العلامة		/ A #				
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)				
		التمرين الأول: (04 نقاط)				
0,25	0,25	1. نص القانون الثاني لنيوتن: في معلم عطالي المجموع الشعاعي للقوى الخارجية المطبقة على				
		مركز عطالة جملة مادية يساوي في كل لحظة جداء كتلتها في شعاع تسارع مركز عطالتها.				
		\overrightarrow{F} \overrightarrow{R}_N \overrightarrow{R}_N 2. \overrightarrow{R}_N				
		J = 1 (mix) 1 (mix)				
0,50	0,50	\overrightarrow{P} - فوة التقل \overrightarrow{R}_N - قوة فعل سطح المستوي على المتزحلق \overrightarrow{R}_N				
		\overrightarrow{f} قوة الاحتكاك \overrightarrow{f}				
		3. عبارة التسارع:				
	0,25	$\sum \overrightarrow{F}_{ext} = m \overrightarrow{a}$ بتطبيق القانون الثاني لنيوتن في معلم سطحي ارضي عطالي				
1,0	0,25	$\vec{P} + \vec{f} + \vec{R}_N = m\vec{a} \implies mg \sin \alpha - f = ma \implies a = \frac{mg \sin \alpha - f}{m} = g \sin \alpha - \frac{f}{m}$				
1,0	0,23	/// /// /// مناقشة طبيعة الحركة: بما أن التسارع ثابت والمسار مستقيم.				
	0,50	من أجل $a>0\;;v>0\;$ حركة مستقيمة متسارعة بانتظام				
	0,50	من أجل $a<0$, $a<0$ حركة مستقيمة متباطئة بانتظام $f>m\;g\;\sinlpha$				
		وفي حالة $a ightarrow a = 0$ تكون الحركة مستقيمة منتظمة $f = m \ g \sin lpha ightarrow a = 0$				
		G طبیعة حرکة:				
		$f < m \ g \sin lpha \rightarrow a > 0 \; ; v > 0$ نلاحظ من البيان أنّ السرعة تتزايد خلال الحركة وهي توافق				
	0,25	فإن الحركة مستقيمة متسارعة بانتظام.				
	0,25	$v = at + v_0$ المعادلة الزمنية للسرعة: $v = at + v_0$				
	0,25	$x = \frac{1}{2}at^2 + v_0t / x_0 = 0$ المعادلة الزمنية للحركة:				
		2.4. اثبات العلاقة:				
1,75	0,25	من معادلة السرعة: $t=\frac{v-v_0}{a}$ نعوض في معادلة الحركة نجد				
		$x = \frac{1}{2}a(\frac{v - v_0}{a})^2 + v_0(\frac{v - v_0}{a})$				
		$v^2 = 2ax + v_0^2$ ومنه نستنتج العلاقة				

	0,25×2	. v_0 والسرعة الابتدائية a والسرعة الابتدائية .3.4
	0,23/\2	$v_0 = 16m/s$ و $a = 0,14m/s^2$ و $a = 0,14m/s^2$ و $v^2 = 0,28x+256$ و $v_0 = 16m/s$
	0.25	\overrightarrow{f} استنتاج شدة قوة الاحتكاك . \overrightarrow{f} .
	0,25	$f = m (g \sin \alpha - a) = 80 \times (9,81 \times \sin 10^{\circ} - 0,14) = 125N$
	0,25	تم استنتاج قيمة شدة القوة \overrightarrow{R}_N ثم استنتاج قيمة شدة \overrightarrow{R} . بأسقاط العلاقة الشعاعية للقانون الثاني \overline{R}
0,50	0,23	$R_N = mg \cos \alpha = 80 \times 9.81 \times \cos 10^\circ = 772.9N$ لنيوتن على المحور (O, \vec{j}) نجد:
	0,25	$R = \sqrt{R_N^2 + f^2} = 782,9N$
		التمرين الثاني: (04 نقاط)
	0,25	1.1. المقصود بنواة مشعة: هي نواة غير مستقرة تتفكك تلقائيا لتعطي نواة أكثر استقرارا مع اصدار
		اشعاع.
