

USER: Unsupervised Structural Entropy-based Robust Graph Neural Network

Yifei Wang, Yupan Wang, Zeyu Zhang, Song Yang, Kaiqi Zhao, Jiamou Liu The University of Auckland, Auckland, New Zealand wany107@aucklanduni.ac.nz, jiamou.liu@auckland.ac.nz

Background

- Unsupervised graph representation learning models are vulnerable to inherent randomness in the input graph.
- Unsupervised robust graph representation learning aims to alleviate the interference of randomness in the input graph while learning graph representation without label information.

Challenges

- How to find a graph that mitigates the interference of randomness in the input data without labels?
- What's objective function that guides a model to reveal such graphs?

Main Idea

Idea: Learn innocuous graphs that are GNN-equivalent to an unobserved intrinsic connectivity graph and locally feature smooth

- Edges in a graph are formed randomly, following certain underlying intrinsic connectivity.
- Two graphs with which GNN would learn the same embeddings are not necessarily equal. We say that they are **GNN-equivalent**.
- Although the intrinsic connectivity is unobserved, certain graphs are GNN-equivalent to it, i.e., the innocuous graphs.

Theorem 1. (Necessary condition of GNN-equivalence) G_1 is GNNequivalent to G_0 only if $Rank(A_1) \ge Rank(A_0)$

Corollary 1. let c be the rank of the intrinsic connectivity graph, G' is an innocuous graph only if $Rank(A') \geq c$.

Local feature smoothness: For nodes $v_a \in C$, $v_b \in C$ and $v_c \notin C$,

 $f(X_a, X_b) \le f(X_a, X_c).$

- Let *X* be the feature matrix
- $f(\vec{x}, \vec{y})$: a function that evaluates distance between vectors
- C: a connected component

Structural Entropy-based Objective Function

To search for innocuous graphs, we invoke *network partition structural information (NPSI)* [1,2]:

$$NPSI_{\mathrm{GP}(G)} \coloneqq \sum_{k < r} \frac{vol_k - g_k}{2|\epsilon|} log_2 \frac{vol_k}{2|\epsilon|},$$

where vol_k is volumn of C_k and g_k denotes the number of edges with exactly one end in C_k . To utilize it in GNN models, we introduce a matrix form of NPSI:

$$NPSI(A, Y) \coloneqq \operatorname{trace}\left(\frac{Y^TAY}{2sum(A)} \otimes log_2\left(\frac{\{1\}^{r \times n}AY}{2sum(A)}\right)\right),$$

where A is the adjancecy matrix of graph G while $Y \in \{0,1\}^{n \times r}$ is an indicator matrix that satisfies — $Y_{ik} = 1$ if $i \in C_k$, otherwise $Y_{ik} = 0$.

Theorem 2. (minimize NPSI(A, Y) with learnable A):

Suppose $A = \operatorname{argmin} NPSI(A, Y)$, s.t., $A_{ij} \ge 0$ and $A = A^T$. Then $Rank(A) \ge r$.

By **Theorem 1** and **Theorem 2**, one may search for a graph that satisfies the necessary condition of being innocuous graph (Corollary 1) by minimizing NPSI(A, Y) with r = c.

With $\{C_1, C_2 \cdots C_r\}$ indicated by Y, a graph satisfies **local feature smoothness** can be learned by minimizing **Davies-Bouldin index** DBI(X,Y), where $Y = \operatorname{argmin} NPSI(A,Y)$ [3].

The process of finding an innocuous graph into an optimization requires minimizing the loss L_N : $L_N := NPSI(A, Y) + \beta DBI(X, Y)$

Unsupervised Structural Entropy-based Robust GNN

USER framework facilitates GNN models to learn embeddings and the innocuous adjacency matrix simultaneously.:

- ➤ A': a learnable matrix
- > GNN encoder: a supported model, can be any unsupervised GNN model
- $\succ L_S$: the loss function of the supported model

Experiments

Dataset: 3 real-world networks. **Noises:** {Random noise, meta-attack}. **Tasks:** {Node clustering, Link prediction}.

