Can Your Model Tell a Negation from an Implicature? Unravelling Challenges With Intent Encoders

Yuwei Zhang^{1,2} Siffi Singh¹ Sailik Sengupta¹ Igor Shalyminov¹ Hang Su¹ Hwanjun Song^{1,3} Saab Mansour¹

¹**3**WS AI Labs ²University of California, San Diego ³KAIST, Republic of Korea

Large embedding models don't understand semantics (2) But, we can improve them!

Flaws in Understanding

Intent classification and clustering tasks often require embedding models to understand subtle distinctions in semantics. We noticed that embedding models, such as instructor-large), embed negation utterances $(x, \neg x)$ closer to, and implied utterances $(x \rightarrow y)$ further away from the original utterance \mathbf{x} .

Given triplets u, u_i^p, u_i^n , we finetune the embedding models using a loss function similar to Su et. al. 2023:

$$l_i = \frac{\exp(s(f(u_i), f(u_i^p))/\gamma)}{\sum_{j \in \mathcal{B}} \exp(s(f(u_i), f(u_i^p))/\gamma)} + \frac{\exp(s(f(u_i), f(u_i^p), f(u_i^p))/\gamma)}{\sum_{j \in \mathcal{B}} \exp(s(f(u_i^p), f(u_i^p))/\gamma)}$$

To generate triplets, we first use 252,744 unique and unlabelled utterances from various dialogue data-sets (see Disable LLM 👉). Then, we add more u^p and u^n utterances that are synthetically generated using less-capable LLMs (see Our best 👉).

Note that the data-sets and models used for synthetic data generation are different at train and test time.

Benchmark - Intent Semantics Toolkit

Consider a tuple $\{u_i, u_i^p, u_i^n\}$ where u^p denotes implicature and u^n denotes negation.

Triplet Task $\frac{1}{N_T} \sum_{i=1}^{N_T} \mathbb{I}(D(f(u_i), f(u_i^p)) < D(f(u_i), f(u_i^n)))$ Binary Classification

$$\frac{1}{N_B} \sum_{i=1}^{N_B} \mathbb{I}(D(f(u_i), f(i)) < D(f(u_i), f(\neg i)))$$

where $\neg i$ denotes 'not intent i'. Beyond these, we also consider clustering and multi-class (intent) classification tasks. The data generation workflow constitutes existing datasets \rightarrow use of SoTA LLMs to generate phenomenaspecific data-points \rightarrow quality control with human evaluation.

		0	riginal		Intent Semantic Toolkit										
Model	Clust	ering	Multi-class		Triplet	(Ori-Ori)	Triplet (Ori	t (Ori-Imp)	Binaı	y Class	sification	Clust	ering	Mult	i-class
	KM	Agg	0-shot	10-shot	T_{hard}	T_{easy}	T_{hard}	T_{easy}	Ori	Imp	Neg	KM	Agg	0-shot	10-shot
paraphrase	81.7	83.5	61.1	83.3	22.6	84.8	3.9	68.9	77.6	57.3	82.4	57.2	58.8	22.2	28.2
IAE	83.4	84.7	66.6	84.7	24.0	84.3	3.2	67.3	86.6	70.1	79.6	58.3	59.9	25.4	30.1
instructor-base	83.8	84.9	67.5	85.8	19.1	86.1	2.0	68.0	89.1	67.3	78.4	57.9	59.2	26.2	30.9
instructor-large	84.3	86.0	67.6	86.2	23.4	87.5	3.6	71.0	89.6	73.5	87.4	59.1	61.4	28.8	34.3

Our toolkit reveals a lack of understanding on negation and implicature utterances.

	0	riginal	Intent Semantic Toolkit												
Model	Clustering		Multi	Multi-class		Triplet (Ori-Ori)		Triplet (Ori-Imp)		Binary Classification		Clustering		Multi-class	
	KM	Agg	0-shot	10-shot	T_{hard}	T_{easy}	T_{hard}	T_{easy}	Ori	Imp	Neg	KM	Agg	0-shot	10-shot
Baseline	84.3	86.0	67.6	86.2	23.4	87.5	3.3	70.6	89.6	73.9	79.4	62.2	64.4	29.2	34.1
Disable LLM	84.1	85.0	71.7	85.5	39.3	86.2	8.0	50.8	89.2	53.0	84.8	65.5	66.9	31.7	34.3
Ours best	84.6	86.8	73.4	87.2	51.1	93.7	20.4	77.6	94.0	73.6	83.1	65.9	68.2	33.9	37.2

Synthetic data generation with a particular prompting strategy (labeled $P^4, N^{1,3}$ in the paper) & fine-tuning improves all the models (table shows results on instructor-large).

We also observe negative co-relation between the triplet task and the binary classification task that makes designing a single embedding model that improves on both tasks a challenging future work!

