This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BEANK (USPRO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A2

(11) International Publication Number:

WO 99/40182

C12N 9/64

(43) International Publication Date:

12 August 1999 (12.08.99)

(21) International Application Number:

PCT/US99/02185

(22) International Filing Date:

3 February 1999 (03.02.99)

(30) Priority Data:

60/073,709 4 February 1998 (04.02.98) US 09/050,083 30 March 1998 (30.03.98) US Not furnished 27 January 1999 (27.01.99) US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

US 60/073,709 (CON) Filed on 4 February 1998 (04.02.98) 09/050.083 (CON) US 30 March 1998 (30.03.98) Filed on US Not furnished (CON) 27 January 1999 (27.01.99) Filed on

(71) Applicants (for all designated States except US): IMMUNEX CORPORATION [US/US]; 51 University Street, Seattle, WA 98101 (US). MAX-PLANCK-INSTITUTE FOR BIO-CHEMISTRY [DE/DE]; Am Klopferitz 18a, D-82152 Martinsreid-Planegg (DE). AMERICAN HOME PRODUCTS CORPORATION [US/US]; 5 Giralda Farms, Madison, NJ 07940 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BLACK, Roy, A. [US/US]; 8062 30th Avenue N.E., Seattle, WA 98115 (US). PAXTON, Raymond, James [US/US]; 6583 156th Avenue S.E., Bellevue, WA 98006 (US). BODE, Wolfram [DE/DE]: Tulpenstrasse 5, D-82131 Gauting (DE). MASKOS, Klaus [DE/DE]; Roggersdorferstrasse 36, D-83607 Holzkirchen (DE). FERNANDEZ-CATALAN, Carlos [ES/DE]; Am Klopferitz 18a, D-82152 Martinsreid-Planegg (DE). CHEN, James, Ming [US/US]; 7 Sargent David Stoddard Court, Bedminster, NJ 07921 (US). LEVIN, Jeremy, Ian [US/US]; 19 Long Meadow Drive, New City, NY 10956 (US).

(74) Agents: ISACSON, John, P. et al.; Foley & Lardner, Suite 500, 3000 K Street, N.W., Washington, DC 20007-5109 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: CRYSTALLINE TNF-α-CONVERTING ENZYME AND USES THEREOF

(57) Abstract

A tumor necrosis factor- α converting enzyme (TACE) is produced. purified, and crystallized. The three-dimensional coordinates of the crystal are obtained by X-ray diffraction. The coordinates can be recorded on a computer readable medium, or are part of a video memory, where they can be used as part of a system for studying TACE. The coordinates are also used in designing, screening, and developing compounds that associate with TACE.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	, SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH,	Ghana	, MG	Madagascar	· TJ	Tajikistan
BE ·	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG .	Bulgaria	HU ·	Hungary	ML.	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR .	Brazil .	IL	Israel	MR.	Mauritania	UG	Uganda
BY.	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	· Uzbekistan
CF	Central African Republic	.JP .	Japan	" NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan ·	, NO	Norway	zw	Zimbabwe
CI '	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	211	Zimbaowe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT ·	Portugal		
Ct:	Cuba	KZ	Kazakstan	RO	Romania		
C.	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
1.3	Germany	LI	Liechtenstein	SD	Sudan		
4930	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

TITLE OF THE INVENTION

Crystalline TNF-α-Converting Enzyme and Uses Thereof

INFORMATION ON RELATED APPLICATIONS

5

10

15

20

25

This application claims the priority benefit of U.S. provisional patent application serial No. 60/073,709, filed February 4, 1998, U.S. patent application serial No. 09/050,083, filed March 30, 1998 (which will be converted to a US provisional application pursuant to a petition filed on January 27, 1999), and US provisional patent application titled "Crystalline TNF-α-Converting Enzyme and Uses Thereof," filed January 27, 1999.

BACKGROUND OF THE INVENTION

The cytokine tumor necrosis factor- α (TNF α) plays a role in the induction of inflammatory reactions and is known to be cytotoxic towards tumor cells. TNFa, however, also may cause severe damage to the human body when produced in excess by eventually leading to multiple organ failure and death. See Bemelmans et al., "Tumor Necrosis Factor: Function, Release and Clearance," Crit. Rev. Immun. 16: 1-11 (1996).

Tumor necrosis factor-\alpha is produced by activated cells, such as mononuclear phagocytes, T-Cells, B-Cells, mast cells and NK cells. TNFa exists in two forms: a type II membrane protein having a relative molecular mass of 26 kD and a soluble 17 kD form generated from the membrane form by proteolytic cleavage. The TNFa membrane protein is synthesized as a 223 amino acid membrane-anchored precursor. The soluble $TNF\alpha$ is released from the membrane-bound precursor by a membrane-anchored proteinase. This proteinase was recently identified as a

multidomain metalloproteinase called TNF α -converting enzyme (TACE). See, Black *et al.*, "A metalloproteinase disintigrin that releases tumor-necrosis factor- α from cells," Nature 385: 729-733 (1997), Moss *et al.*, "Cloning of a disintigrin metalloproteinase that processes precursor tumor-necrosis factor- α ," Nature 385: 733-736 (1997). TACE has recently been identified as a zinc endopeptidase consisting of an extracellular region comprising an N-terminal signal peptide, a prodomain, a 263 residue catalytic domain (TCD) that is preceded by a furin cleavage site (residues 211-214), a disintegrin domain, an EGF-like domain, and a crambin-like domain, an apparent transmembrane helix and the intracellular C-terminal tail. Tumor necrosis factor- α converting enzyme (TACE), including a polynucleotide sequence, is described in detail in the published PCT application No. WO 96/41624, herein incorporated in the entirety by reference.

As noted above, the over-production or unregulated production of TNF α presents serious physiological dangers. It has been implicated in various deleterious physiological diseases such as rheumatoid arthritis, cachexia and endotoxic shock. It also may eventually lead to organ failure and death. Thus, a way to control or block release of TNF α into the circulation is needed. Because of TACE's role in the conversion of TNF α , inhibition, modulation, or regulation of TACE would affect the release of TNF α into circulation. Inhibitors of metalloproteinases and structure based design thereof are described in Zask et al., "Inhibition of Matrix Metalloproteinases: Structure Based Design" Current Pharmaceutical Design, 2:624-661 (1996). Thus, compounds that associate with TACE, such as inhibitors, receptors or modulators will be useful to protect patients from adverse effects associated with the over-production or unregulated production of tumor necrosis factor- α .

5

10

15

20

SUMMARY OF THE INVENTION

5

10

15

25

According to one aspect of the invention, there is provided a composition comprising a polypeptide in crystalline form, wherein the polypeptide is a TNF- α converting enzyme polypeptide. In one embodiment, the TNF-α-converting enzyme polypeptide comprises the TNF-α-converting enzyme catalytic domain. In another embodiment, the TNF-α-converting enzyme polypeptide is the expression product of a polynucleotide encoding the pro and catalytic domains of TNF-α-converting enzyme. In a further embodiment, the TNF-α-converting enzyme polypeptide is the expression product of a polynucleotide encoding the amino acid residues 1-477 of TNF-α-converting enzyme. In yet another embodiment, the polynucleotide is substituted such that amino acid residue Ser266 is changed to Ala and amino acid residue Asn542 is changed to Gln, and wherein a second polynucleotide encoding the sequence Gly-Ser-(His)₆ is fused to the C-terminus.

According to another aspect of the invention, the compositions above further comprising a binding partner suitable for co-crystallization with the TNF- α converting enzyme polypeptide. In one embodiment, the binding partner is a hydroxamate-based binding partner. In another embodiment, the binding partner is N-{D,L-2-(hydroxyaminocarbonyl)methyl-4-methylpentanoyl}-L-3-amino-2dimethylbutanoyl-L-alanine, 2-(amino)ethyl amide.

According to further embodiments, the compositions above have a crystal structure diffracting to 2.0 Å, are monoclinic, have a unit cell comprising four crystallographically independent TNF-α-converting enzyme catalytic domain (TCD) molecules, have the TCD molecules are in an asymmetric unit, and/or have monoclinic space group P2₁ and the cell has the constants a=61.38 A, b=126.27 A, c=81.27 A, and $\beta=107.41^{\circ}$.

> In still another embodiment of the invention, the polypeptides above are characterized by the structure coordinates according to Table 1, or a substantial part thereof.

According to a further aspect of the invention, there is provided a method for crystallizing a TNF- α -converting enzyme polypeptide, comprising (A) mixing a solution comprising a TACE polypeptide and a binding partner with a crystallization buffer; and (B) crystallizing the mixture of step (A) by drop vapor diffusion to form a crystalline precipitate. In one embodiment, the method further comprises (C) transferring seeds from the crystalline precipitate formed by the drop vapor diffusion and a crystallization promotor into a mixture of a concentrated solution comprising a TACE polypeptide and binding partner substrate, and a crystallization buffer; and (D) crystallizing the mixture of step (C) by drop vapor diffusion to form a crystal. In another embodiment, the crystallization buffer is 0.1M Na Citrate pH 5.4, 20% w/v PEG 4000, and 20% v/v Isopropanol. In still another embodiment, the binding partner is N-{D,L-2-(hydroxyaminocarbonyl)methyl-4methylpentanoyl\-L-3-amino-2-dimethylbutanoyl-L-alanine, 2-(amino)ethyl amide. In yet another embodiment, crystallization is at a temperature ranging from 4 to 20 degrees Celsius. In another embodiment, the solution comprising the TACE polypeptide and the inhibitor is at a concentration of about 5 mg/mL to about 12 mg/mL in a buffer. In a further embodiment, the solution comprising a TACE polypeptide and the binding partner is mixed with the crystallization buffer in a 1:1 ratio.

20

15

5

10

According to still another aspect of the invention, there is provided a tumor necrosis factor- α (TNF- α)-converting enzyme crystal made by co-crystallizing a TNF- α -converting enzyme polypeptide with a co-crystallization substrate.

25

According to yet another aspect of the invention, there is provided a computer-readable medium having recorded thereon x-ray crystallographic coordinate data for the catalytic domain of TNF-α converting enzyme, or a portion thereof. In one embodiment, the computer-readable medium has recorded thereon the x-ray crystallographic coordinate data set forth in Table 1, or a portion thereof. In another embodiment, the medium is selected from the group consisting of a

floppy disc, a hard disc, computer tape, RAM, ROM, CD, DVD, a magnetic disk, and an optical disk. In still another embodiment, the computer-readable medium has recorded thereon machine-readable data, wherein the computer-readable medium, when used in conjunction with a machine programmed with instructions for using the data, is capable of generating image signals for depicting a graphical, three-dimensional representation of a TNF- α converting enzyme polypeptide, or portion thereof.

According to a further aspect of the invention, there is provided a system for studying a TNF- α converting enzyme polypeptide, said system comprising (a) a memory capable of storing information representing at least a portion of a TNF-\alpha converting enzyme polypeptide, wherein said memory comprises at least one firsttype storage region, including a set of spatial coordinates specifying a location in a three dimensional space, and at least one second-type storage region comprising information representing a characteristic of one of a plurality of amino acids, said second-type storage regions being logically associated with said first-type storage regions in said memory to represent a geometric arrangement of at least one characteristic of said at least a portion of said TNF-α converting enzyme peptide in said three dimensional space; (b) a processor coupled to said memory to access said first-type storage regions and said second-type storage regions, wherein the processor generates image signals for depicting a visual image representing three dimensional image of said at least one characteristic of said at least a portion of said TNF-α converting enzyme polypeptide in said three dimensional space based on data from said memory; and (c) a display coupled to said processor to receive said image signals, wherein the display depicts a visual three dimensional image of said at least one characteristic of said at least a portion of said TNF-α converting enzyme polypeptide in said three dimensional space based on said image signals. In one embodiment of the invention, the image signals include signals for depicting a visual three dimensional image of a ribbon structure of said at least a portion of said TNF-

5

5

10

15

10

15

. 20

25

α converting enzyme polypeptide in said three dimensional space. In another embodiment of the invention, the image signals include signals for depicting a visual image of a solid model representation of said at least a portion of said TNF- α converting enzyme polypeptide in said three dimensional space. In still another embodiment of the invention, the image signals include signals for depicting a visual three dimensional image of electrostatic surface potential of said at least a portion of said TNF- α converting enzyme polypeptide in said three dimensional space. In yet another embodiment of the invention, the image signals include signals for depicting a visual three dimensional stereo image of said at least a portion of said TNF-α converting enzyme polypeptide in said three dimensional space. In a further embodiment of the invention, the system further comprises a storage device capable of storing data representing a geometric arrangement of a characteristic of a composition other than said TNF-\alpha converting enzyme polypeptide; and an operator interface for receiving instructions from a operator; and wherein said processor is coupled to said storage device and to said operator interface and generates additional image signals for depicting said geometric arrangement of said characteristic of said composition relative to said visual three dimensional image of said at least one characteristic of said at least a portion of said TNF-α converting enzyme polypeptide on said display based on instructions from the operator interface. In one embodiment, the storage device is part of said memory. In another embodiment, the system comprises a plurality of first-type and second-type storage regions.

According to another aspect of the invention, there is provided a video memory capable of storing information for generating a visual display of at least a portion of a TNF-α converting enzyme polypeptide, said video memory comprising (a) at least one first-type storage region, each of said first-type storage regions including a set of spatial coordinates specifying a location in a three dimensional space; and (b) at least one second-type storage region, each of said second-type

storage regions containing information for visually depicting a characteristic of one of a plurality of amino acids; wherein said second-type storage regions are logically associated with said first-type storage regions in said video memory to represent a geometric arrangement of at least one characteristic of said at least a portion of said TNF- α converting enzyme polypeptide in said three dimensional space. In one embodiment, the second-type storage regions are logically associated with said first-type storage regions in said video memory to represent a geometric arrangement of at least one characteristic of a catalytic domain portion of said TNF- α converting enzyme polypeptide in said three dimensional space. In another embodiment, the first-type storage regions and said second-type storage regions are regions of a semiconductor memory. In yet another embodiment, the first-type storage regions and said second-type storage regions are regions of a magnetic memory. In a further embodiment, the video memory comprises a plurality of first-type and second-type storage regions.

In a still further aspect of the invention, there is provided a method of identifying a compound that associates with TNF- α -converting enzyme, comprising (A) designing an associating compound for said polypeptide that forms a bond with the TNF- α -converting enzyme catalytic domain based on x-ray diffraction coordinates of a TNF- α -converting enzyme polypeptide crystal; (B) synthesizing said compound; and (C) determining the associate capability of said compound with said TNF- α -converting enzyme. In one embodiment, the associating compound is an inhibitor, mediator, or other compound that regulates TNF- α -converting enzyme activity. In another embodiment, the associating compound is a competitive inhibitor, un-competitive inhibitor, or non-competitive inhibitor. In still another embodiment, the coordinates are the coordinates of Table 1, or a substantial part thereof. In a further embodiment, the TNF- α -converting enzyme polypeptide crystal comprises the TNF- α -converting enzyme catalytic domain. In still another

5

10

15

+ 11 .

20

embodiment, the TNF-α-converting enzyme polypeptide is the expression product of a polynucleotide encoding the pro and catalytic domains of TNF- α -converting enzyme. In yet another embodiment, the TNF-α-converting enzyme polypeptide is the expression product of a polynucleotide encoding the amino acid residues 1-477 of TNF-α-converting enzyme. In another embodiment, the polynucleotide is substituted such that amino acid residue Ser266 is changed to Ala and amino acid residue Asn542 is changed to Gln, and wherein a second polynucleotide encoding the sequence Gly-Ser-(His)6 is fused to the C-terminus. In a further embodiment, the TNF-α-converting enzyme polypeptide crystal is co-crystallized with a binding partner. In still another embodiment, the binding partner is a hydroxamate-based binding partner or N-{D,L-2-(hydroxyaminocarbonyl)methyl-4-methylpentanoyl}-L-3-amino-2-dimethylbutanoyl-L-alanine,2-(amino)ethyl amide. In yet other embodiments, the TNF- α -converting enzyme polypeptide crystal has a crystal structure diffracting to 2.0 Å, is monoclinic, has a unit cell comprising four crystallographically independent TNF- α -converting enzyme catalytic domain (TCD) molecules, has the TCD molecules are in an asymmetric unit, and/or is of monoclinic space group P2₁ and the cell has the constants a=61.38 Å, b=126.27 Å, c=81.27 Å, and $\beta=107.41^{\circ}$. In still another embodiment, the invention the the associating compound is designed to associate with the S1' region of TNF- α converting enzyme. In yet another embodiment, the associating compound is designed to associate with the S1'S3' pocket of TNF-α-converting enzyme. In still other embodiments of the invention, the associating compound is designed to (i) incorporate a moiety that chelates zinc, (ii) form a hydrogen bond with Leu348 or Gly349 of TNF-\alpha-converting enzyme, (iii) introduce a non-polar group which 25 coccupies the S1 pocket of TNF-α-converting enzyme, (iv) introduce a group which lies within the channel joining S1' - S3' pockets of TNF-α-converting enzyme and which makes appropriate van der Waal contact with the channel, and/or (v) form a

5

10

- 15

10

15

20

25

hydrogen bond with Leu348 or Gly349 on the backbone amide groups of TNF- α -converting enzyme.

These and other aspects of the invention will become apparent to the skilled artisan in view of the teachings contained herein.

BRIEF DESCRIPTION OF THE FIGURES

Fig. 1: Figure 1 is a ribbon diagram of the TACE catalytic domain (TCD). The chain starts on the lower left back side, runs through the structural elements sI, hAI, hA, sII, hB, hB2, sIII, IV, IVa, sIVb, sV, hC, Met-turn and hD, and ends in the upper left back. The three disulfides are shown as connections, with the sulphurs given as small spheres. The catalytic zinc (central sphere) is liganded by the three imidazoles of His4O5, His4O9 and His415, and by the hydroxyl and the carbonyl oxygen atoms of the inhibitor hydroxamic acid group. The inhibitor mimicking interaction of primed-site residues of a peptide substrate is shown in full. Figure 1 was made using SETOR. See Evans, S. "SETOR: Hardware Lighted Three-Dimensional Solid Model Representations of Macromolecules" J. Mol. Graph. 11:134-138 (1993).

Figs. 2a and 2b: Figures 2a and 2b are solid surface representations of the catalytic domains of TACE (TCD) (Figure 2a) and MMP-3 (Figure 2b). The electrostatic surface potential is contoured from -15 (intense red) to 15 (intense blue) k_8 T/e. Both active-site clefts run from left to right, with the catalytic zinc atoms (spheres) in the centers. In TACE, the bound inhibitor is shown in full structure, binding with its isobutyl (P1') and its Ala (P3') sidechains into the deep S1' and the novel S3' pockets. The orientation is similar to Fig. 1. Figures 2a and 2b were made using GRASP. Nicolls, A., Bharadwaj, R. and Houig, B., "Grasp - Graphical representation and analysis of surface properties," *Biophys.* 64, A166 (1993).

Fig. 3:Figure 3 aligns the catalytic domain sequences of adamalysin II (ADAM_CROAD), TACE and human ADAM 10 (hADAM10), according to their topological equivalence and sequence similarity, respectively. The residue numbers are due to the generic TACE numbering. Arrows and braces represent β -strands and α -helices in TACE.

Fig. 4: Figure 4 is a stereo section of the final 2.0 Å electron density around the catalytic zinc (large, central sphere) superimposed with the final TACE model. Visible are the three zinc liganding imidazole rings of His4O5 (top), His4O9 (left) and His415 (bottom), the "catalytic" Glu4O6, and the hydroxamic acid moiety of the inhibitor. The orientation is similar to Fig. 1. Figure 4 was made using TURBO-FRODO. See Roussel, A. & Cambilleau, C., "Turbo-Frodo in Silicon Graphics Geometry," *Partners Directory*, Silicon Graphics, Mountain View, CA (1989).

Fig. 5: Figure 5 is a superposition of the ribbon plots of the catalytic domain of TACE (light) and adamalysin (dark). Also shown is the catalytic zinc of TACE (sphere) and the three (TACE) and two (adamalysin) disulfide bridges. The orientation is similar to Fig. 1. Figure 5 was made using GRASP.

Fig. 6: Figure 6 illustrates a system for studying a TNF- α converting enzyme, including a video memory storing information for generating a visual display of at least a portion of a TNF- α converting enzyme.

The first of the company of the second of th

20

15

5

10

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a highly purified tumor necrosis factor- α converting enzyme (TACE) polypeptide, a method of producing and purifying a TACE polypeptide, a method of crystallizing a TACE polypeptide, and a TACE polypeptide crystal. The invention further relates to a X-ray diffraction method using a TACE polypeptide crystal, and to a method of obtaining the X-ray crystallographic structural coordinates of a TACE polypeptide as well as the structural coordinates themselves. Still further, the present invention relates using the structural coordinates of a TACE polypeptide to elucidate the three-dimensional structure of a TACE polypeptide and designing and developing compounds that associate with TACE. Knowledge of the three-dimensional structure and structure coordinates provided according to the invention permit the skilled person to make compounds that will interact with TACE. Such interacting compounds can be made by a variety of techniques and design criteria, including those disclosed in *Protein Engineering* (Oxender and Fox, eds.) (Alan R. Liss, Inc. 1987).

15

20

25

10

5

As used herein, TACE refers to a group of polypeptides that are capable of converting the 26 kD cell membrane-bound form of TNFα into the soluble 17 kD form that comprises the C-terminal 156 residues of the TNFα protein. TACE encompasses proteins having the amino acid sequence described in PCT application No. WO 96/41624, herein incorporated in its entirety by reference, as well as any of those proteins having homology, preferably no less than 50%, more preferably at least 80% homology, still more preferably 90% homology to such sequence, at the amino acid level. Additionally, TACE further refers to the expression products of nucleotide sequences disclosed in PCT application No. WO 96/41624. TACE further encompasses the membrane-bound protein and soluble or truncated proteins comprising the extracellular portion of the protein and which retain biological activity and are capable of being secreted. Examples of such proteins are described in PCT application No. WO 96/41624.

10

15

20

The TACE amino acid sequence, or any part or residue thereof, can be found in Black et al., "A Metalloproteinase disintigrin that releases tumour-necrosis factor-α from cells," Nature 385: 729-733 (Feb. 1997), herein incorporated in the entirety by reference. Variations in the amino acid sequence of TACE are within the present invention as well. All references to the TACE amino acid sequence contained herein refer to the sequence in Black et al., supra.

As used herein, the TACE catalytic domain (TCD) refers to the portion of a TACE polypeptide between residues 215 and 477 and including the preceding furin cleavage site (residues 211-214), or any part thereof that is capable of cleaving the peptide PLAQAVRSSS.

Expression, Isolation and Purification of TACE Polypeptides

Tumor necrosis factor- α converting enzyme (TACE) is described in the published PCT application No. WO 96/41624. The application describes isolated nucleic acids encoding TACE or portions of TACE, expression vectors comprising a cDNA encoding TACE or portions thereof, and host cells transformed or transfected with the expression vectors comprising a cDNA encoding TACE or portions of TACE. The application further describes processes for producing TACE and portions thereof, for example by culturing transfected cells engineered to express TACE, followed by purification of the recombinantly produced TACE or portion thereof. Methods of isolating, expressing, and purifying a TACE polypeptide are described in detail in published PCT application No. WO 96/41624. The entirety of PCT 96/41624 is incorporated herein by reference.

According to the invention, cDNA encoding the signal peptide, pro and catalytic domains of TACE, i.e., amino acid residues 1-477 is inserted into a suitable expression vector and expressed in a suitable cell line. The cDNA also may include other regions that facilitate expression or achieve other objects that

10

15

25

otherwise that do not depart from the essence of the invention, such as flanking regions.

The cDNAs encoding the TACE polypeptide, or functional portions thereof, such as the TCD, may be altered by addition, substitution, deletion, or insertion. Such alterations may be made, for example, to prevent glycosolation, prevent formation of incorrect or undesired disulfide bridges, and/or enhance expression. Examples of such alterations are described in WO 96/41624 and can be carried out by the methods described therein and other conventional methods. TACE may also be conjugated. Such conjugates may comprise peptides added to facilitate purification and/or identification. Such peptides include, for example, poly-His peptides. Conjugation is described in U.S. Patent No. 5,011,912 and Hopp et al., Bio/Technology 6:1204 (1988).

In one embodiment of the invention, the cDNA encodes a TNF-α converting enzyme polypeptide comprising the signal peptide, pro and catalytic domains of TACE (TCD), residues 1-477, with Ser266 changed to Ala and Asn452 changed to Gln. These substitutions are useful in preventing N-linked glycosolation. Additionally, the sequence Gly-Ser(His)₆ may be added to the C-terminus. The addition of the sequence Gly-Ser(His)₆ facilitates purification of the polypeptide using metal-chelate affinity resins, such as Ni-NTA resins.

Recombinant expression vectors containing the nucleotide sequence encoding TACE, or a portion thereof, may be prepared using well known methods. Suitable host cells for expression of TACE polypeptides include prokaryotic, yeast, and higher eukaryotic cells. Vectors and host cells suitable for use in the present invention are described in WO 96/41624. Further examples of suitable expression systems that can be employed to express recombinant TACE according to the present invention include mammalian or insect host cell culture expression systems, including baculovirus systems in insect cells (See Luckow and Summers, Bio/Technology 6:47 (1988))and mammalian cell lines such as COS-7 cells

(Gluzman et al., Cell 23:175 (1981)). Additional examples are known in the art and include those described in WO 96/41624. In one embodiment of the invention, the TACE polypeptide is expressed in CHO cells. In this embodiment, the cells secrete a mixture of TACE polypeptide beginning with Val212 and Arg215.

5

In one embodiment, stable expressing cells may be selected by culturing the cells in a drug that kills those cells that do not incorporate the vector. Examples of suitable selection methods are described in, for example, Kaufman, R.J., "Selection and coamplification of heterologous genes in mammalian cells," *Methods in Enzymology*, 185:537-566 (1990).

10

Purification of the expressed TACE polypeptide may be carried out by any suitable means, such as those described in WO 96/41624. According to one aspect of the invention, it is preferable to obtain a TACE polypeptide that is suitable for crystallization. In obtaining a TACE polypeptide suitable for crystallization, it is important that the process for purifying the TACE polypeptide is sufficient to yield a polypeptide pure enough to properly crystallize.

. 15

20

A preferred method of purification starts with a suitable amount of medium from the culture of TACE-secreting cells. This medium is generally a supernate of the culture. The medium contains the TACE polypeptide to be purified. Preferably, the TACE polypeptide is recombinantly produced using DNA coding for the TACE polypeptide with the sequence altered to encode a conjugate or conjugates that facilitate purification. For example, the sequence encoding Gly-Ser-(His)₆ may be added to the C-terminus to facilitate purification using metal-chelate resins.

25

The medium is concentrated, for example, by diafiltration. Suitable diafiltration units include a Millipore 10K cut-off, 1 ft² TFF diafiltration unit. A suitable buffer solution is then added to the concentrated medium. Any suitable buffer may be used. One such suitable buffer contains 20 mM Tris (pH 7.5) and 300 mM NaCl.

10

15

25

The sample is reconcentrated and diluted numerous times. For example, the sample may be reconcentrated and diluted a second time with the buffer, reconcentrated again, diluted a third time with the buffer, and reconcentrated a final time. The sample retained in the diafiltration unit is recovered by a suitable method, such as by a back-flush method. The recovered material may then be filtered through a suitable membrane. Suitable membranes include, for example, 0.45 or 0.22 micron pore-size membranes. Azide is then added. The filtered sample may then be stored overnight at a low temperature, such as about 2-9 °C.

After overnight storage, imidazole from a stock solution in water and ZnCl₂ from a stock solution in water are added to the filtered sample. The sample then is pumped over a suitable column. One suitable column, particularly when the TACE polypeptide is conjugated with the sequence Gly-Ser-(His)₆, is a metal-chelate resin, such as a Ni-NTA resin.

The column is washed with a buffer, such as a buffer of 20 mM Tris pH 7.5, 300 mM NaCl, 5 mM imidazole, and 5 uM ZnCl₂. The TACE polypeptide is then eluted with an increasing gradient of imidazole. Fractions are collected in tubes containing glycerol in water Tris pH 8. Preferably, the glycerol solution is prepared the day of the column run.

An aliquot from each fraction is spotted on a membrane which is stained with amido black to determine which fractions contain a significant amount of protein. Alternatively, a small amount, for example 5 µl, from each fraction may be used for gel analysis using Coomassie staining. The fractions with a significant amount of protein are pooled, and the pool is then concentrated with, for example, a diafiltration unit.

In some cases, aggregation of polypeptide may occur. In order to eliminate aggregates and further facilitate purification, an inhibitor of TACE, such as a hydroxamate-based inhibitor, may be added to the concentrated sample from a stock solution in water, and octylglucoside (commercially available from Boehringer

Mannheim) is added from a stock solution in water. The sample is then incubated at room temperature for 15-24 hours.

Following incubation, the sample is applied to a size exclusion column. The column is first equilibrated with a suitable buffer, such as a buffer of 10 mM Tris pH 7.5, 100 mM NaCl, 10% glycerol. Suitable size exclusion columns include, for example, LKB 2135-365, packed with TSK-G3000 SWG or the like such as Superdex-200. The buffer is then pumped through the column. The highly purified TACE polypeptide can be detected by absorption at 280 nm.

A gel analysis of all fractions with significant protein is carried out to determine which fractions should be pooled. The size exclusion chromatography pool is concentrated using, for example, a diafiltration unit.

A binding partner, such as an inhibitor, may then be added to the purified sample. The binding partner is particularly useful in stabilizing the TACE polypeptide. The binding partner may be any suitable compound. Suitable binding partners include, for example, hydroxamate-based inhibitors. One suitable inhibitor is N-{D,L-2-(hydroxyaminocarbonyl)methyl-4-methylpentanoyl}-L-3-amino-2-dimethylbutanoyl-L-alanine, 2-(amino)ethyl amide. This inhibitor, as well as other inhibitors, are described in US patent No. 5,594,106 (Black *et al.*), herein incorporated in its entirety by reference.

The protein complex can be stored at low temperature, for example, at about 4 °C.

Jane Branch Branch Branch Branch

Company of the Company of the Company

5

10

15

10

15

25

TACE Crystal and Methods of Crystallization of TACE Polypeptides

One aspect of the invention relates to a method of crystallizing a TACE polypeptide. A preferred method comprises co-crystallizing a TACE polypeptide with a binding partner described above. Exemplary means for obtaining the TACE polypeptide, as well as purification of the polypeptide are described above.

Crystals may be grown or formed by any suitable method, including drop vapor diffusion, batch, liquid bridge, and dialysis, and under any suitable conditions. Crystallization by drop vapor diffusion is often preferable. In addition, those of skill in the art will appreciate that the crystallization conditions may be varied. Various methods of crystallizing polypeptides are generally known in the art. See, for example, WO 95/35367, WO 97/15588, EP 646 599 A2, GB 2 306 961 A, and WO 97/08300.

In one embodiment of the invention, a DNA construct comprising TACE residues 1-477, with Ser266 changed to Ala, Asn452 changed to Gln, and the sequence Gly-Ser-(His), added to the C-terminus, may be expressed in CHO cells. These cells primarily secrete a processed mixture of TACE, about half beginning with Val212 and about half with Arg215. The mixture is purified as described above. The purified TACE polypeptide, with the added binding partner, is stored in a buffer as described above.

20 The TACE polypeptide and binding partner are co-crystallized. The TACE/binding partner solution, at a polypeptide concentration of about 5 mg/mL to about 12 mg/mL in a TACE buffer described above, is mixed with a suitable crystallization buffer and crystallized using a suitable crystallization technique, for Suitable crystallization buffers, for example, example drop vapor diffusion. include: 0.1 M Na Acetate pH 5.3, 0.2 M CaCl₂, 30% v/v Ethanol; 0.1 M Na Citrate pH 5.0, 40% v/v Ethanol; 0.1 M Na Citrate pH 8.7, 20% w/v PEG 4000, 20% v/v Isopropanol; and 0.1 M Na Citrate pH 5.4, 20% w/v PEG 4000, 20% v/v Isopropanol. The sample is incubated at a temperature ranging from about 4 to 20 degrees Celsius. A crystalline precipitate is formed.

Seeds from the crystalline precipitate obtained, as whole crystals or crushed crystal suspensions, are transferred, along with a suitable crystallization promoter, such as hair of rabbit, to a solution of concentrated TACE/substrate in a crystallization buffer. Crystals suitable for X-ray data collection are formed.

Another aspect of the invention relates to a TACE polypeptide crystal. One such crystal comprises a TNF- α converting enzyme catalytic domain (TCD) polypeptide co-crystallized with an inhibitor. The crystal diffracts to about 2 A and belongs to the monoclinic space group P2₁. The crystal's unit cell comprises four crystallographically independent TCD molecules. The TCD molecules are in an asymmetric unit and are not clustered into separate tetrameres, but are integrated into the infinite periodic structure. The crystal has the cell constants: a=61.38 Å (angstrom), b=126.27 Å, C=81.27 Å and $\beta=107.41^{\circ}$.

15

20

. 25 :

. 10.

5

X-Ray Diffraction

Another aspect of the invention relates to the structure of TACE, particularly the structure of the TACE catalytic domain (TCD). The structure of TACE can be determined utilizing a crystal comprising a TACE polypeptide as described above. According to the present invention, the structure of TACE, and particularly the TCD, is determined using X-ray crystallography. Any suitable X-ray diffraction method for obtaining three-dimensional structural coordinates of a polypeptide may be used. The three-dimensional structure coordinates, or any part thereof that characterizes the part of the TACE polypeptide of interest, such as the TACE catalytic domain or part thereof that is capable of cleaving the peptide PLAQAVRSSS, can be used as described herein.

green and the second second

10

15

25

Methods of Using TACE X-Ray Diffraction Coordinates

The invention also relates to use of the structure coordinates obtained from the above described X-ray diffraction studies of the TACE catalytic domain. The coordinates may be utilized, by direct analysis, with the aide of computers, or combinations thereof, to determine the structure, including secondary and tertiary structure, of the TACE catalytic domain. The TACE catalytic domain structure coordinates also may be used to develop, design, and/or screen compounds that associate with TACE. As used herein, "associate" means that the compound may bind to or interact with TACE ionically, covalently, by hydrogen bond, van der Waals interaction, salt bridges, steric interaction, hydophilic interactions and hydrophobic interaction. Moreover, the term "associate" encompasses associations with any portion of the TACE catalytic domain. For example, compounds that associate with TACE may be compounds that act as competitive inhibitors, uncompetitive inhibitors, and non-competitive inhibitors. Compounds that associate with TACE also may be compounds that act as mediators or other regulatory compounds. Compounds that associate with TACE also may be compounds that isomerize to short-lived reaction intermediates in the chemical reaction of substrate with TACE. In particular, compounds designed to associate with TACE may be used therapeutically as inhibitors, mediators and other regulatory compounds.

