Report

Robot Car Contest

contributer

นายนันทพงศ์	พงศ์ธำรงศักดิ์	รหัสนักศึกษา	67011475
นายติณณ์	สูงเมฆ	รหัสนักศึกษา	67011448

Introduction to Computer Engineering (ICE)
Semester 1 Year 1 | Bachelor of Computer Engineering
King Mongkut's Institute of Technology Ladkrabang, KMITL

Table of Content

แนวคิดและหลักการทำงานของ Robot Car	
การออกแบบ Hardware ของ Robot Car	3
Circuit Diagram ของ Robot Car	5
การออกแบบ Software Design ของ Robot Car	6
Source Code ของ Robot Car	10

Robot Car Contest - Report

แนวคิดและหลักการทำงานของ Robot Car

การทำงานของ Robot Car โดยสังเขป คือ หุ่นยนต์จะเคลื่อนที่ตามเส้นสีดำบนสนาม ซึ่งประกอบด้วยเส้นทึบและเส้นประ ในกรณีที่หุ่นยนต์เคลื่อนที่ออกนอกเส้นทาง (เกิดข้อผิด พลาด) ระบบจะพยายามปรับทิศทางกลับเข้าสู่เส้นทางเดิมโดยอัตโนมัติ หุ่นยนต์จะเริ่มเดินจาก จุดเริ่มต้นจนไปถึงจุดสิ้นสุด

อีกหนึ่งฟังก์ชันการทำงานที่สำคัญคือ เมื่อหุ่นยนต์พบทางแยก จะหยุดและรอรับ สัญญาณไฟ หากไฟกระพริบ 1 ครั้ง หุ่นยนต์จะเลี้ยวซ้าย และหากไฟกระพริบ 2 ครั้ง หุ่นยนต์จะ เลี้ยวขวา

- Field Mission
 - สนามขนาดประมาณ 2×3 m
 - —เส้นหนาประมาณ 3 cm
 - มุมโดยประมาณ แสดงในสนาม
 - จุดตั้งสัญญาณไฟ a และ b1 หรือ b2
 - ถ้า A กระพริบ 1 ครั้ง (ไปทางซ้าย)
 - ตั้งสัญญาณไฟที่ b2
 - ถ้า A กระพริบ 2 ครั้ง (ไปทางชวา)
 - ตัวสัญญาณไฟที่ b1

ในการออกแบบตัว Robot ได้ทำการจัดวางอุปกรณ์ต่างๆให้เหมาะสมได้แก่ บอร์ด Arduino UNO, Ultrasonic Sensor, IR Sensor (TCRT5000), LDR Sensor, L298N Dual Motor Controllerและรางถ่าน เพื่อให้เกิดความสมดุล

โดยอุปกรณ์ที่ใช้มีดังนี้

ลำดับ	ชื่ออุปกรณ์	จำนวนชิ้น
1	Robot car	1
2	Arduino UNO R3	1
3	Ultrasonic Sensor	1
4	LDR Sensor	1
5	IR Sensor	5
6	ตัวต้านทาน 220 โอห์ม	5
7	ตัวต้านทาน 10000 โอห์ม	5
8	บอร์ดไข่ปลา	1
9	Pin header	7
10	8 Pin Female Header PCB Connectors	1

Robot Car Contest 4

ลำดับ	ชื่ออุปกรณ์	จำนวนชิ้น	
11	L298N Dual Motor Controller Module	1	
12	รางถ่าน	1	
13	ถ่าน	2	
14	DC Motor	2	
15	Male to Male Cable Jumper	7	
16	Male to Female Cable Jumper	20	

TCRTS000 (Bottom View)

- กลไกการเดินตามเส้น

ใช้ IR Sensor ทั้งหมด 5 ตัว ในการอ่านข้อมูล เส้นบนสนาม ณ ขณะเวลา หนึ่ง ๆ โดยค่าเซ็นเซอร์ที่อ่านเส้นสีดำได้จะแตกต่างกันเนื่องจาก IR Sensor แต่ละตัวมีประสิทธิภาพ แตกต่างกัน โดยเรียงจากซ้าย ไป ขวา ดังภาพ

IR sensor 1 < 600 จะพบเส้นดำ

IR sensor 2 < 650 จะพบเส้นดำ

IR sensor 3 < 800 จะพบเส้นดำ

IR sensor 4 < 600 จะพบเส้นดำ

IR sensor 5 < 650 จะพบเส้นดำ

เพื่อให้ง่ายต่อความเข้าใจได้สะดวก แทนเลข 1 เมื่อเซ็นเซอร์ เมื่อพบ เส้นดำ แทนเลข 0 เมื่อเซ็นเซอร์ ไม่พบ เส้นดำ

โดยสามารถอธิบายพฤติกรรมการเดินเส้นโดยทั่วไปของ Robot car ได้ตามตารางนี้

IR SENSOR (จาก ช้าย ไป ขวา)	พฤติกรรมของ Robot Car
0 0 1 0 0	เดินตรง
00110	เอียงขวาเล็กน้อย
0 1 1 0 0	เอียงซ้ายเล็กน้อย
0 0 0 1 1	เอียงขวา
1 1 0 0 0	เอียงซ้าย
0 0 1 1 1	พบโค้งหักศอกทางขวา
11100	พบโค้งหักศอกทางซ้าย
10111	พบโค้งหักมุมทางขวา
11101	พบโค้งหักมุมทางซ้าย
11111	พบทางแยก
0 0 0 0 0	หลุดออกจากเส้นทาง

โดยที่พฤติกรรมของหุ่นที่แตกต่างกันในแต่ละกรณี จะนำไปสู่การตัดสินใจเดินที่แตกต่างกัน เช่น หาก หุ่นอยู่ในสถานะเดินตรงตามเส้น ก็จะพยายามเดินตรงตามเส้นต่อไป แต่หากในกรณีที่ หุ่นมีการเอียงออกจาก เส้น ก็จะพยายามเดินกลับเข้าสู่เส้น

- การควบคุมทิศทางของ Robot Car

ในการควบคุม Robot Car จะใช้ DC motor จำนวนสองตัว (ซ้ายและขวา) โดยสั่งงาน ผ่าน Motor Driver Module (L298N) โดยหากต้องการควบคุมให้ Robot Car เคลื่อนที่ไปใน ทิศทางที่ต่างกัน อาจมีหลักการในการสั่งงานโดยถ้าต้องการเลี้ยวจะให้มอเตอร์ ข้างใดข้าง นึงหมุนช้ากว่ามอเตอร์อีกข้างนึงเพื่อให้การเลี้ยวมีประสิทธิภาพมากที่สุด โดยความเร็วปกติที่ Robot Car ตั้งไว้คือ 65

ทิศทาง	ความเร็ว DC motor (ซ้าย)	ความเร็ว DC motor (ขวา)	หมายเหตุ
ตรงไป	65	65	
เลี้ยวขวา แบบเลี้ยวปกติ	32.50	65	
เลี้ยวซ้าย แบบเลี้ยวปกติ	65	32.50	
เลี้ยวขวา แบบเลี้ยวเฉียบแหลม	21.67	65	
เลี้ยวซ้าย แบบเลี้ยวเฉียบแหลม	65	21.67	
เลี้ยวขวา แบบเลี้ยวเพิ่มกำลัง	21.67	75	
เลี้ยวซ้าย แบบเลี้ยวเพิ่มกำลัง	75	21.67	
หมุนซ้าย	65	65	มอเตอร์ขวาหมุน ไปข้างหน้า มอเตอร์ซ้ายหมุน ไปข้างหลัง
หมุนขวา	65	65	มอเตอร์ซ้ายหมุน ไปข้างหน้า มอเตอร์ขวาหมุน ไปข้างหลัง
หยุด	0	0	
ถอยหลัง	65	65	มอเตอร์ทั้งคู่ หมุนถอยหลัง

โดยในการสั่งงาน ได้สร้างฟังก์ชันการเลี้ยวแต่ละแบบไว้ เพื่อการสั่งงาน ซึ่งจะได้ลงรายละเอียด ต่อไปในการอธิบาย Source Code

