MATEMÁTICA DISCRETA Estructuras Algebraicas

Prof. Sergio Salinas

Facultad de Ingeniería Universidad Nacional de Cuyo

Segundo semestre 2024

Contenido

- 1 Clasificación de Grupos
- ② Grupos cíclicos
- 3 Grupos de Permutaciones

Clasificación de Grupos

Clasificación de Grupos

- 1. **Grupos Finito:** contienen un número finito de elementos.
- 2. Grupos Infinito: tienen un número infinito de elementos.
- 3. Grupos Abelianos: grupos en los que la operación es conmutativa.
- 4. **Grupos No Abelianos:** grupos donde la operación no es conmutativa.
- 5. **Grupos Cíclicos:** es un grupo que puede ser generado por un solo elemento.
- Grupos de Permutación: grupos formados por las permutaciones de un conjunto.

Clasificación de Grupos

- 7. **Grupos Simples:** grupos no triviales que no tienen subgrupos normales distintos de la identidad y del propio grupo.
- 8. Grupos de Lie: se utilizan en física y geometría.
- Grupos de Presentación: grupos definidos por generadores y relaciones. Se utilizan para describir grupos complejos.
- Grupos Abelianos Libres: grupos abelianos donde no hay relaciones no triviales entre generadores. Cualquier conjunto de generadores puede combinarse libremente.
- 11. **Grupos de Automorfismos:** grupos formados por los automorfismos de un grupo dado, donde la operación es la composición de funciones.
- 12. **Grupos de Galois:** grupos que relacionan las raíces de polinomios y las extensiones de cuerpos. Son fundamentales en la teoría de cuerpos y en la resolución de ecuaciones.

Definición

Decimos que un grupo < G, *> es **cíclico** si existe un elemento $a \in G$ tal que cualquier elemento $x \in G$ se puede expresar como

$$x = a^n$$
,

para algún entero n. El elemento a se dice que es un **generador** de G, y algunas veces se lo denota por < a >.

Ejemplo, \mathbb{Z}_5 es un grupo cíclico:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Ejemplo, \mathbb{Z}_5 es un grupo cíclico:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

$$\begin{aligned} 1 \cdot [1] &= [1] \\ 2 \cdot [1] &= [1] + [1] = [2] \\ 3 \cdot [1] &= [1] + [1] + [1] = [3] \\ 4 \cdot [1] &= [1] + [1] + [1] + [1] = [4] \end{aligned}$$

Ejemplo, \mathbb{Z}_5 es un grupo cíclico:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

$$1 \cdot [2] = [2]$$

$$2 \cdot [2] = [2] + [2] = [4]$$

$$3 \cdot [2] = [2] + [2] + [2] = [1]$$

$$4 \cdot [2] = [2] + [2] + [2] + [2] = [3]$$

Ejemplo, \mathbb{Z}_5 es un grupo cíclico:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Ejemplo, \mathbb{Z}_5 es un grupo cíclico:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Ejemplo, \mathbb{Z}_5 es un grupo cíclico:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

$$1\cdot[3]=[3]$$

Ejemplo, \mathbb{Z}_5 es un grupo cíclico:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

$$1 \cdot [3] = [3] 2 \cdot [3] = [3] + [3] = [1]$$

Ejemplo, \mathbb{Z}_5 es un grupo cíclico:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

$$1 \cdot [3] = [3]$$
$$2 \cdot [3] = [3] + [3] = [1]$$
$$3 \cdot [2] = [3] + [3] + [3] = [4]$$

Ejemplo, \mathbb{Z}_5 es un grupo cíclico:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

$$1 \cdot [3] = [3]$$

$$2 \cdot [3] = [3] + [3] = [1]$$

$$3 \cdot [2] = [3] + [3] + [3] = [4]$$

$$4 \cdot [2] = [3] + [3] + [3] + [3] = [2]$$

Ejemplo, \mathbb{Z}_5 es un grupo cíclico:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Es posible observar que [3] es un elemento generador de $<\mathbb{Z}_5,+>$ ya que

$$1 \cdot [3] = [3]$$

$$2 \cdot [3] = [3] + [3] = [1]$$

$$3 \cdot [2] = [3] + [3] + [3] = [4]$$

$$4 \cdot [2] = [3] + [3] + [3] + [3] = [2]$$

¿Existen otros elementos generadores de $<\mathbb{Z}_5,+>$?

