MCMC method 1:

Note that MCMC method 1 is similar to the one Nuñez-Antonio et.al. (2011) use. In a MH step use the following proposal distribution:

$$p(r_i) = N(m_{0i}, v_{0i})$$

where $m_{0i} = \log\left(\frac{1}{2}\left[b_i + (b_i^2 + 8)^{\frac{1}{2}}\right]\right)$ and $v_{0i} = (2 + \exp(2m_{0i}))^{-1}$. Define a value, y_0 , as the (natural) logarithm of the current value of r_i , $y_0 = \log(r_i)$. Next, complete the following steps 5 times:

- Sample a second value y_1 from the proposal distribution.
- Compute the kernel of $f(\ln(r_i) | \theta_i)$ for y_1 :

o
$$f(y_1) = 2y_1 - 0.5 \exp(y_1) (\exp(y_1) - 2b_i)$$
.

- Compute the natural logarithm of the density of the proposal distribution for y_1 .
- Compute the difference between $\log(f(y_1))$ and $\log(p(y_1))$:

$$w_1 = \log(f(y_1)) - \log(p(y_1)).$$

- Repeat the previous three steps for y_0 .
- Compute the acceptance ratio:

$$\alpha = w_1 - w_0$$

where
$$w_0 = \log(f(y_0)) - \log(p(y_0))$$
.

• Sample a value *k* from a uniform distribution:

o
$$k \sim U(0,1)$$
.

• If $\alpha \ge \log(k)$ we accept y_1 , so $y_0 = y_1$. Else, we do not accept y_1 and $y_0 = y_0$.

After five iterations $r_i = \exp(y_0)$.

MCMC method 2:

In a slice sampler the joint density for an auxiliary variable v_i with r_i for regression is:

•
$$p(r_i, v_i \mid \theta_i, \boldsymbol{\mu}_i = \boldsymbol{B}^t \boldsymbol{x}_i) \propto r_i \boldsymbol{I}(0 < v_i < \exp\{-.5(r_i - b_i)^2\}) \boldsymbol{I}(r_i > 0)$$

The full conditionals for v_i and r_i are:

•
$$p(v_i | r_i = r_i, \boldsymbol{\mu}_i, \theta_i) \sim U(0, \exp\{-.5(r_i - b_i)^2\})$$

•
$$p(r_i \mid v_i = v_i, \boldsymbol{\mu}_i, \theta_i) \sim r_i \boldsymbol{I}(b_i + \max\{-b_i, -\sqrt{-2 \ln v_i}\} < v_i < b_i + \sqrt{-2 \ln v_i})$$

We thus sample v_i from the uniform distribution specified above. Independently we sample a value m from U(0,1). We obtain a new value for r_i by computing $r_i = \sqrt{(r_{i2}^2 - r_{i1}^2)m + r_{i1}^2}$, where $r_{i1} = b_i + \max\{-b_i, -\sqrt{-2\ln v_i}\}$ and $r_{i2} = b_i + \sqrt{-2\ln v_i}$).