

INF201 Algorithmique et Programmation Fonctionnelle Cours 9 : Ordre supérieur

Année 2022

Rappel des épisodes précédents

- types prédéfinis : booléens, entiers, réels, . . .
- ▶ identificateurs (locaux et globaux)
- définition et utilisation de fonctions
- définition de types : synonyme, énuméré, produit, somme
- filtrage par pattern-matching
- récursion
 - fonctions récursives, terminaison
 - types récursifs
- ▶ listes avec constructeurs explicites (Cons/Nil) et notations OCaml ([], ::)

Plan

(Retour sur le) Polymorphisme

Ordre supérieur

Curryfication

étendre la notion de fonction

Définition d'une fonction identité :

► Identité sur les int :

let id (x:int):int = x

val id:int \rightarrow int = <fun>

étendre la notion de fonction

Définition d'une fonction identité :

▶ Identité sur les float :

```
let id (x:float):float = x valid:float \rightarrow float = <fun>
```

étendre la notion de fonction

Définition d'une fonction identité :

► Identité sur les float :

```
let id (x:float):float = x valid:float \rightarrow float = <fun>
```

▶ Identité sur les char :

```
let id (x:char):char = x val id : char \rightarrow char = < fun>
```

étendre la notion de fonction

Définition d'une fonction identité :

▶ Identité sur les float :

```
let id (x:float):float = x val id:float \rightarrow float = <fun>
```

► Identité sur les char :

```
let id (x:char):char = x val id : char \rightarrow char = < fun>
```

Inconvénients:

- une fonction par type pour lesquels la fonction est définie
- des noms différents sont nécessaires si ces fonctions doivent "cohabiter" dans un même programme ...

Fonctions sur les listes

Calcul de la longueur d'une liste

d'entiers :

```
let rec longueur_int (1: int list):int= match 1 with  |[] \rightarrow 0 \\ |\_::1 \rightarrow 1+ longueur_int 1
```

Fonctions sur les listes

Calcul de la longueur d'une liste

d'entiers :

```
let rec longueur_int (1: int list):int= match 1 with  |[] \rightarrow 0 \\ |\_::1 \rightarrow 1+ longueur_int 1
```

de caractères :

```
let rec longueur_char (1: char list):int= match 1 with  |[] \rightarrow 0 \\ |\_::1 \rightarrow 1+ longueur\_char l
```

Fonctions sur les listes

Calcul de la longueur d'une liste

d'entiers :

```
let rec longueur_int (1: int list):int= match 1 with  |[] \rightarrow 0 \\ |\_::1 \rightarrow 1+ longueur_int 1
```

de caractères :

```
let rec longueur_char (1: char list):int= match 1 with  |[] \rightarrow 0 \\ |\_::1 \rightarrow 1 + longueur\_char 1
```

▶ de pingouins ...

```
let rec longueur_char (1: pingouins list):int=
match 1 with ...
```

Fonctions sur les listes

Calcul de la longueur d'une liste

d'entiers :

```
let rec longueur_int (1: int list):int= match 1 with  |[] \rightarrow 0 \\ |\_::1 \rightarrow 1+ longueur_int 1
```

de caractères :

```
let rec longueur_char (1: char list):int= match 1 with  |[] \rightarrow 0 \\ | \_::1 \rightarrow 1+ longueur\_char 1
```

▶ de pingouins ...

```
let rec longueur_char (1: pingouins list):int=
match 1 with ...
```

Le corps de ces fonctions ne dépend pas du type des éléments ...

