APPENDIX

1

PROPERTY TABLES AND CHARTS (SI UNITS)

Table A-1	Molar mass, gas constant, and critical-point properties	Table A-20	Ideal-gas properties of carbon dioxide, CO ₂
Table A-2	Ideal-gas specific heats of various common gases	Table A-21	Ideal-gas properties of carbon monoxide, CO
Table A-3	Properties of common liquids, solids, and foods	Table A-22 Table A-23	Ideal-gas properties of hydrogen, H ₂ Ideal-gas properties of water vapor, H ₂ O
Table A-4	Saturated water—Temperature table	Table A-24	Ideal-gas properties of monatomic
Table A-5	Saturated water—Pressure table		oxygen, O
Table A-6	Superheated water	Table A-25	Ideal-gas properties of hydroxyl, OH
Table A-7	Compressed liquid water	Table A-26	Enthalpy of formation, Gibbs function
Table A-8	Saturated ice-water vapor		of formation, and absolute entropy at
Figure A-9	T-s diagram for water	T.U. A 07	25°C, 1 atm
Figure A-10	Mollier diagram for water	Table A-27	Properties of some common fuels and hydrocarbons
Table A-11	Saturated refrigerant-134a— Temperature table	Table A-28	Natural logarithms of the equilibrium constant K_p
Table A-12	Saturated refrigerant-134a— Pressure table	Figure A–29	Generalized enthalpy departure chart
Table A-13	Superheated refrigerant-134a	Figure A–30	Generalized entropy departure chart
Figure A-14	P-h diagram for refrigerant-134a	Figure A–31	Psychrometric chart at 1 atm total pressure
Figure A–15	Nelson–Obert generalized compressibility chart	Table A-32	One-dimensional isentropic compressible-flow functions
Table A-16	Properties of the atmosphere at high altitude		for an ideal gas with $k = 1.4$
Table A-17	Ideal-gas properties of air	Table A-33	One-dimensional normal-shock functions for an ideal gas with $k = 1.4$
Table A-18	Ideal-gas properties of nitrogen, N ₂	Table A-34	Rayleigh flow functions for an ideal
Table A-19	Ideal-gas properties of oxygen, O ₂	LUDIO A OT	gas with $k = 1.4$

TABLE A −1

Molar mass, gas constant, and critical-point properties

			Gas	Critical-p	ooint properties	5
Substance	Formula	Molar mass, <i>M</i> kg/kmol	constant, R kJ/kg·K*	Temperature, K	Pressure, MPa	Volume, m³/kmol
Air	_	28.97	0.2870	132.5	3.77	0.0883
Ammonia	NH_3	17.03	0.4882	405.5	11.28	0.0724
Argon	Ar	39.948	0.2081	151	4.86	0.0749
Benzene	C_6H_6	78.115	0.1064	562	4.92	0.2603
Bromine	Br ₂	159.808	0.0520	584	10.34	0.1355
<i>n</i> -Butane	C_4H_{10}	58.124	0.1430	425.2	3.80	0.2547
Carbon dioxide	CO_2	44.01	0.1889	304.2	7.39	0.0943
Carbon monoxide	CO	28.011	0.2968	133	3.50	0.0930
Carbon tetrachloride	CCI ₄	153.82	0.05405	556.4	4.56	0.2759
Chlorine	Cl ₂	70.906	0.1173	417	7.71	0.1242
Chloroform	CHCI₃	119.38	0.06964	536.6	5.47	0.2403
Dichlorodifluoromethane (R-12)	CCI_2F_2	120.91	0.06876	384.7	4.01	0.2179
Dichlorofluoromethane (R-21)	CHCI ₂ F	102.92	0.08078	451.7	5.17	0.1973
Ethane	C_2H_6	30.070	0.2765	305.5	4.48	0.1480
Ethyl alcohol	C_2H_5OH	46.07	0.1805	516	6.38	0.1673
Ethylene	C_2H_4	28.054	0.2964	282.4	5.12	0.1242
Helium	He	4.003	2.0769	5.3	0.23	0.0578
<i>n</i> -Hexane	C_6H_{14}	86.179	0.09647	507.9	3.03	0.3677
Hydrogen (normal)	H_2	2.016	4.1240	33.3	1.30	0.0649
Krypton	Kr	83.80	0.09921	209.4	5.50	0.0924
Methane	CH_4	16.043	0.5182	191.1	4.64	0.0993
Methyl alcohol	CH ₃ OH	32.042	0.2595	513.2	7.95	0.1180
Methyl chloride	CH₃CI	50.488	0.1647	416.3	6.68	0.1430
Neon	Ne	20.183	0.4119	44.5	2.73	0.0417
Nitrogen	N_2	28.013	0.2968	126.2	3.39	0.0899
Nitrous oxide	$N_2^{-}O$	44.013	0.1889	309.7	7.27	0.0961
Oxygen	02	31.999	0.2598	154.8	5.08	0.0780
Propane	C_3H_8	44.097	0.1885	370	4.26	0.1998
Propylene	C_3H_6	42.081	0.1976	365	4.62	0.1810
Sulfur dioxide	SO ₂	64.063	0.1298	430.7	7.88	0.1217
Tetrafluoroethane (R-134a)	CF ₃ CH ₂ F	102.03	0.08149	374.2	4.059	0.1993
Trichlorofluoromethane (R-11)	CCĬ ₃ F	137.37	0.06052	471.2	4.38	0.2478
Water	H_2O	18.015	0.4615	647.1	22.06	0.0560
Xenon	Xe	131.30	0.06332	289.8	5.88	0.1186

^{*}The unit kJ/kg-K is equivalent to kPa·m³/kg-K. The gas constant is calculated from $R = R_u/M$, where $R_u = 8.31447$ kJ/kmol-K and M is the molar mass

Source: K. A. Kobe and R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117–236; and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), pp. 16.4 and 36.1.

TABLE A–2Ideal-gas specific heats of various common gases

(a) At 300 K

Gas	Formula	Gas constant, <i>R</i> kJ/kg·K	$c_{\scriptscriptstyle p}$ kJ/kg \cdot K	<i>c</i> _∨ kJ/kg⋅K	k
Air	_	0.2870	1.005	0.718	1.400
Argon	Ar	0.2081	0.5203	0.3122	1.667
Butane	C_4H_{10}	0.1433	1.7164	1.5734	1.091
Carbon dioxide	$\overrightarrow{CO}_2^{10}$	0.1889	0.846	0.657	1.289
Carbon monoxide	CO	0.2968	1.040	0.744	1.400
Ethane	C_2H_6	0.2765	1.7662	1.4897	1.186
Ethylene	$C_2^2H_4^{\circ}$	0.2964	1.5482	1.2518	1.237
Helium	He	2.0769	5.1926	3.1156	1.667
Hydrogen	H_2	4.1240	14.307	10.183	1.405
Methane	CH₄	0.5182	2.2537	1.7354	1.299
Neon	Ne	0.4119	1.0299	0.6179	1.667
Nitrogen	N_2	0.2968	1.039	0.743	1.400
Octane	$C_8^2H_{18}$	0.0729	1.7113	1.6385	1.044
Oxygen	02	0.2598	0.918	0.658	1.395
Propane	$C_3^2H_8$	0.1885	1.6794	1.4909	1.126
Steam	H_2° 0 $^{\circ}$	0.4615	1.8723	1.4108	1.327

Note: The unit kJ/kg·K is equivalent to kJ/kg·°C.

Source: Chemical and Process Thermodynamics 3/E by Kyle, B. G., © 2000. Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

TABLE A–2Ideal-gas specific heats of various common gases (*Continued*)

(b) At various temperatures

Temperature,	<i>c_p</i> kJ/kg⋅K	<i>c₀</i> kJ/kg∙K	k	<i>c_p</i> kJ/kg⋅K	<i>c</i> _v kJ/kg⋅K	k	c _p kJ/kg⋅K	<i>c</i> √ kJ/kg⋅K	k
K K		Air		Car	bon dioxide, (CO ₂	Carboi	n monoxide,	CO
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1.398
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376
650	1.063	0.776	1.370	1.102	0.913	1.207	1.100	0.803	1.370
700	1.075	0.788	1.364	1.126	0.937	1.202	1.113	0.816	1.364
750	1.087	0.800	1.359	1.148	0.959	1.197	1.126	0.829	1.358
800	1.099	0.812	1.354	1.169	0.980	1.193	1.139	0.842	1.353
900	1.121	0.834	1.344	1.204	1.015	1.186	1.163	0.866	1.343
1000	1.142	0.855	1.336	1.234	1.045	1.181	1.185	0.888	1.335
		Hydrogen,	H_2		Nitrogen,	N_2	C	xygen, O ₂	
250	14.051	9.927	1.416	1.039	0.742	1.400	0.913	0.653	1.398
300	14.307	10.183	1.405	1.039	0.743	1.400	0.918	0.658	1.395
350	14.427	10.302	1.400	1.041	0.744	1.399	0.928	0.668	1.389
400	14.476	10.352	1.398	1.044	0.747	1.397	0.941	0.681	1.382
450	14.501	10.377	1.398	1.049	0.752	1.395	0.956	0.696	1.373
500	14.513	10.389	1.397	1.056	0.759	1.391	0.972	0.712	1.365
550	14.530	10.405	1.396	1.065	0.768	1.387	0.988	0.728	1.358
600	14.546	10.422	1.396	1.075	0.778	1.382	1.003	0.743	1.350
650	14.571	10.447	1.395	1.086	0.789	1.376	1.017	0.758	1.343
700	14.604	10.480	1.394	1.098	0.801	1.371	1.031	0.771	1.337
750	14.645	10.521	1.392	1.110	0.813	1.365	1.043	0.783	1.332
800	14.695	10.570	1.390	1.121	0.825	1.360	1.054	0.794	1.327
900	14.822	10.698	1.385	1.145	0.849	1.349	1.074	0.814	1.319
1000	14.983	10.859	1.380	1.167	0.870	1.341	1.090	0.830	1.313

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), p. 783, Table A-4M. Originally published in Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

TABLE A-2

Ideal-gas specific heats of various common gases (Concluded)

(c) As a function of temperature

$$\overline{c}_p = a + bT + cT^2 + dT^3$$

(T in K, c_p in kJ/kmol·K)

Substance Formula a b c d range, K Max Avg. Nitrogen N₂ 28.90 −0.1571 × 10⁻² 0.8081 × 10⁻⁵ −2.873 × 10⁻⁰ 273−1800 0.59 0.3 Oxygen 0₂ 25.48 1.520 × 10⁻² −0.7155 × 10⁻⁵ 1.312 × 10⁻⁰ 273−1800 1.19 0.2 Air — 28.11 0.1967 × 10⁻² 0.4802 × 10⁻⁵ −1.086 × 10⁻⁰ 273−1800 0.72 0.3 Hydrogen H₂ 29.11 −0.1916 × 10⁻² 0.4003 × 10⁻⁵ −0.8704 × 10⁻⁰ 273−1800 0.0 0.2 Carbon monoxide CO₂ 22.26 5.981 × 10⁻² −3.501 × 10⁻⁵ −2.222 × 10⁻⁰ 273−1800 0.67 0.2 Water vapor H₂O 32.24 0.1923 × 10⁻² 1.055 × 10⁻⁵ −3.595 × 10⁻⁰ 273−1500 0.97 0.3 Nitroso NO 29.34 −0.09395 × 10⁻² 0.9747 × 10⁻⁵ −1.687 × 10⁻⁰ 273−1500 0.97 0.3 Nitrosio NO₂							Temperature	<u> % е</u>	error
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Substance	Formula	а	b	С	d			Avg.
Coxygen O₂ 25.48 1.520 × 10⁻² −0.7155 × 10⁻⁵ 1.312 × 10⁻⁰ 273-1800 1.19 0.2 Air — 28.11 −0.1967 × 10⁻² 0.4802 × 10⁻⁵ −1.966 × 10⁻⁰ 273-1800 0.72 0.3 Hydrogen H₂ 29.11 −0.1916 × 10⁻² 0.4003 × 10⁻⁵ −0.8704 × 10⁻⁰ 273-1800 0.72 0.3 Carbon Domoxide CO 28.16 0.1675 × 10⁻² 0.5372 × 10⁻⁵ −2.222 × 10⁻⁰ 273-1800 0.67 0.2 dioxide CO₂ 22.26 5.981 × 10⁻² −3.501 × 10⁻⁵ 7.469 × 10⁻⁰ 273-1800 0.67 0.2 Water vapor H₀ 32.24 0.1923 × 10⁻² 1.055 × 10⁻⁵ 7.469 × 10⁻⁰ 273-1800 0.53 0.2 Witric oxide No₂ 22.411 5.8632 × 10⁻² 0.9747 × 10⁻⁵ -3.595 × 10⁻⁵ 7.487 × 10⁻⁰ 273-1500 0.59 0.2 Nitrous oxide No₂ 22.9 5.715 × 10⁻² -3.52 × 10⁻⁵ 7.87 × 10⁻⁰ 273-1500 0.46 0.1 <td>Nitrogen</td> <td>N_2</td> <td>28.90</td> <td>-0.1571×10^{-2}</td> <td>0.8081×10^{-5}</td> <td>-2.873×10^{-9}</td> <td>273-1800</td> <td>0.59</td> <td>0.34</td>	Nitrogen	N_2	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}	273-1800	0.59	0.34
Air — 28.11 0.1967 × 10⁻² 0.4802 × 10⁻⁵ −1.966 × 10⁻⁵ 273−1800 0.72 0.3 Carbon University Color of the properties of the pro		02	25.48	1.520×10^{-2}	-0.7155×10^{-5}	1.312×10^{-9}	273-1800	1.19	0.28
Carbon monoxide CO 28.16 0.1675×10^{-2} 0.5372×10^{-5} -2.222×10^{-9} $273-1800$ 0.89 0.3 Carbon dioxide CO2 22.26 5.981×10^{-2} -3.501×10^{-5} 7.469×10^{-9} $273-1800$ 0.67 0.2 Water vapor H_2O 32.24 0.1923×10^{-2} 1.055×10^{-5} -3.595×10^{-9} $273-1800$ 0.53 0.2 Nitric oxide N_0 29.34 -0.09395×10^{-2} 0.9747×10^{-5} -4.187×10^{-9} $273-1500$ 0.97 0.3 Nitrous oxide N_2O 24.11 5.8632×10^{-2} -3.562×10^{-5} 10.58×10^{-9} $273-1500$ 0.59 0.2 Nitrous oxide N_2O 22.9 5.715×10^{-2} -3.562×10^{-5} 7.87×10^{-9} $273-1500$ 0.46 0.1 Ammonia N_3 27.568 2.5630×10^{-2} 0.99072×10^{-5} -6.6909×10^{-9} $273-1500$ 0.91 0.3 Sulfur S_2 27.21 2.218×10^{-2} -3.812×10^{-5} 8.612×10^{-9} $273-1800$ 0.45 0.2 Sulfur dioxide SO_2 25.78 5.795×10^{-2} -3.812×10^{-5} 8.612×10^{-9} $273-1800$ 0.45 0.2 Sulfur SO_3	Air		28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}	273-1800	0.72	0.33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hydrogen	H_2	29.11	-0.1916×10^{-2}	0.4003×10^{-5}	-0.8704×10^{-9}	273-1800	1.01	0.26
Carbon dioxide CO_2 22.26 5.981×10^{-2} -3.501×10^{-5} 7.469×10^{-9} $273-1800$ 0.67 0.2 Water vapor H_2O 32.24 0.1923×10^{-2} 1.055×10^{-5} -3.595×10^{-9} $273-1800$ 0.53 0.2 Nitrico xide NO 29.34 -0.09395×10^{-2} 0.9747×10^{-5} -4.187×10^{-9} $273-1500$ 0.97 0.3 Nitrous oxide N_2O 24.11 5.8632×10^{-2} -3.562×10^{-5} 10.58×10^{-9} $273-1500$ 0.59 0.2 Nitrogen dioxide NO_2 22.9 5.715×10^{-2} -3.562×10^{-5} 7.87×10^{-9} $273-1500$ 0.46 0.1 Ammonia NH_3 27.568 2.5630×10^{-2} 0.99072×10^{-5} -6.6909×10^{-9} $273-1500$ 0.91 0.3 Sulfur S_2 27.21 2.218×10^{-2} -1.628×10^{-5} 3.986×10^{-9} $273-1800$ 0.99 0.3 Sulfur S_2 27.21 2.218×10^{-2} -3.812×10^{-5} 3.986×10^{-9} $273-1800$ 0.99 0.3 Sulfur S_2 $S_1 \times 10^{-2}$ $S_2 \times 10^{-2}$ $S_3 \times 10^{-2}$	Carbon	-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	monoxide	CO	28.16	0.1675×10^{-2}	0.5372×10^{-5}	-2.222×10^{-9}	273-1800	0.89	0.37
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Carbon								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	dioxide	CO_2	22.26	5.981×10^{-2}	-3.501×10^{-5}	7.469×10^{-9}	273-1800	0.67	0.22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Water vapor	$H_2\bar{O}$	32.24	0.1923×10^{-2}	1.055×10^{-5}	-3.595×10^{-9}	273-1800	0.53	0.24
Nitrogen dioxide NO_2 22.9 5.715×10^{-2} -3.52×10^{-5} 7.87×10^{-9} $273-1500$ 0.46 0.1 Ammonia NH_3 27.568 2.5630×10^{-2} 0.99072×10^{-5} -6.6909×10^{-9} $273-1500$ 0.91 0.3 Sulfur S_2 27.21 2.218×10^{-2} -1.628×10^{-5} 3.986×10^{-9} $273-1800$ 0.99 0.3 Sulfur S_2 27.21 2.218×10^{-2} -3.812×10^{-5} 8.612×10^{-9} $273-1800$ 0.45 0.2 Sulfur dioxide SO_2 25.78 5.795×10^{-2} -3.812×10^{-5} 8.612×10^{-9} $273-1800$ 0.45 0.2 Sulfur trioxide SO_3 16.40 14.58×10^{-2} -11.20×10^{-5} 32.42×10^{-9} $273-1300$ 0.29 0.1 Acetylene C_2H_2 21.8 9.2143×10^{-2} -6.527×10^{-5} 18.21×10^{-9} $273-1500$ 1.46 0.5 Benzene C_6H_6 -36.22 48.475×10^{-2} -31.57×10^{-5} 77.62×10^{-9} $273-1500$ 0.34 0.2 Methanol CH_40 19.0 9.152×10^{-2} -1.22×10^{-5} -8.039×10^{-9} $273-1500$ 0.18 0.0 Ethanol C_2H_60 19.9 20.96×10^{-2} -10.38×10^{-5} 20.05×10^{-9} $273-1500$ 0.40 0.2 Hydrogen chloride C_2H_6 6.900 17.27×10^{-2} 1.327×10^{-5} -4.338×10^{-9} $273-1500$ 0.22 0.0 Methane CH_4 19.89 5.024×10^{-2} 1.269×10^{-5} -11.01×10^{-9} $273-1500$ 0.83 0.2 Propane C_3H_8 -4.04 30.48×10^{-2} -15.72×10^{-5} 31.74×10^{-9} $273-1500$ 0.83 0.2 Propane C_4H_{10} 3.96 37.15×10^{-2} -18.34×10^{-5} 31.74×10^{-9} $273-1500$ 0.40 0.1 n -Butane C_4H_{10} 3.96 37.15×10^{-2} -18.34×10^{-5} 31.74×10^{-9} $273-1500$ 0.25 0.1 n -Pentane C_5H_{12} 6.774 45.43×10^{-2} -28.65×10^{-5} 49.91×10^{-9} $273-1500$ 0.25 0.1 n -Pentane C_5H_{14} 6.938 55.22×10^{-2} -28.65×10^{-5} 57.69×10^{-9} $273-1500$ 0.56 0.2 1.60 1.7	Nitric oxide		29.34	-0.09395×10^{-2}	0.9747×10^{-5}	-4.187×10^{-9}	273-1500	0.97	0.36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nitrous oxide	N_2O	24.11	5.8632×10^{-2}	-3.562×10^{-5}	10.58×10^{-9}	273-1500	0.59	0.26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nitrogen	-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		NO_2	22.9	5.715×10^{-2}	-3.52×10^{-5}	7.87×10^{-9}	273-1500	0.46	0.18
Sulfur dioxide SO_2 25.78 5.795×10^{-2} -3.812×10^{-5} 8.612×10^{-9} $273-1800$ 0.45 0.25 $0.$	Ammonia		27.568	2.5630×10^{-2}	0.99072×10^{-5}	-6.6909×10^{-9}	273-1500	0.91	0.36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sulfur	S_2	27.21	2.218×10^{-2}	-1.628×10^{-5}	3.986×10^{-9}	273-1800	0.99	0.38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sulfur	_							
$ \begin{array}{c} \text{trioxide} & \text{SO}_3 & 16.40 & 14.58 \times 10^{-2} & -11.20 \times 10^{-5} & 32.42 \times 10^{-9} & 273-1300 & 0.29 & 0.1 \\ \text{Acetylene} & \text{C}_2\text{H}_2 & 21.8 & 9.2143 \times 10^{-2} & -6.527 \times 10^{-5} & 18.21 \times 10^{-9} & 273-1500 & 1.46 & 0.5 \\ \text{Benzene} & \text{C}_6\text{H}_6 & -36.22 & 48.475 \times 10^{-2} & -31.57 \times 10^{-5} & 77.62 \times 10^{-9} & 273-1500 & 0.34 & 0.2 \\ \text{Methanol} & \text{CH}_4\text{O} & 19.0 & 9.152 \times 10^{-2} & -1.22 \times 10^{-5} & -8.039 \times 10^{-9} & 273-1500 & 0.18 & 0.0 \\ \text{Ethanol} & \text{C}_2\text{H}_6\text{O} & 19.9 & 20.96 \times 10^{-2} & -10.38 \times 10^{-5} & 20.05 \times 10^{-9} & 273-1500 & 0.40 & 0.2 \\ \text{Hydrogen} & & & & & & & & & & & & & & & & & & &$	dioxide	SO_2	25.78	5.795×10^{-2}	-3.812×10^{-5}	8.612×10^{-9}	273-1800	0.45	0.24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sulfur	_							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	trioxide	SO ₃	16.40	14.58×10^{-2}	-11.20×10^{-5}	32.42×10^{-9}	273-1300	0.29	0.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Acetylene	C_2H_2	21.8	9.2143×10^{-2}	-6.527×10^{-5}	18.21×10^{-9}	273-1500	1.46	0.59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Benzene		-36.22	48.475×10^{-2}	-31.57×10^{-5}	77.62×10^{-9}	273-1500	0.34	0.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Methanol		19.0	9.152×10^{-2}	-1.22×10^{-5}	-8.039×10^{-9}	273-1000	0.18	0.08
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethanol	C ₂ H ₆ O	19.9	20.96×10^{-2}	-10.38×10^{-5}	20.05×10^{-9}	273-1500	0.40	0.22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hydrogen								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	chloride	HCI	30.33	-0.7620×10^{-2}	1.327×10^{-5}	-4.338×10^{-9}	273-1500	0.22	0.08
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Methane	CH₄	19.89	5.024×10^{-2}	1.269×10^{-5}	-11.01×10^{-9}	273-1500	1.33	0.57
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ethane		6.900	17.27×10^{-2}	-6.406×10^{-5}	7.285×10^{-9}	273-1500	0.83	0.28
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Propane		-4.04	30.48×10^{-2}	-15.72×10^{-5}	31.74×10^{-9}	273-1500	0.40	0.12
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	<i>n</i> -Butane		3.96	37.15×10^{-2}	-18.34×10^{-5}	35.00×10^{-9}	273-1500	0.54	0.24
n-Pentane C_5H_{12} 6.774 45.43×10^{-2} -22.46×10^{-5} 42.29×10^{-9} $273-1500$ 0.56 0.2 n-Hexane C_6H_{14} 6.938 55.22×10^{-2} -28.65×10^{-5} 57.69×10^{-9} $273-1500$ 0.72 0.2 Ethylene C_2H_4 3.95 15.64×10^{-2} -8.344×10^{-5} 17.67×10^{-9} $273-1500$ 0.54 0.1	<i>i</i> -Butane		-7.913	41.60×10^{-2}	-23.01×10^{-5}	49.91×10^{-9}	273-1500	0.25	0.13
<i>n</i> -Hexane C_6H_{14} 6.938 55.22 × 10 ⁻² -28.65 × 10 ⁻⁵ 57.69 × 10 ⁻⁹ 273–1500 0.72 0.2 Ethylene C_2H_4 3.95 15.64 × 10 ⁻² -8.344 × 10 ⁻⁵ 17.67 × 10 ⁻⁹ 273–1500 0.54 0.1	<i>n</i> -Pentane		6.774	45.43×10^{-2}	-22.46×10^{-5}	42.29×10^{-9}	273-1500	0.56	0.21
Ethylene C_2H_4 3.95 15.64×10^{-2} -8.344×10^{-5} 17.67×10^{-9} 273–1500 0.54 0.1	<i>n</i> -Hexane		6.938	55.22×10^{-2}	-28.65×10^{-5}	57.69×10^{-9}	273-1500	0.72	0.20
	Ethylene		3.95	15.64×10^{-2}	-8.344×10^{-5}	17.67×10^{-9}	273-1500	0.54	0.13
Propylene U_3H_6 3.15 23.83 \times 10^{-2} -12.18×10^{-3} 24.62 \times 10^{-9} 2/3–1500 0./3 0.1	Propylene	C_3H_6	3.15	23.83×10^{-2}	-12.18×10^{-5}	24.62×10^{-9}	273-1500	0.73	0.17

