

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- ✓ • BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

20

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
18. Juli 2002 (18.07.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/055693 A2

(51) Internationale Patentklassifikation⁷: C12N 15/11

LIMMER, Stephan [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE); ROST, Sylvia [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE). HADWIGER, Philipp [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE).

(21) Internationales Aktenzeichen: PCT/EP02/00152

(74) Anwalt: GASSNER, Wolfgang; Nägelsbachstrasse 49a, 91052 Erlangen (DE).

(22) Internationales Anmeldedatum:
9. Januar 2002 (09.01.2002)

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(25) Einreichungssprache: Deutsch

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH,

(26) Veröffentlichungssprache: Deutsch

GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(30) Angaben zur Priorität:

101 00 586.5 9. Januar 2001 (09.01.2001) DE
101 55 280.7 26. Oktober 2001 (26.10.2001) DE
101 58 411.3 29. November 2001 (29.11.2001) DE
101 60 151.4 7. Dezember 2001 (07.12.2001) DE

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR INHIBITING THE EXPRESSION OF A TARGET GENE

(54) Bezeichnung: VERFAHREN ZUR HEMMUNG DER EXPRESSION EINER ZIELGENS

(57) Abstract: The invention relates to a method for inhibiting the expression of a target gene in a cell, comprising the following steps: introduction of an amount of at least one dual-stranded ribonucleic acid (dsRNA I) which is sufficient to inhibit the expression of the target gene. The dsRNA I has a dual-stranded structure formed by a maximum of 49 successive nucleotide pairs. One strand (as1) or at least one section of the one strand (as1) of the dual-stranded structure is complementary to the sense strand of the target gene. The dsRNA has an overhang on the end (E1) of dsRNA I formed by 1 - 4 nucleotides.

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte: Einführen mindestens einer doppelstängigen Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge, wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Sinn-Strang des Zielgens ist, und wobei die dsRNA am einen Ende (E1) der dsRNA I einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

WO 02/055693 A2

Veröffentlicht:

- ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Verfahren zur Hemmung der Expression eines Zielgens

Die Erfindung betrifft ein Verfahren, eine Verwendung und ein Medikament zur Hemmung der Expression eines Zielgens.

5

Aus der WO 99/32619 sowie der WO 00/44895 sind Verfahren zur Hemmung der Expression von medizinisch oder biotechnologisch interessanten Genen mit Hilfe einer doppelsträngigen Ribonukleinsäure (dsRNA) bekannt. Die bekannten Verfahren sind zwar 10 hoch effektiv. Es besteht gleichwohl das Bedürfnis, deren Effizienz weiter zu steigern.

Aufgabe der vorliegenden Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es sollen insbesondere 15 ein Verfahren, eine Verwendung und ein Medikament angegeben werden, mit denen eine noch effizientere Hemmung der Expression eines Zielgens erreichbar ist.

Diese Aufgabe wird durch die Merkmale der Ansprüche 1, 41 und 20 81 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 40, 42 bis 80 und 82 bis 120.

Mit den erfindungsgemäß beanspruchten Merkmalen wird überraschenderweise eine drastische Erhöhung der Effektivität der 25 Hemmung der Expression eines Zielgens *in vitro* und *in vivo* erreicht. Durch die besondere Ausbildung der Enden der dsRNA kann sowohl deren Effizienz bei der Vermittlung der hemmenden Wirkung auf die Expression eines Zielgens als auch deren Stabilität gezielt beeinflusst werden. Durch die Vergößerung der 30 Stabilität wird die wirksame Konzentration in der Zelle erhöht.

Unter einem "Zielgen" im Sinne der Erfindung wird der DNA-Strang der doppelsträngigen DNA in der Zelle verstanden, welcher kopolmentär zu einem bei der Transkription als Matritze dienenden DNA-Strang einschließlich aller transkribierten Be-

reiche ist. Bei dem "Zielgen" handelt es sich also im allgemeinen um den Sinnstrang. Der eine Strang bzw. Antisinnstrang (as1) kann komplementär zu einem bei der Expression des Zielgens gebildeten RNA-Transkript oder deren Prozessierungsprodukt, z.B. eine mRNA, sein. Unter "Einführen" wird die Aufnahme in die Zelle verstanden. Die Aufnahme kann durch die Zelle selbst erfolgen; sie kann auch durch Hilfsstoffe oder Hilfsmittel vermittelt werden. Unter einem "Überhang" wird ein endständiger einzelsträngiger Überstand verstanden, welcher nicht nach Watson & Crick gepaarte Nukleotide aufweist. Unter einer "doppelsträngigen Struktur" wird eine Struktur verstanden, bei der die Nukleotide der Einzelstränge im Wesentlichen nach Watson & Crick gepaart sind. Im Rahmen der vorliegenden Erfindung kann eine doppelsträngige Struktur auch einzelne Fehlpaarungen ("Mismatches") aufweisen.

Nach einer besonderen vorteilhaften Ausgestaltung weist die dsRNA I den Überhang am 3'-Ende des einen Strangs bzw. Antisinnstrangs as1 und/oder am 3'-Ende des anderen Strangs bzw. Sinnstrang ss1 auf. Die dsRNA I kann auch an einem Ende glatt ausgebildet sein. In diesem Fall befindet sich das glatte Ende vorteilhaftweise auf der Seite der dsRNA I, die das 5'-Ende des einen Strangs (Antsinnstrang; as1). In dieser Ausbildung zeigt die dsRNA I einerseits eine sehr gute Effektivität und andererseits eine hohe Stabilität im lebenden Organismus. Die Effektivität insgesamt *in vivo* ist hervorragend. Der Überhang ist zweckmäßigerweise aus 1 bis 4 Nukleotiden, vorzugsweise aus 1 oder 2 Nukleotiden, gebildet.

Nach einem weiteren Ausgestaltungsmerkmal kann die Effektivität des Verfahrens weiter erhöht werden, wenn zumindest eine entsprechend der erfindungsgemäßen dsRNA I ausgebildete weitere dsRNA II in die Zelle eingeführt wird, wobei der eine Strang oder zumindest ein Abschnitt des einen Strangs der doppelsträngigen Struktur der dsRNA I komplementär zu einem ersten Bereich des Sinnstrangs des Zielgens ist, und wobei

ein weiterer Strang oder zumindest ein Abschnitt des weiteren Strangs der doppelsträngigen Struktur der weiteren dsRNA II komplementär zu einem zweiten Bereich des Sinnstrangs des Zielgens ist. Die Hemmung der Expression des Zielgens ist in 5 diesem Fall deutlich gesteigert. Der erste und der zweite Bereich können abschnittsweise überlappen, aneinander grenzen oder auch voneinander beabstandet sein.

Es hat sich weiter als vorteilhaft erwiesen, wenn die dsRNA I 10 und/oder die weitere dsRNA II eine Länge von weniger als 25 aufeinander folgenden Nukleotidpaaren aufweisen. Als besonders effektiv hat sich eine Länge im Bereich zwischen 19 und 23 Nukleotidpaaren erwiesen. Die Effizienz kann weiter gesteigert werden, wenn an den vorzugsweise aus 19 bis 23 Nu- 15 kleotidpaaren gebildeten Doppelsträngen einzelsträngige Überhänge von 1 bis 4 Nukleotiden vorhanden sind.

Das Zielgen kann nach einem weiteren Ausgestaltungsmerkmal 20 eine der in dem anhängenden Sequenzprotokoll wiedergegebenen Sequenzen SQ001 bis SQ140 aufweisen. Es kann auch aus der folgenden Gruppe ausgewählt sein: Onkogen, Cytokin-Gen, Id-Protein-Gen, Prionen, Gene zur Expression von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie Apoptose- und Zellzyklus-regulierende Molekülen sowie Gene zur Expression des EGF-Rezeptors. Beim Zielgen kann es sich insbesondere um das MDR1-Gen handeln. Es kann in diesem Zusammenhang eine der Sequenzen SQ141 - 173 bestehende bzw. ein aus jeweils zusammengehörenden Antisinn (as)- und Sinnsequenzen (ss) kombinierte 25 30 dsRNA I/II verwendet werden.

Nach einem weiteren vorteilhaften Ausgestaltungsmerkmal wird 35 die Expression nach dem Prinzip der RNA-Interferenz gehemmt.

Das Zielgen wird zweckmäßigerweise in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert. Es kann Bestandteil eines Virus oder Viroids, insbesondere eines humanpathogenen Virus oder Viroids, sein. Das Virus oder Viroid kann auch ein 5 tier- oder pflanzenpathogenes Virus oder Viroid sein.

Nach einem weiteren Ausgestaltungsmerkmal ist vorgesehen, dass die ungepaarten Nukleotide durch Nukleosidthiophosphate substituiert sind.

10

Zumindest ein Ende der dsRNA I/II kann modifiziert werden, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken. Vorteilhafterweise wird dazu der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt 15 der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht. Die chemische Verknüpfung kann durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet werden. Es hat sich weiter als 20 zweckmäßig und die Stabilität erhöhend erwiesen, wenn die chemische Verknüpfung in der Nähe des einen Endes gebildet ist. Weitere vorteilhafte Ausgestaltungen hinsichtlich der chemischen Verknüpfung können den Merkmalen der Ansprüche 24 bis 30 entnommen werden, ohne dass es dafür einer näheren Erläuterung bedarf.

Die dsRNA I/II kann dann besonders einfach in die Zelle eingeschleust werden, wenn sie in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird. Zum Transport der dsRNA I/II in die Zelle hat es sich auch als vorteilhaft erwiesen, dass diese an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben werden. Das Hüllprotein kann vom Polyomavirus abgeleitet sein. Das Hüllprotein kann insbesondere das Virus-Protein 30 35

1 und/oder das Virus-Protein 2 des Polyomavirus enthalten.
Nach einer weiteren Ausgestaltung ist vorgesehen, dass bei
Bildung eines Kapsids oder kapsidartigen Gebildes aus dem
Hüllprotein die eine Seite zum Inneren des Kapsids oder kap-
5 sidartigen Gebildes gewandt ist. Ferner ist es von Vorteil,
dass der eine Strang der dsRNA I/II (as1/2) zum primären oder
prozessierten RNA-Transkript des Zielgens komplementär ist.
Die Zelle kann eine Vertebratenzelle oder eine menschliche
Zelle sein.

10

Weiterhin hat es sich gezeigt, dass die dsRNA I/II vorteil-
hafterweise bereits in einer Menge von höchstens 5 mg/kg Kör-
pergewicht pro Tag einem Säugetier, vorzugsweise einem Men-
schen, verabreicht werden kann. Bereits in dieser geringen
15 Dosis wird eine ausgezeichnete Effektivität erzielt.

Überraschenderweise hat sich gezeigt, dass die dsRNA I/II zur
Applikation in eine Pufferlösung aufgenommen und dann oral
oder mittels Injektion oder Infusion intravenös, intratumo-
ral, inhalativ, intraperitoneal verabreicht werden kann.
20

Erfindungsgemäß ist weiterhin die Verwendung einer doppel-
strängigen Ribonukleinsäure (dsRNA I) zur Hemmung der Express-
sion eines Zielgens in einer Zelle vorgesehen, wobei die
25 dsRNA I eine doppelsträngige aus höchstens 49 aufeinander
folgenden Nukleotidpaaren gebildete Struktur aufweist, und
wobei ein Strang (Antisinnstrang; as1) oder zumindest ein Ab-
schnitt des einen Strangs (as1) der doppelsträngigen Struktur
komplementär zum Sinnstrang des Zielgens ist, und wobei die
30 dsRNA I zumindest an einem Ende einen aus 1 bis 4 Nukleotiden
gebildeten Überhang aufweist.

Nach weiterer Maßgabe der Erfindung ist ein Medikament zur
Hemmung der Expression eines Zielgens in einer Zelle vorgese-
35 hen, enthaltend eine doppelsträngige Ribonukleinsäure (dsRNA
I) in einer zur Hemmung der Expression des Zielgens ausrei-

chenden Menge, wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur 5 komplementär zum Sinnstrang des Zielgens ist, und wobei die dsRNA I zumindest an einem Ende einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

Wegen der weiteren vorteilhaften Ausgestaltung der dsRNA I/II 10 wird auf die vorangegangenen Ausführungen verwiesen.

Die Erfindung wird nachfolgend anhand der Zeichnungen und Ausführungsbeispiele beispielhaft erläutert. Es zeigen:

15 Fig. 1a, b schematisch eine erste und zweite doppelsträngige RNA und

Fig. 2 schematisch ein Zielgen,

20 Fig. 3 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in NIH/3T3-Zellen (erstes Experiment),

25 Fig. 4 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in NIH/3T3-Zellen (zweites Experiment),

30 Fig. 5 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in NIH/3T3-Zellen (drittes Experiment),

Fig. 6 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in NIH/3T3-Zellen (viertes Experiment),

- Fig. 7 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in HeLa-S3-Zellen (fünftes Experiment),
- 5 Fig. 8 fluoreszenzmikroskopische Aufnahmen von NIH/3T3-Zellen nach Transfektion mit pcDNA-YFP bzw nach Kotransfektion mit pcDNA-YFP und verschiedenen dsRNAs,
- 10 Fig. 9 fluoreszenzmikroskopische Aufnahmen von HeLa-S3-Zellen nach Transfektion mit pcDNA-YFP bzw. nach Kotransfektion mit pcDNA-YFP und verschiedenen dsRNAs,
- 15 Fig. 10 gelelektrophoretische Auftrennung von S1 nach Inkubation in Maus-Serum,
- Fig. 11 gelelektrophoretische Auftrennung von S1 nach Inkubation in humanem Serum,
- 20 Fig. 12 gelelektrophoretische Auftrennung von S7 nach Inkubation in Maus-Serum,
- Fig. 13 gelelektrophoretische Auftrennung von S7 nach Inkubation in humanem Serum,
- 25 Fig. 14 gelelektrophoretische Auftrennung von K3 nach Inkubation in Maus-Serum,
- 30 Fig. 15 gelelektrophoretische Auftrennung von PKC1/2 nach Inkubation in Maus-Serum,
- Fig. 16 gelelektrophoretische Auftrennung von S1A/S4B nach Inkubation in humanem Serum,

- Fig. 17 gelelektrophoretische Auftrennung von K2 nach Inkubation in humanem Serum und
- Fig. 18 5 GFP-spezifische Immunoperoxidase-Färbung an Nieren-Paraffinschnitten transgener GFP-Mäuse,
- Fig. 19 10 GFP-spezifische Immunoperoxidase-Färbung an Herz-Paraffinschnitten transgener GFP-Mäuse,
- Fig. 20 15 GFP-spezifische Immunoperoxidase-Färbung an Pankreas-Paraffinschnitten transgener GFP-Mäuse,
- Fig. 21 20 Western-Blot-Analyse der GFP-Expression im Plasma,
- Fig. 22 25 Western-Blot-Analyse der GFP-Expression in der Niere,
- Fig. 23 30 Western-Blot-Analyse der GFP-Expression im Herz,
- Fgi. 24 35 Western-Blot-Analyse der EGFR-Expression in U-87 MG Glioblastom-Zellen,
- Fig. 25a Northern-Blot-Analyse des MDRI mRNA-Niveaus in der Kolonkarzinom-Zelllinie LS174T, wobei die Zellen nach 74 Stunden geerntet wurden,
- Fig. 25b 40 Quantifizierung der Banden nach Fig. 25a, wobei die Mittelwerte aus zwei Werten dargestellt sind,
- Fig. 26a 45 Northern-Blot-Analyse des MDRI mRNA-Niveaus in der Kolonkarzinom-Zelllinie LS174T, wobei die Zellen nach 48 Stunden geerntet wurden,

Fig. 26b Quantifizierung der Banden nach Fig. 26a, wo-
bei die Mittelwerte aus zwei Werten darge-
stellt sind,

5

Fig. 27 vergleichende Darstellung einer durchlicht-
und fluoreszenzmikroskopischen Aufnahme einer
Transfektion mit 175 nM dsRNA (Sequenz R1 in
Tabelle 4).

10

Die in den Fig. 1a und 1b schematisch gezeigten doppelsträn-
gigen Ribonukleinsäuren dsRNA I und dsRNA II weisen jeweils
ein erstes Ende E1 und ein zweites Ende E2 auf. Die erste und
die zweite Ribonukleinsäure dsRNA I/dsRNAlI weisen an ihren
15 beiden Enden E1 und E2 einzelsträngige, aus etwa 1 bis 4 un-
gepaarten Nukleotiden gebildete Abschnitte auf. Es sind zwei
mögliche Varianten dargestellt (Variante 1 und 2), wobei Va-
riante 2 ein glattes Ende (E2) aufweist. Das glatte Ende kann
jedoch auch in einer weiteren Variante am anderen Ende (E1)
20 liegen.

In Fig. 2 ist schematisch ein auf einer DNA befindliches
Zielgen gezeigt. Das Zielgen ist durch einen schwarzen Balken
kenntlich gemacht. Es weist einen ersten Bereich B1 und einen
25 zweiten Bereich B2 auf.

Jeweils der eine Strang der ersten dsRNA I (as1) bzw. der
zweiten dsRNA II (as2) ist komplementär zum entsprechenden
Bereich B1 bzw. B2 auf dem Zielgen.

30

Die Expression des Zielgens wird dann besonders wirkungsvoll
gehemmt, wenn die dsRNA I/dsRNA II an ihren Enden E1, E2 ein-
zelsträngige Abschnitte aufweist. Die einzelsträngigen Ab-
schnitte können sowohl am Strang as1 oder as2 als auch am Ge-
35 genstrang (ss1 bzw. ss2) oder am Strang as1, as2 und am Ge-
genstrang ausgebildet sein.

Die Bereiche B1 und B2 können, wie in Fig. 2 gezeigt, von einander beabstandet sein. Sie können aber auch aneinander grenzen oder überlappen.

5

I. Hemmung der Expression des YFP-Gens in Fibroblasten:

Es wurden aus Sequenzen des Yellow Fluorescent Proteine (YFP), einer Variante des GFP (Grün-fluoreszierendes Protein) der Alge *Aequoria victoria* abgeleitete doppelsträngige RNAs (dsRNAs) hergestellt und zusammen mit einem YFP-kodierenden Plasmid in Fibroblasten mikroinjiziert. Anschließend wurde die Fluoreszenzabnahme gegenüber Zellen ohne dsRNA ausgewertet.

15 Versuchsprotokoll:

Mittels eines RNA-Synthesizer (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen SQ148, 149 und SQ159 ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Anschließend erfolgte die Reinigung mit Hilfe der HPLC. Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Erhitzen des stöchiometrischen Gemisches der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 90°C und nachfolgendes langsames Abkühlen über 6 Stunden auf Raumtemperatur. Die so erhaltenen dsRNAs wurden in die Testzellen mikroinjiziert.

Als Testsystem für diese Zellkultur-Experimente diente die murine Fibroblasten-Zelllinie NIH/3T3, ECACC No. 93061524 (European Collection of Animal Cell Culture). Für die Mikroinjektionen wurde das Plasmid pcDNA-YFP verwendet, das ein 800bp großes Bam HI/Eco RI-YFP-Fragment in den entsprechenden Restriktionsschnittstellen des Vectors pcDNA3 enthält. Die Expression des YFP wurde unter dem Einfluß gleichzeitig mittransfizierter sequenzhomologer dsRNA untersucht. Die Auswer-

tung unter dem Fluoreszenzmikroskop erfolgte frühestens 3 Stunden nach Injektion anhand der grünen Fluoreszenz.

Vorbereitung der Zellkulturen:

5 Die Kultivierung der Zellen erfolgte in DMEM mit 4,5 g/l Glu-
cose, 10 % fötalem Kälberserum (FCS), 2 mM L-Glutamin, Peni-
cillin/Streptomycin (100 IE/100 µg/ml, Biochrom) im Brut-
schränke unter 5 % CO₂-Atmosphäre bei 37°C. Die Zellen wurden
alle 3 Tage passagiert, um sie in der exponentiellen Wachs-
10 tumsphase zu halten. Einen Tag vor der Durchführung der
Transfektion wurden die Zellen trypsinisiert (10x Tryp-
sin/TEDTA, Biochrom) und mit einer Zelldichte von 0,3 x 10⁵
Zellen in beschichteten Petrischalen (CORNING® Cell Culture
Dish, 35 mm, Corning Inc., Corning, USA) ausgesät. Die Petri-
15 schalen wurden mit 0,2 % Gelatine (Biochrom) für mindestens
30 Minuten bei 37°C inkubiert, einmal mit PBS gewaschen und
sofort für die Aussaat der Zellen verwendet. Um ein Wieder-
finden individueller Zellen zu ermöglichen, wurden CELLocate
Coverslips der Fa. Eppendorf (Square size 55 µm) verwendet.
20

Mikroinjektion:

Zur Durchführung der Mikroinjektion wurden die Petrischalen ca. 10 Minuten aus dem Brutschrank genommen. Pro Schale und Ansatz wurden ca. 50 Zellen mikroinjiziert (FemtoJet; Mikro-
25 manipulator 5171, Eppendorf). Für die Mikroinjektion wurden Glaskapillaren (FemtoTip) der Firma Eppendorf mit einem Spitzendurchmesser von 0,5 µm verwendet. Die Injektionsdauer betrug 0,8 Sekunden und der Druck 30 hPa. Durchgeführt wurden die Mikroinjektionen an einem Olympus IX50 Mikroskop mit
30 Fluoreszenzeinrichtung. Als Injektionspuffer wurde 14 mM NaCl, 3 mM KCl, 10 mM KH₂PO₄, pH 7,0 verwendet, der 0,01 µg/µl pcDNA-YFP enthielt. Zur Überprüfung einer erfolgreichen
Mikroinjektion wurde der Injektionslösung jeweils 0,08% (w/v)
an Dextran-70000 gekoppeltes Texas-Rot (Molecular Probes,
35 Leiden, Niederlande) zugesetzt. Um die Inhibition der YFP-Expression mit spezifischer dsRNA zu untersuchen, wurden der

Injektionslösung dsRNAs zugegeben: Ansatz 1: 0,1 µM dsRNA (Sequenzprotokoll SQ148/149); Ansatz 2: 0,1 µM dsRNA (Sequenzprotokoll SQ148/159); Ansatz 3: ohne RNA. Nach der Mikroinjektion wurden die Zellen für mindestens drei weitere 5 Stunden im Brutschrank inkubiert. Danach wurden die intrazelluläre YFP-Fluoreszenz am Mikroskop ausgewertet: gleichzeitig rot und grün-fluoreszierende Zellen: Mikroinjektion war erfolgreich, es wird keine Inhibition der YFP-Expression durch dsRNA beobachtet; bzw. es handelt sich um 10 Kontrollzellen, in die keine dsRNA injiziert wurde; nur rot-fluoreszierende Zellen: Mikroinjektion war erfolgreich, die dsRNA inhibiert YFP-Expression.

Ergebnisse:

15 Bei einer dsRNA-Konzentration von 0,1 µM konnte beim Einsatz der dsRNA mit den an beiden 3'-Enden um je zwei Nukleotide überstehenden Einzelstrangbereichen (Sequenzprotokoll SQ148/159) eine merklich erhöhte Hemmung der Expression des YFP-Gens in Fibroblasten beobachtet werden im Vergleich zur 20 dsRNA ohne überstehende Einzelstrangenden (Tabelle 1).

Die Verwendung von kurzen, 19-25 Basenpaare enthaltenden, 25 dsRNA-Molekülen mit Überhängen aus wenigen, vorzugsweise 1 bis 3 nicht-basengepaarten, einzelsträngigen Nukleotiden ermöglicht somit eine vergleichsweise stärkere Hemmung der Genexpression in Säugerzellen als die Verwendung von dsRNAs mit derselben Anzahl von Basenpaaren ohne die entsprechenden Einzelstrangüberhänge bei jeweils gleichen RNA-Konzentrationen.

Ansatz	Name	Sequenzprotokoll-Nr.	0.1 µM
1	S1A/ S1B	SQ148 SQ149	+
2	S1A/ S4B	SQ148 (überstehende Enden) SQ159	+++
3		ohne RNA	-

Tabelle 1: Die Symbole geben den relativen Anteil an nicht oder schwach grün-fluoreszierenden Zellen an (+++ > 90%; ++ 60-90%; + 30-60%; - < 10%).

5

II. Hemmung der Genexpression eines Zielgens in kultivierten HELA-S3-Zellen und Mausfibroblasten durch dsRNA:

- 10 Die Effektivität der Inhibition der YFP-Expression nach transienter Transfektion eines YFP-codierenden Plasmids auf der Basis der RNA-Interferenz mit dsRNAs lässt sich durch Gestaltung der 3'-Enden und der Länge des basengepaarten Bereichs modulieren.

15

Ausführungsbeispiel:

- Zum Wirksamkeitsnachweis der dsRNA bei der spezifischen Inhibition der Genexpression wurden transient transfizierte
 20 NIH/3T3-Zellen (Fibroblasten aus NIH Swiss Mausembryo, ECCAC (European collection of animal cell culture) Nr. 93061524) und HELA-S3 (humane cervikale Karzinomzellen, DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen) Nr. ACC 161) verwendet. Für die Transfektion wurde das Plasmid pcDNA-YFP
 25 verwendet, das ein 800 bp großes Bam HI /Eco RI-YFP-Fragment in den entsprechenden Schnittstellen des Vektors pcDNA3 enthält. Aus der Sequenz des gelb-fluoreszierenden Proteins (YFP) abgeleitete doppelsträngige RNAs (dsRNAs) wurden herge-

stellt und zusammen mit dem Plasmid pcDNA-YFP transient in die Fibroblasten transfiziert (Die verwendeten spezifischen dsRNAs sind in ihren Antisinn-Strängen komplementär zu entsprechenden Abschnitten der Gensequenzen von sowohl YFP als 5 auch GFP). Nach 48 Stunden wurde die Fluoreszenzabnahme quantifiziert. Als Kontrollen fungierten Zellen, die entweder nur mit pcDNA-YFP oder mit pcDNA-YFP und einer Kontroll-dsRNA (nicht aus der YFP-Sequenz abgeleitet) transfiziert wurden.

10 Versuchsprotokoll:

dsRNA-Synthese:

Mittels eines RNA-Synthesizers (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Anschließend erfolgte die Reinigung der rohen Syntheseprodukte mit Hilfe der HPLC. Verwendet wurde die Säule NucleoPac PA-100, 9x250 mm, der Fa. Dionex; 15 als Niedersalz-Puffer 20 mM Tris, 10 mM NaClO₄, pH 6,8, 10% Acetonitril und als Hochsalz-Puffer 20 mM Tris, 400 mM NaClO₄, pH 6,8, 10% Acetonitril. Der Fluß betrug 3 ml/ Minute. Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Erhitzen des stöchiometrischen Gemisches der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 80-90°C und nachfolgendes langsames Abkühlen über 25 6 Stunden auf Raumtemperatur.

Aussaat der Zellen:

30 Alle Zellkulturarbeiten wurden unter sterilen Bedingungen in einer entsprechenden Werkbank (HS18, Hera Safe, Kendro, Heraeus) durchgeführt. Die Kultivierung der NIH/3T3-Zellen und der HELA-S3 erfolgte im Brutschrank (CO₂-Inkubator T20, Hera cell, Kendro, Heraeus) bei 37°C, 5% CO₂ und gesättigter

Luftfeuchtigkeit in DMEM (Dulbecco's modified eagle medium, Biochrom), für die Mausfibroblasten, und Ham's F12 für die HELA-Zellen mit 10% FCS (fetal calf serum, Biochrom), 2 mM L-Glutamin (Biochrom) und Penicillin/Streptomycin (100 IE/100 µg/ml, Biochrom). Um die Zellen in der exponentiellen Wachstumsphase zu halten, wurden die Zellen alle 3 Tage passiert. 24 Stunden vor der Durchführung der Transfektion wurden die Zellen trypsinisiert (10x Trypsin/EDTA, Biochrom, Deutschland) und mit einer Zelldichte von $1,0 \times 10^4$ Zellen/Vertiefung in einer 96-Loch-Platte (Multiwell Schalen 96-Well Flachboden, Labor Schubert & Weiss GmbH) in 150 µl Wachstumsmedium ausgesät.

15

Durchführung der transienten Transfektion:

Die Transfektion wurde mit Lipofectamine Plus™ Reagent (Life Technologies) gemäß den Angaben des Herstellers durchgeführt. Pro Well wurden 0,15 µg pcDNA-YFP-Plasmid eingesetzt. Das Gesamt-Transfektionsvolumen betrug 60 µl. Es wurden jeweils 3-fach-Proben angesetzt. Die Plasmid-DNA wurde zuerst zusammen mit der dsRNA komplexiert. Dazu wurde die Plasmid-DNA und die dsRNA in serumfreiem Medium verdünnt und pro 0,1 µg Plasmid-DNA 1 µl PLUS Reagent eingesetzt (in einem Volumen von 10 µl) und nach dem Mischen für 15 Minuten bei Raumtemperatur inkubiert. Während der Inkubation wurde pro 0,1 µg Plasmid-DNA 0,5 µl Lipofectamine in insgesamt 10 µl serumfreiem Medium verdünnt, gut gemischt, zu dem Plasmid/dsRNA/PLUS-Gemisch zugegeben und nochmals 15 Minuten inkubiert. Während der Inkubation wurde ein Mediumwechsel durchgeführt. Die Zellen wurden dazu 1 x mit 200 µl serumfreiem Medium gewaschen und danach mit 40 µl serumfreiem Medium bis zur Zugabe von DNA/dsRNA/PLUS/Lipofectamine weiter im Brutschrank inkubiert. Nach der Zugabe von 20 µl DNA/dsRNA/PLUS/Lipofectamine pro

Well wurden die Zellen für 2,5 Stunden im Brutschrank inkubiert. Anschließend wurden die Zellen nach der Inkubation 1 x mit 200 µl Wachstumsmedium gewaschen und für 24 Stunden bis zur Detektion der Fluoreszenz in 200 µl Wachstumsmedium im
5 Brutschrank inkubiert.

Detection der Fluoreszenz:

24 Stunden nach dem letzten Mediumwechsel wurde die Fluoreszenz der Zellen am Fluoreszenz-Mikroskop (IX50-S8F2, Fluoreszenz-Einheit U-ULS100Hg, Brenner U-RFL-T200, Olympus) mit einer USH-I02D-Quecksilber-Lampe (USHIO Inc., Tokyo, Japan), ausgestattet mit einem WIB-Fluoreszenz-Würfel und einer digitalen CCD-Kamera (Orca IIIm, Hamamatsu) und C4742-95 Kamera-Controller) photographiert. Die Auswertung der Fluoreszenzaufnahmen erfolgte mit der analysis-Software 3.1 (Soft Imaging System GmbH, Deutschland). Um die YFP-Fluoreszenz in Relation zur Zelldichte zu setzen, wurde eine Zellkernfärbung (Hoechst-Staining) durchgeführt. Dazu wurden die Zellen in 100 µl Methylcarnoy (75% Methanol, 25% Eisessig) zuerst für 5 und danach nochmals für 10 Minuten in Methylcarnoy fixiert.
20 Nach dem Lufttrocknen wurden die fixierten Zellen für 30 Minuten im Dunkeln mit 100 µl pro Well Hoechst-Farbstoff (75 ng/ml) inkubiert. Nach 2maligem Waschen mit PBS (PBS Dulbecco w/o Ca²⁺, Mg²⁺, Biochrom) wurden die Hoechst-gefärbten Zellen unter dem Fluoreszenz-Mikroskop (Olympus, WU-Fluoreszenz-Würfel für Hoechst) photographiert.

In den Fig. 3 bis 9 sind die Ergebnisse zur Inhibition der YFP-Expression durch dsRNA in kultivierten Zellen zusammengefasst:

30

In Fig. 3, 4, 5 und 6 sind die Effekte von YFP-spezifischen dsRNAs und von Kontroll-dsRNAs auf die YFP-Expression in NIH/3T3-Mausfibroblasten nach transienter Transfektion zusammengefasst. Die Experimente wurden wie im Versuchsprotokoll

beschrieben durchgeführt. Die Konzentration der dsRNA bezieht sich auf die Konzentration im Medium während der Transfektionsreaktion. Die Bezeichnungen für die dsRNAs sind der Tabelle 2 zu entnehmen. Dargestellt ist die relative Fluoreszenz 5 pro Bildausschnitt in Flächenprozent. Pro Well wurden 3 verschiedene Bildausschnitte ausgewertet. Die Mittelwerte ergeben sich aus den 3-fach-Ansätzen.

In den Fig. 7 und 9 ist die spezifische Inhibition der YFP-Genexpression durch dsRNAs in HELA-S3-Zellen dargestellt.

10 In Fig. 7 ist die hemmende Wirkung unterschiedlich gestalteter dsRNA-Konstrukte (Tabelle 2) in verschiedenen Konzentrationen auf die Expression von YFP in HeLa-Zellen dargestellt. Fig. 8 zeigt repräsentative fluoreszenzmikroskopische Aufnahmen von transient mit YFP transfizierten NIH/3T3-Mausfibroblasten ohne dsRNA und mit spezifisch gegen YFP gerichteten dsRNAs (x 100 Vergrößerung).

15 8A: YFP-Kontrolle

8B: S1, 10 nM

8C: S4, 10 nM

20 8D: S7, 10 nM

8E: S7/S11, 1 nM

8F: S7/S12, 1 nM

Fig. 9 zeigt repräsentative fluoreszenzmikroskopische Aufnahmen von transient mit YFP transfizierten HELA-3S-Zellen ohne dsRNA und mit spezifisch gegen YFP gerichteten dsRNAs (x 100 Vergrößerung).

25 9A: K2-Kontrolle, 10 nM

9B: S1, 10 nM

30 9C: S4, 10 nM

9D: S7, 10 nM

9E: S7/11, 1 nM

9F: S7/12, 1 nM

9G: S1A/S4B, 10 nM

9H: YFP-Kontrolle

Ergebnisse:

- 5 Fig. 3 zeigt, dass die YFP-Expression nach transienter Kotransfektion von Mausfibroblasten mit dem YFP-Plasmid und spezifisch gegen die YFP-Sequenz gerichteten dsRNAs dann besonders wirkungsvoll gehemmt wird, wenn die 3'-Enden der 22 und 19 Basenpaare enthaltenden Bereiche der dsRNAs einzelsträngige Abschnitte von 2 Nukleotiden (nt) aufweisen. Während die dsRNA S1 mit glatten 3'-Enden bei einer Konzentration von 1 nM (bezogen auf die Konzentration im Zellkultur-Medium während der Durchführung der Transfektion) keine inhibitorischen Effekte auf die YFP-Expression zeigt, inhibieren 10 die dsRNAs S7 (19 Nukleotidpaare) und S4 (22 Nukleotidpaare) mit jeweils 2nt Überhängen an beiden 3'-Enden die YFP-Expression um 50 bzw. um 70% im Vergleich zu den entsprechenden Kontroll-dsRNAs K3 und K2. Bei einer Konzentration von 10 nM inhibiert die als S1 bezeichnete dsRNA mit glatten Enden 15 die YFP-Expression um ~65%, während die Inhibition der YFP-Expression durch die S4 dsRNA ~93% beträgt (Fig. 4). Der inhibitorische Effekt der mit S4 und S7 bezeichneten dsRNAs ist konzentrationsabhängig (Fig. 3 und 4, siehe auch Fig. 7).
- 20
- 25 Fig. 4 zeigt, dass für die effiziente Unterdrückung der YFP-Genexpression die einzelsträngige Ausbildung nicht an beiden 3'-Enden (auf Sinn- und Antisinn-Strang) notwendig ist. Um eine möglichst effektive Inhibition der YFP-Expression zu erreichen, ist lediglich der 2nt-Überhang am 3'-Ende auf dem 30 Antisinn-Strang notwendig. So liegt die Inhibition der YFP-Expression bei einer Konzentration von 1 nM bei den beiden dsRNAs S4 (mit 2nt-Überhängen auf beiden 3'-Enden) und S1A/S4B (mit einem 2nt-Überhang auf dem 3'-Ende des Antisinn-Stranges) bei ~70%. Befindet sich dagegen der 2nt-Überhang

auf dem 3'-Ende des Sinn-Stranges (und das 3'-Ende des Anti-sinn-Stranges trägt keinen einzelsträngigen Bereich), so liegt die Inhibition der YFP-Genexpression lediglich bei 50%. Analog ist die Inhibition bei höheren Konzentrationen deutlich besser, wenn mindestens das 3'-Ende des Antisinn-Stranges einen 2nt-Überhang trägt.

Eine deutlichere Hemmung der YFP-Expression wird erreicht, wenn der basengepaarte Bereich 21 Nukleotid-Paare statt 22 (S1 und S4), 20 (S13 bzw. S13/14) oder 19 (S7) umfasst (Fig. 5, 6 und 7). So beträgt die Inhibition der YFP-Expression durch S1 (22 Basenpaarungen mit glatten Enden) in einer Konzentration von 5 nM ~40%, während die Inhibition durch S7/S12 (21 Basenpaarungen mit glatten Enden), ebenfalls mit 5 nM bei ~92% liegt. Weist die dsRNA mit 21 Basenpaarungen noch einen 2nt-Überhang am Antisinnstrang-3'-Ende (S7/S11) auf, so liegt die Inhibition bei ~ 97% (verglichen mit ~73% Inhibition durch S4 und ~70% Inhibition durch S7).

20

III. Untersuchung der Serumstabilität der doppelsträngigen RNA (dsRNA):

Ziel ist es, die in den Zellkulturen gefundene Effektivität der durch dsRNAs vermittelten Hemmung der Genexpression von Zielgenen für den Einsatz *in vivo* zu steigern. Dies wird durch eine verbesserte Stabilität der dsRNAs im Serum und durch eine daraus resultierende verlängerte Verweilzeit des Moleküls im Kreislauf bzw. die damit verbundenen erhöhte-wirksame-Konzentration des funktionellen Moleküls erreicht.

Ausführungsbeispiel:

~

Die Serumstabilität der die GFP-Expression hemmenden dsRNAs wurde *ex vivo* in murinem und humanem Serum getestet.

Versuchsprotokoll:

5

Die Inkubation mit humanem bzw. murinem Serum mit der entsprechenden dsRNA erfolgte bei 37°C. Es wurden je 85 µl Serum mit 15 µl 100µM dsRNA inkubiert. Nach bestimmten Inkubationszeiten (30 min, 1h, 2h, 4h, 8h, 12h, 24h) wurden die Proben 10 bei -80°C eingefroren. Als Kontrolle wurde dsRNA ohne Serum (+85 µl ddH₂O) und dsRNA mit Serum zum Zeitpunkt 0 verwendet.

Für die Isolierung der dsRNA aus dem Inkubationsansatz, die auf Eis erfolgte, wurden jeweils 400 µl 0,1% SDS zu den An-15 sätzen gegeben und diese einer Phenolextraktion unterzogen: Pro Ansatz wurden 500 µl Phenol : Chloroform : Isoamylalkohol (IAA, 25:24:1, Roti®-Phenol, Roth, Karlsruhe) zugegeben und für 30 sec auf höchster Stufe gevortext (Vortex Genie-2; Scientific Industries). Nach 10minütiger Inkubation auf Eis 20 erfolgte die Phasentrennung durch Zentrifugation bei 12.000xg, 4°C, für 10 min (Sigma 3K30, Rotor 12131-H). Die obere wässrige Phase (ca. 200 µl) wurde abgenommen und zuerst einem DNase I- und danach einem Proteinase K - Verdau unterzogen: Zugabe von 20 µl 10xfach DNaseI-Puffer (100 mM Tris, 25 pH 7,5, 25 mM MgCl₂, 1 mM CaCl₂) und 10 U DNase I (D7291, Sigma-Aldrich), 30 min Inkubation bei 37°C, erneute Zugabe von 6 U DNase I und Inkubation für weitere 20 min bei 37°C, Zugabe von 5 µl Proteinase K (20 mg/ml, 04-1075, Peqlab, Deutschland) und 30 min Inkubation bei 37°C. Danach wurde eine 30 Phenolextraktion durchgeführt. Dazu wurde 500 µl Phenol : Chloroform : IAA (25:24:1) zugegeben, 30 sec auf höchster Stufe gevortext, 10 min bei 12.000xg, 4°C, zentrifugiert, der Überstand abgenommen und nacheinander mit 40 µl 3 M Na-Ac (Natriumacetat), pH 5,2, und 1 ml 100% EtOH versetzt, dazwi-

schen gut gemischt und für mindestens 1 h bei -80°C gefällt. Das Präzipitat wurde durch Zentrifugation bei 12.000xg für 30 min und 4°C pelletiert, mit 70% EtOH gewaschen und erneut zentrifugiert (10 min, 12.000xg, 4°C). Das luftgetrocknete
5 Pellet wurde in 30 µl RNA-Gelauftragspuffer (7 M Harnstoff, 1 x TBE (0,09 M Tris-Borat, 0,002 M EDTA (Ethylendiamintetraacetat), 0,02% (w/v) Bromphenolblau, 0,02% (w/v) Xylencyanol) aufgenommen und bis zum Gelauftrag bei -20°C gelagert.

10 Zur Charakterisierung der dsRNA wurde eine analytische, denaturierende Polyacrylamid-Gelelektrophorese (analytische PAGE) durchgeführt. Die Harnstoffgele wurden kurz vor dem Lauf hergestellt: 7M Harnstoff (21g) wurde in 25 ml 40% wässrige Acrylamid/Bisacrylamid Stammlösung (Rotiphorese-Gel, A515.1,
15 Roth) und 5 ml 10 x TBE (108 g Tris, 55 g Borsäure, 9,3 g EDTA pro L Aqua dest.) unter Rühren gelöst und auf 50 ml mit Aqua dest. aufgefüllt. Kurz vor dem Gießen wurden 50 µl TEMED (N,N,N',N'-Tetramethylethylendiamin) und 500 µl 10% APS (Ammoniumperoxidisulfat) zugesetzt. Nach dem Auspolymerisieren
20 wurde das Gel in eine vertikale Elektrophorese-Apparatur (Merck, Darmstadt) eingesetzt und ein Vorlauf für 30 min bei konstant 40 mA Stromstärke durchgeführt. Als Laufpuffer wurde 1 x TBE-Puffer verwendet. Vor dem Auftrag auf das Gel wurden die RNA-Proben für 5 min bei 100°C erhitzt, auf Eis abgekühlt
25 und für 20 sec in einer Tischzentrifuge (Eppendorf, minispin) abzentrifugiert. Es wurden je 15 µl auf das Gel aufgetragen. Der Lauf erfolgte für ca. 2h bei einem konstanten Stromfluß von 40 mA. Nach dem Lauf wurde das Gel 30 min bei RT (Raumtemperatur) mit Stains all-Färbelösung (20 ml Stains all
30 Stammlösung (200 mg Stains all in 200 ml Formamid gelöst) mit 200 ml Aqua dest. und 180 ml Formamid versetzt) gefärbt und die Hintergrundfärbung danach durch Spülen in Aqua dest. für 45 min entfernt. Die Gele wurden mit dem Photodokumentationsystem Image Master VDS von Pharmacia photographiert.

Die Fig. 10 bis 17 zeigen die Serumstabilität der dsRNA nach Inkubation mit humanem bzw. murinem Serum und nachfolgender elektrophoretischer Auftrennung im 20%igem 7M Harnstoffgel.

5 **Fig. 10: Inkubation von S1 (0-22-0) in Maus-Serum**

1. zum Zeitpunkt 0 (ohne Serum)
2. zum Zeitpunkt 0
3. für 30 Minuten
4. für 1 Stunde
- 10 5. für 2 Stunden
6. für 4 Stunden
7. für 12 Stunden
8. 2 μ l 100 μ M S1 ohne Inkubation
- S1A) Sinnstrang S1 (10 μ l 20 μ M S1A)
- 15 S1B) Antisinnstrang S1 (10 μ l 20 μ M S1B)

Fig. 11: Inkubation von S1 (0-22-0) in humanem Serum

1. 2 μ l 100 μ M S1 unbehandelt (ohne Inkubation)
2. für 30 Minuten
3. für 2 Stunden
- 20 4. für 4 Stunden
5. für 6 Stunden
6. für 8 Stunden
7. für 12 Stunden
8. für 24 Stunden
- 25 S1A) Sinnstrang S1 (10 μ l 20 μ M S1A)
- S1B) Antisinnstrang S1 (10 μ l 20 μ M S1B)

Fig. 12: Inkubation von S7 (2-19-2) in Maus-Serum

1. zum Zeitpunkt 0 (ohne Serum)
2. für 30 Minuten
- 30 3. für 4 Stunden
4. für 12 Stunden

Fig. 13: Inkubation von S7 (2-19-2) in humanem Serum

1. Sinnstrang S7 (10 μ l 20 μ M S7A)

2. Antisinnstrang S7 (10 µl 20 µM S7B)
3. für 30 Minuten
4. für 1 Stunde
5. für 2 Stunden
5. für 4 Stunden
7. für 6 Stunden
8. für 12 Stunden
9. für 24 Stunden
10. zum Zeitpunkt 0 (ohne Serum)

10 Fig. 14: Inkubation von K3 (2-19-2) in Maus-Serum

1. Sinnstrang K3 (10 µl 20 µM K3A)
2. Antisinnstrang K3 (10 µl 20 µM K3B)
3. zum Zeitpunkt 0 (ohne Serum)
4. zum Zeitpunkt 0 (mit Serum)
- 15 5. für 30 Minuten
6. für 1 Stunde
7. für 2 Stunden
8. für 4 Stunden
9. für 12 Stunden

20 Fig. 15: Inkubation von PKC1/2 (0-22-2) in Maus-Serum

1. für 30 Minuten
2. für 1 Stunde
3. für 2 Stunden
4. für 4 Stunden
- 25 5. für 12 Stunden
6. 2 µl 100 µM PKC1/2 (unbehandelt)

Fig. 16: Inkubation von S1A/S4B (0-22-2) in humanem Serum

1. zum Zeitpunkt 0 (ohne Serum)
2. für 24 Stunden
- 30 3. für 12 Stunden
4. für 8 Stunden
5. für 6 Stunden
6. für 4 Stunden

7. für 2 Stunden
8. für 30 Minuten
9. Sinnstrang S1A (10 µl 20 µM S1A)
10. Antisinnstrang S4B (10 µl 20 µM S4B)

5 Fig. 17: Inkubation von K2 (2-22-2) in humanem Serum

1. Sinnstrang K2 (10 µl 20 µM K2A)
2. Antisinnstrang K2 (10 µl 20 µM K2B)
3. zum Zeitpunkt 0 (ohne Serum)
4. für 30 Minuten
- 10 5. für 2 Stunden
6. für 4 Stunden
7. für 6 Stunden
8. für 8 Stunden
9. für 12 Stunden
- 15 10. für 24 Stunden

Ergebnisse:

dsRNAs ohne einzelsträngige Bereiche an den 3'-Enden sind im
20 Serum sowohl von Mensch und Maus wesentlich stabiler als
dsRNAs mit einzelsträngigen 2nt-Überhängen an den 3'-Enden
(Fig. 10 bis 14 und 17). Nach 12 bzw. 24 Stunden Inkubation
von S1 in murinem bzw. humanem Serum ist noch immer eine Ban-
de in der ursprünglichen Größe fast vollständig erhalten. Da-
gegen nimmt bei dsRNAs mit 2nt-Überhängen an beiden 3'-Enden
25 die Stabilität in humanem als auch im murinen Serum deutlich
ab. Bereits nach 4 Stunden Inkubation von S7 (Fig. 12 und 13)
oder K3 (Fig. 14) ist keine Bande in der Originalgröße mehr
detektierbar.

30

Um die Stabilität von dsRNA im Serum zu erhöhen, ist es aus-
reichend, wenn die dsRNA ein glattes Ende besitzt. Im Maus-
Serum ist nach 4 Stunden Inkubation (Fig. 15, Bahn 4) die

Bande in der Originalgröße kaum abgebaut im Vergleich zu S7 (nach 4 Stunden vollständiger Abbau; Fig. 12, Bahn 3).

- Als optimaler Kompromiß hinsichtlich der biologischen Wirk-
- 5 samkeit von dsRNA kann die Verwendung von dsRNA mit einem glatten Ende und einem einzelsträngigem Bereich von 2 Nukleo-
- tiden angesehen werden, wobei sich der einzelsträngige Über-
- hang am 3'-Ende des Antisinn-Stranges befinden sollte.
- 10 Die hier verwendeten Sequenzen sind aus der nachstehenden Ta-
- belle 2 und den Sequenzprotokollen SQ148-151 und 153-167 er-
- sichtlich.

Name	Sequenz- proto- koll-Nr.	dsRNA-Sequenz	
S1	SQ148	(A) 5' - CCACAUAGAAGCAGCACGACUUC -3'	0-22-0
	SQ149	(B) 3' - GGUGUACUUCGUCGUGCUGAAG -5'	
S7	SQ150	(A) 5' - CCACAUAGAAGCAGCACGACUU -3'	2-19-2
	SQ151	(B) 3' - CUGGUGUACUUCGUCGUGCUG -5'	
K1	SQ153	(A) 5' - ACAGGAUGAGGAUCGUUUCGCA -3'	0-22-0
	SQ154	(B) 3' - UGUCCUACUCCUAGCAAAGCGU -5'	
K3	SQ155	(A) 5' - GAUGAGGAUCGUUUCGCAUGA -3'	2-19-2
	SQ156	(B) 3' - UCCUACUCCUAGCAAAGCGUA -5'	
K2	SQ157	(A) 5' - ACAGGAUGAGGAUCGUUUCGCAUG -3'	2-22-2
	SQ158	(B) 3' - UCUGUCCUACUCCUAGCAAAGCGU -5'	
S1A/ S4B	SQ148	(A) 5' - CCACAUAGAAGCAGCACGACUUC -3'	0-22-2
	SQ159	(B) 3' - CUGGUGUACUUCGUCGUGCUGAAG -5'	

PKC 1/2	SQ160 SQ161	(A) 5'- CUUCUCCGCCUCACACCGCUGCAA -3' (B) 3'- GAAGAGGCAGGAGUGUGGGCGACG -5'	2-22-0
S7/S12	SQ150 SQ162	(A) 5'- CCACAUGAAGCAGCACGACUU -3' (B) 3'- GGUGUACUUCGUCGUGCUGAA -5'	0-21-0
S7/S11	SQ150 SQ163	(A) 5'- CCACAUGAAGCAGCACGACUU -3' (B) 3'- CUGGUGUACUUCGUCGUGCUGAA -5'	0-21-2
S13	SQ164 SQ165	(A) 5'- CCACAUGAAGCAGCACGACU -3' (B) 3'- CUGGUGUACUUCGUCGUGCUGA -5'	0-20-2
S13/14	SQ164 SQ166	(A) 5'- CCACAUGAAGCAGCACGACU -3' (B) 3'- GGUGUACUUCGUCGUGCUGA -5'	0-20-0
S4	SQ167 SQ159	(A) 5'- CCACAUGAAGCAGCACGACUUUCUU -3' (B) 3'- CUGGUGUACUUCGUCGUGCUGAAG -5'	2-22-2
K1A/ K2B	SQ153 SQ158	(A) 5'- ACAGGAUGAGGAUCGUUUCGCA -3' (B) 3'- UCUGUCCUACUCCUAGCAAAGCGU -5'	0-22-2
K1B/ K2A	SQ154 SQ157	(A) 5'- ACAGGAUGAGGAUCGUUUCGCAUG -3' (B) 3'- UGUCCUACUCCUAGCAAAGCGU -5'	2-22-0
S1B/ S4A	SQ149 SQ167	(A) 5'- CCACAUGAAGCAGCACGACUUUCUU -3' (B) 3'- GGUGUACUUCGUCGUGCUGAAG -5'	2-22-0

Tabelle 2

IV. In vivo-Studie:

5

Es wurde „GFP-Labormäusen“, die das Grün-fluoreszierende Protein (GFP) in allen Proteinbiosynthese betreibenden Zellen exprimieren, doppelsträngige RNA (dsRNA), die aus der GFP-Sequenz abgeleitet wurde, bzw. unspezifische dsRNA intravenös in die Schwanzvene injiziert. Am Versuchsende wurden die Tie-

10

re getötet und die GFP-Expression in Gewebeschnitten und im Plasma analysiert.

Versuchsprotokoll:

5

Synthese der dsRNA:

Mittels eines RNA-Synthesizers (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Anschließend erfolgte die Reinigung der rohen Syntheseprodukte mit Hilfe der HPLC. Als Säulen wurden NucleoPac PA-100, 9x250 mm der Fa. Dionex, verwendet; als Niedersalz-Puffer 20 mM Tris, 10 mM NaClO₄, pH 6,8, 10% Acetonitril und als Hochsalz-Puffer 20 mM Tris, 400 mM NaClO₄, pH 6,8, 10% Acetonitril. Der Fluß betrug 3 ml/Minute. Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Erhitzen des stöchiometrischen Gemisches der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 80-90°C und nachfolgendes langsames Abkühlen über 6 Stunden auf Raumtemperatur.

Versuchstierhaltung und Versuchsdurchführung:

Es wurde der transgene Labormausstamm TgN(GFPU) 5Nagy (The Jackson Laboratory, Bar Harbor, ME, USA) verwendet, der GFP (mit einem beta-Aktin-Promotor und einem CMV intermediate early enhancer) in allen bisher untersuchten Zellen exprimiert (Hadjantonakis AK et al., 1993, Mech. Dev. 76: 79-90; Hadjantonakis AK et al., 1998 Nature Genetics 19: 220-222). GFP-transgene Mäuse lassen sich eindeutig anhand der Fluoreszenz (mit einer UV-Handlampe) von den entsprechenden Wildtypen (WT) unterscheiden. Für die Zucht wurde jeweils der entsprechende WT mit einem heterozygotem GFP-Typ verpaart.

Die Versuchsdurchführung erfolgte gemäß den deutschen Tier-
schutzbestimmungen. Die Tiere wurden unter kontrollierten Um-
weltbedingungen in Gruppen von 3-5 Tieren in Typ III Makro-
lon-Käfigen der Fa. Ehret, Emmendingen, bei einer konstanten
5 Temperatur von 22°C und einem Hell-Dunkel-Rhythmus von 12h
gehalten. Als Sägemehleinstrye wurde Weichholzgranulat 8/15
der Fa. Altromin, Lage, verwendet. Die Tiere erhielten Lei-
tungswasser und Standardfutter Altromin 1324 pelletiert (Al-
tromin) ad libitum.

10

Für die Versuchsdurchführung wurden die heterozygoten GFP-
Tiere zu je 3 Tieren gruppenweise in Käfigen wie oben be-
schrieben gehalten. Die Injektionen der dsRNA-Lösung erfolg-
ten intravenös (i.v.) in die Schwanzvene im 12h-Turnus (zwi-
15 schen 5³⁰ und 7⁰⁰ sowie zwischen 17³⁰ und 19⁰⁰ Uhr) über 5 Tage
hinweg. Das Injektionsvolumen betrug 60 µl pro 10 g Körperge-
wicht und die Dosis betrug 2,5 mg dsRNA bzw. 50 µg pro kg
Körpergewicht. Die Einteilung in die Gruppen war wie folgt:

20 Gruppe A: PBS (phosphate buffered saline) je 60 µl pro
10 g Körpergewicht,

Gruppe B: 2,5 mg pro kg Körpergewicht einer unspezifi-
25 schen Kontroll-dsRNA (K1-Kontrolle mit glatten
Enden und einem Doppelstrangbereich von 22 Nu-
kletidpaaren),

Gruppe C: 2,5 mg pro kg Körpergewicht einer weiteren un-
spezifischen Kontroll-dsRNA (K3-Kontrolle mit
30 2nt-Überhängen an beiden 3'-Enden und einem
Doppelstrangbereich von 19 Nukletidpaaren),

Gruppe D: 2,5 mg pro kg Körpergewicht dsRNA (spezifisch
gegen GFP gerichtet, im weiteren als S1 be-

zeichnet, mit glatten Enden und einem Doppelstrangbereich von 22 Nukleotidpaaren),

Gruppe E: 2,5 mg dsRNA pro kg Körpergewicht (spezifisch
5 gegen GFP gerichtet, im Weiteren als S7 bezeichnet, mit 2nt-Überhängen an den 3'-Enden beider Stränge und einem Doppelstrangbereich von 19 Nukleotidpaaren)

10 Gruppe F: 50 µg S1-dsRNA pro kg Körpergewicht (also 1/50 der Dosis der Gruppe D).

Nach der letzten Injektion von insgesamt 10 Injektionen wurden die Tiere nach 14-20h getötet und Organe und Blut wie beschrieben entnommen.
15

Organentnahme:

Sofort nach dem Töten der Tiere durch CO₂-Inhalation wurden Blut und verschiedene Organe entnommen (Thymus, Lunge, Herz, Milz, Magen, Darm, Pankreas, Gehirn, Niere und Leber). Die Organe wurden kurz in kaltem, steriles PBS gespült und mit einem sterilen Skalpell zerteilt. Ein Teil wurde für immunhistochemische Färbungen in Methyl Carnoys (MC, 60% Methanol, 30% Chloroform, 10% Eisessig) für 24h fixiert, ein Teil für Gefrierschnitte und für Proteinisolierungen sofort in flüssigem Stickstoff schockgefroren und bei -80°C gelagert und ein weiterer, kleinerer Teil wurde für RNA-Isolierungen in RNAeasy-Protect (Qiagen) bei -80°C eingefroren. Das Blut wurde sofort nach der Entnahme 30 min auf Eis gehalten, gemixt, 30 5 min bei 2000 rpm (Mini spin, Eppendorf) zentrifugiert, der Überstand abgenommen und bei -80°C gelagert (hier als Plasma bezeichnet).

Prozessieren der Biopsien:

Nach 24h Fixierung der Gewebe in MC wurden die Gewebestücke in einer aufsteigenden Alkoholreihe bei RT (Raumtemperatur) dehydriert: je 40 min 70% Methanol, 80% Methanol, 2 x 96% Methanol und 3 x 100% Isopropanol. Danach wurden die Gewebe 5 in 100% Isopropanol auf 60°C im Brutschrank erwärmt, nachfolgend für 1h in einem Isopropanol/Paraffin-Gemisch bei 60°C und 3 x für 2h in Paraffin inkubiert und sodann in Paraffin eingebettet. Für Immunperoxidase-Färbungen wurden mit einem Rotationsmikrotom (Leica) Gewebeschnitte von 3 µm Schnittdicke angefertigt, auf Objektträger (Superfrost, Vogel) aufgezogen und für 30 min bei 60°C im Brutschrank inkubiert.

Immunperoxidase-Färbung gegen GFP:

Die Schnitte wurden 3 x 5 min in Xylol deparaffiniert, in einer absteigenden Alkoholreihe (3 x 3 min 100% Ethanol, 2 x 2 min 95% Ethanol) rehydriert und danach 20 min in 3% H₂O₂/Methanol zum Blocken endogener Peroxidasesen inkubiert. Alle Inkubationsschritte wurden im Folgenden in einer feuchten Kammer durchgeführt. Nach 3 x 3 min Waschen mit PBS wurde 20 mit dem 1. Antikörper (goat anti-GFP, sc-5384, Santa Cruz Biotechnology) 1:500 in 1% BSA/PBS über Nacht bei 4°C inkubiert. Die Inkubation mit dem biotinyliertem Sekundärantikörper (donkey anti-goat; Santa Cruz Biotechnology; 1:2000 Verdünnung) erfolgte für 30 min bei RT, danach wurde für 30 min 25 mit Avidin D Peroxidase (1:2000-Verdünnung, Vector Laboratories) inkubiert. Nach jeder Antikörperinkubation wurden die Schnitte 3 x 3 min in PBS gewaschen und Pufferreste mit Zellstoff von den Schnitten entfernt. Alle Antikörper wurden in 1% Rinderserumalbumin (BSA)/PBS verdünnt. Die Färbung mit 30 3,3'-Diaminobenzidin (DAB) wurde mit dem DAB Substrat Kit (Vector Laboratories) nach Herstellerangaben durchgeführt. Als nukleäre Gegenfärbung wurde Hämatoxylin III nach Gill (Merck) verwendet. Nach der Dehydrierung in einer aufsteigenden Alkoholreihe und 3 x 5 min Xylol wurden die Schnitte mit

Entellan (Merck) eingedeckt. Die mikroskopische Auswertung der Färbung erfolgte mit dem IX50 Mikroskop von Olympus, ausgestattet mit einer CCD-Camera (Hamamatsu).

5 Proteinisolierung aus Gewebestücken:

Zu den noch gefrorenen Gewebestücken wurden jeweils 800 µl Isolierungspuffer (50 mM HEPES, pH 7,5; 150 mM NaCl; 1 mM EDTA; 2,5 mM EGTA; 10% Glycerol; 0,1% Tween; 1 mM DTT; 10 mM β-Glycerol-Phosphat; 1 mM NaF; 0,1 mM Na₃VO₄ mit einer Protease-Inhibitor-Tablette „Complete“ von Roche) zugegeben und 10 2 x 30 Sekunden mit einem Ultraturrax (DIAx 900, Dispergierwerkzeug 6G, Heidolph) homogenisiert, dazwischen auf Eis abgekühlt. Nach 30 Minuten Inkubation auf Eis wurde gemischt und für 20 Minuten bei 10.000xg, 4°C, zentrifugiert (3K30, 15 Sigma). Der Überstand wurde erneut 10 Minuten auf Eis inkubiert, gemischt und 20 Minuten bei 15.000xg, 4°C, zentrifugiert. Mit dem Überstand wurde eine Proteinbestimmung nach Bradford, 1976, modifiziert nach Zor & Selinger, 1996, mit dem Roti-Nanoquant-System von Roth nach den Angaben des Herstellers durchgeführt. Für die Protein-Eichgerade wurde BSA (bovines Serumalbumin) in Konzentrationen von 10 bis 100 µg/ml eingesetzt.

20 SDS-Gelelektrophorese:

25 Die elektrophoretische Auftrennung der Proteine erfolgte in einer Multigel-Long Elektrophoresekammer von Biometra mit einer denaturierenden, diskontinuierlichen 15% SDS-PAGE (Polyacrylamid Gelelektrophorese) nach Lämmli (Nature 277: 680-685, 1970). Dazu wurde zunächst ein Trenngel mit 1,5 mm Dicke 30 gegossen: 7,5 ml Acrylamid/Bisacrylamid (30%, 0,9%), 3,8 ml 1,5 M Tris/HCl, pH 8,4, 150 µl 10% SDS, 3,3 ml Aqua bidest., 250 µl Ammoniumpersulfat (10%), 9 µl TEMED (N,N,N',N'-Tetramethylendiamin) und bis zum Auspolymerisieren mit 0,1%

SDS überschichtet. Danach wurde das Sammelgel gegossen: 0,83 µl Acrylamid/Bisacrylamid (30%/0,9%), 630 µl 1 M Tris/HCl, pH 6,8, 3,4 ml Aqua bidest., 50 µl 10% SDS, 50 µl 10% Ammoniumpersulfat, 5 µl TEMED.

5

Vor dem Auftrag auf das Gel wurden die Proteine mit einer entsprechenden Menge an 4fach Probenpuffer (200 mM Tris, pH 6,8, 4% SDS, 100 mM DTT (Dithiotreithol), 0,02% Bromphenolblau, 20% Glycerin) versetzt, für 5 min im Heizblock bei 10 100°C denaturiert, nach dem Abkühlen auf Eis kurz abzentrifugiert und auf das Gel aufgetragen. Pro Bahn wurde die gleichen Plasma- bzw. Proteinmengen eingesetzt (je 3µl Plasma bzw. 25 µg Gesamtprotein). Die Elektrophorese erfolgte wasergekühlt bei RT und konstant 50 V. Als Längenstandard wurde 15 der Proteingelmarker von Bio-Rad (Kaleidoscope Prestained Standard) verwendet.

Western Blot und Immundetektion:

Der Transfer der Proteine vom SDS-PAGE auf eine PVDF (Polyvinylidifluorid)-Membran (Hybond-P, Amersham) erfolgte im semi-dry Verfahren nach Kyhse-Anderson (J. Biochem. Biophys. Methods 10: 203-210, 1984) bei RT und einer konstanten Stromstärke von 0,8 mA/cm² für 1,5 h. Als Transferpuffer wurde ein Tris/Glycin-Puffer eingesetzt (39 mM Glycin, 46 mM Tris, 0,1 % SDS und 20% Methanol). Zum Überprüfen des elektrophoretischen Transfers wurden sowohl die Gele nach dem Blotten als auch die Blotmembranen nach der Immundetektion mit Coomassie gefärbt (0,1% Coomassie G250, 45% Methanol, 10% Eisessig). Zum Absättigen unspezifischer Bindungen wurde die Blotmembran 30 nach dem Transfer in 1% Magermilchpulver/PBS für 1h bei RT inkubiert. Danach wurde je dreimal für 3 min mit 0,1% Tween-20/PBS gewaschen. Alle nachfolgenden Antikörperinkubationen und Waschschrifte erfolgten in 0,1% Tween-20/ PBS. Die Inkubation mit dem Primärantikörper (goat anti-GFP, sc-5384, San-

ta Cruz Biotechnology) in einer Verdünnung von 1:1000 erfolgte für 1h bei RT. Danach wurde 3 x 5 min gewaschen und für 1h bei RT mit dem Sekundärantikörper (donkey anti-goat IgG H-
5 seradish Peroxidase gelabelt, Santa Cruz Biotechnology) in einer Verdünnung von 1 : 10.000 inkubiert. Die Detektion erfolgte mit dem ECL-System von Amersham nach den Angaben des Herstellers.

