(Kernel) Canonical Correlation Analysis

CS-E4830 - Kernel Methods in Machine Learning: Unsupervised Learning Algorithms 2

Viivi Uurtio

Department of Computer Science, Aalto University Helsinki Institute for Information Technology HIIT

March 20, 2019

Canonical correlation methods find multivariate relations from two-view datasets

<u>relation</u>: a set of ordered pairs (2-tuples)

The set $\{(x,y): x^2+y^2=1\}$ is the set of all ordered pairs (x,y) for which $x^2+y^2=1$.

<u>multivariate relation</u>: a set of ordered tuples of more than two elements

The set $\{(x,y,z): x^2+y^2+z^2=1\}$ is the set of all ordered tuples (x,y,z) for which $x^2+y^2+z^2=1$.

 $\underline{\textit{function}}$: a relation for which every element in the domain maps on a single element in the codomain

Example of a function: $(x, y) : y = x^2$.

Canonical correlation methods find multivariate relations from two-view datasets

 $\underline{\textit{view}}$: a matrix in $\mathbb{R}^{n \times p}$ where n and p denote the observations and variables respectively

 $\underline{two\text{-}view\ dataset}$: every observation is described by p+q variables, that is the dataset consists of two matrices $\mathbf{X}_a \in \mathbb{R}^{n \times p}$ and $\mathbf{X}_b \in \mathbb{R}^{n \times q}$

Given a set of p+q variables, or vectors in \mathbb{R}^n , canonical correlation methods find subsets of variables that are ordered tuples

Canonical correlation methods find multivariate relations from two-view datasets

Example. Let $\mathbf{X}_a \in \mathbb{R}^{200 \times 10}$ and $\mathbf{X}_b \in \mathbb{R}^{200 \times 10}$ denote the two views of the data. Let the first two variables in view \mathbf{X}_a be linearly related with the first two variables of view \mathbf{X}_b , that is $\mathbf{x}_b^1 + \mathbf{x}_b^2 = \mathbf{x}_a^1 + \mathbf{x}_a^2 + \boldsymbol{\xi}$ where $\boldsymbol{\xi}$ denotes normal noise.

The related variables are determined from the values of the entries of \mathbf{w}_a and \mathbf{w}_b .

Canonical correlation methods find the \mathbf{w}_a and \mathbf{w}_b that maximize the canonical correlation ρ between $\mathbf{X}_a\mathbf{w}_a$ and $\mathbf{X}_b\mathbf{w}_b$.

This lecture covers standard canonical correlation analysis (CCA) and kernel CCA

CCA

$\begin{bmatrix} \max_{\mathbf{w}_a, \mathbf{w}_b} & \frac{\langle \mathbf{X}_a \mathbf{w}_a, \mathbf{X}_b \mathbf{w}_b \rangle}{||\mathbf{X}_a \mathbf{w}_a||_2 ||\mathbf{X}_b \mathbf{w}_b||_2} \end{bmatrix}$

Kernel CCA

may	$\langle \mathbf{K}^x oldsymbol{lpha}, \mathbf{K}^y oldsymbol{eta} angle$			
$\max_{\boldsymbol{\alpha},\boldsymbol{\beta}}$	$\overline{\ \mathbf{K}^x \boldsymbol{lpha}\ _2 \ \mathbf{K}^y \boldsymbol{eta}\ _2}$			

- → How these optimisation problems are solved
- ightarrow How we interpret the solution to the CCA and KCCA problems
- → When kernel CCA is more useful than CCA

A CCA model is assessed on test data

Training:

- Learn the coefficients
-Tune the hyperparameters

Testing:

Are the learnt relations predictive?

