Data Structures & Algorithms

Tree

- Basics
- Binary Tree
- implementations
- Tree Traversal
- Binary Search Tree
- AVL Tree

When do we need a tree?

- Folders/files on a computer
- Organizational charts
- ML: decision trees
- HTML Document Structure

Definition

- Connected graph with no cycles
- Single path from root to leaf
- Nodes with parent-child relations

Root: only node with no parents

- Root: only node with no parents
- Internal Node: any node with at least a child

- Root: only node with no parents
- Internal Node: any node with at least a child
- External Node (Leaf): any node with no children

- Root: only node with no parents
- Internal Node: any node with at least a child
- External Node (Leaf): any node with no children

Depth of a Node: Number of edges in the path

from the root

- Root: only node with no parents
- Internal Node: any node with at least a child
- External Node (Leaf): any node with no children

• Depth of a Node: Number of edges in the path

from the root

Height: Max depth

- Root: only node with no parents
- Internal Node: any node with at least a child
- External Node (Leaf): any node with no children
- Depth of a Node: Number of edges in the path

from the root

Height: Max depth

Ancestors

- Root: only node with no parents
- Internal Node: any node with at least a child
- External Node (Leaf): any node with no children
- Depth of a Node: Number of edges in the path

from the root

Height: Max depth

- Ancestors
- Descendants

- Root: only node with no parents
- Internal Node: any node with at least a child
- External Node (Leaf): any node with no children
- Depth of a Node: Number of edges in the path

from the root

Height: Max depth

- Ancestors
- Descendants
- Subtree

- Root: only node with no parents
- Internal Node: any node with at least a child
- External Node (Leaf): any node with no children
- Depth of a Node: Number of edges in the path

from the root

Height: Max depth

- Ancestors
- Descendants
- Subtree
- Element=Key

Maastricht University

Tree ADT

- Defines operations to manipulate the root element
 - The TreeNode will provide operations to add/remove children
- Main operations:
 - addRoot(E e): add an element e as root
 - getRoot(): returns the value e in the root
 - hasRoot(): checks if there is a root node
 - Size(): number of elements in the tree

Tree ADT

```
public interface Tree<E> {
    void addRoot(E e);
    TreeNode<E> getRoot();
    boolean hasRoot();
    int size();
}
```

TreeNode ADT

 Provides operations to modify the Node, add/remove children, check properties of the node

- Main operations:
 - get/setElement()
 - isRoot()/isInternal()/isLeaf()
 - getParent()/getChildren()/hasChild()/addChild()
 - Delete()

TreeNode ADT

```
public interface TreeNode<E> {
   E getElement();
   void setElement(E e);
   boolean isRoot();
   boolean isInternal();
   boolean isExternal();
   TreeNode<E> getParent();
   TreeNode<E>[] getChildren();
   void addChild(E e);
   void delete();
   boolean hasChild(E e);
```


Binary Tree

Binary Tree

- A binary tree is a tree with the following properties:
 - Each internal node has at most two children (exactly two for proper binary trees)
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child

Is this a Binary Tree?

• Is this a Binary Tree?

No! There are internal nodes with 3 children

Is this a Binary Tree?

Is this a Binary Tree?

Yes! Each internal node has at most 2 children

Is this a Proper Binary Tree?

Is this a Proper Binary Tree?

No! C only has 1 child

Is this a Proper Binary Tree?

Is this a Proper Binary Tree?

Yes! Each internal node has exactly 2 children

BinaryTree and BinaryTreeNode Operations

 In a binary tree each node provides operation to modify and read left and right children

- Operations:
 - leftChild()/rightChild()
 - addLeftChild()/addRightChild()

Binary Tree Implementations

Binary Tree implementations

Two main strategies

Binary Tree implementations

Two main strategies

Array-based

- Elements are stored in an array
- Direct access
- We need a way to obtain the loction of the children of a node
- The whole array must be allocated in memory

Binary Tree implementations

Two main strategies

Array-based

- Elements are stored in an array
- Direct access
- We need a way to obtain the loction of the children of a node
- The whole array must be allocated in memory

Linked-based

- Elements are stored in independent structures: Nodes
- The location of the root element is stored

Array-Based Binary Tree

- Index(root) = 0
- Given a generic node v stored at index i
 - Index(left(v)) = 2* i + 1
 - Index(right(v)) = 2 * i + 2
 - Index(parent(v)) = | (i 1) / 2 | // floor operator

Array-Based Representation: Issues?

