Теория категорий Конструкции в категориях

Валерий Исаев

07 сентября 2015 г.

План лекции

Мономорфизмы и эпиморфизмы

Произведения

Уравнители

▶ В категории **Set** морфизм является изоморфизмом тогда и только тогда, когда он инъективен и сюръективен.

- ▶ В категории **Set** морфизм является изоморфизмом тогда и только тогда, когда он инъективен и сюръективен.
- Верно ли это в произвольной категории?

- ▶ В категории **Set** морфизм является изоморфизмом тогда и только тогда, когда он инъективен и сюръективен.
- Верно ли это в произвольной категории?
- Чтобы данный вопрос имел смысл, нам понадобится обощение понятия инъективных и сюръективных функций.

- ► В категории **Set** морфизм является изоморфизмом тогда и только тогда, когда он инъективен и сюръективен.
- Верно ли это в произвольной категории?
- Чтобы данный вопрос имел смысл, нам понадобится обощение понятия инъективных и сюръективных функций.
- Морфизм $f:X \to Y$ называется мономорфизмом, если для любых стрелок $g,h:Z \to Y$ равенство $f\circ g=f\circ h$ влечет g=h.

$$Z \xrightarrow{g} X \xrightarrow{f} Y \implies g = h$$

- ▶ В категории **Set** морфизм является изоморфизмом тогда и только тогда, когда он инъективен и сюръективен.
- Верно ли это в произвольной категории?
- Чтобы данный вопрос имел смысл, нам понадобится обощение понятия инъективных и сюръективных функций.
- Морфизм $f:X \to Y$ называется мономорфизмом, если для любых стрелок $g,h:Z \to Y$ равенство $f\circ g=f\circ h$ влечет g=h.

$$Z \xrightarrow{g} X \xrightarrow{f} Y \implies g = h$$

 Мономорфизмы в Set – это в точности инъективные функции.

Мономорфизмы в алгебраических категориях

Proposition

В любой алгебраической категории (**Grp**, **Ab**, **Ring**, ...) мономорфизмы – это в точности инъективные функции.

Доказательство.

Докажем для \mathbf{Grp} , для остальных можно доказать аналогично. Пусть $f:A\to B$ — инъективный гомоморфизм групп, и $g,h:C\to A$ — такие, что $f\circ g=f\circ h$. Так как f — мономорфизм множеств, то g и h равны как функции над множествами. Но отсюда следует, что они равны как гомоморфизмы групп.

Наоборот, если f — мономорфизм, то пусть $a_1,a_2\in A$ такие, что $f(a_1)=f(a_2)$. Тогда рассмотри пару гомоморфизмов $g_1,g_2:\mathbb{Z}\to A$ таких, что $g_i(1)=a_i$. Так как $f\circ g_1=f\circ g_2$, то $g_1=g_2$. Следовательно $a_1=g_1(1)=g_2(1)=a_2$.

lacktriangle Морфизм f:X o Y называется епиморфизмом, если

$$X \xrightarrow{f} Y \xrightarrow{g} Z \implies g = h$$

lacktriangle Морфизм f:X o Y называется епиморфизмом, если

$$X \xrightarrow{f} Y \xrightarrow{g} Z \implies g = h$$

▶ Эпиморфизмы в Set — это в точности сюръективные функции.

lacktriangle Морфизм f:X o Y называется епиморфизмом, если

$$X \xrightarrow{f} Y \xrightarrow{g} Z \implies g = h$$

- Эпиморфизмы в Set это в точности сюръективные функции.
- Эпиморфизмы в категориях моноидов и колец не обязательно сюръективны.

lacktriangle Морфизм f:X o Y называется епиморфизмом, если

$$X \xrightarrow{f} Y \xrightarrow{g} Z \implies g = h$$

- Эпиморфизмы в Set это в точности сюръективные функции.
- Эпиморфизмы в категориях моноидов и колец не обязательно сюръективны.
- ▶ Примеры: $\mathbb{N} \hookrightarrow \mathbb{Z}$, $\mathbb{Z} \hookrightarrow \mathbb{Q}$.

