TEK 5040/9040 LSTM Supplement

Narada Warakagoda

Long Short Time Memory (LSTM)

- Plain RNN cells are very hard to train with long sequences
 - Due to gradient explosion or vanishing problem
- LSTM was proposed as a solution to this problem
- Similar solutions such as Gated Recurrent Unit (GRU) also exist.

background RNN Cells Configs LSTM Variants _ Implement 2 / 8

Plain RNN vs LSTM cells

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

background RNN Cells Configs LSTM Variants

Implement 3 / 8

Main components of LSTM

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

background RNN Cells Configs LSTM Variants _ Implement

Forget gate

- Forgets irrelevant information ($\mathbf{f}_t pprox 0$) in the control state
- Let relevant information passes through ($\mathbf{f}_t \approx 1$)

$$\mathbf{f}_t = \sigma(\mathbf{W}_f \cdot [\mathbf{s}_{t-1}, \mathbf{x}_t] + \mathbf{b}_f)$$
$$\mathbf{C}'_{t-1} = \mathbf{C}_{t-1} * \mathbf{f}_t$$

Variants

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

background RNN Cells Configs LSTM

Input gate

Picks new information to be added to the control state

$$\mathbf{i}_t = \sigma(\mathbf{W}_i \cdot [\mathbf{s}_{t-1}, \mathbf{x}_t] + \mathbf{b}_i)$$
$$\tilde{\mathbf{C}}_t = \tanh(\mathbf{W}_c \cdot [\mathbf{s}_{t-1}, \mathbf{x}_t] + \mathbf{b}_c)$$

$$\mathbf{C}_t = \mathbf{C}'_{t-1} + \mathbf{i}_t * \tilde{\mathbf{C}}_t$$

$$= \mathbf{f}_t * \mathbf{C}_{t-1} + \mathbf{i}_t * \tilde{\mathbf{C}}_t$$

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

background

RNN Cells

Configs

LSTM

Variants

Implement 6 / 8

Output gate

Picks information to be transferred from control state to the cell output

$$\mathbf{o}_t = \sigma(\mathbf{W}_o \cdot [\mathbf{s}_{t-1}, \mathbf{x}_t] + \mathbf{b}_o)$$

$$\mathbf{s}_t = \mathbf{o}_t * \tanh(\mathbf{C}_t)$$

background RNN Cells Configs LSTM Variants _ Implement

LSTM vs plain RNN vanishing gradients

Plain RNN

$$s_{t} = \sigma(ws_{t-1})$$

$$\frac{\partial s_{t}}{\partial s_{t-1}} = w\sigma'(ws_{t-1}) = w\sigma'(v_{t-1})$$

$$\frac{\partial E}{\partial s_{t-1}} = \frac{\partial E}{\partial s_{t}} \frac{\partial s_{t}}{\partial s_{t-1}}$$

$$= \frac{\partial E}{\partial s_{t}} w\sigma'(v_{t-1})$$

$$\frac{\partial E}{\partial s_{t-N}} = \frac{\partial E}{\partial s_{t}} w^{N} \prod_{s} \sigma'(v_{t-1-s})$$

if w < 1, $\frac{\partial E}{\partial s_{t-N}} \to 0$ when N is large due to the factor w^N

LSTM

$$c_{t} = c_{t-1}\sigma(w_{f}s_{t-1}) + \sigma(w_{i}s_{t-1}) \tanh(w_{c}s_{t-1})$$

$$\frac{\partial c_{t}}{\partial c_{t-1}} = A_{t} + B_{t} + G_{t} + H_{t} \text{ (i.e. several terms)}$$

$$\frac{\partial E}{\partial c_{t-1}} = \frac{\partial E}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{t-1}}$$

$$= \frac{\partial E}{\partial c_{t}} (A_{t} + B_{t} + C_{t} + D_{t})$$

$$\frac{\partial E}{\partial c_{t-N}} = \frac{\partial E}{\partial c_{t}} \text{ (complicated_product)}$$

 $\frac{\partial E}{\partial c_{t-N}}$ does not coverge to 0 as easily

background

RNN Cells

Configs

LSTM

Variants

mplement 8 / 8