Lab 1

Kennly Weerasinghe

11:59PM February 18, 2021

You should have RStudio installed to edit this file. You will write code in places marked "TO-DO" to complete the problems. Some of this will be a pure programming assignment. The tools for the solutions to these problems can be found in the class practice lectures. I want you to use the methods I taught you, not for you to google and come up with whatever works. You won't learn that way.

To "hand in" the homework, you should compile or publish this file into a PDF that includes output of your code. Once it's done, push by the deadline to your repository in a directory called "labs".

• Print out the numerical constant pi with ten digits after the decimal point using the internal constant pi.

```
options(digits=11)
pi
```

[1] 3.1415926536

• Sum up the first 103 terms of the series $1 + 1/2 + 1/4 + 1/8 + \dots$

```
sum(1/(2^(0:102)))
```

[1] 2

• Find the product of the first 37 terms in the sequence 1/3, 1/6, 1/9...

```
prod(1/(seq(from=3,by=3,length.out=37)))
```

```
## [1] 1.613528728e-61
```

• Find the product of the first 387 terms of 1 * 1/2 * 1/4 * 1/8 * ...

```
prod(1/2<sup>(0:386))</sup>
```

[1] 0

Is this answer *exactly* correct?

The answer is not exactly correct because we experienced numerical underflow

• Figure out a means to express the answer more exactly. Not compute exactly, but express more exactly.

```
-\log(2)*sum(0:386)
```

```
## [1] -51771.856063
```

• Create the sequence $x = [Inf, 20, 18, \ldots, -20]$.

```
x <- c(Inf, seq(from=20, to=-20, by=-2))
x
```

```
## [1] Inf 20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 ## [20] -16 -18 -20
```

```
Create the sequence x = [log_3(Inf), log_3(100), log_3(98), ... log_3(-20)].
```

```
x <- c(Inf, seq(from=100, to=-20, by=-2))
x = log(x, base=3)</pre>
```

Warning: NaNs produced

```
log(100, 3)
```

[1] 4.1918065486

Comment on the appropriateness of the non-numeric values.

• Create a vector of booleans where the entry is true if x[i] is positive and finite.

```
y = !is.nan(x) & is.finite(x) & x>0
```

• Locate the indices of the non-real numbers in this vector. Hint: use the which function. Don't hesitate to use the documentation via ?which.

```
which(y == FALSE)
```

```
## [1] 1 52 53 54 55 56 57 58 59 60 61 62
```

• Locate the indices of the infinite quantities in this vector.

```
which(is.infinite(x))
```

[1] 1 52

• Locate the indices of the min and max in this vector. Hint: use the which.min and which.max functions. which.min(x)

[1] 52

```
which.max(x)
```

[1] 1

• Count the number of unique values in x.

length(unique(x))

[1] 53

• Cast x to a factor. Do the number of levels make sense?

as.factor(x)

```
4.19180654857877
                                            4.1734172518943
                                                               4.15464876785729
##
    [1] Inf
   [5] 4.13548512895119
                          4.11590933734319
                                            4.09590327428938
                                                               4.07544759935851
   [9] 4.05452163806914
                          4.03310325630434
                                            4.01116871959141
                                                               3.98869253500376
## [13] 3.96564727304425
                          3.94200336638929
                                            3.91772888178973
                                                               3.89278926071437
## [17] 3.86714702345081
                          3.84076143030548
                                            3.81358809221559
                                                               3.78557852142874
## [21] 3.75667961082847
                          3.72683302786084
                                            3.69597450568212
                                                               3.66403300987579
## [25] 3.63092975357146
                          3.59657702661571
                                            3.56087679500731
                                                               3.52371901428583
## [29] 3.48497958377173
                          3.44451784578705
                                            3.40217350273288
                                                               3.3577627814323
## [33] 3.31107361281783
                          3.26185950714291
                                            3.20983167673402
                                                              3.15464876785729
## [37] 3.09590327428938
                          3.03310325630434
                                            2.96564727304425
                                                               2.89278926071437
## [41] 2.8135880922156
                          2.72683302786084
                                            2.63092975357146
                                                               2.52371901428583
                                                              1.89278926071437
                                            2.09590327428938
## [45] 2.40217350273288
                          2.26185950714291
## [49] 1.63092975357146 1.26185950714291 0.630929753571457 -Inf
## [53] NaN
                          NaN
                                            NaN
                                                               NaN
```

```
## [57] NaN
                                                          NaN
                                                                                                   NaN
                                                                                                                                            NaN
                                                          NaN
## [61] NaN
## 53 Levels: -Inf 0.630929753571457 1.26185950714291 ... NaN
      • Cast x to integers. What do we learn about R's infinity representation in the integer data type? In the
          integer data type there is no infinity or no NAN
as.integer(x)
## Warning: NAs introduced by coercion to integer range
         [1] NA
                                                            4
                                                                  4
                                                                                4
                                                                                                                                3
                                                                                                                                       3
                                                                                                                                              3
##
      [26]
                    3
                          3
                                 3
                                        3
                                               3
                                                     3
                                                          3
                                                                 3
                                                                        3
                                                                               3
                                                                                      3
                                                                                             3
                                                                                                     3
                                                                                                            2
                                                                                                                   2
                                                                                                                         2
                                                                                                                                2
                                                                                                                                       2
                                                                                                                                              2
                    O NA NA NA NA NA NA NA NA NA NA
х
##
         [1]
                                        Inf 4.19180654858 4.17341725189 4.15464876786 4.13548512895
        [6] 4.11590933734 4.09590327429 4.07544759936 4.05452163807 4.03310325630
##
## [11] 4.01116871959 3.98869253500 3.96564727304 3.94200336639 3.91772888179
## [16] 3.89278926071 3.86714702345 3.84076143031 3.81358809222 3.78557852143
## [21] 3.75667961083 3.72683302786 3.69597450568 3.66403300988 3.63092975357
## [26] 3.59657702662 3.56087679501 3.52371901429 3.48497958377 3.44451784579
## [31] 3.40217350273 3.35776278143 3.31107361282 3.26185950714 3.20983167673
## [36] 3.15464876786 3.09590327429 3.03310325630 2.96564727304 2.89278926071
## [41] 2.81358809222 2.72683302786 2.63092975357 2.52371901429 2.40217350273
## [46] 2.26185950714 2.09590327429 1.89278926071 1.63092975357 1.26185950714
## [51] 0.63092975357
                                                                      -Inf
                                                                                                       NaN
                                                                                                                                       NaN
                                                                                                                                                                       NaN
## [56]
                                                                        NaN
                                                                                                        NaN
                                                                                                                                       NaN
                                                                                                                                                                       NaN
                                        NaN
## [61]
                                        NaN
                                                                        NaN
      • Use x to create a new vector y containing only the real numbers in x.
y = x[(!is.nan(x) \& is.finite(x) \& x>0)]
У
##
         [1] 4.19180654858 4.17341725189 4.15464876786 4.13548512895 4.11590933734
        [6] 4.09590327429 4.07544759936 4.05452163807 4.03310325630 4.01116871959
## [11] 3.98869253500 3.96564727304 3.94200336639 3.91772888179 3.89278926071
## [16] 3.86714702345 3.84076143031 3.81358809222 3.78557852143 3.75667961083
## [21] 3.72683302786 3.69597450568 3.66403300988 3.63092975357 3.59657702662
## [26] 3.56087679501 3.52371901429 3.48497958377 3.44451784579 3.40217350273
## [31] 3.35776278143 3.31107361282 3.26185950714 3.20983167673 3.15464876786
## [36] 3.09590327429 3.03310325630 2.96564727304 2.89278926071 2.81358809222
## [41] 2.72683302786 2.63092975357 2.52371901429 2.40217350273 2.26185950714
## [46] 2.09590327429 1.89278926071 1.63092975357 1.26185950714 0.63092975357
      • Use the left rectangle method to numerically integrate x^2 from 0 to 1 with rectangle width size 1e-6.
sum(seq(from = 0, to = 1 - 1e-6, by = 1e-6)^2) * 1e-6
## [1] 0.33333283333
      • Calculate the average of 100 realizations of standard Bernoullis in one line using the sample function.
sample(c(0,1), size=100, replace=TRUE)
##
            \begin{smallmatrix} [1] \end{smallmatrix} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.
         ##
        [75] 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1
```

 Calculate the average of 500 realizations of Bernoullis with p = 0.9 in one line using the sample and mean functions.

```
mean(sample(c(0,1), size=500, replace=TRUE, prob=c(0.1, 0.9)))
```

[1] 0.884

• Calculate the average of 1000 realizations of Bernoullis with p = 0.9 in one line using rbinom.

```
mean(rbinom(n=1000, size=1, prob=0.9))
```

[1] 0.909

• In class we considered a variable x_3 which measured "criminality". We imagined L = 4 levels "none", "infraction", "misdimeanor" and "felony". Create a variable x_3 here with 100 random elements (equally probable). Create it as a nominal (i.e. unordered) factor.

```
x_3 = as.factor(sample(c("none", "infraction", "misdimeanor", "felony"), size=100, replace=TRUE))
x_3
```

```
##
                     misdimeanor infraction misdimeanor misdimeanor misdimeanor
     [1] none
##
     [7] misdimeanor none
                                 infraction
                                             misdimeanor none
                                                                      none
##
    [13] misdimeanor none
                                 misdimeanor misdimeanor infraction
                                                                      felony
##
    [19] misdimeanor none
                                 none
                                             none
                                                          felony
                                                                      none
##
    [25] felony
                     misdimeanor infraction
                                                          none
                                                                      none
                                             none
##
    [31] infraction
                    none
                                 felony
                                             infraction felony
                                                                      none
##
    [37] felony
                     infraction felony
                                              infraction felony
                                                                      misdimeanor
##
   [43] none
                     misdimeanor misdimeanor felony
                                                                      misdimeanor
##
    [49] misdimeanor infraction
                                                          misdimeanor felony
                                 felony
                                             none
##
    [55] misdimeanor infraction
                                 none
                                              infraction infraction
                                                                      none
   [61] felony
                     felony
                                 infraction
                                             felony
                                                          infraction
                                                                      infraction
##
   [67] infraction felony
                                             misdimeanor felony
                                                                      infraction
                                 infraction
    [73] misdimeanor misdimeanor infraction
                                             felony
                                                          infraction
                                                                      infraction
##
   [79] misdimeanor misdimeanor felony
                                             none
                                                          infraction
                                                                      felony
                                                          infraction
                                                                      infraction
   [85] misdimeanor felony
                                 felony
                                             felony
    [91] misdimeanor none
                                 felony
                                             misdimeanor misdimeanor felony
   [97] misdimeanor none
                                 felony
                                             none
## Levels: felony infraction misdimeanor none
```

• Use x_3 to create x_3_bin, a binary feature where 0 is no crime and 1 is any crime.

```
x_3_bin = x_3 != "none"
x_3_bin
```

```
##
     [1] FALSE
                TRUE
                       TRUE
                              TRUE
                                    TRUE
                                           TRUE
                                                 TRUE FALSE
                                                              TRUE
                                                                     TRUE FALSE FALSE
##
    [13]
          TRUE FALSE
                       TRUE
                              TRUE
                                    TRUE
                                           TRUE
                                                 TRUE FALSE FALSE FALSE
                                                                            TRUE FALSE
##
    [25]
                       TRUE FALSE FALSE FALSE
          TRUE.
                 TRUE
                                                 TRUE FALSE
                                                              TRUE
                                                                     TRUE
                                                                            TRUE FALSE
##
    [37]
          TRUE
                 TRUE
                       TRUE
                             TRUE
                                    TRUE
                                           TRUE FALSE
                                                        TRUE
                                                              TRUE
                                                                     TRUE
                                                                            TRUE
    [49]
##
          TRUE
                 TRUE
                       TRUE FALSE
                                    TRUE
                                           TRUE
                                                 TRUE
                                                        TRUE FALSE
                                                                     TRUE
                                                                            TRUE FALSE
##
    [61]
          TRUE
                 TRUE
                       TRUE
                              TRUE
                                    TRUE
                                           TRUE
                                                  TRUE
                                                        TRUE
                                                               TRUE
                                                                     TRUE
                                                                            TRUE
                                                                                  TRUE
    [73]
                 TRUE
                                                        TRUE
                                                                                  TRUE
##
          TRUE
                       TRUE
                              TRUE
                                    TRUE
                                           TRUE
                                                  TRUE
                                                               TRUE FALSE
                                                                            TRUE
##
    [85]
          TRUE
                 TRUE
                       TRUE
                              TRUE
                                    TRUE
                                           TRUE
                                                  TRUE FALSE
                                                               TRUE
                                                                     TRUE
                                                                            TRUE
                                                                                  TRUE
##
    [97]
          TRUE FALSE
                       TRUE FALSE
```

• Use x_3 to create x_3_ord, an ordered factor variable. Ensure the proper ordinal ordering.

```
factor(x_3, levels =c("none", "infraction", "misdimeanor", "felony"), ordered = TRUE )
## [1] none misdimeanor infraction misdimeanor misdimeanor
```

[7] misdimeanor none infraction misdimeanor none none

```
[13] misdimeanor none
                                misdimeanor misdimeanor infraction felony
    [19] misdimeanor none
##
                                none
                                            none
                                                        felony
                                                                    none
    [25] felony
                    misdimeanor infraction
                                            none
                                                        none
                                                                    none
   [31] infraction none
                                            infraction felony
                                                                    none
##
                                felony
##
   [37] felony
                    infraction felony
                                            infraction felony
                                                                    misdimeanor
##
   [43] none
                    misdimeanor misdimeanor felony
                                                                    misdimeanor
   [49] misdimeanor infraction felony
                                                        misdimeanor felony
                                            none
##
   [55] misdimeanor infraction
                                none
                                            infraction infraction none
##
   [61] felony
                    felony
                                infraction
                                            felony
                                                        infraction infraction
##
  [67] infraction felony
                                infraction
                                            misdimeanor felony
                                                                    infraction
  [73] misdimeanor misdimeanor infraction
                                            felony
                                                        infraction infraction
##
  [79] misdimeanor misdimeanor felony
                                            none
                                                        infraction felony
                                            felony
   [85] misdimeanor felony
                                felony
                                                        infraction infraction
  [91] misdimeanor none
                                felony
                                            misdimeanor misdimeanor felony
## [97] misdimeanor none
                                felony
## Levels: none < infraction < misdimeanor < felony
?factor
```

• Convert this variable into three binary variables without any information loss and put them into a data matrix

```
x_3_matrix = matrix(nrow = length(x_3), ncol = 3)
x_3_matrix[ , 1] = as.numeric(x_3 == "infraction")
x_3_matrix[ , 2] = as.numeric(x_3 == "felony")
x_3_matrix[ , 3] = as.numeric(x_3 == "misdimeanor")
colnames(x_3_matrix) = c("is_infraction", "is_felony", "is_misdimeanor")
x_3_matrix
```

```
##
            is_infraction is_felony is_misdimeanor
##
      [1,]
                          0
                                     0
      [2,]
##
                          0
                                     0
                                                       1
                                                       0
##
      [3,]
                          1
                                     0
##
      [4,]
                          0
                                     0
                                                       1
##
      [5,]
                          0
                                     0
                                                       1
##
      [6,]
                          0
                                     0
                                                       1
##
      [7,]
                          0
                                     0
                                                       1
##
      [8,]
                          0
                                     0
                                                       0
##
     [9,]
                          1
                                     0
                                                       0
##
    [10,]
                          0
                                     0
                                                       1
    [11,]
                          0
                                     0
                                                       0
    [12,]
                          0
##
                                     0
                                                       0
##
    [13,]
                          0
                                     0
                                                       1
##
                          0
                                     0
                                                       0
    [14,]
##
   [15,]
                          0
                                     0
                                                       1
##
   [16,]
                          0
                                     0
                                                       1
    [17,]
                                     0
                                                       0
##
                          1
                          0
                                                       0
##
   [18,]
                                     1
##
   [19,]
                          0
                                     0
                                                       1
    [20,]
                          0
                                     0
                                                       0
##
##
   [21,]
                          0
                                     0
                                                       0
                          0
                                                       0
## [22,]
                                     0
## [23,]
                          0
                                                       0
                                     1
## [24,]
                          0
                                     0
                                                       0
## [25,]
                          0
                                                       0
                                     1
                          0
                                     0
## [26,]
```

	5 3			
##	[27,]	1	0	0
##	[28,]	0	0	0
##	[29,]	0	0	0
##	[30,]	0	0	0
##	[31,]	1	0	0
##	[32,]	0	0	0
##	[33,]	0	1	0
##	[34,]	1	0	0
##	[35,]	0	1	0
##	[36,]	0	0	0
##	[37,]	0	1	0
##	[38,]	1	0	0
##	[39,]	0	1	0
##	[40,]	1	0	0
##	[41,]	0	1	0
##	[42,]	0	0	1
##	[43,]	0	0	0
##	[44,]	0	0	1
##	[45,]	0	0	1
##	[46,]	0	0	1
		0		0
##	[47,]		1	
##	[48,]	0	0	1
##	[49,]	0	0	1
##	[50,]	1	0	0
##	[51,]	0	1	0
		0	0	
##	[52,]			0
##	[53,]	0	0	1
##	[54,]	0	1	0
##	[55,]	0	0	1
##	[56,]	1	0	0
##	[57,]	0	0	0
##	[58,]	1	0	0
##	[59,]	1	0	0
##	[60,]	0	0	0
##	[61,]	0	1	0
##	[62,]	0	1	0
##	[63,]	1	0	0
##	[64,]	0	1	0
##	[65,]	1	0	0
##	[66,]	1	0	0
##	[67,]	1	0	0
##	[68,]	0	1	0
##	[69,]	1	0	0
##	[70,]	0	0	1
##	[71,]	0	1	0
	[72,]	1	0	0
##				
##	[73,]	0	0	1
##	[74,]	0	0	1
##	[75,]	1	0	0
##	[76,]	0	1	0
	[77]			
##	[77,]	1	0	0
##	[78,]	1	0	0
##	[79,]	0	0	1
##	[80,]	0	0	1
	• =			

```
##
     [81,]
                                         1
                                                            0
##
     [82,]
                            0
                                         0
                                                            0
##
     [83,]
                            1
                                         0
                                                            0
     [84,]
                            0
                                         1
                                                            0
##
##
     [85,]
                            0
                                         0
                                                            1
                            0
                                                            0
##
     [86,]
                                         1
                            0
##
     [87,]
                                         1
                                                            0
##
     [88,]
                            0
                                         1
                                                            0
##
     [89,]
                            1
                                         0
                                                            0
                                         0
                                                            0
##
     [90,]
                            1
##
     [91,]
                            0
                                         0
                                                            1
                            0
                                         0
                                                            0
##
     [92,]
##
     [93,]
                            0
                                         1
                                                            0
                            0
##
     [94,]
                                         0
                                                            1
##
     [95,]
                            0
                                         0
                                                            1
##
     [96,]
                            0
                                         1
                                                            0
##
     [97,]
                            0
                                         0
                                                            1
##
     [98,]
                            0
                                         0
                                                            0
    [99,]
                            0
                                                            0
##
                                         1
## [100,]
                            0
                                         0
                                                            0
```

• What should the sum of each row be (in English)?

