9.A Complexification

Tuesday 10 September 2024 19:09

Complexition of a Vector Space

definition; Let V(R). complexification of V is vector space V_c over C s.t. $V_c \cong V^2$ the isomorphism $\psi: V^2 \to V_c$ is $\phi(u,v) = u + i v$

theorem; let V(R), $\underbrace{2}V_j$ basis of Vthen $\underbrace{2}V_j$ is also basis of V_c corollery; $dim(V) = dim(V_c)$ proof; spanning in V_a $V_j \in Span(\underbrace{2}V_j)$, $\underbrace{1}V_j \in Span(\underbrace{2}V_j)$) $\Rightarrow V_a = Span(\underbrace{2}V_j)$ let $\lambda_j V_j = 0$ where $\lambda_j \in C$ $\Rightarrow Re(\lambda_j) V_j = 0$ and $Im(\lambda_j) V_j = 0$ V_j basis in $V(R) \Rightarrow Re(\lambda_j) = 0 = Im(\lambda_j)$ $\forall j$

Complexitication of an Operator

definition; let VCR), Te L(V) complexification of T is $T_{C}(u+iv) := Tu + iTv \quad \text{for } (u,v) \in V^{T}$ $\Rightarrow T_{C} = L(V_{C})$

corollery: Let V(R), $\{v_j\}$ basis of V, $T \in L(V)$ then $M(T, \{v_j\}) = M(T_{\epsilon}, \{v_j\})$

theorem; all operator on nonzero finite-dim vector space has an invariant subspace of dim lor 2

proof; already proven for #= 1.

assume VCR), Te L(V)

let atib e-value of Te where (a,b) eR²

\(\frac{1}{2}\) \(\frac{1}{2}\) (u,v) \(\frac{1}{2}\) \(\frac{

The Minimal Polynomial of the Complexification

theorem: V(R), T ∈ S(V) then

minimal of T_C = minimal of T

proof: p ∈ P(R) be minimal of T

T₄ (n+iv) = Tⁿ + iTⁿv

⇒ p(T_C) = (p(T))_C = O_C=0

let q ∈ P(C) be any moric s.t. q(T_C)=0

q(z) = z^{do(q)} + z^{do(q)} a:zⁱ

v(z):= z^{do(q)} + denote Recailzi

⇒ v(z):= z^{do(q)} + denote Recailzi

Eigenvalues of the Complexification

theorem: let VCIR), TEL(V), $\lambda \in \mathbb{R}$ then λ is e-value of $T < \Rightarrow \lambda$ is e-value of T_{ϵ} $Proof1: (\Rightarrow): \exists v \in V \setminus \{0\} \text{ s.t. } T_{v} = \lambda v \Rightarrow T_{\epsilon}v = \lambda v \text{ } v$ $(\&): \exists (u,v) \in V \setminus \{0\} \text{ s.t. } T_{\epsilon}(u+iv) = \lambda (u+iv)$ $\Rightarrow Tu + iTv = \lambda u + i\lambda v \Rightarrow Tu = \lambda u, Tv = \lambda v \Rightarrow Tv = \lambda v$

(=) $(T_{c}-\lambda I)^{j}(u+\overline{\imath}v)=0$ $\Rightarrow (T_{c}-\lambda I)^{j-1}((T_{c}-\lambda I)(u+\overline{\imath}v))=0$ $\Rightarrow (T_{c}-\overline{\lambda}I)^{j-1}((T_{c}-\lambda I)(u+\overline{\imath}v))=0$ $\Rightarrow (T_{c}-\overline{\lambda}I)^{j-1}((T_{c}-\lambda I)(u+\overline{\imath}v))$ ((=) replace $\lambda \to \overline{\lambda}$, $v \to -v$

Corollery 1: λ is e-value of $T_{c} \iff \overline{\lambda}$ is e-value of T_{c} (j=1) corollery 2: multiplicity of λ = multiplicity of $\overline{\lambda}$ proof: let $\{U_{j} + iV_{j}\}$ be basis of $G(\lambda, T_{c})$

 $\Rightarrow \{u_j - iv_j\}$ is basis of $G(\overline{\lambda}, T_c)$

theorem; let V(R), dim(V) mod $2 \equiv 1$ then \exists an eigenvalue $\forall T \in L(V)$

Proof: $dim(V) = dim(V_{\epsilon}) = \text{Smultiplicity of evalue of } T_{\epsilon} \equiv 1 \mod 2$ if $\lambda \notin \mathbb{R}$ is evalue of T_{ϵ} then multiplicity of λ + multiplicity of $\overline{\lambda} = 2m \equiv 0 \mod 2$ $\Rightarrow \sum \text{multiplicity of veal e-value of } T_{\epsilon} \equiv 1 \mod 2$

Characteristic Polynomial of the Complexification

lemma: let V(R), $T \in L(V)$ then characteristic polynomial of $T_a \in P(R)$ proof: let $\lambda \notin R$ be e-value of T_a with multiplicity in

 $(z-\lambda)^{m}(z-\overline{\lambda})^{m} = (z^{2}-2\operatorname{Re}(\lambda)z+|\lambda|^{2})^{m} \operatorname{divides}$ Characteristic polynomial of T_{ϵ}

=> all wefficients & 1R

definition; let VCR), Tel(V) then

the characteristic polynomial of Tel

iii of Te

covollaries; let p be characteristic polynomial of T, then

(a) $p \in P(R)$ (b) deg(p) = dim(V)

(c) {e-values of T} = { Kent zeros of p(z)}

theorem; Cayley-Hamilton theorem

Let $T \in L(V)$, $q \in P(F)$ is characteristic of Tthen q(T) = 0proof; proven for $V(C) \Rightarrow assume V(R)$ q is characteristic of T_{G} $(C+H) \Rightarrow q(T_{G}) = 0 \Rightarrow q(T) = 0$ corollary; let p be minimal of T

covollery; let p be minimal of T(a) $deg(p) \leq dim(V)$ (b) $\exists s \in \mathcal{P}(F)$ s.t. q = ps