- When we resize we need to make space for a whole level
- Possibly many empty locations
 - What is the worst case?

Linked-Based (Binary) Tree

- Nodes are represented by objects storing:
 - Element
 - (optional) Parent node
 - Children
 - Left and right for binary trees
 - A list of elements for generic trees

Removing Nodes from Binary Tree

Depending on the node we want to delete:

- Depending on the node we want to delete:
 - Leafs: we can remove them

- Depending on the node we want to delete:
 - Leafs: we can remove them
 - Internal node with two children: we cannot remove them

- Depending on the node we want to delete:
 - Leafs: we can remove them
 - Internal node with two children: we cannot remove them
 - Internal node with one child:
 we remove it and assign the child to the parent

- Depending on the node we want to delete:
 - Leafs: we can remove them
 - Internal node with two children: we cannot remove them
 - Internal node with one child:
 we remove it and assign the child to the parent

Tree Traversal

Tree Traversal

- Different ways to traverse a tree
- Goal: start at root, visit all nodes in the tree
 - Pre-order
 - Post-order
 - In-order (only for binary trees)

In-order Traversal (ONLY for binary trees)

 In an inorder traversal a node is visited after its left subtree and before its right subtree

In-order Traversal (ONLY for binary trees)

 In an inorder traversal a node is visited after its left subtree and before its right subtree

In-order Traversal (ONLY for binary trees)

 In an inorder traversal a node is visited after its left subtree and before its right subtree

Designing Algorithms for Trees

- Many tree algorithms are recursive
 - Use the recursive definition of a tree
- A tree is
 - An empty tree

- Many tree algorithms are recursive
 - Use the recursive definition of a tree

root

- A tree is
 - An empty tree

- A node maintaining

a list of subtrees

- Pre-order visit
 - If the node is null -> nothing to do

• Pre-order visit

- If the node is null -> nothing to do
- If the node is not null

• Pre-order visit

- If the node is null -> nothing to do
- If the node is not null
 - Visit the node

Pre-order visit

- If the node is null -> nothing to do
- If the node is not null
 - Visit the node
 - Visit recursively all the children one by one

Pre-order visit

- If the node is null -> nothing to do
- If the node is not null
 - Visit the node
 - Visit recursively all the children one by one

preOrder(v)
 if v ≠ ∅
 visit(v)
 for each child w of v
 preOrder(w)

- Post-order visit
 - If the node is null -> nothing to do

Post-order visit

- If the node is null -> nothing to do
- If the node is not null

Post-order visit

- If the node is null -> nothing to do
- If the node is not null
 - Visit recursively all the children one by one

Post-order visit

- If the node is null -> nothing to do
- If the node is not null
 - Visit recursively all the children one by one
 - Visit the node

Post-order visit

- If the node is null -> nothing to do
- If the node is not null
 - Visit recursively all the children one by one
 - Visit the node

postOrder(v)

if v ≠ ∅

for each child w of v

postOrder(w)

visit(v)

- In-order visit
 - If the node is null -> nothing to do

- In-order visit
 - If the node is null -> nothing to do
 - If the node is not null

- In-order visit
 - If the node is null -> nothing to do
 - If the node is not null
 - Visit recursively the left subtree

- In-order visit
 - If the node is null -> nothing to do
 - If the node is not null
 - Visit recursively the left subtree
 - Visit the node

- In-order visit
 - If the node is null -> nothing to do
 - If the node is not null
 - Visit recursively the left subtree
 - Visit the node
 - Visit recursively the right subtree

