

ITF SHEET WORK Page 1


```
Prove that the equation, (sin*s)* + (son*s)* + as* has no note for a = \frac{1}{32}. \longrightarrow (86.7 e)^{\frac{1}{2}}(6.5 e)^{\frac{3}{2}} (8.6 e) \frac{1}{12} (8.6 e) \frac{1}{12} (8.6 e) \frac{1}{12}

\frac{1}{1 + 3 \cdot 2^{n}} = \frac{1}{1 + 3 \cdot 2^{n}}
```

13. $\cos^{-1}\left(\frac{3}{5}\right) + \cos^{-1}\left(\frac{5}{13}\right)$ is equal to (C) $\frac{\pi}{3}$

(64)

ITF SHEET WORK Page 3

- 10. The value of $\cos\left[\frac{1}{2}\cos^{-1}\left\{\cos\left(-\frac{14\pi}{5}\right)\right\}\right]$ is:
 - $\text{(A)} \cos \left(-\frac{7\pi}{5} \right) \qquad \quad \text{(B")} \sin \left(\frac{\pi}{10} \right) \qquad \quad \text{(C")} \cos \left(\frac{2\pi}{5} \right) \qquad \quad \text{(D")} \cos \left(\frac{3\pi}{5} \right)$
- 11. sin-1 x > cos-1 x holds for
 - (A) all values of x (B) x c $\left(0 \cdot \frac{1}{\sqrt{2}}\right)$ (C*) x c $\left(\frac{1}{\sqrt{2}} \cdot 1\right)$ (D*) x = 0.75
- 12. If $0 \le x \le 1$, then $tan^{-1} \frac{\sqrt{1-x^2}}{1+x}$ is equal to:
 - $\langle A^{*} \rangle \frac{1}{2} \; \cos^{-1} \kappa \qquad \qquad \langle B^{*} \rangle \; \cos^{-1} \sqrt{\frac{l+x}{2}} \qquad \qquad \langle C^{*} \rangle \; \sin^{-1} \sqrt{\frac{l-x}{2}} \qquad \qquad \langle D \rangle \frac{1}{2} \; \tan^{-1} \sqrt{\frac{l+x}{l-x}}$
- - (B) $x^2 = \left(\frac{\sqrt{5} + 1}{2}\right)$ $(A^*) x^2 = \left(\frac{\sqrt{5} - 1}{2}\right)$
 - $(C^*) \sin(\cos^{-1}x) = \left(\frac{\sqrt{5}-1}{2}\right)$ (D) $\tan(\cos^{-1}x) = \left(\frac{\sqrt{5}-1}{2}\right)$
- 14. The sum $\sum_{n=1}^{\infty} \tan^{-1} \frac{4n}{n^4 2n^2 + 2}$ is equal to:
 - (A*) $\tan^{-1} 3$ (B) 4 $\tan^{-1} 1$ (C) $\pi/2$ (D*) $\sec^{-1} \left(-\sqrt{2}\right)$

DDS ACADEMY Moh / Inverse Trigonometry ratios / JEE / June 17

EXERCISE - 5 (JEE MAIN & ADVANCED)

JEE Main

- Let $t'(\sqrt{\cos(\theta)} \tan^2(\sqrt{\cos(\theta)} \sec^2(\cos(\theta)))$. Let $t'(\sqrt{\cos(\theta)} \tan^2(\sqrt{\cos(\theta)} \sec^2(\theta)))$. The toperometric equation in $t' = 2 \sin^2(\theta)$ in b is satisfied for $b = 1 + \frac{1}{2} \cos^2(\theta)$. A fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. A fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. A fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. A fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. A fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. A fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. A fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. A fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. A fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. A fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. A fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. A fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. A fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. A fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. The fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$. The fill $b = 1 + \frac{1}{2} \cos^2(\theta)$ is $b = 1 + \frac{1}{2} \cos^2(\theta)$. The fill real $b = 1 + \frac{1}{2} \cos^2(\theta)$ is $b = 1 + \frac{1}{2} \cos^2(\theta)$. The fill $b = 1 + \frac{1}{2} \cos^2(\theta)$ is $b = 1 + \frac{1}{2} \cos^2(\theta)$. The fill $b = 1 + \frac{1}{2} \cos^2(\theta)$ is $b = 1 + \frac{1}{2} \cos^2(\theta)$. The fill $b = 1 + \frac{1}{2} \cos^2(\theta)$ is $b = 1 + \frac{1}{2} \cos^2(\theta)$.

- 6. The value of cot $\left(\cos e^{-t} \frac{5}{3} + \tan^{+2} \frac{2}{3}\right)$ is 8. $\frac{6}{17}$ b. $\frac{3}{17}$ c. $\frac{4}{17}$ d. $\frac{5}{17}$ (AIEEE 2008)

- (JEE Main 2013) 8. Let ten 'y = tan 'x + tan ' $\left(\frac{2x}{1-x^2}\right)$, where $|x| < \frac{1}{\sqrt{3}}$. Then a value of y is
- a. $\frac{3x x^2}{1 3x^2}$ b. $\frac{3x + x^2}{1 3x^2}$ c. $\frac{3x x^2}{1 + 3x^2}$ d. $\frac{3x + x^2}{1 + 3x^2}$

Single Correct Answer Type

- $$\begin{split} & \text{Single Correct Answer Type} \\ & 1. \text{ The value of twe} \left[\cos^2\left(\frac{4}{5}\right) + \tan^2\left(\frac{2}{3}\right)\right] \text{ is} \\ & \pm \frac{\pi}{10}, \quad \frac$$
- 3. If we consider only the principal values of the inverse injuscements functions, then the value of $\tan \left(\cos^{-1}\frac{1}{5\sqrt{2}} \sin^{-1}\frac{4\pi}{\sqrt{1}}\right)$ is $\tan \left(\cos^{-1}\frac{1}{3\sqrt{2}} \cos^{-1}\frac{4\pi}{\sqrt{1}}\right)$ is $\frac{\sqrt{52}}{3} \frac{1}{3} \cos^{-1}\frac{5}{\sqrt{2}} 6 \cdot \frac{1}{3} \cos^{-1}\frac{1}{\sqrt{1}}$ in This or Trial solutions of $\tan^{-1}\sqrt{4\pi(x+1)}$ is $\cos^{-1}\sqrt{4\pi^2 + x + 1} = \pi/2$ is a residual form of the order of the contrast of the c

DDS ACADEMY Moh / Inverse Trigonometry ratios / IEE / June 17


```
| Columbra | Columbra
```

ITF SHEET WORK Page 6