Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	312	(712/209).CCLS.	US-PGPUB; USPAT; EPO; JPO; IBM_TDB	OR	OFF	2005/09/06 08:03
S1	299	(712/209).CCLS.	US-PGPUB; USPAT; EPO; JPO; IBM_TDB	OR	OFF	2005/02/22 07:50

Web Images Groups News <u>Froogle</u> Local more » Advanced Search THUMB instruction format + 1999 Search

Web

Results 1 - 10 of about 32,500 for ARM THUMB instruction format + 1999. (0.20 seconds)

Preferences

ARM ASSEMBLER PROGRAMMING; tutorial, resources, and examples

Please note, however, that the 'Thumb' instruction set is not (yet) described. ... Instruction Quick Finder - lists all ARM instructions I'm aware of ... www.heyrick.co.uk/assembler/ - 26k - Cached - Similar pages

ACM: Digital Library: Communications of the ACM

In ARM state, 32-bit instructions are executed, and in Thumb state, ... The ARM ISA (instruction set architecture) supports a three-address format, ... portal.acm.org/ft gateway.cfm?id=859697&type=html - Similar pages

Dynamic coalescing for 16-bit instructions

9 Jacobson, Q. and Smith, JE 1999. Instruction pre-processing in trace processors. ... Profile guided selection of arm and thumb instructions, ... portal.acm.org/citation.cfm?id=1053271.1053273 - Similar pages

[PDF] Heads and Tails: A Variable-Length Instruction Format Supporting ...

File Format: PDF/Adobe Acrobat - View as HTML Existing variable-length instruction formats provide higher code ... The ARM Thumb [18] and MIPS16 [13] instruction sets provide ... www.cag.csail.mit.edu/scale/papers/hat-cases2001.pdf - Similar pages

EETimes.com - Free 32-bit processor core hits the Net

Lampret said the initial goal had been to publish the core in 1999 and to port ... or 16-to-32-bit instruction format translation (used in ARM's Thumb and ... www.eetimes.com/story/OEG20000228S0007 - 65k - Cached - Similar pages

[PDF] Dynamic Coalescing for 16-Bit Instructions

File Format: PDF/Adobe Acrobat - View as HTML and 16-bit Thumb instruction sets. The data in Figure 1 compares the ARM and ... for the lack of three address instruction format in Thumb. We introduce the ... www.cs.arizona.edu/people/gupta/ research/Publications/Comp/16tecs.pdf - Similar pages

[PDF] Thumb Instruction Set Quick Reference Card

File Format: PDF/Adobe Acrobat - View as HTML Change to ARM. Encoded as two Thumb instructions. ... FPSCR format. Rounding. (Stride – 1)*3. Vector length – 1 ... Oct 1999. CKS. Fourth Release ... www.arm.com/pdfs/QRC0001H_rvct_v2.1_thumb.pdf - Similar pages

Citations: MIPS16: High-density MIPS for the Embedded Market ...

The ARM Thumb [25] and MIPS16 [20] instruction sets provide alternate 16 bit ... from the short instruction format to the wider instruction format in the ... citeseer.ist.psu.edu/context/425491/0 - 35k - Cached - Similar pages

<u>Citations: An Introduction to Thumb - Machines (ResearchIndex)</u> ARM and MIPS are examples of such dual mode instruction sets. ... The Thumb instruction set is essentially a new instruction set which consists of a subset ... citeseer.ist.psu.edu/context/425487/0 - 16k - Cached - Similar pages

[PDF] Thomas J

File Format: PDF/Adobe Acrobat - View as HTML instruction sequences that can be replaced profitably with better, sequences. ... commercial C compiler for ARM Ltd.'s ARM/Thumb family of ...

Thumb[®] Instruction Set Quick Reference Card

ey to Tables			
loreglist>	A comma-separated list of Lo registers, enclosed in braces, (and).	<losedlist+lr></losedlist+lr>	A comma-separated list of Lo registers. plus the LR, enclosed in braces, (and).
		Loreglist+PC>	A comma-separated list of Lo registers, plus the PC, enclosed in braces, { and }.

