LiFS: Little Human-Effort, Device-Free Localization with Fine-grained Subcarrier Information

October 5, 2016

Ju Wang, Hongbo Jiang, Jie Xiong, Kyle Jamieson, Xiaojiang Chen, Dingyi Fang, Binbin Xie

Location is the key for many applications

Academia

[RADAR'00], [Cricket'04], [Horus'05],[Beepbeep'07], [SrndSense'09], [EZ'10], [BatPhone'11], [Zee'12], [Centaur'12], [ArrayTrack'13], [Guoguo'13], [PinPoint'13], [Ubicarse'14],[Luxapose'14],[T] agoram'14],[SpotFi'15],[ToneT rack'15],[Chronos'16]...

Location is the key for many applications

Academia

[RADAR'00], [Cricket'04],

Industry

Why device-free localization?

rack'15],[Chronos'16]...

Unwilling to wear a wearable device

Elderly Care

Intruder Detection

Not possible to attach a tracking device

Limitations of Existing Work

High labor-cost/hardware-cost

Build Fingerprint Database

Offline training and updating cause high human-effort

Demand Software-Defined-Radio

Not cost-effective for large deployment

Limitations of Existing Work

High labor-cost/hardware-cost

Build Fingerprint
Database

Demand Software-Defined-Radio

Can we do better?

Our Approach: LiFS

A model-based device-free localization system implemented on commodity Wi-Fi device

Low labor cost: no labor-intensive offline training.

Low hardware cost: cheap commodity Wi-Fi device.

 High accuracy: around 1 m median accuracy for device-free passive localization.

How does LiFS Work?

Considering a Wi-Fi link

We can easily measure the signal power

The signal power decreases if a target appears

Wireless Propagation theory shows:

Power decrease is $R_{ij} = f(C_i, C_j, X)$

where C_i , C_i and X are locations of AP, client and target

Employing models to determine the target's location, avoiding offline training

The idea is straightforward!

But, does it work in reality?

Outdoors: Few Multipath

Outdoors: Few Multipath

Outdoors: Few Multipath

Target can be localized accurately with models due to few multipath.

Indoors: Rich Multipath

Multipath is the problem

Multipath is the problem

Real data does not match model values indoors due to rich multipath!

Multipath is the problem

Large errors occur if employing raw data for localization indoors!

Understand Power Decrease

Measure Power with CSI

 Traditionally, power is measured as RSS across the whole bandwidth.

What if, looking power at CSI over multiple subcarriers.

24

CSI provides more detailed information across multiple subcarriers

• What if, looking power at *CSI* over multiple subcarriers.

Understand Power Decrease

Outdoor with few multipath

Indoor with rich multipath

Understand Power Decrease

Not all subcarriers are affected equally by multipath!

Outdoor with few multipath

Indoor with rich multipath

Key Idea

Identify "clean" subcarriers not affected by multipath for localization

Outdoor with few multipath

-30 (wgp) -40 Decreased! -55 -55 5 10 15 20 25 30 Subcarrier Index

Indoor with rich multipath

Find "Clean" Subcarriers: Pre-Processing Method for CSI

Subcarriers greatly affected by multipath

CSI Pre-Processing Method Verification

- Environment: Indoor
- −TX: AP (TP-Link)
- **RX:** Laptop with Intel 5300
- -TX-RX distance: 6 meters

Filtered CSI at

30 subcarriers

Processed CSI

Thepretical value

CSI Pre-Processing Method Verification

Pre-processed CSI measurements match the theoretical values

Challenge: locations of some transceivers (e.g. mobiles) are unknown!

Unknown Transceiver Locations

$$R_{1,3} = f(C_1, C_3, X)$$

$$R_{2,4} = f(C_2, C_4, X)$$

$$C_4$$

$$C_3$$

Unknown Transceiver Locations

Consider more

$$R_{1,3} = f(C_1, C_3, X)$$
 $R_{2,4} = f(C_2, C_4, X)$
 \vdots
 $R_{N,N-1} = f(C_N, C_{N-1}, X)$

Key Observation

$$R_{1,3} = f(C_1, C_3, X)$$
 $R_{2,4} = f(C_2, C_4, X)$
 \vdots
 $R_{N,N-1} = f(C_N, C_{N-1}, X)$

N(N-1)/2 equations >> 2(N+1) unknowns

Given enough number of transceivers, all unknown locations can be estimated!

Implementation & Evaluation

Implementation

 Implemented: 11 laptops, which are equipped with Intel 5300 Wi-Fi card.

- 4 laptops act as APs and the rest are clients.
- APs and one client have known locations.
- Objective: device-free passively localize a target.

Compared Approaches

	Signal Feature	Methodology	Requirement
Pilot [1]	CSI	Kernel-based MAP	Fingerprinting
RASS [2]	RSS	SVM	Fingerprinting
RTI [3]	RSS	Maximum attenuation	Knowledge of deployment

^[1] J. Xiao, K. Wu, Y. Yi, L. Wang, and L. M. Ni. Pilot: Passive device-free indoor localization using channel state information. In Proc. IEEE International Conference on Distributed Computing Systems (ICDCS), pages 236–245, 2013.

^[2] D. Zhang, Y. Liu, X. Guo, and L. M. Ni. RASS: A real-time, accurate, and scalable system for tracking transceiver-free objects. IEEE Trans. on Parallel and Distributed Systems (**TPDS**), 24(5):996–1008, 2013.

^[3] J. Wilson and N. Patwari. See-through walls: Motion tracking using variance-based radio tomography networks. IEEE Trans. on Mobile Computing (**TMC**), 10(5):612–621, 2011.

Evaluation in Medium Multipath

Home environment: medium multipath

Home environment

Testbed floorplan

Evaluation in LoS & NLoS

 Empty classroom and Library environments, corresponding to *low* and *high* multipath

Strong LoS (9 m x 12 m)

Strong NLoS (7 m x 12 m)

Evaluation in Medium Multipath

Home environment: medium multipath

Evaluation in LoS & NLoS

 Empty classroom and Library environments, corresponding to *low* and *high* multipath

Classroom (Strong LoS)

Library (Strong NLoS)

Two-Target Localization

 Intuition: a target is not able to affect all the wireless links simultaneously.

Four snapshot localization results when two targets are 5.4 m, 3 m, 1.8 m and 0.6 m apart.

LiFS can localize each individual target accurately when they are not too close!

Conclusions

- Device-free localization is important for many applications.
- Even in a rich multipath environment, it's possible to identify "clean" subcarriers for model-based localization.
- Extensive experiments demonstrate the effectiveness of LiFS.