

Otimização e Simulação

Problema do Caminho Mínimo

Prof. Dr. Daniel Rodrigues da Silva

Problema do Caminho mais Curto

O problema do caminho mais curto, também conhecido como problema do caminho mínimo, busca encontrar o menor caminho entre dois nós de uma rede. Em vez de minimizar a distância total percorrida, pode-se minimizar também o custo total ou o tempo total de viagem.

O problema considera apenas um nó de oferta que corresponde ao ponto de origem da rede e apenas um nó de demanda que corresponde ao ponto de destino da rede. A capacidade de fornecimento do nó de oferta e a demanda do nó de destino da rede correspondem a uma unidade. Já todos os outros nós intermediários ou de transbordo terão oferta e demanda iguais a zero.

Formulação Matemática do Problema do Caminho mais Curto

Parâmetros do modelo:

 c_{ij} = distância do nó i ao nó j,

Variáveis de decisão:

$$x_{ij} = \begin{cases} 1 & \text{se o arco (i, j) estiver contido no caminho mais curto} \\ 0 & \text{caso contrário} \end{cases}$$

Exemplo: Um fornecedor de alimentos localizado em Osasco entrega salgados e doces diariamente para uma padaria localizada na região da Vila Formosa, em São Paulo. Para isso, o motorista pode percorrer mais de um caminho, passando por diferentes bairros em São Paulo. A figura ao lado mostra possíveis caminhos a percorrer de Osasco à Vila Formosa, e as distâncias em quilômetros entre os nós ou bairros. Formular o problema do caminho mais curto.

 $x_{ij} = \begin{cases} 1 & \text{se (i, j) estiver contido no caminho mais curto} \\ 0 & \text{caso contrário} \end{cases}$

 $x_{12} = 1$ se a rota (1, 2) está no caminho mais curto; 0 caso contrário. $x_{13} = 1$ se a rota (1, 3) está no caminho mais curto; 0 caso contrário. $x_{24} = 1$ se a rota (2, 4) está no caminho mais curto; 0 caso contrário. $x_{25} = 1$ se a rota (2, 5) está no caminho mais curto; 0 caso contrário. $x_{34} = 1$ se a rota (3, 4) está no caminho mais curto; 0 caso contrário. $x_{35} = 1$ se a rota (3, 5) está no caminho mais curto; 0 caso contrário. $x_{46} = 1$ se a rota (4, 6) está no caminho mais curto; 0 caso contrário. $x_{47} = 1$ se a rota (4, 7) está no caminho mais curto; 0 caso contrário. $x_{57} = 1$ se a rota (5, 7) está no caminho mais curto; 0 caso contrário. $x_{58} = 1$ se a rota (5, 8) está no caminho mais curto; 0 caso contrário. $x_{69} = 1$ se a rota (6, 9) está no caminho mais curto; 0 caso contrário. $x_{79} = 1$ se a rota (7, 9) está no caminho mais curto; 0 caso contrário. $x_{89} = 1$ se a rota (8, 9) está no caminho mais curto; 0 caso contrário.

A função objetivo busca o menor caminho entre o nó de oferta e o nó de demanda da rede:

$$\min z = 11x_{12} + 9x_{13} + 4x_{24} + 8x_{25} + 8x_{34} + 6x_{35} + 6x_{46} + 5x_{47} + 6x_{57} + 4x_{58} + 6x_{69} + 4x_{79} + 6x_{89}$$

As restrições do modelo estão especificadas a seguir:

As restrições do modelo estão especificadas a seguir:

Nó de oferta:

$$x_{12} + x_{13} = 1$$

2. Nó de demanda:

$$x_{69} + x_{79} + x_{89} = 1$$

3. Nós intermediários ou de transbordo:

4. As variáveis de decisão são binárias:

$$x_{12}, x_{13}, x_{24}, x_{25}, x_{34}, x_{35}, x_{46}, x_{47}, x_{57}, x_{58}, x_{69}, x_{79}, x_{89} \in \{0, 1\}$$

O problema do caminho mais curto será resolvido de duas formas: pelo algoritmo de Dijkstra e pelo Solver do Excel.

O Algoritmo de Dijkstra: O algoritmo de Dijkstra determina o menor caminho entre o nó fonte e o nó destino de uma rede, assumindo que os custos de todos os arcos são não negativos, garantindo assim que a solução ótima seja encontrada. Trata-se de um algoritmo eficiente que define um nó k como rotulado ou fechado quando se encontra o menor caminho do nó fonte até este nó. Já os nós cujos caminhos mínimos ainda não foram encontrados são chamados não rotulados ou abertos. Considere R o conjunto de nós rotulados e NR o conjunto de nós não rotulados. Assim, inicialmente, o conjunto R é vazio, enquanto o conjunto NR contém todos os elementos da rede. O algoritmo de Dijkstra é descrito a seguir.