Source: B. G. Kyle, Chemical and Process Thermodynamics (Englewood Cliffs, NJ: Prentice-Hall, 1984). Used with permission.

TABLE A-3

Properties of common liquids, solids, and foods

(a) Liquids

	Boiling	data at 1 atm	Freez	ring data	L	iquid properti	es
Substance	Normal boiling point, °C	Latent heat of vaporization $h_{\rm fg}$, kJ/kg	Freezing point, °C	Latent heat of fusion h_{if} , kJ/kg	Temperature, °C	Density ρ, kg/m ³	Specific heat c_p , kJ/kg·K
Ammonia	-33.3	1357	-77.7	322.4	-33.3 -20	682 665	4.43 4.52
					0 25	639 602	4.60 4.80
Argon	-185.9	161.6	-189.3	28	-185.6	1394	1.14
Benzene Brine (20% sodium	80.2	394	5.5	126	20	879	1.72
chloride by mass)	103.9	_	-17.4		20	1150	3.11
<i>n</i> -Butane	-0.5	385.2	-138.5	80.3	-0.5	601	2.31
Carbon dioxide Ethanol	-78.4* 78.2	230.5 (at 0°C) 838.3	-56.6 -114.2	109	0 25	298 783	0.59 2.46
Ethyl alcohol	78.2 78.6	855	-114.2 -156	109	20	789	2.46
Ethylene glycol	198.1	800.1	-10.8	181.1	20	1109	2.84
Glycerine	179.9	974	18.9	200.6	20	1261	2.32
Helium	-268.9	22.8			-268.9	146.2	22.8
Hydrogen	-252.8	445.7	-259.2	59.5	-252.8	70.7	10.0
Isobutane	-11.7	367.1	-160	105.7	-11.7	593.8	2.28
Kerosene	204-293	251	-24.9	_	20	820	2.00
Mercury	356.7	294.7	-38.9	11.4	25	13,560	0.139
Methane	-161.5	510.4	-182.2	58.4	-161.5	423	3.49
					-100	301	5.79
Methanol	64.5	1100	-97.7	99.2	25	787	2.55
Nitrogen	-195.8	198.6	-210	25.3	-195.8	809	2.06
					-160	596	2.97
Octane	124.8	306.3	-57.5	180.7	20	703	2.10
Oil (light)	100	0107	0100	107	25	910	1.80
Oxygen	-183	212.7	-218.8	13.7	-183	1141	1.71
Petroleum	— 40.1	230–384	107.7	00.0	20	640	2.0
Propane	-42.1	427.8	-187.7	80.0	-42.1	581	2.25
					0 50	529 449	2.53 3.13
Defricerent 124e	-26.1	217.0	-96.6		-50	1443	1.23
Refrigerant-134a	-26.1	217.0	-96.6	_	-30 -26.1	1374	1.23
					-20.1 0	1295	1.34
					25	1207	1.43
Water	100	2257	0.0	333.7	0	1000	4.22
114101	100	2201	0.0	555.7	25	997	4.18
					50	988	4.18
					75	975	4.19
					100	958	4.22

^{*} Sublimation temperature. (At pressures below the triple-point pressure of 518 kPa, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of -56.5° C.)

TABLE A–3Properties of common liquids, solids, and foods (*Concluded*)

(b) Solids (values are for room temperature unless indicated otherwise)

Substance	Density, $ ho$ kg/m 3	Specific heat, $c_p \ \mathrm{kJ/kg \cdot K}$	Substance	Density, $ ho$ kg/m ³	Specific heat, c_p kJ/kg·K
Metals			Nonmetals		
Aluminum			Asphalt	2110	0.920
200 K		0.797	Brick, common	1922	0.79
250 K		0.859	Brick, fireclay (500°C)	2300	0.960
300 K	2,700	0.902	Concrete	2300	0.653
350 K		0.929	Clay	1000	0.920
400 K		0.949	Diamond	2420	0.616
450 K		0.973	Glass, window	2700	0.800
500 K		0.997	Glass, pyrex	2230	0.840
Bronze (76% Cu, 2% Zn,	8,280	0.400	Graphite	2500	0.711
2% AI)			Granite	2700	1.017
Brass, yellow (65% Cu,	8,310	0.400	Gypsum or plaster board	800	1.09
35% Zn)			Ice		
Copper			200 K		1.56
-173°C		0.254	220 K		1.71
-100°C		0.342	240 K		1.86
−50°C		0.367	260 K		2.01
0°C		0.381	273 K	921	2.11
27°C	8,900	0.386	Limestone	1650	0.909
100°C		0.393	Marble	2600	0.880
200°C		0.403	Plywood (Douglas Fir)	545	1.21
Iron	7,840	0.45	Rubber (soft)	1100	1.840
Lead	11,310	0.128	Rubber (hard)	1150	2.009
Magnesium	1,730	1.000	Sand	1520	0.800
Nickel	8,890	0.440	Stone	1500	0.800
Silver	10,470	0.235	Woods, hard (maple, oak, etc.)	721	1.26
Steel, mild	7,830	0.500	Woods, soft (fir, pine, etc.)	513	1.38
Tungsten	19,400	0.130			

(c) Foods

	Water		,	Specific heat, kJ/kg·K			Water	ter		c <i>heat,</i> ∙K	Latent heat of	
Food	content, % (mass)	Freezing point, °C	Above freezing	Below freezing	heat of fusion, kJ/kg	Food	content, % (mass)	Freezing point, °C	Above freezing	Below freezing	fusion, kJ/kg	
Apples	84	-1.1	3.65	1.90	281	Lettuce	95	-0.2	4.02	2.04	317	
Bananas	75	-0.8	3.35	1.78	251	Milk, whole	88	-0.6	3.79	1.95	294	
Beef round	67	_	3.08	1.68	224	Oranges	87	-0.8	3.75	1.94	291	
Broccoli	90	-0.6	3.86	1.97	301	Potatoes	78	-0.6	3.45	1.82	261	
Butter	16	_	_	1.04	53	Salmon fish	64	-2.2	2.98	1.65	214	
Cheese, swiss	39	-10.0	2.15	1.33	130	Shrimp	83	-2.2	3.62	1.89	277	
Cherries	80	-1.8	3.52	1.85	267	Spinach	93	-0.3	3.96	2.01	311	
Chicken	74	-2.8	3.32	1.77	247	Strawberries	90	-0.8	3.86	1.97	301	
Corn, sweet	74	-0.6	3.32	1.77	247	Tomatoes, ripe	94	-0.5	3.99	2.02	314	
Eggs, whole	74	-0.6	3.32	1.77	247	Turkey	64	_	2.98	1.65	214	
Ice cream	63	-5.6	2.95	1.63	210	Watermelon	93	-0.4	3.96	2.01	311	

Source: Values are obtained from various handbooks and other sources or are calculated. Water content and freezing-point data of foods are from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), Chapter 30, Table 1. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

TABLE A-4

Saturated water—Temperature table

		Specific volume, m³/kg			<i>Internal energy,</i> kJ/kg			<i>Enthalpy,</i> kJ/kg			<i>Entropy,</i> kJ/kg∙K		
Temp., <i>T</i> °C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v _g	Sat. Iiquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g	
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	8.7488 8.5559	9.1556 9.0249 8.8999 8.7803 8.6661	
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7.8466 7.6832	8.5567 8.4520 8.3517 8.2556 8.1633	
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540	
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.5355 6.4089 6.2853	7.6812 7.6111 7.5435 7.4782 7.4151	
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5.9319 5.8193 5.7092	7.3542 7.2952 7.2382 7.1829 7.1292	
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.3919 5.2901 5.1901	7.0771 7.0265 6.9773 6.9294 6.8827	
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9002 4.8066 4.7143	6.8371 6.7927 6.7492 6.7067 6.6650	
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.4448 4.3572 4.2705 4.1847	6.6242 6.5841 6.5447 6.5059 6.4678 6.4302	

TABLE A–4Saturated water—Temperature table (*Concluded*)

		Specific volume, m³/kg		In	<i>ternal en</i> kJ/kg	ergy,		<i>Enthalµ</i> kJ/kg	* 1	Entropy, kJ/kg·K		
Temp.,	Sat. press.,	Sat. liquid,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,
	P _{sat} kPa	V_f	Vg	U _f	U _{fg}	Ug	h_f	h _{fg}	h _g	S_f	S _{fg}	Sg
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	897.61 920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	3.9318 3.8489 3.7664	6.3930 6.3563 6.3200 6.2840 6.2483
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1616.1 1593.2 1569.8 1545.7 1521.1	2602.9 2603.2 2603.1 2602.7 2601.8	990.14 1013.7 1037.5 1061.5 1085.7	1812.8 1789.5 1765.5 1740.8 1715.3	2802.9 2803.2 2803.0 2802.2 2801.0	2.6100 2.6560 2.7018 2.7476 2.7933	3.5216 3.4405 3.3596	6.2128 6.1775 6.1424 6.1072 6.0721
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387.4	2600.5 2598.7 2596.5 2593.7 2590.3	1110.1 1134.8 1159.8 1185.1 1210.7	1689.0 1661.8 1633.7 1604.6 1574.5	2799.1 2796.6 2793.5 2789.7 2785.2	2.8390 2.8847 2.9304 2.9762 3.0221	3.1169 3.0358 2.9542	6.0369 6.0017 5.9662 5.9305 5.8944
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1236.7 1263.1 1289.8 1317.1 1344.8	1543.2 1510.7 1476.9 1441.6 1404.8	2779.9 2773.7 2766.7 2758.7 2749.6	3.0681 3.1144 3.1608 3.2076 3.2548	2.7066 2.6225 2.5374	5.8579 5.8210 5.7834 5.7450 5.7059
305 310 315 320 325	9209.4 9865.0 10,556 11,284 12,051	0.001425 0.001447 0.001472 0.001499 0.001528	0.019932 0.018333 0.016849 0.015470 0.014183	1360.0 1387.7 1416.1 1445.1 1475.0	1195.9 1159.3 1121.1 1080.9 1038.5	2555.8 2547.1 2537.2 2526.0 2513.4	1373.1 1402.0 1431.6 1462.0 1493.4	1366.3 1325.9 1283.4 1238.5 1191.0	2739.4 2727.9 2715.0 2700.6 2684.3	3.3024 3.3506 3.3994 3.4491 3.4998	2.2737 2.1821 2.0881	5.6657 5.6243 5.5816 5.5372 5.4908
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3	1525.8 1559.4 1594.6 1631.7 1671.2	1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.5516 3.6050 3.6602 3.7179 3.7788	1.6756 1.5585	5.4422 5.3907 5.3358 5.2765 5.2114
355 360 365 370 373.95	17,570 18,666 19,822 21,044 5 22,064	0.001808 0.001895 0.002015 0.002217 0.003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0	2388.6 2351.9 2303.6 2230.1 2015.7	1714.0 1761.5 1817.2 1891.2 2084.3	812.9 720.1 605.5 443.1 0	2526.9 2481.6 2422.7 2334.3 2084.3	3.8442 3.9165 4.0004 4.1119 4.4070		

Source: Tables A-4 through A-8 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

TABLE A-5

Saturated water—Pressure table

			<i>fic volume,</i> m³/kg		<i>Internal energy,</i> kJ/kg			<i>Enthalpy,</i> kJ/kg			Entropy, kJ/kg·K		
Press., P kPa	Sat. temp., T_{sat} °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g	
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690		
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314		
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621		
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302		
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222		
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2553.7 2560.7 2574.0 2583.9 2598.3	0.4224 0.4762 0.5763 0.6492 0.7549	8.0510 7.9176 7.6738 7.4996 7.2522	8.3938 8.2501 8.1488	
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073	
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302	
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675	
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691	
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931	
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.3545	
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562		
101.325	99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476		
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100		
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894		
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716	
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270	
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877	
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525	
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207	
300	133.52	0.001073	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917	
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	6.9650	
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.9402	
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171	
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1	1.7765	5.1191	6.8955	
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.8561	
500	151.83	0.001093	0.37483	639.54	1921.2	2560.7	640.09	2108.0	2748.1	1.8604	4.9603	6.8207	
550	155.46	0.001097	0.34261	655.16	1908.8	2563.9	655.77	2096.6	2752.4	1.8970	4.8916	6.7886	
600	158.83	0.001101	0.31560	669.72	1897.1	2566.8	670.38	2085.8	2756.2	1.9308	4.8285	6.7593	
650	161.98	0.001104	0.29260	683.37	1886.1	2569.4	684.08	2075.5	2759.6	1.9623	4.7699	6.7322	
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	4.7153	6.7071	
750	167.75	0.001111	0.25552	708.40	1865.6	2574.0	709.24	2056.4	2765.7	2.0195	4.6642	6.6837	

TABLE A–5Saturated water—Pressure table (*Concluded*)

			Specific volume, m³/kg		<i>Internal energy,</i> kJ/kg			<i>Enthalpy,</i> kJ/kg			Entropy, kJ/kg·K		
Press., P kPa	Sat. temp., T_{sat} °C	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g	
800 850 900 950 1000	170.41 172.94 175.35 177.66 179.88	0.001115 0.001118 0.001121 0.001124 0.001127	0.24035 0.22690 0.21489 0.20411 0.19436	731.00 741.55 751.67	1856.1 1846.9 1838.1 1829.6 1821.4	2576.0 2577.9 2579.6 2581.3 2582.8	720.87 731.95 742.56 752.74 762.51	2047.5 2038.8 2030.5 2022.4 2014.6	2768.3 2770.8 2773.0 2775.2	2.0457 2.0705 2.0941 2.1166 2.1381	4.6160 4.5705 4.5273 4.4862 4.4470	6.6616 6.6409 6.6213 6.6027 6.5850	
1100 1200 1300 1400 1500	184.06 187.96 191.60 195.04 198.29	0.001133 0.001138 0.001144 0.001149 0.001154	0.17745 0.16326 0.15119 0.14078 0.13171	796.96 813.10 828.35	1805.7 1790.9 1776.8 1763.4 1750.6	2585.5 2587.8 2589.9 2591.8 2593.4	781.03 798.33 814.59 829.96 844.55	1999.6 1985.4 1971.9 1958.9 1946.4	2788.9	2.1785 2.2159 2.2508 2.2835 2.3143	4.3735 4.3058 4.2428 4.1840 4.1287	6.5520 6.5217 6.4936 6.4675 6.4430	
1750 2000 2250 2500 3000	205.72 212.38 218.41 223.95 233.85	0.001166 0.001177 0.001187 0.001197 0.001217	0.11344 0.099587 0.088717 0.079952 0.066667	906.12 933.54	1720.6 1693.0 1667.3 1643.2 1598.5	2596.7 2599.1 2600.9 2602.1 2603.2	878.16 908.47 936.21 961.87 1008.3	1917.1 1889.8 1864.3 1840.1 1794.9		2.3844 2.4467 2.5029 2.5542 2.6454	4.0033 3.8923 3.7926 3.7016 3.5402	6.3877 6.3390 6.2954 6.2558 6.1856	
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352	0.057061 0.049779 0.039448 0.032449 0.027378	1045.4 1082.4 1148.1 1205.8 1258.0	1557.6 1519.3 1448.9 1384.1 1323.0	2601.7 2597.0	1154.5 1213.8	1753.0 1713.5 1639.7 1570.9 1505.2	2800.8 2794.2 2784.6	2.7253 2.7966 2.9207 3.0275 3.1220	3.3991 3.2731 3.0530 2.8627 2.6927	6.1244 6.0696 5.9737 5.8902 5.8148	
8000 9000 10,000 11,000 12,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.023525 0.020489 0.018028 0.015988 0.014264	1306.0 1350.9 1393.3 1433.9 1473.0	1264.5 1207.6 1151.8 1096.6 1041.3	2570.5 2558.5 2545.2 2530.4 2514.3	1363.7 1407.8 1450.2	1441.6 1379.3 1317.6 1256.1 1194.1	2758.7 2742.9 2725.5 2706.3 2685.4	3.2077 3.2866 3.3603 3.4299 3.4964	2.5373 2.3925 2.2556 2.1245 1.9975	5.7450 5.6791 5.6159 5.5544 5.4939	
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1511.0 1548.4 1585.5 1622.6 1660.2	985.5 928.7 870.3 809.4 745.1	2496.6 2477.1 2455.7 2432.0 2405.4	1571.0 1610.3 1649.9	1131.3 1067.0 1000.5 931.1 857.4	2662.7 2637.9 2610.8 2581.0 2547.7	3.5606 3.6232 3.6848 3.7461 3.8082	1.8730 1.7497 1.6261 1.5005 1.3709	5.4336 5.3728 5.3108 5.2466 5.1791	
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1699.1 1740.3 1785.8 1841.6 1951.7 2015.7	675.9 598.9 509.0 391.9 140.8		1888.0 2011.1	777.8 689.2 585.5 450.4 161.5		3.8720 3.9396 4.0146 4.1071 4.2942 4.4070	1.2343 1.0860 0.9164 0.7005 0.2496	5.1064 5.0256 4.9310 4.8076 4.5439 4.4070	

