EECS 16A Designing Information Devices and Systems I Discussion 13B

1. Building a classifier

We would like to develop a classifier to classify points based on their distance from the origin.

You are presented with the following data. Each data point $\vec{d_i}^T = [x_i \ y_i]^T$ has the corresponding label $l_i \in \{-1, 1\}$.

y_i	l_i
1	-1
1	1
1	1
1	-1
	1 1 1

Table 1: *
Labels for data you are classifying

- (a) You want to build a model to understand the data. You first consider a linear model, i.e. you want to find $\alpha, \beta, \gamma \in \mathbb{R}$ such that $l_i \approx \alpha x_i + \beta y_i + \gamma$.
 - Set up a least squares problem to solve for α , β and γ . If this problem is solvable, solve it, i.e. find the best values for α , β , γ . If it is not solvable, justify why.
- (b) Plot the data points in the plot below with axes (x_i, y_i) . Is there a straight line such that the data points with a +1 label are on one side and data points with a -1 label are on the other side? Answer yes or no, and if yes, draw the line.

x_i	y_i	l_i
-2	1	-1
-1	1	1
1	1	1
2	1	-1

Table 2: *

Table repeated for your convenience: Labels for data you are classifying

(c) You now consider a model with a quadratic term: $l_i \approx \alpha x_i + \beta x_i^2$ with $\alpha, \beta \in \mathbb{R}$. Read the equation carefully!

Set up a least squares problem to fit the model to the data. If this problem is solvable, solve it, i.e, find the best values for α, β . If it is not solvable, justify why.

x_i	Уi	l_i
-2	1	-1
-1	1	1
1	1	1
2	1	-1

Table 3: *

Table repeated for your convenience: Labels for data you are classifying

(d) Plot the data points in the plot below with axes (x_i, x_i^2) . Is there a straight line such that the data points with a +1 label are on one side and data points with a -1 label are on the other side? Answer yes or no, and if yes, draw the line.

x_i	y_i	l_i
-2	1	-1
-1	1	1
1	1	1
2	1	-1

Table 4: *

Table repeated for your convenience: Labels for data you are classifying

(e) Finally you consider the model: $l_i \approx \alpha x_i + \beta x_i^2 + \gamma$, where $\alpha, \beta, \gamma \in \mathbb{R}$. Independent of the work you have done so far, would you expect this model or the model in part (c) (i.e. $l_i \approx \alpha x_i + \beta x_i^2$) to have a smaller error in fitting the data? Explain why.

2. Orthonormal Matrices and Projections

An orthonormal matrix, A, is a matrix whose columns, \vec{a}_i , are:

- Orthogonal (ie. $\langle \vec{a}_i, \vec{a}_i \rangle = 0$ when $i \neq j$)
- Normalized (ie. vectors with length equal to 1, $\|\vec{a}_i\| = 1$). This implies that $\|\vec{a}_i\|^2 = \langle \vec{a}_i, \vec{a}_i \rangle = 1$.
- (a) Suppose that the matrix $\mathbf{A} \in \mathbb{R}^{N \times M}$ has linearly independent columns. The vector \vec{y} in \mathbb{R}^N is not in the subspace spanned by the columns of \mathbf{A} . What is the projection of \vec{y} onto the subspace spanned by the columns of \mathbf{A} ?

Answer: When finding a projection onto a subspace, we're trying to find the "closest" vector in that subspace. This can be found by first finding \vec{x} that minimizes $||\vec{y} - A\vec{x}||$. From least squares, we know that $\vec{\hat{x}} = (A^T A)^{-1} A^T \vec{y}$. The projection of \vec{y} onto the columns of \vec{A} is then $\vec{\hat{y}} = A\hat{\hat{x}} = A(A^T A)^{-1}A^T \vec{y}$.

(b) Show if $\mathbf{A} \in \mathbb{R}^{N \times N}$ is an orthonormal matrix then the columns, \vec{a}_i , form a basis for \mathbb{R}^N .

Answer:

We want to show that the columns of **A** form a basis for \mathbb{R}^N . To show that the columns form a basis for \mathbb{R}^N we need to show two things:

- The columns must form a set of *N* linearly independent vectors.
- Any vector $\vec{x} \in \mathbb{R}^N$ can be represented as a linear combination of the vectors in the set.

We already know we have N vectors, so first we will show they are linearly independent. We shall do this by showing that $\vec{A}\vec{\beta} = \vec{0}$ implies that $\vec{\beta}$ can be only $\vec{0}$.

$$\mathbf{A}\vec{\boldsymbol{\beta}} = \vec{0} \tag{1}$$

$$\beta_1 \vec{a}_1 + \ldots + \beta_N \vec{a}_N = \vec{0} \tag{2}$$

Then to exploit the properties of orthogonal vectors, we consider taking the inner product of each side of the above equation with \vec{a}_i .

$$\langle \vec{a}_i, \beta_1 \vec{a}_1 + \ldots + \beta_N \vec{a}_N \rangle = \langle \vec{a}_i, \vec{0} \rangle = 0$$
 (3)

Now we apply the distributive property of the inner product and the definition of orthonormal vectors,

$$\langle \vec{a}_i, \beta_1 \vec{a}_1 \rangle + \ldots + \langle \vec{a}_i, \beta_i \vec{a}_i \rangle + \ldots + \langle \vec{a}_i, \beta_N \vec{a}_N \rangle = 0 \tag{4}$$

$$0 + \ldots + \beta_i \langle \vec{a}_i, \vec{a}_i \rangle + \ldots + 0 = 0 \tag{5}$$

$$0 + \ldots + \beta_i \vec{a}_i^T \vec{a}_i + \ldots + 0 = 0$$
 (6)

Because $\vec{a}_i^T \vec{a}_i = 1$, $\beta_i = 0$ for the equation to hold. Then, since this is true for all i from 1 to N, all the elements of the vector beta must be zero $(\vec{\beta} = \vec{0})$. Because $\vec{x} = \vec{0}$ implies $\vec{\beta} = \vec{0}$, the columns of \bf{A} are linearly independent.