In den Fig. 18 bis 20 ist die Inhibition der GFP-Expression
10 nach intravenöser Injektion von spezifisch gegen GFP gerichteter dsRNA mit Immunperoxidase-Färbungen gegen GFP an 3 µm Paraffinschnitten dargestellt. Im Versuchsverlauf wurde gegen GFP gerichtete dsRNA mit einem doppelsträngigen Bereich von 22 Nukleotid-(nt)paaren ohne Überhänge an den 3'-Enden (D)
15 und die entsprechende unspezifische Kontroll-dsRNA (B) sowie spezifisch gegen GFP gerichtete dsRNA mit einem 19 Nukleotidpaare umfassenden Doppelstrangbereich mit 2nt-Überhängen an den 3'-Enden (E) und die entsprechende unspezifische Kontroll-dsRNA (C) im 12 Stunden-Turnus über 5 Tage hinweg
20 appliziert. (F) erhielt 1/50 der Dosis von Gruppe D. Als weitere Kontrolle wurden Tiere ohne dsRNA-Gabe (A) bzw. WT-Tiere untersucht. Die Fig. 18 zeigt die Inhibition der GFP-Expression in Nierenschnitten, Fig. 19 in Herz- und Fig. 20 in Pankreasgewebe. In den Fig. 21 bis 23 sind Western Blot-Analysen der GFP-Expression in Plasma und Geweben dargestellt. In der Fig. 21 ist die Inhibition der GFP-Expression im Plasma, in Fig. 22 in der Niere und in Fig. 23 in Herz gezeigt. In Fig. 23 sind Gesamtproteinisolate aus verschiedenen Tieren aufgetragen. Es wurden jeweils gleiche Gesamtproteinkonzentrationen pro Bahn aufgetragen. In den Tieren, denen unspezifische Kontroll-dsRNA verabreicht wurde (Tiere der Gruppen B und C), ist die GFP-Expression gegenüber Tieren, die keinerlei dsRNA erhielten, nicht reduziert. Tiere, die spezifisch gegen GFP gerichtete dsRNA mit 2nt-Überhängen an den 3'-Enden
25
30

beider Strände und einen 19 Nukleotidpaare umfassenden Doppelstrangbereich erhielten, zeigten eine signifikant inhibierte GFP-Expression in den untersuchten Geweben (Herz, Niere, Pankreas und Blut), verglichen mit unbehandelten Tieren
5 (Fig. 18 bis 23). Bei den Tieren der Gruppen D und F, denen spezifisch gegen GFP gerichtete dsRNA mit glatten Enden und einem 22 Nukleotidpaare umfassenden Doppelstrangbereich appliziert wurde, zeigten nur jene Tiere, die die dsRNA in einer Dosis von 50 µg/kg Körpergewicht pro Tag erhielten, ei-
10 ne spezifische Inhibition der GFP-Expression, die allerdings weniger deutlich ausgeprägt war als die der Tiere in Gruppe E.

Die zusammenfassende Auswertung von GFP-Inhibition in den Ge-
webeschnitten und im Western Blot ergibt, dass die Inhibition
15 der GFP-Expression im Blut und in der Niere am stärksten ist
(Fig. 18, 21 und 22).

V. Hemmung der Genexpression des EGF-Rezeptors mit dsRNA
als therapeutischer Ansatz bei Krebsformen mit EGFR-
20 Überexpression oder EGFR-induzierter Proliferation:

Der Epidermal Growth Factor (=EGF)-Rezeptor (=EGFR) gehört zu den Rezeptor-Tyrosinkinasen, transmembranen Proteinen mit einer intrinsischen Tyrosinkinase-Aktivität, die an der Kon-
25 trolle einer Reihe von zellulären Prozessen wie Zellwachstum, Zelldifferenzierungen, migratorischen Prozessen oder der Zellvitalität beteiligt sind (Übersicht in: Van der Geer et al. 1994). Die Familie der EGFR besteht aus 4 Mitgliedern, EGFR (ErbB1), HER2 (ErbB2), HER3 (ErbB3) und HER4 (ErbB4) mit
30 einer transmembranen Domäne, einer cysteinreichen extrazellulären Domäne und einer intrazellulären katalytischen Domäne. Die Sequenz des EGFR, einem 170 kDa Protein, ist seit 1984 bekannt (Ullrich et al., 1984).

Aktiviert wird der EGFR durch Peptid-Wachstumsfaktoren wie EGF, TGF α (transforming growth factor), Amphiregulin, Beta-cellulin, HB-EGF (heparin-binding EGF-like growth factor) und Neureguline. Ligandenbindung induziert die Bildung von Homo- oder Heterodimeren mit nachfolgender Autophosphorylierung zytoplasmatischer Tyrosine (Ullrich & Schlessinger, 1990; Alroy & Yarden, 1997). Die phosphorylierten Aminosäuren bilden die Bindungsstellen für eine Vielzahl von Proteinen, die an den proximalen Schritten der Signalweiterleitung in einem komplexen Netzwerk beteiligt sind. Der EGFR ist an den verschiedensten Tumorerkrankungen beteiligt und damit ein geeignetes Target für therapeutische Ansätze (Huang & Harari, 1999). Die Mechanismen, die zu einer aberranten EGFR-Aktivierung führen, können auf Überexpression, Amplifikation, konstitutiver Aktivierung mutanter Rezeptor-Formen oder autokrinen Loops beruhen (Voldborg et al., 1997). Eine Überexpression des EGFR wurde für eine Reihe von Tumoren beschrieben, wie z.B. Brustkrebs (Walker & Dearing, 1999), Nicht-Klein-Lungenkarzinom (Fontanini et al., 1998), Pankreaskarzinom, Kolonkarzinom (Salomon et al., 1995) und Glioblastomen (Rieske et al., 1998). Insbesondere für maligne Glioblastome sind bisher keine effizienten und spezifischen Therapeutika verfügbar.

25 Ausführungsbeispiel:

Zum Nachweis der Wirksamkeit der dsRNA bei der spezifischen Inhibition der EGFR-Genexpression wurden U-87 MG-Zellen (humanne Glioblastomzellen), ECCAC (European collection of animal cell culture) Nr. 89081402, verwendet, die mit spezifisch gegen den EGF-Rezeptor (Sequenzprotokoll SQ 51) gerichteten dsRNA transfiziert wurden. Nach ca. 72 Stunden Inkubation wurden die Zellen geerntet, Protein isoliert und im Western Blot Verfahren die EGFR-Expression untersucht.

Versuchsprotokoll:dsRNA-Synthese:

5 Mittels eines RNA-Synthesizers (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Anschließend erfolgte die Reinigung der rohen Syntheseprodukte mit Hilfe der HPLC. Verwendet wurde die Säule NucleoPac PA-100, 9x250 mm, der Fa. Dionex; als Niedersalz-Puffer 20 mM Tris, 10 mM NaClO₄, pH 6,8, 10% Acetonitril und als Hochsalz-Puffer 20 mM Tris, 400 mM NaClO₄, pH 6,8, 10% Acetonitril. Der Fluß betrug 3 ml/Minute.

10 15 Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Erhitzen des stöchiometrischen Gemischs der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 80-90°C und nachfolgendes langsames Abkühlen über 6 Stunden auf Raumtemperatur.

20

Aussaat der Zellen:

Alle Zellkulturarbeiten wurden unter sterilen Bedingungen in einer entsprechenden Werkbank (HS18, Hera Safe, Kendro, Heraeus) durchgeführt. Die Kultivierung der U-87 MG-Zellen erfolgte im Brutschrank (CO₂-Inkubator T20, Hera cell, Kendro, Heraeus) bei 37°C, 5% CO₂ und gesättigter Luftfeuchtigkeit in DMEM (Dulbecco`s modified eagle medium, Biochrom) mit 10% FCS (fetal calf serum, Biochrom), 2 mM L-Glutamin (Biochrom), 1 mM Natrium-Pyruvat (Biochrom), 1xNEAA (Non-30 essetial Aminoacids, Biochrom) und Penicillin/Streptomycin (100 IE/100 µg/ml, Biochrom). Um die Zellen in der exponentiellen Wachstumsphase zu halten, wurden die Zellen alle 3 Tage passagiert. 24 Stunden vor der Applikation der dsRNA mittels Transfektion wurden die Zellen trypsinisiert (10x Trypsin/EDTA,

Biochrom, Deutschland) und mit einer Zelldichte von 5×10^5 Zellen/Vertiefung in einer 6-Well-Platte (6-Well Schalen, Labor Schubert & Weiss GmbH) in 1,5 ml Wachstumsmedium ausgesät.

5

Applikation der dsRNA in kultivierte U-87 MG-Zellen:

Die Applikation der dsRNA erfolgte mittels Transfektion mit dem OLIGOFECTAMINE™ Reagent (Life Technologies) gemäß den Angaben des Herstellers. Das Gesamt-Transfektionsvolumen betrug 10 1 ml. Zuerst wurde die dsRNA in serumfreiem Medium verdünnt: Dazu wurden pro Well 0,5 μ l einer 20 μ M Stammlösung spezifisch gegen EGFR gerichteten dsRNA und 9,5 μ l einer 20 μ M Stammlösung unspezifischer dsRNA (K1A/K2B) mit 175 μ l serumfreiem Medium verdünnt (200 nM dsRNA im Transfektionsansatz 15 bzw. 10 nM spezifische EGFR-dsRNA). Das OLIGOFECTAMINE™ Reagent wurde ebenfalls in serumfreien Medium verdünnt: pro Well 3 μ l mit 12 μ l Medium und danach 10 min bei Raumtemperatur inkubiert. Danach wurde das verdünnte OLIGOFECTAMINE™ Reagent zu den in Medium verdünnten dsRNAs gegeben, gemischt und für 20 weitere 20 min bei RT inkubiert. Während der Inkubation wurde ein Mediumwechsel durchgeführt. Die Zellen wurden dazu 1 x mit 1 ml serumfreiem Medium gewaschen und mit 800 μ l serumfreiem Medium bis zur Zugabe von dsRNA/OLIGOFECTAMINE™ Reagent weiter im Brutschrank inkubiert. Nach der Zugabe von 200 μ l 25 dsRNA/OLIGOFECTAMINE™ Reagent pro Well wurden die Zellen bis zur Proteinisolierung weiter im Brutschrank inkubiert.

Proteinisolierung:

Ca. 72 Stunden nach der Transfektion wurden die Zellen geerntet und eine Proteinisolierung durchgeführt. Dazu wurde das 30 Medium abgenommen und das Zellmonolayer 1 x mit PBS gewaschen. Nach Zugabe von 200 μ l Proteinisolierungspuffer (1x Protease-Inhibitor „Complete“, Roche, 50 mM HEPES, pH 7,5,

150 mM NaCl, 1 mM EDTA, 2,5 mM EGTA, 10% Glyzerin, 0,1% Tween-20, 1 mM DTT, 10 mM β -Glycerinphosphat, 1 mM NaF, 0,1 mM Na₃VO₄) wurden die Zellen mit Hilfe eines Zellschabers abgelöst, 10 min auf Eis inkubiert, in ein Eppendorf-

5 Reaktionsgefäß überführt und bei -80°C für mindestens 30 min gelagert. Nach dem Auftauen wurde das Lysat für 10 sec mit einem Dispergierer (DIAx 900, Dispergierwerkzeug 6G, Heidolph-Instruments GmbH & Co KG, Schwabach) auf Stufe 3 homogenisiert, für 10 min auf Eis inkubiert und für 15 min bei

10 14.000xg, 4°C (3K30, Sigma) zentrifugiert. Mit dem Überstand wurde eine Proteinbestimmung nach Bradford mit dem Roti®-Nanoquant-System von Roth (Roth GmbH & Co., Karlsruhe) nach Angeben des Herstellers durchgeführt. Dazu wurden je 200 µl Proteinlösung in geeigneter Verdünnung mit 800 µl 1x Arbeits-

15 lösung gemischt und die Extinktion in Halbmikroküvetten bei 450 und 590 nm gegen Aqua dest. in einem Beckman-Spektralphotometer (DU 250) gemessen. Für die Eichgerade wurden entsprechende BSA-Verdünnungen verwendet (perliertes BSA, Sigma).

20

SDS-Gelelektrophorese:

Die elektrophoretische Auftrennung der Proteine erfolgte in einer Multigel-Long Elektrophoresekammer von Biometra mit einer denaturierenden, diskontinuierlichen 7,5% SDS-PAGE (Polyacrylamid Gelelektrophorese) nach Lämmli (Nature 277: 680-685, 19970). Dazu wurde zunächst ein Trenngel mit 1,5 mm Dicke gegossen: 3,75 ml Acrylamid/Bisacrylamid (30%, 0,9%), 3,8 ml 1 M Tris/HCl, pH 8,4, 150 µl 10% SDS, 7,15 ml Aqua bidest., 150 µl Ammoniumpersulfat (10%), 9 µl TEMED (N,N,N',N'-Tetramethylendiamin) und bis zum Auspolymerisieren mit 0,1% SDS überschichtet. Danach wurde das Sammelgel gegossen: 0,83 ml Acrylamid/Bisacrylamid (30%/0,9%), 630 µl 1 M Tris/HCl, pH 6,8, 3,4 ml Aqua bidest., 50 µl 10% SDS, 50 µl 10% Ammoniumpersulfat, 5 µl TEMED.

Für den Auftrag auf das Gel wurden die Proteinproben 1:3 mit
4x Probenpuffer (200 mM Tris, pH 6,8, 4% SDS, 100 mM DTT
(Dithiotreithol), 0,02% Bromphenolblau, 20% Glycerin) ver-
5 setzt, für 5 min bei 100°C denaturiert, nach dem Abkühlen auf
Eis kurz abzentrifugiert und auf das Gel aufgetragen. Pro
Bahn wurden 35 µg Gesamtprotein aufgetragen. Der Gelauf er-
folgte wassergekühlt bei RT und konstant 50 V. Als Längen-
standard wurde der Kaleidoskop-Proteingelmarker (BioRad))
10 verwendet.

Western Blot und Immundetektion:

Der Transfer der Proteine vom SDS-PAGE auf eine PVDF (Polyve-
nyldifluorid)-Membran (Hybond-P, Amersham) erfolgte im semi-
15 dry Verfahren nach Kyhse-Anderson (J. Biochem. Biophys. Me-
thods 10: 203-210, 1984) bei RT und einer konstanten Strom-
stärke von 0,5 mA/cm² für 1,5 h. Als Transferpuffer wurden
verwendet: Kathodenpuffer (30 mM Tris, 40 mM Glycin, 10%
Methanol, 0,01% SDS; pH 9,4), Anodenpuffer I (300 mM Tris, pH
20 10,4, 10% Methanol) und Anodenpuffer II (30 mM Tris, pH 10,4,
10% Methanol). Vor dem Zusammensetzen des Blotstapels mit 3MM
Whatman-Papier (Schleicher & Schüll) wurden das Gel in Katho-
denpuffer und die PVDF-Membran (zuvor 30 sec in 100% Methyl-
anol) in Anodenpuffer II inkubiert (5 min): 2 Lagen 3MM-Papier
25 (Anodenpuffer I), 1 Lage 3MM-Papier (Anodenpuffer II), PVDF-
Membran, Gel, 3 Lagen 3MM-Papier (Kathodenpuffer). Zum Über-
prüfen des elektrophoretischen Transfers wurden sowohl die
Gele nach dem Blotten als auch die Blotmembranen nach der Im-
mundetektion mit Coomassie gefärbt (0,1% Coomassie G250, 45%
30 Methanol, 10% Eisessig).

Die Blotmembran wurde nach dem Transfer in 1% Magermilchpul-
ver/PBS/0,1% Tween-20 für 1h bei RT inkubiert. Danach wurde
dreimal für 3 min mit 0,1% Tween-20/PBS gewaschen. Alle nach-

folgenden Antikörperinkubationen und Waschschritte erfolgten in 0,1% Tween-20/ PBS. Die Inkubation mit dem Primärantikörper (human EGFR extracellular domain, specific goat IgG, Cat-Nr. AF231, R&D Systems) erfolgte auf einem Schüttler für 2h bei RT in einer Konzentration von 1,5 µg/ml. Danach wurde 3 x 5 min gewaschen und für 1h bei RT mit dem Sekundärantikörper (donkey anti-goat IgG Horseradish Peroxidase gelabelt, Santa Cruz Biotechnology) inkubiert (1:10.000 verdünnt). Nach dem Waschen (3 x 3min in PBS/0,1% Tween-20) erfolgte sofort die Detektion mittels ECL-Reaktion (enhanced chemiluminescence): Zu 18 ml Aqua dest. wurden 200 µl Lösung A (250 mM Luminol, Roth, gelöst in DMSO), 89 µl Lösung B (90 mM p-Coumarsäure, Sigma, gelöst in DMSO) und 2 ml 30% H₂O₂-Lösung pipettiert. Je nach Membrangröße wurden 4-6 ml direkt auf die Membran pipettiert, 1 min bei RT inkubiert und danach sofort ein Röntgenfilm (Biomax MS, Kodak) aufgelegt.

Die hier verwendeten Sequenzen sind in der nachstehenden Tabelle 3 sowie in den Sequenzprotokollen SQ153, 157, 158, 168-173 wiedergegeben.

ES-7	SQ168 SQ169	(A) 5' - AACACCGCAGCAUGUCAAGAU -3' (B) 3' - UUUUGUGGCGUCGUACAGUUC -5'	2-19-2
ES-8	SQ170 SQ171	(A) 5' - AAGUUAAAAAUCCCCGUCGCUAU -3' (B) 3' - CAAUUUUAGGGCAGCGAUAGU -5'	2 ⁵ -19-2 ⁵
ES2A/ ES5B	SQ172 SQ173	(A) 5' - AGUGUGAUCCAAGCUGUCCCAA -3' (B) 3' - UUUCACACUAGGUUCGACAGGGUU -5'	0-22-2
K2	SQ157 SQ158	(A) 5' - ACAGGAUGAGGAUCGUUUCGCAUG -3' (B) 3' - UCUGUCCUACUCCUAGCAAAGCGU -5'	2-22-2

K1A/ K2B	SQ153 SQ158	(A) 5'- ACAGGAUGAGGAUCGUUUCGCA -3' (B) 3'- UCUGUCCUACUCCUAGCAAAGCGU -5'	0-22-2
-------------	----------------	--	--------

Tabelle 3

Inhibition der EGFR-Expression in U-87 MG Glioblastom-Zellen:

5 24 Stunden nach dem Aussäen der Zellen wurden diese mit 10 nM dsRNA wie angegeben (Oligofectamine) transfiziert. Nach 72 Stunden wurden die Zellen geerntet und Protein isoliert. Die Auftrennung der Proteine erfolgte im 7,5% SDS-PAGE. Pro Bahn wurden je 35 µg Gesamtprotein aufgetragen. In Fig. 24 ist die 10 entsprechende Western Blot-Analyse gezeigt, aus der hervorgeht, dass sich mit der spezifisch gegen das EGFR-Gen gerichteten dsRNA mit einem 2nt-Überhang am 3'-Ende des Antisinn-Strangs die EGFR-Expression nach Transfektion in U-87 MG-Zellen signifikant gegenüber den entsprechenden Kontrollen 15 inhibieren lässt. Diese Inhibition der Expression eines endogenen Gens durch spezifische dsRNA bestätigt somit die in Ausführungsbeispiel II angeführten Ergebnisse zur Inhibition der Expression eines nach transakter Transfektion in die Zelle eingebrachten artifiziellen Gens. Die durch ES-7 bzw. 20 ES-8 vermittelte Inhibition der EGFR-Expression ist deutlich geringer. Die in Fig. 24 verwendeten dsRNAs sind Tabelle 3 zu entnehmen.

25 VI. Hemmung der Expression des Multidrug resistance Gens 1 (MDR1) :

Versuchsprotokoll:

Der *in vitro* Nachweis für das Blockieren der MDR1-Expression 30 wurde in der Kolonkarzinom-Zelllinie LS174T (ATCC - American Type Culture Collection; Tom et al., 1976) durchgeführt. Von

dieser Zelllinie ist bekannt, daß die Expression von MDR1 durch Zugabe von Rifampicin zum Kulturmedium induzierbar ist (Geick et al., 2001). Transfektionen wurden mit verschiedenen käuflichen Transfektions-Kits (Lipofectamine, Oligofectamine, 5 beide Invitrogen; TransMessenger, Qiagen) durchgeführt, wobei der TransMessenger Transfektions-Kit sich als für diese Zelllinie am geeignetsten herausstellte.

Zur Durchführung der RNA-Interferenz-Experimente wurden 4
10 kurze doppelsträngige Ribonukleinsäuren R1-R4 eingesetzt, deren Sequenzen in Tabelle 4) gezeigt sind. Die Ribonukleinsäuren sind mit Abschnitten der kodierenden Sequenz von MDR1 (Sequenzprotokoll SQ 30) homolog. Die Sequenzen R1 - R3 bestehen aus einem 22-mer Sinn- und einem 24-mer Antisinn-Strang,
15 wobei der entstehende Doppelstrang am 3'-Ende des Antisinn-Stranges einen 2-Nukleotid-Überhang aufweist (0-22-2). Die Sequenz R4 entspricht R1, jedoch besteht sie aus einem 19-mer Doppelstrang mit je 2-Nukleotid-Überhängen an jedem 3'-Ende (2-19-2).

20

<u>Name</u>	<u>Sequenz- proto- koll-Nr.</u>	<u>Sequenz</u>	<u>Position in Daten- bank#</u>
Seq	SQ141	5' - CCA UCU CGA AAA GAA GUU AAG A-3'	1320-1342
R1	SQ142	3' -UG GGU AGA GCU UUU CUU CAA UUC U-5'	1335-1318
Seq	SQ143	5' - UAU AGG UUC CAG GCU UGC UGU A-3'	2599-2621
R2	SQ152	3' -CG AUA UCC AAG GUC CGA ACG ACA U-5'	2621-2597
Seq	SQ144	5' - CCA GAG AAG GCC GCA CCU GCA U-3'	3778-3799
R3	SQ145	3' -UC GGU CUC UUC CGG CGU GGA CGU A-5'	3799-3776
Seq	SQ146	5' - CCA UCU CGA AAA GAA GUU AAG-3'	1320-1341
R4	SQ147	3' -UG GGU AGA GCU UUU CUU CAA U -5'	1339-1318

			<u>Position in Daten- bank-#</u>
			<u>AF402779</u>
K1A/ K2B	SQ153 SQ158	5' - ACA GGA UGA GGA UCG UUU CGC A-3' 3' -UC UGU CCU ACU CCU AGC AAA GCG U-5'	2829-2808 2808-2831

Tabelle 4

Die in Tabelle 4 gezeigten Sequenzen sind nochmals im Sequenzprotokoll als Sequenzen SQ141-147, 152, 153, 158 wieder-gegeben. Die dsRNAs wurden in einer Konzentration von 175 nM jeweils als doppelte Ansätze in die Zellen transfiziert, welche am Tag zuvor in 12-Loch-Platten à $3,8 \times 10^5$ Zellen/Vertiefung ausgesät wurden. Dazu wurden pro Transfektionsansatz 93,3 µl EC-R-Puffer (TransMessenger Kit, Qiagen, Hilden) mit 3,2 µl Enhancer-R vermenkt und danach 3,5 µl der jeweiligen 20 µM dsRNA zugegeben, gut gemischt und 5 Minuten bei Raumtemperatur inkubiert. Nach Zugabe von jeweils 6 µl TransMessenger Transfection Reagent wurden die Transfektionsansätze 10 Sekunden kräftig gemischt und 10 Minuten bei Raumtemperatur inkubiert. In der Zwischenzeit wurde das Medium von den Zellen abgesaugt, einmal mit PBS (Phosphate buffered saline) gewaschen und 200 µl frisches Medium ohne FCS pro Vertiefung auf die Zellen gegeben. Nach Ablauf der 10-minütigen Inkubationszeit wurden je 100 µl FCS-freies Medium zu den Transfektionsansätzen pipettiert, gemischt, und die Mischung tropfenweise zu den Zellen pipettiert (die dsRNA-Konzentration von 175 µM bzieht sich auf 400 µl Medium Gesamtvolumen). Die dsRNA/Trans-Messenger-Komplexe wurden 4 Stunden bei 37°C mit den Zellen in FCS-freiem Medium inkubiert. Danach wurde ein Mediumwechsel durchgeführt, wobei das frische Medium 10 µM Rifampicin und 10% FCS enthielt. Als

Kontrolle wurde eine unspezifische dsRNA-Sequenz, die keinerlei Homologie mit der MDR1-Gensequenz aufweist,eingesetzt (K) und eine MOCK-Transfektion durchgeführt, die alle Reagenzien außer dsRNA enthielt.

5

Die Zellen wurden nach 24, 48 und 72 Stunden geerntet und die Gesamt-RNA mit dem RNeasy-Mini-Kit von Qiagen extrahiert. 10 µg Gesamt-RNA jeder Probe wurden auf einem 1%igen Agarose-Formaldehyd-Gel elektrophoretisch aufgetrennt, auf eine Ny-
10 lon-Membran geblottet und mit 5'-α³²P-dCTP random-markierten, spezifischen Sonden zuerst gegen MDR1 und nach dem Strippen des Blots gegen GAPDH als interne Kontrolle hybridisiert und auf Röntgenfilmen exponiert.

15 Die Röntgenfilme wurden digitalisiert (Image Master, VDS Pharmacia) und mit der Image-Quant-Software quantifiziert. Dabei wurde ein Abgleich der MDR1-spezifischen Banden mit den entsprechenden GAPDH-Banden durchgeführt.

20 Ergebnisse:

Die Fig. 25 und 26 zeigen Northern-Blots (Fig. 25a, 26a) mit quantitativer Auswertung der MDR1-spezifischen Banden nach Abgleich mit den entsprechenden GAPDH-Werten (Fig. 25b, 26b). Es konnte eine Reduktion der MDR1-mRNA um bis zu 55 % im Vergleich zur MOCK-Transfektion und um bis zu 45 % im Vergleich 25 zur unspezifischen Kontroll-Transfektion beobachtet werden. Nach 48 h ist eine signifikante Reduktion des MDR1-mRNA-Niveaus mit den als R1, R2, R3 (Tabelle 4) bezeichneten dsRNA-Konstrukten erreicht worden. Mit den R4-dsRNA-Konstrukten wurde nach 48 h keine signifikante Reduktion gegenüber den Kontrollen beobachtet (Fig. 26a und 26b). Nach 72 h war eine deutlich stärkere Reduktion des MDR1-mRNA-Levels mit R1, R2 und R3 gegenüber den Kontrollen im Vergleich zu den 48 h-Werten zu beobachten (Fig. 25a und 25b).

Mit R4 konnte zu diesem Zeitpunkt ebenfalls eine signifikante Verringerung des MDR1-mRNA-Niveaus erzielt werden. Somit reduzieren die Konstrukte mit einem 2nt-Überhang am 3'-Ende des Antisinnstrangs und einem doppelsträngigen Bereich aus 22 Nukleotidpaaren, relativ unabhängig von dem jeweiligen zum MDR1-Gen homologen Sequenzbereich (nach 48 h; Fig. 26b) das MDR1-mRNA-Level effizienter als die Konstrukte mit 2nt-Überhängen an den 3'-Enden beider Stränge (Antisinn- und Sinnstrang) und einem Doppelstrangbereich von 19 Nukleotidpaaren. Die Ergebnisse bekräftigen damit die in Ausführungsbeispiel IV beschriebene Inhibition der EGFR-Genexpression durch spezifische dsRNAs nach Transfektion in U-87 MG-Zellen.

Die Transfektionseffizienz wurde in einem getrennten Experiment mit Hilfe eines Texas-Red-markierten DNA-Oligonukleotids (TexRed-A(GATC)₅T; ebenfalls 175 nM transfiziert) ermittelt (Fig. 27a, 27b; 400fache Vergrößerung, 48h nach Transfektion). Sie betrug etwa 50% auf der Grundlage der rot fluoreszierenden Zellen im Vergleich zur Gesamtzellzahl. Berücksichtigt man die Transfektionsrate der Zellen von etwa 50%, so liegt die beobachtete Verringerung des MDR1-mRNA-Niveaus um ca. 45-55% liegt (verglichen mit den Kontrollen), den Schluss nahe, dass in allen Zellen, die mit spezifischer dsRNA erfolgreich transfiziert werden konnten, die MDR1-mRNA nahezu vollständig und spezifisch abgebaut wurde.

Literatur:

- Alroy I & Yarden Y (1997): The Erb signalling network in embryogenesis and oncogenesis: signal diversification through 5 combinatorial ligand-receptor interactions. FEBS Letters 410: 83-86.
- Bass,B.L., 2000. Double-stranded RNA as a template for gene silencing. Cell 101, 235-238.
- Bosher,J.M. and Labouesse,M., 2000. RNA interference: genetic wand and genetic watchdog. Nature Cell Biology 2, E31-E36.
- Bradford MM (1976): Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
- Caplen,N.J., Fleenor,J., Fire,A., and Morgan,R.A., 2000. dsRNA-mediated gene silencing in cultured *Drosophila* cells: a 20 tissue culture model for the analysis of RNA interference. Gene 252, 95-105.
- Clemens,J.C., Worby,C.A., Simonson-Leff,N., Muda,M., Maelama,T., Hemmings,B.A., and Dixon,J.E., 2000. Use of double-stranded RNA interference in *Drosophila* cell lines to dissect signal transduction pathways. Proc.Natl.Acad.Sci.USA 97, 6499-6503.
- Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fe-
30 hrenbacher L, Wolter JM, Paton V, Shak S, Liebermann G &
Slamon DJ (1999): Multinational study of the efficacy and
safety of humanized anti-HER2 monoclonal antibody in women
who have HER2-overexpressing metastatic breast cancer that

has progressed after chemotherapy for metastatic disease.

Journal of Clinical Oncology 17: 2639-2648.

Ding,S.W., 2000. RNA silencing. Curr. Opin. Biotechnol. 11,
5 152-156.

Fire,A., Xu,S., Montgomery,M.K., Kostas,S.A., Driver,S.E.,
and Mello,C.C., 1998. Potent and specific genetic interfer-
ence by double-stranded RNA in *Caenorhabditis elegans*. Nature
10 391, 806-811.

Fire,A., 1999. RNA-triggered gene silencing. Trends Genet.
15, 358-363.

15 Freier,S.M., Kierzek,R., Jaeger,J.A., Sugimoto,N., Caruth-
ers,M.H., Neilson,T., and Turner,D.H., 1986. Improved free-
energy parameters for prediction of RNA duplex stability.
Proc. Natl. Acad. Sci. USA 83, 9373-9377 .

20 Geick, A., Eichelbaum, M., Burk, O. (2001). Nuclear receptor
response elements mediate induction of intestinal MDR1 by ri-
fampin. J. Biol. Chem. 276 (18), 14581-14587.

Fontanini G, De Laurentiis M, Vignati S, Chine S, Lucchi M,
25 Silvestri V, Mussi A, De Placido S, Tortora G, Bianco AR,
Gullick W, Angeletti CA, Bevilaqua G & Ciardiello F (1998):
Evaluation of epidermal growth factor-related growth factors
and receptors and of neoangiogenesis in completely resected
stage I-IIIA non-small-cell lung cancer: amphiregulin and mi-
30 crovessel count are independent prognostic factors of sur-
vival. Clinical Cancer Research 4: 241-249.

- Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J., 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in *Drosophila* cells. *Nature* 404, 293-296.
- 5 Higgins, C.F. (1995). The ABC of channel regulation. *Cell*, 82, 693-696.
- Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M & Nagy A (1993): Generating green fluorescent mice by germline transmission of green fluorescent ES cells. *Mech. Dev.* 76: 79-90.
- 10 Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M & Nagy A (1998): Non-invasive sexing of preimplantation mammalian embryos. *Nature Genetics* 19: 220-222.
- 15 Kyhse-Anderson J (1984): Electroblotting of multiple gels: A simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. *J. Biochem. Biophys. Methods* 10: 203-210.
- 20 Lämmli UK (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 277: 680-685.
- 25 Loo, T.W., and Clarke, D.M. (1999) *Biochem. Cell Biol.* 77, 11-23.
- Huang SM & Harari PM (1999): Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and preliminary clinical results. *Investigational New Drugs* 17: 259-269.
- 30 Limmer, S., Hofmann, H.-P., Ott, G., and Sprinzl, M., 1993. The 3'-terminal end (NCCA) of tRNA determines the structure and

stability of the aminoacyl acceptor stem. Proc. Natl. Acad. Sci. USA 90 , 6199-6202.

Montgomery,M.K. and Fire,A., 1998. Double-stranded RNA as a
5 mediator in sequence-specific genetic silencing and co-suppression. Trends Genet. 14, 255-258.

Montgomery,M.K., Xu,S., and Fire,A., 1998. RNA as a target of
double-stranded RNA-mediated genetic interference in *Caeno-*
10 *rhabditis elegans*. Proc. Natl. Acad. Sci. USA 95, 15502-
15507.

Rieske P, Kordek R, Bartkowiak J, Debiec-Rychter M, Bienhat W
& Liberski PP (1998): A comparative study of epidermal growth
15 factor (EGFR) and mdm2 gene amplification and protein immu-
noreactivity in human glioblastomas. Polish Journal of Pa-
thology 49: 145-149.

Robert, J. (1999). Multidrug resistance in oncology: diagnostic and therapeutic approaches. Europ J Clin Invest 29, 536-
20 545.

Stavrovskaya, A.A. (2000) Biochemistry (Moscow) 65 (1), 95-
106.

25

Salomon DS, Brandt R, Ciardiello F & Normanno N (1995): Epidermal growth factor related peptides and their receptors in human malignancies: Critical Reviews in Oncology and Haematology 19: 183-232.

30

Tom, B.H., Rutzky, L.P., Jakstys, M.M., Oyasu, R., Kaye, C.I., Kahan, B.D. (1976), In vitro, 12, 180-191.

Tsuruo, T., Iida, H., Tsukagoshi, S., Sakurai, Y. (1981). Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. *Cancer Res*, 41, 1967-72.

5

Ui-Tei, K., Zenno, S., Miyata, Y., and Saigo, K., 2000. Sensitive assay of RNA interference in *Drosophila* and Chinese hamster cultured cells using firefly luciferase gene as target. *FEBS Lett.* 479, 79-82.

10

Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Liebermann TA, Schlessinger J et al. (1984): Human epidermal growth factor receptor cDNA sequences and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. *Nature* 309: 418-425.

15

Ullrich A & Schlessinger J (1990): Signal transduction by receptors with tyrosine kinase activity. *Cell* 61: 203-212.

20

Van der Geer P, Hunter T & Linberg RA (1994): Receptor protein-tyrosine kinases and their signal transduction pathways. Annual review in Cell Biology 10: 251-337.

25

Voldborg BR, Damstrup L, Spang-Thopmsen M & Poulsen HS (1997): Epidermal growth factor Receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. *Annals of Oncology* 8: 1197-1206.

30

Walker RA & Dearing SJ (1999): Expression of epidermal growth factor receptor mRNA and protein in primary breast carcinomas. *Breast Cancer Research Treatment* 53: 167-176.

Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P., 2000.
RNAi: double-stranded RNA directs the ATP-dependent cleavage
of mRNA at 21 to 23 nucleotide intervals. Cell 101 , 25-33.

- 5 Zor T & Selinger Z (1996): Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal. Biochem. 236: 302-308.

Patentansprüche

1. Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte:

5

Einführen mindestens einer doppelsträngigen Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,

10 wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

15

und wobei die dsRNA zumindest an einem Ende (E1, E2) der dsRNA I einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

20 2. Verfahren nach Anspruch 1, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

25 3. Verfahren nach Anspruch 1 oder 2, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

4. Verfahren nach Anspruch 3, wobei das glatte Ende (E1, E2) das 5'-Ende des einen Strangs (as1) enthält.

30 5. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

6. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest eine entsprechend der dsRNA I nach einem der vorhergehenden Ansprüche ausgebildete weitere doppelsträngige Ribonukleinsäure (dsRNA II) in die Zelle eingeführt wird,
5 wobei der eine Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei ein weiterer Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des
10 Zielgens ist.

7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren aufweist/en.
15

8. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

20 9. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabsintet sind.

25 10. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen,
30 Cytokin-Gen, Id-Protein-Gen, Prionen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Ge-

ne von Proteinasen sowie Apoptose- und Zellzyklus-regulierenden Molekülen.

12. Verfahren nach einem der vorhergehenden Ansprüche, wobei
5 das Zielgen das MDR1-Gens ist.

13. Verfahren nach einem der vorhergehenden Ansprüche, wobei
als dsRNA I/II eine der Sequenzen SQ141 -173 bzw. ein aus
zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnse-
10 quenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen
SQ141 - 173 verwendet wird.

14. Verfahren nach einem der vorhergehenden Ansprüche, wobei
die Expression nach dem Prinzip der RNA-Interferenz gehemmt
15 wird.

15. Verfahren nach einem der vorhergehenden Ansprüche, wobei
das Zielgen in pathogenen Organismen, vorzugsweise in Plasmo-
dien, exprimiert wird.
20

16. Verfahren nach einem der vorhergehenden Ansprüche, wobei
das Zielgen Bestandteil eines Virus oder Viroids ist.

17. Verfahren nach Anspruch 16, wobei das Virus ein humanpa-
25 thogenes Virus oder Viroid ist.

18. Verfahren nach Anspruch 16, wobei das Virus oder Viroid
ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

30 19. Verfahren nach einem der vorhergehenden Ansprüche, wobei
ungepaarte Nukleotide durch Nukleosidthiophosphate substitu-
iert sind.

20. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest ein Ende (E1, E2) der dsRNA I/II modifiziert wird, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

5

21. Verfahren nach einem der vorhergehenden Ansprüche, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht wird.

10

22. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

15

23. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.

20

24. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Oligoethylenglycol-Ketten sind.

25

25. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet wird.

30

26. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Purinanaloga gebildet wird.

27. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

5 28. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktio-
nelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-
acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psora-
10 len.

29. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1,
E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-
15 Gruppen gebildet wird.

30. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1,
E2) befindliche Tripelhelix-Bindungen hergestellt wird.

20 31. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird.

25 32. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.

30 33. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

34. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

5 35. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

10 36. Verfahren nach einem der vorhergehenden Ansprüche, wobei der eine Strang (as1, as2) der dsRNA I/II zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

15 37. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

20 38. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.

25 39. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen ist.

30 40. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verabreicht wird.

41. Verwendung einer die doppelsträngigen Ribonukleinsäure (dsRNA I) zur Hemmung der Expression eines Zielgens in einer Zelle,

wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

und wobei die dsRNA I zumindest am einen Ende (E1, E2) einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

10

42. Verwendung nach Anspruch 41, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

15

43. Verwendung nach Anspruch 41 oder 42, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

44. Verwendung nach Anspruch 43, wobei das glatte Ende (E1, E2) das 5'-Ende des einen Strangs (as1) enthält.

20

45. Verwendung nach einem der Ansprüche 41 bis 44, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

25

46. Verwendung nach einem der Ansprüche 41 bis 45, wobei zumindest eine weitere entsprechend der dsRNA I nach einem der Ansprüche 41 bis 45 ausgebildete doppelsträngige Ribonukleinsäure (dsRNA II) in die Zelle eingeführt wird, wobei der eine Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Sinn-Strangs des Zielgens ist, und wobei der weitere Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

47. Verwendung nach einem der Ansprüche 41 bis 47, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren 5 aufweist/en.
48. Verwendung nach einem der Ansprüche 41 bis 47, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.
- 10 49. Verwendung nach einem der Ansprüche 41 bis 48, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.
- 15 50. Verwendung nach einem der Ansprüche 41 bis 49, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.
51. Verwendung nach einem der Ansprüche 41 bis 50, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, 20 Cytokin-Gen, Id-Protein-Gen, Prionen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie von Apoptose- und Zellzyklusregulierende Molekülen.
- 25 52. Verwendung nach einem der Ansprüche 41 bis 51, wobei das Zielgen das MRD1-Gens ist.
- 30 53. Verwendung nach einem der Ansprüche 41 bis 52, wobei als dsRNA I/II eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 - 173 verwendet wird.

54. Verwendung nach einem der Ansprüche 41 bis 53, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.

5 55. Verwendung nach einem der Ansprüche 41 bis 54, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert wird.

10 56. Verwendung nach einem der Ansprüche 41 bis 55, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

57. Verwendung nach Anspruch 56, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

15 58. Verwendung nach Anspruch 56, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

20 59. Verwendung nach einem der Ansprüche 41 bis 58, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

25 60. Verwendung nach einem der Ansprüche 41 bis 59, wobei zu mindest ein Ende (E1, E2) der dsRNA modifiziert wird, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

30 61. Verwendung nach einem der Ansprüche 41 bis 60, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht wird.

62. Verwendung nach einem der Ansprüche 41 bis 61, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwir-

kungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

63. Verwendung nach einem der Ansprüche 41 bis 62, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.

64. Verwendung nach einem der Ansprüche 41 bis 63, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicooxy-1,3-propandiol)- und/oder Oligoethylenglycol-Ketten sind.

65. Verwendung nach einem der Ansprüche 41 bis 64, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet wird.

66. Verwendung nach einem der Ansprüche 41 bis 65, wobei die chemische Verknüpfung durch Purinanaloga gebildet wird.

67. Verwendung nach einem der Ansprüche 41 bis 66, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

68. Verwendung nach einem der Ansprüche 41 bis 67, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

69. Verwendung nach einem der Ansprüche 41 bis 68, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.

70. Verwendung nach einem der Ansprüche 41 bis 69, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt wird.

5 71. Verwendung nach einem der Ansprüche 41 bis 70, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird.

10 72. Verwendung nach einem der Ansprüche 41 bis 71, wobei die dsRNA I/II an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.

15 73. Verwendung nach einem der Ansprüche 41 bis 72, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

20 74. Verwendung nach einem der Ansprüche 41 bis 73, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

25 75. Verwendung nach einem der Ansprüche 41 bis 74, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

76. Verwendung nach einem der Ansprüche 41 bis 75, wobei der eine Strang (as1, as2) der dsRNA I/II zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

30

77. Verwendung nach einem der Ansprüche 41 bis 76, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

78. Verwendung nach einem der Ansprüche 41 bis 77, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.

5

79. Verwendung nach einem der Ansprüche 41 bis 78, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen ist.

10 80. Verwendung nach einem der Ansprüche 41 bis 79, wobei die dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verabreicht wird.

15 81. Medikament zur Hemmung der Expression eines Zielgens in einer Zelle enthaltend eine doppelsträngige Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,

20 wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist,

25 und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

und wobei die dsRNA I zumindest am einen Ende (E1, E2) einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

30

82. Medikament nach Anspruch 81, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

83. Medikament nach Anspruch 81 oder 82, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

84. Medikament nach Anspruch 83, wobei das glatte Ende (E1, 5 E2) das 5'-Ende des einen Strangs (as1) enthält.

85. Medikament nach einem der Ansprüche 81 bis 84, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

10

86. Medikament nach einem der Ansprüche 81 bis 85, enthaltend zumindest eine weitere entsprechend der dsRNA I nach einem der Ansprüche 81 bis 85 ausgebildete doppelsträngige Ribonukleinsäure (dsRNA II), wobei der eine Strang (as1) oder 15 zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei der weitere Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

20

87. Medikament nach einem der Ansprüche 81 bis 86, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren aufweist/en.

25

88. Medikament nach einem der Ansprüche 81 bis 87, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

30

89. Medikament nach einem der Ansprüche 81 bis 88, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

90. Medikament nach einem der Ansprüche 81 bis 89, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen,

Cytokin-Gen, Id-Protein-Gen, Priongen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie von Apoptose- und Zellzyklusregulierende Molekülen.

91. Medikament nach einem der Ansprüche 81 bis 90, wobei das Zielgen das MRD1-Gen ist.

10

92. Medikament nach einem der Ansprüche 81 bis 91, wobei als dsRNA eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 - 173 verwendet wird.

15

93. Medikament nach einem der Ansprüche 81 bis 92, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.

20

94. Medikament nach einem der Ansprüche 81 bis 93, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimierbar ist.

25

95. Medikament nach einem der Ansprüche 81 bis 94, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

96. Medikament nach Anspruch 95, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

30

97. Medikament nach Anspruch 95, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

98. Medikament nach einem der Ansprüche 81 bis 97, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

5 99. Medikament nach einem der Ansprüche 81 bis 98, wobei zu mindest ein Ende (E1, E2) der dsRNA modifiziert ist, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

10 100. Medikament nach einem der Ansprüche 81 bis 99, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht ist.

15 101. Medikament nach einem der Ansprüche 81 bis 100, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet
20 ist.

102. Medikament nach einem der Ansprüche 81 bis 101, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.

25 103. Medikament nach einem der Ansprüche 81 bis 102, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder
30 Oligoethylenglycol-Ketten sind.

104. Medikament nach einem der Ansprüche 81 bis 103, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet ist.

105. Medikament nach einem der Ansprüche 81 bis 104, wobei die chemische Verknüpfung durch Purinanaloge gebildet ist.
- 5 106. Medikament nach einem der Ansprüche 81 bis 105, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet ist.
- 10 107. Medikament nach einem der Ansprüche 81 bis 106, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktio nelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psor alien.
- 15 108. Medikament nach einem der Ansprüche 81 bis 107, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet ist.
- 20 109. Medikament nach einem der Ansprüche 81 bis 108, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt ist.
- 25 110. Medikament nach einem der Ansprüche 81 bis 109, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen ist.
- 30 111. Medikament nach einem der Ansprüche 81 bis 110, wobei die dsRNA I an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben ist/sind.

112. Medikament nach einem der Ansprüche 81 bis 111, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

113. Medikament nach einem der Ansprüche 81 bis 112, wobei
5 das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-
Protein 2 (VP2) des Polyomavirus enthält.

114. Medikament nach einem der Ansprüche 81 bis 113, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem
10 Hüllprotein die eine Seite zum Inneren des Kapsids oder kap-
sidartigen Gebildes gewandt ist.

115. Medikament nach einem der Ansprüche 81 bis 114, wobei
der eine Strang (as1, as2) der dsRNA I zum primären oder pro-
15 zessierten RNA-Transkript des Zielgens komplementär ist.

116. Medikament nach einem der Ansprüche 81 bis 115, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

20 117. Medikament nach einem der Ansprüche 81 bis 116, wobei der erste (B1) und der zweite Bereich (B2) voneinander beab-
standet sind.

25 118. Medikament nach einem der Ansprüche 81 bis 117, wobei die dsRNA in einer Menge von höchstens 5 mg pro Verabrei-
chungseinheit enthalten ist.

119. Medikament nach einem der Ansprüche 81 bis 118, wobei
30 die dsRNA in eine Pufferlösung aufgenommen ist.

120. Medikament nach einem der Ansprüche 81 bis 119, wobei die dsRNA oral oder mittels Injektion oder Infusion intrave-
nös, intratumoral, inhalativ, intraperitoneal verabreichtbar ist.

121. Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte:

5

Einführen mindestens einer doppelsträngigen Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,

10 wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

15

und wobei die dsRNA zumindest an einem Ende (E1, E2) der dsRNA I einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

20 122. Verfahren nach Anspruch 1, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

25 123. Verfahren nach Anspruch 1 oder 2, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

124. Verfahren nach Anspruch 3, wobei das glatte Ende (E1, E2) das 5'-Ende des einen Strangs (as1) enthält.

30 125. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

126. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest eine entsprechend der dsRNA I nach einem der vorhergehenden Ansprüche ausgebildete weitere doppelsträngige Ribonukleinsäure (dsRNA II) in die Zelle eingeführt wird,
5 wobei der eine Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei ein weiterer Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des
10 Zielgens ist.

127. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren aufweist/en.
15

128. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

20 129. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabsintet sind.

25 130. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

131. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen,
30 Cytokin-Gen, Id-Protein-Gen, Prionen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Ge-

ne von Proteinasen sowie Apoptose- und Zellzyklus-regulierenden Molekülen.

132. Verfahren nach einem der vorhergehenden Ansprüche, wobei
5 das Zielgen das MDR1-Gens ist.

133. Verfahren nach einem der vorhergehenden Ansprüche, wobei
als dsRNA I/II eine der Sequenzen SQ141 -173 bzw. ein aus
zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnse-
10 quenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen
SQ141 - 173 verwendet wird.

134. Verfahren nach einem der vorhergehenden Ansprüche, wobei
die Expression nach dem Prinzip der RNA-Interferenz gehemmt
15 wird.

135. Verfahren nach einem der vorhergehenden Ansprüche, wobei
das Zielgen in pathogenen Organismen, vorzugsweise in Plasmo-
dien, exprimiert wird.

20 136. Verfahren nach einem der vorhergehenden Ansprüche, wobei
das Zielgen Bestandteil eines Virus oder Viroids ist.

137. Verfahren nach Anspruch 16, wobei das Virus ein humanpa-
25 thogenes Virus oder Viroid ist.

138. Verfahren nach Anspruch 16, wobei das Virus oder Viroid
ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

30 139. Verfahren nach einem der vorhergehenden Ansprüche, wobei
ungepaarte Nukleotide durch Nukleosidthiophosphate substitu-
iert sind.

140. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest ein Ende (E1, E2) der dsRNA I/II modifiziert wird, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

5

141. Verfahren nach einem der vorhergehenden Ansprüche, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht wird.

10

142. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

15

143. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.

20

144. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Oligoethylenglycol-Ketten sind.

25

145. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet wird.

30

146. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Purinanaloga gebildet wird.

147. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

5 148. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktio-
nelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-
acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psora-
10 len.

149. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1,
15 E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-
Gruppen gebildet wird.

150. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1,
20 E2) befindliche Tripelhelix-Bindungen hergestellt wird.

151. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird.

25 152. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.

30 153. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

154. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

5 155. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

10 156. Verfahren nach einem der vorhergehenden Ansprüche, wobei der eine Strang (as1, as2) der dsRNA I/II zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

15 157. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

20 158. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.

25 159. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen ist.

30 160. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verabreicht wird.

161. Verwendung einer die doppelsträngigen Ribonukleinsäure (dsRNA I) zur Hemmung der Expression eines Zielgens in einer Zelle,

wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

und wobei die dsRNA I zumindest am einen Ende (E1, E2) einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

10

162. Verwendung nach Anspruch 41, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

15

163. Verwendung nach Anspruch 41 oder 42, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

164. Verwendung nach Anspruch 43, wobei das glatte Ende (E1, E2) das 5'-Ende des einen Strangs (as1) enthält.

20

165. Verwendung nach einem der Ansprüche 41 bis 44, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

25

166. Verwendung nach einem der Ansprüche 41 bis 45, wobei zumindest eine weitere entsprechend der dsRNA I nach einem der Ansprüche 41 bis 45 ausgebildete doppelsträngige Ribonukleinäure (dsRNA II) in die Zelle eingeführt wird, wobei der eine Strang (as1) oder zumindest ein Abschnitt des einen

30

Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Sinn-Strangs des Zielgens ist, und wobei der weitere Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

167. Verwendung nach einem der Ansprüche 41 bis 47, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren 5 aufweist/en.
168. Verwendung nach einem der Ansprüche 41 bis 47, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.
- 10 169. Verwendung nach einem der Ansprüche 41 bis 48, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.
- 15 170. Verwendung nach einem der Ansprüche 41 bis 49, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.
171. Verwendung nach einem der Ansprüche 41 bis 50, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, 20 Cytokin-Gen, Id-Protein-Gen, Prionen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie von Apoptose- und Zellzyklusregulierende Molekülen.
- 25 172. Verwendung nach einem der Ansprüche 41 bis 51, wobei das Zielgen das MRD1-Gens ist.
- 30 173. Verwendung nach einem der Ansprüche 41 bis 52, wobei als dsRNA I/II eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 - 173 verwendet wird.

174. Verwendung nach einem der Ansprüche 41 bis 53, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.
- 5 175. Verwendung nach einem der Ansprüche 41 bis 54, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert wird.
- 10 176. Verwendung nach einem der Ansprüche 41 bis 55, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.
177. Verwendung nach Anspruch 56, wobei das Virus ein humanpathogenes Virus oder Viroid ist.
- 15 178. Verwendung nach Anspruch 56, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.
179. Verwendung nach einem der Ansprüche 41 bis 58, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.
- 20 180. Verwendung nach einem der Ansprüche 41 bis 59, wobei zu mindest ein Ende (E1, E2) der dsRNA modifiziert wird, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstrände entgegenzuwirken.
- 25 181. Verwendung nach einem der Ansprüche 41 bis 60, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht wird.
- 30 182. Verwendung nach einem der Ansprüche 41 bis 61, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwir-

kungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

183. Verwendung nach einem der Ansprüche 41 bis 62, wobei die
5 chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.

184. Verwendung nach einem der Ansprüche 41 bis 63, wobei die
10 chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Oligoethylenglycol-Ketten sind.

185. Verwendung nach einem der Ansprüche 41 bis 64, wobei die
15 chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet wird.

186. Verwendung nach einem der Ansprüche 41 bis 65, wobei die
20 chemische Verknüpfung durch Purinanaloga gebildet wird.

187. Verwendung nach einem der Ansprüche 41 bis 66, wobei die
25 chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

188. Verwendung nach einem der Ansprüche 41 bis 67, wobei zur
25 Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

30 189. Verwendung nach einem der Ansprüche 41 bis 68, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.

190. Verwendung nach einem der Ansprüche 41 bis 69, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt wird.

5 191. Verwendung nach einem der Ansprüche 41 bis 70, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird.

10 192. Verwendung nach einem der Ansprüche 41 bis 71, wobei die dsRNA I/II an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.

15 193. Verwendung nach einem der Ansprüche 41 bis 72, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

194. Verwendung nach einem der Ansprüche 41 bis 73, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

20 195. Verwendung nach einem der Ansprüche 41 bis 74, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

25 196. Verwendung nach einem der Ansprüche 41 bis 75, wobei der eine Strang (as1, as2) der dsRNA I/II zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

30

197. Verwendung nach einem der Ansprüche 41 bis 76, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

198. Verwendung nach einem der Ansprüche 41 bis 77, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.

5

199. Verwendung nach einem der Ansprüche 41 bis 78, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen ist.

10 200. Verwendung nach einem der Ansprüche 41 bis 79, wobei die dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verabreicht wird.

15 201. Medikament zur Hemmung der Expression eines Zielgens in einer Zelle enthaltend eine doppelsträngige Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,

20 wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist,

25 und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

und wobei die dsRNA I zumindest am einen Ende (E1, E2) einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

30.

202. Medikament nach Anspruch 81, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

203. Medikament nach Anspruch 81 oder 82, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

204. Medikament nach Anspruch 83, wobei das glatte Ende (E1, 5 E2) das 5'-Ende des einen Strangs (as1) enthält.

205. Medikament nach einem der Ansprüche 81 bis 84, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

10

206. Medikament nach einem der Ansprüche 81 bis 85, enthaltend zumindest eine weitere entsprechend der dsRNA I nach einem der Ansprüche 81 bis 85 ausgebildete doppelsträngige Ribonukleinsäure (dsRNA II), wobei der eine Strang (as1) oder 15 zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei der weitere Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

20

207. Medikament nach einem der Ansprüche 81 bis 86, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren aufweist/en.

25

208. Medikament nach einem der Ansprüche 81 bis 87, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

30 209. Medikament nach einem der Ansprüche 81 bis 88, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

210. Medikament nach einem der Ansprüche 81 bis 89, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen,

Cytokin-Gen, Id-Protein-Gen, Prionen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie von Apoptose- und Zellzyklusregulierende Molekülen.

211. Medikament nach einem der Ansprüche 81 bis 90, wobei das Zielgen das MRD1-Gen ist.

10

212. Medikament nach einem der Ansprüche 81 bis 91, wobei als dsRNA eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 - 173 verwendet wird.

15

213. Medikament nach einem der Ansprüche 81 bis 92, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.

20

214. Medikament nach einem der Ansprüche 81 bis 93, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimierbar ist.

25

215. Medikament nach einem der Ansprüche 81 bis 94, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

216. Medikament nach Anspruch 95, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

30

217. Medikament nach Anspruch 95, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

218. Medikament nach einem der Ansprüche 81 bis 97, wobei un-gepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.
- 5 219. Medikament nach einem der Ansprüche 81 bis 98, wobei zu-mindest ein Ende (E1, E2) der dsRNA modifiziert ist, um einem Abbau in der Zelle oder einer Dissoziation in die Einzel-stränge entgegenzuwirken.
- 10 220. Medikament nach einem der Ansprüche 81 bis 99, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht ist.
- 15 221. Medikament nach einem der Ansprüche 81 bis 100, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechsel-wirkungen, vorzugsweise van-der-Waals- oder Stapelungswech-selwirkungen, oder durch Metall-Ionenkoordination gebildet
20 ist.
222. Medikament nach einem der Ansprüche 81 bis 101, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.
- 25 223. Medikament nach einem der Ansprüche 81 bis 102, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbin-dungsgruppen gebildet wird, wobei die Verbindungsgruppen vor-zugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder
30 Oligoethylenglycol-Ketten sind.
224. Medikament nach einem der Ansprüche 81 bis 103, wobei die chemische Verknüpfung durch anstelle von Nukleotiden be-nutzte verzweigte Nukleotidanaloge gebildet ist.

225. Medikament nach einem der Ansprüche 81 bis 104, wobei die chemische Verknüpfung durch Purinanaloga gebildet ist.
- 5 226. Medikament nach einem der Ansprüche 81 bis 105, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet ist.
- 10 227. Medikament nach einem der Ansprüche 81 bis 106, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoraleen.
- 15 228. Medikament nach einem der Ansprüche 81 bis 107, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet ist.
- 20 229. Medikament nach einem der Ansprüche 81 bis 108, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt ist.
- 25 230. Medikament nach einem der Ansprüche 81 bis 109, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen ist.
- 30 231. Medikament nach einem der Ansprüche 81 bis 110, wobei die dsRNA I an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hülpprotein gebunden, damit assoziiert oder davon umgeben ist/sind.

232. Medikament nach einem der Ansprüche 81 bis 111, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

233. Medikament nach einem der Ansprüche 81 bis 112, wobei
5 das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-
Protein 2 (VP2) des Polyomavirus enthält.

234. Medikament nach einem der Ansprüche 81 bis 113, wobei
bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem
10 Hüllprotein die eine Seite zum Inneren des Kapsids oder kap-
sidartigen Gebildes gewandt ist.

235. Medikament nach einem der Ansprüche 81 bis 114, wobei
der eine Strang (as1, as2) der dsRNA I zum primären oder pro-
15 zessierten RNA-Transkript des Zielgens komplementär ist.

236. Medikament nach einem der Ansprüche 81 bis 115, wobei
die Zelle eine Vertebratenzelle oder eine menschliche Zelle
ist.

20 237. Medikament nach einem der Ansprüche 81 bis 116, wobei
der erste (B1) und der zweite Bereich (B2) voneinander beab-
standet sind.

25 238. Medikament nach einem der Ansprüche 81 bis 117, wobei
die dsRNA in einer Menge von höchstens 5 mg pro Verabrei-
chungseinheit enthalten ist.

239. Medikament nach einem der Ansprüche 81 bis 118, wobei
30 die dsRNA in eine Pufferlösung aufgenommen ist.

240. Medikament nach einem der Ansprüche 81 bis 119, wobei
die dsRNA oral oder mittels Injektion oder Infusion intrave-

nös, intratumoral, inhalativ, intraperitoneal verabrechbar ist.

