Leveraging GTEx Data to Dissect Existing GWAS

Hae Kyung Im, PhD GWAS subgroup call November 12, 2014

Leveraging GTEx and Existing GWAS

PrediXcan

- Gene-based test that tests tissue-specific mediating effects of gene expression traits on phenotypes
- Imputation quality improvement with option 1 data
- Application to drug-induced peripheral neuropathy data
- Regulability
 - Heritability of the regulome
 - Application to WTCCC

Mechanisms Tested by PrediXcan

PrediXcan uses Reference Transcriptome

PredictDB: Public Database of Weights for GReX

PredictDB: Database of Prediction Models

Additive model of gene expression trait trained in reference transcriptome datasets

$$T = \sum_{k} w_k X_k + \epsilon$$

$$GReX$$

Weights stored in PredictDB

trait

0.1

1.2

PrediXcan Imputes Transcriptome & Tests Assoc.

M SNPs

	id	rs1	rs2	rs1	• • •	rsM
n' individuals	id1 id2 id3 : :	0 1 2 :	2 2 1 :	1 2 1 :		0 2 1 :

"Imputed" Transcriptome

m genes

	id	g1	g2	g3	• • •	gm
•	id1 id2 id3 :	0.2 2.3 3.3 :	0.6 1.8 2.2 :	0.2 1.2 1.7 :		3.2 4.1 2.1 :
	idn'	2.2	2.0	3.1	:	2.1

Association

Test

PrediXcan: Mechanism-driven Gene-Based Test

- Directly tests the molecular mechanism through which genetic variants affect phenotype
- Genes more attractive than genetic variants
 - A lot is know about their function
 - Follow up experiments can be easily devised
 - Reduced multiple testing burden
- Direction of effects
 - Positive effects: down regulation is therapeutic option
 - Negative effects: more likely to harbor deleterious rare variants
- No reverse causality issues
- Can be systematically applied to existing GWAS studies
- Tissue-specificity can be inferred

Simple Polygenic Score vs. LASSO

GEUVADIS

Heather Wheeler

Imputation QualityTibial Nerve

N=97 all (3.5M) SNPs (pilot data)

GTEx-NT 10-fold CV 10-reps LASSO adj.exp

N=256 HapMap2 unamb. 2.6M SNPs (2014-06-13 data)

GTEx-NT 10-fold CV 10-reps LASSO hapmap2

Heather Wheeler

Imputation Quality Whole Blood

GTEx-WB 10-fold CV 10-reps LASSO adj.exp

N=339 HapMap2 unamb. 2.6M SNPs (2014-06-13 data)

GTEx-WB 10-fold CV 10-reps LASSO hapmap2

Drug Induced Peripheral Neuropathy

Heather Wheeler

Chip Heritability & Regulability

 Chip heritability: proportion of trait variability explained by genotyped variants

$$Y_i = \sum_k c_k X_{ik} + \epsilon_i$$

 Regulability: proportion of trait variability explained by the genetically predicted transcriptome —regulome

$$Y_i = \sum_g \gamma_g T_{ig} + \eta_i$$

Regulability Calculation

- "Impute" transcriptome
- Compute covariance matrix of imputed transcriptome
- Compute REML estimate of variance

$$Y_i = \sum_g \gamma_g T_{ig} + \eta_i$$

WTCCC - Regulability Estimates using Whole Blood

Acknowledgements

Thank you!

Contributors

- Eric R. Gamazon
- Heather E. Wheeler
- Nancy J. Cox
- Dan Nicolae
- Kaanan P. Shah
- Sahar Mozaffari
- M. Eileen Dolan

Data sources

- CALGB 90401
- WTCCC
- GFUVADIS

Funding

- HKI was funded in part by Uchicago CTSA NCI K12CA139160
- University of Chicago Diabetes
 Research and Training Center: P60
 DK20595, P30 DK020595
- Genotype of Tissue Expression GTEx R01 MH090937 and R01 MH101820
- Pharmacogenomics of Anticancer Agents PAAR UO1GM61393
- Pharmacogenomics Research
 Network (PGRN) Statistical Analysis
 Resource (P-STAR) U19 HL065962
- Conte Center grant P50MH094267