Learning methods:

Standard Eigenvalue Problem (CCA, Kernel CCA)
Generalised Eigenvalue Problem (CCA, Kernel CCA)
Singular Value Decomposition (CCA)

CCA is based on linear transformations

We only know the transformations (the data matrices)

$$\underbrace{\mathbf{X}_a}_{\mathbb{R}^{n \times p}} \underbrace{\mathbf{w}_a}_{\mathbb{R}^p} = \underbrace{\mathbf{z}_a}_{\mathbb{R}^n} \underbrace{\mathbf{X}_b}_{\mathbb{R}^{n \times q}} \underbrace{\mathbf{w}_b}_{\mathbb{R}^q} = \underbrace{\mathbf{z}_b}_{\mathbb{R}^n}$$

We want to find the positions \mathbf{w}_a and \mathbf{w}_b and their images \mathbf{z}_a and \mathbf{z}_b such that the cosine of the angle between the images is maximized:

$$\cos \theta_r = \max \langle \mathbf{z}_a^r, \mathbf{z}_b^r \rangle$$
$$||\mathbf{z}_a^r||_2 = 1 \quad ||\mathbf{z}_b^r||_2 = 1$$
$$\langle \mathbf{z}_a^r, \mathbf{z}_a^j \rangle = 0 \quad \langle \mathbf{z}_b^r, \mathbf{z}_b^j \rangle = 0$$
$$\forall j \neq r : j, r = 1, 2, \dots, \min(p, q)$$

Consecutive pairs of images with greater enclosing angles are found in the orthogonal complements.

The CCA problem can be formulated in terms of the data matrices and \mathbf{w}_a and \mathbf{w}_b

Let $\mathbf{C}_{ab} = \frac{1}{n-1} \mathbf{X}_a^{\top} \mathbf{X}_b$, $\mathbf{C}_{ba} = \frac{1}{n-1} \mathbf{X}_b^{\top} \mathbf{X}_a$, $\mathbf{C}_{aa} = \frac{1}{n-1} \mathbf{X}_a^{\top} \mathbf{X}_a$, and $\mathbf{C}_{bb} = \frac{1}{n-1} \mathbf{X}_b^{\top} \mathbf{X}_b$ denote the empirical between-set and within-set covariance matrices.

We can formulate the CCA problem:

$$\cos \theta = \max_{\mathbf{z}_a, \mathbf{z}_b} \langle \mathbf{z}_a, \mathbf{z}_b \rangle = \max_{\mathbf{w}_a, \mathbf{w}_b} \mathbf{w}_a^{\top} \mathbf{C}_{ab} \mathbf{w}_b$$

$$||\mathbf{z}_a||_2 = \sqrt{\mathbf{w}_a \mathbf{C}_{aa} \mathbf{w}_a} = 1 \quad ||\mathbf{z}_b||_2 = \sqrt{\mathbf{w}_b \mathbf{C}_{bb} \mathbf{w}_b} = 1$$

The norm constraints are generally expressed in squared form, $\mathbf{w}_a \mathbf{C}_{aa} \mathbf{w}_a = 1$ and $\mathbf{w}_b \mathbf{C}_{bb} \mathbf{w}_b = 1$.

The standard eigenvalue problem is obtained through the Lagrange multiplier technique

Let $L = \mathbf{w}_a^{\top} \mathbf{C}_{ab} \mathbf{w}_b - \frac{\rho_1}{2} (\mathbf{w}_a^{\top} \mathbf{C}_{aa} \mathbf{w}_a - 1) - \frac{\rho_2}{2} (\mathbf{w}_b^{\top} \mathbf{C}_{bb} \mathbf{w}_b - 1)$, where ρ_1 and ρ_2 denote the Lagrange multipliers.

$$\begin{split} \frac{\delta L}{\delta \mathbf{w}_a} &= \mathbf{C}_{ab} \mathbf{w}_b - \rho_1 \mathbf{C}_{aa} \mathbf{w}_a = \mathbf{0} \text{ and } \frac{\delta L}{\delta \mathbf{w}_b} = \mathbf{C}_{ba} \mathbf{w}_a - \rho_2 \mathbf{C}_{bb} \mathbf{w}_b = \mathbf{0} \\ \mathbf{w}_a^\top \mathbf{C}_{ab} \mathbf{w}_b - \rho_1 \mathbf{w}_a^\top \mathbf{C}_{aa} \mathbf{w}_a = 0 \text{ and } \mathbf{w}_b^\top \mathbf{C}_{ba} \mathbf{w}_a - \rho_1 \mathbf{w}_b^\top \mathbf{C}_{bb} \mathbf{w}_b = 0 \\ \text{Since } \mathbf{w}_a^\top \mathbf{C}_{aa} \mathbf{w}_a = \mathbf{w}_b^\top \mathbf{C}_{bb} \mathbf{w}_b = 1 \text{ we have } \rho_1 = \rho_2 = \rho. \\ \text{Then } \mathbf{w}_a = \frac{\mathbf{C}_{aa}^{-1} \mathbf{C}_{ab} \mathbf{w}_b}{\rho} \text{ and } \frac{1}{\rho} \mathbf{C}_{ba} \mathbf{C}_{aa}^{-1} \mathbf{C}_{ab} \mathbf{w}_b - \rho \mathbf{C}_{bb} \mathbf{w}_b = 0. \\ \text{If } \mathbf{C}_{bb}^{-1} \text{ is invertible we have } \mathbf{C}_{bb}^{-1} \mathbf{C}_{ba} \mathbf{C}_{aa}^{-1} \mathbf{C}_{ab} \mathbf{w}_b = \rho^2 \mathbf{w}_b. \end{split}$$

The canonical correlations are the square roots of the eigenvalues of the matrix $\mathbf{C}_{bb}^{-1}\mathbf{C}_{ba}\mathbf{C}_{aa}^{-1}\mathbf{C}_{ab}$, the eigenvectors correspond to \mathbf{w}_b and the $\mathbf{w}_a = \frac{\mathbf{C}_{aa}^{-1}\mathbf{C}_{ab}\mathbf{w}_b}{\rho}$.

The generalised eigenvalue problem is obtained from simultaneous equations

$$\begin{split} \frac{\delta L}{\delta \mathbf{w}_a} &= \mathbf{C}_{ab} \mathbf{w}_b - \rho_1 \mathbf{C}_{aa} \mathbf{w}_a = \mathbf{0} \text{ and } \frac{\delta L}{\delta \mathbf{w}_b} = \mathbf{C}_{ba} \mathbf{w}_a - \rho_2 \mathbf{C}_{bb} \mathbf{w}_b = \mathbf{0} \\ \mathbf{C}_{ab} \mathbf{w}_b &= \rho \mathbf{C}_{aa} \mathbf{w}_a \text{ and } \mathbf{C}_{ba} \mathbf{w}_a = \rho \mathbf{C}_{bb} \mathbf{w}_b \\ \begin{pmatrix} \mathbf{0} & \mathbf{C}_{ab} \\ \mathbf{C}_{ba} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{w}_a \\ \mathbf{w}_b \end{pmatrix} = \rho \begin{pmatrix} \mathbf{C}_{aa} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{bb} \end{pmatrix} \begin{pmatrix} \mathbf{w}_a \\ \mathbf{w}_b \end{pmatrix} \end{split}$$

The generalised eigenvalues come in pairs

$$\{\rho_1, -\rho_1, \rho_2, -\rho_2, \dots, \rho_p, -\rho_p, 0\}$$

where p < q.

The positive generalised eigenvalues correspond to the canonical correlations.

The SVD can be applied on a rectangular matrix of covariances

$$\mathbf{C}_{aa} = \mathbf{C}_{aa}^{1/2} \mathbf{C}_{aa}^{1/2}$$
 and $\mathbf{C}_{bb} = \mathbf{C}_{bb}^{1/2} \mathbf{C}_{bb}^{1/2}$

$$\begin{pmatrix} \mathbf{C}_{aa}^{-1/2} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{bb}^{-1/2} \end{pmatrix} \begin{pmatrix} \mathbf{C}_{aa} & \mathbf{C}_{ab} \\ \mathbf{C}_{ba} & \mathbf{C}_{bb} \end{pmatrix} \begin{pmatrix} \mathbf{C}_{aa}^{-1/2} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{bb}^{-1/2} \end{pmatrix} =$$

$$\begin{pmatrix} \mathbf{I}_{q} & \mathbf{C}_{aa}^{-1/2} \mathbf{C}_{ab} \mathbf{C}_{bb}^{-1/2} \\ \mathbf{C}_{bb}^{-1/2} \mathbf{C}_{ba} \mathbf{C}_{aa}^{-1/2} & \mathbf{I}_{p} \end{pmatrix}$$

$$\mathbf{C}_{aa}^{-1/2} \mathbf{C}_{ab} \mathbf{C}_{bb}^{-1/2} = \mathbf{U}^{\top} \mathbf{S} \mathbf{V}$$

- C_{aa} $C_{ab}C_{bb}$ $\equiv C \cdot S \cdot V$
- \to The columns of the matrices ${\bf U}$ and ${\bf V}$ correspond to the sets of orthonormal left and right singular vectors respectively.
- \rightarrow The positions \mathbf{w}_a and \mathbf{w}_b are obtained from

$$\mathbf{w}_a = \mathbf{C}_{aa}^{-1/2} \mathbf{U} \quad \mathbf{w}_b = \mathbf{C}_{bb}^{-1/2} \mathbf{V}$$

 \rightarrow The singular values of matrix ${\bf S}$ correspond to the canonical correlations.

Jupyter Exercise 1: canonical correlations through the standard eigenvalue problem

Let $\mathbf{X}_a^{\text{train}} \in \mathbb{R}^{500 \times 10}$ and $\mathbf{X}_b^{\text{train}} \in \mathbb{R}^{500 \times 10}$ where the columns of both matrices are generated from a random normal distribution with zero mean and unit variance. The following relations are simulated:

We compute the square roots of the eigenvalues of the matrix ${f C}_{bb}^{-1}{f C}_{ba}{f C}_{aa}^{-1}{f C}_{ab}$ and obtain

 $\{0.997, 0.888, 0.876, 0.172, 0.168, 0.127, 0.1020.094, 0.022, 0.002\}$

Jupyter Exercise 1: canonical correlations through the standard eigenvalue problem

The score plots show the forms of the relations

-	0.52	-0.034	0.056	-	0.86	-0.015	0.043
2	0.54	0.0014	-0.019	2	0.5	-0.0027	0.096
3	-0.00025	0.0035	-0.71	en	0.0048	0.0098	-0.98
4	0.0088	0.017	-0.73	4	0.0023	-0.00089	-0.16
9	0.0044	-0.33	-0.0015	9	0.0085	-0.79	0.023
9	0.0024	-0.32	0.038	9	0.0062	-0.62	0.033
7	-2.6e-05	0.0048	-0.0063	7	-0.0017	-0.01	0.015
00	0.0021	-0.023	-0.046	œ	-0.0045	-0.0085	0.071
6	6.4e-05	-0.03	0.0088	o	0.0061	-0.0095	-0.042
9	0.00058	0.0045	-0.046	10	0.00094	-0.02	-0.014
	\mathbf{W}^1_{∂}	\mathbf{w}_a^2	\mathbf{w}_a^3		\mathbf{w}_b^1	\mathbf{w}_b^2	\mathbf{w}_b^3

The related variables are determined from \mathbf{w}_a and \mathbf{w}_b

If there are more variables than examples the within-set covariance matrix becomes singular

 \rightarrow The inverses of \mathbf{C}_{aa} and/or \mathbf{C}_{aa} cannot be computed if p>n or q>n

 \to This problem is addressed with regularization: we add small positive constants to the diagonal of the within-set covariance matrix.

Regularised standard eigenvalue problem:

$$\left(\mathbf{C}_{bb} + c_b \mathbf{I}\right)^{-1} \mathbf{C}_{ba} \left(\mathbf{C}_{aa} + c_a \mathbf{I}\right)^{-1} \mathbf{C}_{ab} \mathbf{w}_b = \rho^2 \mathbf{w}_b.$$

Regularised generalised eigenvalue problem:

$$\begin{pmatrix} \mathbf{0} & \mathbf{C}_{ab} \\ \mathbf{C}_{ba} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{w}_a \\ \mathbf{w}_b \end{pmatrix} = \rho \begin{pmatrix} \mathbf{C}_{aa} + c_a \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{bb} + c_b \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{w}_a \\ \mathbf{w}_b \end{pmatrix}$$

