# Cryptosystems and Symmetric Encryption/Decryption)

Need for improved Security

## Some attack types on Network

- 1. Disclosure (İfşaat)
- 2. Traffic Analysis(Trafik Analizi)
- 3. Masquerade (Gerçeği gizleme)
- 4. Content Modification (İçerik Değiştirme)
- 5. Sequence Modification (Sıra Değiştirme)
- 6. Timing Modification (Zamanlamayı Değiştirme)
- 7. Repudiation (İnkarcılık)

| No. | Source                       | Destination                  | Layer      | Summary                                                               | Error | Size     | Interpacket Time | Absolute Time _          |
|-----|------------------------------|------------------------------|------------|-----------------------------------------------------------------------|-------|----------|------------------|--------------------------|
|     | 0020AF247F25                 | 0000E82F772A                 |            | Port:POP3> 1067 ACK PUSH                                              |       | 97       |                  | 8:58:38 PM               |
|     |                              |                              |            | Port:1067> POP3 ACK<br>Port:1067> POP3 ACK PUSH                       |       | 64<br>71 |                  | 8:58:38 PM<br>8:58:38 PM |
| 9   | 0020AF247F25                 | 0000E82F772A                 |            | Port:POP3> 1067 ACK PUSH                                              |       | 77       | 7 ms             | 8:58:38 PM               |
|     | 0000E82F772A<br>0000E82F772A | 0020AF247F25<br>0020AF247F25 | top<br>top | Port:1067> POP3 ACK<br> Port:1067> POP3 ACK PUSH                      |       | 64<br>74 |                  | 8:58:39 PM<br>8:58:39 PM |
|     | 0020AF247F25<br>0000E82F772A | 0000E82F772A<br>0020AF247F25 |            | Port:POP3> 1067 ACK PUSH<br>Port:1067> POP3 ACK                       |       | 91<br>64 |                  | 8:58:39 PM<br>8:58:39 PM |
| 1   |                              |                              |            |                                                                       |       |          | l                | <u> </u>                 |
|     | 0: 00 00 E                   | 38 2F 77 2A<br>C 00 40 00    | 00 2       | 0 AF 24 7F 25 08 00 45 00  /w*\$.%<br>06 BA CC C0 A8 01 64 C0 A8  .;@ | -     |          |                  |                          |
| 1   | 20: 01 3C 0                  |                              |            | D OD 56 00 BF 06 DF 50 18   .<.n.+V                                   | P.    |          |                  |                          |
|     | · · · · · · · · ·            | 03 06 00 00<br>5 70 74 65    |            | RF 4B 20 75 73 65 72 20 61  "++OK us<br>DD 0A  ccepted                | er a  |          |                  |                          |

- MSG 3,4,5 3 way hanshake
- 6,7 POP3 Mail server msg
- 8 Client's Logon name

| No.            | Source                                                       | Destination                                                           | Layer                | Summary                                                                                                                                                                        | Error    | Size                 | Interpacket Time           | Absolute Time                                        |
|----------------|--------------------------------------------------------------|-----------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|----------------------------|------------------------------------------------------|
|                | 0020AF247F25                                                 | 0000E82F772A                                                          | l. '                 | Port:POP3> 1067 ACK PUSH                                                                                                                                                       |          | 97                   |                            | 8:58:38 PM                                           |
|                | 0000E82F772A                                                 | 0020AF247F25<br>0020AF247F25                                          |                      | Port:1067> POP3 ACK<br> Port:1067> POP3 ACK PUSH                                                                                                                               |          | 64<br>71             |                            | 8:58:38 PM<br>8:58:38 PM                             |
|                |                                                              | 0020AF247F25<br>0000E82F772A                                          |                      | Port:POP3> 1067 ACK PUSH                                                                                                                                                       |          | 77                   |                            | 8:58:38 PM                                           |
| 10<br>11<br>12 | 0000E82F772A<br>0000E82F772A<br>0020AF247F25<br>0000E82F772A | 0020AF247F25<br>0020AF247F25<br>0000E82F772A                          | top<br>top<br>top    | Port:1067> POP3 ACK Port:1067> POP3 ACK PUSH Port:POP3> 1067 ACK PUSH Port:1067> POP3 ACK                                                                                      |          | 64<br>74<br>91<br>64 | 162 ms<br>326 ms<br>920 µs | 8:58:39 PM<br>8:58:39 PM<br>8:58:39 PM<br>8:58:39 PM |
|                | 10: 00 3B 1<br>20: 01 3C 0<br>30: 22 2B D                    | C8 2F 77 2A<br>C 00 40 00<br>10 6E 04 2B<br>03 06 00 00<br>5 70 74 65 | 20 0<br>00 0<br>2B 4 | 20 AF 24 7F 25 08 00 45 00  /w*\$.%<br>26 BA CC CO A8 01 64 CO A8  .;@<br>20 DD 56 00 BF 06 DF 50 18  .<.n.+V<br>21 AF 4B 20 75 73 65 72 20 61  "++OK us<br>22 DD 0A   ccepted | .d<br>P. |                      |                            |                                                      |

- MSG 9 logon name
- 11 POP3 Mail client msg
- 12 response of server

## Passive monitoring clear text Clear text protocols

- FTP Authentication is clear text.
- **Telnet** Authentication is clear text.
- **SMTP** Contents of mail messages are delivered as clear text.
- HTTP Page content and the contents of fields within forms are sent clear text.
- IMAP Authentication is clear text.
- SNMPv1 Authentication is clear text.

## Good authentication required

Session hijacking



- Verifying destination
- C2MYAZZ (server spoofing Attack)
- DNS Poisoning

### **Encryption Techniques**

Many savages at the present day regard their names as vital parts of themselves, and therefore take great pains to conceal their real names, lest these should give to evil-disposed persons a handle by which to injure their owners.

—The Golden Bough, Sir James George Frazer

- For Encryped communication;
  - Encryption Algorithm(E)
  - Decryiption Algorithm (D)
  - -Key(K),

## Some Basic Terminology

- plaintext original message
- ciphertext coded message
- cipher algorithm for transforming plaintext to ciphertext
- key info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- **decipher (decrypt)** recovering ciphertext from plaintext
- cryptography study of encryption principles/methods
- cryptanalysis (codebreaking) study of principles/ methods of deciphering ciphertext without knowing key
- cryptology field of both cryptography and cryptanalysis

## Requirements

- two requirements for secure use of symmetric encryption:
  - a strong encryption algorithm
  - a secret key known only to sender / receiver
- mathematically have:

```
c = E_{\kappa}(m) one to one function m = D_{\kappa}(c) decryption function
```

- assume encryption algorithm is known
- implies a secure channel to distribute key

## Cryptography

- characterize cryptographic system by:
  - type of encryption operations used
    - substitution / transposition / product
  - number of keys used
    - single-key or private / two-key or public
  - way in which plaintext is processed
    - block / stream

## Cryptosystem



## Cryptosystem

- Alphabet A
- Plain text space P
- Ciphertext space C
- Key space K
- Encryption Func. E
- Decryption Func. D
- A Cryptosystem is formed as (P,C,K,E,D)
- $for \forall k \in K, D_k \in D$  there is a  $nE_k \in E$  functions, such as;
- $\forall E_k : P \to C$  and  $\forall D_k : C \to P$  and  $D_k (E_k(x)) = x$ for  $\forall x \in P$

## Cryptosystem

- is classified according to;
- Types of operations used for transforming from plaintext to ciphertext
  - Substitution, transposition
- Number of used keys
  - Symmetric, asymmetric
- Processing method of plaintext
  - Block cipher, stream cipher

## Symmetric Encryption

- or conventional / private-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are privatekey
- was only type prior to invention of public-key in 1970's
- and by far most widely used

## Symmetric Cipher Model



## Cryptanalysis

- objective to recover key not just message
- general approaches:
  - cryptanalytic attack
  - brute-force attack

## Cryptanalytic Attacks

#### ciphertext only

 only know algorithm & ciphertext, is statistical, know or can identify plaintext

#### known plaintext

– know/suspect plaintext & ciphertext

#### chosen plaintext

select plaintext and obtain ciphertext

#### chosen ciphertext

select ciphertext and obtain plaintext

#### chosen text

select plaintext or ciphertext to en/decrypt

### **More Definitions**

#### unconditional security

 no matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

#### computational security

 given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

#### **Brute Force Search**

- always possible to simply try every key
- most basic attack, proportional to key size

• assume either know / recognise plaintext

|                          |                                | <u>,                                    </u> |                              |
|--------------------------|--------------------------------|----------------------------------------------|------------------------------|
| Key length(bit)          | Number of keys                 | Required time in speed                       | Required time in             |
|                          |                                | of 1 analysis/µs                             | speed of                     |
|                          |                                |                                              | 10 <sup>6</sup> analsis/µs   |
| 24                       | $2^{24} = 1.6 \times 10^7$     | $2^{23} \mu s = 8.4 \text{ sec}$             | 8.4 μsec.                    |
| 32                       | $2^{32} = 4.3 \times 10^9$     | $2^{31} \mu s = 35.8 \text{ min}$            | 2.15 milisec.                |
| 48                       | $2^{48} = 2.8 \times 10^{14}$  | $2^{47}  \mu s = 4.46  \text{years}$         | 2.35 min.                    |
| 56                       | $2^{56} = 7.2 \times 10^{16}$  | $2^{55} \mu s = 1142 \text{ years}$          | 10 hours                     |
| 128                      | $2^{128} = 3.4 \times 10^{38}$ | $2^{127} \mu s = 5.4 x  10^{24}  years$      | 5.4x 10 <sup>18</sup> yearsl |
| 168                      | $2^{168} = 3.7 \times 10^{50}$ | $2^{167} \mu s = 5.9 x  10^{36}  years$      | 5.9x 10 <sup>30</sup> years  |
| 26 character permutation | $26! = 4 \times 10^{26}$       | $2x10^{26} \mu s = 6.4x \ 10^{12} y$         | 6.4x 10 <sup>6</sup> years   |

