The Code Library of xiaohai

Version 2.0

Volume 2 (Part IV, V)

xiaohai

Lingxiao Ma Yi Li Lanjun Duan Anran Li

College of Imformation Science and Technology Beijing Normal University

Contents

IV	A	Algorithm	7
15	Gra	ph Theory	9
	15.1	Theorm	9
	15.2	图数据结构	9
		15.2.1 链式前向星	9
	15.3	搜索	10
		15.3.1 Dancing Links	10
	15.4	基本图算法	23
		15.4.1 判断是否存在奇环、是否是二分图:交叉染色法 $(O(V+E))$	23
		15.4.2 2-SAT 问题 $(O(V+E))$	23
		15.4.3 Euler 路径(未知复杂度)	35
		15.4.4 Hamilton 回路	41
		15.4.5 弦图判断	41
	15.5	无向图	42
		15.5.1 割点 $(O(V+E))$	42
		15.5.2 割边(桥) $(O(V+E))$	43
		15.5.3 双连通分量: Tarjan算法 $(O(V+E))$	45
		15.5.4 无向图的最小环 $(O(N^3))$	46
		15.5.5 无向图最小割: Stoer-Wagner算法 $(O(N^3))$	47
	15.6	有向图	49
		15.6.1 拓扑排序 $(O(V+E))$	49
		15.6.2 强连通分量: Tarjan算法 $(O(V+E))$	53
		15.6.3 弱连通分量: Tarjan算法 $(O(V+E))$	55
		15.6.4 有向图的最小环 $(O(N^3))$	55
		15.6.5 有向图最小权点基	55
	15.7	树	55
		15.7.1 树的直径	55
		15.7.2 LCA & RMQ	57
		15.7.3 最小斯坦纳树(Steiner Tree) $(O(n3^k + cE2^k))$	68
	15.8	最小生成树	70
		15.8.1 Prim 算法 $(O(N^2))$	70
		15.8.2 Kruskal 算法(稀疏图) $(O(E \lg E))$	73
		15.8.3 增量最小生成树	76
		15.8.4 最小瓶颈路与最小瓶颈生成树	76
		15.8.5 次小生成树(O(V²))	76

CONTENTS TEAM #xiaohai

	15.8.6 第k小生成树	78
	15.8.7 最优比例生成树(未知复杂度)	78
	15.8.8 有向图最小树形图 $(O(VE))$	81
	15.8.9 最小度限制生成树	83
	15.8.10 最小生成森林(<i>k</i> 颗树): 改进Kruskal(<i>O(E</i> lg <i>E)</i>)	83
	$15.8.11$ 平面点的欧几里德最小生成树 $(O(V^2))$	83
	15.8.12 平面点的曼哈顿最小生成树与莫队算法	83
	15.8.13 最小平衡生成树	94
	15.8.14生成树计数(Matrix-Tree定理)	94
	15.8.15 最小生成树计数(BZOJ 1016)	96
15.9	最短路径	100
		100
	15.9.2 非负权值加权图的最短路径: 朴素Dijkstra算法(适用稠密图) $(O(V^2))$	101
	15.9.3 非负权值加权图的最短路径: Dijkstra算法(二叉堆优化)($O((E+V) \lg V)$)	102
	15.9.4 非负权值加权图的最短路径: Dijkstra 算法(优先队列优化)	
	15.9.5 含负权值加权图的单源最短路径: Bellman-Ford 算法(适用负环未知)(O(VE	
	15.9.6 含负权值加权图的单源最短路径: Bellman-Ford 算法(栈优化,适用负环	//
		107
		108
	15.9.8 全源最短路径: Floyd 算法 $(O(V^3))$	114
	15.9.9 全源最短路径: Johnson 算法(稀疏图)(O(EV lg V))	
	15.9.10次短路径	
	15.9.11 第k短路径	
	15.9.12差分约束系统: SPFA(O(KE))	121
	15.9.13 平面点对的最短路径(优化)	
	15.9.14 双标准限制最短路径	
15.10	0匹配	128
	15.10.1 二分图最大匹配: Hungary算法(O(VE))	128
	15.10.2大数据二分图最大匹配: Hopcroft-Karp $(O(\sqrt{V}E))$	
	15.10.3 二分图多重匹配: Hungary算法改(O(VE))	
	15.10.4 二分图的几个等价	
	15.10.5 二分图带权(最大/最小)完备匹配: Kuhn-Munkras算法($O(N^3)$)	134
	15.10.6 一般图最大匹配: 带花树算法(未知复杂度)	136
	$15.10.7$ 稳定婚姻匹配 $(O(N^2))$	139
15.1	· · · · · · · · · · · · · · · · · · ·	141
	15.11.1 最大流: Edmonds Karp $(O(V*E^2))$	141
		144
	15.11.3 最大流最小割:加各种优化的ISAP算法 $(O(V^2E))$	149
	15.11.4 最大流最小割: 加各种优化的HLPP算法 $(O(V^2\sqrt{E}))$	153
		157
	15.11.6有上下界的网络流	163
	15.11.7 最小(大)费用最大流: SPFA增广路(O(w * O(SPFA)))	168
		173
	15.11.9判断最小割唯一	179
	15.11.16最大权闭合子图	180

TEAM #xiaohai CONTENTS

\mathbf{V} \mathbf{C}	lassic Problems	207
17.3	Meet in the Middle	. 205
	Get a Circle (Floyd)	
	Get $Min(A[i]-A[j])$ $(0,1,2,\ldots,n-1)$ \ldots \ldots \ldots \ldots \ldots \ldots	
	er Algorithms	205
	2010.12 70.201 1.100 0011 1110 11101 1110 1110)	
	16.5.4 类TSP问题(状压DP)(POJ 3311 Hie with the Pie)	
	16.5.3 最大子矩阵和(Ural 1146)	
	16.5.2 最长公共子序列LCS	
10.5	经典问题	
10 5	16.4.2 GarsiaWachs算法(POJ 1738 An old Stone Game)	
	16.4.1 朴素四边形优化	
16.4	四边形优化	
	状态压缩模型	
	串模型	
16.1	线性模型	. 197
16 Dyr	namic Programming	197
	15.11.16点连通度与边连通度	. 196
	15.11.1最小K路径覆盖	
	15.11.14二分图最大点权独立集	
	15.11.13二分图最小点权覆盖	
	15.11.12混合图(有向+无向)的欧拉路径	
	15.11.1最大密度子图	

CONTENTS TEAM #xiaohai

Part IV

Algorithm

Chapter 15

Graph Theory

$\S 15.1$ Theorm

- 将一个树连成双连通分量至少需要的边= (叶子节点数+1)/2
- n顶点k条边的图至少有n-k个连通分量
- 如果一个图有一条不是环的边,则它至少有2个顶点不是割点
- 一个图是二分图是不存在奇环的充要条件,用交叉染色法判断是不是二分图
- n个顶点,则有 n^2 个有序对,有 2^{n^2} 个简单有向图,有 $3^{\binom{n}{2}}$ 个定向图(简单图的定向),有 $2^{\binom{n}{2}}$ 个竞赛图(完全图的定向)
- //

§ 15.2 图数据结构

15.2.1 链式前向星

```
/**
*链式前向星
*/
const int maxn=0;
const int maxm=0;
struct Edge
{
    int u,v;
    int w;
    int next;
}edge[maxm];
int head[maxn],edgeNum;
void addSubEdge(int u,int v,int w)
{
    edge[edgeNum].u=u;
    edge[edgeNum].v=v;
```

```
edge[edgeNum].w=w;
    edge[edgeNum].next=head[u];
    head[u]=edgeNum++;
}
void addEdge(int u,int v,int w)
    addSubEdge(u,v,w);
    addSubEdge(v,u,w);
}
void init()
{
    memset(head,-1,sizeof(head));
    edgeNum=0;
/*扫描*/
for(int i=head[u];i!=-1;i=edge[i].next)
    //内容
}
```

§ 15.3 搜索

15.3.1 Dancing Links

精确覆盖

精确覆盖 在一个全集X中若干子集的集合为S,精确覆盖是指,S的子集S*,满足X中的每一个元素在S*中**恰好**出现一次。

精确覆盖DLX模板

```
S[i] = 0;
        U[i] = D[i] = i;
        L[i] = i - 1;
        R[i] = i + 1;
    R[m] = 0; L[0] = m;
    size = m;
    for (int i = 1; i <= n; i++)
        H[i] = -1;
void Link(int r, int c)
{
    ++S[Col[++size] = c];
    Row[size] = r;
    D[size] = D[c];
    U[D[c]] = size;
    U[size] = c;
    D[c] = size;
    if (H[r] < 0)H[r] = L[size] = R[size] = size;</pre>
    else
    {
        R[size] = R[H[r]];
        L[R[H[r]]] = size;
        L[size] = H[r];
        R[H[r]] = size;
    }
}
void remove(int c)
{
    L[R[c]] = L[c]; R[L[c]] = R[c];
    for (int i = D[c]; i != c; i = D[i])
        for (int j = R[i]; j != i; j = R[j])
        {
            U[D[j]] = U[j];
            D[U[j]] = D[j];
            --S[Col[j]];
        }
}
void resume(int c)
    for (int i = U[c]; i != c; i = U[i])
        for (int j = L[i]; j != i; j = L[j])
            ++S[Col[U[D[j]] = D[U[j]] = j]];
    L[R[c]] = R[L[c]] = c;
}
```

```
//d为递归深度
    bool Dance(int d)
    {
        if (R[0] == 0)
        {
            ansd = d;
            return true;
        }
        int c = R[0];
        for (int i = R[0]; i != 0; i = R[i])
            if (S[i] < S[c])
                c = i;
        remove(c);
        for (int i = D[c]; i != c; i = D[i])
        {
            ans[d] = Row[i];
            for (int j = R[i]; j != i; j = R[j])remove(Col[j]);
            if (Dance(d + 1))return true;
            for (int j = L[i]; j != i; j = L[j])resume(Col[j]);
        }
        resume(c);
        return false;
};
例: HUST 1017
/*
样例: HUST 1017
*/
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int maxnode = 100010;
const int MaxM = 1010;
const int MaxN = 1010;
```

```
struct DLX
{
    int n, m, size;
    int U[maxnode], D[maxnode], R[maxnode], L[maxnode], Row[maxnode], Col[maxnode];
    int H[MaxN], S[MaxM];
    int ansd, ans[MaxN];
    void init(int _n, int _m)
    {
        n = _n;
        m = _m;
        for (int i = 0; i \le m; i++)
            S[i] = 0;
            U[i] = D[i] = i;
            L[i] = i - 1;
            R[i] = i + 1;
        }
        R[m] = 0; L[0] = m;
        size = m;
        for (int i = 1; i <= n; i++)
            H[i] = -1;
    }
    void Link(int r, int c)
        ++S[Col[++size] = c];
        Row[size] = r;
        D[size] = D[c];
        U[D[c]] = size;
        U[size] = c;
        D[c] = size;
        if (H[r] < 0)H[r] = L[size] = R[size] = size;</pre>
        else
        {
            R[size] = R[H[r]];
            L[R[H[r]]] = size;
            L[size] = H[r];
            R[H[r]] = size;
        }
    }
    void remove(int c)
    {
        L[R[c]] = L[c]; R[L[c]] = R[c];
        for (int i = D[c]; i != c; i = D[i])
            for (int j = R[i]; j != i; j = R[j])
            {
```

```
U[D[j]] = U[j];
                D[U[j]] = D[j];
                --S[Col[j]];
            }
    }
    void resume(int c)
    {
        for (int i = U[c]; i != c; i = U[i])
            for (int j = L[i]; j != i; j = L[j])
                ++S[Col[U[D[j]] = D[U[j]] = j]];
        L[R[c]] = R[L[c]] = c;
    }
    //d为递归深度
    bool Dance(int d)
    {
        if (R[0] == 0)
            ansd = d;
            return true;
        }
        int c = R[0];
        for (int i = R[0]; i != 0; i = R[i])
            if (S[i] < S[c])
                c = i;
        remove(c);
        for (int i = D[c]; i != c; i = D[i])
            ans[d] = Row[i];
            for (int j = R[i]; j != i; j = R[j])remove(Col[j]);
            if (Dance(d + 1))return true;
            for (int j = L[i]; j != i; j = L[j])resume(Col[j]);
        }
        resume(c);
        return false;
    }
};
DLX g;
int main()
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int n, m;
    while (scanf("%d%d", &n, &m) == 2)
    {
```

```
g.init(n, m);
        for (int i = 1; i <= n; i++)
        {
            int num, j;
            scanf("%d", &num);
            while (num--)
            {
                scanf("%d", &j);
                g.Link(i, j);
            }
        }
        if (!g.Dance(0))printf("NO\n");
        else
        {
            printf("%d", g.ansd);
            for (int i = 0; i < g.ansd; i++)
                printf(" %d", g.ans[i]);
            printf("\n");
        }
    }
    return 0;
}
```

重复覆盖

重复覆盖 在一个全集X中若干子集的集合为S,重复覆盖是指,S的子集S*,满足X中的每一个元素在S*中**至少**出现一次。

重复覆盖DLX模板

```
/*
重复覆盖: DLX
输入: Link()
输出: ans, bool Dance(int k)
*/
const int maxnode = 360000;
const int maxc = 500;
const int maxr = 500;
const int inf = 0x3f3f3f3f;
struct DLX
{
    int L[maxnode], R[maxnode], D[maxnode], U[maxnode], C[maxnode];
    int S[maxc], H[maxr], size;
    int ans;
    ///不需要S域
    void Link(int r, int c)
```

```
{
   S[c]++; C[size] = c;
   U[size] = U[c]; D[U[c]] = size;
    D[size] = c; U[c] = size;
    if (H[r] == -1) H[r] = L[size] = R[size] = size;
    else
    ₹
       L[size] = L[H[r]]; R[L[H[r]]] = size;
       R[size] = H[r]; L[H[r]] = size;
    size++;
}
void remove(int c)
    for (int i = D[c]; i != c; i = D[i])
       L[R[i]] = L[i], R[L[i]] = R[i];
}
void resume(int c)
{
    for (int i = U[c]; i != c; i = U[i])
       L[R[i]] = R[L[i]] = i;
}
int h() ///用精确覆盖去估算剪枝
    int ret = 0;
   bool vis[maxc];
   memset (vis, false, sizeof(vis));
   for (int i = R[0]; i; i = R[i])
    {
       if (vis[i])continue;
       ret++;
       vis[i] = true;
       for (int j = D[i]; j != i; j = D[j])
           for (int k = R[j]; k != j; k = R[k])
               vis[C[k]] = true;
    return ret;
//根据具体问题选择限制搜索深度或直接求解。
bool Dance(int k)
{
   if (k + h() >= ans) return 0;
   if (!R[0])
    {
       if (k < ans)ans = k;
```

#include <string>

```
return 1;
       }
       int c = R[0];
      for (int i = R[0]; i; i = R[i])
          if (S[i] < S[c])c = i;
       for (int i = D[c]; i != c; i = D[i])
          remove(i);
          for (int j = R[i]; j != i; j = R[j])
             remove(j);
          Dance(k + 1);
          for (int j = L[i]; j != i; j = L[j])
             resume(j);
          resume(i);
       }
      return 0;
   }
   void initL(int x) ///col is 1~x,row start from 1
      for (int i = 0; i \le x; ++i)
       {
          S[i] = 0;
          D[i] = U[i] = i;
          L[i + 1] = i; R[i] = i + 1;
       }///对列表头初始化
       R[x] = 0;
       size = x + 1; ///真正的元素从m+1开始
       memset (H, -1, sizeof(H));
       ///mark每个位置的名字
   }
};
例: POJ 1084 Square Destroyer
/*
1、题意:给你一个n*n(n<=5)的完全由火柴棍组成的正方形,已经去掉了一些火柴棍,问最少
去掉多少根火柴棍使得所有1*1、2*2.....n*n的正方形均被破坏掉?
2、方法: 矩阵的一行代表一根火柴棍, 矩阵的一列代表一个正方形
3、处理去掉的火柴棍: 先计算不去掉火柴棍的矩阵, 对去掉的火柴棍对应的正方形加标记并
在DLX里面标记它们已经访问过,然后在添加link时忽略这些标记过的正方形
// #pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <iostream>
#include <cstring>
```

```
#include <cmath>
#include <set>
#include <list>
#include <map>
#include <iterator>
#include <cstdlib>
#include <vector>
#include <queue>
#include <stack>
#include <algorithm>
#include <functional>
using namespace std;
typedef long long LL;
#define pb push_back
const int maxn = 110;
const int inf = 0x3f3f3f3f;
const int maxnode = 360000;
const int maxc = 500;
const int maxr = 500;
// const int inf = 0x3f3f3f3f;
struct DLX
    int L[maxnode], R[maxnode], D[maxnode], U[maxnode], C[maxnode];
    int S[maxc], H[maxr], size;
    int ans;
    ///不需要S域
   void Link(int r, int c)
    {
        S[c]++; C[size] = c;
        U[size] = U[c]; D[U[c]] = size;
        D[size] = c; U[c] = size;
        if (H[r] == -1) H[r] = L[size] = R[size] = size;
        else
        {
            L[size] = L[H[r]]; R[L[H[r]]] = size;
            R[size] = H[r]; L[H[r]] = size;
        }
        size++;
    }
    void remove(int c)
    {
        for (int i = D[c]; i != c; i = D[i])
            L[R[i]] = L[i], R[L[i]] = R[i];
    }
```

```
void resume(int c)
{
   for (int i = U[c]; i != c; i = U[i])
       L[R[i]] = R[L[i]] = i;
}
int h() ///用精确覆盖去估算剪枝
{
    int ret = 0;
   bool vis[maxc];
   memset (vis, false, sizeof(vis));
    for (int i = R[0]; i; i = R[i])
       if (vis[i])continue;
       ret++;
       vis[i] = true;
       for (int j = D[i]; j != i; j = D[j])
           for (int k = R[j]; k != j; k = R[k])
               vis[C[k]] = true;
   }
   return ret;
}
//根据具体问题选择限制搜索深度或直接求解。
bool Dance(int k)
{
    if (k + h() >= ans) return 0;
    if (!R[0])
       if (k < ans)ans = k;
       return 1;
    }
    int c = R[0];
    for (int i = R[0]; i; i = R[i])
        if (S[i] < S[c])c = i;
    for (int i = D[c]; i != c; i = D[i])
    {
       remove(i);
       for (int j = R[i]; j != i; j = R[j])
           remove(j);
       Dance(k + 1);
       for (int j = L[i]; j != i; j = L[j])
           resume(j);
       resume(i);
    }
    return 0;
}
```

```
void initL(int x) ///col is 1~x,row start from 1
    {
        for (int i = 0; i \le x; ++i)
           S[i] = 0;
           D[i] = U[i] = i;
           L[i + 1] = i; R[i] = i + 1;
        }///对列表头初始化
        R[x] = 0;
        size = x + 1; ///真正的元素从m+1开始
        memset (H, -1, sizeof(H));
        ///mark每个位置的名字
    }
} dlx;
int kase;
int n;
vector<int> vec;
bool mtx[maxn] [maxn];
int row, col;
bool vis[maxn];
void init()
   kase++;
   vec.clear();
   memset(mtx, 0, sizeof(mtx));
   memset(vis, 0, sizeof(vis));
}
void input()
    scanf("%d", &n);
    int k;
    scanf("%d", &k);
    while (k--)
    {
        int x;
        scanf("%d", &x);
        vec.pb(x);
    }
}
void debug()
{
    //
}
void calmtx()
```

```
{
   row = 2 * n * (n + 1);
    col = 0;
    for (int i = 1; i \le n; i++)
        col += i * i;
    int cnt = 1;
    for (int si = 1; si <= n; si++)
        for (int i = 1; i \le n - si + 1; i++)
        {
            for (int j = 1; j \le n - si + 1; j++)
            {
                for (int k = 0; k < si; k++)
                {
                    mtx[(i-1)*(2*n+1)+j+k][cnt] = 1;
                    mtx[(i - 1 + si) * (2 * n + 1) + j + k][cnt] = 1;
                    mtx[i * n + (i - 1) * (n + 1) + j + k * (2 * n + 1)][cnt] = 1;
                    mtx[i * n + (i - 1) * (n + 1) + j + k * (2 * n + 1) + si][cnt] = 1;
                }
                cnt++;
            }
        }
   }
}
void build()
    calmtx();
    dlx.initL(col);
    for (int i = 0; i < vec.size(); i++)</pre>
    {
        int x = vec[i];
        for (int j = 1; j <= col; j++)
            if (mtx[x][j] && !vis[j])
            {
                vis[j] = 1;
                dlx.R[dlx.L[j]] = dlx.R[j];
                dlx.L[dlx.R[j]] = dlx.L[j];
                dlx.R[j] = dlx.L[j] = 0;
            }
    }
    for (int i = 1; i <= row; i++)
    {
        for (int j = 1; j \le col; j++)
```

```
{
            if (mtx[i][j] && !vis[j])
                dlx.Link(i, j);
        }
    }
}
void solve()
{
    build();
    dlx.ans = inf;
    dlx.Dance(0);
    printf("%d\n", dlx.ans);
}
void output()
{
    //
}
int main()
#ifdef xysmlx
    freopen("in.cpp", "r", stdin);
#endif
    kase = 0;
    int T;
    scanf("%d", &T);
    while (T--)
    {
        init();
        input();
        solve();
        output();
    }
    return 0;
}
```

DLX标记已经提前选取过的列

```
dlx.R[dlx.L[j]] = dlx.R[j];
dlx.L[dlx.R[j]] = dlx.L[j];
dlx.R[j] = dlx.L[j] = 0;
```

§ 15.4 基本图算法

15.4.1 判断是否存在奇环、是否是二分图:交叉染色法(O(V+E))

```
/**
*判断是否存在奇环、是否是二分图:交叉染色法($0(V+E)$)
*使用方法: 找一个连通分量用一次(因为fflag[])
*输入:图(链式前向星),now,fflag[](是否在同一连通分量)
*输出: true(是奇环、不是二分图),false(是二分图、不是奇环)
*/
const int maxn=0;
bool fflag[maxn];
bool toColor(int now)
{
   queue<int> Q;
   int color[maxn];
   memset(color,0,sizeof(color));
   color[now]=1;
   Q.push(now);
   while(!Q.empty())
   {
       int u = Q.front();
       Q.pop();
       for(int i=head[u]; i!=-1; i=edge[i].next)
       {
          int v=edge[i].v;
          if(!fflag[v]) continue;/* 不是同一连通分量*/
          if(!color[v])
          {
              color[v]=-color[u];
              Q.push(v);
           else if(color[v] == color[u]) return true;
       }
   }
   return false;
}
```

15.4.2 2-SAT 问题(O(V+E))

理论

建图 把所有的输入都转化为 $(x_1||y_1)$ && $(x_2||y_2)$ &&···&& $(x_i||y_i)$ ···的形式: 那么 $(x_i||y_i)$ 就可以转化为 $|x_i| > y_i$,和 $|y_i| > x_i$ 两条边。

具体转化过程: a&&b = (a||b)&&(!a||b)&&(!b||a)

1. a AND b = 1: 这个等价于(a||b)&&(!a||b)&&(!b||a),于是在图中增加六条边!a->

```
b, !b->a, a->b, !b->!a, b->a, !a->!b
```

- 2. a AND b = 0: 这个等价于!a||!b,于是在原图中增加两条边a > !b, b > !a
- 3. $a \ OR \ b = 0$: 这个等价于(!a||!b)&&(!a||b)&&(!b||a),于是在图中增加六条边a->!b , b->!a , a->b , !b->!a , b->a , !a->!b
- 4. $a \ OR \ b = 1$: 这个等价于a||b,于是在图中增加两条边!a > b, !b > a
- 5. $a \ XOR \ b = 0$: 这个等价于(a||!b)&&(!a||b),于是在图中增加四条边!a->!b,b->a,a->b,!b->!a
- 6. $a \ XOR \ b1$: 这个等价于(a||b)&&(!a||!b),于是在图中增加四条边!a->b, !b->a, a->b, !b->a
- 7. a > b: 这个等价于(a > b)&&(!b > !a),于是在图中增加两条边a > b, !b > !a
- 8. a = 0: 这个等价于加边!a > a
- 9. a = 1: 这个等价于加边a > !a

可行性判定 检查所有的变量a: !a和a不能够在同一个连通分量中,否则无解.

构造解 强连通分量缩点,在DAG图中按照逆拓扑序,依次选择,每一次选择,同时把和被选择点矛盾矛盾的点及其连通分量标记为不选,直到所有的点都作出了选择.

实现

Modified Edition of LRJ

```
/**
*2-SAT模板, Modified Edition of LRJ 按字典序排列结果
*输入:按照法则添加边(参数为2*i或者2*i+1)
*运行: 先init(n), 再add(), 再solve()
*注意: add(2*i,2*j)才行
*输出: mark[](1表示选中), solve()(是否有解)
*/
const int maxn = 0;
struct TwoSAT
{
   int n;
   vector<int> G[maxn*2];
   bool mark[maxn*2];
   int S[maxn*2], c;
   bool dfs(int x)
       if (mark[x^1]) return false;
       if (mark[x]) return true;
       mark[x] = true;
```

```
S[c++] = x;
    for (int i = 0; i < G[x].size(); i++)</pre>
        if (!dfs(G[x][i])) return false;
    return true;
}
void init(int n)
{
    this->n = n;
    for (int i = 0; i < n*2; i++) G[i].clear();</pre>
    memset(mark, 0, sizeof(mark));
}
/// x AND y = 1
void add_and_one(int x,int y)
{
    G[x^1].push_back(y);
    G[y^1].push_back(x);
    G[x].push_back(y);
    G[y^1].push_back(x^1);
    G[y].push_back(x);
    G[x^1].push_back(y^1);
}
/// x AND y = 0
void add_and_zero(int x,int y)
    G[x].push_back(y^1);
    G[y].push_back(x^1);
}
/// x OR y = 1
void add_or_one(int x,int y)
{
    G[x^1].push_back(y);
    G[y^1].push_back(x);
}
/// x OR y = 0
void add_or_zero(int x,int y)
{
    G[x].push_back(y^1);
    G[y].push_back(x^1);
    G[x].push_back(y);
    G[y^1].push_back(x^1);
```

```
G[x^1].push_back(y^1);
    G[y].push_back(x);
}
/// x XOR y = 1
void add_xor_one(int x,int y)
{
    G[x^1].push_back(y);
    G[y^1].push_back(x);
    G[x].push_back(y^1);
    G[y].push_back(x^1);
}
/// x XOR y = 0
void add_xor_zero(int x,int y)
{
    G[x^1].push_back(y^1);
    G[y].push_back(x);
    G[x].push_back(y);
    G[y^1].push_back(x^1);
}
/// x -> y
void add_to(int x,int y)
{
    G[x].push_back(y);
    G[y^1].push_back(x^1);
}
bool solve()
{
    for(int i = 0; i < n*2; i += 2)
        if(!mark[i] && !mark[i+1])
        {
            c = 0;
            if(!dfs(i))
                while(c > 0) mark[S[--c]] = false;
                if(!dfs(i+1)) return false;
            }
        }
    return true;
}
```

};

链式前向星写法

```
/**
*2-SAT模板:按字典序排列结果
*输入:按照法则添加边(参数为2*i或者2*i+1)
*运行: 先init(n),再add(),再solve()
*注意: add(2*i,2*j)才行
*输出: vis[](1表示选中), solve()(是否有解)
*/
const int maxn = 0;
const int maxm = 0;
struct Edge
{
    int u, v;
    int next;
};
struct TwoSAT
{
    int n, en;
   Edge edge[maxm];
   int head[maxn];
    int vis[maxn], S[maxn];
    int cnt;
   void init(int _n = 0)
    {
       n = _n;
       memset(head, -1, sizeof(head));
       en = 0;
       memset(vis, 0, sizeof(vis));
    }
   void addse(int u, int v)
    {
       edge[en].u = u;
       edge[en].v = v;
       edge[en].next = head[u];
       head[u] = en++;
    }
   bool dfs(int u)
    {
       if (vis[u ^ 1])return 0;
       if (vis[u])return 1;
       vis[u] = 1;
       S[cnt++] = u;
```

```
for (int i = head[u]; i != -1; i = edge[i].next)
        if (!dfs(edge[i].v))return 0;
    }
    return 1;
}
bool solve()
    for (int i = 0; i < 2 * n; i += 2)
        if (vis[i] || vis[i ^ 1])continue;
        cnt = 0;
        if (!dfs(i))
        {
            while (cnt)vis[S[--cnt]] = 0;
            if (!dfs(i ^ 1))return 0;
        }
    }
    return 1;
}
/// x AND y = 1
void add_and_one(int x, int y)
{
    addse(x ^ 1, y);
    addse(y ^1, x);
    addse(x, y);
    addse(y ^1, x ^1);
    addse(y, x);
    addse(x ^1, y ^1);
}
/// x AND y = 0
void add_and_zero(int x, int y)
{
    addse(x, y ^1);
    addse(y, x^1);
}
/// x OR y = 1
void add_or_one(int x, int y)
    addse(x ^1, y);
    addse(y ^ 1, x);
```

```
}
   /// x OR y = 0
   void add_or_zero(int x, int y)
   {
       addse(x, y^1);
       addse(y, x ^1);
       addse(x, y);
       addse(y ^ 1, x ^ 1);
       addse(x ^ 1, y ^ 1);
       addse(y, x);
   }
   /// x XOR y = 1
   void add_xor_one(int x, int y)
   {
       addse(x ^1, y);
       addse(y ^1, x);
       addse(x, y^1);
       addse(y, x^1);
   }
   /// x XOR y = 0
   void add_xor_zero(int x, int y)
   {
       addse(x ^1, y ^1);
       addse(y, x);
       addse(x, y);
       addse(y ^1, x ^1);
   }
   /// x -> y
   void add_to(int x, int y)
   {
       addse(x, y);
       addse(y ^1, x ^1);
   }
按字典序排列结果的2-sat
/**
*2-SAT模板:按字典序排列结果
*输入:按照法则添加边(参数为2*i或者2*i+1)
*运行: 先init(n),再add(),再solve()
*注意: add(2*i,2*j)才行
```

};

```
*输出: color[](R表示选中), solve()/solvable()(是否有解)
*/
const int maxn = 0;
struct TwoSAT
{
   char color[maxn];//染色
   bool visit[maxn];
   queue<int>q1, q2;
   //vector建图方法很妙
                                    //中间一定要加空格把两个,>, 隔开
   vector<vector<int> >adj; //原图
   vector<vector<int> >radj;//逆图
   vector<vector<int> >dag;//缩点后的逆向DAadj图
   int id[maxn], order[maxn], ind[maxn]; //强连通分量, 访问顺序, 入度
   int n, cnt;
   void init(int _n = 0)
       n = _n;
       adj.assign(2 * n, vector<int>());
       radj.assign(2 * n, vector<int>());
   }
   void dfs(int u)
   {
       visit[u] = true;
       int i, len = adj[u].size();
       for (i = 0; i < len; i++)
           if (!visit[adj[u][i]])
               dfs(adj[u][i]);
       order[cnt++] = u;
   }
   void rdfs(int u)
   {
       visit[u] = true;
       id[u] = cnt;
       int i, len = radj[u].size();
       for (i = 0; i < len; i++)
           if (!visit[radj[u][i]])
               rdfs(radj[u][i]);
   }
   void korasaju()
   {
       int i;
```

```
memset(visit, false, sizeof(visit));
    for (cnt = 0, i = 0; i < 2 * n; i++)
        if (!visit[i])
            dfs(i);
    memset(id, 0, sizeof(id));
    memset(visit, false, sizeof(visit));
    for (cnt = 0, i = 2 * n - 1; i \ge 0; i--)
        if (!visit[order[i]])
            cnt++;//这个一定要放前面来
           rdfs(order[i]);
        }
}
bool solvable()
{
    korasaju();
    for (int i = 0; i < n; i++)
        if (id[2 * i] == id[2 * i + 1])
           return false;
    return true;
}
void topsort()
{
    int i, j, len, now, p, pid;
    while (!q1.empty())
       now = q1.front();
        q1.pop();
        if (color[now] != 0)continue;
        color[now] = 'R';
        ind[now] = -1;
        for (i = 0; i < 2 * n; i++)
            if (id[i] == now)
            {
                //p=(i%2)?i+1:i-1;//点的编号从0开始以后这一定要修改
               p = i ^1;
               pid = id[p];
                q2.push(pid);
               while (!q2.empty())
                   pid = q2.front();
                    q2.pop();
```

```
if (color[pid] == 'B')continue;
                    color[pid] = 'B';
                    len = dag[pid].size();
                    for (j = 0; j < len; j++)
                         q2.push(dag[pid][j]);
                }
            }
        }
        len = dag[now].size();
        for (i = 0; i < len; i++)
        {
            ind[dag[now][i]]--;
            if (ind[dag[now][i]] == 0)
                q1.push(dag[now][i]);
        }
    }
}
bool solve()
{
    if (!solvable()) return false;
    dag.assign(cnt + 1, vector<int>());
    memset(ind, 0, sizeof(ind));
    memset(color, 0, sizeof(color));
    for (int i = 0; i < 2 * n; i++)
    {
        for (int j = 0; j < adj[i].size(); j++)</pre>
            if (id[i] != id[adj[i][j]])
            {
                dag[id[adj[i][j]]].push_back(id[i]);
                ind[id[i]]++;
            }
    for (int i = 1; i <= cnt; i++)
        if (ind[i] == 0) q1.push(i);
    topsort();
    return true;
}
/// x AND y = 1
void add_and_one(int x, int y)
{
    adj[x ^ 1].push_back(y);
    adj[y ^ 1].push_back(x);
    adj[x].push_back(y);
```

```
adj[y ^1].push_back(x ^1);
    adj[y].push_back(x);
    adj[x ^ 1].push_back(y ^ 1);
    radj[y].push_back(x ^ 1);
    radj[x].push_back(y ^ 1);
    radj[y].push_back(x);
    radj[x ^ 1].push_back(y ^ 1);
    radj[x].push_back(y);
    radj[y ^ 1].push_back(x ^ 1);
}
/// x AND y = 0
void add_and_zero(int x, int y)
{
    adj[x].push_back(y ^ 1);
    adj[y].push_back(x ^ 1);
    radj[y ^ 1].push_back(x);
    radj[x ^ 1].push_back(y);
}
/// x OR y = 1
void add_or_one(int x, int y)
{
    adj[x ^ 1].push_back(y);
    adj[y ^ 1].push_back(x);
    radj[y].push_back(x ^ 1);
    radj[x].push_back(y ^ 1);
}
/// x OR y = 0
void add_or_zero(int x, int y)
{
    adj[x].push_back(y ^ 1);
    adj[y].push_back(x ^ 1);
    adj[x].push_back(y);
    adj[y ^1].push_back(x ^1);
    adj[x ^ 1].push_back(y ^ 1);
    adj[y].push_back(x);
    radj[y ^ 1].push_back(x);
    radj[x ^ 1].push_back(y);
    radj[y].push_back(x);
```

```
radj[x ^ 1].push_back(y ^ 1);
        radj[y ^ 1].push_back(x ^ 1);
        radj[x].push_back(y);
   }
    /// x XOR y = 1
   void add_xor_one(int x, int y)
    {
        adj[x ^ 1].push_back(y);
        adj[y ^ 1].push_back(x);
        adj[x].push_back(y ^ 1);
        adj[y].push_back(x ^ 1);
        radj[y].push_back(x ^ 1);
        radj[x].push_back(y ^ 1);
        radj[y ^ 1].push_back(x);
        radj[x ^ 1].push_back(y);
    }
    /// x XOR y = 0
   void add_xor_zero(int x, int y)
    {
        adj[x ^1].push_back(y ^1);
        adj[y].push_back(x);
        adj[x].push_back(y);
        adj[y ^ 1].push_back(x ^ 1);
        radj[y ^ 1].push_back(x ^ 1);
        radj[x].push_back(y);
        radj[y].push_back(x);
        radj[x ^1].push_back(y ^1);
   }
    /// x -> y
   void add_to(int x, int y)
    {
        adj[x].push_back(y);
        adj[y ^ 1].push_back(x ^ 1);
        radj[y].push_back(x);
        radj[x ^ 1].push_back(y ^ 1);
    }
} sat;
```

15.4.3 Euler 路径(未知复杂度)

判定

无向图

- G有欧拉通路的充分必要条件为: G 连通, G中只有两个奇度顶点(它们分别是欧拉通路的两个端点)。
- G有欧拉回路(G为欧拉图): G连通, G中均为偶度顶点。

有向图

- D有欧拉通路: D连通,除两个顶点外,其余顶点的入度均等于出度,这两个特殊的顶点中,一个顶点的入度比出度大1,另一个顶点的入度比出度小1。
- D有欧拉回路(D为欧拉图): D连通, D中所有顶点的入度等于出度。

混合图(有向+无向)

- 1. 把该图的无向边随便定向,计算每个点的入度和出度。如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路。因为欧拉回路要求每点入度=出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路。
- 2. 现在每个点入度和出度之差均为偶数。将这个偶数除以2,得x。即是说,对于每一个点,只要将x条边反向(入;出就是变入,出;入就是变出),就能保证出=入。如果每个点都是出=入,那么很明显,该图就存在欧拉回路。
- 3. 构造网络流模型。有向边不能改变方向,直接删掉。开始已定向的无向边,定的是什么向,就把网络构建成什么样,边长容量上限1。另新建s和t。对于入> 出的点u,连接边(u,t)、容量为x,对于出> 入的点v,连接边(s,v),容量为x (注意对不同的点x 不同。当初由于不小心,在这里错了好几次)。之后,察看是否有满流的分配。有就是能有欧拉回路,没有就是没有。查看流值分配,将所有流量非0 (上限是1,流值不是0就是1)的边反向,就能得到每点入度= 出度的欧拉图。

有向图

非递归

{

```
/**
*Euler 路径(未知复杂度)
*首先计算出每个点的度数degree, 然后调用euler函数, 返回值为欧拉路径长度
*输入: n,g[][](邻接矩阵),deg[]
*输出: euler(),在相应地方处理
*/
const int maxn=0;
int n;
int deg[maxn];
int g[maxn][maxn];
void euler()
```

```
for(int i=0; i<n; i++)</pre>
   {
       if(deg[i])
       {
           int u=i;
           while(1)
           {
               for(int j=0; j< n; j++)
                  if(g[u][j]&&g[j][u])
                      g[j][u]=0;/// 欧拉路径的边,在这里处理
                      deg[u]--,deg[i]--;
                      u=j;
                      break;
                  }
               }
               if(u==i) break;
           }
       }
   }
}
递归(不建议用)
/**
*Euler 路径(未知复杂度)
*首先计算出每个点的度数degree,然后调用euler函数,返回值为欧拉路径长度
*输入: n,graph[][](邻接矩阵)
*输出: euler(int n)欧拉路径长度
const int maxn=0;//顶点
const int maxm=0;//边
int graph[maxn] [maxn];
int degree[maxn],n;
int ans[maxm];
void dfs(int k,int& top)
{
   int i;
   for(i=1; i<=500; ++i)
       if(graph[k][i]>0)
       {
           --graph[k][i];
           --graph[i][k];
```

```
dfs(i,top);
        }
    }
    ans[top++]=k;
}
int euler(int n)
    int ret=0;
    for(int i=1; i<=500; ++i)
        if(degree[i]&1)
            dfs(i,ret);
            return ret;
        }
    }
   dfs(1,ret);
   return ret;
}
混合图(POJ 1637)
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
typedef long long LL;
const int maxn = 2010;
const int maxm = 4010;
const int inf = 0x3f3f3f3f;
struct Edge
{
    int u, v;
    int cap, flow;
    int next;
} edge[maxm];
int head[maxn], edgeNum; //需初始化
int n, m, d[maxn], cur[maxn];
int st, ed;
bool vis[maxn];
void addSubEdge(int u, int v, int cap, int flow)
{
    edge[edgeNum].u = u;
    edge[edgeNum].v = v;
```

```
edge[edgeNum].cap = cap;
    edge[edgeNum].flow = flow;
    edge[edgeNum].next = head[u];
    head[u] = edgeNum++;
    cur[u] = head[u];
}
void addEdge(int u, int v, int cap)
{
    addSubEdge(u, v, cap, 0);
    addSubEdge(v, u, 0, 0); //注意加反向0 边
}
bool BFS()
{
    queue<int> Q;
    memset(vis, 0, sizeof(vis));
    Q.push(st);
   d[st] = 0;
    vis[st] = 1;
    while (!Q.empty())
    {
        int u = Q.front();
        Q.pop();
        for (int i = head[u]; i != -1; i = edge[i].next)
            int v = edge[i].v;
            int w = edge[i].cap - edge[i].flow;
            if (w > 0 \&\& !vis[v])
            {
                vis[v] = 1;
                Q.push(v);
                d[v] = d[u] + 1;
                if (v == ed) return 1;
            }
        }
    }
    return false;
}
int Aug(int u, int a)
{
    if (u == ed) return a;
    int aug = 0, delta;
    for (int &i = cur[u]; i != -1; i = edge[i].next)
        int v = edge[i].v;
        int w = edge[i].cap - edge[i].flow;
```

```
if (w > 0 \&\& d[v] == d[u] + 1)
        {
            delta = Aug(v, min(a, w));
            if (delta)
            {
                edge[i].flow += delta;
                edge[i ^ 1].flow -= delta;
                aug += delta;
                if (!(a -= delta)) break;
            }
        }
    }
    if (!aug) d[u] = -1;
    return aug;
}
int Dinic(int NdFlow)
    int flow = 0;
    while (BFS())
        memcpy(cur, head, sizeof(int) * (n + 1));
        flow += Aug(st, inf);
        /*如果超过指定流量就return 掉*/
        if (NdFlow == inf) continue;
        if (flow > NdFlow) break;
    }
   return flow;
}
int in[maxn], out[maxn], a[maxn], b[maxn], c[maxn];
int N, M;
void init()
₹
    memset(in, 0, sizeof(in));
   memset(out, 0, sizeof(out));
    memset(head, -1, sizeof(head));
    edgeNum = 0;
}
void input()
    scanf("%d%d", &N, &M);
   for (int i = 0; i < M; i++)
        scanf("%d%d%d", &a[i], &b[i], &c[i]);
        out[a[i]]++;
```

```
in[b[i]]++;
    }
}
void solve()
{
    int flag = 1;
   for (int i = 1; i <= N; i++)
        if ((out[i] - in[i] + 1000) & 1) flag = 0;
    if (!flag)
    {
        puts("impossible");
        return;
    }
    st = 0, ed = N + 1, n = N + 2;
    for (int i = 0; i < M; i++)
    {
        if (a[i] != b[i] && !c[i]) addEdge(a[i], b[i], 1);
    }
    int ans = 0;
   for (int i = 1; i <= N; i++)
    {
        if (out[i] > in[i])
            addEdge(st, i, (out[i] - in[i]) / 2);
            ans += (out[i] - in[i]) / 2;
        else if (out[i] < in[i]) addEdge(i, ed, (in[i] - out[i]) / 2);
    }
    if (Dinic(inf) == ans) puts("possible");
    else puts("impossible");
}
int main()
₹
    int T;
    scanf("%d", &T);
    while (T--)
    {
        init();
        input();
        solve();
    }
   return 0;
}
```

15.4.4 Hamilton 回路

15.4.5 弦图判断

弦 连接环中不相邻的两个点的边

弦图 一个无向图称为弦图, 当图中任意长度大于3的环都至少有一个弦。

```
/**
*弦图判断
*输入: g[][]置为邻接矩阵, n(从0到n-1)
*调用: mcs(n); peo(n);
*输出: peo(n)
*/
int g[maxn]maxn], order[maxn], inv[maxn], tag[maxn];
void mcs(int n)
{
    int i, j, k;
   memset(tag, 0, sizeof(tag));
   memset(order, -1, sizeof(order));
   for (i = n - 1; i \ge 0; i--) // vertex: 0 ~ n-1
        for (j = 0; order[j] >= 0; j++);
        for (k = j + 1; k < n; k++)
            if (order[k] < 0 \&\& tag[k] > tag[j]) j = k;
        order[j] = i, inv[i] = j;
        for (k = 0; k < n; k++) if (g[j][k]) tag[k]++;
   }
}
int peo(int n)
    int i, j, k, w, min;
   for (i = n - 2; i \ge 0; i--)
        j = inv[i], w = -1, min = n;
        for (k = 0; k < n; k++)
            if (g[j][k] && order[k] > order[j] &&
                    order[k] < min)
               min = order[k], w = k;
        if (w < 0) continue;
        for (k = 0; k < n; k++)
            if (g[j][k] && order[k] > order[w] && !g[k][w])
               return 0; // no
    }
   return 1; // yes
```

}

§ 15.5 无向图

BCC 双连通分量

15.5.1 割点(O(V+E))

```
/**
*割点(O(V+E))
*输入:图(链式前向星),n(顶点数)(从0到n-1)
*输出: iscut[](标记是否为割点)
const int maxn = 0;
const int maxm = 0;
struct Edge
{
    int v;
    int next;
} edge[maxm];
int head[maxn], edgeNum;
void addSubEdge(int u, int v)
{
    edge[edgeNum].v = v;
    edge[edgeNum].next = head[u];
   head[u] = edgeNum++;
}
void addEdge(int u, int v)
{
    addSubEdge(u, v);
    addSubEdge(v, u);
}
void init()
{
   memset(head, -1, sizeof(head));
    edgeNum = 0;
}
int n;
int low[maxn];
int mark[maxn];
int iscut[maxn];
int dfn;
int dfs(int k, int p)
   mark[k] = low[k] = dfn++;
```

Page 42 of 208

```
int son = 0, tag = 0;
    for (int i = head[k]; i != -1; i = edge[i].next)
    {
        int j = edge[i].v;
        if (j == p)continue;
        if (mark[j] == 0)
        {
           dfs(j, k);
           ++son;
           low[k] = min(low[k], low[j]);
           if (low[j] >= mark[k])tag = 1;
        }
        else low[k] = min(low[k], mark[j]);
    }
    if (p != -1 \&\& tag || p == -1 \&\& son > 1)iscut[k] = 1;
   return 0;
}
/*Dfs调用*/
void cutpoint()
   memset(mark, 0, sizeof(mark));
   memset(iscut, 0, sizeof(iscut));
   for (int i = 0; i < n; ++i) if (mark[i] == 0)dfs(i, -1);
}
15.5.2
        割边(桥)(O(V+E))
/**
*割边(桥)(不带判重)(O(V+E))
*判重方法:用map判重
*输入:图(链式前向星),n(顶点数)(从0到n-1)
*输出:按需输出
*/
const int maxn = 0;
const int maxm = 0;
struct Edge
{
    int v;
    int next;
} edge[maxm];
int head[maxn], edgeNum;
void addSubEdge(int u, int v)
    edge[edgeNum].v = v;
```

```
edge[edgeNum].next = head[u];
   head[u] = edgeNum++;
}
void addEdge(int u, int v)
{
    addSubEdge(u, v);
    addSubEdge(v, u);
}
void init()
   memset(head, -1, sizeof(head));
    edgeNum = 0;
}
int n;
int low[maxn];
int mark[maxn];
int dfn;
void dfs(int k, int p)
   mark[k] = low[k] = dfn++;
   for (int i = head[k]; i != -1; i = edge[i].next)
    {
        int j = edge[i].v;
        if (j == p) continue;
        if (mark[j] == 0)
        {
            dfs(j, k);
            low[k] = min(low[k], low[j]);
            if (low[j] == mark[j])
                //发现(k,j)为桥
            }
        else low[k] = min(low[k], mark[j]);
    }
void bridge()
   memset(mark, 0, sizeof(mark));
    dfn = 1;
    for (int i = 0; i < n; i++) if (mark[i] == 0) dfs(i, -1);
}
```

15.5.3 双连通分量: Tarjan算法(O(V+E))

至少添加几条边,使无向图边成双连通图:将无向图求双连通分量(BCC),缩点后变成一棵树!根据缩点后的新图,统计度为1的结点(假设有a个)!则(a+1)/2 就是答案!

```
/**
*双连通分量: Tarjan算法($0(V+E)$)
*输入:图(链式前向星),n
*输出: bcc[](双连通分量)
*/
const int maxn = 0;
const int maxm = 0;
struct Edge
    int v;
    int next;
} edge[maxm];
int head[maxn], edgeNum;
void addSubEdge(int u, int v)
{
    edge[edgeNum].v = v;
    edge[edgeNum].next = head[u];
   head[u] = edgeNum++;
}
void addEdge(int u, int v)
{
    addSubEdge(u, v);
    addSubEdge(v, u);
}
void init()
{
   memset(head, -1, sizeof(head));
    edgeNum = 0;
}
int n;
int mark[maxn], low[maxn]; //mark初始化为0
                           //top初始化为0
int sstack[maxn], stop;
                           //初始化为1
int dfn;
                           //bid初始化为1
int bcc[maxn], bid;
int dfs(int k, int p)
    int i, j;
   low[k] = mark[k] = dfn++;
    sstack[stop++] = k;
   for (i = head[k]; i != -1; i = edge[i].next)
    {
```

```
j = edge[i].v;
        if (mark[j] == 0)
        {
            dfs(j, k);
            low[k] = min(low[k], low[j]);
        }
        else if (j != p) low[k] = min(low[k], mark[j]);
    }
    if (mark[k] > low[k])return 0;
    while (sstack[--stop] != k) // 导出一个双连通分量
    {
        bcc[sstack[stop]] = bid;
    }
   bcc[k] = bid;
    ++bid;
   return 0;
}
/*Dfs调用*/
void tarjan()
   memset(mark, 0, sizeof(mark));
   dfn = bid = 1;
    stop = 0;
   for (int i = 1; i \le n; ++i) if (mark[i] == 0) dfs(i, -1);
}
         无向图的最小环(O(N^3))
15.5.4
   修改版Floyd
const int MAX = 110;
int g[MAX][MAX];
int dist[MAX][MAX], s[MAX][MAX];
const int INF = 1000000000;
int path[MAX], ct;
int solve(int i, int j, int k)
{
    ct = 0;
   while (j != i)
        path [ct++] = j;
        j = s[i][j];
   path [ct++] = i, path [ct++] = k;
    return 0;
}
```

```
int min_circle(int graph[MAX][MAX], int n)
{
   memmove(dist, g, sizeof(dist));
    int ret = INF;
    for (int k = 0; k < n; ++k)
        for (int i = 0; i < k; ++i)
        {
            if (g[k][i] == INF)continue;
            for (int j = i + 1; j < k; ++j)
                if (dist[i][j] < INF && g[k][j] < INF
                        && ret > dist[i][j] + g[k][i] + g[k][j])
                {
                    ret = dist[i][j] + g[k][i] + g[k][j];
                    solve(i, j, k);
                }
        }
        for (int i = 0; i < n; ++i)
            if (dist[i][k] == INF)continue;
            for (int j = 0; j < n; ++j)
                if (dist[k][j] < INF && dist[i][j] > dist[i][k] + dist[k][j])
                    dist[i][j] = dist[i][k] + dist[k][j];
                    s[i][j] = s[k][j];
                }
        }
    }
    return ret;
}
```

15.5.5 无向图最小割: Stoer-Wagner算法 $(O(N^3))$

求解最小割集普遍采用Stoer-Wagner算法:

- 1. min=MAXINT,固定一个顶点P
- 2. 从点P用类似prim的s算法扩展出"最大生成树",记录最后扩展的顶点和最后扩展的边
- 3. 计算最后扩展到的顶点的切割值(即与此顶点相连的所有边权和),若比min小更新min
- 4. 合并最后扩展的那条边的两个端点为一个顶点(当然他们的边也要合并,这个好理解吧?)
- 5. 转到2,合并N-1次后结束
- 6. min即为所求,输出min

/*

```
prim本身复杂度是O(n^2),合并n-1次,算法复杂度即为O(n^3)
如果在prim中加堆优化,复杂度会降为O((n<sup>2</sup>)logn)
*/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int NN = 505;
const int INF = 0x3ffffffff;
int n, m, g[NN][NN], node[NN], dist[NN];
bool used[NN];
int mincut()
{
   int maxj, pre, ret = INF;
   for (int i = 0; i < n; i++) node[i] = i;
   while (n > 1)
   {
       memset(used, 0, sizeof(used));
       used[node[0]] = 1;
                                              //记录,最远,的结点
       \max j = 1;
       for (int i = 1; i < n; i++)
       {
           dist[node[i]] = g[node[0]][node[i]]; //固定定点P为node[0],这里初始化dist
           if (dist[node[i]] > dist[node[maxj]]) maxj = i;
       }
       pre = 0;
       for (int i = 1; i < n; i++)
                                              //生成树的最后一条边
           if (i == n - 1)
               ret = min(ret, dist[node[maxj]]); //更新最小割
               for (int k = 0; k < n; k++)
                                            //合并pre和maxj两点
               {
                   g[node[k]][node[pre]] += g[node[k]][node[maxj]];
                   g[node[pre]][node[k]] = g[node[k]][node[pre]];
                                              //删掉maxj结点
               node[maxj] = node[--n];
           used[node[maxj]] = 1;
           pre = maxj;
           maxj = -1;
           for (int j = 1; j < n; j++)
               if (!used[node[j]])
```

```
{
                   dist[node[j]] += g[node[pre]][node[j]]; //更新到树的和距离
                   if (maxj == -1 || dist[node[maxj]] < dist[node[j]]) maxj = j;</pre>
               }
       }
    }
   return ret;
}
int main()
{
   while (scanf("%d%d", &n, &m) != -1)
    {
       memset(g, 0, sizeof(g));
        for (int i = 1; i <= m; i++)
        {
           int a, b, c;
           scanf("%d%d%d", &a, &b, &c);
           g[a][b] += c;
           g[b][a] += c;
       }
       printf("%d\n", mincut());
    }
   return 0;
}
          有向图
§ 15.6
DAG 有向无环图
SCC 强连通分量
```

拓扑排序(O(V+E))15.6.1

高效版, 默认字典序最小, 可改最大

```
/**
*拓扑排序: ($0(V+E)$)
*高效版,默认字典序最小方案,可改最大(循环从n-1到0即可)
*输入: g[][](有向图), in[](每个点的入度), n
*/
const int maxn = 0;
int in[maxn];
int g[maxn] [maxn];
void TopoOrder(int n)
{
```

```
int i, top = -1;
   for (i = 0; i < n; ++i)
        if (in[i] == 0) // 下标模拟堆栈
            in[i] = top;
           top = i;
        }
    }
    for (i = 0; i < n; ++i)
    {
        if (top == -1)
            printf("存在回路\n");
            return ;
        }
        else
        {
            int j = top;
            top = in[top];
            printf("%d", j);
            for (int k = 0; k < n; ++k)
                if (g[j][k] \&\& (--in[k]) == 0)
                {
                    in[k] = top;
                    top = k;
                }
            }
       }
   }
}
```

输出所有序列

```
/**
*拓扑排序: ($0(V+E)$)
*输出所有序列
*POJ 1270 Following Orders
*给出变量列表和一组约束关系,按字典序输出所有满足关系的拓扑序列
*/
#include <iostream>
#include <stdio.h>
#include <string>
```

Page 50 of 208

```
#include <cstring>
#include <algorithm>
using namespace std;
int node[30], num; //num为变量的个数, node存储变量对应的整型值
int edge[30][30]; //edge[i][j]=1表示i<j。
int into[30]; //表示i的入度
//u表示此次选的是第u个变量, idx表示目前选了idx个变了, s是输出的结果字符串
void topo_dfs(int u, int idx, string s)
{
   if (u != -1)
       s += char(node[u] + 'a');
   if (idx == num)
   {
       cout << s << endl;</pre>
       return;
   }
   for (int i = 0; i < num; i++)
   {
       //选出入度为0的变量,将与它相连的点的入度-1。
       if (into[node[i]] == 0)
       {
           into[node[i]] = -1;
           for (int j = 0; j < 26; j++)
           {
              if (edge[node[i]][j])
               {
                  into[j]--;
              }
           }
           //一开始第一个参数传了node[i]。。。
           topo_dfs(i, idx + 1, s);
           //最后别忘了恢复
           into[node[i]] = 0;
           for (int j = 0; j < 26; j++)
           {
               if (edge[node[i]][j])
               {
                  into[j]++;
              }
           }
       }
   }
}
int main()
{
```

```
char str1[100], str2[300];
   int u, v, len1, len2;
   while (gets(str1))
       gets(str2);
       memset(edge, 0, sizeof(edge));
       memset(into, 0, sizeof(into));
       num = 0;
       len1 = strlen(str1);
       len2 = strlen(str2);
       for (int i = 0; i < len1; i += 2)
           u = str1[i];
           node[num++] = u - 'a';
       }
       //这里排序, 是为了之后dfs枚举的顺序按照字典顺序
       sort(node, node + num);
       for (int i = 0; i < len2; i += 4)
           u = str2[i] - 'a';
           v = str2[i + 2] - 'a';
           edge[u][v] = 1;
           into[v]++; //注意啦,这里into的下标是v,不是node数组中的索引!!! 一开
始dfs中into就是用的索引,导致样例一直不过。。。
       topo_dfs(-1, 0, "");
       puts("");
   }
   return 0;
}
其他版
/**
*拓扑排序
*输入: g[maxn] [maxn](图, 1~N)
*输出: topo[maxn](拓扑排序顺序)
const int maxn=0;
int n,mk[maxn],topo[maxn],g[maxn][maxn],ps,topook;
void dfs(int u)
{
   if(mk[u]<0)
   {
```

```
topook=0;
    return;
}
if(mk[u]>0) return;
else mk[u]=-1;
for(int v=1;topook&&v<=n;v++) if(g[u][v]) dfs(v);
topo[ps--]=u;
    mk[u]=1;
}
void toposort()
{
    topook=1;
    ps=n;
    memset(mk,0,sizeof(mk));
    for(int i=1;topook&&i<=n;i++) if(!mk[i]) dfs(i);
}</pre>
```

15.6.2 强连通分量: Tarjan算法(O(V+E))

至少添加几条边,使有向图边成强连通图:将有向图求强连通分量(SCC),缩点后变成有向无环图(DAG)!根据缩点后的新图,分别统计入度为0的结点个数(假设有a个),出度为0的结点个数(假设有b个)!则max(a,b)就是答案!

给定一个有向图,问有多少个点由任意顶点出发都能到达:将有向图求强连通分量(SCC),缩点后变成有向无环图(DAG)!统计新图中入度为0的结点个数,如果只有一个则输出该结点所代表的强连通分量下的顶点个数!否则无解,输出0!