Ejemplo, \mathbb{Z}_5 es un grupo cíclico:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Es posible observar que [3] es un elemento generador de $<\mathbb{Z}_5,+>$ ya que

$$1 \cdot [3] = [3]$$

$$2 \cdot [3] = [3] + [3] = [1]$$

$$3 \cdot [2] = [3] + [3] + [3] = [4]$$

$$4 \cdot [2] = [3] + [3] + [3] + [3] = [2]$$

¿Existen otros elementos generadores de $<\mathbb{Z}_5,+>$? Todos los elementos generadores de $<\mathbb{Z}_5,+>$ son [1],[2],[3],[4] y [5].

Theorem

Sea $<\mathbb{Z}_5,+>$ un grupo cíclico, entonces se cumplen las siguientes propiedades:

- 1. G es un grupo abeliano.
- 2. Si a es un generador de G entonces a^{-1} también es un generador de G.
- 3. Si G es finito y a es un generador de G de orden n entonces

$$G = \{a, a^2, \cdots, a^{n-1}, a^n = e\}$$

4. Sea G finito de orden n, $1 \le m < n$ y a un generador de G, entonces

 a^m es un generador de G si y sólo si el máximo común divisor de m y n es 1.

Además, n es el menor entero positivo tal que $a^n = e$.

Grupos de Permutaciones

Permutaciones

■ Consideraremos funciones de un conjunto en sí mismo, es decir f: A → A, donde el dominio y la imagen de la función es el mismo conjunto A.

- Consideraremos funciones de un conjunto en sí mismo, es decir f: A → A, donde el dominio y la imagen de la función es el mismo conjunto A.
- Dos funciones f y g en A son iguales si y sólo si f(x) = g(x) para cada elemento x en A.

- Consideraremos funciones de un conjunto en sí mismo, es decir f : A → A, donde el dominio y la imagen de la función es el mismo conjunto A.
- Dos funciones f y g en A son iguales si y sólo si f(x) = g(x) para cada elemento x en A.
- Si f y g son funciones de A en A, entonces su composición $f \circ g$ es también una función de A en A definida por $[f \circ g](x) = f(g(x))$ para cada x en A.

- Consideraremos funciones de un conjunto en sí mismo, es decir f : A → A, donde el dominio y la imagen de la función es el mismo conjunto A.
- Dos funciones f y g en A son iguales si y sólo si f(x) = g(x) para cada elemento x en A.
- Si f y g son funciones de A en A, entonces su composición $f \circ g$ es también una función de A en A definida por $[f \circ g](x) = f(g(x))$ para cada x en A.
- Es importante resaltar que la composición de funciones es asociativa y la composición de dos funciones biyectivas también es una función biyectiva.

Definición

Una permutación es una función biyectiva de un conjunto no vacío $S \to S$ recibe el nombre de permutación de S.

Por ejemplo, si $S = \{a, b\}$ las dos posibles permutaciones de $\{a, b\}$ son $\{a, b\}$ y $\{b, a\}$ y se representan con la siguiente notación:

Por ejemplo, si $S = \{a, b\}$ las dos posibles permutaciones de $\{a, b\}$ son $\{a, b\}$ y $\{b, a\}$ y se representan con la siguiente notación:

$$\sigma_1 = \left(\begin{array}{cc} a & b \\ a & b \end{array}\right) \mathsf{y}$$

Por ejemplo, si $S = \{a, b\}$ las dos posibles permutaciones de $\{a, b\}$ son $\{a, b\}$ y $\{b, a\}$ y se representan con la siguiente notación:

$$\sigma_1 = \begin{pmatrix} a & b \\ a & b \end{pmatrix}$$
 y $\sigma_2 = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$,

Por ejemplo, si $S = \{a, b\}$ las dos posibles permutaciones de $\{a, b\}$ son $\{a, b\}$ y $\{b, a\}$ y se representan con la siguiente notación:

$$\sigma_1 = \left(\begin{array}{cc} a & b \\ a & b \end{array} \right)$$
 y $\sigma_2 = \left(\begin{array}{cc} a & b \\ b & a \end{array} \right)$,

donde el primer renglón de σ contiene los elementos de S en el orden indicado y el segundo renglón proporciona sus imágenes.