- In-order visit
 - If the node is null -> nothing to do
 - If the node is not null
 - Visit recursively the left subtree
 - Visit the node
 - Visit recursively the right subtree

```
inOrder(v)
  if v ≠ ∅
  inOrder(left(v))
  visit(v)
  inOrder(right(v))
```


Binary Search Tree (BST)

Binary Search Trees (BST)

- A BST is a binary tree storing elements (keys) satisfying the following property:
 - Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v

Binary Search Trees (BST)

- A BST is a binary tree storing elements (keys) satisfying the following property:
 - Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v

Then $key(u) \le key(v) \le key(w)$

Binary Search Tree (BST)

- BSTs keep elements (keys) in sorted order
- Search, insertion, and deletion can use this info to find the elements or the position where to insert them
- Given a key to search, at each node, half of the node's subtrees can be eliminated

• Example: *insert(5)*

• Example: insert(5)
First, we find(5)

• Example: insert(5)
First, we find(5)

• Example: insert(5)
First, we find(5)

 As 5 > 4, we insert 5 as right child of 4

Deletion Case 1 – leaf

• Example: remove(5)

Deletion Case 1 – leaf

• Example: remove(5)

 As 5 is a leaf, we can just remove it

• Example: remove(4)

Example: remove(4)

 Let v be the node storing 4 and w its only child

- Example: remove(4)
- Let v be the node storing 4 and w its only child
- We remove v by assigning w to its parent

- Example: remove(4)
- Let v be the node storing 4 and w its only child
- We remove v by assigning w to its parent

• Example: remove(4)

• Example: remove(4)

 Let v be the node storing 4 having 2 children

- Example: remove(4)
- Let v be the node storing 4 having 2 children
 - Find the node w that follows v in an inorder traversal

• Example: remove(4)

- Let v be the node storing 4 having 2 children
 - Find the node w that follows v in an inorder traversal
 - 2. Replace **v** with **w**

- Example: remove(4)
- Let v be the node storing 4 having 2 children
 - Find the node w that follows v in an inorder traversal
 - 2. Replace **v** with **w**
 - 3. Remove node **w**

Deletion Case 3 – if the successor has a child?

- Example: remove(4)
- Let v be the node storing 4 having 2 children
 - Find the node w that follows v in an inorder traversal
 - 2. Replace **v** with **w**
 - 3. Remove node **w**

Deletion Case 3 – if the successor has a child?

- Example: remove(4)
- Let v be the node storing 4 having 2 children
 - Find the node w that follows v in an inorder traversal
 - 2. Replace **v** with **w**
 - 3. Remove node **w**

 An additional operation that can be answered by a binary search tree is a range query

findInRange(k1, k2, node):
 find all elements k stored in the BST rooted in node such that:

 $k1 \le k \le k2$

findInRange(k1, k2, node)

If node is null -> nothing to do

- If node is null -> nothing to do
- If *node* is not null, let *k* be the element in node

- If node is null -> nothing to do
- If *node* is not null, let *k* be the element in node
 - If $k1 \le k \le k2$:

- k is in the interval and we need to return it
- Where can other elements to return be?

- If node is null -> nothing to do
- If *node* is not null, let *k* be the element in node
 - If $k1 \le k \le k2$:

- k is in the interval and we need to return it
- Where can other elements to return be?
 - In both subtrees!
- If node is null -> nothing to do
- If *node* is not null, let *k* be the element in node
 - If $k1 \le k \le k2$:

- If node is null -> nothing to do
- If *node* is not null, let *k* be the element in node
 - If $k1 \le k \le k2$:
 - we return the result of both recursive calls plus the element k

- If node is null -> nothing to do
- If *node* is not null, let *k* be the element in node
 - If *k*1 ≤ *k* ≤ *k*2:
 - we return the result of botl
 - If *k < k1*:

- k is NOT in the interval and we don't return it
- Where can other elements to return be?

