Problème à remettre le 18 panvier On traitera les 2 premieres parties

Composition d'analyse

Introduction.

Dans tout le problème, E₀ (resp. L¹) désigne l'espace vectoriel des fonctions (resp. classes de fonctions) continues et bornées sur R² (resp. intégrables pour la mesure de Lebesgue de R²), à valeurs complexes.

E₁ est l'ensemble des éléments de E₀ dont la classe appartient à L¹; comme c'est l'usage, on notera par une même lettre une classe de fonctions et un représentant de cette classe.

$$||f||_{\infty} = \sup (\{|f(u, v)|/(u, v) \in \mathbb{R}^2\}) \quad \text{pour} \quad f \in \mathcal{E}_0,$$

et

$$||f||_1 = \iint_{\mathbb{R}^2} |f(u,v)| du dv \quad \text{si} \quad f \in L^1;$$

on abrège en « p.p. » l'expression « presque partout », et en « \iint » le signe « $\iint_{\mathbb{R}^2}$ ».

Si f est une application de \mathbb{R}^2 dans \mathbb{C} et si $(a,b) \in \mathbb{R}^2$, on note $f_{a,b}$ la fonction définie par $f_{a,b}(x,y) = f(a+x,b+y)$; a étant > 0, Δ_a représente l'ensemble des $(x,y) \in \mathbb{R}^2$ tels que $-a \le x \le a$ et $-a \le y \le a$. On rappelle enfin que $\int_0^a \frac{\sin t}{t} dt$ tend vers $\frac{\pi}{2}$ quand le réel a tend vers $+\infty$ et que $\int_{-\infty}^{+\infty} e^{-t^2} dt$

Les quatre parties sont dépendantes, mais on peut traiter chacune en admettant les résultats de celles qui précèdent.

Première partie.

1° a) Soit f et g appartenant à L¹; montrer – par exemple à l'aide du théorème de Fubini – que la quantité

$$(f * g)(x, y) = \iint f(x - u, y - v)g(u, v) du dv$$

est définie pour presque tout (x, y), que $f * g \in L^1$ et que $||f * g||_1 \le ||f||_1 ||g||_1$.

Si $g \in E_1$, établir que f * g appartient aussi à E_1 et majorer $||f * g||_{\infty}$ en fonction de $||f||_1$ et $||g||_{\infty}$.

i (ux+vy)

- b) f étant toujours dans L^1 , on pose $\hat{f}(x, y) = \iint f(u, v)e^{i(u)t^2+vy} du dv$ pour $(x, y) \in \mathbb{R}^2$; prouver que $\hat{f} \in E_0$ et que, si $g \in L^1$, $\hat{f} * \hat{g} = \hat{f}\hat{g}$.
 - 2° a) Soit $\lambda > 0$; pour $(u, v) \in \mathbb{R}^2$ et a > 0, on pose

$$I_{u,o}(a) = \iint_{\Delta} \frac{e^{i(ux+oy)} \sin \lambda x \sin \lambda y}{xy} dx dy$$

Mettre I_{u,v}(a) sous forme du produit de deux intégrales simples; montrer qu'il est borné indépendamment de (u, v, a) ct que, lorsque a tend vers $+\infty$, $I_{u,v}(a)$ tend vers $:\pi^2$ si $(u, v) \in \mathring{\Delta}_{\lambda}$ (intérieur de Δ_{λ}) et 0 si $(u, v) \notin \mathring{\Delta}_{\lambda}$.

b) Lorsque $f \in L^1$, déduire du a, la limite de

$$\iint_{\Delta} \hat{f}(x, y) \frac{\sin \lambda x \sin \lambda y}{xy} \, \mathrm{d}x \, \mathrm{d}y$$

quand a tend vers $+\infty$.

c) On suppose que $f \in E_1$ et que f = 0. Établir que f(0, 0) = 0, puis que f(a, b) est nul pour tout $(a, b) \in \mathbb{R}^2$ (on pourra utiliser la fonction $f_{a,b}$).

3° f désigne un élément de L1.

- a) Montrer que $||f_{a,b} f||_1$ tend vers 0 quand (a, b) tend vers (0, 0) dans \mathbb{R}^2 (on pourra, par exemple, approcher f par des fonctions continues à support compact).
 - b) Prouver que, si f * g = 0 pour tout $g \in E_1$, alors f = 0 p.p.
 - c) Déduire des résultats précédents que, si $\hat{f} = 0$, alors f = 0 p.p.
 - 4° K est un compact de R² et μ_K sa fonction caractéristique.

a) Vérisier que, pour y (resp. x) récl sixé, $\hat{\mu}_K(x, y)$ est une sonction analytique de x (resp. y).