The sum of each row should be either 0 or 1. An individual that has a record of "none" will be captured by a row with the sum of 0.

Verify that.

```
rowSums(x_3_matrix)
```

• How should the column sum look (in English)?

The column should sum up to roughly 25 if the sample (c()) function truly has equal probability of assigning criminal levels.

Verify that.

colSums(x_3_matrix)

```
## is_infraction is_felony is_misdimeanor
## 24 25 29
```

• Generate a matrix with 100 rows where the first column is realization from a normal with mean 17 and variance 38, the second column is uniform between -10 and 10, the third column is poisson with mean 6, the fourth column in exponential with lambda of 9, the fifth column is binomial with n = 20 and p = 0.12 and the sixth column is a binary variable with exactly 24% 1's dispersed randomly. Name the rows the entries of the fake_first_names vector.

```
fake_first_names = c(
   "Sophia", "Emma", "Olivia", "Ava", "Mia", "Isabella", "Riley",
   "Aria", "Zoe", "Charlotte", "Lily", "Layla", "Amelia", "Emily",
   "Madelyn", "Aubrey", "Adalyn", "Madison", "Chloe", "Harper",
   "Abigail", "Aaliyah", "Avery", "Evelyn", "Kaylee", "Ella", "Ellie",
   "Scarlett", "Arianna", "Hailey", "Nora", "Addison", "Brooklyn",
   "Hannah", "Mila", "Leah", "Elizabeth", "Sarah", "Eliana", "Mackenzie",
```

```
"Peyton", "Maria", "Grace", "Adeline", "Elena", "Anna", "Victoria",
  "Camilla", "Lillian", "Natalie", "Jackson", "Aiden", "Lucas",
  "Liam", "Noah", "Ethan", "Mason", "Caden", "Oliver", "Elijah",
  "Grayson", "Jacob", "Michael", "Benjamin", "Carter", "James",
  "Jayden", "Logan", "Alexander", "Caleb", "Ryan", "Luke", "Daniel",
  "Jack", "William", "Owen", "Gabriel", "Matthew", "Connor", "Jayce",
  "Isaac", "Sebastian", "Henry", "Muhammad", "Cameron", "Wyatt",
  "Dylan", "Nathan", "Nicholas", "Julian", "Eli", "Levi", "Isaiah",
  "Landon", "David", "Christian", "Andrew", "Brayden", "John",
  "Lincoln"
)
n <- 100
X <- matrix(nrow=n, ncol=6)</pre>
X[,1] \leftarrow rnorm(n=n, mean=17, sd=sqrt(38))
X[,2] \leftarrow runif(n=n, min=-10, max=10)
X[,3] \leftarrow rpois(n=n, lambda=6)
X[,4] \leftarrow rexp(n=n, rate=9)
X[,5] \leftarrow rbinom(n=n, size=20, p=0.12)
X[,6] \leftarrow sample(c(rep(1, n * 0.24), rep(0, n*0.76)))
rownames(X) = fake_first_names
X
##
                                                           [,4] [,5] [,6]
                      [,1]
                                      [,2] [,3]
## Sophia
             21.0338007405 -4.00284694973
                                             5 0.0446132500139
## Emma
             14.8465919148 9.75827042479
                                             6 0.1334909744928
## Olivia
             13.7861390762 8.28336256091
                                             7 0.0656357516224
                                                                        0
## Ava
             20.1569349163 -9.50797969010
                                             6 0.0266486758235
                                                                   4
                                                                        1
             11.2500347213 9.75628689397
                                                                        0
## Mia
                                             4 0.0790453332770
## Isabella 12.1317296420 3.64927040879
                                             6 0.1077233785675
                                                                        0
## Riley
             10.5914966861 4.52036416158
                                             3 0.0045338264770
                                                                        1
## Aria
             13.6078641613 5.00859005842
                                             6 0.0449775161946
                                                                   3
                                                                        0
## Zoe
             21.6919843122 5.10639288928
                                             4 0.0231308499869
## Charlotte 13.5853859241 -8.76582714729
                                             3 0.1325783901284
                                                                   6
                                                                        1
## Lily
             23.8343941779 -8.68912381586
                                             8 0.2117805075221
                                                                   3
                                                                        0
             11.1070035560 -8.00324857235
                                             8 0.0904681045101
## Layla
                                                                   3
                                                                        0
## Amelia
             18.8984519445 -9.33218385559
                                             9 0.1267416302275
## Emily
            8.3022316773 -0.15383844264
                                            11 0.0876163071139
                                                                        1
## Madelyn
             16.8535564747 -1.11540870275
                                             2 0.0217923224490
                                                                        0
## Aubrey
             -1.3257400226 -6.60828856286
                                             5 0.0564887421206
                                                                        1
## Adalyn
             10.4883213888 1.76787269302
                                             5 0.2412825104436
## Madison
             23.0814077159 -1.51876500808
                                             4 0.0382478398238
                                                                        1
## Chloe
             8.4115186369 5.65372773912
                                            14 0.4751351410769
                                                                   5
                                                                        0
## Harper
             13.2671268213 8.94944194704
                                             5 0.1405159790643
                                                                        0
## Abigail
             7.8566148185 2.45194523130
                                             8 0.1037493564920
                                                                        1
             13.7319253815 4.79118470568
                                             4 0.0118802070825
## Aaliyah
                                                                        0
## Avery
             22.5742249621 -7.32990298886
                                            12 0.0270842096308
                                                                   1
                                                                        0
## Evelyn
              9.7682735769 0.41635468602
                                             4 0.0311367161468
## Kaylee
             10.9508727311 -9.98156530317
                                             3 0.0710876639932
                                                                        0
## Ella
             15.5331124697 -2.50006929040
                                             4 0.1644300007065
                                                                   0
                                                                        0
## Ellie
             10.6398205160 4.05042340048
                                             8 0.1238749424570
                                                                   5
                                                                        0
## Scarlett 10.8842385040 2.28800474666
                                             4 0.1368354687214
                                                                        0
## Arianna
             23.4231488442 3.20224570576
                                             5 0.2774677005882
                                                                        0
## Hailey
             13.4669628559 -1.14420713857
                                             6 0.4438590446461
                                                                        0
```

```
## Nora
              9.7785366579
                             3.64052575547
                                               5 0.0034513313634
                                                                     2
                                                                           0
## Addison
                                                                           0
             19.1635826250 -9.71308275126
                                               2 0.0894440302786
                                                                     3
  Brooklyn
             16.3190742578
                             1.89013717696
                                                 0.0200635005589
                                                                           0
  Hannah
                                                                           0
             17.5286911504 -2.81503128354
                                               7 0.0112110285295
                                                                     2
## Mila
             23.5493982376
                             6.64789864328
                                                 0.1014856861651
                                                                     3
                                                                           0
## Leah
             25.7298496566 -0.23971855640
                                                 0.0581379489452
                                                                           0
                                                                     3
## Elizabeth 25.1875617498
                             7.12194119580
                                                 0.1886898270818
                                                                           0
## Sarah
             18.7679672494
                             4.41241895314
                                               5 0.0662924767886
                                                                     0
                                                                           0
##
  Eliana
             17.0104159311
                             6.70944635291
                                               4 0.0207683669084
                                                                      2
                                                                           0
  Mackenzie 24.3364535842
                             0.62974540517
                                                 0.2303258470270
                                                                           0
   Peyton
             12.2383029717
                             5.96279597841
                                               9 0.5927086126560
                                                                           1
                                                                           0
## Maria
             30.0061121543
                             5.22850914858
                                               9 0.1260647087142
                                                                      3
   Grace
##
             19.3979646918
                             2.77291605715
                                               6 0.0129179966946
                                                                     3
                                                                           0
##
   Adeline
             11.5567107537 -4.78049070109
                                               8 0.2408627908052
                                                                           0
## Elena
             15.1594431006
                             2.32559158467
                                               8 0.2431657012926
                                                                      2
                                                                           1
##
   Anna
             18.3279612812 -4.03786812909
                                                 0.1412802571384
                                                                           0
##
             16.8682588318 -7.60930346325
                                              12 0.2403604245294
  Victoria
                                                                      1
                                                                           1
             19.7721607171 -4.43769809324
                                                 0.0118858338748
                                                                           0
   Camilla
## Lillian
              5.1299120932 -0.85050702561
                                                 0.0363479952406
                                                                           0
                                                                     0
## Natalie
             14.2016978955
                             6.85560448561
                                                 0.0462932187902
                                                                           0
##
  Jackson
             14.1961932039 -6.24204883818
                                               4 0.0724643292423
                                                                           0
                                                                      1
## Aiden
             16.9963088440
                             7.18084688764
                                               7 0.0512846562908
                                                                           1
## Lucas
             11.1627617106
                             8.57106121723
                                               4 0.1242409926896
                                                                           0
                                                                     2
## Liam
             17.4541076260
                             5.49823297188
                                               2 0.0112134871177
                                                                     2
                                                                           0
## Noah
             15.4040682064 -9.31023423094
                                               4 0.0964618575609
                                                                           0
## Ethan
              9.0394726337
                             2.33853303362
                                              10 0.1611254411760
                                                                      1
                                                                           0
             15.2406054301 -7.22366711590
                                                                           0
## Mason
                                                 0.3505215079165
##
   Caden
             24.5502718241
                             3.47088538110
                                              10 0.0145783722918
                                                                           0
##
                                                                           0
   Oliver
             16.9528903150 -4.48851423804
                                               3 0.1414334617715
  Elijah
                             0.64962655306
                                               5 0.0841834029757
                                                                           0
             16.1825823686
                                                                      1
   Grayson
             11.6733727829
                             7.50769569073
                                                 0.0569606186926
                                                                     0
                                                                           0
##
   Jacob
             23.2539926686
                             9.29826793261
                                              11 0.2308309732119
                                                                      2
                                                                           0
   Michael
             18.7859850904
                             6.02505883202
                                              11 0.0549111100328
              8.8413719668 -6.77348078229
                                                 0.1005795492434
   Benjamin
                                                                      2
                                                                           1
   Carter
                             2.46083064470
                                                 0.0602773531444
                                                                           0
             13.2587125209
                                                                     1
##
   James
              14.8374857672
                            4.10757062025
                                                 0.0506852138270
                                                                     1
                                                                           1
   Jayden
             13.9411374916 -1.53344968334
                                              11 0.0269026220259
                                                                           0
## Logan
                                               9 0.0723280944965
                                                                           0
              8.0426297529
                             3.80718810018
                                                                     0
   Alexander
              9.0697044387
                             0.32815725077
                                               4 0.0271896600234
                                                                           1
##
   Caleb
              9.9099562623 -4.89958856720
                                               4 0.2473909095896
                                                                     2
                                                                           0
##
  Ryan
             17.8064887312
                             9.71996294800
                                               6 0.0866623605658
                                                                           0
                                                                           0
##
  Luke
              14.4737747121 -8.87365504634
                                               7 0.0137357362546
                                                                     5
##
  Daniel
             21.8927288163 -8.54193090461
                                                 0.0133758923039
                                                                     2
                                                                           0
##
             12.0683054794 -4.94881659281
                                                                           0
   Jack
                                                 0.0510282159473
                                                                     0
## William
              6.6967077631
                            1.95695393719
                                               3 0.0789476258427
                                                                      2
                                                                           1
                                                                           0
## Owen
             16.7547627854 -1.37131532654
                                               4 0.1176745288234
                                                                      3
   Gabriel
             21.6437234533
                             8.83663245477
                                               4 0.0341459147425
                                                                     1
                                                                           0
   Matthew
              8.0040404906 -8.34140213672
                                               4 0.0335829788302
                                                                           0
   Connor
             12.2131529597 -1.43550199457
                                               3 0.0532010394252
                                                                     0
                                                                           0
   Jayce
             24.7237535538 -8.69726166129
                                               4 0.0343709282267
                                                                     3
                                                                           0
##
   Isaac
             15.7051445327 -8.88600753620
                                               3 0.0986771175798
                                                                     3
                                                                           0
   Sebastian 18.0149819574 9.54685135279
                                               7 0.0145477665485
                                                                           0
## Henry
             16.6867439604 -5.19735625014
                                               7 0.1151834077466
                                                                     3
                                                                           0
## Muhammad 13.7606631170 3.55915428139
                                               7 0.4226328488206
                                                                           1
```

```
## Cameron
             24.9457216766 -6.90430133138
                                               7 0.0044845556423
                                                                          0
                                                                     1
## Wyatt
             14.6398604695 -7.16087991372
                                               6 0.1778783733963
                                                                     2
                                                                          1
                                               9 0.0108096177675
## Dylan
             20.5334694191 0.77375824098
                                                                          0
## Nathan
                            0.21414410323
                                                                          0
             18.1662452272
                                              10 0.3438211495596
                                                                     3
## Nicholas
             11.0527580597 -5.25207844097
                                               4 0.1362163360287
                                                                     5
                                                                          0
## Julian
             13.4982174682 -2.23285576794
                                               3 0.0566994360545
                                                                     2
                                                                          0
## Eli
             10.3398095501 8.23295261245
                                               9 0.0798137278429
                                                                          1
## Levi
             21.3716446358 -0.74553988408
                                               4 0.0402732752264
                                                                     1
                                                                          0
## Isaiah
             15.1393616084 -6.25549208838
                                              11 0.3382187535179
                                                                     2
                                                                          0
## Landon
             19.3408406575 -5.32363748178
                                               4 0.1987676125754
                                                                          1
## David
             18.7006359149
                            7.16443934944
                                               8 0.1694094184693
                                                                     1
                                                                          1
## Christian 11.9644723291
                             5.05099453032
                                               4 0.0615463598838
                                                                     1
                                                                          0
## Andrew
             19.3663775583
                            7.55499009974
                                               9 0.0438315844577
                                                                          0
                                                                     3
             23.8107161103 3.99710392114
## Brayden
                                               8 0.0398135119532
                                                                          0
                                                                          0
## John
             24.1305684010
                             4.64877506718
                                              10 0.0418418229351
                                                                     4
## Lincoln
             19.0891993586
                             1.04692106601
                                               8 0.0776670898989
                                                                          1
```

• Create a data frame of the same data as above except make the binary variable a factor "DOMESTIC" vs "FOREIGN" for 0 and 1 respectively. Use RStudio's View function to ensure this worked as desired.

```
df = data.frame(X)
df$X6 = factor(df$X6, levels = c(0,1), labels = c("DOMESTIC", "FOREIGN"))
View(df,"Lab 01 df")
```

• Print out a table of the binary variable. Then print out the proportions of "DOMESTIC" vs "FOREIGN".

```
table(df$X6)
```

```
## ## DOMESTIC FOREIGN
## 76 24
```

table(df\$X6)/n

DOMESTIC FOREIGN ## 0.76 0.24

Print out a summary of the whole dataframe.

summary(df)

```
##
          X1
                                X2
                                                       ХЗ
##
    Min.
            :-1.325740
                         Min.
                                 :-9.98156530
                                                 Min.
                                                        : 2.00
##
    1st Qu.:11.644207
                         1st Qu.:-5.01095151
                                                 1st Qu.: 4.00
                                                 Median: 6.00
##
    Median: 15.322337
                         Median: 0.71169240
                                 : 0.23622887
##
    Mean
            :15.797880
                         Mean
                                                 Mean
                                                        : 6.31
    3rd Qu.:19.347225
                         3rd Qu.: 5.01919118
                                                 3rd Qu.: 8.00
##
                                 : 9.75827042
##
    Max.
            :30.006112
                                                 Max.
                                                        :14.00
##
          Х4
                                   Х5
                                                    Х6
##
    Min.
            :0.0034513314
                            Min.
                                    :0.00
                                             DOMESTIC:76
                            1st Qu.:1.00
                                             FOREIGN:24
##
    1st Qu.:0.0358537285
##
    Median :0.0750657096
                            Median:2.00
##
    Mean
            :0.1105003253
                            Mean
                                    :2.25
                            3rd Qu.:3.00
    3rd Qu.:0.1377555963
            :0.5927086127
                                    :6.00
                            Max.
```

• Let n = 50. Create a n x n matrix R of exactly 50% entries 0's, 25% 1's 25% 2's. These values should be in random locations.

```
n <- 50
R <- matrix(nrow=n, ncol=n, sample(c(rep(0, n*n*0.5), rep(1, n*n*0.25), rep(2, n*n*0.25))))
df <- data.frame(R)
df</pre>
```

```
## 1
          1
               1
                    0
                          0
                               0
                                    0
                                         0
                                               0
                                                    0
                                                         1
## 2
          1
               2
                    2
                          0
                               2
                                    1
                                         0
                                               2
                                                    1
                                                         2
               2
                                    2
## 3
          0
                     1
                          0
                               2
                                         2
                                               0
                                                    0
                                                         0
               0
                    0
                               0
                                    2
                                              0
## 4
                          0
                                         0
                                                    0
                                                         1
          1
                                    2
## 5
          0
               0
                    2
                          1
                               0
                                         2
                                              0
                                                    0
                                                         1
## 6
          2
               0
                    0
                          0
                               0
                                         0
                                              0
                                                         0
                                    1
                                                    1
## 7
          0
               0
                     2
                          0
                                    1
                                         0
                                              0
                                                    0
                                                         2
                               1
## 8
          0
               2
                    1
                          1
                               0
                                    1
                                         0
                                               1
                                                    0
                                                         1
## 9
          2
               0
                    1
                          0
                               0
                                    0
                                         0
                                               2
                                                    2
                                                         0
                          0
                                    0
                                               2
## 10
          0
               1
                    1
                               0
                                         1
                                                    1
                                                         1
##
   11
          2
               1
                    0
                          2
                               0
                                    0
                                         1
                                               0
                                                    0
                                                         0
                                    2
                                              0
##
    12
               0
                    0
                          0
                               0
                                                    0
                                                         0
          1
                                         1
          2
               2
                          2
                                    0
                                         2
                                              0
                                                    2
                                                         0
##
   13
                    1
                               0
##
   14
               1
                     1
                          0
                                    0
                                              0
                                                    0
                                                         0
          1
                               1
                                         1
##
   15
          0
               2
                     2
                          2
                               0
                                    0
                                               2
                                                    2
                                                         0
                                         1
##
   16
          2
               0
                    0
                          0
                               0
                                    0
                                         0
                                               1
                                                    0
                                                         0
##
   17
               1
                    2
                          1
                                    0
                                         0
                                              0
                                                    0
                                                         1
          1
                               1
                     2
                          2
                                               2
                                                    2
##
   18
          1
               0
                               0
                                    1
                                         0
                                                         0
##
   19
                                              0
                                                    0
                                                         0
          0
               1
                    1
                          1
                               1
                                    1
                                         1
   20
                          2
                               2
                                               2
##
          0
               1
                    1
                                    0
                                         0
                                                    0
                                                         1
##
   21
          0
               0
                    0
                          0
                               2
                                    0
                                         0
                                              2
                                                    1
                                                         0
## 22
          0
               2
                    0
                          1
                               0
                                    2
                                         0
                                               2
                                                    0
                                                         1
## 23
               0
                    0
                          2
                                         0
                                              0
                                                         0
          0
                                    1
                                                    0
                               1
##
   24
          0
               2
                    0
                          2
                               2
                                    0
                                         2
                                              1
                                                    1
                                                         0
   25
          2
                    0
                          0
                               2
                                    0
                                         0
                                              0
                                                         0
##
               1
                                                    0
##
   26
          0
               1
                    1
                          0
                               0
                                    0
                                         0
                                              0
                                                    0
                                                         0
##
   27
          0
               1
                    2
                          1
                               2
                                    2
                                         0
                                               1
                                                         1
                                                    1
##
    28
          0
               2
                    0
                          0
                                    0
                                         0
                                              0
                                                         1
                               1
                                                    1
   29
          2
                    2
                          0
                                    0
                                               2
                                                         2
##
               0
                               0
                                         0
                                                    0
   30
                     2
                               2
                                                    2
                                                         0
##
          1
               0
                          1
                                    0
                                         1
                                               1
##
   31
          2
               1
                     1
                          0
                               2
                                    1
                                         2
                                               1
                                                    1
                                                         0
##
   32
          2
               2
                    1
                          0
                               1
                                    0
                                         1
                                               1
                                                    1
                                                         0
##
    33
          0
               0
                    0
                          0
                               2
                                    2
                                         0
                                               0
                                                    0
                                                         1
##
    34
               1
                          2
                               0
                                    2
                                               1
                                                    0
                                                         0
          0
                    1
                                         1
                    2
                                    0
##
    35
          1
               0
                          1
                               0
                                         1
                                              0
                                                    1
                                                         0
##
   36
          0
               1
                    0
                          1
                               0
                                    0
                                         2
                                              2
                                                    0
                                                         0
##
   37
          2
               2
                     0
                          1
                               1
                                    0
                                         1
                                               0
                                                    0
                                                         2
##
   38
               1
                          1
                               0
                                    0
                                              0
                                                         2
          1
                     1
                                         1
                                                    1
##
   39
          0
               2
                    1
                          1
                               0
                                    2
                                         0
                                               2
                                                    2
                                                         1
               2
                                    2
                                         2
                                               2
                                                    0
                                                         2
##
   40
          0
                    0
                          0
                               1
##
   41
               0
                    0
                          1
                               2
                                    2
                                         1
                                               2
                                                    1
                                                         0
          1
##
   42
          0
               0
                    0
                          1
                               2
                                    2
                                         0
                                              0
                                                    0
                                                         0
##
   43
          0
                    2
                          2
                               0
                                    0
                                         2
                                               2
                                                    0
                                                         1
               1
                    0
                                         2
                                                         2
##
    44
          1
               0
                          0
                                    1
                                               1
                                                    0
                               1
   45
               2
                          0
                                         0
                                               2
                                                    0
                                                         0
##
          0
                    1
                               1
                                    1
                          2
                                         2
                                                         0
   46
               0
                    1
                               0
                                    0
                                               1
                                                    0
##
          1
                    2
                          0
                                    0
                                         0
                                               2
                                                    2
                                                         0
##
   47
          0
               1
                               0
##
    48
               1
                    0
                          0
                                    0
                                         2
                                               0
                                                    0
                                                         2
          1
                               0
                          2
                                               2
                                                         2
##
   49
          0
               1
                    1
                               0
                                    1
                                         0
                                                    0
## 50
          2
                     1
                          0
                                    0
                                               0
                                                         1
                               0
                                         0
                                                    1
```

• Randomly punch holes (i.e. NA) values in this matrix so that an each entry is missing with probability 30%.

```
n <- 50
R <- matrix(nrow=n, ncol=n, sample(c(rep(0, n*n*0.5), rep(1, n*n*0.25), rep(2, n*n*0.25))))
random_holes = matrix(nrow=n, ncol=n, sample(c(rep(0, n*n*0.7), rep(3, n*n*0.3))))
for(i in 1:n){
   for(j in 1:n){
      if(random_holes[i,j] == 3){
        R[i, j] = NA
      }
   }
}
R</pre>
```

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
##
                           2
                                                           2
##
     [1,]
                    NA
                                       NA
                                             NA
                                                    0
                                                                NA
                                                                         0
                                                                                        2
                                                                                               2
             NA
                                 1
                                                                                1
##
     [2,]
             NA
                     2
                           2
                                NA
                                        0
                                              0
                                                    0
                                                           1
                                                                NA
                                                                         2
                                                                                0
                                                                                        0
                                                                                               0
                                                           2
##
     [3,]
               1
                    NA
                          NA
                                NA
                                        2
                                              0
                                                    2
                                                                NA
                                                                       NA
                                                                                1
                                                                                      NA
                                                                                               1
##
     [4,]
                     0
                           2
                                 2
                                       NA
                                              2
                                                   NA
                                                          NA
                                                                 2
                                                                         1
                                                                                1
                                                                                        1
                                                                                               0
             NA
     [5,]
                                                                                        2
##
             NA
                     1
                           0
                                NA
                                       NA
                                             NA
                                                    0
                                                          NA
                                                                 2
                                                                         0
                                                                                0
                                                                                              NA
##
    [6,]
               1
                     0
                           1
                                              2
                                                           0
                                                                       NA
                                                                                0
                                                                                      NA
                                                                                              NA
                                NA
                                        1
                                                   NA
                                                                 0
                                                                                2
##
     [7,]
               0
                     0
                           0
                                 0
                                        0
                                             NA
                                                   NA
                                                           0
                                                                 1
                                                                       NA
                                                                                        0
                                                                                               1
##
     [8,]
             NA
                     0
                           0
                                 1
                                        2
                                              1
                                                    2
                                                           1
                                                                 1
                                                                         1
                                                                                1
                                                                                      NA
                                                                                               2
##
    [9,]
               0
                     2
                           1
                                 1
                                        0
                                              0
                                                    1
                                                                 0
                                                                         2
                                                                                2
                                                                                      NA
                                                                                              NA
## [10,]
               2
                     2
                                                    2
                                                                         2
                                                                                        0
                          NA
                                 0
                                        0
                                                                NA
                                                                                1
                                                                                               1
                                              1
                                                           1
##
   Γ11. ]
               2
                    NA
                          NA
                                 2
                                        0
                                             NA
                                                   NA
                                                           2
                                                                 0
                                                                       NA
                                                                                1
                                                                                        0
                                                                                              NA
                                                                 2
                                                                         0
                                                                                               2
## [12,]
               0
                     2
                          NA
                                 2
                                              0
                                                    1
                                                           2
                                                                                1
                                                                                      NA
                                        1
## [13,]
             NA
                    NA
                           0
                                NA
                                       NA
                                             NA
                                                   NA
                                                           0
                                                                NA
                                                                       NA
                                                                                1
                                                                                        0
                                                                                              NA
## [14,]
               0
                    NA
                           1
                                 1
                                        0
                                              0
                                                    0
                                                           0
                                                                 1
                                                                         0
                                                                               NA
                                                                                        1
                                                                                               1
##
   [15,]
                    NA
                           2
                                 0
                                       NA
                                              1
                                                    0
                                                           2
                                                                       NA
                                                                               NA
                                                                                        0
                                                                                               0
             NA
                                                                NA
                                                                                        2
## [16,]
                     2
                                 0
                                                                                0
                                                                                              NA
             NA
                          NA
                                        2
                                             NA
                                                   NA
                                                          NA
                                                                 0
                                                                       NA
## [17,]
                                                    2
                                                                                0
                                                                                        2
               0
                     0
                           0
                                NA
                                        1
                                              1
                                                           2
                                                                 1
                                                                         1
                                                                                               0
                                                                                               2
## [18,]
               1
                    NA
                           0
                                 0
                                       NA
                                             NA
                                                    1
                                                           0
                                                                 0
                                                                         1
                                                                                0
                                                                                        0
## [19,]
               0
                    NA
                           1
                                NA
                                        2
                                             NA
                                                    0
                                                          NA
                                                                NA
                                                                         0
                                                                                1
                                                                                      NA
                                                                                              NA
## [20,]
                                                    2
               1
                    NA
                           1
                                NA
                                        1
                                              0
                                                           2
                                                                 0
                                                                       NA
                                                                               NA
                                                                                        1
                                                                                               0
## [21,]
                           2
                                 0
                                        0
                                             NA
                                                    1
                                                           2
                                                                 0
                                                                               NA
                                                                                        0
                                                                                               0
               1
                     1
                                                                         1
## [22,]
               1
                                                    1
                                                                                               0
                    NA
                          NA
                                 0
                                        1
                                             NA
                                                           1
                                                                 0
                                                                       NA
                                                                                0
                                                                                        1
                                                                                        2
                                                                                               2
## [23.]
               2
                    NA
                           1
                                 1
                                        1
                                             NA
                                                    1
                                                           2
                                                                 2
                                                                         0
                                                                                0
## [24,]
               0
                    NA
                           0
                                 1
                                       NA
                                             NA
                                                   NA
                                                           0
                                                                 0
                                                                         0
                                                                                0
                                                                                        0
                                                                                              NA
## [25,]
               0
                     0
                           0
                                NA
                                        0
                                              2
                                                   NA
                                                           0
                                                                 1
                                                                       NA
                                                                                0
                                                                                        0
                                                                                              NA
                                                           2
## [26,]
             NA
                     1
                           1
                                NA
                                        0
                                              1
                                                    0
                                                                 2
                                                                         1
                                                                               NA
                                                                                      NA
                                                                                               0
## [27,]
               0
                     0
                                 0
                                                   NA
                                                           2
                                                                               NA
                                                                                      NA
                                                                                               2
                           1
                                        2
                                             NA
                                                                 1
                                                                       NA
   [28,]
               1
                     0
                           1
                                NA
                                        0
                                              0
                                                    2
                                                          NA
                                                                NA
                                                                         0
                                                                                1
                                                                                      NA
                                                                                               0
                                                                                               2
## [29,]
               0
                     2
                           0
                                NA
                                        0
                                              0
                                                    0
                                                           2
                                                                 0
                                                                         1
                                                                                0
                                                                                        1
##
   [30.]
               1
                     2
                                 0
                                        0
                                              2
                                                    2
                                                           0
                                                                 1
                                                                         2
                                                                                0
                                                                                        0
                                                                                              NA
                          NA
## [31,]
               2
                     0
                          NA
                                 2
                                              1
                                                    0
                                                           0
                                                                 2
                                                                         0
                                                                                0
                                                                                        0
                                        1
                                                                                               1
## [32,]
               0
                     2
                                             NA
                                                                         0
                                                                                2
                                                                                        0
                                                                                               2
                           1
                                 1
                                        1
                                                    1
                                                           1
                                                                NA
## [33,]
                           0
                                                    0
                                                           0
                                                                       NA
                                                                                0
                                                                                        0
               1
                    NA
                                NA
                                              0
                                                                 1
                                                                                               1
                                        1
## [34,]
                     2
                           0
                                        2
                                                    2
                                                                 0
                                                                         0
                                                                               NA
                                                                                      NA
                                                                                               2
             NA
                                NA
                                             NA
                                                          NA
## [35,]
               1
                           2
                                NA
                                        2
                                              2
                                                    0
                                                           0
                                                                         1
                                                                                0
                                                                                        0
                                                                                               0
                     1
                                                                NA
## [36,]
               0
                     1
                           0
                                 2
                                        0
                                              0
                                                    0
                                                           0
                                                                NA
                                                                         0
                                                                                1
                                                                                        1
                                                                                               0
## [37,]
               0
                     0
                           0
                                        0
                                                                         2
                                                                                0
                                                                                        2
                                 0
                                              1
                                                    0
                                                          NA
                                                                 0
                                                                                               0
               2
                                              2
                                                                         0
                                                                                2
## [38,]
                     0
                           1
                                NA
                                        0
                                                    1
                                                                NA
                                                                                        1
                                                                                               1
                                                           1
                                                                                        2
                                                                                               2
## [39,]
                                              0
                                                    0
                                                                         1
                                                                                0
             NA
                     1
                          NA
                                 1
                                        0
                                                          NA
                                                                 0
## [40,]
             NA
                     2
                          NA
                                NA
                                       NA
                                             NA
                                                    0
                                                           0
                                                                NA
                                                                       NA
                                                                                0
                                                                                        0
                                                                                              NA
                                                    2
                                                                         2
## [41,]
             NA
                     0
                           0
                                 1
                                       NA
                                             NA
                                                           1
                                                                 0
                                                                                0
                                                                                        0
                                                                                               0
```

##	[42,]	0	NA	NA	0 () NA	0	2	1	0	2	NA	1
##	[43,]	0	NA	2 1	NA NA	O A	1	1	2	NA	0	NA	1
##	[44,]	1	2	NA	2 () NA	0	1	0	NA	0	0	NA
##	[45,]	1	0	1	0 () NA	0	0	NA	0	1	0	0
##	[46,]	0	NA	1	2 1	L 0	0	NA	2	2	NA	0	2
##	[47,]	2	0	0	1 () NA	1	0	NA	2	1	1	1
##	[48,]	0	0	NA	1 1		NA	NA	0	1	NA	NA	NA
##	[49,]	NA	1	0	1 (NA	1	0	2	0	0	NA
##	[50,]	2	NA	NA	2 NA		0	NA	1	NA	0	NA	0
##	F. 7	[,14]	[,15]		[,17]		[,19]	[,20]	[,21]	[,22]	[,23]	[,24]	[,25]
##	[1,]	NA	0	NA	NA	0	0	0	NA	0	1	2	NA
##	[2,]	NA	2	0	NA	NA	1	NA	1	0	0	0	2
##	[3,]	2	1	NA	0	1	2	0	NA	1	1	0	2
##	[4,]	0	0	1	0	2	NA	NA	0	0	2	2	2
## ##	[5,] [6,]	1 NA	NA NA	1 1	0	2 1	2	0	2	0	0	NA O	0 0
##	[7,]	NA 1	NA NA	NA	1	0	NA	NA	NA	1	0	1	0
##	[8,]	0	0	0	0	NA	2	0	NA NA	0	2	0	2
##	[9,]	NA	0	1	0	1	0	2	0	2	0	0	0
##	[10,]	NA	0	0	0	NA	NA	NA	0	0	1	NA	0
##	[11,]	NA	NA	NA	1	0	1	0	NA	NA	0	0	1
	[12,]	2	NA	0	1	1	NA	0	1	NA	0	NA	0
	[13,]	NA	0	NA	2	1	2	0	1	1	NA	0	NA
	[14,]	0	1	0	NA	0	NA	0	NA	0	1	1	0
	[15,]	NA	NA	NA	2	0	0	2	0	NA	0	NA	NA
	[16,]	0	NA	1	0	NA	0	1	2	2	0	NA	NA
##	[17,]	0	1	0	0	0	NA	2	NA	2	2	0	0
##	[18,]	0	NA	0	0	0	NA	NA	0	0	NA	1	0
##	[19,]	0	0	0	0	0	2	0	NA	0	1	0	NA
##	[20,]	2	2	0	NA	2	2	1	0	0	1	1	2
##	[21,]	NA	0	1	2	1	0	1	0	0	1	NA	1
##	[22,]	0	0	NA	1	0	2	NA	1	0	NA	1	NA
##	[23,]	NA	0	NA	1	NA	1	1	NA	NA	2	0	NA
##	[24,]	1	2	NA	NA	0	NA	0	0	0	NA	0	0
##	[25,]	0	1	NA	0	1	0	NA	0	0	0	NA	2
##	[26,]	2	0	NA	1	2	NA	0	2	2	0	2	0
##	[27,]	2	NA	1	0	2	0	0	NA	2	0	NA	NA NA
	[28,] [29,]	2	NA NA	0 2	NA 2	0	O NA	NA O	1 NA	NA	0 2	NA O	NA NA
	[30,]	1	NA O	0	2	NA	NA NA	1	NA NA	NA 2	NA	0	0
	[31,]	1	2	0	2	2	NA	NA	0	2	NA	NA	0
	[32,]	NA	NA	0	0	NA	0	2	0	2	0	0	0
	[33,]	NA	2	0	0	0	0	1	2	0	NA	0	0
##		0	0	0	0	NA	2	NA	0	NA	1	2	0
##		2	0	0	0	2	0	1	0	NA	0	NA	1
##	[36,]	2	0	0	0	2	NA	2	NA	2	1	NA	0
##		0	NA	2	1	1	2	NA	0	1	0	2	2
##		NA	0	2	0	0	0	0	1	0	1	0	NA
##		0	0	NA	NA	0	1	0	0	1	0	0	2
##	[40,]	NA	NA	0	1	2	0	0	NA	0	1	1	1
##	[41,]	0	0	NA	0	0	NA	2	1	NA	0	0	NA
##	[42,]	NA	1	0	0	NA	1	0	0	NA	1	NA	NA
	[43,]	0	0	0	NA	0	0	NA	NA	1	NA	NA	0
##	[44,]	NA	1	NA	1	0	1	NA	NA	1	0	0	0

##	[45,]	1	0	2	NA	NA	0	0	NA	0	1	2	NA
##	[46,]	0	NA	2	0	NA	0	1	0	NA	0	NA	0
##	[47,]	NA	0	0	0	0	2	NA	1	2	0	NA	2
##	[48,]	NA	NA	0	2	0	0	1	2	2	2	NA	1
##	[49,]	NA	0	2	NA	NA	1	2	NA	0	2	0	0
##	[50,]	NA	2	NA	0	0	NA	2	1	0	NA	2	1
##	F4 7	[,26]	[,27]	[,28]	[,29]	[,30]	[,31]	[,32]	[,33]	[,34]	[,35]	[,36]	[,37]
##	[1,]	NA	NA	1	0	0	NA	0	NA	1	1	0	NA
## ##	[2,] [3,]	1	NA NA	NA	2	0	2 NA	0 1	1 1	NA	NA NA	NA 2	NA 2
##	[4,]	NA	NA NA	NA 1	2	2	NA 2	0	0	NA O	NA O	2	NA
##	[5,]	1	2	0	NA	1	1	2	2	1	NA	NA	1
##	[6,]	0	2	0	0	2	0	0	2	0	0	0	2
##	[7,]	NA	NA	NA	NA	NA	1	0	NA	2	NA	0	NA
##	[8,]	0	2	NA	0	1	NA	0	NA	NA	2	0	0
##	[9,]	0	0	0	2	NA	2	2	NA	0	0	1	NA
##	[10,]	0	1	2	NA	NA	NA	0	NA	0	0	1	0
##	[11,]	2	2	NA	0	0	2	2	0	NA	1	0	NA
##	[12,]	0	2	2	2	0	0	0	1	0	NA	0	0
##	[13,]	0	NA	0	1	1	NA	1	2	2	NA	NA	NA
##	[14,]	0	0	NA	1	1	1	1	1	1	2	1	1
##	[15,]	2	0	0	1	2	1	2	0	2	2	1	NA
##	[16,]	NA	0	2	2	NA	NA	NA	0	0	0	1	2
	[17,]	1	NA	2	0	1	1	0	NA	NA	NA	NA	NA
	[18,]	0	0	NA	NA	0	NA	NA	1	1	0	0	2
	[19,]	NA	0	NA	NA	0	2	2	NA	0	NA	1	NA
##	[20,]	2	0	0	2	0	NA	0	2	1	0	NA	1
	[21,]	0	2	2	1	0	NA	0	2	0	NA	0	0
	[22,]	1	NA	NA	NA	1	1	0	1	0	NA	2	NA
	[23,]	NA	NA	NA	0	1	NA	2	0	0	NA	1	0
##	[24,]	NA	1 NA	NA	0	1 NA	0	0	0	NA	NA	NA NA	1
## ##	[25,] [26,]	NA O	NA 1	0	O NA	NA O	0	0	NA O	NA O	1 NA	NA 2	NA NA
##	[27,]	1	1	NA	NA NA	0	NA	0	1	NA	2	0	0
##	[28,]	NA	NA	2	NA	1	1	NA	NA	NA	0	NA	0
##	[29,]	NA	NA	2	NA	1	1	0	0	1	NA	1	NA
##	[30,]	2	NA	2	1	0	0	2	0	0	NA	0	NA
	[31,]	2	0	NA	NA	2	2	NA	1	0	0	2	0
	[32,]	0	2	0	NA	2	2	1	2	2	0	1	1
	[33,]	0	NA	NA	NA	0	2	2	2	2	NA	NA	1
	[34,]	0	2	NA	0	NA	0	0	NA	2	0	NA	NA
##	[35,]	2	0	NA	1	1	0	2	0	NA	NA	NA	NA
##	[36,]	1	NA	NA	1	NA	1	0	0	0	NA	NA	2
##	[37,]	0	2	NA	0	0	2	NA	NA	0	1	NA	NA
##	[38,]	2	2	2	1	1	0	NA	2	NA	2	0	0
##	[39,]	1	1	0	NA	0	1	1	0	0	0	NA	2
	[40,]	1	2	2	NA	NA	2	0	NA	2	2	0	2
	[41,]	NA	NA	NA	0	0	0	2	0	NA	NA	1	0
	[42,]	2	0	NA	NA	NA	NA	NA	NA	0	0	0	0
	[43,]	2	0	2	NA	1	0	0	NA	0	NA	NA	0
	[44,]	0	NA	2	NA NA	NA	NA 1	2	2	2	2	0	0
	[45,]	0	0	1 2	NA	0	1	0	0	1 NA	O N A	2	2
	[46,] [47,]	2	1 2	0	0 1	0	0	1 NA	0	NA NA	NA O	0	1 2
##	L41,]	U	2	U	1	U	1	A VI	1	IV A	U	U	2

	[48,]	0	0	0	NA	2	0	1	2	0	NA	0	NA
##	[49,]	0	NA	NA 2	0	2	1	O	O	0	1 NA	NA	2
## ##	[50,]	0 [,38]	0 [,39]	[,40]	0 Γ 41]	[,42]	2 [42]	NA [,44]	NA L vej	0 [,46]	NA [,47]	NA [,48]	1 [,49]
##	[1,]	0	NA	0	0	NA	NA	NA	0	1	2	0	0
##	[2,]	2	NA	2	1	0	0	NA	2	1	NA	0	2
##	[3,]	1	2	NA	2	1	0	NA	0	0	1	NA	0
##	[4,]	0	0	NA	1	0	1	NA	NA	NA	0	1	NA
##	[5,]	1	0	0	1	NA	NA	2	0	0	NA	0	0
##	[6,]	NA	NA	NA	1	NA	NA	2	1	2	0	NA	1
##	[7,]	NA	NA	2	2	0	0	0	0	NA	0	0	NA
##	[8,]	0	0	0	0	2	NA	NA	0	0	NA	2	2
##	[9,]	NA	0	NA	0	NA	0	2	2	1	2	1	1
##	[10,]	0	NA	1	2	0	0	NA	1	0	NA	0	0
##	[11,]	NA	2	1	NA	NA	1	NA	NA	0	NA	0	2
##	[12,]	1	NA	0	NA	NA	0	NA	1	0	0	2	0
##	[13,]	1	NA	2	1	0	NA	1	NA	0	NA	NA	NA
##	[14,]	0	0	NA	0	NA	NA	0	NA	2	NA	NA	2
##	[15,]	0	1	2	0	0	2	0	NA	NA	0	0	0
##	[16,]	NA	0	2	NA	0	2	0	0	1	NA	0	NA
##	[17,]	0	2	2	NA	0	NA	0	2	1	NA	0	2
##	[18,]	NA 1	2	NA	2	NA 1	0	0	NA	NA NA	NA NA	0	0
## ##	[19,]	1 1	0 2	0 2	1 1	1	0 2	1	0	NA O	NA O	2 NA	O N A
##	[20,] [21,]	0	1	1	0	0	NA	0	0	NA	0	NA NA	NA NA
##	[22,]	NA	0	0	0	1	NA	1	1	0	NA	NA	0
##	[23,]	0	2	NA	NA	2	2	1	0	1	NA	2	0
##	[24,]	2	2	0	2	1	0	0	NA	0	0	2	0
##	[25,]	0	NA	1	1	2	NA	2	NA	NA	2	1	2
##	[26,]	NA	0	0	NA	0	2	1	NA	1	NA	NA	NA
##	[27,]	1	2	NA	NA	0	1	0	0	0	0	NA	2
##	[28,]	NA	1	0	NA	0	NA	0	2	NA	0	2	0
##	[29,]	2	0	2	0	NA	NA	NA	0	0	1	1	NA
##	[30,]	0	NA	0	1	2	0	0	0	1	NA	0	NA
##	[31,]	0	1	0	2	0	NA	1	NA	NA	NA	NA	2
##	[32,]	NA	1	2	NA	0	1	NA	NA	2	0	0	0
##	[33,]	1	NA	NA	0	2	1	1	NA	NA	NA	1	2
	[34,]	2	0	1	1	0	NA	0	2	0	2	0	2
##	[35,]	2	1	0	2	2	2	NA	0	0	NA	1	0
##	[36,]	0	0	NA	0	NA	1	1	NA	NA	1	1	0
## ##	[37,] [38,]	1	NA NA	2 2	1	1 0	2	0 2	2	NA O	1	NA NA	0
##	[39,]	NA	0	NA	NA	0	1	0	1	1	0	NA	NA
##	[40,]	2	2	2	NA	2	2	0	NA	1	0	1	NA
##	[41,]	2	1	NA	1	0	NA	0	NA	2	1	0	NA
##	[42,]	0	0	2	NA	0	0	NA	0	0	NA	0	2
##	[43,]	NA	2	0	NA	0	1	0	0	NA	NA	2	1
##	[44,]	1	2	NA	2	0	1	0	1	NA	0	2	1
##	[45,]	NA	0	2	2	NA	NA	0	2	0	2	0	1
##	[46,]	NA	0	0	2	2	0	NA	NA	NA	NA	NA	NA
##	[47,]	0	NA	1	0	2	1	NA	2	1	0	2	NA
##	[48,]	NA	NA	2	0	0	1	0	1	NA	1	2	2
##	[49,]	2	2	0	0	0	0	NA	NA	1	1	0	0
##	[50,]	NA	NA	NA	0	0	0	NA	1	NA	0	0	NA

