The More Irresistible $Hi(\mathcal{SROIQ})$ for Meta-modeling and Meta-query Answering (Supplementary File for ESWC2019)

Zhenzhen Gu¹, Cungen Cao¹, and Songmao Zhang²

Proof of Proposition 1.

Proof. (1) \mathcal{K} is v-satisfiable, so it has a v-model \mathcal{V} . By \mathcal{V} , an interpretation \mathcal{I} of $\mathsf{Dl}(\mathcal{K})$ can be constructed by setting (i) $a^{\mathcal{I}} = a^{\mathcal{V}}$ for each $a \in \mathbb{N}$; (ii) $\{o\}^{\mathcal{I}} = \{o^{\mathcal{I}}\}$ for $o \in \mathbb{N}$ and $A^{\mathcal{I}} = \mathfrak{C}^{\mathcal{V}}(\boldsymbol{v}_c^-(A))$ for $A \in \mathbb{C}$; and (iii) $P^{\mathcal{I}} = \mathfrak{R}^{\mathcal{V}}(\boldsymbol{v}_r^-(P))$ for $P \in \mathbb{R}^3$. \mathcal{V} and \mathcal{I} follow the same way to interpret class and role constructors, so it holds trivially that $(\spadesuit) \mathfrak{C}^{\mathcal{V}}(C) = \tau_c(C)^{\mathcal{I}}$ for each $\mathsf{Hi}(\mathcal{SROIQ})$ class C and $\mathfrak{R}^{\mathcal{V}}(R) = \tau_r(R)^{\mathcal{I}}$ for each $\mathsf{Hi}(\mathcal{SROIQ})$ role R. By (\spadesuit) , it holds trivially that \mathcal{I} satisfies all the axioms and assertions in $\mathsf{Dl}(\mathcal{K})$, i.e., \mathcal{I} is a model of $\mathsf{Dl}(\mathcal{K})$. So $\mathsf{Dl}(\mathcal{K})$ is satisfiable.

(2) If \mathcal{K} is not v-satisfiable then this conclusion holds trivially. Now we assume \mathcal{K} is v-satisfiable, so $\mathsf{DI}(\mathcal{K})$ is satisfiable. Let $\mathbf{u} \in \mathsf{Ans}(\mathsf{DI}(Q), \mathsf{DI}(\mathcal{K}))$. Let \mathcal{V} be an arbitrary v-model of \mathcal{K} . According to (1), a model \mathcal{I} of $\mathsf{DI}(\mathcal{K})$ can be constructed. Then there exists a binding π of $\mathsf{DI}(Q(\mathbf{u}))$ over \mathcal{I} such that $\mathcal{I}, \pi \models \mathsf{DI}(Q(\mathbf{u}))$. From π , we can construct a binding π' of $Q(\mathbf{u})$ over \mathcal{V} by setting $\pi'(x) = \pi(x)$ for each variable x in $Q(\mathbf{u})$ and $\pi'(a) = a^{\mathcal{V}}$ for each name a in $Q(\mathbf{u})$. By (\clubsuit) , it holds that $\mathcal{V}, \pi' \models_{v} Q(\mathbf{u})$. So $\mathbf{u} \in \mathsf{Ans}_{v}(Q, \mathcal{K})$ holds. Therefor $\mathsf{Ans}(\mathsf{DI}(Q), \mathsf{DI}(\mathcal{K})) \subseteq \mathsf{Ans}_{v}(Q, \mathcal{K})$ holds.

Proof of Lemma 1.

Proof. By Proposition 1, we just need to prove the (\Leftarrow) direction of (1) and the (\subseteq) direction of (2).

 $(1. \Leftarrow) \mathsf{DI}(\mathcal{K})$ is satisfiable, so it has a model \mathcal{I} . We assume that (\spadesuit) for every two different names a and b in \mathbb{N} , $a^{\mathcal{I}} \neq b^{\mathcal{I}}$ holds. If \mathcal{I} does not satisfy (\spadesuit) , then for every two different names c and d satisfying $c^{\mathcal{I}} = d^{\mathcal{I}}$, by the condition in this lemma, we can get that c or d is not used as individual in \mathcal{K} . Suppose d is not used as individual in \mathcal{K} . Let o be a new element that does not occur in $\Delta^{\mathcal{I}}$. Then add o to $\Delta^{\mathcal{I}}$ and set $d^{\mathcal{I}} = o$. Because d is not used as individual in

¹ Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China guzhenzhen0720@163.com cgcao@ict.ac.cn

² Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing, China smzhang@math.ac.cn

³ We use f^- to denote the inverse function of a bijective function f.

