Задача обучения с экспертной информацией *

А. В. Грабовой¹, В. В. Стрижов²

Аннотация: Ключевые слова: смесь экспертов; байесовский выбор модели; априорное распределение.

 \mathbf{DOI} : 00.00000/00000000000000

1 Введение

2 Постановка задачи

Пусть задано множество объектов Ω , а также подмножество наблюдаемых объектов Ω'

$$\Omega' \subset \Omega,$$
 (2.1)

где $|\Omega'|=N$. Пусть для Ω задана некоторая экспертная информация $\boldsymbol{E}\left(\Omega\right)$.

На основе экспертной информации $E\left(\Omega\right)$ введем отображения из множества объектов Ω :

$$K_y^{E(\Omega)}: \Omega \to \mathbb{R}, \quad K_x^{E(\Omega)}: \Omega \to \mathbb{R}^n,$$
 (2.2)

где n количество признаков, причем предполагаем, что $n \ll N$. Применив отображения $K_x^{E(\Omega)}$ и $K_y^{E(\Omega)}$ для множества наблюдаемых объектов Ω' получаем выборку:

$$\mathfrak{D}\left(\mathbf{\Omega}', \mathbf{E}\left(\mathbf{\Omega}\right)\right) = \left\{\left(\mathbf{x}, y\right) \middle| \mathbf{x} = K_{x}^{\mathbf{E}(\mathbf{\Omega})}\left(\omega\right), \ y = K_{y}^{\mathbf{E}(\mathbf{\Omega})}\left(\omega\right), \ \forall \omega \in \mathbf{\Omega}'\right\},\tag{2.3}$$

Предполагается, что существуют нетривиальные отображения $K_y^{E(\Omega)}, K_x^{E(\Omega)}$, и $\mathbf{w} \in \mathbb{R}^n$, такие, что:

$$y \approx \mathbf{x}^{\mathsf{T}} \mathbf{w}, \quad \forall (\mathbf{x}, y) \in \mathfrak{D}(\Omega', \boldsymbol{E}(\Omega)),$$
 (2.4)

то есть получаем выборку, которая является задачей линейной регрессии по нахождению неизвестного вектора \mathbf{w} (аналогично можно ввести задачу для логистической регрессии).

^{*}Работа выполнена при поддержке РФФИ и правительства РФ.

¹Московский физико-технический институт, grabovoy.av@phystech.edu

²Московский физико-технический институт, strijov@ccas.ru

В случае, когда экспертная информация представляется в виде объединения нескольких экспертов:

$$\boldsymbol{E}\left(\boldsymbol{\Omega}\right) = \boldsymbol{E}_{0}\left(\boldsymbol{\Omega}\right) \cup \boldsymbol{E}_{1}\left(\boldsymbol{\Omega}_{1}\right) \cup \boldsymbol{E}_{2}\left(\boldsymbol{\Omega}_{2}\right) \cup \cdots \cup \boldsymbol{E}_{K}\left(\boldsymbol{\Omega}_{K}\right), \quad \cup_{i=k}^{K} \boldsymbol{\Omega}_{k} = \boldsymbol{\Omega}$$
 (2.5)

в этом случае будем говорить о задаче смеси K экспертов. Каждая информация $E_k\left(\Omega_k\right)$ описывает локальную информацию о каком-то подмножестве объектов Ω_k для всех $k=\overline{1...K}$. Информация эксперта $E_0\left(\Omega\right)$ описывает глобальную информацию о всем множестве объектов Ω .

В случае задачи смеси K экспертов вводятся отображения:

$$K_{y}^{\boldsymbol{E}_{1}(\boldsymbol{\Omega}_{1})}: \boldsymbol{\Omega} \to \mathbb{R}, \quad K_{x}^{\boldsymbol{E}_{1}(\boldsymbol{\Omega}_{1})}: \boldsymbol{\Omega} \to \mathbb{R}^{n_{1}},$$

$$\cdots$$

$$K_{y}^{\boldsymbol{E}_{K}(\boldsymbol{\Omega}_{K})}: \boldsymbol{\Omega} \to \mathbb{R}, \quad K_{x}^{\boldsymbol{E}_{K}(\boldsymbol{\Omega}_{K})}: \boldsymbol{\Omega} \to \mathbb{R}^{n_{K}},$$

$$(2.6)$$

где получаем множество отображений во множество локальных моделей, в которых учтены информации от каждого эксперта.

Также, как в и задаче одного эксперта вводится предположения, что каждая локальная модель является линейной:

$$\forall k \in \{1, \dots K\}, \quad y \approx \mathbf{x}^\mathsf{T} \mathbf{w}_k, \quad \forall (\mathbf{x}, y) \in \mathfrak{D} (\mathbf{\Omega}'_k, \mathbf{E} (\mathbf{\Omega}_k)).$$
 (2.7)

Заметим, что истинного разбиения Ω на множества $\{\Omega_k\}_{k=1}^K$ нету. Рассмотрим вектор функцию π :

$$\boldsymbol{\pi}: \boldsymbol{\Omega} \to \mathbb{R}^K, \quad \sum_{k=1}^K \pi_k(\omega) = 1, \ \forall \omega \in \boldsymbol{\Omega},$$
 (2.8)

где π назовем шлюзовой функцией.

Предположим, что все $\left\{\left(K_x^{E_k(\Omega_k)}, K_y^{E_k(\Omega_k)}\right)\right\}_{k=1}^K$ являются заданными отображениями. Используя локальные модели, построим глобальную мультимодель, которая описывает все множество объектов Ω :

$$\sum_{\omega \in \mathbf{\Omega}'} \sum_{k=1}^{K} \pi_{k} \left(\omega, \mathbf{V} \right) \left(K_{y}^{\mathbf{E}_{k}(\mathbf{\Omega}_{k})} \left(\omega \right) - \mathbf{w}_{k}^{\mathsf{T}} K_{x}^{\mathbf{E}_{k}(\mathbf{\Omega}_{k})} \left(\omega \right) \right)^{2} + R \left(\mathbf{V}, \mathbf{W}, \mathbf{E} \left(\mathbf{\Omega} \right) \right) \to \min_{\mathbf{V}, \mathbf{W}}$$
 (2.9)

где $\mathbf{W} = [\mathbf{w}_1^\mathsf{T}, \cdots, \mathbf{w}_K^\mathsf{T}]$, а $R(\mathbf{V}, \mathbf{W}, \boldsymbol{E}(\Omega))$ является некоторой регуляризацией параметров, которая также основывается на экспертной информации, \mathbf{V} — параметры шлюзовой функции.

3 Пример

Список литературы

[1] Yuksel Seniha Esen, Wilson Joseph N., Gader Paul D Twenty Years of Mixture of Experts // IEEE Transactions on Neural Networks and Learning Systems. 2012. Issues. 23, No 8. pp. 1177–1193.

[2]	Bishop	C. Pattern	Recognition	and Ma	chine I	Learning.	— Berlin:	Springer,	2006.	758 p.