6.02214×10^{23} $N_{\rm Av}$: mol^{-1} 1.6605×10^{-27} 1 amu: kg 1.38065×10^{-23} $\rm J~K^{-1}$ 8.61734×10^{-5} $eV K^{-1}$ $k_{\rm B}$: $J K^{-1} mol^{-1}$ 8.2057×10^{-2} l atm mol⁻¹ K⁻¹ R: 8.314472 ${
m J}~{
m s}^{-1}~{
m m}^{-2}~{
m K}^{-4}$ 5.6704×10^{-8} σ_{SB} : $\rm m\ s^{-1}$ 2.99792458×10^{8} c: 6.62607×10^{-34} h: J s 4.13566×10^{-15} eV s 1.05457×10^{-34} 6.58212×10^{-16} eV sJ s \hbar : hc: 1239.8 eV nm 1.60218×10^{-19} \mathbf{C} e: $9.10938215 \times 10^{-31}$ $MeV c^{-2}$ kg 1: 0.5109989 m_e : $C^2 J^{-1} m^{-1}$ $e^2 \text{ Å}^{-1} \text{ eV}^{-1}$ 8.85419×10^{-12} 5.52635×10^{-3} $e^2/4\pi\epsilon_0$: 2.30708×10^{-28} J m 14.39964 eV Å 0.529177×10^{-10} 0.529177Å \mathbf{m} a_0 : 27.212 E_{H} : Ha eV

Table 1: Key units in Physical Chemistry

1 The Classical Foundations

1.1 Lecture 0: Introduction

- 1. Burning lighter
- 2. Foundations of Physical Chemistry
 - (a) Quantum mechanics
 - (b) Statistical mechanics
 - (c) Thermodynamics, kinetics, spectroscopy
 - (d) Physical and chemical properties of matter

1.2 Lecture 1: Basic statistics

- 1. Discrete probability distributions—Coin flip
 - (a) Example of Bernoulli trial, 2^n possible outcomes from n flips
 - (b) Number of ways to get i heads in n flips, ${}_{n}C_{i} = n!/i!(n-i)!$
 - (c) Probability of *i* heads $P_i \propto {}_nC_i$
 - (d) Normalized probability, $\tilde{P}_i = P_i / \sum_i P_i = {}_n C_i / 2^n$
 - (e) Expectation value $\langle i \rangle = \sum_i i \tilde{P}_i$
- 2. Continuous distributions—temperature
 - (a) Probability density P(x) has units 1/x
 - (b) Normalized $\tilde{P}(x) = P(x) / \int P(x) dx$
 - (c) (Unitless) probability $a < x < b = \int_a^b \tilde{P}(x) dx$

- (d) Expectation value $\langle f(x) \rangle = \int f(x) \tilde{P}(x) dx$
- (e) Mean = $\langle x \rangle$
- (f) Mean squared = $\langle x^2 \rangle$
- (g) Variance $\sigma^2 = \langle x^2 \rangle \langle x \rangle^2$
- (h) Standard deviation $\Delta x = \sigma$

3. Boltzmann distribution

- (a) $P(E) \propto e^{-E/k_BT}$, in some sense the definition of temperature
- (b) Energy and its units
- (c) Absolute temperature and its units
- (d) k_BT as an energy scale, $0.026\,\mathrm{eV}$ at $298\,\mathrm{K}$
- (e) Gravity example
 - i. E(h) = mgh, linear, continuous energy spectrum
 - ii. molecule vs car in a gravitational field (Table 2)
 - iii. Barometric law for gases, $P = P_0 e^{-mgh/k_BT}$
- (f) Kinetic energy in 1-D example

i.
$$KE = \frac{1}{2}mv_x^2$$

ii.
$$P_{1D}(v_x) = \left(\frac{m}{2\pi k_B T}\right)^{1/2} \exp\left(-\frac{m|v_x|^2}{2k_B T}\right)$$

iii. Gaussian distribution, mean μ , variance σ^2

$$G(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- iv. By inspection, $\mu = \langle v_x \rangle = 0$, $\sigma^2 = \langle v_x^2 \rangle = k_B T/m$
- v. Molecule vs car again
- (g) Equipartition energy freely exchanged between all degrees of freedom

Table 2: Car vs gas molecule at the earth's surface

	car	gas molecule
\overline{m}	$1000\mathrm{kg}$	$1 \times 10^{-26} \mathrm{kg}$
h	$1\mathrm{m}$	$1\mathrm{m}$
mgh	$9800\mathrm{J}$	$9.8 \times 10^{-26} \mathrm{J}$
	$6.1 \times 10^{22} \mathrm{eV}$	$6.1 \times 10^{-7} \text{eV}$
T	$298\mathrm{K}$	$298\mathrm{K}$
k_BT	$0.026\mathrm{eV}$	$0.026\mathrm{eV}$
mgh/k_BT	2.4×10^{24}	2.3×10^{-5}
$P(1{\rm m})/P(0)$	$e^{-2.4 \times 10^{-24}}$	0.99998
$\langle h \rangle$	$0\mathrm{m}$	$42\mathrm{km}$

	J	eV	Hartree	$kJ \text{ mol}^{-1}$	cm^{-1}
1 J =	1	6.2415×10^{18}	2.2937×10^{17}	6.0221×10^{20}	5.0340×10^{22}
1 eV =	1.6022×10^{-19}	1	0.036748	96.485	8065.5
1 Ha =	4.3598×10^{-18}	27.212	1	2625.6	219474.6
$1 \text{ kJ mol}^{-1} =$	1.6605×10^{-21}	0.010364	3.8087×10^{-4}	1	83.5935
$1 \text{ cm}^{-1} =$	1.986410^{-23}	1.23984×10^{-4}	4.55623×10^{-6}	0.011963	1

Table 3: Energy conversions and correspondences

```
import numpy as np
    import matplotlib.pyplot as plt
    RO = 8.31441e-3 \# kJ/mol K
    def Boltzmann(E,T):
6
        return np.exp(-E/(R0*T))/(R0*T)
8
9
    energy = np.linspace(0,25,50)
10
    plt.figure()
11
12
    for Temperature in [100,300,1000]:
       Probability = Boltzmann(energy, Temperature)
13
       plt.plot(Probability, energy, label='{0} K'.format(Temperature))
14
15
    legend = plt.legend()
16
17
    plt.xlabel('Energy (kJ/mol)')
18
    plt.ylabel('Probability (mol/kJ)')
19
    # plt.title('Boltzmann distribution at various temperatures')
20
    plt.savefig('./Images/Boltzmann.png')
^{22}
    RO = 8.31441 \# J/mol K
23
^{24}
    mass = 28./1000. # kg/mol
    def MB1D(v,T):
25
        return np.sqrt(mass/(2*np.pi*R0*T))*np.exp(-(mass*v*v)/(2*R0*T))
27
28
    velocity = np.linspace(-1000,1000,1000)
^{29}
    plt.figure()
    for Temperature in [100,200,300,400,500]:
30
        Probability = MB1D(velocity, Temperature)
        plt.plot(velocity,Probability,label='{} K'.format(Temperature))
32
33
    legend=plt.legend()
34
    plt.xlabel('Velocity (m/s)')
35
   plt.ylabel('Probability (1/(m/s))')
    # plt.title('Boltzmann distribution at various temperatures')
37
    plt.savefig('./Images/MB1D.png')
```

1.3 Lecture 2: Kinetic theory of gases

- 1. Postulates
 - (a) Gas is composed of molecules in constant random, thermal motion
 - (b) Molecules only interact by perfectly elastic collisions
 - (c) Volume of molecules is << total volume
- 2. Maxwell-Boltzmann distribution of molecular speeds

 $\textbf{Figure 1:} \ \, \textbf{Boltzmann distribution at various temperatures} \\$

Figure 2: One-dimensional (Gaussian) velocities of N_2 gas

- (a) Speed $v = \sqrt{v_x^2 + v_y^2 + v_z^2}$
- (b) $P_{MB}(v)dv = P_{1D}(v_x)P_{1D}(v_y)P_{1D}(v_z) * degeneracy(v)dv$
- (c) mean speeds $\propto \sqrt{T}$
- (d) mean energy $U = \frac{3}{2}RT$ and heat capacity $C_v = \frac{3}{2}R$
- 3. Flux and pressure
 - (a) Velocity flux $j(v_x)dv_x = v_x \frac{N}{V} P(v_x) dv_x$, molecules /area /time / v_x
 - (b) Wall collisions, J_w , total collisions /area /time
 - (c) Momentum exchange, pressure, ideal gas law
- 4. Collisions and mean free path
 - (a) Collision cross section $\sigma = \pi d^2$, size of molecule
 - (b) Molecular collisions, z per molecule and z_{AA} per volume
 - (c) Mean free path, λ , mean distance between collisions

```
import numpy as np
    import matplotlib.pyplot as plt
    RO = 8.31441 \# J/mol K
4
    mass = 28. /1000 \# kq/mol N2
    def Boltzmann(E,T):
        return np.exp(-E/(R0*T))/(R0*T)
8
9
    def MB(c,T):
10
        K = 0.5 * mass * c *c
11
         \texttt{degeneracy} = 4 * \texttt{np.pi} * \texttt{c} * \texttt{c}
12
        normalization = (mass/(2*np.pi*R0*T))**1.5
13
         return normalization*degeneracy*Boltzmann(K,T)
14
15
    energy = np.linspace(0,1500,1500)
16
17
18
    plt.figure()
    for Temperature in [100,300,1000]:
19
20
        Probability = Boltzmann(energy, Temperature)
        plt.plot(Probability,energy,label='{0} K'.format(Temperature))
21
22
    legend = plt.legend()
23
24
    plt.xlabel('Energy (kJ/mol)')
^{25}
26
    plt.ylabel('Probability (mol/kJ)')
27
    # plt.title('Boltzmann distribution at various temperatures')
    plt.savefig('./Images/Boltzmann.png')
28
    RO = 8.31441 \# J/mol K
30
    mass = 28./1000. \# kg/mol
31
^{32}
    def MB1D(v,T):
        return np.sqrt(mass/(2*np.pi*R0*T))*np.exp(-(mass*v*v)/(2*R0*T))
33
34
    velocity = np.linspace(-1000,1000,1000)
35
36
    plt.figure()
    for Temperature in [100,200,300,400,500]:
37
         Probability = MB1D(velocity, Temperature)
38
39
         plt.plot(velocity,Probability,label='{} K'.format(Temperature))
40
41
    legend=plt.legend()
    plt.xlabel('Velocity (m/s)')
42
```

```
43 plt.ylabel('Probability (1/(m/s))')
44 # plt.title('Boltzmann distribution at various temperatures')
45 plt.savefig('./Images/MB1D.png')
```


