Planche n° 20. Limite d'une fonction en un point. Continuité en un point. Corrigé

Exercice nº 1

1) Soit A un réel strictement positif. Soit $x \in]5, +\infty[$. Alors, $\frac{3x-1}{x-5} \geqslant \frac{14}{x-5}$ puis

$$\frac{3x-1}{x-5} \geqslant A \Leftarrow \frac{14}{x-5} \geqslant A \Leftarrow 0 < x-5 \leqslant \frac{14}{A}$$

Soit $\alpha = \frac{14}{A}$. α est un réel strictement positif tel que pour tout $x \in]5, +\infty[$, si $(0 <)x - 5 \leqslant \alpha$, alors $f(x) \geqslant A$.

Maintenant, si A est un réel négatif ou nul, $\alpha = 1$ est un réel strictement positif tel que pour tout $x \in]5, +\infty[$, si $(0 <)x - 5 \le \alpha$, alors $f(x) \ge A$ (puisque pour tout x > 5, f(x) > 0).

On a montré que $\forall A \in \mathbb{R}, \ \exists \alpha > 0 / \ \forall x \in \mathbb{R} \setminus \{5\}, \ (0 < x - 5 \leqslant \alpha \Rightarrow f(x) \geqslant A).$ Donc, $\lim_{\substack{x \to 5 \\ x > 5}} \frac{3x - 1}{x - 5} = +\infty.$

2) Soit $x_0 \in \mathbb{R} \setminus \{5\}$. Pour $x \neq 5$,

$$|f(x) - f(x_0)| = \left| \frac{3x - 1}{x - 5} - \frac{3x_0 - 1}{x_0 - 5} \right| = \frac{14|x - x_0|}{|x - 5| \times |x_0 - 5|}.$$

Ensuite, pour $x \in \left[x_0 - \frac{|x_0 - 5|}{2}, x_0 + \frac{|x_0 - 5|}{2}\right]$ ou encore si $|x - x_0| \leqslant \frac{|x_0 - 5|}{2}$, on a $|x - 5| \geqslant \frac{|x_0 - 5|}{2}$ (faire un dessin). Ainsi,

$$\forall x \in \left[x_0 - \frac{|x_0 - 5|}{2}, x_0 + \frac{|x_0 - 5|}{2}\right], \ |f(x) - f(x_0)| \leqslant \frac{28}{(x_0 - 5)^2}|x - x_0|.$$

Soit $\epsilon>0.$ Soit $\alpha=\operatorname{Min}\left\{\frac{|x_0-5|}{2},\frac{(x_0-5)^2\epsilon}{28}\right\}(>0).$ On a

$$\begin{split} |x-x_0| &\leqslant \alpha \Rightarrow |f(x)-f(x_0)| \leqslant \frac{28}{(x_0-5)^2} |x-x_0| \; (\operatorname{car}|x-x_0| \leqslant \frac{|x_0-5|}{2}) \\ &\leqslant \frac{28}{(x_0-5)^2} \times \frac{(x_0-5)^2 \varepsilon}{28} \; (\operatorname{car}|x-x_0| < \frac{(x_0-5)^2 \varepsilon}{28 \times 2}) \\ &\leqslant \varepsilon \end{split}$$

On a monté que $\forall \epsilon > 0$, $\exists \alpha > 0 /$ $(\forall x \in \mathbb{R} \setminus \{5\})$, $(|x - x_0| \leqslant \alpha \Rightarrow |f(x) - f(x_0)| \leqslant \epsilon)$. f est donc continue en chaque point de $\mathbb{R} \setminus \{5\}$.

Exercice nº 2

 $\operatorname{Min}(f,g) = \frac{1}{2}(f+g-|f-g|) \text{ et } \operatorname{Max}(f,g) = \frac{1}{2}(f-g+|f-g|) \text{ sont continues en } x_0 \text{ en vertu de théorèmes généraux}.$

Exercice nº 3

Notons $\chi_{\mathbb{Q}}$ la fonction caractéristique de \mathbb{Q} . Soit x_0 un réel. On note que

$$x_0 \in \mathbb{Q} \Leftrightarrow \forall n \in \mathbb{N}^*, \ x_0 + \frac{1}{n} \in \mathbb{Q} \Leftrightarrow \forall n \in \mathbb{N}^*, \ x_0 + \frac{\sqrt{2}}{n} \notin \mathbb{Q}.$$

$$\mathrm{Donc},\ \lim_{n\to+\infty}\chi_{\mathbb{Q}}\left(x_0+\frac{1}{n}\right)\ \mathrm{existe},\ \lim_{n\to+\infty}\chi_{\mathbb{Q}}\left(x_0+\frac{\sqrt{2}}{n}\right)\ \mathrm{existe}\ \mathrm{et}\lim_{n\to+\infty}\chi\left(x_0+\frac{1}{n}\right) \neq \lim_{n\to+\infty}\chi\left(x_0+\frac{\sqrt{2}}{n}\right)\ (\mathrm{l'une}\ \mathrm{des})$$

deux limites valant 1 et l'autre valant 0) bien que $\lim_{n \to +\infty} x_0 + \frac{1}{n} = \lim_{n \to +\infty} x_0 + \frac{\sqrt{2}}{n} = x_0$. Ainsi, pour tout réel $x_0 \in \mathbb{R}$, la fonction caractéristique de \mathbb{Q} n'a pas de limite en x_0 et est donc discontinue en x_0 .

Exercice nº 4

 $\textbf{1)} \ \operatorname{Pour} \ n \in \mathbb{N}, \ \operatorname{posons} \ u_n = 2n\pi \ \operatorname{et} \ \nu_n = \frac{\pi}{2} + 2n\pi. \ \operatorname{On} \ \operatorname{a} \ \lim_{n \to +\infty} u_n = +\infty = \lim_{n \to +\infty} \nu_n \ \operatorname{mais} \ \lim_{n \to +\infty} \sin \left(u_n\right) = 0 \ \operatorname{et} \ \lim_{n \to +\infty} \sin \left(\nu_n\right) = 1. \ \operatorname{Puisque} \ 1 \neq 0, \ \operatorname{on} \ \operatorname{en} \ \operatorname{d\'eduit} \ \operatorname{que} \ \operatorname{la} \ \operatorname{fonction} \ x \mapsto \sin x \ \operatorname{n'a} \ \operatorname{pas} \ \operatorname{de} \ \operatorname{limite} \ \operatorname{quand} \ x \ \operatorname{tend} \ \operatorname{vers} +\infty.$

- 2) Pour $n \in \mathbb{N}^*$, posons $u_n = \frac{1}{2n\pi}$ et $v_n = \frac{1}{\frac{\pi}{2} + 2n\pi}$. On a $\lim_{n \to +\infty} u_n = 0 = \lim_{n \to +\infty} v_n$ mais $\lim_{n \to +\infty} \sin(u_n) = 0$ et $\lim_{n\to+\infty}\sin\left(\nu_n\right)=1$. Puisque $1\neq0$, on en déduit que la fonction $x\mapsto\sin\left(\frac{1}{x}\right)$ n'a pas de limite quand x tend vers 0.
- 3) Pour tout réel non nul x, $\left|x\sin\left(\frac{1}{x}\right)\right| = |x| \times \left|\sin\left(\frac{1}{x}\right)\right| \leqslant |x|$. Puisque |x| tend vers 0 quand x tend vers 0, on en déduit que $x \sin\left(\frac{1}{x}\right)$ tend vers 0 quand x tend vers 0.

Ainsi, la fonction $x \mapsto x \sin\left(\frac{1}{x}\right)$ a une limite réelle quand x tend vers 0 ou encore la fonction $x \mapsto x \sin\left(\frac{1}{x}\right)$ est prolongeante par continuité en 0

Exercice nº 5

- Soit $x \in \mathbb{R}$. Si x > 1, $6x 5 \ge 0$ et donc f(x) existe. D'autre part si x < 1, f(x) existe. Finalement f est définie sur $]-\infty,1[\cup]1,+\infty[.$
- Quand x tend vers 1 par valeurs supérieures, x-1 tend vers 0 et $\sqrt{6x-5}-b$ tend vers 1-b. Donc, si $b \ne 1$, la fonction n'a pas de limite réelle en 1 à droite. Si b = 1, pour x > 1,

$$f(x) = \frac{\sqrt{6x-5}-1}{x-1} = \frac{6x-5-1}{(x-1)\left(\sqrt{6x-5}+1\right)} = \frac{6}{\sqrt{6x-5}+1},$$

et donc $\lim_{\substack{x \to 1 \\ x > 1}} f(x) = \frac{6}{2} = 3$. Finalement, f a une limite à droite en 1 si et seulement si b = 1 et dans ce cas, cette limite est

• $\lim_{\substack{x \to 1 \\ x > 1}} \frac{e^{x-1} - 1}{x-1} = \lim_{\substack{X \to 0 \\ X > 0}} \frac{e^X - 1}{X} = 1$ et donc $\lim_{\substack{x \to 1 \\ x > 1}} f(x) = \alpha$.

Donc, si $\alpha \neq 3$, $\lim_{\substack{x \to 1 \\ x > 1}} f(x) \neq \lim_{\substack{x \to 1 \\ x < 1}} f(x)$ et f n'a pas de limite quand x tend vers 1. Si par contre $\alpha = 3$, f a une limite réelle quand x tend vers 1 ou encore f est prolongeable par continuité en 1.

En résumé, f est prolongeable par continuité en 1 si et seulement si a = 3 et b = 1. Le prolongement encore noté f est la fonction

$$f: x \mapsto \begin{cases} \frac{3(e^{x-1}-1)}{x-1} & \text{si } x > 1 \\ 3 & \text{si } x = 1 \\ \frac{\sqrt{6x-5}-1}{x-1} & \text{si } x > 1 \end{cases} = \begin{cases} \frac{3(e^{x-1}-1)}{x-1} & \text{si } x > 1 \\ \frac{6}{\sqrt{6x-5}+1} & \text{si } x \geqslant 1 \end{cases}.$$

Exercice nº 6

$$\mathrm{Pour}\; x \in [0,1], \; \mathrm{posons}\; f(x) = \left\{ \begin{array}{l} x \; \mathrm{si}\; x \in (\mathbb{Q} \cap [0,1]) \setminus \left\{0,\frac{1}{2}\right\} \\ 1 - x \; \mathrm{si}\; x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0,1] \\ 0 \; \mathrm{si}\; x = \frac{1}{2} \; \mathrm{et}\; \frac{1}{2} \; \mathrm{si}\; x = 0 \end{array} \right..$$

$$\begin{split} f \ \mathrm{est} \ \mathrm{bien} \ \mathrm{une} \ \mathrm{application} \ \mathrm{d\acute{e}finie} \ \mathrm{sur} \ [0,1] \ \grave{\mathrm{a}} \ \mathrm{valeurs} \ \mathrm{dans} \ [0,1]. \ \mathrm{De} \ \mathrm{plus}, \ \mathrm{si} \ x \in (\mathbb{Q} \cap [0,1]) \setminus \left\{0,\frac{1}{2}\right\}, \ \mathrm{alors} \ f(f(x)) = f(x) = x. \\ \mathrm{Si} \ x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0,1], \ \mathrm{alors} \ 1 - x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0,1] \ \mathrm{et} \ \mathrm{donc} \ f(f(x)) = f(1-x) = 1 - (1-x) = x. \\ \mathrm{Enfin}, \ f(f(0)) = f\left(\frac{1}{2}\right) = 0 \ \mathrm{et} \ f\left(f\left(\frac{1}{2}\right)\right) = f(0) = \frac{1}{2}. \end{split}$$

Finalement, $f \circ f = \text{Id}_{[0,1]}$ et f, étant une involution de [0,1], f est une permutation de [0,1].

Soit α un réel de [0,1]. On note que $\lim_{x\to\alpha,\ x\in(\mathbb{R}\setminus\mathbb{Q})} f(x)=1-\alpha$ et $\lim_{x\to\alpha,\ x\in\mathbb{Q}} f(x)=\alpha$. Donc, si f a une limite en α , nécessairement $1-\alpha=\alpha$ et donc $\alpha=\frac{1}{2}$. Ceci montre déjà que f est discontinue en tout réel de [0,1] distinct de $\frac{1}{2}$. D'autre $\mathrm{part},\,\mathrm{si}\,\;\alpha=\frac{1}{2},\,\lim_{x\to\alpha.}\lim_{x\in\mathbb{O},\,\,x\neq\alpha}f(x)=\alpha=\frac{1}{2}\neq0=f\left(\frac{1}{2}\right)\,\mathrm{et}\,\,\mathrm{donc}\,\,f\,\,\mathrm{est}\,\,\mathrm{discontinue}\,\,\mathrm{en}\,\,\mathrm{tout}\,\,\mathrm{point}\,\,\mathrm{de}\,\,[0,1].$

Exercice nº 7

Donnons tout d'abord une expression plus explicite de f(x) pour chaque réel x.

- Si x > 1, alors $\frac{1}{x} \in]0,1[$ et donc, f(x) = 0. Si $\exists p \in \mathbb{N}^* / x \in \left[\frac{1}{p+1}, \frac{1}{p} \right], f(x) = px$.
- f(0) = 1 et d'autre part, $\forall p \in \mathbb{Z}^*$, $f\left(\frac{1}{p}\right) = 1$.
- Si $x \leq -1$, alors $\frac{1}{x} \in [-1, 0[$ et donc, f(x) = -x.
- Enfin, si $\exists p \in \mathbb{Z} \setminus \{-1\}$ tel que $x \in \left[\frac{1}{p+1}, \frac{1}{p}\right]$, alors $\frac{1}{p+1} < x \leqslant \frac{1}{p} (<0)$ fournit, par décroissance de la fonction $x \mapsto \frac{1}{x}$ sur $]-\infty, 0[$, $p \leqslant \frac{1}{x} < p+1 (<0)$ et donc f(x)=px.

Etude en 0. $\forall x \in \mathbb{R}^*$, $\frac{1}{x} - 1 < \left| \frac{1}{x} \right| \leqslant \frac{1}{x}$ et donc $1 - x < f(x) \leqslant 1$ si x > 0 et $1 \leqslant f(x) < 1 - x$ si x < 0. Par suite,

$$\forall x \in \mathbb{R}, |f(x) - 1| \leq |x|.$$

D'après le théorème des gendarmes, $\lim_{x\to 0} f(x) = 1$ et f est donc continue en 0.

f est affine sur chaque intervalle de la forme $\left|\frac{1}{p+1},\frac{1}{p}\right|$ pour p élément de $\mathbb{Z}\setminus\{-1,0\}$ et donc est continue sur ces intervalles et en particulier continue à gauche en chaque $\frac{1}{n}$. f est affine sur $]-\infty,-1]$ et aussi sur $]1,+\infty[$ et est donc continue sur ces intervalles. Il reste donc à analyser la continuité à droite en $\frac{1}{p}$, pour p entier relatif non nul donné. Mais,

$$f\left(\frac{1}{p}^+\right) = \lim_{x \to \frac{1}{p}, \ x > \frac{1}{p}} (x(p-1)) = 1 - \frac{1}{p} \neq 1 = f\left(\frac{1}{p}\right).$$

f est donc discontinue à droite en tout $\frac{1}{p}$ où p est un entier relatif non nul donné.

Graphe de f:

Exercice nº 8

Soit T une période strictement positive de f. On note ℓ la limite de f en $+\infty$. Soit x_0 un réel. $\forall n \in \mathbb{N}$, $f(x_0) = f(x_0 + nT)$ et quand n tend vers $+\infty$, puisque T > 0, on obtient :

$$f(x) = \lim_{n \to +\infty} f(x + nT) = \lim_{X \to +\infty} f(X) = \ell.$$

Ainsi, $\forall x \in \mathbb{R}$, $f(x) = \ell$ et donc f est constante sur \mathbb{R} .

