DEFINIZIONI ALGEBRA LINEARE

SISTEMA LINEARE

1) È un insieme di m equazioni lineari con n incognite che devono essere verificate contemporaneamente.

SPAZIO EUCLIDEO IN \mathbb{R}^n

- 2) \mathbb{R}^n
 - \checkmark Fissato un generico intero n, si denoterà con \mathbb{R}^n l'insieme delle n-uple ordinate di numeri reali. L'intero n si dirà dimensione di \mathbb{R}^n .
 - ✓ Dato $x \in \mathbb{R}^n$, con $x = (x_1, x_2, ..., x_n)$, il numero reale x_i è detto **i-esima componente** del vettore x.
 - $\checkmark \forall x, y \in \mathbb{R}^n : x = y \equiv con \forall i \in \{1, 2, ..., n\}, x_i = y_i$
- 3) SOMMA DI VETTORI: $\forall x, y \in \mathbb{R}^n : x + y \equiv (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$
- 4) PRODOTTO SCALARE PER VETTORE:

```
\forall x \in \mathbb{R}^n, \ \forall \lambda \in \mathbb{R} : \lambda x = (\lambda x_1, \lambda x_2, ..., \lambda x_n)
```

5) ASSIOMI SPAZIO VETTORIALE

```
\forall x, y, z \in \mathbb{R}^n : x + (y + z) = (x + y) + z;
    I.
   II.
            \forall x,y \in \mathbb{R}^n: x+y=y+x;
            \forall x, y \in \mathbb{R}^n, \ \forall \lambda \in \mathbb{R} : \lambda(x + y) = \lambda x + \lambda y;
  III.
            \forall x \in \mathbb{R}^n, \ \forall \lambda, \mu \in \mathbb{R} : (\lambda + \mu)x = \lambda x + \mu x;
  IV.
   V.
            \forall x \in \mathbb{R}^n, \ \forall \lambda, \mu \in \mathbb{R} : \lambda(\mu x) = (\lambda \mu)x;
  VI.
            \forall x \in \mathbb{R}^n : 1x = x;
            \exists y \in \mathbb{R}^n , \forall x \in \mathbb{R}^n : y + x = x;
 VII.
            \forall x \in \mathbb{R}^n, \exists y \in \mathbb{R}^n : y + x = 0;
VIII.
            \forall x \in \mathbb{R}^n : \mathbf{0}x = \mathbf{0}:
  IX.
   X.
            \forall x \in \mathbb{R}^n : (-1)x = -x;
  XI.
            \forall x,y \in \mathbb{R}^n : -(x+y) = -x-y.
```

6) NORMA

$$\forall u \in \mathbb{R}^n |u| \equiv \sqrt{u_1^2 + u_2^2 + \dots + u_n^2} = \sqrt{\sum_{i=1}^n u_i^2}$$

<u>ASSIOMI</u>

- $1. \quad \forall x \in \mathbb{R}^n : |x| \geq 0;$
- II. $|x| = 0 \Leftrightarrow x = 0$;
- III. $\forall x \in \mathbb{R}^n$, $\forall \lambda \in \mathbb{R} : |\lambda x| = |\lambda||x|$;
- IV. $\forall x,y \in \mathbb{R} : |x+y| \le |x| + |y|$.

7) VERSORI

Dato un vettore $u \in \mathbb{R}^n$, e supposto $u \neq 0$, si definisce *versore* di *u* il vettore ottenuto considerandone il multiplo secondo il reciproco della sua norma, ossia $\frac{1}{|u|}u$.

8) DISTANZA

$$\forall u, v \in \mathbb{R}^n \ d(u, v) \equiv |u - v| \equiv \sqrt{\sum_{i=1}^n (u_i - v_i)^2}$$

ASSIOMI

- I. $\forall u, v \in \mathbb{R}^n d(u, v) \geq 0$;
- II. $\forall u, v \in \mathbb{R}^n d(u, v) = 0 \Leftrightarrow u = v$;
- III. $\forall u, v \in \mathbb{R}^n d(u, v) = d(v, u)$;
- IV. $\forall u, v, w \in \mathbb{R}^n d(u, v) \leq d(u, w) + d(w, v)$.

9) SFERA EUCLIDEA

BALL EUCLIDEA

$$\forall u_0 \in \mathbb{R}^n$$
, $\forall \delta \in \mathbb{R}$ $S(u_0, \delta) \equiv \{v \in \mathbb{R}^n : d(u_0, v) = \delta\}$

BALL APERTA

$$B(u_0,\delta) \equiv \{v \in \mathbb{R}^n : d(u_0,v) < \delta\}$$

BALL CHIUSA

$$B(u_0, \delta) \equiv \{v \in \mathbb{R}^n : d(u_0, v) \leq \delta\}$$

10)PRODOTTO SCALARE IN \mathbb{R}^n

$$\forall u, v \in \mathbb{R}^n \ uv \equiv u_1v_1 + u_2v_2 + \cdots + u_nv_n \equiv \sum_{i=1}^n u_iv_i$$

ASSIOMI

- I. $\forall u \in \mathbb{R}^n \quad uu \geq 0$;
- II. $uu = 0 \Leftrightarrow u = 0$;
- III. $\forall u, v \in \mathbb{R}^n \ uv = vu;$
- IV. $\forall u, v, w \in \mathbb{R}^n$, $\forall \alpha, \beta \in \mathbb{R}$ $(\alpha u + \beta v)w = \alpha uw + \beta vw$.

11) COSENO DELL' ANGOLO FRA VETTORI NON NULLI

$$\forall u, v \in \mathbb{R}^n$$
 $\cos \widehat{uv} \equiv \frac{uv}{|u||v|}$

12)PRODOTTO SCALARE IN \mathbb{C}^n

$$\forall u, v \in \mathbb{C}^n \ uv \equiv \sum_{i=1}^n u_i \overline{v_i}$$

ASSIOMI

- I. $\forall u \in \mathbb{C}^n$ $uu \equiv \sum_{i=1}^n u_i \overline{u_i} \equiv \sum_{i=1}^n |u_i|^2 \geq 0$;
- II. $uu = 0 \Leftrightarrow u = 0$;
- III. $\forall u, v \in \mathbb{C}^n \quad vu = \overline{uv}$; EMISIMMETRIA;
- IV. $\forall u, v, w \in \mathbb{C}^n$, $\forall \alpha, \beta \in \mathbb{C}$ $u(\alpha v + \beta w) = \overline{\alpha}uv + \overline{\beta}uw$ e $(\alpha u + \beta v)w = \alpha uw + \beta vw$ SESQUILINEARITÀ.

13)PROIEZIONE

$$P_v u \equiv \frac{uv}{|v|^2} v$$
 , $v \neq 0$

14) AREA PARALLELOGRAMMA E TRIANGOLO

$$Area_P(u,v) = \sqrt{|u|^2|v|^2 - (uv)^2}$$

 $Area_T(u,v) = \frac{1}{2} Area_P(u,v)$

15)PRODOTTO VETTORE IN \mathbb{R}^3

$$u \wedge v = egin{pmatrix} u_1 \ u_2 \ u_3 \end{pmatrix} \wedge egin{pmatrix} v_1 \ v_2 \ v_3 \end{pmatrix} = egin{pmatrix} u_2 v_3 - u_3 v_2 \ -(u_1 v_3 - u_3 v_1) \ u_1 v_2 - u_2 u_1 \end{pmatrix} = egin{pmatrix} det \ \begin{vmatrix} u_1 & v_2 \ u_3 & v_3 \end{vmatrix} \ -det \ \begin{vmatrix} u_1 & v_1 \ u_3 & v_3 \end{vmatrix} \ det \ \begin{vmatrix} u_1 & v_1 \ u_2 & v_2 \end{vmatrix} \end{pmatrix}$$

ASSIOMI

- I. $\forall u, v, w \in \mathbb{R}^3$, $\forall \lambda, \mu \in \mathbb{R} : (\lambda u + \mu v) \land w = \lambda u \land w + \mu v \land w$;
- II. $\forall u, v \in \mathbb{R}^3 : u \wedge v = -v \wedge u;$
- III. $\forall u \in \mathbb{R}^3 : u \wedge u = 0$;
- IV. $\forall u, v, w \in \mathbb{R}^n : u \wedge v \wedge w = v(uw) w(uv)$.

16) SISTEMA ORTOGONALE E ORTONORMALE

$$u_1, ..., u_n$$
 si dicono *ORTOGONALI* se $u_i u_j = 0 \ \forall i, j = 1, ..., n$
Se $|u_1| = \cdots = |u_n| = 1$, si dicono *ORTONORMALI*.

