Acute Stress Decreases Glutamate Transmission through Endocannabinoid-CB1 Receptors in the Female Rat Dorsomedial Hypothalamus

Mount UNIVERSITY

Ruby Muzzatti, Dr Karen Crosby

Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada

What causes this decrease?

BACKGROUND

The dorsomedial hypothalamus (DMH) is a brain region involved in appetite and body weight regulation¹, and the stress response²

Using glutamate and GABA, the DMH

Previous work by Sarah Wilson (unpublished) found that acute stress in male rats:

• Did not change the strength of glutamate synapses (compared to long-term depression seen in naïve males)

The relationship between eating behaviours and stress is complex. Risk factors for increased food consumption under stress include being female, overweight, or having a history of food restriction⁵

How acute stress in females affects glutamatergic DMH transmission to ultimately influence appetite is unknown

All experiments were performed according to protocol #104140 approved by the Mount Allison University Animal Care Committee in accordance with the Canadian Council on Animal Care Guidelines They were anesthetized, euthanized, and Young, **female** Sprague-Dawley their brains were quickly removed rats were exposed to a single restraint stress Immediately following brain removal, a carotid **blood** sample was collected 250 µm coronal brain slices A recording electrode was containing the **DMH** inserted into **DMH** were kept alive in **neurons**, and a oxygenated artificial stimulating electrode into cerebrospinal fluid the surrounding tissue to kept at 32.5 °C evoke **excitatory** 50 µM picrotoxin was postsynaptic currents (eEPSC) at 0.2 Hz applied to observe **glutamate** synapses Living neurons were recorded from before and after high Data analysis was frequency stimulation (HFS) performed using

RESULTS Endocannabinoids can trigger Acute stress triggered a long-lasting depression in glutamate transmission a long-lasting decrease in glutamate release Acute with 5 µM AM251 Females, n = 10 Females, n = 8 Time (min) Time (min) Naïve data was collected by Lara Swart. A paired t-test was used to compare each 5-minute interval to the 5-minute baseline period. * = p-value < 0.05, ** = p-value < 0.01 Time (min) Is the decrease due to a presynaptic decrease in glutamate onto DMH neurons during acute stress? The PPR significantly increased, indicating a lower probability of glutamate release onto DMH neurons, but there is no change when Endocannabinoid-CB1 receptors are blocked Acute with 5 µM AM251 Naïve Acute

The PPR (calculated as P2/P1) compares the amplitude of two evoked currents and is inversely proportional to the probability of neurotransmitter release. A paired t-test was used to compare between baseline and HFS for each group. * = p-value < 0.05

CKNOWLEDGMENTS

ant to thank my supervisor, Dr Crosby, for her contin dance and support. I want to express my gratitude to kie Jacob-Vogels for her dedication to and passion fo edible animal care, from which I have learned so mu nk you to Christelinda for her support with data anal d to my lab mates Selena and Christian.

patchclampplotteR by

Christelinda Laureijs⁶

project was supported by a Mount Allison Independe lent Research Grant (ISRG), funded by a Natural Scie I Engineering Research Counsil of Canada (NSERC) lergraduate Student Research Award (USRA).

Future work aims to determine:

- The effect of chronic (repeated) stress (work in progress)
- How corticosterone is involved in the change in glutamate transmission
- The effect of stress on neuronal excitability

Stress response mechanisms have not adapted to our high stress society and landscape of high calorie, highly palatable foods⁷. Women are particularly vulnerable to disordered eating behaviours when **stressed**⁵, for which the neurophysiological basis is unclear. Yet, female research subjects remain underrepresented, which this research aims to address.

EFRENCES

100 Hz for 4 seconds, repeated twice, 20 seconds apart

- 06:75-105. doi:<u>10.1016/S0079-6123(06)53004-3</u>