- Algorithm ในการจัดการกับเส้นประ

เนื่องจากในสนามแข่งมีเส้นที่เป็นลักษณะของเส้นประ ทำให้เมื่อตัว Robot Car เดินทางถึงตำแหน่ง เส้นประดังกล่าว ทำให้ IR Sensor ทั้งหมดตรวจจับเป็นสีขาว ทำให้เมื่อ Robot Car เจอกับเส้นประ ตัว Robot Car จะมองว่า หลุดออกนอกเส้นทาง จึงทำการถอยหลัง กลับจนกลับมาเจอเส้นสีดำ แล้วก็จะ เดินหน้าจนเจอสีขาวทั้งหมดอีก แล้วก็จะถอยหลังกลับมา เจอสีดำอีก วนแบบนี้ไป เรื่อย ๆ ทำให้ Robot Car ไม่สามารถผ่านเส้นประได้

จึงแก้โดยการเมื่อ IR Sensor ทั้งหมดไม่พบเส้นดำ

- 1.ให้ทำการเดินหน้าไปเป็นระยะเวลานึง
 2.ถ้าเดินไปแล้วตรวจพบเส้นดำให้เดินไปต่อแบบปกติ ถ้าหากไม่พบให้ทำการถอยหลังจนกว่าจะพบเส้นดำเพื่อ
- ถาหาก เมพบ เหทาการถอยหลงจนกวาจะพบเส ให้เข้าสู่เส้นทางเดิม

- Algorithm ในการจัดการกับสัญญาณไฟ

เมื่อ Robot Car อ่านค่าจาก IR Sensor ได้เป็นสีดำทั้งหมด Robot Car จะ detect ได้ ว่าตอนนี้น่าจะต้องรอรับสัญญาณไฟ เมื่อสัญญาณไฟกระพริบ 1 และ 2 ครั้ง Robot Car จะเลี้ยว ไปทางซ้ายและขวาตามลำดับ

การตรวจสอบว่าสัญญาณไฟกระพริบ 1 หรือ 2 ครั้ง จะใช้ LDR Sensor ซึ่งตั้ง OUTPUT ไว้เป็น Analog โดยถ้ามีไฟเข้า LDR Sensor จะให้ค่าที่น้อยกว่า 600

- 1.โดยถ้ามีไฟเข้ามาจะสร้างตัวแปร Temp_light = 0 ขึ้นมา แล้วตั้งค่า Temp_light = 1 แล้วรอเป็นระยะเวลา 8 วินาที
- 2.ถ้าระหว่างนั้นมีไฟเข้ามาอีกรอบ จะตั้ง Temp_light = 2 พอครบ 8 วินาที แล้วให้ทำ การเลี้ยวตามเงื่อนไขที่ตั้งไว้
- 3.พอเลี้ยวแล้วจะให้ทำการลดกำลังเครื่องลงเป็นระยะเวลา 15 วินาที เพื่อให้รถสามารถ จัดการหน้ารถตัวเองเพื่อให้หยุดในทางแยกถัดไปได้อย่างพอดี
- 4. และ ในกรณีที่หากไม่มีไฟเข้ามา นั้นคือ Temp_light = 0 จะให้ทำการถอยหลังแทน เพื่อให้รถสามารถเดินไปได้อย่างปกติ เพื่อป้องกันในกรณีเมื่อบังเอิญเซ็นเซอร์ทั้งหมดพบเส้น ดำทั้งหมดแต่ไม่ใช่ทางแยก

- Algorithm การเลี้ยวเมื่อถึงโค้งหักมุม

เมื่อเผชิญหน้ากับโค้งหักมุม บ่อยครั้งที่ Robot Car จะเกิดปัญหา ในการเลี้ยว คือ ไม่ สามารถเลี้ยวได้ หรือบางครั้งถอยเข้าถอยออกจากฟังก์ชันที่จัดการเส้นประจนไม่สามารถเดิน หน้าต่อไปได้ จึงคิด Algorithm ในการจัดการกับการเลี้ยวโค้งหักมุมขึ้น

เรียงลำดับ IR Sensor จากซ้ายไปขวา

โดย จะสังเกตุว่า IR Sensor ตัวที่ 3 และ ตัวที่ 5 หรือ ตัวที่ 1 เมื่อเป็นกรณีเมื่อพบโค้งหักมุม

