5

6 7

8

9

- 1 1. A method of fabrication of etching a low -k dielectric 2 layer used in microelectronics fabrication; comprising the 3 steps of:
 - forming an organic low k dielectric layer over a substrate;
 - b) forming a masking pattern over said organic low k dielectric layer; said masking pattern having an opening;
 - c) using an etch process said organic low k dielectric layer through said opening using said resist pattern as an etch mask; said etch process comprising:
 - in a first step, etching said organic low k dielectric layer by applying a plasma power and flowing at least NH3 gas.
 - 2. The method of claim 1 wherein said first step comprises applying a medium plasma power plasma density between 1E9 and 1E11 cm^{-3} and flowing only NH_3 gas.
- 5 3. The method of claim 1 wherein said first step comprises 6 applying a medium plasma power plasma density between 1E9 and 1E11 cm⁻³ and flowing only NH₃ gas, a power in 7 8 between 500 and 1500 W, and a NH_3 flow between 50 and 300 sccm and a pressure between 80 and 800 mTorr. 9
- The method of claim 1 wherein said first step comprises 10 11 applying a medium plasma power plasma density 12 between 1E9 and 1E11 cm⁻³ and flowing only NH₃ gas, a power in between 500 and 1500 W, and a NH_3 flow between 50 and 300 sccm 13 14 and a pressure between 80 and 800 mTorr and flowing CO or O2 15 gasses.

- 16 The method of claim 1 wherein said organic low k dielectric
- is comprised of a material selected from the group consisting 17
- of fluorinated arylether, Benzocyclobuthene (BCB), amorphous 18
- teflon, carbon doped oxides, poly arylene ether (PAE) and 19
- , 20 organic Spin on materials.
 - 21 The method of claim 1 wherein said organic low k dielectric
 - 22 is comprised of a material selected from the group consisting
 - 23 of fluorinated arylether, and poly arylene ether.
 - The method of claim 1 wherein said organic low k dielectric 24
 - 25 is comprised of carbon doped oxide.
 - 26 The method of claim 1 wherein said organic low k dielectric
 - 27 is comprised of poly arylene ether (PAE).
 - The method of claim 1 wherein said etch forms a first
 - opening through said organic low k dielectric layer; said
- 131 72 9 130 0 first opening having sidewalls defined by said organic low k
 - dielectric layer; said sidewalls are substantially vertical at
- **13**2 a angle between 87 and 93 degrees to the surface of the
- substrate.
 - The method of Claim 1 wherein the substrate is selected 10.
 - from the group consisting of: microelectronics conductor
- 3 4 5 6 materials; microelectronics semiconductor materials; and
- microelectronics dielectric materials. 37

3

31

- 11. A method of fabrication of etching a low -k dielectric 1
- 2 layer, comprising the steps of :
 - a) forming an organic low k dielectric layer over an
- 4 insulation layer over a substrate;
- 5 b) forming a masking pattern over said organic low k
- 6 dielectric layer; said masking pattern having an
- 7 opening;

23

8	c) using an etch process said organic low k dielectric
9	layer through said opening using said masking pattern as
10	an etch mask; said etch process comprising:
11	(1) in a first step, etching said organic low k
12	dielectric layer by applying a plasma power and
13	flowing $\mathrm{NH_3}$ and $\mathrm{H_2}$ etch gasses.
14	
1	12. The method of claim 11 wherein said first step comprises:
2	a plasma power between 500 and 1500 W, medium plasma
3	power plasma density between 1E9 and 1E11 ${ m cm}^{-3}$,a ${ m NH}_3$ flow
4	between 50 and 300 sccm, a ${\rm H}_2$ flow between 50 and 300 sccm and a
5	pressure between 80 and 800 mTorr.
1 6	13. The method of claim 11 wherein said first step comprises:
- - - - - - - - - - - - - - - - - - -	a plasma power between 500 and 1500 W, medium plasma
<u>1</u> 8	power plasma density between 1E9 and 1E11 ${ m cm}^{-3}$,a ${ m NH}_3$ flow
1 9	between 50 and 300 sccm, a ${\rm H}_2$ flow between 50 and 300 sccm and a
IO 111	pressure between 80 and 800 mTorr and flowing O_2 or CO gasses.
01 1 2	14. The method of claim 1 wherein said organic low k dielectric
13	is comprised of a material selected from the group consisting
14	of fluorinated arylether, Benzocyclobuthene (BCB), amorphous
15	teflon, carbon doped oxides, poly arylene ether (PAE) and
16	organic Spin on materials.
17	15. The method of claim 11 wherein said organic low k
18	dielectric is comprised of a material selected from the group
19	consisting of fluorinated arylether, and poly arylene ether.
20	16. The method of claim 11 wherein said organic low k
21	dielectric is comprised of carbon doped oxide.

17. The method of claim 11 wherein said organic low k

dielectric is comprised of poly arylene ether (PAE).

4

- 24 18. The method of claim 11 wherein said etch forms a first
- opening through said organic low k dielectric layer; said
- 26 first opening having sidewalls defined by said organic low k
- 27 dielectric layer; said sidewalls are substantially vertical at
- a angle between 87 and 93 degrees to the surface of the
- 29 substrate.
 - 1 19. A method of fabrication of etching a low -k dielectric
 2 layer; comprising the steps of:
 - a) forming an organic low k dielectric layer over a insulation layer over a substrate;
 - b) forming a masking pattern over said organic low k dielectric layer; said masking pattern having an opening;
 - c) using an etch process said organic low k dielectric layer through said opening using said masking pattern as an etch mask; said etch process comprising:
 - (1) in a first step, etching said organic low k dielectric layer by applying a plasma power and flowing only NH_3 and N_2 etch gasses.
 - 20. The method of claim 19 wherein said first step comprises: power in between 500 and 1500 W, medium plasma power plasma density between 1E9 and 1E11 cm $^{-3}$, a NH $_3$ flow between 50 and 300 sccm and a N $_2$ flow between 50 and 300 sccm and a pressure between 80 and 800 mTorr.
 - 21. The method of claim 19 wherein said first step comprises: power in between 500 and 1500 W, medium plasma power plasma density between 1E9 and 1E11 cm $^{-3}$, a NH $_3$ flow between 50 and 300 sccm and a N $_2$ flow between 50 and 300 sccm and a pressure between 80 and 800 mTorr and flowing CO or O $_2$ gasses.

- 22. The method of claim 19 wherein said organic low k dielectric is comprised of a material selected from the group consisting of fluorinated arylether, Benzocyclobuthene (BCB), amorphous teflon, carbon doped oxides, poly arylene ether (PAE) and organic Spin on materials.
- 23. The method of claim 19 wherein said organic low k dielectric is comprised of a material selected from the group consisting of fluorinated arylether, and poly arylene ether.
- 24. The method of claim 19 wherein said organic low k dielectric is comprised of carbon doped oxide.
- 25. The method of claim 19 wherein said organic low k dielectric is comprised of poly arylene ether (PAE).
- 26. The method of claim 19 wherein said etch forms an first opening through said organic low k dielectric layer; said first opening having sidewalls defined by said organic low k dielectric layer; said sidewalls are substantially vertical at a angle between 87 and 93 degrees to the surface of the substrate.