20. The use of X-ray coordinates for structure determination, molecular design and selection and synthesis of compounds that associate with other polypeptides is known in the art. Published PCT application WO 95/35367 describes the use of Xray structure coordinates to design, evaluate, synthesize and use compounds that associate with the active site of an enzyme. UK Patent Application 2306961A describes the use of X-ray coordinates in rational drug design. Published PCT application, WO 97/15588 describes the structural determination of a polypeptide using x-ray diffraction patterns as well as use of the coordinates and threedimensional structure in finding compounds that associate with the polypeptide of . 5

10

. :

. . .

15

20

25

interest. This invention, however, for the first time allows the use of X-ray coordinates for a TACE polypeptide for structural determination, molecular design, and selection and synthesis of compounds that associate with TACE.

In one aspect of the invention, the structure coordinates obtained by the foregoing methods may be displayed as, or converted to, a graphical representation, including three-dimensional shape representations. This may be accomplished using commercially available computer programs capable of generating graphical representations of molecules, or parts thereof, from a set of structural coordinates. Examples of computer programs capable of generating graphical representations of molecules, or parts thereof, from a set of structural coordinates are described in published PCT application WO 97/08300, incorporated in the entirety by reference.

In another aspect of the invention, the structure coordinates and structure may be compared to, or superimposed over, other similar molecules, such as other metalloproteinases. For example, the TACE structure coordinates and structure may be compared to or superimposed over the structure coordinates or structure of snake venom metalloproteinases, such as, for example, adamalysin II. The TACE structure coordinates and structure also may be compared to or superimposed over the structure coordinates or structure of matrix metalloproteinases, such as ADAM 10, including human ADAM 10. Comparison of TACE and other molecules for which a graphical structure or three-dimensional structural coordinates are available may be carried out with the aide of available software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations, Inc., Waltham, MA).

Compounds that associate with TACE also may be computationally evaluated and designed by screening and selecting chemical entities or fragments for their ability to associate with TACE, and specifically the TACE catalytic domain. Several methods may be used to accomplish this aspect of the invention. In one embodiment, one may visually inspect a computer-generated model of TACE, and

specifically the catalytic domain, based on the structure coordinates described Computer generated models of chemical entities or specific chemical moieties can then be positioned in or around the catalytic domain and evaluated based on energy minimization and molecular dynamics, using, for example, available programs such as CHARMM or AMBER. Positioning of the chemical entity or fragment can be accomplished, for example with docking software such as Quanta and Sybyl. Additionally, known and commercially available computer programs may be used in selecting chemical entities or fragments. Once suitable chemical entities or fragments are selected, they may be assembled into a single compound, such as an inhibitor, mediator, or other regulatory compound. Known and commercially available model building software may assist in assembly.

In one aspect of the invention, compounds that associate with TACE and specifically the TACE catalytic domain may be designed as a whole, rather than by assembly of specific chemical moieties or chemical entities. This embodiment may be carried out using computer programs such as LUDI (Biosym Technologies, San Diego, CA), LEGEND (Molecular Simulations, Burlington, MA), and Leap Frog (Tripos Associates, St. Louis, MO).

In one embodiment, a candidate compound is chosen based upon the desired sites of interaction with TACE and the candidate compound in light of the sites of interaction identified previously. Once the specific candidate compound-TACE interactions are determined, docking studies, using commercially available docking software, are performed to provide preliminary "modeled" complexes of selected candidate compound with TACE.

> Constrained conformational analysis is performed using, for example, molecular dynamics (MD) to check the integrity of the modeled TACE-inhibitor complex. Once the complex reaches its most favorable conformational state, the structure as proposed by the MD study is analyzed visually to ensure that the modeled complex complies with known experimental SAR/QSAR (structure-activity

5

10

15

20

relationship/quantitative structure-activity relationship) based on measured binding affinities.

Other modeling techniques also may be used in accordance with the invention. Examples of these techniques are disclosed in Cohen et al., "Molecular Modeling Software and Methods for Medicinal Chemistry," J. Med. Chem., 33:883-894 (1990) and Navia et al., "The Use of Structural Information in Drug Design," Current Opinions in Structural Biology, 2:202-210 (1992), herein incorporated by reference in the entirety.

Compounds developed or designed to associate with TACE may be optimized or the efficiency of association can be tested using a number of methods known in the art. For example, the deformation energy and electrostatic interactions may be determined and optimized. Known and commercially available software and hardware systems may be used. Examples of such software are disclosed in WO 95/07619. Structure-based analoging for optimization of the inhibitor potency, selectivity and physical drug-like properties in an iterative manner also may be performed by one skilled in the art of drug design.

Substitutions also may be made to selected or designed compounds. These substitutions can be made to improve or modify the association properties of the compound. Such substitutions may be made, for example, in side groups or particular atoms of the compounds. Generally, one should begin with conservative substitutions that have approximately the same size, shape, charge and other characteristics of the original group or atom. Substituted compounds may be further analyzed and optimized as described above.

In a further aspect of the invention, the potential inhibitory, mediatory, regulatory, or other binding effect of a compound may be analyzed and evaluated, using, for example, commercially available computer software, prior to actual synthesis and testing of such compound. In this way, one can evaluate the probability of synthesizing and testing of inoperative compounds.

5

10

20

Procedures for measuring inhibition generally are known in the art and are disclosed, for example, in PCT 96/41624. Such methods include assays based on reaction with a peptide substrate.

TACE Catalytic Domain Structure

5

10

15

25

The physical features of the TCD, determined based on the X-ray diffraction data obtained using the methods described and its use in creating molecular models of the TCD, are further described, with reference to the Figures.

The domain depicted in Fig. 1 has the shape of an oblate ellipsoid, notched at its flat side to give a relatively small active-site cleft separating the small "lower" subdomain from the "upper" main molecular body (Fig. 2a). The TCD polypeptide chain starts on the molecular surface (in the lower back, Fig. 1), with the chain becoming well defined between Asp217 and Met221 (see Fig. 3). Central to the molecule is the five-stranded β -pleated sheet, with the β -strands arranged in the order (from back to front, see Fig 1) 'sII, sI, sIII, sV and sIV (see Fig. 3), with sIV, the "edge" strand, running antiparallel to the others. This β-sheet is highly twisted flanked by two α-helices (hB and hB2) on its convex and two helices (hA and hC) on its concave side. The β -strands sI and sII are connected by the short α -helix hAl and the long α-helix hA (the obliquely running helix on the backside, Fig. 1). The β-strands sII and sIII are linked by the large "multiple-turn loop", the long "intermediate" α-helix hB and the adjacent short α-helix hB2, all of them arranged on "top" of the β-sheet thus fully shielding its central part from bulk water (Fig. 1). The multiple-turn loop is bulged out at two sites giving rise to a "spur-like" and a quite acidic protuberance, respectively (visible in Fig. 2a on top of the molecule). The sIII-sIV linker terminates in a short "bulge", before it enters the edge strand sIV. The sIV-sV connecting segment is dissected into two large "ear-like" surfacelocated loops, a first one nestling to the main molecular body (giving rise to the "blue" surface, center left, in Fig. 2a), and a long β-hairpin loop (sIIa-sIIb)

projecting from the molecular surface (top left in Figs. 1 and 2). A bulged-out loop links sV with the "active-site helix" hC, which is located in the center of the molecule and stops abruptly at the strictly conserved Gly412, where the chain kinks down to build the lower subdomain.

. 5

10 ...

. 15

The C-terminal chain comprising the last 61 TCD residues (Fig. 3) first forms three short straight almost perpendicularly arranged segments linked by two "narrow" supertwisted loops, returns via the tight "Met-turn" Tyr433-Val434-Met435-Tyr436 back to the surface where it kinks at Pro437 to form the Pro437-Ile438- Ala439 outer "wall" of the S1' crevice, approaches in a wide loop the Cterminal α -helix hD and runs through it, and ends up on the molecular "back" surface close to the N-terminus, with the last defined residues Arg473-Ser474 fixed via hydrogen bonds to the main molecular body. Via Cys423-Cys453, the first of the two "narrow" loops is disulfide-linked with the N-terminus of helix hD, whose C-terminal end in turn is clamped to the "ear-like" sIV-sV linker peptide through Cys365-Cys469. Spatially adjacent, the third disulfide bridge of TCD, Cys225-Cys333, connects the N-terminal parts of β-strands sI and sIII. In the intact TACE molecule, four residues downstream of Ser474 would reside Cys478, which is already integral part of the compact elongated disintegrin domain (Saudek et al., "Three-dimensional structure of echistatin, the smallest active RGD protein" Biochem. 30, 7369-7372 (1991)). Considering Ser474 and this Cys478 as pivot points of their respective domains, the three residue linker would allow relatively unconstrained docking of the disintegrin domain to the "left" surface side of the catalytic domain.

25

20

The active-site cleft of TACE (Fig. 2a) is relatively flat on the left hand (non-primed) side, but becomes notched towards the right. The catalytic zinc residing in its center is penta-coordinated by the three imidazole N∈2 atoms of His4O5, His4O9 and His4I5 (provided by the active-site helix and the following "descending" chain comprising the conserved zinc binding consensus motif

HEXXHXXGXXH), and by the carbonyl and the hydroxyl oxygen of the hydroxamic acid moiety of the inhibiter (see Figs. 1, 2a and 4). This zinc-imidazole ensemble is based on the distal ∈-methyl-sulphur moiety of the strictly conserved Met435, harbored in the Met-turn characteristic for the metzincin clan (Bode et al., "Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins' FEBS Lett. 331, 134-140 (1993); Stöcker et al., "The metzincins: Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases" Protein Sci. 4, 823-840 (1995)). Both carboxylate oxygens of the "catalytic" Glu4O6 (which acts as a general base during catalysis (Grams et al., "X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors: Implications for substrate binding and rational drug design" Eur. J. Biochem. 228, 830-841 (1995)) squeezed between the zinc-liganding imidazole of His4O5 and the edge strand, are hydrogen bonded to the hydroxyl and the N-H group of the hydroxamic acid (see Fig.4). To the right of the catalytic zinc opens the deep S1' pocket, which, besides the S1' wall-forming segment (bottom, Figs. 1 and 2a), is bordered by the side chains of His4O5 and Glu4O6 (left), the sIV main chain and the Leu345 side chain (top), and the side chains of Val44O (back) and Ala439 (right). To the right of Ala439 opens a second (S3') pocket; which inside the molecule merges with the S1' pocket, leaving a small bridge made of the opposing side chains of Ala439 and Leu348 (Fig. 2a).

The (pseudo)peptidic part of the inhibitor binds in an extended geometry to the notched right-hand side of the active-site cleft, mimicking the interaction of the primed residues of a productively bound peptide substrate (Fig. 2a). It runs antiparallel to the upper short bulge Gly346-Thr347-Leu348 and parallel to the S1' wall-forming segment Pro437-Ile438-Ala439, making two and two inter-main chain

5

10

15

..20.

hydrogen bonds, respectively. The dominant intermolecular interactions are made by the P1' isobutyl (pseudo-leucyl) side chain of the inhibitor and the essentially hydrophobic S1' pocket, however, is large and accommodates three partially ordered solvent molecules in addition. The P2' t-butyl side chain extends away from the enzyme, but nestles to the hydrophobic canopy above formed by the enzyme's bulge. The P3' Ala side chain points into the large negatively charged S3' pocket, but is too short to make favorable contacts. The C-terminal diaminoethyl group has different conformations in the four molecules.

The P1' to P3' segment Val77-Arg78-Ser79 of a bound pro-TNFα probably binds in a similar manner, possibly under better matching with the underlying cleft surface; the preceding P3 to P1 residues Ala74-Gln75-Ala76 certainly will align antiparallel to the edge strand, with their side chains extending into the (partially charged) S3 pocket and the (negatively charged) shallow S2 depression, and projecting out of the central cleft, respectively. The primed subsites and surrounding molecular surfaces of TACE are dominated by negative charges, while the nonprimed subsites are essentially hydrophobic in nature (Fig. 2a). More distant interactions may be involved in the specificity of TACE for processing pro-TNFa. The 12 residue substrate comprising the pro-TNF α cleavage site can also be split by some of the MMPs, although with less specificity and efficacy (Black et al., "Relaxed specificity of matrix metalloproteinases (MMPs) and TIMP intensity of tumor necrosis factor- α (TNF- α) production suggest the major TNF- α converting enzyme is not an MMP" Biochem. Biophys. Res. Commun. 225, 400-405 (1996)). Thus, the preferential processing of the (probably trimeric) (Tang et al., "Human pro-tumor necrosis factor is a homotrimer" Biochem. 35, 8216-8225 (1996a); Tang et al., "Length of the linking domain of human pro-tumor necrosis factor determines the cleavage processing" Biochem. 35, 8226-8233 (1996b)) membrane-bound pro-TNFα in vivo might in part be due to correct assembling, i.e. suitable presentation of the pro-TNFa cleavage segment to the TACE active site in a distinct distance

5

10

15

20

from the anchoring membrane. Some experimental evidence (Tang et al., Biochem. 35, 8216-8225 (1996a); Tang et al., Biochem. 35, 8226-8233 (1996b)) suggests that the cleavage site might not be determined by the cleavage sequence alone, but that also the distance to the base of the compact cone formed by the associated C-terminal segments of three TNFα molecules (Jones et al., "Structure of tumor necrosis factor" Nature 338, 225-228 (1989)) plays a role. In a productive TACE-proTNFα complex, the base of this TNFα-trimer cone (into which the disordered N-termini run up) may be recognized by the "right" side of the TACE catalytic domain (Fig. 2a), with the about 10 residues long spacer favoring the correct placement of the proTNFα Ala76-Val77 scissile peptide bond in the active site of TACE.

The polypeptide topology and in particular the surface presentation of the catalytic zinc prove the catalytic domain of TACE to be a typical metzincin. (Bode et al., "Astacins, serralysins, snake venom and matmrix metalloproteinases exhibit identical zinc binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins'" FEBS lett. 331, 134-140 (1993); Stöcker et al., "The metzincins: Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases" Protein Sci. 4, 823-840 (1995)) A superposition with the other metzincins shows, however, that its topology is most similar to that of the catalytic domain of snake venom metalloproteinases such as adamalysin II (Fig. 5). (Gomis-Rüth et al., "First structure of a snake venom metalloproteinase; prototype for matrix metalloproteinases/collagenases" EMBO J. 12, 4151-4157 (1993); Zhang et al., "Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d)" Proc. Natl. Acad. Sci. USA 91, 8447-8451 (1994); Kumasaka et al., "Crystal structure of H2-proteinase from the venom of Trimeresurus flavoviridis" J. Biochem. 119, 49-57 (1996)) This close homology is

5

10

15

20

reflected by the much better simultaneous superposition of the central sheet and the large helices, but in particularly also by a couple of structural features, which TACE shares exclusively with the adamalysins such as: the long helix hB and the preceding multiple-turn loop arranged on top of the β-sheet; the typically arranged and shaped C-terminal helix hC; and the extended C-terminus placed on the backside surface. About 175 of the 263 TACE and 201 adamalysin α -atoms are topologically equivalent (with an rms deviation of 1.3 Å, 39 of which have identical side chains (Fig. 3). These numbers are close to those obtained from a comparison of members within the different metzincin families. (Stöcker et al., supra) In addition, detailed structural features prove the close relationship of TACE to the adamalysins: a more conserved core structure; the loosely arranged N-terminus; the characteristic Asp416 (directly following the zinc binding consensus motif, Fig. 3) involved in identical intramolecular hydrogen bond interactions; the adjacent disulfide bridge Cys423-Cys453 linking the first narrow loop to the C-terminal helix hD (which TACE does not share with adamalysin II, but with the H2-proteinase from the snake venom of T. flavoviridis) (Kumasaka et al., supra); disulfide bridge .Cys365-Cys469 connecting the sIV-sV linker with the C-terminal helix hD; a similarly shaped active-site cleft, with particularly strong similarities in the SI' pocket and other primed subsites.

The catalytic domain of TACE (TCD) also differs from adamalysin II in several respects: with 263 residues, its chain is much longer; most of the additional residues of TACE are clustered giving rise to a more projecting hA-sII turn, to the two surface protuberances of the multiple-turn loop, to the two "ears" of the sIV-sV linker, and to a more bulged-out sV-hC connector (see Figs. 3 and 5); lack of a calcium binding site but presence of a third disulfide bridge Cys225-Cys333 in TACE, both elements serving, however, for the same function namely to clamp the N- terminal chain to strand sill; the quite deep S3' pocket of TACE which merges

5

10

15

20

25.

... WO 99/40182 PCT/US99/02185

with its S1' pocket; an almost inverted charge pattern in and around the primed subsites, with an absolute predominance of positive charges in adamalysin.

According to its sequence, and probably with respect to its three-dimensional structure, the TACE catalytic domain is thus not a typical member of the mammalian ADAMs proper (a family of membrane-anchored cell-surface proteins, with the catalytic domain quite homologous to adamalysin (Wolfsberg et al., "ADAMs in Fertilization and Development" Developm. Biol. 180, 389-401 (1996))) TACE presumably shares this "outsider" role with (bovine): ADAM 10 (Fig. 3), which does also possess some TACE-like activity (Lunn et al., "Purification of ADAM 10 from bovine spleen as a TNFα convertase," FEBS Lett. 400, 333-335 (1997)), and whose *Drosophila* version (kuz) has recently been shown to process the Notch receptor (Rooke et al., Science 273, 1227-1231 (1996)). Also ADAM 10 probably exhibits an elongated hA-sII loop and the two "ears" typical for TACE, but might have a multiple-turn intermediate in size between TACE and adamalysin (see Fig. 3). Ninety of the ADAM 10 catalytic domain residues are identical to TACE further underlining the close homology (see Fig. 3), whereas the other mammalian ADAMs probably resemble much more adamalysin II (Gomis-Ruth et al., "Refined 2.0 A crystal structure of snake venom zinc endopeptidase adamalysin II" J. Mol. Biol. 239, 513-544 (1994)).

The structural homology of TACE to the MMPs is significantly lower. The relative arrangement of the common secondary structural elements differs more (reflected by the significantly larger rms deviation of 1.6 Å of the about 120 topologically equivalent Co-atoms), and the MMPs lack characteristic TACE/adamalysin structural elements (such as the intermediate helix hB and the multiple-turn loop, the Asp residue behind the third zinc-binding histidine), or exhibit typical determinants (such as the structural zinc and the integrated calcium ions) not seen in TACE. Notwithstanding the differences in secondary structure, the active-site cleft of TACE bears some similarity with that of the MMPs, with the

5

10

15

5 -

10

15

20

25

flat nonprimed (left-hand) side, and the narrow primed side centering in the deep S1' pocket (Fig. 2b). This subsite similarity to the MMPs explains the observed partial sensitivity of TNFα-convertase activity towards synthetic hydroxamic acid inhibitors originally designed for inhibition of various MMPs (DiMartino et al., "Anti-arthritic activity of hydroxamic acid-based pseudopeptide inhibitors of matrix metalloproteinases and TNFα processing" Inflamm. Res. 46, 211-215 (1997)). Model building experiments with TIMP-1 structure (Gomis-Rüth et al., "Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1" Nature 389, 77-81(1997)) show no obvious obstacles in the active-site region of TACE that would easily explain its resistance to blockage by the TIMPs.

This TCD crystal structure thus gives evidence for a topological similarity of the catalytic domain of TACE with that of the adamalysins/ADAMs, and for a share of its substrate binding site to that of the MMPs. TACE exhibits, however, several structural peculiarities regarding surface contour, charge and shape, which facilitates the design of potent selective synthetic inhibitors.

In designing and developing compounds, such as inhibitors, mediators and other compounds having activities with biological significance, that associate with TACE, it is desirable to select compounds with a view toward the particular surface contour, charge, shape, and other physical characteristics of the TACE catalytic domain. Generally, the compounds should be capable of physically and structurally associating with TACE, as well as be able to assume a conformation that allows it to associate with TACE. The features described above will direct the skilled artisan in this regard. In particular, compounds with a linear functionality should be particularly suitable. Such compounds will be particularly suitable in light of the deep pockets of the TACE catalytic domain.

The compounds that associate with TACE, for example, may be designed to associate with the S1' region or the S1'S3' pocket of TACE. Compounds that associate with TACE also may be designed to (i) incorporate a moiety that chelates

10

15

25

zinc: 'Further exemplary compounds include compounds are designed to form a hydrogen bond with Leu348 or Gly349 of TACE, (ii) introduce a non-polar group which occupies the S1' pocket of TACE, (iii) introduce a group which lies within the channel joining S1' - S3' pockets of TACE and which makes appropriate van der Waal contact with the channel, and (iv) form a hydrogen bond with Leu348 or Gly349 on the backbone amide groups of TNF- α -converting enzyme, or (v) any combination of the above.

Computer-Readable Medium

The present invention also relates to a computer-readable medium having recorded thereon the x-ray diffraction structure coordinates of a crystalline TACE polypeptide. The computer-readable media of the invention are useful for storage, transfer, and use with software of the TACE structural coordinates. The computer readable medium may be any suitable data storage material, including, but not limited to, a floppy disc, a hard disc, computer-type Random Access Memory, Read-Only Memory flash memory, CD-ROM, recordable and rewritable CDs, recordable and rewritable DVDs, magnetic-optical disk, ZIP drive, JAZ drive, Syquist drive, digital tape drive, or the like. Other suitable media will be known to Attribute of skill in the art. The way of the late of the control of the control

20 In one embodiment, the computer readable medium comprises the coordinates of Table 1 or a substantial portion thereof. The computer-readable medium may be used in conjunction with a machine programmed with instructions for using the data recorded on the medium, such as a computer loaded with one or more programs identified throughout the specification, to display a graphical, threedimensional representation of a TACE polypeptide, or any part thereof.

rapas e terra e abanda 1.1 da. derber diberakan apa

the state of the first and sometimes are segrent to be presented as the And the state of t

Computer Based System

5

. 10

15

20

25

Figure 6 illustrates a system 1000 for studying a TACE polypeptide. The system includes a video memory 110 that stores information representing at least a portion of a TACE polypeptide. The memory has at least one first-type storage region 112, having recorded thereon a set of spatial coordinates specifying a location in a three dimensional space, and at least one second-type storage region 114, having recording thereon information representing a characteristic of one of a plurality of amino acids. The second-type storage regions are logically associated with the first-type storage regions in the video memory 110 to represent a geometric arrangement of at least one characteristic of at least a portion of the TACE polypeptide in the three dimensional space. Memory, 112 and 114 can comprise, for example, the data shown in Table 1. The system 1000 also includes a processor, coupled to the memory to access the first-type storage regions 112 and the secondtype storage regions 114, to generate image signals for depicting a visual three dimensional image of at least one characteristic of at least a portion of the TACE polypeptide in the three dimensional space based on data from the memory 110. The processor can be any general purpose processor with a CPU, register, memory and the like. A display 130 coupled to the processor 120 via lines 125 to receive the image signals, for depicting a visual three dimensional image of at least one characteristic of at least a portion of the TACE polypeptide in the three dimensional space based on the image data on a screen 132.

In one embodiment of the invention, the image data includes data for depicting a visual three dimensional image of a ribbon structure of at least a portion of a TACE polypeptide in three dimensional space, such as shown in Fig. 1. In another embodiment, the image data includes data for depicting a visual three dimensional image of a solid model representation of at least a portion of said TACE polypeptide in three dimensional space, such as shown in Fig. 2. In still another embodiment, the image data includes data for depicting a visual three

dimensional image of electrostatic surface potential of at least a portion of TACE polypeptide in three dimensional space, such as shown in Fig. 2. In yet another embodiment, the image data includes data for depicting a visual three dimensional stereo image of at least a portion of a TACE polypeptide in three dimensional space, such as shown in fig. 4.

The system 1000 of the present invention may further comprise a storage device 145 that stores data representing a geometric arrangement of a characteristic of a composition other than the TACE polypeptide and an operator interface, such as a mouse 135, for receiving instructions from a operator. Storage device 145 can include, for example, the three-dimensional X-ray coordinate data for other chemical entities. The processor 120 is coupled to the storage device 145 and to said operator interface 135 and generates additional image data for depicting the geometric arrangement of the characteristic of the composition relative to said visual three dimensional image of said at least one characteristic of said at least a portion of TACE polypeptide on the screen 132 based on instructions from the operator interface. In the Fig. 6 embodiment, the storage device 145 is part of the memory 110.

The first-type storage regions 112 and said second-type storage regions 114 are regions of, for example, a semiconductor memory, regions of an optical disk, or regions of a magnetic memory.

In one embodiment, processor 120 and video memory 110 are in the form of a UNIX or VAX computer, such those available from Silicon Graphics, Sun Microsystems, and IBM. However, the invention is not limited to use of this particular hardware and software.

25

5

10

.15

The invention is described in more detail in the following illustrative examples. Although the examples may represent only selected embodiments of the

Control of the American Control of the

invention, it should be understood that the following examples are illustrative and not limiting.

A cDNA encoding the signal peptide, pro and catalytic domains of TACE,

Example 1 - TACE Polypeptide Expression, Isolation, and Purification

10

5

amino acid residues 1-477, as disclosed in Black et al., "A Metalloproteinase disintigrin that releases tumour-necrosis factor-α from cells," Nature 385: 729-733 (Feb. 1997), with Ser266 changed to Ala, Asn452 changed to Gln and the sequence Gly-Ser-(His)₆ added to the C-terminus, was inserted into an expression vector for CHO cells. The TACE polypeptide was expressed in CHO cells and a mixture of the TACE polypeptide beginning either with Val212 or Arg215 was secreted. The cells were cultured in the drug, methotrexate, which kills those cells that did not

15

incorporate the vector.

The expressed TACE polypeptide was then purified. Purification started with 5 liters of the medium containing the expressed TACE polypeptide. The medium was concentrated to about 200 mL with a Millipore 10K cut-off, 1 ft² TFF diafiltration unit. The pumping rate was 50-100 mL/min. Two liters of a buffer solution of 20 mM Tris (pH 7.5) and 300 mM NaC! (Buffer E) was then added to the sample.

20

The sample was reconcentrated as described above and diluted a second time with 2 liters of Buffer E, reconcentrated again, diluted a third time with 2 liters of Buffer E, and reconcentrated to about 100 mL. The sample retained in the diafiltration unit was recovered by a back-flush. This material was then filtered through a 0.45 μ m and was azide added to 0.05%. The filtered sample was stored overnight at 4 °C.

25

After overnight storage, imidazole was added to the filtered sample to 5 mM from a 200 mM stock in water and ZnCl₂ was added to 5 uM from a 1 M stock in

5

10

15

25

water. The sample then was pumped over 2.2 mL of Qiagen Ni-NTA Superflow resin (Cat. # 30430) at 3 mL/min (column size 7.5 x 50 mm).

The column was washed at 5 mL/min with 100 mL of a buffer of 20 mM Tris pH 7.5, 300 mM NaCl, 5 mM imidazole, and 5 uM ZnCl, (Buffer A). The protein was then eluted with an increasing gradient of imidazole, going up to 200 mM in 1 minute (5 mL total volume), followed by 35 mL of 200 mM imidazole in Buffer A. Two mL fractions were collected, TACE generally coming off about 6 mL into the elution. The fractions were collected in tubes containing 500 ul of 50% glycerol in water and 200 ul of 1 M Tris pH 8. The glycerol in water was prepared the day of the column run.

A dot blot, with 3 µl from each fraction, was stained with amido black to determine which fractions contained a significant amount of protein. The fractions with a significant amount of protein were pooled. The pool was then concentrated to 1-2 mL with a 10 K cut-off Amicon Centriprep concentrator.

The inhibitor N-{D,L-2-(hydroxyaminocarbonyl)methyl-4-methylpentanoyl}-L-3-amino-2-dimethylbutanoyl-L-alanine, 2-(amino)ethyl amide was added to the concentrated sample to 1 mM from a 50 mM stock in water, and octylglucoside was added to 1% from a 10% stock in water. The sample was then incubated at room temperature for 15-24 hours.

Following incubation, the sample was applied to a 21.5 x 600 mm size exclusion column, LKB 2135-365, packed with TSK-G3000 SWG, and equilibrated with 10 mM Tris pH 7.5, 100 mM NaCl, 10% glycerol. This buffer was then pumped through the column at 2.5 mL/min for 100 minutes. The TACE polypeptide in the effluent was detected by absorption at 280 nm. Excluded material generally eluted at about 38 minutes. The pure TACE generally eluted at about 78 minutes or longer. The same of the same

> A gel analysis, with 15 μ l of all fractions with significant protein was then carried out to determine which fractions should be pooled. The size-exclusion

chromatography pool was concentrated to about 1 mL with a 10 K cut-off Amicon Centriprep concentrator.

The inhibitor N-{D,L-2-(hydroxyaminocarbonyl)methyl-4-methylpentanoyl}-L-3-amino-2-dimethylbutanoyl-L-alanine, 2-(amino)ethyl amide was then added to the purified sample to a concentration of 1 mM. The protein can be stored at 4 °C.

Example 2 - Protein Crystallization

5

10

15 .

20

25

A DNA construct comprising the prodomain and the catalytic domain of human TACE (resides 1-477) was fused to the sequence Gly-Ser-(His)₆ to facilitate purification of the protein on a Ni-NTA affinity column. Chinese Hamster Ovary (CHO) were cells used for protein expression. The cells secreted a mixture of mature TACE beginning with either Val212 or Arg215. TACE-containing fractions from the Ni-NTA column were incubated in a buffer containing octylglucoside and the binding partner N-[D,L-[2-(hydroxyaminocarnbonyl)methyl]-4-methyl-pentanoyl)-L-3-(tert-butyl)-glycyl-L-alanine. The final purification step was performed on a gel filtration column. Purified TACE was stored in a buffer containing 10 mM Tris/HCL pH 7.5, 100 mM NaCl, 10% glycerol and 1 mM of inhibitor (TACE buffer).

Crystallization experiments were set up at a TACE concentration of approximately 5 mg/mL by mixing TACE (in TACE buffer) in a 1:1 ratio with the crystallization buffers listed below and using the sitting drop vapor diffusion technique. The experiments were performed in duplicate and incubated either at about 4°C or at 20°C. Crystalline precipitate was obtained at 20°C in the following crystallization buffers:

- Buffer A) 0.1 M Na Acetate pH 5.3, 0.2 M CaCl₂, 30% v/v Ethanol
- Buffer B) 0.1 M Na Citrate pH 5.0, 40% v/v Ethanol
- Buffer C) 0.1 M Na Citrate pH 8.7, 20% w/v PEG 4000, 20% v/v Isopropanol

Small crystals were obtained upon transferring seeds from the crystalline precipitate with a hair of a rabbit into a 1:1 mixture of a concentrated sample of TACE (12 mg/mL in TACE buffer) with either buffer B or C. Further refinement of buffer C resulted in buffer D, which allowed the production of crystals suitable for X-ray data collection.

Buffer D) 0.1 M Na Citrate pH 5.4, 20% w/v PEG 4000, 20% v/v Isopropanol

The first data set was measured to a reduction of 2.5 Å on a MAR300 imaging plate scanner attached to a Rigaku-Denki totaling Cu-anode generator operated at 5.4 kW providing graphite-monochromatized CuKα radiation. The data were processed with MOSFLM v. 5.23 program and routines of the CCP4 suite. All attempts to solve the structure by molecular replacement methods using either adamalysin II, an all-alanine model of adamalysin II and models generated failed to produce useful starting points for phasing. Thus the locations of four independent zinc atoms were determined with the help of an anomalous difference Patterson synthesis. In order to measure MAD data, the crystals were deep-frozen in liquid nitrogen. Therefore, crystals were transferred into a cryo buffer (80% v/v buffer D containing 17% v/v glycerol) with the help of a silk loop of appropriate size, soaked for about 10 seconds and then immediately deep-frozen at 90 degrees K.

The crystals obtained belong to the monoclinic space group P2₁, have cell constants a = 61.38 Å (angstrom), b = 126.27 Å, c = 81.27 Å, $\beta = 107.41^{\circ}$, and contain four molecules in the asymmetric unit.

AND A BOOK OF THE POST OF THE

25 Example 3 - X-ray Diffraction

Using the crystals described in Example 2, a first data set was measured to a resolution of 2.5 Å on a MAR300 imaging plate scanner attached to a Rigaku-Denki rotating Cu-anode generator operated at 5.4kW providing graphite-

5

10

15

20.

monochromatized $CuK\alpha$ radiation. The data were processed at with the MOSFLM v. 5.23 program and routines of the CCP4 suite.

All attempts to solve the structure by molecular replacement methods using either adamalysin II, an all-alanine model of adamalysin II, and other models failed to produce useful starting points for phasing.

Thus, the locations of the four independent zinc atoms were determined with the help of an anomalous difference Patterson synthesis. In order to measure MAD data, the crystals were deep-frozen in a nitrogen gas stream cooled down to the temperature of liquid nitrogen. The crystals were first transferred into a cryo-buffer of 80% v/v Buffer D (0.1 M Na Citrate pH 5.4, 20% w/v PEG 4000, 20% v/v Isopropanol) containing 17% v/v glycerol. Transfer to the cryo-buffer was performed with the help of a silk loop of appropriate size. The crystals were soaked in the cryo-buffer for about 10 seconds and then immediately deep-frozen at 90 K.

Anomalous diffraction data to 2.0 Å were collected with MAR345 imaging plate scanner at 90 K on the BW6 wiggler beamline of DORIS (DESY, Hamburg, Germany), using monochromatic X-ray radiation at the wavelengths of maximal f' (1.2769 Å) and minimal f' (1.2776 Å) at the K absorption edge of zinc and at a remote wavelength (1.060 Å). The data were scanned and evaluated using DENZO/SCALEPACK, yielding 77653 independent reflections from 1051836 measurements (96.9% completeness, R-merge 0.031 in intensities).

