2.4.7.- Considere el siguiente razonamiento ecuacional

$$\neg p \lor (q \to \neg s) \equiv \neg p \lor (s \to \neg q)$$
$$\equiv (s \to \neg q) \lor \neg p$$
$$\equiv \neg (s \to \neg q) \to \neg p$$

Justifique cada paso mediante instancias particulares de la regla de Leibniz, llenando la siguiente tabla:

Paso	X	Y	E	E[z := X]	E[z := Y]
1				$\neg p \lor (q \to \neg s)$	
2					
3					$\neg(s \to \neg q) \to \neg p$

2.4.8.- Complete utilizando la regla de Leibniz. Decida cuáles son las expresiones E, X, Y. Dé todas las respuestas posibles.

$$\frac{2*y+1=5}{x+(2*y+1)*w=?}$$

2.5. Conceptos semánticos importantes

Una vez que hemos estudiado el análisis sintáctico de una fórmula lógica pasamos a estudiar ciertos conceptos de importancia relacionados con su semántica.

2.5.1. Interpretaciones

La noción de interpretación presentada en esta sección será de gran importancia para evitar el uso de tablas de verdad en las pruebas de correctud.

Definición 2.11 Un *estado* de las variables proposicionales es una función \mathcal{I} que asigna a cada variable proposicional el valor de falso o verdadero:

$$\mathcal{I}: VProp \rightarrow \{0,1\}$$

donde VProp es el conjunto de variables proposicionales.

Cada estado genera una función de interpretación sobre todas las fórmulas, definida como se explica a continuación:

71

Definición 2.12 Cada estado \mathcal{I} determina una *interpretación* de las fórmulas –denotada también por \mathcal{I} – definida como se muestra en la siguiente página:

$$\begin{split} \mathcal{I}(\mathsf{true}) &= 1 & \mathcal{I}(\mathsf{false}) = 0 \\ \mathcal{I}(\neg P) &= 1 & \text{si y s\'olo si} & \mathcal{I}(P) = 0 \\ \mathcal{I}(P \lor Q) &= 0 & \text{si y s\'olo si} & \mathcal{I}(P) = 0 = \mathcal{I}(Q) \\ \mathcal{I}(P \land Q) &= 1 & \text{si y s\'olo si} & \mathcal{I}(P) = 1 = \mathcal{I}(Q) \\ \mathcal{I}(P \to Q) &= 0 & \text{si y s\'olo si} & \mathcal{I}(P) = 1 \ \text{e} \ \mathcal{I}(Q) = 0 \\ \mathcal{I}(P \leftrightarrow Q) &= 1 & \text{si y s\'olo si} & \mathcal{I}(P) = \mathcal{I}(Q) \end{split}$$

Si $\mathcal{I}(P) = 1$ entonces decimos que

- \mathcal{I} satisface a P, o bien
- P es satisfacible en \mathcal{I} , o bien
- P se satisface en \mathcal{I} , o bien
- \mathcal{I} es un *modelo* de P.

Ejemplo 2.26. Si tenemos la fórmula $A = p \rightarrow q \lor r$, la siguiente asignación de estado

$$\mathcal{I}_1(p) = 1, \mathcal{I}_1(q) = 0, \mathcal{I}_1(r) = 0,$$

hace $\mathcal{I}_1(p \to q \vee r) = 0$, por lo que \mathcal{I}_1 no es un modelo para la fórmula. Por otro lado, el estado

$$\mathcal{I}_2(p) = 1, \mathcal{I}_2(q) = 0, \mathcal{I}_2(r) = 1$$

hace que $\mathcal{I}_2(p \to q \lor r) = 1$, por lo que sí es un modelo para la fórmula.

Dada una fórmula P podemos preguntarnos ¿cuántas interpretaciones hacen verdadera a P? Las posibles respuestas llevan a las siguientes definiciones.

Definición 2.13 Sea *P* una fórmula. Entonces

- Si $\mathcal{I}(P) = 1$ para toda interpretación \mathcal{I} , decimos que P es una tautología o fórmula válida y escribimos $\models P$.
- Si $\mathcal{I}(P) = 1$ para alguna interpretación \mathcal{I} , decimos que P es satisfacible, que P es verdadera en \mathcal{I} o que \mathcal{I} es modelo de P y escribimos $\mathcal{I} \models P$
- Si \(\mathcal{I}(P) = 0\) para alguna interpretación \(\mathcal{I}\), decimos que \(P\) es falsa o insatisfacible en \(\mathcal{I}\) o que \(\mathcal{I}\) no es modelo de \(P\) y escribimos \(\mathcal{I} \notin P\)
- Si $\mathcal{I}(P)=0$ para toda interpretación \mathcal{I} , decimos que P es una contradicción o fórmula no satisfacible.

