## Университет ИТМО Физико-технический мегафакультет Физический факультет



| Группа М3215                               | К работе допущен |
|--------------------------------------------|------------------|
| Студент <u>Гаджиев С.И., Адмайкин П.Г.</u> | Работа выполнена |
| Преподаватель Тимофеева Э. О.              | Отчет принят     |

# Рабочий протокол и отчет по лабораторной работе №3.05

"Температурная зависимость электрического сопротивления металла и полупроводника"

#### 1. Цель работы.

- 1. Получить зависимость электрического сопротивления металлического и полупроводникового образцов в диапазоне температур от комнатной до 75 ∘*C*.
- 2. По результатам п.1 вычислить температурный коэффициент сопротивления металла и ширину запрещенной зоны полупроводника.

#### 2. Задачи, решаемые при выполнении работы.

- 1. Построить график R(t) для металлического образца и график InR(1/T) для полупроводникового образца и оценить их линейность.
- 2. Вычислить тепловой коэффициент металла и ширину запрещенной зоны полупроводника.

#### 3. Объект исследования.

Полупроводниковый и металлический объекты.

## 4. Метод экспериментального исследования.

Прямое многократное измерение силы тока и напряжения при различных температурах.

#### 5. Рабочие формулы и исходные данные.

1) 
$$k = 1,380649 \cdot 10^{-23} \, \text{Дж/K} \approx 8,61733 \cdot 10^{-5} \, \text{эВ/K}$$

2) T = t + 273. (Из градусов в кельвины)

$$\frac{R_i - R_j}{R_j * t_i - R_i * t_j}$$
 (Тепловой коэффициент сопротивления)

$$E_{g_{ij}}=2k*rac{\Delta\ln(R_n)}{\Delta\left(rac{1}{T}
ight)}=2k*rac{T_iT_j}{T_j-T_i}\ln\left(rac{R_i}{R_j}
ight)$$
 (Ширина запрещенной зоны)

#### 6. Измерительные приборы.

| № п/п | Наименование | Тип прибора | Используемый<br>диапазон | Погрешность<br>прибора |
|-------|--------------|-------------|--------------------------|------------------------|
| 1     | Вольтметр    | Цифровой    | 0 – 2 B                  | 0,001 B                |
| 2     | Амперметр    | Цифровой    | 0 – 2000 мкА             | 1 мкА                  |

#### 7. Схема установки (перечень схем, которые составляют Приложение 1).



Рис. 2. Общий вид лабораторной установки



Рис. 3. Принципиальная электрическая схема установки.

Общий вид лабораторной установки показан на рис.2. Она состоит из стенда «C3-TT01» с объектами изучения - металлическим и полупроводниковым образцами, генератора ГН1 и амперметра-вольтметра AB1, соединенных проводниками. На корпусе стенда схематично изображены элементы электрической цепи. Принципиальная электрическая схема установки представлена на рис. 3. Одновременно измеряя напряжение на объекте исследования и ток через него, можно найти его сопротивление с помощью закона Ома для участка цепи R = U/I.

# 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Приложение

Таблица 1: Полупроводниковый образец

https://study.physics.itmo.ru

| No | T, K | І, мкА | U, B  | R, Ом | $\ln R$ | $\frac{10^3}{T}, \frac{1}{K}$ |
|----|------|--------|-------|-------|---------|-------------------------------|
| 1  | 295  | 1024   | 626   |       |         |                               |
| 2  | SOOM | 1299   | 322   |       |         |                               |
|    | 310  | 142-7  | 304   |       |         |                               |
|    | 315  | 1444   | . 277 |       |         |                               |
|    | 320  | 1537   | -218  |       |         |                               |
|    | 258  | 1589   | 177   |       |         |                               |
|    | 550  | 1623   | 146   |       |         |                               |
|    | 555  | 1659   | 150   |       |         |                               |
|    | 346  | 1674   | . 109 |       |         |                               |
|    | 345  | 1698   | - 030 |       |         |                               |
|    | 240  | 1716   | - 076 |       |         |                               |
|    | 355  | 1730   | , 064 |       |         |                               |
|    | 360  | 1747   | .055  |       |         |                               |
|    |      |        |       |       |         |                               |

Agnationer, Tagmuel MSCIS 01.12 AMMENT

16

| No.   | T, K | І, мкА | U, B  | R, кОм | t, °C |
|-------|------|--------|-------|--------|-------|
| 1     | 560  | 1043   | 1.559 |        |       |
| 2     | 555  | 1084   | 1.730 |        |       |
|       | 550  | 1070   | 1-521 |        |       |
|       | 345  | 1050   | 1.612 |        |       |
| 3.5.5 | 340  | logz   | 1501  |        |       |
| 1.4.4 | 335  | 1103   | 1.490 |        |       |
|       | 550  | 1106   | 1.441 |        |       |
|       | 526  | 1123   | 1.470 |        |       |
|       | 32.0 | 1190   | 1460  |        |       |
| N. W. | 315  | 1151   | 1,450 |        | 13    |
|       | 510  | 1161   | 1 442 |        |       |
|       | 506  | 1175   | 1.452 |        |       |
|       | 306  | 1185   | 1422  |        |       |
|       | 295  | 1200   | 1.410 |        |       |

