Example Breakdown: Lambda Calculus Reductions

Problem 1: Reducing (λx. x x) (λy. y)

Step 1: Understanding the Expression

- We have a function λx . x x applied to another function λy . y.
- In lambda calculus, function application means substituting the argument into the function.

Step 2: Applying Beta Reduction

- The function λx. x x expects an input and applies it to itself.
- We substitute (λy. y) for x in x x:

 $(\lambda x. x x) (\lambda y. y) \rightarrow (\lambda y. y) (\lambda y. y)$

Step 3: Evaluating the New Expression

- Now we have (λy. y) (λy. y).
- The function λy. y is the identity function, meaning it returns whatever is given to it.
- Applying it to **\(\lambda y. \) y** results in:

 $(\lambda y. y) \rightarrow \lambda y. y$

• The expression reduces to **Ay. y**, which is the simplest form (normal form).

Key Concepts in This Reduction:

- **Beta Reduction:** Replacing a bound variable with its argument.
- Identity Function: λy. y always returns its input.
- **Normal Form:** When no further reductions can be applied.

Problem 2: Reducing ($\lambda x. x (\lambda z. z)$) ($\lambda y. y y$)

Step 1: Understanding the Expression

- The function λx. x (λz. z) is applied to λy. y y.
- This means x will be replaced with (λy. y y) in the expression x (λz. z).

Step 2: Applying Beta Reduction

• Substitute (λy . y y) for x in x (λz . z):

$$(\lambda x. x (\lambda z. z)) (\lambda y. y y) \rightarrow (\lambda y. y y) (\lambda z. z)$$

Step 3: Evaluating the New Expression

- Now we have (λy. y y) (λz. z).
- λy. y y applies itself to its argument, which is λz. z.
- This results in:

$(\lambda z. z) (\lambda z. z)$

- The function λz . z is the identity function, so it just returns λz . z.
- The final result is λz. z, which is the normal form.

Key Concepts in This Reduction:

- **Function Substitution:** Replacing **x** with its argument.
- **Self-Application:** λy. y y applies itself to an argument.
- Normal Form: The simplest form after reduction.

General Notes for Understanding Lambda Calculus:

- Alpha Conversion: Renaming bound variables to avoid confusion.
- Beta Reduction: The main step of computation in lambda calculus.
- Eta Reduction: Simplifying functions when possible (e.g., λx . $f x \rightarrow f$ if x does not appear in f).

This document should help you practice breaking down lambda expressions step by step!