1

Assignment 12

Rubeena Aafreen

Download the latex-tikz codes from

https://github.com/rubeenaafreen20/EE5609/tree/master/Assignment12

1 Problem

(UGC-june2017,74):

For any $n \times n$ matrix B, let $N(B) = \{X \in \mathbb{R}^n : BX = 0\}$ be the null space of B. Let A be a 4×4 matrix with dim(N(A - 4I)) = 2, dim(N(A - 2I)) = 1 and rank(A) = 3 Which of the following are true?

- 1) 0,2 and 4 are eigenvalues of A
- 2) determinant(A)=0
- 3) A is not diagonalizable
- 4) trace(A)=8

2 Solution

Given	A is a 4×4 matrix. dim(N(A-4I)) = 2, dim(N(A-2I)) = 1, and rank(A) = 3
Eigenvalues of a matrix	The number λ is an eigenvalue of a matrix A if and only if $A - \lambda I$ is singular, i.e. $ A - \lambda I = 0$ For $\lambda = 2$ Given that $dim(N(A - 2I)) = 1$ $\Rightarrow rank(A - 2I) = 4 - 1 = 3$ $\Rightarrow (A - 2I)$ is not a full rank matrix Therefore $ A - 2I = 0$ $\Rightarrow 2$ is an eigenvalue of A with multiplicity 2. Similarly, for $\lambda = 4$ Given that $dim(N(A - 4I)) = 2$ $\Rightarrow rank(A - 4I) = 4 - 2 = 2$ $\Rightarrow (A - 4I)$ is not a full rank matrix Therefore $ A - 4I = 0$ $\Rightarrow 4$ is an eigenvalue of A with multiplicity 1.

	For $\lambda = 0$ Given that $rank(A) = 3$ $\Rightarrow A$ is not a full rank matrix Therefore $ A = 0$ $\Rightarrow 0$ is an eigenvalue of A with multiplicity 1.
Determinant	Given that $rank(A) = 3$ $\implies A$ is not a full rank matrix Therefore $ A = 0$
Diagonalizability	An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigen vectors. $rank(A) + nullity(A) = n$ \implies for $\lambda = 0$, $nullity(A - \lambda I) = nullity(A) = 4 - 3 = 1$ \implies There exists only one linearly independent eigen vector corresponding to 0 eigen value Thus, matrix A is not diagonalizable.
Trace	Trace(A)=sum of eigen values $\implies Trace(A) = 0 + 2 + 2 + 4 = 8$
Conclusion	Option (1), (2) and (4) are correct