

Centralna Komisja Egzaminacyjna

EGZAMIN MATURALNY 2012

MATEMATYKA POZIOM PODSTAWOWY

Kryteria oceniania odpowiedzi

Zadanie 1. (0-1)

Obszar standardów	Opis wymagań	odpo	awna wiedź p.)
Observation do n	opis nymigin	Wersja arkusza A	Wersja arkusza B
Modelowanie matematyczne	Wykonanie obliczeń procentowych (III.1.d)	A	D

Zadanie 2. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Zastosowanie praw działań na potęgach o wykładnikach wymiernych, obliczenie potęgi o wykładniku wymiernym (II.1.g)	В	C	
--	--	---	---	--

Zadanie 3. (0–1)

Wykorzystanie i interpretowanie reprezentacji	Wykonanie obliczeń na liczbach rzeczywistych z wykorzystaniem wzorów skróconego mnożenia (II.1.a; 1.g; 2.a)	A	A	
--	---	---	---	--

Zadanie 4. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Obliczenie wartości logarytmu (II.1.h)	В	C	
--	--	---	---	--

Zadanie 5. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Wykorzystanie pojęcia wartości bezwzględnej do rozwiązania równania typu $ x-a =b$ (II.1.f)	В	A	
---	---	---	---	--

Zadanie 6. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Obliczenie sumy rozwiązań równania kwadratowego (II.3.a)	C	В	
---	--	---	---	--

Zadanie 7. (0-1)

Wykorzystanie i interpretowanie informacji	Odczytanie z postaci iloczynowej funkcji kwadratowej jej miejsc zerowych (I.4.j)	A	В	
--	--	---	---	--

Zadanie 8. (0–1)

Wykorzystanie	Wykorzystanie interpretacji		
i interpretowanie reprezentacji	współczynników we wzorze funkcji liniowej (I.4.g)	A	D
	111110WCJ (1.4.g)		

Zadanie 9. (0–1)			1
Wykorzystanie i interpretowanie informacji	Odczytanie z wykresu funkcji jej miejsc zerowych (I.4.b)	C	D
Zadanie 10. (0–1)			
Wykorzystanie i interpretowanie informacji	Planowanie i wykonanie obliczeń na liczbach rzeczywistych (I.1.a; 6.a)	D	В
Zadanie 11. (0–1)			
Wykorzystanie i interpretowanie reprezentacji	Wykorzystanie definicji do wyznaczenia wartości funkcji trygonometrycznych danego kąta ostrego (II.6.a)	В	A
Zadanie 12. (0–1)			
Wykorzystanie i interpretowanie reprezentacji	Znalezienie związków miarowych w figurach płaskich. Zastosowanie twierdzenia Pitagorasa (II.7.c)	В	C
Zadanie 13. (0–1)			
Wykorzystanie i interpretowanie reprezentacji	Znalezienie związków miarowych w figurach płaskich. Zastosowanie twierdzenia Pitagorasa (II.7.c)	D	A
Zadanie 14. (0–1)			,
Wykorzystanie i interpretowanie informacji	Posłużenie się własnościami figur podobnych do obliczania długości odcinków (I.7.b)	D	C
Zadanie 15. (0–1)			
Wykorzystanie i interpretowanie reprezentacji	Wykorzystanie związku między promieniem koła opisanego na kwadracie i długością jego boku (II.7.c)	В	C
Zadanie 16. (0–1)	· · · · · · · · · · · · · · · · · · ·		•
Wykorzystanie i interpretowanie informacji	Wykorzystanie związków między kątem wpisanym i środkowym do obliczenia miary kąta (I.7.a)	C	В
			1