# 9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

|      | Таблица №1. Полупроводниковый образец |       |         |       |             |  |
|------|---------------------------------------|-------|---------|-------|-------------|--|
| T, K | I, MKA                                | U, B  | R, Om   | In R  | 10^3/T, 1/K |  |
| 295  | 1024                                  | 0,620 | 605,469 | 6,406 | 3,390       |  |
| 300  | 1299                                  | 0,322 | 247,883 | 5,513 | 3,333       |  |
| 310  | 1427                                  | 0,304 | 213,034 | 5,361 | 3,226       |  |
| 315  | 1464                                  | 0,277 | 189,208 | 5,243 | 3,175       |  |
| 320  | 1537                                  | 0,218 | 141,835 | 4,955 | 3,125       |  |

| 325 | 1589 | 0,177 | 111,391 | 4,713 | 3,077 |
|-----|------|-------|---------|-------|-------|
| 330 | 1629 | 0,146 | 89,626  | 4,496 | 3,030 |
| 335 | 1639 | 0,138 | 84,198  | 4,433 | 2,985 |
| 340 | 1674 | 0,109 | 65,114  | 4,176 | 2,941 |
| 345 | 1698 | 0,090 | 53,004  | 3,970 | 2,899 |
| 350 | 1716 | 0,076 | 44,289  | 3,791 | 2,857 |
| 355 | 1730 | 0,064 | 36,994  | 3,611 | 2,817 |

|      | Таблица №2. Металлический образец |       |        |      |  |
|------|-----------------------------------|-------|--------|------|--|
| T, K | I, MKA                            | U, B  | R, кОм | t, C |  |
| 355  | 1064                              | 1,536 | 1,444  | 82   |  |
| 350  | 1070                              | 1,521 | 1,421  | 77   |  |
| 345  | 1080                              | 1,512 | 1,400  | 72   |  |
| 340  | 1092                              | 1,501 | 1,375  | 67   |  |
| 335  | 1103                              | 1,490 | 1,351  | 62   |  |
| 330  | 1116                              | 1,481 | 1,327  | 57   |  |
| 325  | 1129                              | 1,470 | 1,302  | 52   |  |
| 320  | 1140                              | 1,460 | 1,281  | 47   |  |
| 315  | 1151                              | 1,450 | 1,260  | 42   |  |
| 310  | 1161                              | 1,442 | 1,242  | 37   |  |
| 300  | 1185                              | 1,422 | 1,200  | 27   |  |
| 295  | 1200                              | 1,410 | 1,175  | 22   |  |

Сопротивления высчитывалось по закону Ома (Пример):

$$R = \frac{U}{I} = \frac{0,620}{1024} \cdot 10^6 = 605,469$$

Разобьём точки Таблицы №2 (графика R(t)) на пары и рассчитаем alpha:

| alpha  |
|--------|
| 0,0044 |
| 0,0045 |
| 0,0045 |
| 0,0043 |
| 0,0040 |
| 0,0039 |
| 0,0039 |
|        |

$$\alpha_{ij} = \frac{R_i - R_j}{R_j \cdot t_i - R_i \cdot t_j} = \frac{1,444 - 1,327}{1,327 \cdot 82 - 1,444 \cdot 57} = 0,0044$$

$$E_{gij} = 2k \cdot \frac{T_i T_j}{T_i - T_i} ln\left(\frac{R_i}{R_j}\right) = 2k \cdot \frac{295 \cdot 325}{325 - 295} \cdot ln\frac{605,469}{111,391} = 0,93 \text{ 3B}$$

Разобьём точки Таблицы №1 (графика lnR(1/T)) на пары и рассчитаем  $E_g$ :

| Пары | $E_g$ , Дж | $E_g$ , эВ |
|------|------------|------------|
| 1-6  | 1,49E-19   | 0,93       |
| 2-7  | 9,27E-20   | 0,58       |
| 3-8  | 1,06E-19   | 0,66       |
| 4-9  | 1,26E-19   | 0,79       |
| 5-10 | 1,20E-19   | 0,75       |
| 6-11 | 1,16E-19   | 0,72       |
| 7-12 | 1,14E-19   | 0,71       |

| < $E_g$ >, Дж | < <i>E<sub>g</sub></i> >, эВ |
|---------------|------------------------------|
| 1,18E-19      | 0,74                         |

# 10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\Delta \alpha = \sqrt{\frac{\sum (\alpha_i - \langle \alpha \rangle)^2}{7 \cdot (7 - 1)}} \cdot 3,17 = 0,00062 \qquad \varepsilon = 14\%$$

$$\Delta E_g = \sqrt{\frac{\sum (E_g - \langle E_g \rangle)^2}{7 \cdot (7 - 1)}} \cdot 3,17 = 0,25 \text{ 9B}$$
  $\varepsilon = 34\%$ 

## 11. Графики (перечень графиков, которые составляют Приложение 2).





#### 12. Окончательные результаты.

Температурный коэффициент сопротивления металла:

$$\alpha = 0,0042 \pm 0,00062 \frac{1}{K}$$
  $\varepsilon = 14\%$ 

Ширина запрещенной зоны полупроводника:

$$E_g=$$
 0,74  $\pm$  0,25  $ext{  $ext{  $eta}$  B}$   $arepsilon=34\%$   $arepsilon_g=1$ ,18 $arepsilon-19\pm3$ ,9694 $arepsilon-20$  Дж  $arepsilon=34\%$$ 

#### 13. Выводы и анализ результатов работы.

Анализируя температурный коэффициент сопротивления, можно предположить, что металлический образец был изготовлен из алюминия. Исходя из измеренной ширины запрещенной зоны, можно сделать вывод, что полупроводниковый образец был сделан из германия. Оценка линейности графиков указывает на то, что оба графика линейны. Это подтверждает предположение о том, что сопротивление металлического образца линейно увеличивается, а сопротивление полупроводникового образца экспоненциально уменьшается с увеличением температуры.