

4 – Particle filter

Advanced Methods for Mapping and Self-localization in Robotics MPC-MAP

Tomas Lazna
Brno University of Technology
2025

What can a convenient localization algorithm offer?

- Mutlimodality
- Continuity
- Intuitivness
- Efficiency
- Scalability

PDF = Probability Density Function

- Numerical methods based on random sampling
- Optimization, numerical intergration, drawing from PDFs, modeling
- Law of large numbers
- Estimating the π value (Buffon's needle)
- Particle filter = Sequential MC method

[1]

[1]

Particle representation of a PDF

$$\chi = \{ [\chi^{(i)}, w^{(i)}] \}_{i=1,...,N}$$

State hypothesis

Belief (weight)

$$p(\mathbf{x}) = \sum_{i=1}^{N} w^{(i)} \delta_{\mathbf{x}^{(i)}}(\mathbf{x})$$

Dirac delta function

probability / weight

Bayes' theorem

$$P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E)}$$

$$E \text{ evidence}$$

- Particle filter applications:
 - Robot localization
 - Object tracking, computer vision
 - General estimation in nonlinear systems
- Original article (referred to as ,bootstrap filter') [2]

^{1.} STACHNISS, Cyrill. Short Introduction to Particle Filters and Monte Carlo Localization [online]. Uni Freiburg, 2013 [cit. 2021-02-18]. Available at: http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam10-particle-filter-4.pdf

^{2.} GORDON, N.J. et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F Radar and Signal Processing [online]. 1993, 140(2) [cit. 2021-02-21]. DOI: 10.1049/ip-f-2.1993.0015

- Uniform distribution
 - Any random number generator
 - Usually a pseudorandom series
 - Can be utilized for other PDFs
- Normal distribution
 - Parameric function (mean μ, variance σ²)
 - Approximation by UD:

$$x \leftarrow \sum_{i=1}^{12} \operatorname{rand}(-0.5\sigma, 0.5\sigma)$$

- Other distributions
 - Parametric
 - Non-parametric

- 1. Continuous uniform distribution. Wikipedia, Wikimedia Foundation, 20 Dec 2020. Available at: https://en.wikipedia.org/wiki/Continuous_uniform_distribution
- 2. Normal distribution. Wikipedia, Wikimedia Foundation, 13 Feb 2021. Available at: https://en.wikipedia.org/wiki/Normal_distribution

Rejection sampling

- Generate random samples
 [y, f(y)] in range:
 - $y \in \langle x_{\min}; x_{\max} \rangle$
 - $f(y) \in (0; \max(p(x)))$
- Reject sample if:
 - f(y) > p(y)
- The random variable Y is now distributed according to p(x)

Rejection sampling

- Generate random samples[y, f(y)] in range:
 - $y \in \langle x_{\min}; x_{\max} \rangle$
 - $f(y) \in (0; \max(p(x)))$
- Reject sample if:
 - f(y) > p(y)
- The random variable Y is now distributed according to p(x)
- Tends to be inefficient

Importance sampling

- Use other distribution π that is simple to draw from
- Correct the difference between the target distribution f and proposal π by assigning ,weights' to random samples:

$$w(x) = \frac{f(x)}{\pi(x)}$$

 To ensure samples are drawn from the whole target distribution, following condition needs to be met:

$$\forall x \in \mathbb{R}: f(x) > 0 \Rightarrow \pi(x) > 0$$

- Other methods for drawing random samples
 - Adaptive rejection sampling [1]
 - Markov chain Monte Carlo (MCMC) methods,
 e.g., Metropolis-Hastings algorithm [2]

^{2.} CHIB, Siddhartha and Edward GREENBERG. Understanding the Metropolis-Hastings Algorithm. The American Statistician [online]. 1995, 49(4). [cit. 2021-02-19]. DOI: 10.1080/00031305.1995.10476177

Particle filter principle

Prediction step

- State of all particles is updated in accordance with starting state and the input vector
- Goal: Estimate the state transition
- Correction step
 - Particles' hypotheses are compared with actual measurement
 - Goal: Find out which particles are the fittest
- Resampling step
 - Draw random samples from the previous particle set with the probability given by weights
 - Goal: Increase the particle density in more probable parts of state space

Prediction

$$x_{t-1} \to x_t$$
$$x_t \sim p(x_t | x_{t-1}, u_t)$$

Resampling

$$\chi_t \sim [x_t, w_t]$$
$$p(x_t) \propto w_t$$

Correction

$$\forall [x, w] \in \chi : w_t^{(i)} =$$

$$= f\left(x_t^{(i)}, z_t\right) \propto p(z_t | x_t)$$

1. Initialization

bel(x)

2. Correction

p(z|x)
bel(x)

3. Resampling

bel(x)

[1]

3. Resampling

bel(x)

4. Prediction

bel(x)

5. Correction

5. Correction

6. Resampling

7. Prediction

- Predict state of the system after a control vector is applied
- Increase variance of particles
- Let us assume that the state transition depends on the previous state only (first order Markov Process)
- The noise can have arbitrary distribution

Predicted state $x_t^{(i)} = f\left(x_{t-1}^{(i)}, u_t, Q\right)$ Random variable – noise
Control vector

Example – omnidirectional drive

$$\begin{pmatrix} x_t \\ y_t \\ \theta_t \end{pmatrix} = \begin{pmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{pmatrix} + \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} \Delta t + \mathbf{Q}$$

