NAME:Khushi Gharate

ROLL NO:-757

BATCH:-G3

PRN:-202201090168

ASSIGNMENT 3

Import numpy as np dl= np.genfromtxt("/content/sample_data/testmarks1.csv",delimiter=',') print(dl)

OUTPUT:

[[nan nan nan nan]

[801. 43.05 27.79 28.7 27.79]

[802. 43.47 28.52 28.98 27.89]

[803. 42.24 28.16 28.16 25.63]

[804. 39.24 26.16 26.16 26.16]

[805. 40.9 26.03 27.27 25.65]

[806. 39.47 26.31 26.31 25.21]

[807. 41.68 25.63 27.79 25.46]

[808. 42.19 27.61 28.13 26.21]

[809. 44.75 28.35 29.83 28.21]

[810. 46.95 28.88 31.3 28.53]]

EDS=dl[1:,1] print(EDS) print(type(EDS)) print(max(EDS))

OUTPUT:

[43.05 43.47 42.24 39.24 40.9 39.47 41.68 42.19 44.75 46.95]

<class 'numpy.ndarray'>

46.95

```
Import numpy as np d2= np.genfromtxt("/content/sample_data/testmarks2.csv",delimiter=',') print(d2)
```

OUTPUT:

```
[[nan nan nan nan]
```

[801. 28.48 34.18 30.56 22.23]

[802. 28.1 33.72 30.68 22.82]

[803. 26.16 31.39 28.2 22.53]

[804. 26.16 31.39 28.78 20.93]

[805. 26.1 31.32 28.22 20.82]

[806. 25.45 30.54 27.73 21.05]

[807. 26.16 31.39 28.01 20.51]

[808. 27.44 32.93 28.83 22.08]

[809. 28.63 34.35 31.03 22.68]

[810. 30.35 36.42 31.38 23.1]]

[]

Print(dl) print(d2) result=dl-d2

Print("\nUsing Operator:\n",resultarray) result=np.subtract(dl,d2)

Print("\nUsing Numpy Function:\n",result)

OUTPUT:

[[nan nan nan nan nan]

[801. 43.05 27.79 28.7 27.79]

[802. 43.47 28.52 28.98 27.89]

[803. 42.24 28.16 28.16 25.63]

[804. 39.24 26.16 26.16 26.16]

[805. 40.9 26.03 27.27 25.65]

[806. 39.47 26.31 26.31 25.21]

[807. 41.68 25.63 27.79 25.46]

[808. 42.19 27.61 28.13 26.21]

[809. 44.75 28.35 29.83 28.21]

[810. 46.95 28.88 31.3 28.53]]

```
[[ nan nan nan nan]
```

Using Operator:

[[nan nan nan nan nan]

[0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0.]

 $[\ 0.\ 0.\ 0.\ 0.\ 0.]$

[0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0.]]

Using Numpy Function:

[[nan nan nan nan nan]

- [0. 14.57 -6.39 -1.86 5.56]
- [0. 15.37 -5.2 -1.7 5.07]
- [0. 16.08 -3.23 -0.04 3.1]
- [0. 13.08 -5.23 -2.62 5.23]

```
[ 0. 14.8 -5.29 -0.95 4.83]
```

[0. 16.6 -7.54 -0.08 5.43]]

Resultarray=dl+d2 print("\nUsing Numpy Function:\n",resultarray) resultarray=np.add(dl,d2) print("\nUsingOperator:\n",resultarray)

OUTPUT:

Using Numpy Function:

```
[[ nan nan nan nan]
```

[1602. 71.53 61.97 59.26 50.02]

[1604. 71.57 62.24 59.66 50.71]

[1606. 68.4 59.55 56.36 48.16]

[1608. 65.4 57.55 54.94 47.09]

[1610. 67. 57.35 55.49 46.47]

[1612.	64.92 56.85 54.04 46.26]
--------	--------------------------

Using Operator:

[[nan na	an n	nan	nan	nan]
-----------	------	-----	-----	------

[1602. 71.53 61.97 59.26 50.02]

[1604. 71.57 62.24 59.66 50.71]

[1606. 68.4 59.55 56.36 48.16]

[1608. 65.4 57.55 54.94 47.09]

[1610. 67. 57.35 55.49 46.47]

[1612. 64.92 56.85 54.04 46.26]

[1614. 67.84 57.02 55.8 45.97]

