Evolution of cooperation among individuals with limited payoff memory

ICSD 2022

Nikoleta Glynatsi, Christian Hilbe, Alex McAvoy

How do we model the evolution of cooperation?

$$\rho = \frac{1}{1 + e^{-\beta(\pi_{\rm A} - \pi_{\rm B})}}$$

π_A and π_B ?	

Perfect Memory Payoffs

- \bullet remembers last turn
- + knows opening action

- remembers last turn
- + knows opening action

Updating stage:

- remembers N-1 interactions
- remembers each turn

- remembers last turn
- + knows opening action

• remembers last turn + knows opening action

Updating stage:

- \bullet remembers N-1 1 interactions
- \bullet remembers each last turn

Limited Memory Payoffs

- remembers 1 interactions
- remembers last turn

- remembers 2 interactions
- \bullet remembers last turn

- \bullet remembers 1 interactions
- remembers 2 last turn

- remembers 2 interactions
- remembers two last turn

Nikoleta - v3 http://web.evolbio.mpg.de/social-behaviour/