⇒ il faut une notion de liste générique (ou polymorphe)

Limitation de la notion (courante) de liste

- → Plusieurs définitions du type liste avec constructeurs explicites :
 - type list_int = Nil | Cons int * list_int
 ex :Cons (2, Cons (9,Nil))
 - type list_char = Nil | Cons char * list_char
 ex :Cons ('t', Cons ('v',Nil))

Limitation de la notion (courante) de liste

- → Plusieurs définitions du type liste avec constructeurs explicites :
 - type list_int = Nil | Cons int * list_int
 ex :Cons (2, Cons (9,Nil))
 - type list_char = Nil | Cons char * list_char
 ex :Cons ('t', Cons ('v',Nil))
- → Plusieurs "types listes" en notation OCaml :
 - ▶ liste d'entiers :
 [1;2] (ou 1::2::[]) de type int list
 - ▶ liste de caractères :
 ['e'; 'n'] (ou 'e':: 'n'::[]) de type char list
 - ▶ liste de booléens : [true; false] (ou true::false::[]) de type bool list

Retour sur les différentes fonctions identité :

 \hookrightarrow et si on ne précisait pas le type du paramètre et du résultat ?

let
$$id x = x$$

Retour sur les différentes fonctions identité :

→ et si on ne précisait pas le type du paramètre et du résultat ?

let
$$id x = x$$

 \hookrightarrow le type renvoyé par OCaml est ' a \to ' a (ou encore $\alpha {\to} \alpha$)

valid: 'a
$$\rightarrow$$
 'a =

Retour sur les différentes fonctions identité :

 \hookrightarrow et si on ne précisait pas le type du paramètre et du résultat ?

let
$$id x = x$$

 \hookrightarrow le type renvoyé par OCaml est ' a \rightarrow ' a (ou encore $\alpha \rightarrow \alpha$)

valid: 'a
$$\rightarrow$$
 'a =

Inférence de type :

OCaml calcule le type "le plus général possible" pour id

Fonction polymorphe

id est une fonction polymorphe (un de ses paramètres peut prendre plusieurs types). On peut aussi le spécifier explicitement :

let id
$$(x : 'a)$$
: 'a = x

Retour sur les différentes fonctions identité :

 \hookrightarrow et si on ne précisait pas le type du paramètre et du résultat ?

let
$$id x = x$$

 \hookrightarrow le type renvoyé par OCaml est ' a \rightarrow ' a (ou encore $\alpha \rightarrow \alpha$)

val id: 'a
$$\rightarrow$$
 'a = $<$ fun>

Inférence de type :

OCaml calcule le type "le plus général possible" pour id

Fonction polymorphe

id est une fonction polymorphe (un de ses paramètres peut prendre plusieurs types). On peut aussi le spécifier explicitement :

let id
$$(x : 'a)$$
: 'a = x

Remarque

' a désigne un type paramètre

Comme pour tout paramètre, on peut lui donner n'importe quel nom :

5/18

Types polymorphes

On peut aussi définir des types paramétrés par d'autres types . . .

Exemple:

```
type t2 = ('elt * 'elt)
type t2 = ('elt1 * 'elt2)
type 't liste = Nil | Cons of 't * 't liste
```

 \rightarrow on parle de types polymorphes

Types polymorphes

On peut aussi définir des types paramétrés par d'autres types . . .

Exemple:

```
type t2 = ('elt * 'elt)
type t2 = ('elt1 * 'elt2)
type 't liste = Nil | Cons of 't * 't liste
```

→ on parle de types polymorphes

Le type list de Caml est un type polymorphe :

- ▶ le type de [] est 'a list (ou encore α list)
- ▶ le type de :: est 'a \rightarrow 'a list \rightarrow 'a list (ou encore $\alpha \rightarrow \alpha$ list $\rightarrow \alpha$ list)

Remarque Les éléments d'une liste sont tous du même type ' a

Exemple de fonction que l'on ne peut pas définir sur une liste polymorphe ???

Outline

(Retour sur le) Polymorphisme

Ordre supérieur

Curryfication

Introduction à l'ordre supérieur

fonctions = briques de base pour :

- découper un programme en éléments plus petits/lisibles
- calculer des valeurs

Introduction à l'ordre supérieur

fonctions = briques de base pour :

- découper un programme en éléments plus petits/lisibles
- calculer des valeurs

Mais ...

une fonction peut être un paramètre ou un résultat d'une autre fonction

Exemples:

- définir une fonction affine pour a et b : f(x) = ax + b
- ightharpoonup définir la composition de deux fonctions $f \circ g$
- ▶ définir la dérivé *f*′ d'une fonction *f*, etc.

