

PROJETO 3

ESTUDO DA DISTRIBUIÇÃO DA MÉDIA AMOSTRAL (\overline{X}) VIA SIMULAÇÃO

OBJETIVO:

O objetivo deste projeto é que o aluno seja capaz de compreender e explicar o resultado do Teorema do Limite Central (TLC) por meio de simulação, uma vez que a demonstração teórica é complexa e requer conhecimento de outras teorias avançadas.

A seguir, apresentamos a definição da média amostral e o resultado descrito no Teorema do Limite Central.

Definição:

Seja X uma variável aleatória de interesse com distribuição qualquer, cuja média populacional e variância populacional são, usualmente, denotadas por $E(X) = \mu$ e $Var(X) = \sigma^2$.

Para estimar a **média populacional, \mu**, utiliza-se o estimador **Média Amostral** definido por:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}.$$

Teorema do Limite Central:

Para uma amostra aleatória $(X_1, ..., X_n)$ retirada de uma população cuja variável de interesse X tem média μ e variância σ^2 , então a distribuição de da média amostral (\overline{X}) se aproxima de uma distribuição normal com média μ e variância σ^2/n , quando n tende ao infinito (suficientemente grande).

Parafraseando, seja X uma variável aleatória com média μ e variância σ^2 e seja $(X_1, ..., X_n)$ uma amostra aleatória retirada de X, então $\overline{X} \sim N\left(\mu; \frac{\sigma^2}{n}\right)$, quando n tende ao infinito (suficientemente grande). Mesmo que X não tenha distribuição normal

O QUE DEVE SER FEITO:

Nesse projeto, você e sua equipe (até DUPLA) deverão fazer um estudo de **SIMULAÇÃO** para visualizar graficamente a distribuição da média amostral, calcular o valor médio e a variância dessas médias e interpretar esses resultados.

Para tanto, siga os seguintes passos:

- 1. Construir os valores da população:
 - a. Definir uma distribuição teórica para variável X e definir valor(es) para representar o(s) parâmetro(s) da sua distribuição teórica escolhida.
 - i. Por exemplo, se definir que $X \sim Poisson(\lambda)$, então, para essa distribuição teórica, tem-se que $E(X) = Var(X) = \lambda$. Logo, será necessário definir apenas um valor para λ , por exemplo, $\lambda = 4$.
 - b. Sortear aleatoriamente um número muito grande de valores da sua distribuição teórica definida no item 1.a. Esses valores gerados aleatoriamente irão caracterizar todos os valores da sua população. Pesquise o método .rvs da sua distribuição no Python.
 - i. Continuando o exemplo acima da Poisson, aqui seria stats.poisson.rvs(mu=4, loc=0, size=1000000).
 - c. Calcule a média e a variância desses valores, os quais irão representar, respectivamente, a média populacional μ e a variância populacional σ^2 .
- 2. Construir a distribuição da média amostral:
 - a. Inicialmente, considere n = 2.
 - b. Sorteien valores entre os muitos gerados no item 1b. Para tanto, pesquise o método .random.choice do numpy.
 - c. Calcule a média amostral dos valores obtidos no item anterior.
 - d. Repita os itens 2.b e 2.c por 10.000 vezes. Nesse caso, deverá ter 10.000 médias amostrais.
 - e. Considerando essas 10.000 médias amostrais, construa um histograma com esses valores, calcule a média e a variância dessas médias amostrais.
 - f. Interprete os resultados confrontando com o resultado aguardado via TLC.
- 3. Repita o item 2 para n = 4; n = 20; n = 50.
- 4. Faça uma conclusão geral explicando tudo o que aconteceu, o que é para ser visto e como se relaciona com o TLC. Faça essa explicação como se alguém pudesse aprender o TLC a partir de sua simulação.

Engenharia Ciência dos Dados

Ainda, para compreender o resultado do TLC, é necessário observar que a sequência $(X_1, ..., X_n)$ é chamada de **amostra aleatória**, ou seja, as variáveis dessa sequência são independentes e identicamente distribuídas a X.

Para tanto, siga os seguintes passos:

- i. Considerando as simulações de n=50, por exemplo, guarde sempre o terceiro e o décimo quinto valores sorteados em cada uma das 10.000 vezes. Ao final, deverá ter duas listas de 10.000 valores cada, uma que irá representar X_3 e outra que irá representar X_{15} .
- ii. Faça o histograma apenas com os valores X_3 .
- iii. Faça o histograma apenas com os valores X_{15} .
- iv. Compare com a distribuição de X com que escolheram no item 1 acima. Elas são iguais? Ou seja, X_3 .e X_{15} são identicamente distribuídas a X?
- v. Calcule a correlação entre X_3 .e X_{15} e verifique se essa correlação é próxima de zero, indicando a independência entre elas.

ESTUDO DA DISTRIBUIÇÃO DE
$$\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$$
 E DE $\frac{\overline{X} - \mu}{S/\sqrt{n}}$ VIA SIMULAÇÃO

OBJETIVO:

Outro objetivo deste projeto é que aluno seja capaz de compreender a distribuição da padronização da média amostral utilizando o verdadeiro desvio padrão σ e a distribuição da padronização da média amostral utilizando o desvio padrão amostral S, ambos por meio de simulação.

As distribuições dessas padronizações são importantes na Estatística e muito utilizadas em técnicas inferenciais. Assim, as distribuições que seguem tais padronizações são:

Resultado 1:

Para uma amostra aleatória $(X_1, ..., X_n)$ retirada de uma população cuja variável de interesse X tem média μ e variância σ^2 , então a distribuição de:

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1),$$

quando n tende ao infinito (suficientemente grande).

