Практическое занятие № 2

- 1. Наименование практического занятия: Знакомство и работа с IDE PyCharm Community. Построение программ линейной структуры в IDE PyCharm Community.
- 2. Количество часов: 4
- 3. Цели практического занятия: выработка первичных навыков работы с IDE PyCharm Community, Git, GitHub, составление программ линейной структуры.

Инструкция к практическому заданию № 2

- 1. Открыть файл «Инструкция по началу работы с PyCharm Community», ознакомится с его содержимым (https://py-charm.blogspot.com/2017/09/blog-post.html).
- 2. Изучить пояснения и критерии оценивания ПЗ (см. ниже).
- 3. Для размещения репозитория на GitHub и первоначального коммита все необходимые действия выполнить совместно с преподавателем согласно инструкции, из файла «Изучение системы Git и сервиса GitHub.pdf».
- 4. Приступить к выполнению задания ПЗ согласно присвоенному номеру варианта.

Правила создания проектов на Python:

- 1. При составлении идентификаторов имен проектов, функций, переменных и пр. не использовать кириллицу.
- 2. Внутри проекта размещать файлы в директориях, директории именовать осмысленно (например, PZ_2, что значит «практическое занятие № 2»), имена файлам внутри пакета также присваивать со смыслом (например, PZ_2_1, что значит «первая задача из практического занятия №2»).

Пояснения. Код программы не должен содержать синтаксических и логических ошибок, содержать обработку исключений и комментарии, соответствовать PEP 8.

Разместить в проекте на GitHub коды, полученные на практическом занятии.

Критерии оценивания:

Оценка «5» - код программы размещен на GitHub, задача решена полностью, в соответствии с условием и пояснениями, защита работы выполнена.

Оценка «4» - код программы размещен на GitHub, задача решена полностью, с незначительными отклонениями от условий и пояснений, защита работы выполнена.

Оценка «3» - код программы размещен на GitHub, задача решена полностью, со значительными отклонениями от условий и пояснений, защита работы выполнена.

Варианты заданий

Вариант 1. Известно, что X кг конфет стоит А рублей. Определить, сколько стоит 1 кг и Y кг этих же конфет.

Вариант 2. Известно, что X кг шоколадных конфет стоит A рублей, а Y кг ирисок стоит B рублей. Определить, сколько стоит 1 кг шоколадных конфет, 1 кг ирисок, а также во сколько раз шоколадные конфеты дороже ирисок.

Вариант 3. Скорость лодки в стоячей воде V км/ч, скорость течения реки U км/ч (U < V). Время движения лодки по озеру T_1 ч, а по реке (против течения) — T_2 ч. Определить

путь S, пройденный лодкой (путь = время • скорость). Учесть, что при движении против течения скорость лодки уменьшается на величину скорости течения.

Вариант 4. Скорость первого автомобиля Vi км/ч, второго — V2 км/ч, расстояние между ними S км. Определить расстояние между ними через T часов, если автомобили удаляются друг от друга. Данное расстояние равно сумме начального расстояния и общего пути, проделанного автомобилями; общий путь = время • суммарная скорость.

Вариант 5. Скорость первого автомобиля Vi км/ч, второго — V2 км/ч, расстояние между ними S км. Определить расстояние между ними через T часов, если автомобили первоначально движутся навстречу друг другу. Данное расстояние равно модулю разности начального расстояния и общего пути, проделанного автомобилями; общий путь = время • суммарная скорость.

Вариант 6. Дано расстояние L в сантиметрах. Используя операцию деления нацело, найти количество полных метров в нем (1 метр = 100 см).

Вариант 7. Дана масса M в килограммах. Используя операцию деления нацело, найти количество полных тонн в ней (1 тонна = 1000 кг).

Вариант 8. Дан размер файла в байтах. Используя операцию деления нацело, найти количество полных килобайтов, которые занимает данный файл (1 килобайт = 1024 байта).

Вариант 9. Даны целые положительные числа A и B (A > B). На отрезке длины A размещено максимально возможное количество отрезков длины B (без наложений). Используя операцию деления нацело, найти количество отрезков B, размещенных на отрезке A.

Вариант 10. Даны целые положительные числа A и B (A > B). На отрезке длины A размещено максимально возможное количество отрезков длины B (без наложений). Используя операцию взятия остатка от деления нацело, найти длину незанятой части отрезка A.