Exercice nº 9

Pour $x \neq 0$, posons $g(x) = \frac{f(2x) - f(x)}{x}$. f est définie sur un voisinage de 0 et donc il existe $\alpha > 0$ tel que] $-\alpha$, $\alpha \in D_f$. Mais alors, $\left] -\frac{\alpha}{2}, \frac{\alpha}{2} \right[\setminus \{0\} \subset D_g$.

Soit $x \in \left] -\frac{\alpha}{2}, \frac{\alpha}{2} \right[\setminus \{0\} \text{ et } n \in \mathbb{N}^*.$

$$\begin{split} f(x) &= \sum_{k=0}^{n-1} \left(f\left(\frac{x}{2^k}\right) - f\left(\frac{x}{2^{k+1}}\right) \right) + f\left(\frac{x}{2^n}\right) \text{ (somme t\'elescopique)} \\ &= \sum_{k=0}^{n-1} \frac{x}{2^{k+1}} g\left(\frac{x}{2^{k+1}}\right) + f\left(\frac{x}{2^n}\right). \end{split}$$

Par suite, pour $x\in\left]-\frac{\alpha}{2},\frac{\alpha}{2}\right[\setminus\{0\}\ \mathrm{et}\ n\in\mathbb{N}^*,\ \mathrm{on}\ \mathrm{a}:$

$$\left| \frac{f(x)}{x} \right| \leqslant \sum_{k=0}^{n-1} \frac{1}{2^{k+1}} \left| g\left(\frac{x}{2^{k+1}}\right) \right| + \left| \frac{f\left(x/2^n\right)}{x} \right|.$$

Soit $\varepsilon > 0$. Puisque par hypothèse, g tend vers 0 quand x tend vers 0,

$$\exists \alpha \in \left]0, \frac{\alpha}{2}\right[/\ \forall X \in [-\alpha, \alpha], \ |g(X)| \leqslant \frac{\epsilon}{2}.$$

 $\mathrm{Or,\ pour\ } x \in [-\alpha,\alpha] \setminus \{0\} \mathrm{\ et\ pour\ } k \mathrm{\ dans\ } \mathbb{N}^*, \, \frac{x}{2^k} \mathrm{\ est\ dans\ } [-\alpha,\alpha] \setminus \{0\} \mathrm{\ et\ par\ suite},$

$$\sum_{k=0}^{n-1} \frac{1}{2^{k+1}} \left| g\left(\frac{x}{2^{k+1}}\right) \right| \leqslant \frac{\varepsilon}{2} \sum_{k=0}^{n-1} \frac{1}{2^{k+1}} = \frac{\varepsilon}{2} \times \frac{1}{2} \times \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} = \frac{\varepsilon}{2} \left(1 - \frac{1}{2^n}\right) \leqslant \frac{\varepsilon}{2},$$

et donc, $\left|\frac{f(x)}{x}\right| \le \frac{\varepsilon}{2} + \left|\frac{f(x/2^n)}{x}\right|$. On a ainsi montré que

$$\forall x \in [-\alpha, \alpha] \setminus \{0\}, \ \forall n \in \mathbb{N}^*, \ \left| \frac{f(x)}{x} \right| \leqslant \frac{\varepsilon}{2} + \left| \frac{f(x/2^n)}{x} \right|.$$

Mais, à x fixé, $\frac{f(x/2^n)}{x}$ tend vers 0 quand n tend vers $+\infty$. Donc, on peut choisir n tel que $\left|\frac{f(x/2^n)}{x}\right| \leqslant \frac{\epsilon}{2}$, ce que l'on fait. On a alors $\left|\frac{f(x)}{x}\right| \leqslant \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. On a montré que

$$\forall \epsilon > 0, \; \exists \alpha > 0 / \; \forall x \in D_f, \; \left(0 < |x| \leqslant \alpha \Rightarrow \left|\frac{f(x)}{x}\right| \leqslant \epsilon\right),$$

ce qui montre que (f est dérivable en 0 et que) $\lim_{x\to 0} \frac{f(x)}{x} = 0$.