ADV: Trigonometry (Adv), T3 Trig Functions and Graphs (Adv) Trig Graphs (Y12) Trig Applications (Y12)

Teacher: Troy McMurrich

Exam Equivalent Time: 139.5 minutes (based on HSC allocation of 1.5 minutes approx.

per mark)

T3 Trig Functions and Graphs

HISTORICAL CONTRIBUTION

- T3 Trig Functions and Graphs is a small contributor to past Mathematics exams, accounting for an average of 2.5% of past papers. We expect this to increase for reasons outlined below.
- This topic has been split into two sub-topics for analysis purposes: 1-Trig Graphs (1.0%), and 2-Trig Applications (1.5%).
- This analysis looks at the sub-topic Trig Graphs.

HSC ANALYSIS - What to expect and common pitfalls

- *Trig Graphs* have been examined in each of the last 6 years, receiving a multiple choice question on 4 occasions and longer answer questions worth 2-3 marks in 2021 and 2017.
- We expect *Trig Graphs* to be examined more often going forward due to the new syllabus content looking at transformations. This has not been the case in 2020-21, but in our view, it has been clearly flagged by the inclusion of 2 separate trig graph questions in the NESA sample HSC exam. Our database, in response, has been significantly expanded in this area.
- We recommend close revision of T3 EQ-Bank 3 and 5 which are informed by the
 question style and difficulty level of NESA's sample questions. Also, special attention
 should be given to 2013 HSC 6 MC which was surprisingly poorly answered.
- Note that more than half of students answered the 2016 multiple choice question on a tan function graph's *period* incorrectly. Deserves attention.

Questions

1. Trigonometry, 2ADV T3 2020 HSC 6 MC

Which interval gives the range of the function $y = 5 + 2\cos 3x$?

- A. [2, 8]
- B. [3, 7
- C. [4, 6]
- D. [5, 9]

2. Trigonometry, 2ADV T3 SM-Bank 8 MC

The diagram below shows one cycle of a circular function.

The amplitude and period of this function are respectively

- A. 3 and 2
- B. 3 and $\frac{\pi}{2}$
- C. 4 and $\frac{\pi}{4}$
- D. 3 and 4

$$f(x) = 2\sin(3x) - 3$$

The period and range of this function are respectively

- (A) period = $\frac{2\pi}{3}$ and range = [-5, -1]
- (B) period = $\frac{2\pi}{3}$ and range = [-2,2]
- (C) period = $\frac{\pi}{3}$ and range = [-1, 5]
- (D) period = 3π and range = [-1, 5]
- 4. Trigonometry, 2ADV T3 SM-Bank 2 MC

Let
$$f(x)=1-2\cos\Bigl(rac{\pi x}{2}\Bigr).$$

The period and range of this function are respectively

- (A) 4 and [-2, 2]
- (B) 4 and [-1, 3]
- (c) 1 and [-1, 3]
- (D) 4π and [-2,2]
- 5. Trigonometry, 2ADV T3 SM-Bank 3 MC

Let
$$f(x) = 5\sin(2x) - 1$$
.

The period and range of this function are respectively

- (A) π and [-1,4]
- (B) 2π and [-1, 5]
- (C) π and [-6,4]
- (D) 2π and [-6, 4]
- 6. Trigonometry, 2ADV T3 SM-Bank 18

The period of the function $f(x) = an\!\left(rac{\pi x}{2}
ight)$ is

- A. 2
- в. 4
- C. 2π
- D. 4π

7. Trigonometry, 2ADV T3 SM-Bank 4 MC

A section of the graph of f(x) is shown below.

The equation of f(x) could be

- (A) $f(x) = \tan(x)$
- (B) $f(x) = \tan\left(x \frac{\pi}{4}\right)$
- (C) $f(x) = \tan\left(2\left(x \frac{\pi}{4}\right)\right)$
- (D) $f(x) = an\!\left(2\!\left(x-rac{\pi}{2}
 ight)
 ight)$

The UV index, y, for a summer day in Newcastle East is illustrated in the graph below, where t is the number of hours after 6 am.

The graph is most likely to be the graph of

(A)
$$y = 5 + 5\cos\left(\frac{\pi t}{7}\right)$$

(B)
$$y = 5 - 5\cos\left(\frac{\pi t}{7}\right)$$

(C)
$$y = 5 + 5\cos\left(\frac{\pi t}{14}\right)$$

(D)
$$y=5-5\cos\Bigl(rac{\pi t}{14}\Bigr)$$

9. Trigonometry, 2ADV T3 SM-Bank 6 MC

The function with equation $\,f(x)=4 an\!\left(rac{x}{3}
ight)\,$ has period

- (A) $\frac{2\pi}{3}$
- (B) 6π
- (C) 3
- (D) 3π

10. Trigonometry, 2ADV T3 SM-Bank 7 MC

The graph shown could have equation

(A)
$$y=2\cos\Bigl(x+rac{\pi}{6}\Bigr)+1$$

(B)
$$y=2\cos 4\Bigl(x-rac{\pi}{6}\Bigr)+1$$

(C)
$$y = 4\sin 2\left(x - \frac{\pi}{12}\right) - 1$$

(D)
$$y=3\cos\Bigl(2x+rac{\pi}{6}\Bigr)-1$$

11. Trigonometry, 2ADV T3 2019 HSC 7 MC

The diagram shows part of the graph of $y = a \sin(bx) + 4$.

What are the values of \boldsymbol{a} and \boldsymbol{b} ?

(A)
$$a = 3$$
 $b = \frac{1}{2}$

(B)
$$a=3$$
 $b=2$

(C)
$$a = 1.5$$
 $b = \frac{1}{2}$

(D)
$$a = 1.5$$
 $b = 2$

12. Trigonometry, 2ADV T3 2013 HSC 6 MC

Which diagram shows the graph $y=\sin\Bigl(2x+rac{\pi}{3}\Bigr)$?

13. Trigonometry, 2ADV T3 2016 HSC 6 MC

What is the period of the function $f(x) = \tan(3x)$?

- (A) $\frac{\pi}{3}$
- (B) $\frac{2\pi}{3}$
- (C) 3π
- (D) 6π

14. Trigonometry, 2ADV T3 2018 HSC 10 MC

A trigonometric function $\boldsymbol{f}(\boldsymbol{x})$ satisfies the condition

$$\int_0^\pi f(x)\ dx \neq \int_\pi^{2\pi} f(x)\ dx.$$

Which function could be f(x)?

- (A) $f(x) = \sin(2x)$
- (B) $f(x) = \cos(2x)$
- (C) $f(x) = \sin\left(\frac{x}{2}\right)$
- (D) $f(x) = \cos\left(\frac{x}{2}\right)$

15. Trigonometry, 2ADV T3 EQ-Bank 5

The function $f(x)=\sin x$ is transformed into the function $g(x)=rac{\sin(4x)}{3}$.

Describe in words how the amplitude and period have changed in this transformation. (2 marks)

16. Trigonometry, 2ADV T3 2010 HSC 8c

The graph shown is $y = A \sin bx$.

- i. Write down the value of $oldsymbol{A}$. (1 mark)
- ii. Find the value of b. (1 mark)
- iii. Copy or trace the graph into your writing booklet. On the same set of axes, draw the graph $y=3\sin x+1$ for $0\leq x\leq \pi$. (2 marks)

17. Trigonometry, 2ADV T3 SM-Bank 9

Let
$$f(x) = 2\cos(x) + 1$$
 for $0 \le x \le 2\pi$.

- i. Solve the equation $2\cos(x)+1=0$ for $0\leq x\leq 2\pi$. (2 marks)
- ii. Sketch the graph of the function f(x) on the axes below. Label the endpoints and local minimum point with their coordinates. (3 marks)

18. Trigonometry, 2ADV T3 2006 HSC 7b

A function f(x) is defined by $f(x) = 1 + 2\cos x$

- i. Show that the graph of y=f(x) cuts the x-axis at $x=rac{2\pi}{3}$. (1 mark)
- ii. Sketch the graph of y=f(x) for $-\pi \leq x \leq \pi$ showing where the graph cuts each of the axes. (3 marks)
- iii. Find the area under the curve y=f(x) between $x=-rac{\pi}{2}$ and $x=rac{2\pi}{3}$. (3 marks)

19. Trigonometry, 2ADV T3 2017 HSC 14a

Sketch the curve $y = 4 + 3\sin 2x$ for $0 < x < 2\pi$. (3 marks)

20. Trigonometry, 2ADV T3 2010 MET1 3

Shown below is part of the graph of a period of the function of the form $y = \tan(ax + b)$.

Find the value of \boldsymbol{a} and the value of \boldsymbol{b} , where $\boldsymbol{a}>0$ and 0< b<1. (3 marks)

21. Trigonometry, 2ADV T3 2021 HSC 20

For what values of \pmb{x} , in the interval $0 \le \pmb{x} \le \frac{\pi}{4}$, does the line $\pmb{y} = 1$ intersect the graph of $\pmb{y} = 2\sin 4\pmb{x}$? (2 marks)

22. Trigonometry, 2ADV T3 SM-Bank 12

State the range and period of the function

$$h(x)=4+3\cos\Bigl(rac{\pi x}{2}\Bigr)$$
. (2 marks)

23. Trigonometry, 2ADV T3 SM-Bank 13

On any given day, the depth of water in a river is modelled by the function

$$h(t)=14+8\sin\Bigl(rac{\pi t}{12}\Bigr), \ \ 0\leq t\leq 24$$

where $m{h}$ is the depth of water, in metres, and $m{t}$ is the time, in hours, after 6 am.

