

Predicción del tiempo de permanencia de pacientes en un hospital

1. Introducción

Asignación de recursos en hospitales

- Mejorar la atención de pacientes en cantidad y calidad
- Recursos finitos

1.1 ¿Cuál es el principal problema asociado?

- Asignación eficiente de camas para pacientes de urgencia o en espera
- Resolverlo estimando los tiempos de permanencia de pacientes en un hospital. En otras palabras, estimando el LOS (length of stay) de los pacientes

1.2 Complejidades del problema

- Diversos factores influyen en el LOS
- Variación de LOS según centro de salud
- La asignación eficiente de camas está sujeta al tiempo de permanencia
- Pacientes con alto LOS implica una disminución en la capacidad del hospital

2.1 Descripción Datos

Procedures

Consta de 4 variables principales

• Case: ID paciente

Date: Fecha procedimiento

Release: Fecha de alta

Procedure: Código

Diagnosis

Consta de 4 variables principales

Case : ID paciente

PrincSec : Tipo de diagnóstico

 Seq: Número diagnostico principal asociado

Diagnosis : Código

2.2 Descripción del problema

Alcances

- Reducción tiempos de espera
- Descongestión de sistemas de salud
- Planificación interna más eficiente
- Manejo eficiente de insumos médicos

3. Metodologías

Utilizadas

- Random Forest
 - K-Means (12 intervalos)
- Naive Bayes
 - K-Means (12 intervalos)
- Decision Tree
- Support Vector Machine
- Multilayer Perceptron

3. Metodologías

Redes bayesianas

- Grafo acíclico dirigido
- Aristas representan dependencias
 condicionales y los nodos son estados
- Enfoque Maximum a Posteriori (MAP)

3. Metodologías

Naive Bayes

- Independencia entre variables predictoras
- Se puede entrenar de manera eficiente en un entorno de aprendizaje supervisado
- Se requieren pocos datos de entrenamiento para estimar parámetros

Complejidad Inicial

- Pacientes con muchos procedimientos que tenían LOS más pequeños que su LOS total (distinta entrada, misma salida).
- Esto se debe a que fueron procedimientos que se fueron realizando a medida que el paciente se encontraba en el hospital

Complejidad Inicial

- Dado el sistema de información del hospital, no se sabe la contribución real de cada uno de estos procedimientos en la estadía del paciente, solo se sabe que el conjunto de procedimiento gatilla un largo de estadía
- Se decidió ajustar los LOS por paciente.

Complejidad Inicial: Ejemplo Paciente 14158735

Case	Procedure	Date	Release	LOS
14158735	3E04305	01-08-2017	14-01-2018	166
14158735	3E0G76Z	26-11-2017	14-01-2018	49
14158735	5A1955Z	25-11-2017	14-01-2018	50
14158735	5A1955Z	17-12-2017	14-01-2018	28
14158735	8E0ZXY6	29-11-2017	14-01-2018	46
14158735	DB021ZZ	24-07-2017	14-01-2018	174

Complejidad Inicial: Ejemplo Paciente 14158735

Case	Procedure	Date	Release	LOS	LOS Final
14158735	3E04305	01-08-2017	14-01-2018	186	186
14158735	3E0G76Z	26-11-2017	14-01-2018	49	186
14158735	5A1955Z	25-11-2017	14-01-2018	50	186
14158735	5A1955Z	17-12-2017	14-01-2018	28	186
14158735	8E0ZXY6	29-11-2017	14-01-2018	46	186
14158735	DB021ZZ	24-07-2017	14-01-2018	174	186

Base de datos : Procedimientos

- Se revisó la cantidad de datos por procedimiento.
- Se agruparon los procedimientos por el primer carácter.

Procedimiento	0	1	2	3	4	5	6	8	В	С	D	F	G	Н	X
Cantidad de datos	16275	1514	161	3048	2194	1165	78	94	1795	36	38	117	9	43	1

Base de datos : Procedimientos

- Se volvió a agrupar el procedimiento 0 en 6 categorías por la desviación y cantidad de datos.
- Se agruparon el grupo de procedimientos de un paciente en una misma celda.
- Asignación de un orden según frecuencias de los distintos procedimientos
- Se hizo un .join() con el excel de diagnósticos.

	Cantidad Datos	Intervalo LOS
ОТ	4247	[0,1]
0U	2278]1, 2]
0V	3475]2, 5]
0W	2061]5, 10]
0Y	2153]10, 25]
0Z	2061]25,]

Base de datos : Diagnósticos

- Se decidió trabajar con los procedimientos según los diagnósticos principales de los pacientes.
- Se categorizaron por el primer carácter.
- Se agruparon como una tupla por paciente.

