Arbres

Mathieu Pigeon

UQAM

Introduction

Construction d'un arbre de régression

Construction d'un arbre de classification

Arbres de décision

- L'objectif est de diviser l'espace des variables explicatives $\mathcal{X}_1 \times \ldots \times \mathcal{X}_p$, où $X_i \in \mathcal{X}_i$, $i = 1, \ldots, p$, en régions « plus simples ».
- Les arbres de décision peuvent être utilisés pour des problématiques de régression et de classification.
- Ils sont simples à mettre en place et utiles pour l'interprétation.
- On combine généralement plusieurs arbres afin d'améliorer le pouvoir prédictif du modèle (prochain cours).

Exemple 1

Base de données *freaggnumber* disponible dans la librairie *CASdatasets* contient la fréquence totale de sinistres pour 12513 classes d'assuré(e)s. Les variables sont

- ClaimNumber : la fréquence totale pour la classe;
- Exposure : l'exposition totale pour la classe (en année-police);
- VehAge : l'âge du véhicule;
- LicenceAge : l'âge auquel le conducteur a obtenu son permis de conduire;
- DriverAge : l'âge du conducteur.

Exemple 1 : Préparation des données

data(freaggnumber)

library(CASdatasets)

dataAGG <- freaggnumber head(dataAGG)

DriverAge	LicenceAge	VehAge	Exposure	${\tt ClaimNumber}$
39	18	3	1356.402	192
35	18	3	1243.948	172
37	18	1	1263.064	172
38	18	3	1328.589	171
39	18	2	1346.795	170
40	18	3	1263.537	165

dataAGG\$Y <- dataAGG\$ClaimNumber/dataAGG\$Exposure</pre>

Exemple 1 : Arbre simple

```
install.packages("rpart")
library(rpart)
### Ajustement du modèle
arbre1 <- rpart(Y ~ DriverAge, data = dataAGG)
### Graphique
plot(arbre1, uniform = TRUE, branch = 0.5, margin = 0.1)
text(arbre1, all = FALSE, use.n = TRUE)</pre>
```

Exemple 1 : Arbre simple

Exemple 1 : Arbre simple

Exemple 1 : Arbre simple (2)

```
### Ajustement du modèle
arbre2 <- rpart(Y ~ DriverAge + VehAge, data = dataAGG)
### Graphique
plot(arbre2, uniform = TRUE, branch = 0.5, margin = 0.1)
text(arbre2, all = FALSE, use.n = TRUE)</pre>
```

Exemple 1 : Arbre simple (2)

Exemple 1 : Arbre simple (2)

Terminologie

- Les régions finales obtenues sont nommées noeuds terminaux ou, plus souvent, feuilles de l'arbre.
- Les autres points où se font les divisions sont des noeuds internes de l'arbre.
- Les segments de l'arbre qui connectent les noeuds sont des branches.

Procédure cadre

Pour réaliser des prédictions à partir d'un arbre il faut

- ① diviser l'espace des variables explicatives en J régions, R_1, \ldots, R_J , telles que
 - $R_i \cap R_j = \emptyset$, $i \neq j$ et
 - $R_1 \cup R_2 \cup \ldots \cup R_J = \mathcal{X}_1 \times \mathcal{X}_2 \times \ldots \times \mathcal{X}_J$.
- ② Pour chaque observation qui tombe dans la région R_j , une prédiction identique sera faite en utilisant, par exemple, la **moyenne** des observations de cette classe : $\widehat{Y}_{R_j} = \frac{1}{|R_i|} \sum_{i: \mathbf{X}_i \in R_j} Y_i$.

Comment diviser l'espace des variables explicatives?

- La procédure cadre ne donne aucune indication sur la forme des régions : toutes les possibilités peuvent être tentées → une infinité de choix.
- On limite la forme des régions à des (hyper-)rectangles (des rectangles dans \mathbb{R}^p) afin de simplifier la construction de l'arbre et de permettre une interprétation des résultats (sous la forme d'un graphique).
- Chacun des noeuds se construit en optimisant une fonction objectif.

