Università degli Studi di Milano - Bicocca

 $\begin{array}{c|c} & Scuola \ di \ Scienze \\ img/logo_unimib.pdf \end{array}$

Dipartimento di Informatica, Sistemistica e Comunicazione

Corso di Laurea Magistrale in Informatica

Algoritmi per la trasformata di Burrows-Wheeler Posizionale con compressione run-length

Relatore: Prof. Raffaella Rizzi

Correlatore: Dott. Yuri Pirola

Tesi di Laurea Magistrale di:

Davide Cozzi Matricola 829827

E pensare che mi iscrissi ad informatica per fare il sistemista!

Indice

1	Intr	oduzio	one	3
2	\mathbf{Pre}	limina	ri	5
	2.1	Bitvec	etor	5
		2.1.1	Funzione rank	7
		2.1.2	Funzione select	7
	2.2	Straig	ht-Line Program	8
		2.2.1	Longest Common Extension	10
	2.3	Suffix	Array	11
		2.3.1	Longest common prefix	12
		2.3.2	SA inverso	13
		2.3.3	LCP permutato	13
		2.3.4	Funzione phi	14
	2.4	Trasfo	ormata di Burrows-Wheeler	15
		2.4.1	Trasformata di Burrows-Wheeler run-length encoded	21
		2.4.2	RLBWT e r-index	21
		2.4.3	Match massimali con RLBWT	23
		2.4.4	Uso delle LCE query	27
	2.5	Trasfo	ormata di Burrows-Wheeler posizionale	31
		2.5.1	Match massimali con aplotipo esterno	38
		2.5.2	Varianti della PBWT	46
		2.5.3	Una prima proposta run-length encoded	48
3	Met	todo		52
	3.1	Perche	é la compressione run-length	52
	3.2	Introd	luzione alle varianti della RLPBWT	53
	3.3		ning Statistics per la RLPBWT	56
	3.4	Comp	onente per il mapping	58
		3.4.1	Mapping con interctor	59
		3.4.2	Mapping con bitvector	64
	3.5	Comp	onente per le threshold	71

		3.5.1 Threshold con integration integral.	71
		3.5.2 Threshold con bitvector	74
	3.6	Componente per i prefix array samples	74
	3.7	Componenti per il random access e le LCE query	75
	3.8	Componente per la struttura Phi	77
		3.8.1 Costruzione della struttura di supporto	79
	3.9	Calcolo degli SMEM con LCP	83
	3.10	Calcolo degli SMEM con matching statistics	87
		3.10.1 Calcolo dell'array MS con threshold	87
		3.10.2 Calcolo dell'array MS con LCE query	92
4	Rist	ıltati	98
	4.1	Descrizione degli esperimenti	98
		4.1.1 Riproducibilà degli esperimenti	.01
	4.2	Studio su pannelli simulati	.01
	4.3	Sperimentazione sui pannelli reali	.08
		4.3.1 Tempo di una singola query	.17
5	Con	clusioni 1	19
	5.1	Sviluppi futuri	20

Capitolo 1

Introduzione

Negli ultimi anni si è assistito ad un cambio di paradigma nel campo della bio-informatica, ovvero il passaggio dallo studio della sequenza lineare di un singolo genoma a quello di un insieme di genomi, provenienti da un gran numero di individui, al fine di poter considerare anche le varianti geniche. Questo nuovo concetto è stato nominato per la prima volta, nel 2005, da Tettelin [1] con il termine di pangenoma. Grazie ai risultati ottenuti in pangenomica, ci sono stati miglioramenti sia nel campo della biologia che in quello della medicina personalizzata, grazie al fatto che, con il pangenoma, si migliora la precisione della rappresentazione di multipli genomi e delle loro differenze.

Il genoma umano di riferimento (GRCh38.p14), è composto da circa 3.1 miliardi di basi, con più di 88 milioni varianti tra i genomi sequenziati, secondo i risultati ottenuti nel 1000 Genome Project [2]. Considerando come la quantità dei dati di sequenziamento sia destinata ad aumentare esponenzialmente nei prossimi anni, grazie al miglioramento delle tecnologie di sequenziamento (Next Generation Sequencing e Third-Generation Sequencing), risulta necessaria la costruzione di algoritmi e strutture dati efficienti per gestire una tale informazione. In merito, uno degli approcci più usati per rappresentare il pangenoma è un pannello di aplotipi [3], ovvero, computazionalmente, una matrice di M righe, corrispondenti agli individui, e N colonne, corrispondenti ai siti con le varianti. Si specifica che, con il termine aplotipo, si intende l'insieme di alleli, ovvero di varianti, che un organismo eredita da ogni genitore.

In questo contesto trova spazio uno dei problemi fondamentali della bioinformatica, ovvero quello del pattern matching. Inizialmente tale concetto era relativo allo studio di un piccolo pattern all'interno di un testo di grandi dimensioni, ovvero il genoma di riferimento. Ora, con l'introduzione del pangenoma, tale problema si è adattato alle nuove strutture dati.

Lo scopo di questa tesi è ottimizzare il problema del pattern matching, inteso come ricerca dei set-maximal exact match (SMEM) tra un aplotipo esterno e un

pannello di aplotipi, in una delle strutture dati più utilizzata: la trasformata di Burrows-Wheeler Posizionale (PBWT) [4]. Il progetto di tesi, svolto in collaborazione con il prof. Gagie (Dalhousie University) e la prof.ssa Boucher (University of Florida), tra gli autori dei principali risultati ottenuti per la trasformata di Burrows-Wheeler run-length encoded [5] [6] [7] [8], ha quindi permesso lo sviluppo di una variante run-length encoded della PBWT, detta RLPBWT, che permettesse di risolvere tale problema.

Struttura della tesi

Nel capitolo 2 si introdurranno i concetti di base, di ambito computazionale e bioinformatico, necessari a comprendere questa tesi. Nel capitolo 3 verranno discussi i contributi di questa tesi, descrivendo le soluzioni algoritmiche e le metodologie utilizzate per raggiungere gli obiettivi prefissati. Nel capitolo 4 si discuteranno i risultati ottenuti durante la sperimentazione. Infine, nel capitolo 5, si trarranno le conclusioni di questo progetto di tesi discutendone anche i prospetti futuri.

DC L'intera introduzione va estesa

Capitolo 2

Preliminari

In questo capitolo verranno specificati tutti i concetti fondamentali, allo stato dell'arte, atti a comprendere i metodi usati in questa tesi. Si introdurranno i concetti di:

- bitvector
- straight-line program e longest common extension query
- suffix array e longest common prefix
- trasformata di Burrows-Wheeler e la sua variante run-length encoded
- trasformata di Burrows-Wheeler posizionale

L'unione di tutte queste strutture e di queste tecniche ha permesso la creazione della RLPBWT. A livello di notazione, si specifica inoltre che, con la notazione T[i,j] si intende la sottostringa del testo/sequenza/riga/colonna T, iniziante all'indice i e terminante all'indice j incluso. Qualora si avesse j > i allora si parla di sottostringa nulla ε .

2.1 Bitvector

Nonostante qualche primo risultato isolato, si identifica, con la tesi di dottorato di Jacobson del 1988 [9], l'inizio dello studio delle **strutture dati succinte**. Jacobson, con questo termine, denota quelle strutture dati che usano, con N numero dei differenti oggetti da memorizzare, $\log N + o(\log N)$ bit. Ad esempio, assumendo un array di n bit, una struttura dati succinta utilizza n + o(n) bit, avendo infatti $N = 2^n$ [10].

Un anno dopo, Jacobson [11] notò come una delle *strutture dati succinte* fondamentali allo sviluppo di altre strutture efficienti in memoria fossero i cosiddetti **bitvector**.

Definizione 1. Si definisce un **bitvector** B come un array di lunghezza n, popolato da elementi binari. Formalmente si ha quindi:

$$B[i] \in \{0, 1\}, \ \forall i \ t.c. \ 0 \le i < n$$
 (2.1)

In alternativa si potrebbe avere, come formalismo:

$$B[i] \in \{\bot, \top\}, \ \forall i \ t.c. \ 0 \le i < n \tag{2.2}$$

Nel corso degli ultimi anni si sono sviluppate diverse varianti dei *bitvector*, finalizzate ad offrire diversi costi di complessità spaziale e diversi tempi computazionali per le principali funzioni offerte.

Il primo vantaggio di questa struttura dati è quella di garantire random access in tempo costante, pur sfruttando varie tecniche per la memorizzazione efficiente della stessa in memoria. A tal proposito, lo spazio necessario per l'implementazione, presente nella **Succinct Data Structure Library** (**SDSL**) [12] (una delle principali librerie, scritta in C++11, per strutture dati succinte) delle principali varianti è visualizzabile in tabella 2.1. Il secondo vantaggio consiste nel fatto che i bitvector permettono l'implementazione efficiente di due funzioni:

1. la **funzione rank**

2. la funzione select

Un'implementazione naive delle stesse richiederebbe tempo $\mathcal{O}(n)$, dovendo scansionare l'intero bitvector. In realtà, tali funzioni, al costo teorico di o(n) bit aggiuntivi, possono essere supportate in tempo costante. Si noti però che, nelle implementazioni di SDSL, le complessità temporali delle due funzioni possono variare, sia in termini di bit aggiuntivi che di complessità temporale, a seconda della tipologia di bitvector.

Tabella 2.1: Stime dello spazio occupato per la memorizzazione di alcune varianti di *bitvector*. Si assume un bitvector di lunghezza n con un numero di bit posti pari a 1 (o \top) pari a m. K indica la *block size* per l'*interleave*.

DC Mi è sembrato utile riportare tali tabelle

Variante	Spazio occupato
Plain bitvector	$64\left\lceil\frac{n}{64}+1\right\rceil$
Interleaved bitvector	$\approx n \left(1 + \frac{64}{K}\right)$
H_0 -compressed bitvector	$pprox \left\lceil \log \binom{n}{m} \right\rceil$
Sparse bitvector	$\approx m \left(2 + \log \frac{n}{m}\right)$

2.1.1 Funzione rank

La prima funzione che si approfondisce è la **funzione rank**. Tale funzione permette di calcolare il *rango* di un dato elemento del bitvector.

Definizione 2. Dato un bitvector B, lungo n, e data una certa posizione i del bitvector, la **funzione rank** restituisce il numero di 1 presenti fino a quella data posizione, esclusa. Più formalmente si ha che:

$$rank_B(i) = \sum_{k=0}^{k < i} B[k], \ \forall i \ t.c. \ 0 \le i < n$$
 (2.3)

Come detto, da un punto di vista teorico, al costo di o(n) bit aggiuntivi in memoria tale funzione sarebbe supportata in tempo $\mathcal{O}(1)$. La complessità temporale varia però a seconda dell'implementazione, anche in conseguenza al fatto che si ha una quantità diversa di bit aggiuntivi salvati in memoria. La tabella con le complessità temporali stimate della funzione rank, per le varianti di bitvector implementate in SDSL, è visualizzabile in tabella 2.2.

Tabella 2.2: Complessità temporali stimate della funzione rank per alcune varianti di bitvector, con la quantità di bit aggiuntivi richiesta. Si assume un bitvector di lunghezza n, con un numero di bit posti pari a 1 (o \top) pari a m, e un numero k di $rank \ sample$.

Variante	Bit aggiuntivi	Complessità temporale
$Plain\ bitvector$	$0.0625 \cdot n$	$\mathcal{O}(1)$
Interleaved bitvector	128	$\mathcal{O}(1)$
H_0 -compressed bitvector	80	$\mathcal{O}(k)$
$Sparse\ bitvector$	64	$\mathcal{O}\left(\log \frac{n}{m}\right)$

2.1.2 Funzione select

La seconda funzione fondamentale è la **funzione select**, la quale permettere di ottenere l'indice di un simbolo $\sigma = 1$ nel bitvector.

Definizione 3. Dato un bitvector B, lungo n, e dato un valore intero i, la **funzione select** calcola l'indice dell'i-esimo valore pari a 1 nel bitvector B, lungo n. Più formalmente si ha, quindi, che:

$$select_B(i) = \min\{j < n \mid rank_B(j+1) = 1\}, \ \forall i \ t.c. \ 0 < i \le rank_B(n)$$
 (2.4)

Anche in questo caso vale lo stesso discorso fatto per la funzione rank in merito alla complessità temporale e ai bit aggiuntivi. La tabella con le complessità temporali stimate della funzione select, per le varianti di bitvector implementate in SDSL, è visualizzabile in tabella 2.3.

Tabella 2.3: Complessità temporali stimate della funzione select per alcune varianti di bitvector, con la quantità di bit aggiuntivi richiesta. Si assume un bitvector di lunghezza n.

Variante	Bit aggiuntivi	Complessità temporale
$Plain\ bitvector$	$\leq 0.2 \cdot n$	$\mathcal{O}(1)$
Interleaved bitvector	64	$\mathcal{O}(\log n)$
H_0 -compressed bitvector	64	$\mathcal{O}(\log n)$
Sparse bitvector	64	$\mathcal{O}(1)$

Esempio 1. Ipotizziamo di avere il sequente bitvector B, di lunghezza n = 14:

Si ha che, per esempio:

$$rank(6) = 3$$
 $select(5) = 9$

Si vedrà, nel corso di questa tesi, come l'uso di tali strutture, nel dettaglio l'uso dei *plain bitvector* e dei *bitvector sparsi*, sia fondamentale per lo studio delle due strutture *run-length encoded*.

2.2 Straight-Line Program

Nel contesto bioinformatico una delle principali problematiche è la gestione di testi molto estesi. Pensiamo, ad esempio, al caso umano. Il primo cromosoma, il più lungo tra i cromosomi umani, conta circa 247.249.719 bps (paia di basi), nonostante, è bene segnalare, l'uomo non sia affatto l'essere vivente con il genoma più esteso. Fatta questa breve premessa, è facile comprendere l'importanza degli algoritmi e delle strutture dati per la compressione di testi.

Per questa tesi si è quindi pensato all'uso dei cosiddetti **Straight-Line Programs**

(SLP). In termini generici, un SLP è una grammatica context-free che genera una e una sola parola [13], parlando, quindi, di grammar-based compression.

Definizione 4. Sia dato un alfabeto finito Σ di simboli terminali. Sia data una stringa $s = a_1, a_2, \ldots, a_n \in \Sigma^*$, lunga n e costruita sull'alfabeto Σ , avendo $a_i \in \Sigma$, $\forall i$ t.c. $1 \leq i \leq n$. Si denota, con alph $(s) = \{a_1, a_2, \ldots a_n\}$, l'insieme dei simboli della stringa s.

Si definisce SLP, costruito sull'alfabeto Σ , una grammatica context-free A tale che:

$$\mathcal{A} = (\mathcal{V}, \Sigma, \mathcal{S}, \mathcal{P}) \tag{2.5}$$

Dove:

- V è l'insieme dei simboli non terminali
- Σ è l'insieme dei simboli terminali
- $S \in V$ è il simbolo iniziale non terminale
- \mathcal{P} è l'insieme delle produzioni, avendo che:

$$\mathcal{P} \subseteq \mathcal{V} \times (\mathcal{V} \cup \Sigma)^* \tag{2.6}$$

Tale grammatica, per essere un SLP, deve soddisfare due proprietà:

- 1. si ha una e una sola produzione $(A, \alpha) \in \mathcal{P}, \forall A \in \mathcal{V} e \text{ con } \alpha \in (\mathcal{V} \cup \Sigma)^*$ (si noti che la produzione (A, α) può anche essere indicata con $A \to \alpha$)
- 2. la relazione $\{(A,B) \mid (A,\alpha) \in \mathcal{P}, B \in alph(\alpha)\}$ è aciclica

DC verificare questo secondo punto

Si ha quindi che la grandezza dell'SLP è calcolabile come:

$$|\mathcal{A}| = \sum_{(A,\alpha)\in\mathcal{P}} |\alpha| \tag{2.7}$$

Il linguaggio A generato da un SLP consiste in una singola parola, denotata da eval(A).

A partire dall'SLP \mathcal{A} si genera un **albero di derivazione**, che, nel dettaglio, è un albero radicato e ordinato dove la radice è etichettata con \mathcal{S} , ogni nodo interno è etichettato con un simbolo di $\mathcal{V} \cup \Sigma$ e ogni foglia è etichettata con un simbolo di Σ .

Esempio 2. Si prenda, ad esempio [14], la seguente stringa:

$$s = GATTAGATACAT\$GATTACATAGAT$$

Si potrebbe produrre il sequente SLP:

• $S \rightarrow ZWAY\$ZYAW$

• $X \rightarrow TA$

• $Z \rightarrow WX$

• $W \rightarrow GV$

• $Y \rightarrow CV$

• $V \rightarrow AT$

Al quale corrisponde il seguente albero di derivazione:

img/slpgagie.pdf

Si noti che il simbolo iniziale non terminante, ovvero la radice, è indicata con un cerchio giallo, i simboli non terminanti, ovvero i nodi interni, sono indicati dai cerchi blu mentre i simboli terminanti, ovvero le foglie, sono indicati dai quadrati verdi.

Nel 2020, Gagie et al. [14] proposero un articolo, a cui si rimanda per approfondimenti, in merito a miglioramenti prestazionali per il random access all'SLP, anche tramite l'uso dei bitvector sparsi.

Si stima che il tempo necessario al $random\ access$ su un testo T compresso tramite SLP, sia in tempo:

$$\mathcal{O}\left(\log(eval(\mathcal{A}))\right) \tag{2.8}$$

L'uso di tale variante degli SLP è stato cruciale, come si vedrà più avanti in questa tesi, per la costruzione della versione run-length encoded sia della Burrows-Wheeler Transform (BWT) che della Positional Burrows-Wheeler Transform (PBWT).

2.2.1 Longest Common Extension

Oltre a permettere $random\ access$ alla testo compresso, l'uso degli SLP permette di effettuare un'altra operazione in modo efficiente: le **Longest Common Extension** (LCE) queries.

Definizione 5. Dato un testo T, tale che |T| = n, il risultato della **LCE query** tra due posizioni i e j, tali che $0 \le i, j < n$, corrisponde al più lungo prefisso comune tra le sotto-stringhe che hanno come indice di partenza i e j, avendo quindi il più lungo prefisso comune tra T[i, n-1] e T[j, n-1].

Sfruttando l'SLP del testo T è quindi possibile effettuare due $random\ access$ al testo compresso, in i e j, per poi "risalire" l'albero al fine di computare il prefisso comune tra le due sottostringhe.

Si stima che il calcolo di una LCE query sia effettuabile in tempo:

$$\mathcal{O}\left(\log(eval(\mathcal{A}))\right) \tag{2.9}$$

I due concetti di *SLP* e *LCE query* verranno generalizzati, in questa tesi, all'uso su matrici permettendo una rappresentazione compatta in memoria, con *random access*, per un pannello di aplotipi.

DC capire se sono necessari altri approfondimenti

2.3 Suffix Array

Nel 1976, Manber e Myers [15] proposero una struttura dati per la memorizzazione di stringhe e la loro interrogazione, efficiente sia in termini di uso della memoria che di complessità temporale. Tale struttura venne denotata Suffix Array (SA).

Definizione 6. Dato un testo T, \$-terminato (assumendo che il simbolo \$ sia sempre il simbolo lessicograficamente minore nell'alfabeto di studio), tale che |T| = n, si definisce **suffix array** di T, denotato con SA_T , un di interi array lungo n, tale che $SA_T[i] = j$ sse il suffisso di ordine j, ovvero T[j, n-1], è l'i-esimo suffisso nell'ordinamento lessicografico dei suffissi di T. Ne segue che, presi $i, i' \in \mathbb{N}$ tali che $0 \le i < i' < n$ allora vale che, indicando con \prec l'ordinamento lessicografico:

$$T[SA_T[i], n-1] \prec T[SA_T[i'], n-1]$$
 (2.10)

Il suffix array è quindi una permutazione dei numeri interi in $\{0, n-1\}$.

Esempio 3. Si prenda la stringa:

$$s = mississippi \$, |s| = 12$$

Si producono quindi i seguenti suffissi e il loro riordinamento:

Indice del suffisso	Suffisso		Indice del suffisso	Suffisso
0	mississippi\$		11	\$
1	ississippi\$		10	i\$
2	ssissippi\$		7	ippi\$
3	sissippi\$		4	issippi\$
4	issippi\$		1	ississippi\$
5	ssippi\$	\Longrightarrow	0	mississippi\$
6	sippi\$		9	pi\$
7	ippi\$		8	ppi\$
8	ppi\$		6	sippi\$
9	pi\$		3	sissippi\$
10	i\$		5	ssippi\$
11	\$		2	ssissippi\$

Ottenendo quindi che:

$$SA_T = [11, 10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2]$$

2.3.1 Longest common prefix

L'uso del *suffix array* è spesso accompagnato da un'altra struttura dati, detta **Longest Common Prefix**.

Definizione 7. Si definisce il Longest Common Prefix (LCP) di un testo T lungo n, denotato con LCP_T , come un array lungo n+1, contenente la lunghezza del prefisso comune tra ogni coppia di suffissi consecutivi nell'ordinamento lessicografico dei suffissi, ovvero l'ordinamento specificato da SA_T . Più formalmente LCP_T è un array tale che, avendo $0 \le i \le n$ e indicando con lcp(x,y) il più lungo prefisso comune tra le stringhe x e y:

$$LCP_{T}[i] = \begin{cases} -1 & se \ i = 0 \lor i = n \\ |lcp(T[SA_{T}[i-1], n], T[SA_{T}[i], n])| & altrimenti \end{cases}$$
(2.11)

Esempio 4. Riprendendo l'esempio precedente si avrebbe quindi:

Indice	$\mathbf{SA_{T}}$	$ \text{LCP}_{\mathbf{T}} $	Suffisso
0	11	-1	\$
1	10	0	i\$
2	7	1	<u>i</u> ppi\$
3	4	1	<u>i</u> ssippi\$
4	1	4	<u>issi</u> ssippi\$
5	0	0	mississippi\$
6	9	0	pi\$
7	8	1	ppi\$
8	6	0	sippi\$
9	3	2	<u>si</u> ssippi\$
10	5	1	ssippi\$
11	2	3	ssissippi\$
12	-	-1	_

Senza entrare in ulteriori dettagli relativi all'algoritmo di pattern matching tramite SA e LCP, in quanto non centrali per il resto della trattazione, risulta comunque interessante riportare le complessità temporali. Si ha quindi che, per l'algoritmo di query su SA senza l'uso dell'LCP, si ha, per un testo lungo n e un pattern lungo m:

$$\mathcal{O}(m\log n) \tag{2.12}$$

Con l'uso dell'LCP questo si riduce a:

$$\mathcal{O}(m + \log n) \tag{2.13}$$

Per ulteriori approfondimenti in merito agli algoritmi di pattern matching basati su *suffix array* e ai relativi *acceleratori*, si rimanda al testo di Gusfield [16].

2.3.2 SA inverso

Ai fini di poter comprendere future definizioni si presenta anche la permutazione inversa dei valori del *suffix array*, detta **Inverse Suffix Array** (*ISA*). Grazie a tale permutazione inversa, dato un indice di suffisso, è possibile sapere in quale posizione si trovi tale suffisso nel *suffix array*.

Definizione 8. Dato il suffix array SA_T , costruito su un testo T di lunghezza n, si definisce l'inverse suffix array, denotato con ISA_T , come:

$$ISA_T[i] = j \iff SA_T[j] = i, \ \forall i \in \{0, n-1\}$$

Esempio 5. Riprendendo l'esempio precedente si avrebbe quindi:

Indice	SA_T	$ $ ISA $_{\mathbf{T}}$	Suffisso
0	11	5	\$
1	10	4	i\$
2	7	11	ippi\$
3	4	9	issippi\$
4	1	3	ississippi\$
5	0	10	mississippi\$
6	9	8	pi\$
7	8	2	ppi\$
8	6	7	sippi\$
9	3	6	sissippi\$
10	5	1	ssippi\$
11	2	0	ssissippi\$

2.3.3 LCP permutato

Un'altra permutazione che bisogna introdurre è il **permuted longest-common-prefix array** (PLCP) [17]. Tale permutazione permette una rappresentazione succinta in memoria dell'LCP [18], permettendo di ottenere gli stessi risultati di quest'ultimo. Un'altro vantaggio è che la sua ricostruzione richiede un minor costo computazionale.

Definizione 9. Si definisce il **permuted longest-common-prefix array**, denotato con $PLCP_T$, costruito a partire da un testo T di lunghezza n, come un array tale per cui [8]:

$$PLCP_{T}[p] = \begin{cases} -1 & se\ ISA_{T}[p] = 0\\ LCP_{T}[ISA_{T}[p]] & altrimenti \end{cases}, \ \forall p \in \{0, n-1\}$$
 (2.15)

Quindi, i valori sono in ordine di posizione, ovvero l'ordine originale dato dagli indici dei suffissi, e non lessicografico. In altri termini, si ha una permutazione dei valori di LCP_T tale per cui $|17\rangle$:

$$PLCP_{T}[SA_{T}[p]] = LCP_{T}[p], \ \forall p \in \{1, n-1\}$$
 (2.16)

DC L'intera sottosezione potrebbe essere quasi totalmente rimossa ma almeno al definizione serve per il calcolo di tutte le occorrenze di un MEM, come in PHONI

Indice	SA_T	$ $ ISA $_{\mathbf{T}}$	$LCP_{\mathbf{T}}$	$PLCP_T$	Suffisso
0	11	5	-1	0	\$
1	10	4	0	4	i\$
2	7	11	1	3	<u>i</u> ppi\$
3	4	9	1	2	<u>i</u> ssippi\$
4	1	3	4	1	<u>issi</u> ssippi\$
5	0	10	0	1	mississippi\$
6	9	8	0	0	pi\$
7	8	2	1	1	$\underline{\mathbf{p}}\mathbf{p}\mathbf{i}\$$
8	6	7	0	1	sippi\$
9	3	6	2	0	<u>si</u> ssippi\$
10	5	1	1	0	ssippi\$
11	2	0	3	-1	ssissippi\$
12	_	_	-1	_	_

Esempio 6. Riprendendo l'esempio precedente si avrebbe quindi:

Ciò che permette una rappresentazione compatta del PLCP è descritto nel seguente lemma [19].

Lemma 1. Dato un testo T, tale che |T| = n, si ha che:

$$PCLP_{T}[i] \ge PLCP_{T}[i-1] - 1, \ \forall i \in \{1, n-1\}$$
 (2.17)

Grazie a tale lemma si può memorizzare l'PLCP sparso.

Definizione 10. Dato un intero q, per il quale calcolo (basato sul lemma precedente) si rimanda al paper di Kasai [19], si definisce **array PCLP sparso**, lungo $\left\lfloor \frac{n}{q} \right\rfloor$ e denotato PLCP_q, l'array che memorizza ogni q-esimo valore del PLCP, avendo che:

$$PLCP_{q}[i] = PLCP_{T}[iq] (2.18)$$

DC Capire se serve variante sparsa e se serve esempio

2.3.4 Funzione phi

L'ultimo concetto che si introduce sono le **funzioni** φ e φ^{-1} , usate per poter identificare i valori precedenti e successivi di un dato valore in SA_T . Essere sono utili al fine di poter sia ricostruire efficientemente il PLCP di un testo T (per i dettagli si rimanda all'articolo di Kärkkäinen [17]) che di permettere, come si vedrà più avanti nella sezione 2.4, il riconoscimento di tutte le occorrenze di un **match massimale esatto** (MEM) in T [8].

Definizione 11. Dato un testo T di lunghezza n si definiscono le funzioni, che di fatto sono permutazioni dei valori di SA_T , φ e φ^{-1} come [8]:

$$\varphi(p) = \begin{cases} null & se\ ISA_T[p] = 0\\ SA_T[ISA_T[p] - 1] & altrimenti \end{cases}, \ \forall p \in \{0, n - 1\}$$
 (2.19)

$$\varphi^{-1}(p) = \begin{cases} null & se\ ISA_T[p] = n - 1\\ SA_T[ISA_T[p] + 1] & altrimenti \end{cases}, \ \forall \ p \in \{0, n - 1\}$$
 (2.20)

Si noti che si ha il valore null quando, rispettivamente, si studia il primo e l'ultimo valore del suffix array in quanto non hanno, sempre rispettivamente, l'antecedente e il successore. Infatti, semplicemente, tali funzioni restituiscono i due valori, se esistenti, di SA_T adiacenti ad un valore del suffix array dato.

Analogamente, sempre coi medesimi vincoli, possono essere definite come [17]:

$$\varphi[SA[p]] = SA[p-1] \tag{2.21}$$

$$\varphi^{-1}[SA[p]] = SA[p+1] \tag{2.22}$$

Esempio 7. Riprendendo l'esempio precedente si avrebbe quindi:

Indice	SA_T	$ $ ISA $_{\mathbf{T}}$	arphi	$oldsymbol{arphi}^{-1}$	Suffisso
0	11	5	1	9	\$
1	10	4	4	0	i\$
2	7	11	5	null	ippi\$
3	4	9	6	5	issippi\$
4	1	3	7	1	ississippi\$
5	0	10	3	2	mississippi\$
6	9	8	8	3	pi\$
7	8	2	10	4	ppi\$
8	6	7	9	6	sippi\$
9	3	6	0	8	sissippi\$
10	5	1	11	7	ssippi\$
11	2	0	null	10	ssissippi\$

Infatti, ad esempio, il valore 9 in SA_T è preceduto dal valore $\varphi(9) = 0$ ed è seguito dal valore $\varphi^{-1}(9) = 8$.

2.4 Trasformata di Burrows-Wheeler

Introdotta nel 1994 da Burrows e Wheeler con lo scopo di comprimere testi, la **Burrows-Wheeler Transform** [20] è divenuta ormai uno standard nel campo dell'algoritmica su stringhe e della bioinformatica, grazie ai suoi molteplici vantaggi sia dal punto di vista della complessità temporale che da quello dell'efficienza in memoria.

Nel dettaglio la BWT è una trasformata reversibile che permette una compressione lossless, quindi senza perdita d'informazione. Tale trasformazione viene costruita a partire dal riordinamento dei caratteri del testo in input, riordinando lessico-graficamente le cosiddette **rotazioni** del testo. Interessante è la proprietà per cui

caratteri uguali tendono ad essere posti consecutivamente all'interno della stringa prodotta dalla trasformata. Questa proprietà è causata dalle ripetizioni di sottostringhe all'interno del testo stesso.

Definizione 12. Dato un testo T \$-terminato, tale che |T| = n, si definisce la **Burrows-Wheeler Transform (BWT)** di T, denotata con BWT_T , come un array di caratteri lungo n dove l'elemento i-esimo è il carattere che precede l'i-esimo suffisso T nel riordinamento lessicografico. Più formalmente si ha che:

$$BWT_{T}[i] = \begin{cases} T[SA_{T}[i] - 1] & se \ SA_{T}[i] \neq 1 \\ \$ & altrimenti \end{cases}, \ \forall i \in \{0, n - 1\}$$
 (2.23)

In termini più pratici, la BWT di un testo è calcolabile riordinando lessicograficamente tutte le possibili **rotazioni** del testo T.

Definizione 13. Si definisce **rotazione i-esima** di un testo T lungo n, denotata con $rot_T(i)$, come la stringa ottenuta dalla concatenazione del suffisso i-esimo con la restante porzione del testo. Più formalmente si ha che, denotando con $X \cdot Y$ la concatenazione tra la stringa X e la stringa Y:

$$rot_T(i) = T[i, n-1] \cdot T[0, i-1], \ \forall i \in \{0, n-1\}$$
 (2.24)

Data questa definizione, quindi, la BWT del testo T risulta essere l'ultima colonna della matrice, detta **Burrows-Wheeler Matrix** (BWM), che si ottiene riordinando tutte le rotazioni di T, che altro non sono che i suffissi già riordinati per il calcolo del SA a cui viene concatenata la parte restante del testo.

Un altro array spesso utilizzato insieme alla BWT è il cosiddetto **array F**, lungo |T|, che è l'array formato dalla prima colonna della BWM. In pratica l'array F è. banalmente, l'array formato dal riordinamento lessicografico dei caratteri del testo T.

Esempio 8. Si prenda la stringa:

$$s = mississippi \$, |s| = 12$$

Si produce la BWM_T , da cui si estraggono F_T e BWT_T :

Indice	$\mathbf{SA_T}$	$\mathbf{F_{T}}$	$\mathbf{BWM_T}$	$\mathbf{BWT_{T}}$
0	11	\$	\$mississippi	i
1	10	i	i\$mississipp	p
2	7	i	ippi\$mississ	\mathbf{s}
3	4	i	issippi\$miss	\mathbf{s}
4	1	i	ississippi\$m	m
5	0	m	mississippi\$	\$
6	9	p	pi\$mississip	p
7	8	p	ppi\$mississi	i
8	6	s	sippi\$missis	\mathbf{s}
9	3	s	sissippi\$mis	\mathbf{s}
10	5	s	ssippi\$missi	i
11	2	s	ssissippi\$mi	i

L'importanza di questa trasformata è dovuta soprattutto al fatto che sia reversibile, implicando quindi che a partire da BWT_T è possibile ricostruire T. Questo è possibile grazie ad una proprietà intrinseca della trasformata che viene riassunta nel concetto di **LF-mapping**.

Definizione 14. Dato un testo T, tale che |T| = n, data la sua BWT_T e il suo array F_T si definisce \mathbf{LF} -mapping come la proprietà per la quale l'i-esima occorrenza di un carattere σ in BWT_T corrisponde all'i-esima occorrenza dello stesso carattere in F_T .

Grazie a questa definizione è possibile partire dall'ultimo carattere del testo, \$, e ricostruire l'intero testo a ritroso. Si vede quindi un breve esempio.

Esempio 9. Si riprende l'esempio precedente, avendo:

$$BWT_T = ipssm pissii\ e\ F_T = piiiimppssss$$

E avendo i seguenti caratteri associati dall'LF-mapping:

Si comincia dal simbolo '\$' in BWT_T , che è l'ultimo carattere di T. Si ha che esso corrisponde al primo e unico simbolo '\$' in F_T , all'indice 0. Tale simbolo, per l'ovvia proprietà delle rotazioni è preceduto dal simbolo $BWT_T[0] = 'i$ ' in T. Quindi 'i' precederà '\$' in T:

$$T = \dots i$$
\$

Si sa inoltre che tale 'i' è il primo 'i' in BWT_T . Si cerca quindi il primo simbolo 'i' anche in F_T , sapendo che sono lo stesso simbolo nel testo. A questo punto il simbolo allo stesso indice di tale 'i' nella BWT_T , ovvero il simbolo 'p', sarà il simbolo che precede 'i' nel testo:

$$T = \dots pi$$
\$

Proseguendo a ritroso si ricostruisce l'intero testo:

$$T = mississippi$$
\$

DC Questo esempio serve davvero?

FM-index

Tramite l'uso dell'LF-mapping è possibile risolvere il problema di ricerca di un pattern all'interno del testo, tramite l'algoritmo nominato **backward search**. Questa tecnica consiste nell'iterare il pattern da destra a sinistra e salvare, di volta in volta, un intervallo sul suffix array. Nel dettaglio, ipotizzando di essere in posizione i del pattern, tale intervallo è relativo a quei suffissi che hanno come prefisso il suffisso i-esimo del pattern. Tale intervallo viene quindi esteso usando il carattere P[i-1] selezionando il nuovo intervallo sul suffix array. Tale aggiornamento è detto **backward step** e consiste nell'aggiornare l'intervallo sul suffix array a quei suffissi del testo che, estesi a sinistra col carattere (i-1)-esimo del pattern, presentano un match con P[i-1, |P|-1].

Usando la BWT è possibile usare due funzioni, dette C e Occ, per computare la $backward\ search$.

Definizione 15. Dato un testo \$-terminato T, lungo n e costruito su alfabeto Σ , si definisce la funzione C, tale che:

$$C: \Sigma \cup \$ \to \mathbb{N} \tag{2.25}$$

avendo che, dato un carattere $\sigma \in \Sigma$, $C(\sigma)$ restituisce il numero di occorrenze dei caratteri lessicograficamente più piccoli di σ in T.

Definizione 16. Dato un testo \$-terminato T, lungo n e costruito su alfabeto Σ , e la sua BWT_T , si definisce la funzione Occ, tale che:

$$Occ: \Sigma \cup \$ \times \{0, n\} \to \mathbb{N}$$
 (2.26)

avendo che, dato un carattere $\sigma \in \Sigma$ e una posizione i della BWT_T , $Occ(\sigma, i)$ restituisce il numero di occorrenze del carattere σ nei primi i elementi di BWT_T .

Questa coppia di funzioni prende il nome di **FM-index** [21], il quale è definito essere un *self index* in quanto è possibile tenere in memoria solo l'indice per ottenere i risultati medesimi della BWT_T , ricordando anche che da essa si può ricostruire il testo T.

Esempio 10. Si prenda la stringa:

$$T = mississippi\$, |s| = 12$$

Che produce:

$$BWT_T = ipssm pissii$$

Si ha, per $C(\sigma)$:

σ	$C(\sigma)$
\$	0
i	1
\mathbf{m}	5
p	6
\mathbf{s}	8

Mentre per $Occ(\sigma, i)$ si ha:

0	0	0	0	0	0
		1	0	0	0
2	0	1	0	1	0
1 2 3 4 5 6 7 8	0 0 0 0 0 1 1 1 1 1	1	0	$egin{array}{cccccccccccccccccccccccccccccccccccc$	1
4	0		0	1	2
5	0	1 1 1 2 2 2 3	1 1 1	1	1 2 2 2 2 2 3
6	1	1	1	1	2
7	1	1	1	2	2
8	1	2	1	2	2
9	1	2		2	3
10	1	2	1 1	2	4
11	1	3	1	2	4
_12	1	4	1	2	4
i/σ	\$	i	m	p	s

Dato un simbolo σ del pattern e il precedente intervallo [f, g) su SA_T , eseguire il **backward step**, tramite l'FM-index, aggiornando f e g nel seguente modo:

$$f' = C(\sigma) + Occ(\sigma, f), \quad g' = C(\sigma) + Occ(\sigma, g)$$
(2.27)

Ritornando il nuovo intervallo $[f,g) \leftarrow [f',g')$ sse f' < g'. Si segnala che tali variabili sono inizializzate con f = 0 e g = n.

Tale calcolo altro non è che l'LF-mapping. Infatti, partendo da un intervallo su SA_T (che è anche un intervallo su BWT_T), si identifica quali suffissi sono preceduti dal simbolo del pattern voluto. Tale simbolo, se il pattern ha un'occorrenza fino al carattere in analisi, sarà presente in sottointervallo di [f,g) sulla BWT_T . Una volta identificati tali caratteri su BWT_T si usano $C(\sigma)$ e $Occ(\sigma,i)$, per trovare tali caratteri su F_T , calcolando il nuovo intervallo [f,g).

DC capire se dire meglio

Esempio 11. Si assuma il pattern P = iss da voler ricercare nel testo T = mississippi\$. Si ha, in termini di inizializzazione che f = 0, g = 12, $\sigma = P[|P| - 1] = P[2] = s$. Si calcolano i nuovi f' e g':

$$f' = C(s) + Occ(s, 0) = 8 + 0 = 8$$
$$g' = C(s) + Occ(s, 12) = 8 + 4 = 12$$

Ottenendo l'intervallo [8, 12) sul suffix array. Si prosegue leggendo il carattere $\sigma = P[1] = s$:

$$f' = C(s) + Occ(s, 8) = 8 + 2 = 10$$
$$q' = C(s) + Occ(s, 12) = 8 + 4 = 12$$

Limitando quindi l'intervallo a [10,12). Si noti che tale intervallo corrisponde ai due simboli "s" presenti in $BWT_T[8,11]$, che sono esattamente i simboli in $F_T[10,11]$. Un ulteriore aggiornamento, col carattere $\sigma = P[0] = i$, comporta:

$$f' = C(i) + Occ(i, 10) = 1 + 2 = 3$$
$$g' = C(i) + Occ(i, 12) = 1 + 4 = 5$$

Avendo l'intervallo finale su SA_T del match, ovvero: [3,5). Seguendo l'intero ragionamento sul suffix array si avrebbe:

Indice	SA_T	$\mathbf{F_{T}}$	BWM_T	BWT_T		Indice	SA_T	$\mathbf{F_{T}}$	$\mathbf{BWM_T}$	BWT_T
0	11	\$	\$mississippi	i		0	11	\$	\$mississippi	i
1	10	i	i\$mississipp	p		1	10	i	i\$mississipp	р
2	7	i	ippi\$mississ	S		2	7	i	ippi\$mississ	s
3	4	i	issippi\$miss	S		3	4	i	issippi\$miss	s
4	1	i	ississippi\$m	m		4	1	i	ississippi\$m	m
5	0	m	mississippi\$	\$	\Longrightarrow	5	0	m	mississippi\$	\$
6	9	р	pi\$mississip	p		6	9	p	pi\$mississip	р
7	8	р	ppi\$mississi	i		7	8	p	ppi\$mississi	i
8	6	s	sippi\$missis	S		8	6	s	sippi\$missis	S
9	3	s	sissippi\$mis	S		9	3	s	sissippi\$mis	S
10	5	s	ssippi\$missi	i		10	5	s	ssippi\$missi	i
11	2	s	ssissippi\$mi	i		11	2	S	ssissippi\$mi	i

 \Downarrow

Indice	SA_T	$\mathbf{F_{T}}$	BWM_T	BWT_T		Indice	SA_T	$\mathbf{F_{T}}$	BWM_T	BWT_T
0	11	\$	\$mississippi	i	-	0	11	\$	\$mississippi	i
1	10	i	i\$mississipp	p		1	10	i	i\$mississipp	p
2	7	i	ippi\$mississ	s		2	7	i	ippi\$mississ	s
3	4	i	issippi\$miss	s		3	4	i	issippi\$miss	S
4	1	i	ississippi\$m	m		4	1	i	ississippi\$m	m
5	0	m	mississippi\$	\$	\Longrightarrow	5	0	m	mississippi\$	\$
6	9	р	pi\$mississip	p		6	9	p	pi\$mississip	p
7	8	р	ppi\$mississi	i		7	8	р	ppi\$mississi	i
8	6	s	sippi\$missis	s		8	6	s	sippi\$missis	s
9	3	s	sissippi\$mis	s		9	3	s	sissippi\$mis	s
10	5	s	ssippi\$missi	i		10	5	s	ssippi\$missi	i
11	2	s	ssissippi\$mi	i		11	2	s	ssissippi\$mi	i

Avendo quindi che le occorrenze del pattern P = iss iniziano alle posizioni $SA_T[3] = 4$ e $SA_T[4] = 1$ del testo.

2.4.1 Trasformata di Burrows-Wheeler run-length encoded

Come già introdotto, la *BWT* tende ad avere caratteri uguali in posizioni consecutive all'interno della sua sequenza. Si è quindi pensato, fin da subito, ad un modo efficiente per memorizzare in modo compresso testi mediante l'uso del **runlength encoding**. Tale tecnica consiste nel memorizzare le cosiddette **run**, ovvero sequenze massimali di caratteri uguali, mediante coppie:

(carattere, lunghezza della run)

Esempio 12. Vediamo un breve esempio. Si ipotizzi di avere la seguente stringa:

s = aaaacctgggggg

Una sua memorizzazione run-length sarebbe del tipo:

$$\{(a,4),(c,2),(t,1),(g,6)\}$$

2.4.2 RLBWT e r-index

In questa direzione, nel 2005, Mäniken e Navarro proposero la Run-Length encoded Burrows-Wheeler Transform (*RLBWT*) [5].

Definizione 17. Dato un testo T si definisce la RLBWT di T come la rappresentazione run-length encoded della BWT_T , denotandola con $RLBWT_T$. Si noti che, avendo r come numero di run nella BWT_T :

$$|RLBWT_T| = r (2.28)$$

L'uso di tale struttura risulta particolarmente efficiente, ad esempio, volendo creare un'unica BWT a partire dalla concatenazione di multipli genomi. Infatti, tale concatenazione conterrà, per ovvie ragioni biologiche, diverse regioni genomiche ripetute.

Una strategia per la memorizzazione in modo compatto la RLBWT è quella di memorizzare:

- una stringa c, tale che |c|=r, contenente un solo carattere per ogni run della BWT_T
- un bitvector bv, lungo quanto BWT_T , tale che bv[i] = 1 sse $BWT_T[i]$ è il primo carattere, detto anche testa, di una run

Esempio 13. Si prenda ad esempio la seguente BWT_T :

$$BWT_T = acggtcccaa$$

Si hanno:

$$c = acgtca$$

$$bv = 1110110010$$

Mäniken e Navarro hanno proposto anche il seguente teorema.

Teorema 1. Dato un testo T, tale che |T| = n, se ne può costruire la RLBWT in uno spazio $\mathcal{O}(r)$ tale per cui si possono conteggiare tutte le occorrenze di un pattern P, tale che |P| = m, in tempo:

$$\mathcal{O}(m\log n) \tag{2.29}$$

La struttura dati dietro questo risultato ha preso il nome di **r-index**. Tale indice consiste in:

- la RLBWT
- dei suffix array sample

Nonostante questi ottimi risultati, per poter computare l'r-index, si richiedeva anche la costruzione dei suffix array samples in spazio $\mathcal{O}(r)$.

Grazie a tale indice, dato un testo T, tale che |T| = n, e dato un pattern P, tale che |P| = m, è stato possibile:

• conteggiare le occorrenze (count query) del pattern nel testo, in tempo $\mathcal{O}(m \log n)$, con spazio $\mathcal{O}(r)$

• localizzare tali occorrenze (locate query) in tempo $\mathcal{O}(s)$, con spazio $\mathcal{O}\left(\frac{r}{s}\right)$, avendo s come distanza tra due SA samples

Si ha quindi che i SA samples sono di un ordine di grandezza maggiore, in termini di memoria, rispetto alla RLBWT.

Nel 2017, Policriti and Prezza [22] proposero un teorema fondamentale in questo ambito.

Teorema 2 (Toehold lemma). Dato un testo T, tale che |T| = n, e dato un pattern P, tale che |P| = m, si può computare l'intervallo sulla BWT_T contenente i k caratteri precedenti le occorrenze di P in T in spazio $\mathcal{O}(r)$ e in tempo:

$$\mathcal{O}(m\log\log n) \tag{2.30}$$

Questo risultato dimostra come identificare **un** SA sample nell'intervallo contenente il pattern P. Il limite è dato dal fatto che non si supporta la localizzazione di tutte le k occorrenze degli SA samples in quell'intervallo.

Nel 2020 Gagie et al [6], combinando la RLBWT e il $Toehold\ lemma$, trovarono una soluzione a questo problema, mediante la definizione della funzione φ (che nel dettaglio si dettaglierà più avanti). Tale funzione ha permesso di avere le locate query in spazio $\mathcal{O}(r)$. Tale risultato si riassume nel seguente teorema.

Teorema 3. Dato un testo T, tale che |T| = n, si può memorizzare T in spazio $\mathcal{O}(r)$ tale che si possano trovare tutte le k occorrenze di un pattern P, lungo m, in tempo:

$$\mathcal{O}((m+k)\log\log n) \tag{2.31}$$

Nel dettaglio, i risultati di Gagie portarono a definire l'**r-index** tramite l'uso dei valori del *SA* all'inizio e alla fine di ogni run come *suffix array sample*. Si è quindi ottenuto che i *suffix array sample* possono essere memorizzati in spazio proporzionale al numero di run, pur permettendo in modo efficiente le *locate query*. Per i dettagli in merito alla costruzione dell'*r-index* si rimanda ai paper di Kuhnle et al. [23], di Mun et al. [24] e di Boucher et al. [25].

2.4.3 Match massimali con RLBWT

Dopo aver introdotto l'**r-index** bisogna brevemente come avvenga il calcolo dei cosiddetti **Maximal Exact Match** (*MEM*), ovvero match esatti, tra un pattern e un testo, che non possono essere estesi in alcuna direzione.

Definizione 18. Dato un testo T, con |T| = n, e un pattern P, con |P| = m, si definisce una sottostringa P[i, i+l-1], di lunghezza l, MEM di P in T se:

• P[i, i+l-1] è una sottostringa di T

- P[i-1,i+l-1] non è una sottostringa di T (non si può estendere a sinistra)
- P[i, i+l] non è una sottostringa di T (non si può estendere a destra)

L'importanza nel calcolo dei match massimali esatti si ritrova nel loro uso nei metodi di allineamento basati sul **paradigma seed-and-extend**. Tale paradigma, sfruttato in algoritmi di allineamento come **BLAST** [26], uno degli allineatori più usati al mondo, si basa sul trovare *MEM* di piccola lunghezza, i *seed* appunto, per poi continuare l'allineamento tramite algoritmi più sofisticati, spesso basati sulla *programmazione dinamica*.

Nel 2020, Bannai et al. [27] mostrarono come il calcolo dei MEM fosse equivalente al calcolo delle **Matching Statistics** (MS), un concetto teorico molto usato in bioinformatica. Informalmente, per ogni posizione i del pattern, le MS riportano la lunghezza e una posizione di inizio sul testo della più lunga sottostringa comune tra il testo e P[i, |P| - 1].

Definizione 19. Dato un testo T, con |T| = n, e un pattern P, con |P| = m, si definisce **matching statistics** di P su T un array MS di coppie (pos, len), lungo quanto il pattern, tale che:

- T[MS[i].pos, MS[i].pos + MS[i].len 1] = P[i, i + MS[i].len 1], quindi si ha un match tra P e T lungo MS[i].len a partire da MS[i].pos in T e da i in P
- P[i, i + MS[i].len] non occorre in T, quindi il match non è ulteriormente estendibile

Una volta calcolato l'array MS si ha il seguente lemma.

Lemma 2. Dato un testo T, un pattern P lungo m e il corrispondente array di matching statistics MS, si ha che:

$$P[i, i+l-1], \forall \, 0 < i \le m \tag{2.32}$$

è un **MEM** di lunghezza l in T sse:

$$MS[i].len = l \wedge MS[i-1].len \leq MS[i].len$$
 (2.33)

Inoltre, qualora si avesse i = 0, si ha che P[0, l - 1] è un **MEM** di lunghezza l in T sse:

$$MS[0].len = l \wedge MS[0].len \ge MS[1].len \tag{2.34}$$

DC Secondo caso da verificare

Per costruire l'array MS l'approccio naive è quello di sfruttare interamente l'LCP array ma, sempre nell'articolo di Bannai et al.[27], si è presentato una semplice concetto in grado di ottimizzare il processo, quello delle **threshold**. Questa piccola struttura dati memorizza il minimo valore dell'LCP array tra due run consecutive del medesimo simbolo nella BWT.

Definizione 20. Dato un testo T e date $BWT_T[j',j]$ e $BWT_T[k,k']$ due run consecutive dello stesso carattere in BWT_T , si definisce **threshold** la posizione:

$$j < i \le k$$
 tale che i è l'indice del minimo valore in $LCP[j+1,k]$ (2.35)

Rossi et al., nel 2021, sfruttarono tutte le conoscenze relative alla RLBWT, all'r-index e alle matching statistics per ideare MONI: A Pangenomics Index for Finding MEMs [7]. In questa soluzione si ha quindi la costruzione, in due sweep, tramite l'algoritmo di Bannai, dell'array delle matching statistics. Infatti si ha:

- un primo sweep che computa i vari MS[i].pos
- un secondo sweep che, tramite random access sul testo T computa i vari MS[i].len, confrontando direttamente le due sottostringhe del testo e del pattern. Contemporaneamente a tale calcolo, l'algoritmo annota gli eventuali MEM

Nel dettaglio, per computare i valori MS[i].pos, si procede scorrendo il pattern P, lungo m, da destra a sinistra. Brevemente i passi dell'algoritmo sono i seguenti:

- 1. si inizia cercando l'ultima occorrenza, di indice q, di P[i], i=m-1, in BWT_T , "virtualmente" essendo essa in memorizzata in modo compatto tramite compressione run-length
- 2. si procede tramite LF-mapping a partire da q, arrivando in una nuova posizione q per le medesime motivazione descritte precedentemente nel caso della BWT
- 3. si memorizza $MS[i].pos = SA_T[q]$
- 4. a questo punto si hanno due alternative:
 - se $BWT_T[q] = P[i-1]$ si procede con il mapping come in 2.
 - se $BWT_T[q] \neq P[i-1]$ si deve selezionare un nuovo q tale per cui $BWT_T[q] = P[i-1]$. Questo può essere o l'indice della coda della run precedente di simboli P[i-1] o la testa della run successiva di simboli P[i-1]. Qualora non si debba scegliere, ovvero la run attuale

non è preceduta/succeduta da una run di simboli P[i-1], si sceglie, rispettivamente, la testa della run successiva o la coda della run precedente di simboli P[i-1]. Altrimenti si usa la threshold relativa al carattere P[i-1], la cui posizione viene denotata t. Qualora si ha che q < t si procede scegliendo la coda della run precedente mentre, avendo $q \ge t$, si seleziona la testa della run successiva. La scelta basata sulla posizione della threshold è dettata dal fatto che, in tal modo, si seleziona, di volta in volta, il suffisso più lungo che presenta un match con il suffisso, esteso a sinistra con P[i-1], del pattern. Una volta scelto il nuovo q si procede con il mapping come in 2.

5. si itera fino ad esaurimento del pattern

Lo pseudocodice è visualizzabile all'algoritmo 2.1.

Questa pubblicazione è stata uno dei punti di partenza per riadattare quanto studiato sulla *RLBWT* classica al fine di ottenere risultati analoghi per la *RLPBWT*. Per ulteriori dettagli sull'implementazione, sul calcolo delle *threshold* e sui risultati sperimentali si rimanda direttamente al paper di *MONI* [7].

Algoritmo 2.1 Algoritmo di Bannai per il calcolo dell'array MS tra un pattern P e un testo T. Per semplicità si ignorano i casi in cui q non è definito. Si assume inoltre che P[m-1] occorre in T. Con $LF(\cdot)$ si intende il calcolo dell'LF-mapping.

```
1: function COMPUTE MS(P, T, SA_T, BWT_T)
2:
        MS \leftarrow [(pos: 0, len: 0) \dots (0, 0)]
                                                                          \triangleright |P| = m, |T| = n, |MS| = m
3:
        q \leftarrow posizione dell'ultima occorrenza di P[m-1] in BWT_T
4:
        pos \leftarrow SA_T[q]
        for every i \in [0, m-1] do
5:
            if BWT_T[q] \neq P[i] then
6:
7:
                if BWT_T[q] è prima della relativa threshold per P[i] then
8:
                   q \leftarrow posizione dell'occorrenza precedente di P[i] in BWT_T
9:
10:
                    q \leftarrow posizione dell'occorrenza successiva di P[i] in BWT_T
                pos \leftarrow SA_T[q]
11:
12:
            MS[i].pos \leftarrow pos
13:
            q \leftarrow LF(q), \ pos \leftarrow pos - 1
        for every i \in [0, m-1] do
14:
            MS[i].len \leftarrow MS[i-1].len - 1
15:
            while P[i + MS[i].len] = T[MS[i].pos + MS[i].len] do
16:
17:
                MS[i].len \leftarrow MS[i].len + 1
        return MS
18:
```

DC Sistemare pseudo Bannai

DC ridire meglio e dimostra-

2.4.4 Uso delle LCE query

Nel 2021, Boucher, Gagie, Rossi et al. proposero un ulteriore miglioramento di quanto fatto in *MONI*, con **PHONI**: Streamed Matching Statistics with Multi-Genome References.

In questo progetto non solo si sostituì l'uso delle thresholds con l'uso delle **LCE** query, riducendo l'algoritmo ad un solo sweep sull'array MS (permettendo un uso "online" dell'algoritmo), ma si esplicitò anche l'uso delle funzioni φ e φ^{-1} e dell' $PLCP_T$ per il riconoscimento di tutte le occorrenze di ogni MEM tra un pattern e un testo, nel modo riportato all'algoritmo 2.2 [8].

A tal fine si sfrutta infatti il seguente teorema [6].

Teorema 4. Dato un testo T, tale che |t| = n, si può memorizzare T in $\mathcal{O}(r)$, con r numero di run, tale che, dato un indice $p \in \{0, n-1\}$ si possano computare $\varphi(p)$, $\varphi^{-1}(p)$ e PLCP[p] in tempo:

$$\mathcal{O}(\log\log n) \tag{2.36}$$

Si è quindi potuto migliorare e semplificare l'algoritmo di Bannai usato in MONI. Infatti, sfruttando le LCE query, avendo il testo T in memoria sotto forma di SLP, è possibile computare contemporaneamente sia i vari MS[i].pos che i vari MS[i].len. Infatti, a differenza di quanto visto in MONI, qualora si debba effettuare la scelta la si fa in base al risultato delle LCE query, che comporta anche il calcolo di MS[i].len. Sfruttando, infatti, MS[i+1].len e la lunghezza del risultati dell'LCE query è possibile tenere conto di eventuali overlap tra i match e computare correttamente MS[i].len. Alternativamente, qualora si possa proseguire avendo un match tra $BWT_T[q]$ e P[i-1], il calcolo MS[i].len avviene a partire da MS[i+1].len, incrementandolo di uno avendo aggiunto un carattere a sinistra. Inoltre, come nel caso dell'algoritmo di Bannai, si ha anche il computo dei MEM nel momento in cui si hanno a disposizione i valori MS[i].len. Il riconoscimento della run a cui appartiene un certo indice e degli indici delle teste delle run avviene tramite l'uso di bitvector. Infatti, $\forall \sigma \in \Sigma$, con Σ alfabeto in uso, si ha un bitvector B_{σ} , lungo n (ovvero quanto il testo), tale che:

$$B_{\sigma}[i] = \begin{cases} 1 & \text{se } BWT_{T}[i] = \sigma \\ 0 & \text{altrimenti} \end{cases}$$
 (2.37)

L'algoritmo 2.3 [8] riporta il calcolo completo dell'array MS presente in PHONI, la cui complessità temporale è stimata in:

$$\mathcal{O}(m\log\log n) \tag{2.38}$$

Per ulteriori approfondimenti si rimanda al paper di riferimento [8].

DC Spiegare molto meglio e verificare tempo **Algoritmo 2.2** Algoritmo per il calcolo della lista di tutte le occorrenze di una sottostringa del pattern, P[i, j], in un testo T, a partire dall'array delle matching statistics MS.

```
1: function ALL OCC(MS, i, j, P, T)
         if MS[i].len < j - i + 1 then
 2:
 3:
             return
        p \leftarrow MS[i].pos
 4:
        occ \leftarrow []
 5:
 6:
        push(occ, p)
         while PLCP[p] \ge j - i + 1 do
 7:
 8:
             p \leftarrow \varphi(p)
 9:
             push(occ, p)
        p \leftarrow \varphi^{-1}(MS[i].pos)
10:
         while p \neq null \land PLCP[p] \ge j - i + 1 do
11:
             push(occ, p)
12:
             p \leftarrow \varphi^{-1}(p)
13:
14:
        return occ
```

Algoritmo 2.3 Algoritmo per il calcolo dell'array MS in PHONI. Per semplicità si ignorano i casi in cui q, q' e q'' non sono definiti. Si assume inoltre che P[m-1] occorre in T. Con $LF(\cdot)$ si intende il calcolo dell'LF-mapping.

```
1: function Compute MS(P, T, SA_T, BWT_T)
         MS \leftarrow [(pos: 0, len: 0) \dots (0, 0)]
                                                                          |P| = m, |T| = n, |MS| = m
         q \leftarrow select_{P[m-1]}(1)
 3:
         MS[m-1] \leftarrow (SA_T[q]-1,1), q \leftarrow LF(q)
 4:
         for i = m - 2 \text{ to } 0 \text{ do}
 5:
 6:
             if BWT_T[q] = P[i] then
                  MS[i] \leftarrow (MS[i+1].pos-1, MS[i+1].len+1), q \leftarrow LF(q)
 7:
             else
 8:
 9:
                  c \leftarrow rank_{P[i]}(q)
                  q' \leftarrow select_{P[i]}(c), \ q'' \leftarrow select_{P[i]}(c+1)
10:
                  l' \leftarrow \min\left(M\widetilde{S}[i+1].len, |LCE(\widetilde{S}A_T[q'], MS[i+1].pos)|\right)
11:
                  l'' \leftarrow \min\left(MS[i+1].len, |LCE(SA_T[q''], MS[i+1].pos)|\right)
12:
             if l' \geq l'' then
13:
                  MS[i] \leftarrow (SA_T[q'] - 1, l' + 1), q \leftarrow LF(q')
14:
15:
             else
                  MS[i] \leftarrow (SA_T[q''] - 1, l'' + 1), q \leftarrow LF(q'')
16:
         return MS
17:
```

Esempio 14. Si ripropone nuovamente l'esempio con (anche se il pattern ha un carattere in più rispetto agli esempi precedenti):

$$T = mississippi$$
\$ $e P = miss$

Studiando il calcolo dell'array delle matching statistics sia con MONI che con PHONI. Si assume che |T| = n e |P| = m.

Si hanno, avendo in ultima colonna i 5 bitvector relativi alle threshold per ogni simbolo:

Indice	SA_T	$\mathbf{F_T}$	$ \mathbf{BWM_T}$	BWT_T	$B_{\$}$	B_i	B_m	B_p	B_s	\$imps
0	11	\$	\$mississippi	i	0	1	0	0	0	11111
1	10	i	i\$mississipp	p	0	0	0	1	0	01000
2	7	i	ippi\$mississ	s	0	0	0	0	1	00000
3	4	i	issippi\$miss	s	0	0	0	0	0	00000
4	1	i	ississippi\$m	m	0	0	1	0	0	00000
5	0	m	mississippi\$	\$	1	0	0	0	0	00011
6	9	p	pi\$mississip	p	0	0	0	1	0	00000
7	8	p	ppi\$mississi	i	0	1	0	0	0	00000
8	6	\mathbf{s}	sippi\$missis	s	0	0	0	0	1	01000
9	3	\mathbf{s}	sissippi\$mis	s	0	0	0	0	0	00000
10	5	\mathbf{s}	ssippi\$missi	i	0	1	0	0	0	00000
11	2	\mathbf{s}	ssissippi\$mi	i	0	0	0	0	0	00000

Iniziamo con l'algoritmo visto in MONI.

Si ha che P[m-1] ='s', ne segue, seguendo la stessa notazione vista sopra e cercando l'ultima occorrenza di 's' in BWT_T , che q=9. Si procede quindi con l'LF-mapping avendo che LF(9)=11. A questo punto si ha il valore di MS[m-1].pos:

$$MS.pos = ???SA_T[11] = ????2$$

Si ha poi che $BWT_T[11] = ii' \neq P[m-2] = is'$. Non avendo alcuna run di simboli is' sotto l'attuale run di simboli ii' si procede aggiornando q con l'indice della cosa della precedente run di simboli is', avendo quindi q = 9. Si procede con l'LF-mapping avendo che LF(9) = 11 e si aggiorna l'array MS.pos:

$$MS.pos = ??SA_T[11]2 = ??22$$

Si ha, a questo punto, che $BWT_T[11] = ii' = P[m-2] = is'$. Si procede con l'LF-mapping, ottenendo LF(11) = 4 e aggiornando MS:

$$MS.pos = ?SA_T[4]22 = ?122$$

Infine, avendo $BWT_T[4] = ii \neq P[m-3] = m'$ si conclude il calcolo dell'array MS con l'ultimo LF-mapping. Infatti LF(4) = 5, avendo quindi:

$$MS.pos = SA_T[5]122 = 0122$$

DC verificare bene threshold A questo punto, tramite random access al testo, si calcolano i vari MS.len. Partendo da sinistra, si calcola per primo MS[i].len con i=0, cercando il più lungo prefisso comune tra P[i, m-1] = miss e T[MS[0].len, m-1-i] = miss, che è, in questo caso, lungo 4. Si procede per tutti i valori di MS.pos, ottenendo:

i	0	1	1	3
P	m	i	S	s
pos	0	1	2	2
len	4	3	2	1

Avendo che P[0, 4-1] = P[0, 3] è un MEM di P in T.

Si passa ora al calcolo tramite PHONI.

Si inizia avendo $q = select_{P[m-1]}(1) = select_{s'}(1) = 2$, ovvero ponendo q pari all'indice della prima occorrenza di P[m-1] in BWT_T . Seguendo l'algoritmo si ottiene, essendo $SA_T[2] = 7$, quindi:

i	0	1	1	3
P	m	i	s	s
	2	2	2	C
pos		٤		6

Si procede con l'LF-mapping, avendo LF(2) = 8. Si ha che $BWT_T[8] = P[m-2]$ e quindi, essendo $SA_T[8] = 6$ si ottiene:

i	0	1	1	3
P	m	i	s	S
pos	?	?	5	6
len	?	?	2	1

Anche in questo caso, essendo LF(8) = 10 ed essendo $BWT_T[10] = P[m-3]$, si aggiornano senza ulteriori passaggi i valori dell'array MS:

i	0	1	1	3
P	m	i	S	S
pos	?	4	5	6
len	?	3	2	1

Infine, avendo che LF(10) = 3, si ha $BWT_T[3] \neq P[m-4]$. In questo caso si potrebbe ottimizzare il calcolo del nuovo indice, sapendo che è presente una sola

occorrenza del carattere desiderato, 'm', in BWT_T , ma, ai fini dell'esempio, si mostra il calcolo completo. Innanzitutto bisogna capire quanti caratteri P[m-4] = 'm' si hanno prima di q=3. Si ha che $rank_{m'}(3)=0$. A questo punto si selezionano, tramite select_{m'}, l'indice della testa della run precedente di caratteri 'm' (che in questo caso non esiste e gli si assegna il valore 0) e della run successiva:

$$q' = select_{m'}(3) = 0$$

$$q'' = select_{'m'}(4) = 4$$

Seguendo l'algoritmo si ha che:

$$l' = \min(3, |LCE(SA_T[0], 4)|) = \min(3, |LCE(11, 4)|) = \min(3, 0) = 0$$

$$l'' = \min(3, |LCE(SA_T[4], 4)|) = \min(3, |LCE(1, 4)|) = \min(3, 4) = 3$$

Avendo $l'' \ge l'$ si aggiorna MS di conseguenza, avendo $SA_T[q''] = SA_T[4] = 1$:

i	0	1	1	3
P	m	i	s	s
pos	0	4	5	6

Avendo che P[0, 4-1] = P[0, 3] è un MEM di P in T.