17) COMPLEMENTO ORTOGONALE $W^{\perp} = \{x \in X : xw = 0 \ \forall \ w \in W\}$

TEORIA DELLA DIMENSIONE

18)SPAN

$$Span(u_1, u_{2, \dots, u_n}) = \langle u_1, u_{2, \dots, u_n} \rangle := \left\{ \sum_{i=1}^n \alpha_i u_i, \quad \alpha_i \in \mathbb{R} \ o \ \mathbb{C} \right\}$$

19) DIPENDENZA LINEARE

Un sistema di vettori è detto *LINEARMENTE DIPENDENTE* se almeno uno di essi è combinazione lineare degli altri. Se $u_1, u_2, ..., u_n$ sono dipendenti allora $\exists \ \alpha_1, ..., \alpha_n$ NON TUTTI NULLI tali che $\sum_{i=1}^n \alpha_i u_i = \mathbf{0}$

20) INDIPENDENZA LINEARE

Un sistema di vettori che NON è dipendente si dice *LINEARMENTE INDIPENDENTE.* $u_1, u_2, ..., u_n$ linearmente indipendenti se $\sum_{i=1}^n \alpha_i u_i = 0$, è verificata solo se $\forall \alpha_i = 0$

21)BASE

Una base di uno spazio vettoriale è un SISTEMA DI GENERATORI INDIPENDENTE:

$$X = \langle x_1, x_2, ..., x_n \rangle$$
 e $x_1, x_2, ..., x_n$ indipendenti

22) SOMMA DIRETTA

Posti X_i , i=1,...,n sottospazi di X e posto $\sum_{i=1}^n X_i = \{\sum_{i=1}^n x_i : x_i \in X_i\}$ come sottospazio somma, si dirà che tale somma sia *DIRETTA* e si scrive:

$$\sum_{i=1}^{n} X_i = \bigoplus_{i=1}^{n} X_i$$
 se $\forall x_i, x_i' \in X_i \to \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i' \quad x_i = x_i' \quad \forall i = 1, ..., n$

MATRICI

23)MATRICE

Una *matrice* $\mathbf{m} \times \mathbf{n}$, a m righe ed n colonne, a termini razionali, reali o complessi, è una *funzione* $\mathcal{A} : \{ \mathbf{1}, \dots, \mathbf{m} \} \times \{ \mathbf{1}, \dots, \mathbf{n} \} \to \mathbb{Q}$ $\mathbf{o} \mathbb{R}$ $\mathbf{o} \mathbb{C}$. Si usano i simboli $\mathbb{Q}^{m \times n}$, $\mathbb{R}^{m \times n}$, $\mathbb{C}^{m \times n}$ per denotare l'insieme delle matrici $\mathbf{m} \times \mathbf{n}$ a termini rispettivamente razionali, reali o complessi.

24) SOMMA TRA MATRICI E PRODOTTO MATRICE PER UNO SCALARE

$$(A + B)_{ij} = A_{ij} + B_{ij}$$
 $(\alpha A)_{ij} = \alpha A_{ij}$
 $SOMMA$ $PRODOTTO PER SCALARE$

25) MATRICE QUADRATA, TRIANGOLARE, DIAGONALE

- $\checkmark A \in \mathbb{R}^{m \times n}$ con m = n, è detta QUADRATA;
- ✓ Una matrice QUADRATA $(a_{ij}) \in \mathbb{R}^{n \times n}$ viene detta *DIAGONALE* se $a_{ij} = 0$ *per i ≠ j*
- \checkmark Una matrice QUADRATA $\left(a_{ij}
 ight)\in~\mathbb{R}^{~n imes n}$ viene detta <code>TRIANGOLARE</code> se $a_{ij}=0$ <code>per i>j</code> .

26)MATRICE IDENTICA

La matrice
$$(a_{ij}) \in \mathbb{R}^{n \times n} : \begin{cases} 1 \text{ se } i = j \\ 0 \text{ se } i \neq j \end{cases}$$
 è detta *IDENTICA* (in $\mathbb{R}^{n \times n}$). Talvolta si scrive $\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$ " $\delta \text{ di KRONECKER}$ ".

27)MINORE

Una matrice $\mathbb{R}^{k \times k}$ ottenuta sopprimendo da una matrice $A \in \mathbb{R}^{n \times n}$ n - k righe ed n - k colonne viene detta *MINORE* (estratto) da A.