Immediate range 0-1020 (word-aligned). Flags not affected. Immediate range 0-1020 (word-aligned). Flags not affected. Immediate range 0-508 (word-aligned). Flags not affected. Inunediate range 0-508 (word-aligned). Flags not affected. Allowed shifts 0-31. * C flag unaffected if shift is 0. Can be Lo to Lo, Lo to Hi, Hi to Lo, or Hi to Hi. Any register to any register. Flags not affected. * C and V flags unpredictable in §4T, unchanged in §5T and above * C flag unaffected if Rs[7:0] is 0. Not Lo to Lo. Flags not affected. Not Lo to Lo. Flags not affected. Immediate range 0-255. Inunediate range 0-255. Inunediate range 0-255. Immediate range 0-255. * Clears C and V flags. Immediate range 0-7. Immediate range 0-7. Allowed shifts 1-32. Allowed shifts 1-32. Flags not affected. Notes Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:24] := Rm[23:16], Rd[23:16] := Rm[31:24] Rd[31:24] := Rm[7:0], Rd[23:16] := Rm[15:8] Rd[15:8] := Rm[23:16], Rd[7:0] := Rm[31:24] Rd(15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:16] := Rm[7] * &FFFF Rd := (R15 AND 0xFFFFFFC) + immed update CPSR flags on Rn AND Rm update CPSR flags on Rn - immed N Z C V update CPSR flags on Rn – Km N Z C V update CPSR flags on Rn + Rm N Z C V update CPSR flags on Rn – imm N Z C V Rd := Rd - Rm - NOT C-bit Rd := Rd AND NOT Rm N Z C V Rd := Rd + innmed N Z C V Rd := Rd + Rm + C-bit Rd := Rd ASR Rs[7:0] Rd := Rd ROR Rs[7:0] R13 := R13 + immed R13 := R13 - immed Rd := Rd << Rs[7:0] Rd := Rd >> Rs[7:0]Rd := Rm ASR shift Rd := R13 + immed Rd := Rd AND Rm N Z C V Rd := Rn - immed N Z C V Rd := Rd - immed Rd := Rd EOR Rm N Z C V Rd := Rn + immed Rd := Rm << shift Rd := Rd OR Rm Rd := Rm >> shift N Z C V Rd := Rn + Rm Rd := NOT Rm Rd := Rd + Rm N Z C V Rd := Rn - Rm N Z * * Rd := Rm * Rd Rd := immed N Z C V Rd := -Rm Rd := RmRd := RmRd := Rm Updates Action N Z C* *2 C N N Z Z N N N Z Z Z Z 2 Z All Thumb registers are Lo (R0-R7) except where specified. Hi registers are R8-R15. ADD Rd, Rn, #<immed> #<immed> ADD Rd, SP, #<immed> Rn, #<immed> LSL Rd, Rm, #<shift> LSR Rd, Rm, #<shift> #<shift> #<immed> #<1mmed> #<immed> MOV Rd, #<immed> #<immed> CMP Rn, #<immed> Rn, Rm 뙶 쫎, 찙 ЪС, ASR Rd, Rm, R 뙲 뛾 뙲 MOV Rd, Rm CPY Rd, Rm RH 톲 찙 찙 R 뛾 묎 凝 ROR Rd, Rs REV Rd, Rm § Assembler REV16 Rd, 6 REVSH Rd, SP, Rd, Rď, Rd, æ, ADD Rd, CMN Rn, MOV Rd, ADD Rd, ADC Rd, Rď, SBC Rd, NEG Rd, MUL Rd, AND Rd, BIC Rd, MVN Rd, ADD Rd, SUB SP, EOR Rd, ORR Rd, TST Rn, LSR Rd, ASR Rd, LSL Rd, SUB SUB ADD ADD SUB CMP NOP Hi to Lo, Lo to Hi, Hi to Hi Hi to Lo, Lo to Hi, Hi to Hi form address from PC form address from SP Bytes in both halfwords Bytes in low halfword, sign extend Arithmetic shift right Copy Any to Any value from SP ogical shift right immediate 3 immediate 8 Logical shift left value to SP immediate with carry with carry immediate Exclusive OR Bytes in word No operation negative Move NOT Rotate right Inunediate Multiply Compare Lo to Lo Subtract Bit clear Test bits AND Add OR. Shift/rotate Arithmetic Operation Reverse Logical Move

Vector Floating Point Instruction Set Quick Reference Card

Sd, Sn, Sm (single precision), or Dd, Dn, Dm (double precision).	E: raise exception on any NaN. Without E: raise exception only on signaling NaNs.	Round towards zero. Overrides FPSCR rounding mode.	A comma separated list of consecutive VFP registers, enclosed in braces ({ and })).
Fd, Fn, Fm	(E)	{z}	<vfpregs></vfpregs>
See Table Condition Field	S (single precision) or D (double precision).	As above, or X (unspecified precision).	FPSCR, or FPSID.
{cond}	<s d=""></s>	<s d="" x=""></s>	<vfpsysreg></vfpsysreg>
Key to Tables			

