

Quadrilaterals Ex 14.2 Q8

Answer:

The figure is given as follows:

It is given that ABCD is a parallelogram.

Thus $AD \parallel BC$

And $\angle DBC$ are $\angle ADB$ alternate interior opposite angles.

Therefore,

$$\angle ADB = \angle DBC$$

$$\angle ADB = \boxed{60^{\circ}} \dots (i)$$

We know that the opposite angles of a parallelogram are equal. Therefore,

$$\angle A = \angle C$$

Also, we have $\angle A = 75^{\circ}$

Therefore,

$$\angle C = 75^{\circ}$$
 (ii)

In ΔBCD

By angle sum property of a triangle.

$$\angle CDB + \angle ADB + \angle C = 180^{\circ}$$

From (i) and (ii), we get:

$$\angle CDB + 60^{\circ} + 75^{\circ} = 180^{\circ}$$

 $\angle CDB + 135^{\circ} = 180^{\circ}$
 $\angle CDB = 180^{\circ} - 135^{\circ}$
 $\angle CDB = \boxed{45^{\circ}}$

Hence, the required value for $\angle ADB$ is $\boxed{60^{\circ}}$

And $\angle CDB$ is $\boxed{45^{\circ}}$

******* END *******