Mining Closed patterns & From Association Analysis to correlation Analysis

Mining closed Patterns

- An itemset X is closed in dataset D if there exists no proper super-itemset Y such that Y has the same support count as X in D.
- Closed frequent itemsets can reduce the number of patterns generated in frequent itemsets mining but preserves the information regarding set of frequent itemsets.
- From the closed frequent itemsets we can derive the frequent itemsets and their support.
- Search for closed frequent itemsets directly during mining process which prune the search space.
- Different pruning strategies: Item Merging, sub-item
 pruning and item skipping

Mining closed Patterns

• Itemset merging: if every transaction containing frequent itemset x also contains an itemset Y but not any proper superset of Y, then Y is merged with X forms frequent closed itemset and there is no need to search for any itemset containing X but no Y.

The projected conditional database for prefix item {15:2} is {{12,11},{12,11,13}}, each of its transaction dataset contain itemset{11,12} and merged with {15} to form closed itemset {15,11,12:2} but we do not need to mine for closed itemsets that contain {15} but not{12,11}

Mining closed Patterns

- Sub-itemset pruning: if Y > X, and sup(X) = sup(Y), X and all of X's descendants in the set enumeration tree cannot be frequent closed itemsets and thus can be pruned
- Eg: {<a1, a2... a100>, <a1, a2, a50>} min_supp=2
- Supp {a2} = supp {a1, a2... a50} = 2 since a2 is the proper subset of {a1, a2...a50} then a2 and its projected db cannot be examined
- Item skipping: In depth first mining, if a local frequent item has the same support in several header tables at different levels, one can prune it from the header table at higher levels.
- Eg: Because a2 has the same support in al's projected and in the global header table a2 can be pruned from header

Which Patterns Are Interesting?—Pattern Evaluation Methods

- Pattern-mining will generate a large set of patterns/rules
 - Not all the generated patterns/rules are interesting
- Interestingness measures: Objective vs. subjective
 - Objective interestingness measures (statistics "behind" data)
 - Support, confidence, correlation,.....
 - Subjective interestingness measures: One man's trash could be another man's treasure
 - Query-based: Relevant to a user's particular request
 - Against one's knowledge-base: unexpected, freshness, timeliness
 - Visualization tools: Multi-dimensional, interactive examination

Limitation of the Support-Confidence Framework

- Are s and c interesting in association rules: "A => B" [s careful!
- Example: Suppose one school may have the following statistics on # of students who may play basketball and/or eat cereal:

	play-basketball	not play-basketball	sum (row)
eat-cereal	400	350	750
not eat-cereal	200	50	250
sum(col.)	600	400	1000

- Association rule mining may generate the following:
 - -play-basketball => eat-cereal [40%, 66.7%] (higher s & c)
- But this strong association rule is misleading: The overall % of students eating cereal is 75% is more larger than 66.7%
- play basketball => not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence

Which Patterns Are Interesting?—Pattern Evaluation Methods

- Play basket ball and eating cereal are negatively associated the occurrence of one item actually decreases the likehood of other items.
- Without understanding there is possibility of making unwise decisions.
- The confidence rule A=>B can be deceiving, it does not measure the real strength of the correlation.
- Support -confidence measures are insufficient at filtering uninteresting rules.
- Leads to correlation rules
 - A=>B(s,c,corr)
- Lift is simple correlation measure, the occurrence of an itemset A is
 independent of occurrence of B if P(AUB)=P(A) P(B)

Interestingness Measure: Lift

Measure of dependent/correlated events: lift

$$lift(B,C) = \frac{c(B \to C)}{s(C)} = \frac{P(B \cup C)}{P(B) \times P(C)}$$

Lift is more telling than s & c

¬В

350

50

400

В

400

200

600

 C

 $\neg C$

 $\Sigma_{\text{col.}}$

 \sum_{row}

750

250

1000

- ☐ Lift(B, C) may tell how B and C are correlated
 - □ Lift(B, C) = 1: B and C are independent
 - □ > 1: positively correlated
 - < 1: negatively correlated</p>
- ☐ For our example,

1;f+(D C)—	$\frac{400/1000}{600/1000 \times 750/1000}$	-0.80
<i>tift</i> (B , C) –	600/1000×750/1000	-0.89
1;f+(P ¬C)-	$\frac{200/1000 \times 750/1000}{600/1000 \times 250/1000}$	-1 33
<i>iiji</i> (B , 'C)—	600/1000×250/1000	-1.33

- □ Thus, B and C are negatively correlated since lift(B, C)
 - B and ¬C are positively correlated since lift(B, ¬C) ▼1

Interestingness Measure: χ^2

Another measure to test correlated

events:
$$\chi^2$$

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- □ General rules

 - \mathbf{Q} $\mathbf{\chi}^2$ > 0: correlated, either positive or negative, so it needs additional test

$$\chi^{2} = \frac{(400 - 450)^{2}}{450} + \frac{(350 - 300)^{2}}{300} + \frac{(200 - 150)^{2}}{150} + \frac{(50 - 100)^{2}}{100} = 55.56$$

 $\ \ \ \ \ \chi^2$ shows B and C are negatively correlated since the expected value is 450 is less than the observed value 400

		В	¬В	Σ_{row}
С	# 00	(250)	350 (300)	750
¬C	200	(150)	50 (100)	250
Σ_{col}	6	500	400	1000

Expected value

Observed value

Lift and χ^2 : Are They Always Good Measures?

- Null transactions: Transactions that contain neither B nor C
- Let's examine the dataset D
- BC (100) is much rarer than $B\neg C$ (1000) and $\neg BC$ (1000), but there are many $\neg B\neg C$ (100000)
- Unlikely B & C will happen together!
 But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)
- χ² = 670: Observed(BC) >> expected
 value (11.85) Too many null
 transactions may "spoil the soup"!

	В	¬B	Σ_{row}
С	100	1000	1100
¬C	1000	10000 0	101000
$\Sigma_{\text{col.}}$	1100	null	
<u> transaction</u>			sactions

Contingency table with expected values added

	. В	םר	≥ _{row}
С	100 (11.85)	1000	1100
¬C	1000 (988.15)	10000	10100 0
$\Sigma_{\text{col.}}$	1100	10100 0	10210 0

Interestingness Measures & Null-Invariance

Null invariance: Value does not change with the # of

null-transactions

Measure	Definition	Range	Null-Invariant	
$\chi^2(A,B)$	$\sum_{i,j=0,1} \frac{(e(a_i b_j) - o(a_i b_j))^2}{e(a_i b_j)}$	$[0,\infty]$	No	
Lift(A,B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0,\infty]$	No	V
AllConf(A, B)	$\frac{s(A \cup B)}{max\{s(A), s(B)\}}$	[0, 1]	Yes	
Jaccard(A, B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes	ľ
Cosine(A,B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0,1]	Yes	
Kulczynski(A,B)	$\frac{1}{2} \left(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$	[0, 1]	Yes	\ <mark>[</mark>
MaxConf(A, B)	$max\{\frac{s(A)}{s(A \cup B)}, \frac{s(B)}{s(A \cup B)}\}$	[0, 1]	Yes	

X² and lift are not nullinvariant

Jaccard,
consine,
AllConf,
MaxConf,
and
Kulczynski
are null-

Imbalance Ratio with Kulczynski Measure

• IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications:

$$IR(A,B) = \frac{|s(A)-s(B)|}{s(A)+s(B)-s(A\cup B)}$$

- Null value cases are predominant in many large datasets
- Lift, χ^2 and cosine are good measures if null transactions are not predominant
- Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern

