Week 2: Constructors, Plotting, and Centrality

Daryl DeFord

Math 581.05: Computational Tools for Complex Networks Fall 2020

Outline

- Introduction and Overview
- Graph Constructors
- Opening
 Opening
- 4 Centrality Scores

Excelephants #3

Figure: We may need a hose for this cleaning project.

Ways to play along...

- These slides are on GitHub: link
- CoCalc: cocalc.com
- CoLab: colab.research.google.com
- Sage Cell:
 - math.wsu.edu/faculty/ddeford/sage_cell.html
 - people.csail.mit.edu/ddeford/sage_cell.hmtl
- On your own machine

Building Graphs

- Individual nodes/edges
- Generators: link
- Data structures link
 - Adjacency matrices
 - Edge lists
 - Adjacency list
 - Pajek, json, etc.

- $G1 = nx.grid_graph([4,5])$
- $G2 = nx.wheel_graph(10)$
- G3 = nx.karate_club_graph()

Drawing Networks

- Options: link
 - Node size
 - Node color
 - Node shapes
 - Labels
 - Edge properties
- Layouts: link
 - Circular
 - Spring
 - Kamada-Kawai
 - Shell

```
    nx.draw_kamada_kawai(G1,
node_color='hotpink',
node_size=400
, node_shape='*'
    )
```


Centrality

Figure: Link to networkx docs

Structural Measures

- Degree Centrality
 - You are popular if you have lots of friends

Structural Measures

- Degree Centrality
 - You are popular if you have lots of friends
- Eigenvector Centrality
 - You are popular if your friends are popular (recursion)

Structural Measures

- Degree Centrality
 - You are popular if you have lots of friends
- Eigenvector Centrality
 - You are popular if your friends are popular (recursion)
- Page Rank
 - You are popular if you have a relatively high occupation probability in the steady state of a properly designed Markov chain¹

¹less pithy - more useful!

- Closeness Centrality
 - You are popular if you can broadcast information easily

- Closeness Centrality
 - You are popular if you can broadcast information easily
- Betweeness Centrality
 - You are popular if you control the flow of information

- Closeness Centrality
 - You are popular if you can broadcast information easily
- Betweeness Centrality
 - You are popular if you control the flow of information
- Big underlying assumptions:

- Closeness Centrality
 - You are popular if you can broadcast information easily
- Betweeness Centrality
 - You are popular if you control the flow of information
- Big underlying assumptions:
 - Shortest paths are relevant
 - Full network structure is known
 - No competition of messages
 - Messages are sent regularly
 - Etc.

References

- Centrality and network flow (Borgatti), Social Networks, 27(1), 2005.
- Axioms for Centrality (Boldi and Vigna) arxiv:1308.2140, 2013.
- The anatomy of a large-scale hypertextual Web search engine, (Brin and Page), Computer Networks and ISDN systems, 30, 1998.

