This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

and ten amino acid residues, inclusive, said peptide being an analog of one of the following naturally occurring peptides terminating at the carboxy-terminus with a Met residue: (a) litorin; (b) the ten amino acid carboxy-terminal region of mammalian gastrin releasing peptide; and (c) the ten amino acid carboxy-terminal region of the formula:

$$R_1$$
 $A^0-A^1-A^2-Trp-A^4-A^5-A^6-A^7-W$
 R_2

wherein

- A^0 = Gly, Nle, α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal, or is deleted;
- A^1 = the D or L-isomer of any of pGlu, Nle, or α -aminobutyric acid, or the D-isomer of any cf Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), F₅-Phe, Trp, Cys, or β -Nal, or is deleted;
- $A^2 = pGlu$, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO_2 , OH, H or CH_3), Trp, Cys, B-Nal, His, 1-methyl-His, or 3-methyl-His;
- A^4 = Ala, Val, Gln, Asn, Gly, Leu, fle, Nie, α -aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

- $A^5 = Gln$, Asn, Gly, Ala, Leu, Ile, Nle, α -aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃), Trp, Thr, or β -Nal;
- A^6 = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

 A^7 = 1-methyl-His, 3-methyl-His, or His; provided that, if A^0 is present, A^1 cannot be pGlu; further provided that, if A^0 or A^1 is present, A^2 cannot be pGlu; further provided that, when A^0 is deleted and A^1 is pGlu, R_1 must be H and R_2 must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I):
$$\begin{array}{ccc}
Z_1 & O \\
& & \parallel \\
-NH-CH-R_3-C-V
\end{array}$$

wherein R_3 is $CHR_{20}-(CH_2)_{n1}$ (where R_{20} is either of H or OH; and nl is either of 1 or 0), or is deleted, and Z_1 is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH, or CH₃), F_5 -Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or β -nal; and V is either OR_4 , or

where R_4 is any of C_{1-20} alkyl, C_{3-20} alkenyl, C_{3-20} alkinyl, phenyl, naphthyl, or C_{7-10} phenylalkyl, and each R_5 , and R_6 , independently, is any of H, C_{1-12} alkyl, C_{7-10} phenylalkyl, lower acyl, or,

where R_{22} is any of H, C_{1-12} alkyl, C_{7-10} phenylalkyl, or lower acyl; provided that, when one of R_5 or R_6 is -NHR₂₂, the other is H;

(II):

wherein Z_1 is the identifying group of any one of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, β -Nal, Gln, p-X-Phe

(where X = H, F, Cl, Br, NO₂, OH or CH₃), F_5 -Phe, Trp, Cys, Met, Pro, or HyPro; and each Z_2 , Z_3 , and Z_4 , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or (III):

Z₂₀

wherein each Z_{20} and Z_{30} , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of Z_{20} or Z_{30} is other than H, A^7 is His, A^6 is Gly, A^5 is Val, A^4 is Ala, A^2 is His, and either of R_1 or R_2 is other than H, A^1 must be other than deleted; further provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R_1 and R_2 , independently, is H, C_{1-12} alkyl, C_{7-10} phenylalkyl, COE_1 (where E_1 is C_{1-20} alkyl, C_{3-20} alkenyl, C_{3-20} alkinyl, phenyl, naphthyl, or C_{7-10} phenylalkyl), or lower acyl, and R_1 and R_2 are bonded to the N-terminal amino acid of said peptide, and further provided that when one of R_1 or R_2 is COE_1 , the other must be H, or a pharmaceutically acceptable salt thereof.

The therapeutic peptide of claim I wherein $A^0 = Gly$, D-Phe, or is deleted; $A^1 = p-Glu$, D-Phe, D-Ala, D-B-Nal, D-Cpa, or D-Asn; $A^2 = Gln$, His, 1-methyl-His, or 3-methyl-His; $A^4 = Ala;$ $A^5 = Val;$ $A^6 = Sar, Gly, D-Phe, or D-Ala;$ $A^7 = His;$ and, where W is (I) and R_3 is CH_2 or CH_2-CH_2 , Z_1 is the identifying group of Leu or Phe, where W is (I) and R3 is CHOH- CH_2 , Z_1 is the identifying group of Leu, cyclohexyl-Ala, or Phe and each R_5 and R_6 is H; and where W is (I), V is NHR₆, and R_5 is NH_2 ; where W is (II), Z_1 is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH_3); and each Z_2 , Z_3 and Z_4 , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each $\rm Z_{20}$ and $\rm Z_{30}$, is H; and each $\rm R_1$ and $\rm R_2$, independently, is H, lower alkyl, or lower acyl.

- 3. The therapeutic peptide of claim 2 of the formula: D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.
- 4. The therapeutic peptide of claim 2 of the formula: p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide. $\widehat{(q)}$

5. The therapeutic peptide of claim 2 of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His-B-Leu-NH2.

- 6. The peptide of claim $_{\rm I}$ wherein W is (I), V is ${\rm OR}_4$, and ${\rm R}_4$ is any of ${\rm C}_{1-20}$ alkyl, ${\rm C}_{3-20}$ alkenyl, ${\rm C}_{3-20}$ alkinyl, phenyl, naphthyl, or ${\rm C}_{7-10}$ phenylalkyl, and ${\rm A}^6$ is N-methyl-D-Ala or ${\rm A}^1$ is D-F₅-Phe.
- 7. The therapeutic peptide of claim 6 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

8. The therapeutic peptide of claim 2 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His-B-Leu-NH2.