Figure 3: Maxwell-Boltzmann speed distribution of N_2 gas

Figure 4: Diffusional spreading, $\sqrt{\langle x^2 \rangle} = \sqrt{2Dt}$

1.4 Lecture 3: Transport

- 1. Effusion and Graham's law, effusion rate $\propto MW^{-1/2}$
- 2. Fick's first law: net flux proportional to concentration gradient
 - (a) $j_x = -D\frac{dc}{dx}$
 - (b) Self-diffusion constant, $D = \frac{1}{3}\lambda \langle v \rangle$
- 3. Knudsen diffusion, $D = \frac{1}{3}l\langle v \rangle$
- 4. Fick's second law: time evolution of concentration gradient
 - (a) Continuity with no advection: $\frac{\partial c}{\partial t} = -\nabla \cdot \vec{j} + \mathrm{gen}$

Table 4: Kinetic theory of gases key equations

Boltzmann distribution $(g(E))$: degeneracy of E)	$P(E) = g(E)e^{-E/k_BT}$		
Maxwell-Boltzmann distribution	$P_{\text{MB}}(v) = 4\pi v^2 \left(\frac{m}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{mv^2}{2k_B T}\right)$		
Mean and RMS speeds	$\langle v \rangle = \left(\frac{8k_BT}{\pi m}\right)^{1/2} \qquad \langle v^2 \rangle^{1/2} = \left(\frac{3k_BT}{m}\right)^{1/2}$		
Pressure	$\langle P \rangle = \frac{\Delta p}{\Delta t} = m \frac{N}{V} \frac{1}{3} \langle v^2 \rangle = \frac{N k_B T}{V} = \frac{nRT}{V}$		
Wall collision frequency	$J_W = \frac{1}{4} \frac{N}{V} \langle v \rangle = \frac{P}{(2\pi m k_B T)^{1/2}}$		
Molecular collision frequency	$z = \sqrt{2}\sigma \langle v \rangle \frac{N}{V} = \frac{4\sigma P}{(\pi m k_B T)^{1/2}}$		
Total collisions	$z_{AA}=rac{1}{2}rac{N}{V}z$		
Mean free path	$\lambda = \frac{\langle v \rangle}{z} = \frac{V}{\sqrt{2}\sigma N}$		
Graham's effusion law	$\frac{dN}{dt} = \text{Area} \cdot J_w \propto 1/m^{1/2}$		
Effusion from a vessel	$P = P_0 e^{-t/\tau}, \tau = \frac{V}{A} \left(\frac{2\pi m}{k_B T}\right)^{1/2}$		
Self-diffusion constant	$D_{11} = \frac{1}{3} \langle v \rangle \lambda$		
Diffusion rate	$\langle x^2 \rangle^{1/2} = \sqrt{2Dt} \langle r^2 \rangle^{1/2} = \sqrt{6Dt}$		
Einstein-Smoluchowski equation	$D_{11} = \frac{\delta^2}{2\tau}$		
Stokes-Einstein equation for liquids	$D_{11} = \frac{k_B T}{4\pi \eta r}$ "Slip" boundary		
	$D_{\text{Brownian}} = \frac{k_B T}{6\pi \eta r}$ "Stick" boundary		

- (b) One-dimension: $\frac{dc}{dt} = D \frac{d^2c}{dx^2}$
- (c) Diffusion has Gaussian probability distribution: $c(x,t)/c_0 = [2\sqrt{\pi Dt}]^{-1} \exp(-x^2/4Dt)$
- 5. Seeing is believing—Brownian motion
 - (a) Seemingly random motion of large particles ("dust") due to "kicks" from invisible molecules
 - (b) Einstein receives Nobel Prize for showing:
 - i. Motion follows same Gaussian diffusion behavior
 - ii. From steady-state arguments in a field, diffusion constant is ratio of Boltzmann energy, k_BT , to mobility
 - iii. Mobility inversely related to viscosity
 - (c) Stokes-Einstein equation
 - (d) Allows measurement of Avogadro's number, final proof of kinetic theory
 - (e) Similar model for diffusion of liquid molecules, slip boundary
- 6. Random walk model of diffusion
 - (a) Binomial distribution
 - (b) Large N and Stirling approximation
 - (c) Einstein-Smoluchowski relation
- 2 Quantum Mechanics: Blurred Lines Between Particles and Waves
- 3 Statistical Mechanics: The Bridge from the Tiny to the Many