Ejercicios de Práctica 2

Profesor: Luis Jesús Trucio Cuevas. Ayudantes: Jesús Angel Cabrera Labastida, Hugo Víctor García Martínez.

- 1) La tarea se entrega de forma presencial durante la clase del 7 de marzo.
- II) Los equipos para realizar la tarea deberan contar con mínimo 4 integrantes y máximo 6.
- III) Se pueden usar resultados vistos en clase, **siempre y cuando** se mencione claramente cuándo y dónde se usan.
- IV) Cada ejercicio tiene un valor de dos puntos para un total de diez. Hay un ejercicio adicional con valor de un punto, éste se calificará únicamente con cero o su valor total.

Conjuntos Abstractos

Los ejercicios de esta sección se deben resolver en la categoría de conjuntos abstractos, \mathscr{S} , a menos que se indique lo contrario.

Ej 1 Muestra que el clasificador de subobjetos Ω es coseparador, es decir, dadas f, g: $A \to B$ si para cualquier $\phi \colon B \to \Omega$ el diagrama

$$A \xrightarrow{f \atop q} B \xrightarrow{\varphi} \Omega$$

conmuta, entonces f = g.

ZFC

Resuelvan los ejercicios de esta sección utilizando únicamente los axiomas de ZFC vistos en clase (aún NO se puede usar el axioma del infinito)

Ej 2 Si R es un orden parcial sobre A, definimos $R' = R \cup \Delta_A$ como el orden parcial reflexivo asociado; por otro lado si R es reflexivo, definimos $R^* = R \setminus \Delta_A$ como su orden estricto asociado.

Demuestra los siguientes puntos:

- I) Si $A \subseteq B$, entonces $(B \setminus A) \cup A = B$.
- II) $A \cap B = \emptyset$, entonces $(B \cup A) \setminus A = B$.
- III) R' es efectivamente un orden parcial reflexivo sobre A.

- IV) R^* es efectivamente un orden estricto sobre A.
- v) $R'^* = R$ cuando R es estricto.
- vi) $R^{*\prime}=R$ cuando R es reflexivo. Esto junto al inciso anterior prueba que los órdenes estrictos y reflexivos están asociados mediante unaa biyección.