```
[,50]
##
    [1,]
##
             NA
    [2,]
##
             NA
    [3,]
              0
##
##
    [4,]
              0
##
    [5,]
             NA
##
    [6,]
              1
    [7,]
              2
##
##
    [8,]
              2
##
    [9,]
              0
## [10,]
              0
## [11,]
              0
## [12,]
             NA
## [13,]
              0
## [14,]
              0
## [15,]
             NA
## [16,]
              0
## [17,]
             NA
## [18,]
              1
## [19,]
              0
## [20,]
             NA
## [21,]
              2
## [22,]
             NA
## [23,]
              0
## [24,]
              0
## [25,]
              2
## [26,]
              2
## [27,]
              1
## [28,]
             NA
## [29,]
              1
## [30,]
             NA
## [31,]
              2
## [32,]
              1
## [33,]
              0
## [34,]
              0
## [35,]
             NA
## [36,]
              1
## [37,]
             NA
## [38,]
              0
## [39,]
              0
## [40,]
             NA
## [41,]
             NA
## [42,]
             NA
## [43,]
             NA
## [44,]
             NA
## [45,]
              1
## [46,]
              2
## [47,]
              2
## [48,]
              1
## [49,]
             NA
## [50,]
```

• Sort the rows in matrix R by the largest row sum to lowest. Be careful about the NA's!

order(rowSums(R, na.rm=TRUE), decreasing=TRUE) [1] 20 31 32 47 23 40 3 4 8 9 17 35 37 38 44 48 2 12 5 26 15 27 29 30 34 ## [26] 21 33 45 46 6 11 49 16 36 14 10 25 50 13 39 1 22 41 43 19 7 28 24 18 42 • We will now learn the apply function. This is a handy function that saves writing for loops which should be eschewed in R. Use the apply function to compute a vector whose entries are the standard deviation of each row. Use the apply function to compute a vector whose entries are the standard deviation of each column. Be careful about the NA's! This should be one line. matrix(c(apply(X, 1, sd, na.rm = TRUE), apply(X, 2, sd, na.rm = TRUE)), nrow = 50, ncol = 2) ## Warning in matrix(c(apply(X, 1, sd, na.rm = TRUE), apply(X, 2, sd, na.rm = ## TRUE)), : data length [106] is not a sub-multiple or multiple of the number of ## rows [50] ## [,1][,2]## 8.7192088504 6.7707937089 [1,] ## [2,]6.0790751680 6.0736959232 [3,] ## 5.4792317702 4.6183517320 ## [4,]9.7097797339 6.6588941488 ## [5,] 5.1551021496 7.9997220736 ## [6,] 4.6945081300 4.5505609573 [7,] ## 3.8025384702 7.5803541126 [8,] 5.0544270385 9.4139028969 [9,] ## 8.0811929352 7.3280642134 ## [10,] 7.3506318867 6.3368483348 ## [11,] 10.9621322233 4.8710444850 ## [12,] 6.7356717854 8.9767551542 ## [13,] 9.4730926305 7.1461204841 ## [14,] 4.7445064440 5.9431039464 [15,]6.7299003243 5.1452128182 ## [16,] 3.8026808776 5.7078925028 ## [17,] 4.0536988036 6.5404552520 ## [18,] 9.1106974339 4.1767876193 ## [19,] 5.2240055732 3.4177257475 ## [20,] 5.2256446671 4.9224292521 ## [21,] 3.4067754138 7.0551865615 ## [22,] 5.0233537613 7.8806613083 [23,] 10.7248475616 10.2885914286 ## [24,] 3.8472563057 5.9536033890 ## [25,] 6.7301894592 2.3024696905 ## [26,] 6.5461864631 6.6818113397 ## [27,] 4.2353162972 8.4062440767 ## [28,] 4.1194646146 5.4985734800 ## [29,] 8.9949120094 5.0664094521 [30,] 5.4952693827 11.1648881100 ## [31,] 3.6975678740 7.9474622153 ## [32,] 9.3740053446 7.1377261864 ## [33,] 6.1493069283 7.5588396950 ## [34,] 7.4076711198 5.0582234600 ## [35,] 8.7876470154 11.0172007933

7.2165577878

8.1626743510

7.3680248087

[36,] 10.1046626730

9.2824794252

7.2626618763

[37,]

[38,]

```
## [39,]
         6.4335656249
                        5.5422233825
## [40,]
         9.4921940774
                        5.5819194053
## [41,]
         4.5704120149
                        4.8963494488
## [42,] 11.3479590259
                        8.5382763981
## [43,]
         7.3061441789
                        7.8885018675
## [44,]
         5.9364156119
                        8.3209436436
## [45,]
          5.7745066974
                        7.0803624197
## [46,]
          8.3883863686
                        4.5701753365
## [47,]
         8.9046181414
                        7.3360559478
## [48,]
         8.4852167452
                        9.1829981698
## [49,]
         2.5105931555
                        9.1026172803
## [50,]
         5.6906274516
                        7.4746787943
```

• Use the apply function to compute a vector whose entries are the count of entries that are 1 or 2 in each column. This should be one line.

```
apply(X, 2, function(v){sum((v == 1 | v == 2), na.rm = TRUE)})
```

```
## [1] 0 0 3 0 51 24
```

• Use the split function to create a list whose keys are the column number and values are the vector of the columns. Look at the last example in the documentation ?split.

```
?split
split(R, col(R))
## $`1`
    [1] NA NA
                1 NA NA
                         1
                             O NA
                                   0
                                      2
                                          2
                                             O NA
                                                  O NA NA
                                                             0
                                          0
                         2
                             0
                               1 NA
                                      1
                                             0
                                                2 NA NA NA
                                                             0
##
## $`2`
##
    [1] NA
            2 NA
                   0
                      1
                         0
                             0
                                0
                                   2
                                      2 NA
                                             2 NA NA NA
                                                          2
                                                             O NA NA NA 1 NA NA NA O
  [26]
                   2
                      2
                         0
                             2 NA
                                   2
                                      1
                                          1
                                             0
                                                0
                                                   1
                                                       2
                                                          O NA NA
                                                                    2
                                                                       O NA
##
## $`3`
                             0
                                   1 NA NA NA
                                                0
                                                  1
                                                      2 NA
                                                             0
                   O NA NA
                                   0
                                      2
                                             0
## [26]
                             1
                                0
                                         0
                                                1 NA NA
                                                          O NA
                                                                2 NA
                                                                             O NA
##
## $`4`
                                      0
                                             2 NA
    [1]
         1 NA NA
                   2 NA NA
                             0
                               1
                                   1
                                          2
                                                   1
                                                      0
                                                          O NA
                                                                O NA NA
   [26] NA
            O NA NA
                         2
                             1 NA NA NA
                                         2
                                             O NA
                                                   1 NA
                                                          1
                                                             O NA
##
                      0
                                                                    2
## $`5`
##
    [1] NA
            0
                2 NA NA
                                2
                                   0
                                      0
                                          0
                                             1 NA
                                                   O NA
                                                          2
                                                             1 NA
                                                                    2
                                      2
                                             0
                                                0
                                                   O NA NA
                   0
                      0
                                   2
                                          0
                                                             O NA
                                                                    0
                                                                       0
                          1
                             1
                                1
                                                                          1
##
## $`6`
    [1] NA
            0
                0
                   2 NA
                         2 NA
                                   0
                                      1 NA
                                             O NA
                                                   0
                                                      1 NA
                                                             1 NA NA
                                                                      O NA NA NA NA 2
                                1
                         1 NA
                                O NA
                                      2
                                          0
                                                2
                                                   O NA NA NA
                                                                O NA NA
                                                                          O NA
##
   [26]
         1 NA
                      2
                                             1
##
## $`7`
    [1]
                2 NA
                      O NA NA
                                2
                                      2 NA
                                             1 NA
                                                   0
                                                       O NA
                                                             2
                                                                       2
                                                                                1 NA NA
                                   1
                                                                 1
                                                                          1
   [26]
                                   2
                                      0
                                          0
                                             0
                                                1
                                                       0
##
## $`8`
                                                      2 NA
                                         2
                                             2
                                                0
                                                   0
    [1]
         2
                2 NA NA
                         0
                            0
                                   0
                                      1
                                                             2
                                                                O NA
                                                                       2
            1
                               1
```