MAD phases were refined and calculated with MLPHARE including all measured data to 2.0 Å resolution. Their initial mean-figure-of-merit of 0.53 was increased to 0.76 by solvent flattening/histogram matching methods applying DM. This density allowed building of the complete chains of the four independent TACE catalytic domains and the bound hydroxamic acid substrates on an SGI system using TURBO-FRODO. This model was crystallographically refined with XPLOR and with CCP4 routines to a crystallographic R factor of 18.6% (R_{free} 27.4%) using 79400 independent reflections from, 12.0 to 2A. resolution.

5

10

15

20

25

Four independent TACE molecules form the periodic arrangement.

Molecules 1 and 2, and 3 and 4 are defined from Asp219 and Met221, respectively, to Ser474.

5 Example 4 - X-ray Diffraction

THE STATE OF THE STATE OF THE STATE OF

医环状性 医二甲磺胺乙酰 海绵 有法 副原体 製造 能工法 医牙上性皮肤炎

programmed and the state of the contract of th

化二氯基酚 化氯化氯基氯化 医海绵 化二氯基甲二酰基酚

一种,一个女子,只有一点,我们的大大大大大大大

The second of th

ner de la lege a legal e le la la la la lege de la legal e la legal e la legal e legal e legal e legal e legal

10

Anomalous dispersion diffraction data to 2.0 Å were collected with a MAR345 imaging plate scanner at 100 K on the wiggler beamline of DORIS (DESY, Hamburg, Germany), using monochromatic X-ray radiation of maximal f (1.2797 Å) and minimal f' (1.2804 Å) at the K absorption edge of zinc and at a remote wavelength (1.060 Å). These data were evaluated and scanned using DENZO/SCALEPACK, yielding 77,653 independent reflections (96.9% completeness, R-merge 0.031).

The structure coordinates obtained are reproduced in Table 1.

TABLE 1

REMAR Carlo	RK Creace	а ру мо	LEMAN V	. 961218/	7.2.5 at	Fri Sen	19 20.05	.05 1007	for user
SEMNO	os ov manan						-5 -50.03	.03 1997	for user
CRYST	K MoleMan	n PDB f	ile						
CRIGX			.278 8	31.273 9	0.00 1	07.42 9	0.00	2 21	
ORIGX	-	.000000	0.0000			0.000		21	4
ORIGX		.000000	1.0000		0000	0.000			
SCALE		000000	0.0000	00 1.000	0000	0.000			
SCALE		016290	0.0000	0.005		0.000			
SCALE	• •	000000	0.0079	19 0.000		0.000			
علاماد	٥.	000000	0.0000	00 0.012	896	0.000			
, ,	Ato <u>Typ</u>								
	***	e Resid	<u>ue ?</u>	<u>#</u>	. <u>x</u>	<u>Y</u>	<u>z</u>	<u>000</u>	<u>B</u>
ATOM	1 N	ASP					_		8
ATOM		D2 ASP	A	219	0.865		15.204	1.00	20.00
ATOM,	_	D1 ASP	A	219	5.154		14.335		20.00
ATOM	4 C		A	219	4.450		14.844		20.00
ATOM	5 C		A	219	4.191			1.00	20.00
ATOM	6 C		A	219	2.738		14.156		20.00
ATOM	7 C	,	A	219	2.290			1.00	20.00
ATOM	. 8 0		A	219	3.166		16.123	1.00	20.00
ATOM	: 9 N	,	A	219	3.439			1.00	20.00
ATOM	10 C		A A	220	3.629		16.386	1.00	20.00
ATOM	11 CI			220	4.073		16.118	1.00	20.00
ATOM	12 CI		A	220	3.224		15.588	1.00	20.00
ATOM	13 · C		A A	220	4.893		17.303	1.00	20.00
ATOM	14 C	PRO	A	220	4.523	31.452	17.495	1.00	20.00
ATOM	15 0	PRO		220	5.649	32.530	17.443	1.00	20.00
ATOM	16 N	MET	. A A	220	6.513	32.741	18.173	1.00	20.00
. ATOM	17 CE		A	221	5.766	33.341	16.625	1.00	48.83
ATOM .	18 SE		A	221	9.090	36.336	12.584	1.00	53.01
. ATOM	. 19 CG		Ā	221 221	9.248	36.147	14.337	1.00	54.21
ATOM	. 20 CB		A		8.515	34.606	14.801	1.00	51.15
ATOM	:.21 CA		. A	221 221	7.101	34.778	15.298	1.00	48.69
	:- 22 C	MET	. A	221	6.875		16.701	1.00	46.22
ATOM	23 0	MET	A	221	6.485	35.500	17.614	1.00	42.51
ATOM	'24 N	LYS	A	222	7.279	36.002	18.427	1.00	43.93
ATOM	25 NZ		A	222	5.215	35.817	17.508	1.00	36.53
ATOM	26 CE	LYS	Α	222	1.844	39.934	13.657	1.00	40.05
ATOM	27 CD	LYS	A	222	2.513	39.901	14.974	1.00	39.09
ATOM	. 28 CG	LYS	A	222	2.353	38.522		1.00	38.20
ATOM	29 CB	LYS	A	222	3.646	38.146	16.312	1.00	36.27
ATOM	- 30 CA	LYS	A	222	3.345 4.567	37.404	17.597	1.00	33.97
ATOM	'31 C	LYS	Α -	222 :		36.853	18.299	1.00	32.39
ATOM	32 0	LYS	Α	222	4:144	36.220		1.00	29.13
ATOM	· 33 N	ASN	A	223	2.999	35.844	19.866	1.00	26.54
MOTA	34 CA	ASN	A	223	5.157	36.011	20.462	1.00	23.62
ATOM	. 32 CB	ASN	. A	223	4.951	35.295	21.704	1.00	22.97
ATOM	√36 CG	ASN	A	223	5.756	33.987.		1.00	25.44
ATOM	37 - 001	ASN	A	223	7.229	34.245	21.372	1.00	26.32
ATOM	28 מסא	ASN	, A ,	223	7.973	33.261	21.243	1.00	29.74
ATOM	39 €	ASN	A	223	7.688 5.327	35.482		1.00	25.96
AŢOM	40:0		Α .	223		36.123		1.00	18.46
ATOM	. 41 N	THR	A	224		35.556		1.00	18.08
				·	3.011	37.408	22.709	1.00	17.03

	Ato Typ								
		<u>c</u> <u>€=210</u>	<u> </u>	#	X	Y	<u>z</u>	<u>occ</u>	<u>B</u>
ATOM	42 (14 THR							=
ATOM		THR	, A	. 224	6.03	5 38.246	23.824	1.00	16.24
ATOM		G1 THR	A	224	7.50	7 38.721	23.599		17.52
ATOM	_	G2 THR	A	224	8.31				16.14
ATOM	46 0		Α	224	8.00				17.72
ATOM	47 0		Α.	224	3.15			1.00	16.13
ATOM	48 N		Α. λ	224	4.86			1.00	15.14
ATOM	49 C		A A	225	4.70				16.61
ATOM	50 C		A	225	3.91			1.00	17.81
ATOM	51 S		A	225 225	2.89	-			18.01
ATOM	. 52 C	CYS	A	225	2.120				18.77
ATOM	5 3 O	CYS	A	225	4.899		26.101		17.46
ATOM	54 N		A	226	5.614		27.093	1.00	18.52
ATOM	55 C)	LYS	A	226	5.070			1.00	17.94
ATOM	56 C		A	226	6.011 6.373	_	25.573	1.00	18.61
ATOM	57 CC		A	226	6.985			1.00	21.04
ATOM	58 CI	LYS	A	226	9.395		23.202	1.00	22.16
ATOM .	Š9 CE		Α	226		43.451 42.585	23.514		24.95
ATOM	60 NZ		A	226	10.336		22.365	1.00	28.75
ATOM ATOM	61 C	LYS	A	226	5.461		22.185	1.00	31.31
ATOM	62 0		A	226	4.295		26.658	1.00	17.48
ATOM	63 N	LEU	A	227	6.281			1.00	15.96
ATOM	64 CA		A	227	5.848		27.641 28.777		15.78
ATOM	65 CB		A	227	6.182		30.117	1.00	15.23
ATOM	66 CG		. A	227	5.848		30.334	1.00	15.96
ATOM	68 CD	1 LEU	A	227	6.375		31.692	1.00	15.88
ATOM		2 LEU	A	227	4.356	43.646	30.314	1.00	15.72
ATOM		LEU	A	227	6.462	47.398	28.965	1.00	13.61
ATOM	70 O	LEU	A	227	7.639	47.635	28.725	1.00	16.89 17.35
ATOM	72 CA	LEU LEU .	A	228	5.585	48.248	29.488	1.00	16.01
ATOM	73 CB	LEU	A	228	6.024	49.559		1.00	15.78
ATOM	74 CG	LEU	A	228	5.105	50.721	29.644	1.00	15.98
ATOM		LEU	A .n	228/3	5.360	52.012	30.426	1.00	17.60
ATOM	76 CD2	LEU	A	228	6.596	52.712	29.853	1.00	15.81
ATOM	77 C	LEU	, A , A	228		52.945	30.340	1.00	19.40
ATOM `	78 0		А · . А	228	6.144	49.360	31.455	1.00	16.70
ATOM	79 N	VAL	- Ā	228	5.124	49.074	32.104	1.00	16.99
ATOM	80 CA	VAL	- A	229 229	7.356		31.983	1.00	13.83
ATOM	81 CB	VAL	A	229	7.484		33.450	1.00	12.75
ATOM .	82 CG1	VAL	A	229	8.600			1.00	15.41
ATOM	-83 CG2	VAL	A	229 0	9.015			1.00	15.21
ATOM	84 C	VAL	A	229	8.062 7.758	<u> </u>		1.00	16.11
ATOM	85 0	VAL	A.	229	8.592			1.00	11.45
ATOM	86 N	VAL	Α	230	7.029	51.462		1.00	10.78
ATOM		VAL	A	230	7.169			1.00	11.10
ATOM	88 CB	VAL	A -	230	5.910			1.00	13.35
ATOM	89 CG1	VAL	·A	230	6.096			1.00	13.78
ATOM		VAL	Α-	230		54.643	6.192	1.00	13.70
ATOM	-91 C	VAL	A ·	230 - 1		53.586 3 52.252 3		1.00	12.14
ATOM	92 0	VAL	A	230				1.00	12.98
ATOM		ALA	Α	231				1.00	14.51
	94 CA	ALA.	A	231				1.00	14.57
ATOM	95 CB	ALA	Ą	231				.00	12.63
		•				5	9.219 1	00	14.54

		Ato	2111								
		Ive	<u>e Re</u>	<u>sidue</u>	2	<u>±</u>	X	Y	<u>z</u>	<u> </u>	<u> B</u>
ATOM	9	6 0	: AI	Δ.	A 2	31	,				_
MOTA		7 0		.A		31	8.61				13.5
ATCM		8 1/	l As	-	_	32	9.21			04 1.00	
ATOM			A As	P ,		32	7.73				
ATOM	10		B AS	P ,		32	7.44 5.06				15.63
ATOM ATOM	10	-	G AS			32	5.85		_		
ATOM	10		D1 AS	P)	A 2:		4.72				17.24
ATOM	10		D2 AS				6.80				18.20
ATOM	10:	_ `	. —			2	8.55		65 43.40 76 41.87		15.69
ATOM	100			_ `		2	9.39		59 42.25		15.96
ATOM	101			_			8.37	5 57.49	92 42.39		13.21
ATOM	108	_					9.399	9 58.11			16.98
ATOM	109			_			9.079	5 59.60			16.61
ATOM	110		D2 HIS				7.977	7 59.86			17.60
ATOM	111		ol HIS				8.012	60.04			17.74
ATOM	112		1 HIS	A A			6.648		6 44.15		18.92 17.72
ATOM	113	NE	2 HIS	A			5.910		4 45.22		18.19
ATOM	114	С	HIS				6.730		4 46.26	6 1.00	19.56
ATOM	115	0	HIS		23. 23:		9.562		4 44.53		16.98
ATOM	116		ARG	- •	23.		10.626			0 1.00	14.73
ATOM	117		ARG		234		8.457			5 1.00	15.26
ATOM	118		ARG		234		8.476			1.00	16.71
ATOM	119			A	234		7.083 6.078				19.19
atom atom	120	CD			234		4.726				18.94
ATOM	121	NE			234		3.696				21.89
ATOM	122	CZ	ARG	A	234		2.872	57.214 57.469			23.72
ATOM	123 124	NH	1 ARG	A	234		2.923	56.798			26.70
ATOM	125		2 ARG	. A	234		1.953	58.411			27.34
ATOM	126	С О	ARG	A	234		9.319	54.728			28.96
ATOM	127	N .	ARG PHE	, A	234	D .	10.072	54.359		1.00 1.00	17.39
ATOM	128	CA	PHE	A	235		9.149	54.039			17.02
ATOM	129	CB	PHE	A	235		9.913	52.829			15.45
ATOM	130	CG	PHE	A A	235	٠.	9.458	52.167	43.370	1.00	17.15 15.92
ATOM	131		PHE	A	., 235	• • • •	10.063	50.804	43.165	1.00	14.51
ATOM .	132	· CD2	PHE	Ä	235	•	11.226	50.638	. 42.442		14.09
MOTA	133	CEI	PHE	Δ	. 235		9.429	49,693	43.697		13.27
ATOM	134	CE2	PHE	A,	235	**	11.786	49.394		1.00	12.49
ATOM	135	CZ	PHE	A	235		9.979	48.436	43.514	1.00	14.15
ATOM	136	С	PHE	A	235		11.159		42.812	1.00	11.73
ATOM	137	0	PHE	·	235		11.391 12.309	53.211	44.502	1.60	15.85
ATOM ATOM	138	N	TYR	. 'A.	236	- 12	12.309	52.611	45.041	1.00	15.02
	139	CA	TYR '			1	12.920	54.282		1.00	15.65
	140	CB	TYR]		236		12.809	54.781		1.00	18.77
	141	CG	TYR	A	236		14.079	56.087 56.831		1.00	20.15
	142	CD1	TYR		- 236		15.006			1.00	20.77
	143 144	CEI	TYR	A	· 236		16.171	56.379 57.111		1.00	23.25
•		CD3	TYR	Α.	236	٠, .		58.043	41.294	1.00	25.10
	145: 146			A	236			58.789	43.094	1.00	22.97
	147.	CZ	TYR	, A _e	, , 236	••		58.309		1.00	23.38
· -	148		TYR	. A	236	. 5.2		59.032	41.699	1.00	24.28
		_	TYR '	, ,			13.668	55.005	44.807	1.00	27.10
•	٠,.		TYR) A	,236	•			44.979	1.00	18.41
										1.00	17.82

		4=0=								
		Atom <u>Type</u>	Pesidi	18 7						
				<u> 1</u>	<u>=</u>	. <u>x</u>	ž.	<u>z</u>	<u>0CC</u>	<u>a</u>
MOTA	15	0 и	ARG	А	222					_
MOTA	15			Ä	237 237	13.02				18.84
ATOM	. 15	2 NH:		Α	237	15.16				36.66
ATOM	15	3 cz	ARG	A	237	15.51			1.00	35.42
ATOM	15	4 NE	ARG	. A	237	15.20				35.99
ATOM	15		ARG	A	237	13.94 12.86				36.11
ATOM	15		ARG	Α	237	12.65				32.12
ATOM	15		ARG	, A	237	12.57				28.99
ATOM ATOM	158		ARG	A	237	13.56	_			22.94
ATOM	159	-	ARG	; A	237	13.82				21.89
ATOM ·	160		ARG ,	Α	237	14.87				22.82
ATOM			TYR	· A	238	12.826			1.00	22.33
ATOM	162		TYR	A	238	12.807			1.00	20.93
ATOM	163		TYR	Α	238	11.438		49.142	1.00	22.79
ATCM	164		TYR	Α	238	11.052		49.835 50.502	1.00	25.02
ATOM	165		TYR	Α	238	10.191		49.873	1.00	28.43
ATOM	166 167			A	238	9.827		50.439	1.00	30.38
ATOM	168	CD2	TYR	Α	238	11.570		51.729	1.00	32.45
ATOM	169		TYR	A	238	11.228		52.309	1.00	30.38
ATOM	170	⊂Z Oh	TYR	A	238	10.384		51.647	1.00 1.00	32.79
ATOM	171	C	TYR	A	238	10.043	57.784	52.208		33.85
ATOM	172	0	TYR	A	238	13.222	51.579	48.683	1.00	34.86
ATOM	173	N	TYR	A	238	13.682	50.772	49.509	1.00	22.48
ATOM	174	CA	MET MET	A	239	13.171	51.306	47.405	1.00	24.69
ATOM	175	CB	MET	Α	239	13.680	50.048	46.893	1.00	20.92
ATOM	176	CG	MET	A	239	12.667	49.374	45.965	1.00	18.57
ATOM	177	SD	MET	A	239	11.394	48.971	46.729	1.00	18.57 18.44
ATOM	178	CE	MET	A	239	11.677	47.664	47.929	1.00	17.64
ATOM	179		MET	A	239	12.084	46.309	46.855	1.00	16.38
ATOM	180		MET	γA A	239	14.975	50.292	46.121	1.00	17.52
ATOM	181		GLY	A	239.	15.826	49.422	46.133	1.00	16.58
ATOM	182		GLY	Â	240	15.067	51.440	45.447	1.00	16.74
ATOM	183		GLY	A .	240 240	16.198	51,733	44.602	1.00	16.82
ATOM	.184	_	GLY	A		17.334		45.232	1.00	20.60
ATOM	185		ARG	Α.	240 241 *	18.280	52.875	44.516	1.00	20.21
ATOM ·		CA .	ARG	Α		17.242	52.871		1.00	20.89
ATOM	187	CB	ARG	j.A -	241	18.300	53.628	47.162	1.00	24.17
ATOM	188	CG 🤼	ARG	Α	241	19.609	52.806	47.126	1.00	26.15
MOTA	189	CD · 1	ARG "	. A	241	19.504 20.771	51.488	47.875	1.00	29.48
ATOM	190		ARG	Α .	241	21.417	50.648	47.896	1.00	31.73
ATOM	191	CZ · j	ARG	A	241	22.188			1.00	32.75
ATOM	192	NH1 3	\RG	Α	241	22.361	51.837		1.00	33.64
ATOM	193	NH2 A	\RG	A	241	22.752			1.00	35.35
ATOM	194.	_	VRG	A	241	18.497			1.00	32.64
ATOM	195		URG .	A	241	19.574		46.543	1.00	25.05
ATOM	196		LY	A	242	17.470	55.585		1.00	21.63
ATOM.	197		LY	A	242	17.603			1.00	22.70
ATOM ATOM	198.		LY	Α.	242	18.622			1.00	20.94
ATOM	199		LY	Ą	242	19.255			1.00	20.36
ATOM			LU	A.	243	18.841			1.00	20.42
ATOM			LU	A , , '	243	19.832			1.00	19.57
ATOM			LU .	A	243	20.951			L.00	19.51
	203	CG G	LU	A	.243			12.832 1		21.04
			•	•			~ 1.0TO 4	13.816]	1.00	22.54

			Acom									
			Tvoe	Residue	2	<u>#</u>						
					_	-		<u>x</u>	Y	<u>z</u>	<u> 000</u>	<u> </u>
	MOTA	204	CD	GLU	Α	243						_
	ATCM	205		GLU	A	243		22.78			3 1.00	24.67
	ATOM	206	CEZ	GLU	A	243		23.74			2 1.00	24.23
	ATOM	207	C	'GLU	A	243		22.51				22.83
	ATCM	208	0	GLU	A	243		19.10				19.62
	ATOM	209	N	GLU	A	244		18.41			1.00	18.85
	ATOM	210	CA	GLU	A	244		19.32				19.48
	ATOM	211	CЭ	GLU'	A	244		18.69				22.19
	ATOM	212	CG	GLU	A	244		18.92 18.50		_	_	25.49
	ATOM	213	CD	GLU	A	244		18.40				29.88
	ATOM	214	OE1	GLU	A.	244				-		32.59
	ATOM	215	OE2	GLU	A	244		18.20 18.52	-			33.16
	ATOM	216	C	GLU	A	244						35.02
	MOTA	217	0	GLU	Α	244		19.176 18.360				21.10
	ATOM	218	N	SER	A	245		20.466				17.68
	ATOM	219		SER	A	245		21.001				18.06
	ATOM	220		SER	Α	245		22.549				20.29
	ATOM	221		SER	A	245		22.833	51.953 52.394		1.00	21.06
	ATOM ATOM	222		SER	A	245		20.409			1.00	21.74
	ATOM	223		SER	A	245		19.970			1.00	17.46
	ATOM	224		THR	A	246		20.355			1.00	18.81
	ATOM	225		THR	A	246		19.821			1.00	15.88
	ATOM	226 227		THR	. ¸ A	246		20.051			1.00	18.13
	ATOM		0G1 '	THR	Α	246		21.459			1.00	19.42
	ATOM		CG2		A	246		19.692			1.00	21.14
	ATOM			THR .	A	246		18.337		41.014	1.00	19.86
•	ATOM	231		THR THR	A	246		17.915	48.619	41.068	1.00	16.92
	ATOM			THR	Α	247		17.545	50.799	40.800	1.00	14.90
•	ATOM			THR	A	247		16.108	50.689	40.560	1.00	17.19 16.84
	ATOM		0G1 :1		A A	247		15.458	52.076	40.443	1.00	16.21
	ATOM			HR	A ·	247 247		15.860	52.839	41.581	1.00	14.61
	ATOM	236 (HR	A	247	-	13.920	52.069	40.449	1.00	14.87
. •	ATOM	237 (HR	A	247		15.848	49.892	39.308	1.00	15.69
	ATOM	238		HR :	Α	248		15.088	48.922	39.235	1.00	14.94
•	ATOM			HR	A	248		16.502	50.305	38.232	1.00	16.92
	ATOM			HR	A	248		16.382 17.322	49.685	36.926	1.00	16.92
	ATOM		GI T	HR .	A	248		16.875	50.415	35.963	1.00	17.93
٠.	ATOM	-		HR	Α.	248		17.381	51.787	35.915	1.00	18.06
	ATOM ATOM	243 C			A	248		16.712	49.792 48.202	34.586	1.00	19.15
	ATOM	244 0		HR ,	À	248		16.073	47.313	36.972	1.00	18.22
•	ATOM	245 N		SN	A A	249	٠.	17.857	47.907	36.427	1.00	14.91
	ATOM	246 C				249	٠,	18.342	46.545	37.593 37.700	1.00	17.46
	ATOM			SN	Α	249		19.723	46.472		1.00	17.81
	ATOM		G AS	SN .	Α	249	•	20.854	47.016		1.00	19.11
•	ATOM		D1 A5	SN .	Α	249		20.753	47.173		1.00	22.53
	ATOM		D2 AS		Α	249	•	21.989	47.306		1.00	22.82
**	ATOM	251 C	AŚ			249	•	17.364	45.662		1.00 1.00	21.73
	ATOM	253 N	AS		A	249		17.157	44.510		1.00	15.16
	ATOM	254 C			Α	250		16.850	46.170	_	1.00	13.94
	ATOM	255 CE			A .	250		15.888			1.00	14.10
	ATOM	256 CG		<u> </u>	A :	250		15.393			1.00	15.67
•	ATOM	257 · CD			.	250			45.444		1.00	16.52 19.76
					١.,	250 .	÷				1.00	20.38
										•		-4.30

		Acom								
		<u>Type</u>		<u>:e ?</u>	#		<u>x</u>	<u>Y</u> <u>Z</u>	<u> </u>	<u>B</u>
MOTA	258	CE	1 TYR	· A	250					
ATOM		CD 🗧	2 TYR	A	250	14.		031 44.4		21.56
ATOM	~ 260		2 TYR	A	250	13. 12.:		344 42.3		18.76
ATOM	261	_	TYR	A	250	12.		600 43.2		19.63
ATOM-			TYR	Α	250	12.		943 44.24		22.22
ATOM	263		TYR	A	250	14.6		189 45.13 029 39.43		24.91
ATOM ATOM	•	-	TYR	Α	250	14.2				14.95
ATOM	265		LEU	A	251	14.1				11.83
ATOM	266 267		LEU	A	251	12.9		_		13.07
ATOM	268	CB CC	LEU	. A	251	12.2				12.72
ATOM	269		LEU	A	251	11.6				12.66
ATOM	270	CD	LEU LEU	A	251	11.0				14.96
ATOM	271	CD		A	251	10.7				18.53
ATOM	272	0	Leu Leu	A	251	13.2			0 1.00	19.00 11.35
ATCM	273	N	ILE	A	251	12.5				10.33
ATCM	274	CA	ILE	A	252	14.4				10.33
ATOM	275	CB	ILE	A .	252	14.8		109, 34.94		12.09
ATOM	- 276		ILE	A A	252	16.2				13.58
ATOM	277	CGI	ILE	A.	252	16.8				14.17
ATOM	278	CD1	ILE	A	252 252	16.0			1 1.00	16.57
ATOM	279	С	ILE	A	252	17.3		50 . 32.90		18.53
ATOM	280	ο ΄	ILE	A	252	14.9				10.51
ATOM	281	N	GLU	A	253	14.59 15.50				12.14
ATOM	282	CA	GLU	A	253	15.74				9.27
ATOM	283	CB	GLU	A	253	16.76	3 41.2 2 41.2			10.71
ATOM ATOM	284	CG	GLU	A	253	18.21	7 41.4			12.25
ATOM	285	CD	GLU	A	253	19.21				12.76
ATOM	286	0E1	GLU	A	253	19.09				15.62
ATOM	287 - 288		GLU	A ·	253	20.13	4 41.7			14.92
ATOM	289	0	GLU	Α.	253	14.42		19 37.605	1.00	14.69
ATOM	290	N	GLU	A	253	14.19	5 39.44	11 37 388		9.88 7.43
ATOM	291	CA	LEU	A	254	13.55	9 41.42			10.47
ATOM	292	CB	LEU	Ą.		12.26	6 40.85	8 38.649	1.00	10.04
ATOM	293		LEU	A	254	11.53		7 - 39.572	1.00	9.92
ATOM	294	CD1		A A		10.10	3 41.49	3 .40.022	1.00	10.99
ATOM .	295	CD2	LEU	A	254	9.77			1.00	11.71
ATOM	296		LEU	A.	254 254	3.10			1.00	11.46
ATOM	297.	_	LEU	A	254				1.00	9.41
ATOM			ILE	A					1.00	10.16
ATOM -	299	CA	ILE	A	255	11.399			1.00	11.15
ATOM	300		ILE	A	255	10.480			1.00	11.06
ATOM	301	CG2	ILE	Α	255	9.910	42.10		1.00	10.34
ATOM	302	CG1	ILE		255	9.646	43.21		1.00	12.31
ATOM	303	CD1		Α	255	8.235			1.00	10.06
ATOM ATOM			ILÉ	A	-255	11.113		•	1.00	10.90
ATOM			ILE		255	10.466			1.00	11.34
ATOM			ASP	A	256	12.458			1.00	8.95
ATOM			\SP	A	256	13.108			1.00	10.09
ATOM	_ :		\SP	A	256	14.621			1.00	11.00
ATOM		CG A	ASP	Α.	256	15.320			1.00	
ATOM	311 (ODS -	ISP	A	256	15.159	37.033		1.00	16.54
	(A	13 P	Α,	256	15.977			1.00	17.04 18.15
										±0.10

		Atom								
		Type	Residu	<u> </u>	<u> </u>	<u>x</u>	¥	,		
ATOM						_	<u> </u>	<u>z</u>	<u>0CC</u>	<u>B</u>
ATOM	_	C	ASP	A	256	12.76	3 37.12	4 34 77	• • • •	
ATOM	313	0	ASP	A	256	12.48				10.53
ATOM	314 315	N	ARG	A	257	12.71				11.14
ATOM	315	CA	ARG	Α	257	12.36				11.51
ATOM	317	CB	ARG	Α	257	12.64	6 36.29			11.03
ATOM	318	CD	ARG	Α	257	14.19	4 36.30	2 38.74	3 1.00	11.04
ATOM	319	NE.	ARG ARG	A	257	14.34	7 36.33			9.97
ATOM	320	CZ	ARG	A	257	13.58	1 37.39			9.94 9.56
ATOM	321		ARG	A	257	14.05	38.613			10.48
, ATOM	322		ARG	A	257	15.283		40.677		8.64
ATOM	323	С	ARG	A A	257	13.363		41.718		8.45
ATOM	324	0	ARG	A A	257	10.868				10.99
ATOM	325	N	VAL	A	257	10.495	_		1.00	10.38
ATOM	326	CA	VAL	A	258 258	10.033				7.90
ATOM	327	CB	VAL	A	258 258	8.600				9.48
ATOM	328	CG1		A	258	7.877				8.97
ATOM	329	CG2	VAL	A	258	6.398			1.00	7.38
ATOM	330	C	VAL	A	258	7.915			1.00	7.76
ATOM	331	0	VAL	A	258	8.469			1.00	9.20
ATOM	332	N	ASP	A	259	7.769			1.00	11.73
ATOM	333	CA	ASP	A	259	9.193 9.196			1.00	10.44
ATOM	334		ASP	A	259	10.101			1.00	11.92
ATOM ATOM	335		ASP	A	259	10.059	36.614	31.655	1.00	12.64
	. 336	OD1	ASP	A	259	8.962		30.219	1.00	17.49
atom atom	337	OD2		A	259	11.145	36.007	29.644	1.00	16.26
ATOM	338		ASP	A	259	9.618	35.932 34.346	29.637	1.00	20.54
ATOM	339		ASP	A	259	9.021	33.572	32.546	1.00	13.21
ATOM			ASP '	A	260	10.546	33.904	31.783 33.412	1.00	11.13
ATOM		OD2 2		A	260	14.081	33.042	35.067	1.00	12.46
ATOM		OD1 /		A	260	13.629	33.074	32.936	1.00	19.42
ATOM			ASP	A	260	13.335	32.789	34.098	1.00	15.68
ATOM		-	ASP ASP	A	260 -	11.972	32.171	34.451	1.00	16.09
ATOM			ISP	A _.	260	10.912	32.498	33.403	1.00	13.52
ATOM			SP	A.	260	9.647	31.669	33.761	1.00	11.20 13.45
ATOM		-	LE	``A''	260	9:461	30.565	33.241	1.00	11.34
ATOM		_	LE	A A	261	8.867	32.202	34.720	1.00	10.81
ATOM		_	LE	A	261 -	7.643	31.469	35,052	1.00	11.86
ATOM		G2 I		A	261	6.910	32.167	36.198	1.00	13.06
ATOM	352. (G1 I	LE	A	261	5.538	31.612	36.416	1.00	12.50
ATOM		D1 I		A	261 261	7.825	31.986	37.422	1.00	16.02
ATOM	354		LE	A	261	7.242	32.547	38.701	1.00	17.40
ATOM	355 C) []	LE	ĹΑ	261	6.738	31.396	33.815	1.00	10.07
ATOM	356 N	T		À	262	6.351	30.273		1.00	11.72
ATOM		A T	YR	A	262	6.434	32.522	33.232	1.00	8.70
ATOM .		B T	YR		262	5.515	32.515	32.082	1.00	11.55
ATOM			YR :	A A	262	5.275	33.937		1.00	11.91
ATOM .	360 C	D1 T	ZR "	A	262	4.257 4.554		32.411	1.00	12.15
ATOM	361 / C	El Ti	/R	A,	262				1.00	12.29
ATOM	362 C	D2 TY	rr 🦠 🧻	A	262				1.00	12.53
ATOM	363 C	E2 TY	r.	A	262				1.00	14.52
ATOM	364 .C		TR ··	Α	262				1.00	14.04
TOM	365 OF	TY	R	A	262				1.00	14.14
	: .						36.538	34.724	1.00	12.39

		Atom								
		<u>Tvoe</u>	Residue	2	#	<u>x</u>	<u>¥</u>	7	200	
						-	-	<u>z</u>	<u> 000</u>	₿
ATCM	366	5 C	TYR	Α	262	5 00				
ATCM	367	7 0	TYR	Α	262	5.98				11.66
ATOM	368	N,	ARG	A	263	5.20				11.39
ATOM	369	CA	ARG	A	263	7.23				10.78
ATOM	370	CB	ARG	A		7.77				14.61
ATOM	371		ARG	A	263	, 9.23	5 31.623	29.117	1.00	18.66
ATOM	372		ARG	A	263	9.63		28.194	1.00	21.81
ATCM	373		ARG		263	11.10				25.82
MOTA	374	–	ARG	A	263	11.93	31.745		1.00	27.30
ATOM	375		ARG	A	263	12.42				28.71
ATOM			ARG	A	263	12.225	33.329	30.166		29.09
ATOM .	377			A	263	13.087	31.212			
ATOM	378	_	ARG	A	263	7.751		29.425	1 00	27.05
ATOM	379	0	ARG	Α	263	7.596	28.973	28.384	1.00	15.13
ATOM		N,	-	A	264	8.019		30.591		17.45
ATOM	380	CA	asn	A	264	8.003			1.00	12.82
	381	CB	ASN	A	264	8.878			1.00	14.56
ATOM	382	CG	ASN	A	264	10.322		32.013	1.00	17.95
atom	383	OD1	ASN	A	264	10.776		31.654	1,.00	19.62
ATOM	384	ND2	ASN	A	264	10.957		30.654	1.00	23.25
ATOM	385	· C	ASN	A	264			32.335	1.00	19.81
ATOM	386	0	ASN	Α	264	6.582		31.076	1.00	16.00
ATOM	387	N	THR ·	A	265	6.449		31.293	1.00	14.82
ATOM	388	CA	THR	A	265	5.566	28.017	31.073	1:00	13.74
ATOM	389	CB	THR	A	265	4.221	27.425	31.290	1.00	13.37
ATOM	390	0G1	THR	A	265	3.309	28.463	31.935	1.00	14.37
ATOM	391	CG2	THR	A	265	3.800	28.787	33.238	1.00	11.71
ATOM	392	С	THR	A	265	1.866	27.953	32.101	1.00	12.84
ATOM	393	0	THR	A		3.675	26.917	29.965	1.00	12.82
ATOM	394	N	ALA	A	265	3.698	27.628	28.968	1.00	14.37
ATOM	395	CA	ALA		266	3.134	25.708	29.970	1.00	13.65
ATOM	396		ALA	A	266	2.432	25.151	28.820	1.00	14.19
ATOM	397		ALA	A	266	2.737	23.645	28.812	1.00	14.17
ATOM	398		ALA	A	266 ·	0.937	25.431	28:997	1.00	11.04
ATOM	399		TRP	A	266	0.250	24.682	29.675	1.00	10.22
ATOM	400			Α	267	0.426	26.539	28:524	1.00	11.35
ATOM	401		TRP	A·	267	-0.962	26.949	28.736	1.00	13.04
ATOM	402		TRP	A	267	-1.183	28.301	28:045	1.00	
ATOM	403		TŘP		267	-0.186	29.330	28.523	1.00	11.63
	404	CD2	TRP :	A į	267	-0.205	29.920		1.00	10.70
ATOM	405	CE2		A	267	0.904	30.814	29.863	1.00	8.77
ATOM	406	CE3		Ą	267	-1.007	29.828	30.931		12.19
ATOM		CD1		Α	267	0.865	29.846	27.849	1.00	9.72
ATOM	407	NE1	TRP	A	267	1.531	30.754			10.38
ATOM	408	CZ2	TRP	A	267	1.187	31.580		1.00	11.35
	409	CZ3 1	TRP .	A .	267 .	-0.718			1.00	10.57
ATOM.	410	CH2 1		A,	267	0.395			1.00	11.82
ATOM		C	-	A.	267	-2.007	31.439		1.00	9.78
ATOM		0 7		A.	267			28.298	1.00	14.01
ATOM				Α,	268	-3.089			1:00	14.19
ATOM	414		SP ,		268	-1.688		27.326	1.00	11.86
ATOM			SP ,			-2.615	24.026		1.00	13.82
ATOM		CGA	'		268	-2.765	24.051	25.382	1.00	13.92
ATOM		OD1 A	`	A	268	-1.517	23.691	24.619	1.00	16.74
ATOM		OD2 A			268	-0.422	23.699	25.244	1.00	16.49
ATOM					268				L.00	15.38
•	(- , A	SP .	.	268		:.		1.00	
•										15.26

