

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«СПЕЦИАЛЬНО	<u> ЭЕ МАШИНОСТРО</u>	ЕНИЕ»			
САФЕДРА «РАКЕТНЫЕ И ИМПУЛЬСНЫЕ СИСТЕМЫ» (СМ-6)						
O	гчет по лабој	раторной р	аботе			
Б	ПО ДИС аллистика ракетно	СЦИПЛИНЕ: ЭГО И СТВОЛЬНОГО	оружия			
	1		1,7			
Опр		ТЕМУ:	, , , , , , , , , , , , , , , , , , ,			
Olipe	еделение параметр	ов ду минимал	іьнои массы			
Студенты группы	<u>CM6-71</u>		Большаков А. Н.			
			Галоян Д. В.			
			Гарпинич Д. Н.			
			Гудков И. А.			
			Зеленский А. О.			
Проверил		(подпись, дата)	О. С. Серпинский (И.О. Фамилия)			

Оглавление

Ис	ходнь	ые данные	3
1.	Терм	лодинамический расчет	5
2.	Опре	еделение диапазонов варьирования входных проектных параметров.	6
3.	Обос	снование проектных параметров РДТТ	0
	3.1.	Определение номинального давления в камере сгорания	0
	3.2.	Выбор формы топливного заряда и определение его геометрически	X
	характ	теристик1	0
	3.3.	Определение массовых и габаритных характеристик РДТТ 1	2

Исходные данные

Таблица 1. Исходные данные

	Oci	новные исходны	е данн	ње		
Наружный диаметр РДТТ $D_{\scriptscriptstyle m H}$, мм						200
Полный импу	льс тяги РДТТ	Г ІР, кН∙с				125
Продолжител	ьность работы	РДТТ в номинал	ъном р	режиме $t_{\text{ном}}$, c	5
		Характеристик	и ТРТ			
Краткое обозначение	Содержание,	Условная химическая формула		$\Delta h_{f298}^{0},$ кДж / кг		ρ, κγ/m³
ПБГГ	13,7	C7.075H10.65O0.223N0.063		-310		920
ПХА	71	NH ₄ ClO ₄		-2510		1950
Алюминий	15	Al		0		2700
Оксид железа	0,3	Fe ₂ O ₃		-5150		5250
	Пара	метры закона го	рения	TPT		
		6,4				
		0,358				
u , мм/с ($p = 5 \text{ М}\Pi a$)			11,4			
D_t , 1/K			0,0012			

Таблица 1. Продолжение

Характеристики материала корпуса РДТТ (СП-28Ш)				
Плотность ρ_{κ} , $\kappa \Gamma/m^3$	Плотность ρ_{κ} , $\kappa \Gamma/M^3$ 7830			
Предел прочности $\sigma_{вр}$, МПа	Предел прочности $\sigma_{вр}$, МПа 1700			
Условный предел текучести $\sigma_{0.2}$, МПа				
Характеристики материалов теплозащитных покрытий (ТЗП)				
Плотность материала ТЗП камера	1500			
Плотность материала ТЗП сопла	1750			
Плотность материала защитно-крепящего слоя (ЗКС) ρ_{3KC} , $K\Gamma/M^3$				
Плотность материала вкладыша критическо	2200			

1. Термодинамический расчет

Для заданного состава СТРТ проводится расчёт в программе «*Terra*». Давление в камере 4 МПа, давление атмосферное 0,1 МПа, режим адиабатического расширения, расширение «замороженное».

Полученные данные для трех участков ДУ приведены в табл. 2.

Таблица 2. Результат термодинамического расчёта

Параметры термодинамического равновесия							
p, MПа	4 <i>І</i> , кДж / кі		-1840,02 <i>T_p</i> , K		3342,4		
Те	еплофизичес	ские характери	стики проду	ктов сгора	RNH		
<i>c_p</i> , Дж / (кг·К)	1,9098	<i>R_g</i> , Дж / (кг·К)	411,52	Z	0,26754		
<i>c_{pg}</i> , Дж / (кг·К)	3,6138	λ _g , Дж / (кг·К)	0,38647	μ _g , Па∙с	0,9404·10 ⁻⁴		
	Параметры потока в критическом сечении сопла						
β, м / с	1576,1	<i>I</i> _{удн} , м / с	1944,5	n	1,1408		
	Параметры потока в выходном сечении сопла						
(равновесное расширение)							
<i>v_a</i> , M / c	2438,2	<i>I</i> _{удп} , м / с	2704,9	n	1,1346		
Параметры потока в выходном сечении сопла							
(«замороженное» расширение)							
<i>v_a</i> , м / с	2410,1	<i>I</i> _{удп} , м / с	2661,6	n	1,1597		

