FUEL SPACER

Patentnummer:

JP6148370

Publiceringsdag:

1994-05-27

Uppfinnare:

HIRUKAWA ATSUJI

Sökande:

TOKYO SHIBAURA ELECTRIC CO

Klasser:

-internationell:

G21C3/344; G21C3/34; (IPC1-7): G21C3/344

-europeisk:

Ansökningsnummer:

JP19920295175 19921104

Prioritetsnummer:

JP19920295175 19921104

Report a data error here

Sammandrag från JP6148370

PURPOSE: To perform outside chamfering of the end part of a ferrule existing in a flow channel of a coolant, control pressure loss reduction and transition boiling easy of producing at the upstream side of a fuel spacer and provide the fuel spacer improving critical output. CONSTITUTION: The inside and outside of a tube-like ferrule 30 inserting fuel rods 5, 9 in a fuel assembly 28 of a nuclear reactor bundling a plurality of the fuel rods 5, 9 are regarded as a flow channel of a coolant and each fuel rod 5, 9 is concentrically held with an inward projection 14 and continuous loop springs 16, 35. Characterization is performed in that a chamfer 32 is formed in the outside of at least the lower end part (on the upstream side of coolant) of the tube-like ferrule 30 in regard to fuel spacers 29a, 29b connected at a lateral position be mutually welding the ferrules 30, a spring and a circumferential support band 13.

Data från esp@cenet databasen - Worldwide

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-148370

(43)公開日 平成6年(1994)5月27日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

G 2 1 C 3/344

7156-2G

G 2 1 C 3/34

GDB R

審査請求 未請求 請求項の数1(全 9 頁)

(21)出願番号

特願平4-295175

(22)出顧日

平成4年(1992)11月4日

(71)出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72)発明者 蛭川 厚治

神奈川県横浜市磯子区新杉田町8番地 株

式会社東芝横浜事業所内

(74)代理人 弁理士 猪股 祥晃

(54) 【発明の名称】 燃料スペーサ

(57)【要約】

【目的】冷却材の流路に介在するフェルールの端部に外 側チャンファ加工をして、圧損低減と燃料スペーサ上流 側で発生し易い遷移沸騰を抑制し、限界出力が向上する 燃料スペーサを提供する。

【構成】複数本の燃料棒5,9を束ねた原子炉の燃料集合体28中で前記燃料棒5,9を挿通した各管状フェルール30の内外側を冷却材の通路として内方の突起14および連続ループパネ16,35により各燃料棒5,9を同心円状に保持すると共に、このフェルール30相互を溶接とパネおよび周辺支持パンド13で横方向位置に連結した燃料スペーサ29a,29bにおいて、前記管状フェルール30の少なくとも下端部(冷却材流路上流側)の外側にチャンファ32を形成したことを特徴とする。

【特許請求の範囲】

【請求項1】 複数本の燃料棒を束ねた原子炉の燃料集 合体中で前記燃料棒を挿通した各フェルールの内外側を 冷却材の通路として内方の突起およびパネにより各燃料 棒を同心円状に保持すると共に、このフェルール相互を 溶接とバネおよび周辺支持パンドで横方向位置に連結し た燃料スペーサにおいて、前記フェルールの少なくとも 下端部(冷却材流路上流側)の外側にチャンファを形成 したことを特徴とする燃料スペーサ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、原子炉の燃料集合体に 用いる燃料スペーサに係り、特に独立セル型燃料スペー サに関する。

[0002]

【従来の技術】従来、沸騰水型原子炉に用いられる燃料 集合体の燃料スペーサとしては、特開昭59-65287号公報 の第2A図に示す構造が提案されている。この燃料スペ ーサは、内部に燃料棒が挿入される多数の管状フェルー ルを格子状に配列し、隣接する相互の管状フェルールを 溶接にて結合して構成したものである。なお、燃料棒と 同様にウォーターロッドも管状フェルール内に挿入され

