

FCC PART 15C TESTREPORT No.I17Z61226-IOT01

for

TCL Communication Ltd.

UMTS/GSM Smartphone

VFD 310/ VFD 311

with

FCC ID: 2ACCJB096

Hardware Version: PIO

Software Version: 010 01

Issued Date: 2017-08-21

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date	
No.I17Z61226-IOT01	Rev.0	1st edition	2017-08-21	

CONTENTS

1.	TEST LABORATORY	5
1.1.	TESTING LOCATION	5
1.2.	TESTING ENVIRONMENT	5
1.3.	PROJECT DATA	5
1.4.	SIGNATURE	5
2.	CLIENT INFORMATION	6
2.1.	APPLICANT INFORMATION	6
2.2.	MANUFACTURER INFORMATION	6
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1.	ABOUT EUT	7
3.2.	INTERNAL IDENTIFICATION OF EUT	7
3.3.	INTERNAL IDENTIFICATION OF AE	7
3.4.	GENERAL DESCRIPTION	9
3.5.	INTERPRETATION OF THE TEST ENVIRONMENT	9
4.	REFERENCE DOCUMENTS	
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	9
4.2.	REFERENCE DOCUMENTS FOR TESTING	9
5.	TEST RESULTS	10
5.1.	SUMMARY OF TEST RESULTS	10
5.2.	STATEMENTS	10
5.3.	TEST CONDITIONS	10
6.	TEST FACILITIES UTILIZED	11
7.	MEASUREMENT UNCERTAINTY	12
7.1.	MAXIMUM OUTPUT POWER	12
7.2.	PEAK POWER SPECTRAL DENSITY	12
7.3.	DTS 6-DB SIGNAL BANDWIDTH	12
7.4.	BAND EDGES COMPLIANCE	12
7.5.	TRANSMITTER SPURIOUS EMISSION	12
7.6.	AC POWER-LINE CONDUCTED EMISSION	12
ANI	NEX A: DETAILED TEST RESULTS	13

No.I17Z61226-IOT01 Page4 of 104

A.1. MEASUREMENT METHOD	13
A.2. MAXIMUM OUTPUT POWER	14
A.2.1. PEAK OUTPUT POWER-CONDUCTED	14
A.2.2. AVERAGE OUTPUT POWER-CONDUCTED	
A.3. PEAK POWER SPECTRAL DENSITY	17
A.4. DTS 6-DB SIGNAL BANDWIDTH	24
A.5. BAND EDGES COMPLIANCE	31
A.6. TRANSMITTER SPURIOUS EMISSION	36
A.6.1 Transmitter Spurious Emission – Conducted	
A.6.2 Transmitter Spurious Emission - Radiated	89
A.7. AC POWER-LINE CONDUCTED EMISSION	101
ANNEX R. ACCREDITATION CERTIFICATE	104

1. Test Laboratory

1.1. Testing Location

Conducted testing Location: CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Radiated testing Location: CTTL(BDA)

Address: No. 18 Jia Kangding Street, BDA District, Beijing, P. R.

China 100191

1.2. Testing Environment

Normal Temperature: $15-35^{\circ}$ C Extreme Temperature: $-20/+60^{\circ}$ C Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: 2017-08-01 Testing End Date: 2017-08-21

1.4. Signature

ZA A

Jiang Xue

(Prepared this test report)

Zheng Wei

(Reviewed this test report)

Lv Songdong

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: TCL Communication Ltd.

5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park, Address:

Pudong Area Shanghai, P.R. China. 201203

City: Shanghai Postal Code: 201203 Country: China

Telephone: 0086-21-31363544 Fax: 0086-21-61460602

2.2. Manufacturer Information

Company Name: TCL Communication Ltd.

