特殊平行四边形中的解题技巧专题

引例:

如图,在边长为6的正方形ABCD中,点E,F分别在BC,CD上,BC=3BE且 BE=CF, AE_LBF, 垂足为 G, O 是对角线 BD 的中点, 连结 OG, 则 OG 的长为 多少?

◆类型一 特殊四边形中求最值、定值问题

一、利用对称性求最值

1. 如图, 四边形 ABCD 是菱形, AC=8, DB=6, P, Q 分别是 AC, AD 上的动点, 连接 DP, PO,则DP+PO的最小值为

第1题图

第2题图

2. 如图, 正方形 ABCD 的边长为 6, $\triangle ABE$ 是等边三角形, 点 E 在正方形 ABCD 内, 在对角线 AC 上有一点 P,使 PD+PE 的和最小,则这个最小值为 .

二、利用面积法求定值

3. 如图, 在矩形 ABCD 中, 点 P 是线段 BC 上一动点, 且 $PE \perp AC$, $PF \perp BD$, AB = 6, BC=8,则 PE+PF 的值为

【变式题】矩形两条垂线段之和→菱形两条垂线段之和→正方形两条垂线段之和

(1)如图,菱形 ABCD 的周长为 40,面积为 25, P 是对角线 BD 上一点,分别作 P 点到 直线 AB、AD 的垂线段 PE、PF,则 PE+PF 等于

(2)如图,正方形 ABCD 的边长为 1,E 为对角线 BD 上一点且 BE=BC,点 P 为线段 CE 上一动点,且 $PM \bot BE$ 于 M, $PN \bot BC$ 于 N,则 PM+PN 的值为_____.

◆类型二 正方形中利用旋转性解题

4. 如图,在四边形 ABCD 中, \angle $ADC=\angle$ $ABC=90^\circ$,AD=CD, $DP\perp AB$ 于 P. 若四边形 ABCD 的面积是 18,则 DP 的长是 .

5. 如图, 在正方形 ABCD 中, 对角线 AC, BD 交于点 O, P 为正方形 ABCD 外一点, 且 $BP \perp CP$, 连接 OP. 求证: $BP + CP = \sqrt{2}OP$.

6. 如图,在正方形 ABCD 中,点 E, F 分别在 BC, CD 上, \angle $EAF=45^\circ$. 求证: $S_{\triangle ABF} = S_{\triangle ABE} + S_{\triangle ADF}$.

拓展提升: 如图, 在正方形 ABCD 中, ∠ EAF=45°, 你能写出哪些结论?

变式: 1、如图,连接 BD,

求证: (1) 、*MN*²=*BM*²+*DN*²

(2)
$$2AM^2 = BM^2 + DM^2$$

变式 2: (1) 连接 NE、MF, \triangle ANE、 \triangle AMF 是等腰直角三角形吗? 如果是,请证明。

(2) 你还能得到哪些结论?

(3) 猜想 CE 与 DN, CF 与 BM 的数量关系, 并证明

(4) 取 EF 的中点 G, 连接 GM、GN, △MGN 是等腰直角三角形吗?

变式训练3

(1) 如图1, 在 $Rt \triangle ABC$ 中, AB=AC, $\angle MCN=45$ °, 求证: $MN^2 = AM^2 + BN^2$

(2) 如图2, 在 $Rt \triangle ABC$ 中, AB=AC, $\angle MCN=45$ °, 上述结论是否成立? 如成立, 请证明。

(3) 如图3, 在 $Rt \triangle ABC$ 中, AB=AC, $\triangle MCD=45$ °, 延长DC 交BA的延长线于N, MN, AM, BN之间又有怎样的关系? 并证明

巩固训练:

- 1. 如图①, 点 P 是正方形 ABCD 内一点, PA=1, PB=2, PC=3.你能求出∠ APB 的度数吗?
- 2. 【类比探究】如图②,若点 P 是正方形 ABCD 外一点,PA=3,PB=1,PC= $\sqrt{11}$ 求 \angle APB 的度数.

