SI Code: 118

F

INTERMEDIATE EXAMINATION 2018 (ANNUAL)

CHEMISTRY

रेसीयन शास्त्र

I.Sc.

कुल प्रश्नों की सख्या 53 Total No. of Questions: 53

(समय ७ घटे १५ मिन्ही

[Time: 03 Hrs. 15 Minutes]

कुल मुद्रित पृष्ठों की संख्याः 16

Total No. of Printed Pages: 16 (प्रांक 70)

[Marks: 70]

परीकाशियों के लिये निर्देश-Instructions for the candidate:

परीक्षको एका समय अपने राज्यों ने ही उत्तर दे।

Candidates are required to give their answers in their own note as far as practicable

दाहिनी और हारीये पर दियें हुए अक पूर्णक निविश्व करते हैं Figures in the right hand margin indicate full marks.

3 जत्तर देते जन्य परीक्षाओं कथासमय सन्द-सीमा का ध्यान _रहे While answering the questions, candidate should adhere to be word limit as far as practicable.

इस प्रस्त पत्र को ध्यानपूर्वक पढ़ने के लिए 15 मिनट का स्टेन्ट्स समय दिया गया है। 15 Minutes of extra time has been allotted for the candidates to read the questions carefully.

यह प्रश्न-पत्र दो खण्डों में है खण्ड - अ एवं खण्ड - व 5

This question paper is divided into two sections - Section - A and Section - B खन्ड - अ में 35 वस्तुनिश्च प्रश्न हैं. सभी प्रश्न अनिवार्य हैं उत्तेक के लिए 1 अंक निर्धारित हैं). इनका उत्तर उपलब्ध कराये गये OMR - शीट में दिये गये सही इह को काले नीले बोल पेन से भरें । किसी भी प्रकार के व्हाइटनर /तस्त पदार्थ / ब्लेड / नाव्हुन आदि का उत्तर पत्रिका में प्रयोग करना मना है, अथवा परीक्षा परिणाम अमान्य होगा।

In Section - A, there are 35 objective type questions which are compulsory, each carrying 1 mark. Darken the circle with blue black ball pen against the correct option on OMR Sheet provided to you. Do not use Whitener Liquid Blade Nail on OMR Paper, otherwise the result will be invalid.

खण्ड – ब में 15 लघु उत्तरीय प्रश्न हैं। (प्रत्येक के लिए 2 उक निधारित है), जिनमें से किसी 10 प्रश्नों का उत्तर देना अनिवार्य हैं।

इनके अतिरिक्त, इस खण्ड में 3 दीर्घ उत्तरीय प्रश्न दिये गर्द हैं (एत्येक के लिए 5 अंक निर्धारित हैं।) प्रत्येक प्रश्न के लिए विकल्प (अथवा के रूप) में एक और प्रस्न दिया गया है

In Section - B, there are 15 short answer type questions (each carrying 2 marks), out of which any 10 questions are to be answered. Apart from this, there are 3 Long Answer Type questions (Each Carrying 5 marks). Each question has an alternate option.

किसी तरह के इलेक्ट्रॉनिक यत्र का उपयोग वर्जित है।

Use of any electronic device is prohibited.

्ष —अ / (वस्तुनिष्ठ प्रश्न)

SECTION A (Objective Type Questions)

निम्नलिखित प्रस्न संख्या । से ५५ तक	के प्रत्येक प्रश्न के लिए एक ही विकल्प सही है। प्रत्येक प्रश्न
से सही उत्तर उत्तर पत्र में विन्हित करें।	(35×1=35)

In the following question Nos. 1 to 35 there is only one correct answer against each question. For each question, mark the correct option on the answer sheet.

(35×1=35)

- 1. सोडियम पलोराइड के जलीय घोल का विद्युत विच्छेदन कराने पर धनोद एवं ऋणोद प्राप्त प्रतिफल है-
 - (A) F_2 , Na

(B) F_2, H_2

(C) O2, Na

(D) O₂, H₂

A dilute aqueous Solution of sodium fluoride is electrolysed; the products at the anode and cathode are -

(A) F₂, Na

(B) F_2, H_2

(C) O₂, Na

- (D) O₂, H₂
- 2. C_2 अणु में σ और π बन्धन की संख्या है-
 - (A) 1σ और 1π
- (B) 1σ और 2π