			Atom								
			Type	Residu	<u>e</u> 2						
						#	x	<u>Y</u>	<u>z</u>	<u> </u>	9
	ATOM	420	0	ASP	А	268					_
	ATOM	421	N	ASN	A	269	-2.59				13.18
	ATOM	422		ASN	A	269	-1.22				
	ATOM ATOM	423		ASN	Α	269	-0.59 -1.54		_		15.45
	ATOM	424	_	ASN	Α	269	-2.19	17 20.45 90 21.18			17.28
•	ATOM	425 426	ODI	ASN	A	269	-1.46				18.96
	ATOM	427		ASN	, A	269	-3.50				20.34
	ATOM	428	_	asn asn	A	269	0.10	8 20.556			18.93
•	ATOM	429	N	ALA	A A	269	0.33	0 19.352		1.00	14.79
	ATOM	430	CA	ALA	A	270	0.52		26.654		14.35 14.55
	ATOM	431	CB	ALA	A	270 270	1.20		25.533	1.00	17.42
	ATOM	432	C	ALA	A	270	0.18		24.481	1.00	15.76
•	ATOM	433	0	ALA	A	270	2.23			1.00	16.67
	ATOM ATOM	434	N	GLY	Α	271	3.183 2.143				19.13
	ATOM	435		GLY	A	271	3.174				16.01
	ATOM	436		GLY	A	271	2.951				18.64
	ATOM	438		GLY	Α	271	3.768		23.125 22.589	1.00	17.56
	ATOM	439		PHE	A	272	1.844		23.659	1.00	18.20
	ATOM	440		PHE PHE	A	272	1.538		23.614	1.00	17.81
	ATOM	441		PHE	A	272	0.047	26.539	23.710	1.00	16.42
	ATOM	442	CD1	PHE	A A	272	-0.389	27.890	23.205	1.00	16.73 17.94
	ATOM .	443	CD2	PHE	. A	272 . 272	-0.462		21.858	1.00	19.17
	ATOM	444	CE1	PHE	A	272	-0.716		24.100	1.00	18.80
	ATOM	445	CE2 1	PHE	A	272	-0.813	29.421	21.407	1.00	18.87
. •	ATOM ATOM	446		HE	A	272	-1.120 -1.142	30.139	23.664	1.00	18.81
	ATOM	447		PHE	A	272	2.305	30.404	22.310	1.00	19.11
•	ATOM	449		HE	A	272	1.786	27.138	24.796 25.860	1.00	16.83
	ATOM	450		YS YS	A-	273	3.584	27.067	24.561	1.00	14.19
	ATOM	451		YS	A	273 .	4.522	27.543	25.546	1.00	17.93
	ATOM	452		YS	A A	273	5.236	26.296	26.080	1.00	21.35
4.	ATOM	453		YS .	A	273 273	6.157	25.698	25.023	1.00	24.32 27.94
. 1	ATOM	454		YS	A	273	6.625	24.300	25.389	1.00	31.29
•	ATOM		NZ L	YS	A	273	7.307	24.300	26.732	1.00	32.80
	ATOM ATOM			YS	À	273	6.347 5.479	24.136	27.857	1.00	33.38
	ATOM			YS	Ą,	273 (4.5)	5.444	28.518	24.906	1.00	19.96
• •	ATOM				A	274 "	6.382	28.763 a 29.094	23.706	1.00	18.61
	ATOM	_			A	274	7.323		25.709 25.166	1.00	20.59
	ATOM		-		A	274 👈 😘	6.701		25.166 25.153	1.00	17.10
	ATOM		N T		A ·	274	7.272		24.547	1.00	17.80
٠	ATOM		CA TY		A A	275	5.527			1.00	17.48
	ATOM		CB TY		A A	275	4.892			1.00	15.67 16.24
	ATOM	465	G TY		A.	275	3.340	32.874		1.00	15.81
	ATOM	466 C	D1 TY	R ;	A	275 275	2.838		. .	1.00	17.73
	ATOM	467 C	E1 TY	R ,	A .	275	2.784		24.175	1.00	17.51
•	ATOM	468 C	D2 TY	R ,	A	275	2.384		22.919	1.00	20.42
	ATOM ATOM		EZ TY	R` ,	A	275			23.543	1.00	18.48
	ATOM		Z TY	R j		275				1.00	20.02
	ATOM		H TY			275		-		1.00	19.42
î .	ATOM	472 C				275 '.	_		-	1.00	23.70
	,	473 0	TYI	R A		275	- '			.00	15.60
								2	8.160 1	1.00	15.87

	Acom	1							
	<u>∵⁄pe</u>	Resid	<u>ue ?</u>	#	· <u>X</u>	<u>γ</u>	7	000	
ATOM					-	-	<u>z</u>	<u>0CC</u>	B
- ATOM	474 N 475 CA	GLY	A	276	5.63	8 34.95	9 26.991	1.00	15
ATOM	475 CA 476 C		A	276	5.97				17.04 17.48
ATOM	477 0	GLY	A	276	5.98				17.48
ATOM	478 Ń	GLY	A	276	5.22				16.76
ATOM	479 CA	ILE	, A	277	6.89				18.66
ATOM	480 CB		A	277	6.93		28.907		17.89
ATOM .	481 CG		A	277	6.41		30.256		19.63
ATOM		1 ILE	A	277	4.929		30.421		21.02
ATOM	: 483 CD	1 ILE	A A	277	7.212			1.00	20.19
ATOM	484 €	ILE	A	277	6.754			1.00	20.94
ATOM	485 0	ILE	A	277.	8.385			1.00	18.46
ATOM	486 ท	GLN	A	277	9.318			1.00	16.61
ATOM	487 CA	GLN	. A	278 278	8.505			1.00	17.96
ATOM	488 CÉ	GLN	A	278	9.743			1.00	19.65
ATOM	. 489 CG	GLN	A	278	10.224			1.00	25.01
ATOM	490 CD	GLN	A	278	11.692			1.00	28.24
ATOM	491 OE	L GLN	A	278	11.580			1.00	32.63
ATOM	492 NE2		A	278	11.660			1.00	33.32
ATOM	493 C	GLN	A	278	11.331 9.499		26.502	1.00	34.14
ATOM	494 0	GLN	, А	278	8.589		28.316	1.00	17.44
ATOM	495 N	ILE	. A	279	10.537		27.693	1.00	14.22
ATOM	496 CA	ILE	A	279	10.471	45.146	28.900	1.00	13.53
ATOM	497 CB	ILE	A	279	11.441	45.658	29.090	1.00	15.82
atom atom	498 CG2		A	279	11.402	47.166	30.183	1.00	15.54
	499 CG1	ILE	A	279	11:007	45.083	30.140	1.00	15.97
ATOM ATOM		ILE ,	A	279	11.940	45.388	31.520 32.661	1.00	16.27
ATOM	501 C	ILE	A	279	10.745	45.847	27.771	1.00	17.52
ATOM	502 0 503 ท	ILE	A	279	11.741	45.578	27.115	1.00	16.97
ATOM		GLU	A	280	9.824		27.370	1.00	16.40
ATOM	504 CA	GLU	A	280	10.019	47.523	26.185	1.00	17.63
ATOM	506 CG	GLÜ	A	280	8.744	47.778	25:.395	1.00	20.86 23.07
ATOM		GLU	A	280	8.890	48.784	24.268	1.00	29.11
ATOM		GLU	A	280	9.843	48.327	23:.189	1:00	32.61
ATOM	509 OE2	GLU	A	280 '	10.187	47.124	23.154	1.00	36.14
ATOM	510 C	GLU.	A	280	10.293	49.127	22.343	1.00	34.84
ATOM,		GLU	«A Ä	280	10.599	48.892	26.605	1.0ò	18.21
ATOM	512 N	GLN'	Ā	280	11.426	49.511	25.941	1.00	16.53
ATOM	513 NE2	GLŃ	A	281	10.088	49.380	27.716	1.00	18.36
ATOM	514 OE1	GLN	A	281 281	11.497	53.112	26.056	1.00	34.24
ATOM	515 CD	GLN	A	281	10.702	55.093		1.00	36.11
ATOM		GLN	Α	281	10.798	53.869		1.00	33.14
ATOM	517 CB	GLN	A	281		53.163	28.056	1.00	29.67
ATOM		GLN -	A	281	9.611	51.793		1.00	24.17
ATOM	519 C :	GLN	A	281	10.509 10.385	50.675	28.207	1.00	21.85
ATOM	520 O	GLN'	A	281	9.444	50.730		1.00	22.08
ATOM	521 ห	ILE:	A	282	11.379			1.00	19.43
ATOM	522 CA	ILE	Α	282	11.3/9			1.00	19.26
ATOM		ILE	A	282	12.456			1.00	20.21
ATOM	524 CG2		A ´	282	12.567			1.00	23.17
ATOM	525 CG1	ILE	A	282	12.183		_	1.00	22.63
ATOM	52,6 CD1		A,		13.292			1.00	24.53
ATOM.		ILE	Α	282	11.408			r.00 .	27.43
						-3.002	32.033	1.00	20.13

		Atom						٠.,			
		Type	Residue	2	#		$\overline{\mathbf{z}}$	¥	<u>z</u>	<u>000</u>	<u>3</u>
ATOM	528	9 0	ILE	A	282	,	12 10	2 52 00			
ATOM	529		ARG	Α	283		12.18 10.59		· · · · · ·	_	21.53
ATOM	530		ARG	Α	283		10.54				18.99
ATOM	531		ARG	Α	283		9.15				20.71
ATOM	532			Α	283		8.77				23.74
ATOM ATOM	533		ARG	Α	283		9.03				28.61
ATOM	534 535	_	ARG	Α	283		9.59			_	33.16
ATOM	535 536		ARG	A	283		9.19				37.40
ATOM	537		ARG ARG	Α	283	•	8.19				40.44
ATOM	538	C	ARG	A	283		9.80		5 27.492		41.71 41.03
ATOM	539	0	ARG	A	283		10.826	5 54.93			20.40
ATOM	540	N	ILE	A	283		10.049				17.37
ATOM	541	CA	ILE	A A	284		11.881			1.00	18.94
ATOM	542	CB	ILE	A	284		12.127		36.655		19.58
ATOM	543		ILE	A	284 284		13.582			1.00	20.09
MOTA	544		ILE	A	284		13.684				20.97
MOTA	545		ILE	A	284		14.178				20.86
ATOM	546	C	ILE	A	284		13.442 11.792				20.01
ATOM	547	0	ILE	A	284		12.399				19.71
ATOM	548	N	LEU	A	285		10.816				19.08
ATOM ATOM	549	CA	LEU .	Α	285		10.379				19.33
ATOM	550	CB	LEU	A	285		8.881	58.729		1.00	20.90
ATOM	551 552	CC	LEU	A	285		8.020				20.57
ATOM	553	CD1	LEU	Α	285		6.569	58.488		1.00 1.00	18.92
ATOM	554 [°]	CD2 C		A	285		8.426	58.759		1.00	19.77
ATOM	555		LEU LEU	A	285		11.153	59.078	39.542	1.00	18.79
ATOM	556		LYS	A	285		10.861	58.536	40.585	1.00	22.65 21.09
ATOM	557		LYS	A	286		12.179	59.897	39.370	1.00	23.47
ATOM	558	CB -		A A		•	13.101	60.223	40.443	1.00	25.88
ATOM	559		LYS	Α	286 286		14.400	60.777	39.830	1.00	24.64
ATOM	560		LYS	À	286		15.057	59.703	38.969	1.00	26.69
ATOM	561	CE 1	LYS	A		. • ′	16.105 17.308	60.262	38.032	1.00	28.58
ATOM	- 562	NZ 1	LYS .	Ä		٠	18.328	59.334	•	1.00	28.89
ATOM	563	C	LYS	Α :	286		12.515	59.807 61.157	37.012	1.00	29.92
ATOM	564		LYS	A .	286	,	12.944	61.136	41.473	1.00	26.73
ATOM ATOM	565		SER	A	287	~ /;	11.543	61.980	42.622	1.00	28.60
ATOM	566		ER	A	287	٠.	10.969	62,865	41.133 42.158	1.00	25.80
ATOM	567 568		ER	A	287	7 °	11.627	64.249	42.056	1.00	26.18
ATOM			ER	A	287	6.7	11.272	64.767	40.796	1.00	26.60
ATOM			ER	A _.	287	;	9.471		41.977	1.00	28.18 24.89
ATOM		_		Α	287		8.996	62.358	40.947	1.00	25.47
ATOM .		-		A ·	288		8.739	63.268		1.00	26.04
ATOM				A N	288		9.222	63.876	44.247	1.00	27.14
ATOM		-	'	A .	288	•	7.294	63.276	42.938	1.00	26.70
ATOM				A -	288		6.831	63.561	44.339	1.00	26.05
ATOM	576	C p			288		8.010	63.972	45.128	1.00	27.69
ATOM :	577 - (O p			· 288 288	٠.	6.826	64.313	41.928	1.00	27.00
ATOM,	578 - 1			ng: } A.	289	,	7.522	65.301	41.666	1.00	27.28
ATOM			· · · · · · · · · · · · · · · · · · ·	A.	289		5.681 5.123	64.051	41.341	1.00	25.80
ATOM		CB GI		Ă Î	289	. · ·		64.976		1.00	27.15
ATOM	581 (CG GI		Á	289	٠.	4.021 3.246	64.214		1.00	27.78
		,					270	65.040	38.617	1.00	27.92

	A	Com									
	Ξ	<u>voe</u>	Residu	<u> </u>	#		X	Y	<u>z</u>	<u>occ</u>	B
ATOM	582	CD	GLN	A	289		4 20		_		
· ATOM	583	OE1	GLN	A	289		4.20° 4.970				28.41
ATOM	584		GLN	А	289		4.179				28.03
ATOM	585	С	GLN	A	289						32.04
ATOM	586	0	GLN .	A	289		4.553				27.84
ATOM	587	N	GLU .	A	290		3.693				27.12
. ATOM	588	OE2	GLU	A	290		4.962 4.477				30.72
ATOM	1 589	OE1	GLU	А	290						39.70
ATOM	590	CD	GLU	A	290		6.067 5.336				40.48
ATOM	591	CG	GLU	Α	290		5.461				39.53
ATOM :	592	CB	GLU	A	290		5.094				37.94
ATOM	593	CA	GLU	A	290		4.384				35.71
ATOM	594	Ċ.	GLU	A	290		2.912				33.44
ATOM	595	Ο.	GLU .	Α	290		2.615			1.00	32.66
ATOM	596	N .	VAL	A	291		2.027		•	1.00	32.60
ATOM	597	CĄ	VAL	A	291		0.589			1.00	32.52
ATOM	598	CB	VAL	A	291		0.016	.*		1.00	34.53
ATOM	599	CG1		A	291		-0.992	67.667	42.214	1.00	34+68
ATOM		CG2	VAL	Α	291		-0.509	67.828 .66.742	43.317	1.00	33.99
ATOM	601	C ·	VAL	Α	291		-0.040	70.265	41.114	1.00	33.97
ATOM		0	VAL	A	291		0.296	70.786	42.070	1.00	36.93
ATOM		N	LYS	A	292		-0.879	70.860	43.141	1.00	35.77
ATOM		NZ	LYS	A	292		0.250	74.239	41.231	1.00	38.91
ATOM		CE	LYS	A	292		-0.459	74.753	36.361	1.00	47.09
ATOM			LYS	, A	292		-1.298	73.665	37.563	1.00	45.89
ATOM		CG	LYS	A	292		-1.226	73.759	38.215	1.00	45.49
ATOM	_		LYS	A	292		-2.197	72.809	39,722	1.00	44.08
ATOM			LYS	Α·	292		-1.595	72.078	40.397	1.00	42.31
ATOM			LYS	A	292		-2.701	71.697	42.557	1.00	41.28
ATOM.			LYS	A	292		-3.085	70.535	42.624	1.00	41.79
ATOM			PRO	A	293	••	-3.192	72.668	43.305	1.00	42.72
ATOM ATOM			PRO	Α.	293		-2.802	74.096	43.247	1.00	42.21
-			PRO	A ·	293	•	-4.279	72.420	44.237	1.00	42.59
ATOM .			PRO	À,	293 .	•	-4.605	73.784	44.806	1.00	41.91
ATOM	616 (PRO	, A _{. E.}	293	21	-3.481	74.676	44.450	1.00	41.79
ATOM	617		PRO	A.	293	4	-5.441	71.807	43.474	1.00	41.90
ATOM	618 (PRO	, A	293		-5.696	72.212	42.339	1.00	41.40
ATOM			LY	A	294	6 E S	-6.059	70.755	44.003	1.00	41.02
ATOM			LY	Ą	294	2.	-7.176	70.123	43.332	1.00	40.85
ATOM.	621 · · · c	** **	ELY	A	294	. •	-6.832	69.033	42.332	1.00	41.30 40.98
ATOM			TA,	. А	294		-7.688	68.185	42.061	1.00	41.17
ATOM	623 N		LU	, A	295	٠.	-5.636	69.051	41.753	1.00	39.55
ATOM	625 10	E2 (LU	A :	295	· · ·	-2.049	69.989	38.852	1.00	44.47
ATOM	625 O			Ą	295		-3.356	71.223	37.568	1.00	44.87
ATOM			LU	A	295	.* 1,	-3.176	70.330	38.422	1.00	44.01
ATOM			LU	A ·	295	٠. ٠	-4.422	69.647	38.946	1.00	42.26
ATOM			LU	A	295	, n. 1	-4.099	68.521	39.886	1.00	39.91
ATOM			LU	A	295		-5.214	68.044	40.813	1.00	38.60
ATOM			LU	A	295		-4.641	66.825	41.552	1.00	36.59
ATOM		_	LU	Α .	295		-4.281	66.871	42.720	1.00	36.85
ATOM			YS	A	296	. •	-4.418	65.777	40.773	1.00	33.95
ATOM	633 _. C		YS	Α .	_		-3.782	64.575	,	1.00	30.68
ATOM	635 C		YS	A ,.	296		-4.755	63.656		1.00	31.56
	(c	یا د	YS	A	296	•. ′	-5.992	63.312		1.00	32.22
											36.66

		Atom								
		Type	Pesidu	<u>?</u>	#	<u>x</u>	Ϋ́	<u>z</u>	<u>occ</u>	<u>B</u>
ATOM	€36		LYS	Α	296	-7.14	9 62.924	42.035		
ATOM	537		LYS	A	296	-3.16				32.13
ATOM	538	_	LYS	Α	296	-3.10				33.43
ATOM	539		LYS	A	296	-3.028				34.90
atom atom	540		LYS	Α	296	-3.275	54.112			28.79
ATOM	641		HIS	Α	297	-1.999	63.135			27.50
ATOM	642 543		HIS	Α	297	-1.216				25.20
ATOM	644	CB	HIS	A	297	-0.148			1.00	20.71 20.06
. ATOM	545	CC	HIS HIS	A	297	0.824	62.612		1.00	18.56
ATOM	546		HIS	A	297	1.808	61.741	38.309		15.40
ATOM	647		HIS	A	297	0.863		36.701	1.00	18.13
MOTA	648	NES	HIS	A	297	1.844			1.00	17.97
ATOM	649	C	HIS	A	297	2.416	61.463	37.105	1.00	19.72
ATOM	650	ō	HIS	A	297	-0.730		40.292	1.00	19.15
ATOM	651	N	TYR	A A	297	-0.477		41.493	1.00	18.54
ATOM	652	CA	TYR	A	298	-0.557		39.580	1.00	18.21
ATOM	653	CB	TYR	A	298	-0.155		40.330	1.00	16.80
ATOM	654	CG	TYR	A	298 298	-0.193		39.437	1.00	16.24
ATOM	655	CD1		A	298	0.940		38.444	1.00	17.23
ATOM	556	CE1	TYR	A	298	2.077	56.755	38.742	1.00	15.56
ATOM	657	CD2	TYR	A	298	3.094 0.881	56.667	37.821	1.00	15.21
ATOM	658	CE2	TYR	Α	298	1.913	58.184	37.236	1.00	16.74
ATOM	659	CZ	TYR	A	298	3.022	58.098	36.337	1.00	16.91
ATOM	560	OH	TYR	Α	298	4.046	57.325 57.260	36.636	1.00	16.49
ATOM	661		TYR	Α	298	1.185	58.981	35.719	1.00	18.10
ATOM	562		TYR	A	298	1.351	58.330	41.029 42.073	1.00	16.63
ATOM ATOM	663		ASN	A	299	2.112	59.766	40.523	1.00	16.70
ATOM	664		ASN	A	299	3.423	60.011	41.085	1.00	16.99
ATOM	665. 6 6 6		ASN	A	299	4.463	60.166	39.965	1.00	18.59
ATOM	667		ASN .	A	299	5.890	60.214	40.494	1.00	18.92 18.76
ATOM	568	OD1 . ND2 .		· A	299 -	6.205	59.456	41.412	1.00	18.23
ATOM	669		asn Asn	A	299	5.748	61.070	39.950	1.00	19.19
ATOM	670		ASN ASN	Α	299	3.513	61.224	42.009	1.00	20.06
ATOM	671		MET	Α	299	4.606	61.723	42:362	1.00	18.80
ATOM	672		MET	A A	300	2.395	61.732	42.509	1.00	20.80
ATOM	673		MET	A	300	2.449	62.886	43.417	1.00	22.77
ATCM		-	1ET	A	300	1,115	63.568		1.00	23.16
ATOM	675		IET.	A	300	0.029	62.931	44.436	1.00	25.10
ATOM	. 676		1ET	A -	300 300	-1.590	63.723	44.020	1,00	28.00
ATOM	677		ET :	A	300	-2.640	62.839	45.144	1.00	24.04
ATOM		_	ET .	A	300	3.012	62:458	44.767	1.00	21.89
ATOM	679	N P	I.A	A	301	2.833	61.314		1.00	18.53
ATOM	680	CA A	LA .	A -	301	3. 3 69 3.872	63.413		1.00	22.83
ATOM	681	CB . A		Α	301	4.450	63.134		1.00	23.87
ATOM		C A		Α	301	2.841	64.429	•	1.00	23.72
ATOM		O A	LA	Α	301	3.085			1.00	24.63
ATOM		N L	YS	Α	302	1.652			1.00	23.46
ATOM				A	302	0.645			1.00	26.09
ATOM				Ά	302		63.890	48.859	1.00	26.00
ATOM ETOM				A	302				1.00	28.38
ATOM			YS	A	302				1.00	29.29
ATOM			YS .	A	302				1.00	30.98
	7.8						 - ,		1.00	32.65

	_									
		Atom Type	D '							
		YDE	Resid:	<u> </u>	#	<u>x</u>	<u>¥</u>	<u>z</u>	<u> 000</u>	<u>B</u>
ATOM	690	NZ								-
ATOM	691	C	LYS	A	302	2.61			1.00	33.62
ATOM	692	0	LYS	. A	302	-0.198		48.291		25.55
ATOM	693	. N	SER	A	302	-0.299	61.399	47.087		24.72
ATOM	694	CA		A	303	-0.793	60.835	49.202		24.45
ATOM	695	C3	SER SER	A	303	-1.621		48.836		25.50
ATOM	696	OG	SER	A	303	-1.434		49.878		26.64
ATOM	697	c	SER	A	303		59.030		1.00	31.03
ATOM	698	ō	SER	: A	303	-3.052				25.87
ATOM	699	N	TYR	A	303	-3.396			1.00	22.73
ATOM	700	CA	TYR	A	304	-3.814				24.98
ATOM.	701	CB	TYR	A	304	-5.181				24.27
ATOM .	702	CG	TYR	A	304	-5.140		46.132	1.00	25.45
ATOM	703		TYR	A	304	-6.466				28.35
ATOM	704	CEI	TYR	A A	304	-6.762			1.00	29.08
ATOM	705	CD2	TYR	A	304	-7.978			1.00	29.59
ATOM	706	CE2		·Ā	304	-7.426			1.00	27.54
atom	707	CZ	TYR	A	304	-8.630			1.00	29.33
ATOM	708	OH	TYR	A	304 304	-8.893		44.944		29.27
ATOM	709	C.	TYR	A	304	-10.103	62.610		1.00	32.08
ATOM	710	0	TYR	A		-6.192	58.769	47.721	1.00	25.14
ATOM	711	N	PRO	A	304 305 .	-5.707	57.735	47.336	1.α00	20.08
ATOM	712	CD	PRO	A	305 . 305	-7.356	59.000	48.279	1.00	26.60
ATOM	713	CA	PRO	A	305	-8.386	58.001	48.459	1.00	25.22
ATOM	714	CB	PRO	A	305	-7.989		48.637	1.00	27.02
MOTA	715	CG	PRO	A	305	-9.492	60.083	48.491	1.00	25.75
ATOM	716.	C .	PRO	A	305	-9.707	58.646	48.789	1.00	25.74
MOTA	717	0	PRO	A	305	-7.625	60.782	50.007	1.00	28.63
ATOM		И.	ASN	A	306	-7.922 -6.988	61.915	50.430	1.00	28.68
ATOM	719	CA	ASN	A	306	-6.713	59.904 60.273	50.783	1.00	29.14
ATOM			ASN	A	306	-7.350	59.232	52.173	1.00	30.26
ATOM		CG ·		Α	306	-8.766	58.861	53.075	1.00	32.58
ATOM		OD1		Α	306	-9.661	59.712	52.676	1.00	35.48
ATOM	. 723 ;]	ND2	ASN	· 1 A	306	-8.992	57.588	52.612	1.00	36.24
ATOM		C 1		A	306	-5.229	60.477		1.00	36.01
			ASN	Α	306	-4.444	59.536	52.439	1.00	29.94
ATOM			GLU	A	307	-4.819	61.724	52.507	1.00	28.29
ATOM ATOM		DE2		A	307	-2.295	66.669	51.130	1.00	29.94
ATOM	728 (DE1		A	307	-2.711	66.223	53.238	1.00	41.44
ATOM	729 . (ZD' (À	307	-2.656	65.896	52.037	1.00	41.35
ATOM	730	2 G (GLU:	A	307	-3.034	64.464	51.678	1.00	40.02
ATOM	731 (B. (A	307	-3.401	63.683		1.00	38.20 33.77
ATOM	732 0		GLU	A	307	-3.461	62.152	52:717	1.00	32.32
ATOM	733 0		3LU	A	307	-2.770	61.594	53.949	1.00	30.24
ATOM	734 0		SLU	A .	307	-1.542	61.522	53.970	1.00	
ATOM	735 N		3LU	A:	308	-3.513		54.984	1.00	30.44
ATOM		E2 (A	308	-6.099			1.00	29.39
ATOM		E1 (Α	308	-7.129			1.00	38.47 37.95
ATOM		D . C		Α	308	-6.176			1.00	36.70
ATOM	_		LU	A	308	•			1.00	3 5. 70
ATOM			LU	A	308		60.913	57.384	1.00	33.10
ATOM		-	LU	A	308		60.795		1.00	29.98
ATOM			LU	A	308				1.00	29.90
	743 0	G	LU.	A	308				1.00	26.31
										20.31

		<u>YDe</u>	Resid	<u>ue </u>	±	· <u>X</u>		_		
ATOM	744	N			_	=	Y	<u>z</u>	<u>0CC</u>	B
ATOM	745	CA.	LYS	λ	309	-3.00	4 58.62	6 55.094	1.00	24
ATOM	746	C3	LYS LYS	À	309	-2.64	8 57.21			24.19
ATOM	747	CG	LYS	A	309	-3.71		3 54.263	1.00	24.20
ATOM	748	CD	LYS	A	309	-5.09	8 56.34			24.89
ATOM	749	CE	LYS	À	309	-5.08	9 56.57			27.73 31.22
ATOM	750	NZ	LYS	A A	309	-6.31		57.162		32.52
ATOM	751	C	LYS	A	309	-6.63		58.107		34.53
ATOM	752	0	LYS	A	309	-1.28		54.387	1.00	21.98
ATOM	753	N	ASP	A.	309 310	-0.83		53.636	1.00	22.27
ATOM	754	CA	ASP	A	310	-0.67			1.00	20.75
ATOM	755	CB	ASP	A	310	0.609			1.00	20.70
ATOM	756	CG	ASP	A	310	1.130	•		1.00	20.19
ATOM	757	OD1	ASP	A	310	2.619			1.00	22.21
ATOM	758	OD2	ASP	A	310	3.335			1.00	24.55
ATOM		С	ASP	A	310	3.040			1.00	18.20
ATOM		0	ASP	A	310	0.474			1.00	19.43
ATOM		N	ALA	A	311	1.385			1.00	20.19
ATOM		CA	ALA	A	311	-0.727		51.990	1.00	18.69
ATOM		CB	ALA	Α	311	-0.947 -0.991	_	50.572	1.00	17.44
ATOM		C :	ALA	A	311	-2.302		50.429	1.00	16.55
ATOM		ο.	ALA	A	311	-3.221		50.028	1.00	16.60
ATOM		N	TRP	A	312	-2.339	55.655	50.751	1.00	12.08
ATOM		CA	TRP	A	312	-3.555		48.711	1.00	17.19
atom Atom		CB	TRP	A	312	-3.236	55.615	47.963	1.00	15.85
ATOM		CG	TRP	A	312	-2.713	55.569 56.757	46.483	1.00	14.37
ATOM	770 (D2	TRP	A	312	-3.413	57.526	45.760	1.00	16.10
ATOM	771 (E2	TRP	Α	312	-2.554	58.554	44.772	1.00	16.24
ATOM	772 (E3	TRP	, A	312	-4.685	57.427	44.342	1.00	17.46
ATOM	773 (Dı	TRP	Α	312	-1.492	57.360	44.204	1.00	17.59
ATOM	774 N	E1	TRP	, A	312 .	-1.381	58.440	45.884	1.00	15.52
ATOM		Z2		A	312	-2.900	59.475	45.050	1.00	16.75
ATOM		Z3 '	TRP	Α	312	-5.022	58.348	43.357	1.00	17.80
ATOM		H2 '		A	312 :	-4.154	59.345	43.228	1.00	15.80
ATOM			TRP	Α	312 ,	-4.562	54.502	42.828 48.204	1.00	17.23
ATOM	779 O 780 N		TRP	Α	312	-4.185	53.393		1.00	16.18
ATOM	781 C		ASP	A	313	-5.841	54.750	47.906	1.00	14.62
ATOM	782 C	-	ASP '	Α.	313 .	-6.817	53.682	47.741	1.00	17.14
ATOM	783 C	-	asp ISP	, A	313	-8.170	54.298	47.343	1.00	17.42
ATOM		01 A		A	313	-9.106	53.244	46.797	1.00	19.70
ATOM		02 A		A	313	-9.073	52.935		1.00	22.89 24.60
ATOM	786. C		SP	A	313	-9.841	52.697		1.00	26.78
ATOM	787 0		SP :	A	313	-6.273	52.903		1.00	14.58
ATOM	788 N		AL .	A	313	-6.033	53.570		1.00	14.85
ATOM	789 C		AL .	A	314	-6.101		_	1.00	15.33
ATOM	790 CE	-	AL	A A	314	-5.434		_	1.00	14.25
ATOM		ı v	ΔT:	A .	314	-5.067			1.00	13.94
ATOM		2 V	AI.	A A	314	-6.266	48.578		1.00	12.58
ATOM	793 C	. V	AI.	A	314	4.090	48.891		1.00	12.94
ATOM	794 0	V	AL:	Á	314		50.966		.00	14.22
ATOM	795 N	L		A	314	5.480			.00	13.01
ATOM	796 NZ	L	rs	A	315	-7.435	50.819		.00	16.35
ATOM	797 CE			A	315		48.884		.00	27.78
	٠, ۲,		•		315	-11.908	48.279 4		.00	26.99

1....