1/20

Fig. 1a**Fig. 1b****Fig. 2**

2/20

Fig. 3

Fig. 4

3/20

Fig. 5

Fig. 6

4/20

Fig. 7

5/20

Fig. 8

6/20

Fig. 9

7/20

Fig. 10

Fig. 11

8/20

Fig. 12**Fig. 13****Fig. 14**

9/20

Fig. 15

Fig. 16

10/20

Fig. 17

11/20

Fig. 18

12/20

Fig. 19

13/20

Fig. 20

14/20

Fig. 21**Fig. 22**

15/20

Fig. 23

Fig. 24

16/20

Fig. 25a

17/20

Fig. 25b

18/20

Fig. 26a

19/20

Fig. 26b

20/20

Fig. 27

SEQUENZPROTOKOLL

<110> Ribopharma AG

5 <120> Verfahren zur Hemmung der Expression
eines Zielgens

<130>

10 <140>

<141>

<160> 142

15 <170> PatentIn Ver. 2.1

<210> 1

<211> 2955

<212> DNA

20 <213> Homo sapiens

<300>

<302> Eph A1

<310> NM00532

25

<300>

<302> ephrin A1

<310> NM00532

30 <400> 1

atggagcggc gctggccctt ggggcttaggg ctgggtgtgc tgctctgcgc cccgctgccc 60
ccggggcgc gcgccaagga agttactctg atggacacaaa gcaaggcaca gggagagctg 120ggctggctgc tggatcccc aaaagatggg tggagtgaac agcaacagat actgaatggg 180
acacccctct acatgtacca ggactgccc atgcaaggac gcagagacac tgaccactgg 24035 cttcgtctca attggatcta ccgcggggag gaggcttccc gcgtccacgt ggagctgcag 300
ttcacccgtgc gggactgcaa gagttccctt gggggagccg ggcctctggg ctgcaaggag 360accttcaccc ttctgtacat ggagagtgc caggatgtgg gcattcagct ccgacggccc 420
ttgttccaga aggttaaccac ggtgctgcgca gaccagact tcaccattcg agaccttgcg 48040 tctggctccg tgaagctgaa tgtggagcgc tgctctctgg gccgcctgcg ccggcgtggc 540
cttacccctcg ctttccacaa cccgggtgcc tgtgtggccc tggtgtctgt ccgggtcttc 600taccagcgtc gtcttgagac cctgaatggc ttggcccaat tcccagacac tctgcctggc 660
cccgctgggt tggtggaaat ggcgggcacc tgcttgcacc acgcgcgggc cagccccagg 720ccctcagggt caccggccat gcactgcagc cctgatggcg agtggctgtt gcctgttagga 780
cggtgccact gtgagctgg ctatgaggaa ggtggcagtg gcgaagcatg tgggcctgc 84045 cctagcggct cttaccggat ggacatggac acaccccttt gtctcacgtg ccccccagcag 900
agcaactgtcg agtctgaggg ggcaccatc tgcacccatg agagcggcca ttacagact 960ccgggggagg gccccccagg ggcattgcaca ggtttccctt cggccccccc aaacctgagc 1020
ttctctgcct caggactca gtcctccctg cttggggaaac ccccaaggaga tacgggggg 108050 cgcaggatcg tcaagatacg tgtggatgtt tcccaatgtc agggcacatc acaggacggg 1140
ggccctgtcc agccctgtgg ggtggcgtg cacttctcgc cggggcccg ggcgcctacc 1200acacctgcag tgcattgtcaa tggcattgtaa ctttatgcac actacacatt taatgtggaa 1260
gccaaaatg gatgttcagg gctgggcagc tctggccatg ccagcacctc agtcagcatc 1320

agcatggggc atgcagatgc actgtcaggc ctgtctctga gactgtgtaa gaaagaaccg 1380

agccaactag agctgacctg ggcggggtcc cggccccggaa gcccctgggc gaacctgacc 1440

55 tatgagctgc acgtgctgaa ccaggatgaa gaacgggtacc agatgttct agaaccagg 1500
gtcttgcgtg cagactgcg cgcctgacacc acatacatcg tcagactccg aatgctgacc 1560

ccactgggtc ctggcccttt ctccctgtat catgatgtttt ggaccggccc accagtgtcc 1620

aggggcctga ctggaggaga gattgttagcc gtcatttttgg ggtctgtgt tggtgcagcc 1680

60 cactgtgaccg cgccaccatgtt gttggatcgag aggacaactgt gtgctgaagc cttatgtgtt 1800

acctccaggc atacgaggac cctgcacagg gaggcccttggg ctttacccgg aggtgtgtt 1860

aattttccctt cccggggact tgcattccaggc tggctgtatgg tggacactgt cataggagaa 1920

	ttcaactaccg	agatccatcc	atcctgtgtc	actcgccaga	aggtgatcg	agcaggagag	1980
	tttggggagg	tgtacaaggg	catgtgaag	acatcctcg	ggaagaagga	ggtgccgg	2040
5	gccccatcaaga	cgctgaaagc	cggctacaca	gagaagcagc	gagtggactt	cctcggcgag	2100
	gccccatca	tggccagtt	cagccaccac	aacatcatcc	gcctagaggg	cgtcatctcc	2160
	aaatacaagc	ccatgtat	catcaactgag	tacatggaga	atggggccct	ggacaagttc	2220
	cttcgggaga	aggatggcg	gttcaagcgt	ctgcagctgg	tggccatgt	gccccggatc	2280
	gcagctggca	tgaagtacct	ggccaacatg	aactatgtgc	accgtgacct	gctgcccgc	2340
10	aacatctcg	tcaacagcaa	cctgtctgc	aagggtctg	actttggct	gtcccgctg	2400
	ctggaggacg	accccggggc	cacccatacc	accaggggc	gcaagatccc	catccgctgg	2460
	accgccccgg	aggccatttc	ctacccggaa	ttcacctctg	ccagcgacgt	gtggagctt	2520
	ggcattgtca	tgtggggagg	gatgacctat	ggcgagcg	cctactggg	gttgtccaac	2580
	cacgaggtga	tgaaagccat	caatgtggc	ttccggctcc	ccacacccat	ggactgcccc	2640
15	tccgccccatct	accagctcat	gatgcgtgc	tggcagcagg	agcgtgccc	ccgcccccaag	2700
	ttcgtgtaca	tcgtcagcat	cctggacaag	ctcattcgt	cccctgactc	cctcaagacc	2760
	ctggctgact	ttgacccccc	cgtgtctatc	cggctccca	gcacgagcg	ctcggagggg	2820
	gtgcccttcc	gcacgggtgc	cgagtggctg	gagtccatca	agatgcagca	gtatacggag	2880
	cacttcatgg	cggccggcta	cactgccc	gagaagggtgg	tgcagatgac	caacgacgac	2940
	ataaagagga	ttgggggtgc	gtgcggggc	caccagaagc	gcatccctta	cagccctgctg	3000
20	ggactcaagg	accagggtgaa	cactgtgggg	atccccatct	ga		3042
	<210> 3						
	<211> 2953						
	<212> DNA						
25	<213> Homo sapiens						
	<300>						
	<302> ephrin A3						
	<310> NM005233						
30	<400> 3						
	atggattgtc	agctctccat	cctccctt	ctcagctgt	ctgttctcg	cagcttcggg	60
	gaactgattc	cgcagcccttc	caatgaagtc	aatctactgg	attcaaaaac	aattcaaggg	120
	gagctggct	ggatcttta	tccatcacat	gggtggaaag	agatcagtgg	tgtggatgaa	180
35	cattacacac	ccatcaggac	ttaccagggt	tgcaatgtca	tggaccacag	tcaaaaacaat	240
	tggctgagaa	caaactgggt	ccccaggaac	tcagctcaga	agatttatgt	ggagctcaag	300
	ttcactctac	gagactgcaa	tagattcca	ttgggttttag	gaacttgc	ggagacattc	360
	aacctgtact	acatggagtc	tgtatgtat	catgggggtga	aatttcgaga	gcatcagttt	420
40	acaagattg	acaccattgc	agctgtatgg	agtttactc	aataggatct	tggggaccgt	480
	attctgaagc	tcaacactga	gattagagaa	gtaggtcc	tcaacaagaa	gggattttat	540
	ttggcatttc	aagatgttgg	tgcttgtt	gccttgggt	ctgtgagagt	atacttcaaa	600
	aagtgcctat	ttacagtgaa	gaatctggct	atgtttccag	acacggtacc	catggactcc	660
	cagtccctgg	tggaggttag	agggtctt	gtcaacaatt	ctaaggagga	agatccctca	720
	aggatgtact	gcagttacaga	aggcgaatgg	cttgcacca	ttggcaagt	ttcctgcaat	780
45	gctggctatg	aagaaagagg	ttttatgtgc	caagttgtc	gaccagggtt	ctacaaggca	840
	ttggatggta	atatgaagt	tgcttaagtgc	ccgcctcaca	gttctactca	ggaagatgg	900
	tcataatgtact	gcaggtgtga	gaataattac	ttccggggcag	acaagaccc	tccatccatg	960
	gcttgtaccc	gacccatccat	ttcacaaga	aatgttatct	ctaataaaaa	cgagacctca	1020
50	gttacccatgg	actggagtt	gccccctggac	acaggaggcc	ggaaagatgt	tacccatcaac	1080
	atcatatgtat	aaaaatgtgg	gtggaaat	aaacagtgt	agccatgcag	cccaaatgtc	1140
	cgttccctcc	ctcgacatgt	tggactcacc	aacaccacgg	tgacagtgc	agaccttctg	1200
	gcacatacta	actacaccc	tgagattgt	gcccgttaat	gggtgtcaga	gctgagctcc	1260
	ccaccaagac	agtttgc	ggtcagc	acaacta	aggctgtcc	atcacctgtc	1320
55	ctgacgatta	agaaagatcg	gacccatccaga	aatagcatct	ctttgcctg	gcaagaaccc	1380
	gaacatccat	atgggatcat	attggactac	gaggtaa	actatgaaaa	gcaggaaccaa	1440
	gaaacaagtt	ataccattct	gagggtcaaga	ggcacaaatg	ttaccatc	tagcctcaag	1500
	cctgacacta	tatacgat	ccaaatccga	gccccgaacag	ccgctggata	ttggacgaa	1560
	agccgcaagt	ttgaggttga	aactagtcc	gacttcttct	ccatctctgg	tgaaagtagc	1620
60	caagtggtca	tgatccat	ttcagcggca	gtacatgtt	ttctccat	tgttgc	1680
	tatgtttga	ttgggggtt	ctgtggctat	aagtcaaaac	atggggcaga	tgaaaaaaga	1740
	cttcatttttgc	gcaatggggc	ttttaaaactt	ccaggctc	ggacttatgt	tgacccacat	1800
	acatatgtat	accctaccca	agctgttcat	gagtttgc	aggaatttgg	tgccaccaac	1860

atatccattg ataaaagtgt tggagcaggt gaatttggag aggtgtgcag tggtcgctta 1920
 aaacttcctt caaaaaaaga gatttcagtg gccattaaaa ccctgaaagt tggtcacaca 1980
 gaaaagcaga ggagagactt cctgggagaa gcaaggatca tgggacagtt tgaccacccc 2040
 aatatcatc gactggagg agttgttacc aaaagtaagc cagttatgat tgcacagaa 2100
 5 tacatggaga atggttcctt ggatagttt ctacgtaaac acgatgccc gttactgtc 2160
 attcagctag tggggatgt tcgagggata gcatctggca tgaagtacct gtcagacatg 2220
 ggctatgttc acccgagacct cgctgctgg aacatcttgc tcaacagttt cttgggtgt 2280
 aaggttctg atttcggact ttgcgtgtc ctggaggatg acccagaagc tgcttatata 2340
 acaagaggag ggaagatccc aatcagggtgg acatcaccag aagctatagc ctaccgcaag 2400
 10 ttcacgtcag ccagcgatgt atggagttat gggattgttc tctgggaggt gatgtcttat 2460
 ggagagagac catactggga gatgtccaat caggatgtaa ttaaagctgt agatgaggc 2520
 taticactgc cacccccattt ggactgccc gctgccttgtt atcagctgtat gctggactgc 2580
 tggcagaaag acaggaacaa cagacccaag ttttagcaga ttgttagtat tctggacaag 2640
 15 cttatccgga atcccgccag cctgaagatc atcaccaggc cagccgcaag gccatcaaac 2700
 cttcttctgg accaaagcaa tgtggatattc tctaccccttgc cacaacagg tgactggctt 2760
 aatggtgtcc ggacagcaca ctgcaaggaa atcttcacgg gcgtggatgta cagttcttg 2820
 gacacaatag ccaagatttcc cacagatgc atgaaaaagg ttgggttcac cgtgggtggg 2880
 ccacagaaga agatcatcag tagcattaaa gctctagaaa cgcaatcaa gaatggccc 2940
 20 gttccctgtt aaa 2953

<210> 4
 <211> 2784
 <212> DNA
 25 <213> Homo sapiens

<300>
 <302> ephrin A4
 <310> XM002578

30 <400> 4
 atggatgaaa aaaatacacc aatccgaacc taccaagtgt gcaatgtgat ggaacccagc 60
 cagaataact ggctacgaac tgattggatc acccgagaag gggctcagag ggtgtatatt 120
 gagattaaat tcaccttgg ggactgcaat agtcttccgg gcgtcatggg gacttgcag 180
 35 gagacgttta acctgtacta ctatgaatca gacaacgaca aagagcgttt catcagagag 240
 aaccagtttg tcaaaaatgtc caccatgtc gctgtatgaga gcttcacccaa agtggacatt 300
 ggtgacagaa tcatgaatgtc gaacacccggat atccgggatg tagggccatt aagcaaaaag 360
 gggttttacc tggcttttca ggtatgtggg gcctgcatttc ccttgcatttgc agtccgtgt 420
 ttctataaaa agtgccttcaact cacaatgcgc aatctggccc agtttcttgc caccatcaca 480
 40 ggggctgata cgtcttcctt ggttggaaatc cgaggctctt gtgtcaacaa ctcagaagag 540
 aaagatgtgc caaaaatgtc ctgtggggca gatggtaat ggctggtaacc cattggcaac 600
 tgcctatgca acgctggca tgaggagccg agcggagaat gccaagcttgc caaaattgg 660
 tattacaagg ctctctccac ggatgccacc tgcgttgcatttgc cccacccca cagctactt 720
 gtcctggaaag gagccaccc tgcacccatg gaccgaggtt tttttagcaga tgacaacat 780
 45 gctgcctcta tgccctgcac ccgtccacca tctgcctcccc tgaacttgcat ttcaaattgtc 840
 aacgagacat ctgtgaactt ggaatggagt agccctcaga atacagggtgg cgcgcaggac 900
 atttccttata atgtggatgtt caagaaatgtt ggagctgggtt accccagcaat gtcggaccc 960
 tggtaatgtt gggctccacta caccggccatc cagaatgttgc tgaagaccac caaagtctcc 1020
 atcaacttgc tcttgcatttca taccaatttgc acctttggaaat tctgggtgtt gaatggatgt 1080
 50 tccaaatata accctaaacc agaccaatca gtttctgtca ctgtgaccac caaccaagca 1140
 gacccatcat ccattgtttt ggtccaggctt aaagaatgtca caagatatacg tgcgttgcact 1200
 gcttggctgg aaccagatgtc gccaatgggg gtaatccctt gatgttgcatttgc aatatgttgc 1260
 gagaaggatc agaatgtgc aagctatgtt atagttcggatc cagctgcacca gacacacat 1320
 atcaaaggcc tgaaccctt cacttgcattt gtttccaccc tgcgttgcaccc gacacacat 1380
 55 ggctatggag acttcgttgc gcccctgggg gttacaacca acacagtgc tttccggatc 1440
 atggagatgtt gggctaaactt cacttgcattt ctgggttgcatttgc tctcggggatc tttccggatc 1500
 gtggtaattt tcattgcattt ttttgcatttgc gggccggatc gggatataatc cagtaaagcc 1560
 aacaagaagatgtt gggatccaa ccaacatgtt gttacaacca gtttccggatc 1620
 ttacgttgc aagatgttgc ccaacatgtt gttacaacca gtttccggatc 1680
 60 tgcatttgcattt ttttgcatttgc gggatccaa ccaacatgtt gttacaacca gtttccggatc 1740
 ctcatttgcattt ttttgcatttgc gggatccaa ccaacatgtt gttacaacca gtttccggatc 1800
 acagacaaac agaggagatgtt gggatccaa ccaacatgtt gttacaacca gtttccggatc 1860

	ccgaacatca	ttcacttgg	aggcgtggc	actaaatgta	aaccagtaat	gatcataaca	1920
	gagtagatgg	agaatggctc	cttgatgca	ttccatcgag	aaaatgatgg	cagattaca	1980
	gtcattcagc	tggggcat	gttcgtggc	atgggtctg	ggatgaagta	tttatctgat	2040
5	atgagctatg	tgcatcgta	tctgccgc	cgaaacatcc	tggtaacag	caacttggc	2100
	tgcaaagtgt	ctgattttgg	catgtcccga	gtgcttgagg	atgatccgga	agcagcttac	2160
	accaccaggg	gtggcaagat	tcctatccgg	tggactgcgc	cagaagcaat	tgccatcg	2220
	aaattcacat	cagcaagtga	tgtatggagc	tatgaaatcg	ttatgtggg	agtgatgtcg	2280
	tacggggaga	ggcccttattg	ggatatgtcc	aatcaagatg	tgattaaagc	cattgaggaa	2340
	ggctatcggt	tacccctcc	aatggactgc	ccattgcgc	tccaccagct	gatgctagac	2400
10	tgctggcaga	aggagaggag	cgacaggcct	aaatttggc	agattgtcaa	catgttggac	2460
	aaactcatcc	gcaacccaa	cagcttgaag	aggacaggga	cggagagctc	cagacctaac	2520
	actgccttgt	tggatccaag	ctccctgaa	ttctctgtcg	tggtatcagt	gggcgattgg	2580
	ctcaggccca	ttaaaatgga	ccggataag	gataacttca	cagctgctgg	ttataccaca	2640
	ctagaggctg	tggtgcacgt	gaaccaggag	gacctggca	gaattgttat	cacagccatc	2700
15	acgaccacaga	ataagattt	gaggactgtc	caggcaatgc	gaacccaa	gcagcagatg	2760
	cacggcagaa	tggtcccgt	ctga				2784
	<210>	5					
20	<211>	2997					
	<212>	DNA					
	<213>	Homo sapiens					
	<300>						
25	<302>	ephrin A7					
	<310>	XM004485					
	<400>	5					
30	atggtttttc	aaactcggt	cccttcatgg	attatttat	gctacatctg	gctgctccgc	60
	tttgcacaca	caggggaggc	gcaggctg	aaggaagtac	tactgtgg	ttctaaagca	120
	caacaaacag	agttggagt	gatttctct	ccacccaatg	ggtggaaaga	aattagtgg	180
	ttggatgaga	actatacccc	gatacgaaca	taccagggt	gccaagtcat	ggagcccaac	240
	caaaacaact	ggctgcggac	taactggatt	tccaaaggca	atgcacaaag	gattttgt	300
	gaattgaaat	tcaccctgg	ggattgtaa	agtcttctg	gagtaactgg	aacttgc	360
35	gaaacacat	atttgtact	ttatgaaaca	gactatgca	ctggcaggaa	tataagagaa	420
	aacctctatg	taaaaataga	caccattgt	cgatgtaa	gttttaccca	aggtgac	480
	ggtgaaagaa	agatgaagct	taacactgag	gtgagagaga	ttggac	gtccaaaaaag	540
	ggattctatc	ttgccttca	ggatgttaggg	gcttgcata	ctttgtt	tgtcaaaatg	600
	tactacaaga	agtgcgtggc	cattattgag	aacttagct	tctttccaga	tacagtgt	660
40	ggttcagaat	tttcctctt	agtcgagg	cgaggacat	gtgtcag	tgcagaggaa	720
	gaagcggaaa	acgccccag	gatgcactgc	agtgcaga	gagaatgtt	agtgc	780
	ggaaaatgta	tctgcaaa	aggctaccag	caaaaaggag	acacttgt	accctgtgg	840
	cgtgggttct	acaagtctc	ctctcaagat	cttcagt	ctcg	tgtccacat	900
	tttctgtat	aagaaggctc	ctccagatgt	aatgtgaa	atgggtat	cagggttca	960
45	tctgacccac	catacg	atgcacaagg	cctccatctg	caccac	cctcat	1020
	aacatcaacc	aaaccacagt	aaatgggaa	tggatc	ctgcagacaa	tggggaa	1080
	aacgatgtga	cctcaga	aatgtgt	cggtgc	ggggcaggg	cgaatgtgt	1140
	ccctgtggg	gtaacatgg	atcatgccc	cagcagact	gattaggg	taactatgt	1200
	actgtcatgg	ac	ccacgct	ataactttt	aaatgtgaa	tgtaaatgg	1260
50	gttctgtact	taagccgatc	ccagagg	tttgc	tcagtat	cactgt	1320
	gcagctccct	cgcaagt	tg	aggag	tactgc	gagtgt	1380
	ctttcctggc	aggacc	gat	ggat	cata	aatcaat	1440
	tacgagaaag	atcaaagg	acggac	tcaac	aaatca	tacttgc	1500
	tccattaata	atctgaa	aggaa	atgtttt	agat	tttactgt	1560
55	gctggttat	gaaat	ccac	gtgttgc	tca	actacagg	1620
	aaaatgttt	aagctac	tg	tttgc	acta	gatgt	1680
	gttgcgtgt	ctgg	accat	catttgg	tgc	tatggg	1740
	aggcactgt	gtt	atg	ggat	tttgc	tttgc	1800
	aaat	ccag	gcac	aaac	ctacat	tttgc	1860
60	gtccatcaat	tcg	ccaa	g	cctg	tttgc	1920
	gcaggagaat	tcgg	gaa	ctg	atg	tttgc	1980
	gcagtagcca	taaaa	acc	gaa	tttgc	tttgc	2040

5 tgtgaagcaa gcatcatggg gcagtttgcac cacccaaatg ttgtccattt ggaaggggtt 2100
 gttacaagag ggaaaccagt catgatagta atagatgtca tggaaaatgg agccctagat 2160
 gcatttctca ggaaacatgta tggcaattt acagtcatc agtttaggg aatgctgaga 2220
 ggaattgctg ctggaatgag atattggct gatatggat atgttcacag ggaccttgca 2280
 10 gctcgcaata ttcttgc当地 cagcaatctc gtttgtaaag tgtcagatgg tggcctgtcc 2340
 cgagttatag aggatgatcc agaagctgtc tatacaacta ctggtggaaa aattccagta 2400
 aggtggacag caccgc当地 catccagttc cggaaattca catcagccag tgatgtatgg 2460
 agctatggaa tagtcatgtg ggaagttatg tcttatggag aaagaccta ttgggacatg 2520
 tcaaatcaag atgttataaa agcaatagaa gaaggttac gtttaccacg acccatggac 2580
 15 tgcccagctg gccttc当地 gctaatgtt gattgttggc aaaaggagcg tgctgaaagg 2640
 caaaaatttg aacagatagt tggattcta gacaaaatga ttcgaaaccc aaatagtctg 2700
 aaaactcccc tgggaaactt tagtaggcca ataagccctc ttctggatca aaacactct 2760
 gatttacta ccttttgc当地 agttggagaa tggctacaag ctattaatg gaaaagat 2820
 aaagataatt tcacggc当地 tggctacaat tcccttgaat ctagtagccag gatgactatt 2880
 20 gaggatgtga tgagtttagg gatcacactg gttgtc当地 aaaagaaaat catgagcagc 2940
 attcagacta tgagagcaca aatgtcatat ttacatggaa ctggcattca agtgtga 2997

20 <210> 6
 <211> 3217
 <212> DNA
 <213> Homo sapiens

25 <300>
 <302> ephrin A8
 <310> XM001921

30 <400> 6
 ncbnsncvrb mdnctdrtnm nmstrctrst tanmymmssar chbmdrtnnc tdstrctrng 60
 mstmmtanmy rmtsndhstr ycbardasna stagnbankg rahcsmdatv washtmantt 120
 hdbrandnb arggnbankh msanshahar tntanmycsm bmrnarnvdn tnhmansha 180
 hamrnaaccs snmvrsnmga tggccccc当地 cggggccgc当地 ctgccccctg cgtctgggt 240
 cgtcacggcc gccc当地 cggccacctg cgtgtccgc当地 gccgc当地 aagtgaattt 300
 gctggacacg tcgaccatcc acggggactg gggctggctc acgtatccgg ctc当地gggt 360
 35 ggactccatc aacgagggtgg acgactc当地 cc当地ccatc cacacgtacc aggtttgca 420
 cgtcatgagc cccaaacc当地 acaactggt ggc当地cggc当地 tggg当地ccccc gagacggccg 480
 cccgccc当地 tatgtgaga tcaagttac cttccgc当地 cgc当地acca tgc当地gggt 540
 gctggc当地 ctc当地aacct ctactacctg gagtc当地ggacc ggc当地ctggg 600
 ggc当地caca caagaaagcc agttc当地caa aatcgacacc attgc当地ggccg acgagagctt 660
 40 cacagggtcc gaccttggc当地 tggccgctc当地 caagctcaac acggagggtgc gcaactgtggg 720
 tccctc当地cage aaggccggct tctacctggc当地 cttccaggac ataggtgc当地 ct当地ggccat 780
 cctctctctc cgc当地act ataagaagtg cc当地tgc当地atc tgc当地caatc tggctgc当地t 840
 ctccggaggca gtgacggggg cc当地actcgcc当地 ctc当地actggc当地 gaggtgaggg gcaactgc当地t 900
 gccc当地actca gaggagccggg acacacc当地aa gatgtactgc agc当地ggagg gcaactggct 960
 45 cgtccccc当地 ggc当地aatgc当地 tgc当地actgc当地 cggctacccgag gagccggccggg atgc当地gtgt 1020
 ggc当地ctgtgag ctgggctctc acaactgc当地 cccctggggac cagctgtgtg cccgctgccc 1080
 tccccacagc cactccgc当地 ctccaggcc当地 ccaactgc当地 cactgtgacc tc当地actacta 1140
 cc当地tgc当地ccctggcc当地 ctggccccc当地 ctc当地actccggc当地 cc当地ccctgg caccactgaa 1200
 cctgatctcc agtgc当地atg ggacatc当地gt gactctggag tgggccc当地tccctggacc 1260
 50 aggccggcc当地 agtgc当地atca cctacaatgc cgtgtccgc当地 cgctccccc当地 gggcactgag 1320
 cc当地ctgc当地gag gcatgtggg gccc当地ccccc当地 ctttgc当地ccc cagc当地agacaa gctggc当地 1380
 ggc当地aggcc当地 ctggcc当地ca acctgc当地tggc当地 cc当地atgaa tactccctt ggc当地tgc当地gg 1440
 cgtcaatggc gtgtccgacc tgagccccc当地 gccc当地ccgg gccgctgtgg tcaacatcac 1500
 cacaaaccag gc当地agccccc当地 cccagggtgg ggtgatccgc当地 caagagccggg cggggccagac 1560
 55 cagc当地gtctcg ctgctgtggc当地 aggagccccc当地 gc当地agccgaaac ggc当地catatcc tggagat 1620
 gatcaactgc当地 tacgagaagg acaaggagat gc当地agactac tccaccctca aggccc当地tca 1680
 caccaggcc当地 accgtctccg gc当地ctcaagcc gggc当地ccccc当地 cactgttcc aggtccgagc 1740
 cc当地caccctca gc当地aggctgtg gccc当地tccag cc当地aggccatg gaggtggaga cccggaaacc 1800
 cc当地gccccccg当地 tatgacacca ggaccattgt ctggatctgc当地 ctgacgctca tcaactggccctt 1860
 60 ggtggctt ctgctctc当地 tc当地atgc当地aa gaagaggccac tgggctaca gcaaggccctt 1920
 cc当地aggactcg gacgaggagaa agatgc当地acta tc当地agaatggc当地 caggccccc当地 cacctgtctt 1980
 cctgc当地ctctc当地 catcaccccc当地 cgggaaagct cccagagcc当地 cagttctatg cggaaacc当地ca 2040

	cacctacgag	gagccaggcc	gggcgggccc	cagtttca	cgggagatcg	aggcctctag	2100
	gatccacatc	gagaaaatca	tcggctctgg	agactccggg	gaagtctgt	acgggaggct	2160
	gcgggtgcca	gggcagcggg	atgtgcccgt	gccatcaag	gccctcaaag	ccggctacac	2220
	ggagagacag	aggcgggact	tcctgagcga	gcmcgtccatc	atggggaat	tcgaccatcc	2280
5	caacatcatc	cgcctcgagg	gtgtcgtcac	ccgtggccgc	ctggcaatga	ttgtgactga	2340
	gtacatggag	aacggctctc	tggcacac	cctgaggacc	cacgacgggc	agttcaccat	2400
	catcagctg	gtgggcgtgc	tgagaggat	gggtgcgggc	atgcgtacc	tctcagacct	2460
	ggctatgtc	caccgagacc	tggccggcc	caacgtcctg	gttgacagca	acctggctg	2520
10	caaggtgtct	gacttcgggc	tctcacgggt	gctggaggac	gaccggatg	ctgcctacac	2580
	caccacgggc	gggaagatcc	ccatccgctg	gacggcccca	gaggccatcg	ccttccgcac	2640
	cttctctcg	gccagcgcacg	tgtggagctt	ccggcgtggc	atgtgggagg	tgctggccta	2700
	tggggagcgg	ccctactgga	acatgaccaa	ccgggatgtc	atcagctctg	tggaggaggg	2760
	gtaccgcctg	ccccgaccca	tgggctgccc	ccacgccc	caccagctca	tgcctcgactg	2820
15	ttggcacaag	gaccgggcgc	agcggcctcg	cttctccca	attgtcagtg	tccctcgatgc	2880
	gctcatccgc	agccctgaga	gtctcagggc	caccgcacaa	gtcagcagg	gcccacccccc	2940
	tgcctctgc	cggagctgt	ttgaccc	agggggcagc	ggtggcgg	ggggcctcac	3000
	cgtggggac	tggctggact	ccatccgcat	ggccgggtac	cgagaccact	tgcgtgcggg	3060
	cggatactcc	tctctggca	tggtgcatac	catgaacgc	caggacgtgc	gcccctggg	3120
20	catcaccctc	atggggcacc	agaagaatg	cctgggcagc	attcagacca	tgcgggccc	3180
	gctgaccagc	accaggggc	ccccggca	cctctgta			3217
	<210>	7					
	<211>	1497					
25	<212>	DNA					
	<213>	Homo sapiens					
	<300>						
	<308>	U83508					
30	<300>						
	<302>	angiopoietin 2					
	<310>	U83508					
35	<400>	7					
	atgacagttt	tccttcctt	tgcttcctc	gctgccattc	tgactcacat	agggtgcagc	60
	aatcagcgcc	gaagtccaga	aaacagtggg	agaagatata	accggattca	acatgggcaa	120
	tgtgcctaca	ctttcatttc	tccagaacac	gatggcaact	gtcgtgagag	tacgacagac	180
	cagataaca	caaacgcctc	gcagagatg	gtcccacacg	tggAACGGA	tttctcttcc	240
40	cagaaacttc	aacatctgga	acatgtgat	gaaaatttca	ctcagtggt	gcaaaaaactt	300
	gagaattaca	ttgtggaaaa	catgaagtgc	gagatggccc	agatacgc	aatgcagtt	360
	cagaaccaca	cggctaccat	gctggagata	gaaaccagcc	tcctctctca	gactgcagag	420
	cagaccagaa	agctgacaga	tgttgagacc	caggtactaa	atcaaacttc	tgcacttgag	480
	atacagctgc	tggagaattc	attatccacc	tacaagctag	agaagcaact	tcttcaacag	540
45	acaatgaaa	tcttgaagat	ccataaaaaa	aacagtttat	tagaacataa	aatcttagaa	600
	atgaaaggaa	aacacaagga	agagttggac	accttaaagg	aagagaaaaga	gaaccttcaa	660
	ggcttggta	ctcgtcaaac	atataataatc	caggagctgg	aaaagcaatt	aaacagagct	720
	accaccaaca	acagtgtcct	tcagaagcag	caactggagc	tgtggacac	agtccacaac	780
	cttgcatac	tttgcactaa	agaaggtgtt	ttactaaagg	gaggaaaaag	agaggaagag	840
50	aaaccattta	gagactgtc	agatgtat	caagctgggt	ttataataatg	tgaatctac	900
	actatttata	ttaataataat	gccagaaccc	aaaagggtgt	tttgcataat	ggatgtcaat	960
	gggggaggtt	ggactgtat	acaacatcgt	gaagatggaa	gtctagattt	ccaaagaggc	1020
	tggaaaggat	ataaaaatggg	ttttggaaat	ccctccgggt	aatattggct	gggaaatgag	1080
	tttatttttg	ccatttaccag	tcagaggcag	tacatgtcaa	gaattgagtt	aatggactgg	1140
55	gaagggaaacc	gagccttattc	acagatgtac	agattccaca	tagaaatga	aaagaaaaac	1200
	tataggttgt	atttaaaagg	tcacactggg	acagcaggaa	aacagacgc	cctgatctta	1260
	cacgggtctg	atttcagcac	taaagatgtc	gataatgaca	actgtatgt	caaatgtgcc	1320
	ctcatgttaa	caggaggatg	gtgggttgat	gcttgcggcc	cctccaatct	aatggaaatg	1380
	ttctatactg	cgggacaaaa	ccatggaaaa	ctgaatggga	taaagtggca	ctacttcaaa	1440
60	ggcccccagtt	actccttacg	ttccacaact	atgatgattc	gacctttaga	tttttga	1497

<210> 8
 <211> 3417
 <212> DNA
 <213> Homo sapiens
 5
 <300>
 <310> XM001924
 10
 <300>
 <302> Tie1
 15
 <400> 8
 atggcttggc ggggtcccccc tttcttgc tc cccatcccttc tctttggcttc tc atgtgggc 60
 gggcggtgg acctgacgct gctggccaa ctgcggctca cggacccccc ggcgttcttc 120
 ctgacttgcg tgtctgggg ggcggggcg gggagggct cggacgcctg gggccgc 180
 ctgctgtgg agaaggacga ccgtatcg tg cgaccccg cccggccacc cctgcgcctg 240
 ggcgcacaac gttcgaccca ggtcacgctt cgccgcttcc ccaagccctc ggacctcg 300
 ggcttcttctt cctgcgtggg cggtgtctgg ggcggcgca cgccgtcat ctacgtgcac 360
 aacagccctg gagcccacct gttccagac aaggtcacac acactgtgaa caaagggtgac 420
 20 accgctgtac ttctgcacg tgcacaaag gagaagcaga cagacgtgtat ctggaagagc 480
 aacggatctt acttctacac cctggactgg catgaagccc aggatggcg gttctgtctg 540
 cagctcccaa atgtgcaccc accatcgacg ggcatactaca tgccactta cctgcgc 600
 agccccctgg gcagcgcctt ctttcggctc atcgtgcggg gttgtgggc tggcgctgg 660
 25 gggccaggct gtaccaagga gtgcccagg tgcctacatg gaggtgtctg ccacgaccat 720
 gacggcgaat gtgtatggcc cctggcttc actggcaccc gctgtgaaca ggcctgcaga 780
 gagggccgtt ttgggcagag ctgccaggag cagtgcctcg gcatatcagg ctgcccggc 840
 ctcaccccttgc gcctcccaaga cccttatggc tgctcttgat gatctggctg gagaggaagc 900
 cagtgcctaa aagcttgc cccctggatcat ttggggctg attgcccact ccagtgc 960
 30 tgcagaatgt gtggcaccttgc tgcacgggtt cagtgggtgt tctgccttc tgggtggcat 1020
 ggagtgcact gtgagaagtc agacccggatccc cccagatcc tcaacatggc ctcagaactg 1080
 gagttcaact tagagacgat gccccggatc aactgtgcag ctgcaggaa ccccttcccc 1140
 gtggggggca gcatagacgt acgcacggca gacggcactg tgctctgtc caccaggcc 1200
 attgtggagc cagagaagac cacagcttag ttcgagggtgc cccgcttgg tcttgcggac 1260
 35 agtgggtctt gggagtggc tggttccaca tctggcgcc aagacagccg ggcgttcaag 1320
 gtcataatgtga aagtggccccc ctgtggccctg gtcacactc ggctctgcgcaagcagac 1380
 cgcacgttgc tggttccccctt gctggctctcg ttctctggg atggacccat ctccactgtc 1440
 cgctgcactt accggccccca ggacagtacc atggacttgtt cgaccattgtt ggtggacccc 1500
 agtggagaacg tgacgttaat gaacctgagg ccaaagacag gatacagtgt tcgtgtgc 1560
 40 ctgagccggc caggggaagg aggagagggg gcctggggc ctccaccct catgaccaca 1620
 gactgtccctg agcctttgtt gcagccgtgg ttggagggtct ggcacatgtgga aggcaactgac 1680
 cggctgcgag tgagctggc cttggccctt gtcggccggc cactgtgtgg cgacgggttc 1740
 ctgctgcgc tggggacgg gacacggggg caggagccgc gggagaacgt ctatcccc 1800
 caggccccggc ctggcccttgc gacggactc acgcctgcac cccactacca gctggatgtq 1860
 cagcttacc actgcacccctt cttggccctg gcctgcggcc ctgcacacgt gttctgtcc 1920
 45 cccagtgggc ctccagcccccc cgcacaccc cgcacccagg ccctctcaga ctccggatc 1980
 cagctgcacat ggaagccccc ggaggctctg cttggggccaa tatccaagta ctgttggag 2040
 gtgcagggtgg ctgggggtgc aggagaccca ctgtggatcat acgtggacag gcctggagg 2100
 acaaggaccca tcatccgtgg cctcaacgc agcacgcgtt acctttccg catgcggggc 2160
 50 agcattcagg ggctgggggatc ctggagcaac acatgtgggggatc agtccaccctt gggcaacggg 2220
 ctgcaggctg agggcccaatc ccaagagagc cggccagctg aagagggctt ggatcagcag 2280
 ctgatccctgg cgggtggggatc cttccgtgtctt gccacctgc tcaccatctt ggctggccctt 2340
 ttaaccctgg tgcacatccg cagaagctgc ctgcacatgg gacgcacccctt cacctaccag 2400
 tcaggctcgat ggcaggagac catccctgcag ttcaatgtgg ggcaccccttgc acttaccgg 2460
 cggccaaaaac tgcagccggc gcccctgagc tacccagtgcc tagatgtgggaa ggacatcacc 2520
 55 tttgaggacc tcatccgggatc gggggacttc ggccagggtca tccggggccat gatcaagaag 2580
 gagggggctg agatggacgc agccatcaaa atgctgtggaaat gatgtgcctc tgaaaatgac 2640
 catgtgtact ttggggggatc actggaaatc ctgtggatcat tggggcatca ccccaacatc 2700
 atcaacccctcc tggggggcttgc taagaacccgaa gtttacttgtt atatcgctat tgaatatgac 2760
 ccctacgggatc acctgtgtatc ttttctgggaaaagccggg tccttagagac tgacccaggt 2820
 60 tttgctcgat ggcaggagac agccttaccat cttagcttcc ggcacgtgt ggcgttcc 2880
 agtggatgcggc ccaatggcat gcaatgtggc agtggaaagc agttcatcca caggggaccc 2940
 gtcggccggatc atgtgtggatc cggagagacatc ctggcccttca agattgcaga ctggccctt 3000

ttcggggtag aggaggttta tgtgaagaag acgatgggc gtctccctgt gcgcgtggatg 3060
 gcccatttgagt ccctgaacta cagttcttat accaccaaga gtatgtctg gtcctttgga 3120
 gtccttcttt gggagatagt gaggccttggga ggtacaccct actgtggcat gacctgtgcc 3180
 gagctctatg aaaagctgcc ccagggtctac cgcattggagc agcctcgaaa ctgtgacgat 3240
 5 gaagtgtacg agctgtatgcg tcagtgctgg cgggaccgtc cctatgagcg acccccctt 3300
 gcccagattt cgctacagct aggccgcgtg ctggaaagcca ggaaggccta tgtgaacatg 3360
 tcgctgtttt agaacttcac ttacgcgggc attgatgcca cagctgagga ggcctga 3417

 10 <210> 9
 <211> 3375 .
 <212> DNA
 <213> Homo sapiens

 15 <300>
 <302> TEK
 <310> L06139

 <400> 9
 20 atggactctt tagccagctt agttctctgt ggagtcaact tgctcccttc tggaaactgtg 60
 gaaggtgcca tggacttgat ctgtatcaat tccctaccc ttgtatctga tgctgaaaca 120
 tctctcacct gcattgcctc tgggtggcgc ccccatgagc ccatcaccat aggaaggac 180
 tttgaagctt taatgaacca gcaccaggat cgcgttggaa ttactcaaga tggaccaga 240
 25 gaatgggcta aaaaaggtgt ttggaaagaga gaaaaggctt gtaagatcaa tggtgcttat 300
 ttcgtgaag ggcgaggctcg aggagaggca atcaggatac gaaccatgaa gatgcgtcaa 360
 caagcttcctt tcctaccaggc tactttaact atgactgtgg acaaggagaa taacgtgaac 420
 atatcttca aaaaggattt gattaaagaa gaagatgcag tgatttacaa aaatggttcc 480
 ttcatccatt cagtgcctcg gcatgaagta cctgatattc tagaagtaca cctgcctcat 540
 gtcagcccc aggatgtctgg agtgtactcg gccaggtata taggaggaaa cctcttcacc 600
 30 tcggccctca ccaggctgtat agtccggaga tggaaagccc agaagtgggg acctgaatgc 660
 aaccatctct gtactgtttt tatgaacaat ggtgtctgc atgaagatac tggagaatgc 720
 atttgccttc ctgggtttat gggaaaggacg tggagaagg cttgtgaact gcacacgtt 780
 ggcagaaactt gtaaagaaag gtgcgttggca caagaggat gcaagtctta tggttctgt 840
 35 ctcctgtacc cctatgggtt ttccgttgcc acaggcttggaa agggtctgc gtgcataatgaa 900
 gatgcgcacc ctgggttttta cggggccat gtaagctt ggtcggatgtt caaatatggg 960
 gagatgtgtt atcgccttca aggatgtctc tgcgtccatgatggcgggg gctccagtt 1020
 gagagagaag gcataccggag gatgacccca aagatgtgg atttgcaga tcatatagaa 1080
 gtaaacagttt gtaaatttttac tcccttgc aagatgtttt gctggccgtt acctactaat 1140
 40 gaagaaatgtt ccctgggttggaa gccggatggg acagtgtcc atccaaaaga cttaaccat 1200
 acggatcatt tctcgtatgc catattcacc atccacccggaa tcctccccc tgactcagga 1260
 gtttgggtct gcagtgtgaa cacagtggct gggatgggttgg aaaagccctt caacatttt 1320
 gttaaagttc ttccaaagcc cctgaatgcc ccaaacgttga ttgcacttgg acataacttt 1380
 gctgtcatca acatcaatgtc tgacgttttac ttgggttggat gaccaatcaa atccaaagaag 1440
 cttctataca aaccctgtttaa tcaactatggag gtttggcaac atattcaatg gacaaatgag 1500
 45 attgttacatc tcaactatggaa ggaacccctcg acagaatatg aactctgtgt gcaactggtc 1560
 cgtcgtggatgggg agggatggggaa agggcatctt ggacctgtga gacgttccac aacacttct 1620
 atcggacttc ctccttcaag aggtcttaat ttcgtccatgaaatggcgggg gacttccat 1680
 ttgacctggc aaccatatt tccaagctcg gaaatgtactt tttatgttga agtggagaga 1740
 aggtctgtgc aaaaaagtgttca ctagcagaat attaaaggatc caggcaactt gacttcgggt 1800
 50 ctacttaaca acttacatcc caggggagcag tacgtggtcc gagtagatgcaatgggggg 1860
 gcccagggggg aatggagtgttca agatctactt gcttggaccc ttagtgcacat tcttccctct 1920
 caaccagaaa acatcaagat ttccaaacattt acacacttcc cggctgttat ttcgtggaca 1980
 atattggatg gctattttat ttcttctattt actatccgtt acaaggatgttca aggcaagaat 2040
 55 gaagaccagc acgttgtatgttca gaaatggatggaa aatggccatca tcatttgcgttca 2100
 ggccttagagc ctgaaacagc ataccaggat gacatttttgcgttca gacggatggat gacgttccat 2160
 agcaacccag ctttttctca tgaactgtgttccatca gacccctccatgaaatgttcaacc 2220
 ctcgggggg ggaagatgttca gttatagcc atcccttgcgttca gacggatggat gacgttccat 2280
 actgtgtctt tggcctttctt gatcatattt gttatgttca gacccctccatgaaatgttcaacc 2340
 atggcccaag ctttccaaaaa ctttgcgttca gttatgttca gacccctccatgaaatgttcaacc 2400
 60 ctggcccttaa acaggaaggatc caaaaacaac ctagatgttca gttatgttca gacccctccatgaaatgttcaacc 2460
 tggaaatgaca tcaaatttca agatgtgttca gttatgttca gacccctccatgaaatgttcaacc 2520
 qcgcgcgttca agaaggatgg gttacqgatg gatgttccatca gttatgttca gacccctccatgaaatgttcaacc 2580

gcctccaaag atgatcacag ggactttgca ggagaactgg aagttctttg taaaacttgga 2640
 caccatccaa acatcatcaa tctcttagga gcatgtgaac atcgaggcta ctgttacctg 2700
 gccattgagt acgcgccccca tggaaacctt ctggacttcc ttgcacaagag ccgtgtgctg 2760
 gagacggacc cagcatttgc cattgccaat agcaccgctg ccacactgtc ctcccagcag 2820
 5 ctcttcaact tcgctgccga cgtggcccg ggcatggact acttgagcca aaaacagttt 2880
 atccacaggg atctggctgc cagaaacatt ttagttggtg aaaactatgt ggaaaaata 2940
 gcagatttg gattgtcccg aggtcaagag gtgtacgtga aaaagacaat ggaaggctc 3000
 ccagtgcgtt ggtggccat cgagtcactg aattacagtg tgtacacaac caacagtgtat 3060
 gtatggctt atggtgtgtt actatggag attgttagct taggaggcac accctactgc 3120
 10 gggatgactt gtgcagaact ctaccagaag ctgccccagg gctacagact ggagaagccc 3180
 ctgaactgtg atgatgaggt gtatgatcta atgagacaat gctggggga gaagccttat 3240
 gagaggccat catttgc当地 gatattgggt tccttaaaca gaatgttaga ggagcgaag 3300
 acctacgtga ataccacgct ttatgagaag ttactttagt caggaattga ctgttctgct 3360
 15 gaagaaggcg cctag . 3375

<210> 10
 <211> 2409
 <212> DNA
 20 <213> Homo sapiens
 .

<300>
 25 <300>
 <302> beta5 integrin
 <310> X53002

<400> 10
 ncbsncvra tgccgcggc cccggcgcgg otgtacgcct gcctcctgg gctctgcgcg 60
 30 ctctgc当地 ggctcgagg tctcaacata tgcacttagt gaagtgc当地 ctc当地tgaa 120
 gaatgtctgc taatccaccc aaaatgtgcc tggtgctcca aagaggactt cggaaagccc 180
 cggtccatca cctctcggt tgatctgagg gcaaacctt tcaaaaatgg ctgtggaggt 240
 gagatagaga gcccagccag cagcttccat tgc当地ggaggaa gcctgccc当地 cagcagcaag 300
 ggttcgggct ctgcaggctg ggacgtcatt cagatgacac cacaggagat tggcgtgaac 360
 35 ctccggcccg gtgacaagac caccttccag ctacagggtc gccagggtga ggactatcct 420
 gtggacctgt actacctgt ggacctctcc ctgtccatga aggatgactt ggacaatata 480
 cggagcctgg gcaccaaact cggcaggagg atgaggaagc tcaccagcaa ctccgggttg 540
 ggatttgggt ct当地tgggt taaggacatc tctc当地tctt cctacacggc accgaggatc 600
 cagaccaatc cgtc当地tgg ttaacaagttt tttccaaattt gc当地ccctc ct当地gggttc 660
 40 cgc当地atctgc tgc当地tccac agacagatgt gacagcttca atgaggaagt tggaaacag 720
 agggtgc当地 ggaaccgaga tggccctgag gggggctt atgc当地tactt ccaggcagcc 780
 gtctgc当地 agaagatgg ctggc当地aaag gatgcactgc atttgc当地tggt gttcacaaca 840
 gatgatgtgc cccacatc当地 attggatggaa aaattgggag gc当地gggtca gccacacatg 900
 ggc当地atgtcc acctgaacga ggccaaacgg tacacagcat ccaaccatg ggactatcca 960
 45 tccctgc当地 tgcttggaga gaaattggca gagaacaaca tcaaccatcat ct当地cagtg 1020
 acaaaaacc attatatgtc gtacaagaat ttacagccc tgatacctgg aacaacgggtg 1080
 gagatttttag atggagactc caaaatattt attcaactgtt ttattaatgc atacaatagt 1140
 atccggctca aagtggatgt gtc当地tgg gatgc当地tgg aggatctt当地 tctt当地tctt 1200
 50 actgtaccc gccaagatgg ggtatccatc cctggtca ggaatgtga ggtctgtcaag 1260
 attggggaca cggcatctt tgaatgtca ttggaggccc ggactgtcc cagcagacac 1320
 acggagcatg tggccctt cggccggg ggattccggg acagcttca ggtgggggtc 1380
 acctacaact gcacgtgc当地 ctgc当地ggc当地 gggctggaaac ccaacacggc caggtgc当地 1440
 gggagcgggaa cctatgtctg cggccgtgt gagtgc当地ggc cccggcttactt gggcaccagg 1500
 tgc当地gtcc aggtggggaa gaaccagagc gtgtaccaga acctgtccg ggaggcagag 1560
 55 ggcaaggccac tggc当地ggc当地 gctggggac tgc当地gtca accagtgtcc ctgcttgc当地 1620
 agcgagttt gcaagatcta tggccctt当地 tggatgtgc当地 acaacttctc ctgtgc当地 1680
 aacaaggggag tcctctgtc aggccatggc gaggatgtactt gggggatg caagtgc当地 1740
 gcaggataca tc当地gggacaatc ctgtacttca tc当地ggagaca tc当地ggatcatg cccggggc当地 1800
 gatggccaga tctgc当地ggc当地 gctggggac local tggatgtcc atgc当地gggatg 1860
 60 cggggggccct ttggggagat tggatgtcc cactctggaa aacctgacaatc cc当地acgtcc 1920
 aagagagattt gctgc当地ggc当地 cctgtctgc当地 cactctggaa aacctgacaatc cc当地acgtcc 1980
 cacaggctat gcaggatgtca ggtatcaca tgggtggaca cc当地atgtca agatgaccag 2040

<210> 12

<211> 3147
 <212> DNA
 <213> Homo sapiens
 5 <300>
 <302> alpha v intergrin
 <310> NM0022210
 10 <400> 12
 atggctttc cgccgccccgc acggctgcgc ctcggcccc gcggccccc gcttcttc 60
 tcgggactcc tgctacccct gtgccgcgc ttcaacccat acgtggacag tcctgcgag 120
 tactctggcc ccgaggaaag ttacttcggc ttccggctgg atttctcgat gcccagcgcg 180
 tcttccggaa tggttcttct cgtgggagct cccaaagcaa acaccaccca gcctggatt 240
 15 gtggaaaggag ggcaggcttcc caaatgtgac tggcttcta cccggccgtg ccagccaatt 300
 gaatttgatg caacaggcaa tagagattat gccaaggatg atccatttggc attaagtcc 360
 catcagtggt ttggagcatc tgtgggtcg aaacaggata aaattttggc ctgtgcggca 420
 ttgttaccatt ggagaactga gatggaaacag gaggcggacg ctgttggaaat atgcttctt 480
 caagatggaa caaagactgt tgtagtatgt ccatgtatg cacaagatata tgatgtcat 540
 ggacaggggat ttgtcaagg aggattcagc attgattttt ctaaagctga cagagtactt 600
 20 cttgggtggtc ctggtagctt ttattggaa ggtcagctt tttcgatca agtggcagaa 660
 atcgtatctt aatacggaccc caatgtttac agcatcaatg ataataacca attagcaact 720
 cggactgcac aagctttt tgtagacagc tattttgggtt atttgggtc tgcggat 780
 ttcaatgggt atggcataaga tgatgttgtt tcaggatcc caagagcgcg aaggacttt 840
 25 ggaatggttt atatttatga tggaaagaac atgtcctctt tatacaatgt tactggcgag 900
 cagatggctg catatttccg attttctgtt gctgccactg acattaatgg agatgattat 960
 gcagatgtgt ttattggagc acctcttc atggatctgt gctctgtatgg caaactccaa 1020
 gaggtggggc aggtctcagt gtctctacag agagcttcag gagacttcca gacgacaaag 1080
 ctgaatggat ttgaggctt tgcacggttt ggcagtgcac tagtccttt gggagatctg 1140
 30 gaccaggatg gtttcaatga tatttcaattt gctgctccat atgggggtga agataaaaaaa 1200
 ggaattgtttt atatcttcaa tggaaagatca acaggcttgc acgcagttccc atctcaaattc 1260
 cttgaagggc agtgggctgc tcgaagcatg ccaccaagct ttggctattc aatgaaagga 1320
 gccacagata tagacaaaaaa tggatattcca gacttaattt taggagcttt tgggtgtat 1380
 cgagatctatct tatacagggc cagaccaggat atcaactgtt atgtggctc tgaagtgtac 1440
 35 ccttagcattt taaaatcaaga caataaaaacc tgctcaatgc ctggacacgc tctcaaaatgt 1500
 tcctgtttta atgttagttt ctgttttttttgc aagatggca aaggacttccc tcccaggaaa 1560
 cttaaatttcc aggtggaaact tcttttggat aaactcaagc aaaaggggagc aatttcgacga 1620
 gcactgtttc tctacacgcg gtccccaaatg cactccaaga acatgactat ttcaaggggg 1680
 ggactgtatgc agtgtgagga attgatagcg tatctggggg atgaatctga atttagagac 1740
 40 aaactcactc caattactat tttttaggaa tatcggttgg attatagaac agtgcgtat 1800
 acaacaggct tgcaacccat tcttaaccag ttcacgcctg ctaacattag tcgacaggct 1860
 cacattctac ttgactgtgg tgaagacaat gtctgttaac ccaagctggc agtttctgt 1920
 gatagtgtatc aaaagaagat ctatattggg gatgacaacc ctctgacatt gattgttaag 1980
 gctcagaatc aaggagaagg tgcttacgaa gctgagctca tcgtttccat tccactgcag 2040
 45 gctgatttca tcgggggtgtt ccggaaacaat gaaaggcttag caagactttc ctgtgcattt 2100
 aagacagaaaa accaaactcg ccagggtggta tgcgtacccat gaaacccat gaaggctgg 2160
 actcaacttctc tagctgttct tcgtttcgtt gtcacccaggc agtcaactt ggataactt 2220
 gtggaaatttgc acttacaaat cccaaagtcgaaatc aatcttatttgc acaaagtagg cccagttgt 2280
 tctcacaaatg ttgatcttgc ttttttagtgc gcaatggaga taaggaggat ctcgagtt 2340
 50 gatcatatct ttcttccat tccaaactgg gaggcacaagg agaaccctga gactgaagaa 2400
 gatgtggggc cagttgtca gcacatctat gagctgagaa acaatggtc aagtttcattc 2460
 agcaaggcaaa tgctccatct tcagtggctt tacaatata ataataacac tctgttgtat 2520
 atccttcattt atgatattga tgaccaatg aactgcactt cagatatggc gatcaaccct 2580
 ttgagaatttca agatctcattt tttgcaaaaca actgaaaaaga atgacacggt tgccggccaa 2640
 55 ggtgagcggg accatctcat cactaaggcgg gatcttgcctt tcagtgtggc agatattc 2700
 actttgggtt gtggagttgc tcagtgcctt aagattgtct gccaagggtgg gagatttagac 2760
 agagggaaaga gtgcaatctt gtacgtaaag tcattactgt ggactgagac tttttatgtat 2820
 aaagaaaaatc agaatttcattt ctattctctg aagtgcgttgc ctccattttaa tgcgtatag 2880
 tttcccttata agaatttcc aatttggatgatc acaccaatgc ccacattggt taccactaat 2940
 gtcacctggg gcatttcaggc agcggccatg cctgtgcctg tgggtgtat catttttagca 3000
 60 gttcttagcag gattgttgc actggctgtt ttggatttttgc taatgtacag gatgggctt 3060
 tttaaacggg tccggccacc tcaagaagaa caagaaagggg agcagcttca acctcatgaa 3120
 aatggtgaag gaaactcaga aactttaa 3147

acatcttcca gtcaagctcg taaatacgtg aatgcattct cagcccgac gctggtcatg 1920
tga 1923

5 <210> 15
<211> 544
<212> DNA
<213> Homo sapiens

10 <300>
<302> c-myc
<310> J00120

<400> 15
15 gacccccgag ctgtgctgct cgccggccgc accgggggc cccggccgtc cctggctccc 60
ctcctgcctc gagaaggca gggcttctca gaggcttggc gggaaaaaga acggagggag 120
ggatcgcgtc gagtataaaa gccgttttc ggggctttat ctaactcgct gttagtaattc 180
cagcgagagg cagaggggagc gagccggcgg ccggctaggg tggaagagcc gggcgagcag 240
agctgcgtc cggcgctctt gggaaaggag atccggagcg aatagggggc ttgcctctg 300
20 gcccagccct cccgctgatc ccccagccag cggccgcaca cccttgcgc attcacgaaa 360
ctttggccat agcagcgggc gggcactttg cactggaact tacaacaccc gagcaaggac 420
gcgactctcc cgacgcgggg aggctattct gcacatttgg ggacacttcc ccggcgctgc 480
cagggccgc ttctctgaaa ggctctcctt gcagctgctt agacgctgga ttttttcgg 540
gtag 544

25 <210> 16
<211> 618
<212> DNA
30 <213> Homo sapiens

<300>
<302> ephrin-A1
<310> NM004428

35 <400> 16
atggagttcc tctggccccc tctcttgggt ctgtgctgca gtctggccgc tgctgatcgc 60
cacaccgtct tctggAACAG ttcaaatccc aagtccgga atgaggacta caccatacat 120
gtgcagctga atgactacgt ggacatcatc tgtccgcact atgaagatca ctctgtggca 180
40 gacgctgcca tggagcagta catactgtac ctggtgagc atgaggagta ccagctgtgc 240
cagccccagt ccaaggacca agtccgctgg cagtgcAACCCGGCCGC 300
ccggagaagc tgtctgagaa gttccagcgc ttacacaccc tcacccctggg caaggaggttc 360
aaagaaggac acagctacta ctacatctcc aaacccatccc accagcatga agacccgctgc 420
ttgaggttga aggtgactgt cagtgccaaa atcactcaca gtcctcaggc ccatgtcaat 480
45 ccacaggaga agagacttgc agcagatgac ccagagggtgc gggttctaca tagcatcggt 540
cacagtctg ccccacgcct cttcccactt gcctggactg tgctgctctt ccacttctg 600
ctgctgcaaa ccccggtga 618

50 <210> 17
<211> 642
<212> DNA
<213> Homo sapiens

55 <400> 17
atggcgcccg cgccaggccccc gctgtccccc ctgtgctccc tgctgttacc gctgccggcc 60
ccgccttcg cgccgcggca ggacgcccgc cgcccaact cggaccgcta cgccgtctac 120
tggaaaccgca gcaaccccgat gtcccaacgca ggcgcggggg acgacggcgg gggctacacg 180
gtggaggtga gcatcaatgatc acactggac atctactgcc cgcaactatgg ggcgcggctg 240
60 ccgcggcccg agcgcatggc gcactacgt ctgtacatgg tcaacggcga gggccacgc 300
tcctgcgacc accggccagcg cggcttcaag cgctgggagt gcaacccggcc cgccggccccc 360
ggggggccgc tcaagttctc ggagaagttc cagctttca cgcccttc cctgggcttc 420

gagttccggc ccggccacga gtattactac atctctgcc a cgcctccaa tgctgtggac 480
cggccctgcc tgcgactgaa ggtgtacgtg cggccgacca acgagaccct gtacgaggct 540
cctgagccca tcttcaccag caataactcg tgttagcagcc cgggcccgtg ccccttcc 600
ctcagcacca tccccgtgct ctggaccctc ctgggttccct ag 642

5

<210> 18
<211> 717
<212> DNA
10 <213> Homo sapiens

<300>
<302> ephrin-A3
<310> XM001787

15 <400> 18
atggcggcgg ctccgctgct gctgctgctg ctgctcgatcc cggtgccgt gctgccgtg 60
ctggcccaag ggccggagg ggcgtctggaa aaccggcatg cggtgtactg gaacagctcc 120
aaccaggcacc tgcggcgaga gggctacacc gtgcaggtga acgttaacga ctatctggat 180
20 atttactgccc cgcactacaa cagctcgaaaa gtggggcccg gggcgggacc gggggcccgaa 240
ggccggggcag agcagtacgt gctgtacatg gtgagccgca acggctaccg cacctgcaac 300
gccagccagg gcttcaagcg ctgggagtgcc aaccggccgc acgccccgca cagccccatc 360
aaggttctcg 9 agaaggttcca ggcgtacage gccttctctc tgggctacga gttccacgccc 420
ggccacgagt actactacat ctccacgccc actcacaacc tgcactggaa gtgtctgagg 480
25 atgaagggtgt tcgtctgctg cgcctccaca tcgcactccg gggagaagcc ggtccccact 540
ctcccccaact tcacatggg ccccaatatg aagatcaacg tgctggaaga ctttggggaa 600
gagaaccctc aggtgcccaa gcttgagaag agcatcagcg ggaccagccc caaacgggaa 660
cacctgcccc tggccgtggg catcgcccttc ttctctatga cgttcttggc ctccttag 717

30

<210> 19
<211> 606
<212> DNA
35 <213> Homo sapiens

<300>
<302> ephrin-A3
<310> XM001784

40 <400> 19
atgcggctgc tgccccctgct gggactgtc ctctggccg cgttcctcg ctccccctcg 60
cgcgggggct ccagcctccg ccacgtatgc tactggaaact ccagtaaccc cagggtgtt 120
cgaggagacg ccgtgggtgg a gctggccctc aacgattacc tagacattgt ctgccccac 180
tacgaaggcc caggggccccc tgagggccccc gagacgtttg ctttgatcat ggtggactgg 240
45 ccaggctatg agtcctgcca ggcagagggc cccgggcct acaagcgctg ggtgtgtcc 300
ctgcccccttg gccatgttca atttcacagag aagattcagc gcttcacacc ctctccctc 360
ggcttgagt tcttacatgg agagacttac tactacatct ccgtggccac tccagagagt 420
tctggccatg gcttgaggct ccagggtgtc gtctgctgca aggagaggaa gtctgagtc 480
50 gcccatctgg ttggggccccc tggagagact ggacatcag ggtggccagg gggggacact 540
cccagccccc tctgtcttctt gctattactg ctgcttctga ttcttctgtc tctgcgaaatt 600
ctgtga 606

55 <210> 20
<211> 687
<212> DNA
55 <213> Homo sapiens

<300>
60 <302> ephrin-A5
<310> NM001962

5 <400> 20
 atgttgcacg tggagatgtt gacgctggtg tttctggc tctggatgtg tgtgttcagc 60
 caggaccgg gctccaaggc cgtcggcgc cgctacgctg tctactggaa cagcagcaac 120
 cccagatcc agaggggtga ctaccatatt gatgtctgt acaatgacta cctggatgtt 180
 ttctgccctc actatgagga ctccgtccca gaagataaga ctgagcgcta tgtcctctac 240
 atgtgtaaact ttgatggcta cagtgccctgc gaccacactt ccaaagggtt caagagatgg 300
 gaatgtaaacc ggcctcaactc tccaaatggc ccgctgaagt tctctgaaaa attccagctc 360
 ttcaactccct ttctcttagg atttgaattc aggccaggcc gagaatattt ctacatctcc 420
 tctgcaatcc cagataatgg aagaagggtcc tgcataaagc tcaaagtctt tgtgagacca 480
 10 acaaaatagct gtatgaaaac tataggtgtt catgatcgta ttttcgtatgt taacgacaaa 540
 gtagaaaattt cattagaacc agcagatgac accgtacatg agtcagccga gccatcccgc 600
 ggcgagaacg cggcacaaac accaaggata cccagccgccc ttttggcaat cctactgttc 660
 ctccctggcga tgcttttgcg attataag 687

 15 <210> 21
 <211> 2955
 <212> DNA
 <213> Homo sapiens

 20 <400> 21
 atggccctgg attatctact actgctcctc ctggcatccg cagtggctgc gatgaaagaa 60
 acgttaatgg acaccagaac ggctactgca gagctggct ggacgGCCaa tcctgcgtcc 120
 ggggtggaaag aagtcaatgg ctacatggaa aacctgaaca ccatccgcac ctaccagggtt 180
 25 tcaatgtct tcgagcccaa ccagaacaaat tggctgtca ccacccatc caaccggcgg 240
 gggggccatc gcatctacac agatgtgcgc ttcaactgtga gagactgcag cagcctccct 300
 aatgtcccag gatcctgcaaa ggagaccttca aacttgtatt actatgagac tgactctgtc 360
 attgccacca agaagtcaacg ctctctgttca gaggccccctt acctcaaagt agacaccatt 420
 gctgcagatg agagcttctc ccaggtggac tttgggggaa ggctgtatgaa ggtaaacaca 480
 30 gaagtcaacca gctttggcc tcttactcgg aatggttttt acctcgctt tcaggattat 540
 ggagcctgttca tgccttctt ttctgtccgt gtcttcttca aaaagtgtcc cagcattgtt 600
 caaaaattttt cagttttcc agagactatg acaggggcag agagoacatc tctggtgatt 660
 gctcgccggca catgcatccc caacgcagag gaagtggacg tgcccatcaa actctactgc 720
 aacggggatg gggaaatggat ggtgcattt gggcgtatgca cctgcaagcc tggctatgag 780
 35 cctgagaaca gctgtggcatg caaggcttc cctgcaggga catcaaggc cagccaggaa 840
 gtcggaggct gtccttccatg ccccttccaa agccgttcc ctgcaggaggc gtctccatc 900
 tgcacctgtc ggacccgttta ttaccggacg gactttgacc ctcccaagggtt ggcatgcact 960
 agcgtcccat caggtccccg caatgttatac tccatgtca atgagacgtc catcattctg 1020
 gagtggcacc ctccaaaggaa gacaggtggg cgggatgtt gtagcttacaa catcatctgc 1080
 40 aaaaaagtgcc gggcagacccg ccggagctgc tcccgtgtg acgacaatgt ggagttgtt 1140
 ccaggcagc tgggcctgac ggagtgcgc gtctccatca gcagcctgtg ggcccacacc 1200
 ccctacaccc ttgacatcca ggcacatcaat ggagtctcca gcaagagtcc cttccccccca 1260
 cagcacgtct ctgtcaacat caccacaaac caagccgccc cctccacccgt tcccatcatg 1320
 caccacgtca gtgcactat gaggacatc accttgcattt ggcacacagcc ggagcagccc 1380
 45 aatggcatca tcctggacta tgagatccgg tactatgaga aggaacacaaa tgagttcaac 1440
 tcctccatgg ccaggatgtca gaccaacaca gcaaggatgtt atgggctgcg gcctggcatg 1500
 gtatgttgg tacagggtgc tgccgcact gttgtggctt acggcaagggtt cagtggcaag 1560
 atgtgttcc agactctgtac tgacgtatgt tacaagttagt agctgaggaa gcagctgccc 1620
 ctgattgttgc gctcgccagc ggcgggggtc gtgttgcgtt tgcccttgggt ggcacatctt 1680
 50 atcgctgttgc gcaaggaaacg ggcttatacg aaagaggctg tgcacagcga taagctccag 1740
 cattacagca caggccgagg ctccccaggg atgaagatct acattgaccc cttcaacttat 1800
 gaggatccca acgaagctgtt ccggagttt gccaaggaga ttgtatgtatc ttttggaa 1860
 attgaagagg tcatcggtac agggagttt ggagaagtgtt acaagggcg tttgaaactg 1920
 ccaggcaaga gggaaatcta cgtggccatc aagaccctgtt aaggcagggtt ctcggagaag 1980
 55 cagcgtcggtt actttctgtt tgaggcgacg atcatggggc agttcgacca tcctaaacatc 2040
 attcgcctgg aggggtgtgtt caccatggc cggccgttca tgatcatcag aggttcatg 2100
 gagaatgggtt cattggattt tttctctggg caaaatgtacg ggcagttcac cgtgtatccag 2160
 ctgtgggtt tgctcaggatc ctcgtgttgc ggcatgaatgtt acctggctgtt gatgaattat 2220
 gtgcacatggg acctggctgc taggaacatt ctggtcaaca gtaacctgggt gtgcacagggt 2280
 60 tccgacttttgc ggcctccctt ctacctccatc gatgacaccc tcaatccac ctacaccacg 2340
 tcctggggag ggaagatccc tgcgtatgtt acagctccatc aggccatcgcc ttcaccacg 2400
 ttcacttcacg ccagcgtatc ttggatgttgc gggatgttca tgcgttggaaatgttcat 2460

ggagagagac cctattggga tatgtccaac caagatgtca tcaatgccat cgagcaggac 2520
 taccggctgc ccccacccat ggactgtcca gctgctctac accagctcat gctggactgt 2580
 tggcagaagg acccgAACAG ccggccccgg tttgcggaga ttgtcaacac cctagataag 2640
 atgatccgga acccggcaag tctcaagact gtggcaacca tcaccccggt gccttcccag 2700
 5 cccctgctcg acccgctccat cccagacttc acggccttta ccaccgtgga tgactggctc 2760
 agcgcctca aaatggtcca gtacaggac acgttccctca ctgctggct cacctccctc 2820
 cagctgtca cccagatgac atcagaagac ctccctgagaa taggcattcac ctggcaggc 2880
 catcagaaga agatcctgaa cagcattcat tctatgaggg tccagataag tcagtcacca 2940
 acggcaatgg catga 2955
 10
 <210> 22
 <211> 3168
 <212> DNA
 15 <213> Homo sapiens
 <400> 22
 atgcgtctgc ggaggctggg ggccgcgtg ctgctgtgc cgctgctcg cgccgtggaa 60
 gaaacgctaa tggactccac tacagcact gctgagctgg gctggatggt gcatcctcca 120
 20 tcaggggtggg aagaggttag tggctacgt gagaacatga acacgatccg cacgtaccag 180
 gtgtcaacg tgtttgagtc aagccagaac aactggctac ggaccaagtt tatccggcgc 240
 cgtggcgccc accgcattca cgtggagatg aagtttcgg tgcgtactg cagcagcato 300
 cccagcgtgc ctggctctg caaggagacc ttcacacctt attactatga ggctgacttt 360
 gactcggcca ccaagaccc ccccaactgg atggagaatc catgggtgaa ggtggatacc 420
 25 attgcagccg acgagagctt ctcccagggtg gacctgggtg gccgcgtcat gaaaatcaac 480
 accgagggtgc ggagcttcgg acctgtgtcc cgcagcggct tctacctggc cttccaggac 540
 tatggcggtc gcatgtccct catgcgcgtg cgtgtcttcc accgcagaatg ccccccgcate 600
 atccagaatg ggcgcattt ccagaaacc ctgtcggggg ctgagagcac atgcgtggtg 660
 gctgccccgg gcaagctgc tgcgcattgcg gaagaggtgg atgtacccat caagctctac 720
 30 tgtaaacgggg acggcgagtg gctgtgccc atcgggcgt gcatgtgcaa agcaggcttc 780
 gagggcggtg agaatggcac cgtctgccc ggttgtccat ctggacttt caaggccaac 840
 caaggggatg aggctgtac ccactgtccc atcaacagcc ggaccacttc tgaagggggcc 900
 accaactgtg tctgcccaca tggctactac agagcagacc tggacccct ggacatgccc 960
 tgcacaacca tccccctccgc gccccaggct gtgatttcca gtgtcaatga gaccccttc 1020
 35 atgctggagt ggacccctcc cgcgcactcc ggaggccgag aggacctcg tctacaacatc 1080
 atctgcaaga gctgtggctc gggccgggt gcctgcaccc gctgcgggaa caatgtacag 1140
 tacgcaccac gccagctagg cctgaccggag ccacgcattt acatcaatgtc cctgctggcc 1200
 cacacccagt acacccatcg gatccaggct gtgaacggcg ttactgtacca gagcccccctc 1260
 tcgcctctgt tgcgccttgc tgcgccttgc gatccatccc accaaccagg cagctccatc ggcagtgctc 1320
 40 atatgcatc aggtgaggcc caccgtggac agcattaccc tgcgtggc ccagccagac 1380
 cagccaaatg gctgtatccct ggactatgag ctgcgtact atgagaagga gtcagtgag 1440
 tacaacgcaca cagccataaa aagccccacc aacacgggtca ccgtgcaggg cctcaaaagcc 1500
 ggcgcctctc atgtcttcca ggtgcgggca cgcaccgtgg caggctacgg ggcgtacagc 1560
 ggcaagatgt acttccagac catgacagaa gccgagtacc agacaagcat ccaggagaag 1620
 45 ttgccactca tcatcggtc ctgcggcgct ggccgtgtc tcctcattgc tgggttgtc 1680
 atcgccatcg tggtaacag acgggggtt gacgtgtcg actcggagta cacggacaag 1740
 ctgcaacact acaccgtgg ccacatgacc ccaggcatga agatctacat cgatcccttc 1800
 acctacgagg accccaaacga ggcagtgcgg gagtttgcga agggaaattga catctccctgt 1860
 gtcaaaattg agcagggtat cgggcggcgg ggtttggcg aggttcgtcag tggccacctg 1920
 50 aagctgccag gcaagagaga gatctttgtc ggcattcaaga cgctcaagtc gggctacacg 1980
 gagaaggcgc gcccggactt ctgcggcgaa gcctccatca tggccaggta cgaccatccc 2040
 aacgtcatcc acctgggggg tgcgtgtacc aagagcacac ctgtgtatgt catcaccggag 2100
 ttcatggaga atggctccctt ggactccctt ctccggcaaa acgatggcga gttcacagtc 2160
 atccagctgg tggccatgtc tggggccatc gcagctggca tgaagtaccc ggcagacatg 2220
 55 aactatgttc accgtgaccc ggctgcccgc aacatcctcg tcaacagcaa cctggctctgc 2280
 aagggtgtcg actttggct ctcacgtttt ctgcgtggatc atacccatcaga ccccccaccc 2340
 accagtgcctc tgggcggaaa gatccccatc cgctggacag ccccgaaagc catccagttac 2400
 cggaaatgtca cctcgcccgat tgcgtgtgg agctacggca ttgtcatgtg ggaggtgtatg 2460
 tcctatgggg agcggccatc ctgggcacatg accaaccagg atgtaaatcaa tggccattgtag 2520
 60 caggactatc ggctgcccacc gcccattggc tgccggcaggcc ccctgcacca actcatgtg 2580
 gactgttggc agaaggaccc gcaaccacccg cccaaatgtt gccaaatgtt caacacgcata 2640
 gacaagatga tccgcaatcc caacagcctc aaagccatgg cggcccttc ctctggcattc 2700

aacctgccgc tgctggaccg cacgatcccc gactacacca gctttaacac ggtggacgag 2760
 tggctggagg ccatcaagat ggggcagtac aaggagagct tcgccaatgc cggttcacc 2820
 tccttgacg tcgtgtctca gatgatgatg gaggacattc tccgggttgg ggtcaacttg 2880
 gctggccacc agaaaaaaat cctgaacagt atccaggtga tgccggcgca gatgaaccag 2940
 5 attcagtctg tggagggcca gccactcgcc aggaggccac gggccacggg aagaaccaag 3000
 cggtgccagc caccgagact cacaagaaa acatgcact caaacgcacg aaaaaaaaaag 3060
 ggaatggaa aaaagaaaaac agatctggg agggggcgaa aaatacagg aatattttt 3120
 aaagaggatt ctcaataagg aagcaatgac tgttcttgcg gggataa 3168

10 <210> 23
 <211> 2997
 <212> DNA
 <213> Homo sapiens

15 <400> 23
 atggccagag cccgcccgc gcccggccg tcgcccggc cggggcttct gccgctgctc 60
 cctccgctgc tgctgtgcc gctgtctg ctgcccggc gctgcccggc gctggaaagag 120
 accctcatgg acacaaaatg ggttaacatct gagttggcgt ggacatctca tccagaaaagt 180
 20 gggtggaaag aggtgagtgg ctacgatgag gccatgaatc ccatccgcac ataccagggt 240
 tgaatgtgc gcgagtcaag ccagaacaac tggcttcgcg cggggttcat ctggcgccgg 300
 gatgtgcagc gggtctacgt ggagctcaag ttcaactgtgc gtgactgcaa cagcatcccc 360
 aacatccccg gtcctgcggaa ggagacccctc aacctttct actacgaggc tgacagcgat 420
 gtggcctcag ctcctccccc cttctggatg gagaacccct acgtgaaagt ggacaccatt 480
 25 gcaccccgatg agagcttctc gcggtctggat gccggccgtg tcaacaccaa ggtgcgcagc 540
 tttggccac tttccaaggc tggcttctac ctggccttcc aggaccaggc cgccctgcgt 600
 tcgctcatct ccgtgcgcgc ctttacaaag aagtgtgcatt ccaccacccgc aggttcgc 660
 ctctcccccgg agaccctcac tggggcgagg cccacccctc tggtcatgtc tccctggcacc 720
 30 tgcataacta acggccgtggaa ggtgtcggtg ccactcaacg tctactgcaa cggcgatggg 780
 gagttggatgg tgcctgtggg tgcctgcacc tggccaccg gccatgagcc agctgccaag 840
 gagtcccagt gcccgcctgt tccccctggg agctacaagg cgaaggaggc agagggggcc 900
 tgctctccat gtccccccaa cagccgtacc acctccccag cggccagcat ctgcacctgc 960
 cacaataact tctaccgtgc agactcggac tctcgccgaca gtgcctgtac caccgtgcca 1020
 tctccacccc gaggtgtgtat ctccaatgtg aatgaaaccc cactgatctt cgagtggagt 1080
 35 gagcccccggg acctgggtgt ccggatgac ctccctgtaca atgtcatctg caagaagtgc 1140
 catggggctg gaggggctc agcctgctca cgctgtgatg acaacgtgga gtttgtgcct 1200
 cggcagctgg gcctgtcgga gccccgggtc cacaccagcc atctgtgcgc ccacacgcgc 1260
 tacaccccttgc aggtgcggc ggtcaacgggt gtctcgccgca agacccctt gccgcctcg 1320
 tatgcggccg tgaatatac cacaacccag gtcggccctg ctgaaatgc cacactacgc 1380
 40 ctgcacacga gtcaggccag cgccttcacc ctatctggg cacccttccaga gcccggccaa 1440
 ggagtcatcc tggactacga gatgaagtac ttgagaaga gcgaggccat cgccctccaca 1500
 gtgaccagcc agatgaactc cgtgcagctg gacgggctt ggcctgcgc cgcttatgtg 1560
 gtcagggtcc gtgcccgcac agtagctggc tatgggcagt acagccccc tgccgagttt 1620
 gagaccacaa gtgagagagg ctctggggcc cagcgttcc aggagcagct tcccctcatc 1680
 45 gtgggctccg ctacagctgg gcttgccttc gtgggtggctg tcgtgtcat cgctatcg 1740
 tgcctcaggaa agcagcgcaca cggctctgat tcggagtaca cggagaagct goagcagtg 1800
 attgctcttg gaatgaaggt ttatattgac ctttttacat acgaggaccc taatgaggct 1860
 gttcgggagt ttgccaaggaa gatgcacgtg tctcggtca agatcgaggaa ggtgatcgga 1920
 gctggggaaat ttggggaaat gtgcctgtgtt cgactgaaac agcctggccg cogagagggt 1980
 50 tttgtggcca tcaagacgt gaagggggcc tacaccgaga ggcagccggc ggacttccta 2040
 agcgaggccct ccatcatggg tcagttgtat cacccttataa taatccggct cgagggcg 2100
 gtcacccaaa gtcggccagt tatgatccctc actgaggatca tggaaaactg cggccctggac 2160
 tccttcctcc ggctcaacga tggccagttc acggctcatcc agctgggtggg catgttgcgg 2220
 ggcattgctg cccggatgaa gtacctgtcc gagatgaact atgtgcaccg cgacctggct 2280
 55 gctcgcaaca tccttgtcaa cagcaacccgt gtctgcacaa tctcagactt tggcccttc 2340
 cgcttcctgg agatgaccc ctcggatctt acctacacca gttccctggg cggaaagatc 2400
 cccatccgcgt ggactgcacc agaggccata gcctatcgga agttcaactc tgctagtgt 2460
 gtcagggtcc acggaaatgtt catgtggggag gtctcgatgact atggagagcg accctactgg 2520
 gacatgagca accaggatgtt catcaatgcg gtggagccgg attacccggctt gccaccaccc 2580
 60 atggactgtc ccacgcact gcaccagctc atgctggact gtcgggtgcg ggaccggaaac 2640
 ctcaggccca aattctccca gattgtcaat accctggaca agctcatccg caatgctgcc 2700
 agcctcaagg tcattgcggc cgctcgtctt ggcacccctctt ggaccgcacg 2760

gtcccagatt acacaacctt cacgacagt ggtgattggc tggatgccat caagatgggg 2820
 cggtaacaagg agagcttcgt cagtgcgggg tttgcattt ttgacccatggt ggcccagatg 2880
 acggcagaag acctgctccg tattggggc accctggccg gccaccagaa gaagatcctg 2940
 agcagtatcc aggacatgcg gctcagatg aaccagacgc tgcctgtca ggtctga 2997
 5

<210> 24
 <211> 2964
 <212> DNA
 10 <213> Homo sapiens

<400> 24
 atggagctcc gggtgctgt ctgtgggct tcgttggccg cagcttggg agagaccctg 60
 ctgaacacaa aattggaaac tgctgatctg aagtgggtga cattccctca ggtggacggg 120
 15 cagtgggagg aactgagccg cctggatggc gaacagcaca gcgtgcgcac ctacgaagtg 180
 tgtgaagtgc agcgccccc gggccaggcc cactggcttc gcacagggtt ggtcccacgg 240
 cggggcggcg tccacgtta cgccacgctg cgcttcacca tgctcgatgt cctgtccctg 300
 cctcgggctg ggcgctctg caaggagacc ttcaccgtct tctactatga gagcgtatgcg 360
 gacacggcca cggccctcac gccagcctgg atggagaacc cctacatcaa ggtggacacg 420
 20 gtggccgcgg agcatctcac ccggaaagcgc cctggggccg aggccaccgg gaaggtgaat 480
 gtcaagacgc tgcgtctgg accgctcagc aaggctggc tctacttgc ctccaggac 540
 cagggtgcct gcatggccct gctatccctg caccttttca aaaaaagtgc cggccagctg 600
 actgtgaacc tgactcgatt cccggagact gtgcctcggg agctgggtt gcccgtggcc 660
 25 ggttagctcg gttgtggatgc cgtccccggc cctggggccca gcccggccct ctactgcgt 720
 gaggatggcc agtggggccga acagccggc acgggctgca gctgtgtcc ggggttcgag 780
 gcaagctgagg ggaacaccaa gtgcggagcc tggcccccgg gcacccatcaa gcccctgtca 840
 ggaaagggt gtcgtccat ggcggcgtcg ggacttccgg gcacgcacag acccccccggg tgatctgca 900
 30 accacccctc cttcggctcc gcgagcgtg gtttcccggc tgaacggctc ctccctgcac 1020
 ctggaatggc gtgccccct ggagtctggt ggccgagagg acctcaccta cggccctccgc 1080
 tgccgggagt gccgaccctgg aggctctgt ggcgcctg ggggagaccc gacttttgc 1140
 cccggccccc gggacctggt ggagccctgg gtgggtggtc gagggtatc tccggacttc 1200
 acctatacct ttgaggtcac tgcattgaac ggggtatctt ctttagccac gggggccctc 1260
 35 ccatttgagc ctgtcaatgt caccactgac cgagggatgc ctccctgcgt gtctgacatc 1320
 cgggtgacgc ggtcctcacc cagcagctt gacccgttcc ggggttcc cggggcaccc 1380
 agtggggcggt ggctggacta cgaggttca taccatgaga agggcccgaa gggtcccagg 1440
 aegtgtgcgtt tcctgaagac gtcagaaaaac cgggcagagc tgcggggctt gaagggggaa 1500
 gccagttacc tggcgatgtt acggggccgc tctggggccg gtcacccggc cttcggccag 1560
 40 gaacatcaca gccagacca actggatgg agcgagggtt ggcggggca gtcggccctg 1620
 attgcgggca cggcagtcgt ggggtgtggc ctggctctgg tggatattgt ggtcgacgtt 1680
 ctctgcctca ggaaggcagag caatgggaga gaagcagaat attcgacaa acacggacag 1740
 tatctcatcg gacatggatc taaggcttac atcgaccct tcacttatga agaccctaat 1800
 gaggctgtga gggaaatttc aaaagagatc gatgtctctt acgtcaagat tgaagggatg 1860
 attgggtcag gtgagtttgg cgaggtgtgc cggggccgc tcaaggcccc agggaaagaag 1920
 45 gagagctgtg tggcaatcaa gaccctgaag ggtggctaca cggagccgc gggcggtgag 1980
 tttctgagcg aggcctccat catggggccat tggcgacc ccaatatcat cccgcgtggag 2040
 ggcgtggcata ccaacacgt gcccgtcatg atttcacatg agttcatgaa gaacggccgc 2100
 ctggactctt tccctgggtt aaacacgtt cagttcacat tcatttcacat cttggggatg 2160
 ctgcggggca tccgccttggg catcggtatc tttggccgaga tgagctacgt ccaccgagac 2220
 50 ctggctgtc gcaacatctt agtcaacacgt aacccgtct gcaaaatgtc tgactttggc 2280
 ctttcccgat tcctggggaa gaactcttcc gatccaccc acacgagctc cctggggagga 2340
 aagattccca tccgatggac tgccccggag gccattgc tccggaaatg cacttccgc 2400
 agtgatgcct ggagttacgg gattgtgtatg tggggatgtt gtcattttgg ggagaggccg 2460
 tactgggaca tgagcaatca ggacgtgatc aatgcattt aacaggacta cccggctgccc 2520
 55 cccggcccccactgacttccat cccctccac cagctcatgc tggactgtt gcaaaaaagac 2580
 cggaaatgccc gggcccccgtt ccccccagggt gtcagccccc tggacaagat gatccggaaac 2640
 cccggccaggcc tcaaaaatctgt gggccgggg aatggggggg cctcacaccc ttcctggac 2700
 cagccggcaggcc ttcactacte agttttggc tctgtggggc agtggcttcg ggcacatcaa 2760
 atgggaagat acgaaggccc tttcgatggcc gtcggctttt gtccttcgaa gtcgggtcagc 2820
 60 cagatctctg ctgaggaccc gtcctccatc ggagtcactc tggccggaca ccagaagaaa 2880
 atcttggcca gtgtcccgatca catgaagtcc caggccaagc cgggaaccccc ggggtggaca 2940
 ggaggaccgg ccccgccatca ctga 2964

5 <210> 25
 <211> 1041
 <212> DNA
 <213> Homo sapiens

10 <300>
 <302> ephrin-B1
 <310> NM004429

15 <400> 25
 atggctcggc ctgggcagcg ttggctcggc aagtggcttg tggcgatggc cgtgtggcg 60
 ctgtccggc tcgccacacc gctggccaag aacctggagc ccgtatcctg gagctccctc 120
 aaccctaagt tcctgagttt ggaggcattt gtatctatc cgaaaattgg agacaagctg 180
 gacatcatct gccccccgagc agaagcaggc cggccctatg agtactacaa gctgtacctg 240
 gtgcggctg agcaggcagc tgcctgttagc acaggctctg accccaaacgt gttggtcacc 300
 tgcaataggc cagagcagga aatacgtttt accatcaagt tccaggagtt cagccccaaac 360
 tacatgggcc tggagttcaa gaagcaccat gattactaca ttacctaaca atccaatgga 420
 agcctggagg ggctggaaaa ccgggaggc ggtgtgtgcc gcacacgcac catgaagatc 480
 atcatgaagg ttgggcagaag tcccaatgtct gtgacgcctg agcagctgac taccagcagg 540
 cccagcaagg aggcagacaa cactgtcaag atggccacac aggcccctgg tagtcggggc 600
 tcctctgggtg actctgtatgg caagcatgg actgtgaacc aggaagagaa gagtgcccca 660
 ggtgcaagtg ggggcagcag cggggaccct gatggcttct tcaactccaa ggtggcattt 720
 ttcgcggctg tcgggcgcgg ttgcgtcatc ttccctgctca tcatacatctt cctgacggtc 780
 ctactactga agtacgcaaa gcccacccgc aagcacacac agcagccccg ggctgcctc 840
 tcgctcaagg ccctggccagg tcccaagggg ggcagtggca cagcgggcac cgagccccaggc 900
 gacatcatca ttcccttacg gactacagag aacaactact gccccacta tgagaagggt 960
 agtggggact acgggcaccc tgtctacatc gtccaagaga tgccgccccca gagccccggcg 1020
 aacatctact acaaggctcg a 1041

35 <210> 26
 <211> 1002
 <212> DNA
 <213> Homo sapiens

40 <300>

45 <400> 26
 atggctgtga gaaggggactc cgtgtggaaag tactgctggg gtgttttatgc 60
 agaactgcga tttccaaatc gatagtttta gagcctatct attggaaattc ctcgaactcc 120
 aaatttctac ctggacaagg actggacta tacccacaga taggagacaa attggatatt 180
 atttgcggcc aagtggactc taaaactgtt ggccagttatg aatattataa agtttatatg 240
 gttgataaaag accaaggcaga cagatgcact attaagaagg aaaataccct ttcctcaac 300
 tgtgccaaac cagaccaaga tatcaaattt accatcaagt ttcaagaattt cagccctaaac 360
 ctctggggtc tagaatttca gaagaacaaa gatttatac ttatatctac atcaaattgg 420
 tctttggagg gcctggataa ccaggaggga ggggtgtgcc agacaagagc catgaagatc 480
 ctcatgaaag ttggacaaga tgcaagttct gctggatcaa ccaggaataa agatccaaca 540
 agacgtccag aactagaagc tggtaaaaaat ggaagaagtt cgacaacaag tccctttgt 600
 aaaccaaatac caggttctag cacagacggc aacagcgccg gacattcggtt gaacaacatc 660
 ctcggttccg aagtggcctt atttgcaggg attgcttca gatgcacatc cttcatcgtc 720
 atcatcatca cgctgggtgt cctttgtct aagtaccggg ggagacacag gaagcactcg 780
 ccgcagcaca cgaccacgct gtcgctcagc acactggcaca caccacagcg cagcggcaac 840
 aacaacggct cagagcccaag tgacattatc atcccgctaa ggactgcggc cagcgttcc 900
 tgccctcaact acgagaaggc cagcggcgcac tacgggcacc cgggtatcat cgtccaggag 960
 atgccccccgc agagccccggc gaacatttac tacaaggctt ga 1002

60 <210> 27
 <211> 1023
 <212> DNA

<213> Homo sapiens

<400> 27

5 atggggcccc cccattctgg gccggggggc gtgcgagtcg gggccctgct gctgctgggg 60
 gtttggggc tggtgtctgg gtcagcctg gagcctgtct actgaaactc ggcgaataag 120
 aggttccagg cagagggtgg ttatgtctg taccctcaga tcgggaccg gctagacctg 180
 ctctgcccccc gggcccgcc tcctggccct cactcctctc ctaattatga gttctacaag 240
 ctgtacctgg taggggggtgc tcagggccgg cgctgtgagg cacccctgc cccaaacctc 300
 ctctcaatt gtgatecccc agacctggat ctccgcttca ccatcaagtt ccaggagtt 360
 10 agccctaatt tctggggca cgagttccgc tcgcaccacg attactacat cattgccaca 420
 tcggatggga cccgggaggg cctggagagc ctgcagggag gtgtgtgcct aaccagagc 480
 atgaaggtgc ttctccgagt gggacaaagt ccccgaggag gggctgtccc ccgaaaacct 540
 gtgtctgaaa tgcccatgga aagagaccga ggggcagccc acagcctgga gcctgggaag 600
 gagaacctgc caggtgaccc caccagcaat gcaacctccc ggggtgctga aggccccctg 660
 15 cccctccca gcatgcctgc agtggctggg gcagcagggg ggctggcgct gctcttgctg 720
 ggcgtggcag gggctgggg tgccatgtgt tggcggagac ggcggccaa gcctteggag 780
 agtcgccacc ctggctctgg ctccctcggg aggggagggg ctctggcct ggggggtgga 840
 gttggatgg gacctcgggg ggctgagcct ggggagctag ggatagctct gcgggggtggc 900
 20 gggctgcag atccccctt ctgcacccac tatgagaagg tgagtgtga ctatggcat 960
 cctgtgtata tcgtgcagga tggggggggc cagagccctc caaacatcta ctacaaggta 1020
 tga 1023

<210> 28

25 <211> 3399
 <212> DNA
 <213> Homo sapiens

<300>

30 <302> telomerase reverse transcriptase
 <310> AF015950

<400> 28

35 atgcgcgcgc ctccccgtg ccgagccgtg cgctccctgc tgcgcagcca ctaccgcgag 60
 gtgtgcgcgc tggccacgtt cgtgcggcgc ctggggccccc agggctggcg gctgggtgcag 120
 cggggggacc cggcggttt cgcgcgcgtg gtggcccaagt gcctgtgtg cgtccccctgg 180
 gacgcacggc cgccccccgc cgccccctcc ttccgcggc tgccttcgcct gaaggagctg 240
 gtggcccgag tgctgcagag gctgtgcgcg cgcggcgcga agaacatgtct ggccttcggc 300
 ttgcgcgtgc tggacggggc cgcggggggc ccccccgggg ccttcaccac cagcgtgcgc 360
 40 agtacactgc ccaacacggt gacccacgcgca ctgcggggga gcggggcggt ggggctgctg 420
 ctgcgcgcgc tgggcgacga cgtgtgtt cacctgtctg cacgcgtgcgc gctctttgtg 480
 ctggtggtctc ccagctgcgc ctaccagggtg tgcggggccgc cgctgtacca gtcggcgct 540
 gcaactcagg cccggccccc gccacacgcgt agtggacccc gaaggcgtct gggatgcgaa 600
 cgggcctggg accatagcgt caggaggccc ggggtcccccc tgggcctgcg agccccgggt 660
 45 gcgaggaggc gcgggggcag tgccagccga agtctgcgt tgcccaagag gcccaggcgt 720
 ggcgtgccc ctgagccggc gcggacgcggc ttggggcagg ggtccctgggc ccacccgggc 780
 aggacgcgtg gaccgagtg ccgtgtttt tttgtgtgtt caccgtcccg acccgcccgaa 840
 gaagccaccc ctgggggggg tgctgtctct ggcacgcgcg actcccaccc atccgtggc 900
 cgcctggacc acgcggggccc cccatccaca tcgcggccac cacgtccctg ggacacgcct 960
 50 tgtccccccgg tgcgtcccgaa gaccaagcac ttccctact cctcaggcga caaggagcag 1020
 ctgcggccct ctttcctact cagctctctg aggcccaggcc tgactggcgc tcggaggctc 1080
 gtggagacca tctttctggg ttccaggccc ttggatgcac ggactccccg cagggtgccc 1140
 cgcctggccc agcgtactg gcaaatgcgg cccctgttcc tggagctgt tggaaaccac 1200
 ggcgtgtcc cctacgggt gctctcaag acgcactgcc cgctgcgcgc tgccgtcacc 1260
 55 ccagcagccg gtgtctgtgc ccgggagaag ccccaagggt ctgtggcgcc ccccgaggag 1320
 gaggacacag acccccgctg cctggtgcag ctgcctccgcg agcacagcag cccctggcag 1380
 gtgtacggct tcgtgcgggc ctgcctgcgc cggctgggtc ccccaagggt ctgggggtctc 1440
 aggacacaacg aacggccgtt cctcaaggaa accaagaagat tcatctccct ggggaaggcat 1500
 gcaagctct cgcgtcgagg gctgacgtgg aagatgagcgc tgccggactg cgcttggctg 1560
 60 cgcaggagcc cagggggtgg ctgtgttccg gccgcagagc accgctctgc tgaggagatc 1620
 ctggccaagt tcctgcactg gctgatgagt gtgtacgtg tcgagctgt cagggtcttc 1680
 ttttatgtca cggagaccac gtttcaaaag aacaggctct ttttctaccg gaagaggtgc 1740

	tggagcaagt	tgcaaagcat	tggaatcaga	cagcaattga	agagggtgca	gctgcggag	1800
	ctgtcggaag	cagaggctcg	gcagcatcg	gaagccaggc	ccgcctcgct	gacgtccaga	1860
	ctccgcgttca	tccccaaagcc	tgacgggctg	cggccgattt	tgaacatgga	ctacgtcg	1920
5	ggagccagaa	cgttccgcag	agaaaagagg	gcccagcgtc	tcaoctcgag	ggtgaaggca	1980
	ctgttcagcg	tgctcaacta	cgagcggggc	cggcgcggc	gcctctggg	cgcctctgtg	2040
	ctgggcctgg	acgatatcca	cagggcctgg	cgcacccctcg	tgctcgctgt	gcgggcccag	2100
	gaccgcgcgc	ctgagctgta	cttgtcaag	gtggatgtga	cgggcgcgt	cgacaccatc	2160
10	ccccaggaca	ggtcacgga	ggtcatcgcc	agcatcatca	aaccccagaa	cacgtactgc	2220
	gtgcgtcggt	atgccgtgg	ccagaaggcc	gcccattggc	acgtccgc	ggccttcaag	2280
	agccacgtct	ctacccgtac	agacccctccag	ccgtacatgc	gacagtctcg	ggctcacctg	2340
	caggagaca	gcccgcgtag	ggatggcg	gtcatcgac	agagctccctc	cctgaatagag	2400
15	gccagcgtg	gccttctgca	cgtcttccta	cgcttcatgt	gccaccacgc	cgtgcgcac	2460
	agggcaagt	cctacgtcca	gtgccagggg	atcccgcagg	gtcccatct	ctccacgcgt	2520
	ctctgcagcc	tgtgtacgg	cgacatggag	aacaagctgt	ttgcggggat	tcggcggac	2580
	gggctgctcc	tgcgtttgg	ggatgatttc	ttgttggta	cacccacact	cacccacgcg	2640
	aaaaccttcc	tcaggaccct	ggtcccgagg	gtccctgagt	atggctgcgt	ggtaacttg	2700
20	cggaaagacag	tggtaactt	ccctgttagaa	gacgaggccc	tgggtggcac	ggctttgtt	2760
	cagatgccgg	cccacggcct	attccccctgg	tgcggctgc	tgctggatac	ccggaccctg	2820
	gaggtgcaga	gctgactact	cagctatgcc	cgacccctca	tcagagccag	tetcacccctc	2880
25	aaccgcggct	tcaaggctgg	gaggaacatg	cgtcgcacaa	tctttgggt	tttgcggctg	2940
	aagtgtcaca	gcctgttct	ggatttgcag	gtgaacagcc	tccagacgg	gtgcaccaac	3000
	atctacaaga	tcctctctgt	gcagggctac	aggtttcacg	catgtgtgt	gcagctccca	3060
	tttcatcage	aagtttgaa	gaaccccccaca	tttttctgc	gcgtcatctc	tgacacggcc	3120
30	tcctctgtct	actccatccct	gaaagccaag	aacgcaggg	tgtcgctgg	ggccaagggc	3180
	gccgcgggcc	ctctgcctc	cgaggccgt	cagttgtgt	gccaccaagc	attcctgtctc	3240
	aagctgactc	gacaccgtgt	cacctacgt	ccactctgg	ggtaactcag	gacagcccaag	3300
	acgcagctga	gtcggaaagct	cccggggacg	acgctgactg	ccctggaggg	cgcagccaaac	3360
	ccggcaactgc	cctcagactt	caagaccatc	ctggactga			3399
35	<210> 29						
	<211> 567						
	<212> DNA						
	<213> Homo sapiens						
40	<400> 29						
	atgactgaat	ataaaacttgt	ggtagttgga	gcttgtggcg	taggcaagag	tgccttgacg	60
	atacagctaa	ttcagaatca	ttttgtggac	aatatgatc	caacaataga	ggattccctac	120
	aggaagcaag	tagtaattga	tggagaaaacc	tgtctcttgg	atattctcg	cacagcagg	180
45	caagaggagt	acagtgcatt	gaggggaccag	tacatggaa	ctggggaggg	ctttctttgt	240
	gtatgtccca	taaataatac	taaattcattt	gaagatattt	accattatag	agaacaaaatt	300
	aaaagaggtt	aggactctga	agatgtaccc	atggtccttag	taggaaataa	atgtgatttg	360
	ccttctagaa	cagtagacac	aaaacaggct	caggacttag	caagaagtt	tggaaattctt	420
50	tttattgaaa	catcagaaaa	gacaagacag	ggtgttgcgt	atgccttcta	tacatttagtt	480
	cgagaaaattt	gaaaacataa	agaaaaagatg	agcaaagatg	gtaaaaagaa	aaaaaagaag	540
	tcaaagacaa	agtgtgttat	tatgtaa				567
55	<210> 30						
	<211> 3840						
	<212> DNA						
	<213> Homo sapiens						
60	<300>						
	<302> mdr-1						
	<310> AF016535						
	<400> 30						

	atggatcttg	aaggggaccg	caatggagga	gcaaagaaga	agaactttt	taaactgaac	60
	aataaaagtg	aaaaagataa	gaagggaaag	aaaccaactg	tcaatgttatt	ttcaatgttt	120
	cgctattcaa	attggcttga	caagttgtat	atgggggtgg	gaactttggc	tgccatcatc	180
5	catggggctg	gacttcctct	catgtatctg	gtgttggag	aatgacaga	tatctttgca	240
	aatgcaggaa	attnagaaga	tctgtatgtca	aacatcaacta	atagaagtga	tatcaatgtat	300
	acagggttct	tcatgaatct	ggaggaagac	atgaccagggt	atgccttatta	ttacagtggaa	360
	attgggtctg	gggtgtgtt	tgctgtttac	attcagggtt	cattttgggt	cctggcagct	420
10	ggaagacaaa	tacacaaaat	tagaaaacag	ttttttcatg	ctataatgcg	acaggagata	480
	ggctggtttg	atgtgcacga	tggtggggag	cttaacaccc	gacttacaga	tgtatgtctcc	540
	aagattaatg	aaggaaatgg	tgacaaaatt	ggaatgttct	ttcagtcaat	gccaacattt	600
	ttcaactgggt	ttatagtagg	atttacacgt	gttggaaagc	taacccttgt	gattttggcc	660
	atcagtccctg	ttcttggact	gtcaatgtct	gtctgggcaa	agatactatc	ttcattttact	720
15	gataaagaac	tcttagcgta	tgcaaaaagct	ggagcagtag	ctgaagaggt	cttggcagca	780
	attagaactg	tgattgtcc	tgggggacaa	aagaaagaac	ttgaaaggt	caacaaaaat	840
	ttagaagaag	ctaaaagaat	tgggataaaag	aaagcttata	cagccaatat	ttctataggt	900
	gctgtttcc	tgctgtatct	tgcatttat	gctctggct	tctggatgg	gaccacccctg	960
	gtccctctcg	ggaaatattc	tattggacaa	gtactactg	tattttctgt	attaatttggg	1020
	gcttttagtg	ttggacagggc	atcttcaagc	attgaagcat	ttgcaatgc	aaggaggagca	1080
20	gcttatgaaa	tcttcaagat	aattgataat	aagccaagta	ttgacagcta	ttcgaagaggt	1140
	gggcacaaaac	cagataatat	taagggaaat	ttggaattca	gaaatgttca	cttcagttac	1200
	ccatctcgaa	aagaagttaa	gatcttgaag	ggtctgaacc	tgaaggtgc	gagtggcag	1260
	acggtggccc	tggttggaaa	cagtggctgt	gggaagagca	caacagtcca	gctgatgcag	1320
	aggctctatg	accccacaga	ggggatggtc	agtgttgcgt	gacaggatata	taggaccata	1380
	aatgtaaagg	ttctacggg	aatcattttgt	gtgggtggat	aggaacctgt	attgtttgcc	1440
25	accacatag	ctgaaaacat	tgcattatggc	cgtggaaaat	tcaccatgg	tgagatttgag	1500
	aaagctgtca	aggaaagccaa	tgccatgtac	tttattatgt	aactgcctca	taaattttgac	1560
	accctgggt	gagagagagg	ggcccgatgt	agtgggtggc	agaaggagag	gatcgccatt	1620
	gcacgtggcc	tggttgcgaa	ccccaaagatc	ctcctgttgg	atgaggccac	gtcagccctg	1680
30	gacacagaaa	gcgaagcagt	ggttcagggt	gctctggata	aggccagaaa	agtcggacc	1740
	accattgtga	tagctcatcg	tttgtctaca	gttcgtatgt	ctgacgtcat	cgctggttc	1800
	gatgatggag	tcattgttgc	gaaaggaaat	catgtatgaa	tcatgaaaga	gaaaggcatt	1860
	tacttcaaac	ttgtcacaat	gcagacagca	ggaaatgaag	ttgaattaga	aatgcagct	1920
	gatgaatcca	aaagtgaat	tgatgcctt	gaaatgttct	caaatgttca	aagatccagt	1980
	ctaataagaa	aaagatcaac	tcgttaggat	gtccgtggat	cacaagccca	agacagaaaag	2040
35	cttagtacca	aagggtct	ggatgaaat	ataccctccag	tttcccttttgc	gaggattatg	2100
	aagctaaat	taactgtat	gccttatttttgc	ttttttttttgc	cattataat	2160	
	ggaggccctgc	aaccaggat	tgcaataataa	ttttcaaaa	ttttaggggt	ttttacaaga	2220
	attgtatgtc	ctgaaaacaaa	acgacagaat	agtaactttgt	tttctactatt	gtttctagcc	2280
40	cttggattt	tttcttttat	tacatttttc	cttcagggtt	tcacattttgc	caaagcttgc	2340
	gagatcctca	ccaagcggt	ccgatatactg	gtttccgtat	ccatgtctcg	acaggatgtg	2400
	agttgggttgc	atgaccctaa	aaacaccact	ggagcatttg	ctaccaggct	cgccaaatgtat	2460
	gctgtctcaag	ttaaaggggc	tataagggttcc	aggcttgcgt	taatttccca	gaatatacgca	2520
	aatcttggga	caggaataat	tatacttcc	atctatgtt	ggcaactaac	actgttactc	2580
45	ttagcaatttgc	taccatcat	tgcaatagca	ggagttgttgc	aatgaaaat	gttgtcttgc	2640
	caagcactga	aagataagaa	agaactagaa	ggtgctggga	agatgcctac	tgaagcaata	2700
	gaaaaactcc	gaaccgtgt	ttctttgtact	caggagcaga	agtttgaaca	tatgtatgtct	2760
	cagagtttgc	aggttccat	cagaaaactct	ttggggaaag	cacacatctt	ttgaaattaca	2820
50	ttttccctca	cccaggcaat	gtatgttttgc	tcctatgtct	gtatgttccg	gtttggagcc	2880
	tacttgggttgc	cacataaact	catgagctt	gaggatgttgc	tgtttagtatt	ttcagcttgc	2940
	gtctttgggt	ccatggccgt	ggggcaagtc	agttcatttg	ctcctgtacta	tgccaaagcc	3000
	aaaatatacg	cagcccat	catcatgtat	attgaaaaaa	cccctttgtat	tgacagctac	3060
	agcacggaa	gcctaattgc	gaacacatttgc	gaaggaaatgt	tcacattttgc	tgaagttgtat	3120
	ttcaactatc	ccacccgacc	ggacatccca	gtgcttcagg	gactgagctt	ggaggtgaag	3180
55	aaggggccaga	cgctggcttgc	gggtggccgc	agtggctgt	ggaagagcac	agtgggtccag	3240
	ctccctggagc	ggttctacga	cccccttggca	ggggaaatgtc	tgcttgcattttgc	caaagaaaata	3300
	aagcgactga	atgttcaatgt	gtcccgagca	cacctgggca	tcgtgtccca	ggagccccatc	3360
	ctgtttgtact	gcagcatgtc	tgagaacatttgc	gcctatgttgc	acaacagccg	gggtgggttca	3420
	caggaaagaga	ttgtgagggttgc	agccaaaggag	gccaacatatac	atgccttcat	cgagtactg	3480
60	cctaataaaat	atagcactaa	agtagggagac	aaaggaacttgc	agctctcttgc	tggccagaaa	3540
	caacgcatttgc	ccatagctcg	tgcccttgc	agacagccct	atattttgttgc	tttggatgaa	3600
	gccacgttgc	ctctggatatac	agaaatgttgc	aaagggttgc	aaagacccct	ggacaaagcc	3660
	agagaaggcc	gcacactgcatt	tgtgatttgc	caccgcctgt	ccaccatccaa	aatgcagac	3720

ttaatagtgg tggccatggaa tggcagagtc aaggagcatg gcacgcata gcagctgtg 3780
gcacagaaaag gcatctattt ttcaatggtc agtgtccagg ctggaacaaa gcccagtga 3840

5 <210> 31
<211> 1318
<212> DNA
<213> Homo sapiens

10 <300>
<302> UPAR (urokinase-type plasminogen activator receptor)
<310> XM009232

15 <400> 31
atgggtcacc cggcgctgt gcccgtgtg ctgctgtcc acacctgcgt cccagccct 60
tggggcctgc ggtgcgtca gtgtaaagacc aacggggatt gcccgtgtgaa agagtgcgcc 120
ctggacagg acctctgcgt gaccacgatc gtgcgtttgtt gggagaagg agaaagactg 180
gactgtgtgg agaaaagctg taccactca gagaagacca acaggaccct gagctatcg 240
actggcttgaa agatcaccag ccttaccgag gttgtgtgtt ggtagactt gtgcaaccag 300
20 gccaactctg gccgggtctgt cacatttcc cgaagccgtt acctcgaatg catttcctgt 360
ggctcatcg acatgagctg tgagaggggc cggcaccaga gcctgcgtg ccgcagccct 420
gaagaacagt gcctggatgt ggtgaccac tggatccagg aaggtaaga aggccgtcca 480
aaggatgacc gccacccctcg tggctgtggc taccttcccc gctgcccggg ctccaatgg 540
ttccacaaca acgacacccctt ccacttcctg aaatgctgca acaccaccaa atgcaacgag 600
25 ggcaccaatcc tggagcttga aaatctggcg cagaatggcc gccagtgtt cagctgcaag 660
ggaaacagca cccatggatg ctcctctgaa gagactttcc tcatttgcgtt ccggaggcccc 720
atgaatcaat gtctggtagc caccggact cacaacccggaaaacaaag ctatatggta 780
agaggctgtg caacccctc aatgtgccaatgcccacc tgggtgacgc cttcagcatg 840
aaccacattt atgtctctgt ctgtactaaa aatggctgtt accacccaga cttggatgtc 900
30 cagttccgca gtggggctgc tcctcagccct gcccctgccc atctcagccct caccatcacc 960
ctgtcaatga ctggccagact gtggggaggg actctccctt ggacctaacc ctgaaatccc 1020
cctctctgcc ctggctggat ccgggggacc ctttgcctt tccctcggtt cccagcccta 1080
cagacttgcgt gtgtgacccctt agggcactgtt gcccacccctt ctgggcctca gttttcccg 1140
ctatgaaaac agtatctca caaagttgtt tgaaggcagaa gagaaaaagct ggaggaaggc 1200
35 cgtggggccaa tgggagagct cttgttatta ttaatattgt tgccgtgtt gtgttgtt 1260
tattaattaa tattcatatt atttattttt tacttacata aagattttgtt accagtgg 1318

40 <210> 32
<211> 636
<212> DNA
<213> Homo sapiens

45 <300>
<302> Bak
<310> U16811

50 <400> 32
atggcttcgg ggcaaggccc aggtcctccc aggcaggagt gcggagagcc tgccctgccc 60
tctgtttctg aggagcaggat agcccaggac acagaggagg tttcccgag ctacgttttt 120
taccgcctac agcaggaaca ggaggctgaa ggggtggctg cccctgcga cccagagatg 180
gtcaccttac ctctgcacc tagcagcacc atggggcagg tgggacggca gtcgcctac 240
atcggggacg acatcaaccc acgttatgtac tcagatgttcc agaccatgtt gcagcacctg 300
cagcccacgg cagagaatgc ctatgatgttcc ttaccaaga ttgcacccag cctgtttgag 360
55 agtggcatca attggggccg tgggtggctt ctctgggtt tcggctaccg tctggcccta 420
cacgtctacc agcatggccct gactggcttc ctggccagg tgacccgctt cgtggcgtac 480
ttcatgtgtc atcaactgttcc tggccgtgg attgcacaga ggggtggctg ggtggcagcc 540
ctgaacttgg gcaatggtcc catccgtaaac gtgtgtgtt ttctgggtgtt ggttctgtt 600
ggccagtttgg tggtaacaaat tcatgtt 636

60

<210> 33

<211> 579
<212> DNA
<213> Homo sapiens

5 <300>
<302> Bax alpha
<310> L22473

<400> 33

10 atggacgggt ccggggagca gcccagaggc ggggggcccc caagctctga gcagatcatg 60
aagacagggg ccctttgtc tcagggttc atccaggatc gagcaggcg aatggggggg 120
gaggcacccg agctggccct ggaccgggtg cctcaggatg cgtccaccaa gaagctgagc 180
gagtgtctca agcgcatecg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
ggccggctgg acacagactc ccccccggag gtcttttcc gagtggcagc tgacatgttt 300
15 tctgacggca acttcaactg gggccgggtt gtcgcccctt tctactttgc cagcaaactg 360
gtgctcaagg ccctgtgcac caagggtcccg gaactgtatca gaaccatcat gggctggaca 420
ttggacttcc tccggggagcg gctgtgggc tggatccaag accagggtgg ttgggacggc 480
ctctctctt actttgggac gcccacgtgg cagaccgtga ccattttgtt ggcgggagtg 540
ctcaccgcct cgctcaccat ctggaagaag atggctga 579

20

<210> 34
<211> 657
<212> DNA
25 <213> Homo sapiens

<300>
<302> Bax beta
<310> L22474

30 <400> 34

atggacgggt ccggggagca gcccagaggc ggggggcccc caagctctga gcagatcatg 60
aagacagggg ccctttgtc tcagggttc atccaggatc gagcaggcg aatggggggg 120
gaggcacccg agctggccct ggaccgggtg cctcaggatg cgtccaccaa gaagctgagc 180
35 gagtgctctca agcgcatecg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
ggccggctgg acacagactc ccccccggag gtcttttcc gagtggcagc tgacatgttt 300
tctgacggca acttcaactg gggccgggtt gtcgcccctt tctactttgc cagcaaactg 360
gtgctcaagg ccctgtgcac caagggtcccg gaactgtatca gaaccatcat gggctggaca 420
40 ttggacttcc tccggggagcg gctgtgggc tggatccaag accagggtgg ttgggtgaga 480
ctctcaagg ctctcaccc ccaccaccgc gccctcacca cgcggccctgc cccaccgtcc 540
ctggggcccg ccactcctct gggaccctgg gccttctggc gcaggtcaca gtgggtgcct 600
ctccccatct tcagatcatc agatgtggtc tataatgcgt ttcccttacg tgtctga 657

45 <210> 35
<211> 432
<212> DNA
<213> Homo sapiens

50 <300>
<302> Bax delta
<310> U19599

<400> 35

55 atggacgggt ccggggagca gcccagaggc ggggggcccc caagctctga gcagatcatg 60
aagacagggg ccctttgtc tcagggatg attgccgcgg tggacacaga ctccccccga 120
gaggctttt tccgagtggc agctgacatg tttctgacg gcaacttcaa ctggggccgg 180
gttgtcgccc ttttctactt tgccagcaaa ctgggtgcac aggcctgtg caccagggtg 240
ccggaactga tcagaaccat catgggctgg acattggact tcctccggga gcccgtgtg 300
60 ggctggatcc aagaccaggg tggttggac ggcctctct cctactttgg gacggccacg 360
tggcagaccc tgaccatctt tgtggggga gtgctcaccg cctcgctcac catctggaaag 420
aagatgggct ga 432

5 <210> 36
 <211> 495
 <212> DNA
 <213> Homo sapiens

 10 <300>
 <302> Bax epsilon
 <310> AF007826

 15 <400> 36
 atggacgggt ccggggagca gcccagaggc ggggggcccc ccagctctga gcagatcatg 60
 aagacagggg ccctttgct tcagggttc atccaggatc gagcaggcg aatgggggg 120
 19 gaggcacccg agctggccct ggaccgggt cctcaggatg cgtccaccaa gaagctgagc 180
 gagtgtctca agcgcacccg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
 gccgcgtgg acacagactc ccccccggag gtcttttcc gagtggcagc tgacatgttt 300
 23 tctgacggca acttcaactg gggccgggtt gtgccttctt tctactttgc cagcaaaactg 360
 gtgctcaagg ctggcgtaaa atggcgtat ctgggctcac tgcaacctct gcctcctggg 420
 27 ttcaaggcgat tcacctgcct cagcatccca aggagctggg attacaggcc ctgtgcacca 480
 agtgccgga actga 495

 32 <210> 37
 <211> 582
 <212> DNA
 <213> Homo sapiens

 37 <300>
 <302> bcl-w
 <310> U59747

 42 <400> 37
 atggcgaccc cagcctcgcc cccagacaca cgggctctgg tggcagactt tgttaggttat 60
 35 aagctgaggc agaagggtta tgcgtgtgg gtcggcccg gggagggccc agcagctgac 120
 ccgtgcacc aagccatgcg ggcagctgg gatgagttcg agacccgctt ccggcgcacc 180
 ttctctgatc tggcggtca gtcgtatgtg accccaggt cagcccagca acgcttcacc 240
 caaggctccg acgaactttt tcaagggggc cccaaactggg gccccttgtt agccttcttt 300
 40 gtccttgggg ctgcactgtg tgctgagagt gtcaacaagg agatggaacc actgggtggg 360
 caagtgcagg agtggatggg ggctcacctg gagacgcggc tggctgactg gatccacagc 420
 agtgggggct gggcgagtt cacagctcta tacggggac gggccctggg ggaggcgcgg 480
 cgtctgcggg aggggaactg ggcatacgatg aggacagtgc tgacggggc cgtggactg 540
 gggggccctgg taactgtagg ggccttttt gctagcaagt ga 582

 45 <210> 38
 <211> 2481
 <212> DNA
 <213> Homo sapiens

 50 <300>
 <302> HIF-alpha
 <310> U22431

 55 <400> 38
 atggaggcgcc ccggcgccgc gaacgacaag aaaaagataa gttctgaacg tcgaaaagaa 60
 aagtctcgag atgcaggccag atctcgccga agtaaaagaat ctgaagttt ttatgagctt 120
 gtcatcatgt tgccacttcc acataatgtg agttcgcacat ttgataaggc ctctgtatg 180
 aggcttacca tcagctttt ggcgtgtgagg aaacttctgg atgtgttgc ttggatatt 240
 60 gaagatgaca tgaaagcaca gatgattgc ttttatttga aagccttggg tgggtttgtt 300
 atggttctca cagatgatgg tgacatgtt tacatttctg ataatgtgaa caaatatcatg 360
 qgattaaactc aqtttqaact aactqqacac aqgtgttttq attttactca tccatgtgac 420

	catgaggaaa	tgagagaaaat	gttacacac	agaaatggcc	ttgtaaaaaa	gggtaaagaa	480
	caaaacacac	agcgaagctt	tttttcaga	atgaagtta	ccctaactag	ccgaggaaga	540
	actatgaaca	taaagtctgc	aacatggaa	gtattgcact	gcacaggcca	cattcacgt	600
	tatgatacca	acagtaacca	acctcagtgt	gggtataaga	aaccacctat	gacctgctt	660
5	gtgtgattt	gtgaaccat	tcctcaccca	tcaaataattt	aaatttctt	agatagcaag	720
	actttcctca	gtcgacacac	cctggatatg	aaattttctt	attgtatga	aagaattacc	780
	gaattgatgg	gatatgagcc	agaagaactt	ttaggccgct	caatttatga	atattatcat	840
	gctttggact	ctgatcatct	gaccaaaact	catcatgata	tgtttactaa	aggacaagtc	900
10	accacaggac	agtacaggat	gtttgccaaa	agagggtgat	atgtctgggt	tgaaactcaa	960
	gcaactgtca	tatataaacac	caagaattct	caaccacagt	gcattgtatg	tgtgaattac	1020
	gttgtgagt	gttattatca	gcacgactt	attttctccc	ttcaacaaac	agaatgtgtc	1080
	cttaaacccgg	ttgaatcttc	agatatgaaa	atgactcagc	tattcacca	agttgaatca	1140
	gaagatacaa	gtagccttct	tgacaaaactt	aagaaggaaac	ctgatgctt	aactttgctg	1200
15	gcccccagccg	ctggagacac	aatcatatct	ttagatttt	gcagcaacga	cacagaaaact	1260
	gatgaccagc	aacttggaga	agtaccata	tataatgtat	taatgtctcc	ctcaccacaa	1320
	gaaaattttac	agaatataaa	tttggcaatg	tctccattac	ccaccgctga	aacgccaaag	1380
	ccacttcgaa	gttagtgcgt	ccctgcactc	aatcaagaag	ttgcattaaa	attagaacca	1440
	aatccagagt	cactggact	ttcttttacc	atgccccaga	ttcagatca	gacacctagt	1500
20	ccttccgatg	gaagcactag	acaaagttca	cctgagccct	atagtcccag	tgaatattgt	1560
	ttttatgtgg	atagtatgt	ggtaatgaa	ttcaagttgg	aattggtaga	aaaacttttt	1620
	gctgaagaca	cagaagcaaa	gaacccattt	tctactcagg	acacagattt	agacttggag	1680
	atgttagctc	cctatatccc	aatggatgt	gacttccagt	tacgttccct	cgatcagtt	1740
	tcaccattag	aaagcagttc	cgcaagccct	gaaagcgc	gtcctcaaag	cacagttaca	1800
25	gtattccagc	agactcaat	acaagaacct	ctgtatggaa	acattaaaat	attgattgca	1860
	actgtatgaat	aaaaaacagt	gacaaaagac	cgtatggaa	ccacatcatc	accatataga	1920
	tctccatctc	ctacccacat	acataaagaa	actactatgt	ccacatcatc	accatataga	1980
	gatactcaa	gtcggacagc	ctcaccacaa	agagcaggaa	aaggagtcat	agaacagaca	2040
	gaaaattctc	atccaaaag	ccctaacgtg	ttatctgtcg	ctttgagtc	aagaactaca	2100
30	gttcctgagg	aagaactaaa	tccaaagata	ctagtttgc	agaatgtca	gagaaagcga	2160
	aaaatggAAC	atgatggttc	acttttcaa	gcagtaggaa	ttggAACATT	attacagca	2220
	ccagacgatc	atgcagactac	tacatca	tcttggaaac	gtgtaaaagg	atgcaatct	2280
	agtgaacaga	atggaatgga	gcaaaagaca	attatTTAA	taccctctga	tttagcatgt	2340
	agactgtgg	ggcaatcaat	ggatgaaagt	ggattaccac	agctgaccag	ttatgattgt	2400
	gaagttatg	ctcctataca	aggcagcaga	aacctactgc	agggtgaaga	attactcaga	2460
35	gcttggatc	aagttaactg	a				2481

	<210>	39					
	<211>	481					
40	<212>	DNA					
	<213>	Homo sapiens					
	<300>						
	<302>	ID1					
45	<310>	X77956					
	<400>	39					
	ataaaagtcg	ccagtggcag	caccgcccacc	gccgcccgg	gccccagctg	cgcgcgtgaag	60
	gcggcgaaga	cagcgagcgg	tgccccggcag	gtgggtcgct	gtctgtctga	gcagagcgtg	120
50	gccccatctc	gctgggggg	cgccggggcg	cgcctgcctg	ccctgctgga	cgagcagcag	180
	gtaaaacgtgc	tgctctacga	catgaacggc	tgttactac	gcctcaagga	gctgggtgcc	240
	accctggccc	agaaccccaa	ggtgagcaag	gtggagattc	tccagcacgt	catcgactac	300
	atcaggggacc	ttcagttgg	gctgaactcg	aatccgaag	ttgggacccc	ccccggccg	360
	ggggctggcgg	tccgggctcc	gctcagcacc	ctcaacggcg	agatcagcgc	cctgacggcc	420
55	gaggcggcat	gcgttctgc	ggacgatcg	atcttgtc	gctgaatggt	aaaaaaaaaa	480
	a						481
	<210>	40					
	<211>	110					
60	<212>	DNA					
	<213>	Homo sapiens					

5 <300>
 <302> ID2B
 <310> M96843

10 <400> 40
 tgaaaggcctt cagtcgggtg aggtccatta ggaaaaacag cctgttggac caccgcctgg 60
 gcatctccca gagcaaaacc ccggatg acctgatgag cctgctgtaa 110

15 <210> 41
 <211> 486
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> ID4
 <310> Y07958

25 <400> 41
 atgaaggcgg tgagccccgt ggcgcctcg ggccgcagg cgccgtcggg ctgcggcggc 60
 ggggagctgg cgctgcgtg cctggccag cacggccaca gcctgggtgg ctccgcagcc 120
 gcggcggcgg cggcggcggc agcgcgtgt aaggcggccg aggccggcgc cgacgagccg 180
 gcgtgtgcc tgcagtgcga tatgaacgac tgctatagcc gcctgcggag gctgggtgccc 240
 accatcccgcc caacaacaaga agtcagcaaa gtggagatcc tgccgcacgt tataactac 300
 atccctggacc tgcagctggc gctggagacg caccggccccc tgctgaggca gecaccaccg 360
 cccgccggcgc cacaccaccc ggccgggacc tgccagecg cgccggcgcg gaccccgctc 420
 actgcgtca acaccgaccc ggccggcgcg gtgaacaagc agggcgacag cattctgtgc 480
 cgctga 486
30
35 <210> 42
 <211> 462
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> IGF1
 <310> NM000618
45 <400> 42
 atggaaaaaa tcagcagtct tccaacccaa ttatTTAAGT gctgcTTTG tgatttcttg 60
 aaggTgaaga tgcacaccat gtcctcctcg catctcttct acctggcgt gtgcctgctc 120
 acttcacca gctctgccc ggctggaccc gagacgtct gcggggctga gctgggtggat 180
 gctcttcagt tcgtgtgtgg agacaggggc ttTTATTCa acaagccac agggatggc 240
 tccagcagtc ggagggcgc tcagacaggc atcgtggatg agtgcgtctt ccggagctgt 300
 gatctaagga ggctggagat gtattgcgc cccctcaagc ctgccaagtc agtcgtctc 360
 gtccgtgccc agcgcacac cgacatgccc aagacccaga aggaagtaca ttGAAGAAC 420
 gcaagttagag ggagtgcagg aaacaagaac tacaggatgt ag 462
50
55 <210> 43
 <211> 591
 <212> DNA
 <213> Homo sapiens

60 <300>
 <302> PDGFA
 <310> NM002607
65 <400> 43
 atgaggacct tggcttgcct gctgcctc ggctgcggat acctcgccca tggctggcc 60

5 gaggaagccg agatcccccg cgaggtgate gagaggctgg cccgcagtca gatccacagc 120
 atccggacc tccagcgact cctggagata gactccgtag ggagttagga ttctttggac 180
 accagcctga gagtcacgg ggtccacgccc actaagcatg tgccccgagaa gcggcccccctg 240
 cccattcggaa ggaagagaag catcgaggaa gctgtcccgct ctgtctgcaa gaccaggacg 300
 gtcatttacg agattcctcg gagtcaggc gaccccacgt ccgcacactt cctgatctgg 360
 ccccggtcg tggaggtgaa acgctgcacc ggctgctgca acacgagcg tgtcaagtgc 420
 cagccctccc gcgtccacca ccgcacgc aagggtggcca aggtgaaata cgtcaggaag 480
 aagccaaaat taaaagaagt ccaggtgagg ttagaggagc atttggatg cgcctgcgcg 540
 accacaagcc tgaatccgaa gaggacacgg atgtgaggtg a 591
 10

15 <210> 44
 <211> 528
 <212> DNA
 <213> Homo sapiens

20

<300>
 <302> PDGFRA
 <310> XM003568

25 <400> 44
 atggccaagc ctgaccacgc taccagtgaa gtctacgaga tcatggtaa atgtggAAC 60
 agtgagccgg agaagagacc ctccctttac cacctgagtg agattgtgaa gaatctgctg 120
 cctggacaaat ataaaaaagag ttatgaaaaaa attcacctgg acttcctgaa gagtgaccat 180
 cctgctgtgg cacgcatcg tggactca gacaatgc acatgggtt cacctacaaa 240
 aacgaggaag aacaatcgaa ggactggag ggtggctgg atgagcagag actgagcgt 300
 gacagtggct acatcatcc tctgcctgac attgaccctg tccctgagga ggaggacctg 360
 ggcaagagga acagacacag ctcgcagacc tctgaagaga gtgcattga gacgggttcc 420
 agcagttcca ccttcatcaa gagagaggac gagaccattt aagacatcg catgatggat 480
 30 gacatcgcc tagactcttc agacctggtaa gaagacagct tcctgtaa 528

35

<210> 45
 <211> 1911
 <212> DNA
 <213> Homo sapiens

40

<300>
 <302> PDGFRB
 <310> XM003790

45 <400> 45
 atgcggcttc cgggtgcgat gccagctctg gcccctaag gcgagctgct gttgctgtct 60
 ctctgttac ttctggaaacc acagatctc caggccctgg tcgtcaccc cccggggcca 120
 gagctgttcc tcaatgttcc cagcaccttc gttctgaccc gtcgggttc agctccgggt 180
 gtgtggaaac ggtatgtccca ggagccccca caggaaatgg ccaaggccca ggatggacc 240
 ttctccagcg tgctcacact gaccaacccctc actgggtctag acacgggaga atactttgc 300
 acccacaatg actccctgtt actggagacc gatgagcggaa acggctcta catctttgtg 360
 ccagatcccccc cctccctaat gatgccgagg aactattcat ctttctcaccg 420
 50 gaaataactg agatcaccat tccatgccga gtaacagacc cacagctgg ggtgacactg 480
 cacgagaaga aaggggacgt tgcaactgcct gtcccctatg atcaccacg tggctttct 540
 ggtatcttg aggacagaag ctacatctc aaaaccacca ttggggacag ggaggtggat 600
 tctgtatgcct actatgtcta cagactccag gtgtcatcca tcaacgttcc tggaaacgca 660
 gtgcagactg tggtccggca ggggtggaaac atcaccctca tggcattgt gatcgggaaat 720
 55 gaggtggta acttcgagtg gacatacccc cgccaaagaaa gtggggggct ggtggagccg 780
 gtgactgact tcctcttggat tattgccttac cacatcccgct ccatcctgca catccccagt 840
 gccgagtttag aagactcgcc gacccatccc tgcaatgtga cggagagtgt gaatgaccat 900
 cagatgaaa aggccatcaa catcacgtt gttgagagcg gtcacgtcg gtcctggaa 960
 gagggtggca cactacaatt tgctgagctg catcgagcc ggacactgca ggttgttcc 1020
 60 gaggcctacc caccggccac tgcctgtgg ttcaaagaca accgcacccct gggcgactcc 1080
 agcgctggcg aaatgcctt gtcacgcgc aacgtgtcg agaccggta tggcagag 1140
 ctgacactgg ttgcgtgaa ggtggcagag gtcggccact acaccatcg ggccttccat 1200

5 gaggatgctg aggtccagct ctcccttccag ctacagatca atgtccctgt ccgagtgctg 1260
 gagctaagtg agagccaccc tgacagtggg gaacagacag tccgctgtcg tggccggggc 1320
 atgcccccagc cgaacatcat ctggctgtcc tgcagagacc tcaaaaaggtg tccacgttag 1380
 ctgcccccac cgctgctggg gaacagttcc gaagaggaga gccagctgga gactaacgtg 1440
 acgtactggg aggaggagca ggaggttgag gtggtgagca cactgcgtct gcagcacgtg 1500
 gatcgccac tgcgggtcgct ctgcacgcgtg cgcaacgcgtg tggccagga cacgcaggag 1560
 gtcatctgtgg tgccacactc cttgccttt aaggtgggtg tgatctcagc catcctggcc 1620
 ctgggtgtgc tcaccatcat ctcccttatac atcctcatca tgcttggca gaagaagcca 1680
 cgttacgaga tccgatgaa ggtgatttgag tctgtgagct ctgacggcca tgagtacatc 1740
 10 tacgtggacc ccatgcagct gccotatgac tccacgtggg agctgccg 1800
 gtgctgggac gcaccctcg ctctggggcc tttgggcagg tggtgaggc cacgggtcat 1860
 ggcctgagcc atttcaagc cccaatgaaa gtggccgtca aaaaatgcta a 1911

15 <210> 46
 <211> 1176
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> TGFbeta1
 <310> NM000660

25 <400> 46
 atgcccgcctt cggggctgctg gctgctgccc ctgctgctac cgctgctgtg gctactgggt 60
 ctgacgcctg gccccccggc cgcgggacta tccacctgca agactatcgca catggagctg 120
 gtgaagcgga agcgcatcgca ggccatccgc ggccagatcc tgcgttccatcgatc gccggctcgcc 180
 agccccccga gccagggggg ggtgcccgtc ggcccgctgc cccggggccgt gctcgccctg 240
 tacaacagca cccgcgaccg ggtggccggg gagagtgcag aaccggagcc cgagcctgag 300
 30 gccgactact acgccaaggg ggtcaccgcgtgctaattgg tggaaaccca caacgaaatc 360
 tatgacaagt tcaagcagag tacacacacg atatatatgt tcttcaacac atcagagctc 420
 cgagaagcggt tacctgaacc cgtgttgc tcccgccggcag agctgcgtct gctgaggagg 480
 ctcagaattaa aagtggagca gcacgtggag ctgttaccaga aatacagcaa caattccctgg 540
 cgatcacctca gcaaccggct gctggccacc accgcactgc cagagtggat atctttgtat 600
 35 gtcaccggag ttgtgcggca gtgggttgcg cgtgggggg aaatttgggg ctttcgccct 660
 agccccccact gtcctgtgca cagcaggat aacacactgc aagtggacat caacgggttc 720
 actaccggcc gccgagggttgc cctggccacc attcatggca tgaaccggcc tttccctgctt 780
 ctcatggcca ccccgctggca gaggggcccg catctgcggaa gctccggca cccggcggcc 840
 ctggacacca actattgtt cagctccacg gagaagaact gtcgtgtcg gcagctgtac 900
 40 attgacttcc gcaaggaccc tggatccacg agcccaagggtt ctaccatgccc 960
 aacttctgca tcggccctg cccctacatt tggagcctgg acacgcgtt cagcaagggtt 1020
 ctggccctgt acaaccagca taacccgggc gcctcgccgg cggcgctgtc cgtgcccggc 1080
 gcgctggagc cgctgcccatt cgtgtactac gtggggccca agcccaagggtt ggagcagctg 1140
 tccaacatga tcgtgcgtct ctgcacgtgc agctga 1176

45 <210> 47
 <211> 1245
 <212> DNA
 <213> Homo sapiens

50 <300>
 <302> TGFbeta2
 <310> NM003238

55 <400> 47
 atgcactact gtgtgctgag cgctttctg atcctgcattt tggtcacggc cgccgtcaggc 60
 ctgtctaccc gcaacactt cgtatggac cagttcatgc gcaagaggat cgaggcgatc 120
 cgcggccaga tcctgagca gctgaagctt accagtcacc cagaagacta tcctgagccc 180
 60 gaggaagtcc ccccgagggtt gattccatc tacaacagca ccaggactt gctccaggag 240
 aaggcgagcc ggagggccggc cgccgtcgatc cgcgagagga ggcacgaaatgc gtactacgccc 300
 aaggagggttt aaaaaataga catggccccc ttcttccctt ccggaaatgc catccggccc 360

actttctaca gaccctactt cagaattgtt cgatttgacg ttcagcaat ggagaagaat 420
 gctccaatt tggtaaagc agagttcaga gtcttcgtt tgcagaaccc aaaagccaga 480
 gtgcctgaac aacggatga gcttatcatcg attctcaagt ccaaagattt aacatctcca 540
 acccagcgct acatcgacag caaagttgtg aaaacaagag cagaaggcga atggctctcc 600
 5 ttcatgtaa ctgatgtgt tcataaatgg cttcaccata aagacaggaa cctgggattt 660
 aaaaataagct tacactgtcc ctgctgact tttgtaccat ctaataatta catcatccca 720
 aataaaagtg aagaactaga agcaagattt gcaggtattt atggcaccc cacatatacc 780
 agtggtgatc agaaaactat aaagtcact aggaaaaaaaaa acagtggaa gaccccacat 840
 ctcctgctaa tgttattgcc ctcctacaga cttgagtcac aacagaccaa ccggcgaaag 900
 10 aacgtgctt tggatcgcc ctattgttt agaaatgtgc aggataattt ctgcctacgt 960
 ccactttaca ttgatttcaa gaggatcta ggggtggaaat ggatacacga acccaaagg 1020
 tacaatgcca acttctgtgc tggagcatgc ccgtattttat ggagttcaga cactcagcac 1080
 agcagggtcc tgagttata taataccata aatccagaag catctgttc tccttgctc 1140
 gtgtcccaag atttagaacc tctaaccatt ctctactaca ttggccaaac acccaagatt 1200
 15 gaacagcttt ctaatatgtat tgtaaagtct tgcaaatgca gctaa 1245

<210> 48
 <211> 1239
 20 <212> DNA
 <213> Homo sapiens

<300>
 <302> TGFbeta3
 25 <310> XM007417

<400> 48
 atgaagatgc acttgcaaa ggctctgggt gtcctggccc tgctgaacctt tgccacggc 60
 agcctctc tgcacttgc caccacccgt gacttcggcc acatcaagaa gaagagggtg 120
 30 gaagccatta ggggacagat cttgagcaag ctcaggctca ccagcccccc tgagccaacg 180
 gtgtatgaccc acgtccctta tcaggtccgt gcccttaca acagcacccgg ggagctgctg 240
 gaggagatgc atggggagag ggaggaaggc tgcacccagg aaaacaccga gtcggaatac 300
 tatgccaaag aaatccataa attcgacatg atccagggggc tggcgagca caacgaactg 360
 gctgtctgcc ctaaaggaaat tacatccaaat gtttccgttcaatgtgtc ctcagtggag 420
 35 aaaaatagaa ccaacctatt ccgagcagaa ttccgggtct tgccgggtcc caacccccc 480
 tctaagcggg atgagcggag gatcgacgtc ttccagatcc ttccggcaga tgagcacatt 540
 gccaaacacgc gctatatacg tggcaagaat ctggccacac ggggcactgc cgagtggctg 600
 tccttgatg tcactgacac tgcgtgtgg tggctgttga gaagagagtc caacttaggt 660
 ctagaaatca gcattcaatc tccatgtcaca acctttcagc ccaatggaga tattctggaa 720
 40 aacattcacg aggtgatgaa aatcaaattt aaaggcgtgg acaatgagga tgaccatggc 780
 cgtggagatc tggggcgcc caagaagcag aaggatcacc acaacccctca tctaattctc 840
 atgatgatc ccccacaccc gctcgacaaac ccggggccagg ggggtcagag gaagaagcgg 900
 gctttggaca ccaattactg cttccgcaac ttggaggaga actgctgtgt ggcggccctc 960
 tacattgact tccgacacgg tctggctgg aagtgggtcc atgaacctaa ggctactat 1020
 45 gccaacttct gctcaggccc ttgcccatac ctccgcgtt cagacacaaac ccacagcacg 1080
 gtgtgggac tgcataacac tctgaaccctt gaagcatctg ctcgcctt ctgcgtgccc 1140
 caggacctgg agccccctgac catcctgtac tatgttggaa ggaccccaa agtggagcag 1200
 ctctccaaaca tgggtgttacatgttgcataa tgtagctga 1239