(C) सिर्फ 2π

(D) 1σ और 3π

Number of σ and π bonds in C_2 molecule is/are-

- (A) 1σ and 1π
- (B) 1σ and 2π

(C) 2π only

(D) 1σ and 3π

3	. अम्लीय जलांशन के दर का क्रम होगा-	
	$CH = CH_2(1)$	>CH = CH CH
	$C = CH_2 (III)$	
	(A) 1 < 11 < 111	(B) $\pi i < \mu^{2}$ (D) $ i < i ^{2}$
	(C) 1 < 111 < 11	4
	Rate of hydration in aqueous ac	id will be in the or ^k
	$CH = CH_2(I)$	\rightarrow CH = CH $-C_{\parallel}$
	ÇH₃	•
	$C = CH_2$ (III)	
	(A) I < II < III	(B) $III < II^{2}$
	(C) I < III < II	(D) II < 1 < 1
4.	किस अणु का द्विधुव आघूर्ण शून्य है?	
	(A) NF ₃	_(B) BF ₃
	(C) C(O ₂	(D) CH ₂ Cl ₂
	The molecule which has zero of	lipole moment is -
	(A) NF ₃	(B) BF ₃
,	(C) C(O ₂	(D) CH ₂ Cℓ ₂
5.	LiCl, NaCl और KCl के विलय	न का अनन्त तनुता पर समतुल्यांक सूचालकता का सही क्रम है।
	(A) $LiC\ell > NaC\ell > KC\ell$	(B) KC/>NaC(>LiC/
	(C) NaC ℓ > KC ℓ > LiC ℓ	(D) $LiC\ell > KC\ell > NaC\ell$
	The correct order of equival	lent conductance at infinite dilution of LiCl, NaCl and
	KCℓ is-	
	(A) $LiC\ell > NaC\ell > KC\ell$	(B) $KC\ell > NaC\ell > LiC\ell$
	(C) $NaC\ell > KC\ell > LiC\ell$	(D) $LiC\ell > KC\ell > NaC\ell$

П.	केनिजारो	प्रतिक्रिया	नहीं	टिरवलास	۵
----	----------	-------------	------	---------	---

(A) - फौरभेत्जिहाइड

⁸ मित्रहर्नितिष्ट (वि)

(C) बेन्जेत्खिहाइड

(D) फरपपूरल

The cannizzaro's reaction is not given by -

(A) Formaldehyde

(B) Acetaldehyde

(C) Benzaldehyde

(D) Furfural

12. कौन शून्य कोटि प्रतिक्रिया को दिखलाता है?

Which represents a zero order reaction?

(A) [A] t → (B) [A]

(C) [A] $t \rightarrow$

(D) [A]

13. किस गैस का अवशोषण चारकोल के द्वारा सबसे अधिक होता है?

(A) CO

(B) NH₃

(C) NCl₃

(D)/H₂

Which gas is absorbed strongly by charcoal?

(A) CO

(B) NH,

(C) NCl₃

(D) H_2

	Page 7 of 16	UM OVE
(C) (CH ₃) ₃ C - X	(D) C ₆ H ₅ -CH ₂ X	. 0.4
(A) CH ₃ -CH ₂ -X	(B) CH, CH—X	
Which alkyl halide follows or	nly SN ² hydrolysis mechanism?	
(C) (CH ₃) ₃ C - X	(D) *C ₆ H ₅ - CH ₂ X	
(A) CH ₃ -CH ₂ -X (C) (CH ₃) ₃ C - X	(B) CH ₃ CH—X	
19. कौन एल्काइलहेलाइड सिर्फ SN ² जर	लांशन क्रियाविधि का अनुगरण करता है?	
(C) $Hg (NH_2) Cl_2$	(D) Hg (NH ₂) Ct	
(A) HgCl ₂ . 2 NH ₃	(B) $\operatorname{Hg}(\operatorname{NH}_1)_2\operatorname{Cl}_2$	
molecular formula of white pre-		
	h ammonia gas and forms white precipitate	. The
(C)—Hg (NH ₂) $C\ell_2$	(D) Hg (NH ₂) CL	
(A) $HgC\ell_2$. 2 NH_3	(B) $Hg(NH_0)_2Cl_2$	
ाठ. भरवयूरक वलाराइड अमानिया गस्त स अणुसूत्र है—	1 NRIBERT TO SULVE	- •
	(11) ते प्रतिक्रिया कर उजता श्रवद्यंप बनाता है। उजले अक्ट्रो	प का
(D) Hydrogen hexa chlorido Pt		
(C) Hydrogen hexa chlorido Pt (
(B) Hydrogen hexachloro platina		
(A) Hydrogen hexachloro platina	ate (IV)	
IUPAC name of H ₂ [Pt Cl ₆] is -	,	
(D) हाइड्रोजन हैक्सा क्लोराइडो Pt (II)		
(C) हाइड्रोजन हेक्सा क्लोराइडो Pt (IV		
(B) हाइड्रोजन हेक्सा क्लोरो प्लेटिनेट (I	, and the second	
(A) हाइड्रोजन हेक्सा वलोरो प्लेटिनेट (IV	V)	
17. H₂ [Pt Cl₀] का IUPAC नाम 🕏 –		