TABLE A-6

Superh	Superheated water											
T	V	И	h	s	V	и	h	S	l v u	h	S	
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg kJ/kg	kJ/kg	kJ/kg⋅K	
	D —	0.01 ME	°a (45.81°	PC)*	D —	0.05 MP	o (Q1 22º	()	P = 0.10 M	Pa (00 61	°C)	
0 - 4 †												
Sat.† 50	14.670 14.867		2583.9 2592.0	8.1488 8.1741	3.2403	2483.2	2645.2	7.5931	1.6941 2505.6	2675.0	7.3589	
100	17.196		2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959 2506.2	2675.8	7.3611	
150	19.513		2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367 2582.9			
200	21.826		2879.6	8.9049	4.3562	2660.0	2877.8		2.1724 2658.2			
250	24.136		2977.5	9.1015	4.8206	2735.1	2976.2		2.4062 2733.9			
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389 2810.7	3074.5	8.2172	
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027 2968.3	3278.6	8.5452	
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655 3132.2	3488.7	8.8362	
600	40.296		3706.3	10.1631	8.0577	3303.1	3706.0		4.0279 3302.8			
700	44.911		3929.9	10.4056	8.9813	3480.6	3929.7		4.4900 3480.4			
800	49.527			10.6312	9.9047	3665.2	4160.4		4.9519 3665.0			
900	54.143		4398.3	10.8429	10.8280	3856.8		10.1000	5.4137 3856.7			
1000	58.758			11.0429	11.7513	4055.2		10.3000	5.8755 4055.0			
1100	63.373			11.2326	12.6745	4259.9		10.4897	6.3372 4259.8		10.1698	
1200	67.989			11.4132	13.5977	4470.8		10.6704	6.7988 4470.7		10.3504	
1300	72.604			11.5857	14.5209	4687.3		10.8429	7.2605 4687.2	5413.3	10.5229	
			a (120.2)			0.30 MPa	-		P = 0.40 MI			
Sat.	0.88578			7.1270	0.60582		2724.9		0.46242 2553.1			
150	0.95986			7.2810	0.63402		2761.2	7.0792	0.47088 2564.4			
200	1.08049			7.5081	0.71643		2865.9 2967.9	7.3132	0.53434 2647.2			
250 300	1.19890 1.31623			7.7100 7.8941	0.79645 0.87535		3069.6	7.5180 7.7037	0.59520 2726.4 0.65489 2805.1			
400	1.54934			8.2236	1.03155		3275.5	8.0347	0.03489 2803.1			
500	1.78142			8.5153	1.18672		3486.6	8.3271	0.88936 3129.8			
600	2.01302			8.7793	1.34139		3704.0		1.00558 3301.0			
700	2.24434			9.0221	1.49580		3928.2		1.12152 3479.0			
800	2.47550			9.2479	1.65004		4159.3	9.0605	1.23730 3663.9			
900	2.70656	3856.3	4397.7	9.4598	1.80417		4397.3		1.35298 3855.7			
1000	2.93755			9.6599	1.95824		4642.0		1.46859 4054.3	4641.7	9.3396	
1100	3.16848	4259.6	4893.3	9.8497	2.11226	4259.4	4893.1	9.6624	1.58414 4259.2	4892.9	9.5295	
1200	3.39938	4470.5	5150.4	10.0304	2.26624		5150.2	9.8431	1.69966 4470.2	5150.0	9.7102	
1300	3.63026	4687.1	5413.1	10.2029	2.42019	4686.9	5413.0	10.0157	1.81516 4686.7	5412.8	9.8828	
	P =	0.50 MP	a (151.83	3°C)	<i>P</i> =	0.60 MPa	(158.83	°C)	P = 0.80 M	^o a (170.4)	1°C)	
Sat.	0.37483			6.8207	0.31560		2756.2		0.24035 2576.0	2768.3	6.6616	
200	0.42503			7.0610	0.35212		2850.6		0.26088 2631.1			
250	0.47443			7.2725	0.39390			7.1833	0.29321 2715.9			
300	0.52261			7.4614	0.43442		3062.0		0.32416 2797.5			
350	0.57015			7.6346	0.47428		3166.1		0.35442 2878.6			
400	0.61731			7.7956	0.51374		3270.8		0.38429 2960.2			
500	0.71095			8.0893	0.59200		3483.4		0.44332 3126.6			
600	0.80409			8.3544	0.66976		3701.7		0.50186 3298.7			
700	0.89696 0.98966			8.5978	0.74725 0.82457		3926.4		0.56011 3477.2			
800				8.8240			4157.9		0.61820 3662.5			
900 1000	1.08227 1.17480			9.0362 9.2364	0.90179 0.97893		4396.2 4641.1		0.67619 3854.5 0.73411 4053.3			
1100	1.26728			9.4263	1.05603		4892.4		0.79197 4258.3			
1200	1.35972			9.4203	1.13309		5149.6		0.79197 4258.5			
1300	1.45214			9.7797	1.21012			9.6955	0.90761 4686.1			

 $^{{}^{*}\}text{The temperature in parentheses}$ is the saturation temperature at the specified pressure.

 $^{^{\}dagger}$ Properties of saturated vapor at the specified pressure.

TABLE A-6

Superheated water (Concluded) T v u h s v u h s v u h s v u h s v u h s v u h s v u h s v u h s v u h s v u h s v u h s v u h s v v u h s v v u h s v v u h s v v v u h s v v v v v v v v v v v v v v v v v v												
				s	v	и	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg∙K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K
	Р	= 1.00 MI	Pa (179.8	8°C)	Р	= 1.20 M	MPa (187	.96°C)	P =	1.40 MP	a (195.0	4°C)
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	2587.8	2783.8	6.5217	0.14078	2591.8	2788.9	6.4675
200	0.20602	2622.3	2828.3	6.6956	0.16934	2612.9	2816.1	6.5909	0.14303	2602.7	2803.0	6.4975
250	0.23275	2710.4	2943.1	6.9265	0.19241	2704.7	2935.6	6.8313	0.16356	2698.9	2927.9	6.7488
300	0.25799	2793.7	3051.6	7.1246	0.21386	2789.7	3046.3	7.0335	0.18233	2785.7	3040.9	6.9553
350	0.28250	2875.7	3158.2	7.3029	0.23455			7.2139	0.20029	2869.7		7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482			7.3793	0.21782	2953.1	3258.1	7.3046
500	0.35411	3125.0	3479.1	7.7642	0.29464		3477.0	7.6779	0.25216	3121.8	3474.8	7.6047
600	0.40111	3297.5	3698.6	8.0311	0.33395			7.9456	0.28597	3295.1		
700	0.44783	3476.3	3924.1	8.2755	0.37297			8.1904	0.31951	3474.4		8.1183
800	0.49438	3661.7	4156.1	8.5024	0.41184			8.4176	0.35288	3660.3	4154.3	
900	0.54083	3853.9	4394.8	8.7150	0.45059			8.6303	0.38614	3852.7		8.5587
1000 1100	0.58721 0.63354	4052.7 4257.9	4640.0 4891.4	8.9155 9.1057	0.48928 0.52792			8.8310 9.0212	0.41933 0.45247	4051.7 4257.0	4890.5	8.7595 8.9497
1200	0.63334	4469.0	5148.9	9.1057	0.56652		5148.5	9.0212	0.43247	4468.3	5148.1	
1300	0.72610	4685.8	5411.9	9.4593	0.60509			9.3750	0.51866	4685.1		9.3036
1000	-	= 1.60 MI					MPa (207)			2.00 MP		
0 - 1												
Sat. 225	0.12374 0.13293	2594.8 2645.1	2792.8 2857.8	6.4200 6.5537	0.11037 0.11678	2597.3 2637.0			0.09959 0.10381	2599.1 2628.5		6.3390 6.4160
250	0.13293	2692.9	2919.9	6.6753	0.11678	2686.7			0.10381	2680.3		6.5475
300	0.14130	2781.6	3035.4	6.8864	0.12302	2777.4			0.11150	2773.2		2 6.7684
350	0.17459	2866.6	3146.0	7.0713	0.15460	2863.6			0.13860	2860.5		6.9583
400	0.19007	2950.8	3254.9	7.2394	0.16849	2948.3			0.15122	2945.9		7.1292
500	0.22029	3120.1	3472.6	7.5410	0.19551	3118.5			0.17568	3116.9		3 7.4337
600	0.24999	3293.9	3693.9	7.8101	0.22200	3292.7			0.19962	3291.5		7.7043
700	0.27941	3473.5	3920.5	8.0558	0.24822	3472.6	3919.	4 8.0005	0.22326	3471.7	3918.2	7.9509
800	0.30865	3659.5	4153.4	8.2834	0.27426	3658.8	4152.	4 8.2284	0.24674	3658.0		8.1791
900	0.33780	3852.1	4392.6	8.4965	0.30020	3851.5			0.27012	3850.9		8.3925
1000	0.36687	4051.2	4638.2	8.6974	0.32606	4050.7			0.29342	4050.2		8.5936
1100	0.39589	4256.6	4890.0	8.8878	0.35188	4256.2			0.31667	4255.7		8.7842
1200	0.42488	4467.9	5147.7	9.0689	0.37766	4467.6			0.33989	4467.2		8.9654
1300	0.45383	4684.8	5410.9	9.2418	0.40341	4684.5	5 5410.	6 9.1872	0.36308	4684.2	5410.3	3 9.1384
	<i>P</i>	= 2.50 MI	Pa (223.9	5°C)	Р	= 3.00 M	MPa (233	.85°C)	P =	3.50 MP	a (242.5	6°C)
Sat. 225	0.07995 0.08026	2602.1 2604.8	2801.9 2805.5	6.2558 6.2629	0.06667	2603.2	2803.	2 6.1856	0.05706	2603.0	2802.7	6.1244
250	0.08705	2663.3	2880.9	6.4107	0.07063	2644.7	2856.	5 6.2893	0.05876	2624.0	2829 7	7 6.1764
300	0.09894	2762.2	3009.6	6.6459	0.08118	2750.8			0.06845	2738.8		1 6.4484
350	0.10979		3127.0	6.8424	0.09056	2844.4			0.07680	2836.0		6.6601
400	0.12012		3240.1	7.0170	0.09938	2933.6			0.08456	2927.2		6.8428
450	0.13015	3026.2	3351.6	7.1768	0.10789	3021.2			0.09198	3016.1		7.0074
500	0.13999		3462.8	7.3254	0.11620	3108.6			0.09919	3104.5		7.1593
600	0.15931	3288.5	3686.8	7.5979	0.13245	3285.5	3682.	8 7.5103	0.11325	3282.5	3678.9	7.4357
700	0.17835	3469.3	3915.2	7.8455	0.14841	3467.0	3912.	2 7.7590	0.12702	3464.7	3909.3	7.6855
800	0.19722		4149.2	8.0744	0.16420	3654.3			0.14061	3652.5		7.9156
900	0.21597		4389.3	8.2882	0.17988	3847.9			0.15410	3846.4		8.1304
1000	0.23466		4635.6	8.4897	0.19549	4047.7			0.16751	4046.4		8.3324
1100	0.25330		4887.9	8.6804	0.21105	4253.6			0.18087	4252.5		8.5236
1200	0.27190		5146.0	8.8618	0.22658	4465.3			0.19420	4464.4		8.7053
1300	0.29048	4683.4	5409.5	9.0349	0.24207	4682.6	5408.	8 8.9502	0.20750	4681.8	5408.0	8.8786

TABLE A-6

TABLE	A-6												
Superl													
T	v u	h	S		И	h	S	1 '	И	h	S		
°C	m³/kg kJ/kg	kJ/kg	kJ/kg∙K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg∙K		
	P = 4.0	MPa (250.3	5°C)	Р	= 4.5 MP	a (257.44	°C)	P =	5.0 MPa	(263.94	°C)		
Sat.	0.04978 2601	.7 2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737		
275	0.05461 2668		6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3		6.0571		
300	0.05887 2726		6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0		6.2111		
350	0.06647 2827		6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5		6.4516		
400	0.07343 2920		6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5		6.6483		
450	0.08004 3011		6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6		6.8210		
500	0.08644 3100 0.09886 3279		7.0922 7.3706	0.07652	3096.0 3276.4	3440.4 3670.9	7.0323 7.3127	0.06858	3091.8 3273.3		6.9781		
600 700	0.11098 3462		7.6214	0.08766	3460.0	3903.3	7.5127 7.5647	0.07870	3457.7		7.2605 7.5136		
800	0.12292 3650		7.8523	0.10916	3648.8	4140.0	7.7962	0.00032	3646.9		7.7458		
900	0.13476 3844		8.0675	0.11972	3843.3	4382.1	8.0118	0.10769	3841.8		7.7438		
1000	0.14653 4045		8.2698	0.13020	4043.9	4629.8	8.2144	0.11715	4042.6		8.1648		
1100	0.15824 4251		8.4612	0.14064	4250.4	4883.2	8.4060	0.12655	4249.3		8.3566		
1200	0.16992 4463	.5 5143.2	8.6430	0.15103	4462.6	5142.2	8.5880	0.13592	4461.6		8.5388		
1300	0.18157 4680	.9 5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3	5405.7	8.7124		
	P = 6.0	MPa (275.5	9°C)	Р	= 7.0 MP	a (285.83	°C)	P =	8.0 MPa	(295.01	.°C)		
Sat.	0.03245 2589	.9 2784.6	5.8902	0.027378	2581.0	2772.6	5.8148	0.023525	2570.5	2758.7	5.7450		
300	0.03619 2668		6.0703	0.029492		2839.9	5.9337	0.024279			5.7937		
350	0.04225 2790		6.3357	0.035262		3016.9	6.2305	0.029975		2988.1	6.1321		
400	0.04742 2893	.7 3178.3	6.5432	0.039958	2879.5	3159.2	6.4502	0.034344	2864.6	3139.4	6.3658		
450	0.05217 2989		6.7219	0.044187		3288.3	6.6353	0.038194			6.5579		
500	0.05667 3083		6.8826	0.048157		3411.4	6.8000	0.041767			6.7266		
550	0.06102 3175		7.0308	0.051966		3531.6	6.9507	0.045172			6.8800		
600	0.06527 3267		7.1693	0.055665		3650.6	7.0910	0.048463			7.0221		
700 800	0.07355 3453 0.08165 3643		7.4247 7.6582	0.062850 0.069856		3888.3 4128.5	7.3487 7.5836	0.054829			7.2822		
900	0.08964 3838		7.8362	0.069836		4126.5	7.8014	0.061011			3 7.5185 3 7.7372		
1000	0.09756 4040		8.0786	0.076730		4622.5	8.0055	0.007082			7.7372 7.9419		
1100	0.10543 4247		8.2709	0.090341		4877.4	8.1982	0.079025			8.1350		
1200	0.11326 4459		8.4534	0.097075		5137.4	8.3810	0.084934			8.3181		
1300	0.12107 4677		8.6273	0.103781		5402.6	8.5551	0.090817			8.4925		
	P = 9.0	MPa (303.3	5°C)	P :	= 10.0 MI	Pa (311.00)°C)	P =	12.5 MPa	 a (327.8°	 1°C)		
Sat.	0.020489 2558		5.6791	0.018028		2725.5	5.6159	0.013496			5.4638		
325	0.020489 2558		5.8738	0.018028		2810.3	5.7596	0.010490	2505.0	2074.3	0.7000		
350	0.025816 2725		6.0380	0.022440		2924.0	5.9460	0.016138	2624.9	2826.6	5.7130		
400	0.029960 2849			0.026436			6.2141	0.020030					
450	0.033524 2956		6.4872	0.029782		3242.4	6.4219	0.023019			6.2749		
500	0.036793 3056	.3 3387.4	6.6603	0.032811		3375.1	6.5995	0.025630	3023.2	3343.6	6.4651		
550	0.039885 3153	.0 3512.0	6.8164	0.035655		3502.0	6.7585	0.028033			6.6317		
600	0.042861 3248		6.9605	0.038378		3625.8	6.9045	0.030306			6.7828		
650	0.045755 3343		7.0954	0.041018		3748.1	7.0408	0.032491			6.9227		
700	0.048589 3438		7.2229	0.043597		3870.0	7.1693	0.034612			7.0540		
800	0.054132 3632		7.4606	0.048629		4114.5	7.4085	0.038724			7.2967		
900	0.059562 3829		7.6802	0.053547 0.058391		4362.0 4613.8	7.6290	0.042720			7.5195		
1000 1100	0.064919 4032 0.070224 4240		7.8855 8.0791	0.058391		4613.8 4870.3	7.8349 8.0289	0.046641			7.7269 7.9220		
1200	0.075492 4454		8.2625	0.063163		5131.7	8.2126	0.050310			8.1065		
1300	0.080733 4672		8.4371	0.007938		5398.0	8.3874	0.054342			8.2819		
1000	0.000700 4072	5555.5	0.40/1	3.0,2007	TO/ 1.0	5550.0	0.007 +	0.000147	+007.0	5557.1	5.2013		

TABLE A-6

IARLE	uperheated water (<i>Concluded</i>)											
Superl	heated wate	er (<i>Conclu</i>	ıded)									
T	V	И	h	S	V	И	h	S	V	И	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K
		= 15.0 MP	a (342.16		P = 1	17.5 MPa	(354.67	°C)	P =	20.0 MP	a (365.75	
Sat.	0.010341	2455.7	2610.8	5.3108	0.007932	2390.7	2529.5	5.1435	0.005862			
350	0.011481	2520.9	2693.1	5.4438								
400	0.015671	2740.6	2975.7	5.8819	0.012463		2902.4		0.009950		2816.9	5.5526
450	0.018477	2880.8	3157.9	6.1434	0.015204			6.0212	0.012721		3061.7	5.9043
500	0.020828	2998.4	3310.8	6.3480	0.017385			6.2424	0.014793		3241.2	6.1446
550	0.022945	3106.2	3450.4	6.5230	0.019305			6.4266	0.016571		3396.2	6.3390
600	0.024921	3209.3	3583.1	6.6796	0.021073			6.5890	0.018185		3539.0	6.5075
650	0.026804	3310.1	3712.1	6.8233	0.022742 0.024342				0.019695		3675.3	6.6593
700 800	0.028621 0.032121	3409.8 3609.3	3839.1 4091.1	6.9573 7.2037	0.024342			6.8735 7.1237	0.021134 0.023870			6.7991 7.0531
900	0.032121	3811.2	4343.7	7.4288	0.027403		4334.6		0.023870			7.0331
1000	0.033303	4017.1	4599.2	7.4200	0.030348			7.5616	0.020484		4584.7	7.4950
1100	0.042062	4227.7	4858.6	7.8339	0.036029			7.7588	0.023626			7.6933
1200	0.045279	4443.1	5122.3	8.0192	0.038806			7.9449	0.031354			7.8802
1300	0.048469	4663.3	5390.3	8.1952	0.041556		5386.5		0.036371	4655.2		8.0574
		P = 25	.0 MPa			P = 30.0	O MPa			P = 35	.0 MPa	
375	0.001978	1799.9	1849.4	4.0345	0.001792	1738 1	1791 9	3.9313	0.001701	1702 8	1762.4	3.8724
400	0.006005	2428.5	2578.7	5.1400	0.001732			4.4758	0.002105		1988.6	4.2144
425	0.007886	2607.8	2805.0	5.4708	0.005299			5.1473	0.003434			4.7751
450	0.009176	2721.2	2950.6	5.6759	0.006737			5.4422	0.004957		2671.0	5.1946
500	0.011143	2887.3	3165.9	5.9643	0.008691			5.7956	0.006933		2997.9	5.6331
550	0.012736	3020.8	3339.2	6.1816	0.010175	2974.5	3279.7	6.0403	0.008348	2925.8	3218.0	5.9093
600	0.014140	3140.0	3493.5	6.3637	0.011445	3103.4	3446.8	6.2373	0.009523	3065.6	3399.0	6.1229
650	0.015430	3251.9	3637.7	6.5243	0.012590			6.4074	0.010565		3560.7	6.3030
700	0.016643	3359.9	3776.0	6.6702	0.013654			6.5599	0.011523			6.4623
800	0.018922	3570.7	4043.8	6.9322	0.015628			6.8301	0.013278		3996.3	6.7409
900	0.021075	3780.2	4307.1	7.1668	0.017473			7.0695	0.014904			6.9853
1000	0.023150	3991.5	4570.2	7.3821	0.019240			7.2880	0.016450			7.2069
1100	0.025172	4206.1	4835.4	7.5825	0.020954			7.4906	0.017942			7.4118
1200 1300	0.027157 0.029115	4424.6 4647.2	5103.5 5375.1	7.7710 7.9494	0.022630 0.024279			7.6807 7.8602	0.019398 0.020827		5085.0 5360.2	7.6034 7.7841
1300	0.023113			7.5454	0.024273	P = 50.0		7.0002	0.020027			7.7041
075	0.001641	P = 40		2 0000	0.001560			0.7640	0.001500	P = 60		0.7140
375	0.001641	1677.0	1742.6	3.8290	0.001560			3.7642	1		1699.9	
400 425	0.001911	1855.0 2097.5	1931.4 2199.0	4.1145 4.5044	0.001731				0.001633			
450	0.002538 0.003692				0.002009 0.002487				0.001816			
500	0.005623		2906.5	5.4744	0.002487				0.002080			
550	0.005025	2875.1	3154.4	5.7857	0.005118				0.002352			
600	0.008089	3026.8	3350.4	6.0170	0.006108				0.004833			
650	0.009053	3159.5	3521.6	6.2078	0.006957				0.005591			
700	0.009930	3282.0	3679.2	6.3740	0.007717				0.006265			
800	0.011521	3511.8	3972.6	6.6613	0.009073				0.007456			
900	0.012980	3733.3	4252.5	6.9107	0.010296				0.008519			
1000	0.014360	3952.9	4527.3	7.1355	0.011441			7.0131	0.009504	3902.0	4472.2	6.9099
1100	0.015686	4173.7	4801.1	7.3425	0.012534	4152.2	4778.9	7.2244	0.010439	4130.9	4757.3	7.1255
1200		4396.9	5075.9		0.013590				0.011339			
1300	0.018239	4623.3	5352.8	7.7175	0.014620	4607.5	5338.5	7.6048	0.012213	4591.8	5324.5	7.5111