Zadanie 17. (0–1)			
Modelowanie matematyczne	Obliczenie wyrazów ciągu arytmetycznego (III.5.a)	C	В
Zadanie 18. (0–1)			
Wykorzystanie i interpretowanie informacji	Obliczenie wyrazu ciągu określonego wzorem ogólnym (I.5.a)	В	D
Zadanie 19. (0–1)			
Wykorzystanie i interpretowanie reprezentacji	Obliczenie objętości sześcianu z wykorzystaniem związków miarowych w sześcianie (II.9.b)	В	C
Zadanie 20. (0–1)			
Wykorzystanie i interpretowanie reprezentacji	Wyznaczenie wysokości stożka z wykorzystaniem funkcji trygonometrycznych lub własności kwadratu (II.9.b)	A	С
Zadanie 21. (0–1)			
Wykorzystanie i interpretowanie informacji	Wskazanie równania prostej równoległej do danej (I.8.c)	A	В
Zadanie 22. (0–1)			•
Wykorzystanie i interpretowanie reprezentacji	Wykorzystanie pojęcia układu współrzędnych na płaszczyźnie (II.8.a)	A	D
Zadanie 23. (0–1)			
Wykorzystanie i interpretowanie reprezentacji	Zbadanie czy dany punkt spełnia równanie okręgu (II.8.g)	В	D
Zadanie 24. (0–1)			
Wykorzystanie i interpretowanie reprezentacji	Zliczenie obiektów w prostych sytuacjach kombinatorycznych, stosowanie zasady mnożenia (II.10.b)	C	В
Zadanie 25. (0–1)			
Wykorzystanie i interpretowanie reprezentacji	Obliczenie średniej arytmetycznej i interpretowanie tego parametru w kontekście praktycznym (II.10.a)	D	A

Zadanie 26. (0-2)

Wykorzystanie	Rozwiązanie nierówności kwadratowej (II.3.a)
i interpretowanie reprezentacji	

• prawidłowo obliczy pierwiastki trójmianu kwadratowego $x_1 = -5, x_2 = -3$ i na tym poprzestanie lub dalej popełni błędy

albo

• rozłoży trójmian kwadratowy $x^2 + 8x + 15$ na czynniki liniowe i zapisze nierówność (x+3)(x+5) > 0 i na tym poprzestanie lub dalej popełni błędy

albo

• popełni błąd rachunkowy przy obliczaniu pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność, np. $x_1 = 3, x_2 = 5, x \in (-\infty, 3) \cup (5, \infty)$

albo

• doprowadzi nierówność do postaci |x+4| > 1 (na przykład z postaci $(x+4)^2 - 1 > 0$ otrzymuje $(x+4)^2 > 1$, a następnie |x+4| > 1) i na tym poprzestanie lub dalej popełni błędy.

Zdający otrzymuje2 pkt gdy poda zbiór rozwiązań nierówności w postaci:

•
$$(-\infty, -5) \cup (-3, \infty)$$

albo

•
$$x < -5$$
 lub $x > -3$

albo

•
$$x < -5, x > -3$$

albo

• w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

- 1. Jeśli zdający poprawnie obliczy pierwiastki trójmianu $x_1 = -5, x_2 = -3$ i zapisze, np. $x \in (-\infty, -5) \cup (3, \infty)$ popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to otrzymuje **2 punkty**.
- 2. Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $(-\infty, -3) \cup (-5, \infty)$, to przyznajemy **2 punkty**.

Zadania 27. (0-2)

Rozumowanie i argumentacja Uzasadnienie prawdziwości nierówności algebraicznej (V.2.b)
--

I sposób rozwiązania

Aby wykazać prawdziwość podanej nierówności, przekształcimy ją najpierw do prostszej postaci równoważnej. Rozpoczynamy od podanej nierówności:

$$\frac{a+b+c}{3} > \frac{a+b}{2}$$

Mnożymy obie strony tej nierówności przez 6:

$$2(a+b+c) > 3(a+b)$$

Redukujemy wyrazy podobne:

$$2c > a + b$$

Uzyskana nierówność jest równoważna nierówności wyjściowej, zatem wystarczy wykazać jej prawdziwość. Z założenia wiemy, że c > a oraz c > b. Wobec tego

$$2c = c + c > a + b$$

Co należało wykazać.

Schemat oceniania I sposobu rozwiązania

II sposób rozwiązania

Zdający prowadzi ciąg nierówności, wychodząc od jednej ze stron podanej nierówności i na końcu dochodząc do drugiej.

Założenie: 0 < a < b < c

$$\frac{a+b+c}{3} = \frac{1}{3}a + \frac{1}{3}b + \frac{1}{3}c > \frac{1}{3}a + \frac{1}{3}b + \frac{1}{3}b = \frac{1}{3}a + \frac{2}{3}b = \frac{1}{3}a + \frac{1}{6}b + \frac{1}{2}b > \frac{1}{3}a + \frac{1}{6}a + \frac{1}{2}b = \frac{1}{2}a + \frac{1}{2}b = \frac{a+b}{2}a + \frac{1}{2}a + \frac{1}$$

Schemat oceniania II sposobu rozwiązania

Zadanie 28. (0-2)

Wykorzystanie i interpretowanie	Rozwiązanie równania wielomianowego metodą rozkładu na czynniki (II.3.d)
reprezentacji	

Uwaga

Gdy zdający poda poprawną odpowiedź (trzeci pierwiastek wielomianu: x = -3) nie wykonując żadnych obliczeń, to otrzymuje **1 punkt**.

