Función generadora de momentos

- 1. Hallar la función generadora de momentos de X, cuando X tiene distribución:
 - $a) \mathcal{P}(\lambda)$
 - b) $\mathcal{B}(n,p)$
 - $c) \mathcal{E}(\lambda)$
- 2. Usando funciones generadora de momentos probar que:
 - a) si X e Y son v.a. independientes, $X \sim \mathcal{P}(\lambda)$, $Y \sim \mathcal{P}(\mu)$, entonces $X + Y \sim \mathcal{P}(\lambda + \mu)$.
 - b) si X e Y son v.a. independientes, $X \sim \mathcal{B}(n,p), Y \sim \mathcal{B}(m,p)$, entonces $X+Y \sim \mathcal{B}(n+m,p)$.
- 3. Hallar la función generadora de momentos de $X \sim \Gamma(n, \lambda)$ y de $Y \sim \chi^2(n)$.
- 4. Calcular para las variables de los items 1 y 3 los primeros cuatro momentos.