日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年11月 7日

REC'D 2 3 DEC 2004

出 願 番 号 Application Number:

特願2003-378923

WIPO PCT

[ST. 10/C]:

[JP2003-378923]

出 願 人
Applicant(s):

独立行政法人科学技術振興機構

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年11月11日

1) 11]

特許庁長官 Commissioner, Japan Patent Office 【書類名】

特許願

【整理番号】

K056P22

【提出日】

平成15年11月 7日

【あて先】

特許庁長官 殿

【国際特許分類】

C07F 7/08 C08G 61/00

【発明者】

【住所又は居所】

愛知県名古屋市千種区北千種1-9番地 1-214号

【氏名】

山口 茂弘

【発明者】

【住所又は居所】

愛知県名古屋市千種区四谷通2-2 本山ハイツ5B

【氏名】

徐 彩虹

【特許出願人】

【識別番号】

503360115

【氏名又は名称】

独立行政法人科学技術振興機構

【代理人】

【識別番号】

100080034

【弁理士】

【氏名又は名称】

原 謙三

【電話番号】

06-6351-4384

【手数料の表示】

【予納台帳番号】

003229

【納付金額】

21,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】

要約書 1

【書類名】特許請求の範囲

【請求項1】

下記式(1)で示される、

【化1】

の構造を有し、

式(1)中、Ar¹は、アリーレン基、置換アリーレン基、オリゴアリーレン基、置換 オリゴアリーレン基、2価の複素環基、2価の置換複素環基、2価のオリゴ複素環基、ま たは 2 価の置換オリゴ複素環基を示し、 R^1 、 R^2 は、独立に、水素原子、アルキル基、 アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリ ールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル 基、アリールアルキニル基、アリル基、アミノ基、置換アミノ基、シリル基、置換シリル 基、シリルオキシ基、置換シリルオキシ基、アリールスルフォニルオキシ基、アルキルス ルフォニルオキシ基、1価の複素環基またはハロゲン原子を示し、R³は、水素原子、ア ルキル基、アルキルチオ基、アリール基、アリールチオ基、アリールアルキル基、アリー ルアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アリル基、ヒドロキ シアルキル基、シリル基、置換シリル基、スタンニル基、置換スタンニル基、ハロゲン化 マグネシウム、ハロゲン化亜鉛、ボロン酸、ボロン酸エステル、ボリル基、1価の複素環 基またはハロゲン原子を示し、R⁴は、水素原子、アルキル基、アルコキシ基、アルキル チオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリー ルアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル 基、アリル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置 換シリルオキシ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、置 換ボリル基、1価の複素環基またはハロゲン原子を示し、1は、0または1の値であり、 nは、0~4の値であることを特徴とする多環縮環型π共役有機材料。

【請求項2】

下記式(2)で示される、

【化2】

の構造を有し、

式(2)中、 R^1 、 R^2 は、独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキン基、アリールアルキン基、アリールアルキン基、アリールアルキン基、置換アミノ基、置換アミノ基、置換シリル基、シリル基、のリルオキシ基、置換シリルオキシ基、アリールスルフォニルオキシ基、工価の複素環基またはハロゲン原子を示し、 R^3 は水素原子、アルキル基、アルキルチオ基、アリール基、アリールチオ基、アリールアルキルチオ基、アリールアルキルチオ基、アリールアルキルチオ基、アリー

ルアルケニル基、アリールアルキニル基、アリル基、ヒドロキシアルキル基、シリル基、置換シリル基、スタンニル基、置換スタンニル基、ハロゲン化マグネシウム、ハロゲン化 亜鉛、ボロン酸、ボロン酸エステル、ボリル基、1価の複素環基またはハロゲン原子を示し、 R^4 、 R^5 は、独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキオ基、アリールアルケニル基、アリールアルキニル基、アリル 基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、置換ボリル基、1価の複素環基またはハロゲン原子を示し、m、nは、独立に、 $0\sim4$ の値であることを特徴とする多環縮環型 π 共役有機材料。

【請求項3】

下記式(3)で示される、

【化3】

の構造を有し、

[式中、Ar³は、アリール基、置換アリール基、1価の複素環基、または1価の置換複 素環基を示し、 R^1 、 R^2 は、独立に、水素原子、アルキル基、アルコキシ基、アルキル チオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリー ルアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル 基、アリル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置 換シリルオキシ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、1 価の複素環基またはハロゲン原子を示し、R³は、水素原子、アルキル基、アルキルチオ 基、アリール基、アリールチオ基、アリールアルキル基、アリールアルキルチオ基、アリ ールアルケニル基、アリールアルキニル基、アリル基、ヒドロキシアルキル基、シリル基 、置換シリル基、スタンニル基、置換スタンニル基、ハロゲン化マグネシウム、ハロゲン 化亜鉛、ボロン酸、ボロン酸エステル、ボリル基、1 価の複素環基またはハロゲン原子を 示し、R⁵は、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、ア リールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリー ルアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アリル基、アミノ基 、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、アリ ールスルフォニルオキシ基、アルキルスルフォニルオキシ基、置換ボリル基、1 価の複素 環基またはハロゲン原子を示し、οは0~2の値であることを特徴とする多環縮環型π共 役有機材料。

