

RAZONAMIENTO LOGICO MATEMATICO

DOCENTE: Eliseo Velasquez Condori

Actividad:

- -Sucesiones
- -Series
- -Sumatorias
- -Inducción

Alumno:

Josue Gabriel Sumare Uscca

EJERCICIOS

1.-) Calcular las sumas

a.-)
$$\sum_{i=1}^{8} \sqrt{i+1} - \sqrt{i}$$

b.-)
$$\sum_{k=1}^{60} k(k-1)^2$$

$$\frac{100}{100} = \frac{100}{100} =$$

2.-) Calcule los primeros siete términos de la sucesión cuyo término n-ésimo es

$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

2) Calcule les primeres. I termines de la sucesión auyo termino n-esimoes an=1 $(1+\sqrt{5})^2-1$ $(1+\sqrt{5})^2-$

Inample de Pascal

Aplicando sob estas presbas

se prede ves la tendensia de crezamente

que es la mama a la detiboracci

que es la

3.-) La siguiente tabla muestra el saldo en diciembre para cada año desde 1996 hasta 2000, en una cuenta de ahorros a una tasa compuesta fija

1	Año	1996	1997	1998	1999	2000
S	aldo	20,000	22,000	24,200	26,620	29,282

a.-) Los saldos forman una sucesión geométrica. ¿Cuál es el valor de r?

Los saldos forman unasucesión geométrica. d'Cuales el valorder?

$$a_{n \mid n_{m}} = r$$
 $a_{2 \mid n_{m}} = r$
 $r = 2/2 p p \mid 20 q p \mid$

b.-) Escriba una fórmula para el saldo en la cuenta n años después de diciembre de 1996

Escriba una formula para el saldo en la cuenta n años des pues
de diciembre de 1996

Sn =
$$\alpha_1$$
 ($\tau^{n+1} - 1$)

1998 α_2 $f(x) = 20000 ((1,1) - 1)$

1,1 = τ

c.-) Determine la suma de los saldos de diciembre desde 1996 hasta 2006 inclusive

Usando la anterior fonción

$$a_0=1996$$
 $a_1=1998$
 $a_2=1998$
 $a_1=2006$
 $a_1=2006$

4.-) resolver

a.-) El quinto y el noveno términos de una sucesión aritmética son -5 y -17, respectivamente. Determinar el primer término y una regla recursiva para el n-ésimo término.

$$a_{5} = a_{6} = a_{7} = a_{8} = a_{9}$$

$$-5 = -5.7 = -5.21 = 5.35 = -5.44$$

$$a_{9} = -5.44$$

$$a_{9} = -17$$

$$a_{7} = -12$$

$$a_{7} = -3$$

$$a_{5} = a_{1} + (n-3)^{7}$$

$$-6 = a_{1} + (5-1)-3$$

$$-5 = a_{1} + (5-1)-3$$

$$a_{7} = a_{14}$$

$$a_{1} = a_{14}$$

$$a_{1} = a_{14}$$

$$a_{1} = a_{14} = a_{14}$$

$$a_{2} = a_{2} = a_{2} = a_{3}$$

$$a_{1} = a_{2} = a_{3} = a_{2} = a_{3}$$

$$a_{1} = a_{2} = a_{3} = a_{3} = a_{3} = a_{3}$$

$$a_{2} = a_{2} = a_{3} = a_{3} = a_{3} = a_{3}$$

$$a_{3} = a_{2} = a_{3} = a$$

b.-) Determine si la $\sum_{n=1}^{\infty} 7(3/4)^n$ converge

b) Determina si la serie
$$\frac{3}{4}$$
 7 (34) converge :

 $\frac{3}{4}$ C n^{2}
 $\frac{3}{4}$ C

5.-) inducción matemática el miércoles