TABLE A-7

Compressed	liquid	water
------------	--------	-------

Comp	resseu riqui	u watei										
<i>T</i> °C	<i>v</i> m³/kg	<i>u</i> kJ/kg	h k l/ka	S	v m ³ /kg	U k 1/ka	h k l/ka	s kJ/kg∙K	v m ³ /kg	U k 1/ka	h k l/ka	S k I/ka K
C	III°/kg	KJ/Kg	kJ/kg	kJ/kg·K	III°/kg	kJ/kg	kJ/kg	KJ/Kg·K	III°/kg	kJ/kg	kJ/kg	kJ/kg·K
	P =	= 5 MPa	(263.94°C)	P =	= 10 MPa	(311.00°C	C)	P =	= 15 MPa	(342.16°	°C)
Sat.	0.0012862	1148.1	1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603	0.0016572	1585.5	1610.3	3.6848
0	0.0009977	0.04	5.03	0.0001	0.0009952	0.12	10.07	0.0003	0.0009928	0.18	15.07	0.0004
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951	83.01	97.93	0.2932
40	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013	165.75	180.77	0.5666
60	0.0010149	250.29	255.36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105	248.58	263.74	0.8234
80	0.0010267			1.0723	0.0010244	332.69	342.94	1.0691	0.0010221	331.59	346.92	
100	0.0010410			1.3034	0.0010385	416.23	426.62	1.2996	0.0010361	414.85	430.39	
120	0.0010576	501.91		1.5236	0.0010549	500.18	510.73	1.5191	0.0010522	498.50	514.28	
140	0.0010769		592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.0010708	582.69	598.75	
160	0.0010988			1.9374	0.0010954	670.06	681.01	1.9316	0.0010920	667.63	684.01	
180	0.0011240			2.1338	0.0011200	756.48	767.68	2.1271	0.0011160	753.58	770.32	
200	0.0011531			2.3251	0.0011482	844.32	855.80	2.3174	0.0011435	840.84	858.00	
220	0.0011868			2.5127	0.0011809	934.01	945.82	2.5037	0.0011752	929.81	947.43	
240	0.0012268		1037.7	2.6983	0.0012192		1038.3	2.6876	0.0012121		1039.2	2.6774
260	0.0012755	1128.5	1134.9	2.8841	0.0012653		1134.3	2.8710	0.0012560		1134.0	2.8586
280					0.0013226		1235.0	3.0565	0.0013096		1233.0	3.0410
300 320					0.0013980	1329.4	1343.3	3.2488	0.0013783 0.0014733		1338.3 1454.0	3.2279 3.4263
340									0.0014733		1592.4	3.4263
340									0.0010311	1507.9	1392.4	3.0000
	P =	20 MPa	(365.75°C	C)		P = 30) MPa		P = 50 MPa			
Sat.	0.0020378	1785.8	1826.6	4.0146								
0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29	49.13	-0.0010
20	0.0009929	82.71	102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	0.2845
40	0.0009992	165.17	185.16	0.5646	0.0009951	164.05	193.90	0.5607	0.0009872	161.90	211.25	0.5528
60	0.0010084	247.75	267.92	0.8208	0.0010042	246.14	276.26	0.8156	0.0009962	243.08	292.88	0.8055
80	0.0010199			1.0627	0.0010155	328.40	358.86	1.0564	0.0010072	324.42		
100	0.0010337			1.2920	0.0010290	410.87	441.74	1.2847	0.0010201	405.94	456.94	
120	0.0010496			1.5105	0.0010445	493.66	525.00	1.5020	0.0010349	487.69	539.43	
140	0.0010679		602.07	1.7194	0.0010623	576.90	608.76	1.7098	0.0010517	569.77	622.36	
160	0.0010886			1.9203	0.0010823	660.74	693.21	1.9094	0.0010704	652.33	705.85	
180	0.0011122			2.1143	0.0011049	745.40	778.55	2.1020	0.0010914	735.49	790.06	
200	0.0011390			2.3027	0.0011304	831.11	865.02	2.2888	0.0011149	819.45	875.19	
220	0.0011697			2.4867	0.0011595	918.15	952.93	2.4707	0.0011412	904.39	961.45	
240	0.0012053		1040.2	2.6676	0.0011927		1042.7	2.6491	0.0011708		1049.1	2.6156
260	0.0012472		1134.0	2.8469	0.0012314		1134.7	2.8250	0.0012044		1138.4	2.7864
280	0.0012978		1231.5	3.0265	0.0012770		1229.8	3.0001	0.0012430		1229.9	2.9547
300	0.0013611		1334.4	3.2091	0.0013322		1328.9	3.1761	0.0012879		1324.0	3.1218 3.2888
320	0.0014450		1445.5	3.3996	0.0014014		1433.7	3.3558	0.0013409		1421.4	
340 360	0.0015693 0.0018248		1571.6 1740.1	3.6086 3.8787	0.0014932 0.0016276		1547.1 1675.6	3.5438 3.7499	0.0014049 0.0014848		1523.1 1630.7	3.4575 3.6301
	0.0018248	1/03.0	1/40.1	J.0/8/								
380					0.0018729	1/82.0	1838.2	4.0026	0.0015884	100/.1	1746.5	3.8102

TABLE A–8Saturated ice–water vapor

		Specific volume, m³/kg		kJ/kg			<i>Enthalpy</i> kJ/kg	;	<i>Entropy,</i> kJ/kg∙K			
Temp., T°C	Sat. press., P _{sat} kPa	Sat. ice, v _i	Sat. vapor, v_g	Sat. ice, <i>u_i</i>	Subl., u _{ig}	Sat. vapor, u_g	Sat. ice, <i>h_i</i>	Subl., h _{ig}	Sat. vapor, h_g	Sat. ice, s_i	Subl., s _{ig}	Sat. vapor, s _g
0.01	0.61169	0.001091	205.99	-333.40	2707.9	2374.5	-333.40	2833.9	2500.5	-1.2202	10.374	9.154
0	0.61115	0.001091	206.17	-333.43	2707.9	2374.5	-333.43	2833.9	2500.5	-1.2204	10.375	9.154
-2	0.51772	0.001091	241.62	-337.63	2709.4	2371.8	-337.63	2834.5	2496.8	-1.2358	10.453	9.218
-4	0.43748	0.001090	283.84	-341.80	2710.8	2369.0	-341.80	2835.0	2493.2	-1.2513	10.533	9.282
-6	0.36873	0.001090	334.27	-345.94	2712.2	2366.2	-345.93	2835.4	2489.5	-1.2667	10.613	9.347
-8	0.30998	0.001090	394.66	-350.04	2713.5	2363.5	-350.04	2835.8	2485.8	-1.2821	10.695	9.413
-10	0.25990	0.001089	467.17	-354.12	2714.8	2360.7	-354.12	2836.2	2482.1	-1.2976	10.778	9.480
-12	0.21732	0.001089	554.47	-358.17	2716.1	2357.9	-358.17	2836.6	2478.4	-1.3130	10.862	9.549
-14	0.18121	0.001088	659.88	-362.18	2717.3	2355.2	-362.18	2836.9	2474.7	-1.3284	10.947	9.618
-16	0.15068	0.001088	787.51	-366.17	2718.6	2352.4	-366.17	2837.2	2471.0	-1.3439	11.033	9.689
-18	0.12492	0.001088	942.51	-370.13	2719.7	2349.6	-370.13	2837.5	2467.3	-1.3593	11.121	9.761
-20	0.10326	0.001087	1131.3	-374.06	2720.9	2346.8	-374.06	2837.7	2463.6	-1.3748	11.209	9.835
-22	0.08510	0.001087	1362.0	-377.95	2722.0	2344.1	-377.95	2837.9	2459.9	-1.3903	11.300	9.909
-24	0.06991	0.001087	1644.7	-381.82	2723.1	2341.3	-381.82	2838.1	2456.2	-1.4057	11.391	9.985
-26	0.05725	0.001087	1992.2	-385.66	2724.2	2338.5	-385.66	2838.2	2452.5	-1.4212	11.484	10.063
-28	0.04673	0.001086	2421.0	-389.47	2725.2	2335.7	-389.47	2838.3	2448.8	-1.4367	11.578	10.141
-30	0.03802	0.001086	2951.7	-393.25	2726.2	2332.9	-393.25	2838.4	2445.1	-1.4521	11.673	10.221
-32	0.03082	0.001086	3610.9	-397.00	2727.2	2330.2	-397.00	2838.4	2441.4	-1.4676	11.770	10.303
-34	0.02490	0.001085	4432.4	-400.72	2728.1	2327.4	-400.72	2838.5	2437.7	-1.4831	11.869	10.386
-36	0.02004	0.001085	5460.1	-404.40	2729.0	2324.6	-404.40	2838.4	2434.0	-1.4986	11.969	10.470
-38	0.01608	0.001085	6750.5	-408.07	2729.9	2321.8	-408.07	2838.4	2430.3	-1.5141	12.071	10.557
<u>-40</u>	0.01285	0.001084	8376.7	-411.70	2730.7	2319.0	-411.70	2838.3	2426.6	-1.5296	12.174	10.644

FIGURE A-9

T-s diagram for water.

Copyright © 1984. From NBS/NRC Steam Tables/1 by Lexter Haar, John S. Gallagher, and George S. Kell. Reproduced by permission of Routledge/Taylor & Francis Books, Inc.

FIGURE A-10

Mollier diagram for water.

Copyright © 1984. From NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell. Reproduced by permission of Routledge/Taylor & Francis Books, Inc.

TABLE A–11Saturated refrigerant-134a—Temperature table

		Specific m ³ /l		Inte	ernal ener kJ/kg	rgy,		<i>Enthalpy</i> kJ/kg	;		<i>Entropy,</i> kJ/kg∙K	
Temp T °C	Sat. ., press., $P_{\rm sat}$ kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, <i>h_g</i>	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
-40 -38 -36 -34 -32	51.25 56.86 62.95 69.56 76.71	0.0007054 0.0007083 0.0007112 0.0007142 0.0007172	0.36081 0.32732 0.29751 0.27090 0.24711	-0.036 2.475 4.992 7.517 10.05	207.40 206.04 204.67 203.29 201.91	207.37 208.51 209.66 210.81 211.96	0.000	225.86 224.61 223.35	225.86 227.12 228.39 229.65 230.91	0.00000 0.01072 0.02138 0.03199 0.04253	0.96866 0.95511 0.94176 0.92859 0.91560	0.96866 0.96584 0.96315 0.96058 0.95813
-30 -28 -26 -24 -22	84.43 92.76 101.73 111.37 121.72	0.0007203 0.0007234 0.0007265 0.0007297 0.0007329	0.22580 0.20666 0.18946 0.17395 0.15995	12.59 15.13 17.69 20.25 22.82	200.52 199.12 197.72 196.30 194.88	213.11 214.25 215.40 216.55 217.70	12.65 15.20 17.76 20.33 22.91	219.52 218.22 216.92 215.59 214.26	232.17 233.43 234.68 235.92 s237.17	0.05301 0.06344 0.07382 0.08414 0.09441	0.90278 0.89012 0.87762 0.86527 0.85307	0.95579 0.95356 0.95144 0.94941 0.94748
-20 -18 -16 -14 -12	132.82 144.69 157.38 170.93 185.37	0.0007362 0.0007396 0.0007430 0.0007464 0.0007499	0.14729 0.13583 0.12542 0.11597 0.10736	25.39 27.98 30.57 33.17 35.78	193.45 192.01 190.56 189.09 187.62	218.84 219.98 221.13 222.27 223.40	25.49 28.09 30.69 33.30 35.92	212.91 211.55 210.18 208.79 207.38	238.41 239.64 240.87 242.09 243.30	0.10463 0.11481 0.12493 0.13501 0.14504	0.84101 0.82908 0.81729 0.80561 0.79406	0.94564 0.94389 0.94222 0.94063 0.93911
-10 -8 -6 -4 -2	200.74 217.08 234.44 252.85 272.36	0.0007535 0.0007571 0.0007608 0.0007646 0.0007684	0.099516 0.092352 0.085802 0.079804 0.074304	43.66 46.31	186.14 184.64 183.13 181.61 180.08	224.54 225.67 226.80 227.92 229.04	38.55 41.19 43.84 46.50 49.17	205.96 204.52 203.07 201.60 200.11	244.51 245.72 246.91 248.10 249.28	0.15504 0.16498 0.17489 0.18476 0.19459	0.78263 0.77130 0.76008 0.74896 0.73794	0.93766 0.93629 0.93497 0.93372 0.93253
0 2 4 6 8	293.01 314.84 337.90 362.23 387.88	0.0007723 0.0007763 0.0007804 0.0007845 0.0007887	0.069255 0.064612 0.060338 0.056398 0.052762	54.30 56.99 59.68	178.53 176.97 175.39 173.80 172.19	230.16 231.27 232.38 233.48 234.58	51.86 54.55 57.25 59.97 62.69	198.60 197.07 195.51 193.94 192.35	250.45 251.61 252.77 253.91 255.04	0.20439 0.21415 0.22387 0.23356 0.24323	0.72701 0.71616 0.70540 0.69471 0.68410	0.93139 0.93031 0.92927 0.92828 0.92733
10 12 14 16 18	414.89 443.31 473.19 504.58 537.52	0.0007930 0.0007975 0.0008020 0.0008066 0.0008113	0.049403 0.046295 0.043417 0.040748 0.038271	67.83 70.57 73.32	170.56 168.92 167.26 165.58 163.88	235.67 236.75 237.83 238.90 239.96	65.43 68.18 70.95 73.73 76.52	190.73 189.09 187.42 185.73 184.01	256.16 257.27 258.37 259.46 260.53	0.25286 0.26246 0.27204 0.28159 0.29112	0.67356 0.66308 0.65266 0.64230 0.63198	0.92641 0.92554 0.92470 0.92389 0.92310

TABLE A–11Saturated refrigerant-134a—Temperature table (*Concluded*)

		Specific m ³ /		Inte	ernal ene kJ/kg	rgy,		<i>Enthalpy</i> kJ/kg	;		<i>Entropy,</i> kJ/kg∙K	
Temp T°C	Sat. ., press., $P_{\rm sat}$ kPa	Sat. Iiquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
20	572.07	0.0008161	0.035969	78.86	162.16	241.02	79.32	182.27	261.59	0.30063	0.62172	0.92234
22	608.27	0.0008210	0.033828	81.64	160.42	242.06	82.14	180.49	262.64	0.31011	0.61149	0.92160
24	646.18	0.0008261	0.031834	84.44	158.65	243.10	84.98	178.69	263.67	0.31958	0.60130	0.92088
26	685.84	0.0008313	0.029976	87.26	156.87	244.12	87.83	176.85	264.68	0.32903	0.59115	0.92018
28	727.31	0.0008366	0.028242	90.09	155.05	245.14	90.69	174.99	265.68	0.33846	0.58102	0.91948
30	770.64	0.0008421	0.026622	92.93	153.22	246.14	93.58	173.08	266.66	0.34789	0.57091	0.91879
32	815.89	0.0008478	0.025108	95.79	151.35	247.14	96.48	171.14	267.62	0.35730	0.56082	0.91811
34	863.11	0.0008536	0.023691	98.66	149.46	248.12	99.40	169.17	268.57	0.36670	0.55074	0.91743
36	912.35	0.0008595	0.022364	101.55	147.54	249.08	102.33	167.16	269.49	0.37609	0.54066	0.91675
38	963.68	0.0008657	0.021119	104.45	145.58	250.04	105.29	165.10	270.39	0.38548	0.53058	0.91606
40	1017.1	0.0008720	0.019952	107.38	143.60	250.97	108.26	163.00	271.27	0.39486	0.52049	0.91536
42	1072.8	0.0008786	0.018855	110.32	141.58	251.89	111.26	160.86	272.12	0.40425	0.51039	0.91464
44	1130.7	0.0008854	0.017824	113.28	139.52	252.80	114.28	158.67	272.95	0.41363	0.50027	0.91391
46	1191.0	0.0008924	0.016853	116.26	137.42	253.68	117.32	156.43	273.75	0.42302	0.49012	0.91315
48	1253.6	0.0008996	0.015939	119.26	135.29	254.55	120.39	154.14	274.53	0.43242	0.47993	0.91236
52	1386.2	0.0009150	0.014265	125.33	130.88	256.21	126.59	149.39	275.98	0.45126	0.45941	0.91067
56	1529.1	0.0009317	0.012771	131.49	126.28	257.77	132.91	144.38	277.30	0.47018	0.43863	0.90880
60	1682.8	0.0009498	0.011434	137.76	121.46	259.22	139.36	139.10	278.46	0.48920	0.41749	0.90669
65	1891.0	0.0009750	0.009950	145.77	115.05	260.82	147.62	132.02	279.64	0.51320	0.39039	0.90359
70	2118.2	0.0010037	0.008642	154.01	108.14	262.15	156.13	124.32	280.46	0.53755	0.36227	0.89982
75	2365.8	0.0010372	0.007480	162.53	100.60	263.13	164.98	115.85	280.82	0.56241	0.33272	0.89512
80	2635.3	0.0010772	0.006436	171.40	92.23	263.63	174.24	106.35	280.59	0.58800	0.30111	0.88912
85	2928.2	0.0011270	0.005486	180.77	82.67	263.44	184.07	95.44	279.51	0.61473	0.26644	0.88117
90	3246.9	0.0011932	0.004599	190.89	71.29	262.18	194.76	82.35	277.11	0.64336	0.22674	0.87010
95	3594.1	0.0012933	0.003726	202.40	56.47	258.87	207.05	65.21	272.26	0.67578	0.17711	0.85289
100	3975.1	0.0015269	0.002630	218.72	29.19	247.91	224.79	33.58	258.37	0.72217	0.08999	0.81215

Source: Tables A-11 through A-13 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner-Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and Pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at -40°C (and -40°F).

