2013—2014 学年第一学期《高等数学(2-1)》期末考试 A 卷 (工科类)参考答案及评分标准

- 二. (共3小题,每小题7分,共计21分)
 - 1. 指出函数 $f(x) = x \cdot \cot x$ 的间断点,并判断其类型.
 - **解** 函数 $f(x) = x \cdot \cot x$ 的间断点为:

$$\stackrel{\text{def}}{=} x = k\pi$$
, $k = \pm 1, \pm 2, \dots$ $\lim_{x \to k\pi} f(x) = \lim_{x \to k\pi} x \cot x = \lim_{x \to k\pi} \frac{x \cos x}{\sin x} = \infty$,

$$\therefore x = k\pi$$
, $(k = \pm 1, \pm 2, \cdots)$ 为函数 $f(x) = x \cdot \cot x$ 的**第二类无穷**间断点 . ------(2分)

2. 求极限
$$\lim_{x\to +\infty} \frac{1}{x^2} \int_0^x (1+t^2) e^{t-x} dt$$

$$\mathbf{R} \quad \lim_{x \to +\infty} \frac{1}{x^2} \int_0^x (1+t^2) e^{t-x} dt = \lim_{x \to +\infty} \frac{\int_0^x (1+t^2) e^t dt}{x^2 e^x} \left(\frac{\infty}{\infty}\right) - \dots (3 \%)$$

$$= \lim_{x \to +\infty} \frac{(1+x^2)e^x}{(2x+x^2)e^x}$$
 (3 \(\frac{\psi}{2}\))

$$= \lim_{x \to +\infty} \frac{1+x^2}{2x+x^2} = 1 . \tag{1 \(\frac{1}{2}\)}$$

3. 设方程
$$\sqrt[x]{y} = \sqrt[y]{x}$$
 ($x > 0$, $y > 0$)确定二阶可导函数 $y = y(x)$,求 $\frac{d^2y}{dx^2}$.

解 1 对
$$\sqrt[x]{y} = \sqrt[y]{x}$$
 两边取对数,得 $\frac{1}{x} \ln y = \frac{1}{y} \ln x$,

即
$$y \ln y = x \ln x$$
, ------(2分)

等式两边关于
$$x$$
 求导,得: $(1+\ln y)\frac{dy}{dx}=1+\ln x$,即 $\frac{dy}{dx}=\frac{1+\ln x}{1+\ln y}$,------(2分)

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{\frac{1}{x} (1 + \ln y) - (1 + \ln x) \cdot \frac{1}{y} \cdot \frac{dy}{dx}}{(1 + \ln y)^2}$$
 (2 \(\frac{\psi}{x}\))

$$= \frac{y(1+\ln y)^2 - x(1+\ln x)^2}{xy(1+\ln y)^3} . \dots (1 \%)$$

解2 对
$$\sqrt[4]{y} = \sqrt[7]{x}$$
 两边取对数,得 $\frac{1}{x} \ln y = \frac{1}{y} \ln x$,(2分)

等式两边关于
$$x$$
 求导, $-\frac{1}{x^2} \ln y + \frac{1}{x} \cdot \frac{1}{y} \cdot \frac{dy}{dx} = -\frac{1}{y^2} \cdot \ln x \cdot \frac{dy}{dx} + \frac{1}{y} \cdot \frac{1}{x}$

$$\therefore \frac{dy}{dx} = \frac{xy + y^2 \ln y}{xy + x^2 \ln x} \qquad (直接再求导比较繁琐, 需化简后再求导)$$

$$\pm \frac{1}{x} \ln y = \frac{1}{y} \ln x \not\in y \ln y = x \ln x,$$

$$\frac{dy}{dx} = \frac{xy + y^2 \ln y}{xy + x^2 \ln x} = \frac{xy + xy \ln x}{xy + xy \ln y} = \frac{1 + \ln x}{1 + \ln y}, \quad \text{UT I ME } 1.$$

三. (共3小题,每小题7分,共计21分)

1. 求不定积分
$$\int \frac{\sin x \cos^3 x}{1 + \sin^2 x} dx$$
.

