ДЕРЕВА РІШЕНЬ (DECISION TREES)

ПОНЯТТЯ ДЕРЕВА РІШЕНЬ

Приклад

Задача: чи виграє "Динамо" свій наступний матч?
Параметри (незалежні змінні):

чи вдома грається матч;
чи вище знаходиться суперник в турнірній таблиці;
яка температура повітря;
чи йде дощ.

Відомі результати декількох матчів.

Спрогнозувати результат матчу при інших значеннях параметрів.

Приклад: результати попередніх ігор

Де грає	Суперник	Температура	Дощ	Перемога
Вдома	Вище	Висока	Так	Hi
Вдома	Нижче	Норма	Hi	Так
В гостях	Нижче	Норма	Так	Так
В гостях	Нижче	Висока	Так	Hi
Вдома	Вище	Висока	Hi	Так
Вдома	Нижче	Висока	Так	Hi
В гостях	Нижче	Висока	Hi	Hi
В гостях	Вище	Норма	Hi	Так

Приклад: дерево рішень

Приклад: дерево рішень: інша коренева вершина

Основні поняття

- □ Дерево рішень (ДР) інтуїтивно зрозумілий метод класифікації шляхом задання серії уточнюючих питань.
- □ У бінарному ДР кожний вузол розбиває дані на підмножини за допомогою порогового значення однієї з ознак.
- □ У гарно спроектованому ДР кожне питання буде зменшувати кількість варіантів приблизно вдвоє, швидко звужує можливі варіанти навіть при великій кількості класів.
- □ Дерева рішень це основа **випадкового лісу,** ансамблю моделей на основі дерев рішень.

Постановка задачі класифікації

Дано: Множина об'єктів
$$T=\{t_1,t_2,...,t_n\}$$
 навчальна вибірка $t_i \to \{x_1,x_2,...,x_m,y\}$ (тестові приклади) $X=\{x_1,x_2,...,x_m\}$ - незалежні змінні (атрибути) $C_h=\{c_{h1},c_{h2},...,c_{hq_h}\}$ - значення, які приймає x_h y - залежна змінна $V=\{v_1,v_2,...,v_s\}$ - значення, які приймає y

Знайти: спрогнозувати значення y при нових значеннях незалежних змінних

Поняття дерева рішень

Дерево рішень — зв'язний граф з множиною вершин, який не містить циклів і має окрему вершину, в яку не входить жодне ребро. Ця вершина називається коренем дерева.

Вершини двох видів: внутрішні та листи.

Приклад: дерево рішень

АЛГОРИТМ РОЗБИТТЯ Надія І. Недашківська n.nedashkivska@gmail.com

Методи побудови дерев рішень Алгоритм розбиття: загальний підхід

Ідея: Побудова дерева зверху-вниз, від кореня до листів

Рекурсивне розбиття навчальної вибірки на максимально більш "чисті" підмножини

Розбиття має бути значущим — класифікувати найбільшу кількість елементів навчальної вибірки

Алгоритм розбиття

1. Якщо множина T містить елементи, які відносяться до різних класів, тоді

1.1.
$$x_h$$
 $T = \bigcup_{i=1}^{q_h} T_i$

$$T_i \subseteq T: x_h = c_{hi}$$

Множини T_i більш "чисті" в порівнянні з T.

1.2.
$$T := T_i$$
 $\forall i = 1,...,q_h$

Методи побудови дерев рішень Алгоритми розбиття: загальний підхід

\mathcal{X}_h	=	"Де	грає"
-----------------	---	-----	-------

 T_1

 c_{h1} = "Вдома"

 T_2

 C_{h2} = "В гостях"

Де гра	ає Суперник	Температура	Дощ	Перемога
Вдома	Вище	Висока	Так	Hi
Вдома	Вище	Висока	Hi	Так
Вдома	Нижче	Норма	Hi	Так
Вдома	Нижче	Висока	Так	Hi
В гостях	Нижче	Норма	Так	Так
В гостях	Нижче	Висока	Так	Hi
В гостях	Нижче	Висока	Hi	Hi
В гостях	Вище	Норма	Hi	Так

Вибір змінної розбиття: загальне правило

$$x_h^*$$
: $\max_{h=1,...,n}$ кількість елементів у T_i , що належать одному класу $i=1,...,q_h$

Потрібний **критерій помилки**, який показує, наскільки якісно дана умова, тобто дана пара (ознака h та значення цієї ознаки q_h) розбиває вибірку T на підвибірки T_i .