		Atom					٠,			
•		Type	Residu	<u>e ?</u>	브	•		_		
				_	-	<u>x</u>	Σ	<u>z</u>	<u>occ</u>	3
ATOM	798	CD	LYS	A	315	-11.499	12.20-			
MOTA	799		LYS	A	315	-10.084				24.72
ATOM	800		LYS	Α	315	-9.700				21.52
ATOM	801		LYS	- A	315	-8.223				18.30
ATOM	8.02	_	LYS	Α	315	-8.111				17.01
ATOM	803		LYS	A	315	-7.967				15.42
ATOM	804	-	MET	·A	316	-8.189				14.82
MOTA MOTA	805		MET	· A	316	-8.023			1.00	16.67 16.96
ATOM	806 807	CB	MET	A	316	-8.396	55.717		1.00	19.66
ATOM	808		MET.	A	316	-9.874			1.00	21.49
ATOM	809	SD	MET	. А	316	-10.303	56.858		1.00	25.95
ATOM	810	C	MET MET	A	316	-11.921	56.212		1.00	23.70
ATOM	811	o	MET	·A	316 `	-6.624	54.927	41.996	1.00	16.13
ATOM	812	И	LEU	A A	316	-6.463	55.672	41.038	1.00	16.38
ATOM	813	CA	LEU	. A	317	-5.583	54.315	42.552	1.00	15.29
ATOM	814	CB	LEU	A	317 317	-4.218	54.490	42.078	1.00	13.26
ATOM	815	CG	LEU	A	317	-3.200	53.915	43.097	ī.Ģū	11.74
ATOM	816	CD1	LEU	A	317		54.036	42.672	1.00	12.04
ATOM	817		LEU	A	317	-1.323 -0.861	55.505	42.512	1.00	10.99
ATOM	818	C	LEU	A	317	-4.079	53.326 53.785	43.698	1.00	11.54
ATOM	819	0	LEU	A	317	-3.526	54.334	40.755	1.00	12.38
ATOM	820	N	LEU	A	318	-4.637	52.580	39.819 40.616	1.00	14.48
ATOM	821	CA	LEU	A	318		51.890	39.326	1.00	12.87
ATOM	822	CB	LEU	Α	318	-5.112	50.457	39.453	1.00	12.84
ATOM ATOM	823	CG	LEU	A	318	-4.966	49.629	38.170	1.00	12.79
ATOM	824		LEU	A	318	-3.531	49.542	37.700	1.00	14.82 15.86
ATOM	825 826		LEU	A	318	-5.558	48.241	38.355	1.00	14.73
ATOM	827	0	LEU	A	318	-5.230	52.673	38.218	1.00	12.07
ATOM	828	N	LEU GLU	A	318	-4.780	52.829	37.099	1.00	12.74
ATOM	829		.GLU	A	319	-6,420	53.193	38.511	1.00	15.24
ATOM	830		GLU	A A	319	-11.483	52.210	39.220	1.00	28.26
ATOM	831	CD		A	319 319	-10.797	54.093		1.00	29.42
ATOM	832	CG .		A	319	-10.674	53.181	39.193	1.00	27.45
ATOM	833			A	319	-9.561	53.233		1.00	24.55
ATOM	834	CA .		A	319	-8.553 -7.199	54.375	38.270	1.00	18.18
ATOM	835	C	GLU	A	319	-6.421	54.025 55.288	37.614	1.00	15.25
ATOM-	836	0	GLU ·	. A :	319	-6.317	55.697	37.289	1.00	14.06
ATOM:	837	N	GLN	∵A	320	-5.879	55.947	36.141 38.303	1.00	13.57
ATOM	838	CA,	GÍN '	· A	320 "	-5.086	57.164	38.073	1.00	14.48
ATOM:	839	CB -	GLN	. A	320	-4.631	57.772	30.073	1.00	15.95
ATOM ATOM	840	, CG	GLN	A	320	-3.969	59.147	39.262	1.00	17.37 20.30
ATOM	841	CD	GLN	A	320	-4.917	60.189	38.681	1.00	20.82
ATOM	842 843	OE1		A	320 ·	-6.069	60.198		1.00	22.55
ATOM	844	NE2		A	320	-4.480	61.016	37.768	1.00	20.50
ATOM	845		GLN	A	320	-3.896	56.849	37.206	1.00	15.14
ATOM	846			:A .	320	-3.545	57.572	36.274	1.00	16.35
ATOM	847		PHE PHE	Α.	321	-3.178	55.751	37.535	1.00	14.19
ATOM	848			A	321	-1.997	55.416	36.728	1.00	13.62
ATOM	849		PHE PHE	Α:	321	-1.389	54.100	37.277	1.00	14.84
ATOM	850	CD1		Α ΄	321	-0.285	53.531	36.462	1.00	14.25
ATOM	851	CD2		A A	321	0.874	54.232		1.00	16.53
	- -			Α .	321	-0.407	52.275	35.889	1.00	15.71

		Atom								
		<u>T∵⁄⊅e</u>	Residue	. 2	<u>=</u>	x	¥	<u>z</u>	<u>occ</u>	<u>B</u>
ATC:4	852	CEI	LPHE	А	321	. 015		25		
ATCM	853		PHE	A	321	1.915 0.594			1.00	16.96
ATCM	854	cz	PHE	A	321	1.760			1.00	16.98
ATCM	855	С	PHE	A	321	-2.367		34.920	1.00	19.64
ATCM	856	ာ	PHE	A	321	-1.743		35.284	1.00	15.37
ATCM	857	N	SER	A	322	-3.440		34.391 35.011	1.00	17.95
ATCM	858	CA	SER	Α	322	-3.862		33.650	1.00	15.65
ATCM	859	СЭ	SER	A	322	-5.052	53.312	33.545	1.00	16.47
ATCM	860	CG	SER	A	322	-4.956	52.111	34.281	1.00	17.62
ATCM	861	C	SER	Α	322	-4.219	55.608	32.980	1.00	21.90 15.02
ATCM	862	0	SER	A	322	-3.836	55.773	31.839	1.00	15.73
ATCM	863	N	PHE	A	323	-4.855	56.499	33.694	1.00	15.76
ATCM	864	CA	PHE	A	323	-5:163	57.831	33.153	1.00	17.15
ATOM	865	CB	PHE	A	323	-5.953	58.697	34.136	1.00	18.22
ATCM	866	CG	PHE	A	323	-6.374	60.050	33.604	1.00	20.68
ATOM ATCM	867		PHE	A	323	-5.660	61.195	33.861	1.00	21.45
ATCM	868		PHE	Α	323	-7.524	60.161	32.852	1.00	22.31
ATOM	869 870		PHE	A	323	-6.032	62.425	33.329	1.00	22.60
ATCM	871	CEZ	PHE	Α	323	-7.945	61.384	32.325	1.00	24.15
ATCM	872	C	PHE PHE	A	323	-7.175	62.502	32.558	1.00	23.26
ATOM	873	0	PHE	A	323	-3.897	58.570	32.756	1.00	18.08
ATOM	874	N	ASP	A	323	-3.807	59.053	31.648	1.00	15.95
ATOM	875	CA	ASP	A	324	-2.913	58.698	33.662	1.00	19.20
ATOM	876	CB	ASP	A A	324	-1.748	59.521	33.405	1.00	20.57
ATOM	877	CG	ASP	A	324	-0.994	59.740	34.742	1.00	23.05
ATOM	878		ASP	A	324 324	-1.773	60.624	35.687	1.00	23.08
ATOM	879		ASP	A	324	-1.894	60.419	36.896	1.00	22.69
ATOM	880	C	ASP	A	324	-2.335	61.620	35.188	1.00	26.34
ATOM	881	0	ASP	Α	324	-0.746	58.999	32.402	1.00	21.82
ATOM	882	N.	ILE	A	325	-0.058 -0.672	59.793		_1.00	21.73
ATOM	883	CA	ILE	Α	325	0.264	57.679 57.038	32.240 31.339	1.00	21.33
MOTA	884	CB	ILE	A	325	0.922	55.889	32.161	1.00	22.61
ATOM	885	CG2		Α.	325	0.154	54.579	32.043	1.00	25.69
ATOM	886	CG1		Α	325	2.370	55.730	31.765	1.00	24.65 26.90
ATOM	887	CD1	ILE	À	325	3.359	56.465	32.631	1.00	27.55
ATOM	888	C :	ILE	Α	325	-0.394	56.551	30.073	1.00	27.33
ATOM	889	0	ILE	Α	325	0.238	55.950	29.209	1.00	19.22
ATOM	890	N	ALA	A	326	-1.663	56.970	29.849	1.00	21.30
ATOM	891	CA	ALA	Α	326	-2.412	56.538	28.677	1.00	21.14
ATOM	892	CB	ALA	A	326	-3.743	57.301	28.568	1.00	20.96
ATOM	893	C .	ALA	A.	326	-1.701	56.616		1.00	20.02
ATOM ATOM	894		ALA	A	326	-1.716	55.660	26.557	1.00	18.13
ATOM	895		GLU	Α.	327	-1.087	57.750	27.055	1.00	21.17
ATOM	896	OE2		A	327	1.606	59.498	22.827	1.00	38.00
ATOM	897	OE1		. A	327	-0.468	59.073	22.310	1.00	37.16
ATOM	898		GLU	Α	327	0.389	59.482	23.114	1.00	35.40
ATOM	899 900		GLU	Α, .	327	-0.062	59.993	24.456	1.00	33.57
ATOM .	901 -		GLU	A	327	0.333	59.223	25.685	1.00	26.72
ATOM.	902		GLU	A.	327	-0.310	57:845	25.805	1.00	23.82
ATOM	903		GLU	Α.	327	0.748	56.760	25.705	1.00	20.97
ATOM	904		GLU	Α	327 .	0.932	56.156	24.626	1.00	20.68
ATOM	905	OE2	GLU	Α.	328	1.536	56.501	26.758	1.00	20.00
		752	GLO ,	A	328	6.485	57.857	28.558	1.00	20.00

		Atom								
		<u>Tvpe</u>	Residu	<u>e / 2</u>	<u> </u>	<u> x</u>	<u>y</u>	<u>z</u>	<u>0CC</u>	ь
						_	_	_	<u> </u>	8
ATOM	906	OE1	LGLU	Α	328	5.550	56.151	29.650		
ATOM	907	CD	GLU	Α	328	5.561		28.651		20.00
MOTA	908	CG	GLU	A	328	4.474		27.579		20.00
ATOM	909	C3	GLU	Α	328 🖖	3.625		27.694		20.00
ATOM	910	CA	GLU	Α	328	2.584	55.483	26.582	1.00	20.00
ATOM	911	C	GLU	Α	328	1.966	54.088	26.633	1.00	20.00
ATOM	912	0	GLU	A	328	2.420	53.176	25.932	1.00	20.00
ATOM	913	N ·	ALA	Α	329	0.930	53.900	27.438	1.00	20.00
ATOM	914	CA	ALA	A	329	0.280	52.586	27.501	1.00	19.57
ATOM	915	_	ALA	A	329	-0.828	52.628	28.545	1.00	21.09 20.52
ATOM	916	С	ALA	A	329	-0.292	52.148	26.167	1.00	20.52
ATOM	917	0	ALA	A	329	-0.460	50.963	25.860	1.00	
ATOM	918	N	SER	A.	330	-0.593	53.077	25.263	1.00	22.92 22.47
ATOM	919	CA	SER	A	330	-1.185	52.807	23.972	1.00	23.55
ATOM	920	CB	SER	A	330	-1.669	54.151	23.397	1.00	23.31
ATOM	921	OG.	SER	A	330	-0.614	54.856	22.781	1.00	25.74
ATOM ATOM	922	C	SER	A	330	-0.209	52.129	23.038	1:00	23.79
	923	0	SER	: A	330	-0.545	51.533	22.032	1.00	23.73
ATOM ATOM	924	N	LYS	Α	331	1.073	52.141		1.00	20.00
ATOM	925	NZ	LYS	A	331	4.948	57.241	21.295	1.00	20.00
ATOM	926	CE	LYS.	A	331	3.827	56.290	21.276	1.00	20.00
ATOM	927 928	CD	LYS	A	331	4.162	54.958	21.950	1.00	20.00
ATOM		CG	LYS	A	331	2.995	53.972	21.928	1.00	20.00
ATOM	929 930	CB	LYS	A	331	3.327	52.639	22.588	1.00	20.00
ATOM	931	CA	LYS	Α	331	2.147	51.613	22.574	1.00	20.00
ATOM	932	C	LYS	A	331	2.659	50.261	22.982	1.00	20.00
ATOM	933	0	LYS	A	331	3.484	49.683	22.278	1.00	20.00
ATOM	934	N CA	VAL	A	332	2.207	49.748	24.112	1.00	21.24
ATOM		CB	VAL VAL	A	332	2.660	48.458	24.592	1.00	19.62
ATOM	936		VAL	A	332	3.467	48.639	25.896	1.00	20.18
ATOM	937	CG2		A	332	4.816	49.290	25.660	1.00	19.67
ATOM	938	C C	VAL	A	332	2.651	49.433	26.897	1.00 -	18.82
ATOM	939		VAL	A A	332 332	1.495		24.905	1.00	18.19
ATOM	940	N	CYS:	A		0.344	47.965	24.964	1.00	18.61
ATOM "	941	CA	CYS	•		1.816	46.274		1.00	16.72
ATOM	942	CB	CYS	A A	333	0.869	45.245	25.475	1.00	18.08
ATOM	943		CYS	A		4.322		.25.365	1.00	20.13
MOTA	944	Ç.	CYS	_	333	0.034	42.448	26.048	1.00	23.29
ATOM	945	ō	CYS	. A	333 333	*	45.494	26.878	1.00	16.83
ATOM	946	N	LEU	A ·	334	0.000	45.347	27.075	1.00	15.63
ATOM	947	CA	LEU .	A		1.226	45.820	27.841	1.00	12.87
ATOM	948		LEU	Ä.	334 334	0.838	46.094	29.187	1.00	12.88
MOTA	949		LEU	A	334	0.037	44.925	30.157	1.00	13.67
ATOM	950	CD1		Α	334	0.001	43.686	29.867	1.00	12.92
ATOM	951	CD2		A	334	0.432	42.513	30.699	1.00	9.29
ATOM	952		LEU	A	334	-1.465	44.030	30.158	1.00	10.80
ATOM	953		LEU:	A		1.788	47.151	29.816	1.00	14.90
ATOM	954		ALA	A	335	2.929	47.313	29.428	1.00	
ATOM	955		ALA	À	335	1.203	47.856	30.778	1.00V	14.03
ATOM	956		ALA	A	335 335	1.920	48.854	31.544	1.00%	14.38
ATOM	957		ALA	A	335	1.292	50.235	31.381	1.00	15.95
ATOM			ALA	Α	335	1.859	48.404	32.991	1.00	13.27
ATOM	9 59		HIS	A	336	0.794	48.020	33.435	1.00	14.32
	-	-		~	, 96	2.936	48.458	33.750	1.00	12.02

		\								
		Atom Type	<u>Residue</u>							
			·· - Jrade	2	=	<u>x</u>	Σ	<u>z</u>	<u> 000</u>	3
ATOM	960	CA	HIS	,						
ATOM	961		HIS	ý	336	2.886		35.141	1.00	10.67
ATOM	962		HIS	Ä	336	3.543		35.252	1.00	9.55
ATOM	963		HIS		336	3.104		36.449	1.00	12.03
ATOM	964		HIS	A	336	2.026			1.00	9.22
ATOM	965		HIS	A	336	3.730		37.684	1.00	11.53
ATOM	966		HIS		336	3.048		38.533	1.00	8.45
ATOM	967		HIS	A	336	1.995		37.891	1.00	12.17
ATOM	968	ō	HIS	A A	336	3.596			1.00	13.40
ATOM	969	N	LEU		336	4.669		-	1.00	13.52
ATOM	970	CA	LEU	A A	337	2.987	_	37.104	1.00	12.61
ATOM	971	CB	LEU	À	337	3.514		38.026	1.00	12.83
ATOM	972	CG	LEU	A	337	2.357		38.563	1.00	13.25
ATOM	973		LEU	A	337	2.688		39.816	1.00	14.22
ATOM	974		LEU	A	337	3.886		39.540	1.00	14.34
ATOM	975	C	LEU	A	337	1.489	53.027	40.232	1.00	12.48
ATOM	976	0	LEU	λ	337	4.137		39.243	1.00	11.76
ATOM	977	N	PHE	A	337	3.486	48.887	39.833	1.00	10.29
ATOM	978	CA	PHE	A	338	5.396	50.012	39.548	1.00	11.12
ATOM	979	CB	PHE	A	338	6.001	49.502	40.775	1.00	9.77
ATOM	980	CG	PHE	A	338	7.378	48.877	40.584	1.00	10.95
ATOM	981	CD1		. A	338 338	7.336	47.661	39.688	1.00	10.01
ATOM	982	CD2		A	338	7.341	47.745	38.336	1.00	6.77
ATOM	983	CE1		A	338	7.347	46.392	40.263	1.00	10.50
ATOM	.984	CE2		A	338	7.261	46.629	37.530	1.00	8.39
ATOM	985		PHE	A	338	7.260	45.254	39.504	1.00	7.33
ATOM	. :986		PHE	Α	338	7.257	45.387	38.135	1.00	9.45
ATOM	987		PHE	A	338	6.093	50.673	41.742	1.00	10.02
ATOM	988		THR	A	339	6.621	51.737	41.430	1.00	11.99
ATOM	989	CA '	THR	A	339	5.501	50.493	42.897	1.00	9.73
ATOM	990	CB ·	THR	A	339	5.455	51.468	43.940	1.30	12.72
MOTA	991		THR	A	339	4.053	52.092	44.003	1.00	15.30
ATOM	992	CG2	THR	A	339	4.060 3.048	53.246	44.828	1.00	16.97
ATOM	993	C - 1	THR	Ą	339	5.886	51.044	44.495	1.00	15.12
ATOM	994	0	THR	A .	339	6.169	50.830	45.261	1.00	12.86
ATOM	995	N	TYR	A	340;	5.954	49.638 51.663	45.386	1.00	12.05
ATOM	996	CA 1	TYR	A	340	6.323	51.315	46.268	1.00	11.17
ATOM	997	CB 1	TYR .	A	340	7 /823	51:632	47.616	1.00	11.82
ATOM	. 998		TYR '	Α.	340	8.342	51.050	47.844	1.00	10.81
ATOM	999	CD1 1		A	340	8:766	49:717	49.121	1.00	11.94
ATOM	1000	CE1 1	TYR	Α	340	9/228	49.144	49.157	1.00	13.34
ATOM	1001	CD2 1		A	340	8.375	51,795		1.00	13.22
ATOM	1002	CE2 1	TYR	A	340	8.862	51.239		1.00	11.57
ATOM	1003	CZ I	TYR (A	340	9.294	49.929		1.00	13.34
ATOM	1004	OH T	YR	A	340	9.708	49.349	51.474	1.00	12.53
ATOM	1005	CI	YR	A	340	5.422	52.066	52.630	1.00	13.01
ATOM	1006		YR	Α	340	5.784	53.138	48.560	1.00	12.56
ATOM	1007	N G	LN	Α	341	4.248		49.086	1.00	13.24
MOTA	1008		LN	A	341	3.279	51.479 52.124	48.801	1.00	12.63
ATOM		CB · G	LN	A,	341	2.457		49.697	1.00	12.73
ATOM			LN	A	341	1.630	53.199	48.996	1.00	15.96
ATOM		CD G	LN	A	341	1.063	52.745 53.915	47.790	1.00	12.86
MOTA	1012	0E1 G	LN	A	341	0.019			1.00	14.37
MOTA	1013 .		LN	A	341	1.690			1.00	14.26
	33. 3	•		٠,	- -	050	966.50	45.913	1.00	12.87

		Atom								
		Type	Resid	tue 2	<u>#</u>	<u>x</u>	Y	<u>z</u>	<u>0CC</u>	<u>B</u>
ATOM	101		GLN	A	341	2.409	9 51.026	50 201		
ATOM	101		GLN	A	341	2.139				13.05
ATOM	1016	_	ASP	A	342	2.036				12.36
ATOM	101		ASP	À	342	1.313				11.62
ATOM	1018		ASP	A	342	1.766				12.36
ATOM ATOM	1019	_	ASP	. А	342	1.603				11.58
ATOM	1020		ASP	A	342	1.136				14.83
ATOM	1021		ASP	Α	342	1.976		55.734		12.25
ATOM	1022 1023		ASP	A	342	-0.202		52.159		16.16 13.76
ATOM	1023		ASP	A	342	-0.850	50.940	53.016		10.06
ATOM	1025		PHE	A	343	-0.705	49.804	51.047		12.77
ATOM	1026		PHE	A	343	-2.123	49.686	50.828		13.67
ATOM	1027		PHE PHE	. A	343	-2.407	48.846	49.572	1.00	11.23
ATOM	1028		PHE	. A	343	-1.813	49.447	48.336	1.00	13.10
ATOM	1029		PHE	. А	343	-2.070		47.978		11.42
ATOM	1030	CEI	PHE	A	343	-0.968	48.703	47.519	1.00	11.91
ATOM	1031	CE2		A . Ā	343	-1.494	51.298	46.845	1.00	11.83
ATOM	1032		PHE	. А	343		49.235	46.395	1.00	13.17
ATOM	1033	C	PHE	· A	343	-0.693	50.547	46.011	1.00	11.97
ATOM	1034	0	PHE	A	343	-2.827	49.073	52.018	1.00	13.82
MOTA	1035	N	ASP .	A	343 344	-2.411	48.111	52.663	1.00	11.97
ATOM	1036	CA	ASP	A	344		49.646	52.364	1.00	14.70
ATOM	1037	CB	ASP	A	344	-4.734	49.159	53.500	1.00	16.30
ATOM	1038	CG	ASP	A	344	-6.066	49.896	53.688	1.00	19.86
ATOM	1039	OD1		- A	344	-5.919	51.270	54.287	1.00	24.51
MOTA	1040	OD2	ASP	A	344	-4.851 -6.983	51.804	54.586	1.00	24.70
ATOM	1041	C	ASP	. A	344	-5.093	51.916	54.436	1.00	27.18
ATOM	1042	0	ASP	· A	344	-5.208	47.675	53.396	1.00	13.85
ATOM	1043	N	MET	A	345	-5.213	47.157 47.069	52.310	1.00	9.77
ATOM	1044	CA	MET	A	345	-5.708	45.753	54.564	1:00	13.16
ATOM	1045		MET	A	345	-7.235	45.710	54.800	1.00	17.11
ATOM	1046		MET	A	345	-7.944	46.687	54.450 55.406	1.00	23.01
ATOM	1047		MET	" A .	345	-9.349	45.913	56.215	1.00	28.99
ATOM ATOM	1048		MET	A	345	-9.993	47.308	57.172	1.00	39.05
ATOM	1049	_	MET	A	345	-4.992	44.658	54.023	1.00	36.28
ATOM	1050			A	345	-5.586	43.729	53.496	1.00	16.11
ATOM	1051		GLY	Α	346	-3.649	44.811	53.976	1.00	11.01 13.02
ATOM	1053		GLY	. А	346	-2.848	43.775	53.364	1.00	12.48
ATOM	1054		GLY :	: , A	346	-2.754	43.637	51.897	1.00	10.57
ATOM	1055		GLY	, A	346	-2.092	42.654	51.492	1.00	10.20
ATOM	1056			Α΄	347	-3.392	44.516		1.00	10.34
ATOM	1057		THR THR	, A .	347	-3.236	44.419	49.645	1.00	10.83
ATOM		0G1	TUD	A :	347	-4.204	45.426	48.958	1.00	11.57
ATOM-	1059	CG2	TUD	A, 1	347	-5.515	45.104	49.474	1.00	11.02
ATOM	1060		THR	Α	347	-4.265	45.214	47.479	1.00	9.59
ATOM	1061		THR	A A	347	-1.836	44.653	49.119	1.00	11.95
ATOM	1062		LEU	A	347	-1.160	45.651	49.506	1.00	10.72
ATOM	1063		LEU	A	348	-1.400	43.853	48.171	1.00	9.29
ATOM	1064		EU	A	348	-0.082	43.950.	47.585	1.00	11.62
ATOM -	1065	_	EU	A	348	0.550	42.518		1.00	11.68
ATOM	1066	CD1 L		A	348 348			48.967	1.00	13.21
ATOM		CD2 I		À	348			48.924	1.00	13.82
				• • •	348	2.282	42.599		1.00	13.80

		Acom									
		Tvoe	Residue	2	≢		<u>x</u>	ĭ	<u>Z</u>	<u>0000</u>	<u>8</u>
							_	-	_		=
ATCM	1068	С	LEU	À	348		-0.066	44.478	46.170	1.00	10.88
ATOM	1069	0	LEU	A	348		0.889	45.107	45.724	1.00	10.81
ATOM	1070	N	GLY	Α	349		-1.177	44.229	45.417	1.00	10.78
ATCM	1071	CA	GLY	, A	349		-1.154	44.718	44.035	1.00	9.96
ATCM	1072	C	GLY	Α	349		-2.577	44.686	43.420	1.00	11:05
MOTA	1073	0	GLY	Α	349		-3.461	44.195	44.075	1.00	9.57
ATOM:	1074	N	LEU	A	350		-2.667	45.177	42.201	1.00	12.61
MOTA	1075	CA	LEU	. A	350		-4.033	45.102	41.592	1.00	12.78
ATOM	1076	C3	LEU	A	350		-4.766	46.348	42.090	1.00	13.89
ATOM	1077	CG	LEU	A	350		-6.279	46.356	41.850	1.00	16.31
ATCM	1078		LEU	A	350		-6.981	45.416	42.807	1.00	17.00
ATOM	1079		LEU	A	350		-6.786	47.797	41.945	1.00	15.79
ATOM	1080	C	LEU	A	350		-3.881	45.086	40.119	1.00	10.61
ATOM.	1081	0	LEU	A	350		-2.867	45.625	39.674	1.00	9.12
ATCM	1082	N	ALA	A	351		-4.815	44.544	39.319	1.00	8.13
ATOM	1083	CA	ALA	A	351		-4.645	44.560	37.896	1.00	9.68
ATCM	1084	CB	ALA	A	351		-3.807	43.358	37.429	1.00	8.30
ATOM	1085	С	ALA	A	351		-6.006	44.393	37.158	1.00	8.00
ATOM .	1086		ALA	A	351		-6.781	43.671	37.749	1.00	8.17
ATOM	1087	N	TYR	Α ,	352		-6.102	44.923	35.997	1.00	10.56
MOTA	1088	CA	TYR	A	352		-7.378	44.669	35.243	1.00	11.99
ATOM	1089	C3	TYR	A	352		-7.517	45.727	34.152	1.00	13.49
MOTA	1090	CG	TYR	A	352		-7.816	47.102	34.704	1.00	16.49
ATOM	1091		TYR	A	352		-9.085	47.388	35.198	1.00	18.25
MOTA	1092		TYR	A	352		-9.369	48.643	35.704	1.00	18.58
ATOM ·	1093	CD3		A	352		-6.835	48.096	34.726	1.00	15.80
MOTA	1094		TYR	A	352		-7.121	49.344	35.231	1.00	17.33
ATOM	1095	CZ	TYR	A	352		-8.385	49.612	35.726	1.00	19.62
ATOM	1096	OH	TYR	A	352		-8.671	50.865	36.229	1.00	20.81
ATOM	1097	C	TYR	Α	352		-7.306	43.297	34.623	1.00	11.61
ATOM	1098	0	TYR	A	352	.3-	6.226	42.856	34.133	1.00	9.99
ATCM	1099	N	VAL	Α, .	353		-8.414	42.569	34.618	1.00	9.19
ATOM	1100	CA	VAL	A .	353		-8.433	41.240	34.027	1.00	9.63
ATCM	1101	CB	VAL	A	353		-9.532	40.388	34.675	1.00	12.16
ATCM	1102	CG1	· · · —	Α	353		9.580	38.963	34.168	1.00	11.71
ATOM	1103	CG2	VAL	Α.	353		-9.337	40.459	36.180	1.00	. 11.77
ATOM	1104	С	VAL	A	353		8.597	41.233	32.532	1.00	12.50
ATOM ·	1105	0	VAL	Α	353		-9.522	41.869	32.012	1.00	12.29
ATOM	1106	N	GLY	A	354		7.759	40.476	31.830	1.00	10.94
ATCM '	1107	CA	GLY	A	354		-7.781	40.328	30.400	1.00	14.31
ATOM .	1108	С	GLY	Α	354		-8.927	39.377	29.976	1.00	14.67
ATOM	1109	0	GLY	A .	354		-9.497	38.711	30.814	1.00	13.50
ATOM	1110	N	SER	A	355		-9.183	39.300	28.685	1.00	15.31
ATOM	1111	CA	SER	Α	355		-10.226	38.340	28.254	1.00	18.47
ATOM	1112	CB	SER.	A	355		~-11.596	39.039	28.449	1.00	19.00
ATOM	1113	OG	SER	A	355		-12.631	38.360	27.760	1.00	21.32
ATOM	1114	C	SER	Α .	355		-9. 9 59	38.049	26.808	1.00	17.63
ATOM	1115	0	SER	A .	355		-9.378	38.937	26.168	1.00	18.38
ATCM	1116	N	PRO	Α	356		-10.461	36.952	26'.271	1.00	19.06
ATCM .	1117	CD	PRO	\mathbf{A}_{j}	356		-11.125	35.862	27.017	1.00	18.95
ATCM	1118	· CA	PRO	Α	356		-10.370	36.661	24.859	1.00	21.26
ATCM	1119	CB	PRO	Α	356		-10.771	35.200	24.707	1.00	20.19
ATOM	1120	CG	PRO	Α.	356		-11.451	34.834	25.974	1.00	20.51
ATOM	1121	C (PRO	Α,	356		-11.357	37.502	24.051	1.00	24.27

		Atom								
		Type	2esidue	2	<u>#</u>	<u>x</u>	, Ž	<u>z</u>	<u>000</u>	<u>B</u>
ATOM	1122		PRO	Α	356	-11.24	9 37.622	22.833		
ATOM ATOM	1123		ARG	А	357	-12.369		_		25.16
ATOM	1124		ARG	Α	357	-14.829				
ATOM	1125		ARG	Α	357	-15.278				45.75
ATOM	1126		ARG	A	357	-15.278				45.46
ATOM	1128			A	357	-15.708				43.96
ATOM	1129		ARG	A.	357	-16.239		26.627		41.93 38.04
ATOM	1130	_	ARG	A ·	357	-15.252	38,219		1.00	34.46
ATOM	1131	CA	ARG ARG	A	357	-14.476			1.00	32.97
ATOM	1132	c	ARG	A.	357	-13.386		24.032	1.00	31.58
ATOM	1133	ò	ARG	A	357	-12.777		23.231	1.00	33.38
ATOM	1134	CB	ALA	A	357	-11.979		23.635	1.00	32.52
ATOM	1135	C	ALA	A A	358	-13.971		19.874	1.00	
ATOM	1136	.0	ALA	A	358	-12.904		21.524	1.00	36.30
ATOM	1137	N	ALA	A	358	-11.940		21.425	1.00	37.79
ATOM	1138	CA	ALA	Ä	358	-13.235	39.948	21.981	1.00	35.10
ATOM	1139	N.	ASN	A	356	-12.901	40.933	20.979	1.00	36.40
MOTA	1140	ND2	ASN	A'	359	-14.027	42.745	22.100	1.00	36.18
ATOM	1141	OD1		.A	359 359	-17.589	44.247	20.981	1.00	
ATOM	1142		ASN	A	359	-15.577	44.791	20.178	1.00	40.48
ATOM	1143		ASN .	A	359	-16.290	44.493	21.132	1.00.	39.04
ATOM	1144		ASN	Α	359	-15.760	44.367	22.540	1.00	37.70
ATOM	1145		ASN	A	359	-14.263	44.061	22.641	1.00	36.27
ATOM	1146	Ö	ASN .	A	359	-13.834	44.198	24.094	1.00	35.65
ATOM	1147	N	SER	A.	360	-14.157 -13.119	45.182	24.751	1.00	35.92
ATOM	1148.	OG	SER	A.	360	-10.429	43.218	24.615	1.00	34.08
ATOM	1149	CB .	SER	A	360	-11.683	42.540	26.749	1.00	34.50
ATOM	1150	CA.	SER	A	360	-12.647	42.108	26.257	1.00	33.68
ATOM	1151	, C :	SER	A	360	-11.907	43.261	25.982	•	32.95
ATOM	1152	0 :	SER	A	360	-11.073	44.577	26.260	1.00~	30.62
ATOM	1153		HIS	A	361	-12.244	45.128	25.505	1.00	29.59
ATOM	1154	CD2 1	HIS	A	361	-14.316	47.743	27.405		28.43
ATOM	1155	NE2 I	HIS	A ,	361	14.610	48.664	26.576 25.596	1.00	37.21
ATOM ATOM	1156	CE1 I		Α	361	13.624	49.531	25.503	1.00	37.98
	1157	ND1 I		A `	361	-12.729	49.221	26.413	1.00	
ATOM ATOM	1158		IIS	A B	361	-13.138	48.108	27.110		. 38.32
ATOM	1159		IIS	A :: ⋅	361	-12.374	47.488	28.234	1.00	36.46
ATOM	1160 1161		IIS.		361	² -11.550	46.275	27.920	1.00	33.76
ATOM	1162		IIS .	A	361	-10.928	45.653	29,193	1.00	30.24 29.98
ATOM	1163		IIS	A***	361	-11.660	45.080	30.014	1.00	33.02
ATOM	1164		LY		362	-9.625	45.543	29.184	1.00	
ATOM	1165		LY			-8.942	45.064	30.371	1.00	20.70
ATOM		·		A	362	-7.829	44.108	29.983	1.00	16.68
ATOM				Α	362	-7.986		29.056	1.00/	12.10
ATOM			LY	Α'	363	-6.695	44.301		1.00	
ATOM		-		A ;.		-5.648	43.339	-	1.00	14.18
ATOM		-	LY	Α .		-4.908	43.513.	•	1.00/	
ATOM	1171		LY AL			-4.808		28.557	1.00	12.16
ATOM		CG2 V		Α		-4.310		28.673	1.00	14.17
ATOM		CG2 V		Α		-4.030	40.030	27.062	1.00	15.53
ATOM				Α	364	-1.902	40.628	28.266	1.00	15.36
ATOM		_		Α	364	-2.897	41.047	27.174	1.00	18.71
* -		V/	: A	Α .	364	-3.455	42.442		1.00	17.47

