Scalable methods for large spatial data: Nearest Neighbor Gaussian processes

Abhi Datta March 9, 2018

Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland

Review of Low rank Gaussian Predictive Process

Pros

- Choose knots $S^* = \{s_1^*, s_2^*, \dots, s_r^*\}$
- $\tilde{w}(s) = E(w(s) | w(S^*)) + \eta(s)$
- $var(\tilde{w}) = A_{n \times r} Var(\tilde{w}(S^*))_{r \times r} A' + D_{n \times n}$
- Matrix identities ensure we only need to invert the $r \times r$ matrix
- Computationally tractable FLOPs count $O(nr^2)$
- Proper Gaussian process
- Allows for coherent spatial interpolation at arbitrary resolution
- Can be used as prior for spatial random effects in any hierarchical setup for spatial data

Review of Low rank Gaussian Predictive Process

Cons

Figure: Comparing full GP vs low-rank GP

- Low rank models like the Predictive Process (PP) often tends to oversmooth
- Increasing the number of knots can fix this but will lead to heavy computation

Sparse matrices

• Idea: Use a sparse matrix instead of a low rank matrix to approximate the dense full GP covariance matrix

• Goals:

- Scalability: Both in terms of storage and computing inverse and determinants
- Closely approximate full GP inference
- Proper Gaussian process model like the Predictive Process

• Write a joint density $p(w) = p(w_1, w_2, \dots, w_n)$ as:

$$p(w_1)p(w_2 | w_1)p(w_3 | w_1, w_2) \cdots p(w_n | w_1, w_2, \dots, w_{n-1})$$

• For Gaussian distribution $w \sim N(0, C)$ this \Rightarrow

$$w_1 = 0 + \eta_1;$$

 $w_2 = a_{21}w_1 + \eta_2;$
...
 $w_n = a_{n1}w_1 + a_{n2}w_2 + \cdots + a_{n,n-1}w_{n-1} + \eta_n;$

• Write a joint density $p(w) = p(w_1, w_2, ..., w_n)$ as:

$$p(w_1)p(w_2 | w_1)p(w_3 | w_1, w_2) \cdots p(w_n | w_1, w_2, \dots, w_{n-1})$$

• For Gaussian distribution $w \sim N(0, C)$ this \Rightarrow

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ a_{21} & 0 & 0 & \dots & 0 & 0 \\ a_{31} & a_{32} & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{n,n-1} & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \vdots \\ w_n \end{bmatrix} + \begin{bmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \\ \vdots \\ \eta_n \end{bmatrix}$$

$$\implies w = Aw + \eta; \quad \eta \sim N(0, D), \text{ where } D = diag(d_1, d_2, \dots, d_n).$$

• Write a joint density $p(w) = p(w_1, w_2, ..., w_n)$ as:

$$p(w_1)p(w_2 | w_1)p(w_3 | w_1, w_2) \cdots p(w_n | w_1, w_2, \dots, w_{n-1})$$

• For Gaussian distribution $w \sim N(0, C)$ this \Rightarrow

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ a_{21} & 0 & 0 & \dots & 0 & 0 \\ a_{31} & a_{32} & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{n,n-1} & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \vdots \\ w_n \end{bmatrix} + \begin{bmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \\ \vdots \\ \eta_n \end{bmatrix}$$

 $\implies w = Aw + \eta; \quad \eta \sim N(0, D), \text{ where } D = diag(d_1, d_2, \dots, d_n).$

• Cholesky factorization: $C^{-1} = (I - A)'D^{-1}(I - A)$

- $w_{< i} = (w_1, w_2, \dots, w_{i-1})'$
- $c_i = Cov(w_i, w_{< i}), C_i = Var(w_{< i})$
- i^{th} row of A and $d_i = Var(\eta_i)$ are obtained from $p(w_i \mid w_{< i})$ as follows:
 - Solve for a_{ij} 's from $\sum_{j=1}^{i-1} a_{ij} w_j = E(w_i \mid w_{< i}) = c_i' C_i^{-1} w_{< i}$
- For large i, inverting C_i becomes slow
- The Cholesky factor approach for the full GP covariance matrix C does not offer any computational benefits

