

저 해상도 이미지 복원을 통한 차량 판독 B반/4조

강은석 김성실 원정아 이지윤 최영용 최지선

목차

- 1. 프로젝트 소개
 - 추진배경 및 목표
 - 관련 논문
 - 구현 방향
 - 전체구조도
- 2. 구현 과정
- 3. 프로젝트 결과
 - Model 별 성능 결과
 - 시연영상
 - 개선사항
 - 기대 응용 분야

1. 프로젝트 - 추진 배경

- 영재 발굴단 '자동차 천재' 편
- 노이즈가 있는 동영상에서 차종의 일부분을 확인
- 차종 파악하는 영재의 능력에서 아이디어 착안

- CCTV와 블랙박스 영상의 노이즈를 제거
- 차량 일부분을 추출하여 차종을 파악하는 AI 고안

1.프로젝트 - 목표

1. 프로젝트 - 관련 논문

	Super Resolution GAN	Object Detection	Object Detection -YOLO v4	Classification -EfficientNet
논문	Photo-Realistic Single Image Super- Resolution Using a Generative Adversarial Network	Deep Learning Based Vehicle Make- Model Classification	YOLO v4 Optimal Speed and Accuracy of Object Detection	EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
내용	일반적인 SR은 MSE loss function을 이용하여 이미지가 smooth해지는 반면, GAN 기반의 SR은 adversarial loss를 추가해서 더 사실에 가까운 texture을 보여준다.	이미지를 디텍트하여 잘라내었을때 정확도가 더 높다는 논문	EfficientNet, RestNet, ATSS, HardNet, ASFF, YOLO v4의 detection tjdsmd를 비교한 결과 YOLO v4의 속도와 정확도가 가장 높음을 알 수 있다.	차종 판단시 ResNet의 경우 90%이상의 정확도를 보여주는데 EfficientNet의 resnet보다 파라미터 갯수가 7.6배 적으면서 비슷한 정확도를 보인다.

-데이터 전처리

- -Super Resolution GAN
- -Object Detect(YOLO v4)
- -Classification (EfficientNet)
- -OCR

Original

Detected

SR 적용 전

SR 적용 전 + Detected

-데이터 전처리

-Super Resolution GAN

- -Object Detect(YOLO v4)
- -Classification (EfficientNet)
- -OCR

- -데이터 전처리
- -Super Resolution GAN
- -Object Detect (YOLO v4)
- -Classification (EfficientNet)
- -OCR

- -데이터 전처리
- -Super Resolution GAN
- -Object Detect (YOLO v4)

-OCR

현대 제네시스 g80

쉐보레 트레일블레이저

- -데이터 전처리
- -Super Resolution GAN
- -Object Detect (YOLO v4)
- -Classification (EfficientNet)
- -OCR

11나 7374

1. 프로젝트 - 전체 구조도

2. 구현 과정 - Super Resolution

2. 구현 과정 - Detection model

Input

주변의 차를 더 높은 확률로 car로 인식하여 차의 넓이가 가장 큰 것을 crop하는 형태로 구현 그 결과 65,000장 중 64,000장 crop 성공

2. 구현 과정 - Classification

모델: 학습이 빠르고 높은 성능의 EfficientNetB1

train img size(7): test img size(3) = 45448:10431

크롭 이미지와 원본 이미지 각각 모델 학습

2. 구현 과정 - OCR

54가 0639

번호판 이미지 검출(Opev CV)

Contours box ->박스 사이즈 &위치값으로 문자열 이미지 추출

OCR(Tesseract OCR)

문자열 image-> 문자열

3. 프로젝트 결과 - Model 별 성능 결과

	Classifier	YOLO(crop) → Classifier	Super Resolution → Classifier
img	74.4 %	91.8 %	X

3. 프로젝트 결과 - 시연영상

3. 프로젝트 결과 - 개선사항

- 차량 이미지에 대한 전처리 방안 고민
- 84 종의 국내차 이미지로 차량 종류를 추가 가능
- super resolution 모델의 정확도 개선을 위한 추가적인 학습
- yolo이외에도 성능이 좋은 classification 모델 적용 검토 (Inception 모델 등)
- -차종 분류 모델인 Efficient 모델중 상위 모델 적용
- OCR 성능 개선을 위한 딥러닝 모델 검토

3. 프로젝트 결과 - 기대 응용 분야

제조업 자동차 디자인

자·타사의 차량 디자인 유사도를 비교해 디자인 디벨롭을 보조함

제조업 물류 관리

최고난이도의 기술이 필요한 차량 선적에 자동 차종 판별로 효율적인 물류관리

행정안전부에서

대포 차량, 도난 차량 등 범죄 차량 경로 추적

감사합니다

Q&A