

Computação Gráfica

Ano Letivo 2023/2024

Trabalho Prático Fase 1 - Primitivas Gráficas

Grupo 13

Ema Martins - A97678 Gonçalo Costa - A100824 Henrique Malheiro - A97455 Marta Rodrigues - A100743

Índice

Introdução	3
Arquitetura	3
Generator	
Plane	
Box	5
Cone	
Sphere	9
SphereEstruturas Auxiliares	12
Engine	
Conclusão	13

Introdução

Este relatório foi elaborado no âmbito da primeira fase do trabalho prático da unidade curricular de Computação Gráfica, na qual nos foi proposto o desenvolvimento de duas aplicações: o Generator, um gerador de vértices para primitivas gráficas como planos, caixas, esferas e cones, e a Engine, uma aplicação capaz de ler ficheiros de configuração em XML para desenhar os vértices das primitivas gráficas geradas previamente.

Para a implementação de tal, recorremos à utilização da linguagem de programação C++ e à ferramenta OpenGL, ambas lecionadas nas aulas práticas. As diferentes metodologias e abordagens implementadas serão detalhas mais à frente neste relatório.

Arquitetura

O projeto foi estruturado da seguinte forma:

- engine: traduz os pontos gerados pelo generator para figuras 3d;
- **generator:** responsável pelo cálculo das coordenadas dos pontos para a representação do plano, caixa, esfera e cone, bem como a criação dos ficheiros .3d de forma a depois serem utilizados pelo **engine**;
- pugiXML: contém o package pugiXML, de forma a auxiliar o parser para leitura de ficheiros XML;
- utils: possui as estruturas auxiliares que o Engine e o Generator utilizam para o seu devido funcionamento.

Generator

Contém os diversos ficheiros responsáveis por calcular os pontos dos triângulos que permitem construir as diversas primitivas para gerar o ficheiro .3d de uma figura específica.

A estrutura do ficheiro resultante possui assim:

- Na primeira linha com o número total de pontos no ficheiro gerado;
- Os sucessivos pontos que constroem a figura pedida. Cada ponto é constituido por 3 valores float, separados por vírgula, sendo esses X, Y e Z respectivamente.

```
54
-0.5,0,-0.5
-0.5,0,-0.166667
-0.166667,0,-0.166667
-0.166667,0,-0.5
-0.5,0,-0.5
-0.166667,0,-0.166667
0.166667,0,-0.166667
0.166667,0,-0.166667
0.166667,0,-0.5
-0.166667,0,-0.5
-0.166667,0,-0.5
```

Figure 1: Exemplo de um ficheiro .3d

Para construir os pontos para as diferentes primitivas, é necessário fornecer ao Generator os seguintes argumentos:

• O nome da figura que se deseja desenhar (plane, box, sphere ou cone);

- O sucessivos valores necessários para construir a primitiva pretendida (Plane length, divisions; Box lenght, divisions; Sphere radius, slices, stacks; Cone radius, height, slices, stacks);
- Ficheiro destino .3d onde os pontos serão armazenados, para posteriormente serão lidos pelo engine.

Explicaremos agora os diferentes ficheiros em mais detalhe.

Plane

Os planos precisam estar contidos no plano XZ e o seu centro deve estar na origem (0,0,0).

O plano será visto como uma matriz de dimensão divisões × divisões em que cada elemento dessa matriz é um quadrado de lado (comprimento/divisões) dividido em dois triângulos cuja hipotenusa é a diagonal desse quadrado. Para a construção do plano:

- 1. São inicializados 4 pontos de seguintes coordenadas:
 - p0 = (-comprimento/2, 0, -comprimento/2)
 - p1 = (-comprimento/2, 0, -comprimento/2 + divisões)
 - p2 = (-comprimento/2 + divisões, 0 ,-comprimento/2 + divisões)
 - P3 = (-comprimento/2 + divisões, 0 ,-comprimento/2)
- 2. Após esses pontos serem guardados o plano continuará a ser construido linha a linha deslocando os pontos inicialmente mencionados ao longo do eixo do X, sendo cada deslocação do tamanho da divisão da comprimento pelo número de divisões (comprimento/divisões). Cada quadrado é composto por dois triângulos de vértices [p0, p1, p2] e [p0, p2, p3].
- 3. Quando a linha acaba, ou seja, atinge o valor de divisões pedidas, os valores dos pontos voltam aos originais e incrementa-se o valor do Z com o mesmo valor (resultado da divisão da comprimento pelo número de divisões *comprimento/divisões*) e volta se a repetir o processo anterior.

Seguem-se duas figuras ilustrativas para auxiliar na explicação do raciocínio acima.

Figure 2: Processo de construção de um dos quadrados

Na figura acima, é apresentada a ordem pelo que os vértices gerados inicialmente estão dispostos, para poder formar os dois triângulos necessários. Para formar o plano completo, os quadrados que formam o plano são construídos na seguinte ordem:

Figure 3: Processo de construção do plano

Com o comprimento = 1 e divisões = 3, a figura a seguir representa o plano desenhado através do ficheiro .3d gerado:

Figure 4: Exemplo de um plano com comprimento 1 e 3 divisões

Box

Para obter os pontos que levariam à construção da caixa foi aplicado o mesmo raciocínio que o do plano, extendendo esse mesmo.

Deste modo, foram criados 6 planos diferente, isto é, foram gerados dois planos paralelos a cada plano que contém os eixos XZ, XY e YZ, sendo os valores de $y = \pm comprimento/2$, $z = \pm comprimento/2$ e $x = \pm comprimento/2$, respectivamente.

Os seguintes pontos, são aqueles que iniciam as funções que geram os planos paralelos aos planos especificados em cima:

1. Função geradora de um plano paralelo a XZ:

- $p0 = (-comprimento/2, \pm comprimento/2, -comprimento/2)$
- $p1 = (-comprimento/2, \pm comprimento/2, -comprimento/2 + comprimento/divisões)$
- $p2 = (-comprimento/2 + comprimento/divisões, \pm comprimento/2, -comprimento/2)$
- p3 = (-comprimento/2 + comprimento/divisões, ±comprimento/2 , -comprimento/2 + comprimento/divisões);

2. Função geradora de um plano paralelo a XY:

- $p0 = (-comprimento/2, -comprimento/2, \pm comprimento/2)$
- $p1 = (-comprimento/2, -comprimento/2 + comprimento/divisões, \pm comprimento/2)$
- $p2 = (-comprimento/2 + comprimento/divisões, -comprimento/2, \pm comprimento/2)$
- p3 = (-comprimento/2 + comprimento/divisões, -comprimento/2 + comprimento/divisões, ±comprimento/2)

3. Função geradora de um plano paralelo a YZ:

- $p0 = (\pm comprimento/2, -comprimento/2, -comprimento/2)$
- p1 = (±comprimento/2, -comprimento/2, -comprimento/2 + comprimento/divisões)
- p2 = (±comprimento/2, -comprimento/2 + comprimento/divisões, -comprimento/2)
- p3 = (±comprimento/2, -comprimento/2 + comprimento/divisões, -comprimento/2 + comprimento/divisões)

O cálculo dos pontos a partir destes inicializados é feito como foi especificado anteriormente no plano.

Porém, ao contrário do plano as funções que geram os planos paralelos a XZ, XY e YZ têm uma flag "reverse" que permite alterar a ordem em que os pontos são inseridos na figura de modo a inverter a orientação do polígono, isto é, trocando a ordem entre os vértices da diagonal dos triângulos. Por exemplo, na função que gera o plano paralelo a XZ, se a flag tiver o valor 0, o plano poderá ser visto de cima, com y > 0. Caso a flag tome valor 1, o plano poderá ser visto debaixo, com y < 0.

Figure 5: Exemplo de uma box com comprimento 2 e 3 divisões

Cone

Para criação do cone tivemos em consideração 4 parâmetros muito importantes, sendo esses a altura do cone, o raio da base, o número de stacks e de slices.

Começamos por calcular a base do cone, dividindo 2π por n° slices obtendo assim o ângulo (α) entre os vértices e o raio da circunferência, permitindo assim, com o auxílio de coordenadas polares, calcular as coordenadas de x e z de cada ponto partir das seguintes fórmulas:

- $x = raio \times cos(\alpha)$
- $z = raio \times sin(\alpha)$

Sendo y = 0 um valor constante pois a base do cone será definida no plano xz.

Deslocando o ponto da origem através do ângulo obtido (0, 0, raio), foi nos possível calcular os diversos pontos da base.

Figure 6: Ilustração da base de um cone e o seu α

Após calculados os pontos necessários para a base do cone, falta o cálculo das faces laterais do cone.

Para a criação das laterias recorremos à criação de triângulos sucessivos até o número dos mesmos atingir o número de *slices*.

Como o cone é dividido em diversas *stacks* que são representadas por cortes horizontais, foi preciso calcular o tamanho de cada *stack*, esse valor foi obtido calculando o resultado da divisão da *altura do cone* pelo número de *stacks*.

Para além disso, à medida que vamos avançando na construção do cone e "subindo" no cone, o raio irá também variar, vai ser necessário calcular o raio da stack seguinte para encontrar as coordenadas, através da seguinte expressão:

• Próximo raio = raio * $\left(1 - \left(\frac{n}{\text{stacks}}\right)\right)$, sendo *raio* o raio inicial fornecido, *n* a *stack* atual e *stacks* o número de *stacks total*

Conseguimos chegar a esta fórmula analisando a vista de cima de um cone, como representado na figura a seguir. Através desta podemos visualizar que as *stacks* partem o raio de forma igual, por exemplo com 3 *stacks*, o Δ raio representa $\frac{1}{3}$ do raio fornecido, sendo assim o raio da primeira divisão $\frac{2}{3}$ do raio fornecido.

Figure 7: Ilustração auxiliar da explicação (vista cima)

Com todas essas informações, acrescentando que a base do cone estará contida no plano XZ, podemos formar as 4 equações para o cálculo sucessivo dos triângulos que constituirão cada stack:

- $p0 = (raio\ atual \times sin(slice\ atual \times alfa),\ altura\ da\ stack \times stack\ atual,\ raio\ atual \times cos(slice\ atual \times alfa))$
- $p1 = (raio\ atual \times sin((slice\ atual + 1) \times alfa),\ altura\ da\ stack \times stack\ atual,\ raio\ atual \times cos((slice\ atual + 1) \times alfa))$
- p2 = (proximo raio × sin(slice atual × alfa), altura da stack × próxima stack, proximo raio × cos(slice atual × alfa))
- $p3 = (proximo\ raio \times sin((slice\ atual + 1) \times alfa),\ altura\ da\ stack \times próxima\ stack,\ proximo\ raio \times cos((slice\ atual + 1) \times alfa))$

A construção do cone é feita slice a slice, progredindo dentro de cada slice pelas suas stacks, até à penúltima camada do cone. Finalmente, para o topo do cone, há exceção do resto do anterior, são reaproveitados os últimos pontos calculados e desenha-se um triângulo final por stack, e tem um dos vértices com y = (0, altura do cone, 0). Obtendo assim exemplos de diferentes cones desenhados apartir dos ficheiros .3d gerados:

Figure 8: Exemplo de um cone com raio 1, 2 de altura, 4 slices e 3 stacks

Figure 9: Exemplo de um cone com raio 2, 5 de altura, 10 slices e 5 stacks

Sphere

Para calcular os pontos das esferas, recorremos às coordenadas esféricas (α , β , raio) que serão transformadas em coordenadas cartesianas através das fórmulas seguintes:

- $x = raio \times cos(\beta) \times sin(\alpha)$
- $y = raio \times sin(\beta)$
- $z = raio \times cos(\beta) \times cos(\alpha)$

Assim, para calcular os pontos de uma esfera precisamos do raio, do número de slices (camadas verticais) e do número de stacks (camadas horizontais). O ângulo entre as diferentes slices α será o resultado de 2π / slices, e, então, representa o valor do ângulo pelo qual iremos deslocar o ponto base de origem (0, 0, raio).

Figure 10: Exemplo de um valor α numa esfera

Para determinar o deslocamento necessário entre as camadas das stacks, calculamos o ângulo β como π / stacks, sendo que este valor, durante a construção da esfera, irá variar entre $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ de modo que a coordenada y possa ser negativa e positiva.

