COMBINATORICS:

Agenda:

Counting

Permutation

Combination

Pen and paper for today's session.

Q1) You are given 3 questions answer of which is either True or False. Total ways to answer them all.

 $\frac{2}{TIF}$ and $\frac{2}{TIF}$ and $\frac{2}{TIF}$

$$2 \times 2 \times 2 = 8$$

Q1 \times Q2 \times Q3
When It's and we multiply

(Q.2) There are 10 girls and 7 boys. Count no. of ways to pick a pour of boy & girl.

$$\frac{10}{\text{GiV}}$$
 and $\frac{7}{\text{Boy}}$

Q3)

How many possible routes

 $\frac{3}{}$ and $\frac{4}{}$ \Rightarrow 3x4 = 12

0.4)

1/19

 $2 \times 3 = 6$

Q.5) Considering you vely as a normal human being. How many way to more from Hyderabad to Delhi

And: Hyd Maghar Delhi =
$$3 \times 4 = 12$$
 ways

Hyd Naghar Delhi = $2 \times 3 = 6$ ways

Total routes = $12 + 6 = 18$ routes

(0.6) You can gift one of the following combos. Count Total number of ways to form a gift humber.

Mrs) Given:

- i) 1 Pen and 1 book
 - ii) 1 flower and 1 chocolate
 - iii) 1 ring

Pen & book

$$\frac{3}{\text{pen}}$$
 and $\frac{5}{\text{book}}$ = 15

Hower & chocolate

$$\frac{7}{\text{flower}}$$
 and $\frac{3}{\text{chocolate}}$ = 21

$$\frac{3}{\text{ring}}$$
 $= 3$

* Permutation:

- The total number of arrangements of an object in defined order. Order matters here.

Example: You have 2 balls of different colors.

Example

(0.7) Count no. of ways to assaye "a", "b", "c". Without repitition.

Ans:

there we are fixing one element of we'll see how many ways can we arrange rest of the elements.

<u>3</u> × <u>2</u> × <u>1</u> = 6

(a, 8) "a", "b", "c", "d"

 $\frac{4}{4} \times \frac{3}{3} \times \frac{2}{4} \times \frac{1}{4} = 24$

n!

No. of ways to arrange n distinct elements at n positions.

Q.10: Number of ways to arrange O element.

My! 0! = 1

$$\frac{4}{5} \times \frac{4}{5} = 20$$

Example:
$$n = 5$$

$$x = 3$$

$$\frac{5}{n} \times \frac{4}{n} \times \frac{3}{(n-1)} = 60$$

if
$$\tau = 3$$
 $n \times (n-1) \times (n-2)$
if $\tau = 4$ $n \times (n-1) \times (n-2) \times (n-3)$

if
$$v = K$$
 $n \times (n-1) \times (n-2) \times \dots \times (n-(K-1))$

$$=) \qquad n \times (n-1) \times (n-2) \dots (n-k+1) \times (n-k) \times (n-k-1) \times \dots 1$$

$$(n-k) \times (n-k-1) \times \dots \times 1$$

$$\frac{n!}{(n-k)!}$$

$$= \frac{n!}{(n-r)!}$$

$$= \frac{n!}{(n-r)!}$$

$$= \frac{n!}{(n-r)!}$$

$$= \frac{n!}{(n-r)!}$$

Combination: It's about selection of object.

Order doesn't matter

Example, :

S1: Dhoni, Kohli, Bumrah, Rohit, Chahal S2: Chahal, Bumrah, Kohli, Dhoni, Rohit

My: P1, P2, P3, P4

$$\frac{N_0 t_{\overline{x}}}{(n-r)! \times \overline{x!}} = \frac{4 \times 3 \times 2 \times 1}{1! \times 3!} = 4$$

Combination:

=) no. of ways to arrange n objects at
$$r$$
 slots
$$n p_r = \frac{n!}{(n-r)!}$$

Combination:
$$\frac{n!}{(n-r)! \ \ \gamma!}$$

$$= \frac{n!}{(n-r)! \times r!}$$

3)
$$5(1) = \frac{5!}{(5-1)! \times 1!}$$
 S) $\frac{5 \times 4+}{4! \times 1!}$