Perturbation-MMKPNN

Perturbation-MMKPNN: Interpretable Modeling of Single-Cell Perturbation Responses

Sally Yepes (2025)

1. Problem

Single-cell perturbation datasets are revolutionizing biology by revealing how cells respond to drugs and genetic interventions. However, current models such as scGen and CPA treat this task as black-box prediction, leaving fundamental questions unanswered: Which pathways are rewired by perturbations? Which subnetworks consistently mediate resistance across cell types? Explanations are often unstable across seeds or datasets, limiting biological trust and translational use.

2. Innovation

Perturbation-MMKPNN introduces **concept bottlenecks** into perturbation modeling. Expression features and perturbation metadata are forced to propagate through biologically curated modules — pathways, transcription factors, regulatory subnetworks — derived from Reactome, DoRothEA, and MSigDB. Predictions are therefore mediated by interpretable latent variables, transforming the model into a transparent mapping: $perturbation \rightarrow regulatory\ program \rightarrow transcriptional\ outcome$. This design stabilizes interpretability and grounds predictions in biological priors.

3. Validation

The framework will be validated across multiple datasets — scPerturb, Perturb-seq, L1000, DrugComb — to ensure robustness. Benchmarking against scGen, CPA, and linear baselines will test predictive accuracy and generalization. Novel metrics will include attribution stability (repeatability of bottleneck activations across runs) and cross-dataset transfer (train on one perturbation set, test on another). Biological case studies will identify conserved regulators of resistance, supported by counterfactual experiments silencing bottleneck nodes to simulate pathway inhibition.

4. Contribution

Perturbation-MMKPNN moves perturbation modeling beyond prediction to **mechanistic discovery**. By systematizing interpretability, reproducibility, and robustness, it provides a framework that can be adopted as a **benchmark standard** for single-cell perturbation analysis. Scientifically, it enables identification of pathways mediating drug resistance and

thetic lethality. Methodologically, it demonstrates how concept-bottleneck models can bilize explanations, setting a precedent for causal, reproducible AI in biology.	