Netzwerke

COMPUTERGESTÜTZTE NETZWERKE

INTERNET PEER TO PEER SWITCH VLAN

INTRANET ROUTER

INTERFACE TOPOLOGIE

Agenda Woche 1

- 2
- Geschichte des Internet
 - wichtige Meilensteine
- Computer-Netzwerke
 - Verwendung, Klassifikation, Topologie, Verbindungsarten
- Aufgaben eines lokalen Netzes
 - 5 wichtige Bereiche
- Arten von Endgeräten
 - o Komplettsystem, FAT-Client, ...
- Identifikation
 - Passwörter

- 1957
 - UDSSR startete erfolgreich den Satelliten Sputnik 1 und eröffnete die Raumfahrt (Sputnikschock)
- 1958
 - USA gründete die Behörde ARPA
 (Advanced Research Projects Agency)
 Aufgabe war den technologischen Vorsprung der UDSSR aufzuholen und eine Kommunikationsstruktur zu entwickeln
- 1969
 - ARPANET mit 4 Knoten online
 - IMP (Information Message Processor)

4

- 1971
 - o 14 Knoten online

- 1972
 - o einheitliches Programm um Nachrichten zu versenden
 - vergleichbar mit E-Mail
- 1974
 - Entwicklung von TCP
 - ALOHA und ARPA werden verbunden
- 1982
 - TCP/IP wird als Standard definiert
- 1988
 - o erster Virus: "Morris WORM"
- 1989
 - 160 000 Computer online

- 1990
 - o erste Webseite online
 - Tim Berners entwickelte HTML
- 1994
 - erster Browser wird von Netscape veröffentlicht
- 1996
 - 16 000 000 Computer online
- 2000
 - o 1 000 000 000 Webseiten online
- 2012
 - o ca. 1 Milliarde Webseiten online
- 2018
 - ca. 1,24 Billionen Webseiten online

Computer-Netzwerke

- Was ist ein Computer-Netzwerk
 - Zusammenschluss verschiedener technischer, selbstständiger elektronischer Systeme, die die Kommunikation der einzelnen Systeme untereinander ermöglichen
- Warum werden Rechner zusammengeschlossen?
 - Kommunikation
 - Teilen von Ressourcen (Geräte, Dateien, Programmen)
 - Erhöhung der Rechenleistung
 - Erhöhung der Systemverfügbarkeit

Klassifikation von Rechner-Netzwerken

- Bandbreite
- Topologie
- Übertragungsarten
- Übertragungsmedien
- Mobilität
- Vermittlungsart

Klassifikation: Bandbreite

- Breitband
 - o ITU
 - Österreich
 - o USA

- → Übertragungsrate höher als 2048 kBit/s
- → Download höher als 144 kBit/s
- → Download höher als 4 MBit/s

- Schmalband
 - o ITU

- → 1 Kanal mit max. 64 kBit/s
- Analoges Telefonnetz

Klassifikation: Übertragungsmedium

Kupferleitung

- 8 polige Leitung Twisted-Pair-Kabel
- 2 polige Leitung -- Telefonkabel
- Stecker: RJ45 bis 10-Gigabit CAT7a
- Stecker: GG 45 und TERRA -- CAT6a bis CAT7a

Lichtwellenleitung

- Fasern aus Glas oder Kunststoff
- o verschiedene Stecker FC, ST, SC
- Übertragung bis 100 Gbit/s
- Elektromagnetische Wellen
 - O GSM, UMTS, WIMAX, LTE, WLAN

Klassifikation: Übertragungsart

12

- Analog
 - o vorwiegend Telefonleitung im Schmalbandbereich
 - analoges Modem

- Digital
 - DSL-Technologie
 - **Telefonkabeln**
 - TV-Kabel
 - Koaxialkabeln

Klassifikation: Vermittlung

Leitungsorientiert

- o durchgeschalteter Übertragungskanal
- konstanter Bandbreite
- alle relevanten Verbindungen werden während des Verbindungsaufbaus ausgetauscht

