

FOUNDATIONS OF STATISTICAL ANALYSIS & MACHINE LEARNING

Amric Trudel amric.trudel@epita.fr

COURSE PROGRAM

Structure

PREPARATION	Data exploration				
	Data preprocessing				
REGRESSION					
REGRESSION	Multiple and polynomial regression				
CLASSIFICATION					
	k-NN, Decision Tree, SVM				
CLUSTERING	k-means, hierarchical clustering				
DIMENSIONALITY REDUCTION	Principal Components Analysis				
ALL NOTIONS	Final assignment				

Illustration

Illustration

1 → Class A

Illustration

Illustration

Illustration

Illustration

Process

- Pick a value for k
- For each point from the training data set, compute the distance to each observation
- Select the k nearest points and predict the class as the most popular one in that k points.

Parameter setting

- Distance:
- ℓ_2 -norm (Euclidian), ℓ_1 -norm, etc.
- <u>/!\</u> Scale effect: *The curse of dimensionality*
- k
 - Low value: sensitivity to noise (over-fitting)
 - High value: overly generalized
 - Pick k that maximize accuracy

Python implementation

Training a k-NN model:

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors = 5, metric = 'euclidean')
knn.fit(X_train, y_train)
```

• Using the model for predicting:

```
y_pred = knn.predict(X_test)
```

Process

• Objective: split the feature space into distinct and non-overlapping boxes of maximum "purity"

Process

• We divide the predictor space into distinct and non-overlapping boxes

Process

We divide the predictor space into distinct and non-overlapping boxes

Classification rules setting

- Choose an attribute from the data set
- Calculate the significance of the attribute in splitting of data
- Split data based on the value of the best attribute
- Iterate until a stopping criterion is reached

Cross entropy

- Cost function: **cross entropy** $E = -\sum_{k=1}^{K} \hat{p}_k \log_2(\hat{p}_k)$
 - Measure of randomness
 - Value between zero (purity of separation) and one (complete randomness)

Cross entropy

Weighted cross entropy to measure information gain and make split decision

weighted
$$E = \frac{9}{15} \cdot 0.99 + \frac{6}{15} \cdot 1 = 0.99$$

$$E = 0$$
 $E = 0.50$

This split maximizes the purity/predictiveness of

weighted
$$E = \frac{9}{15} 0.99 + \frac{6}{15} 1 = 0.99$$
 weighted $E = \frac{7}{15} 0 + \frac{9}{15} 0.50 = 0.30$

Ensemble learning

"A methodology to combine a set of models, each solves the same original task, in order to obtain a better composite global model, with more accurate and reliable estimates or decisions than can be obtained from using a single model".

Random Forests

- Extension of Decision Tree to improve performance (Ensemble method)
- Method:
 - Define the number N_t of trees you want to build
 - Pick N_p random data points from the training set
 - Build the Decision Tree associated to these N_p data points
- Repeat second and third steps N_t times
- For the class prediction of a new data points, provide the average across the $N_{\rm t}$ predictions given by each Decision Tree

Python implementation

Training a Decision Tree model:

```
from sklearn.tree import DecisionTreeClassifier

dt = DecisionTreeClassifier(criterion = 'entropy')

dt.fit(X_train, y_train)
```

Random Forest version:

```
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators = 10, criterion = 'entropy')
```

Using the model for predicting:

```
y_pred = dt.predict(X_test)
```

Principle of support vector

• If the training set is linearly separable, there is a gap between categories

Principle of support vector

- Hard margin: minimize ||w||

subject to
$$(w^T x_i - b) \ge 1$$
 if $y_i = 1$ for $i = 1, ..., n$ $(w^T x_i - b) \le 1$ if $y_i = 0$

Principle of support vector

- Extension for a training set that is not linearly separable:
 - **Soft margin**: using C as a regularization parameter

Principle of support vector

- Extension for a training set that is not linearly separable:
 - **Soft margin**: using C as a regularization parameter

Python implementation

Training a SVM model for classification:

```
from sklearn.svm import SVC
svm = SVC(kernel = 'linear', C = 1.0)
```

Using the model for predicting:

```
y_pred = svm.predict(X_test)
```

K-NN, DECISION TREES, SVM

Example of implementation

- Data set: user profiles and sales information
- Objectives:
- Train a k-NN, a Decision Tree and a SVM models to predict purchase based on profile information
- Check visually the results on decision areas
- Compare the performances of the different models

chased	F	EstimatedSalary	Age	Gender	User ID	
no		19000	19	Male	15624510	1
no	Male 35 20000		Male	15810944	2	
no	nale 26 43000		Female	15668575	3	
no		57000	27	Female	15603246	4
no		76000	19	Male	15804002	5
no		58000	27	Male	15728773	6
no		84000	27	Female	15598044	7
yes		150000	32	Female	15694829	8
no		33000	25	Male	15600575	9
no		65000	35	Female	15727311	10
no		80000	26	Female	15570769	11
no		52000	26	Female	15606274	12
no		86000	20	Male	15746139	13

Student practice

Foundations of Statistical Analysis & Machine L

- Data set: breast cancer diagnosis based on tumor characteristics
- Objectives:
 - Train a k-NN, a Decision Tree and a SVM models on two predictors
 - Visualize the results
 - Compare the performances

mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension
14.69	13.98	98.22	656.1	0.10310	0.18360	0.14500	0.06300	0.2086	0.07406
13.17	18.66	85.98	534.6	0.11580	0.12310	0.12260	0.07340	0.2128	0.06777
12.95	16.02	83.14	513.7	0.10050	0.07943	0.06155	0.03370	0.1730	0.06470
18.31	18.58	118.60	1041.0	0.08588	0.08468	0.08169	0.05814	0.1621	0.05425
15.13	29.81	96.71	719.5	0.08320	0.04605	0.04686	0.02739	0.1852	0.05294
16.16	21.54	106.20	809.8	0.10080	0.12840	0.10430	0.05613	0.2160	0.05891
19.19	15.94	126.30	1157.0	0.08694	0.11850	0.11930	0.09667	0.1741	0.05176
18.08	21.84	117.40	1024.0	0.07371	0.08642	0.11030	0.05778	0.1770	0.05340

benign
malignant
benign
malignant
malignant
malignant
malignant
malignant