Seletiva UFG 2019 2

Problema B Banana split

Autor: Rafael Castro
Tempo limite: 1 segundo

Bob gosta bastante de banana split e está procurando a sorveteria mais próxima para que possa comer esse delicioso sorvete. Com o mapa da cidade em mãos ele já circulou todas as n sorveterias que vendem esse sorvete. Porém, Bob não tem carro e terá que se deslocar apenas pela linha de metrô. No momento Bob está no ponto (x_0, y_0) e as n sorveterias são localizadas nos pontos (x_i, y_i) $(1 \le i \le n)$. A i-ésima sorveteria fechará em t_i segundos $(1 \le i \le n)$. Até há algum tempo atrás, a distância entre dois pontos da cidade era dada pela distância de Manhattan. Por exemplo, a distância entre os pontos (x_i, y_i) e (x_j, y_j) , $(0 \le i, j \le n)$, era $|x_i - x_j| + |y_i - y_j|$ metros. Mas o atual prefeito publicou um novo decreto que determina que essa distância para ir do ponto i para o ponto j deve ser calculada como $(|x_i - x_j| + |y_i - y_j|) \cdot r[i][j]$, onde r é uma matriz que foi criada para representar o custo adicional da presença de pessoas nas ruas. Observe que com essa mudança a distância para ir do ponto i para o ponto j pode não ser a mesma para ir do ponto j para o ponto i.

Sabendo-se que o metrô viaja a uma velocidade de 1 metro por segundo, responda se é possível a Bob chegar a tempo em uma sorveteria para comer banana split. Considere que se Bob chegar no exato momento da sorveteria fechar, ele ainda conseguirá entrar e pedir sua sobremesa, pois nesse momento ele usará sua habilidade de persuasão para convencer a sorveteria a ainda servi-lo.

Entrada:

A primeira linha da entrada contém um inteiro n $(1 \le n \le 500)$. Seguem então n+1 linhas, cada uma com dois inteiros x_i e y_i $(0 \le x_i, y_i \le 10^9$ para $0 \le i \le n)$, sendo que (x_0, y_0) é a localização atual de Bob. As próximas n+1 linhas contém, cada uma, n+1 inteiros, os quais são os elementos da matriz r especificada acima $(1 \le r[i][j] \le 10^9$ para $0 \le i, j \le n$). Por fim, seguem mais n inteiros t_i $(1 \le t_i \le 10^9)$, onde t_i é o tempo restante em segundos até que a i-ésima sorveteria feche $(1 \le i \le n)$.

Saída:

Responda "SIM", caso seja possível Bob obter a sua banana split em alguma sorveteria, ou "NAO", caso contrário.

Exemplo de entrada 1	Exemplo de saída 1
3	NAO
1 1	
10 10	
5 3	
4 1	
1 2 3 4	
4 3 1 2	
6 5 2 1	
5 3 7 6	
2 8 4	

Exemplo de entrada 2	Exemplo de saída 2
3	SIM
0 0	
10 10	
5 3	
4 1	
1 2 3 4	
4 3 1 2	
6 5 2 1	
5 3 7 6	
40 8 4	