Introduction à l'ordre supérieur

fonctions = briques de base pour :

- découper un programme en éléments plus petits/lisibles
- calculer des valeurs

Mais ...

une fonction peut être un paramètre ou un résultat d'une autre fonction

Exemples:

- ightharpoonup définir une fonction affine pour a et b : f(x) = ax + b
- ightharpoonup définir la composition de deux fonctions $f \circ g$
- \blacktriangleright définir la dérivé f' d'une fonction f, etc.

L'ordre supérieur permet aussi de définir des schémas de programmation :

- ▶ fonction qui applique une **fonction** à tous les éléments d'une liste
- ▶ fonction qui extrait d'une liste les éléments qui vérifient un **prédicat**

⇒ De nombreux intérêts du point de vue programmation . . .

Fonctions d'ordre supérieur

Un peu de vocabulaire

Definition (Langage d'ordre supérieur)

C'est un langage (de programmation) dans lequel il est possible de transmettre des fonctions en paramètre **et** en résultat d'autres fonctions.

Definition (Fonction d'ordre supérieur)

C'est une fonction qui permet :

- soit de prendre une fonction en paramètre
- soit de renvoyer une fonction en résultat

Remarque Les fonctions qui ne sont pas d'ordre supérieur sont dites de premier ordre.

Type d'une fonction

fonction à un paramètre de type t et résultat de type r en maths : $f: t \to r$ en OCaml : f : t \to r

Type d'une fonction

- ▶ fonction à un paramètre de type t et résultat de type r en maths : $f : t \rightarrow r$ en OCaml : $f : t \rightarrow r$
- ▶ fonction à *n* paramètres de type $t_1, t_2, ... t_n$ et résultat de type r
 - ightharpoonup en maths : $f: t_1 \times t_2 \times \cdots \times t_n \rightarrow r$
 - ▶ en OCaml: f:t1 \rightarrow t2 \rightarrow ... \rightarrow tn \rightarrow r

Type d'une fonction

- ▶ fonction à un paramètre de type t et résultat de type r en maths : $f : t \rightarrow r$ en OCaml : $f : t \rightarrow r$
- ▶ fonction à n paramètres de type $t_1, t_2, \dots t_n$ et résultat de type r
 - ightharpoonup en maths : $f: t_1 \times t_2 \times \cdots \times t_n \rightarrow r$
 - en OCaml: $f:t1 \rightarrow t2 \rightarrow ... \rightarrow tn \rightarrow r$
 - → on parle de forme curryfiée

Fonction à paramètres de type fonction

ex.: f a 2 paramètres de type fonction, $p1: t1 \rightarrow r1$ et $p2: t2 \rightarrow r2$

let f (p1:t1
$$\rightarrow$$
 r1) (p2:t2 \rightarrow r2):r = ...

Le type de f est alors f : (t1 \rightarrow r1) \rightarrow (t2 \rightarrow r2) \rightarrow r

Type d'une fonction

- ▶ fonction à un paramètre de type t et résultat de type r en maths : $f : t \rightarrow r$ en OCaml : $f : t \rightarrow r$
- fonction à *n* paramètres de type $t_1, t_2, \dots t_n$ et résultat de type *r*
 - ightharpoonup en maths : $f: t_1 \times t_2 \times \cdots \times t_n \rightarrow r$
 - en OCaml: $f:t1 \rightarrow t2 \rightarrow ... \rightarrow tn \rightarrow r$

Fonction à paramètres de type fonction

ex.: f a 2 paramètres de type fonction, $p1: t1 \rightarrow r1$ et $p2: t2 \rightarrow r2$

let f (p1:t1
$$\rightarrow$$
 r1) (p2:t2 \rightarrow r2):r = ...

