Surrogate Modelling of the Tritium Breeding Ratio

Petr Mánek Graham Van Goffrier

Centre for Doctoral Training in Data Intensive Science University College London

8th October 2020

Background

Nuclear fusion – the energy of the future!

Illustration by Chris Philpot, courtesy of IEEE Spectrum.

- Designing next-generation Inertial Confinement Fusion (ICF) facility.
- Search for optimal reactor design.
- Fueling important for viability.
- Require fuel of 2 varieties:
 - Deuterium ²H abundant in naturally-sourced water.
 - Tritium ³H extremely rare.
- Modern reactors can generate tritium during operation.

Problem Description

Tritium breeding blankets convert neutron radiation to ³H fuel:

$$_{0}^{1}n+_{3}^{6}\mathrm{Li}\rightarrow_{1}^{3}\mathrm{H}+_{2}^{4}\mathrm{He}$$
 $_{0}^{1}n+_{3}^{1}\mathrm{He}$

$$_{0}^{1}n + _{3}^{7}Li \rightarrow _{1}^{3}H + _{2}^{4}He + _{0}^{1}n$$

 3 H balance described by Tritium Breeding Ratio (TBR) = $\frac{\text{fuel bred}}{\text{fuel consumed}}$

- Depends on numerous geometric and material parameters.
- Evaluated by *Paramak* OpenMC neutronics simulation.
- Slow . . . we want to consider as many reactor designs as possible!

Our Challenge

Produce a fast TBR surrogate that strongly approximates Paramak.

Data Generation

Produced datasets by sampling Paramak outputs over its 7 discrete and 11 continuous input parameters at random.

Deployed at UCL's Hypatia cluster:

- Created 1M points.
- 27 days of runtime.

2 classes of runs:

- All parameters free.
- Discrete fixed, continuous free

	Parameter name	Domain
Blanket	Breeder fraction [†] Breeder ⁶ Li enrichment fraction Breeder material Breeder packing fraction Coolant fraction [†] Coolant material Multiplier fraction [†] Multiplier material Multiplier packing fraction Structural fraction [†] Structural material Thickness	$ \begin{array}{c} [0,1] \\ [0,1] \\ [0,1] \\ \{Li_2TiO_3, Li_4SiO_4\} \\ [0,1] \\ [0,1] \\ [0,2] \\ \{D_2O, H_2O, He\} \\ [0,1] \\ [0,1] \\ [0,1] \\ [0,1] \\ [0,1] \\ \{SiC, eurofer\} \\ [0,500] \end{array} $
First wall	Armour fraction [‡] Coolant fraction [‡] Coolant material Structural fraction [‡] Structural material Thickness	$ \begin{bmatrix} [0,1] \\ [0,1] \\ \{D_2O,H_2O,He\} \\ [0,1] \\ \{SiC,eurofer\} \\ [0,20] \\ \end{bmatrix} $

Groups of parameters marked^{†‡} are required to sum to 1.

Methodology

Conventional regression task – search for a cheap surrogate $\hat{f}(x)$ that minimizes dissimilarity with an expensive function f(x):

- Regression performance: mean absolute error, σ of error, R^2 , $R^2_{adj.}$
- Computational complexity: training & prediction time / sample

2 approaches to solution:

Decoupled Approach

- Collect training dataset.
- Use data to train a surrogate.

Adaptive Approach

- Collect initial training dataset.
- 2 Use data to train a surrogate.
- Collect more data in regions where surrogate performed poorly.
- 4 Repeat steps 2 and 3.

Decoupled Approach

Outline

Compared 9 state-of-the-art surrogate families:

- Support vector machines,
- Gradient boosted trees,
- Extremely randomized trees,
- AdaBoosted decision trees,
- Gaussian process regression,

- *k* nearest neighbors,
- Artificial neural networks (MLP),
- Inverse distance weighting,
- Radial basis functions.

Performed 4 experiments:

- Hyperparameter tuning (simplified) Bayesian optimization, discrete features fixed & withheld.
- 2 Hyperparameter tuning same as #1 but with all features.
- 3 Scaling benchmark increase training set size.
- 4 Model comparison train surrogates for practical use.

