Week 1 Intro to Practical Econometrics

Dragos Ailoae dragos@nyu.edu

Applied Statistics and Econometrics 2 ECON GA-1102 Lab Sections 031 and 032

> New York University January 2, 2024

Today

- 1. This class
- 2. Research project
- 3. Next steps

This Class Research Project Next Steps

This Class

Lab = Enhanced Recitation

- Recitation
 - Review theory
 - Solve exercises to complement theory, homework
- Empirical work in R
 - Complement lecture
 - Research project
- Answer your questions resuscitation

Office hours

No formal office hours but available by email

- Last half hour of class for 1 on 1 discussion or research group meetings
 - by appointment or "walk in"

This Class Research Project Next Steps

Research Project

Intro: Motivation

One of the priorities of this course is to guide you into producing your own research by the end of the semester

- Great opportunity to explore a topic of interest
- Apply the econometric methods you learned
- Excellent topic of discussion for job interviews

Intro: Logistics

- Detailed in the "Project Outline" handout
- Groups of 3-5 students (ideally from same lab section)
- Important dates:

Project Requirement	Date Due
Group Signup	Feb 5
Problem Statement	Feb 26
Model Description	Apr 1
Presentation	Apr 29
Final Report	May 10

This Class
Research Project
Next Steps

Causal Inference

Research Project: Guidelines

Three ingredients of a successful research project

Academic rigor

- a) Understand and encompass the existing literature
- ы) Innovative, yet appropriate, use of data
- c) Appropriate causal inference

2. Policy relevance

- a) Tied to new facts or trends
- b) Framed in terms of policy levers
- c) Timely

3. Broadly communicated

- a) Accessible to a wide range of audiences
- b) High potential for media coverage
- c) Partnered with policy makers

Econometric research workflow

Model should be anchored in established economic theory

Avoid data mining! Put the Econ in the Econometrics

Some (broad) theoretical frameworks:

- Supply / demand
- Consumption smoothing
- Monopolistic competition

Keep your eyes open for empirical examples in your textbooks (Chiang book, Greene book)

This Class Research Project Next Steps Intro
Guidelines
Data
Causal Inference

Research Project: Data

Experimental vs. observational data

 Experimental data come from experiments designed to evaluate a treatment or policy or to investigate a causal effect

 Observational (nonexperimental) data are collected using surveys and administrative records

Experimental data: RCTs

Randomized Control Trials:

- All participants are randomly assigned into two groups.
- The control group receives no treatment (or placebo)
- The experimental group receives the treatment.
- After a follow-up period, compare the two groups

RCTs: advantages

The gold standard for causal inference

- Randomization minimizes selection bias
- Ensures that the only systematic difference between the control treatment group is the treatment itself, with the effects from other confounding factors eliminated

RCTs: disadvantages

 Cost: Called "the gold standard" because expensive (in money and time)

• **Ethics**: Especially in social science, we cannot impose some treatment due to ethic concerns

Observational data: advantage

Readily available:

Public databases

- Federal Reserve Economic Data https://fred.stlouisfed.org/
- US Census https://www.census.gov/en.html
- US Bureau of Labor Statistics https://www.bls.gov/
- US Economic Accounts https://www.bea.gov/data
- Penn World Tables https://cid.econ.ucdavis.edu/pwt.html
- IMF https://data.oecd.org/

Replication data sets

- openICPSR https://www.openicpsr.org/openicpsr/repository/
- Harvard Dataverse https://dataverse.harvard.edu/

Author personal website

Paid Haver Analytics, Bloomberg, FactSet, Markit, CapitallQ

Curated datasets

- R datasets https://vincentarelbundock.github.io/Rdatasets/articles/data.html
- Data and Story Library https://dasl.datadescription.com/datafiles/

Observational data: disadvantage 1

Observational data: disadvantage 1

Choices already baked in: Know your data collection methodology! (see Abraham Wald, survivorship bias, selection bias, truncation, censoring)

Observational data: disadvantage 2

"Treatment" is not randomly assigned so difficult to estimate causal effects

Much of econometrics dedicated to dealing with causality using observational data