- $w_{< i} = (w_1, w_2, \dots, w_{i-1})'$
- $c_i = Cov(w_i, w_{< i}), C_i = Var(w_{< i})$
- i^{th} row of A and $d_i = Var(\eta_i)$ are obtained from $p(w_i \mid w_{< i})$ as follows:
 - Solve for a_{ij} 's from $\sum_{i=1}^{i-1} a_{ij} w_i = E(w_i | w_{< i}) = c'_i C_i^{-1} w_{< i}$
 - $d_i = Var(w_i \mid w_{< i}) = \sigma^2 c'_i C_i^{-1} c_i$
- For large i, inverting C_i becomes slow
- The Cholesky factor approach for the full GP covariance matrix C does not offer any computational benefits

Cholesky Factors and Directed Acyclic Graphs (DAGs)

- Number of non-zero entries (sparsity) of A equals number of arrows in the graph
- In particular: Sparsity of the ith row of A is same as the number of arrows towards i in the DAG

$$p(y_1)p(y_2 | y_1)p(y_3 | y_1, y_2)p(y_4 | y_1, y_2, y_3)$$

$$\times p(y_5 | y_1, y_2, y_3, y_4)p(y_6 | y_1, y_2, \dots, y_5)p(y_7 | y_1, y_2, \dots, y_6).$$

$$p(y_1)p(y_2 | y_1)p(y_3 | y_1, y_2)p(y_4 | y_1, y_2, y_3)$$

$$p(y_5 | y_1, y_2, y_3, y_4)p(y_6 | y_1, y_2, y_3, y_4, y_5)p(y_7 | y_1, y_2, y_3, y_4, y_6, y_6)$$

- Create a sparse DAG by keeping at most m arrows pointing to each node
- Set $a_{ij} = 0$ for all i, j which has no arrow between them
- Fixing $a_{ij} = 0$ introduces conditional independence and w_j drops out from the conditional set in $p(w_i | \{w_k : l < i\})$

- N(i) denote neighbor set of i, i.e., the set of nodes from which there are arrows to i
- $a_{ij} = 0$ for $j \notin N(i)$ and nonzero a_{ij} 's obtained by solving:

$$\mathsf{E}[w_i \mid w_{N(i)}] = \sum_{j \in N(i)} a_{ij} w_j$$

• The above linear system is only $m \times m$

Choosing neighbor sets

Matern Covariance Function:

$$C(s_i, s_j) = \frac{1}{2^{\nu-1}\Gamma(\nu)}(||s_i - s_j||\phi)^{\nu} \mathscr{K}_{\nu}(||s_i - s_j||\phi); \ \phi > 0, \nu > 0,$$

Choosing neighbor sets

- Spatial covariance functions decay with distance
- Vecchia (1988): $N(s_i) = m$ —nearest neighbors of s_i in $s_1, s_2, \ldots, s_{i-1}$
 - Nearest points have highest correlations
 - Theory: "Screening effect" Stein, 2002
- We use Vecchia's choice of *m*-nearest neighbor
- Other choices proposed in Stein et al. (2004); Gramacy and Apley (2015); Guinness (2016) can also be used

Predictive Process

Predictive Process

Sparse precision matrices

- ullet The neighbor sets and the covariance function $C(\cdot,\cdot)$ define a sparse Cholesky factor A
- $N(w | 0, C) \approx N(w | 0, \tilde{C})$; $\tilde{C}^{-1} = (I A)^{\top} D^{-1} (I A)$

- $\det(\tilde{C}) = \prod_{i=1}^n D_i$,
- \tilde{C}^{-1} is sparse with $O(nm^2)$ entries

Sparse precision matrices

- ullet The neighbor sets and the covariance function $C(\cdot,\cdot)$ define a sparse Cholesky factor A
- $N(w \mid 0, C) \approx N(w \mid 0, \tilde{C})$; $\tilde{C}^{-1} = (I A)^{\top} D^{-1} (I A)$