Differential drive:

$$x_t + Q \neq f(x_{t-1}, g(u_t, Q))$$

Start

where Q has normal distribution

Prediction

10 meters

 $x_{t-1} \rightarrow x_t$

 $x_t \sim p(x_t | x_{t-1}, u_t)$

^{1.} TRIEBEL, Rudolph. The Particle Filter. In: Machine Learning for Computer Vision [online]. Technische Universität München, 2017 [cit. 2021-02-19]. Available at: https://vision.in.tum.de/_media/teaching/ss2017/ml4cv/variationalinference.pdf

- Application of Bayes' rule
 - Prior: all particles have the same weight 1 / N
 - Posterior: proportional to the measurement model
- Weights should be normalized
- Examples for rangefinders:
 - Using normal distribution (σ)

$$W \propto \prod_{m=1}^{M} e^{-\frac{1}{2} \left(\frac{d_m - p_m}{\sigma}\right)^2}$$

Using Euclidean distance

$$W \propto \frac{1}{\sqrt{\sum_{m=1}^{M} (d_m - p_m)^2}}$$

d... measured distancep... predicted distanceM... number of measurements

Correction $\forall [x, w] \in \chi: w_t^{(i)} =$ $= f\left(x_t^{(i)}, z_t\right) \propto p(z_t|x_t)$

- Increase density of particles in regions of high posterior probability and vice versa
- Needed in case of limited number of samples
- Draw N particles with the probability given by weights of original set
- General algorithm:
 - 1. Generate sorted set of N random numbers u_k in range (0,1)
 - 2. Compute cummulative sum of weights
 - 3. For each u_k pick particle x_i according to condition:

$$u_k \in \left(\sum_{s=1}^{i-1} w_s, \sum_{s=1}^i w_s\right)$$

Resampling

 $\chi_t \sim [x_t, w_t]$ $p(x_t) \propto w_t$

- Low variance systematic resampling
 - Only one iteration through the weights set
 - Keeps particles of even weights alive
 - Generate random number \tilde{u} in range $\left(0, \frac{1}{N}\right)$

$$u_k = \frac{(k-1) + \tilde{u}}{N}$$

- Thrun's heuristic algorithm
 - Higher degree of randomness
 - Easy implementation

1	index = rand(0, N-1)	
2	for $i = 1$ to N do	
3	$beta = rand(0, 2w_{max})$	
4	while w[index] < beta	
5	beta = beta - w[index]	
6	index++	
7	if index > N	
8	index = 1	
9	new_particles[i] = particles[index]	

Particle filter 21

Particle filter in pseudocode

Parti	$cle_filter(\chi_{t-1}, u_t, z_t):$	
1	$\overline{\chi_t} = \chi_t = \emptyset$	
2	for $n = 1$ to N do	
3	sample $x_t^{(n)} \sim p\left(x_t u_t, x_{t-1}^{(n)}\right)$	prediction step
4	$w_t^{(m)} = p\left(z_t x_t^{(n)}\right)$	compute weight (correction)
5	$\bar{\chi_t} \leftarrow \left[x_t^{(n)}, w_t^{(m)}\right]$	keep list of weighted original particles
6	r = rand(0, 1/N)	low variance resampling algorithm
7	$c=w_t^{(1)}, i=1$	
8	for $n = 1$ to N do	
9	u = r + (n-1)/N	
10	while $u > c$	
11	$c = c + w_t^{(++i)}$	
12	$\chi_t \leftarrow \chi_t^{(i)}$	
13	return χ_t	

Particle degeneracy

- Each resampling step results in so-called particle degeneracy and impoverishment
- Particles with low probability are eliminated while particles with large weights are exist in too many copies
- How to address the degeneracy issue?
 - It is essential to increase the variance of the particle set
 - Intensify noise in the prediction step
 - Do not resample in each iteration
 - Add Gaussin noise in the resampling step (= regularized particle filters [2])

$$x_t^{(i)} = x_t^{(i)} + h\Gamma_t \varepsilon$$
 h ... Bandwidth Γ_t ... Square root of empirical covariance matrix ε ... Random vector drawn from Gaussian kernel

[1]

Kidnapped robot problem

- Robot is relocated by some unpredictable intervention
- The localitazion algorithm converges to a wrong location due to similarity of different parts of a map
- Tests the robustness of the localization solution.
- Possible approaches for the particle filter:
 - Assessing the quality of localization
 - Sample covariance matrix
 - Error function (unnormalized weights)
 - Reset the filter (re-initialize the particles)
 - Injection of random particles
 - Fixed rate
 - Adaptive rate

[1]

Summary

- Particle filter
 - Non-parametric recursive Bayes filter
 - Approximates the posterior by weighted samples
 - Can handle non-Gaussian PDFs and non-linear transitions
 - Basic principles: Importance sampling and Survival-of-the-fittest
- Monte Carlo localization (MCL)
 - Based on the particle filter
 - Prediction: Applying the motion model to particles
 - Correction: Likelihood of observations
 - Easy implementation
 - Accuracy and robustness depends on the quality of motion and measurement models
 - Standard for mobile robots localization

Tomas Lazna

tomas.lazna@ceitec.vutbr.cz

Brno University of Technology
Faculty of Electrical Engineering and Communication
Department of Control and Instrumentation

Robotics and Al Research Group