CS-C3100 Computer Graphics Jaakko Lehtinen

10.2 Mass-Spring Modeling

Lots of slides from Frédo Durand

Plan

- Mass-spring modeling
- Heuristic cloth modelling with masses and springs
 - Structural forces that keep the model intact
 - Deformation forces that resist bending
 - External forces that make it move (gravity, wind..)

Mass-Spring Modeling

- Beyond pointlike objects: strings, cloth, hair, etc.
- Interaction between particles
 - Create a network of spring forces that link pairs of particles

- First, slightly hacky version of cloth simulation
- Then, some motivation/intuition for *implicit* integration

How would you simulate a string?

- Each particle is linked to two particles (except ends)
- Come up with forces that try to keep the distance between particles constant
- What forces?

Springs

Spring Force – <u>Hooke's Law</u>

Spring Force – Hooke's Law

• Force in the direction of the spring and proportional to difference with rest length L_0 .

$$F(P_i, P_j) = K(L_0 - ||P_i \vec{P}_j||) \frac{P_i P_j}{||P_i \vec{P}_j||}$$

- K is the stiffness of the spring
 - When K gets bigger, the spring *really* wants to keep its rest length

Spring Force – Hooke's Law

• Force in the direction of the spring and proportional to difference with rest length L_0 .

$$F(P_i, P_j) = K(L_0 - ||P_i \vec{P}_j||) \frac{P_i P_j}{||P_i P_j||}$$

- K is the stiffness of the spring
 - When K gets bigger, the spring *really* wants to keep its rest length

This is the force on P_j. Remember Newton:

P_i experiences force of equal magnitude but opposite direction.

Mass on a Spring, Phase Space

Click image for link

Wikipedia user Mazemaster

Mass on a Spring, Phase Space

Click image for link

Wikipedia user Mazemaster

How would you simulate a string?

- Springs link the particles
- Springs try to keep their rest lengths and preserve the length of the string
- Not exactly preserved though, and we get oscillation
 - Rubber band approximation

Hair

- Linear set of particles
- Length-preserving structural springs like before
- Deformation forces proportional to the angle between segments

Demo – Spring and ODE Solvers

- Forces:
 - Springs
 - structural forces (to resist bending)
 - damping
- Effects of varying spring stiffness and damping

• Euler vs. Midpoint vs. Runge-Kutta 4

Mass-Spring Cloth

Michael Kass

Cloth – Three Types of Forces

- Structural forces
 - Try to enforce invariant properties of the system
 - E.g. force the distance between two particles to be constant

- Ideally, these should be *constraints*, not forces
- Internal deformation forces
 - E.g. a string deforms, a spring board tries to remain flat
- External forces
 - Gravity, etc.

Springs for Cloth

- Network of masses and springs
- Structural springs:
 - link (i j) and (i+1, j); and (i, j) and (i, j+1)
- Shear springs
 - (i j) and (i+1, j+1)
- Flexion springs
 - (i,j) and (i+2,j); (i,j) and (i,j+2)
- See <u>Provot's Graphics</u> <u>Interface '95 paper</u> for details

Provot 95

External Forces

- Gravity G
- Viscous damping C
- Wind, etc.

Provot 95

Cloth Simulation

- Then, the all trick is to set the stiffness of all springs to get realistic motion!
- Remember that forces depend on other particles (coupled system)
- But it is *sparse* (only near neighbors)
 - This is in contrast to e.g.
 the N-body problem.

Provot 95

Contact forces

Reaction force

- Hanging curtain:
- 2 contact points stay fixed
- What does it mean?
 - Sum of the forces is zero
- How so?
 - Because those point undergo an external force that balances the system
- What is the force at the contact?
 - Depends on all other forces in the system
 - Gravity, wind, etc.

Contact forces

- How can we compute the external contact force?
 - Inverse dynamics!
 - Sum all other forces applied to point
 - Take negative
- Do we really need to compute this force?
 - Not really, just ignore the other forces applied to this point!

Example

• Excessive rubbery deformation: the strings are not stiff enough

Initial position

After 200 iterations

Cloth Videos

The Stiffness Issue

- We use springs while we really mean constraint
 - Spring should be super stiff, which requires tiny Δt
 - Remember x'=-kx system and Euler speed limit!
 - The story extends to N particles and springs (unfortunately)

- Many numerical solutions
 - Reduce Δt (well, not a great solution)
 - Actually use constraints
 - Implicit integration scheme

Euler has a speed limit!

• h > 1/k: oscillate. h > 2/k: explode!

SIGGRAPH PBM notes -rom the

- 1D example, with two particles constrained to move along the x axis only, rest length $L_0 = 1$
- Phase space is 4D: (x_1, v_1, x_2, v_2)
 - But spring force only depends on x_1 , x_2 and L_0 .

height=magnitude of spring force

height=magnitude of spring force

Constrained Dynamics

- In our mass-spring cloth, we have "encouraged" length preservation using springs that want to have a given length (unfortunately, they can refuse offer;-))
- Constrained dynamic simulation: force it to be constant
- How it works not in this class
 - Start with constraint equation
 - E.g., $(x_2-x_1)-1=0$ in the previous 1D example
 - Derive extra forces that will exactly enforce constraint
 - This means *projecting* the external forces (like gravity) onto the "subspace" of phase space where constraints are satisfied
 - Fancy name for this: "Lagrange multipliers"
 - Again, see the SIGGRAPH 2001 Course Notes

That's It!

- Next: implementing ODE solvers
- Further reading
 - Stiff systems
 - Explicit vs. implicit solvers
 - Again, consult the 2001 course notes!