【請求項4】

下記式(4)で示される、

【化4】

の構造を有し、

[式 (4) 中、 R^1 、 R^2 は、独立に、水素原子、アルキル基、アルコキシ基、アルキル チオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリー ルアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル 基、アリル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置 換シリルオキシ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、1 価の複素環基またはハロゲン原子を示し、R³は、水素原子、アルキル基、アルキルチオ 基、アリール基、アリールチオ基、アリールアルキル基、アリールアルキルチオ基、アリ ールアルケニル基、アリールアルキニル基、アリル基、ヒドロキシアルキル基、シリル基 、置換シリル基、スタンニル基、置換スタンニル基、ハロゲン化マグネシウム、ハロゲン 化亜鉛、ボロン酸、ボロン酸エステル、ボリル基、1価の複素環基またはハロゲン原子を 示し、 R^4 、 R^5 は、独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、 アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコ キシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アリ ル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリル オキシ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、置換ボリル 基、1価の複素環基またはハロゲン原子を示し、nは0~4の値であり、oは0~2の値 であることを特徴とする多環縮環型 π 共役有機材料。

【請求項5】

下記式(5)で示される、

【化5】

$$SiR^{1}R^{2}X$$

$$= \left(Ar^{1}\right)_{I}$$

$$(R^{4})_{n}$$

$$XR^{2}R^{1}Si$$
(5)

の構造を有し、

キルチオ基、アリールアルケニル基、アリールアルキニル基、アリル基、ヒドロキシアルキル基、シリル基、置換シリル基、置換ボリル基、1価の複素環基またはハロゲン原子を示し、 R^4 は、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールアルキシ基、アリールアルコキシ基、アリールアルカンストラールアルカンストラールアルカンストラールを表。アリールアルキールールスルフォニルストラールスルフォニルオキシ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、置換ボリル基、1価の複素環基またはハロゲン原子を示し、1は0または1の値であり、R1は0~4の値であることを特徴とする多環縮環型 R 共役有機材料の合成中間体。

【請求項6】

下記式(6)で示される、

【化6】

の構造を有し、

式 (6) 中、Xは、水素原子、ハロゲン原子、アルコキシ基、アルキルチオ基、アリー ルオキシ基、アリールチオ基、シリル基、置換シリル基、スタンニル基、置換スタンニル 基を示し、 R^1 、 R^2 は独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基 、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアル コキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、ア リル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリ ルオキシ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、1価の複 素環基またはハロゲン原子を示し、R³は、水素原子、アルキル基、アルキルチオ基、ア リール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキル チオ基、アリールアルケニル基、アリールアルキニル基、アリル基、ヒドロキシアルキル 基、シリル基、置換シリル基、置換ボリル基、1価の複素環基またはハロゲン原子を示し 、R 4 、R 5 は、独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリ ール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ 基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アリル基 、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキ シ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、置換ボリル基、 1価の複素環基またはハロゲン原子を示し、m、nは、独立に、0~4の値であることを 特徴とする多環縮環型 π 共役有機材料の合成中間体。

【請求項7】

下記式(7)で示される、

【化7】

$$Ar^{3} \xrightarrow{\text{SiR}^{1}R^{2}X}$$

$$Ar^{3} \xrightarrow{\text{Ar}^{3}} Ar^{3}$$

$$XR^{2}R^{1}Si(R^{5})_{0}$$
(7)

の構造を有し、

式(7)中、Xは、水素原子、ハロゲン原子、アルコキシ基、アルキルチオ基、アリー ルオキシ基、アリールチオ基、シリル基、置換シリル基、スタンニル基、置換スタンニル 基を示し、Ar³は、アリール基、置換アリール基、1価の複素環基、または1価の置換 複素環基を示し、 R^1 、 R^2 は、独立に、水素原子、アルキル基、アルコキシ基、アルキ ルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリ ールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニ ル基、アリル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、 置換シリルオキシ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、 1価の複素環基またはハロゲン原子を示し、R³は、水素原子、アルキル基、アルキルチ オ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリール アルキルチオ基、アリールアルケニル基、アリールアルキニル基、アリル基、ヒドロキシ アルキル基、シリル基、置換シリル基、置換ボリル基、1価の複素環基またはハロゲン原 子を示し、R⁵は、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基 、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、ア リールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アリル基、アミ ノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、 アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、置換ボリル基、1 価の 複素環基またはハロゲン原子を示し、oは、0~2の値であることを特徴とする多環縮環 型π共役有機材料の合成中間体。

【請求項8】

下記式(8)で示される、

【化8】

の構造を有し、

式(8)中、Xは、水素原子、ハロゲン原子、アルコキシ基、アルキルチオ基、アリー ルオキシ基、アリールチオ基、シリル基、置換シリル基、スタンニル基、または置換スタ ンニル基を示し、 R^1 、 R^2 は独立に、水素原子、アルキル基、アルコキシ基、アルキル チオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリー ルアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル 基、アリル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置 換シリルオキシ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、1 価の複素環基またはハロゲン原子を示し、R³は、水素原子、アルキル基、アルキルチオ 基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールア ルキルチオ基、アリールアルケニル基、アリールアルキニル基、アリル基、ヒドロキシア ルキル基、シリル基、置換シリル基、置換ボリル基、1 価の複素環基またはハロゲン原子 を示し、R⁴、R⁵は、独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基 、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアル コキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、ア リル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリ ルオキシ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、置換ボリ ル基、1価の複素環基またはハロゲン原子を示し、nは、0~4の値であり、oは、0~ 2の値であることを特徴とする多環縮環型 π 共役有機材料の合成中間体。

