$_{ m QCM}^{ m Algo}$

- 1. La construction d'une liste itérative n'est pas basée sur?
 - ·((a)) L'ajout d'un élément à la première place d'une liste
 - (b) La récupération du reste de la liste
 - (c) L'insertion d'un élément à la K^{ième} place
- 2. Une opération sans argument est?
- (a) impossible
- (b) une constante
- (c) une variable
- (d) partielle
- 3. L'implémentation d'une liste itérative sous la forme d'une liste chaînée, n'est pas possible?
 - (a) faux
 - (b) vrai
- 4. L'implémentation d'une liste récursive sous la forme d'un tableau d'éléments, est?
- , (a) statique
 - (b) chaînée
- ♠ (c) contiguë
 - (d) dynamique
- 5. Quelles opérations définissent un vecteur?
- (a) entier
- (b) longueur
- (c) vect
 - (d) changer-ième
- 6 Dans un axiome, on doit remplacer la variable par une opération interne lorsque l'on applique?
 - (a) un observateur à une opération interne ayant deux arguments définis
 - (b) un observateur à une opération interne n'ayant uniquement qu'un argument prédéfini
 - (c) un observateur à une opération interne n'ayant uniquement qu'un argument défini
 - (d) un observateur n'ayant qu'un argument prédéfini à une opération interne
- 7. L'implémentation sous forme de liste chaînée est?
 - (a) statique
 - (b) extatique
 - (c) contiguë
- . (d) dynamique

- 8. L'implémentation d'une liste itérative sous la forme d'un tableau d'éléments, est?
- o (a) statique
 - (b) chaînée
- (c) contiguë
 - (d) dynamique
- Que représentent opé1 et opé2 dans l'axiome suivant (dans lequel e est un élément et l une liste) opé1(opé2 (e,1)) = e?
 - (a) opé1 = premier, opé2 = tête
 - (b) opé1 = cons, opé2 = premier
 - (c) opé1 = premier, opé2 = cons
 - (d) opé1 = fin, opé2 = premier
- $10. \ \ Une \ liste \ est \ une \ structure \ intrins\`e quement \ ?$
 - •(a) Récursive
 - (b) Itérative
 - (c) Répétitive
 - (d) Alternative

QCM N°10

lundi 7 novembre 2016

Question 11

Les solutions de l'équation différentielle y''-3y'+2y=0 sur $\mathbb R$ sont les fonctions de la forme

a.
$$k_1 e^{-x} + k_2 e^{-2x}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

• b.
$$k_1 e^x + k_2 e^{2x}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

c.
$$\left(k_1\cos(x)+k_2\sin(2x)\right)$$
 où $(k_1,k_2)\in\mathbb{R}^2$

d.
$$e^{x}(k_1\cos(2x) + k_2\sin(2x))$$
 où $(k_1, k_2) \in \mathbb{R}^2$

e. rien de ce qui précède

Question (12)

Les solutions de l'équation différentielle y'' - 4y' + 4y = 0 sur $\mathbb R$ sont les fonctions de la forme

a.
$$k_1 e^x + k_2 e^{2x}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

b.
$$k_1\cos(2x)+k_2\sin(2x)$$
 où $(k_1,k_2)\in\mathbb{R}^2$

c.
$$(k_1x+k_2)e^{2x}$$
 où $(k_1,k_2)\in\mathbb{R}^2$

d.
$$e^{x}(k_1\cos(2x) + k_2\sin(2x))$$
 où $(k_1, k_2) \in \mathbb{R}^2$

e. rien de ce qui précède

Question 13

Les solutions de l'équation différentielle y''+y'-6y=0 sur $\mathbb R$ sont les fonctions de la forme

a.
$$k_1e^{-2x} + k_2e^{3x}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

b.
$$(k_1x + k_2)e^{2x}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

c.
$$e^{-2x}(k_1\cos(3x)+k_2\sin(3x))$$
 où $(k_1,k_2)\in\mathbb{R}^2$

od.
$$k_1e^{2x} + k_2e^{-3x}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

e. rien de ce qui précède

Question 14

Les solutions de l'équation différentielle y''(x) + y(x) = 0 sur $\mathbb R$ sont les fonctions de la forme

a.
$$k_1e^x + k_2e^{-x}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

b.
$$k_1 \cos(x) + k_2 \sin(x)$$
 où $(k_1, k_2) \in \mathbb{R}^2$

c.
$$(k_1x + k_2)e^x$$
 où $(k_1, k_2) \in \mathbb{R}^2$

d. rien de ce qui précède

Question 15

Les solutions de l'équation différentielle y''(x) + 6y'(x) + 9y(x) = 0 sur \mathbb{R} sont les fonctions de la forme

a.
$$k_1e^{4x}+k_2e^{-3x}$$
 où $(k_1,k_2)\in\mathbb{R}^2$

b.
$$e^{-3x}(k_1\cos(4x) + k_2\sin(4x))$$
 où $(k_1, k_2) \in \mathbb{R}^2$

c.
$$(k_1x+k_2)e^{-3x}$$
 où $(k_1,k_2)\in\mathbb{R}^2$

d. rien de ce qui précède

Question 16

Les solutions de l'équation différentielle 2xy'+y=0 sur \mathbb{R}_+^* sont les fonctions de la forme

b.
$$kx^2$$
 où $k \in \mathbb{R}$.

c.
$$ke^{x^2}$$
 où $k \in \mathbb{R}$.

• d.
$$\frac{k}{\sqrt{x}}$$
 où $k \in \mathbb{R}$.

e. rien de ce qui précède

Question 17

Les solutions de l'équation différentielle $(1+x^2)y'-y=0$ sur $\mathbb R$ sont les fonctions de la forme

a.
$$ke^{\arctan(x)}$$
 où $k \in \mathbb{R}$

b.
$$\frac{k}{1+x^2}$$
 où $k \in \mathbb{R}$

c.
$$ke^{1+x^2}$$
 où $k \in \mathbb{R}$

d.
$$ke^{1/1+x^2}$$
 où $k \in \mathbb{R}$

e. rien de ce qui précède

Question 18

Les solutions de l'équation différentielle y'-2y=0 sur $\mathbb R$ sont les fonctions de la forme

 $ke^{x/2}$ où $k \in \mathbb{R}$.

- $\oint ke^{-x/2} \text{ où } k \in \mathbb{R}.$
- c. ke^{2x} où $k \in \mathbb{R}$.
- d. ke^{-2x} où $k \in \mathbb{R}$.
 - e. rien de ce qui précède

Question 19

Au voisinage de 0, on a

$$\ln(1+x) = x - \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$$

• b.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$$

c.
$$\ln(1+x) = x + \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$$

$$\oint \ln(1+x) = x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$$

e. rien de ce qui précède

Question 20

Au voisinage de 0, on a

a.
$$\frac{1}{1+x} = 1 + x + x^2 + o(x^2)$$

b.
$$\frac{1}{1+x} = x + x^2 + o(x^2)$$

• c.
$$\frac{1}{1+x} = 1-x+x^2+o(x^2)$$

d.
$$\frac{1}{1+x} = -x + x^2 + o(x^2)$$

e. rien de ce qui précède

31.	. She we	ent out the fact that it was raining.	
	a.	. although	
	, b.		
	c.		
	d.	-	
32.	I was la	ate, the others were on time.	
	a.		
	b.	•	
	, C.		
	d.		
33.	They m	nanaged it my absence.	
	a.		
	b.		
	. C.	_	
	d.	•	
34.	'You did	d it!'	
	. а.	'I didn't enjoy it much, though'	
	b.	'I didn't enjoy it much, although'	
	c.	'Despite I didn't enjoy it much'	
	d.	None of the above	
35.		his objecting to my presence.'	
	a.		
	b.		
	C.	-6	
	• d.	despite	
36.	Which o	one doesn't make a sense?	
	a.	Mary is rich, while John is poor.	
	b.	Mary is rich, but John is poor.	
	c.	Mary is rich. John, on the other hand, is poor.	
	• d.	Mary is rich even though John is poor.	
		, and a second is poor.	
37.	Which o	one doesn't make a sense?	
	• a.	Take your umbrella. However, you'll get wet.	
	b.	Take your umbrella. Otherwise, you'll get wet.	
	c.	Take your umbrella, or else you'll get wet.	
	d.	You'll get wet unless you take your umbrella.	
38.	Despite t	the declining population of Japan, Tokyo's population	getting larger.
	a.	lsn't	— Betting larger.
	• b.	is	
		doesn't	
	d.	none of the above	
20	a la G	是这是一种一个一种也不是一种不同的。	
39. /		Japan a lot of oil, oil isn't found in Japan.	
		use	分别的人的
	加克里斯 克尔	uses 上海色流光 独态。第二年被	2000年2月27
		don't use doesn't use	为 的。据证据书
		ocean case	Scott And Mark

