B دائرة قطرها AB ماعدا النقطتين	$ \begin{cases} \left(\overrightarrow{BM}; \overrightarrow{AM}\right) = \frac{\pi}{2} \\ \emptyset^{f} \\ \left(\overrightarrow{BM}; \overrightarrow{AM}\right) = -\frac{\pi}{2} \end{cases} $	$\arg\left(\frac{z-z_A}{z-z_B}\right) = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$
القوس $\stackrel{\frown}{A^{B}}$ ماعدا النقطتين A و	$(\overrightarrow{BM}; \overrightarrow{AM}) = \alpha$	$\alpha \in IR - \{k\pi; k \in Z\}$, $\arg\left(\frac{z - z_A}{z - z_B}\right) = \alpha$

المتتاليات العددية

اتجاه تغیر متتالیة:

- $u_{n+1} u_n \ge 0$: N منتالية متزايدة معناه من أجل كل قيم n من u_n
- . $u_{n+1}-u_n \leq 0$: IN متتالية متناقصة معناه من أجل كل قيم n من (u_n)
 - . $u_{n+1} u_n = 0$: N منتالية ثابتة معناه من أجل كل قيم n من (u_n)
- . 1 و المقارنة مع $\frac{u_{n+1}}{u_n}$ متتالية حدودها موجبة تماما يمكن حساب النسبة و المقارنة مع $\boldsymbol{\cdot}$
- [0;+ ∞ [على المجال معرفة بحدها العام $u_n = f(n)$ يمكن دراسة اتجاه تغير الدالة (u_n) على المجال \star

ح تقارب متتالية:

- $l\in IR$ حيث $\lim_{n\to\infty}u_n=l$ اي l=1 حيث القبل نهاية وحيدة u_n متتالية متقاربة معناه أن u_n
- متتالية متباعدة معناه أن (u_n) لا تقبل نهاية أي $\pm\infty=\pm 1$ أو نهايتها غير موجودة. u_n
 - متتالية محدودة من الأعلى:

 $u_n \leq lpha : I\!N$ من n من أجل كل قيم n من lpha و ذلك من أجل كل قيم

ح متتالية محدودة من الأسفل:

 $u_n \geq \beta : IN$ من أجل كل قيم n من β و ذلك من أجل كل قيم

متتالية محدودة:

. $\beta \leq u_n \leq \alpha$: IN من n مين أجل كل قيم α و β و ذلك من أجل كل قيم α

- مبرهنة:
- اذا كانت (u_n) متتالية متزايدة و محدودة من الأعلى فإنها متقاربة .
- إذا كانت (u_n) متتالية متناقصة و محدودة من الأسفل فإنها متقاربة .
 - المتتاليتان المتجاورتان:
- نقول أن المتتاليتان $(u_n)_{0}(v_n)_{0}$ متجاورتان إذا كانت إحداهما متزايدة و الأخرى متناقصة و $\lim_{n\to\infty} [u_n-v_n]=0$.

• مبرهنه: كل متناليتان منجاورتان متفاريتان نحو نفس النهاية.

 $u_{n+1}-u_n=r:I\!\!N$ من آجل کل قیم u_n من أجل کل قیم u_n معناه يو جد عدد حقیقي ثابت u_n بحيث من أجل کل قیم u_n r : أساس المتتالية الحسابية.

علاقة الحد العام:
$$p$$
 علاقة الحد العام: p علاقة الحد العام:

. a العام a

مجموع حدود متتالية حسابية:

 $k \succ p$ و $k \cdot S = u_p + u_{p+1} + \cdots + u_k$ و $k \cdot S = u_p + u_{p+1} + \cdots + u_k$

$$S = \frac{k - p + 1}{2} \left(u_p + u_k \right)$$

الوسط الحسابي : دود متتابعة من متتالية من متتالية الم

a+c=2b

المتتالية الهندسية:

 $u_{n+1} = qu_n : IN$ متتالیة هندسیة معناه یو جد عدد حقیقی غیر معدوم ثابت q بحیث من أجل کل قیم n من u_n a: أساس المتتالية الهندسية.

﴿ علاقة الحد العام:

.[(

و
$$q$$
 أعداد طبيعية n ، $u_n = u_p q^{n-p}$

. a^b العام $u_n=a^{bn}$ العام a و a أعداد حقيقية غير معدومة هي متتالية هندسية أساسها a

$$q \neq 1$$
 حیث $S = u_p \frac{1 - q^{k-p+1}}{1 - q}$

الوسط الهندسي : $c \cdot b \cdot a$ ثلاثة حدود متتابعة من متتالية هندسية :

 $a \times c = b^2$

> نهایهٔ مِتتالیهٔ هندسیه:

- . $\lim q^n = +\infty$ ، q > 1 اذا کان
- . $\lim_{n\to\infty}q^n=0$ ، $-1\prec q\prec 1$ إذا كان
 - اذا كان $q \le -1$ الا توجد نهاية.