Lecture 4: Regularization; gradient descent TTIC 31020: Introduction to Machine Learning

Instructor: Greg Shakhnarovich

TTI-Chicago

October 6, 2016

Administrivia

- Problem set 1: out today, due in two weeks
- Problem set 2 will be out before PS1 is due
- Tutorial: next Monday 3pm (Python), in this room
- Will announce if/when will have additional tutorial slot
- I am traveling next week; lectures held as usual

Review: noise model and log-likelihood

• Statistical model: noise as a Gaussian random variable

$$y = f(\mathbf{x}; \mathbf{w}) + \nu, \qquad \nu \sim \mathcal{N}(\nu; 0, \sigma^2)$$

equivalent to
$$p(y|\mathbf{x}; \mathbf{w}, \sigma) = \mathcal{N}(y; f(\mathbf{x}; \mathbf{w}), \sigma^2)$$

Maximizing log-likelihood under this model

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \sum_{i} \log p(y_i | \mathbf{x}_i; \mathbf{w}, \sigma)$$

is equivalent to least-squares regression

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i} (y_i - f(\mathbf{x}_i; \mathbf{w}))^2$$

Review: Decomposition of error

Approximation error

$$E\left[\left(y-\mathbf{w}^{*T}\mathbf{x}\right)^{2}\right]$$

Estimation error

$$E\left[\left(\mathbf{w}^{*T}\mathbf{x} - \hat{\mathbf{w}}^{T}\mathbf{x}\right)^{2}\right]$$

- Approximation error: due to the failure to include optimal predictor in the model class, plus inherent uncertainty in $y|\mathbf{x}$
- Estimation error: due to failure to select the best predictor in the chosen model class; could be reduced with more data

Review: generalized linear regression

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \ldots + w_m \phi_m(\mathbf{x}),$$

Still the same ML estimation technique applies:

$$\hat{\mathbf{w}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

where X is the design matrix

$$\begin{bmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \dots & \phi_m(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \dots & \phi_m(\mathbf{x}_2) \\ \dots & \dots & \dots & \dots & \dots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \phi_2(\mathbf{x}_N) & \dots & \phi_m(\mathbf{x}_N) \end{bmatrix}$$

Roadmap

- So far: least squares regression (with arbitrary feature functions)
 - Closed form solution for maximum likelihood
 - Overfitting is a problem
- Today: regularization main tool to combat overfitting
- Also: gradient descent as an alternative to closed form solution

Model complexity and overfitting

• Data drawn from 3rd order model:

Controlling for overfitting

- More complex model (10th degree) overfits more than simple model (linear)
- Pure ERM would always prefer complex models
- Holdout/validation/cross-validation is a way to control for this in model selection

Model complexity - intuition

- Intuitively, the complexity of the model can be measured by the number of "degrees of freedom" (independent parameters).
 - The more complex the model, the more data needed to fit
 For a given number of points, a more complex model more likely to overfit.

This is an issue only because of finite training data!

Penalizing model complexity

- Idea 1: restrict model complexity based on amount of data
 - Rule of thumb: ≈ 10 examples per parameter

Penalizing model complexity

- Idea 1: restrict model complexity based on amount of data
 - Rule of thumb: ≈ 10 examples per parameter
- Idea 2: directly penalize by the number of parameters. Akaike information criterion (AIC): maximize

$$\log p\left(X\left|\widehat{\mathbf{w}}\right.\right) - \#\mathsf{params}$$

Penalizing model complexity

- Idea 1: restrict model complexity based on amount of data
 - Rule of thumb: ≈ 10 examples per parameter
- Idea 2: directly penalize by the number of parameters. Akaike information criterion (AIC): maximize

$$\log p\left(X\left|\widehat{\mathbf{w}}\right.\right) - \#\mathsf{params}$$

 But: Definition of model complexity as a number of parameters is a bit too simplistic. Consider feature vector

$$\phi x = \begin{bmatrix} 1 & x & -2x & 2x & x^2 & \frac{1}{2}x^2 \end{bmatrix}$$

Does linear regression $\phi(x) \to y$ really have 6 parameters?

• Idea: look at the behavior of the values of w*

Linear regression complexity

• Example: polynomial regression, true [from Bishop, Ch. 1]

• Value of the optimal (ML) regression coefficients:

			•	, 0
	m = 0	m = 1	m = 3	m = 9
w_0^*	0.19	0.82	0.31	0.35
w_1^*		-1.27	7.99	232.37
w_2^*			-25.43	-5321.83
$w_{3}^{\tilde{*}}$			17.37	48568.31
w_{A}				-231639.30
$w_{\scriptscriptstyle 5}^*$				640042.26
w_{6}^{*}				-1061800.52
w_7^*				1042400.18
w_8^*				-557682.99
w_0^*				125201.43

Description length

- Intuition: should penalize not the parameters, but the number of bits required to encode the parameters
- With finite set of parameter values, these are equivalent
- With "infinite" set, we can limit the effective number of degrees of freedom by restricting the value of the parameters.
- Then we have penalized log-likelihood:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \left\{ \frac{1}{2} \sum_{i=1}^{N} \log p(\mathsf{data}_i; \mathbf{w}) - \mathsf{penalty}(\mathbf{w}) \right\}$$

Shrinkage methods

- ullet Shrinkage methods impose penalty on the size of ${f w}$
- ullet We can measure "size" in a few different ways. Let us start with L_2 norm:

$$\mathbf{w}_{\mathsf{ridge}}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \left\{ \sum_{i=1}^{N} \log p(\mathsf{data}_i; \, \mathbf{w}) \, - \, \lambda \|\mathbf{w}\|^2 \right\}$$

in regression "data $_i$ " = $y_i|\mathbf{x}_i$

- ullet This is ridge regression; λ is the regularization parameter
- Does it matter that log-likelihood is not averaged?