Por ejemplo, si $S = \{a, b\}$ las dos posibles permutaciones de $\{a, b\}$ son $\{a, b\}$ y $\{b, a\}$ y se representan con la siguiente notación:

$$\sigma_1 = \left(\begin{array}{cc} a & b \\ a & b \end{array} \right)$$
 y $\sigma_2 = \left(\begin{array}{cc} a & b \\ b & a \end{array} \right)$,

donde el primer renglón de σ contiene los elementos de S en el orden indicado y el segundo renglón proporciona sus imágenes.

En estas condiciones el conjunto $S_2 = \{\sigma_1, \sigma_2\}$ es el conjunto de todas las permutaciones posibles de elementos de S.

Propiedades:

1. La composición de cualesquiera dos permutaciones de A es una permutación de A.

- La composición de cualesquiera dos permutaciones de A es una permutación de A.
- 2. Para cualquier conjunto A la función identidad en A representada por ε es una función donde $\varepsilon(x)=x$ para cada elemento de A.

- La composición de cualesquiera dos permutaciones de A es una permutación de A.
- 2. Para cualquier conjunto A la función identidad en A representada por ε es una función donde $\varepsilon(x)=x$ para cada elemento de A.
- 3. Cualquier permutación f en A cumple la siguiente propiedad $f \circ \varepsilon = f$ y $\varepsilon \circ f = f$, otra forma de representarlo es mediante la siguiente notación $[f \circ \varepsilon](x) = f(\varepsilon(x)) = f(x)$.

- 1. La composición de cualesquiera dos permutaciones de A es una permutación de A.
- 2. Para cualquier conjunto A la función identidad en A representada por ε es una función donde $\varepsilon(x)=x$ para cada elemento de A.
- 3. Cualquier permutación f en A cumple la siguiente propiedad $f \circ \varepsilon = f$ y $\varepsilon \circ f = f$, otra forma de representarlo es mediante la siguiente notación $[f \circ \varepsilon](x) = f(\varepsilon(x)) = f(x)$.
- 4. Considerando que una permutación es una función biyectiva entonces por definición existe la inversa de tal función.

Propiedades:

- 1. La composición de cualesquiera dos permutaciones de A es una permutación de A.
- 2. Para cualquier conjunto A la función identidad en A representada por ε es una función donde $\varepsilon(x)=x$ para cada elemento de A.
- 3. Cualquier permutación f en A cumple la siguiente propiedad $f \circ \varepsilon = f$ y $\varepsilon \circ f = f$, otra forma de representarlo es mediante la siguiente notación $[f \circ \varepsilon](x) = f(\varepsilon(x)) = f(x)$.
- 4. Considerando que una permutación es una función biyectiva entonces por definición existe la inversa de tal función.
- 5. La inversa de cualquier permutación de A es una permutación de A.

Propiedades:

- 1. La composición de cualesquiera dos permutaciones de A es una permutación de A.
- 2. Para cualquier conjunto A la función identidad en A representada por ε es una función donde $\varepsilon(x)=x$ para cada elemento de A.
- 3. Cualquier permutación f en A cumple la siguiente propiedad $f \circ \varepsilon = f$ y $\varepsilon \circ f = f$, otra forma de representarlo es mediante la siguiente notación $[f \circ \varepsilon](x) = f(\varepsilon(x)) = f(x)$.
- Considerando que una permutación es una función biyectiva entonces por definición existe la inversa de tal función.
- 5. La inversa de cualquier permutación de A es una permutación de A.
- 6. Si f es cualquier permutación de A y f^{-1} es su inversa entonces $f^{-1} \circ f = \varepsilon$ y $f \circ f^{-1} = \varepsilon$ es decir $[f^{-1} \circ f](x) = \varepsilon(x)$ esto es $f^{-1}(f(x)) = x$.