【請求項9】

請求項5に記載の多環縮環型 π 共役有機材料の合成中間体を、金属還元剤と反応させて ジアニオン中間体を生成した後、

ジアニオン中間体を求電子剤で捕捉することにより、請求項1に記載の多環縮環型π共 役有機材料を得ることを特徴とする多環縮環型π共役有機材料の製造方法。

【請求項10】

請求項7に記載の多環縮環型 π 共役有機材料の合成中間体を、金属還元剤と反応させて ジアニオン中間体を生成した後、

ジアニオン中間体を求電子剤で捕捉することにより、請求項3に記載の多環縮環型π共 役有機材料を得ることを特徴とする多環縮環型π共役有機材料の製造方法。

【請求項11】

下記式(9)で示される、

[化9]

$$(R^4)_n$$

$$(R^4)_n$$

$$(P^4)_n$$

$$(P^4)_n$$

の構造を有し、

式(9)中、Zは、臭素原子またはヨウ素原子を示し、R⁴は、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基、アリールアルキニル基、アリールアルキニル基、アリールアル基、世換シリル基、シリルオキシ基、置換シリルオキシ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、置換ボリル基、1価の複素環基またはハロゲン原子を示し、1は、0または1の値である原料を、有機金属塩基によりジメタル化した後、

有機ケイ素試薬で捕捉することにより、請求項5に記載の合成中間体を得ることを特徴 とする多環縮環型π共役有機材料の合成中間体の製造方法。

【請求項12】

下記式(10)で示される、

【化10】

の構造を有し、

式(10)中、Zは、臭素原子またはヨウ素原子を示し、Ar 3 は、yリール基、置換アリール基、1価の複素環基、または1価の置換複素環基を示し、 R^1 、 R^2 は、独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アリールアルケニル基、アリールアルキニル基、アリル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、1価の複素環基またはハロゲン原子を示

す原料を、有機金属塩基によりジメタル化した後、

有機ケイ素試薬で捕捉することにより、請求項7に記載の合成中間体を得ることを特徴とする多環縮環型π共役有機材料の合成中間体の製造方法。

【書類名】明細書

【発明の名称】多環縮環型 π 共役有機材料、その合成中間体、多環縮環型 π 共役有機材料の製造方法、および多環縮環型 π 共役有機材料の合成中間体の製造方法

【技術分野】

[0001]

本発明は、有機電界発光(EL)素子に応用可能な高効率発光および電荷輸送特性を有する多環縮環型π共役有機材料、およびその合成中間体、並びにそれらの製造方法に関するものである。

【背景技術】

[0002]

従来、電界発光(EL)する発光素子を用いた表示装置は、小電力化や薄型化が可能なことから、種々研究され、さらに、有機材料から成るEL発光素子は、軽量化や大型化が容易なことから活発に検討されてきた。

[0003]

特に、光の三原色の一つである青色をはじめとする発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能(半導体や超電導体となる可能性を有する)を備えた有機材料の開発については、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。

【非特許文献 1】M. Serby, S. Ijadi-Maghsoodi, and T. J. Barton, XXXIIIrd Symposium on Organosilicon Chemistry, Abstract No. PA-35, April 6-8, 2000, Saginaw, Michigan, USA

【発明の開示】

【発明が解決しようとする課題】

[0004]

しかしながら、色純度、発光効率の点、あるいはキャリヤー移動度およびキャリヤー注入の点で本当に優れた特性を備えた有機材料は依然限られている。現在、この分野の最大の課題の一つとなっている。

[0005]

本発明は、上記課題に鑑みてなされたものであり、その目的は、有機電界発光 (EL) 素子に用いる発光材料あるいは電荷輸送材料として応用可能な優れた特性を発揮できる新規な多環縮環型 π 共役有機材料、およびその合成中間体、並びにそれらの製造方法を提供することにある。

[0006]

本発明者らは、上記目的を達成すべく鋭意検討した結果、下記の式(1)ないし(4)で示される構造を有する化合物およびその製造方法を新たに見出し、それらが高い発光特性を示すことを見いだし、本発明を完成した。

【課題を解決するための手段】

[0007]

本発明に係る多環縮環型π共役有機材料は、上記課題を解決するために、下記式 (1) で示される、

[0008]

【化1】

[0009]

の構造を有することを特徴としている。

[0010]

上記多環縮環型π共役有機材料では、下記式(2)で示される、

[0011]

【化2】

[0012]

の構造を有するものであってもよい。

[0013]

本発明に係る他の多環縮環型 π 共役有機材料は、上記課題を解決するために、下記式 (3) で示される、

[0014]