1,0	0,25	2.1. القوة المسؤولة عن تماسك النواة هي القوة النووية القويّة إنها تربط النترونات والبروتونات مع
	0,23	بعضها البعض وشدتها أكبر من شدة قوة التنافر الكهربائي بين البروتونات.
	0,50	3.1. أنماط الاشعاعات:
		$lpha({}_{2}^{4}He)\;;\;eta^{+}({}_{1}^{0}e)\;;\;eta^{-}({}_{-1}^{0}e)\;;\;{}_{0}^{\gamma}$
	0,50	1.2. التعرف على الأنوية:
		$X_{1} \rightarrow {}^{212}_{82}Pb$; $X_{2} \rightarrow {}^{212}_{83}Bi$; $X_{3} \rightarrow {}^{208}_{81}Tl$; $X_{4} \rightarrow {}^{208}_{82}Pb$
1,50	0,25	$:({}^{212}_{82}Pb\ , {}^{212}_{83}Bi)$ ، $X_1\ , \ X_2$ النواتان. 2.2
1,50	0,23	النواتان لا تمثلان نظيرين لأن لهما Z مختلف.
	0,25×3	3.2. معادلات التحولات النووية:
	0,25	$N_{Bi}(t) = N_0 e^{-\lambda t}$ عدد الأنوية المشعّة: $N_{Bi}(t) = N_0 e^{-\lambda t}$
	0,25	$N_{0} = N_{Tl}(t) + N_{Bi}(t) = N_{Tl}(t) + N_{0}e^{-\lambda t} \Rightarrow N_{Tl}(t) = N_{0}(1 - e^{-\lambda t})$.1.2.3
	0,25	2.2.3 تعريف زمن نصف العمر: الزمن اللاّزم لتفكك نصف عدد الأنوية المشعّة الابتدائية
		- قيمة N_0 : من البيان عند اللّحظة $t=t_{1/2}=60\mathrm{min}$ فإنّ
1,50	0,25	(یمکن استخدام $N_{_{TI}}(t) = N_{_{0}}(1 - e^{-\lambda t})$ والبیان $\frac{N_{_{0}}}{2} = 14 \times 10^{20} \rightarrow N_{_{0}} = 28 \times 10^{20}$
	0,25	$m_0 = \frac{N_0}{N_A}.M(^{212}_{83}Bi) = 1g$: m_0 الكتلة –
	0,25	$A_{0}=\lambdaN_{0}=rac{\ln2}{t_{1/2}}.N_{0}=5,4 imes10^{17}Bq$ نومة $-$

		/t ime OC > ti2ti
	0,50	التمرين الثالث: (06 نقاط)
2.75		1.1. الظاهرة الكهربائية الحادثة مجهريا هي هجرة جماعية للإلكترونات من اللبوس المرتبط بـ
2,75		Com لمقياس الآمبير الى اللبوس الآخر عبر المولد (شحن المكثفة بمولد التيار الكهربائي).
	0,50	2.1. تحديد رقم البيان لعملية الشحن مع التعليل:
	,	لما $t=0$ فإن $u_c=0$ خلال الشحن و هذا يوافق البيان رقم (2).
	$0,25 \times 2$	$:t$ و $:t$ و $:t$ عبارة u_{c} عبارة $:t$ و $:t$ و $:t$
		$u_{C} = \frac{I_{0}}{C} \cdot t$ ونعلم أن: $q = I_{0} \cdot t$ إذا $q = I_{0} \cdot t$
	0,25×2	C قيمة سعة المكثفة. C
	0,23×2	(حيث a معامل توجيه البيان) $u_c=a.t=0,1t$ العبارة البيان:
		$C=rac{I_0}{a}=rac{150}{0.1}=1500F$ بالمطابقة مع العبارة $u_{\scriptscriptstyle C}=rac{I_0}{C}$. t
	0.25	$u_{_C}=2.5V \; \Rightarrow t_{_1}=25s \; $ ومن أجل (2) ومن أبل اللّحظة $t_{_1}$: من البيان (2) ومن أجل
	0,25	حساب قيمة الطاقة $E_{_{C}}(t_{_{1}})$ المخزّنة في المكثّفة:
	0,25×2	$E_C = \frac{1}{2} \cdot C \cdot U_C^2 = \frac{1}{2} \cdot 1500 \cdot (2,5)^2 \implies E_C = 4687,5J$
	0,50	1.2. الظاهرة الكهربائية الحادثة للمكثفة مجهرياً مع التعليل:
		الظاهرة الحادثة هي ظاهرة التفريغ يحدث خلالها هجرة الالكترونات من اللبوس السالب الى
		اللبوس الموجب حيث يتناقص التوتر الكهربائي بين طرفيها كما في البيان(1).
