Principles of Al Planning

2. Transition systems and planning tasks

Bernhard Nebel and Robert Mattmüller

Albert-Ludwigs-Universität Freiburg

October 25th, 2011

Principles of Al Planning

October 25th, 2011 — 2. Transition systems and planning tasks

2.1 Transition systems

2.2 Planning tasks

2.1 Transition systems

- Definition
- Blocks world

Transition systems

Definition (transition system)

A transition system is a 5-tuple $\mathcal{T} = \langle S, L, T, s_0, S_{\star} \rangle$ where

- ► *S* is a finite set of states.
- ► *L* is a finite set of (transition) labels,
- ▶ $T \subseteq S \times L \times S$ is the transition relation,
- $ightharpoonup s_0 \in S$ is the initial state, and
- ▶ $S_{\star} \subseteq S$ is the set of goal states.

We say that \mathcal{T} has the transition $\langle s, \ell, s' \rangle$ if $\langle s, \ell, s' \rangle \in \mathcal{T}$.

We also write this $s \xrightarrow{\ell} s'$, or $s \to s'$ when not interested in ℓ .

Note: Transition systems are also called state spaces.

Transition systems: example

Transition systems are often depicted as directed arc-labeled graphs with marks to indicate the initial state and goal states.

Transition system terminology

We use common graph theory terms for transition systems:

- ▶ s' successor of s if $s \rightarrow s'$
- ightharpoonup s predecessor of s' if $s \to s'$
- s' reachable from s if there exists a sequence of transitions

$$s^0 \xrightarrow{\ell_1} s^1$$
, ..., $s^{n-1} \xrightarrow{\ell_n} s^n$ s.t. $s^0 = s$ and $s^n = s'$

- Note: n = 0 possible; then s = s'
- $ightharpoonup s^0 \xrightarrow{\ell_1} s^1, \ldots, s^{n-1} \xrightarrow{\ell_n} s^n$ is called path from s to s'
- $ightharpoonup s^0, \ldots, s^n$ is also called path from s to s'
- length of that path is n
- additional terms: strongly connected, weakly connected, strong/weak connected components, ...

Transition system terminology (ctd.)

Some additional terminology:

- ► s' reachable (without reference state) means reachable from initial state s₀
- ▶ solution or goal path from s: path from s to some $s' \in S_*$
 - if s is omitted, $s = s_0$ is implied
- \triangleright transition system solvable if a goal path from s_0 exists

Deterministic transition systems

Definition (deterministic transition system)

A transition system with transitions T is called deterministic if for all states s and labels ℓ , there is at most one state s' with $s \stackrel{\ell}{\to} s'$.

Example: previously shown transition system

Running example: blocks world

- Throughout the course, we will often use the blocks world domain as an example.
- ▶ In the blocks world, a number of differently coloured blocks are arranged on our table.
- Our job is to rearrange them according to a given goal.

Blocks world rules

Location on the table does not matter.

Location on a block does not matter.

Blocks world rules (ctd.)

At most one block may be below a block.

At most one block may be on top of a block.

Blocks world transition system for three blocks

(Transition labels omitted for clarity.)

Blocks world computational properties

blocks	states	blocks	states
1	1	10	58941091
2	3	11	824073141
3	13	12	12470162233
4	73	13	202976401213
5	501	14	3535017524403
6	4051	15	65573803186921
7	37633	16	1290434218669921
8	394353	17	26846616451246353
9	4596553	18	588633468315403843

- Finding a solution is polynomial time in the number of blocks (move everything onto the table and then construct the goal configuration).
- Finding a shortest solution is NP-complete (for a compact description of the problem).

2.2 Planning tasks

- State variables
- Propositional logic
- Operators
- Deterministic planning tasks

Compact representations

- ► Classical (i.e., deterministic) planning is in essence the problem of finding solutions in huge transition systems.
- ▶ The transition systems we are usually interested in are too large to explicitly enumerate all states or transitions.
- ► Hence, the input to a planning algorithm must be given in a more concise form.
- ▶ In the rest of chapter, we discuss how to represent planning tasks in a suitable way.

