Praktikum Kriptografi

Pertemuan - 10

Topik: Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography (5-0)

ECC merupakan sebuah pendekatan **public-key cryptography** yang memanfaatkan struktur aljabar dari kurva eliptik pada finite field.

ECC memungkinkan **penggunaan key yang lebih kecil** dibanding algoritma public key lainnya, untuk menyediakan tingkat keamanan yang setara, sehingga dapat dikatakan bahwa algoritma ini lebih kuat.

"One of the most powerful, but least understood in use today"

Visualisasi ECC

Visualisasi kurva eliptik bukan berbentuk elips atau oval, melainkan garis lingkaran yang memotong dua sumbu (garis pada grafik yang digunakan untuk menunjukkan posisi suatu titik).

Aplikasi ECC

- Key Agreement
- Digital Signature
- Pseudo-random Generator
- Encryption
- Dasar Integer Factorization Algorithms

Bentuk Umum

ECC secara umum memiliki bentuk seperti berikut:

$$y^2 \equiv x^3 + ax + b \pmod{p}$$

Dimana **p** merupakan **bilangan prima lebih besar dari 3**:

 $\{p > 3, p \in bilangan prima\}$

Kriteria Euler: R merupakan Quadratic Residue (QR) jika:

$$R^{(p-1)/2} \equiv 1 \pmod{p}$$

Step-by-Step

- Tentukan nilai **p, a,** dan **b** dari ECC
- Ambil plaintext (Pt) yang akan dienkripsi (p_1, p_2)
- ullet Tentukan sembarang **titik** $oldsymbol{lpha}$ pada kurva sebagai **titik "pembangkit"**
- ullet Tentukan konstanta $oldsymbol{q}$ untuk enkripsi dan $oldsymbol{r}$ untuk dekripsi
- $E(p_1, p_2) = (y_1, y_2)$, dimana :
 - $\circ \quad \mathbf{y_1} = \mathbf{q}\alpha$
 - $y_2 = (p_1, p_2) + q.(r\alpha)$
 - $D(y_1, y_2) = y_2 (r.y_1)$

Aturan ECC

Misalkan
$$\begin{cases} P = (x_1, y_1) \\ O = (x_2, y_2) \end{cases}$$
 Jika
$$\begin{cases} x_1 = x_2 \\ y_1 = -y_2 \end{cases} P + Q = 0$$

$$Q = \begin{cases} x_3 = \lambda \\ y_3 = \lambda \end{cases}$$

$$Q = \begin{cases} x_3 \\ y_3 \end{cases}$$

$$\left[\underline{y_2} \right]$$

$$P + Q = \begin{cases} x_3 = \lambda^2 - x_1 - x_2 \\ y_3 = \lambda (x_1 - x_3) - y_1 \end{cases}$$

$$\lambda = \begin{cases} y_3 = \lambda (x_1 - x_3) - y_1 \\ \frac{y_2 - y_1}{x_2 - x_1}, & \text{uth } P \neq Q \\ \frac{3x_1^2 + a}{2y_1}, & \text{uth } P = Q \end{cases}$$

$$p + Q = (x_3, y_3)$$

Misalkan p = 11, a = 1 dan b = 6 sehingga didapat kurva elips:

$$y^2 \equiv x^3 + x + 6 \pmod{11}$$
, E = 14

Konstanta yang merupakan *Quadratic Residue* (QR) modulo 11 adalah:

1, 3, 4, 5, 9

$$1^5 \equiv 1 \pmod{11} \qquad 3^5 \equiv 1 \pmod{11}$$

$$9^5 \equiv 1 \pmod{11}$$

 $4^5 \equiv 1 \pmod{11} \qquad 5^5 \equiv 1 \pmod{11}$

Mencari **nilai y** yang memungkinkan:

$$1^2 = 1 \pmod{11}$$

 $4^2 = 5 \pmod{11}$ $7^2 = 5 \pmod{11}$

 $5^2 = 3 \pmod{11}$ $6^2 = 3 \pmod{11}$

$$2^2 = 4 \pmod{11}$$
 $9^2 = 4 \pmod{11}$

 $3^2 = 9 \pmod{11}$ $8^2 = 9 \pmod{11}$

Tabel dari nilai x terhadap fungsi ECC yang memenuhi nilai **QR** dan **y** :

X	$x^3 + x + 6$	mod 11	$R^{(p-1)/2} \equiv 1 \mod p$	QR(11)	у
2	16	5	1	yes	(4,7)
3	36	3	1	yes	(5,6)
5	136	4	1	yes	(2,9)
7	356	4	1	yes	(2,9)
8	526	9	1	yes	(3,8)

Note: Dalam proses pengerjaan soal, seluruh nilai x harus dihitung QR dan y-nya, contoh tabel ini disimplifikasi untuk QR yang memenuhi saja agar lebih efisien.

