Thermal Emission Observations of Phobos: Compositional Interpretations

Ted Roush
NASA Ames Research Center

Phobos, Deimos, and Mars Workshop Tokyo, Japan 15-16 February 2016

My thanks for

- 1) workshop organizers invitation
- 2) ELSI staff assistance

感謝します

- 1) ショップ主催者の招待状
- 2) ELSI スタッフの支援

Reflected vs. Emitted Flux

Reflected vs. Emitted Measurements

Particle Size

Visible-NearIR

Thermal IR

Increasing particle size decreases the reflectance/emittance and increases contrast of spectral features for both VNIR and TIR

Reflected vs. Emitted Measurements

Space Weathering

Simulated impact melting increases the spectral contrast in the TIR

Reflected vs. Emitted Measurements

Mixing

Contaminant has greater impact on VNIR versus TIR

Thermal Emission Observations of Phobos

Multiple Phobos observations by Mariner 9 InfaRed Thermal Mapper (IRTM) were used to derive minimum / maximum temperatures of 140 / 300 K (Lunine et al. 1982).

Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) measured from 1700 to 200 cm⁻¹ (\sim 6 to 50 μ m) with spectral resolutions of 6.25-12.5 **cm**⁻¹ (Christensen et al., 1992, 1998).

Mars Express (MEX) Planetary Fourier Spectrometer (PFS) measured wavenumbers 8200-1700 cm⁻¹ (SWC, 1.2-5.9 μ m) and 1700-250 cm⁻¹ (LWC 5.9-40 μ m) with a spectral resolution of ~ 2 cm⁻¹ (Formisano et al. 2005) Today I only discuss data from LWC.

At these wavelengths, TES & PFS provide a sensitive means of determining mineralogy. They sample minerals fundamental vibrational modes whose number, position, intensity, and shape depend upon the atomic masses, inter-atomic force fields, and molecular geometry.

Thermal Emission Observations of Phobos

- Both TES and PFS observed Phobos multiple times
- The spacecraft (SC)-Phobos distances result in a relatively large coverage of the surface (panel a)
- During half of the encounters TES and PFS viewed the unilluminated hemisphere of Phobos (above dashed line in panel b)
- The illuminated hemisphere of Phobos (below dashed line panel b) was observed with resolutions of a few to ≈ 25 km (panel c)

Emittance from Data

- 1) Three black bodies used to fit the data
- 2) Results used to create an upper hull fit to the radiance maxima
- 3) Emittance is produced by dividing the measured radiance by the hull

Inst-Orb #	Solar dist., AU	Avg. T1, K	Avg. T2, K	Avg. T3, K
TES-476	1.58587	218±15	149±30	114±40
TES-501	1.59916	194±15	139±20	102±25
TES-526	1.61140	190±20	146±27	102±25
TES-551	1.62260	271±51	206±44	143±51
PFS-756	1.66508	265±5	260±5	250±5
PFS-5851	1.64121	240±5	160±5	130±5
PFS-5870	1.6374	270±5	265±5	260±5
PFS-6906	1.38759	353±5	290±5	260±5

TES and PFS minimum, 130-140 K, and maximum, 270-353 K, temperatures are consistent with Viking IRTM; night 140 K, day 300 K (Lunine et al. 1982)

The maximum temperature of PFS-6906, 353±5 K, ≈1.39 AU, is consistent with Earth-based observations, ≈1.38-1.39 AU, yielding 320-340 K (Lynch et al. 2007)

PFS Emissivity

TES Emissivity

TES observations near Stickney (orbit 551)

Statistically distinct (K-means clustering) spectra exist within each box

CF = Christiansen feature, RB = Reststhralen band, TF = transparency feature

PFS – TES Comparisons (Giuranna et al. 2011)

When areas overlap, similar spectral features

25

TES compositional Analyses: CF of Terrestrial Samples

Christiansen frequency (CF) related to rock type (Salisbury and Walters, 1989). Created averages for igneous rocks from their Table 2 (points $\pm 1\sigma$).

4 Stickney classes CFs determined using quadratic fit (7.1-9.8 μm, letters) are similar to ultramafic rocks

TES CF range is consistent with phyllosilicates (e.g., clays & micas), nesosilicates (e.g., olivines) & limited tectosilicates (e.g., feldspathoids).

TES Compositional Analyses: Spectral Library Comparison

- 1) Spectral Analysist (IDL-ENVI) spectral feature fitting for comparison to libraries
- 2) Evaluations of TES clusters over full and restricted ranges
- 3) Record top 10 matches

Library	White	Green	Red	Yellow
ASU, 8-35 μm	PS	PS	PS	PS
8-18 μm	PS, IS, TS	PS, IS, salts	PS	PS, salts
18-35 μm	PS, IS	PS, IS, salts	PS, IS	IS, TS
ASTER meteorites, 8-25 μm	AC, CC	AC	AC, OC	AC
8-18 μm	AC, CC	AC, CC	AC, OC	AC, OC
18-25 μm	AC, CC	AC	AC, CC	AC
ASTER Terrestrial Rocks, 8-14 μm	Ba, Di, Ij	Ba, Ij, No	Ba, An	Ba, Ij, No
ASTER Lunar Samples, 8-14 μm	LM, LT	LT	LM, LT	LM, LT

PS = phyllosilicates, IS = inosilicates, TS = tectosilicates

AC = achrondites, CC = carbonaceous chrondrites, OC = ordinary chondrites

Ba = basalt, Di = diorite, Ij = ijolite, No = norite, An = andesite

LM = lunar maria, LT = lunar transitional

TES Analyses of Glotch et al. 2014

Short-wavelength "roll-off", structure, and 1590 cm⁻¹ (6.3 µm) feature.

