Chapitre 2 Dr. Khaled ROUABAH

Sommaire

Notions de probabilités	2
Expériences Aléatoires	2
Epreuve	- 2
Evénement	- 2
Espace des solutions	- 2
Remarques	- 2
Algèbre des événements	3
Probabilités des événements	3
Propriétés élémentaires	3
Evénements équiprobables	3
Probabilités conditionnelles	- 4
Événements indépendants	- 5
Probabilité totale	- 6

Dr. Khaled ROUABAH

RAPPELS SUR LA THEORIE DES PROBABILITES

Notions de probabilités

Expériences Aléatoires

Une expérience est dite aléatoire si ses résultats ne sont pas prévisibles avec certitude en fonction des conditions initiales.

Epreuve

On appelle épreuve la réalisation d'une expérience aléatoire.

Evénement

On appelle événement, la propriété du système, c.-à-d., si l'épreuve est effectuée alors la propriété du système est réalisée ou non.

Exemple

Soit l'expérience aléatoire « Lancer deux dés ».

L'événement A : « Obtenir un total de nombre >10 » →

A se réalise pour les épreuves :

(6,5), (5,6), (6,6).

Espace des solutions

L'ensemble des résultats possibles d'1 expérience aléatoire est appelé l'espace des solutions ou des réalisations, noté « S ».

Un élément de « S » est appelé un point solution.

Chaque résultat d'1 expérience correspond à un échantillon de « S ».

Exemple

Une caisse contient 3 boules rouges et 3 boules noires. On tire une boule au hasard. Donner l'espace des solutions.

 $S = \{Boule \ rouge, \ Boule \ noire \} = \{r, r, r, n, n, n\}$

Remarques

- Un ensemble, A est appelé sous ensemble de B et est noté $A \subset B$, si tous les éléments de A sont aussi éléments de B.
- L'espace des solutions « S » est un sous ensemble de lui-même, soit : $S \subset S$

Université de Bordj Bou Arréridj

Faculté des Sciences et de la Technologie

Département d'électronique

Notes de cours SAPS Master1-ST

Chapitre 2

Dr. Khaled ROUABAH

2017/2018

S est appelé événement certain.

Algèbre des événements

- Le complément de A, notée \bar{A} , est l'événement contenant tous les échantillons de « S » à l'exception de ceux de A.
- AUB correspond à l'évènement contenant tous les échantillons soit de A soit de B soit aux deux.
- -A∩B correspond à l'événement contenant tous les échantillons appartenant en même temps à A et à B.
- -Ø correspond à l'évènement impossible qui ne contient aucun échantillon.
- -A et B sont dits en mutuelle exclusion ou disjoints s'ils ne contiennent aucun échantillon commun, soit $A \cap B = \emptyset$.

Probabilités des événements

La probabilité P(A) d'un événement A est un nombre réel associé à A de telle façon à satisfaire les trois axiomes (hypothèses, postulats) suivantes :

Axiome 1: $p(A) \ge 0$

Axiome 2: p(S)=1

Axiome 3: $P(A \cup B) = P(A) + P(B)$ si:

 $A \cap B = \emptyset$.

Propriétés élémentaires

- $P(\bar{A})=1-P(A)$.
- $P(\emptyset)=0$.
- $P(A) \le P(B)$ si $A \subseteq B$
- P(A)≤1
- $P(A \cup B) = P(A) + P(B) P(A \cap B) \Rightarrow 0 \le P(A) \le 1$.
- $P(A \cup B) \leq P(A) + P(B)$.

Evénements équiprobables

Considérons un espace des solutions fini « S ».

 $S = {\lambda_1, \lambda_2, ..., \lambda_n}$ avec : λ_i : les éléments élémentaires

 $P(\lambda_i)=P_i$.

Avec: $0 \le P_i \le 1$

 \forall , i=1,2,...,n

2017/2018

Dr. Khaled ROUABAH

$$\sum_{i=1}^{n} P_{i} = P_{1} + P_{2} + \dots + P_{n} = 1$$

Si $A=\bigcup_{i\in I} \lambda_i$ avec I : ensemble d'indice quelconque.

$$P(A) = \sum_{\lambda_i \in A} P(\lambda_i) = \sum_{i \in I} P_i$$
.

