日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年12月25日

出 願 番 号 Application Number:

特願2002-374022

[ST. 10/C]:

[J P 2 0 0 2 - 3 7 4 0 2 2]

出 願 人
Applicant(s):

株式会社半導体エネルギー研究所

ioo

2003年10月28日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

P006834

【提出日】

平成14年12月25日

【あて先】

特許庁長官 殿

【発明者】

【住所又は居所】

神奈川県厚木市長谷398番地 株式会社半導体エネル

ギー研究所内

【氏名】

中島 晴恵

【発明者】

【住所又は居所】

神奈川県厚木市長谷398番地 株式会社半導体エネル

ギー研究所内

【氏名】

瀬尾 哲史

【特許出願人】

【識別番号】

000153878

【氏名又は名称】 株式会社半導体エネルギー研究所

【代表者】

山崎 舜平

【手数料の表示】

【予納台帳番号】

002543

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】明細書

【発明の名称】電界発光素子及び電界発光素子の作製方法

【特許請求の範囲】

【請求項1】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた電界発光層と、を少なくとも有する電界発光素子において、前記電界発光層は、有機化合物と金属塩とを共蒸着することにより形成された層を含み、かつ、前記有機化合物は、ブレンステッド酸性を示すプロトン供与性官能基と、非共有電子対を有する官能基とをそれぞれ少なくとも一つ有することを特徴とする電界発光素子。

【請求項2】

請求項1に記載の電界発光素子において、前記プロトン供与性官能基は、水酸基 、カルボキシル基、およびメルカプト基からなる一群より選ばれるいずれかの官 能基であることを特徴とする電界発光素子。

【請求項3】

請求項1に記載の電界発光素子において、前記非共有電子対を有する官能基は、 複素環残基、アゾメチン基、およびカルボニル基からなる一群より選ばれるいず れかの官能基であることを特徴とする電界発光素子。

【請求項4】

請求項1に記載の電界発光素子において、前記プロトン供与性官能基は、水酸基、カルボキシル基、およびメルカプト基からなる一群より選ばれるいずれかの官能基であり、かつ、前記非共有電子対を有する官能基は、複素環残基、アゾメチン基、およびカルボニル基からなる一群より選ばれるいずれかの官能基であることを特徴とする電界発光素子。

【請求項5】

請求項1乃至請求項4のいずれか一項に記載の電界発光素子において、前記金属 塩は、金属酢酸塩、金属ハロゲン化物、および金属アルコキシドからなる一群よ り選ばれるいずれかの物質であることを特徴とする電界発光素子。

【請求項6】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた電界発光層と、を少な

くとも有する電界発光素子において、前記電界発光層は、有機化合物と金属塩と を共蒸着することにより形成された層を含み、かつ、前記有機化合物は、下記一 般式(1)で表される化合物であることを特徴とする電界発光素子。

【化1】

$$R_5$$
 OH OH R_4 R_3 R_2 R_1 R_1

(式中、R1~R6は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、 炭素数1~10まで)、アルコキシル基(ただし、炭素数1~10まで)、置換 または無置換のアリール基(ただし、炭素数は1~20まで)、置換または無置 換の複素環残基(ただし、炭素数は1~20まで)、のいずれかを表す。また、 R3とR4、またはR4とR5、またはR5とR6は、それぞれ互いに結合し、 ベンゼン環または多環縮合環(ただし、炭素数は1~20まで)を形成しても良 い。また、R1とR2は互いに結合し、ピリジン環を形成してもよい。)

【請求項7】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた電界発光層と、を少なくとも有する電界発光素子において、前記電界発光層は、有機化合物と金属塩とを共蒸着することにより形成された層を含み、かつ、前記有機化合物は、下記一般式(2)で表される化合物であることを特徴とする電界発光素子。

【化2】

$$R_{11}$$
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}
 R_{16}
 R_{15}
 R_{14}
 R_{15}
 R_{15}
 R_{15}
 R_{16}
 R_{15}
 R_{16}
 R_{15}
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 R

(式中、R1~R15は、水素、ハロゲン元素、シアノ基、アルキル基(ただし

、炭素数 $1\sim10$ まで)、アルコキシル基(ただし、炭素数 $1\sim10$ まで)、置換または無置換のアリール基(ただし、炭素数は $1\sim20$ まで)、置換または無置換の複素環残基(ただし、炭素数は $1\sim20$ まで)、のいずれかを表す。また、R1とR2は互いに結合し、ピリジン環を形成しても良い。)

【請求項8】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた電界発光層と、を少なくとも有する電界発光素子において、前記電界発光層は、有機化合物と金属塩とを共蒸着することにより形成された層を含み、かつ、前記有機化合物は、下記一般式(3)で表される化合物であることを特徴とする電界発光素子。

【化3】

(式中、R1~R12は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数1~10まで)、アルコキシル基(ただし、炭素数1~10まで)、置換または無置換のアリール基(ただし、炭素数は1~20まで)、のいずれかを表す。また、R1とR2は互いに結合し、シクロアルカン構造、またはベンゼン環、または多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R4とR5、またはR5とR6、またはR6とR7、またはR8とR9、またはR9とR10、またはR10とR11は、それぞれ互いに結合し、ベンゼン環または多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R2とR3、またはR1とR12は、それぞれ互いに結合し、ピリジン環を形成しても良い。)

【請求項9】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた電界発光層と、を少な

くとも有する電界発光素子において、前記電界発光層は、有機化合物と金属塩と を共蒸着することにより形成された層を含み、かつ、前記有機化合物は、下記一 般式(4)で表される化合物であることを特徴とする電界発光素子。

【化4】

$$R_{22}$$
 R_{23}
 R_{19}
 R_{14}
 R_{13}
 R_{11}
 R_{10}
 R_{9}
 R_{18}
 R_{17}
 R_{16}
 R_{16}
 R_{17}
 R_{16}
 R_{17}
 R_{16}
 R_{17}
 R_{18}
 R_{18}
 R_{19}
 R_{11}
 R_{11}
 R_{12}
 R_{11}
 R_{10}
 $R_$

(式中、R $1 \sim$ R 3 0 は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数 $1 \sim$ 1 0 まで)、アルコキシル基(ただし、炭素数 $1 \sim$ 1 0 まで)、置換または無置換のアリール基(ただし、炭素数は $1 \sim$ 2 0 まで)、のいずれかを表す。また、R 1 と R 2 は互いに結合し、シクロアルカン構造、またはベンゼン環、または多環縮合環(ただし、炭素数は $1 \sim$ 2 0 まで)を形成しても良い。また、R 2 と R 3、またはR 1 と R 3 0 は、それぞれ互いに結合し、ピリジン環を形成しても良い。)

【請求項10】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた電界発光層と、を少な くとも有する電界発光素子において、前記電界発光層は、有機化合物と金属塩と を共蒸着することにより形成された層を含み、かつ、前記有機化合物は、下記一 般式(5)で表される化合物であることを特徴とする電界発光素子。 【化5】

$$R_3$$
 R_4
 R_5
 R_1
 R_1
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_1
 R_2
 R_3
 R_4
 R_5
 R_5

(式中、R1~R5は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数1~10まで)、アルコキシル基(ただし、炭素数1~10まで)、置換または無置換のアリール基(ただし、炭素数は1~20まで)、のいずれかを表す。またR4は、アミノ基、ジアルキルアミノ基、アリールアミノ基、のいずれかを表しても良い。また、R2とR3、またはR3とR4、またはR4とR5は、それぞれ互いに結合し、ベンゼン環または多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R3とR4、R4とR5とが互いに結合し、ジュロリジン骨格を形成しても良い。)

【請求項11】

請求項6乃至請求項10のいずれか一項に記載の電界発光素子において、前記金属塩は、金属酢酸塩、金属ハロゲン化物、および金属アルコキシドからなる一群より選ばれるいずれかの物質であることを特徴とする電界発光素子。

【請求項12】

請求項11に記載の電界発光素子において、前記金属塩は、亜鉛、アルミニウム、 、珪素、ガリウム、およびジルコニウムからなる一群より選ばれるいずれかの金 属元素を含むことを特徴とする電界発光素子。

【請求項13】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた電界発光層と、を少な くとも有する電界発光素子において、前記電界発光層は、下記一般式(6)で表 される構造を有する金属錯体を含む層を含むことを特徴とする電界発光素子。 【化6】

(式中、Mは飽和または不飽和の金属イオンを表す。また、R1~R6は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数1~10まで)、アルコキシル基(ただし、炭素数1~10まで)、置換または無置換のアリール基(ただし、炭素数は1~20まで)、置換または無置換の複素環残基(ただし、炭素数は1~20まで)、のいずれかを表す。また、R3とR4、またはR4とR5、またはR5とR6は、それぞれ互いに結合し、ベンゼン環または多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R1とR2は互いに結合し、ピリジン環を形成してもよい。)

【請求項14】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた電界発光層と、を少な くとも有する電界発光素子において、前記電界発光層は、下記一般式 (7) で表 される構造を有する金属錯体を含む層を含むことを特徴とする電界発光素子。

【化7】

$$R_{12}$$
 R_{13}
 R_{14}
 R_{15}
 R_{9}
 R_{1}
 R_{15}
 $R_{$

(式中、Mは飽和または不飽和の金属イオンを表す。また、R1~R15は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数1~10まで)、アルコキシル基(ただし、炭素数1~10まで)、置換または無置換のアリール基(ただし、炭素数は1~20まで)、置換または無置換の複素環残基(ただし、

炭素数は1~20まで)、のいずれかを表す。また、R1とR2は互いに結合し、ピリジン環を形成しても良い。)

【請求項15】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた電界発光層と、を少なくとも有する電界発光素子において、前記電界発光層は、下記一般式(8)で表される構造を有する金属錯体を含む層を含むことを特徴とする電界発光素子。

【化8】

(式中、Mは飽和または不飽和の金属イオンを表す。R1~R12は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数1~10まで)、アルコキシル基(ただし、炭素数1~10まで)、置換または無置換のアリール基(ただし、炭素数は1~20まで)、置換または無置換の複素環残基(ただし、炭素数は1~20まで)、のいずれかを表す。また、R1とR2は互いに結合し、シクロアルカン構造、またはベンゼン環、または多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R4とR5、またはR5とR6、またはR6とR7、またはR8とR9、またはR9とR10、またはR10とR11は、それぞれ互いに結合し、ベンゼン環または多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R2とR3、またはR1とR12は、それぞれ互いに結合し、ピリジン環を形成しても良い。)

【請求項16】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた電界発光層と、を少な くとも有する電界発光素子において、前記電界発光層は、下記一般式 (9) で表 される構造を有する金属錯体を含む層を含むことを特徴とする電界発光素子。 【化9】

$$R_{24}$$
 R_{23}
 R_{19}
 R_{18}
 R_{15}
 R_{16}
 R_{17}
 R_{16}
 R_{16}
 R_{17}
 R_{16}
 R_{17}
 R_{16}
 R_{17}
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 R_{19}
 R_{19}
 R_{10}
 R

(式中、Mは飽和または不飽和の金属イオンを表す。R1~R30は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数1~10まで)、アルコキシル基(ただし、炭素数1~10まで)、置換または無置換のアリール基(ただし、炭素数は1~20まで)、置換または無置換の複素環残基(ただし、炭素数は1~20まで)、のいずれかを表す。また、R1とR2は互いに結合し、シクロアルカン構造、またはベンゼン環、または多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R2とR3、またはR1とR30は、それぞれ互いに結合し、ピリジン環を形成しても良い。)

【請求項17】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた電界発光層と、を少なくとも有する電界発光素子において、前記電界発光層は、下記一般式(10)で表される構造を有する金属錯体を含む層を含むことを特徴とする電界発光素子。

【化10】

$$\begin{bmatrix} R_3 & R_1 & O \\ R_4 & R_5 & 0 \end{bmatrix}$$

$$(10)$$

(式中、Mは飽和または不飽和の金属イオンを表す。 $R1\sim R5$ は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数 $1\sim 10$ まで)、アルコキシ

ル基(ただし、炭素数 $1\sim10$ まで)、置換または無置換のrリール基(ただし、炭素数は $1\sim20$ まで)、置換または無置換の複素環残基(ただし、炭素数は $1\sim20$ まで)、のいずれかを表す。またR4は、r5ノ基、ジアルキルアミノ基、rリールアミノ基、のいずれかを表しても良い。また、R2とR3、またはR3とR4、またはR4とR5は、それぞれ互いに結合し、ベンゼン環または多環縮合環(ただし、炭素数は $1\sim20$ まで)を形成しても良い。また、R3とR4、R4とR5とが互いに結合し、ジュロリジン骨格を形成しても良い。nは1以上4以下の整数を表す。)

【請求項18】

請求項13乃至請求項17のいずれか一項に記載の電界発光素子において、前記金属イオンは、亜鉛、アルミニウム、珪素、ガリウム、ジルコニウムのいずれかの元素からなる金属イオンであることを特徴とする電界発光素子。

【請求項19】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた一つまたは複数の有機 化合物層を含む電界発光層と、を少なくとも有する電界発光素子の作製方法において、前記有機化合物層のうち少なくとも一層の形成工程が、ブレンステッド酸性を示すプロトン供与性官能基と非共有電子対を有する官能基とをそれぞれ少なくとも一つ有する有機化合物と、金属塩とを共蒸着する工程からなることを特徴とする電界発光素子の作製方法。

【請求項20】

請求項19に記載の電界発光素子の作製方法において、前記プロトン供与性官能基は、水酸基、カルボキシル基、およびメルカプト基からなる一群より選ばれるいずれかの官能基であることを特徴とする電界発光素子の作製方法。

【請求項21】

請求項19に記載の電界発光素子の作製方法において、前記非共有電子対を有する官能基は、複素環残基、アゾメチン基、およびカルボニル基からなる一群より 選ばれるいずれかの官能基であることを特徴とする電界発光素子の作製方法。

【請求項22】

請求項19乃至請求項21のいずれか一項に記載の電界発光素子の作製方法にお

いて、前記金属塩は、金属酢酸塩、金属ハロゲン化物、および金属アルコキシドからなる一群より選ばれるいずれかの物質であることを特徴とする電界発光素子の作製方法。

【請求項23】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた一つまたは複数の有機 化合物層を含む電界発光層と、を少なくとも有する電界発光素子の作製方法にお いて、前記有機化合物層のうち少なくとも一層の形成工程が、下記一般式(1) で表される有機化合物と、金属塩とを共蒸着する形成工程からなることを特徴と する電界発光素子の作製方法。

【化11】

$$R_5$$
 R_6
 R_6
 R_7
 R_8
 R_9
 R_1
 R_1
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_1

(式中、R $1\sim$ R 6 は、水素、ハロゲン、シアノ基、アルキル基(ただし、炭素数 $1\sim$ 1 0 まで)、アルコキシル基(ただし、炭素数 $1\sim$ 1 0 まで)、置換又は無置換のアリール(ただし、炭素数 $1\sim$ 1 0 まで)、置換または無置換の複素環残基(ただし、炭素数 $1\sim$ 2 0 まで)を表す。また、R 3 と R 4 、またはR 4 とR 5 、またはR 5 とR 6 は、それぞれ互いに結合し、ベンゼン環または多環縮合環(ただし、炭素数 $1\sim$ 2 0 まで)を形成しても良い。また、R 1 とR 2 は互いに結合し、ピリジン環を形成してもよい。)

【請求項24】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた一つまたは複数の有機 化合物層を含む電界発光層と、を少なくとも有する電界発光素子の作製方法において、前記有機化合物層のうち少なくとも一層の形成工程が、下記一般式(2) で表される有機化合物と、金属塩とを共蒸着する形成工程からなることを特徴と する電界発光素子の作製方法。 【化12】

$$R_{10}$$
 R_{11}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R

(式中、R $1\sim$ R 1 5 は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数 $1\sim$ 1 0 まで)、アルコキシル基(ただし、炭素数 $1\sim$ 1 0 まで)、置換または無置換のアリール基(ただし、炭素数は $1\sim$ 2 0 まで)、置換または無置換の複素環残基(ただし、炭素数は $1\sim$ 2 0 まで)、のいずれかを表す。また、R 1 とR 2 は互いに結合し、ピリジン環を形成してもよい。)

【請求項25】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた一つまたは複数の有機 化合物層を含む電界発光層と、を少なくとも有する電界発光素子の作製方法において、前記有機化合物層のうち少なくとも一層の形成工程が、下記一般式(3) で表される有機化合物と、金属塩とを共蒸着する形成工程からなることを特徴と する電界発光素子の作製方法。

【化13】

$$R_{10}$$
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{11}
 R_{12}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}

(式中、R $1\sim$ R 1 2 は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数 $1\sim$ 1 0 まで)、アルコキシル基(ただし、炭素数 $1\sim$ 1 0 まで)、置換または無置換のアリール基(ただし、炭素数は $1\sim$ 2 0 まで)、置換または無置換の複素環残基(ただし、炭素数は $1\sim$ 2 0 まで)、のいずれかを表す。また

、R1とR2は互いに結合し、シクロアルカン構造、またはベンゼン環、または 多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R4と R5、またはR5とR6、またはR6とR7、またはR8とR9、またはR9と R10、またはR10とR11は、それぞれ互いに結合し、ベンゼン環または多 環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R2とR 3、またはR1とR12は、それぞれ互いに結合し、ピリジン環を形成しても良い。)

【請求項26】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた一つまたは複数の有機 化合物層を含む電界発光層と、を少なくとも有する電界発光素子の作製方法において、前記有機化合物層のうち少なくとも一層の形成工程が、下記一般式(4) で表される有機化合物と、金属塩とを共蒸着する形成工程からなることを特徴と する電界発光素子の作製方法。

【化14】

$$R_{22}$$
 R_{23}
 R_{19}
 R_{19}
 R_{14}
 R_{13}
 R_{10}
 R

良い。)

【請求項27】

陽極と、陰極と、前記陽極と前記陰極との間に設けられた一つまたは複数の有機 化合物層を含む電界発光層と、を少なくとも有する電界発光素子の作製方法において、前記有機化合物層のうち少なくとも一層の形成工程が、下記一般式 (5) で表される有機化合物と、金属塩とを共蒸着する形成工程からなることを特徴と する電界発光素子の作製方法。

【化15】

$$R_3$$
 R_4
 R_5
 R_1
 O
 OH
 OH
 OH

(式中、R1~R5は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数1~10まで)、アルコキシル基(ただし、炭素数1~10まで)、置換または無置換のアリール基(ただし、炭素数は1~20まで)、のいずれかを表す。またR4は、アミノ基、ジアルキルアミノ基、アリールアミノ基、のいずれかを表しても良い。また、R2とR3、またはR3とR4、またはR4とR5は、それぞれ互いに結合し、ベンゼン環または多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R3とR4、R4とR5とが互いに結合し、ジュロリジン骨格を形成しても良い。)

【請求項28】

請求項23乃至請求項27のいずれか一項に記載の電界発光素子の作製方法において、前記金属塩は、金属酢酸塩、金属ハロゲン化物、および金属アルコキシドからなる一群より選ばれるいずれかの物質であることを特徴とする電界発光素子の作製方法。

【請求項29】

請求項28に記載の電界発光素子の作製方法において、前記金属塩は、亜鉛、ア

ルミニウム、珪素、ガリウム、およびジルコニウムからなる一群より選ばれるいずれかの金属元素を含むことを特徴とする電界発光素子の作製方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、一対の電極間に挟まれて電界発光層が形成された電界発光素子、および前記電界発光素子を用いた発光装置に関する。また、前記電界発光素子の作製 方法に関する。

[0002]

【従来の技術】

有機化合物を発光体として用いた電界発光素子は、薄型軽量・高速応答性・直流 低電圧駆動、広視野角などの特性を有しており、次世代のフラットパネルディス プレイ素子として注目されている。

[0003]

電界発光素子の発光機構は、一対の電極間に挟まれた電界発光層に電圧を印加することで、陰極と陽極からそれぞれキャリアである電子と正孔とが注入され、それらが電界発光層内の発光中心にて再結合し分子励起子を形成した後、基底状態に戻る際に光としてエネルギーを放出するためとされている。励起状態には一重項と三重項とが知られているが、発光はどちらの状態からでも可能とされている

[0004]

一般に電界発光層の発光は、キャリアの注入と再結合によるため、電子と正孔とのバランスの良い注入が高効率化のポイントとなる。そのためキャリアの再結合領域である電界発光層を単層ではなく、発光層、電子注入層、電子輸送層、ホール輸送層、ホール注入層等、役割を分担した層を設けた構造が好ましいとされている。さらに発光層と電極との間に層を設けることは、電極界面によって分子励起子が消光されることを防ぐことが出来るという点においても好ましい。

[0005]

現在、電界発光層をポリマー材料にて形成する場合は、スピンコート法などの湿

式法によって製膜されている。湿式法を用いると積層が困難であるため、積層に適した他のプロセスも試みられているが、ポリマー材料はその分子量の大きさから、蒸着することは不可能とされている。そこでそれを克服するため、その原料である1種類以上の低分子材料(モノマー)を共蒸着し、真空中での加熱など処理を行うことで、その基板上で重合させ膜を形成する方法等が試みられている(例えば、非特許文献1及び特許文献1参照)

[0006]

【非特許文献1】

M ジャンケ (M. Jandke) ら、 シンセティック メタルズ、(2000)Vol. 111-112、 221-223

【特許文献1】

特開2000-150148号公報

[0007]

一方、低分子材料に関しては、主に真空蒸着法によって成膜がなされている。特に金属錯体の場合は、アモルファス性が高いため蒸着膜の膜質が良い。しかしながら、銅フタロシアニン(以下、CuPc)やトリス(8ーキノリラト)アルミニウム(以下、Alq)など蒸着出来るものが限られているのが現状である。多くのものは蒸発温度が高く、蒸発する前に分解してしまう。

[0008]

例えば、中心金属の配位数を満たしていない金属錯体は、たとえ発光特性が良好であっても真空蒸着が困難であり、電界発光素子に適さないという報告がある(例えば、非特許文献2)。これら蒸着しづらいものは、蒸着による膜形成は当然行えなえず、ポリマーへ導入しスピンコートする等、他のアプローチ法が試みられている(例えば、特許文献2)。しかし、これらの金属錯体は一般に、溶解性の乏しいものが多い。

[0009]

【非特許文献2】

ユウジ ハマダ、 IEEE トランスアクションズ オン エレクトロン デ・バイスィズ、(1997) Vol. 44、 1208-1217

【特許文献2】

米国特許第5,529,853号明細書

[0010]

昇華性や溶解性に乏しい金属錯体材料でも、熱的安定性や蛍光強度等、物性が良いものもあり、電界発光素子に適用した場合に非常に特性の良いものができると期待される。よって、従来の技術に依らない膜形成法が望まれている。

[0011]

【発明を解決するための課題】

上記問題点に鑑み本発明は、錯体の状態では蒸着や湿式塗布が困難な材料に関しても、その錯体を含む薄膜を形成できる手段を提案し、その手段を用いて作製した電界発光素子を提供することを課題とする。

[0012]

【課題を解決するための手段】

蒸着や湿式塗布が容易な錯体材料は少ないが、その錯体の原料である配位子や金属塩に関しては、容易に蒸着できるものが比較的多い。そこで本発明者は、本来金属錯体の原料である配位子と金属塩とを共蒸着することにより、基板上で錯形成させ、その金属錯体を含む膜を得ることを考案した。そして、このような共蒸着膜を用い、電界発光素子を作製することを考案した。

[0013]

ここで、電界発光素子に用いられる金属錯体は、Alqに代表されるように、主としてアニオン性のキレート配位子を有する金属錯体である。これらの配位子の特徴は、容易にプロトンを放出してアニオン性を示す(そして金属と結合する)官能基と、金属に配位結合するための非共有電子対を有する官能基と、を有していることである。すなわち、本発明において、金属塩と共蒸着する有機化合物(配位子)としては、上述の二つの官能基を少なくとも一つずつ有することが条件となる。

$[0\ 0\ 1\ 4]$

したがって本発明では、陽極と、陰極と、前記陽極と前記陰極との間に設けられた電界発光層と、を少なくとも有する電界発光素子において、前記電界発光層は

、有機化合物と金属塩とを共蒸着することにより形成された層を含み、かつ、前 記有機化合物は、ブレンステッド酸性を示すプロトン供与性官能基と、非共有電 子対を有する官能基とをそれぞれ少なくとも一つ有することを特徴とする。

[0015]

なお、前記プロトン供与性官能基としては、水酸基、カルボキシル基、およびメルカプト基からなる一群より選ばれるいずれかの官能基であることが好ましい。また、前記非共有電子対を有する官能基としては、複素環残基、アゾメチン基、およびカルボニル基からなる一群より選ばれるいずれかの官能基であることが好ましい。さらに、これらのプロトン供与性官能基とこれらの非共有電子対を有する官能基とを、それぞれ組み合わせて用いることが有効である。

$[0\ 0\ 1\ 6]$

一方、前記金属塩としては、金属酢酸塩、金属ハロゲン化物、および金属アルコ キシドからなる一群より選ばれるいずれかの物質であることが好ましい。

$[0\ 0\ 1\ 7]$

ところで、ブレンステッド酸性を示すプロトン供与性官能基と、非共有電子対を有する官能基と、をそれぞれ少なくとも一つ有する上述の有機化合物としては、以下の一般式(1)~(5)で表される有機化合物が好適である。すなわち本発明では、陽極と、陰極と、前記陽極と前記陰極との間に設けられた電界発光層と、を少なくとも有する電界発光素子において、前記電界発光層は、有機化合物と金属塩とを共蒸着することにより形成された層を含み、かつ、前記有機化合物は、下記一般式(1)~(5)のいずれかで表される化合物であることを特徴とする。

[0018]

【化16】

$$R_5$$
 OH OH R_4 R_3 R_2 R_1 R_1

(式中、R1~R6は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数1~10まで)、アルコキシル基(ただし、炭素数1~10まで)、置換または無置換のアリール基(ただし、炭素数は1~20まで)、のいずれかを表す。また、R3とR4、またはR4とR5、またはR5とR6は、それぞれ互いに結合し、ベンゼン環または多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R1とR2は互いに結合し、ピリジン環を形成してもよい。)

[0019]

【化17】

$$R_{11}$$
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R

[0020]

【化18】

$$R_{10}$$
 R_{10}
 R_{10}
 R_{11}
 R_{12}
 R_{11}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}

(式中、R1~R12は、水素、ハロゲン元素、シアノ基、アルキル基 (ただし

、炭素数 $1\sim10$ まで)、アルコキシル基(ただし、炭素数 $1\sim10$ まで)、置換または無置換のアリール基(ただし、炭素数は $1\sim20$ まで)、のいずれかを表す。また 、R1とR2は互いに結合し、シクロアルカン構造、またはベンゼン環、または 多環縮合環(ただし、炭素数は $1\sim20$ まで)を形成しても良い。また、R4と R5、またはR5とR6、またはR6とR7、またはR8とR9、またはR9と R10、またはR10とR11は、それぞれ互いに結合し、ベンゼン環または多 環縮合環(ただし、炭素数は $1\sim20$ まで)を形成しても良い。また、R2とR3、またはR1とR12は、それぞれ互いに結合し、ピリジン環を形成しても良い。)

[0021]

【化19】

$$R_{24}$$
 R_{23}
 R_{19}
 R_{14}
 R_{13}
 R_{11}
 R_{10}
 R

[0022]

【化20】

$$R_3$$
 R_4
 O
 O
 O
 O
 O
 O

(式中、R1~R5は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数1~10まで)、アルコキシル基(ただし、炭素数1~10まで)、置換または無置換のアリール基(ただし、炭素数は1~20まで)、のいずれかを表す。またR4は、アミノ基、ジアルキルアミノ基、アリールアミノ基、のいずれかを表しても良い。また、R2とR3、またはR3とR4、またはR4とR5は、それぞれ互いに結合し、ベンゼン環または多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R3とR4、R4とR5とが互いに結合し、ジュロリジン骨格を形成しても良い。)

[0023]

なお、上記一般式(1)~(5)で表される有機化合物と共蒸着する金属塩に関しても、金属酢酸塩、金属ハロゲン化物、および金属アルコキシドからなる一群より選ばれるいずれかの物質であることが好ましい。中でも、それら金属塩が、亜鉛、アルミニウム、珪素、ガリウム、およびジルコニウムからなる一群より選ばれるいずれかの金属元素を含む場合が、より好ましい。

[0024]

さらに、上記一般式(1)~(5)で表される有機化合物と金属塩とを共蒸着して形成した層は、以下の一般式(6)~(10)で表される構造を有する金属錯体を含む。したがって本発明では、陽極と、陰極と、前記陽極と前記陰極との間に設けられた電界発光層と、を少なくとも有する電界発光素子において、前記電界発光層は、下記一般式(6)~(10)のいずれかで表される構造を有する金属錯体を含むことを特徴とする。

[0025]

【化21】

(式中、Mは飽和または不飽和の金属イオンを表す。R1~R6は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数1~10まで)、アルコキシル基(ただし、炭素数1~10まで)、置換または無置換のアリール基(ただし、炭素数は1~20まで)、置換または無置換の複素環残基(ただし、炭素数は1~20まで)、のいずれかを表す。また、R3とR4、またはR4とR5、またはR5とR6は、それぞれ互いに結合し、ベンゼン環、または多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R1とR2は互いに結合し、ピリジン環を形成してもよい。)

[0026]

【化22】

$$R_{11}$$
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R

(式中、Mは飽和または不飽和の金属イオンを表す。R1~R15は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数1~10まで)、アルコキシル基(ただし、炭素数1~10まで)、置換または無置換のアリール基(ただし、炭素数は1~20まで)、置換または無置換の複素環残基(ただし、炭素数は1~20まで)、のいずれかを表す。また、R1とR2は互いに結合し、ピリジン環を形成しても良い。)

[0027]

【化23】

(式中、Mは飽和または不飽和の金属イオンを表す。R1~R12は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数1~10まで)、アルコキシル基(ただし、炭素数1~10まで)、置換または無置換のアリール基(ただし、炭素数は1~20まで)、置換または無置換の複素環残基(ただし、炭素数は1~20まで)、のいずれかを表す。また、R1とR2は互いに結合し、シクロアルカン構造、またはベンゼン環、または多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R4とR5、またはR5とR6、またはR6とR7、またはR8とR9、またはR9とR10、またはR10とR11は、それぞれ互いに結合し、ベンゼン環または多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R2とR3、またはR1とR12は、それぞれ互いに結合し、ピリジン環を形成しても良い。)

[0028]

【化24】

$$R_{24}$$
 R_{23}
 R_{19}
 R_{18}
 R_{15}
 R_{10}
 R

(式中、Mは飽和または不飽和の金属イオンを表す。R1~R30は、水素、ハ

ロゲン元素、シアノ基、アルキル基(ただし、炭素数 $1\sim10$ まで)、アルコキシル基(ただし、炭素数 $1\sim10$ まで)、置換または無置換のアリール基(ただし、炭素数は $1\sim20$ まで)、置換または無置換の複素環残基(ただし、炭素数は $1\sim20$ まで)、のいずれかを表す。また、R1とR2は互いに結合し、シクロアルカン構造、またはベンゼン環、または多環縮合環(ただし、炭素数は $1\sim20$ まで)を形成しても良い。また、R2とR3、またはR1とR30は、それぞれ互いに結合し、ピリジン環を形成しても良い。)

[0029]

【化25】

$$\begin{bmatrix} R_3 & R_1 & O \\ R_4 & O & O \\ R_5 & 0 & 0 \end{bmatrix}_n$$
 (10)

(式中、Mは飽和または不飽和の金属イオンを表す。R1~R5は、水素、ハロゲン元素、シアノ基、アルキル基(ただし、炭素数1~10まで)、アルコキシル基(ただし、炭素数1~10まで)、置換または無置換のアリール基(ただし、炭素数は1~20まで)、置換または無置換の複素環残基(ただし、炭素数は1~20まで)、のいずれかを表す。またR4は、アミノ基、ジアルキルアミノ基、アリールアミノ基、のいずれかを表しても良い。また、R2とR3、またはR3とR4、またはR4とR5は、それぞれ互いに結合し、ベンゼン環、または多環縮合環(ただし、炭素数は1~20まで)を形成しても良い。また、R3とR4、R4とR5とが互いに結合し、ジュロリジン骨格を形成しても良い。nは1以上4以下の整数を表す。)

[0030]

なお、上記一般式(6)~(10)で表される構造を有する金属錯体において、 前記金属イオンMは、亜鉛、アルミニウム、珪素、ガリウム、ジルコニウムのい ずれかの元素からなることが好ましい。

[0031]

ところで、本発明は、上述のような電界発光素子の作製工程に関しても、有効な 手段を提供するものである。したがって本発明では、陽極と、陰極と、前記陽極 と前記陰極との間に設けられた一つまたは複数の有機化合物層を含む電界発光層 と、を少なくとも有する電界発光素子の作製方法において、前記有機化合物層の うち少なくとも一層の形成工程が、ブレンステッド酸性を示すプロトン供与性官 能基と非共有電子対を有する官能基とをそれぞれ少なくとも一つ有する有機化合物と、金属塩とを共蒸着する工程からなることを特徴とする。

[0032]

この時、前記プロトン供与性官能基としては、水酸基、カルボキシル基、およびメルカプト基からなる一群より選ばれるいずれかの官能基であることが好ましい。また、前記非共有電子対を有する官能基としては、複素環残基、アゾメチン基、およびカルボニル基からなる一群より選ばれるいずれかの官能基であることが好ましい。さらに、これらのプロトン供与性官能基とこれらの非共有電子対を有する官能基とを、それぞれ組み合わせて用いることが有効である。

[0033]

一方、前記金属塩としては、金属酢酸塩、金属ハロゲン化物、および金属アルコ キシドからなる一群より選ばれるいずれか物質であることが好ましい。

[0034]

また、本発明の電界発光素子の作製方法において、ブレンステッド酸性を示すプロトン供与性官能基と、非共有電子対を有する官能基と、をそれぞれ少なくとも一つ有する有機化合物としては、上記の一般式(1)~(5)で表される有機化合物が好適である。すなわち本発明では、陽極と、陰極と、前記陽極と前記陰極との間に設けられた一つまたは複数の有機化合物層を含む電界発光層と、を少なくとも有する電界発光素子の作製方法において、前記有機化合物層のうち少なくとも一層の形成工程が、上記一般式(1)~(5)で表される有機化合物のいずれかと、金属塩とを共蒸着する形成工程からなることを特徴とする。

[0035]

なお、上記一般式(1)~(5)で表される有機化合物と共蒸着する金属塩に関しても、金属酢酸塩、金属ハロゲン化物、および金属アルコキシドからなる一群

より選ばれるいずれかの物質であることが好ましい。中でも、それら金属塩が、 亜鉛、アルミニウム、珪素、ガリウム、およびジルコニウムからなる一群より選 ばれるいずれかの金属元素を含む場合が、より好ましい。

[0036]

【発明の実施の形態】

本発明における電界発光素子は、基本的には、一対の電極(陰極及び陽極)間に 上述した配位子と金属塩とを共蒸着した層、または金属錯体を含む層を電界発光 層に含む電界発光素子である。なお、電界発光素子は、発光を取り出すためにど ちらかの電極の一方が透明であれば良い。したがって、基板上に透明な電極を形 成し、基板側から光を取り出す従来の素子構造だけではなく、実際は、基板とは 逆側から光を取り出す構造や、電極の両側から光を取り出す構造も適用可能であ る。

[0037]

以下ではまず、本発明に用いる材料について、具体例を挙げながら説明する。

[0038]

本発明は、昇華性や溶解性に乏しい低分子の金属錯体を膜状あるいは膜中に形成するため、その錯体の原料である有機化合物(配位子)と金属塩とを共蒸着し、その金属錯体と同様の構造を含む薄膜を形成するものである。そして、その有機化合物(配位子)としての条件は、ブレンステッド酸性を示すプロトン供与性官能基と、非共有電子対を有する官能基とをそれぞれ少なくとも一つ有することである。

[0039]

プロトン供与性官能基としては、プロトンを放出することにより金属と容易に共 有結合を形成する官能基が好ましい。すなわち、水酸基、カルボキシル基、メル カプト基などが挙げられる。特にフェノール性の水酸基やカルボキシル基が有用 である。

[0040]

また、非共有電子対を有する官能基は、金属に対して配位結合するための官能基であり、複素環残基、アゾメチン基、カルボニル基などが挙げられる。代表的に

は、ピリジン環やシッフ塩基、あるいはクマリン構造やフラボン構造に見られる ような芳香族ケトン類などである。

[0041]

一方、上述の有機化合物(配位子)と共蒸着する金属塩としては、金属酢酸塩、金属ハロゲン化物、および金属アルコキシドが好ましい。具体的には、酢酸亜鉛(II)、塩化アルミニウム(III)、塩化ガリウム(III)、塩化ジルコニウム(IV)、酢酸珪素(IV)などが挙げられる。

[0042]

また、ブレンステッド酸性を示すプロトン供与性官能基と、非共有電子対を有する官能基とをそれぞれ少なくとも一つ有する有機化合物(配位子)としては、上記一般式(1)~(5)で示した有機化合物が好ましい。

[0043]

[0044]

しかしながら、これらの有機化合物自体は、一般に昇華性を有する。したがって、上記一般式(1)~(5)で示した有機化合物と金属塩とを共蒸着することにより作製する本発明の電界発光素子は、従来電界発光素子に適用することのできなかった強蛍光性の金属錯体と同様の構造を持つ物質を、電界発光素子に導入することができる。

[0045]

上記一般式(1)~(5)で示した有機化合物の具体例としては、下記構造式(11)~(19)などが挙げられる。

[0046]

【化26】

$$\begin{array}{c|c}
OH & HO \\
\hline
N & CH_3
\end{array}$$
(11)

(式中、プロトン供与性置換基として水酸基を1つとカルボキシル基を1つ、非 共有電子対を有する置換基としてアゾメチン構造を1つ、それぞれ有する有機化 合物である。上記一般式(1)のR1にメチル基を導入したものに相当する。)

[0047]

【化27】

(式中、プロトン供与性置換基として水酸基を1つとカルボキシル基を1つ、非 共有電子対を有する置換基としてアゾメチン構造を1つ、それぞれ有する有機化 合物である。上記一般式(1)のR1にフェニル基を導入したものに相当する。)

[0048]

【化28】

(式中、プロトン供与性置換基として水酸基を1つとカルボキシル基を1つ、非 共有電子対を有する置換基としてアゾメチン構造を1つ、それぞれ有する有機化 合物である。上記一般式 (1) のR1にメチル基を導入し、R3とR4とが互い に結合してベンゼン環を形成したものに相当する。)

[0049]

【化29】

(式中、プロトン供与性置換基として水酸基を1つとカルボキシル基を1つ、非 共有電子対を有する置換基としてアゾメチン構造を1つ、それぞれ有する有機化 合物である。上記一般式(2)のR1にメチル基を導入したものに相当する。)

[0050]

【化30】

(式中、プロトン供与性置換基として水酸基を2つ、非共有電子対を有する置換基としてアゾメチン構造を2つ、それぞれ有する有機化合物である。上記一般式(3)のR2にメチル基を導入したものに相当する。)

[0051]

【化31】

(式中、プロトン供与性置換基として水酸基を4つ、非共有電子対を有する置換基としてアゾメチン構造を2つ、それぞれ有する有機化合物である。上記一般式(3)のR2にメチル基を、R7とR8にそれぞれカルボキシル基を導入したものに相当する。)

[0052]

【化32】

(式中、プロトン供与性置換基として水酸基を2つ、非共有電子対を有する置換基としてアゾメチン構造を2つ、それぞれ有する有機化合物である。上記一般式(3)のR1とR2とが互いに結合してシクロヘキサン構造を形成し、R4とR5、R10とR11とが、それぞれ互いに結合してベンゼン環を形成したものに相当する。)

[0053]

【化33】

(式中、プロトン供与性置換基として水酸基を2つ、非共有電子対を有する置換基としてアゾメチン構造を2つ、それぞれ有する有機化合物である。上記一般式(4)のR1とR2にそれぞれフェニル基を導入したものに相当する。)

[0054]

【化34】

(式中、プロトン供与性置換基としてカルボキシル基を1つ、非共有電子対を有する置換基としてカルボニル基を1つ、それぞれ有する有機化合物である。上記一般式(5)に相当する。)

[0055]

なお、本発明では、これらの有機化合物と金属塩とを共蒸着したのち、錯形成をより効率的に進行させるため、真空加熱することが好ましい。また、その加熱温度は、元となる金属錯体を合成する際の反応温度を目安とし、さらにはその金属錯体の分解温度以下にすることが好ましい。その温度範囲は、好ましくは50℃~200℃である。

[0056]

また、上記一般式(1)~(5)で示される有機化合物と金属塩とを共蒸着して 形成された共蒸着層は、上記一般式(6)~(10)で示される構造を有する金 属錯体を含むと考えられる。具体的には、例えば上記構造式(11)~(19)のいずれかの有機化合物と、酢酸亜鉛とを共蒸着することにより、それぞれ下記構造式(20)~(28)に示す構造を有する金属錯体を含む層が得られる。これらの構造を有する金属錯体はいずれも、錯形成後では昇華しづらい性質を有するが、強い蛍光性を示すため、本発明には好適である。

[0057]

【化35】

$$O$$
 Zn
 O
 CH_3
 O
 CH_3

(式中、中心金属の2価の亜鉛に対して3配位型をとる。この場合、亜鉛に対する配位数4が満たされず、通常昇華しづらい。この構造は、上記一般式(6)のMに亜鉛を導入し、R1にメチル基を導入したものに相当する。)

[0058]

【化36】

(式中、中心金属の2価の亜鉛に対して3配位型をとる。この場合、亜鉛に対する配位数4が満たされず、通常昇華しづらい。上記一般式(6)のMに亜鉛を導入し、R1にフェニル基を導入したものに相当する。)

[0059]

【化37】

(式中、中心金属の2価の亜鉛に対して3配位型をとる。この場合、亜鉛に対する配位数4が満たされず、通常昇華しづらい。上記一般式(6)のMに亜鉛を導入し、R1にメチル基を導入し、R3とR4とが互いに結合してベンゼン環を形成したものに相当する。)

[0060]

【化38】

$$O$$
 Zn
 O
 CH_3
 O
 CH_3

(式中、中心金属の2価の亜鉛に対して3配位型をとる。この場合、亜鉛に対する配位数4が満たされず、通常昇華しづらい。上記一般式 (7)のMに亜鉛を導入し、R1にメチル基を導入したものに相当する。)

$[0\ 0\ 6\ 1]$

【化39】

$$Z_n$$
 Z_n
 Z_n

(式中、中心金属の2価の亜鉛に対して4配位型の錯体になっており、配位数は満たしているが、ダイポールモーメントが大きく、昇華しづらい。上記一般式(8)のMに亜鉛を導入し、R2にメチル基を導入したものに相当する。)

[0062]

【化40】

$$\begin{array}{c|c}
O & O \\
\hline
O & Zn \\
\hline
O & Zn \\
\hline
O & Zn \\
\hline
\end{array}$$
(25)

(式中、中心金属の2価の亜鉛2つに対して、それぞれ4配位型の錯体になっており、配位数は満たしているが、ダイポールモーメントが大きく、昇華しづらい。上記一般式(8)のMに亜鉛を導入し、R2にメチル基を、R7とR8にそれぞれカルボキシル基を導入したものに相当する。)

[0063]

【化41】

$$\sqrt{\frac{1}{26}}$$

(式中、中心金属の2価の亜鉛に対して4配位型の錯体になっており、配位数は満たしているが、ダイポールモーメントが大きく、昇華しづらい。上記一般式(8)のMに亜鉛を導入し、R1とR2とが互いに結合してシクロヘキサン構造を形成し、R4とR5、R10とR11とが、それぞれ互いに結合してベンゼン環を形成したものに相当する。)

[0064]

【化42】

(式中、中心金属の2価の亜鉛に対して4配位型の錯体になっており、配位数は満たしているが、ダイポールモーメントが大きく、昇華しづらい。上記一般式(9)のMに亜鉛を導入し、R1とR2にそれぞれフェニル基を導入したものに相当する。)

[0065]

【化43】

$$(28)$$

(式中、中心金属の2価の亜鉛に対して4配位型の錯体になっており、配位数は満たしている。しかし配位子と中心金属との結合が弱く、分解温度が200℃前後にある。そのため金属錯体の状態では昇華する前に分解してしまう。上記一般式(10)のMに亜鉛を導入したものに相当する。)

[0066]

なお、上記構造式(20)~(28)に示した構造を有する金属錯体において、中心金属を亜鉛としているが、本発明においてはこれに限るものではなく、錯形成する金属であれば何でも良い。蛍光強度の観点から好ましくは、亜鉛の他には、アルミニウム、珪素、ガリウム、ジルコニウム、などが挙げられる。また、金属の最適な配位数と配位子の配位数とを同様にすることが好ましい。例えば、構造式(28)の場合、中心金属にアルミニウム(配位数6)を用いる場合、配位

子の数は3つとするのが好ましい。ただし、本発明はこれらに限定されるものではない。

[0067]

次に、以下では、本発明の電界発光素子について、詳細に説明する。

[0068]

[実施の形態1]

本実施の形態1では、上述した有機化合物(配位子)と金属塩とを共蒸着し、さらに加熱して得られる層を発光層として形成する場合における電界発光素子の構成について、図1を用いて説明する。

[0069]

図1では、基板100上に第1の電極110が形成され、第1の電極110上に電界発光層120が形成され、その上に第2の電極130が形成された構造を有する。

[0070]

なお、ここで基板100に用いる材料としては、従来の電界発光素子に用いられているものであれば良く、例えば、ガラス、石英、透明プラスチックなどからなるものを用いることができる。

[0071]

また、本実施の形態1における第1の電極110は陽極として機能し、第2の電極130は陰極として機能する。

[0072]

物(TiN)等を用いることができる。

[0073]

一方、第2の電極130の形成に用いられる陰極材料としては、仕事関数の小さい(仕事関数3.8 e V以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。なお、陰極材料の具体例としては、元素周期律の1族または2族に属する元素、すなわちLiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含む合金(Mg:Ag、Al:Li)や化合物(LiF、CsF、CaF2)の他、希土類金属を含む遷移金属を用いて形成することができるが、Al、Ag、ITO等の金属(合金を含む)との積層により形成することもできる。

[0074]

なお、上述した陽極材料及び陰極材料は、蒸着法、スパッタリング法等により薄膜を形成することにより、それぞれ第1の電極110及び第2の電極130を形成する。膜厚は、10~500nmとするのが好ましい。

[0075]

また、電界発光層 1 2 0 は複数の層を積層することにより形成されるが、本実施の形態 1 では、正孔注入層 1 2 1、正孔輸送層 1 2 2、及び発光層 1 2 3を積層することにより形成される。なお、積層した電界発光素子中の層については、有機化合物と金属塩とを共蒸着する層以外の層について、積層法を限定するものではない。積層が可能ならば、真空蒸着法やスピンコート法、インクジェット法、ディップコート法など、どの様な手法を選んでも良いものとする。

[0076]

なお、この場合において正孔注入層121を形成する場合に用いる正孔注入性材料としては、有機化合物であればポルフィリン系の化合物が有効であり、フタロシアニン(以下、H2-Pcと示す)、CuPc等を用いることができる。また、導電性高分子化合物に化学ドーピングを施した材料もあり、ポリスチレンスルホン酸(以下、PSSと示す)をドープしたポリエチレンジオキシチオフェン(以下、PEDOTと示す)や、ポリアニリン、ポリビニルカルバゾール(以下、PVKと示す)などを用いることもできる。

[0077]

また、正孔輸送層 1 2 2 を形成する場合に用いる正孔輸送性材料としては、芳香族アミン系(すなわち、ベンゼン環ー窒素の結合を有するもの)の化合物が好適である。広く用いられている材料として、例えば、N, N'ービス (3 ーメチルフェニル) -N, N'ージフェニルー [1, 1

' ービフェニル] ー4, 4' ージアミン (以下、TPDと示す)、その誘導体である4, 4'

-ビス [N-(1-ナフチル)-N-フェニルーアミノ]-ビフェニル (以下、<math>NPBと示す) や、4, 4, 4, 4, -トリス (N, N-ジフェニルーアミノ)-トリフェニルアミン (以下、

TDATAと示す)、4,4',4',-トリス[N-(3-メチルフェニル)-N-フェニル

ーアミノ]ートリフェニルアミン(以下、MTDATAと示す)、などのスターバースト型芳香族アミン化合物が挙げられる。

[0078]

さらに、発光層123は、上述した有機化合物(例えば、一般式(1)、一般式(2)、一般式(3)、一般式(4)、一般式(5)で示される有機化合物など)と、金属塩(例えば金属酢酸塩、金属ハロゲン化物、金属アルコキシドなど)とを共蒸着して形成する。このとき、前記有機化合物と前記金属塩との蒸着時のモル比は、元となる金属錯体における配位子と中心金属とのモル比と、ほぼ同ーになることが好ましい。

[0079]

なお前記有機化合物と前記金属塩とを共蒸着した層は、共蒸着した後、真空中にて加熱することが好ましい。この時の温度は、前記有機化合物と前記金属塩と反応させて元となる金属錯体を合成する際の温度に近いことが好ましく、また、その錯体が分解する温度よりも低いことが好ましい。目安としては50℃~200℃とする。

[0800]

さらに、電子注入層124を形成する材料としては、絶縁性の材料を絶縁しない

程度の約3 n m までの膜厚で使用するのが好ましい。例えば C a 2 F や B a 2 F などが挙げられる。

[0081]

なお、図1では図示していないが、発光層123と電子注入層124との間に、 電子輸送層を設けてもよい。電子輸送層を形成する場合に用いる電子輸送性材料 としては、先に述べたAlaの他、トリス(5-メチル-8-キノリノラト)ア ルミニウム $(A \mid mq)$ 、ビス (10-ヒドロキシベンゾ [h] -キノリナト)ベリリウム (BeBq)、ビス (2-メチル-8-+ノリノラト) - 4-フェニルフェノラトーアルミニウム(BAla)などのキノリン骨格またはベンゾキノ リン骨格を有する金属錯体などが好適である。また、ビス [2-(2-ヒドロキ シフェニル)-ベンゾオキサゾラト〕亜鉛(Zn(BOX))、ビス「2-(2 ーヒドロキシフェニル) ーベンゾチアゾラト] 亜鉛 (Zn (BTZ)) などのオ キサゾール系、チアゾール系配位子を有する金属錯体もある。さらに、金属錯体 以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル) r t -ブチルフェニル) - 1, 3, 4 - +(OXD-7), $3-(4-tert-7+\nu7x-1)$ -4-7x-1 -5-(4-E) (4-E) (4-E) (4-E) (4-E) (4-E) (4-E) (4-E) (4-E) $r t - \vec{J} + \vec$ ν) -1, 2, 4-トリアゾール(p-Et.TAZ)、バソフェナントロリン(BPhen)、バソキュプロイン(BCP)なども電子輸送性材料として用いる ことができる。

[0082]

このようにして得られた本実施の形態1の電界発光素子は、昇華性や溶解性に乏しいが熱的安定性や蛍光強度等に優位性のある錯体の原料である有機化合物(配位子)と金属塩とを共蒸着し、さらに過熱した層を発光層123として含む電界発光素子である。したがって、この層より得られる発光を発光色とする発光素子である。

[0083]

なお、本実施の形態1においては、本発明の共蒸着層を発光層123に用いているが、本発明はこれに限るものではない。上述のようにして共蒸着した層、あるいは、上記一般式(6)~(10)で示した構造を有する金属錯体の特性が、発光層以外の層(例えば、正孔注入層、正孔輸送層、正孔ブロッキング層、電子輸送層、電子注入層、バッファ層)として適しているならば、これらの層に用いてもよい。なおこの場合の特性とは、HOMO準位やLUMO準位、励起スペクトルや発光スペクトル、吸収スペクトル等のことを指す。

[0084]

また、上述のように有機化合物(配位子)と金属塩とを共蒸着し、加熱して得られる層以外の層、又は上記一般式(6)~(10)で示した構造を有する金属錯体を用いた層以外の層としては、公知の材料を用いることができ、低分子系材料および高分子系材料のいずれを用いることもできる。なお、電界発光層を形成する材料には、有機化合物材料のみから成るものだけでなく、無機化合物を一部に含む構成も含めるものとする。

[0085]

また本実施の形態1では、1種類の配位子と1種類の金属塩とを共蒸着し、加熱することで電界発光層のうちの1層を形成しているが、本発明ではこれに限定するものではない。例えば、中心金属が異なるが配位子が同一の2種類の金属錯体を含む層を形成する場合、2種類の金属塩と1種類の配位子とを共蒸着して膜を形成してもよい。

[0086]

また本実施の形態1では、1種類の配位子と1種類の金属塩のみを共蒸着し、加熱することで電界発光層のうちの1層を形成しているが、本発明ではこれに限定するものではない。例えば、ドーパントとなるもの(例えばペリレン、ルブレン等の蛍光色素)を、さらに共蒸着してもよい。この場合、基板を加熱する際にドーパントにダメージが及ばない温度にすることが好ましい。

[0087]

以上、本実施の形態1では、一般に順積方式と呼ばれる、基板上に形成される第 一の電極110が陽極材料を用いた陽極として機能し、第二の電極130が陰極 材料を用いた陰極として機能する場合について説明したが、本発明ではこれに限定されることはない。例えば第一の電極110が陰極材料で形成され、第二の電極130が陽極材料で形成されれば、第一の電極110は陰極として、第二の電極130は陽極として機能させることが出来る。ただしこの場合は、電界発光層の積層構造が逆の積み方になり、一般に逆積方式と呼ばれる素子形態をとる。

[0088]

また、本発明の電界発光素子において、電界発光層におけるキャリアの再結合により生じる光は、第1の電極110または第2の電極130の一方、または両方から外部に出射される構成となる。すなわち、第1の電極110から光を出射させる場合には、第1の電極110を透光性の材料で形成することとし、第2の電極130側から光を出射させる場合には、第2の電極130を透光性の材料で形成することとする。

[0089]

[実施の形態2]

本実施の形態2では、上述した共蒸着の方法について具体的な形状を、図2を用いて説明する。なお、図2は蒸着機の断面図である。蒸着源の形状としては、セルを用いるタイプや導電性の発熱体を用いるタイプなどがあるが、図2では導電性の発熱体を用いる場合を示す。

[0090]

まず、蒸着チャンバー230内の下方にある電極 a 213側に、前記有機化合物 211を充填した容器 a 212を固定する。また同じく、電極 b 223側に、前記金属塩221を充填した容器 b 222を固定する。また、蒸着チャンバー230内の上方にある回転盤231に、電界発光素子の第1の電極などが成膜された基板200を、前記第一の電極が下方に向くように、基板受け232にて固定する。

[0091]

そして、電極 a 2 1 3 及び電極 b 2 2 3 にそれぞれ通電させることで、容器 a 2 1 2 及び容器 b 2 2 2 が発熱し、中にある前記有機化合物 2 1 1 及び金属塩 2 2 1 がそれぞれ加熱され、昇華する。続けて、シャッター a 2 1 4 及びシャッター

b224を同時に開けることによって、前記有機化合物211及び金属塩221が、基板200上に共蒸着される。この時、回転盤231を、蒸着源に対して水平方向に回転させておくと、よりムラなく蒸着することができる。

[0092]

【実施例】

以下に、本発明で用いる電界発光層の作成例、及び実施例について説明するが、 本発明はこれらの例によって限定されるものではない。

[0093]

[実施例1]

ナフトアルデヒド1. 72gの20mlメタノール溶液とシクロヘキサンジアミン0.57gの50mlメタノール溶液とを混合し(尚、この際のモル比は2:1である)、1~2時間攪拌した。黄色の結晶が析出し、この析出物を減圧濾過によって取り出した。これを真空オーブンで乾燥させ、1,2ービス(2ーハイドロキシー1ーナフチリデン)ーシクロヘキサンジアミン(以下、na2-cHex と示す)(一般式(17)に示す)を得た。結晶化温度120℃、融点205℃、分解温度は305℃だった。

[0094]

【化44】

[0095]

合成したna2-cHexおよび酢酸亜鉛の昇華特性を調べたところ、共にガラス基板上に真空蒸着法で単膜形成することができた。したがって、これらを共蒸着した層を適用することで、本発明の電界発光素子が得られることがわかった。

[0096]

[実施例2]

本実施例では、本実施の形態1に示した構造を有する電界発光素子の作製について、図1を用いて具体的に例示する。

[0097]

まず、ガラス基板100上に、第1の電極110として、透明伝導膜であるIT Oをスパッタリング法によって110nmの膜厚で形成する。

[0098]

次に、第一の電極110上に電界発光層120が形成される。尚本実施例では、電界発光層220は正孔注入層121、正孔輸送層122、発光層123、電子注入層124の順番で積層された構造から成る。これらの層は、第一の電極110が形成された基板100を、市販の真空蒸着装置の基板ホルダーに第一の電極110が下方に向く様に固定した状態で、下方から材料を真空蒸着することによって順番に形成される。この際、材料はタングステン等から成るボートやアルミナ等から成る坩堝の中に充填されており、上記ボートや坩堝を加熱することで蒸着される。

[0099]

まず、第一の電極110の上に真空蒸着により正孔注入層121を形成する。ここでは、Cu-Pcを20nmの膜厚にて形成する。

[0100]

次に、この正孔注入層121の上に、同様の方法にて正孔輸送層122を形成する。ここでは、TPDを30nmの膜厚にて形成する。

[0101]

次に、この正孔輸送層 122 の上に、同様の方法にて配位子である sal2-c Hex と金属塩である酢酸亜鉛とを共蒸着する。この時、sal2-cHex 酢酸亜鉛はモル比で約 1:1 になるように成膜し、発光層 123 を形成する。その後、70 で加熱を行う。

$[0\ 1\ 0\ 2\]$

次に、この発光層123の上に、同様の方法にて電子注入層124を形成する。 ここではフッ化カルシウム(以下CaFと示す)を2nmの膜厚で形成する。

[0103]

最後に、電界発光層124の上に陰極として機能する第二の電極130を同様に 真空蒸着法によって形成し、積層する。ここではアルミニウム(以下、Alと示す)を100nmの膜厚で形成する。

[0104]

以上により、有機化合物と中心金属を含む金属塩とを共蒸着し加熱した膜を発光 層に用いた電界発光素子が形成される。

[0105]

「実施例3]

