Michael Vasmer

Curriculum vitae

_			
	peri	00	
_ X	ı 1 ← r ı	-1	11 1
		\sim	\sim

- 2025-present Inria Starting Faculty Position, Inria Paris
 - 2023–2024 Senior Quantum Architecture Scientist, Xanadu Quantum Technologies Inc.
 - 2022–2024 Research Scientist, Perimeter Institute for Theoretical Physics
 - 2022–2023 Quantum Error Correction Researcher, Xanadu Quantum Technologies Inc.
 - 2021–2022 Independent Contractor, Xanadu Quantum Technologies Inc.
 - 2019–2022 **Postdoctoral Fellow**, Perimeter Institute & Institute for Quantum Computing Mentors: Raymond Laflamme and Daniel Gottesman

Education

- 2016–2019 Ph.D. Quantum Computing, University College London
 - Thesis: Fault-tolerant quantum computing with three-dimensional surface codes.
 - Supervisor: Dan Browne.
- 2015–2016 M.Res. Quantum Technologies, *University College London*, Distinction
 - Dissertation: Swapping between color codes and surface codes.
 - Supervisor: Dan Browne.
- 2011–2015 **M.Sci. Natural Sciences**, *Durham University*, First Class Honours Specialised in Physics and Computer Science.

Funding

- 2021 Making noisy quantum processors practical: From theory to applications, Natural Sciences and Engineering Research Council of Canada & Innovate UK, C\$330k + £300k Co-principal investigator. I co-authored the grant proposal and I lead the research program on the Canadian side of the grant.
- 2021–2022 **IonQ Academic Research Credits Program**, \$20k I secured funding for running experiments on IonQ's trapped-ion quantum computers.

Publications

- [1] B. W. Walshe, B. Q. Baragiola, H. Ferretti, J. Gefaell, M. Vasmer, R. Weil, T. Matsuura, T. Jaeken, G. Pantaleoni, Z. Han, T. Hillmann, N. C. Menicucci, I. Tzitrin, and R. N. Alexander, "Linear-optical quantum computation with arbitrary error-correcting codes," *Phys. Rev. Lett.* **134** (Mar, 2025) 100602, arXiv:2408.04126.
- [2] H. Aghaee Rad et al., "Scaling and networking a modular photonic quantum computer," Nature