 \mathcal{K} , we can easily get that \mathcal{I} is still a model of $\mathsf{Dl}(\mathcal{K})$. From \mathcal{I} , we can construct a v-interpretation \mathcal{V} by setting (i) $\Delta^{\mathcal{V}} = \Delta^{\mathcal{I}}$ and (ii) $a^{\mathcal{V}} = a^{\mathcal{I}}$, $\mathfrak{C}^{\mathcal{V}}(a^{\mathcal{V}}) = v_c(a)^{\mathcal{I}}$ and $\mathfrak{R}^{\mathcal{V}}(a^{\mathcal{V}}) = v_r(a)^{\mathcal{I}}$ for each name $a \in \mathbb{N}$. By (\spadesuit) , we can get that \mathcal{V} is correctly defined, i.e., for every two different names a and b, if $a^{\mathcal{V}} = b^{\mathcal{V}}$ then $\mathfrak{C}^{\mathcal{V}}(a^{\mathcal{V}}) = \mathfrak{C}^{\mathcal{V}}(b^{\mathcal{V}})$ and $\mathfrak{R}^{\mathcal{V}}(a^{\mathcal{V}}) = \mathfrak{R}^{\mathcal{V}}(b^{\mathcal{V}})$. \mathcal{V} and \mathcal{I} take the same way to interpret class and role constructors. So (\clubsuit) $\mathfrak{C}^{\mathcal{V}}(C^{\mathcal{V}}) = \tau_c(C)^{\mathcal{I}}$ holds for each $\mathsf{Hi}(\mathcal{SROIQ})$ class C and $\mathfrak{R}^{\mathcal{V}}(R^{\mathcal{V}}) = \tau_r(R)^{\mathcal{I}}$ holds for each $\mathsf{Hi}(\mathcal{SROIQ})$ role R. Hence by (\clubsuit) , we can get that \mathcal{V} satisfies all the axioms and assertions in \mathcal{K} , i.e., \mathcal{V} is a v-model of \mathcal{K} . Thus \mathcal{K} is v-satisfiable.

 $(2. \subseteq)$ If \mathcal{K} is not v-satisfiable, this direction holds trivially. We assume \mathcal{K} is v-satisfiable, so $\mathsf{DI}(\mathcal{K})$ is satisfiable. Let $u \in \mathsf{Ans}_v(Q,\mathcal{K})$. We prove $u \in \mathsf{Ans}(\mathsf{DI}(Q),\mathsf{DI}(\mathcal{K}))$. Let \mathcal{I} be an arbitrary model of $\mathsf{DI}(\mathcal{K})$. From \mathcal{I} , using the way in $(1.\Leftarrow)$, a v-model \mathcal{V} of \mathcal{K} can be constructed. Hence, there exists a binding π of Q(u) over \mathcal{V} such that $\mathcal{V}, \pi \models_v Q(u)$. From π , we can construct a binding π of $\mathsf{DI}(Q(u))$ over \mathcal{I} by setting $\pi'(x) = \pi(x)$ for each variable x in $\mathsf{DI}(Q(u))$ and $\pi'(a) = a^{\mathcal{I}}$ for each individual a in $\mathsf{DI}(Q(u))$. By the construction of \mathcal{V} , it holds trivially that $\mathcal{I}, \pi' \models \mathsf{DI}(Q(u))$. So $u \in \mathsf{Ans}(\mathsf{DI}(Q), \mathsf{DI}(\mathcal{K}))$. This direction holds.

Proof of Theorem 3.

Proof. For a CIERF $\mathfrak E$ of $\mathcal K$, $\mathsf{Dl}([\mathcal K\mathfrak E])$ can be obtained in liner time w.r.t. the size of $\mathcal K$. Each CIERF of $\mathcal K$ is a subset of $(\mathsf{ind}(\mathcal K))^2$. Thus $\mathcal K$ has no more than $2^{|\mathsf{ind}(\mathcal K)| \times |\mathsf{ind}(\mathcal K)|}$ CIERFs. As stated in [7] (Theorem 11), satisfiability checking of a \mathcal{SROIQ} KB can be done in N2EXPTIME. Hence by Theorem 1, we can get that v-satisfiability checking in $\mathsf{Hi}(\mathcal{SROIQ})$ can be done in N2EXPTIME. On the other hand, answering CQs without non-distinguished variables over \mathcal{SROIQ} KBs can be reduced to individual assertion entailment checking which can further be reduced to KB satisfiability checking. Then by Theorem 2, we can obtain that CQ answering in $\mathsf{Hi}(\mathcal{SROIQ})$ can be done in N2EXPTIME.

Proof of Theorem 4

Proof. By Definition 7, the (\supseteq) direction holds trivially. Next, we show the (\subseteq) direction. Let $\boldsymbol{u} \in \mathsf{Ans}_v(Q,\mathcal{K})$. Let $\boldsymbol{\xi}$ be the CP-binding of Q over \mathcal{K} such that for each class (role) variable x of Q, $\boldsymbol{\xi}(x) = u[i]$ holds, where i is the position of x in $\mathsf{Hd}(Q)$. Let \mathcal{V} be an arbitrary v-model of \mathcal{K} . For \boldsymbol{u} , there exists a binding π of $Q(\boldsymbol{u})$ over \mathcal{V} such that $\mathcal{V}, \pi \models_v Q(\boldsymbol{u})$. From π , we construct a binding π' of $Q\boldsymbol{\xi}(\boldsymbol{u})$ over \mathcal{V} such that $\pi'(x) = \pi(x)$ for each variable x in $Q\boldsymbol{\xi}(\boldsymbol{u})$ and $\pi'(a) = a^{\mathcal{V}}$ for each name a in $Q\boldsymbol{\xi}(\boldsymbol{u})$. By the construction of $\boldsymbol{\xi}$, it holds trivially that $\mathcal{V}, \pi' \models_v Q\boldsymbol{\xi}(\boldsymbol{u})$. Thus $\boldsymbol{u} \in \mathsf{Ans}_v(Q\boldsymbol{\xi}, \mathcal{K})$.