Practical 10

Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set.

```
In [2]:
```

```
import numpy as np
import pandas as pd
import csv
from pgmpy.estimators import MaximumLikelihoodEstimator
from pgmpy.models import BayesianModel
from pgmpy.inference import VariableElimination
```

In [4]:

```
df = pd.read_csv('dataset.csv')
df = df.replace('?',np.nan)
df
```

Out[4]:

		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	heartdisease
	0	63	1	1	145	233	1	2	150	0	2.3	3	0	6	0
	1	67	1	4	160	286	0	2	108	1	1.5	2	3	3	2
	2	67	1	4	120	229	0	2	129	1	2.6	2	2	7	1
	3	37	1	3	130	250	0	0	187	0	3.5	3	0	3	0
	4	41	0	2	130	204	0	2	172	0	1.4	1	0	3	0
2	98	45	1	1	110	264	0	0	132	0	1.2	2	0	7	1
2	99	68	1	4	144	193	1	0	141	0	3.4	2	2	7	2
3	00	57	1	4	130	131	0	0	115	1	1.2	2	1	7	3
3	01	57	0	2	130	236	0	2	174	0	0.0	2	1	3	1
3	02	38	1	3	138	175	0	0	173	0	0.0	1	NaN	3	0

303 rows × 14 columns

In [5]:

```
print('\n Attributes and datatypes')
print(df.dtypes)
```

```
Attributes and datatypes
      int64
age
sex
                 int64
                int64
cp
trestbps int64
chol int64
               int64
fbs
restecg int64 thalach int64 exang int64
            int64
float64
int64
oldpeak
slope
               object
ca
thal
               object
heartdisease
                int64
dtype: object
```

```
In []:
model = BayesianModel([('age','heartdisease'),('sex','heartdisease'),('cp','heartdisease'),('heartdisease'),('heartdisease','chol')])

In []:

print('\n Learning CPD using Maximum likelihood estimators')
model.fit(df,estimator=MaximumLikelihoodEstimator)
print('\n Inferencing with Bayesian Network:')
HeartDiseasetest_infer = VariableElimination(model)
print('\n 1.Probability of HeartDisease given evidence= restecg :1')
ql=HeartDiseasetest_infer.query(variables=['heartdisease'],evidence={'restecg':1})
print(ql)
print('\n 2.Probability of HeartDisease given evidence= cp:2 ')
q2=HeartDiseasetest_infer.query(variables=['heartdisease'],evidence={'cp':2})
print(q2)
```