TABLE A-12

Saturated refrigerant-134a—Pressure table

			volume, /kg	Inte	<i>rnal enei</i> kJ/kg	rgy,		E <i>nthalpy,</i> kJ/kg			Entropy, kJ/kg·K	
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. Iiquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s_f	Evap., s _{fg}	Sat. vapor, s_g
60 70 80 90 100	-36.95 -33.87 -31.13 -28.65 -26.37	0.0007098 0.0007144 0.0007185 0.0007223 0.0007259	0.31121 0.26929 0.23753 0.21263 0.19254	7.680 11.15 14.31 17.21	205.32 203.20 201.30 199.57 197.98	209.12 210.88 212.46 213.88 215.19	7.730 11.21 14.37 17.28	218.65 217.16	229.73 231.46 233.02 234.44	0.01634 0.03267 0.04711 0.06008 0.07188	0.94807 0.92775 0.90999 0.89419 0.87995	0.96441 0.96042 0.95710 0.95427 0.95183
120 140 160 180 200	-22.32 -18.77 -15.60 -12.73 -10.09	0.0007324 0.0007383 0.0007437 0.0007487 0.0007533	0.16212 0.14014 0.12348 0.11041 0.099867	22.40 26.98 31.09 34.83 38.28	195.11 192.57 190.27 188.16 186.21	217.51 219.54 221.35 222.99 224.48	22.49 27.08 31.21 34.97 38.43	212.08 209.90 207.90	236.97 239.16 241.11 242.86 244.46	0.09275 0.11087 0.12693 0.14139 0.15457	0.85503 0.83368 0.81496 0.79826 0.78316	0.94779 0.94456 0.94190 0.93965 0.93773
240 280 320 360 400	-5.38 -1.25 2.46 5.82 8.91	0.0007620 0.0007699 0.0007772 0.0007841 0.0007907	0.083897 0.072352 0.063604 0.056738 0.051201	44.48 49.97 54.92 59.44 63.62	182.67 179.50 176.61 173.94 171.45	227.14 229.46 231.52 233.38 235.07	44.66 50.18 55.16 59.72 63.94	199.54 196.71 194.08		0.17794 0.19829 0.21637 0.23270 0.24761	0.75664 0.73381 0.71369 0.69566 0.67929	0.93458 0.93210 0.93006 0.92836 0.92691
450 500 550 600 650	12.46 15.71 18.73 21.55 24.20	0.0007985 0.0008059 0.0008130 0.0008199 0.0008266	0.045619 0.041118 0.037408 0.034295 0.031646	68.45 72.93 77.10 81.02 84.72	168.54 165.82 163.25 160.81 158.48	237.00 238.75 240.35 241.83 243.20	68.81 73.33 77.54 81.51 85.26	183.38	259.30 260.92 262.40	0.26465 0.28023 0.29461 0.30799 0.32051	0.66069 0.64377 0.62821 0.61378 0.60030	0.92535 0.92400 0.92282 0.92177 0.92081
700 750 800 850	26.69 29.06 31.31 33.45	0.0008331 0.0008395 0.0008458 0.0008520	0.029361 0.027371 0.025621 0.024069	88.24 91.59 94.79 97.87	156.24 154.08 152.00 149.98	244.48 245.67 246.79 247.85	88.82 92.22 95.47 98.60	171.82	265.03 266.20 267.29 268.31	0.33230 0.34345 0.35404 0.36413	0.58763 0.57567 0.56431 0.55349	0.91994 0.91912 0.91835 0.91762
900 950 1000 1200 1400	35.51 37.48 39.37 46.29 52.40	0.0008580 0.0008641 0.0008700 0.0008934 0.0009166	0.022683 0.021438 0.020313 0.016715 0.014107	100.83 103.69 106.45 116.70 125.94	148.01 146.10 144.23 137.11 130.43	248.85 249.79 250.68 253.81 256.37	101.61 104.51 107.32 117.77 127.22	163.67 156.10	269.26 270.15 270.99 273.87 276.12	0.37377 0.38301 0.39189 0.42441 0.45315	0.54315 0.53323 0.52368 0.48863 0.45734	0.91692 0.91624 0.91558 0.91303 0.91050
1600 1800 2000 2500 3000	57.88 62.87 67.45 77.54 86.16	0.0009400 0.0009639 0.0009886 0.0010566 0.0011406	0.012123 0.010559 0.009288 0.006936 0.005275	134.43 142.33 149.78 166.99 183.04	124.04 117.83 111.73 96.47 80.22	258.47 260.17 261.51 263.45 263.26	135.93 144.07 151.76 169.63 186.46	111.16		0.47911 0.50294 0.52509 0.57531 0.62118	0.42873 0.40204 0.37675 0.31695 0.25776	0.90784 0.90498 0.90184 0.89226 0.87894

TABLE A-13

Superheated refrigerant-134a

oupei	neated rei	rigorant	10 10									
Τ	V	И	h	S	V	И	h	S	V	И	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
	P = 0.0	06 MPa (7	$s_{\text{sat}} = -36.$	95°C)	P = 0	.10 MPa ($T_{\rm sat} = -26$.37°C)	P=0.	14 MPa (7	$rac{1}{sat} = -18$.77°C)
Sat.	0.31121	209.12	227.79	0.9644	0.19254	215.19	234.44	0.9518	0.14014	219.54	239.16	0.9446
-20	0.33608	220.60	240.76	1.0174	0.19841	219.66	239.50	0.9721				
-10	0.35048	227.55	248.58	1.0477	0.20743	226.75	247.49	1.0030	0.14605	225.91	246.36	0.9724
0	0.36476	234.66	256.54	1.0774	0.21630	233.95	255.58	1.0332	0.15263	233.23	254.60	1.0031
10	0.37893	241.92	264.66	1.1066	0.22506	241.30	263.81	1.0628	0.15908	240.66	262.93	1.0331
20	0.39302	249.35	272.94		0.23373	248.79	272.17	1.0918	0.16544	248.22	271.38	1.0624
30	0.40705		281.37		0.24233	256.44	280.68	1.1203	0.17172	255.93	279.97	
40	0.42102	264.71		1.1915	0.25088	264.25	289.34	1.1484	0.17794	263.79	288.70	
50	0.43495	272.64	298.74		0.25937	272.22	298.16	1.1762	0.18412	271.79	297.57	
60	0.44883	280.73	307.66		0.26783	280.35	307.13	1.2035	0.19025	279.96	306.59	
70	0.46269	288.99		1.2732	0.27626	288.64	316.26	1.2305	0.19635	288.28	315.77	
80	0.47651	297.41	326.00		0.28465	297.08	325.55	1.2572	0.20242	296.75	325.09	
90	0.49032	306.00	335.42		0.29303	305.69	334.99	1.2836	0.20847	305.38	334.57	
100	0.50410	314.74	344.99	1.3520	0.30138	314.46	344.60	1.3096	0.21449	314.17	344.20	1.2814
	P = 0.	18 MPa (7	$rac{1}{sat} = -12.$	73°C)	P = 0	.20 MPa ($T_{\rm sat} = -10$.09°C)	P = 0	.24 MPa ($T_{\rm sat} = -5.5$	38°C)
Sat.	0.11041	222.99	242.86	0.9397	0.09987	224.48	244.46	0.9377	0.08390	227.14	247.28	0.9346
-10	0.11189	225.02	245.16	0.9484	0.09991	224.55	244.54	0.9380				
0	0.11722	232.48	253.58	0.9798	0.10481	232.09	253.05	0.9698	0.08617	231.29	251.97	0.9519
10	0.12240	240.00	262.04	1.0102	0.10955	239.67	261.58	1.0004	0.09026	238.98	260.65	0.9831
20	0.12748	247.64	270.59	1.0399	0.11418	247.35	270.18	1.0303	0.09423	246.74	269.36	1.0134
30	0.13248	255.41	279.25	1.0690	0.11874	255.14	278.89	1.0595	0.09812	254.61	278.16	1.0429
40	0.13741	263.31	288.05	1.0975	0.12322	263.08	287.72	1.0882	0.10193	262.59	287.06	1.0718
50	0.14230	271.36	296.98	1.1256	0.12766	271.15	296.68	1.1163	0.10570	270.71		1.1001
60	0.14715	279.56	306.05	1.1532	0.13206	279.37	305.78	1.1441	0.10942	278.97	305.23	1.1280
70	0.15196	287.91	315.27		0.13641	287.73	315.01	1.1714	0.11310	287.36		1.1554
80	0.15673	296.42	324.63		0.14074	296.25	324.40	1.1983	0.11675	295.91		1.1825
90	0.16149	305.07	334.14		0.14504	304.92	333.93	1.2249	0.12038	304.60	333.49	
100	0.16622	313.88	343.80	1.2602	0.14933	313.74	343.60	1.2512	0.12398	313.44	343.20	1.2356
			$T_{\rm sat} = -1.3$	25°C)	P =	0.32 MPa	$(T_{\rm sat} = 2.4)$	6°C)		0.40 MPa		
Sat.	0.07235		249.72	0.9321	0.06360	231.52	251.88	0.9301	0.051201	235.07	255.55	0.9269
0	0.07282	230.44	250.83	0.9362								
10	0.07646	238.27	259.68		0.06609	237.54	258.69	0.9544	0.051506	235.97		0.9305
20	0.07997	246.13	268.52		0.06925	245.50	267.66	0.9856	0.054213			0.9628
30	0.08338	254.06	277.41	1.0285	0.07231	253.50	276.65	1.0157	0.056796		275.07	
40	0.08672	262.10	286.38		0.07530	261.60	285.70	1.0451	0.059292			1.0236
50	0.09000	270.27		1.0862	0.07823	269.82	294.85	1.0739	0.061724			1.0528
60	0.09324		304.67		0.08111	278.15	304.11	1.1021	0.064104		302.96	
70	0.09644				0.08395				0.066443		312.44	
80	0.09961				0.08675			1.1571	0.068747		322.02	
90	0.10275		333.06			303.97	332.62	1.1840	0.071023		331.73	
100	0.10587		342.80		0.09229		342.39	1.2105	0.073274		341.57	
110	0.10897		352.68		0.09503	321.89	352.30	1.2367	0.075504		351.53	
120	0.11205		362.70		0.09775	331.07	362.35	1.2626	0.077717		361.63	
130	0.11512		372.87		0.10045	340.39	372.54	1.2882	0.079913		371.87	
140	0.11818	350.09	383.18	1.3250	0.10314	349.86	382.87	1.3135	0.082096	349.41	382.24	1.2942

TABLE A-13

Superheated refrigerant-134a (Continued)

Superi	neated refr	gerant-1	1348 (6	onunuea)	l							
T	V	и	h	S	V	и	h	S	V	И	h	S
°C	m³/kg	kJ/kg		kJ/kg∙K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg		kJ/kg∙K
	P = 0.9	50 MPa ($T_{\rm sat} = 15.$	71°C)	P = 0	.60 MPa ($T_{\rm sat} = 21.5$	55°C)	P = 0.	.70 MPa (<i>T</i>	- _{sat} = 26.6	9°C)
Sat.	0.041118	238.75	259.30	0.9240	0.034295	241.83	262.40	0.9218	0.029361	244.48	265.03	0.9199
20	0.042115											
30	0.044338	250.84	273.01	0.9703	0.035984	249.22	270.81	0.9499	0.029966	247.48	268.45	0.9313
40	0.046456	259.26	282.48	1.0011	0.037865	257.86	280.58	0.9816	0.031696	256.39	278.57	
50	0.048499			1.0309	0.039659	266.48	290.28	1.0121	0.033322	265.20	288.53	
60	0.050485			1.0599	0.041389	275.15	299.98	1.0417	0.034875	274.01	298.42	
70	0.052427			1.0883	0.043069	283.89	309.73	1.0705	0.036373	282.87	308.33	
80	0.054331			1.1162	0.044710	292.73	319.55	1.0987	0.037829	291.80	318.28	
90	0.056205		330.61		0.046318	301.67	329.46	1.1264	0.039250	300.82	328.29	
100	0.058053 0.059880		340.53 350.57		0.047900 0.049458	310.73 319.91	339.47 349.59	1.1536	0.040642	309.95 319.19	338.40 348.60	
110 120	0.059880		360.73		0.049438	329.23	359.82	1.1803 1.2067	0.042010 0.043358	328.55	358.90	
130	0.063479		371.03		0.052519	338.67	370.18	1.2327	0.043538	338.04		1.2186
140	0.065256			1.2747	0.052013	348.25	380.66	1.2584	0.046004	347.66	379.86	
150	0.067021		392.02		0.055522	357.96	391.27	1.2838	0.047306	357.41	390.52	
160	0.068775			1.3249	0.057006	367.81	402.01	1.3088	0.048597	367.29	401.31	
		30 MPa (.90 MPa (P = 1	.00 MPa (7		
Sat.	0.025621				0.022683	248.85	269.26	0.9169	0.020313	250.68	out	0.9156
40	0.027035				0.023375	253.13	274.17	0.9327	0.020406	251.30	271.71	
50	0.028547		286.69		0.024809	262.44	284.77	0.9660	0.021796	260.94	282.74	
60	0.029973	272.83	296.81	1.0110	0.026146	271.60	295.13	0.9976	0.023068	270.32	293.38	
70	0.031340	281.81	306.88	1.0408	0.027413	280.72	305.39	1.0280	0.024261	279.59	303.85	1.0160
80	0.032659	290.84	316.97	1.0698	0.028630	289.86	315.63	1.0574	0.025398	288.86	314.25	1.0458
90	0.033941	299.95	327.10	1.0981	0.029806	299.06	325.89	1.0860	0.026492	298.15	324.64	1.0748
100	0.035193	309.15	337.30	1.1258	0.030951	308.34	336.19	1.1140	0.027552	307.51	335.06	1.1031
110	0.036420		347.59		0.032068	317.70	346.56	1.1414	0.028584	316.94	345.53	
120	0.037625			1.1798	0.033164	327.18	357.02	1.1684	0.029592	326.47	356.06	
130	0.038813		368.45		0.034241	336.76	367.58	1.1949	0.030581	336.11	366.69	
140	0.039985		379.05		0.035302	346.46	378.23	1.2210	0.031554	345.85	377.40	
150	0.041143				0.036349	356.28	389.00	1.2467	0.032512	355.71		1.2368
160	0.042290		400.59		0.037384	366.23	399.88	1.2721	0.033457	365.70	399.15	
170	0.043427		411.55		0.038408	376.31	410.88	1.2972	0.034392	375.81	410.20	
180	0.044554	386.99	422.64	1.3327	0.039423	386.52	422.00	1.3221	0.035317	386.04	421.36	1.3124
	P = 1.3	20 MPa ($T_{\rm sat} = 46.$	29°C)	P = 1	.40 MPa ($T_{\rm sat} = 52.4$	10°C)	P = 1.	60 MPa (7	$rac{1}{sat} = 57.8$	8°C)
Sat.	0.016715				0.014107	256.37	276.12	0.9105	0.012123	258.47	277.86	0.9078
50	0.017201				0.015005	064.46	005.47		0.010070	0.00.00	000.00	0.0160
60	0.018404				0.015005	264.46	285.47	0.9389	0.012372	260.89	280.69	
70	0.019502				0.016060		297.10		0.013430			0.9535
80	0.020529				0.017023	284.51	308.34	1.0056	0.014362	282.09		0.9875
90	0.021506				0.017923	294.28	319.37	1.0364	0.015215	292.17	316.52	
100	0.022442				0.018778	304.01	330.30	1.0661	0.016014	302.14	327.76	
110	0.023348 0.024228				0.019597 0.020388	313.76	341.19	1.0949	0.016773	312.07 322.02	338.91	
120 130	0.024228				0.020388	323.55 333.41	352.09 363.02	1.1230 1.1504	0.017500 0.018201	322.02	350.02 361.12	
140	0.025086				0.021155	343.34	363.02	1.1773	0.018201	342.05	372.26	
150	0.025927				0.021904	353.37	385.07	1.2038	0.010002	352.17	383.44	
160	0.020755				0.022030	363.51	396.20	1.2298	0.019343	362.17	394.69	
170	0.027360				0.023333	373.75		1.2554	0.020194	372.69		1.2421
180	0.029158				0.024757		418.76	1.2807	0.020050	383.11	417.44	
			,								. =	

FIGURE A-14

P-h diagram for refrigerant-134a.

Note: The reference point used for the chart is different than that used in the R-134a tables. Therefore, problems should be solved using all property data either from the tables or from the chart, but not from both.

Reprinted by permission of American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.

FIGURE A-15

Nelson-Obert generalized compressibility chart.

Used with permission of Dr. Edward E. Obert, University of Wisconsin.

TABLE A–16Properties of the atmosphere at high altitude

Altitude,	Temperature, °C	Pressure, kPa	Gravity g, m/s ²	Speed of Sound, m/s	Density, kg/m³	Viscosity μ, kg/m⋅s	Thermal Conductivity, W/m∙K
0	15.00	101.33	9.807	340.3	1.225	1.789×10^{-5} 1.783×10^{-5} 1.777×10^{-5} 1.771×10^{-5} 1.764×10^{-5}	0.0253
200	13.70	98.95	9.806	339.5	1.202		0.0252
400	12.40	96.61	9.805	338.8	1.179		0.0252
600	11.10	94.32	9.805	338.0	1.156		0.0251
800	9.80	92.08	9.804	337.2	1.134		0.0250
1000	8.50	89.88	9.804	336.4	1.112	1.758×10^{-5} 1.752×10^{-5} 1.745×10^{-5} 1.739×10^{-5} 1.732×10^{-5}	0.0249
1200	7.20	87.72	9.803	335.7	1.090		0.0248
1400	5.90	85.60	9.802	334.9	1.069		0.0247
1600	4.60	83.53	9.802	334.1	1.048		0.0245
1800	3.30	81.49	9.801	333.3	1.027		0.0244
2000	2.00	79.50	9.800	332.5	1.007	1.726×10^{-5} 1.720×10^{-5} 1.713×10^{-5} 1.707×10^{-5} 1.700×10^{-5}	0.0243
2200	0.70	77.55	9.800	331.7	0.987		0.0242
2400	-0.59	75.63	9.799	331.0	0.967		0.0241
2600	-1.89	73.76	9.799	330.2	0.947		0.0240
2800	-3.19	71.92	9.798	329.4	0.928		0.0239
3000	-4.49	70.12	9.797	328.6	0.909	1.694×10^{-5} 1.687×10^{-5} 1.681×10^{-5} 1.674×10^{-5} 1.668×10^{-5}	0.0238
3200	-5.79	68.36	9.797	327.8	0.891		0.0237
3400	-7.09	66.63	9.796	327.0	0.872		0.0236
3600	-8.39	64.94	9.796	326.2	0.854		0.0235
3800	-9.69	63.28	9.795	325.4	0.837		0.0234
4000	-10.98	61.66	9.794	324.6	0.819	1.661×10^{-5} 1.655×10^{-5} 1.648×10^{-5} 1.642×10^{-5} 1.635×10^{-5}	0.0233
4200	-12.3	60.07	9.794	323.8	0.802		0.0232
4400	-13.6	58.52	9.793	323.0	0.785		0.0231
4600	-14.9	57.00	9.793	322.2	0.769		0.0230
4800	-16.2	55.51	9.792	321.4	0.752		0.0229
5000	-17.5	54.05	9.791	320.5	0.736	1.628×10^{-5} 1.622×10^{-5} 1.615×10^{-5} 1.608×10^{-5} 1.602×10^{-5}	0.0228
5200	-18.8	52.62	9.791	319.7	0.721		0.0227
5400	-20.1	51.23	9.790	318.9	0.705		0.0226
5600	-21.4	49.86	9.789	318.1	0.690		0.0224
5800	-22.7	48.52	9.785	317.3	0.675		0.0223
6000	-24.0	47.22	9.788	316.5	0.660	1.595×10^{-5} 1.588×10^{-5} 1.582×10^{-5} 1.575×10^{-5} 1.568×10^{-5}	0.0222
6200	-25.3	45.94	9.788	315.6	0.646		0.0221
6400	-26.6	44.69	9.787	314.8	0.631		0.0220
6600	-27.9	43.47	9.786	314.0	0.617		0.0219
6800	-29.2	42.27	9.785	313.1	0.604		0.0218
7000	-30.5	41.11	9.785	312.3	0.590	1.561×10^{-5}	0.0217
8000	-36.9	35.65	9.782	308.1	0.526	1.527×10^{-5}	0.0212
9000	-43.4	30.80	9.779	303.8	0.467	1.493×10^{-5}	0.0206
10,000	-49.9	26.50	9.776	299.5	0.414	1.458×10^{-5} 1.422×10^{-5} 1.422×10^{-5} 1.422×10^{-5} 1.422×10^{-5}	0.0201
12,000	-56.5	19.40	9.770	295.1	0.312		0.0195
14,000	-56.5	14.17	9.764	295.1	0.228		0.0195
16,000	-56.5	10.53	9.758	295.1	0.166		0.0195
18,000	-56.5	7.57	9.751	295.1	0.122		0.0195

Source: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 45° latitude and varies with the time of the year and the weather patterns. The conditions at sea level (z=0) are taken to be P=101.325 kPa, $T=15^{\circ}$ C, $\rho=1.2250$ kg/m³, g=9.80665 m²/s.