【化3】

$$Ar^{3} \xrightarrow{R^{1} R^{2}} Ar^{3}$$

$$R^{1} \stackrel{|}{|_{R^{2}}} (R^{5})_{0} R^{3}$$
(3)

[0015]

の構造を有することを特徴としている。

[0016]

上記多環縮環型π共役有機材料においては、下記式(4)で示される、

[0017]

【化4】

[0018]

の構造を有するものであってもよい。

[0019]

本発明に係る多環縮環型 π 共役有機材料の合成中間体は、前記課題を解決するために、 下記式 (5) で示される、

[0020]

【化5】

$$SiR^{1}R^{2}X$$

$$= \left(Ar^{1}\right)_{I}$$

$$(R^{4})_{n}$$

$$XR^{2}R^{1}Si$$
(5)

[0021]

の構造を有することを特徴としている。

[0022]

上記合成中間体では、下記式(6)で示される、

【0023】 【化6】

$$\begin{array}{c|c}
SiR^{1}R^{2}X \\
 & - \\
 & - \\
 & (R^{4})_{n}
\end{array}$$

$$\begin{array}{c|c}
 & (R^{5})_{m}XR^{2}R^{1}Si(R^{4})_{n}
\end{array}$$
(6)

[0024]

の構造を有するものであってもよい。

[0025]

本発明に係る他の多環縮環型 π 共役有機材料の合成中間体は、前記課題を解決するために、下記式 (7) で示される、

【0026】 【化7】

$$Ar^{3} \xrightarrow{SiR^{1}R^{2}X}$$

$$Ar^{3} \xrightarrow{R^{2}R^{1}Si} (R^{5})_{o}$$

$$(7)$$

[0027]

の構造を有することを特徴としている。

[0028]

上記合成中間体においては、下記式(8)で示される、

[0029]

【化8】

[0030]

の構造を有するものであってもよい。

[0031]

本発明に係る多環縮環型 π 共役有機材料の製造方法は、前記式(5)に記載の多環縮環型 π 共役有機材料の合成中間体を、金属還元剤と反応させてジアニオン中間体を生成した後、ジアニオン中間体を求電子剤で捕捉することにより、前記式(1)に記載の多環縮環型 π 共役有機材料を得ることを特徴としている。

[0032]

本発明に係る他の多環縮環型 π 共役有機材料の製造方法は、前記式 (7) に記載の多環縮環型 π 共役有機材料の合成中間体を、金属還元剤と反応させてジアニオン中間体を生成した後、ジアニオン中間体を求電子剤で捕捉することにより、前記式 (3) に記載の多環縮環型 π 共役有機材料を得ることを特徴としている。

[0033]

本発明に係る多環縮環型 π 共役有機材料の合成中間体の製造方法は、下記式 (9) で示される、

[0034]

【化9】

$$(R^4)_n$$

$$(R^4)_n$$

$$(R^4)_n$$

[0035]

の構造を有する原料を、有機金属塩基によりジメタル化した後、有機ケイ素試薬で捕捉することにより、前記式(5)に記載の合成中間体を得ることを特徴としている。

[0036]

本発明に係る他の多環縮環型π共役有機材料の合成中間体の製造方法は、下記式(10)で示される、

[0037]

【化10】

[0038]

の構造を有する原料を、有機金属塩基によりジメタル化した後、有機ケイ素試薬で捕捉することにより、前記式 (7) に記載の合成中間体を得ることを特徴としている。

[0039]

上記の各式(1)ないし(10)の何れかに記載の各略称については、以下の通りである。

[0040]

 $A r^1$ は、アリーレン基、置換アリーレン基、オリゴアリーレン基、置換オリゴアリーレン基、2 価の複素環基、2 価の置換複素環基、2 価のオリゴ複素環基、または2 価の置換オリゴ複素環基を示す。

[0041]

 $A r^3$ は、アリール基(aryl-)、置換アリール基、1 価の複素環基、または1 価の置換複素環基を示す。

[0042]

 R^1 、 R^2 は、独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキオ基、アリールアルケニル基、アリールアルキニル基、アリル基(allyl-)、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、1価の複素環基またはハロゲン原子を示す。

[0043]

R³ は、水素原子、アルキル基、アルキルチオ基、アリール基、アリールチオ基、アリールアルキル基、アリールアルキル基、アリールアルキニル基、アリル基、ヒドロキシアルキル基、シリル基、置換シリル基、スタンニル基、置換スタンニル基、ハロゲン化マグネシウム、ハロゲン化亜鉛、ボロン酸、ボロン酸エステル、ボリル基、1 価の複素環基またはハロゲン原子を示す。

[0044]

R⁴、R⁵は、独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキオ基、アリールアルケニル基、アリールアルキニル基、アリル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換デリルオキシ基、アリールスルフォニルオキシ基、アルキルスルフォニルオキシ基、置換デリル基、1価の複素環基またはハロゲン原子を示す。

[0045]

1は、0または1の値である。n、mは、独立に、 $0\sim4$ の値である。oは、 $0\sim2$ の値である。o2は、臭素原子またはヨウ素原子を示す。

【発明の効果】

[0046]

