Decision Trees

Lecture 8

Today: Learning Objectives

- Understand Decision Trees
- 2. Discover entropy and information gain
- 3. Discuss decision tree limitations
- 4. Learn about an application in XBOX

The car dataset

displacement	horsepower	weight	acceleration	year	maker	mpg
112	88	2395	18	82	America	Good
135	84	2370	13	82	America	Bad
135	84	2370	13	82	America	Good
91	68	1970	17.6	82	Europe	Good
105	63	2125	14.7	82	America	Bad
105	63	2125	14.7	82	America	Good
146	120	2930	13.8	81	Europe	OK
156	92	2620	14.4	81	America	OK
81	60	1760	16.1	81	Europe	Good
140	88	2870	18.1	80	America	OK
305	130	3840	15.4	79	America	Bad
200	85	2990	18.2	79	America	Bad
	112 135 135 91 105 105 146 156 81 140 305	112 88 135 84 135 84 91 68 105 63 105 63 146 120 156 92 81 60 140 88 305 130	112 88 2395 135 84 2370 135 84 2370 91 68 1970 105 63 2125 105 63 2125 146 120 2930 156 92 2620 81 60 1760 140 88 2870 305 130 3840	112 88 2395 18 135 84 2370 13 135 84 2370 13 91 68 1970 17.6 105 63 2125 14.7 105 63 2125 14.7 146 120 2930 13.8 156 92 2620 14.4 81 60 1760 16.1 140 88 2870 18.1 305 130 3840 15.4	112 88 2395 18 82 135 84 2370 13 82 135 84 2370 13 82 91 68 1970 17.6 82 105 63 2125 14.7 82 105 63 2125 14.7 82 146 120 2930 13.8 81 156 92 2620 14.4 81 81 60 1760 16.1 81 140 88 2870 18.1 80 305 130 3840 15.4 79	112 88 2395 18 82 America 135 84 2370 13 82 America 135 84 2370 13 82 America 91 68 1970 17.6 82 Europe 105 63 2125 14.7 82 America 105 63 2125 14.7 82 America 146 120 2930 13.8 81 Europe 156 92 2620 14.4 81 America 81 60 1760 16.1 81 Europe 140 88 2870 18.1 80 America 305 130 3840 15.4 79 America

Full dataset link here!

Split data into a tree structure

- Let's split the dataset on how heavy the car is.
- The root note represents entire dataset (19 bad, 15 okay, and 8 good examples)
- The leaves have some subset of bad/okay/good
- Some leaves are pure (all bad, okay, or good)
- Some leaves are mixed → split further

Second Split

- Let's split the dataset on how displacement
- A leaf is now pure (good!)
- Another leaf is still mixed → split further

Keep Splitting

- Keep on splitting until all leaves are pure
- Some time this actually might not be possible (see the red leaves 1 out of 2 examples is bad)
- We can use this organization of the data as a classifier
- Given a test example, we traverse the tre from root to the leaf and return the leaf label → decision tree!

Decision Tree

Like SVMs, Decision Tree (DT) is a versatile ML algorithm for classification and regression (Recall **DecisionTreeRegressor**)

Also, it is a fundamental component of **Random Forest** (later)

We will discuss how to train, visualize, and predict with Decision Trees, including Classification and Regression Tree (**CART**).

Choosing what feature to split on

A node is "pure" if all samples it applies to belong to the same class (or its impunity = 0). Otherwise its impurity (**Gini index**) is computed as:

$$G_i = 1 - \sum\limits_{k=1}^n {p_{i,k}}^2$$

 $p_{i,k}$ is the ratio of class k instances among the training instances in the i^{th} node.

Compute Gini Impurity

petal length (cm) <= 2.45 gini = 0.6667 samples = 150 value = [50, 50, 50] class = setosa

 $G_i = 1 - \sum_{k=1}^{\infty} p_{i,k}^2$

gini = samples = 50 value = [50, 0, 0] class = setosa

True

petal width (cm) <= 1.75 gini = 0.5 samples = 100 value = [0, 50, 50] class = versicolor

False

gini = samples = 54 value = [0, 49, 5] class = versicolor gini = samples = 46 value = [0, 1, 45] class = virginica

Decision Boundary

Model Interpretation

WHITE BOX

- Like Decision Tree
- Fairly Intuitive and easy to interpret the prediction
- Provide nice and simple classification rules