TABLE A-17

Ideal-gas properties of air

		ities of all			-0	7	-				-0
T	<i>h</i> kJ/kg	D	<i>u</i> kJ/kg		<i>s</i> ° kJ/kg⋅K	T	<i>h</i> kJ/kg	D	<i>u</i> kJ/kg		<i>s</i> ° kJ/kg∙K
K	KJ/Kg	P_r		V _r	KJ/Kg·K	K	KJ/Kg	P_r	KJ/Kg	V_r	KJ/Kg⋅K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260	260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.47716
270 280	270.11 280.13	0.9590 1.0889	192.60 199.75	808.0 738.0	1.59634 1.63279	650 660	659.84 670.47	21.86 23.13	473.25 481.01	85.34 81.89	2.49364 2.50985
285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589
290	290.16	1.2311	206.91	676.1	1.66802	680	691.82	25.85	496.62	75.50	2.54175
295	295.17	1.3068	210.49	647.9	1.68515	690	702.52	27.29	504.45	72.56	2.55731
298	298.18	1.3543	212.64	631.9	1.69528	700	713.27	28.80	512.33	69.76	2.57277
300	300.19	1.3860	214.07	621.2	1.70203	710	724.04	30.38	520.23	67.07	2.58810
305	305.22	1.4686	217.67	596.0	1.71865	720	734.82	32.02	528.14	64.53	2.60319
310	310.24	1.5546	221.25	572.3	1.73498	730	745.62	33.72	536.07	62.13	2.61803
315	315.27	1.6442	224.85	549.8	1.75106	740	756.44	35.50	544.02	59.82	2.63280
320	320.29	1.7375	228.42	528.6	1.76690	750	767.29	37.35	551.99	57.63	2.64737
325	325.31	1.8345	232.02	508.4	1.78249	760	778.18	39.27	560.01	55.54	2.66176
330	330.34	1.9352	235.61	489.4	1.79783	780	800.03	43.35	576.12	51.64	2.69013
340	340.42	2.149	242.82	454.1	1.82790	800	821.95	47.75	592.30	48.08	2.71787
350	350.49	2.379	250.02	422.2	1.85708	820	843.98	52.59	608.59	44.84	2.74504
360	360.58	2.626	257.24	393.4	1.88543	840	866.08	57.60	624.95	41.85	2.77170
370 380	370.67 380.77	2.892 3.176	264.46 271.69	367.2 343.4	1.91313 1.94001	860 880	888.27 910.56	63.09 68.98	641.40 657.95	39.12 36.61	2.79783 2.82344
390 400	390.88 400.98	3.481 3.806	278.93 286.16	321.5 301.6	1.96633 1.99194	900 920	932.93 955.38	75.29 82.05	674.58 691.28	34.31 32.18	2.84856 2.87324
410	411.12	4.153	293.43	283.3	2.01699	940	977.92	89.28	708.08	30.22	2.89748
420	421.26	4.522	300.69	266.6	2.04142	960	1000.55	97.00	725.02	28.40	2.92128
430	431.43	4.915	307.99	251.1	2.06533	980	1023.25	105.2	741.98	26.73	2.94468
440	441.61	5.332	315.30	236.8	2.08870	1000	1046.04	114.0	758.94	25.17	2.96770
450	451.80	5.775	322.62	223.6	2.11161	1020	1068.89	123.4	776.10	23.72	2.99034
460	462.02	6.245	329.97	211.4	2.13407	1040	1091.85	133.3	793.36	23.29	3.01260
470	472.24	6.742	337.32	200.1	2.15604	1060	1114.86	143.9	810.62	21.14	3.03449
480	482.49	7.268	344.70	189.5	2.17760	1080	1137.89	155.2	827.88	19.98	3.05608
490	492.74	7.824	352.08		2.19876		1161.07		845.33	18.896	
500	503.02	8.411	359.49		2.21952		1184.28		862.79		3.09825
510	513.32	9.031	366.92	162.1		1140			880.35		3.11883
520 530	523.63	9.684	374.36	154.1 146.7	2.25997	1160	1230.92 1254.34	207.2 222.2	897.91		3.13916
	533.98	10.37	381.84		2.27967				915.57		3.15916
540	544.35	11.10	389.34	139.7	2.29906 2.31809	1200	1277.79	238.0	933.33		3.17888 3.19834
550 560	555.74 565.17	11.86 12.66	396.86 404.42	133.1 127.0	2.31809	1240	1301.31 1324.93	254.7 272.3	951.09 968.95		3.19834
570	575.59	13.50	411.97		2.35531	1240	1024.33	212.0	500.55	10.009	5.21/51
570	5,5.55	10.00	111.57	121.2	2.00001						

TABLE A–17Ideal-gas properties of air (*Concluded*)

T K	<i>h</i> kJ/kg	P _r	и kJ/kg	V _r	<i>s</i> ° kJ/kg⋅K	T K	<i>h</i> kJ/kg	P_r	и kJ/kg	V _r	<i>s</i> ° kJ/kg⋅K
1260	1348.55	290.8	986.90	12.435	3.23638	1600	1757.57	791.2	1298.30	5.804	3.52364
1280	1372.24	310.4	1004.76	11.835	3.25510	1620	1782.00	834.1	1316.96	5.574	3.53879
1300	1395.97	330.9	1022.82	11.275	3.27345	1640	1806.46	878.9	1335.72	5.355	3.55381
1320	1419.76	352.5	1040.88	10.747	3.29160	1660	1830.96	925.6	1354.48	5.147	3.56867
1340	1443.60	375.3	1058.94	10.247	3.30959	1680	1855.50	974.2	1373.24	4.949	3.58335
1360	1467.49	399.1	1077.10	9.780	3.32724	1700	1880.1	1025	1392.7	4.761	3.5979
1380	1491.44	424.2	1095.26	9.337	3.34474	1750	1941.6	1161	1439.8	4.328	3.6336
1400	1515.42	450.5	1113.52	8.919	3.36200	1800	2003.3	1310	1487.2	3.994	3.6684
1420	1539.44	478.0	1131.77	8.526	3.37901	1850	2065.3	1475	1534.9	3.601	3.7023
1440	1563.51	506.9	1150.13	8.153	3.39586	1900	2127.4	1655	1582.6	3.295	3.7354
1460	1587.63	537.1	1168.49	7.801	3.41247	1950	2189.7	1852	1630.6	3.022	3.7677
1480	1611.79	568.8	1186.95	7.468	3.42892	2000	2252.1	2068	1678.7	2.776	3.7994
1500	1635.97	601.9	1205.41	7.152	3.44516	2050	2314.6	2303	1726.8	2.555	3.8303
1520	1660.23	636.5	1223.87	6.854	3.46120	2100	2377.7	2559	1775.3	2.356	3.8605
1540	1684.51	672.8	1242.43	6.569	3.47712	2150	2440.3	2837	1823.8	2.175	3.8901
1560	1708.82	710.5	1260.99	6.301	3.49276	2200	2503.2	3138	1872.4	2.012	3.9191
1580	1733.17	750.0	1279.65	6.046	3.50829	2250	2566.4	3464	1921.3	1.864	3.9474

Note: The properties P_r (relative pressure) and v_r (relative specific volume) are dimensionless quantities used in the analysis of isentropic processes, and should not be confused with the properties pressure and specific volume.

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 785–86, table A–5. Originally published in J. H. Keenan and J. Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

936 Property tables and charts

TABLE A-18

Ideal-gas properties of nitrogen, N_2

T	h	ū	<u></u> $ \overline{S} $ °	T	h	\overline{u}	₹°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	600	17,563	12,574	212.066
220	6,391	4,562	182.639	610	17,864	12,792	212.564
230	6,683	4,770	183.938	620	18,166	13,011	213.055
240	6,975	4,979	185.180	630	18,468	13,230	213.541
250	7,266	5,188	186.370	640	18,772	13,450	214.018
260	7,558	5,396	187.514	650	19,075	13,671	214.489
270 280	7,849	5,604	188.614	660 670	19,380 19,685	13,892 14,114	214.954
290	8,141 8,432	5,813 6,021	189.673 190.695	680	19,885	14,114	215.413 215.866
298	8,669	6,190	191.502	690	20,297	14,560	216.314
300	8,723	6,229	191.682	700	20,604	14,784	216.756
310	9,014	6,437	192.638	710	20,912	15,008	217.192
320	9,306	6,645	193.562	720	21,220	15,234	217.624
330	9,597	6,853	194.459	730	21,529	15,460	218.059
340	9,888	7,061	195.328	740	21,839	15,686	218.472
350	10,180	7,270	196.173	750	22,149	15,913	218.889
360	10,471	7,478	196.995	760	22,460	16,141	219.301
370	10,763	7,687	197.794	770	22,772	16,370	219.709
380	11,055	7,895	198.572	780	23,085	16,599	220.113
390	11,347	8,104	199.331	790	23,398	16,830	220.512
400 410	11,640	8,314	200.071	800 810	23,714 24,027	17,061 17,292	220.907 221.298
410	11,932 12,225	8,523 8,733	200.794 201.499	820	24,027	17,292	221.298
430	12,518	8,943	202.189	830	24,658	17,757	222.067
440	12,811	9,153	202.863	840	24,974	17,990	222.447
450	13,105	9,363	203.523	850	25,292	18,224	222.822
460	13,399	9,574	204.170	860	25,610	18,459	223.194
470	13,693	9,786	204.803	870	25,928	18,695	223.562
480	13,988	9,997	205.424	880	26,248	18,931	223.927
490	14,285	10,210	206.033	890	26,568	19,168	224.288
500	14,581	10,423	206.630	900	26,890	19,407	224.647
510	14,876	10,635	207.216	910	27,210	19,644	225.002
520	15,172	10,848	207.792	920	27,532	19,883	225.353
530 540	15,469 15,766	11,062 11,277	208.358 208.914	930 940	27,854 28,178	20,122 20,362	225.701 226.047
550 560	16,064 16,363	11,492 11,707	209.461 209.999	950 960	28,501 28,826	20,603 20,844	226.389 226.728
570	16,662	11,923	210.528	970	29,151	21,086	227.064
580	16,962	12,139	211.049	980	29,476	21,328	227.398
590	17,262	12,356	211.562	990	29,803	21,571	227.728
-	·	· · · · · · · · · · · · · · · · · · ·				•	

TABLE A–18 Ideal-gas properties of nitrogen, N_2 (*Concluded*)

iucai-gas	ideal-gas properties of introgen, w ₂ (concluded)										
T	h	\overline{u}	<u></u> \overline{S} °	T	\overline{h}	\overline{u}	<u></u> s°				
K	kJ/kmol	kJ/kmol	kJ/kmol∙K	K	kJ/kmol	kJ/kmol	kJ/kmol∙K				
1000	30,129	21,815	228.057	1760	56,227	41,594	247.396				
1020	30,784	22,304	228.706	1780	56,938	42,139	247.798				
1040	31,442	22,795	229.344	1800	57,651	42,685	248.195				
1060	32,101	23,288	229.973	1820	58,363	43,231	248.589				
1080	32,762	23,782	230.591	1840	59,075	43,777	248.979				
1100	33,426	24,280	231.199	1860	59,790	44,324	249.365				
1120	34,092	24,780	231.799	1880	60,504	44,873	249.748				
1140	34,760	25,282	232.391	1900	61,220	45,423	250.128				
1160	35,430	25,786	232.973	1920	61,936	45,973	250.502				
1180	36,104	26,291	233.549	1940	62,654	46,524	250.874				
1200	36,777	26,799	234.115	1960	63,381	47,075	251.242				
1220	37,452	27,308	234.673	1980	64,090	47,627	251.607				
1240	38,129	27,819	235.223	2000	64,810	48,181	251.969				
1260	38,807	28,331	235.766	2050	66,612	49,567	252.858				
1280	39,488	28,845	236.302	2100	68,417	50,957	253.726				
1300	40,170	29,361	236.831	2150	70,226	52,351	254.578				
1320	40,853	29,378	237.353	2200	72,040	53,749	255.412				
1340	41,539	30,398	237.867	2250	73,856	55,149	256.227				
1360	42,227	30,919	238.376	2300	75,676	56,553	257.027				
1380	42,915	31,441	238.878	2350	77,496	57,958	257.810				
1400	43,605	31,964	239.375	2400	79,320	59,366	258.580				
1420	44,295	32,489	239.865	2450	81,149	60,779	259.332				
1440	44,988	33,014	240.350	2500	82,981	62,195	260.073				
1460	45,682	33,543	240.827	2550	84,814	63,613	260.799				
1480	46,377	34,071	241.301	2600	86,650	65,033	261.512				
1500	47,073	34,601	241.768	2650	88,488	66,455	262.213				
1520	47,771	35,133	242.228	2700	90,328	67,880	262.902				
1540	48,470	35,665	242.685	2750	92,171	69,306	263.577				
1560	49,168	36,197	243.137	2800	94,014	70,734	264.241				
1580	49,869	36,732	243.585	2850	95,859	72,163	264.895				
1600	50,571	37,268	244.028	2900	97,705	73,593	265.538				
1620	51,275	37,806	244.464	2950	99,556	75,028	266.170				
1640	51,980	38,344	244.896	3000	101,407	76,464	266.793				
1660	52,686	38,884	245.324	3050	103,260	77,902	267.404				
1680	53,393	39,424	245.747	3100	105,115	79,341	268.007				
1700	54,099	39,965	246.166	3150	106,972	80,782	268.601				
1720	54,807	40,507	246.580	3200	108,830	82,224	269.186				
1740	55,516	41,049	246.990	3250	110,690	83,668	269.763				

Source: Tables A-18 through A-25 are adapted from Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 787-98. Originally published in JANAF, Thermochemical Tables, NSRDS-NBS-37, 1971.

TABLE A-19

Ideal-gas properties of oxygen, ${\rm O_2}$

Т	ħ	ū	 5°	Т	ħ	ū	¯ s°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	600	17,929	12,940	226.346
220	6,404	4,575	196.171	610	18,250	13,178	226.877
230	6,694	4,782	197.461	620	18,572	13,417	227.400
240	6,984	4,989	198.696	630	18,895	13,657	227.918
250	7,275	5,197	199.885	640	19,219	13,898	228.429
260	7,566	5,405	201.027	650	19,544	14,140	228.932
270	7,858	5,613	202.128	660	19,870	14,383	229.430
280	8,150	5,822	203.191	670	20,197	14,626	229.920
290	8,443	6,032	204.218	680	20,524	14,871	230.405
298	8,682	6,203	205.033	690	20,854	15,116	230.885
300	8,736	6,242	205.213	700	21,184	15,364	231.358
310	9,030	6,453	206.177	710	21,514	15,611	231.827
320	9,325	6,664	207.112	720	21,845	15,859	232.291
330	9,620	6,877	208.020	730	22,177	16,107	232.748
340	9,916	7,090	208.904	740	22,510	16,357	233.201
350	10,213	7,303	209.765	750	22,844	16,607	233.649
360	10,511	7,518	210.604	760	23,178	16,859	234.091
370	10,809	7,733	211.423	770	23,513	17,111	234.528
380	11,109	7,949	212.222	780	23,850	17,364	234.960
390	11,409	8,166	213.002	790	24,186	17,618	235.387
400	11,711	8,384	213.765	800	24,523	17,872	235.810
410	12,012	8,603	214.510	810	24,861	18,126	236.230
420	12,314	8,822	215.241	820	25,199	18,382	236.644
430	12,618	9,043	215.955	830	25,537	18,637	237.055
440	12,923	9,264	216.656	840	25,877	18,893	237.462
450	13,228	9,487	217.342	850	26,218	19,150	237.864
460	13,525	9,710	218.016	860	26,559	19,408	238.264
470	13,842	9,935	218.676	870	26,899	19,666	238.660
480	14,151	10,160	219.326	880	27,242	19,925	239.051
490	14,460	10,386	219.963	890	27,584	20,185	239.439
500	14,770	10,614	220.589	900	27,928	20,445	239.823
510	15,082	10,842	221.206	910	28,272	20,706	240.203
520	15,395	11,071	221.812	920	28,616	20,967	240.580
530	15,708	11,301	222.409	930	28,960	21,228	240.953
540	16,022	11,533	222.997	940	29,306	21,491	241.323
550	16,338	11,765	223.576	950	29,652	21,754	241.689
560	16,654	11,998	224.146	960	29,999	22,017	242.052
570	16,971	12,232	224.708	970	30,345	22,280	242.411
580	17,290	12,467	225.262	980	30,692	22,544	242.768
590	17,609	12,703	225.808	990	31,041	22,809	242.120

TABLE A-19

Ideal-gas properties of oxygen, O_2 (Concluded)

T	\overline{h}	ū	₹°	T	ħ	\overline{u}	₹°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	31,389	23,075	243.471	1760	58,880	44,247	263.861
1020	32,088	23,607	244.164	1780	59,624	44,825	264.283
1040	32,789	24,142	244.844	1800	60,371	45,405	264.701
1060	33,490	24,677	245.513	1820	61,118	45,986	265.113
1080	34,194	25,214	246.171	1840	61,866	46,568	265.521
1100	34,899	25,753	246.818	1860	62,616	47,151	265.925
1120	35,606	26,294	247.454	1880	63,365	47,734	266.326
1140	36,314	26,836	248.081	1900	64,116	48,319	266.722
1160	37,023	27,379	248.698	1920	64,868	48,904	267.115
1180	37,734	27,923	249.307	1940	65,620	49,490	267.505
1200	38,447	28,469	249.906	1960	66,374	50,078	267.891
1220	39,162	29,018	250.497	1980	67,127	50,665	268.275
1240	39,877	29,568	251.079	2000	67,881	51,253	268.655
1260	40,594	30,118	251.653	2050	69,772	52,727	269.588
1280	41,312	30,670	252.219	2100	71,668	54,208	270.504
1300	42,033	31,224	252.776	2150	73,573	55,697	271.399
1320	42,753	31,778	253.325	2200	75,484	57,192	272.278
1340	43,475	32,334	253.868	2250	77,397	58,690	273.136
1360	44,198	32,891	254.404	2300	79,316	60,193	273.891
1380	44,923	33,449	254.932	2350	81,243	61,704	274.809
1400	45,648	34,008	255.454	2400	83,174	63,219	275.625
1420	46,374	34,567	255.968	2450	85,112	64,742	276.424
1440	47,102	35,129	256.475	2500	87,057	66,271	277.207
1460	47,831	35,692	256.978	2550	89,004	67,802	277.979
1480	48,561	36,256	257.474	2600	90,956	69,339	278.738
1500	49,292	36,821	257.965	2650	92,916	70,883	279.485
1520	50,024	37,387	258.450	2700	94,881	72,433	280.219
1540	50,756	37,952	258.928	2750	96,852	73,987	280.942
1560	51,490	38,520	259.402	2800	98,826	75,546	281.654
1580	52,224	39,088	259.870	2850	100,808	77,112	282.357
1600	52,961	39,658	260.333	2900	102,793	78,682	283.048
1620	53,696	40,227	260.791	2950	104,785	80,258	283.728
1640	54,434	40,799	261.242	3000	106,780	81,837	284.399
1660	55,172	41,370	261.690	3050	108,778	83,419	285.060
1680	55,912	41,944	262.132	3100	110,784	85,009	285.713
1700	56,652	42,517	262.571	3150	112,795	86,601	286.355
1720	57,394	43,093	263.005	3200	114,809	88,203	286.989
1740	58,136	43,669	263.435	3250	116,827	89,804	287.614

