

Part III - Knowledge and Reasoning

6 Agents that Reason Logically

- Knowledge-based Agents.
 Representations.
- Propositional Logic. The Wumpus World.

• 7 First-Order Logic

- Syntax and Semantics. Using First-Order Logic.
- Logical Agents. Representing Changes.
- Deducing Properties of the World.
- Goal-based Agents.

8 Building a Knowledge Base

Knowledge Engineering. – General Ontology.

Knowledge Representations

- Knowledge representation (KR)
 - KB: set of sentences -> need to
 - Express knowledge in a (computer-) tractable form

Knowledge representation language

- Syntax implementation level
 - Possible configurations that constitute sentences

- Semantics knowledge level
 - Facts of the world the sentences refer to
 - e.g. language of arithmetics: x, y numbers sentence: "x ≥ y", semantics: "greater or equal"

Reasoning and Logic

- Logic
 - Representation + Inference = Logic
 - Where representation = syntax + semantics
- Reasoning
 - Construction of new sentences from existing ones
- Entailment as logical inference

Deduction and Induction

Mechanical reasoning

- Example
 - If a chord sequence is tonal, then it can be generated by a context-sensitive grammar.
 - The twelve-bar blues has a chord sequence that is tonal.
 - The twelve-bar blues has a chord sequence that can be generated by a context-sensitive grammar.

Deductive inference

KB: Monday ⇒ Work, Monday |- Work sound (MP)

Inductive inference

- KB: Monday ⇒ Work, Work |- Monday unsound!
- Generalization e.g., "all swans are white ..."

Entailment and Inference

Entailment

- Generate sentences that are necessarily true, given that the existing sentences are true
- Notation: KB \mid = α

Inference

- **Tell**, given KB: (KB $\mid = \alpha$)!
- **Ask**, given KB and α : (KB |= α) ?

Properties of Inference

– Can be described by the sentences it derives, KB $\models \alpha_I$

Soundness

- Generate only entailed sentences
- Proof: sequence of operations of a sound inference
 - Record of operations that generate a specific entailed sentence e.g. "Smoke ⇒ Fire" and "Smoke" |= "Fire"
 "Fire ⇒ Call_911" and "Fire" |= "Call_911"

Completeness

A proof can be found for any entailed sentence

Proof theory

- Specify the reasoning operations that are sound

An Example of Sound Inference

- Sentence: x
 - Semantics: an expression; can be a single symbol or number,

the concatenation of 2 expressions, etc.

- Sentence: x y
 - Semantics: an expression which refers to a quantity that is the

product of the quantities referred to by each of the

expressions

- Sentence: x = y
 - Semantics: the 2 expressions on each side of "=" refer to the

same quantity

- A sound inference: from $E = mc^2$ $T_1 \ge T_2$ $\models E T_1 \ge mc^2 T_2$

Knowledge Representation Languages

Formal (programming) languages

- Good at describing algorithms and data structures
 - e.g. the Wumpus world as a 4x4 array, World[2,2] ← Pit
- Poor at representing incomplete / uncertain information
 - e.g. "there is a pit in [2,2] or [3,1]", or "...a wumpus somewhere"
- > not <u>expressive</u> enough

Natural languages

- Very expressive (too much, thus very complex)
- More appropriate for communication than representation
- Suffer from ambiguitye.g. "It's hot!"
 - e.g. "small cats and dogs" compared to "- x + y".

Properties of Representations

 KR languages should combine the advantages of both programming and natural languages.

Desired properties

- Expressive
 - Can represent everything we need to.
- Concise
- Unambiguous
 - Sentences have a unique interpretation.
- Context independent
 - Interpretation of sentences depends on semantics only.
- Effective
 - An inference procedure allows to create new sentences.

one un

uno vi

ichi

Properties of Semantics

- Interpretation (meaning)
 - Correspondence between sentences and facts
 - Arbitrary meaning, fixed by the writer of the sentence
 - Systematic relationship: compositional languages
 - The meaning of a sentence is a function of the meaning of its parts.
 - Truth value
 - A sentence make a claim about the world -> TRUE or FALSE
 - Depends on the interpretation and the state of the world
 - e.g. Wumpus world: S(1,2) true if means "Stench at [1,2]" and the world has a wumpus at either [1,3] or [2,2].

Properties of Inference

Definition

- Inference (reasoning) is the process by which conclusions are reached
- Logical inference (deduction) is the process that implements entailment between sentences

Useful properties

- Valid sentence (tautology)
 - iff TRUE under all possible interpretations in all possible worlds.
 - e.g. "S or ¬ S" is valid, "S(2,1) or ¬ S(2,1)", etc.
- Satisfiable sentence
 - iff there is some interpretation in some world for which it is TRUE
 - e.g. "S and ¬ S" is unsatisfiable

Inference and Agent Programs

Inference in computers

- Does not know the interpretation the agent is using for the sentences in the KB
- Does not know about the world (actual facts)
- Knows only what appears in the KB (sentences)
 - e.g. Wumpus world: doesn't know the meaning of "OK", what a wumpus or a pit is, etc. – can only see: KB |= "[2,2] is OK"
- > Cannot reason informally
 - does not matter, however, if KB |= "[2,2] is OK" is a valid sentence

