第二单元学习笔记

yinxuhao [xuhao_yin@163.com]

December 21, 2022

Contents

1	引言		2
2		存储	2
	2.1	十六进制表示法	2
	2.2	字数据大小	3
	2.3	寻址和字节顺序	3
	2.4	布尔代数	4
	2.5	移位运算	5
3	整数	表示	5
	3.1	: 表示 - 无符号数的编码	5
	3.2	补码编码	6
	3.3	有符号和无符号数之间的转换	6
	3.4	扩展一个数字的位表示	6

信息的表示和处理

1 引言

孤立地讲,**单个的位不是非常有用,将位组合在一起,再加上某种解释** (interpretation),即赋予不同的可能位模式以含意。我们就能表示任何有限 集合的元素。

- 三种重要的数字表示:
- 1. 无符号unsigned编码给予传统的二进制表示法
- 2. 补码two's-complement编码是表示有符号整数的最常见的方式。
- 3. **浮点数**floating-point编码是表示实数的科学计数法的以 2 为基数的版本。

数据**溢出**overflow是产生 bug 的一大原因。负数下溢产生极大的正数;正数上溢产生极小的负数。

浮点运算有完全不同的数学属性。

1. 由于表示的精度有限, 浮点运算是不可结合的。例如

$$(3.14 + 1e_{20}) - 1e_{20} = 0.0$$

but

$$(3.14 + 1e_{20} - 1e_{20}) = 3.14$$

2. 该属性不同的原因,是处理数字表示有限性的方式不同——整数虽只能编码一个相对较小的数值范围,然该表示法是精确的; 浮点数虽可以编码相对较大的数值范围,但这种表示只是近似的。 书中建议的本章学习方式:

深入学习数学语言

学习编写公式和方程式

以及重要属性的推导

2 信息存储

大多数计算机**使用 8 位的块或者字节作为最小的可寻址内存单位**,而不是内存中单独的比特。

机器级程序将内存视为一个非常大的字节数组,称为**虚拟内存**,所有可能的地址的集合称为**虚拟地址空间**virtual address space.

每个程序对象可以简单地视为一个字节块,而程序本身就是一个字节序列。

2.1 十六进制表示法

Hex digit	0	1	2	3	4	5	6	7
Decimal value	0	1	2	3	4	5	6	7
Binary value	0000	0001	0010	0011	0100	0101	0110	0111
Hex digit	8	9	Α	В	C	D	E	F
Decimal value	8	9	10	11	12	13	14	15
Binary value	1000	1001	1010	1011	1100	1101	1110	1111

Figure 1: 十六进制表示法。每个十六进制数字都对 16 个值中的一个进行了编码

十六进制转二进制:将十六进制的每一位转换为二进制格式,然后拼接。例如:

十六进制 1 7 3 A 4 C 二进制 0001 0111 0011 1010 0100 1100

所以 $binary_{0x173a4c_{16}} = 000101110011101001001100_2$ 。

二进制转十六进制:将二进制从右到左做4个一组的划分,如最左侧不足4位则以0补之。然后将每个4位转换为对应的十六进制数字拼接即可。例如:

二进制 11 1100 1010 1101 1011 0011 十六进制 3 C A D B 3

所以, $hex_{1111001010110110110011_2} = 3cadb3_{16}$

2.2 字数据大小

每台计算机都有一个字长,指明指针数据的标称大小。 C 数据类型的典型大小见下图:

C dec	Bytes		
Signed	Unsigned	32-bit	64-bit
[signed] char	unsigned char	1	1
short	unsigned short	2	2
int	unsigned	4	4
long	unsigned long	4	8
int32_t	uint32_t	4	4
int64_t	uint64_t	8	8
char *		4	8
float		4	4
double		8	8

Figure 2: 基本 C 数据类型的典型大小 (以字节为单位)

2.3 寻址和字节顺序

小端法little endian: 最低有效字节在最前面放着。 大端法big endian: 最高有效字节在最前面放着。 具体示例见下图:

```
#include <stdio.h>

typedef unsigned char *byte_pointer;

void show_bytes(byte_pointer start, size_t len) {
    size_t i;
    for(i = 0; i < len; i++) {</pre>
```

Big endian					
	0x100	0x101	0x102	0x103	
	01	23	45	67	
Little endian					
	0x100	0x101	0x102	0x103	
	67	45	23	01	

Figure 3: 大端法与小端法

```
printf(" %.2x", start[i]);
    }
    printf("\n");
 }
 void show_int(int x) {
    show_bytes((byte_pointer) &x, sizeof(int));
void show_float(float x);
void show_pointer(void *x);
void test_show_bytes(int val) {
    int ival = val;
    float fval = (float) val;
    int *pval = &ival;
    show_int(ival);
    show_float(fval);
    show_pointer(pval);
}
```

通过以上代码,可以打印出数据的两位十六进制格式输出。对比结果可以发现,int和float的结果一样,只是排列的大小端不同,而指针值不同,与机器相关。

二进制代码是不兼容的。

2.4 布尔代数

~		&	0 1	1	0 1	^	0	1
0	1	0	0 0	0	0 1	0	0	1
1	0	1	0 1	1	1 1	1	1	0

Figure 4: 布尔代数的运算。二进制 0 和 1 代表逻辑值 TRUE 和 FALSE. 以上四张图依次是逻辑运算符 NOT AND OR EXCLUSIVE-OR

