Analysis I, Exercise 13

David Schmitz

Task 1

- 1. Prove that for every bounded domain $\mathbb{D} \subset \mathbb{C}$, there exists a sequence of polynomial functions $p_n : \mathbb{D} \to \mathbb{C}$ that converges uniformly to the exponential function on \mathbb{D} .
- 2. Does there also exist a sequence of polynomials on \mathbb{C} that converges uniformly to the exponential function? Additionally, is there a sequence of continuous functions with this property?

Solution.

1. Let $p_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$ and C > 0. Then I = [-C, C] is compact and the sequence $(p_n(x))_{n \in \mathbb{N}}$ converges pointwise to $\exp(x)$ by definition.

We claim that the sequence even converges uniformly to $\exp(x)$ on I.

Let $\varepsilon > 0$. Our goal is to find an $N \in \mathbb{N}$ such that $|\exp(x) - p_n(x)| < \varepsilon$ for all $n \ge N$ and $x \in I$.

Define
$$a_n = \frac{C^k}{k!}$$
, so that $\exp(C) = \sum_{k=0}^{\infty} a_k$. Note that $\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{C^{k+1}/(k+1)!}{C^k/k!} \right| = \left| \frac{C}{k+1} \right| < 1$ for $k > |C|$, so $\left(\sum_{k=0}^{n} a_k \right)_{n \in \mathbb{N}}$ converges absolutely to $\exp(C)$ by the quotient criterion.

Hence, there is some $N \in \mathbb{N}$ such that $\sum_{k=n+1}^{\infty} |a_k| < \varepsilon$ for all $n \ge N$. Let now $x \in I$. Then $|x| \le C$ and for any $n \ge N$, we have by the triangle inequality,

$$|\exp(x) - p_n(x)| = \left| \sum_{k=n+1}^{\infty} \frac{x^k}{k!} \right|$$

$$\leq \sum_{k=n+1}^{\infty} \left| \frac{x^k}{k!} \right| = \sum_{k=n+1}^{\infty} \frac{|x|^k}{k!}$$

$$\leq \sum_{k=n+1}^{\infty} \frac{C^k}{k!} < \varepsilon.$$

Hence, $(p_n)_{n\in\mathbb{N}}$ converges uniformly to exp on I.

Finally, we note that \mathbb{D} is bounded. Thus, we can simply take some sufficiently large C with $\mathbb{D} \subseteq [-C, C]$ and we deduce that $(p_n)_{n \in \mathbb{N}}$ also converges uniformly to exp on the subdomain \mathbb{D} .

2. We claim there there is no sequence of polynomials on $\mathbb C$ that converges uniformly to the exponential function.

Assume $(p_n)_{n\in\mathbb{N}}$ were a sequence of polynomials converging uniformly to exp over \mathbb{C} . Take $\varepsilon=1$. By uniform convergence, there is some $N\in\mathbb{N}$ such that $|p_n(x)-\exp(x)|<1$ for all $n\geq N$ and $x\in\mathbb{C}$.

In particular, we have $\exp(x) - p_N(x) < 1$ for all $x \in \mathbb{R}$.

Let $m = \deg(p_N)$ and $a_0, a_1, \ldots, a_m \in \mathbb{C}$ be the coefficients of p_N with $p_N(x) = \sum_{k=0}^m a_k x^k$.

Assume x > 1. Then

$$p_N(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$$

$$\leq a_0 x^m + a_1 x^m + \dots + a_m x^m = (a_0 + a_1 + \dots + a_m) x^m.$$

Hence, there is some constant $C = a_0 + a_1 + \cdots + a_m$ such that $p_N \leq Cx^m$ for all x > 1. However, we also have

$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} > \frac{x^{m+1}}{(m+1)!}$$

for all $x \in \mathbb{R}^+$. All in all, we obtain

$$\frac{x^{m+1}}{(m+1)!} < \exp(x) < 1 + p_N(x) \le Cx^m$$

for all x > 1, or, equivalently, x < C(m+1)!.

Since the only restriction is x > 1, we can simply take x sufficiently large to arrive at a contradiction.

However, there exist sequences of continuous functions converging to $\exp: \mathbb{C} \to \mathbb{C}$, for example the constant sequence $(\exp)_{n \in \mathbb{N}}$.

Task 2

1. Let $a, b, c \in \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ be a function fulfilling

$$a + bx - cx^2 < f(x) < a + bx + cx^2,$$

for all $x \in \mathbb{R}$. Show that f is differentiable at x = 0 and f'(0) = b.

2. Show that the function $f: \mathbb{R} \to \mathbb{R}$,

$$x \mapsto \begin{cases} x^2 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

is differentiable in x = 0 and calculate its derivative at zero.