Эпиморфизмы в **Set**

Proposition

Эпиморфизмы в **Set** – это в точности сюръективные функции.

Доказательство.

Пусть $f:A\to B$ — сюръекция, и $g,h:B\to C$ — такие, что $g\circ f=h\circ f$. Тогда для любого $b\in B$ существует $a\in A$ такой, что f(a)=b. Следовательно g(b)=g(f(a))=h(f(a))=h(b). Наоборот, если $f:A\to B$ — эпиморфизм, то пусть $g,h:B\to \{0,1\}$ — такие, что g всегда равно 1, а h(b) равно 1 в точности когда существует $a\in A$ такой, что f(a)=b. Тогда $g\circ f=h\circ f$. Следовательно g=h. Следовательно для любого $b\in B$ верно, что h(b)=g(b)=1, то есть существует $a\in A$ такой, что f(a)=b, то есть f — сюръекция.

Морфизм $f:A\to B$ называется расщепленным мономорфизмом, если существует $g:B\to A$ такой, что $g\circ f=id_A.$

- ightharpoonup Морфизм f:A o B называется расщепленным мономорфизмом, если существует g:B o A такой, что $g\circ f=id_A$.
- ightharpoonup Морфизм g:B o A называется расщепленным эпиморфизмом, если существует f:A o B такой, что $f\circ g=id_B$.

- ightharpoonup Морфизм f:A o B называется расщепленным мономорфизмом, если существует g:B o A такой, что $g\circ f=id_A$.
- ightharpoonup Морфизм g:B o A называется расщепленным эпиморфизмом, если существует f:A o B такой, что $f\circ g=id_B$.
- Любой расщепленный мономорфизм является мономорфизмом. Действительно, если $f\circ h_1=f\circ h_2$, то $h_1=g\circ f\circ h_1=g\circ f\circ h_2=h_2$.

- ightharpoonup Морфизм f:A o B называется расщепленным мономорфизмом, если существует g:B o A такой, что $g\circ f=id_A$.
- ▶ Морфизм $g: B \to A$ называется расщепленным эпиморфизмом, если существует $f: A \to B$ такой, что $f \circ g = id_B$.
- Любой расщепленный мономорфизм является мономорфизмом. Действительно, если $f\circ h_1=f\circ h_2$, то $h_1=g\circ f\circ h_1=g\circ f\circ h_2=h_2$.
- Любой расщепленный эпиморфизм является эпиморфизмом. Доказательство аналогично предыдущему.

 Категория называется сбалансированной, если любой мономорфный и эпиморфный морфизм является изоморфизмом.

- Категория называется сбалансированной, если любой мономорфный и эпиморфный морфизм является изоморфизмом.
- ▶ Примеры сбалансированных категорий: **Set**, **Grp**, **Ab**.

- Категория называется сбалансированной, если любой мономорфный и эпиморфный морфизм является изоморфизмом.
- ▶ Примеры сбалансированных категорий: **Set**, **Grp**, **Ab**.
- Примеры несбалансированных категорий: категории моноидов и колец.

- Категория называется сбалансированной, если любой мономорфный и эпиморфный морфизм является изоморфизмом.
- ▶ Примеры сбалансированных категорий: **Set**, **Grp**, **Ab**.
- Примеры несбалансированных категорий: категории моноидов и колец.
- ▶ Любой эпиморфный расщепленный мономорфизм является изоморфизмом. Действительно, если $f:A\to B$ и $g:B\to A$ такие, что $g\circ f=id_A$, то $f\circ g\circ f=id_B\circ f$. Следовательно $f\circ g=id_B$.