	0,25×2	$u_c(t)$ المعادلة التفاضلية لتطور التوتر الكهربائي.
	0,23 \ Z	$rac{du_C}{dt} + rac{1}{RC}u_C = 0$ و بما أن: $u_R = Ri$ $i = Crac{du_C}{dt}$ و بما أن: $u_R + u_C = 0$
2,75		1.3.2. عبارة ثابت الزمن $ au$ ثمّ تأكد أنّ له بُعدا زمنيا:
, , ,	0,50	لدينا $\frac{du_{C}(t)}{dt} = -\frac{2.5}{\tau}e^{\frac{(25-t)}{\tau}}$ و $u_{C}(t) = 2.5e^{\frac{(25-t)}{\tau}}$ بالتعويض في المعادلة التفاضلية نجد
	0,25×2	$-\frac{2.5}{\tau}e^{\frac{(25-t)}{\tau}} + \frac{2.5}{RC}e^{\frac{(25-t)}{\tau}} = 0 \implies \tau = RC$
		$[\tau] = [R][C]$ / $[R] = \frac{[u]}{[i]}$; $[C] = \frac{[i][t]}{[u]}$: τ وحدة τ
		بالتعويض نجد: $[au] = [t] = [t]$ إذا له بعد زمني.
		t=25+ au الاستنتاج بیانیا قیمة ثابت الزمن $ au$: من أجل $t=25+ au$
	0,25	$ au = 7525 - 25 = 7.5 \times 10^3 s$ نجد $u_c (25 + au) = 0.37 \times 2.5 = 0.9 V$ نجد
	,	au=7500s=2,11h وهذا يوافق $ au=7500s=2,11h$
	0,25	$ au=RC$ $\Rightarrow R=rac{ au}{C}=rac{7500}{1500}$ $\Rightarrow R=5\Omega$: R قيمة مقاومة الناقل الأومي $=$

	0,25	3.3.2. الحساب بوحدة ساعة (h) المدة اللّازمة لتفريغ المُكثّفة كُلّيا:				
		$\Delta t = 5\tau = 37500s = 10,42h$				
0,50	0,50	3. خصائص المُكثّفة فائقة السعة المدروسة:				
0,50	0,50	 تشحن في مدة قصيرة – تخزن طاقة كبيرة – لها سعة كبيرة – تفرغ في مدة طويلة 				
		التمرين التجريبي: (06 نقاط)				
0.70	0,25	اً $V_0 = 2m$ مزودة $V_0 = 2m$ مزودة الخذ الحجم $V_0 = 2m$ مزودة الزجاجية المُناسبة لأخذ الحجم الحجم الحجم $V_0 = 2m$				
0,50	,	بإجاصة مص.				
	0,25	- الاحتياطات الأمنية الواجب توفيرها: المئزر، القفازات، النظارات، القناع.				
0,25	0.07	2. كتابة المعادلة الكيميائية المُنمذجة للتحول:				
0,23	0,25	$C_n H_{2n+1} COOH(aq) + OH^-(aq) = C_n H_{2n+1} COO^-(aq) + H_2 O(l)$				
	0.07	3. تعريف نقطة التكافؤ: عندها يكون المزيج التفاعلي ستكيومتري.				
