Lecture 11 Maximum Flow Problem

The Ford-Fulkerson method

Maximum flow

- Liquids flow through pipes
- Current through electrical networks
- Information through communication networks

•

Flow Networks

- A flow network G=(V,E) is a directed graph, where each edge $(u,v) \in E$ has a nonnegative capacity $c(u,v) \ge 0$.
- If $(u,v) \notin E$, we assume that c(u,v)=0.
- Requirement: if $(u,v) \in E$, then $(v,u) \notin E$
- two distinct vertices : source s and sink t.

Flow

- Given a flow network G=(V,E) with capacity function c. Let s be the source and t the sink.
- A flow in G is a real-valued function $f: V \times V \rightarrow \mathbb{R}$ satisfying the following three properties:

Capacity constraint: For all $u,v \in V$, $0 \le f(u,v) \le c(u,v)$.

If
$$(u,v) \notin E$$
, $f(u,v)=0$

Flow conservation: For all $u \in V$ - $\{s,t\}$, $\sum_{v \in V} f(v,u) = \sum_{v \in V} f(u,v)$

Value of a Flow

• The value of a flow is defined as

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$
• The total flow out of the source minus the flow

 The total flow out of the source minus the flow into the source.

Maximum-flow Problem

- Input: a flow network G with capacity function c, source s and sink t
- Output: a flow of maximum value

How to solve it efficiently?

An example

We can assume that there is no pair of mutually reverse edges in the flow network.

Explore the Properties

- Capacity constraint: Flow must not exceed capacity.
- Flow-conservation: total flow out of (or into) a vertex is 0.
 - For all $v \in V \{s,t\}$, "flow in equals flow out"
- $(u,v) \notin E$ and $(v,u) \notin E$, f(u,v)=f(v,u)=0.

Networks with multiple sources and sinks

The Ford-Fulkerson Method

- Why call it a "method" rather than an "algorithm"?

 Because it encompasses several implementations with different running times.
- The Ford-Fulkerson method depends on *three important ideas*:
 - residual networks, augmenting paths, and cuts.
- These ideas are essential to the important max-flow mincut theorem, which characterizes the value of maximum flow in terms of cuts of the flow network.

The Ford-Fulkerson Method

- FORD-FULKERSON-METHOD(G,s,t)
 - 1. initialize flow f to θ
 - 2. while there exists an augmenting path p
 - 3. do *augment* flow *f* along *p*
 - 4. return *f*

Residual Networks

- Given a flow network and a flow, the **residual network** consists of edges that can admit more flow.
- More formally, given:

G=(V,E) --a flow network with source s and sink t f: a flow in G.

• The amount of *additional* flow can be pushed form u to v before exceeding the capacity c(u,v) is the residual capacity of (u,v), given by:

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v), & (u,v) \in E \\ f(v,u), & (v,u) \in E \\ 0, & \text{otherwise} \end{cases}$$

• Residual network: $G_f = (V, E_f)$, where $E_f = \{(u,v) \in V \times V : c_f(u,v) > 0\}$: residual edge.

Residual Networks (example)

Augmentation and Cancellation

Given a flow network G=(V,E), if f is a flow in G and f is a flow in the corresponding residual network G_f , $f \uparrow f$, the *augmentation* of flow f by f, is a function from $V \times V$ to R, defined by

$$f \uparrow f'(u,v) = \begin{cases} f(u,v) + f'(u,v) - f'(v,u), & (u,v) \in E \\ 0, & \text{otherwise} \end{cases}$$

The relationship between a flow in a residual network and one in the original network

- Lemma 26.1
- Let G=(V,E) be a flow network with source s and sink t, and let f be a flow in G. Let G_f be the residual network of G induced by f, and let f be a flow in G_f . Then the function $f \uparrow f$ is a flow in G with value $|f \uparrow f'| = |f| + |f'|$.

Proof of Lemma 26.1

- Verify that $f \uparrow f$ obeys the capacity constraint for each edge in E and flow conservation at each vertex in V- $\{s, t\}$.
- Nonnegative.
- For the capacity constraint, first observe that if $(u, v) \in E$, then $c_f(v,u)=f(u,v)$
- Therefore, $f'(v,u) \le c_f(v,u) = f(u,v)$
- Hence, $(f \uparrow f')(u, v) = f(u, v) + f'(u, v) f'(v, u)$ $\geq f(u, v) + f'(u, v) - f(u, v)$ = f'(u, v) ≥ 0 .

