

Winning Space Race with Data Science

Joon Hee Jang 12.17.2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Project Aim: Predict successful land of SpaceX Falcon 9 first stage

SpaceX advertises Falcon 9 rocket launches on its website with fraction of the cost compared to other providers, much of the savings is because SpaceX can reuse the first stage. Therefore if we can determine the outcome of the first stage landing, we can determine the cost of a launch. In this project, data of previous Falcon 9 launch and its outcome is analyzed and use the data to train a machine learning model to predict if the Falcon 9 first stage will land successfully.

There are four different model used to predict the outcome and compared accuracy from cross validation and from test dataset. Decision tree model shows the highest accuracy in cross validation while all model exhibits similar test accuracy score of 0.833.

Introduction

Project background and context

SpaceX is an American spacecraft manufacturer, launcher, and a satellite communications corporation. It was founded in 2002 by Elon Musk with the stated goal of reducing space transportation costs. The major cost saving is come from enabling reuse of the first stage rocket. SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.

Problems you want to find answers

As the rocket is complex set of engineered machinery, there are always risk of unsuccessful landing outcome. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch. Data of previous Falcon 9 launch and its outcome is analyzed and use the data to train a machine learning model to predict if the Falcon 9 first stage will land successfully.

Successful landing

Unsuccessful landing

Methodology

- Data collection methodology:
 - Historical data of SpaceX rocket launch and its outcome are collected from SpaceX public database using API.
 - · Separately, falcon 9 and falcon heavy launches records are collected from Wikipedia web scraping.
- Perform data wrangling
 - The missing values from collected data has been replaced with mean values.
 - Unnecessary annotation from the data in the table had been removed and formatted correctly.
- Perform exploratory data analysis (EDA) using visualization and SQL
- · Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - · Create dependent and independent variables with train and test data sets.
 - Build machine learning pipeline to predict if the first stage will land from given the data.
 - Find best hyperparameters for Logistic Regression, SVM, Classification Tree, and KNN using GridSearchCV.

Data Collection

Historical data of SpaceX rocket launch and its outcome from SpaceX API
 API URL Path: https://api.spacexdata.com/v4/

• Falcon 9 and falcon heavy launches records are collected from Wikipedia

API URL Path: https://en.wikipedia.org/wiki/List_of-Falcon 9\ and Falcon Heavy launches

Data Collection – SpaceX API

Data collection with SpaceX REST

spacex_url=https://api.spacexdata.com/v4/launches/past
response = requests.get(spacex_url)
data=pd.json_normalize(response.json())

FlightNumber Date BoosterVersion PayloadMass Orbit LaunchSite Outcome Flights GridFins Reused Legs

 GitHub URL of the completed SpaceX API calls notebook:

https://github.com/jhjang101/testrepo/blob/eac d53d1d4e8e00ea55bcf862dd41480496cdb8e /Data%20Collection%20APl.ipynb

Data Collection - Scraping

Web scraping process

static_url =
"https://en.wikipedia.org/w/index.php?title=List_of_Fal
con_9_and_Falcon_Heavy_launches&oldid=1027686
922"
soup = BeautifulSoup(r, 'html.parser')

Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing
1	CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success\n	F9 v1.0B0003.1	Failure
2	CCAFS	Dragon	0	LEO	NASA (COTS)\nNRO	Success	F9 v1.0B0004.1	Failure
3	CCAFS	Dragon	525 kg	LEO	NASA (COTS)	Success	F9 v1.0B0005.1	No attempt\n
4	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA (CRS)	Success\n	F9 v1.0B0006.1	No attempt
5	CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA (CRS)	Success\n	F9 v1.0B0007.1	No attempt\n

 GitHub URL of the completed web scraping notebook:

https://github.com/jhjang101/testrepo/blob/eacd53d1d4e8e00ea55bcf862dd41480496cdb8e/Data%20Collection%20with%20Web%20Scraping.ipynb

Data Wrangling

The missing values from collected data has been replaced with mean values.

Unnecessary annotation from the data in the table had been removed and formatted correctly.

```
#if it is number save cells in a dictonary
if flag:
                                                                                   Soup Object
                                                                                                             Extract Data
                                                                                                                                       DataFrame
    extracted row += 1
    # Flight Number value
    # TODO: Append the flight number into launch dict with key `Flight No.`
    launch_dict['Flight No.'].append(flight_number)
    #print(flight_number)
    datatimelist=date time(row[0])
                                                                                                                                             10
```

EDA with Data Visualization

- Flight number vs. Payload It seems the more massive the payload, the less likely the first stage will return.
- Flight number vs. Launch Site Higher flight number mostly use CCAFS SLC 40.
- Payload vs. Launch Site VAFB SLC 4E did not launch high payload (>10,000 kg).
- Orbit vs. Success rate ES-L1, SSO, HEO, and GEO has 100% success rate.
- Flight number vs. Orbit MEO, VLEO, SO, and GEO has high flight numbers.
- Payload vs. Orbit Each orbits has different payload distribution.
- Launch success yearly trend Sucess rate since 2013 kept increasing till 2020.
- GitHub URL: https://github.com/jhjang101/testrepo/blob/eacd53d1d4e8e00ea55bcf862dd41480496c <a href="documents-decomposition-decom

EDA with SQL

SQL queries

- SELECT DISTINCT(launch_site) FROM SpaceX
- SELECT * FROM SpaceX WHERE launch_site LIKE 'CCA%' LIMIT 5
- SELECT SUM(payload_mass__kg_) FROM SpaceX WHERE customer = 'NASA (CRS)'
- SELECT AVG(payload_mass_kg_) FROM SpaceX WHERE booster_version = 'F9 v1.1'
- SELECT MIN(DATE) FROM SpaceX WHERE landing_outcome = 'Success (ground pad)'
- SELECT DISTINCT(booster_version) FROM SpaceX WHERE mission_outcome = 'Success' AND payload_mass__kg_ BETWEEN 4000 AND 6000
- SELECT COUNT(*) FROM SpaceX WHERE mission_outcome LIKE 'Success%'
- SELECT DISTINCT(booster_version) FROM SpaceX WHERE payload_mass__kg_ = (SELECT MAX(payload_mass__kg_) FROM SpaceX)
- SELECT * FROM SpaceX Limit 50
- SELECT COUNT(*), landing_outcome FROM SpaceX WHERE (landing_outcome = 'Failure (drone ship)' OR landing_outcome = 'Success (ground pad)') AND
- BETWEEN '2010-06-04' AND '2017-03-20' GROUP BY landing_outcome ORDER BY COUNT(landing_outcome) DESC

GitHub URL

• https://github.com/jhjang101/testrepo/blob/eacd53d1d4e8e00ea55bcf862dd41480496cdb8e/EDA%20with%20SQL.ipynb

Build an Interactive Map with Folium

Map objects

- All launch sites Circle and Markers to show physical locations of launch sites.
- Success/failed launches for each site Markers using marker_cluster to show Success/failed launches depending on launch sites and check correlations.
- Distances between a launch site to its proximities Markers and Polylines to show Distances between a launch site to railways, highways, and cities and check correlations.

GitHub URL

- https://github.com/jhjang101/testrepo/blob/eacd53d1d4e8e00ea55bcf862dd41480496cdb8e/lab_jupyter_launch_site_location.ipynb Folium not displaying correctly.
- Alterative PDF access: https://github.com/jhjang101/testrepo/blob/56f56ac41b0c95fd2915b9e207d6a4d7a387b1c3/lab_jupyter_launch_site_location.pdf

Build a Dashboard with Plotly Dash

Plots

- Success Count for all launch sites To show success counts depending on launch sites and visualize correlations.
- Success Count for Payload Mass (kg) with Booster Version To show success counts depending on payload and booster version.

GitHub URL

- https://github.com/jhjang101/testrepo/blob/56f56ac41b0c95fd2915b9e207d6a4d7a387b1c3/spacex_dash_app.py
- Dash PDF: https://github.com/jhjang101/testrepo/blob/f6b7548cd69adee212591bd4bb55a6f4e2915ed2/spacex_dash.pdf

Predictive Analysis (Classification)

- Summarize how you built, evaluated, improved, and found the best performing classification model
- You need present your model development process using key phrases and flowchart
- Add the GitHub URL of your completed predictive analysis lab, as an external reference and peer-review purpose

Results

- Exploratory data analysis shows there are some degrees of correlation between features such as payloads, launch sites, and booster with success rate.
- There are four different model used to predict the outcome and compared accuracy from cross validation and from test dataset. Decision tree model shows the highest accuracy in cross validation while all model exhibits similar test accuracy score of 0.833.