- (Jan., 2025) 1-8.
- [3] E. Sabo, L. G. Gunderman, B. Ide, M. Vasmer, and G. Dauphinais, "Weight-Reduced Stabilizer Codes with Lower Overhead," *PRX Quantum* **5** no. 4, (Oct., 2024) 040302, arXiv:2402.05228.
- [4] D. Honciuc Menendez, A. Ray, and M. Vasmer, "Implementing fault-tolerant non-Clifford gates using the [[8,3,2]] color code," *Phys. Rev. A* **109** no. 6, (June, 2024) 062438, arXiv:2309.08663.
- [5] J. C. Bridgeman, A. Kubica, and M. Vasmer, "Lifting Topological Codes: Three-Dimensional Subsystem Codes from Two-Dimensional Anyon Models," *PRX Quantum* **5** no. 2, (Apr., 2024) 020310, arXiv:2305.06365.
- [6] G. Dauphinais, D. W. Kribs, and M. Vasmer, "Stabilizer Formalism for Operator Algebra Quantum Error Correction," Quantum 8 (Feb., 2024) 1261, arXiv:2304.11442.
- [7] A. O. Quintavalle, P. Webster, and M. Vasmer, "Partitioning qubits in hypergraph product codes to implement logical gates," *Quantum* **7** (Oct., 2023) 1153, arXiv:2204.10812.
- [8] E. Huang, A. Pesah, C. T. Chubb, M. Vasmer, and A. Dua, "Tailoring three-dimensional topological codes for biased noise," *PRX Quantum* **4** (Sep. 2023) 030338, arXiv:2211.02116.
- [9] J. Huang, S. M. Li, L. Yeh, A. Kissinger, M. Mosca, and M. Vasmer, "Graphical CSS code transformation using ZX calculus," in *Proceedings of the Twentieth International Conference on Quantum Physics and Logic (QPL 2023)*, vol. 384 of *Electronic Proceedings in Theoretical Computer Science*, pp. 1–19. August, 2023. arxiv:2307.02437.
- [10] A. Kubica and M. Vasmer, "Single-shot quantum error correction with the three-dimensional subsystem toric code," *Nat. Commun.* **13** no. 1, (Oct., 2022) 6272, arXiv:2106.02621.
- [11] T. R. Scruby, M. Vasmer, and D. E. Browne, "Non-Pauli errors in the three-dimensional surface code," *Phys. Rev. Research* **4** no. 4, (Oct., 2022) 043052, arXiv:2202.05746.
- [12] H. Chen, M. Vasmer, N. P. Breuckmann, and E. Grant, "Automated discovery of logical gates for quantum error correction," *Quantum Inf. Comput.* no. 11&12, (Sept., 2022) 0947–0964, arXiv:1912.10063.
- [13] M. Vasmer and A. Kubica, "Morphing quantum codes," *PRX Quantum* **3** no. 3, (Aug., 2022) 030319, arXiv:2112.01446.
- [14] T. R. Scruby, D. E. Browne, P. Webster, and M. Vasmer, "Numerical implementation of just-in-time decoding in novel lattice slices through the three-dimensional surface code," *Quantum* 6 (May, 2022) 721, arXiv:2012.08536.
- [15] P. Webster, M. Vasmer, T. R. Scruby, and S. D. Bartlett, "Universal fault-tolerant quantum computing with stabilizer codes," *Phys. Rev. Research* 4 no. 1, (Feb., 2022) 013092, arXiv:2012.05260.
- [16] A. O. Quintavalle, M. Vasmer, J. Roffe, and E. T. Campbell, "Single-shot error correction of three-dimensional homological product codes," *PRX Quantum* 2 no. 2, (June, 2021) 020340, arXiv:2009.11790. Editors' suggestion.

- [17] J. E. Bourassa, R. N. Alexander, M. Vasmer, A. Patil, I. Tzitrin, T. Matsuura, D. Su, B. Q. Baragiola, S. Guha, G. Dauphinais, K. K. Sabapathy, N. C. Menicucci, and I. Dhand, "Blueprint for a scalable photonic fault-tolerant quantum computer," *Quantum* 5 (Feb., 2021) 392, arXiv:2010.02905.
- [18] M. Vasmer, D. E. Browne, and A. Kubica, "Cellular automaton decoders for topological quantum codes with noisy measurements and beyond," *Sci. Rep.* **11** no. 1, (Jan., 2021) 2027, arXiv:2004.07247.
- [19] M. Vasmer, Fault-tolerant quantum computing with three-dimensional surface codes. PhD thesis, University College London, Dec., 2019.
- [20] M. Vasmer and D. E. Browne, "Three-dimensional surface codes: Transversal gates and fault-tolerant architectures," *Phys. Rev. A* **100** no. 1, (July, 2019) 012312, arXiv:1801.04255.

Preprints

- [1] A. Ray, E. Swaroop, N. Cao, M. Vasmer, and A. Chowdhury, "Quasiprobabilistic imaginary-time evolution on quantum computers," arXiv:2505.06343.
- [2] P. J. Nadkarni, S. Adonsou, G. Dauphinais, D. W. Kribs, and M. Vasmer, "Unified and Generalized Approach to Entanglement-Assisted Quantum Error Correction," arXiv:2411.14389.
- [3] T. Hillmann, G. Dauphinais, I. Tzitrin, and M. Vasmer, "Single-shot and measurement-based quantum error correction via fault complexes," arXiv:2410.12963.