Paketorientiert

- keine direkte Verbindung
- kein physikalischer Kanal
- o mehr Verluste bei der Übertragung möglich

Klassifikation: Mobilität

- Kabelgebunden
 - hohe Übertragungsraten möglich
 - o an einem Standort gebunden
 - o hoher Aufwand an Kabeln, Stecker und Dosen
- nicht kabelgebunden
 - o generell niedrigere Übertragungsraten als mit dem Kabel
 - Mobil
 - keine Kabel und Stecker

Klassifikation: Topologie

- Was ist eine Topologie
 - o bezeichnet die Struktur eines Rechnernetzes
 - entscheidend für Ausfallsicherheit
 - o bestimmt die Performance und die Kosten
 - Darstellung: grafisch in Knoten und Kanten
- Unterscheidung in zwei Arten
 - o physikalische
 - beschreibt den Aufbau der Netzverkabelung
 - logische
 - beschreibt den Datenfluss

Kennwerte der Topologie

- Durchmesser
- Grad
- Skalierbarkeit
- Konnektivität

Übung

- Bilden Sie Gruppen zu drei Personen. Arbeiten Sie die nachstehenden Themen zu Netzwerk-Topologie aus.
 - Gruppe 1: Sterntopologie
 - Gruppe 2: Bustopologie
 - Gruppe 3: Ringtopologie
 - Gruppe 4: Baumtopologie
 - Gruppe 5: Peer-to-Peer

Anforderungen: Beschreibung, Vor- und Nachteile, Aufbau der

Topologie. Zeit 30 Minuten

Danach Expertenrunde

Peer-to-Peer P2P

Peer to Peer

- Punkt zu Punkt Verbindung
- Dienste und Ressourcen können zwischen allen Teilnehmern ausgetauscht werden
- Verfügbarkeit kann nicht gewährleistet werden
- Peers haben eine signifikante Autonomie
- Arten
 - zentralisierte Systeme
 - Verwaltung zentral
 - o reine P2P Systeme
 - Dezentrales Netzwerk (Web of Trust)
 - Hybride Systeme
 - Dynamisch werden zentrale Server bestimmt

Arten von Topologien (pysikalisch)

19

Bus

- o alle Teilnehmer sind direkt mit dem Medium verbunden
- keine aktiven Komponenten zwischen dem Medium und dem Endgerät
- Vorteil
 - geringe Kosten, einfache Verkabelung
- Nachteil
 - kann leicht abgehört werden
 - es kann zu jedem Zeitpunkt immer nur eine Station senden

BUS-Topologie

Arten von Topologien 2

Stern-Topologie

- ein zentrales Gerät zum Verbinden der anderen Teilnehmer (Switch, Hub)
- Vorteile:
 - x hohe Übertragungsraten
 - leicht erweiterbar und leichte Fehlersuche

Nachteil

- Bei Ausfall der Zentrale → keine Kommunikation untereinander
- Hoher Kabelaufwand

Stern-Topologie

Arten von Topologien

Ring-Topologie

- Jeder Teilnehmer ist über eine Zweipunktverbindung verbunden
- wird zugleich als Repeater verwendet
- Zugriffsverfahren Token Ring

Vorteile

- garantierte Bandbreite
- alle Teilnehmer haben gleiche Zugriffsmöglichkeiten

Nachteile

- hoher Verkabelungsaufwand
- x leicht abzuhören

Ring-Topologie

Logische Topologie

- Logische Topologien müssen nicht mit den physikalischen übereinstimmen
- Stern-Topologie (Ethernet)
 - besteht aus Sender und Empfänger
- Ring-Topologie (Token Ring)
 - Token (Datenpaket) wird immer weitergegeben
 - o falls frei wird, Empfängeradresse und Daten angefügt
- Bus-Topologie (CSMA/CD)
 - o ein Teilnehmer sendet Daten -> alle anderen müssen warten

