ESERCIZI SUI NUMERI COMPLESSI

Prima di svolgere gli esercizi, leggere attentamente le slides pubblicate su elearning.

(1) Trovare la parte reale e la parte immaginaria dei seguenti numeri complessi, determinandone anche la posizione come punto sul piano di Argand-Gauss.

$$z = 3$$
, $z = -3$, $z = i - \sqrt{3}$, $z = -i\pi/2$.

(2) Svolgere le operazioni sottoindicate trovando la parte reale e la parte immaginaria del risultato ottenuto:

$$(1-2i) + (\sqrt{2}-i);$$
 $(1-2i) + (\sqrt{2}-i);$ $(1+2i) \cdot (1-2i);$ $(1-2i)^3$

$$(1+i)^3;$$
 $\frac{3-2i}{-1+i};$ $3\left(\frac{1+i}{1-i}\right)^2 - 2\left(\frac{1-i}{1+i}\right)^3.$

(3) Determinare le seguenti potenze dell'unità immaginaria (trovandone la parte reale e la parte immaginaria):

$$i^{12}$$
, i^{17} , i^{-15}

(4) Se z=a+ib, il numero complesso $\overline{z}=a-ib$ si dice il coniugato di \underline{z} . Dati due numeri complessi z,z' dimostrare che $\overline{z+z'}=\overline{z}+\overline{z}'$, $\overline{z}\cdot\overline{z}'=\overline{z}\cdot\overline{z}'$ (in particolare, vale $(\overline{z})^n=\overline{z^n}$). Quali sono i numeri complessi tali che $z=\overline{z}$?

- (5) Determinare la parte reale e la parte immaginaria del coniugato del numero $(1-i)^3$.
- (6) Verificare che il numero complesso z=-1+2i e il suo coniugato \bar{z} soddisfano l'equazione $z^3+z^2+3z-5=0$. Più in generale, usando l'esercizio (4) mostrare che se un numero z è soluzione di un'equazione

$$a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0 = 0,$$

dove i coefficienti a_i sono reali, allora anche \overline{z} è soluzione del polinomio.

(7) Se z è un numero complesso, indichiamo con |z| il suo modulo (ovvero, la lunghezza del vettore che rappresenta z sul piano di Argand-Gauss). Sia E la relazione d'equivalenza definita sui numeri complessi da

$$z E z' \Leftrightarrow |z| = |z'|.$$

Determinare la classe del numero i ed un insieme di rappresentanti per le classi d'equivalenza di E su \mathbb{C} .

- (8) Sia $z=1/2+i\sqrt{3}/2$. Calcolare la forma trigonometrica di z e di z^3 . Risolvere lo stesso esercizio per i numeri: $1/2-i\sqrt{3}/2$, $\sqrt{3}/2+i/2$ e $3/\sqrt{2}-i3/\sqrt{2}$.
- (9) Determinare la parte reale e la parte immaginaria del numero complesso z che ha modulo 2 e argomento $\frac{5\pi}{6}$. Svolgere lo stesso esercizio se il modulo è $\sqrt{2}$ e l'argomento è 75° .
- (10) Trovare la parte reale, la parte immaginaria, il modulo e l'argomento principale dei seguenti numeri complessi:

$$z = 3$$
, $z = -3$, $z = i - \sqrt{3}$, $z = -i\pi/2$.

(11) Sia z il numero complesso 1+i. Il numero complesso z^3 è:

il doppio di
$$i-1;$$

$$2\sqrt{2}(\cos(\frac{\pi}{4}) + i sen(\frac{\pi}{4}));$$

$$V \mid \mathbf{F}$$

$$2(\cos(90^{\circ}) + i sen(90^{\circ}))$$

$$V \mid \mathbf{F}$$

- (12) Sia $z = \rho(\cos(\theta) + i \sin(\theta))$ un numero complesso non nullo, scritto in forma trigonometrica. Trovare la forma trigonometrica del coniugato di z e quella dell'inverso di z.
- (13) Trovare un numero complesso z_0 tale che per qualsiasi numero complesso z il numero z_0z sia ottenuto ruotando il vettore z intorno all'origine in senso antiorario di 45 gradi. Svolgere lo stesso esercizio per la rotazione oraria di $\frac{\pi}{2}$ radianti.
- (14) Siano $z=\rho(\cos(\theta)+isen(\theta))$ e $z'=\rho'(\cos(\theta')+isen(\theta'))$ due numeri complessi in forma trigonometrica. L'argomento di

$$\frac{z^2}{2z'}$$

è:

$$\begin{array}{c|c} 2\theta - \theta'; & \hline \mathbf{V} \ \mathbf{F} \\ \frac{\theta^2}{2\theta'}; & \hline \mathbf{V} \ \mathbf{F} \\ \theta - \theta' & \hline \mathbf{V} \ \mathbf{F} \end{array}$$

- (15) Sia $z = 1/2 + i\sqrt{3}/2$. Determinare il numero $z^{39} z^{36}$.
- (16) Trovare tutte le soluzioni delle seguenti equazioni, verificando la correttezza del risultato.

$$z^4 = -1$$
, $z^3 = 1+i$, $z^3 = -1+i$ $z^7 = 1$, $z^5 = -1/2+i\sqrt{3}/2$.

(17) Sia ρ la relazione d'equivalenza definita sui numeri complessi non nulli da

$$z\rho z' \quad \Leftrightarrow \quad Arg(z) = Arg(z')$$

Determinare la classe del numero i ed un insieme di rappresentanti per le classi d'equivalenza di ρ su $\mathbb C.$

(18) Sia $z=2/\sqrt{2}-i2/\sqrt{2}.$ Calcolare la forma trigonometrica di z, di z^{10} e di $z^{-2}.$