Formal inference

Can handle arbitrarily complex sentences, KB |= P

Different Logics

Formal logic

- Syntax
 - A set of rules for writing sentences
- Semantics
 - A set of rules (constraints) for relating sentences to facts
- Proof theory / inference procedure
 - A set of rules for deducing entailments of sentences

Propositional logic

- Symbols, representing propositions (facts)
- Boolean <u>connectives</u>, combining symbols
 - e.g. "Hot" or "Hot and Humid"

Different Logics

First-order logic

- Objects and <u>predicates</u>, representing properties of and relations between objects
- Variables, Boolean connectives and quantifiers
 - e.g. "Hot(x)", "Hot(Air)" or "Hot(Air) and Humid(Air)"

Temporal logic

World ordered by a set of <u>time</u> points (intervals)

Probabilistic and fuzzy logic

- Degrees of <u>belief</u> and <u>truth</u> in sentences
 - e.g. "Washington is a state" with belief degree 0.4, "a city" 0.6, "Washington is a large city" with truth degree 0.6

Different Degrees of Truth

- Q: Is there a tuna sandwich in the refrigerator?
- A: 0.5!

Probabilities

- There is or there isn't (50% chance either way).

Measures

- There is *half* a tuna sandwich there.

Fuzzy answer

 There is something there, but it isn't really a tuna sandwich. Perhaps it is some other kind of sandwich, or a tuna salad with no bread...

The Commitments of Logics

Formal (KR) Language	Ontological commit- ment (what exists in the world)	Epistemological com- mitment (what an agent believes about facts)		
Propositional logic	facts	true / false / unknown		
First-order logic	facts, objects, relations	true / false / unknown		
Temporal logic	facts, objects, rel., times	true / false / unknown		
Probability logic	facts	degree of belief 01		
Fuzzy logic	degrees of truth 01	degree of belief 01		

Part III - Knowledge and Reasoning

6 Agents that Reason Logically

- Knowledge-based Agents. Representations.
- Propositional Logic.
 The Wumpus World.

• 7 First-Order Logic

- Syntax and Semantics. Using First-Order Logic.
- Logical Agents. Representing Changes.
- Deducing Properties of the World.
- Goal-based Agents.

8 Building a Knowledge Base

Knowledge Engineering. – General Ontology.

Elements of Propositional Logic

Symbols

Logical constants: TRUE, FALSE

Propositional symbols:P, Q, etc.

- Logical connectives: $\Lambda, \lor, \Leftrightarrow, \Rightarrow, \neg$

Parentheses: ()

Sentences

- Atomic sentences: constants, propositional symbols
- Combined with connectives, e.g. P Λ Q \vee R also wrapped in parentheses, e.g. (P Λ Q) \vee R

Logical Connectives

- Conjunction Λ
 - Binary op., e.g. P Λ Q, "P and Q", where P, Q are the conjuncts
- Disjunction
 - Binary op., e.g. P ∨ Q, "P or Q", where P, Q are the disjuncts
- Implication ⇒
 - Binary op., e.g. P ⇒ Q, "P implies Q", where P is the premise (antecedent) and Q the conclusion (consequent)
 - Conditionals, "if-then" statements, or <u>rules</u>
- Equivalence ⇔
 - Binary op., e.g. P ⇔ Q, "P equivalent to Q"
 Biconditionals.
- Negation
 - Unary op., e.g. ¬ P, "not P"

Syntax of Propositional Logic

(Backus-Naur Form)

Sentence AtomicSentence | ComplexSentence **AtomicSentence** LogicalConstant | PropositionalSymbol ComplexSentence (Sentence) Sentence LogicalConnective Sentence ¬Sentence **LogicalConstant** TRUE | FALSE P|Q|R|... **Propositional Symbol** LogicalConnective $\Lambda \mid \vee \mid \Leftrightarrow \mid \Rightarrow \mid \neg$

Precedence (from highest to lowest): \neg , Λ , \vee , \Rightarrow , \Leftrightarrow

e.g.: $\neg P \land Q \lor R \Rightarrow S$ (not ambiguous), eq. to: $(((\neg P) \land Q) \lor R) \Rightarrow S$

Semantics of Propositional Logic

Interpretation of symbols

- Logical constants have fixed meaning
 - True: always means the fact is the case; valid
 - False: always means the fact is not the case; unsatisfiable
- Propositional symbols mean "whatever they mean"
 - e.g.: P "we are in a pit", etc.
 - Satisfiable, but not valid (true only when the fact is the case)

Interpretation of sentences

- Meaning derived from the meaning of its parts
 - Sentence as a combination of sentences using connectives
- Logical connectives as (boolean) functions:
 TruthValue f (TruthValue, TruthValue)

Semantics of Propositional Logic

- Interpretation of connectives

 - Truth-table
 Define a mapping from input to output

Р	Q	¬ P	PΛQ	$P \vee Q$	$P \Rightarrow Q$	P⇔Q
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

Interpretation of sentences by decomposition

• e.g.:
$$\neg P \land Q \lor R \Rightarrow S$$
, with $P \leftarrow T$, $Q \leftarrow T$, $R \leftarrow F$, $S \leftarrow F$: $\neg P \leftarrow F$ $((\neg P) \land Q) \lor R) \leftarrow F$ $(\neg P) \land Q \leftarrow F$ $(((\neg P) \land Q) \lor R) \Rightarrow S \leftarrow T$