

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 103 16 641.6
Anmeldetag: 11. April 2003
Anmelder/Inhaber: ROBERT BOSCH GMBH,
70469 Stuttgart/DE
Bezeichnung: EMV-optimierte Vorrichtung zur Ansteuerung
eines Gebläses
IPC: H 03 K, H 02 P

**Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Patentanmeldung.**

München, den 25. März 2004
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

A handwritten signature in black ink, appearing to read "ext".

A handwritten signature in black ink, appearing to read "Eberl".

05.02.03

5 Robert Bosch GmbH, 70442 Stuttgart

EMV-optimierte Vorrichtung zur Ansteuerung eines Gebläses

10 Technisches Gebiet

Die in einem Kraftfahrzeug eingebauten verschiedenen elektrischen und elektronischen Systeme wie Zündanlage, elektronisches Einspritzsystem, ABS/ASR, Airbag, Autoradio, Autotelefon, Navigationssysteme sind in enger räumlicher Nachbarschaft nebeneinander angeordnet. Sie müssen nebeneinander funktionieren und dürfen sich gegenseitig nicht unzulässig beeinflussen. Andererseits muss sich das Kraftfahrzeug als System neutral in seine Umwelt einfügen, d. h. es darf weder andere Fahrzeuge elektrisch beeinflussen, noch die Übertragung des Rundfunks, Fernsehens und andere Funkdienste stören. Andererseits muss das Kraftfahrzeug in Gegenwart starker elektrischer Felder (zum Beispiel in der Nähe von Sendern) voll funktionsfähig bleiben. Aus diesen Gründen müssen elektrische Systeme für Kraftfahrzeuge und auch Kraftfahrzeuge als Ganzes so ausgestattet werden, dass sie elektromagnetisch verträglich sind.

Stand der Technik

Zur verlustarmen, stufenlosen Steuerung von Gleichstrommotoren wie sie zum Beispiel als Gebläsemotoren an Kühlgebläsen zum Einsatz kommen, werden hochfrequente Taktregler eingesetzt. Um insbesondere lange leitungsgebundene Abstrahlung, die die elektromagnetische Verträglichkeit beeinträchtigt, zu minimieren, werden EMV-Entstörmaßnahmen eingesetzt. Diese umfassen Drosseln (Induktivitäten) sowie Kondensatoren (Kapazitäten). Bei Verzicht auf die EMV-Maßnahmen, wird das Bordnetz eines Kraftfahrzeuges mit einem hohen Strom belastet. Die im Rahmen von EMV-Maßnahmen eingesetzten Spulen und Kondensatoren führen zu einem zweifach tiefpassgefilterten Strom. Induktivitäten und Kapazitäten hängen im Lang- und Kurzwellenbereich im Wesentlichen von der Höhe des Stromes (I_{max}) sowie der Frequenz $f = 1/T_p$, mit der eine Taktung eines hochfrequenten Taktreglers erfolgt, ab. Aus akustischen Gründen wird grundsätzlich mit Frequenzen $\geq 20 \text{ kHz}$ getaktet.

WO 88/10367 hat ein Verfahren zur Ansteuerung elektrischer Verbraucher zum Gegenstand. Gemäß diesem Verfahren werden beim Schalten relativ großer Lasten diese zeitversetzt derart eingeschaltet, dass ein fließender Strom beim Einschaltvorgang im Wesentlichen kontinuierlich ansteigt und beim Ausschaltvorgang im Wesentlichen kontinuierlich abfällt.

WO 98/58445 bezieht sich auf ein Verfahren zur Ansteuerung wenigstens zweier elektrischer Verbraucher. Dazu ist eine gemeinsame Schaltungsanordnung mit pulsweitenmodulierten Signalen vorgesehen, wobei ein während einer Pulspause der pulsweitenmodulierten Signale fließender, von einer Induktivität der elektrischen Verbindungsleitungen abhängiger Zuleitungsstrom von einer Pufferkapazität aufgenommen wird. Die pulsweitenmodulierten Signale werden zeitlich versetzt generiert. Bevorzugt werden die pulsenweitenmodulierten Signale zeitlich derart versetzt generiert, dass bei einer Überlagerung der pulsweitenmodulierten Signale eine gleichzeitige Pulspause aller pulsweitenmodulierten Signale vermieden wird. In einer Schaltungsanordnung, mit zwei elektrischen Verbrauchern, lassen sich diese mit pulsweitenmodulierten Signalen ansteuern, die ein Tastverhältnis von 50 % aufweisen und die um eine halbe Periodendauer zeitlich versetzt sind.

20 Darstellung der Erfindung

Durch die erfindungsgemäß vorgeschlagene Lösung können die zur Verbesserung der elektromagnetischen Verträglichkeit erforderlichen Bauelemente der EMV-Maßnahme, d. h. die Induktivitäten und Kapazitäten so dimensioniert werden, dass sie nur noch die Hälfte ihrer ursprünglichen Induktivität bzw. Kapazität aufweisen. Dadurch können die in der EMV-Maßnahme eingesetzten Induktivitäten und Kapazitäten kleiner dimensioniert werden, insbesondere hinsichtlich des Langwellenbereiches.

Im Falle einer Ansteuerung eines Doppelgebläses an Fahrzeugkühlern - um ein Beispiel zu nennen
30 - werden die beiden Gebläsemotoren über einen Mikrocontroller angesteuert. Jedem der beiden Gebläsemotoren ist ein Leistungshalbleiterbauelement zugeordnet, welches über jeweils einen Ausgang des Mikrocontrollers hinsichtlich einer Spannung U_{Gate1} bzw. U_{Gate2} beaufschlagt wird. Im Falle einer Ansteuerung der beiden Leistungshalbleiter mit einem Tastverhältnis von 50 % sieht das Bordnetz eines Kraftfahrzeuges einen Gleichstrom. Gemäß des vorgeschlagenen Verfahrens
35 wird der zweite elektrische Antrieb genau dann bestromt, nachdem der erste elektrische Antrieb

R. 304671

ausgeschaltet wurde. Der Einschaltzeitpunkt des zweiten elektrischen Antriebes fällt dabei stets mit dem Ausschaltzeitpunkt des ersten elektrischen Antriebes zusammen. Bei Ansteuerung der die beiden Motoren ansteuernden Leistungshalbleiterbauelemente mit einem Tastverhältnis von 50 % sieht das Bordnetz eines Kraftfahrzeuges einen Gleichstrom. Daneben ist optional eine Ansteuerung der beiden elektrischen Antriebe mit unterschiedlichen Tastverhältnissen möglich; dies ermöglicht eine Nutzung des erfindungsgemäß vorgeschlagenen Verfahrens für Doppelgebläse. Damit kann mit einem als Lüfterantrieb ausgelegten, elektrischen Antrieb das Kühlmedium eines Verbrennungsmotors gekühlt werden, während der zweite elektrische Antrieb als Lüfter zum Beispiel zur Kühlung des Wärmetauschers der Klimaanlage oder zur Kühlung einer Lenkhilfe (Servolenkung) an einem Kraftfahrzeug eingesetzt werden kann.

Zeichnung

Anhand der Zeichnung wird die Erfindung nachstehend eingehender erläutert.

15

Es zeigt:

Figur 1 eine bekannte Schaltungsanordnung, bei der die Leistungshalbleiterbauelemente über ein gemeinsames Ansteuersignal eines Mikrocontrollers beaufschlagt werden,

20

Figur 2 den Spannungsverlauf am Ausgang des Mikrocontrollers und den in der Zuleitung fließenden Strom,

25

Figur 3 die an den Ausgängen des Mikrocontrollers einer erfindungsgemäßen Schaltungsanordnung anliegenden Spannungen U_{Gate1} , U_{Gate2} sowie den in der Zuleitung fließenden Strom bei einem Tastverhältnis von 40 %,

30

Figur 4 die Spannungsverläufe U_{Gate1} , U_{Gate2} an den Ausgängen des Mikrocontrollers sowie den in der Zuleitung fließenden maximalen Leistungsstrom bei einem Tastverhältnis von 50 %,

Figur 5 eine Schaltungsanordnung zur Ansteuerung eines Doppelgebläses gemäß der vorliegenden Erfindung, und

Figur 6 die sich bei einem Tastverhältnis von 60 % einstellenden Verläufe der Steuersignale U_{Gate1} , U_{Gate2} .

Ausführungsvarianten

5

Fig. 1 zeigt eine bekannte Schaltungsanordnung zur Ansteuerung zweier elektrischer Antriebe.

Aus der Darstellung gemäß Fig. 1 geht hervor, dass die Schaltungsanordnung einen Masseanschluss 1 sowie eine Versorgungsspannungsklemme 2 umfasst, an welcher an der Schaltungsanordnung in einem Kraftfahrzeug die Fahrzeughbatterie angeschlossen werden kann. Ferner umfasst die Schaltungsanordnung gemäß der Darstellung in Fig. 1 eine EMV-Maßnahme, d. h. eine Induktivität L sowie eine Kapazität C, beispielsweise in Gestalt eines Kondensators. Zur Verbesserung der elektromagnetischen Verträglichkeit der Schaltungsanordnung gemäß der Darstellung in Fig. 1 werden die Induktivität L sowie die Kapazität C abhängig von der Höhe eines in der Zuleitung 6 der Schaltungsanordnung fließenden Stromes I_L sowie abhängig von der Taktfrequenz $f = 1/T_p$ ausgelegt. Die Taktfrequenz, mit der die Schaltungsanordnung betrieben wird, liegt aus akustischen Gründen grundsätzlich bei Frequenzen oberhalb von 20 kHz.

Die Schaltungsanordnung gemäß der Darstellung in Fig. 1 umfasst darüber hinaus einen Mikrocontroller 7 (μ C), mit einem Ausgang 8, an welchem eine erste Ansteuerleitung 9 angeschlossen ist. Über die erste Ansteuerleitung 9 wird ein erstes Leistungshalbleiterbauelement 11 angesteuert, beispielsweise ein Transistor. Die erste Ansteuerleitung 9 umfasst einen Abgriffspunkt 10. An dem Abgriffspunkt 10 ist eine zweite Ansteuerleitung 17 angeschlossen, mittels derer ein zweites Leistungshalbleiterbauelement 12, zum Beispiel ein Transistor angesteuert wird. Die beiden Leistungshalbleiterbauelemente 11 bzw. 12 werden mit der am Ausgang 8 des Mikrocontrollers 7 anstehenden Ansteuerspannung U_{Gate} angesteuert.

Über die beiden Leistungshalbleiterbauelemente 11 bzw. 12 werden ein erster elektrischer Antrieb 14 sowie ein zweiter elektrischer Antrieb 15, die in der Regel als Gleichstrommotoren ausgebildet sind, angetrieben. Dem ersten elektrischen Antrieb 14 ist ebenso wie dem zweiten elektrischen Antrieb 15 eine Freilaufdiode 13 parallel geschaltet. Mit Bezugszeichen 16 sind jeweils Bürstenpaare identifiziert, welche dem ersten elektrischen Antrieb 14 sowie dem zweiten elektrischen Antrieb 15 zugeordnet sind.

R. 304671

Die in der EMV-Maßnahme 3 aufgenommene Induktivität L sowie die dort vorgesehene Kapazität C werden in der Regel abhängig vom in der Zuleitung 6 maximal fließenden Strom dimensioniert.

Die eingesetzten Induktivitäten L bzw. Kapazitäten C haben zur Folge, dass ein doppelt tiefpassgefilterter Strom fließt. Mittels der EMV-Maßnahme 3, die Induktivität L sowie die Kapazität C ent-

5 haltend, wird insbesondere die leitungsgebundene Abstrahlung der Schaltungsanordnung gemäß der Darstellung in Fig. 1 verbessert. Nachteilig bei der in Fig. 1 dargestellten Ausgestaltung der Schaltungsanordnung sind die auf den in der Zuleitung 6 fließenden Maximalstrom I_{max} abgestimmten Baugrößen der Induktivität L bzw. der Kapazität C.

10 Fig. 2 sind die Ansteuerspannung (U_{Gate}) sowie der sich in der Zuleitung einstellende Zuleitungsstrom I_L zu entnehmen bei einem ersten Tastverhältnis.

Das am Ausgang 8 des Mikrocontrollers 7 (μ C) anliegende Ansteuersignal U_{Gate} steuert über die erste Ansteuerleitung 9, sowie die zweite Ansteuerleitung 17, die beiden Leistungshalbleiterbauelemente 11 bzw. 12 gleichphasig an. Dadurch stellt sich während einer Zeit T_P bei Ansteuerung der beiden Leistungshalbleiterbauelemente 11 bzw. 12 der in Fig. 2 dargestellte Verlauf des Ansteuersignales U_{Gate} ein. Das Signal ist durch eine Pulsdauer sowie durch eine sich an diese anschließende Pulspause gekennzeichnet, wobei bei einem ersten Tastverhältnis von beispielsweise 40 % die Dauer der Pulspause länger bemessen ist als die Pulsdauer. Während der Pulsdauer 20 stellt sich eine Maximalspannung U_{max} ein.

Der aus dem Ansteuersignal gemäß der U_{Gate} gemäß Fig. 2 sich ergebende Zuleitungsstrom I_L nimmt während der Pulsdauer seinen Maximalstromwert I_{max} an, der ein Auslegungskriterium für die in Fig. 1 innerhalb der EMV-Maßnahme 3 vorgesehene Induktivität L sowie die dort angeordnete Kapazität C darstellt. Abhängig vom sich aus dem Ansteuersignal U_{Gate} ergebenden Spannungsverlauf stellen sich in der Zuleitung 6 der Schaltungsanordnung gemäß der Darstellung in Fig. 1 während der Pulsdauer Maximalstromwerte ein.

25 Fig. 3 ist der Ansteuersignalverlauf zweier Ansteuersignale U_{Gate1} , U_{Gate2} und der Verlauf des Stromes in der Zuleitung bei einem ersten Tastverhältnis zu entnehmen.

Nach dieser erfindungsgemäßen Ansteuerungsvariante für zwei Leistungshalbleiterbauelemente 11 bzw. 12 steht das Ansteuersignal U_{Gate1} an einem ersten Ausgang eines Mikrocontrollers 7 an, während das Ansteuersignal U_{Gate2} an einem weiteren, am Mikrocontroller 7 (μ C) vorgesehenen zweiten Ausgang ansteht. Sowohl das Ansteuersignal U_{Gate1} als auch das Ansteuersignal U_{Gate2} sind als

R. 304671

pulsweitenmodulierte Signale dargestellt. Das Ansteuersignal U_{Gate1} weist bei einem ersten, am Mikrocontroller 7 (μ C) eingestellten Tastverhältnis 18, eine Pulsdauer 24 auf, an welche sich eine Pulspause 25 anschließt. Die Pulsdauer 24 und Pulspause 25 bestimmen die jeweilige Periodendauer T_p . Während der Pulsdauer 24 wird das Ansteuersignal U_{Gate1} auf seine Maximalspannung

5 U_{max} gesetzt. Das weitere Ansteuersignal U_{Gate2} des Mikrocontrollers 7 (μ C), welches an einem weiteren Ausgang des Mikrocontrollers (μ C) anliegt, ist zum ersten Ansteuersignal U_{Gate1} zeitversetzt entsprechend des eingestellten, in diesem Falle des Tastverhältnisses 18, getaktet. Das weitere Ansteuersignal U_{Gate2} erreicht während seiner Pulsdauer 26 seinen Maximalspannungswert U_{max} . An die Pulsdauer 26 des zweiten Ansteuersignales U_{Gate2} schließt sich eine Pulspause 27 an, die bei 10 einem ersten Tastverhältnis 18 von beispielsweise 40 % gemäß der Darstellung in Fig. 3 die Pulsdauer 26 leicht übersteigt. Die Abschaltflanke des ersten Ansteuersignales U_{Gate1} fällt mit der Einschaltflanke des zweiten Ansteuersignales U_{Gate2} zusammen, d. h. der zweite elektrische Antrieb (vgl. Fig. 5, Bezugszeichen 15) wird genau dann eingeschaltet, wenn der erste elektrische Antrieb (vgl. Fig. 5, Bezugszeichen 14) augeschaltet wird.

15

Durch die Ansteuersignale U_{Gate1} bzw. U_{Gate2} , mit mittels derer die beiden Leistungshalbleiterbauelemente 11 bzw. 12 zur Ansteuerung der elektrischen Antriebe beaufschlagt sind, wird in der Zuleitung 6 gemäß der Darstellung in Fig. 5 ein Zuleitungsstrom I_L erzeugt, der im Vergleich zum in Fig. 2 dargestellten, Zuleitungsstrom I_L in der Nähe eines optimierten Bordnetzstromes $I_{max}/2$ 20 liegt. Innerhalb einer Periodendauer T_p liegt daher in erster Näherung ein Gleichstrom an, der jedoch bei dem in Fig. 3 dargestellten ersten Tastverhältnis 18, von etwa 40 % noch nicht vollständig gleichförmig ist. Der Effektivwert des Zuleitungsstromes in der Zuleitung 6 I_{L-eff} ist jedoch deutlich kleiner als der Zuleitungsstrom in der Zuleitung 6 gemäß der Darstellung in Fig. 2. Der effektive Zuleitungsstrom I_{L-eff} ergibt sich gemäß der Beziehung:

$$I_{L-eff}^2 = \frac{1}{T} \int_0^T I_L^2(t) dt$$

Fig. 4 zeigt die Ansteuersignalverläufe für zwei Leistungshalbleiterbauelemente bei Ansteuerung der Leistungshalbleiterbauelemente mit einem optimalen Tastverhältnis von 50 % sowie den sich ergebenden Zuleitungsstrom I_L .

30

Aus der Darstellung gemäß Fig. 4 geht hervor, dass das Ansteuersignal U_{Gate1} während der Periodendauer T_p eine Pulsdauer 28 aufweist, an welche sich eine Pulspause 29 gleicher Dauer anschließt. Während der Pulsdauer 28 des ersten Ansteuersignales U_{Gate1} nimmt dieses seinen Maxi-

R. 304671

malspannungswert U_{max} an. Im Gegensatz zum Ansteuersignal U_{Gate1} ist das weitere, am Mikrocontroller 7 (μ C) anliegende Ansteuersignal U_{Gate2} zum ersten Ansteuersignal U_{Gate1} zeitversetzt, wobei die Pulsdauern 30 des zweiten Ansteuersignales während der Pulspausen 29 des ersten Ansteuersignales U_{Gate1} anliegen. Umgekehrt liegen die Pulsdauern 28 des ersten Ansteuersignales 5 U_{Gate1} während der Pulspausen 31 des weiteren, zweiten Ansteuersignales U_{Gate2} an. Auch während der Pulsdauern 30 des zweiten, weiteren Ansteuersignales U_{Gate2} wird der Maximalspannungswert U_{max} erreicht. Durch die Ansteuerung der beiden Leistungshalbleiterbauelemente 11 bzw. 12 gemäß der Schaltungsanordnung in Fig. 5, stellt sich in der Zuleitung 6 eines Bordnetzes eines Kraftfahrzeuges ein echter Gleichstrom ein. Die Stromstärke des im Bordnetz eines Kraftfahrzeuges 10 fließenden Stromes, d. h. des Zuleitungsstromes I_L beträgt die Hälfte des maximalen Stromes I_{max} , verglichen mit dem Zuleitungsstrom, der in einem Bordnetz eines Kraftfahrzeuges nach einer herkömmlichen Ansteuerung der elektrischen Antriebe 14, 15 gemäß Fig. 1 fließt (vgl. Zuleitungsstromverlauf I_{max} gemäß Fig. 2). Mit dem erfindungsgemäß vorgeschlagenen Verfahren werden die 15 beiden Leistungshalbleiterbauelemente 11 bzw. 12 mit einem Tastverhältnis von 50 % angesteuert, d. h. die Pulsdauern 28 bzw. 30 der Ansteuersignale U_{Gate1} , U_{Gate2} entsprechen der Länge der Pulspausen 29 bzw. 31 dieser Signale. Wie aus Fig. 4 ersichtlich, fallen die Ausschaltflanken des ersten Ansteuersignales U_{Gate1} jeweils mit den Einschaltflanken des zweiten Ansteuersignales U_{Gate2} zusammen, d. h. der zweite elektrische Antrieb 15, der durch das zweite Ansteuersignal U_{Gate2} 20 angesteuert wird, wird immer dann eingeschaltet, wenn der erste durch das erste Ansteuersignal U_{Gate1} angesteuerte Antrieb 14 ausgeschaltet wird. Auf diese Weise stellt sich während der Periodendauer T_P ein echter Gleichstrom ein.

Aufgrund der Ansteuerung der beiden Leistungshalbleiterbauelemente 11 bzw. 12 (vgl. Darstellung gemäß Fig. 5) mit dem optimierten Tastverhältnis 19 von 50 %, lassen sich die innerhalb einer EMV-Maßnahme 3 angeordneten Induktivitäten bzw. Kapazitäten kleiner dimensionieren, da sie hinsichtlich des Auslegungsparameters maximale verkraftbare Stromstärke auf den optimierten Bordnetzstrom $I_{max}/2$ und nicht auf den Zuleitungsstrom I_{max} gemäß der Darstellung in Fig. 2 ausgelegt werden müssen. Dadurch ergibt sich ein erheblich geringeres Bauvolumen der EMV-Maßnahme 3.

30

Fig. 5 zeigt die erfindungsgemäß konfigurierte Schaltungsanordnung mit einer EMV-Maßnahme mit reduzierter Induktivität und reduzierter Kapazität.

Auch die Schaltungsanordnung gemäß der Darstellung in Fig. 5 umfasst einen Masseanschluss 1 35 sowie eine Versorgungsspannungsklemme 2, an der eine Fahrzeughbatterie - um ein Beispiel zu

- nennen - angeschlossen werden kann. Die EMV-Maßnahme 3 gemäß der Darstellung in Fig. 5 umfasst eine reduzierte Induktivität L_{red} sowie eine reduzierte Kapazität C_{red} . Die Schaltungsanordnung umfasst eine Zuleitung 6, in der der Zuleitungsstrom I_L fließt. Die erfindungsgemäße Schaltungsanordnung gemäß Fig. 5 enthält einen Mikrocontroller 7 (μ C), der im Gegensatz zum in Fig. 1 dargestellten Mikrocontroller 7 einen ersten Ausgang 22 sowie einen zweiten Ausgang 23 umfasst. Am ersten Ausgang 22 des Mikrocontrollers 7 (μ C) ist die erste Ansteuerleitung 9 angeschlossen, mit der das erste Leistungshalbleiterbauelement 11 angesteuert wird. Die erste Ansteuerleitung umfasst im Gegensatz zur Ansteuerleitung des ersten Leistungshalbleiterbauelementes 11 gemäß Fig. 1 keinen Abgriffspunkt 10. Das zweite Leistungshalbleiterbauelement 12 wird durch den Mikrocontroller 7 (μ C) unmittelbar über die zweite Ansteuerleitung 17 angesteuert, die am zweiten Ausgang 23 des Mikrocontrollers 7 (μ C) angeschlossen ist. Durch die erste Ansteuerleitung 9 wird das erste Ansteuersignal U_{Gate1} übertragen; durch die zweite Ansteuerleitung 17 das weitere, zweite Ansteuersignal U_{Gate2} . Entsprechend des am Mikrocontrollers 7 eingestellten Tastverhältnisses, sei es das in Fig. 3 dargestellte erste Tastverhältnis 18 (40 %), sei es das optimierte Tastverhältnis 19 gemäß der Darstellung in Fig. 4, sei es ein drittes Tastverhältnis 20 gemäß der Darstellung in Fig. 6, stellen sich in den Ansteuerleitungen 9 bzw. 17, die an den Ausgängen 22, 23 des Mikrocontrollers 7 angeschlossen sind, die entsprechenden Ansteuersignalverläufe der Ansteuersignale U_{Gate1} bzw. U_{Gate2} ein.
- Wird am Mikrocontroller 7 (μ C) das optimierte Tastverhältnis 19 (50 %) eingestellt, so stellen sich in den Ansteuerleitungen 9 bzw. 17 die Ansteuersignalverläufe U_{Gate1} bzw. U_{Gate2} gemäß der Darstellung in Fig. 4 ein, so dass in der Zuleitung 6 der Schaltungsanordnung gemäß Fig. 5 der optimierte Bordnetzstrom $I_{max}/2$ fließt. Daher können die Induktivitäten bzw. Kapazitäten der EMV-Maßnahme 3 reduziert dimensioniert werden.
- Der Darstellung gemäß Fig. 6 ist die Ansteuerung der beiden Leistungshalbleiterbauelemente der Schaltungsanordnung gemäß Fig. 5 mit einem weiteren, dritten Tastverhältnis zu entnehmen.
- Bei Ansteuerung der beiden Leistungshalbleiterbauelemente 11 bzw. 12 über die Ansteuerleitungen 9 bzw. 17 des Mikrocontrollers 7 (μ C) mit einem dritten Tastverhältnis 20 (60 %) ist die Pulsdauer des ersten Ansteuersignales U_{Gate1} mit Bezugszeichen 32 gekennzeichnet. Die Pulsdauer 32 übersteigt die Dauer der Pulspause 33 des ersten Ansteuersignales U_{Gate1} während der Periodendauer T_p . Das versetzt zum ersten Ansteuersignal U_{Gate1} durch den Mikrocontroller 7 (μ C) getaktete weitere, zweite Ansteuersignal U_{Gate2} setzt sich aus einer Pulsdauer 34 sowie einer Pulspause

35 zusammen. Bei dem dritten Tastverhältnis 20 von 60 % übersteigt die Pulsdauer 34 des zweiten Ansteuersignales U_{Gate2} die Dauer der Pulspause 35.

Bei der Ansteuerung der beiden Leistungshalbleiterbauelemente 11 bzw. 12 für die elektrischen

5 Antriebe 14, 15 mit dem dritten Tastverhältnis 20 gemäß der Darstellung in Fig. 6, stellt sich in der Zuleitung 6 der Schaltungsanordnung der Zuleitungsstrom I_L ein, der sich aus einem Gleichstromanteil, welcher annähernd der Größe $I_{max}/2$ sowie einem pulsierenden Stromanteil zusammensetzt. Da der Gleichstromanteil auch in diesem Betriebspunkt keinen Beitrag zum effektiven Kondensatorstrom liefert, ist auch hier der effektive Kondensatorstrom erheblich verringert worden. Auch
10 bei einem Tastverhältnis 20 von etwa 60 % fällt die Abschaltflanke des den ersten elektrischen Antrieb 14 ansteuernden ersten Steuersignales U_{Gate1} mit der Einschaltflanke des den zweiten elektrischen Antrieb 15 ansteuernden zweiten Ansteuersignales U_{Gate2} zusammen. Bei dem in Fig. 6 dargestellten dritten Tastverhältnis 20 von 60 % stellen sich während der Periodendauer T_p Stromspitzen 36 des Zuleitungsstromes I_L ein.

15

Mit der erfundungsgemäß vorgeschlagenen zeitversetzten Ansteuerung beider elektrischen Antriebe 14 bzw. 15, d.h. der Bestromung des zweiten elektrischen Antriebes 15 über das zweite Ansteuersignal U_{Gate2} nach dem Ausschalten des ersten elektrischen Antriebes 14 über das erste Ansteuersignal U_{Gate1} kann ein Doppelgebläse eines Kraftfahrzeuges zur Erfüllung verschiedener Funktionalitäten genutzt werden, wobei die Frequenz $f = 1/T_p$ des Zuleitungsstromes I_L stets unverändert bleibt. So lässt sich mit dem ersten elektrischen Antrieb 14 das Kühlmedium der Verbrennungskraftmaschine kühlen und mit dem einen den zweiten Lüfter antreibenden elektrischen Antrieb 14 der Wärmetauscher einer Klimaanlage eines Kraftfahrzeugs oder alternativ eine Lenkhilfe (Servolenkung) in einem Kraftfahrzeug kühlen.

25

Patentansprüche

1. Verfahren zur Ansteuerung wenigstens zweier elektrischer Verbraucher (14, 15) in einer Schaltungsanordnung, wobei die Ansteuerung mit wenigstens zwei pulsweitenmodulierten Signalen U_{Gate1} , U_{Gate2} erfolgt und sowohl eine die elektromagnetische Verträglichkeit beeinflussende Induktivität L als auch eine diese beeinflussende Kapazität C vorgesehen sind, mit welcher ein in einer Zuleitung (6) fließender Strom I_L durch die Kapazität C gepuffert wird und die pulsweitenmodulierten Signale U_{Gate1} , U_{Gate2} zeitlich versetzt generiert werden, dadurch gekennzeichnet, dass einer der elektrischen Verbraucher (14, 15) mittels des pulsweitenmodulierten Signales U_{Gate2} eingeschaltet wird, nachdem der andere der elektrischen Verbraucher (14, 15) mittels des pulsweitenmodulierten Signales U_{Gate1} ausgeschaltet wurde.
10
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass Ausschaltflanken des ersten Ansteuersignales U_{Gate1} mit Einschaltflanken des zweiten Ansteuersignales U_{Gate2} unabhängig vom Tastverhältnis (18, 19, 20) zusammenfallen.
15
3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die elektrischen Verbraucher (14, 15) in einem Tastverhältnis (19) von 50 % angesteuert werden.
4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass bei einem Tastverhältnis (19) von 50 % in der Zuleitung (6) zum Bordnetz eines Kraftfahrzeuges ein Gleichstrom erzeugt wird.
20
5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die beiden elektrischen Verbraucher (14, 15) über diesen jeweils zugeordnete Leistungshalbleiterbauelemente (11, 12) angesteuert werden, denen jeweils eine separate Ansteuerleitung (9, 17) zur Übertragung der pulsweitenmodulierten Signale U_{Gate1} , U_{Gate2} zugeordnet ist.
25
6. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass das Tastverhältnis (18, 19, 20) an einem Mikrocontroller (7) (μ C) eingestellt wird.
30
7. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass die Frequenz des in der Leitung (6) fließenden Stromes I_L für unterschiedliche Tastverhältnisse (18, 19, 20) der pulsweitenmodulierten Signale U_{Gate1} , U_{Gate2} gleich bleibt.

R. 304671

8. Vorrichtung zur Ansteuerung wenigstens zweier elektrischer Verbraucher (14, 15), insbesondere gemäß des Verfahrens nach Anspruch 1 mit einer Induktivität L und einer Kapazität C sowie einem die elektrischen Verbraucher (14, 15) ansteuernden und die Ansteuerungssignale U_{Gate1} , U_{Gate2} generierenden Mikrocontroller (7), dadurch gekennzeichnet, dass der die Ansteuersignale U_{Gate1} , U_{Gate2} generierende Mikrocontroller (7) einen ersten Ausgang (22) und einen zweiten Ausgang (23) aufweist, an welchem eine erste Ansteuerleitung (9) und eine zweite Ansteuerleitung (17) zur getakteten Ansteuerung der Leistungshalbleiterbauelemente (11, 12) angeschlossen sind.
- 5
- 10 9. Vorrichtung gemäß Anspruch 8, dadurch gekennzeichnet, dass die beiden Leistungshalbleiterbauelemente (11, 12) als MOSFET-Transistoren oder als Bipolar-Transistoren oder IGBT- oder IGCT-Transistoren ausgeführt sind.

Zusammenfassung

Die Erfindung bezieht sich auf ein Verfahren zur Ansteuerung wenigstens zweier elektrischer Verbraucher (14, 15) in einer Schaltungsanordnung. Die Ansteuerung der wenigstens zwei elektrischen Verbraucher (14, 15) erfolgt mit wenigstens zweipulsweitenmodulierten Signalen U_{Gate1} , U_{Gate2} , wobei sowohl eine die elektromagnetische Verträglichkeit beeinflussende Induktivität L als auch eine diese beeinflussende Kapazität C vorgesehen sind. Mit diesen wird in einer Zuleitung (6) fließender Strom I_L gepuffert, wobei die pulsweitenmodulierte Signale U_{Gate1} , U_{Gate2} zeitlich versetzt generiert werden, so dass einer der elektrischen Verbraucher (14, 15) mittels eines 10 pulsweitenmodulierten Signales U_{Gate2} eingeschaltet wird, nachdem der andere der elektrischen Verbraucher (14, 15) mittels des pulsweitenmodulierten Signales U_{Gate1} zuvor ausgeschaltet wurde.

(Figur 5)

15

20

30

35

Bezugszeichenliste

- 1 Masseanschluss
2 Versorgungsspannungsklemme
5 3 EMV-Maßnahme
L Induktivität
C Kapazität
6 Zuleitung
7 Mikrocontroller (μ C)
10 8 Ausgang
9 1. Ansteuerleitung
10 Abgriffspunkt
11 1. Leistungshalbleiterbauelement
12 2. Leistungshalbleiterbauelement
15 13 Freilaufdiode
14 1. elektrischer Antrieb
15 2. elektrischer Antrieb
16 Bürstenpaar
17 2. Ansteuerleitung
20
 U_{Gate} Ansteuerspannung
 I_L Strom (ungefiltert)
 U_{max} Maximalspannung
 T_P Periodendauer
 $U_{Gate,1}$ Ansteuerspannung 1. μ C Ausgang
 $U_{Gate,2}$ Ansteuerspannung 2. μ C Ausgang
 $T_P/2$ halbe Periodendauer
18 1. Tastverhältnis
30 19 optimales Tastverhältnis
20 3. Tastverhältnis

 $I_{max}/2$ optimierter Bordnetzstrom
 L_{red} reduzierte Induktivität
35 C_{red} reduzierte Kapazität

- 22 1. Ausgang μ C
- 23 2. Ausgang μ C

- 5 24 Pulsdauer beim 1. Tastverhältnis $U_{Gate,1}$
- 25 Pulspause beim 1. Tastverhältnis $U_{Gate,1}$
- 26 Pulsdauer 1. Tastverhältnis $U_{Gate,2}$
- 27 Pulspause 1. Tastverhältnis U_{Gate2}
- 28 Pulsdauer $T_{V,opt}, U_{Gate1}$
- 10 29 Pulspause $T_{V,opt}, U_{Gate1}$
- 30 Pulspause $T_{V,opt}, U_{Gate2}$
- 31 Pulsdauer $T_{V,opt}, U_{Gate2}$
- 32 Pulsdauer 3. T_V, U_{Gate1}
- 33 Pulspause 3. T_V, U_{Gate1}
- 15 34 Pulsdauer 2. T_V, U_{Gate2}
- 35 Pulspause 2. T_V, U_{Gate2}
- 36 Stromspitzen (I_{max})

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