I sposób rozwiązania

Przedstawiamy wielomian W(x) w postaci W(x) = (x+4)(x-3)(x-a), gdzie a oznacza trzeci pierwiastek wielomianu.

Stad
$$W(x) = x^3 + x^2 - ax^2 - 12x - ax + 12a = x^3 + (1-a)x^2 + (-12-a)x + 12a$$
,

Porównując współczynniki wielomianu W(x) otrzymujemy

$$\begin{cases} 1 - a = 4 \\ -12 - a = -9 \\ 12a = -36 \end{cases}$$

Stad a = -3.

Trzecim pierwiastkiem wielomianu W(x) jest liczba x = -3.

Schemat oceniania I sposobu rozwiązania

II sposób rozwiązania

Przedstawiamy wielomian W(x) w postaci iloczynu:

$$W(x) = x^3 + 4x^2 - 9x - 36 = x^2(x+4) - 9(x+4) = (x+4)(x-3)(x+3).$$

Pierwiastkami wielomianu W(x) są zatem

$$x_1 = -4$$
, $x_2 = 3$ oraz $x_3 = -3$.

Odpowiedź: Trzecim pierwiastkiem wielomianu jest liczba x = -3.

Schemat oceniania II sposobu rozwiązania

$$W(x) = (x^2 - 9)(x + 4)$$
 lub $W(x) = (x + 4)(x - 3)(x + 3)$ lub $W(x) = (x^2 + x - 12)(x + 3)$

lub $W(x) = (x^2 + 7x + 12)(x - 3)$ i na tym poprzestanie lub dalej popełni błędy.

III sposób rozwiązania

Liczba -4 jest pierwiastkiem wielomianu W(x), więc wielomian W(x) jest podzielny przez dwumian (x+4).

Dzielimy wielomian W(x) przez dwumian

$$\frac{x^{2} - 9}{(x^{3} + 4x^{2} - 9x - 36)} : (x+4)$$

$$\frac{-x^{3} - 4x^{2}}{-9x - 36}$$

$$\frac{9x + 36}{-3x - 36}$$

Wielomian W(x) zapisujemy w postaci $W(x) = (x+4)(x^2-9)$, stąd W(x) = (x+4)(x-3)(x+3).

Liczba 3 jest pierwiastkiem wielomianu W(x), więc wielomian W(x) jest podzielny przez dwumian (x-3).

Dzielimy wielomian W(x) przez dwumian (x-3)

Wielomian W(x) zapisujemy w postaci $W(x) = (x^2 + 7x + 12)(x - 3)$.

Wyznaczamy pierwiastki trójmianu $x^2 + 7x + 12$: x = -4 i x = -3.

Liczby 3 i –4 są pierwiastkami wielomianu W(x), więc wielomian W(x) jest podzielny przez $(x-3)(x+4) = (x^2+x-12)$.

Dzielimy wielomian W(x) przez

$$(x^2 + x - 12)$$

Zatem

$$W(x) = (x^2 + x - 12)(x+3) = (x-3)(x+4)(x+3).$$

Zatem pierwiastkami wielomianu są: $x_1 = -4$, $x_2 = 3$ oraz $x_3 = -3$.

Odpowiedź: Trzecim pierwiastkiem wielomianu jest liczba x = -3.

Schemat oceniania III sposobu rozwiązania

• wykona dzielenie wielomianu przez dwumian (x+4), otrzyma iloraz (x^2-9) i na tym poprzestanie lub dalej popełnia błędy

albo

• wykona dzielenie wielomianu przez dwumian (x-3), otrzyma iloraz $(x^2+7x+12)$ i na tym poprzestanie lub dalej popełnia błędy

albo

• wykona dzielenie wielomianu przez $(x^2 + x - 12)$, otrzyma iloraz (x+3) i na tym poprzestanie lub dalej popełnia błędy

albo

• wykona dzielenie wielomianu przez (x+4) lub (x-3), lub przez (x^2+x-12) popełniając błąd rachunkowy i konsekwentnie do popełnionego błędu wyznacza pierwiastki otrzymanego ilorazu.

