24. Ober- und Unterfunktionen

Vereinbarung: I.d. Paragraphen: $x_0, y_0 \in \mathbb{R}, a > 0$, $I := [x_0, x_0 + a]$, $I_0 := (x_0, x_0 + a]$, $D := I \times \mathbb{R}$ und $f : D \to \mathbb{R}$ eine Funktion.

Wir betrachten das AWP

$$(A) \begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Definition

 $v, w: I \to \mathbb{R}$ seien differenzierbar auf I.

v heißt eine **Unterfunktion** (UF) bzgl. (A) : \iff

$$v'(x) < f(x, v(x)) \ \forall x \in I \text{ und } v(x_0) \le y_0$$

w heißt eine **Oberfunktion** (OF) bzgl. (A):

$$w'(x) > f(x, w(x)) \ \forall x \in I \text{ und } w(x_0) \ge y_0$$

Hilfssatz 24.1

 $\phi, \psi: I_0 \to \mathbb{R}$ seien differenzierbar auf I_0 . Es sei $\varepsilon > 0, \varepsilon < a$ und es gelte: $\phi < \psi$ auf $(x_0, x_0 + \varepsilon)$. Weiter sei

$$\phi'(x) - f(x, \phi(x)) < \psi'(x) - f(x, \psi(x)) \ \forall x \in I_0$$

Dann: $\phi < \psi$ auf I_0 .

Beweis

Anname: $\exists x_1 \in I_0 : \phi(x_1) \ge \psi(x_1)$. Zwischenwertsatz $\implies M := \{x \in I_0 : \phi(x) = \psi(x)\} \ne \emptyset$.

 $\xi := \inf M$; ϕ, ψ stetig $\Longrightarrow \phi(\xi) = \psi(\xi) \Longrightarrow \xi = \min M$ und $\phi < \psi$ auf (x_0, ξ) . Sei h > 0 so, daß $\xi - h > x_0 \Longrightarrow \phi(\xi - h) < \psi(\xi - h)$

$$\implies \frac{\phi(\xi - h) - \phi(\xi)}{h} < \frac{\psi(\xi - h) - \psi(\xi)}{h}$$

$$\implies \frac{\phi(\xi - h) - \phi(\xi)}{-h} > \frac{\psi(\xi - h) - \psi(\xi)}{-h}$$

$$\implies \frac{1}{-h} > \frac{1}{-h}$$

 $\overset{h\to 0}{\Longrightarrow} \phi'(\xi) \ge \psi'(\xi) \text{ Aber: } \phi'(\xi) - f(\xi,\phi(\xi)) < \psi'(\xi) - f(\xi,\underbrace{\psi(\xi)}_{=\phi(\xi)}) \implies \phi'(\xi) < \psi'(\xi), \text{ Widerspruch!}$

Satz 24.2 (Abschätzung von Lösungen mittels Ober- und Unterfunktionen)

Gegeben: $v, w, y : I \to \mathbb{R}$. v sei eine Unterfunktion bezüglich (A), w sei eine Oberfunktion bezüglich (A) und y sei eine Lösung des AWPs (A) auf I. Dann: v < y < w auf I_0 .

Beweis

Wir zeigen nur v < y auf I_0 .

$$\forall x \in I : v'(x) - f(x, v(x)) < 0 = y'(x) - f(x, y(x)).$$

Wegen 24.1 genügt es z.z:

(*)
$$\exists \varepsilon \in (0, a) : v < y \text{ auf } (x_0, x_0 + \varepsilon)$$

Fall 1: $v(x_0) < y_0 = y(x_0)$; v, y stetig \implies es gilt (*).

Fall 2: $v(x_0) = y_0 = y(x_0)$; h := y - v; dann: $h(x_0) = 0$ und

$$v'(x_0) - f(x_0, v(x_0)) < 0 = y'(x_0) - f(x, \underbrace{y(x_0)}_{=v(x_0)})$$

 $\implies v'(x_0) < y'(x_0)$, also $h'(x_0) > 0$. Annahme: (*) gilt nicht. Dann existiert zu jedem $n \in \mathbb{N}$ ein $x_n \in (x_0, x_0 + \frac{1}{n})$: $h(x_n) \le 0$

$$\implies \frac{h(x_n)}{x_n - x_0} = \frac{h(x_n) - h(x_0)}{x_n - x_0} \le 0 \ \forall n \in \mathbb{N} \stackrel{n \to \infty}{\Longrightarrow} h'(x_0) \le 0$$

Widerspruch!

Bemerkung: Man kann auch folgende Situation betrachten:

 $x_0, y_0 \in \mathbb{R}, a > 0, J := [x_0 - a, x_0], D := J \times \mathbb{R}, f : D \to \mathbb{R}$

$$AWP \begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Dann lauten die Bedingungen für eine

Unterfunktion: v'(x) > f(x, v(x)) $\forall x \in I, v(x_0) \leq y_0$ Oberfunktion: w'(x) < f(x, w(x)) $\forall x \in I, w(x_0) \geq y_0$

 $(\rightarrow \text{Walter: Gew\"{o}hnliche Differentialgleichungen}).$

Anwendung von 24.2, schwer klausurrelevant! :-) : $f(x,y) = \frac{x^2+1}{2} + y^2$.