- If node is null -> nothing to do
- If *node* is not null, let *k* be the element in node
 - If *k*1 ≤ *k* ≤ *k*2:
 - we return the result of botl
 - If k < k1:

- k is NOT in the interval and we don't return it
- Where can other elements to return be?
 - Only in the right subtree!
- If node is null -> nothing to do
- If *node* is not null, let *k* be the element in node
 - If $k1 \le k \le k2$:
 - we return the result of botl
 - If *k < k1*:

- If node is null -> nothing to do
- If *node* is not null, let *k* be the element in node
 - If $k1 \le k \le k2$:
 - we return the result of both recursive calls plus the element k
 - If *k < k1*:
 - we return the result of the recursive call in the *right subtree*

- If node is null -> nothing to do
- If *node* is not null, let *k* be the element in node
 - If $k1 \le k \le k2$:
 - we return the result of both recursive calls plus the element k
 - If k < k1:
 - we return the result of the recursive call in the *right subtree*
 - If *k*2 < *k*:

- If node is null -> nothing to do
- If *node* is not null, let *k* be the element in node
 - If *k*1 ≤ *k* ≤ *k*2:
 - we return the result of botl
 - If *k < k1*:
 - we return the result of the
 - If *k*2 < *k*:

- k is NOT in the interval and we don't return it
- Where can other elements to return be?

- If node is null -> nothing to do
- If *node* is not null, let *k* be the element in node
 - If $k1 \le k \le k2$:
 - we return the result of botl
 - If *k < k1*:
 - we return the result of the
 - If *k2* < *k*:

- k is NOT in the interval and we don't return it
- Where can other elements to return be?
 - Only in the left subtree!
- If node is null -> nothing to do
- If node is not null, let k be the element in node
 - If $k1 \le k \le k2$:
 - we return the result of botl
 - If *k < k1*:
 - we return the result of the
 - If k2 < k:

- If node is null -> nothing to do
- If *node* is not null, let *k* be the element in node
 - If *k*1 ≤ *k* ≤ *k*2:
 - we return the result of both recursive calls plus the element k
 - If *k < k1*:
 - we return the result of the recursive call in the *right subtree*
 - If *k*2 < *k*:
 - we return the result of the recursive call in the left subtree

Range Query Algorithm

```
findInRange(k1, k2, node)
    if \mathbf{v} \neq \emptyset
        if k1 \le key(node) \le k2
            L = findInRange(k1, k2, left(node))
            R = findInRange(k1, k2, right(node))
            return { element(node) } U L U R
        else if k < k1
            return findInRange(k1, k2, right(node))
         else if k2 < k
             return findInRange(k1, k2, left(node))
```


{13, 14, 16, 18, 20, 21}

Binary Search Tree - In-Order Traversal

 An in-order traversal of a binary search trees visits the keys in increasing order

Let's make a BST!

Same values but added with different order

- 1) 15, 8, 2, 20, 21, 14, 18
- 2) 20, 8, 21, 18, 14, 15, 2
- 3) 2, 8, 14, 15, 18, 20, 21

1) A Balanced Tree

The height of the tree is log(N)

1) A mostly-Balanced Tree

1) A Balanced Tree

1) A Balanced Tree

Binary Trees: Performance

- For binary tree of height h and with n nodes:
 - max # of leaves: 2^h
 - max # of nodes: 2^(h+1) 1
 - min # of leaves: 1
 - min # of nodes: h + 1

- Methods find, insert and remove have O(h) complexity
- The height h is O(n) in the worst case
 and O(log n) in the best case

Binary Trees: Performance

- What if we could make sure binary trees remain balanced???
 - Their *height* should be always *O(log n)*
 - Then we can perform all operations in O(log n) time
- Dream or reality?

An AVL tree is a self-balancing binary search tree

- Named after its two Soviet inventors, Georgy Adelson-Velsky and Evgenii Landis
- Published it in the 1962 paper "An algorithm for the organization of information"

- An AVL Tree is a BST such that
 - for every internal node v, the heights of the children of v can differ by at most 1

The height of an AVL tree with n nodes is
 O(log n)

In each node we store

- *Height* of the node
 - we assume here *leafs have height=1*
- Balancing factor
 - height of left subtree height of right subtree

balancing factor height

- Assuming we have an AVL tree
 - When we modify the tree, we update height and balancing factor for all the nodes on the path to the root
 - from the parent to the root of the inserted/deleted node
- If we find a node with a *balancing factor* bigger than 2 (lower than -2)?
 - We restore the balancing using a rotation!