Uwaga

Dzieląc wielomian W(x) przez dwumian (x-p) zdający może posłużyć się schematem Hornera, np. przy dzieleniu przez (x+4) otrzymuje

IV sposób rozwiazania

Korzystamy z jednego ze wzorów Viète'a dla wielomianu stopnia trzeciego i otrzymujemy

$$(-4) \cdot 3 \cdot x_3 = -\frac{-36}{1}$$
, stad $x_3 = -3$

lub

$$(-4)+3+x_3=-\frac{4}{1}$$
, stad $x_3=-3$,

lub

$$(-4)\cdot 3 + (-4)\cdot x_3 + 3\cdot x_3 = \frac{-9}{1}$$
.

Proste sprawdzenie pokazuje, że rzeczywiście W(-3)=0

Schemat oceniania IV sposobu rozwiązania

Zadania 29. (0-2)

	stanie własności symetralnej odcinka do nia jej równania (IV.8.b, 8.c, 8.e)
--	--

I sposób rozwiązania

Obliczamy współczynnik kierunkowy prostej AB: $\frac{10-2}{2-(-2)}=2$. Zatem współczynnik kierunkowy prostej prostopadłej do prostej AB jest równy $\left(-\frac{1}{2}\right)$. Symetralna odcinka AB ma równanie $y=-\frac{1}{2}x+b$. Punkt $S=\left(\frac{-2+2}{2},\frac{2+10}{2}\right)=(0,6)$ jest środkiem odcinka AB. Symetralna tego odcinka przechodzi przez punkt S, więc $6=-\frac{1}{2}\cdot 0+b$. Stąd b=6, a więc symetralna odcinka AB ma równanie $y=-\frac{1}{2}x+6$.

Schemat oceniania I sposobu rozwiązania

gdy poprawnie wyznaczy lub poda współrzędne środka odcinka AB: S = (0,6) oraz współczynnik kierunkowy prostej AB: a = 2 i na tym poprzestanie lub dalej popełni błędy

albo

• gdy popełni błędy rachunkowe przy wyznaczaniu współrzędnych środka odcinka albo współczynnika kierunkowego prostej *AB* i konsekwentnie wyznaczy równanie symetralnej

albo

• gdy obliczy współczynnik kierunkowy prostej AB: a=2 oraz współczynnik kierunkowy prostej do niej prostopadłej $a_1 = -\frac{1}{2}$ i na tym zakończy lub dalej popełni błędy.

II sposób rozwiązania

Obliczamy współrzędne środka odcinka AB: S = (0,6). Obliczamy współrzędne wektora $\overrightarrow{AB} = [4,8]$. Ponieważ symetralna odcinka AB jest prostopadła do wektora \overrightarrow{AB} i przechodzi przez punkt S, więc jej równanie ma postać 4(x-0)+8(y-6)=0, czyli x+2y-12=0.

Schemat oceniania II sposobu rozwiazania

III sposób rozwiązania

Z rysunku w układzie współrzędnych

odczytujemy współrzędne punktu S=(0,6), współczynnik kierunkowy symetralnej odcinka AB: $a=-\frac{1}{2}$ i zapisujemy równanie symetralnej odcinka AB: $y=-\frac{1}{2}x+6$.

Schemat oceniania III sposobu rozwiązania

IV sposób rozwiązania

Korzystamy z tego, że symetralna odcinka jest zbiorem wszystkich punktów równo oddalonych od jego końców. Jeśli punkt P = (x, y) leży na symetralnej, to |AP| = |BP|.

Zatem
$$\sqrt{(x+2)^2 + (y-2)^2} = \sqrt{(x-2)^2 + (y-10)^2}$$
, czyli $(x+2)^2 + (y-2)^2 = (x-2)^2 + (y-10)^2$.

Po uporządkowaniu równania i redukcji wyrazów podobnych otrzymujemy x+2y-12=0.

Schemat oceniania IV sposobu rozwiązania

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający przepisze z błędem współrzędne punktów i wyznaczy konsekwentnie równanie symetralnej odcinka AB, to za takie rozwiązanie przyznajemy **2 punkty**.