0,50	0,25	استنتاج التركيز المولي c للمحلول الحمضي c :				
	0,25	$c.V_a = c_b.V_b \implies c = \frac{c_b.V}{V_a} = 0.1 mol/L$				
		4. جدول تقدم التفاعل الحادث بيْن الحمض $C_n H_{2n+1} COOH$ والماء:				
		المعادلة $C_n H_{2n+1}COOH(aq) + H_2O(l) = C_n H_{2n+1}COO^-(aq) + H_3O^+(aq)$				
	0,25	كمّية المادة (mol) الحالة				
0,50		t=0 $n=c.V$ بزیادة 0 0				
		t $n-x$ x x				
		t_f $n-x_f$ بزیادة x_f x_f				
	0,25	$pH = 2.9 \Rightarrow \left[H_3O^+\right]_f = 10^{-2.9} = 1.25 \times 10^{-3} \ mol \ / L$ اثبات أن حمض ضعيف: $-$				
		بما أن: $< c$ إذا الحمض ضعيف. $\left[H_3 O^+ ight]_c < c$				
		رتقبل الإجابات الأخرى)				
		5. أيجاد عبارة الثابت المُميّز للثنائية (أساس/حمض):				
0,50	0,25	$K_{a} = \frac{\left[H_{3}O^{+}\right]_{f}\left[A^{-}\right]_{f}}{\left[AH\right]_{c}} = \frac{10^{-pH} \cdot 10^{-pH}}{c - 10^{-pH}} = \frac{10^{-2pH}}{c - 10^{-pH}}$				
	0,25	$K_a = rac{10^{-2(2,9)}}{0,1-10^{-2,9}} = 1,6 imes 10^{-5}$: K_a حساب قیمهٔ K_a				
		1.6. استنتاج الصيغة الجزيئية للحمض المجهول:				
		$pK_a = -\log K_a = -\log(1,6 \times 10^{-5}) = 4,8$: pK_a حساب ثابت الحموضة				

تابع الإجابة النموذجية لموضوع. اختبار مادة: العلوم الفيزيائية . الشعبة: رياضيات، تقني رياضي . بكالوريا: 2022

	0,25	حسب الجدول فصيغة الحمض هي: CH3COOH
1,0		ي. استكمال معلومات الملصقة (الكتلة المولية M ، نسبة النقاوة $p\%$):
	0,25	$M = 2 \times 12 + 4 \times 1 + 2 \times 16 = 60 g / mol$ الكتلة المولية للحمض: من صيغة الحمض نجد:
		- نسبة النقاوة: لدينا من معامل التخفيف:
	0,25	$F = \frac{c_0}{c} = 175 \implies c_0 = 175c = 175 \times 0, 1 = 17,5 \mod /L$
	0,25	$c_0 = \frac{10p\%d}{M} \implies p\% = \frac{c_0M}{10d} = \frac{17,7\times60}{10\times1,05} = 100\%$: ومن العلاقة نجد:
0,25	0,25	II/ 1. نسمّي هذا التحول بالأسترة.
0,25	0,25	2. العاملان الحركيان المُستعملان لتسريع التفاعل: - رفع درجة الحرارة - إضافة حمض الكبريت
0,25	0,25	3. كتابة معادلة التفاعل الحادث بين الحمض والكحول:
0,23	0,23	$C_n H_{2n+1} COOH(l) + C_3 H_7 OH(l) = C_n H_{2n+1} COO - C_3 H_7(l) + H_2 O(l)$
	0,25	1.4. خاصيتان للتحول الكيميائي الحادث: - بطيئ - غير تام(محدود)
1,0	0.25	2.4. مردود التفاعل r:
1,0	0,25	$r = \frac{X_f}{X_{\text{max}}} \times 100 = \frac{0,2-0,08}{0,2} \times 100 = 60\%$
	0,25	- صِنف الكحول المُستعمل ثانوي – صِنف الكحول المُستعمل ثانوي
	0,25	ويان – 2 أول – صيغة الكحول نصف المنشورة واسمه النظامي. CH_3 – CH_3 – CH_3 بروبان – 2 أول
0,25	0,25	.5 التحقّق من صيغة الحمض: بما أنّ: $m(aci)_f = m(alc)_f \implies n(aci)_f .M (aci) = n(alc)_f .M (alc)_f$ $n(aci)_f = n(alc)_f \implies M (aci) = M (alc) = 60 g \ / mol$
		$14n + 46 = 60 \implies n = 1$
		ومنه تكون صيغة الحمض هي: CH ₃ COOH
	0,25	6. الصيغة نصف المنشورة للمركب العضوي الناتج واسمه النظامي:
0,50	0,25	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3
		CH_3
		7. اقتراحات لتحسين مردود تصنيع المركب العضوي الناتج:
0,25	0,25	- نزع أحد النواتج - مزيج ابتدائي غير متكافئ في كمية المادة

تابع الإجابة النموذجية لموضوع. اختبار مادة: العلوم الفيزيائية . الشعبة: رياضيات، تقني رياضي . بكالوريا: 2022

العلامة		/			
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)			
0.25		التمرين الأول: (04 نقاط)			
0,25	0,25	اً 1 . المرجع المناسب لدراسة حركة هذا القمر: مرجع جيو مركزي (مركزي أرضي).			