in the second			:		
operation			Exceptions	Action	MOLES
Vector arithmetic	Multiply	FMUL <s d="">{cond} Fd, Fn, Fm</s>	IO, OF, UF, IX	Fd := Fn * Fm	
	and negate	FNMUL <s d="">{cond} Fd, Fn, Fm</s>	IO, OF, UF, IX	Fd := - (Fn * Fm)	
	and accumulate	FMAC <s d="">{cond} Fd, Fn, Fm</s>	IO, OF, UF, IX	Fd := Fd + (Fn * Fm)	
_	negate and accumulate	FNMAC <s d="">{cond} Fd, Fn, Fm</s>	IO, OF, UF, IX	Fd := Fd - (Fn * Fm)	Exceptions
	and subtract	FMSC <s d="">{cond} Fd, Fn, Fm</s>	IO, OF, UF, IX	Fd := - Fd + (Fn * Fm)	10 Invalid operation
	negate and subtract	FNMSC <s d="">{cond} Fd, Fn, Fm</s>	IO, OF, UF, IX	Fd := -Fd - (Fn * Fm)	OF Overflow
	Add	FADD <s d="">{cond} Fd, Fn, Fm</s>	IO, OF, IX	Fd := Fn + Fm	UF Underflow
	Subtract	FSUB <s d="">{cond} Fd, Fn, Fm</s>	IO, OF, IX	Fd := Fn - Fm	IX Inexact result
	Divide	FDIV <s d="">{cond} Fd, Fn, Fm</s>	10, DZ, OF, UF, IX	Fd := Fn / Fm	DZ Division by zero
	Сору	FCPY <s d="">{cond} Fd, Fm</s>		Fd := Fm	
	Absolute	FABS <s d="">{cond} Fd, Fm</s>		Fd := abs(Fm)	
	Negative	FNEG <s d="">{cond} Fd, Fm</s>		Fd := - Fm	
	Square root	FSQRT <s d="">{cond} Fd, Fm</s>	IO, IX	$Fd := sq\pi(Fm)$	
Scalar compare	Two values	FCMP{E} <s d="">{cond} Fd, Fm</s>	OI	Set FPSCR flags on Fd Fm	Use FMSTAT to transfer flags.
	Value with zero	FCMP(E)Z <s d="">(cond) Fd</s>	<u>o</u>	Set FPSCR flags on Fd - 0	Use FMSTAT to transfer flags.
Scalar convert	Single to double	FCVTDS(cond) Dd, Sm	01	Dd := convertStoD(Sm)	
	Double to single	FCVTSD{cond} Sd, Dm	10, OF, UF, 1X	Sd := convertDtoS(Dm)	
	Unsigned integer to float	FUITO <s d="">{cond} Fd, Sm</s>	×	Fd := convertUltoF(Sm)	
	Signed integer to float	FSITO <s d="">{cond} Fd, Sm</s>	×	Fd := convertSitoF(Sm)	
	Float to unsigned integer	FTOUI {Z} < S/D> {cond} Sd, Fm	IO, IX	Sd := convertFtoUI(Fm)	
	Float to signed integer	FTOSI {Z} < S/D> {cond} Sd, Fm	IO, IX	Sd := convertFtoSI(Fm)	
Save VFP registers		FST <s d="">{cond} Fd, [Rn{, #<immed>}]</immed></s>		[address] := Fd. Immediate range 0-1020, multiple of 4.	1020, multiple of 4.
	Multiple, unindexed	FSTMIA <s d="" x="">{cond} Rn, <vfpregs></vfpregs></s>		Saves list of VFP registers, starting at address in Rn.	at address in Rn.
	increment after	FSTMIA <s d="" x="">{cond} Rn!, <vfpregs></vfpregs></s>		synonym: FSTMEA (empty ascending)	ending)
	decrement before	FSTMDB <s d="" x="">{cond} Rn!, <vfpregs></vfpregs></s>		synonym: FSTMFD (full descending)	(ding.)
Load VFP registers		FLD <s d="">{cond} Fd, [Rn{, #<immed>}]</immed></s>		Fd := [address]. Immediate range 0-1020, multiple of 4.	1020, multiple of 4.
	Multiple, unindexed	FLDMIA <s d="" x="">{cond} Rn, <vfpregs></vfpregs></s>		Loads list of VFP registers, starting at address in Rn.	at address in Rn.
	increment after	FLDMIA <s d="" x="">{cond} Rn!, <vfpregs></vfpregs></s>		synonym: FLDMFD (full descending)	nding)
	decrement before	FLDMDB <s d="" x="">{cond} Rn!, <vfpregs></vfpregs></s>		synonym: FLDMEA (empty ascending)	ending)
Transfer registers	ARM to single	FMSR(cond) Sn, Rd		Sn := Rd	
	Single to ARM	FMRS{cond} Rd, Sn		Rd := Sn	
	Two ARM to two singles	FMSRR(cond) (Sn,Sm), Rd, Rn		Sn := Rd, Sm := Rn	Architecture VFPv2 only
	Two singles to two ARM	FMRRS {cond} Rd, Rn, {Sn, Sm}		Rd := Sn, Rn := Sm	Architecture VFPv2 only
	Two ARM to double	FMDRR (cond) Dn, Rd, Rn		Dn[31:0] := Rd, Dn[63:32] := Rn	Architecture VFPv2 only
	Double to two ARM	FMRRD {cond} Rd, Rn, Dn		Rd := Dn[31:0], Rn := Dn[63:32]	Architecture VFPv2 only
	ARM to lower half of double	FMDLR{cond} Dn, Rd		Dn[31:0] := Rd	Use with FMDHR.
	Lower half of double to ARM	FMRDL{cond} Rd, Dn		Rd := Dn[31:0]	Use with FMRDH.
	ARM to upper half of double	FMDHR{cond} Dn, Rd		Dn[63:32] := Rd	Use with FMDLR.
	Upper half of double to ARM	FMRDH(cond) Rd, Dn		Rd := Dn[63:32]	Use with FMRDL.
	ARM to VFP system register	FMXR(cond) <vfpsysreg>, Rd</vfpsysreg>		VFPsysreg := Rd	Stalls ARM until all VFP ops complete.
	VFP system register to ARM	FMRX{cond} Rd, <vfpsysreg></vfpsysreg>		Rd := VFPsysreg	Stalls ARM until all VFP ops complete.
	FPSCR flags to CPSR	FMSTAT{cond}		CPSR flags := FPSCR flags	Equivalent to FMRX R15, FPSCR