## History of Cryptography

- Used 4000 years ago
- Egypts used pictures for cipher



Unrights bic encipherments of proper names and titles, with claker hieroglyphs at lift, plain equivalents as right

## History of Cryptography

- Hebrews used encrypted words in holy books
- Julius Caesar used a basic substitution cipher nearly 2000 years ago
- Roger Bacon presenteed some methods in 1200.
- Geoffrey Chaucer used cipher in his works
- Leon Alberti used a cipher wheel in 1460
- Blaise de Vigenère published a book on cryptography in 1855. (multiple alphabet exchanges)
- Cyrptography is used for mostly military and diplomacy

## **Machine Ciphers**

Jefferson cylinder was developed in 1790



Wheatstone disc is designed by Wadsworth

in1817



### • Enigma Rotor machine is used in world war II



## Classical Substitution Ciphers

- where letters of plaintext are replaced by other letters or by numbers or symbols
- or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

## Caesar Cipher

- earliest known substitution cipher
- by Julius Caesar
- first attested use in military affairs
- replaces each letter by 3rd letter on
- example:

meet me after the toga party
PHHW PH DIWHU WKH WRJD SDUWB

## Caesar Cipher

can define transformation as:

```
abcdefghijklmnopqrstuvwxyz
DEFGHIJKLMNOPQBSTUVWXYZABC
```

mathematically give each letter a number

```
abcdefghij k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
```

then have Caesar cipher as:

$$c = E(p) = (p + k) \mod (26)$$

$$p = D(c) = (c - k) \mod (26)$$

## Cryptanalysis of Caesar Cipher

- only have 26 possible ciphers
  - A maps to A,B,..Z
- could simply try each in turn
- a brute force search
- given ciphertext, just try all shifts of letters
- do need to recognize when have plaintext
- eg. break ciphertext "GCUA VQ DTGCM"

## Monoalphabetic Cipher

- rather than just shifting the alphabet
- could shuffle (jumble) the letters arbitrarily
- each plaintext letter maps to a different random ciphertext letter
- hence key is 26 letters long

Plain: abcdefghijklmnopqrstuvwxyz

Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: ifwewishtoreplaceletters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

## Monoalphabetic Cipher Security

- now have a total of 26! = 4 x 1026 keys
- with so many keys, might think is secure
- but would be !!!WRONG!!!
- problem is language characteristics

# Language Redundancy and Cryptanalysis

- human languages are redundant
- eg "th lrd s m shphrd shll nt wnt"
- letters are not equally commonly used
- in English E is by far the most common letter
  - followed by T,R,N,I,O,A,S
- other letters like Z,J,K,Q,X are fairly rare
- have tables of single, double & triple letter frequencies for various languages

## **English Letter Frequencies**



## Use in Cryptanalysis

- key concept monoalphabetic substitution ciphers do not change relative letter frequencies
- discovered by Arabian scientists in 9<sup>th</sup> century
- calculate letter frequencies for ciphertext
- compare counts/plots against known values
- if caesar cipher look for common peaks/troughs
  - peaks at: A-E-I triple, NO pair, RST triple
  - troughs at: JK, X-Z
- for monoalphabetic must identify each letter
  - tables of common double/triple letters help

## **Example Cryptanalysis**

#### • given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

- count relative letter frequencies (see text)
- guess P & Z are e and t
- guess ZW is th and hence ZWP is the
- proceeding with trial and error finally get:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

## Playfair Cipher

- not even the large number of keys in a monoalphabetic cipher provides security
- one approach to improving security was to encrypt multiple letters
- the Playfair Cipher is an example
- invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

## Playfair Key Matrix

- a 5X5 matrix of letters based on a keyword
- fill in letters of keyword (sans duplicates)
- fill rest of matrix with other letters
- eg. using the keyword MONARCHY

| М | 0 | N | Α   | R |
|---|---|---|-----|---|
| С | I | Υ | В   | D |
| E | F | G | I/J | K |
| L | Р | Q | S   | Т |
| U | V | W | X   | Z |

## **Encrypting and Decrypting**

- plaintext is encrypted two letters at a time
  - 1. if a pair is a repeated letter, insert filler like 'X'
  - 2. if both letters fall in the same row, replace each with letter to right (wrapping back to start from end, ar encrypted as RM)
  - 3. if both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom, mu encrypted as CM)
  - 4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair (hs becomes BP)

## Security of Playfair Cipher

- security much improved over monoalphabetic
- since have 26 x 26 = 676 digrams
- would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic)
- and correspondingly more ciphertext
- was widely used for many years
  - eg. by US & British military in WW1
- it can be broken, given a few hundred letters
- since still has much of plaintext structure

#### Polyalphabetic Ciphers

- polyalphabetic substitution ciphers
- improve security using multiple cipher alphabets
- make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- use a key to select which alphabet is used for each letter of the message
- use each alphabet in turn
- repeat from start after end of key is reached

## Vigenère Cipher

- simplest polyalphabetic substitution cipher
- effectively multiple caesar ciphers
- key is multiple letters long K = k<sub>1</sub> k<sub>2</sub> ... k<sub>d</sub>
- ith letter specifies ith alphabet to use
- use each alphabet in turn
- repeat from start after d letters in message
- decryption simply works in reverse

## Example of Vigenère Cipher

- write the plaintext out
- write the keyword repeated above it
- use each key letter as a caesar cipher key
- encrypt the corresponding plaintext letter
- eg using keyword *deceptive*

key: deceptivedeceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

#### Aids

- simple aids can assist with en/decryption
- a Saint-Cyr Slide is a simple manual aid
  - a slide with repeated alphabet
  - line up plaintext 'A' with key letter, eg 'C'
  - then read off any mapping for key letter
- can bend round into a cipher disk
- or expand into a Vigenère Tableau

#### Security of Vigenère Ciphers

- have multiple ciphertext letters for each plaintext letter
- hence letter frequencies are obscured
- but not totally lost
- start with letter frequencies
  - see if look monoalphabetic or not
- if not, then need to determine number of alphabets, since then can attach each

#### Kasiski Method

- method developed by Babbage / Kasiski
- repetitions in ciphertext give clues to period
- so find same plaintext an exact period apart
- which results in the same ciphertext
- of course, could also be random fluke
- eg repeated "VTW" in previous example
- suggests size of 3 or 9
- then attack each monoalphabetic cipher individually using same techniques as before

#### **Autokey Cipher**

- ideally want a key as long as the message
- Vigenère proposed the **autokey** cipher
- with keyword is prefixed to message as key
- knowing keyword can recover the first few letters
- use these in turn on the rest of the message
- but still have frequency characteristics to attack
- eg. given key deceptive

key: deceptivewearediscoveredsav

plaintext: wearediscoveredsaveyourself

ciphertext:ZICVTWQNGKZEIIGASXSTSLVVWLA

#### **One-Time Pad**

- if a truly random key as long as the message is used, the cipher will be secure
- called a One-Time pad
- is unbreakable since ciphertext bears no statistical relationship to the plaintext
- since for any plaintext & any ciphertext there exists a key mapping one to other
- can only use the key once though
- problems in generation & safe distribution of key

#### **Transposition Ciphers**

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

#### Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- eg. write message out as: meet me after the toga party

```
m e m a t r h t g p r y e t e f e t e o a a t
```

giving ciphertext

MEMATRHTGPRYETEFETEOAAT

#### **Row Transposition Ciphers**

- a more complex transposition
- write letters of message out in rows over a specified number of columns
- then reorder the columns according to some key before reading off the rows

```
Key: 3421567

Plaintext: attackp
ostpone
duntilt
woamxyz

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ
```

#### **Product Ciphers**

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
  - two substitutions make a more complex substitution
  - two transpositions make more complex transposition
  - but a substitution followed by a transposition makes a new much harder cipher
- this is bridge from classical to modern ciphers

#### **Rotor Machines**

- before modern ciphers, rotor machines were most common complex ciphers in use
- widely used in WW2
  - German Enigma, Allied Hagelin, Japanese Purple
- implemented a very complex, varying substitution cipher
- used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted
- with 3 cylinders have 26<sup>3</sup>=17576 alphabets

## Hagelin Rotor Machine



#### Steganography

- an alternative to encryption
- hides existence of message
  - using only a subset of letters/words in a longer message marked in some way
  - using invisible ink
  - hiding in LSB in graphic image or sound file
- has drawbacks
  - high overhead to hide relatively few info bits

#### Finite Fields and Number Theory

- will now introduce finite fields
- of increasing importance in cryptography
  - AES, Elliptic Curve, IDEA, Public Key
- concern operations on "numbers"
  - where what constitutes a "number" and the type of operations varies considerably
- start with concepts of groups, rings, fields from abstract algebra

#### Group

- a set of elements or "numbers"
- with some operation whose result is also in the set (closure)
- obeys:
  - associative law: (a.b).c = a.(b.c)
  - has identity e: e.a = a.e = a
  - has inverses  $a^{-1}$ :  $a.a^{-1} = e$
- if commutative a.b = b.a
  - then forms an abelian group

# Cayley table of a group (\* operation)

| * | e | a | b | c |
|---|---|---|---|---|
| e | e | a | b | c |
| a | a | b | С | e |
| b | b | С | e | a |
| С | С | e | a | b |

 $a^1=a$ ,  $a^2=b$ ,  $a^3=c$  ve  $a^4=e$  '  $b=a^2=a^6=a^{-2}$ .