0,50	0,25×2	$\vec{F}_{T/S}$:			
0,25	0,25	$: \vec{n}$ و $r \cdot m_{S} \cdot M_{T} \cdot G$ بدلالة: $\vec{F}_{T/S}$ بدلالة: $r \cdot m_{S} \cdot M_{T} \cdot G$			
0,23	0,23	$\overrightarrow{F}_{T/S} = G \cdot \frac{m_S \cdot M_T}{r^2} \overrightarrow{n}$			
		1.4. مميزات شعاع تسارع مركز عطالة القمر (8) واستنتاج طبيعة الحركة:			
	0,25	$\sum \overrightarrow{F}_{ext} = m_{_S} \overrightarrow{a}_{G}$ بتطبيق القانون الثاني لنيوتن في معلم عطالي			
		$\overrightarrow{F}_{T/S} = m_S \cdot \overrightarrow{a}_G \implies \overrightarrow{a}_G = \frac{\overrightarrow{F}_{T/S}}{m_S} = G \cdot \frac{M_T}{r^2} \cdot \overrightarrow{n}$			
	0,25	- مبدؤه مركز العطالة – حامله ناظمي – جهته نحو مركز الأرض – شدته ثابتة			
	0,25	- طبيعة الحركة: بما أن المسار دائري والتسارع مركزي (ناظمي) ثابت فالحركة دائرية منتظمة.			
1,25	0,25	$a_G = \frac{F_{T/S}}{m_S} \Rightarrow \frac{v^2}{r} = \frac{G M_T}{r^2} \Rightarrow v = \sqrt{\frac{G M_T}{r}}$: $r \in M_T$ ($G \in M_T$ عبارة $v \in M_T$ عبارة $v \in M_T$ عبارة $v \in M_T$ ($v \in M_T$)			
	0,25	$T=rac{2\pi r}{v} \Rightarrow T=2\pi\sqrt{rac{r^3}{GM_T}}$: T_S عبارة الدور 3.4			
		II/ 1. باستغلال البيان الممثَّل كتابة المعادلة الرياضية:			
	0,25	$F_{T/S} = A \cdot \frac{1}{r^2} = 2,1 \times 10^{16} \cdot \frac{1}{r^2}$ البيان خط مستقيم يمر من المبدأ معادلته من الشكل			
0,50		$F_{T/S}=K.m_S.rac{1}{r^2}$ حيث A معامل توجيه البيان العلاقة النظرية			
	0,25	$K=rac{A}{m_S}$ =39,6×10 13 SI . بالمطابقة: $K=GM_T$ حيث $K=GM_T$			
	0,25	$h=r-R_{T}$. الارتفاع h عن سطح الأرض $h=r-R_{T}$			
		$rac{1}{r^2}$ =5,58 $ imes 10^{-16}$ من البيان نجد: $F_{T/S}$ =11,8 $ imes 10^2 N$ بما أن:			
0,75		$\frac{1}{r^2} = 5,58 \times 10^{-16} \Rightarrow r = \frac{1}{\sqrt{5,58 \times 10^{-16}}} = 4,23.10^7 m = 4,23.10^4 km$			
		$h=4,23.10^4-6,4.10^3=3,59.10^4 km$			

تابع الإجابة النموذجية لموضوع. اختبار مادة: العلوم الفيزيائية . الشعبة: رياضيات، تقني رياضي . بكالوريا: 2022

	0,25	2.2. السرعة المدارية v : $ \frac{GM_{\pi}}{K} = \frac{K}{39.6 \times 10^{13}} $
		$v = \sqrt{\frac{GM_T}{r}} = \sqrt{\frac{K}{r}} = \sqrt{\frac{39,6 \times 10^{13}}{4,23 \times 10^7}} = 3060 m / s = 3,06 km / s$
	0,25	T_S . الدور T_S . الدور
	0,23	$T = \frac{2\pi r}{v} = \frac{2\pi \times 4,23 \times 10^7}{3060} = 86811,76s \approx 24h$
		3. نعم القمر سُهيل سات 2 جيو مستقر لأنه يحقق الشروط التالية:
0,50	0,50	$T_S = 24 h$ دوره يساوي دور الأرض حول محورها $T_S = 24 h$
	0,50	من السياق يظهر ساكنا بالنسبة لملاحظ على سطح الأرض فهو يدور في نفس جهة دوران
		الأرض ومساره يقع في مستوي خط الاستواء.