Geografische Unterteilung

Unterteilung nach geografischer Lage

- PAN (Personal Area Network)
 - o Reichweite ca. 10m
 - Bluetooth, ZigBee, NFC
- LAN (Local Area Network)
 - verbindet ein Netzwerk in einem Gebäude(n) (Firma, Gelände, Haushalt)
 - o max. Ausdehnung 10km
- MAN (Metropolitan Area Network)
 - o verbindet mehrere LAN (Firmengebäude, Stadt)
 - benötigt zwei parallel verlaufende getrennte Leitungen
 - DQDB-Technologie (doppelte Bus-Technologie)

Unterteilung nach geografischer Lage

- WAN (Wide Area Network)
 - o erstreckt sich über einen großen geografischen Bereich
- FAN (Field Area Network)
 - Verwendung in Sprach und Datenübertragung
 - Smart Grid (Electric Grid),
- GAN (Global Area Network)
 - Globales Netzwerk (Internet)

Übung 1

 Nehmen Sie ein Blatt Papier und zeichnen Sie eine doppelte Sterntopologie auf.

Verbindungsarten

Verbindungsarten

- Peer-to-Peer-Netzwerk (P2P)
 - direkte Kommunikation zwischen zwei oder mehreren Rechnern
 - dezentral und ohne Server
 - o jeder ist Client und Server
 - P2P-System ist selbstorganisierend
- Verwendung
 - Datenaustausch (BitTorrent, Gnutella,)

Verbindungsarten 2

Client Server Netzwerk

- Server → bietet Dienste an
- Client → verwendet die Dienste
- ein oder mehrere Server stellen Dienste zur Verfügung (DHCP, DNS, FTP, Printserver, ...)
- Vernetzung zwischen mehreren Rechner

Anwendung

- o gemeinsames Nutzen von Diensten
- Benutzerverwaltung
- gemeinsames nutzen von Dateien und Speicherplatz

Dienste im Netzwerk

- Dienst (Service)
 - Funktion oder Fähigkeit eines Rechnernetzes zur Unterstützung der Kommunikation
- unsymmetrischer Dienst
 - Client sendet eine Anfrage an den Server
 - Server verarbeitet die Anfrage und sendet das Ergebnis zurück (Webservices)
- symmetrischer Dienst
 - o es werden Dienste an zwei oder mehreren Zugangspunkten gleichzeitig bereitgestellt (Kommunikationsdienste)

Dienste

(36)

Aufgaben eines lokalen Netzwerkes

Kommunikationsverbund

- Benutzer können Informationen austauschen
- Schnittstellen zur Verfügung stellen
- Steuerung

Beispiel:

Über einen Switch werden mehrere Computer miteinander vernetzt. So können diese leichter miteinander kommunizieren. Außerdem ist die Steuerung andere Rechner möglich, was die Arbeit komfortabler macht.

Datenverbund

- schneller Datenaustausch
- Zugriff auf entfernte Ressourcen
- weniger Arbeit

Beispiel:

Der Server (Host) stellt Speicher für die PCs (Clients) zur Verfügung. Die Clients können so schnell und problemlos auf Daten entfernter Zweigstellen zugreifen.

Funktionsverbund

- Kostenersparnis
- gemeinsame Peripherie
- Softwareverteilung

Beispiel:

Mehrere Clients könnten auf einen Netzwerkdrucker zugreifen und Druckaufträge an diesen verteilen.

Lastenverbund

- stabile Verbindung
- Lasten zwischen gleichwertigen Komponenten aufteilen
- hohe Verarbeitungsgeschwindigkeit

Beispiel:

Lastenverteilung im Netzwerk → Ziel: erhöhte Performance

Sicherheitsverbund

- Ausfallsicherheit
 - x redundante Hardware
 - gesicherte Stromversorgung
 - Datensicherung
- Zugriffssicherheit
 - Zugriffsberechtigung auf Dateien und Ordner
 - Benutzeranmeldung
 - Schutz vor unberechtigten Zugriff (Firewall)

Beispiel:

Server mit einem zweiten Netzteil zur Absicherung, eine USV um den Server vor Stromausfällen zu schützen und Datensicherungen auf Magnetbändern anlegen.

42

Endgeräte

Arten von Endgeräten

- Komplettsysteme (Server)
 - P2P Systeme
 - Daten Eingabe, Ausgabe und Verarbeitung erfolgt lokal
 - Verwaltungsaufgaben (Domain, DHCP, DNS, ...)

FAT Client

- o (leistungsfähiger) Desktop-Rechner
- managed PC oder unmanaged PC
- Daten Eingabe, Ausgabe und Verarbeitung erfolgt lokal
- Datenspeicherung lokal oder im Netz

Arten von Endgeräten

Thin-Client

- o stellt Benutzerschnittstelle dar
- Verarbeitung der Daten erfolgt am Server
- keine Massenspeicher integriert
- o minimal OS zur Verbindung mit dem Server
- wird nur in Client-Server Umgebungen verwendet

Thin-Client

45)

Arten von Endgeräten

- Ultra-Thin-Client (Zero Client)
 - limitierte Funktionen
 - minimalistisches Betriebssystem auf Flashspeicher
 - Zugriff auf virtualisierte Desktops (Citrix, XEN Desktop, VMWare View, ..)
 - sehr sparsamer Verbrauch
 - Wechsel auf eine andere Architektur ist nicht (schwer) möglich

Identifizieren Authentifizieren

Anmelden an Diensten

Netzwerkdienste

 Netzwerkdienste erfordern eine Identifikation und die Authentifizierung des Benutzers.
 (Soziale Netzwerke, Moodle, Mail, ..)

Rechtevergabe

Jeder Benutzer erhält bei der Anmeldung Rechte auf Dateien,
 Ordner oder Bereiche des Systems.

Zweck

- o eine Gleichberechtigung aller Nutzer würde Chaos erzeugen.
- Schutz vor Angriffen (Schadsoftware)

Begriff: Identifikation

- Identifizieren
 - Überprüfung einer Person oder eines Objektes in Bezug auf vorliegende Merkmale auf Echtheit.
- realen Welt
 - Dokument (Pass, Führerschein)
- Netzwerk
 - Benutzerkennung (Benutzername, Nummer, ..)
 - RFID -- Warenkennzeichnung

Begriff: Authentifizierung

Authentifizieren

- o erbringen eines Nachweises (Passwort, Fingerabdruck, ...)
- Schutz vor Missbrauch
- Authentifizierung geschieht z.B. beim Anmelden (Einloggen) an einem Service
- realen Welt
 - Fingerabdruck
 - Iris Scan
- Netzwerk
 - O Passwort, Smartcard, ...

Passwörter

- Welchen Zweck dient ein Passwort?
 - Authentifizieren von Personen oder Objekten oder Nachweisen von Rechten
- Warum können Passwörter unsicher sein?
 - Passwort zu kurz (aZ)
 - o gleiche Zeichenfolgen (111)
 - o ein bekanntes Wort (admin, password)
 - o persönliche Details (Geburtstag, Name, Kontonummer)
 - bereits verwendetes Passwort
 - auf einem Zettel aufgeschrieben

Passwörter 2

- Die beliebtesten unsicheren Passwörter
 - o 123456, password, abc123, 1234567
- Warum ist ein sicheres Passwort wichtig?
 - Identitätsklau, Zugang zu sensiblen Daten verwehren
- Voraussetzung für ein sicheres Passwort
 - o mind, 8 Zeichen
 - besteht aus Groß- und Kleinbuchstaben, Ziffern, Umlauten und Sonderzeichen (a-z; A-Z; äöüßÄÖÜ!"§\$%Λ'μ()?)
 - o nie dasselbe Passwort verwenden
 - o keine bekannten Namen oder persönlichen Daten verwenden
 - o nirgends aufschreiben
 - Passwort keinem verraten

Fragen?