Suggestive of H₂O associated with phyllosilicates.

TES Analyses of Glotch et al. 2014

Minimum-maximum-minimum near 1340-1415-1522 cm⁻¹ $(7.5-7.07-6.6 \mu m)$.

Suggestive of carbonates

Phobos Composition via Different Wavelengths

Suggested materials	VNIR-SWIR	Thermal
Phyllosilicates	Y	Y
Tectosilicates		Y
Asteroids/Meteorites	Y	N?
Lunar, or basalt-like	N?	Y
Carbonates		Y
Ultramafic		Y

Phobos Composition Summary

- Presence of phyllosilicates via VNIR-SWIR and TIR data
- Presence of basaltic/lunar compositions, carbonates, and tectosilicates supported by TIR data
- Presence of asteroidal or meteorite compositions supported by VNIR data

Thank you for your attention

Backup Slides

CRISM & OMEGA Phobos Observations

Thermal Emission Observations of Phobos

Mariner 9 InfRared Thermal Mapper (IRTM) had multiple Phobos observations used to create 11- and 20-μm thermal contour maps minimum / maximum temperature 140 / 300 K

From Lunine et al. 1982

16 February 2016

Emittance from Data

- A linear combination of 3 black bodies is used in a least squares fit (B)
- Using these results, an upper hull is fit to the radiance maxima (C)
- Emittance is produced by dividing the measured radiance by the hull (D)
- Same approach is used for PFS so derived temperatures can be compared

Emittance from Data

- 1) Three black bodies used to fit the data
- 2) Results used to create an upper hull fit to the radiance maxima
- 3) Emittance is produced by dividing the measured radiance by the hull

Inst-Orb #	Solar dist., AU	Mars Heliocentric Longitude, (°)	Avg. T1, K	Avg. T2, K	Avg. T3, K
TES-476	1.58587	12	218±15	149±30	114±40
TES-501	1.59916	17	194±15	139±20	102±25
TES-526	1.61140	23	190±20	146±27	102±25
TES-551	1.62260	29	271±51	206±44	143±51
PFS-756	1.66508	77.3	265±5	260±5	250±5
PFS-5851	1.64121	102.5	240±5	160±5	130±5
PFS-5870	1.6374	104.9	270±5	265±5	260±5
PFS-6906	1.38759	269.7	353±5	290±5	260±5

TES and PFS minimum, 130-140 K, and maximum, 270-353 K, temperatures are consistent with Viking IRTM; night 140 K, day 300 K (Lunine et al. 1982)

The maximum temperature of PFS-6906, 353±5 K, ≈1.39 AU, is consistent with Earth-based observations, ≈1.38-1.39 AU, yielding 320-340 K (Lynch et al. 2007)

Derived Versus Model Surface Temperatures

Kuzmin and Zabalueva (2003) used a numerical model of the thermal regime of Phobos' surface regolith layer to predict minimum and maximum surface temperatures (black lines) as a function of season.

TES (x) and PFS (▲) derived values are mostly within the predicted diurnal temperature ranges for Phobos surface.

The seasonal temperature variability predicted by the model is also reproduced by TES and PFS results.

Thermal Emission Observations of Phobos

TES and PFS Phobos Observational Information

	SC-Phobos		Phase	km /	# of	L		To 1/	
Inst-Orb #	range,km	dist., AU	anga (°)	pixel	Spect.	L_s^{b} ,(°)	Avg. I1, K	Avg. T2, K	Avg. 13, K
TES-476	1437	1.58587	105–107	12	6	12	218±15	149±30	114±40
TES-501	1081	1.59916	110–113	9	9	17	194±15	139±20	102±25
TES-526	1152–1269	1.61140	93–149	10	106	23	190±20	146±27	102±25
TES-551	275–785	1.62260	51–131	2–7	149	29	271±51	206±44	143±51
PFS-756	155	1.66508	64	7.5	2	77.3	265±5	260±5	250±5
PFS-5851	97	1.64121	99	4.7	1	102.5	240±5	160±5	130±5
PFS-5870	354	1.6374	53	17	1	104.9	270±5	265±5	260±5
PFS-6906	530	1.38759	35	26	2	269.7	353±5	290±5	260±5

^a Sun-Phobos-Spacecraft, ^b solar longitude

TES, Near Stickney Compared to Library Data

TES Compared to Meteorites

PFS Compared to Library Data

TES + PFS Phobos Compositions

	1	2	3	4	Summary
Phyllosilicates		Y	Y	Y	Y
Tectosilicates		Y	Y		Y
Meteorites	N?		N		N
Lunar, or basalt-like	Y	Y	Y?		Y
Carbonates		Y?		Y	Y
Ultramafic			Y	Y	Y

¹Roush and Hogan 2000 ²Roush and Hogan 2001 ³Giuranna et al. 2011 ⁴Glotch et al. 2014

VNIR-SWIR Phobos Compositions

	1	2	3	4	5	6	7	8	9	10	Summary
Phyllosilicates			?		N	?				Y	Y
Tectosilicates											
Meteorites	Υ	Y	N				Y	Y	Y	Y	Y
Lunar, or basalt-like			Y	Y	?	Y?	N		Y	N	N?
Carbonates											
Ultramafic											

¹Pang et al. 1978 and Pollack et al. 1978 ²Murchie et al. 1991 ³Murchie and Erard 1996 ⁴Murchie et al. 1999 ⁵Rivkin et al. 2002 ⁶Gendrin et al. 2005 ⁷Fraeman et al. 2012 ⁸Pajola et al. 2012 ⁹Pajola et al. 2013 ¹⁰Fraeman et al. 2014