20.
$$O \sim N_2CI \xrightarrow{Cu} O \sim CI + N_2$$

इस प्रतिक्रिया का अर्ध आयुकाल प्रतिकारक की सान्द्रता से स्वतन्त्र है। N2 गैस का आयतन 10 👠 के बाद 10 लीटर एवं प्रतिक्रिया की सम्पूर्णता पर 100 लीटर हो जाता है। तो प्रतिक्रिया का प्रतिमिनट इकाई में है -

(A)
$$\frac{2.303}{10}$$

(B)
$$\frac{2.303}{10}$$
 log 5.0

(C)
$$\frac{2.303}{10}$$
 log 2.0

(D)
$$\frac{2.303}{10}$$
 log 4.0

$$\bigcirc N_{2}CI \xrightarrow{CU} \bigcirc CI + N_{2}$$

Half-life of this reaction is independent of concentration of reactant. After 10 minutes volume of N₂ gas is 10 litre and after complete reaction 100 litre. The rate constant of the reaction in min unit is-

(A)
$$\frac{2.303}{10}$$

(B)
$$\frac{2.303}{10}$$
 log 5.0

(C)
$$\frac{2.303}{10}$$
 log 2.0

(B)
$$\frac{2.303}{10} \log 5.0$$

(D) $\frac{2.303}{10} \log 4.0$

जब Fe (OH)3 सॉल में NaC(का घोल मिलाया जाता है तो -

- (A) [Fe(OH₁)] Fe' प्राप्त होता है। (B) [Fe(OH₂)]Cℓ प्राप्त होता है।
- (C) [Fe(OH,)] Na प्राप्त होता है।
- (D) Fe(OH), अवक्षेपित हो जाता है

When NaC(solution is added to Fe (OH)3 colloidal solution then-

- (A) [Fe(OH,)] Fe is formed
- (B) $[Fe(OH_3)]C\ell$ is formed
- (C) [Fe(OH;)] Na is formed
- (D) Fe(OH), is coagulated

निम्नलिखित जटिल यौगिको में किसका अणुघुम्बकीय आघूर्ण सबसे अधिक है-

Which complex has maximum paramagnetic moment value amongst the following -

(A) $\left[Cr(H_2O)_{\kappa} \right]^{\kappa}$

(B) $[Fe(H_2O)_6]C\ell_2$

(C) [Fe(CN)_s] 4-

(D) [Ni (CO)4]

23.	निम्नलिखित में कौन नेसलर अभिकारक के	्रांच देता है?
	(A) CO ₂	साथ पीला या भूरा अवि
	(C) NaC ((B) NH ₃
	Which of the following gives vell	ow or brown precipitate with alkaline Nessler's
	reagent?	ow or brown process
	(A) CO ₂	(B) NH ₃
	(C) NaCl	(D) KI
24.	केनसुगर (अणुभार = 342) के 5% एक	घोल पदार्थ 🗴 🖟 घोल के आइसोटोनिक है। X का
	अणुभार है	4 4
	(A) 68.4	(B) 34.2
	(C) 171.2	(D) 136.2
	A 5% solution of cane sugar (Mol. Wt =342) is isotonic with 1% solution of
	substance X. The molecular weigh	at of X is -
	(A) 68.4	(B) 34.2
	(C) 171.2	(D) 136.2
25.	$HO \longrightarrow OH \rightleftharpoons O=$	=0 + 2H* - 2e ; E° = 1.30V , pH = 2 पर इत्क्ट्रोड
	विभव है-	
	(A) 1.36 V	(B) 1.30 V
	(C) 1.42 V	(D) 1.20 V
	но—О—он — о=<	O +2H* - 2e E° = 1.30V, At pH = 2, Electrod
	potential is -	
	(A) 1.36 V	(B) 1.30 V
	(C) 1.42 V	(D) 1.20 V

- (A) Stephen's reaction
- (B) Cannizzaro's reaction
- (C) Rosenmund's reaction
- (D) Hinsberg's reaction

(C)

11

 $C_6H_5-C-CH_3$

(D)

ŵ.