Zadanie 30. (0-2)

Rozumowanie i argumentacja	Przeprowadzenie dowodu geometrycznego (V.7.c)
----------------------------	---

I sposób rozwiązania

Niech $| \angle BAC | = 2\alpha$, $| \angle ABC | = 2\beta$, $| \angle ACB | = \gamma$, $| \angle APB | = \delta$.

Suma miar kątów wewnętrznych w trójkącie równa jest 180° , więc w trójkącie ABC mamy $2\alpha+2\beta+\gamma=180^\circ$.

Ponieważ $\gamma > 0^{\circ}$, więc $2\alpha + 2\beta < 180^{\circ}$, stąd $\alpha + \beta < 90^{\circ}$.

W trójkącie *ABP* mamy $\alpha + \beta + \delta = 180^{\circ}$.

Stąd i z otrzymanej nierówności $\alpha + \beta < 90^{\circ}$ wynika, że $\delta > 90^{\circ}$.

Oznacza to, że kąt APB jest kątem rozwartym.

Co należało uzasadnić.

Schemat oceniania I sposobu rozwiązania

Zdający otrzymuje2 pkt gdy przeprowadzi pełne rozumowanie i uzasadni, że kąt *APB* jest kątem rozwartym.

II sposób rozwiazania

Niech $| \angle BAC | = 2\alpha$, $| \angle ABC | = 2\beta$, $| \angle ACB | = \gamma$, $| \angle APB | = \delta$.

Ponieważ $\delta + \varphi = 180^\circ$ oraz suma miar kątów wewnętrznych w trójkącie ABP jest równa 180° , więc otrzymujemy

$$\varphi = 180^{\circ} - \delta = \alpha + \beta = \frac{1}{2} (2\alpha + 2\beta) < \frac{1}{2} (2\alpha + 2\beta + \gamma) = \frac{1}{2} \cdot 180^{\circ} = 90^{\circ}.$$

Ponieważ $\varphi < 90^{\circ}$, więc φ jest kątem ostrym, zatem δ jest kątem rozwartym.

Oznacza to, że kąt APB jest kątem rozwartym. Co należało uzasadnić.

Schemat oceniania II sposobu rozwiązania

Zadanie 31. (0-2)

Modelowanie matematyczne	Obliczenie prawdopodobieństwa zdarzenia z zastosowaniem klasycznej definicji prawdopodobieństwa (III.10.b;10.d)

I sposób rozwiązania (klasyczna definicja prawdopodobieństwa)

Zdarzeniami elementarnymi są wszystkie pary uporządkowane (x, y) dwóch liczb ze zbioru $\{1, 2, 3, 4, 5, 6, 7\}$.

Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 7 \cdot 7 = 49$.

Iloczyn wylosowanych liczb jest podzielny przez 6, gdy:

- jedna z tych liczb jest równa 6 (wówczas druga jest dowolna) albo
 - jedną z liczb jest 3, a drugą jest 2 lub 4.

Liczba zdarzeń elementarnych sprzyjających zdarzeniu A jest więc równa $|A| = (2 \cdot 7 - 1) + 2 \cdot 2 = 17$.

Prawdopodobieństwo zdarzenia A jest równe: $P(A) = \frac{17}{49}$

II sposób rozwiązania (metoda tabeli)

	1	2	3	4	5	6	7
1						0	
2			(3)			0	
3		0		0		0	
4			0			0	
5						0	
6	0	0	0	0	0	0	0
7						0	

Symbole w tabeli oznaczają odpowiednio:

😊 - zdarzenie elementarne sprzyjające zdarzeniu A

$$|\Omega| = 7 \cdot 7 = 49$$
 i $|A| = 17$, zatem $P(A) = \frac{17}{49}$.

Schemat oceniania I i II sposobu rozwiązania

• obliczy liczbę wszystkich możliwych zdarzeń elementarnych: $|\Omega| = 7^2 = 49$ albo

• obliczy (zaznaczy poprawnie w tabeli) liczbę zdarzeń elementarnych sprzyjających zdarzeniu A: |A| = 17.

Uwaga

Jeśli zdający rozwiąże zadanie do końca i otrzyma P(A) > 1, to otrzymuje za całe rozwiązanie **0 punktów.**

III sposób rozwiązania (metoda drzewa)

Drzewo z istotnymi gałęziami:

Prawdopodobieństwo zdarzenia *A* (iloczyn wylosowanych liczb jest podzielny przez 6) jest więc równe: $P(A) = \frac{1}{7} \cdot \frac{7}{7} + \frac{2}{7} \cdot \frac{2}{7} + \frac{1}{7} \cdot \frac{3}{7} + \frac{3}{7} \cdot \frac{1}{7} = \frac{17}{49}$.

Schemat oceniania III sposobu rozwiązania

- narysuje pełne drzewo i przynajmniej na jednej gałęzi opisze prawdopodobieństwo albo
 - narysuje drzewo tylko z istotnymi gałęziami.

Uwaga

Jeśli zdający rozwiąże zadanie do końca i otrzyma P(A) > 1, to otrzymuje za całe rozwiązanie **0 punktów**.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki Jeżeli zdający poprawnie obliczy prawdopodobieństwo i błędnie skróci ułamek, np. $P(A) = \frac{17}{49} = \frac{1}{3}$, to otrzymuje **2 punkty**.

Zadanie 32. (0-4)

Modelowanie matematyczne	Zastosowanie własności ciągu arytmetycznego i geometrycznego (III.5.c)

I sposób rozwiązania

Ciąg (9, x, 19) jest arytmetyczny, więc wyraz środkowy jest średnią arytmetyczną wyrazów sąsiednich: $x = \frac{9+19}{2} = 14$.

Wiemy, że ciąg (14,42, y, z) jest geometryczny, zatem jego iloraz jest równy $q = \frac{42}{14} = 3$.

Wobec tego y = 3.42 = 126 i z = 126.3 = 378.

Schemat oceniania I sposobu rozwiązania

• wykorzystanie własności ciągu arytmetycznego i zapisanie, np. $x = \frac{9+19}{2}$ lub 2x = 9+19 lub x = 14

albo

• wykorzystanie własności ciągu geometrycznego i zapisanie, np. $42^2 = xy$ lub $v^2 = 42z$.

II sposób rozwiązania

Ciąg (9, x, 19) jest arytmetyczny, zatem 2x = 9 + 19, x = 14.

Ciąg (14,42, y, z) jest geometryczny, zatem $42^2 = 14 \cdot y$ i $y^2 = 42 \cdot z$,

$$y = \frac{1764}{14} = 126$$
 i $126^2 = 42 \cdot z$, stad $z = 378$.

Schemat oceniania II sposobu rozwiązania

• wykorzystanie własności ciągu arytmetycznego i zapisanie, np. $x = \frac{9+19}{2}$ lub 2x = 9+19, lub x = 14

albo

• wykorzystanie własności ciągu geometrycznego i zapisanie, np. $42^2 = xy$ lub $y^2 = 42z$.

Uwaga

Jeśli zdający pomyli własności ciągów, to za całe zadanie otrzymuje **0 punktów**.

Zadanie 33. (0-4)

Użycie i tworzenie strategii	Obliczenie objętości wielościanu (IV.9.b)
------------------------------	---

Strategia rozwiązania tego zadania sprowadza się do realizacji następujących etapów:

- a) obliczenie wysokości AE ostrosłupa,
- b) obliczenie pola podstawy tego ostrosłupa,
- c) obliczenie objętości ostrosłupa.

Rozwiazanie

a) Obliczenie pola podstawy ostrosłupa

Podstawa ABCD ostrosłupa jest kwadratem o boku AB. Stosując wzór na przekątną kwadratu,

mamy:
$$4 = |AB|\sqrt{2}$$
, stad $|AB| = \frac{4}{\sqrt{2}} = 2\sqrt{2}$.

Obliczamy pole P podstawy ostrosłupa: $P = (2\sqrt{2})^2 = 8$.

b) Obliczenie wysokości AE ostrosłupa

Rysujemy trójkąt *EAC*.

$$|AE| = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$$
.

c) Obliczenie objętości ostrosłupa

Objętość ostrosłupa jest równa $V = \frac{1}{3} \cdot 8 \cdot 4\sqrt{3} = \frac{32}{3}\sqrt{3}$.