Le type de f est alors f : (t1 \rightarrow r1) \rightarrow (t2 \rightarrow r2) \rightarrow r

Fonction à résultat de type fonction

ex.: f a un paramètre entier et renvoie une fonction de type $t1 \times t2 \rightarrow r$

```
let f(x:int):(t1 \rightarrow t2 \rightarrow r) =
fun (a1:t1) (a2:t2) \rightarrow ... (* expression de type r *)
```

Le type de f est alors $f : int \rightarrow (t1 \rightarrow t2 \rightarrow r)$

```
trans: transformation d'un point du plan
trans(f, g, (x, y)) renvoie ((f(x), g(y)))
```

▶ type de trans?

trans: transformation d'un point du plan

trans(f, g, (x, y)) renvoie ((f(x), g(y))

- ▶ type de trans? trans: $(\mathbb{N} \to \mathbb{N}) \times (\mathbb{N} \to \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \to (\mathbb{N} \times \mathbb{N})$ trans: $(\text{int} \to \text{int}) \to (\text{int} \to \text{int}) \to (\text{int} \star \text{int}) \to (\text{int} \star \text{int})$
- réalisation de trans ?

trans: transformation d'un point du plan

trans(f, g, (x, y)) renvoie ((f(x), g(y))

- ▶ type de trans? trans: $(\mathbb{N} \to \mathbb{N}) \times (\mathbb{N} \to \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \to (\mathbb{N} \times \mathbb{N})$ trans: $(\text{int} \to \text{int}) \to (\text{int} \to \text{int}) \to (\text{int} \star \text{int}) \to (\text{int} \star \text{int})$
- ► réalisation de trans?

```
let trans: (f: int \rightarrow int) (g: int \rightarrow int) (p: int * int): (int * int) = let (x,y) = p in ((f x), (g y))
```

trans: transformation d'un point du plan trans(f, g, (x, y)) renvoie ((f(x), g(y)))

- ▶ type de trans? trans: $(\mathbb{N} \to \mathbb{N}) \times (\mathbb{N} \to \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \to (\mathbb{N} \times \mathbb{N})$ trans: $(\text{int} \to \text{int}) \to (\text{int} \to \text{int}) \to (\text{int} \star \text{int}) \to (\text{int} \star \text{int})$
- ▶ réalisation de trans ?

```
let trans: (f: int \rightarrow int) (g: int \rightarrow int) (p: int * int): (int * int) = let (x,y) = p in ((f x), (g y))
```

affine :fonction affine sur a et b affine(a,b) renvoie f(x) = ax + b

▶ type de affine ?

trans: transformation d'un point du plan

trans(f, g, (x, y)) renvoie ((f(x), g(y))

- ▶ type de trans? trans: $(\mathbb{N} \to \mathbb{N}) \times (\mathbb{N} \to \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \to (\mathbb{N} \times \mathbb{N})$ trans: $(\text{int} \to \text{int}) \to (\text{int} \to \text{int}) \to (\text{int} \star \text{int}) \to (\text{int} \star \text{int})$
- réalisation de trans ?

```
let trans: (f: int \rightarrow int) (g: int \rightarrow int) (p: int * int): (int * int) = let (x,y) = p in ((f x), (g y))
```

affine :fonction affine sur a et b affine(a,b) renvoie f(x) = ax + b

- ▶ type de affine ? affine : $\mathbb{R} \times \mathbb{R} \to (\mathbb{R} \times \mathbb{R})$ affine : float \to float \to float)
- réalisation de affine ?

```
trans: transformation d'un point du plan
```

trans(f, g, (x, y)) renvoie ((f(x), g(y))

- ▶ type de trans? trans: $(\mathbb{N} \to \mathbb{N}) \times (\mathbb{N} \to \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \to (\mathbb{N} \times \mathbb{N})$ trans: $(\text{int} \to \text{int}) \to (\text{int} \to \text{int}) \to (\text{int} \star \text{int}) \to (\text{int} \star \text{int})$
- ▶ réalisation de trans ?

```
let trans: (f: int \rightarrow int) (g: int \rightarrow int) (p: int * int): (int * int) = let (x,y) = p in ((f x), (g y))
```

affine :fonction affine sur a et b affine(a,b) renvoie f(x) = ax + b

- ▶ type de affine ?

