

- Understand the mission high level goals
- Identify mission drivers, if any
- Perform the mission functional analysis
- Identify its main phases
- Link phases to ConOps and functionalities
- Understand the on board scientific instruments primary utilisation:
 - Correlate goal-to payloads functions
 - Correlate p\l to conops\phases
- Start correlating functionalities-phases trajectory design (MA understanding)
- Start reverse the trajectory design per phase towards the Dv budget justification and retrieval.

DELIVERY

Format: document

pp: 7-8 max

- Understand the mission propulsion architecture
- Indentify the solutions for **primary and secondary** propulsion and clarify the rationale for the adopted design
- Find the rationale for and justify the selected propulsion type and architecture according to:
 - Operations\phases
 - \(\Delta \text{V} \) budget breakdown
- Understand and justify, through reverse sizing:
 - Propellant selection and masses
 - Tanks sizing (propellant\pressurant), number, material adopted
 - Pressurant selection and masses
 - Feeding strategy selection and sizing
 - No of thrusters
 - Positioning of thrusters in the configuration
 - Positioning of tanks and lines in the configuration

DELIVERY

Format: document

pp: 6-7 max

- Understand the mission TTMTC architecture
- Indentify the solutions for TTMTC subsystem and clarify the rationale for the adopted design
- Find the rationale for and justify the selected TTMTC type and architecture according to:
 - Operations\phases
 - Data volume to transfer space2ground
 - Understand and justify, through reverse sizing:
 - Frequency selection, datarate, band
 - Signal manipulation (encoding, modulation, etc)
 - Antenna selection, type, characteristics and numbers correlated to which frequency and for which data transfer
 - Ground station selection: where, which size\frequency\datarate
 - Amplifier selection
 - Contact strategy: contact windows duration and data volume transferred per contact (average)
 - Link budget U\D
 - Positioning of the antennae the configuration
 - Subsystem architecture

DELIVERY

Format: document

pp: 6 max

- Understand the mission AOCS architecture
- Indentify the solutions for AOCS subsystem and clarify the rationale for the adopted design
- Find the rationale for and justify the selected AOCS type and architecture according to:
 - Control mode
 - Pointing budget
 - 1 Offitting budget
 - Understand and justify, through reverse sizing:
 - Poiting budgets inputs for each subsystem involved: AKE, APE, drift, rates
 - Attitude sensor suite selection according to mode redundancy included
 - Attitude actuator suite selection according to mode
 - Attitude sensor sizing according to pointing knowledge needs, per mode
 - Disturbances effects, slew manuevers, per mode\phase
 - Attitude actuator sizing according to disturbances and requested slew maneuvers per mode (torque, angular momentum, thrust, dipole, etc) – redundancy included
 - Fuel mass sizing according to: attitude SK, maneuvers, desaturation, if any
 - Subsystem budgets: mass, power, data
 - Positioning of the sensors and actuators in the s\c configuration

DELIVERY

Format: document

pp: 6-7 max

- Understand the mission TCS solutions
- Indentify the solutions applied for the TCS subsystem and clarify the rationale for the adopted design
- Justify the selected TCS architecture according to:
 - External\internal thermal fluxes encountered along the mission phases
 - Requested temperature intervals to be respected on board
- Understand and justify, through reverse sizing:
 - Cold and hot case selection, along the whole mission
 - Adopted control strategy, passive &\or active (e.g.painting,blankets, strips,heaters, etc)
 - Selected materials and areas for passive control
 - Needed electric power for active control, if any
 - Units specifically controlled, if any
 - Subsystem budgets: mass, power, data
 - Positioning of the control components (e.g.surfaces, radiators, heaters, peltier, etc) in the s\c configuration
 - Imposed specific pointing direction for any passive control surface

DELIVERY

Format: document

pp: 6 max

- Understand the mission EPS solutions
- Indentify the solutions applied for the EPS subsystem and clarify the rationale for the adopted design
- Justify the selected EPS architecture according to:
 - Electrical Power&Energy requested by on board s\s in each mission phases
 - Operational profiles and available sources (i.e. distance from the Sun, Aspect angle, etc)
- Understand and justify, through reverse sizing:
 - Power budget supplied per phase\mode per subsystem
 - Primary source selection and sizing: area\configuration, mass, power demand, #, topology (if applicable), conversion efficiency
 - Secondary source selection and sizing (if any): mass, #, size, energy density, topology, DOD
 - Primary source regulation adopted strategy
 - Bus regulation adopted strategy
 - Subsystem budgets: mass, power, volume, data
 - Positioning of the components in the s\c configuration: PV arrays\wings, battery packages, RTGs
 - specific pointing direction requirements

DELIVERY

Format: document

pp: 6 max

DELIVERY

Format: document

pp: 3 max

- Understand the configuration of the space segment
- Understand and justify, through reverse sizing:
 - the overall vehicle shape and appendages distribution according to their operational needs and technical requirements
 - The launcher interface location and featuresand the vehicle configuration when in the launcher fairing
 - the distribution of the elements on the external surface: location, distance\proximity with other components, direction of the FOV, pointing needs, shadowing, etc. according to their operational requisites and constraints
 - the distribution\location of the internal elements with respect to their functionality and operational requisites and constraints: CoM balancing, thermal dissipation

- Understand the OBDH subsystem desing for the mission
- Identify and describe the adopted architecture in terms of:
 - OBDH components
 - OBDH adopted bus
- Justify the selected OBDH through reverse engineering sizing according to:
 - OBC features as frequency and throughputs by similarity
 - On board memory size

DELIVERY

Format: document

pp: 4 max