Montrer que, si la fonction $\hat{\mu}_K$ est nulle sur un ouvert non vide de \mathbb{R}^2 , elle l'est alors sur \mathbb{R}^2 tout entier. A quelle condition sur K en est-il ainsi?

b) Application. - On suppose que K n'est pas vide.

Soit $f \in L^1$, telle que $\iint_{\mathfrak{q}(K)} f(u, v) du dv$ soit nulle pour toute translation t du plan affine \mathbb{R}^2 ; démontrer qu'alors f est nulle presque partout.

5° Soit K' et K" deux compacts de R², « réguliers » en ce sens que chacun est l'adhérence de son intérieur. On suppose que, pour toute droite affine L, L \cap K' et L \cap K" ont la même longueur (pour la mesure de Lebesgue de R).

- a) Établir que $\hat{\mu}_{K'}(x, y) = \hat{\mu}_{K'}(x, y)$ pour $(x, y) \in \mathbb{R}^2$ (on pourra commencer par le cas où x = 0).
- b) En déduire que K" est inclus dans K', puis que K' = K''.

DEUXIÈME PARTIE.

On note S l'ensemble des fonctions $\psi \in C^{\infty}(\mathbb{R}^2, \mathbb{C})$ qui ont la propriété suivante : $P(x, y) \frac{\partial^{k+1} \psi}{\partial x^k \partial y^l}(x, y)$ est borné sur \mathbb{R}^2 pour tous k, l entiers ≥ 0 et tout polynôme $P \in \mathbb{C}[x, y]$.

1º \(\psi \) désigne, dans cette question, un élément de S.

à) Vérisser que S est inclus dans L^1 ; démontrer que $\hat{\psi}$ est indésimiment disserntiable et appartient à S (on pourra montrer que, si l'on pose

$$\psi_1(u, v) = \frac{\partial \psi}{\partial u}(u, v), \text{ on a } x\hat{\psi}(x, y) = i\hat{\psi}_1(x, y).$$

b) Si $\omega \in S$, prouver que

$$\iint \psi \left(\frac{u}{\lambda}, \frac{v}{\lambda}\right) \hat{\omega}(u, v) \, du \, dv = \iint \omega \left(\frac{u}{\lambda}, \frac{v}{\lambda}\right) \hat{\psi}(u, v) \, du \, dv \quad \text{pour tout } \lambda > 0.$$

Calculer explicitement $\hat{\omega}(x, y)$ pour la fonction $\omega(u, v) = e^{-u^2 - v^2}$.

c) Déduire de ce qui précède que $\psi(0,0) = \frac{1}{4\pi^2} \iint \hat{\psi}(x,y) \, dx \, dy$, puis exprimer de manière analogue $\psi(a,b)$ pour $(a,b) \in \mathbb{R}^2$.

Établir que l'application $\psi \mapsto \hat{\psi}$ définit une bijection de S sur lui-même.

- 2° Soit $f \in L^1$.
- a) Montrer qu'il existe une fonction $\rho \in S$ telle que :

$$\hat{\rho}(x, y) = 1$$
 si $(x, y) \in \Delta_1$ et $\hat{\rho}(x, y) = 0$ si $(x, y) \notin \Delta_2$

Pour $\lambda > 0$ et $(u, v) \in \mathbb{R}^2$, on note :

$$\rho_{\lambda}(u, v) = \frac{1}{\lambda^2} \rho\left(\frac{u}{\lambda}, \frac{v}{\lambda}\right) \text{ et } h_{\lambda}(u, v) = \hat{f}(0, 0) \rho_{\lambda}(u, v) - (f * \rho_{\lambda})(u, v).$$

- b) Démontrer que $||h_{\lambda}||_1$ tend vers 0 quand $\lambda \to +\infty$ et que $||f * \rho_{\lambda} f||_1$ tend vers 0 quand $\lambda \to 0_+$.
- c) Déduire du premier résultat de b que, pour $\delta > 0$, il existe un voisinage V de (0, 0) dans \mathbb{R}^2 et une fonction $h \in L^1$ tels que

$$||h||_1 < \delta$$
 et $\hat{h}(x, y) = \hat{f}(0, 0) - \hat{f}(x, y)$ pour $(x, y) \in V$.

Énoncer et prouver un résultat analogue, où (0,0) est remplacé par un point quelconque (a,b) de \mathbb{R}^2 .

