

· .

Fig. 2

Fig. 3C

Fig. 4A(1)(a)

Fig. 4A(1)(b)

	node1	node 2 RHS	RHS
cnode+	$\frac{1}{R}$	$-\frac{1}{R}$	
-apouo	- <u>1</u>	$\frac{1}{R}$	

Fig. 4A(2)

RHS	2	
node 2	2πjfC	2πjfC
19pou	2πjfC	2πjfC
	+əpous	-әроиэ

node 1 — | — node 2

Fig. 4B(1)

Fig. 4B(2)

	node1	node 2	RHS
cnode+		_ 1	
	$2\pi jfL$	$2\pi jfL$	
-apous	_	-	
	$-2\pi jfL$	$2\pi j L$	

node 1 _____node 2

Fig. 4C(1)

Fig. 4C(2)

1-	9	output
ontpu	input	

RHS

Fig. 4D(2)

	input 1	input 2	output	RHS
output	l-	1-	1	

→ output Fig. 4E(1)

_	_	
(•	1
ì	ĩ	ī
7	Ĵ	7
	\subseteq	Z
L		_
		こして・だっ

	input 1	input 2	output		RHS
output				1	
br1	1-	1-			

output Fig. 4F(1)

input 2 -

input I

O node+

cnode+ O-

Fig. 4F(2)

	cnode+ cnode-		node+ node-	-apou		RHS
cnode+					1	
-apous					1-	
node+					ထ	
node-				•	. 6	
Pr4	1	-1				

Fig. 4G(2)

Fig. 4G(1)

cnode- O_

Fig. 4H(2)

Fig. 4H(1)

cnode-

cnode+ O-

-O node+

cnode+ O +

 V_I

+6	cnode+ cnode- node+ node-	node+	node-		RHS
				1-	
				7	
	9m			1-	

Fig. 4I(2)

cnode- O

RHS					
			-	-	
node-				•	-1
node+ node-					1
cnode+ cnode-					η
+epous					n'-
	+apous	-apous	node+	node-	br1

 μ_I^{\prime} node-

cnode- O

O node+

cnode+ O +

Fig. 4J(2)

Fig. 4K(1)

	Ei~ 11/10)	13.4V(Z)	
RHS			>
	1	-1	
node 2			-1
node 1			1
	node1	node 2	br1

	node 1	Copon		ONG
	וממני	ווממב ע	, ,	25
node1			1	
node 2			-1	
br1	1	-1		>

Fig. 4L(1)

Fig. 4L(2)

RHS		<u> </u>	
12			1-
1,	1-	1-	
-apou		$\frac{k11\cdot k22}{k12} - k21$	
+opou		$k21 - \frac{k11 \cdot k22}{k12}$	<u>k11</u> <u>k12</u>
-apous		$-\frac{k22}{k12}$	1 k12
+epous		$\frac{k22}{k12}$	$-\frac{1}{k12}$
	cnode+ cnode- node+ node-	br1	br2

⊢ node I

- node 2

cnode 2 —

Fig. 4M(1)

Fig. 4M(2)

Fig. 4N(1)

Fig. 40(1)

Fig. 4P(1)

input output out tfunc -1
out
output

tfunc -1	Eia 10/2)
ant	IJ

 cuode-
-K

Fig. 4N(2)

Fig. 4Q(1)