给定一个有向图,求出sink点(sink点:如果v能够到的点,反过来可以到达v点)并按升序输出:将有向图求强连通分量(SCC),缩点后变成有向无环图(DAG)!统计出度为0的结点个数,升序输出该结点所代表的强连通分量下的顶点

有向无环图(DAG)性质:

- 1. 任何DAG都有一个始点(我们假定入度为0的结点为始点,出度为0的结点为终点)
- 2. 如果一个有向图的DAG只有一个始点,则由该始点出发可以到达DAG中的任意结点
- 3. 如果一个有向图的DAG只有一个终点,则由图中的任意结点都可以到达这个终点

```
/**
*有向图强连通分量: Tarjan算法($O(V+E)$)
*输入: 图(从0到n-1)
*输出: sid[](强连通分量标号)
*/
const int maxn=0;
const int maxm=0;
struct Edge
{
   int v;
   int next;
```

```
}edge[maxm];
int head[maxn],edgeNum;
void addSubEdge(int u,int v)
    edge[edgeNum].v=v;
    edge[edgeNum].next=head[u];
    head[u] = edgeNum++;
}
void addEdge(int u,int v)
    addSubEdge(u,v);
    addSubEdge(v,u);
}
void init()
{
    memset(head,-1,sizeof(head));
    edgeNum=0;
}
int sid[maxn];
int mark[maxn],low[maxn];
int check[maxn];
int sstack[maxn],top;
int dfn,ssn;
int n,m;
void dfs(int k)
{
    int i,j;
    check[k]=1;
    low[k]=mark[k]=dfn++;
    sstack[top++]=k;
    for(int i=head[k]; i!=-1; i=edge[i].next)
        int j=edge[i].v;
        if(mark[j]==0)
        {
            dfs(j);
            low[k]=min(low[k],low[j]);
        }
        else if(check[j])
            low[k]=min(low[k],mark[j]);
    }
    if(mark[k]==low[k])
        while(sstack[--top]!=k)
        {
```

```
check[sstack[top]]=0;
             sid[sstack[top]]=ssn;
        }
        sid[k]=ssn;
        check[k]=0;
        ++ssn;
    }
    return;
}
void tarjan()
{
    ssn=1;
    dfn=1;
    top=0;
    memset(check,0,sizeof(check));
    memset(mark,0,sizeof(mark));
    for(int i=0; i<n; ++i) if(mark[i]==0) dfs(i);</pre>
}
```

15.6.3 弱连通分量: Tarjan算法(O(V+E))

首先用Tarjan对原图进行缩点,对于缩点后的图,统计每个点的入度和出度,如果入度为0的点和出度为0的点都只存在1个,则判定这个图是弱连通图。

15.6.4 有向图的最小环 $(O(N^3))$

直接由Floyd算法可以求得ans = min(ans, edge[u][v] + dis[v][u])

直接用flody算法求到到个点得最短路,最后取i == j中的最小值或最大值即为最小环和最大环的值

路径的求法: 用一个pre[i][j]记录j前面的一个顶点,初始化为i,当出现需要更新的时候则将pre[i][j] = pre[k][j]; 若i == j的时候则表示找全了路径,最后将k点加入路径中

15.6.5 有向图最小权点基

- 1. 求强连通缩点
- 2. 求入度为0的点
- 3. 入度为0的点所在强连通分量的最小权值的点即为所求

§ 15.7 树

15.7.1 树的直径

两次DFS:第一次DFS任意起点,得到第二次DFS的起点;第二次DFS以第一次DFS 得出的最远的点为起点,找最长路径长度。

权值为1的树的直径

```
/**
*树的直径(权值为1)
*输入:链式前向星(顶点标号从1到N)
*输出: diameter()(树的直径)
*/
const int maxn=0;
const int maxm=0;
int head[maxn],en;
Edge edge[maxm];
typedef pair<int,int> Result;
Result visit(int p,int u)
{
   Result r(0,u);
   for(int i=head[u];i!=-1;i=edge[i].next)
   {
       int v=edge[i].v;
       if(v==p) continue;
       Result t=visit(u,v);
       t.first+=1;
       if(r.first<t.first) r=t;</pre>
   }
   return r;
}
int diameter()
{
   Result r=visit(0,1);
   Result t=visit(0,r.second);
   return t.first;
}
任意权值的树的直径
/**
*树的直径(任意权值)
*输入:链式前向星(顶点标号从1到N)
*输出: diameter()(树的直径)
*/
const int maxn=0;
const int maxm=0;
int head[maxn],en;
Edge edge[maxm];
typedef int Weight;
typedef pair<Weight,int> Result;
Result visit(int p,int u)
```

Page 56 of 208

```
{
    Result r(0,u);
    for(int i=head[u];i!=-1;i=edge[i].next)
        int v=edge[i].v;
        int w=edge[i].w;
        if(v==p) continue;
        Result t=visit(u,v);
        t.first+=w;
        if(r.first<t.first) r=t;</pre>
    }
    return r;
}
Weight diameter()
{
    Result r=visit(0,1);
    Result t=visit(0,r.second);
    return t.first;
}
```

15.7.2 LCA & RMQ

算法名称	针对问题	时间消耗	空间消耗
ST算法	一般RMQ问题	O(Nlog ₂ N)-O(1)	O(Nlog ₂ N)
Tarjan算法	LCA问题	$O(N\alpha(N) + Q)$	O(N)
±1RMQ算法	±1RMQ问题	O(N)-O(1)	O(N)

注: N表示问题规模, Q表示询问次数

dfs+ST在线算法

```
// POJ 1330
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
```

```
using namespace std;
/*
* LCA (POJ 1330)
* 在线算法 DFS + ST
*/
//**************
//ST算法, 里面含有初始化init(n)和query(s,t)函数
//点的编号从1开始,从1到n.返回最小值的下标
//**************
const int MAXN = 10010;
int rmq[2 * MAXN]; //rmq数组, 就是欧拉序列对应的深度序列
struct ST
{
   int mm[2 * MAXN];
   int dp[2 * MAXN][20]; //最小值对应的下标
   void init(int n)
       mm[O] = -1;
       for (int i = 1; i <= n; i++)
          mm[i] = ((i & (i - 1)) == 0) ? mm[i - 1] + 1 : mm[i - 1];
          dp[i][0] = i;
       for (int j = 1; j \le mm[n]; j++)
          for (int i = 1; i + (1 << j) - 1 <= n; i++)
              dp[i][j] = rmq[dp[i][j-1]] < rmq[dp[i+(1 << (j-1))][j-1]] ?
                        dp[i][j-1]: dp[i+(1 << (j-1))][j-1];
   }
   int query(int a, int b) //查询[a,b]之间最小值的下标
       if (a > b)swap(a, b);
       int k = mm[b - a + 1];
       return rmq[dp[a][k]] \le rmq[dp[b - (1 << k) + 1][k]]?
             dp[a][k] : dp[b - (1 << k) + 1][k];
   }
//边的结构体定义
struct Edge
{
   int to, next;
};
Edge edge[MAXN * 2];
int tot, head[MAXN];
int F[MAXN * 2]; //欧拉序列, 就是dfs遍历的顺序, 长度为2*n-1,下标从1开始
```

```
int P[MAXN];//P[i]表示点i在F中第一次出现的位置
int cnt;
ST st;
void init()
   tot = 0;
   memset(head, -1, sizeof(head));
}
void addedge(int u, int v) //加边, 无向边需要加两次
    edge[tot].to = v;
    edge[tot].next = head[u];
   head[u] = tot++;
}
void dfs(int u, int pre, int dep)
   F[++cnt] = u;
   rmq[cnt] = dep;
   P[u] = cnt;
   for (int i = head[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].to;
        if (v == pre)continue;
       dfs(v, u, dep + 1);
       F[++cnt] = u;
       rmq[cnt] = dep;
   }
}
void LCA_init(int root, int node_num) //查询LCA前的初始化
{
    cnt = 0;
   dfs(root, root, 0);
    st.init(2 * node_num - 1);
}
int query_lca(int u, int v) //查询u,v的lca编号
   return F[st.query(P[u], P[v])];
}
bool flag[MAXN];
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int T;
```

```
int N;
   int u, v;
   scanf("%d", &T);
   while (T--)
   {
      scanf("%d", &N);
      init();
      memset(flag, false, sizeof(flag));
      for (int i = 1; i < N; i++)
         scanf("%d%d", &u, &v);
         addedge(u, v);
         addedge(v, u);
         flag[v] = true;
      }
      int root;
      for (int i = 1; i <= N; i++) // 找根
         if (!flag[i])
            root = i;
            break;
         }
      LCA_init(root, N); // LCA初始化
      scanf("%d%d", &u, &v);
      printf("%d\n", query_lca(u, v)); // LCA查询
   }
   return 0;
}
LCA转化为RMQ的问题(O(N))
/* **************
LCA转化为RMQ的问题
MAXN为最大结点数。ST的数组 和 F, edge要设置为2*MAXN
F是欧拉序列, rmq是深度序列, P是某点在F中第一次出现的下标
struct LCA2RMQ
   int n;//结点个数
   Node edge[2 * MAXN]; //树的边,因为是建无向边, 所以是两倍
   int tol;//边的计数
   int head[MAXN];//头结点
```

```
bool vis[MAXN];//访问标记
int F[2 * MAXN]; //F是欧拉序列, 就是DFS遍历的顺序
int P[MAXN];//某点在F中第一次出现的位置
int cnt;
ST st;
void init(int n)//n为所以点的总个数,可以从0开始,也可以从1开始
   this->n = n;
   tol = 0;
   memset(head, -1, sizeof(head));
}
void addedge(int a, int b) //加边
   edge[tol].to = b;
   edge[tol].next = head[a];
   head[a] = tol++;
   edge[tol].to = a;
   edge[tol].next = head[b];
   head[b] = tol++;
}
int query(int a, int b) //传入两个节点, 返回他们的LCA编号
{
   return F[st.query(P[a], P[b])];
}
void dfs(int a, int lev)
{
   vis[a] = true;
   ++cnt;//先加,保证F序列和rmq序列从1开始
   F[cnt] = a; //欧拉序列, 编号从1开始, 共2*n-1个元素
   rmq[cnt] = lev; //rmq数组是深度序列
   P[a] = cnt;
   for (int i = head[a]; i != -1; i = edge[i].next)
       int v = edge[i].to;
       if (vis[v])continue;
       dfs(v, lev + 1);
       ++cnt:
       F[cnt] = a;
       rmq[cnt] = lev;
   }
}
```

```
void solve(int root)
   {
       memset(vis, false, sizeof(vis));
       cnt = 0;
       dfs(root, 0);
       st.init(2 * n - 1);
   }
};
离线Tarjan算法(O(N+Q))
// POJ 1470
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
 * POJ 1470
 * 给出一颗有向树, Q个查询
 * 输出查询结果中每个点出现次数
 */
/*
 * LCA离线算法, Tarjan
 * 复杂度O(n+Q);
 */
const int MAXN = 1010;
const int MAXQ = 500010;//查询数的最大值
//并查集部分
int F[MAXN];//需要初始化为-1
int find(int x)
{
   if (F[x] == -1)return x;
   return F[x] = find(F[x]);
}
void bing(int u, int v)
```

Page 62 of 208

```
{
   int t1 = find(u);
   int t2 = find(v);
   if (t1 != t2)
       F[t1] = t2;
//*************
bool vis[MAXN];//访问标记
int ancestor[MAXN];//祖先
struct Edge
{
    int to, next;
} edge[MAXN * 2];
int head[MAXN], tot;
void addedge(int u, int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
   head[u] = tot++;
}
struct Query
    int q, next;
    int index;//查询编号
} query[MAXQ * 2];
int answer[MAXQ];//存储最后的查询结果,下标0~Q-1
int h[MAXQ];
int tt;
int Q;
void add_query(int u, int v, int index) //u,v,第几组查询
{
   query[tt].q = v;
   query[tt].next = h[u];
    query[tt].index = index;
   h[u] = tt++;
   query[tt].q = u;
   query[tt].next = h[v];
   query[tt].index = index;
   h[v] = tt++;
}
void init()
{
```

```
tot = 0;
   memset(head, -1, sizeof(head));
   tt = 0;
   memset(h, -1, sizeof(h));
   memset(vis, false, sizeof(vis));
    memset(F, -1, sizeof(F));
   memset(ancestor, 0, sizeof(ancestor));
}
void LCA(int u)
{
    ancestor[u] = u;
    vis[u] = true;
    for (int i = head[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].to;
        if (vis[v])continue;
        LCA(v);
        bing(u, v);
        ancestor[find(u)] = u;
    }
    for (int i = h[u]; i != -1; i = query[i].next)
        int v = query[i].q;
        if (vis[v])
            answer[query[i].index] = ancestor[find(v)];
        }
    }
}
bool flag[MAXN];
int Count_num[MAXN];
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int n;
    int u, v, k;
    while (scanf("%d", &n) == 1)
    {
        init();
        memset(flag, false, sizeof(flag));
        for (int i = 1; i <= n; i++)
```

```
scanf("%d:(%d)", &u, &k);
            while (k--)
            {
                scanf("%d", &v);
                flag[v] = true;
                addedge(u, v);
                addedge(v, u);
            }
        }
        scanf("%d", &Q);
        for (int i = 0; i < Q; i++)
        {
            char ch;
            cin >> ch;
            scanf("%d %d)", &u, &v);
            add_query(u, v, i); //增加一组查询
        }
        int root;
        for (int i = 1; i <= n; i++) //找根
            if (!flag[i])
            {
                root = i;
                break;
            }
        LCA(root);
        memset(Count_num, 0, sizeof(Count_num));
        for (int i = 0; i < Q; i++)
            Count_num[answer[i]]++;
        for (int i = 1; i <= n; i++)
            if (Count_num[i] > 0)
                printf("%d:%d\n", i, Count_num[i]);
    }
    return 0;
}
倍增算法, 在线算法
```

```
// POJ 1330
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
```

```
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
/*
 * POJ 1330
 * LCA 在线算法
 */
const int MAXN = 10010;
const int DEG = 20;
struct Edge
    int to, next;
} edge[MAXN * 2];
int head[MAXN], tot;
void addedge(int u, int v)
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
}
void init()
{
    tot = 0;
   memset(head, -1, sizeof(head));
}
int fa[MAXN][DEG];//fa[i][j]表示结点i的第2~j个祖先
int deg[MAXN];//深度数组
void BFS(int root)
{
    queue<int>que;
    deg[root] = 0;
    fa[root][0] = root;
    que.push(root);
    while (!que.empty())
        int tmp = que.front();
        que.pop();
        for (int i = 1; i < DEG; i++)
            fa[tmp][i] = fa[fa[tmp][i - 1]][i - 1];
        for (int i = head[tmp]; i != -1; i = edge[i].next)
```

```
{
            int v = edge[i].to;
            if (v == fa[tmp][0])continue;
            deg[v] = deg[tmp] + 1;
            fa[v][0] = tmp;
            que.push(v);
        }
    }
int LCA(int u, int v)
    if (deg[u] > deg[v])swap(u, v);
    int hu = deg[u], hv = deg[v];
    int tu = u, tv = v;
    for (int det = hv - hu, i = 0; det ; det >>= 1, i++)
        if (det & 1)
            tv = fa[tv][i];
    if (tu == tv)return tu;
   for (int i = DEG - 1; i >= 0; i--)
    {
        if (fa[tu][i] == fa[tv][i])
            continue;
        tu = fa[tu][i];
        tv = fa[tv][i];
    }
   return fa[tu][0];
}
bool flag[MAXN];
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int T;
    int n;
    int u, v;
    scanf("%d", &T);
    while (T--)
    {
        scanf("%d", &n);
        init();
        memset(flag, false, sizeof(flag));
        for (int i = 1; i < n; i++)
        {
            scanf("%d%d", &u, &v);
```

```
addedge(u, v);
            addedge(v, u);
            flag[v] = true;
        }
        int root;
        for (int i = 1; i \le n; i++)
            if (!flag[i])
            {
                 root = i;
                 break;
            }
        BFS(root);
        scanf("%d%d", &u, &v);
        printf("%d\n", LCA(u, v));
    }
    return 0;
}
```

15.7.3 最小斯坦纳树(Steiner Tree)($O(n3^k + cE2^k)$)

斯坦纳树(Steiner Tree) 使得指定集合中的点连通的树。

最小斯坦纳树 将指定点集合中的所有点连通,且边权总和最小的生成树。

最小斯坦纳树解法 可以用DP求解,dp[i][state]表示以i为根,指定集合中的点的连通状态为state的生成树的最小总权值。

- 第一重(枚举子树的形态): dp[i][state] = mindp[i][state], dp[i][subset1] + dp[i][subset2]; 枚举子集的技巧可以用for(sub = (state 1)&state; sub; sub = (sub 1)&state).
- 第二重(按照边进行松弛): dp[i][state] = mindp[i][state], dp[j][state] + e[i][j]

模板

```
/*
    * Steiner Tree: 求,使得指定K个点连通的生成树的最小总权值
    * st[i] 表示顶点i的标记值,如果i是指定集合内第m(O<=m<K)个点,则st[i]=1<<m
    * endSt=1<<K
    * dptree[i][state] 表示以i为根,连通状态为state的生成树值
    * 输入: 图(链式前向星)、st[i]、K
    */
struct Edge
{
    int u, v;
    int w;
    int next;
} edge[maxm];
Page 68 of 208
```

```
int head[maxn];
int en;
int dptree[N][1 << K], st[N], endSt;</pre>
bool vis[N][1 << K];
queue<int> que;
int input()
{
    /*
         输入,并且返回指定集合元素个数K
         因为有时候元素个数需要通过输入数据处理出来, 所以单独开个输入函数。
    */
}
void initSteinerTree()
    while (!que.empty()) que.pop();
    memset(dptree, -1, sizeof(dptree));
   memset(st, 0, sizeof(st));
    for (int i = 1; i \le n; i++)
        memset(vis[i], 0, sizeof(vis[i]));
    endSt = 1 << input();</pre>
    for (int i = 1; i \le n; i++)
        dptree[i][st[i]] = 0;
}
void update(int &a, int x)
    a = (a > x \mid | a == -1) ? x : a;
}
void SPFA(int state)
{
   while (!que.empty())
    {
        int u = que.front();
        que.pop();
        vis[u][state] = false;
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].v;
            if (dptree[v][st[v] | state] == -1 ||
                    dptree[v][st[v] | state] > dptree[u][state] + edge[i].w)
            {
```

```
dptree[v][st[v] | state] = dptree[u][state] + edge[i].w;
               if (st[v] | state != state || vis[v][state])
                   continue; //只更新当前连通状态
               vis[v][state] = true;
               que.push(v);
           }
       }
   }
}
void steinerTree()
{
   for (int j = 1; j < endSt; j++)
    {
        for (int i = 1; i <= n; i++)
            if (st[i] \&\& (st[i]\&j) == 0) continue;
           for (int sub = (j - 1)\&j; sub; sub = (sub - 1)\&j)
               int x = st[i] \mid sub, y = st[i] \mid (j - sub);
               if (dptree[i][x] != -1 && dptree[i][y] != -1)
                   update(dptree[i][j], dptree[i][x] + dptree[i][y]);
           }
            if (dptree[i][j] != -1)
               que.push(i), vis[i][j] = true;
        }
        SPFA(j);
   }
}
例:
          最小生成树
§ 15.8
15.8.1
       \mathbf{Prim} 算法(O(N^2))
/**
*最小生成树Prim 算法
*输入: 邻接矩阵mtx[MAXN][MAXN]
*输出: prim()(最小权值),path[](最小生成树的边)
*/
#include<cstdio>
#include<cstring>
#include<iostream>
```

Page 70 of 208

```
#include<string>
#include<algorithm>
#include<functional>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
const int MAXN=1010;//Max size of the problem
const double INF=1e30;//Infinity
const double EPS=1e-6;//Epsilon
double mtx[MAXN][MAXN];//Matrix of the graph
int clovtx[MAXN];
double lowwei[MAXN];
int n;//Number of the vertexes
int st;//Start vertex
struct EDGE//Edge of the graph
{
    int st;
    int ed;
    double wei;
    EDGE(int stx=0,int edx=0,double weight=0):st(stx),ed(edx),wei(weight) {}
    void setedge(int stx=0,int edx=0,double weight=0)
    {
        st=stx;
        ed=edx;
        wei=weight;
    }
    ~EDGE() {}
};
vector<EDGE> path;
void initial()//Initial the problem
{
    for(int i=0; i<MAXN; i++)</pre>
    {
        for(int j=0; j<MAXN; j++)</pre>
            if(i==j) mtx[i][j]=0;
            else mtx[i][j]=INF;
        }
    }
    n=0;
    st=-1;
void input()//Input the data
```

```
{
    int ne;
    cout<<"Input the number of the vertexes: ";</pre>
    cout<<"Input the number of the edges: ";</pre>
    cout<<"Input the edges(start, end, weight):"<<endl;</pre>
    for(int i=0; i<ne; i++)</pre>
         int a,b;
        double c;
        cin>>a>>b>>c;
        mtx[a][b]=c;
        mtx[b][a]=c;
    }
    cout<<"Input the start vertex: ";</pre>
    cin>>st;
}
double prim()//Prim Algorithm
    path.clear();
    double sum=0;
    for(int i=1; i<=n; i++)</pre>
         lowwei[i]=mtx[st][i];
         clovtx[i]=st;
    lowwei[st]=0;
    clovtx[st]=-1;
    for(int i=1; i<n; i++)</pre>
    {
         double MinCost=INF;
         int v=-1;
        for(int j=1; j<=n; j++)</pre>
         {
             if(clovtx[j]!=-1&&lowwei[j]<MinCost)</pre>
                 MinCost=lowwei[j];
                 v=j;
             }
        }
         if(v!=-1)
             EDGE temp=EDGE(clovtx[v],v,lowwei[v]);
             path.push_back(temp);//Get the MST
```

```
clovtx[v]=-1;
            sum+=lowwei[v];
            for(int j=1; j<=n; j++)</pre>
                \verb|if(clovtx[j]!=-1&&mtx[v][j]<|owwei[j]||
                    lowwei[j]=mtx[v][j];
                    clovtx[j]=v;
                }
            }
        }
    }
    return sum;
}
void solve()
{
    double ans=prim();
    cout<<"The cost of the MST is: "<<ans<<endl;</pre>
    cout<<"The MST is:"<<endl;</pre>
    vector<EDGE>::iterator ite;
    for(ite=path.begin();ite!=path.end();ite++)//Output the MST
        cout<<ite->st<<"---"<<ite->ed<<" "<<ite->wei<<endl;
    }
}
int main()
    initial();
    input();
    solve();
   return 0;
}
         Kruskal 算法(稀疏图)(O(E \lg E))
15.8.2
/**
*最小生成树Kruskal 算法
*输入: edge[](边)
*输出: kruskal()(最小权值),path[](最小生成树的边)
*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<string>
#include<algorithm>
```

```
#include<functional>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
const int MAXN=1010;//Max size of the problem
const double INF=1e30;//Infinity
const double EPS=1e-6;//Epsilon
struct EDGE//Edge of the graph
{
    int st;
    int ed;
    double wei;
    EDGE(int stx=0,int edx=0,double weight=0):st(stx),ed(edx),wei(weight) {}
    void setedge(int stx=0,int edx=0,double weight=0)
        st=stx;
        ed=edx;
        wei=weight;
    }
    ~EDGE() {}
    bool operator<(const EDGE &temp) const</pre>
        return wei<temp.wei;</pre>
    }
};
vector<EDGE> edge;//The set of edges
vector<EDGE> path;//Store the MST
int pnt[MAXN];//Parents vector
int n;//Number of the vertexes
void initial()//Initial the problem
{
    edge.clear();
    n=0;
    for(int i=0;i<MAXN;i++) pnt[i]=i;</pre>
}
void input()//Input the data
{
    int ne;
    cout<<"Input the number of the vertexes: ";</pre>
    cin>>n;
    cout<<"Input the number of the edges: ";</pre>
    cin>>ne;
    cout<<"Input the edges(start, end, weight):"<<endl;</pre>
```

```
for(int i=0; i<ne; i++)</pre>
    {
        int a,b;
        double c;
        cin>>a>>b>>c;
        EDGE temp=EDGE(a,b,c);
        edge.push_back(temp);
    }
}
int UFind(int x)//Union-Find Algorithm
    if(x!=pnt[x]) pnt[x]=UFind(pnt[x]);
    return pnt[x];
}
double kruskal()//Kruskal Algorithm
{
    path.clear();
    double sum=0;
    sort(edge.begin(),edge.end());
    vector<EDGE>::iterator ite;
    for(ite=edge.begin();ite!=edge.end();ite++)
        if(UFind(ite->st)!=UFind(ite->ed))
        {
            sum+=ite->wei;
            path.push_back(*ite);
            pnt[UFind(ite->ed)]=UFind(ite->st);
        }
    }
    return sum;
}
void solve()
    double ans=kruskal();
    cout<<"The cost of the MST is: "<<ans<<endl;</pre>
    cout<<"The MST is:"<<endl;</pre>
    vector<EDGE>::iterator ite;
    for(ite=path.begin();ite!=path.end();ite++)//Output the MST
    {
        cout<<ite->st<<"---"<<ite->ed<<" "<<ite->wei<<endl;
    }
}
int main()
{
    initial();
```

```
input();
solve();
return 0;
}
```

15.8.3 增量最小生成树

增量最小生成树 从n个点的空图开始,依次加入m条带权边,每加入一条边,输出一次权值。

算法1 $(O(NM \lg N))$ 每生成一个最小生成树,将其余的所有非生成树的边删除。然后每次做最小生成树即可。

算法2(O(NM)) 每次加入一条边后,图中恰好包含一个环,删除该回路上权值最大的边即可。 每次O(N)搜索,复杂度O(NM)。

15.8.4 最小瓶颈路与最小瓶颈生成树

最小瓶颈生成树 给出加权无向图,求一颗生成树,使得最大边权最小。即为最小生成树。

最小瓶颈路 给定加权无向图的两个节点u,v, 求从u到v的一条路径, 使路径最长边最短。先计算最小生成树, 最小瓶颈路即在最小生成树上。计算任意两对点的最小瓶颈路: f(x,u) = max(f(x,v),w(u,v))

15.8.5 次小生成树 $(O(V^2))$

在prim算法的同时,计算出任意两点间在生成树路径上的最大边,这个计算的复杂度为 $O(V^2)$.然后再枚举不在生成树上的边,做可行交换,复杂度为 $O(V^2)$.总的时间复杂度为 $O(V^2)$.

```
/**
*次小生成树(O(V^2))
*输入: n(点,从0到n-1),m(边数),graph[][](邻接矩阵)
*输出: tag(是否单一),
*/
const int maxn=0;
const int inf=0x3f3f3f3f;
int graph[maxn] [maxn];
int dp[maxn] [maxn];
int mark[maxn];
int s[maxn];
int d[maxn];
int n,m;
void lessMST()
{
   d[0]=0;
   s[0]=-1;
   mark[0]=1;
   for(int i=1; i<n; ++i)
```

```
{
    if(graph[i][0]==0) d[i]=inf;
    else d[i]=graph[i][0];
    s[i]=0;
}
int ans=0;
for(int i=1; i<n; ++i)</pre>
{
    int k=-1;
    for(int j=0; j< n; ++j)
        if(mark[j]==1)continue;
        if(k=-1||d[j]<d[k]) k=j;
    if (k==-1||d[k]==inf)break;
    ans+=d[k];
    for(int j=0; j < n; ++j)
    {
        if(mark[j]==0)continue;
        dp[j][k]=max(dp[j][s[k]],d[k]);
        dp[k][j]=dp[j][k];
    }
    mark[k]=1;
    for(int j=0; j< n; ++j)
    {
        if(mark[j]==1)continue;
        if(graph[k][j]\&\&graph[k][j]<d[j])
        {
            d[j]=graph[k][j];
            s[j]=k;
        }
    }
}
int tag=0;
for(int i=0; i<n; ++i)</pre>
{
    for(int j=0; j< n; ++j)
    {
        if(graph[i][j]==0)continue;
        if(s[i]==j||s[j]==i)continue;
        if(graph[i][j]==dp[i][j]) tag=1;
    }
}
if(tag) printf("Not Unique!\n");//不单一
else printf("%d\n",ans);// 单一
```

```
}
void input()
{
    scanf("%d%d",&n,&m);
    memset(graph,0,sizeof(graph));
    memset(mark,0,sizeof(mark));
    memset(dp,0,sizeof(dp));
    while(m--)
    {
        int i,j,k;
        scanf("%d%d%d",&i,&j,&k);
        --i,--j;//从0到n-1
        if(graph[i][j]==0) graph[i][j]=k;
        else graph[i][j]=min(graph[i][j],k);// 带重边
        graph[j][i]=graph[i][j];
    }
}
```

15.8.6 第k小生成树

15.8.7 最优比例生成树(未知复杂度)

Dinkelbach 版(优于二分)

```
*最优比例生成树(未知复杂度)(优于二分)
*从1到n
*输入: n(顶点数),a[][](收益),b[][](费用)
*输出: dinkelbach()(最优比率)
*/
const int maxn=0;
const double INF=1e30;
const double eps=1e-6;// 控制精度
double a[maxn] (maxn], b[maxn] (maxn], mtx[maxn] (maxn];
int clovtx[maxn];
double lowwei[maxn];
double prim()//Prim Algorithm
   double p=0,q=0;
   int st=1;
   double sum=0;
   for(int i=1; i<=n; i++)</pre>
       lowwei[i]=mtx[st][i];
```

