Rules

Safe Haskell None Language Haskell2010

This module defines the data structures, helper functions and declarations for the fuzzy logic relations which will be used in out FLC.

Documentation

data **Action**

Action is the type representing the discreet set of action we might take.

Constructors

HardSlowdown Slowdown NoOP Speedup HardSpeedup

■ Instances

Bounded Action
Enum Action
Eq Action
Ord Action
Show Action

data Speed

Speed is the type representing the discreet set of possible speed "ratings".

Constructors

VerySlow Slow Normal Fast VeryFast

■ Instances

Bounded Speed
Enum Speed
Eq Speed
Ord Speed
Show Speed

data **Distance**

Distance represents the type of the discreet set of relative distances to the destination.

Constructors

VeryClose Close

Halfway

Far

VeryFar

■ Instances

Bounded Distance

Enum Distance

Eq Distance

Ord Distance

Show Distance

type Conclusion = Map FuzzySet Action

Conclusion is a mapping of FuzzySets to Actions.

conclusion :: Reader Config Conclusion

conclusion is the default conclusion. I.e. conclusion == zip [Actions] Conclusion
Rule It relies on the "totalSpace", "conclusionSpacing" and "conclusionDelta" Config
keys.

```
type TermLimits = [(Int, Int)]
```

TermLimits is simply the list of upper and lower limit tuples representing a the terms in a Rule.

```
termLimiter :: Reader Config ([a] -> TermLimits)
```

termLimiter takes a list of terms and returns their TermLimits. It relies on the "ruleSpacing" configuration option.

```
type Rule = [FuzzySet]
```

Rule is a list of the degrees of activation of each premise. (i.e. foldr unionT rule == fuzzy logic rule)

```
mkRuler :: Reader Config (TermLimits -> Rule)
```

mkRuler takes a list of term limits and returns the associated Rule. It relies on the config keys totalSpace, ruleDelta.