Address: 5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,

Pudong Area Shanghai, P.R. China. 201203

City: Shanghai Postal Code: 201203 Country: China

Telephone: 0086-21-31363544 Fax: 0086-21-61460602

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description UMTS/GSM Smartphone Model name VFD 310/ VFD 311

FCC ID 2ACCJB096

IC ID /

With WLAN Function Yes

Frequency Range ISM 2400MHz~2483.5MHz

Type of Modulation DSSS/CCK/OFDM

Number of Channels 11

Antenna Integral Antenna
MAX Conducted Power 22.82dBm(OFDM)
Power Supply 3.8V by Battery

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	359933080002966	PIO	010 01
EUT2	359933080003279	PIO	010 01

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	SN
AE1	Battery	/
AE3	Charger	/
AE4	Charger	/
AE5	Charger	/
AE14	USB Cable	/
AE15	USB Cable	/

AE1

Model CAB1500045C1

Manufacturer BYD
Capacitance 1500 mAh
Nominal voltage 3.8 V

AE3

Model CBA3068AA1C4

Manufacturer AOHAI

Length of cable /

No.I17Z61226-IOT01 Page8 of 104

AE4 CBA0077AA1C1

Model BYD Manufacturer /

Length of cable

AE5 CBA0066AA1C1

Model BYD Manufacturer 120CM

Length of cable

AE14 CDA3122005C2

Model BYD Manufacturer 95CM

Length of cable

AE15 CDA3122005C1

Model JUWEI Manufacturer 95CM

Length of cable

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of UMTS/GSM Smartphone with integrated antenna and inbuilt battery.

It has Bluetooth (EDR) function.

It consists of normal options: travel charger, USB cable and Phone.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

3.5. Interpretation of the Test Environment

For the test methods, the test environment uncertainty figures correspond to an expansion factor k=2.

Measurement Uncertainty

Parameter	Uncertainty
temperature	0.48°C
humidity	2 %
DC voltages	0.003V

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general requirements;	2016
	15.247 Operation within the bands 902-928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
ANSI C03.10	Testing of Unlicensed Wireless Devices	2013

5. Test Results

5.1. Summary of Test Results

SUMMARY OF MEASUREMENT RESULTS	Sub-clause of Part15C	Sub-clause of IC	Verdict
Maximum Peak Output Power	15.247 (b)	1	Р
Peak Power Spectral Density	15.247 (e)	1	Р
Occupied 6dB Bandwidth	15.247 (a)	1	Р
Band Edges Compliance	15.247 (d)	1	Р
Transmitter Spurious Emission - Conducted	15.247 (d)	1	Р
Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	1	Р
AC Powerline Conducted Emission	15.107, 15.207	1	Р

Please refer to ANNEX A for detail.

Terms used in Verdict column

Р	Pass, The EUT complies with the essential requirements in the standard.				
NP	Not Perform, The test was not performed by CTTL				
NA	Not Applicable, The test was not applicable				
F	Fail, The EUT does not comply with the essential requirements in the				
	standard				
F	Fail, The EUT does not comply with the essential requirements in the				
	standard				

5.2. Statements

The test cases as listed in section 5.1 of this report for the EUT specified in section 3 was performed by CTTL and according to the standards or reference documents listed in section 4.2 The EUT met all requirements of the standards or reference documents, and only the WLAN function was tested in this report.

The UMTS/GSM Smartphone VFD 310 is a new product for this testing. The VFD 311 is a variant product of VFD 310 and results share the VFD 310 results.

5.3. Test Conditions

T nom	Normal Temperature	
T min	Low Temperature	
T max	High Temperature	
V nom	Normal Voltage	

For this report, if the test cases listed above are tested under normal temperature and normal voltage, and also under norm humidity, the specific condition is shown as follows:

Temperature	T nom 26℃	
Voltage	V nom 3.8V (By battery)	
Humidity	H nom	44%

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial	Manufacturer	Calibration	Calibration
NO.	Equipment	Wiodei	Number	Wallulacturei	date	Due date
4	Vector Signal	FSQ40	200089	Rohde &	2017-06-02	2019 06 01
'	Analyzer	F3Q40	200069	Schwarz	2017-06-02	2018-06-01
2	Test Receiver	ESCI	100344	Rohde &	2017-02-16	2018-03-15
2	rest Receiver	ESCI	100344	Schwarz	2017-02-16	2016-03-15
2	LISN	ENIVO46	101200	Rohde &	2017 07 04	2010 00 02
3	LISIN	ENV216 10	101200	Schwarz	2017-07-04	2018-08-03
4	Shielding Room	S81	/	ETS-Lindgren	/	/