Each elements of {e,a,b,c} can be defined as a<sup>n</sup> a is a generoator of group.

#### Cyclic Group

- define exponentiation as repeated application of operator
  - example:  $a^3 = a.a.a$
- and let identity be:  $e=a^0$
- a group is cyclic if every element is a power of some fixed element
  - ie  $b = a^k$  for some a and every b in group
- a is said to be a generator of the group

## Ring

- a set of "numbers"
- with two operations (addition and multiplication) which form:
- an abelian group with addition operation
- and multiplication:
  - has closure
  - is associative
  - distributive over addition: a(b+c) = ab + ac
- if multiplication operation is commutative, it forms a commutative ring
- if multiplication operation has an identity and no zero divisors, it forms an integral domain

#### Field

- a set of numbers
- with two operations which form:
  - abelian group for addition
  - abelian group for multiplication (ignoring 0)
  - ring
- have hierarchy with more axioms/laws
  - group -> ring -> field

#### Modular Arithmetic

- define modulo operator "a mod n" to be remainder when a is divided by n
- use the term congruence for: a = b mod n
  - when divided by n, a & b have same remainder
  - eg.  $100 = 34 \mod 11$
- b is called a **residue** of a mod n
  - since with integers can always write: a = qn + b
  - usually chose smallest positive remainder as residue
    - ie. 0 <= b <= n-1
  - process is known as modulo reduction
    - eg.  $-12 \mod 7 = -5 \mod 7 = 2 \mod 7 = 9 \mod 7$

#### **Divisors**

- say a non-zero number b divides a if for some m have a=mb (a, b, m all integers)
- that is b divides into a with no remainder
- denote this b | a
- and say that b is a divisor of a
- eg. all of 1,2,3,4,6,8,12,24 divide 24
- if a | 1, a = ±1
- if a | b and b | a, a = ±b dir.
- any  $b \neq 0$  divides zero.
- if, b|g and b|h, for any integer m,n b|(mg +nh)

#### Modular Arithmetic Operations

- is 'clock arithmetic'
- uses a finite number of values, and loops back from either end
- modular arithmetic is when do addition & multiplication and modulo reduce answer
- can do reduction at any point, ie

```
-a+b \mod n = [a \mod n + b \mod n] \mod n
```

- if,  $n \mid (a-b)$  then  $a \equiv b \mod n$ .
- $a \equiv b \mod n$ , means  $b \equiv a \mod n$ .
- $a \equiv b \mod n$  and  $b \equiv c \mod n$ , means  $a \equiv c \mod n$

## Modulo 8 Addition Example

| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 |
| 2 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | 1 |
| 3 | 3 | 4 | 5 | 6 | 7 | 0 | 1 | 2 |
| 4 | 4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 |
| 5 | 5 | 6 | 7 | 0 | 1 | 2 | 3 | 4 |
| 6 | 6 | 7 | 0 | 1 | 2 | 3 | 4 | 5 |
| 7 | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

#### Properties of Mod operation

- Add  $(a+b) \mod n = [(a \mod n) + (b \mod n)] \mod n$
- **Sub** (a-b) mod n = [(a mod n) (b mod n)] mod n
- Mult. axb mod n = [(a mod n) x (b mod n)] mod n
- Derived with repeated adition
- Neither a nor b not equal zero may be a.b modn =0
  - Ex. 2.5 mod 10
- Div. a/b mod n
- Like multiply inverse of b: a/b = a.b<sup>-1</sup> mod n
- If n prime there is b<sup>-1</sup> mod n and b.b<sup>-1</sup> = 1 mod n
  - Ex. 2.3=1 mod 5 so,4/2=4.3=2 mod 5.

#### Modular Arithmetic

- can do modular arithmetic with any group of integers:  $Z_n = \{0, 1, ..., n-1\}$
- Z<sub>n</sub> is defined as residue class [r] = { a : a integer;
   such as a = r mod n
- form a commutative ring for addition
- with a multiplicative identity
- note some peculiarities
  - if  $(a+b)=(a+c) \mod n$ then b=c mod n
  - but if (a.b) = (a.c) mod n
    then b=c mod n only if a is relatively prime to n

## properties

| property            | description                                                      |
|---------------------|------------------------------------------------------------------|
| Commutative         | $(a + b) \mod n = (b + a) \mod n$                                |
|                     | $(a \times b) \mod n = (b \times a) \mod n$                      |
| Associative         | $[(a+b) +c] \mod n = [a +(b + c)] \mod n$                        |
|                     | [(axb) x c] mod n = [a x(b x c)] mod n                           |
| Distributive        | [ax(b+c)] mod n = $[(axb) + (axc)]$ mod n                        |
| Identity element    | $(0 + a) \mod n = a \mod n$                                      |
|                     | (1xa) mod n = a mod n                                            |
| Additive invers(-a) | For $\forall a \ Z_n$ there is a b such as; $a + b = 0 \mod n$ . |

if order of finite field is p<sup>n</sup>, (p prime number)
This field called **Galois Field modulo p** and shown as **GF(p<sup>n</sup>)** 

#### **Greatest Common Divisor (GCD)**

- a common problem in number theory
- GCD (a,b) of a and b is the largest number that divides evenly into both a and b
  - eg GCD(60,24) = 12
- often want no common factors (except 1) and hence numbers are relatively prime
  - eg GCD(8,15) = 1
  - hence 8 & 15 are relatively prime

#### **Euclidean Algorithm**

- an efficient way to find the GCD(a,b)
- uses theorem that:
  - -GCD(a,b) = GCD(b, a mod b)
- Euclidean Algorithm to compute GCD(a,b) is:
- GCD (a,n) is given by:
- let g0=n g1=a
- gi+1 = gi-1 mod gi
- when gi=0 then GCD(a,n) = gi-1
- ex. Find GCD (56,98) '.
- g0=98 g1=56 g2 = 98 mod 56 = 42 g3 = 56 mod 42
   = 14 g4 = 42 mod 14 = 0 as a result GCD(56,98)=14

#### Example GCD(1970,1066)

```
1970 = 1 \times 1066 + 904
                            gcd(1066, 904)
                            gcd(904, 162)
1066 = 1 \times 904 + 162
904 = 5 \times 162 + 94
                            gcd(162, 94)
162 = 1 \times 94 + 68
                            gcd(94, 68)
94 = 1 \times 68 + 26
                            gcd(68, 26)
68 = 2 \times 26 + 16
                            gcd(26, 16)
26 = 1 \times 16 + 10
                            gcd(16, 10)
16 = 1 \times 10 + 6
                            gcd(10, 6)
10 = 1 \times 6 + 4 gcd(6, 4)
6 = 1 \times 4 + 2
                            gcd(4, 2)
4 = 2 \times 2 + 0
                            gcd(2, 0)
```

#### **Galois Fields**

- finite fields play a key role in cryptography
- can show number of elements in a finite field must be a power of a prime p<sup>n</sup>
- known as Galois fields
- denoted GF(p<sup>n</sup>)
- in particular often use the fields:
  - -GF(p)
  - $-GF(2^{n})$

## Galois Fields GF(p)

- GF(p) is the set of integers {0,1, ..., p-1} with arithmetic operations modulo prime p
- these form a finite field
  - since have multiplicative inverses
- hence arithmetic is "well-behaved" and can do addition, subtraction, multiplication, and division without leaving the field GF(p)

## GF(7) Multiplication Example

| × | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 0 | 2 | 4 | 6 | 1 | 3 | 5 |
| 3 | 0 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4 | 0 | 4 | 1 | 5 | 2 | 6 | 3 |
| 5 |   |   | l |   |   |   | 2 |
| 6 | 0 | 6 | 5 | 4 | 3 | 2 | 1 |

## GF(7)additive and multip. Inverse For $\forall w \in Z_p$ there is z in $Z_p$ and $wxz = 1 \mod p$

| W                     | -W | $\mathbf{W}^{-1}$ |
|-----------------------|----|-------------------|
| 0                     | 0  | _                 |
| 1                     | 6  | 1                 |
| 2                     | 5  | 4                 |
| 3                     | 4  | 5                 |
| 4                     | 3  | 2                 |
| 2<br>3<br>4<br>5<br>6 | 2  | 3                 |
| 6                     | 1  | 6                 |

# Polynomial Arithmetic

can compute using polynomials

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = \sum a_i x^i$$

- nb. not interested in any specific value of x
- which is known as the indeterminate
- several alternatives available
  - ordinary polynomial arithmetic
  - poly arithmetic with coords mod p
  - poly arithmetic with coords mod p and polynomials mod m(x)