Fig. 5

$=\mathbf{Y}_{I}\mathbf{V}_{CD}=\mathbf{I}_{CD}$		[
$\widetilde{\mathbf{C}}_{AB} + \widetilde{\mathbf{D}}_{CD} = \widetilde{\mathbf{C}} \cdot 0 + \widetilde{\mathbf{D}}_{I CD} = (\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B})^{-1} \mathbf{I}_{CD} = \mathbf{V}_{CD} \Leftrightarrow (\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B}) \mathbf{V}_{CD} = \mathbf{Y}_I \mathbf{V}_{CD} = \mathbf{I}_{CD}$	III	- /		\ <u>-</u>					
$CD = \mathbf{V}_{CD} \Leftrightarrow$	0	$-\frac{1}{R_{3b}}$	$-\frac{1}{R_{Z1}}$			$-\frac{1}{R_{ZL}}$	$\frac{1}{R_{3b}} + \frac{1}{R_{ZL}}$	K I I I	
$\mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{I}$	5	$-\frac{1}{R_4}$				$\frac{1}{R_{ZL}} + \frac{1}{R_4}$	$-\frac{1}{R_{ZL}}$		
$\mathbf{p}=(\mathbf{D}-\mathbf{q})$	4	$-\frac{1}{R_{3a}}$			$\frac{1}{R_{3a}}$:
$+\tilde{\mathbf{DI}}_C$	3		$-\frac{1}{R_2}$	$\frac{1}{R_3}$					
$\widetilde{\mathbf{D}}_{CD} = \widetilde{\mathbf{C}} \cdot ($	2		$\frac{1}{R_2} + \frac{1}{R_{Z1}}$	$-\frac{1}{R_2}$			$-\frac{1}{R_{Z1}}$	1	
$ ilde{\mathbf{CI}}_{AB}$ +	1	$\frac{1}{R_{3a}} + \frac{1}{R_{3b}} + \frac{1}{R_4}$			$-\frac{1}{R_{3a}}$	$-\frac{1}{R_4}$	$-\frac{1}{R_{3b}}$	1-1	
		-	2	3	4	က	0		

Fig. 6

Fig. 7

```
MATLAB
                                                                                        . 🗆 ×
<u>File Edit View Web Window Help</u>
         光画園のの
                           ? Current Directory: D:\matlabR12\work\Edwin
>> testl_script
Loading netlist, and calculates transfer function...
Netlist:
              R, R3b,
                        Ο,
                             Ο,
                                  Ο,
                                       0]
   0,
         1,
    Ο,
             R, Z1,
R, R2,
                                       0]
                        Ο,
                             Ο,
         2,
                                  Ο,
         З,
                            Ο,
                                       0]
                       Ο,
                                  0,
         4,
              R, Rs,
                        Ο,
                            Ο,
                                       0]
              R, R4,
         4,
                        Ο,
                             Ο,
                                       0]
    Ο,
         4,
              R, ZL,
                             Ο,
                                  Ο,
                                       0]
                        Ο,
                            Ο,
    5,
              R, R3a,
         1,
                        Ο,
                                       0]
                  Ο,
                        3, 0,
                                  Ο,
                                       0]
         2,
                 ٧O,
                            Ο,
                                       0]
Transfer function:
[ R3b*ZL*(R2*R4+Z1*R4+Z1*Rs)/(-R3b*R3a*ZL*R2+Z1*Rs*R3b*R3a+Z1*R4*Rs*R3b+Z1*R4*Rs*R3a+Z1*ZL*
Fixing transfer function...
>> |
4
Ready
```

Fig. 8

Fig. 10

Fig. 11

Fig. 12

$$\begin{cases} \frac{1}{R_{gen}} \left(V_1 - V_3 \right) + I_e = 0 \\ I_{2,0} = \frac{1}{R_{load}} \left(V_1 - V_2 \right) \\ I_{3,4} = \frac{1}{R_{gen}} \left(V_1 - V_2 \right) \\ I_{4,0} = I_{3,4} \\ I_{e} + I_{4,0} + I_{2,0} = \frac{1}{R_{load}} \left(V_{gnd} - V_2 \right) \\ V_0 = V_1 - V_{gnd} \\ V_{1,1} = j\omega L_1 I_{3,4} + P_{1,2} j\omega k_{12} \sqrt{L_1 L_2} I_{4,0} + P_{1,3} j\omega k_{13} \sqrt{L_1 L_3} I_{2,0} \\ V_{1,2} = j\omega L_2 I_{4,0} + P_{2,1} j\omega k_{21} \sqrt{L_2 L_1} I_{3,4} + P_{2,3} j\omega k_{23} \sqrt{L_2 L_3} I_{2,0} \\ V_{1,3} = j\omega L_3 I_{2,0} + P_{3,1} j\omega k_{31} \sqrt{L_3 L_1} I_{3,4} + P_{3,2} j\omega k_{32} \sqrt{L_2 L_3} I_{4,0} \\ V_{1,2} = V_4 - V_{gnd} \\ V_{1,3} = V_2 - V_{gnd} \end{cases}$$

Fig. 14

If $p(T_{1,1}) = p(T_{1,2}) = -$, $p(T_{1,3}) = +$ then $p_{1,3} = p_{2,3} = p_{3,1} = p_{3,2} = -1$

If $p(T_{1,1}) \neq p(T_{1,2})$ then $p_{1,1} = p_{1,2} = -1$