Answer Form

Experimental Problem No. 1

Diode laser wavelength

Task 1.1 Experimental setup.

(0.75)

1	.1		1.0	
		of the beam as measured from the table		
		$h \pm \Delta h = (5.0 \pm 0.05) \times 10^{-2} \text{ m} (0.25)$		

Experimental setup for measurement of diode laser wavelength Task 1.2 Expressions for optical path differences.

Case I: (0.25)

$$\begin{split} \Delta_{\mathrm{I}}(n) &= (BF + FP) - BP = (L_b - L_0) + \sqrt{L_0^2 + L_R^2(n)} - \sqrt{L_b^2 + L_R^2(n)} \\ &= (L_b - L_0) + L_0 \sqrt{1 + \frac{L_R^2(n)}{L_0^2}} - L_b \sqrt{1 + \frac{L_R^2(n)}{L_b^2}} \end{split}$$

using
$$\sqrt{1+x} \approx 1 + \frac{1}{2}x$$

$$\approx (L_b - L_0) + L_0 \left(1 + \frac{1}{2} \frac{L_R^2(n)}{L_0^2} \right) - L_b \left(1 + \frac{1}{2} \frac{L_R^2(n)}{L_b^2} \right)$$

$$\Rightarrow \Delta_{\rm I}(n) \approx \frac{1}{2} L_R^2(n) \left(\frac{1}{L_0} - \frac{1}{L_0} \right)$$

Case II: (0.25)

$$\Delta_{II}(n) = (FB + BP) - FP = (L_0 - L_a) + \sqrt{L_a^2 + L_L^2(n)} - \sqrt{L_0^2 + L_L^2(n)}$$

$$\approx (L_0 - L_a) + L_a \sqrt{1 + \frac{L_L^2(n)}{L_a^2}} - L_0 \sqrt{1 + \frac{L_L^2(n)}{L_0^2}}$$

using
$$\sqrt{1+x} \approx 1 + \frac{1}{2}x$$

$$\approx (L_0 - L_a) + L_a \left(1 + \frac{1}{2} \frac{L_L^2(n)}{L_a^2} \right) - L_0 \left(1 + \frac{1}{2} \frac{L_L^2(n)}{L_0^2} \right)$$

$$\Rightarrow \Delta_{II}(n) \approx \frac{1}{2} L_L^2(n) \left(\frac{1}{L_a} - \frac{1}{L_0} \right)$$

Task 1.3 Measuring the dark fringe positions and locations of the blade. Use additional sheets if necessary.

TABLE I

n	$(l_{\rm R}(n) \pm 0.1) \times 10^{-3} \text{ m}$	$(l_L(n) \pm 0.1) \times 10^{-3} \text{ m}$	\mathcal{X}_R	x_L
0	-7.5	1.1	0.791	0.935
1	-10.1	3.7	1.275	1.369
2	-12.4	6.4	1.620	1.696
3	-14.0	8.2	1.903	1.968
4	-15.6	10.0	2.151	2.208
5	-17.2	11.4	2.372	2.424
	17.2	11	2.3 / 2	2.121
6	-18.4	12.2	2.574	2.622
7	-19.7		2.761	
8	-20.7		2.937	
9	-22.0		3.102	
10	-23.0		3.260	
11	-24.1		3.410	

1.3 Report positions of the blade and their difference with higher precision: $L_b \pm \Delta L_b = (653\pm 1) \times 10^{-3} \text{ m } (0.25) \text{ LABEL (I) (measuring tape)}$ $L_a \pm \Delta L_a = (628\pm 1) \times 10^{-3} \text{ m } (0.25) \text{ LABEL (I) (measuring tape)}$ $d = L_b - L_a = (24.6\pm 0.1) \times 10^{-3} \text{ m } (0.25) \text{ LABEL (H) (caliper)}$

Task 1.4 Performing a statistical and graphical analysis.

From the condition of dark fringes and Task 1.2, we have

$$\frac{1}{2}L_R^2(n)\left(\frac{1}{L_0} - \frac{1}{L_b}\right) = \left(n + \frac{5}{8}\right)\lambda$$

and

$$\frac{1}{2}L_L^2(n)\left(\frac{1}{L_a} - \frac{1}{L_0}\right) = \left(n + \frac{7}{8}\right)\lambda$$

Using (1.5), $L_R(n) = l_R(n) - l_{0R}$ and $L_L(n) = l_L(n) - l_{0L}$ we can rewrite

$$\frac{1}{2} (l_R(n) - l_{0R})^2 \left(\frac{1}{L_0} - \frac{1}{L_b} \right) = \left(n + \frac{5}{8} \right) \lambda$$

$$\Rightarrow l_R(n) = \sqrt{\frac{2L_b L_0}{L_b - L_0}} \lambda \sqrt{n + \frac{5}{8}} + l_{0R}$$

and

$$\frac{1}{2} (l_L(n) - l_{0L})^2 \left(\frac{1}{L_a} - \frac{1}{L_0} \right) = \left(n + \frac{7}{8} \right) \lambda$$

$$\Rightarrow l_L(n) = \sqrt{\frac{2L_a L_0}{L_0 - L_a}} \lambda \sqrt{n + \frac{7}{8}} + l_{0L}$$

These can be cast as equations of a straight line, y = mx + b.

