Stude	nf	Info	rm	atio	m
Diuu			,, ,,,	auı	,,,

Name:	Zhu Bo	Student ID:	1002856	
n n	0.7.0			

Due Date: 25 Sep, 11:59PM.

Submit answers on eDimension in pdf format. Submission without student information will **NOT** be marked! Any questions regarding the homework can be directed to the TA through email (contact information on eDimension).

Week 1

For all answers that are FALSE to a (T/F) question, please provide a short reason why as well.

- 1. The asymptotic complexity of $n^3 + 2n^2 + 1000$ is $O(n^3)$. (T/F) T highest power n^3
- 2. The asymptotic complexity of $100n^2 + n + \cos n + 1000$ is $\Theta(n^2)$. (T/F) T higher power n^2
- 3. The asymptotic complexity of $100n^{10}+n^{2.3}+1000$ is $\Omega(n^9)$. (T/F) T higher present n^{10} which $n^{10} > n^{10}$
- 4. The asymptotic complexity of $n^2 + n + 1000$ is $\Theta(n^{1.5})$. (T/F) F highest power n^2 which $n \ge n^{1.5}$
- 5. Given a program that performs the following (assuming printing takes $\Theta(1)$):

$$for(int \ i=0; \ i< n^2; \ i++)$$

$$for(int \ j=0; \ j< n; \ j++)$$

$$for(int \ k=0; \ k<10; \ k++)$$

$$print(Hello)$$

$$for(int \ k=0; \ k<10; \ k++)$$

The asymptotic complexity is $\Theta(n^2)$. (T/F)

F 3rd for 600y D(1)
... D(n3) is the coupleday.

6. Given a program that performs the following (assuming printing takes $\Theta(1)$):

for (int
$$i = 0$$
; $i < 100$; $i++$)
for (int $j = 0$; $j < n$; $j++$)

print (Hello)

2nd for (orp $\Theta(n)$).

The asymptotic complexity is $\Theta(n)$. (T/F)

7. Given a program that performs the following (assuming printing takes $\Theta(1)$):

for(int
$$i = 0$$
; $i < 100$; $i++$)

$$for(int \ j=0; \ j<500; \ j++) \\ print(n)$$
 both for (aps are θ C1)
$$for(int \ j=0; \ j<500; \ j++)$$
 both for (aps are θ C1)

The asymptotic complexity is $\Theta(n)$. (T/F)

8. Given
$$f(n)=n^3+n^2$$
 and $g(n)=10n^2$, $f(n)=\Theta(g(n))$. (T/F)

9. Given
$$f(n) = n^{0.5} + 10$$
 and $g(n) = n + 10$, $f(n) = O(g(n))$. (T/F) τ $t = 0$ of $t = 0$. In the ranking of the functions below post-folds.

10. The ranking of the functions below, sorted in ascending order of growth is (${\sf B}\,$).

A.
$$n^2 < n \log(n) < 2^n < n^n$$

B.
$$nlog(n) < n^2 < 2^n < n^n$$

C.
$$nlog(n) < n^2 < n^n < 2^n$$

D.
$$n^2 < nlog(n) < n^n < 2^n$$

accords to the slides ..

nlog(n) grows slowest.

 $2^n > n^2$

Week 2

1) Use the Master Theorem to give tight asymptotic bounds for the following recurrences. Please show how you derive your answer.

1.
$$T(n) = 2T(n/4) + n^2$$

2.
$$T(n) = 2T(4n/5) + \log n$$

3.
$$T(n) = 2T(n/4) + \sqrt{n}$$

4.
$$T(n) = \sqrt{2}T(n/4) + n \log n$$

Q1:
$$T(n) = 2T(n/4) + n^2$$
 $\log_b \alpha = \frac{1}{2}$

Apply motor theorem case 3

 $n^2 = \Omega(n^{\frac{1}{2}+\epsilon})$

we choose $\epsilon = \frac{3}{2}$ check:

 $n^2 = \Omega(n^2)$
 $2(\frac{n}{4})^2 \le Cn^2$
 $T(n) = \theta(f(n))$
 $\theta(f(n))$
 $choose \ c = \frac{1}{8} \theta(n)$
 $choose \ c = \frac{1}{8} \theta(n)$

we choose
$$\varepsilon = \frac{3}{2}$$
 check:
 $n^2 = \Omega(n^2)$ $2(\frac{n}{4})^2 \le Cn^2$
 $T(n) = \theta(f(n))$ $\Rightarrow \frac{n^2}{8} \le cn^2$
 $choose \ C = \frac{1}{8} \theta(n^2)$
 $\Rightarrow f(n) = \theta(n^2)$ $\Rightarrow f(n) = \theta(n^2)$

O3:
$$T(n) = 2T(n/4) + Tn$$
 $\log_b a = \log_4 2 = \frac{1}{2}$
Apply case 2
$$f(n) = \Theta(n \log_b a)$$
 $n^{\frac{1}{2}} = \Theta(n^{\frac{1}{2}})$
Since this holds.

Q2:
$$T(n) = 2T(4n/s) + logn$$
 $log_{b}\alpha = log \frac{\pi}{4}2 = 3 \cdot lo6$

Apply marker theorem once l
 $logn = O(logn 3 \cdot lo6 - \epsilon)$
 $T(n) = \frac{1}{2}(n \cdot lo6)$

that

Q4: $T(n) = T_2 T(n/4) + n log n$

it is always fine that Inly 15 Inlon