Fonction objectif

Pour une problématique de régression, on travaillera souvent avec la somme des erreurs au carré (SSE) ou l'erreur quadratique moyenne (MSE)

$$SSE = \sum_{j=1}^{J} \sum_{i: \mathbf{X}_i \in R_j} \left(Y_i - \widehat{Y}_{R_j} \right)^2,$$

où \widehat{Y}_{R_j} est la valeur prédite dans la région R_j . On cherche alors une partition R_1, \ldots, R_J qui **minimise** le SSE.

Fonction objectif

- À nouveau, si on considère toutes les partitions possibles de l'espace des variables explicatives, on devra considérer un trop grand nombre de possibilités.
- On va plutôt utiliser un algorithme glouton descendant (top-down greedy approach) par division binaire récursive (recursive binary splitting).
- Algorithme descendant : on commence avec toutes les observations dans une même classe (racine de l'arbre) et on divise l'espace en régions de plus en plus petites.
- Algorithme glouton : l'optimisation se fait à chaque étape sans regard vers le passé ou vers l'avenir.

Division binaire récursive

Première étape : on sélectionne la variable explicative X_j et le point c tels que la division en deux régions

$$R_1(j,c) = \{X_1, \dots, X_J | X_j < c\}$$

$$R_2(j,c) = \{X_1, \dots, X_J | X_j \ge c\}$$

conduise à la plus grande réduction possible de la fonction objectif. Si la somme des erreurs au carré a été choisie, on cherche alors à minimiser

$$\sum_{i:\mathbf{X}_i\in R_1(j,c)} \left(Y_i - \widehat{Y}_{R_1(j,c)}\right)^2 + \sum_{i:\mathbf{X}_i\in R_2(j,c)} \left(Y_i - \widehat{Y}_{R_2(j,c)}\right)^2.$$

Division binaire récursive

Étapes suivantes : à l'étape k, on répète la procédure décrite à la première étape pour chacune des régions créées à l'étape k-1, c'est-à-dire que pour chacune des régions r, on doit identifier la variable explicative X_j et le point c qui vont minimiser la fonction objectif après la division donnée par

$$\{ \mathbf{X} \in r | X_j < c \} \text{ et } \{ \mathbf{X} \in r | X_j \ge c \}.$$

La procédure est arrêtée lorsqu'un certain critère est atteint. En l'absence de critère d'arrêt, l'arbre obtenu aura n feuilles (n n'étant pas nécessairement le nombre d'observations dans la base de données) \rightarrow surapprentissage.

Critère d'arrêt

- On utilise souvent comme critère d'arrêt le fait d'avoir un nombre minimal d'observations dans chacune des régions.
- Utiliser comme critère d'arrêt le fait d'avoir une diminution de la fonction objectif qui dépasse un certail seuil n'est généralement pas une bonne idée.
- Même si un critère d'arrêt approprié est sélectionné, il y a fort à parier que l'arbre conduise à du surajustement, c'est-à-dire qu'il performera (trop) bien sur une base de données d'entrainement mais sera mauvais sur une base de données d'évaluation.

Élagage de l'arbre

- Une meilleure stratégie consiste en (1) construire un très gros arbre de départ \mathcal{T}_0 et (2) couper certaines branches de l'arbre.
- \bullet On cherchera à identifier le sous-arbre $\mathcal{T}\subset\mathcal{T}_0$ qui minimise

$$\sum_{m=1}^{|\mathcal{T}|} \sum_{i: \mathbf{X}_i \in R_m} \left(Y_i - \widehat{Y}_{R_m} \right)^2 + \alpha |\mathcal{T}|,$$

- où α est un (hyper-)paramètre de complexité et $|\mathcal{T}|$ représente le nombre de feuilles du sous-arbre \mathcal{T} .
- Similaire à la régression Ridge/Lasso : compromis entre le biais et la variance, entre la précision et la parcimonie.
- Le paramètre de complexité peut être estimé par validation croisée.