Base de datos : Procedimientos y Diagnósticos

	Case	Diagnosis	Procedure	LOS
10	14198020	(I, K)	0Z-3	224
11	14228157	7 (E,)	0V	3
12	14229907	(C, I, U)	0Z	133
13	14234686	(E,)	OW	7
14	14236115	(M,)	0U	2
15	14240255	(A, I, U, Z)	0Z-3-4-5-B	159
16	14254687	(L,)	0V	4
17	14255134	(L,)	0T	1
18	14263128	B (N,)	0T	1
19	14266798	(O,)	1	3
20	14266806	(O,)	0W-1-3-4	6
21	14266816	(O,)	0V-1	3
22	14266824	(O,)	0V-1-3-4	3
23	14267839	(C, U)	0Z-3	156

	Case	Diagnosis	Procedure	LOS
24	1427572	5 (S,)	0T	1
25	1428143	1 (D, Z)	0Z	115
26	1428297	4 (L,)	0V	3
27	1428328	0 (O,)	0V-1-3	4
28	1429040	0 (O,)	1-3-4	3
29	1429642	0 (M,)	0V	5
30	1430001	3 (O,)	0V-1	3
31	1430274	5 (M,)	0T	1
32	1430315	9 (L,)	0V	3
33	1430843	8 (O,)	0V-1-3-4	5
34	1430868	9 (O,)	0U-1-3-4	2
35	1430873	8 (O,)	1-3-4	2
36	1430883	1 (O,)	1-3-4	2
37	1430884	5 (O,)	1-3	3

Base de datos: 11951 datos de pacientes

Procedimiento	Cantidad
0Т	2645 (15.3%)
0 U	1481 (8.55%)
0V	2370 (13.7%)
0W	1122 (6.48%)
0Y	924 (5.33%)
0Z	576 (3.32%)
1	1060 (6.12%)

Procedimiento	Cantidad
2	53 (0.30%)
3	2182 (12.6%)
4	2157 (12.45%)
5	953 (5.5%)
6	72 (0.42%)
8	94 (0.54%)
В	1410 (8.14%)

Procedimiento	Cantidad
С	34 (0.19%)
D	33 (0.19%)
F	113 (0.65%)
G	1 (0.006%)
н	42 (0.24%)
x	1 (0.006%)

Base de datos: 11526 datos de pacientes

Procedimiento	Cantidad
0Т	2634 (16.1%)
0 U	1477 (9.04%)
0V	2334 (14.28%)
0W	1081 (6.61%)
0Y	851 (5.21%)
0Z	444 (2.72%)
1	1059 (6.48%)

Procedimiento	Cantidad
3	2034 (12.45%)
4	2149 (13.15%)
5	889 (5.44%)
В	1388 (8.5%)

Diagnóstico : Probabilidades a priori

Diagnóstico: Probabilidades a priori

Diagnóstico	Probabilidad
Α	0.0158
В	0.0031
С	0.0616
D	0.0332
Е	0.0475
F	0.0039

Diagnóstico	Probabilidad		
G	0.0874		
Н	0.0056		
ı	0.1491		
J	0.0648		
K	0.1204		
L	0.0108		

Diagnóstico	Probabilidad		
M	0.1091		
N	0.0559		
0	0.0979		
Р	0.0043		
Q	0.0049		
R	0.0281		

Diagnóstico	Probabilidad
S	0.0704
Т	0.0329
U	0.2855
Z	0.0938

Procedimiento: Orden por mayor ocurrencia

Procedimiento: Orden por mayor ocurrencia

Procedimiento: Orden por mayor ocurrencia

Procedimiento : Prob. condicionadas por nodo padre

Procedimiento (P =)	P Padre	P Padre	P Padre	P Padre	
0V	0.000	1.000	0.262	0.738	
4	0.081	0.919	0.213	0.787	
3	0.119	0.881	0.188	0.812	
0U	0.046	0.954	0.147	0.853	
В	0.059	0.941	0.129	0.871	

Procedimiento (P=)	P Padre	P Padre P Padre		P Padre	
OW	0W 0.062 0.938		0.096	0.904	
1	0.015	0.985	0.099	0.901	
5	0.000	1.000	0.085	0.915	
0Y	0.161	0.839	0.067	0.933	
0Z	0.000	1.000	0.041	0.959	