【0003】従来の燃料スペーサを図13乃至図17に基づ いて説明する。図13は沸騰水型原子炉に使用する燃料集 合体の縦断面図で、この燃料集合体1はハンドル2を有 する上部タイプレート3と、下部タイプレート4および 両端部が上部タイプレート3と下部タイプレート4とに 支持された多数の燃料棒5と、この燃料棒5の間に配置 されたウォーターロッド6、および軸方向に複数個配置 30 された燃料スペーサ7a、7bとチャンネルボックス8 から形成されている。

【0004】また燃料スペーサ7a, 7bは、燃料棒5 およびウォーターロッド6の相互の水平方向間隔を一定 に保持し、さらにチャンネルボックス8が燃料スペーサ 7a, 7bによって束ねられた燃料棒5およびウォータ ーロッド6の束を取り囲んでいる。なお、チャンネルボ ックス8は上部タイプレート3に取り付けられる。燃料 棒の一部は短尺燃料棒9で、その下端部のみを下部タイ プレート4に保持されていて、ウォーターロッド6の下 40 端部に冷却材流入口10が設けられ、上端部には冷却材流 出口11が設けられている。

【0005】燃料スペーサ7aは、図14(b)の図13に おけるB-B矢視断面図に示すように、燃料棒5および 短尺燃料棒9と同数の管状フェルール12を格子状に配列 して、管状フェルール12の束の外周を帯状の周辺支持バ ンド13にて取り囲んだものである。

【0006】また燃料スペーサ7bは、図14(a)で図 13のA-A矢視断面図に示すように、燃料棒5と同数の

支持パンド13で取り囲んだもので、いずれも格子状に配 列された管状フェルール12は、隣接している管状フェル ール12同士が点溶接にて接合されている。

2

【0007】管状フェルール12は図15の拡大斜視図に示 すように、管状フェルール12の両端または近傍には、特 公昭63-48031号公報の第7図、または特開昭59-65287号 公報の第3A図および第3B図に開示されているような 突起が夫々2個設けられている。これらの突起14は管状 フェルール12の一部を内側に突出させたものである。

【0008】隣接する管状フェルール12の端は点溶接15 *10* (図15中黒点で示す) にて溶接されている。また図14 (a), (b) に示すように隣接している2個の管状フ ェルール12に跨って連続ループバネ16が設置されてお り、この連続ループパネ16の形状は、特開昭59-65287号 公報の第4図に開示されているものと同様であって、高 さ方向の中央部が外側に突出している。

【0009】さらに、連続ループバネ16を取り付ける部 分は、特開昭62-287184 号公報の第1図および第2図に 開示されているように、図15に示す管状フェルール12の 円筒側面部の1ケ所に縦方向に矩形の切り欠き部17を設 け、この切り欠き部17の一端または上下端近傍(図15で は切り欠き部17の上下部) に爪部18を突設した形状とし

【0010】また隣接する管状フェルール12における、 同じ切り欠き部17を相対または軸方向に逆転させて突き 合わせ、これらの爪部18に燃料棒押圧用の連続ループバ ネ16を保持させる。この結果、管状フェルール12は格子 状に組立てられる。なお、ウォーターロッド6が管状フ ェルール12の内径よりも太径の場合の燃料スペーサ7 a、7bの開発が行われており、この例としては、特開 昭61-198096号公報の第1図に開示されたものが提案さ れている。

【0011】従来の管状フェルール12を格子状に配列し た燃料スペーサ7a,7bは燃料棒5の挿入性を容易に することと、上下端を隣接する管状フェルール12同士で 点溶接し易いように端面の内側にチャンファを加工して いる。

[0012]

【発明が解決しようとする課題】近年、燃料集合体1の 遷移沸騰発生と燃料スペーサ7a, 7bの形状との関係 のメカニズム解明が進み、燃料集合体1の出力が限界出 カに近づくと軸方向に複数個(現在7個乃至8個)配置 された燃料スペーサ7a, 7bの上方から2個目乃至1 個目の下端側近傍(下端より上流側5~6 mm)で遷移沸 騰が生じ易いことが分かっている。

【0013】さらに、遷移沸騰が生じている燃料棒表面 の周方向位置は、図16の流路要部拡大断面図に示すよう に、4本の燃料棒5で囲まれる流路19の中心に面する部 分(図16において、45°方向の燃料棒表面部位)である 管状フェルール12を格子状に配列し、外周を帯状の周辺 50 ことが分かっている。また燃料スペーサは、2相流を撹

拌することによって燃料スペーサ下流側の燃料棒5の表 面に冷却材の液滴を付着させて液膜を厚くする働きをす るが、燃料スペーサの上流側では燃料棒5の表面に沿っ て流れる液膜を2相流の流れの乱れの結果、薄くして遷 移沸騰を生じ易くする影響も与える。

【0014】また図16に4本の燃料棒5で囲まれた流路 19における2相流の流速分布を等高線で示す。この等高 線の添え字1~6で示した数字の小さいほど流速が大き いことを示す。流速分布は燃料棒表面の0°,90°部位 では遅く、45°部位20では速いことが分かる。実験によ 10 る遷移沸騰を生じ易い燃料スペーサ下端近傍の燃料棒表 面の液膜厚さ測定結果も、この45°部位20で液膜が薄く なる傾向を示している。

【0015】これらの結果から、燃料スペーサ7a,7 b通過前後の冷却材の2相流(環状流状態を呈してい る) 状態を考察すると、図17の燃料棒間の流路説明図に 示すような流れ状態が考察される。すなわち、図17 (a) に示す燃料棒表面の0°、90°部位(直角方向) では、燃料棒5.5間の冷却材の流路19の中央におい て、管状フェルール12,12が先端が共に内側にチャンフ ァ21を有する平板状の障害として存在し、この外形に沿 って滑らかに冷却材の流線が曲がって、管状フェルール 12の内側と燃料棒5の表面の間の環状流路22に流入す

【0016】この時、この部位の流速は比較的に遅いの で、液膜23の流も厚く、環状流路22に流入する時に加速 されて、かつ流線が燃料棒5の表面に近づくことによる 液膜23の厚さの低減は小さい。これに対して図17(b) に示す45°部位(対角方向)では、燃料棒5,5間の冷 却材の流路19の両側で管状フェルール12が先端が片側に チャンファ21を有する平板状の障害として存在する。従 って、この外形に沿って滑らかに流線が曲がって管状フ ェルール12の内側と燃料棒5の表面の間の環状流路22に 流入する流線と、管状フェルール12の外側に沿って流れ る流れに分かれる。

【0017】ところが、この外側流路24では流速が速い ため、燃料棒5表面の境界層も薄い流れの状態を呈し、 燃料棒5表面と管状フェルール12内側との環状流路22に おいては、0°,90°部位(直角方向)におけるよりも 高速の蒸気流を狭い環状流路22に誘導することになる。 この結果、管状フェルール12の上流側25では元々液膜23 の流の厚さが薄いところへ、この高速流の加速効果およ び流線が燃料棒5の表面に近づくことにより、液膜23の 厚さの低減度合いが、図15 (a) に示す直角方向部位よ り大きくなる。

【0018】この結果から従来遷移沸騰を生じる場合 は、燃料スペーサ7a、7bの管状フェルール12下端近 傍の対角方向部位であると考えられる。また燃料スペー サ7a,7b通過後においては、燃料スペーサ7a,7

離して乱流を生じるため、環状流における蒸気相の中の 液滴26が流れの乱れにより、燃料棒5の表面に付着す る。

【0019】さらに、燃料棒5表面近傍の流速が拡大流 となり、流速が低下復帰することにより管状フェルール 12の下流側27における液膜23の流れの厚さは、管状フェ ルール12通過前よりも厚くなる。これが燃料スペーサ7 a, 7 bによる限界出力の向上効果である。なお、図17 (a), (b) において、一点鎖線の左側は2相流を矢 印で、右側はで2相流を断面で表している。

【0020】本発明の目的とするところは、冷却材の流 路に介在するフェルールの端部に外側チャンファ加工を して、圧損低減と燃料スペーサ上流側で発生し易い遷移 沸騰を抑制し、限界出力が向上する燃料スペーサを提供 することにある。

[0021]