# Ordinary Polynomial Arithmetic

- add or subtract corresponding coefficients
- multiply all terms by each other
- eg let  $f(x) = x^3 + x^2 + 2$  and  $g(x) = x^2 - x + 1$   $f(x) + g(x) = x^3 + 2x^2 - x + 3$   $f(x) - g(x) = x^3 + x + 1$  $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$

# Polynomial Arithmetic with Modulo Coefficients

- when computing value of each coefficient do calculation modulo some value
  - forms a polynomial ring
- could be modulo any prime
- but we are most interested in mod 2
  - ie all coefficients are 0 or 1

- eg. let 
$$f(x) = x^3 + x^2$$
 and  $g(x) = x^2 + x + 1$   

$$f(x) + g(x) = x^3 + x + 1$$

$$f(x) \times g(x) = x^5 + x^2$$

# Polynomial Division

- can write any polynomial in the form:
  - -f(x) = q(x) g(x) + r(x)
  - can interpret r(x) as being a remainder
  - $-r(x) = f(x) \bmod g(x)$
- if have no remainder say g(x) divides f(x)
- if g(x) has no divisors other than itself & 1 say it is **irreducible** (or prime) polynomial
- arithmetic modulo an irreducible polynomial forms a field

# Polynomial GCD

- can find greatest common divisor for polys
  - c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree which divides both a(x), b(x)
- can adapt Euclid's Algorithm to find it:

$$EUCLID[a(x), b(x)]$$

**1.** 
$$A(x) = a(x)$$
;  $B(x) = b(x)$ 

**2.** if 
$$B(x) = 0$$
 return  $A(x) = gcd[a(x), b(x)]$ 

**3.** 
$$R(x) = A(x) \mod B(x)$$

# Modular Polynomial Arithmetic

- can compute in field GF(2<sup>n</sup>)
  - polynomials with coefficients modulo 2
  - whose degree is less than n
  - hence must reduce modulo an irreducible poly of degree n (for multiplication only)
- form a finite field
- can always find an inverse
  - can extend Euclid's Inverse algorithm to find

# Example GF(2<sup>3</sup>)

**Table 4.6** Polynomial Arithmetic Modulo  $(x^3 + x + 1)$ 

|     | +             | 000           | 001<br>1      | 010<br>x      | $\begin{array}{c} 011 \\ x+1 \end{array}$ | $\frac{100}{x^2}$ | $x^2 + 1$     | $\frac{110}{x^2 + x}$ | $x^2 + x + 1$ |
|-----|---------------|---------------|---------------|---------------|-------------------------------------------|-------------------|---------------|-----------------------|---------------|
| 000 | 0             | 0             | 1             | X             | x+1                                       | $x^2$             | $x^2 + 1$     | $x^2 + x$             | $x^2 + x + 1$ |
| 001 | 1             | 1             | 0             | x + 1         | х                                         | $x^2 + 1$         | $x^2$         | $x^2 + x + 1$         | $x^2 + x$     |
| 010 | X             | x             | x + 1         | 0             | 1                                         | $x^2 + x$         | $x^2 + x + 1$ | $x^2$                 | $x^2 + 1$     |
| 011 | x + 1         | x+1           | x             | 1             | 0                                         | $x^2 + x + 1$     | $x^2 + x$     | $x^2 + 1$             | $x^2$         |
| 100 | $x^2$         | $x^2$         | $x^2 + 1$     | $x^2 + x$     | $x^2 + x + 1$                             | 0                 | 1             | X                     | x+1           |
| 101 | $x^2 + 1$     | $x^2 + 1$     | $x^2$         | $x^2 + x + 1$ | $x^{2} + x$                               | 1                 | 0             | x + 1                 | X             |
| 110 | $x^{2} + x$   | $x^2 + x$     | $x^2 + x + 1$ | $x^2$         | $x^2 + 1$                                 | х                 | x + 1         | 0                     | 1             |
| 111 | $x^2 + x + 1$ | $x^2 + x + 1$ | $x^2 + x$     | $x^2 + 1$     | $x^2$                                     | x+1               | x             | 1                     | 0             |

#### (a) Addition

|     | ×             | 000 | 001<br>1      | 010<br>x      | $\begin{array}{c} 011 \\ x + 1 \end{array}$ | 100<br>x <sup>2</sup> | $x^2 + 1$     | $\frac{110}{x^2 + x}$ | $111$ $x^2 + x + 1$ |
|-----|---------------|-----|---------------|---------------|---------------------------------------------|-----------------------|---------------|-----------------------|---------------------|
| 000 | 0             | 0   | 0             | 0             | 0                                           | 0                     | 0             | 0                     | 0                   |
| 001 | 1             | 0   | 1             | X             | x+1                                         | $x^2$                 | $x^2 + 1$     | $x^2 + x$             | $x^2 + x + 1$       |
| 010 | X             | 0   | х             | $\chi^2$      | $x^2 + x$                                   | x+1                   | 1             | $x^2 + x + 1$         | $x^2 + 1$           |
| 011 | x + 1         | 0   | x + 1         | $x^2 + x$     | $x^2 + 1$                                   | $x^2 + x + 1$         | $x^2$         | 1                     | X                   |
| 100 | $x^2$         | 0   | $x^2$         | x + 1         | $x^2 + x + 1$                               | $x^2 + x$             | х             | $x^2 + 1$             | 1                   |
| 101 | $x^2 + 1$     | 0   | $x^2 + 1$     | 1             | $x^2$                                       | х                     | $x^2 + x + 1$ | x + 1                 | $x^2 + x$           |
| 110 | $x^{2} + x$   | 0   | $x^2 + x$     | $x^2 + x + 1$ | 1                                           | $x^2 + 1$             | x + 1         | X                     | x <sup>2</sup>      |
| 111 | $x^2 + x + 1$ | 0   | $x^2 + x + 1$ | $x^2 + 1$     | X                                           | 1                     | $x^{2} + x$   | $\chi^2$              | x+1                 |

# Computational Considerations

- since coefficients are 0 or 1, can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift & XOR
  - cf long-hand multiplication
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift & XOR)

# Computational Example

- in GF(2<sup>3</sup>) have  $(x^2+1)$  is  $101_2 \& (x^2+x+1)$  is  $111_2$
- so addition is

$$-(x^2+1)+(x^2+x+1)=x$$

- $-101 \text{ XOR } 111 = 010_2$
- and multiplication is

$$-(x+1).(x^2+1) = x.(x^2+1) + 1.(x^2+1)$$
$$= x^3+x+x^2+1 = x^3+x^2+x+1$$

- polynomial modulo reduction (get q(x) & r(x)) is
  - $-(x^3+x^2+x+1) \mod (x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$
  - 1111 mod 1011 = 1111 XOR 1011 = 0100<sub>2</sub>

# Using a Generator

- equivalent definition of a finite field
- a generator g is an element whose powers generate all non-zero elements
  - in F have 0,  $g^0$ ,  $g^1$ , ...,  $g^{q-2}$
- can create generator from root of the irreducible polynomial
- then implement multiplication by adding exponents of generator

#### **Prime Numbers**

- prime numbers only have divisors of 1 and self
  - they cannot be written as a product of other numbers
  - note: 1 is prime, but is generally not of interest
- eg. 2,3,5,7 are prime, 4,6,8,9,10 are not
- prime numbers are central to number theory
- list of prime number less than 200 is:

```
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
```

#### **Prime Factorisation**

- to **factor** a number n is to write it as a product of other numbers:  $n=a \times b \times c$
- note that factoring a number is relatively hard compared to multiplying the factors together to generate the number
- the prime factorisation of a number n is when its written as a product of primes

-eg. 91=7x13 ; 3600=
$$2^4$$
x3 $^2$ x5 $^2$   $a = \prod_{p} p^{a_p}$ 

### Relatively Prime Numbers & GCD

- two numbers a, b are relatively prime if have no common divisors apart from 1
  - eg. 8 & 15 are relatively prime since factors of 8 are 1,2,4,8
     and of 15 are 1,3,5,15 and 1 is the only common factor
- conversely can determine the greatest common divisor by comparing their prime factorizations and using least powers
  - eg.  $300=2^1x3^1x5^2$   $18=2^1x3^2$  hence GCD  $(18,300)=2^1x3^1x5^0=6$

#### Fermat's Theorem

- $a^{p-1} = 1 \pmod{p}$ - where p is prime and gcd(a, p) = 1
- also known as Fermat's Little Theorem
- also  $a^p = p \pmod{p}$
- useful in public key and primality testing

- If elements of Z<sub>p</sub> multiply with {0,1,...,(p-1)} a, modulo p residues sequences of Z<sub>p</sub>. In addition, a x 0 = 0mod p., So array of { amod p, 2amodp, ...,(p-1)amod p } is (p-1) number {0,1,...,(p-1)}.
- ax2ax ... x ((p-1)a) = [(a modp) x (2amodp) x ....x((p-1)a modp]modp
- =  $[1 \times 2 \times ... \times (p-1)]$  modp
- $\bullet = (p-1)! \bmod p$
- But,  $a \times 2a \times .....x((p-1)a) = (p-1)!a^{p-1}$ .
- So,  $(p-1)!a^{p-1} = (p-1)!$  Modp. Here we can cancel (p-1)! 'As a result:
- $a^{p-1} = 1 \mod p$