 affine: $\mathbb{R} \times \mathbb{R} \to (\mathbb{R} \times \mathbb{R})$ affine: float \to float \to (float \to float)
- ► réalisation de affine?

```
let affine (a: float) (b: float): float \rightarrow float = fun (x: float) \rightarrow a *. x +. b
```

Fonctions numériques

Exemple : derivée d'une fonction f

On approche f'(x) (valeur de la dérivée de f en x) par :

$$\frac{f(x+h)-f(x)}{h}$$
 (avec h petit)

DEMO: Dérivée

Fonctions numériques

Rappels:

- ▶ Un zero d'une fonction f est une valeur x_0 t.q. $f(x_0) = 0$
- ► Théorème des valeurs intermédiaires: Soit f une fonction continue, a et b deux réels, si f(a) et f(b) sont de signe opposés, alors l'intervalle [a, b] contient un zero pour f.
- ▶ \sqrt{a} est zero de la fonction $x \mapsto x^2 a$
- $\blacktriangleright \ \forall a \ge 0 : 0 \le \sqrt{a} \le \frac{1+a}{2}$

Fonctions numériques

Rappels:

- ▶ Un zero d'une fonction f est une valeur x_0 t.q. $f(x_0) = 0$
- ► Théorème des valeurs intermédiaires: Soit f une fonction continue, a et b deux réels, si f(a) et f(b) sont de signe opposés, alors l'intervalle [a, b] contient un zero pour f.
- ▶ \sqrt{a} est zero de la fonction $x \mapsto x^2 a$
- $\blacktriangleright \ \forall a \ge 0 : 0 \le \sqrt{a} \le \frac{1+a}{2}$

Exercice: calcul du zero d'une fonction continue par dichotomie

- Définir une fonction sign qui indique si un réel est positif ou non ;
- ▶ En déduire une fonction zero qui renvoie le *zero* d'une fonction, à ϵ près, étant donnés deux réels vérifiant le théorème des valeurs intermédiaires ;
- En déduire une fonction qui approxime la racine carrée d'un réel.

Quelques exemples de fonctions d'ordre supérieur Composition de fonctions

Composition de fonctions :

 $\begin{array}{cccc} f & : & C \longrightarrow D \\ g & : & A \longrightarrow B \\ g \circ f & : & C \longrightarrow B & \text{si } D \subseteq A \end{array}$

Simplifions en prenant D = A, d'où $g \circ f : C \xrightarrow{f} A \xrightarrow{g} B$

Composition de fonctions

Composition de fonctions :

$$\begin{array}{cccc} f & : & C \longrightarrow D \\ g & : & A \longrightarrow B \\ g \circ f & : & C \longrightarrow B & \text{si } D \subseteq A \end{array}$$

Simplifions en prenant D = A, d'où $g \circ f : C \xrightarrow{f} A \xrightarrow{g} B$

Exercice: Définir la composition de fonctions en OCaml

- Spécifier la fonction compose qui compose deux fonctions (attention aux types!)
- ► Implémenter la fonction compose

En OCaml:

si f est une fonction de type $t1 \to t2$ et g est une fonction de type $t2 \to t3$ alors

- Compose g f sera de type t1→ t3
- ▶ compose sera de type (t2 \rightarrow t3) \rightarrow (t1 \rightarrow t2) \rightarrow (t1 \rightarrow t3)

DEMO: Implementation de compose

n-ième terme d'une suite et composition de fonctions

Soit une suite définie par :

$$\begin{array}{rcl} u_0 & = & a \\ u_n & = & f(u_{n-1}), \, n \geq 1 \end{array}$$

Le *n*-ième terme u_n est $f(u_{n-1}) = f(f(u_{n-2})) = f(f(f(\dots(u_0)\dots)))$

n-ième terme d'une suite et composition de fonctions

Soit une suite définie par :

$$u_0 = a u_n = f(u_{n-1}), n \ge 1$$

Le *n*-ième terme
$$u_n$$
 est $f(u_{n-1}) = f(f(u_{n-2})) = f(f(f(\dots(u_0)\dots)))$