- Категория называется сбалансированной, если любой мономорфный и эпиморфный морфизм является изоморфизмом.
- ▶ Примеры сбалансированных категорий: **Set**, **Grp**, **Ab**.
- Примеры несбалансированных категорий: категории моноидов и колец.
- Любой эпиморфный расщепленный мономорфизм является изоморфизмом. Действительно, если $f:A\to B$ и $g:B\to A$ такие, что $g\circ f=id_A$, то $f\circ g\circ f=id_B\circ f$. Следовательно $f\circ g=id_B$.
- Любой мономорфный расщепленный эпиморфизм является изоморфизмом. Доказательство аналогично предыдущему.

План лекции

Мономорфизмы и эпиморфизмы

Произведения

Уравнители

▶ В категориях **Set** и **Hask** существует много похожих объектов: \mathbb{Z} и *Integer*, $\{*\}$ и (), $A \times B$ и (a,b).

- ▶ В категориях **Set** и **Hask** существует много похожих объектов: \mathbb{Z} и *Integer*, $\{*\}$ и (), $A \times B$ и (a, b).
- Существует ли обобщение этих конструкций в произвольных катгеориях?

- ▶ В категориях Set и Hask существует много похожих объектов: \mathbb{Z} и Integer, $\{*\}$ и (), $A \times B$ и (a, b).
- Существует ли обобщение этих конструкций в произвольных катгеориях?
- ightharpoonup Объект A некоторой категории ${f C}$ называется Tерминальным, если для любого объекта B существует уникальная стрелка $B \to A$.

- ▶ В категориях **Set** и **Hask** существует много похожих объектов: \mathbb{Z} и *Integer*, $\{*\}$ и (), $A \times B$ и (a, b).
- Существует ли обобщение этих конструкций в произвольных катгеориях?
- ▶ Объект A некоторой категории ${\bf C}$ называется терминальным, если для любого объекта B существует уникальная стрелка $B \to A$.
- ▶ Другими словами, A является терминальным, если для любого B множество $Hom_{\mathbf{C}}(B,A)$ одноэлементно.

▶ В **Set** множество терминально тогда и только тогда, когда оно одноэлементно.

- ▶ В Set множество терминально тогда и только тогда, когда оно одноэлементно.
- ▶ В Grp группа терминальна тогда и только тогда, когда она одноэлементна.

- ▶ В **Set** множество терминально тогда и только тогда, когда оно одноэлементно.
- В Grp группа терминальна тогда и только тогда, когда она одноэлементна.
- ▶ В Hask есть следующие терминальные объекты: (), data Unit = Unit.

- ▶ В Set множество терминально тогда и только тогда, когда оно одноэлементно.
- В Grp группа терминальна тогда и только тогда, когда она одноэлементна.
- В Hask есть следующие терминальные объекты: (), data Unit = Unit.
- Утверждение строчкой выше не является верным :(

- ▶ В Set множество терминально тогда и только тогда, когда оно одноэлементно.
- В Grp группа терминальна тогда и только тогда, когда она одноэлементна.
- B Hask есть следующие терминальные объекты: (),
 data Unit = Unit.
- Утверждение строчкой выше не является верным :(
- В группоиде существует терминальный объект только если он тривиален.

Уникальность терминальных объектов

Proposition

Любые два терминальных объекта изоморфны.

Доказательство.

Если A и B — терминальные объекты, то существует пара стрелок $f:A\to B$ и $g:B\to A$. При этом по уникальности верно, что $g\circ f=id_A$ и $f\circ g=id_B$.

Уникальность терминальных объектов

Proposition

Любые два терминальных объекта изоморфны.

Доказательство.

Если A и B — терминальные объекты, то существует пара стрелок $f:A\to B$ и $g:B\to A$. При этом по уникальности верно, что $g\circ f=id_A$ и $f\circ g=id_B$.

Терминальный объект обычно обозначают 1. Уникальный морфизм из X в 1 обычно обозначают $!_X:X o 1$.