I *minori principali* sono quelli nei quali vengono soppresse righe e colonne dello stesso indice.

28) CONVENZIONE DI EINSTEIN (-LANDAU)

Se un prodotto di quantità dipendenti da indici contiene una coppia di indici uguali, è sottintesa *una somma di tutti i prodotti ottenuti* facendo variare gli indici in tutti i valori possibili.

$$u_i v_i \equiv \sum_{i=1}^n u_i v_i$$

29) PRODOTTO TRA MATRICI

Date $A \in \mathbb{R}^{m \times n}$ e $B \in \mathbb{R}^{n \times p}$ si definisce $AB \in \mathbb{R}^{m \times p}$ ponendo:

$$(AB)_{ij} = A_{ih}B_{hj} \equiv \sum_{h=1}^{n} A_{ih}B_{hj}$$

30) MATRICE TRASPOSTA

Data $A \in \mathbb{R}^{m \times n}$, si definisce la matrice *TRASPOSTA* $A^* \in \mathbb{R}^{n \times m}$: $(A^*)_{ij} = A_{ji}$

31)MATRICE AGGIUNTA ED AUTOAGGIUNTA

Data $A\in\mathbb{C}^{m imes n}$, si definisce la matrice $AGGIUNTA\,A^*\in\mathbb{C}^{n imes m}:(A^*)_{ij}=\overline{A}_{ji}$

Se $A = A^*$, la matrice è detta *AUTOAGGIUNTA*.

32) MATRICE REGOLARE E MATRICE SINGOLARE

 $A \in \mathbb{R}^{n \times n}$ si dice *REGOLARE* se le sue colonne sono indipendenti, *SINGOLARE* altrimenti.

33)INVERTIBILITÀ

 $A \in \mathbb{R}^{n \times n}$ si dice *INVERTIBILE* se $\exists X \in \mathbb{R}^{n \times n}$ tale che AX = I (la matrice identica)

34) DETERMINANTE

Si definisce $det(A_1,A_2,...,A_n)=det(A)$ la funzione $det: \mathbb{R}^n \times \mathbb{R}^n \times ... \times \mathbb{R}^n \to \mathbb{R}$ verificante le seguenti *proprietà:*

- o $det(e_1, e_2, ..., e_n) = 1;$
- $o \quad det(A_1,\ldots,A_i,\ldots,A_j,\ldots,A_n) = -det(A_1,\ldots,A_i,\ldots,A_i,\ldots,A_n);$
- $o \quad det (A_1 + B_1, A_2, ..., A_n) = det (A_1, A_2, ..., A_n) + det (B_1, A_2, ..., A_n);$
- $\circ \quad det(\lambda A_1, A_2, ..., A_n) = \lambda det(A_1, A_2, ..., A_n).$

APPLICAZIONI LINEARI

35)OPERATORE LINEARE

 $\mathcal{A}: X \to Y$ verificante la proprietà di *linearità*:

$$\mathcal{A}(x+x') = \mathcal{A}(x) + \mathcal{A}(x') \ \forall x, x' \in X$$
 $\mathcal{A}(\lambda x) = \lambda \mathcal{A}(x)$ $\mathcal{A}(\lambda x) = \lambda \mathcal{A}(x)$ $\mathcal{A}(\lambda x) = \lambda \mathcal{A}(x)$

36) INIETTIVA, SURIETTIVA, BIIETTIVA

37)NUCLEO: *Ker A* = { $x \in X : A(x) = 0$ }

38)IMMAGINE: $A(x) = \{ y \in Y : \exists x \in X \text{ per cui } A(x) = y \}$

39) MATRICE ASSOCIATA AD \mathcal{A} E A DUE BASI

$$\mathcal{A}(e_i) = \sum_{j=1}^n A_{ij} \, e_j{}'$$

40) MATRICE ASSOCIATA A CAMBIO DI BASE

La matrice di *cambio di base* è definita come la *matrice* avente come *colonne le coordinate di ciascuno dei vettori* di $\mathbf{e_1}'$... $\mathbf{e_n}'$ rispetto alla base $\mathbf{e_1}$... $\mathbf{e_n}$ e cioè $\mathbf{M} = (\mathbf{m_{ii}})$ ove:

$$e_j' = \sum_{i=1}^n m_{ij} e_i$$

41)MATRICE ASSOCIATA A FORMA BILINEARE

Data un'applicazione bilineare α definita sulle coppie x e y di vettori di X, a valori reali, e una base u_i , i=1..n in X, si definisce matrice associata all'applicazione bilineare la matrice $a_j^i=\alpha(u_i,u_j)$. Essa verifica $\alpha(x,y)=x_i'$ a_j^i y^j , ove x_i' è il vettore (riga) trasposto del vettore delle coordinate di x rispetto alla base di X, e y^j è il vettore (colonna) delle coordinate di y.