40.	Columbia exports a lot of emeralds, while South Africa	gold
-----	--	------

- a. doesn't export
- b. don't export
- c. exports
 - d. none of the above

- 1. The Elaboration Likelihood Model
 - a. is a general theory of how people process communication information
 - b. was developed by John Cacioppo and Richard Petty
 - c. helps us understand the conditions underlying the persuasiveness of messages
 - d. All of the above
- 2. The two major routes to persuasion in the Elaboration Likelihood Model are
 - a. Central and peripheral
 - b. Central and cranial
 - c. Peripheral and autonomic
 - d. Autonomic and cranial
- 3. The first stage of the Elaboration Likelihood Model is
 - a. Motivation to engage in message processing
 - b. Environmental awareness
 - c. Ability
 - d. None of the above
- 4. According to the Elaboration Likelihood Model, if I am engaged in really trying to understand a message, I am engaged in which type of thinking?
 - a. Central
 - b. Message
 - c. Issue-relevant
 - d. All of the above
- (5) Which of the following was NOT found when researching the Elaboration Likelihood Model?
 - a. The peripheral cue assessments always play a role in the outcome
 - b. The peripheral cue assessments don't always play a role in the outcome
 - c. The outcome is relatively short term
 - d. The outcome is not necessarily enduring or impactful

Lecture 3

- 6. The main ideas you need to convey that are the substantive part of your major purpose of your presentation are
 - a. Talking points
 - b. Discussion points
 - c. Sub-points
 - d. Facilitation points
- 7. If you are a disorganized speaker, you lose what quality as a speaker?
 - a. Reliability
 - b. Credibility
 - c. Likeability
 - d. Believability
- 8. An organizational framework answers the question(s)
 - a. Where are my ideas connected?
 - b. How are my ideas connected?
 - c. What ideas stem from other ideas?
 - d. All of the above
- 9. Ideas that are organized by importance are organized
 - a. Spatially
 - b. Temporally
 - c. Hierarchically
 - d. Causally

- 10. Ideas that are organized over time are organized
 - a. Spatially
 - **a** b. Temporally
 - c. Hierarchal
 - d. Causally

Q.C.M n°4 de Physique

41- La dérivée par rapport à la variable t de la fonction $f(\dot{\theta}(t)) = 2(\dot{\theta}(t))^3$ s'écrit :

a)
$$\frac{df}{dt} = 6(\theta(t)) \theta$$

b)
$$\frac{df}{dt} = 6(\theta(t))^2$$

4 c)
$$\frac{df}{dt} = 6(\theta(t))^2 \theta$$

42- Le vecteur accélération d'un mouvement de vitesse $\vec{V} = \begin{pmatrix} V_x(t) = -R.\omega \sin(\omega t) \\ V_y(t) = R.\omega \cos(\omega t) \end{pmatrix}$, tels que R et ω sont des constantes positives s'écrit

$$\vec{a} = \begin{pmatrix} R.\omega^2 \cos(\omega t) \\ -R.\omega^2 \sin(\omega t) \end{pmatrix}$$

$$\vec{a} = \begin{pmatrix} R.\omega\cos(\omega t) \\ -R.\omega\sin(\omega t) \end{pmatrix}$$

b)
$$\vec{a} = \begin{pmatrix} -R.\omega^2 \sin(\omega t) \\ -R.\omega^2 \cos(\omega t) \end{pmatrix}$$

ad)
$$\vec{a} = \begin{pmatrix} -R.\omega^2 \cos(\omega t) \\ -R.\omega^2 \sin(\omega t) \end{pmatrix}$$

