Metode QR Aceste metode merg pentru matrice simetrice tridiagono. $A = \begin{bmatrix} a_1 & b_2 & 0 & ... & ... & 0 \end{bmatrix}$ [Oil br Daca le = 0 si le = 0, aturci matrices A are valorile proprii a, si a n. Daca acestes nu sunt, aturci transformam matrices A para cand devin apropiate de o. Daca lej = 0, aturci putem sa re importim " matriclo in 2: $A_1 = \begin{bmatrix} a_1 & b_2 & 0 \\ b_2 & \vdots & 0 \end{bmatrix}$ $A_2 = \begin{bmatrix} a_j & b_{j*} & 0 \\ \vdots & \vdots & \vdots \\ a_n & \vdots \end{bmatrix}$ Apoi aplicam metodele Q R pe cele 2 matrici si aflam valorile propri pentru fiecare.

Q = \[0.90 \\ 0 - 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\	0.9	0.1
R = [6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.6 0.3 4.2 3.1	
A = R · Q :	6 · 3 · 0 · ¥ · 0 · ¥ · 5 · 2 · 0 · 8 · · · · · · · · · · · · · · · ·	0 08 1.5]
Q = 0.99 0-1	-0.1 0.02 1 -0.2 0.2 0.99	
R = [6.3 0 0 0 0 0 0 0 0 0	1.3 0 5.1 1 0 7.4	
A = \[\begin{aligned} 6 \cdot 4 \\ 0 \cdot 6 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0. C 0) 5. 2 0. 2] 0. 2 1.3]	Dig (A) = [1.35 5 6.6]