State variables

How to represent huge state sets without enumerating them?

- represent different aspects of the world in terms of different state variables
- → a state is a valuation of state variables.
 - n state variables with m possible values each induce m^n different states
- → exponentially more compact than "flat" representations.
- Example: *n* variables suffice for blocks world with *n* blocks

Blocks world with finite-domain state variables

Describe blocks world state with three state variables:

- location-of-A: {B, C, table}
- location-of-B: {A, C, table}
- ▶ location-of-C: {A, B, table}

Example

$$s(location-of-A) = table$$

 $s(location-of-B) = A$
 $s(location-of-C) = table$

Not all valuations correspond to intended blocks world states.

Example: s with s(location-of-A) = B, s(location-of-B) = A.

Boolean state variables

Problem:

How to succinctly represent transitions and goal states?

Idea: Use propositional logic

- state variables: propositional variables (0 or 1)
- goal states: defined by a propositional formula
- transitions: defined by actions given by
 - precondition: when is the action applicable?
 - effect: how does it change the valuation?

Note: general finite-domain state variables can be compactly encoded as Boolean variables

Blocks world with Boolean state variables

Example

$$s(A-on-B) = 0$$

 $s(A-on-C) = 0$
 $s(A-on-table) = 1$
 $s(B-on-A) = 1$
 $s(B-on-C) = 0$
 $s(B-on-table) = 0$
 $s(C-on-B) = 0$
 $s(C-on-table) = 1$

Syntax of propositional logic

Definition (propositional formula)

Let A be a set of atomic propositions (here: state variables).

The propositional formulae over A are constructed by finite application of the following rules:

- ightharpoonup T and \perp are propositional formulae (truth and falsity).
- ▶ For all $a \in A$, a is a propositional formula (atom).
- ▶ If φ is a propositional formula, then so is $\neg \varphi$ (negation)
- \blacktriangleright If φ and ψ are propositional formulas, then so are $(\varphi \lor \psi)$ (disjunction) and $(\varphi \land \psi)$ (conjunction).

Note: We often omit the word "propositional".

Propositional logic conventions

Abbreviations:

- $(\varphi \to \psi)$ is short for $(\neg \varphi \lor \psi)$ (implication)
- $(\varphi \leftrightarrow \psi)$ is short for $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$ (equivalence)
- parentheses omitted when not necessary
- ▶ (¬) binds more tightly than binary connectives
- ▶ (\land) binds more tightly than (\lor) than (\rightarrow) than (\leftrightarrow)

Semantics of propositional logic

Definition (propositional valuation)

A valuation of propositions A is a function $v: A \to \{0, 1\}$.

Define the notation $v \models \varphi$ (v satisfies φ ; v is a model of φ ; φ is true under v) for valuations v and formulae φ by

- \triangleright $v \models \top$
- v ⊭ ⊥
- \triangleright $v \models a \text{ iff } v(a) = 1, \text{ for } a \in A.$
- \triangleright $v \models \neg \varphi$ iff $v \not\models \varphi$
- \triangleright $v \models \varphi \lor \psi$ iff $v \models \varphi$ or $v \models \psi$
- \triangleright $v \models \varphi \land \psi$ iff $v \models \varphi$ and $v \models \psi$

Propositional logic terminology

- A propositional formula φ is satisfiable if there is at least one valuation v so that $v \models \varphi$.
- Otherwise it is unsatisfiable.
- A propositional formula φ is valid or a tautology if $v \models \varphi$ for all valuations v.
- ▶ A propositional formula ψ is a logical consequence of a propositional formula φ , written $\varphi \models \psi$, if $v \models \psi$ for all valuations v with $v \models \varphi$.
- ► Two propositional formulae φ and ψ are logically equivalent, written $\varphi \equiv \psi$, if $\varphi \models \psi$ and $\psi \models \varphi$.

Question: How to phrase these in terms of models?

Propositional logic terminology (ctd.)

- ▶ A propositional formula that is a proposition a or a negated proposition $\neg a$ for some $a \in A$ is a literal.
- A formula that is a disjunction of literals is a clause. This includes unit clauses I consisting of a single literal, and the empty clause \perp consisting of zero literals.

Normal forms: NNF. CNF. DNF

Operators

Transitions for state sets described by propositions A can be concisely represented as operators or actions $\langle \chi, e \rangle$ where

- \triangleright the precondition χ is a propositional formula over A describing the set of states in which the transition can be taken (states in which a transition starts), and
- ▶ the effect e describes how the resulting successor states are obtained from the state where the transitions is taken (where the transition goes).

Example: blocks world operators

Blocks world operators

To model blocks world operators conveniently, we use auxiliary state variables A-clear, B-clear, and C-clear to denote that there is nothing on top of a given block.

Then blocks world operators can be modeled as:

- $ightharpoonup \langle A\text{-clear} \wedge A\text{-on-}T \wedge B\text{-clear}, A\text{-on-}B \wedge \neg A\text{-on-}T \wedge \neg B\text{-clear} \rangle$
- $ightharpoonup \langle A\text{-clear} \wedge A\text{-on-}T \wedge C\text{-clear}, A\text{-on-}C \wedge \neg A\text{-on-}T \wedge \neg C\text{-clear} \rangle$
- $ightharpoonup \langle A\text{-clear} \wedge A\text{-on-B}, A\text{-on-T} \wedge \neg A\text{-on-B} \wedge B\text{-clear} \rangle$
- \blacktriangleright $\langle A$ -clear \land A-on-C, A-on- $T \land \neg A$ -on- $C \land C$ -clear \rangle
- $ightharpoonup \langle A\text{-}clear \wedge A\text{-}on\text{-}B \wedge C\text{-}clear, A\text{-}on\text{-}C \wedge \neg A\text{-}on\text{-}B \wedge B\text{-}clear \wedge \neg C\text{-}clear \rangle$
- $ightharpoonup \langle A\text{-clear} \wedge A\text{-on-}C \wedge B\text{-clear}, A\text{-on-}B \wedge \neg A\text{-on-}C \wedge C\text{-clear} \wedge \neg B\text{-clear} \rangle$

Effects (for deterministic operators)

Definition (effects)

(Deterministic) effects are recursively defined as follows:

- ▶ If $a \in A$ is a state variable, then a and $\neg a$ are effects (atomic effect).
- ▶ If e_1, \ldots, e_n are effects, then $e_1 \wedge \cdots \wedge e_n$ is an effect (conjunctive effect).
 - The special case with n=0 is the empty effect \top .
- If χ is a propositional formula and e is an effect, then $\chi \triangleright e$ is an effect (conditional effect).

Atomic effects a and $\neg a$ are best understood as assignments a := 1 and a := 0, respectively.

Effect example

 $\chi \triangleright e$ means that change e takes place if χ is true in the current state.

Example

Increment 4-bit number $b_3b_2b_1b_0$ represented as four state variables b_0 , ..., b_3 :

$$(\lnot b_0
hd b_0) \land \ ((\lnot b_1 \land b_0)
hd (b_1 \land \lnot b_0)) \land \ ((\lnot b_2 \land b_1 \land b_0)
hd (b_2 \land \lnot b_1 \land \lnot b_0)) \land \ ((\lnot b_3 \land b_2 \land b_1 \land b_0)
hd (b_3 \land \lnot b_2 \land \lnot b_1 \land \lnot b_0))$$

Definition (changes caused by an operator)

For each effect e and state s, we define the change set of e in s, written [e], as the following set of literals:

- $ightharpoonup [a]_s = \{a\}$ and $[\neg a]_s = \{\neg a\}$ for atomic effects $a, \neg a$
- $[e_1 \wedge \cdots \wedge e_n]_s = [e_1]_s \cup \cdots \cup [e_n]_s$
- $[x \triangleright e]_s = [e]_s$ if $s \models x$ and $[x \triangleright e]_s = \emptyset$ otherwise

Definition (applicable operators)

Operator $\langle \chi, e \rangle$ is applicable in a state s iff $s \models \chi$ and $[e]_s$ is consistent (i. e., does not contain two complementary literals).