```
## [26] 2 2 NA 2 0 0 1 0 NA 0 0 NA 1 NA 0 1 2 1 1 0 NA 0 NA 1 NA
##
## $`9`
## [1] NA NA NA 2 2 0 1 1 0 NA 0 2 NA 1 NA 0 1 0 NA 0 0 0 2 0 1
## [26] 2 1 NA 0 1 2 NA 1 0 NA NA 0 NA 0 1 2 0 NA 2 NA 0 0 1
## $\10\
## [1] O 2 NA 1 O NA NA 1 2 2 NA O NA O NA NA 1 1 O NA 1 NA O O NA
## [26] 1 NA 0 1 2 0 0 NA 0 1 0 2 0 1 NA 2 0 NA NA 0 2 2 1 2 NA
##
## $`11`
## [1] 1 0 1 1 0 0 2 1 2 1 1 1 1 NA NA 0 0 0 1 NA NA 0 0 0
## [26] NA NA 1 0 0 0 2 0 NA 0 1 0 2 0 0 0 2 0 0 1 NA 1 NA 0 0
##
## $`12`
## [1] 2 0 NA 1 2 NA 0 NA NA 0 0 NA 0 1 0 2 2 0 NA 1 0 1 2 0 0
## [26] NA NA NA 1 0 0 0 0 NA 0 1 2 1 2 0 0 NA NA 0 0 0 1 NA 0 NA
##
## $`13`
## [1] 2 0 1 0 NA NA 1 2 NA 1 NA 2 NA 1 0 NA 0 2 NA 0 0 0 2 NA NA
## [26] 0 2 0 2 NA 1 2 1 2 0 0 0 1 2 NA 0 1 1 NA 0 2 1 NA NA 0
## $`14`
## [1] NA NA 2 O 1 NA 1 O NA NA NA 2 NA O NA O O O O 2 NA O NA 1 O
## [26] 2 2 2 0 1 1 NA NA 0 2 2 0 NA 0 NA 0 NA 1 0 NA NA NA NA
## $`15`
## [1] O 2 1 O NA NA NA O O O NA NA O 1 NA NA 1 NA O 2 O O O 2 1
## [26] O NA NA NA O 2 NA 2 O O O NA O O NA O 1 O 1 O NA O NA O 2
##
## $`16`
## [1] NA O NA 1 1 1 NA O 1 O NA O NA 1 O O O 0 1 NA NA NA NA
## [26] NA 1 0 2 0 0 0 0 0 0 0 2 2 NA 0 NA 0 0 NA 2 2 0 0 2 NA
##
## $\ 17\
## [1] NA NA O O O 1 1 O O O 1 1 2 NA 2 O O O O NA 2 1 1 NA O
## [26] 1 0 NA 2 2 2 0 0 0 0 0 1 0 NA 1 0 0 NA 1 NA 0 0 2 NA 0
##
## $`18`
## [1] O NA 1 2 2 1 O NA 1 NA O 1 1 O O NA O O O 2 1 O NA O 1
## [26] 2 2 0 0 NA 2 NA 0 NA 2 2 1 0 0 2 0 NA 0 0 NA NA 0 0 NA 0
##
## $\19\
## [1] O 1 2 NA 2 O NA 2 O NA 1 NA 2 NA O O NA NA 2 2 O 2 1 NA O
## [26] NA O O NA NA NA O O 2 O NA 2 O 1 O NA 1 O 1 O O 2 O 1 NA
##
## $ 20
## [1] O NA O NA O 1 NA O 2 NA O O O O 2 1 2 NA O 1 1 NA 1 O NA
## [26] O O NA O 1 NA 2 1 NA 1 2 NA O O O 2 O NA NA O 1 NA 1 2 2
## $`21`
## [1] NA 1 NA O 2 O NA NA O O NA 1 1 NA O 2 NA O NA O O 1 NA O O
## [26] 2 NA 1 NA NA O O 2 O O NA O 1 O NA 1 O NA NA NA O 1 2 NA 1
##
```

```
## $\22\
## [1] 0 0 1 0 0 0 1 0 2 0 NA NA 1 0 NA 2 2 0 0 0 0 0 NA 0 0
## [26] 2 2 NA NA 2 2 2 0 NA NA 2 1 0 1 0 NA NA 1 1 0 NA 2 2 0 0
## $\23\
## [1] 1 0 1 2 0 0 0 2 0 1 0 0 NA 1 0 0 2 NA 1 1 1 NA 2 NA 0
## [26] 0 0 0 2 NA NA 0 NA 1 0 1 0 1 0 1 NA 0 1 0 0 2 2 NA
##
## $\24\
## [1] 2 0 0 2 NA 0 1 0 0 NA 0 NA 0 1 NA NA 0 1 0 1 NA 1 0 0 NA
## [26] 2 NA NA O O NA O O 2 NA NA 2 O O 1 O NA NA O 2 NA NA NA O 2
##
## $\25\
## [1] NA 2 2 2 0 0 0 2 0 0 1 0 NA 0 NA NA 0 0 NA 2 1 NA NA 0 2
## [26] ONANANAOOOOO 1 O 2 NA 2 1 NANAOONAO 2 1 O 1
##
## $`26`
  [1] NA 1 0 NA 1 0 NA 0 0 0 2 0 0 0 2 NA 1 0 NA 2 0 1 NA NA NA
## [26] 0 1 NA NA 2 2 0 0 0 2 1 0 2 1 1 NA 2 2 0 0 2 0 0 0
## $`27`
## [1] NA NA NA NA 2 2 NA 2 0 1 2 2 NA 0 0 0 NA 0 0 0 2 NA NA 1 NA
## [26] 1 1 NA NA NA O 2 NA 2 O NA 2 2 1 2 NA O O NA O 1 2 O NA O
## $`28`
## [1] 1 NA NA 1 0 0 NA NA 0 2 NA 2 0 NA 0 2 2 NA NA 0 2 NA NA NA 0
## [26] O NA 2 2 2 NA O NA NA NA NA NA 2 0 2 NA NA 2 2 1 2 0 0 NA 2
## $`29`
## [1] O 2 O 2 NA O NA O 2 NA O 2 1 1 1 2 O NA NA 2 1 NA O O O
## [26] NA NA NA NA 1 NA NA NA O 1 1 O 1 NA NA O NA NA NA NA O 1 NA O O
##
## $`30`
## [1] 0 0 0 2 1 2 NA 1 NA NA 0 0 1 1 2 NA 1 0 0 0 0 1 1 1 NA
## [26] 0 0 1 1 0 2 2 0 NA 1 NA 0 1 0 NA 0 NA 1 NA 0 0 0 2 2 2
## $\31\
## [1] NA 2 NA 2 1 0 1 NA 2 NA 2 0 NA 1 1 NA 1 NA 2 NA NA 1 NA 0 0
## [26] ONA 1 1 O 2 2 2 O O 1 2 O 1 2 ONA ONA 1 O 1 O 1 2
##
## $\32\
## [1] 0 0 1 0 2 0 0 0 2 0 2 0 1 1 2 NA 0 NA 2 0 0 0 2 0 0
## [26] O O NA O 2 NA 1 2 O 2 O NA NA 1 O 2 NA O 2 O 1 NA 1 O NA
##
## [1] NA 1 1 0 2 2 NA NA NA O 1 2 1 0 0 NA 1 NA 2 2 1 0 0 NA
## [26] O 1 NA O O 1 2 2 NA O O NA 2 O NA O NA NA 2 O O 1 2 O NA
##
## $`34`
## [1] 1 NA NA O 1 O 2 NA O O NA O 2 1 2 O NA 1 O 1 O O O NA NA
## [26] ONANA 1 O O 2 2 2 NA O ONA O 2 NA O O 2 1 NA NA O O
##
## $`35`
## [1] 1 NA NA O NA O NA 2 O O 1 NA NA 2 2 O NA O NA O NA NA NA NA 1
```

```
## [26] NA 2 O NA NA O O NA O NA NA 1 2 O 2 NA O NA 2 O NA O NA 1 NA
##
## $\36\
## [1] O NA 2 2 NA O O O 1 1 O O NA 1 1 1 NA O 1 NA O 2 1 NA NA
## [26] 2 0 NA 1 0 2 1 NA NA NA NA O NA O 1 0 NA O 2 0 0 0 NA NA
## $\37\
## [1] NA NA 2 NA 1 2 NA O NA O NA O NA 1 NA 2 NA 2 NA 1 O NA O 1 NA
## [26] NA O O NA NA O 1 1 NA NA 2 NA O 2 2 O O O O 2 1 2 NA 2 1
##
## $\38\
## [1] O 2 1 O 1 NA NA O NA O NA 1 1 O O NA O NA 1 1 O NA O 2 O
## [26] NA 1 NA 2 0 0 NA 1 2 2 0 1 0 NA 2 2 0 NA 1 NA NA 0 NA 2 NA
##
## $\39\
## [1] NA NA 2 0 0 NA NA 0 0 NA 2 NA NA 0 1 0 2 2 0 2 1 0 2 2 NA
## [26] O 2 1 O NA 1 1 NA O 1 O NA NA O 2 1 O 2 2 O O NA NA 2 NA
##
## $`40`
## [1] O 2 NA NA O NA 2 O NA 1 1 O 2 NA 2 2 2 NA O 2 1 O NA O 1
## [26] ONA O 2 O O 2 NA 1 ONA 2 2 NA 2 NA 2 ONA 2 O 1 2 ONA
## $`41`
## [1] 0 1 2 1 1 1 2 0 0 2 NA NA 1 0 0 NA NA 2 1 1 0 0 NA 2 1
## [26] NA NA NA O 1 2 NA O 1 2 O 1 O NA NA 1 NA NA 2 2 2 0 O 0 O
## $`42`
## [1] NA O 1 O NA NA O 2 NA O NA NA O NA O O O NA 1 O O 1 2 1 2
## [26] 0 0 0 NA 2 0 0 2 0 2 NA 1 0 0 2 0 0 0 0 NA 2 2 0 0 0
##
## $`43`
## [1] NA O O 1 NA NA O NA O O 1 O NA NA 2 2 NA O O 2 NA NA 2 O NA
## [26] 2 1 NA NA O NA 1 1 NA 2 1 2 0 1 2 NA O 1 1 NA O 1 1 0 0
##
## $`44`
## [1] NA NA NA NA 2 2 0 NA 2 NA NA NA 1 0 0 0 0 0 1 0 0 1 1 0 2
## [26] 1 0 0 NA 0 1 NA 1 0 NA 1 0 2 0 0 0 NA 0 0 0 NA NA 0 NA NA
##
## $`45`
## [1] O 2 O NA O 1 O O 2 1 NA 1 NA NA NA O 2 NA O 1 O 1 O NA NA
## [26] NA O 2 O O NA NA NA 2 O NA 2 O 1 NA NA O O 1 2 NA 2 1 NA 1
##
## $`46`
## [1] 1 1 0 NA 0 2 NA 0 1 0 0 0 0 2 NA 1 1 NA NA 0 NA 0 1 0 NA
## [26] 1 0 NA 0 1 NA 2 NA 0 0 NA NA 0 1 1 2 0 NA NA 0 NA 1 NA 1 NA
##
## $`47`
## [1] 2 NA 1 O NA O O NA 2 NA NA O NA NA O NA NA NA NA O O NA NA O 2
## [26] NA O O 1 NA NA O NA 2 NA 1 1 O O O 1 NA NA O 2 NA O 1 1 O
##
## $`48`
## [1] O O NA 1 O NA O 2 1 O O 2 NA NA O O O O 2 NA NA NA 2 2 1
## [26] NA NA 2 1 0 NA 0 1 0 1 1 NA NA NA 1 0 0 2 2 0 NA 2 2 0 0
##
```

```
## $`49`
  [1] 0 2 0 NA 0 1 NA 2 1 0 2 0 NA 2 0 NA 2 0 0 NA NA 0 0 0 2
                       2 2 0 0 0 0 NA NA NA 2 1 1 1 NA NA
## [26] NA 2 0 NA NA 2 0
##
## $`50`
## [1] NA NA O
              O NA
                      2 2 0 0 0 NA 0 0 NA 0 NA 1 0 NA 2 NA 0 0
                   1
       2 1 NA
              1 NA
                   2
                     1
                        0
                          O NA
                               1 NA O O NA NA NA NA NA 1
```

• In one statement, use the lapply function to create a list whose keys are the column number and values are themselves a list with keys: "min" whose value is the minimum of the column, "max" whose value is the maximum of the column, "pct_missing" is the proportion of missingness in the column and "first_NA" whose value is the row number of the first time the NA appears.

```
lapply(split(R, col(R)), function(R) {list(min = min(R, na.rm = T), max = max(R, na.rm = T), pct_missin
## $`1`
## $`1`$min
## [1] 0
##
## $`1`$max
## [1] 2
## $`1`$pct_missing
## [1] 0.28
##
## $`1`$first_NA
## [1] 1
##
## $`2`
## $`2`$min
## [1] 0
##
## $`2`$max
## [1] 2
##
## $`2`$pct_missing
## [1] 0.34
##
## $`2`$first_NA
## [1] 1
##
##
## $`3`
## $`3`$min
## [1] 0
##
## $`3`$max
## [1] 2
## $`3`$pct_missing
## [1] 0.28
## $`3`$first_NA
## [1] 3
```

```
##
##
## $`4`
## $`4`$min
## [1] 0
##
## $`4`$max
## [1] 2
##
## $`4`$pct_missing
## [1] 0.36
## $`4`$first_NA
## [1] 2
##
##
## $`5`
## $`5`$min
## [1] 0
##
## $`5`$max
## [1] 2
##
## $`5`$pct_missing
## [1] 0.22
## $`5`$first_NA
## [1] 1
##
##
## $`6`
## $`6`$min
## [1] 0
##
## $`6`$max
## [1] 2
##
## $`6`$pct_missing
## [1] 0.44
##
## $`6`$first_NA
## [1] 1
##
## $`7`
## $`7`$min
## [1] 0
##
## $`7`$max
## [1] 2
##
## $`7`$pct_missing
## [1] 0.22
##
```

```
## $`7`$first_NA
## [1] 4
##
##
## $`8`
## $`8`$min
## [1] 0
##
## $`8`$max
## [1] 2
## $`8`$pct_missing
## [1] 0.22
##
## $`8`$first_NA
## [1] 4
##
##
## $`9`
## $`9`$min
## [1] 0
##
## $`9`$max
## [1] 2
##
## $`9`$pct_missing
## [1] 0.3
## $`9`$first_NA
## [1] 1
##
##
## $`10`
## $`10`$min
## [1] 0
## $`10`$max
## [1] 2
## $`10`$pct_missing
## [1] 0.32
## $`10`$first_NA
## [1] 3
##
##
## $`11`
## $`11`$min
## [1] 0
## $`11`$max
## [1] 2
##
## $`11`$pct_missing
```

```
## [1] 0.18
##
## $`11`$first_NA
## [1] 14
##
## $`12`
## $`12`$min
## [1] 0
##
## $`12`$max
## [1] 2
## $`12`$pct_missing
## [1] 0.28
##
## $`12`$first_NA
## [1] 3
##
##
## $`13`
## $`13`$min
## [1] 0
## $`13`$max
## [1] 2
##
## $`13`$pct_missing
## [1] 0.28
## $`13`$first_NA
## [1] 5
##
##
## $`14`
## $`14`$min
## [1] 0
##
## $`14`$max
## [1] 2
## $`14`$pct_missing
## [1] 0.4
##
## $`14`$first_NA
## [1] 1
##
##
## $`15`
## $`15`$min
## [1] 0
##
## $`15`$max
## [1] 2
```

```
##
## $`15`$pct_missing
## [1] 0.32
##
## $`15`$first_NA
## [1] 5
##
##
## $`16`
## $`16`$min
## [1] 0
## $`16`$max
## [1] 2
##
## $`16`$pct_missing
## [1] 0.3
##
## $`16`$first_NA
## [1] 1
##
##
## $`17`
## $`17`$min
## [1] 0
## $`17`$max
## [1] 2
##
## $`17`$pct_missing
## [1] 0.2
##
## $`17`$first_NA
## [1] 1
##
##
## $`18`
## $`18`$min
## [1] 0
##
## $`18`$max
## [1] 2
## $`18`$pct_missing
## [1] 0.24
##
## $`18`$first_NA
## [1] 2
##
##
## $`19`
## $`19`$min
## [1] 0
##
```

```
## $`19`$max
## [1] 2
##
## $`19`$pct_missing
## [1] 0.3
##
## $`19`$first_NA
## [1] 4
##
##
## $`20`
## $`20`$min
## [1] 0
##
## $`20`$max
## [1] 2
##
## $`20`$pct_missing
## [1] 0.28
##
## $`20`$first_NA
## [1] 2
##
##
## $`21`
## $`21`$min
## [1] 0
## $`21`$max
## [1] 2
## $`21`$pct_missing
## [1] 0.36
##
## $`21`$first_NA
## [1] 1
##
##
## $`22`
## $`22`$min
## [1] 0
##
## $`22`$max
## [1] 2
## $`22`$pct_missing
## [1] 0.22
##
## $`22`$first_NA
## [1] 11
##
##
## $`23`
## $`23`$min
```

```
## [1] 0
##
## $`23`$max
## [1] 2
## $`23`$pct_missing
## [1] 0.18
##
## $`23`$first_NA
## [1] 13
##
##
## $`24`
## $`24`$min
## [1] 0
##
## $`24`$max
## [1] 2
## $`24`$pct_missing
## [1] 0.34
##
## $`24`$first_NA
## [1] 5
##
## $`25`
## $`25`$min
## [1] 0
##
## $`25`$max
## [1] 2
## $`25`$pct_missing
## [1] 0.28
## $`25`$first_NA
## [1] 1
##
##
## $`26`
## $`26`$min
## [1] 0
##
## $`26`$max
## [1] 2
## $`26`$pct_missing
## [1] 0.22
## $`26`$first_NA
## [1] 1
##
```

##

```
## $`27`
## $`27`$min
## [1] 0
##
## $`27`$max
## [1] 2
## $`27`$pct_missing
## [1] 0.36
##
## $`27`$first_NA
## [1] 1
##
## $`28`
## $`28`$min
## [1] 0
##
## $`28`$max
## [1] 2
##
## $`28`$pct_missing
## [1] 0.42
## $`28`$first_NA
## [1] 2
##
## $`29`
## $`29`$min
## [1] 0
##
## $`29`$max
## [1] 2
## $`29`$pct_missing
## [1] 0.4
##
## $`29`$first_NA
## [1] 5
##
##
## $`30`
## $`30`$min
## [1] 0
##
## $`30`$max
## [1] 2
## $`30`$pct_missing
## [1] 0.2
##
## $`30`$first_NA
## [1] 7
```