C.H. - C-C.H.

	~ı Kı		
	में आधि में आधि में	वासन	पर उजला अवशेष प्राप्त होता है. यह उजला अवशेष है
32.		(B)	Cu2 I2
	(A) Cu l ₂	(D)	- t
	(C) Cu ₂ SO ₄	ina.	12
	Copper sulphate solution	valin	ent with excess of KI gives whitish precipitate
	The precipitate is		
	(A) Cu I ₂	(B)	$Cu_2 I_2$
	(C) Cur SO:	(D)	I;
22	्र क्रिक्ट की कार्या आर्थी अर्थित क्रिक्ट का	अवस्थ	T &_
33.	(A) +3	(B)	+5
	(C) +3 और +5 दोनी		कोई नही
	Most stable oxidation state of b		
		(B)	
	(A) +3		
	(C) +3 and +5 both		None
34.	कौन- सी धातु का नवादे <i>ं हैं</i> । ता ^{का प्}		न होने पर रंगहीन गैस मुक्त करता है?
	(A) NaNO ₃	(B)	Cu (NO ₃) ₂
	(C) Ba $(NO_3)_2$	(D)	Hg (NO ₁) ₂
	Which metal nitrate gives colon	desa	gas on thermal decomposition?
	(A) NaNO,	(B)	Cu (NO ₁) ₂
	(C) Ba (NO ₁) ₂	(D)	Markon .
.:-	निम्नालिखित में जीनसे जोड़े में जिन्हर	वीटः	नह (NOD) लब्हीय वॉयड और अष्टेफलकीय वॉयड हाता ह ?
{	A) bee after fee		bcp और सिम्पल क्यूबिक
	C) hep she cep	- 45	bec afte hep
ų . 4	n which of the following part	x of	Structure
. Y	olds respectively?	- 0,	structures are tetrahedral as well as octahedral
	harmatt.	/ D -	
	hep and eep	(15)	hep and simple cubic
	and the	(D)	bcc and hcp
nd S			

खण्ड -व (ग्रेय-तरगुनिका प्रेषः) SECTION - B (Non - Objective Type Questions) (तघु उत्तरीय प्रश्न) (Short Answer Type Questions)

ieirer any ten questions:-

करें दस प्रश्नों के उत्तर दें :-इत्वरोड और इत्वट्रोड विभव को परिमापित करे।

(1+1=2)

Define electrode and electrode potential.

त्राइटोजन सिर्फ NCC3 का निर्माण करता है जबकि श्रीस्क्रोरस PCI3 और PCI5 दोनों बनाता है।

व्याच्या करें। Nitrogen forms only NCl3 but phosphorous forms PCl3 and PCl5 both. Explain.

क्यों किसी तरल में अउड़नशील ठोस घुल्य डालने पर उसके वाष्य दाब में कमी आती है? (2)

Why does vapour pressure of a liquid decrease with addition of a non-volatile solid

solute? (2)नाइट्रोजन की इलेक्ट्रॉन बन्धुता कार्बन से कम होती है। ल्ला?

Electron affinity of nitrogen is less than Carbon. Why?

(2) P - नाइट्रोफिनॉल, P - मिथाईल फिनॉल से अधिक आम्लीय होता है। क्यॉं?

P-Nitrophenol is more acidic than P-methyl phenol. Why?

P. Nitrophenol is more acidic than P-methyl phenol. (1+1=2)
$$C_6H_6 \xrightarrow{Cl_2} [A] \qquad CH_3-Cl \\ AlCl_3 \qquad [B]$$

[A] और [B] का नाम और संरचना लिखें।

$$C_6H_6 \xrightarrow{Cl_2} [A]$$
 CH_3-Cl $AlCl_3$

Write the name and structure of [A] and [B].

[118]

किंडल-कांघर की एटकाइटोर्स अधिकायाओं को लिखे। (1+1=2)किंडल-काप्ट की त्यां alkylation and acylation reaction.
Write Friedel — Crafts विकास Write Friedel - Crais की परिमापित करें। (1+1=2)विशिष्ट एवं समतुत्याक करें।

Define specific conductance के equivalent conductance. Define specific conductance.

प्रथम कोटि की प्रतिक्रियों की उत्तरिक शिक्षां की दर निकालें। (2)प्रधम कोटि की प्रातामां विदर निकालें।

Half life period of first order reaction is 10 minutes. Calculate the rate constant of the reaction.