【課題を解決するための手段】複数本の燃料棒を束ねた 原子炉の燃料集合体中で前記燃料棒を挿通した各フェル ールの内外側を冷却材の通路として内方の突起とパネに より各燃料棒を同心円状に保持すると共に、このフェル ール相互を溶接とバネおよび周辺支持バンドで横方向位 置に連結した燃料スペーサにおいて、前記フェルールの 少なくとも下端部(冷却材流路上流側)の外側にチャン ファを形成したことを特徴とする。

[0022]

【作用】燃料集合体中に流れる冷却材の流路は、燃料棒 間の直角方向と対角方向とで間隔が異なり、特に燃料棒 を保持する燃料スペーサ位置においては、直角方向では 燃料棒表面とフェルール内側間の環状流路を、また対角 方向では環状流路と隣接するフェルール外側間の外側流 路が形成される。

【0023】特に対角方向の環状流路においては、燃料 棒表面近傍の流速が速い冷却材の流れをフェルールの下 端部(冷却材流路上流側)に形成した外側のチャンファ により外側流路に誘導して、フェルール内側と燃料棒表 面とで形成する狭い環状流路に取り込まないで、外側流 路を圧縮流の形で流すので、燃料棒表面近傍における流 線が燃料棒表面に近づかないことと、流れが圧縮されず に加速度合いが小さいので液膜流の厚さ低下が緩和され 40 る。これにより、遷移沸騰の発生が抑制されて燃料集合 体の限界出力が向上する。

[0024]

【実施例】本発明一実施例を図面を参照して説明する。 なお、上記した従来技術と同じ構成部分には同一符号を 付して詳細な説明を省略する。図1の縦断面図に示すよ うに、沸騰水型原子炉に使用する燃料集合体28は、ハン ドル2を有する上部タイプレート3と下部タイプレート 4、および両端部が上部タイプレート3と下部タイプレ ート4とに支持された、多数の燃料棒5と短尺燃料棒9 bの管状フェルール12の表面に沿った境界層の流れが剥 50 の間に配置されたウォーターロッド 6、さらに軸方向に

複数個配置された燃料スペーサ29a, 29bとから形成されている。

【0025】燃料棒5,9およびウォーターロッド6は、燃料スペーサ29a,29bにより相互の水平方向間隔を一定に保持されている。さらに、チャンネルボックス8が、燃料スペーサ29a,29bによって束ねられた燃料棒5,9とウォーターロッド6を取り囲んで、上部タイプレート3に取り付けられている。

【0026】燃料棒の一部は短尺燃料棒9で、その下端 にっかい このみを下部タイプレート4に保持させても良い。同様 10 る。にウォーターロッド6も、その下端部のみを下部タイプ レート4に保持させても良く、またチャンネルボックス 8は上部タイプレート3の代わりに下部タイプレート4 に取り付けられても良い。さらに、ウォーターロッド6 3、の下端部には冷却材流入口10が設けられ、上端部に冷却 材流出口11が設けられている。 架板

【0027】燃料スペーサ29 bは、図2(a)の断面図で図1におけるA-A矢視断面図に示すように、燃料棒5と同数の管状フェルール30を格子状に配列し、この管状フェルール30の束を連続ループパネ16と、外周を帯状の周辺支持パンド13にて取り囲んだものである。また燃料スペーサ29 bは、図2(b)の断面図で、図1におけるB-B矢視断面図に示すように、燃料棒5および単尺燃料棒9と同数の管状フェルール30を格子状に配列し、この管状フェルール30の束を連続ループパネ16と、外周を帯状の周辺支持パンド13にて取り囲んだものである。

【0028】また格子状に配列された図3の拡大斜視図で示す管状フェルール30は、隣接している管状フェルール30同士を点溶接31(黒点で示す)にて溶接している。管状フェルール30の上下端には内側に突起14が夫々2個 30設けている。これらの突起14は、管状フェルール30の一部を内側に突出させたものである。

【0029】管状フェルール30の下端面(冷却材流路上流側)は、隣接する管状フェルール30と点溶接31する部位近傍を除いて外側に大きいチャンファ32を加工を施す。なお、端面が鋭角になる方がより本発明上都合が良い。また上端面(下流側端面)は燃料棒組立の容易性の観点から内側に若干のチャンファ加工をする。しかし圧損低減の観点からは大きいチャンファの方が都合が良いが、境界層剥離による流れの乱れを大きくして燃料棒 405,9の表面への液滴26の付着を増進する観点からは、この部分のチャンファ量は小さい方が良い。

