2. Boolean Laws, Realisation of Boolean Gates using Universal Gates

07 November 2023 14:46

BOOLEAN LAWS

Inversion daw

$$\iint_{A=0} A = 1 \longrightarrow A' = 0$$

Double Inversion law

$$(A')' = A$$

AND Law

$$A \cdot I = A$$

OR daw

$$A + A' = 0$$

Principle of duality / Duality theorem

· Each AND sign is changed to an OR sign, as one changed to 1s and vice versa for both.

Dual of AND gate → OR gate

Qual of NAND gate -> NOR gate

Qual of XOR gate => XNOR gate

Commutative law

Associative law

From poinciple of duality:

Distrubutive law

$$A + \overline{A} \cdot B = (A + \overline{A}) \cdot (A + B) = A + B$$

$$\bar{A} + \underline{A} \cdot \bar{B} = \bar{A} + \bar{B}$$

From principle of duality,
$$A \cdot (B+C) = A \cdot B + A \cdot C$$

De Mongan's Theorem

" Break the line, change the sign"

Absorption Theorem

$$A + AB = A$$

$$A + AB = A (1+B)$$

(ii)
$$A(A+B) = A$$

Redundancy Laws

(ii)
$$A \cdot (\bar{A} + B) = AB$$

$$A + \overline{A} \cdot B = (A + \overline{A}) \cdot (A + B) = A + B$$

redundant

since $(A + \overline{A})$

is 1

Consensus Theorem

If you have an expression with no single variable:

· Check terms for any variable X and

AB + AE + BC (A+A)

= AB + AC + ABC + ABC

= AB + ABC + AC + ABC

= AB(I+C) + AC (I+B)

= AB +ĀC redundant since both equal one

Example

1) Y = AB +BC +BC + AB + AC

= AB + BC + AB + AC

= AB+BC +AC

2 Y = AB + AC + AB + BC + ABC + ABC + ABC

- AB+ AC + AB + ABC + ABC + ABC

= AB (1+c) + AB (1+c) + AC (1+B)

= AB + AB + AC

· Check terms for any variable X and its complement \bar{X} .

· It such terms exist, then check their coefficients.

Eg: XA, XB Coefficients: A, B

· Check for terms consisting of only the welficient variables (eg: AB).

Such terms are taken as redundant

REMEMBER: APPLE

UNIVERSAL GATES

NAND NOR

· Any digital logic cincuit can be implemented using these

REALISATION OF LOGIC GATES USING NAND

1 NOT GATE

Y = A-A = A + A = A

2 AND GATE

Y = (AB) = AB

3 OR GATE

REALISATION OF LOGIC GATES USING NOR

1 NOT GATE

2 OR GIATE

3 AND GATE

(4) NAND GATE

3 XOR GATE

6 XNOR GATE

$$Y_1 = \overline{A + \overline{A + B}}$$

$$= \overline{A} \cdot \overline{A + B}$$

PROBLEMS

① Realise F = XY + Z using only NAND gates Solution:

Method 1

Step 10: Draw bosic gake expression

Step 2: Replace each gate by its NAND equivalent

Step 3. Remove double successive inversions (doubled up NOT gales)

Solution: X Z Method 2 Atch 1: Draw booic gake expression X Y Z Z Atch 2: Replace each gate symbol with MAND gete symbol

Atch 3: Remove double successive inversions and ensure every diade is in terms of NAND