解
$$\int \frac{\sin x \cos^3 x}{1 + \sin^2 x} dx = \int \frac{\sin x (1 - \sin^2 x)}{1 + \sin^2 x} d(\sin x)$$
 (2分)

$$(\Leftrightarrow \sin x = t)$$
 = $\int \frac{t(1-t^2)}{1+t^2} dt = \int \left(-t + \frac{2t}{1+t^2} \right) dt$ ----- (2 $\frac{1}{2}$)

$$= -\frac{t^2}{2} + \ln(1+t^2) + C = -\frac{1}{2}\sin^2 x + \ln(1+\sin^2 x) + C.$$
 (3 \(\frac{1}{2}\))

2. 设 $\ln^2 x$ 是函数f(x)的一个原函数,求 $\int x f'(x) dx$.

$$\therefore \int f(x)dx = \ln^2 x + C, \qquad (2 \%)$$

$$\therefore \int x f'(x) dx = \int x df(x)$$

$$= x f(x) - \int f(x) dx$$

$$= 2 \ln x - \ln^2 x + C \dots (3 \%)$$

3. 求定积分
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (x^3 \sin x^4 + \cos^7 2x) dx$$
.

$$\mathbf{R} \qquad \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (x^3 \sin x^4 + \cos^7 2x) \, dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} x^3 \sin x^4 dx + \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^7 2x \, dx - \dots$$
 (1 \(\frac{\psi}{2}\))

$$= 0 + \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^7 2x \, dx - (2 \, \%)$$

$$=2\int_{0}^{\frac{\pi}{4}}\cos^{7}2x\,dx------(2\,\%)$$

$$=\frac{6!!}{7!!}$$
 .------(1分)

四. (共2小题,每小题6分,共计12分)

1. 已知一个长方形的长l以 2cm/s 的速度增加,宽w以 3cm/s 的速度增加,则当长为 12cm,宽为 5cm 时,它的对角线的增加率是多少?

解: 设长方形的对角线为 v ,则 $v^2 = l^2 + w^2$ ------(2分)

两边关于
$$t$$
 求导,得 $2y \cdot \frac{dy}{dt} = 2l \cdot \frac{dl}{dt} + 2w \cdot \frac{dw}{dt}$,

即 $y \cdot \frac{dy}{dt} = l \cdot \frac{dl}{dt} + w \cdot \frac{dw}{dt}$ (1) ------(2分)

已知
$$\frac{dl}{dt} = 2$$
, $\frac{dw}{dt} = 3$, $l = 12$, $w = 5$, $\Rightarrow y = \sqrt{12^2 + 5^2} = 13$, 代入(1)式,得

对角线的增加率:
$$\frac{dy}{dt} = 3$$
 (cm/s).....(2分)

2. 物体按规律 $x = ct^2$ 做直线运动,该物体所受阻力与速度平方成正比,比例系数为1,计算该物体由 x = 0 移至 x = a 时克服阻力所做的功.

$$f(x) = k4c^2t^2 = 4c^2t^2 = 4cx$$
, ------(2 $\%$)

五. (本题 10 分) 已知 $f(x) = x - 5 \arctan x$, 试讨论函数的单调区间,极值,凹凸性,拐点,渐近线

解 函数的定义域为
$$(-\infty,+\infty)$$
. $f'(x) = 1 - \frac{5}{1+x^2} = \frac{x^2-4}{1+x^2}$, 令 $f'(x) = 0$ 得驻点

$$f''(x) = \frac{10x}{(1+x^2)^2}$$
,令 $f''(x) = 0$, 得可能拐点的横坐标: $x = 0$.-----(1分)

列表讨论函数的单调区间,极值,凹凸性,拐点:

x	$(-\infty,-2)$	-2	(-2,0)	0	(0, 2)	2	(2,+∞)
f'(x)	+	0	ı	-	_	0	+
f''(x)	-	-	-	0	+	+	+
		极大值 -2+5arctan2	,		*	极小值 2-5arctan2	/
y = f(x)	Λ			拐点 (0,0)	U		

------(6分)

$$a_{1} = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} (1 - \frac{5 \arctan x}{x}) = 1,$$

$$b_{1} = \lim_{x \to +\infty} [f(x) - a_{1}x] = \lim_{x \to +\infty} (-5 \arctan x) = -\frac{5\pi}{2},$$

$$a_{2} = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} (1 - \frac{5 \arctan x}{x}) = 1,$$

$$b_{2} = \lim_{x \to -\infty} [f(x) - a_{2}x] = \lim_{x \to -\infty} (-5 \arctan x) = \frac{5\pi}{2},$$
渐近线为: $y = x \pm \frac{5\pi}{2}$. (2分)

六. (共2小题,每小题7分,共计14分)

1. 试求曲线 $y = \sqrt{x}e^{-\frac{x}{2}}$ $(x \ge 0)$ 与 x 轴所夹的平面图形绕 x 轴旋转所得到的伸展到无穷远处的旋转体的体积 .

$$V = \pi \int_{0}^{+\infty} y^{2} dx = \pi \int_{0}^{+\infty} x e^{-x} dx \qquad (4 \%)$$

$$= \pi \left[-(x+1)e^{-x} \right]_{0}^{+\infty} = \pi - \pi \lim_{x \to +\infty} (x+1)e^{-x}$$

$$= \pi - \pi \lim_{x \to +\infty} \frac{x+1}{e^{-x}} = \pi - 0 = \pi \qquad (3 \%)$$

2. 求微分方程 y'' + 5y' + 4y = 3 - 2x 的通解.

解 特征方程为:
$$r^2 + 5r + 4 = 0$$
, 特征根: $r_1 = -4$, $r_2 = -1$(2分)

对应齐次方程的通解为:
$$y = C_1 e^{-4x} + C_2 e^{-x}$$
.----(2分)

而 0 不是特征根,可设非齐次方程的特解为 $y^* = Ax + B$ ----- (1分)

故所要求的通解为
$$y = C_1 e^{-4x} + C_2 e^{-x} - \frac{x}{2} + \frac{11}{8}$$
. ----- (1分)

七. (本题 7 分) 叙述罗尔 (Rolle) 中值定理, 并用此定理证明:

方程
$$a_1 \cos x + a_2 \cos 2x + \dots + a_n \cos nx = 0$$

在 $(0,\pi)$ 内至少有一个实根,其中 $a_1,a_2,\cdots a_n$ 为常数.

罗尔 (Rolle) 中值定理: 设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导, f(a) = f(b), 则

$$\diamondsuit f(x) = a_1 \sin x + \frac{a_2 \sin 2x}{2} + \dots + \frac{a_n \sin nx}{n} , \quad \dots$$
 (2 \(\frac{\phi}{n}\))

在 $[0,\pi]$ 上连续,在 $(0,\pi)$ 内可导,且 $f'(x) = a_1 \cos x + a_2 \cos 2x + \cdots + a_n \cos nx$,

$$f(0) = f(\pi) = 0$$
,由罗尔中值定理, $\exists \xi \in (0, \pi)$,

使得
$$f'(\xi) = a_1 \cos \xi + a_2 \cos 2\xi + \dots + a_n \cos n\xi = 0$$
,

即方程 $a_1 \cos x + a_2 \cos 2x + \cdots + a_n \cos nx = 0$ 在 $(0, \pi)$ 内至少有一个实根. ----(2分)

各章所占分值如下:

第一章 函数与极限 13%;

第二章 一元函数的导数与微分 16%;

第三章 微分中值定理与导数的应用 20%;

第 四 章 不定积分 14 %;

第五章 定积分及其应用 30%.

第 六 章 常微分方程 7%.