問 1.

化学結合の生成は、次の二準位系ハミルトニアン行列で大雑把にモデル化できる。

$$\mathbf{H}(\lambda) = \begin{pmatrix} E_1 & \lambda \Delta \\ \lambda \Delta & E_2 \end{pmatrix} \tag{1}$$

ここで E_1 および E_2 は、結合生成に関与=する原子軌道のエネルギー準位であり、 λ は原子軌道間に働く相互作用(摂動)の強さである。このとき、以下の問い答えよ。

- (a). ハミルトニアン行列 $\mathbf{H}(\lambda)$ のエネルギー固有値 ϵ_1 及び ϵ_2 を相互作用 λ の関数として計算せよ。
- (b). 問い (a) で得られたエネルギーは、 $\lambda \ll |E_1-E_2|$ と仮定出来る場合にはどうなるか。 λ に関して 2 次の項まで考えよ。
- (c). 問い(b)で得られたネルギーは、それぞれ結合性、反結合性軌道のエネルギーである。このとき、これらのエネルギーギャップが最も大きくなるのはどのような場合か。

ヒント: $\sqrt{a+bx}$ を x に関してマクローリン展開し、x の 1 次の項まで考える。これに λ^2 などを適宜代入する。