現態

1. 位置
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
 $x = \begin{bmatrix} x_1 \\ x_2$

COV[X] = [V(X) LOV (X,, X2) COV (X,, Xp)]	4 11 1 12 1 2 1
Cov(Xpy,Xx) ORV(Xpv)	- [=X]
+ i, j & [1, N] ((x: Y) =)	11位第二年度
$Cov[x] = \begin{bmatrix} V(x_1) & 0 & \cdots & 0 \\ 0 & \cdots & V(x_n) \end{bmatrix} = P[6] 0 - \cdots$	7=P
Li vixp	-1.6N
部海机变量不互相独立时, 在打定理!	TIX) - V
一方母在的有机向量マペル(スス)、其中元GR 力は	均值有量,至日子十半正
正头对称矩阵为文的村建拓阵 则在九岁年经红	本BER ^{nxn} ,1建得
= D(X-N), 而 え~N(で1)	
1 (1) , Xn)= (271) = 1BBT/= C = 11 PM CAPT	(200)
$P=Z=EL(X-\pi)(X-\pi)^T=cov(X)=BB^T$	
$B^{\dagger}X - B^{\dagger}\vec{\mu} = \Sigma = Y$	[[[]]
$A = B^{-1}$, $b = -B^{-1}\vec{\mu} = -B^{-1}m$	二十一种地方
	AND INA
B = FOIR + 50 - MITOO 10]	1 He X 0- 11.51X
. x~ N(m,62) DIJ f(x)= 1 e - (x-m)2 DIJ El	- X (11) /
E(X) = Var(x) + E(x) = 62 + 42 m2	$[x] = m^{(1)}$
$E[X^3] = \int_{-\infty}^{\infty} \chi^3 \int_{-\infty}^{\infty} e^{-\frac{(\chi - m)^2}{26^2}} dx \qquad \chi^3 \int_{-\infty}^{\infty} \frac{1}{26^2} dx$	
The second	N. F.
E[(x-u)3] = E[x3] - 3ME[x3] + 3M2 E[x] - M3	µ=M
$E[(x-\mu)^3] = -6^2(x-m)^2e^{-\frac{(x-m)}{26^2}} + 26^2\int_{-\infty}^{\infty} (x-m)^2$	$e^{\frac{(x-m)^2}{26}}dx$
= 0	

(, E[x3]=03HE[x]-3HE[x]+1, = m3+3m62 # p 1=mi
[[X"]- m D[X"] + [[X"]"
光成四阶原之美色
$E[(x-m)^4] = \int_{-\infty}^{+\infty} t^9 \int_{-\infty}^{+\infty} e^{-x^2} dt$
根据分类积为公式 = 36° 500 t°exp(-====)dt
= 362 E[(x-m)2] 11 (1) 2 0 1) (2)
· 如何于你有美国的 (2010) 美国在在98 € 美存在 19 10年
E[(x-m)*] = E[x4] - 4m E[x3] + 6m2 E[x2] - 4m3 E[x] + m4
E[X ⁴]= 36 ⁴ + μm(m ³ +3m6 ²) - 6m ² (8 ² +m ²) + μm ⁴ - m ⁴
$=36^{4}+m^{4}+6m^{2}6^{2}$
凡分别求得两个多量边缘分布的概率密度
P(x) = (6 (x x) dy = 6x2+6x+2.
$P_{Y}(y) = \int_{0}^{1} P_{X,Y}(x,y) dx = \frac{by^{2} + by + 2}{2}$
$E(x) = E(Y) = \frac{9}{14}$
期20 × 12 27
$D(x) = D(Y) = E(x^2) - E(x)^2 = \frac{199}{2980}$
(m(V,Y) = F(V,Y) - F(X)E(Y)
$= \frac{3}{10} + \frac{1}{10} - \frac{9}{10} \times \frac{1}{10} = \frac{1}{10} \left(\frac{1}{10} \times \frac{1}{10} + \frac{1}{10} \right)^2 dxdy$
- TY - 1 - 14/14
- 588 - 199 - 507
因此 协为差矩阵为 [199 - 588] - 588]
2440
5、引理,当相两个变量相互独立时协方差。经济并为对角矩阵
5. 引程, 当相两个要量相互独立即 协方差缺少 为对自然中

 $Gov(x, y) = E[\alpha - E(x))(y - E(y))] = E[x - E(x)] E[y - E(y)]$ = DXD 联合高期分布 x~N(0,5), y/x~N(x,C) f(y)= /x f(y/x) f(x)dx Py y~ NCO, 64c7 敌火, e 别属于服从期望为0的高斯分布 e的协为差矩阵 con(e.e.) 严格正定 放存在逆矩阵 (ov W-Be, e) = (ov We) - B (ov (e, e) is B = (ov(v, e)[(ov(e, e)] 唯一存在月

11