Invited talks

- Jul 2024 Implementing fault-tolerant non-Clifford gates using color codes
 International Conference on Atomic Physics 2024 Satellite Workshop, University of Sussex,
 Brighton, UK
- May 2024 Weight Reduced Stabilizer Codes with Lower Overhead Canadian Association of Phylicists Congress, London ON, Canada
- Mar 2024 Weight Reduced Stabilizer Codes with Lower Overhead
 Yukawa Institute for Theoretical Physics Error Correction Workshop, Kyoto, Japan
- Nov 2023 Fault-tolerant quantum computation beyond the surface code
 Quantum Innovators Workshop, Waterloo ON, Canada
- Jun 2023 Fault-tolerant quantum computation with topological subsystem codes
 International Workshop on General-Purpose Quantum Computing and Information Theory,
 Institute of Theoretical Physics, Chinese Academy of Sciences (online)
- Mar 2023 **3D subsystem codes from 2D topological codes**APS March Meeting, Las Vegas NV, USA
- Oct 2022 Fault-tolerant quantum computing in the age of "good codes" Q-SITE Conference, Toronto ON, Canada

Jul 2022	Single-shot quantum error correction: Part II IBM Quantum Error Correction Summer School, Tarrytown NY, USA		
	Contributed talks & seminars		
May 2025	Fault-tolerant transformations of spacetime codes Quandela, Massy, France		
Apr 2025	Non-Clifford gates in $(2+1)$ -dimensions and just-in-time decoding Yale University, New Haven CT, USA		
Apr 2025	Review of recent progress in constructing codes with transversal non-Clifford		
	gates Perimeter Institute, Waterloo ON, Canada Yale University, New Haven CT, USA		
2025	Teleporting quantum errors: Knill error correction in the era of modern quantum processors		
	University of Guelph, Guelph ON, Canada International Conference on Quantum Computing, Paris, France		
2025	Single-shot and measurement-based quantum error correction via fault		
	complexes NISQ2LSQ workshop, L'université d'Aix-Marseille, Marseille, France QIP 2025, Raleigh NC, USA		
May 2024	Overview of quantum error correction with a view on machine learning		
	opportunities Future Horizons: Bridging AI, Quantum and New Materials workshop, Montréal QC, Canada		
May 2024	Quantum error correction with constant time overhead		
	Quantum Spain seminar (online), Recoding: https://youtu.be/HXuIFxHMmZg		
Apr 2024	Weight Reduced Stabilizer Codes with Lower Overhead Quandela, Massy, France		
2024	Implementing fault-tolerant non-Clifford gates using the [[8,3,2]] color code IBM Quantum Information Technical Exchange colloquium (online) Alice & Bob (online)		
Dec 2023	Decoding the 3D subsystem toric code Inria Paris, France		
Dec 2023	Photonic quantum computation beyond the surface code Télécom Paris, France		
May 2022	Fault-tolerant quantum computation beyond the surface code QuEra Computing (online)		

2022 **Morphing quantum codes** Riverlane, Cambridge, UK

APS March Meeting, Chigaco IL, USA

2021 Single-shot quantum error correction with the 3D subsystem toric code

Cambridge Quantum Computing, UK

University College London, UK

Freie Universität Berlin (online), Recording: https://youtu.be/idmrNQy09Aw

2021 Locally unencoding the color code

TQC 2021 (online), Recording: https://youtu.be/jUY0jC9Z68g 1QB Information Technologies (online)

2020 Cellular automaton decoders for toplogical codes with noisy measurements and beyond

Quantum Code Design and Architecture seminar (online) Université de Sherbrooke, Sherbrooke QC, Canada

Mar 2019 Cellular automaton decoder for topological codes with boundaries

APS March Meeting, Boston MA, USA

Quantum Code Design and Architecture kick-off meeting, Paris, France

2018 Quantum computing with 3D surface codes

Perimeter Institute, Waterloo ON, Recording: https://doi.org/10.48660/18110080 Quantum Roundabout 2018, Nottingham, UK Northern Quantum meeting, Durham, UK

Awards

- Aug 2019 Poster Prize, 5th International Conference on Quantum Error Correction, London UK
- Sep 2017 Prize for outstanding performance in the MRes in Quantum Technologies, University College London
- Jun 2012 Outstanding Achievement Prize, Durham University Physics Department

Supervision

- 2021–2024 Supervised one PhD student and one master's students at the University of Waterloo for projects on quantum error correction and quantum error mitigation (resulted in preprint [1]).
- Summer 2022 Supervised two undergraduate students for projects on quantum error correction and quantum error mitigation (resulted in publication [4]).
- Summer 2021 Supervised a Perimeter Scholars International master's student for his thesis (resulted in publication [8]).