Solution.

1. Define g(x) = f(x) - a - bx. Then by assumption,

$$g(x) = f(x) - a - bx \ge a + bx - cx^2 - a - bx = -cx^2,$$

$$g(x) = f(x) - a - bx \le a + bx + cx^2 - a - bx = cx^2.$$

In particular, for x=0, we have $0 \le g(x) \le 0$, so g(0)=0 and f(0)=a. In addition, for x=1, we get $-c \le g(1) \le c$, so $c \ge 0$.

With $c \ge 0$, it now follows that $-cx^2 \le g(x) \le cx^2 \implies |g(x)| \le cx^2$ for all $x \in \mathbb{R}$.

Our goal is to show that $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$ exists and that it equals b.

If c = 0, then $|g(x)| \le 0$ for all x, so g(x) = 0 and f(x) = a + bx for all x. Then we simply calculate

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{a + bx - a - b \cdot 0}{x} = \lim_{x \to 0} b = b,$$

as desired.

Now assume c > 0.

Let $\varepsilon > 0$. Choose $\delta = \frac{\varepsilon}{c} > 0$. Then for all $x \neq 0$ with $|x| < \delta$, we have

$$\frac{f(x) - f(0)}{x - 0} = \frac{a + bx + g(x) - a}{x} = b + \frac{g(x)}{x}.$$

Hence.

$$\left| \frac{f(x) - f(0)}{x - 0} - b \right| = \left| b + \frac{g(x)}{x} - b \right|$$

$$= \frac{|g(x)|}{|x|} \le \frac{cx^2}{|x|} = \frac{c|x|^2}{|x|}$$

$$= c|x| < c\delta = \varepsilon.$$

Therefore, $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = b$, so f is differentiable at x=0 and f'(0)=b.

2. We claim that $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{f(x)}{x} = 0$, which will imply that f is differentiable at 0 and f'(0) = 0.

Let $\varepsilon > 0$. Choose $\delta = \varepsilon$ and let $x \neq 0$ be such that $|x| < \delta$.

- $x \in \mathbb{R} \setminus \mathbb{Q}$: In this case, we simply have $\left| \frac{f(x)}{x} \right| = \left| \frac{0}{x} \right| = 0 < \varepsilon$.
- $x \in \mathbb{Q}$: In this case, we have $\left| \frac{f(x)}{x} \right| = \left| \frac{x^2}{x} \right| = |x| < \delta = \varepsilon$.

Hence, we have $\frac{f(x)}{x} < \varepsilon$ for all such x, so this fraction approaches 0 as $x \to 0$. Thus, $\lim_{x \to 0} \frac{f(x)}{x} = 0$ and f'(0) = 0.

Task 3

- 1. Show that the derivative of the logarithm is given by $\frac{1}{x}$.
- 2. Prove that for $a, b \in \mathbb{R}$ with 0 < a < b, it holds that

$$1 - \frac{a}{b} < \ln\left(\frac{b}{a}\right) < \frac{b}{a} - 1.$$

- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable with $f'(x) \neq 0$ for all $x \in \mathbb{R}$. How many roots can f have at most?
- 4. Find all differentiable functions $f: \mathbb{R} \to \mathbb{R}$ such that f'(x) = f(x) for all $x \in \mathbb{R}$.

Solution.

1. Let $f(x) = \ln(x)$ and $a \in \mathbb{R}$ be arbitrary. We claim that f is continuous at $x = \exp(a)$, i.e.

$$\lim_{x \to \exp(a)} \frac{f(\exp(a)) - f(x)}{\exp(a) - x} = \frac{1}{\exp(a)}.$$

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of positive real numbers distinct from $\exp(a)$ and with limit $\exp(a)$. Our goal is to show that $\lim_{n\to\infty}\frac{f(\exp(a))-f(a_n)}{\exp(a)-a_n}=\frac{1}{\exp(a)}$.

Since $a_n > 0$ for all n, we can define $b_n = \ln(a_n)$. Then since $x \mapsto \ln(x)$ is continuous (see (3.9)), it follows that

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \ln(a_n) = \ln\left(\lim_{n \to \infty} a_n\right) = \ln(\exp(a)) = a.$$

Then

$$\lim_{n \to \infty} \frac{f(\exp(a)) - f(a_n)}{\exp(a) - a_n} = \lim_{n \to \infty} \frac{\ln(\exp(a)) - \ln(\exp(b_n))}{\exp(a) - \exp(b_n)}$$
$$= \lim_{n \to \infty} \frac{a - b_n}{\exp(a) - \exp(b_n)} = \left(\lim_{n \to \infty} \frac{\exp(a) - \exp(b_n)}{a - b_n}\right)^{-1}.$$

Since $\lim_{n\to\infty} b_n = a$, it follows that the limit in parentheses equals $\exp'(a) = \exp(a)$. Hence,

$$\lim_{n \to \infty} \frac{f(\exp(a)) - f(a_n)}{\exp(a) - a_n} = \frac{1}{\exp(a)},$$

as desired.

