☐ TABLE 9-8 Conditional Branch Instructions Relating to Status Bits in the PSR

Branch Condition	Mnemonic	Test Condition
Branch if zero	BZ	Z = 1
Branch if not zero	BNZ	Z = 0
Branch if carry	BC	C = 1
Branch if no carry	BNC	C = 0
Branch if minus	BN	N = 1
Branch if plus	BNN	N = 0
Branch if overflow	BV	V = 1
Branch if no overflow	BNV	V = 0

□ TABLE 9-9 Conditional Branch Instructions for Unsigned Numbers

Branch Condition	Mnemonic	Condition	Status Bits*
Branch if above	BA	A > B	C + Z = 0
Branch if above or equal	BAE	$A \ge B$	C = 0
Branch if below	BB	A < B	C = 1
Branch if below or equal	BBE	$A \leq B$	C + Z = 1
Branch if equal	BE	A = B	Z = 1
Branch if not equal	BNE	$A \neq B$	Z = 0

^{*}Note that C here is a borrow bit.

■ TABLE 9-10 Conditional Branch Instructions for Signed Numbers

Branch Condition	Mnemonic	Condition	Status Bits
Branch if greater	BG	A > B	$(N \oplus V) + Z = 0$
Branch if greater or equal	BGE	$A \ge B$	$N \oplus V = 0$
Branch if less	BL	A < B	$N \oplus V = 1$
Branch if less or equal	BLE	$A \leq B$	$(N \oplus V) + Z = 1$
Branch if equal	BE	A = B	Z = 1
Branch if not equal	BNE	$A \neq B$	Z = 0

- **9-10.** *A computer has a 32-bit word length, and all instructions are one word in length. The register file of the computer has 16 registers.
 - (a) For a format with no mode fields and three register addresses, what is the maximum number of opcodes possible?
 - **(b)** For a format with two register address fields, one memory field, and a maximum of 100 opcodes, what is the maximum number of memory address bits available?
- **9-25.** *It is necessary to branch to ADRS if the bit in the least significant position of the operand in a 16-bit register is equal to 1. Show how this can be done with the TEST (Table 9-7) and BNZ (Table 9-8) instructions.
- **9-26.** Consider the two 8-bit numbers A = 10110110 and B = 00110111.
 - (a) Give the decimal equivalent of each number, assuming that (1) they are unsigned and (2) they are signed 2s complement.
 - **(b)** Add the two binary numbers and interpret the sum, assuming that the numbers are (1) unsigned and (2) signed 2s complement.
 - (c) Determine the values of the C (carry), Z (zero), N (sign), and V (overflow) status bits after the additions.
 - (d) List the conditional branch instructions from Table 9-8 that will have a true condition for each addition.
- **9-27.** *The program in a computer compares two unsigned numbers A and B by performing a subtraction A B and updating the status bits. For operands let A = 01011101 and B = 01011100,
 - (a) Evaluate the difference and interpret the binary result.
 - **(b)** Determine the values of status bits C (borrow) and Z (zero).
 - **(c)** List the conditional branch instructions from Table 9-9 that will have a true condition.
- **9-28.** The program in a computer compares two signed 2s complement numbers A and B by performing subtraction A-B and updating the status bits. For operands let A=11011010 and B=01110110,
 - (a) Evaluate the difference and interpret the binary result.
 - **(b)** Determine the value of status bits N (sign), Z (zero), and V (overflow).
 - **(c)** List the conditional branch instructions from Table 9-10 that will have a true condition.