Lect 08

K-Maps and QM Methods

CS221: Digital Design

Dr. A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- Canonical form of Function
 - -SOP and POS
- Gray Code and Hamming Distances
- K-Maps : Graphical
- QM Methods : Tabular

Converting among Representations

Q: Convert to equation

а	b	F	Term
0	0	1	a'b'
0	1	1	a'b
1	0	0	
1	1	0	

F = a'b' + a'b

Expressing Functions with Minterms

- Boolean function can be expressed algebraically from a give truth table
 - Forming sum of ALL the minterms that produce 1 in the function

Example: Consider the function defined by the truth table

F(X,Y,Z) = X'Y'Z' + X'YZ' + XY'Z + XYZ XYZ

 $= m_0 + m_2 + m_5 + m_7$ = $\sum m(0, 2, 5, 7)$

0	0	0	m _o	1
0	0	1	m_1	0
0	1	0	m ₂	1
0	1	1	m ₃	0
1	0	0	m ₄	0
1	0	1	m _s	1
1	1	0	m ₆	0
1	1	1	m ₇	1

Expressing Functions with Maxterms

- Boolean function : Expressed algebraically from a give truth table
- By forming logical product (AND) of ALL the maxterms that produce 0 in the function

Example:

Consider the function defined by the truth table

 $F(X,Y,Z) = \Pi M(1,3,4,6)$ Applying DeMorgan

F' = $m_1 + m_3 + m_4 + m_6 = \sum m(1,3,4,6)$ E = E'' = $[m_1 + m_2 + m_3 + m_4]$ '

 $F = F'' = [m_1 + m_3 + m_4 + m_6]'$ = $m_1' \cdot m_3' \cdot m_4' \cdot m_6'$

> = $M_1.M_3.M_4.M_6$ = $\Pi M(1,3,4,6)$

Note the indices in this list are those that are missing from the previous list in $\Sigma m(0,2,5,7)$

<u>Sum of Minterms vs Product of</u> <u>Maxterms</u>

- A function can be expressed algebraically as:
 - The sum of minterms
 - The product of maxterms
- Given the truth table, writing F as
 - $\sum m_i$ for all minterms that produce 1 in the table, or
 - ΠM_i for all maxterms that produce 0 in the table
- Minterms and Maxterms are complement of each other.

Example: minterm & maxterm

- Write E = Y' + X'Z' in the form of $\sum m_i$ and $\prod M_i$?
- Method1
 First construct the Truth Table as shown
- $E = \sum m(0,1,2,4,5)$, and
- $E = \prod M(3,6,7)$

X	Υ	Z	m	M	E
0	0	0	m_0	M_0	1
0	0	1	m_1	M_1	1
0	1	0	m ₂	M ₂	1
0	1	1	m ₃	M_3	0
1	0	0	m ₄	M ₄	1
1	0	1	m ₅	M ₅	1
1	1	0	m_6	M_6	0
1	1	1	m ₇	M ₇	0

SOP and POS Conversion

SOP → POS

F = AB + CD

- = (AB+C)(AB+D)
- = (A+C)(B+C)(AB+D)
- = (A+C)(B+C)(A+D)(B+D)

Hint 1: Use id15: X+YZ=(X+Y)(X+Z) Hint 2: Factor

POS → SOP

- F = (A'+B)(A'+C)(C+D)
- = (A'+BC)(C+D)
- = A'C+A'D+BCC+BCD
- = A'C+A'D+BC+BCD
- = A'C+A'D+BC

Hint 1: Use id15 (X+Y)(X+Z)=X+YZ Hint 2: Multiply

Implementation of SOP

F(X,Y,Z) = XZ+Y'Z+X'YZ

- Any SOP expression can be implemented using 2levels of gates
- The 1st level consists of AND gates, and the 2nd level consists of a single OR gate
- Also called 2-level Circuit

Implementation of POS

F(X,Y,Z) = (X+Z)(Y'+Z)(X'+Y+Z)

- Any POS expression can be implemented using 2levels of gates
- The 1st level consists of OR gates, and the 2nd level consists of a single AND gate
- Also called 2-level Circuit

Implementation of SOP

- Consider F = AB + C(D+E)
 - This expression is NOT in the sum-of-products form
 - Use the identities/algebraic manipulation to convert to a standard form (sum of products), as in F = AB + CD + CE
- · Logic Diagrams:

Gray Codes

• Gray code is a binary value encoding in which adjacent values only differ by one bit

2-bit Gray Code		
00		
01		
11		
10		

Filling of Karnaugh Map Why not: A'B', A'B, AB', AB 00, 01, 10, 11 Only two adjacent can be grouped Group Reduce a variable: AB'+AB=A(B'+B)=A A'B', A'B, AB, AB' 00 01, 11 01 All 4 Adjacent can be grouped

Don't Care

- A don't-care term is an input to a function that the designer does not care about
- Because that input would never happen
- Example:
 - BCD number (0-9, A-F) are 4 bits, don't care about input A-F
 - Suppose a system have 5 type of input
 - Unfortunately we can't have 2 input line
 - Make 3 input line and last 3 sequence as don't care
 - S0, S1, S2,S3,S4, X,X,X == > 000, 001....,111

BCD to 7 Segment Display

- BCD are 4 bit
- Design a decoder to drive 7 segment LED

Prime Implicants

- A group of one or more 1's which are adjacent and can be combined on a Karnaugh Map is called an implicant.
- The biggest group of 1's which can be circled to cover a given 1 is called a prime implicant.
 - -They are the only implicants we care about.

Another Example

Finding the Minimum Sum of Products

- 1. Find each <u>essential</u> prime implicant and include it in the solution.
- 2. Determine if any minterms are not yet covered.
- 3. Find the minimal # of <u>remaining</u> prime implicants which finish the cover.

Yet Another Example (Use of non-essential primes)

| S-Variable Karnaugh Map | BC | DE | 00 | 01 | 11 | 10 | DE | 00 | 01 | 11 | 10 | DE | 00 | 01 | 11 | 10 | 00 | m16 | m20 | m28 | m24 | m17 | m21 | m29 | m25 | m11 | m3 | m7 | m15 | m11 | 11 | m19 | m23 | m31 | m27 | m18 | m22 | m30 | m26 | . | This is the A=0 plane | This is the A=1 plane | The planes are adjacent to one another (one is above the other in 3D)

KMap Summary

- A Kmap is simply a folded truth table
 where physical adjacency implies logical adjacency
- KMaps are most commonly used hand method for logic minimization
- KMaps have other uses for visualizing Boolean equations
 - you may see some later.

Quine-McCluskey (QM) Method for Logic Minimization

Quine-McCluskey Method for Minimization

- KMAP methods was practical for at most 6 variable functions
- Larger number of variables: need method that can be applied to computer based minimization
- Quine-McCluskey method
- For example:

$$\sum m(0,1,2,3,5,7,13,15)$$

QM Method

• Phase I: finding Pis

-Tabular methods: Grouping and combining

• Phase II: Covers minimal PIs

QM Method

- Minterms that differ in one variable's value can be combined.
- Thus we list our minterms so that they are in groups with each group having the same number of 1s.
- So the first step is ordering the minterms according to their number of 1s (0-cube list)
- only minterms residing in adjacent groups have the chance to be combined.):

63

QM Method

 $\sum m(0,1,2,3,5,7,13,15)$

0_Cube		
0	0000	
1	0001	
	0010	
2	0011	
	0101	
3	0111	
	1101	
4	1111	

QM Method: Combining Adjacent

- Compare minterms of a group with those of an adjacent one to form 1-cube list.
- Skip multiple adjacent
 - 0010 of Gr 1 and 0101 of G2 have Hamming distance 3, so cannot be combined.
 - HD value 1 is GRAY adjacent
- When doing the combining, we put checkmark alongside the minterms in the 0-cube list that have been combined.

QM Method: Combining Adjacent

- Do same combination of comparing adjacent group minterms
 - To form 2-cubes, 3-cubes and so on.
 - Compare minterms of a group with those of an adjacent one to form 1-cube list.
 - Skip multiple adjacent
 - 0010 of Gr 1 and 0101 of G2 have Hamming distance 3, so cannot be combined.
 - HD value 1 is GRAY adjacent
- Only minterms of adjacent groups have the chance of being combined
 - -Which have an X in the same position.

QM Method: Covers

- To find a minimal cover, we first need to find essential Pis
- To do this we need to find columns that only have one checkmark in them, the according row will thus show the essential PI.
- After identifying essential PIs, that are necessarily part of the cover, we cover any remaining minterms using a minimal set of PIs.

