GRUPPI (III PARTE)

Omomorfismi

Def: Siano
$$(G, \cdot)$$
 e $(H, *)$ due gruppi. Un omomerfismo da (G, \cdot) a $(H, *)$ è una funzione $f: G \to H$ tale che $\forall g_1, g_2 \in G$ $f(g_1 \cdot g_2) = f(g_1) * f(g_2)$ $G \times G \longrightarrow G$ $f \times G \longrightarrow G$ $f \times G \longrightarrow G$ Questa definitione equivale a richiedere che il diagramma $f \times G \longrightarrow G$ $f \times G$

Esempi.

- 1) (G,·), (H,*). Sia e_H l'elemento neutro di H.

 f:G→H costante è un omomorfismo : f(g1·g2) = eH

 g → eH ∀g∈G f(g)=eH

 f(g1)*f(g2) = eH*eH = eH) sono aguali
- 2) (G,·) gruppo. idg:G->G è un omomorfismo.

3)
$$(\mathbb{Z},+)$$
 $f:\mathbb{Z} \to \mathbb{Z}$ $f:\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}$ $f:\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}$ $f:\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}$ $f:\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}$ $f:\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z$

proprietà dei logaritmi

7)
$$n \in \mathbb{N}$$
 fissato $(S_n, \circ) \xrightarrow{S_0} (\{\pm 1\}, \circ)$ $S_0(\sigma) = \{1 \text{ se } \sigma \in \rho \text{ari} \}$ $\sigma \mapsto S_0(\sigma)$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma) = \{-1 \text{ se } \sigma \in \rho \text{ari} \}$ $S_0(\sigma$

1)
$$sg(\sigma) \cdot sg(\tau) = 1.1 = 1$$

3)
$$sg(\tau) \cdot sg(\tau) = -1 \cdot 1 = -1$$

coincidona coni precedenti -> sq è un amamorfismo

Non esempi:

8)
$$(\mathbb{R},+) \longrightarrow (\mathbb{R},+)$$
 $\approx \lim_{n \to \infty} \sin n$

non è un amamarfismo
Per esempio:
$$x = \frac{\pi}{2}$$
, $y = \frac{\pi}{4}$

$$\sin x + \sin y = 1 + \frac{1}{\sqrt{2}}$$

 $\sin (x + y) = \frac{1}{\sqrt{2}}$

9)
$$(\mathbb{Z},+) \xrightarrow{f} (\mathbb{Z},+)$$
 non \tilde{e} un omomorfismo $x \longmapsto 1$ $x=0$, $y=1$ $f(0+1)=f(1)=1$ $f(a)+f(1)=1+1=2$

Prop;
$$f: (G_1 \cdot) \longrightarrow (H, *)$$
 omomorfismo di gruppi. Valgoro:

1) $f(e_q) = e_H$

2) $\forall g \in G$ $f(g)^{-1} = f(g^{-1})$

3) $\forall g \in G$, $\forall n \in \mathbb{Z}$, $f(g)^n = f(g^n)$

4) Se $G_1 \subseteq G$, allora $f(G_1) \subseteq H$

5) Se $H_1 \subseteq H$, allora $f^{-1}(H_1) \subseteq G$

Dim: $f(e_g) = f(e_g \cdot e_g) = f(e_g) * f(e_g)$
 $f(e_g) = f(e_g \cdot e_g) = f(e_g) * f(e_g)$
 $f(e_g) = f(e_g) = f(e_g) * f(e_g)$
 $f(e_g) = f(e_g) = f(e_g) * f(e_g)$
 $f(e_g) = f(e_g) = f(e_g)$
 $f(e_g) = f(e_g) = f(e_g)$
 $f(e_g) = f(e_g)$

4) Siano
$$h_1, h_2 \in f(G_1)$$
. Allora $\exists g_1, g_2 \in G_1 + c$. $f(g_1) = h_1, f(g_2) = h_2, quindi$

$$h_1 * h_2^{-1} = f(g_1) * f(g_2)^{-1} = f(g_1) * f(g_2^{-1}) = f(g_1 \cdot g_2^{-1}) \implies h_1 * h_2^{-1} \in f(G_1)$$
usiamo il fatto
purto 2) che f è omomorfismo

5) Siano
$$g_1, g_2 \in f^{-1}(H_1)$$
. Albra $\exists h_1, h_2 \in H_1 + .c. f(g_1) = h_1, f(g_2) = h_2$

$$f(g_1 \cdot g_2^{-1}) = f(g_1) * f(g_2^{-1}) = f(g_1) * f(g_2)^{-1} = h_1 * h_2^{-1} \in H_1 \implies g_1 \cdot g_2^{-1} \in f^{-1}(H_1).$$

$$f(g_1 \cdot g_2^{-1}) = f(g_1) * f(g_2^{-1}) = f(g_1) * f(g_2)^{-1} = h_1 * h_2^{-1} \in H_1 \implies g_1 \cdot g_2^{-1} \in f^{-1}(H_1).$$

Questa proposizione si può usare in negativo:

$$\frac{Es}{z}: f: (Z,+) \longrightarrow (Z,+)$$

$$\Rightarrow f \text{ non soddisfa la proprietà 1}$$

$$\Rightarrow f \text{ non } e \text{ un omomorfismo}.$$

Def: f:(G,·) -> (H,*) omomorfismo di gruppi, si dice

1) monomorfismo se è iniettivo,

2) epimorfismo se è suriettivo,

3) isomorfismo se è biettivo,

4) endomorfismo se (G,·) = (H,*),

$$E_{\underline{S}}.$$
 $f:(o,+\infty),\cdot) \longrightarrow (iR,+)$ è un isomorfismo.
 $z \longmapsto log_2 z$

5) automorfismo

Def: $f: (G, -) \longrightarrow (H, *)$ omomorfisms digruph. Si dice <u>nucleo</u> di f il sattoinsieme: $Ker(f) = \{g \in G \text{ t.c. } f(g) = e_H\} = f^{-1}(e_H)$

se è un endomorfismo biettivo.

Teorema: $f:(G,\cdot) \longrightarrow (H,*)$ omomorfismo di gruppi è iniettivo se e solo se $\ker(f) = \{e_G\}$. $\underline{\text{Dim}}: \text{"solo se"}: \text{ Sia } f \text{ iniettivo}, \text{ allora } |f^{-1}(e_H)| \le 1$ e poiché $f(e_G) = e_H \Rightarrow \ker(f) = f^{-1}(e_H) = \{e_G\}$. "se": $\text{Sia } \ker(f) = \{e_G\} \text{ e siano } g_1, g_2 \in G \text{ tali the } f(g_1) = f(g_2)$. Allora $f(g_1g_2^{-1}) = f(g_1) * f(g_2^{-1}) = f(g_1) * f(g_2^{-1}) = e_H$, quindi $g_1g_2^{-1} \in \ker(f) \Rightarrow g_1g_2^{-1} = e_G \Rightarrow g_1g_2^{-1}g_2 = g_2 \Rightarrow g_1 = g_2 \boxtimes$