Приклад: варіанти розбиття дерева

Властивості алгоритму розбиття

□ "жадібність"

На кожному кроці робить локально оптимальний вибір, допускаючи, що результат буде глобально оптимальним

ациклічність

Алгоритм не дозволяє повернутися назад і вибрати іншу змінну розбиття

Критерії вибору змінної розбиття

□ Ентропійні (- приросту інформації – ID3, - відношення приросту інформації – C4.5)
 □ Хі-квадрат
 □ Джині

Поняття ентропії

Означення: Нехай множина T складається з n об'єктів, k з яких мають властивість S.

Тоді $\underline{\textbf{ентропія}}$ множини T по відношенню до властивості S

$$H(T,S) = -\frac{k}{n}\log_2\frac{k}{n} - \frac{n-k}{n}\log_2\frac{n-k}{n}$$

$$H(T,S)=1$$
 коли $k=n/2$ $H(T,S)=0$ коли $k=n$

Якщо S може приймати s різних значень, кожне з яких — в k_i випадках, тоді

$$H(T,S) = -\sum_{i=1}^{S} \frac{k_i}{n} \log_2 \frac{k_i}{n}$$

Приклад 1: розрахунок ентропії

Де грає	Суперник	Температура	Дощ	Перемога
Вдома	Вище	Висока	Так	Hi
Вдома	Нижче	Норма	Hi	Так
В гостях	Нижче	Норма	Так	Так
В гостях	Нижче	Висока	Так	Hi
Вдома	Вище	Висока	Hi	Так
Вдома	Нижче	Висока	Так	Hi
В гостях	Нижче	Висока	Hi	Hi
В гостях	Вище	Норма	Hi	Так

$$H(T,Victory) = -\frac{4}{8}\log_2\frac{4}{8} - \frac{4}{8}\log_2\frac{4}{8} = 1$$

Приклад 2: розрахунок ентропії

Де грає	Суперник	Температура	Дощ	Перемога Цільова змінна
Вдома	Вище	Висока	Так	Hi
Вдома	Вище	Висока	Hi	Так
Вдома	Нижче	Норма	Hi	Так
В гостях	Нижче	Норма	Так	Так
В гостях	Нижче	Висока	Так	Hi
Вдома	Нижче	Висока	Так	Hi
В гостях	Нижче	Висока	Hi	Так

$$H(T, S) = -4/7 \log_2 (4/7) - 3/7 \log_2 (3/7)$$

Критерій помилки розбиття для часткового випадку бінарного дерева

Потрібний **критерій помилки**, який показує, наскільки якісно дана умова, тобто дана пара (ознака h та значення порогу t) розбиває вибірку T на підвибірки T_L і T_R :

$$L(T, x_h, t) = \frac{|T_L|}{|T|} H(T_L) + \frac{|T_R|}{|T|} H(T_R)$$

Ентропійний критерій вибору змінної розбиття (алгоритм ID3) для загального, не бінарного дерева

Ідея: Максимізувати приріст інформації в результаті розбиття

Означення: Нехай множина T об'єктів, які характеризуються

властивістю S, класифіковано за змінною x_h ,

яка приймає q_h значень.

Приростом інформації (Gain) в результаті розбиття називається

$$Gain(T, x_h) = H(T, S) - \sum_{i=1}^{q_h} \frac{|T_i|}{|T|} H(T_i, S)$$
 $T_i \subseteq T: x_h = c_{hi}$ Ентропія розбиття

$$x_h^* = \underset{h}{\operatorname{arg}} \max_{h} Gain(T, x_h)$$
 - корінь дерева (піддерева)

Приклад 1: розрахунок приросту інформації

$$\mathcal{X}_h$$
 = "Де грає"

$$Gain(T, x_h) = H(T, S) - \sum_{i=1}^{q_h} \frac{|T_i|}{|T|} H(T_i, S)$$

Де грає	Суперник	Температура	Дощ	Перемога
Вдома	Вище	Висока	Так	Hi
Вдома	Нижче	Норма	Hi	Так
В гостях	Нижче	Норма	Так	Так
В гостях	Нижче	Висока	Так	Hi
Вдома	Вище	Висока	Hi	Так
Вдома	Нижче	Висока	Так	Hi
В гостях	Нижче	Висока	Hi	Hi
В гостях	Вище	Норма	Hi	Так

$$H(T,S) = -\sum_{i=1}^{s} \frac{k_i}{n} \log_2 \frac{k_i}{n}$$

$$Gain(T, x_h) =$$

$$=1-\frac{4}{8}\cdot 1-\frac{4}{8}\cdot 1=0$$

$$= H(T, Victory) - \frac{4}{8}H(T_{\text{at_home}}, Victory) - \frac{4}{8}H(T_{\text{in_guest}}, Victory) = \frac{2}{4}\log_2\frac{2}{4} - \frac{2}{4}\log_2\frac{2}{4} - \frac{2}{4}\log_2\frac{2}{4} - \frac{2}{4}\log_2\frac{2}{4} - \frac{2}{4}\log_2\frac{2}{4}$$