- i. Find the minimum depth of the water in the river. (1 mark)
- ii. Find the values of t for which h(t)=10. (2 marks)

24. Trigonometry, 2ADV T3 SM-Bank 14

For the function
$$f(x) = 5\cos\Bigl(2\Bigl(x+rac{\pi}{3}\Bigr)\Bigr), \quad -\pi \le x \le \pi$$

- a. Write down the amplitude and period of the function (2 marks)
- b. Sketch the graph of the function f(x) on the set of axes below. Label axes intercepts with their coordinates.

Label endpoints of the graph with their coordinates. (3 marks)

25. Trigonometry, 2ADV T3 SM-Bank 15

The graphs of $y = \cos(x)$ and $y = a\sin(x)$, where a is a real constant, have a point of intersection at $x = \frac{\pi}{3}$.

- i. Find the value of a. (2 marks)
- ii. Find the x-coordinate of the other point of intersection of the two graphs, given $0 \le x \le 2\pi$ (1 mark)

26. Trigonometry, 2ADV T3 2018 HSC 15a

The length of daylight, L(t), is defined as the number of hours from sunrise to sunset, and can be modelled by the equation

$$L(t)=12+2\cos\!\left(rac{2\pi t}{366}
ight)$$

where t is the number of days after 21 December 2015, for $0 \leq t \leq 366$.

- i. Find the length of daylight on 21 December 2015. (1 mark)
- ii. What is the shortest length of daylight? (1 mark)
- iii. What are the two values of t for which the length of daylight is 11? (2 marks)

The population of wombats in a particular location varies according to the rule

$$n(t) = 1200 + 400 \cos\left(\frac{\pi t}{3}\right)$$
, where n is the number of wombats and t is the number of months after 1 March 2018.

- i. Find the period and amplitude of the function n. (2 marks)
- ii. Find the maximum and minimum populations of wombats in this location. (2 marks)
- iii. Find n(10). (1 mark)
- iv. Over the 12 months from 1 March 2018, find the fraction of time when the population of wombats in this location was less than n(10). (2 marks)

28. Trigonometry, 2ADV T3 2013 HSC 13a

The population of a herd of wild horses is given by

$$P(t) = 400 + 50\cos\Bigl(rac{\pi}{6}t\Bigr)$$

where t is time in months.

- i. Find all times during the first 12 months when the population equals 375 horses. (2 marks)
- ii. Sketch the graph of P(t) for $0 \leq t \leq 12$. (2 marks)

29. Trigonometry, 2ADV T3 SM-Bank 16

Sammy visits a giant Ferris wheel. Sammy enters a capsule on the Ferris wheel from a platform above the ground. The Ferris wheel is rotating anticlockwise. The capsule is attached to the Ferris wheel at point \boldsymbol{P} . The height of \boldsymbol{P} above the ground, \boldsymbol{h} , is modelled by

$$h(t) = 65 - 55 \cos \left(rac{\pi t}{15}
ight)$$
 , where t is the time in minutes after Sammy enters the capsule and h

is measured in metres.

Sammy exits the capsule after one complete rotation of the Ferris wheel.

- i. State the minimum and maximum heights of $m{P}$ above the ground. (1 mark)
- ii. For how much time is Sammy in the capsule? (1 mark)
- iii. Find the rate of change of \boldsymbol{h} with respect to \boldsymbol{t} and, hence, state the value of \boldsymbol{t} at which the rate of change of \boldsymbol{h} is at its maximum. (2 marks)

By drawing graphs on the number plane, show how many solutions exist for the equation

$$\cos x = \left| rac{x - \pi}{4} \right|$$
 in the domain $(-\infty, \infty)$ (3 marks)

31. Trigonometry, 2ADV T3 2011 SPEC1 8

Find the coordinates of the points of intersection of the graph of the relation

$$y = \mathrm{cosec}^2 \Big(rac{\pi x}{6} \Big)$$
 with the line $y = rac{4}{3}$, for $0 < x < 12$. (3 marks)

32. Trigonometry, 2ADV T3 SM-Bank 8

$$f(x) = 2\sin(2x)$$
 is defined in the domain $\left\{x\colon rac{\pi}{8} \le x < rac{\pi}{3}
ight\}$

What is the range of the function f(x)? (2 marks)

33. Trigonometry, 2ADV T3 2020 HSC 31

The population of mice on an isolated island can be modelled by the function

$$m(t) = a \sin\left(\frac{\pi}{26}t\right) + b$$

where t is the time in weeks and $0 \le t \le 52$. The population of mice reaches a maximum of 35 000 when t = 13 and a minimum of 5000 when t = 39. The graph of m(t) is shown.

