

Exact Methods: Value Iteration

Easwar Subramanian

TCS Innovation Labs, Hyderabad

Email: easwar.subramanian@tcs.com / cs5500.2020@iith.ac.in

August 26, 2022

Overview

- Review
- 2 Value Iteration
- Possible Extensions
- 4 Few Remarks

Review

Policy Iteration

Question: Is there a way to arrive at π_* starting from an arbitrary policy π ?

Answer: Policy Iteration

ightharpoonup Evaluate the policy π

$$\star$$
 Compute $V^{\pi}(s) = \mathbb{E}_{\pi}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s)$

▶ Improve the policy π

$$\pi'(s) = \operatorname{greedy}(V^{\pi}(s))$$

$$\pi_0 \xrightarrow{\mathrm{E}} V^{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} V^{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi^* \xrightarrow{\mathrm{E}} V^*,$$

Policy Iteration: Algorithm

Algorithm Policy Iteration

- 1: Start with an initial policy π_1
- 2: **for** $i = 1, 2, \dots, N$ **do**
- 3: Evaluate $V^{\pi_i}(s) \quad \forall s \in \mathcal{S}$. That is,
- 4: **for** $k = 1, 2, \dots, K$ **do**
- 5: For all $s \in \mathcal{S}$ calculate

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}^{\pi_i}(s') \right]$$

- 6: end for
- 7: Perform policy Improvement

$$\pi_{i+1} = \operatorname{greedy}(V^{\pi_i})$$

8: end for

Policy Iteration: Schematic Representation

- ► The sequence $\{\pi_1, \pi_2, \cdots, \}$ is guaranteed to converge.
- ▶ At convergence, both current policy and the value function associated with the policy are optimal.

Value Iteration

Value Iteration

Question: Is there a way to arrive at V_* starting from an arbitrary value function V_0 ?

Answer: Value Iteration

Optimality Equation for State Value Function

Recall the Bellman Evaluation Equation for an MDP with policy π

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

Question: Can we have a recursive formulation for $V_*(s)$?

$$V_*(s) = \max_{a} Q_*(s, a) = \max_{a} \left[\sum_{s' \in S} \mathcal{P}^a_{ss'} \left(\mathcal{R}^a_{ss'} + \gamma V_*(s') \right) \right]$$

Optimality Equation for Action-Value Function

Similarly, there is a recursive formulation for $Q_*(\cdot,\cdot)$

$$Q_*(s, a) = \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma \max_{a'} Q_*(s', a') \right) \right]$$

Question: These are also a system of equations with n = |S| with n variables. Can we solve them?

<u>Answer</u>: Optimality equations are non-linear system of equations with n unknowns and n non-linear constraints (i.e., the max operator).

Solving the Bellman Optimality Equation

- ▶ Bellman optimality equations are non-linear
- ▶ In general, there are no closed form solutions
- ▶ Iterative methods are typically used

Bellman's Optimality Principle

Principle of Optimality

The tail of an optimal policy must be optimal

 \blacktriangleright Any optimal policy can be subdivided into two components; an optimal first action, followed by an optimal policy from successor state s'.

Bellman optimality equation:

$$V_*(s) = \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma V_*(s') \right) \right]$$

Optimal Substructure : Optimal solution can be constructed from optimal solutions to subproblems

Overlapping Subproblems : Problem can be broken down into subproblems and can be reused several times

- ▶ Markov Decision Processes, generally, satisfy both these characteristics
- Dynamic Programming is a popular solution method for problems having such properties

Value Iteration : Idea

- ▶ Suppose we know the value $V_*(s')$
- ▶ Then the solution $V_*(s)$ can be found by one step look ahead

$$V_*(s) \leftarrow \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} \left(\mathcal{R}^a_{ss'} + \gamma V_*(s') \right) \right]$$

▶ Idea of value iteration is to perform the above updates iteratively

Algorithm Value Iteration

- 1: Start with an initial value function $V_0(\cdot)$;
- 2: **for** $k = 0, 1, 2, \dots, K$ **do**
- 3: for $s \in \mathcal{S}$ do
- 4: Calculate

$$V_{k+1}(s) \leftarrow \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right) \right]$$

- 5: end for
- 6: end for

Value Iteration : Example

No noise and discount factor $\gamma = 1$

Value Iteration : Example

$$V_{k+1}(s) \leftarrow \max_{a} \left[\sum_{s' \in S} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right) \right]$$

0	-1	-2	-2	
-1	-2	-2	-2	
-2	-2	-2	-2	
-2	-2	-2	-2	
V				

 V_{Δ}

0	-1	-2	-3		
-1	-2	-3	4		
-2	-3	-4	-5		
-3	-4	-5	-5		
V					

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6
	-1	-1 -2 -2 -3	-1 -2 -3 -2 -3 -4

Value Iteration : Remarks

- ▶ The sequence of value functions $\{V_1, V_2, \cdots, \}$ converge
- ▶ It converges to V_*
- ▶ Convergence is independent of the choice of V_0 .
- ▶ Intermediate value functions need not correspond to a policy in the sense of satisfying the Bellman Evaluation Equation
- \blacktriangleright However, for any k, one can come up with a greedy policy as follows

$$\pi_{k+1}(s) \leftarrow \operatorname{greedy} V_k(s)$$

Optimality Equation for Action-Value Function

There is a recursive formulation for $Q_*(\cdot,\cdot)$

$$Q_*(s, a) = \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma \max_{a'} Q_*(s', a') \right) \right]$$

One could similarly conceive an iterative algorithm to compute optimal Q_* using the above recursive formulation!!

