Exercices. Feuille 5

Exercice 1. (Equivalence ou développement limité?)

Dire si les équivalences (au voisinage de 0) ci-dessous sont vraies ou fausses :

$$x \sim \sin(x)$$
, $x^3/6 \sim x - \sin(x)$, $\sin(x) \sim x - x^3/6$, $\sin(x) \sim x - x^3/1917$, $\sin(x) \sim x + x^2$, $\sin(x) - x \sim x^2$, $\cos(x) \sim 1 - x^2/68$.

Exercice 2. Notations de Landau

1. On considère les fonctions suivantes, définies au voisinage de 0 :

$$f(x) = x^2, g(x) = \frac{\sin(x^4)}{x}, h(x) = \frac{1}{\exp(1/x^2)}, i(x) = \frac{\ln(1+x)}{x^2}$$

Dire lesquelles sont un o(1), puis un $o(x^2)$.

- 2. Soient $k, k' \in \mathbb{N}$, montrer que
 - (a) $o(x^k) = x^k o(1)$
 - (b) $x^k o(x^{k'}) = o(x^{k+k'})$
 - (c) $o(x^k)o(x^{k'}) = o(x^{k+k'})$
 - (d) $o(x^k) \pm o(x^{k'}) = o(x^{\min(k,k')})$

Exercice 3. Trouver une suite $\{u_n\}_n$ telle que :

$$u_n = o(n^{\alpha})$$
 et $(\ln n)^{\alpha} = o(u_n)$ pour tout $\alpha > 0$.

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{R}$, supposons qu'il existe $n \in \mathbb{N}, P \in \mathbb{R}_{2n+1}[X]$ tel que

$$\forall m \in \mathbb{N}, \forall x \in \mathbb{R}, |f^{(m)}(x)| \le |P(x)|$$

On veut montrer qu'alors f est identiquement nulle.

- 1. Montrer qu'il existe $x_0 \in \mathbb{R}$ tel que pour tout $m \in N$, $f^{(m)}(x_0) = 0$. (On pourra appliquer le théorème des valeurs intermédiaires pour prouver que tout polynôme de degré impair à coefficients réels admet au moins une racine réelle.)
- 2. Soit $\alpha \in \mathbb{R}$, montrer que $\lim \frac{\alpha^n}{n!} = 0$.
- 3. Ecrire la formule de Taylor avec reste intégral pour f en x_0 , et montrer que $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}, |f(x)| \leq C \frac{|x-x_0|^{n+1}}{(n+1)!}$, puis conclure.

Exercice 5. (Uniforme convexité) Soit f une fonction de classe C^2 sur un intervalle [a,b] et $\lambda \in \mathbb{R}$ fixé. On suppose que pour tout $x \in [a,b]$, $f''(x) \geq \lambda$.

1. Montrer que pour $t \in [0, 1]$ on a

$$(1-t)f(a) + tf(b) - f((1-t)a + tb) \ge \lambda t(1-t)(b-a)^2/2.$$

On pourra faire deux développements de Taylor entre des points bien choisis.

- 2. Pour la fonction $f(x) = \frac{1}{2}x^2$, quel λ peut-on prendre et que devient la formule ci-dessus?
- 3. Comment s'interprète le résultat du 1. lorsque $\lambda=0$? Montrer que le cas général peut se déduire du cas $\lambda=0$.

Exercice 6. Etudier la limite lorsque $x \to +\infty$ de $\left(\cos\left(\frac{1}{x}\right)\right)^{x^2}$.

Exercice 7. Étudier, en fonction du réel α , la convergence de la suite $u_n = \left(n\sin(1/n)\right)^{n^{\alpha}}$ et de la suite n^2u_n .