Radiated emission test system

	National Control of System					
No.	Equipment	Model	Serial Number	Manufacturer	Calibration date	Calibratio n Due date
1	Test Receiver	ESCI 7	100948	Rohde & Schwarz	2017-06-26	2018-07-25
2	Loop antenna	HFH2-Z2	829324/007	Rohde & Schwarz	2014-12-17	2017-12-16
3	BiLog Antenna	VULB9163	302	Schwarzbeck	2017-02-28	2020-03-27
4	Dual-Ridge Waveguide Horn Antenna	3115	6914	EMCO	2014-12-16	2017-12-15
5	Dual-Ridge Waveguide Horn Antenna	3116	2661	ETS-Lindgren	2017-06-17	2020-06-16
6	Vector Signal Analyzer	FSV	101047	Rohde & Schwarz	2017-06-28	2018-06-27
7	Semi-anechoic chamber	/	CT000332-1 074	Frankonia German	/	/

7. Measurement Uncertainty

7.1. Maximum Output Power

Measurement Uncertainty: 0.339dB,k=1.96

7.2. Peak Power Spectral Density

Measurement Uncertainty: 0.705dBm/MHz,k=1.96

7.3. DTS 6-dB Signal Bandwidth

Measurement Uncertainty: 60.80Hz,k=1.96

7.4. Band Edges Compliance

Measurement Uncertainty: 0.62dBm,k=1.96

7.5. <u>Transmitter Spurious Emission</u>

Conducted (k=1.96)

Frequency Range	Uncertainty(dBm)
30MHz ≤ f ≤ 2GHz	1.22
2GHz ≤ f ≤3.6GHz	1.22
3.6GHz ≤ f ≤8GHz	1.22
8GHz ≤ f ≤12.75GHz	1.51
12.75GHz ≤ f ≤26GHz	1.51
26GHz ≤ f ≤40GHz	1.59

Radiated (k=2)

Frequency Range	Uncertainty(dBm)	
30MHz ≤ f ≤ 1GHz	4.86	
1GHz ≤ f ≤18GHz	5.26	
18GHz ≤ f ≤40GHz	5.28	

7.6. AC Power-line Conducted Emission

Measurement Uncertainty: 3.38dBm,k=2

ANNEX A: Detailed Test Results

A.1. Measurement Method

A.1.1. Conducted Measurements

Connect the EUT to the test system as Fig.A.1.1.1 shows.

Set the EUT to the required work mode.

Set the EUT to the required channel.

Set the Vector Signal Analyzer and start measurement.

Record the values. Vector Signal Analyzer

Fig.A.1.1.1: Test Setup Diagram for Conducted Measurements

A.1.2. Radiated Emission Measurements

In the case of radiated emission, the used settings are as follows, Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 10Hz;

Fig.A.1.2.1: Test Setup Diagram for Radiated Measurements

A.2. Maximum Output Power

Method of Measurement: See ANSI C63.10-2013-clause 11.9.1.2

- a) Set the RBW = 1 MHz.
- b) Set the VBW = 3 MHz.
- c) Set the span \geq [1.5 \times DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector).

Measurement Limit:

Standard	Limit (dBm)	
FCC CRF Part 15.247(b)	< 30	

EUT ID: EUT2

A.2.1. Peak Output Power-conducted

Measurement Results:

802.11b/a mode

	Data Rate	Test Result (dBm)			
Mode	(Mbps)	2412MHz	2437MHz	2462 MHz	
	(MDPs)	(Ch1)	(Ch6)	(Ch11)	
	1	18.10	/	/	
802.11b	2	18.15	/	/	
002.110	5.5	19.58	/	/	
	11	21.14	22.70	22.82	
	6	17.51	/	/	
	9	17.52	/	/	
	12	17.32	/	/	
902.114	18	17.61	/	/	
802.11g	24	17.79	/	/	
-	36	17.69	/	/	
	48	17.88	20.65	20.45	
-	54	17.85	/	/	

The data rate 11 Mbps and 48 Mbps are selected as worse condition, and the following cases are performed with this condition.

