

Prediction of a New Observation

$$\bullet \ \ Y_{h(new)} = \mathbf{X}_h' \boldsymbol{\beta} + \epsilon_h : \qquad \text{with the observations } Y_i \mathbf{s}.$$

$$\bullet \ \ \text{Predicted value: } \widehat{Y}_h := \qquad .$$

$$\bullet \ \ \sigma^2(pred_h) := \qquad .$$

$$\bullet \ \ \text{Standard error for prediction:}$$

$$s(pred_h) = \qquad .$$

$$\bullet \ \ (1 - \alpha) \text{-prediction interval for } Y_{h(new)} :$$

4 D > 4 B > 4 E > 4 E > E 900

Prediction of a New Observation

•
$$Y_{h(new)} = X_h' \beta + \epsilon_h$$
: independent with the observations Y_i s.

• Predicted value: $\widehat{Y}_h := \mathbf{X}'_h \hat{\boldsymbol{\beta}}$

$$\sigma^2(\mathsf{pred}_h) := \mathsf{Var}(\widehat{\mathsf{Y}}_h - \mathsf{Y}_{h(\mathsf{new})}) = \sigma^2(\widehat{\mathsf{Y}}_h) + \sigma^2(\mathsf{Y}_{h(\mathsf{new})}) = \sigma^2 \mathsf{X}_h'(\mathsf{X}'\mathsf{X})^{-1} \mathsf{X}_h + \sigma^2.$$

Standard error for prediction:

$$s(pred_h) = \sqrt{MSE[1 + \mathbf{X}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h]}.$$

•
$$(1 - \alpha)$$
-prediction interval for $Y_{h(new)}$:

$$Y_h \pm t(1-\alpha/2; n-p)s(pred_h).$$

Multiple Regression: Example

n -	= 3	n c:	200	C 1	'ACI	าดท	22	var	iah	۱ ما	V a	nd ·	thre	o r)rei	dict	or۱	/ari	ahl	മഠ			
X_1	X_2	X_3	}.	ا ,	CS	JO1 1	30	vai	iau		a	·u		,), C.	JICL	0.	/an	αυι	C3			
	e –			X1		Х2		х3															
1 2								1.2 -0.															
3								0.4															
 30					12			0.6															
30			1.4	۷.	12	-0.	. 6 -	u . 0.															
														4	□ }	∢ 🗗	⊢ ∢	≣ ⊦	∢ ∄	Þ	=	99	(~

Example: Model 2

Nonadditive model with interaction between
$$X_1$$
 and X_2 :

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i1} X_{i2} + \epsilon_i, \quad i = 1, \cdots, 30.$$

($\rho = 5$)
Call:
Im(formula = Y \(^{-1} X_1 + X_2 + X_3 + X_1 : X_2, \text{ data} = \text{ data})

Coefficients:
Estimate Std. Error t value \(^{-1} Pr(>|t|) \)
(Intercept) 0.8832 0.2153 4.103 0.00038 ***
X1 1.5946 0.2421 6.587 6.69e-07 ***
X2 1.7091 0.2605 6.560 7.16e-07 ***
X3 2.1266 0.2687 7.916 2.85e-08 ***
X1:X2 1.0076 0.2467 4.084 0.00040 ***

X1:X2 1.0076 0.2467 4.084 0.00040 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.026 on 25 degrees of freedom Multiple R-squared: 0.933, Adjusted R-squared: 0.9223 F-statistic: 87.04 on 4 and 25 DF, p-value: 2.681e-14

- Predict a new observation when $X_1 = 0.8, X_2 = 0.5, X_3 = +1$
- under Model 2. Standard error for prediction:
 - s(pred) =
 - A 99%-prediction interval for Y_{hnew} :
 - $1.290 \pm 2.787 \times 1.1098 = [-1.803, 4.383].$
 - R codes.
 - > newX=data.frame(X1=0.8, X2=0.5, X3=-1)
 - > predict.lm(fit2, newX, interval="confidence",
 - + level=0.99, se.fit=TRUE)
 - > predict.lm(fit2, newX, interval="prediction", + level=0.99, se.fit=TRUE)

Predict a new observation when $X_1 = 0.8, X_2 = 0.5, X_3 = -1$ under Model 2.

Standard error for prediction:

$$s(pred) = \sqrt{1.053 \times (1 + 0.170)} = 1.1098.$$

- A 99%-prediction interval for Y_{hnew}:
 - $1.290 \pm 2.787 \times 1.1098 = [-1.803, 4.383].$
- R codes.
- > newX=data.frame(X1=0.8, X2=0.5, X3=-1)
 - > predict.lm(fit2, newX, interval="confidence",
 - + level=0.99, se.fit=TRUE)
- > predict.lm(fit2, newX, interval="prediction",
 - + level=0.99, se.fit=TRUE)

Hidden Extrapolations

- Recall that extrapolation occurs when predicting the response variable for values of the X variable(s) of the original data.
- It's possible that, the fitted model when extended outside the range of the observations.
- With more than one X variables, the levels of define the region of the observations. One can not merely look at the ranges of each X variable.
- With two X variables, we can look at their scatter plot.
- Procedure to identify hidden extrapolation for more than two X variables will be discussed later.

Hidden Extrapolations

- Recall that extrapolation occurs when predicting the response variable for values of the X variable(s) lying outside the range of the original data.
- It's possible that, the fitted model does not hold when extended outside the range of the observations.
- With more than one X variables, the levels of all X variables jointly define the region of the observations. One can not merely look at the ranges of each X variable.
- With two X variables, we can look at their scatter plot.
- Procedure to identify hidden extrapolation for more than two X variables will be discussed later.

Extra Sum of Squares

$$I$$
 and $\mathcal J$ are two **non-overlapping** index sets.

• Extra sum of squares (ESS):

$$SSR(X_{\mathcal J}|X_I) :=$$
• It indicates the

• Degrees of freedom: $d.f.(SSR(X_{\mathcal J}|X_I)) =$

• Mean squares: $MSR(X_{\mathcal{J}}|X_I) :=$

4 □ > 4 ₱ > 4 Ē > 4 Ē > Ē 90 Q €

Extra Sum of Squares

$$I$$
 and $\mathcal J$ are two **non-overlapping** index sets.

Extra sum of squares (ESS):

$$SSR(X_{\mathcal{I}}|X_{\mathcal{I}}) := SSE(X_{\mathcal{I}}) - SSE(X_{\mathcal{I}}, X_{\mathcal{I}}).$$

- It indicates the reduction in error sum of squares by adding $X_{\mathcal{J}}$ to the model where $X_{\mathcal{I}}$ is the set of X variables.
- Degrees of freedom: $d_i f_i(SSR(X_{\mathcal{J}}|X_{\mathcal{I}})) = |\mathcal{J}|$.
- Mean squares: $MSR(X_{\mathcal{J}}|X_I) := \frac{SSR(X_{\mathcal{J}}|X_I)}{d.f.(SSR(X_{\mathcal{J}}|X_I))}$.

Notations. • I: an index set; $X_I := \{X_i : i \in I\}$. • E.g. $I = \{2, 3\}, X_T = \{X_2, X_3\}.$ $SSE(X_T)$ and $SSR(X_T)$ denote the error sum of squares and regression sum of squares, respectively, under the regression model with $X_{\mathcal{I}} := \{X_i : i \in \mathcal{I}\}$ being the X variables. • E.g., $SSE(X_2, X_3)$ is the error sum of squares of the model with X_2 and X_3 .

4 D > 4 B > 4 E > 4 E > E 900

Some properties of ESS. • $SSR(X_T|X_T) \geq 0$. Usually $SSR(X_T|X_T) \neq SSR(X_T|X_T)$. ESS is also the marginal increase of the regression sum of squares, i.e., $SSR(X_T|X_T) = SSR(X_T, X_T) - SSR(X_T).$ 4 D > 4 B > 4 E > 4 E > E 900

Body Fat

A researcher measured the amount of body fat (Y) of 20 healthy females 25 to 34 years old, together with three (potential) predictor variables, triceps skinfolds thickness (X_1) , thigh circumference (X_2) , and midarm circumference (X_3) . The amount of body fat was obtained by a cumbersome and expensive procedure requiring immersion of the person in water. Thus it would be helpful if a regression model with some or all of these predictors could provide reliable estimates of body fat as these predictors are easy to measure.

Consider the following 4 models.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \epsilon_i, \quad i = 1, \cdots, 20.$$

 $Y_i = \beta_0 + \beta_2 X_{i2} + \epsilon_i, i = 1, \dots, 20.$

 $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i, i = 1, \dots, 20.$

Model 2: regression of Y on
$$X_2$$

Model 3: regression of Y on
$$X_1$$
 and X_2

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, \quad i = 1, \dots, 20.$$

4□ b 4 ē b 4 ē b ē 90 €

Consider the following 4 models.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \epsilon_i, \quad i = 1, \cdots, 20.$$

 $Y_i = \beta_0 + \beta_2 X_{i2} + \epsilon_i, i = 1, \dots, 20.$

 $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i, i = 1, \dots, 20.$

Model 2: regression of Y on
$$X_2$$

Model 3: regression of Y on
$$X_1$$
 and X_2

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, \quad i = 1, \dots, 20.$$

> summary(fit1)	
Call: lm(formula = Y ~ X1, data = fat)	
Coefficients:	
Estimate Std. Error t value Pr(> t)	
(Intercept) -1.4961 3.3192 -0.451 0.658	
X1 0.8572 0.1288 6.656 3.02e-06 ***	
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1	
Residual standard error: 2.82 on 18 degrees of freedom	
Multiple R-squared: 0.7111, Adjusted R-squared: 0.695	
F-statistic: 44.3 on 1 and 18 DF, p-value: 3.024e-06	
> anova(fit1) Analysis of Variance Table	
marysis of variance rable	
Response: Y	
Df Sum Sq Mean Sq F value Pr(>F) X1 1 352.27 352.27 44.305 3.024e-06 ***	
Residuals 18 143.12 7.95	
(GLT)	

> summar	y(fit	2)															
Call: lm(formu	15 - 1	v ~ v	o 4.	a+a -	fat.												
Im(IOIma	1a -	^	2, u	ala -	Tat.	,											
Coeffici	ents:																
Estimate (Interce								0 000	E66 -	***							
X2				0.													
Signif.	codes	. 0	*** (0.001	** (0.01	* 0.	95.	0.1	1							
Residual																	
Multiple											7583						
F-statis	tic: (50.62	on :	1 and	18	DF,	p-va	lue:	3.6e	-07							
> anova(Analysis		rian	CA T:	ahle													
marysis	01 11	ii iun	CC 10	ubic													
Response	: Y																
Df Sum S																	
X2				81.97		617	3.6e	-07 *	**								
Residual	s 18	113.4	2	6.30													

> summary(fit	:3)							
Call:								
lm(formula =	Y ~ X1 + X2,	data = fat	:)					
Coefficients:								
Estimate Std.								
(Intercept) -	-19.17 <mark>42 {</mark>							
X1		0. <mark>3034</mark> 0.						
X2 	0.6594							
Signif. codes	s: 0 *** 0.00	01 ** 0.01	* 0.05 .	0.1 1				
Residual star								
Multiple R-so								
F-statistic:	29.8 on 2 at	id 17 DF,	p-value:	2.774e-06				
> anova(fit3))							
Analysis of V	/arian <mark>ce Ta</mark> ble	2						
Response: Y								
Df S <mark>u</mark> m Sq Mea								
	352.2 <mark>7 352.2</mark>							
	33.17 33.3		0.0369	*				
Residuals 17	109.95 6.4	17						
							∢ GLT	

	\ e111	nmary	(fi+	1)															
	Call	: ´	-	-		v o .	vo .		fai	,									
	1m(±0	ormul	a = '	Y X	1 + 1	X2 +	A3, (ıata	= fa	()									
	Coef:	ficie	nts:																
						value													
		ercep	t) :	117.0				1.			258								
	X1 X2				34			1.			170								
						2													
	Х3			-2.1	.86	1	. 595	-1.	370	0.	190								
	Resi	dual	stan	lard	erro	r: 2.	48 oı	1 16	degr	es o	f fre	edom							
	Mult:	iple	R-sqı	ared	: 0.8	8014,		Adju	sted	R-sq	uare	1: 0.	7641						
	F-sta	atist	ic: 7	21.52	on	3 and	16 I	F,	p-va:	lue:	7.34	3e-06							
		ova(f ysis			ce Ta	able													
		onse:																	
	Df Si X1	um Sq				lue 52.27			1 12	10-06	***								
	X2					33.17													
	Х3					11.55													
	Resid	duals	16	98.4	:0	6.15													
																	√ GL		
																	- 01		
																		_	

Body Fat: ESS

From the R outputs, we can derive a number of extra sums of squares. For example:

$$SSR(X_2|X_1) =$$

$$SSR(X_1|X_2) =$$

- Both extra sums of squares have degrees of freedom , so $MSR(X_2|X_1) =$ and $MSR(X_1|X_2) =$
- The reduction of SSE by adding with is much more than the reduction of SSE by adding to a model with

to a model

Body Fat: ESS

From the R outputs, we can derive a number of extra sums of squares. For example:

- From Model 1, $SSE(X_1) = 143.12$ and from Model 3, $SSE(X_1, X_2) = 109.95. So$
 - $SSR(X_2|X_1) = SSE(X_1) SSE(X_1, X_2) = 143.12 109.95 = 33.17.$
- From Model 2, SSE(X₂) = 113.42, so

$$SSR(X_1|X_2) = SSE(X_2) - SSE(X_1, X_2) = 113.42 - 109.95 = 3.47.$$

- Both extra sums of squares have degrees of freedom 1, so $MSR(X_2|X_1) = 33.17$ and $MSR(X_1|X_2) = 3.47$.
- The reduction of SSE by adding X_2 to a model with X_1 is much more than the reduction of SSE by adding X_1 to a model with X_2 .

 $SSR(X_3|X_1,X_2) =$ This extra sum of squares has degrees of freedom so $MSR(X_3|X_1,X_2) =$ $SSR(X_2, X_3|X_1) =$ This extra sums of squares has degrees of freedom so $MSR(X_2, X_3|X_1) =$ Are there other ESS that can be derived from the R outputs? 4 D > 4 B > 4 E > 4 E > E 900 • From Model 4, $SSE(X_1, X_2, X_3) = 98.40$, so

$$SSR(X_3|X_1, X_2) = SSE(X_1, X_2) - SSE(X_1, X_2, X_3)$$

= 109.95 - 98.40 = 11.55.

This extra sum of squares has degrees of freedom 1, so $MSR(X_3|X_1,X_2) = 11.55$.

• Moreover.

$$SSR(X_2, X_3|X_1) = SSE(X_1) - SSE(X_1, X_2, X_3) = 143.12 - 98.40 = 44.72,$$

 $SSR(X_1, X_3|X_2) = SSE(X_2) - SSE(X_1, X_2, X_3) = 113.42 - 98.40 = 15.02.$

 $SSR(X_1, X_3|X_2) = SSE(X_2) - SSE(X_1, X_2, X_3) = 113.42 - 98.40 = 15.02.$ These two extra sums of squares have degrees of freedom 2, so $MSR(X_2, X_3|X_1) = 44.72/2 = 22.36$.

 $MSR(X_1, X_3|X_2) = 15.02/2 = 7.51.$

Are there other ESS that can be derived from the R outputs?

Decomposition of SSR into ESS

For a model with multiple X variables, the regression sum of squares (SSR) can be expressed as the of several extra sums of squares.

For example:

$$SSR(X_1, X_2) =$$

 X_1 is already in the model.