Propiedades:

- 1. La composición de cualesquiera dos permutaciones de A es una permutación de A.
- 2. Para cualquier conjunto A la función identidad en A representada por ε es una función donde $\varepsilon(x)=x$ para cada elemento de A.
- 3. Cualquier permutación f en A cumple la siguiente propiedad $f \circ \varepsilon = f$ y $\varepsilon \circ f = f$, otra forma de representarlo es mediante la siguiente notación $[f \circ \varepsilon](x) = f(\varepsilon(x)) = f(x)$.
- Considerando que una permutación es una función biyectiva entonces por definición existe la inversa de tal función.
- 5. La inversa de cualquier permutación de A es una permutación de A.
- 6. Si f es cualquier permutación de A y f^{-1} es su inversa entonces $f^{-1} \circ f = \varepsilon$ y $f \circ f^{-1} = \varepsilon$ es decir $[f^{-1} \circ f](x) = \varepsilon(x)$ esto es $f^{-1}(f(x)) = x$.

Ejemplo:

Ejemplo:

$$f = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array}\right) y$$

Ejemplo:

$$f = \left(\begin{array}{rrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array}\right) \text{ y } g = \left(\begin{array}{rrr} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{array}\right)$$

entonces

$$f \circ g = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array}\right) \circ \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{array}\right) = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{array}\right)$$

Ejemplo:

$$f = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array}\right) \text{ y } g = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{array}\right)$$

entonces

$$f \circ g = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array}\right) \circ \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{array}\right) = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{array}\right)$$

ya que por ejemplo $f \circ g(1) = f(g(1)) = f(3) = 4$ y así con cada elemento.

■ El conjunto de todas las permutaciones de un conjunto A con la operación ∘ de composición es un grupo.

- El conjunto de todas las permutaciones de un conjunto A con la operación o de composición es un grupo.
- Para cualquier conjunto A de todas las permutaciones de A se denomina grupo simétrico en A y se representa con el símbolo S_A .

- El conjunto de todas las permutaciones de un conjunto A con la operación o de composición es un grupo.
- Para cualquier conjunto A de todas las permutaciones de A se denomina grupo simétrico en A y se representa con el símbolo S_A .
- Para cualquier entero positivo n, el grupo simétrico en el conjunto $A = \{1, 2, 3, ..., n\}$ se denomina grupo simétrico de n elementos y se denota con S_n .

Consideremos el conjunto $A = \{1, 2, 3\}$ entonces S_3 está definido por todas las posibles permutaciones en A.

Consideremos el conjunto $A = \{1, 2, 3\}$ entonces S_3 está definido por todas las posibles permutaciones en A.

_ (1	2	3	$\sqrt{}$	_ (1	2	3	/	_ /	1	2	3		
$\sigma_0 = \langle$	1	2	3)	$\sigma_1 = 0$	2	3	1)	$\sigma_2 = \langle$	3	1	2	丿丨	
_ (1	2	3	\int	$ au_2 = \left(\right.$	1	2	3	$\overline{\ }$	$ au_3 = \left(\right.$	1	2	3		
$\tau_1 = \left(\right.$	1	3	2			3	2	1			2	1	3)	

Consideremos el conjunto $A = \{1, 2, 3\}$ entonces S_3 está definido por todas las posibles permutaciones en A.

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline & \sigma_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} & \sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} & \sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \\ \hline & \tau_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} & \tau_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} & \tau_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \\ \hline \end{array}$$

Utilizando la notación de funciones entonces $\sigma_1(2)=3$ y la composición $[\sigma_1\circ\tau_1](3)=\sigma_1(\tau_1(3))=\sigma_1(2)=3$.

