SVM_Classification

1. What is the percentage of correct classification of both (Purchased and Not Purchased) to the total input of test set?

```
The confusion Matrix: [[80 5] [ 7 42]]
```

	purchased		Not Po	Not Purchased	
Purchased	80 TP		5	FP	
Not_Purchased	7	F_Np	42	T_Np	

Accuracy = $T(Purchased)+T(Not\ Purchased)+T(Not\ Purchased)+F(Purchased)+F(Not\ Purchased)$

```
=80+42÷80+42+5+7= 122÷134=0.910
```

Recall:

What Is the percentage of correct Classification Of Purchased to the total input of Purchased in the test set?

```
The confusion Matrix: [[80 5] [ 7 42]]
```

	Purchased		Not P	Not Purchased	
Purchased	80 TP		5	FP	
Not_Purchased	7	F_Np	42	T_Np	

Recall=T(Purchased)+F(Purchased)

```
=80÷80+5=80÷85=0.941
```

What Is the percentage of correct Classification Of Not Purchased to the total input of NotPurchased in the test set?

The Confusion Matrix:

```
Recall= T(Not_Purchased) ÷T(Not_Purchased) +F(Not_Purchased) =42÷42+7=42÷49=0.857
```

Precision:

What is the percentage of correct Classification of (Purchased) to sum of correctly Classified as (Purchased) and wrongly classified as (Purchased) in the test set?

The Confusion Matrix:

```
The confusion Matrix: [[80 5] [ 7 42]]
```

	purchased		Not Pur	chased
Purchased	80 TP		5	FP
Not_Purchased	7	F_Np	42	T_Np

Precision=T(Purchased)+T(Purchased)+F(Purchased)

```
= 80 \div 80 + 7 = 80 \div 87 = 0.91
```

What is the percentage of correct Classification of (Not_Purchased) to sum of correctly Classified as (Not_Purchased) and wrongly classified as (Not_Purchased) in the test set?

The Confusion Matrix:

	purchased		Not Pu	Not Purchased	
Purchased	80 TP		5	FP	
Not_Purchased	7	F_Np	42	T_Np	

```
Precision= T (Not_ Purchased) ÷T(Not_ Purchased)+F(Not_ Purchased)
=42÷42+5=42÷47= 0.89
```

F1_Measure:

What is the overall performance of Purchased?

The Confusion Matrix:

```
The confusion Matrix:
```

```
The confusion Matrix: [[80 5] [ 7 42]]
```

	purchased		Not Purchased		
Purchased	80 TP		5	FP	
Not_Purchased	7	F_Np	42	T_Np	

```
F1_Measure=2*0.94*0.91
```

```
\div 0.94 + 0.91 = 1.7108 \div 1.85 = 0.924
```

What is the overall performance of Not_Purchased?

```
The confusion Matrix: [[80 5] [ 7 42]]
```

	purchased		Not Purchased		
Purchased	80 TP		5	FP	
Not_Purchased	7	F_Np	42	T_Np	

```
F1_Measure=2*0.85*0.89
÷0.85+0.89=1.513 ÷1.74 =0.869
```

Macro _Average:

```
The confusion Matrix: [[80 5] [ 7 42]]
```

	purchased		Not Pur	chased
Purchased	80 TP		5	FP
Not_Purchased	7	F_Np	42	T_Np

Precision:

What is the average performance of Precision(correctly and wrongly classified)?

Precision(Purchased)+Precision(Not_Purchased)+2

```
=0.91+0.89÷2=1.8÷2
Precision=0.9
```

Recall:

What is the average performance of Recall(correctly classified)?

Recall(Purchased)+Recall(Not_Purchased)+2

=0.899

Which is the average performance of F1_Measure(overall_performance)?

=F1(Purchased)+F2(Not_Purchased)÷2

$$= 0.924 + 0.869 \div 2 = 1.793 \div 2$$

=0.89

Weighted Average:

```
The confusion Matrix: [[80 5] [ 7 42]]
```

	purchased		Not Pu	Not Purchased	
Purchased	80 TP		5	FP	
Not_Purchased	7	F_Np	42	T_Np	

Precision:

Total count in the test set = 134

Total count of Purchased in the test set = 123

Total count of Not_Purchased in the test set = 11

What is the sum of Product of proportion rate weight of each class?

Precision(Purchased)*123÷134+Precision(Not Purchased)*11÷134

Precision=0.91*123÷134+0.89*11÷134

$$=111.93 \div 134 + 9.79 \div 134$$

$$=0.8352+0.073=0.90$$

Recall:

What is the sum of product of proportion rate weight of each class?

```
Recall(Purchased)*123 \div 134 + Recall(Not\_Purchased)*11 \div 134
```

Recall=0.941*123÷134+0.857*11÷134

=115.743÷134+9.427÷134

=0.8637+0.0703

=0.934

F1_Measure

What is the sum of product of proportion rate weight of each class?

F1_Measure=f1(Purchased)*123÷134+F2(Not_Purchased)*11÷134

=113.65÷134+9.559÷134=0.8481+0.0713 =0.919