- a. What are the values of \boldsymbol{a} and \boldsymbol{b} ? (2 marks)
- b. On the same island, the population of cats can be modelled by the function

$$c(t) = -80\cos\Bigl(rac{\pi}{26}(t-10)\Bigr) + 120$$

Consider the graph of m(t) and the graph of c(t).

Find the values of $\,t,\,\,0 \leq t \leq 52$, for which both populations are increasing. (3 marks)

c. Find the rate of change of the mice population when the cat population reaches a maximum. (2 marks)

34. Trigonometry, 2ADV T3 2009 HSC 7b

Between 5 am and 5 pm on 3 March 2009, the height, \boldsymbol{h} , of the tide in a harbour was given by

$$h=1+0.7\sin\Bigl(rac{\pi}{6}t\Bigr) \ \ ext{for} \ \ 0\leq t\leq 12$$

where \boldsymbol{h} is in metres and \boldsymbol{t} is in hours, with $\boldsymbol{t}=\boldsymbol{0}$ at 5 am.

- i. What is the period of the function h? (1 mark)
- ii. What was the value of \boldsymbol{h} at low tide, and at what time did low tide occur? (2 marks)
- iii. A ship is able to enter the harbour only if the height of the tide is at least 1.35 m. Find all times between 5 am and 5 pm on 3 March 2009 during which the ship was able to enter the harbour. (3 marks)

Copyright © 2004-21 The State of New South Wales (Board of Studies, Teaching and Educational Standards NSW)

Worked Solutions

1. Trigonometry, 2ADV T3 2020 HSC 6 MC

$$-1 \le \cos 3x \le 1$$

$$-2 \leq 2\cos 3x \leq 2$$

$$3 \le 5 + 2\cos 3x \le 7$$

$$\Rightarrow B$$

2. Trigonometry, 2ADV T3 SM-Bank 8 MC

Graph centres around y = 1

Amplitude
$$= 3$$

Period:
$$= 4$$

$$\Rightarrow D$$

3. Trigonometry, 2ADV T3 SM-Bank 1 MC

Range:
$$[-3-2, -3+2]$$

$$= [-5, -1]$$

$$\mathrm{Period} = \frac{2\pi}{n} = \frac{2\pi}{3}$$

$$\Rightarrow A$$

4. Trigonometry, 2ADV T3 SM-Bank 2 MC

$$Period = \frac{2\pi}{n} = \frac{2\pi}{\frac{\pi}{2}} = 4$$

$$Amplitude = 2$$

Graph centre line (median): y = 1.

$$\therefore$$
 Range = $[1-2, 1+2]$

$$= [-1, 3]$$

$$\Rightarrow B$$

5. Trigonometry, 2ADV T3 SM-Bank 3 MC

$$\mathrm{Period} = \frac{2\pi}{2} = \pi$$

Range =
$$[-1-5, -1+5]$$

= $[-6, 4]$

$$\Rightarrow C$$

6. Trigonometry, 2ADV T3 SM-Bank 18

$$n=rac{\pi}{2}$$

$$ext{Period} = rac{\pi}{n} = rac{\pi}{rac{\pi}{2}} = 2$$

$$\Rightarrow A$$

7. Trigonometry, 2ADV T3 SM-Bank 4 MC

$$Period = \frac{\pi}{2}$$

$$\Rightarrow$$
 must be C or D

Shift
$$y = \tan(x)$$
 right $\frac{\pi}{4}$.

$$\Rightarrow$$
 C

8. Trigonometry, 2ADV T3 SM-Bank 5 MC

Centre line (median):
$$y = 5$$

$$Amplitude = 5$$

Period:
$$14 = \frac{2\pi}{n}$$

$$n=rac{\pi}{7}$$

$$\therefore \text{ Graph: } y = 5 - 5\cos\left(\frac{\pi t}{7}\right)$$

$$\Rightarrow B$$

$$Period = \frac{\pi}{n}$$
$$= \frac{\pi}{\frac{1}{3}}$$
$$= 3\pi$$

 $\Rightarrow D$

10. Trigonometry, 2ADV T3 SM-Bank 7 MC

Amplitude = 2 (range from - 1 to 3)

Graph centre line (median): y = 1

 \therefore Eliminate C and D.

