

激扬函数) sigmod
$$f(x) = \frac{1}{1+e^{-x}}$$

 $tanh$ $f(x) = \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
 $ReLU$ $f(x) = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases}$
 $Purelin$ $f(x) = x$

ツト sig mod 为 個

$$\mathcal{U}_{i} = \frac{1}{He^{-1\sum X_{i}V_{ij} + \mathcal{U}_{j}\theta_{i}}} \qquad \mathcal{Y} = \frac{1}{1 + e^{-\left(\sum \mathcal{U}_{i}W_{j} + \theta_{j}\right)}}$$

损失函数 以 L = \(\(\zeta\) 2 以侧

が多下路流 (大) 化多数
$$\hat{w} = w - u \frac{dy}{dw}$$
 需要状態的智能 \hat{v} , \hat{v} \hat{y} \hat{y}

$$\frac{\int_{0}^{(k)} = (y^{(k)} - \hat{y}^{(k)})^{2}}{\partial w_{j}} = 2(y^{(k)} - \hat{y}^{(k)}) \frac{\partial y^{(k)}}{\partial w_{j}}$$

$$\Rightarrow y = f(6)$$

$$\Rightarrow \frac{\partial y^{(k)}}{\partial w_j} = \frac{\partial y^{(k)}}{\partial 6} \frac{\partial 6}{\partial w_j} = \frac{\partial y}{\partial 6}$$

$$\frac{\partial y^{(k)}}{\partial 6} = (\frac{1}{He^{-6}})' = \frac{e^{-6}}{(He^{-6})^2} = \frac{1}{(He^{-6})}(1 - \frac{1}{He^{-6}})$$

$$= y^{(k)}(1 - y^{(k)})$$

$$\frac{\partial L^{(k)}}{\partial \theta^{y}} = 2(y^{(k)} - \hat{y}^{(k)}) y^{(k)} (-y^{(k)}).$$

= 2(y 1k) - ŷ(k) y(k) (- y(k)) wj uj (+uj) Xi (k)

母求 Pj 的确多 3℃(k)

$$\frac{\partial L^{(k)}}{\partial \theta_{j}^{(k)}} = 2(y^{(k)} - \hat{y}^{(k)}) y^{(k)} (Ly^{(k)}) w_{j} w_{j} (+ w_{j})$$

缑上.

$$\frac{\partial L^{(k)}}{\partial u_{j}} = 2(y^{(k)} - \hat{y}^{(k)}) y^{(k)} (r y^{(k)}) u_{j}$$

$$\frac{\partial L^{(k)}}{\partial \theta^{j}} = 2(y^{(k)} - \hat{y}^{(k)}) y^{(k)} (r y^{(k)})$$

$$\frac{\partial L^{(k)}}{\partial v_{ij}} = 2(y^{(k)} - \hat{y}^{(k)}) y^{(k)} (r y^{(k)}) u_{j} u_{j} (r u_{j}) x_{i}^{(k)}$$

$$\frac{\partial L^{(k)}}{\partial v_{ij}} = 2(y^{(k)} - \hat{y}^{(k)}) y^{(k)} (r y^{(k)}) u_{j} u_{j} (r u_{j}) x_{i}^{(k)}$$

$$\frac{\partial L^{(k)}}{\partial v_{ij}} = 2(y^{(k)} - \hat{y}^{(k)}) y^{(k)} (r y^{(k)}) u_{j} u_{j} (r u_{j})$$

MATLAB代码实现

Step 1° 导入数据. 80%。作为训练集

Step 2° 初始化多数 train_num = round (0.8*m)

test_num = m- train_num

Neurous_num = b % 隐藏神经扩散

input-num = n-1

output-num = 1

Lx-train-std, x -train-mu, x -train-sigmal = $zscore(x$ -train)	
Iy_train_stol, y_train_mu, y_train_sigmaJ=2score(y-train)	
1 10 211 49 62 4 34 2 22 1 201 39 18) =	2份金化.货等从=0,0=1
从用训练系参数标卷化测试集	nin-Max
Z -score $z = \frac{x - \mu}{\sigma}$	NaxAbs LobustScaler
$Z-SCORe = \frac{x-u}{\sigma} $ $X-test-std = [X-test-repmot(X-train_mu,test_num,1)]./$	
repmat(x_train_sigma, test_num,1)	
G repmat (A, m, n)	
G ans = $IAAAJ_{m\times n}$	
Step 3° 网络参照	LA A A Jiliki
vij = rand (Neurous_num, input_nu	m) % 6×8
theta_u = rand (Neurous_num, 1)	% 劇值
Wj = rand (output_num, Neurous_num)	
theta- $y = rand(output_num, l)$	
$learn_rate = 0.0001$	% 等司學
Epochs_max = 50000	%最大些什次数
error_rate = o.	%目标凝盖
Obj-save = zeros(1. Zpochs_max)	%损失函数
step 4°. 训练网络	
Step 4.1° 埃莱尔斯	
epoch_num=0	

++

y-pre-std-u=vij *x-train-std + reproat (theta-u.1.train.num, y-pre-std-u1 = loysig(y-pre-std-u)

y-pre-std-y= Wj*y-pre-std-u1+repmat(theta-y,1...)
y-pre-std-y1 = Caysig(y-pre-std-y)

obj = y-pre-std-y1 - y-train_std

Ems = sumsqr(obj)

% 5(49)2

Obj-Lave (epoch-num) = Zms.

if Ems Lernor-nate break;

end

Step 4.2° 協態下降

C-Wj =

c-theta-y=

C-Vij =

c-theta-u=

Wj = Wj - learn_rate * C_wj

 $theta_y = \cdots$

end

Sten 5° 使用模型

test-put = logsig(vij * x_test-std + repmat(theta_u,1,test_num) test-out-std = logsig(wj * test-put + repmat(theta_y,1,test_num) step 6° R13-10

test-pre-out = test-out_std*y_train_sigma+y_train_mu errors_nn=sum(abs(test-pre-out'-y_test)./y_test))/length() g性差報行

Step 7° 画图

figure(1)

plot(Obj-save, 'b-', 'LineWidth', 1.5)

title('损失函数')

xlabel ('epoch')

y (abel ('errors')

figure(2)

color = 1111, 168, 86; 128, 189, 252; 112, 138, 248; 184, 84, 240]/25

plot (y-test, 'color', colore,:), 'Linewidth',1)

hold on

plot (test- pre-out .'*', 'color', color(1,:))

hold on

titlestr= I' 伝前指导BP納台网络, 埃多切: 'num2str(emors_nn)
titile (titlestr)