Assume the following is a binary tree

$$A \le x \le B \le y \le C$$

Assuming we have a negative unbalance in x

$$A \le x \le B \le y \le C$$

Assuming we have a negative unbalance in x

LEFT ROTATION

$$A \le x \le B \le y \le C$$

Assuming we have a negative unbalance in x

$$A \le x \le B \le y \le C$$

Assuming we have a negative unbalance in x

The ordering is preserved! $A \le x \le B \le y \le C$

If we have a positive unbalance in y?

$$A \le x \le B \le y \le C$$

If we have a positive unbalance in y?

RIGHT ROTATION

$$A \le x \le B \le y \le C$$

If we have a positive unbalance in y?

$$A \le x \le B \le y \le C$$

Assuming we have a positive unbalance in x

The ordering is preserved!

$$A \le x \le B \le y \le C$$

 Rotation operations keep the ordering while modifying the height

 A left rotation restores the balance if the imbalance comes from C

- A left rotation restores the balance if the imbalance comes from C
- What if the imbalance is in B?

- A left rotation restores the balance if the imbalance comes from C
- What if the imbalance is in B?

RIGHT-LEFT ROTATION!

 We first perform a right rotation on y

RIGHT-LEFT ROTATION!

 We first perform a right rotation on y

RIGHT-LEFT ROTATION!

AVL Tree - ROTATION

- We first perform a right rotation on y
- Then we perform a left rotation on x

RIGHT-LEFT ROTATION!

AVL Tree - ROTATION

- We first perform a right rotation on y
- Then we perform a left rotation on x

RIGHT-LEFT ROTATION!

AVL Tree - ROTATION

RIGHT-LEFT ROTATION!

balancing factor height

• Let's insert values 1, 2, 3, 4, 5, 6

Insert(1)

balancing factor height

• Let's insert values 1, 2, 3, 4, 5, 6

Insert(2)

balancing factor height

balancing factor height

balancing factor height

• Let's insert values 1, 2, 3, 4, 5, 6

Insert(3)

balancing factor height

• Let's insert values 1, 2, 3, 4, 5, 6

Insert(4)

balancing factor height

• Let's insert values 1, 2, 3, 4, 5, 6

Insert(5)

balancing factor height

balancing factor height

• Let's insert values 1, 2, 3, 4, 5, 6

Insert(5)

balancing factor height

• Let's insert values 1, 2, 3, 4, 5, 6

Insert(6)

balancing factor height

balancing factor height

• Let's insert values 1, 2, 3, 4, 5, 6

Insert(6)

balancing factor height

Now we insert 5.5

- 5 has balancing factor -2
- The previous updated node has balancing factor 1

balancing factor height

Now we insert 5.5

- 5 hasbalancingfactor -2
- The previous updated node has balancing factor 1

balancing factor height

Now we insert 5.5

 If the signs are not the same, we need a rightleft rotation!

balancing factor height

Now we insert 5.5

Right rotation on 6

balancing factor height

Now we insert 5.5

Right rotation on 6

balancing factor height

Now we insert 5.5

- Right rotation on 6
- Left rotation on 5

Maastricht Universit

Insert(5.5)

balancing factor height

Now we insert 5.5

- Right rotation on 6
- Left rotation on 5

AVL Tree Performance

Given an AVL tree storing *n* items:

- The data structure uses O(n) space
- A single restructuring takes O(1) time using a linked-structure binary tree
- Searching takes O(log n) time
- Insertion takes O(log n) time
- Removal takes O(log n) time

Downside is complex implementation

Some complexities revisited

	Insert	Remove	Search
Unsorted array	O(1)	O(n)	O(<i>n</i>)
Sorted array	O(<i>n</i>)	O(<i>n</i>)	O(log(<i>n</i>))
Linked list	O(1)	O(1)	O(<i>n</i>)
BST (if balanced)	O(log n)	O(log n)	O(log n)