42) SPAZIO DUALE

Uno spazio duale è lo *spazio vettoriale* formato da tutti i funzionali lineari $f: V \to K$ tale che:

$$(f+g)(w) := f(w) + g(w)$$

$$(\alpha f)(w) := \alpha f(w)$$

43) BASE DUALE

Sia
$$B = \{v_1, ..., v_n\}$$
 una base per V, la base duale $B^* = \{v^*_1, ..., v_n^*\}$ è definita dalle relazioni $v^*_i(v_j) = \begin{cases} 1 \text{ se } i = j \\ 0 \text{ se } i \neq j \end{cases}$

44) APPLICAZIONE INVERSA

$$\mathcal{A}: X \to Y$$
 è detta INVERTIBILE se $\exists \mathcal{A}^{-1}: Y \to X$, detta INVERSA tale che: $\mathcal{A}^{-1}ig(\mathcal{A}(x)ig) = x$, $\forall x \in X$ e $\mathcal{A}\Big(\mathcal{A}^{-1}(y)\Big) = y$, $\forall y \in Y$

45)RANGO

 $\mathcal{A}: X \to Y$, lineare, si definisce il RANGO di \mathcal{A} come la dimensione della sua immagine

46)TIPI DI APPLICAZIONE LINEARE

Sia $\mathcal{A}: X \to Y$, $\mathcal{B}: X \to X$: allora

OMOMORFISMO | A è lineare | A è lineare e suriettiva | A è lineare e diniettiva | A è lineare e diniettiva | A è lineare e biiettiva | A è lineare e biiettiva | ENDOMORFISMO | B è un omomorfismo | B è un isomorfismo

47) ISOMORFISMO CANONICO

Dato X reale, di dimensione finita n>0, e data una sua base e_1 ... e_n arbitraria, si definisce l'ISOMORFISMO CANONICO $\phi: X \to \mathbb{R}^n$ relativo alla base e_1 ... e_n come l'applicazione che associa ad ogni $x \in X$ le proprie coordinate (x_1 ... x_n) $\in \mathbb{R}^n$ rispetto alla base.

48) APPLICAZIONE (FORMA) BILINEARE

Dato uno spazio vettoriale reale, una funzione (o anche forma, o applicazione) bilineare è una funzione $\alpha: X \times X \to \mathbb{R}$ lineare rispetto ad ogni variabile, ossia tale che $u \to \alpha(u,v)$ sia lineare per ogni v fissata, e $v \to \alpha(u,v)$ sia lineare per ogni u fissata.

TEORIA SPETTRALE

49) FORMA QUADRATICA

Dato uno spazio vettoriale reale X, una funzione $H: X \to \mathbb{R}$ è detta forma quadratica su X se esiste una forma bilineare α su X tale che $H(u) = \alpha(u, u) \ \forall u \in X$.

50) DIAGONALIZZABILITÀ

- ✓ Una forma bilineare $\alpha(u, v)$ [o quadratica $\alpha(u, u)$] su uno spazio reale X di dimensione finita n è detta diagonale rispetto ad una base $e_1, e_2, ..., e_n$ se la matrice $\alpha_{ij} = \alpha(e_i, e_j)$ che la rappresenta è diagonale. Verrà inoltre detta diagonalizzabile se esiste una base rispetto alla quale essa è diagonale.
- ✓ Dato uno spazio vettoriale (reale o complesso) X e un operatore $A: X \to X$, diremo che tale operatore è diagonalizzabile se esistono basi di X formate da autovettori di A.

51) AUTOVALORE, AUTOVETTORE, AUTOSPAZIO, SPETTRO, BASE SPETTR.

Sia $\mathcal{A}: X \to X$ se $u \in X$, $u \neq 0$ e \exists uno scalare λ tali che $\mathcal{A}(u) = \lambda u$, allora u è un autovettore e λ il suo autovalore.

L'autospazio relativo a un certo λ_1 è $< u_1, ..., u_k >$, con $u_1, ..., u_k : \mathcal{A}(u) = \lambda_1 u$ o anche $Ker(A - \lambda_1 Id)$.

L'insieme di tutti gli autovalori di \mathcal{A} è detto spettro di \mathcal{A} . Una base spettrale di X è una base formata da autovettori di \mathcal{A}

52) POLINOMIO CARATTERISTICO

Data una matrice $A \in \mathbb{R}^{n \times n}$, si definisce equazione caratteristica di A l'equazione $\det(A - \lambda I) = 0$ Il polinomio $p(\lambda) = \det(A - \lambda I)$ è detto polinomio caratteristico di A.

53) ESPONENZIALE COMPLESSO

$$z \in \mathbb{C}, \quad x, y \in \mathbb{R}$$

$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x} (\cos y + i \sin y)$$

54) DERIVATA

Data una funzione f(t) = g(t) + i h(t), si definisce la sua derivata ponendo $f(t) \equiv g(t) + ih(t)$ in ogni punto nel quale entrambe le componenti reali g(t) = g(t) + ih(t) in ogni punto nel quale entrambe le componenti reali g(t) = h(t) siano derivabili.

55)OPERATORE AUTOAGGIUNTO

Sia $\mathcal{A}: X \to X$. \mathcal{A} è autoaggiunto se e solo se $(\mathcal{A}(u))v = u(\mathcal{A}(v)) \ \forall \ u, v \in X$.

TEOREMI PRINCIPALI

- 1. FORMULA DI CRAMER
- 2. TEOREMA DI SYLVESTER
- 3. C.N.S $A_1 \dots A_n$ DIPENDENTE $\rightarrow det(A_1 \dots A_n) = 0$
- 4. LEMMA DI SCAMBIO
- 5. LEMMA FONDAMENTALE
- 6. C.N.S SOMMA DIRETTA
- 7. TEOREMA DI ESISTENZA DELLA PROIEZIONE
- 8. TEOREMA DI UNICITA' DELLA PROIEZIONE
- 9. TEOREMA DI EUCLIDE-VIETE
- 10. TEOREMA DI DECOMPOSIZIONE ORTOGONALE
- 11. MINIMA DISTANZA
- 12. TEOREMA DI PITAGORA
- 13. IDENTITÀ
- 14. DISUGUAGLIANZA DI SCHWARTZ
- 15. DISUGUAGLIANZA TRIANGOLARE
- 16. EQUIVALENZA DELLE DUE DISUGUAGLIANZE
- 17. $|u_v| \le |u|$
- 18. C.N.S INVERTIBILITÀ MATRICI
- 19. TEOREMA DI CRAMER PER LE APPLICAZIONI LINEARI
- 20. PRINCIPIO DI SOVRAPPOSIZIONE
- 21. TEOREMA DI GRASSMANN PER LE APPLICAZIONI LINEARI
- 22. TEOREMA DI GRASSMANN PER I SOTTOSPAZI
- 23. TEOREMA DEI GENERATORI
- 24. TEOREMA MASSIMO NUMERO DI VETTORI INDIPENDENTI
- 25. TEOREMA DI ESISTENZA DELLA BASE
- 26. TEOREMA DEL COMPLETAMENTO
- 27. TEOREMA DELLA DIMENSIONE
- 28. TEOREMA DI INVARIANZA DELLA DIMENSIONE
- 29. TEOREMA DI DECOMPOSIZIONE DEL DOMINIO
- 30. TEOREMA DEI GENERATORI DELL'IMMAGINE
- 31. TEOREMA ISOMORFISMO CANONICO
- 32. TEOREMA DI ESISTENZA DEGLI AUTOVETTORI / DEI SOTTOSPAZI INVARIANTI
- 33. TEOREMA DI INDIPINDENZA DEGLI AUTOVETTORI
- 34. C.N.S OPERATORE LINEARE AUTOAGGIUNTO
- 35. TEOREMA SEGNI FORMA QUADRATICA
- 36. CRITERIO DI DIAGONALIZZABILITÀ
- 37. TEOREMA DEGLI AUTOVALORI SEMPLICI
- 38. TEOREMA SPETTRALE CASO COMPLESSO
- 39. TEOREMA SPETTRALE CASO REALE
- 40. TEOREMA FONDAMENTALE DELL' ALGEBRA