Intro
Guidelines
Data
Causal Inference

Causal Inference

Measure of association: correlation coefficient

Regression

Regression

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Y = dependent variable

X = independent variable

 ε = other factors (aka "error term")

Lifespan =
$$\beta_0 + \beta_1$$
RedWineConsumption + ε

Wealth as possible confounder (wealthy people likely to drink wine but also likely to get better health care)

LungCancer =
$$\beta_0 + \beta_1$$
SmokingTobacco + ε

Ronald Fisher (a smoker himself) argued on the side of tobacco companies about possible confounders (genetics etc)

- Regression can be useful but be careful not to interpret causally
- Safer to say "X is associated with Y" or, if you want to be more specific,
 - "a one unit increase in X is associated with a β_1 increase/decrease in

Causal effect

- Causal effect the effect on an outcome of a given action or treatment as measured in an ideal RCT
- The concept of the ideal randomized controlled experiment does provide a theoretical benchmark to define causal effects in research design
- Sometimes nature helps natural experiments (quasi-experiments) provide randomization

Methods

- Difference in Differences Greene Ch. 6
- Instrumental Variables Greene Ch. 8

VS

Difference in Differences

Jon Snow ("Game of Thrones" character)

John Snow (Father of epidemiology)

Source: Wikipedia

Difference in Differences

- John Snow 1850s cholera incidence vs. water provider
- Card and Krueger (1994) – NJ, PA unemployment level vs. min wage

Difference in Differences

- Sources of randomization:
 - Local governments change policy (marijuana, pay-day loans, min. wage)
 - Jurisdictions hand down legal rulings (abortion)
 - Natural disasters (wildfires in California, hurricanes in Louisiana)
 - Firms lay off workers

Image source: Scott Cunningham, Causal Inference: The Mixtape(2020)

Instrumental Variables

Phillip G Wright's original illustration of the identification problem

FIGURE 4. PRICE-OUTPUT DATA FAIL TO REVEAL EITHER SUPPLY OR DEMAND CURVE.

Source: PG Wright, The Tariff on Animal and Vegetable Oils (1928)

Instrumental Variables

$$\ln(Q_i^{butter}) = \beta_0 + \beta_1 \ln(P_i^{butter}) + u_i$$

Source: Stock and Watson

Instrumental Variables

Using Rainfall as Instrumental Variable for Butter Supply

Source: Stock and Watson

Data
Causal Inference
Statistical Data Types
Summary

Statistical Data Types

1. Cross-sectional data

- Data on different entities for a single time period are called cross-sectional data
- The sequence of each observation number is arbitrarily assigned
- Cross-sectional data can be experimental data or observational data

person	year	income	age	sex
1	2018	50	27	M
2	2018	80	38	F

2. Time series data

- Data for a single entity collected at multiple time periods
- The sequence of each record is based on the time period it happened

person	year	income	age	sex
1	2018	50	27	M
1	2019	55	28	M
1	2020	60	29	M

- Econometrics 2:
 - Serial correlation, nonstationarity
 - Spurious correlation http://tylervigen.com/spurious-correlations
 - Vector Autoregressive models (VAR), GARCH etc.

3. Panel data

- Also called longitudinal data data for multiple entities in which each entity is observed at two or more time periods.
- Panel data are very useful for estimating causal effects

person	year	income	age	sex
1	2018	50	27	M
1	2019	55	28	M
1	2020	60	29	M
2	2018	80	38	F
2	2019	85	39	F
2	2020	90	40	F

Statistical data types visualization

Summary

- Great topic for future job interviews
- Writeup is like an empirical final exam (i.e. show you've learned the material) but packaging matters (policy relevance)
- A topical research question has legs
- Econometric model should be anchored in economic theory (careful with data mining)

TLDR

- Find a good reference paper
- Start now!

This Class Research Project Next Steps

Next Steps

Next Steps

- Start thinking about your project group sign-up due Feb 5
- I will post homework 1 early next week
- Next week: Panel data analysis with R (may help with HW)
 - Install Rstudio: https://www.datacamp.com/community/tutorials/installing-R-windows-mac-ubuntu
 - Bring laptops (fully charged, few outlets in classroom)