Proof continued

capacity constraint

$$(f \uparrow f')(u, v)$$

$$= f(u, v) + f'(u, v) - f'(v, u) \text{ (by equation (26.4))}$$

$$\leq f(u, v) + f'(u, v) \text{ (because flows are nonnegative)}$$

$$\leq f(u, v) + c_f(u, v) \text{ (capacity constraint)}$$

$$= f(u, v) + c(u, v) - f(u, v) \text{ (definition of } c_f)$$

$$= c(u, v).$$

Proof continued

• flow conservation, for all $u \in V - \{s, t\}$

$$\sum_{(u,v)\in E} f \uparrow f'(u,v)$$

$$= \sum_{(u,x)\in E} [f(u,x) + f'(u,x) - f'(x,u)]$$

$$= \sum_{(u,x)\in E} f(u,x) + \sum_{\substack{(u,x)\in E\\(u,x)\in E}} f'(u,x) - \sum_{\substack{(u,x)\in E\\(u,x)\in E}} f'(x,u)$$
(1)

根据剩余网络中,点u的流守恒。

 $=\sum f \uparrow f'(x,u)$

 $(x,u)\in E$

Proof continued

- $|f \uparrow f'| = |f| + |f'|$ V₁: each of these vertices has an edge to s.
- V_2 : s has an edge to each of these vertices.
- $|f \uparrow f'|$

$$= \sum_{v \in V_1} (f(s, v) + f'(s, v) - f'(v, s)) - \sum_{v \in V_2} (f(v, s) + f'(v, s) - f'(s, v))$$

$$= \sum_{v \in V_1} f(s,v) + \sum_{v \in V_1} f'(s,v) - \sum_{v \in V_1} f'(v,s) \ - \sum_{v \in V_2} f(v,s) - \sum_{v \in V_2} f'(v,s) + \sum_{v \in V_2} f'(s,v)$$

$$= \sum_{v \in V_1} f(s, v) - \sum_{v \in V_2} f(v, s) + \sum_{v \in V_1} f'(s, v) + \sum_{v \in V_2} f'(s, v) - \sum_{v \in V_1} f'(v, s) - \sum_{v \in V_2} f'(v, s)$$

$$= \sum_{v \in V_1} f(s, v) - \sum_{v \in V_2} f(v, s) + \sum_{v \in V_1 \cup V_2} f'(s, v) - \sum_{v \in V_1 \cup V_2} f'(v, s)$$

$$= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{v \in V} f'(s, v) - \sum_{v \in V} f'(v, s)$$

$$= |f| + |f'|$$

Augmenting paths

- Given a flow network G=(V,E) and a flow f, an augmenting path is a simple path from s to t in the residual network G_f
- Residual capacity of p: the maximum amount of flow that we can ship along the edges of an augmenting path p, i.e.,

$$c_f(p) = \min \{ c_f(u,v) : (u,v) \text{ is on } p \}.$$

The residual capacity is 1.

Augmenting Path (example)

Augmenting Path

• Lemma 26.2

Let G=(V,E) be a flow network, Let f be a flow in G, and let p be an augmenting path in G_f . Let $f_p:V\times V\to R$ by

$$f_p(\mathbf{u},\mathbf{v}) = \begin{cases} c_f(\mathbf{p}) \text{ if } (\mathbf{u},\mathbf{v}) \text{ is on } \mathbf{p} \\ 0 \text{ otherwose.} \end{cases}$$

Then f_p is a flow in G_f with value $|f_p| = c_f(\mathbf{p}) > 0$.

Augmenting Path

Corollary 26.3

Let G=(V,E) be a flow network, Let f be a flow G, and let p be an augmenting path in G_f . Let f_p be defined as in equation (26.8). Define a function $f'=f \uparrow f_p$. Then f' is a flow in G with value $|f'|=|f|+|f_p|>|f|$.

Cut

- Cut (S, T): S is a subset of $V, T = V S, s \in S$ and $t \in T$.
- Net flow across the cut (S,T): f(S,T)
- Capacity of the cut (S,T): c(S,T)
- Minimum cut of a network: a cut with minimum capacity.

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

Cut

• Lemma 26.4

Let f be a flow in a flow network G with source S and S and S in S and let S, S be a cut of S. Then the net flow across S is S is S is S is S is S is S in S

Proof of lemma 26.4

For all
$$u \in V - \{s, t\}$$
, $\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) = 0$

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u)\right)$$

$$= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \sum_{v \in V} f(u, v) - \sum_{u \in S - \{s\}} \sum_{v \in V} f(v, u)$$

$$= \sum_{v \in V} \left(f(s, v) + \sum_{u \in S - \{s\}} f(u, v)\right) - \sum_{v \in V} \left(f(v, s) + \sum_{u \in S - \{s\}} f(v, u)\right)$$

$$= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u)$$

$$= \sum_{v \in S} \sum_{u \in S} f(u, v) - \sum_{v \in T} \sum_{u \in S} f(v, u) + \left(\sum_{v \in S} \sum_{u \in S} f(v, u) - \sum_{v \in S} \sum_{u \in S} f(v, u)\right)$$

$$= f(S, T)$$

Cut

Corollary 26.5

The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G.

