Computer Science 331

Trees, Spanning Trees, and Subgraphs

Mike Jacobson

Department of Computer Science University of Calgary

Lecture #31

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #31

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #31

Trees, Spanning Trees and Subgraphs

Goals for the Lecture:

- We will introduce a particular type of graph a (free) tree that will be used in definitions of graph problems, and graph algorithms, throughout the rest of this course
- Additional important definitions and graph properties will also be introduced

Outline

- Introduction
- Paths and Cycles
- Trees
 - Definition
 - Properties
- Spanning Trees
- **5** Predecessor Subgraphs
 - Subgraphs and Induced Subgraphs
 - Predecessor Subgraphs
- 6 Example

Paths and Cycles

Paths and Simple Paths

Definition: A path in an undirected graph G = (V, E) is a sequence of zero or more edges in G

$$(v_0, v_1), (v_1, v_2), (v_2, v_3), \dots, (v_{k-1}, v_k)$$

where the second vertex (shown) in each edge is the first vertex (shown) in the next edge.

The path shown above is a path from v_0 (the first vertex in the first edge) $to v_k$ (the second vertex in the final edge).

This is a *simple path* if v_0, v_1, \ldots, v_k are distinct.

Paths and Simple Paths

Definition: The *length* of a path is the length of the *sequence* of edges in it.

Thus the path shown in the previous slide has length k.

Definition: An undirected graph G = (V, E) is a *connected* graph if there is a path from u to v, for every pair of vertices $u, v \in V$.

Mike Jacobson (University of Calgary)

Problem: There is No Completely Standard Terminology!

Problem with Terminology

- Different references tend to use these terms differently!
- For example, in some textbooks, a simple cycle is considered to be a kind of simple path, and the definition of "cycle" given is the same as the definition of simple cycle given above
- Other references only call something a "path" if it is a simple path, as defined above; they only call something a "cycle" if it is a simple cycle; and they use the term walk to refer to the more general kind of "path" that is defined in these notes

Consequence: You should check the definitions of these terms in any other references that you use!

Cycles and Simple Cycles

Definition: A cycle (in an undirected graph G = (V, E)) is a path with length greater than zero from some vertex to itself:

A cycle $(v_0, v_1), (v_1, v_2), \dots, (v_{k-2}, v_{k-1}), (v_{k-1}, v_0)$ is a *simple cycle* if v_0, v_1, \dots, v_{k-1} are distinct.

A graph G = (V, E) is acyclic if it does not have any cycles.

Trees

Definition: A *free tree* is a connected acyclic graph.

Frequently we just call a free tree a "tree."

• If we identify one vertex as the "root," then the result is the kind of "rooted tree" we have seen before.

Trees Properties

Properties 1

Properties 2

Consider graph G = (V, E):

• If G is connected then $|E| \ge |V| - 1$

 $\textbf{ 0 If } G \text{ is acyclic then } |E| \leq |V| - 1$

3 If G is connected and acyclic then |E| = |V| - 1

See the lecture supplement for proofs.

Mike Jacobson (University of Calgary)

Computer Science 331

ecture #31

#31 9 */*

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #31

10 / 00

Spanning Trees

Spanning Trees

If G = (V, E) is a connected undirected graph, then a *spanning tree* of G is a subgraph $\widehat{G} = (\widehat{V}, \widehat{E})$ of G such that

- $\hat{V} = V$ (so that \hat{G} includes all the vertices in G)
- $\hat{E} \subseteq E$
- \widehat{G} is a tree.

Consider graph G = (V, E). We will use the following properties to characterize trees:

- If G is a tree then it has |V|-1 edges
- 2 An acyclic graph with |V|-1 edges is a tree
- **3** A connected graph with |V| 1 edges is a tree

See the lecture supplement for proofs.

Spanning

Example

Suppose G = (V, E) is as follows.

Example Tree 1

Example Tree 2

Is the following graph $G_1 = (V_1, E_1)$ a spanning tree of G? Yes!

Is the following graph $G_2 = (V_2, E_2)$ also a spanning tree of G? Yes!

Example Tree 3

Is the following graph $G_3 = (V_3, E_3)$ is also a spanning tree of G? No! Doesn't span G (vertex g missing)

Predecessor Subgraphs Subgraphs and Induced Subgraphs

Subgraphs and Induced Subgraphs

Suppose G = (V, E) is a graph.

- $\widehat{G} = (\widehat{V}, \widehat{E})$ is a *subgraph* of G if \widehat{G} is a graph such that $\widehat{V} \subseteq V$ and $\widehat{E} \subseteq E$
- \bullet $\widetilde{G} = (\widetilde{V}, \widetilde{E})$ is an induced subgraph of G if
 - \bullet \widetilde{G} is a subgraph of G and, furthermore
 - $\widetilde{E} = \left\{ (u, v) \in E \mid u, v \in \widetilde{V} \right\}$, that is, \widetilde{G} includes all the edges from Gthat it possibly could

Example

 G_2 is an *induced subgraph* of G_1 .

 G_3 is a subgraph of G_1 , but G_3 is **not** an induced subgraph of G_1 .

Predecessor Subgraphs

Let G = (V, E) and let $s \in V$. Construct a subset V_p of V, a subset E_p of E, and a function $\pi: V \to V \cup \{NIL\}$ as follows.

- Initially, $V_p = \{s\}$, $E_p = \emptyset$, and $\pi(v) = \text{NIL}$ for every vertex $v \in V$.
- The following step is performed, between 0 and |V|-1 times:
 - Pick some vertex u from the set V_p .
 - Pick some vertex $v \in V$ such that $v \notin V_p$ and $(u, v) \in E$. (The process must end if this is not possible to do.)
 - Set $\pi(v)$ to be u, add the vertex v to the set V_p , and add the edge $(u,v)=(\pi(v),v)$ to E_p

Note that $V_p \subseteq V$, $E_p \subseteq E$, and each edge in E_p connects pairs of vertices that each belongs to V_p each time the above (interior) step is performed — so that $G_p = (V_p, E_p)$ is always a subgraph of G.

Example

Mike Jacobson (University of Calgary)

Predecessor Subgraph Property

The graph $G_p = (V_p, E_p)$ that has been constructed is called a *predecessor* subgraph.

Claim:

Let $G_p = (V_p, E_p)$ be a predecessor subgraph of an undirected graph G.

- a) G_p is a subgraph of G and G_p is a tree.
- b) If $V_p = V$ then G_p is a spanning tree of G.

Proof.

Part (a) is true because $|E_p| = |V_p| - 1$, by the construction of V_p and of E_p , and G_p is always connected, so G_p is a tree, as well as a subgraph of G.

Part (b) now follows by the fact that E_p is a subset of E, so that G_p is a subgraph of G, and by the fact that $V_p = V$.