2. Определение диапазонов варьирования входных проектных параметров

Входными проектными параметрами являются относительная площадь выходного сечения сопла f_a и степень расширения сопла v_a :

$$f_a = \frac{F_a}{F_m}$$
; $v_a = \frac{F_a}{F_{\text{KD}}}$.

Чтобы определить рациональные диапазоны варьирования проектных параметров необходимо определить границы области допустимых баллистических решений (ОДБР). При решении данной задачи используются следующие ограничения:

- по уровню номинального давления ($p_{\text{ном}} = p_{\text{min}} \dots p_{\text{max}}$, где $p_{\text{min}} = 4 \text{ МПа}$, а $p_{\text{max}} = 20 \text{ МПа}$);
- по отсутствию перерасширения сопла ($p_a \ge p_h$, где $p_h = 0,1$ МПа);
- по удельному импульсу ($I_{yд} \ge I_{yд \min}$);
- по поперечным габаритам сопла ($f_a \ge f_{a \max}$, где $f_{a \max} = 0.9$).

Определение границ ОДБР начинается с нахождения точек пересечения границы $p_a = p_h$ с границами $p_{\text{ном}} = p_{\text{min}}$ (точка 1) и $p_{\text{ном}} = p_{\text{max}}$ (точка 2). При заданном давлении ($p = p_{\text{ном}}$) приведённая скорость потока в выходном сечении сопла для заданных точек находится из газодинамической (ГД) функции (1)

$$\lambda_a(p) = \lambda_{\text{max}} \sqrt{1 - \left(\frac{p_a}{p}\right)^{\frac{n-1}{n}}}, \qquad (1)$$

где

$$\lambda_{\max} = \sqrt{\frac{n+1}{n-1}} \,.$$

Показатель политропы n во всех расчётах равен показателю политропы в выходном сечении сопла для «замороженного» адиабатического расширения, если не указывается иное значение.

Относительная площадь выходного сечения сопла, необходимая для обеспечения заданного уровня тяги, определяется по формуле (2)

$$f_a(p, \lambda_a) = \frac{\eta_f}{\frac{p}{p_h} (\lambda_a^2 + 1) \varepsilon(\lambda_a) \zeta(\lambda_a) - 1},$$
(2)

где:

• приведённая тяга (η_f) определяется по формуле

$$\eta_f = \frac{P}{p_h F_m},$$

где площадь миделя ЛА (F_m) определяется по формуле

$$F_m = \frac{\pi D_{\rm H}^2}{\Delta};$$

• ГД функция є определяется по формуле

$$\varepsilon(\lambda_a) = \left(1 - \frac{k-1}{k+1}\lambda_a^2\right)^{\frac{1}{k-1}},$$

где показатель адиабаты равен показателю политропы (k = n);

 поправочный коэффициент, учитывающий потери тяги и удельного импульса, обусловленные наличием конденсированной фазы в продуктах сгорания (ζ) определяется по формуле

$$\zeta(\lambda_a) = (1-z) + z \frac{2k}{k+1} \frac{\lambda_a^2}{\lambda_a^2 + 1}.$$

Удельный импульс двигателя, реализуемый в точках 1 и 2, определяется по формуле (3)

$$I_{yx}(p, \lambda_a) = \beta \left(\left(\lambda_a + \lambda_a^{-1} \right) \varepsilon(1) \zeta(\lambda_a) - \frac{p_h}{p} \frac{1}{q(\lambda_a)} \right).$$

$$\beta = \frac{\sqrt{R_{cm} \chi T_p}}{A_n},$$
(3)

где:

$$R_{\text{cm}} = R_g (1-z); \ A_n = \sqrt{n \left(\frac{2}{n+1}\right)^{\frac{n+1}{n-1}}}.$$

Для постоянной расхода (A_n) используется показатель политропы (n), соответствующий критическому сечению сопла.