Period =
$$\frac{2\pi}{3} - \frac{\pi}{6} = \frac{\pi}{2}$$
 (from graph)

Consider option B,

$$Period = \frac{2\pi}{n} = \frac{2\pi}{4} = \frac{\pi}{2}$$

$$\Rightarrow B$$

11. Trigonometry, 2ADV T3 2019 HSC 7 MC

$$a = \frac{1}{2}(5.5 - 2.5) = 1.5$$

Since graph passes through $\left(\frac{\pi}{4}, 5.5\right)$:

$$5.5=1.5\sin\!\left(b imesrac{\pi}{4}
ight)+4$$

$$\sin\left(b \times \frac{\pi}{4}\right) = 1$$

$$b \times \frac{\pi}{4} = \frac{\pi}{2}$$

$$\therefore b = 2$$

 $\Rightarrow D$

12. Trigonometry, 2ADV T3 2013 HSC 6 MC

At
$$x = 0$$
, $y = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$
 \Rightarrow It cannot be A or C

♦♦ Mean mark 34%

Find x when y = 0,

$$\sin\left(2x + \frac{\pi}{3}\right) = 0$$

$$\therefore 2x + \frac{\pi}{3} = 0 \quad (\sin 0 = 0)$$

$$2x = -\frac{\pi}{3}$$

$$x = -\frac{\pi}{6}$$

$$\Rightarrow D$$

13. Trigonometry, 2ADV T3 2016 HSC 6 MC

$$Period = \frac{\pi}{n}$$
$$= \frac{\pi}{3}$$
$$\Rightarrow A$$

♦ Mean mark 42%.

14. Trigonometry, 2ADV T3 2018 HSC 10 MC

Consider options A and C

Consider options B and D

When
$$y = \cos \frac{x}{2}$$
,

$$\int_0^{\pi} f(x) \ dx \neq \int_{\pi}^{2\pi} f(x) \ dx$$
$$\Rightarrow D$$

15. Trigonometry, 2ADV T3 EQ-Bank 5

$$g(x) = \frac{1}{3} \sin(4x)$$

 \Rightarrow The new amplitude is one third of the original amplitude.

$$Period = \frac{2\pi}{n} \Rightarrow n = \frac{1}{4}$$

 \Rightarrow The new period is one quarter of the original period.

- 16. Trigonometry, 2ADV T3 2010 HSC 8c
- i. A=4
- ii. Since the graph passes through $\left(\frac{\pi}{4},4\right)$

Substituting into $y = 4 \sin bx$

$$4\sin\Bigl(b imesrac{\pi}{4}\Bigr)=4$$
 $\sin\Bigl(b imesrac{\pi}{4}\Bigr)=1$

$$b imesrac{\pi}{4}=rac{\pi}{2}$$

$$\therefore b=2$$

MARKER'S COMMENT: Graphs are consistently drawn too small by many students. Aim to make your diagrams 1/3 to 1/2 of a page.

i.
$$2\cos(x) + 1 = 0$$

$$\cos(x) = -\frac{1}{2}$$

$$\Rightarrow \cos \frac{\pi}{3} = \frac{1}{2}$$
 and cos is negative

in 2nd/3rd quadrant

$$\therefore x = \pi - \frac{\pi}{3}, \pi + \frac{\pi}{3}$$
$$= \frac{2\pi}{3}, \frac{4\pi}{3}$$

ii.

18. Trigonometry, 2ADV T3 2006 HSC 7b

i.
$$f(x) = 1 + 2\cos x$$

$$f(x)$$
 cuts the x-axis when $f(x) = 0$

$$1+2\cos x=0$$

$$2\cos x = -1$$

$$\cos x = -\frac{1}{2}$$

$$\therefore x = \frac{2\pi}{3} \dots \text{ as required}$$

iii. Area
$$=\int_{-rac{\pi}{2}}^{rac{2\pi}{3}}1+2\cos x\ dx$$

$$=[x+2\sin x]_{-\frac{\pi}{2}}^{\frac{2\pi}{3}}$$

$$=\left[\left(rac{2\pi}{3}+2\sinrac{2\pi}{3}
ight)-\left(rac{-\pi}{2}+2\sinrac{-\pi}{2}
ight)
ight]$$

$$=\left(rac{2\pi}{3}+2 imesrac{\sqrt{3}}{2}
ight)-\left(rac{-\pi}{2}+2(-1)
ight)$$

$$=rac{2\pi}{3}+\sqrt{3}+rac{\pi}{2}+2$$

$$=\left(rac{7\pi}{6}+\sqrt{3}+2
ight)\mathrm{u}^{_2}$$

19. Trigonometry, 2ADV T3 2017 HSC 14a

$$y=4+3\sin 2x$$

 \Rightarrow Amplitude of 3 about y = 4

20. Trigonometry, 2ADV T3 2010 MET1 3

$$y = \tan(ax + b)$$

Substitute $(1, \sqrt{3}), (-1, -1)$ into equation:

$$\tan(a+b) = \sqrt{3}$$

$$\tan(b-a) = -1$$

$$a+b=\frac{\pi}{3}\ldots(1)$$

$$b-1=-\frac{\pi}{4}\ldots(2)$$

Add (1) + (2):

$$2b = \frac{\pi}{3} - \frac{\pi}{4}$$

$$b=rac{\pi}{24}$$

Substitute into (1):

$$a + \frac{\pi}{24} = \frac{\pi}{3}$$
$$a = \frac{7\pi}{24}$$

21. Trigonometry, 2ADV T3 2021 HSC 20

Find x such that:

$$2\sin 4x=1$$

$$\sin 4x = \frac{1}{2}$$

$$4x=\sin^{-1}\frac{1}{2}$$

$$4x=rac{\pi}{6},rac{5\pi}{6},rac{13\pi}{6},rac{17\pi}{6},\dots$$

$$\therefore x = rac{\pi}{24}, rac{5\pi}{24} \ \left(0 \leq x \leq rac{\pi}{4}
ight)$$

22. Trigonometry, 2ADV T3 SM-Bank 12

$$-1 \le \cos\Bigl(rac{\pi x}{2}\Bigr) \le 1$$

$$-3 \leq 3\cos\Bigl(rac{\pi x}{2}\Bigr) \leq 3$$

$$1 \leq 4 + 3\cos\!\left(\frac{\pi x}{2}\right) \leq 7$$

$$\therefore$$
 Range: $1 \le y \le 7$

$$Period = \frac{2\pi}{n} = \frac{2\pi}{\frac{\pi}{2}} = 4$$

- 23. Trigonometry, 2ADV T3 SM-Bank 13
- i. $h_{
 m min}$ occurs when $\sin\!\left(rac{\pi t}{12}
 ight)= \,-\,1$

$$\therefore h_{\min} = 14 - 8$$
$$= 6 \text{ m}$$

MARKER'S COMMENT: Students who used calculus to find the minimum were less successful.

ii.
$$14+8\sin\Bigl(\dfrac{\pi}{12}t\Bigr)=10$$

$$\sin\Bigl(\dfrac{\pi}{12}t\Bigr)=\,-\,\dfrac{1}{2}$$

Solve in general:

$$rac{\pi}{12}t = rac{7\pi}{6} + 2\pi n \quad ext{or} \quad rac{\pi}{12}t = rac{11t}{6} + 2\pi n, \ t = 14 + 24n \qquad \qquad t = 22 + 24n$$

Substitute integer values for n,

$$t : t = 14 \text{ or } 22, (0 \le t \le 24)$$

- 24. Trigonometry, 2ADV T3 SM-Bank 14
- a. Amplitude = 5

$$\mathrm{Period} = \frac{2\pi}{2} = \pi$$

b. Shift $y = 5\cos(2x)$ left $\frac{\pi}{3}$ units.

$$\mathbf{Period} = \pi$$

Endpoints are
$$\left(-\pi, -\frac{5}{2}\right)$$
 and $\left(\pi, -\frac{5}{2}\right)$

i. Intersection occurs when $x = \frac{\pi}{3}$,

$$a\sin\left(\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right)$$

$$an\Bigl(rac{\pi}{3}\Bigr)=rac{1}{a}$$

$$\sqrt{3} = \frac{1}{a}$$

$$\therefore a = \frac{1}{\sqrt{3}}$$

ii.
$$\tan(x) = \sqrt{3}$$

$$x=rac{\pi}{3},rac{4\pi}{3},2\pi+rac{\pi}{3},\dots$$

$$\therefore x = \frac{4\pi}{3} \ \ (0 \le x \le 2\pi)$$

26. Trigonometry, 2ADV T3 2018 HSC 15a

i.
$$L(t)=12+2\cos\!\left(rac{2\pi t}{366}
ight)$$

On 21 Dec 2015
$$\Rightarrow t = 0$$

$$L(0) = 12 + 2\cos 0$$

= 14 hours

ii. Shortest length of daylight occurs when

$$\cos\!\left(\frac{2\pi t}{366}\right) = -1$$

♦ Mean mark 43%.