```
##
##
## $`31`
## $`31`$min
## [1] 0
##
## $`31`$max
## [1] 2
##
## $`31`$pct_missing
## [1] 0.26
## $`31`$first_NA
## [1] 1
##
##
## $`32`
## $`32`$min
## [1] 0
## $`32`$max
## [1] 2
##
## $`32`$pct_missing
## [1] 0.18
## $`32`$first_NA
## [1] 16
##
##
## $`33`
## $`33`$min
## [1] 0
##
## $`33`$max
## [1] 2
##
## $`33`$pct_missing
## [1] 0.3
##
## $`33`$first_NA
## [1] 1
##
## $`34`
## $`34`$min
## [1] 0
##
## $`34`$max
## [1] 2
##
## $`34`$pct_missing
## [1] 0.28
##
```

```
## $`34`$first_NA
## [1] 2
##
##
## $`35`
## $`35`$min
## [1] 0
##
## $`35`$max
## [1] 2
## $`35`$pct_missing
## [1] 0.46
##
## $`35`$first_NA
## [1] 2
##
##
## $`36`
## $\36\$min
## [1] 0
##
## $`36`$max
## [1] 2
##
## $`36`$pct_missing
## [1] 0.34
## $`36`$first_NA
## [1] 2
##
##
## $`37`
## $`37`$min
## [1] 0
## $`37`$max
## [1] 2
##
## $`37`$pct_missing
## [1] 0.38
## $`37`$first_NA
## [1] 1
##
##
## $`38`
## $`38`$min
## [1] 0
## $`38`$max
## [1] 2
##
## $`38`$pct_missing
```

```
## [1] 0.32
##
## $`38`$first_NA
## [1] 6
##
## $`39`
## $`39`$min
## [1] 0
##
## $`39`$max
## [1] 2
## $`39`$pct_missing
## [1] 0.3
##
## $`39`$first_NA
## [1] 1
##
##
## $`40`
## $`40`$min
## [1] 0
## $`40`$max
## [1] 2
##
## $`40`$pct_missing
## [1] 0.28
## $`40`$first_NA
## [1] 3
##
##
## $`41`
## $`41`$min
## [1] 0
##
## $`41`$max
## [1] 2
## $`41`$pct_missing
## [1] 0.26
##
## $`41`$first_NA
## [1] 11
##
##
## $`42`
## $`42`$min
## [1] 0
##
## $`42`$max
## [1] 2
```

```
##
## $`42`$pct_missing
## [1] 0.22
##
## $`42`$first_NA
## [1] 1
##
##
## $`43`
## $`43`$min
## [1] 0
## $`43`$max
## [1] 2
##
## $`43`$pct_missing
## [1] 0.32
##
## $`43`$first_NA
## [1] 1
##
##
## $`44`
## $`44`$min
## [1] 0
## $`44`$max
## [1] 2
##
## $`44`$pct_missing
## [1] 0.32
##
## $`44`$first_NA
## [1] 1
##
##
## $`45`
## $`45`$min
## [1] 0
##
## $`45`$max
## [1] 2
## $`45`$pct_missing
## [1] 0.34
##
## $`45`$first_NA
## [1] 4
##
##
## $`46`
## $`46`$min
## [1] 0
```

##

```
## $`46`$max
## [1] 2
##
## $`46`$pct_missing
## [1] 0.34
##
## $`46`$first_NA
## [1] 4
##
##
## $`47`
## $`47`$min
## [1] 0
##
## $`47`$max
## [1] 2
##
## $`47`$pct_missing
## [1] 0.42
##
## $`47`$first_NA
## [1] 2
##
##
## $`48`
## $`48`$min
## [1] 0
## $`48`$max
## [1] 2
## $`48`$pct_missing
## [1] 0.28
##
## $`48`$first_NA
## [1] 3
##
##
## $`49`
## $`49`$min
## [1] 0
##
## $`49`$max
## [1] 2
## $`49`$pct_missing
## [1] 0.3
##
## $`49`$first_NA
## [1] 4
##
##
## $`50`
## $`50`$min
```

```
## [1] 0
##
## $`50`$max
## [1] 2
##
## $`50`$pct_missing
## [1] 0.36
##
## $`50`$first_NA
## [1] 1
```

• Set a seed and then create a vector **v** consisting of a sample of 1,000 iid normal realizations with mean -10 and variance 100.

```
set.seed(7)
n <- 1000
v <- rnorm(n, mean = -10, sd = sqrt(100))
v
## [1] 12.872471613405 -21.967716822223 -16.942925104355 -14.122929511368</pre>
```

```
##
      [5] -19.706733411195 -19.472799452281
                                             -2.518606597094 -11.169552258872
##
      [9]
           -8.473423737178 11.899781073294
                                             -6.430137696710 17.167517831307
##
     [13]
          12.814519259896
                           -6.759794598615
                                               8.960670668099
                                                               -5.323194886783
     [17] -18.938007230854 -13.073282995372 -10.048224222676
##
                                                               -0.118358505001
##
     [21]
           -1.602496403759
                            -2.946581690945
                                               3.059647208117 -23.879962165929
##
     [25]
            2.729168642552 -8.158072287642
                                             -2.477201042600
                                                               -4.082549475373
##
     [29] -19.830525957710 -12.760639551120 -18.708510225686
                                                               -2.812894469158
           -8.893471222307 -10.784667679717 -14.204904593420 -15.621258762853
##
     [33]
##
     [37]
           -0.024865552447 -21.051300588133 -11.422878307746
                                                               -6.850050951121
##
     [41]
            2.185505345073 -16.993170786855 -12.854327515287 -23.115526726094
##
     [45] -13.910124314493 -14.015266130950
                                                              -4.088099729108
                                               3.505175809230
##
     [49]
           -8.994745443714
                            -0.689280044799 -12.627423485665 -10.076681047127
##
                             7.071625451376
     [53]
           -6.328469934544
                                             -2.762597374716
                                                               -5.189639512921
##
     [57] -25.678682442253
                           -6.817497165192
                                             -8.340085493226 -18.999076296282
##
     [61]
           -9.236285261394
                            -8.408447217373
                                             -4.563258152903
                                                               -2.951926473870
                                             -2.308458053429
##
     [65]
           -6.810308574429
                             1.092497889711
                                                                1.534736747789
##
     [69]
            2.606835026809 -2.993764934277
                                             -5.673728391540 -19.226017182569
##
     [73] -16.155842066309 -18.666596882514 -26.395170871811 -23.258392438434
     [77] -18.890367276380 -15.576023303021 -10.624023088383 14.226929771594
##
##
          -6.574146498527
                            -9.957517637479
                                             -9.707801579983 -13.934234291213
##
     [85] -17.927045627889 -13.117018652952 -13.460685917809 -13.046075882453
##
     [89] -27.858934874445
                            -4.127253281420
                                               6.357944344466 -16.454234736344
                                             -1.534991012484 -15.736457388497
##
     [93]
           -3.810078312127
                           -7.636064015987
##
     [97]
            1.179932039962 -25.400011319330 -14.381238993001 -11.506729708964
##
    [101]
           -4.809416347270
                           -4.124602950981 -10.793330610552 -21.743610148694
##
    [105]
           -6.912778823616 -26.038785426835
                                             -0.087103749473
                                                                0.232204447004
##
    [109]
           -1.598545611165
                            -8.799213920443 -14.262550554457
                                                               -5.410737564960
                           -3.884694507098 -18.892112938688
##
    Γ1137
           -3.549520523061
                                                                5.438923486922
##
    [117] -22.417636048850
                             1.034473403913
                                             -0.172276433244
                                                               -6.956728259668
##
    [121] -25.547182161953
                             5.698907764003
                                             -3.115503067159 -11.776036589516
##
    [125]
           -2.707987340709
                             5.332509314471
                                             -4.934215519946
                                                               -9.666723237367
##
    [129] -24.675507151376
                             0.191577159290 -15.933393332234
                                                               -1.875901100392
##
    [133]
           -1.338321696948
                            -6.316916967592
                                               1.348190986188 -17.570992800679
                            -0.840670561472
                                             -7.302412575818
##
    [137]
           -5.547794311013
                                                                0.075404488840
    [141] -24.614332649228 -18.747856107393 -8.347710616423
                                                              -7.927929732459
```

```
-5.176381092062 -10.716583748081 -18.889284253762 -5.140564297858
##
          -6.595032427639 -20.979241939866 -13.556944427786
    Г1497
                                                               0.973004107235
    [153] -19.066919699925 -12.074566241375 -3.211385659530 -17.977877412248
    [157] -25.915389379775
                             1.803481245176
                                              2.225692898381 -10.109091865598
##
##
    Г161]
          -6.544775342523 -9.058108419514
                                            -9.932066321262
                                                             -2.573771219008
##
    [165]
           0.421865361616 -13.193371382304 -6.773566037765
                                                             -3.149470211730
           -6.797572256549 -29.149380240243 -33.399628993987
    Г1697
                                                              -5.171357064211
##
    Γ1737
            1.785300473814 -22.927770335029
                                            -3.842269147556
                                                             -7.439579191134
##
    Γ177]
           -2.721609976095
                             3.241109185364 -8.528415098214 -15.985393927546
##
    [181]
           11.925299267792 13.271127955782
                                             1.348695997695 -11.908845561884
    [185]
          -5.251554360063 -15.454749352582
                                              0.556485448708
                                                             -5.709781675071
    [189] -28.199564141556 -16.919760890394 -29.318282476756
##
                                                              2.096720126449
    [193] -12.790000483072 -20.957832269415 -11.021860424633
                                                             -6.429770418438
##
    [197] -18.823025657507 -10.566477939583 -15.810189514208
                                                             -3.559118109345
##
           10.233440532460 -1.375075024398 -10.249094914784
                                                             -3.993650510171
    [201]
##
    [205]
            2.164807350484 -21.765315497183 -16.093400343200
                                                             -6.127374267900
##
                             2.324918507156 -9.844924993510 -26.209590519721
    [209] -23.991401444828
##
    [213] -16.654646643047 -15.748405095731 -19.018929754680
                                                              4.915993703655
    [217] -11.372793171938 -8.917183019222 -20.352151033152 -14.447439187217
##
##
    [221] -11.960492656875 -22.693644917495 -0.464788153493 -5.274533461741
##
    [225] -15.587781013907
                             2.420645597365 -10.152584661862 -17.917883891997
    [229] -14.016187425474 -28.967012895361 -0.280250655751 -15.139548559075
##
    [233] -9.854383273101 -12.609355702082
                                            5.223583920091 -24.733697457848
##
    [237] -10.165580140537 -9.754593911184 -10.012569888595 -14.339327066248
##
##
    [241] -14.055590568275 -8.447666811274 -19.723818180092
                                                               5.481749304093
    [245] -13.701233330067
                             9.615252568594 -16.099955758511 -10.774287574080
##
    [249] -28.288592626879 -1.940757580837 -24.775917800752 -39.732557129817
    [253] -23.397621419614 -12.658420263565 -13.839934082877 -16.029423299642
##
    [257] -16.515240372179
                             7.576715092821 -10.190348651873 -8.447153875381
##
    [261] -17.608464408616 -25.497269072103 17.501650117285
                                                              0.474232483745
##
    [265]
          -0.820075262363 -5.298904919823 -16.173720878349
                                                             -9.578937272834
##
    [269] -19.018989012885
                             3.395832098225
                                            -1.961456498985
                                                             -6.815213468868
##
    [273] -11.904533066533 -20.872666906117 -8.546002708815
                                                             14.628002507678
          -0.763803077893 -2.581233120211
##
    [277]
                                              4.160217918960
                                                              2.516633702646
##
    [281]
          11.089056909611 -2.896873970732 -24.751820086636 -15.897264837166
##
          -8.602967535240 -15.117242332947 -8.490626488469
    [285]
                                                             -5.579606046603
##
    [289] -11.623991225992 -0.281614589640 -16.712654817862
                                                               6.383971613652
##
    [293] -20.682726813330 -10.114121246577 -28.652813396458 -9.817491365004
    [297] -12.470205455542 -19.194251122442 -31.731644324665 -16.493770544535
##
          -4.747384502013 -12.757273107576 -9.452902346972 -13.882496057350
##
    [301]
    [305] -14.170230460279 -21.641751651550
                                             7.378641350770 -12.540773501895
##
    [309] -19.737186232485
                            1.111989466255
                                            -0.265009435765
                                                               2.571286758474
##
    [313]
           7.762875832498 -36.831685222502 -3.401369248543
                                                               1.794496668503
##
          -6.064862235379 -21.898586670803 -13.565273652886 -24.655080439444
    Г3177
    [321] -20.907301520956 -16.572542156317 12.629410039421 -9.123099705279
##
          -2.324769983833 -16.131574639645
                                            -8.474970300890 -15.917074467713
    [325]
##
    [329] -19.607049671060 -15.849579949172 -3.433271106590 -12.902495879937
##
    [333]
          -0.959022710715 -8.009797762973 -10.515748068775 -19.082051794861
##
    [337] -21.424783394131 -0.096750642353 -8.877267222866
                                                              1.496316741612
##
    [341] -19.104953238995 -21.038197165156 -26.348673063289 -26.163824942052
##
                                              2.350981802016 -8.279333983534
    [345] -18.367370074867
                             0.929991155745
##
         -8.795068297610 -4.424673296652 -5.086168379688 -10.690126243766
##
    [353] -23.507963149139 -2.006424288163 -13.200940770234 -13.569511893780
     [357] \ -15.107279378471 \ -28.788800824498 \ -19.518450898789 \ 12.731566149315
```

```
##
    [361]
           -7.973123700028 -33.085546978706 -10.566356633383 -9.371561579545
##
          -2.897718626085 -15.923073973115 -7.014753696966 -3.574643732881
    [365]
##
    [369]
           11.127950955741 -0.822203668345 -25.728547528753 -0.073582685835
    [373]
           -5.204791287152 \ -12.965805554160 \ -1.841597652808 \ -19.997716130581
##
##
    [377]
           -4.507897056172 -7.202287955447 -0.833641102450 -27.312572577836
    [381] -24.795810668193 12.298110273848 -6.135010535521
                                                             -3.397343124530
##
    [385] -12.762352096932 -7.240670014901 -32.742312015109
                                                             -0.919142600520
    [389] -20.862531082837 -12.155267146110 -17.334273762143
##
                                                             -7.878821648863
##
    [393] -19.391419034328 -16.191936366639 -7.559888420808
                                                             -6.282566165746
          -3.727917812449 -20.731139258813 -17.086927142320
##
    [397]
                                                             -0.928683282158
    [401] -13.197056384927
                            1.650659409543 -16.217105488530
                                                              2.482131897476
            4.404015417580 -2.380065619484 -4.406287649565
##
    [405]
                                                               5.992638060614
##
    [409] -10.984577348497 -24.495537840845 -12.576613060225 -30.330713305359
    [413]
         -4.130358284782 -8.394134675026 -8.868471319014 -4.283093930927
##
##
    [417] -19.655296541985 -6.819988469880 -11.735075898317 -19.126111808927
##
    [421] -28.468947726120 -3.304819819353 -11.087865188456
                                                               5.665753513316
##
    [425] -18.448452316645
                             0.976492844501 -6.991196572223 -17.769662521649
##
    [429] -10.384341786515
                           1.094895688729 -4.636747344805 -13.633484581605
    [433] -11.055007115217 -6.661253571613 -1.897689477666 -26.836953829160
##
##
    [437]
          -3.342721570597 -17.923875349022
                                             5.277233032314 -24.866923981931
##
    [441] -16.711485814442
                             6.751774465665
                                            -3.880679392662 -12.322056456631
         -3.947066815328 -21.591061240025 -21.644292718054 -18.699249474685
     \left[ 449 \right] \; -12.611057175170 \; -14.941956643974 \; -23.058227313342 \quad 10.234126207356 
##
    [453] -17.556488212307 -12.415946189219
                                             0.971588993329 -19.466127511475
##
##
    [457] -21.339599212694 -18.833835227370 -4.835866014099 -13.379553988032
    [461] -10.224518561571 -11.020509577127 -6.995914032981 -1.933795870060
##
    [465] -10.372058945554 -24.564759923517 -16.238906466381 -11.695982724849
##
    [469]
           2.761231679036 -12.559144771312 -11.653682710396 -14.273211111287
##
    [473] -10.568727469011 -24.453835958572
                                            8.828070195665 -8.831099819239
    [477] -5.788672972571
                             5.774043820963 -12.513885242267 -10.556243358561
##
    [481] -10.225318714676 13.309609732628 -10.988303469125 -8.335684214723
##
    [485] -12.696354001784 -1.555263918571
                                              4.087677491323 -25.662362205067
##
    [489] -8.309618144194 -25.056791688762
                                            -0.050670525891
                                                               2.439084075687
    [493] -10.362568258711 -14.112558781390
##
                                             2.841489642462 -21.178076585829
##
    [497] -18.350697046668
                            5.008116976672 -1.008491395016 -14.564120778160
    [501] -12.060157504066 -15.878436062056 -16.854529455776
##
                                                              0.048241824918
##
    [505] -17.726490929748 -29.937337010814 -19.092544845767 -15.631560806002
    [509] -22.178556170847 -28.203178528754 -13.996293460866 11.183683482010
##
    [513]
            4.151575459115 -4.352348842263 -20.812971641995 -19.419760935071
##
##
                             0.854885538228 -4.416561728569 -31.762283505580
    [517] -12.441834432318
          -1.226987686856 -1.574646642318 -10.515839881304 -16.901214028455
    [525] -28.389828452840 -7.169620829691 -32.525900826544 -2.656498130598
##
##
    [529]
          -8.541942593502 -16.494285809241 -15.612243601396 -6.652079508510
##
          -9.679815729876
                             2.369171894445 -9.435865761835 -11.454327083996
    [533]
    [537] -15.923496259370 -22.607129804552 -16.836057842745 -11.634371954676
    [541] -14.384735082636 -15.787030149867
                                            5.810904318315
                                                               5.406613104409
##
##
    [545]
          -2.970189955616 -10.637486177995 -17.406239843769 -20.339471661621
##
    [549] -12.960636625179 -24.429497248816 -10.271916534102
                                                               5.613929786412
##
    [553] -19.910781580742 -9.958060141351 -10.448048417905 -16.886536691845
##
    [557] -11.302546486332 -8.449072123468
                                             2.773415519807
                                                               0.535482122839
    [561] -13.717165462765 -11.031325008967 14.980736060963 -17.772608660121
##
##
          -2.426154226258 -9.774549647217 -26.500315279247 -18.891162160291
                                              4.712112557731 -5.336115257225
##
    [569] -16.083697219598 -12.130629042640
##
    [573]
           8.183583613942 9.233962123120 -15.390035643105 -13.862788010896
```

