

Gender Disparity in

2022 Aggie Hacks x Google Cloud Hackathon Q

Our team member

Ran Zhang

Data Modeling

Google Colab, R

Yi Huang

Data Visualization

Google Studio

Data Modeling

GCP Bigquery, R

Andrew Chao

Data Visualization

Google Studio

Table of contents

O1 Problem
Gender gap exists in tech industry

Model Support
Mediation Regression

Gender gap in race, industry, occupations and benefits

O4 Recommendations
Improve gender equality in tech

"Employers cannot discriminate against employees based on gender or reproductive choices."

——Ruth Bader Ginsburg

Problem: Women earn less than men in tech industry

Salary across industry

Woman Salary as percentage of Man salary

- Different industries
- Although women in tech industry have the <u>highest</u> median salary vs. other industries, there is still a <u>~\$13k</u> gap between gender
- Woman in tech industry have earnings <u>84.5%</u> of man's earnings, showing salary disparity

Bar chart built in Google Data Studio Source: 2019 United States Census Bureau

Women earn less in the same position

Average Compensation Comparison

In the same tech position, women's average compensation is lower than male.

Women has less access to career benefit

The female population is extremely lower than male population

Overall, in the tech industry, the female population is significant less than male group. As the age increased, the gender gap become bigger.

Gender disparity is obvious in the White and Asian group

In tech industry, female population in White and Asian group is less than male population

Source: 2013-2019 National Center for Science and Engineering Statistics

Gender Disparity Exists!

Population, Benefits, Wages,...

How can we solve it? Education?

Mediation Regression: Can education improve women wage?

Does our research goal make sense?

Regress Wage ~ Gender Fea 1980 - 2010, 2017 - 2019 x Female, Male Gender Fea explains Wage

Mediation Regression: Can education improve women wage?

Mediation Regression: Can education improve women wage?

Education for women becomes effective in recent years

Bootstrap

1980 - 2010

- → More years in education <u>cannot</u> benefit <u>female</u> wages significantly
- → More years in education can benefit male wages significantly

2017 - 2019

- → More years in education <u>significant benefit</u> <u>female wages</u>
- → Education effect works <u>indifferently</u> for man and women

Source: 1980-2010, 2017-2019 The Panel Study of Income Dynamics (PSID) Family-level

Recommendations

Self Effort

 Females should be more self-motivated to get tech domain knowledge by <u>obtaining a higher education degree</u>, <u>getting</u> <u>certificates</u>, and <u>attending industry conferences</u>

Industry Effort

• build up a women friendly culture

Society Effort

The government should invest more on improving gender equality in all race and age groups.

Q&A

Thank You

Limitations & Next step

1 LIMITATIONS

- For EDA part, adding more demographic dimensions may give us new findings
- In our regression modeling dataset, we assume individuals graduating from stem-major work in the tech industry, which may bring bias into our model

2 NEXT STEP

- Explore more EDA insights
- Given more time and data, we can also study how alternative social factors (race, age, location, etc.) would affect gender disparity in tech industries, by applying regression and machine learning models