}

```
clovtx[i]=st;
    }
    lowwei[st]=0;
    clovtx[st]=-1;
    for(int i=1; i<n; i++)</pre>
         double MinCost=INF;
         int v=-1;
         for(int j=1; j<=n; j++)</pre>
             if(clovtx[j]!=-1&&lowwei[j]<MinCost)</pre>
             {
                 MinCost=lowwei[j];
                 v=j;
             }
        }
         if(v!=-1)
         {
             p+=a[clovtx[v]][v];
             q+=b[clovtx[v]][v];
             clovtx[v]=-1;
             sum+=lowwei[v];
             for(int j=1; j<=n; j++)</pre>
                 if(clovtx[j]!=-1&&mtx[v][j]<lowwei[j])</pre>
                  {
                      lowwei[j]=mtx[v][j];
                      clovtx[j]=v;
                 }
             }
        }
    }
    return p/q;
double dinkelbach()
    double L=0.5;
    double ans;
    do
    {
         ans=L;
         for(int i=1; i<n; i++)</pre>
             for(int j=i+1; j<=n; j++)</pre>
                 mtx[i][j]=mtx[j][i]=a[i][j]-L*b[i][j];
         for(int i=1; i<=n; i++) mtx[i][i]=INF;</pre>
```

```
L=prim();
    }
    while(fabs(ans-L)>=eps);
    return ans;
}
二分版
/**
*最优比例生成树(未知复杂度)
*从0到n-1
*输入: n(顶点数),c[][](费用),w[][](收益)
*输出: opt_mst()(最优比率)
*/
const int maxn=0;
const double INF=1e30;
const double eps=1e-6;
int n;
double g[maxn] [maxn],c[maxn] [maxn],w[maxn] [maxn];
double mst()
    double minD[maxn];
    int mark[maxn];
    double ans=0.0;
    memset(mark,0,sizeof(mark));
    for(int i=0; i<n; ++i)</pre>
        minD[i]=INF;
    minD[0]=0;
    for(int i=0; i<n; ++i)</pre>
        if(g[0][i]<minD[i])</pre>
            minD[i]=g[0][i];
    mark[0]=1;
    for(int i=1; i<n; ++i)</pre>
        int k=-1;
        for(int j=0; j< n; ++j)
            if(mark[j]==0)
            {
                if(k==-1||minD[j]<minD[k])</pre>
                    k=j;
            }
        ans+=minD[k];
        mark[k]=1;
```

```
for(int i=0; i<n; ++i)</pre>
        {
            if(mark[i] == 0&&g[k][i] < minD[i])</pre>
               minD[i]=g[k][i];
       }
    }
   return ans;
}
double opt_mst()//二分法求解
   double low=0.0,high=100;
   while(fabs(low-high)>eps)
    {
        double mid=(low+high)/2;
        for(int i=0; i<n; ++i)</pre>
           for(int j=0; j< n; ++j)
               g[i][j]=c[i][j]-mid*w[i][j];
        double ans=mst();
        if(fabs(ans)<eps)
        {
            low=mid;
            break;
        else if(ans>-eps) low=mid;
        else high=mid;
    }
   return low;
}
         有向图最小树形图(O(VE))
15.8.8
/**
*有向图最小树形图(O(VE))
*输入: edge置为边表; res 置为0; cp[i] 置为i;N(顶点数,从0到n-1)
*调用: dirtree(root, nv, ne)
*输出: res是结果,cp[](记录父子节点);
const int maxn=0;
const int maxm=0;
int res,dis[maxn],N;
int to[maxn],cp[maxn],tag[maxn],en;
struct Edge
    int u,v,next,w;
};
```

```
Edge edge[maxm];
int iroot(int i)
{
    if (cp[i] == i) return i;
   return cp[i] = iroot(cp[i]);
}
bool dirtree(int root) // root: 树根
{
// vertex: 0 ~ n-1
    int i, j, k, circle = 0;
   memset(tag, -1, sizeof(tag));
   memset(to, -1, sizeof(to));
   for (i = 0; i < N; ++i) dis[i] = inf;
   for (j = 0; j < en; ++j)
    {
        i = iroot(edge[j].u);
        k = iroot(edge[j].v);
        if (k != i && dis[k] > edge[j].w)
            dis[k] = edge[j].w;
            to[k] = i;
        }
   to[root] = -1;
   dis[root] = 0;
    tag[root] = root;
    for (i = 0; i < N; ++i) if (cp[i] == i && -1 == tag[i])
        {
            j = i;
            for ( ; j != -1 \&\& tag[j] == -1; j = to[j])
                tag[j] = i;
            if (j == -1) return 0;
            if (tag[j] == i)
            {
                circle = 1;
                tag[j] = -2;
                for (k = to[j]; k != j; k = to[k]) tag[k] = -2;
            }
        }
    if (circle)
    {
        for (j = 0; j < en; ++j)
            i = iroot(edge[j].u);
            k = iroot(edge[j].v);
```

```
if (k != i && tag[k] == -2) edge[j].w -= dis[k];
        }
        for (i = 0; i < N; ++i) if (tag[i] == -2)
                res += dis[i];
                tag[i] = 0;
                for (j = to[i]; j != i; j = to[j])
                   res += dis[j];
                   cp[j] = i;
                   tag[j] = 0;
                }
        if (0 == dirtree(root)) return 0;
    }
    else
    {
        for (i = 0; i < N; ++i) if (cp[i] == i) res += dis[i];
    }
    return 1; // 若返回0 代表原图不连通
}
```

15.8.9 最小度限制生成树

15.8.10 最小生成森林(k颗树): 改进 $Kruskal(O(E \lg E))$

数据结构 并查集

算法 改进Kruskal

根据Kruskal算法思想,图中的生成树在连完第n-1条边前,都是一个最小生成森林,每次贪心的选择两个不属于同一连通分量的树(如果连接一个连通分量,因为不会减少块数,那么就是不合算的)且用最"便宜"的边连起来,连接n-1次后就形成了一棵MST,n-2次就形成了一个两棵树的最小生成森林, $n-3,\cdots,n-k$ 此后就形成了k颗树的最小生成森林,就是题目要求求解的。

15.8.11 平面点的欧几里德最小生成树 $(O(V^2))$

欧几里德距离: $dis(A,B) = \sqrt{(A_x - B_x)^2 + (A_y - B_y)^2}$ 先生成所有点之间的欧几里德距离的邻接矩阵,再用Prim算法即可。

15.8.12 平面点的曼哈顿最小生成树与莫队算法

曼哈顿距离: $dis(A,B) = |A_x - B_x| + |A_y - B_y|$

朴素算法 $(O(V^2))$

先生成所有点之间的曼哈顿距离的邻接矩阵,再用Prim算法即可。

莫队算法中的最小生成树(O(VlgV))

每个点出发向8个方向的范围内最多只与一个点相连,那么我们只要想这8个点连边建图,这样只会有8n条边(去重了还剩4n),把这个图建出来,最小生成树就很好搞了。

(http://wenku.baidu.com/view/1e4878196bd97f192279e941.html)

POJ 3241 Object Clustering

```
/*
POJ 3241 Object Clustering
给你N个点,让你计算出K最小生成森林(K=1时为最小生成树)
*/
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-8
#define pi acos(-1.0)
typedef long long 11;
const int maxn = 100100;
struct Point
{
    int x, y, id;
    bool operator < (const Point p) const</pre>
    {
        if (x != p.x)return x < p.x;
        return y < p.y;</pre>
    }
} p[maxn];
struct BIT
    int min_val, pos;
    void init()
        min_val = INF;
        pos = -1;
} bit[maxn << 2];</pre>
struct Edge
{
    int u, v, d;
    bool operator < (const Edge p) const</pre>
    {
        return d < p.d;
    }
```

```
} edge[maxn << 2];</pre>
int tot, n, F[maxn];
int find(int x)
    return F[x] = (F[x] == x ? x : find(F[x]));
}
void addedge(int u, int v, int d)
    edge[tot].u = u; edge[tot].v = v; edge[tot].d = d; tot++;
void update(int i, int val, int pos)
    while (i > 0)
        if (val < bit[i].min_val)</pre>
        {
            bit[i].min_val = val;
            bit[i].pos = pos;
        }
        i -= i & (-i);
    }
}
int ask(int i, int m)
    int min_val = INF, pos = -1;
    while (i <= m)
        if (bit[i].min_val < min_val)</pre>
        {
            min_val = bit[i].min_val;
            pos = bit[i].pos;
        i += i & (-i);
    return pos;
int dist(Point a, Point b)
    return abs(a.y - b.y) + abs(a.x - b.x);
int MHT(int n, Point *p, int k)
{
    int a[maxn], b[maxn];
    tot = 0;
    for (int dir = 0; dir < 4; dir++)
```

```
{
        if (dir == 1 || dir == 3)
        {
            for (int i = 0; i < n; i++)
                swap(p[i].x, p[i].y);
        }
        if (dir == 2)
        {
            for (int i = 0; i < n; i++)
                p[i].x = -p[i].x;
        }
        sort(p, p + n);
        for (int i = 0; i < n; i++)
            a[i] = b[i] = p[i].y - p[i].x;
        sort(b, b + n);
        int m = unique(b, b + n) - b;
        for (int i = 1; i <= m; i++)bit[i].init();</pre>
        for (int i = n - 1; i \ge 0; i--)
            int pos = lower_bound(b, b + m, a[i]) - b + 1;
            int ans = ask(pos, m);
            if (ans != -1)
                addedge(p[i].id, p[ans].id, dist(p[i], p[ans]));
            update(pos, p[i].x + p[i].y, i);
        }
    }
    sort(edge, edge + tot);
    for (int i = 0; i < n; i++)F[i] = i;
    for (int i = 0; i < tot; i++)
        int u = edge[i].u, v = edge[i].v;
        int fa = find(u), fb = find(v);
        if (fa != fb)
        {
            k--;
            F[fa] = fb;
            if (k == 0)return edge[i].d;
        }
    }
int main()
    int n, k;
    while (~scanf("%d%d", &n, &k))
    {
```

}

{

莫队算法 $(O(N^{1.5}))$ (用于无修改区间查询)

莫队算法 对于两个区间的查询[l1,r1],[l2,r2]如果每增加一个区间元素或者删除,都能做到O(1)的话,那么从[l1,r1]转移到[l2,r2],暴力可以做到—l1-l2—+—r1-r2—,就是manhattan距离。

曼哈顿最小生成树版本([2009国家集训队]小Z的袜子(hose),3284ms)

```
/*
```

[2009国家集训队]小Z的袜子(hose)

输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。

接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。 再接下来M行,每行两个正整数L,R表示一个询问。

求[L,R]区间取两只袜子相同颜色的概率

```
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>
#define lowbit(x) (x&(-x))
#define LL long long
using namespace std;
const int N = 50005;
struct Point
{
    int x, y, id;
   bool operator<(const Point p)const</pre>
       return x != p.x ? x < p.x : y < p.y;
    }
} p[N], pp[N];
//数状数组, 找(y-x)大于当前的, 但是y+x最小的
struct BIT
{
   int min_val, pos;
   void init()
    {
```

 $min_val = (1 << 30);$

```
pos = -1;
    }
} bit[N];
//所有有效边, Kruskal
struct Edge
    int u, v, d;
    bool operator<(const Edge e)const</pre>
        return d < e.d;
    }
} e[N << 2];
//前向星
struct Graph
    int v, next;
} edge[N << 1];</pre>
int n, m, tot, pre[N];
int total, start[N];
int find(int x)
{
    return pre[x] = (x == pre[x] ? x : find(pre[x]));
inline int dist(int i, int j)
    return abs(p[i].x - p[j].x) + abs(p[i].y - p[j].y);
inline void addedge(int u, int v, int d)
{
    e[tot].u = u;
    e[tot].v = v;
    e[tot++].d = d;
}
inline void _add(int u, int v)
{
    edge[total].v = v;
    edge[total].next = start[u];
    start[u] = total++;
inline void update(int x, int val, int pos)
{
    for (int i = x; i \ge 1; i = lowbit(i))
        if (val < bit[i].min_val)</pre>
            bit[i].min_val = val, bit[i].pos = pos;
}
```

```
inline int ask(int x, int m)
    int min_val = (1 << 30), pos = -1;
    for (int i = x; i \le m; i += lowbit(i))
        if (bit[i].min_val < min_val)</pre>
            min_val = bit[i].min_val, pos = bit[i].pos;
    return pos;
}
inline void Manhattan_minimum_spanning_tree(int n, Point *p)
    int a[N], b[N];
    for (int dir = 0; dir < 4; dir++)
    {
        //4种坐标变换
        if (dir == 1 || dir == 3)
        {
            for (int i = 0; i < n; i++)
                swap(p[i].x, p[i].y);
        }
        else if (dir == 2)
        {
            for (int i = 0; i < n; i++)
                p[i].x = -p[i].x;
            }
        sort(p, p + n);
        for (int i = 0; i < n; i++)
            a[i] = b[i] = p[i].y - p[i].x;
        sort(b, b + n);
        int m = unique(b, b + n) - b;
        for (int i = 1; i <= m; i++)
            bit[i].init();
        for (int i = n - 1; i \ge 0; i--)
            int pos = lower_bound(b, b + m, a[i]) - b + 1; //BIT中从1开始
            int ans = ask(pos, m);
            if (ans != -1)
                addedge(p[i].id, p[ans].id, dist(i, ans));
            update(pos, p[i].x + p[i].y, i);
        }
    }
    sort(e, e + tot);
```

```
for (int i = 0; i < n; i++)
        pre[i] = i;
    for (int i = 0; i < tot; i++)</pre>
        int u = e[i].u, v = e[i].v;
        int fa = find(u), fb = find(v);
        if (fa != fb)
        {
            pre[fa] = fb;
            _add(u, v);
            _add(v, u);
        }
    }
}
LL gcd(LL a, LL b)
{
   return b == 0 ? a : gcd(b, a % b);
}
LL up[N], down[N];
LL ans;
int col[N], vis[N] = \{0\};
int cnt[N] = {0}; //记录每种颜色出现的次数
inline void add(int 1, int r)
{
   for (int i = 1; i <= r; i++)
    {
        int c = col[i];
        ans -= (LL)cnt[c] * (cnt[c] - 1) / 2;
        cnt[c]++;
        ans += (LL)cnt[c] * (cnt[c] - 1) / 2;
    }
}
inline void del(int 1, int r)
{
   for (int i = 1; i <= r; i++)
    {
        int c = col[i];
        ans -= (LL)cnt[c] * (cnt[c] - 1) / 2;
        cnt[c]--;
        ans += (LL)cnt[c] * (cnt[c] - 1) / 2;
    }
}
//[11,r1]前一个区间 [12,r2]当前区间
void dfs(int 11, int r1, int 12, int r2, int idx, int pre)
{
```

```
if (12 < 11) add(12, 11 - 1);
    if (r2 > r1) add(r1 + 1, r2);
    if (12 > 11) del(11, 12 - 1);
    if (r2 < r1) del(r2 + 1, r1);
    up[pp[idx].id] = ans;
    vis[idx] = 1;
    for (int i = start[idx]; i != -1; i = edge[i].next)
        int v = edge[i].v;
        if (vis[v]) continue;
        dfs(12, r2, pp[v].x, pp[v].y, v, idx);
    }
    if (12 < 11) del(12, 11 - 1);
    if (r2 > r1) del(r1 + 1, r2);
    if (12 > 11) add(11, 12 - 1);
    if (r2 < r1) add(r2 + 1, r1);
}
int main()
    //freopen("input.txt","r",stdin);
    scanf("%d%d", &n, &m);
    tot = total = 0;
   memset(start, -1, sizeof(start));
    for (int i = 1; i <= n; i++)
        scanf("%d", &col[i]);
    for (int i = 0; i < m; i++)
    {
        scanf("%d%d", &p[i].x, &p[i].y);
        down[i] = (LL)(p[i].y - p[i].x + 1) * (p[i].y - p[i].x) / 2;
        p[i].id = i;
        pp[i] = p[i]; //副本一份, 便于后面DFS, 或者之后按id排序
    Manhattan_minimum_spanning_tree(m, p);
    for (int i = 0; i < m; i++)
        p[i].y = -p[i].y;
    dfs(2, 1, pp[0].x, pp[0].y, 0, -1);
    for (int i = 0; i < m; i++)
    {
        LL g = gcd(up[i], down[i]);
        printf("%lld/%lld\n", up[i] / g, down[i] / g);
    }
    return 0;
```

```
CHAPTER 15. GRAPH THEORY
}
无生成树版本([2009国家集训队]小Z的袜子(hose),884ms)
[2009国家集训队]小Z的袜子(hose)
输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。
接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。
再接下来M行,每行两个正整数L,R表示一个询问。
求[L,R]区间取两只袜子相同颜色的概率
直接把x轴分块,每一块中按v升序排列就好了。
这样每个块内做一遍暴力的莫队,时间算下来O(n^1.5)。
具体实现是按照x/s,y排序(x是根号m),
然后对于x/s相同的先把第一个求出来, 然后暴力转移后面的。
*/
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#define maxn 55000
#define inf 2147483647
using namespace std;
struct query
{
   int 1, r, s, w;
} a[maxn];
int c[maxn];
long long col[maxn], size[maxn], ans[maxn];
int n, m, cnt, len;
long long gcd(long long x, long long y)
{
   return (!x) ? y : gcd(y % x, x);
}
bool cmp(query a, query b)
{
   return (a.w == b.w) ? a.r < b.r : a.w < b.w;
}
int main()
{
   //freopen("hose.in","r",stdin);
```

scanf("%d%d", &n, &m);

}

```
for (int i = 1; i <= n; i++) scanf("%d", &c[i]);
len = (int)sqrt(m);
cnt = (len * len == m) ? len : len + 1;
for (int i = 1; i <= m; i++)
{
    scanf("%d%d", &a[i].1, &a[i].r);
    if (a[i].l > a[i].r) swap(a[i].l, a[i].r);
    size[i] = a[i].r - a[i].l + 1;
    a[i].w = a[i].l / len + 1;
    a[i].s = i;
}
sort(a + 1, a + m + 1, cmp);
int i = 1;
while (i <= m)
{
    int now = a[i].w;
    memset(col, 0, sizeof(col));
    for (int j = a[i].l; j \le a[i].r; j++)
        ans[a[i].s] += 2 * (col[c[j]]++);
    i++;
    for (; a[i].w == now; i++)
    {
        ans[a[i].s] = ans[a[i - 1].s];
        for (int j = a[i - 1].r + 1; j \le a[i].r; j++)
            ans[a[i].s] += 2 * (col[c[j]]++);
        if (a[i - 1].1 < a[i].1)
            for (int j = a[i - 1].1; j < a[i].1; j++)
                ans[a[i].s] -= 2 * (--col[c[j]]);
        else
            for (int j = a[i].1; j < a[i - 1].1; j++)
                ans[a[i].s] += 2 * (col[c[j]]++);
    }
}
long long all, num;
for (int i = 1; i <= m; i++)
{
    if (size[i] == 1) all = 1; else all = size[i] * (size[i] - 1);
    num = gcd(ans[i], all);
    printf("%lld/%lld\n", ans[i] / num, all / num);
return 0;
```

15.8.13 最小平衡生成树

15.8.14 生成树计数(Matrix-Tree定理)

Matrix-Tree定理(Kirchhoff矩阵-树定理)

- 1. G的度数矩阵D[G]是一个n*n的矩阵,并且满足: 当i≠j 时,dij=0; 当i=j 时, dij等于vi的度数。
 - 2. G的邻接矩阵A[G]也是一个n*n的矩阵,并且满足:如果vi、vj之间有边直接相连,则aij=1,否则为0。
- 我们定义G的Kirchhoff矩阵(也称为拉普拉斯算子)C[G]为C[G]=D[G]-A[G],则Matrix-Tree定理可以描述为: G的所有不同的生成树的个数等于其Kirchhoff矩阵C[G]任何一个n-1阶主子式的行列式的绝对值。所谓n-1阶主子式,就是对于r(1 \leq r \leq n),将C[G]的第r行、第r列同时去掉后得到的新矩阵,用Cr[G]表示。

SPOJ HIGH Highways

```
/*
SPOJ HIGH Highways
N点、M条边的图, 问生成树有多少个
*/
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define zero(x)((x>0? x:-x)<1e-15)
int const maxn = 100;
double a[maxn][maxn];
double b[maxn][maxn];
int g[53][53];
int N, M;
double det(double a[maxn][maxn], int n)
    int i, j, k, sign = 0;
   double ret = 1, t;
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
           b[i][j] = a[i][j];
    for (i = 0; i < n; i++)
    {
        if (zero(b[i][i]))
           for (j = i + 1; j < n; j++)
                if (!zero(b[j][i]))
```

```
break;
            if (j == n)
                return 0;
            for (k = i; k < n; k++)
                t = b[i][k], b[i][k] = b[j][k], b[j][k] = t;
            sign++;
        }
        ret *= b[i][i];
        for (k = i + 1; k < n; k++)
            b[i][k] /= b[i][i];
        for (j = i + 1; j < n; j++)
            for (k = i + 1; k < n; k++)
                b[j][k] -= b[j][i] * b[i][k];
    }
    if (sign & 1)
        ret = -ret;
    return ret;
}
int main()
#ifdef xysmlx
    freopen("in.cpp", "r", stdin);
#endif
    int T;
    scanf("%d", &T);//T组数据
    while (T--)
        scanf("%d%d", &N, &M);//N,M
        memset(g, 0, sizeof(g));
        while (M--)//M条边, 建图
        {
            int a, b;
            scanf("%d%d", &a, &b);
            g[a - 1][b - 1] = g[b - 1][a - 1] = 1;
        }
        for (int i = 0; i < N; i++)
            for (int j = 0; j < N; j++) a[i][j] = 0;
        for (int i = 0; i < N; i++)
            int d = 0;
            for (int j = 0; j < N; j++) if (g[i][j]) d++;
            a[i][i] = d;
        }
```

```
for (int i = 0; i < N; i++)
         for (int j = 0; j < N; j++)
            if (g[i][j]) a[i][j] = -1;
      double ans = det(a, N - 1);
      printf("%0.01f\n", ans);
   }
  return 0;
}
15.8.15 最小生成树计数(BZOJ 1016)
/*
*题目地址:
*http://www.lydsy.com/JudgeOnline/problem.php?id=1016
*题目大意:
*给出一个简单无向加权图,求这个图中有多少个不同的最小生成树;
*由于不同的最小生成树可能很多,所以只需输出方案数对31011的模就可以了;
*算法思想:
*Kruskal+Matrix_Tree定理;
*先按照任意顺序对等长的边进行排序;
*然后利用并查集将所有长度为LO的边的处理当作一个阶段来整体看待;
*可以定义一个数组的vector向量来保存每一个连通块的边的信息;
*即将原图划分成多个连通块,每个连通块里面的边的权值都相同;
*针对每一个连通块构建对应的Kirchhoff矩阵C,利用Matrix_Tree定理求每一个连通块的生成
树个数:
*最后把他们的值相乘即可;
*Matrix_Tree定理:
*G的所有不同的生成树的个数等于其Kirchhoff矩阵C[G]任何一个n-1阶主子式的行列式的绝
*n-1阶主子式就是对于r(1 \le r \le n),将C[G]的第r行,第r列同时去掉后得到的新矩阵,用Cr[G]表
示;
**/
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <vector>
using namespace std;
const int N = 111;
const int M = 1111;
```

```
const int mod = 31011;
struct Edges
{
    int a, b, c;
   bool operator<(const Edges &x)const</pre>
       return c < x.c;
   }
} edge[M];
int n, m;
int f[N], U[N], vist[N]; //f,U都是并查集, U是每组边临时使用
int G[N][N], C[N][N]; //G顶点之间的关系, C为生成树计数用的Kirchhoff矩阵
vector<int>V[N];//记录每个连通分量
int Find(int x, int f[])
{
    if (x == f[x])
       return x;
   else
       return Find(f[x], f);
}
int det(int a[][N], int n) //生成树计数:Matrix-Tree定理
{
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
           a[i][j] %= mod;
    int ret = 1;
    for (int i = 1; i < n; i++)
    {
        for (int j = i + 1; j < n; j++)
           while (a[j][i])
               int t = a[i][i] / a[j][i];
               for (int k = i; k < n; k++)
                   a[i][k] = (a[i][k] - a[j][k] * t) % mod;
               for (int k = i; k < n; k++)
                   swap(a[i][k], a[j][k]);
               ret = -ret;
           }
        if (a[i][i] == 0)
           return 0;
        ret = ret * a[i][i] % mod;
```

```
}
    if (ret < 0)
       ret = -ret;
   return (ret + mod) % mod;
}
void Solve()
{
    sort(edge, edge + m); //按权值排序
   for (int i = 1; i <= n; i++) //初始化并查集
    {
       f[i] = i;
       vist[i] = 0;
    }
    int Edge = -1; //记录相同的权值的边
    int ans = 1;
   for (int k = 0; k \le m; k++)
       if (edge[k].c != Edge || k == m) //一组相等的边,即权值都为Edge的边加完
       {
           for (int i = 1; i \le n; i++)
           {
               if (vist[i])
               {
                   int u = Find(i, U);
                   V[u].push_back(i);
                   vist[i] = 0;
               }
           }
           for (int i = 1; i <= n; i++) //枚举每个连通分量
               if (V[i].size() > 1)
               {
                   for (int a = 1; a <= n; a++)
                       for (int b = 1; b <= n; b++)
                          C[a][b] = 0;
                   int len = V[i].size();
                   for (int a = 0; a < len; a++) //构建Kirchhoff矩阵C
                       for (int b = a + 1; b < len; b++)
                       {
                           int a1 = V[i][a];
                           int b1 = V[i][b];
                           C[a][b] = (C[b][a] -= G[a1][b1]);
                           C[a][a] += G[a1][b1]; //连通分量的度
```

```
C[b][b] += G[a1][b1];
                        }
                    int ret = (int)det(C, len);
                    ans = (ans * ret) % mod; //对V中的每一个连通块求生成树个数再
相乘
                    for (int a = 0; a < len; a++)
                        f[V[i][a]] = i;
               }
            }
            for (int i = 1; i <= n; i++)
               U[i] = f[i] = Find(i, f);
               V[i].clear();
            }
            if (k == m)
               break;
            Edge = edge[k].c;
        }
        int a = edge[k].a;
        int b = edge[k].b;
        int a1 = Find(a, f);
        int b1 = Find(b, f);
        if (a1 == b1)
            continue;
        vist[a1] = vist[b1] = 1;
        U[Find(a1, U)] = Find(b1, U); //并查集操作
        G[a1][b1]++;
        G[b1][a1]++;
   }
    int flag = 0;
    for (int i = 2; i <= n && !flag; i++)
        if (U[i] != U[i - 1])
           flag = 1;
    if (m == 0)
        flag = 1;
    printf("%d\n", flag ? 0 : ans % mod);
}
int main()
    while (~scanf("%d%d", &n, &m))
    {
```

§ 15.9 最短路径

最长路径可用SPFA或Bellman-Ford做

15.9.1 有向无环图的最短路径: 拓扑排序(O(N + E))

```
/**
*拓扑排序
*输入: g[maxn] [maxn](图, 1~N)
*输出: topo[maxn](拓扑排序顺序)
*/
const int maxn=0;
int n,mk[maxn],topo[maxn],g[maxn][maxn],ps,topook;
void dfs(int u)
{
    if(mk[u]<0)
    {
        topook=0;
        return;
    }
    if(mk[u]>0) return;
    else mk[u]=-1;
    for(int v=1;topook&&v<=n;v++) if(g[u][v]) dfs(v);
    topo[ps--]=u;
   mk[u]=1;
}
void toposort()
{
    topook=1;
   ps=n;
   memset(mk,0,sizeof(mk));
    for(int i=1;topook&&i<=n;i++) if(!mk[i]) dfs(i);</pre>
}
```

15.9.2 非负权值加权图的最短路径: 朴素Dijkstra算法(适用稠密图)($O(V^2)$)

```
/**
*Dijkstra 数组实现 O(V^2)
*Dijkstra --- 数组实现(在此基础上可直接改为STL的Queue实现)
*d[] --- st到其他点的最近距离
*path[] -- st为根展开的树,记录父亲结点
*/
const int maxn = 0;
const int inf = 0x3f3f3f3f;
int path[maxn];
bool vis[maxn];
int cost[maxn] [maxn];
int d[maxn];
int n;
void dijkstra(int st)
{
    int i, j, minx;
   memset(vis, 0, sizeof(vis));
   vis[st] = 1;
   for (i = 0 ; i < n ; i++)
       d[i] = cost[st][i];
       path[i] = st;
    }
   d[st] = 0;
   path[st] = -1;
    int pre = st;
    for (i = 1 ; i < n ; i++)
    {
       minx = inf;
       for (j = 0; j < n; j++)//下面的加法可能导致溢出, INF不能取太大
       {
           if (vis[j] == 0 && d[pre] + cost[pre][j] < d[j] )</pre>
           {
               d[j] = d[pre] + cost[pre][j];
               path[j] = pre;
           }
       for (j = 0 ; j < n ; j++)
           if ( vis[j] == 0 && d[j] < minx )
           {
               minx = d[j];
               pre = j;
```

```
}
        }
        vis[pre] = 1;
   }
}
        非负权值加权图的最短路径: Dijkstra算法(二叉堆优化)(O((E +
15.9.3
         V) \lg V)
/**
*(不建议使用)
*非负权值加权图的最短路径: Dijkstra 算法(二叉堆优化)(From SJTU)(不建议使用)
*注: 从1到n
*将dst去掉,将后面的while改为while(1)就可以得到某点到其他所有点的最短距离了
*输入: 用input() 函数输入和建立nbs[],ev[],ew[],next[],n,m; 输入src 和dst;
*输出: value[]
*/
const int maxn=0;
const int inf=0x3f3f3f3f;
int n,m,num,len,next[maxn],ev[maxn];
int value[maxn], mk[maxn], nbs[maxn], ps[maxn], heap[maxn];
void update(int r)
{
    int q=ps[r],p=q>>1;
    while(p&&value[heap[p]]>value[r])
    {
        ps[heap[p]]=q;
       heap[q]=heap[p];
        q=p;
        p=q>>1;
    }
   heap[q]=r;
   ps[r]=q;
}
int getmin()
    int ret=heap[1],p=1,q=2,r=heap[len--];
    while(q<=len)
    {
        \label{lem:condition} \mbox{if} (\mbox{$q$<$len&&value[heap[$q$+1]]$} < \mbox{value[heap[$q$]]}) \ \ \mbox{$q$++$};
        if(value[heap[q]]<value[r])</pre>
        {
```

```
ps[heap[q]]=p;
            heap[p]=heap[q];
            p=q;
            q=p<<1;
        }
        else break;
    }
    heap[p]=r;
    ps[r]=p;
    return ret;
}
void dijkstra(int src,int dst)
    int u,v;
    for(int i=1;i<=n;i++)</pre>
        value[i]=inf;
        mk[i]=ps[i]=0;
    value[src]=0;
    heap[len=1]=src;
    ps[src]=1;
    while(!mk[dst])
    {
        if(len==0) return;
        u=getmin();
        mk[u]=1;
        for(int j=nbs[u];j;j=next[j])
            v=ev[j];
            if(!mk[v]&&value[u]+ew[j]<value[v])</pre>
            {
                 if(ps[v]==0)
                 {
                     heap[++len]=v;
                     ps[v]=len;
                 value[v]=value[u]+ew[j];
                 update(v);
            }
        }
    }
}
```

```
void input()
{
    int i,u,v,w;
    cin>>n>>m;//n 个顶点, m 条边
   num=0;
    memset(nbs,0,sizeof(nbs));
    while(m--)
    {
        cin>>u>>v>>w;
        next[++num]=nbs[u];
        nbs[u]=num;
        ev[num]=v;
        ew[num]=w;
    }
    dijkstra(1,n);
}
```

