Contents

1	1 Classes			
	1.1	poly.fc	ormalsum – formal sum	
		1.1.1	FormalSumContainerInterface – interface class	
			1.1.1.1 construct_with_de	efault-copy-constructing
			1.1.1.2 iterterms – iterator	of terms
			1.1.1.3 itercoefficients – ite	erator of coefficients
			1.1.1.4 iterbases – iterator	of bases
			1.1.1.5 terms – list of term	IS
			1.1.1.6 coefficients – list of	coefficients
			1.1.1.7 bases – list of bases	8
			1.1.1.8 terms map – list o	f terms
			1.1.1.9 coefficients map –	list of coefficients
			1.1.1.10 bases map – list o	f bases
	1.1.2 DictFormalSum – formal sum implemented with diction		n implemented with dictionary	
		1.1.3 ListFormalSum – formal sum implemented with list		

Chapter 1

Classes

1.1 poly.formalsum – formal sum

- Classes
 - †FormalSumContainerInterface
 - DictFormalSum
 - †ListFormalSum

The formal sum is mathematically a finite sum of terms, A term consists of two parts: coefficient and base. All coefficients in a formal sum are in a common ring, while bases are arbitrary.

Two formal sums can be added in the following way. If there are terms with common base, they are fused into a new term with the same base and coefficients added.

A coefficient can be looked up from the base. If the specified base does not appear in the formal sum, it is null.

We refer the following for convenience as terminit:

terminit

terminit means one of types to initialize dict. The dictionary constructed from it will be considered as a mapping from bases to coefficients.

Note for beginner You may need USE only **DictFormalSum**, but may have to READ the description of **FormalSumContainerInterface** because interface (all method names and their semantics) is defined in it.

${\bf 1.1.1} \quad Formal Sum Container Interface-interface\ class$

Initialize (Constructor)

Since the interface is an abstract class, do not instantiate.

The interface defines what "formal sum" is. Derived classes must provide the following operations and methods.

Operations

operator	explanation	
f + g	addition	
f - g	subtraction	
-f	negation	
+f	new copy	
f * a, a * f	multiplication by scalar a	
f == g	equality	
f != g	inequality	
f[b]	get coefficient corresponding to a base b	
b in f	return whether base b is in f	
len(f)	number of terms	
hash(f)	hash	

Methods

1.1.1.1 construct with default - copy-constructing

 $construct \quad with \quad default(self, \, maindata: \, \textit{terminit}) \, \rightarrow \, \textit{FormalSumContainerInterface}$

Create a new formal sum of the same class with self, with given only the maindata and use copy of self's data if necessary.

1.1.1.2 iterterms – iterator of terms

$iterterms(self) \rightarrow iterator$

Return an iterator of the terms.

Each term yielded from iterators is a (base, coefficient) pair.

1.1.1.3 itercoefficients – iterator of coefficients

$$itercoefficients(self) \rightarrow iterator$$

Return an iterator of the coefficients.

1.1.1.4 iterbases – iterator of bases

iterbases(self) ightarrow iterator

Return an iterator of the bases.

1.1.1.5 terms – list of terms

$ext{terms(self)} o ext{\it list}$

Return a list of the terms.

Each term in returned lists is a (base, coefficient) pair.

1.1.1.6 coefficients – list of coefficients

$\operatorname{coefficients}(\operatorname{self}) o \mathit{list}$

Return a list of the coefficients.

1.1.1.7 bases – list of bases

$bases(self) \rightarrow \mathit{list}$

Return a list of the bases.

1.1.1.8 terms map – list of terms

terms $map(self, func: function) \rightarrow FormalSumContainerInterface$

Map on terms, i.e., create a new formal sum by applying func to each term. func has to accept two parameters base and coefficient, then return a new term pair.

1.1.1.9 coefficients map - list of coefficients

$coefficients map(self) \rightarrow FormalSumContainerInterface$

Map on coefficients, i.e., create a new formal sum by applying func to each coefficient.

func has to accept one parameters coefficient, then return a new coefficient.

1.1.1.10 bases map – list of bases

$bases \quad map(self) \rightarrow \textit{FormalSumContainerInterface}$

Map on bases, i.e., create a new formal sum by applying func to each base.

func has to accept one parameters base, then return a new base.

${\bf 1.1.2}\quad {\bf DictFormalSum-formal\, sum\, implemented\, with\, dictionary}$

A formal sum implementation based on dict.

This class inherits **FormalSumContainerInterface**. All methods of the interface are implemented.

Initialize (Constructor)

See **terminit** for type of args. It makes a mapping from bases to coefficients. The optional argument defaultvalue is the default value for <code>__getitem__</code>, i.e., if there is no term with the specified base, a look up attempt returns the defaultvalue. It is, thus, an element of the ring to which other coefficients belong.

1.1.3 ListFormalSum – formal sum implemented with list

A formal sum implementation based on list.

This class inherits **FormalSumContainerInterface**. All methods of the interface are implemented.

Initialize (Constructor)

See **terminit** for type of args. It makes a mapping from bases to coefficients. The optional argument defaultvalue is the default value for **__getitem__**, i.e., if there is no term with the specified base, a look up attempt returns the defaultvalue. It is, thus, an element of the ring to which other coefficients belong.

Bibliography