

Claims

1. Process for the preparation of chiral compounds of formula

wherein X represents S or O, and R represents C₁₋₆-alkyl, C₃₋₈-cycloalkyl, aryl or aralkyl, each aryl or aralkyl being optionally further substituted with one or more C₁₋₄-alkyl groups and/or halogen atoms,

which process comprises the asymmetric hydrogenation of compounds of formula

wherein X and R are as defined above,
in the presence of a transition metal complex of a chiral bidentate phosphine ligand
and, optionally, a base.

- 20
2. The process of claim 1 wherein the chiral bidentate phosphine ligand is a compound of formula

wherein R² and R³ are methyl, ethyl or isopropyl; and wherein R⁴ and R⁵ are hydrogen or R⁴ and R⁵ together form a isopropylidenedioxy group.

3. The process of claim 1, wherein the chiral bidentate phosphine ligand is a compound of
5 formula

10

IV,

and enantiomers

wherein R⁶ and R⁷ are methoxy or ethoxy or wherein R⁶ and R⁷ together form a 1,3-propylidenedioxy or a 1,4-butylidenedioxy group.

15

4. The process of claim 1, wherein the chiral bidentate phosphine ligand is selected from the group consisting of (S,S)-Me-DuPhos, (S,S)-Et-DuPhos, (S,S,S,S)-Me-KetalPhos and (S)-C4-TunaPhos.
- 20 5. The process of any one of claims 1 to 4, wherein the transition metal is Ru or Rh.
6. The process of any one of claims 1 to 5, wherein the transition metal complex of a chiral bidentate phosphine ligand comprises at least one diene, alkene or arene as stabilizing ligand.
- 25 7. The process of claim 6, wherein the transition metal complex of a chiral bidentate phosphine ligand comprises at least one stabilizing ligand selected from the group consisting of 1,5-cyclooctadiene and p-cymene.
- 30 8. The process of any one of claims 1 to 7, wherein the counterion of the transition metal complex of a chiral bidentate phosphine ligand is selected from the group consisting of Cl⁻, BF₄⁻, AsF₆⁻, SbF₆⁻ and triflate.

9. The process of any one of claims 1 to 8, wherein the catalyst is prepared by mixing a transition metal complex of the formula $[\text{Rh}(\text{cod})_2]^+\text{BF}_4^-$ with a chiral bidentate phosphine selected from the group consisting of (S,S)-Me-DuPhos, (S,S)-Et-DuPhos and (S,S,S,S)-Me-KetalPhos.

5

10. The process of any one of claims 1 to 9, wherein the base is a hydroxide, methanolate or ethanolate of lithium, sodium or potassium or a mixture of said bases.
11. The process of any of claims 1 to 10, wherein the hydrogen pressure during the reaction
10 is in the range of 1 to 60 bar and more particularly preferred in the range of 10 to 30 bar.

12. Compounds of formula

15

20

and its addition salts of proton acids, wherein X represents S or O, and R represent C₁₋₆-alkyl, C₃₋₈-cycloalkyl or benzyl with the exception of compounds wherein X is S and R is methyl.