BLACK BOX

- Like Random Forest or Neural Network (later)
- Hard to explain in simple terms why the predictions are made
- Difficulty to know which features actually contribute to the model

Estimating Class Probability

Predict by estimating probability that an sample belong to a particular class k

Traverse the tree to leaf node, then return the ratio of training samples of class k

The CART Training Algorithm

The Classification and Regression Tree (CART) algorithm to train Decision Trees

• Search for the pair of a single feature and its threshold (k, t_k) that produce the subset with **lowest Gini index**:

$$J(k, t_k) = \frac{m_{\text{left}}}{m} G_{\text{left}} + \frac{m_{\text{right}}}{m} G_{\text{right}}$$
 where
$$\begin{cases} G_{\text{left/right}} \text{ measures the impurity of the left/right subset,} \\ m_{\text{left/right}} \text{ is the number of instances in the left/right subset.} \end{cases}$$

- Split training set into two subsets using feature k and threshold t_k
- Split the subset using the same logic, stop once reaches max depth

2. Entropy, anyone?

DESK ENTROPY

Definition

Desk entropy is a spatiodynamic quantity that measures a workspace's degree of disorder, and the inability to find anything when you really need it.

Any spontaneous activity, whether productive or unproductive, disperses matter and increases overall desk entropy.

Efforts to reverse desk entropy are temporary, and inevitably decrease over time.

www.phdcomics.com

Entropy

Entropy is a measure of **disorderness**: it is zero when well-order and identical

A set's entropy is zero when it contains instances of only one class.

Entropy is calculated as H;:

$$H_i = -\sum_{k=1}^n p_{i,k} \log(p_{i,k})$$
 Vs. Gini $G_i = 1 - \sum_{k=1}^n p_{i,k}^2$

- Both Entropy and Gini produce similar tree most of the time, but Gini is slightly faster.
- Gini is for numerical features while Entropy is for categorical ones.
- Gini tends to isolate the **largest** class from other classes while Entropy tends to find group that made up ~50% of the data → **more balanced tree**.

Entropy Interpretation

For binary Y, the entropy is a function of p(y):

$$H(Y) = -\sum_{y \in Y} p(y) \log p(y)$$

Note: entropy is 0 when p=1 or p=0 (all are of the same class)

Entropy is 1 when p=0.5 (50% in either class)

Another interpretation of entropy is the expected number of bits needed to encode Y. For example, an unbiased coin requires 1 bit, an eight sided dice requires 3 bits.

What about a biased coin that always comes up head?

Information Gain

To measure the reduction in entropy of Y from knowing X, we use Information Gain:

$$ext{IG }(Y,X) = H(Y) - H(Y|X)$$
 where $H(Y|X) = \sum\limits_{x \in X} p(x) H(Y|X=x)$

To determine which feature in a given set of feature vectors is most useful to discriminating between the classes

We will use IG to decide the ordering of features in the nodes of a decision tree.

Example: when to playing tennis?

Outlook	Temperature	Humidity	Windy	Play		
Sunny	Hot	High	False	No		
Sunny	Hot	High	True	No		
Overcast	Hot	High	False	Yes		
Rainy	Mild	High	False	Yes		
Rainy	Cool	Normal	False	Yes		
Rainy	Cool	Normal	True	No		
Overcast	Cool	Normal	True	Yes		
Sunny	Mild	High	False	No		
Sunny	Cool	Normal	False	Yes		
Rainy	Mild	Normal	False	Yes		
Sunny	Mild	Normal	True	Yes		
Overcast	Mild	High	True	Yes		
Overcast	Hot	Normal	False	Yes		
Rainy	Mild	High	True	No		

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

$$H(Y) = -\sum_{i=1}^{K} p_k \log_2 p_k$$

$$= -\frac{5}{14} \log_2 \frac{5}{14} - \frac{9}{14} \log_2 \frac{9}{14}$$

$$= 0.94$$

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

$$InfoGain(Humidity) = H(Y) - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$$
$$= 0.94 - \frac{7}{14} H_L - \frac{7}{14} H_R$$