Nilai α yang memungkinkan dari tabel :

- $y = 6 \rightarrow (3,6)$
 - $\bullet \quad y = 7 \rightarrow (2,7)$
 - $y = 8 \rightarrow (8,8)$
 - $y = 9 \rightarrow (5,9), (7,9)$

Dengan menggunakan informasi yang didapatkan sebelumnya, enkripsikan **plaintext** (Pt) = (10,9) dengan fungsi pembangkit α = (2,7). Gunakan konstanta enkripsi q = 3 dan konstanta dekripsi \mathbf{r} = 7.

Step 1: Cari nilai $\beta = q\alpha$

$$\alpha + \alpha = (2,7) + (2,7)$$

$$\lambda = \frac{3x_1^2 + a}{2y_1} = \frac{3.4 + 1}{2.7} = \frac{13}{14} \pmod{11}$$

= 13.4(mod 11) = 8(mod 11)

$$x_3 = \lambda^2 - x_1 - x_2 = 64 - 2 - 2$$

$$= 60 \pmod{11} = 5 \pmod{11}$$
$$v_3 = \lambda(x_1 - x_3) - v_1 = 8(2 - 5) - 7$$

 $= -31 \pmod{11} = 2 \pmod{11}$

$$\therefore 2\alpha = (5,2)$$

$$2\alpha + \alpha = (5,2) + (2,7)$$

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 2}{2 - 5} = \frac{5}{-3} \pmod{11}$$

$$= 5. - 4 \pmod{11} = 2 \pmod{11}$$

$$= -3 \pmod{11} = 8 \pmod{11}$$
$$y_3 = \lambda(x_1 - x_3) - y_1 = 2(5 - 8) - 2$$

 $x_3 = \lambda^2 - x_1 - x_2 = 4 - 5 - 2$

$$= -8 \pmod{11} = 3 \pmod{11}$$

$$\therefore 3\alpha = (8,3)$$

J

Enkripsi:

$$y_1 = q\alpha$$

$$y_2 = (p_1, p_2) + q.(r\alpha)$$

$$y_2 = (p_1, p_2) + q.(1u)$$

 $y_1 = 3.\alpha = 3(2,7) = (8,3)$

$$y_2 = (p_1, p_2) + 3(7.\alpha) = (10.9) + 3(7.2)$$
$$= (10.9) + (3.5) = (10.2)$$

$$(p_1, p_2) = y_2 - r.y_1$$

= $(10,2) - 7(8,3) = (10,2) - (3,5) = (10,2) + (3,-5) | -5 \mod 11$
= $(10,2) + (3,6) = (10,9)$

Hasil dekripsi: (10,9)

Note Singkat

Kecuali disebutkan secara eksplisit pada permasalahan,
Nilai p persamaan ECC, biasanya nilai prima terakhir dari satu siklus ECC, misal:

E = 34

Maka persamaan akan memiliki **nilai p** dengan bilangan prima **31**.

Tugas 1


```
Misalkan diberikan persamaan ECC, sebagai berikut : y^2 \equiv x^3 + x + 13 \pmod{31}
```

```
p = 31
```

Buatlah dan Carilah:

$$a = 1$$
 $b = 13$

- Tabel untuk menghitung seluruh nilai QR dan y untuk setiap x yang ada (seperti pada slide 12)
- Seluruh **nilai y** dan α yang memungkinkan
- Misalkan $\beta = a\alpha$, dimana $\alpha = 25$, dengan menggunakan fungsi pembangkit $\alpha = (9,10)$, carilah nilai β . (Tampilkan fungsi yang digunakan hingga mendapat 7α , selebihnya silahkan menggunakan tabel untuk simplifikasi jika dibutuhkan).

· -

Tugas 2

```
Misalkan diberikan persamaan ECC, sebagai berikut : y^2 \equiv x^3 + x + 6 \pmod{31}
p = 31
```

b = 6

Lakukan:

```
• Enkripsi:
```

- Enkripsi:

 Plaintext: (7,8)
 - $\circ \quad \alpha = (3,6)$
 - o q = 2
- Dekripsi:
 - Gunakan Ciphertext yang didapatkan dari proses enkripsi
 - \circ r = 3

Tugas

Kumpulkan Tugas 1 dan Tugas 2 dalam 1 file PDF di Google Classroom, dengan format :

Format: Tugas10_NPM.pdf

Deadline Tugas: H-1 Praktikum Berikutnya, 23.59

Thank You!!

Kalau misalkan ada pertanyaan, yaudah tanya aja

Praktikum Kriptografi 2022

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution