Homework #1 MME 529

- 1. Use Euclid's Algorithm to find the gcd of each pair
 - a) 24,138 b) 159, 414 c) 272 and 1479 d) 4144 and 7696
- 2. Use the prime factorization of the numbers in Problem 1 to find their gcd's. (feel free to use software for the prime factorization)
- 3. a) If $\mathbf{a}|\mathbf{b}$ and $\mathbf{a}|\mathbf{c}$ prove that $\mathbf{a}|(\mathbf{b}+\mathbf{c})$.
 - b) prove gcd(ta,tb) = t gcd(a,b)
- 4. A student claims that $(2n+1, 2n^2 + 2n, 2n^2 + 2n + 1)$ give Pythagorean Triples
 - a) verify it *does* generate Pythagorean Triples (i.e satisfy the Pythagorean Theorem)
 - b) can you find one triple that it does *not* generate? (this would then prove that it only produces a proper subset)
- 5. Argue that the sum of the squares of two odd numbers must always be even.
- 6. What is the sum of

- 7. For a general arithmetic series with n+1 terms $a + (a+d) + (a+2d) + \dots (a+nd)$ Can you work out a formula for the sum?
- 8. Can you prove the arithmetic series formula $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ by induction?
- 9. What are the possible values of gcd(n,n+2) where **n** is any possible positive integer?
- 10. a) Use Geometric series to sum the first n powers of 2 $1 + 2 + 2^2 + ... + 2^{n-1}$
 - a) What is the binary form of 2⁷-1? 2⁹-1? 2ⁿ-1? (by binary is meant base 2)
- **11.** Consider numbers of the form 2^{pq} 1 where p and q are integers greater than 1. See if you can factor this. (hint: use Geometric Series)
- 12. Write Maple or Matlab code to generate a list of PTs as discussed in **Problem #4**. Do a screen shot and include it in your work turned in. Which ones are PPTs?