Декартово произведение

• Множество B вместе с парой функций $\pi_i: B \to A_i$ является декартовым произведением множеств A_1 и A_2 , если для любых $a_i \in A_i$ существует уникальный $b \in B$ такой, что $\pi_i(b) = a_i$.

Декартово произведение

- Множество B вместе с парой функций $\pi_i: B \to A_i$ является декартовым произведением множеств A_1 и A_2 , если для любых $a_i \in A_i$ существует уникальный $b \in B$ такой, что $\pi_i(b) = a_i$.
- Объект B вместе с парой отображений $\pi_i: B \to A_i$ называется декартовым произведением A_1 и A_2 , если для любых $f_i: C \to A_i$ существует уникальная стрелка $h: C \to B$ такая, что $\pi_i \circ h = f_i$.

Уникальность декартова произведения

Proposition

Если (B, π_i^B) и (C, π_i^C) – произведения объектов A_1 и A_2 , то B и C изоморфны.

Доказательство.

По определению декартова произведения существуют стрелки $g: B \to C$ и $h: C \to B$ как на диаграмме ниже. По уникальности $h \circ g = id_B$ и, аналогично, $g \circ h = id_C$.

Произведение множества объектов

▶ Если $\{A_i\}_{i\in I}$ – колекция объектов некоторой категории, то объект B вместе с морфизмами $\pi_i: B \to A_i$ называется декартовым произведением объектов A_i , если для любой коллекции морфизмов $\{f_i: C \to A_i\}_{i\in I}$ существует уникальная стрелка $h: C \to B$ такая, что $\pi_i \circ h = f_i$.

Произведение множества объектов

- ▶ Если $\{A_i\}_{i\in I}$ колекция объектов некоторой категории, то объект B вместе с морфизмами $\pi_i: B \to A_i$ называется декартовым произведением объектов A_i , если для любой коллекции морфизмов $\{f_i: C \to A_i\}_{i\in I}$ существует уникальная стрелка $h: C \to B$ такая, что $\pi_i \circ h = f_i$.
- ▶ Декартово произведение объектов $\{A_i\}_{i\in I}$ уникально с точностью до изоморфизма.

Произведение множества объектов

- ▶ Если $\{A_i\}_{i\in I}$ колекция объектов некоторой категории, то объект B вместе с морфизмами $\pi_i: B \to A_i$ называется декартовым произведением объектов A_i , если для любой коллекции морфизмов $\{f_i: C \to A_i\}_{i\in I}$ существует уникальная стрелка $h: C \to B$ такая, что $\pi_i \circ h = f_i$.
- ▶ Декартово произведение объектов $\{A_i\}_{i\in I}$ уникально с точностью до изоморфизма.
- ▶ Оно обозначается $\prod_{i \in i} A_i$. Если $I = \{1, \dots n\}$, то оно обозначается $A_1 \times \dots \times A_n$. Уникальный морфизм $C \to A_1 \times \dots \times A_n$ обозначается $\langle f_1, \dots f_n \rangle$.

Декартовы категория

Категория, в которой существует терминальный объект и бинарные произведения, называется *декартовой*.

Декартовы категория

Категория, в которой существует терминальный объект и бинарные произведения, называется *декартовой*.

Proposition

Категория декартова тогда и только тогда, когда в ней существуют все конечные произведения.

Доказательство.

Терминальный объект — произведение пустого множества объектов, бинарные произведения — произведение двух объектов. И наоборот, произведение A_i можно сконструировать как

$$A_1 \times (A_2 \times \ldots (A_{n-1} \times A_n) \ldots)$$

Это можно доказать по индукции.

План лекции

Мономорфизмы и эпиморфизмы

Произведения

Уравнители

 Часто новые множества конструируются из уже существующих как подмножества элементов, удовлетворяющих некоторому уравнению.