Значение, полученное при определении удельного импульса двигателя в точке 1, является минимальным на линии 1-2 ($I_{\rm уд1}$). Приведённая скорость потока в точке 3, для которой $p_{\rm Hom} = p_{\rm max}$ и $I_{\rm уд} = I_{\rm yд1}$, определяется итерационным путём из условия

$$I_{\mathrm{y}\mathrm{J}}(p_{\mathrm{max}}, \lambda_{a3}) = I_{\mathrm{y}\mathrm{J}1},$$

где значение λ_{a3} определяется из диапазона $1...\lambda_{a1}$.

Определив значения λ_{a3} определяется значение f_{a3} по формуле (2).

Также для точек 1, 2 и 3 определяются ГД функции ν_a и p_a :

$$v_a(\lambda_a) = \frac{1}{q(\lambda_a)}; \tag{3}$$

$$p_a(p, \lambda_a) = p\pi(\lambda_a), \tag{4}$$

где ГД функции q и π определяются по формулам:

$$q(\lambda_a) = \frac{\lambda_a \left(1 - \frac{k-1}{k+1} \lambda_a^2\right)^{\frac{1}{k-1}}}{\left(\frac{2}{k+1}\right)^{\frac{1}{k-1}}}; \ \pi(\lambda_a) = \left(1 - \frac{k-1}{k+1} \lambda_a^2\right)^{\frac{k}{k-1}}.$$

Результаты расчётов параметров в точках 1, 2, 3 по формулам (1-4) представлены в табл. 3.

Таблица 3. Значения параметров в трёх точках

Точка	λ_a	v_a	f_a	$p_{\scriptscriptstyle{ ext{HOM}}}$, $ ext{HOM}$	p_a / p_h	<i>I</i> _{уд} , м / с
				МПа		
1	2,32	6,41	0,81	4	1	2337
2	2,65	22,52	0,52	20	1	2694
3	2,05	3,1	0,08	20	13,41	2337

Границы ОДБР в координатах (v_a , f_a) определяются параметрическим способом. Для этого с некоторым шагом (0,001) задаются диапазоны значений λ_a , соответствующие линиям 1–2, 3–2 и 3–1. Для каждой линии определяются значения v_a по формуле (3) и значения f_a :

• для линии $1-2 (p_a = p_h)$

$$f_a(\lambda_a) = \frac{\eta_f}{\frac{p_a}{p_h} \frac{\lambda_a^2 + 1}{\tau(\lambda_a)} \zeta(\lambda_a) - 1},$$

где

$$\tau(\lambda_a) = 1 - \frac{k-1}{k+1} \lambda_a^2;$$

- для линии 3-2 ($p_{\text{ном}} = p_{\text{max}}$) расчёт выполняется по формуле (2);
- для линии 3–1 ($I_{yд} = I_{yд1}$)

$$f_a(\lambda_a) = \eta_f \left(\frac{\beta}{I_{yx}} (\lambda_a + \lambda_a^{-1}) \epsilon(1) \zeta(\lambda_a) - 1 \right).$$

График границ ОДБР, построенных в координатах (v_a, f_a), представлен на рис.1.

Рис. 1. Границы ОДБР

3. Обоснование проектных параметров РДТТ

С помощью заданных величин $D_{\rm H}$, I_{P} , $t_{\rm Hom}$ и известных характеристиках ТРТ сочетание f_a и λ_a определяются все оставшиеся проектные параметры РДТТ.

Для ОДБР задаётся множество точек. Для каждой точки ОДБР проводится ряд вычислений, позволяющих определить массовые и габаритные характеристики РДТТ. После сравнения полученных вариантов осуществляется выбор наилучшего на основе определённого критерия качества.

3.1. Определение номинального давления в камере сгорания

Удельный импульс двигателя в атмосфере (из условия заданного уровня тяги) определяется по формуле (5)

$$I_{yx}(I_{yxx}) = I_{yxx}(\lambda_a) \frac{\eta_f}{\eta_f + f_a}, \tag{5}$$

где удельный импульс двигателя в пустоте ($I_{\text{удп}}$) рассчитывается по формуле

$$I_{\text{удп}}(\lambda_a) = \beta((\lambda_a + \lambda_a^{-1})\epsilon(1)\zeta(\lambda_a)).$$

Номинальное давление в камере сгорания (КС) определяется по формуле (6):

$$p_{\text{ном}}\left(\mathbf{v}_{a},\,I_{\text{удп}},\,I_{\text{уд}}\right) = p_{h} \frac{\beta \mathbf{v}_{a}\left(\lambda_{a}\right)}{I_{\text{удп}}\left(\lambda_{a}\right) - I_{\text{уд}}\left(\lambda_{a}\right)}. \tag{6}$$

Также ещё выполняется рассчёт давления в выходном сечении сопла (p_a) по формуле (4).