## Euler Totient Function $\emptyset$ (n)

- when doing arithmetic modulo n
- complete set of residues is: 0 . . n-1
- reduced set of residues is those numbers (residues)
   which are relatively prime to n
  - eg for n=10,
  - complete set of residues is {0,1,2,3,4,5,6,7,8,9}
  - reduced set of residues is {1,3,7,9}
- number of elements in reduced set of residues is called the Euler Totient Function ø(n)

# Euler Totient Function Ø (n)

- to compute ø(n) need to count number of residues to be excluded
- in general need prime factorization, but

```
- for p (p prime) \phi(p) = p-1

- for p.q (p,q prime) \phi(pq) = (p-1)x(q-1)
```

• eg.

```
\phi(37) = 36
\phi(21) = (3-1)x(7-1) = 2x6 = 12
```

#### **Primitive Roots**

- from Euler's theorem have  $a^{\phi(n)} \mod n = 1$
- consider  $a^m=1 \pmod{n}$ , GCD(a,n)=1
  - must exist for  $m = \phi(n)$  but may be smaller
  - once powers reach m, cycle will repeat
- if smallest is  $m = \phi(n)$  then a is called a **primitive** root
- if p is prime, then successive powers of a "generate"
   the group mod p
- these are useful but relatively hard to find

# $\phi(n)$ values for n=30

| n  | φ(n) | n  | φ(n) | n  | φ(n) |
|----|------|----|------|----|------|
| 1  | 1    | 11 | 10   | 21 | 12   |
| 2  | 1    | 12 | 4    | 22 | 10   |
| 3  | 2    | 13 | 12   | 23 | 22   |
| 4  | 2    | 14 | 6    | 24 | 8    |
| 5  | 4    | 15 | 8    | 25 | 20   |
| 6  | 2    | 16 | 8    | 26 | 12   |
| 7  | 6    | 17 | 16   | 27 | 18   |
| 8  | 4    | 18 | 6    | 28 | 12   |
| 9  | 6    | 19 | 18   | 29 | 28   |
| 10 | 4    | 20 | 8    | 30 | 8    |

#### **Euler's Theorem**

- a generalisation of Fermat's Theorem
- $a^{\phi(n)} = 1 \pmod{n}$ - for any a, n where gcd(a, n) = 1
- eg.

```
a=3; n=10; \phi(10)=4;
hence 3^4=81=1 \mod 10
a=2; n=11; \phi(11)=10;
hence 2^{10}=1024=1 \mod 11
```

# **Primality Testing**

- often need to find large prime numbers
- traditionally sieve using trial division
  - ie. divide by all numbers (primes) in turn less than the square root of the number
  - only works for small numbers
- alternatively can use statistical primality tests based on properties of primes
  - for which all primes numbers satisfy property
  - but some composite numbers, called pseudo-primes, also satisfy the property
- can use a slower deterministic primality test

# Miller Rabin Algorithm

- a test based on Fermat's Theorem
- algorithm is:

```
TEST (n) is:
```

- 1. Find integers k, q, k > 0, q odd, so that  $(n-1) = 2^k q$
- 2. Select a random integer a, 1 < a < n-1
- 3. if  $a^q \mod n = 1$  then return ("maybe prime");
- 4. **for** j = 0 **to** k 1 **do** 
  - 5. if  $(a^{2^{j}q} \mod n = n-1)$

then return(" maybe prime ")

6. return ("composite")

#### **Probabilistic Considerations**

- if Miller-Rabin returns "composite" the number is definitely not prime
- otherwise is a prime or a pseudo-prime
- chance it detects a pseudo-prime is < <sup>1</sup>/<sub>4</sub>
- hence if repeat test with different random a then chance n is prime after t tests is:
  - Pr(n prime after t tests) =  $1-4^{-t}$
  - eg. for t=10 this probability is > 0.99999

#### Prime Distribution

- prime number theorem states that primes occur roughly every (ln n) integers
- but can immediately ignore evens
- so in practice need only test 0.5 ln(n) numbers of size n to locate a prime
  - note this is only the "average"
  - sometimes primes are close together
  - other times are quite far apart

# Discrete Logarithms

- the inverse problem to exponentiation is to find the discrete logarithm of a number modulo p
- that is to find x such that  $y = g^x \pmod{p}$
- this is written as  $x = \log_q y \pmod{p}$
- if g is a primitive root then it always exists, otherwise it may not, eg.
  - $x = log_3 4 mod 13 has no answer$  $x = log_2 3 mod 13 = 4 by trying successive powers$
- whilst exponentiation is relatively easy, finding discrete logarithms is generally a hard problem

#### Chinese Remainder Theorem

- used to speed up modulo computations
- if working modulo a product of numbers

```
- eg. mod M = m_1 m_2 ... m_k
```

- Chinese Remainder theorem lets us work in each moduli m<sub>i</sub> separately
- since computational cost is proportional to size, this is faster than working in the full modulus M

#### Chinese Remainder Theorem

- can implement CRT in several ways
- to compute A (mod M)
  - first compute all  $a_i = A \mod m_i$  separately
  - determine constants  $c_i$  below, where  $M_i = M/m_i$
  - then combine results to get answer using:

$$A \equiv \left(\sum_{i=1}^k a_i c_i\right) \pmod{M}$$

$$c_i = M_i \times (M_i^{-1} \mod m_i) \quad \text{for } 1 \le i \le k$$

Chinese Remainder Theorem: For relatively prime moduli m and n, the congruences
 x ≡ a (mod m)
 x ≡ b (mod n)

have a unique solution x modulo mn. Our example problem would have a unique solution modulo .

•  $x \equiv 13 \pmod{27}$  $x \equiv 7 \pmod{16}$ 

Our example problem would have a unique solution modulo 27.16

- study of how hard a problem is to solve in general
- allows classification of types of problems
- some problems intrinsically harder than others, eg
  - multiplying numbers O(n²)
  - multiplying matrices O(n(2)(2n-1)) (n^(2)(2n-1))
  - solving crossword o(26^(n))
  - recognizing primes O(n^(log log n))
- deal with worst case complexity
  - may on average be easier



Some Unknowns in Complexity Theory:

- i) NP = P
- ii) NP = CONP
- iii P = CONP = NP

- an instance of a problem is a particular case of a general problem
- the input length of a problem is the number n of symbols used to characterize a particular instance of it
- the order of a function f(n) is some O(g(n)) of some function g(n) s.t.
  - -f(n)<=c.|g(n)|, for all n>=0, for some c

- a polynomial time algorithm (P) is one which solves any instance of a particular problem in a length of time O(p(n)), where p is some polynomial on input length
- an exponential time algorithm (E) is one whose solution time is not so bounded
- a non-deterministic polynomial time algorithm
   (NP) is one for which any guess at the solution of
   an instance of the problem may be checked for
   validity in polynomial time

- NP-complete problems are a subclass of NP problems for which it is known that if any such problem has a polynomial time solution, then all NP problems have polynomial solutions. These are thus the hardest NP problems
- Co-NP problems are the complements of NP problems, to prove a guess at a solution of a Co-NP problem may well require an exhaustive search of the solution space

# Modern Block Ciphers

- now look at modern block ciphers
- one of the most widely used types of cryptographic algorithms
- provide secrecy /authentication services
- focus on DES (Data Encryption Standard)
- to illustrate block cipher design principles

# Symmetric Cryptosystems



Symmetric (Private-Key) Encryption System

# **Block vs Stream Ciphers**

- block ciphers process messages in blocks,
   each of which is then en/decrypted
- like a substitution on very big characters
  - 64-bits or more
- stream ciphers process messages a bit or byte at a time when en/decrypting
- many current ciphers are block ciphers
- broader range of applications

# Block and Stream ciphers



**Block Cipher** 



Stream Cipher

# **Block Cipher Principles**

- most symmetric block ciphers are based on a Feistel Cipher Structure
- needed since must be able to decrypt ciphertext to recover messages efficiently
- block ciphers look like an extremely large substitution
- would need table of 2<sup>64</sup> entries for a 64-bit block
- instead create from smaller building blocks
- using idea of a product cipher

# Ideal Block Cipher



# Claude Shannon and Substitution-Permutation Ciphers

- Claude Shannon introduced idea of substitutionpermutation (S-P) networks in 1949 paper
- form basis of modern block ciphers
- S-P nets are based on the two primitive cryptographic operations seen before:
  - substitution (S-box)
  - permutation (P-box)
- provide confusion & diffusion of message & key

### Confusion and Diffusion

- cipher needs to completely obscure statistical properties of original message
- a one-time pad does this
- more practically Shannon suggested combining
   S & P elements to obtain:
- diffusion dissipates statistical structure of plaintext over bulk of ciphertext
- confusion makes relationship between ciphertext and key as complex as possible

# Feistel Cipher Structure

- Horst Feistel devised the feistel cipher
  - based on concept of invertible product cipher
- partitions input block into two halves
  - process through multiple rounds which
  - perform a substitution on left data half
  - based on round function of right half & subkey
  - then have permutation swapping halves
- implements Shannon's S-P net concept

# Feistel Cipher Structure



# Feistel Cipher Design Elements

- block size
- key size
- number of rounds
- subkey generation algorithm
- round function
- fast software en/decryption
- ease of analysis

# Feistel Cipher Decryption



### Data Encryption Standard (DES)

- most widely used block cipher in world
- adopted in 1977 by NBS (now NIST)
  - as FIPS PUB 46
- encrypts 64-bit data using 56-bit key
- has widespread use
- has been considerable controversy over its security

