MATH808K - Algebraic K-Theory

Taught by Jonathan Rosenberg Notes taken by Haoran Li 2021 Spring

Department of Mathematics University of Maryland

Contents

1	Projective modules	2
2	Homotopy invariance	4
3	Homeworks	5
In	dex	7

1 Projective modules

K-theory is the study of categories of vector bundles or similar objects. A vector bundle is a parametrized family of vector spaces: $p: E \to X$ is a vector bundle, X is a topological space. For each $x \in X$, $E_x = p^{-1}(x)$ is a vector space depending "continuously" on $x \in X$. K-theory deals with parametrized linear algebra. Often we don't deal directly with geometry, but with rings

Swan-Serre Theorem

Theorem 1.1 (Swan-Serre). There is an equivalence of cateogories between vector bundles over X and finitely generated projective modules over an associated ring of functions on X. Here are 3 categories in which this works

- 1. X compact Hausdorff, R = C(X) the continuous function on X
- 2. X affine variety over a field k, $R = \mathcal{O}(X)$ is the ring of regular functions. If X is projective, it is more complicated
- 3. X stein manifold(holomorphic submanifold of \mathbb{C}^n), $R = \mathcal{O}(X)$ holomorphic functions on X, category of vector bundles is holomorphic category

Review of projective modules

In this course, a ring almost always have units but not necessarily commutative

Definition 1.2. R is a ring with unit. A free R-module is one isomorphic to R^I , I is some index set. A finitely generated free R-module is one isomorphic to R^n . R is said to have the invariant basis property if $R^n \cong R^m \Rightarrow n = m$. Note that this is always true if R is commutative (reason: true for fields, and if R is commutative, k = R/m is field, $R \otimes k$ is a vector space over k)

Example 1.3 (Counter-example). k is a field, $R = \operatorname{End}_k(k^{\infty})$ doesn't have the invariant basis property, as $R \cong R^2$. Idea: $k^{\infty} \oplus k^{\infty} \cong k^{\infty}$

Theorem 1.4. R is ring, P is an R-module. The following are equivalent

- 1. P is a direct summand in a free R-module, i.e. $F \cong P \oplus Q$ for some free R-module F
- 2. $\operatorname{Hom}_R(P, -)$ is an exact functor
- 3. P has the property that if $\phi: M \to N$ is a surjective R-module map and we are given $\alpha: P \to N$, there exists $\beta: P \to M$ such that $\alpha = \phi \circ \beta$

An R-module with these 3 equivalent conditions is called projective

Proof. $2\Rightarrow 3$ is due to the fact that $\operatorname{Hom}_R(P,-)$ can only fail to be exact on the right, i.e. given $0 \to M' \to M \to N \to 0$

The first invariant of K-theory is $K_0(R)$, then Grothendieck group of finitely generated projective modules over R. If P and Q are finitely generated projective R modules, we can "add" by taking direct sum, but not subtract. $K_0(R)$ is the group with generators [P], P finitely generated R-module with relations [P] = [Q] if $P \cong Q$. We build in the relation $[P] + [Q] = [P \oplus Q]$. Note that every element of $K_0(R)$ is of the form [P] - [Q] for some P, Q, $[P] - [Q] = [P'] - [Q'] \iff P \oplus Q' \oplus S \cong R' \oplus Q \oplus S$ for some S. In general, "addition" of projective modules does not have the cancellation property, just as addition of vector bundles does not

Example 1.5. TS^2 is not free since not trivial, Euler characteristic

- Fact 1.6 (reference: Hatcher's K-theory book). 1. Any vector bundle (by definition) is locally trivial, then rank $X \to \mathbb{N}$ is continuous, hence locally constant
 - 2. Any vector bundle can be equipped with a metric, i.e. a family of inner products varying continuously with $x \in X$. (Construction: use local triviality and patch with partition of unity)

- 3. Any vector bundle can be embedded into a trivial vector bundle $X \times \mathbb{F}^n$ for n large enough. (Use local triviality and partition of unity)
- 4. $2+3 \Rightarrow$ Any vector bundle is a direct summand in a trivial bundle

proof of Theorem 1.1. Send $p: E \to X$ to the set of sections $\Gamma(E)$, then $\Gamma(E)$ is a $\mathcal{O}(X)$ -module, from above, $\Gamma(E)$ is finitely generated and projective. The rest is formal

Example 1.7. Observation: Any vector bundle over $S^n, n \ge 1$ is obtained by gluing("clutching"): two trivial vector bundles over the upper and lower hemispheres via a map $S^{n-1} \to \operatorname{GL}(k,\mathbb{F})$. This is because any vector bundle over a contractible space is trivial, so

$$Vect^k_{\mathbb{F}}(S^n) \cong [S^{n-1}, \operatorname{GL}(k, \mathbb{F})] \cong \pi_{n-1}(O(k), U(k), Sp(k)) for \mathbb{R}, \mathbb{C}, \mathbb{H}$$

 $X = S^2$, $\mathbb{F} = \mathbb{R}$, what is the classification of rank n vector bundles over X? We see that rank k vector bundles over S^2 are classified by $\pi_1(O(k))$, since S^1 is connected, any map $S^1 \to O(k)$ lies in a single component, both isomorphic to SO(k), for $k \geq 3$, SO(k) is a simple Lie group and $\pi_1(SO(k)) \cong \mathbb{Z}/2(\text{except }SO(4))$ is only semi-simple with two cover?)

Implication for K-theory: The stable isomorphic classes of vector bundles E over S^2 is characterized by

$$egin{cases} {\sf rank} \in \mathbb{N} \ Stiefel-Whitneynumber = \langle w_2(E), [S^2]
angle \in \mathbb{Z}/2 \end{cases}$$

Similar analysis holds for S^n

$$\begin{cases} \operatorname{rank} \in \mathbb{N} \\ \operatorname{something in} \ \pi_{n-1}(\operatorname{SO}) \end{cases}$$

Here
$$\pi_{n-1}(SO) = \pi_{n-1}(SO(\infty)) = \underset{k}{\underline{\lim}} \pi_{n-1}(SO(k)), \, \pi_{n-1}(SO(k))$$
 stablizes as $k \to \infty$

Theorem 1.8 (Bott periodicity theomem).

$$\pi_{n-1}(\mathsf{SO}) = egin{cases} \mathbb{Z}, & n ext{ is a multiple of 4} \ \mathbb{Z}/2, & n \equiv 1, 2 \operatorname{mod 8} \ 0, & ext{otherwise} \end{cases}$$

Lessons form this example: stable classification is much easier than the unstable classification. A stably trivial bundle need not to be trivial. These lessons carry over to the purely algebraic setting of projective modules over a ring. To get a corresponding example with projective modules over a Noetherian commutative ring, take $R = \mathbb{R}[x, y, z]/(x^2 + y^2 + z^2 - 1)$, Spec R is an "algebraic model" for S^2 . Our non-trivial but stably trivial vector bundle can be constructed as $\{(x, y, z, u, v, w)|x^2 + y^2 + z^2 = 1, xu + yv + zw = 0\}$

2 Homotopy invariance

theorem 1 - 1/29/2021

Theorem 2.1. The calssification of the otpological vector budnels over a compact Haudsorrfff space X is homotopy invariant. In other words, if $f, g: X \to Y$ are maps of compact spaces and E is an \mathbb{F} bundle over Y, then $f \simeq g \Rightarrow f^*(e) \cong g^*(E)$

Corollary 2.2. Every vector bundle over a contractible space is trivial

theorem 2 - 1/29/2021

Theorem 2.3. A is a unital Banach algebra (For application, $A = C(X, M_n(\mathbb{F}))$). Let IdemA be the set of idempotents in $A(x^2 = x)$. If $e, f \in IdemA$ lies in the same component, then they are conjugate under $GL_1(A)$

Proof. It's enough to show that if $e, f \in IdemA$ are sufficiently close in norm, then e, f are conjugate. Suppose e, f are close and let $a = e + f - 1 \in A$, then a^2 is close to $(2e - 1)^2 = 1$, so a^2 is invertible, thus a is invertible. ae = fa since ae = (e + f - 1)e = fe, fa = f(e + f - 1) = fe, thus $aea^{-1} = f$

proof Theorem 2.1. Embed E as a direct summand in a tribial bundle of rank n, then $f^*(E), g^*(E)$ are obtained by projecting down from $X \times \mathbb{F}^n$ via homotopic idempotents in $C(X, M_n(\mathbb{F}))$

Projective modules over a local ring

Definition 2.4. R is a ring with unit, R is called local if the non-invertible elements in R constitute a 2-sided ideal m. Obviously m is the unique maximal 2-sided ideal

Caution: In the non-commutative case, having a unique maximal 2-sided ideal is not good enough! Since $M_n(\mathbb{F})$ has this property for \mathbb{F} a field, and this ring is not local Note: If R is local and $x \in R$ has a left inverse, then it also has a right inverse. Suppose ax = 1, then $ax \notin m$, so $x \notin m$, so x is invertible

- **Fact 2.5.** 1. If R is local with maximal ideal m and $x \in m$, then 1 + x is invertible. If not, then $1 + x \in m \Rightarrow 1 \in m$ which is a contradiction
 - 2. (Nakayama's lemma) R is a local ring with maximal ideal m, and let m be a finitely generated R-module, if mM = M, then M = 0 Proof: Let $M = Rx1 + \cdots + Rx_n$ such that n is minimal, then since mM = M, $x_n = r1x_1 + \cdots + r_nx_n$ with $r_j \in m$, now $(1-r_n)x_n = r_1x_1 + \cdots + r_{n-1}x_{n-1}$, but $1-r_n$ is invertible, we can divide to get $x_n = \cdots$, contradicting the minimality unless n = 0, i.e. M = 0

Theorem 2.6. Let R be a local ring, M a finitely generated projective R-module, then M is free

Proof. $M \oplus N \cong R^n$. $m(M \oplus N) = m^n$, so (R/m)M is a direct summand in $(R/m)^n$, but R/m is a division ring, so $(R/m)M \cong (R/m)^k$ for some $0 \le k \le n$, and $(R/m)N = (R/m)^{n-k}$. Let $\dot{x}_1, \dots, \dot{x}_k$ be a free basis for $(R/m)M \cong M/nM$ and extend it to a free basis by adding $\dot{x}_{k+1}, \dots, \dot{x}_n$ for (R/m)N, pull these back to $x_1, \dots, x_k \in M$ and $x_{k+1}, \dots, x_n \in N$. $M = Rx_1 \dots Rx_k$ by Nakayama's lemma x_1, \dots, x_n is another generating set for R^n with n elements, writing the the matrix of x_i 's and e_i 's gives the linear independence

Corollary 2.7. $K_0(R) = \mathbb{Z}$, with the class of a projective module given by its rank(this is only stable case, note that the theorem actually prove the non-stable case, which is more general)

3 Homeworks

References

 $[1] \ \ The \ K\text{-}Book$ - Charles Weibel

\mathbf{Index}

Projective module, 2