DC Esempio da sistemare

2.5 Trasformata di Burrows-Wheeler posizionale

Presentata nel 2014 da Richard Durbin [4], la **Positional Burrows-Wheeler Transform** (*PBWT*), traducibile con *trasformata di Burrows-Wheeler posizio-nale*, è una struttura efficiente per la memorizzazione e l'interrogazione di **pannelli di aplotipi**.

La costruzione di tali pannelli avviene tramite il riconoscimento delle variazioni di un singolo nucleotide tra le sequenze genomiche di diversi individui, ovvero dei cosiddetti Single-Nucleotide Polymorphism (SNP). Ogni variazione, identificata per un certo nucleotide in una posizione specifica, viene detto allele. La combinazione di tutte le varianti alleliche, ereditate, a meno di mutazioni, da ogni genitore, forma l'aplotipo di un certo individuo. Come visibile in figura 2.1 [28], la costruzione parte dai vari sequenziamenti (nell'immagine relativi a diversi cromosomi ma il procedimento è uguale partendo da diversi individui) da cui si identificano le varianti alleliche. Da queste ultime si costruiscono gli aplotipi da cui si estraggono i cosiddetti tag SNPs, ovvero le possibili alternative per una certa

Figura 2.1: Schema di ottenimento del pannello di aplotipi.

variante allelica. Questi ultimi, tendenzialmente rappresentati per l'uomo da due caratteri vista la sua natura diploide, formano, l'alfabeto del pannello. L'informazione combinata di tutti gli aplotipi in un individuo è detta, invece, **genotipo**. Formalmente si considera un pannello X di M aplotipi x_i , con $i=0,\ldots,M-1$, su N siti, indicizzati tramite $k=0,\ldots,N-1$, tale per cui tutti i siti sono considerati biallelici. Da un punto di vista computazionale, quest'ultima assunzione comporta che il pannello X è costruito sull'alfabeto ordinato $\Sigma = \{0,1\}$, con $0 \prec 1$. Si ha la sostituzione dei tag SNPs, per un certo sito, con tale alfabeto. Ne segue che:

$$x_i[k] = \{0, 1\} \tag{2.39}$$

Prima di proseguire con la trattazione è bene fornire la descrizione di alcuni formalismi utilizzati:

- si denota, per una qualsiasi riga x_i , con $x_i[k_1, k_2)$ la **sottostringa** di x_i che inizia alla colonna k_1 e termina alla colonna $k_2 1$
- date due righe x_i e x_j , si definisce un **match** tra le due righe, iniziante alla colonna k_1 e terminante alla colonna $k_2 1$, sse:

$$x_i[k_1, k_2) = x_i[k_1, k_2) \tag{2.40}$$

• un match tra due righe x_i e x_j , come definito al punto precedente, è definito **localmente massimale** sse non si ha alcuna estensione a destra o sinistra

che comporti un ulteriore match, avendo quindi che:

$$(k_1 = 0 \lor x_i[k_1 - 1] \ne x_i[k_1 - 1]) \land (k_2 = N \lor x_i[k_2] \ne x_i[k_2])$$
 (2.41)

• comparando una sequenza z ad un pannello di aplotipi X si definisce che s ha un **set-maximal exact match (SMEM)** con x_i , che inizia alla colonna k_1 e termina alla colonna $k_2 - 1$, sse tale match è localmente massimale e non si ha alcun altro match di z con un altro x_j che include ed estende l'intervallo $[k_1, k_2)$. Si ha che z può avere uno SMEM, tra k_1 e $k_2 - 1$, con più di un aplotipo del pannello

Si noti che il match tra le due sequenze nella PBWT è tale sse iniziano entrambi nella stessa colonna e terminano nella stessa colonna. Questo vincolo, da cui deriva il termine "posizionale" e che, di fatto, impedisce l'uso degli algoritmi tradizionali visti con la BWT, è dato dal fatto che una colonna rappresenta un preciso sito di una variante genica.

La costruzione di questa struttura dati si basa, ad ogni colonna k, sul riordinamento lessicografico delle sequenze di aplotipi basato sull'ordinamento inverso dei prefissi terminanti in colonna k-1. I valori presenti in colonna k, dopo il riordinamento, altro non sono che i valori che andranno a popolare la cosiddetta **matrice PBWT**, che rappresenta la vera e propria trasformata. Si noti che avere le sequenze ordinate in base ai prefissi invertiti alla k-esima colonna permette di identificare i match con maggior facilità in quanto, ad ogni colonna, aplotipi con suffisso comune (o prefisso comune in ordine inverso) saranno in posizioni consecutive all'interno della trasformata.

La computazione di tutti i riordinamenti non presenta difficoltà dal punto di vista computazionale in quanto, conoscendo l'ordinamento in colonna k, si può derivare facilmente l'ordinamento in colonna k+1, studiando solo i valori riordinati alla colonna precedente.

Definizione 21. Dato un aplotipo i, appartenente al pannello X, e un indice di colonna k, si definisce il **prefix array** a_k come una permutazione degli indici $0, \ldots, M-1$ tale che $a_k[i] = j$ sse x_j è l'i-esimo aplotipo di X nell'ordinamento inverso dei prefissi ottenuto alla colonna k. Quindi $a_k[i] = m$, con m < M, altro non è che l'indice della sequenza x_m del pannello X da cui deriva il prefisso i-esimo nell'ordine inverso in colonna k.

Data questa definizione ne segue che la $matrice\ PBWT$ si ottiene direttamente andando a vedere, per ogni colonna, gli indici del $prefix\ array$ e prendendo i valori del pannello X secondo l'ordine espresso da esso.

Per comodità di rappresentazione definiamo formalmente i valori della matrice PBWT con il seguente formalismo:

$$y_i^k[j] = x_{a_k[i]}[j] (2.42)$$

avendo quindi che y_i^k denota la sequenza *i*-esima secondo l'ordinamento ottenuto per la colonna k. Si può quindi accedere al valore j-esimo, ovvero il valore in colonna j, di tale sequenza. Possiamo quindi meglio spiegare perché risulti semplice computare i vari prefix array. Infatti, si ha che l'ordinamento degli elementi per a_{k+1} si ottiene a partire dall'ordinamento in a_k . Si considerano, infatti, i valori $y_i^k[k]$ e la precedenza del valore 0 sul valore 1 per riordinare in modo stabile tali valori.

Come anticipato, prefissi simili saranno consecutivi nei riordinamenti fino alla colonna k-esima. Quindi, risulta utile tenere traccia della posizione iniziale dei match tra prefissi vicini.

DC Un po' confusionario

Definizione 22. Si definisce divergence array l'array d_k tale che $d_k[i]$ è l'indice colonna iniziale del match massimale a sinistra terminante in k tra l'i-esimo aplotipo e il suo precedente nell'ordinamento ottenuto alla colonna k-esima. Formalmente, dato i > 0, si definisce $d_k[i]$ come il più piccolo j tale che:

$$y_i^k[j,k) = y_{i-1}^k[j,k) \tag{2.43}$$

Ne segue che

$$y_i^k[k-1] \neq y_{i-1}^k[k-1] \implies d_k[i] = k$$
 (2.44)

Per definizione, non avendo una riga precedente con cui effettuare il confronto:

$$d_k[0] = k \tag{2.45}$$

Si può quindi dimostrare che l'inizio di qualsiasi match massimale, terminante in colonna k, tra qualsiasi y_i^k e y_j^k , con i < j, è calcolabile facilmente avendo che è dato da:

$$\max_{i < m < j} d_k[m] \tag{2.46}$$

Si noti che al posto del divergence array si può usare anche una variante del Longest Common Prefix (LCP) array.

Definizione 23. Si definisce Longest Common Prefix (LCP) array l'array l_k che, anziché memorizzare l'indice d'inizio del match massimale a sinistra da due aplotipi consecutivi nell'ordinamento ottenuto alla colonna k-esima, tiene traccia della lunghezza di tale match. Formalmente si ha, quindi, che:

$$l_k[i] = k - d_k[i] \tag{2.47}$$

Fatte queste premesse possiamo quindi fornire una definizione formale di ${\bf PB-WT}$.

Definizione 24. Dato un pannello di M aplotipi con N siti $X = \{x_1, x_2, \ldots, x_M\}$, si definisce la PBWT di X come una collezione di N+1 coppie di array (a_k, d_k) , con $0 \le k \le N$, dove ogni a_k è detto **prefix array** e ogni d_k è detto **divergence** array.

L'algoritmo per la costruzione di a_{k+1} e d_{k+1} a partire da a_k e d_k è disponibile all'algoritmo 2.4. Si può quindi notare come il costo della costruzione dei due insiemi di array sia:

$$\mathcal{O}(NM) \tag{2.48}$$

Ai fini della trattazione dell'algoritmo di match con un'aplotipo esterno ricordiamo

DC Serve altro? Serve spiegare i dettagli dell'algoritmo?

Algoritmo 2.4 Algoritmo di Durbin per la costruzione di a_{k+1} e d_{k+1} a partire da a_k e d_k .

```
1: function BUILDPREFIXANDDIVERGENCEARRAYS(k, M, a_k, d_k)
 2:
          u \leftarrow 0, v \leftarrow 0
          p \leftarrow k+1, q \leftarrow k+1
 3:
 4:
          a \leftarrow [], b \leftarrow [], d \leftarrow [], e \leftarrow []
          for every i \in [0, M-1] do
 5:
               if d_k[i] > p then
 6:
 7:
                    p \leftarrow d_k[i]
               if d_k[i] > q then
 8:
 9:
                     q \leftarrow d_k[i]
               if y_i^k[k] = 0 then
10:
11:
                    a[u] \leftarrow a_k[i], d[u] \leftarrow p
                     u \leftarrow u + 1, p \leftarrow 0
12:
               else
13:
                    b[v] \leftarrow a_k[i], \ e[v] \leftarrow q
14:
                    v \leftarrow v + 1, q \leftarrow 0
15:
          a_{k+1} \leftarrow concatenate(a,b)
16:
          d_{k+1} \leftarrow concatenate(d, e)
17:
```

un'ulteriore definizione.

Definizione 25. Si definisce α_k come l'inverso della permutazione data dal prefix array a_k , avendo che:

$$\alpha_k[i] = j \iff a_k[j] = i$$

Grazie a queste prime definizioni è possibile notare alcune prime forti correlazioni, fattore chiave nello sviluppo di questa tesi, che sussistono tra BWT e PBWT (e le rispettive varianti run-length encoded. Nella seguente tabella si ricordano queste prime correlazioni:

BWT	PBWT
SA_T	a_k
ISA_T	α_k
LCP_T	$d_k \circ l_k$

Esempio 15. Si assuma il seguente pannello X e di voler calcolare y^6 :

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1

Si inizia riordinando il pannello con l'ordine inverso alla quinta colonna, avendo che y^6 altro non è che la sesta colonna del pannello così riordinato. Ne segue che a_6 è la colonna degli indici, che è stata ottenuta con la permutazione data dall'ordinamento, e d_6 la colonna iniziale in cui terminano i match tra righe consecutive nel rioridnamento le sottolineature (evidenziati nell'immagine seguente dalle sottolineature):

img/matrix1.pdf

Avendo, nel complesso:

$$a_6 = [14, 15, 0, 9, 10, 16, 8, 11, 12, 13, 18, 19, 1, 2, 3, 17, 4, 5, 6, 7]$$

$$\alpha_6 = [2, 12, 13, 14, 16, 17, 18, 19, 6, 3, 4, 7, 8, 9, 0, 1, 5, 15, 10, 11]$$

$$d_6 = [6, 0, 4, 2, 0, 0, 5, 0, 0, 0, 3, 0, 4, 0, 0, 6, 4, 0, 0, 0]$$

$$l_6 = [0, 6, 2, 4, 6, 6, 1, 6, 6, 6, 3, 6, 2, 6, 6, 0, 2, 6, 6, 6]$$

Con il calcolo di tutti gli a_k si otterrebbe la seguente matrice PBWT:

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	1	1	0	1	1	0	0	0	1	0	0	1	1	1	1
01	1	1	0	1	1	0	0	0	1	0	0	1	1	1	1
02	1	1	0	1	1	1	0	0	0	1	1	1	0	1	1
03	1	1	0	1	1	0	0	0	1	0	0	1	1	0	1
04	0	1	0	1	0	1	0	0	1	0	0	1	1	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	0
07	0	1	0	1	1	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	1	0	0	0	1	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	0	1
10	0	1	0	1	1	0	0	0	0	0	0	1	1	0	1
11	0	1	0	0	1	0	1	1	0	0	0	1	0	0	1
12	0	1	0	0	1	0	0	1	0	0	0	0	0	0	1
13	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1
14	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
16	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1
17	1	0	1	0	0	0	0	0	0	0	1	1	0	0	1
18	0	0	1	0	0	0	0	0	0	0	1	1	0	0	1
19	0	1	0	0	0	0	0	0	0	0	1	1	0	0	1

2.5.1 Match massimali con aplotipo esterno

Durbin, nel suo articolo, propone diversi algoritmi per l'uso effettivo della sua trasformata. Ad esempio, viene proposto un algoritmo per il calcolo di match interni ad X più lunghi di una lunghezza minima L e uno per la ricerca di tutti i set-maximal match interni ad X in tempo lineare.

Di interesse per questa tesi è però il cosiddetto **algoritmo 5**. Tale algoritmo si propone di trovare tutti i set-maximal match tra il panello X e un aplotipo esterno z, assumendo |z| = N, sempre avendo che una colonna k del pannello e una posizione k della query rappresentano il medesimo sito.

L'idea dietro l'algoritmo è quella di usare tre indici: e_k , f_k e g_k . Nel dettaglio e_k tiene traccia dell'inizio del più lungo match, terminante in colonna k, tra z e un qualche y_i^k . L'intervallo $[f_k, g_k) \subseteq [0, \ldots, M)$ invece identifica il sotto-intervallo di a_k contenente gli indici degli aplotipi appartenetenti a tale match. Si noti come si riprenda quindi l'idea, vista con la **backward search** per la BWT, di studiare un intervallo $[f_k, g_k)$ su SA_T per identificare i match tra un pattern e un testo.

Definizione 26. Dato un pannello X, con M aplotipi/righe e N siti/colonne, e un aplotipo query z, tale che |z| = N, si definisce un **Set-Maximal Exact Match (SMEM)**, iniziante in colonna e_k e terminante il colonna k, tra la query z e le righe del pannello indicizzate dai valori compresi nell'intervallo $[f_k, g_k)$ in a_k sse:

$$z[e_k, k) = y_i^k[e_k, k) \land z[e_k - 1] \neq y_i^k[e_k - 1], \forall i \text{ t.c. } f_k \leq i < g_k$$
 (2.49)

Si noti che $g_k = M$ sse y_{M-1}^k appartiene alle righe per le quali si ha tale SMEM.

Bisogna quindi come aggiornare e_k , f_k e g_k passando dalla colonna k alla colonna k+1. Si procede esattamente come visto per la **backward search**, selezionando, per calcolare $[f_{k+1}, g_{k+1})$, il sottointervallo di $[f_k, g_k)$ in cui si hanno aplotipi che possono essere estesi a destra con il simbolo z[k+1]. L'idea è quella per cui, avendo $f_{k+1} < g_{k+1}$ allora sicuramente ho ancora delle righe che presentano un match che parte da $e_{k+1} = e_k$ e termina in k che può essere esteso in k+1. In caso contrario, avendo $f_{k+1} = g_{k+1}$, non si hanno match estendibili e quindi si può concludere che quelli terminanti in colonna k erano match massimali. In questo secondo caso bisogna poi aggiornare e_{k+1} , ottenedo i relativi f_{k+1} e g_{k+1} , al fine di trovare la nuova colonna da cui parte lo SMEM successivo e le righe del pannello per le quali si ha tale SMEM.

Bisogna, quindi, capire come funzioni la variante del **backward-step** visto per la BWT. Tale mapping, guidato dal carattere corrente dell'aplotipo query, permette di ottenere f_{k+1} e g_{k+1} a partire da f_k e g_k .

Per effettuare il mapping abbiamo bisogno di tre componenti, che, intuitivamente, svolgono la medesima funzione di C e Occ per la BWT:

- 1. l'array c tale per cui c[k] = j sse la colonna k contiene j occorrenze di 0
- 2. l'array u_k tale per cui, alla colonna k-esima, $u_k[i] = j$ sse j è il numero di occorrenze di 0 prima dell'indice i nella colonna k
- 3. l'array v_k tale per cui, alla colonna k-esima, $v_k[i] = j$ sse j è il numero di occorrenze di 1 prima dell'indice i nella colonna k

Tali valori possono essere computati e memorizzati in fase di costruzione della \mathbf{PBWT} , come visibile direttamente nell'algoritmo 2.4 per quanto riguarda u e v. Per quanto riguarda c si ha che potrebbe essere banalmente calcolato anch'esso in fase di costruzione della \mathbf{PBWT} , tenendo ogni volta traccia del numero di 0 incontrati nella colonna k-esima.

Sfruttando i valori di questi 3 array possiamo quindi effettuare lo step/mapping alla colonna successiva, definito, per comodità, da una funzione:

$$w_k: \{0, \dots, M\} \times \Sigma \to \{0, \dots, M\}$$
 (2.50)

tale per cui:

$$w_k(i,\sigma) = \begin{cases} u_k[i] & \text{se } \sigma = 0 \\ v_k[i] + c[k] & \text{se } \sigma = 1 \end{cases}$$
 (2.51)

Tale funzione è rappresentabile in pseudocodice come nell'algoritmo 2.5.

Risulta interessante notare, come confermato anche dall'algoritmo di costruzione stesso, che si ha:

$$a_{k+1} \left[w_k \left(i, y_i^k[k] \right) \right] = a_k[i] \tag{2.52}$$

Avendo che tale mapping permette di "seguire" una determinata riga all'interno delle varie permutazioni dettate dai vari a_k .

Algoritmo 2.5 Algoritmo per il mapping nella PBWT.

```
1: function w(k, i, s, c_k, u_k, v_k)

2: if s = 0 then

3: return u_k[i]

4: else

5: return c_k + v_k[i]
```

Esempio 16. Vediamo un piccolo esempio chiarificatore, riprendendo l'esempio 15, ricordando che:

$$a_5 = [14, 15, 17, 0, 4, 5, 6, 7, 9, 10, 16, 8, 11, 12, 13, 18, 19, 1, 2, 3]$$

 $\alpha_5 = [3, 17, 18, 19, 4, 5, 6, 7, 11, 8, 9, 12, 13, 14, 0, 1, 10, 2, 15, 16]$

$$a_6 = [14, 15, 0, 9, 10, 16, 8, 11, 12, 13, 18, 19, 1, 2, 3, 17, 4, 5, 6, 7]$$

 $\alpha_6 = [2, 12, 13, 14, 16, 17, 18, 19, 6, 3, 4, 7, 8, 9, 0, 1, 5, 15, 10, 11]$

Si ha, ad esempio, con k = 5 e i = 2, che:

$$a_6 \left[w_5 \left(2, y_2^5 [5] \right) \right] = a_5 [2]$$

Avendo:

$$w_5(2, y_2^5[5]) = w_5(2, 1) = v_5[2] + c[5] = 0 + 15 = 15$$

Si ha che:

$$a_6[15] = 17 = a_5[2]$$

Dimostrando come con tale funzione si possa, di fatto, "seguire" la riga 17, capendo da quale posizione arrivi della colonna permutata precedente.

Pensando alla permutazione inversa del **prefix array**, si ottiene un risultato interessante, permettendo di ottenere risultati per la colonna k + 1 a partire dalla colonna k-esima:

$$\alpha_{k+1}[i] = w_k(\alpha_k[i], x_i[k])$$
 (2.53)

Esempio 17. Si riprendono i dati dell'esempio precedente e si vuole calcolare, sempre con k = 5 e i = 2:

$$\alpha_6[2] = w_5(\alpha_5[2], x_2[5]) = w_5(18, 0) = 13$$

Come volevasi dimostrare.

L'ultima equazione ci suggerisce quindi che la funzione w consente il corretto aggiornamento di f_k e g_k . Definendo, infatti:

DC Capire se dire altro su w()

$$f_{k+1} = w_k(f_k, z[k]) (2.54)$$

si ha che f_{k+1} sarà l'indice, in a_{k+1} , della prima sequenza y_j^k , con $j \geq f_k$, per la quale $y_j^k[k] = z[k]$. Analogamente, pensando alla prima sequenza per cui si ha un mismatch dopo l'aggiornamento dell'intervallo, si calcola:

$$g_{k+1} = w_k(g_k, z[k]) (2.55)$$

Si hanno quindi, dopo il calcolo dei potenziali f_{k+1} e g_{k+1} due possibili casi:

1. si ha che $f_{k+1} < g_{k+1}$. In questo caso si hanno ancora match che partono da e_k e terminano in k che si estendono anche in k+1. In altri termini si ha che un sottointervallo non nullo di $[f_k, g_k)$ è relativo a righe che presentano z[k+1] come simbolo in colonna k+1. In tal caso, si prosegue con l'iterazione, avendo $e_{k+1} = e_k$

2. si ha che $f_{k+1} = g_{k+1}$. In questo caso non si hanno match che partono da e_k e terminano in k che sono anche estendibili in k+1. Bisogna quindi annotare i match terminanti in k-1, nell'intervallo $[f_k, g_k)$ su a_k , e poi ricalcolare i nuovi e_{k+1} , f_{k+1} e g_{k+1} . Il punto fondamentale per poter calcolare i nuovi indici è che, virtualmente, l'aplotipo z si trova, in colonna k, o subito prima o subito dopo il blocco di aplotipi indicizzati da $[f_k, g_k)$ su a_k , secondo l'ordinamento dato dalla medesima colonna. Di conseguenza si può inferire che, essendo z nell'ordinamento in k o subito prima di f_k o subito dopo g_k ed avendo $f_{k+1} = g_{k+1}$:

$$y_{f_{k+1}-1}^{k+1} \prec z \prec y_{f_{k+1}}^{k+1} \tag{2.56}$$

Ne segue direttamente che:

$$e_{k+1} \le d_{k+1}[f_{k+1}] \tag{2.57}$$

Avendo che il nuovo indice di partenza del match sarà almeno nella colonna indicata da $d_{k+1}[f_{k+1}]$, essendo esso calcolato tra $y_{f_{k+1}-1}^{k+1}$ e $y_{f_{k+1}}^{k+1}$, tra le quali sequenze è virtualmente compresa la query z.

Si considera quindi, come punto di partenza:

$$e_{k+1} = d_{k+1}[f_{k+1}] - 1 (2.58)$$

Studiando, di conseguenza, $z[e_{k+1}]$, si hanno due casi possibili, dati dal fatto che, per la nozione di divergence array e di ordinamento dei prefissi inversi con $0 \prec 1$:

$$y_{f_{k+1}-1}^{k+1}[e_{k+1}] = 0 \neq y_{f_{k+1}}^{k+1}[e_{k+1}] = 1$$
(2.59)

Si ha quindi che:

- (a) se tale valore è 0 allora z ha un match migliore con $y_{f_{k+1}-1}^{k+1}$ rispetto che con $y_{f_{k+1}}^{k+1}$. Si aggiorna quindi e_{k+1} , decrementandolo, fino a che si ha match tra $z[e_{k+1}-1]$ e $y_{f_{k+1}-1}^{k+1}[e_{k+1}-1]$. Infine si decrementa f_{k+1} fino a che $d_{k+1}[f_{k+1}] \leq e_{k+1}$, trovando quelle righe per il quale il divergence array non supera il valore di e_{k+1} . Si ottengono in tal modo le sequenze, nel riordinamento in k+1, che hanno un match da e_{k+1} a k+1. Invece g_{k+1} resta fisso, avendo che $y_{g_{k+1}}^{k+1}$ presenta un mismatch in colonna k+1
- (b) se tale valore è 1 allora, per l'ordinamento, z ha un match migliore con $y_{f_{k+1}}^{k+1}$ rispetto che con $y_{f_{k+1}-1}^{k+1}$. Si aggiorna quindi e_{k+1} , decrementandolo, fino a che si ha match tra $z[e_{k+1}-1]$ e $y_{f_{k+1}-1}^{k+1}[e_{k+1}-1]$. Infine si incrementa g_{k+1} fino a che $d_{k+1}[g_{k+1}] \leq e_{k+1}$, per lo stesso

ragionamento del caso precedente. Si noti che si permette di ottenere $g_{k+1} = M$ avendo che tale valore risulta escluso in $[f_{k+1}, g_{k+1})$. In tal modo si segnala che la riga indicizzata con $a_{k+1}[M-1]$, in colonna k+1, presenta un match. Invece f_{k+1} resta fisso, avendo che $y_{f_{k+1}}^{k+1}$ presenta un mismatch in colonna k+1

In termini di inizializzazione, per permettere il funzionamento dell'algoritmo, si hanno:

$$f_0 = g_0 = e_0 = 0$$

Quindi il primo step sarà già un caso in cui $f_k = g_k$ qualora $x_0[0] = y_0^0 \neq z[0]$.

Esempio 18. Mostrare un esempio completo di esecuzione richiederebbe troppo spazio quindi ci si limita a mostrare cosa succede nel caso in cui, ad un certo punto dell'esecuzione si hanno $f_{k+1} = g_{k+1}$.

Si assuma il pannello e la matrice PBWT visti all'esempio 15 con una query z. Nel complesso si identificano i seguenti match:

img/pbwtmatch.pdf

Si assuma di essere in colonna k = 6, avendo, dopo i calcoli fatti in colonna k = 5:

- $f_6 = 6$
- $g_6 = 10$
- $e_6 = 0$

Avendo quindi che, a partire dalla colonne 0 fino alla colonna 6-1=5, si hanno le righe nel range [6,10) di a_6 che matchano con z[0,5]. Tali righe sono, nel dettaglio, quelle indicizzate $\{8,11,12,13\}$.

Bisogna quindi aggiornare f_7 e g_7 . Si assuma che z[6] = 1 e che:

$$y^6 = 000000000000100000000, c[6] = 19$$

Si calcolano quindi:

$$f_7 = w_6(6, 1) = v_6[6] + c[6] = 0 + 19 = 19$$

$$g_7 = w_6(10, 1) = v_6[10] + c[6] = 0 + 19 = 19$$

Avendo quindi $f_7 = g_7$ si procede, in primis, annotando i match terminanti in k = 5.

Seguendo l'algoritmo si ha quindi un primo aggiornamento di e_{k+1} , che viene inizializzato a, avendo in memoria d_7 con random access in tempo costante:

$$e_7 = d_7[19] - 1 = 7 - 1 = 6$$

Questo viene fatto in quanto, come detto, l'aplotipo z si trova o subito prima del blocco di aplotipi $[f_k, g_k)$.

Essendo inoltre $z[e_7] = z[6] = 1$ si procede aggiornando g_7 e tenendo fermo f_7 , avendo z[6] = 1. Si procede quindi inizializzando il nuovo g_7 :

$$q_7 = f_7 + 1 = 20$$

ricordando che g_k può "superare" le dimensioni del pannello essendo escluso in $[f_k, g_k)$.

A questo punto si segue la linea specificata da f_7 in a_7 a ritroso, partendo da e_7-1 , fino a che si hanno match con z, aggiornando così il valore di e_7 .

In questo caso non si hanno altre operazioni, in quanto $g_7 = M$ ma, qualora non lo fosse stato, si sarebbe incrementato g_7 fino a che il corrispondente $d_7[g_7]$ sarebbe stato minore o uguale di e_7 , identificando tutte le nuove righe che hanno un match da con $z[e_7, 6]$.

DC Forse sono necessarie immagini?

L'algoritmo 5, consultabile all'algoritmo 2.6 secondo i calcoli di Durbin, ha complessità:

$$\mathcal{O}(N+c) \tag{2.60}$$

tale risultato è stimato tale in quanto si ritiene che il numero di accessi ai loop interni sia limitato dalla costante rappresentante il numero di match, c. Nonostante ciò tale complessità temporale è ancora in corso di studio in quanto si hanno in letteratura evidenze della sua non correttezza. Un esempio è il paper di Naseri [29], dove si afferma che l'intuizione per cui tale costante c limiti superiormente gli accessi ai loop innestati sia falsa. Si noti che nell'articolo non viene però precisata una nuova misura per la complessità dell'algoritmo ma solo che la stima di Durbin è empiricamente accettabile come $caso\ medio$:

Avg.
$$\mathcal{O}(N+c)$$
 (2.61)

In ogni caso, una soluzione naïve, impiegherebbe tempo:

$$\mathcal{O}(N^2M) \tag{2.62}$$

Si comprende, quindi, come tale algoritmo e tale struttura siano stati rivoluzionari per lo studio di pannelli di aplotipi.

Algoritmo 2.6 Algoritmo 5 di Durbin.

```
1: function FIND_SET_MAXIMAL_MATCHES_FROM_Z(z)
         for k \leftarrow 0 to N do
 2:
              e, f, g \leftarrow Update\_Z\_Matches(k, z, e, f, g)
 3:
 4:
    function UPDATE_Z_MATCHES(k, z, e, f, g)
         f' \leftarrow w(k, f, z[k])
 6:
         g' \leftarrow w(k, g, z[k])
 7:
         if f' < g' then
                                                            \triangleright se k \ \dot{e} \ N-1 match da e_k a N-1
 8:
              e' \leftarrow e_k
 9:
                                                                                     \triangleright match da e_k a k
         else
10:
              e' \leftarrow d_{k+1}[f'] - 1
11:
              if z[e'] = 0 and f' > 0 then
12:
                   f' \leftarrow g' - 1
13:
                   while z[e'-1] = y_{f'}^{k+1}[e'-1] do e' \leftarrow e'-1 while d_{k+1}[f'] \le e' do f' \leftarrow f'-1
14:
15:
              else
16:
                   q' \leftarrow f' + 1
17:
                   while z[e'-1] = y_{f'}^{k+1}[e'-1] do e' \leftarrow e'-1
18:
                   while g' < M and d_{k+1}[g'] \le e' do g' \leftarrow g' + 1
19:
         return e', f', g'
20:
```

Limiti spaziali

Bisogna affrontare la tematica della complessità in spazio di tale algoritmo. Si ipotizzi di non ricalcolare, colonna per colonna, comportando un'incremento dal punto di vista temporale, tutti gli array necessari a costruire la PBWT e a permettere di computare la funzione $w(i, \sigma)$.

Ricapitolando, per poter eseguire l'algoritmo 5, si necessita di avere in memoria, con random access in tempo costante:

- il pannello X, di dimensione NM
- l'insieme dei **prefix array** a, di dimensione NM
- l'insieme dei divergence array d, di dimensione NM
- i **vettori** u_k e v_k , per ogni colonna k, complessivamente di dimensione 2NM
- il **vettore** c, di dimensione N

Possiamo quindi dire che si ha una complessità in memoria pari a:

$$\mathcal{O}(NM) \tag{2.63}$$

Nel dettaglio, Durbin stesso ha proposto una stima quantitativa di tale memoria richiesta, ovvero¹:

$$13NM$$
 bytes (2.64)

Per poter capire meglio la problematica conseguente a tali richieste di spazio, prendiamo, ad esempio, un pannello di medie dimensioni, con N=30000 e M=100000. Ne segue che, secondo la stima di Durbin, si necessitano $\sim 36.32 \mathrm{GB}$ di memoria. Inoltre, una stima sperimentale di tale richiesta di memoria può essere confermata con l'esecuzione dell'implementazione della PBWT di Durbin stesso [30]. Infatti, monitorando con time il picco di memoria durante l'esecuzione, si ha che esso corrisponde a $\sim 40.76 \mathrm{GB}$, comprensivi anche di tutto ciò che è "a contorno" all'algoritmo stesso. I dati quindi sembrano confermare le stime di Durbin, confermando l'alto uso di memoria richiesto dall'algoritmo 5. Questa è stata la motivazione principale per cui si è sviluppata, in questa tesi magistrale, una versione **run-length encoded** della struttura dati che permettesse di effettuare query con un aplotipo esterno.

 $^{^{1}} https://github.com/richarddurbin/pbwt/blob/0de8d02df1b77146ded81e9e196991fdab520767/pbwtMatch.cc\#L252$

2.5.2 Varianti della PBWT

Negli anni immediatamente successivi all'articolo di Durbin, una miriade di articoli e ricerche sono state svolte per migliorare la *PBWT*, crearne varianti o utilizzarla per portare a compimento vari studi. Non essendo tali lavori direttamente correlati a questa tesi non verranno approfonditi ma, soprattutto nell'ottica dei prospetti futuri, è bene citarne i principali.

PBWT multiallelica

La prima variante che si introduce è la **PBWT multiallelica** (mPBWT), proposta da Naseri et al. nel 2019 [31]. Questo lavoro estende la PBWT di Durbin generalizzandola ad un alfabeto arbitrario.

Dal punto di vista delle motivazioni biologiche, questa soluzione risulta fondamentale, oltre che per lo studio di specie multialleliche (soprattutto nel mondo vegetale) in quanto gli studi riportano come, nell'uomo, la presenza di siti triallelici sia sotto stimata.

Da un punto di vista prettamente algoritmico si sono quindi estesi i concetti di c, u_k e v_k visti nella PBWT per ottenere un vero e proprio FM-index in grado di lavorare su alfabeto arbitrario Σ , con conseguente forte aumento dello spazio richiesto in memoria. Da un punto di vista della complessità temporale, invece, si ha che le le stime asintotiche degli algoritmi devono tenere conto anche della grandezza dell'alfabeto stesso, avendo però che, essendo esso tendenzialmente di dimensioni ridotte, questo fatto non comporti, in media, particolari problematiche dal punto di vista dei tempi di calcolo. Le complessità temporali della mPBWT infatti sono incrementate di un fattore t, con $t = |\Sigma|$, e se tale valore è assunto costante ad inizio computazione, avendo che difficilmente si ha t >> 2, la complessità temporale non subisce variazioni considerevoli.

PBWT con struttura LEAP

Sempre nel 2019, Naseri et al.[32] proposero anche una variante della *PBWT* che permettesse il calcolo non solo dei match massimali, come per l'algoritmo 5 di Durbin, ma anche qualsiasi match di lunghezza maggiore uguale ad una lunghezza arbitraria *L*. Tale algoritmo fu nominato **PBWT-query**. Inoltre, nello stesso articolo, proposero una struttura dati aggiuntiva, detta **LEAP** (*Linked Equal/Alternating Position*), che, al costo della memorizzazione di otto array aggiuntivi che permettessero di effettuare dei salti nella *matrice PBWT* (salvando gli indici del precedente/prossimo valore nella colonna uguale/diverso) e di memorizzare gli indici dei valori nel *divergence array* relativi a tali indici, ottimizzava i tempi dell'algoritmo per la *PBWT-query* ottenendo l'algoritmo detto (*L-PBWT-query*). Da un punto di vista computazionale si noti che la complessità dell'algoritmo per

DC Serve dire di più sulla struttura LEAP?

la PBWT query, con match di lunghezza minima L è:

$$\mathcal{O}(N + c(R - L + 1)) \tag{2.65}$$

Avendo:

- \bullet R lunghezza media dei match
- c numero totale dei match

In merito ai tempi dell'algoritmo L-PBWT-query si ha invece che è, al costo di 8NM interi aggiuntivi in memoria, con N e M dimensioni del pannello:

$$\mathcal{O}(N+c) \tag{2.66}$$

PBWT dinamica

Sanaullah et al., nel 2021, proposero la **Dynamic PBWT** (*d-PBWT*) [29] col fine di superare le limitazioni imposte dalle strutture statiche usate nella *PBWT* di Durbin. Si è quindi pensato di sostituire l'uso degli array, statici, con l'uso di *linked list*, dinamiche.

Grazie alle $linked\ list$, si è reso possibile l'aggiornamento efficiente della $matrice\ PBWT$ all'aggiunta di un nuovo aplotipo nel pannello o alla rimozione di uno già presente nel pannello.

Da un punto di vista computazionale, è interessante notare come le implementazioni degli algoritmi di Durbin presentino la medesima complessità asintotica. Infatti, ad esempio, la creazione della *d-PBWT* richiede tempo:

$$\mathcal{O}(NM) \tag{2.67}$$

Invece, l'aggiunta e la rimozione di un aplotipo sono entrambe in tempo:

$$Avq. \mathcal{O}(N)$$
 (2.68)

PBWT con wildcard

La tematica dei dati mancanti è una tematica aperta in bioinformatica. I sequenziatori infatti presentano un range d'errore dal 1% al 15%, si ha a volte un basso coverage (ovvero il numero di read che contengono la base sequenziata per un certo locus del genoma) e la fase di assemblaggio del genoma può comportare errori. Questo, in fase di produzione dei pannelli, implica che, in determinati casi, non si sappia quale sia l'allele corretto per un individuo riferendosi ad un sito.

Nel 2020, Williams e Mumey [33] proposero quindi l'uso della **PBWT con wildcard** al fine di disegnare un algoritmo in grado di trovare i match interni ad

un pannello biallelico con dati mancanti, rappresentati come wildcard mediante il simbolo "*" (avendo quindi $\Sigma = \{0, 1, *\}$).

In termini computazionali gli autori sono riusciti a formulare un algoritmo in grado tutti i match interni (ovvero i blocchi) massimali al pannello in tempo, con T numero di blocchi:

$$\mathcal{O}(NMT) \tag{2.69}$$

DC Serve dire

IMPUTE5

Per citare un uso della *PBWT* si può introdurre il concetto di **genotype imputation**, ovvero il processo con il quale si predicono genotipi non ancora osservati in un campione di individui, usando un pannello di aplotipi. Questo tipo di studio si basa sui dati prodotti dai **GWAS** (*Genome-wide association studies*), studi il cui scopo è quello di di esaminare multipli genomi alla ricerca di associazioni tra varianti genetiche e malattie (o outcome specifici delle stesse), identificando varianti genomiche che sono statisticamente associate al rischio per una malattia. A tal fine, nel 2020, Rubinacci et al. proposero **IMPUTE5** [34], un metodo basato sulla *PBWT* per la *genotype imputation*, in grado di studiare pannelli di grandi dimensioni.

DC Aggiungere qualcosa?

2.5.3 Una prima proposta run-length encoded

A fine 2021, Gagie et al. [35] hanno iniziato a teorizzare una variante **run-length** encoded della **PBWT**, basandosi sui risultati già ottenuti sulla BWT classica con la RLBWT.

Pensando alla costruzione della PBWT, con M individui e N siti, si ha che ogni colonna della $matrice\ PBWT$ è ottenuta tramite la permutazione data dal prefix array. Denotiamo tale permutazione, alla colonna k, con π_k , $\forall\ 1 \le k < N$. Ipotizziamo ora di voler studiare la riga i-esima del pannello originale. Si ha che, al variare della colonna k sulla $matrice\ PBWT$, la posizione della riga i è ricostruibile applicando le varie permutazioni :

$$i, \pi_1(i), \pi_2(\pi_1(i)), \dots, \pi_{N-1}(\dots(\pi_2(\pi_1(i))))\dots)$$
 (2.70)

Il punto fondamentale si ritrova nel fatto che l'autore asserisce:

Notice π_k can be stored in space proportional to the number of runs in the kth column of the PBWT...

Nell'articolo si propone quindi una struttura dati formata da N "tabelle" dove, la j-esima riga della k tabella contiene:

- l'indice p di inizio della j-esima run nella colonna k della $matrice\ PBWT$
- il valore $\pi_k(p)$, avendo che:

$$\pi_k(p) = \begin{cases} p - v_k[p] & \text{if } y_p^k[k] = 0\\ c[k] + v_k[p] - 1 & \text{if } y_p^k[k] = 1 \end{cases}$$
 (2.71)

- l'indice della run contenente il simbolo $pi_k(p)$ nella colonna k+1 della $matrice\ PBWT$
- un booleano per capire se la prima run è composta da simboli $\sigma=0$ o $\sigma=1$

Il paper presenta anche il metodo per l'estrazione della i-esima riga:

- 1. si cerca della prima "tabella" la riga relativa alla run, con indice di testa p, contenente l'indice i. Si noti che la prima "tabella", relativa alla colonna k=0 non presenta permutazioni e quindi l'indice i del pannello è anche l'indice i della $matrice\ PBWT$
- 2. si calcola la permutazione per l'indice i (alla prima operazione si avrà k = 1):

$$\pi_k(i) = \pi_k(p) + i - p \tag{2.72}$$

- 3. si cerca poi la riga relativa alla run contenente il simbolo $\pi_k(p)$ nella "tabella" successiva e si scansionano le righe di tale tabella a partire da quella appena identificata fino a trovare la run che contiene $\pi_k(i)$ (alla prima operazione si avrà k=1). Infine, si estrae il simbolo relativo a tale run
- 4. si ripete la procedura dal punto 2) per ogni colonna k

Inoltre, vengono proposti ulteriori ottimizzazioni, basate sul metodo detto **fractional cascading**. Con tale rappresentazione, si riesce a ridurre il numero di run che devono essere scansionate nel passaggio 3. Questo risultato ha un tradeoff in termini di spazio. Infatti, aumentando il numero totale di righe in tutte le tabelle di un fattore al più $\left(1+\frac{1}{d}\right)$, è possibile garantire che si avranno al più d iterazioni, in ogni tabella, per ottenere l'estrazione del simbolo desiderato.

Si segnala che, nel paper, non vengono specificati metodi per effettuare query a tale struttura dati, indicando solo che dovrebbe essere possibile interrogare tale struttura a tabelle.

Per ulteriori dettagli si rimanda al paper di riferimento [35].

Esempio 19. Supponendo di voler ricostruire la riga i = 9, si assuma la matrice PBWT, avendo che in rosso sono segnati i simboli appartenenti alla riga 9:

X	01	02	03	04	05	06	07	08	09	10	11	12
00	1	1	0	0	0	1	0	0	1	1	1	1
01	1	1	0	0	0	1	0	0	1	1	1	1
02	1	1	1	0	0	0	1	1	1	0	1	1
03	1	1	0	0	0	1	0	0	1	1	0	1
04	1	0	1	0	0	1	0	0	1	1	0	1
05	1	0	1	0	0	0	0	0	1	0	0	1
06	1	0	1	0	0	0	0	0	1	0	0	0
07	1	1	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	0	1	0	0	0	1	0	1
09	1	0	0	0	0	1	0	0	0	0	0	1
10	1	1	0	0	0	0	0	0	1	1	0	1
11	0	1	0	1	1	0	0	0	1	0	0	1
12	0	1	0	0	1	0	0	0	0	0	0	1
13	0	0	0	0	1	0	0	0	0	0	0	1
14	0	0	0	0	0	0	0	0	0	0	0	1
15	0	0	0	0	0	0	0	0	0	0	0	1
16	1	0	0	0	0	0	0	0	1	0	0	1
17	0	0	0	0	0	0	0	1	1	0	0	1
18	0	0	0	0	0	0	0	1	1	0	0	1
19	0	0	0	0	0	0	0	1	1	0	0	1

Si costruiscono quindi le seguenti tabelle [35]:

img/trick.jpg

Nelle tabelle, in rosso, si hanno le varie $\pi_k(i)$ calcolate nel processo, ottenute, se necessario, iterando a partire dalle $\pi_k(p)$, segnalate in azzurro.

Si hanno infatti i seguenti calcoli, ovvero i vari $\pi_j(i) = \pi_j(p) + i - p$ relativi alle permutazioni in colonna k, per l'estrazione della riga 9:

•
$$\pi_1(9) = 17 + 9 - 9 = 17$$

•
$$\pi_2(17) = 4 + 17 - 13 = 8$$

•
$$\pi_3(8) = 4 + 8 - 8 = 3$$

•
$$\pi_4(3) = 0 + 3 - 0 = 3$$

•
$$\pi_5(3) = 0 + 3 - 0 = 3$$

•
$$\pi_6(3) = 16 + 3 - 3 = 16$$

•
$$\pi_7(16) = 2 + 16 - 3 = 15$$

•
$$\pi_8(15) = 2 + 15 - 3 = 14$$

•
$$\pi_9(14) = 3 + 14 - 12 = 5$$

•
$$\pi_{10}(5) = 1 + 5 - 5 = 1$$

•
$$\pi_{11}(1) = 17 + 1 - 0 = 18$$

Sfruttando quindi il valore booleano (non rappresentato nelle tabelle ma esistente) che ci dice con che simbolo inizia una colonna e sapendo che, essendo un pannello binario si alternano le run con simboli $\sigma = 0$ e $\sigma = 1$, si può ricostruire la riqa 9 del pannello originale:

$$x_9 = 100001000011$$

Capitolo 3

Metodo

In questo capitolo verranno illustrate le metodologie usate in questa tesi, trattando, sia dal punto di vista teorico che sperimentale, tutte le soluzioni che hanno portato alla costruzione della **RLPBWT**.

Nel dettaglio, si approfondiranno tutte le varianti della **RLPBWT** ottenute durante lo studio, evidenziandone pro e contro.

3.1 Perché la compressione run-length

Prima di proseguire con la spiegazione dettagliata delle varianti della **RLPBWT** è bene dare una prima motivazione al perché si sia ritenuto utile sviluppare una variante **run-length encoded** della **PBWT**.

Citando direttamente il paper di Durbin [4]:

Furthermore we can also expect the y arrays to be strongly run-length compressible. This is because population genetic structure means that there is local correlation in values due to linkage disequilibrium, which means that haplotypes with similar prefixes in the sort order will tend to have the same allele values at the next position, giving rise to long runs of identical values in the y array. So the PBWT can easily be stored in smaller space than the original data.

Quindi il risultato atteso è quello per cui aplotipi simili, che, ad ogni step. saranno consecutivi nel riordinamento, è molto probabile presentino lo stesso allele nella colonna di cui si sta in quel momento calcolando la permutazione. Ne segue che, all'interno della $matrice\ PBWT$, è molto probabile che si abbiano lunghe run di simboli $\sigma=0$ e di simboli $\sigma=1$.

Si noti quindi che si ottiene quindi il medesimo risultato atteso avuto con la BWT, avendo che caratteri uguali è molto probabile vengano posti in posizioni consecutive all'interno della BWT stessa. Si hanno quindi le stesse premesse che hanno portato

alla *RLBWT*, considerando, inoltre, che, come in quel caso, non si tratta solo di memorizzare la struttura con compressione run-length ma di lavorare direttamente con la struttura dati compressa, risolvendo il problema del calcolo degli *SMEM* senza decomprimere la struttura dati.

3.2 Introduzione alle varianti della RLPBWT

Lo sviluppo di questo progetto di tesi è stato tale per cui si sono sviluppate varie implementazioni della **RLPBWT**.

Al fine di una miglior trattazione di tali implementazioni, si è deciso di suddividere le stesse in *sotto-componenti*, le quali, adeguatamente "assemblate" permetteranno, in varie accezioni, il calcolo degli *SMEM*. Tali componenti, che verranno dettagliate in seguito, sono:

- le componenti per il mapping tra la colonna k-esima e la colonna k+1, ovvero, riprendendo la notazione di Durbin, le strutture run-length encoded per gli array c, u_k e v_k . Nel dettaglio, tale componente è implementata in due varianti:
 - 1. mapping tramite intvector (MAP-INT)
 - 2. mapping tramite bitvector sparsi (MAP-BV)
- la componente per la memorizzazione, anch'essa proporzionale al numero di run, delle threshold. Anche in questo caso si hanno due varianti, corrispondenti di fatto alle due varianti della componente del mapping:
 - 1. threshold con intvector (THR-INT)
 - 2. threshold con bitvector sparsi (THR-BV)
- la componente per la memorizzazione della permutazione ad ogni colonna della matrice PBWT, ovvero dei samples di prefix array (PERM)
- la componente in grado di garantire *random access* al pannello. Si hanno due possibilità:
 - 1. random access con bitvector (RA-BV)
 - 2. random access con SLP (RA-SLP)
- la componente per le longest common extension query (LCE)
- la componente per l'intero longest common prefix array (LCP), già descritto nella sezione 2.5

• la componente per permettere il calcolo delle funzioni φ e φ^{-1} (PHI)

Assemblando tali componenti si ottengono otto strutture dati:

• due strutture dati composte unicamente dalle componenti dedicate al mapping e dall'intero array LCP. Tali strutture sono nominate:

```
1 MAP-INT + LCP
2 MAP-BV + LCP
```

Queste soluzioni, che non permettono di sapere quali righe del pannello presentano uno *SMEM*, terminante in una certa colonna, ma solo quante esse siano, sono basate su una re-implementazione dell'algoritmo 5 di Durbin

• quattro strutture per il calcolo degli SMEM tramite la computazione in due passaggi dell'array delle $matching\ statistics$, in modo analogo a quanto introdotto in MONI per la BWT, tramite $threshold\ e\ random\ access$ al pannello. Il pannello, come anticipato, è memorizzato come $vettore\ di\ bitvector$ o come SLP. L'algoritmo necessita, inoltre, sia della componente atta al mapping che di quella relativa ai $sample\ di\ prefix\ array$. Infine, al fine di estendere il riconoscimento a tutte le righe che presentano uno SMEM fino ad una certa colonna, si necessita della struttura che permette di "emulare" le $funzioni\ \varphi\ e\ \varphi^{-1}$. Tali strutture sono nominate:

```
3 MAP-INT + THR-INT + RA-BV + PERM + PHI
4 MAP-INT + THR-INT + RA-SLP + PERM + PHI
5 MAP-BV + THR-BV + RA-BV + PERM + PHI
6 MAP-BV + THR-BV + RA-SLP + PERM + PHI
```

• due strutture per il calcolo degli *SMEM* tramite la computazione in un singolo passaggio dell'array delle *matching statistics*, in modo analogo a quanto introdotto in *PHONII* per la *BWT*, tramite l'uso delle *LCE que-ry*, con le quali, rispetto alle quattro precedenti, si sostituisce l'uso delle *threshold* e del *random access* al pannello. Tali strutture sono nominate:

```
7 MAP-INT + LCE + PERM + PHI
8 MAP-BV + LCE + PERM + PHI
```

Una visualizzazione grafica di quanto descritto è rappresentata alla figura 3.1.

Figura 3.1: Schema grafico dell'ottenimento delle otto strutture dati.

3.3 Matching Statistics per la RLPBWT

Prima di discutere nel dettaglio delle varie componenti, è bene introdurre il concetto di **matching statistics** nel caso della **RLPBWT**, al fine di comprendere al meglio il senso della maggior parte delle componenti citate.

Definizione 27. Dato un pannello X, di dimensioni $M \times N$, con M individui e N siti, e un aplotipo esterno/pattern z, tale che |z| = N, si definisce matching statistics di z su X un array MS di coppie (row, len), di lunghezza N, tale che (avendo che x_i indica l'i-esima riga del pannello X):

- $x_{MS[i].row}[i MS[i].len + 1, i] = z[i MS[i].len + 1, i]$, ovvero si ha che l'aplotipo query ha un match, terminante in colonna i, con la riga MS[i].row
- z[i-MS[i].len,i] non è un suffisso terminante in colonna i di un qualsiasi sottoinsieme di righe di X. In altri termini il match non deve essere ulteriormente estendibile a sinistra

Inoltre, analogamente al caso della variante classica, si ha il seguente lemma.

Lemma 3. Dato un pannello X, di dimensioni $M \times N$, con M individui e N siti, un aplotipo esterno/pattern z, tale che |z| = N, e il corrispondente array di matching statistics MS si ha che:

$$z[i - l + 1, i]$$

è uno SMEM di lunghezza l in con la riga MS[i].row del pannello X sse:

$$MS[i].len = l \wedge (i = N - 1 \vee MS[i].len > MS[i + 1].len)$$

Si vedrà in sezione 3.8 come calcolare, a partire da tali SMEM, tutte le righe del panello per le quali si ha lo stesso SMEM.

Il calcolo dell'array MS di z rispetto al pannello X si basa su due fasi:

- 1. la fase di **start**
- 2. la fase di **extend**

Si assuma di avere due indici $i \in j$, $0 \le i \le j < N$, tali per cui z[i,j] è un suffisso di uno tra $x_0[0,j]$, ..., $x_{M-1}[0,j]$.

La fase di extend estende il match di z[i, j] a z[i, j + 1] sse:

- *i* < *M*
- z[i, j+1] è un suffisso di uno tra $x_0[0, j+1], \ldots, x_{M-1}[0, j+1]$

D'altro canto la fase di start cerca il più piccolo indice i', avendo $i \leq i' \leq j$, tale per cui z[i',j] è un suffisso di uno tra $x_0[0,j], \ldots, x_{M-1}[0,j]$. Si ha quindi il computo di ogni valore MS[i], $\forall i \in [0,N)$, dell'array delle matching statistics:

- si assume inizialmente che MS[0].len = 0, quando i = 0
- si applica la fase di start per cercare il minimo indice i', avendo $i \leq i'$, tale che z[i',i'+MS[i].len] è un suffisso di uno tra $x_0[0,i'+MS[i].len],\ldots,x_{M-1}[0,i'+MS[i].len]$. Inoltre, per minimalità di i', si ha che, $\forall i < j < i', MS[j].len = MS[j-1].len + 1$
- a questo punto si itera la fase di extend per trovare il più lungo prefisso z[i',k] che è anche un suffisso di uno tra $x_0[0,k], \ldots, x_{M-1}[0,k]$, avendo che MS[i'].len = k i' + 1
- avendo che i' > i si può procedere induttivamente al calcolo dell'array MS

In altri termini, più "pratici", il calcolo dell'array MS avviene nel seguente modo:

- \bullet si parte da una riga arbitraria i della prima colonna
- se $x_i[0] = z[0]$ si procede salvando MS[0].row = i
- qualora si abbia $x_i[0] \neq z[0]$ si seleziona o l'ultima riga della run precedente o la prima riga della run successiva a quella a cui appartiene la riga i. Tale riga, j, verrà salvata in MS, avendo MS[0].row = j
- a questo punto si effettua il mapping verso la colonna successiva, k, e, a seconda di avere o meno un match con z[k], si procede come nei casi visti sopra

Si noti che non si è parlato di come calcolare i vari MS[i].len, questo in quanto si hanno due soluzioni (che verranno poi approfondite tramite le rispettive componenti):

- 1. si possono usare le *threshold* per capire che nuova riga selezionare in caso di mismatch. In tal caso i vari MS[i].len devono essere calcolati dopo il calcolo di MS[i].row tramite $random\ access$ al panel
- 2. si possono usare le LCE query per capire che nuova riga selezionare in caso di mismatch e in tal caso il calcolo delle MS[i].len avviene in contemporanea

DC PARTE
PRESA DAL
PAPER: RIVEDERE PROFONDAMENTE, FORSE
MANCA ANALISI COMPLETO MISMATCH

img/pbwtmatch.pdf

In tal caso l'array MS sarebbe, avendo scelto come riga iniziale la 19:

<i>k</i>	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
\overline{z}	0	1	0	0	1	0	1	0	0	0	1	1	1	0	1
	19														
len	1	2	3	4	5	6	4	5	6	7	4	5	2	3	4

Dove si possono riconoscere i vari SMEM, la cui colonna di fine è segnalata in verde, secondo la definizione data sopra (anche in questo caso i dettagli del calcolo verranno esplicitati successivamente).

3.4 Componente per il mapping

La prima componente, nelle sue due varianti, che si descrive è quella relativa al mapping tra una colonna e la sua successiva. Bisogna quindi memorizzare per ogni

colonna k, in modo proporzionale al numero di run della stessa, le informazioni atte a ottenere i medesimi risultati ottenibili con la funzione $w(i, \sigma)$, secondo la notazione di Durbin [4].

3.4.1 Mapping con intvector

La prima variante che si descrive è quella denominata MAP-INT.

L'ispirazione iniziale per tale componente è stata data dall'articolo di Gagie et al [35], nonostante si abbiano, di fatto, diverse modifiche strutturali. Riprendendo quanto descritto alla sotto-sezione 2.5.3, si è quindi deciso di memorizzare gli indici delle teste di run, ovvero gli indici iniziali di ogni run. Ovviamente questa informazione non è sufficiente per poter sapere se una run sia composta da simboli $\sigma=0$ o simboli $\sigma=1$. Fortunatamente, essendo lo studio limitato, come per la PBWT, a pannelli costruiti su alfabeto binario $\Sigma=\{0,1\}$, si è potuto sfruttare il fatto che le run si alternano tra un carattere e l'altro. Basta quindi tenere in memoria un valore booleano nominato $start_k$, che permetta di capire se, in colonna k, la prima run sia una run di simboli $\sigma=0$. Infatti le run di indice pari presentano lo stesso simbolo della prima run e quindi, dato un qualsiasi indice di run, è possibile sapere quale sia il simbolo corrispondente a tale run. L'implementazione di questo concetto è visualizzabile all'algoritmo 3.1 e richiede tempo costante.

```
Algoritmo 3.1 Algoritmo per estrazione simbolo da una run in una colonna
```

```
1: function GET_SYMBOL(s, r) \triangleright s = \top sse la prima run ha simbolo \sigma = 0, r indice di run 2: if s then
3: if r \mod 2 = 0 then return 0 else return 1
4: else
5: if r \mod 2 = 0 then return 1 else return 0
```

Si memorizzano gli indici delle teste di run in un array p_k , di lunghezza pari al numero di run in colonna k. In pratica si memorizza un indice i sse:

$$y_{i-1}^{k}[k] \neq y_{i}^{k}[k] \tag{3.1}$$

Il passaggio successivo è stato quello di capire se le informazioni necessarie al mapping fossero tutte necessarie. In altri termini se, data la colonna k nella $matrice\ PBWT$, fossero necessari c[k], u_k e v_k . In merito al valore c[k], per quanto calcolabile, ipotizzando di avere solo p_k , in tempo $\mathcal{O}(r)$, dove r è il numero di run della colonna k-esima, si è deciso che si potesse calcolarlo in fase di costruzione delle RLPBWT e memorizzarlo esattamente come per la PBWT. In merito invece ai vettori u_k e v_k si è cercato un modo per ottenerne una rappresentazione che implicasse avere un solo valore per ogni run della colonna. In altri termini si è cercato di capire se fosse possibile tenere in memoria r valori che permettessero di

effettuare comunque il mapping, a partire da un indice arbitrario $i \in \{0, ..., M-1\}$. Anche in questo caso l'alternanza data dal caso binario ha permesso di trovare una semplice soluzione. I valori di u_k e v_k crescono infatti in modo alternato. Infatti, a seconda del simbolo σ rappresentato in una data run, si ha che solo i valori dell'array relativo a tale simbolo, nel range di indici di quella run, verranno incrementati, ad ogni passo, di una unità. Facendo un semplice esempio, se siamo in una run di 0 e iteriamo virtualmente all'interno di tale run, solo i valori di u_k , in quel range di indici, cresceranno di volta in volta di uno mentre per v_k , nello stesso range, si avrà sempre lo stesso valore.

Esempio 21. Si vede un esempio per chiarire meglio quanto espresso in merito a u_k e v_k .

Sia data la seguente colonna:

Si hanno, oltre a c[5] = 15:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
y^5	0	0	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
u_5	0	1	2	2	3	3	3	3	3	4	5	6	7	8	9	10	11	12	13	14
v_5	0	0	0	1	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	5

Dove si nota l'alternanza di crescita dei valori sopra descritta.

Grazie a questo comportamento è possibile memorizzare, per ogni indice di testa di run i, tale che $i \neq 0$, solo il valore di $u_k[i]$ o $v_k[i]$, rispettivamente se sia una run su simboli $\sigma = 1$ o $\sigma = 0$. Questo in quanto, se si analizza una run di zeri si avrà che solo i valori di v_k , nel range della run, verranno incrementati ad ogni step. Per i = 0 banalmente si ha che $u_k[i] = v_k[i] = 0$.

Memorizzando i valori di u_k e v_k in un array uv_k , tale che $|uv_k| = r$, con r numero di run, e dato $i \in \{0, \ldots, r-1\}$, a seconda che la colonna presenti o meno la prima run con simboli $\sigma = 0$, si possono estrarre, in tempo costante, i valori di u_k e v_k per una data testa di run. Nel dettaglio, dato $i \in 0, \ldots, r-1$:

- se i = 0 si ha che $u_k[p[i]] = v_k[p[i]] = uv_k[0] = 0$
- se $i \mod 2 = 0$ si hanno due casi:
 - la prima run è di simboli $\sigma=0$ e quindi si ottiene $u_k[p[i]]=uv_k[i-1]$ e $v_k[p[i]]=uv_k[i]$
 - la prima run è di simboli $\sigma=1$ e quindi si ottiene $u_k[p[i]]=uv_k[i]$ e $v_k[p[i]]=uv_k[i-1]$

- se $i \mod 2 \neq 0$ si hanno due casi, che sono l'inverso della situazione descritta precedentemente:
 - la prima run è di simboli $\sigma = 0$ e quindi si ottiene $u_k[p[i]] = uv_k[i]$ e $v_k[p[i]] = uv_k[i-1]$
 - la prima run è di simboli $\sigma=1$ e quindi si ottiene $u_k[p[i]]=uv_k[i-1]$ e $v_k[p[i]]=uv_k[i]$

Tale operazione è eseguibile in tempo costante lo pseudocodice relativo a quanto appena detto è consultabile all'algoritmo 3.2.

Algoritmo 3.2 Algoritmo per uvtrick con MAP-INT.

```
1: function UVTRICK(k, i)
                                                             \triangleright k indice di colonna, i indice di run
 2:
        if i = 0 then
            return (0, 0)
 3:
        else if i \mod 2 = 0 then
 4:
 5:
            u \leftarrow uv_k[i-1], \ v \leftarrow uv_k[i]
 6:
            if start_k then
                return (u, v)
 7:
 8:
            else
 9:
                return (v, u)
        else
10:
            u \leftarrow uv_k[i], \ v \leftarrow uv_k[i-1]
11:
12:
            if start_k then
                return (u, v)
13:
14:
            else
                return (v, u)
15:
```

Da un punto di vista implementativo, gli array di interi p_k e uv_k vengono memorizzati in $vettori\ di\ interi\ bit\text{-}compressed.}$ Dato un array v, tale che x è il massimo indice, si calcola:

$$b = \lceil \log(x - 1) \rceil + 1 \tag{3.2}$$

e si memorizzano le componenti di v in un vettore di interi con componenti memorizzate in di b bit.

Ricapitolando, per la componente MAP-INT, si hanno in memoria, per ogni colonna k:

- $start_k$, con il booleano atto a capire il simbolo della prima run
- p_k , con gli indici delle teste di run

- uv_k , coi valori compatti di u_k e v_k per le teste di run
- c[k], per sapere il numero totale di simboli $\sigma=0$ nella colonna k della matrice PBWT

Esempio 22. Sia data la seguente colonna:

Per la componente MAP-INT della colonna 5, si hanno in memoria:

$$p_5 = [0, 2, 3, 4, 8]$$

 $uv_5 = [0, 2, 1, 3, 5]$
 $c[5] = 15$

La costruzione della componente MAP-INT per una certa colonna, analizzabile nell'algoritmo 3.3, ha costo $\mathcal{O}(M)$, avendo che la costruzione avviene scorrendo la colonna k permutata dal prefix array a_k .

Si hanno quindi le informazioni relative alle teste di run. Per l'implementazione dei vari algoritmi si ha però necessità di usare anche indici con valori $\{0, M-1\}$. Una delle operazioni fondamentali è quindi quella, dato un indice $i \in \{0, \ldots, M-1\}$, di computare a quale run esso appartenga, in una certa colonna k. Tale operazione può essere svolta usando una semplice variante della ricerca binaria. Tale variante, anziché ritornare l'indice di un elemento qualora esista nell'array, restituisce l'ultimo indice iniziale del sottointevallo usato dalla ricerca binaria calcolato prima dell'interruzione dell'esecuzione dell'algoritmo (che avviene secondo l'algoritmo standard). Tale soluzione, come visualizzabile all'algoritmo 3.4, ha complessità in tempo, con $r = |p_k|$ numero di run in colonna k:

$$\mathcal{O}(\log(r)) \tag{3.3}$$

Ipotizzando, inoltre, di avere un indice $i \in \{0, ..., M-1\}$ è possibile risalire ai valori $u_k[i]$ e $v_k[i]$, sfruttando l'offset dell'indice rispetto alla testa della run a cui appartiene. Banalmente, ipotizzando di essere in una run di simboli σ con testa di run all'indice p, si avranno, avendo ottenuto $u_k[p]$ e $v_k[p]$ da $uv_k[p]$:

$$\begin{cases} v_k[i] = v_k[p] \\ u_k[i] = u_k[p] + (i-p) \end{cases}, \text{ sse } y_p^k[k] = 0 \quad \begin{cases} u_k[i] = u_k[p] \\ v_k[i] = v_k[p] + (i-p) \end{cases}, \text{ sse } y_p^k[k] = 1 \end{cases}$$
(3.4)

Tenendo eventualmente conto dell'offset of f, qualora si abbia un simbolo σ uguale a quello della run in analisi, è quindi possibile riadattare l'algoritmo per il mapping

Algoritmo 3.3 Algoritmo per la costruzione della componente MAP-INT per la colonna k.

```
1: function BUILD_MAP_INT(col, pref)
                                                                                                         \triangleright pref = a_k
          c \leftarrow 0, u \leftarrow 0, v \leftarrow 0, u' \leftarrow 0, v' \leftarrow 0, run \leftarrow 0
 2:
          start \leftarrow \top, \ beg_{run} \leftarrow \top, \ push_{zero} \leftarrow \bot, \ push_{one} \leftarrow \bot
 3:
          p \leftarrow [], uv \leftarrow []
 4:
 5:
          for every k \in [0, M) do
 6:
              if k = 0 \land col[pref[k]] = 1 then
 7:
                   start \leftarrow \bot
 8:
              if col[k] = 0 then
 9:
                   c \leftarrow c + 1
10:
          if start then
11:
              push_{one} \leftarrow \top
12:
          else
              push_{zero} \leftarrow \top
13:
          for every k \in [0, M) do
14:
15:
              if beg_{run} then
                   u \leftarrow u', \ v \leftarrow v'
16:
                   beg_{run} \leftarrow \bot
17:
              if col[pref[k]] = 1 then
18:
19:
                   v' \leftarrow v' + 1
20:
              else
                   u' \leftarrow u' + 1
21:
22:
              if k = 0 \lor col[pref[k]] \ne col[pref[k-1]] then
23:
                   run \leftarrow k
              if k = M - 1 \lor col[pref[k]] \ne col[pref[k+1]] then
24:
25:
                   if push_{one} then
                        push(p, run), push(uv, v)
26:
                        swap(push_{one},push_{zero}) \\
27:
28:
                   else
                        push(p, run), push(uv, u)
29:
                        swap(push_{one}, push_{zero})
30:
31:
                   beg_{run} \leftarrow \top
32:
          return (start, c, p, uv)
```

Algoritmo 3.4 Algoritmo per convertire un indice di colonna in indice di run, con MAP-INT.

```
1: function INDEX_TO_RUN(k, i)
                                                        \triangleright k indice di colonna, i indice di riga della colonna k
         if i \geq p_k[|p_k|-1] then
 3:
              return |p_k|-1
 4:
         b \leftarrow 0, \ e \leftarrow |p_k|
         run \leftarrow \tfrac{e-b}{2}
 5:
 6:
         while run \neq e \wedge p_k[run] \neq i do
 7:
              if i < p_k[run] then
 8:
                  e \leftarrow run
 9:
              else
                  if run + 1 = e \vee p_k[run + 1] > i then
10:
11:
12:
                  b \leftarrow run + 1
              run \leftarrow b + \frac{e-b}{2}
13:
14:
         return run
```

visto per la PBWT di Durbin, da intendersi alla stregua del backward step visto nel caso della BWT, dalla colonna k alla colonna k+1 guidato da z[k+1]. Tale soluzione è riportata all'algoritmo 3.5. Ricordando che si può risalire ai valori u[p] e v[p] in tempo costante, anche il mapping da una colonna alla successiva avviene in tempo costante.

3.4.2 Mapping con bitvector

La seconda variante della componente di mapping sfrutta, al posto degli *intvector*, i *bitvector sparsi*, da cui la nomenclatura MAP-BV.

L'idea è quindi quella di sostituire, data una colonna k, quanto necessario a rappresentare le run (ovvero il vettore p_k della MAP-INT) e quanto necessario a permettere il mapping (ovvero il vettore uv_k della MAP-INT).

In primis, per poter localizzare le run nella k-esima colonna, si è scelto di usare un bitvector sparso, che denominiamo per praticità h_k , tale che $|h_k| = M$. Formalmente si ha che:

$$h_k[i] = \begin{cases} 1 & \text{se } y_i^k[k] \neq y_{i+1}^k[k] \lor i = M - 1 \\ 0 & \text{altrimenti} \end{cases}, \forall i \in \{0, \dots, M - 1\}$$
 (3.5)

Informalmente, quindi, si ha che si ha $h_k[j] = 1$ sse è l'indice di fine di una run. mpiricamente ci si aspettano "poche" run all'interno di una colonna della matrice PBWT, per quanto già discusso nella sezione 2.5. Avendo poche run ci si aspetta anche "pochi" 1 all'interno di h_k , di conseguenza si è optato per usare i bitvector sparsi per la memorizzazione in memoria di ogni h_k , ricordando che, secondo quanto riportato per la libreria SDSL [12], tale variante richiede in memoria, indicando

Algoritmo 3.5 Algoritmo per il mapping con MAP-INT.

```
1: function W(k, i, \sigma, o)
                                          \triangleright k indice di colonna, i indice di riga, \sigma simbolo
 2:
         run \leftarrow index \ to \ run(k, i)
 3:
         if \sigma = 0 \land get\_symbol(start_k, run) = 1 then
 4:
             off \leftarrow 0
         else if \sigma = 1 \land get\_symbol(start_k, run) = 0 then
 5:
             off \leftarrow 0
 6:
         else
 7:
             off \leftarrow i - p_k[run]
 8:
         (u, v) \leftarrow uvtrick(k, i)
 9:
         if p_k[i] + of f = M then
10:
             if get\_symbol(start_k, i) = 0 then
11:
                  v \leftarrow v - 1
12:
             else
13:
                  u \leftarrow u - 1
14:
         if \sigma = 0 then
15:
             return u + of f
16:
17:
         else
             return c[k] + v + of f
18:
```

con r il numero di run:

$$\approx r \left(2 + \log \frac{M}{r}\right)$$
 bit (3.6)

Pensando ad una correlazione tra MAP-INT e MAP-BV, si ha che $rank_{h_k}$ fa le veci della funzione index_to_run mentre $select_{h_k}$ equivale a p_k .

Più elaborata è la rappresentazione dei vettori u_k e v_k . In questo caso si è deciso, a differenza della rappresentazione unica vista con la MAP-INT, di optare per due bitvector sparsi. In particolare, per il vettore u_k , tale che $|u_k| = c[k]$, si ha che, $\forall i \in \{0, \ldots, |u_k| - 1\}$:

$$u_k[i] = \begin{cases} 1 & \text{se } i \text{ è il numero di simboli che contiene la } rank_{u_k}(i)\text{-esima run di 0} \\ 0 & \text{altrimenti} \end{cases}$$

Analogamente si definisce v_k , avendo $|v_k| = M - c[k]$ e $\forall i \in \{0, \dots, |v_k| - 1\}$, come:

$$v_k[i] = \begin{cases} 1 & \text{se } i \text{ è il numero di simboli che contiene la } rank_{v_k}(i)\text{-esima run di 1} \\ 0 & \text{altrimenti} \end{cases}$$

(3.8)

Si noti che:

$$rank_{h_k}(|h_k| - 1) + 1 = (rank_{u_k}(|u_k| - 1) + 1) + (rank_{v_k}(|v_k| - 1) + 1)$$
(3.9)

Ovvero il numero di 1 presenti in h_k è pari alla somma di quelli presenti in u_k e v_k . Si noti che i vari +1 sono dovuti al fatto che la funzione rank(i) esclude dal computo la posizione i stessa e tutti e tre i bitvector, per costruzione, presentano $\sigma = 1$ in ultima posizione. Ne segue che, anche per questi ultimi due bitvector, la scelta di usare bitvector sparsi per la loro memorizzazione sia giustificata, empiricamente, dalla poca quantità attesa di simboli $\sigma = 1$.

Esempio 23. Sia data la sequente colonna:

Si ha quindi che:

$$h_5 = 011100010000000000001$$

Avendo appunto un numero di run pari a:

$$rank_{h_5}(|h_5|-1)+1=4+1=5$$

In merito alle run composte da simboli $\sigma = 0$ si ha che:

$$u_5 = 011000000000001$$

Avendo infatti che si segnalano:

- la prima run composta da due simboli $\sigma = 0$
- la seconda run composta da un solo simbolo $\sigma = 0$
- la terza run composta da dodici simboli $\sigma = 0$

Parlando invece di v₅ si ha:

$$v_5 = 10001$$

Avendo che:

- la prima run è composta da un solo simbolo $\sigma = 1$
- la seconda run è composta da quattro $\sigma = 1$

Si conferma, inoltre, quanto detto nell'equazione 3.9, avendo:

$$rank_{h_5}(|h_5|-1)+1=5=(rank_{u_5}(13)+1)+(rank_{v_5}(4)+1)=(2+1)+(1+1)=5$$

Algoritmo 3.6 Algoritmo per la costruzione della componente MAP-BV per la colonna k.

```
1: function BUILD_MAP_BV(col, pref)
                                                                                                      \triangleright pref = a_k
         c \leftarrow 0, u \leftarrow 0, v \leftarrow 0, u' \leftarrow 0, v' \leftarrow 0, curr_{lcs} \leftarrow 0
 2:
 3:
         start \leftarrow \top, \ beg_{run} \leftarrow \top, \ push_{zero} \leftarrow \bot, \ push_{one} \leftarrow \bot
 4:
         for every k \in [0, M) do
              if k = 0 \land col[pref[k]] = 1 then
 5:
                   start \leftarrow \bot
 6:
 7:
              if col[k] = 0 then
 8:
                   c \leftarrow c + 1
         runs \leftarrow [0..0]
 9:
                                                   \triangleright bitvector sparso per le run, di lunghezza M+1
10:
         zeros \leftarrow [0..0]
                                                           \triangleright bitvector sparso per u_k, di lunghezza c[k]
11:
         ones \leftarrow [0..0]
                                                        \triangleright bitvector sparso per v_k, di lunghezza M-c
12:
         if start then
              push_{one} \leftarrow \top
13:
14:
         else
              push_{zero} \leftarrow \top
15:
         for every k \in [0, M) do
16:
              if beg_{run} then
17:
                   u \leftarrow u', \ v \leftarrow v', \ beg_{run} \leftarrow \bot
18:
19:
              if col[pref[k]] = 1 then
                   v' \leftarrow v' + 1
20:
21:
              else
                   u' \leftarrow u' + 1
22:
              if k = M - 1 \lor col[pref[k]] \ne col[pref[k+1]] then
23:
                   runs[k] \leftarrow 1
24:
25:
                   if push_{one} then
                       if v \neq 0 then
26:
                            ones[k-1] = 1
27:
28:
                       swap(push_{zero}, push_{one})
29:
                   else
                       if u \neq 0 then
30:
                            zeros[k-1] = 1
31:
32:
                       swap(push_{zero}, push_{one})
33:
                   beg_{run} \leftarrow \top
         if |zeros| \neq 0 then
34:
35:
              zeros[|zeros|-1] \leftarrow 1
         if |ones| \neq 0 then
36:
              ones[|ones|-1] \leftarrow 1
37:
         costruzione delle strutture per rank/select dei tre bitvector
38:
39:
         return (start, c, runs, zeros, ones)
```

Lo pseudocodice relativo alla costruzione della componente MAP-BV per la colonna k-esima è disponile all'algoritmo 3.6. Anche in questo caso la costruzione avviene scorrendo la colonna k permutata dal *prefix array* a_k .

Assumendo che la complessità in tempo delle costruzioni delle strutture a supporto per le funzioni rank e select dei tre bitvector sparsi sia limitata superiormente dalla loro lunghezza massima, ovvero M, si ha che la costruzione della componente MAP-BV per una singola colonna avviene in tempo:

$$\mathcal{O}(M) \tag{3.10}$$

Bisogna spiegare come, dato un indice di aplotipo $i \in \{0, ..., M-1\}$ e una colonna k, estrarre $u'_k[i]$ e $v'_k[i]$, ovvero come se si stesse usando la PBWT classica, a partire dagli attuali $u_k[i]$ e $v_k[i]$. Ovviamente, se i = 0, si ha che $u'_k[0] = v'_k[0] = 0$. In caso contrario bisogna, in primis, calcolare la run in cui si trova l'indice i. Questo si ottiene direttamente sfruttando h_k :

$$run = rank_{h_k}(i) (3.11)$$

Una volta calcolato l'indice di run si hanno tre possibilità:

1. si ha che run = 0 e una run di simboli $\sigma = b$, con $b \in \{0, 1\}$ allora:

$$(u,v) = \begin{cases} (i,0) & \text{se } b = 0\\ (0,i) & \text{altrimenti} \end{cases}$$
 (3.12)

2. si ha che run = 1 e una run di simboli $\sigma = b$, con $b \in \{0, 1\}$. In tal caso bisogna per prima cosa individuare l'indice di inizio della seconda run, sfruttando h_k :

$$beg = select_{h_k}(1) + 1 (3.13)$$

A questo punto si ha il numero di simboli della prima run, indicizzata a 0, e, calcolando la distanza tra l'indice di riga e quello di inizio della prima run, avendo che:

$$(u,v) = \begin{cases} (beg, i - beg) & \text{se } b = 0\\ (i - beg, beg) & \text{altrimenti} \end{cases}$$
(3.14)

3. si ha che run = j, con $j \in \{2, r - 1\}$. Anche in questo caso si procede calcolando l'indice di inizio della run:

$$beg = select_{h_k}(run) + 1 \tag{3.15}$$

e l'offset rispetto all'indice i dato:

$$offset = i - beg (3.16)$$

Poi, sfruttando la solita dicotomia fornita dal caso binario in studio, si hanno due casi:

(a) si è in una run di indice pari. Si sfruttano poi u_k e v_k per sapere l'indice della precedente run con simboli $\sigma = 0$:

$$pre_u = select_{u_k}\left(\left\lfloor \frac{run}{2}\right\rfloor\right) + 1$$
 (3.17)

e quello della run con simboli simboli $\sigma = 1$:

$$pre_v = select_{v_k} \left(\left\lfloor \frac{run}{2} \right\rfloor \right) + 1$$
 (3.18)

Si noti che si usa $\frac{run}{2}$ in quanto, essendo in una run di indice pari si hanno precedentemente lo stesso numero di run per $\sigma=0$ e per $\sigma=1$ e quindi si considera lo stesso numero di "run" nei due bitvector $sparsi\ u_k$ e v_k .

A questo punto, sempre per il ragionamento per cui solo uno tra u e v non è costante all'interno di una run si ha che o pre_u o pre_v è tale costante mentre l'altro valore deve essere calcolato considerando l'offset:

$$(u,v) = \begin{cases} (pre_u + offset, pre_v) & \text{se } b = 0\\ (pre_u, pre_v + offset) & \text{altrimenti} \end{cases}$$
(3.19)

(b) ci si trova in una run di indice dispari, quindi non si hanno precedentemente lo stesso numero di run per i due simboli. Bisogna quindi calcolare quante siano tali run. Se la prima run è di zeri:

$$run_u = select_{u_k}\left(\left\lfloor \frac{run}{2} \right\rfloor\right) + 1$$
 (3.20)

$$run_v = select_{v_k} \left(\left\lfloor \frac{run}{2} \right\rfloor \right) \tag{3.21}$$

mentre se la prima run non è di zeri si devono invertire i due valori. Si sa quindi quali "run" considerare sui due bitvector sparsi u_k e v_k . Posso quindi procedere come nel caso precedente, avendo:

$$pre_u = select_{u_k}(run_u) + 1 (3.22)$$

$$pre_v = select_{v_k}(run_v) + 1 (3.23)$$

E potendo quindi restituire:

$$(u,v) = \begin{cases} (pre_u, pre_v + offset) & \text{se } b = 0\\ (pre_u + offset, pre_v) & \text{altrimenti} \end{cases}$$
(3.24)

DC Sistemare

Esempio 24. Si prendano i dati e i risultati ottenuti all'esempio 23. Si vogliono calcolare u e v per i = 6.

In primis si ha quindi:

$$run = rank_{h_5}(6) = 3$$

:

$$beg = select_{h_5}(3) + 1 = 3 + 1 = 4$$

 $offset = i - beg = 6 - 4 = 2$

Quindi ci si trova nel terzo caso e, nel dettaglio, avendo una run di indice dispari. Si calcolano quindi:

$$run_{u} = select_{u_{5}}\left(\left\lfloor \frac{3}{2} \right\rfloor\right) + 1 = select_{u_{5}}(1) + 1 = 1 + 1 = 2$$

$$run_{v} = select_{v_{5}}\left(\left\lfloor \frac{3}{2} \right\rfloor\right) = select_{v_{5}}(1) = 0$$

che non andranno invertiti avendo start⁵ = \top . Si calcolano quindi:

$$pre_u = select_{u_5}(2) + 1 = 2 + 1 = 3$$

$$pre_v = select_{v_5}(0) + 1 = 0 + 1 = 1$$

Avendo infatti, in totale, tre simboli $\sigma = 0$ e un simbolo $\sigma = 1$ prima dell'indice 6. Concludendo, avendo start⁵ = \top :

$$(u, v) = (pre_u, pre_v + offset) = (3, 1 + 2) = (3, 3)$$

Lo pseudocodice per il calcolo di $u_k[i]$ e $v_k[i]$ è disponibile all'algoritmo 3.7. In merito alla complessità in tempo del calcolo di $u_k[i]$ e $v_k[i]$, si ha che essa è limitata superiormente dal costo della funzione rank su bitvector sparsi, essendo la funzione select disponibile in tempo costante. Ne segue che, avendo r run nella colonna k, si ha un tempo proporzionale a:

$$\mathcal{O}\left(\log\frac{M}{r}\right) \tag{3.25}$$

Non dovendo in tal caso considerare esplicitamente l'offset, come nel caso della MAP-INT, il mapping dalla colonna k alla colonna k+1, guidato da z[k+1], viene fatto come nel caso della PBWT, come visualizzabile all'algoritmo 3.8, che presenta quindi la medesima complessità del calcolo di u[i] e v[i], ovvero quello visto all'equazione ??.

DC Serve altro?

3.5 Componente per le threshold

Come discusso per *MONI*, l'uso delle **threshold** è parte fondamentale di uno dei due modi per ottenere le *matching statistics*.

Definizione 28. Data la colonna k-esima della **matrice PBWT**, y^k , memorizzata tramite compressione **run-length** e data la run j-esima, indicizzata da i a i', si definisce **threshold** come l'indice del minimo valore LCP, che ricordiamo essere calcolato sull'ordinamento inverso, compreso negli indici della run, compreso l'eventuale $LCP_k[i'+1]$, qualora $i' \neq M-1$. Si noti che quest'ultimo valore, se esistente, deve essere considerato in quanto per il suo calcolo, come specificato nei preliminari alla sezione 2.5, si prende in considerazione $y_{i'}^k$ e $y_{i'+1}^k$.

Da un punto di vista implementativo, come anticipato, si hanno due soluzioni, una basata su *intvector* e una basata su *bitvector sparsi*. In entrambi i casi il calcolo si può effettuare in parallelo a quello di MAP-INT e MAP-BV.

3.5.1 Threshold con intvector

In questo caso la memorizzazione delle threshold avviene in modo molto semplice, usando un vettore di interi bit-compressed. Data una colonna k della PBWT matrix, con r numero di run, si calcola t_k tale che $t_k[i] = j$ sse j è l'indice della threshold dell'i-esima run.

Lo pseudocodice per la costruzione della componente THR-INT della colonna k è consultabile all'algoritmo 3.9 e, dovendo scorrere la colonna permutata dal prefix array a_k e dovendo accedere ai valori di l_k , tale operazione ha complessità in tempo proporzionale a:

$$\mathcal{O}(M) \tag{3.26}$$

Si noti che, qualora minimo LCP si trovi nella testa della run successiva (da considerare in quanto calcolato anche grazie all'ultimo elemento della run corrente), si può tranquillamente memorizzare l'indice della testa della run successiva come threshold.

Algoritmo 3.7 Algoritmo per uvtrick con MAP-BV.

```
\triangleright k indice di colonna, i indice di riga
 1: function UVTRICK(k, i)
            if i = 0 then
 2:
                 return (0, 0)
 3:
            run \leftarrow rank_h^k(i)
 4:
            if run = 0 then
 5:
                 if start_k then
 6:
                       return (i, 0)
 7:
                 else
 8:
 9:
                       return (0, i)
10:
            else if run = 1 then
11:
                 if start_k then
                       return (select_h^k(run) + 1, i - (select_h^k(run) + 1))
12:
                 else
13:
                       return (i - (select_h^k(run) + 1), select_h^k(run) + 1)
14:
15:
            else
                 if run \mod 2 = 0 then
16:
                       \begin{aligned} & pre_u \leftarrow select_u^k \left( \left \lfloor \frac{run}{2} \right \rfloor \right) + 1 \\ & pre_v \leftarrow select_v^k \left( \left \lfloor \frac{run}{2} \right \rfloor \right) + 1 \\ & offset \leftarrow i - \left( select_h^k (run) + 1 \right) \end{aligned}
17:
18:
19:
                       if start_k then
20:
                             return (pre_u + offset, pre_v)
21:
22:
                       else
                             return (pre_u, pre_v + offset)
23:
                 else
24:
                       run_u \leftarrow \left( \left\lfloor \frac{run}{2} \right\rfloor \right) + 1
run_v \leftarrow \left\lfloor \frac{run}{2} \right\rfloor
if \neg start_k then
25:
26:
27:
28:
                             swap(run_u, run_v)
                       pre_u \leftarrow select_u^k(run_u) + 1
29:
                       pre_v \leftarrow select_v^k(run_v) + 1
30:
                       offset \leftarrow i - (select_h^k(run) + 1)
31:
                       if start_k then
32:
                             return (pre_u, pre_v + offset)
33:
34:
                       else
                             return (pre_u + offset, pre_v)
35:
```

Algoritmo 3.8 Algoritmo per il mapping con MAP-BV.

```
1: function \mathbf{W}(k,\ i,\ \sigma) \Rightarrow k indice di colonna, i indice di riga, \sigma simbolo

2: c \leftarrow c[k]

3: (u,v) \leftarrow uvtrick(k,\ i)

4: if \sigma = 0 then

5: return u

6: else

7: return c + v
```

Algoritmo 3.9 Algoritmo per la costruzione della componente THR-INT.

```
function Build_thr_int(col, pref, div) \Rightarrow pref = a_k, div = l_k
\begin{array}{l} curr_{lcs} \leftarrow 0, \ tmp_{thr} \leftarrow 0 \\ t \leftarrow [] \\ \text{for every } k \in [0, \ M) \ \text{do} \\ \text{if } k = 0 \lor col[pref[k]] \neq col[pref[k-1]] \ \text{then} \\ curr_{lcs} \leftarrow div[k], \ tmp_{thr} \leftarrow k \\ \text{if } div[k] < curr_{lcs} \ \text{then} \\ curr_{lcs} \leftarrow div[k], \ tmp_{thr} \leftarrow k \\ \text{if } k = M - 1 \lor col[pref[k]] \neq col[pref[k+1]] \ \text{then} \\ \text{if } k \neq M - 1 \land div[k+1] < div[tmp_{thr}] \ \text{then} \\ push(t, k+1) \\ \text{else} \\ push(t, tmp_{thr}) \\ \text{return } t \end{array}
```

3.5.2 Threshold con bitvector

In questo caso le posizioni delle threshold vengono memorizzate tramite un $bitvector\ sparso$ per ogni colonna k, denotato thr_k , avendo che $thr_k[i]=1$ sse i è l'indice di una threshold. Qualora il minimo LCP si ritrovi nell'indice della testa della run successiva, la posizione della threshold verrà comunque memorizzata all'indice della coda della run corrente. Purtroppo questa è una situazione di ambiguità, avendo che, seguendo la definizione sopra, avendo la threshold a fine run, bisognerebbe scegliere la testa della run successiva, qualora l'indice i si trovi esattamente a fine run. Invece, qualora la threshold sia a fine run a causa del fatto che il minimo LCP si trovi nella testa della run successiva, bisogna scegliere la coda della run precedente. L'unico modo per disambiguare è quindi effettuare $trandom\ access$ al pannello per vedere quale sia la soluzione migliore, ovvero quale tra la coda della run precedente e la testa della run successiva siano relative alla riga del pannello originale con un suffisso comune alla query più lungo.

Purtroppo non è possibile salvare la threshold direttamente nella testa della run successiva in quanto questa potrebbe essere anche la posizione della threshold della run successiva e avere due threshold sovrapposte impedirebbe di capire a quale run appartiene una certa threshold, tramite la funzione rank.

Tale bitvector deve essere quindi aggiunto alle informazioni memorizzate per ogni singola colonna. Lo pseudocodice per la costruzione della componente THR-BV della colonna k è consultabile all'algoritmo 3.10 e, dovendo scorrere la colonna permutata dal prefix array a_k e dovendo accedere ai valori di l_k , tale operazione ha complessità in tempo proporzionale a:

$$\mathcal{O}(M) \tag{3.27}$$

3.6 Componente per i prefix array samples

Come introdotto parlando delle $matching\ statistics$, qualora si abbia un cambio di riga da memorizzare si seleziona sempre o quella relativa alla coda della run precedente o quella relativa alla testa della run successiva. Risulta quindi necessario, in colonna k, memorizzare i valori di a_k all'inizio e alla fine di ogni run, sotto forma di $vettori\ di\ interi\ bit-compressed$. Tali valori sono quindi un sample dei valori che permettono le permutazioni che costruiscono la $matrice\ PBWT$ e quindi tale componente prende il nome di PERM.

All'algoritmo 3.11 è possibile analizzare lo pseudocodice del metodo usato per calcolare la componente PERM per la colonna k-esima. L'algoritmo, dovendo iterare

Algoritmo 3.10 Algoritmo per la costruzione della componente THR-BV.

```
function Build_thr_bv(col, pref, div)
                                                                           \triangleright pref = a_k, div = l_k
    curr_{lcs} \leftarrow 0, \ tmp_{thr} \leftarrow 0
    thrs \leftarrow [0..0]
                                                          \triangleright bitvector sparso di lunghezza M
    for every k \in [0, M) do
        if k = 0 \lor col[pref[k]] \ne col[pref[k-1]] then
             curr_{lcs} \leftarrow div[k], tmp_{thr} \leftarrow k
         if div[k] < curr_{lcs} then
             curr_{lcs} \leftarrow div[k], tmp_{thr} \leftarrow k
        if k = M - 1 \lor col[pref[k]] \ne col[pref[k+1]] then
             if k \neq M - 1 \wedge div[k+1] < div[tmp_{thr}] then
                  thrs[k] \leftarrow 1
             else
                  thrs[tmp_{thr}] \leftarrow 1
    costruzione delle strutture rank/select per thr
    return thr
```

l'intera colonna della matrice PBWT ha costo, in tempo:

$$\mathcal{O}(M) \tag{3.28}$$

La costruzione può essere fatta in contemporanea a quelle delle componenti gia descritte, ovvero: MAP-INT/MAP-BV e THR-INT/THR-BV.

3.7 Componenti per il random access e le LCE query

Le ultime componenti da descrivere sono quelle atte a garantire il random access al testo e, nel caso dell'uso degli SLP, permettere il computo delle LCE query. Parlando di strutture per il random access una differenza sostanziale tra l'uso di un vettore di bitvector, RA-BV, e quello dell'SLP, RA-SLP, è data dai tempi di accesso ai singoli elementi. Infatti, parlando di RA-BV, si ha accesso in tempo costante ad un qualsiasi elemento del pannello mentre, nel caso di RA-SLP, denotando con s la lunghezza della parola generata dall'SLP, si ha che l'accesso ad ogni elemento è in tempo:

$$\mathcal{O}(\log s) \tag{3.29}$$

La seconda differenza, già ampiamente introdotta e di fatto scontata, è data dalla dimensione delle due strutture dati, avendo che RA-BV memorizza $\sim NM$ bit, dove il \sim è dato dai costi in memoria aggiuntivi dati dall'avere un vettore che memorizza

Algoritmo 3.11 Algoritmo per la costruzione della componente PERM per la colonna k.

```
1: function BUILD_PERM(col, pref)
                                                                                                 \triangleright pref = a_k
 2:
         tmp_{beg} \leftarrow 0, \ beg_{run} \leftarrow \top
         samples_{beg} \leftarrow [], \ samples_{end} \leftarrow [] \quad \triangleright vettori per i prefix array samples ad
 3:
    inizio/fine di ogni run
         for every k \in [0, height) do
 4:
              if beg_{run} then
 5:
 6:
                   tmp_{beg} \leftarrow pref[k]
                   beq_{run} \leftarrow \bot
 7:
              if k = height - 1 \lor col[pref[k]] \neq col[pref[k+1]] then
 8:
                   push(samples_{beq}, tmp_{beq})
 9:
                   push(samples_{end}, pref[k])
10:
                   beg_{run} \leftarrow \top
11:
         \mathbf{return}\ (samples_{beg},\ samples_{end})
12:
```

i bitvector. Parlando invece di RA-SLP non si può avere una stima teorica dello spazio necessario ma, come si vedrà nel capitolo 4, i risultati quantitativi daranno prova della capacità di compressione degli *SLP*.

Parlando della componente LCE bisogna solo descrivere il modo con cui si ottiene la singola stringa che verrà compressa tramite SLP. In primis, le librerie per la costruzione di tale struttura assumono un input "monodimensionale", ovvero una singola sequenze lineare. Inoltre, anche per permettere la costruzione efficiente della PBWT, e conseguentemente della RLPBWT, il pannello in input risulta essere trasposto, avendo che le righe nel file in input rappresentano i siti e non gli individui. Bisogna quindi in primis trasporre tale pannello. Per procedere ulteriormente bisogna però ricordare che sull'SLP si avrà necessità di effettuare LCE query che però, si anticipa, nel nostro pannello, devono essere fatte tra due righe da destra a sinistra (a differenza di quanto visto nel caso standard dove si confrontavano prefissi comuni). Per rendere possibile questa operazione quindi il pannello deve essere sia salvato come un'unica riga, per ottenerne l'SLP, che "da destra a sinistra", per permettere le LCE query. Si procede quindi concatenando ogni riga, selezionandole consecutivamente e leggendone i singoli elementi da destra a sinistra.

Esempio 25. Si vede quindi un breve esempio.

Si assuma di avere il sequente pannello nel file in input.

$$X = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Dove però come detto le righe sono i siti e le colonne i sample. Per ottenere l'SLP biosgna quindi, in primis, trasporre la matrice:

$$X^T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

A questo punto bisogna considerare l'ordine in cui si vorranno effettuare le LCE query. Ad esempio, prendendo la seconda e la terza riga, facendo partire il confronto dall'ultima colonna, avremmo una LCE query lunga 3, terminante nella prima colonna esclusa:

Si procede quindi salvano la sequenza lineare relativa al pannelli come descritto sopra, ottenendo, con colorate gli stessi risultati della query fatta sopra:

Si noti che qui si sono segnalate le varie righe con uno spazio ma solo per praticità "visiva".

In termini di complessità, si ricorda che, come per il $random\ access$, per il calcolo delle $LCE\ query\ con\ SLP$ si ha un tempo proporzionale a:

$$\mathcal{O}(\log s) \tag{3.30}$$

3.8 Componente per la struttura Phi

L'ottenimento dell'array matching statistics permette di sapere solo l'indice di una della righe del pannello per le quali si ha un match con l'aplotipo query. Analogamente a quanto discusso in PHONI [8], anche per la RLPBWT si è pensato a due funzioni, φ e φ^{-1} , per il riconoscimento di tutte le righe del pannello per cui

si ha il match. La struttura che permette il calcolo di tali funzioni è la componente denotata PHI.

L'intuizione alla base del ragionamento è molto semplice. Nell'ordinamento alla colonna k-esima, dato da a_k , tutte le righe per le quali si ha un match sono poste consecutivamente, questo a causa del fatto che l'ordinamento è lessicografico.

DC Qui non ho PLCP quindi calcolo ogni volta

Definizione 29. Dati:

- un pannello X, di dimensioni $N \times M$
- una colonna k, il prefix array a_k e la sua permutazione inversa α_k

Si definiscono formalmente:

$$\varphi_k(p) = \begin{cases} null & se \ \alpha_k[p] = 0 \\ a_k[\alpha_k[p] - 1] & altrimenti \end{cases}, \forall p \in \{0, M - 1\}$$

$$\varphi_k^{-1}(p) = \begin{cases} null & se \ \alpha_k[p] = M - 1 \\ a_k[\alpha_k[p] + 1] & altrimenti \end{cases}, \forall p \in \{0, M - 1\}$$

In altri termini, avendo $a_k[j] = p$ si ha che:

$$\varphi_k(p) = \begin{cases} null & se \ j = 0 \\ a_k[j-1] & altrimenti \end{cases}, \forall p \in \{0, M-1\}$$

$$\varphi_k^{-1}(p) = \begin{cases} null & se \ j = M - 1 \\ a_k[j+1] & altrimenti \end{cases}, \forall p \in \{0, M - 1\}$$

VERIFICARE DEFINIZIONE IN QUANTO "NUOVA"

Esempio 26. Per praticità si riporta un breve esempio. Si ipotizzi di avere, come per l'esempio 15:

$$a_6 = [14, 15, 0, 9, 10, 16, 8, 11, 12, 13, 18, 19, 1, 2, 3, 17, 4, 5, 6, 7]$$

$$\alpha_6 = [2, 12, 13, 14, 16, 17, 18, 19, 6, 3, 4, 7, 8, 9, 0, 1, 5, 15, 10, 11]$$

Si fissa quindi p = 3 e si ottengono:

$$\varphi(3) = a_6[\alpha_6[3] - 1] = a_6[14 - 1] = a_6[13] = 2$$

$$\varphi^{-1}(3) = a_6[\alpha_6[3] + 1] = a_6[14 + 1] = a_6[15] = 17$$

Avendo quindi MS[i].row = p e MS[i].len = l basta iterare le righe a partire a p in a_i , che denotiamo con l'indice q, fino a che si ha si ha $LCE_k(x_p, x_q) \geq l$. Ovviamente bisogna iterare in entrambe le direzioni. Tutte le righe x_q che soddisfano un match di lunghezza l con l'aplotipo query. L'algoritmo 3.12 rappresenta esattamente quanto detto, avendo che con la funzione $lce_bounded$ si limita il calcolo della LCE alla lunghezza l. La complessità temporale di questo algoritmo varia a seconda della componente RA (e della conseguente presenza della componente LCE). Inoltre è difficile poter dare una stima asintotica in quanto varia sul numero di righe che presentano un certo SMEM, che denominiamo qui ν , e dalla lunghezza dello stesso, indicata con λ . Quindi, si ha che, qualora si avesse la componente RA-BV, si avrebbe un tempo proporzionale a:

$$\mathcal{O}(\nu\lambda) \tag{3.31}$$

Mentre con l'uso della componente LCE, avendo il pannello in memoria con la componente RA-SLP, si avrebbe una complessità in tempo, con s lunghezza della stringa unica prodotta dall'SLP, pari a:

$$\mathcal{O}(\nu\lambda\log s)\tag{3.32}$$

Questa è la definizione formale delle due funzioni ma, all'atto pratico, in memoria si hanno solo i *prefix array sample*, ad inizio e fine di ogni run, e nessuna informazione in merito alla *permutazione inversa* del *prefix array*. Si è quindi pensato ad una struttura dati, basata anch'essa su *bitvector sparsi*, che permettesse il calcolo delle due funzioni.

3.8.1 Costruzione della struttura di supporto

L'idea di base per la costruzione della struttura a supporto delle **funzioni** φ e φ^{-1} si basa sul fatto che, data una colonna k e dati due valori consecutivi p e q in a_k (avendo $a_k[i] = p$ e $a_k[i+1] = q$), essi rimarranno consecutivi anche in a_{k+o} , prefix array dell'arbitraria colonna k+o, fino a che che $x_p[k+o] \neq x_q[k+o]$, ovvero fino a che, in colonna k+o, tali righe non corrisponderanno a due simboli diversi. Cruciale è che, in quella colonna, p sarà memorizzato come prefix array sample della fine della run p mentre p come prefix array sample dell'inizio della run p come prefix array sample dell'inizio della run p consideratione si può costruire una struttura che, data una colonna arbitraria e un arbitrario valore di prefix array, permetta di computare p e p-1. Tale struttura dati è composta da:

• un vettore di sparse bitvector per φ , che denotiamo con Φ , tale che $\Phi[i][j] = 1$ sse la riga i indicizza una testa di run alla colonna j nella matrice PBWT. Si ha quindi che Φ ha dimensione $M \times N$

Algoritmo 3.12 Algoritmo per estendere uno SMEM in colonna k usando φ , φ^{-1}

```
1: function EXTEND_MATCHES(k, row, len)
         haplos \leftarrow []
 2:
         check_{down} \leftarrow \top, \ check_{up} \leftarrow \top
 3:
 4:
          while check_{down} do
              down_{row} \leftarrow \varphi^{-1}(row, k)
 5:
              if lce\_bounded(k, row, down_{row}, len) then
 6:
 7:
                   push(haplos, down_{row})
                   row \leftarrow down_{row}
 8:
              else
 9:
                   check_{down} \leftarrow \bot
10:
         while up_{down} do
11:
              up_{row} \leftarrow \varphi(row, k)
12:
              if lce\_bounded(k, row, up_{row}, len) then
13:
14:
                   push(haplos, up_{row})
                   row \leftarrow up_{row}
15:
              else
16:
                   check_{up} \leftarrow \bot
17:
         return haplos
18:
```

- un vettore di sparse bitvector per φ^{-1} , che denotiamo con Φ^{-1} , tale che $\Phi[i][j] = 1$ sse la riga i indicizza una coda di run alla colonna j nella matrice PBWT. Si ha quindi che Φ^{-1} ha dimensione $M \times N$
- un vettore di interi a supporto, denotato Φ_{supp} , del vettore di sparse bitvector per φ che memorizza, per ogni 1 di tale vettore, il prefix array sample della coda della run precedente o l'altezza del pannello, M, qualora non si abbia alcuna run precedente
- un vettore di interi a supporto, denotato Φ_{supp}^{-1} , del vettore di sparse bitvector per φ^{-1} che memorizza, per ogni 1 di tale vettore, il prefix array sample della testa della run successiva o l'altezza del pannello, M, qualora non si abbia alcuna run successiva.

Si ha quindi che la lunghezza della riga *i*-esima di Φ_{supp} è uguale al numero di uni presenti nella riga *i*-esima di Φ . Analogamente si ha per Φ_{supp}^{-1} . In entrambi i casi, inoltre, si hanno M righe.

Al fine della costruzione bisogna, inoltre, sfruttare a_{N-1} per poter identificare quelle coppie di valori consecutivi non presenti nei vari prefix array samples, in modo che sia possibile effettuare le query per qualsiasi valore di prefix array in input.

L'algoritmo 3.13 riporta quindi la costruzione della struttura, iterando in primis i vari prefix array samples e completando i risultati con a_{N-1} . Tale algoritmo ha complessità in tempo, nel caso peggiore, pari a:

$$\mathcal{O}(NM) \tag{3.33}$$

Che si ha qualora ogni colonna della $matrice\ PBWT$ abbia un numero di run pari all'altezza stessa della colonna. Indicando con ρ il numero medio complessivo di run, si può dire che la complessità nel caso medio è:

$$\mathcal{O}(N\rho) \tag{3.34}$$

CAPIRE SE COMMENTARE ULTERIORMENTE LA COSTRUZIONE

Dal punto di vista delle query, data una colonna k e un valore di prefix array p, si procede quindi nel seguente modo:

• per la funzione φ si effettua la $rank^{\varphi}(k)$ sulla riga p di Φ , avendo che:

$$\varphi_k(p) = \begin{cases} null & \text{se } \Phi^p_{supp}[rank_p^{\varphi}(k)] = M \\ \Phi^p_{supp}[rank_p^{\varphi}(k)] & \text{altrimenti} \end{cases}$$

• per la funzione φ^{-1} si effettua la $rank^{\varphi^{-1}}(k)$ sulla riga p di Φ^{-1} , avendo che:

$$\varphi_k^{-1}(p) = \begin{cases} null & \text{se } \Phi_{supp}^{-1}[rank_p^{\varphi^{-1}}(k)] = M \\ \Phi_{supp}^{-1}[rank_p^{\varphi^{-1}}(k)] & \text{altrimenti} \end{cases}$$

Esempio 27. Si ha la seguente situazione nella matrice PBWT:

img/phi.pdf

Algoritmo 3.13 Algoritmo per la costruzione della componente PHI.

```
1: function Build_phi(cols, panel, prefix)
                                                                                                          \triangleright prefix is the last prefix array
                                                                                            \triangleright sparse bit vector panels for \varphi and \varphi^{-1}
            \Phi \leftarrow [[0..0]..[0..0]], \ \Phi^{-1} \leftarrow [[0..0]..[0..0]]
            \begin{array}{l} \varPhi_{supp} = [], \ \varPhi_{supp}^{-1} = [] \\ \textbf{for} \ every \ k \in [0, |cols|) \ \textbf{do} \end{array}
 3:
                                                                                                     \triangleright vectors for \varphi and \varphi^{-1} row values
 4:
                 \begin{array}{c} \mathbf{for}\ every\ i \in [0, |samples_{beg}|)\ \mathbf{do} \\ \varPhi[sample_{beg}^k[i]][k] \leftarrow 1 \end{array}
 5:
 6:
                       if i = 0 then
 7:
                             push(\Phi_{supp}[sample_{beq}^{k}[i]], panel_{height})
 8:
 9:
                       else
                             push(\Phi_{supp}[sample_{beq}^{k}[i]], sample_{end}^{k}[i-1])
10:
                       \begin{array}{l} \varPhi^{-1}[sample_{end}^{k}[i]][k] \leftarrow 1 \\ \textbf{if} \ i = |sample_{beg}^{k}| - 1 \ \textbf{then} \end{array}
11:
12:
                             push(\Phi_{supp}^{-1}[sample_{end}^{k}[i]], panel_{height})
13:
14:
                       else
                             push(\Phi_{supp}^{-1}[sample_{end}^{k}[i]], sample_{beg}^{k}[i+1])
15:
16:
            for every k \in [0, |prefix|) do
17:
                  if \Phi[k][|\Phi[k]| - 1] = 0 then
                        \Phi[k][|\Phi[k]|-1] \leftarrow 1
18:
19:
                       if k = 0 then
20:
                             push(\Phi_{supp}[prefix[k]], panel_{height})
21:
                       else
                             push(\Phi_{supp}[prefix[k]], prefix^k[i-1])
22:
                  if \Phi^{-1}[k][|\Phi[k]| - 1] = 0 then
23:
                       \Phi^{-1}[k][|\Phi[k]| - 1] \leftarrow 1
24:
                       if k = |prefix| - 1 then
25:
                             push(\Phi_{supp}^{-1}[prefix[k]],panel_{height})
26:
27:
28:
                             push(\Phi_{supp}^{-1}[prefix[k]], prefix^{k}[i+1])
29:
            costruzione della struttura rank per ogni bitvector sparso \Phi \in \Phi^{-1}
```

Dove si noti che, a parità di colore, si ha lo stesso simbolo tra due indici consecutivi.

In colonna k, che per praticità assumiamo essere k = 0, si vorrebbe avere informazione in merito a $\varphi_k(j)$ e $\varphi_k^{-1}(m)$.

Si nota che, per definizione della struttura dati, si ha che (limitandoci alle colonne della figura):

$$\Phi_j = [0, 0, 0, 1, 0, \ldots]$$

 $\Phi_m^{-1} = [0, 0, 0, 1, 0, \ldots]$

In quanto, in entrambi i casi, rispettivamente per la riga j e la riga m, in colonna k+3, si che j è il prefix array di una testa di run mentre m di una coda di run. In colonna k+3 si conoscono anche, rispettivamente, i, prefix array della coda della run precedente a quella di j, e n, prefix array della testa della run successiva quella di m. Si ottengono quindi:

$$\Phi_{supp} = [i, \ldots]$$

$$\Phi_{supp}^{-1} = [n, \ldots]$$

Si vogliono quindi calcolare $\varphi_0(j)$ e $\varphi_0^{-1}(m)$. Si ha:

$$\Phi_{supp}^{j}[rank_{j}^{\varphi}(0)] = \Phi_{supp}^{j}[0] = i$$

$$\Phi_{sum}^{-1\ m}[rank_m^{\varphi^{-1}}(0)] = \Phi_{sum}^{-1\ m}[0] = n$$

Si noti che uguali risultati si avrebbero per k + 1, k + 2 e k + 3.

DC SISTEMA-RE e aggiungere complessità

3.9 Calcolo degli SMEM con LCP

Questa prima soluzione per il calcolo degli SMEM con un aplotipo esterno è quella che può essere effettuata tramite le strutture:

- MAP-INT + LCP
- MAP-BV + LCP

I due algoritmi riprendono esattamente quanto discusso nell'algoritmo 5 di Durbin. Tali algoritmi, di fatto, non sfruttano l'uso delle matching statistics e sono limitati dal non poter calcolare quali righe presentano un solo SMEM, calcolando solo quante siano. Il secondo limite è dato dal fatto che necessitano di avere interamente in memoria l'LCP array. Questo comporta avere in memoria una struttura non run-length encoded occupante 4NM bytes.

Il metodo procede, quindi, con l'aggiornamento dei tre indici e_k , f_k e g_k , avendo che gli ultimi due possono assumere qualsiasi valore in $\{0, \ldots, M\}$, come con la PBWT classica. Avendo memorizzato solo informazioni relative alle run bisogna quindi, ogni volta, ricondurre l'indice alla run corretta. Inoltre Durbin sfruttava il random access al pannello, avendo in memoria sia il pannello che il prefix array, al fine di aggiornare il valore di e_k . In entrambe le struttura dati, però, non si ha in memoria né il prefix array né il pannello ma solo solo la rappresentazione compatta della matrice PBWT. Si è quindi dovuto pensare ad un metodo che ricomponga data una riga x_j del pannello X a partire da un elemento, indicizzato con $a_{k+1}[i] = j$, con $0 \le i < M$, alla colonna k+1, della matrice PBWT, muovendosi da destra a sinistra e seguendo in modo inverso la permutazione che produce il prefix array. In altri termini, tale metodo permette un mapping inverso che segua una riga del pannello originale nella matrice PBWT.

Per ottenere l'indice alla colonna k-esima da cui "proviene" la riga j, indicizzata all'indice i in colonna k+1, si inizia analizzando il valore c[k]. Infatti, se i < c[k], allora sicuramente, in colonna k, è un indice corrispondente a $\sigma=0$ quello dal quale proviene, ricordando come la costruzione della colonna k+1 nella $matrice\ PBWT$ si abbia grazie ad ordinamento stabile. Si sfruttano così o l'array p_k o le funzioni $rank_{h_k}$ e $select_{h_k}$ per risalire all'indice in colonna k, calcolando prima l'indice di run e l'eventuale offset, per il quale il mapping porta all'indice i' in colonna k+1, seguendo "virtualmente" la riga x_j del pannello originale. Per quanto riguarda la MAP-INT + LCP si ha lo pseudocodice per il mapping inverso consultabile all'algoritmo 3.14 mentre per quanto riguarda la MAP-BV + LCP si ha l'algoritmo 3.15. Parlando in termini di complessità in tempo si ha che, nel caso della componente MAP-INT, si ha, con r numero di run alla colonna k, un caso peggiore proporzionale a:

$$\mathcal{O}(r) \tag{3.35}$$

Nel caso, invece, in cui si ha la componente MAP-BV, si ha:

$$\mathcal{O}\left(\log\frac{M}{r}\right) \tag{3.36}$$

DC Approfondire?

Si procede quindi riadattando l'algoritmo di Durbin all'uso delle run, ottenendo, ad ogni step, i medesimi valori per e_k , f_k e g_k . Le uniche differenze sono:

- il calcolo del mapping necessità dell'estrazione dei valori u e v, tenendo conto esplicito degli offset nel caso della MAP-INT + LCP
- non si ha *random access* al pannello quindi bisogna procedere ogni volta con il'inverso del mapping e il calcolo del simbolo a partire dall'indice della run

Algoritmo 3.14 Algoritmo per il mapping inverso con la MAP-INT + LCP.

```
\rhd kindice di colonna, iindice di riga
 1: function REVERSE MAP(k, i)
         if k = 0 then
 2:

▷ by design

 3:
              return 0
         k \leftarrow k - 1
 4:
         c \leftarrow rlpbwt[k].c
 5:
         u \leftarrow 0, v \leftarrow 0, offset \leftarrow 0, run \leftarrow 0, found \leftarrow \bot
 6:
         if i < c then
 7:
              u \leftarrow i
 8:
              prev_0 \leftarrow 0, next_0 \leftarrow 0
 9:
              for every j \in [0, |p_k|) do
10:
                   (prev_0, \_) \leftarrow uvtrick(k, j)
11:
                   (next_0, \_) \leftarrow uvtrick(k, j + 1)
12:
                   if prev_0 \le u < next_0 then
13:
                        run \leftarrow j, found \leftarrow \top
14:
                        break
15:
              if \neg found then
16:
                   run \leftarrow |p_k| - 1
17:
              (curr_u, \_) \leftarrow uvtrick(k, run), offset \leftarrow u - curr_u
18:
              return p_k[run] + offset
19:
20:
         else
              v \leftarrow i - c
21:
              prev_1 \leftarrow 0, next_1 \leftarrow 0
22:
              for every j \in [0, |p_k|) do
23:
                   (\_, prev_1) \leftarrow uvtrick(k, j)
24:
25:
                   (\_, next_1) \leftarrow uvtrick(k, j + 1)
26:
                   if prev_1 \le v < next_1 then
                        run \leftarrow j, found \leftarrow \top
27:
                        break
28:
              if \neg found then
29:
                   run \leftarrow |p_k| - 1
30:
              (curr_v, curr_u) \leftarrow uvtrick(k, run), offset \leftarrow v - curr_v
31:
              return p_k[run] + offset
32:
```

Algoritmo 3.15 Algoritmo per il mapping inverso con la MAP-BV + LCP.

```
1: function REVERSE_MAP(k, i)
                                                             \triangleright k indice di colonna, i indice di riga
         if k = 0 then
 2:
                                                                                                ▷ by design
              return 0
 3:
         k \leftarrow k - 1
 4:
         c \leftarrow rlpbwt[k].c
 5:
         if i < c then
 6:
              if start_k then
 7:
                   run \leftarrow rank_{u}^{k}(i) \cdot 2
 8:
 9:
              else
                   run \leftarrow rank_u^k(i) \cdot 2 + 1
10:
              i_{run} \leftarrow 0
11:
              if run \neq 0 then
12:
                   i_{run} \leftarrow select_h^k(run) + 1
13:
              (prev_0, \_) \leftarrow uvtrick(k, i_{run})
14:
              return i_{run} + (i - prev_0)
15:
         else
16:
              if start_k then
17:
                   run \leftarrow rank_v^k(i) \cdot 2 + 1
18:
19:
                   run \leftarrow rank_v^k(i) \cdot 2
20:
              i_{run} \leftarrow 0
21:
              if run \neq 0 then
22:
                   i_{run} \leftarrow select_h^k(run) + 1
23:
              (\_, prev_1) \leftarrow uvtrick(k, i_{run})
24:
              return i_{run} + (i - (c + prev_1))
25:
```

• non si ha il prefix array in memoria quindi non è possibile sapere quali siano le righe che stanno matchando fino alla colonna k ma solo quante, sapendo che sono $g_k - f_k$

Anche in questo caso lo pseudocodice è consultabile all'algoritmo 3.16. Calcolare la complessità di tale algoritmo non è semplice, come già visto nel caso dell'algoritmo 5 di Durbin. In modo analogo si può comunque intuire come i vari cicli interni siano limitati superiormente dalla larghezza del pannello e dai tempi di mapping. Questo si può stimare in quanto le occorrenze dei cicli interni sono proporzionali al numero di SMEM e al numero di "step" all'indietro necessari a ri-computare il nuovo intervallo, numero di step che scala sul numero di caratteri in overlap tra due SMEM consecutivi. Fatta questa premessa si può stimare che il calcolo degli SMEM con la struttura MAP-INT + LCP è proporzionale, con ρ numero medio di run per una colonna, a:

$$\mathcal{O}(N\log\rho)\tag{3.37}$$

Nel caso, invece, della struttura MAP-BV + LCP si ha:

$$\mathcal{O}\left(N\log\frac{M}{\rho}\right) \tag{3.38}$$

DC APPROFONDIRE
SPIEGAZIONE
ALGORITMI

3.10 Calcolo degli SMEM con matching statistics

L'obbiettivo di questa tesi era quello di applicare i metodi e gli algoritmi già studiati per la BWT, riferendosi al calcolo dei MEM a partire dall'array delle $matching\ statistics$, alla PBWT.

Nelle sei strutture dati dedicate al calcolo degli SMEM tramite matching statistics si riconoscono le due modalità già descritte con MONI e PHONI:

- 1. calcolare l'array MS in due passaggi sfruttando il $random\ access$ al pannello per calcolare i vari MS[i].len
- 2. calcolare l'array MS in un passaggio sfruttando le LCE query sia per scegliere i vari MS[i].row che per calcolare, in contemporanea, i vari MS[i].len

3.10.1 Calcolo dell'array MS con threshold

Questa prima soluzione, necessitando sia della componente THR-INT/THR-BV che della componente RA-BV/RA-SLP, è relativa alle seguenti strutture dati:

Algoritmo 3.16 Calcolo degli SMEM con aplotipo esterno per MAP-INT/BV + LCP, con eventuali usi diversificati per MAP-INT e MAP-BV segnalati con "oppure".

```
1: function EXTERNAL MATCHES(z)
                                                                                                          \triangleright si assume |z| = N
          f \leftarrow 0, \ f_{run} \leftarrow 0, \ f' \leftarrow 0
 3:
          g \leftarrow 0, \ g_{run} \leftarrow 0, \ g' \leftarrow 0
          e \leftarrow 0, \ nh \leftarrow 0
 4:
 5:
          for every k \in [0, |z|) do
 6:
               f_{run} \leftarrow index\_to\_run(f,k) oppure f_{run} \leftarrow rank_h^k(f)
 7:
              g_{run} \leftarrow index\_to\_run(g,k) oppure f_{run} \leftarrow rank_h^k(g)
 8:
               f' \leftarrow w(k, f, z[k]), g' \leftarrow w(k, g, z[k]), nh \leftarrow g - f
 9:
              if f' < g' then
10:
                    f \leftarrow f', \ g \leftarrow g'
11:
               else
12:
                    if k \neq 0 then
13:
                         memorizzazione\ degli\ SMEM\ tra\ le\ colonne\ [e,\ k-1]\ con\ nh\ aplotipi
14:
                    if f' = |l_{k+1}| then e \leftarrow k+1 else e \leftarrow k-l_{k+1}[f']
                    if (z[e] = 0 \land f' > 0) \lor f' = M then
15:
                         f' \leftarrow g' - 1
16:
17:
                        if e \ge 1 then
                             f_{rev} \leftarrow f', \ k' \leftarrow k+1
18:
                             while k' \neq e - 1 do
19:
                                  f_{rev} \leftarrow reverse\_map(k', f_{rev}), k' \leftarrow k' - 1
20:
21:
                             run \leftarrow index\_to\_run(f_{rev}, k') oppure run \leftarrow rank_h^{k'}(f_{rev})
22:
                             symb \leftarrow get\_symbol(start_{k'}, run)
23:
                             while e > 0 \land z[e-1] = symb \ \mathbf{do}
                                  e \leftarrow e - 1, \ f_{rev} \leftarrow reverse\_map(e, \ f_{rev})
24:
                                  run \leftarrow index\_to\_run(f_{rev}, e-1) oppure run \leftarrow rank_h^{e-1}(f_{rev})
25:
26:
                                  symb \leftarrow get\_symbol(start_{e-1}, run)
                        while f' > 0 \land (k+1) - l_{k+1}[f] \le e \text{ do } f' \leftarrow f' - 1
27:
28:
                         f \leftarrow f', g \leftarrow g'
29:
                    else
                         g' \leftarrow f' - 1
30:
                        if e \ge 1 then
31:
                             f_{rev} \leftarrow f', \ k' \leftarrow k+1
32:
33:
                             while k' \neq e - 1 do
                                  f_{rev} \leftarrow reverse\_map(k', f_{rev}), k' \leftarrow k' - 1
34:
35:
                             run \leftarrow index\_to\_run(f_{rev}, k') oppure run \leftarrow rank_h^{k'}(f_{rev})
                             symb \leftarrow get\_symbol(start_{k'}, run)
36:
37:
                             while e > 0 \land z[e-1] = symb \ \mathbf{do}
38:
                                  e \leftarrow e - 1, \ f_{rev} \leftarrow reverse\_map(e, \ f_{rev})
                                  run \leftarrow index\_to\_run(f_{rev}, e-1) oppure run \leftarrow rank_h^{e-1}(f_{rev})
39:
40:
                                  symb \leftarrow get\_symbol(start_{e-1}, run)
                        while e < M \land (k+1) - l_{k+1}[g'] \le e \text{ do } g' \leftarrow g' + 1
41:
42:
                         f \leftarrow f', g \leftarrow g'
43:
          if f < g then
44:
               nh \leftarrow g - f
               memorizzazione \ degli \ SMEM \ tra \ le \ colonne \ [e, \ |z|-1] \ con \ nh aplotipi
45:
```

- MAP-INT + THR-INT + RA-BV + PERM + PHI
- MAP-INT + THR-INT + RA-SLP + PERM + PHI
- MAP-BV + THR-BV + RA-BV + PERM + PHI
- MAP-BV + THR-BV + RA-SLP + PERM + PHI

Tra le quali le uniche differenze si riscontrano nei tempi d'esecuzione e nella memoria richiesta.

Vediamo il funzionamento dell'algoritmo. Sia data t la posizione della threshold nella run corrente, in colonna k, e si supponga che tale run, con testa all'indice h, non sia associata al simbolo desiderato, ovvero z[k]. Si supponga che, con il mapping, si sia arrivati all'indice i della colonna k. Si supponga inoltre che la run successiva abbia testa in indice e. Si hanno due casi possibili, denotando con LCS(x,y) il longest common suffix tra le stringhe X e Y e con a_k il prefix array in colonna k:

1. i < t allora, per definizione di threshold:

$$LCS(z[0,k], x_{a_k[h-1]}[0,k]) \ge LCS(z[0,k], x_{a_k[e]}[0,k])$$

Quindi si ha che $MS[k].row = a_k[h-1]$ e il mapping potrà proseguire dall'indice h-1

2. $i \ge t$ allora, per definizione di threshold:

$$LCS(z[0,k], x_{a_k[s-1]}[0,k]) \le LCS(z[0,k], x_{a_k[e]}[0,k])$$

Quindi si ha che $MS[k].row = a_k[e]$ e il mapping potrà proseguire dall'indice e

Qualora una colonna presenti solo simboli $\sigma \neq z[k]$, per convenzione, si imposta che MS[k].row = M e si ricomincia, in colonna k+1, dall'ultima posizione, indicizzata nel pannello originale dal valore finale del prefix array sample dell'ultima run.

Esempio 28. Si vede quindi un esempio di funzionamento delle threshold. Si prenda pannello visto all'esempio 15 e si effettui la permutazione secondo a₂:

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
17	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
18	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
19	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1

Si prenda la seconda run, di simboli $\sigma = 1$, indicizzata tra 17 e 18. supponga che, tramite il mapping, si sia arrivati alla riga 17 ma cl

Si supponga che, tramite il mapping, si sia arrivati alla riga 17 ma che si abbia z[2] = 0. la scelta è quindi tra la coda della run precedente, avendo che $a_2[16] = 16$ o la testa della run successiva, avendo che $a_2[19] = 17$. Si può notare come il minimo LCP si trovi, per la run, all'indice 18 (a causa del fatto che il minimo LCP è all'indice 19, quello della testa della run successiva). Si può quindi proseguire o con la riga. Questo significa che il suffisso comune più lungo con la query si ha con la riga 16 del pannello, per definizione di threshold, avendo che questa sarà memorizzata nell'array MS:

$$MS[2].row = 16$$

Successivamente, tramite random access al testo, confrontando la riga x_{16} e la query z, fino alla colonna k=2, si potrà calcolare che MS[2].len=3.

SISTEMARE ESEMPIO

Una volta computato tutti i valori MS[i].row per calcolare i vari MS[i].len si scorre da sinistra a destra calcolando la lunghezza dello SMEM facendo random access al pannello e confrontando la query z con la riga MS[i].row. Si assuma infatti di aver calcolato MS[i-1].len e di voler calcolare MS[i].len. Si hanno tre casi possibili:

1. MS[i].row = M e in tal caso, avendo segnalata l'inesistenza di alcuno SMEM, si ha che MS[i].len = 0

- 2. MS[i].row = MS[i-1].row, avendo $i \neq 0$ e $MS[i-1].len \neq 0$, allora si sta seguendo la stessa riga che si seguiva in colonna i-1 e quindi, banalmente, MS[i].len = MS[i-1].len + 1
- 3. in qualsiasi altro caso bisogna confrontare, a partire dalla colonna i, la query z con la riga MS[i].row del pannello da destra a sinistra, fino a che non si trova un mismatch, calcolando la lunghezza l del suffisso comune tra esse e memorizzando tale valore, tramite MS[i].len = l

In fase di costruzione delle lunghezze è possibile anche riportare gli SMEM, terminanti in colonna i, qualora:

- $MS[i].len \ge MS[i+1].len \land MS[i].len \ne 0$
- si è arrivati a fine array, avendo $i = N 1 \land MS[i].len \neq 0$

Come si può verificare nell'esempio 20.

L'algoritmo per il match tramite *threshold* è visualizzabile all'algoritmo 3.17. Anche in questo caso la stima delle complessità non è di facile ottenimento. Dividendo nelle varie parti l'algoritmo si ha che:

• il calcolo dei valori row dell'array MS varia a seconda dell'uso della componente MAP-INT o MAP-BV. Il costo della funzione down, variabile a seconda della componente RA e dell'eventuale componente LCE, risulta trascurabile vista la bassa frequenza d'uso, in termini probabilistici. Si ha quindi che, con ρ numero medio di run per colonna, usando MAP-INT si ha tempo proporzionale a:

$$\mathcal{O}(N\log\rho) \tag{3.39}$$

Mentre con MAP-BV è proporzionale a:

$$\mathcal{O}\left(N\log\frac{M}{\rho}\right) \tag{3.40}$$

• il calcolo dei valori len dell'array MS è il più complesso da stimare in termini di complessità asintotica. Questa difficoltà è dovuta dal fatto che gli accessi al pannello vengono fatti solo quando $MS.row[i] \neq MS.row[i-1]$. Per semplicità denotiamo con γ il numero di accessi al pannello e, nel caso della componente RA-BV, si ha che il calcolo complessivo delle lunghezza è proporzionale a:

$$\mathcal{O}(N\gamma) \tag{3.41}$$

Mentre con RA-SLP è proporzionale, con s lunghezza della stringa unica prodotta dall'SLP, a:

$$\mathcal{O}\left(N\gamma\log s\right) \tag{3.42}$$

• si ha infine il calcolo effettivo degli SMEM e di tutte le righe del pannello per le quali si hanno tali match. Denotando con δ il numero complessivo di accessi alla componente RA-BV o di usi della componente LCE, qualora disponibile, e con μ il numero di SMEM, si ha che, nel primo caso, la complessità di tale operazione è proporzionale a:

$$\mathcal{O}(\mu\delta) \tag{3.43}$$

mentre nel caso di uso dell'SLP e della componente LCE, avendo sempre s lunghezza della stringa unica prodotta dall'SLP:

$$\mathcal{O}(\mu\delta\log s)\tag{3.44}$$

Facendo una stima complessiva si può ipotizzare come la struttura MAP-BV + THR-BV + RA-SLP + PERM + PHI, a causa della maggior lentezza in fase di mapping e di accesso al pannello per il calcolo delle lunghezze, sia quella con prestazioni peggiori mentre, per il ragionamento inverso, la struttura MAP-INT + THR-INT + RA-BV + PERM + PHI sia quella con le migliori performance dal punto di vista del tempo macchina.

In termini di memoria, invece, la struttura MAP-INT + THR-INT + RA-SLP + PERM + PHI risulta essere la più vantaggiosa mentre la struttura MAP-BV + THR-BV + RA-BV + PERM + PHI la peggiore, per le stime viste nelle sezioni precedenti dedicate alle singole componenti.

DC MANCA-NO COMPLES-SITÀ

3.10.2 Calcolo dell'array MS con LCE query

Come anticipato, grazie all'uso delle LCE query è possibile calcolare l'array delle matching statistics in un solo scorrimento da sinistra a destra. Infatti è possibile usare tali query per calcolare non solo quale nuova sequenza scegliere in caso di mismatch con l'aplotipo query in colonna i, come si faceva con l'uso delle threshold, ma anche di computare la lunghezza del suffisso comune tra essa e l'aplotipo query, calcolando nello stesso momento sia MS[i].row che MS[i].len.

Tale soluzione è quindi relativa alle seguenti strutture dati:

- MAP-INT + LCE + PERM + PHI
- MAP-BV + LCE + PERM + PHI

Con la notazione:

$$LCE(k, x, y) \tag{3.45}$$

Si indica il calcolo della LCE query tra le righe di indice x e indice y terminante in colonna k-1 (quindi escludendo la colonna k-esima).

Algoritmo 3.17 Calcolo degli SMEM con aplotipo esterno con componenti MAP-INT/BV, THR-INT/BV (i cui usi diversificati di entrambe le componenti sono segnalati con "oppure"), RA-BV/SLP, PERM e PHI.

```
1: function external matches(z)
2:
3:
                                                                                                          \trianglerightvettore MSdi lunghezza |z|
        ms_{row} \leftarrow [0..0], \ ms_{len} \leftarrow [0..0]
         curr_{row} \leftarrow rlpbwt[0].samples_{end}[|rlpbwt[0].samples_{end}|-1]
 4:
5:
        curr_{run} \leftarrow index\_to\_run(curr_{index}, 0) oppure curr_{run} \leftarrow rank_h^0(curr_{index})
 6:
         symb \leftarrow get\_symbol(start_0, curr_{run})
                                                                                               \triangleright Costruzione righe dell'array MS
7:
        for every k \in [0, |z|) do
8:
             if z[i] = symb then
9:
                 ms_{row}[k] \leftarrow curr_{row}
10:
                 \textbf{if} \ k \neq |z| - 1 \ \textbf{then} \ (curr_{index}, \ curr_{run}, \ symb) \leftarrow UPDATE(k, curr_{index}, z)
11:
12:
                  curr_{thr} \leftarrow t_k[curr_{run}] oppure curr_{thr} \leftarrow rank_t^k(curr_{index})
                  force_{down} \leftarrow \top sse l'indice è sovrapposto ad una threshold non in coda di run force_{down} \leftarrow \top sse l'indice è sovrapposto ad una threshold in coda di run e DOWN(\ldots) = \top
13:
14:
                  if |samples_{beg}^k| = 1 then
15:
16:
                      ms_{row}[k] \leftarrow M
                      if k \neq |z| - 1 then
17:
                          curr_{row} \leftarrow rlpbwt[k+1].samples_{end}[|rlpbwt[k+1].samples_{end}|-1]
18:
19:
                          curr_{index} \leftarrow M-1
                          curr_{run} \leftarrow index\_to\_run(curr_{index}, k+1) oppure curr_{run} \leftarrow rank_h^{k+1}(curr_{index})
20:
21:
                          symb \leftarrow get\_symbol(start_{k+1}, curr_{run})
22:
                  else if (curr_{run} \neq 0 \land curr_{run} = curr_{thr} \land \neg down) \lor curr_{run} = |samples_{beq}^k| - 1 then
23:
                      curr_{index} \leftarrow p_k[curr_{run}] - 1 oppure curr_{index} \leftarrow select_h^k(curr_{run})
24:
                      curr_{row} \leftarrow samples_{end}^{k}[curr_{run} - 1]
25:
                      ms_{row}[k] \leftarrow curr_{row}
26:
                      \textbf{if } k \neq |z| - 1 \textbf{ then } (curr_{index}, \ curr_{run}, \ symb) \leftarrow UPDATE(k, curr_{index}, z) \\
27:
28:
                      curr_{index} \leftarrow p_k[curr_{run} + 1] oppure curr_{index} \leftarrow select_h^k(curr_{run} + 1) + 1
29:
                      curr_{row} \leftarrow samples_{beg}^{k}[curr_{run} + 1]
30:
                      ms_{row}[k] \leftarrow curr_{row}
31:
                      if k \neq |z| - 1 then (curr_{index}, curr_{run}, symb) \leftarrow UPDATE(k, curr_{index}, z)
32:
          for every k \in [0, |z|) do
                                                                                        \triangleright Costruzione lunghezze dell'array MS
              if ms_{row}[k] = M then
33:
34:
                  ms_{len}[k] \leftarrow 0
35:
              else if k \neq 0 \land ms_{row}[i] = ms_{row}[i-1] \land ms_{len}[i-1] \neq 0 then
36:
                  ms_{len}[i] \leftarrow ms_{len}[i-1] + 1
37:
                                                             \triangleright ra effettua il random access con la componente RA-BV o RA-SLP
38:
                  tmp_{index} \leftarrow i, \ tmp_{len} \leftarrow 0
39:
                  while tmp_{index} \ge 0 \land z[tmp_{index}] = ra(ms_{row}[k], tmp_{index}) do
40:
                      tmp_{index} \leftarrow tmp_{index} - 1, \ tmp_{len} \leftarrow tmp_{len} + 1
41:
                  ms_{len}[k] \leftarrow tmp_{len}
42:
         for every k \in [0, |z|) do
                                                                                                         \triangleright Calcolo dei match da MS
43:
              if (ms_{len}[k] > 1 \land ms_{len}[k] \ge ms_{len}[k+1]) \lor (k=|z|-1 \land ms_{len}[k] \ne 0 then
44:
                  report\ dello\ SMEM\ terminante\ in\ colonna\ k
                  SMEM di lunghezza ms_{len}[k] con la riga ms_{row}[k] e quelle estese da essa tramite PHI
45:
46: function DOWN(pos, prev, next)
47:
          si usano le LCE queries o il random access per calcolare il suffisso comune più lungo tra quelli delle righe
48:
         pos/prev e pos/next fino alla colonna precedente a quella corrente
49:
          se il secondo è maggiore o uguale al primo ritorna \top, altrimenti \bot
```

Algoritmo 3.18 Algoritmo per l'update con componenti MAP-INT e MAP-BV.

```
1: function UPDATE(k, curr_{index}, z)

2: curr_{index} \leftarrow lf(k, curr_{index}, z[k])

3: curr_{run} \leftarrow index\_to\_run(curr_{index}, k+1) oppure curr_{run} \leftarrow rank_h^{k+1}(curr_{index})

4: symb \leftarrow get\_symbol(start_{k+1}, curr_{run})

5: return(curr_{index}, curr_{run}, symb)
```

Si illustra ora come computare l'array delle matching statistics. Anche in questo caso, per convenzione, si inizia la computazione dell'ultima riga della prima colonna. Si assuma di avere calcolato l'array MS di una query z rispetto al pannello X. le cui righe si identificano tramite $x_i, \forall i \in \{0, M\}$, fino alla colonna k-1. Sia i l'indice di riga sulla matrice PBWT al quale si è arrivati mediante il mapping, avendo che tale riga è quella che ha il più lungo suffisso comune con z[1, k-1]. Si assuma che l'indice i appartenga alla run r, di simboli σ , testa di indice h e coda di indice e-1. Si hanno diversi casi:

- 1. $z[k] = \sigma$, quindi la riga i può essere usata per estendere il match, avendo che MS[k].row = MS[k-1].row e MS[k].len = MS[k-1].len + 1, e per proseguire col mapping in colonna k+1
- 2. $z[k] \neq \sigma$ e si ha una sola run in colonna k, avendo quindi che non si possono avere match. Per convenzione, si imposta che MS[k].row = M e MS[k].len = 0. Infine si ricomincia, in colonna k+1, dall'ultima posizione, indicizzata nel pannello originale dal valore finale del prefix array sample dell'ultima run
- 3. $z[k] \neq \sigma$ ma si hanno anche altre run, dovendo quindi scegliere la nuova riga da seguire. Si ha che il più lungo suffisso di z[1, k] che è anche suffisso di $x_1[1, k], \ldots, x_m[1, k]$ è uno tra:
 - $x_{a_k[h-1]}$, se $h \neq 0$, ovvero la riga del pannello corrispondente alla fine della run precedente a r nella $matrice\ PBWT$, se esistente
 - $x_{a_k[e+1]}$, se $e \neq M-1$, ovvero la riga del pannello corrispondente all'inizio della run successiva a r nella $matrice\ PBWT$, se esistente

Avendo quindi i prefix array sample che ci dicono a quale riga nel pannello corrispondano tali valori e conoscendo MS[k-1].row è possibile calcolare $LCE(k, MS[k-1].row, a_k[h-1])$ e $LCE(k, MS[k-1].row, a_k[e+1])$. A questo punto si sceglie il suffisso comune più lungo tra le due, ovvero il maggiore tra i valori ritornati dalla LCE query e si sceglie la riga corrispondente per proseguire. Si ha quindi o $MS[k].row = a_k[h-1]$ o $MS[k].row = a_k[e+1]$.

In merito alla lunghezza, assumendo che la lunghezza maggiore delle due LCE query sia l, si ha che:

$$MS[k].len = \min(MS[k-1].len, l) + 1$$

In quanto la LCE query potrebbe restituire un valore più lungo dell'effettivo match con al query z quindi si sceglie il minimo tra le due lunghezze, ottenendo l'effettiva lunghezza del suffisso comune tra z e la nuova riga scelta fino a k-1, e lo si incrementa di uno, contando il match ottenuto in colonna k

DC Sistemare esempio.

Esempio 29. Riprendiamo l'esempio 28, visto per il calcolo tramite threshold. Senza usare le threshold, nella medesima situazione si dovrebbe calcolare, avendo che MS[1].row = 19 e MS[1].len = 2:

$$LCE(2, x_{19}, x_{16}) = "01" \Longrightarrow |LCE(2, x_{19}, x_{16})| = 2$$

$$LCE(2, x_{19}, x_{17}) = "1" \implies |LCE(2, x_{19}, x_{17})| = 1$$

Come verificabile dal pannello presente all'esempio 15. Si ha quindi che MS[2].row = 16. Inoltre, sempre per quanto detto sopra:

$$MS[2].len = min(MS[1].len, 2) + 1 = 2 + 1 = 3$$

Con questa soluzione, il cui pseudocodice è consultabile all'algoritmo 3.19, quindi:

- non si necessita di tenere in memoria le informazioni per le threshold
- si permette il calcolo dell'array MS in una singola scansione del pattern
- non si necessita di memorizzare l'intero array MS ma solamente quattro variabili relative alla coppia (row, len) corrente e quella precedente

Dal punto di vista della complessità temporale, per il calcolo dell'array MS, si hanno solo due casistiche possibili, al variare della componente di mapping. Nel caso della componente MAP-INT, avendo s lunghezza della singola parola prodotta dall'SLP e ρ numero medio di run per colonna, si ha un tempo proporzionale, dovendo iterare la query, fare il mapping e usare la componente LCE, a:

$$\mathcal{O}(N(\log \rho + \log s)) \tag{3.46}$$

Mentre nel caso dell'uso della componente MAP-BV si ha tempo proporzionale a:

$$\mathcal{O}\left(N\left(\log\frac{M}{\rho} + \log s\right)\right) \tag{3.47}$$

Infine, per il calcolo di tutte le righe del pannello per cui si ha uno *SMEM* si può fare riferimento all'equazione 3.44, avendo la medesima situazione.

Si deduce quindi come la struttura MAP-INT + LCE + PERM + PHI sia, a livello di tempo macchina, la soluzione più vantaggiosa usando la componente LCE. Tale soluzione risulta, sempre nel contesto delle strutture basate sulla componente LCE, essere anche la soluzione più vantaggiosa in termini di memoria.

Si vedrà, sperimentalmente, nel capitolo 4, il confronto con le altre strutture dati.

DC Sistemare pseudocodice per non avere salvato intero MS

DC Manca strima complessità

Algoritmo 3.19 Calcolo degli SMEM con aplotipo esterno con componenti MAP-INT/BV (i cui usi diversificati sono segnalati con "oppure"), LCE, PERM e PHI.

```
1: function MATCHES_MS_LCE(z)
         ms_{row} \leftarrow [0..0], \ ms_{len} \leftarrow [0..0]
                                                                                                                   \trianglerightarrayMSdi lunghezza |z|
<del>-</del>3:
         curr_{row} \leftarrow rlpbwt[0].samples_{end}[|rlpbwt[0].samples_{end}|-1], \ curr_{index} \leftarrow curr_{row}
4:
5:
         curr_{run} \leftarrow index\_to\_run(curr_{index}, 0) oppure curr_{run} \leftarrow rank_h^0(curr_{index})
         symb \leftarrow get\_symbol(start_0, curr_{run})
                                                                                                             \triangleright Costruzione dell'array MS
6:
7:
8:
         for every k \in [0, |z|) do
             if z[i] = symb then
                  ms_{row}[k] \leftarrow curr_{row}
                  if k = 0 then ms_{len}[k] \leftarrow 1 else ms_{len}[k] \leftarrow ms_{len}[k-1] + 1
9:
10:
                  if k \neq |z| - 1 then (curr_{index}, curr_{run}, symb) \leftarrow UPDATE(k, curr_{index}, z)
11:
12:
                   if |samples_{beg}^k| = 1 then
                       \begin{aligned} ms_{row}[k] &\leftarrow M \\ ms_{len}[k] &\leftarrow 0 \end{aligned}
13:
14:
15:
                       if k \neq |z| - 1 then
16:
                            curr_{row} \leftarrow rlpbwt[k+1].samples_{end}[|rlpbwt[k+1].samples_{end}|-1]
17:
                            curr_{index} \leftarrow M-1
                            curr_{run} \leftarrow index\_to\_run(curr_{index}, k+1) \ \mathbf{oppure} \ curr_{run} \leftarrow rank_h^{k+1}(curr_{index})
18:
19:
                            symb \leftarrow get\_symbol(start_{k+1}, curr_{run})
20:
                   else
21:
                       if curr_{run} = |samples_{beg}^k| - 1 then
22:
                            curr_{index} \leftarrow p_k[curr_{run} - 1] \ \mathbf{oppure} \ curr_{index} \leftarrow select_h^k(curr_{run})
23:
                            prev_{row} \leftarrow samples_{end}^{k}[curr_{run} - 1]
                            lce \leftarrow LCE(k, curr_{row}, prev_{row})
24:
25:
                            ms_{row}[k] \leftarrow prev_{row}, \ curr_{row} \leftarrow prev_{row}
26:
                            if k = 0 then ms_{len}[k] \leftarrow 1 else ms_{len}[k] \leftarrow min(ms_{len}[k-1], |lce|) + 1
27:
                            if k \neq |z| - 1 then (curr_{index}, \ curr_{run}, \ symb) \leftarrow UPDATE(k, curr_{index}, z)
28:
                       else if curr_{run} = 0 then
                            curr_{index} \leftarrow p_k[curr_{run} + 1] \ \mathbf{oppure} \ curr_{index} \leftarrow select^k_h(curr_{run} + 1) + 1
29:
30:
                            next_{row} \leftarrow samples_{beg}^{k}[curr_{run} + 1]
                            lce \leftarrow LCE(k, curr_{row}, next_{row})
31:
32:
                            ms_{row}[k] \leftarrow next_{row}, \ curr_{row} \leftarrow next_{row} if k = 0 then ms_{len}[k] \leftarrow 1 else ms_{len}[k] \leftarrow min(ms_{len}[k-1], |lce|) + 1
33:
34:
                            \textbf{if} \ k \neq |z| - 1 \ \textbf{then} \ (curr_{index}, \ curr_{run}, \ symb) \leftarrow UPDATE(k, curr_{index}, z)
35:
36:
                            prev_{row} \leftarrow samples_{end}^{k}[curr_{run} - 1], \ next_{row} \leftarrow samples_{beg}^{k}[curr_{run} + 1]
37:
                            lce \leftarrow \max(|LCE(k, curr_{row}, prev_{row})|, |LCE(k, curr_{row}, next_{row})|)
38:
                                                                       \triangleright lce_{row} segnala l'indice della riga con LCE query più lunga
                            curr_{row} \leftarrow lce_{row}
39:
                            ms_{row}[k] \leftarrow curr_{row}
40:
                            if k = 0 then ms_{len}[k] \leftarrow 1 else ms_{len}[k] \leftarrow min(ms_{len}[k-1], |lce|) + 1
41:
                            if k \neq |z| - 1 then (curr_{index}, curr_{run}, symb) \leftarrow UPDATE(k, curr_{index}, z)
42:
                                                                                                               \triangleright Calcolo dei match da MS
43:
              if (ms_{len}[k] > 1 \land ms_{len}[k] \ge ms_{len}[k+1]) \lor (k=|z|-1 \land ms_{len}[k] \ne 0 then
44:
                   report degli SMEM di lunghezza ms_{len}[k], terminanti in colonna k
45:
                   con la riga ms_{row}[k] e quelle estese da essa tramite la componente PHI
```

Capitolo 4

Risultati

Verranno ora riportati alcuni risultati sperimentali, ottenuti su pannelli simulati, relativi all'implementazione della **RLPBWT**. In primis, verranno discusse le modalità di sperimentazione per poi trattare sia i risultati ottenuti su pannelli simulati che su alcuni pannelli del **1000 Genome Project** [36].

4.1 Descrizione degli esperimenti

Prima di addentrarci nella discussione dei risultati è bene introdurre le modalità con cui si sono svolti gli esperimenti.

Dal punto di vista dei linguaggi di programmazione si sono usati:

- C++, per l'implementazione delle strutture dati e degli algoritmi
- **Python**, per la creazione della struttura a partire dal pannello in input e per gestire l'intera pipeline di sperimentazione, partendo dal *preprocessing* dell'input fino alla produzione dei grafici al termine della computazione

Nel dettaglio la costruzione della **RLPBWT**, i cui singoli step verranno approfonditi nel corso del capitolo, si articola nel seguente modo:

- 1. *input:* pannello binario generato tramite MaCS oppure un pannello in Variant Call Format (VCF) [37], nel caso di dati reali, convertito per praticità in formato *MACs*
- 2. opzionale: produzione dell'SLP del pannello
- 3. **step intermedio:** estrazione dal pannello in input di un pannello di query di grandezza selezionata dall'utente e costruzione della struttura dati
- 4. opzionale: serializzazione della struttura dati, tramite SDSL

5. output: file contenente i risultati dei match

Si specifica che per il file di output si è mantenuto lo stesso formato utilizzato da Durbin nella sua implementazione della **PBWT** [30]. Tale formato prevede, per facilitarne il parsing, un tsv (tab-separated values) con le seguenti colonne:

- 1. colonna semplicemente indicante che si ha un MATCH
- 2. l'indice della query di cui si annota il match
- 3. l'indice dell'aplotipo per cui si ha il match
- 4. l'indice della colonna da cui parte il match
- 5. l'indice della colonna in cui termina il match
- 6. la lunghezza del match

MaCS MaCS [38], sviluppato da Gary K. Chen, è un simulatore di *processi* coalescenti, basati sulla **teoria della coalescenza**. Tale teoria è un modello di come gli alleli campionati da una popolazione possano essere originati da un antenato comune. Il tool simula genealogie spaziali tra i cromosomi sfruttando processi Markoviani.

Nel dettaglio il lavoro è fortemente ispirato dai risultati di Wiuf e Hein [39], che per primi proposero un algoritmo basato sulla costruzione e sulla memorizzazione di un ancestral recombination graph (ARG).

Chen stesso segnala le seguenti differenze con l'algoritmo di Wiuf e Hein:

- gli eventi di ricombinazione si verificano solo sulla geneologia locale nella posizione attuale sulla sequenza invece che in qualsiasi altro punto dell'ARG, ma possono unirsi a qualsiasi lignaggio sull'ARG compresi quelli non sulla geneologia locale (ad esempio un arco non ancestrale)
- i tempi di attesa (ovvero la distanza tra le ricombinazioni sulla sequenza) sono calcolati in modo esponenziali con intensità basata sulla lunghezza dell'arco della geneologia locale invece della lunghezza ARG
- l''algoritmo è detto dell'n-esimo ordine Markoviano, dove n è basato sui parametri inserito dall'utente

L'autore ricorda che queste modifiche rendono l'algoritmo sostanzialmente più efficiente del Wiuf e Hein con poca perdita di precisione.

Dal punto di vista pratico l'esecuzione di MaCS produce i pannelli binari, da intendersi come pannelli di aplotipi, che verranno poi studiati tramite la PBWT e la RLPBWT. Tali pannelli presentano:

- un header, con informazioni in merito al comando usato e al seed
- una riga per ogni sito, con prima alcune informazioni in merito a come è stato prodotto il dato e poi la sequenza di valori binari, uno per ogni sample
- un footer, con ulteriori informazioni, tra cui le dimensioni del pannello

Quindi, trascurando le varie informazioni aggiuntive, il pannello è **trasposto** rispetto a quanto studiato dalla PBWT e dalla RLPBWT. Questa però risulta essere una comodità in quanto, leggendo iterativamente il file, si legge di volta in volta la i-esima colonna, ovvero quanto serve per la costruzione della struttura dati. Per capire meglio come venga prodotto un pannello tramite questo strumento, analizziamo un semplice esempio:

```
./macs 5 3000 -t 0.001 -r 0.001
```

Dove:

- 5 è il numero di sample richiesto, ovvero il numero di sequenze che il software simulerà
- 3000 è la lunghezza in paia-basi della regione genomica su cui verranno simulate le 5 sequenze
- -t 0.001 segnala il *mutation rate* per ogni sito, ovvero la frequenza di *nuove* mutazioni per un sito nel tempo
- -r 0.001 segnala il recombination rate per ogni sito, ovvero la frequenza di ricombinazioni geniche, che sono i processi per i quali si ottengono nuove combinazioni di alleli a partire da un genotipo, per un sito nel tempo

BigRePair e ShapedSlp Come introdotto alla sezione 2.2, una delle varianti della **RLPBWT**, richiede l'uso, estremamente vantaggioso dal punto di vista della memoria occupata, degli **SLP**.

Da un punto di vista implementativo, l'oggetto contenente l'*SLP* del pannello viene costruito ed interrogato mediante l'uso della libreria **ShapedSlp** [40], implementazione dei risultati ottenuti da Gagie et al. [14]. Inoltre, tale libreria basa il suo funzionamento sull'uso di un'altra libreria, detta **BigRePair** [41], che implementa i quanto studiato da Gagie et al. [42] in merito alla compressione, via uso di grammatiche, di file con frequenti ripetizioni (come possono essere, nel nostro caso, pannelli binari di aplotipi).

In termini di pipeline si procede quindi:

- 1. generando la *grammatica* tramite *BigRePair*, che accetta come file di input un file txt "raw" ma anche un file in formati più standard come i *FASTA*
- 2. generando l'*SLP* tramite *ShapedSlp* specificatamente a partire dai risultati di *BigRePair* (si segnala che la libreria accetta anche input prodotti tramite altri tool che non verranno qui approfonditi)

4.1.1 Riproducibilà degli esperimenti

Al fine di rendere riproducibili gli esperimenti si è costruita una pipeline per l'esecuzione dei vari algoritmi e l'estrazione dei dati quantitativi relativi alle performance. L'intera pipeline è stata gestita tramite **Snakemake** [43], un workflow management system, uno strumento molto usato in bioinformatica per creare analisi dati scalabili e riproducibili. Nel dettaglio la pipeline comprende, avendo in input un pannello ed una lista di quantità di aplotipi di query:

- scaricamento dei tool e delle loro dipendenze per la PBWT di Durbin e la RLPBWT proposta in questa tesi
- produzione dell'input per la PBWT e della RLPBWT per ogni quantità di query richiesta
- produzione delle strutture dati
- esecuzione degli algoritmi per il pattern matching
- produzione di vari grafici relativi sia ai tempi di esecuzione che alla memoria richiesta

Al fine di ottenere risultati non banali infatti l'idea è quella di partire da un pannello iniziale fisso ed estrarre un numero di righe pari al numero di query richieste, righe che, a loro volta, andranno a formare il pannello di query. Uno schema delle regole usate è visualizzabile in figura 4.1.

4.2 Studio su pannelli simulati

Al fine di analizzare i risultati ottenuti si sono confrontate 5 varianti della RLPB-WT:

- RLPBWT naïve
- RLPBWT con bitvector
- RLPBWT con pannello completo e threshold

Figura 4.1: Regole usate in Snakemake per la sperimentazione.

- RLPBWT con pannello compresso (SLP) e threshold
- RLPBWT con pannello compresso (SLP) e LCE query

Confrontandole con l'implementazione originale dell'algoritmo 5 di Durbin, nominato MatchIndexed. Studiando la repository di Durbin inoltre si è scoperto l'esistenza di un ulteriore algoritmo, non descritto formalmente nel paper del 2014 [4] ma solo citato in una tabella, che considera in un unico panello sia il pannello che l'insieme delle query ed effettua il matching interno al pannello stesso, calcolando in modo dinamico l'indicizzazione ad ogni colonna. Nonostante l'algoritmo presenti limiti dal punto di vista dell'estendibilità ad altre problematiche, avendo che le varianti della PBWT citate in sezione 2.5 si basano, nel caso di SMEM con aplotipi esterni, sulle idee dell'algoritmo 5, esso risulta essere davvero molto performante sia dal punto di vista del tempo macchina che della memoria occupata. A causa di ciò, per completezza, tale algoritmo, chiamato MatchDynamic, è stato incluso nei risultati sperimentali, pur mancandone una trattazione teorica approfondita.

Studio della memoria Lo scopo principale di questa tesi era la riduzione delle informazioni in memoria necessarie a permette il mapping, quindi in primis si sono valutati i vari risultati dal punto di vista della memoria.

Prima ancora di affrontare i requisiti in memoria dell'intera struttura è interessante analizzare le capacità di compressione che si ha con l'uso degli SLP, grazie ai due tool sopra citati. In figura 4.2 si può iniziare ad apprezzare l'efficacia di

img/slp_vs_macs0.png

Figura 4.2: Confronto delle dimensioni, espresse in kilobytes, dei pannelli in formato macs e dei rispettivi SLP. Il grafico è in scala logaritmica.

tale grammatica. Si nota infatti come, per quanto i pannelli siano di dimensione modesta, hanno un peso che varia in un range di un centinaio di megabytes mentre gli SLP relativi nel centinaio di kilobytes. Si ha infatti:

#Samples	#Siti	$\mathrm{SLP}\ (kb)$	$\mathrm{MACs}\;(kb)$	%
20000	4294	228.13	84050.48	0.2714
21000	4294	238.83	88243.83	0.2707
22000	4294	243.04	92437.18	0.2629
23000	4294	250.37	96630.53	0.2591
24000	4294	272.72	100823.87	0.2705
25000	4294	278.22	105017.22	0.2649
26000	4294	283.57	109210.57	0.2597
27000	4294	288.62	113403.92	0.2545
28000	4294	293.85	117597.27	0.2499
29000	4294	298.76	121790.62	0.2453

Notando come, per pannelli di grandezza simile, pare si abbia una compressione proporzionale alla dimensione del pannello.

Andando a vedere pannelli molto più grossi si nota come il rateo di compressione continui essere proporzionale alla dimensione del pannello e, nonostante il esso cresca di dimensione, la grandezza dell'SLP resta molto piccola:

img/slp_vs_macs2.png

Figura 4.3: Confronto delle dimensioni, espresse in kilobytes, dei pannelli in formato macs e dei rispettivi *SLP*. Il grafico è in scala logaritmica.

#Samples	#Siti	$\mathrm{SLP}\ (kb)$	$\mathrm{MACs}\;(kb)$	%
100000	358653	14771.0	35042963.54	0.0422
100000	100000	9077.88	9075120.49	0.1
100000	46538	8017.09	4448994.19	0.1802

Tale risultato è anche apprezzabile in figura 4.3. Il caso estremo, un pannello 100000×358653 , occupante in memoria circa 35gb in formato .macs, viene compresso in circa 15mb. Questo accade soprattutto in quanto un pannello di soli simboli $\Sigma = \{0,1\}$ contiene molte ripetizioni, permettendo la costruzione di una grammatica, tramite l'SLP, particolarmente "compatta".

Si analizzano ora le due strutture dati, confrontando lo spazio richiesto dalle varie sotto-strutture per effettuare il match con una query esterna, descritte alle sezioni 2.5, ??, ?? e ??.

Si precisa che i dati ora descritti sono stati calcolati nel seguente modo:

- per quanto riguarda la PBWT, sfruttando le stime fatte da Durbin stesso
- per quanto riguarda la **RLPBWT**, sfruttando le serializzazioni ottenute tramite SDSL

Con un studio al leggero variare del pannello si nota, graficamente in figura 4.4, come quanto descritto precedentemente venga confermato. Le informazioni richieste dall'algoritmo 5 di Durbin sono quelle che richiedono maggior memoria mentre

img/pbwt_vs_rlpbwt_dyn.png

Figura 4.4: Confronto dello spazio in memoria, in kilobytes, richiesto dalle varie strutture dati.

la variante della RLPBWT basata su SLP e LCE query risulta essere la soluzione migliore tra le varianti della RLPBWT. Bisogna però notare come la soluzione mat-chDynamic ritrovabile nella repository della PBWT risulti essere incredibilmente più efficace, avendo, secondo Durbin stesso, una richiesta in spazio proporzionale a $\mathcal{O}(M+N)$.

Limitiamo però ora il confronto all'algoritmo 5 di Durbin, in quanto obbiettivo della tesi. Da un punto di vista di guadagno percentuale in memoria i risultati sembrano essere interessanti, confrontando tale soluzione con la migliore per la RLPBWT:

#Samples	#Siti	RLPBWT SLP-LCE (kb)	PBWT Indexed (kb)	%
20000	4294	12118.62	1090270.65	1.1115
21000	4294	12583.13	1144784.18	1.0992
22000	4294	13033.78	1199297.71	1.0868
23000	4294	13487.57	1253811.24	1.0757
24000	4294	13954.44	1308324.78	1.0666
25000	4294	14419.27	1362838.31	1.058
26000	4294	14867.82	1417351.84	1.049
27000	4294	15316.41	1471865.37	1.0406
28000	4294	15765.41	1526378.9	1.0329
29000	4294	16214.09	1580892.44	1.0256

Provando in modo quantitativo l'efficacia in memoria della soluzione ultima proposta in questa tesi.

Tempi di esecuzione Bisogna infine considerare i tempi di esecuzione per il pattern matching con un pannello di query. Dal punto di vista della *RLPBWT* bisogna considerare in primis due aspetti:

- avere meno informazione in memoria comporta molto probabilmente, a parità di risultati, tempi maggiori
- l'uso di strutture dati succinte ed eventualmente dell'*SLP* comporta costi dal punto di vista temporale. Come anticipato in sezione 2.1, le operazioni sugli sparse bitvector non sono tutte i tempo costante e, come invece anticipato in sezione 2.2, gli *SLP* non garantiscono *random access* in tempo costante e questo, per quanto poi l'algoritmo di estensione sia efficiente, si ripercuote anche sul calcolo delle *LCE query*

Questa premessa fa capire come ci si aspettasse che i tempi fossero maggiori con la RLPBWT, in ogni sua variante, rispetto all'algoritmo 5 di Durbin. Parlando invece dell'algoritmo matchDynamic si ha che, per quanto asintoticamente presenti la stessa complessità dell'algoritmo 5, ovvero $\mathcal{O}(N(M+Q))$, con Q numero di query, esso risulta incredibilmente più performante.

Alcuni risultati sono visualizzabili in figura 4.5 e 4.6, dove si possono osservare sia i tempi che lo spazio richiesto. Anche la completa esecuzione quindi conferma come l'algoritmo 5 sia incredibilmente esoso dal punto di vista dello spazio richiesto, pur avendo ottime performance temporali. Dal punto di vista invece delle varianti della RLPBWT si nota come:

- la *RLPBWT naïve*, priva dell'uso dei bitvector e dell'*SLP*, risulti essere la più performante, anche se, si ricordi, non permette di identificare quali righe stiano effettivamente matchando ma solo quante
- la *RLPBWT con bitvector*, avente lo stesso limite della variante naïve, presenta anche maggiori costi in termini di memoria di quest'ultima, avendo anch'essa ancora l'*LCP array* completo ma anche tutte le informazioni memorizzate in bitvector, che aumentano, come anticipato, i tempi di calcolo. La chiave delle varianti che sfruttano le *matching statistics* è infatti quella di non avere l'*array LCP* in memoria, una delle cause principali dell'aumento di spazio richiesto
- le tre varianti basate sulle *matching statistics* hanno spazio occupato pressoché uguale, anche se si può percepire, nei due casi studiati, come il tenere l'intero pannello in forma di bitvector, all'aumentare della grandezza dello stesso, comporti molta più memoria degli *SLP*. Dal punto di vista temporale, inoltre, anche se si ha *random access* in tempo costante, all'aumentare

Figura 4.5: Esecuzione dei vari algoritmi di match su un pannello 29000×4294 e 1000 query. Il grafico a destra è in scala logaritmica.

del pannello, il numero di accessi allo stesso comporta forti costi in termini di tempo macchina. Questi ultimi, infatti, come già visto occupano pochissima memoria anche con pannelli molto estesi. Dal punto di vista temporale si rileva come la variante basata su *SLP* e *threshold* richieda molto più tempo. Si nota che ciò accade a causa di due fattori:

- il continuo accesso all'SLP per calcolare MS[i].len
- l'eventuale accesso all'*SLP* per disambiguare le threshold a fine run

Tra le tre quindi la variante con SLP e LCE query, all'aumentare della grandezza del pannello, risulta essere la soluzione migliore

Per completezza, in figura 4.7, si riportano anche i risultati in tempo e spazio di una sperimentazione su un pannello di grandi dimensioni: 70000×46538 con 30000 query. Sono riportati anche i risultati delle tre varianti basate su matching statistics senza l'estensione dei match tramite le **funzioni** φ e φ^{-1} . Si può notare come la struttura dati aggiuntiva non comporti praticamente alcuna differenza sostanziale sia in termini di memoria che di tempo di calcolo. In merito agli altri risultati si ha che seguono tutti il trend già descritto negli esempi precedenti. In particolare si nota che:

• l'algoritmo 5 di Durbin ha una richiesta di memoria davvero molto grande, parlando di circa 40.75 gb di memoria richiesta

Figura 4.6: Esecuzione dei vari algoritmi di match su un pannello 20000×4294 e 10000 query. Il grafico a destra è in scala logaritmica.

- l'algoritmo match Dynamic di Durbin risulta essere migliore sia dal punto di vista dello spazio richiesto che del tempo d'esecuzione. Parlando di tempi, infatti, l'intera esecuzione richiede ~ 22 s, contro i ~ 411 dell'algoritmo match Indexed e i ~ 1824 della RLPBWT con SLP e LCE query
- la variante *RLPBWT* con *SLP* e *threshold*, per le problematiche già descritte richiede un tempo d'esecuzione importante, parlando di circa 2 ore di esecuzione

4.3 Sperimentazione sui pannelli reali

Al fine di valorizzare maggiormente i risultati ottenuti in questo progetto, si è deciso di procedere con lo studio di dati reali, relativi alla *phase 3* del **1000 Genome Project**¹ [36].

Tali pannelli, disponibili in formato VCF, presentano un numero costante di sample, ovvero 5008, mentre a variare è il numero di siti. Essendo dati reali, non si ha la sola presenza di siti biallelici. Si è quindi proceduto alla selezione dei soli siti biallelici, ottenendo quindi pannelli costruiti su un alfabeto binario $\Sigma = \{0,1\}$, tramite l'uso di **bcftools** [44], tramite il comando **bcftools** view -m2 -M2 -v snps.

¹https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

Figura 4.7: Risultati, in scala logaritmica, dell'esecuzione dei vari algoritmi su un pannello di grosse dimensioni. Si noti che, quantitativamente, la variante matchIndexed richieda 42736132 kb di memoria mentre la RLPBWT con SLP e LCE query solo 3286424 kb, richiedendo quindi appena il 7% di memoria richiesta dall'algoritmo 5 di Durbin. Infine, per quanto la scala logaritmica renda impercettibile tale differenza, la variante RLPBWT con pannello richiede 3695968 kb, quindi circa 380 mb in più della soluzione basata sull'uso dell'SLP.

La prima selezione dei pannelli è stata dettata dalla volontà di studiare, per praticità, matrici non troppo estese. Si sono, quindi, scelti i pannelli relativi:

- al cromosoma 22, con 1055454 siti
- al cromosoma 20, con 1739315 siti
- al cromosoma 18, con 2171378 siti
- al cromosoma 16, con 2596072 siti

In aggiunta, si è studiato uno dei pannelli più grossi disponibili, ovvero quello relativo al cromosoma 1, con 6196151 siti.

Al fine del computo degli SMEM, avendo un numero ridotto di sample a disposizione, si è scelto di estrarre da ognuno 100 sample da usare come query.

Prima di procedere con l'effettivo studio delle performance di calcolo degli SMEM, trattandosi di pannelli reali, è risultata interessante una preliminare indagine esplorativa sulla natura di tali pannelli in termini di sparsità degli alleli e di conseguente numerosità delle run. Si è quindi calcolato, per i cinque pannelli, il numero di simboli $\sigma=0$ e $\sigma=1$, notando come il numero di simboli $\sigma=1$ fosse molto ridotto rispetto al totale, essendo il $\sim 0.03\%$ del totale dei simboli. Una tale sparsità del dato si "propaga" anche sul numero di run di ogni colonna, avendo di fatto pochi simboli $\sigma=1$ in ogni colonna, simboli che possono anche essere nella medesima

run dopo la permutazione data dalla PBWT. Si ricordi, inoltre, che tale permutazione. come per la BWT, è studiata per essere maggiormente efficiente nel caso del dato biologico. Studiando, quindi, il numero medio di run per colonna e il numero massimo di run in una colonna si è confermato tale risultato, infatti:

- per il cromosoma 22 si ha un numero medio di 14 run, con un massimo di 2450
- per il cromosoma 20 si ha un numero medio di 11 run, con un massimo di 2176
- per il cromosoma 18 si ha un numero medio di 11 run, con un massimo di 2365
- per il cromosoma 16 si ha un numero medio di 12 run, con un massimo di 2330
- per il cromosoma 1 si ha un numero medio di 11 run, con un massimo di 2721

Si conferma quindi il risultato atteso, risultato che è a favore, in termini di complessità in spazio, della RLPBWT in quanto tutte le componenti sono proporzionali al numero di run. In figura 4.8 si riportano graficamente tali risultati.

Viste le dimensioni di tali pannelli si ritiene necessario studiare, dal punto di vista del tempo macchina e dei picchi di memoria necessaria, i vari step della sperimentazione:

- la fase di preprocessing, necessaria per la RLPBWT, comprendente:
 - la conversione dei file VCF in file MACs
 - l'estrazione del pannello delle query e la creazione del nuovo pannello di reference
 - la produzione dellSLP del pannello di reference, comprendente sia la produzione della stringa che l'esecuzione di BigRepair che di ShapedSlp
- la costruzione delle varianti della RLPBWT e dei file ad hoc per la PBWT
- il calcolo degli SMEMs

In generale i risultati ottenuti risultano essere coerenti con quanto visto nei pannelli simulati.

Figura 4.8: Distribuzione delle run per colonna con il numero minimo/medio/massimo delle stesse. Nel titolo si hanno anche il numero complessivo di run, il numero di simboli $\sigma=0$ e $\sigma=1$, nonché la percentuale della quantità di questi ultimi sul totale dei simboli.

Figura 4.9: Tempo richiesto e picco di memoria, in scala logaritmica, per le tre fasi di preprocessing dei dati in input per la RLPBWT.

Preprocessing In figura 4.9 si possono analizzare le prestazioni delle tre fasi. La separazione del pannello con le query risulta essere assolutamente ininfluente e, di fatto, anche la conversione tra i due formati (conversione che diventerebbe non necessaria implementando l'input direttamente da file VCF) non necessita particolari considerazioni. Bisogna, però, analizzare la costruzione dell'SLP. Per quanto quest'operazione sia da svolgersi una tantum, le richieste in termini di memoria sono nell'ordine delle centinaia di gigabytes di RAM mentre i tempi di calcolo sono nell'ordine delle ore. D'altro canto, bisogna considerare che tutti gli algoritmi per la produzione dell'SLP sono studiati per partire da una singola stringa e non da una matrice e questo potrebbe lasciar spazio a diverse ottimizzazioni. Inoltre questa fase è necessaria solo per due delle tre soluzioni studiate per la RLPB-WT e, come già detto, il fatto che sia necessaria solo una volta deve essere preso in considerazione nell'ottica di un confronto con, ad esempio, lo spazio richiesto dall'algoritmo 5 di Durbin, che richiede 13NM bytes ad ogni esecuzione.

In figura 4.10 si può osservare il vantaggio in termini di memoria che si ha con l'uso degli *SLP*, confrontando il peso dei file MACs con il peso delle grammatiche compresse. Di seguito si possono confrontare quantitativamente tali risultati, che risultano percentualmente peggiori rispetto a quanto visto coi pannelli simulati:

#Samples	#Siti	SLP (kb)	MACs(kb)	%
4908	1055454	45866.4	5079359.44	0.9
4908	1739315	63378.56	8370121.94	0.76
4908	2171378	82088.5	10449409.15	0.79
4908	2596072	101095.88	12493108.91	0.81
4908	6196151	232363.65	29821949.72	0.78

Figura 4.10: Confronto tra la memoria richiesta dai file MACs e dagli SLP per i pannelli del 1000 Genome Project. Il grafico di destra è in scala logaritmica.

Nonostante tale peggioramento la potenza di compressione degli SLP risulta comunque non trascurabile.

Costruzione della struttura Passiamo ora ad analizzare tempi e picchi di memoria per la costruzione delle strutture dati. Bisogna ricordare che:

- nel caso della *RLPBWT* questa fase prevede la costruzione e la serializzazione dell'intera struttura dati, comprensiva di tutte le sottostrutture necessarie al computo degli SMEM
- nel caso della PBWT questa fase crea unicamente un file compresso "ad hoc" con le strutture base delle PBWT, a partire dalla quale, in fase di calcolo degli SMEM, verranno calcolati anche tutte le altre strutture necessarie al calcolo degli stessi

Fatte queste doverose premesse passiamo ad analizzare, graficamente in figura 4.11, i tempi di calcolo della costruzione delle strutture dati. Si possono fare varie osservazioni:

- tutti gli algoritmi di costruzione sono in tempo proporzionale a $\mathcal{O}(NM)$ ma, come detto, le varianti della RLPBWT includono in questa fase anche il calcolo delle strutture utili al calcolo degli SMEM
- la *RLPBWT* con *pannello completo* e *threshold* richiede più tempo in quanto deve memorizzare effettivamente il pannello
- la *RLPBWT naïve*, non dovendo costruire i *bitvector sparsi* e nemmeno le strutture a supporto per *rank/select*, risulta essere la più performante parlando delle soluzioni run-length encoded

Figura 4.11: Wall clock time per la costruzione delle varianti della RLPWBT e per la PBWT. Il grafico di destra presenta il tempo in scala logaritmica.

In figura 4.12 vengono visualizzati, invece, i picchi di memoria richiesti. Anche in questo caso si hanno varie osservazioni possibili:

- come anticipato la PBWT non calcola e memorizza tutti gli indici necessari al calcolo degli SMEM in fase di costruzione, avendo quindi una bassissima richiesta di memoria in questa fase
- la *RLPBWT naïve* e la *RLPBWT con bitvector*, dovendo memorizzare l'intero insieme degli *array LCP*, hanno un elevato consumo di memoria
- nonostante la non memorizzazione delle threshold, la RLPBWT con SLP e LCE ha un guadagno minimo rispetto a quella con SLP e threshold. Questo è giustificato dalla sparsità dei dati (nonché dal conseguente basso numero di run) e dall'uso dei bitvector sparsi, che scalano in memoria proprio sul numero di simboli $\sigma = 1$, quindi sul numero di run

In tabella 4.1 si riportano, in megabytes, le dimensioni delle singole strutture dati che compongono le varianti della RLPBWT. Le stesse misurazioni sono visualizzabili anche in figura 4.13. Si può innanzitutto apprezzare il vantaggio dell'uso dell'SLP rispetto al pannello non compresso in memoria. Si può notare, inoltre, come il peso dei bitvector sparsi per le teste di run e le threshold sia pressoché identico. Si segnala, infine, come memorizzare i $prefix \ array \ samples$ e la struttura di supporto per il calcolo delle funzioni φ e φ^{-1} , non presenti particolari criticità dal punto di vista della memoria richiesta.

DC Serve altro?

Calcolo degli SMEM Passando all'effettivo calcolo degli SMEM, si possono, anche in questo caso, confermare i risultati avuti con i pannelli simulati. In figura 4.14 si riportano i risultati i termini di tempo di calcolo, notando che:

Figura 4.12: Picchi di memoria per la costruzione delle varianti della RLPWBT e per la PBWT. Il grafico di destra presenta il tempo in scala logaritmica.

Figura 4.13: Memoria occupata dalle singole componenti, avendo sulle ascisse sia il numero di siti, a sinistra, che il numero di run, a destra. Si noti che con MAP si intende h+u+v+c+start mentre con THR t.

Tabella 4.1: Dimensioni, in megabytes, delle varie componenti della RLPBWT.

Chr	t	$Samples$	$ \phi$	SLP	Pannello	$\mid h \mid$	$oldsymbol{u}$	v	c+start
22	198.9	71.3	89.0	44.7	628.1	194.5	180.2	162.7	5.1
20	322.5	103.8	117.9	61.9	1035.1	315.1	293.5	264.7	8.3
18	401.9	127.8	147.4	80.2	1292.2	392.9	366.1	330.4	10.3
16	483.4	159.3	186.1	98.7	1544.9	472.4	439.5	396.1	12.4
1	1145.6	365.6	410.9	226.9	3687.3	1119.6	1043.4	940.4	29.5

Figura 4.14: Tempo di calcolo degli SMEM, in scala logaritmica, con e senza l'algoritmo $PBWT\ Dynamic$.

- come atteso, l'algoritmo $PBWT\ Dynamic$ risulta essere il più performante
- la *RLPBWT* con *SLP* e *threshold*, a causa dei frequenti accessi all'*SLP*, sia per il calcolo delle lunghezze delle matching statistics che per la fase di "disambiguazione", richiede più tempo di tutte le altre varianti, soprattutto se si pensa alla corrispondente variante senza *SLP*
- la *RLPBWT* con *SLP* e *LCE* risulta essere circa il doppio più lenta della soluzione proposta da Durbin con l'*algoritmo 5*. Questo è un risultato molto interessante se si tiene in considerazione la memoria necessaria per il calcolo degli SMEM

In figura 4.15 si riportano i risultati i termini di picchi di memoria durante la computazione degli SMEM. Anche in questo caso, si possono fare diverse osservazioni:

- come previsto, la *PBWT Dynamic* ha le migliori prestazioni anche in spazio, calcolando dinamicamente i vari indici per il computo dei match massimali interni al pannello
- l'algoritmo~5 di Durbin conferma le previsioni fatte dall'autore, avendo che la memoria utilizzata è circa 13NM bytes
- la differenza tra le varianti della RLPBWT basate sul calcolo dell'array delle Matching Statistics è minima. All'aumentare delle dimensioni del pannello, d'altro canto, si prevede che l'uso dell'SLP garantisca un minor uso di memoria

Interessante è notare il rapporto tra la memoria richiesta dalla RLPBWT con SLP e LCE e la PBWT Indexed:

Figura 4.15: Picchi di memoria per il calcolo degli SMEM, in scala logaritmica, con e senza l'algoritmo PBWT Dynamic.

#Samples	#Siti	RLPBWT SLP-LCE (kb)	PBWT Indexed (kb)	%
4908	1055454	3058088	65975520	4.64
4908	1739315	4961664	108713424	4.56
4908	2171378	6190684	135726084	4.56
4908	2596072	7430300	162257008	4.58
4908	6196151	17635700	387252160	4.55

Anche in questo caso le percentuali risultano leggermente peggiori rispetto ai pannelli simulati, pur restando risultati molto interessanti.

4.3.1 Tempo di una singola query

Infine, per completare lo studio delle prestazioni temporali, si è deciso di isolare il calcolo degli SMEM con ogni singola query, valutando media e deviazione standard delle 100 query. Tale risultato è visualizzabile in figura 4.16, dove si è deciso di escludere la RLPBWT naïve e la RLPBWT con bitvector in quanto non in grado di computare quali righe presentino un certo SMEM, e conferma quanto ipotizzato e discusso precedentemente:

- la *PBWT Dynamic* richiede di costruire, ogni volta, la trasformata della query e calcolare i match interni al pannello originale a cui viene aggiunta la query, considerando poi solo i match provenienti da tale pannello. Questo processo richiede molte operazioni e non è ottimizzato per una singola query. Una query o un centinaio di query hanno quindi all'incirca lo tempo di calcolo
- la PBWT Indexed richiede molto meno operazioni ed è quindi la soluzione più performante

img/exe_single_time_dyn_paper.png

Figura 4.16: Tempo medio di esecuzione del calcolo degli SMEM per una singola query. Il grafico di destra è in scala logaritmica e, in entrambi, le barre d'errore rappresentano la deviazione standard.

- per quanto riguarda la *RLPBWT* con *SLP* e *threshold*, ovvero quella più lenta, si ha che essa soffre degli stessi problemi relativi all'random access, precedentemente descritti. Questi problemi sono risolti dalla *RLPBWT* con pannello completo e threshold
- utilizzando le *LCE query* si ha una soluzione leggermente più lenta rispetto alla *RLPBWT* con pannello completo e threshold, dovuto, di fatto, ai costi di calcolo delle *LCE query* stesse

Tali risultati sono ottenuti isolando unicamente le singole funzioni atte al calcolo dei match, escludendo i tempi di caricamento delle strutture o di eventuali ulteriori costruzioni (come degli array nel caso della PBWT indexed o della PBWT della singola query nel caso della PBWT Dynamic).

Capitolo 5

Conclusioni

Fissato l'iniziale obbiettivo di risolvere le problematiche relative alla memoria richiesta dall'algoritmo 5 di Durbin, l'implementazione della **RLPBWT**, nel dettaglio basata sull'uso dei SLP e LCE query, ha riportato risultati molto incoraggianti. Come descritto nel capitolo 4, la quantità di memoria richiesta risulta essere incredibilmente inferiore. D'altro canto l'algoritmo matchDynamic di Durbin, per quanto non approfondito nell'articolo del 2014 [4], risulta essere ancor meno esoso di risorse, nonché incredibilmente più veloce dal punto di vista dei tempi di calcolo. Lo svantaggio di questo algoritmo è che i risultati sono prodotti in "ordine sparso" e, giudicando la letteratura degli ultimi anni le cui trattazioni si basano sempre sull'algoritmo 5, che non sembra essere facilmente riadattabile per la risoluzione di altri task.

Si possono comunque rilevare alcune possibili migliorie in merito all'implementazione attuale della RLPBWT:

- si potrebbe pensare ad un metodo per gestire in modo efficiente lo studio di più query contemporaneamente, migliorando i tempi di calcolo complessivi
- studiare eventuali ottimizzazioni per l'algoritmo di mapping e per le strutture dati richieste, studiando, ad esempio, se sia possibile tenere in memoria un solo bitvector uv_k che funzioni in modo similare a quanto si era inizialmente pensato per la RLPBWT naive
- migliorare il sistema di serializzazione. Allo stato attuale l'intera struttura viene serializzata e caricata in modo completo. Studiare una strategia efficiente per caricare, di volta in volta, in memoria solo la colonna necessaria ad un dato passo di computazione o comunque un sottoinsieme di colonne

Nonostante queste possibili migliorie la qualità dei risultati è sufficiente per stabilire che una variante run-length encoded della PBWT, alla stregua di quanto analizzato negli ultimi anni sulla *RLBWT* con *MONI* [7] e *PHONI* [8], sia possibile e possa permettere, nel prossimo futuro, la memorizzazione compatta delle informazioni necessarie allo studio di grandi pannelli di aplotipi. In un futuro in cui le tecnologie di sequencing produrranno sempre più dati da sempre più individui, avere a disposizione strutture dati efficienti dal punto di vista della memorizzazione permetterà uno studio sempre più approfondito dei dati stessi, nei campi dei *genome-wide association studies*, della *medicina personalizzata* etc...

5.1 Sviluppi futuri

Ovviamente questa prima implementazione completa della RLPBWT non è da considerarsi come un punto di arrivo. Come accaduto per la PBWT, infatti, si potranno sviluppare nuove strutture dati basate su di essa per la gestione di pannelli di varia natura. Principalmente si può pensare a due casi, già anticipati nella sezione 2.5:

- pannelli multi-allelici, ovvero costruiti su un alfabeto Σ arbitrario e non limitato ai simboli $\sigma=0$ e $\sigma=1$
- pannelli con dati mancanti, ovvero pannelli costruiti direttamente da dati reali che possono contenere siti, per certi individui, per i quali non si ha certezza in merito all'allele

Inoltre, allo stato attuale, la struttura dati è stata sviluppata per permettere unicamente il calcolo dei match massimali con un aplotipo esterno. Anche in questo caso, quindi, si potrebbe avere lo sviluppo di nuovi algoritmi che rispondano a task diversi, come il calcolo dei match interni al panel, i cosiddetti *blocchi*, o anche il calcolo di tutti i match con un aplotipo esterno di lunghezza maggiore ad una fissata o che includano un numero stabilito di sequenze di aplotipi nel panello.

RLPBWT multi-allelica Per quanto i pannelli di aplotipi prodotti dal sequencing del genoma umano raramente presentino siti multi-allelici si ha una presenza stimata, al momento, di circa il 2% di siti tri-allelici [45]. Inoltre, all'aumentare della disponibilità di dati genomici, si ha in letteratura la propensione a credere che tale percentuale di siti sia non solo sottostimata (stimando che sia stimato circa un terzo dei reali siti tri-allelici) ma anche destinata a cresce in modo non lineare rispetto al numero di individui sequenziati [46]. Inoltre, molte specie, soprattutto vegetali, sono già riconosciute essere poliploidi, quindi una struttura dati efficiente in memoria in grado di gestire pannelli costruiti su un alfabeto arbitrario risulterà necessaria nel breve futuro.

Ipotizzando un possibile funzionamento della RLPBWT multi-allelica (m-RLPBWT) si può pensare ad una soluzione molto simile a quanto visto per la RLPBWT. Infatti, per ogni colonna, si potrebbero memorizzare:

- una stringa che memorizzi quale simbolo corrisponda ad una certa run, non potendo sfruttare l'alternanza di simboli vista nel caso binario
- una rivisitazione delle strutture necessarie al mapping, tenendo in memoria vettori di *bitvector sparsi*
- riadattamento del calcolo dell'array delle matching statistics

In merito allo spazio richiesto e ai tempi di calcolo bisognerà considerare la grandezza dell'alfabeto su cui è costruito il pannello, che ci si aspetta comune inferiore a 10 nella maggioranza dei casi di studio biologico.

Nonostante, allo stato dell'arte, ci siano pochissimi studi in merito si ritiene possibile generalizzare, in modo computazionalmente efficiente, la RLPBWT anche a questa casistica.

RLPBWT con dati mancanti La maggior parte delle soluzioni attualmente sviluppate sono basate su una forte assunzione: i dati in input sono corretti e senza dati mancanti. Ovviamente, limitandosi a studiare pannelli simulati o comunque "riempiti" in una fase di preprocessing, si rischia di non poter comprendere a fondo l'efficacia dei metodi su dati reali, oltre che a limitare l'inferenza dai pannelli stessi.

Come anticipato alla sezione 2.5, si sono iniziate a sviluppare estensioni della PB-WT che ammettano wildcard, ovvero simboli nel pannello che possono assumere qualsiasi valore dell'alfabeto Σ , su cui è costruito il pannello stesso.

Uno degli sviluppi futuri sarebbe quindi quello di generalizzare la RLPBWT, ma anche l'eventuale m-RLPBWT, per la gestione di dati mancanti nel pannello. Inoltre si potrebbero sviluppare algoritmi in grado di gestire le wildcard anche all'interno delle query stesse.

Sempre in via ipotetica, l'uso di *algoritmi parametrici* (ma anche di *algoritmi approssimati*) adattati al funzionamento della *RLPBWT* potrebbero portare a soluzioni interessanti per la gestione di pannelli reali.

K-SMEM Come anticipato, oltre che variare le caratteristiche del pannello in analisi, si possono studiare anche algoritmi per risolvere nuovi task con la RLPB-WT.

Di recente, Gagie [47] ha proposto un articolo in cui dimostra come la struttura implementata in MONI [7] sia già predisposta al calcolo dei **k-MEM**, ovvero match massimali tra sotto-stringhe di un pattern e un testo che occorrono esattamente k

volte nel testo stesso.

In merito alla RLPBWT si potrebbe adattare l'idea di Gagie al calcolo di **K-SMEM** tra sotto-stringhe dell'aplotipo query e il pannello che comportino il match con esattamente k righe del pannello stesso. L'ormai empiricamente dimostrata correlazione tra la RLBWT e la RLPBWT porta a pensare che tale problema sia risolvibile anche con la nuova definizione di matching statistics per la RLPBWT. Ovviamente nulla è stato sviluppato al momento ma si ritiene questo un'interessante sviluppo futuro in quanto permetterebbe studi statistici, molto comuni nei GWAS, in merito alla presenza si sotto-sequenze di un aplotipo esterno all'interno di un pannello di aplotipi.

SISTEMARE

Riferimenti

- [1] Hervé Tettelin, Vega Masignani, Michael J Cieslewicz, Claudio Donati, Duccio Medini, Naomi L Ward, Samuel V Angiuoli, Jonathan Crabtree, Amanda L Jones, A Scott Durkin, et al. Genome analysis of multiple pathogenic isolates of streptococcus agalactiae: implications for the microbial "pan-genome". Proceedings of the National Academy of Sciences, 102(39):13950–13955, 2005.
- [2] Jasmijn A Baaijens, Paola Bonizzoni, Christina Boucher, Gianluca Della Vedova, Yuri Pirola, Raffaella Rizzi, and Jouni Sirén. Computational graph pangenomics: a tutorial on data structures and their applications. *Natural Computing*, pages 1–28, 2022.
- [3] The Computational Pan-Genomics Consortium. Computational pangenomics: status, promises and challenges. *Briefings in Bioinformatics*, 19(1):118–135, 10 2016.
- [4] Richard Durbin. Efficient haplotype matching and storage using the positional burrows—wheeler transform (pbwt). *Bioinformatics*, 30(9):1266–1272, 01 2014.
- [5] Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding. In *Annual Symposium on Combinatorial Pattern Matching*, pages 45–56. Springer, 2005.
- [6] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal text searching in bwt-runs bounded space. *Journal of the ACM (JACM)*, 67(1):1–54, 2020.
- [7] Massimiliano Rossi, Marco Oliva, Ben Langmead, Travis Gagie, and Christina Boucher. Moni: A pangenomic index for finding maximal exact matches. *Journal of Computational Biology*, 02 2022.
- [8] Christina Boucher, Travis Gagie, I Tomohiro, Dominik Köppl, Ben Langmead, Giovanni Manzini, Gonzalo Navarro, Alejandro Pacheco, and Massimiliano

Rossi. Phoni: Streamed matching statistics with multi-genome references. In 2021 Data Compression Conference (DCC), pages 193–202. IEEE, 2021.

- [9] Guy Joseph Jacobson. Succinct static data structures. Carnegie Mellon University, 1988.
- [10] Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University Press, 2016.
- [11] Guy Jacobson. Space-efficient static trees and graphs. In 30th annual symposium on foundations of computer science, pages 549–554. IEEE Computer Society, 1989.
- [12] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug and play with succinct data structures. In 13th International Symposium on Experimental Algorithms, (SEA 2014), pages 326–337, 2014.
- [13] Markus Lohrey. Algorithmics on slp-compressed strings: A survey. *Groups-Complexity-Cryptology*, 4(2):241–299, 2012.
- [14] Travis Gagie, Giovanni Manzini, Gonzalo Navarro, Hiroshi Sakamoto, Louisa Seelbach Benkner, Yoshimasa Takabatake, et al. Practical random access to slp-compressed texts. In *International Symposium on String Processing and Information Retrieval*, pages 221–231. Springer, 2020.
- [15] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. siam Journal on Computing, 22(5):935–948, 1993.
- [16] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, 1997.
- [17] Juha Kärkkäinen, Giovanni Manzini, and Simon J Puglisi. Permuted longest-common-prefix array. In *Annual Symposium on Combinatorial Pattern Matching*, pages 181–192. Springer, 2009.
- [18] Kunihiko Sadakane. Succinct representations of lcp information and improvements in the compressed suffix arrays. In *SODA*, volume 2, pages 225–232, 2002.
- [19] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time longest-common-prefix computation in suffix arrays and its applications. In *Annual Symposium on Combinatorial Pattern Matching*, pages 181–192. Springer, 2001.

[20] Michael Burrows and David Wheeler. A block-sorting lossless data compression algorithm. 1994.

- [21] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In *Proceedings 41st annual symposium on foundations of computer science*, pages 390–398. IEEE, 2000.
- [22] Alberto Policriti and Nicola Prezza. Lz77 computation based on the runlength encoded bwt. *Algorithmica*, 80(7):1986–2011, 2018.
- [23] Alan Kuhnle, Taher Mun, Christina Boucher, Travis Gagie, Ben Langmead, and Giovanni Manzini. Efficient construction of a complete index for pangenomics read alignment. *Journal of Computational Biology*, 27(4):500–513, 2020.
- [24] Taher Mun, Alan Kuhnle, Christina Boucher, Travis Gagie, Ben Langmead, and Giovanni Manzini. Matching reads to many genomes with the r-index. *Journal of Computational Biology*, 27(4):514–518, 2020.
- [25] Christina Boucher, Travis Gagie, Alan Kuhnle, Ben Langmead, Giovanni Manzini, and Taher Mun. Prefix-free parsing for building big bwts. *Algorithms for Molecular Biology*, 14(1):1–15, 2019.
- [26] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic local alignment search tool. *Journal of molecular biology*, 215(3):403–410, 1990.
- [27] Hideo Bannai, Travis Gagie, and I Tomohiro. Refining the r-index. *Theoretical Computer Science*, 812:96–108, 2020.
- [28] Richard A Gibbs, John W Belmont, Paul Hardenbol, Thomas D Willis, FL Yu, HM Yang, Lan-Yang Ch'ang, Wei Huang, Bin Liu, Yan Shen, et al. The international hapmap project. *Nature*, 2003.
- [29] Ahsan Sanaullah, Degui Zhi, and Shaojie Zhang. d-PBWT: dynamic positional Burrows–Wheeler transform. *Bioinformatics*, 37(16):2390–2397, 02 2021.
- [30] Richard Durbin. PBWT. https://github.com/richarddurbin/pbwt, 2014.
- [31] Ardalan Naseri, Degui Zhi, and Shaojie Zhang. Multi-allelic positional burrows-wheeler transform. *BMC bioinformatics*, 20(11):1–8, 2019.

[32] Ardalan Naseri, Erwin Holzhauser, Degui Zhi, and Shaojie Zhang. Efficient haplotype matching between a query and a panel for genealogical search. *Bioinformatics*, 35(14):i233–i241, 2019.

- [33] Lucia Williams and Brendan Mumey. Maximal perfect haplotype blocks with wildcards. *Iscience*, 23(6):101149, 2020.
- [34] Simone Rubinacci, Olivier Delaneau, and Jonathan Marchini. Genotype imputation using the positional burrows wheeler transform. *PLoS genetics*, 16(11):e1009049, 2020.
- [35] Nathaniel K Brown, Travis Gagie, and Massimiliano Rossi. Rlbwt tricks. arXiv preprint arXiv:2112.04271, 2021.
- [36] 1000 Genomes Project Consortium et al. A global reference for human genetic variation. *Nature*, 526(7571):68, 2015.
- [37] Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A Albers, Eric Banks, Mark A DePristo, Robert E Handsaker, Gerton Lunter, Gabor T Marth, Stephen T Sherry, et al. The variant call format and vcftools. *Bioinformatics*, 27(15):2156–2158, 2011.
- [38] Gary K. Chen. MaCS. https://github.com/gchen98/macs, 2019.
- [39] Carsten Wiuf and Jotun Hein. Recombination as a point process along sequences. *Theoretical population biology*, 55(3):248–259, 1999.
- [40] I. Tomohiro. ShapedSlp. https://github.com/itomomoti/ShapedSlp, 2020.
- [41] Giovanni Manzini. BigRePair. https://gitlab.com/manzai/bigrepair, 2019.
- [42] Travis Gagie, Giovanni Manzini, Gonzalo Navarro, Hiroshi Sakamoto, Yoshimasa Takabatake, et al. Rpair: rescaling repair with rsync. In *International Symposium on String Processing and Information Retrieval*, pages 35–44. Springer, 2019.
- [43] Felix Mölder, Kim Philipp Jablonski, Brice Letcher, Michael B Hall, Christopher H Tomkins-Tinch, Vanessa Sochat, Jan Forster, Soohyun Lee, Sven O Twardziok, Alexander Kanitz, et al. Sustainable data analysis with snakemake. F1000Research, 10, 2021.
- [44] Petr Danecek, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O Pollard, Andrew Whitwham, Thomas Keane, Shane A McCarthy, Robert M Davies, and Heng Li. Twelve years of SAMtools and BCFtools. *GigaScience*, 10(2), 02 2021. giab008.

[45] Alan Hodgkinson and Adam Eyre-Walker. Human triallelic sites: evidence for a new mutational mechanism? *Genetics*, 184(1):233–241, 2010.

- [46] Ian M Campbell, Tomasz Gambin, Shalini N Jhangiani, Megan L Grove, Narayanan Veeraraghavan, Donna M Muzny, Chad A Shaw, Richard A Gibbs, Eric Boerwinkle, Fuli Yu, et al. Multiallelic positions in the human genome: challenges for genetic analyses. *Human mutation*, 37(3):231–234, 2016.
- [47] Travis Gagie. Moni can find k-mems. arXiv preprint arXiv:2202.05085, 2022.

DC Sistemare tutte le citazione coi DOI