15.9.4 非负权值加权图的最短路径: Dijkstra 算法(优先队列优化)

```
/**
*Dijkstra 算法(优先队列优化)(From WJMZBMR)
*输入:图(链式前向星),n(顶点数)(从0到n-1),st(起点)
*输出: Dist[](某点到其他所有点的距离)
*/
const int maxn=0;
const int maxm=0;
const int inf=0x3f3f3f3f;
int n;
struct Edge
{
    int v,w,id,next;//t:to, c:value, num:id
}edge[maxm];
int head[maxn],edgeNum;
void addSubEdge(int u,int v,int w,int id)
{
    edge[edgeNum].v=v;
    edge[edgeNum].w=w;
    edge[edgeNum].id=id;
    edge[edgeNum].next=head[u];
   head[u]=edgeNum++;
}
void addEdge(int u,int v,int w,int id)
{
    addSubEdge(u,v,w,id);
    addSubEdge(v,u,w,id);
```

Page 104 of 208

```
}
void init()
{
    memset(head,-1,sizeof(head));
    edgeNum=0;
}
int Dist[maxn];
struct State
{
    int p,c;//p: 点 c: 值
    State(int _p,int _c):p(_p),c(_c) {}
    bool operator<(const State&o)const</pre>
    {
        return c>o.c;
    }
};
void Dijstra(int st)
{
    priority_queue<State> Q;
    fill(Dist,Dist+n,inf);
    Dist[st]=0;
    Q.push(State(st,0));
    while(!Q.empty())
    {
        State t=Q.top();
        Q.pop();
        if(t.c>Dist[t.p])continue;
        int ncost;
        for(int i=head[t.p];i!=-1;i=edge[i].next)
            if((ncost=t.c+edge[i].w)<Dist[edge[i].v])</pre>
            {
                Dist[edge[i].v]=ncost;
                Q.push(State(edge[i].v,Dist[edge[i].v]));
            }
    }
}
```

15.9.5 含负权值加权图的单源最短路径: Bellman-Ford 算法(适用负环未知)(O(VE))

```
/**
*含负权值加权图的单源最短路径: Bellman-Ford 算法(适用负环未知)($0(VE)$)
*输入: 图(链式前向星),n(顶点数,从1到n)
*输出: d[](距离),是否有负环
*/
```

```
const int maxn=0;
const int maxm=0;
struct Edge
    int v,w;
    int next;
} edge[maxm];
int head[maxn],edgeNum;
void addSubEdge(int u,int v,int w)
    edge[edgeNum].v=v;
    edge[edgeNum].w=w;
    edge[edgeNum].next=head[u];
    head[u]=edgeNum++;
}
void init()
   memset(head,-1,sizeof(head));
    edgeNum=0;
}
int n,m;
int d[maxn];
bool bellman_ford(int s)
{
   for(int i=1; i<n; i++)
    {
        bool flag=1;
        for(int u=1; u<=n; u++)
        {
            for(int j=head[u]; j!=-1; j=edge[j].next)
            {
                int v=edge[j].v;
                int w=edge[j].w;
                if(d[u]+w<d[v])//最长路改为>即可
                {
                    d[v]=d[u]+w;
                    flag=0;
                }
            }
        if(flag) break;//return 1;(没有负环)
    }
    ///判断负环
    for(int u=1; u<=n; u++)</pre>
    {
```

15.9.6 含负权值加权图的单源最短路径: Bellman-Ford 算法(栈优化,适用 负环未知)(O(VE))

```
/**
*含负权值加权图的单源最短路径: Bellman-Ford 算法(栈优化)(O(VE))
*输入:图(链式前向星),n(顶点数,从1到n)
*输出: d[](距离)
*/
const int maxn=0;
const int maxm=0;
struct Edge
{
    int v,w;
    int next;
}edge[maxm];
int head[maxn],edgeNum;
void addSubEdge(int u,int v,int w)
{
    edge[edgeNum].v=v;
    edge[edgeNum].w=w;
    edge[edgeNum].next=head[u];
   head[u]=edgeNum++;
}
void init()
{
   memset(head,-1,sizeof(head));
    edgeNum=0;
}
int n,m;
int d[maxn];
void bellman_ford(int s)
{
    int mark[maxn];
    int q[maxn],top;//栈
   for(int i=1; i<=n; ++i) d[i]=inf;</pre>
```

```
memset(mark,0,sizeof(mark));
    d[s]=0;
    mark[s]=1;
    top=0;
    q[top++]=s;
    while(top>0)
    {
        int k=q[--top];
        mark[k]=0;
        for(int i=head[k]; i!=-1; i=edge[i].next)
            int s=edge[i].v;
            int w=edge[i].w;
            if(d[k]+w<d[s])
            {
                d[s]=d[k]+w;
                if(mark[s]==0)
                {
                     mark[s]=1;
                     q[top++]=s;
                }
            }
        }
    }
}
```

15.9.7 含负权值加权图的单源最短路径: \mathbf{Spfa} 算法(稀疏图)(O(KE))

朴素SPFA

```
/**
    *含负权值加权图的单源最短路径: Spfa 算法(稀疏图)(O(KE))(不适用分层图)
    *输入: 图(链式前向星),n(顶点数,从1到n)
    *输出: d[](距离)
    */
    const int maxn = 0;
    const int maxm = 0;
    struct Edge
    {
        int u, v, w;
        int next;
    } edge[maxm];
    int head[maxn], en;
    int n, m;
    int d[maxn];
    int pre[maxn];//用于解析路径
```

Page 108 of 208

```
int num[maxn];//最短路径数量
int cnt[maxn];
bool mark[maxn];
queue<int> Q;
void addse(int u, int v, int w)
    edge[en].u = u;
    edge[en].v = v;
    edge[en].w = w;
    edge[en].next = head[u];
   head[u] = en++;
}
void init()
   memset(head, -1, sizeof(head));
    en = 0;
}
/*DFS找负环
bool cir[maxn];
void dfs(int u)
{
    cir[u]=true;
    for(int i=head[u]; i!=-1; i=edge[i].next)
        if(!cir[edge[i].v]) dfs(edge[i].v);
}
*/
bool spfa(int s)
{
   memset(d, 0x3f, sizeof(int) * (n + 1));
    for (int i = 1; i <= n; ++i) pre[i] = i; //用于解析路径
    memset(mark, 0, sizeof(bool) * (n + 1));
    memset(cnt, 0, sizeof(int) * (n + 1));
    d[s] = 0;
    Q.push(s);
    mark[s] = 1;
    num[s] = 1;//最短路径数量
    cnt[s]++;
    while (Q.size())
        int u = Q.front();
        Q.pop();
        mark[u] = 0;
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
```

```
int v = edge[i].v;
           int w = edge[i].w;
           if (d[u] + w < d[v])
              pre[v] = u; // 用于解析路径
              d[v] = d[u] + w;
              num[v] = num[u];//最短路径数量
              if (mark[v] == 0)
              {
                  mark[v] = 1;
                  Q.push(v);
                  if (++cnt[v] > n) return false; //有负环, 可以用DFS找
              }
           }
           else if (d[u] + w == d[v])//最短路径数量
           {
              num[v] += num[u];
           }
       }
   }
   return true;
}
SLF优化的SPFA
/**
*含负权值加权图的单源最短路径: Spfa 算法(稀疏图)(0(KE))(不适用分层图)(SLF优化
的SPFA)
*输入:图(链式前向星),n(顶点数,从1到n)
*输出: d[](距离)
*/
const int maxn = 0;
const int maxm = 0;
struct Edge
{
   int u, v, w;
   int next;
} edge[maxm];
int head[maxn], en;
int n, m;
int d[maxn];
int pre[maxn];//用于解析路径
int cnt[maxn];
bool mark[maxn];
deque<int> Q;
void addse(int u, int v, int w)
Page 110 of 208
```

```
{
    edge[en].u = u;
    edge[en].v = v;
    edge[en].w = w;
    edge[en].next = head[u];
   head[u] = en++;
}
void init()
{
   memset(head, -1, sizeof(head));
    en = 0;
}
/*DFS找负环
bool cir[maxn];
void dfs(int u)
{
    cir[u]=true;
    for(int i=head[u]; i!=-1; i=edge[i].next)
        if(!cir[edge[i].v]) dfs(edge[i].v);
}
*/
bool spfa(int s)
    while (!Q.empty()) Q.pop_front();
   memset(d, 0x3f, sizeof(int) * (n + 1));
    for (int i = 1; i <= n; ++i) pre[i] = i; //用于解析路径
    memset(mark, 0, sizeof(bool) * (n + 1));
    memset(cnt, 0, sizeof(int) * (n + 1));
    d[s] = 0;
    Q.push_back(s);
    mark[s] = 1;
    cnt[s]++;
    while (Q.size())
    {
        int u = Q.front();
        Q.pop_front();
        mark[u] = 0;
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].v;
            int w = edge[i].w;
            if (d[u] + w < d[v])
                pre[v] = u; // 用于解析路径
                d[v] = d[u] + w;
```

```
if (mark[v] == 0)
                {
                    mark[v] = 1;
                    if (!Q.empty())
                    {
                        if (d[v] > d[Q.front()]) Q.push_back(v);
                        else Q.push_front(v);
                    }
                    else Q.push_back(v);
                    if (++cnt[v] > n) return false; //有负环, 可以用DFS找
                }
            }
        }
    }
    return true;
}
```

SPFA求包含原点闭环的最短路(邻接矩阵版)

要计算从出发点出发的闭环的路径长度。所以要在普通SPFA的基础上做点变化。 就是把dist[start]设为INF。同时一开始并不是让出发点入队,而是让出发点能够到达的点 入队。

```
/**
*含负权值加权图的单源最短路径: Spfa 算法(稀疏图)(O(KE))(不适用分层图)
*输入:图(链式前向星),n(顶点数,从1到n)
*输出: d[](距离)
*/
const int maxn = 0;
int n;
int d[maxn];
int pre[maxn];//用于解析路径
int num[maxn];//最短路径数量
int cnt[maxn];
bool mark[maxn];
queue<int> Q;
/*DFS找负环
bool cir[maxn];
void dfs(int u)
{
   cir[u]=true;
   for(int i=head[u]; i!=-1; i=edge[i].next)
       if(!cir[edge[i].v]) dfs(edge[i].v);
}
*/
```

{

```
bool spfa(int s)
   while (!Q.empty()) Q.pop();
   memset(d, 0x3f, sizeof(int) * (n + 1));
   for (int i = 1; i <= n; ++i) pre[i] = i; //用于解析路径
   memset(mark, 0, sizeof(bool) * (n + 1));
   memset(cnt, 0, sizeof(int) * (n + 1));
   for (int v = 0; v < n; v++)
       if (v == s)
       {
           d[v] = inf;
           mark[v] = 0;
       }
       else if (g[s][v] != inf)
           d[v] = g[s][v];
           Q.push(v);
           mark[v] = 1;
           num[v] = 1;//最短路径数量
           cnt[v]++;
       }
       else
       {
           d[v] = inf;
           mark[v] = 0;
       }
   }
   while (Q.size())
   {
       int u = Q.front();
       Q.pop();
       mark[u] = 0;
       for (int v = 0; v < n; v++)
           if (g[u][v] == inf) continue;//不邻接
           int w = g[u][v];
           if (d[u] + w < d[v])
           {
               pre[v] = u; // 用于解析路径
               d[v] = d[u] + w;
               num[v] = num[u];//最短路径数量
               if (mark[v] == 0)
```

```
{
                   mark[v] = 1;
                   Q.push(v);
                   if (++cnt[v] > n) return false; //有负环, 可以用DFS找
               }
           }
           else if (d[u] + w == d[v])//最短路径数量
           {
               num[v] += num[u];
       }
    }
   return true;
}
        全源最短路径: Floyd 算法(O(V^3))
15.9.8
/**
*全源最短路径: Floyd 算法
*输入: mtx[][](从0到n-1)
*输出: mtx[][](最短路径长度),path[][](从后往前的最短路径)
*/
const int maxn=0;
int mtx[maxn] [maxn];
int path[maxn] [maxn];
int n;
void floyd()
    for(int i=0;i<n;i++) for(int j=0;j<n;j++) path[i][j]=i;</pre>
    for(int k=0;k< n;k++)
       for(int i=0;i<n;i++)</pre>
           for(int j=0; j< n; j++)
           {
               if(mtx[i][k]+mtx[k][j]<mtx[i][j])</pre>
               {
                   mtx[i][j]=mtx[i][k]+mtx[k][j];
                   path[i][j]=path[k][j];// 从后往前的, 要用栈得到正向路径
               }
           }
       }
   }
}
```

15.9.9 全源最短路径: Johnson 算法(稀疏图)($O(EV \lg V)$)

15.9.10 次短路径

```
/*
POJ 3255 (次短路经)
*/
#include <iostream>
#include <queue>
using namespace std;
const int maxn = 5010;
const int maxm = 200010;
const int inf = 0x3f3f3f3f;
typedef struct
{
    int v, w, next;
} Edge;
Edge edge[maxm];
int d[maxn], dr[maxn];
int n, m, en;
int head[maxn];
bool vis[maxn];
void init()
{
   memset(head, -1, sizeof(head));
    for (int i = 1; i \le n; i++) d[i] = dr[i] = inf;
}
void addedge(int u, int v, int w)
{
    edge[en].v = v;
    edge[en].w = w;
    edge[en].next = head[u];
   head[u] = en++;
}
void spfa(int st, int dt[])
{
    int i, v, u;
    queue<int>q;
```

```
memset(vis, 0, sizeof(vis));
    dt[st] = 0;
    vis[st] = 1;
    q.push(st);
    while (!q.empty())
        v = q.front(); q.pop();
        vis[v] = 0;
        for (i = head[v]; i != -1; i = edge[i].next)
            u = edge[i].v;
            if (dt[v] + edge[i].w < dt[u])
            {
                dt[u] = dt[v] + edge[i].w;
                if (!vis[u])
                {
                    vis[u] = 1;
                    q.push(u);
                }
            }
        }
    }
}
int main()
{
    int a, b, c;
    int ans, tmp, i;
    while (\scanf(\d\d\d\d\, &n, &m))
        init();
        while (m--)
            scanf("%d%d%d", &a, &b, &c);
            addedge(a, b, c);
            addedge(b, a, c);
        }
        spfa(1, d);
        spfa(n, dr);
        ans = inf;
        for (i = 1; i \le n; i++)
        {
            for (int j = head[i]; j != -1; j = edge[j].next)
```

}

```
{
                b = edge[j].v;
                c = edge[j].w;
                tmp = d[i] + dr[b] + c;
                if (tmp > d[n] \&\& ans > tmp)
                    ans = tmp;
            }
        }
        printf("%d\n", ans);
   return 0;
}
         第k短路径
15.9.11
第k短路径: A*
* 第K短路径(A*)
* POJ 2449
*/
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1005;
const int maxm = 200005;
int n, m;
int st, ed, K;
struct Edge
{
    int v, w, next;
   bool rev;
} edge[maxm];
int en, pnt[maxn][2];
void addse(int x, int y, int z, bool r = false)
{
    edge[en].v = y;
    edge[en].w = z;
    edge[en].rev = r;
    edge[en].next = pnt[x][r];
   pnt[x][r] = en++;
```

```
void init()
{
    en = 0;
    for (int i = 1; i <= n; i++) pnt[i][0] = pnt[i][1] = -1;
    while (m--)
    {
        int x, y, z;
        scanf("%d%d%d", &x, &y, &z);
        addse(x, y, z);
        addse(y, x, z, true);
    }
}
//reversed edges
int f[maxn];
bool inq[maxn];
void spfa()
    for (int i = 1; i <= n; i++)
    {
        f[i] = -1;
        inq[i] = false;
    }
    queue<int> q;
    f[ed] = 0;
    q.push(ed);
    inq[ed] = true;
    while (!q.empty())
        int cx = q.front();
        q.pop();
        inq[cx] = false;
        for (int i = pnt[cx][1]; i >= 0; i = edge[i].next)
        {
            int nx = edge[i].v;
            if (f[nx] < 0 \mid | f[nx] > f[cx] + edge[i].w)
            {
                f[nx] = f[cx] + edge[i].w;
                if (!inq[nx])
                {
                     q.push(nx);
                     inq[nx] = true;
                }
            }
```

```
}
    }
}
struct Node
    int v, f;
    Node() {}
    Node(int x, int y)
        v = x;
        f = y;
    bool operator < (const Node &x)const</pre>
    {
        return f > x.f;
    }
};
int cnt[maxn];
int astar()
{
    if (f[st] < 0) return -1;
    for (int i = 1; i <= n; i++) cnt[i] = 0;
    priority_queue<Node> q;
    q.push(Node(st, f[st]));
    while (!q.empty())
        Node tmp = q.top();
        q.pop();
        int cx = tmp.v;
        int cy = tmp.f;
        cnt[cx] += 1;
        if (cnt[ed] == K) return cy;
        if (cnt[cx] > K) continue;
        for (int i = pnt[cx][0]; i \ge 0; i = edge[i].next)
            q.push(Node(edge[i].v, cy + edge[i].w + f[edge[i].v] - f[cx]));
        }
    }
    return -1;
}
void work()
{
    scanf("%d%d%d", &st, &ed, &K);
```

```
K += (st == ed);
    spfa();
   printf("%d\n", astar());
}
int main()
{
    while ("scanf("%d%d", &n, &m))
        init();
        work();
    }
   return 0;
}
前k短路径: Dijkstra变形
/*
*前K短路径O(VK*(1g(V^2K)+V))
*/
struct Heap
{
    int x;
    int dis;
   Heap(int _x, int _dis): x(_x), dis(_dix) {}
   Heap() {}
   bool operator < (cosnt Heap &o) const</pre>
        return dis > o.dis;
};
int n, m;
int tot;
int st, ed, K;
int dis[maxn] [maxn];
int cnt[maxn];
int head[maxn];
priority_queue<Heap> pq;
int dijkstra(int st)
   Heap u = Heap(st, 0);
   pq.push(u);
    while (!pq.empty())
    {
```

```
u = pq.top();
pq.pop();
dis[u.x][++cnt[u.x]] = u.dis;
for (int i = head[u.x]; ~i; i = edge[i].next)
{
         Heap v = Heap(edge[i].v, u.dis + edge[i].w);
         if (cnt[v.x] < K)
         {
             pq.push(v);
          }
    }
} return -1;
}</pre>
```

15.9.12 差分约束系统: SPFA(O(KE))

Theorm

 $A_x \leq b$ 给出的约束条件是m个差分约束集合,其中包含n个未知量,对应的线性规划矩阵A为m 行n 列。每个约束条件为如下形式的简单线性不等式: $x_j - x_i \leq b_k$ 。其中 $1 \leq i, j \leq n$ 1 $\leq k \leq m$ 。

在一个差分约束系统 $A_x \leq b$ 中,mXn 的线性规划矩阵A可被看做是n顶点,m条边的图的 关联矩阵。对于 $i=1,2,\cdots,n$,图中的每一个顶点 v_i 对应着n 个未知量的一个 x_i 。图中的每个有向边对应着关于两个未知量的m个不等式中的一个。

顶点集合V由对应于每个未知量 x_i 的顶点 v_i 和附加的顶点 v_0 组成。边的集合E由对应于每个差分约束条件的边与对应于每个未知量 x_i 的边 (v_0,v_i) 构成。如果 $x_j-x_i\leq b_k$ 是一个差分约束,则边 (v_i,v_j) 的权 $w(v_i,v_j)=b_k$ (注意i和j 不能颠倒),从 v_0 出发的每条边的权值均为0。

给定一差分约束系统 $A_x \leq b$,设G = (V, E) 为其相应的约束图。如果G不包含负权回路,那么 $x = (d(v_0, v_1), d(v_0, v_2), \cdots, d(v_0, v_n))$ 是此系统的一可行解,其中 $d(v_0, v_i)$ 是约束图中 v_0 到 v_i 的最短路径 $(i = 1, 2, \cdots, n)$ 。如果G包含负权回路,那么此系统不存在可行解。

 $A_x \ge b$ 可转化成最长路径

最短路解得在某个变量确定的情况下,其他所有变量都取到所能取的最大值。最长路解得在某个变量确定的情况下,其他所有变量都取到所能取的最小值。

模板: SPFA(O(KE))

邻接表版

```
//负环要用普通的bellman-ford
//类似,求解时可以用各种最短距离算法,有时TLE有时AC
//有时求解最长路径,将'<'改成'>',将inf改成-inf
struct Edge
{
   int v,w;
   int next;
}edge[maxm];
```

```
int head[maxn],edgeNum;
void addSubEdge(int u,int v,int w)
{
    edge[edgeNum].v=v;
    edge[edgeNum].w=w;
    edge[edgeNum].next=head[u];
    head[u]=edgeNum++;
}
void init()
    memset(head,-1,sizeof(head));
    edgeNum=0;
}
int n,m;
int d[maxn];
void spfa(int s)
    int mark[maxn];
    queue<int> Q;
    for(int i=1; i<=n; ++i) d[i]=inf;//-inf</pre>
    memset(mark,0,sizeof(mark));
    d[s]=0;
    Q.push(s);
    mark[s]=1;
    while(Q.size())
    {
        int k=Q.front();
        Q.pop();
        mark[k]=0;
        for(int i=head[k]; i!=-1; i=edge[i].next)
        {
            int s=edge[i].v;
            int w=edge[i].w;
            if(d[k]+w<d[s])//>
            {
                d[s]=d[k]+w;
                if(mark[s]==0)
                 {
                     mark[s]=1;
                     Q.push(s);
                }
            }
        }
    }
}
```

带负环的情况: Bellman-Ford

一道例题: HDU 3776 Task

```
/**
*注意: xi-xj>=d, 最长路处理, 注意要加xi-xj>=0的约束
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn=110;
const int maxm=100010;
const int inf=1000000;
struct Edge
{
    int v,w;
    int next;
} edge[maxm];
int head[maxn],edgeNum;
void addSubEdge(int u,int v,int w)
{
    edge[edgeNum].v=v;
    edge[edgeNum].w=w;
    edge[edgeNum].next=head[u];
    head[u]=edgeNum++;
}
void init()
{
    memset(head,-1,sizeof(head));
    edgeNum=0;
}
int n,m;
int d[maxn];
bool bellman_ford(int s)
    fill(d,d+n+1,1);
    for(int i=1; i<=n-1; i++)
        int flag=1;
        for(int u=1; u<=n; u++)</pre>
            for(int j=head[u]; j!=-1; j=edge[j].next)
            {
```

```
int v=edge[j].v;
                int w=edge[j].w;
                if(d[u]+w>d[v])
                    flag=0;
                    d[v]=d[u]+w;
                }
            }
        }
        if(flag) break;
    }
    for(int u=1; u<=n; u++)</pre>
    {
        if(d[u]>=inf) return false;// 处理环
        for(int j=head[u]; j!=-1; j=edge[j].next)
        {
            int v=edge[j].v;
            int w=edge[j].w;
            if(d[u]+w>d[v]) return false;
        }
    }
    return true;
}
void input()
{
    scanf("%d",&m);
    char ts[1010];
    int a,b,c;
    while(m--)
        scanf("%*s%d%*s%s",&a,ts);
        if(ts[0]=='a')
            scanf("%*s%d%*s%*s%*s%d", &c, &b);
            addSubEdge(b,a,c);
        }
        else
        {
            scanf("%d%*s%*s%*s%*s%*s%*s%d", &c, &b);
            addSubEdge(a,b,-c);
            addSubEdge(b,a,0);
        }
    }
}
void solve()
```

```
{
    int flag=bellman_ford(1);
    if(!flag)
        puts("Impossible.");
        return;
    }
    for(int i=1; i<=n; i++)</pre>
        printf("%d",d[i]);
        if(i<n) printf(" ");</pre>
    puts("");
}
int main()
{
    while("scanf("%d",&n))
    {
        if(!n) return 0;
        init();
        input();
        solve();
   return 0;
}
   上题另解
/**
*注意: xi-xj>=d, 最长路处理, 注意要加xi-xj>=0的约束
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn=110;
const int maxm=100010;
const int inf=1000000;
struct Edge
{
    int v,w;
    int next;
} edge[maxm];
int head[maxn],edgeNum;
```

```
void addSubEdge(int u,int v,int w)
{
    edge[edgeNum].v=v;
    edge[edgeNum].w=w;
    edge[edgeNum].next=head[u];
    head[u]=edgeNum++;
}
void init()
{
    memset(head,-1,sizeof(head));
    edgeNum=0;
}
int n,m;
int d[maxn];
int cnt[maxn];
bool spfa(int s)
    int mark[maxn];
    queue<int> Q;
    memset(mark,0,sizeof(mark));
    memset(cnt,0,sizeof(cnt));
    d[s]=1;
    Q.push(s);
    mark[s]=1;
    ++cnt[s];
    while(Q.size())
        int k=Q.front();
        Q.pop();
        mark[k]=0;
        for(int i=head[k]; i!=-1; i=edge[i].next)
            int s=edge[i].v;
            int w=edge[i].w;
            if(d[k]+w<d[s])//>
            {
                d[s]=d[k]+w;
                if(mark[s]==0)
                {
                    mark[s]=1;
                     Q.push(s);
                     if(++cnt[s]>n) return false;
                }
            }
        }
```

```
}
    return true;
}
void input()
{
    scanf("%d",&m);
    char ts[1010];
    int a,b,c;
    while(m--)
        scanf("%*s%d%*s%s",&a,ts);
        if(ts[0]=='a')
        {
             scanf("%*s%d%*s%*s%*s%d", &c, &b);
             addSubEdge(b,a,c);
        }
        else
        {
             scanf("%d%*s%*s%*s%*s%*s%*s%d", &c, &b);
             addSubEdge(a,b,-c);
             addSubEdge(b,a,0);
        }
    }
}
void solve()
{
    fill(d,d+n+1,inf);
    for(int i=1; i<=n; i++)</pre>
    {
        if(d[i]>=inf)
        {
             if(!spfa(i))
                 puts("Impossible.");
                 return;
             }
        }
    }
    int minx=inf;
    for(int i=1; i<=n; i++) minx=min(minx,d[i]);</pre>
    minx--;
    for(int i=1; i<=n; i++)</pre>
        printf("%d",d[i]-minx);
        if(i<n) printf(" ");</pre>
```

```
}
  puts("");
}
int main()
{
  while(~scanf("%d",&n))
      if(!n) return 0;
     init();
      input();
      solve();
  }
  return 0;
}
邻接矩阵版
       平面点对的最短路径(优化)
15.9.13
15.9.14 双标准限制最短路径
        匹配
§ 15.10
15.10.1 二分图最大匹配: Hungary算法(O(VE))
主框架
bool 寻找从k出发的对应项出的可增广路
  while (从邻接表中列举k能关联到顶点j)
   {
      if (j不在增广路上)
      {
        把j加入增广路;
        if (j是未盖点 或者 从j 的对应项出发有可增广路)
        {
           修改j的对应项为k;
           则从k的对应项出有可增广路,返回true;
        }
     }
   则从k的对应项出没有可增广路,返回false;
}
```

```
void 匈牙利hungary()
{
   for i->1 to n
       if (则从i的对应项出有可增广路)
          匹配数++;
   }
   输出 匹配数;
}
邻接矩阵实现
*二分图匹配:匈牙利算法的DFS实现(O(VE))
*适于稠密图, DFS找增广路快
*输入: g[][]两边定点划分的情况
*输出: hungary()(最大匹配数),cx[]cy[](匹配)
*字典序最大:在hungary()中从n-1到0地扫
*/
const int maxn = 0;
int uN, vN; //u,v数目
int g[maxn] [maxn];//编号是0~n-1 的
int cx[maxn], cy[maxn];
bool used[maxn];
bool dfs(int u)
   int v;
   for (v = 0; v < vN; v++)
       if (g[u][v] && !used[v])
          used[v] = true;
          if (cy[v] == -1 \mid \mid dfs(cy[v]))
              cx[u] = v;
              cy[v] = u;
              return true;
          }
       }
   }
   return false;
}
int hungary()
   int res = 0;
```

```
int u;
   memset(cx, -1, sizeof(cx));
   memset(cy, -1, sizeof(cy));
   for (u = 0; u < uN; u++)//默认最小字典序,在这里uN-1->0扫描使得字典序最大
   {
       memset(used, 0, sizeof(used));
       if (dfs(u)) res++;
   }
   return res;
}
链式前向星实现
/**
*二分图匹配:匈牙利算法的DFS实现(O(VE))
*适于稠密图, DFS找增广路快
*输入:链式前向星
*输出: hungary()(最大匹配数),cx[]cy[](匹配)
*字典序最大:在hungary()中从n-1到0地扫
*/
const int maxn = 0;
const int maxm = 0;
struct Edge
   int u, v;
   int next;
} edge[maxm];
int en, head[maxn];
int uN, vN; //u,v数目
int cx[maxn], cy[maxn];
bool used[maxn];
bool dfs(int u)
{
   for (int i = head[u]; ~i; i = edge[i].next)
   {
       int v = edge[i].v;
       if (!used[v])
       {
           used[v] = true;
           if (cy[v] == -1 \mid | dfs(cy[v]))
           {
              cx[u] = v;
              cy[v] = u;
              return true;
           }
```

```
}
   }
   return false;
}
int hungary()
   int res = 0;
   int u;
   memset(cx, -1, sizeof(cx));
   memset(cy, -1, sizeof(cy));
   for (u = 0; u < uN; u++)//默认最小字典序,在这里uN-1->0扫描使得字典序最大
       memset(used, 0, sizeof(used));
       if (dfs(u)) res++;
   }
   return res;
}
         大数据二分图最大匹配: Hopcroft-Karp(O(\sqrt{V}E))
15.10.2
/**
*大数据二分图匹配: Hopcroft-Karp($0(\sqrt{v}E)$)
*适用于数据较大的二分匹配(从0到n-1)
*输入: Nx,Ny,g[][]
*输出: res=MaxMatch();Mx[]My[]
const int maxn = 0;
const int inf = 0x3f3f3f3f;
int g[maxn] [maxn], Mx[maxn], My[maxn], Nx, Ny;
int dx[maxn], dy[maxn], dis;
bool vst[maxn];
bool searchP()
{
   queue<int>Q;
   dis = inf;
   memset(dx, -1, sizeof(dx));
   memset(dy, -1, sizeof(dy));
   for (int i = 0; i < Nx; i++)
       if (Mx[i] == -1)
           Q.push(i);
           dx[i] = 0;
   while (!Q.empty())
   {
```

```
int u = Q.front();
        Q.pop();
        if (dx[u] > dis) break;
        for (int v = 0; v < Ny; v++)
            if (g[u][v] \&\& dy[v] == -1)
                dy[v] = dx[u] + 1;
                if (My[v] == -1) dis = dy[v];
                else
                {
                    dx[My[v]] = dy[v] + 1;
                    Q.push(My[v]);
                }
            }
    }
    return dis != inf;
}
bool DFS(int u)
    for (int v = 0; v < Ny; v++)
        if (!vst[v] && g[u][v] && dy[v] == dx[u] + 1)
        {
            vst[v] = 1;
            if (My[v] != -1 \&\& dy[v] == dis) continue;
            if (My[v] == -1 \mid | DFS(My[v]))
            {
                My[v] = u;
                Mx[u] = v;
                return 1;
            }
        }
    return 0;
}
int MaxMatch()
{
    int res = 0;
    memset(Mx, -1, sizeof(Mx));
    memset(My, -1, sizeof(My));
    while (searchP())
        memset(vst, 0, sizeof(vst));
        for (int i = 0; i < Nx; i++)
            if (Mx[i] == -1 && DFS(i)) res++;
    }
    return res;
```

}

15.10.3 二分图多重匹配: Hungary算法改(O(VE))

```
/*
二分图的多重匹配: 匈牙利算法
输入: cap[](y图的匹配数限制),g[][](图)
输出: mulmatch(),link[][]
*/
const int maxn = 0;
int cap[maxn], g[maxn] [maxn], vlink[maxn], link[maxn] [maxn];
bool vis[maxn];
int nx, ny;
int path(int s)
{
   for (int i = 0; i < ny; i++)
        if (g[s][i] && !vis[i])
        {
            vis[i] = true;
            if (vlink[i] < cap[i])</pre>
               link[i][vlink[i]++] = s;
                return 1;
            }
            for (int j = 0; j < vlink[i]; j++)
                if (path(link[i][j]))
                    link[i][j] = s;
                    return 1;
                }
            }
        }
    }
    return 0;
}
bool mulmatch()
   memset(vlink, 0, sizeof(vlink));
    for (int i = 0; i < nx; i++)
    {
        memset(vis, 0, sizeof(vis));
        if (!path(i))
            return 0;
```

```
}
return 1;
}
```

15.10.4 二分图的几个等价

最大边独立集 边集导出子图不含公共点叫独立集,最大的叫最大边独立集

最大独立集 点集导出子图不含边叫独立集,最大的叫最大独立集

最小支配集 点集,原图任意顶点要么属于此点集,要么与此点集的点邻接,最小的叫最小支配集

最大团 点集导出子集中任意两点均有边,最大的叫最大团

最小点覆盖 边集,边的两端点的集合是原图的点集,最小的叫最小点覆盖

最小路径覆盖 点集,点是所有边的两端点之一,最小的叫最小路径覆盖

等价

- 最小点覆盖 = |V| 最大独立集
- 最大独立点集 = 最大完全子图
- 二分图最小点覆盖集 = 二分图最大匹配
- 二分图最大独立点集 = |V|二分图最小点覆盖集
- 最大团 = 补图的最大点独立集
- 有向图最小路径覆盖 = |V|最大匹配
- 无向图最小路径覆盖 = |V|最大匹配/2

15.10.5 二分图带权(最大/最小)完备匹配: Kuhn-Munkras算法 $(O(N^3))$

```
/**

*二分图带权(最大/最小)完备匹配: Kuhn-Munkras算法($O(N^3)$)

*lx[],ly[]为顶标, nx,ny为x,y顶点数, sx[],sy[]表示visx,visy

*默认最大, 若求最小则把权值取反即可

*输入: g[][],nx,ny

*输出: cx[],cy[],KuhnMunkres()(最大匹配)

*/

const int inf = 0x3f3f3f3f;

const int maxn = 0;

int cx[maxn], cy[maxn], nx, ny, match;

bool sx[maxn], sy[maxn];

double lx[maxn], ly[maxn], g[maxn][maxn];
```

```
bool path(int u)
{
    sx[u] = 1;
    for (int v = 1; v \le ny; v++)
        if (g[u][v] == lx[u] + ly[v] && !sy[v])
            sy[v] = 1;
            if (!cy[v] || path(cy[v]))
                cx[u] = v;
                cy[v] = u;
                return 1;
            }
    return 0;
}
int KuhnMunkres()
    int i, j, u, minx;
   memset(lx, 0, sizeof (lx));
   memset(ly, 0, sizeof (ly));
   memset(cx, 0, sizeof (cx));
   memset(cy, 0, sizeof (cy));
    for (i = 1; i <= nx; i++)
        for (j = 1; j \le ny; j++)
            lx[i] = max(lx[i], g[i][j]);
    for (match = 0, u = 1; u \le nx; u++)
        if (!cx[u])
        {
            memset(sx, 0, sizeof (sx));
            memset(sy, 0, sizeof (sy));
            while (!path(u))//没找到增广路径
            {
                minx = inf;
                for (i = 1; i <= nx; i++)
                    if (sx[i])
                        for (j = 1; j \le ny; j++)
                            if (!sy[j]) minx = min(minx, lx[i] + ly[j] - g[i][j]);
                for (i = 1; i <= nx; i++)
                    if (sx[i])
                    {
                        lx[i] -= minx;
                        sx[i] = 0;
                    }
```

```
for (j = 1; j \le ny; j++)
                  if (sy[j])
                  {
                      ly[j] += minx;
                      sy[j] = 0;
                  }
           }
       }
   int ret = 0; //计算最大匹配
   for (int i = 1; i <= ny; i++)
       if (cy[i] > 0) ret += g[cy[i]][i];
   /**与上面等价
   for(int i=1;i<=nx;i++)</pre>
       if(cx[i]>0) ret+=g[i][cx[i]];
   */
   return ret;
}
15.10.6 一般图最大匹配: 带花树算法(未知复杂度)
/**
*一般图的最大基数匹配: 带花树算法
*输入: g[][],n(输入从0到n-1,用addEdge()加边)
*输出: gao()(最大匹配数), match[](匹配)
*/
const int maxn = 0;
struct Matching
{
   deque<int> Q;
   int n;
   //g[i][j]存放关系图: i,j是否有边,match[i]存放i所匹配的点
   bool g[maxn] [maxn], inque[maxn], inblossom[maxn], inpath[maxn];
   int match[maxn], pre[maxn], base[maxn];
   //找公共祖先
   int findancestor(int u, int v)
       memset(inpath, 0, sizeof(inpath));
       while (1)
           u = base[u];
           inpath[u] = true;
           if (match[u] == -1)break;
           u = pre[match[u]];
       }
```

```
while (1)
    {
        v = base[v];
        if (inpath[v])return v;
        v = pre[match[v]];
    }
}
//压缩花
void reset(int u, int anc)
    while (u != anc)
        int v = match[u];
        inblossom[base[u]] = 1;
        inblossom[base[v]] = 1;
        v = pre[v];
        if (base[v] != anc)pre[v] = match[u];
        u = v;
    }
}
void contract(int u, int v, int n)
{
    int anc = findancestor(u, v);
    //SET(inblossom,0);
    memset(inblossom, 0, sizeof(inblossom));
    reset(u, anc);
    reset(v, anc);
    if (base[u] != anc)pre[u] = v;
    if (base[v] != anc)pre[v] = u;
    for (int i = 1; i <= n; i++)
        if (inblossom[base[i]])
        {
            base[i] = anc;
            if (!inque[i])
                Q.push_back(i);
                inque[i] = 1;
            }
        }
}
bool dfs(int S, int n)
{
```

```
for (int i = 0; i \le n; i++)pre[i] = -1, inque[i] = 0, base[i] = i;
    Q.clear();
    Q.push_back(S);
    inque[S] = 1;
    while (!Q.empty())
        int u = Q.front();
        Q.pop_front();
        for (int v = 1; v \le n; v++)
            if (g[u][v] \&\& base[v] != base[u] \&\& match[u] != v)
            {
                if (v == S \mid | (match[v] != -1 \&\& pre[match[v]] != -1))contract(u, v, n);
                else if (pre[v] == -1)
                {
                     pre[v] = u;
                     if (match[v] != -1)Q.push_back(match[v]), inque[match[v]] = 1;
                     else
                         u = v;
                         while (u != -1)
                             v = pre[u];
                             int w = match[v];
                             match[u] = v;
                             match[v] = u;
                             u = w;
                         }
                         return true;
                     }
                }
            }
        }
    }
    return false;
}
void init(int n)
{
    this->n = n;
    memset(match, -1, sizeof(match));
    memset(g, 0, sizeof(g));
}
void addEdge(int a, int b)
```

```
{
        ++a;
        ++b;
        g[a][b] = g[b][a] = 1;
    }
    int gao()
    {
        int ans = 0;
        for (int i = 1; i \le n; ++i)
            if (match[i] == -1 \&\& dfs(i, n))
               ++ans;
       return ans;
   }
};
15.10.7 稳定婚姻匹配(O(N^2))
/**
*POJ 3487 The Stable Marriage Problem
*男的优先的稳定婚姻匹配
*DATA:
1 // test case
3 // 男女数
a b c A B C //Male name is a lowercase letter, female name is an upper-case letter
a:BAC
b:BAC
c:ACB
A:acb
B:bac
C:cab
*/
#include <iostream>
#include <queue>
using namespace std;
int gg[30][30], mm[30][30];
int a[30], n, ggpre[30], mmpre[30];
queue<int>my;
void stable_marriage()
{
    int i;
   memset(ggpre, 0, sizeof(ggpre)); //gg优先选择.
   memset(mmpre, -1, sizeof(mmpre)); //mm优先选择.
    int pm, pf;
    while (!my.empty())
```

```
{
       pm = my.front();
       my.pop();
        pf = gg[pm][ggpre[pm]];
        ggpre[pm]++;
        if (mmpre[pf] < 0) mmpre[pf] = pm; //pf是自由的 (pm, pf) 变成约会状态
        else if (mm[pf][mmpre[pf]] < mm[pf][pm]) //pf更喜欢pm1,pm保持自由.
        {
           my.push(pm);
        }
        else
                                      //pf更喜欢pm,而不是pm1,(pm,pf)变成约会状
态.
        {
           my.push(mmpre[pf]);
           mmpre[pf] = pm;
       }
   }
   for (i = 0; i < 26; i++)
        if (mmpre[i] > -1) ggpre[mmpre[i]] = i;
   for (i = 0; i < n; i++)
       printf("%c %c\n", a[i] + 'a', ggpre[a[i]] + 'A');
   puts("");
}
int main()
    int i, j, t;
    scanf("%d", &t);
   while (t--)
    {
        scanf("%d", &n);
        char temp, str[30];
        while (!my.empty())
           my.pop();
        for (i = 0; i < n; i++)
        {
            scanf(" %c", &temp);
           a[i] = temp - 'a';
           my.push(temp - 'a');
        sort(a, a + n);
        for (i = 0; i < n; i++)
            scanf(" %c", &temp);
        for (i = 0; i < n; i++)
        {
            scanf("%s", str);
```

§ 15.11 网络流

增广路方法的复杂度是通过估计增广次数的上界得到的。对于实际应用中的网络,增广次数往往很少,所以使用范围还是很广的,实用性强。预流推进方法看似比增广路方法在复杂度上快很多,然而实际上,预流推进方法的复杂度的上界是比较紧的。对于一些稀疏图,预流推进方法的实际效果往往不如增广路方法。

15.11.1 最大流: Edmonds Karp $(O(V*E^2))$

无打印路径

```
/**
*最大流: Edmonds Karp ($(V*E^2)$)
*输入: g[][],st=0,ed=1,n(点的个数,编号0-n.n包括了源点和汇点)
*输出: 最大流Edmonds_Karp()
*/
const int maxn=0;
const int inf=0x3f3f3f3f;
int g[maxn] [maxn];//存边的容量,没有边的初始化为0
int path[maxn],st,ed;
int n;//点的个数,编号0-n.n包括了源点和汇点。
int bfs()
{
   int i,t;
   queue<int> q;
   int flow[maxn];
   memset(path,-1,sizeof(path));//每次搜索前都把路径初始化成-1
   path[st]=st;
   flow[st]=inf;//源点可以有无穷的流流进
   q.push(st);
   while(!q.empty())
```

Page 142 of 208

```
{
       t=q.front();
       q.pop();
       if(t==ed)break;
       //枚举所有的点,如果点的编号起始点有变化可以改这里
       for(i=0; i<=n; i++)
       {
           if(i!=st&&path[i]==-1&&g[t][i])
              flow[i]=min(flow[t],g[t][i]);
              q.push(i);
              path[i]=t;
           }
       }
   }
   if(path[ed]==-1)return -1;//即找不到汇点上去了。找不到增广路径了
   return flow[ed];
}
int EK(int NdFlow)
   int max_flow=0;
   int step,now,pre;
   while((step=bfs())!=-1)
       max_flow+=step;
       now=ed;
       while(now!=st)
       {
           pre=path[now];
           g[pre][now]-=step;
           g[now][pre]+=step;
           now=pre;
       /*如果超过指定流量就return 掉*/
       if(NdFlow==inf) continue;
       if(flow > NdFlow) break;
   }
   return max_flow;
}
带打印路径
/**
*最大流: Edmonds Karp ($(V*E^2)$)
*输入: cap[][],st=0,ed=1,n(点的个数,编号0-n.n包括了源点和汇点)
```

```
*输出: 最大流EK(),flow[][](用于打印路径)
*/
const int maxn=0;
const int inf=0x3f3f3f3f;
int cap[maxn][maxn];//存边的容量,没有边的初始化为0
int flow[maxn][maxn];//记录记录路径
int path[maxn],st,ed;
int n;//点的个数,编号0-n.n包括了源点和汇点。
int bfs()
{
   int i,t;
   int tflow[maxn];
   queue<int> q;
   memset(path,-1,sizeof(path));//每次搜索前都把路径初始化成-1
   path[st]=st;
   tflow[st]=inf;//源点可以有无穷的流流进
   q.push(st);
   while(!q.empty())
   {
       t=q.front();
       q.pop();
       if(t==ed)break;
       //枚举所有的点,如果点的编号起始点有变化可以改这里
       for(i=0; i<=n; i++)
       {
           if(i!=st&&path[i]==-1&&cap[t][i])
           {
              tflow[i]=min(tflow[t],cap[t][i]);
              q.push(i);
              path[i]=t;
           }
       }
   }
   if(path[ed]==-1)return -1;//即找不到汇点上去了。找不到增广路径了
   return tflow[ed];
}
int EK(int NdFlow)
{
   memset(flow,0,sizeof(flow));
   int max_tflow=0;
   int step,now,pre;
   while((step=bfs())!=-1)
   {
       max_tflow+=step;
```

```
now=ed;
       while(now!=st)
       {
           pre=path[now];
           cap[pre] [now] -=step;
           cap[now][pre]+=step;
           flow[pre] [now] += step;
           flow[now][pre]-=step;
           now=pre;
       /*如果超过指定流量就return 掉*/
       if(NdFlow == inf) continue;
       if(max_tflow > NdFlow) break;
   }
   return max_tflow;
}
         最大流最小割:加各种优化的Dinic算法(O(V^2E))
15.11.2
/**
*最大流最小割:加各种优化的Dinic算法($0(V^2E)$)
*输入:图(链式前向星),n(顶点个数,包含源汇),st(源),ed(汇)
*输出: Dinic(NdFlow)(最大流),MinCut()(最小割)(需先求最大流)
*打印路径方法:按反向边(i&1)的flow 找,或者按边的flow找
*/
const int maxn = 0;
const int maxm = 0;
const int inf = 0x3f3f3f3f;
struct DINIC
{
   struct Edge
   {
       int u, v;
       int cap, flow;
       int next;
   } edge[maxm];
   int head[maxn], en; //需初始化
   int n, m, d[maxn], cur[maxn];
   int st, ed;
   bool vis[maxn];
   void init(int _n = 0)
   {
       n = _n;
       memset(head, -1, sizeof(head));
       en = 0;
```

```
}
void addse(int u, int v, int cap, int flow)
{
    edge[en].u = u;
    edge[en].v = v;
    edge[en].cap = cap;
    edge[en].flow = flow;
    edge[en].next = head[u];
    head[u] = en++;
    cur[u] = head[u];
}
void adde(int u, int v, int cap)
{
    addse(u, v, cap, 0);
    addse(v, u, 0, 0); //注意加反向0 边
}
bool BFS()
{
    queue<int> Q;
    memset(vis, 0, sizeof(vis));
    Q.push(st);
    d[st] = 0;
    vis[st] = 1;
    while (!Q.empty())
    {
        int u = Q.front();
        Q.pop();
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].v;
            int w = edge[i].cap - edge[i].flow;
            if (w > 0 \&\& !vis[v])
                vis[v] = 1;
                Q.push(v);
                d[v] = d[u] + 1;
                if (v == ed) return 1;
            }
        }
    return false;
}
int Aug(int u, int a)
{
    if (u == ed) return a;
```

```
int aug = 0, delta;
    for (int &i = cur[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].v;
        int w = edge[i].cap - edge[i].flow;
        if (w > 0 \&\& d[v] == d[u] + 1)
            delta = Aug(v, min(a, w));
            if (delta)
                edge[i].flow += delta;
                edge[i ^ 1].flow -= delta;
                aug += delta;
                if (!(a -= delta)) break;
            }
        }
    }
    if (!aug) d[u] = -1;
    return aug;
}
int dinic(int NdFlow)
{
    int flow = 0;
    while (BFS())
        memcpy(cur, head, sizeof(int) * (n + 1));
        flow += Aug(st, inf);
        /*如果超过指定流量就return 掉*/
        if (NdFlow == inf) continue;
        if (flow > NdFlow) break;
    }
    return flow;
}
/*残余网络*/
void Reduce()
    for (int i = 0; i < en; i++) edge[i].cap -= edge[i].flow;
}
/*清空流量*/
void ClearFlow()
{
    for (int i = 0; i < en; i++) edge[i].flow = 0;</pre>
}
/*求最小割*/
vector<int> MinCut()
```

```
{
    BFS();
    vector<int> ans;
    for (int u = 0; u < n; u++)
    {
        if (!vis[u]) continue;
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
            if (i & 1) continue; /*忽略反向边*/
            int v = edge[i].v;
            int w = edge[i].cap;
            if (!vis[v] && w > 0) ans.push_back(i);
        }
    }
    return ans;
}
/*判网络流有多解*/
bool no[maxn];
int Stack[maxn], top;
bool dfs(int u, int pre, bool flag)
{
    vis[u] = 1;
    Stack[top++] = u;
    for (int i = head[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].v;
        if (edge[i].cap <= edge[i].flow) continue;</pre>
        if (v == pre) continue;
        if (!vis[v])
        {
            if (dfs(v, u, edge[i ^ 1].flow < edge[i ^ 1].cap))</pre>
                return true;
        }
        else if (!no[v])return true;
    }
    if (!flag)
        while (1)
        {
            int v = Stack[--top];
            no[v] = true;
            if (v == u)break;
        }
    }
    return false;
```

```
}
   bool multi()
    {
        memset(vis, 0, sizeof(bool) * (n + 1));
        memset(no, 0, sizeof(bool) * (n + 1));
        return dfs(ed, ed, 0);
    }
} dinic;
另一版本(有时较快,不适合double)
*/
typedef long long LL;
const int maxn = 1010;
const int maxm = 2005010;
const int inf = 0x3f3f3f3f;
int node, s, t, edge;
int to[maxm], flow[maxm], next[maxm];
int head[maxn], work[maxn], dis[maxn], q[maxn];
inline int min(int a, int b)
{
   return a < b ? a : b;
inline void init(int nn, int ss, int tt)
{
   node = nn, s = ss, t = tt, edge = 0;
   for (int i = 0; i < node; ++i) head[i] = -1;
}
inline void add(int u, int v, int c1, int c2 = 0)
{
   to[edge] = v, flow[edge] = c1, next[edge] = head[u], head[u] = edge++;
   to[edge] = u, flow[edge] = c2, next[edge] = head[v], head[v] = edge++;
}
bool bfs()
{
    int i, u, v, 1, r = 0;
   for (i = 0; i < node; ++i) dis[i] = -1;
   dis[q[r++] = s] = 0;
    for (1 = 0; 1 < r; ++1)
        for (i = head[u = q[1]]; i >= 0; i = next[i])
            if (flow[i] && dis[v = to[i]] < 0)</pre>
            {
                dis[q[r++] = v] = dis[u] + 1;
                if (v == t)return 1;
            }
```

```
return 0;
}
int dfs(int u, int maxf)
   if (u == t) return maxf;
   for (int &i = work[u], v, tmp; i >= 0; i = next[i])
       if (flow[i] \&\& dis[v = to[i]] == dis[u] + 1 \&\& (tmp = dfs(v, min(maxf, flow[i]))) > 0)
       {
           flow[i] -= tmp;
           flow[i ^ 1] += tmp;
           return tmp;
       }
   return 0;
}
LL dinic()
{
   int i, delta;
   LL ret = 0;
   while (bfs())
       for (i = 0; i < node; ++i) work[i] = head[i];</pre>
       while (delta = dfs(s, inf))ret += delta;
   return ret;
}
15.11.3 最大流最小割:加各种优化的ISAP算法(O(V^2E))
/**
*最大流最小割:加各种优化的ISAP算法($0(V^2E)$)
*输入:图(链式前向星),n(顶点个数,包含源汇),st(源),ed(汇)
*输出: ISAP(NdFlow)(最大流),MinCut()(最小割)(需先求最大流)
*打印路径方法:按反向边(i&1)的flow 找,或者按边的flow找
*/
const int maxn = 0;
const int maxm = 0;
const int inf = 0x3f3f3f3f;
struct ISAP
   struct Edge
   {
       int u, v;
       int cap, flow;
       int next;
   } edge[maxm];
```

```
int head[maxn], en;
int st, ed, n;
int d[maxn], p[maxn], num[maxn], cur[maxn];;
bool vis[maxn];
void init(int _n = 0)
    n = _n;
    memset(head, -1, sizeof(head));
    en = 0;
void addse(int u, int v, int cap, int flow)
{
    edge[en].u = u;
    edge[en].v = v;
    edge[en].cap = cap;
    edge[en].flow = flow;
    edge[en].next = head[u];
    head[u] = en++;
}
void adde(int u, int v, int cap)
{
    addse(u, v, cap, 0);
    addse(v, u, 0, 0);
}
void bfs()
{
    queue<int> Q;
    memset(vis, 0, sizeof(vis));
    d[ed] = 0;
    vis[ed] = 1;
    Q.push(ed);
    while (!Q.empty())
    {
        int u = Q.front();
        Q.pop();
        for (int i = head[u]; i != -1; i = edge[i].next)
            i ^= 1;
            int v = edge[i].u, cap = edge[i].cap, flow = edge[i].flow;
            if (!vis[v] && cap > flow)
            {
                vis[v] = 1;
                d[v] = d[u] + 1;
                Q.push(v);
            }
```

```
i ^= 1;
        }
    }
}
int Aug()
{
    int u = ed, a = inf;
    while (u != st)
        a = min(a, edge[p[u]].cap - edge[p[u]].flow);
        u = edge[p[u]].u;
    for (u = ed; u != st; u = edge[p[u]].u)
        edge[p[u]].flow += a;
        edge[p[u] ^ 1].flow -= a;
    }
    return a;
}
int isap(int NdFlow)
{
    int flow = 0;
    bfs();
    memset(num, 0, sizeof(num));
    for (int i = 0; i < n; i++) num[d[i]]++;
    memcpy(cur, head, sizeof(int) * (n + 1));
    int u = st;
    while (d[st] < n)
    {
        if (u == ed)
        {
            flow += Aug();
            u = st;
        }
        int ok = 0;
        for (int i = cur[u]; i != -1; i = edge[i].next)
            int v = edge[i].v, ef = edge[i].flow, cap = edge[i].cap;
            if (d[v] + 1 == d[u] \&\& cap > ef) // Advance
                ok = 1;
                p[v] = i;
                cur[u] = i;
                u = v;
                break;
```

```
}
        }
        if (!ok) // Retreat
            int tmp = n - 1;
            for (int i = head[u]; i != -1; i = edge[i].next)
                if (edge[i].cap > edge[i].flow)
                    tmp = min(tmp, d[edge[i].v]);
            if (--num[d[u]] == 0) break;
            num[d[u] = tmp + 1]++;
            cur[u] = head[u];
            if (u != st) u = edge[p[u]].u;
        /*如果超过指定流量就return 掉*/
        if (NdFlow == inf) continue;
        if (flow >= NdFlow) break;
    }
    return flow;
}
/*残余网络*/
void Reduce()
    for (int i = 0; i < en; i++) edge[i].cap -= edge[i].flow;</pre>
}
/*清空流量*/
void ClearFlow()
    for (int i = 0; i < en; i++) edge[i].flow = 0;
}
/*求最小割*/
bool bfs2()
{
    queue<int> Q;
    memset(vis, 0, sizeof(vis));
    Q.push(st);
    vis[st] = 1;
    while (!Q.empty())
    {
        int u = Q.front();
        Q.pop();
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].v;
            int w = edge[i].cap - edge[i].flow;
            if (w > 0 \&\& !vis[v])
```

```
{
                  vis[v] = 1;
                  Q.push(v);
                  if (v == ed) return 1;
              }
           }
       }
       return false;
   }
   vector<int> MinCut()
       bfs2();
       vector<int> ans;
       for (int u = 0; u < n; u++)
           if (!vis[u]) continue;
           for (int i = head[u]; i != -1; i = edge[i].next)
           {
              if (i & 1) continue; /*忽略反向边*/
              int v = edge[i].v;
              int w = edge[i].cap;
              if (!vis[v] && w > 0) ans.push_back(i);
           }
       }
       return ans;
   }
} isap;
         最大流最小割:加各种优化的HLPP算法(O(V^2\sqrt{E}))
/**
*最大流最小割: 加各种优化的HLPP算法($0(V^2\sqrt{E})$)(从1到n)
*输入:图(链式前向星),n(顶点个数,包含源汇),st(源),ed(汇)
*输出:
*打印路径方法:按反向边(i&1)的flow 找,或者按边的flow找
*/
const int maxn = 0;
const int maxm = 0;
const int inf = 0x3f3f3f3f;
struct HLPP
{
   struct Edge
   {
       int u, v;
```

int cap, flow;

```
int next;
} edge[maxm];
int head[maxn], en; //需初始化
int n, label_max, st, ed;
int label[maxn], GAP[maxn];
bool vis[maxn];
int in_flow[maxn];
queue<int> active[maxn];
void init(int _n = 0)
{
    n = _n;
    memset(head, -1, sizeof(head));
    en = 0;
}
void addse(int u, int v, int cap, int flow)
{
    edge[en].u = u;
    edge[en].v = v;
    edge[en].cap = cap;
    edge[en].flow = flow;
    edge[en].next = head[u];
    head[u] = en++;
}
void adde(int u, int v, int cap)
{
    addse(u, v, cap, 0);
    addse(v, u, 0, 0); //注意加反向0 边
}
void bfs()
{
    queue<int> Q;
    for (int i = 0; i \le n; i++) label[i] = n + 1;
    memset(vis, 0, sizeof(vis));
    Q.push(ed);
    label[ed] = 0;
    vis[ed] = 1;
    GAP[0] = 1;
    GAP[n + 1] = n - 1;
    while (!Q.empty())
        int u = Q.front();
        Q.pop();
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].v;
```

```
int w = edge[i].cap - edge[i].flow;
            if (!vis[v]) //不可加w>0
            {
                vis[v] = 1;
                Q.push(v);
                label[v] = label[u] + 1;
                GAP[label[v]]++;
            }
        }
}
void prepare()
{
    for (int i = head[st]; i != -1; i = edge[i].next)
    {
        int v = edge[i].v;
        int w = edge[i].cap - edge[i].flow;
        if (w > 0)
        {
            in_flow[v] += w;
            edge[i].flow += w;
            edge[i ^ 1].flow -= w;
            label_max = max(label_max, label[v]);
            active[label[v]].push(v);
        }
    }
}
void max_flow()
{
    while (label_max)
    {
        if (active[label_max].empty())
        {
            label_max--;
            continue;
        int u = active[label_max].front();
        active[label_max].pop();
        int label_min = n + 1;
        int push_flow;
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].v;
            int w = edge[i].cap - edge[i].flow;
            if (w > 0)
```

{

```
if (label[v] + 1 == label[u])
                {
                    push_flow = min(w, in_flow[u]);
                    edge[i].flow += push_flow;
                    edge[i ^ 1].flow -= push_flow;
                    in_flow[u] -= push_flow;
                    in_flow[v] += push_flow;
                    if (push_flow) active[label[v]].push(v);
                }
            }
            if (edge[i].cap > edge[i].flow)
                label_min = min(label_min, label[v]);
            if (!in_flow[u])
                break;
        }
        if (in_flow[u] \&\& u != ed \&\& label_min < n)
            int tmp = label[u];
            GAP[label[u]]--;
            label[u] = label_min + 1;
            GAP[label[u]]++;
            if (GAP[tmp] == 0)
            {
                for (int i = 1; i <= n; i++)
                    if (label[i] > tmp && label[i] < n + 1)
                    {
                        GAP[label[i]]--;
                        GAP[n + 1]++;
                        label[i] = n + 1;
                    }
            }
            active[label[u]].push(u);
            if (label[u] > label_max)
                label_max = label[u];
        }
                  /*如果超过指定流量就return掉*///此处有问题
        //
        //
                  if(NdFlow==inf) continue;
        //
                  if(in_flow[ed]>=NdFlow) break;
   }
}
int hlpp()
{
    memset(in_flow, 0, sizeof(in_flow));
```

```
for (int i = 0; i < n; i++)
           while (!active[i].empty()) active[i].pop();
       bfs();
       prepare();
       max_flow();
       return in_flow[ed];
   }
} hlpp;
         贪心预流:用于分层图Dinic预处理(ZOJ 2364)
15.11.5
/**
*贪心预流:用于分层图Dinic预处理(从0到n-1)
*输入:图(链式前向星),n(顶点个数,包含源汇),st(源),ed(汇),rk[i]=i,level[](分层图的
层次)
*输出: GreedyPreFlow()(预处理Dinic)
const int maxn=0;
const int maxm=0;
const int inf=0x3f3f3f3f;
int in[maxn], out[maxn];
int level[maxn], rk[maxn];
bool cmp(const int &i, const int &j)
   return level[i] < level[j];</pre>
void GreedyPreFlow()
{
   memset(in, 0, sizeof (in));
   memset(out, 0, sizeof (out));
   sort(rk, rk + n, cmp);
   in[st] = inf;
   for (int i = 0; i < n; ++i)
       int u = rk[i];
       for (int j = head[u]; j != -1; j = edge[j].next)
           int v = edge[j].v, w = edge[j].cap - edge[j].flow;
           if (!(j & 1) && in[u] > out[u])
               int f = min(w, in[u] - out[u]);
               in[v] += f, out[u] += f;
           }
       }
   }
```

```
memset(in, 0, sizeof (in));
in[ed] = inf;
for (int i = n - 1; i >= 0; --i)
{
    int v = rk[i];
    for (int j = head[v]; j != -1; j = edge[j].next)
    {
        int u = edge[j].v, w = edge[j ^ 1].cap - edge[j ^ 1].flow;
        if (j & 1 && out[u] > in[u])
        {
            int f = min(w, min(out[u] - in[u], in[v]));
            in[u] += f, in[v] -= f;
            edge[j].flow -= f, edge[j ^ 1].flow += f;
        }
    }
}
```

示例: ZOJ 2364

Page 158 of 208

```
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<list>
#include<map>
#include<iterator>
#include<cstdlib>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
#include<functional>
using namespace std;
typedef long long LL;
#define ROUND(x) round(x)
#define FLOOR(x) floor(x)
#define CEIL(x) ceil(x)
//const int maxn=0;
//const int inf=0x3f3f3f3f;
const LL inf64=0x3f3f3f3f3f3f3f3f3f1LL;
const double INF=1e30;
```

```
const double eps=1e-6;
/**
*最大流最小割: 加各种优化的Dinic算法($0(V^2E)$)
*输入:图(链式前向星),n(顶点个数,包含源汇),st(源),ed(汇)
*输出: Dinic(NdFlow)(最大流),MinCut()(最小割)(需先求最大流)
*打印路径方法:按反向边(i&1)的flow 找,或者按边的flow找
*/
const int maxn=1510;
const int maxm=600010;
const int inf=0x3f3f3f3f;
struct Edge
   int u,v;
   int cap,flow;
   int next;
} edge[maxm];
int head[maxn],edgeNum;//需初始化
int n,m,d[maxn],cur[maxn];
int st,ed;
bool vis[maxn];
void addSubEdge(int u,int v,int cap,int flow)
{
   edge[edgeNum].u=u;
   edge[edgeNum].v=v;
   edge[edgeNum].cap=cap;
   edge[edgeNum].flow=flow;
   edge[edgeNum].next=head[u];
   head[u]=edgeNum++;
   cur[u]=head[u];
}
void addEdge(int u,int v,int cap)
{
   addSubEdge(u,v,cap,0);
   addSubEdge(v,u,0,0);//注意加反向0 边
}
bool BFS()
{
   queue<int> Q;
   memset(vis, 0, sizeof(vis));
   Q.push(st);
   d[st]=0;
   vis[st]=1;
   while (!Q.empty())
   {
       int u=Q.front();
```

```
Q.pop();
        for(int i=head[u]; i!=-1; i=edge[i].next)
        {
            int v=edge[i].v;
            int w=edge[i].cap-edge[i].flow;
            if(w>0 && !vis[v])
            {
                vis[v]=1;
                Q.push(v);
                d[v]=d[u]+1;
                if(v==ed) return 1;
            }
        }
    }
    return false;
}
int Aug(int u, int a)
{
    if (u==ed) return a;
    int aug=0, delta;
    for(int &i=cur[u]; i!=-1; i=edge[i].next)
    {
        int v=edge[i].v;
        int w=edge[i].cap-edge[i].flow;
        if (w>0 && d[v]==d[u]+1)
        {
            delta = Aug(v, min(a,w));
            if (delta)
            {
                edge[i].flow += delta;
                edge[i^1].flow -= delta;
                aug += delta;
                if (!(a-=delta)) break;
            }
        }
    if (!aug) d[u]=-1;
    return aug;
}
int Dinic(int NdFlow)
{
    int flow=0;
    while (BFS())
    {
        memcpy(cur,head,sizeof(int)*(n+1));
```

```
flow += Aug(st,inf);
        /*如果超过指定流量就return 掉*/
        if(NdFlow==inf) continue;
        if(flow > NdFlow) break;
    }
   return flow;
}
int in[maxn],out[maxn];
int level[maxn], rk[maxn];
bool cmp(const int &i,const int &j)
    return level[i] < level[j];</pre>
}
void GreedyPreFlow()
{
   memset(in, 0, sizeof (in));
   memset(out, 0, sizeof (out));
    sort(rk, rk+n, cmp);
    in[st] = inf;
    for (int i = 0; i < n; ++i)
    {
        int u = rk[i];
        for (int j = head[u]; j!=-1; j = edge[j].next)
            int v = edge[j].v, w = edge[j].cap-edge[j].flow;
            if (!(j & 1) && in[u] > out[u])
            {
                int f = min(w, in[u]-out[u]);
                in[v] += f, out[u] += f;
            }
        }
    }
    memset(in, 0, sizeof (in));
    in[ed] = inf;
    for (int i = n-1; i >= 0; --i)
        int v = rk[i];
        for (int j = head[v]; j!=-1; j = edge[j].next)
            int u = edge[j].v, w = edge[j^1].cap-edge[j^1].flow;
            if (j & 1 && out[u] > in[u])
                int f = min(w, min(out[u]-in[u], in[v]));
                in[u] += f, in[v] -= f;
```

```
edge[j].flow -= f, edge[j^1].flow += f;
             }
        }
    }
}
int N,M,L;
void init()
{
    memset(head,-1,sizeof(head));
    edgeNum=0;
}
void input()
    scanf("%d%d%d",&N,&M,&L);
    int x=0;
    int idx=0;
    st=0,ed=0;
    for(int i=0; i<N; i++)</pre>
    {
        scanf("%d",&x);
        rk[i]=i;
        level[i]=x;
        if(x==1) st=i;
        if(x==L) ed=i;
    }
    for(int i=0; i<M; i++)</pre>
    {
        int u,v,w;
        scanf("%d%d%d",&u,&v,&w);
        u--, v--;
        addEdge(u,v,w);
    }
    n=N;
}
void solve()
{
    GreedyPreFlow();
    Dinic(inf);
//
     cout<<HLPP()<<endl;</pre>
      cout<<Dinic(inf)<<endl;</pre>
    for(int i=0; i<edgeNum; i+=2) printf("%d\n",edge[i].flow);</pre>
}
void output()
{
```

```
//
}
int main()
{
//
      std::ios_base::sync_with_stdio(false);
//
      freopen("in.cpp","r",stdin);
    int T;
    scanf("%d",&T);
    while(T--)
        init();
        input();
        solve();
        output();
    }
    return 0;
}
```

15.11.6 有上下界的网络流

无源汇最大流

原理 上界用 c_i 表示,下界用 b_i 表示。

下界是必须流满的,那么对于每一条边,去掉下界后,其自由流为 c_ib_i 。主要思想:每一个点流进来的流=流出去的流 对于每一个点i,令

- 1. $M_i = sum(i$ 点所有流进来的下界流)sum(i点所有流出去的下界流)
- 2. 新建源点S、汇点T
 - 如果 $M_i > 0$,代表此点必须还要流出去 M_i 的自由流,那么我们从源点连一条 M_i 的边到该点。
 - 如果 $M_i < 0$,代表此点必须还要流进来 M_i 的自由流,那么我们从该点连一条 M_i 的边到汇点。
- 3. 求S->T的最大流,看是否满流(S的相邻边都流满)。满流则有解,否则无解。

例: SGU 194 Reactor Cooling

```
/**
```

- *给n个点,及m根pipe,每根pipe用来流躺液体的,单向
- *每时每刻每根pipe流进来的物质要等于流出去的物质,要使得m条pipe组成一个循环体,里面流躺物质
- *并且满足每根pipe一定的流量限制,范围为[Li,Ri]
- *即要满足每时刻流进来的不能超过Ri(最大流问题),同时最小不能低于Li

*/

//#pragma comment(linker, "/STACK:102400000,102400000")

```
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<list>
#include<map>
#include<iterator>
#include<cstdlib>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
#include<functional>
using namespace std;
typedef long long LL;
#define ROUND(x) round(x)
#define FLOOR(x) floor(x)
#define CEIL(x) ceil(x)
const int maxn=210;
const int maxm=2*210*210;
const int inf=0x3f3f3f3f;
const LL inf64=0x3f3f3f3f3f3f3f3f3f1LL;
const double INF=1e30;
const double eps=1e-6;
/**
*最大流最小割: 加各种优化的Dinic算法($O(V^2E)$)
*输入:图(链式前向星),n(顶点个数,包含源汇),st(源),ed(汇)
*输出: Dinic(NdFlow)(最大流),MinCut()(最小割)(需先求最大流)
*打印路径方法:按反向边(i&1)的flow 找,或者按边的flow找
*/
//const int maxn=0;
//const int maxm=0;
//const int inf=0x3f3f3f3f;
struct Edge
{
   int u,v;
   int cap,flow;
   int next;
} edge[maxm];
int head[maxn],edgeNum;//需初始化
int n,m,d[maxn],cur[maxn];
int st,ed;
```

```
bool vis[maxn];
void addSubEdge(int u,int v,int cap,int flow)
{
    edge[edgeNum].u=u;
    edge[edgeNum].v=v;
    edge[edgeNum].cap=cap;
    edge[edgeNum].flow=flow;
    edge[edgeNum].next=head[u];
    head[u]=edgeNum++;
    cur[u]=head[u];
}
void addEdge(int u,int v,int cap)
{
    addSubEdge(u,v,cap,0);
    addSubEdge(v,u,0,0);//注意加反向0 边
}
bool BFS()
{
    queue<int> Q;
    memset(vis, 0, sizeof(vis));
    Q.push(st);
    d[st]=0;
    vis[st]=1;
    while (!Q.empty())
    {
        int u=Q.front();
        Q.pop();
        for(int i=head[u]; i!=-1; i=edge[i].next)
        {
            int v=edge[i].v;
            int w=edge[i].cap-edge[i].flow;
            if(w>0 && !vis[v])
            {
                vis[v]=1;
                Q.push(v);
                d[v]=d[u]+1;
                if(v==ed) return 1;
            }
        }
    return false;
}
int Aug(int u, int a)
{
    if (u==ed) return a;
```

```
int aug=0, delta;
    for(int &i=cur[u]; i!=-1; i=edge[i].next)
    {
        int v=edge[i].v;
        int w=edge[i].cap-edge[i].flow;
        if (w>0 && d[v]==d[u]+1)
            delta = Aug(v, min(a,w));
            if (delta)
                edge[i].flow += delta;
                edge[i^1].flow -= delta;
                aug += delta;
                if (!(a-=delta)) break;
            }
        }
    }
    if (!aug) d[u]=-1;
    return aug;
}
int Dinic(int NdFlow)
{
    int flow=0;
    while (BFS())
        memcpy(cur,head,sizeof(int)*(n+1));
        flow += Aug(st,inf);
        /*如果超过指定流量就return 掉*/
        if(NdFlow==inf) continue;
        if(flow > NdFlow) break;
    }
   return flow;
}
int N,M;
int in[maxn],out[maxn];
int p[maxm],q[maxm];
void init()
{
    memset(head,-1,sizeof(head));
    memset(in,0,sizeof(in));
   memset(out,0,sizeof(out));
    edgeNum=0;
}
void input()
```

```
{
    scanf("%d%d",&N,&M);
    for(int i=0;i<M;i++)</pre>
        int u,v;
        scanf("%d%d%d",&u,&v,&p[i],&q[i]);
        addEdge(u,v,q[i]-p[i]);
        out[u]+=p[i];
        in[v]+=p[i];
    }
}
void solve()
{
    int ans=0;
    st=0,ed=N+1,n=N+2;
    for(int i=1;i<=N;i++)</pre>
        int t=in[i]-out[i];
        if(t>0)
        {
             addEdge(st,i,t);
             ans+=t;
        else if(t<0) addEdge(i,ed,-t);</pre>
    }
    if(Dinic(inf)!=ans)
    {
        puts("NO");
        return;
    }
    puts("YES");
    for(int i=0;i<M;i++)</pre>
//
          cout<<edge[2*i].flow<<endl;</pre>
        printf("%d\n",edge[2*i].flow+p[i]);
    }
}
void output()
{
    //
}
int main()
{
      std::ios_base::sync_with_stdio(false);
```

```
// freopen("in.cpp","r",stdin);
   int T;
   scanf("%d",&T);
   while(T--)
   {
      init();
      input();
      solve();
      output();
   }
   return 0;
}
```

有源汇最大流

原理 满足所有下界的情况下,判断是否存在可行流,方法可以转化成上面无源汇上下界判断方法:

- 只要连一条T->S的边,流量为无穷,没有下界,那么原图就得到一个无源汇的循环流图。
- 原图中的边的流量设成自由流量 c_ib_i
- 新建源点SS汇点TT, 求 M_i , 连边
- 然后求SS- > TT最大流, 判是否满流。
- 判定有解之后然后求最大流,信息都在上面求得的残留网络里面。
- 满足所有下界时,从S->T的流量为后悔边S->T的边权! 然后在残留网络中S->T可能还有些自由流没有流满,再做一次S->T 的最大流,所得到的最大流就是原问题的最大流(内含两部分: 残留的自由流所得到的流+后悔边S->T)。

例: ZOJ 3229 Shoot the Bullet

有源汇最小流

- 1. 同样先转换为无源汇网络流问题
- 2. 先不加T->S边权为无穷的边,求SS->TT的最大流
- 3. 如果还没有流满则再加T->S边权为无穷的边,再求一次最大流。得到后悔边S->T就是原问题的最小流了。

15.11.7 最小(大)费用最大流: SPFA增广路(O(w * O(SPFA)))

ZKW版

/**

*ZKW最小费用最大流

Page 168 of 208

```
*适用于最终流量较大,而费用取值范围不大的图,或者是增广路径比较短的图(如二分图),
zkw算法都会比较快
*/
struct MaxFlow
{
   int size, n;
   int st, en, maxflow, mincost;
   bool vis[maxn];
   int net[maxn], pre[maxn], cur[maxn], dis[maxn];
   std::queue <int> Q;
   struct EDGE
   {
       int v, cap, cost, next;
       EDGE() {}
       EDGE(int a, int b, int c, int d)
           v = a, cap = b, cost = c, next = d;
   } E[maxm << 1];
   void init(int _n)
   {
       n = _n, size = 0;
       memset(net, -1, sizeof(net));
   }
   void add(int u, int v, int cap, int cost)
   {
       E[size] = EDGE(v, cap, cost, net[u]);
       net[u] = size++;
       E[size] = EDGE(u, 0, -cost, net[v]);
       net[v] = size++;
   }
   bool adjust()
   {
       int v, min = inf;
       for (int i = 0; i <= n; i++)
           if (!vis[i]) continue;
           for (int j = net[i]; v = E[j].v, j != -1; j = E[j].next)
               if (E[j].cap)
                   if (!vis[v] && dis[v] - dis[i] + E[j].cost < min)</pre>
                       min = dis[v] - dis[i] + E[j].cost;
       if (min == inf) return false;
       for (int i = 0; i \le n; i++)
           if (vis[i])
```

```
cur[i] = net[i], vis[i] = false, dis[i] += min;
    return true;
}
int augment(int i, int flow)
{
    if (i == en)
        mincost += dis[st] * flow;
        maxflow += flow;
        return flow;
    }
    vis[i] = true;
    for (int j = cur[i], v; v = E[j].v, j != -1; j = E[j].next)
        if (!E[j].cap) continue;
        if (vis[v] || dis[v] + E[j].cost != dis[i]) continue;
        int delta = augment(v, std::min(flow, E[j].cap));
        if (delta)
        {
            E[j].cap -= delta;
            E[j ^1].cap += delta;
            cur[i] = j;
            return delta;
        }
    }
    return 0;
}
void spfa()
{
    int u, v;
    for (int i = 0; i <= n; i++)
        vis[i] = false, dis[i] = inf;
    dis[st] = 0;
    Q.push(st);
    vis[st] = true;
    while (!Q.empty())
        u = Q.front(), Q.pop();
        vis[u] = false;
        for (int i = net[u]; v = E[i].v, i != -1; i = E[i].next)
            if (!E[i].cap || dis[v] <= dis[u] + E[i].cost)</pre>
                continue;
            dis[v] = dis[u] + E[i].cost;
            if (!vis[v])
```

```
{
                   vis[v] = true;
                   Q.push(v);
               }
           }
       }
       for (int i = 0; i <= n; i++)
           dis[i] = dis[en] - dis[i];
   }
   int zkw(int s, int t, int need)
       st = s, en = t;
       spfa();
       mincost = maxflow = 0;
       for (int i = 0; i <= n; i++)
           vis[i] = false, cur[i] = net[i];
       do
       {
           while (augment(st, inf))
              memset(vis, false, sizeof(vis));
       }
       while (adjust());
       if (maxflow < need) return -1;
       return mincost;
   }
} zkw;
普通版
/**
*最小(大)费用最大流: SPFA增广路($0(w*0(SPFA))$)
*最大费用: 费用取反addEdge(,,,-cost);
*输入:图(链式前向星),n(顶点个数,包含源汇),s(源),t(汇)
*输出: minCostMaxflow(int s, int t, int &cost)返回流量, cost为费用
*打印路径方法:按反向边(i&1)的flow 找,或者按边的flow找
*/
const int maxn = 0;
const int maxm = 0;
const int inf = 0x3f3f3f3f;
struct Edge
{
   int u, v;
   int cap, flow;
   int cost;
   int next;
```

```
} edge[maxm];
int head[maxn], en; //需初始化
int n, m;
bool vis[maxn];
int pre[maxn], dis[maxn];
void addse(int u, int v, int cap, int flow, int cost)
    edge[en].u = u;
    edge[en].v = v;
    edge[en].cap = cap;
    edge[en].flow = flow;
    edge[en].cost = cost;
    edge[en].next = head[u];
   head[u] = en++;
}
void adde(int u, int v, int cap, int cost)
    addse(u, v, cap, 0, cost);
    addse(v, u, 0, 0, -cost); //注意加反向0 边
}
bool spfa(int s, int t)
{
   queue<int>q;
   for (int i = 0; i < n; i++)
        dis[i] = inf;
        vis[i] = false;
        pre[i] = -1;
   }
   dis[s] = 0;
    vis[s] = true;
   q.push(s);
    while (!q.empty())
    {
        int u = q.front();
        q.pop();
        vis[u] = false;
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].v;
            if (edge[i].cap > edge[i].flow &&
                    dis[v] > dis[u] + edge[i].cost )
            {
                dis[v] = dis[u] + edge[i].cost;
                pre[v] = i;
```

```
if (!vis[v])
                {
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
    }
    if (pre[t] == -1)return false;
    else return true;
}
int minCostMaxflow(int s, int t, int &cost)//返回流量, cost为费用
{
    int flow = 0;
    cost = 0;
    while (spfa(s, t))
        int Min = inf;
        for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].v])
            if (Min > edge[i].cap - edge[i].flow)
                Min = edge[i].cap - edge[i].flow;
        for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].v])
        {
            edge[i].flow += Min;
            edge[i ^ 1].flow -= Min;
            cost += edge[i].cost * Min;
        flow += Min;
    }
    return flow;
}
```

15.11.8 判网络流有多解

方法1(较慢): 如果残余网络里有长度大于2的环,则网络流有多解。

方法2(很快): 一种找环比较正确,而且快速的方法:和Tarjan的思路差不多。就是从汇点开始去dfs, 记录哪些点是回不到end的。然后就一遍dfs就可以解决了。

```
bool vis[maxn], no[maxn];
int Stack[maxn], top;
bool dfs(int u, int pre, bool flag)
{
    vis[u] = 1;
```

```
Stack[top++] = u;
    for (int i = head[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].v;
        if (edge[i].cap <= edge[i].flow) continue;</pre>
        if (v == pre) continue;
        if (!vis[v])
        {
            if (dfs(v, u, edge[i ^ 1].flow < edge[i ^ 1].cap))</pre>
                return true;
        }
        else if (!no[v])return true;
    }
    if (!flag)
    {
        while (1)
            int v = Stack[--top];
            no[v] = true;
            if (v == u)break;
        }
    }
    return false;
}
例: HDU 4975
/*
HDU 4975 A simple Gaussian elimination problem.
*/
#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#include <queue>
#include <ctime>
#include <cstdlib>
#include <vector>
#include <algorithm>
#include <functional>
using namespace std;
const int maxn = 1010;
const int maxm = 600010;
const int inf = 0x3f3f3f3f;
struct DINIC
{
```

```
struct Edge
{
    int u, v;
    int cap, flow;
    int next;
} edge[maxm];
int head[maxn], en;
int n, m, d[maxn], cur[maxn];
int st, ed;
bool vis[maxn];
void init(int _n = 0)
{
    n = _n;
    memset(head, -1, sizeof(int) * (n + 1));
    en = 0;
}
void addse(int u, int v, int cap, int flow)
{
    edge[en].u = u;
    edge[en].v = v;
    edge[en].cap = cap;
    edge[en].flow = flow;
    edge[en].next = head[u];
    head[u] = en++;
    cur[u] = head[u];
}
void adde(int u, int v, int cap)
{
    addse(u, v, cap, 0);
    addse(v, u, 0, 0);
}
bool BFS()
{
    queue<int> Q;
    memset(vis, 0, sizeof(vis));
    Q.push(st);
    d[st] = 0;
    vis[st] = 1;
    while (!Q.empty())
        int u = Q.front();
        Q.pop();
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
```

```
int v = edge[i].v;
            int w = edge[i].cap - edge[i].flow;
            if (w > 0 \&\& !vis[v])
                vis[v] = 1;
                Q.push(v);
                d[v] = d[u] + 1;
                if (v == ed) return 1;
            }
        }
    }
    return false;
}
int Aug(int u, int a)
{
    if (u == ed) return a;
    int aug = 0, delta;
    for (int &i = cur[u]; i != -1; i = edge[i].next)
        int v = edge[i].v;
        int w = edge[i].cap - edge[i].flow;
        if (w > 0 \&\& d[v] == d[u] + 1)
            delta = Aug(v, min(a, w));
            if (delta)
            {
                edge[i].flow += delta;
                edge[i ^ 1].flow -= delta;
                aug += delta;
                if (!(a -= delta)) break;
            }
        }
    }
    if (!aug) d[u] = -1;
    return aug;
int Dinic(int NdFlow)
{
    int flow = 0;
    while (BFS())
        memcpy(cur, head, sizeof(int) * (n + 1));
        flow += Aug(st, inf);
        if (NdFlow == inf) continue;
        if (flow > NdFlow) break;
```

```
return flow;
    }
    bool no[maxn];
    int Stack[maxn], top;
    bool dfs(int u, int pre, bool flag)
    {
        vis[u] = 1;
        Stack[top++] = u;
        for (int i = head[u]; i != -1; i = edge[i].next)
            int v = edge[i].v;
            if (edge[i].cap <= edge[i].flow) continue;</pre>
            if (v == pre) continue;
            if (!vis[v])
            {
                if (dfs(v, u, edge[i ^ 1].flow < edge[i ^ 1].cap))</pre>
                    return true;
            }
            else if (!no[v])return true;
        }
        if (!flag)
        {
            while (1)
            {
                int v = Stack[--top];
                no[v] = true;
                if (v == u)break;
            }
        }
        return false;
    }
    bool multi()
        memset(vis, 0, sizeof(bool) * (n + 1));
        memset(no, 0, sizeof(bool) * (n + 1));
        return dfs(ed, ed, 0);
    }
} dinic;
int kase;
int n, m;
int a[510], b[510];
int sum;
inline int read()
```

```
{
   bool flag = 0;
    char ch = getchar();
    int data = 0;
    while (ch < '0' || ch > '9')
        if (ch == '-') flag = 1;
        ch = getchar();
    }
    do
    {
        data = data * 10 + ch - '0';
        ch = getchar();
    while (ch >= '0' && ch <= '9');
   return flag ? -data : data;
}
void init()
   kase++;
}
void input()
   n = read();
   m = read();
   sum = 0;
   for (int i = 0; i < n; i++)
    {
        a[i] = read();
        sum += a[i];
    }
    for (int i = 0; i < m; i++)
       b[i] = read();
}
void build()
    dinic.init(n + m + 2);
   dinic.st = 0;
    dinic.ed = 1;
    for (int i = 0; i < n; i++)
        dinic.adde(dinic.st, i + 2, a[i]);
   for (int i = 0; i < m; i++)
        dinic.adde(i + n + 2, dinic.ed, b[i]);
    for (int i = 0; i < n; i++)
        for (int j = 0; j < m; j++)
```

```
dinic.adde(i + 2, j + n + 2, 9);
}
void solve()
    build();
    int flow = dinic.Dinic(inf);
    if (flow < sum)
    {
        printf("Case #%d: So naive!\n", kase);
        return;
    }
    if (dinic.multi())
    {
        printf("Case #%d: So young!\n", kase);
        return;
    printf("Case #%d: So simple!\n", kase);
}
void output()
{
    //
}
int main()
{
#ifdef xysmlx
    freopen("in.cpp", "r", stdin);
#endif
    int T;
    kase = 0;
    T = read();
    while (T--)
    {
        init();
        input();
        solve();
        output();
    }
    return 0;
}
```

15.11.9 判断最小割唯一

残余网络中,从源点出发遍历的点集合和从汇点出发遍历的点集合的点为全部点,则唯一; 否则不唯一。

15.11.10 最大权闭合子图

闭合图 有向图的点集,集合中的点的出边都指向点集内部的点, $(u,v) \in E$ 则当u成立时v成立(即: u蕴含v(u->v))。

最大权闭合子图 点权之和最大的闭合图。

建图 每一条有向边变为容量为 ∞ ,源S到正权点 $\mathbf{v}(w_v>0)$ 的边容量 w_v ,负权点 $\mathbf{v}(w_v<0)$ 到 \mathbb{T} 7的边容量 $-w_v$,零权点 $\mathbf{v}(w_v=0)$ 不与源和汇相连。然后求最小割(SUM-最大流)即为答案。

例: SPOJ PROFIT Maximum Profit

```
/*
n个中转站,每个站建立花费Xi;m个客户,每个客户需要中转站Ai,Bi,获得收益为Ci,问最大
收益
S向客户连边(S,i,Ci)
站向T连边(i,T,Xi)
客户向站连边(i,j,inf)
答案为sum-dinic()
*/
#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#include <cmath>
#include <set>
#include <list>
#include <map>
#include <iterator>
#include <cstdlib>
#include <vector>
#include <queue>
#include <stack>
#include <algorithm>
#include <functional>
using namespace std;
const int maxn = 60010;
const int maxm = 2000010;
const int inf = 0x3f3f3f3f;
struct DINIC
{
   struct Edge
   {
       int u, v;
```

int cap, flow;

```
int next;
} edge[maxm];
int head[maxn], en; //需初始化
int n, m, d[maxn], cur[maxn];
int st, ed;
bool vis[maxn];
void init(int _n = 0)
{
    n = _n;
    memset(head, -1, sizeof(head));
    en = 0;
}
void addse(int u, int v, int cap, int flow)
    edge[en].u = u;
    edge[en].v = v;
    edge[en].cap = cap;
    edge[en].flow = flow;
    edge[en].next = head[u];
    head[u] = en++;
    cur[u] = head[u];
}
void adde(int u, int v, int cap)
    addse(u, v, cap, 0);
    addse(v, u, 0, 0); //注意加反向0 边
}
bool BFS()
{
    queue<int> Q;
    memset(vis, 0, sizeof(vis));
    Q.push(st);
    d[st] = 0;
    vis[st] = 1;
    while (!Q.empty())
        int u = Q.front();
        Q.pop();
        for (int i = head[u]; i != -1; i = edge[i].next)
            int v = edge[i].v;
            int w = edge[i].cap - edge[i].flow;
            if (w > 0 \&\& !vis[v])
            {
                vis[v] = 1;
```

```
Q.push(v);
                    d[v] = d[u] + 1;
                    if (v == ed) return 1;
                }
            }
        }
        return false;
    }
    int Aug(int u, int a)
        if (u == ed) return a;
        int aug = 0, delta;
        for (int &i = cur[u]; i != -1; i = edge[i].next)
            int v = edge[i].v;
            int w = edge[i].cap - edge[i].flow;
            if (w > 0 \&\& d[v] == d[u] + 1)
            {
                delta = Aug(v, min(a, w));
                if (delta)
                {
                    edge[i].flow += delta;
                    edge[i ^ 1].flow -= delta;
                    aug += delta;
                    if (!(a -= delta)) break;
                }
            }
        if (!aug) d[u] = -1;
        return aug;
    }
    int Dinic(int NdFlow)
    {
        int flow = 0;
        while (BFS())
            memcpy(cur, head, sizeof(int) * (n + 1));
            flow += Aug(st, inf);
            /*如果超过指定流量就return 掉*/
            if (NdFlow == inf) continue;
            if (flow > NdFlow) break;
        }
        return flow;
    }
} dinic;
```

```
int kase;
int n, m;
int sum;
void init()
    kase++;
    sum = 0;
}
void input()
    scanf("%d%d", &n, &m);
}
void debug()
{
    //
}
void build()
    dinic.init(n + m + 2);
    dinic.st = 0;
    dinic.ed = 1;
    for (int i = 0; i < n; i++)
    {
        int x;
        scanf("%d", &x);
        dinic.adde(i + 2, dinic.ed, x);
    }
    for (int i = 0 + n + 2; i < m + n + 2; i ++)
        int u, v, w;
        scanf("%d%d%d", &u, &v, &w);
        sum += w;
        dinic.adde(dinic.st, i, w);
        dinic.adde(i, u + 1, inf);
        dinic.adde(i, v + 1, inf);
    }
}
void solve()
    build();
    printf("%d\n", sum - dinic.Dinic(inf));
}
void output()
{
```

```
//
}
int main()
{
#ifdef xysmlx
    freopen("in.cpp", "r", stdin);
#endif
    kase = 0;
    int T;
    scanf("%d", &T);
    while (T--)
    {
        init();
        input();
        solve();
        output();
    }
    return 0;
}
```

15.11.11 最大密度子图

密度 定义一个无向图G=(V,E)的密度(density)D为该图的边数|E|与该图的点数|V|的比值D=|E|/|V|。

最大密度子图 密度最大的子图。

方法

• 二分: L=0, R=U(U为边的数量|E|),二分g, (h(g)=|E'|-g*|V'|),用网络流 判h(g)>0。精度 $eps=1/n^2$

```
if(h(g)>0) L=M;
else R=M;
```

- 网络流:
 - -添加源汇S,T
 - 对原图边(u, v), 插入边(u, v, 1)和(v, u, 1)
 - 对任意顶点v,插入边(S, v, U)和 $(v, T, U + 2 * g d_v)$; $(d_v$ 为原图节点v的度数)。
 - 跑最大流,返回(U*n flow)/2(即: h(g))。

边带权拓广 设边权为 w_e (非负)

• 二分精度eps减小, U为边权之和

• 网络流:

- -添加源汇S,T
- 对原图边(u,v), 插入边 (u,v,w_e) 和 (v,u,w_e)
- 对任意顶点v,插入边(S, v, U)和 $(v, T, U + 2 * g d_v)$; $(d_v$ 为连接原图节点v的边权之和)。
- 跑最大流,返回(U*n flow)/2(即: h(g))。

点边带权拓广 设边权为 w_e (非负), 点权为 p_v (实数)

- 二分精度eps減小,U为边权之和与点权绝对值之和的加和 $(U = \sum w_e + \sum |p_v|)$ 。
- 网络流:
 - -添加源汇S,T
 - 对原图边(u,v), 插入边 (u,v,w_e) 和 (v,u,w_e)
 - 对任意顶点v,插入边(S,v,U)和 $(v,T,U+2*g-d_v)$; $(d_v$ 为连接原图节点v的边权之和 $+2*p_v$)。
 - 跑最大流,返回(U*n flow)/2(即: h(g))。

例: POJ 3155 Hard Life(不带权,输出点集)

```
double h(double g)
{
   dinic.init(n + 2);
   dinic.st = n;
   dinic.ed = n + 1;
   for (int i = 0; i < n; i++)
    {
        dinic.adde(dinic.st, i, m);
        dinic.adde(i, dinic.ed, m + 2 * g - deg[i]);
    }
   for (int i = 0; i < m; i++)
    {
        dinic.adde(e[i].u, e[i].v, 1);
        dinic.adde(e[i].v, e[i].u, 1);
    }
   return ((double)n * (double)m - dinic.Dinic(INF)) * 0.5;
}
void solve()
   double L = 0, R = m;
   double ee = 1.0 / n / n;
   while (R - L \ge ee)
        double M = (R + L) * 0.5;
```

```
if (h(M) > eps) L = M;
        else R = M;
    }
   h(L);
    dinic.bfsx();
    vector<int> ans;
    for (int i = 0; i < n; i++)
    {
        if (dinic.vis[i]) ans.pb(i + 1);
    }
    if (ans.size() == 0) ans.pb(1);
    sort(ans.begin(), ans.end());
    printf("%d\n", ans.size());
    for (int i = 0; i < ans.size(); i++)</pre>
        printf("%d\n", ans[i]);
}
```

15.11.12 混合图(有向+无向)的欧拉路径

见Euler路径部分

15.11.13 二分图最小点权覆盖

描述 Mx或者y集合中选取一些点,使这些点覆盖所有的边,并且选出来的点的权值尽可能小。

建模 原二分图中的边(u,v)替换为容量为 ∞ 的有向边 (u,v,∞) ,设立源点s和汇点t,将s和x集合中的点相连,容量为该点的权值;将y中的点同t相连,容量为该点的权值。在新图上求最大流,最大流量即为最小点权覆盖的权值和。

15.11.14 二分图最大点权独立集

描述 在二分图中找到权值和最大的点集,使得它们之间两两没有边。

建模 其实它是最小点权覆盖的对偶问题。答案=总权值-最小点覆盖集。

例: HDU 1569

/*

一个m*n的棋盘,每个格子都有一个权值,从中取出某些数,使得任意两个数所在的格子没有公共边,

并且所取去出的数和最大。求这个最大的值。

因为这个数据比较大, 所以用动态规划会超时。

将格子染色成二分图,显然是求二分图的最大点权独立集。

将图转换成黑白棋盘问题,i + j 为奇数的与s节点相连,边的权值为棋盘上对应位置的值,其他的与t节点相连,边的权值为棋盘上对应位置的值,

然后让棋盘上相邻之间的节点用边相连,边的权值为INF。这样问题就转换为了最大点权独立集问题。

将问题转化为二分图最小点权覆盖来求解,最终结果=总权和-最大流。

```
最大点权独立集:
转化为最小点权覆盖问题,最大点权独立集=总权值-最小点权覆盖集
最小点权覆盖:
设立源点s和t, s连边到点i, 容量为i点的权值; 点j连边到t, 容量为j点权值;
原二分图中的边容量为INF, 求最大流即为最小点权覆盖。
*/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int INF = Ox7ffffffff;
const int maxv = 2600;
const int maxe = 1000000;
int n, m;
int g[55][55];
struct Edge
   int v;
   int next;
   int flow;
};
Edge e[maxe];
int head[maxv], edgeNum;
int now[maxv], d[maxv], vh[maxv], pre[maxv], preh[maxv];
int start, end;
void addEdge(int a, int b, int c)
   e[edgeNum].v = b;
   e[edgeNum].flow = c;
   e[edgeNum].next = head[a];
   head[a] = edgeNum++;
   e[edgeNum].v = a;
   e[edgeNum].flow = 0;
   e[edgeNum].next = head[b];
   head[b] = edgeNum++;
}
void Init()
{
   edgeNum = 0;
   memset(head, -1, sizeof(head));
   memset(d, 0, sizeof(d));
```

```
}
int sap(int s, int t, int n) //源点, 汇点, 结点总数
    int i, x, y;
    int f, ans = 0;
    for (i = 0; i < n; i++)
        now[i] = head[i];
   vh[0] = n;
    x = s;
    while (d[s] < n)
        for (i = now[x]; i != -1; i = e[i].next)
            if (e[i].flow > 0 && d[y = e[i].v] + 1 == d[x])
                break;
        if (i != -1)
            now[x] = preh[y] = i;
            pre[y] = x;
            if ((x = y) == t)
            {
                for (f = INF, i = t; i != s; i = pre[i])
                    if (e[preh[i]].flow < f)</pre>
                        f = e[preh[i]].flow;
                ans += f;
                do
                    e[preh[x]].flow -= f;
                    e[preh[x] ^ 1].flow += f;
                    x = pre[x];
                while (x != s);
            }
        }
        else
            if (!--vh[d[x]])
                break;
            d[x] = n;
            for (i = now[x] = head[x]; i != -1; i = e[i].next)
            {
                if (e[i].flow > 0 && d[x] > d[e[i].v] + 1)
                    now[x] = i;
                    d[x] = d[e[i].v] + 1;
```

```
}
            }
            ++vh[d[x]];
            if (x != s)
                x = pre[x];
        }
    }
    return ans;
}
void build()
{
    int i, j;
    for (i = 1; i <= m; i++)
    {
        for (j = 1; j \le n; j++)
        {
            int t = (i - 1) * n + j;
            if ((i + j) \% 2)
            {
                addEdge(start, t, g[i][j]);
                if (i > 1)
                    addEdge(t, t - n, INF);
                if (i < m)
                    addEdge(t, t + n, INF);
                if (j > 1)
                    addEdge(t, t - 1, INF);
                if (j < n)
                    addEdge(t, t + 1, INF);
            }
            else
                addEdge(t, end, g[i][j]);
        }
    }
}
int main()
{
    int i, j;
    int result;
    while (scanf("%d %d", &m, &n) != EOF)
        result = 0;
        Init();
```

```
for (i = 1; i \le m; i++)
      {
         for (j = 1; j \le n; j++)
            scanf("%d", &g[i][j]);
            result += g[i][j];
         }
      }
      start = 0;
      end = n * m + 1;
      build();
      printf("%d\n", result - sap(start, end, end + 1));
   }
   return 0;
}
15.11.15 最小K路径覆盖
/**
HDU 4862 Jump 最小K路径覆盖
题意:
给你一个n*m的矩阵,填充着0-9的数字,每次能从一个点出发,到它的右边或者下边的点,
花费为|x1-x2|+|y1-y2|-1,
如果跳跃的起点和终点的数字相同,则获得这个数字的收益,不能走已经走过的点
有K次重新选择起点的机会
如果可以走遍所有点,则输出最大的价值(收益-花费)
否则,输出-1
方法:
最小K路径覆盖,最小费用最大流
建图:
每个点拆为2点: X部和Y部, (a,b)表示流量a, 费用b
源点与X部每个点连(1,0)的边
Y部每个点与汇点连(1,0)的边
X部的点如果可以到Y部的点,则连(1,花费-收益)的边
源点与一个新点连(k,0)的边,新点与Y部每个点连(1,0)的边
结果:
如果满流,则输出0-费用
否则,输出-1
*/
// #pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
```

Page 190 of 208

```
#include <cmath>
#include <set>
#include <list>
#include <map>
#include <iterator>
#include <cstdlib>
#include <vector>
#include <queue>
#include <stack>
#include <algorithm>
#include <functional>
using namespace std;
typedef long long LL;
#define ROUND(x) round(x)
#define FLOOR(x) floor(x)
#define CEIL(x) ceil(x)
// const int maxn = 210;
// const int maxm = 200010;
// const int inf = 0x3f3f3f3f;
const LL inf64 = 0x3f3f3f3f3f3f3f3f3f1LL;
const double INF = 1e30;
const double eps = 1e-6;
const int P[4] = \{0, 0, -1, 1\};
const int Q[4] = \{1, -1, 0, 0\};
const int PP[8] = \{ -1, -1, -1, 0, 0, 1, 1, 1\};
const int QQ[8] = \{ -1, 0, 1, -1, 1, -1, 0, 1\};
/**
*最小(大)费用最大流: SPFA增广路($0(w*0(SPFA))$)
*最大费用: 费用取反addEdge(,,,-cost);
*输入:图(链式前向星),n(顶点个数,包含源汇),s(源),t(汇)
*输出: minCostMaxflow(int s, int t, int &cost)返回流量, cost为费用
*打印路径方法:按反向边(i&1)的flow 找,或者按边的flow找
*/
const int maxn = 210;
const int maxm = 200010;
const int inf = 0x3f3f3f3f;
struct Edge
{
   int u, v;
   int cap, flow;
   int cost;
   int next;
} edge[maxm];
int head[maxn], en; //需初始化
```

```
int n, m;
int st, ed;
bool vis[maxn];
int pre[maxn], dis[maxn];
void addse(int u, int v, int cap, int flow, int cost)
    edge[en].u = u;
    edge[en].v = v;
    edge[en].cap = cap;
    edge[en].flow = flow;
    edge[en].cost = cost;
    edge[en].next = head[u];
   head[u] = en++;
}
void adde(int u, int v, int cap, int cost)
{
    addse(u, v, cap, 0, cost);
    addse(v, u, 0, 0, -cost); //注意加反向0 边
}
bool spfa(int s, int t)
{
    queue<int>q;
    for (int i = 0; i < n; i++)
    {
        dis[i] = inf;
        vis[i] = false;
        pre[i] = -1;
    }
    dis[s] = 0;
    vis[s] = true;
    q.push(s);
    while (!q.empty())
    {
        int u = q.front();
        q.pop();
        vis[u] = false;
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].v;
            if (edge[i].cap > edge[i].flow &&
                    dis[v] > dis[u] + edge[i].cost )
            {
                dis[v] = dis[u] + edge[i].cost;
                pre[v] = i;
                if (!vis[v])
```

```
{
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
    }
    if (pre[t] == -1)return false;
    else return true;
int minCostMaxflow(int s, int t, int &cost)//返回流量, cost为费用
    int flow = 0;
    cost = 0;
    while (spfa(s, t))
    {
        int Min = inf;
        for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].v])
            if (Min > edge[i].cap - edge[i].flow)
                Min = edge[i].cap - edge[i].flow;
        for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].v])
            edge[i].flow += Min;
            edge[i ^ 1].flow -= Min;
            cost += edge[i].cost * Min;
        }
        flow += Min;
    }
   return flow;
}
int N, M, K;
int kase;
int mtx[maxn] [maxn];
int disxy(int x1, int y1, int x2, int y2)
    return abs(x1 - x2) + abs(y1 - y2) - 1;
}
void build()
   n = 3 + N * M * 2;
    st = 0, ed = 1;
   for (int i = 0; i < N; i++)
    {
```

for (int j = 0; j < M; j++)

```
adde(st, i * M + j + 3, 1, 0);
        }
    }
    adde(st, 2, K, 0);
   for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < M; j++)
            adde(2, i * M + j + N * M + 3, 1, 0);
            adde(i * M + j + N * M + 3, ed, 1, 0);
        }
    }
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < M; j++)
        {
            for (int h = i + 1; h < N; h++)
                if (mtx[i][j] == mtx[h][j])
                    adde(i * M + j + 3, h * M + j + N * M + 3, 1, h - i - 1 - mtx[i][j]);
                    // cout << i << " " << j << " " << h << " " << j << endl;
                }
                else
                {
                    adde(i * M + j + 3, h * M + j + N * M + 3, 1, h - i - 1);
                }
            }
            for (int h = j + 1; h < M; h++)
                if (mtx[i][j] == mtx[i][h])
                {
                    adde(i * M + j + 3, i * M + h + N * M + 3, 1, h - j - 1 - mtx[i][j]);
                    // cout << i << " " << j << " " << i << " " << h << endl;
                }
                else
                {
                    adde(i * M + j + 3, i * M + h + N * M + 3, 1, h - j - 1);
                }
            }
        }
    }
}
```

```
void init()
{
   memset(head, -1, sizeof(head));
    en = 0;
   kase++;
}
void input()
{
    scanf("%d%d%d", &N, &M, &K);
    for (int i = 0; i < N; i++)
    {
        char str[maxn];
        scanf("%s", str);
        for (int j = 0; j < M; j++)
            mtx[i][j] = str[j] - '0';
        }
    }
}
void debug()
{
    //
void solve()
   build();
   int cost;
    int flow = minCostMaxflow(st, ed, cost);
   // cout << "flow,cost: " << flow << " " << cost << endl;
    if (flow == N * M)
    {
        printf("Case %d : %d\n", kase, -cost);
    }
    else
        printf("Case %d : %d\n", kase, -1);
    }
}
void output()
    //
}
int main()
{
    // int size = 256 << 20; // 256MB
```

```
// char *p = (char *)malloc(size) + size;
    // __asm__("movl %0, %%esp\n" :: "r"(p));
    // std::ios_base::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
   freopen("in.cpp", "r", stdin);
#endif
   kase = 0;
    int T;
    scanf("%d", &T);
   while (T--)
    {
        init();
        input();
        solve();
        output();
    }
   return 0;
}
```

15.11.16 点连通度与边连通度

连通度问题 在图中删去部分元素(点或边),使得图中指定的两个点s和t不连通(不存在从s到t的路径),求至少要删去几个元素。

点连通度 只许删点,求至少要删掉几个点(当然,s和t不能删去,这里保证原图中至少有三个点);

边连通度 只许删边,求至少要删掉几条边。

有向图点连通度 需要拆点。建立一个网络,原图中的每个点i在网络中拆成i'与i'',有一条边<i',i''>,容量为1(< s',s''>和< t',t''>例外,容量为正无穷)。原图中的每条边<< i,j>在网络中为边<< i'',j'>,容量为正无穷。以s'为源点、t''为汇点求最大流,最大流的值即为原图的点连通度。容量为正无穷的边不可能通过最小割,也就是原图中的边和s、t两个点不能删去;若边<< i',i''>通过最小割,则表示将原图中的点i删去。

有向图边连通度 这个其实就是最小割问题。以s为源点,t为汇点建立网络,原图中的每条边在网络中仍存在,容量为1,求该网络的最小割(也就是最大流)的值即为原图的边连通度。

无向图 将图中的每条边(i, j)拆成< i, j >和< i, i >两条边,再按照有向图的办法处理。

混合图 对于混合图,只需将其中所有的无向边按照无向图的办法处理、有向边按照有向图的办法处理即可。

点或边带权 边权为权重即可。

Chapter 16

Dynamic Programming

- § 16.1 线性模型
- § 16.2 串模型
- § 16.3 状态压缩模型
- § 16.4 四边形优化

16.4.1 朴素四边形优化

当函数w(i,j)满足w(a,c) + w(b,d) <= w(b,c) + w(a,d) 且a <= b < c <= d 时,我们称w(i,j)满足四边形不等式。。

当函数w(i,j)满足w(i',j) <= w(i,j'); i <= i' < j <= j' 时,称w关于关于区间包含关系单调。

s(i,j) = k是指m(i,j)这个状态的最优决策

以上定理的证明自己去查些资料

今天看得lrj的书中介绍的四边形优化做个笔记,加强理解

最有代价用d[i,j]表示

$$d[i, j] = mind[i, k - 1] + d[k + 1, j] + w[i, j]$$

其中w[i,j] = sum[i,j]

- 四边形不等式w[a,c] + w[b,d] <= w[b,c] + w[a,d] (a < b < c < d) 就称其满足凸四边形不等式
- 决策单调性w[i,j] <= w[i',j'] ([i,j]属于[i',j']) 既i' <= i < j <= j'

于是有以下三个定理

- 定理一: 如果w同时满足四边形不等式和决策单调性,则d也满足四边形不等式
- 定理二: 当定理一的条件满足时,让d[i,j]取最小值的k为K[i,j],则K[i,j-1] <= K[i,j] <= K[i+1,j]
- 定理三: w为凸当且仅当 $w[i,j] + w[i+1,j+1] \le w[i+1,j] + w[i,j+1]$

由定理三知判断w是否为凸即判断w[i,j+1]-w[i,j]的值随着i的增加是否递减于是求K值的时候K[i,j]只和K[i+1,j]和K[i,j-1]有关,所以可以以i-j递增为顺序递推各个状态值最终求得结果将 $O(n^3)$ 转为 $O(n^2)$

POJ 1738 An old Stone Game

```
#include <cstdio>
#include <cstring>
#define N 1005
int s[N][N], f[N][N], sum[N], n;
int main()
{
   while (scanf("%d", &n) != EOF)
        memset(f, 127, sizeof(f));
        sum[0] = 0;
        for (int i = 1; i <= n; i++)
            scanf("%d", &sum[i]);
            sum[i] += sum[i - 1];
            f[i][i] = 0;
            s[i][i + 1] = i;
        for (int i = 1; i <= n; i++)
            f[i][i + 1] = sum[i + 1] - sum[i - 1];
        for (int i = n - 2; i >= 1; i--)
            for (int j = i + 2; j \le n; j++)
                for (int k = s[i][j - 1]; k \le s[i + 1][j]; k++)
                    if (f[i][j] > f[i][k] + f[k + 1][j] + sum[j] - sum[i - 1])
                    {
                        f[i][j] = f[i][k] + f[k + 1][j] + sum[j] - sum[i - 1];
                        s[i][j] = k;
                    }
        printf("%d\n", f[1][n]);
   }
   return 0;
}
```

16.4.2 GarsiaWachs算法(POJ 1738 An old Stone Game)

1. 这类题目一开始想到是DP, 设dp[i][j]表示第i堆石子到第j堆石子合并最小得分. 状态方程: dp[i][j] = min(dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]); sum[i]表示第1到第i堆石子总和. 递归记忆化搜索即可.

- 2. 不过此题有些不一样, 1 <= n <= 50000范围特大, dp[50000][50000]开不到这么大数组. 问题分析:
 - (a) 假设我们只对3堆石子a,b,c进行比较, 先合并哪2堆, 使得得分最小.

$$score1 = (a + b) + ((a + b) + c)$$

 $score2 = (b + c) + ((b + c) + a)$

再次加上score1 <= score2,化简得: a <= c,可以得出只要a和c的关系确定,合并的顺序也确定.

- (b) GarsiaWachs算法, 就是基于(1)的结论实现.找出序列中满足stone[i-1] <= stone[i+1]最小的i, 合并temp = stone[i] + stone[i-1], 接着往前面找是否有满足stone[j] > temp, 把temp值插入stone[j]的后面(数组的右边). 循环这个过程一直到只剩下一堆石子结束.
- (c) 为什么要将temp插入stone[j]的后面,可以理解为(1)的情况从stone[j+1]到stone[i-2]看成一个整体stone[mid],现在stone[j], stone[mid], temp(stone[i-1]),情况因为temp < stone[j],因此不管怎样都是stone[mid]和temp先合并,所以讲temp值插入stone[j]的后面是不影响结果.

/*

有n堆石头排成一条直线 ,每堆石头的个数已知,现在要将这n堆石头合并成一堆,每次合并只能合并相邻的两堆石头,代价就是新合成石头堆的石头数,现在问将这n堆石头合并成一堆,最小代价是多少?

```
*/
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
#define MAX 50005
int n;
int a[MAX];
int num, result;
void combine(int k)
{
    int i, j;
    int temp = a[k] + a[k - 1];
    result += temp;
    for (i = k; i < num - 1; ++i)
        a[i] = a[i + 1];
    num--;
    for (j = k - 1; j > 0 \&\& a[j - 1] < temp; --j)
        a[j] = a[j - 1];
    a[j] = temp;
    while (j \ge 2 \&\& a[j] \ge a[j - 2])
        int d = num - j;
```

```
combine(j - 1);
        j = num - d;
    }
}
int main()
    int i;
    while (scanf("%d", &n) != EOF)
        if (n == 0) break;
        for (i = 0; i < n; ++i)
            scanf("%d", &a[i]);
        num = 1;
        result = 0;
        for (i = 1; i < n; ++i)
            a[num++] = a[i];
            while (num >= 3 \&\& a[num - 3] <= a[num - 1])
                combine(num - 2);
        }
        while (num > 1) combine(num - 1);
        printf("%d\n", result);
    return 0;
}
```

§ 16.5 经典问题

16.5.1 最长上升子序列LIS

16.5.2 最长公共子序列LCS

Subsequence(不连续)

$$dp(i,j) = \begin{cases} dp(i-1,j-1) + 1, & a[i] = b[j] \\ max\{dp(i-1,j), dp(i,j-1)\}, & a[i] \neq b[j] \end{cases}$$

Substring(连续)

$$dp(i,j) = \begin{cases} dp(i-1,j-1) + 1, & a[i] = b[j] \\ 0, & a[i] \neq b[j] \end{cases}$$

相同位置相同

$$dp(i,j) = \begin{cases} dp(i-1,j-1) + 1, & a[i] = b[j] \\ dp(i-1,j-1), & a[i] \neq b[j] \end{cases}$$

16.5.3 最大子矩阵和(Ural 1146)

预处理dp[i][j]表示第i行前j个元素之和(即:前缀和),将其压缩为一维最大子段和问题, $O(N^3)$ 。

```
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
const int maxn = 1010;
const int inf = 0x3f3f3f3f;
int kase, n;
int mtx[maxn] [maxn];
int dp[maxn][maxn];
void init()
{
    kase++;
}
void input()
{
    for (int i = 1; i <= n; i++)
        for (int j = 1; j \le n; j++)
            scanf("%d", &mtx[i][j]);
}
void solve()
    for (int i = 1; i <= n; i++)
    {
        dp[i][0] = 0;
        for (int j = 1; j \le n; j++)
            dp[i][j] = dp[i][j - 1] + mtx[i][j];
    }
    int ans = -inf;
    for (int i = 1; i \le n; i++)
        for (int j = i; j \le n; j++)
        {
            int tmp = dp[1][j] - dp[1][i - 1];
            int sum = tmp;
            for (int k = 2; k \le n; k++)
```

Page 202 of 208

```
{
              if (sum > 0) sum += dp[k][j] - dp[k][i - 1];
             else sum = dp[k][j] - dp[k][i - 1];
             tmp = max(tmp, sum);
          }
          ans = max(tmp, ans);
      }
   }
   printf("%d\n", ans);
int main()
   kase = 0;
   while (~scanf("%d", &n))
       init();
       input();
       solve();
   }
   return 0;
}
        类TSP问题(状压DP)(POJ 3311 Hie with the Pie)
16.5.4
/*
POJ 3311 Hie with the Pie
有N个城市(1~N)和一个PIZZA店(0),要求一条回路,从0出发,又回到0,而且距离最短
用FLOYD先求出任意2点的距离dis[i][j]
枚举所有状态,用11位二进制表示10个城市和pizza店,1表示经过,O表示没有经过
定义状态DP(i,s)表示在s状态下,到达城市i的最优值
状态转移方程:DP(i,s) = min{DP(k,s^(1<<(i-1))) + dis[k][j],DP(i,s)}
其中s^{(1<(i-1))}表示未到达城市i的所有状态, 1<=k<=n
对于全1的状态,即s = (1<<n)-1则表示经过所有城市的状态,最终还需要回到PIZZA店0
那么最终答案就是min{DP(i,s) + dis[i][0]}
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 12;
const int inf = 0x3f3f3f3f;
int dis[maxn] [maxn];
int n;
int dp[maxn][(1 << 10) + 5];
```

```
void init()
{
    memset(dp, 0, sizeof(dp));
}
void input()
    for (int i = 0; i \le n; i++)
        for (int j = 0; j \le n; j++)
            scanf("%d", &dis[i][j]);
}
void floyd()
{
    for (int k = 0; k \le n; k++)
        for (int i = 0; i <= n; i++)
            for (int j = 0; j \le n; j++)
                dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
}
void caldp()
    int tot = (1 \ll n);
    for (int s = 0; s < tot; s++)
        for (int i = 1; i <= n; i++)
        {
            if (s == (1 << (i - 1)))
                dp[i][s] = dis[0][i];
            else if (s & (1 << (i - 1)))
            {
                dp[i][s] = inf;
                for (int j = 1; j \le n; j++)
                    if ((s & (1 << (j - 1))) && j != i)
                         dp[i][s] = min(dp[i][s], dp[j][s ^ (1 << (i - 1))]
                                        + dis[j][i]);
            }
        }
    }
}
void solve()
{
    floyd();
    caldp();
    int ans = inf;
    int tot = (1 << n) - 1;
    for (int i = 1; i \le n; i++)
        ans = min(ans, dp[i][tot] + dis[i][0]);
```

```
printf("%d\n", ans);
}
int main()
{
    while (~scanf("%d", &n))
    {
        if (!n) break;
        init();
        input();
        solve();
    }
    return 0;
}
```

Chapter 17

Other Algorithms

```
Get Min(A[i]-A[j]) (0,1,2,...,n-1)
§ 17.1
int ans=A[0]-A[1];
int MaxAi=A[0];
for(int i=1;i<n;i++)</pre>
    ans=max(ans,MaxAi-A[i]);
   MaxAi=max(A[i],MaxAi);
}
§ 17.2
          Get a Circle (Floyd)
   即: Floyd 判圈法
do
{
   k1=next(n,k1);//People 1
   k2=next(n,k2);//People 2, first step
    if(k2>ans) ans=k2;
   k2=next(n,k2);//People 2, second step
    if(k2>ans) ans=k2;
}while(k1!=k2);//stop when overtake
```

§ 17.3 Meet in the Middle

即:中途相遇法。

先找出前n/2 的结果并保存在一个集合中,然后找后n/2 的结果并在前面的集合中查找得出最终结果(可使用STL 的map)。

例题: UVa 1326 - Jurassic Remains。使用后将复杂度从 $O(2^n)$ 降到 $O(2^{n/2}lgn)$ 。

Part V Classic Problems