1. sumlr.cpp

Cho hai số nguyên dương L và R.

Yêu cầu: tính tổng các số lẻ từ L đến R.

Input: gồm 2 số nguyên dương L và R $(1 \le L \le R \le 10^9)$.

Output: ghi ra một số nguyên là tổng của tất cả các số lẻ trong khoảng từ L đến R.

Ví dụ:

INPUT	OUTPUT
7 9	16

2. cpal.cpp

Cho mảng chứa n xâu kí tự $S_1, S_2, ..., S_n$ chỉ bao gồm các chữ cái in thường. Xâu S_i được gọi là xâu đẹp nếu tồn tại một xâu con liên tiếp của S_i có độ dài chẵn và là xâu đối xứng $(1 \le i \le n)$.

Yêu cầu: đếm số lượng xâu đẹp trong mảng S.

Input:

- Dòng đầu tiên gồm một số nguyên dương n $(n \le 10^3)$.

- n dòng tiếp theo, dòng thứ i chứa xâu S_i (xâu S_i có độ dài nhỏ hơn 10^3).

Output: ghi ra số lượng xâu đẹp trong mảng S.

Ví dụ:

INPUT	OUTPUT	Giải thích
2	1	Xâu eabccbaf là xâu đẹp. Còn
eabccbaf		xâu abcba không là xâu đẹp.
abcba		

3. kdigits.cpp

Cho hai số nguyên dương n và k. Ta định nghĩa $n! = 1 \times 2 \times 3 \times ... \times n$.

Yêu cầu: Tìm k chữ số đầu tiên của n!, với k luôn nhỏ hơn hoặc bằng số chữ số của n!.

Input: chứa hai số n và k $(1 \le n \le 10^3)$.

Output: k chữ số đầu tiên của n!.

Ví dụ:

INPUT	OUTPUT	Giải thích
10 3	362	10! = 3628800, ba chữ số đầu tiên là 362.

4. divprime.cpp

Cho một số nguyên dương n, $n \ge 2$. Hãy kiểm tra xem tích các ước nguyên tố của n có nhỏ hơn n không? Nếu n chỉ có một ước nguyên tố thì tích các ước nguyên tố của n chính là ước nguyên tố duy nhất của n.

Input: gồm một dòng chứa số nguyên dương n ($2 \le n \le 10^{18})$

Output: ghi ra YES nếu tích các ước nguyên tố của n nhỏ hơn n, ngược lại ghi ra NO.

Ví dụ:

INPUT	OUTPUT
3	NO
4	YES

Ràng buộc:

- Có 80% số test có $2 \le n \le 10^7$;
- 20% số test không có giới hạn gì thêm.

5. dmax.cpp

Cho n số nguyên dương a_1 , a_2 , ..., a_n . Hãy tìm số nguyên dương d lớn nhất để a_1 % $d = a_2$ % $d = ... = a_n$ % d trong đó phép toán % là phép chia lấy dư.

Input:

- Dòng đầu tiên gồm một số nguyên dương n $(n \ge 2)$.
- Dòng thứ 2 chứa n số nguyên dương $a_1, a_2, ..., a_n$ (tồn tại $a_i \neq a_i$ với $i \neq j$).

Output: ghi ra d lớn nhất tìm được.

Ví dụ:

INPUT	OUTPUT
3	2
3 7 9	

Ràng buộc:

- Có 50% số test có $\,n \leq 10$ và $a_i \leq 10^6 \,(1 \leq i \leq n);$
- 30% số test có $n \le 10$ và $a_i \le 10^{16} (1 \le i \le n)$;
- 20% số test có $n \le 10^5$ và $a_i \le 10^{16}$ $(1 \le i \le n)$.