Value Iteration : Policy Evaluation

Iterative application of Bellman Evaluation Equation

Iterative update rule:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}^{\pi}(s') \right]$$

The sequence of value functions $\{V_1^{\pi}, V_2^{\pi}, \cdots, \}$ converge to V^{π}

Policy Iteration: Example Revisited

Update Rule:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^a \left[\mathcal{R}_{ss'}^a + \gamma V_k^{\pi_i}(s') \right]$$

 v_k for the

greedy policy

w.r.t. vi

$$k = 2$$

$$0.0 -1.7 -2.0 -2.0$$

$$-1.7 -2.0 -2.0 -2.0$$

$$-2.0 -2.0 -2.0 -1.7$$

$$-2.0 -2.0 -1.7 0.0$$

Figure Source: David Silver's UCL

course

random

policy

Policy Iteration: Example Revisited

Modified Policy Iteration

Can we computationally simplify policy iteration process?

- ▶ We need not wait for policy evaluation to converge to V^{π}
- ▶ We can have a stopping criterion like ϵ -convergence of value function evaluation or K iterations of policy evaluation
- \blacktriangleright Extreme case of K=1 is value iteration. We update the policy every iteration

Prediction and Control using Dynamic Programming

- ▶ Dynamic Programming assumes full knowledge of MDP
- ▶ Used for both **prediction** and **control** in an MDP
- ▶ Prediction
 - ★ Input MDP $(\langle S, A, P, R, \gamma \rangle)$ and policy π
 - \star Output : $V^{\pi}(\cdot)$
- ► Control
 - ★ Input MDP $(\langle S, A, P, R, \gamma \rangle)$
 - \star Output: Optimal value function $V_*(\cdot)$ or optimal policy π_*

Synchronous Dynamic Programming

Problem	Bellman Equation	Algorithm
Prediction	Bellman Evaluation Equation	Policy Evaluation
Control	Bellman Evaluation Equation +	Policy Iteration
	Greedy Policy Improvement	
Control	Bellman Optimality Equation	Value Iteration

- ▶ All the methods described above have synchronous backups
- ▶ All states are backed up in every iteration

Possible Extensions

Asynchronous Dynamic Programming

- ▶ Updates to states are done individually, in any order
- ▶ For each selected state, apply the appropriate backup
- ► Can significantly reduce computation
- ▶ Convergence guarantees exist, if all states are selected sufficient number of times

Real Time Dynamic Programming

- ▶ Idea : update only states that are relevant to agent
- \blacktriangleright After each time step, we get s_t, a_t, r_{t+1}
- ▶ Perform the following update

$$V(s_t) \leftarrow \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}^a_{s_t s'} \left(\mathcal{R}^a_{s_t s'} + \gamma V(s') \right) \right]$$

Few Remarks

MDP and RL setting

- ▶ MDP Setting: The agent has knowledge of the state transition matrices $\mathcal{P}^a_{ss'}$ and the reward function \mathcal{R} .
- ▶ RL Setting: The agent <u>does not</u> have knowledge of the state transition matrices $\mathcal{P}_{ss'}^a$ and the reward function \mathcal{R}
 - ★ The goal in both cases are same; Determine optimal sequence of actions such that the total discounted future reward is maximum.
 - ★ Although, this course would assume Markovian structure to state transitions, in many (sequential) decision making problems we may have to consider the history as well.

Concluding Remarks

- ► Recall that a (stochastic) policy is a distribution over actions given states
- ▶ Markov policy means that the policy depends only on the current state and not on the history
- ▶ Policies could be stationary or non-stationary
- ▶ In general, the optimal policy for an MDP need not be unique
- ▶ For finite horizon MDP, the optimal policy need not be even stationary
- ▶ For infinite horizon, an MDP admits an optimal policy that is deterministic and stationary. But there could other optimal policies that are stochastic and non-stationary.

Concluding Remarks

- ▶ The grid world problem is an example **stochastic shortest path** problem where we consider only policies that are 'proper'
 - \bigstar A policy that has a non-zero chance to finally reach the terminal state Under this assumption the theory on convergence will work out for even $\gamma=1$.
- ▶ The total discounted return G_t could have infinite terms or $\gamma = 1$ but not both

On Value Iteration Convergence : Technical Questions

- \blacktriangleright How do we know that value iteration converges to V_* ?
- \triangleright Or that iterative policy evaluation converges to V_{π} ?
- ▶ And therefore that policy iteration converges to π_* ?
- ▶ Is the solution unique?
- \blacktriangleright How fast do these algorithms converge? (Depends on discount factor γ)
- ▶ These questions were resolved by
 - ★ Banach Fixed Point Theorem / Contraction Mapping Theorem

course