Procedimiento : Prob. condicionadas por nodo padre

5.1 Ejemplo Modelamiento: Paciente 14574357

 CASE: 14574357
 Orden Frecuencia Procedimientos :

 DIAGNOSIS: I-U
 OT > 0V > 4 > 3 > 0U > B > 0W > 1 > 5 > 0Y > 0Z

 $P(A^{C}) = P(\overline{A}) = 1 - P(A)$

5.1 Ejemplo Resultados: Paciente 14574357

Intervalo LOS real (0.0, 5.053) LOS real 3 días

Intervalo LOS	Valor Intervalo	Probabilidad
LOS 1 0Z ^C	(0.0, 5.053)	4.968e-05
LOS 2 0Z ^C	(5.053, 12.141)	8.357e-06
LOS 3 0Z ^c	(12.141, 21.285)	3.574e-06
LOS 4 0Z ^C	(21.285, 32.089)	9.325e-07
LOS 5 0Z ^C	(32.089, 44.246)	5.651e-08
LOS 6 0Z ^C	(44.246, 58.306)	2.119e-08

Intervalo LOS	Valor Intervalo	Probabilidad
LOS 7 0Z ^C	(58.306, 75.144)	2.119e-08
LOS 8 0Z ^c	(75.144, 93.408)	0
LOS 9 0Z ^c	(93.408, 110.25)	0
LOS 10 0Z ^C	(110.25, 125.75)	7.064e-09
LOS 11 0Z ^C	(12.75, 145.5)	0
LOS 12 0Z ^C	(145.5, 159)	0

Porcentajes obtenidos luego de realizar 10-Fold Cross Validation

Modelo Predictivo	Accuracy
Naive Bayes	77.75%
Random Forest	88.82 %
Decision Tree	67.49 %
Support Vector Machine	85.83 %
Multilayer Perceptron	85.76%

Métodos de Comparación de los Clasificadores

- Curva ROC de los clasificadores → Sensibilidad vs Especificidad
- Accuracy → Fracción de veces que el modelo acierta.
- Weighted Precision → Fracción de veces que no se comete error tipo II
- Weighted Recall → Fracción de veces que no se comete error tipo I
- Weighted F1 Score → Condensa info Recall y Precision

Desglose de métricas (Naive Bayes)

Intervalo	Precisión	Recall	F1-Score	Support
(0.0, 5.05)	0.80	1.00	0.89	1756
(5.05, 12.14)	0.00	0.00	0.00	289
(12.14, 21.29)	0.00	0.00	0.00	122
(21.29, 32.09)	0.42	0.57	0.49	60
(32.09, 44.25)	0.00	0.00	0.00	24
(44.25, 58.31)	0.00	0.00	0.00	16
(58.31, 75.14)	0.00	0.00	0.00	7
(75.14, 93.41)	0.00	0.00	0.00	4
(93.41, 110.25)	0.00	0.00	0.00	1

	Accuracy	Weighted Precision	Weighted Recall	Weighted F1- Score	
Naive Bayes	78.5%	62.6%	78.5%	69.69%	
Random Forest	andom Forest 89.6% 90.9%		89.6%	90%	
Decision Tree	sion Tree 81.2% 6		% 81.2%	74.8%	
Support Vector Machine			86.2%	83.3%	
Multilayer Perceptron	85.3%	79.9%	85.3%	82.39%	

7. Proyecciones

- Incluir diagnósticos secundarios.
- Averiguar si existe temporalidad entre los procedimientos.
- Incoporar historial clínico del paciente.

Predicción del tiempo de permanencia de pacientes en un hospital

8. Anexo

Ingresar DataFrame de pacientes o solo un paciente

[> {(0.0, 5.053121516936446): 4.967605666756014e-05, (5.053121516936446, 12.141026503753984): 8.357049920040337e-06, (12.141026503753984, 2 (0.0, 5.053121516936446)

8. Anexo

Matriz de confusión (Naive Bayes):

- Accuracy: **78.5**%
- Weighted Precision:62.6%
- Weighted Recall:78.5%
- Weighted F1-score:69.69%

1756	0	0	0	0	0	0	0	0
289	0	0	0	0	0	0	0	0
122	0	0	0	0	0	0	0	0
26	0	0	34	0	0	0	0	0
1	0	0	23	0	0	0	0	0
5	0	0	11	0	0	0	0	0
0	0	0	7	0	0	0	0	0
0	0	0	4	0	0	0	0	0
0	0	0	1	0	0	0	0	0