3.2. Выбор формы топливного заряда и определение его геометрических характеристик

Для выбора формы заряда предварительно строится зависимость приведённой толщины свода (e_d) от номинального давления в КС из условия обеспечения заданной продолжительности работы РДТТ (7)

$$e_d(u) = \frac{2}{D_{\text{\tiny KC}}} u(p) t_{\text{\tiny HOM}}, \tag{7}$$

где:

• закон горения определяется по формуле (8)

$$u(p) = u_1 p^{\vee}; \tag{8}$$

• внутренний диаметр КС

$$D_{\text{KC}} = 0.96 D_{\text{H}}$$
.

По среднему значению диапазона e_d определяется форма заряда. Из результатов, представленных в табл. 5, делается вывод о том, что заряд щелевой с цилиндрическим каналом ($e_d = 0,5...0,75$).

После выбора формы заряда задаются характерные значения его основных геометрических параметров.

Рекомендуемые значения параметров щелевого заряда:

- количество щелей (n = 4);
- относительная длина щели ($\bar{a} = 0.3$);
- относительная ширина щели ($\bar{c} = 0.3$);

Из полученных по формуле (7) значений e_d выбираются точки, для которых выполняется условие применимости для щелевого заряда

$$e_d(u) < 1 - \overline{c}$$

Коэффициент заполнения объёма цилиндрической части КС для заряда щелевого типа рассчитывается по формуле (9)

$$\varepsilon_{\omega}\left(\varepsilon_{f}, f_{\mathbf{m}}\right) = \varepsilon_{f}\left(\overline{d}\right) - \overline{a}f_{\mathbf{m}}\left(\overline{d}\right), \tag{9}$$

где:

• коэффициент заполнения поперечного сечения КС для заряда щелевого типа рассчитывается по формуле

$$\varepsilon_f(\overline{d}) = 1 - \overline{d}(e_d)^2$$

где

$$\overline{d}(e_d) = 1 - e_d(u);$$

• относительная суммарная площадь поперечного сечения щелей (f_{III})

$$f_{\text{III}}\left(\overline{d}\right) = \frac{n}{\pi} \left(\overline{c}\sqrt{1-\overline{c}^2} - \overline{c}\sqrt{\overline{d}^2 - \overline{c}^2} + \arcsin\left(\overline{c}\right) - \overline{d}^2\arcsin\left(\frac{\overline{c}}{\overline{d}}\right)\right).$$

Масса топлива (из условия обеспечения заданного полного импульса тяги при реализуемом удельном импульсе) определяется по формуле (10)

$$\omega(I_{yx}) = \frac{I_P}{I_{yx}(I_{yxx})}.$$
 (10)

Длина заряда из условия размещения необходимой массы топлива (11)

$$l_{\text{sap}}(\omega, \, \varepsilon_{\omega}) = \frac{\omega(I_{\text{yd}})}{\rho_{\text{T}} \varepsilon_{\omega}(\varepsilon_{f}, f_{\text{III}}) F_{\text{KC}}}, \tag{11}$$

где:

• плотность ТРТ определяется по формуле

$$\frac{1}{\rho_{\mathrm{T}}} = \sum_{i=1}^{n} \frac{q_i}{\rho_i},$$

где q_i – массовая доля i-го компонента в составе ТРТ;

• площадь КС

$$F_{\rm KC} = \frac{\pi D_{\rm KC}^2}{4} \, .$$

Параметр Победоносцева (начальное значение) для заряда щелевого типа определяется по формуле (12)

$$\kappa \left(l_{\text{sap}}, e_d\right) = \frac{4l_{\text{sap}}\left(\omega, \varepsilon_{\omega}\right)}{D_{\text{KC}}\left(1 - e_d\left(u\right)\right)}.$$
(12)

3.3. Определение массовых и габаритных характеристик РДТТ

По условию ДЗ топливный заряд скреплён со стенками камеры, сопловой блок имеет одно центральное сопло.