- $\det(\tilde{C}) = \prod_{i=1}^n D_i$,
- \tilde{C}^{-1} is sparse with $O(nm^2)$ entries

Extension to a Process

• We have defined $w \sim N(0, \tilde{C})$ over the set of data locations $S = \{s_1, s_2, \dots, s_n\}$

• For $s \notin S$, define N(s) as set of *m*-nearest neighbors of *s* in *S*

- Define $w(s) = \sum_{i:s_i \in N(s)} a_i(s)w(s_i) + \eta(s)$ where $\eta(s) \stackrel{ind}{\sim} N(0, d(s))$
 - $a_i(s)$ and d(s) are once again obtained by solving $m \times m$ system

- Well-defined GP over entire domain
 - Nearest Neighbor GP (NNGP) Datta et al., JASA, (2016)

Hierarchical spatial regression with NNGP

Spatial linear model

$$y(\mathbf{s}) = x(\mathbf{s})'\beta + w(\mathbf{s}) + \epsilon(\mathbf{s})$$

- w(s) modeled as NNGP derived from a $GP(0, C(\cdot, \cdot, | \sigma^2, \phi))$
- $\epsilon(s) \stackrel{\text{iid}}{\sim} N(0, \tau^2)$ contributes to the nugget
- \bullet Priors for the parameters $\beta,\,\sigma^2,\,\tau^2$ and ϕ
- ullet Only difference from a full GP model is the NNGP prior w(s)

Hierarchical spatial regression with NNGP

Full Bayesian Model

$$N(y \mid X\beta + w, \tau^{2}I) \times N(w \mid 0, \tilde{C}(\sigma^{2}, \phi)) \times N(\beta \mid \mu_{\beta}, V_{\beta})$$
$$\times IG(\tau^{2} \mid a_{\tau}, b_{\tau}) \times IG(\sigma^{2} \mid a_{\sigma}, b_{\sigma}) \times Unif(\phi \mid a_{\phi}, b_{\phi})$$

Gibbs sampler:

- Conjugate full conditionals for β , τ^2 , σ^2 and $w(s_i)$'s
- ullet Metropolis step for updating ϕ
- Posterior predictive distribution at any location using composition sampling:

$$\int N(y(s) | x(s)'\beta + w(s), \tau^2 I) \times N(w(s) | a(s)'w_R, d(s)) \times p(w, \beta, \tau^2, \sigma^2, \phi | y) d(w, \beta, \tau^2, \sigma^2, \phi)$$

Choosing *m*

- Run NNGP in parallel for few values of m
- Choose *m* based on model evaluation metrics
- Our results suggested that typically $m \approx 20$ yielded excellent approximations to the full GP

Storage and computation

- Storage:
 - Never needs to store $n \times n$ distance matrix
 - Stores smaller $m \times m$ matrices
 - Total storage requirements $O(nm^2)$
- Computation:
 - Only involves inverting small $m \times m$ matrices
 - Total flop count per iteration of Gibbs sampler is $O(nm^3)$
- Since $m \ll n$, NNGP offers great scalability for large datasets

spNNGP package in R

- Implements the MCMC for spatial regression model using NNGP
- Full posterior distributions of all parameters available (similar to spBayes)
- Suitable for parallel computing
- Implements NNGP variants like the response model and the MCMC-free conjugate model
- Very suitable for analyzing very large spatial datasets (upto millions of locations)

Predicted surfaces of *w*

Reducing parameter dimensionality

- The Gibbs sampler algorithm for the NNGP updates $w(s_1), w(s_2), \ldots, w(s_n)$ sequentially
- Dimension of the MCMC for this sequential algorithm is O(n)
- If the number of data locations *n* is very large, this high-dimensional MCMC can converge slowly
- Although each iteration for the NNGP model will be very fast, many more MCMC iterations may be required
- Solution: Back to the marginalized model?