Now, we will show that any vector $\vec{x} \in \mathbb{R}^N$ can be represented as a linear combination of the columns of **A**.

$$\vec{x} = \mathbf{A}\vec{\beta} = \beta_1 \vec{a}_1 + \ldots + \beta_N \vec{a}_N \tag{7}$$

Because we know that the N columns of **A** are linearly independent, then there exists A^{-1} . Applying the inverse to the equation above,

$$\mathbf{A}^{-1}\mathbf{A}\vec{\boldsymbol{\beta}} = \mathbf{A}^{-1}\vec{\boldsymbol{x}} \tag{8}$$

$$\vec{\beta} = \mathbf{A}^{-1}\vec{x},\tag{9}$$

we find that there exists a unquie β that allow us to represent any \vec{x} as a linear combination of the columns of A.

(c) When $\mathbf{A} \in \mathbb{R}^{N \times M}$ and $N \geq M$ (i.e. tall matrices), show that if the matrix is orthonormal, then $\mathbf{A}^T \mathbf{A} = \mathbf{I}_{M \times M}$.

Answer: Want to show $\mathbf{A}^T \mathbf{A} = \mathbf{I}_{M \times M}$.

$$\mathbf{A}^{T}\mathbf{A} = \begin{bmatrix} \vec{a}_{1}^{T}\vec{a}_{1} & \vec{a}_{1}^{T}\vec{a}_{2} & \dots & \vec{a}_{1}^{T}\vec{a}_{n} \\ \vec{a}_{2}^{T}\vec{a}_{1} & \vec{a}_{2}^{T}\vec{a}_{2} & \dots & \vec{a}_{2}^{T}\vec{a}_{n} \\ \vdots & \vdots & & \vdots \end{bmatrix} = \mathbf{I}_{M \times M}$$
(10)

When $\vec{a}_i^T \vec{a}_i = ||\vec{a}_i||^2 = 1$ and when $i \neq j$, $\vec{a}_i^T \vec{a}_j = 0$ because the column vectors are orthogonal.

(d) Again, suppose $\mathbf{A} \in \mathbb{R}^{N \times M}$ where $N \geq M$ is an orthonormal matrix. Show that the projection of \vec{y} onto the subspace spanned by the columns of \mathbf{A} is now $\mathbf{A}\mathbf{A}^T\vec{y}$.

Answer:

Starting with the result from part (a),

$$\mathbf{A}\hat{\mathbf{x}} = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}, \tag{11}$$

we can apply the result from part (c),

$$\mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{\mathbf{y}} = \mathbf{A} \mathbf{I} \mathbf{A}^T \vec{\mathbf{y}}$$
 (12)

$$= \mathbf{A}\mathbf{A}^T \vec{\mathbf{v}} \tag{13}$$

(e) Given
$$\mathbf{A} \in \mathbb{R}^{N \times M} = \begin{bmatrix} 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 and the columns of \mathbf{A} are orthonormal, find the least squares solution to $\mathbf{A} : \vec{\mathbf{A}} = \vec{\mathbf{A}} : \vec{\mathbf{A}} : \vec{\mathbf{A}} = \vec{\mathbf{A}} : \vec{\mathbf{A}} = \vec{\mathbf{A}} : \vec{\mathbf{A}} : \vec{\mathbf{A}} = \vec{\mathbf{A}} : \vec{\mathbf{A}}$

Answer:

Method 1:

Since the columns of A are orthonormal, from part (d) we know that

$$\hat{\vec{x}} = \mathbf{A}^T \vec{y} = \begin{bmatrix} \langle \vec{a}_1, \vec{y} \rangle \\ \langle \vec{a}_2, \vec{y} \rangle \\ \langle \vec{a}_3, \vec{y} \rangle \end{bmatrix}.$$

Note that this is equivalent to projecting \vec{y} onto each column of A:

$$\begin{split} \hat{x_1} &= \frac{\langle \vec{a_1}, \vec{y} \rangle}{||\vec{a_1}||^2} = \langle \vec{a_1}, \vec{y} \rangle = 8 \\ \hat{x_2} &= \frac{\langle \vec{a_2}, \vec{y} \rangle}{||\vec{a_2}||^2} = \langle \vec{a_2}, \vec{y} \rangle = 7 \\ \hat{x_3} &= \frac{\langle \vec{a_3}, \vec{y} \rangle}{||\vec{a_3}||^2} = \langle \vec{a_3}, \vec{y} \rangle = \frac{17\sqrt{2}}{2} \end{split}$$

Method 2 (Alternatively you can use the least squares formula):

$$\hat{\vec{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{y} = \begin{pmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 12 \\ 7 \\ 8 \end{bmatrix} \\
= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 12 \\ 7 \\ 8 \end{bmatrix} = \begin{bmatrix} 8 \\ 7 \\ \frac{17\sqrt{2}}{2} \end{bmatrix}$$