IT314 – Software Engineering Lab-09

Mutation Testing Khushi Prajapati – 202201062

Question 1) doGraham Function () On converting code to python

```
def do_graham(p):
    min_index = 0

# Search for minimum point for i in
    range(1, len(p)):
        if p[i][1] < p[min_index][1]:  # Compare y values min_index = i

# Continue along the values with the same y component for i in range(len(p)):
        if p[i][1] == p[min_index][1] and p[i][0] > p[min_index][0]:
        # Compare x values
            min_index = i
    return min_index  # Return the index of the minimum point
```

Control Flow Graph (CFG): Yes, the logic of CFG generated matches with the one by tool using Eclipse flow graph generator

Test Sets

a. Statement Coverage

To achieve statement coverage, we need to ensure that each statement is executed at least once.

Minimum Test Cases:

- 1. **Test Case 1:** p = [(1, 2), (2, 3), (0, 1)]
 - \circ Minimum point is (0, 1), index 2.
- 2. **Test Case 2:** p = [(1, 2), (2, 1), (0, 1)]
 - Minimum point is (0, 1), index 2.
- 3. **Test Case 3:** p = [(1, 2), (1, 2), (0, 1)]
 - \circ Minimum point is (0, 1), index 2.

b. Branch Coverage

To achieve branch coverage, we need to ensure that both true and false outcomes for each condition are tested.

c. Minimum Test Cases:

- 1. **Test Case 1:** p = [(1, 2), (2, 3), (0, 1)] (Covers first condition True)
- 2. **Test Case** 2: p = [(1, 2), (1, 3), (0, 1)] (Covers first condition False)
- 3. Test Case 3: p = [(1, 1), (2, 1), (0, 1)] (Covers second condition True)
- 4. **Test Case** 4: p = [(1, 1), (0, 1), (0, 2)] (Covers second condition False)

d. Basic Condition Coverage

This requires that each atomic condition in the program has been evaluated to be both true and false.

Minimum Test Cases:

```
1. Test Case
                 1: p =
                           [(1, 2),
                                     (2,
                                            (0, 1)
                                                                (First condition
   True)
2. Test Case 2: p
                           [(1,
                                                                (First condition
                                  2),
                                       (1,
                                             3),
                                                  (0,
                                                      1)]
   False)
3. Test Case 3: p
                       = [(1,
                                                                (Second condition
                                  1),
                                       (2,
                                             1),
                                                  (0, 1)
   True for both)
4. Test Case 4: p
                                                  (0, 2)
                                                                (Second condition
                           [(1,
                                  1),
                                       (0,
                                            1),
   False for both)
```

To achieve basic condition coverage, we can reuse the four cases from branch coverage since they effectively cover all atomic conditions.

Mutation Testing

Corrected Code:

```
convex_hull.py - C:/Users/Admin/Documents/convex_hull.py (3.10.5)
File Edit Format Run Options Window Help

def do_graham(p):
    min_index = 0

for i in range(len(p)):
    if p[i][1] < p[min_index][1]:
        min_index = i

    elif p[i][1] == p[min_index][1] and p[i][0] < p[min_index][0]:
        min_index = i

return min_index</pre>
```

Test cases:

```
test_convex_hull.py - C:\Users\Admin\Documents\project\test_convex_hull.py (3
File Edit Format Run Options Window Help
import unittest
from convex_hull import do_graham
class TestDoGraham(unittest.TestCase):
  def test_basic_case(self):
     p = [[0, 0], [1, 1]]
     self.assertEqual(do_graham(p), 0)
  def test_y_value_different(self):
    p = [[0, 0], [1, -1]]
    self.assertEqual(do_graham(p), 1)
  def test_y_value_same_x_different(self):
     p = [[0, 0], [0, 0], [1, 0]]
    self.assertEqual(do_graham(p), 2)
  def test_y_value_edge_case(self):
     p = [[1, 1], [1, 1], [2, 0]]
     self.assertEqual(do_graham(p), 2)
if __name__ == '__main__':
  unittest.main()
```

```
C:\Users\Admin\Documents\project>python test_convex_hull.py
....
Ran 4 tests in 0.001s
```

Mutation 1: Deleting a line of code

```
def do_graham(p):
    min_index = 0

for i in range(len(p)):
    if p[i][1] < p[min_index][1]:
        min_index = i</pre>
```

Mutation 2: Inserting a line of code

```
def do_graham(p):
    min_index = 0
    min_index = 1

for i in range(len(p)):
    if p[i][1] < p[min_index][1]:
        min_index = i
    elif p[i][1] == p[min_index][1] and p[i][0] < p[min_index][0]:
        min_index = i</pre>
```

Mutation 3: Modifying a line of code

```
def do_graham(p):
    min_index = 0

for i in range(len(p)):
    if p[i][1] > p[min_index][1]:
        min_index = i
    elif p[i][1] == p[min_index][1] and p[i][0] < p[min_index][0]:
        min_index = i</pre>
```

```
:\Users\Admin\Documents\project>python test_convex_hull.py
FAIL: test_basic_case (__main__.TestDoGraham.test_basic_case)
   raceback (most recent call last):
    File "C:\Users\Admin\Documents\project\test_convex_hull.py", line 8, in test_basic_case
         self.assertEqual(do_graham(p), 0)
AssertionError: 1 != 0
FAIL: test_y_value_different (__main__.TestDoGraham.test_y_value_different)
Traceback (most recent call last):
    File "C:\Users\Admin\Documents\project\test_convex_hull.py", line 12, in test_y_value_different
          self.assertEqual(do_graham(p), 1)
AssertionError: 0 != 1
FAIL: test_y_value_edge_case (__main__.TestDoGraham.test_y_value_edge_case)
Traceback (most recent call last):
File "C:\Users\Admin\Documents\project\test_convex_hull.py", line 20, in test_y_value_edge_case
          self.assertEqual(do_graham(p), 2)
AssertionError: 0 != 2
FAIL: test_y_value_same_x_different (__main__.TestDoGraham.test_y_value_same_x_different)
Traceback (most recent call last):
    \label{localize} File \ "C:\Users\Admin\Documents\project\test\_convex\_hull.py", line 16, in \ test\_y\_value\_same\_x\_different 
          self.assertEqual(do_graham(p), 2)
AssertionError: 0 != 2
Ran 4 tests in 0.002s
FAILED (failures=4)
```

Path Coverage

To ensure path coverage where every loop is explored at least zero, one, or two times, we can create the following test cases:

Derived Test Cases:

- 1. Test Case 1: p = [] (0 iterations of both loops)
- 2. Test Case 2: p = [(1, 1)] (0 iterations of the second loop)
- 3. Test Case 3: p = [(1, 1), (1, 1), (1, 1)] (1 iteration of the first loop, 0 of the second)
- 4. Test Case 4: p = [(1, 2), (2, 1), (0, 1)] (1 iteration of both loops)
- 5. Test Case 5: p = [(1, 2), (0, 1), (0, 1)] (2 iterations of the second loop)