【0030】多数の管状フェルール30は格子状に配列して、図2に示すように組み合わせる。この時に、上下端は夫々下流側と、上流側の区別を持って揃えられる。また燃料スペーサ29a,29bは図4の一部切断正面図で示すように、隣接している管状フェルール30に跨って連続ループパネ16が設置されている。この連続ループパネ16の形状は、高さ方向の中央部が外側に突出している。

【0031】連続ループパネ16を取り付ける部分は、図 50 る。

3に示すように管状フェルール30の円筒部側面に縦方向に矩形の切り欠き部17を設け、この切り欠き部17の上下端近傍に爪部18を突設した形状とし、隣接する管状フェルール30の同じ切り欠き部17と相対するように突き合わせ、これら上下の爪部18に燃料棒押圧用の連続ループパネ16を保持させる。さらに周囲は周辺支持パンド13で囲

み、この結果、管状フェルール30は図5(a)の要部拡

大一部切断正面図および図5(b)の要部拡大横断面図 に示すように格子状に組込まれて燃料棒5を保持してい

【0032】燃料スペーサ29a,29bの中央部の構造は図6の要部拡大平面図に示すように、中央部の7個の管状フェルール30が取り除かれた状態で形成された孔部3、すなわち、中央部の10個の管状フェルール30の側壁で取り囲まれた細長い孔部33が形成されている。4個の架橋部材34a,34bが図2および図6に示すように孔部33内で燃料スペーサ29a,29bの対角線に直交する方向に配置されている。

【0033】架橋部材34aの左右の両端部は、燃料スペーサ29a,29bの中央部の孔部33を形成している10個の管状フェルール30のうち、細長い孔部の両端を構成している隣接の2個の管状フェルール30の側面に点溶接31にて夫々取り付けられている。

【0034】架橋部材34aは上下2枚の部材からなり、上部端または下端に凹部を有し、この部分に連続ループパネ35を装着の上、溶接して一枚の架橋部材34aとして、管状フェルール30の上下端部に架橋部材34aの左右端部を上下端で点溶接する。また架橋部材34bは細長い孔部33の腹部の管状フェルール30を3個結合しつつ、燃料スペーサ29a,29bの対角線方向に突出した曲り部36を形成し、この曲り部36の隅でウォーターロッド6を支える。

【0035】さらに架橋部材34bは、管状フェルール30の側壁と同じ曲率で左右の端部、および曲り部36の根元が成型されていて、この部分で隣接する管状フェルール30と上下端が点溶接される。ウォーターロッド6は、図2、図6に示すように孔部33内に挿入されており、架橋部材34aに設けられた連続ループパネ35にて架橋部材34bの曲り部36で押圧されている。

7 【0036】上記図2(a)に示す燃料スペーサ29b は、燃料集合体28の上部に取り付けられる燃料スペーサ で、短尺燃料棒9の位置の管状フェルール30が削除され て空所になっている。

【0037】こうして構成された管状フェルール30の配列の内、図4で示すように燃料スペーサ29a,29bの周辺の管状フェルール30に周辺支持バンド13が固定される。この周辺支持パンド13には、燃料棒5同士の中間位置に、少なくとも内向きに湾曲した上向き(冷却材流路の下流倒へ向いた)の複数の突起板37が設けられてい

【0038】また周辺支持パンド13の4隅近くには、一 対の外向きに周辺支持パンド13の部材を突出させたロー ブ38が形成されていて、このローブ38により燃料スペー サ29 a, 29 b を取り囲むチャンネルボックス8との間に 一定の間隔を持たせるようにして構成されている。

【0039】次に上記構成による作用について説明す る。原子炉の冷却材は、炉心の下方から炉心内に装荷さ れた燃料集合体28内を上昇する。すなわち、冷却材は下 方より下部タイプレート4内に流入し、さらにチャンネ ルポックス8内で燃料棒5,9間に形成された流路19を 上昇して、上部タイプレート3より上部プレナムに流出 する。またチャンネルボックス8内に流入した冷却材の 一部は、冷却材流入口10よりウォーターロッド6内に供 給され、ウォーターロッド6内を上昇して冷却材出口11 よりウォーターロッド6外部に流出する。