		Acom	ļ				7.			
		:vpe	Residu	<u>e ?</u>	<u>#</u>	<u>x</u>	<u>Y</u>	<u>z</u>	<u>0CC</u>	<u> 9</u>
MOTA	1176	5 C	VAL	A	364	4 12		1		
ATOM	1177	7 0	VAL	A	364	-4.138				22.13
ATOM	1178	N	CYS	A	365	-5.313				18.74
ATOM	1179		CYS	A	365	-3.323 -3.257				26.09
ATOM	1180	CB	CYS	A	365	-4.184				38.70
ATOM	1181		CYS	A	365	-3.608				34.15
ATOM	1182		CYS	A	365	-4.433				32.02
ATOM	1183	-	CYS	A	365	-5.505			1.00	32.84
ATOM	1184	N	PRO	A	366	-3.826		24.391	1.00	33.41
ATOM	1185	CG	PRO	A	366	-2.315		23.731	1.00	34.94
ATOM	1186	CD		A	366	-2.542		23.698	1.00	34.57
ATOM ATOM	1187		PRO ·	A	366	-3.403	49.216	24.501	1.00 1.00	34.14
ATOM	1188	CA	PRO ·	A	366	-4.515	48.220	24.644	1.00	35.23
ATOM	1189	C	PRO	A	366	-5.714	48.244	23.715	1.00	35.75
ATOM	1190	0	PRO	A	366	-5.574	47.917	22.548	1.00	36.16
ATOM	1191 1192	N	LYS .	A	367	-6.905	48.420	24.211	1.00	38.73 36.55
ATOM	1193	NZ	LYS	A	367	-11.060	46.083	19.713	1.00	39.83
ATOM	1194	CE	LYS	A	367	-10.945	46.830	20.990	1.00	39.58
ATOM	1195	CD	LYS	A	367	-10.461	45.989	22.141	1.00	39.79
ATOM	1196	CB	LYS LYS	A	367	-9.071	46.373	22.617	1.00	39.82
ATOM	1197	CA	LYS	A	367	-9.031	47.227	23.867	1.00	36.78
ATOM	1198	c	LYS	A	367	-8.228	48.530	23.676	1.00	37.98
ATOM	1199	ō	LYS	A A	367	-8.995	49.679	24.375	1.00	36.54
ATOM	1200	N	ALA	. A	367	-9.725	49.528	25.366	1.00	33.85
ATOM	1201	CA	ALA	A	368	-8.855	50.888	23.839	1.00	35.07
ATOM	1202	CB	ALA	A	368 368	-9.376	52.113	24.400	1.00	32.73
ATOM	1203	С	ALA	Α.	368	-9.170	53.209	23.330	1.00	34.00
MOTA	1204	0	ALA	A	368	-10.770 -11.784	52.317	24.933	1.00	32.95
MOTA	1205	N	TYR	A	369		51.928	24.364	1.00	32.14
ATOM	1206	CA	TYR	A	369	-10.878 -12.087	53.117	25.991	1.00	31.03
ATOM	1207	CB	TYR	Α	369	-12.264	53.643	26.567	1.00	32.06
ATOM	1208	CG	TYR	A	369	-13.026	53.583. 52.465		1.00	34.85
ATOM	1209	CD1	TYR	A	369	-12.349	51.435	28.689	1.00	37.47
ATOM	1210	CEI	TYR	5 A	369	-13.025	50.390	29.321 29.914	1.00	38.45
ATOM	1211	CDS	TYR	Α.	369	-14.410	52.415	28.669	1.00	39.73
ATOM	1212		TYR	A	369	-15.096	51.380	29.271	1.00	39.08
ATOM	1213	CZ	TYR	Α	369 [†]	-14.397	50.369	29.891	1.00	40.46
ATOM ATOM	1214	ОН	TYR	. A	369	-15.067	49.320	30.483	1.00	41.04
ATOM	1215	С	TYR	Α ΄	369	-11.953	55.158	26.287	1.00	42.68
ATOM	1216	0	TYR	'A	369	-10.842	55.634	26.529	1.00	32.03
ATOM	1217	N	TYR	A	370	-12.996	55.828	25.851	1.00	28.95 32.03
ATOM	1218 1219	OH	TYR	A	370	-13.216	63.382		1.00	38.96
ATOM	1220	CD2	TYR:	~A	370	-14.752	60.205		1.00	36.28
ATOM	1221	CE2		Α -	370	-14.597	61.568		1.00	36.78
ATOM	1222	CZ	TYR	. A	370	-13.409	62.034		1.00	37.70
ATOM	1223	CEI	TYR	A	370 ·	-12.383	61.168		1.00	36.85
ATOM	1224	CD1		A	370	-12.563	59.820		1.00	35.73
ATOM	1225 .	CD.	TYR	Α,	370	-13.741	_ •		1.00	35.35
ATOM	1226	CA		. A	370	-13.896	57.816		1.00	34.74
ATOM	1227		TYR TYR	Α	370	-12.850			1.00	33.23
ATOM	1228		TYR.,	A	370	-12.982			1.00	33.56
MOTA	1229		SER :	·A	370	-13.819	57.580		1.00	33.28
		•••	JER	A ·	371	-12.169			1.00	35.61

		λtom								
		Type	Resid	<u>ue ?</u>	3	x	ĭ	<u>z</u>	<u>occ</u>	<u>B</u>
ATOM	1230	0G	SER	A	371	-10.952	60.534	30.262		
ATOM			SER	. A	371	-10.994				37.79
ATOM			SER	Α	371	-12.297			1.00	39.02
ATOM	1233		SER	A	371	-12.666			1.00	38.04
ATOM ATOM	1234	0	SER	λ	371	-11.843		27.853	1.00	39.91 38.57
ATOM -	1235	• (0)	PRO	A	372 ·	-13.931		28.420	1.00	43.1B
ATOM		CG	PRO	Α	372	-16.243	61.324	28.452	1.00	44.76
ATOM	1237 1238	CD	PRO	A	372	-15.008		28.867	1.00	44.03
ATOM		CB CA	PRO	Α	372.	-15.900		28.425	1.00	45.09
ATOM	1240	C.	PRO PRO	Ą	372	-14.403		28.437	1.00	45.43
ATOM	1241	o	PRO	A	372	-13.833	63.366	29.760	1.00	46.59
ATOM		N	VAL	A A	372	-14.102	62.743	30.789	1.00	47.64
ATOM	1243	CG2		A	373	-12.978	64.362	29.767	1.00	48.18
ATOM	1244		VAL	A	373 373	-13.693	65.070	32.937	1.00	48.74
ATCM	1245	СВ	VAL	A	373 373	-11.354	64.454	33.270	1.00	48.15
ATOM	1246	CA	VAL	, A	373	-12.534	64.295	32.314	1.00	48.02
ATOM	1247	C.	VAL	Ā	373	-12.176	64.754	30.916	1.00	47.53
ATOM	1248	0	VAL	A	373	-10.843 -10.706	64.081	30.527	1.00	47.84
ATOM	1249	N	GLY	A	374	-9.966	62.871	30.685	1.00	48.07
ATOM	1250	CA	GLY	A	374	-8.687	64.870 64.329	29.936	1.00	46.71
ATOM	1251	C	GLY	À	374	-8.718	64.327	29.474 27.946	1.00	45.92
ATOM	1252	0	GLY	Α	374	-7.703	64.386	27.276	1.00	44.34
ATOM	1253	N	LYS	A	375	-9.937	64.227	27.433	1.00	43.53
ATOM	1254	NZ	LYS	A	375	-11.621	70.469	25.481	1.00 1.00	20.00
ATOM	1255	CE	LYS	A	375	-11.822	69.108	25.996	1.00	20.00
ATOM	1256	CD	LYS	A	375	-10.786	68.111	25.474	1.00	20.00 20.00
ATOM ATOM	1257	CG	LYS	Α	375	-10.999	66.697	26.013	1,00-	20.00
ATOM	1258 1259	CB	LYS	A	375	-9.976	65.697	25.486	1.00	20.00
ATOM	1260	CA C	LYS	A	375	-10.201	64.262	26.011	1.00	20.00
ATOM	1261	O	LYS	A	375	-9.308	63.297	25.260	1.00	20.00
ATOM	1262	N	LYS	A	375	-8.529	63.725	24.411	1.00	20.00
ATOM	1263	NZ	LYS	Α.	376	-9.386	62.003	25.604	1.00	20.00
ATOM	1264		LYS	A . A	376	-3.285	64.692	24.559	1.00	20.00
ATOM	1265		LYS	` Δ	376 ·	-4.696	64.381	24.290	1.00,	20.00
ATOM.	1266	CG	LYS	•	376	-5.139	63.045	24.890	1.00	20.00
ATOM	1267	CB.	LYS	A	376	-6.606	62.726	24.608	1.00	20.00
ATOM ·	1268	CA .		Α	376	-7.050 -8.531	61.390	25.194	1.00	20.00
ATOM	1269	. C .	LYS	Α	376	-8.810	61.050	24.897	1.00	20.00
ATOM '	1270	0	LYS	A	376	-9.696	59.601 59.281	25.286	1.00	20.00
ATOM	1271	N	ASN	A	377	-8.050	58.726	26.077	1.00	20.00
ATOM	1272	CA	ASN	Α	377	-8.240	57.295	24.640 24.862	1.00	29.74
ATOM	1273		ASN	' A	377	-7.825	56.539		1.00	29.33
ATOM	1274		ASN	À	377	-8.743	56.803	22.433	1.00	29.66
ATOM	1275	OD1	ASN	Α	3 7 7	-9.964	56.948	22.559	1.00	30.76
ATOM	1276	ND2		A .	377	-8.128	56.865	1	1.00	29.66 31.26
ATOM	1277		ASN	A	377 .	-7.486	56.848	26.098	1.00	28.35
ATOM	1278		ASN	A	377	-6.411	57.376		1.00	26.83
ATOM ATOM	1279		ILE	A	378 -	-8.123	56.055		1.00	26.88
ATOM			ILE	A	378 -	-7.431			1.00	28.08
ATOM	1281		ILE	A	378	-7.802			1.00	29.37
ATOM	1282 1283	CG2 CG1		A	378	-7.624	57.282		1.00	28.66
	**47	COT	TTE	Α	378	-9.217			1.00	31.06

		Atom					, e			
		Type	Resid	due ?	크	<u>x</u>	Σ	<u>z</u>	<u>0000</u>	<u>B</u>
ATOM			1 ILE	À	378	-9.56	55.30			
ATOM			ILE	A	378	-7.56	7 53.881			32.92
ATOM			ILE	A	378	-9.559	33.283			26.65
MCTA			TYR	A	379	-6.456				25.21
ATOM				Α	379	-6.298	51.805			25.14
ATOM			TYR	A	379	-5.057				23.62
ATOM	1290		TYR	A	379	-5.076				25.30
ATOM	1291		1 TYR	A	379	-4.644				27.60
ATOM	1292		1 TYR	A	379	-4.683				28.62
ATOM	1293			A	379	-5.571	51.619			30.42
ATOM	1294		2 TYR	A	379	-5.582				28.58
ATOM	1295		TYR	A	379	-5.141	53.597		1.00	29.43
ATOM	1296		TYR	A	379	-5.162				30.50
ATOM	1297		TYR	A	379	-6.141		29.498		33.44
ATOM	1298		TYR	A	379	-5.164	51.460	30.204		22.07
MOTA MCTA	1299	N	LEU	Α	380	-6.941	50.122	29.768	1.00	22.84
ATOM	1300	CA	LEU	A	380	-6.831	49.396	30.998	1.00	16.20
ATOM	1301	CB	LEU	Α	380	-8.233	49.019	31.490	1.00	17.68
ATOM	1302	CG	LEU	Α	380	-9.204	50.207	31.624	1.00	19.14
ATOM	1303		LEU	- A	380	-10.479	49.690	32.285	1.00	21.74
ATOM	1304		LEU	A	380	-8.614	51.364	32.411	1.00	22.06
ATOM	1305 1306	C	LEU	A	380	-5.903	48.191	30.845	1.00	20.08
ATOM	1306	0	LEU	A	380	-6.249	47.139	31.351	1.00	13.92
ATOM	1307	N	ASN	A	381	-4.762	48.385	30.190	1.00	12.26
ATOM	1308	CA	ASN	A	381	-3.798	47.282	30.009	1.00	14.40
ATOM	1310	CB	ASN	A	381	-3.148	47.364	28.646	1.00	15.71
ATOM	1311	CC	ASN	A	381	-2.442	48.681	28.373	1.00	13.12
ATOM	1312		ASN	A	381	-2.614	49.693	29.057	1.00	13.93
ATOM	1313		ASN	A	381	-1.584	48.766	27.386	1.00	15.98
ATOM	1314	0	ASN	A	381	-2.732	47.428	31.111	1.00	13.77
ATOM	1315	N	ASN	Α.	381	-1.538	47.496	30.826	1.00	15.34 19.25
ATOM	1316	CA :	SER	A	382	-3.178	47.587	32.318	1.00	14.28
ATOM	1317	CB	SER SER	, A	382	-2.363	47.953	33.462	1.00	16.49
ATOM	1318	OG.	SER	A	382.	-2.722	49.449	33.712	1.00	19.36
ATOM	1319	C	SER	A	382	-4.021	49.622	34.261	1.00	19.22
ATOM	1320	٠.	SER	Α.	382	-2.534	47.168.	34.720	1.00	13.50
ATOM	1321		GLY	.;A N	382	-3.491	46.443	34,986	1.00	14.79
ATOM	1322		GLY	. A . · A	383	-1.543	47.226	35.602	1.00	12.08
ATOM	1323		GLY		383	-1.460	46.552	36.865	1.00	7.68
ATOM	1324		GLY	A ·	383	-0.407	47.250	37.737	1.00	9.13
MOTA	1325		LEU	. ; <u>A</u>	383	0.356	48.018	37.167	1.00	7.23
ATOM	1326		LEU	A A	384	-0.406	46.961	39.018	1.00	9.60
ATOM	1327		LEU	Ä	384	0.596	47.604	39.860	1.00	10.98
ATOM	1328		LEU	A A	384	0.108	48.911	40.437	1.00	10.87
MOTA	1329	CD1		À	384	-1.098	48.840	41.372	1.00	12.55
ATOM	1330	CD2		A A	384	-0.751	48.583	42.819	1.00	11.84
ATOM	1331		LEU	A .	384	-1.824	50.197	41.305	1.00	14.27
ATOM	1332		LEU	A,	384	0.963	46.614	40.982	1.00	11.40
ATOM		-	THR	A.	384		45.705	41.269	1.00	12.17
ATOM	1334		THR	À -	385 385	2.174	46.774	41.470	1.00	10.30
ATOM			THR	A			45.977	42.535	1.00	10.05
ATOM		OG1 7		A	385			41.969	1.00	11.82
ATOM		CG2 1			385		44.161	41.100	1.00	12.53
. •				7. A	385	4.842	44.430		1.00	7.93

		Atom								
		<u>Type</u>	Resid	<u>ue ?</u>	<u>=</u>	<u>x</u>	¥	<u>z</u>	<u>occ</u>	<u> </u>
ATOM	1338	С	THR	Α	385	3.429	46.936	. 13 546		
ATOM	1339		THR	Α	385	4.154				10.37
ATOM	1340		SER	A	386	3.153	•			10.04
ATOM	1341		SER	, A	386	3.835				10.16
ATOM	1342		SER	Α	386	2.913				12.08
ATOM	1343		SER	A	386	3.625				12.65
ATOM			. SER	A	386	4.773		-		12.90 11.71
ATOM	1345		SER	A	386	4.348			1.00	11.70
ATOM	1346 1347		THR	A	387	5.929	46.899	46.978	1.00	13.21
ATOM	1348	CA CB	THR	A	387	6.861	46.004	47.677	1.00	11.54
ATOM	1349		THR	A	387	8.258		47.083	1.00	12.46
ATOM	1350	CG2		A	387	8.794	47.305	46.902	. 1.00	12.52
ATOM	1351	C	THR	A	387	8.193	45.224	45.771	1.00	9.84
ATOM	1352	ō	THR	A	387	6.917	46.429	49.137	1.00	12.59
ATOM	1353	N	LYS	A A	387	7.750	45.916	49.857	1.00	9.86
ATOM	1354	CA	LYS	A	388	5.888	47.176	49.559	1.00	10.11
ATOM	1355	CE	LYS	Ä	388	5.781		50.983	1.00	11.18
ATOM -	1356	CG	LYS	A	388 388	5.844		51.315	1.00	10.27
ATOM	1357	CD	LYS	A	388	5.598	49.163	52.809	1.00	11.78
ATOM	1358	CE	LYS	A	388	5.570		53.086		12.59
MOTA	1359	NZ	LYS	A	388	5.610	50.846	54.616	1.00	12.42
ATOM	1360	С	LYS	A	388	5.400 4.466	52.289	54.915		12.86
ATOM	1361	0	LYS	A	388	3.445	46.836	51.470	1.00	12.79
ATOM	1362	N	ASN	A	389	4.490	47.068 46.117	50.803	1.00	13.47
ATOM	1363	CA	ASN	A	389	3.235	45.595	52.561	1.00	11.20
ATOM	1364	CB	ASN	A	389	2.797	44.247	53.114 52.498	1.00	13.05
ATOM	1365	CG	ASN	A	389	1.328	43.929	52.695	1.00	9.98
ATOM	1366	OD1		A	389	0.562	44.823	53.020	1.00	13.57
ATOM	1367	ND2		A	389	0.828	42.697	52.544	1.00	11.41
ATOM ATOM	1368	Ċ	ASN	A	389	3.401	45.431	54.605	1.00	11.87 12.01
ATOM	1369	C	ASN	A	389	4.389	44.832	55.045	1.00	12.68
ATOM	1370 1371	N	TYR	A	390	2.463	45.891	55.415	1:.00	9.33
ATOM	1371	CA	TYR	A.	390	2.544	45.725	56.834	1.00	11.32
ATOM	1373	CB; CG	TYR	A	390	2:395	44.317	57.360	1.00	13.01
	1374	CD1	TYR	Ą	390	1:034	43.646	57.138	1.00	17.63
	1375	CE1		A.	390	0.888	42.699	56.135	1.00	17.99
ATOM	1376	CD2		A	390 .	-0.324	42.059	55.906	1.00	18.34
ATOM	1377	CE2		A.	390	-0.059	43.950	57.918	1.00	17.56
ATOM	1378		TYR	A	390	-1:295	43.344	57.684	1.00	19.81
ATOM	1379		TYR	A ,	390	-1.408	42.399	56.685	1.00	18.72
ATOM	1380		TYR	A	390	-2.599	41,-770	56.456	1.00	18.16
ATOM	1381		TYR	. A	390 -: 390 -:	3.875	46.390	57.342	1.00	11.32
ATOM	1382		GLY	A		4.444	45.867	58.262	1.00	10.06
ATOM	1383		GLY	A		4.202	47.568	56.849	1.00	12.38
ATOM	1384		GLY	A	391 391	5.264	48.396	57.395	1.00	13.46
ATOM	1385		GLY	A	391	6.671	47.822	57.226	1.00	14.75
ATOM	1386		LYS	A	392	7.615	48.218	57.920	1.00	13.47
ATOM	1387		LYS	Ā	392	6.864 6.391	47.001	56.213	1.00	14.18
ATOM	1388		LYS	À	392	6.545	42.087	59.901	1.00	31.24
ATOM	1389		LYS	A	392	7.980	43.237	58.726	1.00	30.06
ATOM.	1390	CG 1	LYS	A	392	8.231			1.00	27.75
ATOM	1391 ·	CB I	LYS	_ A	392	8.133	44.929	57.942	1.00	25.41
		•		**				56.460	1.00	20.56

	Atom					;					
		ype	<u>Pesidue</u>	2	<u>#</u>		<u>x</u>	Y	<u>z</u>	<u> </u>	В
							_	_	-	_	=
ATOM	1392	CA	LYS	Α	392		8.133	46.376	55.909	1.00	15.04
ATOM	1393	С	LYS	Α	392		8.255	46.221	54.399	1.00	15.94 14.65
ATOM	1394	0	LYS	Α	392		7.242	46.070	53.676	1.00	
ATOM	1395	N	THR	A	393		9.481	45.969	53.965		12.21
ATOM	1396	CA	THR	Α	393		9.744	45.629	52.574	1.00	9.88
MOTA	1397	CB	THR	Α	393		11.178	45.988		1.00	10.28
ATOM	1398	0G1	THR	A	393		11.412	47.397	52.155	1.00	10.31
ATOM	1399		THR	A	393		11.393	45.631	52.330 50.693	1.00	9.91
MOTA	1400	С	THR	A	393		9.450	44.139		1.00	7.83
MOTA	1401	0	THR	A	393		9.872		52.450	1.00	11.39
MOTA	1402	N	ILE	A	394		8.715	43.332	53.278	1.00	11.16
ATOM	1403	CA	ILE	A	394				51.398	1.00	8.47
ATOM	1404	CB	ILE	A	394		8.413	42.305	51.297	1.00	8.59
ATOM	1405		ILE	A	394		7.223	42.076	50.329	1.00	7.43
ATOM	1406		ILE	A	394		6.044	42.929	50.867	1.00	5.89
ATOM	1407		ILE	Α	394		7.562	42.401	48.910	1.00	7.72
ATOM	1408	C	ILE	A	394		6.413	42.268	47.877	1.00	9.17
ATOM	1409	ō	ILE	·A	394		9.657	41.573	50.761	1.00	9.33
ATOM	1410	N	LEU	A	395		10.482	42.262	50.170	1.00	8.55
ATOM	1411	CA	LEU	A	395		9.689	40.276	50.913	1.00	7.97
ATOM	1412	CB	LEU	A			10.808	39.499	50.347	1.00	11.81
ATOM	1413	CG	LEU	A	395 395		10.545	37.998	50.620	1.00	12.21
ATOM	1414		LEU	A	395 395		10.370	37.651	52.090	1.00	13.09
ATOM	1415		LEU	A			10.246	36.140	52.313	1.00	10.90
ATOM	1416		. LEU	A	395		11.569	38.245	52.832	1.00	13.70
ATOM	1417	ō	LEU	A	395		10.920	39.603	48.860	1.00	13.57
ATOM	1418	N	THR	A	395		9.864	39.692	48.193	1.00	11.36
ATOM	1419	CA	THR	A	396 386		12.089	39.426	48.281	1.00	9.31
ATOM	1420	СВ	THR	A	396		12.273	39.345	46.840	1.00	11.95
ATOM	1421		THR	A	396 396		13.746	39.021	46.476	1.00	14.52
ATOM .	1422	CG2		A	396		14.575	40.034	47.090	1.00	16.31
ATOM	1423	c	THR	A.	396 396		13.983	39.148	44.996	1.00	16.49
ATOM .	1424	ō	THR	A	396		11.376	38.264	46.209	1.00	12.19
ATOM .	1425	N	LYS	A	396		10.790	38.544	45.152	1.00	11.09
ATOM	1426	CA	LYS	À	397		11.286	37.104	46.840	1.00	9.73
ATOM	1427	CB	LYS	À	397		10.451	36.033	46.298	1.00	12.22
ATOM	1428	CG	LYS	À	397	*	10.630	34.680	46.935	1.00	11.19
ATOM	1429	CD	LYS	À		• ••	10.365	34.491	48.402	1.00	10.22
ATOM	1430	CE	LYS	Â	397	•	10.459	32.971	48.678	1.00	12.87
ATOM	1431	NZ	LYS	Ā	397		9.904	32.634	50.049	1.00	10.59
ATOM	1432	C	LYS	A	397		10.430	31.409	50.690	1.00	13.72
ATOM	1433	0	LYS		397	.•	8.946	36.390	46.379	1.00	11.16
ATOM	1434	N	GLU	À	397		8.250	35.937	45.488	1.00	10.09
ATOM	1435		GLU	A	398		8.588		47.346	1.00	10.22
ATOM	1436		GLU	A	398		7.207	37.628	47.475	1.00	13.12
ATOM	143.7		GLU		. 398		6.931	38.233	48.857	1.00	11.64
ATOM	1438				398	`•	6.951	37.079	49.876	1.00	15.45
ATOM	1439	OE1	GLU	A			6.952	37.662	51.284	1.00	15.72
ATOM	1440			·A				38.861	51.557	1.00	15.77
ATOM	1441	OE2			- 398	<i>i</i> .	6.722	36.861	52.186	1.00	17.81
ATOM	1442		GLU	; A	398		6.875	38.628	46.374	1.00	14.23
ATOM	1443		GLU	Α	398	+	5.819	38.496	45.746	1.00	11.36
ATOM	1444		ALA	Α.			7.791	39.566	46.144	1.00	11.71
ATOM	1445		ALA .	· A	399		7.603	40.571	45.121	1.00	10.93
ATOM	7.4.4.D	СВ	ALA .	A	399	r	8.705	41.611	45.021	1.00	10.46

		Atom									
		Type	Residu	<u> 1e</u> . <u>?</u>	#		<u>x</u>	¥	<u>z</u>	<u>0CC</u>	<u>B</u>
ATOM	1446	С	ALA	· A.	399		7 454				
ATOM	1447		ALA	- A	399		7.464 6.535				11.66
ATOM	1448	N	ASP	A	400		9.259				8.52
ATOM	1449	CA		A	400		8.092				10.58
ATOM	1450	СB	ASP	Α	400		9.061				11.27
ATOM	1451	CG	ASP	• A	400		10.525	37.001 37.443			13.33
ATOM	1452	. OD:	L-ASP	Α	400		10.787				15.25
ATOM	1453		2 ASP	- A	400		11.331	36.459			11.52
ATOM	1454	C	ASP	A	400		6.682	37.543	42.061		15.55
ATOM	1455	0	ASP	A	400		6.102	37.681	40.959	1.00	10.74
ATOM	1456	. N	LEU	Α	401		6.184	37.034	43.155	1.00	11.54
ATOM	1457	CA	LEU	A	401		4.860	36.399		1.00	9.91
ATOM	1458	CB	LEU	. A	401		4.618	35.610	44.411	1.00	12.48
ATOM	1459	CG	LEU	A	401		5.551	34.464	44.805	1.00	13.67
ATOM	1460		LEU	A	401		5.596	34.451		1.00	19.11
ATOM	1461		LEU	A	401		5.072	33.125	44.302	1.00	20.83
ATOM	1462	Ç	LEU	A	401		3.724	37.434	42.994	1.00	19.44
ATOM	1463	0	LEU	A	401		2.701	37.092	42.388	1.00	11.96
ATOM	1464	N	VAL	Α	402		3.849	38.626	43.576	1.00	9.62 9.23
ATOM	1465	CA	VAL	A	402		2.856	39.664	43.347	1.00	10.16
ATOM	1466	CB	VAL	A	402		3.222	40.976	44.086	1.00	11.53
ATOM	1467		VAL	A	402		2.219	42.096	43.805	1.00	10.53
ATOM	1468		VAL	A	402		3.254	40.598	45.565	1.00	8.46
ATOM	1469	С	VAL	A	402		2.701	40.016	41.882	1.00	12.23
ATOM ATOM	1470	0	VAL	A	402		1.581	40.096	41.336	1.00	9.50
ATOM	1471	N	THR	A	403		3.821	40.359	41.261	1.00	8.92
ATOM	1472 1473	CA	THR	A	403		3.845	40.764	39.883	1.00	8.22
ATOM		CB	THR	A	403		5.220	41.259	39.386	1.00	6.99
ATOM	1474 1475		THR	A	403	•	5.612	42.325	40.255	1.00	6.97
ATOM	1476		THR	A	403		5.221	41.841	37.998	1.00	6.87
ATOM	1477	С 0	THR	A	403	•	3.381	39.610	38.992	1.00	9.35
ATOM	1478	N	THR THR	A	403		2.693	39.954	38.016	1.00	5.99
ATOM	1479	CA	THR	A	404		3.855	38.407	39.301	1.00	6.34
ATOM	1480	CB	THR	A A	404	• =	3.382	37.249	38.521	1.00	7.96
ATOM	1481		THR	. A	404		3.962	35,946	39.104	1.00	8.71
ATOM	1482		THR		404		5.404	35.959	38.945	1.00	8.46
ATOM	1483	C	THR	A A	404		3.448	34.743	38.303	1.00	8.11
ATOM `	1484	2	THR	A.	404 404	•	1.842	37.175	38.572	1.00	6.99
ATOM	1485		HIS	A			1.211	36.979	37.529	1.00	6.33
ATOM	1486		HIS	A	405 405		1.298	37.277	39.751	1.00	6.76
ATOM	1487	CB	HIS	A	405		-0.132	37.232	40.003	1.00	9.62
ATOM	1488			A			-0.383	37.343	41.495	1.00 ·	7.56
ATOM	1489	CD2	HIS	À	405		-1.828	37.311	41.919		6.65
ATOM	1490	ND1		Α			-2.801	38.292	41.862	1.00	4.31
ATOM		CEL		A	405	٠.	-2.389	36.204	42.467	1.00	7.16
ATOM		NE2		A	405	.,	-3.664 -3.937	36.486	42.798	1.00	9.20
ATOM	1493		HIS	A	405			37.722	42.413	1.00	9.52
ATOM	1494		HIS	A.	405	•	-0.867 -1.836	38.376	39.290	1.00	9.96
ATOM	1495		GLÚ	Α.	406			38.080	38.597	1.00	9.05
ATOM	1496		GLU	A	406		-0.414 -1.106	39.612	39.416	1.00	9.09
ATOM	1497		GLU .	A	406	•	-0.532	40.730	38.755	1.00-	11.72
ATOM	1498		GĽU	A	406		-0.532	42.078	39.207	1.00	12.02
ATOM	1499		GLU	A ·	406		-0.582	42.239		1.00	11.63
							4.340	42.013	41.321	1.00	12.61

		Atom				•. •				
		Type	Resid	<u>ue ?</u>	<u> =</u>	\bar{x}	<u>Ү</u>	<u>z</u>	<u>000</u>	<u> </u>
ATCM	1500) CE1	GLU	А	406	-2.98				
ATCM	1501	CE2	GLU	Α	406	-1.91				12.02
MOTA	1502	: C	GLU	Α	406	-1.087				12.54
ATCM	1503		GLU	A	406	-2.110				13.24
ATCM	1504	N	LEU	A	407	0.115				10.09
ATCM	1505		LEU	А	407	0.259				9.35
ATCM	1506		LEU	. A	407	1.702				11.31
ATCM	1507		LEU.	Α	407	2.671				13.34
ATCM	1508		LEU.	A	407	2.232		34.384	1.00	17.06
ATCM	1509		LEU	A	407	4.112		34.412	1.00	15.35
- ATCM	1510	C	LEU	Α	407	-0.675		34.878	1.00	15.89
ATCM	1511	0	LEU	A	407	-1.105		34.886	1.00	8.96
ATCM	1512	N	GLY	A	408	-0.837		33.720 35.732	1.00	9.09
ATCM	1513	CA	GLY	A	408	-1.649	36.774		1.00	7.26
ATCM	1514	С	GLY	Α	408	-3.107		35.444 35.182	1.00	7.95
ATCM	1515	0	GLY	A	408	-3.776		34.277	1.00	8.27
ATCM	1516	N	HIS	Α	409	-3.565	_	36.030	1.00	7.64
ATCM	1517	CA	HIS	Α	409		38.777	35.752	1.00	10.19
ATCM	1518	CB	HIS	Α	409	-5.162	39.920	36.713	1.00	11.21
ATCM	1519	CG	HIS	Α	409	-5.605	.39.404	38.018	1.00	8.68
ATCM ATOM	1520	CD2		A	409	-5.193	39.710	39.255	1.00	10.30
ATOM		ND1		A	409	-6.606	38.454	38.114	1.00	9.44
ATCM	1522	CEi	HIS	A	409	-6.833	38.237	39.402	1.00 1.00	10.06
ATCM	1523	NE2		A	409	-5.961	38.972	40.132	1.00	12.63
ATCM	1524	С	HIS	A	409	-4.918	39.414	34.381	1.00	12.50
ATCM	1525	0	HIS	A	409	-5.853	39.223	33.615	1.00	12.04
MOTA	1526	N	ASN	A	410	-3.910	40.235	34.085	1.00	12.02
ATCM	1527		ASN	A	410	-3.859	40.925	32.820	1.00	11.36
ATCM	1528 1529		ASN	: A	410	-2.594	41.750	32.616	1.00	10.24
ATCM	1530		ASN	A	410	-2.499	43.027	33.424	1.00	10.71 12.40
ATC:	1531	OD1		A	410	-1.369	43.394	33.748	1.00	9.72
ATOM	1532	ND2		. A	410	-3.598	43.762	33.714	1.00	9.17
ATCM	1533		ASN	A	410	-3.953	39.918	31.675	1.00	12.78
ATCM	1534		ASN	A	410	-4.538	40.276	30.652	1.00	9.40
ATCM	1535		PHE	Α .	411	-3.292	38.782	31.796	1.00	9.09
ATCM	1536		PHE	Α	411	-3.280	37.693	30.872	1.00	10.91
ATC:	1537		PHE	Α	411	-2.105	36.703	31.101	1.00	10.93
ATCM	1538	CD1	PHE	, A	411	-0.840	37.086	30.375	1.00	13.69
ATOM	1539	CD2	PRE Due	. A	411	-0.102	38.216	30.730	1.00	15.12
ATOM	1540	CE1	FRE DUP	A	411	-0.309	36.297	29.389	1.00	15.69
ATOM	1541	CE2		A :	411	1.076	38.546	30.052	1.00	13.51
ATOM	1542	CZ 1	DUE DUE	A	411	0.862	36.617	28.723	1.00	15.64
ATOM	1543		PHE	. A	411	1.556	37.782	29.051	1:00	14.11
ATOM	1544		PHE	Α	411	-4.606	36.903	30.849	1.00	10.27
ATOM	1545	-	GLY	∵A ∵A	411	-4.684	36.100	29.931	1.00	9.02
ATCM	1546	CA		7 A	412	-5.578	37.150	31.701	1.00	11.88
ATCM	1547		SLY	* A	412	-6.912	36.517	31.563	1.00	11.02
ATOM	1548		eri Eri	^.A ·	412	-7.360	35.734	32.748	1.00	12.85
ATOM	1549		ALA	A	412	-8.496	35.256	32.898	1.00	11.80
MOTA	1550		LA LA	A	413	-6.418		33.737	1.00	9.39
ATOM	1551		LA	A	413	-6.759		34.850	1.00	8.60
ATCM	1552	7.	LA	Α.	413	-5.523			1.00	6.06
ATOM			LA	Α	413	-7.520	35.451		1.00	9.94
	•	- ^		Α	413	-7.216	36.584		1.00	9.19
										-