- Часто новые множества конструируются из уже существующих как подмножества элементов, удовлетворяющих некоторому уравнению.
- ightharpoonup Например, множество неотрицательных вещественных чисел $\mathbb{R}_{\geq 0}$ является подмножеством \mathbb{R} таких x, что |x|=x.

- Часто новые множества конструируются из уже существующих как подмножества элементов, удовлетворяющих некоторому уравнению.
- ightharpoonup Например, множество неотрицательных вещественных чисел $\mathbb{R}_{>0}$ является подмножеством \mathbb{R} таких x, что |x|=x.
- ▶ Другой пример: множество корней полинома p является подмножеством $\mathbb R$ таких x, что p(x) = 0.

- Часто новые множества конструируются из уже существующих как подмножества элементов, удовлетворяющих некоторому уравнению.
- lacktriangle Например, множество неотрицательных вещественных чисел $\mathbb{R}_{\geq 0}$ является подмножеством \mathbb{R} таких x, что |x|=x.
- ▶ Другой пример: множество корней полинома p является подмножеством $\mathbb R$ таких x, что p(x)=0.
- ▶ В общем случае, если $f,g:A\to B$ пара функций, то уравнитель этих функций это подмножество A таких x, что f(x)=g(x).

Уравнители в произвольной категории

Vравнитель пары морфизмов $f,g:A\to B$ — это мономорфизм $e:E\to A$ такой, что $f\circ e=g\circ e$ и для любого $h:F\to A$ такого, что $f\circ h=g\circ h$, существует стрелка $g:F\to E$ такая, что $e\circ g=h$.

Уравнители в произвольной категории

Уравнитель пары морфизмов $f,g:A\to B$ — это мономорфизм $e:E\to A$ такой, что $f\circ e=g\circ e$ и для любого $h:F\to A$ такого, что $f\circ h=g\circ h$, существует стрелка $g:F\to E$ такая, что $e\circ g=h$.

Мономорфизм называется *регулярным*, если он является уравнителем некоторой пары стрелок.

Другое определение уравнителей

Vравнитель пары морфизмов $f,g:A\to B$ – это морфизм $e:E\to A$ такой, что $f\circ e=g\circ e$ и для любого $h:F\to A$ такого, что $f\circ h=g\circ h$, существует уникальная стрелка $g:F\to E$ такая, что $e\circ g=h$.

Другое определение уравнителей

 \mathcal{V} равнитель пары морфизмов $f,g:A\to B$ – это морфизм e:E o A такой, что $f\circ e=g\circ e$ и для любого h:F o Aтакого, что $f\circ h=g\circ h$, существует уникальная стрелка $g: F \to E$ такая, что $e \circ g = h$.

Упражнение: докажите, что эти определения эквивалентны.

▶ В категории **Ab** абелевых групп уравнители тесно связаны с понятием ядра морфизма.

- ▶ В категории **Ab** абелевых групп уравнители тесно связаны с понятием ядра морфизма.
- ▶ Если $f: A \to B$ морфизм абелевых групп, то ядро f это уравнитель пары стрелок $f, 0: A \to B$.

- ▶ В категории **Ab** абелевых групп уравнители тесно связаны с понятием ядра морфизма.
- ▶ Если $f: A \to B$ морфизм абелевых групп, то ядро f это уравнитель пары стрелок $f, 0: A \to B$.
- ▶ И наоборот, если $f, g: A \to B$ пара морфизмов, то их уравнитель это ядро морфизма $f g: A \to B$.

- ▶ В категории **Ab** абелевых групп уравнители тесно связаны с понятием ядра морфизма.
- \blacktriangleright Если f:A o B морфизм абелевых групп, то ядро f это уравнитель пары стрелок f,0:A o B.
- ▶ И наоборот, если $f, g: A \to B$ пара морфизмов, то их уравнитель это ядро морфизма $f g: A \to B$.
- Таким образом, в категории **Ab** существуют все уравнители.