- テーマ3・問2 -

実際に AdaBoost のプログラムを作成し、実験データ(例えば mushroom)を用いて、その性能などを実験し、その結果・解析・考察を述べよ。訓練データ(つまり事例集合)として 1000個くらいを使い、残りのデータを使って得られた仮説の良さを評価してみるとよい。ベストな仮説は何か?訓練データを多くするとどうなるか?高速化の工夫と効果は?等々、いろいろと調べられると思う。

c 言語でアルゴリズムの実装は python より難しいため、今回は pyclassic のソースを参照し、python で Adaboost のプログラムを作成した、参考先は http://code.google.com/p/pyclassic/. アルゴリズムとしては、資料通りの伝統的な Adaboost を使う、たくさんの識別器も選ばれるが、ここでは決定株(Decision stump)という弱識別器だけを考える.

また、実験データは mushroom を用いる、今回のデータは shuffle 済みなので、訓練集合をデータの前からの m 個、テスト集合をデータの後からの n 個、m+n< データの数 とする。ここでは、 $m \in \{500,1000,1500,2000\}$ 、 $n \in \{500,1000,1500,2000\}$ 、それぞれの m,n を組み合せ、訓練・予測を行う。閾値 $\varepsilon=0.1$ 、反復回数 T=10 に設定する、実験結果は下記である。

訓練集合サイズ	テスト集合サイズ	判別精度 (%)	学習時間 (s)	予測時間 (s)	反復回数
500	500	0.822000	00.224870	00.000334	3
500	1000	0.837000	00.191105	00.000409	3
500	1500	0.838667	00.225717	00.000910	3
500	2000	0.842000	00.195486	00.001162	3
1000	500	0.826000	00.451063	00.000326	3
1000	1000	0.841000	00.408634	00.000505	3
1000	1500	0.844667	00.414288	00.000487	3
1000	2000	0.848500	00.375509	00.000639	3
1500	500	0.826000	00.574550	00.000239	3
1500	1000	0.841000	00.537895	00.000383	3
1500	1500	0.844667	00.562652	00.000431	3
1500	2000	0.848500	00.548065	00.000555	3
2000	500	0.826000	00.713411	00.000239	3
2000	1000	0.841000	00.703578	00.000339	3
2000	1500	0.844667	00.705330	00.000442	3
2000	2000	0.848500	00.693032	00.000532	3

表 1 データサイズ別の判別精度

訓練集合サイズだけを考察すると,500 個の集合より1000 個以上のほうが精度が高い,しかし,1000 個,1500 個,2000 個の訓練集合の精度が等しい,オッカムのカミソリより,コンパクトな仮説のほうが望ましい,機械学習における,簡単なモデルのほうが overfitting しにくいので,1000 個の

訓練集合のほうが効率よいと思う。一方、テスト集合サイズが大ければ大きいほど精度が高いに見られる。また、学習時間は訓練集合サイズとは正相関、学習時間と比べ、予測時間はかなり短いこと(早い過ぎで正確に測られない)も分かられる。反復回数を考えると、すべての学習は3反復まで終わるので、閾値に近づくのは早いである。閾値をそれぞれ0.1,0.2,0.3,0.4に設定し、実験をやり直したが、全く同じな結果が出るので、ここでは挙げない。

次は adaboost の収束を考え、閾値を外し、 $T=10, \varepsilon=0.1, m=1000, n=2000$ の設定で各反復の計算結果を示す。ただし、 $e=P_{\boldsymbol{\alpha},D_0}[f_*(\boldsymbol{\alpha})\neq f_t(\boldsymbol{\alpha})]$.

反復 (t)	誤判別率 (e)	優位度 (γ_t)	仮説の重み($lpha_t$)
1	0.500000	0.347000	0.855631
2	0.366000	0.297096	0.684122
3	0.000000	0.378471	0.989016
4	0.366000	0.306668	0.714251
5	0.000000	0.379926	0.995865
6	0.366000	0.307153	0.715808
7	0.000000	0.380001	0.996219
8	0.366000	0.307178	0.715889
9	0.000000	0.380005	0.996237
10	0.366000	0.307179	0.715893

表 2 各反復の予測精度

表通り、誤判別率は 0 反復でランダム誤判別率 0.5 から 2 反復ですぐ 0.000000 に減少するが、閾値を設定せずに計算し続くと、誤判別率が上がり、0.366000 に戻ってしまい。優位度も同じく二つの値の間に繰り返す、むだな仮説も増加する。従って閾値の設定が必要だと思う。なお、資料よりパラメータを代入し、Adaboost のブースティング性を計算すると、反復回数 $T \le 19.12$ だが、実際にブースティングはかなり早いので、上界までは行かない。

高速化するため、次の方法を考えた、上記の結果より、学習時間の削減をメインに考える.

- 1. よりよい弱分類器を使う 今回は Decision Stump を実装したが、他の弱分類器を使ったほうが早いと思う。例えば、Hard margin の SVM ならば、二次計画問題に定着できる(高次元に射影しなければいけないが);また、Lasso などの ℓ_1 アルゴリズムを用い、疎性が高い解を求め、計算時間もメモリーの減少できる。一方、Adaboost で各反復で予測を行う時、重みしか更新されないので、もしオンライン学習のアルゴリズムを使い、更新された分だけをアップデートすれば、メモリーが削減できるし、早いスビードで収束することも可能になる。
- 2. 変数の計算 例えば、 D_t の更新する際、適当な スデップサイズ を追加すればもっと早く計算 できると思う。
- 3. 各反復でのメモリー削減 今回のプログラムは毎回予測を行う際すべての α_t を使ったが、実際にはメモリーに記録し、更新分だけを追加すればよいと思う。