Node clustering performance (NMI±Std) under meta-attack

Dataset	Ptb Rate (%)	deepwalk	GAE	VGAE	ARGA	AGE	DGI	GIC	GCA	GAE_CG	ARGA_CG	USER
	5	41.73 ± 2.16	43.37 ± 3.34	43.06 ± 2.66	43.33 ± 3.28	48.6 ± 1.73	50.33 ± 2.3	46.89 ± 2.05	38.12 ± 3.46	43.64 ± 3.44	43.0 ± 3.15	50.64 ± 2.77
	10	37.68 ± 2.86	34.1 ± 3.44	33.6 ± 3.66	34.5 ± 3.71	39.35 ± 3.14	37.73 ± 3.63	36.58 ± 3.11	34.07 ± 2.77	35.47 ± 2.79	35.94 ± 3.51	41.71 ± 3.32
cora	15	21.99 ± 4.38	19.96 ± 4.11	19.56 ± 4.18	20.04 ± 3.82	25.39 ± 3.88	23.13 ± 3.39	23.19 ± 3.29	21.54 ± 4.61	22.59 ± 3.69	22.92 ± 3.38	29.27 ± 3.68
	20	7.31 ± 2.85	7.26 ± 2.86	7.22 ± 2.91	7.88 ± 2.79	9.65 ± 3.35	10.17 ± 2.67	10.96 ± 3.11	9.97 ± 2.01	10.34 ± 3.2	10.31 ± 2.96	18.82 ± 2.9
	5	16.97 ± 2.14	22.5 ± 3.43	22.73 ± 2.68	20.85 ± 2.69	34.06 ± 1.99	40.22 ± 1.89	39.91 ± 1.95	20.78 ± 5.93	22.67 ± 2.54	21.69 ± 3.07	35.72 ± 2.03
	10	23.52 ± 1.69	22.25 ± 2.6	22.59 ± 2.62	22.02 ± 2.22	25.13 ± 2.7	29.71 ± 3.05	29.45 ± 3.0	18.92 ± 1.91	22.6 ± 1.94	22.06 ± 1.87	31.86 ± 2.84
citeseer	15	17.33 ± 2.73	13.73 ± 2.81	13.6 ± 2.95	13.94 ± 2.65	15.71 ± 2.01	17.68 ± 2.77	17.81 ± 2.68	13.61 ± 1.99	15.6 ± 2.35	15.61 ± 2.15	27.77 ± 3.31
	20	8.3 ± 2.45	5.64 ± 2.01	5.71 ± 1.82	5.63 ± 1.74	9.11 ± 0.85	9.11 ± 1.78	9.08 ± 2.17	7.08 ± 2.03	7.68 ± 2.06	7.61 ± 2.12	26.42 ± 2.67
	5	34.06 ± 1.74	19.59 ± 7.49	19.22 ± 7.6	20.8 ± 5.9	41.76 ± 1.31	32.94 ± 2.61	35.03 ± 3.18	27.24 ± 1.4	18.24 ± 7.97	16.27 ± 5.05	48.44 ± 1.71
	10	22.96 ± 2.74	13.09 ± 6.62	11.14 ± 5.52	12.48 ± 4.46	38.72 ± 0.26	22.59 ± 3.1	23.64 ± 2.65	25.86 ± 1.81	13.34 ± 6.63	10.98 ± 4.41	$\textbf{47.71} \pm \textbf{1.7}$
wiki	15	14.35 ± 1.8	4.59 ± 5.02	4.99 ± 4.31	6.82 ± 3.15	40.9 ± 0.89	12.27 ± 2.43	15.19 ± 0.93	20.14 ± 5.08	4.62 ± 5.21	7.04 ± 3.79	47.54 ± 1.53
	20	9.3 ± 1.2	2.22 ± 3.4	1.52 ± 3.09	3.61 ± 1.85	42.71 ± 0.98	8.85 ± 0.77	9.24 ± 2.33	15.39 ± 2.7	3.1 ± 3.9	2.49 ± 0.21	47.48 ± 1.54

Case study of learnt innocuous graph

Parameter analysis

(a) α on Citeseer (b) β on Citeseer (c) α on Wiki

Conclusions

(b) β on Wiki

- > There are multiple innocuous graphs with which GNN can learn the appropriate embeddings.
- NPSI-based objective function is an ideal tool to capture innocuous graph.
- Unsupervised RGRL framework may effectively alleviate the interference of graph randomness.
- Code available: https://github.com/wangyifeibeijing/USER

[1] Li, A., & Pan, Y. (2016) Structural information and dynamical complexity of networks. [2] Liu, Y., Liu, J., Zhang, Z., Zhu, L., & Li, A. (2019). REM: From structural entropy to community structure deception [3] Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure.