

Unit 1: Partial Differentiation Assignment

Class - 6

Problems on Euler's theorem

1. Verify Euler's theorem for the following function

$$u = x^2yz-4y^2z^2+2xz^3$$

2. If
$$u = e^{\frac{x}{y}} \sin\left(\frac{x}{y}\right) + e^{\frac{y}{x}} \cos\left(\frac{x}{y}\right)$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.

3. If
$$u = sin^{-1} \left(\frac{x^2 y^2}{x+y} \right)$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3 \tan u$.

4. If
$$u = \cot^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{-1}{4}\sin 2u$.

5. If
$$u = tan^{-1} \left(\frac{x^3 + y^3}{\sqrt{x} + \sqrt{y}} \right)$$
, find the value of

i)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$$
 Ans: $\frac{5}{4}$ sin2u

ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$$
 Ans: $\frac{25}{16} \sin 4u - \frac{5}{4} \sin 2u$