高発光効率および高電荷輸送能を発揮できる材料設計として、高い平面性を備えたπ共役系骨格を有する分子を構築することが挙げられる。その一つの例として、本発明者らは、下記のtrans-スチルベン骨格をケイ素置換基で架橋し平面に固定したケイ素架橋スチルベン骨格を基本構造に有する化合物の合成法を見出した。

[0047]

【化11】

ケイ素架橋スチルベンおよびその誘導体

[0048]

さらに、本発明者らは、この骨格の高発光特性などの特徴を保持したまま、構造修飾のフレキシビリティを付加した化合物として前記各式 (1) ないし (4) に示した、有機ケイ素を含む多環縮環型 π 共役有機材料を見出した。

[0049]

これらの化合物は、そのまま、高効率発光有機材料や電荷輸送有機材料としての高性能電子材料として使用できるばかりでなく、高分子の新たな構成単位としても有用なものであることが期待できる。

[0050]

有機ケイ素を含む化合物としては、5,5,10,10-テトラメチル-5,10-ジシラ-5,10-ジヒドロインデノ[2,1-a]インデンが、非特許文献 1 に示す合成方法により得られることが知られている。

[0051]

しかし、その合成方法は、特殊な高温熱分解反応によるものであり、(1) 大量合成に向かない、(2) 高分子合成に必要な官能基をもつ誘導体の合成に向かない、および(3) 多環縮環型の化合物の合成に応用できないといった合成上の致命的な制約があった。

[0052]

よって、これまで、有機ケイ素を含む多環縮環型π共役有機材料である、上記各化合物に関する有効な合成法は全く知られていなかった。

[0053]

この点を克服すべく、今回、概念的に新しい合成法を用いて、前記各式(1)ないし(4)に示した各有機材料の製造方法の開発に取り組み、本発明の製造方法に至った。本発明で示される分子内還元的環化反応を用いた製造方法は、シラインダン骨格を基本構造にもつパイ共役電子系有機材料の初めての効率的一般的合成法である。

【発明を実施するための最良の形態】

[0054]

本発明の実施の形態について説明すると以下の通りである。

[0055]

本発明に係る多環縮環型 π 共役有機材料は、下記の各反応式に示すように、出発原料を、有機金属塩基によりジメタル化した後、有機ケイ素試薬で捕捉することにより、合成中間体を得、続いて、上記合成中間体を、金属還元剤との反応により分子内還元的環化反応を進行させてジアニオン中間体を生成した後、ジアニオン中間体を求電子剤で捕捉することにより得られるものである。

[0056]

まず、下記の式 (5)、式 (7)で示される各合成中間体の合成法についてそれぞれ以下に説明する。

[0057]

【化12】

$$Z = (Ar^{1})_{1} = Z$$

$$Z = (Ar^{1})_{1} = Z$$

$$Z = Br, I$$

$$Z = Br, I$$

$$Z = SiR^{1}R^{2}X$$

[0058]

式 (9)、式 (10) にてそれぞれ示される各原料について、それぞれ、有機金属塩基を用いたハロゲンーメタル交換反応によりジメタル化した後、 R^1 R^2 S i X Y O 一般式で表される有機ケイ素試薬で捕捉することにより、式 (5)、式 (7)で示される各合成中間体をそれぞれ合成できる。

[0059]

この際、用いる有機金属塩基としては、n-BuLi、s-BuLi、t-BuLiなどの有機リチウム試薬、アルキルグリニャール試薬、アルキルマグネシウムアミド、などの有機マグネシウム試薬、あるいはアルキル亜鉛試薬が使用できる。このうち、t-BuLiを用いてTHF中でメタル化を行うとき、最も収率がよい。

[0060]

[0061]

[0062]

Yとしてアルコキシ基を有する化合物の合成には、有機ケイ素試薬 R^1 R^2 S i X Y としては、 R^1 R^2 S i (OR) 2 または R^1 R^2 S i Cl (NR $_2$) が使用できる。後者の場合には、 R^1 R^2 S i Cl (NR $_2$) と一旦反応させた後、単離せずに、そのまま塩化アンモニウムなどの酸触媒存在下、アルコホリシスすることにより目的生成物を得ることができる。

[0063]

SiR¹R²X

$$(R^4)_n$$

[0064]

次に、分子内還元的環化反応について、上記の各反応式の基づき説明する。まず、式(5)、式(7)で示される各化合物を金属還元剤とそれぞれ反応させることにより、分子内還元的環化反応が進行してジアニオン中間体が生成し、このジアニオン中間体をさらに求電子剤(electrophile)で捕捉することにより、式(1)、式(3)で示される環化生成物である、本発明に係る多環縮環型 π 共役有機材料がそれぞれ得られる。

[0065]

この際、金属還元剤としては、リチウム、リチウムナフタレニド、リチウムビフェニリド、リチウム(4,4'-i)-tert-ブチルビフェニリド)、リチウム[8-(N,N-i)メチルアミノ)ナフタレニド]、リチウム/液化アンモニア、ナトリウム、ナトリウムナフタレニド、ナトリウムビフェニリド、ナトリウム(4,4'-i)-tert-ブチルビフェニリド)、ナトリウム[8-(N,N-i)メチルアミノ)ナフタレニド]、ナトリウム/液化アンモニア、カリウム、カリウムグラファイトなどが使える。

