Lecture 10 – Real-time Scheduling CSE 456: Embedded Systems

Real-Time Scheduling of Mixed Task Sets

Problem of Mixed Task Sets

In many applications, there are aperiodic as well as periodic tasks.

- □ *Periodic tasks: time-driven*, execute critical control activities with hard timing constraints aimed at guaranteeing regular activation rates.
- ☐ *Aperiodic tasks: event-driven*, may have hard, soft, non-real-time requirements depending on the specific application.

Background Scheduling

Background scheduling is a simple solution for RM and EDF:

- ☐ Processing of aperiodic tasks in the background, i.e. execute if there are no pending periodic requests.
- ☐ Periodic tasks are not affected.
- Response of aperiodic tasks may be prohibitively long and there is no possibility to assign a higher priority to them.
- ☐ Example:

Background Scheduling

Example (rate monotonic periodic schedule):

Rate-Monotonic Polling Server

<i>Idea:</i> Introduce an artificial periodic task whose purpose is to service aperiodic requests as soon as possible (therefore, "server").
Function of <i>polling server (PS)</i>
\square At regular intervals equal to T_s , a PS task is instantiated. When it has the highest current priority, it serves any pending aperiodic requests within the limit of its capacity C_s .
If no aperiodic requests are pending, PS suspends itself until the beginning of the next period and the time originally allocated for aperiodic service is not preserved for aperiodic execution.
$\ \square$ Its priority (period!) can be chosen to match the response time requirement for the aperiodic tasks.
Disadvantage: If an aperiodic requests arrives just after the server has suspended, it must wait until the beginning of the next polling period.

Rate-Monotonic Polling Server

Rate-Monotonic Polling Server

Schedulability analysis of periodic tasks:

- The interference by a server task is the same as the one introduced by an equivalent periodic task in rate-monotonic fixed-priority scheduling.
- A set of periodic tasks and a server task can be executed within their deadlines if

$$\frac{C_s}{T_s} + \sum_{i=1}^{n} \frac{C_i}{T_i} \le (n+1) \left(2^{1/(n+1)} - 1 \right)$$

Again, this test is sufficient but not necessary.

	Periodic with D = T	Periodic with D < T	Mixed Tasks
Static Priority	RM	DM	Polling Server
Dynamic Priority	EDF	EDF	Total Bandwidth Server

RM – Schedulability Test

Sufficient (but not necessary)

$$\sum_{i=1}^{n} \frac{C_i}{T_i} \le n(2^{\frac{1}{n}} - 1)$$

	Periodic with D = T	Periodic with D < T	Mixed Tasks
Static Priority	RM	DM	Polling Server
Dynamic Priority	EDF	EDF	Total Bandwidth Server

DM – Schedulability Test

Sufficient (but not necessary)

$$\sum_{i=1}^{n} \frac{C_i}{D_i} \le n(2^{\frac{1}{n}} - 1)$$

RM & DM – Schedulability Test

Longest Response Time R_i (computed iteratively)

$$\sum_{i=1}^{R_i} \left[\frac{\sum_{i=1}^{R_i}}{T_i} \right] C_j + C_i$$

	Periodic with D = T	Periodic with D < T	Mixed Tasks
Static Priority	RM	DM	Polling Server
Dynamic Priority	EDF	EDF	Total Bandwidth Server

EDF – Schedulability Tests

$$\begin{array}{c|c} \mathbf{D_i} = \mathbf{T_i} & \mathbf{D_i} < \mathbf{T_i} \\ \hline \text{Necessary & Sufficient (but not necessary)} \\ \hline \\ \sum_{i=1}^n \frac{C_i}{T_i} \leq 1 & \sum_{i=1}^n \frac{C_i}{D_i} \leq 1 \\ \hline \end{array}$$

Utilization: $U = \sum_{i=1}^{n} \frac{C_i}{T_i}$

	Periodic with D = T	Periodic with D < T	Mixed Tasks
Static Priority	RM	DM	Polling Server
Dynamic Priority	EDF	EDF	Total Bandwidth Server

RM – Polling Server

 Idea: Introduce an artificial periodic task (C_s, T_s) which serves the aperiodic requests

Schedulability test for mixed task set:

$$\frac{C_s}{T_s} + \sum_{i=1}^n \frac{C_i}{T_i} \le (n+1)(2^{\frac{1}{n+1}} - 1)$$

Sufficient (but not necessary)

Aperiodic guarantee:

$$(1 + \left\lceil \frac{C_a}{C_s} \right\rceil) T_s \le D_a$$

Assumption: aperiodic task finishes before new aperiodic request arrives

Sufficient (but not necessary)