Com todas as informações necessárias decifradas, podemos então inferir as primeiras coordenadas para a construção da esfera:

- $p1 = raio \times cos(beta\ atual) \times sin(alfa\ atual)$, $raio \times sin(beta\ atual)$, $raio \times cos(beta\ atual) \times cos(alfa\ atual)$
- $p2 = raio \times cos(pr\'oximo\ beta) \times sin(alfa\ atual)$, $raio \times sin(pr\'oximo\ beta)$, $raio \times cos(pr\'oximo\ beta)$ × $cos(alfa\ atual)$
- p3 = raio × cos(próximo beta) × sin(próximo alfa), raio × sin(próximo beta), raio × cos(próximo beta) × cos(próximo alfa)
- p4 = raio × cos(beta atual) × sin(próximo alfa), raio × sin(beta atual), raio × cos(beta atual) × cos(próximo alfa)

Os triângulos da esfera serão desenhados stack a stack, "descendo" pela esfera, decrementando o valor de β , e enquanto nos encontramos na stack a ser gerada, todas as slices são percorridas (através do incremento de α pelo valor do ângulo determinado inicialmente), ou seja, só se avança para a próxima stack quando todos os triângulos das slices da stack atual são calculadas.

Entre duas stacks e duas slices vai então existir um "quadrado" constituído por dois triângulos de estrutura semelhante à Figure 2. No entanto, visto que as slices da stack superior e a inferior da esfera são apenas formados por um único triângulo com orientações diferentes, quando a stack atual é a primeira a ser desenhada, ou seja a do topo da esfera, é apenas construído o triângulo da esquerda, por outro lado caso seja a última, a que se encontra no fundo da esfera, só se desenha o triângulo da direita. Assim, na imagem a seguir, que procura representar melhor este processo, o triângulo vermelho é gerado em todas as slices das stacks que não sejam a superior e o triângulo azul é gerado em qualquer slices das stacks que não sejam a inferior da esfera.

Figure 11: Processo seleção dos triângulos a desenhar nas stacks

Na figura seguinte, apresentamos assim um exemplo de uma esfera desenhada através do ficheiro .3d gerado com o ficheiro teste .xml :

Figure 12: Exemplo de uma esfera raio 1, 10 slices e 10 stacks

Adicionalmente, a próxima imagem representa o resultado de outro teste fornecido, composta por uma esfera e um plano, sendo tal possível pela lógica do engine exposto mais à frente neste relatório:

Figure 13: Exemplo de uma esfera raio 1, 10 slices e 10 stacks e um plano de comprimento 2 e 3 divisões

Estruturas Auxiliares

Vale realçar que foram criadas as estruturas auxiliares figura e ponto.

Uma figura representa o total de pontos de uma figura e é constituida por um *vector* de pontos. Os pontos por si são compostos por três valores float que correspondem aos valores de x, y e z. Também foram criadas funções auxiliares para as estruturas, para possibilitar a manipulação das mesmas como inserção de pontos de figuras e a inicialização, e, no caso das figuras, poder fazer a escrita para o ficheiro pretendido.

Figure 14: Estrutura de um ponto

```
typedef struct figura {
    std::vector<Ponto> pontos;

    // Construtor padrão
    figura() {}
}Figura;

void addPonto(Figura& f, Ponto p);
void writeToFile(Figura f, const char* file_path);
```

Figure 15: Estrutura de uma Figura

Engine

O engine, utilizando a bibiloteca *pugixml*, lê e faz o parse do ficheiro de configuração (em *XML*), guardando a sua informação em formato de árvore, associando cada nível de identação a um subnível dessa árvore.

Percorrendo os diversos filhos da árvore, configura a página, desde dimensões da janela (altura e largura), posição da câmara com vetores (posição, lookAt e up) bem como os parâmetros da matriz projeção (field of view, near e far).

Por fim, percorre-se os diversos *models* indicados no ficheiro, carregando os seus vértices, indicados nos ficheiros .3d gerados no generator, num vector por figura. Posteriormente, junta-se os diversos vetores num buffer comum, para que o render scene desenhe as figuras, segundo a metedologia de VBOs. Essa metedologia permite uma melhor performance, uma vez que os pontos são carregados unicamente na *main*, sendo apenas deslocados quando a posição da câmara ou da figura se alterem.

Conclusão

Nesta primeira fase do trabalho fomos capazes de consolidar os diversos conhecimentos adquiridos nas primeiras aulas teóricas e práticas desta unidade curricular.

Apesar de diversas dificuldades enfrentadas acreditamos que fomos capazes de atingir todos os objetivos propostos para esta primeira fase, ou seja, a implementação do Generator e do Engine. Além disso, introduziu-se como extras a capacidade de movimentação da câmara e a capacidade de mudar o modo de visualização da figura

Graças à consolidação destas bases obtidas ao longo do desenvolvimento desta fase, o grupo sente-se preparado para continuar o desenvolvimento para as futuras etapas.