[0066]

反応に用いる溶媒としては、THFの他、ジエチルエーテルやジメチルエーテル、1,2-ジメトキシエタンなどのエーテル系溶媒が使える。反応温度は、-78度から+50度、好ましくは、-20度から+30度で行うことができる。

[0067]

【実施例】

9/

[0068]

以下、本発明をさらに詳細に説明するために各実施例を示すが、本発明はこれらに限定されるものではない。

[0069]

(実施例1)

[0070]

【化14】

スキーム1

[0071]

最初に、合成中間体である1,4-Bis[(2-dimethylsilylphenyl)ethynyl]benzene (II) の合成法について、合成の上記スキーム1を参照しながら以下に示した。まず、1,4-Bis[(2-bromophenyl)ethynyl]benzene (I) (7.01 g, 16.07 mmol)のTHF溶液(150 mL)に

tert-ブチルリチウムのペンタン溶液(1.44 M, 46.0 mL, 66.24 mmol)を-78 ℃で滴下した。 1 時間、温度を-78 ℃に保ったまま攪拌した後、chlorodimethylsilane (7.4 mL, 66.63 mmol)をシリンジで加え、ゆっくりと室温まで昇温しながら 2 2 時間攪拌した。

[0072]

減圧下で溶媒を留去し、エーテルを加え、不溶物をろ過により取り除いた。ろ液を濃縮した後、シリカゲルカラムクロマトグラフィー(展開溶媒hexane/ethyl acetate, 100/1, $R_{\rm f}=0.38$)で分離精製することにより、目的化合物である合成中間体 (II) (6.06 g, 15.35 mmol))を収率96%で得た。

[0073]

合成中間体(II)の物性は以下の通りであった。 1 H NMR(CDCl₃): d 0.48(d, J = 3.9 Hz, 12H), 4.65(m, J = 2.7 Hz, 2H), 7.37(m, 4H), 7.54(s, 4H), 7.58(m, 4H). 13 C NMR(CDCl₃): d -3.87, 91.88, 92.12, 123.24, 127.76, 128.48, 129.23, 131.32, 131.93, 134.74, 140.19.

[0074]

(実施例2)

[0075]

【化15】 スキーム2

[0076]

次に、他の合成中間体である1,4-Bis(phenylethynyl)-2,5-bis(dimethylsilyl)benzene (IV) の合成法について上記スキーム2を参照しながら以下に示した。まず、2,5-Bis(phenylethynyl)-1,4-dibromobenzene (III) (1.00 g, 2.29 mmol)のTHF溶液(20 mL)にtert-ブチルリチウムのペンタン溶液(1.45 M, 6.4 mL, 9.28 mmol)を一78℃で滴下した。1時間、温度を一78℃に保ったまま攪拌した後、chlorodimethylsilane (7.4 mL, 66.63 mmol)をシリンジで加え、ゆっくりと室温まで昇温しながら8時間攪拌した。

[0077]

その後、減圧下で溶媒を留去し、エーテルを加え、不溶物をろ過により取り除いた。ろ液を濃縮した後、シリカゲルカラムクロマトグラフィー(展開溶媒hexane/ethyl acetate, 100/1, $R_f=0.50$)で分離精製することにより、目的化合物である合成中間体 (IV) (0.75g, 1.90 mmol)を収率83%で得た。

[0078]

合成中間体 (IV) の物性は以下の通りであった。 1 H NMR (CDCl₃): d 0.48 (d, J = 3.6 Hz, 12H), 4.63 (m, J = 3.6 Hz, 2H), 7.37 (m, 6H), 7.55 (m, 4H), 7.73 (s, 2H).

(実施例3) 【0079】 【化16】

スキーム3

[0080]

続いて、さらに他の合成中間体である1,4-Bis(2-dimethylsilylphenyl)-1,3-butadiyne (VI) の合成法について上記スキーム 3 を参照しながら説明する。まず、1,4-Bis(2-bro mophenyl)-1,3-butadiyne (7.00 g, 19.44 mmol) のエーテル溶液(195 mL)にn-ブチルリチウムのヘキサン溶液(1.6 M, 26.0 mL, 41.6 mmol)を-78 でで滴下した。 1.5時間、同じ温度で攪拌した後、chlorodimethylsilane (5.5 mL, 49.57 mmol)をシリンジで加え、さらに 6 時間室温まで昇温しながら攪拌した。減圧下溶媒を留去し、得られた混合物をシリカゲルカラムクロマトグラフィー(展開溶媒hexane, $R_f = 0.53$)で分離精製することにより、5.50 g (17.26 mmol)の目的化合物である合成中間体 (VI) を収率89%で淡黄色液体として得た。

[0081]

合成中間体 (VI) の物性は以下の通りであった。 1 H NMR (CDCl₃): d 0.45 (d, J = 3.9 Hz, 12H), 4.56 (m, J = 3.6 Hz, 2H), 7.35 (m, 4H), 7.56 (m, 4H).