940 Property Tables and Charts

TABLE A-20

Ideal-gas properties of carbon dioxide, CO₂

T	ħ	\overline{u}	ō°	T	h	\overline{u}	₹°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	600	22,280	17,291	243.199
220	6,601	4,772	202.966	610	22,754	17,683	243.983
230	6,938	5,026	204.464	620	23,231	18,076	244.758
240	7,280	5,285	205.920	630	23,709	18,471	245.524
250	7,627	5,548	207.337	640	24,190	18,869	246.282
260	7,979	5,817	208.717	650	24,674	19,270	247.032
270	8,335	6,091	210.062	660	25,160	19,672	247.773
280	8,697	6,369	211.376	670	25,648	20,078	248.507
290	9,063	6,651	212.660	680	26,138	20,484	249.233
298	9,364	6,885	213.685	690	26,631	20,894	249.952
300	9,431	6,939	213.915	700	27,125	21,305	250.663
310	9,807	7,230	215.146	710	27,622	21,719	251.368
320	10,186	7,526	216.351	720	28,121	22,134	252.065
330	10,570	7,826	217.534	730	28,622	22,522	252.755
340	10,959	8,131	218.694	740	29,124	22,972	253.439
350	11,351	8,439	219.831	750	29,629	23,393	254.117
360	11,748	8,752	220.948	760	30,135	23,817	254.787
370	12,148	9,068	222.044	770	30,644	24,242	255.452
380	12,552	9,392	223.122	780	31,154	24,669	256.110
390	12,960	9,718	224.182	790	31,665	25,097	256.762
400	13,372	10,046	225.225	800	32,179	25,527	257.408
410	13,787	10,378	226.250	810	32,694	25,959	258.048
420	14,206	10,714	227.258	820	33,212	26,394	258.682
430	14,628	11,053	228.252	830	33,730	26,829	259.311
440	15,054	11,393	229.230	840	34,251	27,267	259.934
450	15,483	11,742	230.194	850	34,773	27,706	260.551
460	15,916	12,091	231.144	860	35,296	28,125	261.164
470	16,351	12,444	232.080	870	35,821	28,588	261.770
480	16,791	12,800	233.004	880	36,347	29,031	262.371
490	17,232	13,158	233.916	890	36,876	29,476	262.968
500	17,678	13,521	234.814	900	37,405	29,922	263.559
510	18,126	13,885	235.700	910	37,935	30,369	264.146
520	18,576	14,253	236.575	920	38,467	30,818	264.728
530	19,029	14,622	237.439	930	39,000	31,268	265.304
540	19,485	14,996	238.292	940	39,535	31,719	265.877
550	19,945	15,372	239.135	950	40,070	32,171	266.444
560	20,407	15,751	239.962	960	40,607	32,625	267.007
570	20,870	16,131	240.789	970	41,145	33,081	267.566
580	21,337	16,515	241.602	980	41,685	33,537	268.119
590	21,807	16,902	242.405	990	42,226	33,995	268.670

TABLE A-20

Ideal-gas properties of carbon dioxide, ${\rm CO_2}$ (${\it Concluded}$)

T	h	\overline{u}	<u></u> s °	T	h	\overline{u}	₹°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	42,769	34,455	269.215	1760	86,420	71,787	301.543
1020	43,859	35,378	270.293	1780	87,612	72,812	302.217
1040	44,953	36,306	271.354	1800	88,806	73,840	302.884
1060	46,051	37,238	272.400	1820	90,000	74,868	303.544
1080	47,153	38,174	273.430	1840	91,196	75,897	304.198
1100	48,258	39,112	274.445	1860	92,394	76,929	304.845
1120	49,369	40,057	275.444	1880	93,593	77,962	305.487
1140	50,484	41,006	276.430	1900	94,793	78,996	306.122
1160	51,602	41,957	277.403	1920	95,995	80,031	306.751
1180	52,724	42,913	278.361	1940	97,197	81,067	307.374
1200	53,848	43,871	297.307	1960	98,401	82,105	307.992
1220	54,977	44,834	280.238	1980	99,606	83,144	308.604
1240	56,108	45,799	281.158	2000	100,804	84,185	309.210
1260	57,244	46,768	282.066	2050	103,835	86,791	310.701
1280	58,381	47,739	282.962	2100	106,864	89,404	312.160
1300	59,522	48,713	283.847	2150	109,898	92,023	313.589
1320	60,666	49,691	284.722	2200	112,939	94,648	314.988
1340	61,813	50,672	285.586	2250	115,984	97,277	316.356
1360	62,963	51,656	286.439	2300	119,035	99,912	317.695
1380	64,116	52,643	287.283	2350	122,091	102,552	319.011
1400	65,271	53,631	288.106	2400	125,152	105,197	320.302
1420	66,427	54,621	288.934	2450	128,219	107,849	321.566
1440	67,586	55,614	289.743	2500	131,290	110,504	322.808
1460	68,748	56,609	290.542	2550	134,368	113,166	324.026
1480	66,911	57,606	291.333	2600	137,449	115,832	325.222
1500	71,078	58,606	292.114	2650	140,533	118,500	326.396
1520	72,246	59,609	292.888	2700	143,620	121,172	327.549
1540	73,417	60,613	292.654	2750	146,713	123,849	328.684
1560	74,590	61,620	294.411	2800	149,808	126,528	329.800
1580	76,767	62,630	295.161	2850	152,908	129,212	330.896
1600	76,944	63,741	295.901	2900	156,009	131,898	331.975
1620	78,123	64,653	296.632	2950	159,117	134,589	333.037
1640	79,303	65,668	297.356	3000	162,226	137,283	334.084
1660	80,486	66,592	298.072	3050	165,341	139,982	335.114
1680	81,670	67,702	298.781	3100	168,456	142,681	336.126
1700	82,856	68,721	299.482	3150	171,576	145,385	337.124
1720	84,043	69,742	300.177	3200	174,695	148,089	338.109
1740	85,231	70,764	300.863	3250	177,822	150,801	339.069

TABLE A-21

Ideal-gas properties of carbon monoxide, CO

T	\overline{h}	ū	¯s°	T	h	ū	₹°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol∙K
0	0	0	0	600	17,611	12,622	218.204
220	6,391	4,562	188.683	610	17,915	12,843	218.708
230	6,683	4,771	189.980	620	18,221	13,066	219.205
240	6,975	4,979	191.221	630	18,527	13,289	219.695
250	7,266	5,188	192.411	640	18,833	13,512	220.179
260	7,558	5,396	193.554	650	19,141	13,736	220.656
270	7,849	5,604	194.654	660	19,449	13,962	221.127
280	8,140	5,812	195.713	670	19,758	14,187	221.592
290	8,432	6,020	196.735	680	20,068	14,414	222.052
298	8,669	6,190	197.543	690	20,378	14,641	222.505
300	8,723	6,229	197.723	700	20,690	14,870	222.953
310	9,014	6,437	198.678	710	21,002	15,099	223.396
320	9,306	6,645	199.603	720	21,315	15,328	223.833
330	9,597	6,854	200.500	730	21,628	15,558	224.265
340	9,889	7,062	201.371	740	21,943	15,789	224.692
350	10,181	7,271	202.217	750	22,258	16,022	225.115
360	10,473	7,480	203.040	760	22,573	16,255	225.533
370	10,765	7,689	203.842	770	22,890	16,488	225.947
380	11,058	7,899	204.622	780	23,208	16,723	226.357
390	11,351	8,108	205.383	790	23,526	16,957	226.762
400	11,644	8,319	206.125	800	23,844	17,193	227.162
410	11,938	8,529	206.850	810	24,164	17,429	227.559
420	12,232	8,740	207.549	820	24,483	17,665	227.952
430	12,526	8,951	208.252	830	24,803	17,902	228.339
440	12,821	9,163	208.929	840	25,124	18,140	228.724
450	13,116	9,375	209.593	850	25,446	18,379	229.106
460	13,412	9,587	210.243	860	25,768	18,617	229.482
470	13,708	9,800	210.880	870	26,091	18,858	229.856
480	14,005	10,014	211.504	880	26,415	19,099	230.227
490	14,302	10,228	212.117	890	26,740	19,341	230.593
500	14,600	10,443	212.719	900	27,066	19,583	230.957
510	14,898	10,658	213.310	910	27,392	19,826	231.317
520	15,197	10,874	213.890	920	27,719	20,070	231.674
530	15,497	11,090	214.460	930	28,046	20,314	232.028
540	15,797	11,307	215.020	940	28,375	20,559	232.379
550	16,097	11,524	215.572	950	28,703	20,805	232.727
560	16,399	11,743	216.115	960	29,033	21,051	233.072
570	16,701	11,961	216.649	970	29,362	21,298	233.413
580	17,003	12,181	217.175	980	29,693	21,545	233.752
590	17,307	12,401	217.693	990	30,024	21,793	234.088

TABLE A-21Ideal-gas properties of carbon monoxide, CO (*Concluded*)

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol∙K
1000	30,355	22,041	234.421	1760	56,756	42,123	253.991
1020	31,020	22,540	235.079	1780	57,473	42,673	254.398
1040	31,688	23,041	235.728	1800	58,191	43,225	254.797
1060	32,357	23,544	236.364	1820	58,910	43,778	255.194
1080	33,029	24,049	236.992	1840	59,629	44,331	255.587
1100	33,702	24,557	237.609	1860	60,351	44,886	255.976
1120	34,377	25,065	238.217	1880	61,072	45,441	256.361
1140	35,054	25,575	238.817	1900	61,794	45,997	256.743
1160	35,733	26,088	239.407	1920	62,516	46,552	257.122
1180	36,406	26,602	239.989	1940	63,238	47,108	257.497
1200	37,095	27,118	240.663	1960	63,961	47,665	257.868
1220	37,780	27,637	241.128	1980	64,684	48,221	258.236
1240	38,466	28,426	241.686	2000	65,408	48,780	258.600
1260	39,154	28,678	242.236	2050	67,224	50,179	259.494
1280	39,844	29,201	242.780	2100	69,044	51,584	260.370
1300	40,534	29,725	243.316	2150	70,864	52,988	261.226
1320	41,226	30,251	243.844	2200	72,688	54,396	262.065
1340	41,919	30,778	244.366	2250	74,516	55,809	262.887
1360	42,613	31,306	244.880	2300	76,345	57,222	263.692
1380	43,309	31,836	245.388	2350	78,178	58,640	264.480
1400	44,007	32,367	245.889	2400	80,015	60,060	265.253
1420	44,707	32,900	246.385	2450	81,852	61,482	266.012
1440	45,408	33,434	246.876	2500	83,692	62,906	266.755
1460	46,110	33,971	247.360	2550	85,537	64,335	267.485
1480	46,813	34,508	247.839	2600	87,383	65,766	268.202
1500	47,517	35,046	248.312	2650	89,230	67,197	268.905
1520	48,222	35,584	248.778	2700	91,077	68,628	269.596
1540	48,928	36,124	249.240	2750	92,930	70,066	270.285
1560	49,635	36,665	249.695	2800	94,784	71,504	270.943
1580	50,344	37,207	250.147	2850	96,639	72,945	271.602
1600	51,053	37,750	250.592	2900	98,495	74,383	272.249
1620	51,763	38,293	251.033	2950	100,352	75,825	272.884
1640	52,472	38,837	251.470	3000	102,210	77,267	273.508
1660	53,184	39,382	251.901	3050	104,073	78,715	274.123
1680	53,895	39,927	252.329	3100	105,939	80,164	274.730
1700	54,609	40,474	252.751	3150	107,802	81,612	275.326
1720	55,323	41,023	253.169	3200	109,667	83,061	275.914
1740	56,039	41,572	253.582	3250	111,534	84,513	276.494

944 Property tables and charts

TABLE A-22

Ideal-gas properties of hydrogen, H_2

T	\overline{h}	\overline{u}	<u></u> s°	T	h	\overline{u}	<u></u> s°
K	kJ/kmol	kJ/kmol	kJ/kmol∙K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	1440	42,808	30,835	177.410
260	7,370	5,209	126.636	1480	44,091	31,786	178.291
270	7,657	5,412	127.719	1520	45,384	32,746	179.153
280	7,945	5,617	128.765	1560	46,683	33,713	179.995
290	8,233	5,822	129.775	1600	47,990	34,687	180.820
298	8,468	5,989	130.574	1640	49,303	35,668	181.632
300	8,522	6,027	130.754	1680	50,622	36,654	182.428
320	9,100	6,440	132.621	1720	51,947	37,646	183.208
340	9,680	6,853	134.378	1760	53,279	38,645	183.973
360	10,262	7,268	136.039	1800	54,618	39,652	184.724
380	10,843	7,684	137.612	1840	55,962	40,663	185.463
400	11,426	8,100	139.106	1880	57,311	41,680	186.190
420	12,010	8,518	140.529	1920	58,668	42,705	186.904
440	12,594	8,936	141.888	1960	60,031	43,735	187.607
460	13,179	9,355	143.187	2000	61,400	44,771	188.297
480	13,764	9,773	144.432	2050	63,119	46,074	189.148
500	14,350	10,193	145.628	2100	64,847	47,386	189.979
520	14,935	10,611	146.775	2150	66,584	48,708	190.796
560	16,107	11,451	148.945	2200	68,328	50,037	191.598
600	17,280	12,291	150.968	2250	70,080	51,373	192.385
640	18,453	13,133	152.863	2300	71,839	52,716	193.159
680	19,630	13,976	154.645	2350	73,608	54,069	193.921
720	20,807	14,821	156.328	2400	75,383	55,429	194.669
760	21,988	15,669	157.923	2450	77,168	56,798	195.403
800	23,171	16,520	159.440	2500	78,960	58,175	196.125
840	24,359	17,375	160.891	2550	80,755	59,554	196.837
880	25,551	18,235	162.277	2600	82,558	60,941	197.539
920	26,747	19,098	163.607	2650	84,368	62,335	198.229
960	27,948	19,966	164.884	2700	86,186	63,737	198.907
1000	29,154	20,839	166.114	2750	88,008	65,144	199.575
1040	30,364	21,717	167.300	2800	89,838	66,558	200.234
1080	31,580	22,601	168.449	2850	91,671	67,976	200.885
1120	32,802	23,490	169.560	2900	93,512	69,401	201.527
1160	34,028	24,384	170.636	2950	95,358	70,831	202.157
1200	35,262	25,284	171.682	3000	97,211	72,268	202.778
1240	36,502	26,192	172.698	3050	99,065	73,707	203.391
1280	37,749	27,106	173.687	3100	100,926	75,152	203.995
1320	39,002	28,027	174.652	3150	102,793	76,604	204.592
1360	40,263	28,955	175.593	3200 3250	104,667	78,061	205.181
1400	41,530	29,889	176.510	3250	106,545	79,523	205.765

TABLE A-23

Ideal-gas properties of water vapor, $\rm H_2O$

T	\overline{h}	\overline{u}	<u></u> $ \overline{S}$ °	T	\overline{h}	\overline{u}	<u></u> s°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol∙K
0	0	0	0	600	20,402	15,413	212.920
220	7,295	5,466	178.576	610	20,765	15,693	213.529
230	7,628	5,715	180.054	620	21,130	15,975	214.122
240	7,961	5,965	181.471	630	21,495	16,257	214.707
250	8,294	6,215	182.831	640	21,862	16,541	215.285
260	8,627	6,466	184.139	650	22,230	16,826	215.856
270	8,961	6,716	185.399	660	22,600	17,112	216.419
280	9,296	6,968	186.616	670	22,970	17,399	216.976
290	9,631	7,219	187.791	680	23,342	17,688	217.527
298	9,904	7,425	188.720	690	23,714	17,978	218.071
300	9,966	7,472	188.928	700	24,088	18,268	218.610
310	10,302	7,725	190.030	710	24,464	18,561	219.142
320	10,639	7,978	191.098	720	24,840	18,854	219.668
330	10,976	8,232	192.136	730	25,218	19,148	220.189
340	11,314	8,487	193.144	740	25,597	19,444	220.707
350	11,652	8,742	194.125	750	25,977	19,741	221.215
360	11,992	8,998	195.081	760	26,358	20,039	221.720
370	12,331	9,255	196.012	770	26,741	20,339	222.221
380	12,672	9,513	196.920	780	27,125	20,639	222.717
390	13,014	9,771	197.807	790	27,510	20,941	223.207
400	13,356	10,030	198.673	800	27,896	21,245	223.693
410	13,699	10,290	199.521	810	28,284	21,549	224.174
420	14,043	10,551	200.350	820	28,672	21,855	224.651
430	14,388	10,813	201.160	830	29,062	22,162	225.123
440	14,734	11,075	201.955	840	29,454	22,470	225.592
450	15,080	11,339	202.734	850	29,846	22,779	226.057
460	15,428	11,603	203.497	860	30,240	23,090	226.517
470	15,777	11,869	204.247	870	30,635	23,402	226.973
480	16,126	12,135	204.982	880	31,032	23,715	227.426
490	16,477	12,403	205.705	890	31,429	24,029	227.875
500	16,828	12,671	206.413	900	31,828	24,345	228.321
510	17,181	12,940	207.112	910	32,228	24,662	228.763
520	17,534	13,211	207.799	920	32,629	24,980	229.202
530	17,889	13,482	208.475	930	33,032	25,300	229.637
540	18,245	13,755	209.139	940	33,436	25,621	230.070
550	18,601	14,028	209.795	950	33,841	25,943	230.499
560	18,959	14,303	210.440	960	34,247	26,265	230.924
570	19,318	14,579	211.075	970	34,653	26,588	231.347
580	19,678	14,856	211.702	980	35,061	26,913	231.767
590	20,039	15,134	212.320	990	35,472	27,240	232.184

946 PROPERTY TABLES AND CHARTS

TABLE A-23

Ideal-gas properties of water vapor, $\rm H_2O$ (Continued)

T	ħ	\overline{u}	<u></u> s°	T	\overline{h}	\overline{u}	<u></u> S o
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	35,882	27,568	232.597	1760	70,535	55,902	258.151
1020	36,709	28,228	233.415	1780	71,523	56,723	258.708
1040	37,542	28,895	234.223	1800	72,513	57,547	259.262
1060	38,380	29,567	235.020	1820	73,507	58,375	259.811
1080	39,223	30,243	235.806	1840	74,506	59,207	260.357
1100	40,071	30,925	236.584	1860	75,506	60,042	260.898
1120	40,923	31,611	237.352	1880	76,511	60,880	261.436
1140	41,780	32,301	238.110	1900	77,517	61,720	261.969
1160	42,642	32,997	238.859	1920	78,527	62,564	262.497
1180	43,509	33,698	239.600	1940	79,540	63,411	263.022
1200	44,380	34,403	240.333	1960	80,555	64,259	263.542
1220	45,256	35,112	241.057	1980	81,573	65,111	264.059
1240	46,137	35,827	241.773	2000	82,593	65,965	264.571
1260	47,022	36,546	242.482	2050	85,156	68,111	265.838
1280	47,912	37,270	243.183	2100	87,735	70,275	267.081
1300	48,807	38,000	243.877	2150	90,330	72,454	268.301
1320	49,707	38,732	244.564	2200	92,940	74,649	269.500
1340	50,612	39,470	245.243	2250	95,562	76,855	270.679
1360	51,521	40,213	245.915	2300	98,199	79,076	271.839
1380	52,434	40,960	246.582	2350	100,846	81,308	272.978
1400	53,351	41,711	247.241	2400	103,508	83,553	274.098
1420	54,273	42,466	247.895	2450	106,183	85,811	275.201
1440	55,198	43,226	248.543	2500	108,868	88,082	276.286
1460	56,128	43,989	249.185	2550	111,565	90,364	277.354
1480	57,062	44,756	249.820	2600	114,273	92,656	278.407
1500	57,999	45,528	250.450	2650	116,991	94,958	279.441
1520	58,942	46,304	251.074	2700	119,717	97,269	280.462
1540	59,888	47,084	251.693	2750	122,453	99,588	281.464
1560	60,838	47,868	252.305	2800	125,198	101,917	282.453
1580	61,792	48,655	252.912	2850	127,952	104,256	283.429
1600	62,748	49,445	253.513	2900	130,717	106,605	284.390
1620	63,709	50,240	254.111	2950	133,486	108,959	285.338
1640	64,675	51,039	254.703	3000	136,264	111,321	286.273
1660	65,643	51,841	255.290	3050	139,051	113,692	287.194
1680	66,614	52,646	255.873	3100	141,846	116,072	288.102
1700	67,589	53,455	256.450	3150	144,648	118,458	288.999
1720	68,567	54,267	257.022	3200	147,457	120,851	289.884
1740	69,550	55,083	257.589	3250	150,272	123,250	290.756

TABLE A-24

Ideal-gas properties of monatomic oxygen, O

T	\overline{h}	\overline{u}	S °	T	\overline{h}	\overline{u}	S °
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	2400	50,894	30,940	204.932
298	6,852	4,373	160.944	2450	51,936	31,566	205.362
300	6,892	4,398	161.079	2500	52,979	32,193	205.783
500	11,197	7,040	172.088	2550	54,021	32,820	206.196
1000	21,713	13,398	186.678	2600	55,064	33,447	206.601
1500	32,150	19,679	195.143	2650	56,108	34,075	206.999
1600	34,234	20,931	196.488	2700	57,152	34,703	207.389
1700	36,317	22,183	197.751	2750	58,196	35,332	207.772
1800	38,400	23,434	198.941	2800	59,241	35,961	208.148
1900	40,482	24,685	200.067	2850	60,286	36,590	208.518
2000	42,564	25,935	201.135	2900	61,332	37,220	208.882
2050	43,605	26,560	201.649	2950	62,378	37,851	209.240
2100	44,646	27,186	202.151	3000	63,425	38,482	209.592
2150	45,687	27,811	202.641	3100	65,520	39,746	210.279
2200	46,728	28,436	203.119	3200	67,619	41,013	210.945
2250	47,769	29,062	203.588	3300	69,720	42,283	211.592
2300	48,811	29,688	204.045	3400	71,824	43,556	212.220
2350	49,852	30,314	204.493	3500	73,932	44,832	212.831