- 1. จะให้ทำการให้รถเดินไปข้างหน้าเป็นระยะเวลา 1 วินาที เพื่อให้ IR Sensor พ้นเส้นดำ
- 2. เมื่อครบ 1 วินาที แล้ว รถจะหมุนแล้ว หมุนจนกว่า IR Sensor ตัวที่ 1 หรือ ตัวที่ 5 พบ เส้นดำ
- 3. เมื่อพบเส้นดำแล้วให้รถเดินตามปกติ

ชึ่งมีอัตตราการสำเร็จมากกว่า 90 % ถ้าหากไม่สำเร็จ รถจะทำการไปข้างหน้าแล้วถอยหลังกลับ ตามฟังก์ชันแบบเดียวกับเส้นประ แก้ไขโดยการต้องรีเช็ตการเดินรถใหม่

Source Code ของ Robot Car

```
void setup() {
  pinMode(enA, OUTPUT);
  pinMode(enB, OUTPUT);
  pinMode(in1, OUTPUT);
  pinMode(in2, OUTPUT);
  pinMode(in3, OUTPUT);
  pinMode(in4, OUTPUT);
  pinMode(trigPin, OUTPUT);
  pinMode(echoPin, INPUT);
  Serial.begin(9600);
}
```

```
void moveForward(int speed) {
   analogWrite(enA, speed);
  analogwrite(enh, speed);
analogwrite(enB, speed);
digitalWrite(in1, LOW);
digitalWrite(in2, HIGH);
digitalWrite(in3, HIGH);
  digitalWrite(in4, LOW);
void moveBackward(int speed) {
  analogWrite(enA, speed);
  analogWrite(enB, speed);
digitalWrite(in1, HIGH);
  digitalWrite(in2, LOW);
digitalWrite(in3, LOW);
  digitalWrite(in4, HIGH);
void stopMotors() {
  analogWrite(enA, 0);
  analogWrite(enB, 0);
digitalWrite(in1, LOW);
  digitalWrite(in2, LOW);
digitalWrite(in3, LOW);
  digitalWrite(in4, LOW);
void turnLeft(int speed) {
  analogWrite(enA, speed );
   analogWrite(enB, speed/2);
                                                                   ฟังก์ชันรถเลี้ยวซ้าย แบบ เลี้ยวปกติ
  digitalWrite(in2, HIGH);
digitalWrite(in3, HIGH);
  digitalWrite(in4, LOW);
                                                                                                                                                                ใช้ในกรณีที่เจอทางโค้งแบบปกติ
void turnRight(int speed) {
  analogWrite(enA, speed/2 );
analogWrite(enB, speed);
digitalWrite(in1, LOW);
  digitalWrite(in2, HIGH);
digitalWrite(in3, HIGH);
   digitalWrite(in4, LOW);
```



```
analogWrite(enA, speed);
analogWrite(enB, speed);
  digitalWrite(in1, HIGH);
digitalWrite(in2, LOW);
digitalWrite(in3, HIGH);
                                                    ฟังก์ชันหมุนรถไปทางซ้าย
  digitalWrite(in4, LOW);
                                                                                                            ใช้ในกรณีพบโค้งหักมุม 30 , 45 องศา
void rotateRight(int speed) {
  analogWrite(enA, speed);
  analogWrite(enB, speed);
digitalWrite(in1, LOW);
  digitalWrite(in2, HIGH);
digitalWrite(in3, LOW);
  digitalWrite(in4, HIGH);
int measureDistance() {
    digitalWrite(trigPin, LOW);
  delayMicroseconds(2);
  digitalWrite(trigPin, HIGH);
  delayMicroseconds(10);
  digitalWrite(trigPin, LOW);
  duration = pulseIn(echoPin, HIGH);
  int distance = duration * 0.034 / 2;
```

```
void loop() {

distance = measureDistance();

DoNale = analogRead(idr);

if (distance < 15) {

stopetors();

} climater < 45) {

stopetors();

stopetors()
```

```
else if (sensor3 < 800 && sensor2 < 650 && sensor1 < 600)
  sensor5 = analogRead(IR5); sensor4 = analogRead(IR4);
 while(sensor5 > 800 || sensor4 > 750){
   sensor5 = analogRead(IR5); sensor4 = analogRead(IR4);
   rotateRight(motorSpeed);
  if(sensor5 < 800 || sensor4 < 750) {</pre>