Therefore, $x \mapsto \ln(x)$ is continuous at $x = \exp(a)$ for every a > 0 with $f'(x) = \frac{1}{\exp(a)} = \frac{1}{x}$. Since $\exp(\mathbb{R}) = \mathbb{R}^+$, this proves that $x \mapsto \ln(x)$ is continuous at every point x > 0 with derivative $\ln'(x) = \frac{1}{x}$.

2. Define $f(x) = \ln(x) - \left(1 - \frac{1}{x}\right)$, $g(x) = (x - 1) - \ln(x)$. If we let $x = \frac{b}{a} > 1$, then our problem is equivalent to showing f(x), g(x) > 0 for all x > 1. Note that $f(1) = \ln(1) - \left(1 - \frac{1}{1}\right) = 0 = (1 - 1) - \ln(1) = g(1)$. Observe that f, g are differentiable on \mathbb{R}^+ . Thus, by using the chain rule, it follows that for x > 0,

$$f'(x) = \frac{1}{x} - \frac{1}{x^2},$$
$$g'(x) = 1 - \frac{1}{x}.$$

Hence, f'(1)=g'(1)=0 and for x>1, we even have $\frac{1}{x}<1$, so g'(x)>0. Similarly, $x^2>x$, so $\frac{1}{x^2}<\frac{1}{x}$ and f(x)>0 for all x>1.

Thus, f and g are strictly increasing on $(1, \infty)$ by (3.40) and monotonically increasing on $[1, \infty)$.

Therefore, f(x) > f(1) = 0 and g(x) > g(1) = 0 for all x > 1, as desired.

3. We claim that f can have at most one root. Assume f had two distinct roots a, b. Without loss of generality assume a < b.

Then f(a) = 0 = f(b), so by Rolle's theorem, there is some $\xi \in [a, b]$ with $f'(\xi) = 0$.

However, this contradicts the assumption that f' has no roots.

Hence, such f has at most one root. Indeed, one root is also attainable, for example by f(x) = x with root f(0) = 0 and $f'(x) = 1 \neq 0$ for all x.

4. We claim that f is a solution if and only if $f(x) = C \exp(x)$ for some constant $C \in \mathbb{R}$. Firstly, since the derivative is linear, we have $(C \exp)' = C(\exp)' = C \exp$, so all such f are indeed solutions.

Now assume f satisfies f(x) = f'(x) for all x.

Define $g(x) = f(x)e^{-x}$. Then g is differentiable by (3.35) and $g'(x) = f'(x)e^{-x} - f(x)e^{-x} = (f'(x) - f(x))e^{-x} = 0$.

Hence, g is constant, so g(x) = C for all x, or, equivalently, $g(x) = Ce^x$, as desired.

Remark. The fact that g is constant can be shown as follows: assume g(x) < g(y) for some $x, y \in \mathbb{R}$. Then by the mean value theorem, there is some $\xi \in [\min\{x,y\}, \max\{x,y\}]$ with $g'(\xi) = \frac{g(x) - g(y)}{x - y} \neq 0$, which contradicts $g'(\xi) = 0$.

Task 4

Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable and $a, b \in \mathbb{R}$ with a < b and f'(a) < f'(b). Show that for every value $c \in \mathbb{R}$ with f'(a) < c < f'(b), there exists a value $a < \xi < b$ such that $f'(\xi) = c$.

Solution. Even though this looks like the intermediate value theorem, we simply cannot apply it here, since it is possible that f is differentiable but not continuously differentiable.

Define $g: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x) - cx$. Then g'(x) = f'(x) - c and since g is continuous on the compact interval [a, b], it follows by (3.24c) that g attains some minimum x_0 , i.e. $g(x) \ge g(x_0)$ for some $x_0 \in [a, b]$ and all $x \in [a, b]$.

Since g'(a) = f'(a) - c < 0 < f'(b) - c = g'(b), it follows that $g(a+\varepsilon) < g(a)$ and $g(b-\varepsilon) < g(b)$ for sufficiently small ε , so $x_0 \neq a$ and $x_0 \neq b$.

Hence, $x_0 \in (a, b)$. Thus, x_0 is an interior point of [a, b] and g has a local minimum at x_0 , so by (3.37), $0 = g'(x_0) = f'(x_0) - c$. Thus, we can take $\xi = x_0$.

Remark. This is known as Darboux's theorem.