Similarmente, si Γ es un conjunto de fórmulas decimos que:

• Γ es satisfacible si tiene un modelo, es decir, si existe una interpretación \mathcal{I} tal que $\mathcal{I}(P)=1$ para toda $P\in\Gamma$, lo cual denotamos a veces, abusando de la notación, con $\mathcal{I}(\Gamma)=1$.

• Γ es insatisfacible o no satisfacible si no tiene un modelo, es decir, si no existe una interpretación \mathcal{I} tal que $\mathcal{I}(P) = 1$ para toda $P \in \Gamma$.

Para el último ejemplo se cumple lo siguiente, de acuerdo a la definición anterior,

$$\mathcal{I}_1 \not\models A, \ \mathcal{I}_2 \models A, \not\models \mathcal{A}.$$

Veamos otro ejemplo.

Ejemplo 2.27. Sean $\Gamma_1 = \{p \to q, r \to s, \neg s\}, \Gamma_2 = \{p \to q, \neg (q \lor s), s \lor p\}.$ Entonces

- Si $\mathcal{I}(s) = \mathcal{I}(r) = \mathcal{I}(p) = 0$, entonces $\mathcal{I}(\Gamma_1) = 1$ por lo que Γ_1 es satisfacible.
- Γ₂ resulta insatisfacible, pues supóngase que existe una interpretación *I* tal que *I*(Γ₂) = 1. Entonces se tiene que *I*(¬(q ∨ s)) = 1, por lo que *I*(¬q) = *I*(¬s) = 1. Además, como *I*(p → q) = 1 entonces *I*(p) = 0, puesto que el consecuente de la implicación es falso. De esto último se tiene *I*(s) = 1, dado que *I*(s ∨ p) = 1. De manera que se tiene *I*(¬s) = 1 = *I*(s), lo cual es imposible. Por lo tanto, no puede existir una interpretación *I* que satisfaga a Γ₂.

Con respecto a las tablas de verdad tenemos las siguientes observaciones:

- Una fórmula P es satisfacible si en alguna línea de la tabla de verdad, P toma el valor 1. En caso contrario, es decir si en **todas** las líneas toma el valor 0, entonces es insatisfacible (contradicción).
- Un conjunto de fórmulas Γ es satisfacible si existe alguna línea de la tabla de verdad en la que **todas** las fórmulas de Γ toman el valor 1.

2.5.2. Consecuencia lógica

La definición matemática formal de argumento deductivo correcto se sirve del concepto de consecuencia o implicación lógica que discutimos en esta sección.

Definición 2.14 Sean $\Gamma = \{A_1, \dots, A_n\}$ un conjunto de fórmulas y B una fórmula. Decimos que B es consecuencia lógica de Γ si toda interpretación \mathcal{I} que satisface a Γ también satisface a B. Es decir, si todo modelo de Γ es modelo de B. En tal caso escribimos $\Gamma \models B$.

Nótese que la relación de consecuencia lógica está dada por una implicación de la forma si $\mathcal{I}(\Gamma) = 1$ entonces $\mathcal{I}(B) = 1$.

De manera que no se afirma nada acerca de la satisfacibilidad del conjunto Γ , sino que simplemente se supone que es satisfacible y, en tal caso, se prueba que la fórmula B

también lo es con la misma interpretación.

Obsérvese la sobrecarga del símbolo \models que previamente utilizamos para denotar satisfacibilidad ($\mathcal{I} \models A$) y tautologías ($\models A$).

Ejemplo 2.28. Considérese el siguiente conjunto $\Gamma = \{q \to p, \ p \leftrightarrow t, \ t \to s, \ s \to r\}$. Muestre que $\Gamma \models q \to r$.

Sea $\mathcal I$ un modelo de Γ . Tenemos que demostrar que $\mathcal I(q \to r) = 1$. Si $\mathcal I(q) = 0$ entonces $\mathcal I(q \to r) = 1$ y terminamos. En otro caso se tiene $\mathcal I(q) = 1$ de donde $\mathcal I(p) = 1$ pues $\mathcal I(q \to p) = 1$. Entonces se tiene $\mathcal I(t) = 1$, pues $\mathcal I$ es modelo de $p \leftrightarrow t$, de donde $\mathcal I(s) = 1$ dado que I también es modelo de $t \to s$. Finalmente, como $\mathcal I(s \to r) = 1$ e $\mathcal I(s) = 1$, entonces $\mathcal I(r) = 1$. Por lo tanto, $\mathcal I(q \to r) = 1$.

Para terminar la sección discutimos algunas propiedades importantes de la relación de consecuencia lógica.

Proposición 2.2 La relación de consecuencia lógica cumple las siguientes propiedades:

- (a) Si $A \in \Gamma$ entonces $\Gamma \models A$.
- (b) Principio de refutación: $\Gamma \models A$ si y sólo si $\Gamma \cup \{\neg A\}$ es insatisfacible.
- (c) $\Gamma \models A \rightarrow B$ si y sólo si $\Gamma \cup \{A\} \models B$.
- (d) Insatisfacibilidad implica trivialidad: Si Γ es insatisfacible entonces $\Gamma \vDash A$ para toda fórmula A.
- (e) Si $\Gamma \models$ false entonces Γ es insatisfacible.
- (f) $A \equiv B$ si y sólo si $A \models B$ y $B \models A$.
- (g) $\models A$ (es decir A es tautología) si y sólo si $\varnothing \models A$ (es decir, A es consecuencia lógica del conjunto vacío).

Demostración.

Procedemos a justificar algunos de los incisos:

- (a) Si $\mathcal{I}(\Gamma) = 1$ quiere decir que existe un modelo para Γ y, por lo tanto, para cada una de las fórmulas de Γ , en particular para A.
- (b) Supongamos que toda interpretación que satisface a Γ también satisface a A (definición de $\Gamma \models A$). Tenemos que demostrar que $\Gamma \cup \{\neg A\}$ es insatisfacible. Si una interpretación satisface a Γ , dado que satisfacía también a A, entonces no satisface a $\neg A$. Por lo tanto, es imposible satisfacer a Γ y a $\neg A$ al mismo tiempo, lo cual implica que $\Gamma \cup \{\neg A\}$ es insatisfacible.

En sentido contrario, supongamos que $\Gamma \cup \{\neg A\}$ es insatisfacible. Para mostrar que $\Gamma \models A$, consideremos \mathcal{I} , una interpretación cualquiera tal que $\mathcal{I}(\Gamma) = 1$. En tal caso, necesariamente tenemos que $\mathcal{I}(A) = 1$. De lo contrario, si $\mathcal{I}(A) = 0$ entonces $\mathcal{I}(\neg A) = 1$, con lo que $\Gamma \cup \{\neg A\}$ sería satisfacible mediante \mathcal{I} , lo cual, por hipótesis, no sucede.

(c) Supongamos $\Gamma \vDash A \to B$ y tenemos que demostrar, entonces, que $\Gamma \cup \{A\} \vDash B$. Por la definición de consecuencia lógica, tenemos que si $\mathcal{I}(\Gamma) = 1$ entonces $\mathcal{I}(A \to B) = 1$. Para mostrar que $\Gamma \cup \{A\} \vDash B$, sea \mathcal{I} una interpretación tal que $\mathcal{I}(\Gamma \cup \{A\}) = 1$; en esta interpretación se tiene que $\mathcal{I}(A) = 1$; como además $\mathcal{I}(A \to B) = 1$ por hipótesis, porque estamos suponiendo $\mathcal{I}(\Gamma) = 1$, entonces, por definición de la interpretación de una implicación y dado que para el antecedente A se tiene $\mathcal{I}(A) = 1$, necesariamente $\mathcal{I}(B) = 1$. Por lo tanto $\Gamma \cup \{A\} \vDash B$.

En sentido contrario, supongamos que $\Gamma \cup \{A\} \models B$. Esto es que si $\mathcal{I}(\Gamma \cup \{A\}) = 1$ entonces $\mathcal{I}(B) = 1$. Sea \mathcal{I} una interpretación tal que $\mathcal{I}(\Gamma) = 1$. Tenemos los siguientes casos:

- $\mathcal{I}(A) = 1$. Entonces $\mathcal{I}(B) = 1$, pues se cumple que $\mathcal{I}(\Gamma \cup \{A\}) = 1$; además, estamos suponiendo que $\Gamma \cup \{A\} \models B$, con lo que $\mathcal{I}(A \to B) = 1$. Por lo tanto, $\Gamma \models A \to B$.
- $\mathcal{I}(A) = 0$. En este caso, independientemente de cuál sea el valor de $\mathcal{I}(B)$, tenemos $\mathcal{I}(A \to B) = 1$, por lo que nuevamente $\Gamma \models A \to B$.

Hemos demostrado, entonces, $\Gamma \models A \rightarrow B$ si y sólo si $\Gamma \cup \{A\} \models B$.

- (d) Si Γ es insatisfacible quiere decir que para toda interpretación \mathcal{I} , se tiene $\mathcal{I}(\Gamma)=0$. Si esto es así, se cumple trivialmente que si $\mathcal{I}(\Gamma)=1$ entonces $\mathcal{I}(A)=1$. Es decir $\Gamma \models A$.
- (e) Si $\Gamma \models$ false, por la definición de consecuencia lógica tenemos que $\mathcal{I}(\Gamma) = 1$ implica $\mathcal{I}(\mathsf{false}) = 1$. Sin embargo, $\mathcal{I}(\mathsf{false}) = 0$ siempre sucede; por lo que, como $\Gamma \models$ false tenemos necesariamente que $\mathcal{I}(\Gamma) = 0$ para toda posible interpretación de Γ , es decir, Γ es insatisfacible.

Se deja la justificación de los incisos restantes al lector.

Es importante disponer de métodos algorítmicos para decidir la consecuencia lógica, que nos permitirán, en particular, analizar argumentos del lenguaje natural y establecer su correctud formalmente. En las siguientes secciones presentaremos algunos de estos métodos.

Ejercicios

2.5.1.- Para cada una de las fórmulas que siguen, determine si son o no *satisfacibles*. Si lo son, muestre un *modelo* para cada una de ellas.

a)
$$p \wedge q \leftrightarrow \neg p \wedge q$$

c)
$$p \land q \land \neg p$$

b)
$$(\neg p \lor q) \land p$$

$$d) (p \rightarrow q) \land (q \rightarrow p)$$

2.5.2.- Use interpretaciones para determinar si las siguientes fórmulas son tautologías, contradicciones o contingentes. Si son contingentes, dé una interpretación en la que la fórmula no se evalúa a verdadero.

a)
$$(((p \lor q) \lor r) \land (p \lor (q \lor r))) \rightarrow p \lor q$$
 c) $p \lor q \rightarrow p \lor r$
b) $(p \land (q \land r)) \rightarrow (p \rightarrow (q \rightarrow r))$ d) $(p \rightarrow (p \rightarrow q)) \rightarrow p$

2.5.3.- Decida si los siguientes conjuntos son satisfacibles.

a)
$$\Gamma = \{(\neg q \land r) \lor p \lor q, \ p \land r\}$$

b) $\Gamma = \{p \land \neg q, \ \neg(q \lor \neg p), \ (q \land p) \lor q \lor \neg p\}$
c) $\Gamma = \{q \lor r \lor s, \ \neg(q \lor r), \ \neg(r \lor s), \ \neg(s \lor q)\}$
d) $\Gamma = \{\neg(p \land q) \land \neg(p \land r), \ q \lor r, \ \neg(p \lor \neg r)\}$
e) $\Gamma = \{p \leftrightarrow q, \ q \leftrightarrow s, \ p, \ \neg s\}$

2.5.4.- Demuestre la consecuencia lógica en cada caso:

2.5.5.- Determine, utilizando interpretaciones, si los siguientes conjuntos de fórmulas de la lógica proposicional son satisfacibles; en caso positivo exhiba un modelo.

a)
$$\Gamma = \{p \rightarrow q, \neg q \lor r, p \land \neg r\}$$

b) $\Gamma = \{(p \lor q) \rightarrow r, \neg((\neg p \land \neg q) \lor r)\}$
c) $\Gamma = \{(p \lor q) \rightarrow r, \neg r, \neg p\}$

2.6. Análisis de argumentos

En esta sección aplicamos todos los conocimientos previos de lógica matemática estudiados hasta ahora para cumplir con nuestro propósito fundamental: el análisis de correctud de un argumento lógico proposicional.

2.6.1. Tablas de Verdad

Como ya discutimos antes, un argumento es correcto si y sólo si su fórmula asociada es una tautología; para decidir esta situación podemos construir la tabla de verdad correspondiente tal y como lo hicimos en la sección 2.1.6. Veamos un ejemplo más.

Ejemplo 2.29. El argumento $P \rightarrow Q$, $Q \rightarrow R/$ $\therefore P \rightarrow R$ es correcto.