Reg. No.	
Signature	

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY — APRIL, 2017

ENGINEERING MATHEMATICS - I

(Common to all Diploma Programmes)

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions. Each question carries 2 marks.
 - 1. Evaluate Lt $\frac{x^3 27}{x 3}$
 - 2. If $\tan A = 3/4$ and A is acute, find $\sin 2A$.
 - 3. In a triangle ABC, $A = 45^{\circ}$ B = 60° a = 5cm. Find b.
 - 4. Evaluate $4 \sin^3 60 3\cos 30$
 - 5. Find the slope of the curve $y = 3x^2 + x 2$ at (1, 2).

 $(5 \times 2 = 10)$

PART-B

(Maximum marks: 30)

- II Answer any five questions from the following. Each question carries 6 marks.
 - 1. Express $\sqrt{3}\cos x + \sin x$ in the form R $\sin (x + \alpha)$ where α is acute.
 - 2. If $A \neq B = 45^{\circ}$, show that $(1 + \tan A) (1 + \tan B) = 2$.
 - 3. Show that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$.
 - Differentiate 'sin x' by method of first principles.
 - 5. If $y = x^2 \sin x$ prove that $x^2y'' 4xy' + (x^2 + 6) y = 0$.
 - 6. The distance S metres travelled by a particle is given by $S = ae^{nt} + be^{-nt}$ where t represents the time. Show that the acceleration varies as the distance.
 - A balloon is spherical in shape. Gas is escaping from it at the rate of 10cc/sec.
 How fast is the surface area shrinking, when the radius is 15cm.

 $(5 \times 6 = 30)$

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

		Unit — I	
III	(a)	Prove that $\frac{cosec \ \theta}{cosec \ \theta - 1} + \frac{cosec \ \theta}{cosec \ \theta + 1} = 2 \ sec^2 \theta$	C
	(b)	If $tanA = 3/4$, $sinB = 5/13$. A lies in third quadrant and B lies in second quadrant. Find $sin(A - B)$ and $cos(A + B)$.	5
	(c)	Evaluate cos570 sin510 – sin330 cos390.	5
		OR	
IV	(a)	Prove that $\sin(\pi/3 + A) - \sin(\pi/3 - A) = \sin A$.	5
	(b)	If $tanx = 7/24$ and x is in 3rd quadrant. Find the value of $3sinx - 4cosx$.	4
	(c)	Find the value of $\tan 75$ without using tables and show that $\tan 75 + \cot 75 = 4$.	6
-		Unit — II	
V	(a)	Prove that $\frac{(\sin 2A + \sin 5A - \sin A)}{\cos 2A + \cos 5A + \cos A} = \tan 2A$	5
	(b)	Show that $\frac{1 + \cos 2A}{\sin 2A} = \cot A$ and deduce the value of cot 15.	5
I.	(c)	Solve triangle ABC, given $a = 4cm$ $b = 5cm$ $c = 7cm$.	5
VI	(a)	Prove that $\frac{\sin 3A}{\sin A} - \frac{\cos 3A}{\cos A} = 2$.	5
-	(b)	Show that $\cos 55 + \cos 65 + \cos 175 = 0$.	5
	(c)	Prove that $R(a^2 + b^2 + c^2) = abc(cotA + cotB + cotC)$.	5
		UNIT — III	
VII	(a)	Evaluate: Lt $x^3 - 64$	
		$x \rightarrow 3$ $x^2 - 16$	4
7	(b)	Find $\frac{dy}{dx}$, if (i) $y = \log \sin \sqrt{x}$ (ii) $\frac{(x^2 \sec x)}{(x^2 + 3)}$	6
	(c)	If $x = a$ (cost + t sint) $y = a(sint - tcost)$, find $\frac{dy}{dx}$	5
		and and an equipment of the OR for the other management makes the	
III	(a)	Find $\frac{dy}{dx}$ if: (i) $y = \cot^5(x^2)$ (ii) $\frac{\sin(\log x)}{x}$	6

(b) Find $\frac{dy}{dx}$, if $x^2y^2 = x^3 + y^3 + 3xy$.

(c) Find the derivative of cotx using quotient rule.

UNIT - IV

	IX	(a)	Find the equations to the tangent and normal to the curve $y = \cos x$ at $x = \pi/6$.	5
		(b)	If S denotes the displacement of a-particle at the time t secs and $S = t^3-6t^2+8t-4$, find the time when the acceleration is 12cm/sec^2 . Find the velocity at that time.	5
		(c)	The deflection of a beam is given by $y = 2x^3 - 9x^2 + 12x$. Find the maximum deflection.	3
	v	(a)	OR Find the values of x for which the tangent to the curve $y = \frac{x}{(1-x)^2}$ will be	9
	Λ	(a)		5
		(b)	A spherical rubber bladder of radius 3" has air pumped into it. If the radius increases at a uniform rate of 1" per minute, find the rate at which the volume is increasing at the end of 3 minutes.	5
		(c)	is increasing at the end of 3 minutes. The sum of the diameter and length of an open cylindrical vessel is 40cm. Prove that the maximum volume is obtained. When the radius is equal to	5
1	Y	>		