本実施例では、画素部に本発明の電界発光素子を有する発光装置について図3を用いて説明する。なお、図3(A)は、発光装置を示す上面図、図3(B)は図3(A)をA-A'で切断した断面図である。点線で示された301は駆動回路部(ソース側駆動回路)、302は画素部、303は駆動回路部(ゲート側駆動回路)である。また、304は封止基板、305はシール剤であり、シール剤305で囲まれた内側307は、空間になっている。

[0106]

なお、308はソース側駆動回路301及びゲート側駆動回路303に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)309からビデオ信号、クロック信号、スタート信号、リセット信号等を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基板(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。

[0107]

次に、断面構造について図3 (B) を用いて説明する。基板310上には駆動回路部及び画素部が形成されているが、ここでは、駆動回路部であるソース側駆動回路301と、画素部302が示されている。

[0108]

なお、ソース側駆動回路 301 はn チャネル型 T F T 3 2 3 とp チャネル型 T F T 3 2 4 とを組み合わせた C M O S D B が形成される。また、駆動回路を形成す

るTFTは、公知のCMOS回路、PMOS回路もしくはNMOS回路で形成しても良い。また、本実施の形態では、基板上に駆動回路を形成したドライバーー体型を示すが、必ずしもその必要はなく、基板上ではなく外部に形成することもできる。

[0109]

また、画素部302はスイッチング用TFT311と、電流制御用TFT312 とそのドレインに電気的に接続された第1の電極313とを含む複数の画素によ り形成される。なお、第1の電極313の端部を覆って絶縁物314が形成され ている。ここでは、ポジ型の感光性アクリル樹脂膜を用いることにより形成する

[0110]

また、カバレッジを良好なものとするため、絶縁物314の上端部または下端部に曲率を有する曲面が形成されるようにする。例えば、絶縁物314の材料としてポジ型の感光性アクリルを用いた場合、絶縁物314の上端部のみに曲率半径 $(0.2\mu\,\mathrm{m}\sim3\mu\,\mathrm{m})$ を有する曲面を持たせることが好ましい。また、絶縁物 314として、感光性の光によってエッチャントに不溶解性となるネガ型、或いは光によってエッチャントに溶解性となるポジ型のいずれも使用することができる。

[0111]

第1の電極313上には、電界発光層316、および第2の電極317がそれぞれ形成されている。ここで、陽極として機能する第1の電極313に用いる材料としては、仕事関数の大きい材料を用いることが望ましい。例えば、ITO(インジウムスズ酸化物)膜、インジウム亜鉛酸化物(IZO)膜、窒化チタン膜、クロム膜、タングステン膜、Zn膜、Pt膜などの単層膜の他、窒化チタンとアルミニウムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタン膜との3層構造等を用いることができる。なお、積層構造とすると、配線としての抵抗も低く、良好なオーミックコンタクトがとれ、さらに陽極として機能させることができる。

[0112]

また、電界発光層316は、蒸着マスクを用いた蒸着法、またはインクジェット 法等によって形成されるが、この電界発光層316には本発明で開示した共蒸着 膜をその一部に用いることとする。具体的には、実施例2で示した電界発光層な どを用いればよい。

[0113]

[0114]

さらにシール剤305で封止基板304を素子基板310と貼り合わせることにより、素子基板301、封止基板304、およびシール剤305で囲まれた空間307に電界発光素子318が備えられた構造になっている。なお、空間307には、不活性気体(窒素やアルゴン等)が充填される場合の他、シール剤305で充填される構成も含むものとする。

[0115]

なお、シール剤305にはエポキシ系樹脂を用いるのが好ましい。また、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また、封止基板304に用いる材料としてガラス基板や石英基板、ステンレス缶の他、FRP(Fiberglass-Reinforced Plastics)、PVF(ポリビニルフロライド)、マイラー、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができる。また、画素部302上に、水分や酸素を透過しないシール材305で層を形成することで、これら封止基板を用いた場合と同等の、電界発光素子の劣化を防ぐ効果があれば、封止基板304を用いる必要はない。

[0116]

以上のようにして、本発明の電界発光素子を有する発光装置を得ることができる。

[0117]

[実施例4]

本実施例では、本発明の電界発光素子を有する発光装置を用いて完成させた様々 な電気器具について説明する。

[0118]

本発明の電界発光素子を有する発光装置を用いて作製された電気器具として、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、ノート型パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはデジタルビデオディスク(DVD)等の記録媒体を再生し、その画像を表示しうる表示装置を備えた装置)などが挙げられる。これらの電気器具の具体例を図4に示す。

[0119]

図4 (A) は表示装置であり、筐体4001、支持台4002、表示部4003、スピーカー部4004、ビデオ入力端子4005等を含む。本発明の電界発光素子を有する発光装置をその表示部4003に用いることにより作製される。なお、表示装置は、パソコン用、TV放送受信用、広告表示用などの全ての情報表示用装置が含まれる。

[0120]

図4 (B) はノート型パーソナルコンピュータであり、本体4201、筐体4202、表示部4203、キーボード4204、外部接続ポート4205、ポインティングマウス4206等を含む。本発明の電界発光素子を有する発光装置をその表示部2203に用いることにより作製される。

$[0 \ 1 \ 2 \ 1]$

図4 (C) はモバイルコンピュータであり、本体4301、表示部4302、スイッチ4303、操作キー4304、赤外線ポート4305等を含む。本発明の

T

電界発光素子を有する発光装置をその表示部4302に用いることにより作製される。

[0122]

図4 (D) は記録媒体を備えた携帯型の画像再生装置(具体的にはDVD再生装置)であり、本体4401、筐体4402、表示部A4403、表示部B4404、記録媒体(DVD等) 読み込み部4405、操作キー4406、スピーカー部4407等を含む。表示部A4403は主として画像情報を表示し、表示部B4404は主として文字情報を表示するが、本発明の電界発光素子を有する発光装置をこれら表示部A、B4403、4404に用いることにより作製される。なお、記録媒体を備えた画像再生装置には家庭用ゲーム機器なども含まれる。

[0123]

図4 (E) はゴーグル型ディスプレイ (ヘッドマウントディスプレイ) であり、本体4501、表示部4502、アーム部4503を含む。本発明の電界発光素子を有する発光装置をその表示部4502に用いることにより作製される。

[0124]

図4 (F) はビデオカメラであり、本体4601、表示部4602、筐体4603、外部接続ポート4604、リモコン受信部4605、受像部4606、バッテリー4607、音声入力部4608、操作キー4609、接眼部4610等を含む。本発明の電界発光素子を有する発光装置をその表示部4602に用いることにより作製される。

[0125]

ここで、図4(G)は携帯電話であり、本体4701、筐体4702、表示部4703、音声入力部4704、音声出力部4705、操作キー4706、外部接続ポート4707、アンテナ4708等を含む。本発明の電界発光素子を有する発光装置をその表示部4703に用いることにより作製される。なお、表示部4703は黒色の背景に白色の文字を表示することで携帯電話の消費電力を抑えることができる。

[0126]

以上の様に、本発明の電界発光素子を有する発光装置の適用範囲は極めて広く、

ページ: 48/E

この発光装置をあらゆる分野の電気器具に適用することが可能である。

[0127]

【発明の効果】

本発明を適用することにより、錯体の状態では蒸着や溶液塗布が困難な材料に関しても、その錯体を含む薄膜を形成することが出来る。したがって、それら錯体を含む電界発光素子を提供することができる。

【図面の簡単な説明】

- 【図1】本発明の電界発光素子の具体的な素子構造を説明する図。
- 【図2】共蒸着の形態を説明する図。
- 【図3】実施例3における発光装置を説明する図。
- 【図4】 実施例4における電気器具の具体例を説明する図。

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【要約】

【課題】 錯体の状態では蒸着や湿式塗布が困難な材料に関しても、その錯体を含む薄膜を形成できる手段を提案し、その手段を用いて作製した電界発光素子を提供する。

【解決手段】 金属錯体の原料である有機化合物(配位子)と金属塩とを共蒸着することにより、基板上で錯形成させ、その金属錯体を含む膜を得る。そして、このような共蒸着膜を用いて電界発光素子を作製する。この時、前記有機化合物(配位子)は、容易にプロトンを放出してアニオン性を示す(そして金属と結合する)官能基と、金属に配位結合するための非共有電子対を有する官能基と、を有していることが条件となる。

【選択図】 なし

出願人履歴情報

識別番号

[000153878]

1. 変更年月日 [変更理由] 1990年 8月17日

住 所

新規登録

氏 名

神奈川県厚木市長谷398番地 株式会社半導体エネルギー研究所