www.arm.com

Vector Floating Point Instruction Set **Quick Reference Card**

FPSC	R form	lat					Rour	unding	(Stride	Stride - 1)*3	Vec	/ector length - 1	라			Except	exception trap of	ip enable bits	its	L		ō	Cumulative exception b	except	ion bits	Γ
=	30	62	78	_	_	24	23	22	21	20	18	17	9		12	=	2	6	8	L	_	4	m	2	- -	c
z	2	ပ	>		-	FZ	R	10DE	STR	STRIDE		CEN			IXE	UFE	IXE UFE OFE DZE 10E	DZE	IOE		_	XC (IXC UFC OFC DZC 10C	J.F.C	DZC	202
FZ:	= flush	to zer	o mode.		굨	unding	:: 0 = rou	and to ne	arest, 1 =	= towards	+ 9 2 = 10	wards -	~ 3 = t	nd to nearest, $1 = \text{towards} + 9 = 2 = \text{towards} - 9 = 1 = 1 = 1 = 2 = 1 = 1 = 1 = 1 = 1 = 1$) 		Vector I	ength *	Stride) n	nust no	(Vector length * Stride) must not exceed 4 for double precision o	for dor	able pre	cision o	perands	Γ.

If Fd is S0-S7 or D0-D3, operation is Scalar (regardless of vector length).	Fd is S8-S31 or D4-D15, and Fm is S
If Fd is S8-S31 or D4-D15, and Fm is S8-S31 or D4-D15, operation is Vector.	0-S7 (or D0-D3), S8-S15 (D4-D7), S16-S23 (D8-D1

Condition Field	70	
Mnemonic	Description (Thumb)	Description (VFP)
ČЭ	Equal	Equal
NE	Not equal	Not equal, or unordered
CS / HS	Carry Set / Unsigned higher or same	Greater than or equal, or unordered
CC / TO	Carry Clear / Unsigned lower	Less than
M	Negative	Less than
PĽ	Positive or zero	Greater than or equal, or unordered
NS	Overflow	Unordered (at least one NaN operand)
VC	No overflow	Not unordered
HI	Unsigned higher	Greater than, or unordered
r.s	Unsigned lower or same	Less than or equal
ЭĐ	Signed greater than or equal	Greater than or equal
LT	Signed less than	Less than, or unordered
GT	Signed greater than	Greater than
TE	Signed less than or equal	Less than or equal, or unordered
AL	Do not use in Thumb	Always (nonnally omitted)

ŭ	Exceptions
0I	Invalid operation
OF	Overflow
UF	Underflow
ĭ	Inexact result
DZ	Division by zero

Proprietary Notice

Words and logos marked with $^{\otimes}$ or 13 are registered trademarks or trademarks owned by ARM Limited. Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This reference card is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss or damage arising from the use of any information in this reference card, or any error or omission in such information, or any incorrect use of the product.

Document Number

ARM QRC 0001H

Change Log

Change First Release Second Release Third Release Fourth Release Fith Release Sixth Release Seventh Release Seventh Release
BBH BBH CKS CKS CKS
Date June 1995 Sept 1996 Nov 1998 Oct 2000 Sept 2001 Jun 2003 Oct 2003
Issue A A B B B B B B B B B B B B B B B B B B