43) Le vecteur vitesse d'un mouvement circulaire de rayon R admet en coordonnées polaire l'expression suivante :

a)
$$\vec{V} = \begin{pmatrix} V_{\rho} = R \hat{\theta} \\ V_{\theta} = 0 \end{pmatrix}$$

b)
$$\vec{V} = \begin{pmatrix} V_{\rho} = 0 \\ V_{\theta} = R \hat{\theta} \end{pmatrix}$$

a)
$$\vec{V} = \begin{pmatrix} V_{\rho} = R \dot{\theta} \\ V_{\theta} = 0 \end{pmatrix}$$
 b) $\vec{V} = \begin{pmatrix} V_{\rho} = 0 \\ V_{\theta} = R \dot{\theta} \end{pmatrix}$ c) $\vec{V} = \begin{pmatrix} V_{\rho} = -R(\dot{\theta})^2 \\ V_{\theta} = 0 \end{pmatrix}$

44- L'équation de la trajectoire d'un mouvement d'équations horaires $\begin{cases} x(t) = R \sin(\omega t) \\ v(t) = R \cos(\omega t) \end{cases}$ (Où R et ω sont des constantes positives) est :

a)
$$x^2 + y^2 = 1$$

b)
$$x + y = R$$

(c)
$$x^2 + y^2 = R^2$$

45. L'équation d'une trajectoire elliptique est de la forme :

a)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
 b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ c) $\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$

b)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

c)
$$\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$$

46 Dans la base de Frenet (\vec{u}_T, \vec{u}_N) , le vecteur unitaire tangentiel \vec{e}_T vérifie :

a)
$$\frac{d\vec{u}_T}{dt} = \dot{\theta} \vec{u}_N$$

b)
$$\frac{d\vec{u}_T}{dt} = \vec{0}$$

c)
$$\frac{d\vec{u}_T}{dt} = -\dot{\theta} \vec{u}_N$$

La norme du vecteur vitesse d'un mouvement en spirale est $V = A.\omega.e^{\omega t}$ (ω et A sont des constantes positives). Le vecteur accélération en base de Frenet admet comme composantes:

a)
$$\vec{a} = \begin{pmatrix} a_T = 0 \\ a_N = \frac{A^2 \cdot \omega^2 \cdot e^{2\omega t}}{R} \end{pmatrix}$$
 (R : rayon de courbure de la trajectoire)

b)
$$\vec{a} = \begin{pmatrix} a_T = A\omega^2 . e^{\omega t} \\ a_N = \frac{A^2 . \omega^2 . e^{2\omega t}}{R} \end{pmatrix}$$

c)
$$\vec{a} = \begin{pmatrix} a_T = A.\omega^2.e^{\omega t} \\ a_N = \frac{A^2.\omega^2.e^{2\omega t}}{R^2} \end{pmatrix}$$

48- La loi de composition des vitesses est donnée par : \vec{V}_a

a)
$$\vec{V}_a = \vec{V}_r - \vec{V}_e$$

•b)
$$\vec{V}_a = \vec{V}_e - \vec{V}_r$$

a)
$$\vec{V}_a = \vec{V}_r - \vec{V}_e$$
 (b) $\vec{V}_a = \vec{V}_e - \vec{V}_r$ $\Rightarrow \vec{V}_a = \vec{V}_r + \vec{V}_e$

49- Dans la loi de composition des vitesses, la vitesse d'entraînement représente

- a) la vitesse du repère mobile par rapport au repère fixe
- b) la vitesse du point matériel M par rapport au repère mobile
- c) la vitesse de rotation du point matériel M
- d) la vitesse du point matériel M par rapport au repère fixe

50- Dans l'expression de la vitesse d'entraînement \vec{V}_e , le terme : $\vec{\Omega} \wedge o'\vec{M}$, représente

- a) la vitesse du point M par rapport au repère mobile
- b) la vitesse de rotation du repère mobile par rapport au repère fixe
- c) la vitesse de translation du repère mobile par rapport au repère fixe

QCM Electronique – InfoS1

Pensez à bien lire les questions ET les réponses proposées

On considère le schéma suivant (Q1 à Q5):

On donne:

$$I_1 = 10 \text{ mA}$$

 $I_3 = 5 \text{ mA}$
 $I_6 = 2,5 \text{ mA}$
 $E = 15V$
 $R_1 = 1k\Omega$
 $R_3 = 500\Omega$
 $R_6 = 400\Omega$

Q1. Choisir l'affirmation correcte.