Вариант 11. Дано двузначное число. Вывести вначале его левую цифру (десятки), а затем — его правую цифру (единицы). Для нахождения десятков использовать операцию деления нацело, для нахождения единиц — операцию взятия остатка от деления.

Вариант 12. Дано двузначное число. Найти сумму и произведение его цифр.

Вариант 13. Дано двузначное число. Вывести число, полученное при перестановке цифр исходного числа.

Вариант 14. Дано трехзначное число. Используя одну операцию деления нацело, вывести первую цифру данного числа (сотни).

Вариант 15. Дано трехзначное число. Вывести вначале его последнюю цифру (единицы), а затем — его среднюю цифру (десятки).

Вариант 16. Дано трехзначное число. Найти сумму и произведение его цифр.

Вариант 17. Дано трехзначное число. Вывести число, полученное при прочтении исходного числа справа налево.

Вариант 18. Дано трехзначное число. В нем зачеркнули первую слева цифру и приписали ее справа. Вывести

Вариант 19. Дано трехзначное число. В нем зачеркнули первую справа цифру и приписали ее слева. Вывести полученное число.

Вариант 20. Дано трехзначное число. Вывести число, полученное при перестановке цифр сотен и десятков исходного числа (например, 123 перейдет в 213).

Вариант 21. Дано трехзначное число. Вывести число, полученное при перестановке цифр десятков и единиц исходного числа (например, 123 перейдет в 132).

Вариант 22. Дано целое число, большее 999. Используя одну операцию деления нацело и одну операцию взятия остатка от деления, найти цифру, соответствующую разряду сотен в записи этого числа.

Вариант 23. Дано целое число, большее 999. Используя одну операцию деления нацело и одну операцию взятия остатка от деления, найти цифру, соответствующую разряду тысяч в записи этого числа.

Вариант 24. С начала суток прошло N секунд (N — целое). Найти количество полных минут, прошедших с начала суток.

Вариант 25. С начала суток прошло N секунд (N — целое). Найти количество полных часов, прошедших с начала суток.

Вариант 26. С начала суток прошло N секунд (N — целое). Найти количество секунд, прошедших с начала последней минуты.

Вариант 27. С начала суток прошло N секунд (N — целое). Найти количество секунд, прошедших с начала последнего часа.

Вариант 28. С начала суток прошло N секунд (N — целое). Найти количество полных минут, прошедших с начала последнего часа.

Вариант 29. Дни недели пронумерованы следующим образом: 0 — воскресенье, 1 — понедельник, 2 — вторник, ..., 6 — суббота. Дано целое число K, лежащее в диапазоне 1-365. Определить номер дня недели для K-го дня года, если известно, что в этом году 1 января было понедельником.

Вариант 30. Дни недели пронумерованы следующим образом: 0 — воскресенье, 1 — понедельник, 2 — вторник, . . . , 6 — суббота. Дано целое число K, лежащее в диапазоне 1-365. Определить номер дня недели для K-го дня года, если известно, что в этом году 1 января было четвергом.

Вариант 31. Дни недели пронумерованы следующим образом: 1 — понедельник, 2 — вторник, ..., 6 — суббота, 7 — воскресенье. Дано целое число K, лежащее в диапазоне 1-365. Определить номер дня недели для K-го дня года, если известно, что в этом году 1 января было вторником.

Вариант 32. Дни недели пронумерованы следующим образом: 1 — понедельник, 2 — вторник, ..., 6 — суббота, 7 — воскресенье. Дано целое число K, лежащее в диапазоне 1-365. Определить номер дня недели для K-го дня года, если известно, что в этом году 1 января было субботой.

Вариант 33. Дни недели пронумерованы следующим образом: 1 — понедельник, 2 — вторник, ..., 6 — суббота, 7 — воскресенье. Дано целое число K, лежащее в диапазоне 1-365, и целое число N, лежащее в диапазоне 1-7. Определить номер дня недели для K-го дня года, если известно, что в этом году 1 января было днем недели с номером N.

Вариант 34. Даны целые положительные числа A, B, C. На прямоугольнике размера A x B размещено максимально возможное количество квадратов со стороной C (без наложений). Найти количество квадратов, размещенных на прямоугольнике, а также площаль незанятой части прямоугольника.

Вариант 35. Дан номер некоторого года (целое положительное число). Определить соответствующий ему номер столетия, учитывая, что, к примеру, началом 20 столетия был 1901 год.