Algoritmo di Query Optimization Prof. Alfredo Pulvirenti Prof. Salvatore Alaimo

Equivalenza di espressioni

 Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati

 L'equivalenza è importante in pratica perché i DBMS cercano di eseguire espressioni equivalenti a quelle date, ma meno "costose"

Un'equivalenza importante

Push selection (se A è attributo di R₂)

$$\sigma_{A=10}(R_1 \bowtie R_2) = R_1 \bowtie \sigma_{A=10}(R_2)$$

 Riduce in modo significativo la dimensione del risultato intermedio (e quindi il costo dell'operazione)

Esempio di Query

- Supponiamo che vogliamo trovare:
 - tutti i professori che hanno dato a Mario Rossi piu' di 27.

 $\pi_{Professore}(\sigma_{Nome='Mario\ Rossi' \land Voto>27}(STUDENTI\bowtie ESAMI\bowtie CORSI))$

Query Optimization

La stessa query

 $\pi_{Professore}(\sigma_{Nome='Mario\ Rossi' \land Voto>27}(STUDENTI\bowtie ESAMI\bowtie CORSI))$

• Può essere espressa come

 $\pi_{Professore}(\sigma_{Nome='Mario\ Rossi'}(STUDENTI) \bowtie \sigma_{Voto>27}(ESAMI) \bowtie CORSI)$

Che risulta essere molto più efficiente!

Regole per la query optimization

 Anticipare l'applicazione delle proiezioni e delle restrizioni rispetto al prodotto (e quindi alle giunzioni), in modo da ridurre la dimensione delle tabelle a cui applicare il prodotto (e le giunzioni).

 Le regole che seguono possono essere utilizzate per l'ottimizzazione di espressioni.

1. Raggruppamento di restrizioni

$$\sigma_{c(X)}\left(\sigma_{c(Y)}(E)\right) = \sigma_{c(X)\wedge c(Y)}(E)$$

Regole sulla restrizione

2. Commutatività di σ e π

a.
$$\sigma_{c(X)}(\pi_Y(E)) = \pi_Y(\sigma_{c(X)}(E))$$
 se $X \subseteq Y$

b.
$$\pi_Y\left(\sigma_{c(X)}(\pi_{XY}(E))\right) = \pi_Y\left(\sigma_{c(X)}(E)\right)$$
 se $X \nsubseteq Y$

Restrizione e Prodotto

3. Anticipazione di σ rispetto a \times .

a.
$$\sigma_{c(X)}(E \times F) = \sigma_{c(X)}(E) \times F \text{ se } X \subseteq attr(E)$$

b.
$$\sigma_{c(X) \land c(Y)}(E \times F) = \sigma_{c(X)}(E) \times \sigma_{c(Y)}(F)$$

 $se\ X \subseteq attr(E)\ e\ Y \subseteq attr(F)$

a.
$$\sigma_{c(X) \land c(Y) \land c(Z)}(E \times F) = \sigma_{c(Z)} \left(\sigma_{c(X)}(E) \times \sigma_{c(Y)}(F) \right)$$

 $se \ X \subseteq attr(E), Y \subseteq attr(F), Z \subseteq attr(E) \cup attr(F)$

Regole per la proiezione

4. Raggruppamento di proiezioni.

$$\pi_X(\pi_Y(E)) = \pi_X(E) \text{ se } X \subseteq Y$$

5. Eliminazione di proiezioni superflue.

$$\pi_X(E) = E \ se \ X = attr(E)$$

6. Anticipazione della π rispetto a \times .

$$\pi_{XY}(E \times F) = \pi_X(E) \times \pi_Y(F)$$

se $X \subseteq attr(E)$ e $Y \subseteq attr(F)$

L'algoritmo

 Si applicano le seguenti tre regole (per anticipare la selezione) finché è possibile

- A. Si anticipa σ rispetto a π usando la **2.** σ $\sigma_{c(X)}(\pi_Y(E)) = \pi_Y(\sigma_{c(X)}(E))$
- B. Si raggruppano le restrizioni usando la 1 $\sigma_{c(X)}\left(\sigma_{c(Y)}(E)\right) = \sigma_{c(X)\wedge c(Y)}(E)$
- C. Si anticipa l'esecuzione di σ su \times usando la 3.

Anticipazione delle proiezioni

- D. Si eliminano le proiezioni superflue usando la 5 $\pi_X(E) = E \ se \ X = attr(E)$
- E. Si raggruppano le proiezioni mediante la regola 4 $\pi_X(\pi_Y(E)) = \pi_X(E)$ se $X \subseteq Y$
- F. Si anticipa l'esecuzione delle proiezioni rispetto al prodotto usando ripetutamente la 2 $\left[\pi_Y\left(\sigma_{c(X)}\left(\pi_{XY}(E)\right)\right) = \pi_Y\left(\sigma_{c(X)}(E)\right) \text{ se } X \not\subseteq Y\right] \text{ e la 6 [Anticipazione della π rispetto a \times].}$

Distributività

•
$$\sigma_C(R_1 \cup R_2) = \sigma_C(R_1) \cup \sigma_C(R_2)$$

•
$$\sigma_C(R_1 - R_2) = \sigma_C(R_1) - \sigma_C(R_2)$$

•
$$\pi_X(R_1 \cup R_2) = \pi_X(R_1) \cup \pi_X(R_2)$$

Esercizio

• NON VALE $\pi_X(R_1 - R_2) = \pi_X(R_1) - \pi_X(R_2)$ costruire un controesempio per dimostrare la disuguaglianza

•
$$\sigma_{C \vee D}(R) = \sigma_C(R) \cup \sigma_D(R)$$

•
$$\sigma_{C \wedge D}(R) = \sigma_C(R) \cap \sigma_D(R)$$

•
$$\sigma_{C \wedge \neg D}(R) = \sigma_C(R) - \sigma_D(R)$$