CS5231: Systems Security

Lecture 1: Overview

About This Course

- (Generalized) definition of systems
- Principle and practice of systems security
 - Understanding security principles through practice
 - Learning skills of programming, system administration, and etc.
- Research frontier of systems security

Uniqueness of This Module

- Think in a different angle
 - How various systems can fail?
 - How to prevent such failures?
- Learn to think like a hacker, behave like a defender
 - Make no assumptions of hackers
- Heavily based on system programming
 - Have fun!

The Security Problem

What are the recent security incidents in news?

Why Does This Happen?

- Functionality: the primary concern during design and implementation.
 - Security is the secondary goal
 - Unawareness of security problems
- Unavoidable human mistakes
 - Awareness
 - Lazy programmer
- Complex modern computing systems

Security: Mission impossible

- But in practice, we need to make the security problem under control.
- Need better understanding of whole system

The Axioms of Security

Principle of Easiest Penetration

- Security is about every aspect of a computing system
 - Hardware, software, data, and people.
- Principle of easiest penetration:
 - Any system is most vulnerable at its weakest point.
 - Attackers don't follow any rules. Don't underestimate their creativity.

Security can be no stronger than its weakest link.

Methodology of Security

Methodology

Learning to Attack

 If you know the enemy and know yourself, you need not fear the result of a hundred battles.

知己知彼,百战不殆。
Sun Tzu, Art of War

• To prevent attack, we need to learn how attack happens

Ethical Use of Security Information

- We discuss vulnerabilities and attacks
 - Most vulnerabilities have been fixed
 - Some attacks may still cause harm
 - Do not try these at home
- Purpose of this class
 - Learn to prevent malicious attacks
 - Use knowledge for good purposes

Administrative Issue

Administrative Issues

- In-class tests/quiz: 30%
- Individual assignments: 45%
 - Three homework assignments
- Final group project: 25%
- No final exam

Individual Homework Projects

- Sample topics of programming assignments
 - Memory error and attacks
 - Assembly, C, gdb
 - System auditing and provenance
 - Linux kernel security mechanisms
 - Linux kernel programming
 - Linux security modules, eBPF

Group-based Final Project

Project Goal:

- Apply our methodology: Deeply understand of a large system, understand attacks, and design solutions.
- A typical group has 2-3 students.
 - Find teammates with similar interest, e.g., binary, kernel, etc.
 - Based on the same base system, develop solutions with individual components to understand or solve security problems
 - Please announce your group information to the TA mailing list
 - If you need to form group of three students, a concrete proposal with individual contributions is needed.

Notifications & Communication

- Watch out for Canvas announcements
- You are expected to participate in in-person lectures.
 - Interactions beyond lecture notes...
- Please use email <u>cs5231ta@googlegroups.com</u> with for all email communication related to the module.
- Teams Channel "Consultation" for general consultation, private message for quick-response matters

Honesty & Collaboration

- TA and instructor will not "see / debug" code
- All questions go to Canvas forum and Teams Consultation
- Academic Honesty
 - You may discuss high-level approach to solving or share public sources of information via the forum.
 - But, independently solve the assignment
 - Not OK to find answers to the assignment questions (past students, instructors, other students, friends, Internet)
- Ethics: Responsible Disclosure
 - If you find a system vulnerable, inform the company / team responsibly
 - Not ok to exploit or sell vulnerability information.

Academic Dishonesty

A simple rule in NUS:

If reported or caught cheating, in any way, all students involved will get an F grade

- Plagiarism is a serious offense in academia
- Information for plagiarism definition and prevention
 - http://www.cit.nus.edu.sg/plagiarism-prevention/
- We use the Turn It In tool to check all submissions
 - Submissions are compared with document on the Internet and against one another

Prerequisites

- Have basic knowledge of:
 - OS, Architecture, Compilers, Systems Programming, Basics of Probability Theory
- Have worked at some point with:
 - C/C++ programming
 - Tools like Linux commands, GDB (see notes)
- Many who take this class don't have the full coverage of these pre-requisites. That is fine. Prepare to pick up the requisite knowledge as you need them.

One more thing

The view angle of system security researchers

The view of systems

Program/App

System Services

System Kernel

Hardware/Execution Engine

Component View of Operating System

CS5331 Lecture 7 25

Layers and Flexibility of Execution Environment

Application

The Key Question about Security

Our Lens from System Angle: Guiding Questions

- What is the runtime platform/code/data?
- What are the owners and how to identify them?
- What are the resources to be protected?
- What is considered a security problem?
- What is the nature of the protection mechanism?
 - Access control
 - Isolation
 - Deterrence

• ...

Component View of Browser

CS5331 Lecture 7 29

Emerging Systems

- LLM
- Web3
- Industry control systems

• . . .

CS6231 Week 12 30

LLM Security

- LLM as AI process
 - Loss, adversarial sample, distribution, ...
- LLM as software
 - Components and functions, call paths
- LLM as system
 - CPU, memory, user isolation

CS6231 Week 12 31

Evolution of Systems

Web 3.0

Distributed Systems Web 0.0

Web 1.0

Web 2.0

Open discussion of ideas and topics

Thanks! See you next week...