# **DES History**

- IBM developed Lucifer cipher
  - by team led by Feistel in late 60's
  - used 64-bit data blocks with 128-bit key
- then redeveloped as a commercial cipher with input from NSA and others
- in 1973 NBS issued request for proposals for a national cipher standard
- IBM submitted their revised Lucifer which was eventually accepted as the DES

# **DES Design Controversy**

- although DES standard is public
- was considerable controversy over design
  - in choice of 56-bit key (vs Lucifer 128-bit)
  - and because design criteria were classified
- subsequent events and public analysis show in fact design was appropriate
- use of DES has flourished
  - especially in financial applications
  - still standardised for legacy application use

# **DES Encryption Overview**



### **Initial Permutation IP**

- first step of the data computation
- IP reorders the input data bits
- even bits to LH half, odd bits to RH half
- quite regular in structure (easy in h/w)
- example:

```
IP(675a6967 5e5a6b5a) = (ffb2194d 004df6fb)
```

### **DES Round Structure**

- uses two 32-bit L & R halves
- as for any Feistel cipher can describe as:

$$L_{i} = R_{i-1}$$

$$R_{i} = L_{i-1} \oplus F(R_{i-1}, K_{i})$$

- F takes 32-bit R half and 48-bit subkey:
  - expands R to 48-bits using perm E
  - adds to subkey using XOR
  - passes through 8 S-boxes to get 32-bit result
  - finally permutes using 32-bit perm P



# One round of DES



# **DES Round Structure**



# **Expanded permutation**



### Substitution Boxes S

- have eight S-boxes which map 6 to 4 bits
- each S-box is actually 4 little 4 bit boxes
  - outer bits 1 & 6 (row bits) select one row of 4
  - inner bits 2-5 (col bits) are substituted
  - result is 8 lots of 4 bits, or 32 bits
- row selection depends on both data & key
  - feature known as autoclaving (autokeying)
- example:
  - $-S(18\ 09\ 12\ 3d\ 11\ 17\ 38\ 39) = 5fd25e03$

#### 0123456789ABCDEF

- \$10: E4D12FB83A6C5907
  - 1: 0 F 7 4 E 2 D 1 A 6 C B 9 5 3 8
  - 2: 4 1 E 8 D 6 2 B F C 9 7 3 A 5 0
  - 3: FC 8 2 4 9 1 7 5 B 3 E A 0 6 D
- \$20: F18E6B34972DC05A
  - 1: 3 D 4 7 F 2 8 E C 0 1 A 6 9 B 5
  - 2: 0 E 7 B A 4 D 1 5 8 C 6 9 3 2 F
  - 3: D 8 A 1 3 F 4 2 B 6 7 C 0 5 E 9
- \$30: A09E63F51DC7B428
  - 1: D709346A285ECBF1
  - 2: D6498F30B12C5AE7
  - 3: 1 A D 0 6 9 8 7 4 F E 3 B 5 2 C
- 84 0: 7 D E 3 0 6 9 A 1 2 8 5 B C 4 F
  - 1: D 8 B 5 6 F 0 3 4 7 2 C 1 A E 9
  - 2: A 6 9 0 C B 7 D F 1 3 E 5 2 8 4
  - 3: 3 F 0 6 A 1 D 8 9 4 5 B C 7 2 E
- \$50: 2C417AB6853FD0E9
  - 1: EB 2 C 4 7 D 1 5 0 F A 3 9 8 6
  - 2: 421BAD78F9C5630E
  - 3: B 8 C 7 1 E 2 D 6 F 0 9 A 4 5 3
- 860: C1AF92680D34E75B
  - 1: AF427C9561DE0B38
  - 2: 9 E F 5 2 8 C 3 7 0 4 A 1 D B 6
  - 3: 432C95FABE17608D
- 870: 4 B 2 E F 0 8 D 3 C 9 7 5 A 6 1
  - 1: D 0 B 7 4 9 1 A E 3 5 C 2 F 8 6
  - 2: 14BDC37EAF680592
  - 3: 6 B D 8 1 4 A 7 9 5 0 F E 2 3 C
- \$80: D 2 8 4 6 FB 1 A 9 3 E 5 0 C 7
  - 1: 1 F D 8 A 3 7 4 C 5 6 B 0 E 9 2
  - 2: 7 B 4 1 9 C E 2 0 6 A D F 3 5 8
  - 3: 2 1 E 7 4 A 8 D F C 9 0 3 5 6 B

# P-box permutation

```
167 202129122817
1 1523265 183110
2 8 241432273 9
1913306 22114 25
```

P-Box Permutasyonu

# **DES Key Schedule**

- forms subkeys used in each round
  - initial permutation of the key (PC1) which selects
     56-bits in two 28-bit halves
  - 16 stages consisting of:
    - rotating each half separately either 1 or 2 places depending on the key rotation schedule K
    - selecting 24-bits from each half & permuting them by PC2 for use in round function F
- note practical use issues in h/w vs s/w

# **DES Decryption**

- decrypt must unwind steps of data computation
- with Feistel design, do encryption steps again using subkeys in reverse order (SK16 ... SK1)
  - IP undoes final FP step of encryption
  - 1st round with SK16 undoes 16th encrypt round
  - **–** ....
  - 16th round with SK1 undoes 1st encrypt round
  - then final FP undoes initial encryption IP
  - thus recovering original data value

### **Avalanche Effect**

- key desirable property of encryption alg
- where a change of one input or key bit results in changing approx half output bits
- making attempts to "home-in" by guessing keys impossible
- DES exhibits strong avalanche

# Strength of DES – Key Size

- 56-bit keys have  $2^{56} = 7.2 \times 10^{16}$  values
- brute force search looks hard
- recent advances have shown is possible
  - in 1997 on Internet in a few months
  - in 1998 on dedicated h/w (EFF) in a few days
  - in 1999 above combined in 22hrs!
- still must be able to recognize plaintext
- must now consider alternatives to DES

### Strength of DES – Analytic Attacks

- now have several analytic attacks on DES
- these utilise some deep structure of the cipher
  - by gathering information about encryptions
  - can eventually recover some/all of the sub-key bits
  - if necessary then exhaustively search for the rest
- generally these are statistical attacks
- include
  - differential cryptanalysis
  - linear cryptanalysis
  - related key attacks

### Strength of DES – Timing Attacks

- attacks actual implementation of cipher
- use knowledge of consequences of implementation to derive information about some/all subkey bits
- specifically use fact that calculations can take varying times depending on the value of the inputs to it
- particularly problematic on smartcards

- one of the most significant recent (public) advances in cryptanalysis
- known by NSA in 70's cf DES design
- Murphy, Biham & Shamir published in 90's
- powerful method to analyse block ciphers
- used to analyse most current block ciphers with varying degrees of success
- DES reasonably resistant to it, cf Lucifer

- a statistical attack against Feistel ciphers
- uses cipher structure not previously used
- design of S-P networks has output of function f influenced by both input & key
- hence cannot trace values back through cipher without knowing value of the key
- differential cryptanalysis compares two related pairs of encryptions

# Differential Cryptanalysis Compares Pairs of Encryptions

- with a known difference in the input
- searching for a known difference in output
- when same subkeys are used

```
\Delta m_{i+1} = m_{i+1} \oplus m'_{i+1}
= [m_{i-1} \oplus f(m_i, K_i)] \oplus [m'_{i-1} \oplus f(m'_i, K_i)]
= \Delta m_{i-1} \oplus [f(m_i, K_i) \oplus f(m'_i, K_i)]
```

- have some input difference giving some output difference with probability p
- if find instances of some higher probability input / output difference pairs occurring
- can infer subkey that was used in round
- then must iterate process over many rounds (with decreasing probabilities)



- perform attack by repeatedly encrypting plaintext pairs with known input XOR until obtain desired output XOR
- when found
  - if intermediate rounds match required XOR have a right pair
  - if not then have a wrong pair, relative ratio is S/N for attack
- can then deduce keys values for the rounds
  - right pairs suggest same key bits
  - wrong pairs give random values
- for large numbers of rounds, probability is so low that more pairs are required than exist with 64-bit inputs
- Biham and Shamir have shown how a 13-round iterated characteristic can break the full 16-round DES

# Linear Cryptanalysis

- another recent development
- also a statistical method
- must be iterated over rounds, with decreasing probabilities
- developed by Matsui et al in early 90's
- based on finding linear approximations
- can attack DES with 2<sup>43</sup> known plaintexts,
   easier but still in practise infeasible

# Linear Cryptanalysis

find linear approximations with prob p != ½

```
P[i_1, i_2, ..., i_a] \oplus C[j_1, j_2, ..., j_b] = K[k_1, k_2, ..., k_c] where i_a, j_b, k_c are bit locations in P,C,K
```

- gives linear equation for key bits
- get one key bit using max likelihood alg
- using a large number of trial encryptions
- effectiveness given by:  $|p^{-1}/_2|$

### **DES Design Criteria**

- as reported by Coppersmith in [COPP94]
- 7 criteria for S-boxes provide for
  - non-linearity
  - resistance to differential cryptanalysis
  - good confusion
- 3 criteria for permutation P provide for
  - increased diffusion

### Block Cipher Design

- basic principles still like Feistel's in 1970's
- number of rounds
  - more is better, exhaustive search best attack
- function f:
  - provides "confusion", is nonlinear, avalanche
  - have issues of how S-boxes are selected
- key schedule
  - complex subkey creation, key avalanche

