Computer of the second of the

Recap

- Representing real numbers
- Fixed Point
- Floating Point

Plan For Today

- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Disclaimer: Slides for this lecture were borrowed from

- —Nick Troccoli's Stanford CS107 class
- —Randal E. Bryant and David R. O'Hallaron's CMU 15-213 class

Lecture Plan

- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac

- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s	exp	frac	E	Value
Denormalized numbers	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 closest to zero
	0	0000	010	-6	2/8*1/64 = 2/512
	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	7/8*1/64 = 7/512 largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0	0001	001	-6	9/8*1/64 = 9/512
	•••				
	0	0110	110	-1	14/8*1/2 = 14/16
	0	0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	9/8*1 = 9/8 closest to 1 above
	0	0111	010	0	10/8*1 = 10/8
	•••				
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 largest norm
	0	1111	000	n/a	inf

 $v = (-1)^s M 2^E$ n: E = Exp - Biasd: E = 1 - Bias

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Lecture Plan

- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Demo: Float Arithmetic

float_arithmetic.c

Is this just overflowing? It turns out it's more subtle.

```
float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14
```

Let's look at the binary representations for 3.14 and 1e20:

	31	30 2	23 22 0
3.14:	0	1000000	10010001111010111000011
	31	30 2	23 22 0
1e20:	0	11000001	01011010111100011101100

To add real numbers, we must align their binary points:

What does this number look like in 32-bit IEEE format?

Step 1: convert from base 10 to binary

What is 10000000000000000003.14 in binary? Let's find out!

http://web.stanford.edu/class/archive/cs/cs107/cs107.1184/float/convert.html

Step 2: find most significant 1 and take the next 23 digits for the fractional component, rounding if needed.

1 01011010111100011101100

Step 3: find how many places we need to shift **left** to put the number in 1.xxx format. This fills in the exponent component.

66 shifts -> 66 + 127 = 193

Step 4: if the sign is positive, the sign bit is 0. Otherwise, it's 1.

Sign bit is 0.

The binary representation for 1e20 + 3.14 thus equals the following:

This is the **same** as the binary representation for 1e20 that we had before!

We didn't have enough bits to differentiate between 1e20 and 1e20 + 3.14.

Is this just overflowing? It turns out it's more subtle.

```
float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14
```

Floating point arithmetic is not associative. The order of operations matters!

- The first line loses precision when first adding 3.14 and 1e20, as we have seen.
- The second line first evaluates 1e20 1e20 = 0, and then adds 3.14

Demo: Float Equality

float_equality.c

Float arithmetic is an issue with most languages, not just C!

http://geocar.sdf1.org/numbers.html

Let's Get Real

What would be nice to have in a real number representation?

- Represent widest range of numbers possible ✓
- Flexible "floating" decimal point ✓
- Represent scientific notation numbers, e.g. 1.2 x 10^6 \checkmark
- Still be able to compare quickly ✓
- Have more predictable over/under-flow behavior ✓

Lecture Plan

- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - •double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int \rightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int \rightarrow float
 - Will round according to rounding mode

Ariane 5: A Bug and A Crash

- On June 4, 1996, Ariane 5 rocket self destructed just after 37 seconds after liftoff
- Cost: \$500 million
- Cause: An overflow in the conversion from a 64 bit floating point number to a 16 bit signed integer
- A design flaw:
 - 5 times faster than Ariane 4
 - Reused same software specifications from Ariane 4
 - Ariane 4 assumes horizontal velocity would never overflow a 16bit number

© Fourmy/REA/SABA/Corbis

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither **d** nor **f** is NaN

```
False
• x == (int)(float) x
• x == (int)(double) x
                                     True
• f == (float)(double) f
                                     True
• d == (float) d
                                     False
• f == -(-f);
                                     True
• 2/3 == 2/3.0
                                     False
• d < 0.0 \Rightarrow ((d*2) < 0.0)
                                     True (OF?)
• d > f \Rightarrow -f > -d
                                     True
                                     True (OF?)
• d * d >= 0.0
• (d+f)-d == f
                                     False
```

Floats Summary

- IEEE Floating Point is a carefully-thought-out standard. It's complicated, but engineered for their goals.
- Floats have an extremely wide range, but cannot represent every number in that range.
- Some approximation and rounding may occur! This means you definitely don't want to use floats e.g. for currency.
- Associativity does not hold for numbers far apart in the range
- Equality comparison operations are often unwise.

Recap

- Representing real numbers
- Fixed Point
- Floating Point
- Floating Point Arithmetic

Next time: How can a computer represent and manipulate more complex data like text?