}else if( sensor3 < 800 && sensor4 < 750 && sensor5 < 650){
     sensor1 = analogRead(IR5); sensor2 = analogRead(IR2);
 while(sensor1 > 600 || sensor2 > 650){
sensor1 = analogRead(IR5); sensor2 = analogRead(IR2);
   rotateLeft(motorSpeed);
   if(sensor1 < 600 || sensor2 < 650) {</pre>
lelse if (sensor3 < 800 && sensor2 < 650) {
 turnLeftSuperSharp(motorSpeed);
}else if( sensor3 < 800 && sensor4 < 750){
  turnRightSuperSharp(motorSpeed);</pre>
else if( sensor3 < 800 && sensor5 < 800 && sensor2 < 650)
  moveForward(motorSpeed);
 sensor1 = analogRead(IR1);
 while(sensor1 >= 800){
     sensor1 = analogRead(IR1);
     rotateRight(motorSpeed);
```

```
else if( sensor3 < 800 && sensor1 < 800 && sensor4 < 750){
  moveForward(motorSpeed);
 sensor5 = analogRead(IR5);
  while(sensor5 >= 800){
      sensor5 = analogRead(IR5);
rotateLeft(motorSpeed);
}else if( sensor3 < 800 && sensor1 < 600){
  moveForward(motorSpeed);
 all_blackline_detected_mode_startTime = millis();
while(millis() - all_blackline_detected_mode_startTime < 1000){</pre>
    | | | sensor1 = analogRead(IR1); sensor2 = analogRead(IR2); sensor3 = analogRead(IR3); sensor4 = analogRead(IR4); sensor5 = analogRead(IR5); if(sensor1 < 600 && sensor2 < 650 && sensor3 < 800 && sensor4 < 600 && sensor5 < 650){
  sensor1 = analogRead(IR1);
      sensor1 = analogRead(IR1);
rotateRight(motorSpeed);
else if( sensor3 < 800 && sensor5 < 800)
 moveForward(motorSpeed);
all_blackline_detected_mode_startTime = millis();
  while(millis() - all_blackline_detected_mode_startTime < 1000){

| | | | sensor1 = analogRead(IR1); sensor2 = analogRead(IR2); sensor3 = analogRead(IR3); sensor4 = analogRead(IR4); sensor5 = analogRead(IR5);

if(sensor1 < 600 && sensor2 < 650 && sensor3 < 800 && sensor4 < 600 && sensor5 < 650){
 sensor5 = analogRead(IR5);
while(sensor5 >= 800){
      sensor5 = analogRead(IR5);
rotateLeft(motorSpeed);
```

```
| palse if (sensor3 < 880) {
| moveForusrd(motorSpeed);
| class if (sensor4 < 750) {
| turnLeft(motorSpeed);
| class if (sensor4 < 750) {
| turnLeft(motorSpeed);
| class if (sensor4 < 750) {
| turnLeft(motorSpeed);
| class if (sensor4 < 750) {
| turnLeftsharp(motorSpeed);
| class if (sensor4 < 760) {
| turnLeftsharp(motorSpeed);
| class if (sensor4 < 760) {
| turnLeftsharp(motorSpeed);
| class if (sensor4 < 760) {
| turnLeftsharp(motorSpeed);
| class if (sensor4 < 760) {
| turnLeftsharp(motorSpeed);
| class if (sensor4 < 760) {
| turnLeftsharp(motorSpeed);
| class if (sensor4 < 760) {
| turnLeftsharp(motorSpeed);
| class if (sensor4 > 600) {
| turnLeftsharp(motorSpeed);
| class if (sensor4 > 600) {
| sensor4 < 600] {
| sensor4 < 600 | | sensor5 > 650) {
| sensor6 = analogRead(IRI); sensor7 = analogRead(IR2); sensor3 = analogRead(IR3); sensor4 = analogRead(IR4); sensor5 = analogRead(IR5); sensor4 < 600 | | sensor6 < 600) {
| sensor1 < 600 | | sensor2 < 650 | | sensor3 < 800 | | sensor4 < 600 | | sensor4 = analogRead(IR4); sensor5 = analogRead(IR5); sensor4 = analogRead(IR1); sensor5 = analogRead(IR1); sensor4 = analogRead(IR1); sensor5 = analogRead(IR1); sensor6 < 650) {
| return; | sensor6 | senso
```