[1616. 69.63 60.54 56.96 48.29]

```
[1618. 73.38 62.7 60.86 50.89]
         [1620. 77.3 65.3 62.68 51.63]]
 Resultarray=dl%d2
Print("\nUsing Operator:\n",resultarray)
Resultarray=np.mod(dl,d2)
Print("\nUsing Numpy Function:\n",resultarray)
OUTPUT:
Using Operator:
[[ nan nan nan nan nan]
[ 0.
        14.57 27.79 28.7 5.56]
[ 0.
         15.37 28.52 28.98 5.07]
[ 0.
         16.08 28.16 28.16 3.1 ]
[ 0.
         13.08 26.16 26.16 5.23]
[ 0.
         14.8 26.03 27.27 4.83]
```

[0.

14.02 26.31 26.31 4.16]

[0. 15.52 25.63 27.79 4.95] [0. 14.75 27.61 28.13 4.13] [0. 16.12 28.35 29.83 5.53] [0. 16.6 28.88 31.3 5.43]] Using Numpy Function: [[nan nan nan nan nan] [0. 14.57 27.79 28.7 5.56] [0. 15.37 28.52 28.98 5.07] [0. 16.08 28.16 28.16 3.1] [0. 13.08 26.16 26.16 5.23] [0. 14.8 26.03 27.27 4.83] [0. 14.02 26.31 26.31 4.16] [0.

15.52 25.63 27.79 4.95]

14.75 27.61 28.13 4.13]

16.12 28.35 29.83 5.53]

[0.

[0.

[0. 16.6 28.88 31.3 5.43]]

Resultarray=dI*d2 Print("\nUsing Operator:\n",resultarray) resultarray=np.multiply(dl,d2) Print("\nUsing Numpy Function:\n",resultarray) OUTPUT: Using Operator:]] nan nan nan nan nan] [6.4160100e+05 1.2260640e+03 9.4986220e+02 8.7707200e+02 6.1777170e+02] [6.4320400e+05 1.2215070e+03 9.6169440e+02 8.8910640e+02 6.3644980e+02] [6.4480900e+05 1.1049984e+03 8.8394240e+02 7.9411200e+02 5.7744390e+02] [6.4641600e+05 1.0265184e+03 8.2116240e+02 7.5288480e+02 5.4752880e+02] [6.4802500e+05 1.0674900e+03 8.1525960e+02 7.6955940e+02 5.3403300e+02]

[6.4963600e+05 1.0045115e+03 8.0350740e+02 7.2957630e+02 5.3067050e+02]

[6.5124900e+05 1.0903488e+03 8.0452570e+02 7.7839790e+02 5.2218460e+02]

 $[6.5286400e+05\ 1.1576936e+03\ 9.0919730e+02\ 8.1098790e+02\ 5.7871680e+02]\ [6.5448100e+05\ 1.2811925e+03\ 9.7382250e+02\ 9.2562490e+02\ 6.3980280e+02]$

Using Numpy Function:

[[nan nan nan nan]

[6.4160100e+05 1.2260640e+03 9.4986220e+02 8.7707200e+02 6.1777170e+02]
[6.4320400e+05 1.2215070e+03 9.6169440e+02 8.8910640e+02 6.3644980e+02]
[6.4480900e+05 1.1049984e+03 8.8394240e+02 7.9411200e+02 5.7744390e+02]
[6.4641600e+05 1.0265184e+03 8.2116240e+02 7.5288480e+02 5.4752880e+02]
[6.4802500e+05 1.0674900e+03 8.1525960e+02 7.6955940e+02 5.3403300e+02]
[6.4963600e+05 1.0045115e+03 8.0350740e+02 7.2957630e+02 5.3067050e+02]
[6.5124900e+05 1.0903488e+03 8.0452570e+02 7.7839790e+02 5.2218460e+02]
[6.5286400e+05 1.1576936e+03 9.0919730e+02 8.1098790e+02 5.7871680e+02]
[6.5448100e+05 1.2811925e+03 9.7382250e+02 9.2562490e+02 6.3980280e+02]
[6.5610000e+05 1.4249325e+03 1.0518096e+03 9.8219400e+02 6.5904300e+02]]

