# **Using the Transformer**

# T5 (Raffel et al., 2019)



### Learning goals

- Understand the improvements over BERT
- Dynamic Masking

## GOOGLE'S T5 PRAFFEL ET AL. (2019)

#### **Short summary:**

- Text-to-Text Transfer Transformer (T5)
- A complete encoder-decoder Transformer architecture
- Relative positional emeddings
- All tasks reformulated as text-to-text tasks
- → Probably the most important innovation of this work
  - From BERT-size up to 11 Billion parameters
  - Paradigm shift from Sequential Transfer Learning towards Multi-Task Learning

► Animation (Link)

## **ILLUSTRATION**



## INPUT AND OUTPUT FORMAT

#### Input Side:

- SentencePiece framework w/ WordPiece tokens
- Add task-specific (text) prefix to the original input
- Choice of the prefix: Hyperparameter!!
- → Changing this had limited impact
- → No extensive experiments performed by the authors

### **Output Side:**

- Output as a word or a piece of text (also similarity scores)
- If output not present in set of potential alternatives, prediction considered as wrong

## ADD-ON: DISTINCTION TO PROMPTING

### Adding task-specific (text) prefix:

- Add task-specific (text) prefix to the original input
- Model is fine-tuned on samples prepended with this prefix
- → It learns to recognize what it is expected to do when encountering a specific prefix at test time
- $\rightarrow$  Probably because of this: limited impact found by the authors

### Prompting:

- Refers to just querying a trained w/o fine-tuning it (cf. next chapter)
- Paradigm of Few-/Zero-Shot Learning
- This is found to have a huge impact on model performance

#### PRE-TRAINING T5

Thank you for inviting me to your party last week.

Inputs
Thank you <X> me to your party <Y> week.

Targets
<X> for inviting <Y> last <Z>

Baseline objective (Source: Raffel et al., 2019)

- Mark spans in input sequence for corruptions
- Replace tokens with sentinel tokens
- Predict sentinel tokens and replaced tokens

## PRE-TRAINING OBJECTIVES

- Authors experimented with different objectives
- Most of them rely in some way on MLM

| Objective                                                                                                                                                                             | Inputs                                                                                                                                                                                                                                                                                                                                                       | Targets                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prefix language modeling<br>BERT-style Devlin et al. (2018)<br>Deshuffling<br>MASS-style Song et al. (2019)<br>Li.d. noise, replace spans<br>Li.d. noise, drop tokens<br>Random spans | Thank you for inviting Thank you <pre> Thank you</pre> Thank you Thank you <pre> Thank</pre> Thank you Thank you Thank you Thank you Thank you Thank you <pre> Thank</pre> Thank you Thank you <pre> Thank</pre> Thank you | me to your party last week . (original text) (original text) (original text) (So for inviting <y> last <z> for inviting last <x> for inviting last <x> your party last <z></z></x></x></z></y> |

## PRE-TRAINING OBJECTIVES



## THE COLOSSAL CLEAN CRAWLED CORPUS (C4)

- Effort to measure the effect of quality, characteristics & size of the pre-training resources
- Common Crawl as basis, careful cleaning and filtering for English language
- Orders of magnitude larger (750GB) compared to commonly used corpora

## THE COLOSSAL CLEAN CRAWLED CORPUS (C4)

### **Experiments (with respect to C4)**

| Data set         | Size    | GLUE  | CNNDM | SQuAD | SGLUE | EnDe  | EnFr  | EnRo  |
|------------------|---------|-------|-------|-------|-------|-------|-------|-------|
| ★ C4             | 745GB   | 83.28 | 19.24 | 80.88 | 71.36 | 26.98 | 39.82 | 27.65 |
| C4, unfiltered   | 6.1TB   | 81.46 | 19.14 | 78.78 | 68.04 | 26.55 | 39.34 | 27.21 |
| RealNews-like    | 35GB    | 83.83 | 19.23 | 80.39 | 72.38 | 26.75 | 39.90 | 27.48 |
| WebText-like     | 17GB    | 84.03 | 19.31 | 81.42 | 71.40 | 26.80 | 39.74 | 27.59 |
| Wikipedia        | 16GB    | 81.85 | 19.31 | 81.29 | 68.01 | 26.94 | 39.69 | 27.67 |
| Wikipedia + TBC  | 20GB    | 83.65 | 19.28 | 82.08 | 73.24 | 26.77 | 39.63 | 27.57 |
| Number of tokens | Repeats | GLUE  | CNNDM | SQuAD | SGLUE | EnDe  | EnFr  | EnRo  |
| Full data set    | 0       | 83.28 | 19.24 | 80.88 | 71.36 | 26.98 | 39.82 | 27.65 |
| $2^{29}$         | 64      | 82.87 | 19.19 | 80.97 | 72.03 | 26.83 | 39.74 | 27.63 |
| $2^{27}$         | 256     | 82.62 | 19.20 | 79.78 | 69.97 | 27.02 | 39.71 | 27.33 |
| $2^{25}$         | 1,024   | 79.55 | 18.57 | 76.27 | 64.76 | 26.38 | 39.56 | 26.80 |
| $2^{23}$         | 4,096   | 76.34 | 18.33 | 70.92 | 59.29 | 26.37 | 38.84 | 25.81 |

## **T5 - EXHAUSTIVE EXPERIMENTS**

### Performed experiments with respect to ..

- .. architecture, size & objective
- $\rightarrow$  enc, dec, enc-dec
- → Between 60M and 11B parameters
  - .. details of the Denoising objective (which was found to work best)
  - .. fine-tuning methods
- → Adapter layers
- → Gradual Unfreezing (cf. ULMFiT)
  - .. Multi-task learning strategies
- ightarrow Examples-proportional mixing
- → Temperature-scaled mixing

## **BENCHMARK RESULTS**

| Model         | GLUE<br>Average   |                 | SST-<br>r's Accura |                     | MRPC<br>Accuracy | STS-B<br>Pearson | STS-B<br>Spearman |
|---------------|-------------------|-----------------|--------------------|---------------------|------------------|------------------|-------------------|
| Previous best | 89.4 <sup>a</sup> | $69.2^{b}$      | 97.1               | a 93.6 <sup>b</sup> | $91.5^{b}$       | $92.7^{b}$       | $92.3^{b}$        |
| T5-Small      | 77.4              | 41.0            | 91.8               | 89.7                | 86.6             | 85.6             | 85.0              |
| T5-Base       | 82.7              | 51.1            | 95.2               | 90.7                | 87.5             | 89.4             | 88.6              |
| T5-Large      | 86.4              | 61.2            | 96.3               | 92.4                | 89.9             | 89.9             | 89.2              |
| T5-3B         | 88.5              | 67.1            | 97.4               | 92.5                | 90.0             | 90.6             | 89.8              |
| T5-11B        | 90.3              | 71.6            | 97.5               | 92.8                | 90.4             | 93.1             | 92.8              |
| Model         | QQP<br>F1         | QQP<br>Accuracy | MNLI-m<br>Accuracy | MNLI-mm<br>Accuracy | QNLI<br>Accuracy | RTE<br>Accuracy  | WNLI<br>Accuracy  |
| Previous best | $74.8^{c}$        | 90.7            | 91.3ª              | 91.0 <sup>a</sup>   | 99.2             | 89.2a            | $91.8^{a}$        |
| T5-Small      | 70.0              | 88.0            | 82.4               | 82.3                | 90.3             | 69.9             | 69.2              |
| T5-Base       | 72.6              | 89.4            | 87.1               | 86.2                | 93.7             | 80.1             | 78.8              |
| T5-Large      | 73.9              | 89.9            | 89.9               | 89.6                | 94.8             | 87.2             | 85.6              |
| T5-3B         | 74.4              | 89.7            | 91.4               | 91.2                | 96.3             | 91.1             | 89.7              |
| T5-11B        | 75.1              | 90.6            | 92.2               | 91.9                | 96.9             | 92.8             | 94.5              |

Results on GLUE (Source: Raffel et al., 2019)

## **BENCHMARK RESULTS**

| Model         | $_{\rm EM}^{\rm SQuAD}$ | SQuAD<br>F1   | SuperGLUE<br>Average | BoolQ<br>Accuracy  | CB<br>F1        | CB<br>Accuracy  | COPA<br>Accuracy  |
|---------------|-------------------------|---------------|----------------------|--------------------|-----------------|-----------------|-------------------|
| Previous best | $90.1^{a}$              | $95.5^{a}$    | 84.6 <sup>d</sup>    | $87.1^{d}$         | $90.5^{d}$      | $95.2^{d}$      | $90.6^{d}$        |
| T5-Small      | 79.10                   | 87.24         | 63.3                 | 76.4               | 56.9            | 81.6            | 46.0              |
| T5-Base       | 85.44                   | 92.08         | 76.2                 | 81.4               | 86.2            | 94.0            | 71.2              |
| T5-Large      | 86.66                   | 93.79         | 82.3                 | 85.4               | 91.6            | 94.8            | 83.4              |
| T5-3B         | 88.53                   | 94.95         | 86.4                 | 89.9               | 90.3            | 94.4            | 92.0              |
| T5-11B        | 91.26                   | 96.22         | 88.9                 | 91.2               | 93.9            | 96.8            | 94.8              |
| Model         | MultiRC<br>F1a          | MultiRC<br>EM | ReCoRD<br>F1         | ReCoRD<br>Accuracy | RTE<br>Accuracy | WiC<br>Accuracy | WSC<br>Accuracy   |
| Previous best | 84.4 <sup>d</sup>       | $52.5^{d}$    | $90.6^{d}$           | $90.0^{d}$         | $88.2^{d}$      | $69.9^{d}$      | 89.0 <sup>d</sup> |
| T5-Small      | 69.3                    | 26.3          | 56.3                 | 55.4               | 73.3            | 66.9            | 70.5              |
| T5-Base       | 79.7                    | 43.1          | 75.0                 | 74.2               | 81.5            | 68.3            | 80.8              |
| T5-Large      | 83.3                    | 50.7          | 86.8                 | 85.9               | 87.8            | 69.3            | 86.3              |
| T5-3B         | 86.8                    | 58.3          | 91.2                 | 90.4               | 90.7            | 72.1            | 90.4              |
| T5-11B        | 88.1                    | 63.3          | 94.1                 | 93.4               | 92.5            | 76.9            | 93.8              |

Results on SQUAD and S-GLUE (Source: Raffel et al., 2019)

## **BENCHMARK RESULTS**

| Model         | WMT EnDe<br>BLEU | WMT EnFr<br>BLEU | WMT EnRo<br>BLEU | CNN/DM<br>ROUGE-1 | CNN/DM<br>ROUGE-2 | CNN/DM<br>ROUGE-L |
|---------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
| Previous best | $33.8^{e}$       | $43.8^{e}$       | $38.5^{f}$       | $43.47^{g}$       | $20.30^{g}$       | $40.63^{g}$       |
| T5-Small      | 26.7             | 36.0             | 26.8             | 41.12             | 19.56             | 38.35             |
| T5-Base       | 30.9             | 41.2             | 28.0             | 42.05             | 20.34             | 39.40             |
| T5-Large      | 32.0             | 41.5             | 28.1             | 42.50             | 20.68             | 39.75             |
| T5-3B         | 31.8             | 42.6             | 28.2             | 42.72             | 21.02             | 39.94             |
| T5-11B        | 32.1             | 43.4             | 28.1             | 43.52             | 21.55             | 40.69             |

Results on MT/Summarization Benchmarks (Source: Raffel et al., 2019)

### T5 - EXHAUSTIVE EXPERIMENTS

#### Conclusions

- Encoder-decoder architecture works best in this "text-to-text" setting
- More data, larger models & ensembling all boost the performance
  - Larger models trained for fewer steps better than smaller models on more data
  - Ensembling: Using same base pre-trained models worse than complete separate model ensembles
- Different denoising objectives work similarly well
- Updating all model parameters during fine-tuning works best (but expensive)