Теория игр в топологии

Содержание

🚺 Понятия теории игр

Топологические игры

Лекция 1. Топологические игры

Рассматриваются игры, которые используются в топологии. Такие игры называются топологическими играми. Практически всегда топологическая игра — это антагонистическая последовательная игра с двумя игроками с бесконечным количеством ходов.

Главный вопрос в топологических играх:

Problem 1.1.

У кого из игроков есть выигрышная стратегия.

Общее понятие игры

- (Р) Играет несколко *игроков*, $P = \{\alpha, \beta, ...\}$ *множество игроков*. Как правило играют два игрока $P = \{\alpha, \beta\}$.
- (S) У каждого игрока есть набор *множеств стратегий* $S_{\alpha}, S_{\beta}, ..., S = \{S_{\alpha}, S_{\beta}, ...\} = \{S_{\delta} : \delta \in P\}.$
- (р) Игроки в игре реализуют свои стратегии, в результате получается *партия*; задана функция

$$p: \prod_{\delta \in P} S_{\delta} = S_{\alpha} \times S_{\beta} \times ... \to R$$

R — множество партий

(b) По партии $r \in R$ определяется выигрыш каждого игрока с помощью функции выигрыша: выигрыш для игрока $\delta \in P$ равен $b_{\delta}(r)$, где $b_{\delta}: R \to R_{\delta}, R_{\delta}$ — возможные выигрыши для игрока $\delta := \{b_{\alpha}, b_{\beta}, ...\} = \{b_{\delta}: \delta \in P\}$.

Игра определяется набором (P, S, p, R,). Набор (P, S, p, R) назовем процедурой игры.

Выигрышные стратегии

В топологических играх рассматривается ситуация, когда для игрока $\gamma \in P$ выясняется только выиграл он или проиграл, то есть $o_\gamma: R \to \mathbb{B}$ есть булева функция, где $\mathbb{B} = \{ \text{true}, \text{false} \} = \{0,1\}$. Топологические игры с *нулевой суммой (антогонистические*). Если выигрывает один игрок, остальные проигрывают.

Definition 1.2.

Стратегия $s \in S_\delta$ называется выигрышной для игрока $\delta \in P$, если для любого *профайла стратегий*

$$ec{s} = (s_{lpha}, s_{eta}, ...) = (s_{\delta})_{\delta \in P} \in S_{lpha} \times S_{eta} \times ... = \prod_{\delta \in P} S_{d}e$$

такого что $s_\delta=s$, игрок δ выигрывает, то есть

$$b_{\delta}(r)=\mathsf{true}=1,$$

где
$$r = p(\vec{s})$$
.

Благоприятные игры

Definition 1.3.

Игра называется

- (1) благоприятной для игрока δ , если у игрока δ есть выигрышная стратегия.
- (2) неблагоприятной для игрока δ , если у игрока δ нет выигрышной стратегии.
- (3) слабо благоприятной для игрока δ , если для любого набора стратегий

$$(s_{\gamma})_{\gamma\in P\setminus\{\delta\}}\in\prod_{\gamma\in P\setminus\{\delta\}}S_{\gamma}$$

существует стратегия $s_\delta \in S_\delta$, так что для профайла стратегий $\vec{s} = (s_\gamma)_{\gamma \in P}$ выполняется $b_\delta(p(\vec{s})) = 1$.

Если $P = \{\alpha, \beta\}$, то

- Если игра благоприятна для α , то она не благоприятна для β .
- ② Игра слабо благоприятна для lpha если и только если она неблагоприятна для eta.
- ullet Если игра благоприятна для lpha, то она слабо благоприятна для lpha.

Аналогичные определения даются для *каолиции* $K\subset P$.

Игра Банаха-Мазура BM(X, M)

Пусть $M\subset X=\mathbb{I}=[0,1].$ Играют два игрока lpha и eta на X. Игроки по очереди выбирают отрытые непустые отрезки

$$U_1 \supset V_1 \supset U_2 \supset V_2 ... \supset U_n \supset V_n ...$$

$$\alpha \qquad \beta$$

Игрок lpha выигрывает, если

$$(b_{NEI})$$
: $M \cap \bigcap_{n} U_{n} = M \cap \bigcap_{n} V_{n} \neq \emptyset$.

ightarrowто игра Банаха-Мазура BM(X,M).

Категории подмножеств

Пусть X пространство (например, $X=\mathbb{I}$), $M\subset X$.

- ② Int $M = X \setminus \overline{X \setminus M}$ внутренность M.

Подминожество $M\subset X$ называеться:

- ullet всюду плотным, если $\overline{M}=X$;
- $oldsymbol{0}$ нигде не плотным, если $X\setminus\overline{M}$ всюду плотно;
- первой категории (или тощим), если существует счетное семейство нигде не плотных множеств M_n , $n ∈ \mathbb{N}$, так что $M = \bigcup_n M_n$;
- второй категории (или тучным), если М не тощее.
- \odot *остаточным*, если $X \setminus M$ тощее.

Игра $BM(\mathbb{I},\mathbb{I})$

Игра $BM(\mathbb{I},\mathbb{I})$ α -благоприятна, то есть у α есть выигрышная стратегия. Опишем эту стратегию.

 $\overline{U_n} \subset V_n$. По лемме о вложенных отрезках,

$$\bigcap_{n} U_{n} = \bigcap_{n} \overline{U_{n}} \neq \varnothing.$$

Tощие M

Theorem 2.1.

Если M тощее, то BM(M,X) β -благоприятна.

Доказательство.

Пусть $M = \bigcup_n M_n$, где M_n нигде не плотное. Определим стратегию для β . На n-ом шаге возмем открытое непустое $V_n \subset U_n \setminus M_n$. Тогда

$$\bigcap V_n \subset X \setminus \bigcup_n M_n = X \setminus M.$$

Следовательно

$$M \cap \bigcap V_n = \emptyset$$
.

Tучные M

Из теоремы 2.1 вытекает

Theorem 2.2.

Если M BM(M, X) β -неблагоприятна, то M тучнае.

Из того что $BM(\mathbb{I},\mathbb{I})$ lpha-благоприятна и теоремы 2.1 вытекает, что \mathbb{I} тучное.