Priprava predstavitve z okoljem Beamer

Robert Šeliga(23211220)

Fakulteta za Strojništvo

23. oktober 2023

University of Ljubljana Faculty of Mechanical Engineering

Kazalo

- Uvod
- 2 Potek naloge
 - Nadaljevaje poteka naloge
 - Uporaba datotek in funkcij
 - Izpis odstopanja in napake števila pi
 - Izris točk
- Zaključek

ullet V tej predstavitvi boste izvedeli kako je potekala moja domača naloga pri predmetu Naparedna računalniška orodja.Naloga je zahtevala, da s pomočjo Monte Carlo izračunamo priblužek števila π

Potek naloge

• s pomočjo metode Monte Carlo smo izračunali približno vrednost števila π .

Nadaljevaje poteka naloge

 Metodo Monte Carlo smo reševali s pomočjo Metlaba, kot je prikazano na spodnji sliki

```
%generiranje naključnih točk
x=2*rand(T,1)-1;
y=2*rand(T,1)-1;
%iskanje točk znotraj kroga
razdelitev=sqrt(x.^2+y.^2);
notr=(razdelitev <= 1);
x_notr = x(notr);
y_notr = y(notr);</pre>
```

Slika: Metoda Monte Carlo

Uporaba datotek in funkcij

- Morali smo uporabiti dve datoteki in eno funkcijo, ki so navedena spodaj:
 - Funkcijska datoteka,

Uporaba datotek in funkcij

- Morali smo uporabiti dve datoteki in eno funkcijo, ki so navedena spodaj:
 - Funkcijska datoteka,
 - Programska datoteka,

Uporaba datotek in funkcij

- Morali smo uporabiti dve datoteki in eno funkcijo, ki so navedena spodaj:
 - Funkcijska datoteka,
 - Programska datoteka,
 - Anonimna funkcija

Izpis odstopanja in napake pri π

• Ob zagonu funkcije nam bo izpisalo kakšna je napaka in naš približek π , videli smo da je naša natančnost odvisna on našega števila točk. Večje kot bo število točk večja bo natančnost

```
Odstopek:0.0067102
Približek pija:3.1349
```

Slika: Izpis π (št. točk 4000)

Izris točk

Zaključek

 \bullet Ta domača naloga se mi zdi zelo zanimiva. Najboljše pa je, da sem se tako naučil novo metodo in dobil nekoliko boljšo predstavo glede števila π