Collapsed NNGP

• Same model:

$$y(s) = x(s)'\beta + w(s) + \epsilon(s)$$
$$w(s) \sim NNGP(0, C(\cdot, \cdot \mid \theta))$$
$$\epsilon(s) \stackrel{\text{iid}}{\sim} N(0, \tau^2)$$

- Vector form $y \sim N(X\beta + w, \tau^2 I)$; $w \sim N(0, \tilde{C}(\theta))$
- Collapsed model: Marginalizing out w, we have $y \sim N(X\beta, \tau^2 I + \tilde{C}(\theta))$

Collapsed NNGP

Model

$$y \sim N(X\beta, \tau^2 I + \tilde{C}(\theta))$$

- Only involves few parameters β , τ^2 and $\theta = (\sigma^2, \phi)'$
- Drastically reduces the MCMC dimensionality
- \bullet Gibbs sampler updates are based on sparse linear systems using $\tilde{\mathcal{C}}^{-1}$
- Improved MCMC convergence
- Can recover posterior distribution of $w \mid y$
- Complexity of the algorithm depends on the design of the data locations and is not guaranteed to be O(n)

Response NNGP

- $w(s) \sim GP(0, C(\cdot, \cdot | \theta)) \Rightarrow y(s) \sim GP(x(s)'\beta, \Sigma(\cdot, \cdot | \tau^2, \theta))$
- $\Sigma(s_i, s_j) = C(s_i, s_j | \theta) + \tau^2 \delta(s_i = s_j)$ (δ is Kronecker delta)
- We can directly derive the NNGP covariance function corresponding to $\Sigma(\cdot,\cdot)$
- $\tilde{\Sigma}$ is the NNGP covariance matrix for the *n* locations
- Response model: $y \sim N(X\beta, \tilde{\Sigma})$
- Storage and computations are guaranteed to be O(n)
- Low dimensional MCMC ⇒ Improved convergence
- Cannot coherently recover $w \mid y$

MCMC convergence

Figure: MCMC convergence diagnostics using Gelman-Rubin shrink factor for different NNGP models for a simulated dataset

Case Study: Alaska Tanana Valley Forest Height Dataset

Forest height and tree cover

Forest fire history

- ullet Forest height (red lines) data from LiDAR at $5 imes 10^6$ locations
- Knowledge of forest height is important for biomass assessment, carbon management etc

Case Study: Alaska Tanana Valley Forest Height Dataset

Forest height and tree cover

Forest fire history

- Goal: High-resolution domainwide prediction maps of forest height
- Covariates: Domainwide tree cover (grey) and forest fire history (red patches) in the last 20 years

Analyzing the data

Models used:

• Non-spatial regression:

$$y_{FH}(s) = \beta_0 + \beta_{tree} x_{tree} + \beta_{fire} x_{fire} + \epsilon(s)$$

Figure: Variogram of the residuals from non-spatial regression indicates strong spatial pattern

NNGP models

- Collapsed NNGP:
 - $y_{FH}(s) = \beta_0 + \beta_{tree} x_{tree} + \beta_{fire} x_{fire} + w(s) + \epsilon(s)$
 - $w(s) \sim NNGP(0, C(\cdot, \cdot | \sigma^2, \phi))$
 - $y_{FH} \sim N(X\beta, \tilde{C} + \tau^2 I)$ where \tilde{C} is the NNGP covariance matrix derived from C
- Response NNGP:
 - $y_{FH}(s) \sim NNGP(\beta_0 + \beta_{tree}x_{tree} + \beta_{fire}x_{fire}, \Sigma(\cdot, \cdot \mid \sigma^2, \phi, \tau^2))$
 - $y_{FH} \sim N(X\beta, \tilde{\Sigma})$ where $\tilde{\Sigma}$ is the NNGP covariance matrix derived from $\Sigma = C + \tau^2 I$

NNGP models

	Non-spatial regression	Collapsed NNGP	Response NNGP
CRPS	2.3	0.86	0.86
RMSPE	4.2	1.73	1.72
CP	93%	94%	94%
CIW	16.3	6.6	6.6