ATOM 1554 N GLU A 414 -9.476 34.694 35.	<u>occ</u> <u>a</u> 530 1.00 9.61
A 414 -9 476 31 CO4 3C	530 1.00 9.61
	330 1.00 9.61
A 414 -9.172 15 158 37	
A 414 -10.666 34 812 37	
A 414 -11.293 35 501 26	
A 414 -11 505 135 007 156	
ATOM 1550 OFF THE A 414 -11.520 37.544 37.5	20.01
ATOM 1561 0 414 -12.266 37.646 35.6	120
ATOM 1562 O CITY A 414 -8.509 34.457 38.5	
ATOM 1563 N A 414 -7.455 33.841 38.7	
ATOM 1564 CA UTS 2 -9.108 34.478 40.1	.04 1.00 11.96
ATOM 1565 CB HIS A 415 -8.512 33.849 41.2	59 1.00 13.28
ATOM 1566 CG HIS A 415 -9.093 34.484 42.5	14 1.00 12.84
ATOM 1567 CD2 HIS A 415 -8.513 35.841 42.7	16 1.00 11.55
ATOM 1568 ND1 HIS h 425	
ATOM 1569 CE1 HIS h 136.899 43.2	
ATOM 1570 NE2 ETS 7 -0.380 37.944 43.3	
ATOM 1571 C 875 15 42.7	
ATOM 1572 O HIS A 415 -9.851 32.362 41.2	
ATOM 1573 N ASP A 416 -7.855 31.557 41.0	
ATOM 1574 CA ASP A 416 -8.239 30 159 41.8	
ATOM 1575 CB ASP A 416 -6.978 29 338 42 2	
1370 CG ASP A 416 -5 913 20 202	
1377 ODI ASP A 416	
ATOM 1570 A 416 -4.717 29.403 41 66	
ATOM 1580 C ASP A 416 -9.254 29.930 43.09	
ATOM 1581 N 200 A 416 -9.169 30.468 44.15	
ATOM 1582 CD 200 A 417 -10.296 29.111 42.80	
ATOM 1583 CD 200 A 417 -10.544 28.473 41.50	
ATOM 1584 CB PRO 3 417 -11.275 28.774 43.80	5 1.00 12.54
ATOM 1585 CG PRO A 117, -12.495 28.328 42.97	75 1.00 13.91
ATOM 1586 C PRO h 41.540 27.894 41.67	4 1,00 15.31
ATOM 1587 O PRO 1 11.83/ 27.603 44.68	
ATOM 1588 N ASP A	
ATOM 1589 CA ASP A 418 11 086 26 218	
ATOM 1590 CB ASP A 418 11 375 36 524	
1331 CG ASP A 418	_
1232, ODI ASP A 418 -9 333 37	
A 418 -10.774 78.666 40.00	
ATOM 1505 ASP A 418 -11.997 25:061 46 25	_
ATOM 1505 1 ASP A 418 -13.034 25.354 45 64	
ATOM 1507 CT A 419 -11.533 23.829 46.30	
ATOM 1599 22.650 46.05	0 1.00 28.51
ATOM 1599 0 0 0 419 -12.000 21.714 44.91	
ATOM 1600 N 777 A 419 -11.000 21.726 44.16	
ATOM 1601 CD2 LET 420 -12.976 20.849 44.629	
ATOM 1602 CD: 120 A 42014.406 17:142 44.11	
ATOM 1503 CD A 420 -16.571 18.444 44.050	
ATOM 1604 CB (ET) A 420 -15.061 18.507 44.238	3 1.00 36.91
ATOM 1605 CA LETT 2 420 -14.424 19.470 43.224	1.00 36.82
ATOM 1606 C 1577 A 420 -12.969 19.843 43.591	
ATOM 1607 O LEU A 420 -12.193 20.130 42.331	1.00 36.08
A 420 -11.638 19'.221 41.701	1.00 37.02

		Ato	m				:			
		Tvo	<u>e Resi</u>	due ?	<u>=</u>	. <u>x</u>	<u>Y</u>	<u>z</u>	<u>000</u>	<u>a</u>
ATOM	160	8 N	ALA							-
ATOM	160			A A	421	-12.05				36.27
ATOM	161	G C.		A	421	-11.47			1.00	37.17
ATOM	161	ı c		Ä	421 421	-11.30			1.00	36.49
ATOM	161	2 0		A	421	-9.84				35.18
ATOM	1613	N E	GLU	A	422	-9.25				36.10
ATOM	1614		E2 GLU	A	422	-9.183 -8.104	21.102			32.65
ATOM	1619		El GLU	А	422	-6.137	20.106 7 19.284			41.16
ATOM	1616			A	422	-6.983				39.97
ATOM ATOM	1617			A	422	-6.628				38.24
ATOM	1618			A	422	-7.426			1.00	35.89
ATOM	1619			A	422	-7.761			1.00	31.03
ATOM	1620 1621		GLU	A	422	-6.901		41.779	1.00	29.38
ATOM	1622		GLU	A	422	-5.677	21.951	41.645	1.00	24.25
ATOM	1623		CYS	A	423	-7.530		41.837	1.00	21.69
ATOM	1624			A	423	-6.862		41.613	1.00	19.59 18.31
ATOM	1625			A	423	-7.819		40.797	1.00	21.54
ATOM	1626		CYS	A A	423	-8.112		39.090	1.00	22.74
ATOM	1627	_	CYS	A	423	-6.367		42.893	1.00	16.82
ATOM	1628	N	ALA	A	423	-5.884	26.233	42.855	1.00	14.86
ATOM	1629	CA		A	424 424	-6.516	24.451	44.029	1.00	15.16
ATOM	1630	CB	ALA	A	424	-5.974	24.991	45.288	1.00	16.52
ATOM	1631	C	ALA	A	424	-6.940 -5.603	25.972	45.924	1.00	15.07
ATOM	1632	0	ALA	A	424	-6.206	23.812	46.165	1.00	15.42
ATOM	1633	N	PRO	A	425	-4.545	23.507 23.118	47.182	1.00	16.31
ATOM	1634	CD	PRO	. A	425	-3.694	23.394	45.774 44.593	1.00	16.63
ATOM ATOM	1635	CA	PRO	A	425	-4.096	21.935	46.484	1.00	14.62
ATOM	1636	CB	PRO	A	425	-2.965	21.392	45.635	1.00	18.01
ATOM	1637 1638	CG	PRO	Α	425	-3.064	22.047	44.301	1.00	17.36
ATOM	1639	С О	PRO	, A	425	-3.655	22.217	47.908	1.00	16.07 19.52
ATOM	1640	N	PRO	. A	425 [.]	-3.304	23.325	48.294	1.00	16.80
ATOM	1641		ASN ASN	, A	426	-3.670	21.143	48.707	1.00	21.90
ATOM	1642		ASN	A	426	-6.177	19.346	50.674	1.00	32.22
ATOM	1643	CG	ASN	A A.	426	-5.934	21.437	51.378	1.00	30.53
ATOM	1644	CB	ASN	A	426 426	-5.407	20.380	51.018	1.00	30.42
ATOM	1645	CA	ASN	A	426	-3.898	20.167	50.928	1.00	27.25
ATOM	1646	\mathbf{C}	ASN	Ä	426	-3.224	21.249	50 _€ 088	1.00	24.17
ATOM	1647	Ο.	ASN	Α	426	-1.695 -1.014	21:270	50.121	1.00	22.87
ATOM	1648	N	GLU	A	427	-1.148	21.025		1.00	19.72
ATOM	1649	OE2		, A	427	3.209	21.695 21.859	51.247	1.00	24.03
ATOM	1650		GLU	A,	427	2.503	23.818	55.259 54.605	1.00	39.86
ATOM ATOM	1651	CD	GLU	A	427	2.640	22.595	54.427	1.00	37.70
ATOM	1652	CG	GLU	A	427	2.167	21.979		1.00	37.41
ATOM	1653	CB	GLU	A	427	0.679		52.857	1.00	36.42
ATOM	1654 1655	CA	GLU	Α.	427	0.305	21.775		1.00	32.16
ATOM	1656	C	GLU	Α -	427 :	0.998			1.00	29.42
ATOM	1657	N O	GLU	A	427 -	1.971			1.00	29.51 29.26
ATOM	1658		ASP	A	428	0.488			1.00	31.72
ATOM	1659	OD1		A	428	-1.918	16.341		1.00	41.88
ATOM	1660	CG	ASP	Α.	. 428		18.328		1.00	37.31
ATOM.	1661	CB	ASP	Α.	428			52.267	1.00	38.88
				A	428	0.320		_	1.00	36.50

		Atom	1				, -			
		Type	Resi	due ?	#	<u>x</u>	X,	<u>z</u>	<u>0CC</u>	<u>B</u>
ATOM	1662		ASP	; , A	428	1.04	. 19.054	51.077		
ATOM	1663		ASP	À	428	1.08				32.85
ATOM	1664		ASP	∴ A	428	1.82				32.15
ATOM	1665		GLN		429	0.30		•		32.63
ATOM	1666		2 GLN		429	-0.844				29.90
ATOM	1667		1 GLN	. A	429	-0.899				35.05
ATOM	1668	כם	GLN	. A	429	-1.190				36.32
ATOM	1669		GLN	. A	429	-1.923				35.53
ATOM	1670	CB	.GLN	, A	429	-1.138				32.82
ATOM	1671		GLN	A	429	0.307	18.190			30.20
ATOM	1672	C.	GLN	· A	429	1.041				26.44
· ATOM	1673	0	GLN	, А	429	0.832				22.82
ATOM	1674		GLY	A	430	1.812				21.67
ATOM	1 67 5	CA	GLY	- A	430	2.534			1.00	18.52
ATOM	1676	C.	GLY	A	430	1.982			1.00	15.09
ATOM	1677	0	GLY	A	430	2.582		46.889		14.53
ATOM	1678	N	GLY	A	431			46.432	1.00	16.43
ATOM	1679	CA	GLY	A	431	0. 8 98 0.314		47.615	1.00	11.39
ATOM	1680	С		- A	431			47.958	1.00	12.94
ATOM	1681	0	GLY	A	431	-0.505		46.871	1.00	10.35
ATOM	1682	N	LYS	A	432	-0.764	24.181	45.795	1.00	11.85
ATOM	1683	CA	LYS	A	432	-0.845		47.147	1.00	11.65
ATOM	1684	CB	LYS	· A	432	-1.637	26.762	46.245	1.00	13.87
ATOM	1685	CG	LYS	A	432	-2.343		47.049	1.00	16.54
ATOM	1686	CD	LYS	A	432	-3.250	27.146	48.043	1.00	20.67
ATOM	1687	CE	LYS	A		-4.058	28.036	48.933	1.00	24.37
ATOM	1688	NZ	LYS	, A	432	-5.090	27.228	49.718	1.00	25.86
ATOM	1689	C	LYS	Ä	432	-4.539	25.962	50.296	1.00	25.58
ATOM	1690	0	LYS	A	432	-0.810	27.312	45.112	1.00	12.71
ATOM	1691	N	TYR	. A	432	0.414	27.398	45.187	1.00	11.37
ATOM	1692	CA	TYR	A	433	-1.533	27.713	44.072	1.00	8.62
ATOM	1693	CB	TYR	A	433	-0.997	28.243	42.844	1.00	8.63
ATOM	1694	CG	TYR	. A	433	-1.677	27.746	41.591	1.00	8.94
ATOM	1695		TYR	A	433	-1.507	26.270	41.276	1.00	12.81
ATOM	1696		TYR	•	433	-2.460	25.350	41.653	1.00	12.02
ATOM	1697	CDS	TYR	<u>A</u>	433	-2.310	23.999	41.361	1.00	14.63
ATOM	1698	CF2	TYR	Α.	433	-0.360	25.813	40.637	1.00	13.00
ATOM	1699	CZ	TYR	r s A	433	-0.202	24.469	40.333	1.00	14.04
ATOM	1700		TYR	g (, A ,	433	-1.180	23.579	40.713	1.00	15.76
ATOM-	1701	C	TYR	, A	433	-1.018	22.241	40.429	1.00	18.68
ATOM	1702	0	TÝR	Ą	433	-0.990	29.769	42.955	1.00	6.12
ATOM	1703	N "	VAL	A	433	-1.576	30.319	43.866	1.00	7.36
ATOM	1704		VÁL	7 · A	434	-0.279	30.385	42.031	1.00	8.06
ATOM	1705			A	434	-0.023	31.820	42.080	1.00	9.13
ATOM	1706		VAL	A	434 ' 5	1.026	32.189	41.035	1.00	9.24
ATOM	1707	CG1		A	434	0.473	32.255	39.614	1.00	9.78
ATOM	1708	CG2		-, • ·A	434	1.656	33.531	41.432	1.00	9.67
ATOM	1708	C	VAL	• A	434	-1.247	32.724	41.971	1.00	9.44
ATOM -		0	VAL	, A	434 🚟 🖰	-1.224	33.807	42.521	1.00	8.77
ATOM	1710	N	MET.	A	435	-2.348		41.373	1.00	9.61
	1711		MET	, , A	435	-3.580			1.00	10.35
ATOM	1712	CB	MET	; A :	435	-4.313	32.866		1.00	9.92
ATOM	1713		MET	, A :	435	-3.514			1.00	10.91
ATOM	1714		MET	A	435	-2.789			1.00	
ATOM-	1715	CE	MET	Α :	435	-4.229	· :		1.00	11.06
			•						1.00	11.66

		Atom					· ·			
		Type	Residu	<u> 2</u>	=	<u>x</u>	<u>Y</u>	<u>z</u>	<u>occ</u>	<u>B</u>
ATCM			MET	Α	435	-4.47	9 77 076			
ATCM		_	MET	Α	435	-5.62				11.89
ATOM	171	_	TYR	Α	436	-4.004				10.19
ATCM ATCM	1719		TYR	Α	436	-4.776				9.70
ATCM	1720		TYR	A	436	-4.154				10.59
ATOM	1721		TYR	Α	436	-5.187				12.19
ATOM	1722 1723		L TYR	Α	436	-6.086				12.41
ATOM	1724		TYR	Α	436	-7.026			1.00 1.00	13.54
ATCM	1725		TYR	A	436	-5.275	31.200	48.218	1.00	10.84
ATOM		-	TYR TYR	A	436	-6.216		49.104	1.00	12.72 15.95
ATOM	1727		TYR	A	436	-7.105	29.725	48.659	1.00	14.43
ATOM	1728		TYR	A	436	-8.012		49.572	1.00	17.14
ATOM	1729		TYR	A	436	-4.977	33.571	45.304	1.00	10.80
ATOM	1730		PRO	A A	436	-4.106		45.121	1.00	7.79
ATOM	1731	CD	PRO	A	437	-6.178		45.778	1.00	11.93
ATOM	1732	CA	PRO	Ā	437 437	-7.340	33.037	45.939	1.00	11.26
ATOM	1733	CB	PRO	A	437	-6.467	35.326	46.139	1.00	10.62
ATOM	1734	CG	PRO	A	437	-7.962	35.319	46.495	1.00	12.25
ATOM	1735	C	PRO	A	437	-8.320	33.884	46.714	1.00	12.44
ATOM	1736	0	PRO	A	437	-5.713 -5.577	35.775	47.385	1.00	10.79
ATOM	1737	N ·	ILE	A	438	-5.411	36.995	47.602	1.00	11.50
ATOM	1738	CA	ILE	A	438	-4.645	34.802	48.243	1.00	11.06
ATOM	1739		ILE	A	438	-5.154	35.046 34.201	49.464	1.00	14.21
ATOM	1740		ILE	A	438	-4.290	34.449	50.625	1.00	16.10
ATOM ATOM	1741		ILE	A	438	-6.619	34.470	51.876 50.967	1.00	19.74
ATOM	1742	CD1		A	438	-7.175	33.545	52.055	1.00	19.29
ATOM	1743	С	ILE	A	438	-3.173	34.778	49.119	1.00	20.13
ATOM	1744 1745	0	ILE	Α	438	-2.796	33.666	48.710	1.00	14.66
ATOM	1746	N N	ALA	A	439	-2.342	35.803	49.202	1.00	10.76
ATOM.	1747	CA	ALA ALA	A	439	-0.137	36.968	49.129	1.00	12.90 13.51
ATOM	1748	C C	ALA	A	439	-0.946	35.702	48.748	1.00	12.56
ATOM	1749		ALA	. A	439	-0.219	34.450	49.179	1.00	11.82
ATOM	1750		VAL	A	439	-0.053	34.221	50.350	1.00	12.72
ATOM	1751		VAL	A A	440	0.244	33.624	48.232	1.00	12.54
ATOM	1752		VAL .	A	440	1.038	32.460	48.610	1.00	13.18
ATOM	1753	CG1		A .	440	1.194	31.545	47.405	1.00	13.89
MOTA	1754	CG2	VAL	Ä	440	-0.203	30.964	47.060	1.00	14.71
ATOM	1755		VAL	A	440	1.748	32.335		1.00	14.29
ATOM	1756		VAL	A	440	2.422 2.951		49.105	1.00	13.24
ATOM	1757	N ;	SER	A .	441	3.009	33.937		1.00	10.97
ATOM .	1758		SER	Α .	441		32.117		1.00	13.77
ATOM	1759		SER	A	441	4.602		50.541	1.00	15.67
ATOM	1760		ER	A	441	4.895	_		1.00	14.54
ATOM .	1761		SER	A	441	5.443			1.00	12.13
ATOM .	1762		SER	Α.	441	6.393			1.00	14.86
ATOM	1763			Α	442				1.00	16.15
ATOM	1764		LY	A	442				1.00	15.69
			LY	A ,	442 3		_		1.00	15.78
ATOM	1767		LY,	Α.,	442			17.700 .]	1.00	17.87
ATOM.	:		SP	A	443				1.00	17.88
ATOM				A - ,	443			0.053	00 -	16.97
	-709	CS A	SP ·	Α	443				00	19.48
										20.17

		Atom								
		<u> 1.75</u> e	Residu	<u>e</u> 2	<u>#</u>	<u>x</u> ,	<u>Y</u>	<u>z</u>	<u>occ</u>	<u>B</u>
ATOM			ASP	. A	443	7.51	2 29.37			
ATOM			1 ASP	A	443	8.29				23.62
ATOM	_		2 ASP	A	443	7.11				23.81
ATOM	1773	_	ASP	, A	443	7.30				25.54
ATOM	1774		ASP	А	443	8.05				21.78
ATOM ATOM	1775		HIS	Α	444	6.16				20.22
ATOM	1776		HIS	- A	444	5.734				18.42
ATOM	1777	7	HIS	A	444	4.263	25.329			18.25
ATOM	1778 1779		HIS	A	444	4.010				19.33
ATOM	1780		HIS	A	444	3.475	26.703			21.40 21.56
ATOM	1781		HIS .	A	444	4.407	24.766			22.82
ATOM	1782		HIS	A	444	4.098				22.65
ATOM	1783	C	HIS	A	444	3.540				23.53
ATOM	1784	ō	HIS	A	444	5.869				18.20
ATOM	1785	N	GLU	- A A	444	5.869		45.924	1.00	16.89
ATOM	1786		GLU	A	445	5.967		46.228	1.00	18.90
ATOM	1787		GLU	A	445	7.287		44.909	1.00	37.32
ATOM	1788	CD	GLU	Α	445 445	5.382		43.805	1.00	36.75
ATOM	1789	CG	GLU	A	445	6.406		44.213	1.00	34.73.
ATOM	1790	CB	GLU	A	445	6.551	21.509	43.912	1.00	31.48
ATOM	1791	CA	GLU	A	445	5.641		44.753	1.00	24.36
ATOM	1792	C	GLU	A.	445	6.094 5.192	23.856	44.844	1.00	21.30
ATOM	1793	0	GLU .	A	445	5.654	24.573	43.856	1.00	19.12
ATOM	1794	N	asn	A	446	3.886	25.106	42.852	1.00	18.43
ATOM	1795	CA	ASN	A	446	2.931	24.568 25.161	44.155	1.00	14.02
ATOM	1796	CB	ASN	A	446	1.558	24.575	43.217	1:00	12.89
ATOM	1797	cci	ASN	A	446	1.492	23.081	43.616 43.416	1.00	13.52
ATOM ATOM	1798	OD1		A	446	2.288	22.530	42.688	1.00	11.57
ATOM	1799	ND2		Ą	446	0.580	22.359	44:016	1.00	14.69
ATOM	1800	C	ASN	Α.	446	2.880	26.669	43.236	1.00	14.47
ATOM	1801 1802		ASN	, A	446	2.299	27.295	42.349	1.00	12.30 11.18
ATOM	1802		ASN	A	447 "	3.432	27.299	44.274	1.00	12.22
ATOM	1804		ASN	.a <mark>A</mark> a	447 .	3.261	28.692	44.560	1.00.	12.81
ATOM	1805		ASN ASN	Α	447	3.943	29,244	45.794	1.00	13.02
ATOM	1806	OD1		, A	447	3.432	28.721	47.094	1.00	14.61
ATOM	1807	ND2	DON,	Α .	447 .	4.151	28.922	48.081	1.00	15.02
ATOM .	1808		ASN	A	447	2.276	28.070	47.103	1.00	13.05
ATOM	1809		ASN	A	447	3.662	29.596	43.403	1.00	14.50
ATOM	1810		LYS	A	447 448	2.990	30.597	43.173	1.00	14.90
ATOM	1811		. vc	A		4.698	29.182	42.678	1.00	15.41
ATOM	1812		LYS	A	448 448	5.123	30.032	41.582	1.00	19.44
ATOM	1813		LYS	A	448	6.678 7.319	30.007	41.496	1.00	20.29
ATOM	1814	CD . 1		A.	448	8.503	30.599	42.725	1.00	22.70
ATOM	1815		LYS	Α	448	8.285	31.527		1.00	25.96
ATOM		NZ I	LYS	À	448	8.963	32.968		1.00	24.34
ATOM		C I	YS	Α .	448	4.568		44.090	1.00	16.70
ATOM	1818		YS	Α, ΄	448	5.136			1.00	19.62
ATOM		N N	ET .	A	449		**	39.263 ,		25.92
ATOM	1820		ET .	A	449	3.122			1.00	13.54
ATOM			IET .	A	449	3.181	- 41		1.00	14.78
ATOM			ET'	A	449		` .		1.00	17.23
ATOM .	1823	SD M	ET.	A .	449		1.		1.00	23.71
	•		•			- • ·		J7.701	1.00	35.18

		Atom								
		T'/De		<u> 2</u>	#	<u>x</u>	· ½	<u>z</u>	<u>0CC</u>	<u> </u>
ATOM	1824		MET	Α	449	5.512		33.000		
ATOM	1825		MET	Α	449	1.660				29.45
ATOM	1825		MET	A	449	1.051				10.74
ATOM	1827		PHE	A	450	1.104	28.330			7.03
ATOM	1828			Α	450	-0.319		37.829		9.72
ATOM	1829	_		Α	450	-0.503			1.00	11.38
ATOM	1830			A	450	-0.071		35.959	1.00	11.13
ATOM	1831		1 PHE	Α	450	-0.930		36.320	1.00	12.52
ATOM ATOM	1832		2 PHE	A	450	1.207		35.549	1.00	12.19
ATOM	1833 1834		1 PHE	A	450	-0.508		36.265	1.00	10.84 11.08
ATOM	1835		2 PHE	A	450	1.624	32.264	35.490	1.00	10.58
ATOM	1836	CZ C	PHE	Α	450	0.770	33.283	35.856	1.00	10.00
ATOM	1837	0	PHE PHE	A	450	-1.150	27.312	37.490	1.00	11.07
ATOM	1838	N	SER	A	450	-0.799	26.260	36.954	1.00	9.07
ATOM	1839	CA	SER	A	451	-2.323	27.410	38.138	1.00	11.36
ATOM	1840	CB	SER	A	451	-3.268	26.315	38.270	1.30	10.14
ATOM	1841	CG	SER	A A	451	-4.487	26.735	39.155	1.00	10.95
ATOM	1842	c	SER	A	451	-5.179	27.782	38.420	1.00	9.02
ATOM	1843	0	SER	Ä	451 451	-3.844	25.958	36.901	1.00	9.35
ATOM	1844	N	GLN	· A	452	-3.770	26.735	35.963	1.00	9.40
ATOM	1845	CA	GLN	A	452	-4.577	24.855	36.824	1.00	12.16
ATOM	1846	CB	GLN	A	452	-5.351	24.521	35.618	1.00	13.47
ATOM	1847	CG	GLN	A	452	-5.964 -6.700	23.125	35.803	1.00	16.94
ATOM	1848	CD	GLN	A	452	-5.827	22.595	34.601	1.00	21.50
ATOM	1849	OE1	GLN	Α	452	-4.673	22.669	33.361	1.00	23.04
ATOM	1850,	NE2	GLN	Α	452	-6.377	22.244 23.285	33.400	1.00	21.47
ATOM	1851	С	GLN	. A	452	-6.430	25.554	32.307 35.338	1.00	23.25
ATOM	1852	0	GLN	A	452	-6.638	25.907	34.165	1.00	13.65
ATOM	1853	N	CYS	A	453	-7.045	26.104	36.363	1.00	14.17
ATOM ATOM	1854	CY		Α	453	-8.092	27.127	36.197	1.00	14.02
ATOM	1855	CB	CYS	A·	453	-8.719	27.417	37.560	1.00	17.31 21.49
ATOM	1856 1857	SG	, CYS	·A	453	-9.533	26.093	38.447	1.00	29.58
ATOM	1858	С.	CYS	Α,	453	-7.500	28.361	35.535	1.00	15.91
ATOM	1859	0 N	CYS.	A	453	-7.993	28.886	34.524	1.00	12.98
ATOM	1860	CA	SER	A	454	-6.301	28.786	36.002	1.00	10.78
ATOM	1861	CB	SER	A	454	-5.584	29.858	35.390	1.00	9.42
ATOM	1862	OG	SER SER	A	454	-4.341	30.410	36.146	1.00	8.01
ATOM	1863	C	SER	A A	454	-4.692	30.709	37.471	1.00	8.77
ATOM	1864	ō	SER	A	454	-5.186	29538	33.979	1.00	9.67
ATOM	1865	N	LYS.	A	454	-5.237	30.413	33.113	1.00	9.80
ATOM	1866	CA	LYS	A	455 455	-4.691	28.304	33.763	1.00	11.07
ATOM	1867	СВ	LYS	Ä	455	-4.240	27.987	32.421	1.00	12.98
ATOM	1868	CG	LYS	Α		-3.599		32.376	1.00	13.14
ATOM	1869	CD	LYS	A		-2.146	26.611	32.855	1.00	17.01
ATOM	1870	CE	LYS	A	455	-1.656	25.166	32.882	1.00	19.15
ATOM	1871	NZ	LYS	A	455	-0.242 0.195	25.104	33.451	1.00	20.39
ATOM	1872	С	LYS	Α		5.367	23.673		1.00	23.90
ATOM	1873	0	LYS	Α	455	-5.180			1.00	12.31
ATOM	1874	N	GLN		456	-5.529			1.00	12.74
ATOM		NE2	GLN .	A.	456	-10.676			1.00	14.47
ATOM	1876	0E1	GLN	A ·	456	-9.503			1.00	30.34
ATOM			GLN	A	456	-9.664			1.00	29.79
	•				•	004	24.686	32.606	1.00	28.31

		Atom									
		<u>Tvoe</u>	Residue	1 1	#		<u>x</u>	Y	· <u>z</u>	000	
							-	-	=	<u> </u>	₽
ATOM		_	GLN	À	456		-8.67	25.34	2 21 626		
ATOM			GL11	À	456		-8.81				25.00
ATCM	1880		GLN	À	456		-7.66	27.51	_		19.95
ATOM	1881		GLN	À	456		-7.96				16.41
ATOM	1882		GLN	, A	456			29.330	29.244		15.24
ATOM ATOM	1883		SER	A	457		-8.038				15.99
ATOM	1884	CA.	SER	A	457		-8.377				14.14
ATCM	1885	CB	SER	A	457		-8.518				14.81
ATOM	1886 1887	OG C	SER	A	457		-9.565				15.12
ATOM	1888	o : ⊂	SER	λ	457		-7.354				16.45
ATOM	1889		SER	A	457		-7.697	32.696			12.94
ATOM	1890	N	ILE	. А	458		-6.051			1.00	12.19
ATOM	1891	CA	·ILE	A	458		-5.038			1.00	12.21
ATOM	1892	CB	ILE	Α	458		-3.699			1,00	9.86
ATOM	1893	CG2	ILE	λ	458		-2.555	32.898	29.890	1.00	11.36
ATOM	1894		ILE	Α	458		-3.853	33.384	32.036	1.00	6.36
ATOM	1895		ILE	A	458		-2.730	33.281	33.0 5 9	1.00	9.88
ATOM	1896	С О	ILE	À	458		-4.854	32.048	28.573	1.00	11.89
ATOM	1897	N	ILE	A	458		-4.640	32.816	27.634	1.00	9.53 9.61
ATOM	1898	CA	TYR	À	459		-4.939	30.731	28.423	1.00	
ATOM	1899	CB	TYR	A	459		-4.767	30.100		1.00	9.48 11.60
ATOM	1900	CG	TYR	λ	459		-5.038	28.600	27.250	1.00	11.22
ATOM	1901	CD1	TYR	λ	459		-5.045	27.843	25.943	1.00	16.31
ATOM	1902	CEI		A	459		-4.013	27.976	25.041	1.00	16.99
ATOM	1903	CD2		A	459		~4.028	27.303	23.827	1.00	19.40
ATOM	1904	CE2	TWD	A	459		-6.103	26.999		1.00	18.93
ATOM	1905	CZ		A	459		-6.108	26.299	24.422	1.00	21.51
ATOM	1906		TYR TYR	A	459		-5.075	26.458	23.532	1.00	20.71
ATOM	1907		TYR	A	459		-5.095	25.772	22.341	1.00	21.74
ATOM	1908		TYR	A	459		-5.720	30.750	26.110	1.00	12.72
ATOM.	1909		LYS	A	459-	-	-5.334	31.252	25.073	1.00	14.82
ATOM	1910		LYS	A	460		-6.974	30.779	26.528	1.00	14.14
ATOM	1911		LYS	A	460	**	-10.468	26.961	25.743	1.00	30.41
ATOM	1912		LYS	A	460		-9.733	27.718	24.702	1.00	27.82
ATOM	1913 .		LYS	<u>}</u> .	460		-9.809	29.219	24.921	1.00	26.35
ATOM	1914		LYS -	À		$\tau : \mathcal{C}$	-9.794	29.689	26.345	1.00	23.26
ATOM	1915		LYS	Ä	460		-9.375	31.156	26.477	1.00	19.80
ATOM	1916		LYS		460 .	1 2	-8.043	31.371	25.721	1.00.	18.07
ATOM			LYS	A,	460	. •	-7.739	32.806	25.384	1.00	16.65
ATOM				A	460		-7.735	33.206	24.229	1.00	16.84
ATOM	1919		THR	A.	461	•	-7.225	33.546	26.348	1.00	14.44
ATOM	1920	CB 2		À	461		-6.847	34.932	26.129	1.00	14.79
ATOM	1921	0G1 1	THR !	À	461		-6.597	35.590		1.00	13.79
ATOM	1922	CG2 1		í	461		-7.813	35.528	28.254	1.00.	13.87
ATOM				Ä	461		-6.192	37.054		1.00	16.01
ATOM		-	HR	A			-5.709	35.061	25.159	1.00.	14.88
ATOM				Â.			-5.830	35.765	24.142	1.00	14.86
ATOM				A A	462		-4.569		25.419	1.00	
ATOM		_		A A					24.542	1.00	17.34
ATOM		CG2 I		A A			-2.223	33.642		1.00	18.43
ATOM.		CG1 I		A A	462			33.699	23.904	1.00	20.28
ATOM	1930	CD1 T		A A	462			34.018	26.316	1.00	18.70
ATOM .		_			462		-0.726	32.967	26.945		19.10
		•		A	462	٠.	-3.757			1.0Ò	18.59

		Acon	1							
		Type	Resid	iue ?	<u>=</u>	X	ĭ	<u>z</u>	<u>000</u>	<u>9</u>
ATOM	1932	2 0	ILE	A	462	-3.420		22.200		
ATOM	1933		GLU	Α	463	-4.473				17.11
ATOM	1934		2 GLU	Α	463	-9.026				22.82
ATOM	1935		:1 GLU	Α	463	-7.006				41.03
ATOM	1936			Α	463	-7.293			1.00	39.73
MOTA	1937			Α	463	-6.723			1.00	39.22
ATOM	1938			A	463	-5.228			1.00	36.15
MOTA MOTA	1939			Α	463	-4.692			1.00	30.56
ATOM	1940		GLU	Α	463	-5.492		20.800	1.00	26.30 27.72
ATOM	1941		GLU	Α	463	-5.233		19.607	1.00	29.03
ATOM	1942 1943		SER	A	464	-6.399	34.283	21.418	1.00	26.79
ATOM	1943	CA		A	464	-7.190	35.312	20.764	1.00	26.80
ATOM	1945	CB OG	SER	A	464	-8.395	35.611	21.666	1.00	25.15
ATOM	1946	C	SER	A	464	-9.060	36.806	21.404	1.00	25.60
ATOM	1947	0.	SER	A	464	-6.434	36.623	20.582	1.00	27.79
ATOM	1948	N	SER	A	464	-6.686	37.340	19.612	1.00	27.52
ATOM	1949	CA	LYS LYS	A	465	-5.598	36.959	21.560	1.00	25.83
ATOM	1950	C3	LYS	A	465	-4.956	38.267	21.585	1.00	28.04
ATOM	1951	CG	LYS	A	465	-5.065	38.846	22.993	1.00	28.65
ATOM	1952	CD	LYS	, A	465	-6.217	39.766	23.316	1.00	30.43
ATOM	1953	CE	LYS	A	465	-7.570	39.136	23.099	1.00	31.72
ATOM	1954	NZ	LYS	A	465	-8.699	40.165	23.068	1.00	32.17
ATOM	1955	C	LYS	A	465	-8.593	41.165	24.149	1.00	32.20
ATOM	1956	ō	TAR ,	A	465	-3.505	38.293	21.145	1.00	27.28
ATOM	1957	N	ALA	A	465 466	-3.053	39.353	20.704	1.00	27.45
ATOM	1958	CA	ALA	A	466	-2.767	37.193	21.184	1.00	28.49
ATOM	1959	СВ	ALA	· A	466	-1.373	37.191	20.753	1.00	28.95
ATOM	1960	C	ALA	A	466	-0.788	35.788	20.750	1.00	27.44
ATOM	1961	0	ALA .	A	466	-1.152	37.821	19.385	1.00	30.12
ATOM	1962	N	GLN	A	467	-0.295 -1.922	38.708	19.256	1.00	28.37
ATOM	1963	NE2	GLN	Α	467	0.360	37.440	18.373	1.00	30.63
ATOM		OE1	GLN	A	467	-0.196	36.582 35.394	14.061	1.00	41.77
ATOM	1965	CD	GLN	A	467	-0.524	36.191	15.846	1.00	42.22
ATOM	1966	CG	GLN	. A	467	-1.903	36.768	14.967 14.813	1.00	40.84
ATOM	1967	CB	GLN	A	467	-2.609	37.306	16.027	1.00	40.14
ATOM	1968	CA	GLN	Α	467	-1.712	38.007	17.038	1.00	36.55
ATOM	1969	С	GLN	A	467	-1.891	39.519	16 996	1.00	33.94
ATOM	1970	0	GLN	, A	467			16.271	1.00 1.00	33.19
ATOM ATOM	1971	N	GLU	À	468	-2.797	40.063	17.768	1.00	33.32
ATOM	1972		GLU	A	468	-7.657	40.802	18.969	1.00	33.44
ATOM	1973		GLU	. A	468	-6.465	41.900	20.497	1.00	44.61 44.24
ATOM	1974	CD	GLU	. A	468	-6.664	41.480	19.332	1.00	44.10
ATOM	1975 1976	CG	GLU .	A	468	-5.602	41.832	18.305	1.00	41.64
ATOM	1977	CB	GLU	A	468	-4.238	41.582	18.934	1.00	38.28
ATOM	1978	CA	GLU	A	468	-3.092	41.457	17.917	1.00	35.15
ATOM	1979	Ċ	GLU	Α	468	-1.956	42.299	18.485	1.00	33.88
ATOM	1980	0	GLU	A	468	-1.706	43.397	17.980	1.00	32.88
ATOM	1981	N	CYS	A	469	-1.382	41.873	19.618	1.00	32.54
ATOM	1982	CA	CYS	Α .	469	-0.374	42.738	20.230	1.00	32.43
ATOM	1983	CB SG	CYS	A	469	-1.019	43.591		1.00	34.38
ATOM	1984	C	CYS	A	469		42.874		1.00	36.46
ATOM	1985	0	CYS	A	469		42.055		1.00	29.85
		-	CYS	A	469	1.786			1.00	30.62

		Atom								
		<u>Tvoe</u>	Residue	-	#	<u>x</u>	. <u>Y</u> .	<u>z</u>	<u>0CC</u>	2
ATOM	1986	N	PHE	А	470					
ATOM	1987	CA	PHE	A	470	1.027	40.739		1.00	25.22
ATOM	1988	СЭ	PHE	A	470	2.314	40.147		1.00	25.07
ATOM	1989	CG	PHE	A	470	2.163	38.694		1.00	21.98
ATOM	1990	CD1	PHE	A	470	1.492	38.480		1.00	21.50
ATOM	1991		PHE	A	470	0.810	39.497		1.00	19.78
ATOM	1992		PHE	A	470	1.556	37.251	23.414	1.00	19.41
ATOM	1993		PHE	A	470	0.182	39.309	24.658	1.00	20.26
ATOM	1994	CZ	PHE	A	470	0.932	37.046	24.634	1.00	20.13
ATOM	1995	С	PHE	A	470	0.257	38.065	25.257	1.00	20.62
ATOM	1996	0	PHE .	A		3.351	40.383	19.999	1.00	24.85
ATOM	1997	N	GLN	A	470	2.994	40.592	18.836	1.00	23.37
ATOM	1998	CA	GLN	A	471	4.610	40.404	20.389	1.00	23.76
ATOM	1999	CB	GLN	A	471	5.714	40.672	19.491	1.00	25.96
ATOM	2000	CG	GLN	A	471	6.350	42.028	19.794	1.00	27.26
ATOM	2001	CD	GLN	A	471	5.453	43.201	19.442	1.00	31.81
ATOM	2002		GLN	A	471	6.014	44.575	19.678	1.00	33.37
ATOM	2003		GLM	À	471	5.258	45.547	19.668	1.00	35.13
ATOM	2004	C	GLN	A	471	7.323	44.,723	19.885	1.00	35.41
ATOM	2005	0	GLN	A	471	6.772	39.578	19.615	1.00	25.85
MOTA	2006	N	GLU	A	471	6.668	38.670	20.433	1.00	23.32
· ATOM	2007	OE2		A	472		39.683	18.760	1.00	27.21
ATOM	2008	OE1	GLU	A	472	8.898	41.817	17.307	1.00	43.27
ATOM	2009	CD	GLU	A	472	9.685	41.624	15.282	1.00	44.72
ATOM	2010	CG	GLU	A	472	9.267	41.115	16.344	1.00	42.17
ATOM	2011	CB	GLU	A	472	9.207	39.605	16.387	1.00	39.41
ATOM	2012		GLU	A	472	9.836	38.975	17.600	1.00	34.14
ATOM	2013	c	GLU	A	472	8.867	38.730	18.759	1.00	30.87
ATOM	2014	ō	GLU	A	472	9.656	38.993	20.037.	1.00	30.26
ATOM	2015		ARG	A	472	9.773	40.161	20.396	1.00	29.23
ATOM	2016		ARG	A	473		37.970	20.584	1.00	31.97
ATOM	2017		ARG	A	473	11.073	38.106	21.778	1.00	34.21
ATOM	2018		ARG	A	473	11.230	36,691	22.340	1.00	34.97
ATOM	2019		ARG :	A	473	12.230	36.454	23.443	1.00	37.52
ATOM	2020		ARG	A	473		35.449	24.436	1.00	39.68
ATOM	-			A	473	12.564	35.155	25.532 .	1.00	41.06
ATOM	2022	: .	'		473		35.726	26.729	1.00	42.18
ATOM '	2023	NH2		A	473		35.423	27.693	1.00	42.83
MOTA	2024			A	473	11.559	36.660		1.00	42.33
ATOM-	2025		· ·		473		38.665		1.00	36.39
ATOM				A	473	13.092	38.294		1.00	36.44
ATOM	`			A	474	12.918	39.567		1.00	37.92
ATOM	·			A	474		38.413		1.00	36.38
ATOM	_ •			A	474				1.00	37.61
ATOM				A	474	14.200			1.00	37.96
ATOM	'			A	474	14.436			1.00	39.67
END	~~~	٠, s	ER	A.	474	13.589 4		_	1.00	40.16

Example 5 - TACE Inhibitor Design

The TACE x-ray diffraction coordinates were read into a Sybyl v.6.3 (Tripos Associates) software package and the x-ray structure analyzed graphically. The regions within the original x-ray coordinates were corrected for chirality and atom type. The modified x-ray model of TACE was energy minimized until all the TACE structural parameters were at their equilibrium or optimal values. The energy minimized structure was then compared to the original structure to confirm the absence of anomalies.

Sites of specific interaction(s) between TACE and the co-crystallized inhibitor were identified. The inhibitor was then removed from the X-ray complex model, leaving only the TACE structural model.

Candidate inhibitors were chosen based upon the sites of interaction with TACE and the candidate inhibitor in light of the sites of interaction identified previously for the co-crystallized inhibitor. Once specific candidate inhibitor-TACE interactions were determined, docking studies were performed to provide preliminary "modeled" complexes of selected candidate inhibitors with TACE.

Constrained conformational analysis was performed using molecular dynamics (MD) to check the integrity of the modeled TACE-inhibitor complex. Once the complex reached its most favorable conformational state, the structure as proposed by the MD study was analyzed visually to insure that the modeled complex complied with known experimental SAR/QSAR based on measured binding affinities.

The modeled candidate inhibitor-TACE complex was analyzed. The region of the complex associated with the S1' regions of TACE containing a small solvent exposed channel was chosen as a target region for modification. A single modification, a benzyl group which becomes embedded within the target region, was selected based upon computational and synthetic chemical principles. The benzyl group was oriented on an appropriate zinc chelator core so as to be projected

5

10

15

20

25

into the S1' S3' pocket. This modification converts an inhibitor which was generally MMP selective to one which is TACE selective. IC50 data for the inhibitor with a benzyl modification confirm this selectivity.

Structure-based analoging for optimization of inhibitor potency, selectivity and physical drug-like properties was performed in an iterative manner.

Example 6 - Measuring TACE Inhibition

250μM peptide substrate (Ac-SPLAQAVRSSSR-NH₂) was incubate with 3.7 U/μL TACE in a buffer containing 10mM TRIS HCl, pH 7.4, 10% glycerol at 25 degrees C. The reaction was quenched with 1% TFA (final concentration) after two hours. The reaction mixture was separated by HPLC on a Hewlett-Packard 1150. The product formation was monitored by absorbance at 220nm.

The linearity of the reaction was confirmed ($r^2 > 0.85$). The mean (x \pm sem) of the control rate was calculated and compared for statistical significance (p < 0.05) with drug-tested rates using Dunnett's multiple comparison test. Dose-response relationships were generated using multiple doses of drug and IC₅₀ values with 95%. CI were estimated using linear regression.

the property of the state of the state of the state of

From the foregoing description and examples, one skilled in the art can ascertain the essential characteristics of the invention and, without departing from the spirit and scope of the invention, can make changes, modifications, and variations of the invention to adapt it to various uses and conditions. Additionally, the disclosure of all publications and patent applications cited above, including U.S. provisional patent application serial No. 60/073,709 and U.S. patent application serial No. 09/050,083, are expressly incorporated herein by reference in their entireties to the same extent as if each were incorporated by reference individually.

5

10

15

20

25

What We Claim Is:

1. A composition comprising a polypeptide in crystalline form, wherein the polypeptide is a TNF- α -converting enzyme polypeptide.

- 2. A composition according to claim 1, wherein the TNF- α -converting enzyme polypeptide comprises the TNF- α -converting enzyme catalytic domain.
- 3. A composition according to claim 1, wherein the TNF- α -converting enzyme polypeptide is the expression product of a polynucleotide encoding the pro and catalytic domains of TNF- α -converting enzyme.
- 4. A composition according to claim 1, wherein the TNF- α -converting enzyme polypeptide is the expression product of a polynucleotide encoding the amino acid residues 1-477 of TNF- α -converting enzyme.
- 5. A composition according to claim 4, wherein the polynucleotide is substituted such that amino acid residue Ser266 is changed to Ala and amino acid residue Asn542 is changed to Gln, and wherein a second polynucleotide encoding the sequence Gly-Ser-(His)₆ is fused to the C-terminus.
- 6. A composition according to claim 1, further comprising a binding partner suitable for co-crystallization with the TNF- α -converting enzyme polypeptide.
- 7. A composition according to claim 6, wherein the binding partner is a hydroxamate-based binding partner.

- 8. A composition according to claim 6, wherein the binding partner is N-{D,L-2-(hydroxyaminocarbonyl)methyl-4-methylpentanoyl}-L-3-amino-2-dimethylbutanoyl-L-alanine,2-(amino)ethyl amide.
- 9. A composition according to claim 1, wherein the crystal has a crystal structure diffracting to $2.0\ \text{Å}$.
- 10. A composition according to claim 1, wherein the crystal is monoclinic.
- 11. A composition according to claim 1, wherein the unit cell of the crystal comprises four crystallographically independent TNF- α -converting enzyme catalytic domain (TCD) molecules.
- 12. A composition according to claim 11, wherein the TCD molecules are in an asymmetric unit.
- 13. A composition according to claim 1, wherein the crystal is of monoclinic space group P2₁ and the cell has the constants a=61.38 A, b=126.27 A, c=81.27 A, and $\beta=107.41^{\circ}$.
 - 14. A composition according to claim 1, wherein the polypeptide is characterized by the structure coordinates according to Table 1, or a substantial part thereof.
 - 15. A method for crystallizing a TNF- α -converting enzyme polypeptide, comprising:

(A) mixing a solution comprising a TACE polypeptide and a binding partner with a crystallization buffer; and

- (B) crystallizing the mixture of step (A) by drop vapor diffusion to form a crystalline precipitate.
 - 16. The method according to claim 15, further comprising:
- (C) transferring seeds from the crystalline precipitate formed by the drop vapor diffusion and a crystallization promotor into a mixture of a concentrated solution comprising a TACE polypeptide and binding partner substrate, and a crystallization buffer; and
- (D) crystallizing the mixture of step (C) by drop vapor diffusion to form a crystal.
- 17. The method of claim 15 or 16, wherein said crystallization buffer is 0.1M Na Citrate pH 5.4, 20%w/v PEG 4000, and 20% v/v Isopropanol.

 18.The method of claim 15 or 16, wherein the binding partner is N-{D,L-2-(hydroxyaminocarbonyl)methyl-4-methylpentanoyl}-L-3-amino-2-dimethylbutanoyl-L-alanine, 2-(amino)ethyl amide.
- 19. The method of claims 15 or 16, wherein crystallization is at a temperature ranging from 4 to 20 degrees Celsius.

Company of the second section

الوارورون كالراز والمراج المنافية

20. The method of claim 15 or 16, wherein the solution comprising the TACE polypeptide and the inhibitor is at a concentration of about 5 mg/mL to about 12 mg/mL in a buffer.

- 21. The method of claim 20, wherein the solution comprising a TACE polypeptide and the binding partner is mixed with the crystallization buffer in a 1:1 ratio
- 22. A tumor necrosis factor- α (TNF- α)-converting enzyme crystal made by co-crystallizing a TNF- α -converting enzyme polypeptide with a co-crystallization substrate.
- 23. A computer-readable medium having recorded thereon x-ray crystallographic coordinate data for the catalytic domain of TNF- α converting enzyme, or a portion thereof.
- 24. A computer-readable medium having recorded thereon the x-ray crystallographic coordinate data set forth in Table 1, or a portion thereof.

 25.A computer-readable medium of claim 23 or 24, wherein the medium is selected from the group consisting of a floppy disc, a hard disc, computer tape, RAM, ROM, CD, DVD, a magnetic disk, and an optical disk.
- 26. A computer-readable medium having recorded thereon machine-readable data, wherein the computer-readable medium, when used in conjunction with a machine programmed with instructions for using the data, is capable of generating image signals for depicting a graphical, three-dimensional representation of a TNF- α converting enzyme polypeptide, or portion thereof.
- 27.A system for studying a TNF- α converting enzyme polypeptide, said system comprising:

ter sommer from the light with the

(a) a memory capable of storing information representing at least a portion of a TNF-α converting enzyme polypeptide, wherein said memory

comprises at least one first-type storage region, including a set of spatial coordinates specifying a location in a three dimensional space, and at least one second-type storage region comprising information representing a characteristic of one of a plurality of amino acids, said second-type storage regions being logically associated with said first-type storage regions in said memory to represent a geometric arrangement of at least one characteristic of said at least a portion of said TNF- α converting enzyme peptide in said three dimensional space;

- (b) a processor coupled to said memory to access said first-type storage regions and said second-type storage regions, wherein the processor generates image signals for depicting a visual image representing three dimensional image of said at least one characteristic of said at least a portion of said TNF- α converting enzyme polypeptide in said three dimensional space based on data from said memory; and
- (c) a display coupled to said processor to receive said image signals, wherein the display depicts a visual three dimensional image of said at least one characteristic of said at least a portion of said TNF- α converting enzyme polypeptide in said three dimensional space based on said image signals.
- 28. A system as set forth in claim 27, wherein said image signals include signals for depicting a visual three dimensional image of a ribbon structure of said at least a portion of said TNF-α converting enzyme polypeptide in said three dimensional space.
- 29. A system as set forth in claim 27, wherein said image signals include signals for depicting a visual image of a solid model representation of said at least a portion of said TNF- α converting enzyme polypeptide in said three dimensional space.

* ...

30. A system as set forth in claim 27, wherein said image signals include signals for depicting a visual three dimensional image of electrostatic surface potential of said at least a portion of said TNF- α converting enzyme polypeptide in said three dimensional space.

- 31. A system as set forth in claim 27, wherein said image signals include signals for depicting a visual three dimensional stereo image of said at least a portion of said TNF- α converting enzyme polypeptide in said three dimensional space.
 - 32. A system as set forth in claim 27, further comprising:

a storage device capable of storing data representing a geometric arrangement of a characteristic of a composition other than said TNF- α converting enzyme polypeptide; and

an operator interface for receiving instructions from a operator; and wherein said processor is coupled to said storage device and to said operator interface and generates additional image signals for depicting said geometric arrangement of said characteristic of said composition relative to said visual three dimensional image of said at least one characteristic of said at least a portion of said TNF-α converting enzyme polypeptide on said display based on instructions from the operator interface.

- 33. A system as set forth in claim 32, wherein said storage device is part of said memory.
 - 34. A system as set forth in claim 27, comprising a plurality of first-type and second-type storage regions.

Carlot Control of Attack Straight Control of the

- 35. A video memory capable of storing information for generating a visual display of at least a portion of a TNF- α converting enzyme polypeptide, said video memory comprising:
- (a) at least one first-type storage region, each of said first-type storage regions including a set of spatial coordinates specifying a location in a three dimensional space; and
- (b) at least one second-type storage region, each of said second-type storage regions containing information for visually depicting a characteristic of one of a plurality of amino acids; wherein said second-type storage regions are logically associated with said first-type storage regions in said video memory to represent a geometric arrangement of at least one characteristic of said at least a portion of said $TNF-\alpha$ converting enzyme polypeptide in said three dimensional space.
- 36. A video memory as set forth in claim 35, wherein said second-type storage regions are logically associated with said first-type storage regions in said video memory to represent a geometric arrangement of at least one characteristic of a catalytic domain portion of said TNF- α converting enzyme polypeptide in said three dimensional space.
- 37. A video memory as set forth in claim 35, wherein said first-type storage regions and said second-type storage regions are regions of a semiconductor memory.
- 38. A video memory as set forth in claim 35, wherein said first-type storage regions and said second-type storage regions are regions of an optical disk.

ang manggaran kalandagan kepada dan dibinan kebanah di

But the state of t

- 39. A video memory as set forth in claim 35, wherein said first-type storage regions and said second-type storage regions are regions of a magnetic memory.
- 40. A video memory as set forth in claim 35, comprising a plurality of first-type and second-type storage regions.
- 41. A method of identifying a compound that associates with TNF- α -converting enzyme, comprising:
- (A) designing an associating compound for said polypeptide that forms a bond with the TNF- α -converting enzyme catalytic domain based on x-ray diffraction coordinates of a TNF- α -converting enzyme polypeptide crystal;
 - (B) synthesizing said compound; and

Sangkara de la la Santa Mark de Mercala de describación

- (C) determining the associate capability of said compound with said TNF- α -converting enzyme.
- 42. The method according to claim 41, wherein said associating compound is an inhibitor, mediator, or other compound that regulates TNF- α -converting enzyme activity.
- 43. The method of claim 42, wherein said associating compound is a competitive inhibitor, un-competitive inhibitor, or non-competitive inhibitor.
- The method according to claim 41, wherein the coordinates are the coordinates of Table 1, or a substantial part thereof.
- 45. The method of claim 41, wherein said TNF- α -converting enzyme polypeptide crystal comprises the TNF- α -converting enzyme catalytic domain.

46. The method of claim 41, wherein said TNF- α -converting enzyme polypeptide is the expression product of a polynucleotide encoding the pro and catalytic domains of TNF- α -converting enzyme.

- 47. The method of claim 41, wherein said TNF- α -converting enzyme polypeptide is the expression product of a polynucleotide encoding the amino acid residues 1-477 of TNF- α -converting enzyme.
- 48. The method of claim 47, wherein the polynucleotide is substituted such that amino acid residue Ser266 is changed to Ala and amino acid residue Asn542 is changed to Gln, and wherein a second polynucleotide encoding the sequence Gly-Ser-(His)₆ is fused to the C-terminus.
- 49. The method of claim 41, wherein said TNF- α -converting enzyme polypeptide crystal is co-crystallized with a binding partner.
- 50. The method of claim 49, wherein the binding partner is a hydroxamate-based binding partner.
- 51. The method of claim 49, wherein the binding partner is N-{D,L-2-(hydroxyaminocarbonyl)methyl-4-methylpentanoyl}-L-3-amino-2-dimethylbutanoyl-L-alanine,2-(amino)ethyl amide.
- 52. The method of claim 41, wherein said TNF-α-converting enzyme polypeptide crystal has a crystal structure diffracting to 2.0 Å.

- 53. The method of claim 41, wherein said TNF- α -converting enzyme polypeptide crystal is monoclinic.
- 54. The method of claim 41, wherein said TNF-α-converting enzyme polypeptide crystal has a unit cell comprising four crystallographically independent TNF-α-converting enzyme catalytic domain (TCD) molecules.
- 55. The method of claim 54, wherein the TCD molecules are in an asymmetric unit.
- 56. The method of claim 41, wherein said TNF- α -converting enzyme polypeptide crystal is of monoclinic space group P2, and the cell has the constants a=61.38 Å, b=126.27 Å, c=81.27 Å, and $\beta=107.41^{\circ}$.
- 57. The method of claim 41, wherein the associating compound is designed to associate with the S1' region of TNF- α -converting enzyme.
- 58. The method of claim 41, wherein the associating compound is designed to associate with the S1'S3' pocket of TNF- α -converting enzyme.
- 59. The method of claim 41, wherein the associating compound is designed to incorporate a moiety that chelates zinc.
- 60. The method of claim 41, wherein the associating compound is designed to form a hydrogen bond with Leu348 or Gly349 of TNF- α -converting enzyme.

61. The method of claim 41, wherein the associating compound is designed to introduce a non-polar group which occupies the S1' pocket of TNF- α -converting enzyme.

- 62. The method of claim 41, wherein the associating compound is designed to introduce a group which lies within the channel joining S1' S3' pockets of TNF- α -converting enzyme and which makes appropriate van der Waal contact with the channel.
- 63. The method of claim 41, wherein the associating compound is designed to form a hydrogen bond with Leu348 or Gly349 on the backbone amide groups of TNF- α -converting enzyme.

FIG. 1

FIG. 2A

F1G 2B

110 2274010	•				PC1/US99
		4	17		
250	300	347	397	441	491
SDLNIIRTR RGEESTTTNY TRE.AVAIQ	ITI. VKPGEKHYNM KDPTNPF	LTAINFEGKI FTYQDFDMGT FTDRDFDDGV	HSPINL KNYGKTILTK QNYGSHVPPK	LCIMRPGLTP KYVMYPIAVS NYIMYARATS	RVDEGEECDP WVEQGEECDC
ADRRVFMKYN ADHRFYRYMG TDHLFFKYYG	DLEIWSGQDF QIRILKSPQE RIRINTTADE	TRKRHDNAQL KVCLAHL DYCLAYV	RSSVGIVKD IYLNSGLTST SLNTGIITV	DQGG SKNLGQKENG	NKP ER <i>SNKVCGNS</i> ESGQPICGNG
PQRYIELVVV MKNTCKLLVV EKNTCQLYIQ	NIRVSLT GFKGYGIQIE GIRNISFMVK	FGEWRERVLL FSFDIAEEAS	AYYSPVGKKN SKLYSDGKKK	KDCLRG DGLAECAPNE GTECTPGE	LNQYKPQCIL INQYKPQCIL IESKAQECFQ LEKKRNNCFV
EQNL .VKRRADPDP LLRKRRTTSA	FYRSL IYRNTSWDNA IYQTTDFS	QSSSSNTLNS AWDVKMLLEQ ISVEKFLE.	SMCNP ANSHGGVCPK SGSSGGICEK	GHNLGMEHDG GHNFGAEHDP GHNFGSPHDS	DDSMGYYQKF NCSKQSIYKT LCSIRNISQV
PEELVHR QEKHAINGPE	VHEIVNIINE LIELIDRVDD ISSHVKAIDT	AKSYPNEEKDRFPN		LVAVTMAHEL EADLVTTHEL VSHITFAHEV	GRSYEFS GDHENNKMFS GDKLNNNKFS
205	251	301	348	398	442
ADAM_CROAD TACE hADAM10	ADAM_CROAD TACE hADAM10	ADAM_CROAD TACE hADAM10	ADAM_CROAD TACE hADAM10	ADAM_CROAD TACE hADAM10	ADAM_CROAD TACE hADAM10

F/G. 3

SUBSTITUTE SHEET (RULE 26)

FIG. 5

F/G. 6

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C12N 9/64

A3

(11) International Publication Number:

WO 99/40182

(43) International Publication Date:

12 August 1999 (12.08.99)

(21) International Application Number:

PCT/US99/02185

(22) International Filing Date:

3 February 1999 (03.02.99)

(30) Priority Data:

60/073,709 4 February 1998 (04.02.98) US 09/050,083 30 March 1998 (30.03.98) US Not furnished 27 January 1999 (27.01.99) US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

US 60/073,709 (CON)
Filed on 4 February 1998 (04.02.98)
US 99/050,083 (CON)
Filed on 30 March 1998 (30.03.98)
US Not furnished (CON)
Filed on 27 January 1999 (27.01.99)

(71) Applicants (for all designated States except US): IMMUNEX CORPORATION [US/US]; 51 University Street, Seattle, WA 98101 (US). MAX-PLANCK-INSTITUTE FOR BIO-CHEMISTRY [DE/DE]; Am Klopferitz 18a, D-82152 Martinsreid-Planegg (DE). AMERICAN HOME PRODUCTS CORPORATION [US/US]; 5 Giralda Farms, Madison, NJ 07940 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BLACK, Roy, A. [US/US]; 8062 30th Avenue N.E., Seattle, WA 98115 (US). PAXTON, Raymond, James [US/US]; 6583 156th Avenue S.E., Bellevue, WA 98006 (US). BODE, Wolfram [DE/DE]; Tulpenstrasse 5, D-82131 Gauting (DE). MASKOS, Klaus [DE/DE]; Roggersdorferstrasse 36, D-83607 Holzkirchen (DE). FERNANDEZ-CATALAN, Carlos [ES/DE]; Am Klopferitz 18a, D-82152 Martinsreid-Planegg (DE). CHEN, James, Ming [US/US]; 7 Sargent David Stoddard Court, Bedminster, NJ 07921 (US). LEVIN, Jeremy, Ian [US/US]; 19 Long Meadow Drive, New City, NY 10956 (US).

(74) Agents: ISACSON, John, P. et al.; Foley & Lardner, Suite 500, 3000 K Street, N.W., Washington, DC 20007-5109 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:

7 October 1999 (07.10.99)

(54) Title: CRYSTALLINE TNF-α-CONVERTING ENZYME AND USES THEREOF

(57) Abstract

A tumor necrosis factor- α converting enzyme (TACE) is produced, purified, and crystallized. The three-dimensional coordinates of the crystal are obtained by X-ray diffraction. The coordinates can be recorded on a computer readable medium, or are part of a video memory, where they can be used as part of a system for studying TACE. The coordinates are also used in designing, screening, and developing compounds that associate with TACE.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU.	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE .	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH,	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	. TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ,	Benin	IE	Ireland -	MN	Mongolia	UA	Ukraine
BR	Brazil	IL.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada .	IT .	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic .	. JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI,	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		ZMITOGOWC
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI ·	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

INTERNATIONAL SEARCH REPORT

Interr and Application No PC1/US 99/02185

	PC1/US S	79/02100
A. CLASSIF IPC 6	CLEND/64	
	International Patent Classification (IPC) or to both national classification and IPC	
	SEARCHED cumentation searched (classification system followed by classification symbols)	
IPC 6	C12N	
Documentat	ion searched other than minimum documentation to the extent that such documents are included in the fields	searched
Electronio da	ata base consulted during the international search (name of data base and, where practical, search terms use	ed)
	NTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	WO 96 41624 A (IMMUNEX CORP)	1-6,
	27 December 1996 (1996-12-27) cited in the application	9-14,
	cited in the application	23-49, 52-57
	page 7, paragraph 3	
Y	page 18, last paragraph - page 19, paragraph 1	7,8, 15-22,
	paragraph 1	50,51,
		58-63
x	WO 97 35538 A (GLAXO GROUP LTD ;MCGEEHAN	1.6
^	GERARD M (US); CHEN WEN JI (US); MOSS MA)	1-6, 9-14,
	2 October 1997 (1997-10-02)	23-49,
γ ΄	nage 28 last namagnaph nage 20	52-57 7,8,
'	page 28, last paragraph - page 29, paragraph 1	15-22,
	on the control of the same and the control of the c	50,51,
		58-63
<u> </u>	er documents are listed in the continuation of box C. X Patent family members are listed	d in annex.
•	egories of cited documents: T later document published after the ir or priority date and not in conflict wi	
consid	ered to be of particular relevance art which is not cited to understand the principle or invention	
E" earlier d filing d	ocument but published on or after the international and the considered novel or cannot be consid	
which i	nt which may throw doubts on priority claim(s) or involve an inventive step when the sorted to establish the publication date of another	document is taken alone
	or other special reason (as specified) ontreferring to an oral disclosure, use, exhibition or document is combined with one or	inventive step when the more other such docu-
other n		•
later th	an the priority date claimed *&* document member of the same pater	
Date of the a	octual completion of the international search Date of mailing of the international s	earch report
1	1 August 1999 1 8. 08. 99	
Vame and m	nailing address of the ISA Authorized officer	
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel (491.70) 246 0740 Tv 23.651 assets	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 VAN DER SCHAAL (C.A.

Form PCT/ISA/210 (second sheet) (July 1992)

1

INTERNATIONAL SEARCH REPORT

Intern: That Application No PCT/US 99/02185

		PCT/US 99/02185
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	CIRILLI ET AL: "2.ANG. X-ray structure of adamalysin II complexed with a peptide phosphonate inhibitor adopting a retro-binding mode" FEBS LETTERS, vol. 418, 1 January 1997 (1997-01-01), pages 319-322, XP002089575 ISSN: 0014-5793 the whole document	7,8, 15-22, 50,51, 58-63
γ	GOMIS-RÜTH F ET AL: "Structures of adamalysin II with peptide inhibitors. Implications for the design of tumor necrosis factor alpha convertase inhibitors" PROTEIN SCIENCE, vol. 7, February 1998 (1998-02), pages 283-292, XP002111816 page 288; figures 6,7	7,8, 15-22, 50,51, 58-63
Y	US 5 594 106 A (FITZNER JEFFREY N ET AL) 14 January 1997 (1997-01-14) cited in the application the whole document	7,8,50, 51
Y	DECICCO, CARL P. ET AL: "Novel cyclophane inhibitors of matrix metalloproteinases and TNF -alpha converting enzyme." ABSTRACTS OF PAPERS AMERICAN CHEMICAL SOCIETY, (1997) VOL. 214, NO. 1-2, PP. MEDI 96. MEETING INFO.: 214TH AMERICAN CHEMICAL SOCIETY NATIONAL MEETING LAS VEGAS, NEVADA, USA SEPTEMBER 7-11, 1997, XP002111817 abstract 096	7,8,50, 51
γ	US 5 702 935 A (SACCHETTINI JAMES ET AL) 30 December 1997 (1997-12-30) example A	17,19
Α	WO 97 08300 A (ARIAD PHARMA INC) 6 March 1997 (1997-03-06) cited in the application page 1-39; claims; figure 8	23-40
A	WO 97 15588 A (AZZO ALESSANDRA D ; RUDENKO GABRIELLE (US); HOL WIM G J (US)) 1 May 1997 (1997-05-01) cited in the application page 1-19; claims; figure 22	23-40
	-/	

INTERNATIONAL SÉARCH REPORT

PCT/US 99/22/25

Interm Conal Application No PCI/US 99/02185

	C.(Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	<u> </u>	•		
catalytic domain of human tumor necrosis factor-alpha-converting enzyme." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, (1998 MAR 31) 95 (7) 3408-12., XP002111818 the whole document	Category °	Citation of document, with indication, where appropriate, of the relevant passages	<u> </u>	Relevant to claim No.	im No.	
	P,X	factor-alpha-converting enzyme." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, (1998 MAR 31) 95 (7) 3408-12., XP002111818		1-63	ì	
			•			
		•	. :	1 - K		
			· ,	, v.		
					,	
	-					
		:	~			
					`.	
				4 - 2		
		<u>.</u>				

1

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 23-40 could be considered as a mere presentation of information or a computer program , Rule 39.1 (v and vi) PCT, the search has been carried out as far as possible in our systematic documentation
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
· · · · · · · · · · · · · · · · · · ·
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

INTERNATIONAL SEARCH REPORT

nal Application No PCT/US 99/02185

Patent document cited in search report	Publication date			tent family ember(s)	Publication date	
WO 9641624	Α	27-12-1996	US	5830742 A	03-11-1998	
			AU	6378196 A	09-01-1997	
			CA	2222650 A	27-12-1990	
			ΕP	0830130 A	25-03-1998	
•			ИО	975438 A	06-02-1998	
			CN	1211918 A	24-03-1999	
WO 9735538	Α	02-10-1997	AU	2291397 A	17-10-1997	
			CA	2249985 A	02-10-199	
		ş [*]	EP	0900272 A	10-03-199	
US 5594106	A	14-01-1997	US	5629285 A	13-05-1997	
			AU	5030298 A	05-03-199	
			AU	687436 B	26-02-1998	
			AU	7569494 A	21-03-199	
			EΡ	0715619 A	12-06-199	
			FI	960803 A	22-04-199	
			JP	9503201 T	31-03-199	
			NO	960723 A	23-02-199	
			NZ	271893 A	24-11-199	
		·	WO	9506031 A	02-03-199	
US 5702935	Α	30-12-1997	US	5648392 A	15-07-199	
			ับร	5556778 A	17-09-199	
		•	บร	5837480 A	17-11-199	
			บร	5882878 A	16-03-199	
			US	5837732 A	17-11-199	
WO 9708300	Α	06-03-1997	AU	6960696 A	19-03-199	
			CA	2226963 A	06-03-199	
			EP	0847443 A	17-06-199	
WO 9715588	Α-	01-05-1997	AU	1115797 A	15-05-199	

THIS PAGE BLANK (USPTO)