- 3° Dans la suite de cette partie, on fixe une fonction $\phi \in E_0$.
- a) Vérisier que $f * \phi$ conserve un sens pour tout $f \in L^1$, que $f * \phi$ appartient alors à E_0 , mais plus nécessairement à L^1 .

Montrer que $(f * g) * \varphi = f * (g * \varphi)$ pour f et g appartenant à L^1 .

b) On pose

$$I_{\varphi} = \{ f \in L^1 / f * \varphi = 0 \},$$

$$Z_{\varphi} = \{ (a, b) \in \mathbb{R}^2 / f (a, b) = 0 \text{ pour tout } f \in I_{\varphi} \}.$$

Établir que I, est un sous-espace vectoriel fermé de L1, stable pour *, et que Z, est une partie fermée de R2.

4° On suppose, dans le reste de cette partie, que Z_♥ est vide.

a) Soit $(a, b) \in \mathbb{R}^2$, expliquer pourquoi il existe un voisinage V de (a, b), $f \in I_{\bullet}$ et $h \in L^1$ tels que

$$\hat{f}(a,b) = 1$$
, $||h||_1 < 1$ et $\hat{h}(x,y) = 1 - \hat{f}(x,y)$ pour $(x,y) \in V$.

b) Soit g un élément de L^1 , tel que \hat{g} soit à support compact, inclus dans V. On définit la suite de fonctions (g_n) par : $g_0 = g$ et $g_{n+1} = h * g_n$ pour tout $n \in \mathbb{N}$.

Montrer que la série $\sum_{n=0}^{+\infty} ||g_n||_1$ est convergente et que la fonction $g_{\infty} = \sum_{n=0}^{+\infty} g_n$ est définie presque partout.

Calculer \hat{g}_{∞} en fonction de \hat{g} et \hat{h} uniquement.

- c) Prouver que $g = g_{\infty} * f p.p.$ et que g appartient à I_{ϕ} . En déduire que, si ψ appartient à S et $\hat{\psi}$ est à support compact, alors $\psi \in I_{\phi}$.
- 5° Démontrer que $I_{\phi} = L^1$ (on pourra d'abord vérifier que ρ_{λ} appartient à I_{ϕ} pour tout $\lambda > 0$), puis que $\omega = 0$.

TROISIÈME PARTIE.

Pour tout nombre complexe w, on note Fw la fonction définie par

$$F_w(z) = \exp\left[\frac{w}{2}\left(z - \frac{1}{z}\right)\right], \text{ pour } z \in \mathbb{C} - \{0\}$$

et $\sum J_n(w)z^n$ le développement de Laurent de F_w au point 0.

- 1° a) Pour quelles valeurs de z la série ci-dessus converge-t-elle vers $F_w(z)$? Comment peut-on calculer $J_x(w)$ en fonction de F_w ?
- b) Soit Γ le cercle de centre O, de rayon 1, dans le plan complexe, orienté dans le sens trigonométrique; montrer que:

$$J_{n}(w) = \frac{1}{2\pi i} \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{k!} \left(\frac{w}{2}\right)^{n+2k} \int_{\Gamma}^{-n-k} \frac{1}{2} e^{z} dz$$

pour $w \in \mathbb{C}$ et $n \in \mathbb{Z}$.

- c) Lorsque $n \in \mathbb{N}$, expliciter les coefficients de la série entière du b); quel est son rayon de convergence?
- 2° a) Prouver que $\frac{d}{dw}(w^nJ_n(w)) = w^nJ_{n-1}(w)$ pour $w \in \mathbb{C}$ et $n \ge 1$.
- b) Établir que

$$J_n(w) = \frac{1}{2\pi} \int_0^{2\pi} \cos(n\theta - w \sin \theta) d\theta$$

pour $w \in \mathbb{C}$ et $n \in \mathbb{Z}$.

- c) Montrer que l'équation $J_1(x) = 0$ a, au moins, deux racines réelles > 0; on notera désormais J l'ensemble des nombres de la forme $\frac{p}{q}$ où p et q sont des zéros réels > 0 de la fonction J_1 .
 - 3° a) Soit r un réel > 0 et D(r) le disque fermé de centre O et de rayon r dans le plan \mathbb{R}^2 .

Démontrer que $\hat{\mu}_{D(r)}(x, y) = 2\pi \int_0^r J_0(\rho \sqrt{x^2 + y^2}) \rho \, d\rho$ pour $(x, y) \in \mathbb{R}^2$; en déduire que, si $(x, y) \neq (0, 0)$,

 $\hat{\mu}_{D(r)}(x, y)$ vaut $\frac{2\pi r}{\sqrt{x^2 + y^2}} J_1(r\sqrt{x^2 + y^2})$. Quelle est la valeur de $\hat{\mu}_{D(r)}(0, 0)$?

b) Soit K un compact de \mathbb{R}^2 et $\varphi \in E_0$, tels que $\mu_K * \varphi = 0$. Montrer que, pour tout $(a,b) \in Z_{\varphi}$, on a $\hat{\mu}_K(a,b) = 0$ (Z_{φ} a été défini au 3° de la deuxième partie).

- 4° Application.
- a) Soit $\varphi \in E_0$, ayant la propriété suivante :
- (1) il existe deux réels > 0, r_1 et r_2 tels que $\frac{r_1}{r_2} \notin J$ et que $\iint_D \varphi(x, y) dx dy$ soit nulle pour tout disque D, de centre quelconque et de rayon $r \in \{r_1, r_2\}$.

Prouver que \(\phi \) est identiquement nulle.

- b) Vérifier que la conclusion de a) tombe en défaut si l'on ne suppose pas que $\frac{r_1}{r_2} \notin J$ (on pourra, par exemple, montrer que la fonction $\varphi(x, y) = \sin y$ a une intégrale nulle sur tout disque ayant pour rayon l'un quelconque des zéros réels > 0 de la fonction J_1).
 - 5° Si f appartient à L¹ et vérifie la propriété (1) du a) est-elle nulle presque partout?

QUATRIÈME PARTIE.

On note \mathscr{D} le groupe des déplacements affines du plan \mathbb{R}^2 ; si K est un compact de \mathbb{R}^2 , une fonction $\varphi \in E_0$ est dite K-inerte lorsque $\iint_{d(K)} \varphi(x, y) \, dx \, dy$ est nulle pour tout $d \in \mathscr{D}$.

On dit que K est descriptif lorsque 0 est la seule fonction K-inerte dans E₀.

- 1º Soit K un compact de R2.
- a) On suppose que $\hat{\mu}_K(0,0) \neq 0$ et que $\hat{\mu}_K$ n'est, dans \mathbb{R}^2 , identiquement nulle sur aucun cercle de centre 0. Démontrer qu'alors K est descriptif.
- b) Pour x et y complexes, on pose encore

$$\hat{\mu}_{K}(x, y) = \iint \mu_{K}(u, v)e^{i(ux+\sigma y)} du dv.$$

Prouver que la conclusion de a, demeure, si l'on suppose seulement que $\hat{\mu}_K(0,0) \neq 0$ et que $\hat{\mu}_K$ n'est identiquement nulle sur aucun des

$$\Gamma_r = \{(x, y) \in \mathbb{C}^2 / x^2 + y^2 = r^2\}$$
 pour $r > 0$

- 2° a) Montrer qu'aucun disque fermé n'est un compact descriptif.
- b) Établir, par contre, que le compact délimité par une ellipse, non circulaire et non réduite à un segment, est descriptif.
 - c) Qu'en est-il pour un carré?
 - 3° a) Soit a < b et c > 0 trois nombres réels, et T le compact délimité par le triangle A(a, 0), B(b, 0), C(0, c).

$$r > 0$$
 étant fixé, on pose : $x_t = t$ et $y_t = -it \sqrt{1 - \frac{r^2}{t^2}}$ pour $t \ge r$.

Calculer explicitement $\hat{\mu}_T(x_t, y_t)$ et démontrer qu'il existe un nombre complexe $k \neq 0$, indépendant de t, tel que la fonction $\hat{\mu}_T(x_t, y_t)$ soit équivalente à $\frac{k}{t^2}e^{rt}$ lorsque t tend vers $+\infty$.

- b) Soit K_0 un compact dont tous les points ont une ordonnée ≤ 0 ; prouver que $\hat{\mu}_{K_0}(x_t, y_t)$ reste borné lorsque $t \to +\infty$.
 - c) Établir que K₀ UT est descriptif.
- 4° Démontrer que tout compact convexe, d'intérieur non vide, dont la frontière est une ligne polygonale, est descriptif.
- 5° Soit K un compact convexe, d'intérieur non vide, dont la frontière Γ est un arc de classe C¹ par morceaux. On suppose que Γ a, au moins, un point anguleux C, c'est-à-dire tel que les deux demi-tangentes en C à Γ soient distinctes.

Démontrer que K est descriptif.