50 <210> 49
 <211> 1704
 <212> DNA
 <213> Homo sapiens

<300>
 <302> TGFbetaR2
 55 <310> XM003094

60 <400> 49
 atgggtcggtt ggctgctcag gggcctgtgg ccgctgcaca tcgttctgtg gacgcgtatc 60
 gccagcacga tcccacccgca cgttcagaag tcggtaata acgacatgtat agtcaactgac 120

aacaacggtg cagtcaagtt tccacaactg tgtaaatttt gtgatgttag atttccacc 180
 tgtgacaacc agaaatccctg catgagcaac tgcagcatca cctccatctg tgagaagcca 240
 cagaaggctcgt atggagaaag aatgacgaga acataacact agagacagtt 300
 5 tgcattatga aggaaaaaaaaaa aaaggctggt gagactttct tcattgttgc ctgtagctct 420
 gatgagtgca atgacaacat catcttcata gaagaatata acaccagcaa tcctgacttg 480
 ttgctagtca tatttcaagt gacaggcatc agcctctgc caccactggg agttgccata 540
 tctgtcatca tcatcttcta ctgcaccgc gttAACCGGC agcagaagct gagttcaacc 600
 tggaaaccg gcaagacgca gaagctcatg gagttcagcg agcactgtgc catcatcctg 660
 10 gaagatgacc gctctgacat cagctccacg tggccaaaca acatcaacca caacacagag 720
 ctgctccca tttagcttggc caccctggc gggaaagggtc gctttctgtga ggtctataag 780
 gccaagctga agcagaacac ttcaagcag ttttagacatc tggcgtcaaa gatctttccc 840
 tatgaggagt atgccttgc taagacagag aaggacatct tctcagacat caatctgaag 900
 15 catgagaaca tactccagg tctgcacggc gaggagcggg agacggagtt gggaaacaa 960
 tactggctga tcaccgcctt ccacgcacg ggcaacactac aggagttaccc gacgcggcat 1020
 gtcacatcagct gggaggaccc gcgcacgtc ggcacgtccc tcgcggggg gattgtcac 1080
 ctccacagtg atcacactcc atgtgggagg ccaagatgc ccatcgtca cagggaccc 1140
 aagagctcca atatctctgt gaagaacgac ctaacctgtc gcctgtgtga ctttgggctt 1200
 tcoctgcgtc tggaccctac tctgtctgtg gatgacctgg ctaacagtgg gcaagggtggg 1260
 20 actgcaagat acatggctcc agaagtccta gaatccagga tgaatttggg gaatgttgag 1320
 tccttcaagc agaccgtatgt ctactccatg gctctgggtc tctggaaat gacatctcgc 1380
 tgtaatgcag tgggagaagt aaaagattt gaggcctccat ttgggtccaa ggtgcgggag 1440
 caccctgtg tcgaaagcat gaagacaaac gtgttgagag atcgaggcg accagaaatt 1500
 25 ccaagcttgc ggctcaacca ccaggccatc cagatgtgt gtgagacgtt gactgagtgc 1560
 tgggaccacg accccagggc ccgttcaca gcccagtgtg tggcagaacg cttcagttag 1620
 ctggagcatc tggacaggct ctcggggagg agctgtcgg aggagaagat tcctgaagac 1680
 ggctccctaa acactaccaa atag 1704

30 <210> 50
 <211> 609
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> TGFbeta3
 <310> XM001924

<400> 50

40 atgtctcatt acaccattat tgagaatatt tgcctaaag atgaatctgt gaaattctac 60
 agtcccaaga gaggactt tcctatcccg caagctgaca tggataagaa gcgattcagc 120
 tttgtctca agcctgtctt caacacctca ctgctttc tacagtgtga gctgacgctg 180
 tgtaacgaa tggagaagca ccccccaag tggcctaagt gtgtgcctcc tgacgaagcc 240
 45 tgacccctgc tggacgcctc gataatctgg gccatgtatc agaataagaa gacgttcaact 300
 aagcccttg ctgtgatecca ccatgaagca gaatctaaag aaaaagggtcc aagcatgaag 360
 gaaccaaatac caattttctcc accaatttttc catggcttgg acaccctaac cgtgatgggc 420
 attgcgtttg cagcctttgt gatggagca ctccatgcgg gggccttggt gtacatctat 480
 tctcacacag gggagacagc aggaaggcag caagtccca cctcccgcc agcctcgaa 540
 50 aacagcagtg ctgcccacag catcggcagc acgcagagca cgccttgctc cagcagcagc 600
 acggccttag 609

<210> 51
 <211> 3633
 55 <212> DNA
 <213> Homo sapiens

<300>

<302> EGFR

60 <310> X00588

<400> 51

	atgcgaccct	ccgggacggc	cggggcagcg	ctcctggcgc	tgctggctgc	gctctgccc	60
	gcgagtccgg	ctctggagga	aaagaaaagtt	tgccaaggca	cgagtaacaa	gctcacgcag	120
	ttgggactt	ttgaagatca	ttttctcagc	ctccagagga	tgttcaataa	ctgtgagg	180
5	gtccttggga	atttggaaat	tacctatgtg	cagaggaatt	atgatcttc	cttcttaaag	240
	accatccagg	aggtggctgg	ttatgcctc	attgcoccta	acacagtgg	gcgaattcct	300
	ttggaaaaacc	tgcagatcat	cagaggaat	atgtactacg	aaaattccta	tgccttagca	360
	gtcttatcta	actatgatgc	aaataaaaacc	ggactgaaagg	agctgccat	gagaatttta	420
10	cagaaatcc	tgcatggcgc	cgtgcgggtc	agcaacaacc	ctgcccgtg	caacgtggag	480
	agcatccagt	ggcgggacat	agtca	gacttctca	gcaacatgtc	gatggacttc	540
	cagaaccacc	tgggcagctg	ccaaaagtgt	gatccaagct	gtcccaatgg	gagctgctgg	600
	ggtgtcaggag	aggagaactg	ccagaaaactg	acccaaatca	tctgtccca	gcagtgc	660
	gggcgctgcc	gtggcaagtc	ccccagtgac	tgctgcccaca	accagtgtc	tgcaggctgc	720
	acaggcccccc	gggagagcga	ctgcctggc	tgccgcaaat	tccgagacga	agccacgtgc	780
15	aaggacaccc	gccccccact	catgtctac	aaccccaacc	cgatccaggat	ggatgtgaac	840
	cccgaggggca	aatacagctt	tgggccacc	tgctgtgaa	agtgtccctcg	taattatgtg	900
	gtgacagatc	acggctcg	cgtccgagcc	tgtggggccg	acagctatga	gatggaggaa	960
	gacggcgtcc	gcaagtgtaa	aaatgtcg	gggccttgc	gcaaaatgt	taacggata	1020
	ggtattgggt	aatttaaga	ctcactctcc	ataatgtct	cgaatattaa	acacttcaaa	1080
20	aactgcaccc	ccatcagttg	cgatctccac	atcctggccc	ttggcatttag	gggtgactcc	1140
	ttcacacata	ctccctct	ggatccacag	gaactggata	ttctgaaaac	cgtaaaggaa	1200
	atcacagggt	ttttgctgtat	tcaggcttgg	cctgaaaaca	ggacggac	coatgcctt	1260
	gagaacctag	aaatcatacg	cgccaggacc	aagcaacatg	gtcagtttc	tettgcagtc	1320
	gtcaagctga	acataacatc	cttgggatta	cgatccctca	aggagataag	tgtatggagat	1380
25	gtgataattt	caggaaacaa	aaatttgtgc	tatgcaaata	caataaactg	aaaaaaaactg	1440
	tttgggactt	ccggtcagaa	aacccaaatt	ataagcaaca	gagggtaaaa	cagctgcaag	1500
	gcacacaggcc	aggtctgca	tgccttgc	tcccccagg	gctgtgggg	cccgagccc	1560
	aggactgcg	tctcttgc	gaatgtcag	cgaggcagg	aatgtcg	caagtgc	1620
	cttctggagg	gtgagccaag	ggagttgtg	gagaactctg	agtgcataca	gtgccaccca	1680
30	gagtgcctgc	ctcaggccat	gaacatcacc	tgcacaggac	ggggaccaga	caactgtatc	1740
	cagtgtgccc	actacattga	cgccccccac	tgctcaaga	cctgcccggc	aggagtcatg	1800
	ggagaaaaaca	acaccctgtt	ctggaaagtac	gcagacgc	gccatgtgt	ccacctgtgc	1860
	catccaaact	gcacctacgg	atgcactggg	ccaggctctg	aggctgtcc	aacgaatggg	1920
	cctaagatcc	cgtccatcgc	cactggatg	gtggggccc	tcctcttgc	gttgggtgt	1980
	gccttggga	tcggcctt	catgcgaagg	cgccacatcg	ttcggaa	cgacgtgcgg	2040
35	aggctgctgc	aggagaggg	gtttgtggag	cctcttacac	ccagtggaga	agctccaaac	2100
	caagctctt	tgaggatctt	gaagaaaact	gaatcaaaa	agatcaa	agtgggtctc	2160
	ggtgcgttcg	gcacgggtta	taagggact	tggatccc	agggtgagaa	agttaaaatt	2220
	cccgctgcta	tcaaggaaatt	aagagaagca	acatctccg	aagccaa	ggaaatcctc	2280
	gatgaagctt	acgtgatggc	cagcgtggac	aaccccaac	tgtccgc	gttgggc	2340
40	tgccctcacct	ccaccgtgca	actcatcag	cagctcatc	ccttcggct	ccicctggac	2400
	tatgtccggg	aacacaaga	caatatttgc	tcccagtacc	tgctcaactg	gtgtgtgcag	2460
	atcgcaaaagg	gcatgaacta	cttggaggac	cgtcgcttgg	tgcacccgca	cctggcagcc	2520
	aggaacgtac	tggtaaaaac	accgcagcat	gtcaagatca	cagattttg	gttggccaa	2580
	ctgctgggt	cggaagagaa	agaataccat	gcagaaggag	gcaaaatgt	tatcaagtgg	2640
45	atggcattgg	aatcaatttt	acacagaatc	tataccacc	agagtatgt	ctggagctac	2700
	gggggtgaccg	tttgggagtt	gatgaccctt	ggatcca	catatgacgg	aatccctgc	2760
	agcgagatct	cctccatct	ggagaaagg	gaacgc	ccat	atgtac	2820
	atcgatgtct	acatgtatc	ggtaactgc	tggatgatag	acgcagatag	tgc	2880
	ttccgtgagt	tgatcatcg	atttccaaa	atggcccg	acccccc	ctaccttg	2940
50	attcaggggg	atgaaagaat	gcatttgc	agtcc	actccaa	ctaccgtgc	3000
	ctgatggatg	aagaagacat	ggacgacgt	gtggatcc	acgagatcc	catcccac	3060
	cagggcttct	tcagcagccc	ctccacgtc	cgactccc	tcctgag	tctgatgt	3120
	accagcaaca	attccacccgt	ggcttgcatt	gatagaaatg	ggctgcaaa	ctgtccatc	3180
	aaggaagaca	gttcttgca	gcatgac	tcagaccc	caggcc	gactgaggac	3240
55	agcatagacg	acacccct	cccagtgcct	gaatacataa	accagtcc	tcccaaaagg	3300
	cccgctggct	ctgtgcagaa	tcctgtctat	cacaatc	ctctgaa	cgccccc	3360
	agagaccac	actaccagg	ccccac	actgc	actgc	gtatctca	3420
	actgtccagc	ccacctgtgt	caacagcaca	ttcgac	ctgccc	actggcc	3480
	ggcagccacc	aaatttagctt	ggacaacc	gactacc	aggactt	tcccaaggaa	3540
60	gcaagccaa	atggcatctt	taagggtctc	acagctgaaa	atgcagaata	cctaagggtc	3600
	gcccacaaa	gcagtgaatt	tattggagca	tga			3633

<210> 52
<211> 3768
<212> DNA
5 <213> Homo sapiens

<300>
<302> ERBB2
<310> NM004448

10 <400> 52
atggagctgg cggccttgtg ccgcgtgggg ctcctcctcg ccctcttgcc ccccgaggcc 60
gcgagcaccc aagtgtgcac cggcacagac atgaagctgc ggctccctgc cagtcccag 120
accacacctgg acatgctccg ccacactctac cagggctgcc aggtggtgca gggaaacctg 180
15 gaactcacct acctgccccac caatgccagc ctgtccttcc tgcaggatata ccaggagggt 240
cagggctacg tgctcatcg tcacaaccaa gtgaggcagg tcccactgca gaggctgcgg 300
attgtgcgag gcacccagct ctttggggac aactatgccc tggccgtgtc agacaatgga 360
gaccggctga acaataccac ccctgtcaca ggggcctccc caggaggcct gcgggagctg 420
cagcttcgaa gcctcacaga gatcttggaa ggagggtct tgatccagcg gaaccccccag 480
20 ctctgttacc aggacacat ttttgtggaa gacatcttcc acaagaacaaa ccagctggct 540
ctcacactga tagacaccaa ccgcgtctcg gcctgcacc cctgttctcc gatgtgttaag 600
ggctcccgct gctggggaga gagttctcg gattgtcaga gcctgacgctg cactgtctgt 660
gcccgtggct gtgcccgtg caagggggcc caagcactct ctggccactg actgtgtccca tgagcagtgt 720
25 agtggcatct gtgagctgca ctgcccagcc gactgcctgg cctgcctcca cttcaaccac 780
tccatgccccca atcccgggg ccggtataaca ttccggccca gctgtgtgac tgcctgtccc 900
tacaactacc ttctacggg cgtgggatcc tgccacccctg tctgccccct gcacaacacaa 960
gaggtgacag cagaggatgg aacacagccg tttggggatcc tttggggatcc tggcatttct gccggagagc 1140
gtgtgttatg gtctgggcat ggagcaactg 30 atccaggagt ttgtctggct caagaagatc tttggggatcc tggcatttct gccggagagc 1140
tttggatgggg acccagccct caacactgccc ccgctccagc cagagcagct ccaagtgttt 1200
gagactctgg aagagatcac agtttaccta tacatctcg catggccggc cagcctgcct 1260
gacccatcgcc tcttccagaa cctgtcaagta atccggggac gatttctgca caatggccgc 1320
35 tactcgctga ccctgtcaagg gctggggatcc agctggctgg ggctgcgtc actgaggaa 1380
ctggggcagtg gactggccct catccaccc aacacccccc tctgttctgt gcacacgggt 1440
ccctgggacc agctcttccg gaacccggcac caagctctgc tccacactgc caacccggcca 1500
gaggacgagt gtgtggcga gggcctggcc tgccaccaggc tgcagccagt tccttgggg ccaggagggtc 1560
40 tggggtccag gggccacccca gtgtgtcaac atgcccacatc ggaagttcc agatgaggag 1860
gtggaggaat gccgagtaat gcaggggctc accactctt gtgtggccat ggatgacaag 1920
ttggccgtgcc accctgagtg tcagccccag aatggctcag tgacctgttt tggaccggag 1740
gctgaccagt gtgtggctg tgcccaactat aaggaccctc ccttctgcgt ggcccgcgtc 1800
45 cccagccgtg taaaaacctga cctctcctac atgcccacatc ggaagttcc agatgaggag 1860
ggcgcatgcc ageccttgcct catcaactgc accactctt gtgtggccat ggatgacaag 1920
ggctggcccg ccgagcagag agccagccct ctgacgtcca tgcgttctgc ggtgggtggc 1980
attctgtcggt tcgtggctt ggggggtgtc tttgggatcc tcatcaagcg acggcagcag 2040
aagatccggg agtacacatg gcgagactg 50 cccaaagccca acaaagaaaat cttagacgaa gcatacgtga tggctgggtt gggctccca 2340
acacacttagcg gagcgatgcc caaccaggcg tatgtctccc gccttctggg catctgcctg acatccacgg tgcagctggt gacacagctt 2400
gacctgtga actgggtgtat gcagattgcc cggggaaacc gctgtgtatgca aaggggatga gtcacccctt ggtgtgcgg 2520
ctcgtacaca gggacttggc cgctcgaaac tttggcacag tctacaaggg catctggatc 2220
55 attacagact tcgggctggc tcggctgtc gacattgtca agatcccacatc ggcacccatcc aacacatcc 2280
ggggcaagg tgcccatcaa gtggatggcg ctggaggatca ttctccggc ggggttcacc 2700
caccagatgt atgtgtggag ttatgtgtc actgtgtggg agtctgtatgac ttttggggcc 2760
aacacccatcg atgggatccc agcccgaggatcc gtcacatgaa tcatgttccaa atgttggatg 2820
ctgccccccgc ccccccacatcg caccattgtat gtcacatgaa tcatgttccaa atgttggatg 2880
60 attgactctg aatgtcgcc aagattccgg gatgtgggtt ctgaattctc cgcacatggcc 2940
agggacccccc agcgctttgtt ggtcatccag aatgaggact tggggccagc cagtccttgc 3000
gacagcacct tctaccgctc actgtgtggag gacgatgaca tgggggacatc ggtggatgtc 3060

5 gaggagtatc tggtacccca gcagggcttc ttctgtccag accctgcccc gggcgctggg 3120
 ggcatggtcc accacaggca ccgcagctca tctaccaggaa gtggcggtgg ggacctgaca 3180
 ctagggctgg agccctctga agaggaggcc cccagggtctc cactggcacc ctccgaagggg 3240
 gctggctccg atgtatttga tggtgacctg ggaatggggg cagccaagggg gctgcaaaggc 3300
 10 ctcccccacac atgaccccg ccctctacag cggtagtacgtg aggacccac agtacccctg 3360
 ccctctgaga ctgatggta cggtggggcc ctgacctgca gccccccagcc tgaatatgtg 3420
 aaccagccag atgttcggcc ccagggggct tcgccccggag agggccctct gcctgctgcc 3480
 cgacctgctg gtgccactct gaaaaggggcc aagactctc ccccaaggaa gaatggggtc 3540
 gtcaaagacg tttttgcctt tgggggtgcc gtggagaacc cggagactt gacacccac 3600
 15 ggaggagctg cccctcagcc ccaccctctt cctgccttca gcccagcctt cgacaacctc 3660
 tattactggg accaggaccc accagagcgg ggggctccac ccagcacctt caaaggggaca 3720
 cctacggcag agaaccaga gtacccgggt ctggacgtgc cagtgtga 3768

20 <210> 53
 <211> 1986
 <212> DNA
 <213> Homo sapiens

25 <300>
 <302> ERBB3
 <310> XM006723

30 <400> 53
 atgcacaact tcagtgttt ttccaaattt acaaccattg gaggcagaag cctctacaac 60
 cggggctctt cattgttgat catgaagaac ttgaatgtca catctctggg ctccgatcc 120
 ctgaaggaaa ttagtgcgg gcttatctat ataagtgcata ataggcagct ctgctaccac 180
 cactcttga actggaccaa ggtgttcgg gggcctacgg aagaggcact agacatcaag 240
 cataatcggc cgccgagaga ctgcgtggca gagggcaaaag tgggtgaccc actgtgctcc 300
 35 tctggggat gctggggcc agggcctggg cagtgtttt cctgtcgaaa ttatagccga 360
 ggagggtgtct gtgtgacca ctgcaacttt ctgaatgggg agcctcgaga atttgcct 420
 gaggccgaat gcttctctg ccacccggaa tgccaaacca tggagggcac tgccacatgc 480
 aatggctcggt gctctgatcat ttgtgctcaa tggccattt ttcgagatgg gccccactgt 540
 gtgagcactg gccccatgg agtccctaggt gccaaggggcc caatctacaa gtacccagat 600
 40 gttcagaatg aatgtcgcc ctgcctatgg aactgcaccc aggggtgtaa aggaccagag 660
 cttcaagact gtttaggaca aacactgggt ctgtcgccaa aaaccatct gacaatggct 720
 ttgacagtgta tagcaggatt ggttagtatt ttcatgatgc tggcgccac ttttctctac 780
 tggcggtggc gccggattca gaataaaaagg gctatgagggc gatacttggaa acgggggtgag 840
 agcatagagc ctctggaccc cagtgagaag gctaacaagat tcttggccag aatcttcaaa 900
 45 gagacagagc taaggaagct taaagtgtttt ggctcggtt tctttggaaat tggcaca 960
 ggagtgtgga tccctgaggg tgaatcaatc aagattccag tctgcattaa agtcatttggag 1020
 gacaagagtg gacggcagag ttttcaagct gtgacagatc atatgtggc cattggcagc 1080
 ctggaccatg cccacatgtt aaggctgtg ggactatgcc cagggtcatac tctgcagctt 1140
 gtcactcaat atttgcctctt gggttctctg ctggatcatg tgagacaaca cggggggggca 1200
 50 ctggggccac agtgcgtct caactggggaa gtacaaatgg ccaaggaaat gtactacctt 1260
 gaggaacatg gtatggtgca tagaaacactg gctggccaa acgtgtactt caagtcaccc 1320
 agtcaggatcc aggtggcaga tttttgtgtg tgcgtaccc tgcctctgtg tgataaggcag 1380
 ctgctataca gtgaggccaa gactccaattt aagtggatgg cccttggagag tatccacttt 1440
 gggaaataca cacaccagag tgatgtctgg agctatgggt tgacagtttggagttgatg 1500
 55 accttcgggg cagggcccta tgcagggtca cgattggctg aagtaccaga cctgcttagag 1560
 aaggggggagc ggttggcaca gccccagatc tgcacaattt atgtctacat ggtgtatggtc 1620
 aagtgttgggat tgattgtatc gaacatttgc ccaaccttta aagaacttgc caatgagttc 1680
 accaggatgg cccgagaccc accacggat tgcgtacccaa agagagagat tggggcttgg 1740
 atagcccccctg ggccagagcc ccatggctgtg acaaacaaga agctagaggg agtagagctg 1800
 60 gagccagaac tagacctaga cctagacttg gaaggcaggg aggacaacctt ggcaaccacc 1860
 acactggcttccg ccccccctcag cctaccatgtt ggaacactt atcggccacg tggggccac 1920
 agccttttaa gtccatcatc tggatcatg cccatgaacc agggtaatct tggggttctt 1980
 ctttag

65 <210> 54
 <211> 1437

<212> DNA
<213> Homo sapiens

35 <210> 55
<211> 627
<212> DNA
<213> Homo sapiens

40 <300>
<302> FGF10
<310> NM004465

<210> 56
<211> 679
60 <212> DNA
<213> Homo sapiens

<300>
<302> FGF11
<310> XM008660

5 <400> 56
aatggccgcg ctggccagta gcctgatccg gcagaaggcg gagggtccgcg agccccgggg 60
cagccggccg gtgtccgcg ageggcgcgt gtgtccccgc ggcaccaagt cccttgcga 120
gaagcagctc ctcatactgc tgtccaaggt gcgactgtgc gggggccgc ccgcgcggcc 180
ggaccgcggc cccggagcctc agctaaagg catcgtaacc aaactgttct gccgcccagg 240
10 tttctacctc caggcgaatc ccgacggaaag catccagggc accccagagg ataccagctc 300
cttcacccac ttcaacctga tccctgtggg ctcctgtgt gtcaccatcc agagcgccaa 360
gctgggtcac tacatggcca tgaatgtga gggactgctc tacagttcgc cgcatttcac 420
agtgtagtgt cgcttttaagg agtgtagtgt tgagaattac tacgtccctgt acgcctctgc 480
15 tctctaccgc cagcgtcggt ctggccggc ctggtaaccgc ggcctggaca aggaggggca 540
ggtcatgaag ggaaaccgg ttaagaagac caaggcagct gcccacttcc tgcccaagct 600
cctggagggtg gccatgtacc aggagccttc tctccacagt gtccccgagg cctcccccttc 660
cagtcggccctt gccccctga 679

20 <210> 57
<211> 732
<212> DNA
<213> Homo sapiens

25 <300>
<302> FGF12
<310> NM021032

<400> 57
30 atggctgcgg cgatagccag ctccctgatc cggcagaagc ggcaggcgag ggagtccaaac 60
agcgaccgag tgcggccctc caagcgcgcg tccagccccca gcaaagacgg ggcgtccctg 120
.tgcggaggc acgtccctcg ggtttcgcg aaagtgcgt tctgcagcgcc cgcaagagg 180
ccgggtgggc ggagaccaga accccagctc aaagggttt tgacaaggtt attcagccag 240
cagggatact tcctgcagat gcacccagat ggtaccattt atgggaccaa ggacgaaaaac 300
35 agcactaca ctctcttcaa tctaattccc gtgggcctgc gtgttagtggc catccaaggaa 360
gtgaagggtt gccttatgt ggccatgaat ggtgaaggct atctctacag ttcatgttt 420
ttcactccag aatgcaaattt caaggaatct gtgtttggaaa actactatgt gatctattct 480
tccacactgt accgcgcagca agaattcggc cgagcttggt ttctggact caataaaagaa 540
ggtcaaaattt tgaaggggaa cagagtgaag aaaaccaagc cctcatcaca ttttgtaccg 600
40 aaaccttattt aagtgtgtat gtacagagaa ccatcgctac atgaaattgg agaaaaacaa 660
ggcggttcaa ggaaaaggttc tggaacacca accatgaatg gaggcaaagt tgtgaatcaa 720
gattcaacat ag 732

45 <210> 58
<211> 738
<212> DNA
<213> Homo sapiens

50 <300>
<302> FGF13
<310> XM010269

<400> 58
55 atggccggccg ctatgcgcag ctgcgtcatc cgtcagaaga ggcaagcccc cgagcgccgag 60
aaatccaaacg cctgcaagtgt gtgcagcgc cccagcaag gcaagaccag ctgcgacaaa 120
aacaaggtaa atgtcttttc cccgggtcaaa ctcttcggct ccaagaagag ggcgcagaaga 180
agaccagagc ctcaagttaa gggtagatgtt accaagctat acagccgaca aggcttaccac 240
ttgcagctgc aggcggatgg aaccattgtt ggcaccaaaat atgaggacag cacttacact 300
60 ctgtttaacc tcataccctgt gggctgcga gtgttggcta tccaaaggagt tcaaaccac 360
ctgtacttgg caatgaacacg tgagggatac ttgtacactt cggaaactttt cacacccatgg 420
tgcaaaatttca aagaatcaatgtt gtttggaaaat tattatgtga catatttcac aatgtatatac 480

5 <400> 61
 atgtattcag cgccctccgc ctgcaattgc ctgtgtttac acttcctgt gctgtgcttc 60
 caggtacagg tgctgggtgc cgaggagaac gtggacttcc gcacccacgt ggagaaccag 120
 acgcgggctc gggacatgtt gagccgtaag cagctcgcc tgcgttccgt ctacagccgg 180
 accagtggga aacacatcca ggtctgggc cgcaggatca gtgcccggg cgaggatggg 240
 gacaagtatg cccagcttcc agtgagaca gacacccatcg gtagtcaagt ccggatcaag 300
 ggcaggaga cggaaattcta cctgtgcattt aaccgaaag gcaagctcggtt gggaaagccc 360
 gatggccatc gcaaggatgt tgcgttccatc gagaaggatcc tggagaacaa ctacacggcc 420
 ctgtatgtcg ctaagtactc cggctggta gtgggcttca ccaagaagggg gccggccggg 480
 10 aaggccccca agaccggga gaaccaggag gacgtgcatt tcatgaagcg ctaccccaag 540
 gggcagccgg agtttcagaa gcccttcaag tacacgacgg tgaccaagag gtcccgctgg 600
 atccggccca cacaccctgc ctag 624

15 <210> 62
 <211> 651
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> FGF19
 <310> AF110400

25 <400> 62
 atgcgggagcg ggtgtgtggg ggtccacgtt tggatccctgg ccggccctctg gctggccgtg 60
 gccggccggcc ccctcgccctt ctcggacgcg gggcccccacg tgcactacgg ctggggcgac 120
 cccatccggcc tgccggcacct gtacacccatc ggcggcccccacg ggctctccag ctgcttccctg 180
 cgcacatccgtg cccgacggcg cgtggacttc ggcggccggcc agagcgcgcg cagtttgcgt 240
 gagatcaagg cagtcgtct gccggaccgtg gccatcaagg gctgtgcacag cgtgcgggtac 300
 30 ctctgcattt ggcggccacgg caagatgcag gggctgttcc agtactcgga ggaagactgt 360
 gctttcgagg aggagatccg cccagatggc tacaatgtgtt accgatccga gaagcaccgc 420
 ctccgggtctt ccctgagcag tgccaaacag cggcagctgtt acaagaacag aggtttctt 480
 ccactctctc atttccctgc catgtgcggcc atggtcccacg aggacgttca ggacctcagg 540
 ggcacttgg aatctgtacat gttcttccatc cccctggaga ccgcacacat ggaccat 600
 35 gggttgtca ccggacttggg ggcgttggagg agtccctgtt ttgagaagta a 651

40 <210> 63
 <211> 468
 <212> DNA
 <213> Homo sapiens

45 <400> 63
 atggctgaag gggaaatcac caccatttaca gcccgttccg agaagtttaa tctgccttca 60
 gggaaatttaca agaaggccaa actcccttac ttttttttttttccctt ccttggggatc 120
 cttccggatg gcacagtggg tggggacaagg gacaggagcg accagacat tcacgtcgac 180
 ctcagtgcgg aaaggctggg ggagggttat ataaaggatgatcccgacttccatgtt 240
 gccatggaca ccgcacggct tttataccgc tcacagacac caaatggatggatggatgg 300
 ctggaaaaggc tggaggagaa ccattacaac accttatatat ccaagaagca tgccatggatgg 360
 50 aattggtttgc ttggccttcaaa gaagaatggg agtgcacaaac gcggccctcg gactcactat 420
 ggcacacatggc caatcttgc ttttttttttttccctt ccttggggatc 468

55 <210> 64
 <211> 636
 <212> DNA
 <213> Homo sapiens

60 <300>
 <302> FGF20
 <310> NM019851

<400> 64
 atggctccct tagccgaagt cggggcctt ctggggcgcc tggaggcgtt gggccagcag 60
 gtgggttcgc atttcctgtt gcctcctgcc ggggagcgcc cgccgcgtgt gggcgagcgc 120
 aggagcgcgg cggagcggag cgcccgccgc gggccgggg ctgcgcagct ggccacactg 180
 5 cacggcatcc tgcgcgcggc gcagcttat tgcgcacccg gttccacctt gcagatcctg 240
 cccgacggca gcgtgcaggc accccggcag gaccacagcc tcttcggat ctttgaattc 300
 atcagtgtgg cagtggactt ggtcgttatt agaggtgtgg acagtggctt ctatcttgg 360
 atgaatgaca aaggagaact ctatggatca gagaaactta cttccgaatg catctttagg 420
 gagcagttt aagagaactg gtataaacacc tattcatcta acatatataa acatggagac 480
 10 actggccgca ggtattttgt ggcacttaac aaagacggaa ctccaagaga tggcgccagg 540
 tccaaagaggc atcagaattt tacacatttc ttaccttagac cagtggatcc agaaaagagtt 600
 ccagaattgt acaaggaccc actgatgtac acttga 636

15 <210> 65
 <211> 630
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> FGF21
 <310> XM009100

<400> 65
 25 atggacttcgg acgagacccg gttcgagcac tcaggactgt gggtttctgt gctggctgg 60
 cttctgtgg gaggctggca ggcacaccccc atcccgtact ccagtcctt cctgcaattc 120
 gggggccaaag tccggcagcg gtacccctac acagatgtat cccagcagac agaagccac 180
 ctggagatca gggaggatgg gacgggtggg ggcgtgctg accagagccc cggaaagtctc 240
 ctgcagctga aagccttggaa gcccggagtt attcaaatct tgggagtcggaa gacatccagg 300
 30 ttctgtgcc agcggccaga tggggccctg tatggatcgc tccacttgc ccctgaggcc 360
 tgcagcttcc gggagctgtt ctgttggggac ggatacaatg tttaccatgc cgaagccac 420
 ggcctcccgcc tgccacccgttcc agggaaacaag tccccacacc gggaccctgc accccgagga 480
 ccagctcgct tcctggccact accaggccctg. ccccccgcac tcccgagcc acccgaaatc 540
 ctggcccccggaa agccccccggaa tggggctcc tggggccctc tgagcatgtt gggaccccttcc 600
 35 caggccgaa gccccagcttgc ctgccttgc 630

<210> 66
 <211> 513
 40 <212> DNA
 <213> Homo sapiens

<300>
 <302> FGF22
 <310> XM009271

<400> 66
 atgcgcggcc gcctgtggct gggcctggcc tggctgtgc tggcgccggc gcccggacgcc 60
 45 gggggaaacc cggcgccgtc ggggggaccg cgccgcgttcc cgccacttggaa gggcgacgtg 120
 cgctggggcc gccttcttc ctccacttcc ttcttcgtgc gcgtggatcc cggcgccggc 180
 gtgcaggccca cccgctggcc ccacggccag gacagcatcc tggagatccg ctctgtacac 240
 gtggggctcg tggatcatca agcagtgtcc tcaggcttct acgtggccat gaaccggccgg 300
 ggcgcctct acgggtcgcc actctacacc gtggacttgc ggttccggga ggcgcacccgaa 360
 50 gagaacggcc acaacacca cgcctcacag cgctggccgc gcccggccca gcccattttc 420
 ctggcgctgg acaggagggg gggggcccccgg ccaggccggc ggacgcggcg gtaccacactg 480
 tccggccacttcc tctggcttcc tga 513

<210> 67
 60 <211> 621
 <212> DNA
 <213> Homo sapiens

<302> FGF9
<310> XM007105

<400> 70
5 gatggctccc ttaggtgaag ttgggaacta ttcgggtgtg caggatgcgg taccgtttgg 60
gaatgtgcccg gtgttgcggg tggacagccc ggaaaaatgttta agtgcaccacc tggttcagtc 120
cgaaggcaggc gggctccccca ggggacccgc agtcacggac ttggatcatt taaagggat 180
tctcaggcgg aggcatatat actgcaggac tggatttcac ttagaaatct tccccaatgg 240
tactatccag ggaaccagga aagaccacag ccgatttggc attctggaaat ttatcagtat 300
10 agcagtgggc ctggtcagca ttcgaggcgt gcacagtggc ctctacccctcg ggtatgaatga 360
gaagggggag ctgtatggat cagaaaaact aacccaagag tggatgttca gagaacagtt 420
cgaagaaaac tggtataata ctgtactcatc aaacccatata aagcacgtgg acactggaaag 480
gcgatactat gttgcattaa ataaagatgg gaccccgaga gaaggacta ggactaaacg 540
gcaccagaaa ttccacacatt ttttacctag accagtggac cccgacaaag tacctgaact 600
15 gtataaggat attctaagcc aaaggta 628

<210> 71
<211> 2469
20 <212> DNA
<213> Homo sapiens
<300>
<302> FGFR1
25 <310> NM000604

<400> 71
atgtggagct ggaagtgcct cctttctgg gctgtgtgg tcacagccac actctgcacc 60
30 gctaggccgt ccccgacccctt gcctgaacaa gcccagccct ggggagcccc tggtaagtgc 120
gagtccttcc tggtccaccc cggtgacccctg ctgcagccctc gctgtcggct gccggacgat 180
gtgcagagca tcaactggct gcgggacggg gtgcagctgg cggaaagcaa ccgcacccgc 240
atcacagggg aggagggtgga ggtgcaggac tccgtgcccc cagactccgg cctctatgct 300
tgcgttaacca gcagccccctc gggcgttgac accacctact tctccgtcaa tggttcagat 360
gctctccctt cctcggagga tggatgtat gatgtgact cctcttcaga ggagaaagaaa 420
35 acagataaca ccaaaacccaa cctgtatggcc tggatgtccat attggacatc cccagaaaaag 480
atgaaaaga aattgcatgc agtggccggc gcaagacagc tgaaggtaaa atggcccttcc 540
agtgggaccc caaacccccc actgcgttgg ttgaaaaatg gcaaaagaatt caaacctgac 600
cacaagaattt gaggctacaa ggtccgttat gccaccttgg gcatcataat ggactctgtg 660
40 gtgcctctg acaagggcaa ctacacccctgc attgtggaga atgagatccgg cagcatcaac 720
cacacataacc agctggatgt cgtggagccg tcccttcacc gcccattctt gcaagcagg 780
ttgcccggca acaaaacagt gcccctgggt agcaacgtgg agtgcattgtg taagggtgtac 840
agtgcacccgc agccgcacat ccagtggctt aagcacatcg aggtgaatgg gagcaagatt 900
ggcccagaca acctgccttca tggccatgtc ttgaagactg ctggagttaa taccacccgc 960
aaagagatgg aggtgttca cttaaaatgttccatggatggcagg ggagtataacg 1020
45 tgcttggcggt gtaactcttc cggactctcc catcaactctg catgggtgac ctttctggaa 1080
gccctggaaag agggccggc agtgcattgtc tggcccttgc acctggagat catcatctat 1140
tgcacagggg ctttccttcat cttctgtat gttgggttgc tgcgttgcata caagatgttgc 1200
agtggatcca agaagatgtt gttccacccgc cagatggctg tgcacaagct gcccaagagc 1260
atccctctgc gcaagacaggat aacagtgtct gtcacttca gtcgttccat gaactctggg 1320
50 gttttcttgg ttcggccatc acggcttcc tccagttggg ctcccatgtc agcagggttc 1380
tctgaggatg agttcccgaa agaccctcgcc tggagactgc ctgggacacg actgggttta 1440
ggcaaaccccc tgggagaggg ctgttttggg cagggtgggtt tggcagaggc tatcgggttg 1500
gacaaggaca aacccaaacccg tggatgttca gatgttggaa gtcggacgc 1560
acagagaaag acttgcaga cctgtatctca gaaatggaga tgatgttgc gatcggaaag 1620
55 cataagaata tcatcaacct gtcggggcc tgcacgcagg atggccctt gtatgttcatc 1680
gtggaggatg cttccaaaggc caacctgcgg ggttgcactgc agggccggag gccccccagg 1740
ctggatatact gtcataaccc cagccacaaac ccagggaggc agtctccctc caaggacctg 1800
gtgtccttgcg ctttccatggt gggccggaggc atggaggatc tggcccttca gaaatgttca 1860
60 caccggagacc tggcggccatc gatgttgc tggcagaggc acaatgttgc gatgttgc 1920
gactttggcc tcgcacggga catttccacccatcactt ataaaaagac aaccaacggc 1980
cgactgcctg tgaatgttgc ggcacccggag gcattatttgc accggatcta caccacccag 2040
agtgtatgtt ggttccatgg tggaggatct tcactctggg cggctccca 2100

	taccccgggtg	tgcctgtggta	ggaacttttc	aagctgtga	aggagggtca	ccgcattggac	2160
	aagcccagta	actgcaccaa	cgagctgtac	atgatgtatgc	gggactgtcg	gcatgcagtg	2220
	ccctcacaga	gaccacacctt	caagcagctg	gtggaaagacc	tggaccgcac	cgtggccttg	2280
5	acctccaacc	aggagtacct	ggacctgtcc	atgcccctgg	accagtactc	ccccagctt	2340
	cccgacaccc	ggagctctac	gtgtcctca	ggggaggatt	ccgtcttctc	tcatgagccg	2400
	ctgcccggagg	agccctgcct	gccccgacac	ccagcccagc	ttgccaatgg	cggactcaaa	2460
	cgccgctga						2469
10	<210> 72						
	<211> 2409						
	<212> DNA						
	<213> Homo sapiens						
15	<300>						
	<302> FGFR4						
	<310> XM003910						
	<400> 72						
20	atgcggctgc	tgctggccct	gttgggggtc	ctgctgagtg	tgcctgggcc	tccagtcttg	60
	tccctggagg	cctctgagga	agtggagctt	gagccctgcc	tggctcccg	cctggagcag	120
	caagagcagg	agctgacagt	agcccttggg	cagcctgtgc	ggctgtgtcg	tggcgccgt	180
	gagcgtggtg	gccactggta	caaggagggc	agtcgcctgg	cacctgtcg	ccgtgtacgg	240
	gcttgagggg	gccgcctaga	gattgccagc	ttcctacctg	aggatgtcg	ccgctaccc	300
25	tgccctggcac	gaggctccat	gatcgctctg	cagaatctca	ccttgattac	aggtgactcc	360
	ttgacacctca	gcaacgatga	tgaggacccc	aagtccata	gggacactc	aataggcac	420
	agttacccccc	agcaaggacc	ctactggaca	caccccccagc	gcatggagaa	gaaactgcac	480
	gcagtacctg	cgggaaacac	cgtcaagtcc	cgctgtccag	ctgcaggca	ccccacgc	540
30	accatccgct	ggcttaagga	tggacaggcc	tttcatgggg	agaaccgcat	tggaggcatt	600
	cggctgccc	atcagcaactg	gagtctcg	atggagagcg	ttgtgc	ggaccgcggc	660
	acatacacct	gcctggtaga	gaacgctgtg	ggcagcatcc	gttataacta	cctgtcatag	720
	gtgctggagc	gttcccccgc	ccggcccatc	ctgcaggccg	ggctcccg	caacaccaca	780
	gcccgtggtg	gcagcgcacgt	ggagctgtcg	tgcaagggt	acagcgatgc	ccagccccac	840
	atccatgtggc	taaagcaca	cgtcatcaac	ggcagcagct	tggagccga	cggttcccc	900
35	tatgtgcaag	tcctaaagac	tgcagacatc	aatagctc	aggtggaggt	cctgtaccc	960
	cggAACGTG	cagccgagga	cgcaggc	tacac	tcgcaggca	ttccatggc	1020
	cctctcttacc	agtctgc	gctcacgg	ctgca	aggaccccac	atggaccgca	1080
	gcagcgc	aggccaggt	tacggacatc	atcc	cgtcgg	cctggc	1140
40	gttgtgtcc	tgctgtggc	caggctgtat	cgagg	cg	ccggc	1200
	cggccgc	ccactgtgc	gaagctctc	cgcttcc	tggccg	ttctcc	1260
	gagtcaaggct	cttccggca	gtcaagtc	tccctgt	gaggcgt	tctctcc	1320
	agcggcccc	ccttgc	cg	agtct	atcc	cccactat	1380
	gagt	gggacagg	gtgtctgg	aagcc	ctag	cttggcc	1440
45	gttagtacgt	cagggc	tggatggac	cctgg	ctgacca	cactgt	1500
	ggccgtcaaga	tgctcaaa	caacgcctc	gacaagg	tggc	gttctc	1560
	atggagggtg	tgaagctgat	cgccc	aagaacatc	tcaac	tcgt	1620
	acccaggaag	ggccc	ctg	gatgtcg	gag	cctgcgg	1680
	ttcctgc	cccgg	ccc	gac	ctg	tcgg	1740
50	gaggggccc	tctc	agt	tc	acc	ccgagg	1800
	cagtatctg	cc	cc	cc	gt	tgtctgt	1860
	actgaggaca	at	cc	cc	cc	cc	1920
	gactactata	agaaa	caac	ct	cc	cc	1980
	ttgtttgacc	gggt	acac	gt	cc	cc	2040
55	gagatcttca	ccct	cc	cc	cc	cc	2100
	ctgtctggg	agg	ccat	cc	cc	cc	2160
	ctgtatgt	gt	cc	cc	cc	cc	2220
	gaggcgtgg	acaagg	ct	cc	cc	cc	2280
	ttcggaccct	att	cc	cc	cc	cc	2340
60	gtcttcagcc	acgac	cc	cc	cc	cc	2400
	cagacatg	ttt	cc	cc	cc	cc	2409

<210> 73
 <211> 1695
 <212> DNA
 <213> Homo sapiens

5 <300>
 <302> MT2MMP
 <310> D86331

10 <400> 73
 atgaagcggc cccgctgtgg ggtgccagac cagttcgffff tacgagtgaa agccaaacctg 60
 cggggcgcgc ggaagcgta cgcgcctcacc gggaggaaat ggaacaacca ccatctgacc 120
 ttttagcatcc agaactacac ggagaagttt ggctggtaacc actcgatgaa ggcgggtgcgc 180
 agggccttcc gcgtgtggga gcaggccacg cccctggctc tccaggaggt gcccttatgag 240

15 gacatccggc tgccggcaca gaaggaggcc gacatcatgg tactcttcgc ctctggcttc 300
 cacggcgaca gctcgccgtt tgatggcacc ggtggctttc tggcccacgc ctatccct 360
 ggccccggcc taggcgggggca caccatccc gacgcagatg agccctggac ctctccagc 420
 actgacactgc atggaaacaa cctttccctg gtggcagtgc atgagctggg ccacgcgctg 480
 gggctggagc actccagaa ccccaatgcc atcatggcgc cggttctacca gtggaaaggac 540

20 gttgacaact tcaagctgcc cgaggacgat ctccgtggca tccagcagct ctacggtaacc 600
 ccacacggc agccacagcc taccggcact ctcccccactg tgacggccacg gcccggcaggg 660
 cggcctgacc acggggccccc cccggctccc cagccacccac ccccagggtgg gaagccagag 720
 cggggcccaa agccggggccc cccatggcag ccccgagccaa cagacggcc cgaccatgt 780
 ggcccccaaca tctggcgcgg ggacttttgc acatggcca tgcttcgcgg ggagatgttc 840

25 gtgttcaagg gccgctgggtt ctggcgagtc cggcacaacc cgcgtcttgc caactatccc 900
 atgcccattcg ggcacttctg gcgtggctcg cccggtgaca tcagtgtctgc ctacgagcgc 960
 caagacggc gtttgtctt ttccaaaggt gaccgctact ggcttcttgc agaagcgaac 1020
 ctggagcccg gctacccaca gccgctgacc agctatggcc tgggcatccc ctatgaccgc 1080
 attgacacgg ccatctggtgg ggagccaca ggccacaccc tcttettcca agaggacagg 1140

30 tactggcgt tcaacggagga gacacagcgt ggagaccctg ggtaccccaa gcccattcgt 1200
 gtcggcagg ggatccctgc ctccctaaa gggggccttcc tgagcaatga cgcagcctac 1260
 acctacttct acaaggggcac caaatactgg aaattcgaca atgagcgcct gccgatggag 1320
 cccggctacc ccaagtccat cctggggac ttcatgggc gccaggagca cgtggagcc 1380
 ggccccccat ggcggcgcgt ggccggggccg cccttcaacc cccacgggggg tgcagagccc 1440

35 gggccggaca ggcgcagaggg cgacgtgggg gatggggatg gggactttgg gggccggggtc 1500
 aacaaggaca ggggcagggc cgtgggtgg cagatggggg aggtggcacc gacgggtgaac 1560
 gtggatgg tgctgggcc actgctgtcg ctgctctgc tcctgggcct cacctacgcg 1620
 ctggtgca gtcagcgc当地 gggtgcgcc a cgtgtcctgc tttactgca ggcgtcgctg 1680
 caggagtggg tctga 1695

40 <210> 74
 <211> 1824
 <212> DNA
 <213> Homo sapiens

45 <300>
 <302> MT3MMP
 <310> D85511

50 <400> 74
 atgatcttac tcacatttcag cactggaga cgggtggatt tcgtgcata ttcgggggtg 60
 tttttcttgc aaaccttgc ttggatttttata tggcttacag tctggaaac ggaggcgtat 120
 ttcaatgtgg aggtttggc acaaaatgtc ggcttacccctt caccgactga ccccaatgt 180

55 tcagtgtgc gctctgcaga gaccatgcag tctggcccttgc ctgcata gcaatgttctat 240
 ggcattaaca tgacaggaaaa agtggacaga aacacaattt actggatgaa gaagccccga 300
 tggcgtgtac ctgaccagac aagaggtagc tccaaatattt atattcgatc aaagcgatat 360
 gcattgacag gacagaaaatg gcacccacaag cacatcaattt acagtataaa gaacgttaact 420
 caaaaatgtc gagacccttgc gactcgtaaa gtttgcgc ttgtgtggcag 480

60 aatgtactc ctctgcatt tggaaatgtt cccttacatgt aatttagaaaa tggcaaaacgt 540
 gatgtggata taaccattat ttttgcattt gtttccatg gggacagctc tccctttgat 600
 ggagagggag gatgtggc acatgcctac ttcctggac caggaattgg aggagatacc 660

	cattttgact	cagatgagcc	atggacacta	ggaaatccta	atcatgatgg	aatatgactta	720
	tttctttag	cagtccatga	actggggacat	gctctgggat	tggagcattc	caatgacccc	780
	actgccatca	tggcttcatt	ttaccaggat	atggaaacag	acaacttcaa	actacctaata	840
	gatgatttac	agggcattca	gaagatata	ggtccacatg	acaagattcc	tccacctaca	900
5	agacctctac	cgacagtgc	cccacaccgc	tctattcctc	cggctgaccc	aaggaaaaat	960
	gacaggccaa	aacctctcg	gcctccaacc	ggcagaccc	cctatcccgg	agccaaaccc	1020
	aacatctgtg	atgggaactt	taacactcta	gctattcctc	gtcgtgagat	gtttgtttc	1080
	aaggaccagt	ggtttggcg	agtgagaaac	aacagggtga	tggatggata	cccaatgcaa	1140
	attacttact	tctggccggg	cttgccctct	agtatcgatg	cagtttatga	aaatagcgac	1200
10	gggaattttt	tggtctttaa	aggtAACAAA	tattgggtgt	tcaaggatac	aactcttcaa	1260
	cctggttacc	ctcatgactt	gataaccctt	ggaagtggaa	ttccccctca	tggttattgt	1320
	teagccattt	ggtggggagga	cgtcggggaaa	acctatttct	tcaaggaga	cagatattgg	1380
	agatataatgt	aaggaaatgaa	aaacatggac	cctggctatc	ccaaagccaaat	cacagtctgg	1440
	aaaggggatcc	ctgaatctcc	tcagggagca	tttgtacaca	aagaaaaatgg	ctttacgtat	1500
15	ttctacaaag	gaaaggagta	ttggaaattc	aacaaccaga	tactcaaggt	agaacctgga	1560
	tatccaagat	ccatcccaa	ggattttatg	ggctgtgtat	gaccaacaga	cagagttaaa	1620
	gaaggacaca	gccaccacaga	tgtatgtagac	attgtcatca	aactggacaa	cacagccagc	1680
	actgtgaaag	ccatagctat	tgtcattccc	tgcacatcttgg	ccttatgcct	ccttgcattt	1740
	gtttacactg	tgttccagtt	caagaggaaa	ggaacaccc	gccacatact	gtactgtaaa	1800
20	cgctctatgc	aagagtgggt	gtga				1824

<210> 75
<211> 1818
25 <212> DNA
<213> Homo sapiens

30 <300>
 <302> MT4MMP
 <310> AB021225

caggccctga cgctatga

1818

5 <210> 76
 <211> 1938
 <212> DNA
 <213> Homo sapiens

10 <300>
 <302> MT5MMP
 <310> AB021227

15 <400> 76
 atgccgagga gcccggggcg ccgcgcggcg cggggggccgc cgccggccgcc gccgcccggc 60
 ggccaggccc cgcgctggag ccgcgtggcg gtccctgggc ggctgctgt gctgctgtg 120
 cccgcgctct gtcgcctccc gggcgcccg cggggcgccgg cggcgccggc gggggcaggg 180
 aacccgggcag cggtgtggcggt ggcgggtggcg cggggcggaacg aggccggaggc gcccttcgccc 240
 ggccagaact gttaaagtc ctatggctat ctgcttccct atgactcacg ggcatactgcg 300
 ctgcactcag cgaaggcctt gcagtcggca gtctccacta tgcagcagtt ttacgggatc 360
 ccggtcaccg gtgtgttgg aaccccaactt aagccgtagg cggagaaaaca agcgctatgc cctgactgga 420
 gtccctgatc aaccccaactt aagccgtagg cggagaaaaca agcgctatgc cctgactgga 480
 cagaagtgg aggaaaaaca catcacctac agcattcaca actatacccc aaaagtgggt 540
 gagtagagca cgcggaaagc tattcccgatc gtttcgatc tttggcagaa ggtgacccca 600
 ctgacccctt aagagggtggc ataccatggc atcaaaaatgg acggaaagga ggcagacatc 660
 25 atgatctttt ttgcttctgg tttccatggc gacagctccc catttatgg agaaggggga 720
 ttcctggccc atgcctactt ccctggccca gggattggag gagacaccca ctttgactcc 780
 gatgagccat ggacgctagg aaaccccaac catgacggga acgacccctt cttgggtggct 840
 gtgcgtgagc tggggccacgc gctgggactg gagcactcca gcgcacccag cgccatcatg 900
 gcgccttctt accagtacat ggagacgcac aacttcaagc tgccccagga cgatctccag 960
 30 ggcatccaga agatctatgg aaccccaagcc gaggctctgg agcccacaag gccactccct 1020
 acactccccg tccgcaggat ccactcacca tcggagagga aacacgagcg ccagccagg 1080
 ccccctcgcc cgccccctcg ggacccggcca tccacaccag gcaccaaacc caacatctgt 1140
 gacggcaact tcaacacagt gggcccttcc cggggcgaga tggggatgtt taaggatcgc 1200
 tgggtctggc gtctgcgca taaccggatc cgggggggtt accccatgca gatcgagcag 1260
 35 ttctggaaagg gcgcgccttc cccgcgtac gcgcctatg aaaggccga tggggattt 1320
 gtcttcttca aagggtacaa gtatgggtt ttaaggagg tgacgggtt gctgggtac 1380
 ccccacagcc tggggggact gggcagctgt ttggccctgt aaggcattga cacagctctg 1440
 cgctgggaac ctgtgggcaaa gacctacttt ttcaaaaggcg agcgttactg gcgcctacagc 1500
 gaggagcgcc gggccacggc ccctggctac cctaagccca tcaccgtgt gaagggcatc 1560
 40 ccacaggctc cccaaaggagc ttcatcagc aaggaaggat attacaccta ttctacaag 1620
 ggccggact actggaaatg tgacaaccag aaactgagcg tggagccagg ctacccgcgc 1680
 aacatcttcgtc gtgactggat gggctgcaac cagaaggagg tggagccggc gaaggagcgg 1740
 cgctggcccc aggacgcacgt ggacatcatg gtgaccatca acgatgtgcc gggtccctgt 1800
 aaccccggtgg ccgtggatc cccctgcattc ctgtccctt gcatccctgt gctggcttac 1860
 45 accatcttcc agttcaagaa caagacaggc ctcagccctg tcacctacta taagccggcca 1920
 gtccaggaat ggggtgtt 1938

50 <210> 77
 <211> 1689
 <212> DNA
 <213> Homo sapiens

55 <300>
 <302> MT6MMP
 <310> AJ27137

60 <400> 77
 atgcggctgc ggctccggct tctggcgctg ctgcttctgc tgctggcacc gcccggccgc 60
 gccccgaagc cctcggcgca ggacgtggac ctggggcggtt actggctgac tcgctatgg 120
 tacctggccgc caccggccatc tgcccaaggcc cagctgcaga gcccggatc gttggcgat 180
 gcatcaaaag tcacccatggat gttcgccgggg ctggccggatc ggacccagg 240

	acagtggcca	ccatgcgtta	gccccgtgc	tccctgcctg	acgtgttggg	ggtggcgaaaa	300
	cttgtcaggc	ggcgtcgccg	gtacgtctcg	agcggcagcg	tgtggaaagaa	gcgaaccctg	360
	acatggaggg	tacgttcctt	cccccaagac	tcccagctga	gccaggagac	cgtgcgggtc	420
5	ctcatgagct	atgccccgtat	ggcctggggc	atggagtcag	gcctcacatt	tcatgaggtg	480
	gattcccccc	agggccagga	gccccacatc	ctcatcgact	ttgcccgc	cttccaccag	540
	gacagctacc	ccttcgacgg	gttggggggc	acccttagccc	atgccttctt	ccctggggag	600
	caccccatct	ccggggacac	tcactttgac	gatgaggaga	cctggacttt	tgggtcaaaa	660
10	gacggcgagg	ggaccgaccc	gtttgccgtg	gctgtccatg	agtttgccca	cggccctgggc	720
	ctggggccact	cctcagcccc	caactccatt	atgaggccct	tctaccaggg	tccgggtggc	780
15	gaccctgaca	agtaccgcct	gtctcaggat	gaccgcgtat	gcctgcagca	actctatggg	840
	aaggcgcccc	aaacccata	tgacaagccc	acaaggaaac	ccctggctcc	tccggcccccag	900
	cccccgccct	cggccacaca	cagccatcc	tteccccatcc	ctgatcgatg	tgagggcaat	960
	tttgcaccca	tcgccaacat	ccggggggaa	acttttcttct	tcaaaggccc	ctgggtctgg	1020
20	cgccctccagg	cctccggaca	getgtgttcc	ccgcgaccccg	cacgggtgca	ccgcttctgg	1080
25	gaggggctgc	ccggcccggt	gagggtgttgc	caggccgcct	atgctcgca	ccgagacggc	1140
30	cgaatcctcc	tctttagcgg	gccccagttc	tgggtgttcc	aggaccggca	gtggagggc	1200
	ggggcgccgc	cgctcacgga	gctggggctg	cccccgggag	aggaggtgga	cggcgtgttc	1260
	tcgtggccac	agaacgggaa	gacctacctg	gtccgcggcc	ggcagtaactg	gcgctacgac	1320
	gaggcggcg	cgcgccccga	ccccggctac	cctcgcgacc	tgagccctctg	ggaaggcgcg	1380
35	ccccccctcc	ctgacgatgt	caccgtcagc	aacgcagggt	acacctactt	cttcaaggcc	1440
	gcccactact	ggcgcttccc	caagaacagc	atcaagaccg	agccggacgc	cccccagccc	1500
	atggggccca	actggcttgg	ctgccccgcc	ccgagctctg	gtccccggc	ccccaggccc	1560
	cccaaagcga	cccccggtgc	cgaaacctgc	gattgtcagt	gcgagctcaa	ccaggccgca	1620
	ggacgttggc	ctgctccat	cccgtgtc	ctcttgcccc	tgctgggtgg	gggtgttagcc	1680
40	tcccgctga						1689

<210> 78
 <211> 1749
 30 <212> DNA
 <213> Homo sapiens

<300>
 <302> MTMMP
 35 <310> X90925

	<400> 78						
	atgtctcccg	ccccaaagacc	ctcccggttgc	tccctgctcc	ccctgctcac	gctcgccacc	60
	gcgcgtcgct	ccctcggtc	ggcccaaagc	agcagcttca	gccccgaagc	ctggctacag	120
40	caatatggct	acctgcctcc	cggggaccta	ctgaccacaca	cacagcgctc	accccagtca	180
	ctctcagcgg	ccatcgctgc	catcgagaag	ttttacggct	tgcaagtaac	aggcaaagct	240
	gatcgagaca	ccatgaaggc	catgaggcgc	ccccgatgt	gtgttccaga	caagtttggg	300
	gctgagatca	aggccaatgt	tcgaaggaag	cgctacgcca	tccagggtct	caaatggcaa	360
	cataatgaaa	tcactttctg	catccagaat	tacacccccc	aggtggcga	gtatgccaca	420
45	tacgaggcca	ttcgcaaggc	gttccgcgtg	ttggagagtg	ccacacact	gcgcttccgc	480
	gaggtggcc	atgcctacat	ccgtgaggggc	catcgagaagc	aggccgacat	catgatctt	540
	tttgcgagg	gttccatgg	cgacacgc	cccttcgtat	gtgaggggcg	cttcctggcc	600
	catgcctact	tcccaggcccc	caacatttgg	ggagacaccc	actttgactc	tgccgagcc	660
	tggactgtca	ggaatgggaa	tctgaatgg	aatgacatct	tcctgggtgg	tgtgcacgag	720
50	ctggggccatg	ccctggggct	cgagcattcc	agtgcacccct	cgccatcat	ggcacccctt	780
	taccagtgg	tggcacacgg	gaattttgt	ctgccccat	atgaccgc	gggcacatccag	840
	caactttatg	gggggtgagtc	agggttcccc	accaagatgc	ccctctaacc	caggactacc	900
	tcccgccctt	ctgttccat	taaaccctaa	aacccaccc	atggggccaa	catctgtgac	960
	gggaactttg	acaccgtggc	catgtccga	ggggagatgt	ttgtctcaa	ggagcgctgg	1020
55	ttctggcgcc	tgaggaataa	ccaaatgtat	gatggatacc	caatgccc	tggccagttc	1080
	tggcgccggcc	tgcctcgctc	catcaacact	gcctacgaga	ggaaggatgg	caaattcg	1140
	ttcttcaaaag	gagacaagca	ttgggtgttt	gatggggcg	ccctgaaacc	tggctacccc	1200
	aagcacattt	aggacgtgg	ccgagggtcg	cttaccgc	agatgtatgc	tgcctctt	1260
60	tggatggccca	atggaaagac	ctacttctt	cgtggaaaca	agtactaccg	tttcaacgaa	1320
	gagctcagggg	cagtggatag	cgagttccccc	aagaacatca	aagtctggga	aggatccct	1380
	gagctccca	gagggttcatt	catgggc	gatggaaatct	tcaacttactt	ctacaagggg	1440
	aacaaatact	ggaaatttcaa	caaccagaag	ctgaaggtag	aaccgggcta	ccccaaagcga	1500

5 gcctgaggg actggatggg ctgccatcg ggaggccggc cggatgaggg gactgaggag 1560
gagacggagg tgatcatat tgaggtggac gaggagggcg gcggggcggt gagcgcggct 1620
gccgtggtc tgccgtgct gctgtgtc ctggtgcgg cggtggccct tgcaagtttc 1680
ttcttcagac gccatgggac ccccaggcga ctgctctact gccagcgttc cctgctggac 1740
5 aaggctcta 1749

10 <210> 79
<211> 744
<212> DNA
<213> Homo sapiens

15 <300>
<302> FGF1
<310> XM003647

20 <400> 79
atggccgcgg ccatcgctag cggcttgate cgccagaagc ggcaggcgcg ggagcagcac 60
tgggaccggc cgtctgccag caggaggcg agcagcccc gcaagaaccg cgggctctgc 120
aacggcaacc tggtgatat ctctccaaa gtgcgcatct tcggcctcaa gaagcgcagg 180
ttgcggcgcc aagatcccc gctcaagggt atagtgcaca gtttatattt caggcaaggc 240
tactacttgc aaatgcaccc cgtggagct ctgcgtggaa ccaaggatga cagcactaat 300
tctacacttctcaacactcat accagtggga ctacgtgtt ttgcacatcca gggagtgaaa 360
acagggttgt atatagccat gaatggagaa gtttacacttcc accccatcaga actttttacc 420
25 cctgaatgc agtttaaaaga atctgtttt gaaaattattt atgtaatcta ctcatccatg 480
ttgtacagac aacaggaatc tgtagagcc tggtttttg gattnaataaa ggaagggcaa 540
gctatgaaag ggaacagagt aaagaaaaacc aaaccagca gtcattttct acccaagcca 600
ttgaaagttg ccatgtaccg agaaccatct ttgcgtatgt ttggggaaac ggtcccgaag 660
30 cctgggtga cgccaagtaa aagcacaagt gcgtctgcaa taatgaatgg aggcaaacc 720
gtcaacaaga gtaagacaac atag 744

35 <210> 80
<211> 468
<212> DNA
<213> Homo sapiens

40 <300>
<302> FGF2
<310> NM002006

45 <400> 80
atggcagccg ggagcatcac cacgtgccc gccttgcggc aggtggcg cagcggcgcc 60
ttcccgcccg gcccacttcaa ggaccccaag cggctgtact gcaaaaacgg gggcttcttc 120
ctgcgcacatcc accccgacgg ccgagttgac ggggtccggg agaagagcga ccctcacatc 180
aagctacaac ttcaaggcga agagagagga gttgtgtcta tcaaaggagt gtgtgctaac 240
cgtaacctgg ctatgaagga agatggaaaga ttactggctt ctaaatgtt tacggatgag 300
tgtttctttt ttgaacgatt ggaatctaat aactacaata cttaccggc aaggaaatac 360
50 accagttgtt atgtggcact gaaacgaact gggcagtata aacttggatc caaaacagga 420
cctggcaga aagctataact ttttcttcca atgtctgcta agagctga 468

55 <210> 81
<211> 756
<212> DNA
<213> Homo sapiens

60 <300>
<302> FGF23
<310> NM020638

<400> 81

tacagactca agtttcgctt tggataa

807

5 <210> 84
 <211> 649
 <212> DNA
 <213> Homo sapiens

10 <300>
 10 <302> FGF8
 <310> NM006119

15 <400> 84
 atgggcagcc cccgctccgc gctgagctgc ctgctgttgc acttgctggc cctctgcctc 60
 caagcccagg taactgttca gtcctcacct aattttacac agcatgttag ggagcagagc 120
 ctggtaacgg atcagctcg ccgcgcctc atccggaccc accaactcta cagccgcacc 180
 agccggaaaggc acgtgcaggt cctggccaac aagcgcatac acgccatggc agaggacggc 240
 gacccttcg caaagctcat cgtggagacg gacacctttg gaagcagagt tcgagtcgc 300
 ggagccgaga cgggcctcta catctgcatac aacaagaagg ggaagctgtat cgccaaagagc 360
 20 aacggcaaag gcaaggactg cgtttcacg gagattgtgc tggagaacaa ctacacagcg 420
 ctgcagaatg ccaagtacga gggctggta atggccttca cccgcaaggg cccgccccgc 480
 aagggtccca agacgcggca gcaccagcgt gaggtccact tcatgaagcg gctgccccgg 540
 ggcaccacaca ccaccgagca gagcctgcgc ttcgagttcc tcaactaccc gcccttcacg 600
 cgcagcctgc gcgccagcca gaggacttgg gccccggaaac cccgatagg 649