Exercice: n-ième terme d'une suite

Définir une fonction nieme qui calcule le n-ième terme de la suite définie ci-dessus pour une fonction f et un entier n

n-ième terme d'une suite et composition de fonctions

Soit une suite définie par :

$$u_0 = a u_n = f(u_{n-1}), n \ge 1$$

Le *n*-ième terme u_n est $f(u_{n-1}) = f(f(u_{n-2})) = f(f(f(...(u_0)...)))$

Exercice: n-ième terme d'une suite

Définir une fonction nieme qui calcule le n-ième terme de la suite définie ci-dessus pour une fonction f et un entier n

Exercice: *n*-ième itération d'une fonction

Définir une fonction iterate qui calcule la **fonction** qui est la n-ième composition d'une fonction pour un n donné.

Plan

(Retour sur le) Polymorphisme

Ordre supérieur

Curryfication

A propos de curryfication

Exemple: let f(x1:int)(x2:int)(x3:int):int = x1+x2+x3

- f est de type "fonction à 3 paramètres entiers et à resultat entier"
- ▶ le résultat de (f 1 2 3) est l'entier 6

Résultat de (f 1) ? \rightarrow "fonction à 2 paramètres entiers et à resultat entier"

 \Rightarrow L'application f1 x1 x2 ... xn est en fait une suite d'applications $(((f_1 \ x1) \ x2)...) \ xn$

Definition: application partielle

C'est l'application d'une fonction à n paramètres formels avec strictement moins de n paramètres effectifs. Le résultat d'une application partielle est donc une **fonction**.

Typage:

Si

- ▶ f est de type $t1 \rightarrow t2 \rightarrow ... \rightarrow tn \rightarrow t$, et
- ▶ xi est de type ti pour $i \in [1, j] \subseteq [1, n]$

Alors f x1 x2 ... xj est de type $t(j+1) \rightarrow ... \rightarrow tn \rightarrow t$

A propos de curryfication

Quelques exemples

Exemple : Appliquer une fonction 2 fois Retour sur la fonction appliquer2fois

let appliquer2fois (f:int
$$\rightarrow$$
 int) (x:int):int
= f (f x)

Appliquer appliquer2 fois avec un seul argument :

appliquer2fois (fun
$$x \rightarrow x + 4$$
)

renvoie la fonction

fun
$$x \rightarrow x + 8$$

DEMO: appliquer2fois

Intérêts de la curryfication

Définition d'une fonction qui prend $a \in A$ et $b \in B$ et renvoie $c \in C$

Sans curryfication : Avec currifycation

 $f: tA * tB \rightarrow tC$: $f: tA \rightarrow tB \rightarrow tC$

 $\begin{array}{lll} \texttt{f a un seul paramètre} & \texttt{f a deux paramètres} \\ (\texttt{un couple}) & \texttt{f a b est de type } \texttt{tC} \\ \texttt{f a est de type } \texttt{tB} \rightarrow \texttt{tC} \end{array}$

DEMO: 2 définitions de l'addition sur les entiers et le (+) prédéfini de OCaml

A retenir

- La curryfication offre une certaine flexibilité
- Permet également de spécialiser une fonction

Remarque Lorsque l'on applique une fonction currifiée il est possible d'oublier un paramètre sans s'en rendre compte . . .

Fonctions d'ordre supérieur

Avantages, et ce que l'on doit retenir

L'utilisation de fonctions d'ordre supérieur va permettre :

- l'écriture de programmes plus concis
- ► l'écriture de programmes plus faciles à étendre/maintenir
- ▶ l'émergence de schémas de programmation

Ce qu'il faudra retenir :

- la notion d'ordre supérieur
- le vocabulaire associé
- quand et comment utiliser cette notion . . .
- → A développer, en pratiquant sur des exemples...

la suite au prochain cours!