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

$$InfoGain(Humidity) = H(Y) - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$$

$$0.94 - \frac{7}{14} H_L - \frac{7}{14} H_R$$

$$H_L = -\frac{6}{7}\log_2\frac{6}{7} - \frac{1}{7}\log_2\frac{1}{7}$$

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

 $InfoGain(Humidity) = H(Y) - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$ $0.94 - \frac{7}{14} H_L - \frac{7}{14} H_R$

$$H_L = -\frac{6}{7}\log_2\frac{6}{7} - \frac{1}{7}\log_2\frac{1}{7}$$

$$= 0.592$$

$$H_R = -\frac{3}{7}\log_2\frac{3}{7} - \frac{4}{7}\log_2\frac{4}{7}$$

$$= 0.985$$

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

InfoGain(Humidity) = $H(Y) - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$ $0.94 - \frac{7}{14} 0.592 - \frac{7}{14} 0.985$ = 0.94 - 0.296 - 0.4925 = 0.1515

Calculating for each feature:

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

IG(Humidity) = 0.1515

IG(Outlook) = 0.247

IG(Temperature) = 0.029

IG(Windy) = 0.048

 \rightarrow Initial split is on **Outlook** because it is the feature with the highest IG.

Search for best split at the next level:

Temperature = 0.571

Windy = 0.020

Humidity = 0.971

The final decision tree

Note that not all leaves need to be pure; sometimes similar (even identical) instances have different classes. Splitting stops when data cannot be split any further.

Computational Complexity

- Finding the optimal trees is known as a NP-Complete problem, so we must settle for a "reasonably good" solution.
- Traversing requires roughly (log (m)) independent of number of features
 → very fast
- Training comparing all features on all samples at each node (nm log (m))
 → slow down considerably for large training set.

What makes a good tree?

- Not too small: need to handle important but subtle distinction in data
- Not too big: avoid overfitting training examples
- Occam's Razor: find the simplest model (smallest tree) that fits the observations
- Inductive bias: small trees with informative nodes near the root
- In practice, you can regularizes the construction process to get small but effective tree

Regularization Hyperparameters

Left unconstrained, decision tree will most likely overfitting to the training data.

Need to restrict the tree degree of freedom → regularization

- max_depth: the maximum depth of the DT
- min_sample_split: the minimum number of samples a node must have to split
- min_sample_leaf: the minimum number of samples a leaf node must have
- max_leaf_nodes: maximum number of leaf nodes
- max_features: maximum number features that are evaluated for splitting

Training a Decision Tree in Python

```
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load_iris()
X = iris.data[:, 2:] # petal length and width
y = iris.target

tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf.fit(X, y)
```

Code Demo

```
from sklearn.datasets import make_moons
Xm, ym = make_moons(n_samples=100, noise=0.25, random_state=53)

deep_tree_clf1 = DecisionTreeClassifier(random_state=42)
deep_tree_clf2 = DecisionTreeClassifier(min_samples_leaf=4, random_state=42)
deep_tree_clf1.fit(Xm, ym)
deep_tree_clf2.fit(Xm, ym)
```


3. Limitations

Sensitivity to Training Set

DT loves **orthogonal** decision boundary → sensitive to training set rotation

Instability to small variation of training data

Random Forest might help! (coming soon)

Summary of Decision Trees

- Easy to understand (by human)
- + Computationally efficient
- + Handle both numerical and categorical data
- Parametric thus compact: do not have to carry training data around
- + Building block for various ensemble methods

- Heuristic training techniques
- Finding partition of space that minimizes error is NP-hard
- Use greedy approaches with limited theoretical work

4. Applications: XBox

Decision Trees (Random Forest) are in XBox

Classifying using depth images

Trained on millions of example

Tree Voting

Today: Learning Objectives

- ✓ Talk about Decision Trees
- ✓ Discover entropy and information gain
- ✓ Discuss decision tree limitations
- ✓ Learn about an application in XBOX

Next: Ensemble Learning and Random Forest

Bonus Slides

Regression

```
from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor(max_depth=2, random_state=42)
tree_reg.fit(X, y)
```


Max Depth and Prediction

CART cost function

$$J(k, t_k) = \frac{m_{\text{left}}}{m} \text{MSE}_{\text{left}} + \frac{m_{\text{right}}}{m} \text{MSE}_{\text{right}}$$

where
$$\begin{cases} MSE_{\text{node}} = \sum_{i \in \text{node}} (\hat{y}_{\text{node}} - y^{(i)})^2 \\ \hat{y}_{\text{node}} = \frac{1}{m_{\text{node}}} \sum_{i \in \text{node}} y^{(i)} \end{cases}$$

Regression Overfitting and Regularization