位向量一个很有用的应用就是**表示有限集合**。利用位向量 $[a_{w-1},\ldots,a_1,a_0]$ 可以编码任何子集 $A\in 0,1,\ldots,w-1$ 。

例如, 定义规则 $a_i = 1 \iff i \in A$ 。

位向量 $a \doteq [01101001]$ 表示集合 A = 0, 3, 5, 6,而位向量 $b \doteq [01010101]$ 表示集合 B = 0, 2, 4, 6。

编码集合的使用方法是使用布尔运算。

例如: $a\&b \rightarrow [010000001]$, 对应于 $A \cap B = 0, 6$ 。

它的实际应用,还有使用位向量作为掩码有选择地使用或屏蔽一些信号,该掩码就是设置为有效信号的集合。

C 语言中的位级运算, 其实是按照各个位对应的位运算来的。

而 C 语言中的逻辑运算 (||、&&、!) 则是把所有的非零参数都表示 TRUE, 参数 0 表示为 FALSE。它们只返回 1 或 0. 而位级运算只在参数特殊时才与之有相同的结果。

2.5 移位运算

x << k: 左移 k 位,即丢弃最高 k 位,右端补充 k 个 0.

x>>k: 右移 k 位,支持逻辑右移和算术右移。逻辑右移在左端补充 k 个 0,算术右移则在左端补充 k 个最高有效位 (符号位)。

对无符号数,右移必须是逻辑的。

移位运算符是从左至右可结合的。

3 整数表示

Symbol	Type	Meaning
$\overline{B2T_w}$	Function	Binary to two's complement
$B2U_w$	Function	Binary to unsigned
$U2B_w$	Function	Unsigned to binary
$U2T_w$	Function	Unsigned to two's complement
$T2B_w$	Function	Two's complement to binary
$T2U_w$	Function	Two's complement to unsigned
$TMin_w$	Constant	Minimum two's-complement value
$TMax_w$	Constant	Maximum two's-complement value
$UMax_w$	Constant	Maximum unsigned value
$+_{w}^{t}$	Operation	Two's-complement addition
$+_{w}^{u}$	Operation	Unsigned addition
$*_w^{t}$	Operation	Two's-complement multiplication
$*_w^{\mathrm{u}}$	Operation	Unsigned multiplication
$-{}^{\mathrm{t}}_{w}$	Operation	Two's-complement negation
$-{}^{\mathrm{u}}_{w}$	Operation	Unsigned negation

Figure 5: 整数的数据与算术操作术语。下标 w 表示数据中表示中的位数

3.1 无符号数的编码

原理 1 无符号数编码的定义

对向量 $\vec{x} = [x_{w-1}, x_{w-2}, \dots, x_0]$:

$$B2U_w(\vec{x}) \doteq \sum_{i=0}^{w-1} x_i 2^i$$

原理 2 无符号数编码的唯一性函数 $B2U_w$ 是一个双射

3.2 补码编码

原理 3 补码编码的定义

对向量 $\vec{x} = [x_{w-1}, x_{w-2}, \dots, x_0]$:

$$B2T_w(\vec{x}) \doteq -x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$$

原理 4 补码编码的唯一性

函数 $B2T_w$ 是一个双射。

- 1. 补码的范围是不对称的: |TMin| = |TMax| + 1, 即 TMin 没有与之对应的正数。这是因为 0 是非负数。
- 2. 最大的无符号数值刚好比补码的最大值的两倍大一点: $UMax_w = 2TMax_w + 1$

3.3 有符号和无符号数之间的转换

原理 5 补码转换为无符号数

对满足 $TMin_w \le x \le TMax_w$ 的 x 有:

$$T2U_w(x) = \begin{cases} x + 2^w, & x < 0\\ x, & x \ge 0 \end{cases}$$

原理 6 无符号数转换为补码

对满足 $0 \le x \le UMax_w$ 的 u 有:

$$U2T_w(u) = \left\{ \begin{array}{ll} u, & u \leq TMax_w \\ u - 2^w, & u > TMax \end{array} \right.$$

3.4 扩展一个数字的位表示

用于将数据类型转换为一个更大的数据类型,例如 32 位 →64 位。

原理7 无符号数的零扩展

定义宽度为 w 的位向量 $\vec{u} = [u_{w-1}, u_{w-2}, \dots, u_0]$ 和宽度为 w' 的位向量 $\vec{u}' = [0, \dots, 0, u_{w-1}, u_{w-1}, \dots, u_0]$, 其中, w' > w。则 $B2U_w(\vec{u}) = B2U_{w'}(\vec{u}')$ 。

原理 8 补码数的符号扩展

定义宽度为 w 的位向量 $\vec{x} = [x_{w-1}, x_{w-2}, \dots, x_0]$ 和宽度为 w 的位向量 $\vec{x}' = [x_{w-1}, \dots, x_{w-1}, x_{w-1}, x_{w-2}, \dots, x_0]$, 其中 w' > w。则 $B2T_w(\vec{x}) = B2T_{w'}(\vec{x}')$ 。