802.11n-HT20 mode

	Data Rate	Test Result (dBm)			
Mode	(Index)	2412MHz	2437MHz	2462 MHz	
	()	(Ch1)	(Ch6)	(Ch11)	
	MCS0	17.78	/	/	
	MCS1	17.59	/	/	
	MCS2	17.58	/	/	
802.11n	MCS3	18.06	/	/	
(20MHz)	MCS4	17.99	/	/	
	MCS5	18.14	/	/	
	MCS6	18.21	19.91	19.79	
	MCS7	18.03	/	/	

The data rate MCS6 is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT40 mode

	Data Rate	Test Result (dBm)			
Mode	(Index)	2422MHz	2437MHz	2452 MHz	
		(Ch3)	(Ch6)	(Ch9)	
	MCS0	20.02	/	/	
	MCS1	19.48	/	/	
-	MCS2	19.49	/	/	
802.11n	MCS3	19.86	/	/	
(40MHz)	MCS4	19.93	/	/	
-	MCS5	20.03	20.00	20.02	
-	MCS6	19.98	/	/	
-	MCS7	19.74	/	/	

The data rate MCS5 is selected as worse condition, and the following cases are performed with this condition.

Conclusion: Pass

A.2.2. Average Output Power-conducted

Method of Measurement: See ANSI C63.10-2013-clause 11.9.2.2.2

The procedure for this method is as follows:

- a) Set span = 80MHz.
- b) Set RBW = 1MHz.
- c) Set VBW = 3MHz
- d) Number of points in sweep = 625
- e) Sweep time = auto.
- f) Detector = RMS.
- g) The trigger shall be set to "free run."
- h) Trace average 100 traces in power averaging (rms) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's ©Copyright. All rights reserved by CTTL.

band power measurement function, with band limits set equal to the OBW band edges.

802.11b/g mode

Mode	Test Result (dBm)			
Mode	2412MHz (Ch1)	2437MHz (Ch6)	2462 MHz (Ch11)	
802.11b	15.24	15.31	15.32	
802.11g	10.40	12.99	12.89	

802.11n-HT20 mode

Mode	Test Result (dBm)		
Wiode	2412MHz (Ch1)	2437MHz (Ch6)	2462 MHz (Ch11)
802.11n (20MHz)	10.38	12.59	12.47

802.11n-HT40 mode

Mode	Test Result (dBm)		
Mode	2422MHz (Ch3)	2437MHz (Ch6)	2452 MHz (Ch9)
802.11n(40MHz)	12.49	12.52	12.32

Conclusion: Pass

A.3. Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-2013-clause 11.10.2

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to RBW = 3 kHz.
- d) Set the VBW = 10 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

Measurement Limit:

Standard	Limit	
FCC CRF Part 15.247(e)	< 8 dBm/3 kHz	

Measurement Results:

802.11b/g mode

Mode	Channel	Power Spectral Density (dBm/3 kHz)		Conclusion
	1	Fig.A.3.1	-1.98	Р
802.11b	6	Fig.A.3.2	-4.54	Р
	11	Fig.A.3.3	-8.52	Р
	1	Fig.A.3.4	-14.66	Р
802.11g	6	Fig.A.3.5	-13.01	Р
	11	Fig.A.3.6	-13.59	Р

802.11n-HT20 mode

Mode	Channel	Power Spectral Density (dBm/3 kHz)		Conclusion
802.11n (HT20)	1	Fig.A.3.7	-14.97	Р
	6	Fig.A.3.8	-13.39	Р
	11	Fig.A.3.9	-12.93	Р

802.11n-HT40 mode

Mode	Channel	Power Spectral Density (dBm/3 kHz)		Conclusion
802.11n (HT40)	3	Fig.A.3.10	-14.16	Р
	6	Fig.A.3.11	-15.31	Р
	9	Fig.A.3.12	-15.34	Р

Conclusion: Pass

Test graphs as below:

Fig.A.3.1 Power Spectral Density(802.11b,Ch1)

Fig.A.3.2 Power Spectral Density (802.11b, Ch 6)

Fig.A.3.3 Power Spectral Density (802.11b, Ch 11)

Fig.A.3.4 Power Spectral Density (802.11g, Ch 1)

Fig.A.3.5 Power Spectral Density (802.11g, Ch 6)

Fig.A.3.6 Power Spectral Density (802.11g, Ch 11)

Fig.A.3.7 Power Spectral Density (802.11n-HT20, Ch 1)

Fig.A.3.8 Power Spectral Density (802.11n-HT20, Ch 6)

Fig.A.3.9 Power Spectral Density (802.11n-HT20, Ch 11)

Fig.A.3.10 Power Spectral Density (802.11n-HT40, Ch 3)

Fig.A.3.11 Power Spectral Density (802.11n-HT40, Ch 6)

