```
In [1]: import numpy as np import pandas as pd
```

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\4_drug200 - 4_drug200.csv")
a

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

```
In [3]: a.mean()
```

Out[3]: Age 44.315000 Na_to_K 16.084485 dtype: float64

In [4]: a.median()

Out[4]: Age 45.0000 Na_to_K 13.9365 dtype: float64

In [5]: a.mode()

Out[5]:

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	47.0	М	HIGH	HIGH	12.006	drugY
1	NaN	NaN	NaN	NaN	18 295	NaN

In [6]: a.describe()

Out[6]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

In [7]: a.sum()

Out[7]: Age

8863 Sex FMMFFFFMMMFFMFFFMMMFMMFFFMFMMFMMMMMFMFFMMFF... BP HIGHLOWLOWNORMALLOWNORMALLOWNORMALLOWLOW... Cholesterol HIGHHIGHHIGHHIGHHIGHHIGHHIGHHIGHNORMALHIGH... 3216.897 Na_to_K drugYdrugCdrugXdrugYdrugYdrugYdrugCdrugYd... Drug dtype: object

In [8]: a.cumsum()

Out[8]:

	Age	Sex	
0	23	F	
1	70	FM	
2	117	FMM	
3	145	FMMF	
4	206	FMMFF	
195	8732	${\bf FMMFFFFMMMFMMFFFMFMFMMFMMMMFMFFMMFF}$	HIGHLOWLOWNOR
196	8748	${\bf FMMFFFFMMMFMMFFFMFMFMMFMMMMFMFFMMFF}$	HIGHLOWLOWNOR
197	8800	${\bf FMMFFFFMMMFMMFFFMFMFMMFMMMFMFFMMFF}$	HIGHLOWLOWNOR
198	8823	${\bf FMMFFFFMMMFMMFFFMFMFMMFMMMMFMFFMMFF}$	HIGHLOWLOWNOR
199	8863	${\bf FMMFFFFMMMFMMFFFMFMFMMFMMMMFMFFMMFF}$	HIGHLOWLOWNOR

200 rows × 6 columns

```
In [9]: |a.count()
 Out[9]: Age
                         200
          Sex
                         200
          BP
                         200
                         200
          Cholesterol
          Na_to_K
                         200
         Drug
                         200
          dtype: int64
In [10]: | a.min()
Out[10]: Age
                             15
                              F
          Sex
          ΒP
                          HIGH
          Cholesterol
                          HIGH
         Na_to_K
                         6.269
          Drug
                         drugA
          dtype: object
In [11]: | a.max()
Out[11]: Age
                              74
          Sex
                               Μ
          ΒP
                         NORMAL
          Cholesterol
                         NORMAL
         Na_to_K
                         38.247
         Drug
                          drugY
          dtype: object
In [16]: from numpy import cov
In [19]: |d1=a['Age']
         d2=a['Na_to_K']
         d1
         d2
Out[19]: 0
                 25.355
          1
                 13.093
          2
                 10.114
          3
                  7.798
          4
                 18.043
                  . . .
          195
                 11.567
          196
                 12.006
          197
                  9.894
          198
                 14.020
          199
                 11.349
          Name: Na_to_K, Length: 200, dtype: float64
In [20]: cov(d1,d2)
Out[20]: array([[273.71434673, -7.54375153],
                 [ -7.54375153, 52.18553348]])
```