$$\therefore \text{ Shortest length} = 12 + 2(-1)$$
$$= 10 \text{ hours}$$

iii. Find t such that L(t) = 11:

$$11=12+2\cos\biggl(\frac{2\pi t}{366}\biggr)$$

$$\cos\!\left(\frac{2\pi t}{366}\right) = -\frac{1}{2}$$

$$rac{2\pi t}{366} = rac{2\pi}{3}$$
 or $rac{2\pi t}{366} = rac{4\pi}{3}$ $t = rac{366 imes 2}{3}$ $= 122$ $= 244$

$$t = 122 \text{ or } 244$$

- 27. Trigonometry, 2ADV T3 SM-Bank 10
- i. $ext{Period} = rac{2\pi}{n} = rac{2\pi}{rac{\pi}{3}} = 6 ext{ months}$ $ext{Amplitude} = 400$
- ii. Max: 1200 + 400 = 1600 wombats Min: 1200 - 400 = 800 wombats
- iii. $n(10) = 1200 + 400 \cos\left(\frac{10\pi}{3}\right)$ = $1200 + 400 \cos\left(\frac{2\pi}{3}\right)$ = $1200 - 400 \times \frac{1}{2}$ = 1000 wombats
- iv. Find t when n(t)=1000 $1000=1200+400\cos\left(\frac{\pi t}{3}\right)$ $\cos\left(\frac{\pi t}{3}\right)=-\frac{1}{2}$ $\frac{\pi t}{3}=\frac{2\pi}{3},\frac{4\pi}{3},\frac{8\pi}{3},\frac{10\pi}{3},...$

t=2,4,8,10

Since n(0) = 1600,

 $\Rightarrow n(t)$ drops below 1000 between t=2 and t=4, and between t=8 and t=10.

$$\therefore \text{ Fraction} = \frac{2+2}{12}$$
$$= \frac{1}{3} \text{ year}$$

28. Trigonometry, 2ADV T3 2013 HSC 13a

i.
$$P(t)=400+50\cos\Bigl(rac{\pi}{6}t\Bigr)$$

Need to find t when P(t) = 375

$$375 = 400 + 50\cos\left(\frac{\pi}{6}t\right)$$
 $50\cos\left(\frac{\pi}{6}t\right) = -25$ $\cos\left(\frac{\pi}{6}t\right) = -\frac{1}{2}$

Since
$$\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$
, and \cos is

negative in 2nd / 3rd quadrants:

$$\Rightarrow \frac{\pi}{6}t = \left(\pi - \frac{\pi}{3}\right), \left(\pi + \frac{\pi}{3}\right), \left(3\pi - \frac{\pi}{3}\right)$$
$$= \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{8\pi}{3}, \dots$$
$$\therefore t = 4, 8, 16, \dots$$

... In the 1st 12 months, P(t) = 375 when t = 4 months and 8 months.

♦ Mean mark 39%

i.
$$h_{\min} = 65 - 55$$
 $h_{\max} = 65 + 55$
= 10 m = 120 m

ii. Period =
$$\frac{2\pi}{\frac{\pi}{15}}$$
 = 30 min

iii.
$$h'(t)=65-55\cos\left(\frac{\pi t}{15}\right)$$

$$h'(t)=\frac{\pi}{15}\times 55\sin\left(\frac{\pi}{15}t\right)$$

$$=\frac{11\pi}{3}\sin\left(\frac{\pi}{15}t\right)$$

Since
$$\sin\left(\frac{\pi}{15}t\right)_{\text{max}} = \sin\left(\frac{\pi}{2}\right)$$
,

 $\therefore h'(t)_{\text{max}}$ occurs when

$$egin{aligned} rac{\pi t}{15} &= rac{\pi}{2} \ dots &: t = rac{\pi}{2} imes rac{15}{\pi} \ &= rac{15}{2} ext{ minutes } (0 \leq t \leq 30) \end{aligned}$$

30. Trigonometry, 2ADV T3 EQ-Bank 3

Sketch:

$$y = \cos x$$

$$y = \left| rac{x - \pi}{4}
ight|$$

Translate π units to the right:

$$y = |x| \Rightarrow y = |x - \pi|$$

Multiply by $\frac{1}{4}$:

$$y=|x-\pi| \ \Rightarrow \ y=rac{1}{4}|x-\pi|=\left|rac{x-\pi}{4}
ight|$$

... There are 4 solutions.

