- **9** The roots of a quadratic equation are α and β where $\alpha + \beta = -\frac{7}{3}$ and $\alpha\beta = -2$
 - (a) Find a quadratic equation, with integer coefficients, which has roots α and β

(4)

Given that $\alpha > \beta$ and without solving the equation,

(b) show that $\alpha - \beta = \frac{11}{3}$

(2)

(c) form a quadratic equation, with integer coefficients, which has roots

$$\frac{\alpha+\beta}{\alpha}$$
 and $\frac{\alpha-\beta}{\beta}$

(7)

 	• • • • • • • • • • • • • • • • • • • •	 	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA