IMPA Tech MD21 Introdução à Estatística 14 de maio 2025

Primeira avaliação da disciplina Introdução à estatística (MD21). Notem que essa é uma avaliação com nota máxima de 10 pontos, mesmo a soma de pontos das quatro questões podendo ultrapssar esse valor. Ou seja, o total de pontos desse exame consiste no mímino entre a nota atingida e 10 pontos.

1. [3 pontos] Seja X_1, X_2, \dots, X_n variáveis aleatórias independentes com função de probabilidade acumulada $F_X(x)$. Seja a seguinte transformação:

$$Y_i(x) = \begin{cases} 1 & \text{se } X_i \le x, \\ 0 & \text{se } X_i > x. \end{cases} \qquad i = 1, 2, \dots, n.$$

Seja $\widehat{F_X(x)} = \frac{1}{n} \sum_{i=1}^n Y_i(x)$ a função acumulada empírica.

- (a) [1 ponto] Encontre $\mathbb{E}[Y_i(x)]$ e $\mathbb{V}[Y_i(x)]$
- (b) [1 ponto] Mostre que $\widehat{F_X(x)}$ é um estimador não viesado, ou seja, $\mathbb{E}[\widehat{F_X(x)}] = F_X(x)$.
- (c) [1 ponto] Calcule $\mathbb{V}[\widehat{F_X(x)}]$
- 2. [3 pontos] Seja X_1, X_2, \ldots, X_n variáveis aleatórias independentes com distribuição Pareto com parâmtetros α e x^* , cuja função de distribuição acumulada é dada por

$$F_X(x) = \mathbb{P}(X \le x) = \left\{ \begin{array}{cc} 1 - \left(\frac{x^\star}{x}\right)^\alpha & \text{se } x \ge x^\star, \\ 0 & \text{se } x < x^\star. \end{array} \right. \quad \alpha > 0, \quad x^\star > 0.$$

- (a) [1 ponto] Encontre a função de densidade de X.
- (b) [1 ponto] Calcule o primeiro momento de \boldsymbol{X}
- (c) [1 ponto] Escreva a função de verossimilhança de α e x^* , e mostre que os estimadores de máxima verossimilhança de α e x^* são

$$\hat{x}^{\star} = \min_{i} x_{i}$$
 e $\hat{\alpha} = \frac{n}{\sum_{i} \ln(x_{i}/\hat{x^{\star}})}$

3. [3 pontos] Seja X uma variável aleatória com função geradora de momentos dada por

$$M_X(t) = \exp\left\{\lambda[e^t - 1]\right\}$$

- (a) [1 ponto] Encontre a média e a variância de \boldsymbol{X}
- (b) [1 ponto] Seja X_1,X_2,\ldots,X_n variáveis aleatórias independentes com a mesma distribuição de X. Defina $Y=\sum_{i=1}^n X_i$. Encontre a função geradora de momentos de Y.
- (c) [1 ponto] Encontre o valor esperado e a variância de ${\cal Y}$
- 4. [3 pontos] Seja Y_1, Y_2, \dots, Y_T variáveis aleatórias com a seguinte distribuição de probabilidades

$$Y_t \mid Y_{t-1} = y_{t-1} \sim N(\alpha y_{t-1}, \sigma^2), \quad t = 2, 3, \dots, T, Y_1 \sim N(0, \sigma^2)$$

onde $\alpha\in(-1,1)$, $\sigma^2>0$, e a função densidade da distribuição normal com média μ e variância σ^2 é dada por

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \quad x \in \mathbb{R}.$$

Suponha que Y_t dependa do histórico Y_1,Y_2,\ldots,Y_{t-1} somente através de Y_{t-1} , ou seja, $f_{Y_t|Y_1,Y_2,\ldots,Y_{t-1}}(y)=f_{Y_t|Y_{t-1}}(y)$.

- (a) [1 ponto] Escreva a função de densidade conjunta de Y_1, Y_2, \dots, Y_T .
- (b) [1 ponto] Encontre os valores de α e σ^2 que maximizam a função de verossimilhança (calculada no item anterior).
- (c) [1 ponto] Suponha que queremos prever a próxima realização da variável aleatória estudada, X_{T+1} , condicional aos valores X_1, X_2, \ldots, X_T . Proponha um estimador para X_{T+1} .