25 .
 <210> 85
 <211> 2466
 <212> DNA
 30 <213> Homo sapiens

35 <300>
 <302> FGFR2
 <310> NM000141

40 <400> 85
 atggtcagct ggggtcggtt catctgcctg gtcgtggtca ccatggcaac cttgtccctg 60
 gcccgccct ccttcagttt agttgaggat accacattag agccagaaga gccaccaacc 120
 aaataccaaa tctctcaacc agaagtgtac gtggctgcgc cagggggatc gctagaggtg 180
 cgctgcctgt tgaaagatgc cggcgtgatc agttggacta aggtatgggt gcaacttgggg 240
 cccaacaata ggacagtgtt tattggggag tacttgcaaa taaaggcgc cacgcctaga 300
 gactccggcc tctatgttt tactgcccgtt aggactgttag acagtggaaac ttggtaacttc 360
 atggtaatg tcacagatgc catctcatcc ggagatgtat aggtatggacac cgatggtgcg 420
 gaagattttg tcagtggaaa cagtaacaac aagagagcac catactggac caacacagaa 480
 45 aagatggaaa agcggctcca tgctgtgcgt gggcccaaca ctgtcaagtt tcgctgcccc 540
 gccccggggaa accaatggcc aaccatggcc tggctgaaaaa acgggaaggg gtttaagcag 600
 gagcatcgca ttggaggcta caaggtacga aaccaggact ggagctcat tatggaaaagt 660
 gtggtcccat ctgacaaggaa aaattatacc tttgtgggtt agaataataa cgggtccatc 720
 aattcacacgt accaccttgg aattttgtggag cgatggccctc accggcccat cttccaagcc 780
 50 ggactgcccgg caaatgcctc cacagtggtc ggaggagacg tagatgttgc ttgcaagggtt 840
 tacagtgtatg cccagccca catccagttt atcaagcact tgaaaaagaa cggcagtaaa 900
 tacggggcccg acgggctgcc ctactcaag gttctcaagg ccggccgtgt taacaccacg 960
 gacaaagaga ttgagggttctt ctatatttggg aatgttaactt ttgaggacgc tggggaaat 1020
 acgtgtttgg cgggttaattt tattgggata tcctttcaact ctgtcatgggtt gacagttctg 1080
 55 ccagcgccctg gaagagaaaa ggagattaca gttcccccag actacctggaa gatagccatt 1140
 tactgcatacg ggggtttttt aatccctgtt atgggtggtaa cagtcatctt gtggccaaatg 1200
 aagaacacgca ccaagaagcc agacttcgcg agccagccgg ctgtgcacaa gttggccaaa 1260
 cgatcccccc tggcggagaca ggttaacaggat tggctgtatg ccagctctt catgaactcc 1320
 aacacccccc tgggtggatg aacaacacgc ctctcttcaaa cggcagacac ccccatgctg 1380
 60 gcagggggtctt ccgagttatgaa actttccagag gacccaaat gggagttcc aagagataag 1440
 ctgacactgg gcaagccctt gggagaagggt tgctttgggc aagtggcat ggccggaaagca 1500
 gtggaaatgg acaaagacaa gccccaggag gcggtcaccc tggccgtgaa gatgttggaaa 1560

	gatgtatgcca cagagaaaaga cctttctgat ctggtgtca agatggagat gatgaagatg 1620
	attgggaaac acaagaatata cataaatctt cttggagcgc gcacacagga tgggcctctc 1680
	tatgtcatag ttgagtatgc ctctaaaggc aaccctccgag aataacctcg agccccggagg 1740
5	ccaccggga tggagtagtc ctatgacatt aaccgtgtc ctgaggagca gatgaccttc 1800
	aaggacttgg tgtcatgcac ctaccagctg gcccagaggca tggagtagctt ggcttcccaa 1860
	aaatgtattc atcgagattt agcagccaga aatgttttg taacagaaaa caatgtatg 1920
	aaaatagcag actttggact cgccagagat atcaacaata tagactatta caaaaagacc 1980
10	accaatgggc ggcttccagt caagtggatg gctccagaag ccctgttga tagagtatac 2040
	actcatcaga gtgatgtctg gtccttcggg gtgttaatgt gggagatctt cacttttaggg 2100
15	ggctcgccct acccaggat tccctggag gaactttta agctgtcaa ggaaggacac 2160
	agaatggata agccagccaa ctgcaccaac gaactgtaca tgatgtatg ggactgttgg 2220
	catgcagtgc cctcccaagag accaacgttc aagcagttt tagaagactt ggatcgaatt 2280
	ctcaactcta caaccaatga ggaataacttg gacctcagcc aacctctcga acagtattca 2340
	cctagtttca ctgacacaag aagttttgt ttttcaggag atgatctgt tttttctcca 2400
20	<210> 86 <211> 2421 <212> DNA <213> Homo sapiens
25	<300> <302> FGFR3 <310> NM000142
	<400> 86
30	atgggcgccctg ctcctgcgc cctcgcgctc tgcgtggccg tggccatctg ggccggcgcc 60
	tcctcgagt cttggggac ggagcagcgc gtcgtggggc gagcggcaga agtcccgcc 120
	ccagagcccg gccagcagga gcagttggc ttcggcagcg gggatctgt ggagctgagc 180
	tgtccccccgc cccgggggtgg tccatgggg cccactgtct gggtaagga tggcacagg 240
35	ctgggtccct cggagcgtgt cctgggtggg ccccagcgc tcaggtgtct gaatgcctcc 300
	cacgaggact cccggggccta cagctggccg cagcgcgtca cgcagccgt actgtgccac 360
	ttcagtgtgc gggtgacaga cgctccatcc tcgggagatg acgaagacgg ggaggacgag 420
	gtcaggagaca cagggtgtga cacaggggcc ccttaatgtca cacggggca gggatggac 480
	aagaagctgc tggccgtgcc ggccgcacaa accgtccgt tccgtgtccc agccgctggc 540
40	aaccccactc cttccatctc ctggctgaag aacggcaggg agtccgtgg cgagcaccgc 600
	attggaggca tcaagctgcg gcatcagcag tggagcctgg tcatgaaag cgtgtgtccc 660
	tcggaccgcg gcaactacac ctgcgtcgt gagaacaagt ttggcagcat cccgcagac 720
	tacacgctgg acgtgttggc ggcgtccccg caccggccca tcctgcaggc ggggctgccc 780
	gccaaccaga cggcggtgt gggcagcgc gtggagttcc actgcaaggt gtacagtgac 840
45	gcacagccccc acatccagtg gctcaagcac gtggaggtga acggcagcaa ggtgggccc 900
	gacggcacac cttacgttac cgtgtcaag acggcggggc ctaacaccac cgacaaggag 960
	ctagagggttc ttcctttca caacgttacc ttggaggacg cccggggatg caccctgcctg 1020
	gcccccaattt ctatgggtt ttctcatcc tctgcgtggc ttgtgggtgt gccagccgag 1080
	gaggagctgg tggagggtga cgaggcgcc agtgtgtat caggcatctt cagctacgg 1140
50	gtgggcttct tcctgttcat cttgggtggc gggctgtga cgtctgcctt cctgcgcagc 1200
	ccccccaaga aaggcttggg ctccccacc ttgcacaaga tctcccgctt cccgctcaag 1260
	cgacagggtgt ccctggagtc caacgcgtcc atgagctcca acacaccact ggtgcgcata 1320
	gcaaggctgt cctcaggggc gggcccccacg ctggccatag tctcccgatc cgagctgcct 1380
	gccgaccccc aatggggact gtctcgccg cggctgaccc tggcaagcc cttggggag 1440
55	ggctgtttcg gccagggtgtt catggcgag gccatcgca ttgacaagga cccggccgccc 1500
	aaggctgtca cctgtggccgt gaagatgtca aaagacgtg ccactgtacaa ggacctgtcg 1560
	gacctgggtgt ctgagatggc gatgtatgaa atgatcggtt aacacaaaaa catcatcaac 1620
	ctgctggccg cctgcacgca gggggggccc ctgtacgtc ttgtggagta cgcggccaaag 1680
	ggtAACCTGC gggagtttct gcccggcgcc cggcccccccg gcctggacta ctccttcgac 1740
60	acctgcaago cggccggagga cgcacgtcc ttcaaggacc ttgtgtctg tgccttaccac 1800
	gtggcccccgg gcatggatg cttggctcc cagaagtgc tccacaggaa cctggctgcc 1860
	cgaatgtgc tggtgaccga ggacaacgtg atgaagatcg cagacttcgg gctggcccg 1920
	gacgtgcaca acctcgacta ctacaagaag acaaccaacg gccggctgcc cgtgaagtgg 1980
	atggcgcctg aggccttggc tgaccgagtc tacactcacc agagtgcacgt ctggtcctt 2040

ggggtcctgc tctggagat cttcacgctg gggggctccc cgtaaaaaaa catccctgtg 2100
 gagggactct tcaagctct gaaggagggc caccgcattt acaagccccgca caactgcaca 2160
 cacgacctgt acatgatcat gcgggagtgc tggcatgccg cggccctcca gaggcccacc 2220
 ttcaagcagc tggtggagga cctggaccgt gtccttaccc tgacgtccac cgacgagttac 2280
 ctggacctgt cggcgccctt cgagcagtac tccccgggtg gccaggacac ccccagctcc 2340
 agtcctcag gggacgactc cgttttgcc caccgacctgc tgccccggc cccacccaggc 2400
 agtgggggtc cgccggacgtg a 2421

5 <210> 87
 <211> 2102
 <212> DNA
 <213> Homo sapiens

10 <300>
 <302> HGF
 <310> E08541

15 <400> 87
 20 atgcagggg acaaaaggaaa agaagaataa caattcatga attcaaaaaa tcagcaaaga 60
 ctaccctaat caaaatagat ccagcaactga agataaaaaac caaaaaaaaa aataactgcag 120
 accaaatgtc taatagatgt acttagaata aaggacttcc attcacttgc aaggctttt 180
 ttttataaa agcaagaaaa caatgcctt gttccccctt caatagcatg tcaagtgag 240
 taaaaaaaaga atttggccat gaatttgacc tctatgaaaaa caaagactac attagaaact 300
 25 gcatcattgg taaaggacgc agctacaagg gaacagtatc tatcactaag agtggcatca 360
 aatgtcagcc ctggagttcc atgataaccac acgaacacacag cttttgcct tcgagctatc 420
 gggtaaaaga cctacaggaa aactactgtc gaaatccctg agggaaagaa gggggaccct 480
 ggtgtttcac aagcaatcca gaggtacgct acgaagtctg tgacattctt cagtgttcag 540
 aagttgaatg catgacctgc aatggggaga gttatcgagg tctcatggat catabagaat 600
 30 caggcaatgt ttgtcagcgc tgggatcatc agacaccacca cccgcacaaa ttcttcctg 660
 aaagatatacc cgacaaggcgt tttgtatgata attattgcgg caatcccgat gggcagccga 720
 ggcatgggt ctatactctt gaccctcaca cccgctggg gtactgtca attaaaacat 780
 ggcgtgacaa tactatgtatc gacactgttgc ttccatttggg aacaactgtaa tgcatccaaag 840
 35 gtcaaggaga aggctacagg ggcaactgtca ataccatttgc gaatgaaattt ccatgtcagc 900
 gttgggattc tcagtatctt cacgagcatg acatgactcc tgaaaaatttc aagtgcagg 960
 acctacgaga aaattactgc cgaaatccag atgggtctga atcaccctgg tttttacca 1020
 ctgatccaaa catccgagtt ggctactgtc cccaaattcc aaactgtgtat atgtcacaatg 1080
 gacaagattt ttatcggtgg aatggaaaaa attatatggg caacttaccc caaacaagat 1140
 40 ctggactaac atgttcaatg tgggacaaga acatggaaaga cttacatgtt catatcttct 1200
 gggaccacca tgcaagtaag ctgaatgaga attactgcgg aaatccgat gatgtatgtc 1260
 atggaccctg gtgtcacacg gggaaatccac tcattccctt ggattattgc cttatcttc 1320
 gttgtgaagg tgataccaca cctacaatag tcaatattttt ccattccgtt atatcttgc 1380
 cccaaaggaa acaatttgcgtt gttgtaaatgt ggatttccaaac acgaacaaac ataggatgg 1440
 tggtagttt gagatacaga aataaaacatc tctggggagg atcatgttgc aaggagatgt 1500
 45 gggttcttac tgcacgcac tggtttccctt ctcgagactt gaaagattt gaaatggcc 1560
 ttgaaattca tggatgtccac gggaaaggagg atgagaaaatg cccaaatgtt ctcacatgttt 1620
 cccagctggg atatggccctt gaaaggatcatc atctgggtttt aatgaatgtt gccaggccctg 1680
 ctgtccttggc tgatttttt agtacgattt atttacatcc ttatggatgc acaatttgc 1740
 50 aaaagaccac ttgcagtgtt tatggctggg gctacactgg attgtatcaac tatgtatggcc 1800
 tattacgagt ggcacatctc tatataatgg gaaatgagaa atgcacccatc catcatcgag 1860
 ggaaggtgac tctgaatgtt tctgaaatat gtgtctgggc tgaaaagattt ggtatcaggac 1920
 catgtgaggg ggattatgtt gcccacttg tttgtgagca acataaaatg agaataatgg 1980
 ttgggtgtcat tgttccttggc cttggatgtt ccattccaaatc tcgtcttgcgtt atttttgtcc 2040
 gagtagcata ttatgcaaaa tggatcacaca aaatttattt aacatataag gtaccacatgt 2100
 55 ca 2102

60 <210> 88
 <211> 360
 <212> DNA
 <213> Homo sapiens

<300>
<302> ID3
<310> XM001539

5 <400> 88
atgaaggcgc tgagcccggt ggcggctgc tacgaggcgg tgcgtgcct gtcggAACGC 60
agtctggcca tcgccccggg ccgagggaaag gccccggcaag ctgaggagcc gctgagcttg 120
ctggacgaca tgaaccactg ctactcccgc ctgcgggaac tggtacccgg agtcccggaga 180
ggcaactcaggc tttagccaggt ggaaatccta cagcgcgtca tcgactacat tctcgacctg 240
10 cagtagtcc tggccgagcc agccctgga cccctgatg gcccccacct tcggatccag 300
acagccgagc tcactccggaa acttgtcatc tcggaaacgaca aaaggagctt ttggccactga 360

15 <210> 89
<211> 743
<212> DNA
<213> Homo sapiens

20 <300>
<302> IGF2
<310> NM000612

<400> 89
atgggaatcc caatggggaa gtcgatgctg gtgttctca ctttcttggc cttcgccctcg 60
25 tgctgcattt ctgttaccgg ccccaagttag accctgtcg gccccggagct ggtggacacc 120
ctccagttcg tctgtggggc ccggcgcttc tacttcagca gggccggcaag ccgtgtgagc 180
cggtcgccgc gtggcatcg tggaggatgc tgtttccgca gctgtgaccc gggccctctg 240
gagacgtact gtgttaccccg cgccaaagtcc gagaggggacg tgccgaccgg tccgaccgtg 300
30 cttccggaca acttccccag ataccccgta ggcaagttct tcggaaatata gacccctggaaag 360
cagtcacccc aegcgcctgcg caggggcctg cttggccctcc tgctgtggccg cccgggtcac 420
gtgtcgccca aggagctcga ggcgttccagg gaggccaaac gtcaccgtcc cctgattgtct 480
ctacccaccc aagaccccccgc ccacccggggc gcccccccaag agatggccag caatcgaaag 540
tgagcaaaac tgccgcagaat ctgcaccccg ggcacccat cctgcacgcct cctcctgacc 600
35 acggacgttt ccattcaggat ccattccggaa aatctctgg ttccacgtcc ccctggggct 660
tctcttgacc cagttcccgat gccccggcctc cccggaaacag gctactctcc tcggccccct 720
ccatcgggctt gaggaaacgac agc 743

40 <210> 90
<211> 7476
<212> DNA
<213> Homo sapiens

45 <300>
<302> IGF2R
<310> NM000876

<400> 90
atggggggccg ccggccggccg gagcccccac ctggggcccg cgcccccccg ccggccggcag 60
50 cgctctctgc tcctgtca gctgtgcgtg ctgcgtcgctg ccccggggtc cacgcaggcc 120
caggccgccc cgttcccgaa gctgtgcagt tatacatggg aagctgttga taccaaaaat 180
aatgtacttt ataaaatcaa catgtgtgg agtgtggata ttgtccagtg cggggccatca 240
agtgtgtttt gtatgcacga cttgaagacca cgcacttatac attcagtggg tgactctgtt 300
ttgagaagtg caaccagatc tctcttgaa tcggaaacacaa cagttagctg tgaccagcaa 360
55 ggacacaaatc acagagtccaa gagcagcatt gccttcctgt gtggggaaac cctggaaact 420
cctgaatttg taactgcacaa agaatgtgtg cactacttgg agtggaggac cactgcaccc 480
tgcaagaaaag acatatttaa agcaaaaatgg gaggtgcatt gctatgttt tgatgaagag 540
ttgaggaagc atgatctcaa tcctctgtatc aagcttagtg gtgcctactt ggtggatgac 600
60 tccgatccgg acacttcctt attcatcaat gttttagag acatagacac actacgagac 660
ccaggttccac agctgcgggc ctgtcccccc ggcactgcgg cctgcctggg aagaggacac 720
caggggtttt atgttggcca gccccgggac ggactgaagc tgggtgcggaa ggacaggctt 780
gtcctgagtt acgtgagggaa agaggcagga aagcttagact tttgtgatgg tcacagccct 840

	gggttacta	ttacattttgt	ttgccccgtcg	gagcggagag	aggccaccat	tcccaaactc	900
5	acagctaaat	ccaactgcgg	ctatgaaatt	gagtggatta	ctgagtatgc	ctgccacaga	960
	gattacctgg	aaagtaaaaac	ttgttctctg	agcggcgagc	agcaggatgt	ctccatagac	1020
	ctcacaccac	ttgcccagag	cggaggttca	tcctataattt	cagatggaaa	agaatatttg	1080
	tttattttga	atgtctgtgg	agaaaactgaa	atacagtct	gtaataaaaaa	acaagctgca	1140
	gtttgccaag	tgaaaaaagag	cgataccct	caagtcaag	cagcaggaag	ataccacaat	1200
	cagaccctcc	gatattcgg	tggagacctc	accttgatat	attttggagg	tgatgaatgc	1260
	agctcagggt	ttcagcggat	gagcgtcata	aactttagt	gcaataaaaac	cgcaggtaac	1320
	gatggggaaag	gaactctgt	attcacaggg	gagggttact	gcacacttct	cttcacatgg	1380
	gacacgaaat	acgcctgtt	taaggagaag	aaagacccct	tctgcgggtc	caccgcacgg	1440
10	aagaagcgc	atgaccgtc	cgcgctggtc	cgccatgcag	aaccagagca	gaattggggaa	1500
	gctgtggatg	gcagtcagac	ggaaaacagag	aagaagcatt	ttttcattaa	tatttgtcac	1560
	agagtgcgtc	aggaaggcaa	ggcacgaggg	tgtcccgagg	acgcggcagt	gtgtgcagtg	1620
	gataaaaaatg	gaagtaaaaa	tctggggaaa	tttattttct	ctcccatgaa	agagaaaagga	1680
15	aacattcaac	tctcttattt	agatgggtat	gattgtggtc	atggcaagaa	aattaaaact	1740
	aatatcacac	ttgtatgaa	gccaggtat	ctggaaagt	caccagtgtt	gagaacttct	1800
	gggggaaggcg	gttgctttt	tgagttttag	tggcgcacag	ctgcccctg	tgtgctgtct	1860
	aagacagaag	gggagaactg	cacggcttt	gactcccagg	cagggttttc	ttttgactta	1920
20	tcacctctca	caaagaaaaa	tggtgccstat	aaagttgaga	caaagaagta	tgacttttat	1980
	ataaaatgtgt	gtggcccggt	gtctgtgagc	ccctgtcagc	cagactcagg	agcctgcacag	2040
	gtggggaaaa	gtgatgagaa	gacttggAAC	ttgggtctga	gtaatgcgaa	gtcttcatat	2100
	atgatggaa	tgatccaaact	gaactacaga	ggcgcacac	cctataacaa	tgaagacac	2160
	acaccgagag	ctacgtcat	caccccttc	tgtatcggag	acgcgggagt	gggcttccct	2220
25	gaatatcagg	aagaggataa	ctccacctac	aacttccgg	ggtacaccag	ctatgcctgc	2280
	ccggaggagc	ccctggaaatg	cgtagtgtacc	gacccttcca	cgctggagca	gtacgaccc	2340
	tccagtctgg	caaattctga	agggtggcctt	ggagggaaact	ggtatgccc	ggacaactca	2400
	gggggaacatg	tcacgtggag	gaaataactac	attaacgtgt	gtcgccctt	gaatccagt	2460
	ccgggctgca	accgatatgc	atcggcttgc	cagatgaagt	atggaaaaga	tcagggctcc	2520
30	ttcactgaag	tggtttccat	cagtaacttg	ggaatggcaa	agacgggccc	ggtggttgag	2580
	gacagcggca	gcctccct	ggaatacgtg	aatgggtcgg	cctgcaccac	cagcgtatggc	2640
	agacagacca	catataccac	gaggatccat	ctcgctct	ccaggggcag	gctgaacacg	2700
	caccccatct	tttctctcaa	ctgggagtgt	gtggtcagtt	tcctgtggaa	cacagaggt	2760
	gcctgtccca	ttcagacaac	gacggataca	gaccaggctt	gctctataag	ggatcccaac	2820
35	agtggatttg	tgtttatct	taatccgta	aacagtccg	aaggatataa	cgtctctggc	2880
	attgggaaa	tttttatgtt	taatgtctgc	ggcaacatgc	ctgtctgtgc	gaccatcttgc	2940
	ggaaaaacctg	tttctggctg	tgagggcagaa	acccaaactg	aagagctcaa	gaattggaaag	3000
	ccagcaaggc	cagtcggaaat	tgagaaaaagc	ctccagctgt	ccacagaggg	cttcatact	3060
	ctgacctaca	aaggccctct	ctctgccaaa	gttaccctgt	atgttttat	cgtccgctt	3120
40	gtttgcaatg	atgatgttta	ctcagggccc	ctcaaattcc	tgcatcaaga	tatcgactct	3180
	gggcaaggga	tccgaaacac	ttacttttag	tttgaaccg	cgttggctg	tgttccttct	3240
	ccagtggact	gccaagtccac	cgacctggct	ggaaatgagt	acgacctgac	tggcctaagc	3300
	acagtctagg	aaccttggac	ggctgttgac	acctctgtcg	atgggagaaa	gaggacttcc	3360
	tatttgagcg	tttgcaatcc	tctcccttac	attcctggat	gccaggggcag	cgcagtgggg	3420
45	tcttgcttag	tgtcagaaagg	caatagctgg	aatctgggt	ttgtgcagat	gagtcccaaa	3480
	ggccggcggca	atggatcttt	gagcatcatg	tatgtcaacg	gtgacaactg	tgggaaccag	3540
	cgcttctcca	ccaggatcac	gtttgagtgt	gctcagat	cgggctcacc	agcatttccag	3600
	cttcaggatg	gttgcggat	cgtgtttatc	tggagaactg	tggaaaggctg	tcccgttgc	3660
	agagtggaaag	gggacaactg	tgaggtggaaa	gaccggaaaggc	atggcaactt	gtatgacctg	3720
50	aagcccctgg	gcctcaacga	caccatctg	agcgtggcg	aatacactta	ttacttccgg	3780
	gtctgtggga	agctttctc	agacgtctgc	cccacaagt	acaagtccaa	ggtggtctcc	3840
	tcatgtcagg	aaaagcggga	accgcaggga	tttcacaaag	tggcaggct	cctgactcag	3900
	aagctaactt	atgaaaatgg	cttgcattaa	atgaacttca	cggggggggga	cacttgcct	3960
	aaggtttattc	agcgctccac	accatcttc	ttctactgt	accgcggcac	ccagcggcca	4020
55	gtatttctaa	aggagactt	agattgttcc	tacttgttt	atgtggcgaac	gcagtatgccc	4080
	tgcccacctt	tcgatctgc	tgaatgttca	ttcaaagat	gggctggcaa	ctccttcogac	4140
	ctctcgcccc	tgtcaaggta	cagtgcacac	tgggaagcca	tcactggac	gggggaccccg	4200
	gagcactact	tcatcaatgt	ctgcaagtt	ctggcccccg	aggctggcac	tgagccgtgc	4260
	cctccagaag	cggccgcgt	tctgtctgggt	ggctccaagc	ccgtgaacct	cggcagggtt	4320
	agggacggac	ctcagttggag	agatggcata	attgtcctga	aatacgttga	tggcacttact	4380
60	tgtccagatg	ggattcggaa	aaagtcaacc	accatccgt	tcacactgcag	cgagacccaa	4440
	gtgaacttca	ggcccatgtt	catcagcggcc	gtggaggact	gtgagttacac	tttgccttgg	4500
	cccacagcca	cagcctgtcc	catqaagagc	aacgaggatc	atgactqcca	ggtcaccac	4560

	ccaagcacag	gacacctgtt	tgatctgagc	tccttaagtgc	gcagggcggg	attcacagct	4620
	gcttacagcg	agaagggggtt	ggtttacatg	agcatctgtg	gggagaatga	aaactgccct	4680
	cctggcggtg	gggcctgtt	tggacagacc	aggatttagcg	tgggcaaggc	caacaagagg	4740
5	ctgagatacg	tggaccagg	cctgcagctg	gtgtacaagg	atgggtcccc	ttgtccctcc	4800
	aaatccggcc	tgagctataa	gagtgatgc	attttcgtgt	gcaggcctga	ggccggggca	4860
	accaataggc	ccatgctcat	ctcccctggac	aagcagacat	gcactcttct	cttctcctgg	4920
	cacacgcgc	tggcctgcga	gcaagcgacc	aatgttccg	tgaggaatgg	aagctctatt	4980
	gttacttgt	ctcccccatt	tcatcgact	ggtggttatg	aggcttatga	tgagagttag	5040
10	gatgatgcct	ccgataccaa	ccctgatttc	tacatcaata	tttgcagcc	actaaatccc	5100
	atgcacgcag	tgcctgtcc	tgccggagcc	gctgtgtgca	aaatttcttat	tgatggtccc	5160
	cccatagata	tcggccgggt	agcaggacca	ccaatactca	atccaatagc	aatagagatt	5220
	tacattgaatt	ttgaaagcag	tactccttgc	ttagcggaca	agcatttcaa	ctacacctcg	5280
	ctcatcgct	ttcactgtaa	gagaggtgtg	agcatgggaa	cgcctaagct	gttaaggacc	5340
15	agcagactgcg	actttgtgtt	cgaatgggag	actctctgtcg	tctgtcctga	tgaagtgagg	5400
	atggatggct	gtaccctgtac	agatgagcag	ctcctctaca	gcttcaactt	gtccagccct	5460
	tccacgagca	ccttttaaggt	gactcgcgc	tcgcgcac	acagcgttgg	ggtgtgcacc	5520
	tttgcagtcg	ggccagaaca	aggaggctgt	aaggacggag	gagtctgtct	gctctcaggc	5580
	accaaggggg	catcctttgg	acggctgcaa	tcaatgaaaac	tggattacag	gcaccaggat	5640
20	gaagcggctg	ttttaaggtt	cgtgaatgg	gatcgttgc	ctccagaaac	cgatgacggc	5700
	gtccctgtg	tcttccctt	catattcaat	ggaaagagct	acgaggagtg	catcatagag	5760
	agcagggcga	agctgtggtg	tagcacaact	gcccactacg	acagagacca	cgagtggggc	5820
	ttctgcagac	actcaaacag	ctaccggaca	tccagcatca	tatthaagtg	tatgaagat	5880
	gaggacattg	ggaggccaca	agtcttcagt	gaagtgcgtg	ggtgtatgt	gacatttgag	5940
25	tggaaaacaa	aagttgtctg	ccctccaaag	aagttggagt	gcaaattcgt	ccagaaacac	6000
	aaaacactacg	acctcgccgt	gctctctct	ctcaccgggt	cctggccctt	gttccacaac	6060
	ggagtctcg	actatataaa	tctgtccag	aaaatataat	aaggccccct	gggctgtct	6120
	gaaaggccca	gcattttgcag	aaggaccaca	actgttgac	tccaggtct	gggactcgtt	6180
	cacacgcaga	agctgggtgt	cataaggta	aaagttgtt	tcacgtactc	caaaggatat	6240
30	ccgtgtgg	gaaataagac	cgcattcctcc	gtgatagaat	tgaccctgtac	aaagacggtg	6300
	ggcagacctg	cattcaagag	gtttgatatac	gacagctgca	tttactactt	cagctgggac	6360
	tcccggctg	cctgcgcctg	gaaggctcag	gagggtcaga	tggtaatgg	gaccatcacc	6420
	aacctataa	atggcaagag	cttcagccctc	ggagatattt	attttaagct	gttcagagcc	6480
	tctggggaca	tgaggacc	tggggacaac	tacctgtatg	agatccaact	ttcctccatc	6540
35	acaagctcca	gaaacccggc	gtgctctgga	gccaacat	gccaggtgaa	gcccaacgtat	6600
	cagcaactca	gtcgaaagt	tggAACCTCT	gacaagacca	agtactac	tcaagacggc	6660
	gatctcgat	tcgtgtttc	ctcttcctt	aagtgcggaa	aggataagac	caagtctgtt	6720
	tcttccacca	tcttccatca	ctgtgaccct	ctgggtggagg	acgggatccc	cgagttcgt	6780
	cacgactcg	ccgactggca	gtacatcttc	tcttggta	cctcagccgt	gtgtccctcg	6840
40	gggttgggt	ttgacagcga	gaatcccggg	gacgacggggc	agatgcacaa	ggggctgtca	6900
	gaacggagcc	aggcagtcgg	cgcgtgtc	agcctgtgc	tggtggcgt	cacctgtc	6960
	ctgctggccc	tgttgcctca	caagaaggag	aggagggaaa	cagtgataag	taagctgacc	7020
	acttgcgtt	ggagaagg	caacgtgtcc	tacaaataact	caaagggtaa	taaggaagaa	7080
	gagacagatg	agaatgaaac	agagtggctg	atggaaagaga	tccagctgcc	tcctccacgg	7140
45	cagggaaagg	aaggcagga	gaacggccat	attaccacca	agtca	agccctcagc	7200
	tccctgcat	gggatgacca	ggacagttag	gatgagggtt	tgaccatccc	agaggtgaaa	7260
	gttca	gggggggg	ttggggcagag	agctcccacc	cagtgagaaa	cgcacagagc	7320
	aatggccctt	aggacgtgt	ggacgatagg	gtggggctgg	tcaggggtga	gaaggcgagg	7380
	aaagggaaat	ccagctctc	acagcagaag	acagttagat	ccaccaagct	ggtgtccctc	7440
50	catgacgaca	gacgacgagga	ccttttacac	atctga			7476
	<210> 91						
	<211> 4104						
	<212> DNA						
55	<213> Homo sapiens						
	<300>						
	<302> IGF1R						
	<310> NM000875						
60	<400> 91						
	atgaagtctg gctccggagg agggtccccg acctcgctgt gggggctctt gtttctctcc						60

	gccgcgctc	cgctctggcc	gacgagtggaa	gaaatctgcg	ggccaggcat	cgacatccgc	120
	aacgactatc	agcagctgaa	gcccctggag	aactgcacgg	tgatcgaggg	ctacctccac	180
	atccgtctca	tctccaaggc	cgaggactac	cgcagctacc	gcttcccaa	gtcacacggtc	240
5	attaccgagt	acttgcgtct	gttccgagtg	gctggcctcg	agagcctcg	agacctcttc	300
	ccccaaacctca	ccgtcatccg	cggtggaaa	ctttctaca	actaccccct	ggtcatcttc	360
	gagatgacca	atctcaagga	tattgggctt	tacaacctga	ggaacattac	tcggggggcc	420
	atcaggattg	agaaaaatgc	tgacctctgt	tacctctcca	ctgtggactg	gtccctgatc	480
	ctggatgcgg	tgtccaataa	ctacattgtg	gggataaagc	ccccaaagga	atgtggggac	540
10	ctgtgtccag	ggaccatggaa	ggagaagccg	atgtgtgaga	agaccaccat	caacaatgag	600
	tacaactacc	getgcgtggac	cacaaaccgc	tgccagaaaa	tgtcccaag	cacgtgtggg	660
	aaggcgccgt	gcaccgagaa	caatgagtgc	tgccaccccg	agtgcctggg	cagctgcagc	720
	gcccctgaca	acgacacggc	ctgtgttagct	tgccgcccact	actactatgc	cgtgtctgt	780
	gtgcctgcct	gcccccccaa	cacccacagg	tttggggct	ggcgctgtgt	ggaccgtgac	840
15	ttctgcgcca	acatccctcg	cgccgagagc	agcgtcccg	agggggttgt	gatccacgac	900
	ggcgagtgc	tgcaggatgt	ccccctcgcc	ttcatccgca	acggcagcca	gagcatgtac	960
	tgcattccctt	gtgaagggtcc	ttggccaaag	gtctgtgagg	aaaaaaagaa	aacaaagacc	1020
	attgattctg	ttacttctgc	tcagatgctc	caaggatgca	ccatcttcaa	ggcaatttg	1080
	ctcattaaca	tccgacgggg	gaataaacatt	gcttcagagc	tggagaactt	catggggctc	1140
20	atcgagggtgg	tgacgggcta	cgtgaagatc	cgccattctc	atgccttgggt	ctccttgtcc	1200
	ttcctaaaaaa	accttcgctt	catccatgg	gaggagcagc	tagaaggaa	ttactccttc	1260
	tacgtcctcg	acaaccagaa	cttgcagcaa	ctgtggact	gggaccaccg	caacctgacc	1320
	atcaaaggcag	ggaaaaatgt	ctttgtttc	aatcccaa	tatgttttc	cgaattttac	1380
	cgcacgggg	aagtgacggg	gactaaaggg	cgccaaagca	aaggggacat	aaacaccagg	1440
25	aacaacgggg	agagagccct	ctgtgaaatg	gacgtctgc	atttcacccctc	caccacccacg	1500
	tgcagaatac	gcatcatcat	aacatggcac	cggttaccggc	ccccctgacta	cagggtatctc	1560
	atcagcttca	ccgtttaacta	caaggaagca	ccctttaaga	atgtcaacaga	gtatgtggg	1620
	caggatgcct	cgggctccaa	cagctggaa	atggtggacg	tggacccccc	gcccaacaag	1680
	gacgtggagc	ccggcatctt	actacatggg	ctgaaggccct	ggactcagta	cgccgtttac	1740
30	gtcaaggctg	tgaccctcac	catggtggag	aacgaccata	tccgtggggc	caagagttag	1800
	atcttgtaca	ttcgacacaa	tgcttcagtt	ccttccattc	ccttggacgt	tctttcagca	1860
	tgcgaactcct	tttctcagtt	aatcgtgaag	tggAACCCtC	cctctctgccc	caacggcaac	1920
	ctgagttact	acattgtcg	ctggcagcg	cagecctcagg	acgggtaccc	ttaccggcac	1980
	aattactgtc	ccaaagacaa	aatccccatc	aggaagtatg	ccgacggcac	catcgacatt	2040
	gaggaggtca	cagagaaccc	caagactgag	gtgtgtgggt	gggagaaagg	gccttgcgtgc	2100
35	gcctgccccca	aaactgaaac	cgagaagcag	gccggagaagg	aggaggctga	ataccgcaaa	2160
	gtcttggata	atttctgc	caactccatc	gaccttggca	gaccttggaa	gaagcggaga	2220
	gatgtcatgc	aagtggccaa	caccacatg	tccaggccaa	gcaggaacac	cacggccgca	2280
	gacacctaca	acatcaccgg	ccccggaaag	ctggagacag	agtacccttt	ctttgagagc	2340
	agagtggata	acaaggagag	aactgtcatt	tctaaccctc	ggcctttcac	attgtaccgc	2400
40	atcgatatacc	acagctgaa	ccacgaggct	gagaagctgg	gctgcagcgc	ctccaacttc	2460
	gtcttgc	ggactatgccc	cgcagaagga	gcagatgaca	ttcctggggcc	agtgacctgg	2520
	gagccaaggc	ctgaaaactc	catcttttta	aagtggccgg	aacctgagaa	tcccaatgg	2580
	ttgattctaa	tgtatgaaat	aaaatacgg	tcacaagtt	aggatcagcg	agaatgtgt	2640
	tccagacagg	aatacaggaa	gtatggaggg	gccaagctaa	accggctaaa	cccggggaaac	2700
45	tacacagccc	ggatttcaggc	cacatctctc	tctggaaatg	ggtcgtggac	agatccctgt	2760
	ttcttctatg	tccaggccaa	aacaggat	aaaaacttca	tccatctgtat	catcgctctg	2820
	cccgctgt	tcctgttgc	cgtggggaggg	ttggtgat	tgctgtacgt	tttccataga	2880
	aagagaataa	acaggaggct	ggggaaatgg	tgctgtatg	cctctgtaa	cccggagtac	2940
	ttcagcgtg	ctgatgtgt	cgttccgtat	gagtggggagg	tggctgggg	gaagatcacc	3000
50	atgagccggg	aacttggca	ggggtcgttt	gggatggct	atgaaggagt	tgccaagggt	3060
	gtgggtaaag	atgaacctga	aaccagagt	gccattaaaa	cagtgaacga	ggccgcaagc	3120
	atgcgtgaga	ggatttgagg	tctcaacgg	gcttctgtga	tgaaggagtt	caattgtcac	3180
	catgtgggtc	gattgttgg	tgtgtgtcc	caaggccagc	caacactgtt	catcatggaa	3240
	ctgatgacac	ggggcgatct	aaaaagttat	ctccggctc	tgaggccaga	aatggagaat	3300
55	aatccagtcc	tagcacctcc	aaggctgagc	aagatgattc	agatggccgg	agagattgca	3360
	gacggcatgg	catacctca	cgccaataag	ttcgtccaca	gagacccctgc	tgcccccggaa	3420
	tgcgtgttag	ccgaagat	cacagtcaa	atcgaggat	ttggatgtac	gcgagatatac	3480
	tatgagacag	acttacccg	gaaaggaggc	aaagggtgc	tgccctgtgc	ctggatgtct	3540
60	cctgagtc	tcaaggatgg	agtcttcacc	acttactcg	tgccctgtgc	tttcgggggtc	3600
	gtcctctggg	agatccggcac	actggccgag	cagccctacc	agggttgc	caacgagcaa	3660
	gtccttcgct	tgcgtatgg	ggggggccctt	ctggacaagc	cagacaactg	tcctgacatg	3720
	ctgtttgaac	tgtatgcgc	gtgtggcag	tataacccca	agatgaggcc	ttccttcctg	3780

	gagatcatca	gcagcatcaa	agaggagatg	gaccctggct	tccgggaggt	ctccttctac	3840
	tacagcgagg	agaacaagct	gccc gagccg	gaggagctgg	acctggagcc	agagaacatg	3900
	gagagcgtcc	ccctggaccc	cteggeetcc	tcgtcctccc	tgccactgcc	cgacagacac	3960
5	tcaggacaca	aggccgagaa	cggccccggc	cctggggtgtc	tggtcctccg	cggcagcttc	4020
	gacgagagac	agccttacgc	ccacatgaac	gggggcccga	agaacgagcg	ggccttgcgg	4080
	ctgccccagt	cttcgacctg	ctga				4104
	<210>	92					
10	<211>	726					
	<212>	DNA					
	<213>	Homo sapiens					
	<300>						
15	<302>	PDGFB					
	<310>	NM002608					
	<400>	92					
20	atgaatcgct	gctgggcgct	cttcctgtct	ctctgctgtct	acctgcgtct	ggtcagcgcc	60
	gagggggacc	ccattcccgaa	ggagctttat	gagatgctga	gtgaccactc	gatccgcetcc	120
	tttgtatgatc	tccaacgcct	gctgcacggaa	gaccggggag	aggaagatgg	ggccgagttg	180
	gacctgaaca	tgaccggctc	ccacttggaa	ggcgagctgg	agacgttggc	tctgtggaaaga	240
	aggagcctgg	gttccctgac	cattgcttag	ccggccatga	tcgcccagtgc	caagacgcgc	300
25	accgagggtt	tcgagatctc	ccggccctc	atagaccgca	ccaacgccaa	cttcctgggt	360
	tggccgcctt	gtgtggaggt	gcagcgctgc	tccggctgt	gcaacaaccg	caacgtgcag	420
	tggccgcctt	cccgagggtca	gctgcgacct	gtccagggtga	gaaagatcgaa	gattgtgcgg	480
	aagaagccaa	tcttaagaaa	ggccacggtg	acgctggaaag	accacctggc	atgcaagtgt	540
	gagacagtgg	cagctgeacg	gcctgtgacc	cgaagcccg	ggggttccca	ggagcagcga	600
30	gccaaaacgc	cccaaactcg	ggtgaccatt	cggacgggtc	gagtccggcc	gccccccaag	660
	ggcaaggacc	ggaaattcaa	gcacacgcat	gacaagacgg	cactgaagga	gacccttgga	720
	gccttag						726
	<210>	93					
35	<211>	1512					
	<212>	DNA					
	<213>	Homo sapiens					
	<300>						
40	<302>	TGFbetaR1					
	<310>	NM004612					
	<400>	93					
45	atggaggccg	cggtcgctgc	tccgcgtccc	cggctgcctcc	tcctcgtgtct	ggcggccggcg	60
	gcccggccg	cgccggcgct	gtccccgggg	gcgacggcggt	tacagtgttt	ctgcccacctc	120
	tgtacaaaag	acaattttac	tttgtgtaca	gatgggctct	gctttgtctc	tgtcacagac	180
	accacagaca	aagtataca	caacagcatg	tgtatagctg	aaattggactt	aattccctcgaa	240
	gataggccgt	ttgtatgtgc	acccttctca	aaaactgggt	ctgtgactac	aacatattgc	300
50	tgc当地cagg	accattgcaa	taaaatagaa	cttccaacta	ctgtaaagtc	atcacctggc	360
	cttggcctcg	tggaacttggc	agctgtcatt	gctggaccag	tgtgcttcgt	ctgcacatctca	420
	ctcatgttga	tggcttatat	ctgccacaac	cgcactgtca	ttcaccatcg	agtgc当地aa	480
	gaagaggacc	cttcattttaga	tcgccccttt	atttcagagg	gtactacgtt	gaaagactta	540
	atttatgata	tgacaacgtc	aggttctggc	tcagggttac	cattgttgc	tcaagagaaca	600
	attgc当地gaa	ctattgtgtt	acaagaaaagc	attggcaaaag	gtcgatttgg	agaagtttgg	660
55	agaggaaaatg	ggccggggaga	agaagttgt	gttaagat	tctccctctag	agaagaacgt	720
	tctgtgttcc	gtgaggccaga	gatttatcaa	actgtatgt	tacgtcatga	aaacatctcg	780
	ggatattatag	cagcagacaa	taaagacata	ggtaacttgg	ctcagctctg	gttgggtgtca	840
	gatttatcatg	agcatggatc	cctttttgt	tacttaaaca	gatacacatgt	tactgtggaa	900
60	ggaatgataa	aacttgcct	gtccacggcg	agcggcttgc	cccacatctca	catgggagatt	960
	gttggtaccc	aaggaaagcc	agcattgtct	catagagatt	tgaaatcaaa	gaatatcttg	1020
	gtaaaagaaga	atggaaacttg	ctgtattgtca	gacttaggac	tggcagtaag	acatgattca	1080
	gccacagata	ccattgatata	tgctccaaac	cacagagtgg	qaacaaaaaq	qtagatggcc	1140

cctgaagttc tcgatgattc cataaatatg aaacattttg aatcccaa acgtgctgac 1200
 atctatcaa tggcttagt attctggaa attgtcgac gatgtccat tggtaatt 1260
 catgaagatt accaactgcc ttattatgtat ctgtacctt ctgaccatc agttgaagaa 1320
 atgagaaaag ttgttgtga acagaagttt aggccaaata tcccaaacag atggcagac 1380
 5 ttgtgaagcct tgagagtaat ggctaaaattt atgagagaat gttgttatgc caatggagca 1440
 gctaggctt cagcattgcg gattaagaaa acattatgc aactcagtca acaggaaggc 1500
 atcaaaaatgt aa 1512

10 <210> 94
 <211> 4044
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> Flk1
 <310> AF035121

<400> 94

20 atgcagagca aggtgctgct ggccgtcgcc ctgtggctt gcgtggagac ccggggccgccc 60
 tctgtgggtt tgcctagtgt ttctcttgat ctgcccaggc tcagcataca aaaagacata 120
 cttaacaatta aggctaatac aactcttcata attacttgc ggggacagag ggacttggac 180
 tggctttggc ccaataatca gagttggcagt gaggcaaggg tggaggtgac tgagtgcgc 240
 gatggcctct tctgttaagac actcacaattt cccaaatgtca tcggaaatga cactggagcc 300
 25 tacaagtgtct tctaccggga aactgacttg gcctcggtca tttatgtcta tggtaagat 360
 tacagatctc catttattgc ttctgttagt gaccaacatg gagtcgtgtt cattacttag 420
 aacaaaaaaca aaactgtgtt gattccatgtt ctgggttcca tttcaatctt caacgtgtca 480
 ctttgcataa gatacccgaa aaagagattt gttcctgtat gtaacagaat ttcttgggac 540
 agcaagaagg gctttactat tcccagctac atgatcagttt atgctggcat ggtcttctgt 600
 30 gaagaaaaaa ttaatgtat aagttaccatg tctattatgt acatagttgt cgtttaggg 660
 tataggattt atgatgtgtt tctgagtcgtt tctcatggaa ttgaactatc tggtaggaa 720
 aagcttgcct taaattgtac agcaagaactt gaaactaaatg tggggattgtt ctcaactgg 780
 gaataccctt ctgcgaagca tcagcataag aaactgttta accggagacatc aaaaacccag 840
 tctggaggtt agatgtgaaat ttttggatc accttaacta tagatgtgtt aacccggagt 900
 35 gaccaaggat tgcacaccc tgcacatcc agtggctgtt tgaccaagaa gaacagcaca 960
 tttgtcagggtt tccatggaaa acctttgtt gctttggaa gtggcatggaa atctctgggt 1020
 gaagccacgg tggggagcg tgcacatcc cctgcgtt accttggta cccacccca 1080
 gaaataaaaat ggtataaaaaat tggaaatacccc cttgacttcca atcacacaat taaagcgggg 1140
 catgtactgtt cgattatggaa agtggatgtt agagacacag gaaattacac tgcacatcc 1200
 40 accaataccca ttcaaaaggaa gaagcagacg catgtggctt ctctgggtt gtatgtccca 1260
 ccccagattt gtgagaatac tctaatactt cctgtggatt cctaccatg cggcaccact 1320
 caaacgcgtt catgtacgtt ctatgccatt cttccccccgc atcacatcca ctgttattgg 1380
 cagttggagg aaggtgcgc caacggacccc agccaagctg tctcgttgcgaaacccatc 1440
 cctgttgcgtt aatgggaaatgttggaggatc ttccaggag gaaataaaaat tgaagttat 1500
 45 aaaaatcaat ttgtctcaat tgaagggaaa aacaaaatgtt taagtacccct tggtaatccaa 1560
 gggccaaatgt tgcacgtttt tgcacatgtt gaaacgggtca aacaaatgtt gagaggagag 1620
 agggtgatctt ctttccacgtt gacccgggtt cttgaaatgtt ctttgcaccc tgcacatgtt 1680
 cccactgatgtt agggaggtgtt gtctttgtgg tgcactgttgcg acagatctac gtttggaaac 1740
 ctcacatgtt acaagcttgg cccacacccct ctggcaatcc atgtgggaga gttggccaca 1800
 50 cctgtttgcgtt agaacttggaa tactctttgg aaattgtatg ccaccatgtt ctctaatgc 1860
 aaaaatgaca ttttgatcat gtagctttaag aatgcacatc tgcaggacca aggagactat 1920
 gtctgccttgc ctcaagacag gaagaccaag aaaagacattt gctgtgttgc gcaacatcaca 1980
 gtccctagatgtt gtgtggcacc cacgatcaca ggaaacccctt agaattcagac gacaaggat 2040
 gggggaaagca tgcacatgtt atgcacggca tctggaaatc cccctccaca gatcatgtgg 2100
 55 tttaaaagata atgagacccct tgcacatgtt gacccgggtt tattggaaatc tggggacccgg 2160
 aacccctacta tcccgacgtt gacccgggtt gacccgggtt tctacacccgtt ccaggcatgc 2220
 agtgttcttgc gctgtgttgc gatgtggggatc ttttttgcataa tagaagggtgc ccaggaaaag 2280
 acgaacttggaaatcattat tcttagtgcg acggccgttgc ttgcacatgtt ctctggctt 2340
 cttcttgcgtt tgcacatgtt gacccgggtt cggccaaatgc gacccgggtt gacccgggtt 2400
 60 tacttgcgttca tgcacatgtt gacccgggtt cggccaaatgc gacccgggtt gacccgggtt 2460
 cttcttgcgttca tgcacatgtt gacccgggtt cggccaaatgc gacccgggtt gacccgggtt 2520
 gggccgttgcgttca tgcacatgtt gacccgggtt cggccaaatgc gacccgggtt gacccgggtt 2580

	acttgcagga	cagtagcagt	caaaaatgttg	aaagaaggag	caacacacag	tgagcatcga	2640
	gctctcatgt	ctgaactcaa	gatcctcatt	catattggtc	accatctcaa	tgtggtcaac	2700
	cttcttaggt	cctgtaccaa	gccaggaggg	ccactcatgg	tgatttgtgga	attctgcaa	2760
	tttggaaacc	tgtccactta	cctgaggagc	aagagaaatg	aatttgtccc	ctacaagacc	2820
5	aaaaggggcac	gattccgtca	aggaaaagac	tacgttggag	caatccctgt	ggatctgaaa	2880
	cggcgcttgg	acagcatcac	cagtagccag	agctcagcca	gctctggatt	tgtggaggag	2940
	aagtccctca	gtgatgtaga	agaagaggaa	gctcctgaa	atctgtataa	ggacttcctg	3000
	accttggagc	atctcatctg	ttacagcttc	caagtggcta	agggcatgga	gttcttggca	3060
	tgcgaaagt	gtatccccag	ggaccttggcg	gcacaaata	tcctttatc	ggagaagaaa	3120
10	gtgggtaaaa	tctgtgactt	tggttggcc	cggatattt	ataaaagatcc	agattatgtc	3180
	agaaaaaggag	atgctcgcct	ccctttgaaa	tggatggccc	cagaaaacaat	ttttgacaga	3240
	gtgtacacaa	tccagagtga	cgtctggct	tttggtgttt	tgctgtggga	aatattttcc	3300
	tttaggtgct	ctccatatatcc	tggggtaaaag	attgatgaag	aattttgtag	gcgattgaaa	3360
15	gaaggaacta	gaatgggggc	ccctgttattat	actacaccag	aaatgtacca	gaccatgtc	3420
	gactgtggc	acgggggagcc	cagtcagaga	cccacgttt	cagagtgg	ggaacatttg	3480
	ggaaatctct	tgcaagctaa	tgctcagcag	gatggcaaa	actacattgt	tcttccgata	3540
	tcaagagactt	tgagcatgga	agaggattct	ggactctctc	tgccttacctc	acctgtttcc	3600
	tgtatggagg	aggaggaagt	atgtgacccc	aaattccatt	atgacaacac	agcaggaatc	3660
20	agtcatgttc	tgcagaaacag	taagcggaaa	agccggcctg	tgagtgtaaa	aacatttggaa	3720
	gatatccccgt	tagaagaacc	agaagttaaa	gtaatcccg	atgacaacca	gacggacagt	3780
	ggtaggtggtc	ttgcctcaga	agagctgaaa	actttggaa	acagaaacca	attatctcca	3840
	ttttttgggt	gaatggtgcc	cagaaaaagc	agggagtcg	tggcatctga	aggctcaac	3900
	cagacaagcg	gctaccagtc	cggatatacac	tccgatgaca	cagacaccac	cgtgtactcc	3960
25	agtgaggaag	cagaactttt	aaagctgata	gagattggag	tgcaaaccgg	tagcacagcc	4020
	cagattctcc	agcctgactc	gggg				4044

<210> 95
<211> 4017
<212> DNA
<213> Homo sapiens

35 <300>
 <302> Flt1
 <310> AF063657

	agaatttggaa	gcatacactca	gcccgttggca	ataatagaag	gaaagaataa	gatggcttgc	1560
	accttggttt	tggctgactc	tagaattttct	ggaatctaca	tttgcatacg	ttccaataaa	1620
	gttgggactg	ttgggaaa	cataagctt	tatatcacag	atgtccaaa	ttggtttcat	1680
	gttaacttgg	aaaaaatgcc	gacggaaagg	gaggacctga	aactgtctt	cacagttaac	1740
5	aagtttttat	acagagacgt	tacttggatt	ttactgcgga	cagttataa	cagaacaat	1800
	cactacagta	tttagcaagca	aaaaatggcc	atcactaagg	agcactccat	cactcttaat	1860
	cttaccatca	tgaatgtttc	cctgcaagat	tcaggcacct	atgcctgcag	agccaggaaat	1920
	gtatacacag	gggaaagaaat	cctccagaag	aaagaaatta	caatcagaga	tcaggaagca	1980
	ccataacctcc	tgcgaaacct	cagtgtatcac	acagtggcca	tcagcagttc	caccacttta	2040
10	gactgtcatg	ctaattgtgt	ccccgagct	cagatctactt	ggtttaaaaa	caaccacaaa	2100
	ataacaacaa	agccgttgaat	tatttttagga	ccaggaagca	gcacgcgtt	tatttgaaga	2160
	gtcacagaag	aggatgaagg	tgtcttatcac	tgcaaaagcca	ccaaccagaa	gggctctgt	2220
	gaaagttcag	catacctcac	tgttcaaggaa	acctcggacaa	agtctaatct	ggagctgatc	2280
15	actctaacat	gcacccgtgt	ggctgcgact	ctttcttggc	tccttataac	cctctttatc	2340
	cgaaaaatga	aaaggcttcc	ttctgaaata	aagactgact	acctatcaat	tataatggac	2400
	ccagatgaag	ttcccttgg	tgagcagtgt	gagcggctcc	tttatgtgc	cagcaagtgg	2460
	gagtttggcc	gggagagact	taaactgggc	aaatcacttgc	gaagaggggc	ttttggaaaaa	2520
	gtgggttcaag	catcagcatt	tggcattaag	aaatcaccta	cgtggccggac	tgtggctgt	2580
20	aaaatgtga	aagagggggc	cacggccagc	gagtacaaag	ctctgtatgac	ttagctaaaaa	2640
	atcttgacc	acattggcca	ccatctgaac	gtgggtttaacc	tgtctggagc	ctgcaccaag	2700
	caaggagggc	ctctgtatgt	gattttgttga	tactgc当地	atggaaatct	ctccaaactac	2760
	ctcaagagca	aacgtgactt	attttttctc	aacaaggatg	cagactacata	atggagcct	2820
	aagaaaagaaa	aatggagcc	aggcctggaa	caaggcaaga	aaccaagact	agatagcgtc	2880
25	accagcagcg	aaagctttgc	gagctccggc	tttcaggaag	ataaaagtct	gagtgtatgt	2940
	gaggaagagg	aggattctga	cgggttctac	aaggagccca	tcactatgg	agatctgatt	3000
	tottacagtt	ttcaagttgc	cagaggcatg	gagttcctgt	tttccagaaaa	gtgcattcat	3060
	cgggacctgg	cagcgagaaa	cattcttta	tctgagaaca	acgtggtgaa	gatttgtat	3120
	tttggccttgc	cccgggat	ttataagaac	cccgattatg	tgagaaaagg	agataactcga	3180
30	cttcctctga	aatggatggc	tcctgaatct	atctttgaca	aaatctacag	caccaagagc	3240
	gacgtgttgt	tttacggagt	attgtgtgg	gaaatcttct	ccttaggtgg	gtctccatac	3300
	ccaggaggta	aatggatga	ggacttttgc	agtcgcctga	gggaaggcat	gaggatgaga	3360
	gctcctgagt	actctactcc	tgaatctat	cagatcatgc	tggactgtct	gcacagagac	3420
	ccaaaagaaa	ggccaagatt	tgcagaactt	gtggaaaaaac	taggtgattt	gttcaagca	3480
35	aatgtacaac	aggatgttaa	agactacatc	ccaatcaatg	ccatactgac	agggaaatagt	3540
	gggttttacat	actcaactcc	tgccttctac	gaggacttct	tcaagggaaa	tatttgcagt	3600
	csgaagttta	attcaggaag	ctctgtatgt	gtcagatatg	taatgtctt	caagttcat	3660
	agcctggaaa	gaatcaaaac	ctttaagaa	cttttaccca	atgcacaccc	catgtttat	3720
	gactaccagg	gccccacggc	cactctgttgc	gcctctccca	tgctgaagcg	cttcacactgg	3780
40	actgacagca	aacccaaaggc	ctcgctcaag	attgacttgc	gagtaaccag	taaaaagtaag	3840
	gagtcggggc	tgtctgtatgt	cagcaggccc	agtttctgc	attccagctg	ttggcacgtc	3900
	agcgaaggca	agcgcagggt	cacctacgac	cacgctgacg	tggaaaggaa	aatcgcgtc	3960
	tgctccccgc	ccccagacta	caactcggtt	gtcctgtact	ccacccccc	catctag	4017
45	<210>	96					
	<211>	3897					
	<212>	DNA					
	<213>	Homo sapiens					
50	<300>						
	<302>	Flt4					
	<310>	XM003852					
55	<400>	96					
	atgcagcgggg	gccccggcgt	gtgcctgcga	ctgtggctct	gcctgggact	cctggacggc	60
	ctgggtgggt	gctactccat	gaccccccgg	accttgaaca	tcacggagga	gtcacacgtc	120
	atcgacacccg	gtgacagccct	gtccatctcc	tgcaggggac	agccccccct	cgagtgggt	180
	tggccaggag	ctcaggaggc	gccagccacc	ggagacaagg	acagcgagga	cacgggggt	240
	gtgcgagact	gccccggcgt	agacgcccgg	ccctactgca	aggtgttgc	gtgcacgag	300
60	gtacatgcca	acgacacacagg	cagctacgtc	tgctactaca	agtatcataa	ggcacgcatac	360
	gagggccacca	cgccccccag	ctccctacgtt	ttcgtggag	actttgagca	gccattcatc	420
	aacaaggcttgc	acacgcttgc	ggtcaacagg	aaggacggca	tgtgggtgc	ctgtctgggt	480

	tccatccccg	gcctcaatgt	cacgctgcgc	tccggaaagct	cgggtcgctgt	gccagacggg	540
	caggaggtgg	tgtgggatga	ccggcgaaaa	atgctcggt	ccacgcact	gtgcacgat	600
	gccctgtacc	tgcagtgcga	gaccacctgg	ggagaccagg	acttccccc	caacccttc	660
	ctggtgacaca	tcacagcaa	cgagcttat	gacatccacg	tgttgcacag	gaagtgcgtg	720
5	gagctgtgg	tagggagaa	gctggctctg	aactgcacccg	tgtggctga	gtttaactca	780
	ggtgtcacct	ttgactggg	ctaccccgagg	aaggcaggcag	agcggggtaa	gtgggtgc	840
	gagcgcacgt	cccacgcac	ccacacagaa	ctctccagca	tcctgaccat	ccacaacgtc	900
	agccagcacg	acctggctc	gtatgtgtgc	aaggccaaaca	acggcatcca	gegatttcgg	960
	gagagcaccg	aggctatgt	gtatgaaaat	cccttcatac	gctcgagtg	gtccaaagga	1020
10	cccatctgg	aggccacggc	aggagacgag	ctggtaaagc	tgccctgtaa	gtggcagcg	1080
	taccccccgc	ccgagttca	gtgttacaag	gatggaaagg	cactgtccgg	gcccacagt	1140
	ccacatgccc	tgggtctcaa	ggaggtgaca	gaggccagca	caggcaccta	caccctcgcc	1200
	ctgttggact	ccgctgtgg	cctgaggcg	aacatcgcc	tggagcttgt	gttgaatgt	1260
15	cccccccaaga	tacatgagaa	ggagggctcc	tcccccagca	tctactcg	tcacagccgc	1320
	caggccctca	cctgcacggc	ctacgggggt	ccctgcctc	tcagcatcca	gtggacttgg	1380
	cggccctgga	caccctgaa	gatgtttg	cagcgtatgc	tccggcg	gcagcagcaa	1440
	gacctatgc	cacagtgcg	tgactggagg	gcggtgacccg	cgcaggatgc	cgtgaacccc	1500
	atcgagagcc	tggacacctg	gaccgagtt	gtggagggaa	agaataagac	tgtgagcaag	1560
20	ctgggtatcc	agaatgcca	cgtgtctgc	atgtacaatgt	gtgtgttctc	caacaagggt	1620
	ggccaggatg	agcggctcat	ctacttctat	gtgaccacca	tcccccacgg	cttccacatc	1680
	gaatccaagg	catcccgagg	gctacttagag	ggccagccgg	tgctcttgag	ctgccaaggc	1740
	gacagctaca	agtacgacg	tctcgctgg	taccgcctc	acctgtccac	gtgcacgat	1800
	gcccacggg	accgccttc	gctcactgc	aagaacgtgc	atctgttgc	caccctctg	1860
25	gcccgcagcc	tggaggaggt	ggcacctggg	gcgcgcacag	ccacgctcg	cctgagttatc	1920
	ccccgcgtcg	cccccgagca	cgagggccac	tatgtgtgc	aagtgcaga	ccggcgcagc	1980
	catgacaagg	actgccccaa	gaagtacctg	tcggtgacgg	cccttggaa	ccctcggtc	2040
	acgcagaact	tgaccgacct	cctggtaac	gtgagcgact	cgctggagat	gcagtgc	2100
	gtggccggag	cgcacgcg	cagcatcg	tggtacaaag	acgagaggct	gttggaggaa	2160
30	aagtctggag	tcgacttggc	ggacttcca	cagaagctga	gcattccacg	cgtgcgcgag	2220
	gaggatgcgg	gacgctatct	gtgcacgcgt	tgcaacgcca	agggtcg	caactccccc	2280
	gccagcgtgg	ccgtgaaagg	ctccgaggat	aagggcagca	tggagatcg	gatccttgc	2340
	ggtaccggcg	tcatcgctgt	cttcttctgg	gtccctcc	tcctccatct	ctgtaacatc	2400
	aggaggccgg	cccacgcaga	catcaagac	ggetacctgt	ccatcatcat	ggaccccccgg	2460
35	gagggtccct	tggaggagca	atgcgat	ctgtccatcg	atgcgacca	gttggaaatc	2520
	cccccgagac	ggctgcaccc	ggggagagtg	ctggctca	ggcccttc	aaagggtgtt	2580
	gaagcctccg	cttgcgc	ccacaagggg	agcagctgt	acacccgtgc	cgtaaaatg	2640
	ctgaaaaggag	gcccacggc	cagcgacg	cgcgcgt	tgtcgagct	caagatcc	2700
	attcacatcg	gcaaccac	caacgtgg	aacctcc	gggcgtgcac	caagccgcag	2760
40	ggccccctca	tgggtatcg	ggagttctgc	aagtacgg	acctctccaa	cttccctgc	2820
	gccaagcggg	acgccttc	ccccgtcg	gagaagtctc	ccgacgcacg	cggacgc	2880
	cgcgcctatgg	tggagctcg	caggctggat	cgaggccgc	cggggagcag	cgacagggtc	2940
	ctcttcgcgc	ggttctcg	gaccgagggg	ggagcgt	ggggcttctc	agaccaagaa	3000
	gctgaggacc	tgtggctg	cccgctgacc	atggaaatc	ttgtctgt	cagttcc	3060
45	gtggccagag	ggatggat	cctggcttc	cgaaagtgc	tccacagaga	cctggctgt	3120
	cggAACATCC	tgcgtcg	aagcgacgt	gtgaagatct	gtgacttgg	cgttccccgg	3180
	gacatctaca	aagaccccg	ctacgtcc	aaggcgt	cccgctgc	cttgcgttgg	3240
	atggcccctg	aaagcatctt	cgacaaagg	tacaccacg	agatgtacgt	gttgcctt	3300
	gggggtcttc	tctggggat	cttctctct	ggggctccc	cgtaccctgg	gttgcacatc	3360
50	aatgaggagt	tctgcacgc	gctgagagac	ggcacaagg	tgagggcccc	ggagctggcc	3420
	actcccgcca	tacgccccat	catgctgaa	tgctggcc	gagacccaa	ggcgagact	3480
	gcatttctgg	agctggg	gatccctggg	gacctgc	agggcagggg	cctgcaagag	3540
	gaagaggagg	tctgcatgg	cccgcgac	tctcagag	cagaagaggg	cagttctcg	3600
	cagggtgtcc	ccatggcc	acacatcg	caggctgac	ctgaggacag	cccgccaagc	3660
55	ctgcagcgcc	acagctggc	cgccaggtat	tacaactgg	tgttcttcc	cgggtgcctg	3720
	gccagagggg	ctgagaccc	tggttctcc	aggatgaaga	catttgagga	atccccatg	3780
	accccaacga	cctacaaagg	ctctgtgg	aaccagacag	acatggggat	gttgcgtggcc	3840
	tcggaggag	ttgagcagat	agagacgg	catagacaag	aaagcggtt	caggtag	3897
60	<210>	97					
	<211>	4071					
	<212>	DNA					

