24/12/2018 cns20160623.odt

cns20160623.odt

Name:	Last name:	Id:

Computer and network security Sicurezza nelle reti e nei sistemi informatici Crittografia e sicurezza delle reti

Exam of 23rd June 2016, a.y. 2015-16. Time: 2 hours

FOR NON-ENGLISH: 2 penalty points (only applicable to Computer and network security) FOR UNREADABLE HAND-WRITING: discretionary decision

Q1: Secure server-mediated messaging between two parties

We consider the scenario where two parties want to exchange messages (we shall call them *posts*) by the support of a central server S that shares a secure symmetric key with each of the parties (we denote such keys as K_A, K_B etc.). According to an informal protocol, if A wants to send a post to B then:

- a) A should ask the permission to B, and the request should be routed through S.
- b) B can accept/reject the request (still through S).

In case B accepts:

- C) S should generate a session key K (to be used by the parties) and let the parties have it.
- d) Now A can send the message directly to B (and only now B will accept messages from
- A). A will accept messages from B only after her first message sent to B.
- e) Then, A and B can exchange any number of messages, as long as the session has not been invalidated (see below).
- f) At any time, any of the two parties can invalidate the session by sending a specific message.
- $Q1.1\ [6/30]$ Design the contents of the messages to be exchanged between parties/server for implementing the protocol and allowing the posts, also adding suitable contents (e.g., hashes, nonces, challenges etc.) for making the protocol secure over authentication and confidentiality of posts.
- Q1.2 [4/30] Improve the scheme designed in Q1.1 by adding security for *data integrity* (of posts) and against *replay attacks*.

You can assume that:

☐ S is secure.
☐ Both A and B have no malicious behaviours.
☐ The network connecting all the parties is highly reliable and efficient, but not secure
with respect passive/active adversaries.
☐ Exchanged messages can have any size.

Q2: Kerberos

- $Q2.1\ [4/30]$ Give a general description of the Kerberos protocol, clarifying the roles of the authentication server, the ticket-granting server and describing the contents of the tickets (what is an authenticator?).
- Q2.2 [2/30] Describe how a TGT can be used by a principal for requesting a service.
- Q2.3 [2/30] Illustrate the concept of *realms* and the authentication between realms.

03: Cryptographic hashing and one-way functions

- Q3.1 [3/30] Define what a cryptographically secure hashing function is and list its main properties.
- Q3.2 [2/30] Define the concept of one-way function and describe a typical scenario where it could be usefully employed.
- Q3.3 [2/30] Could a cryptographically secure hashing function be a one-way function? Elaborate.

Q4: Session firewalls

Mark each of the	e following assertion	ns on common se	ession firewalls ((e.g.: Iptables)	as TRUE or FALSE.
[+0.8 for correct	t mark, 0 for missir	ng mark, -0.4 for	wrong mark]		

☐ Can filter datagrams on the basis of	Can allow packets within an open
source/destination IPs and/or	TCP connection.
source/destination ports.	

24/12/2018	cns20160623.odt			
 □ Can protect against malware. □ Can protect users from visiting malicious web sites. 	Can offer some support against synflooding attacks.Can be useful in detecting keyloggers.			
of secrecy: confidential (C), very confidential approach to access control would you r	on has classified its documents according to four levels dential (CC), secret (S), top-secret (TS). Which			
HAVE YOU SENT 2015-16 HOMEWORKS TO THE PROF.? YES/NO (circle your answer)				
If YES: I hereby confirm that I sent no	contributions (how many Qs)			
Signature				

Pubblicato da <u>Google Drive</u> – <u>Segnala una violazione</u> – Aggiornato automaticamente ogni 5 minuti

(please sign in both cases)