Print("\n	Using Ope	erator:\n",	resultarray	y) resultai	rray=np.di	vide(dl,d2	e) print("\nUsing Numpy Function:\n",resultarray)
OUTPUT:							
Using Ope	erator:						
	[[nan	nan	nan	nan	nan]	
	[1.	1.511587	08 0.8130	4857 0.93	913613 1.	25011246	5]
	[1.	1.546975	09 0.8457	8885 0.94	458931 1.	22217353	3]
	[1.	1.614678	9 0.89710	099 0.998	58156 1.1	3759432]	
	[1.	1.5	0.833386	43 0.9089	6456 1.24	988055]	
[1.	1.593272	17 0.8165	9834 0.96 60207 0.99 82751 0.96	214566 1.	24134569] [1.	1.55088409 0.86149312 0.94879192 1.1976247] [1. 1.53753644 0.83844519 0.97571974 1.1870471] [1.
	[1.	1.546952	22 0.7929	709 0.997	45061 1.2	3506494]]]
Using Nui	mpy Funct	tion:					
	[[nan	nan	nan	nan	nan]	
	[1.	1.511587	08 0.8130	4857 0.93	913613 1.	25011246	5]

[1. 1.54697509 0.84578885 0.94458931 1.22217353] [1. 1.6146789 0.89710099 0.99858156 1.13759432] [1. 1.5 0.83338643 0.90896456 1.24988055] [1. 1.56704981 0.83109834 0.96633593 1.23198847] [1. 1.55088409 0.86149312 0.94879192 1.1976247] [1. 1.59327217 0.81650207 0.99214566 1.24134569] [1. 1.53753644 0.83844519 0.97571974 1.1870471] [1. 1.56304576 0.82532751 0.96132775 1.24382716] [1. 1.54695222 0.7929709 0.99745061 1.23506494]] HORIZONTAL STACKING Resultarray=np.hstack((dl,d2)) resultarray OUTPUT: $[802.\,,43.47,\,28.52,\,28.98,\,27.89,\,802.\,,\,28.1\,,\,33.72,\,30.68,\,22.82],\,[803.\,,\,42.24,\,32.92]$ 28.16, 28.16, 25.63, 803. , 26.16, 31.39, 28.2 , 22.53], [804. , 39.24, 26.16, 26.16, 26.16, 804. , 26.16, 31.39, 28.78, 20.93], [805. , 40.9 , 26.03, 27.27, 25.65, 805., 26.1, 31.32, 28.22, 20.82], [806., 39.47, 26.31, 26.31, 25.21, 806., 25.45, 30.54, 27.73, 21.05], [807., 41.68, 25.63, 27.79, 25.46, 807., 26.16, 31.39, 28.01, 20.51], [808., 42.19, 27.61, 28.13, 26.21, 808. , 27.44, 32.93, 28.83, 22.08], [809. , 44.75,

28.48, 34.18, 30.56, 22.23], [802., 28.1, 33.72, 30.68, 22.82], [803., 26.16, 31.39, 28.2, 22.53], [804., 26.16, 31.39, 28.78, 20.93], [805.,
26.1 , 31.32, 28.22, 20.82], [806. , 25.45, 30.54, 27.73, 21.05], [807. ,
26.16, 31.39, 28.01, 20.51], [808. , 27.44, 32.93, 28.83, 22.08], [809. ,
28.63, 34.35, 31.03, 22.68], [810. , 30.35, 36.42, 31.38, 23.1]])
RANGE
Arr1=np.arange(800,810,1)
Print(arr1)
ОИТРИТ:


```
1.22217353], [1., 1.6146789, 0.89710099, 0.99858156, 1.13759432]
1.5, 0.83338643, 0.90896456, 1.24988055], [1., 1.56704981, 0.83109834,
0.96633593, 1.23198847], [1., 1.55088409, 0.86149312, 0.94879192,
1.1976247], [1., 1.59327217, 0.81650207, 0.99214566, 1.24134569], [1.,
1.53753644, 0.83844519, 0.97571974, 1.1870471 ], [1., 1.56304576,
0.82532751, 0.96132775, 1.24382716, [1., 1.54695222, 0.7929709,
0.99745061, 1.23506494]])
ARITHMETIC OPERATIONS
# Addition print(np.add(dl,d2)) # Subtraction print(np.subtract(dl,d2))
# Multiplication print(np.multiply(dl,d2))
# Division print(np.divide(dl,d2))
```

OUTPUT:

[1602.	71.53	61.97	59.26	50.02]	
[1604.	71.57	62.24	59.66	50.71]	
[1606.	68.4	59.55	56.36	48.16]	
[1608.	65.4	57.55	54.94	47.09]	
[1610.	67.	57.35	55.49	46.47]	
[1612.	64.92	56.85	54.04	46.26]	
[1614.	67.84	57.02	55.8	45.97]	
[1616.	69.63	60.54	56.96	48.29]	
[1618.	73.38	62.7	60.86	50.89]	
[1620.	77.3	65.3	62.68	51.63]]	
[[nan	nan nan nan nan]				
[0.	14.57 -6.39 -1.86 5.56]				
[0.	15.37 -5	.2 -1.7 5.0	17]		

16.08 -3.23 -0.04 3.1]

[0.

[[nan nan

nan

nan

nan]

```
[ 0. 13.08 -5.23 -2.62 5.23]
```

- [0. 14.8 -5.29 -0.95 4.83]
- [0. 14.02 -4.23 -1.42 4.16]
- [0. 15.52 -5.76 -0.22 4.95]
- [0. 14.75 -5.32 -0.7 4.13]
- [0. 16.12 -6. -1.2 5.53]
- [0. 16.6 -7.54 -0.08 5.43]]
- [[nan nan nan nan nan]

[6.4160100e+05 1.2260640e+03 9.4986220e+02 8.7707200e+02 6.1777170e+02]

[6.4320400e+05 1.2215070e+03 9.6169440e+02 8.8910640e+02 6.3644980e+02]

 $[6.4480900e+05\ 1.1049984e+03\ 8.8394240e+02\ 7.9411200e+02\ 5.7744390e+02]$

[6.4641600e+05 1.0265184e+03 8.2116240e+02 7.5288480e+02 5.4752880e+02]

[6.4802500e+05 1.0674900e+03 8.1525960e+02 7.6955940e+02 5.3403300e+02]

[6.4963600e+05 1.0045115e+03 8.0350740e+02 7.2957630e+02 5.3067050e+02]

[6.5124900e+05 1.0903488e+03 8.0452570e+02 7.7839790e+02 5.2218460e+02]

[6.5286400e+05 1.1576936e+03 9.0919730e+02 8.1098790e+02 5.7871680e+02]

[6.5448100e+05 1.2811925e+03 9.7382250e+02 9.2562490e+02 6.3980280e+02]

[6.56100	00e+05 1.	.42493256	e+03 1.051	L8096e+03	3 9.8219400e+0	2 6.59	904300e+02]]
]]	nan	nan	nan	nan	nan]		
	[1.	1.51158	708 0.813	04857 0.9	3913613 1.250	11246]
	[1.	1.54697	509 0.845	78885 0.9	4458931 1.222	17353]
	[1.	1.61467	89 0.8971	0099 0.99	858156 1.1375	9432]	
	[1.	1.5	0.833386	643 0.908	96456 1.24988	055]	
[1.	1.593272	217 0.816	50207 0.9	9214566 1	1.23198847] [1. 1.24134569] [1. 1.24382716]		1.55088409 0.86149312 0.94879192 1.1976247] [1. 1.53753644 0.83844519 0.97571974 1.1870471] [1.
	[1.	1.54695	222 0.792	9709 0.99	745061 1.2350	6494]]	
STATISTIO	CAL OPERA	ATIONS					
# Standa	rd Deviati	on print(r	np.std(dl))				
#Minimu	ım print(n	p.min(dl)) #Summat	tion print(np.sum(dl))		

#Median print(np.median(dl))

#Mean

Print(np.mean(dl))
#Mode from scipy import stats
Print("Most Frequent element=",stats.mode(dl)[0]) print("Number of Occarances=",stats.mode(dl)[1])
Variance
Print(np.var(dl))
ОИТРИТ:
Nan nan nan nan nan
Most Frequent element= [[801. 39.24 25.63 26.16 25.21]]
Number of Occarances= [[1 1 1 1 1]] nan
<ip><ipython-input-56-da9861487e77>:13: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.</ipython-input-56-da9861487e77></ip>
Print("Most Frequent element=",stats.mode(dI)[0])
<ipython-input-56-da9861487e77>:14: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning. Print("Number of Occarances" state mode(d)\[11\]).</ipython-input-56-da9861487e77>