Kernel CCA (KCCA) is CCA on Hilbert Space Objects

The observations are transformed to Hilbert spaces \mathcal{H}_a and \mathcal{H}_b using symmetric positive semi-definite kernels

$$\mathbf{K}_a(\mathbf{x}_a^i,\mathbf{x}_a^j) = \langle \phi_a(\mathbf{x}_a^i), \phi_a(\mathbf{x}_a^j) \rangle_{\mathcal{H}_a} \text{ and } \mathbf{K}_b(\mathbf{x}_b^i,\mathbf{x}_b^j) = \langle \phi_b(\mathbf{x}_b^i), \phi_b(\mathbf{x}_b^j) \rangle_{\mathcal{H}_b}$$

where $i,j=1,2,\ldots,n$. In KCCA, the data matrices, $\mathbf{X}_a\in\mathbb{R}^{n\times p}$ and $\mathbf{X}_b\in\mathbb{R}^{n\times q}$, are substituted by the Gram matrices $\mathbf{K}_a\in\mathbb{R}^{n\times n}$ and $\mathbf{K}_b\in\mathbb{R}^{n\times n}$.

Let α and β denote the positions in the kernel space \mathbb{R}^n that have the images $\mathbf{z}_a = \mathbf{K}_a \alpha$ and $\mathbf{z}_b = \mathbf{K}_b \beta$. The KCCA optimisation problem becomes:

$$\max_{\mathbf{z}_a, \mathbf{z}_b \in \mathbb{R}^n} \langle \mathbf{z}_a, \mathbf{z}_b \rangle = \boldsymbol{\alpha}^{\top} \mathbf{K}_a^{\top} \mathbf{K}_b \boldsymbol{\beta}$$

$$||\mathbf{z}_a||_2 = \sqrt{\boldsymbol{\alpha}^{\top} \mathbf{K}_a^2 \boldsymbol{\alpha}} = 1 ||\mathbf{z}_b||_2 = \sqrt{\boldsymbol{\beta}^{\top} \mathbf{K}_b^2 \boldsymbol{\beta}} = 1$$

Pen-and-Paper Exercise 2: Derive the KCCA problem.

To find non-spurious correlations, kernel CCA needs to be regularised

KCCA is regularised in similar manner as CCA.

Regularised kernelised standard eigenvalue problem:

$$(\mathbf{K}_b + c_a \mathbf{I})^{-2} \mathbf{K}_b \mathbf{K}_a (\mathbf{K}_a + c_b \mathbf{I})^{-2} \mathbf{K}_a \mathbf{K}_b \alpha = \rho^2 \alpha$$

Regularised kernelised generalised eigenvalue problem:

$$\underbrace{\begin{pmatrix} \mathbf{0} & \mathbf{K}_{a}\mathbf{K}_{b} \\ \mathbf{K}_{b}\mathbf{K}_{a} & \mathbf{0} \end{pmatrix}}_{\mathbf{A}} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{pmatrix} = \rho \underbrace{\begin{pmatrix} (\mathbf{K}_{a} + c_{a}\mathbf{I})^{2} & \mathbf{0} \\ \mathbf{0} & (\mathbf{K}_{b} + c_{b}\mathbf{I})^{2} \end{pmatrix}}_{\mathbf{B}} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{pmatrix}$$

The hyperparameters $c_a>0$ and $c_b>0$ can be determined through cross-validation. In general, a small positive value, such as 0.02, can be used [1].

Pen-and-Paper Exercise 1: Show that KCCA needs to be regularised.