【0040】ウォーターロッド6は、燃料集合体28の横 断面中央部の冷却材の割合を高めることになり、その中 央部における中性子の減速作用を増加させる働きを有す る。このため、燃料集合体28の横断面中央部の反応度が 高くなると共に、横断面における出力分布の平坦化がさ 20

【0041】ところで、チャンネルポックス8内を流れ る冷却材は軸方向に上昇するにつれ、燃料棒5、9を除 熱し、サブクール状態から飽和温度までの昇温加熱さ れ、さらに飽和水の沸騰を生じている。従って、理想的 には冷却材のうち、液相(飽和水)は燃料棒5,9の表 面付近を流れ、気相(蒸気)は燃料棒間の空間を流れる ことが最も除熱効率が良いことになる。

【0042】一方、実際の燃料集合体冷却材流動様式を 見ると、ボイド率が高く除熱上余裕の少ない燃料集合体 上半部領域では、環状流と呼ばれる気液2相流動状態と なっている。この流動状態では、図7の要部拡大模式図 に示すように、燃料棒5、5間の空間の流路19でポイド 率が高くなり、その中を液滴26が混じって流れて、燃料 棒5の表面は液膜23が覆っている。この液膜23の沸騰に より燃料棒5の除熱が行われている。

【0043】本発明における燃料スペーサ29a、29b通 過前後の冷却材の2相流(環状流状態を呈している)状 態を考察すると、図8 (a) および (b) の燃料棒間の 流路説明図に示すような流れ状態が考察される。

【0044】すなわち、図8(a)に示す燃料棒の0 °,90°部位(直角方向)では、燃料棒5,5間の冷却 材の流路19において、管状フェルール30の先端部が共に 両側にチャンファ32を有する平板状の障害として存在 し、この外形に沿って滑らかに流線が曲がって管状フェ ルール30の内側と燃料棒5表面の間の環状流路22に2相 流は流入する。

【0045】この時、この部位の流速は比較的に遅いの で、液膜23の流れも厚く、環状流路22に流入する時に、

って液膜23の厚さの低減は小さい。これに対し図8 (b) に示す45° 部位(対角方向)では、燃料棒5、5 間の冷却材の流路19の両側において管状フェルール30に よる先端が片側で外側にチャンファ32を有する平板状の 障害が存在することになる。

【0046】従って、この外形に沿って滑らかに流線が 曲がって、管状フェルール30の内側と燃料棒5表面の間 の環状流路22に流入する流れと、管状フェルール30の外 側に沿った外側流路24に流れる流れに分かれる。なお、 10 図8(a), (b) において一点鎖線の左側は2相流を 矢印で、右側は断面で示している。

【0047】しかしながら本発明では、この外側流路24 では管状フェルール30の上流側端部のチャンファ32は外 側に形成してあるので、流速が速い流れの取り込み誘導 が少なく、圧縮加速流は管状フェルール30の外側領域の 外側流路24で生じる。その結果、燃料棒5表面と管状フ ェルール30内側との環状流路22においては、高速流の加 速効果が従来より小さく、また流線は燃料棒5の表面に 近づく度合が小さいので、液膜23の厚さの低減度合が従 来より小さくなり、この結果が限界出力の向上に寄与す

【0048】なお、燃料スペーサ29a、29bを通過した 直後においては、燃料スペーサ29a、29bの管状フェル ール30表面に沿った境界層の流れが剥離して乱流が生じ るため、環状における蒸気相の中の液滴26が流れの乱れ により、燃料棒表面に付着することと、燃料棒表面近傍 の流速が拡大流となり、流速が低下復帰することにより 液膜23の流れの厚さは燃料スペーサ通過前よりも厚くな る。この効果は従来の燃料スペーサによる限界出力の向 上効果と同様に期待できる。