		التمرين الثاني: (04) نقاط)
1,0	0,25×4	الكهربائيين u_{AM} و مدخلي راسم الاهتزاز: u_{AM} الكهربائيين u_{AM} و مدخلي راسم الاهتزاز: u_{AM} الذر u_{AM} على المدخل u_{AM} المدخل u_{AM} المدخل u_{AM} على المدخل u_{AM} المدخل u_{AM} على المدخل
		الكهريائيين u_{AM} و مدخلي راسم الاهتزاز: u_{MB} الكهريائيين u_{AM} الكهريائيين u_{AM} الكهريائيين المهريائيين u_{AM} الكهريائيين المهريائيين المهريائين المهريائين المهريائيين المهريائين المهريا
		Y_1^{\bigvee} ملاحظة: الضغط على الزر INV على المدخل Y_2 . Y_2 ملاحظة
	0,25 0,25	2. المُنحنى الذي يمكِّننا من متابعة تطور شدّة التيار الكهربائي: عند $t=0$ فإن $i=0$ ومنه
		وهذا يوافق البيان رقم (2) الذي يمثل تطور التوتر بين طرفي الناقل الأومي ، وبما أن $u_{\scriptscriptstyle R}=0$
0,50		. $i(t)$ و $u_R(t)$ يتناسبان طرديا) فالبيان رقم $u_R(t)$ يمكننا من متابعة تطور $u_R(t)$ و $u_R(t)$
		استنتاج تصرف الوشيعة: لحظة غلق القاطعة K تمانع ظهور التيار في الدارة.
		- في النظام الدائم تتصرف الوشيعة كناقل أومي.
	0,25	E=6V : E القوة المحركة الكهربائية الكامربائية $E=6V$
1,25	0,20	2.3. المقاومة الداخلية للوشيعة r: في النظام الدائم لدينا:
1,23	0,25	$U_R = R I_{\text{max}} = 2V$; $U_b = r I_{\text{max}} = 4V \Rightarrow \frac{r I_{\text{max}}}{R I_{\text{max}}} = 2 \Rightarrow r = 2R = 20\Omega$
	0,25	$I_{\text{max}} = \frac{E}{R+r} = 0,2A$: I_{max} النظام الدائم النظام الدائم الدائم النظام الدائم 3.3
	0,25	$\tau = 50 ms$: نابت الزمن المميّز للدارة τ : من مماس البيان (1) نجد: 4.3
	0,25	$ au=rac{L}{R+r}\Rightarrow L= au(R+r)=50 imes10^{-3} imes30=1,5H$: L استنتاج ذاتية الوشيعة $L= au(R+r)=50 imes10^{-3}$

تابع الإجابة النموذجية لموضوع. اختبار مادة: العلوم الفيزيائية . الشعبة: رياضيات، تقني رياضي . بكالوريا: 2022

	1 1						1
		40 20)	$R(\Omega)$ اومة	المق	:	4. ملء الجدول
	0,25×4	0,10 0,15	I_{max}	دة الأعظمية (A)	الشد		الاستنتاج:
1,25		25,0 37,5	5	au(ms) الزمن		_	تزايد المقاومة ينت
		4 3	$u_{AM}(V)$	تِر الكهربائي في	$\tau(n)$ التو		تناقص كل من:
	0,25	2 3	$u_{MB}(V)$	الم الدائم	النظ	$u_{AM}(V)$ عيل	و (u _{MB} (V) وتز
		<u> </u>	$O \mid MB \mid I$			(† 1 † † ° ° °	2 81 2 81
					•• 1	,	التمرين الثالث:
0,50	0,25			ر تفاعل کیمیائے	_	•	1. تعريف كل مر - الأكسدة عملية
0,50	0,25		ي.	ري			
						تفاعل:	2. جدولا لتقدم ال