ДУ разбивается на следующие элементы:

- цилиндрическая обечайка с защитно-крепящим слоем (ЗКС);
- эллиптическое переднее днище с ТЗП;
- сопловое днище (эллиптическое с центральным отверстием) с ТЗП;
- коническая дозвуковая часть сопла с ТЗП;
- цилиндрический сопловой стакан и эрозионностойкий вкладыш критического сечения;
- коническая сверхзвуковая часть сопла с ТЗП.

Исходные данные для определения массы конструкции включают в себя геометрические размеры, необходимые для вычисления объёмов элементов, представленных выше, а также значения плотностей конструкционных и теплозащитных материалов.

Толщина цилиндрической оболочки камеры (13)

$$\delta_{\text{of}} = \frac{D_{\text{H}}}{2} \frac{p_p}{\sigma_{\text{Bp}}},\tag{13}$$

где p_p — расчётное давление в КС, определяемое на основе давления при максимальной температуре эксплуатации ($T_0 = 323$ K) с учётом поправок

$$p_p = p_{+50} \frac{\sigma_{\text{Bp}}}{\sigma_{0,2}} k_1 k_2 \eta,$$

где k_1 — коэффициент, учитывающий всплеск давления при совместном горении воспламенителя и основного заряда ($k_1 = 1,1$); k_2 — коэффициент, учитывающий повышение давления, обусловленное разбросом характеристик топлива ($k_2 = 1,2$); η — коэффициент запаса прочности ($\eta = 1,25$).

Давление в КС при $T_0 = 323$ К.

$$p_{+50} = p_{\text{HOM}} \left(\varphi_t \left(T_0 \right) \varphi_{\kappa} \left(\kappa \right) \right)^{\frac{1}{1-\nu}},$$

где $\varphi_t(T_0)$, $\varphi_{\kappa}(\kappa)$ — поправки, учитывающие зависимость скорости горения топлива от начальной температуры заряда T_0 и параметра Победоносцева (при превышении порогового значения ($\kappa_{\text{пор}} = 100$))

$$\varphi_t(T_0) = e^{D_t(T_0 - T_{ref})},$$

где $T_{ref} = 293$ K;

$$\phi_{\kappa}(\kappa) = \begin{cases} 1 + 0.003(\kappa - \kappa_{\text{пор}}), & \text{при } \kappa \ge \kappa_{\text{пор}} \\ 1, & \text{при } \kappa < \kappa_{\text{пор}} \end{cases},$$

где $\kappa_{\text{пор}} = 100$.

Толщина переднего днища КС

$$\delta_{\text{дH}1} = \frac{D_{\text{H}}}{2} \frac{p_p}{\sigma_{\text{Bp}}} \left(\frac{D_{\text{H}}^2}{24b^2} + \frac{1}{3} \right),$$

где меньшая полуось эллиптической образующей (b)

$$b = \frac{D_{\rm H}}{4}.$$

Толщины остальных элементов ДУ:

- сопловое днище КС $\delta_{дн2} = \delta_{дн1}$;
- дозвуковая часть сопла $\delta_{c1} = 2\delta_{o6}$;
- сверхзвуковая часть сопла $\delta_{c2} = \delta_{o6}$;
- сопловой стакан $\delta_{cr} = 3\delta_{o6}$;
- ЗКС в цилиндрической части КС $\delta_{3kc} = 1$ мм;
- ТЗП переднего и соплового днищ КС $\delta_{\pi 1} = \delta_{\pi 2} = 6$ мм;
- ТЗП дозвуковой части сопла $\delta_{nc1} = 6$ мм;
- ТЗП сверхзвуковой части сопла $\delta_{nc2} = 3$ мм;
- вкладыш критического сечения $\delta_{\text{вкс}} = 15$ мм.

Диаметр входного сечения сопла, совпадающий с диаметром центрального отверстия соплового днища, равен

$$D_{\text{BX}} = \frac{D_{\text{H}}}{2}$$
.

Диаметры выходного и критического сечений сопла:

$$D_a = \sqrt{\frac{4}{\pi} f_a F_m} \; ;$$

$$D_{\rm kp} = \frac{D_a}{\sqrt{v_a}}.$$

Длина цилиндрической обечайки КС

$$l_{\text{of}} = l_{\text{sap}}$$
.