Início.

$$R = \{ \emptyset \}$$

$$NR = \{1, 2, 3, ..., n\}$$

- Passo 1. Atribua valor 0 ao nó fonte e ∞ aos demais nós.
- **Passo 2**. **Enquanto** o conjunto de nós não rotulados for não vazio ($NR \neq \{\emptyset\}$), **faça** o seguinte:
- Selecione o nó ainda não rotulado com menor valor (nó k)
- Passe o nó *k* para o conjunto de nós rotulados
- Para todo nó *j* ainda não rotulado que seja sucessor de *k*, faça:
- Some o valor do nó *k* com o custo do arco que une os nós *k* e
- j, e atribua esse novo valor ao nó j, em caso de melhoria.
 - Nesse caso, define-se o nó k como precedente de j (só se houver melhoria).

Exemplo 1: Uma empresa transportadora norte americana entrega diariamente encomendas na cidade

de Nova York do ponto de origem 1 (Queens) para o ponto de destino 6 (Manhattan), podendo percorrer diferentes roteiros, como e mostrado a seguir. O fluxo nos arcos representa o custo para transportar a demanda necessaria entre os respectivos bairros. Determine o melhor roteiro utilizando o algoritmo de Dijkstra.

1 *	2 *	3 *	4 *	5 *	6*
0	8	∞	8	8	8
_	(1,6)	(1,9)	8	8	8
_	-	(1,9)	(2,10)	(2,13)	8
_	-	-	(2,10)	(2,13)	8
_	-	-	-	(4 , 12)	(4,17)
_	-	_	-	-	(5 , 15)

Caminho Mínimo: $1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 6 = 15$

Exemplo 2: Aplique o algoritmo de Dijkstra para o problema do caminho mais curto descrito no grafo abaixo:

Passo 1. Atribuindo o valor 0 ao nó fonte (1) e ∞ aos demais nós, obtém-se o grafo: abaixo.

SAPIENTIA
PARENTY STREET

1 *	2*	3 *	4*	5*	6	7*	8*	9*
0	∞	8	∞	8	8	8	8	∞
_	(1,11)	(1,9)	∞	8	8	8	8	∞
-	(1,11)	-	(3, 17)	(3, 15)	8	8	8	∞
-	-	-	(2, 15)	(3, 15)	8	8	8	∞
-	-	-	_	(3,15)	(4,21)	(4, 20)		
-	-	-	_	-	(4,21)	(4, 20)	(5,19)	
-	-	-	-	1	(4,21)	(4,20)	1	(8, 25)
					(4,21)	-	-	(7,24)

Caminho Mínimo: $1 \rightarrow 2 \rightarrow 4 \rightarrow 7 \rightarrow 9 = 24$

Exemplo 3: Uma empresa do setor petrolífero está analisando o escoamento de seus produtos em uma malha logística que tem como ponto de origem o nó A e como ponto de destino o nó E, passando pelos nós intermediários B, C e D. O fluxo nos arcos representa o tempo de escoamento entre os respectivos nós, em segundos. Determine o caminho mais rápido a ser percorrido, utilizando o algoritmo de Dijkstra

A *	B *	C *	D *	E
0	8	8	8	∞
_	(A , 25)	(A, 28)	8	8
_	-	(A , 28)	(B, 47)	8
_	-	-	(B , 47)	(D , 65)

Caminho: $A \rightarrow B \rightarrow D \rightarrow E = 65$

Exemplo 4: A empresa WTLogistica & Solucoes deseja determinar o caminho mais econômico para distribuir

seu produto que pode ser transportado do porto de Suape (1) para o porto de Santos (6). Os demais nós representam os portos intermediários a serem visitados na rede logística. O fluxo nos arcos representa a quantidade máxima que pode ser transportada (em milhoes de toneladas) entre os respectivos portos. Resolva o problema.

1 *	2 *	3 *	4	5 *	6 *
0	8	8	8	8	∞
-	(1,6)	(1,4)	8	8	∞
_	(1,6)	-	(3,14)	(3,10)	∞
_	-	-	(2,13)	(3,10)	∞
-	-	-	(2,13)	-	(5,13)

Caminho: $1 \rightarrow 3 \rightarrow 5 \rightarrow 6 = 13$

Exemplo 5. Determine o menor caminho entre o vértice 1 e o vértice 9