### Multiple Encryption & DES

- clear a replacement for DES was needed
  - theoretical attacks that can break it
  - demonstrated exhaustive key search attacks
- AES is a new cipher alternative
- prior to this alternative was to use multiple encryption with DES implementations
- Triple-DES is the chosen form

#### **Double-DES?**

could use 2 DES encrypts on each block

$$-C = E_{K2} (E_{K1} (P))$$

- issue of reduction to single stage
- and have "meet-in-the-middle" attack
  - works whenever use a cipher twice
  - $-\operatorname{since} X = E_{K1}(P) = D_{K2}(C)$
  - attack by encrypting P with all keys and store
  - then decrypt C with keys and match X value
  - can show takes  $O(2^{56})$  steps

#### Meet in the middle attack



### Triple-DES with Two-Keys

- hence must use 3 encryptions
  - would seem to need 3 distinct keys
- but can use 2 keys with E-D-E sequence
  - $-C = E_{K1} (D_{K2} (E_{K1} (P)))$
  - nb encrypt & decrypt equivalent in security
  - if K1=K2 then can work with single DES
- standardized in ANSI X9.17 & ISO8732
- no current known practical attacks

### Triple-DES with Three-Keys

- although are no practical attacks on two-key
   Triple-DES have some indications
- can use Triple-DES with Three-Keys to avoid even these

```
-C = E_{K3} (D_{K2} (E_{K1} (P)))
```

 has been adopted by some Internet applications, eg PGP, S/MIME

| Algorithm  | Key length           | round           | Mathematical operations                          | Applications                          |
|------------|----------------------|-----------------|--------------------------------------------------|---------------------------------------|
| DES        | 56 Bit               | 16              | XOR, fixed S-boxes                               | SET,Kerberos                          |
| Triple DES | 112 or 168 bit       | 48              | XOR, fixed S-boxes                               | Financial key management, PGP, S/MIME |
| IDEA       | 128 Bit              | 8               | XOR, addition, multiplication                    | PGP                                   |
| Blowfish   | variable, 448 bit    | 16              | XOR, variable S-Boxes, addition                  |                                       |
| RC5        | variable 2048<br>Bit | variable<br>255 | addition, subtraction, XOR, round                |                                       |
| CAST-128   | 40-128 bit           | 16              | addition, subtraction, XOR, round, fixed S-boxes | PGP                                   |

#### Properties of advanced block ciphers

- Variable key length
- Complex mathematical operations
- Data depended rounds
- Key depended S-box
- Multiple length key arrangement algorithms
- Variable plain/cipher text length
- Variable round number
- Operation for each half data at each round
- Variable F Function
- Key depended rounds

### **Modes of Operation**

- block ciphers encrypt fixed size blocks
  - eg. DES encrypts 64-bit blocks with 56-bit key
- need some way to en/decrypt arbitrary amounts of data in practise
- ANSI X3.106-1983 Modes of Use (now FIPS 81) defines 4 possible modes
- subsequently 5 defined for AES & DES
- have block and stream modes

#### Electronic Codebook Book (ECB)

- message is broken into independent blocks which are encrypted
- each block is a value which is substituted, like a codebook, hence name
- each block is encoded independently of the other blocks

```
C_i = DES_{K1}(P_i)
```

uses: secure transmission of single values

### Electronic Codebook Book (ECB)



#### Advantages and Limitations of ECB

- message repetitions may show in ciphertext
  - if aligned with message block
  - particularly with data such graphics
  - or with messages that change very little, which become a code-book analysis problem
- weakness is due to the encrypted message blocks being independent
- main use is sending a few blocks of data

# Cipher Block Chaining (CBC)

- message is broken into blocks
- linked together in encryption operation
- each previous cipher blocks is chained with current plaintext block, hence name
- use Initial Vector (IV) to start process

$$C_i = DES_{K1} (P_i XOR C_{i-1})$$
  
 $C_{-1} = IV$ 

uses: bulk data encryption, authentication

# Cipher Block Chaining (CBC)



#### Message Padding

- at end of message must handle a possible last short block
  - which is not as large as blocksize of cipher
  - pad either with known non-data value (eg nulls)
  - or pad last block along with count of pad size
    - eg. [ b1 b2 b3 0 0 0 0 5]
    - means have 3 data bytes, then 5 bytes pad+count
  - this may require an extra entire block over those in message
- there are other, more esoteric modes, which avoid the need for an extra block

#### Advantages and Limitations of CBC

- a ciphertext block depends on all blocks before it
- any change to a block affects all following ciphertext blocks
- need Initialization Vector (IV)
  - which must be known to sender & receiver
  - if sent in clear, attacker can change bits of first block, and change IV to compensate
  - hence IV must either be a fixed value (as in EFTPOS)
  - or must be sent encrypted in ECB mode before rest of message

## Cipher FeedBack (CFB)

- message is treated as a stream of bits
- added to the output of the block cipher
- result is feed back for next stage (hence name)
- standard allows any number of bit (1,8, 64 or 128 etc) to be feed back
  - denoted CFB-1, CFB-8, CFB-64, CFB-128 etc
- most efficient to use all bits in block (64 or 128)

$$C_{i} = P_{i} \text{ XOR DES}_{K1}(C_{i-1})$$
  
 $C_{-1} = IV$ 

uses: stream data encryption, authentication

# Cipher FeedBack (CFB)



#### Advantages and Limitations of CFB

- appropriate when data arrives in bits/bytes
- most common stream mode
- limitation is need to stall while do block encryption after every n-bits
- note that the block cipher is used in encryption mode at both ends
- errors propogate for several blocks after the error

### Output FeedBack (OFB)

- message is treated as a stream of bits
- output of cipher is added to message
- output is then feed back (hence name)
- feedback is independent of message
- can be computed in advance

```
C_i = P_i XOR O_i
O_i = DES_{K1}(O_{i-1})
O_{-1} = IV
```

uses: stream encryption on noisy channels

# Output FeedBack (OFB)



#### Advantages and Limitations of OFB

- bit errors do not propagate
- more vulnerable to message stream modification
- a variation of a Vernam cipher
  - hence must **never** reuse the same sequence (key+IV)
- sender & receiver must remain in sync
- originally specified with m-bit feedback
- subsequent research has shown that only full block feedback (ie CFB-64 or CFB-128) should ever be used

## Counter (CTR)

- a "new" mode, though proposed early on
- similar to OFB but encrypts counter value rather than any feedback value
- must have a different key & counter value for every plaintext block (never reused)

```
C_i = P_i XOR O_i

O_i = DES_{K1}(i)
```

uses: high-speed network encryptions

# Counter (CTR)



#### Advantages and Limitations of CTR

- efficiency
  - can do parallel encryptions in h/w or s/w
  - can preprocess in advance of need
  - good for bursty high speed links
- random access to encrypted data blocks
- provable security (good as other modes)
- but must ensure never reuse key/counter values, otherwise could break (cf OFB)

### Stream Ciphers

- process message bit by bit (as a stream)
- have a pseudo random keystream
- combined (XOR) with plaintext bit by bit
- randomness of stream key completely destroys statistically properties in message
  - $-C_i = M_i XOR StreamKey_i$
- but must never reuse stream key
  - otherwise can recover messages (cf book cipher)

# Stream Cipher Structure



### Stream Cipher Properties

- some design considerations are:
  - long period with no repetitions
  - statistically random
  - depends on large enough key
  - large linear complexity
- properly designed, can be as secure as a block cipher with same size key
- but usually simpler & faster

#### RC4

- a proprietary cipher owned by RSA DSI
- another Ron Rivest design, simple but effective
- variable key size, byte-oriented stream cipher
- widely used (web SSL/TLS, wireless WEP)
- key forms random permutation of all 8-bit values
- uses that permutation to scramble input info processed a byte at a time

### RC4 Key Schedule

- starts with an array S of numbers: 0..255
- use key to well and truly shuffle
- S forms **internal state** of the cipher

```
for i = 0 to 255 do
   S[i] = i
   T[i] = K[i mod keylen])

j = 0

for i = 0 to 255 do
   j = (j + S[i] + T[i]) (mod 256)
   swap (S[i], S[j])
```

### RC4 Encryption

- encryption continues shuffling array values
- sum of shuffled pair selects "stream key" value from permutation
- XOR S[t] with next byte of message to en/decrypt

```
i = j = 0

for each message byte M_i

i = (i + 1) \pmod{256}

j = (j + S[i]) \pmod{256}

swap(S[i], S[j])

t = (S[i] + S[j]) \pmod{256}

C_i = M_i \text{ XOR } S[t]
```

#### **RC4** Overview



## RC4 Security"

- claimed secure against known attacks
  - have some analyses, none practical
- result is very non-linear
- since RC4 is a stream cipher, must never reuse
   a key
- have a concern with WEP, but due to key handling rather than RC4 itself

#### **AES ENCRYPTION Origins**

- clear a replacement for DES was needed
  - have theoretical attacks that can break it
  - have demonstrated exhaustive key search attacks
- can use Triple-DES but slow, has small blocks
- US NIST issued call for ciphers in 1997
- 15 candidates accepted in Jun 98
- 5 were shortlisted in Aug-99
- Rijndael was selected as the AES in Oct-2000
- issued as FIPS PUB 197 standard in Nov-2001