Длины дозвукового и сверхзвукового участков сопла:

$$l_{\rm cl} = \frac{D_{\rm BX} - D_{\rm Kp}}{2 {\rm tg} \theta_{\rm cl}};$$

$$l_{\rm c2} = \frac{D_a - D_{\rm kp}}{2 {\rm tg} \theta_{\rm c2}},$$

где $\theta_{c1}=30^{\circ},\,\theta_{c2}=15^{\circ}.$

Длина соплового стакана

$$l_{\rm ct} = \frac{D_{\rm kp}}{2}.$$

Длина двигателя (14)

$$.l_{\text{\tiny JB}} = b + l_{\text{\tiny JB}} + b \sqrt{1 - \frac{D_{\text{\tiny BX}}^2}{D_{\text{\tiny H}}^2}} + l_{\text{\tiny c1}} + l_{\text{\tiny cT}} + l_{\text{\tiny c2}} ..$$
 (14)

Элементы ДУ разбиваются на простые формы, объёмы которых вычисляются по формулам:

- 1. Цилиндрическая оболочка $V_{\text{цил}} = \frac{\pi}{4} (D^2 (D 2\delta)^2) l$;
- 2. Коническая оболочка $V_{\text{кон}} = \frac{\pi l \delta}{\cos \theta} \left(\frac{D_{\text{вн 1}} + D_{\text{вн 2}}}{2} + \frac{\delta}{\cos \theta} \right);$
- 3. Эллиптическое днище $V_{\text{элл1}} = \frac{2\pi\delta}{3} \left(\frac{D^2}{4} + Db (D+b)\delta + \delta^2 \right);$
- 4. Эллиптическое днище с центральным отверстием

$$V_{\text{\tiny ЭЛЛ 12}} = \frac{\pi D^2 b}{6} \bigg(1 - \frac{d^2}{D^2} \bigg)^{\!\!\frac{3}{2}} - \frac{\pi}{6} \big(D - 2\delta \big)^2 \big(b - \delta \big) \! \bigg(1 - \frac{d^2}{\big(D - 2\delta \big)^2} \bigg)^{\!\!\frac{3}{2}}.$$

Плотности материала корпуса, ТЗП, ЗКС и вкладыша критического сечения представлены в табл. 1.

Масса «сухой» ДУ (15)

$$m_{\text{дв0}} = \sum_{i=1}^{N} \rho_i V_i$$
 (15)

Масса снаряженной ДУ (16)

$$m_{\rm IB} = m_{\rm IB0} + \omega \,. \tag{16}$$

Коэффициент конструктивно-массового совершенства (17)

$$\alpha_{\rm dB} = \frac{m_{\rm dB0}}{\omega} \,. \tag{17}$$

Выбор одного лучшего решения для дальнейшей проработки выполняется по критерию качества (18)

$$C_{\rm AB} = \sqrt{\frac{m_{\rm AB}}{m_{\rm min}}} \frac{l_{\rm AB}}{l_{\rm min}},\tag{18}$$

где m_{\min} , l_{\min} — наименьшие среди рассмотренных вариантов значения массы и длины ДУ (используются для нормирования критерия).

Лучшее решение соответствует минимуму коэффициента качества $C_{\rm дв}$. В результате проделанной работы строятся графики зависимостей $C_{\rm дв}(m_{\rm дв}, l_{\rm дв})$, $m_{\rm дв}(m_{\rm дв}, l_{\rm дв})$, $l_{\rm дв}(m_{\rm дв}, l_{\rm дв})$, результаты представлены на рис. 2-4 соответственно. Параметры, соответствующие минимуму критерия представлены в табл. 4.

Таблица 4. Результаты расчёта

$C_{ extsf{AB}}$	$m_{ m ДВ},~{ m K}\Gamma$	$l_{ m дв},$ м
1,036	60	1,356

Рис. 2. График зависимости $C_{\rm дв}(m_{\rm дв},\,l_{\rm дв})$

Рис. 3. График зависимости $m_{\rm дв}$ ($m_{\rm дв}$, $l_{\rm дв}$)

Рис. 4. График зависимости $l_{\rm дв}$ ($m_{\rm дв},\,l_{\rm дв}$)