Teaching

Winter 2024 Graduate course at the University of Waterloo on quantum error correction and fault tolerance. Five (three-hour) lectures on quantum LDPC codes and fault-tolerant quantum computation and assessment of students' final projects. Course website: https://www.math.uwaterloo.ca/~wcleung/qic890-w2024.html.

- Winter 2022 Graduate course at the University of Waterloo on quantum error correction and fault tolerance. Six (one-hour) lectures on fault-tolerant quantum computation and assessment of students' final projects. Course website: https://www.math.uwaterloo.ca/~wcleung/co781-w2022.html.
 - 2017–2019 Delivered tutorials on quantum technologies to master's students at University College London. Total: 12 hours.

Community contributions

- Apr 2025 Thesis examiner: The locality of quantum codes by Nouédyn Baspin, University of Sydney, Australia.
- Sep 2025 Organiser: Quantum error correction meets ZX-calculus workshop (Dagstuhl, Germany).
- 2025-present Organiser: QASAR (Quantum Architectures, Small And Reliable) online seminar series.
 - 2024, 2026 Organiser: Fault-tolerant quantum technologies workshop (Benasque, Spain).
 - 2022, 2024 Program committee member: Quantum Computing Theory in Practice workshop.
 - 2022 Organiser: Workshop on industrial quantum error mitigation (London, UK).
 - 2020–2022 Organiser: Perimeter Institute quantum information seminar.
 - 2017 Organiser: QCumber 2017 student conference (Windsor, UK).
- 2020-present Reviewer for scientific journals (number of reviewed articles in brackets):
 - O ACM Transactions on Quantum Computing (1)
 - O Nature (3)
 - Nature Physics (2)
 - o npj Quantum Information (1)
 - Physical Review Letters (3)
 - Physical Review X (2)
 - PRX Quantum (7)
 - O Quantum (6)

2021-present Reviewer for academic conferences:

- Conference on Quantum Information Processing (QIP)
- Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC)
- IEEE International Symposium on Information Theory (ISIT)
- IEEE Information Theory Workshop (ITW)

Equity, diversity and inclusion (EDI)

- 2022–2023 Member: Institute for Quantum Computing EDI committee.
- 2017–2019 PhD tutor, The Brilliant Club (https://thebrilliantclub.org).

 Delivered university-style tutorials about quantum computing to students at low-participation schools. Designed my own course over multiple placements.

Computer skills

Software Programming languages: Python, C++, Julia, GAP, Mathematica.

development Source control: Git, GitHub.

Quantum Experience running quantum circuits on superconducting and trapped-ion quantum

computers comptuers over the cloud, see publication [4].

High- Experience with multiple supercomputing clusters, including the Digital Research

performance Alliance of Canada systems, see publications [3, 5, 10, 11, 14, 16, 17, 18].

computing

Media Coverage

Jan 2025 Lighting up the quantum computing horizon with Aurora, Xanadu press release.

Jan 2024 Quantum computing is taking on its biggest challenge: noise, MIT Technology Review.

May 2021 Phasecraft kicks off Innovate UK-Canada project, Phasecraft press release.

Mar 2021 When physicists consult, Perimeter Institute press release.

Oct 2020 From a state of light to state of the art: the photonic path to millions of qubits, Xanadu press release.

Personal details

Date of birth January 19th 1993

Citizenship United Kingdom, Canada

Languages English (native), Welsh (native), French (B1), German (A2).

References

Available on request.