Linear KCCA is the same as CCA

Canonical correlation:
$$\rho_{\mathsf{cca}} = \frac{\langle \mathbf{X}_a \mathbf{w}_a, \mathbf{X}_b \mathbf{w}_b \rangle}{||\mathbf{X}_a \mathbf{w}_a||_2 ||\mathbf{X}_b \mathbf{w}_b||_2}.$$

Kernel canonical correlation:
$$\rho_{\mathsf{kcca}} = \frac{\langle \mathbf{K}_a \boldsymbol{\alpha}, \mathbf{K}_b \boldsymbol{\beta} \rangle}{\|\mathbf{K}_a \boldsymbol{\alpha}\|_2 \|\mathbf{K}_b \boldsymbol{\beta}\|_2}$$

Let
$$\mathbf{K}_a = \mathbf{X}_a \mathbf{X}_a^{\top}$$
 and $\mathbf{K}_b = \mathbf{X}_b \mathbf{X}_b^{\top}$.

$$\rho_{\mathsf{kcca}} = \frac{\langle \mathbf{X}_a \mathbf{X}_a^\top \boldsymbol{\alpha}, \mathbf{X}_b \mathbf{X}_b^\top \boldsymbol{\beta} \rangle}{\|\mathbf{X}_a \mathbf{X}_a^\top \boldsymbol{\alpha}\|_2 \|\mathbf{X}_b \mathbf{X}_b^\top \boldsymbol{\beta}\|_2}$$

Denote
$$\mathbf{w}_a = \mathbf{X}_a^{\top} \boldsymbol{\alpha}$$
 and $\mathbf{w}_b = \mathbf{X}_b^{\top} \boldsymbol{\beta}$.

We obtain $\rho_{kcca} = \rho_{cca}$.

Jupyter Exercise 2: Quadratic KCCA finds non-monotonic trigonometric relations

The homogeneous quadratic polynomial kernel $\mathbf{K} = \langle \mathbf{X}, \mathbf{X} \rangle^2$ finds periodic trigonometric relations.

Example simulated data: Let every entry of $\theta \in \mathbb{R}^n \sim U[-2\pi, 2\pi]$.

$$\mathbf{X}_{a} = \left(3 \cdot \sin \frac{\mathbf{x}_{a}^{2}}{1} + \boldsymbol{\xi} \quad \cdots \quad \boldsymbol{\theta}_{p}\right)$$

$$\mathbf{X}_{b} = \left(3 \cdot \cos \frac{\mathbf{x}_{a}^{2}}{1} + \boldsymbol{\xi} \quad 6 \cdot \cos \frac{\mathbf{x}_{a}^{2}}{0.4} + \boldsymbol{\xi} \quad \cdots \quad \boldsymbol{\theta}_{q}\right)$$

Jupyter Exercise 2: Quadratic KCCA finds non-monotonic trigonometric relations

Exercise: Complete the generalized eigenvalue problem for KCCA and apply it on this dataset.

Wrap-up: CCA is an eigenvalue-based method that finds multivariate relations from two-view datasets

CCA:

- ightarrow we solve the CCA problem through a standard or generalized eigenvalue problem or by applying the SVD.
- ightarrow The related variables are determined from the entries of \mathbf{w}_a and \mathbf{w}_b .
- ightarrow The value of the training and test correlation is obtained from $ho = \frac{\langle \mathbf{X}_a^t \mathbf{w}_a, \mathbf{X}_b^t \mathbf{w}_b \rangle}{||\mathbf{X}_b^t \mathbf{w}_a||||\mathbf{X}_b^t \mathbf{w}_b||}$ where t is either train or test data.
- \rightarrow Training correlation shows whether learning occurs, test correlation shows if the relation is predictive
- ightarrow The form of the underlying relation is seen from the score plot.

Wrap-up: KCCA is an eigenvalue-based method that finds multivariate relations from two-view datasets

KCCA:

- ightarrow we map the observations to a Hilbert space and solve the CCA problem there, through the standard or generalised eigenvalue problem.
- ightarrow with non-linear kernels, we cannot extract the related variables from the dual coefficient vectors lpha and eta
- ightarrow a high test (non-linear) kernel canonical correlation tells that the data contains non-linear relations

References

- Francis R Bach and Michael I Jordan. "Kernel independent component analysis". In: Journal of machine learning research 3.Jul (2002), pp. 1–48.
- Viivi Uurtio et al. "A Tutorial on Canonical Correlation Methods". In: ACM Comput. Surv. 50.6 (Nov. 2017), 95:1–95:33. ISSN: 0360-0300. DOI: 10.1145/3136624. URL: http://doi.acm.org/10.1145/3136624.