(実施例4)

以下に、1,4-Bis(1,1-dimethyl-1H-1-silainden-2-yl)benzene (VIIa) の合成法について前記スキーム1を参照しながら説明する。まず、リチウム(28 mg, 4.03 mmol)とナフレタレン(519 mg, 4.05 mmol)の混合物をTHF中(4.5 mL)、室温で4時間攪拌し、リチウムナフタレニド溶液を調製した。この溶液に合成中間体(II) (396 mg, 1.00 mmol)のTHF溶液(2 mL)を室温で加えた。5分間攪拌した後、ただちに飽和塩化アンモニウム溶液を加え、反応混合物をエーテルにより抽出した。

[0082]

得られた有機溶媒層を飽和食塩水で洗浄した後、無水 $MgSO_4$ で乾燥し、ろ過後、溶媒を減圧下留去した。得られた混合物をシリカゲルカラムクロマトグラフィー(展開溶媒CHC13)で分離精製することにより、本発明に係る多環縮環型 π 共役有機材料である目的化合物 (VII a) (205 mg, 0.52 mmol)を収率 5 2 %で得た。

[0083]

目的化合物 (VII a) の物性は以下の通りであった。 1 H NMR (CDCl₃): d 0.50 (s, 12H), 7.22 (m, 2H), 7.33 (m, 4H), 7.52 (s, 4H), 7.56 (m, 4H). 13 C NMR (CDCl₃): d -3.06, 124.34, 126.64, 126.95, 130.08, 131.73, 137.94, 138.34, 140.82, 144.91, 148.99.

(実施例5)

次に、1,4-Bis(1,1,3-trimethyl-1H-1-silainden-2-yl)benzene (VII b) の合成法について上記スキーム 1 を参照しながら説明する。リチウム(9 mg, 1.30 mmol)とナフレタレン(166 mg, 1.30 mmol)の混合物をTHF中(2 mL)、室温で 4 時間攪拌し、リチウムナフタレニド溶液を調製した。この溶液に合成中間体(II) (105 mg, 0.26 mmol)のTHF溶液(1 mL)を室温で加えた。 5 分間攪拌した後、ただちに-78 に冷やし、ジメチル硫酸を加え、攪拌しながら 4 時間かけて室温まで温度を上げた。

[0084]

反応混合物に飽和塩化アンモニウム溶液を加えた後、クロロホルムにより抽出した。得られた有機溶媒層を飽和食塩水で洗浄した後、無水 $MgSO_4$ で乾燥し、ろ過後、溶媒を減圧下留去した。得られた混合物にヘキサンを加え、不溶物をろ過により集めることにより、本発明に係る多環縮環型 π 共役有機材料である目的化合物(VIIb)(93 mg, 0.22 mmol)を収率83%で得た。

[0085]

目的化合物 (VIIb) の物性は以下の通りであった。 1 H NMR (CDCl₃): d 0.38 (s, 12H), 2.21 (s, 6H), 7.18 (s, 4H), 7.26 (m, 2H), 7.42 (m, 4H), 7.57 (d, J = 7.2 Hz, 2 H).

(実施例6)

続いて、1,4-Bis(1,1-dimethyl-3-dimethylsilyl-1H-1-silainden-2-yl)benzene (VII c)の合成法について前記スキーム1を参照しながら説明する。

[0086]

上述の目的化合物(VIIb)の合成と同様に操作を行い、求電子剤としてジメチル硫酸の代わりにジメチルクロロシランを用いることにより、収率87%で本発明に係る多環縮環型 π 共役有機材料である目的化合物(VIIc)を得た。

[0087]

目的化合物(VII c)の物性は以下の通りであった。 ¹H NMR(CDCl₃): d 0.21(d, J = 3.6 Hz, 12H), 0.35(s, 12H), 4.38(m, J = 4.0 Hz, 2H), 7.06(s, 4H), 7.23(t, J = 7.2 Hz, 2H), 7.39(t, J = 7.6 Hz, 2H), 7.60(t, 4H). 13 C NMR(CDCl₃): d -4.23,-2.63,124.98,126.01,126.73,129.90,131.82,138.28,140.62,152.61,153.80,163.93.

(実施例7)

以下に、1,4-Bis[1,1-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolanyl)-1H-1-silainden-2-yl]benzene (VIId) の合成法について前記スキーム 1 を参照しながら説

明する。

[0088]

前述の目的化合物 (VIIb) の合成と同様に操作を行い、求電子剤としてジメチル硫酸の代わりに1-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolaneを用いることにより、収率43%で本発明に係る多環縮環型 π 共役有機材料である目的化合物 (VIId) を得た。

[0089]

目的化合物(VII d)の物性は以下の通りであった。 1 H NMR(CDCl₃):d 0.36(s, 12H), 1.30(s, 24H), 7.18(t, J = 7.2 Hz, 2H), 7.26(s, 4H), 7.34(t, J = 7.2 Hz, 2H), 7.47(d, J = 7.2 Hz, 2H), 7.52(d, J = 6.8 Hz, 2H). 13 C NMR(CDCl₃):d -3.86,24.95,83.93,124.72,126.16,127.10,130.00,131.67,138.20,140.09,151.58,158.89. 29 Si NMR(CDCl₃):d 5.20

(実施例8)

次に、1,1,5,5-Tetramethyl-2,6-diphenyl-1,5-dihydro-1,5-disila-s-indacene (VII I) の合成法について前記スキーム2を参照しながら説明する。