Case I:

$$y_R = l_R$$
 $x_R = \sqrt{n + \frac{5}{8}}$ $m_R = \sqrt{\frac{2L_b L_0}{L_b - L_0}} \lambda$ $b_R = l_{0R}$

Case II:

$$y_L = l_L \qquad x_L = \sqrt{n + \frac{7}{8}} \qquad m_L = \sqrt{\frac{2L_a L_0}{L_0 - L_a} \lambda} \qquad b_L = l_{0L}$$

Perform least squares analysis of above equations. In Table I, we write down the values x_R and x_L .

One finds:

$$m_R \pm \Delta m_R = (-6.39 \pm 0.07) \times 10^{-3} \text{ m}$$

$$m_L \pm \Delta m_L = (6.83 \pm 0.19) \times 10^{-3} \text{ m}$$

and (values of l_{0R} and l_{0L})

$$l_{0R} \pm \Delta l_{0R} = b_R \pm \Delta b_R = (-2.06 \pm 0.17) \times 10^{-3} \text{ m}$$

$$l_{0L} \pm \Delta l_{0L} = b_L \pm \Delta b_L = (-5.33 \pm 0.36) \times 10^{-3} \text{ m}$$

The equations used in the least squares analysis:

$$m = \frac{N\sum_{n=1}^{N} x_{n} y_{n} - \sum_{n=1}^{N} x_{n} \sum_{n'=1}^{N} y_{n'}}{\Delta}$$

$$\sum_{n=1}^{N} x_{n}^{2} \sum_{n'=1}^{N} y_{n'} - \sum_{n=1}^{N} x_{n} \sum_{n'=1}^{N} x_{n'} y_{n'}}{\Delta}$$

$$b = \frac{\sum_{n=1}^{N} x_{n}^{2} \sum_{n'=1}^{N} y_{n'} - \sum_{n=1}^{N} x_{n} \sum_{n'=1}^{N} x_{n'} y_{n'}}{\Delta}$$

where

$$\Delta = N \sum_{n=1}^{N} x_n^2 - \left(\sum_{n=1}^{N} x_n\right)^2$$

with N the number of data points. The uncertainty is calculated as

$$(\Delta m)^2 = N \frac{\sigma^2}{\Delta}$$
, $(\Delta b)^2 = \frac{\sigma^2}{\Delta} \sum_{n=1}^N x_n^2$ with,

$$\sigma^{2} = \frac{1}{N-2} \sum_{n=1}^{N} (y_{n} - b - mx_{n})^{2}$$

REFERENCE: P.R. Bevington, *Data Reduction and Error Analysis for the Physical Sciences*, McGraw-Hill, 1969.

Task 1.5 Calculating λ .

1.5	From any slope and the value of L_0 one finds,	2.0
	$\lambda = \frac{L_b - L_a}{2L_a L_b} \frac{m_R^2 m_L^2}{m_R^2 + m_L^2}$	
	Using the suggestion to replace $d = L_b - L_a$, we can write	

$$\lambda = \frac{d}{2L_a L_b} \frac{m_R^2 m_L^2}{m_R^2 + m_L^2}$$

$$\lambda \pm \Delta \lambda = (663 \pm 25) \times 10^{-9} \text{ m}$$

The uncertainty may range from 15 to 30 nanometers.

A precise measurement of the wavelength is $\lambda \pm \Delta \lambda = (655 \pm 1) \times 10^{-9}$ m.

The formula for the uncertainty,

$$\Delta \lambda = \sqrt{\left(\frac{\partial \lambda}{\partial d}\right)^2 \Delta d^2 + \left(\frac{\partial \lambda}{\partial L_a}\right)^2 \Delta L_a^2 + \left(\frac{\partial \lambda}{\partial L_b}\right)^2 \Delta L_b^2 + \left(\frac{\partial \lambda}{\partial m_R}\right)^2 \Delta m_R^2 + \left(\frac{\partial \lambda}{\partial m_L}\right)^2 \Delta m_L^2}$$

one finds,

$$\frac{\partial \lambda}{\partial d} = \frac{\lambda}{d}$$
, $\frac{\partial \lambda}{\partial L_b} = \frac{\lambda}{L_b}$, $\frac{\partial \lambda}{\partial L_a} = \frac{\lambda}{L_a}$ and $\frac{\partial \lambda}{\partial m_R} = \frac{2m_L^2}{m_R} \frac{\lambda}{m_L^2 + m_R^2}$

and analogously for the other slope.

One can calculate directly these quantities. However, one may note that the errors due to L_a , L_b and d are negligible. Moreover, $m_R^2 \approx m_L^2$ and $L_a \approx L_b$. This implies,

$$\frac{\partial \lambda}{\partial m_R} \approx \frac{\lambda}{m_R} \approx \frac{\partial \lambda}{\partial m_L}$$
. Thus,

$$\Delta \lambda \approx \sqrt{2} \frac{\lambda}{m_L} \Delta m_L \approx (25 \times 10^{-9}) \text{ m}$$