Table: Model comparison metrics for the Tanana valley dataset

- NNGP models perform significantly better than the non-spatial model
- MCMC run time for the NNGP models:
 - Collapsed model: 319 hours
 - Response model: 38 hours
- For massive spatial data, full Bayesian output for even NNGP models require substantial time

Another look at the response model

- Original full GP model: $y(s) \stackrel{ind}{\sim} N(x(s)'\beta + w(s), \tau^2)$
- $w(s) \sim \mathit{GP}$ with a stationary covariance function $C(\cdot, \cdot \mid \sigma^2, \phi)$
- $Cov(w) = \sigma^2 R(\phi)$
- Full GP model: $y \sim N(X\beta, \Sigma)$ where $\Sigma = \sigma^2 M$
- $M = R(\phi) + \alpha I$
- $\alpha = \tau^2/\sigma^2$ is the ratio of the noise to signal variance
- Response NNGP model: $y \sim N(X\beta, \tilde{\Sigma})$
- $\tilde{\Sigma} = \sigma^2 \tilde{M}$ where \tilde{M} is the NNGP approximation for M

- $y \sim N(X\beta, \sigma^2 \tilde{M})$
- If ϕ and α are known, M, and hence \tilde{M} , are known matrices
- The model becomes a standard Bayesian linear model
- Assume a *Normal Inverse Gamma (NIG)* prior for $(\beta, \sigma^2)'$
- $(\beta, \sigma^2)' \sim NIG(\mu_{\beta}, V_{\beta}, a_{\sigma}, b_{\sigma})$, i.e., $\beta \mid \sigma^2 \sim N(\mu_{\beta}, \sigma^2 V_{\beta})$ and $\sigma^2 \sim IG(a_{\sigma}, b_{\sigma})$

• $y \sim N(X\beta, \sigma^2 \tilde{M})$, \tilde{M} is known

Joint likelihood:

$$N(y \mid X\beta, \sigma^2 \tilde{M}) \times N(\beta \mid \mu_{\beta}, \sigma^2 V_{\beta}) \times IG(\sigma^2 \mid a_{\sigma}, b_{\sigma})$$

• $y \sim N(X\beta, \sigma^2 \tilde{M})$, \tilde{M} is known

Joint likelihood:

$$N(y \mid X\beta, \sigma^2 \tilde{M}) \times N(\beta \mid \mu_{\beta}, \sigma^2 V_{\beta}) \times IG(\sigma^2 \mid a_{\sigma}, b_{\sigma})$$

- Conjugate posterior distribution $(\beta, \sigma^2) \mid y \sim \textit{NIG}(\mu_{\beta}^*, V_{\beta}^*, a_{\sigma}^*, b_{\sigma}^*)$
- Expressions for μ_{β}^* , V_{β}^* , a_{σ}^* and b_{σ}^* can be calculated in O(n) time

- $\bullet \ (\beta,\sigma^2) \, | \, y \sim \textit{NIG}(\mu_\beta^*,V_\beta^*,a_\sigma^*,b_\sigma^*)$
- Marginal posterior: $\beta \mid y \sim MVt_{2a^*_{\sigma}}(\mu^*_{\beta}, \frac{b^*_{\sigma}}{a^*_{\sigma}}V^*_{\beta})$
- $MVt_k(m, V)$ is the *multivariate t* distribution with degrees of k, mean m and scale matrix V
- $E(\beta | y) = \mu_{\beta}^*$, $Var(\beta | y) = \frac{b_{\sigma}^*}{a_{\sigma}^* 1} V_{\beta}^*$
- Marginal posterior: $\sigma^2 \mid y \sim IG(a_\sigma^*, b_\sigma^*)$
- $E(\sigma^2 \mid y) = \frac{b_\sigma^*}{a_\sigma^* 1}$, $Var(\sigma^2 \mid y) = \frac{b_\sigma^{*2}}{(a_\sigma^* 1)^2(a_\sigma^* 2)}$
- Exact posterior distributions of β and σ^2 are available

