Chapitre 6

Relations de congruences modulo n

1 Congruences modulo n dans \mathbb{Z}

Définition 1. Soit n un entier naturel non nul et a, b deux entiers (relatifs). On dit que a est congru a b modulo n, que l'on note $a \equiv b \pmod{n}$, si et seulement si a - b est divisible par n. L'expression $a \equiv b \pmod{n}$ est alors une congruence et n est son module.

Exemples 1.1.

1. Relation de congruence modulo 2 (cas n = 2):

Donnez des entiers congrus à 4 modulo 2 :

 $4 \equiv \cdots \pmod{2}$ car $4 \equiv \cdots \pmod{2}$ $4 \equiv \cdots \pmod{2}$ car $4 \equiv \cdots \pmod{2}$ $4 \equiv \cdots \pmod{2}$ car $4 \equiv \cdots \pmod{2}$

Remarque: Un entier n est pair si et seulement si $n \equiv \pmod{2}$.

Comment pourrait-on alors caractériser les entiers impairs?

Un entier n est impair si et seulement si $n \equiv \pmod{2}$

2. Relation de congruence modulo 7 (cas n=7):

Aujourd'hui nous sommes

. (Compléter avec le jour de la semaine où a

lieu le cours)

Quel jour de la semaine serons-nous dans 2 413 jours?

- 3. $125 \equiv 4 \pmod{11}$ car 125 4 = 121 et $11 \mid 121$.
- 4. Soit $n \in \mathbb{N}^*$ quelconque. Alors pour tout $a \in \mathbb{Z}$, on a $a \equiv a \pmod{n}$ car $n \mid 0$.
- 5. Pour tous $a, b \in \mathbb{Z}$, $a \equiv b \pmod{1}$ car $1 \mid a b$.
- 6. Soit n = 3. Alors $\equiv 0 \pmod{3}$, $\equiv 1 \pmod{3}$, $\equiv 2 \pmod{3}$, $3 \equiv \pmod{3}$, $\equiv 1 \pmod{3}$.

Notation : Si $n \nmid a - b$, on écrit $a \not\equiv b \pmod{n}$ et on dit que a est non congru à b modulo n.

1.2 Remarques. Soient $n \in \mathbb{N}^*$ et $a, b \in \mathbb{Z}$. Alors :

- 1. $a \equiv b \pmod{n} \iff n \mid a b \iff \exists k \in \mathbb{Z} / a b = kn \iff \exists k \in \mathbb{Z} / a = b + kn$.
- 2. $a \equiv 0 \pmod{n}$ si et seulement si $n \mid a$.
- 3. $a \equiv b \pmod{n}$ si et seulement si $a b \equiv 0 \pmod{n}$.

Proposition 1. Soient $n \in \mathbb{N}^*$ et $a, b \in \mathbb{Z}$. Alors $a \equiv b \pmod{n}$ si et seulement si a et b ont même reste dans la division euclidienne par n.

Définition 2. Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{Z}$. Soit r le reste de la division euclidienne de a par n, c'est-à-dire que r est donné par a = nq + r avec $0 \le r < n$ (en particulier $a \equiv r \pmod{n}$). On appelle r le résidu de a modulo n; c'est le plus petit entier naturel auquel a est congru modulo n.

Exemples 1.3.

- 1. $125 \equiv 4 \pmod{11}$ avec $0 \le 4 < 11$, par conséquent 4 est le résidu de $125 \pmod{11}$. On remarquera que la division euclidienne de $125 \pmod{12}$ par 11 s'écrit $125 = 11 \times 11 + 4$, avec $0 \le 4 < 11$
- 2. $35 \equiv -1 \pmod{12}$ mais -1 n'est pas le résidu de 35 modulo 12 puisque -1 < 0. On a $35 = 12 \times 2 + 11$ avec $0 \le 11 < 12$, par conséquent 11 est le résidu de 35 modulo 12.
- 3. Exercice: 1738 est-il congru à 219 modulo 7?

1ère méthode :

 $2^{\grave{e}me}$ méthode:

2 Propriétés

Théorème 2.1. Soient $n \in \mathbb{N}^*$. Alors on a :

- 1. La relation de congruence modulo n est réflexive : $a \equiv a \pmod{n} \ \forall a \in \mathbb{Z}$.
- 2. La relation de congruence modulo n est symétrique : $si\ a \equiv b\ (\text{mod } n),\ alors\ b \equiv a\ (\text{mod } n)\ \forall a,b\in\mathbb{Z}.$
- 3. La relation de congruence modulo n est transitive : $si\ a \equiv b\ (\text{mod}\ n)$ et $b \equiv c\ (\text{mod}\ n)$, alors $a \equiv c\ (\text{mod}\ n)\ \forall a,b,c \in \mathbb{Z}$.

2.2 Remarques.

- 1. La relation de congruence modulo n est donc une relation d'équivalence dans \mathbb{Z} .
- 2. On dira indifféremment que a est congru à $b \pmod{n}$, ou que b est congru à $a \pmod{n}$, ou encore que a et b sont congrus \pmod{n} .

Théorème 2.3. Soient $n \in \mathbb{N}^*$ et $a, a', b, b' \in \mathbb{Z}$ tels que

$$\begin{cases} a \equiv a' \pmod{n} \\ b \equiv b' \pmod{n} \end{cases}.$$

Alors:

- 1. Pour tous x, y dans \mathbb{Z} , $xa + yb \equiv xa' + yb' \pmod{n}$ (linéarité de la relation de congruence). En particulier, $a + b \equiv a' + b' \pmod{n}$.
- 2. $ab \equiv a'b' \pmod{n}$.
- 3. Conséquence : pour tout $m \in \mathbb{N}$, $a^m \equiv (a')^m \pmod{n}$.

Exemples 2.4.

1. Si $a \equiv 2, \pmod{5}$ et $b \equiv 3, \pmod{5}$ alors

$$-3a + 4b \equiv -3 \times 2 + 4 \times 3 \pmod{5}$$

$$\iff -3a + 4b \equiv 6 \pmod{5}$$

$$\iff -3a + 4b \equiv 1 \pmod{5}$$

2. On souhaite déterminer le résidu de 34^4 modulo 7. Déterminer d'abord le résidu de 34 modulo 7 :

Alors
$$34^2\equiv\pmod{7}\iff 34^2\equiv\pmod{7}.$$
 Et donc $34^4\equiv\pmod{7}.$ Le résidu de 34^4 modulo 7 est donc . On pourra noter $res_7(34^4)=1.$

3 Application : critères de divisibilité

Théorème 3.1.

- 1. Un entier naturel est divisible par 9 si et seulement si la somme de ses chiffres, en système décimal, est divisible par 9.
- 2. Un entier naturel est divisible par 3 si et seulement si la somme de ses chiffres, en système décimal, est divisible par 3.

Démonstration:

Théorème 3.2. Critère de divisibilité par 11 :

Exemples 3.3.

1. Les entiers 201 520 142 013 et 201 420 132 012 sont-ils divisibles par 11?

2. Déterminer le chiffre décimalx pour que le nombre $1\ 72x\ 321$ soit divisible par 11. Même question avec le nombre $x81\ 817$.