 $SSR(X_1)$ measures the contribution by in the model, whereas $SSR(X_2|X_1)$ measures the contribution when , given that

However, such decomposition is usually not unique. For example,

$$SSR(X_1, X_2) =$$

Decomposition of SSR into ESS

For a model with multiple X variables, the regression sum of squares (SSR) can be expressed as the sum of several extra sums of squares.

For example:

$$SSR(X_1, X_2) = SSR(X_1) + SSR(X_2|X_1).$$

 $SSR(X_1)$ measures the contribution by having X_1 alone in the model, whereas $SSR(X_2|X_1)$ measures the additional contribution when X_2 is added, given that X_1 is already in the model.

However, such decomposition is usually not unique. For example,

$$SSR(X_1, X_2) = SSR(X_2) + SSR(X_1|X_2).$$


```
    More X variables.

                                       decompositions. For
  example, with three X variables:
   SSR(X_1, X_2, X_3) =
                         SSR(X_1) + SSR(X_2|X_1) + SSR(X_3|X_1, X_2)
   SSR(X_1, X_2, X_3) = SSR(X_2) + SSR(X_1|X_2) + SSR(X_3|X_1, X_2)
   SSR(X_1, X_2, X_3) = SSR(X_1) + SSR(X_2, X_3|X_1), \dots, \dots

    Body Fat.

     • From Model 1, SSR(X_1) = 352.27; Also SSR(X_2|X_1) = 33.17
       and SSR(X_3|X_1, X_2) = 11.55. So
             SSR(X_1, X_2, X_3) =
     • From Model 2, SSR(X_2) = 381.97; Also SSR(X_1|X_2) = 3.47.
       So
             SSR(X_1, X_2, X_3) =
```

- More X variables, more decompositions. For example, with three X variables:
- $SSR(X_1, X_2, X_3) = SSR(X_1) + SSR(X_2|X_1) + SSR(X_3|X_1, X_2)$ $SSR(X_1, X_2, X_3) = SSR(X_2) + SSR(X_1|X_2) + SSR(X_3|X_1, X_2)$
- $SSR(X_1, X_2, X_3) = SSR(X_1) + SSR(X_2, X_3|X_1), \cdots, \cdots$
- Body Fat. • From Model 1, $SSR(X_1) = 352.27$; Also $SSR(X_2|X_1) = 33.17$
 - and $SSR(X_3|X_1, X_2) = 11.55$. So
- $SSR(X_1, X_2, X_3) = 352.27 + 33.17 + 11.55 = 396.99.$ • From Model 2, $SSR(X_2) = 381.97$; Also $SSR(X_1|X_2) = 3.47$.
 - So $SSR(X_1, X_2, X_3) = 381.97 + 3.47 + 11.55 = 396.99$

Read anova() output

Read anova() output

It provides decomposition of SSR into single d.f. ESS, in the order of the X variables entering the model.

```
Ca11 ·
lm(formula = Y ~ X1 + X2 + X3, data = fat)
> anova(fit4)
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value
                          Pr(>F)
Х1
          1 352.27 352.27 57.2768 1.131e-06 ***
X2
          1 33.17 33.17 5.3931
                                    0.03373 *
          1 11.55 11.55 1.8773
                                    0.18956
Residuals 16 98.40
                      6 15
```

	So	urce	of V	'aria	tion		SS		d.f.		MS	
	Re	gres	sion				96.9		3		32.3	_
	X_1					3	52.2	7	1	3	52.2	7
	^1					1 -			' '	1 -		-
	X_2	X_1				3	3.17	7	1	3	33.17	7
	<i>X</i> ₃	X_1, X_2	X_2			1	1.55	5	1	1	11.55	5
_	Err	or					8.40		16		6.15	
		OI				=	10.40	,	10		0.15	
-	Tot	اد				1	a5 3	a	10			

For example: $SSR(X_2, X_3|X_1) = SSR(X_2|X_1) + SSR(X_3|X_1, X_2) = 33.17 + 11.55 = 44.72.$