Model	CV Accuracy	Test Accuracy
LogisticRegression	0.846429	0.833333
SVM	0.848214	0.833333
Decision Trees	0.889286	0.833333
KNN	0.848214	0.833333

Flight Number vs. Launch Site

Flight Number vs. Launch Site

- CCAFS SLC 40 launch site has the most number of launches.
- As the flight number increases, success rate become higher.
- VAFB SLC 4E launch site has lowest number of launches.
- VAFB SLC 4E has not been used since flight number 65.
- In low flight numbers, KSC LC 39A launch site was not used.

Payload vs. Launch Site

Payload vs. Launch Site

- CCAFS SLC 40 launch site mostly used for low payload or very high payload.
- CCAFS SLC 40 launch site has good success rate for very high payload.
- VAFB SLC 4E launch site was not used for payload more than 10,000.
- KSC LC 39A launch site was not used for payload less than 2,500.
- Higher payload tend to have better success rate but it may be due to CCAFS SLC 40 has relatively low success rate in low payload and CCAFS SLC 40 was mostly used in the low flight number.

Success Rate vs. Orbit Type

Success rate of each orbit type

- ES-L1, SSO, HEO, and GEO has 100% success rate.
- SO has zero success rate.

Flight Number vs. Orbit Type

Flight number vs. Orbit type

- MEO, VLEO, SO, and GEO has high flight numbers.
- Low flight number did not lauch to orbit HEO, MEO, VLEO, SO, and GEO.

Payload vs. Orbit Type

Payload vs. Orbit type

- GTO has payload between 2,500 and 8,000
- VLEO has very high payloads

Launch Success Yearly Trend

Yearly average success rate

- Success rate since 2013 kept increasing till 2020.
- There are no success before 2013.
- Success rate reached plateau at around 0.8 since 2017.

All Launch Site Names

Names of the unique launch sites

There are four unique launch sites

Launch Site Names Begin with 'CCA'

5 records where launch sites begin with `CCA`

	Task 2 Display 5 records where launch sites begin with the string 'CCA'								
1 %%sql 2 SELECT * FROM SpaceX 3 WHERE launch_site LIKE 'CCA%' 4 LIMIT 5									
* ibm_db_sa://xqk12606:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/bludb Done.									
DAT	ΓE time_utc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010-06	6- 04 18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12 0	2- 08 15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05	5- 22 07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10	0- 08 00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03	3- 01 15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

• No success landing outcome

Total Payload Mass

Total payload carried by boosters from NASA

```
Task 3

Display the total payload mass carried by boosters launched by NASA (CRS)

1  %%sql
2  SELECT SUM(payload_mass__kg_) FROM SpaceX
WHERE customer = 'NASA (CRS)'

* ibm_db_sa://xqk12606:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.clogj
Done.

1  45596
```

Total payload from NASA: 45,596 kg

Average Payload Mass by F9 v1.1

average payload mass carried by booster version F9 v1.1

```
Task 4

Display average payload mass carried by booster version F9 v1.1

1 %%sql
2 SELECT AVG(payload_mass__kg_) FROM SpaceX
3 WHERE booster_version = 'F9 v1.1'

* ibm_db_sa://xqk12606:***@54a2f15b-5c0f-46df-8954-7e38e612c2
Done.
1
2928
```

average payload mass carried by booster version F9 v1.1: 2,928 kg

First Successful Ground Landing Date

The dates of the first successful landing outcome on ground pad

The dates of the first successful landing outcome on ground pad: 2015.12.22

Successful Drone Ship Landing with Payload between 4000 and 6000

List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

Task 6

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

1 %%sql
2 SELECT DISTINCT(booster_version) FROM SpaceX
3 WHERE mission_outcome = 'Success' AND payload_mass__kg_ BETWEEN 4000 AND 6000

 names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000 booster_version F9 B4 B1040.2 F9 B4 B1040.1 F9 B5 B1046.2 F9 B5 B1046.3 F9 B5 B1047.2 F9 B5 B1048.3 F9 B5 B1051.2 F9 B5 B1058.2 F9 B5B1054 F9 B5B1060.1 F9 B5B1062.1 F9 FT B1021.2 F9 FT B1031.2 F9 FT B1032.2 F9 FT B1020 F9 FT B1022 F9 FT B1026 F9 FT B1030 F9 FT B1032.1 F9 v1.1 F9 v1.1 B1011 F9 v1.1 B1014 F9 v1.1 B1016

Total Number of Successful and Failure Mission Outcomes

The total number of successful and failure mission outcomes

Task 7 List the total number of successful and failure mission outcomes 1 **%%**sql 2 SELECT COUNT(*) FROM SpaceX 3 WHERE mission_outcome LIKE 'Success%' * ibm db sa://xqk12606:***@54a2f15b-5c0f-46df-8954-7e38e6120 Done. 100 1 **%%**sql 2 SELECT COUNT(*) FROM SpaceX 3 WHERE mission_outcome LIKE 'Failure%' * ibm_db_sa://xqk12606:***@54a2f15b-5c0f-46df-8954-7e38e6120 Done.

- Successful mission outcomes: 100
- Failure mission outcomes: 1

Boosters Carried Maximum Payload

List the names of the booster which have carried the maximum payload mass

List the names of the booster which have carried the maximum payload mass

2015 Launch Records

List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Task 10

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in desce

```
1 %%sql
2 SELECT COUNT(*), landing__outcome FROM SpaceX
WHERE (landing__outcome = 'Failure (drone ship)' OR landing__outcome = 'Success (ground pad)')
AND DATE BETWEEN '2010-06-04' AND '2017-03-20'
GROUP BY landing__outcome
ORDER BY COUNT(landing__outcome) DESC

* ibm_db_sa://xqk12606:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/bludb
Done.

1 landing_outcome

5 Failure (drone ship)

3 Success (ground pad)
```


Location of launch site and NASA Johnson Space Center at Houston, Texas

Launch sites are located at California and Florida.

Success/failure for each launch site

Green are success and Red are failure.

Example screen shot shows success/failure at KSC LC 39A

Distances between a launch site to its proximities

 Markers and Polylines to show Distances between a launch site to railways, highways, and cities and check correlations.

launch success count for all sites

KSC LC 39A has the most success count

the launch site with highest launch success ratio

KSC LC 39A has the highest success rate

Payload vs. Launch Outcome scatter plot for all sites, with different payload selected in the range slider

Classification Accuracy

Model accuracy for all built classification models, in a bar chart

Model	CV Accuracy	Test Accuracy
LogisticRegression	0.846429	0.833333
SVM	0.848214	0.833333
Decision Trees	0.889286	0.833333
KNN	0.848214	0.833333

Confusion Matrix

Confusion matrix of the Decision Trees model

- Among 6 failure test data, 3 of them are correctly predicted as failure and 3 of them are not correctly predicted.
- Among 12 success test data, all of them are correctly predicted.

Conclusions

- Success rate since 2013 kept increasing till 2020 and reached plateau at around 80% success rate since 2017.
- Decision tree model shows the highest accuracy in cross validation while all model exhibits similar test accuracy score of 0.833.
- Decision tree model tend to successfully predict success outcome but not failure outcome.

Appendix

Data Collection API: https://github.com/jhjang101/testrepo/blob/f6b7548cd69adee212591bd4bb55a6f4e2915ed2/Data%20Collection%20API.ipynb

Data Collection with Web Scraping:

https://github.com/jhjang101/testrepo/blob/f6b7548cd69adee212591bd4bb55a6f4e2915ed2/Data%20Collection%20With%20Web%20Scraping.ipynb

EDA with Data Visualization:

https://github.com/jhjang101/testrepo/blob/f6b7548cd69adee212591bd4bb55a6f4e2915ed2/EDA%20with%20Data%20Visualization.ipynb

EDA with SQL: https://github.com/jhjang101/testrepo/blob/f6b7548cd69adee212591bd4bb55a6f4e2915ed2/EDA%20with%20SQL.ipynb

EDA: https://github.com/jhjang101/testrepo/blob/f6b7548cd69adee212591bd4bb55a6f4e2915ed2/EDA.ipynb

Launch site location:

https://github.com/jhjang101/testrepo/blob/f6b7548cd69adee212591bd4bb55a6f4e2915ed2/lab_jupyter_launch_site_location.ipynb

Launch_site_location PDF:

https://github.com/jhjang101/testrepo/blob/f6b7548cd69adee212591bd4bb55a6f4e2915ed2/lab_jupyter_launch_site_location.pdf

spacex_dash_app: https://github.com/jhjang101/testrepo/blob/f6b7548cd69adee212591bd4bb55a6f4e2915ed2/spacex_dash_app.py

spacex_dash pdf: https://github.com/jhjang101/testrepo/blob/f6b7548cd69adee212591bd4bb55a6f4e2915ed2/spacex_dash.pdf

SpaceX Machine Learning Prediction:

https://github.com/jhjang101/testrepo/blob/f6b7548cd69adee212591bd4bb55a6f4e2915ed2/SpaceX_Machine%20Learning%20Prediction_Part_5.ipynb