Lorsque tous les éléments élémentaires λ_i (i=1,2,...,n) sont équiprobables alors :

$$P_1 = P_2 = \cdots = P_n$$
.

Chapitre 2

Comme :
$$\sum_{i=1}^{n} P_i = 1 \Rightarrow \sum_{i=1}^{n} P = 1 = nP \Rightarrow p = \frac{1}{n}$$

L'une des conséquences de la condition d'additivité est que la probabilité d'un événement quelconque est égale à la somme des probabilités des événements élémentaires λ_i qui le constituent.

Il en résulte que la connaissance des probabilités des événements élémentaires détermine entièrement les probabilités sur un ensemble de possibilités.

Probabilités conditionnelles

Elle est noté P(A/B) ou P(B/A) et elle est définie par :

•
$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$
. avec: $P(B) > 0$,

•
$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$
. avec: $P(A) > 0$,

•
$$P(A \cap B) = P(A/B) \cdot P(B) = P(B/A) \cdot P(A)$$
.

Si un événement résulte du concours (التعاون) de deux événements, sa probabilité est égale à celle de l'un d'eux multipliée par la probabilité conditionnelle de l'autre sachant que le premier est réalisé.

La règle de Bayes est donnée par :

$$P(A/B) = \frac{P(B/A) \cdot P(A)}{P(B)}$$

Université de Bordj Bou Arréridj 2017/2018

Faculté des Sciences et de la Technologie

Département d'électronique

Notes de cours SAPS Master1-ST

Chapitre 2

Dr. Khaled ROUABAH

Exemple

Soit à calculer la probabilité pour que, tirant successivement deux cartes d'un jeu de 32 cartes, ces deux cartes soient des valets. Appelons A et B les deux événements suivants :

- A: la première carte est un valet,
- B: la deuxième carte est un valet.

La probabilité cherchée est $P(A \cap B)$ avec $P(A \cap B) = P(A)$. P(B/A).

Lors du premier tirage, il y a 32 cartes et 4 valets dans le jeu, d'où (A) = $\frac{4}{32}$.

Lors du second tirage, il reste 31 cartes et seulement 3 valets, puisque l'événement A est réalisé,

d'où
$$P(B/A) = \frac{3}{31}$$
.

Le résultat est donc: $P(B \cap A) = \frac{3}{31} \cdot \frac{4}{32} = \frac{3}{248} = 0.012$

Événements indépendants

Par définition, deux événements sont indépendants, si la probabilité de l'un n'est pas modifiée lorsque l'autre est réalisé.

Deux événements A et B sont dits statistiquement indépendants si :

$$P(A/B)=P(A)$$

et:

$$P(B/A)=P(B)$$

$$\Rightarrow P(A \cap B) = P(A) \cdot P(B)$$

Les événements ($A_1, A_2, ..., A_n$) sont indépendants si et seulement si :

$$P(A_1 \cap A_2 \cap A_3 \cap ... \cap A_n) = P(A_1).P(A_2)...P(A_n).$$

Exemple

Les deux événements A et B de l'exemple précédent n'étaient pas indépendants. Mais si, par contre, on tire la deuxième carte après remise de la première dans le jeu, les résultats des deux tirages deviennent indépendants et $P(B \cap A) = P(A) \cdot P(B) = \frac{4}{32} \cdot \frac{4}{32} = \frac{1}{64} = 0.0156$

Dr. Khaled ROUABAH

Probabilité totale

Chapitre 2

Les événements $A_1, A_2, A_3, ..., A_n$ sont dits en exclusion mutuelle et exhaustifs si :

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup ... \cup A_n = S$$

et $A_i \cap A_j = \emptyset$ avec $i \neq j$

Soit B un événement quelconque de 'S', nous pouvons définir la probabilité totale de l'événement B comme suite :

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B/A_i) \cdot P(A_i)$$

$$\Rightarrow P(A_i/B) = \frac{P(B/A_i)}{\sum_{i=1}^{n} P(B \cap A_i) \cdot P(A_i)} = \frac{P(A_i)P(B/A_i)}{\sum_{i=1}^{n} P(B/A_i) \cdot P(A_i)}$$

C'est le théorème de Bayes.