tigaR: temporal integrative genomics analysis in R

Integration Meeting 19-06-2015, Delft The Netherlands

Contributors

Statistics

- Viktorian Miok
- Wessel van Wieringen
- Mark van de Wiel

Biology

- Saskia Wilting
- Annelieke Jaspers
- Renske Steenbergen
- Peter Snijders
- Paula van Noort
- Ruud Brakenhoff

Cervical cancer study

- Second most common cancer in women worldwide.
- Caused by HPV virus, in 80% cases HPV16 and HPV18.
- Cell line model in vitro model system of HPV-induced transformation.
- Integration high-throughput multi level molecular data sets.
- Aim: identification of key genes.

Experiment

Model

$$j, j = 1, ..., p$$
 - genes

$$\mathbf{Y}_{*,*,t} = (\mathbf{Y}_{1,*,t},...,\mathbf{Y}_{n,*,t})$$
 - mRNA gene expression

Bayesian GLMM: $Y_{i,j,t} \sim \mathcal{N}(\mu_{i,j,t}, \sigma_{\varepsilon,j}^2)$

Cell line effect Time effect

$$\mu_{i,j,t} = f(i; \boldsymbol{\alpha}_j) + h(t; \boldsymbol{\gamma}_j)$$

 α, γ - Gaussian distribution assumption

Fixed and random effects

Fixed effect:

$$f(i; \boldsymbol{\alpha_j}) = \boldsymbol{\alpha_{i,j}}$$

Random effect:

$$h(t; \boldsymbol{\gamma}_j) = \sum_{k=1}^K \gamma_{j,k} |t - \kappa_k|^3$$

Matrix notation: $Y_{i,j,t} = \alpha_{i,j} + \mathbf{Z}_t \tilde{\gamma}_j + \varepsilon_{i,j,t}$

$$ilde{\mathbf{Z}}_t = \mathbf{Z}_t \mathbf{V}_{\omega} \mathbf{D}_{\omega}^{1/2}$$

Spline basis:

$$\mathbf{Z}_{t} = (|t - \kappa_{1}|^{3}, \dots, |t - \kappa_{K}|^{3})$$

$$ilde{oldsymbol{\gamma}}_j = \mathbf{D}_{\omega}^{-1/2} \mathbf{V}_{\omega}^{\mathrm{T}} oldsymbol{\gamma}_j$$

Spline coefficients:

$$\boldsymbol{\gamma}_j = (\gamma_j, \dots, \gamma_{j,K})^{\mathrm{T}}$$

INLA estimation

- $oldsymbol{ heta}$ model parameters
- hyper-parameters

INLA (Rue et al., 2009) procedure consist in:

- Approximate full posterior of $\pi(\phi|y)$ and $\pi(\theta_l|\phi,y)$ using Laplace approximation.
- Approximate marginal posterior densities of $m{\theta}$ and $m{\phi}$ integrating over hyperparameters of posteriors $\pi(m{\phi}|m{y})$ and $\pi(m{\theta}_l|m{\phi},m{y})$.

Model parameters estimation

- Procedure start with flat prior
- Using data and INLA poster distributions are estimated
- Merge the posterior distribution borrowing of the information

Model parameters estimation

- Merged posterior distribution is used as prior distribution
- New prior distribution is parametrized shrinkage

Model parameters estimation

van de Wiel et al. (2013), Biostatistics.

Shrinkage

- borrowing information across the genes
- better control of false positives
- leads to more stable estimates
- improvement of reproducibility

Comparison of the methods

- > tigaR Miok et al., BMC Bioinformatics, 2014.
- ➤ **EDGE** Storey et al., PNAS., 2005.
- > timecourse Tai and Speed, Annals of Statistics, 2006.
- > BATS Angelini et al., Stat. Appl. Genet. Mol. Biol., 2007.

Comparison set-up

Data

➤ Real data from the experiment

Sensitivity and specificity

- ➤Truth significant genes among methods
- ➤ Calculate true and false positive rate.

Reproducibility

- ➤ Equally divided data set in two groups
- ➤ Methods applied on the groups and calculate number of overlaps

Sensitivity and specificity

Reproducibility

DNA copy number (CN)

$$\mathbf{X}_{*,*,t} = (\mathbf{X}_{1,*,t},...,\mathbf{X}_{n,*,t})$$
 - CN observations

Cell line CN Time Error
$$Y_{i,j,t} = \alpha_{i,j} + \beta_j x_{i,j,t} + \tilde{\mathbf{Z}}_t \tilde{\boldsymbol{\gamma}}_j + \varepsilon_{i,j,t}$$

Gene GSTM3:

CADM1- gene without CN effect

SLC25A36 – gene with CN effect

Wilting et al., Genes, Chromosomes and Cancer, 2008.

Time vs. CN effect

Probelem:

> Flexibility of the splines(time) consumes effect of CN

Potential solution

➤ Orthgonalization of the splines onto CN design matrix

CN parameter

Fit of the model

Spatial multivariate prior for CN

 β_i follow the first-order autoregressive process along the genome:

$$\beta_j = \rho \beta_{j-1} + \varepsilon_j$$

For each triplet trivariate normal prior is assumed:

$$\begin{pmatrix} \beta_{j-1} \\ \beta_{j} \\ \beta_{j+1} \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{j-1}^{2} & \sigma_{j-1}\sigma_{j}\rho & \sigma_{j-1}\sigma_{j+1}\rho^{2} \\ \sigma_{j-1}\sigma_{j}\rho & \sigma_{j}^{2} & \sigma_{j}\sigma_{j+1}\rho \\ \sigma_{j-1}\sigma_{j+1}\rho^{2} & \sigma_{j}\sigma_{j+1}\rho & \sigma_{j+1}^{2} \end{pmatrix}$$

CN parameters

Partial correlation of CN parameter:

Fit of the model

Optimal number of knots for splines

Splines flexibility

Same spline – up/down regulated genes

$$ilde{\mathbf{Z}} = ilde{\mathbf{Z}} \otimes \mathbf{1}_{n imes n}$$

Different spline – allow more flexibility

$$\tilde{\mathbf{Z}} = \tilde{\mathbf{Z}} \otimes \mathbf{I}_{n \times n}$$

Application

Effect	Model	Same spline		Different spline	
		Standard	Orthogonal	Standard	Orthogonal
Time	Splines	417		583	
	CN+Splines	204	203	421	421
CN	CN+Splines	402	403	380	380
	Multivariate	398	399	377	380

Analysis is performed only on 2202 features, which represent one chromosome.

Method identify genes with time and CN effect allowing for:

- > flexibility in modeling of time effect
- ➤ additional stability of CN parameters

RNA-seq data

- Changing link function method can deal with count data.
- Two group time-course RNA-seq data.

Summary

- Improved identification of temporal differential gene expression (TDGE) using penalized splines and empirical Bayes shrinkage.
- Identification of TDGE induced by CN.
- Identification of TDGE in count RNA-seq data.
- Improvement of CN estimates, with orhogonalization and imposing spatial multivariate prior.
- Identification of significant up or down regulated genes.
- As a proof of principle biologically relevant genes SLC25A36 and CADM1 are identified.

Thank you for your attention!