```
[577] -18.618076658804 -14.020065834036 -4.010371803866 -9.181627183922
##
          -6.689742443341 -14.612469359136 -6.409607596910 -15.157911793492
    [581]
##
    [585]
          -4.127237765338
                            6.196110261620 -5.547687708082
                                                             2.552612015603
    [589] -15.749066492200 -6.839105121923 -31.878705648775
                                                           13.721013197035
##
                                                            -7.689620505123
##
    [593]
          -0.234201301992 -3.855481885272 -13.152626540799
          10.754800908060 -3.473151015039 -10.373962981155 -17.063915073722
##
    [597]
##
    [601] -22.278317049470 -8.658415494020 -13.732334891652 -9.609396247603
          -8.568756771622 -8.950527486366 -3.978042584465 -11.183954935898
##
    [605]
##
    [609]
          -4.408304570133 -9.581386215845
                                           -9.363788839195
                                                              4.662036944248
##
    [613] -14.726308684443 -8.365254615983 -6.936498366099
                                                            -2.074237816563
    [617] -19.490767537104 -0.952130176755 -13.401104077035
                                                              5.310074986935
          -6.105966111607 -5.040180197149
                                           -3.551413235578 -10.437647725401
##
    [621]
##
    [625] -23.568687285836 -4.085606058035 -29.882972366137
                                                            -0.813888660075
##
    [629] -17.287825107981 -12.206076917261 -6.956460324739
                                                            -0.073478555285
##
    [633] -10.732678368289 -10.117440175223
                                                            -7.466565705440
                                             0.048726356127
##
    [637] -19.986035416767 -18.014069584814
                                             1.808544350710
                                                            -1.770852823701
         -0.511099189165 -22.521965437888 -25.869747509899 -10.215768986554
##
    [641]
##
    [645] -21.674019239164 -15.483774328985 -20.411208725147
                                                            -9.852099605910
    [649] -25.893993336897 -21.771155007746
                                          -2.139626186640
##
                                                            8.980149382032
##
    [653] -14.137980664720 -3.223346986227 -18.572453050935 -11.210586546374
##
    8.482138499670
    [661] -4.200263649621 -9.108377318851 -0.307525700867
                                                              0.389264760468
##
    ##
    [669] -14.317843427723 -28.057970802312 -11.716773462855 -17.374966279413
##
    [673] -10.034603434728 -10.793741710839 -11.959315680655 -26.704732987485
##
    [677] -19.301488083631 -17.532569449243 -11.117038201885 -14.706929878147
##
    [681] -18.659240163699 -25.712443749659 -4.689304885028 -13.860729980812
##
    [685] -24.436498482544 0.796787923153 -6.243623932995 -19.928700166037
##
    [689]
           0.982030826772 -16.478479412518 -10.051898587511 -11.355064316790
##
    [693]
           2.993083239702 -29.015560068148
                                            2.119188916066 -15.918783445530
##
    [697]
          -6.619850480029
                            4.366194044266
                                           -5.966692552805 -17.464889872585
##
    [701]
           3.431231835646 -11.853945836005
                                           -0.273988702830 -0.788365002913
##
    [705] -10.522303617259 -24.350177918729
                                             0.510526575190 12.405947407498
          -2.996165395420 -21.730810959967 -14.950070012354 -7.213234170984
##
    [709]
##
    [713]
          -2.842869056687 -31.632929893910 -14.520037121549 -19.752897855745
##
     [717] \ -15.366960780347 \ -6.916124799322 \ -5.782062062791 \ -5.613381248278 
##
    [721] -19.863947403073 -16.665123832099 -7.457115710450 -18.050674713325
##
         -6.370493315032 -2.480961777131 -19.389595953928 -13.121951426097
     [729] \ -10.811775036702 \ -3.789608061331 \ -6.263614162292 \ -14.237367446372 
##
    [733] -12.891217354260 -13.829635830296 -0.812880289862
                                                             0.170490047941
##
                            3.614973333316 -12.238045415037
          -3.204882423364
                                                           -3.985546866904
    [741] -11.420755000700 -3.860994960506
                                           0.570122283091 19.614931092388
##
          -3.540613430524 -6.517727797808 -20.518626890398 -5.000609361961
##
    [745]
##
    [749] -11.343538734518 -22.183341707394
                                           9.838025383783 -27.440932049593
         -6.779615632734 -29.793476163008 -2.748701781935 -13.841720448558
    [757] -10.608861752204 -24.535688298390 -8.910019714861 -11.416282648309
##
##
    [761]
           5.959384172893
                            4.549929995592 -10.684785502221 -13.211479724381
##
    [765] -10.185998061267 -23.216974574262 -12.577997736457 -5.269486721308
##
    [769]
         -0.778225679482 -18.538609574587 -29.252757339341
                                                             5.615640305115
##
    [773] -20.050498452922 -14.408200571469 -31.483718234524
                                                            -9.517133330218
##
     [777] \quad -12.210946754467 \quad -13.266841645410 \quad -5.997889849111 \quad -20.329352771652 
##
    [781] -25.361456731577
                            6.012589094505 -6.127402999500 -1.048749627781
##
    [785]
          -5.007292633633 -15.714773141919 -16.604622847770 -12.511563714834
         -7.475602537191 -7.723421655219 -7.261346785244 0.710747122578
##
    [789]
```

```
[793] -12.821601704238 -33.804893126887 -4.047304234301 -10.421091878730
##
                            1.449625837000 -20.816557244122 -9.776487148418
    [797]
          -3.676574491089
##
          -8.713035189135 -15.498658198965 -23.860439847847 -11.416286645474
    ##
##
    [809] -15.930888114912 -16.315692881270
                                            -0.246242022503
                                                             -2.769562743778
          -2.712947945882
                            6.498268063628
                                           -3.864532056960
                                                              0.717186650086
##
    [813]
          -0.790661894237 -13.058130998574 -10.293348106180 -10.835587111940
    [821] -11.025684770315 -20.783908924970
                                           -0.048261435847
##
                                                            -1.380495017678
    [825] -16.751628890458 -13.106693360540 -16.005111491183 -20.369207248781
##
            1.066660804209 - 8.176856366244 - 9.702852492080
##
    [829]
                                                            -5.360117535891
    [833] -12.354564496260 -14.582751628133 -24.038108476490
                                                             -9.517707717697
    [837] -14.947016996592 -8.480544532024 -12.080007675539
                                                             -9.541381871117
##
##
    [841]
           9.481275841148 -11.113414600811 -19.588547057950 -17.767549902855
    [845]
##
          -9.210773274892 -24.709971530980 -13.632504686957 -20.000945245620
##
    [849]
          -4.459348744050
                            9.393684309500 -14.460993249220
                                                             -3.686355894840
##
    [853] -36.214543658442 -7.091853346693 -20.512214027835
                                                              0.267448302685
##
    [857] -15.652935481493 -9.293646468403 -21.380448110573 -18.948949334243
##
    [861] -15.840222339420 -17.723139563798
                                           -7.801394288200
                                                              2.963879571083
            1.106416428217 -16.272974941005
                                            6.175099841597
                                                             -2.768130022240
##
    [865]
##
    [869]
          -6.047064441329 -20.961269086410
                                           -0.157193147323 -18.708681108268
##
    [873] -32.382468652491 -0.779303493659 -17.490915984286
                                                            -3.144824619933
##
          10.565702784232 -20.970050004075 -14.691920711776 -8.151816146919
    [881] -23.994357016747 -9.669372575550
                                           -9.703172707544 -18.309251078634
##
          -9.828625637751 -16.090005660497 -25.578410235663 -11.628392007452
##
    [885]
    [889] -12.465250944303 -11.452381887431 -4.234166155335 -34.305046454912
##
    [893] -28.076109075992 -12.568423310721 -18.830680505097 -20.302710565948
##
    [897] -25.783803757609 -10.412625126365
                                            5.703573672271 -27.958710724306
    [901] -20.062031981095 -10.781124773893 -24.468648774486
                                                             -8.845905356164
##
    [905] -22.063518325986
                            9.214755322058 -11.050704618534 -14.878990061472
    [909] -22.760127043657 -22.870337038274 -23.411408099596 -6.034621671486
                                             0.638238231466 -10.711205996430
##
    [913]
          -4.691594065063 -18.939221986334
##
    [917] -29.725111024210 -1.770043524425 -10.510756797090
                                                              6.103621389461
    [921] -11.406225053230 -4.972541895380 -16.631202914794
##
                                                             -0.940235029870
          -6.902961553306 -10.357866637201
                                             1.090774462701
##
    [925]
                                                             -6.045807901086
##
    [929] -18.400512601066
                            1.834966810208
                                            -8.475447813960
                                                              5.397407765932
##
    [933]
          -4.905611329856
                          -9.396502645723 -12.916025068891
                                                              3.067559592445
##
    [937]
          -9.815688422226 -15.524546389937 -12.487366077558
                                                            -4.543429504181
##
    [941]
          -7.376345315955 -8.034538559457
                                             4.158751017303 -15.531001607141
##
    [945]
          -5.356769512998 -15.039140464046
                                           -7.065603989812 -17.655169397586
##
    [949]
          19.669187313082 -14.458930363515 -13.902677124620 -11.893545874773
    [953]
          -0.702198762766 -24.979589292461 -12.378168144822 -6.620183905515
##
    [957]
          -9.532624357703
                           -4.143431955514
                                            6.881143609086 -10.117587747315
                            9.507920689407 -17.820301679700 -8.343707636389
##
    [961]
          -1.273073988344
          -9.383872671240 -10.576851214867 -19.255099364193 -13.098149650159
##
    [965]
                            0.697656002750 -13.289921411254 -21.345611119426
    [969] -10.272738381363
    [973] -11.624453502072 -21.329477261404 -6.727531315286 -21.783721351349
##
##
    [977]
            0.887857348503
                          -2.054888935559 -7.230564488892
                                                              1.882102031161
    [981] -19.014107159856
                            1.767633501520 -16.878013255347 -10.982598837137
##
    [985] -33.004184115677 -13.689166605317 -18.538289130631 -14.264981485821
##
    [989] -13.944686571838 -16.607274665608
                                            -4.434340827129
                                                              2.165840477745
                                           -0.394898811674
##
    [993] -15.717274275258 -26.222380304574
                                                            -6.440400915854
                           4.954292212338 -28.951541455614
##
    [997] -12.733881218686
                                                              3.405233477848
```

• Repeat this exercise by resetting the seed to ensure you obtain the same results.

```
set.seed(7)
n <- 1000
v \leftarrow rnorm(n, mean = -10, sd = sqrt(100))
##
           12.872471613405 -21.967716822223 -16.942925104355 -14.122929511368
##
      [5] -19.706733411195 -19.472799452281 -2.518606597094 -11.169552258872
##
      [9]
           -8.473423737178 11.899781073294 -6.430137696710 17.167517831307
          12.814519259896 -6.759794598615
##
     [13]
                                              8.960670668099
                                                              -5.323194886783
     [17] -18.938007230854 -13.073282995372 -10.048224222676
##
                                                              -0.118358505001
##
     [21]
           -1.602496403759 -2.946581690945
                                              3.059647208117 -23.879962165929
##
     [25]
            2.729168642552 -8.158072287642 -2.477201042600
                                                              -4.082549475373
                                                             -2.812894469158
##
     [29] -19.830525957710 -12.760639551120 -18.708510225686
##
     [33]
           -8.893471222307 -10.784667679717 -14.204904593420 -15.621258762853
##
     [37]
           -0.024865552447 \ -21.051300588133 \ -11.422878307746 \ -6.850050951121
##
     [41]
            2.185505345073 -16.993170786855 -12.854327515287 -23.115526726094
##
     [45] -13.910124314493 -14.015266130950
                                              3.505175809230 -4.088099729108
##
     [49]
           -8.994745443714 -0.689280044799 -12.627423485665 -10.076681047127
##
     [53]
           -6.328469934544
                             7.071625451376 -2.762597374716 -5.189639512921
##
     [57] -25.678682442253 -6.817497165192 -8.340085493226 -18.999076296282
##
     [61]
           -9.236285261394 -8.408447217373 -4.563258152903
                                                             -2.951926473870
                                            -2.308458053429
##
     [65]
           -6.810308574429
                            1.092497889711
                                                              1.534736747789
##
     [69]
            2.606835026809
                           -2.993764934277
                                             -5.673728391540 -19.226017182569
##
     [73] -16.155842066309 -18.666596882514 -26.395170871811 -23.258392438434
##
     [77] -18.890367276380 -15.576023303021 -10.624023088383 14.226929771594
##
          -6.574146498527
                           -9.957517637479 -9.707801579983 -13.934234291213
     [81]
     [85] -17.927045627889 -13.117018652952 -13.460685917809 -13.046075882453
##
                           -4.127253281420
##
     [89] -27.858934874445
                                              6.357944344466 -16.454234736344
##
     [93]
          -3.810078312127 -7.636064015987 -1.534991012484 -15.736457388497
##
     [97]
            1.179932039962 -25.400011319330 -14.381238993001 -11.506729708964
##
    [101]
           -4.809416347270 -4.124602950981 -10.793330610552 -21.743610148694
##
    [105]
          -6.912778823616 -26.038785426835 -0.087103749473
                                                               0.232204447004
    [109]
          -1.598545611165
                           -8.799213920443 -14.262550554457
                                                              -5.410737564960
           -3.549520523061 -3.884694507098 -18.892112938688
##
    [113]
                                                              5.438923486922
##
    [117] -22.417636048850
                            1.034473403913 -0.172276433244
                                                              -6.956728259668
##
    [121] -25.547182161953
                             5.698907764003
                                            -3.115503067159 -11.776036589516
##
    Γ125]
          -2.707987340709
                                                              -9.666723237367
                             5.332509314471
                                            -4.934215519946
##
    [129] -24.675507151376
                             0.191577159290 -15.933393332234
                                                              -1.875901100392
                                              1.348190986188 -17.570992800679
##
    [133]
           -1.338321696948 -6.316916967592
##
    [137]
          -5.547794311013 -0.840670561472
                                            -7.302412575818
                                                               0.075404488840
##
    [141] -24.614332649228 -18.747856107393 -8.347710616423
                                                              -7.927929732459
##
    [145]
          -5.176381092062 -10.716583748081 -18.889284253762
                                                              -5.140564297858
##
          -6.595032427639 -20.979241939866 -13.556944427786
                                                               0.973004107235
    [149]
    [153] -19.066919699925 -12.074566241375
                                            -3.211385659530 -17.977877412248
                                             2.225692898381 -10.109091865598
##
    [157] -25.915389379775
                             1.803481245176
##
    [161]
           -6.544775342523 -9.058108419514
                                             -9.932066321262
                                                              -2.573771219008
                                                             -3.149470211730
##
    [165]
            0.421865361616 -13.193371382304
                                            -6.773566037765
    [169]
          -6.797572256549 -29.149380240243 -33.399628993987
                                                              -5.171357064211
                                             -3.842269147556 -7.439579191134
##
    [173]
            1.785300473814 -22.927770335029
##
    [177]
           -2.721609976095
                             3.241109185364
                                            -8.528415098214 -15.985393927546
##
    [181]
           11.925299267792 13.271127955782
                                             1.348695997695 -11.908845561884
##
    [185]
          -5.251554360063 -15.454749352582
                                              0.556485448708 -5.709781675071
##
    [189] -28.199564141556 -16.919760890394 -29.318282476756
                                                              2.096720126449
    [193] -12.790000483072 -20.957832269415 -11.021860424633 -6.429770418438
```

```
[197] -18.823025657507 -10.566477939583 -15.810189514208 -3.559118109345
          10.233440532460 -1.375075024398 -10.249094914784 -3.993650510171
##
    [201]
    [205]
##
           2.164807350484 -21.765315497183 -16.093400343200 -6.127374267900
    [209] -23.991401444828
                             2.324918507156 -9.844924993510 -26.209590519721
##
##
    [213] -16.654646643047 -15.748405095731 -19.018929754680
                                                              4.915993703655
    [217] -11.372793171938 -8.917183019222 -20.352151033152 -14.447439187217
##
    [221] -11.960492656875 -22.693644917495 -0.464788153493 -5.274533461741
##
    [225] -15.587781013907
                             2.420645597365 -10.152584661862 -17.917883891997
##
    [229] -14.016187425474 -28.967012895361 -0.280250655751 -15.139548559075
                                            5.223583920091 -24.733697457848
##
    [233]
         -9.854383273101 -12.609355702082
    [237] -10.165580140537 -9.754593911184 -10.012569888595 -14.339327066248
    [241] -14.055590568275 -8.447666811274 -19.723818180092
##
                                                             5.481749304093
##
    [245] -13.701233330067
                             9.615252568594 -16.099955758511 -10.774287574080
    [249] -28.288592626879 -1.940757580837 -24.775917800752 -39.732557129817
##
##
    [253] -23.397621419614 -12.658420263565 -13.839934082877 -16.029423299642
##
    [257] -16.515240372179
                            7.576715092821 -10.190348651873
                                                             -8.447153875381
    [261] -17.608464408616 -25.497269072103 17.501650117285
                                                               0.474232483745
##
##
          -0.820075262363 -5.298904919823 -16.173720878349
                                                             -9.578937272834
##
    [269] -19.018989012885
                             3.395832098225
                                            -1.961456498985
                                                             -6.815213468868
##
    [273] -11.904533066533 -20.872666906117
                                            -8.546002708815
                                                             14.628002507678
##
    [277]
          -0.763803077893 -2.581233120211
                                              4.160217918960
                                                               2.516633702646
          11.089056909611 -2.896873970732 -24.751820086636 -15.897264837166
##
          -8.602967535240 -15.117242332947 -8.490626488469
##
    [285]
                                                             -5.579606046603
    [289] -11.623991225992 -0.281614589640 -16.712654817862
##
                                                               6.383971613652
    [293] -20.682726813330 -10.114121246577 -28.652813396458 -9.817491365004
##
    [297] -12.470205455542 -19.194251122442 -31.731644324665 -16.493770544535
##
          -4.747384502013 -12.757273107576 -9.452902346972 -13.882496057350
    [301]
                                             7.378641350770 -12.540773501895
##
    [305] -14.170230460279 -21.641751651550
##
    [309] -19.737186232485
                            1.111989466255
                                            -0.265009435765
                                                               2.571286758474
##
    [313]
           7.762875832498 -36.831685222502 -3.401369248543
                                                               1.794496668503
##
    [317]
          -6.064862235379 -21.898586670803 -13.565273652886 -24.655080439444
##
    [321] -20.907301520956 -16.572542156317
                                            12.629410039421 -9.123099705279
##
          -2.324769983833 -16.131574639645
                                            -8.474970300890 -15.917074467713
##
    [329] -19.607049671060 -15.849579949172 -3.433271106590 -12.902495879937
##
    [333]
          -0.959022710715 -8.009797762973 -10.515748068775 -19.082051794861
    [337] -21.424783394131 -0.096750642353 -8.877267222866
##
                                                               1.496316741612
##
    [341] -19.104953238995 -21.038197165156 -26.348673063289 -26.163824942052
##
    [345] -18.367370074867
                             0.929991155745
                                              2.350981802016 -8.279333983534
          -8.795068297610 -4.424673296652 -5.086168379688 -10.690126243766
##
    [349]
    [353] -23.507963149139 -2.006424288163 -13.200940770234 -13.569511893780
##
    [357] -15.107279378471 -28.788800824498 -19.518450898789 12.731566149315
    [361]
          -7.973123700028 -33.085546978706 -10.566356633383
                                                             -9.371561579545
##
##
    [365]
          -2.897718626085 -15.923073973115
                                           -7.014753696966
                                                             -3.574643732881
##
    [369]
          11.127950955741 -0.822203668345 -25.728547528753
                                                             -0.073582685835
##
    [373]
          -5.204791287152 -12.965805554160
                                            -1.841597652808 -19.997716130581
          -4.507897056172 -7.202287955447
                                            -0.833641102450 -27.312572577836
##
    [377]
##
    [381] -24.795810668193 12.298110273848 -6.135010535521
                                                              -3.397343124530
##
    [385] -12.762352096932 -7.240670014901 -32.742312015109
                                                             -0.919142600520
##
    [389] -20.862531082837 -12.155267146110 -17.334273762143
                                                             -7.878821648863
##
    [393] -19.391419034328 -16.191936366639
                                            -7.559888420808
                                                             -6.282566165746
          -3.727917812449 -20.731139258813 -17.086927142320
                                                             -0.928683282158
##
    [397]
##
    [401] -13.197056384927
                            1.650659409543 -16.217105488530
                                                              2.482131897476
##
    [405]
            4.404015417580 -2.380065619484 -4.406287649565
                                                               5.992638060614
    [409] -10.984577348497 -24.495537840845 -12.576613060225 -30.330713305359
```

```
 \begin{bmatrix} 413 \end{bmatrix} \quad -4.130358284782 \quad -8.394134675026 \quad -8.868471319014 \quad -4.283093930927 
    [417] -19.655296541985 -6.819988469880 -11.735075898317 -19.126111808927
##
    [421] -28.468947726120 -3.304819819353 -11.087865188456
                                                              5.665753513316
    [425] -18.448452316645
                             0.976492844501 -6.991196572223 -17.769662521649
##
##
    [429] -10.384341786515
                             1.094895688729 -4.636747344805 -13.633484581605
    [433] -11.055007115217 -6.661253571613 -1.897689477666 -26.836953829160
##
          -3.342721570597 -17.923875349022
                                              5.277233032314 -24.866923981931
                             6.751774465665 -3.880679392662 -12.322056456631
##
    [441] -16.711485814442
##
    [445]
          -3.947066815328 -21.591061240025 -21.644292718054 -18.699249474685
     \left[ 449 \right] \; -12.611057175170 \; -14.941956643974 \; -23.058227313342 \quad 10.234126207356 
##
    [453] -17.556488212307 -12.415946189219
                                             0.971588993329 -19.466127511475
    [457] -21.339599212694 -18.833835227370 -4.835866014099 -13.379553988032
##
    [461] -10.224518561571 -11.020509577127 -6.995914032981 -1.933795870060
##
    [465] -10.372058945554 -24.564759923517 -16.238906466381 -11.695982724849
##
            2.761231679036 -12.559144771312 -11.653682710396 -14.273211111287
    [469]
##
    [473] -10.568727469011 -24.453835958572
                                              8.828070195665 -8.831099819239
                             5.774043820963 -12.513885242267 -10.556243358561
##
    [477]
          -5.788672972571
##
    [481] -10.225318714676 13.309609732628 -10.988303469125 -8.335684214723
    [485] -12.696354001784 -1.555263918571
                                              4.087677491323 -25.662362205067
##
##
    [489]
          -8.309618144194 -25.056791688762 -0.050670525891
                                                                2.439084075687
##
    [493] -10.362568258711 -14.112558781390
                                             2.841489642462 -21.178076585829
    [497] -18.350697046668
                             5.008116976672 -1.008491395016 -14.564120778160
    [501] -12.060157504066 -15.878436062056 -16.854529455776
                                                                0.048241824918
##
    [505] -17.726490929748 -29.937337010814 -19.092544845767 -15.631560806002
##
    [509] -22.178556170847 -28.203178528754 -13.996293460866 11.183683482010
##
    [513]
            4.151575459115 -4.352348842263 -20.812971641995 -19.419760935071
##
    [517] -12.441834432318
                             0.854885538228 -4.416561728569 -31.762283505580
##
    [521]
          -1.226987686856 -1.574646642318 -10.515839881304 -16.901214028455
##
    [525] -28.389828452840 -7.169620829691 -32.525900826544 -2.656498130598
##
    [529]
           -8.541942593502 -16.494285809241 -15.612243601396 -6.652079508510
                             2.369171894445 -9.435865761835 -11.454327083996
##
    [533]
          -9.679815729876
##
    [537] -15.923496259370 -22.607129804552 -16.836057842745 -11.634371954676
##
    [541] -14.384735082636 -15.787030149867
                                             5.810904318315
                                                                5.406613104409
          -2.970189955616 -10.637486177995 -17.406239843769 -20.339471661621
##
    [545]
##
    [549] -12.960636625179 -24.429497248816 -10.271916534102
                                                               5.613929786412
##
    [553] -19.910781580742 -9.958060141351 -10.448048417905 -16.886536691845
##
    [557] -11.302546486332 -8.449072123468
                                              2.773415519807
                                                                0.535482122839
##
    [561] -13.717165462765 -11.031325008967 14.980736060963 -17.772608660121
##
           -2.426154226258 -9.774549647217 -26.500315279247 -18.891162160291
##
    [569] -16.083697219598 -12.130629042640
                                               4.712112557731 -5.336115257225
                             9.233962123120 -15.390035643105 -13.862788010896
    [573]
            8.183583613942
    [577] -18.618076658804 -14.020065834036 -4.010371803866 -9.181627183922
##
##
    [581]
          -6.689742443341 -14.612469359136 -6.409607596910 -15.157911793492
##
          -4.127237765338
                             6.196110261620 -5.547687708082
                                                                2.552612015603
    [585]
    [589] -15.749066492200 -6.839105121923 -31.878705648775
                                                              13.721013197035
##
    [593]
          -0.234201301992 -3.855481885272 -13.152626540799 -7.689620505123
##
    [597]
           10.754800908060 -3.473151015039 -10.373962981155 -17.063915073722
##
    [601] -22.278317049470 -8.658415494020 -13.732334891652 -9.609396247603
##
    [605]
          -8.568756771622
                           -8.950527486366 -3.978042584465 -11.183954935898
##
    [609]
           -4.408304570133
                           -9.581386215845
                                             -9.363788839195
                                                                4.662036944248
##
                                                              -2.074237816563
    [613] -14.726308684443
                           -8.365254615983 -6.936498366099
##
    [617] -19.490767537104 -0.952130176755 -13.401104077035
                                                               5.310074986935
##
    [621]
          -6.105966111607
                           -5.040180197149 -3.551413235578 -10.437647725401
    [625] -23.568687285836 -4.085606058035 -29.882972366137 -0.813888660075
```

```
[629] -17.287825107981 -12.206076917261 -6.956460324739 -0.073478555285
##
    [633] -10.732678368289 -10.117440175223
                                            0.048726356127
                                                             -7.466565705440
##
    [637] -19.986035416767 -18.014069584814
                                            1.808544350710 -1.770852823701
##
         -0.511099189165 -22.521965437888 -25.869747509899 -10.215768986554
    Γ641]
##
    [645] -21.674019239164 -15.483774328985 -20.411208725147
                                                            -9.852099605910
    [649] -25.893993336897 -21.771155007746 -2.139626186640
##
                                                              8.980149382032
    [653] -14.137980664720 -3.223346986227 -18.572453050935 -11.210586546374
    [657] -17.171705718454 -14.607225076451 -10.540307283246
                                                              8.482138499670
##
##
    [661]
          -4.200263649621 -9.108377318851 -0.307525700867
                                                              0.389264760468
##
    [665] -16.250006958563 -10.576900806448 -18.439631757611 -8.124467869318
    [673] -10.034603434728 -10.793741710839 -11.959315680655 -26.704732987485
##
##
    [677] -19.301488083631 -17.532569449243 -11.117038201885 -14.706929878147
    [681] -18.659240163699 -25.712443749659 -4.689304885028 -13.860729980812
##
##
                           0.796787923153 -6.243623932995 -19.928700166037
    [685] -24.436498482544
##
    [689]
           0.982030826772 -16.478479412518 -10.051898587511 -11.355064316790
##
           2.993083239702 -29.015560068148
                                             2.119188916066 -15.918783445530
    [693]
##
    [697]
         -6.619850480029
                            4.366194044266 -5.966692552805 -17.464889872585
           3.431231835646 -11.853945836005 -0.273988702830 -0.788365002913
##
    [701]
##
    [705] -10.522303617259 -24.350177918729
                                            0.510526575190 12.405947407498
##
    [709]
         -2.996165395420 -21.730810959967 -14.950070012354 -7.213234170984
    [713] -2.842869056687 -31.632929893910 -14.520037121549 -19.752897855745
##
    ##
    [721] -19.863947403073 -16.665123832099 -7.457115710450 -18.050674713325
##
          -6.370493315032 -2.480961777131 -19.389595953928 -13.121951426097
##
    [725]
    [729] -10.811775036702 -3.789608061331 -6.263614162292 -14.237367446372
##
    [733] -12.891217354260 -13.829635830296 -0.812880289862
                                                             0.170490047941
                            3.614973333316 -12.238045415037 -3.985546866904
##
    [737]
         -3.204882423364
##
    [741] -11.420755000700 -3.860994960506
                                            0.570122283091 19.614931092388
         -3.540613430524 -6.517727797808 -20.518626890398 -5.000609361961
##
    [749] -11.343538734518 -22.183341707394
                                            9.838025383783 -27.440932049593
##
    [753]
          -6.779615632734 -29.793476163008 -2.748701781935 -13.841720448558
##
    [757] -10.608861752204 -24.535688298390 -8.910019714861 -11.416282648309
           5.959384172893 4.549929995592 -10.684785502221 -13.211479724381
##
    [761]
##
    [765] -10.185998061267 -23.216974574262 -12.577997736457
                                                            -5.269486721308
##
         -0.778225679482 -18.538609574587 -29.252757339341
                                                              5.615640305115
##
    [773] -20.050498452922 -14.408200571469 -31.483718234524 -9.517133330218
##
    [777] -12.210946754467 -13.266841645410 -5.997889849111 -20.329352771652
    [781] -25.361456731577
                            6.012589094505 -6.127402999500 -1.048749627781
##
##
          -5.007292633633 -15.714773141919 -16.604622847770 -12.511563714834
    [785]
         -7.475602537191 -7.723421655219 -7.261346785244
                                                              0.710747122578
##
    [793] -12.821601704238 -33.804893126887 -4.047304234301 -10.421091878730
##
    [797]
          -3.676574491089
                           1.449625837000 -20.816557244122 -9.776487148418
         -8.713035189135 -15.498658198965 -23.860439847847 -11.416286645474
##
    [805] -19.624574373727 -1.953938918033 -22.610582927311 -15.675954350715
     \hspace{-0.2cm} \begin{bmatrix} 809 \end{bmatrix} \hspace{-0.2cm} -15.930888114912 \hspace{-0.2cm} -16.315692881270 \hspace{-0.2cm} -0.246242022503 \hspace{-0.2cm} -2.769562743778 
##
##
    [813]
          -2.712947945882
                            6.498268063628 -3.864532056960
                                                              0.717186650086
          -0.790661894237 -13.058130998574 -10.293348106180 -10.835587111940
##
    [817]
    [821] -11.025684770315 -20.783908924970 -0.048261435847 -1.380495017678
##
    [825] -16.751628890458 -13.106693360540 -16.005111491183 -20.369207248781
##
           1.066660804209 -8.176856366244 -9.702852492080
    [829]
                                                            -5.360117535891
##
    [833] -12.354564496260 -14.582751628133 -24.038108476490 -9.517707717697
##
    [837] -14.947016996592 -8.480544532024 -12.080007675539 -9.541381871117
##
    Г8417
          9.481275841148 -11.113414600811 -19.588547057950 -17.767549902855
```

```
##
           -9.210773274892 -24.709971530980 -13.632504686957 -20.000945245620
##
                             9.393684309500 -14.460993249220
    [849]
           -4.459348744050
                                                               -3.686355894840
##
    [853] -36.214543658442
                           -7.091853346693 -20.512214027835
                                                                0.267448302685
                           -9.293646468403 -21.380448110573 -18.948949334243
##
    [857]
         -15.652935481493
##
    [861]
         -15.840222339420 -17.723139563798
                                             -7.801394288200
                                                                2.963879571083
##
    [865]
            1.106416428217 -16.272974941005
                                               6.175099841597
                                                               -2.768130022240
##
    [869]
           -6.047064441329 -20.961269086410
                                             -0.157193147323 -18.708681108268
##
    [873] -32.382468652491 -0.779303493659 -17.490915984286
                                                               -3.144824619933
##
    [877]
           10.565702784232 -20.970050004075 -14.691920711776
                                                               -8.151816146919
##
    [881] -23.994357016747 -9.669372575550
                                             -9.703172707544 -18.309251078634
    [885]
           -9.828625637751 -16.090005660497 -25.578410235663 -11.628392007452
    [889] -12.465250944303 -11.452381887431
                                             -4.234166155335 -34.305046454912
##
##
    [893] -28.076109075992 -12.568423310721 -18.830680505097 -20.302710565948
##
    [897] -25.783803757609 -10.412625126365
                                               5.703573672271 -27.958710724306
    [901] -20.062031981095 -10.781124773893 -24.468648774486
##
                                                              -8.845905356164
##
    [905] -22.063518325986
                             9.214755322058 -11.050704618534 -14.878990061472
    [909] -22.760127043657 -22.870337038274 -23.411408099596
##
                                                               -6.034621671486
##
           -4.691594065063 -18.939221986334
                                               0.638238231466 -10.711205996430
##
    [917] -29.725111024210
                            -1.770043524425 -10.510756797090
                                                                6.103621389461
##
    [921] -11.406225053230
                           -4.972541895380 -16.631202914794
                                                               -0.940235029870
##
    [925]
           -6.902961553306 -10.357866637201
                                               1.090774462701
                                                               -6.045807901086
##
    [929] -18.400512601066
                             1.834966810208
                                             -8.475447813960
                                                                5.397407765932
    [933]
##
           -4.905611329856
                           -9.396502645723 -12.916025068891
                                                                3.067559592445
    [937]
##
           -9.815688422226 -15.524546389937 -12.487366077558
                                                               -4.543429504181
##
    [941]
           -7.376345315955
                            -8.034538559457
                                               4.158751017303 -15.531001607141
##
    [945]
           -5.356769512998 -15.039140464046
                                             -7.065603989812 -17.655169397586
    [949]
           19.669187313082 -14.458930363515 -13.902677124620 -11.893545874773
##
##
    [953]
           -0.702198762766 -24.979589292461 -12.378168144822
                                                               -6.620183905515
##
    [957]
           -9.532624357703
                           -4.143431955514
                                               6.881143609086 -10.117587747315
                                                              -8.343707636389
##
    [961]
           -1.273073988344
                             9.507920689407 -17.820301679700
##
    [965]
           -9.383872671240 -10.576851214867 -19.255099364193 -13.098149650159
##
    [969] -10.272738381363
                             0.697656002750 -13.289921411254 -21.345611119426
##
    [973] -11.624453502072 -21.329477261404
                                             -6.727531315286 -21.783721351349
                                             -7.230564488892
##
    [977]
            0.887857348503
                            -2.054888935559
                                                                1.882102031161
    [981] -19.014107159856
                             1.767633501520 -16.878013255347 -10.982598837137
##
##
    [985] -33.004184115677 -13.689166605317 -18.538289130631 -14.264981485821
##
    [989] -13.944686571838 -16.607274665608
                                             -4.434340827129
##
    [993] -15.717274275258 -26.222380304574 -0.394898811674
                                                               -6.440400915854
    [997] -12.733881218686
                             4.954292212338 -28.951541455614
                                                                3.405233477848
```

• Find the average of v and the standard error of v.

```
average_v <- mean(v)
std_error <- sd(v)/n
average_v</pre>
```

```
## [1] -9.9695167087
```

std_error

[1] 0.0098232172659

• Find the 5%ile of v and use the qnorm function to compute what it theoretically should be. Is the estimate about what is expected by theory?

```
fifth_percentile <- quantile(v, probs = 0.05)
qnorm(0.05, mean = -10, sd = sqrt(100))</pre>
```

```
## [1] -26.44853627
```

fifth_percentile

5% ## -25.895063139

 \bullet What is the percentile of v that corresponds to the value 0? What should it be theoretically? Is the estimate about what is expected by theory?

```
pnorm(0, mean = -10, sd = sqrt(100))
## [1] 0.84134474607
ecdf(v)(0)
```

[1] 0.844