#### **AES Requirements**

- private key symmetric block cipher
- 128-bit data, 128/192/256-bit keys
- stronger & faster than Triple-DES
- active life of 20-30 years (+ archival use)
- provide full specification & design details
- both C & Java implementations
- NIST have released all submissions & unclassified analyses

#### **AES Evaluation Criteria**

#### initial criteria:

- security effort for practical cryptanalysis
- cost in terms of computational efficiency
- algorithm & implementation characteristics

#### final criteria

- general security
- ease of software & hardware implementation
- implementation attacks
- flexibility (in en/decrypt, keying, other factors)

#### **AES Shortlist**

- after testing and evaluation, shortlist in Aug-99:
  - MARS (IBM) complex, fast, high security margin
  - RC6 (USA) v. simple, v. fast, low security margin
  - Rijndael (Belgium) clean, fast, good security margin
  - Serpent (Euro) slow, clean, v. high security margin
  - Twofish (USA) complex, v. fast, high security margin
- then subject to further analysis & comment
- saw contrast between algorithms with
  - few complex rounds verses many simple rounds
  - which refined existing ciphers verses new proposals

## The AES Cipher - Rijndael

- designed by Rijmen-Daemen in Belgium
- has 128/192/256 bit keys, 128 bit data
- an iterative rather than feistel cipher
  - processes data as block of 4 columns of 4 bytes
  - operates on entire data block in every round
- designed to be:
  - resistant against known attacks
  - speed and code compactness on many CPUs
  - design simplicity

## Rijndael

- data block of 4 columns of 4 bytes is state
- key is expanded to array of words
- has 9/11/13 rounds in which state undergoes:
  - byte substitution (1 S-box used on every byte)
  - shift rows (permute bytes between groups/columns)
  - mix columns (subs using matrix multipy of groups)
  - add round key (XOR state with key material)
  - view as alternating XOR key & scramble data bytes
- initial XOR key material & incomplete last round
- with fast XOR & table lookup implementation

# Rijndael



### Byte Substitution

- a simple substitution of each byte
- uses one table of 16x16 bytes containing a permutation of all 256 8-bit values
- each byte of state is replaced by byte indexed by row (left 4-bits) & column (right 4-bits)
  - eg. byte {95} is replaced by byte in row 9 column 5
  - which has value {2A}
- S-box constructed using defined transformation of values in GF(2<sup>8</sup>)
- designed to be resistant to all known attacks

# **Byte Substitution**



#### **Shift Rows**

- a circular byte shift in each each
  - 1<sup>st</sup> row is unchanged
  - 2<sup>nd</sup> row does 1 byte circular shift to left
  - 3rd row does 2 byte circular shift to left
  - 4th row does 3 byte circular shift to left
- decrypt inverts using shifts to right
- since state is processed by columns, this step permutes bytes between the columns

#### **Shift Rows**



#### Mix Columns

- each column is processed separately
- each byte is replaced by a value dependent on all 4 bytes in the column
- effectively a matrix multiplication in GF(2<sup>8</sup>) using prime poly  $m(x) = x^8 + x^4 + x^3 + x + 1$

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix}$$

#### Mix Columns



#### Mix Columns

- can express each col as 4 equations
  - to derive each new byte in col
- decryption requires use of inverse matrix
  - with larger coefficients, hence a little harder
- have an alternate characterisation
  - each column a 4-term polynomial
  - with coefficients in GF(2<sup>8</sup>)
  - and polynomials multiplied modulo (x<sup>4</sup>+1)

### Add Round Key

- XOR state with 128-bits of the round key
- again processed by column (though effectively a series of byte operations)
- inverse for decryption identical
  - since XOR own inverse, with reversed keys
- designed to be as simple as possible
  - a form of Vernam cipher on expanded key
  - requires other stages for complexity / security

# Add Round Key

| S <sub>0,0</sub> | S <sub>0,1</sub> | S <sub>0,2</sub> | S <sub>0,3</sub> |
|------------------|------------------|------------------|------------------|
| S <sub>1,0</sub> | S <sub>1,1</sub> | s <sub>1,2</sub> | S <sub>1,3</sub> |
| S <sub>2,0</sub> | S <sub>2,1</sub> | S <sub>2,2</sub> | S <sub>2,3</sub> |
| S <sub>3,0</sub> | S <sub>3,1</sub> | S <sub>3,2</sub> | S <sub>3,3</sub> |



| Wi | W <sub>i+1</sub> | W <sub>i+2</sub> | W <sub>i+3</sub> |
|----|------------------|------------------|------------------|
|----|------------------|------------------|------------------|

| s' <sub>0,0</sub> | s' <sub>0,1</sub> | s' <sub>0,2</sub> | s' <sub>0,3</sub> |
|-------------------|-------------------|-------------------|-------------------|
| s' <sub>1,0</sub> | s' <sub>1,1</sub> | s' <sub>1,2</sub> | s' <sub>1,3</sub> |
| s' <sub>2,0</sub> | s' <sub>2,1</sub> | s' <sub>2,2</sub> | s' <sub>2,3</sub> |
| s' <sub>3,0</sub> | s' <sub>3,1</sub> | s' <sub>3,2</sub> | s' <sub>3,3</sub> |

#### **AES Round**



#### **AES Key Expansion**

- takes 128-bit (16-byte) key and expands into array of 44/52/60 32-bit words
- start by copying key into first 4 words
- then loop creating words that depend on values in previous & 4 places back
  - in 3 of 4 cases just XOR these together
  - 1<sup>st</sup> word in 4 has rotate + S-box + XOR round constant on previous, before XOR 4<sup>th</sup> back

# **AES Key Expansion**



#### Key Expansion Rationale

- designed to resist known attacks
- design criteria included
  - knowing part key insufficient to find many more
  - invertible transformation
  - fast on wide range of CPU's
  - use round constants to break symmetry
  - diffuse key bits into round keys
  - enough non-linearity to hinder analysis
  - simplicity of description

#### **AES Decryption**

- AES decryption is not identical to encryption since steps done in reverse
- but can define an equivalent inverse cipher with steps as for encryption
  - but using inverses of each step
  - with a different key schedule
- works since result is unchanged when
  - swap byte substitution & shift rows
  - swap mix columns & add (tweaked) round key

# **AES Decryption**



### Implementation Aspects

- can efficiently implement on 8-bit CPU
  - byte substitution works on bytes using a table of 256 entries
  - shift rows is simple byte shift
  - add round key works on byte XOR's
  - mix columns requires matrix multiply in GF(2<sup>8</sup>)
     which works on byte values, can be simplified to use table lookups & byte XOR's

### Implementation Aspects

- can efficiently implement on 32-bit CPU
  - redefine steps to use 32-bit words
  - can precompute 4 tables of 256-words
  - then each column in each round can be computed using 4 table lookups + 4 XORs
  - at a cost of 4Kb to store tables
- designers believe this very efficient implementation was a key factor in its selection as the AES cipher

# Confidentiality using Symmetric Encryption

 traditionally symmetric encryption is used to provide message confidentiality



have two major placement alternatives

#### link encryption

- encryption occurs independently on every link
- implies must decrypt traffic between links
- requires many devices, but paired keys

#### end-to-end encryption

- encryption occurs between original source and final destination
- need devices at each end with shared keys



- when using end-to-end encryption must leave headers in clear
  - so network can correctly route information
- hence although contents protected, traffic pattern flows are not
- ideally want both at once
  - end-to-end protects data contents over entire path and provides authentication
  - link protects traffic flows from monitoring

- can place encryption function at various layers in OSI Reference Model
  - link encryption occurs at layers 1 or 2
  - end-to-end can occur at layers 3, 4, 6, 7
  - as move higher less information is encrypted but it is more secure though more complex with more entities and keys

### **Encryption vs Protocol Level**



In routers and gateways

On links

TCP-H

(c) Link-Level Encryption

Link-H

Shading indicates encryption.

Net-H

IP-H

TCP-H = TCP header IP-H = IP header

Net-H = Network-level header(e.g., X.25 packetheader,LLC header)
Link-H = Data link control protocolheader

Data

Link-T

Link-H = Data link control protocolheader Link-T = Data link control protocoltrailer

### **Traffic Analysis**

- is monitoring of communications flows between parties
  - useful both in military & commercial spheres
  - can also be used to create a covert channel
- link encryption obscures header details
  - but overall traffic volumes in networks and at end-points is still visible
- traffic padding can further obscure flows
  - but at cost of continuous traffic

### **Key Distribution**

- symmetric schemes require both parties to share a common secret key
- issue is how to securely distribute this key
- often secure system failure due to a break in the key distribution scheme

### **Key Distribution**

- given parties A and B have various key distribution alternatives:
  - 1. A can select key and physically deliver to B
  - 2. third party can select & deliver key to A & B
  - 3. if A & B have communicated previously can use previous key to encrypt a new key
  - 4. if A & B have secure communications with a third party C, C can relay key between A & B

### **Key Hierarchy**

- typically have a hierarchy of keys
- session key
  - temporary key
  - used for encryption of data between users
  - for one logical session then discarded
- master key
  - used to encrypt session keys
  - shared by user & key distribution center

# **Key Distribution Scenario**



### **Key Distribution Issues**

- hierarchies of KDC's required for large networks, but must trust each other
- session key lifetimes should be limited for greater security
- use of automatic key distribution on behalf of users, but must trust system
- use of decentralized key distribution
- controlling key usage