- Proof
 - Let (S,T) be any cut of G and let f be any flow. By Lemma 26.4 and capacity constraints,

$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u) \le \sum_{u \in S} \sum_{v \in T} c(u,v) = c(S,T)$$

Cut

- Theorem 26.7(Max-flow Min-cut Theorem)
 - If f is a flow in a flow network G=(V,E) with source s and sink t then the following conditions are equivalent:
 - 1. f is a maximum flow in G.
 - 2. The residual network G_f contains no augmenting paths.
 - 3. |f|=c(S,T) for some cut (S,T) of G

Proof

- (1)⇒(2): Suppose for the sake of contradiction that f is a maximum flow in G but G_f has an augment path p. Then, by Corollary 26.3, the flow sum $f \cap f_p$, where f_p is given by equation (26.8), is a flow in G with value strictly greater than |f|, contradicting the assumption that f is a maximum flow.
- (2) \Rightarrow (3): Suppose that G_f has no augmenting path, that is, that G_f contains no path from s to t. Define

$S=\{ v \in V : \text{there exists a path from s to } v \text{ in } G_f \}$

- and T=V-S. The partition (S,T) is a cut, $s \in S$ and $t \notin S$. For each pair of vertices u and v such that $u \in S$ and $v \in T$, if $(u,v) \in E$, we have f(u,v)=c(u,v), since otherwise $(u,v)\in E_f$, which would place v in the set S. If $(v,u)\in E$, we have f(v,u)=0 for the same reason. By lemma 26.4, therefore, |f|=f(S,T)=c(S,T).
- (3) \Rightarrow (1): By Corollary 26.5, $|f| \le c(S,T)$ for all cuts (S,T). Then |f| = c(S,T) implies that f is a maximum flow.

The Basic Ford-Fulkerson Algorithm

- Ford-Fulkerson(G,s,t)
 - 1. For each edge $(u, v) \in E$
 - 2. **do** $f[u,v] \leftarrow 0$
 - 3. While there exists a path p from s to t in the residual network G_f
 - 4. $c_f(p) \leftarrow \min\{c_f(u,v): (u,v) \text{ is in } p\}$
 - 5. **for** each edge (u,v) in p
 - 6. if $(u,v) \in E$
 - 7. $f[u,v] \leftarrow f[u,v] + c_f(p)$
 - 8. else
 - 9. $f[v,u] \leftarrow f[v,u] c_f(p)$

The Basic Ford-Fulkerson Algorithm

The Basic Ford-Fulkerson Algorithm

Analysis of Ford-Fulkerson Method

- The selection of the augmenting path in this method is arbitrary.
- If the capacities are irrational, the method may not terminate. If the flow does converge, however, it may converge to a value that is not necessarily maximum.
- If the capacities are integers, the While loop is executed at most $|f^*|$ times, since the flow value increases by at least 1 in each iteration.
- If we use either DFS or BFS, the time to find an augmenting path takes O(E) time, i.e. each iteration of While loop the takes O(E) time.
- Thus, the total running time of the method is $O(E|f^*|)$.

A Bad Example for Ford Fulkerson

[U. Zwick, TCS 148, p. 165-170, 1995]

Let
$$r = \frac{\sqrt{5}-1}{2}$$
.

Consider the graph

$$p_0 = \langle s, c, b, t \rangle$$

 $p_1 = \langle s, a, b, c, d, t \rangle$
 $p_2 = \langle s, c, b, a, t \rangle$
 $p_3 = \langle s, d, c, b, t \rangle$

The sequence of augmenting paths $p_0(p_1, p_2, p_1, p_3)^*$ is an infinite sequence of positive flow augmentations.

The flow value does not converge to the maximum value 9.

Analysis of Ford-Fulkerson Method

Figure 26.6 (a) A flow network for which FORD-FULKERSON can take $\Theta(E \mid f^* \mid)$ time, where f^* is a maximum flow, shown here with $\mid f^* \mid = 2,000,000$. An augmenting path with residual capacity 1 is shown. (b) The resulting residual network. Another augmenting path with residual capacity 1 is shown. (c) The resulting residual network.