DC to DC Converter Tables

Diego Trapero

Table of contents

1	Noi	n-Isolated DC to DC Converters	2
2	Isol	ated DC to DC Converters	5
3	Wa	veforms	7
	3.1	Buck	9
	3.2	Boost	11
	3.3	Buck-Boost	12
	3.4	Forward	14
	3.5	Flyback	15

1 Non-Isolated DC to DC Converters

What	Buck	Boost	Buck-Boost
Circuit Diagram	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ON Circuit		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
OFF Circuit		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
V_o CCM	$V_o = DV_i$	$V_o = \frac{1}{1 - D} V_i$	$V_o = \frac{D}{1 - D} V_i$
D CCM	$D = \frac{V_o}{V_i}$	$D = 1 - \frac{V_i}{V_o}$	
V_o DCM		$V_o = V_i \frac{1 + \sqrt{1 + \frac{4D^2}{k}}}{2}$	$V_o = \frac{D}{\sqrt{k}}V_i$
D DCM	$D = \frac{V_o}{V_i} \sqrt{\frac{k}{1 - \frac{V_o}{V_i}}}$		
v_L			
2			

i_L		
i_o		
v_S		
i_S		
v_D		

i_D		
i_C		

2 Isolated DC to DC Converters

What	Forward	Flyback		
Circuit Diagram	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
ON Circuit	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
OFF Circuit	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
v_L				
v_o				

v_{LM}		
?		
?		

3 Waveforms

From *Electrónica de Potencia*, Daniel W. Hart.

3.2 Boost

3.3 Buck-Boost

3.4 Forward

3.5 Flyback