Predictive distributions

- $y(s) | y \sim t_{2a_{\sigma}^*}(m(s), \frac{b_{\sigma}^*}{a_{\sigma}^*}v(s))$
- E(y(s)|y) = m(s), $Var(y(s)|y) = \frac{b_{\sigma}^*}{a_{\sigma}^*-1}v(s)$
- m(s) and v(s) can be computed using O(m) flops
- Exact posterior predictive distributions of y(s) | y for any s
- No MCMC required for parameter estimation or prediction

Choosing α and ϕ

- ϕ and α are chosen using K-fold cross validation over a grid of possible values
- Unlike MCMC, cross-validation can be completely parallelized
- Resolution of the grid for ϕ and α can be decided based on computing resources available
- In practice, a reasonably coarse grid often suffices

Choosing α and ϕ

Figure: Simulation experiment: True value (+) of (α, ϕ) and estimated value (\circ) using 5-fold cross validation

Scalability

- Computation and storage requirements are O(n)
- One evaluation time similar to the response NNGP model
- Unlike response NNGP, does not involve any serial MCMC iterations
- For K fold cross validation and G combinations of ϕ and α , total number of evaluations is KG
- Embarassingly parallel: Each of the KG evaluations can proceed in parallel

Scalability

Figure: Run times of different NNGP models with increasing sample size

Comparison of NNGP models

	Sequential	Collapsed	Response	Conjugate
O(n) time	Yes	No	Yes	Yes
Recovery of w y	Yes	Yes	No	No
MCMC dimensionality	High	Low	Low	MCMC-free
Fully Bayesian inference	Yes	Yes	Yes	No
Embarassingly parallel	No	No	No	Yes

Alaska Tanana Valley dataset

	Conjugate NNGP	Collapsed NNGP	Response NNGP
β_0	2.51	2.41 (2.35, 2.47)	2.37 (2.31,2.42)
β TC	0.02	0.02 (0.02, 0.02)	0.02 (0.02, 0.02)
$eta_{ extit{Fire}}$	0.35	0.39 (0.34, 0.43)	0.43 (0.39, 0.48)
σ^2	23.21	18.67 (18.50, 18.81)	17.29 (17.13, 17.41)
$ au^2$	1.21	1.56 (1.55, 1.56)	1.55 (1.54, 1.55)
ϕ	3.83	3.73 (3.70, 3.77)	4.15 (4.13, 4.19)
CRPS	0.84	0.86	0.86
RMSPE	1.71	1.73	1.72
time (hrs.)	0.002	319	38

Table: Parameter estimates and model comparison metrics for the Tanana valley dataset

- Conjugate model produces estimates and model comparison numbers very similar to the MCMC based NNGP models
- \bullet For 5×10^6 locations, conjugate model takes 7 seconds

Multivariate spatial data

- Point-referenced spatial data often come as multivariate measurements at each location.
- Examples:
 - Environmental monitoring: stations yield measurements on ozone, NO, CO, and PM_{2.5}.
 - Forestry: measurements of stand characteristics age, total biomass, and average tree diameter.
 - Atmospheric modeling: at a given site we observe surface temperature, precipitation and wind speed
- We anticipate dependence between measurements
 - at a particular location
 - across locations

Multvariate spatial linear model

- Spatial linear model for *q*-variate spatial data: $v_i = x_i'(s)\beta_i + w_i(s) + \epsilon_i(s)$ for i = 1, 2, ..., q
- $\epsilon(s) = (\epsilon_1(s), \epsilon_2(s), \dots, \epsilon_q(s))' \sim N(0, E)$ where E is the $q \times q$ noise matrix
- $w(s) = (w_1(s), w_2(s), \dots, w_q(s))'$ is modeled as a q-variate Gaussian process

Spatially varying coefficients

- Often the relationship between the (univariate) spatial response and covariates vary across the space
- The regression coefficients can then be modeled as spatial processes
- Spatially varying coefficient (SVC) model: $y(s) = x(s)'\beta(s) + \epsilon(s)$
- Even though the response can be univariate, $\beta(s)$ is modeled as a p-variate GP