10, किसी दोस पर गैस के अवर्गीवित होने पर उष्णागतिकीय परिवर्तनों का वर्णन करें। (1+1=2)किसी ठास पर नारा | changes when a gas is adsorbed on a solid? 11. निम्न प्रतिक्रियाओं के लिए विद्युतीय **सेल बनायें** — (1+1=2)(i) Fe + Cu² \rightarrow Cu + Fe² (ii) $2 \text{ Fe}^{3x} + 2C\Gamma \rightarrow 2\text{Fe}^{2x} + \text{Cl}_{\frac{3}{2}}$ Construct electric cells for the following reactions -(i) $Fe + Cu^{2+} \rightarrow Cu + Fe^{2+}$ (ii) $2 \text{ Fe}^{3a} + 2C\Gamma \rightarrow 2\text{Fe}^{2a} + \text{Cl}_2$ 12. सिलिकॉन सिर्फ +4 ऑक्सीकरण अवस्या दिखलाता है जबकि टीन +2 और +4 दोनों दिखलाता है। Silicon shows only +4 oxidation state but tin shows both +2 and +4 oxidation states क्यों? both. Why? 13. अमोनिया गैस की क्रमशः जलीय CuSO4 और AgNO3 घोल के साथ प्रतिक्रिया लिखें। (1+1=2) Write the chemical reaction of NH₃ gas with aqueous CuSO₄ and AgNO₃ solutions respectively. (1+1=2)14/ HI, HF से शक्तिशाली अम्ल है। व्याख्या **करें।** HI is stronger acid than HF. Explain. (2)15 वेन्जीन के नाइट्रेशन की विधि का वर्णन करें। Describe method of nitration of benzene.

[118]

Long Answer Type of 1100

तीनों प्रश्नों के उत्तर लिखें :--

Answer all the three questions:-

16. प्रतिक्रिया के प्रथम कोटि के गतिकी का वर्णन करें। क्या प्रिक्तिया की प्रथम कोटि कमी पूर्ण नहीं होती
है?
(4+1=5)

Describe the kinetics of a first order reaction, Why is a first order reaction never completed?

अथवा \sqrt{OR} किसी प्रतिक्रिया की उत्तेजन ऊर्जा 80kJ mol^{-1} है। यहिं प्रतिक्रिया का आवृति गुणक 4.0×10^{10} ली. प्रतिमोल हो तो प्रतिक्रिया का वेग स्थिरांक 400k पर निकालें।

For a chemical reaction the energy of activation is $80kJ \text{ mol}^{-1}$. If frequency factor is $4.0 \times 10^{10} \text{ Lmol}^{-1}$. What is rate constant at 400 k?

17. निम्नलिखित में अंतर स्पष्ट करने के लिए जाँच/जाँचों को लिखें।

(1+1+1+1+1=5)

- (i) इथेनॉल और एसिटल**डिहाइड**
- (ii) फिनॉल और कार्बोक्सिलिक अम्ल
- (iii) प्रत्डिहाइड और किट्रोन
- (iv) फॉर्मिक अम्ल और एसिटिक अम्ल
- (v) प्राइमरी, सेकेण्डरी एवं टरशियरी अल्कॉहल

Write the test by which following are distinguished:

- (i) Ethanol and Acetaldehyde
- (ii) Phenol and carboxylic acid
- (iii) Aldehyde and Ketone
- (iv) Formic acid and acetic acid
- (v) Primary, secondary and tertiary alcohols

No. Plat ✓ OR

निम्न परिविधाः व

 $(2^{1/2} + 2^{1/2} = 5)$

- (i) हॉफमेन होमा³
- (ii) क्लेमेनसन अवकरण

Write the following name

- (i) Hoffmann by "
- (ii) Clemmensen's re

dehyde and Ketone

18/ कॉपर के मुख्य अयरक कर

पिर पायराइट्स से कॉपर का निष्कर्षण कैसे किया जाता (1+4=5)

What are the important or soil control of How is copper extracted from copper pyrites?

अथवा/OR

क्या होता है जबकि 😑

(2+3=5)

- (i) क्लोरीन गैर №-OH
- (ii) नाइट्रिक अम्ल Zn या में विष्या सुन्द्रण पर प्रतिक्रिया करता है।

What happens when :-

- (i) Chlorine gas reacts with Nation colution.
- (ii) Nitric acid reacts v. d. Zn or in different concentrations.