Shrinkage methods

- ullet Shrinkage methods impose penalty on the size of ${f w}$
- ullet We can measure "size" in a few different ways. Let us start with L_2 norm:

$$\mathbf{w}_{\mathsf{ridge}}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \left\{ \sum_{i=1}^{N} \log p(\mathsf{data}_i; \, \mathbf{w}) \, - \, \lambda \|\mathbf{w}\|^2 \right\}$$

in regression "data $_i$ " = $y_i|\mathbf{x}_i$

- ullet This is ridge regression; λ is the regularization parameter
- \bullet Does it matter that log-likelihood is not averaged? Consider relative effect of the value of λ

Ridge regression

$$\mathbf{w}_{\mathsf{ridge}}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 + \lambda \sum_{j=1}^{m} w_j^2 \right\}$$

- Recall: $\mathbf{w} = [w_0, w_1, \dots, w_m]$
- Usually do not include w_0 in regularization (why?)

Ridge regression

$$\mathbf{w}_{\mathsf{ridge}}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 + \lambda \sum_{j=1}^{m} w_j^2 \right\}$$

- Recall: $\mathbf{w} = [w_0, w_1, \dots, w_m]$
- ullet Usually do not include w_0 in regularization (why?)
- Closed form solution:

$$\widehat{\mathbf{w}}_{\mathsf{ridge}}^* = \left(\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}.$$

 Careful: solution not invariant to scaling! Should normalize input before solving.

Lasso regression

• The L_1 -penalized maximum likelihood under Gaussian noise model:

$$\mathbf{w}_{\mathsf{lasso}}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \left\{ -\sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 - \lambda \sum_{j=1}^{m} |w_j| \right\}$$

- This is still concave (i.e. unique maximum), but not "smooth" (differentiable).
- Can solve it efficiently using convex programming methods or first-order numerical optimization (gradient descent)
- Why is it called "lasso"?

Lasso regression

• The L_1 -penalized maximum likelihood under Gaussian noise model:

$$\mathbf{w}_{\mathsf{lasso}}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \left\{ -\sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 - \lambda \sum_{j=1}^{m} |w_j| \right\}$$

- This is still concave (i.e. unique maximum), but not "smooth" (differentiable).
- Can solve it efficiently using convex programming methods or first-order numerical optimization (gradient descent)
- Why is it called "lasso"?
 least absolute shrinkage and selection operator

October 6, 2016

Optimization of ridge regression

• Can rewrite the optimization problem

$$\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 + \lambda \sum_{j=1}^{m} w_j^2$$

in the proper objective/constraint form:

$$\min_{\mathbf{w}} \sum_{i=1}^{N} \left(y_i - \mathbf{w} \cdot \mathbf{x}_i \right)^2$$
 subject to $\sum_{i=1}^{m} w_j^2 \leq t$

• Correspondence $\lambda \Rightarrow t$ can be shown using Lagrange multipliers.

Optimization for Lasso

Similarly, for Lasso:

$$\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$
 subject to
$$\sum_{j=1}^{m} |w_j| \le t$$

• Compare shape of the penalty as a function of w_i :

October 6, 2016

$$\hat{\mathbf{w}} = \underset{\mathbf{w}: \sum_{j=1}^{m} |w_j|^p \le \beta}{\operatorname{argmax}} - \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2.$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w}: \sum_{j=1}^{m} |w_j|^p \le \beta}{\operatorname{argmax}} - \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2.$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w}: \sum_{j=1}^{m} |w_j|^p \le \beta}{\operatorname{argmax}} - \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2.$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w}: \sum_{j=1}^{m} |w_j|^p \le \beta}{\operatorname{argmax}} - \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2.$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w}: \sum_{j=1}^{m} |w_j|^p \le \beta}{\operatorname{argmax}} - \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2.$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w}: \sum_{j=1}^{m} |w_j|^p \le \beta}{\operatorname{argmax}} - \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2.$$

- With sufficiently large λ (=sufficiently small β) lasso leads to *sparsity*.
- Must explicitly solve the above optimization problem
 e.g., using Lagrange multipliers.

Choice of λ

• Example [from Bishop, Ch. 1]: 9th deg polynomial with varying λ :

• Most often: choose λ by (cross) validation

Example: lasso vs. ridge regularization paths

• Example: prostate data [Hastie, Tibshirani and Friedman] Red lines: choice of λ by 10-fold CV.

General view of L_q penalty

 \bullet Can be creative in design of penalty function $\|\mathbf{w}\|_q$

General view of L_q penalty

ullet Can be creative in design of penalty function $\|\mathbf{w}\|_q$

- For q > 1, no sparsity is achieved.
- ullet For q < 1, non-convex
- What about L_0 ?

$$\min_{\mathbf{w}} \sum (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 \quad \text{s.t. } |\{w_j : w_j > 0\}| \le M$$

is NP-hard

