

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000353831 A

(43) Date of publication of application: 19.12.00

(51) Int. Cl

H01L 39/22
H03F 19/00

(21) Application number: 11163213

(22) Date of filing: 10.06.99

(71) Applicant: FUJITSU LTD INTERNATL SUPERCONDUCTIVITY TECHNOLOGY CENTER

(72) Inventor: HARADA NAOKI
YOSHIDA AKIRA

(54) SUPERCONDUCTING JUNCTION AND SUPERCONDUCTING CIRCUIT

and φ is the magnetic flux. When $\beta_c > 1$, hysteresis develops.

(57) Abstract:

COPYRIGHT: (C)2000,JPO

PROBLEM TO BE SOLVED: To obtain a superconducting junction which can be operated at a fast speed by low energy by making an effective Mc Cumber coefficient which depends on electrostatic capacity of a capacitor part larger than a specified value and making an operating current flowing to a junction part during generation of a voltage in a junction part larger than a minimum current value which can maintain a voltage.

SOLUTION: In a latch-type circuit, a high temperature superconducting junction can provide hysteresis to its I-V characteristic by connecting a capacitor part C_s to a junction part J_1 in parallel. Furthermore, a Mc Cumber coefficient β_c is adjusted and the relation between an operating current I_{op} flowing to the junction part J during generation of a voltage of the junction part J and a minimum current value I_{min} which can maintain a voltage is also adjusted to surely develop hysteresis. The Mc Cumber coefficient β_c is featured by hysteresis characteristic of a Josephson junction $\beta_c = 2\pi I_c C R^2 / \varphi_0$. Here, I_c is the superconducting current, C is the electrostatic capacity