[0090]

リチウム(15.2 mg, 2.19 mmol)とナフレタレン(280.2 mg, 2.19 mmol)の混合物をTHF中(2 mL)、室温で4時間攪拌し、リチウムナフタレニド溶液を調製した。この溶液に化合物(IV)(200.0 mg, 0.51 mmol)のTHF溶液(1.5 mL)を室温で加えた。

[0091]

5分間攪拌した後、ただちに飽和塩化アンモニウム溶液を加えた。反応混合物をエーテルにより抽出し、得られた有機溶媒層を飽和食塩水で洗浄した後、無水 $MgSO_4$ で乾燥し、ろ過後、溶媒を減圧下留去した。得られた混合物をシリカゲルカラムクロマトグラフィー (展開溶媒hexane/ethyl acetate, 100/1, $R_f=0.20$)で分離精製することにより、本発明に係る多環縮環型 π 共役有機材料である目的化合物(VIII)(177.7 mg, 0.45 mmol)を収率90%にて得た。

[0092]

目的化合物 (VIII) の物性は以下の通りであった。 1 H NMR (CDCl₃): d 0.51 (s, 12H), 7.26 (m, 2H), 7.38 (t, J = 7.6 Hz, 4H), 7.52 (m, 6H), 7.60 (s, 2H).

(実施例 9)

続いて、1,1,1',1'-Tetramethyl-bi(1H-1-silainden-2-yl) (IX) の合成法について前記スキーム3を参照しながら説明する。

[0093]

リチウム(12 mg, 1.73 mmol)とナフレタレン(222 ng, 1.73 mmol)の混合物をTHF中(2.5 mL)、室温で4時間攪拌し、リチウムナフタレニド溶液を調製した。この溶液に前述の合成中間体(VI) (130 ng, 0.41 mmol)のTHF溶液(1 mL)を室温で加えた。5分間攪拌した後、ただちに飽和塩化アンモニウム溶液を加えた。

[0094]

反応混合物をエーテルにより抽出し、得られた有機溶媒層を飽和食塩水で洗浄した後、無水 $MgSO_4$ で乾燥し、ろ過後、溶媒を減圧下留去した。得られた混合物をシリカゲルカラムクロマトグラフィー(展開溶媒hexane, $R_f=0.24$)で分離精製することにより、本発明に係る多環縮環型 π 共役有機材料である目的化合物(IX)(45 mg, 0.14 mmo1)を収率34%で得た。

[0095]

目的化合物 (IX) の物性は以下の通りであった。 1 H NMR (CDCl₃): d 0.47 (s, 12H), 7 .12 (s, 2H), 7.25 (m, 6H), 7.52 (d, J = 6.9 Hz, 2H).

このようにして得られた化合物は、いずれも強い蛍光を示した。例えば、THF中において、各化合物(IX)、(VII a)、(VIII)は、それぞれ、364 nm、375 nm、398 nmに吸収極大を示し、また、417 nm、437 nm、445 nmにそれぞれ蛍光を示した。その蛍光量子収率は順番に0.49(anthracene)、0.86(9,10-diphe nylanthracene)、0.73(perylene)という値であった。なお、上記のかっこ中は、

蛍光量子収率を求めるのに用いた標準物質を示す。

【産業上の利用可能性】

[0096]

本発明に係る多環縮環型 π 共役有機材料は、発光材料や電荷輸送材料として使用可能な新規な化合物であり、また、高発光効率や、高電荷輸送効率を発揮できるから、E L などの分野に好適に利用できる。また、本発明に係る多環縮環型 π 共役有機材料の合成中間体および多環縮環型 π 共役有機材料の製造方法は、本発明に係る多環縮環型 π 共役有機材料の製造に好適に使用できる。

【書類名】要約書

【要約】

【課題】発光特性電荷輸送特性に優れた多環縮環型 π 共役有機材料、その合成中間体およびそれらの製造方法を提供する。

【解決手段】下記のスキーム1に示すように、出発原料(I)を、 【化1】

スキーム1

VIIa(E=H)
VIIb(E=Me)
VIIc(E=SiMe₂H)
VIId(E=BPin)

有機金属塩基によりジメタル化した後、有機ケイ素試薬で捕捉すること(i:1) n-BuLi or t-BuLi, 2) HMe_2SiCl) により、合成中間体(II) を得、続いて、上記合成中間体を、金属還元剤との反応により分子内還元的環化反応を進行させてジアニオン中間体を生成した後、ジアニオン中間体を求電子剤で捕捉すること(ii:1) LiNaph, THF, rt, 5 min; 2) electrophile or NH_4Cl) により得られる多環縮環型 π 共役有機材料(VII a $\sim VII$ d)。

【選択図】なし

特願2003-378923

出願人履歴情報

識別番号

[503360115]

1. 変更年月日 [変更理由] 住 所 氏 名 2003年10月 1日 新規登録 埼玉県川口市本町4丁目1番8号 独立行政法人 科学技術振興機構

2. 変更年月日 [変更理由] 住 所 氏 名

2004年 4月 1日 名称変更 埼玉県川口市本町4丁目1番8号 独立行政法人科学技術振興機構