Proof of Belief Convergence Scratch of Generalization for Weakly Connected Graphs

Bernardo Amorim

Universidade Federal de Minas Gerais

July 7, 2020

Influencers definition

Definition

Let's call I_i the influencers of the agent a_i , which is defined as:

$$\{a_i \in A \mid \exists P(a_i|a_i)\}$$

An useful lemma

Lemma

$$\exists \ P(a_j|a_i) \iff I_j \subseteq I_i$$

An useful lemma

Lemma

$$\exists P(a_j|a_i) \iff I_j \subseteq I_i$$

Proof.

Let's suppose that $\exists P(a_i|a_i)$.

Now suppose $a_k \in I_j$. By definition this means that $\exists P(a_k|a_j)$. But since $\exists P(a_j|a_i)$, there will also exist $P(a_k|a_i)$. Thus, by definition of influencers $a_k \in I_i$. Since a_k was arbitrary, $I_j \subseteq I_i$. Proving the other side of the implication is trivial given the definition of influencers.

Partial order

Note that the influencers are basically sets of agents, thus they are a partial order. Keeping that in mind, we will look at the minimal elements of the influencers, but first let's look at an influence graph.

Partial order

Note that the influencers are basically sets of agents, thus they are a partial order. Keeping that in mind, we will look at the minimal elements of the influencers, but first let's look at an influence graph.

Partial order representation

Drawing a partial order representation of the influencers of the previous graph we end up with:

Lemma

Looking at the minimal elements of the graph above we should note that the influencers of all of them are strongly connected, which leads us to our lemma:

Lemma

Looking at the minimal elements of the graph above we should note that the influencers of all of them are strongly connected, which leads us to our lemma:

Lemma

$$\nexists a_j (I_j \subseteq I_i) \implies I_i \text{ is strongly connected.}$$

Lemma

Looking at the minimal elements of the graph above we should note that the influencers of all of them are strongly connected, which leads us to our lemma:

Lemma

$$\nexists a_j (I_j \subseteq I_i) \implies I_i \text{ is strongly connected.}$$

Proof.

Suppose $a_j, a_k \in I_i$. Thus $\exists P(a_k|a_i)$ and $\exists P(a_j|a_i)$.

Since I_i is minimal, there must exist $P(a_i|a_j)$ and $P(a_i|a_k)$. This is true because, according to Lemma 1, $I_j \subseteq I_i$ and $I_k \subseteq I_i$. But if $\nexists P(a_i|a_j)$ or $\nexists P(a_i|a_k)$ then either $I_j \subset N_i$ or $I_k \subset I_i$. Which contradicts our hypothesis. Since $\exists P(a_k|a_i) \land \exists P(a_i|a_i)$. $\exists P(a_k|a_i)$. And the same goes

Which contradicts our hypothesis. Since $\exists P(a_k|a_i) \land \exists P(a_i|a_j)$, $\exists P(a_k|a_j)$. And the same goes the other way around, since both a_j and a_k where arbitrary, it is true for all, which means there is a path between any two agents in the influencers. Does it is strongly connected.

Next steps

• Given that the minimal influencers are strongly connected and that they don't receive external influence (I didn't prove this property but it kind of follows from 1).

Next steps

- Given that the minimal influencers are strongly connected and that they don't receive external influence (I didn't prove this property but it kind of follows from 1).
- It will converge according to the other proof (if it is correct, of course). This might give us
 a good start on how to continue the proof. But the most useful part of this would be, to
 me, the ability to assume that the minimal elements have a constant belief, since they
 converge. This would be really useful but I don't know if I can assume it.

Next steps

- Given that the minimal influencers are strongly connected and that they don't receive external influence (I didn't prove this property but it kind of follows from 1).
- It will converge according to the other proof (if it is correct, of course). This might give us
 a good start on how to continue the proof. But the most useful part of this would be, to
 me, the ability to assume that the minimal elements have a constant belief, since they
 converge. This would be really useful but I don't know if I can assume it.
- If we can assume it the next theorem to prove would be: if a graph is strongly connected and receives constant external influence, it converges.

Personal thoughts

• After running some experiments, I believe that the general case might not be as random as I first though. Apparently who rules the beliefs in the limits are the minimal elements, because they converge and aren't affected by the others.

Personal thoughts

- After running some experiments, I believe that the general case might not be as random as I first though. Apparently who rules the beliefs in the limits are the minimal elements, because they converge and aren't affected by the others.
- Also, the simulation I made in the graph showed above actually resulted in the fact that changing the beliefs of agents who aren't from minimal influencers do not change the beliefs in the limit.

Personal thoughts

- After running some experiments, I believe that the general case might not be as random as I first though. Apparently who rules the beliefs in the limits are the minimal elements, because they converge and aren't affected by the others.
- Also, the simulation I made in the graph showed above actually resulted in the fact that changing the beliefs of agents who aren't from minimal influencers do not change the beliefs in the limit.
- What I believe now is that the elements who are not minimal converge to the weighted average of all paths from elements in minimal influencers multiplied by its beliefs.