Ruhr-Universität Bochum

LEHRSTUHL FÜR KRYPTOLOGIE UND IT-SICHERHEIT

Prof. Dr. Alexander May

Gottfried Herold

Präsenzübungen zur Vorlesung Quantenalgorithmen SS 2016

Blatt 1 / 18. April 2016

AUFGABE 1:

Betrachte ein Qubit mit Basiszuständen $|0\rangle, |1\rangle$ sowie Zustände

$$\begin{array}{l} |x\rangle = \frac{4i}{5}|0\rangle + \frac{3}{5}|1\rangle \\ |y\rangle = \frac{3}{5}|0\rangle + \frac{4i}{5}|1\rangle \\ |z\rangle = \frac{1+i}{2}|0\rangle + \frac{1-i}{2}|1\rangle \end{array}$$

- (a) Zeigen Sie, dass $|x\rangle, |y\rangle, |z\rangle$ Einheitsvektoren sind.
- (b) Schreiben Sie $\langle y|$ als Linearkombination von $\langle 0|$ und $\langle 1|$.
- (c) Berechnen Sie $\langle y|x\rangle$, $\langle x|y\rangle$, $\langle y|z\rangle$, $\langle z|y\rangle$, $\langle x|z\rangle$ sowie $\langle z|x\rangle$.
- (d) Schreiben Sie $|z\rangle$ als Linear kombination von $|x\rangle$ und $|y\rangle$.

Bei einer Messung an einem Qubit gibt es immer zwei mögliche Ergebnisse. Normalerweise sind diese $|0\rangle, |1\rangle$, soweit nicht anders spezifiziert. Abhängig von der physikalischen Realisierung ist es manchmal auch möglich, in einer anderen Basis $|v\rangle, |w\rangle$ zu messen, wobei $|v\rangle, |w\rangle$ ein Orthonormalsystem sein müssen.

(e) Nehmen Sie an, das Qubit ist im Zustand $|z\rangle$ und Sie messen in der Basis $|x\rangle, |y\rangle$. Was sind die möglichen Zustände des Qubits nach der Messung und mit welchen Wahrscheinlichkeiten treten diese möglichen Züstände jeweils ein?

AUFGABE 2:

Zeigen Sie, dass die unitären $n \times n$ Matrizen eine Gruppe bilden.

Bitte wenden!

AUFGABE 3:

Wir betrachten nun äußere Produkte von der Form $|\alpha\rangle\langle\beta|$.

(a) Betrachten Sie

$$M_{\neg} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Schreiben Sie M_{\neg} als Linearkombination von $|0\rangle\langle 0|$, $|0\rangle\langle 1|$, $|1\rangle\langle 0|$, $|1\rangle\langle 1|$.

Sei $|v\rangle$ ein beliebiger Einheitsvektor. Wir betrachten den Projektionsoperator $P_{|v\rangle}=|v\rangle\langle v|$.

- (b) Zeigen Sie: $P_{|v\rangle}^{\dagger}:=(P_{|v\rangle}^*)^T=P_{|v\rangle}$ sowie $P_{|v\rangle}^2=P_{|v\rangle}.$
- (c) Sei $|v_1\rangle, \dots, |v_m\rangle$ eine Orthonormalbasis. Dann gilt $\sum_i P_{|v_i\rangle} = \mathrm{id}$.