Datasets

- 1. 2019 Kaggle Machine Learning & Data Science Survey https://www.kaggle.com/c/kaggle-survey-2019/data?select=multiple_choice_responses.csv
- 2. 2013-2019 National Center for Science and Engineering Statistics https://ncsesdata.nsf.gov/builder/nscg
- 3. 2019 United States Census Bureau https://www.census.gov/data/tables/time-series/demo/industry-occupation/median-earnings.html
- 4. Salary for public sector staffs in SF, 2011- 2018 https://www.kaggle.com/fedesoriano/gender-pay-gap-dataset
- 5. 2017-2019 The Panel Study of Income Dynamics (PSID) Family-level https://simba.isr.umich.edu/data/data.aspx

```
Call:
                                                                             Call:
                                                                             lm(formula = WAGES \sim ... data = df_3)
lm(formula = WAGES \sim ... data = df_1)
                                                                             Residuals:
Residuals:
                                                                                  Min
                                                                                           10
                                                                                               Median
                                                                                                            30
                                                                                                                    Max
     Min
                                 30
               10
                   Median
                                         Max
                                                                             -16.2253 -0.7692
                                                                                              -0.0275
                                                                                                        0.7824
                                                                                                                 9.9846
-11.6605 -0.2348
                   0.1588
                            0.5808
                                      3.7381
                                                                             Coefficients:
Coefficients:
                                                                                              Estimate Std. Error t value Pr(>|t|)
                  Estimate Std. Error t value Pr(>|t|)
                                                                                              2.328242
                                                                                                        0.145085 16.047 < 2e-16 ***
                                                                             (Intercept)
(Intercept)
                  7.160498
                             0.734320
                                        9.751 < 2e-16 ***
                                                                             AGE
                                                                                             -0.036052
                                                                                                        0.001175 -30.690 < 2e-16 ***
AGE
                 -0.008812
                             0.005036 -1.750
                                                0.0805 .
                                                                             YRS.PRES.EMP
                                                                                              0.060099
                                                                                                        0.002060 29.182 < 2e-16 ***
YRS.PRES.EMP
                  0.033051
                             0.006751
                                        4.896 1.17e-06 ***
                                                                             WTR.GRADUATED
                                                                                             -0.103498
                                                                                                        0.027208 -3.804 0.000143 ***
                 -0.152699
                             0.176247 -0.866
                                                0.3865
WTR.GRADUATED
                                                                                                        0.000988 166.485 < 2e-16 ***
                                                                             WORK.WEEKS
                                                                                              0.164487
WORK.WEEKS
                  0.085145
                             0.006594 12.912 < 2e-16 ***
                                                                                                        0.006924 13.105 < 2e-16 ***
                                                                             COMPLETED. ED
                                                                                              0.090740
COMPLETED.ED
                  0.022544
                             0.034319
                                        0.657
                                                0.5114
                                                                             SEX_2
                                                                                             -0.068868
                                                                                                        0.036233 -1.901 0.057356 .
SEX_2
                 -0.324637
                             0.173571 -1.870
                                                0.0618 .
                                                                             RACE_2
                                                                                             -0.092317
                                                                                                        0.051505 -1.792 0.073089 .
RACE_2
                 -0.439217
                             0.213781 -2.055
                                                0.0402 *
                                                                             RACE_3
                                                                                             -0.033317
                                                                                                        0.201443 -0.165 0.868639
RACE_3
                 -0.468961
                             0.786772 -0.596
                                                0.5513
                                                                                                        0.134831 -0.748 0.454504
                                                                             RACE_4
                                                                                             -0.100846
RACE_4
                 0.056037
                             0.205164
                                        0.273
                                                0.7848
                                                                             RACE 5
                                                                                              0.265567
                                                                                                        0.462624
                                                                                                                   0.574 0.565944
                                                                                                        0.089404
RACE 5
                 0.819268
                                                0.4619
                                                                             RACE 7
                                                                                              0.185191
                                                                                                                   2.071 0.038338 *
                             1.113097
                                        0.736
                                                                                                        0.057514 -3.393 0.000694 ***
RACE_7
                 -0.861712
                             0.427955 -2.014
                                                0.0444 *
                                                                             CURRENT.REGION 2 -0.195130
                                                                             CURRENT.REGION_3 -0.128762
                                                                                                        0.054106 -2.380 0.017333 *
CURRENT.REGION_2 -0.291249
                            0.177581 -1.640
                                                0.1013
                                                                                                        0.060824 -1.095 0.273608
CURRENT.REGION_3 -0.097483
                            0.166994 -0.584
                                                0.5595
                                                                             CURRENT.REGION_4 -0.066592
                                                                                                        0.355919 -1.834 0.066743 .
                                                                             CURRENT.REGION_5 -0.652585
CURRENT.REGION_4 -0.214227
                            0.177315
                                      -1.208
                                                0.2273
                                                                             CURRENT.REGION_6 -0.935387
                                                                                                        0.227049 -4.120 3.81e-05 ***
                           1.122990
                                                0.9582
CURRENT.REGION_5 -0.058822
                                       -0.052
                                                                             YEAR_2019
                                                                                              0.018504
                                                                                                        0.040960
                                                                                                                   0.452 0.651453
                                       -4.201 2.93e-05 ***
CURRENT.REGION_6 -2.338277
                             0.556582
                                                                             isstem
                                                                                              0.806376
                                                                                                        0.081924
                                                                                                                   9.843 < 2e-16 ***
                 -0.002080
                             0.114036
                                                0.9855
YEAR 2019
                                       -0.018
                                                                             stem female
                                                                                                        0.201109 -1.536 0.124553
                                                                                             -0.308907
year_female
                  0.181155
                            0.294027
                                        0.616
                                                0.5380
                                                                             year_female
                                                                                              0.080308
                                                                                                        0.067124 1.196 0.231555
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                             Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 1.564 on 873 degrees of freedom
                                                                             Residual standard error: 2.116 on 16991 degrees of freedom
Multiple R-squared: 0.231,
                               Adjusted R-squared: 0.2151
                                                                            Multiple R-squared: 0.7861. Adjusted R-squared: 0.7859
F-statistic: 14.57 on 18 and 873 DF. p-value: < 2.2e-16
                                                                             F-statistic: 3123 on 20 and 16991 DF, p-value: < 2.2e-16
```

```
> pension <- prop.test(x=c(25841, 34115), n=c(34429, 43688))
> pension
        2-sample test for equality of proportions with continuity correction
data: c(25841, 34115) out of c(34429, 43688)
X-squared = 99.025, df = 1, p-value < 2.2e-16
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.03633945 -0.02429840
sample estimates:
   prop 1 prop 2
0.7505591 0.7808780
> insurance <- prop.test(x=c(28445, 38314), n=c(34429, 43688))
> insurance
        2-sample test for equality of proportions with continuity correction
data: c(28445, 38314) out of c(34429, 43688)
X-squared = 399.46, df = 1, p-value < 2.2e-16
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.05587484 -0.04572187
sample estimates:
   prop 1 prop 2
0.8261930 0.8769914
```

Mediation Regression, 1980-2010

Code ▼

Hide

Data Processing

```
old <- read.csv("psid_old_stem.csv")
psid_old <- subset(old, select = c(sex, famwgt, age, sch, white, south, LEHS, black, hisp, othrace, west, northeast, northce
ntral, annhrs, realhrwage))
psid_old <- psid_old %>% mutate(annincome = realhrwage * annhrs) # calculate annual salary/wage
psid_old <- subset(psid_old, select = -c(realhrwage, annhrs, othrace))
psid_old$sex <- 1 - psid_old$sex</pre>
```

Are X variables influencing wage?

Yes, sex(1 = Male), lower level of education(LEHS) reduces salary, while as age grows, the salary increases. These are highly significant, whereas Black people receiving less salary.

```
model.0.old.m <- lm(annincome~ . - sch, data = psid_old_male)
summary(model.0.old.m)

Call:
lm(formula = annincome ~ . - sch, data = psid_old_male)

posiduals:</pre>
```

Linear Regression: wage discrimination in tech industry

Race, Working experience Current region, Age, Annual working hours, Year, Gender x Year

For Tech Occupations:

$$ln(Wages) = 7.16 - 0.32 * Is_Female + \beta * X$$

Wage Discrimination exists!