Exemple 1 : Arbre complet

Exemple 1 : Arbre complet

Exemple 1 : Paramètre de complexité

Exemple 1 : Paramètre de complexité

arbre3a <- rpart(Y ~ VehAge, data = dataTRAIN,

Exemple 1: Arbre final

Exemple 1 : Arbre final


```
### Le choix se fait par 10-validation croisée
arbre4 <- rpart(Y ~ VehAge + DriverAge, data = dataAGG)
summary(arbre4)</pre>
```

```
Variable importance
VehAge DriverAge
80 20
```

```
Node number 1: 12513 obs, complexity param=0.05481642
 mean=0.1713315, MSE=0.1073434
 left son=2 (12409 obs) right son=3 (104 obs)
 Primary splits:
      VehAge < 25.5 to the left,
                                    improve=0.05481642,
     DriverAge < 87.5 to the left,
                                    improve=0.01609504,
Node number 2: 12409 obs, complexity param=0.01624138
 mean=0.164309, MSE=0.08627632
 left son=4 (12400 obs) right son=5 (9 obs)
 Primary splits:
      DriverAge < 87.5 to the left,
                                     improve=0.02037659,
      VehAge < 20.5 to the left,
                                     improve=0.01493965,
```


Exemple 1: Arbre final

```
arbre5 <- rpart(Y ~ VehAge + DriverAge + LicenceAge,
               data = dataAGG)
summary(arbre5)
Variable importance
LicenceAge VehAge DriverAge
        58
                  31
                             11
Node number 1: 12513 obs, complexity param=0.08106918
 mean=0.1713315, MSE=0.1073434
 left son=2 (12203 obs) right son=3 (310 obs)
 Primary splits:
     LicenceAge < 39.5 to the left,
                                      improve=0.08106918,
     VehAge < 25.5 to the left,
                                      improve=0.05481642,
     DriverAge < 87.5 to the left,
                                      improve=0.01609504,
```

Exemple 1 : Arbre final

Exemple 1: Arbre final

Exemple 1: Arbre final

```
### Pour faire des graphiques plus "clean"
install.packages("rpart.plot")
library(rpart.plot)
prp(arbre5,extra=1)
```

Exemple 1 : Arbre final

Exemple 1: Arbre final

```
### Approche alternative
arbre5 <- rpart(Y ~ VehAge + DriverAge + LicenceAge,
                 data = dataAGG.
                 control = rpart.control(cp = 0))
CP <- arbre5$cptable[which.min(arbre5$cptable[,4]),1]</pre>
CP
1.899117e-05
arbre6 <- prune(arbre5,cp=CP)</pre>
prp(arbre6, extra = 1)
```

Exemple 1 : Arbre final

Construction

La procédure est similaire à celle utilisée pour une problématique de régression. Quelques différences :

- pour chaque observation qui tombe dans la région R_j, une prédiction identique sera faite en utilisant, par exemple, le **mode** des observations de cette classe;
- les variables réponses n'étant pas numériques, l'erreur quadratique moyenne (ou la somme des erreurs au carré) ne peut par être utilisée comme fonction objectif.

Fonction objectif

 Pour une région r, si le mode est utilisée comme prédiction, on peut utiliser le taux d'erreur de classification donné par

$$E_r = 1 - \max_{g \in \mathcal{G}} \widehat{p}_{rg},$$

où \widehat{p}_{rg} est la proportion d'observations i pour lesquelles $\mathbf{X}_i \in r$ et dont la variable réponse est g.

• Simple à mettre en oeuvre mais plus difficile à interpréter.

Fonction objectif

• L'index Gini associé à la région r est donné par

$$G_r = \sum_{g \in \mathcal{G}} \widehat{p}_{rg} (1 - \widehat{p}_{rg}).$$

- On remarque que l'index Gini prend des petites valeurs si \hat{p}_{rg} est soit près de 0, soit près de 1 : mesure de l'homogénéité (ou de la pureté) du noeud.
- ullet Petites valeurs ullet le noeud contient essentiellement des observations provenant d'une seule classe.

Fonction objectif

• L'entropie associée à la région r est donnée par

$$D_r = -\sum_{g \in \mathcal{G}} \widehat{p}_{rg} \ln(\widehat{p}_{rg}) \mathbb{I}_{\{\widehat{p}_{rg} \neq 0\}},$$

οù

$$\ln(\widehat{\rho}_{rg})\mathbb{I}_{\{\widehat{\rho}_{rg}\neq 0\}} = egin{cases} \ln(\widehat{\rho}_{rg}), & \widehat{\rho}_{rg} \neq 0 \\ 0, & \text{sinon.} \end{cases}$$

• À nouveau, on remarque que l'entropie prend des petites valeurs si \widehat{p}_{rg} est soit près de 0, soit près de 1 : mesure de l'homogénéité (ou de la pureté) du noeud.

Division binaire récursive

Première étape : on sélectionne la variable explicative X_j et le point c tels que la division en deux régions

$$R_1(j,c) = \{X_1, \dots, X_J | X_j < c\}$$

$$R_2(j,c) = \{X_1, \dots, X_J | X_j \ge c\}$$

conduise à la plus grande réduction possible de l'entropie (ou de l'index Gini) agrégée.

Division binaire récursive

 L'entropie (ou l'index Gini) agrégée est simplement la somme pondérée des entropies des deux régions :

$$D_r^* = \pi_1 D_{R_1} + \pi_2 D_{R_2},$$

où D_{R_i} est l'entropie de la région j et

$$\pi_j = \frac{|R_j|}{|R_1| + |R_2|}, \quad j = 1, 2.$$

Division binaire récursive

- Lors de la **construction** de l'arbre initial \mathcal{T}_0 , on utilise presque toujours soit l'index Gini, soit l'entropie.
- Lors de l'élagage de l'arbre, on utilise
 - le taux d'erreur de classification si on vise principalement la précision des prédictions (plutôt que l'interprétation des résultats);
 - l'index Gini ou l'entropie sinon.

Exemple 2

On considère un noeud avec 10 observations :

$${A, A, A, A, A, A, A, A, B, B}$$

et pour lequel la classe prédite est A. Si on considère les sous-groupes

$$R_1 = \{A, A, A, A, A\}$$
 et $R_2 = \{A, A, A, B, B\}$,

évaluer l'impact de cette division sur la pureté du noeud.

Exemple 3

Base de données *credit* disponible dans la librairie *CASdatasets* contient de l'information sur 1 000 dossiers de crédits. La base contient une variable réponse binaire et une vingtaine de variables explicatives :

- class : 0 pour bon crédit et 1 pour mauvais crédit (variable réponse);
- credit_amount : le montant accordé du crédit ;
- savings: le montant des économies: A61 pour moins de 100, A62 pour entre 100 et 500, A63 pour entre 500 et 1000, A64 pour plus de 1000 et A65 pour inconnu;
- age : l'âge de l'emprunteur;
- ...

Exemple 3 : Préparation des données

```
library(CASdatasets)
data(credit)
dataC <- credit</pre>
```

Exemple 3 : Construction de l'arbre

```
arbre1 <- rpart(as.factor(class) ~ credit_amount + savings</pre>
                 + age, data = dataC,
                 control = rpart.control(cp = 0))
CP <- arbre1$cptable[which.min(arbre1$cptable[,4]),1]</pre>
CP
0.008333333
arbre2 <- prune(arbre1, cp = CP)
prp(arbre2, extra = 1)
```

Exemple 3: Arbre

Exemple 3 : Prédictions

```
predict(arbre2, dataC[1:5,])
1 0.8333333 0.1666667
2 0.6712538 0.3287462
3 0.6712538 0.3287462
4 0.3076923 0.6923077
5 0.6712538 0.3287462
predict(arbre2, dataC[1:5,], type = "class")
1 2 3 4 5
0 0 0 1 0
```

Exemple 3 : Matrice de confusion

```
table(dataC$class, predict(arbre2, dataC, type="class"))
```

```
0 684 16
1 264 36
```