Priority Queue & Binary Heap

Introduction

- simple queues doesn't work in some instances
 - Prim's algorithm
 - Dijkstra's algorithm

Priority Queue

is a data structure of items with keys (priorities) that supports two basic operations: insert a new item, and delete the item with the largest (smallest) key.

Model of a Priority Queue

- Several possible implementations are possible:
 - Simple linked list
 - A sorted contiguous list
 - An unsorted list
 - Binary search tree

7 5 8

 What will be the complexity of insert, delmax (or delmin) and other operations if the above data structures are used?

Priority Queue ADT

- In practice, several other operations needed to maintain the queues under all the conditions.
- A more complete set of operations:
 - Construct a priority queue from n given items.
 - Insert a new item
 - Delete the maximum/minimum item
 - Change the priority of an arbitrarily specified item
 - Delete an arbitrarily specified item
 - Join two priority queues into one large one.

Priority Queue Implementations

• Implementations of PQ ADT have widely varying performance:

	insert	delmax	delete	findmax	change	join
ordered array	n	1	n	1	n	n
ordered list	n	1	n	1	n	n
unordered array	1	n	n	n	n	n
unordered list	1	n	n	n	n	1
heap	log n	log n	log n	1	log n	n

Binary Heap (or Just Heap)

- Heaps have two properties
 - Structure property
 - Heap-order property
- An operation on a heap can destroy one of the properties,
 - A heap operation must not terminate until all heap properties are restored.

Structure Property

A heap is a binary tree that is completely filled, with the possible exception of the bottom level, which is always filled from left to right.

Such a tree is known as a complete binary tree.

Structure Property: a heap is a binary tree that is completely filled.

A Complete binary tree

Height of Heaps

- A complete binary tree of height h has at least 2^h and at most 2^{h+1} 1 nodes.
- This implies that the height of a complete binary tree is $|\log n| = O(\log n)$
- Because a complete binary tree is so regular, it can be represented in an array.
 - This encourages a straight-forward pointer-free implementation.

Array Implementation of Heap

- left child: position 2i

Array Implementation of Heap • right child: position (2i + 1), • parent: position $\lfloor i/2 \rfloor$

	Ε	F	В	D	Α	С	G	Н		J			
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Array Implementation of Heap

	Ε	F	В	D	Α	С	G	Н	ı	J			
0	1	2	3	4	5	6	7	8	9	10	11	12	13

- For any element in array position i,
 - left child: position 2i
 - right child: position (2i + 1),
 - parent: position
- No pointers are required, and the operations required to traverse the tree are extremely simple. (Note: bit shifting can be used :

$$001101 \rightarrow 000110)$$

 The only problem is the estimation of the maximum heap size required in advance.

Heap Order Property

- The other trick that enables operations to be performed quickly is the heap order property.
- the largest/smallest element is placed at the root =>
 we can find it in constant time.
- Thus, findmax/findmin, now in constant time O(1).
- In addition, the heap order property is slightly less strict than the search order in binary search tree.

Heap Order Property

Heap Order Property

Each node is larger(smaller) than or equal to the keys in all of that node's children (if any).

Equivalently, the key in each node of a heap-ordered tree is smaller(larger) than or equal to the key in that node's parent (if any).

- If the parent is larger than its children, the heap is known as a max-heap.
- If the parent is smaller than its children, the heap is known as a min-heap.
- In the following, we consider min-heaps.

Min-Heap: Example

Exercise: Write a max-heap with the same set of keys.

Heap: Insert (to insert an element x into the heap)

- Step 1 : Create a hole in the <u>next available location</u> and put x in the hole.
- Step 2: Compare x with its parent. If heap order is not preserved, swap x with its parent.

 Repeat this step toward the root, until heap order is preserved.

This process is called

bubble-up/percolate-up/heapify-up/trickle-up.