Experiments 1 & 2: Hyperparameter Tuning

Experiment 1, slice (c)

- Showing $\bar{t}_{pred.}$ vs. R^2 for the 20 best surrogates per family (top left ⇔ fastest, most accurate).
- Omit discrete features → negligible performance improvement.
- Dominated by trees (GBTs, ERTs) and neural networks.

Experiment 3: Scaling Benchmark

- We observe a hierarchy.
- Trees and neural networks scale the best in $\bar{t}_{pred.}$.
- Maximizing training set size, neural networks dominate.

- Instance-based surrogates (KNN, IDW) train trivially but have slow lookup.
- Neural networks show inverse scaling due to parallelization.

Regression performance

Training time / sample

Prediction time / sample

Experiment 4: Model Comparison

Trained 8 surrogates for practical use.

Model 1, best regression performance

- ANN (4-layer MLP), 500K samples.
- \blacksquare $R^2 = 0.998$, $\sigma = 0.013$,
- $\bar{t}_{pred.} = 1.124 \, \mu s$, speedup $6916416 \times$

Model 2, fastest prediction†

- ANN (2-layer MLP), 500K samples.
- $R^2 = 0.985, \sigma = 0.033,$
- $\bar{t}_{pred.} = 0.898 \, \mu s$, speedup $8659251 \times$

Model 4, smallest training set[†]

- GBT, 10K samples.
- $R^2 = 0.913, \sigma = 0.072,$
- $\bar{t}_{pred.} = 6.125 \, \mu s$, speedup 1 269 777×

[†] with acceptable regression performance.

Adaptive Approach

Adaptive Sampling: Theory

How to use information during training to reduce sample quantity?

Our novel technique:

- Construct surrogate quality distribution by nearestneighbour interpolation.
- 2 Draw candidate samples by quality using MCMC.
- 3 Include samples with greatest separation from neighbours.
- 4 Repeat!

Application on Toy Theory

Toy functional TBR theory with wavenumber n, and qualitatively comparable ANN performance to Paramak:

$$\mathsf{TBR}_\mathsf{toy} = \frac{1}{|C|} \sum_{i \in C} \left[1 + \sin(2\pi n(x_i - 1/2)) \right]$$
 (where C enumerates all continuous variables)

Evaluation set:

- Adaptive samples
- Generated during runtime

Validation set:

- Uniform random samples
- Generated independently

Placebo comparison – incremental uniform-random samples, no MCMC.

Adaptive Sampling: Results

60% decrease in MAE for validation set (dashed)
Equivalently, 6% decrease in samples needed for same accuracy

Adaptive Sampling: Results

Fewer incremented samples can lead to better accuracy! But depends on initial samples, specific model – further study needed.

Conclusion

Decoupled Approach

- Heuristic: GBTs for $< 10^4$ samples, ANNs for $\ge 10^5$ samples.
- Fastest found surrogate evaluates TBR in $0.898\,\mu s$ with error 0.033. This is roughly $8\cdot 10^6 \times$ faster than Paramak.
- Found surrogates with comparable properties with \approx 10K samples.

Adaptive Approach

- New theoretical approach QASS developed, based on MCMC.
- 60% decrease in evaluation MAE demonstrated.
- 6% decrease in expensive TBR samples needed.
- lacktriangle Portable methods o cheap approximation of any simulation.
- Article in IOP Journal of Nuclear Fusion (pending).
- Included as a benchmark in the SciML Collaboration.

Thank you for listening!

Petr Mánek petr.manek.19@ucl.ac.uk Graham Van Goffrier graham.vangoffrier.19@ucl.ac.uk

Further Reading

- Single page abstract (available online).
- Journal article, currently in internal pre-submission review (available online):
 Fast Regression of the Tritium Breeding Ratio in Fusion Reactors.
- Industry group project final report (available online).
- All models, plots, training data, source code and technical documentation.
 https://github.com/ucl-tbr-group-project