Se **X** tiver distribuição normal, então o resultado acima segue uma distribuição normal padrão exata, não importando o tamanho amostral.

Resultado 2:

Para uma amostra aleatória $(X_1, ..., X_n)$ retirada de uma população cuja variável de interesse X tem distribuição Normal com média μ e variância σ^2 , então a distribuição de:

$$\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t_{(n-1)},$$

sendo S o desvio padrão amostral da sequência $(X_1, ..., X_n)$. Assim, a padronização da média amostral assumindo o desvio padrão amostral segue distribuição t-Student com n-1 graus de liberdade.

O QUE DEVE SER FEITO:

Aqui, devem visualizar graficamente a distribuição da padronização da média amostral considerando desvio padrão populacional e a distribuição da padronização considerando desvio padrão amostral.

Para tanto, siga os seguintes passos:

- 1. Construir os valores da população:
 - Definir valores para a distribuição normal atribuída à variável X e definir valor(es)
 para representar o(s) parâmetro(s) da sua distribuição teórica escolhida.
 - i. Por exemplo, se definir que X~Normal(μ , σ^2), então, para essa distribuição teórica, será necessário definir um valor para μ e outro para σ^2 . Por exemplo, $\mu = 10$ e $\sigma^2 = 4$.
 - b. Sortear aleatoriamente um número muito grande de valores da sua distribuição teórica definida no item 1.a. Esses valores gerados aleatoriamente irão caracterizar todos os valores da sua população. Pesquise o método .rvs da sua distribuição no Python.
 - i. Continuando o exemplo acima da Normal, aqui seria stats.norm.rvs(loc=10, scale=2, size=1000000).
 - c. Calcule a média e a variância desses valores, os quais irão representar, respectivamente, a média populacional μ e a variância populacional σ^2 .
- 2. Construir a distribuição da média amostral:
 - a. Inicialmente, considere n = 4.
 - b. Sorteien valores entre os muitos gerados no item 1b. Para tanto, pesquise o método .random.choice do numpy.
 - c. Calcule a média amostral \bar{x} e o desvio padrão amostral s dos valores obtidos no item anterior.
 - d. Calcule $z = \frac{\bar{x} \mu}{\sigma / \sqrt{n}}$ e de $t = \frac{\bar{x} \mu}{s / \sqrt{n}}$.
 - e. Repita os itens 2.b a 2.d por 10.000 vezes. Nesse caso, deverá ter 10.000 valores z e 10.000 valores t.
 - f. Considerando esses 10.000 valores de z, construa um histograma com os valores de z e coloque a f.d.p. da distribuição normal padrão (N(0,1)).
 - g. Considerando esses 10.000 valores de t, construa um histograma com os valores de t e coloque a f.d.p. da distribuição t-Student com n 1 graus de liberdade.
 - h. Interprete os resultados confrontando com os Resultados 1 e 2.

- 3. Repita o item 2 para n = 20; n = 50; n = 300.
- 4. Faça uma conclusão geral explicando todos os resultados obtidos com a simulação confrontados com os resultados teóricos.

ENTREGÁVEIS ESPERADOS E DATAS:

Item	Data	Descrição			
Entrega 1	13/04/2017 Até às 15h30	 Criar pasta Projeto 3 Publicar arquivo Python sobre o Projeto 3 Entrega 1 trabalhado em sala de aula. Os dois integrantes do grupo devem fazer isso. 			
Entrega Final	18/04/2017 Até às 23h59	 Publicar, na pasta Projeto 3, o arquivo Python sobre o Projeto 3 FINAL. Os dois integrantes do grupo devem fazer isso. 			

Engenharia Ciência dos Dados

Insper

RUBRICS DE AVALIAÇÃO DO OBJETIVO DE APRENDIZADO

Objetivo de aprendizado	Insatisfatório (I)	Em desenvolvimento (D)	Essencial (C)	Proficiente (B)	Avançado (A)
Compreender o resultado do TLC via simulação	Apresentou entregas insuficientes ou atrasadas fora do prazo combinado com o professor.	Escolheu um modelo para a variável X considerando valores para a média e a variância dessa variável. A simulação não só é incompleta como também não dá o menor indicativo que seria possível simular o TLC.	Apresenta simulações mas não estão conforme as instruções deste enunciado deixando apenas ideia do comportamento da distribuição da média amostral.	Simulou exatamente como no enunciado e explica basicamente o TLC	Simulou exatamente como no enunciado Procurou complementar a simulação com detalhes extra que reforcem a compreensão do TLC (fórmulas, gráficos, etc) Explica o TLC a ponto de se poder estudar pelo seu notebook.
Compreender a distribuição da padronização da média amostral utilizando desvio padrão populacional e utilizando o desvio padrão amostral	Apresentou entregas insuficientes ou atrasadas fora do prazo combinado com o professor.	A simulação não só é incompleta como também não dá o menor indicativo que seria possível compreender a distribuição das padronizações da média amostral.	Apresenta simulações mas não estão conforme as instruções deste enunciado deixando apenas ideia do comportamento da distribuição das padronizações.	Simulou exatamente como no enunciado e explica basicamente a padronização da média amostral em ambos os contextos.	Simulou exatamente como no enunciado Procurou complementar a simulação com detalhes extra que reforcem a compreensão das padronizações da média amostral e explica com clareza tais resultados