Приклад 1: дерево рішень

Приклад 1: розрахунок приросту інформації

 X_h = "Суперник"

$$Gain(T, x_h) = 0.049$$

 \mathcal{X}_h = "Температура"

 $Gain(T, x_h) = 0.549$

$$\mathcal{X}_h$$
 = "Дощ"

 $Gain(T, x_h) = 0.189$

Приклад 2: розрахунок ентропії

Де грає	Суперник	Температура	Дощ	Перемога Цільова змінна
Вдома	Вище	Висока	Так	Hi
Вдома	Вище	Висока	Hi	Так
Вдома	Нижче	Норма	Hi	Так
В гостях	Нижче	Норма	Так	Так
В гостях	Нижче	Висока	Так	Hi
Вдома	Нижче	Висока	Так	Hi
В гостях	Нижче	Висока	Hi	Так

$$H(T, S) = -4/7 \log_2 (4/7) - 3/7 \log_2 (3/7)$$

Приклад 2: розрахунок приросту інформації

$$X_h$$
 = "Суперник"

$$Gain(T, x_h) = H(T, S) - \sum_{i=1}^{q_h} \frac{|T_i|}{|T|} H(T_i, S)$$

Де грає	Суперник	Температура	Дощ	Перемога Цільова змінна
Вдома	Вище	Висока	Так	Hi
Вдома	Вище	Висока	Hi	Так
Вдома	Нижче	Норма	Hi	Так
В гостях	Нижче	Норма	Так	Так
В гостях	Нижче	Висока	Так	Hi
Вдома	Нижче	Висока	Так	Hi
В гостях	Нижче	Висока	Hi	Так

Gain (T,
$$x_h$$
) = H(T, S) - $-2/7$ H(T₁, S) - $5/7$ H(T₂,S)

$$H(T_1, S) = -1/2 \log_2 (1/2) - 1/2 \log_2 (1/2)$$

$$H(T_2,S) = -3/5 \log_2 (3/5) - 2/5 \log_2 (2/5)$$

Переваги алгоритму ID3

- 1) простота та інтерпретовність класифікації. Алгоритм може видати пояснення класифікації в термінах предметної області
- 2) трудомісткість алгоритма лінійна по довжині вибірки
- 3) не буває відмови від класифікації
- 4) простий в реалізації і легко піддається покращенням. Можна вводити різні критерії розбиття, зупинки тощо.

Недоліки алгоритму ID3

- 1) жадібність
- 2) висока чутливість до складу вибірки
- 3) фрагментація
- 4) переускладнює структуру дерева і тому схильний до перенавчання. Класифікаційна здатність є невисокою.

Способи подолання недоліків — застосування евристичних прийомів:

- редукція,
- погляд вперед (look ahead),
- побудова сукупності дерев класифікаційного лісу (random forest)

Приклад 1: результати попередніх ігор

Де грає	Суперник	Температура	Дощ	Перемога
Вдома	Вище	Висока	Так	Hi
Вдома	Нижче	Норма	Hi	Так
В гостях	Нижче	Норма	Так	Так
В гостях	Нижче	Висока	Так	Hi
Вдома	Вище	Висока	Hi	Так
Вдома	Нижче	Висока	Так	Hi
В гостях	Нижче	Висока	Hi	Hi
В гостях	Вище	Норма	Hi	Так

Приклад 1: дерево рішень

Приклад 1: дерево рішень: інша вершина

Ефект "перенавчання" (overfitting) моделі

Перенавчання моделі — явище, коли побудована модель добре пояснює приклади з навчальної вибірки, але відносно погано працює на прикладах, які не брали участі в навчанні, наприклад на прикладах з тестової вибірки.

Це пов'язано з тим, що при побудові моделі («в процесі навчання») в навчальній вибірці виявляються деякі випадкові закономірності, які відсутні в генеральній сукупності.

Модель запам'ятовує величезну кількість всіх можливих прикладів замість того, щоб навчитися помічати особливості.

