73. Активные фильтры. Активные полосовые фильтры.

Электрическим фильтром называется устройство для передачи электрических сигналов, пропускающее токи в определенной области частот и препятствующее их прохождению вне этой области. В радиотехнике и электронике электрические фильтры подразделяют на пассивные и активные. Схемы пассивных фильтров содержат только пассивные элементы: резисторы, конденсаторы и катушки индуктивности.

В схемы активных фильтров помимо указанных элементов входят такие активные изделия, как транзисторы или интегральные микросхемы. Фильтрующие свойства устройства определяются его амплитудно-частотной характеристикой, которой называется зависимость коэффициента усиления этого устройства от частоты сигнала.

Принято подразделять фильтры на четыре категории в зависимости от расположения полосы прозрачности:

- фильтры нижних частот $(0 \le f \le f_0)$;
- фильтры верхних частот ($f ≥ f_0$);
- полосовые фильтры $(f_{01} \le f \le f_{02});$
- заграждающие или режекторные фильтры ($0 \le f \le f_{01}$ и $f \ge f_{02}$).

Фильтры нижних частот

Рис. 1. Схема активного фильтра нижних частот первого порядка

Такой фильтр представляет собой инвертирующий усилитель, обладающий постоянным коэффициентом усиления в полосе прозрачности от постоянного тока до граничной частоты f_0 .

Граничная частота этого фильтра определяется элементами цепи обратной связи в соответствии с выражением:

$$f_0 = \frac{1}{2\pi R_0 C_2} \ . \tag{2}$$

Амплитудно-частотная характеристика - зависимость амплитуды сигнала на выходе устройства от частоты при постоянной амплитуде на входе этого устройства - представлена на **рис.2**

Рис. 2. Амплитудно-частотная характеристика фильтра нижних частот первого порядка

Фильтры верхних частот

Рис.5. Принципиальная схема активного фильтра верхних частот первого порядка

Граничная частота f_0 на уровне -3 дБ задается входной цепью в соответствии с выражением:

$$f_0 = \frac{1}{2\pi R_1 C_1}.$$
 (3)

Рис. 6. Амплитудно-частотная характеристика фильтра верхних частот первого порядка

Полосовые фильтры

Если объединить активный фильтр нижних частот с активным фильтром верхних частот, то в результате образуется полосовой фильтр, принципиальная схема которого приведена на **рис.9**.

Рис. 9. Принципиальная схема активного полосового фильтра

$$f_0 = \frac{1}{2\pi \sqrt{R_1 C_1 R_2 C_2}}.$$
 (4)

Рис.10. Амплитудно-частотная характеристика полосового фильтра