5 ttaggtgctt ctccatatcc tgggttaaag attgatgaag aatttttag gcgattgaaa 3360
 gaaggaacta gaatgagggc ccctgattat actacaccag aaatgtacca gaccatgctg 3420
 gactgctggc acggggagcc cagttaga cccacgtttt cagagtttgtt ggaacatttg 3480
 gaaatctct tgcaagctaa tgctcagcag gatggcaaag actacattgt tcttcgata 3540
 5 tcagagactt tgacatgga agaggattct ggactctctc tgcctaccc acctgtttcc 3600
 tgtatggagg aggaggaagt atgtgacccc aaattccatt atgacaacac agcaggaatc 3660
 agtcagtatc tgcaaacag taagcgaaag agccggcctg tgagtgtaaa aacatttcaa 3720
 gatatcccgtagaagaacc agaagtaaaa gtaatcccg atgacaacca gacggacagt 3780
 ggtatggttc ttgcctcaga agagctgaaa actttggaaag acagaaccaa attatctcca 3840
 10 tctttgggtg gaatggtgc cagcaaaagc agggagtc tggcatctga aggctcaaac 3900
 cagacaagcgc gctaccatgc cgatccatcac tccgatgaca cagacaccac cgtgtactcc 3960
 agtggagaaag cagaactttt aaagctgata gagattggag tgcaaaccgg tagcacagcc 4020
 cagattctcc agcctgactc gggaccaca ctgagctctc ctccgttta a 4071

15 <210> 98
 <211> 1410
 <212> DNA
 <213> Homo sapiens

20 20 <300>
 <302> MMP1
 <310> M13509

25 25 <400> 98
 atgcacactt tcctccact gctgctgctg ctgttctggg gtgtgggtgc tcacagcttc 60
 ccagcgactc tagaaaacaca agagcaagat gtggacttag tccagaaaata cctggaaaaaa 120
 taatcacaacc tgaagaatga tggaggcaaa gttgaaaagc ggagaaatag tggcccgatg 180
 gttggaaaat tgaagcaaat gcagaattc tttgggtctg aagtactgg gaaaccagat 240
 30 30 gctgaaaccc tgaagggtat gaaggagccc agatgtggag tgcctgtatgtt ggtctcgttt 300
 gtcctactg agggaaaccc tcgctgggag caaacacatc tgaggtacag gattggaaaat 360
 tacacgcccag atttgcaag agcagatgtg gaccatgcca ttgagaaagc cttccaaactc 420
 tggagtaatg tcacacccatc gacattcacc aaggctctgtt aggtcaagc agacatcatg 480
 atatcttttgc tcaaggggaga tcatcgccac aactctccctt ttgatggacc tggaggaaat 540
 35 35 cttgctcatg ctttcaacc aggcccaggat attggagggg atgctcattt tgatgaagat 600
 gaaagggtggc ccaacaattt cagagactac aacttacatc gtgtggcgc tcatgaactc 660
 ggccatttc ttggacttc ccattctact gatatcgcccc ctttgcgtt ccctagctac 720
 acccatcgttgc gtgatgttca gcttagctcag gatgacattt atggcatcca agccatataat 780
 ggacggttccc aaaaatctgtt ccagcccatc ggccccacaaa ccccaaaagc gtgtgacagt 840
 40 40 aagctaaacctt ttgatgtat aactacgatt cgggggagaag tgatgttctt taaagacaga 900
 ttctacatgc gcacaaatcc ctttaccccg gaagttgagc tcaatttcat ttctgttttc 960
 tggccacaac tggccaaatgg gcttgaagct gtttacgat tggccgacag agatgaagtc 1020
 cggttttca aaggaaataa gtactgggtt gttcaggac agaatgtgtt acacggatac 1080
 cccaaggaca tctacagtc ctttgcgttc cctagaactt tgaagcatat cgatgtgtt 1140
 45 45 cttctgagg aaaaacttgg aaaaacctac ttctttgtt ctaacaaaata ctggaggat 1200
 gatgaatata aacgatctat ggatccaagt tatcccaaaa tgatagcaca tgactttctt 1260
 ggaattggcc acaaaggatg tgcgttttcc atgaaagatg gatttttctt tttcttcat 1320
 ggaacaagac aatacaaattt tgatctaaa acgaagagaa ttttgactct ccagaaagct 1380
 50 aatagcttgtt tcaactgcag gaaaaattga 1410

55 55 <210> 99
 <211> 1743
 <212> DNA
 <213> Homo sapiens

60 60 <300>
 <302> MMP10
 <310> XM006269

65 <400> 99
 aaagaaggta agggcagtga gaatgatgca tcttgcattc cttgtgtgt tttgtctgcc 60

agtctgtct gcctatcetc tgagtggggc agcaaaaagag gaggactcca acaaggatct 120
 tgc当地caaa tacctagaaa agtactacaa cctcgaaaaag gatgtaaac agtttagaag 180
 aaaggacagt aatctcatg ttaaaaaaat ccaaggaatg cagaagttcc ttgggttgg 240
 ggtgacaggg aagctagaca ctgacactct ggaggtgatg cgcaagccca ggtgtggagt 300
 5 tcctgacgtt ggtcacttca gtcctttcc tggcatgcc aagtggagga aaaccaccc 360
 tacatacagg attgtgaatt atacaccaga ttgccaaga gatgtgttgc attctgccc 420
 tgagaaagct ctgaaagtct gggaaagaggt gactccactc acatttccca ggctgtatga 480
 aggagaggct gatataatga tctctttgc agttaaagaa catggagact ttactctt 540
 ttagtggccca ggacacagtt tggctcatgc ctacccacct ggacctggc ttatggaga 600
 10 tattcacttt gatgtatgaaa aatggac agaagatgca tcaggccca atttattcc 660
 cggtgctgtc catgaatttgc gccactccctt ggggtctt cactcagcc aactgtaaac 720
 tttgtatgtac ccactcttca actatttca agagctccgc cagttccgc ttgcgaaga 780
 tgatgtgtt ggcatttca gtccttacgg acctccccc gccttactg aggaacccct 840
 ggtggccaca aatcttttc ctggggatc tgagatgcca gccaatgtg atccctgttt 900
 15 gtccttcgtt gccatcagca ctctggggg aaaaatctg ttctttaaag acagatattt 960
 ttggcgaaga tccccacttgc acccttgaacc tgaatttcat ttgatttctg cattttggcc 1020
 ctcttttcca tcatatttgg atgtgcata tgaagtttac acgaggacca ccgttttat 1080
 ttttaaagga aatgaggatct gggccatcag agggaaatgag gtacaagcag gttatccaag 1140
 20 aggcattccat accctgggtt ttccttccaa cataaggaaa attgtgcag ctgtttctga 1200
 caaggaaaag aagaaaaacat acttcttgc acggacaaa tactggagat ttgtgaaaaa 1260
 tagccagtcc atggagcaag gcttccctag actaatagct gatgacttgc caggagttga 1320
 gcctaagggtt gatgtgtat tacaggcatt tggatttttc tacttttca gggatcatc 1380
 acagtttgag tttgaccatc atggcaggat ggtgacacac atattaaaga gtaacagctg 1440
 25 gttacatttc taggcggat agggggaaa cagatatgg tggttttaat aatctaata 1500
 atttttccatc taatgtatc tgagccaaaaa tggttaattt ttcttgcatt ttcgtgact 1560
 gaagaagatg agcatttgcg atatctgcatt gtgtcatgaa gaatgttttgc ggaatttttc 1620
 acttgctttt gaatttgcactt gaaacaaattt aagaaataact catgtgcattt aggtgagaga 1680
 atgtattttc atagatgtgtt tattacttcc tcaataaaaaa gttttatccc gggctgttc 1740
 ctt 1743
 30
 <210> 100
 <211> 1467
 <212> DNA
 35 <213> Homo sapiens
 <300>
 <302> MMP11
 <310> XM009873
 40 <400> 100
 atggctccgg ccgcctggct ccgcagcgcg gcccgcgcg ccctctgc cccgatgtcg 60
 ctgtgtgtc tccagccgc gccgtgtcg gcccgggtc tgccggcga cgcaccac 120
 ctccatgcggc agagggggg gccacagcccc tggcatgcag ccctcccgag tagccggca 180
 45 cctccccctg ccacgcgga agcccccccg cctcgccagca gcctcaggcc tccccctgt 240
 ggcgtgccccg accccatctga tgggtgatg gcccgcaccc gacagaagag gttcgtgtt 300
 tctggccggc gctggagaa gacggaccc acctacagga tccttcgggtt cccatggcag 360
 ttgggtgcagg agcagggtcg gcagacgcgtt gcagaggccc taaaggatgt gacgtatgt 420
 acgccactca ctttactga ggtgcacgcg gcccgtgtt acatcatgtat cgacttcgc 480
 50 aggtactggc atggggacga cctgcgtt gatggccctg ggggcattcc ggcattgc 540
 ttcttccccca agactcaccc agaaggggat gtccacttgc actatgtatg gacctggact 600
 atcggggatg accaggccac agacactgtcg caggtggcag cccatgtatg tggccacgtg 660
 ctggggctgc agcacacaac agcagccaaag gcccgtatgtt ccgccttcta cacccttcgc 720
 taccctactga gtctcaggccc agatgactgc agggggcgatc aacacctata tggccagccc 780
 55 tggccactcg tcacccctcg gaccccgatc ctggggccccc aggtgggat agacaccaat 840
 gagattgcac cgctggagcc agacgccccg ccagatgcctt gtgaggccctc ctgtgacgcg 900
 gtctccacca tccgaggccgatc ttcaaaagccg gttttgtgt ggcctccgt 960
 gggggccagc tgcagcccg ctacccagca ttggccttc gccaatggca gggactgccc 1020
 60 agccctgtgg acgctgcctt cgaggatgccc cagggccaca tttgggttcc ccaagggtct 1080
 cagtactggg tgcacgcgg tgaaaagccat gtcctggggcc cgcacccctt caccgagctg 1140
 ggctgggtga ggttccccgtt ccatgtgcctt ttgggtctgg gtcggagaa gaacaagatc 1200
 tacttcttcc gaggcaggaa ctactggcgt ttccacccca gcacccggcg ttttagacagt 1260

cccggtcccc gcagggccac tgactggaga ggggtgcctt ctgagatcga cgctgccttc 1320
 caggatgctg atggctatgc ctacttcctg cgcggccgc tctactggaa gtttgaccct 1380
 gtgaaggtga aggctctgga aggcttcccc cgtctcgtgg gtcctgactt ctttggctgt 1440
 gccgagcctg ccaacacttt cctctga 1467

5

<210> 101
 <211> 1653
 <212> DNA

10 <213> Homo sapiens

<300>
 <302> MMP12
 <310> XM006272

15

<400> 101

atgaagtttc ttcttaatact gtcctgcag gccactgctt ctggagctct tcccctgaac 60
 agctctacaa gcctggaaaa aaataatgtg ctatttggtg agagataactt agaaaaaattt 120

20

tatggccttg agataaaacaa acttccagtg acaaaaatga aatatagtgg aaacttaatg 180
 aaggaaaaaa tccaagaat gcagcacttc ttgggtctga aagtgaccgg gcaactggac 240

acatctaccc tggagatgt gcacgcacct cgatgtggag tccccatgtt ccatcatttc 300
 aggaaaaatgc cagggggggcc cgtatggagg aaacattata tcacccatag aatcaataat 360

tacacaccc acatgaaccg tgaggatgtt gactacgca tccggaaagc ttccaagta 420
 tggagtaatg ttacccccc gaaattcagc aagattaaca caggcatggc tgacattttg 480

25

gtggtttttg cccgtggagc tcatggagac ttccatgctt ttatggccaa aggtggaatc 540
 ctagcccatg ctttggacc tggatctggc attggagggg atgcacattt cgatgaggac 600

gaattctgga ctacacattc aggagnnnnn nnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnn 660
 nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnn 720

30

nnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnn 780
 nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnn 840

nnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnn 900
 nnnnnnnnnnn nnnnnngagag gatccaaagg ccgtaatgtt ccccacctac 960

aaatatgtt acatcaacac atttcgcctc tctgtgtatc acatacgtgg cattcagtcc 1020
 ctgtatggag accaaaaaga gaaccaacgc ttgccaatc ctgacaattc agraccagct 1080

35

ctctgtgacc caaatttgag ttttgcgtt gtcactaccg tggaaataaa gatcttttc 1140
 ttcaaagaca ggttcttcg gctgaagggtt tctgagagac caaagaccag tggtaattta 1200

atttcttcct tatggccaaac cttgccatct ggcattgaag ctgttatga aattgaagcc 1260
 agaaatcaag tttttcttt taaagatgac aaatactggt taatttagcaa tttaagacca 1320

40

gagccaaatt atcccaagag catacatttct tttggtttc ctaactttgt gaaaaaaattt 1380
 gatgcagctg ttttaaccc acgttttat aggacctact tctttgtaga taaccagtat 1440

tggaggtatg atgaaaggag acagatgtg gaccctgggtt atcccaaact gattaccaag 1500
 aacttccaag gaatcggggcc taaaattgtat gcaatcttctt actctaaaaaa caaataactac 1560

tatttcttcc aaggatctaa ccaatttgaa tatgacttcc tactccaaacg tatcacaaaa 1620
 acactgaaaaa gcaatagctg gtttgggtgt tag 1653

45

<210> 102
 <211> 1416
 <212> DNA

50 <213> Homo sapiens

<400> 102

atgcatccag gggtcctggc tgccttcctc ttcttgagct ggactcatttgc tggggccctg 60
 cccctccca gtgggtgttga tgaagatgtat ttgtctgggg aagacccatca gtttgcagag 120

55

cgctacccatc gatcatacta ccatttccata aatctcgccg gaatccctgaa ggagaatgc 180
 gcaagctcca tgactggagag gctccggaaa atgcgttctt ttttcggctt agaggtgact 240

ggccaaacttg acgataacac ctttagatgtc atggaaaacgc caagatgcgg gtttccctgat 300
 gtgggtgaat acaatgtttt cccttccact cttttatgggtt cccaaatggaa tttaacccat 360

60

agaattgtga attacaccccc ttgtatgact catttcttgcgat tggaaaaggc attcaaaaaaa 420
 gccttccaaag tttggcccgat tggatcttctt ctgtatgtttt ccagacttca cgatggccatt 480
 gctgacatca tgatctttt tggatcttgcgat gggatggcg acttcttccat atttgcgttggg 540
 ccctctggcc tgcgtttccctt cctggccaa attatggagg agatgcccatt 600

tttgatgtatg atgaaacctg gacaagtatg tccaaaggct acaacttgg 660
 gcgcatgatg tcggccactc ctttaggtctt gaccactcca aggacccctgg agcactcatg 720
 tttccttatct acaccttacac cggccaaaagc cactttatgc ttccctgtatga cgatgtacaa 780
 gggatccatgt ctctcttatgg tccaggagat gaagacccca accctaaaca tccaaaaaac 840
 5 ccagacaaat gtgacccttc cttatccctt gatgccatata ccagtcctcg aggagaaaaca 900
 atgatcttta aagacagatt cttctggcgc ctgcacccctc agcaggatgtga tgccggagctg 960
 ttttaaacga aatcattttt gccagaactt cccaaaccgtt ttgatgtctgc atatgagcac 1020
 cctctcatg acctcatctt catcttcaga ggtagaaaat ttgggctct taatggttat 1080
 gacattctgg aaggttatcc caaaaaaaaata tctgaactgg gtcttccaaa agaagttaa 1140
 10 aagataagtg cagctgtca ctttgaggat acaggcaaga ctctctgtt ctcaggaaac 1200
 caggctcttga gatatgtatg tactaaccat attatggata aagactatcc gagactaata 1260
 gaagaagact tcccaggaaat tggtgataaa gtatgtctg tctatgagaa aaatggttat 1320
 atctatttt tcaacggacc catacagttt gaatacagca tctggagtaa ccgtattgtt 1380
 cgctgtcatgc cagcaaatc cattttgtgg tgttaa 1416
 15

<210> 103
 <211> 1749
 <212> DNA
 20 <213> Homo sapiens

<300>
 <302> MMP14
 <310> NM004995

25 <400> 103
 atgtctcccg ccccaagacc ccccccgttgt ctctgtctcc ccctgctcac gctccggcacc 60
 gcgctcgccct ccctcggttc ggccccaaagc agcagcttca gcccccaagc ctggctacag 120
 caatatggct acctgcctcc cggggaccta cgtacccaca cacagcgctc accccagtca 180
 30 ctctcagccgg ccatcgctgc catgcagaag ttttacggct tgcaagtaac aggcaaagct 240
 gatgcagaca ccatgaaggc catgaggcgc ccccgcgttg gtgttccaga caagtttggg 300
 gctgagatca aggccaaatgt tcgaagggaaag cgctacgcca tccagggtct ccaaatggcaa 360
 cataatgaaa tcactttctg catccagaat tacaccccca aggtgggcga gtatgccaca 420
 tacggggcca ttgcgaaggc gttccgcgtg tgggagatgt ccacaccact ggcgttccgc 480
 35 gaggtgcctt atgcctacat ccgtgagggc catgagaagc agggccacat catgatcttc 540
 ttggccgagg gtttccatgg cgacagcagc cccttcgatg gtgaggggcgg cttectggc 600
 catgcctact tcccaggccc caacatttggaa ggagacaccc actttgactc tgccgagcct 660
 tggactgtca ggaatgagga tctgtatggaa aatgacatct tcctgttggc tgcacgag 720
 ctggggccatg ccctggggct cgagcattcc agtgaccctt cggccatcat ggcaccctt 780
 40 taccagtggc tggacacggc gaattttgtg ctggccgatg atgaccggccg gggcatccag 840
 caactttatg ggggtgagtc agggttcccc accaagatgc cccctcaacc caggactacc 900
 tcccggccctt ctgttcttga taaacccaaa aaccccacct atggggccaa catctgtgac 960
 gggaaactttg acaccgtggc catgtccga ggggagatgt ttgtcttcaa ggagcgtgg 1020
 ttctggcgagg tgaggaataa ccaagtgtatg gatggataacc caatgccccat tggccagttc 1080
 45 tggccggggcc tgcctgtgtc catcaacact gcctacgaga ggaaggatgg ccaaattcgtc 1140
 ttcttcaaaag gagacaacga ttgggtgtt gatggggctt ccctggaaacc ttggctacccc 1200
 aagcacatta aggagctggg ccgagggtctg cctaccgcgca agattgtatgc tgctctttc 1260
 tggatgtccca atggaaaagac ctacttcttc cgtggaaaca agtactaccg tttcaacgaa 1320
 gagctcaggg cagtgatgtatg cgagtacccc aagaacatca aagtctgggaa agggatccct 1380
 50 gagtcctccca gagggtcatt catgggcage gatgaagttc tcacttactt ctacaagggg 1440
 aacaaataact ggaaattcaa caaccagaag ctgaaggtag aaccgggcta ccccaagtca 1500
 gccctgaggg actggatggg ctgcccattcg ggaggccggc cggatgaggg gactgaggaa 1560
 gagacggagg tgatcatcat tgaggtggac gaggaggccg gcggggccgtt gagcgcggct 1620
 55 gcccgtggc tgccctgtgtc gctgtgtctc ctgggtgtgg cgggtggccct tgcaagtcttc 1680
 ttcttcagac gccatggggac ccccaggcgca ctgtctact gccagcgttc cctgtggac 1740
 aaggtctga 1749

60 <210> 104
 <211> 2010 .
 <212> DNA
 <213> Homo sapiens

<300>
 <302> MMP15
 <310> NM002428
 5 <400> 104
 atgggcagcg acccgagcgc gcccggacgg ccgggcttgg a cggcagccct cctcggcgac 60
 cgggaggagg cggcgccggcc gggactgtcg cccgtcttc tgggtcttct gggctgcctg 120
 ggccttggcg tagggggcga agacggggag gtccatccg agaactggct gccgctttat 180
 ggttacatcg ctcagcccg cccatcatatg tccaccatgc ttccggccca gatcttggcc 240
 tcggcccttg cagagatgca ggcgttctac gggatcccg tcaccgggt gctcgacgaa 300
 gagaccaagg agtggatgaa ggcccggc gttgggtgc cagaccagg tgggggtacga 360
 gtgaaagcca acctggcgcc ggtcggaag cgctaccccc tcaccggggag gaagtggaa 420
 aaccaccatc tgaccttag catccagaac tacacggaga agtgggtct gtaccactcg 480
 15 atggaggcgg tgcgccggc cttccgcgtg tgggagcagg ccacgcccc ggtcttccag 540
 gaggtgcctt atgaggacat cccgctcgcc cgacagaagg aggccgacat catggtaactc 600
 ttgcctctg gttccacgg cgacagctcg ccgttgcgt gcaccgggt ctttctggcc 660
 cacgcctatt tccctggccc cggcctaggc ggggacaccc attttgcgc agatgagoc 720
 20 tgaccttct ccagcactga cctgcatttga aacaacctt tcctgggtgc agtgcatgag 780
 ctggcccacg cgctgggtc ggagcactcc agcaacccc atggcatcat ggcgcgttc 840
 taccatgtga aggacgttga caacttcaag ctgcccggg acgatctccg tggcatccag 900
 cagctctacg gtacccacgg cggtcggcc cggcttccaccc agctctccc cactgtgacg 960
 ccaacggccg caggccggc tgaccacccg ccccccggc cttcccgacc accaccccca 1020
 25 ggtggaaagc cagacggcc cccaaagccg gggcccccgg tccagccccg agccacagag 1080
 cggcccgacc agtatggcc caacatctgc gacggggact ttgacacagt ggcacatgott 1140
 cgcggggaga tggcggtt caagggccgc tgggtctggc gagtccggca caaccgcgtc 1200
 ctggacaact atcccatgcc catcgccgac ttctgggtg gtctggccgg tgacatca 1260
 gctgcctacg agcgccaaga cggtcggtt gtcttttca aagggtgaccg ctactggctc 1320
 tttcgagaag cgaaccttga gcccggctac ccacagccg tgaccagcta tggcctggcc 1380
 30 atccccatcg accgcattga cacggccatc tggtgggagc ccacaggcca caccttcttc 1440
 ttccaagagg acaggtaactg ggcgttcaac gaggagacac agcggtggaga ccctgggtac 1500
 cccaagccca tcagtgtctg gcaaggggatc cctgccttcc ctaaaggggc cttcctgagc 1560
 aatgacgcag cctacaccta ctctacaag ggcaccaaat actggaaat cgacaatgag 1620
 35 cgcgtcgga tggagcccg ctaccccaag tccatctgc gggacttcat gggctggccag 1680
 gagcacgtgg agccagggcc cccatggccc gacgtggcc ggcccccctt caaccccccac 1740
 ggggggtgcag agccggggc ggacagcgca gagggtgcacg tggggatgg gatggggac 1800
 tttggggccg gggtaacaaa ggacgggggc agccgtgtt ggggtcagat ggaggagggt 1860
 gacacggacgg tgaacgttgtt gatgggtctg gtgcacttc tgctgtctg ctgcgtctg 1920
 40 ggctcacct acgcgttgtt gcacatgcac cgcaagggtg cgccacgtgt cctgctttac 1980
 tgcacggct cgtgcagga gtgggtctg 2010

 <210> 105
 <211> 1824
 <212> DNA
 <213> Homo sapiens

 45 <300>
 <302> MMP16
 <310> NM005941

 50 <400> 105
 atgatcttac tcacatttcg cactggaaaga cgggtggatt tcgtgcata ttcgggggtg 60
 tttttcttgc aaacatgtct ttggattttt tgggtctacag tctcgaaac ggagcgttat 120
 55 ttcataatgtgg aggttttgtt aaaaaatgtac ggctacccctc caccgactga ccccagaatg 180
 tcagtgtctg gctctcgaga gaccatcgac tctgccttag ctgcctatgc gacgttctat 240
 ggcattaaaca tgacagaaaa agtggacaga aacacaatgg actggatgaa gaagccccga 300
 tgcgggtgtac ctgaccagac aagggttagc tccaaatgg atatcgatc aaagcgatata 360
 60 gcattgacag gacagaaatg gcacgacaaag cacatctt acagatataaa gaacgtaaact 420
 cccaaatgtag gagaccctga gactcgtaaa gctattcgcc gtgccttgc tgggtggcag 480
 aatgttaactc ctctgacatt tgaagaaggcc ccctacatgt aatttagaaaa tggcaaacgt 540
 gatgtggata taaccattat ttttgcata ggtttccatg gggacagctc tccctttgat 600

ggagagggag gatttttggc acatgcctac ttccctggac caggaatttg aggagatacc 660
 cattttact cagatgagcc atggacacta gaaatcccta atcatgatgg aaatgactta 720
 tttctttag cagtccatga actggacat gctctggat tggagcattc caatgacc 780
 actgccatca tggctccatt ttaccagtac atggaaacag acaaacttcaa actaccta 840
 5 gatgatttac agggcatcca gaaaatat ggtccacctg acaagattcc tcacac 900
 agacctctac cgacagtgcc cccacaccgc tctattcctc cggctgaccc aaggaaaaat 960
 gacaggccaa aacctccctcg gcctccaacc ggcagaccct cctatcccgg agccaaaccc 1020
 aacatctgtg atggaaactt taacactcta gctattcttc gtcgtgagat gtttgg 1080
 aaggaccagt gttttggcg agtgagaaac aacagggtga tggatggata cccaatgcaa 1140
 10 attacttaact tctggcgggg ctgcctcct agtacgatg cagtttatga aaatagcgac 1200
 gggaaatttg tttttttttaa aggttacaaa tattgggtgt tcaaggat 1260
 cctggttacc ctcatgactt gataaccctt ggaagtggaa ttccccctca tggattgtat 1320
 tcagccattt ggtgggagga cgtcgggaaa acctatttct tcaaggaga cagatattgg 1380
 agatatagtg aagaaatgaa aacaatggac cttggctatc ccaaggccat cacagtctgg 1440
 15 aaaggatcc ctgaatctcc tcaggagca ttgtacaca aaaaaatgg ctttacgtat 1500
 ttctacaag gaaaggagta ttggaaatttca aacaaccaga tactcaaggt agaacctgga 1560
 catccaagat ccacccctcaaa ggattttatg ggctgtgatg gaccaacaga cagagttaaa 1620
 gaaggacaca gccccaccaga tgatgttagac attgtcatca aactggacaa cacagcc 1680
 actgtgaaag ccatagctat tgtcattccc tgcattttgg ctttatgcct cttgtattt 1740
 20 gtttacactg tttccagtt caagaggaaa ggaacacccc gccacatact gtactgtaaa 1800
 cgctctatgc aagagtgggt gtga 1824

<210> 106
 25 <211> 1560
 <212> DNA
 <213> Homo sapiens

<300>
 30 <302> MMP17
 <310> NM004141

<400> 106
 atgcagcagt ttggtggct ggagggcacc ggcacatccgg acgaggccac cctggccctg 60
 35 atgaaaaccc cacgctgctc cctggccagac ctccctgtcc tgaccaggc tecaggaga 120
 cgccaggctc cagccccccac caagtggAAC aagagggAAAC tgcgtggag ggtccggacg 180
 ttcccacggg actcaccact ggggcacgac acgggtgcgtg cactcatgtt ctacccctc 240
 aaggcttggg ggcacatttc gcccctgaac ttccacgagg tggcgggacg caccggc 300
 atccagatcg acttctccaa gcccggccat aacgacggct acccccttcga cggccccggc 360
 40 ggcacctgtgg cccacgcctt cttcccccggc caccaccaca cggccggggg caccacttt 420
 gacgatgacg aggccctggac cttccgctcc tccggatcccc acgggatggaa cctgttttca 480
 gtggctgtcc acgagtttg ccacccatt gggtaagcc atgtggccgc tgcacactcc 540
 atcatgcggc cgtactacca gggccgggtg ggtgacccgc tgcgttacgg gtccttctac 600
 gaggacaagg tgcgtgtctg gcagctgtac ggtgtgggg agtctgtgtc tcccaacggg 660
 45 cagccccggg agccctccct gtcggggag ccccccggacca accgggtccag cggccggccc 720
 aggaaggacg tggcccccacag atcagactt cacttgcgtt cgggtggccca gatccgggg 780
 gaagtttct tcttcaaagg caagtactt tggcggctga cggccggaccc gcacctgtt 840
 tccctgcagc cggcacatggt gcacccgttc tggcggggcc tgcgttgcac cctggacac 900
 gtggacgccc tgcgttgcac caccacggc cacaagatcg tcttctttaa aggagacagg 960
 50 tactgggtgt tcaaggacaa taacgttagag gaaggatacc cgcgcggccgt ctccgactt 1020
 agcctcccgcc ctggccggcat cgacgctgccc ttctctggg cccacaatga caggacttat 1080
 ttctttaagg accagctgtt ctggcgctac gatgaccaca cgaggacat ggacccggc 1140
 taccggccccc agagccccctt gtggagggggt gtcggccat cgcgttgcac cggccatgcgc 1200
 tggtccgacg tgcgttgcctt cttttccgt ggcaggagt actggaaagt gctggatggc 1260
 55 gagctggagg tggcaccgggt gtacccacag tccacggccc gggactggct ggtgtgtgg 1320
 gactcacagg ccgtatggatc tggctgtcg ggcgtggacg cggcagagggg gccccggcc 1380
 cctccaggac aacatgacca gacccgttc gaggacgggtt acggaggtctg ctatgcacc 1440
 tctggggcat cctctccccc gggggcccca ggccactgg tggctggccac catgctgtct 1500
 ctgctggccgc cactgttccacc agggccctg tggacagcgg cccaggccct gacgctatga 1560

<210> 107

<211> 1983
<212> DNA
<213> *Homo sapiens*

5 gtaaaaaaaaa tccgagaaaat gcagaagttc cttggattgg aggtgacggg gaagctggac 240
 tccgacactc tggaggtgat ggcgaagccc aggtgtggag ttccctgacgt tggtcaacttc 300
 agaaccttc ctggcatccc gaagtggagg aaaacccacc ttacatacag gattgtaat 360
 tatacacccag atttgccaaa agatgctgtt gattctgctg ttgagaaaagc tctgaaagtc 420
 10 tggyaagagg tgactccact cacattctcc aggctgtatg aaggagaggc tgatataatg 480
 atctcttttg cagttagaga acatggagac ttttaccctt ttgatggacc tgaaatgtt 540
 ttggccatg cctatgcccc tggccaggg attaatggag atgcccactt tgatgtatg 600
 gaacaatgga caaaggatac aacagggacc aatttatttc tcgttctgc tcatgaaatt 660
 ggccactccc tgggtctt tcactcagcc aacactgaag ctttgcgtta cccactctat 720
 15 cactcactca cagacctgac tcgggtccgc ctgtctcaag atgatataaa tgcattcag 780
 tcctctatg gacctccccc tgactccctt gagacccccc tggtacccac gaaacctgtc 840
 cctccagaatc ctgggaccc agccaactgt gatectgtt tgcctttga tgctgtcagc 900
 actctgaggg gagaatctt gatcttaaa gacaggcact tttggcgaa atccctcagg 960
 20 aagttgaac ctgaatttca ttgtatctt tcattttggc catctttcc ttcaaggcgt 1020
 gatccgcatt atgaagttac tagcaaggac ctcgttttca ttttaaagg aaatcaattc 1080
 tggccatca gaggaaatga ggtacgagct ggatacccaa gaggcatcca cacccttagt 1140
 ttccctccaa ccgtgaggaa aatcgatgca gccatttctg ataaggaaaa gacaaaaca 1200
 tatttctttg tagaggacaa atactggaga tttgtatgaga agagaaattc catggagcca 1260
 ggcttccca agcaaatacg tgaagacttt ccaggattt actcaaagat tgatgtgtt 1320
 25 tttgaagaat ttgggttctt ttatttctt actggatctt cacagttgaa gtttgcacc 1380
 aatgcaaaaga aagtgcacaca cacttgcag agtaacagct ggcttaattt ttga 1434

25 <210> 109
 <211> 1404
 <212> DNA
 <213> Homo sapiens

30 <300>
 <302> MMP8
 <310> NM002424

35 <400> 109
 atgttctccc tgaagacgct tccatttctg ctcttactcc atgtgcagat ttccaaggcc 60
 tttctgtat cttctaaga gaaaaataca aaaactgttc aggactacct gaaaaagttc 120
 taccaattac caagcaacca gtatcagtct acaaggaaaga atggactaa tggactgtt 180
 gaaaagctta aagaaatgcg gcgatttttt gggttgaatg tgacggggaa gcacaaatgag 240
 gaaactctgg acatgtatgg aaaggctcgc tggactgtc ctgacagtgg tggtttatg 300
 ttaaccccaag gaaacccaa gtggAACGC actaacttgc cctacaggat tcgaaactat 360
 40 accccacagc tgcacggc tgaggtagaa agagctatca aggatgcatt tgaactctgg 420
 agtgttgcac caccctctcat cttoaccagg atctcacagg gagaggcaga tatcaacatt 480
 gcttttacc aaagagatca cgggtacaat ttcattttt atggacccaa tgaatccctt 540
 gctcatgcct ttcagccagg ccaaggattt ggaggagatg ctcattttga tgccgaagaa 600
 acatggacca acacctccgc aaatttacaac ttgtttctt ttgactgtc tgaatttggc 660
 45 catttttgg ggctgcgtca ctccctgtac cttggcct tgatgtatcc caactatgt 720
 ttcagggaaa ccgcacta ctcaacttcc caagatgaca tcgatggcat tcaggccatc 780
 tatggacttt caagcaaccc tatccaaccc actggacccaa gcacacccaa accctgtac 840
 cccagtttga catttgcgtc tatcaccaca ctccgtggag aaatactttt cttaaagac 900
 aggtacttct ggagaaggca tcctcagctc caaagactcg aaatgaattt tatttctcta 960
 50 ttctggccat cccttccaa tggatacag gctgttatg aagatttga cagagacctc 1020
 attttccatat taaaaggca ccaataactgg gctctgatg gctatgtat tctgcaaggt 1080
 tatcccaagg atatataaaa ctatggctt cccagcagcg tccaaagcaat tgacgcagct 1140
 gtttctaca gaagtaaaaac atacttctt gtaaaatgacc aattctggag atatgataac 1200
 55 caaagacaaat tcatggaccc aggttatccaa aaaagcatat caggtgcctt tccaggaata 1260
 gagagtaaaag ttgatgcagt ttccatggccaa gaacattttt tccatgtctt cagttggacca 1320
 agatattacg catttgcgtc tatttgcgtc agagttacca gagttgcag aggcaataaa 1380
 tggcttaact gtagatatgg ctga 1404

60 <210> 110
 <211> 2124
 <212> DNA

<213> Homo sapiens

<300>

<302> MMP9

5 <310> XM009491

<400> 110

atgagcctct ggcagccct ggtcctggtg ctccctgggc tgggctgctg ctttgcgtcc 60
 cccagacagc gccagtcac ccttgcgtc ttccctggag acctgagaac caatctcacc 120
 10 gacaggcagc tggcagagga atacctgtac cgctatgggt acactcggtt ggcagagatg 180
 cgtggagagt cgaardtctct gggcctgcg ctgcgtctt tccagaagca actgtccctg 240
 cccagagaccg gttagctgga taggccacg ctgaaggcca tgcaaacccc acgggtgcggg 300
 gtcccagacc tggcagatt ccaaaccctt gagggcgtacc tcaagtggca ccaccacaac 360
 atcacctt ggatccaaa ctatcgaa gacttgcgcg gggcggttat tgacgacgccc 420
 15 tttggccgcg ctttcgcact gtggagcgcg gtgcgcgcgc tcacccatc tcgcgtgtac 480
 agccggacg cagacatcg catcagttt ggtgcgcgg acacggaga cgggtatccc 540
 ttgcacggga aggacgggtt cttgcacac gccttcctt ctggccccgg cattcaggga 600
 gacgcccatt tcgacgatga cgagttgtgg tccctggca agggcgctgt ggttccaact 660
 cggttggaa acgcagatgg cgcgccctgc cacttccct tcacatccatc gggccgcctc 720
 20 tactctgcct gcaccacccga cggtcgcctcc gacggcttgc cttggtcag taccacggcc 780
 aactacgaca ccgacgacccg gtttgcctc tgccccagcg agagactcta cacccaggac 840
 ggcaatgctg atgggaaacc ctgcagttt ccattcatct tccaaggcca atccactcc 900
 gcctgcacca cggacggctcg ctccgacggc taccgttgtt ggcacccac cggcaactac 960
 gaccgggaca agcttgcgg ctctgcggcc acccgagctg actcgacggt gatggggggc 1020
 25 aactcggcg gggagctgtg cgtttttccc ttcactttcc tggtaagga gtaactcgacc 1080
 tgtaccagcg aggggccggc agatggggcgc ctctgggtgcg ctaccaccc gaactttgac 1140
 agcacaaga agtgggggtt ctgcggccgca aaggatatac gtttgcgtt cttggccggc 1200
 catgatgtcg gccacgcgtt gggcttagat ctttcctcag tgccggaggc gtcatgtac 1260
 cctatgtacc gttcaactga gggggccccc ttgcataagg acgacgtgaa tgcatccgg 1320
 30 caccctcatg gtccctgcggc tgaacctgag ccacggccctc caaccaccac cacaccgcag 1380
 cccacggctc ccccgacggt ctgcggccacc ggaccccccac ctgtccaccc ctcagagcgc 1440
 cccacagctg gccccacagg tccccctca gctggccccc cagggtccccc cactgctggc 1500
 ccttctacgg ccactactgt gccttgcgtt ccgggtggacg atgcctgcaa cgtgaacatc 1560
 ttgcacgcca tgcggagat tggaaaccag otgtatgtt tcaaggatgg gaagtactgg 1620
 35 cgattctctg agggcagggg gagccggccg cagggccct tccttatcgc cgacaagtgg 1680
 cccgcgtgc cccgcacgtt ggactcggtc tttgaggagc ggctctccaa gaagctttc 1740
 ttcttctctg ggcggccaggt gtgggtgtac acaggcgctg cgggtgtgg cccgaggcg 1800
 ctggacaacg tgggctggg agccacgtg gcccacgtga cccggccctt cccgagggtgc 1860
 agggggaaaga tgcgtctgtt cagccggccg cgcctctggg gttcgacgt gaaggcgcag 1920
 40 atggtgatc cccggagcgc cagcgagggtt gaccggatgt tccccgggt gcctttggac 1980
 acgcacgacg tcttccagta ccgagagaaaa gcctatccatc gccaggacccg cttctactgg 2040
 cgctgtggatc cccggaggtt gttgaaccag gtggaccaag tggctacgt gacctatgac 2100
 atcctcgatg gccctgagga ctatc 2124

45

<210> 111

<211> 2019

<212> DNA

50 <213> Homo sapiens

<300>

<302> PKC alpha

<310> NM002737

55 <400> 111

atggctgacg ttttccggg caacgactcc acggcgcttc aggacgtggc caaccgttcc 60
 gcccggaaag gggcgcttagt gcagaagaac gtgcacgggg tgaaggacca caaattcatc 120
 gccgcgttct tcaagcgttcc cacccttcgc agccactgca ccgacttcat ctgggggttt 180
 gggaaacaag gcttccagtg ccaagtttgc tggtttgtgg tccacaagag gtggccatgaa 240
 60 tttgttactt tttcttgcgtt ggggtggat aaggggcccg acactgtatc ccccaaggagc 300
 aagcacaatcc tcaaaaatccca cacttacggc aggccaccc tctgcgtatc ctgtgggtca 360
 ctgcgtctatg gacttatccca tcaaggatgt aaatgtatc cctgcgtatc gaacgttac 420

aagcaatgcg tcataatgt ccccaggcctc tgccggaaatgg atcacactga gaagaggggg 480
 cgatttacc taaaaggctga ggttgcgtat gaaaagctcc atgtcacagt acgagatgca 540
 aaaaatctaa tccctatgg a tccaaacggg ctttcagatc cttatgtgaa gctgaaaactt 600
 attctgatc ccaagaatga aagcaagcaa aaaacccaaa ccatacgctc cacactaaat 660
 5 ccgcagtgga atgagtctt tacattcaaa ttgaaaacctt cagacaaaga ccgacgactg 720
 tctgttagaaa tctgggactg ggatcgaaca acaaggaatg acttcatggg atcccttcc 780
 tttggagttt cggagctgtat gaagatggcg gccagtgatc ggtacaagtt gcttaaccaa 840
 gaagaaggtg agtactacaa cgtacccatt ccggaagggg acgaggaagg aaacatggaa 900
 ctcaggcaga aattcgagaa agccaaactt ggcctgtctg gcaacaaagt catcagtccc 960
 10 tctgaagaca ggaaacaacc ttccaaacaac cttgaccgag taaaactcac ggacttcaat 1020
 ttccatcatgg tggggaaaa ggggagttt gggaaagggtg tgcttgcga caggaaggcc 1080
 acagaagaac tgtatgcataaataatccctg aagaaggatg tggattca ggtatgtac 1140
 gtggagtgca ccatacgatc aaagcgatc ttggccctgc ttgacaaacc cccgttctt 1200
 acgcagctc actcctgtt ccagacatg gatcgctt acttcgtcat ggaatatgtc 1260
 15 aacgggtgggg acctcatgtt ccacattcg caagtaggaa aatttaagga accacaagca 1320
 gtattctatg cggcagagat ttccatcgat tttttttt ttcataaaag aggaatcatt 1380
 tatagggatc tgaagttaga taacgtcatg ttggattca aaggacatata caaaattgct 1440
 gactttggga tggcaagga acacatgtat gatggagtca cgaccaggac cttctgtggg 1500
 20 actccagatt atatcgcccc agagataatc gtttatcagc cgtatggaaa atctgtggac 1560
 tggtgggctt atggcgttctt gttgtatgaa atgcttgcg ggcagcttcc atttgcgtt 1620
 gaagatgttgg acgagctatt tcagtcatac atggagcaca acgtttccata tccaaaatcc 1680
 ttgtccaagg aggctgttc tatctgcataa ggactgtatg cccaaacaccc agccaagcgg 1740
 ctggctgtg ggcctgtgggg ggagagggac gtgagagagc atgccttctt cggaggatc 1800
 gactggaaacttggaa aactggagaa caggagatc cagccaccat tcaagcccaa agtgtgtggc 1860
 25 aaaggagcag agaatttgc caagtttcc acacaggac agcccttcc aacaccaccc 1920
 gatcagctgg ttattgtctt catagaccat tctgtatgg aagggttctc gtatgtcaac 1980
 ccccaatggg tgcacccat cttacagatg gcaatgtatg 2019

30 <210> 112
 <211> 2022
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> PKC beta
 <310> X07109

<400> 112

40 atggctgacc cggctgcggg gcccggccg agcgagggcg aggagagcac cgtgcgttcc 60
 gcccggccaaag gcccgttccg gcagaagaac gtgcgttcc gtcacccatcacc 120
 gcccgttcc tcaaggcagcc caccctctgc agccactgca ccgacttcat ctggggcttc 180
 gggaaaggcagg gattccatgtt ccaagtttgc ttgtttgtgg tgcacaaagcg gtgcgttcc 240
 tttgtcacat tccctgtcc tggcgttgc aagggtccag cttccatgtg ccccccgcagc 300
 45 aaacacaatgtt ttaagatcca cacttcc agcccccacgt tttgttgcac ccgttgcgttca 360
 ctgtgtatg gactcatcca ccaggggatg aatgttgcata cctgtcatgtt gaaatgtgcac 420
 aagcgctgatg tttttttttt tccctgtcc tttttttttt accacacggg ggcggccggc 480
 cgcacatctaca tccaggccca catcgacagg gacgttccat tttttttttt aagatgtgtt 540
 aaaaacccatgtt tacctatggc ccccaatggc ctgttgcgttcc cttacgtaaa actgaaactg 600
 50 attcccgatc cccaaatgtt gggccatggc aagacccaaatg ccatccatcacc 660
 cctgtgttgc atgagacatt tagatttcgtt ctgttgcgttcc cggacaaaga cagaagactg 720
 tcgttagaga tttttttttt ggtttttttt ggtttttttt ggtttttttt ggtttttttt 780
 tttttttttt ctgttgcgttcc gatggccatgtt gttttttttt ggtttttttt ggtttttttt 840
 gagggaaaggcg agtacttccat tttttttttt ccaccaggaa gaaatgttcc gaaatgttcc 900
 55 ctgcggccaga aattttttttt gggccatggc aatggccatggc gttttttttt gttttttttt 960
 acgaccaaca ctgttgcgttcc aatggccatggc gttttttttt gttttttttt gttttttttt 1020
 gatgttgcgttcc tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 1080
 cggaaaaggcaga cagatgtatgtt ctgttgcgttcc gatggccatggc gttttttttt gttttttttt 1140
 gatgtatgttcc tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 1200
 60 cccatgttcc tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 1260
 gagttacgttcc tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 1320
 cccatgttcc tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 1380

5 ggcattcattt accgtgacct aaaacttgac aacgtgatgc tcgattctga gggacacatc 1440
 aagattgcgg attttggcat gtgttaaggaa aacatctggg atgggggtgac aaccaagaca 1500
 ttctgtggca ctccagacta catcgccccc gagataattt cttatcagcc ctatggaaag 1560
 tccgtggatt ggtgggcatt tggagtccctg ctgtatgaaa tggtggctgg gcaggccccc 1620
 tttgaagggg aggatgaaga tgaactcttc caatccatca tggAACACAA cgtagcctat 1680
 cccaaagtcta tggccaaggaa agctgtggcc atctgcaaag ggctgtatgac caaacaccca 1740
 ggcaaaacgtc tgggttgtgg acctgaaggc gaacgtgata tcaaaagagca tgcattttc 1800
 cggtatattg attgggagaa acttgaacgc aaagagatcc agccccctta taagccaaaa 1860
 gcttgtgggc gaaatgctga aaacttcgac cgatTTTCA cccgcacatcc accagtccct 1920
 10 acacctcccc accaggaatg catcaggaat attgaccaat cagaattcga aggattttcc 1980
 tttgttaact ctgaattttt aaaacccgaa gtcaagagct aa 2022

15 <210> 113
 <211> 2031
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> PKC delta
 <310> NM006254

25 <400> 113
 atggcgcgt tcctgcgcatt cgccttcaac tccttatgagc tgggtccctt gcaggccgag 60
 gacaggcgca accagccctt ctgtgcgtg aagatgaagg aggccgtcag cacagagcgt 120
 gggaaaacac tgggtcgagaa gaagccgacc atgtatcctg agtggaaagtc gacgttcgt 180
 gccacacatct atgaggggcg cgtcatccag atgtgtctaa tgccggcagc agaggagcca 240
 gtgtctgagg tgaccgtggg tgggtcggtg ctggccgagc gctgcaagaa gaacaatggc 300
 aaggctgagt tctggctgga cctgcagct caggccaagg tggatgtgc tggtcgttat 360
 30 ttccctggagg acgtggattt gaaacaatct atgcgcgtg aggacgaggc caagttccca 420
 acgatgaacc gccgcggagc catcaaacag gccaaaatcc actacatcaa gaaccatgag 480
 tttatcgcca ccttcttgg gcaacccacc ttctgttctg tggcaaaaga ctttgtctgg 540
 ggcctcaaca agcaaggcta caaatgcagg caatgtaaacg ctgcacatcca caagaaatgc 600
 atcgacaaga tcatcgccag atgcactggc accgcggcca acagccggga cactatattc 660
 35 cagaaagaatc gcttcaacat cgacatgccc caccgcttca aggttccaaa ctacatgagc 720
 cccacccttc gtgaccactg cggcaggcctt ctctggggac tggtaagagc gggattaaag 780
 tggtaagact gcccgtatgaa tggcaccat aaatgccgg agaagggtggc caacctctgc 840
 ggcataacc agaagctttt ggctgaggcc ttgaaccaag tcaccagag agcctcccg 900
 agatcagact cggcctctc agacgttgc gggatataatc agggtttgcg gaagaagacc 960
 40 ggagtgtctg gggaggacat gcaagacaaac agtgggacat acggcaagat ctgggaggc 1020
 agcagcaagt gcaacatcaa caacttcata ttccacaagg tcctggccaa aggccgttc 1080
 gggagggtgc tgcttggaga gctgaaggc agaggagat actctgcctt caaggccctc 1140
 aagaaggatg tggctctgtat cgacgacgc gtggagtgc ccattgttgc gaagcgggtg 1200
 ctgacacttg ccccgagaaa tcccttctc acccacatca tctgcacattt ccagaccaag 1260
 45 gaccacctgt tctttgtat ggagtccctt aacggggggg acctgtatgc ccacatccag 1320
 gacaaaggcc gctttgaact ctacgtgc acgttttatg ccgtcgat aatgtgtggc 1380
 ctgcagttt tacacagcaa gggcatcatt tacaggacc tcaaaatgttgc caatgtgtctg 1440
 ttggaccggg atggcccat caagatggc gactttggta tggtaaaaga gaacatattc 1500
 50 gggagagcc gggccagcac ttctgcggc accccctgact atatcccccc tgagatccct 1560
 cagggcctga agtacacatt ctctgtggac tgggtgttcc tcgggggttctt tctgtacgag 1620
 atgctcattt gccagtcctt cttccatgtt gatgtatggg atgaactt ccgtccatc 1680
 cgtgtggaca cggccacatta tccccgtgg atcaccatgg agtccaaagg catcctggag 1740
 aagctctttt aaagggaaacc aaccaagagg ctggaaatga cggggaaacat caaaatccac 1800
 55 cccttcttca agaccataaa ctggactctg ctggaaaagc ggagggttggc gccacccttc 1860
 agccccaaag tgaagtccacc cagagactac agtaacttgc accaggagtt cctgaacgag 1920
 aaggcgcgccc tctcctacag cgacaagaac ctcatcgact ccattggacca gtctgcattc 1980
 gctggcttctt ctttgcgttca cccaaattt cggcacatcc tggaaatgg a 2031

60 <210> 114
 <211> 2049
 <212> DNA

<213> Homo sapiens

<300>

<302> PKC eta

5 <310> NM006255

<400> 114

atgtcgctg gcaccatgaa gttcaatggc tatttggagg tccgcacatgg tgaggcagtg 60

gggcgtgcagc ccacccgctg gtccctgcgc cactcgctct tcaagaaggg ccaccagctg 120

10 ctggacccct atctgacggt gagcgtggac caggtgcggc tggccagac cagcaccaag 180

cagaagacca acaaaccac gtacaacgag gagtttgcg ctaacgtcac cgacggcggc 240

cacctcgagt tggcgctt ccacgagacc cccctgggt acgacttcgt gccaactgc 300

accctcgagt tccaggagct cgtcggcacg accggcgcct cggacacctt cgagggttgg 360

gtggatctcg agccagaggg gaaagtattt gtggtaataa cccttaccgg gagtttact 420

15 gaagctactc tccagagaga cggatcttc aaacattttt ccaggaagcg ccaaagggt 480

atgcgaaggc gagtccacca gataatggc cacaatttca tggccacgtg tctgaggc 540

cccacctact gctctcactg caggagttt atctggggag ttgtttggaa acagggttat 600

cagtgcggcag tggcacctg tggcactt aaacgctgcc atcatctaattt ttttacagcc 660

tgtacttgcc aaaacaatataa taacaaatgt gattcaaaa ttgcagaaca gaggttcggg 720

20 atcaacatcc cacacaatgt cagcatccac aactacaatgg tggcaacattt ctgcgatcac 780

tgtggctcac tgctctgggg aataatgcga caaggacttc agtgtaaaat atgtaaaatg 840

aatgtgcata ttcgatgtca agcgaacgtg gcccctaact gtggggtaaa tgcgggtggaa 900

cttgccaaaga ccctggcagg gatgggtctc caaccggaa atatttctcc aacctcgaaa 960

ctcggttcca gatcgaccct aagacgacag ggaaaggaga gcagcaaaga agaaatggg 1020

25 attggggtaa attcttccaa ccgacttggt atcgacaact ttgaggccat ccgagtggtt 1080

gggaagggggaa gttttgggaa ggtgtatgtt gcaagagttt aagaaacagg agacctctat 1140

gctgtgaagg tgctgaagaa ggacgtgtt ctgctggatg atgatgtgaa atgcaccatg 1200

accgagaaaaa ggatccgttc tctggccgc aatcaccctt tcctcactca ttgttctgc 1260

tgtttcaga cccccgtatc tctgtttt gtgtggagt ttgttaatgg gggtgacttg 1320

30 atgttccaca ttcaaaatgt tcgtcgaaaa gatgaagcac gagctcgctt ctatgtgc 1380

gaaatcattt cggctctcat gttccctccat gataaaaggaa tcatctatag agatctgaaa 1440

ctggacaatg tcctgttggc ccacgagggt cactgttttcc tggcagactt cggaaatgtgc 1500

aaggaggggaa ttgcataatgg tgcaccacac gcccattttt gtggcacaatgc agactatatac 1560

gtcccgaga tcctccagga aatgtgtac gggcctgcag tagactgggtt ggcataatggg 1620

35 gtgttgctct atgagatgt ctgtggtcac ggcgcctttt aggcaagagaa tgaagatgac 1680

ctctttgagg ccataactgaa tggatgggtt gtctaccctt cctggctcca tgaagatgcc 1740

acagggtatcc taaaatctttt catgaccaag aaccccaacca tggcgttggg cagcctgact 1800

caggggaggcg agcaccatccat cttgagacat ctttttttta aggaatatgc ctgggcccag 1860

40 ctgaaccatc gccaaataga accgccttc agacccagaa tcaaattcccg agaagatgtc 1920

agtaattttgc accctgactt cataaaaggaa gagccagttt taactccat tgatgaggga 1980

catcttccaa tgatataacca ggtatgtttt agaaactttt cctatgtgtc tccagaattt 2040

caaccatag 2049

45 <210> 115

<211> 948

<212> DNA

<213> Homo sapiens

50 <300>

<302> PKC epsilon

<310> XM002370

<400> 115

55 atgttggcag aactcaaggg caaagatgaa gtatatgtt gtaaggtctt aaagaaggac 60

gtcataccctt aggtatgtt cgtggactgc acaatgacag agaagaggat tttggctctg 120

gcacggaaac acccgatctt taccaactc tactgtgtt tccagaccaa ggaccgcctc 180

tttttgtca tggatatgtt aatgtgtt gacccatgtt ttccatgttcc ggcgtcccg 240

aaatccgtacg agcctcgatc acgggttcatgtt gtcggcggg tcacatcgcc cctcatgttc 300

60 ctccaccacg atggatgttcat tacacggat tggaaacttgg acaacatccct tctggatgca 360

gaaggtactt gcaagctggc tgacttcggg atgtgcaggaa aaggattttt gaatgggttg 420

acaccacca cgttctgtgg gactctgtac tacatagtc ctgagatccctt gcaaggatgtt 480

gagtatggcc cctccgtgga ctggtgggcc ctgggggtgc tgatgtacga gatgatggct 540
 ggacagcctc cctttgaggc cgacaatgag gacgacctat ttgagtccat cctccatgac 600
 gacgtgtgt acccagtctg gtcagcaag gaggctgtca gcatttgaa agctttcatg 660
 acgaagaatc cccacaagcg cctgggctgt gtggcatcgc agaatggcga ggacgcccac 720
 5 aagcagcacc cattttcaa agagattgac tgggtgtccc tggagcagaa gaagatcaag 780
 ccacccttca aaccacgcat taaaacccaa agagacgtca ataatttga ccaagacttt 840
 acccgggaag agccgtact cacccttgt gacgaagcaa ttgtaaagca gatcaaccag 900
 gaggaaattca aaggtttctc ctacttttgtt gaagacctga tgccctga 948

10 <210> 116
 <211> 1764
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> PKC iota
 <310> NM002740

20 <400> 116
 atgtccccaca cggtcgcagg cggccgcagg ggggaccatt cccaccaggc cccgggtgaaa 60
 gcctactacc gcggggatata catgataaaca cattttgaaac cttccatctc ctttgagggc 120
 ctttgcataatg aggttcgaga catgtgttct tttgacaacg aacagctt caccatgaaa 180
 tggatagatg aggaaggaga cccgtgtaca gtatcatctc agttggagtt agaagaagcc 240
 25 ttttagactt atgactaaa caaggattctt gaacttttga ttcatgtgtt cccttggta 300
 ccagaacgtc ctgggatgcc ttgtccagga gaagataaat ccatctaccg tagaggtgca 360
 cggcgtgtt gaaagcttta ttgtgccaat ggccacactt tccaagccaa gcgtttcaac 420
 aggccgtgtc actgtgcatt ctgcacagac cgaatatggg gacttggacg ccaaggatata 480
 aagtgcataa actgcataact cttgggttcat aagaagtgcc ataaactctgt cacaattgaa 540
 30 tggggccgc attctttgcc acaggaacca gtgatgcca tggatcagtc atccatgcat 600
 tctgaccatg cacagacagt aattccatata aatccatttca gtcatgagag ttggatcaa 660
 gttggtaag aaaaagaggg aatgaacacc agggaaatgt gcaagcttc atccagtcta 720
 ggtcttcagg attttgcattt gctccgggtt ataggaagag gaagttatgc caaaagtactg 780
 ttgggtcgat taaaaaaaaac agatcgatt tatgcaatga aagttgtgaa aaaagagctt 840
 35 gttaatgtat atgaggatata tgattggta cagacagaga agcatgtgtt tgagcaggca 900
 tccaaatcatc ctttcctgt tgggtgtcat tcttgcttc agacagaaag cagattgtt 960
 tttgtttagt agtatgtaaa tggaggagac tcataatgtt atatgcagcg acaaagaaaa 1020
 cttccctgaag aacatgcacat attttactct gcagaaatata gtcttagattt aaattatctt 1080
 catgagcggag ggataattta tagagatttg aaactggaca atgtattact ggactctgaa 1140
 40 gggcacatta aactcaactga ctacggcatg tgtaaggaaag gattacggcc aggagatata 1200
 accagcaattt tctgtgttca tcctaattac attgtctctg aaattttaaag aggagaagat 1260
 tatggtttca gtgttgcattt gtgggtcttt ggagtgtctca tgtttgcattt gatggcaggaa 1320
 aggtctccat ttgatattgt tggagctcc gataaccctg accagaacac agaggattat 1380
 ctcttccaag ttattttggaa aaaacaaaattt cgcataccac gttctctgtc tgtaaaagct 1440
 45 gcaagtgttc tgaagagttt tcttaataag gaccctaagg aacgattggg ttgtcatcct 1500
 caaacaggat ttgtctgatata tcaggggacac ccgttcttcc gaaatgttga ttggatatg 1560
 atggagcaaa aacagggtgtt acctccctttt aaaccaaaaattt ttcttggggaa atttggttt 1620
 gacaacttttgcattt tactaatgaa cctgtccacgc tcactccaga tgacgatgac 1680
 50 atgtgtgagga agattgtatca gtcgttattt gaaggttttgcattt agtataatcaa tcctttttt 1740
 atgtctgcag aagaatgtgtt ctgtt 1764

55 <210> 117
 <211> 2451
 <212> DNA
 <213> Homo sapiens

60 <300>
 <302> PKC mu
 <310> XM007234

<400> 117

atgtatgata agatcctgct ttttcgccat gaccctacact ctgaaaacat ccttcagctg 60
 gtgaaagcgg ccagtatat ccaggaaggc gatcttattt aagtggctt gtcagcttc 120
 gccacccccc aagacttca gattctccc cacgctctt ttgttcattt atacagagct 180
 ccagctttct gtgatcaact tggaaaatg ctgtggggc tggtacgtca aggtcttaaa 240
 5 tggtaagggt tggtctgaa ttaccataag agatgtcat taaaataacc caacaattgc 300
 agcggtgtga ggcggagaag gctctcaaac cttccctca ctggggtcag caccatccgc 360
 acatcatctg ctgaaacttca tacaagtgc cctgatgagc cccttctgca aaaatcacca 420
 tcagagtctg ttattgtcg agagaagagg tcaaatttca aatcatacat tggacgacca 480
 attcacctt acaagattt gatgtctaa gttaaagtgc cgacacatt tgcacatccac 540
 10 tcctacaccc ggccccacagt gtgccagttc tgcaagaagc ttctgaaggg gcttttcagg 600
 cagggcttgc agtgcacaaat ttgcagattt aactgcccata aacgttgtgc accgaaagta 660
 ccaaacaact gccttggcg agtgaccatt aatggagatt tgcttagccc tggggcagag 720
 tctgatgtgg tcatggaaaga agggagtgtat gacaatgata gtgaaaggaa cagtgggctc 780
 atggatgata tggaaagaagc aatggtccaa gatgcagaga tggcaatggc agagtgcac 840
 15 aacgacatgt gcgagatgc agatccagac ccagaccacg aggacgccaa cagaaccatc 900
 agtccatcaa caagcaacaa tatcccactt atgagggtat tgcatctgt caaacacacg 960
 aagaggaaaaa gcgacacagt catgaaagaa gatgcagaga tggcaatggc agagtgcac 1020
 acgctgcgg aacggactt ttggagattt gatagcaat gtattaccct ctttcagaat 1080
 gacacaggaa gcaggtacta caagggaaatt ctttatctg aaattttgtc tctggaaacca 1140
 20 gtaaaaaactt cagtttaat tcctaattggg gccaatccctt attgtttcgaa aatcactacg 1200
 gcaaatgttag tttttttttt gggagaaaat gtggtaatc cttccagccc atcaccataat 1260
 aacagtgttc tcaccatgtt cgttgggtca gatgtggcca ggatgtggga gatagccatc 1320
 cagcatgccc ttatgcccgt cattccaaatg ggctcctccg tgggtacagg aaccaacttg 1380
 cacagagata tctctgttag tatttcgtat tcaaatttgc agattcaaga aatgtggac 1440
 25 atcagcagatc tatatcgat tttccgtat gtttatggg gaaacatcg taaaacagga agagatgttag ctattaaaat cattgacaaa 1500
 gtttatggg gaaacatcg taaaacagga ttacgatttca caacaaaaca agaaagccag cttcgtatc aggttgcatt tctacagaa 1620
 cttcatcacc ctgggtgtgtt aaattttggag tttatgtttt agacgcctga aagagtgttt 1680
 gttgttatgg aaaaacttca tggagacatg ctggaaatga tcttgcataag tggaaaggc 1740
 30 aggttgcac agcacataac gaagtttttta attactcaga tactcgtggc tttgcggcac 1800
 cttcatttttta aaaatatacg tcaactgtgc ctcaaccatc aaaatgtgtt gctagcctca 1860
 gctgatcctt ttccctcaggta gaaactttgtt gattttgggtt ttgcccggat cattggagag 1920
 aagtcttcc ggaggtcagt ggtgggtacc cccgcttacc tggctcctga ggtcctaagg 1980
 aacaagggtt acaatcgct tctagacatg tggctgtt gggcatcat ctatgtaa 2040
 35 ctaagccggca cattcccaatt taatgaagat gaagacatac acgacccaaat tcagaatgca 2100
 gcttcatgt atccacccaaat tccctggaaag gaaatatctc atgaagccat tgatcttate 2160
 aacaattatgc tgcaagtaaa aatgagaaaag cgctacatgc tggataagac cttgagccac 2220
 cttggcttca aggactatca gacccgttta gatttggcgag agtggaaatg caaaatcggg 2280
 gaggcgttaca tcaccatgtt aagtgtatgc ctgggttggg agaagttatgc aggcgagcag 2340
 40 gggctgcgtt accccacaca cctgtatcaat ccaagtgc tggccacatc cactcctgag 2400
 actgaagaaa cagaaatgaa agccctcggt gagcgtgtca gcatcctatg a 2451