Operator semantics (ctd.)

Definition (successor state)

The successor state $app_o(s)$ of s with respect to operator $o = \langle \chi, e \rangle$ is the state s' with $s' \models [e]_s$ and s'(v) = s(v) for all state variables v not mentioned in $[e]_{\varsigma}$.

This is defined only if o is applicable in s.

Example

Consider the operator $\langle a, \neg a \land (\neg c \rhd \neg b) \rangle$ and the state

$$s = \{a \mapsto 1, b \mapsto 1, c \mapsto 1, d \mapsto 1\}.$$

The operator is applicable because $s \models a$ and $[\neg a \land (\neg c \rhd \neg b)]_s = {\neg a}$ is consistent.

Applying the operator results in the successor state

$$app_{(a,\neg a \land (\neg c \triangleright \neg b))}(s) = \{a \mapsto 0, b \mapsto 1, c \mapsto 1, d \mapsto 1\}.$$

Deterministic planning tasks

Definition (deterministic planning task)

A deterministic planning task is a 4-tuple $\Pi = \langle A, I, O, \gamma \rangle$ where

- A is a finite set of state variables (propositions),
- ▶ I is a valuation over A called the initial state.
- O is a finite set of operators over A, and
- $\triangleright \gamma$ is a formula over A called the goal.

Note:

- In the major part of this course, in which we talk about deterministic planning tasks, we usually omit the word "deterministic".
- ▶ When we will talk about nondeterministic planning tasks later, we will explicitly qualify them as "nondeterministic".

Mapping planning tasks to transition systems

Definition (induced transition system of a planning task)

Every planning task $\Pi = \langle A, I, O, \gamma \rangle$ induces a corresponding deterministic transition system $\mathcal{T}(\Pi) = \langle S, L, T, s_0, S_{\star} \rangle$:

- ▶ S is the set of all valuations of A,
- L is the set of operators O,
- ▶ $T = \{\langle s, o, s' \rangle \mid s \in S, o \text{ applicable in } s, s' = app_o(s)\},$
- $ightharpoonup s_0 = I$, and

Tasks

Planning tasks: terminology

- ► Terminology for transitions systems is also applied to the planning tasks that induce them.
- ▶ For example, when we speak of the states of Π , we mean the states of $\mathcal{T}(\Pi)$.
- \blacktriangleright A sequence of operators that forms a goal path of $\mathcal{T}(\Pi)$ is called a plan of Π.

Planning

By planning, we mean the following two algorithmic problems:

Definition (satisficing planning)

Given: a planning task Π

Output: a plan for Π , or **unsolvable** if no plan for Π exists

Definition (optimal planning)

Given: a planning task Π

Output: a plan for Π with minimal length among all plans

for Π , or **unsolvable** if no plan for Π exists

Summary

- ► Transition systems are a kind of directed graph (typically huge) that encode how the state of the world can change.
- Planning tasks are compact representations for transition systems, suitable as input for planning algorithms.
- Planning tasks are based on concepts from propositional logic, suitably enhanced to model state change.
- States of planning tasks are propositional valuations.
- Operators of planning tasks describe when (precondition) and how (effect) to change the current state of the world.
- ▶ In satisficing planning, we must find a solution to planning tasks (or show that no solution exists).
- ▶ In optimal planning, we must additionally guarantee that generated solutions are of the shortest possible length.