TRIGONOMETRY

The Pythagorean Theorem

Practice Problems

Solve for the unknown side.

Right triangle \Rightarrow Pythag. Thm:

$$a^2 + b^2 = c^2$$

Solve for the unknown side.

Right triangle \Rightarrow Pythag. Thm:

$$a^2 + b^2 = c^2$$

 $c \Leftrightarrow \textbf{hypotenuse}$ (longest side)

Solve for the unknown side.

Right triangle \Rightarrow Pythag. Thm:

$$a^2 + b^2 = c^2$$

 $c \Leftrightarrow \textbf{hypotenuse}$ (longest side)

 $a, b \Leftrightarrow \textbf{legs}$ (shorter sides)

Right triangle \Rightarrow Pythag. Thm:

$$a^2 + b^2 = c^2$$

 $c \Leftrightarrow \textbf{hypotenuse}$ (longest side)

 $a, b \Leftrightarrow \textbf{legs}$ (shorter sides)

$$10^2 + 5^2 = x^2$$

Right triangle \Rightarrow Pythag. Thm:

$$a^2+b^2=c^2$$

 $c \Leftrightarrow \textbf{hypotenuse}$ (longest side)

 $a, b \Leftrightarrow \mathbf{legs}$ (shorter sides)

$$10^2 + 5^2 = x^2$$
$$100 + 25 = x^2$$

Right triangle \Rightarrow Pythag. Thm:

$$a^2 + b^2 = c^2$$

 $c \Leftrightarrow \textbf{hypotenuse}$ (longest side)

 $a, b \Leftrightarrow \mathbf{legs}$ (shorter sides)

$$10^2 + 5^2 = x^2$$
$$100 + 25 = x^2$$
$$125 = x^2$$

Right triangle \Rightarrow Pythag. Thm: $a^2 + b^2 = c^2$

 $c \Leftrightarrow \mathbf{hypotenuse}$ (longest side)

 $a, b \Leftrightarrow \mathbf{legs}$ (shorter sides)

$$10^{2} + 5^{2} = x^{2}$$

$$100 + 25 = x^{2}$$

$$125 = x^{2}$$

$$\sqrt{125} = x$$

Right triangle \Rightarrow Pythag. Thm: $a^2 + b^2 = c^2$

 $c \Leftrightarrow \mathbf{hypotenuse}$ (longest side) $a, b \Leftrightarrow \mathbf{legs}$ (shorter sides)

$$10^{2} + 5^{2} = x^{2}$$

$$100 + 25 = x^{2}$$

$$125 = x^{2}$$

$$\sqrt{125} = x$$

$$\sqrt{25 \cdot 5} = x$$

Right triangle \Rightarrow Pythag. Thm: $a^2 + b^2 = c^2$

 $c \Leftrightarrow \mathbf{hypotenuse}$ (longest side) $a, b \Leftrightarrow \mathbf{legs}$ (shorter sides)

$$10^{2} + 5^{2} = x^{2}$$

$$100 + 25 = x^{2}$$

$$125 = x^{2}$$

$$\sqrt{125} = x$$

$$\sqrt{25 \cdot 5} = x$$

$$5\sqrt{5} = x$$

Right triangle \Rightarrow Pythag. Thm: $a^2 + b^2 = c^2$

 $c \Leftrightarrow \mathbf{hypotenuse}$ (longest side) $a, b \Leftrightarrow \mathbf{legs}$ (shorter sides)

$$10^{2} + 5^{2} = x^{2}$$

$$100 + 25 = x^{2}$$

$$125 = x^{2}$$

$$\sqrt{125} = x$$

$$\sqrt{25 \cdot 5} = x$$

$$5\sqrt{5} = x$$

Right triangle \Rightarrow Pythag. Thm:

$$a^2 + b^2 = c^2$$

Right triangle \Rightarrow Pythag. Thm:

$$a^2 + b^2 = c^2$$

$$8^2 + u^2 = 17^2$$

Right triangle \Rightarrow Pythag. Thm:

$$a^2 + b^2 = c^2$$

$$8^2 + u^2 = 17^2$$

 $64 + u^2 = 289$

Right triangle \Rightarrow Pythag. Thm:

$$a^2 + b^2 = c^2$$

$$8^2 + u^2 = 17^2$$
$$64 + u^2 = 289$$
$$u^2 = 225$$

Right triangle \Rightarrow Pythag. Thm: $a^2 + b^2 = c^2$

$$8^{2} + u^{2} = 17^{2}$$
 $64 + u^{2} = 289$
 $u^{2} = 225$
 $u = \sqrt{225}$

Right triangle \Rightarrow Pythag. Thm: $a^2 + b^2 = c^2$

$$8^{2} + u^{2} = 17^{2}$$

$$64 + u^{2} = 289$$

$$u^{2} = 225$$

$$u = \sqrt{225}$$

$$u = \sqrt{15^{2}}$$

Right triangle \Rightarrow Pythag. Thm: $a^2 + b^2 = c^2$

$$8^{2} + u^{2} = 17^{2}$$

$$64 + u^{2} = 289$$

$$u^{2} = 225$$

$$u = \sqrt{225}$$

$$u = \sqrt{15^{2}}$$

$$u = 15$$

Right triangle \Rightarrow Pythag. Thm: $a^2 + b^2 = c^2$

$$8^{2} + u^{2} = 17^{2}$$

$$64 + u^{2} = 289$$

$$u^{2} = 225$$

$$u = \sqrt{225}$$

$$u = \sqrt{15^{2}}$$

$$u = 15$$

Which of the below are right triangles?

Which of the below are right triangles?

<u>If:</u> $a^2 + b^2 = c^2$; **Then:** Right triangle

Which of the below are right triangles?

If: $a^2 + b^2 = c^2$; **Then:** Right triangle

(where c is longest side)

<u>If:</u> $a^2 + b^2 = c^2$; <u>Then:</u> Right triangle

If:
$$a^2 + b^2 = c^2$$
; Then: Right triangle

$$7^2 + 6^2 \stackrel{?}{=} 9^2$$

If: $a^2 + b^2 = c^2$; Then: Right triangle

$$7^2 + 6^2 \stackrel{?}{=} 9^2$$

 $49 + 36 \stackrel{?}{=} 81$

If: $a^2 + b^2 = c^2$; Then: Right triangle

$$7^{2} + 6^{2} \stackrel{?}{=} 9^{2}$$

 $49 + 36 \stackrel{?}{=} 81$
 $85 \neq 81$

3, CONT.

If:
$$a^2 + b^2 = c^2$$
; **Then:** Right triangle

$$7^{2} + 6^{2} \stackrel{?}{=} 9^{2}$$

 $49 + 36 \stackrel{?}{=} 81$
 $85 \neq 81$

X is **not** a right triangle.

If:
$$a^2 + b^2 = c^2$$
; **Then:** Right triangle

$$7^{2} + 6^{2} \stackrel{?}{=} 9^{2}$$

 $49 + 36 \stackrel{?}{=} 81$
 $85 \neq 81$

X is **not** a right triangle.

 $(85 > 81 \Rightarrow X \text{ is an } \textbf{acute} \text{ triangle.})$

$$a^2 + b^2 \stackrel{?}{=} c^2$$

$$a^{2} + b^{2} \stackrel{?}{=} c^{2}$$

 $12^{2} + 9^{2} \stackrel{?}{=} 15^{2}$

$$a^{2} + b^{2} \stackrel{?}{=} c^{2}$$
 $12^{2} + 9^{2} \stackrel{?}{=} 15^{2}$
 $144 + 81 \stackrel{?}{=} 225$

$$a^{2} + b^{2} \stackrel{?}{=} c^{2}$$
 $12^{2} + 9^{2} \stackrel{?}{=} 15^{2}$
 $144 + 81 \stackrel{?}{=} 225$
 $225 = 225$

$$a^{2} + b^{2} \stackrel{?}{=} c^{2}$$
 $12^{2} + 9^{2} \stackrel{?}{=} 15^{2}$
 $144 + 81 \stackrel{?}{=} 225$
 $225 = 225$

Y **is** a right triangle.

$$a^2 + b^2 = c^2$$

$$a^2 + b^2 = c^2$$

$$a^2 + b^2 = c^2$$

 $(x-3)^2 + 12^2 = (x+5)^2$

$$a^{2} + b^{2} = c^{2}$$

$$(x-3)^{2} + 12^{2} = (x+5)^{2}$$

$$(x-3)(x-3) + 144 = (x+5)(x+5)$$

Solve for x.

$$(x-3)^2 + 12^2 = (x+5)^2$$
$$(x-3)(x-3) + 144 = (x+5)(x+5)$$
$$x^2 - 6x + 9 + 144 = x^2 + 10x + 25$$

