РАЗРАБОТКА РОБОТА-САНИТАЙЗЕРА НА ОСНОВЕ ПРОГРАММИРУЕМОГО КОНТРОЛЛЕРА ARDUINO PRO MINI С ВОЗМОЖНОСТЬЮ МОНИТОРИНГА ДАННЫХ ЧЕРЕЗ КРОССПЛАТФОРМЕННОЕ ПРИЛОЖЕНИЕ

Е.И. Червинко, М.А. Гордеев

Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича

работе представлена разработка робота-санитайзера основе возможностью мониторинга программируемого контроллера \boldsymbol{c} данных через кроссплатформенное приложение. Идея разработки робота-санитайзера в озникла в марте 2020 года в связи с наступлением пандемии коронавируса. За основу корпуса был взят диспенсер для воды, в который была помещена сборка, состоящая:из бака для дезинфицирующей жидкости, насоса и системы впрыска дезинфицирующей жидкости в камеру, аудиомодуля, усилителя динамиков, ориентированных и сопровождение инструкциями по обработке рук, датчиков наличия жидкости в баке, датчика открытия дверцы технического отсека, датчика движения, оптического датчика наличия руки в дезинфекционной камере, светодиодной RGB матрицы для визуального сопровождения, аккумулятора с блоком питания, а так же WIFI-модуля для отправки данных в сеть интернет.

. В нижней части конструкции был установлен контейнер для спиртосодержащей жидкости, а далее от него были проведены трубки к плафону для подачи жидкости на руки. Для контроля за количеством жидкости, уровнем заряда и количеством распылений дезинфектора было разработано кроссплатформенное приложение на базе для смартфонов на операционной системе Android.

Разработка электроники, робототехника, Arduino, кроссплатформенное приложение.

Введение

дезинфицирующими Актуальность обработки рук жидкостями приобрела особое последнее значение. разработки время Илея роботизированного устройства появилась в марте 2020 года и была воплощена в жизнь к концу 2021 года. Робот-санитайзер (рис. 1) состоит из трёх основных частей: нижняя часть – расположение контейнера для подачи дезинфицирующей жидкости; средняя часть – расположение электронных компонентов (внутри), а так же RGB-лампы (снаружи); верхняя часть – расположение плафона с отверстием для помещения рук, а также трубками подающими дезинфицирующую жидкость.

Главными особенностями робота-санитайзера являются:

1) Нанесение дезинфицирующей жидкости в виде аэрозоля и подача его под давлением в камеру. Данная особенность позволяет удобно наносить не загущенный антисептик;

- 2) Автоматическое распыление. При помещении руки в камеру дезинфекции, будет произведено распыление дезинфицирующей жидкости, сопровождаемое голосовыми инструкциями.
- 3) Возможность ведения статистики в сети. Санитайзер автоматически отправляет данные о заряде аккумулятора, наличии жидкости в баке, количестве произведенных операций по дезинфекции рук в специально отведенное облако, а эти данные можно всегда посмотреть в специально разработанном приложении.
- 4) Голосовое сопровождение. Все операции, выполняемые с дезинфектором, сопровождаются голосовыми инструкциями со световой индикацией.
- 5) Система безопасности. В случае несанкционированного доступа к внутренностям робота, прозвучит предостерегающее голосовое сообщение, которое сопровождается световой индикацией красного цвета.
- 6) Возможность работать как в автономном режиме(от аккумулятора), так и от сети 220 вольт.
- 5) Индикация уровня заряда и жидкости. При низком уровне заряда или жидкости, после завершения дезинфекции, робот оповестит об этом, а также отправит push-уведомление на устройства, где установлено специальное приложение.

Робот-санитайзер предназначен обеспечения ДЛЯ возможности бесконтактного нанесения жидкого дезинфицирующего вещества простой поверхность кистей рук. Помимо дозации антисептика, робот-санитайзер является интеллектуальной системой различными сценариями поведения.

Устройство включает в себя: аккумулятор, устройство зарядки, емкость для антисептика, насосный блок, форсунки для распыления, управляющий блок, элементы индикации и датчики. Робот реагирует на кисть руки, помещенную в камеру распыления, активируется насосный блок и подает жидкость под давлением 2 атмосферы к форсункам в камере. Характеристики устройства представлены на рис. 2. Краткий сценарий работы устройства: поочерёдное помещение рук в вертикальную камеру дезинфекции с последовательным распылением жидкости.