0,50	0,50	المعادلة	$2I^{-}(aq) +$	$H_2O_2(aq) +$	-		$+4H_2O(l)$
		الحالة		(<i>m</i>	ol) مّية المادة	<u> </u>	
		ح. ابتدائية	c_2V_2	c_1V_1	بوفرة	0	بوفرة
		ح. انتقالية	c_2V_2-2x	c_1V_1-x	بوفرة	Х	بوفرة
		ح. نهائية	$c_2V_2-2X_{\text{max}}$	$c_1V_1 - X_{\text{max}}$	بوفرة	$X_{ m max}$	بوفرة
0,50	0,25				ا التحول:	نابعة الزمنية لهذ	3. أهم طرق المن
0,50	0,23			لثنائي اليود.	اللون المميز	رة اللونية لظهور	- بواسطة المعاير
	0,25	- بواسطة المعايرة بالناقلية لأن المحاليل شاردية.				- بواسطة المعاير	
				اعل:	برات سرعة التن	حنى الموافق لتغب	1.4. تحديد المند
	0,25	.(يوافق البيان رقم(ا	حتى تنعدم فهذا	ن قيمة أعظمية	اعل تتناقص مز	بما أن سرعة التف
	0.25	- استنتاج المُتفاعل المُحد: من البيان رقم(2) لاختفاء شوارد اليود نلاحظ كمّية مادة منه متبقية					
	0,25	ه يكون المتفاعل المحد هو الماء الأكسجيني.					عند نهاية التفاعل
1,75							
					: (c_2 لتركيز المولي	1.2.4. حساب ا
	0,25	cV_{γ}	$=5\times2\times10^{-2}=0.1$	$mol \Rightarrow c_2 = 0$	$\frac{0.1}{1} = 1 mol.L^{-}$	t=0 د $t=0$	ا من البيان(2) عند
		$c_2V_2 = 5 \times 2 \times 10^{-2} = 0,1 \mod \implies c_2 = \frac{0,1}{0,1} = 1 \mod L^{-1}$ من البيان (2) عند $t=0$ عند (2) عند					
	0,25	التقدم الأعظمي X_{max} : في الحالة النهائية من البيان(2) لدينا:					
		$c_2V_2 - 2X_{\text{max}} = 2,5 \times 2 \times 10^{-2} = 5 \times 10^{-2} \text{mol} \implies X_{\text{max}} = \frac{0,1 - 0,05}{2} = 2,5 \times 10^{-2} \text{mol}$					

	0,25			- الحجم V_1 : بما أن الماء الاكسجيني محد فإن: $c_1V_1 - X_{\max} = 0 \Rightarrow V_1 = \frac{X_{\max}}{c_1} = \frac{2.5 \times 10^{-2}}{0.5} = 0.05L = 50mL$				
	0,25	$t=0$ السرعة الحجمية لتشكل I_2 في اللّحظة. $t=0$						
	0,25	v _{(Ve}	$(I_2) = \frac{1}{V_T} \cdot \frac{\partial}{\partial r}$	$\frac{dh(T_2)}{dt} = \frac{1}{V_T} \cdot \frac{dx}{dt} = \frac{1}{0,15} \cdot (4$	$\times 2 \times 10^{-3}$)=5,33×10 ⁻² mod	$l \cdot \min^{-1} L^{-1}$		
						الجزء الثاني:		
0.50	0,25			:	ي العمود ورمزه الاصطلاحي	1. تحدید قطب		
0,50		لقطب	يمة سالبة إذا ا	بالمسرى النحاسي ويعطي ق	، السالب للأمبير متر متصل	بما أن القطب		
				، عند المغنيزيوم.	د عند النحاس والقطب السالب	الموجب للعموا		
	0,25			$(-)Mg/Mg^{2+}$ $\left Cu^2 \right $	$^{2+}/Cu\left(+ ight)$ طلاحي للعمود:	- الرمز الاص		