Multivariate GPs

- $Cov(w(s_i), w(s_j)) = C(s_i, s_j | \theta)$ a $q \times q$ cross-covariance matrix
- Choices for the function $C(\cdot, \cdot \mid \theta)$
 - Multivariate Matérn
 - Linear model of co-regionalization
- For data observed at n locations, all choices lead to a dense $nq \times nq$ matrix $C = Cov(w(s_1), w(s_2), \dots, w(s_n))$
- Not scalable when nq is large

Multivariate NNGPs

• Cholesky factor approach similar to the univariate case

$$\begin{bmatrix} w(s_1) \\ w(s_2) \\ w(s_3) \\ \vdots \\ w(s_n) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ A_{21} & 0 & 0 & \dots & 0 & 0 \\ A_{31} & A_{32} & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{n1} & A_{n2} & A_{n3} & \dots & A_{n,n-1} & 0 \end{bmatrix} \begin{bmatrix} w(s_1) \\ w(s_2) \\ w(s_3) \\ \vdots \\ w(s_n) \end{bmatrix} + \begin{bmatrix} \eta(s_1) \\ \eta(s_2) \\ \eta(s_3) \\ \vdots \\ \eta(s_n) \end{bmatrix}$$

$$\Rightarrow w = Aw + \eta; \quad \eta \sim N(0, D), \ D = diag(D_1, D_2, \dots, D_n).$$

• Only differences: $w(s_i)$ and $\eta(s_i)$'s are $q \times 1$ vectors and A_{ij} and D_i 's are $q \times q$ matrix

Multivariate NNGPs

- Choose neighbor sets N(i) for each location s_i
- Set $A_{ij} = 0$ if $j \notin N(i)$
- Solve for non-zero A_{ij} 's from the $mq \times mq$ linear system: $\sum_{j \in N(i)} A_{ij} w(s_j) = E(w(s_i) | \{w(s_j) | j \in N(i)\})$
- Multivariate NNGP: $w \sim N(0, \tilde{C})$ where $\tilde{C}^{-1} = (I A)'D^{-1}(I A)$
- \tilde{C}^{-1} is sparse with $O(nm^2)$ non-zero $q \times q$ blocks
- $\det(\tilde{C}) = \prod_{i=1}^n \det(D_i)$
- Storage and computation needs remains linear in n

U.S. Forest biomass data

- Forest biomass data from measurements at 114,371 plots
- NDVI (greenness) is used to predict forest biomass

U.S. Forest biomass data

Non Spatial Model

$$Biomass = \beta_0 + \beta_1 NDVI + error, \quad \hat{\beta}_0 = 1.043, \ \hat{\beta}_1 = 0.0093$$

Variogram of residuals

Strong spatial pattern among residuals

Forest biomass dataset

- $n \approx 10^5$ (Forest Biomass) \Rightarrow full GP requires storage $\approx 40\,Gb$ and time ≈ 140 hrs per iteration.
- We use a spatially varying coefficients NNGP model

Model

- $Biomass(s) = \beta_0(s) + \beta_1(s)NDVI(s) + \epsilon(s)$
- $w(s) = (\beta_0(s), \beta_1(s))^{\top} \sim \text{Bivariate NNGP}(0, \tilde{C}(\cdot, \cdot \mid \theta)),$ m = 5
- Time ≈ 6 seconds per iteration
- Full inferential output: 41 hours (25000 MCMC iterations)

Forest biomass data

Summary of Nearest Neighbor Gaussian Processes

- Sparsity inducing Gaussian process
- Constructed from sparse Cholesky factors based on m nearest neighbors
- Scalability: Storage, inverse and determinant of NNGP covariance matrix are all O(n)
- Proper Gaussian process, allows for inference using hierarchical spatial models and predictions at arbitrary spatial resolution
- Closely approximates full GP inference, does not oversmooth like low rank models
- Extension to multivariate NNGP
- Collapsed and response NNGP models with improved MCMC convergence
- spNNGP package in R for analyzing large spatial data using NNGP models