飞扬的小鸟

【问题描述】

Flappy Bird 是一款风靡一时的休闲手机游戏。玩家 需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让 小鸟顺利通过画面右方的管道缝隙。如果小鸟一不小心撞到了 水管或者掉在地上的话,便宣告失败。

为了简化问题,我们对游戏规则进行了简化和改编:

- 1. 游戏界面是一个长为 n, 高为 m 的二维平面,其中有 k 个管道(忽略管道的宽度)。
- 2. 小鸟始终在游戏界面内移动。小鸟从游戏界面最 左边 任意整数高度位置出发, 到达游戏界面最 右边时,游 戏完成。
- 3. 小鸟每个单位时间沿横坐标方向右移的距离为 1, 竖直移动的距离由玩家控制。如 果点击屏幕,小鸟就会上升一定高度 X, 每个单位时间可以点击多次,效果叠加; 如果不点击屏幕, 小鸟就会下降一定高度 Y。小鸟位于横坐标方向不同位置时, 上 升的高度 X 和下降的高度 Y 可能互不相同。
- 4. 小鸟高度等于 0 或者小鸟碰到管道时,游戏失败。小鸟高度为 m 时, 无法再上升。

现在,请你判断是否可以完成游戏。如果可以,输出最少点击屏幕数; 否则, 输出小鸟 最多可以通过多少个管道缝隙。

【输入】

第 1 行有 3 个整数 n, m, k, 分别表示游戏界面的长度, 高度和水管的数量, 每两个整数之间用一个空格隔开;

接下来的 n 行,每行 2 个用一个空格隔开的整数 X 和 Y,依次表示在横坐标位置 $O^{^{\circ}}n-1$ 上玩家点击屏幕后, 小鸟在下一位置上升的高度 X,以及在这个位置上玩家不点击屏幕时, 小鸟在下一位置下降的高度 Y。

接下来 k 行,每行 3 个整数 P, L, H, 每两个整数之间用一个空格隔开。 每行表示一个管道, 其中 P 表示管道的横坐标, L 表示此管道缝隙的下边沿高度为 L, H表示管道缝隙 上边沿的高度(输入数据保证 P 各不相同,但不保证按照大小顺序给出)。

【输出】

共两行。

第一行, 包含一个整数, 如果可以成功完成游戏,则输出 1,否则输出 0。

第二行, 包含一个整数,如果第一行为 1,则输出成功完成游戏需要最少点击屏幕数,

否则,输出小鸟最多可以通过多少个管道缝隙。

【输入输出样例 1】

bird. in	bird. out
10 10 6	1

3 9	6
9 9	
1 2	
1 3	
1 2	
1 1	
2 1	
2 1	
1 6	
2 2	
1 2 7	
5 1 5	
6 3 5	
7 5 8	
8 7 9	
9 1 3	

【输入输出样例 2】

bird. in	bird. out
10 10 4	0
1 2	3
3 1	
2 2	
1 8	
1 8	
3 2	
2 1	
2 1	
2 2	
1 2	
1 0 2	
6 7 9	
9 1 4	
3 8 10	

【输入输出样例说明】

如下图所示, 蓝色直线表示小鸟的飞行轨迹, 红色直线表示管道。

【数据范围】

对于 30%的数据: $5 \le n \le 10$, $5 \le m \le 10$, k=0, 保证存在一组最优解使得同一单位时间最多 点击屏幕 3 次;

对于 50%的数据: $5 \le n \le 20$, $5 \le m \le 10$, 保证存在一组最优解使得同一单位时间最多点击屏 幕3 次;

对于 70%的数据: $5 \le n \le 1000$, $5 \le m \le 100$;

对于 100%的数据: $5 \le n \le 10000$, $5 \le m \le 1000$, $0 \le k'n$, $0 \le k'n$