

Questions to answer:

Effect of sample size on model performances

- choose performances indicators for the Titanic predictor;
- try to build and assess performances using different divisions of learning/evaluation/testing sets;
- discuss the results (on kNN and linear models).

Effect of the choice of attributes build model using various subsets of attributes;

- try to automate the generation of subsets, construction (learning) of models and evaluation;
- discuss the impact of attributes: what are the most (or least) importants?

Work in Progress

Metrics Analyzed in this Notebook		Furthe	er ana	alysis	to perf	orm		
Confusion Matrix		Error rate = 1 - Accuracy						
Accuracy		R Lear R Val	ning					
Balanced Accuracy		F1 scores for each attributes						
Matthews correlation coefficient	ent							
ROC	Survive	Pclass	SibSp	Parch	FareType	SexCode	Age_cat	Embarked_code
	0	549	549	549	549	549	549	549
	1	342	342	342	342	342	342	342

- Discussion
 - Accuracy and F1 are sensible to imbalanced classes
 - F1 score not suitable → dependency with the threshold "s" used in the decision function

Performance Indicators

Matthews correlation coefficient

The coefficient takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes.

$$ext{MCC} = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Receiver Operating Characteristic curve (ROC curve)

The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings.

ROC curve results

Part II: Effect of the choice of attributes

Overview

Initial features set (after data wrangling):

Pclass

SibSp

Parch

FareType

SexCode

Age_cat

Embarked_code

We took all combinations of 1, 2, ... 7 attributes ->

And trained LR, kNN (k=5) and LDA models (with the default threshold)->

For which we looked at the metrics on the next slide ->

Performance metrics for Regression, kNN, LDA

The effect of the choice of attributes

		LR	KNN	LDA
Mean acc	value	0.85	0.85	0.84
	attributes	['Pclass' 'SibSp' 'FareType' 'SexCode' 'Age_cat' 'Embarked_code']	['SibSp' 'Parch' 'FareType' 'SexCode' 'Age_cat']	['Pclass' 'SibSp' 'SexCode' 'Age_cat']
MCC	values	0.67	0.67	0.65
	attributes	['Pclass' 'SibSp' 'FareType' 'SexCode' 'Age_cat' 'Embarked_code']	['SibSp' 'Parch' 'FareType' 'SexCode' 'Age_cat']	['Pclass' 'SibSp' 'SexCode' 'Age_cat']
Balanced Acc	value	0.82	0.83	0.81
	attributes	['Pclass' 'SibSp' 'FareType' 'SexCode' 'Age_cat' 'Embarked_code']	['SibSp' 'Parch' 'FareType' 'SexCode' 'Age_cat']	['Pclass' 'SibSp' 'Parch' 'FareType' 'SexCode' 'Age_cat']
Sensitivity	value	0.72	0.96	0.7
	attributes	['Pclass' 'SibSp' 'FareType' 'SexCode' 'Age_cat' 'Embarked_code']	['Pclass' 'Parch']	['Pclass' 'SexCode' 'Age_cat']
Specificity	value	1	0.97	1
	attributes	['SibSp']	['FareType' 'Embarked_code']	['SibSp']

Different algorithms perform best with different selections of attributes

Bonus: Effect of threshold

Specificity and Sensitivity (function of threshold)

- We selected the attributes for which kNN had the best accuracy
- We trained a kNN model on these attributes (k=5)
- We saved the predicted probabilities
- And we varied the threshold that divides the 2 classes
- Sensitivity and Specificity obtained ->

Sensitivity / True Positive (Recognition) rate

 $\alpha(s) = \frac{TP}{RP}$

Specificity / True Negative (Recognition) rate

 $\beta(s) = \frac{TN}{RN}$

Distribution plots for the two classes

- We used the same model from the previous slide
- And we plotted the frequency of scores for the two classes
- This would help us visualize the best threshold value