【0049】このため本発明によれば、管状フェルール 30は流体の流れ方向に対する小さい形状変更と圧損の増 加なしで、燃料集合体28の限界出力の向上に寄与する。

【0050】次に本発明の変形例について説明する。上 記一実施例では管状フェルール30の下端部(上流側端) は水平の切り口としているが、図9の拡大斜視図に示す 管状フェルール39においては、さらに内側への突起14の 設けられていない対角方向部位でV字型の切込み40を加 工して、その部分に外側のチャンファ32を形成する。な 40 お、V字型の切込みの深さhは5~8 mとする。

【0051】これにより、燃料棒5の燃料スペーサ下端 近傍の上流側25の周方向を見ると、対角方向の燃料棒表 面の流れの一番速い部分の流れは燃料スペーサ29a, 29 bの軸方向の内部で燃料棒5の表面に向けて流線が曲が ることとなる。沸騰水原子炉の運転状況においては、燃 料スペーサ29a,29bの下端近傍で遷移沸騰が発生する のは燃料スペーサ下端から約5~6㎜ということが実験 結果から判明している。

【0052】従って、前述の燃料棒表面の液膜23の流れ 加速されて、かつ流線が燃料棒5表面に近づくことによ 50 の厚さ低減を軸方向で、これだけ遅らせることができる

と、遷移沸騰を生じ易い位置は、燃料スペーサ29 a, 29 bの軸方向内部に含まれることになる。燃料スペーサ29 a, 29 bは普通中性子吸収の少ないジルコニウム合金で主に構成されているが、それでも中性子吸収および減速材の排除効果により、この部分の燃料棒5の発熱は燃料スペーサ29 a, 29 bの上下と比較すると有意に低下している。

【0053】従って、燃料棒表面の熱流速も小さいので、遷移沸騰は生じ難く、これにより、遷移沸騰を生じ易い燃料棒表面の液膜23の流れの状況の発生を、軸方向 10 の燃料スペーサ内部まで遅らせることは限界出力の向上に寄与する。

【0054】なお、対角方向の切込み40をV字状にすると、燃料スペーサ29a,29bの上流側25(下側)で管状フェルール39の端部に当たった流れは、図8において矢印で示したように、管状フェルール39の外側と内側、および管状フェルール39の切欠き17に沿って周方向に流れる。この時に図9の管状フェルール39では、切欠き17の形状変化が管状フェルール39の側壁の外側で囲まれた、図6に示す流路19に流れを誘導しやすい、流路抵抗の小20さい形状である。

【0055】図10の拡大斜視図は管状フェルールの第2変形例を示す。管状フェルール41は、上流側(下側)で突起14を有しない対角方向の下端で、突起14の突出量より小さく、燃料棒5の表面とは接しない程度に突出させた突起42を設けて構成されている。

【0056】また図11の拡大斜視図は管状フェルールの第3変形例を示す。この管状フェルール43は上流側(下側)の突起44を絞り込みにより形成している。これ等はいずれも対角方向の周端の外側にチャンファ32の加工を 30することは第1の変形例と同様である。

【0057】これらの変形例においては、対角方向の燃料棒表面の流れは境界層が薄いので、速い流れを燃料棒 5,9と管状フェルール内側の環状流路22に誘導しないように効果的に流すのに適しており、外側のチャンファ 32のみの場合より効果的である。

【0058】なお、上記の実施例では管状フェルールの形状として、図3に示すような円筒状を基本形状として説明してきたが、図12の要部拡大正面図に示すような8角筒の形状を基本とした管状フェルール45としたもので40もよい。この例では燃料棒5,9配列の直角方向の1側面に図3の管状フェルール30の場合と同様に縦長の切欠き17を設けて、その上下近傍にループパネ16を保持する爪部18を設ける。

【0059】また切欠き17を設けた側面に対峙した面の 両側に隣接した側面の上下端には、夫々内側に突出した 突起14を設ける。

【0060】なお、図12は上流側端面の平面図であるが、流路19を形成する上流側端部には外側のチャンファ32を加工し、他の部分には内側のチャンファを設ける。

また下流側は燃料棒5,9の挿入を円滑に行うために、全ての端部を内側のチャンファ21とする。さらに、この形状においても円筒形における上記第1、第2、第3の変形例と同じ変形案が対角方向の上流側端部に施すこと

10

【0061】以上燃料スペーサ29a,29bの格子形状については、燃料棒5,9が9×9格子で2本ウォーターロッド6を例に説明したが、ウォーターロッド6の本数とか形状が異なっていても、また燃料棒5,9が8×8格子のような他の形状であっても本発明の管状フェルールの適用ができる。

【0062】さらに、上記の実施例は正方格子の燃料棒配列の燃料スペーサについて説明したが、三角格子の燃料棒配列に対して、管状フェルールまたは六角筒フェルールを使用する場合においても、上流側端部に隣接する管状フェルールまたは六角筒と点溶接する周円または辺には内側のチャンファ21を設け、管状フェルールまたは六角筒の外側面で囲まれる流路を構成する周円、または辺には外側のチャンファ32を形成することによって容易に実現でき、その作用、効果は同様に得られる。

[0063]

ができる。

【発明の効果】以上本発明によれば、燃料スペーサにおけるフェルールの構成に極めて簡易な工夫を施したことにより、燃料棒表面における冷却材の遷移沸騰が抑制されて、冷却材への熱伝達効率の向上と、燃料集合体における安全性および限界出力を向上する効果がある。

【図面の簡単な説明】

【図1】本発明に係る一実施例の燃料スペーサを適用した燃料集合体の縦断面図。

70 【図2】本発明に係る一実施例の燃料スペーサを適用した燃料集合体の断面図((a)は図1のA-A矢視断面図、(b)は図1のB-B矢視断面図)。

【図3】本発明に係る一実施例の燃料スペーサの管状フェルールの拡大斜視図。

【図4】本発明に係る一実施例の燃料スペーサの一部切断正面図。

【図5】本発明に係る一実施例の燃料棒と燃料スペーサの要部拡大図((a)は一部切断正面図、(b)は横断面図)。

40 【図6】本発明に係る一実施例の燃料スペーサの要部拡大平面図。

【図7】燃料集合体内の要部拡大模式図。

【図8】本発明に係る一実施例の燃料棒間の流路説明図((a)は直角方向、(b)は対角方向)。

【図9】本発明に係る管状フェルールの第1の変形例の 拡大斜視図。

【図10】本発明に係る管状フェルールの第2の変形例の拡大斜視図。

【図11】本発明に係る管状フェルールの第2の変形例 50 の拡大斜視図。

【図12】本発明に係る管状フェルールの第3の変形例 の拡大斜視図。

【図13】従来燃料スペーサを適用した燃料集合体の縦 断面図。

【図14】従来の燃料スペーサを適用した燃料集合体の 断面図((a)は図13のA-A矢視断面図、(b)は図 13のB-B矢視断面図)。

【図15】従来の管状フェルールの拡大斜視図。

【図16】流路要部拡大断面図。

【図17】従来の燃料棒間の流路説明図((a)は直角 10 路、25…上流側、26…液滴、27…下流側、32…外側チャ 方向、(b)は対角方向)。 ンファ、33…孔部、34a, 34b…架橋部材、36…曲り

【符号の説明】

1, 28…燃料集合体、2…上部タイプレート、3…ハンドル、4…下部タイプレート、5…燃料棒、6…ウォーターロッド、7 a, 7 b, 29 a, 29 b…燃料スペーサ、8…チャンネルボックス、9…短尺燃料棒、10…冷却材流入口、11…冷却材流出口、12, 30, 39, 41, 43, 45…管状フェルール、13…周辺支持バンド、14, 42, 44…突起、15, 31…点溶接、16, 35…連続ループパネ、17…切り欠き部、18…爪部、19…流路、20…45°部位、21…内側チャンファ、22…環状流路、23…液膜、24…外側流路、25…上流側、26…液滴、27…下流側、32…外側チャンファ、33…孔部、34 a, 34 b …架橋部材、36…曲り部、37…突起板、38…ローブ、40…切込み。

12

【図1】 【図2】 【図10】 29Ъ (a) 29b 29a В 29a (b) [図9] 【図11】 [図4] 29q,29b