Fig.A.3.12 Power Spectral Density (802.11n-HT40, Ch 9)

A.4. DTS 6-dB Signal Bandwidth

Method of Measurement: See ANSI C63.10-2013 section 11.8.1.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) = 300 kHz.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measurement Limit:

Standard	Limit (kHz)	
FCC 47 CFR Part 15.247 (a)	≥ 500	

EUT ID: EUT2

Measurement Result:

802.11b/g mode

Mode	Channel	Occupied 6dB Bandwidth (MHz)		conclusion
	1	Fig.A.4.1	8.65	Р
802.11b	6	Fig.A.4.2	9.15	Р
	11	Fig.A.4.3	8.55	Р
802.11g	1	Fig.A.4.4	10.60	Р
	6	Fig.A.4.5	11.85	Р
	11	Fig.A.4.6	11.55	Р

802.11n-HT20 mode

Mode	Channel	Occupied 6dB Bandwidth (MHz)		conclusion
802.11n (HT20)	1	Fig.A.4.7	10.95	Р
	6	Fig.A.4.8	10.30	Р
	11	Fig.A.4.9	11.20	Р

802.11n-HT40 mode

Mode	Channel	-	B Bandwidth //Hz)	conclusion
802.11n (HT40)	3	Fig.A.4.10	27.20	Р
	6	Fig.A.4.11	23.76	Р
	9	Fig.A.4.12	23.64	Р

Conclusion: Pass

Test graphs as below:

Fig.A.4.1 Occupied 6dB Bandwidth(802.11b,Ch 1)

Fig.A.4.2 Occupied 6dB Bandwidth (802.11b, Ch 6)

Fig.A.4.3 Occupied 6dB Bandwidth (802.11b, Ch 11)

Fig.A.4.4 Occupied 6dB Bandwidth (802.11g, Ch 1)

Fig.A.4.5 Occupied 6dB Bandwidth (802.11g, Ch 6)

Fig.A.4.6 Occupied 6dB Bandwidth (802.11g, Ch 11)

Fig.A.4.7 Occupied 6dB Bandwidth (802.11n-20MHz, Ch 1)

Fig.A.4.8 Occupied 6dB Bandwidth (802.11n-HT20, Ch 6)

Fig.A.4.9 Occupied 6dB Bandwidth (802.11n-HT20, Ch 11)

Fig.A.4.10 Occupied 6dB Bandwidth (802.11n-40MHz, Ch 3)

Fig.A.4.11 Occupied 6dB Bandwidth (802.11n-HT40, Ch 6)

Fig.A.4.12 Occupied 6dB Bandwidth (802.11n-HT40, Ch 9)

A.5. Band Edges Compliance

Method of Measurement: See ANSI C63.10-2013-clause 6.10.4

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below.

a) Set Span = 100MHzb) Sweep Time: coupledc) Set the RBW= 100 kHzc) Set the VBW= 300 kHz

d) Detector: Peake) Trace: Max hold

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

EUT ID: EUT2

Measurement Result:

802.11b/g mode

Mode	Channel	Test Results	Conclusion
802.11b	1	Fig.A.5.1	P
	11	Fig.A.5.2	Р
802.11g	1	Fig.A.5.3	Р
	11	Fig.A.5.4	Р

802.11n-HT20 mode

Mode	Channel	Test Results	Conclusion
802.11n	1	Fig.A.5.5	Р
(HT20)	11	Fig.A.5.6	Р

802.11n-HT40 mode

Mode	Channel	Test Results	Conclusion
802.11n	3	Fig.A.5.7	Р
(HT40)	9	Fig.A.5.8	Р

Conclusion: Pass
Test graphs as below:

Fig.A.5.1 Band Edges (802.11b, Ch 1)

Fig.A.5.2 Band Edges (802.11b, Ch 11)

Fig.A.5.3 Band Edges (802.11g, Ch 1)

Fig.A.5.4 Band Edges (802.11g, Ch 11)

Fig.A.5.5 Band Edges (802.11n-HT20, Ch 1)

Fig.A.5.6 Band Edges (802.11n-HT20, Ch 11)

Fig.A.5.7 Band Edges (802.11n-HT40, Ch 3)

Fig.A.5.8 Band Edges (802.11n-HT40, Ch 9)