	13	21	16	24	31	19	68	65	26	32			
0	1	2	3	4	5	6	7	8	9	10	11	12	13

	13	21	16	24	31	19	68	65	26	32	14		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

	13	21	16	24	31 14	19	68	65	26	32	14 31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

	13	21 14	16	24	14 21	19	68	65	26	32	31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Observations

- The number of comparisons during insert is $O(\log n)$ if the element is the new minimum and is bubbled all the way up to the root.
- It has been shown that 2.6 comparisons are required on average to perform an *insert*.
 - The average *insert* moves an element up 1.6 levels.

Heap: delmin (to removing the minimum which is located at the root.)

Step 1: Remove the root and leave a hole.

Step 2 : Delete the last element, x, of the heap.

Step 3: Repeatly heapify the hole until heap order is

preserved if x is placed to the hole.

This process is called

bubble-down/percolate-down/heapify-down/trickle-down.

	13	14	16	19	21	24	68	65	40	32	31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

	14		16	19	21	24	68	65	40	32	31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

	14	19	16		21	24	68	65	40	32	31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

	14	19	16	31	21	24	68	65	40	32			
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Heap: Implementation (1)

Structure Declaration

```
Max capacity of the heap

typedef struct bst_s bst_t;
typedef struct heap_s {
    int capacity;
    int size;
    int *e;
} heap_t;

Array to store the elements of the heap
```

Set of common operations

```
heap t *heap init(int max e);
void
        heap free(heap t *h);
void
        heap make empty(heap t *h);
void
        heap insert(heap t *h, int x);
int
        heap delete min(heap t *h);
        heap find min(heap t *h);
int
int
        heap is full(heap t *h);
int
        heap is empty(heap t *h);
        heap print(heap t *h);
void
```

Heap: Implementation (2)

```
heap_t *heap_init(int max_e){
    heap_t *h = (heap_t *)malloc(sizeof(heap_t));
    h->e = (int *)malloc((max_e + 1)* sizeof(int));
    h->size = 0;
    h->capacity = max_e;
    h->e[0] = INT_MIN;
    return h;
}
The smallest value
```

Heap: Implementation (3)

Assign x to

the hole

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
<pre>void heap_insert(heap_t *h, int x){</pre>								7						
int i;														
++size if (heap_is_full(h)){														
fprintf(stderr, "The	heap	is	fu	11.	\n");								
exit(1);							_ Vi	olat	tion	of h	neap	o or	der	
}								Τ						
for (i = ++h->size; h->e[i /	2]	> x	ji	/=	2)									
$h\rightarrow e[i] = h\rightarrow e[i/2]$. ـ ـ - ـ ـ ـ .		_,		<u> </u>									
h->e[i] = x;	-													
}														
					+ '									

Swap with

the parent

21

13

16

24

19

Move up one level

31

68

65

26

32

14 31

Page 29

	13	14	16	19	21	24	68	65	40	32	31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Heap: Implementation (4)

```
int heap_delete_min(heap_t *h){
                           int i, child, min_e, last_e;
                                                                                          size --
                           if (heap is empty(h)){
                                                                                          last e
                                    fprintf(stderr, "The heap is empty.\n");_
                                    exit(1);
                                                                                         Move down a level
                           min e = h - e[1];
                                                                                            until reaching
                           last_e = h->e[h->size--];
                           for (i = 1; i * 2 \leftarrow h-size; i = child){-
                                                                                             a leave node
                                   //* Find smaller child */
Return
                                    child = i * 2;
the min
                                    if (child != h->size &&
                                             h\rightarrow e[child + 1] < h\rightarrow e[child])
                                             child++;
                                    //* trickle the hole down one level */
                                                                                                 If violate
                                    if (last_e > h->e[child])
                                             h\rightarrow e[i] = h\rightarrow e[child];
                                                                                                heap order,
                                    else
                                             break:
                                                                                                    swap
                           h->e[i] = last_e;
                           return min e;
                                                                                                   Page 30
```

Other Heap Operations (min-heap)

- *findmin*: Finding the minimum can be performed in constant time.
- findmax: No help in finding the maximum
- sort: There is no strict ordering information
 - But can be used for sorting. (see heapsort)
- decrease_key(P, Δ): fixed by bubble_up
- increase_key(P, Δ): fixed by trickle_down
- delete: fixed by bubble up and trickle down
- build_heap

Observation on build_heap

Method 1:

- Create an empty heap,
- and perform *n* successive inserts.
- This will take O(n) average but $O(n \log n)$ worst-case.

Method 2:

- Place the n keys into the tree in any order,
- For node $i = \lfloor n/2 \rfloor$ down to 1, perform *trickle_down*.

build_heap

Step 1: build tree in any order

build_heap: trickle_down

build_heap: trickle_down

build_heap: trickle_down

build_heap: trickle_down

build_heap: trickle_down

build_heap: Final

	1	2	4	3	6	5	11	10	15	9	8	7	12	14	13
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Complexity of build_heap

- To analyze the running time of build_heap, the simplest analysis is that n/2 nodes trickle down the tree O(height-of-tree) = O(log n) times, and thus the complexity is O(n log n)
- However, we observe that every node at height h actually trickles down at most h times, instead of trickling down O(height-of-tree) times
- This gives a tighter bound O(n)

Applications of Heaps

- Heapsort
- K- selection problem

Heapsort

- Priority queues can be used to sort in $O(n \log n)$ time.
- The basic strategy is to
 - (1) build a binary heap of n elements in O(n) time
 - (2) perform *n delete_min*.
- We record the minimum elements that leaves in a second array and copy the array back to complete the sorting.
- Total running time is $O(n) + n \times O(\log n) = O(n \log n)$.

Tricks in Implementing Heapsort

- The memory requirement is doubled since we need an extra array.
- Avoid the second array by making use of the last cell in the array to store the value returned by <u>delete_min</u>.
 - Using this strategy the array will contain the elements in decreasing sorted order after the last *delete_min*.
- Suppose we stick to the more typical increasing order, we can change the heap ordering property so that the parent has a larger key than the child.
 - We use a maxheap with a <u>delete_max</u> operation.

Heapsort Example (1)

• Maxheap with its array representation. Execute delete_max.

Heapsort Example (2)

Heapsort Example (3)

Heapsort Example (4)

Heapsort Example (5)

Heapsort Example (6)

3	31 2	6 41	53	58	59	97
---	------	------	----	----	----	----

Heapsort Example (7)

26 31 41 53 58 59 9

Heapsort Example (8)

The k-selection Problem

- Problem: Suppose you have a group of n numbers and would like to determine the k-th largest.
- First Algorithm
 - Build a max-heap for all numbers and it takes O(n).
 - Keep delmax until we get the k-th value returned. $k \times O(\log n)$.
 - The total running time is $O(n + k \log n)$.
- For small k then the running time dominated by the heap building operation and is O(n).
- For larger values of k, the running time is $O(k \log n)$ time.

The k-selection Problem (2)

- Second Algorithm
 - 1. Build a smaller min-heap of k elements.
 - 2. Then compare the remaining (n k) numbers against the heap.
 - 3. If the new element is larger, it replaces the root, otherwise it is discarded.
 - 4. When the algorithm teminates, the heap contains the klargest numbers from the set.
- To build a k-element the heap takes O(k).
- The time for step 2 is
 - O(1): to test if the element goes into the heap
 - + $O(\log k)$: to delete the root and insert the new element if this is necessary
- The total time is $O(k + (n k)\log k) = O(n \log k)$.

Summary

- Priority Queue ADT:
 - Pick largest/smallest element + insert
- Binary heap: structure & order properties
 - Efficient array implementation
 - findmax/findmin in constant time
 - fixing heap properties in $O(\log n)$ time.
 - O(n) heap construction
- Heapsort : O(n log n) comparisons sorting
- Application: k-selection problem
 - reveal theoretical bound of $O(n \log n)$ in finding the median of a set of n numbers.