It is easy to calculate the average value of finitely many numbers y_1, y_2, \ldots, y_n :

$$y_{\text{ave}} = \frac{y_1 + y_2 + \dots + y_n}{n}$$

But how do we compute the average temperature during a day if infinitely many temperature readings are possible?

Figure 1 shows the graph of a temperature function T(t), where t is measured in hours and T in $^{\circ}$ C, and a guess at the average temperature, T_{ave} .

In general, let's try to compute the average value of a function y = f(x), $a \le x \le b$. We start by dividing the interval [a, b] into n equal subintervals, each with length $\Delta x = (b - a)/n$.

Then we choose points x_1^*, \ldots, x_n^* in successive subintervals and calculate the average of the numbers $f(x_1^*), \ldots, f(x_n^*)$:

$$\frac{f(x_1^*) + \cdots + f(x_n^*)}{n}$$

(For example, if f represents a temperature function and n = 24, this means that we take temperature readings every hour and then average them.)

Since $\Delta x = (b - a)/n$, we can write $n = (b - a)/\Delta x$ and the average value becomes

$$\frac{f(x_1^*) + \dots + f(x_n^*)}{\frac{b - a}{\Delta x}} = \frac{1}{b - a} \left[f(x_1^*) \Delta x + \dots + f(x_n^*) \Delta x \right]$$
$$= \frac{1}{b - a} \sum_{i=1}^n f(x_i^*) \Delta x$$

If we let *n* increase, we would be computing the average value of a large number of closely spaced values.

The limiting value is

$$\lim_{n \to \infty} \frac{1}{b - a} \sum_{i=1}^{n} f(x_i^*) \Delta x = \frac{1}{b - a} \int_a^b f(x) \, dx$$

by the definition of a definite integral.

Therefore we define the **average value of** *f* on the interval [a, b] as

$$f_{\text{ave}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

Example 1

Find the average value of the function $f(x) = 1 + x^2$ on the interval [-1, 2].

Solution:

With a = -1 and b = 2 we have

$$f_{\text{ave}} = \frac{1}{b - a} \int_{a}^{b} f(x) \, dx$$

$$= \frac{1}{2 - (-1)} \int_{-1}^{2} (1 + x^{2}) \, dx$$

$$= \frac{1}{3} \left[x + \frac{x^{3}}{3} \right]_{-1}^{2}$$

$$= 2$$

Practice Problems-for finding the Average value of a function

(a)
$$2x^3 - 3x^2 + 4x - 1$$
, [-1, 1]

(b)
$$\sqrt{5x+1}$$
, [0, 3]

(c)
$$2/(x+1)^2$$
, [3, 5]

(d)
$$\cos 2x$$
, $[3, \pi/4]$

(e)
$$x^{2/3} - x^{-2/3}$$
, [1, 4]

(f)
$$f(x) = x\sqrt{x^2 + 16}$$
, [0, 3]

(g)
$$f(x) = |x| - 1$$
 on $[-1, 3]$

Volume of a solid of Revolution

Disk and Washer Method.

Disk Method-Introduction

The disk method is used when we rotate a single curve y=f(x) around the x-(or y-) axis.

The volume of the solid formed by revolving the region bounded by the curve y = f(x) and the x-axis between x = a and x = b about the x-axis is given by

$$V=\pi\int\limits_{a}^{b}\left[f\left(x
ight)
ight] ^{2}dx.$$

The cross section perpendicular to the axis of revolution has the form of a disk of radius

$$R=f\left(x\right) .$$

Similarly, we can find the volume of the solid when the region is bounded by the curve x = f(y) and the y-axis between y = c and y = d, and is rotated about the y-axis.

The resulting formula is

$$V = \pi \int_{c}^{d} [f(y)]^{2} dy.$$

Washer method

Assuming that the functions f(x) and g(x) are continuous and non-negative on the interval [a,b] and $g(x) \leq f(x)$, consider a region that is bounded by two curves y = f(x) and

$$y = g(x)$$
, between $x = a$ and $x = b$.

The volume of the solid formed by revolving the region about the x-axis is

$$V=\pi\int\limits_{a}^{b}\left(\left[f\left(x
ight)
ight]^{2}-\left[g\left(x
ight)
ight]^{2}
ight)dx.$$

At a point x on the x-axis, a perpendicular cross section of the solid is washer-shape with the inner radius $r=g\left(x\right)$ and the outer radius $R=f\left(x\right)$.

The volume of the solid generated by revolving about the y-axis a region between the curves $x=f\left(y\right)$ and $x=g\left(y\right)$, where $g\left(y\right)\leq f\left(y\right)$ and $c\leq y\leq d$ is given by the formula

$$V=\pi\int\limits_{c}^{d}\left(\left[f\left(y
ight)
ight]^{2}-\left[g\left(y
ight)
ight]^{2}
ight)dy.$$

Problems

Find the volume of the solid obtained by rotating the sine function between x=0 and $x=\pi$ about the x-axis.

By the disk method,

$$V = \pi \int\limits_0^\pi {\left[{\sin x}
ight]^2 dx} = rac{\pi }{2} \int\limits_0^\pi {\left({1 - \cos 2x}
ight)dx} = rac{\pi }{2} \left({x - rac{{\sin 2x}}{2}}
ight) igg|_0^\pi \ = rac{\pi }{2} {\left[{\left({\pi - 0}
ight) - \left({0 - 0}
ight)}
ight] = rac{{{\pi ^2}}}{2}}.$$

Example-2

Calculate the volume of the solid obtained by rotating the region bounded by the parabola

$$y=x^2$$
 and the square root function $y=\sqrt{x}$ around the $x-$ axis.

Both curves intersect at the points x = 0 and x = 1. Using the washer method, we have

$$V=\pi\int\limits_0^1\left(\left[\sqrt{x}
ight]^2-\left[x^2
ight]^2
ight)dx=\pi\int\limits_0^1\left(x-x^4
ight)dx=\pi\left(rac{x^2}{2}-rac{x^5}{5}
ight)igg|_0^1=\pi\left(rac{1}{2}-rac{1}{5}
ight)$$

Practice Problems

- (a) the semi-circular arc $x^2 + y^2 = a^2$ from x = -a to x = a about the x-axis;
- (b) the arc of the curve $y = x^3$ from y = 0 to y = 8 about the y-axis;
- (c) the hyperbola $y^2 x^2 = 1$ from x = -a to x = a about the x-axis
- (d) the hyperbola xy=2 about the y-axis, between the limits y=1 to y=8
- (e) the arc of the parabola $y=\sqrt{x}$ from x=0 to x=1 about the x-axis.

Calculate the volume of the solid obtained by rotating the region bounded by the curve $y=2x-x^2$ and the x-axis about the y-axis.

Find the volume of the solid obtained by rotating the region bounded by two parabolas $y=x^2+1$ and $y=3-x^2$ about the x-axis.

Exercise 1.8.4 (Self-check). Find the volume of the solid of revolution of each of the following regions enclosed by the given curves about the x-axis (between the given limits):

(a)
$$y = x^3 \text{ and } y = x^2$$

(b)
$$y^2 = 4(x-1)$$
 and $y = x-1$

(c)
$$y = x^2 + 2$$
 and $y = 10 - x^2$

(d)
$$y = 1/x$$
 and $2y = 5 - 2x$

(e) by the parabola $y = x^2$ and the line y = x.

Exercise 1.8.5 (Self-check). Find the volume of the solid of revolution of each of the following regions enclosed by the given curves about the y-axis:

(a)
$$y = x^{1/3}$$
 and $x = 4y$, $x, y \ge 0$

(b)
$$x^2 - 2x$$
 and $y = x$

(c)
$$y = 16 - x$$
 and $y = 3x + 2$

(d)
$$y = x^3 \text{ and } y = x^{1/3}$$

Reference for Practice Problems

https://tutorial.math.lamar.edu/classes/calci/volumewithrings.aspx