 $a^2 + b^2 = c^2$

Solve for *x*.

$$(x-3)^2 + 12^2 = (x+5)^2$$
$$(x-3)(x-3) + 144 = (x+5)(x+5)$$
$$x^2 - 6x + 9 + 144 = x^2 + 10x + 25$$

 $a^2 + b^2 = c^2$

$$a^{2} + b^{2} = c^{2}$$

$$(x-3)^{2} + 12^{2} = (x+5)^{2}$$

$$(x-3)(x-3) + 144 = (x+5)(x+5)$$

$$x^{2} - 6x + 9 + 144 = x^{2} + 10x + 25$$

$$-6x + 153 = 10x + 25$$

$$a^{2} + b^{2} = c^{2}$$

$$(x-3)^{2} + 12^{2} = (x+5)^{2}$$

$$(x-3)(x-3) + 144 = (x+5)(x+5)$$

$$x^{2} - 6x + 9 + 144 = x^{2} + 10x + 25$$

$$-6x + 153 = 10x + 25$$

$$128 = 16x$$

$$a^{2} + b^{2} = c^{2}$$

$$(x-3)^{2} + 12^{2} = (x+5)^{2}$$

$$(x-3)(x-3) + 144 = (x+5)(x+5)$$

$$x^{2} - 6x + 9 + 144 = x^{2} + 10x + 25$$

$$-6x + 153 = 10x + 25$$

$$128 = 16x$$

$$8 = x$$

$$a^{2} + b^{2} = c^{2}$$

$$(x-3)^{2} + 12^{2} = (x+5)^{2}$$

$$(x-3)(x-3) + 144 = (x+5)(x+5)$$

$$x^{2} - 6x + 9 + 144 = x^{2} + 10x + 25$$

$$- 6x + 153 = 10x + 25$$

$$128 = 16x$$

$$8 = x$$

$$5^2 + 5^2 = d^2$$

$$5^2 + 5^2 = d^2$$
$$25 + 25 = d^2$$

$$5^{2} + 5^{2} = d^{2}$$

 $25 + 25 = d^{2}$
 $50 = d^{2}$

$$5^{2} + 5^{2} = d^{2}$$
$$25 + 25 = d^{2}$$
$$50 = d^{2}$$
$$\sqrt{50} = d$$

$$5^{2} + 5^{2} = d^{2}$$
$$25 + 25 = d^{2}$$
$$50 = d^{2}$$
$$\sqrt{50} = d$$
$$\sqrt{25 \cdot 2} = d$$

$$5^{2} + 5^{2} = d^{2}$$

$$25 + 25 = d^{2}$$

$$50 = d^{2}$$

$$\sqrt{50} = d$$

$$\sqrt{25 \cdot 2} = d$$

$$5\sqrt{2} = d$$

$$5^{2} + 5^{2} = d^{2}$$

$$25 + 25 = d^{2}$$

$$50 = d^{2}$$

$$\sqrt{50} = d$$

$$\sqrt{25 \cdot 2} = d$$

$$5\sqrt{2} = d$$

3.5 m

4 m -----3.5 m

$$3.5^2 + x^2 = 4^2$$

$$3.5^2 + x^2 = 4^2$$
$$12.25 + x^2 = 16$$

$$3.5^{2} + x^{2} = 4^{2}$$
 $12.25 + x^{2} = 16$
 $x^{2} = 3.75$

$$3.5^{2} + x^{2} = 4^{2}$$
 $12.25 + x^{2} = 16$
 $x^{2} = 3.75$
 $x = \sqrt{3.75}$

$$3.5^{2} + x^{2} = 4^{2}$$
 $12.25 + x^{2} = 16$
 $x^{2} = 3.75$
 $x = \sqrt{3.75} \approx 1.93649$

$$3.5^{2} + x^{2} = 4^{2}$$

$$12.25 + x^{2} = 16$$

$$x^{2} = 3.75$$

$$x = \sqrt{3.75} \approx 1.93649$$

$$x = 1.94$$

$$3.5^{2} + x^{2} = 4^{2}$$
 $12.25 + x^{2} = 16$
 $x^{2} = 3.75$
 $x = \sqrt{3.75} \approx 1.93649$
 $x = 1.94m$

THANKS FOR WATCHING!

Watch the rest of the videos on this topic!

www.chipmunkmath.com

Creative Commons: © () () () ()
Open source, available on GitHub ()
Details at chipmunkmath.com