Es posible verificar la siguiente tabla para S_3 :

Es posible verificar la siguiente tabla para S_3 :

0	σ_0	σ_1	σ_2	$ au_1$	$ au_2$	$ au_3$
σ_0	σ_0	σ_1	σ_2	$ au_1$	$ au_2$	$ au_3$
σ_1	σ_1	σ_2	σ_0	$ au_2$	$ au_3$	$ au_1$
σ_2	σ_2	σ_{0}	σ_1	$ au_3$	$ au_1$	$ au_2$
τ_1	$ au_1$	$ au_3$	$ au_2$	σ_0	σ_2	σ_1
τ_2	$ au_2$	$ au_1$	$ au_3$	σ_1	σ_0	σ_2
$ au_3$	$ au_3$	$ au_2$	τ_1	σ_2	σ_1	σ_0

$$\alpha = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{array}\right), \ \beta = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{array}\right)$$

$$\gamma = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 & 2 \end{array}\right), \ \delta = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{array}\right)$$

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}, \ \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{pmatrix}$$
$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 & 2 \end{pmatrix}, \ \delta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$$

$$\alpha\beta = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{array}\right) \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{array}\right) = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{array}\right)$$

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}, \ \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{pmatrix}$$
$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 & 2 \end{pmatrix}, \ \delta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$$

$$\alpha\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$$

$$\alpha^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{pmatrix}$$

$$\alpha = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{array}\right), \ \beta = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{array}\right)$$

$$\gamma = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 & 2 \end{array}\right), \ \delta = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{array}\right)$$

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}, \ \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{pmatrix}$$
$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 & 2 \end{pmatrix}, \ \delta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$$

$$\beta\alpha = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{array}\right) \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{array}\right) = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{array}\right)$$

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}, \ \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{pmatrix}$$
$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 & 2 \end{pmatrix}, \ \delta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$$

$$\beta\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$$

$$\delta^{-1} = \begin{pmatrix} 3 & 2 & 1 & 5 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$$

Resolver la ecuación $\alpha x = \beta$ significa encontrar el valor de x que satisface la igualdad.

Resolver la ecuación $\alpha x=\beta$ significa encontrar el valor de x que satisface la igualdad.

Resolver la ecuación $\alpha x=\beta$ significa encontrar el valor de x que satisface la igualdad.

$$\bullet \ \alpha = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{array}\right), \ \beta = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{array}\right)$$

Resolver la ecuación $\alpha x=\beta$ significa encontrar el valor de x que satisface la igualdad.

$$\bullet \ \alpha = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{array}\right), \ \beta = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{array}\right)$$

$$\bullet \ \alpha^{-1} = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{array} \right)$$

Resolver la ecuación $\alpha x=\beta$ significa encontrar el valor de x que satisface la igualdad.

$$\bullet \ \alpha^{-1} = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{array} \right)$$

1. Conjuntos de números:

- 1. Conjuntos de números:
 - 1) $\mathbb{N} = \{x|x \text{ es un número natural}\} = \{0,1,2,3,...\}$

- 1. Conjuntos de números:
 - 1) $\mathbb{N} = \{x | x \text{ es un número natural}\} = \{0, 1, 2, 3, ...\}$
 - 2) $\mathbb{Z}=\{x|x \text{ es un número entero }\}=\{...,-3,-2,-1,0,1,2,3,...\}$

- 1. Conjuntos de números:
 - 1) $\mathbb{N} = \{x | x \text{ es un número natural}\} = \{0, 1, 2, 3, ...\}$
 - 2) $\mathbb{Z} = \{x | x \text{ es un número entero } \} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
 - 3) $\mathbb{Q} = \{x | x \text{ es un número racional}\}$ es todo número que puede expresarse como una fracción $\frac{p}{a}$ donde p y q son números enteros.

- 1. Conjuntos de números:
 - 1) $\mathbb{N} = \{x | x \text{ es un número natural}\} = \{0, 1, 2, 3, ...\}$
 - 2) $\mathbb{Z} = \{x | x \text{ es un número entero } \} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
 - 3) $\mathbb{Q} = \{x | x \text{ es un número racional}\}$ es todo número que puede expresarse como una fracción $\frac{p}{a}$ donde p y q son números enteros.
 - 4) $I = \{x | x \text{ es un número irracional} \}$ es todo número que no puede expresarse como una razón de dos números enteros. Ejemplos: $\pi, e, \sqrt{2}$.