Schemat oceniania

Uwaga

<u>Uwaga</u>

Jeśli zdający pominie współczynnik $\frac{1}{3}$ we wzorze na objętość ostrosłupa, ale rozwiązanie doprowadzi konsekwentnie do końca z tym jednym błędem, to za takie rozwiązanie otrzymuje **3 punkty**.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

Nie obniżamy punktacji zadania za błędy nieuwagi, np. gdy zdający poprawnie obliczył wysokość ostrosłupa, ale przy obliczaniu objętości ostrosłupa podstawił błędna wartość.

Zadanie 34. (0-5)

Modelowanie matematyczne	Rozwiązanie zadania, umieszczonego w kontekście praktycznym, prowadzącego do równania kwadratowego (III.3.b)
	(111.5.0)

I sposób rozwiązania

Przyjmujemy oznaczenia np.: t – czas pokonania całej trasy w godzinach przez pociąg osobowy, v – średnia prędkość pociągu osobowego w kilometrach na godzinę. Zapisujemy zależność między czasem a prędkością w sytuacji opisanej w zadaniu dla pociągu pospiesznego: $(t-1)\cdot(v+24)=210$

Następnie zapisujemy układ równań
$$\begin{cases} t \cdot v = 210 \\ (t-1) \cdot (v+24) = 210 \end{cases}$$

Rozwiązując układ równań doprowadzamy do równania z jedną niewiadomą, np.:

$$(t-1) \cdot \left(\frac{210}{t} + 24\right) = 210$$

$$210 + 24t - \frac{210}{t} - 24 = 210$$

$$24t^2 - 24t - 210 = 0$$

$$4t^2 - 4t - 35 = 0$$

$$\Delta = 16 + 560 = 24^2$$

$$t_1 = \frac{4 - 24}{8} = -\frac{5}{2}, \qquad t_2 = \frac{4 + 24}{8} = \frac{7}{2} = 3,5$$

 t_1 jest sprzeczne z warunkami zadania.

Obliczamy czas przejazdu tej drogi przez pociąg pospieszny: 3,5-1=2,5.

Odp. Czas pokonania tej drogi przez pociąg pospieszny jest równy 2,5 godziny.

II sposób rozwiązania

Zapisujemy zależność między czasem a prędkością w sytuacji opisanej w zadaniu dla pociągu pospiesznego: $(t-1)\cdot(v+24)=210$

Następnie zapisujemy układ równań $\begin{cases} t \cdot v = 210 \\ (t-1) \cdot (v+24) = 210 \end{cases}$

Rozwiązując układ równań doprowadzamy do równania z jedną niewiadomą, np.:

$$\left(\frac{210}{v} - 1\right) \cdot (v + 24) = 210$$

$$210 + \frac{5040}{v} - v - 24 = 210$$

$$\frac{5040}{v} - v - 24 = 0$$

$$-v^2 - 24v + 5040 = 0$$

$$\Delta = 576 + 20160 = 144^2$$

$$v_1 = \frac{24 - 144}{-2} = 60, \quad v_2 = \frac{24 + 144}{-2} = -84,$$

 v_2 jest sprzeczne z warunkami zadania.

Obliczamy czas przejazdu tej drogi przez pociąg osobowy: $t = \frac{210}{v} = \frac{210}{60} = \frac{7}{2} = 3.5$.

Obliczamy czas przejazdu tej drogi przez pociąg pospieszny: 3.5 - 1 = 2.5. Odp. Czas pokonania tej drogi przez pociąg pospieszny jest równy 2.5 godziny.

III sposób rozwiązania

Przyjmujemy oznaczenia np.: t – czas pokonania całej trasy w godzinach przez pociąg osobowy, v – średnia prędkość pociągu osobowego w kilometrach na godzinę.

Narysowane duże prostokąty reprezentują odległości przebyte przez obydwa pociągi, mają zatem równe pola. Wobec tego pola zakreskowanych prostokątów są równe. Stąd równość $24(t-1)=1\cdot v$. Droga przebyta przez pociąg osobowy wyraża się wzorem $v\cdot t=24(t-1)\cdot t$.

Ponieważ trasa pociągu ma długość 210 km, otrzymujemy równanie $24(t-1) \cdot t = 210$.

Stad
$$24t^2 - 24t - 210 = 0$$

 $4t^2 - 4t - 35 = 0$
 $\Delta = 16 + 560 = 24^2$
 $t_1 = \frac{4 - 24}{8} = -\frac{5}{2}$, $t_2 = \frac{4 + 24}{8} = \frac{7}{2} = 3,5$

 t_1 jest sprzeczne z warunkami zadania. Zatem pociąg osobowy jechał przez 3,5 godziny, a pociąg pospieszny: 3,5-1=2,5 godziny.

