Свёрточные нейронные сети на графах

Александр Колодезный БПМИ192

Национальный исследовательский университет «Высшая школа экономики» (Москва)

23 ноября 2021 г.

Graph Convolutional Network

Вид одного свёрточного слоя

$$\mathbf{h}_v^{\ell+1} = \phi^{\ell+1} \Big(\mathbf{h}_v^{\ell}, \ \Psi(\{\psi^{\ell+1}(\mathbf{h}_u^{\ell}) \mid u \in \mathcal{N}_v\}) \Big)$$

- ▶ Ψ permutation-invariant функция
- $ightharpoonup \phi^{l+1}$ и ψ^{l+1} некоторый функция на l-ом слое

Graph Convolutional Network

Model	Neighborhood Aggregation $\mathbf{h}_v^{\ell+1}$
NN4G [88]	$\sigma\left(\mathbf{w}^{\ell+1^{T}}\mathbf{x}_{v} + \sum_{i=0}^{\ell} \sum_{c_{k} \in \mathcal{C}} \sum_{u \in \mathcal{N}_{v}^{c_{k}}} w_{c_{k}}^{i} * \mathbf{h}_{u}^{i}\right)$
GNN [104]	$\sum_{u \in \mathcal{N}_v} MLP^{\ell+1} \Big(\mathbf{x}_u, \mathbf{x}_v, \mathbf{a}_{uv}, \mathbf{h}_u^{\ell} \Big)$
GraphESN [44]	$\sigma\Big(\mathbf{W}^{\ell+1}\mathbf{x}_u + \hat{\mathbf{W}}^{\ell+1}[\mathbf{h}_{u_1}^{\ell}, \dots, \mathbf{h}_{u_{\mathcal{N}_v}}^{\ell}]\Big)$
GCN [72]	$\sigma \Big(\mathbf{W}^{\ell+1} \sum_{u \in \mathcal{N}(v)} \mathbf{L}_{vu} \mathbf{h}_u^{\ell} \Big)$
GAT [120]	$\sigma \Big(\sum_{u \in \mathcal{N}_v} \alpha_{uv}^{\ell+1} * \mathbf{W}^{\ell+1} \mathbf{h}_u \Big)$
ECC [111]	$\sigma\left(\frac{1}{ \mathcal{N}_v }\sum_{u\in\mathcal{N}_v}MLP^{\ell+1}(\mathbf{a}_{uv})^T\mathbf{h}_u^{\ell}\right)$
R-GCN [105]	$\sigma \Big(\sum_{c_k \in \mathcal{C}} \sum_{u \in \mathcal{N}_v^{c_k}} \frac{1}{ \mathcal{N}_v^{c_k} } \mathbf{W}_{c_k}^{\ell+1} \mathbf{h}_u^{\ell} + \mathbf{W}^{\ell+1} \mathbf{h}_v^{\ell} \Big)$
GraphSAGE [54]	$\sigma\Big(\mathbf{W}^{\ell+1}(\frac{1}{ \mathcal{N}_v }[\mathbf{h}_v^\ell, \sum_{u \in \mathcal{N}_v} \mathbf{h}_u^\ell])\Big)$
CGMM [3]	$\sum_{i=0}^{\ell} w^i * \left(\sum_{c_k \in \mathcal{C}} w_{c_k}^i * \left(\frac{1}{ \mathcal{N}_v^{c_k} } \sum_{u \in \mathcal{N}_v^{c_k}} \mathbf{h}_u^i \right) \right)$
GIN [131]	$MLP^{\ell+1}\Big(\big(1+\epsilon^{\ell+1}\big)\mathbf{h}_v^\ell + \sum_{u\in\mathcal{N}_v} \mathbf{h}_u^\ell \Big)$

Обработка рёбер

- Рёбра в графе могут иметь дополнительную информацию
- Можно брать различные веса для разных видов рёбер

$$\mathbf{h}_v^{\ell+1} = \phi^{\ell+1} \Big(\mathbf{h}_v^{\ell}, \sum_{c_k \in \mathcal{A}} \Big(\Psi(\{\psi^{\ell+1}(\mathbf{h}_u^{\ell}) \mid u \in \mathcal{N}_v^{c_k}\}) * w_{c_k} \Big) \Big),$$

Более общий вид, если у рёбер есть свои признаки

$$\mathbf{h}_v^{\ell+1} = \phi^{\ell+1} \Big(\mathbf{h}_v^{\ell}, \ \Psi(\{e^{\ell+1}(\mathbf{a}_{uv})^T \psi^{\ell+1}(\mathbf{h}_u^{\ell}) \mid u \in \mathcal{N}_v\}) \Big),$$

Attention

▶ Добавление дополнительных обучаемых весов на рёбра α_{uv}^{l+1}

$$\mathbf{h}_v^{\ell+1} = \phi^{\ell+1} \Big(\mathbf{h}_v^{\ell}, \ \Psi(\{\alpha_{uv}^{\ell+1} * \psi^{\ell+1}(\mathbf{h}_u^{\ell}) \mid u \in \mathcal{N}_v\}) \Big),$$

▶ Вычисляем сначала коэффициенты w_{uv}

$$a(\mathbf{W}^\ell \, \mathbf{h}_u^\ell, \mathbf{W}^\ell \, \mathbf{h}_v^\ell) = \mathrm{LeakyReLU}((\mathbf{b}^\ell)^T [\mathbf{W}^\ell \, \mathbf{h}_u^\ell, \mathbf{W}^\ell \, \mathbf{h}_v^\ell]),$$

Считаем softmax

$$\alpha_{uv}^{\ell} = \frac{\exp(w_{uv}^{\ell})}{\sum_{u' \in \mathcal{N}_v} \exp(w_{u'v}^{\ell})}.$$

Sampling (GraphSAGE)

- Проблема много вычислений на плотных графах
- Для каждой вершины на каждом слое выбираем случайное подмножество соседних вершин.
- ▶ Пересчитываем h_v только от h_u , которые выбрали.
- Приходится пересчитывать градиенты для всех вершин.

Sampling (FastGCN)

- На каждом слое выбираем t вершин
- При вычислении h_v используем только соседей, выбранных на этом слое.

Pooling

- ▶ Сжатие кластеров похожих вершин в одну
- Уменьшает размеры графа
- Уменьшает вычислительную стоимость

Differentiable Pooling

Обучаем для каждой вершины попадание в кластера

$$\mathbf{S}^{\ell+1} = \operatorname{softmax}(\operatorname{GNN}(\mathbf{A}^{\ell}, \mathbf{H}^{\ell})),$$

 Пересчитываются embedding для новых вершин, и новая матрица смежности

$$\mathbf{H}^{\ell+1} = \mathbf{S}^{\ell+1} \mathbf{H}^{\ell}$$
 and $\mathbf{A}^{\ell+1} = \mathbf{S}^{\ell+1} \mathbf{A}^{\ell} \mathbf{S}^{\ell+1}$.

Новая матрица смежности оказывается полной

Top-k Pooling

 Для каждой вершины посчитаем его вес как проекция его эмбединга на обучаемый вектор р

$$s^{\ell+1} = \frac{\mathbf{H}^{\ell} p^{\ell+1}}{\|p^{\ell+1}\|}.$$

- ▶ Выбираем k вершин с наибольшим полученным весом
- Оставляем в графе только найденные вершины
- Расширение метода Self-attention pooling

$$s^{\ell+1} = \sigma(GCN(\mathbf{A}^{\ell}, \mathbf{H}^{\ell})).$$

Edge Pooling

Считаем вес для рёбер

$$s^{\ell+1}((v, u) \in \mathcal{E}_g) = \sigma(\mathbf{w}^T[\mathbf{h}_v^{\ell}, \mathbf{h}_u^{\ell}] + \mathbf{b}).$$

- Сжимаем две вершины, соединённые этим ребром в одну
- Повторяем итерационно

Топологические pooling-и

- GRACLUS алгоритм основанный на спектральном анализе матрицы смежности
- Non-negative Factorization Matrix Pooling pooling основанный на NFM факторизации матрицы смежности.

Graph embedding

- Рассматриваем в задаче граф целиком
- > Хотим построить embedding для всего графа

Graph embedding

- Делаем pooling пока не останется одна вершина
- ▶ Оставшаяся вершина хранит информацию обо всём графе

Graph embedding

$$\mathbf{h}_g^\ell = \Psi\Big(\{f(\mathbf{h}_v^\ell) \mid v \in \mathcal{V}_g\}\Big),\,$$

- Выбрать Ψ как сумму, максимум или минимум, а f — тождественную функцию.
- ▶ f как нейронная сеть

Список литературы

- https://arxiv.org/pdf/1912.12693.pdf
- https://arxiv.org/pdf/1609.02907.pdf
- https://arxiv.org/pdf/1812.04202.pdf
- https://arxiv.org/pdf/1801.10247.pdf
- https://arxiv.org/pdf/1706.02216.pdf