- 1. Conjuntos de números:
 - 1) $\mathbb{N} = \{x | x \text{ es un número natural}\} = \{0, 1, 2, 3, ...\}$
 - 2) $\mathbb{Z} = \{x | x \text{ es un número entero } \} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
 - 3) $\mathbb{Q} = \{x | x \text{ es un número racional}\}$ es todo número que puede expresarse como una fracción $\frac{p}{a}$ donde p y q son números enteros.
 - 4) $I = \{x | x \text{ es un número irracional}\}$ es todo número que no puede expresarse como una razón de dos números enteros. Ejemplos: $\pi, e, \sqrt{2}$.
 - 5) $\mathbb{R} = \{x | x \text{ es un número real}\}$ es todo número en una recta.

- 1. Conjuntos de números:
 - 1) $\mathbb{N} = \{x | x \text{ es un número natural}\} = \{0, 1, 2, 3, ...\}$
 - 2) $\mathbb{Z} = \{x | x \text{ es un número entero } \} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
 - 3) $\mathbb{Q} = \{x | x \text{ es un número racional}\}$ es todo número que puede expresarse como una fracción $\frac{p}{a}$ donde p y q son números enteros.
 - 4) $I = \{x | x \text{ es un número irracional} \}$ es todo número que no puede expresarse como una razón de dos números enteros. Ejemplos: $\pi, e, \sqrt{2}$.
 - 5) $\mathbb{R} = \{x | x \text{ es un número real} \}$ es todo número en una recta.
 - 6) $\mathbb{C}=\{x|x \text{ es un número complejo}\}$ este conjunto incluye todas las raíces de los polinomios.

- 1. Conjuntos de números:
 - 1) $\mathbb{N} = \{x | x \text{ es un número natural}\} = \{0, 1, 2, 3, ...\}$
 - 2) $\mathbb{Z} = \{x | x \text{ es un número entero } \} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
 - 3) $\mathbb{Q} = \{x | x \text{ es un número racional}\}$ es todo número que puede expresarse como una fracción $\frac{p}{a}$ donde p y q son números enteros.
 - 4) $I = \{x | x \text{ es un número irracional} \}$ es todo número que no puede expresarse como una razón de dos números enteros. Ejemplos: $\pi, e, \sqrt{2}$.
 - 5) $\mathbb{R} = \{x | x \text{ es un número real} \}$ es todo número en una recta.
 - 6) $\mathbb{C}=\{x|x \text{ es un número complejo}\}$ este conjunto incluye todas las raíces de los polinomios.
- 2. Conjunto de permutaciones S_n .

- 1. Conjuntos de números:
 - 1) $\mathbb{N} = \{x | x \text{ es un número natural}\} = \{0, 1, 2, 3, ...\}$
 - 2) $\mathbb{Z} = \{x | x \text{ es un número entero } \} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
 - 3) $\mathbb{Q} = \{x | x \text{ es un número racional}\}$ es todo número que puede expresarse como una fracción $\frac{p}{a}$ donde p y q son números enteros.
 - 4) $I = \{x | x \text{ es un número irracional} \}$ es todo número que no puede expresarse como una razón de dos números enteros. Ejemplos: $\pi, e, \sqrt{2}$.
 - 5) $\mathbb{R} = \{x | x \text{ es un número real} \}$ es todo número en una recta.
 - 6) $\mathbb{C} = \{x | x \text{ es un número complejo}\}$ este conjunto incluye todas las raíces de los polinomios.
- 2. Conjunto de permutaciones S_n .
- 3. Conjuntos formado por $n\mathbb{Z}$.

- 1. Conjuntos de números:
 - 1) $\mathbb{N} = \{x | x \text{ es un número natural}\} = \{0, 1, 2, 3, ...\}$
 - 2) $\mathbb{Z} = \{x | x \text{ es un número entero } \} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
 - 3) $\mathbb{Q} = \{x | x \text{ es un número racional}\}$ es todo número que puede expresarse como una fracción $\frac{p}{a}$ donde p y q son números enteros.
 - 4) $I = \{x | x \text{ es un número irracional} \}$ es todo número que no puede expresarse como una razón de dos números enteros. Ejemplos: $\pi, e, \sqrt{2}$.
 - 5) $\mathbb{R} = \{x | x \text{ es un número real} \}$ es todo número en una recta.
 - 6) $\mathbb{C} = \{x | x \text{ es un número complejo}\}$ este conjunto incluye todas las raíces de los polinomios.
- 2. Conjunto de permutaciones S_n .
- 3. Conjuntos formado por $n\mathbb{Z}$.
- 4. Conjuntos formado por \mathbb{Z}_n .

