Teoria do Risco Aula 11

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

https://atuaria.github.io/portalhalley/

Diferente da abordagem do modelo de risco individual, no modelo de risco coletivo o valor total das indenizações é calculado a partir de uma soma aleatória de variáveis aleatórias.

> O modelo de risco coletivo se diferencia do modelo de risco individual por modelar, de maneira conjunta, o número de sinistros e sua severidade.

- \succ O objetivo central da teoria do risco coletivo aplicada a seguros e danos é a modelagem matemática do comportamento probabilístico de S_{col} .
- $\succ S_{col.}
 ightarrow$ é o montante agregado relativo aos sinistros ocorridos no ano.
- $\succ X_i \rightarrow$ é o montante relativo ao i-ésimo sinistro ocorrido.
- $\rightarrow N \rightarrow$ o número de sinistros para o mesmo período em analise.

 $\succ S_{col}$ é condicionado a X_i e a N.

$$S_{col} = \sum_{i=1}^{N} X_i$$

$$S_{col} > 0$$
 se $N > 0$

$$S_{col} = 0$$
 se $N = 0$

> O número de vezes que os sinistros ocorrem e seus valores serão expressos pelas ocorrências verificadas no conjunto das apólices que a compõem.

ightharpoonup Assumindo que N=n, então X_1,X_2,X_3,\ldots,X_n são independentes e identicamente distribuídos.

> $\{X_i\}_{i=1}^{\infty}$ e N são mutualmente independentes.

ightharpoonup...qualquer sinistro ocorrido não pode sofrer interferência de outros eventos de mesma espécie e o número de sinistros (N) não tem efeito sobre o montante deles $(\{X_i\}_{i=1}^{\infty})$.

$$E(S_{col}) = E\left(\sum_{i=1}^{N} X_i\right)$$

- $\succ X_i \rightarrow$ é a variável aleatória que representa a sinistralidade da apólice i-ésima.
- ightarrow N
 ightharpoonupvariável aleatória que representa o número de sinistros na carteira em um dado intervalo de tempo.

Modelo de Risco individual

Modelo de Risco coletivo

 X_i Independentes

X_i Independentes e identicamente distribuídas

$$S_{ind} = \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} B_i I_i$$

$$S_{col} = \sum_{i=1}^{N} X_i$$

$$E(S_{ind}) = E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)$$

$$E(S_{col}) = E\left(\sum_{i=1}^{N} X_i\right)$$

$$X_i, B_i, I_i$$

$$X_i$$
, N

Modelos de risco Coletivo - A distribuição de $\boldsymbol{S_{col}}$, os sinistros coletivos.

- D método da convolução a partir da distribuição de X e N
 - Um método interativo por vezes se tornar bastante penoso, exigindo elevado poder computacional,
- Método da função geradora de momentos.
 - Requer o conhecimento prévio das funções geradoras de momentos dos riscos envolvidos como o método da função geradora de momentos.

Modelos de risco Coletivo-Pelo método da Função Geradora de Momentos.

Uma alternativa a utilização do método da convolução está relacionada com a função geradora de momentos.

Dado

$$M_X(t) = E(e^{tX})$$

$$M_N(t) = E(e^{tN})$$

Tem-se que:

$$M_{S_{col}}(t) = M_N(\ln M_X(t))$$

Demonstração:

$$M_{S_{col}}(t) = E(e^{tS_{col}}) = E[\underline{E(e^{tS_{col}}|N)}]$$

$$E(e^{tS_{col}}|N) = E[e^{t(X_1 + X_2 + \dots X_N)}] = E[e^{tX_1}e^{tX_2} \dots e^{tX_N}] = \prod_{i=1}^{\infty} E(e^{tX_i})$$

Como X_i s são independentes e identicamente distribuídos. Tem-se:

$$E(e^{tS_{col}}|N) = \prod_{i=1}^{N} E(e^{tX_i}) = M_X(t)^N$$

Demonstração:

$$M_{S_{col}}(t) = E(e^{tS_{col}}) = E[E(e^{tS_{col}}|N)]$$

...

$$E(e^{tS_{col}}|N) = \prod_{i=1}^{N} E(e^{tX_i}) = M_X(t)^N$$

Logo

$$M_{S_{col}}(t) = E(e^{tS_{col}}) = E[E(e^{tS_{col}}|N)] = E[M_X(t)^N]$$

$$M_{S_{col}}(t) = E\left[e^{\ln M_X(t)^N}\right] = E\left[e^{N\ln M_X(t)}\right]$$

$$M_{S_{col}}(t) = M_N(\ln M_X(t))$$

EXEMPLO

Calcule $E(S_{col})$ por meio de $M_{S_{col}}(t)$, dado que X possui distribuição Exponencial (α) e N possui distribuição de Poisson (λ) .

Se N \sim poisson(λ), então

$$M_N(t) = E(e^{tN}) = e^{\lambda(e^t-1)}$$

Se $X \sim Exp(\alpha)$, então:

$$M_X(t) = E(e^{tX}) = \frac{\alpha}{(\alpha - t)}$$

Universidade Federal de Alfenas

$$M_{N}(t) = e^{\lambda(e^{t}-1)}$$

$$M_X(t) = \frac{\alpha}{(\alpha - t)}$$

Como $\mathrm{M}_{\mathrm{Scol}}(\mathrm{t}) = M_N(\ln M_X(t))$, então:

$$M_{S_{col}}(t) = e^{\lambda \left[e^{\ln\left(\frac{\alpha}{\alpha-t}\right)} - 1\right]} = e^{\lambda \left(\frac{\alpha}{\alpha-t} - 1\right)} = e^{(\alpha-t)^{-1}\lambda\alpha - \lambda}$$

$$M'_{scol}(t) = \frac{dM_{scol}(t)}{dt} = \frac{\lambda \alpha}{(\alpha - t)^2} e^{\frac{\lambda \alpha}{\alpha - t} - \lambda}$$

$$M'_{scol}(0) = E(S_{col}) = \frac{\lambda \alpha}{(\alpha - 0)^2} e^{\frac{\lambda \alpha}{\alpha - 0} - \lambda} = \frac{\lambda}{\alpha}$$

EXEMPLO 1

Seja N com distribuição $Binomial\ (n,q)$. Determine uma expressão para a função geradora de momentos de S_{col} em função de n,q e da função da geradora de momentos de X.

$$M_{S_{col}}(t) = M_N(\ln M_X(t))$$
 $M_N(t) = (qe^t + 1 - q)^n$

Assim:

$$M_{S_{col}}(t) = \left[qe^{\ln M_X(t)} + 1 - q\right]^n$$

$$M_{S_{col}}(t) = [qM_X(t) + 1 - q]^n$$

EXEMPLO 2

Suponha uma carteira de apólices de seguros de automóvel. Assuma que a severidade bruta do sinistro (sem dedução da franquia) obedece a uma distribuição $Gama(r,\alpha)$. Determine a função geradora de momentos de momentos do total agregado de sinistros S_{col} , dessa carteira dado que o número de ocorrências N obedeça a uma distribuição B (n,q). Obtenha o primeiro momento de S_{col} .

$$M_N(t) = (qe^t + 1 - q)^n$$

$$M_X(t) = \left(\frac{\alpha}{\alpha - t}\right)^r$$

Assim:

$$M_N(t) = (qe^t + 1 - q)^n$$
 $M_X(t) = \left(\frac{\alpha}{\alpha - t}\right)^n$

$$M_{S_{col}}(t) = [qM_X(t) + 1 - q]^n$$

$$M_{S_{col}}(t) = \left[q\left(\frac{\alpha}{\alpha - t}\right)^r + 1 - q\right]^n$$

Assim:

$$M_{S_{col}}(t) = \left[q\left(\frac{\alpha}{\alpha-t}\right)^r + 1 - q\right]^n = [q\alpha^r(\alpha-t)^{-r} + 1 - q]^n$$

$$M'_{S_{col}}(t) = n \left[q \left(\frac{\alpha}{\alpha - t} \right)^r + 1 - q \right]^{n-1} q \alpha^r (-r) (\alpha - t)^{-r-1} (-1)$$

$$M'_{S_{col}}(t) = n \left[q \left(\frac{\alpha}{\alpha - t} \right)^r + 1 - q \right]^{n-1} \frac{r q \alpha^r}{(\alpha - t)^{r+1}}$$

$$M'_{S_{col}}(0) = n \left[q \left(\frac{\alpha}{\alpha - 0} \right)^r + 1 - q \right]^{n-1} \frac{r q \alpha^r}{(\alpha - 0)^{r+1}}$$

$$E(S_{col}) = n(q+1-q)^{n-1} \frac{rq}{\alpha} = \frac{nqr}{\alpha}$$

Teoria do Risco

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

https://atuaria.github.io/portalhalley/

Modelo de Risco individual

Modelo de Risco coletivo

X_i Independentes

X_i Independentes e identicamente distribuídas

$$S_{ind} = \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} B_i I_i$$

$$S_{col} = \sum_{i=1}^{N} X_i$$

$$E(S_{ind}) = E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)$$

$$E(S_{col}) = E\left(\sum_{i=1}^{N} X_i\right)$$

$$S_{ind}, X_i, B_i, I_i$$

$$S_{col}, X_i, N$$

$$M_{S_{ind}}(t) = \prod_{i=1}^{n} M_{X_i}(t)$$

$$S_{col}, X_i, N$$

$$M_{S_{col}}(t) = M_N(\ln M_X(t))$$

$$E(S_{col}) = M'_{S_{col}}(0)$$

$$M'_{S_{col}}(t) = \frac{dM_{S_{col}}(t)}{dt} = M'_{N}(\ln M_{X}(t)) \frac{M'_{X}(t)}{M_{X}(t)}$$

$$E(S_{col}) = M'_{S_{col}}(0) = M'_{N}(0)M'_{X}(0) = E(N)E(X)$$

$$E(S_{col}) = E(N)E(X)$$

$$var(S_{col}) = E(S_{col}^2) - E(S_{col})^2$$

$$\frac{dM_{S_{col}}(t)}{dt} = M'_{N}(\ln M_{X}(t)) \frac{M'_{X}(t)}{M_{X}(t)}$$

$$E(S_{col}) = \frac{dM_{S_{col}}(0)}{dt} = M'_{S_{col}}(0) = M'_{N}(0)M'_{X}(0) = E(N)E(X)$$

$$\frac{d^{2}M_{S_{col}}(t)}{dt^{2}} = M''_{N}(\ln M_{X}(t)) \frac{M'_{X}(t)}{M_{X}(t)} \frac{M'_{X}(t)}{M_{X}(t)} + M'_{N}(\ln M_{X}(t)) \left[\frac{M''_{X}(t)M_{X}(t) - M'_{X}(t)M'_{X}(t)}{M_{X}(t)^{2}} \right]$$

$$M''_{S_{col}}(0) = M''_{N}(\ln M_{X}(0)) \frac{M'_{X}(0)}{M_{X}(0)} \frac{M'_{X}(0)}{M_{X}(0)} + M'_{N}(\ln M_{X}(0)) \left[\frac{M''_{X}(0)M_{X}(0) - M'_{X}(0)M'_{X}(0)}{M_{X}(0)^{2}} \right]$$

$$M''_{S_{col}}(0) = M''_{N}(0)E(X)E(X) + M'_{N}(0)[E(X^{2}) - E(X)^{2}]$$

$$E(S_{col}^2) = E(N^2)E(X)^2 + E(N)var(X)$$

$$var(S_{col}) = E(S_{col}^2) - E(S_{col})^2$$

$$var(S_{col}) = E(N^2)E(X)^2 + E(N)[var(X)] - E(N)^2E(X)^2$$

$$var(S_{col}) = E(X)^{2} [E(N^{2}) - E(N)^{2}] + E(N)var(X)$$

$$var(S_{col}) = E(X)^2 var(N) + E(N)var(X)$$

$$E(S_{col}) = E(N)E(X)$$

$$var(S_{col}) = E(X)^2 var(N) + E(N)var(X)$$

Exemplo 3

Encontre os valores de $\mathrm{E}(S_{col})$ e $var(S_{col})$ para as situações dos itens a seguir:

a) N ~ Poisson(λ) $\in X \sim Exp(\alpha)$.

b) $N\sim Binomial(n,q) \in X\sim Gama(r,\alpha)$.

a) $N \sim Poisson(\lambda) \in X \sim Exp(\alpha)$, então:

$$E(N) = \lambda$$
 $E(X) = \frac{1}{\alpha}$

Logo:

$$E(S_{col}) = E(N)E(X) = \frac{\lambda}{\alpha}$$

$$var(N) = \lambda e var(X) = \frac{1}{\alpha^2}$$

$$var(S_{col}) = var(X)E(N) + E(X)^{2}var(N)$$

$$var(S_{col}) = \frac{1}{\alpha^2}\lambda + \frac{1}{\alpha^2}\lambda = \frac{2\lambda}{\alpha^2}$$

b) $N \sim B(n, q)$ e $X \sim Gama(r, \alpha)$, então:

$$E(N) = nq$$
 $E(X) = \frac{r}{\alpha}$

$$E(S_{col}) = E(N)E(X) = \frac{nqr}{\alpha}$$

$$var(N) = nq(1-q) \ evar(X) = \frac{r}{\alpha^2}$$

$$var(S_{col}) = \frac{r}{\alpha^2}nq + \frac{r^2}{\alpha^2}nq(1-q) = \frac{nqr[1+r(1-q)]}{\alpha^2}$$

Suponha uma carteira de seguros cuja número de sinistros seja caracterizada pela variável aleatória $N \sim Po(12)$ e os valores dos sinistros seja $X \sim U_c(0,1)$, calcule $P(S_{col} \leq 10)$ utilizando uma aproximação pela distribuição normal.

$$E(S_{col}) = E(N)E(X)$$

$$var(S_{col}) = E(X)^{2} var(N) + E(N)var(X)$$

$$E(S_{col}) = 12 \times \frac{1}{2} = 6$$

$$var(S_{col}) = \frac{1}{4}12 + 12\frac{1}{12} = 4$$

$$P(S_{col} \le 10) = P\left(Z \le \frac{10-6}{2}\right)$$

$$P(S_{col} \le 10) = P(Z \le 2) = 0.97725$$

Universidade Federal de Alfenas

$$E(S_{col}) = E[E(S_{col}|N)]$$

$$E(S_{col}) = E[E(X_1 + X_2 + \dots + X_N | N = n)]$$

$$E(S_{col}) = \sum_{n=0}^{\infty} E(X_1 + X_2 + ... + X_N | N = n) \, p(N = n)$$

$$E(S_{col}) = \sum_{n=0}^{\infty} E(X_1 + X_2 + \dots + X_n) p(N = n) = \sum_{n=0}^{\infty} E\left(\sum_{i=1}^{n} X_i\right) p(N = n)$$

$$E(S_{col}) = \sum_{n=0}^{\infty} nE(X) p(N = n) = E(X) \sum_{n=0}^{\infty} n p(N = n)$$

Logo

$$E(S_{col}) = E(X)E(N)$$

$$var(S_{col}) = E[var(S_{col}|N)] + var[E(S_{col}|N)]$$

Primeiro iremos trabalhar $E[var(S_{col}|N)]$, assim:

$$E[var(S_{col}|N)] = E[var(X_1 + X_2 + ... + X_N|N = n)]$$

$$E[var(S_{col}|N)] = \sum_{n=0}^{\infty} var(X_1 + X_2 + \dots + X_N|N = n) \ p(N = n)$$

$$E[var(S_{col}|N)] = \sum_{n=0}^{\infty} var(X_1 + X_2 + \dots + X_n) \ p(N = n) = \sum_{n=0}^{\infty} var\left(\sum_{i=1}^{n} X_i\right) p(N = n)$$

$$E[var(S_{col}|N)] = \sum_{n=0}^{\infty} n \ var(X) \ p(N = n) = var(X) \sum_{n=0}^{\infty} n \ p(N = n)$$

$$E[var(S_{col}|N)] = var(X)E(N)$$

Agora para $var(E(S_{col}|N))$, tem-se:

$$var(S_{col}) = E[var(S_{col}|N)] + var[E(S_{col}|N)]$$

$$E[var(S_{col}|N)] = var(X)E(N)$$

Agora para $var[E(S_{col}|N)]$, tem-se:

$$var[E(S_{col}|N)] = var[E(X_1 + X_2 + ... + X_N|N = n)] = var[NE(X)]$$

$$var[E(S_{col}|N)] = E(X)^2 var(N)$$

Logo

$$var(S_{col}) = E(X)^{2}var(N) + E(N)var(X)$$