31. Trigonometry, 2ADV T3 2011 SPEC1 8

Intersection occurs when:

$$\csc^2\left(\frac{\pi x}{6}\right) = \frac{4}{3}$$
 $\csc\left(\frac{\pi x}{6}\right) = \pm \frac{2}{\sqrt{3}}$

$$\sin\!\left(\frac{\pi x}{6}\right) = \pm \frac{\sqrt{3}}{2}$$

 $\text{Given: } 0 < x < 12 \ \Rightarrow \ 0 < \frac{\pi x}{6} < 2\pi$

$$\frac{\pi x}{6} = \frac{\pi}{3}, \pi - \frac{\pi}{3}, \pi + \frac{\pi}{3}, 2\pi - \frac{\pi}{3}$$
$$= \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$$
$$x = 2, 4, 8, 10$$

$$\Rightarrow y = rac{4}{3} ext{ for each}$$

$$\therefore$$
 Intersection at: $\left(2,\frac{4}{3}\right),\left(4,\frac{4}{3}\right),\left(8,\frac{4}{3}\right),\left(10,\frac{4}{3}\right)$

32. Trigonometry, 2ADV T3 SM-Bank 8

 $\sin(2x)_{
m max}$ occurs when $x=rac{\pi}{4}$ (within domain)

♦ Mean mark 45%.

$$\Rightarrow f(x)_{
m max} = 2 \sin\Bigl(rac{\pi}{2}\Bigr) = 2$$

Checking endpoints:

When
$$x = \frac{\pi}{8} \implies y = 2\sin\left(\frac{\pi}{4}\right) = \sqrt{2}$$

When
$$x=rac{\pi}{3} \;\; \Rightarrow \;\; y=2\sin\!\left(rac{2\pi}{3}
ight)=\sqrt{3}$$

$$\therefore$$
 Range = $[\sqrt{2}, 2],$

33. Trigonometry, 2ADV T3 2020 HSC 31

a.
$$b = \frac{35\ 000 + 5000}{2}$$

= 20\ 000

$$a =$$
amplitude of sin graph

$$=35\ 000-20\ 000$$

= 15000

b. By inspection of the m(t) graph

$$m'(t) > 0$$
 when $0 \le t < 13$ and $39 < t \le 52$
Sketch $c(t)$:

♦♦ Mean mark part (b) 30%.

Minimum
$$(\cos 0)$$
 when $t = 10$

Maximum
$$(\cos \pi)$$
 when $t = 36$

$$c'(t) > 0$$
 when $10 < t < 36$

 \therefore Both populations are increasing when 10 < t < 13

c. c(t) maximum when t=36

$$m(t) = 15~000 \sin\Bigl(rac{\pi}{26}t\Bigr) + 20~000$$

$$m'(t) \equiv rac{15\ 000\pi}{26} \mathrm{cos} \Big(rac{\pi}{26}t\Big)$$

$$m'(36) = \frac{15\ 000\pi}{26} \cdot \cos\left(\frac{36\pi}{26}\right)$$
$$= -642.7$$

... Mice population is decreasing at 643 mice per week.

34. Trigonometry, 2ADV T3 2009 HSC 7b

i.
$$h=1+0.7\sin\Bigl(rac{\pi}{6}t\Bigr) \ ext{for} \ 0\leq t\leq 12$$

$$T=rac{2\pi}{n} \; ext{where} \; n=rac{\pi}{6}$$
 $=2\pi imesrac{6}{\pi}$ $=12 \; ext{hours}$

- \therefore The period of h is 12 hours.
- ii. Find h at low tide

 $\Rightarrow h$ will be a minimum when

$$\sin\!\left(\frac{\pi}{6}t\right) = -1$$

$$h_{\min} = 1 + 0.7(-1)$$

= 0.3 metres

Since
$$\sin x = -1$$
 when $x = \frac{3\pi}{2}$

$$rac{\pi}{6}t = rac{3\pi}{2}$$
 $t = rac{3\pi}{2} imes rac{6}{\pi}$
 $= 9 ext{ hours}$

- \therefore Low tide occurs at 2pm (5 am + 9 hours)
- iii. Find t when $h \ge 1.35$

$$1+0.7\sin\Bigl(rac{\pi}{6}t\Bigr)\geq 1.35$$

$$0.7\sin\!\left(rac{\pi}{6}t
ight) \geq 0.35$$

$$\sin\!\left(rac{\pi}{6}t
ight) \geq rac{1}{2}$$

$$\sin\!\left(rac{\pi}{6}t
ight) = rac{1}{2} ext{ when }$$

$$\frac{\pi}{6}t = \frac{\pi}{6}, \ \frac{5\pi}{6}, \ \frac{13\pi}{6}, \ \text{etc} \dots$$

IMPORTANT: Using $\sin x = -1$ for a minimum here is very effective and time efficient. This property of trig functions is **often very useful** in harder questions.

$$t = 1, 5 \quad (0 \le t \le 12)$$

From the graph,

$$\sin\Bigl(rac{\pi}{6}t\Bigr) \geq rac{1}{2} \;\; ext{when} \;\; 1 \leq t \leq 5$$

 \therefore Ship can enter the harbour between 6 am and 10 am.

Copyright © 2016-2022 M2 Mathematics Pty Ltd (SmarterMaths.com.au)