45 <210> 118
 <211> 2673
 <212> DNA
 <213> Homo sapiens

50 <300>
 <302> PKC nu
 <310> NM005813

<400> 118
 55 atgtctgcaaa ataattcccc tccatcagcc cagaagtctg tattacccac agctattcc 60
 gctgtgcctt cagctgcctt tccgtgttca agtccataaga cgggactctc tgcccgactc 120
 tctaattggaa gcttcagttca accatcaactt accaacttca gaggctcgtt gcatacagtt 180
 tcattttctac tgcaaaattgg cctcacacgg gagagtgtt ccatttgc ccaggaactc 240
 tctttatctg ctgtcaagga tcttgcgttccatagttt atcaaaatgtt tccagatgtt 300
 60 ggattttttt gcatgtatgtt caaaaattttt ctctttccatc atgacatgtt ctcagaaaac 360
 atttgcgtt tgattacactt agcagatgtt atacatgtt gagacatgtt ggaagttgggt 420
 ctccatcgatc tagccacactt agaagacttc cagattcgatc cacatactt ctatgtatcat 480
 tcttacaaatg cttctacttt ctgtgattac tgggtggatc tgggttgggg attggatgtt 540

	caaggactga	aatgtgaagg	ctgtggatta	aattaccata	aacgatgtgc	cttcaagatt	600
	ccaaataact	gtagtggagt	aagaaaagaga	cgtctgtcaa	atgtatctt	accaggaccc	660
	ggcctcttag	ttccaagacc	cctacagcct	gaatatgtag	cccttcccag	tgaagagtc	720
	catgtccacc	aggaaccaag	taagagaatt	ccttcttga	gtggtcgccc	aatctggatg	780
5	gaaaagatgg	taatgtcag	agtggaaagt	ccacacacat	tttgtgttca	ctcttacacc	840
	cgtccccacga	tatgtcagta	ctgcaagcgg	ttactgaaag	gcctctttcg	ccaaggaatg	900
	cagtgtaaaag	attgcaattt	caactgccc	aaacgctgt	catcaaaaagt	accaagagac	960
	tgccttggag	aggttacttt	caatggagaa	ccttccagtc	tggaaacaga	tacagatata	1020
10	ccaatggata	ttgacaataa	tgacataaat	agtgataga	gtccccgggt	ggatgacata	1080
	gaagagccat	caccccccaga	agataagatg	ttttcttcttg	atccatctga	tctcgatgt	1140
	gaaaagagatg	aagaaggcgt	taaaaacaatc	agtccatcaa	caagcaataa	tattccgcgt	1200
	atgagggtt	tacaattccat	caagcacaca	aagaggaaga	gcagcacaaat	ggtgaaggaa	1260
	gggtggatgg	tccattacac	cagcagggtat	aacctgagaa	agagggattta	ttggagactt	1320
15	gacagcaa	gtctaaccatt	atttcagaat	aatctggat	caaagtattta	taaggaaatt	1380
	ccactttcag	aaatttcccg	cataatcttca	ccacgagatt	tcacaaacat	ttcacaaggc	1440
	agcaatccac	actgtttga	aatcattact	gatactatgg	tataattcgt	tggtgagaac	1500
	aatggggaca	gctctcataa	tcctgttctt	gctgccactg	gagttggact	tgatgttagca	1560
	cagagctggg	aaaaagcaat	tcgccaagcc	ctcatgcctg	ttactcctca	agcaagtgtt	1620
20	tgcacttctc	cagggcaagg	gaaagatcac	aaagatttgt	ctcaagat	ctctgtatct	1680
	aattgtcaga	ttcaggagaa	tgtggatata	agtactgttt	accagatctt	tgcagatgag	1740
	gtgttgggtt	caggccagt	tggcatcggt	tatggagaa	aacatagaaa	gactggggagg	1800
	gtatgtggcta	ttttaagtaat	tgataagatg	agattcccc	aaaaacaaga	aagtcaactc	1860
	cgtaatgaag	tggctatttt	acagaatttg	caccatcctg	ggattgtaaa	ccttggaaatgt	1920
25	atgtttgaaa	cccccagaacg	agtctttgtt	gtaatggaaa	agctgcattgg	agatatgttg	1980
	gaaaatgattc	tatccagtga	gaaaagtccg	cttccagaac	gaattactaa	attcatggtc	2040
	acacagatac	ttgttgctt	gaggaatctg	cattttaaaga	atattgtc	ctgtgattta	2100
	aagccagaaa	atgtgtgtct	tgcatcagca	gagccatttc	ctcagggtgaa	gctgtgtgac	2160
	tttggatttg	cacgcatcat	tggtaaaaag	tcatttcagga	gatctgtgtt	aggaactcca	2220
30	gcatacttag	ccccctgaagt	tctccggagc	aaaggttaca	accgttccct	agatatgtgg	2280
	tcagtggggag	ttatcatcta	tgtggaccc	agtggcacat	ttcccttttaa	tgaggatgaa	2340
	gatataatcc	acccaaatcca	aaatgtgtca	tttatgtacc	cacccaaatcc	atggagagaaa	2400
	atttctggtg	aagcaatttga	tctgatcaaaac	aatctgttcc	aagtgaagat	gagaaaaacgt	2460
	tacagtgtt	acaaatcttct	tagtcatccc	tggctacagg	actatcagac	ttggcttgc	2520
35	cttagagaat	ttgaaactcg	cattggagaa	cgttacatta	cacatgaaag	tgtatgtatgt	2580
	cgctggaaa	tacatgcata	cacacataac	cttgtatacc	caaagcactt	cattatggct	2640
	cctaattccag	atgatatgga	agaagatcct	taa			2673

```
        <210> 119  
40    <211> 2121  
        <212> DNA  
        <213> Homo sapiens
```

45 <300>
 <302> PKC tau
 <310> NM006257

<400>	119	atgtcgccat	ttcttcggat	tggcttgc	aactttgact	gcgggtcctg	ccagtc	tgtgtt	60
50	caggcgagg	ctgttaaccc	ttactgtgct	gtgctcgta	aagagtatgt	cgaatc	agag	aaat	120
	aacgggcaga	tgtatatcca	aaaaaaagcct	accatgtacc	caccctggga	cagcact	tttt	180	
	gatgccata	tcaacaagg	aagagtcatg	cagatcattt	tgaaaggcaa	aaacgt	tgac	240	
	ctcatctctg	aaaccaccgt	ggagctctac	tgcgtggctg	agaggtgcag	gaagaacaa	cac	300	
55	ggaaagacag	aaatatggtt	agagctgaaa	cctcaaggcc	gaatgcta	aat	gaat	gcaaga	360
	tactttctgg	aaatgagtga	cacaaaggac	atgaatgaat	ttgagacgga	aggctt	tttt	420	
	gctttgcata	agcgcggggg	tggcatcaag	caggcaaaagg	tccaccacgt	caagtgc	cac	480	
	gagttcaactg	ccaccccttctt	ccccacagccc	acattttgc	ctgtctgcca	cgagtttgc	tc	540	
	tggggcctga	acaaacaggg	ctaccagtgc	cgacaatgc	atgcagcaat	tcacaaga	aaag	600	
60	tgtattgata	aagtatacgc	aaagtgcaca	ggatcagcta	tcaatagccg	agaaaaccat	tg	660	
	ttccacaagg	agagattcaa	aattgacatg	ccacacagat	ttaaagtcta	caattacaa	g	720	
	agcccgacat	tctgtgaaca	ctgtgggacc	ctgctgtggg	gactggcacg	gcaaggact	c	780	
	aagtgtgatg	catgtggcat	gaatgtgcat	cataqatgcc	aqacaaagg	ggccaaacctt	t	840	

	tgtggcataa accagaagct aatggctgaa	gcgcgtggca tgatttagag cactcaacag 900
	gctcgctgct taagagatac tgaacagatc	ttcagagaag gtccgggtga aattggtctc 960
	ccatgctcca tcaaaaatga agcaaggccg	ccatgtttac cgacaccggg aaaaagagag 1020
	cctcaggggca tttctggta gtcctcggtt	gatgagggtgg ataaaatgtg ccatcttcca 1080
5	gaacctgaac tgaacaaaga aagaccatct	ctgcagatta aactaaaaat tgaggatttt 1140
	atcttgacaa aaatgttggg gaaaggaagt	tttggcaagg tcttcttggc agaattcaag 1200
	aaaaccaatc aatttttcgc aataaaggcc	ttaaagaaag atgtggtctt gatggacgat 1260
	gatgttgagt gcacgtatgg agagaagaga	gttctttcct tggctggga gcatccgtt 1320
	ctgacgcaca tgccccgtac attccagacc	aaggaaaacc tctttttgt gatggagtag 1380
10	ctcaacggag gggacttaat gtaccacatc	caaagctgcc acaagttcg a ctttccaga 1440
	gcccacgtttt atgtctgtca aatcattttt	ggtctgcagt tccttcattt caaaagaaata 1500
	gtctacaggg acctgaagct agataacatc	ctgttagaca aagatggaca tatcaagatc 1560
	gcccattttt gaatgtgcaag ggagaacatg	ttaggagatg ccaagacgaa taccttctgt 1620
15	gggacacctg actacatcgc cccagagatc	ttgctgggtc agaaatacaa ccactctgt 1680
	gactgggtgt ctccgggggt tctcccttat	gaaatgctga ttggtcagtc gccttccac 1740
	gggcaggatg aggaggagct ctccactcc	atccgcattt acaatccctt ttacccacgg 1800
	tggctggaga aggaagcaaa ggacccctgt	gtgaagctct tcgtcgaga acctgagaag 1860
	aggctggcg tgaggggaga catccggccag	cacccttgc ttcggagat caactggag 1920
20	gaacttgaac ggaaggagat tgacccaccc	ttccggccga aagtgaatc accatttgac 1980
	tgcagcaatt tcgacaaaga attcttaaac	gagaagcccc ggctgtcatt tgccgacaga 2040
	gcactgtatca acagcatgga ccagaatatg	ttcaggact ttccttcat gaaccccccgg 2100
	atggagcggc tgatattctgt a	2121
25	<210> 120	
	<211> 1779	
	<212> DNA	
	<213> Homo sapiens	
30	<300>	
	<302> PKC zeta	
	<310> NM2744	
	<400> 120	
35	atgcccagca ggaccgaccc caagatggaa gggagcggcg gccgcgtccg cctcaaggcg 60	
	cattacgggg gggacatctt catcaccagc	gtggacgccc ccacgacattt cgaggagctc 120
	tgtgaggaag tgagagacat gtgtcgctg	caccagcagc acccgctcac cctcaagtgg 180
	gtggacagcg aaggtgaccc ttgcacgggt	tcctcccaaga tggagctgga agaggcttc 240
	cgcctggccc gtcagtcag ggtatgaaggc	ctcatcatcc atgttttccc gagcacccct 300
40	gagcagccctg gcctgcatttgc tccgggagaa	gacaatcta tctaccggcg gggagccaga 360
	agatggagga agctgtaccc tgccaaacggc	cacctcttcc aagccaagcg cttaacagg 420
	agagcgtaact gccgtcagtg cagcgagagg	atatggggcc tcggcaggca aggctacagg 480
	tgcataact gcaaaactgtt ggtccataaag	cgctgcccacg gcctctgtcc gctgaccctgc 540
	aggaagcata tggattctgt catgccttcc	caagagcctc cagtagacga caagaacag 600
45	gacgcccggacc ttcccttccga ggagacagat	ggaattgttt acatttccctt atcccccga 660
	catgacagca taaaagacca ctcggggac	cttaagccat ttatcgatgg gatggatgaa 720
	atcaaaaatct ctcaggggct tgggctgcag	gactttgacc taatcagatg catcgccgc 780
	gggagctacg ccaagggtct cctgggtcg	ttgaagaaga atgaccaaattt acatccatg 840
	aaagtggta agaaagagct ggtgcattgtat	gacgaggata ttgactgggt acagacagag 900
50	aagcacgtgt ttgagcaggc atccagcaac	cccttccttgc tcggattaca ctcctgttc 960
	cagacgacaa gtcgggtttt cctggtcatt	gagtcgtca acggcgggga cctgtatgtc 1020
	cacatgcaga ggcagaggaa gtcctcttag	gagcacgcca ggttctacgc ggccgagatc 1080
	tgcatacgccc tcaacttcttgc acagcagagg	gggatcatct acagggacatc gaaagctggac 1140
	aacgtctcc tggatgcggc cgggcacatc	aagtcacag actacggcat gtgcacaggaa 1200
55	ggcctggggcc ctggtgacac aacgagact	ttctggggaa ccccaatta catcgccccc 1260
	gaaaatctgtc ggggagagga gtacgggttc	agcgtggact ggtggggcgat gggagtcctc 1320
	atgtttgaga tgatggccgg ggcctccccc	tgcacatca tcaccggacaa cccggacatc 1380
	aacacagagg actaccctttt ccaagtgtatc	ctggagaagc ccattccggat cccccgggtc 1440
	ctgtccgtca aagcccttcca tggttttaaa	ggatttttaa ataaggaccc caaagagagg 1500
60	ctcggctgccc ggccacagac tgattttct	gacatcaagt cccacgcgtt cttccgcagc 1560
	atagactggg acttgctgga gaaagaaggcag	gcgctccctc cattccagcc acagatcaca 1620
	qacgactacg gtctggacaa ctttgacaca	cagttcacca gcgagcccgat gcaagctgacc 1680

ccagacgatg aggatgccat aaagaggatc gaccagtca agttcgaagg ctttgagtat 1740
atcaacccat tattgctgtc caccgaggag tcggtgtca 1779

5 <210> 121
<211> 576
<212> DNA
<213> Homo sapiens

10 <300>
<302> VEGF
<310> NM003376

<400> 121
15 atgaacttgc tgctgtcttg ggtgcattgg agccttgct tgctgctcta cctccaccat 60
gcagaatgggt cccaggctgc accatggca gaaggaggag ggcagaatca tcacgaagt 120
gtgaaggctca tggatgtcta tcagcgac tactgcccata caatcgagac cttgggtggac 180
atcttcagg agtacccatgtc tgagatcgat tacatcttca agccatcttg tttggcccttg 240
atgcgtatgcg ggggctgtc caatgacgag ggcctggagt gtgtgcccac tgaggagtcc 300
20 aacatcca tgcagattat gcggatcaaa cctcaccat ggcagcacat aggagagatg 360
agcttcctac agcacaacaa atgtaatgc agaccaaaga aagatagagc aagacaagaa 420
aatccctgtg ggccttgctc agagcggaga aagcattttt ttgttacaaga tccgcagacg 480
tgtaaatgtt cctgaaaaa cacagactcg cgttgcaagg cgaggcagct tgagttaaac 540
gaacgtactt gcagatgtca caagccgagg cggtga 576

25 <210> 122
<211> 624
<212> DNA
<213> Homo sapiens

<300>
<302> VEGF B
<310> NM003377

35 <400> 122
atgagcccttc tgctccggc cctgtgtctc gccgcactcc tgcagctggc ccccgccccag 60
gcctctgtc cccagctgc tgccctggc caccagagga aagtgggtgc atggatagat 120
gtgtataactc ggcgtacccgt ccagccccgg gaggtgggtgg tgcccttgac tttggggatgtc 180
40 atgggcaccc tggccaaaca gctgggtggcc agtgcgtga ctgtgcagcg ctgtgggtggc 240
tgctccctgtc acatggcct ggagtgtgtc cccactgggc agcacaagt cccgatgcag 300
atccctcatgt tccggtaacc cggcgtatgc ctgggggaga tgcccttgaa agaacacacg 360
cagtgtgaat gcagacctaa aaaaaaggac agtgcgtga agccagacag ggctgcccact 420
ccccaccacc gtcggcggcc cccgttctgtt cccggctggg actctggccc cggagcaccc 480
45 tcccccagctg acatcacccca tcccaactcca gccccagcc cctctggcca cgctgcaccc 540
agcaccacca ggcggctgac cccggaccc gccggccggc ctggccgacgc cgcagcttcc 600
tccgttgcca agggcggggc ttag 624

50 <210> 123
<211> 1260
<212> DNA
<213> Homo sapiens

55 <300>
<302> VEGF C
<310> NM005429

<400> 123
60 atgcacttgc tgggtttttt ctctgtggcg tgggtctctgc tcggcgctgc gctgctcccg 60
ggtcctcgcg agggccccgc cggccggcc gccttcgagt ccggactcga cctctcgac 120
gcccggcccg acggcgggcga gcccacggct tatgcaagca aagatctggaa ggagcagttt 180

cggctctgtgt ccagtgtaga tgaactcatg actgtactct acccagaata ttggaaaatg 240
 tacaagggtc agctaaggaa aggaggctgg caacataaca gagaacaggc caacctaacc 300
 tcaaggacag aagagactat aaaatttgct gcagcacatt ataatacaga gatcttggaaa 360
 agtattgtata atgagtggag aaagactcaa tgcattccac gggaggtgt tatagatgtg 420
 5 gggaggagt ttggagtgcg gacaacaccc ttctttaaac ctccatgtgt gtccgtctac 480
 agatgtgggg gttgctgca tagtgagggg ctgcagtgc tgaacaccag cacgagctac 540
 ctcagcaaga cgttatttga aattacagtgc cctctctc aaggccccaa accagtaaca 600
 atcagttttg ccaatcacac ttccctgcca tgcattgtcta aactggatgt ttacagacaa 660
 gttcattcca ttatttagacg ttccctgcca gcaacactac cacagtgtca ggcagcgaac 720
 10 aagacctgcc ccaccaatta catgtggaat aatcacatct gcagatgcct ggctcaggaa 780
 gattttatgt ttccctcgga tgctggagat gactcaacag atggattcca tgacatctgt 840
 ggaccaaaca aggagctgga tgaagagacc tgcagtgtg tctgcagagc ggggcttcgg 900
 cctgcgcgt gtggaccccc caaagaacta gacagaaaact catgcgcgtg tgtctgtaaa 960
 15 aacaaactct tccccagcca atgtggggcc aaccgagaat ttgatgaaaa cacatgccaag 1020
 tgtgtatgtaa aagaacactg ccccaagaaaat caacccctaa atcctggaaa atgtgcctgt 1080
 gaatgtacag aaagtccaca gaaaatgttgc ttaaaaggaa agaagttcca ccaccaaaca 1140
 tgcagctgtt acagacgccc atgtacgaaac cgccagaagg cttgtgagcc aggattttca 1200
 tatagtgaag aagtgtgtcg ttgtgtccct tcataattgaa aaagaccaca aatgagctaa 1260

20 <210> 124
 <211> 1074
 <212> DNA
 <213> Homo sapiens

25 <300>
 <302> VEGF D
 <310> AJ0000185

30 <400> 124
 atattcaaaa tgtacagaga gtgggttagtg gtgaatgttt tcatgtatgtt gtacgtccag 60
 ctgggtcagg gtcctcgtaa tgaacatggc ccagtgaagc gatcatctca gtccacattg 120
 gaacgatctg aacagcagat cagggtgtct tctagtttg aggaactact tcgaattact 180
 cactctgagg actggaagct gtggagatgc aggctgaggc tcaaaagttt taccagtatg 240
 35 gactctcgct cagcatccca tcggtccact aggtttgcgg caacttctca tgacattgaa 300
 acactaaaag tttagatgaa agaatggcaa agaaactcgt gcagccctag agaaacgtgc 360
 gtggaggtgg ccagtggatgtt gggaaagagt accaacacat tcttcagcc cccttgggtg 420
 aacgtgttcc gatgtgggtt ctgttgcattt gaagagggcc ttatctgtat gaacaccagc 480
 acctcgatca tttccaaaca gtccttgcgtt atatcgtgc ctttgcacatc agtacctgaa 540
 40 ttagtgcctg taaaagggtgc caatcataca ggttgtaaat gcttgcacac agccccccgc 600
 catccataact caattatcg aagatccatc cagatccctg aagaagatcg ctgttccat 660
 tccaaagaaac tctgtccat tgacatgtca tgggatagca acaaattgtaa atgtgttttg 720
 caggaggaaaa atccacttgc tggAACAGAA gaccacttgc atctccaggaa accagctctc 780
 tgtggccac acatgtatgtt tgacgaagat cgttgcgagt gtgtctgtaa aacaccatgt 840
 45 cccaaagatc taatccagca ccccaaaaaac tgcagtgtct ttgagtgcaa agaaagtctg 900
 gagacctgttgc gccagaagca caagctattt caccctgaca cctgcagctg tgaggacaga 960
 tgccccttcc ataccagacc atgtgcagat ggcAAAACAG catgtgcAAA gcattgcccgc 1020
 tttccaaagg agaaaaggcc tgccctgggg ccccacagcc gaaagaatcc ttga 1074

50 <210> 125
 <211> 1314
 <212> DNA
 <213> Homo sapiens

55 <300>
 <302> E2F
 <310> M96577

60 <400> 125
 atggcccttgg ccggggccccc tggggggggc ccatgcgcgc cggcgctggc ggccctgtctc 60
 gggggccggcg cgctgcggct gctcgactcc tcgcagatcg tcatacatctc cggccgcgc 120

5 gacgccagcg ccccgccggc tcccaccggc cccgcggcgc cgcggccgg cccctgcgac 180
 cctgacctgc tgctcttcgc cacaccgcag ggcggccggc ccacacccag tgcggccgg 240
 cccgcgtcg gccgcccccc ggtgaaggcg aggctggacc tggaaactga ccatcaagtac 300
 ctggccgaga gcagtggggc agctcggggc agaggccggc atccaggaaa aggtgtgaaa 360
 tcggccgggg agaagtcacg ctatgagacc tcaactgaatc tgaccaccaa ggcgttctcg 420
 gagctgctga gccactcggc tgacgggtgc gtcgacactga actgggctgc cgaggtgctg 480
 aagggtgcaga agcggcgcat ctatgacatc accaacgtcc ttgagggcat ccagctcatt 540
 gccaagaagt ccaagaacca catccagtgg ctgggcagcc acaccacagt gggcgtcggc 600
 ggacggcttg aggggttgac ccaggaccc cgacagctgc aggagagcga gcagcagctg 660
 10 gaccacctga tgaatatctg tactacgcag ctgcgcctgc tctccgagga cactgacagc 720
 cagcgccctgg cctacgtgac gtgtcaggac cttcgttagca ttgcagaccc tgcagagcag 780
 atggttatgg tgatcaaagc ccctccttag aaccttcaga tctcccttaa gagcaaacaa acccagctcc aagccgtgga ctcttcggag 840
 aactttcaga gggccgatcg atgtttctt gtgcctctgag 900
 gagaccgtag gtgggatctcg ccctggaaag gggccgatcg atgtttctt gtgcctctgag 960
 15 gagaacaggc ccactgactc tgccaccata gtgtcaccac caccatcatc tccccccctca 1020
 tccttcacca cagatcccg ccagtctcta ctcagectgg agcaagaacc gctgttgtcc 1080
 cgatgggca gcctgcgggc tccctggac gaggaccggc tgccccgct ggtggcggcc 1140
 gactcgctcc tggagcatgt gcgggaggac ttctccggcc tcctccctga ggagttcattc 1200
 agcctttccc caccacca cgcctcgac taccacttcg gactcgagga gggcgaggc 1260
 20 atcagagacc tcttcgactg tgactttggg gacctcaccc ccctggattt ctga 1314

<210> 126
 <211> 166
 25 <212> DNA
 <213> Human papillomavirus

<300>
 <302> EBER-1
 30 <310> Jo2078

<400> 126
 ggacctacgc tgccctagag gttttgttag ggaggagacg tttgtggctg tagccacccg 60
 tcccggttac aagtccccgg tggtgaggac ggtgtctgtg gttgtcttcc cagactctgc 120
 35 tttctgcgtt cttcggtcaa gtaccagctg gtgttccgca tgtttt 166

<210> 127
 <211> 172
 40 <212> DNA
 <213> Hepatitis C virus

<300>
 <302> EBER-2
 45 <310> J02078

<400> 127
 ggacagccgt tgccctagtg gtttcggaca caccgccaac gtcagtgcg gtgctaccga 60
 cccgaggta aagtccccgg gaggagaaga gaggcttccc gcctagagca tttgcaagtc 120
 50 aggattctct aatccctctg ggagaagggt attcggttg tccgtatattt tt 172

<210> 128
 <211> 651
 55 <212> DNA
 <213> Hepatitis C virus

<300>
 <302> NS2
 60 <310> AJ238799

<400> 128

atggaccggg agatggcagc atcgtgcgga ggcgcgggtt tcgtaggctc gatactctt 60
 accttgtcac cgcaactataa gctgttcctc gctaggctca tatgggtgtt acaatatttt 120
 atcaccaggg ccgaggcaca cttgcaagtg tggatcccccc ccctcaacgt tcggggggggc 180
 cgcgatcccg tcatccctct cacgtgcgcg atccacccag agctaatttt taccatcacc 240
 5 aaaaatcttc tcgcccatact cggttcaactc atgggtcttc aggctggtat aaccaaagtg 300
 ccgtacttcg tgcgccaca cgggctcatt cgtgcatgca tgctgggtcg gaagggttgct 360
 gggggtcatt atgtccaaat ggctctcatg aagttggccg cactgacagg tacgtacgtt 420
 tatgaccatc tcacccact gcgggacttgg gccacgcgg gcctacgaga ccttgcgggtg 480
 10 gcagttgagc cctgtgtt ctctgatatg gagaccaagg ttatcacctg gggggcagac 540
 accgcggcgt gtggggacat catcttgggc ctgcccgtct ccgcccgcag ggggagggag 600
 atacatctgg gaccggcaga cagccttggaa gggcagggtt ggcgactctt c 651

<210> 129
 15 <211> 161
 <212> DNA
 <213> Hepatitis C virus

<300>
 20 <302> NS4A
 <310> AJ238799

<400> 129
 25 gcacccctgggt gctggtaggc ggagtcctag cagctctggc cgcgtattgc ctgacaacag 60
 gcagcgtgtt cattgtgggc aggatcatct tgtccggaaa gccggccatc attcccgaca 120
 gggaaagtccct ttaccgggag ttcatgatgaa tggaagagtg c 161

<210> 130
 30 <211> 783
 <212> DNA
 <213> Hepatitis C virus

<300>
 35 <302> NS4B
 <310> AJ238799

<400> 130
 40 gcctcacacc tcccttacat cgaacaggga atgcagctcg ccgaacaatt caaacagaag 60
 gcaatcggtt tgctgcaac agccaccaag caagcggagg ctgctgctcc cgtgggtggaa 120
 tccaagtggc ggaccctcga agccttctgg gCGaAGCATA tggaaattt catcagcggg 180
 atacaatatt tagcagggtt gtccactctg cctggcaacc cgcgatagc attactgtatg 240
 gcattcacag cctctatcac cagccgcctc accacccaaac ataccctctt gtttaacatc 300
 ctggggggat ggggtggccgc ccaacttgct cctccagcg ctgcttctgc ttctgtaggc 360
 45 gccggcatcg ctggagcggc tggtggcagc ataggccttg ggaagggtgt tggtgatatt 420
 ttggcagggtt atggagcagg ggtggcaggc gcgctcggtt cctttaaggt catgagcggc 480
 gagatggccct ccaccggaga cctggtaac ctactccctc ctatcccttc ccctggcgcc 540
 ctatcgctcg gggtcgtgtg cgcagcgata ctgcgtcgcc acgtggggcc aggggagggg 600
 50 gctgtgcagt ggtgaaaccg gctgatagcg ttgcgttgc gggtaacca cgtctccccc 660
 acgcactatg tgcctgagag cgacgctgca gcacgtgtca ctcagatctt ctctagtctt 720
 accatcaactc agctgctgaa gaggcttac cagtggatca acgaggactg ctccacgcca 780
 tgc 783

55 <210> 131
 <211> 1341
 <212> DNA
 <213> Hepatitis C virus

60 <300>
 <302> NSSA
 <310> AJ238799

	<400> 131	tccggctcggttggat	tggatatgca	cggtgttgac	tgatttcaag	60
5	ggctaaagaga	ttgcgggag	tccccttctt	ctcatgtcaa	120	
	acctggctcc	ttgcgggag	aaaccacctg	cccatgtgga	180	
	cgtgggtaca	ggcatcatgc	ccacgggccc	ctgcacgccc	240	
	aggagactcg	tcgcgggtgg	ctgcgtgagga	gtacgtggag	300	
	gcacagatca	tcgcggatgt	tcgcgtgagga	gtacgtggag	360	
	ccggacatgt	ttccatatttc	ccactgacaa	cgtaaagtgc	420	
	agtaaacacgt	ttcccgccgc	acgggcatga	gttcacacagg	480	
10	ggcatgaaac	ttcccgccgc	acagaagtgg	atggggtgcg	540	
	attccccatt	ttcccgccgc	gaggaggctca	cattcctgtt	600	
	caaatttattc	ttcccgccgc	gagcccaac	cgacgtacg	660	
	tagggcgctg	ttcccgccgc	gcccggacgg	ctaaacgtac	720	
	gttacgcggg	ttcccgccgc	gctagccacg	tgtctgcgcc	780	
	ccgttcagg	ttcccgccgc	gacgctgacc	tcatcgaggc	840	
	tacgctcccg	ttcccgccgc	cgcgctggagt	cagaaaataa	900	
	cgtcaaccacc	ttcccgccgc	gaggatgaga	ggaaagtatc	960	
	caatacctgg	ttcccgccgc	cgagcgatgc	ccatatgggc	1020	
15	ttggactctt	ttcccgccgc	ttcccgccgc	gaccggact	1080	
	tcgagccgt	ttcccgccgc	ccgataccac	ctccacggag	1140	
	ccaagcggag	ttcccgccgc	gccttggcg	agctcgccac	1200	
	gagatcctgc	ttcccgccgc	ggcacggcaa	cggctctcc	1260	
	ggaggtccag	ttcccgccgc	tgactgtact	cctccatgcc	1320	
20	gaaattccct	ttcccgccgc	gggtcttgg	ccccctttag	1380	
	tacaaccctc	ttcccgccgc	ctaccgtaag	cgaggaggct	1440	
	caactgttga	ttcccgccgc	agtgaggacg	tcgtctgctg	1500	
25	gttggtccat	ttcccgccgc	c			
					1341	
	<210> 132					
	<211> 1772					
30	<212> DNA					
	<213> Hepatitis C virus					
	<300>					
	<302> NS5B					
35	<310> AJ238799					
	<400> 132					
	tcgatgtcc	acacatggac	aggcgccctg	atcacgcac	ggaaaccaag	60
40	ctgcccata	atgcactgag	caactcttt	ctccgtcacc	ctatgttaca	120
	acatctcgca	gcfgcaagct	gccccagaag	aaggtcacct	gcaggctctg	180
	gacgaccact	accgggacgt	gctcaaggag	atgaaggcga	aggcgtccac	240
	aaacttctat	ccgtggagga	agcctgttaag	ctgacgcccc	cacattcgcc	300
	tttggctatg	gggcaaaagga	cgccggaaac	ctatccagca	agggcgtttaa	360
	tccgtgtgg	aggacttgt	gaaagacact	gagacaccaa	ttgacaccac	420
45	aaaaatgggg	ttttctcggt	ccaaacccaggag	aaggggggcc	gcaaggccacg	480
	gtattccca	atttgggggt	tcgtgtgtc	gagaaaaatgg	ccctttacga	540
	accctccctc	aggccgtat	ggctcttca	tacggatcc	aataactctcc	600
	gtcgagttcc	tgtgtaatgc	ctggaaagcg	aagaaatgcc	ctatggggct	660
50	acccgctgtt	ttgacttaac	ggtcaactgag	aatgacatcc	gtgtttagga	720
	caatgttgt	acttggcccc	cgaagccaga	caggccataa	ggtcgctcac	780
	tacatcgggg	gccccctgac	taattctaaa	gggcagaact	gcccgtatcg	840
	gcgagcgggt	tactgacgac	cagctgcgg	aataccctca	catgttactt	900
	gccccctgtc	gagctgcga	gctccaggac	tgcacgatgc	tcgtatgcgg	960
55	gtcggttatct	gtgaaagcgc	ggggacccaa	gaggacgagg	cgagcctacg	1020
	gaggctatga	ctagatactc	ttggggccctt	ggggacccgc	ccaaaccaga	1080
	gagttgataa	catcatgctc	ttccaaatgt	tcagtcgc	acgatgcac	1140
	gtgtactatc	tcacccgtga	ccccaccacc	cccttgcgc	gggctgcgt	1200
	agacacactc	cagtcaattc	ctggcttagc	aacatcatca	tgtatgcgc	1260
60	gcaaggatga	tcctgtatgc	tcatttctt	tccatcttc	tagtcaggaa	1320
	aaagccctag	atgttcagat	ctacggggcc	tggtactcca	ttgagccat	1380
	cagatcattc	aacgactcca	tggccttagc	gcattttcac	tccatagtt	1440
	qagatcaata	qqgtqgcttc	atqcctcagg	aaacttgggg	taccqcccctt	1500

5 agacatcgaa ccagaagtgt ccgcgctagg ctactgtccc agggggggag ggctgccact 1560
 tggcaagt acctctcaa ctggcagta aggaccaagc tcaaactcac tc当地atcccc 1620
 gctcgctccc agttggattt atccagctgg tt当地tgc当地tgg 1680
 tatacagcc tgc当地tgc当地ccgatgt ggtgc当地act cctactttct 1740
 5 gtaggggtag gc当地tatct actccccaaac cg 1772

10 <210> 133
 <211> 1892
 10 <212> DNA
 <213> Hepatitis C virus

15 <300>
 <302> NS3
 15 <310> AJ238799

20 <400> 133
 cgccattttac ggc当地tactcc caacagacgc gaggc当地act tggctgc当地tcc atc当地tagcc 60
 tc当地aggccg ggacaggaac caggctgagg gggaggctca agtggctcc accgcaacac 120
 20 aatcttc当地tcttcc ggc当地acttc gt当地atggcg tggcttggac tggctatcat ggtgccc当地tct 180
 caaaagaccct tgccggccca aaggggccaa tcaacc当地at gt当地acccatat gtggaccagg 240
 acctcgctgg ctggcaagcg cccccc当地gggg cgcttccctt gacaccatgc acctgc当地ggca 300
 gctcgaccc ttacttggtc acgaggcatg cc当地atgtcat tccggctgccc cggc当地ggggcg 360
 acacgagggg gaggc当地acttc tccccc当地ggc cc当地tccctt ct当地gaaggcc ttttccggcg 420
 25 gtc当地actgt ct当地cccttc当地tcttcc gggcacgtg tgggcatctt tccggctgccc gtgtgc当地ccc 480
 gagggggttc当地tgc gaggccgtg gacttgc当地tgc cc当地tgc当地tgc tatggaaacc actatgc当地gt 540
 ccccggttcc当地tgc acggacaac tccggccctt cc当地ggcttcc gca当地atcc caggctggcc 600
 attc当地acgc cc当地actgtt acgaggcaaga gcaactaagg gccggctgccc tatgc当地ccc 660
 30 aagggtataa ggtgcttgc当地tgc ct当地aaccctt cc当地tgc当地ggc cacccttaggt ttc当地ggggcg 720
 atatgtctaa ggc当地atgtt atc当地accctt acaatc当地aaac cggggtaagg accatccatcca 780
 cggggtgccc当地tgc catc当地gttcc tccacc当地atg gcaacttctt tgccgacggt ggttgc当地tctg 840
 gggggtgccc当地tgc tgacatc当地ata atatgtatg agtgc当地actt aactgacttcc accactatcc 900
 tgggcatccg当地tgc cacatc当地tgc gaccaaggccg agacggctgg agc当地gactt gtc当地tgc当地tctg 960
 35 ccaaccgttcc gcttccgggaa tccggcttccg tggccatccca aaacatcgag gaggtggctc 1020
 tggccagccat tggagaaatc cc当地tcttccatg gcaacttctt tgccgacggt ggttgc当地tctg 1080
 gggggaggccg ccttccatcc tggccatccca agaaggaaatg tgatgagctt gccc当地tccgactt gggc当地ggcc 1140
 tggccggccctt cggactcaat gcttgc当地tgc attacggggg ccttgc当地tgc tccgtc当地atcc 1200
 caacttgc当地tgc agacgttccatg tccggccatcc gggacttccctt aatgc当地ggcc tttaccggcg 1260
 40 atttgc当地tgc agt当地atcgac tgcaactatccatg tggccatccca gacacttccgat ttc当地ggcttcc 1320
 accccgacccat caccatggag acgacccatccg tggccatccca agaaggccat cc当地tccgactt cc当地tccgactt 1380
 ggggaggccg gacttggtagg ggc当地aggatgg gcaacttccatg gtttgc当地tcttcc cccaggagaac 1440
 gggccctccggg catgttccatg tccctccatcc tggccatccg gggacttccctt aatgc当地ggcc tttaccggcg 1500
 45 ggttccggccgttccatcc tggccatccg gggacttccctt aatgc当地ggcc tttaccggcg 1560
 acatagacgc cc当地tcttccatcc tcccaacttcc gggacttccctt aacacaccag 1620
 tagcatccatcc ggttccatcc tggccatccg gggacttccctt aatgc当地ggcc tttaccggcg 1680
 tggccatccatcc tggccatccg gggacttccctt aatgc当地ggcc tttaccggcg 1740
 50 ggttccggccgttccatcc tggccatccg gggacttccctt aacacaccag 1800
 catgttccatcc tggccatccg gggacttccctt aacacaccag 1860
 55 catgttccatcc tggccatccg gggacttccctt aacacaccag 1892

55 <210> 134
 <211> 822
 55 <212> DNA
 <213> Homo sapiens

60 <300>
 <302> stmn cell factor
 <310> M59964

60 <400> 134
 atgaagaaga cacaaaacttgc gatttccatcc tggccatccatcc tggccatccg gggacttccctt aatgc当地ggcc 60

cctctcgtaa aaactgaagg gatctgcagg aatcgtgtga ctaataatgt aaaagacg 120
 actaaaattgg tggcaaatttcccaaaagac tacatgataa ccctcaaata tgccccggg 180
 atggatgttt tgccaaagtca ttgttgata agcgagatgg tagtacaatt gtcagacagc 240
 ttgactgatc ttctggacaa gtttcaaatttctgaag gcttgagtaa ttattccatc 300
 5 atagacaaac ttgtgaatat agtcgatgac cttgtggagt gcgtcaaaga aaactcatct 360
 aaggatctaa aaaaatcatt caagagccca gaaccgcaggc tctttactcc tgaagaattc 420
 tttagaattt ttaatagatc cattgatgcc ttcaaggact ttgttagtggc atctgaaact 480
 agtgattgtg tggtttcttc aacattaagt cctgagaaaag attccagagt cagtgtcaca 540
 aaaccattna tgtaaaaaaagggccccc tggcagcc agctccctta ggaatgacagc cagtagcagt 600
 aataggaagg cccaaaatcc ccctggagac tccagccatc actgggcagc catggcattg 660
 ccagcattgt tttctttat aattggctt gctttggag ctttatactg gaagaagagga 720
 cagccaagtc ttacaaggc agttaaaaat atacaatattt atgaagagga taatgagata 780
 agtatgttgc aagagaaaaga gagagagttt caagaagtgt aa 822

15 <210> 135
 <211> 483
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> TGFalpha
 <310> AF123238

25 <400> 135
 atggccccctt cggctggaca gctcgccctg ttcgctctgg gtattgtgtt ggctgcgtgc 60
 caggccttgg agaacagcac gtcggccctg agtgcagacc cgcccggtggc tgcagcagt 120
 gtgtccattt ttaatgactg cccagattcc cacactcagt tctgttcca tggAACCTGC 180
 aggtttttgg tgcaggagga caagccagca tgggtctgcc attctggta cgttgggtca 240
 30 cgctgtgagc atgcggaccc tctggccctg gtggctgcca gccagaagaa gcaggccatc 300
 accgccttgg tgggtgtctc catcggtggcc ctggctgtcc ttatcatcac atgtgtgtc 360
 atacactgtgt gccaggtccg aaaacactgt gagggtgtcc gggccctcat ctggccggac 420
 gagaagccca gcgcctctt gaagggaga accgcttgct gccactcaga aacagtggtc 480
 tga 483

35 <210> 136
 <211> 1071
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> GD3 synthase
 <310> NM003034

45 <400> 136
 atgagccccctt cggggcgccgc cccggcggacaa acgtccagag gggccatggc tggactggcg 60
 tggaaattcc cggggaccccg gotgccccatggagccaggccctgtgtt cgtggctctc 120
 tggggctctt acatcttccc cgtctaccgg ctggccaaacg agaaagagat cgtgcagggg 180
 50 gtgctgtcaac agggcacggc gtggaggagg aaccagaccg cgcccgacgac gttcaggaaa 240
 caaatggaaag actgtgtcgaa ccctgccccat ctctttgtca tgactaaaat gaattccccct 300
 atggggaaaga gcatgtggta tgacggggag tttttataact cattcaccat tgacaattca 360
 acttactctc tcttccaca ggcaacccca ttccagctgc cattgaagaa atgcgggtg 420
 55 gtggggaaatg gtgggattctt gaagaagagt ggctgtggcc gtcaaataga tgaagcaat 480
 tttgtcatgtc gatgcaatctt ccctcccttgc tcaagtgaa acactaaaggaa tggggatcc 540
 aaaagtcaatgt tagtgacagc taatccccacg ataattccgc aaagggttca gaaaccttctg 600
 tgggtcccgaaa agacatttgtt ggacaacatggaaaatctata accacaggta catctacatg 660
 cctgcctttt ctatgaaagac aggaacacaggccatcttgc ggggttattttacactgtgtca 720
 60 gatgttttttggc ccaatcaac agtgctgtt gccaacccca actttctgcg tagcattgg 780
 aagttctggaa aaagtagagg aatccatgc aagcgcctgt ccacaggact ttttctggc 840
 agcgcagctc tgggtctctg tgaagaggta gccatctatg gcttctggcc cttctctgt 900
 aatatqcatg agcagccccat cagccacccac tactatqaca acgtcttacc cttttctggc 960

ttccatgcc a tgcccggaga atttctccaa ctctggtata ttcataaaaat cggtgcactg 1020
agaatgcagc tggaccatg tgaagatacc tcactccagc ccacttccta g 1071

5 <210> 137
<211> 744
<212> DNA
<213> Homo sapiens

10 <300>
<302> FGF14
<310> NM004115

<400> 137

15 atggccgcgg ccatcgctag cggcttgatc cgccagaagc ggcaggcgcg ggagcagcac 60
tggaccgcg cgtctgcca caggaggcgg agcagcccc gcaagaaccc cgggctctgc 120
aacggcaacc tggtgttat cttctccaa gtgcgcattc tcggccctcaa gaagcgcagg 180
ttgcggcgcc aagatcccc a gtc aagggt atagtgcacca gtttatattt caggcaaggc 240
tactactgc aaatgcaccc cgatggagct ctcgatggaa ccaaggatga cagcactaat 300
20 tctacactct tcaacccat accagtggaa ctacgtgtt ttgcacatcca gggagtgaaa 360
acagggttgt atatagccat gaatggagaa gtttacctt acccatcaga actttttacc 420
cctgaatgca agtttaaga atctgtttt gaaaattatt atgtaatcta ctcatccatg 480
ttgtacagac aacaggaatc tggtagagcc tggtttttg gattaataa ggaaggc 540
gcatatggaaag ggaacagagt aaagaaaacc aaaccagcag ctcattttct acccaagcca 600
25 ttggaagttt ccatgtaccg agaaccatct ttgcatgtt ttggggaaac ggtcccgaag 660
cctgggtgaa cgc aagtaa aagcacaatg gctgtcgca taatgaatgg aggcaaacca 720
gtcaacaaga gtaagacaac atag 744

30 <210> 138
<211> 1503
<212> DNA
<213> Human immunodeficiency virus

35 <300>
<302> gag (HIV)
<310> NC001802

<400> 138

40 atgggtgcga gagcgtcagt attaagcggg ggagaattt atcgatggaa aaaaattcgg 60
ttaaggccag gggaaagaa aaaatataaa taaaacata tagtatggc aagcaggag 120
ctagaacatc tcgcagttaa tcctggcctg ttagaaacat cagaaggctg tagacaataa 180
ctgggacagc tacaaccatc cttcagaca ggatcagaag aacttagatc attatataat 240
acatgtacaa ccctctattt tgcatcaa aggatagaga taaaagacac caaggaagct 300
45 ttagacaaga tagaggaaga gcaaaacaaa agtaagaaaa aagcacagca agcagcagct 360
gacacaggac acagcaatca ggtcagccaa aattaccata tagtgcagaa catccagggg 420
caaatggatc atcaggccat atcacatc aactttaaatg catggtaaa agtagtagaa 480
gagaaggctt tcagccca gatgtatccc atgtttcag cttatcaga aggagccacc 540
ccacaagatt taaacaccat gctaaacaca gtgggggac atcaagcagc catgcaaatg 600
50 taaaagaga ccatcaatga ggaagctca gaatggata gagtcatcc agtgcata 660
gggcattttt caccaggcca gatgagagaa ccaaggggaa gtgacatagc aggaactact 720
agtacccttc aggaacaaat aggatggatc acaaataatc cacctatccc agtagggaa 780
atttataaaa gatggataat cttggatc aataaaatag taagaatgtt tagccctacc 840
agcattctgg acataagaca aggaccaag gaacccttta gagactatgt agaccgggttc 900
55 tataaaactc taagagccga gcaagttca caggaggtaa aaaaattggat gacagaaacc 960
ttgttggtcc aaaatgcgaa cccagattgt aagactat taaaagcatt gggaccagcg 1020
gctacactag aagaaatgtt gacagcatgt caggaggtt gaggacccgg ccataaggca 1080
agatgtttt ctgaagcaat gaggcaagta acaaatttcg ctaccataat gatgcagaga 1140
ggcaattttt ggaaccaaaag aaagattttt aagtgtttca attgtggcaa agaagggcac 1200
60 acagccagaa attgcaggcgc ccctaggaaa aagggtttt gggaaatgtgg aaaggaaggaa 1260
caccatgtt aagattgttac tgagagacag gctaattttt tagggaaatgat ctggccctcc 1320
tacaaggggaa ggccaggaa ttttcttcg agcagaccag agccaacacgcccaccagaa 1380

gagagcttca ggtctgggg agagacaaca actccccctc agaaggcagga gccgatagac 1440
aaggaactgt atcccttaac ttcccctcagg tcactctttg gcaacgcaccc ctcgtcacaa 1500
taa 1503

5 <210> 139
 <211> 1101
 <212> DNA
 <213> Human immunodeficiency virus
 10 <300>
 <302> TARBP2
 <310> NM004178
 15 <400> 139
 atgagtgaag aggagcaagg ctccggcact accacggct gcgggctgcc tagtata
 60 caaatgctgg cgcaccaaccc aggcaagacc ccgatcagcc ttctgcagga gtatggacc
 120 agaataaggaa agacgcctgt gtacgaccc ttccaaagccg agggccaagg ccaccaggct
 180 aatttcaccc tccgggtcac cggtggcgac accagctgca ctggtcaggg ccccaggcaag
 240 aaggcagcca agcacaaggc agctgagggtg gcccctaacc acctcaaagg ggggagcatg
 300 ctggagccgg ccctggagga cagcaggatcttttctcccc tagactcttc actgcctgag
 360 gacattccgg ttttactgc tgacgcagct gctaccccaag ttccatctgt agtcttaacc
 420 aggagcccccc ccatggaaat gcagccccct gtctccccc agcagctgaa gtgcacaaaa
 480 gtttgtgtc tgcaggagct ggttgtgcag aaaggctgc gggtgccgaa gtacacagtg
 540 acccaggagt ctgggcccagc ccaccccaaa gaattcacca tgacctgtcg aatggagcg
 600 ttcatgtgaa ttgggagttgg cactccaaa aaattggcaa agcgaatgc ggccggccaaa
 660 atgctgttcc gagtgacac ggtgcctctg gatgcccggg atggcaatga ggtggagcct
 720 gatgtgacc acttctccat tggtgtggc ttccgcctgg atggctttcg aaaccggggc
 780 ccaggttgca cctgggattc tctacgaaat tcagtaggag agaagatctt gtcctccgc
 840 agttgttccc tgggctccct ggggtgcctg ggcctgcct gctgcctgt ctcagtgag
 900 ctctctgagg agcaggccct tcacgtcagc tacctggata ttgaggagct gaggctgag
 960 ggactctgcc agtgcctgtt ggaactgtcc acccaggccgg ccactgtgtg tcatggctt
 1020 gcaaccacca gggaggcagc ccgtggtgag gtcgcctgcgtt gtcctgcgtt gtcaccc
 1080 atcatggcag gcagcaagt a
 1101
 35 <210> 140
 <211> 219
 <212> DNA
 40 <213> Human immunodeficiency virus
 <300>
 <302> TAT (HIV)
 <310> U44023
 45 <400> 140
 atggagccag tagatccctag cctagagccc tggaaagcatc caggaagtca gcctaagact
 60 gcttgcacca cttgcatttgc taaaaggatgt tgctttcatt gccaagtttgc ttctataaca
 120 aaaggcttag gcatctccat tggcaggaag aagcggagac agcgcacgaag aactcctcaa
 180 ggtcatcaga ctaatcaagt ttctctatca aagcagtaa
 219
 55 <210> 141
 <211> 22
 <212> RNA
 <213> Künstliche Sequenz
 <220>
 <223> Beschreibung der künstlichen Sequenz: Sense-Strang
 (R1A) einer dsRNA, die homolog zur MDR-1-Sequenz
 ist

<400> 141
ccaucucgaa aagaaguuaa ga 22

5 <210> 142
<211> 24
<212> RNA
<213> Künstliche Sequenz

10 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (R1B) einer dsRNA, die
komplementär zur MDR-1-Sequenz ist

15 <400> 142
ucuuuacuuc uuuucgagau gggu 24

20 <210> 143
<211> 22
<212> RNA
<213> Künstliche Sequenz

25 <220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
(R2A) einer dsRNA, die homolog zur MDR-1- Sequenz
ist

30 <400> 143
uauagguucc aggcuugcug ua 22

35 <210> 144
<211> 22
<212> RNA
<213> Künstliche Sequenz

40 <220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
(R3A) einer dsRNA, die homolog zur Sequenz des MDR
1-Gens ist

45 <400> 144
ccagagaagg ccgcaccugc au 22

50 <210> 145
<211> 24
<212> RNA
<213> Künstliche Sequenz

55 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (R3B) einer dsRNA, die
komplementär zur MDR-1-Sequenz ist

60 <400> 145
augcaggugc ggccuucucu ggcu 24

60 <210> 146
<211> 21

zur YFP- bzw. GFP-Sequenz ist

<400> 150
ccacaugaag cagcacgacu u

21

5

<210> 151
<211> 21
<212> RNA
<213> Künstliche Sequenz

10 <213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (S7B) einer dsRNA, die
komplementär zur YFP- bzw. GFP-Sequenz ist

15

<400> 151
gucgugcugc uucauguggu c

21

20

<210> 152
<211> 24
<212> RNA
<213> Künstliche Sequenz

25

<220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (R2B) einer dsRNA, die
komplementär zur MDR-1-Sequenz ist

30

<400> 152
uacagcaagc cuggaaccua uagc

24

35

<210> 159
<211> 22
<212> RNA
<213> Künstliche Sequenz

40

<223> Beschreibung der künstlichen Sequenz: sense-Strang (K1A) einer dsRNA, die homolog zur 5'-UTR der Neomycin-Sequenz ist

45

<400> 153
acaggaugag gaucguuucg ca

22

10

<210> 154
<211> 22
<212> RNA
<213> Künstliche Sequenz

<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (K1B) einer dsRNA, die
komplementär zur 5'-UTR der Neomycin-Sequenz ist

66

<400> 154
ugcgaaaacga uccucauccu gu

22

<210> 155
<211> 21
<212> RNA
<213> Künstliche Sequenz
5
<220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
(K3A) einer dsRNA, die homolog zur 5`-UTR der
Neomycin-Sequenz ist
10
<400> 155
gaugagggaua guuuucgcaug a

15 <210> 156
<211> 21
<212> RNA
<213> Künstliche Sequenz

20 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (K3B) einer dsRNA, die
komplementär zur 5`-UTR der Neomycin-Sequenz ist

25 <400> 156
augcgaaaacg auccucaucc u

30 <210> 157
<211> 24
<212> RNA
<213> Künstliche Sequenz

35 <220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
(K2A) einer dsRNA, die homolog zur 5`-UTR der
Neomycin-Sequenz ist

40 <400> 157
acagggaaug ag gaucguuucg caug

45 <210> 158
<211> 24
<212> RNA
<213> Künstliche Sequenz

50 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (K2B) einer dsRNA, die
komplementär zur 5`-UTR der Neomycin-Sequenz ist

55 <400> 158
ugcgaaaacg a uccucauccu gucu

60 <210> 159
<211> 24
<212> RNA
<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (S4B) einer dsRNA, die
komplementär zur YFP-bzw. GFP-Sequenz ist

5 <400> 159
gaagucgugc ugcuucaugu gguc

24

10 <210> 160
<211> 24
<212> RNA
<213> Künstliche Sequenz

15 <223> Beschreibung der künstlichen Sequenz: sense-Strang
(PKC1 A) einer dsRNA, die homolog zur
Proteinkinase C-Sequenz ist

20 <400> 160
cuucuccggcc ucacacccgcu gcaa

24

<210> 161
<211> 22
25 <212> RNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
30 antisense-Strang (PKC2 B) einer dsRNA, die
komplementär zur Proteinkinase C-Sequenz ist

<400> 161
gcagcggugu gaggcggaga ag

22

<210> 162
<211> 21
<212> RNA
40 <213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
45 antisense-Strang (S12B) einer dsRNA, die
komplementär zur YFP- bzw. GFP-Sequenz ist

<400> 162
aagucgugcu gcuucaugug g

21

50 <210> 163
<211> 23
<212> RNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (S11B) einer dsRNA, die
komplementär zur YFP- bzw. GFP-Sequenz ist

<400> 163
aaqucquqcu gcuucaugug guc

23

5 <210> 164
<211> 20
<212> RNA
<213> Künstliche Sequenz

10 <220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
(S13A) einer dsRNA, die homolog zur YFP- bzw.
GFP-Sequenz ist

15 <400> 164
ccacaugaag cagcacgacu 20

20 <210> 165
<211> 22
<212> RNA
<213> Künstliche Sequenz

25 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (S13B) einer dsRNA, die
komplementär zur YFP- bzw. GFP-Sequenz ist

30 <400> 165
agucgugcug cuucaugugg uc 22

35 <210> 166
<211> 20
<212> RNA
<213> Künstliche Sequenz

40 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (S14B) einer dsRNA, die
komplementär zur YFP- bzw. GFP-Sequenz ist

45 <400> 166
agucgugcug cuucaugugg 20

50 <220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
(S4A) einer dsRNA, die homolog zur YFP- bzw.
GFP-Sequenz ist

55 <400> 167
ccacaugaag cagcacgacu ucuu 24

60 <210> 168
<211> 21
<212> RNA
<213> Künstliche Sequenz

5 <220>
 <223> Beschreibung der künstlichen Sequenz: sense-Strang
 (ES-7A) einer dsRNA, die homolog zur humanen
 EGFR-Sequenz ist

<400> 168
aacaccgcag caugucaaga u

21

10 <210> 169
 <211> 21
 <212> RNA
 <213> Künstliche Sequenz

15 <220>
 <223> Beschreibung der künstlichen Sequenz:
 antisense-Strang (ES-7B) einer dsRNA, die
 komplementär zur humanen EGFR-Sequenz ist

20 <400> 169
cuugacaugc ugcgguguuu u

21

25 <210> 170
 <211> 22
 <212> RNA
 <213> Künstliche Sequenz

30 <220>
 <223> Beschreibung der künstlichen Sequenz: sense-Strang
 (ES-8A) einer dsRNA, die homolog zur humanen
 EGFR-Sequenz ist

35 <400> 170
aaguuaaaau ucccgucgcu au

22

40 <210> 171
 <211> 22
 <212> RNA
 <213> Künstliche Sequenz

45 <220>
 <223> Beschreibung der künstlichen Sequenz:
 antisense-Strang (ES-8B) einer dsRNA, die
 komplementär zur humanen EGFR-Sequenz ist

50 <400> 171
ugauagcgac gggauuuua ac

22

55 <210> 172
 <211> 22
 <212> RNA
 <213> Künstliche Sequenz

60 <220>
 <223> Beschreibung der künstlichen Sequenz: sense-Strang
 (ES-2A) einer dsRNA, die homolog zur humanen
 EGFR-Sequenz ist

<400> 172
agugugaucc aagcugucgg aa

22

- 5 <210> 173
<211> 24
<212> RNA
<213> Künstliche Sequenz
- 10 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (ES-5B) einer dsRNA, die
komplementär zur humanen EGFR-Sequenz ist
- 15 <400> 173
uugggacagc uuggaucaca cuuu

24

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
18. Juli 2002 (18.07.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/055693 A3

(51) Internationale Patentklassifikation⁷: C12N 15/11,
A61K 31/713, C12N 15/88, A61P 35/00

[DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE).
LIMMER, Stephan [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE). **ROST, Sylvia** [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE). **HADWIGER, Philipp** [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE).

(21) Internationales Aktenzeichen: PCT/EP02/00152

(22) Internationales Anmeldedatum:
9. Januar 2002 (09.01.2002)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:

101 00 586.5	9. Januar 2001 (09.01.2001)	DE
101 55 280.7	26. Oktober 2001 (26.10.2001)	DE
101 58 411.3	29. November 2001 (29.11.2001)	DE
101 60 151.4	7. Dezember 2001 (07.12.2001)	DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): RIBOPHARMA AG [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): KREUTZER, Roland

(74) Anwalt: GASSNER, Wolfgang; Nägelsbachstrasse 49a, 91052 Erlangen (DE).

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR),

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR INHIBITING THE EXPRESSION OF A TARGET GENE

(54) Bezeichnung: VERFAHREN ZUR HEMMUNG DER EXPRESSION EINES ZIELGENS

WO 02/055693 A3

(57) Abstract: The invention relates to a method for inhibiting the expression of a target gene in a cell, comprising the following steps: introduction of an amount of at least one dual-stranded ribonucleic acid (dsRNA I) which is sufficient to inhibit the expression of the target gene. The dsRNA I has a dual-stranded structure formed by a maximum of 49 successive nucleotide pairs. One strand (as1) or at least one section of the one strand (as1) of the dual-stranded structure is complementary to the sense strand of the target gene. The dsRNA has an overhang on the end (E1) of dsRNA I formed by 1 - 4 nucleotides.

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte: Einführen mindestens einer doppelstängigen Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge, wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Sinn-Strang des Zielgens ist, und wobei die dsRNA am einen Ende (E1) der dsRNA I einen aus 1 bis 4 Nukleotiden gebildeten überhang aufweist.

OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes und der anderen
Abkürzungen wird auf die Erklärungen ("Guidance Notes on
Codes and Abbreviations") am Anfang jeder regulären Ausgabe
der PCT-Gazette verwiesen.

Veröffentlicht:

— mit internationalem Recherchenbericht

(88) Veröffentlichungsdatum des internationalen

Recherchenberichts: 17. Juli 2003

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 02/00152

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/11 A61K31/713 C12N15/88 A61P35/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, MEDLINE, BIOSIS, EMBASE, CHEM ABS Data, SEQUENCE SEARCH

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 00 44895 A (KREUTZER ROLAND ;LIMMER STEPHAN (DE)) 3 August 2000 (2000-08-03) the whole document ---	1-240
Y	WO 98 05770 A (ROTHBARTH KARSTEN ;JOSWIG GABY (DE); WERNER DIETER (DE); SCHUBERT) 12 February 1998 (1998-02-12) the whole document ---	1-240
Y	WO 99 32619 A (CARNEGIE INST OF WASHINGTON ;MONTGOMERY MARY K (US); FIRE ANDREW () 1 July 1999 (1999-07-01) the whole document ---	1-240
Y	WO 00 44914 A (FARRELL MICHAEL J ;LI YIN XIONG (US); KIRBY MARGARET L (US); MEDIC) 3 August 2000 (2000-08-03) the whole document ---	1-240
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

7 January 2003

27/01/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 310-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

Armandola, E

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 02/00152

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	ZAMORE PHILLIP D ET AL: "RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals" CELL, CELL PRESS, CAMBRIDGE, MA, US, vol. 101, no. 1, 31 March 2000 (2000-03-31), pages 25-33, XP002208683 ISSN: 0092-8674 the whole document ---	1-240
Y	BASS BRENDA L: "Double-stranded RNA as a template for gene silencing" CELL, CELL PRESS, CAMBRIDGE, MA, US, vol. 101, no. 3, 28 April 2000 (2000-04-28), pages 235-238, XP002194756 ISSN: 0092-8674 figure 1 ---	1-240
Y	UHLMANN E ET AL: "ANTISENSE OLIGONUCLEOTIDES: A NEW THERAPEUTIC PRINCIPLE" CHEMICAL REVIEWS, AMERICAN CHEMICAL SOCIETY, EASTON, US, vol. 90, no. 4, 1 June 1990 (1990-06-01), pages 543-584, XP000141412 ISSN: 0009-2665 the whole document ---	20-30, 60-70, 99-109, 140-150, 180-190, 219-229
Y	PARRISH S., FLEENOR J., ET AL.: "Functional Anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference." MOL. CELL, vol. 6, November 2000 (2000-11), pages 1077-187, XP002226361 the whole document ---	1-240
Y,P	AMBROS VICTOR: "Dicing up RNAs" SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,, US, vol. 293, no. 5531, 3 August 2001 (2001-08-03), pages 811-813, XP002183122 ISSN: 0036-8075 the whole document ---	1-240
		-/-

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 02/00152

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y,P	<p>ELBASHIR SAYDA M ET AL: "RNA interference is mediated by 21- and 22-nucleotide RNAs" GENES AND DEVELOPMENT, COLD SPRING HARBOR LABORATORY PRESS, NEW YORK, US, vol. 15, no. 2, 15 January 2001 (2001-01-15), pages 188-200, XP002204651 ISSN: 0890-9369 the whole document</p> <p>-----</p>	1-240
A	<p>WO 94 01550 A (AGRAWAL SUDHIR ;HYBRIDON INC (US); TANG JIN YAN (US)) 20 January 1994 (1994-01-20)</p> <p>-----</p>	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 02/00152

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 0044895	A 03-08-2000	DE AT AU WO DE DE EP EP	19956568 A1 222953 T 3271300 A 0044895 A1 10080167 D2 50000414 D1 1144623 A1 1214945 A2	17-08-2000 15-09-2002 18-08-2000 03-08-2000 28-02-2002 02-10-2002 17-10-2001 19-06-2002
WO 9805770	A 12-02-1998	DE WO EP	19631919 A1 9805770 A2 0918853 A2	12-02-1998 12-02-1998 02-06-1999
WO 9932619	A 01-07-1999	AU AU CA EP JP WO	743798 B2 1938099 A 2311999 A1 1042462 A1 2002516062 T 9932619 A1	07-02-2002 12-07-1999 01-07-1999 11-10-2000 04-06-2002 01-07-1999
WO 0044914	A 03-08-2000	AU EP WO US	2634800 A 1147204 A1 0044914 A1 2002114784 A1	18-08-2000 24-10-2001 03-08-2000 22-08-2002
WO 9401550	A 20-01-1994	AT AU CA CZ DE EP FI HU JP NO NZ PL WO	171210 T 4770093 A 2139319 A1 9403332 A3 69321122 D1 0649467 A1 946201 A 69981 A2 8501928 T 945020 A 255028 A 307025 A1 9401550 A1	15-10-1998 31-01-1994 20-01-1994 12-07-1995 22-10-1998 26-04-1995 30-12-1994 28-09-1995 05-03-1996 28-02-1995 24-03-1997 02-05-1995 20-01-1994

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 02/00152

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C12N15/11 A61K31/713 C12N15/88 A61P35/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C12N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ, MEDLINE, BIOSIS, EMBASE, CHEM ABS Data, SEQUENCE SEARCH

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 00 44895 A (KREUTZER ROLAND ; LIMMER STEPHAN (DE)) 3. August 2000 (2000-08-03) das ganze Dokument ---	1-240
Y	WO 98 05770 A (ROTHBARTH KARSTEN ; JOSWIG GABY (DE); WERNER DIETER (DE); SCHUBERT) 12. Februar 1998 (1998-02-12) das ganze Dokument ---	1-240
Y	WO 99 32619 A (CARNEGIE INST OF WASHINGTON ; MONTGOMERY MARY K (US); FIRE ANDREW ()) 1. Juli 1999 (1999-07-01) das ganze Dokument ---	1-240
Y	WO 00 44914 A (FARRELL MICHAEL J ; LI YIN XIONG (US); KIRBY MARGARET L (US); MEDIC) 3. August 2000 (2000-08-03) das ganze Dokument ---	1-240
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonderes bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldeatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder da aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldeatum oder dem Prioritätsatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann auch aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
7. Januar 2003	27/01/2003
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Armando La, E

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP 02/00152

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	ZAMORE PHILLIP D ET AL: "RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals" CELL, CELL PRESS, CAMBRIDGE, MA, US, Bd. 101, Nr. 1, 31. März 2000 (2000-03-31), Seiten 25-33, XP002208683 ISSN: 0092-8674 das ganze Dokument ---	1-240
Y	BASS BRENDA L: "Double-stranded RNA as a template for gene silencing" CELL, CELL PRESS, CAMBRIDGE, MA, US, Bd. 101, Nr. 3, 28. April 2000 (2000-04-28), Seiten 235-238, XP002194756 ISSN: 0092-8674 Abbildung 1 ---	1-240
Y	UHLMANN E ET AL: "ANTISENSE OLIGONUCLEOTIDES: A NEW THERAPEUTIC PRINCIPLE" CHEMICAL REVIEWS, AMERICAN CHEMICAL SOCIETY, EASTON, US, Bd. 90, Nr. 4, 1. Juni 1990 (1990-06-01), Seiten 543-584, XP000141412 ISSN: 0009-2665 das ganze Dokument ---	20-30, 60-70, 99-109, 140-150, 180-190, 219-229
Y	PARRISH S., FLEENOR J., ET AL.: "Functional Anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference." MOL. CELL, Bd. 6, November 2000 (2000-11), Seiten 1077-187, XP002226361 das ganze Dokument ---	1-240
Y,P	AMBROS VICTOR: "Dicing up RNAs" SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,, US, Bd. 293, Nr. 5531, 3. August 2001 (2001-08-03), Seiten 811-813, XP002183122 ISSN: 0036-8075 das ganze Dokument ---	1-240
		-/-

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 02/00152

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y,P	ELBASHIR SAYDA M ET AL: "RNA interference is mediated by 21- and 22-nucleotide RNAs" GENES AND DEVELOPMENT, COLD SPRING HARBOR LABORATORY PRESS, NEW YORK, US, Bd. 15, Nr. 2, 15. Januar 2001 (2001-01-15), Seiten 188-200, XP002204651 ISSN: 0890-9369 das ganze Dokument -----	1-240
A	WO 94 01550 A (AGRAWAL SUDHIR ;HYBRIDON INC (US); TANG JIN YAN (US)) 20. Januar 1994 (1994-01-20) -----	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationaler Aktenzeichen

PCT/EP 02/00152

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 0044895	A	03-08-2000	DE AT AU WO DE DE EP EP	19956568 A1 222953 T 3271300 A 0044895 A1 10080167 D2 50000414 D1 1144623 A1 1214945 A2		17-08-2000 15-09-2002 18-08-2000 03-08-2000 28-02-2002 02-10-2002 17-10-2001 19-06-2002
WO 9805770	A	12-02-1998	DE WO EP	19631919 A1 9805770 A2 0918853 A2		12-02-1998 12-02-1998 02-06-1999
WO 9932619	A	01-07-1999	AU AU CA EP JP WO	743798 B2 1938099 A 2311999 A1 1042462 A1 2002516062 T 9932619 A1		07-02-2002 12-07-1999 01-07-1999 11-10-2000 04-06-2002 01-07-1999
WO 0044914	A	03-08-2000	AU EP WO US	2634800 A 1147204 A1 0044914 A1 2002114784 A1		18-08-2000 24-10-2001 03-08-2000 22-08-2002
WO 9401550	A	20-01-1994	AT AU CA CZ DE EP FI HU JP NO NZ PL WO	171210 T 4770093 A 2139319 A1 9403332 A3 69321122 D1 0649467 A1 946201 A 69981 A2 8501928 T 945020 A 255028 A 307025 A1 9401550 A1		15-10-1998 31-01-1994 20-01-1994 12-07-1995 22-10-1998 26-04-1995 30-12-1994 28-09-1995 05-03-1996 28-02-1995 24-03-1997 02-05-1995 20-01-1994