Odp. Czas pokonania tej drogi przez pociąg pospieszny jest równy 2,5 godziny.

Schemat oceniania I, II i III sposobu rozwiązania

Zapisanie równania z dwiema niewiadomymi

$$(t-1)(v+24) = 210$$

gdy t oznacza czas pokonania całej trasy w godzinach przez pociąg osobowy, a v średnią prędkość pociągu osobowego w kilometrach na godzinę, lub

$$(t+1)(v-24) = 210$$

gdy t oznacza czas pokonania całej trasy w godzinach przez pociąg pospieszny, a v średnią prędkość pociągu pospiesznego w kilometrach na godzinę.

$$\begin{cases} t \cdot v = 210 \\ (t-1) \cdot (v+24) = 210 \end{cases} \text{ lub } \begin{cases} t \cdot v = 210 \\ (t+1) \cdot (v-24) = 210 \end{cases}$$

$$(t-1)\cdot\left(\frac{210}{t}+24\right)=210$$
 lub $\left(\frac{210}{v}-1\right)\cdot(v+24)=210$ lub $24(t-1)\cdot t=210$

<u>Uwaga</u>

Zdający nie musi zapisywać układu równań, może bezpośrednio zapisać równanie z jedną niewiadomą.

Rozwiązanie zadania do końca lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe) 4 pkt

- rozwiązanie równania z niewiadomą v lub t z błędem rachunkowym i konsekwentne obliczenie czasu pokonania drogi przez pociąg pospieszny albo
- obliczenie czasu jazdy pociągu osobowego: t = 3,5 i nie obliczenie czasu pokonania tej drogi przez pociąg pospieszny.

Uwagi

- 1. Jeżeli zdający porównuje wielkości różnych typów, to otrzymuje **0 punktów**.
- 2. Jeżeli zdający odgadnie czas jazdy pociągu pospiesznego i nie uzasadni, że jest to jedyne rozwiązanie, to otrzymuje **1 punkt**.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

Przykład 1.

Jeśli zdający przedstawi następujące rozwiązanie:

v - prędkość pociągu osobowego, t - czas pokonania całej trasy w godzinach przez pociąg osobowy

$$v+24 = \frac{210}{t-1}$$

$$\begin{cases} 210 = v \cdot t \\ 210 = (v+24)t-1 \end{cases}$$

i na tym zakończy, to takie rozwiązanie kwalifikujemy do kategorii **Rozwiązanie, w którym jest istotny postęp** i przyznajemy **2 punkty**, mimo że w drugim równaniu układu zdający nie ujął wyrażenia t-1 w nawias. Zapis równania $v+24=\frac{210}{t-1}$ wskazuje na poprawną interpretację zależności między wielkościami.

Przykład 2.

Jeśli zdający przedstawi następujące rozwiązanie:

v - prędkość pociągu osobowego, t - czas pokonania całej trasy w godzinach przez pociąg osobowy

$$v + 24 = \frac{210}{t - 1} \quad \begin{cases} v = \frac{210}{t} \\ v + 24 = \frac{210}{t - 1} \end{cases} \quad \frac{120}{t} + 24 = \frac{210}{t - 1}$$

i na tym zakończy, to takie rozwiązanie kwalifikujemy do kategorii **Pokonanie zasadniczych trudności zadania** i przyznajemy **3 punkty,** mimo że w równaniu $\frac{120}{t} + 24 = \frac{210}{t-}$ zdający przestawił cyfry w zapisie liczby 210 i pominął liczbę 1 w mianowniku ułamka.

Przykład 3.

Jeśli zdający otrzyma inne równanie kwadratowe, np. $4t^2 + 4t - 35 = 0$ zamiast równania $4t^2 - 4t - 35 = 0$ (np. w wyniku złego przepisania znaku lub liczby), konsekwentnie jednak rozwiąże otrzymane równanie kwadratowe, odrzuci ujemne rozwiązanie i pozostawi wynik, który może być realnym czasem jazdy pociągu pospiesznego, to takie rozwiązanie kwalifikujemy do kategorii **Rozwiązanie pełne** i przyznajemy **5 punktów**.