Рис.1 Робот-санитайзер

Габариты:	1200х300х300 мм
Масса устройства:	22 кг
Рабочее напряжение насосной системы:	12 вольт
Рабочее напряжение управляющей системы:	5 вольт
Емкость аккумулятора:	7 Ач
Автономность работы:	от 7 дней
Рабочее давление жидкости в насосной системе:	<3 атм
Объем емкость для антисептика:	4 литра (4600 доз)

Рис. 2 Технические характеристики устройства

В начале разработки была поставлена задача выбрать необходимые модули и датчики, и сделать принципиальную схему подключения всех модулей. В конечном счете в проекте используются:

- 1) Датчик уровня жидкости
- 2) ИК-датчик движения
- 3) <u>ИК-датчик расстояния Sharp</u>
- 4) RGB-матрица(кольцо) из 16 RGB светодиодов
- 5) Arduino Pro Mini
- 6) Аудио модуль WT5001M02
- 7) Регулируемый понижающий DC-DC преобразователь
- 8) АКБ 12в 7.2Ач
- 9) Отладочная плата WeMos D1 Mini
- 10) Аудио усилитель ТDA7266

Также были самостоятельно спроектированы схемы для:

- 1) Датчика напряжения аккумулятора на делителе напряжения
- 2) MOSFET-сборки ключа на IRF540NPBF
- 3) Защиты от короткого замыкания и переполюсовки на входе питания

После приобретения необходимых модулей и радиодеталей начался процесс разработки печатной платы прототипа.

Проектирование платы проводилось в программе Sprint Layout, изготовлена плата была по технологии ЛУТ на одностороннем фольгированном текстолите и была протравлена раствором хлорного железа(FeCl₃).

После просверливания отверстий для контактов и непосредственной пайки радиокомпонентов, была успешно проведена проверка работоспособности всех модулей на работоспособность.

При подаче питания на контроллер начинается процесс инициализации GPIO-контактов, Serial-шины(UART), а также в случае открытой двери на непродолжительный промежуток времени подает на MOSFET-сборку напряжение, тем самым запуская гидронасос. Нужно это для того, чтобы дезинфицирующая жидкость прошла до форсунок при первом запуске устройства;после длительного застоя жидкости в трубках; после замены дезинфицирующей жидкости на новую. Далее выполняется проверка наличия жидкости с помощью соответствующего датчика. При наличии жидкости датчик подает на цифровой вход логическую единицу(5 вольт).

АУДИОМОДУЛЬ

Общение между ардуино и аудио модулем происходит с помощью протокола UART. Последовательно отправляется информация байтами по такому алгоритму:

Start code	Length	Opcode	Parameter	End code
0X7E	See below	See below	See below	0X7E

На самом аудио модуле должна быть вставлена microSD-карта, в которой должны находиться звуковые mp3-файлы команд, воспроизводимых роботом.

В зависимости от последовательности загрузки файлов на sd-карту, каждому присваивается свой номер. Впоследствии мы можем воспроизводить аудио-файлы с помощью отправки через uart вот такой последовательности байтов:

6.2.2 Specify the files in SD card to playback

This command can specify the files in SD card to playback, it doesn't effect by the order of files stored.

Start code	Length	Command	High bit of songs	Low bit of songs	End code
7E	04	A0	00	01	7E

, где High bit of songs - старшие 2 бита аудиофайла; Low bit of songs - младшие.

Последовательность для остановки воспроизведения аудиофайлов:

6.2.6 **Stop**

Start code	Length	Command	End code
7E 02		A4	7E

Sending the command to stop the current song.

У аудио модуля присутствует вывод, который называется BUSY. В случае если в данный момент происходит воспроизведение аудиофайла, на этот контакт BUSY будет посылаться лог.единица, в противном случае ноль.

Связь BUSY с цифровым входом на Arduino дает нам возможность проверять воспроизводится ли что-то в данный момент или нет. в сборке робота BUSY подключен к контакту D2 на Arduino. Выходной сигнал с аудио модуля через усилитель поступает на 2 динамика, из-за чего и воспроизводится звук.

Разработка кроссплатформенного приложения для контроля за параметрами устройства

Итог

Список используемых источников

- 1. Корпорация Майкрософт, *Microsoft Docs*. Техническая документация, материалы по API и примеры кода // *UML*: https://docs.microsoft.com/
- 2. Гордеев М. А. Репозиторий исходного кода проекта «ГУТ.Расписание» на интернет-ресурсе *GitHub* // *UML*: https://github.com/xfox111/GUTSchedule