<u>Claims</u>

What is claimed is:

5

6 7

8

1 2

3

4

5

1. An arithmetic circuit comprising:

a plurality of registers;

an arithmetic unit, for regarding, as inputs, values entered in said multiple registers; and a plurality of memories, wherein reading of multiple variables from said plurality of memories to said plurality of registers is performed during

the same reading cycle by way of a pipeline process performed by said

arithmetic unit.

2. The arithmetic circuit according to claim 1, wherein said arithmetic unit is a multiplier adder for, based on values x₁, x₂, x₃ and x₄ having an r-bit length that are respectively input to a first register, second register, third register and fourth register, providing a result Q for $x_1 + x_2 \cdot x_3 + x_4$ having a length of 2r bits or 2r+1 bits.

10

The arithmetic circuit according to claim 2, wherein said multiple memories include a first memory and a second memory; and wherein, at a stage for writing an operation result, which follows the operation stage of said pipeline process, lower r bits Q_L of said operation result Q are recorded in said first memory, and upper bits Q_H of said operation result Q, excluding said bits QL, are recorded in said fourth register, while at a stage for reading variables from said registers, which follows said writing stage, simultaneously, a variable x_1 is read from said first memory and is stored in said first register, and a variable x₃ is read from said second memory and is stored in said third register.

- 1 4. The arithmetic circuit according to claim 3, wherein said first memory 2 and said second memory are two-port memories having one data writing port and one data reading port.
 - 5. The arithmetic circuit according to claim 3, wherein said first memory is a two-port memory having one data writing port and one data reading port, while said second memory is a single-port memory having one port for the writing and reading of data.
 - 6. The arithmetic circuit according to claim 1, wherein said arithmetic unit is a multiplier adder for, based on values x_1 , x_2 , x_3 , x_4 x_5 and x_6 , having an r-bit length, that are respectively input to a first register, a second register, a third register, a fourth register, a fifth register and a sixth register, and for providing the operation results Q for $x_1 + x_2 \cdot x_3 + x_4 \cdot x_5 + x_6$, which have a length of 2r bits or 2r+1 bits.
 - The arithmetic circuit according to claim 6, wherein said multiple memories include a first memory, a second memory and a third memory; wherein, at a stage for writing an operation result, which follows the operation stage of said pipeline process, lower r bits Q_L of said operation result Q are recorded in said first memory, and upper bits Q_H of said operation result Q, excluding said bits Q_L, are recorded in said sixth register; and wherein, at a stage for reading variables to said registers, which follows said writing stage, simultaneously, a variable x₁ is read from said first memory and is stored in said first register, a variable x₃ is read from said second memory and is stored in said third register, and a variable x₅ is read from said third memory and is stored in said fifth register.

1	8.	The arithmetic circuit according to claim 7, wherein said first memory is
2		a two-port memory having one data writing port and one data reading
3		port, and said second memory and said third memories are single-port
4		memories having one port for the writing and the reading of data.
1	9.	An arithmetic method using an arithmetic circuit that includes an
2	•	arithmetic unit, which has multiple input registers and multiple memories
3		comprising the steps of:
4		performing an arithmetic operation based on values stored in said
5		input registers;
6		writing the results of said arithmetic operation in said input
7		registers or said memories; and
8		reading multiple variables from said multiple memories and
9		storing said variables in said multiple input registers during the
10		same pipeline stage.
10		Same pipeline stage.
1	10.	The arithmetic method according to claim 9, wherein said arithmetic unit
2		is a multiplier adder for, based on values x ₁ , x ₂ , x ₃ and x ₄ having an r-bit
3		length that are respectively input to a first register, a second register, a
4		third register and a fourth register, providing the operation results Q for
5		$x_1 + x_2 \cdot x_3 + x_4$ having a length of 2r bits or 2r+1 bits.
1	11.	The arithmetic method according to claim 10, wherein said multiple
2		memories include a first memory and a second memory, further
3		comprising:

a writing step in a pipel ne process of said arithmetic unit for

said operation result Q, excluding said bits Q_L; and

recording, in said first memory, lower r bits Q_L of said operation

result Q, and for recording, in said fourth register, upper bits Q_H of

4

5

6

7

8	a reading step of performing, at the same reading stage in sa	aid
9	pipeline process, the reading of a variable x ₁ from said first	
10	memory and storing said variable x1 in said first register, and	the
11	reading of a variable x₃ from said second memory and storing	g
12	said variable x₃ in said third register.	

- 12. The arithmetic method according to claim 11, wherein said first memory and said second memory are two-port memories having one data writing port and one data reading port.
- 1 13. The arithmetic method according to claim 11, wherein said first memory is a two-port memory having one data writing port and one data reading port, while said second memory is a single-port memory having one port for the writing and reading of data.
 - 14. The arithmetic method according to claim 9, wherein said arithmetic unit is a multiplier adder for, based on values x_1 , x_2 , x_3 , x_4 x_5 and x_6 , having an r-bit length, that are respectively input to a first register, a second register, a third register, a fourth register, a fifth register and a sixth register, and for providing the operation results Q for $x_1 + x_2 \cdot x_3 + x_4 \cdot x_5 + x_6$, which have a length of 2r bits or 2r+1 bits.
- 1 15. The arithmetic method according to claim 14, wherein said multiple
 2 memories include a first memory, a second memory and a third memory,
 3 further comprising:
 - a writing step in a pipeline process of said arithmetic unit for recording, in said first memory, lower r bits Q_L of said operation result Q, and for recording, in said sixth register, upper bits Q_H of said operation result Q, excluding said bits Q_L ; and

Con	cld Q1	

8

9

10

11

12

13

14

1

2

3

4

16.

a reading step of performing, at the same reading stage of said pipeline process, the reading of a variable x_1 from said first memory and storing said variable x_1 in said first register, the reading of a variable x_3 from said second memory and storing said variable x_3 in said third register, and the reading of a variable x_5 from said third me mory and storing said variable x_5 in said fifth register.

The arithmetic method according to claim 15, wherein said first memory is a two-port memory having one data writing port and one data reading port, while said second and third memories are single-port memories having one port for the writing and reading of data.