883	1.100	1.383	1.833	2.262
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228

Questão (0.5): para saber o efeito de um medicamento para resfriado e alergia, um estudo testa 9 indivíduos duas vezes, uma vez uma hora depois de tomar o medicamento e outra vez quando nenhum medicamento foi tomado. Suponha que obtivemos os dados abaixo. Teste se o medicamento produz alguma diferença estatisticamente significante nos pacientes, considerando α = 0.05.

Sem remédio	0	0	3	2	0	0	3	3	1
Com remédio	1	5	6	5	5	5	6	1	6

Muito Obrigada!

Se você tiver qualquer dúvida ou sugestão:

deborah.vm@ufpi.edu.br