TABLE A-25

Ideal-gas properties of hydroxyl, OH

T	\overline{h}	\overline{u}	₹°	T	\overline{h}	\overline{u}	S °
K	kJ/kmol	kJ/kmol	kJ/kmol∙K	K	kJ/kmol	kJ/kmol	kJ/kmol∙K
0	0	0	0	2400	77,015	57,061	248.628
298	9,188	6,709	183.594	2450	78,801	58,431	249.364
300	9,244	6,749	183.779	2500	80,592	59,806	250.088
500	15,181	11,024	198.955	2550	82,388	61,186	250.799
1000	30,123	21,809	219.624	2600	84,189	62,572	251.499
1500	46,046	33,575	232.506	2650	85,995	63,962	252.187
1600	49,358	36,055	234.642	2700	87,806	65,358	252.864
1700	52,706	38,571	236.672	2750	89,622	66,757	253.530
1800	56,089	41,123	238.606	2800	91,442	68,162	254.186
1900	59,505	43,708	240.453	2850	93,266	69,570	254.832
2000	62,952	46,323	242.221	2900	95,095	70,983	255.468
2050	64,687	47,642	243.077	2950	96,927	72,400	256.094
2100	66,428	48,968	243.917	3000	98,763	73,820	256.712
2150	68,177	50,301	244.740	3100	102,447	76,673	257.919
2200	69,932	51,641	245.547	3200	106,145	79,539	259.093
2250	71,694	52,987	246.338	3300	109,855	82,418	260.235
2300	73,462	54,339	247.116	3400	113,578	85,309	261.347
2350	75,236	55,697	247.879	3500	117,312	88,212	262.429

TABLE A–26 Enthalpy of formation, Gibbs function of formation, and absolute entropy at 25°C, 1 atm

		\overline{h}_f°	g_f°	<u></u> s°
Substance	Formula	kJ/kmol	kJ/kmol	kJ/kmol·K
Carbon	C(s)	0	0	5.74
Hydrogen	$H_2(g)$	0	0	130.68
Nitrogen	$N_2(g)$	0	0	191.61
Oxygen	$O_2(g)$	0	0	205.04
Carbon monoxide	CO(g)	-110,530	-137,150	197.65
Carbon dioxide	$CO_2(g)$	-393,520	-394,360	213.80
Water vapor	$H_2\bar{O}(g)$	-241,820	-228,590	188.83
Water	$H_2^-O(\ell)$	-285,830	-237,180	69.92
Hydrogen peroxide	$H_2O_2(g)$	-136,310	-105,600	232.63
Ammonia	$NH_3(g)$	-46,190	-16,590	192.33
Methane	$CH_4(g)$	-74,850	-50,790	186.16
Acetylene	$C_2H_2(g)$	+226,730	+209,170	200.85
Ethylene	$C_2H_4(g)$	+52,280	+68,120	219.83
Ethane	$C_2H_6(g)$	-84,680	-32,890	229.49
Propylene	$C_3H_6(g)$	+20,410	+62,720	266.94
Propane	$C_3H_8(g)$	-103,850	-23,490	269.91
<i>n</i> -Butane	$C_4H_{10}(g)$	-126,150	-15,710	310.12
<i>n</i> -Octane	$C_8H_{18}(g)$	-208,450	+16,530	466.73
<i>n</i> -Octane	$C_8H_{18}(\ell)$	-249,950	+6,610	360.79
<i>n</i> -Dodecane	$C_{12}H_{26}(g)$	-291,010	+50,150	622.83
Benzene	$C_6H_6(g)$	+82,930	+129,660	269.20
Methyl alcohol	CH ₃ OH(<i>g</i>)	-200,670	-162,000	239.70
Methyl alcohol	$CH_3OH(\ell)$	-238,660	-166,360	126.80
Ethyl alcohol	$C_2H_5OH(g)$	-235,310	-168,570	282.59
Ethyl alcohol	$C_2H_5OH(\ell)$	-277,690	-174,890	160.70
Oxygen	O(<i>g</i>)	+249,190	+231,770	161.06
Hydrogen	H(<i>g</i>)	+218,000	+203,290	114.72
Nitrogen	N(g)	+472,650	+455,510	153.30
Hydroxyl	OH(<i>g</i>)	+39,460	+34,280	183.70

Source: From JANAF, Thermochemical Tables (Midland, MI: Dow Chemical Co., 1971); Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-3, 1968; and API Research Project 44 (Carnegie Press, 1953).

TABLE A–27Properties of some common fuels and hydrocarbons

Fuel (phase)	Formula	Molar mass, kg/kmol	Density, ¹ kg/L	Enthalpy of vaporization, ² kJ/kg	Specific heat, ¹ c _p kJ/kg·K	Higher heating value, ³ kJ/kg	Lower heating value, ³ kJ/kg
Carbon (s)	С	12.011	2	<u>—</u>	0.708	32,800	32,800
Hydrogen (g)	H ₂	2.016	_	_	14.4	141,800	120,000
Carbon monoxide (g)	CO	28.013	_	_	1.05	10,100	10,100
Methane (g)	CH₄	16.043	_	509	2.20	55,530	50,050
Methanol (ℓ)	CH₄O	32.042	0.790	1168	2.53	22,660	19,920
Acetylene (g)	$C_2 \vec{H}_2$	26.038	_	_	1.69	49,970	48,280
Ethane (g)	C_2H_6	30.070	_	172	1.75	51,900	47,520
Ethanol (ℓ)	C_2H_6O	46.069	0.790	919	2.44	29,670	26,810
Propane (ℓ)	C ₃ H ₈	44.097	0.500	335	2.77	50,330	46,340
Butane (ℓ)	$C_4^{\circ}H_{10}^{\circ}$	58.123	0.579	362	2.42	49,150	45,370
1-Pentene (ℓ)	C ₅ H ₁₀	70.134	0.641	363	2.20	47,760	44,630
Isopentane (ℓ)	C ₅ H ₁₂	72.150	0.626	_	2.32	48,570	44,910
Benzene (ℓ)	C_6H_6	78.114	0.877	433	1.72	41,800	40,100
Hexene (ℓ)	C ₆ H ₁₂	84.161	0.673	392	1.84	47,500	44,400
Hexane (ℓ)	C ₆ H ₁₄	86.177	0.660	366	2.27	48,310	44,740
Toluene (ℓ)	C ₇ H ₈	92.141	0.867	412	1.71	42,400	40,500
Heptane (ℓ)	C_7H_{16}	100.204	0.684	365	2.24	48,100	44,600
Octane (ℓ)	C ₈ H ₁₈	114.231	0.703	363	2.23	47,890	44,430
Decane (ℓ)	$C_{10}H_{22}$	142.285	0.730	361	2.21	47,640	44,240
Gasoline (ℓ)	$C_n H_{1.87n}$	100-110	0.72-0.78	350	2.4	47,300	44,000
Light diesel (ℓ)	$C_nH_{1.8n}$	170	0.78-0.84	270	2.2	46,100	43,200
Heavy diesel (ℓ)	$C_nH_{1.7n}$	200	0.82-0.88	230	1.9	45,500	42,800
Natural gas (g)	$C_n H_{3.8n} N_{0.1n}$	18	_	_	2	50,000	45,000

 $^{^1\}mathrm{At}\ 1$ atm and 20°C.

 $^{^2\}mbox{At }25\mbox{\,}^{\circ}\mbox{C}$ for liquid fuels, and 1 atm and normal boiling temperature for gaseous fuels.

 $^{^3}$ At 25°C. Multiply by molar mass to obtain heating values in kJ/kmol.

TABLE A-28

Natural logarithms of the equilibrium constant \mathcal{K}_p

The equilibrium constant K_p for the reaction $\nu_A A + \nu_B B \Longrightarrow \nu_C C + \nu_D D$ is defined as $K_p \equiv \frac{P_C^{\nu_C} P_D^{\nu_D}}{P_A^{\nu_A} P_B^{\nu_B}}$

Temp.	,						
K	$H_2 \rightleftharpoons 2H$	$O_2 \rightleftharpoons 20$	$N_2 \rightleftharpoons 2N$	$H_2O \rightleftharpoons H_2 + \frac{1}{2}O_2$	$H_2O \rightleftharpoons {}^1/_2H_2 + OH$	$CO_2 \rightleftharpoons CO + \frac{1}{2}O_2$	$^{1}/_{2}N_{2} + ^{1}/_{2}O_{2} \rightleftharpoons NO$
298	-164.005	-186.975	-367.480	-92.208	-106.208	-103.762	-35.052
500	-92.827	-105.630	-213.372	-52.691	-60.281	-57.616	-20.295
1000	-39.803	-45.150	-99.127	-23.163	-26.034	-23.529	-9.388
1200	-30.874	-35.005	-80.011	-18.182	-20.283	-17.871	-7.569
1400	-24.463	-27.742	-66.329	-14.609	-16.099	-13.842	-6.270
1600	-19.637	-22.285	-56.055	-11.921	-13.066	-10.830	-5.294
1800	-15.866	-18.030	-48.051	-9.826	-10.657	-8.497	-4.536
2000	-12.840	-14.622	-41.645	-8.145	-8.728	-6.635	-3.931
2200	-10.353	-11.827	-36.391	-6.768	-7.148	-5.120	-3.433
2400	-8.276	-9.497	-32.011	-5.619	-5.832	-3.860	-3.019
2600	-6.517	-7.521	-28.304	-4.648	-4.719	-2.801	-2.671
2800	-5.002	-5.826	-25.117	-3.812	-3.763	-1.894	-2.372
3000	-3.685	-4.357	-22.359	-3.086	-2.937	-1.111	-2.114
3200	-2.534	-3.072	-19.937	-2.451	-2.212	-0.429	-1.888
3400	-1.516	-1.935	-17.800	-1.891	-1.576	0.169	-1.690
3600	-0.609	-0.926	-15.898	-1.392	-1.088	0.701	-1.513
3800	0.202	-0.019	-14.199	-0.945	-0.501	1.176	-1.356
4000	0.934	0.796	-12.660	-0.542	-0.044	1.599	-1.216
4500	2.486	2.513	-9.414	0.312	0.920	2.490	-0.921
5000	3.725	3.895	-6.807	0.996	1.689	3.197	-0.686
5500	4.743	5.023	-4.666	1.560	2.318	3.771	-0.497
6000	5.590	5.963	-2.865	2.032	2.843	4.245	-0.341

Source: Gordon J. Van Wylen and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed. (New York: John Wiley & Sons, 1986), p. 723, table A.14. Based on thermodynamic data given in JANAF, Thermochemical Tables (Midland, MI: Thermal Research Laboratory, The Dow Chemical Company, 1971).

FIGURE A-29

Generalized enthalpy departure chart.

Source: Redrawn from Gordon van Wylen, and Richard Sontag, Fundamentals of Classical Thermodynamics, (SI version), 2d ed., Wiley, New York, 1976. Reprinted by permission of John Wiley and Sons, Inc.

FIGURE A-30

Generalized entropy departure chart.

Source: Redrawn from Gordon van Wylen, and Richard Sontag, Fundamentals of Classical Thermodynamics, (SI version), 2d ed., Wiley, New York, 1976. Reprinted by permission of John Wiley and Sons, Inc.

ASHRAE Psychrometric Chart No. 1 Normal Temperature Barometric Pressure: 101.325 kPa

©1992 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

Prepared by Center for Applied Thermodynamic Studies, University of Idaho.

FIGURE A-31

Psychrometric chart at 1 atm total pressure.

Reprinted by permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA; used with permission.

954 PROPERTY TABLES AND CHARTS

$$\begin{aligned} \mathbf{Ma^*} &= \mathbf{Ma} \sqrt{\frac{k+1}{2+(k-1)\mathbf{Ma}^2}} \\ \frac{A}{A^*} &= \frac{1}{\mathbf{Ma}} \left[\left(\frac{2}{k+1} \right) \left(1 + \frac{k-1}{2} \, \mathbf{Ma}^2 \right) \right]^{0.5(k+1)/(k-1)} \\ \frac{P}{P_0} &= \left(1 + \frac{k-1}{2} \, \mathbf{Ma}^2 \right)^{-k/(k-1)} \\ \frac{\rho}{\rho_0} &= \left(1 + \frac{k-1}{2} \, \mathbf{Ma}^2 \right)^{-1/(k-1)} \\ \frac{T}{T_0} &= \left(1 + \frac{k-1}{2} \, \mathbf{Ma}^2 \right)^{-1} \end{aligned}$$

TABLE A-32

One-dimensional isentropic compressible-flow functions for an ideal gas with k = 1.4

Ma	Ma*	A/A*	P/P_0	ρ/ρ_0	T/T ₀
0	0	∞	1.0000	1.0000	1.0000
0.1	0.1094	5.8218	0.9930	0.9950	0.9980
0.2	0.2182	2.9635	0.9725	0.9803	0.9921
0.3	0.3257	2.0351	0.9395	0.9564	0.9823
0.4	0.4313	1.5901	0.8956	0.9243	0.9690
0.5	0.5345	1.3398	0.8430	0.8852	0.9524
0.6	0.6348	1.1882	0.7840	0.8405	0.9328
0.7	0.7318	1.0944	0.7209	0.7916	0.9107
8.0	0.8251	1.0382	0.6560	0.7400	0.8865
0.9	0.9146	1.0089	0.5913	0.6870	0.8606
1.0	1.0000	1.0000	0.5283	0.6339	0.8333
1.2	1.1583	1.0304	0.4124	0.5311	0.7764
1.4	1.2999	1.1149	0.3142	0.4374	0.7184
1.6	1.4254	1.2502	0.2353	0.3557	0.6614
1.8	1.5360	1.4390	0.1740	0.2868	0.6068
2.0	1.6330	1.6875	0.1278	0.2300	0.5556
2.2	1.7179	2.0050	0.0935	0.1841	0.5081
2.4	1.7922	2.4031	0.0684	0.1472	0.4647
2.6	1.8571	2.8960	0.0501	0.1179	0.4252
2.8	1.9140	3.5001	0.0368	0.0946	0.3894
3.0	1.9640	4.2346	0.0272	0.0760	0.3571
5.0	2.2361	25.000	0.0019	0.0113	0.1667
\propto	2.2495	oc	0	0	0

$$\begin{split} T_{01} &= T_{02} \\ \mathbf{M}\mathbf{a}_2 &= \sqrt{\frac{(k-1)\mathbf{M}\mathbf{a}_1^2 + 2}{2k\mathbf{M}\mathbf{a}_1^2 - k + 1}} \\ \frac{P_2}{P_1} &= \frac{1 + k\mathbf{M}\mathbf{a}_1^2}{1 + k\mathbf{M}\mathbf{a}_2^2} = \frac{2k\mathbf{M}\mathbf{a}_1^2 - k + 1}{k + 1} \\ \frac{\rho_2}{\rho_1} &= \frac{P_2/P_1}{T_2/T_1} = \frac{(k+1)\mathbf{M}\mathbf{a}_1^2}{2 + (k-1)\mathbf{M}\mathbf{a}_1^2} = \frac{V_1}{V_2} \\ \frac{T_2}{T_1} &= \frac{2 + \mathbf{M}\mathbf{a}_1^2(k-1)}{2 + \mathbf{M}\mathbf{a}_2^2(k-1)} \\ \frac{P_{02}}{P_{01}} &= \frac{\mathbf{M}\mathbf{a}_1}{\mathbf{M}\mathbf{a}_2} \left[\frac{1 + \mathbf{M}\mathbf{a}_2^2(k-1)/2}{1 + \mathbf{M}\mathbf{a}_1^2(k-1)/2} \right]^{(k+1)/[2(k-1)]} \\ \frac{P_{02}}{P_1} &= \frac{(1 + k\mathbf{M}\mathbf{a}_1^2)[1 + \mathbf{M}\mathbf{a}_2^2(k-1)/2]^{k/(k-1)}}{1 + k\mathbf{M}\mathbf{a}_2^2} \end{split}$$

TABLE A-33

One-dimensional normal-shock functions for an ideal gas with k = 1.4

Ma_1	Ma ₂	P_2/P_1	ρ_2/ρ_1	T_2/T_1	P_{02}/P_{01}	P_{02}/P_1
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.8929
1.1	0.9118	1.2450	1.1691	1.0649	0.9989	2.1328
1.2	0.8422	1.5133	1.3416	1.1280	0.9928	2.4075
1.3	0.7860	1.8050	1.5157	1.1909	0.9794	2.7136
1.4	0.7397	2.1200	1.6897	1.2547	0.9582	3.0492
1.5	0.7011	2.4583	1.8621	1.3202	0.9298	3.4133
1.6	0.6684	2.8200	2.0317	1.3880	0.8952	3.8050
1.7	0.6405	3.2050	2.1977	1.4583	0.8557	4.2238
1.8	0.6165	3.6133	2.3592	1.5316	0.8127	4.6695
1.9	0.5956	4.0450	2.5157	1.6079	0.7674	5.1418
2.0	0.5774	4.5000	2.6667	1.6875	0.7209	5.6404
2.1	0.5613	4.9783	2.8119	1.7705	0.6742	6.1654
2.2	0.5471	5.4800	2.9512	1.8569	0.6281	6.7165
2.3	0.5344	6.0050	3.0845	1.9468	0.5833	7.2937
2.4	0.5231	6.5533	3.2119	2.0403	0.5401	7.8969
2.5	0.5130	7.1250	3.3333	2.1375	0.4990	8.5261
2.6	0.5039	7.7200	3.4490	2.2383	0.4601	9.1813
2.7	0.4956	8.3383	3.5590	2.3429	0.4236	9.8624
2.8	0.4882	8.9800	3.6636	2.4512	0.3895	10.5694
2.9	0.4814	9.6450	3.7629	2.5632	0.3577	11.3022
3.0	0.4752	10.3333	3.8571	2.6790	0.3283	12.0610
4.0	0.4350	18.5000	4.5714	4.0469	0.1388	21.0681
5.0	0.4152	29.000	5.0000	5.8000	0.0617	32.6335
∞	0.3780	∞	6.0000	∞	0	∞

956 PROPERTY TABLES AND CHARTS

$$\begin{split} \frac{T_0}{T_0^*} &= \frac{(k+1) \text{Ma}^2 [2 + (k-1) \text{Ma}^2]}{(1+k \text{Ma}^2)^2} \\ \frac{P_0}{P_0^*} &= \frac{k+1}{1+k \text{Ma}^2} \left(\frac{2+(k-1) \text{Ma}^2}{k+1} \right)^{k/(k-1)} \\ \frac{T}{T^*} &= \left(\frac{\text{Ma}(1+k)}{1+k \text{Ma}^2} \right)^2 \\ \frac{P}{P^*} &= \frac{1+k}{1+k \text{Ma}^2} \\ \frac{V}{V^*} &= \frac{\rho^*}{\rho} = \frac{(1+k) \text{Ma}^2}{1+k \text{Ma}^2} \end{split}$$

TABLE A-34 Rayleigh flow functions for an ideal gas with k = 1.4

Ма	T_{0}/T_{0}^{*}	P_0/P_0^*	T/ T*	P/P*	<i>V</i> / <i>V</i> *
0.0	0.0000	1.2679	0.0000	2.4000	0.0000
0.1	0.0468	1.2591	0.0560	2.3669	0.0237
0.2	0.1736	1.2346	0.2066	2.2727	0.0909
0.3	0.3469	1.1985	0.4089	2.1314	0.1918
0.4	0.5290	1.1566	0.6151	1.9608	0.3137
0.5	0.6914	1.1141	0.7901	1.7778	0.4444
0.6	0.8189	1.0753	0.9167	1.5957	0.5745
0.7	0.9085	1.0431	0.9929	1.4235	0.6975
8.0	0.9639	1.0193	1.0255	1.2658	0.8101
0.9	0.9921	1.0049	1.0245	1.1246	0.9110
1.0	1.0000	1.0000	1.0000	1.0000	1.0000
1.2	0.9787	1.0194	0.9118	0.7958	1.1459
1.4	0.9343	1.0777	0.8054	0.6410	1.2564
1.6	0.8842	1.1756	0.7017	0.5236	1.3403
1.8	0.8363	1.3159	0.6089	0.4335	1.4046
2.0	0.7934	1.5031	0.5289	0.3636	1.4545
2.2	0.7561	1.7434	0.4611	0.3086	1.4938
2.4	0.7242	2.0451	0.4038	0.2648	1.5252
2.6	0.6970	2.4177	0.3556	0.2294	1.5505
2.8	0.6738	2.8731	0.3149	0.2004	1.5711
3.0	0.6540	3.4245	0.2803	0.1765	1.5882

