Grey's Report

Using method used to analyze the data was a Generalized Linear Model so that all requested measurements may be met. Through the development of the model we realized there were two variables that were not statistically important, thus Cancer and CAD.PAD was dropped in forming the model. This increased our measurement of fit for the model, how well our results are matching the data, so we knew it was safe to drop.

After creating the model we gathered the estimates, standard error, z-value, significance, percent change, along with an upper and lower bound for the percent change to show which variables may be most impactful. The following table shows is for your reference:

Variable:	Estimate:	STD Error:	Z-Valu	ıe	Pr(> z)
Intercept	-6.921137	2.09214	-3.30815	4	0.000939
Gender	0.885888	0.551056	1.6076	18	0.107919
BMI	0.075467	0.032745	2.3047	11	0.021183
Age	0.078657	0.025078	3.13642	27	0.00171
Race	-0.540977	0.55694	-0.9713	4	0.331379
Tobacco	0.504598	0.563257	0.8958	58	0.370329
DM	-0.879259	0.664124	-1.3239	38	0.185524
Albuming.dL.	-1.637559	0.475041	-3.4471	.96	0.000566
Operative.Length	0.221255	0.158438	1.3964	79	0.16257
Variable:	%Change	Lower Bo	ound	Upp	er Bound
Intercept	-99.90132932	-99.998	36575	-94.0	04258799
Gender	142.5137762	-89.6174	14443	556	4.59107722
BMI	7.83877393	-98.82248	3749	977	6.07440336
Age	8.18328559	-99.7685	9149	504	75.59508561
Race	-41.78210977	290.730	66197	-91	.32568014
Tobacco	65.63190769	-71.3862	26487	858	3.76783382
DM	-58.49095326	456.034	27284	-96	.90126842
Albuming.dL.	-80.55459337	16615.89	9295326	-99	.97737938
Operative.Length	24.7642146	-91.9205	1856	182	6.622315

This shows that these variables are all the important metrics in determining the risk of an individual having an anastomotic leak. For every unit increase in BMI we see an increased risk of having an anastomotic leak by %3.2 to %17.1 .

Appendix: Code

```
library(car)
library(boot)
library(stringr)
setwd("C:\\Users\\User\\Desktop\\School\\Math_536\\HW\\HW3")
Data=read.csv("colon2017.csv")
head(Data)
drops=c("Diagnosis.ICD9.Code","CPT.Code","Procedure","Incision.Start","Incision.Close")
Data2=Data[,!(names(Data) %in% drops)]
head(Data2)
Data2$Race=as.character(Data2$Race)
fixes=c("White","white","White ","W")
Data2[Data2$Race %in% fixes,][,7]="W"
unique(Data2$Race)
as.character(temp[1,7])==as.character(temp[2,7])
temp[1,7] = temp[2,7]
drops=c("Anastamotic.Leak")
x=Data2[,!(names(Data2) %in% drops)]
y=Data2[,"Anastamotic.Leak"]
Data2$Operative.Length=Data2$Operative.Length*24
```

```
model =
glm(Anastamotic.Leak~Gender+BMI+Age+Race+Tobacco+DM+CAD.PAD+Cancer+Albumin..g.dL.+Operati
ve.Length,data=Data2,family="binomial")
summary(model)
#Potential drops: Cancer, CAD. PAD, RaceW
set.seed(1)
folds=cut(seq(1,nrow(Data2)),breaks=j,labels=F)
pred=0
logLike=0
for (i in 1:j)
   testIndexes=which(folds==i,arr.ind=T)
   testData=Data2[testIndexes,]
   trainData=Data2[-testIndexes,]
   model =
glm(Anastamotic.Leak ^{\sim} Gender + BMI + Age + Race + Tobacco + DM + CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Albumin...g.dL. + Operation of the CAD.PAD + Cancer + Operation of the CAD.PAD + Cancer + Operation of the CAD.PAD + Ope
ve.Length,data=trainData,family="binomial")
   pred=predict.glm(model,newdata=testData,type="response")
   logLike=logLike + sum((testData$Anastamotic.Leak*log(pred))+((1-testData$Anastamotic.Leak)*log(1-
pred)))
}
print(logLike)
#drops: Cancer
set.seed(1)
folds=cut(seq(1,nrow(Data2)),breaks=j,labels=F)
pred=0
```

```
logLike=0
for (i in 1:j)
  testIndexes=which(folds==i,arr.ind=T)
  testData=Data2[testIndexes,]
  trainData=Data2[-testIndexes,]
  model =
glm(Anastamotic.Leak~Gender+BMI+Age+Race+Tobacco+DM+CAD.PAD+Albumin..g.dL.+Operative.Leng
th,data=trainData,family="binomial")
  pred=predict.glm(model,newdata=testData,type="response")
  logLike=logLike + sum((testData$Anastamotic.Leak*log(pred))+((1-testData$Anastamotic.Leak)*log(1-
pred)))
}
print(logLike)
#Potential drops: Cancer, CAD. PAD
set.seed(1)
folds=cut(seq(1,nrow(Data2)),breaks=j,labels=F)
pred=0
logLike=0
for (i in 1:j)
  testIndexes=which(folds==i,arr.ind=T)
  testData=Data2[testIndexes,]
  trainData=Data2[-testIndexes,]
  model =
glm(Anastamotic.Leak ^{\sim} Gender + BMI + Age + Race + Tobacco + DM + Albumin..g.dL. + Operative.Length, data = track + Compared to the compa
ainData,family="binomial")
  pred=predict.glm(model,newdata=testData,type="response")
  logLike=logLike + sum((testData$Anastamotic.Leak*log(pred))+((1-testData$Anastamotic.Leak)*log(1-
pred)))
```

```
}
print(logLike)
#dropping RaceW does not make sense since its only one of a catagory column
model =
glm(Anastamotic.Leak~Gender+BMI+Age+Race+Tobacco+DM+Albumin..g.dL.+Operative.Length,data=tr
ainData,family="binomial")
modSum=summary(model)
printTable=function()
 print("Variable:
                      Estimate: STD Error: Z-Value Pr(>|z|) %Change
                                                                              Lower Bound
Upper Bound")
 print(pasteO("Intercept"," ",modSum$coefficients[1,1]," ",modSum$coefficients[1,2],"
",modSum$coefficients[1,3]
    ",, modSum$coefficients[1,4],, ",round((exp(modSum$coefficients[1,1])-1)*100,8),, ",
    round((exp(modSum$coefficients[1,1]-1.96*modSum$coefficients[1,2])-1)*100,8)," ",
    round(((exp(modSum$coefficients[1,1]+1.96*modSum$coefficients[1,2])-1)*100),8)))
for(i in 1:8)
  print(paste0(str_pad(attr(model$terms, "term.labels")[i],17,"right"),"
",round(modSum$coefficients[i+1,1],6)," ",round(modSum$coefficients[i+1,2],6)," ",
     round(modSum$coefficients[i+1,3],6)," ",round(modSum$coefficients[i+1,4],6),"
",round((exp(modSum$coefficients[i+1,1])-1)*100,8)," ",
     round((exp(modSum$coefficients[i+1,1]-1.96*modSum$coefficients[i+1,2])-1)*100,8)," ",
     round(((exp(modSum$coefficients[i+1,1]+1.96*modSum$coefficients[i+1,2])-1)*100),8)))
}
}
```

printTable()