- 1. Conjuntos de números:
 - 1) $\mathbb{N} = \{x | x \text{ es un número natural}\} = \{0, 1, 2, 3, ...\}$
 - 2) $\mathbb{Z} = \{x | x \text{ es un número entero } \} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
 - 3) $\mathbb{Q} = \{x | x \text{ es un número racional}\}$ es todo número que puede expresarse como una fracción $\frac{p}{a}$ donde p y q son números enteros.
 - 4) $I = \{x | x \text{ es un número irracional} \}$ es todo número que no puede expresarse como una razón de dos números enteros. Ejemplos: $\pi, e, \sqrt{2}$.
 - 5) $\mathbb{R} = \{x | x \text{ es un número real} \}$ es todo número en una recta.
 - 6) $\mathbb{C}=\{x|x \text{ es un número complejo}\}$ este conjunto incluye todas las raíces de los polinomios.
- 2. Conjunto de permutaciones S_n .
- 3. Conjuntos formado por $n\mathbb{Z}$.
- 4. Conjuntos formado por \mathbb{Z}_n .
- 5. Conjunto de divisores D_n .

- 1. Conjuntos de números:
 - 1) $\mathbb{N} = \{x | x \text{ es un número natural}\} = \{0, 1, 2, 3, ...\}$
 - 2) $\mathbb{Z} = \{x | x \text{ es un número entero } \} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
 - 3) $\mathbb{Q} = \{x | x \text{ es un número racional}\}$ es todo número que puede expresarse como una fracción $\frac{p}{a}$ donde p y q son números enteros.
 - 4) $I = \{x | x \text{ es un número irracional} \}$ es todo número que no puede expresarse como una razón de dos números enteros. Ejemplos: $\pi, e, \sqrt{2}$.
 - 5) $\mathbb{R} = \{x | x \text{ es un número real} \}$ es todo número en una recta.
 - 6) $\mathbb{C}=\{x|x \text{ es un número complejo}\}$ este conjunto incluye todas las raíces de los polinomios.
- 2. Conjunto de permutaciones S_n .
- 3. Conjuntos formado por $n\mathbb{Z}$.
- 4. Conjuntos formado por \mathbb{Z}_n .
- 5. Conjunto de divisores D_n .
- 6. Conjunto de productos $\mathbb{Z}_n \times \mathbb{Z}_m$.

- 1. Conjuntos de números:
 - 1) $\mathbb{N} = \{x | x \text{ es un número natural}\} = \{0, 1, 2, 3, ...\}$
 - 2) $\mathbb{Z} = \{x | x \text{ es un número entero } \} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
 - 3) $\mathbb{Q} = \{x | x \text{ es un número racional}\}$ es todo número que puede expresarse como una fracción $\frac{p}{a}$ donde p y q son números enteros.
 - 4) $I = \{x | x \text{ es un número irracional} \}$ es todo número que no puede expresarse como una razón de dos números enteros. Ejemplos: $\pi, e, \sqrt{2}$.
 - 5) $\mathbb{R} = \{x | x \text{ es un número real} \}$ es todo número en una recta.
 - 6) $\mathbb{C}=\{x|x \text{ es un número complejo}\}$ este conjunto incluye todas las raíces de los polinomios.
- 2. Conjunto de permutaciones S_n .
- 3. Conjuntos formado por $n\mathbb{Z}$.
- 4. Conjuntos formado por \mathbb{Z}_n .
- 5. Conjunto de divisores D_n .
- 6. Conjunto de productos $\mathbb{Z}_n \times \mathbb{Z}_m$.

Fin