Ефект "перенавчання" (overfitting) моделі

Зелена крива – перенавчена модель.

Чорна крива має кращу узагальнюючу здатність, надасть кращий прогноз на нових даних.

Алгоритм ID3 схильний до перенавчання

$$oldsymbol{\mathcal{X}}_h$$
 — ключ об'єкта

$$X_h$$
 — ключ об'єкта $Gain(T, X_h) = H(T, S) - \sum_{i=1}^q rac{\mid T_i \mid}{\mid T \mid} H(T_i, S)$

$$T_i \subseteq T$$
: $x_h = c_{hi}$ $|T_i| = 1$

$$Gain(T,x_h) = H(T,S) - \sum_{i=1}^{q} \frac{1}{q} H(T_{x_h = c_{hi}}, S) = H(T,S)$$

$$H(T,S) = -\sum_{i=1}^{S} \frac{k_i}{n} \log_2 \frac{k_i}{n}$$

Алгоритм С4.5 вибору змінної розбиття

Відношенням приросту інформації (Gain_ratio) в результаті розбиття називається:

$$Gain_ratio(T,x_h) = rac{Gain(T,x_h)}{Split_info(T,x_h)}$$
 в результаті розбиття - Оцінка потенційної

- Приріст інформації в результаті розбиття
- Оцінка потенційної інформації в результаті розбиття

$$Split_info(T,x_h) = -\sum_{i=1}^{q} \frac{|T_i|}{|T|} \log_2\left(\frac{|T_i|}{|T|}\right)$$

$$x_h^* = \underset{h}{\operatorname{arg\,max}} \operatorname{Gain} \underline{} ratio(T, x_h)$$
 - корінь дерева (піддерева)

Приклад 2: ілюстрація алгоритму С4.5

$$X_h$$
 = "Суперник"

$$Gain_ratio(T,x_h) = \frac{Gain(T,x_h)}{Split_info(T,x_h)}$$

Де грає	Суперник	Температура	Дощ	Перемога Цільова змінна
Вдома	Вище	Висока	Так	Hi
Вдома	Вище	Висока	Hi	Так
Вдома	Нижче	Норма	Hi	Так
В гостях	Нижче	Норма	Так	Так
В гостях	Нижче	Висока	Так	Hi
Вдома	Нижче	Висока	Так	Hi
В гостях	Нижче	Висока	Hi	Так

Gain (T,
$$x_h$$
) = H(T, S) - $-2/7$ H(T₁, S) - $5/7$ H(T₂,S)

$$Split_info(T,x_h) = -\sum_{i=1}^{q} \frac{|T_i|}{|T|} \log_2 \left(\frac{|T_i|}{|T|}\right)$$

Split_info (T,
$$x_h$$
) = $-2/7 \log_2 (2/7) - 5/7 \log_2 (5/7)$

Модифіковані алгоритми розбиття C4.5 (ID3)

Робота з неперервними ознаками – встановлення порогів для розбиття:

- 1) приклади сортуються у порядку зростання значень вибраної ознаки $\{c_1, c_2, ..., c_a\}$
- 2) розглядаються значення порогів $\{c_1, c_2, ..., c_{q-1}\}$
- 3) вибирається оптимальне значення порогу що забезпечує максимальне значення Gain_ratio (у випадку С4.5) або Gain (у випадку ID3)

Приклад оцінювання кредитного ризику

№ клієнта	Збере- ження	Інші активи (нерухо- мість, автомобіль тощо)	Річний дохід	Кредитний ризик
1	Середні	Високі	75	Низький
2	Низькі	Низькі	50	Високий
3	Високі	Середні	25	Високий
4	Середні	Середні	50	Низький
5	Низькі	Середні	100	Низький
6	Високі	Високі	25	Низький
7	Низькі	Низькі	25	Високий
8	Середні	Середні	75	Низький

Приклад оцінювання кредитного ризику за модифікованим алгоритмом ID3

	№ розбиття	Дочірні вузли	Приріст інформації	
	1	Збереження=Низькі	0,360	
"Aı	ктиви" –	Збереження=Середні		
коріі	нь дерева	Збереження=Високі		
	2	Активи=Низькі	0,548	
		Активи=Середні		
		Активи=Високі		
	3	Дохід <=25	0,159	
		Дохід >25		
	4	Дохід <=50	0,347	
		Дохід >50		
	5	Дохід <=75	0,092	
		Дохід >75		

Для ознаки «Дохід» потрібно вибрати оптимальне значення порогу рівне 50.

Приклад оцінювання кредитного ризику Результуюче дерево

