Logika

Proste definicje

- zdanie to wyrażenie o wartości prawda (P) lub fałsz (F), tylko zdania twierdzące
- wartość logiczna to P lub F przypisana zdaniu
- zmienna zdaniowa to symbol oznaczający całe zdanie, P lub F po podstawieniu wartości logicznej
- funktor zdaniotwórczy to operacja budująca zdania (\land, \lor, \neg)
- Spójniki jedno- i dwuargumentowe:
 - ∘ unarne: ¬
 - \circ binarne: $\land, \lor, \Rightarrow, \Leftrightarrow, \oplus$

Formuła logiki zdań

Definition

Niech $\mathrm{Var} = \{p_1, p_2, \ldots\}$ - przeliczalny zbiór zmiennych Alfabet $\sum = \mathrm{Var} \cup \{\neg, \lor, \land, \Rightarrow, \Leftrightarrow, (,)\}$ Zbiór formuł $\mathrm{Form} \subseteq \sum\}$ to najmniejszy taki zbiór, że:

- 1. $Var \subseteq Form$
- 2. $\varphi \in \text{Form} \Rightarrow (\neg \varphi) \in \text{Form}$
- 3. $\varphi, \psi \in \text{Form } \land \circ \in \{\land, \lor, \Rightarrow, \Leftrightarrow\} \Rightarrow (\varphi \circ \phi) \in \text{Form}$

Definicja w formie CFG

$$egin{aligned} \operatorname{Form} & o \operatorname{Var} \mid
eg \operatorname{Form} \mid (\ \operatorname{Form} \ \operatorname{Bin} \ \operatorname{Form} \) \ & \operatorname{Bin} & o ee \mid \ \wedge \mid \ \Rightarrow \mid \ \Leftrightarrow \ & Var & o \operatorname{ID} \mid P \mid F \end{aligned}$$

Postać normalna formuły - DNF i CNF

- DNF (disjunctive normal form) alternatywa koniunkcji literałów
- CNF (conjunctive normal form) koniunkcja alternatyw literałów

Algorytm zamiany do postaci normalnej

- 1. $|usuń \Leftrightarrow i \Rightarrow :$
- $\bullet \hspace{0.4em} \rule[-1.5em]{0.8em}{0.8em} \hspace{0.4em} p \Leftrightarrow q \equiv (p \Rightarrow q) \wedge (q \Rightarrow p)$
- $ullet p\Rightarrow q\equiv
 eg pee q$
- 2. NNF (negation normal form): wsuń negacje do literałów
- 3. rozdzielaj \vee, \wedge tak aby uzyskać pożądaną formę

Równoważność formuł

Definition

Jeśli $p,q\in ext{Form, to }p\equiv q\Leftrightarrow orall w\in W:w(p)=w(q)$

Specjalne formuly

- tautologia formuła zawsze prawdziwa
- sprzeczność formuła zawsze fałszywa
- spełnialna prawdziwa dla jakiegoś wartościowania
- | wynikanie $\Gamma \vDash p \Leftrightarrow \vDash (\forall \Gamma \Rightarrow p)$

Zbiór spójników funkcjonalnie pełny

☐ Definition

Zbiór spójników jest funkcjonalnie pełny, gdy można przy jego użyciu zdefiniować dowolną funkcję prawdziwościową

Przemienność, łączność i rozdzielność

- przemienność: ∧, ∨, ⇔
- łączność $\land,\lor,\Leftrightarrow$
- rozdzielność lewo i prawo stronna: \wedge, \vee

Kolejność wykonywania spójników

- kolejność: $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$
- łączność: ⇒ łączny prawostronnie

Najważniejsze twierdzenia

■ Zamiana implikacji alternatywą

$$p \Rightarrow q \equiv \neg p \vee q$$

☐ Prawa de Morgana

1.
$$\Big | \neg (p \wedge r) \equiv \neg p ee \neg q \Big |$$

2.
$$igl(\lnot(p\lor q) \equiv \lnot p\land \lnot q igr)$$

☐ Schemat dowodu nie wprost

$$\Gamma, \neg p \vdash F \Rightarrow \Gamma \vdash p$$