Introducción práctica a la inferencia estadística con simulaciones computacionales

Dr. Marco Antonio Aquino López

Descripción general

Este minicurso está diseñado para estudiantes de los primeros semestres de licenciatura interesados en adquirir una perspectiva moderna y práctica de la estadística. A través de simulaciones computacionales usando **Python**, los participantes explorarán ideas fundamentales como la incertidumbre, la estimación y la comparación de modelos, con énfasis en la intuición y la visualización.

Duración: 3 sesiones de 90 minutos cada una

Requisitos: nociones básicas de álgebra y uso básico de Python.

Objetivo general

Brindar una introducción intuitiva y práctica a conceptos fundamentales de la inferencia estadística utilizando simulaciones por computadora y programación en Python.

Temario por sesión

Sesión 1: ¿Qué es la estadística y por qué simular?

- Motivación: entender la estadística como herramienta para modelar la incertidumbre.
- Simulación de experimentos aleatorios (monedas, dados).
- Conceptos de media, varianza y distribución empírica.
- Primeros pasos en Python: generar datos aleatorios y graficar histogramas.

Sesión 2: Estimación e incertidumbre

- Problemas de inferencia: ¿cómo estimar parámetros desconocidos?
- Introducción a la estimación puntual y por intervalo.
- Intervalos de confianza vs intervalos de credibilidad (enfoque bayesiano ligero).
- Visualización con simulaciones.
- Distribuciones Beta como prior y posterior para proporciones.

Sesión 3: Comparación de modelos

- Motivación: ¿cuál modelo describe mejor los datos?
- Comparación de modelos simples (lineal vs cuadrático).
- Simulación de datos con ruido.
- Criterios sencillos: error cuadrático medio, ajuste visual.
- Reflexión final: estadística como herramienta para tomar decisiones.

Recursos computacionales

- Lenguaje de programación: Python 3.
- Bibliotecas clave: numpy, matplotlib, seaborn, scipy, statsmodels.

Evaluación

- Participación en clase y resolución de ejercicios.
- Entrega de mini-proyecto final: simulación e interpretación de un experimento estadístico sencillo.

Bibliografía recomendada

- Downey, A. (2015). Think Stats: Exploratory Data Analysis in Python (2ª ed.). O'Reilly Media.
 - https://greenteapress.com/wp/think-stats/
- Sivia, D. S., & Skilling, J. (2006). *Data Analysis: A Bayesian Tutorial*. Oxford University Press.

•	McElreath, R.	(2020). S	tatistical	Rethinking:	\boldsymbol{A}	Bayesian	Course	with	Examples	in	R	and
	$Stan (2^{\underline{a}} ed.).$	CRC Pres	SS.									

■ Casella, G., & Berger, R. L.	2001). Statistical Inference ($2^{\underline{a}}$ ed.). Duxbury Press
--------------------------------	--------------------------------	---

Este curso fue diseñado por Marco Antonio Aquino López para estudiantes de introducción a la estadística con interés en herramientas computacionales modernas.