AWP (+)
$$\begin{cases} y' = f(x, y) \\ y(0) = 1 \end{cases}$$

 $f \in C(\mathbb{R}^2, \mathbb{R})$, f ist partiell differenzierbar nach y und $f_y \in C(\mathbb{R}^2, \mathbb{R})$ Paragraph 22 \Longrightarrow (+) hat eine eindeutig bestimmte, nicht fortsetzbare Lösung $y : (\omega_-, \omega_+) \to \mathbb{R}$. $(\omega_- < 0 < \omega_+)$. Wir untersuchen diese Lösung für $x \ge 0$.

Behauptung:

- (1) $w_+ \in [\frac{\pi}{4}, 1]$
- (2) $\frac{1}{1-x} < y(x) \ \forall x \in (0, \omega_+)$
- (3) $\frac{1}{1-x} < y(x) < \tan(x + \frac{\pi}{4}) \ \forall x \in (0, \frac{\pi}{4})$

Beweis

 $f_1(x,y) = y^2 \implies f_1 < f \text{ auf } \mathbb{R}^2$. Das

AWP
$$\begin{cases} v' = v^2 = f_1(x, v) \\ v(0) = 1 \end{cases}$$

hat die Lösung $v(x) = \frac{1}{1-x}$ auf $(-\infty, 1)$ (TDV!).

Sei $a \in (0,1), a < \omega_+$. Für $x \in [0,a]$:

$$v'(x) = f_1(x, v(x)) < f(x, v(x)), \quad v(0) = 1$$

v ist eine Unterfunktion bezüglich (+) auf [0, a]. 24.2 $\implies v < y$ auf (0, a] (i).

Annahme: $\omega_+ > 1 \implies (i)$ gilt $\forall a \in (0,1) \implies v < y$ auf (0,1). $\implies \lim_{x \to 1^-} y(x) = \infty$. Aber: $1 \in (\omega_-, \omega_+) \implies y(x) \to y(1)$ $(x \to 1^-)$, Widerspruch! (also: $\omega_+ \le 1$).

Weiter: (i) gilt $\forall a \in (0, \omega_+) \implies v < y$ auf $(0, \omega_+)$. $f_2(x, y) := 1 + y^2$, dann: $f_2 > f$ auf $[0, 1) \times \mathbb{R}$. Das

$$AWP \begin{cases} w' = 1 + w^2 \\ w(0) = 1 \end{cases}$$

hat die Lösung $w(x) = \tan(x + \frac{\pi}{4})$ auf $(-\frac{3}{4}\pi, \frac{1}{4}\pi)$ (TDV!). Sei $a \in (0, \omega_+)$, $a < \frac{\pi}{4}$; für $x \in [0, a]$: $w'(x) = f_2(x, w(x)) > f(x, w(x))$, $w(0) = 1 \implies$ w ist eine Oberfunktion bzgl (+) auf [0, a]. $24.2 \implies y < w$ auf (0, a] (ii).

Annahme: $\omega_{+} < \frac{\pi}{4} \implies (ii)$ gilt $\forall a \in (0, \omega_{+}) \implies y < w$ auf $(0, \omega_{+})$. $y'(x) = \frac{x^{2}+1}{2} + y(x)^{2} > 0 \implies y$ ist streng wachsend. y ist nach oben beschränkt auf $[0, \omega_{+}) \implies \exists \beta := \lim_{x \to \omega_{+} -} y(x)$ und $\beta \in \mathbb{R}$.

$$z(x) := \begin{cases} y(x), & x \in (\omega_{-}, \omega_{+}) \\ \beta, & x = \omega_{+} \end{cases} \quad (\implies z \in C(\omega_{-}, \omega_{+}))$$

$$\lim_{x \to \omega_{+}-} \frac{z(x) - z(\omega_{+})}{x - \omega_{+}} = \lim_{x \to \omega_{+}-} \frac{y(x) - \beta}{x - \omega_{+}} \stackrel{\text{l'Hosp.}}{=} \lim_{x \to \omega_{+}-} y'(x)$$
$$= \lim_{x \to \omega_{+}-} f(x, y(x)) = f(\omega_{+}, \beta)$$

 $\implies z$ ist in ω_+ differenzierbar und $z'(\omega_+) = f(\omega_+, \beta) = f(\omega_+, z(\omega_+)) \implies z$ löst das AWP (+) auf $(\omega_-, \omega_+]$, Widerspruch!, denn y ist nicht fortsetzbar. Also: $\omega_+ \ge \frac{\pi}{4}$. Dann gilt (ii) $\forall a \in (0, \frac{\pi}{4}) \implies y < w$ auf $(0, \frac{\pi}{4})$.