(a)
$$I_5 = -2.5 \text{ mA}$$

b-
$$I_5 = 2.5 \, mA$$

c-
$$I_5 = -5 \text{ mA}$$

d-
$$I_5 = 5 \text{ mA}$$

Choisir l'affirmation correcte : Q2.

(a)
$$R_5 = R_6$$

$$_{0}$$
 b- $R_{5} = -R_{6}$

c-
$$R_5 = 2.R_6$$

d-
$$R_5 = -2.R_6$$

Choisir l'affirmation correcte : Q3.

a-
$$U = -2.5V$$

$$U = 1.5V$$

c-
$$U = 7.5V$$

d-
$$U = 2.5V$$

a-
$$R_4 = 1k\Omega$$

b-
$$R_4 = 500\Omega$$

$$\mathbb{C}$$
 $R_4 = 2.5k\Omega$

d-
$$R_4 = 7.5k\Omega$$

Choisir l'affirmation correcte : Q5.

$$\mathcal{R}_1$$
 et R_2 sont en série

$$E R_2$$
 et R_3 sont en parallèle

Q6. Quelle est la formule correcte (toutes les résistances sont en Ohm), le courant en (Ampère), la tension est en (Volt):

$$U = \frac{R_1 R_2 I}{R_1 + R_2 + R_3}$$

b-
$$U = \frac{(R_1 + R_2).I}{R_1.R_2}$$

c-
$$U = \frac{(R_1 + R_2).I}{R_1.R_2 + R_3^2}$$

d-
$$U = \frac{I.(R_2.R_3 + R_4^2)}{R_1.R_2 + R_3^2}$$

 R_1

Q7. On considère le circuit ci-contre :

On donne:

$$E = 3V$$

$$R_2 = 2 k\Omega$$

$$R_1 = 1k\Omega$$

$$R_3 = 3 k\Omega$$

Choisir la proposition correcte.

a-
$$U = 2V$$

$$c- U = 3V$$

(b)
$$U = 0.5V$$

d-
$$U = 1,5V$$

On considère le circuit ci-contre (Q8 &Q9)

$$E = 10 V$$

$$R_2 = 2 k\Omega$$

$$I = 5 mA$$

$$R_3 = 3 k\Omega$$

$$R_1 = 800 \, \Omega$$

Q8. La résistance équivalente vue par le générateur de tension E vaut :

$$\widehat{a}$$
- $R_{eq} = 2k\Omega$

c-
$$R_{eq} = 5.8k\Omega$$

•b-
$$R_{eq} = 1.6k\Omega$$

d-
$$R_{eq} = 1.2k\Omega$$

 \bigcirc L'intensité du courant I_3 est : :

a-
$$I_3 = 3mA$$

c-
$$l_3 = 2,6mA$$

6-
$$I_3 = 2mA$$

d-
$$I_3 = 1.7 mA$$

Q10. La caractéristique tension-intensité d'un dipôle inconnu est représentée ci-dessous. Il s'agit d'un dipôle :

xb- Passif linéaire

xc- Actif linéaire

d- Actif non linéaire

Architecture des ordinateurs

Lundi 7 nove

11.
$$123_4 =$$

- A. 10111₂
- B. 11001₂
- C. 10011₂
- D. 11011₂

12. $AC13_{16} =$

- A. 126423₈
- B. 126023₈
- C. 1010110000010011₈
- D. 1010110100010011₂

$$13.724_8 =$$

- A. 1D3₁₆
- B. 1D4₁₄
- C. 111010100₂
- D. 011100100100₂

14. En supposant que $18_b = 28_4$, quelle est la valeur de la base b?

- A. 9
- B. Impossible
 - C. 7
 - D. 8

15. En supposant que
$$101_a = 401_b$$
, quelle est la valeur minimale de la base a avec $b > 4$?

- A. $a_{min} = 2$
- B. Impossible
- C. $a_{min} = 5$
- D. $a_{min} = 10$

A٠