	0.25			د کل مسر <i>ی</i> :	النصفية للتفاعل الحادث عند	1.2. المعادلة		
	0,25			$Cu^{2+}(aq) + 2$	$e^- = Cu(s)$ (-	عند القطب (+		
	0,25	$Mg(s) = Mg^{2+}(aq) + 2e^{-}$ (-) القطب						
		المعادلة الاجمالية:						
	0,25	$Mg(s) + (Cu^{2+}(aq) + SO_4^{2-}(aq)) = (Mg^{2+}(aq) + SO_4^{2-}(aq)) + Cu(s)$						
2,25	0,25	$X_{ m max}$ قيمة التقدم الأعظمي: $X_{ m max}$						
		المعادلة	Mg(s)	$+ Cu^{2+}(aq) =$	$= Mg^{2+}(aq) + Q$	Cu(s)		
		t = 0	بوفرة	n = c V	n = c V	بوفرة		
		t	بوفرة	n-x	n+x	بوفرة		
		t_f	بوفرة	$n-X_{\max}$	$n+X_{\max}$	بوفرة		
	0,25			$n-X_{\text{max}}=0 \implies X$	$X_{\text{max}} = c \cdot V = 0,1 \times 50 \times 10^{-2} =$	5×10^{-3} mol		
	0.50	يساب $Q_{ m max}$ كمّية الكهرباء الأعظمية: $Q_{ m max}=Z$. $X_{ m max}$. $F=2 imes5 imes10^{-3} imes96500=965C$						
	0,50							
	0.50			اعة (h) :	رمنية الأعظمية Δt بوحدة س	4.2. المدة ال		
	$Q_{\text{max}} = I_0.\Delta t \implies \Delta t = \frac{Q_{\text{max}}}{I_0} = \frac{965}{70 \times 10^{-3}} = 137$				$\frac{Q_{\text{max}}}{I_0} = \frac{965}{70 \times 10^{-3}} = 13785, 7$	71s = 3,82h		

	0,25×2	$rac{dv}{dt}+Av^n=B$: المعادلة التفاضلية لتطور سرعة مركز عطالة الكرة 1.4 $\sum \vec{F}_{ext}=m\vec{a}$ \Rightarrow $\vec{P}+\vec{\pi}+\vec{f}=m\vec{a}$
	0,25×2	$mg - \pi - f = m a \implies mg - \pi - kv^{n} = m \frac{dv}{dt} \implies \frac{dv}{dt} + \frac{k}{m}v^{n} = \frac{mg - \pi}{m}$ $A = \frac{k}{m} \qquad ; \qquad B = \frac{mg - \pi}{m} = \frac{F_{0}}{m}$
1,75	0,25	2.4 عبارة v_{lim}^n بدلالة F_0 و k عبارة v_{lim}^n عبارة v_{lim}^n عبارة v_{lim}^n عبارة v_{lim}^n ومنه v_{lim}^n ومنه v_{lim}^n ومنه v_{lim}^n
	0,25	$v_{\text{lim}} = 1,38 m / s$ بما أن $k = 0,029 SI$ استنتاج قيمة n باعتبار $k = 0,029 SI$ بما أن $v_{\text{lim}}^n = \frac{F_0}{k} = \frac{4 \times 10^{-2}}{0,029} = 1,38 m / s \Rightarrow n = 1$
		$v_{\text{lim}}^{n} = \frac{F_0}{k} \implies \ln(v_{\text{lim}}^{n}) = \ln(\frac{F_0}{k}) \implies n \ln(v_{\text{lim}}) = \ln(\frac{F_0}{k})$ $n = \frac{\ln(\frac{F_0}{k})}{\ln(v_{\text{lim}})} = \frac{\ln(\frac{4 \times 10^{-2}}{0,029})}{\ln(1,38)} = 1$ (24)
	0,25	f=k.v عبارة f المنمذجة لقوة الاحتكاك: بما أنّ: $n=1$ فالعبارة هي: $f=k.v$