Exam - Computational Logic - Subjects -2013-2014

I Propositional logic

- 1. Using a proof method:
 - a) semantic method (truth table, semantic tableau, conjunctive normal form)
 - b) syntactic method (resolution, definition of deduction, the theorem of deduction and its reverse)
 - c) direct method (truth table, conjunctive normal form, definition of deduction, the theorem of deduction and its reverse)
 - d) refutation method (resolution, semantic tableau)

prove the validity of some propositional formulas:

- A2 the second axiom of propositional logic
- A3- the third axiom, "modul tollens"
- the syllogism rule
- the permutation/ reunion/ separation of the premises law
- 2. Check the following logical/syntactic consequence:

$$U_1, ..., U_n \models V (|-)$$

- build the deduction of V from the hypothesis $U_1, ..., U_n$ using the axiomatic system;
- semantic tableau for: $U_1 \wedge ... \wedge U_n \wedge \neg V$;
- resolution for: FNC(U_1) \land ... \land FNC(U_n) \land FNC(\lnot V).
- 3. Decide the type (consistent, contingent, inconsistent, tautology) of the propositional formula U and write the models and anti-models of U.
 - from the truth table of U;
 - from the semantic tableau of $U \Rightarrow$ the models of U are provided by the open branches
 - from the semantic tableau of \neg U => the anti-models of U are provided by the open branches
 - from the conjunctive normal form of $U \Longrightarrow$ the anti-models of U are provided by the clauses that are not tautologies
 - from the conjunctive normal form of U => the models of U are provided by the cubes that are not inconsistent
- 4. Prove the inconsistency of a set of clauses using:
 - general resolution + transformations used to simplify the initial set of clauses
 - level saturation strategy

- lock resolution
- linear resolution('unit' / 'input')
- 5. Check the consistency/inconsistency of a set of clauses using:
 - level saturation strategy
 - lock resolution + level saturation strategy
 - linear resolution backtracking.
- 6. The theorems of soundness and completeness of the proof methods:

The properties of propositional logic: coherence, non-contradiction, decidability.

The theorem of soundness for propositional logic:

If
$$|-U$$
 then $|=U$ (a theorem is a tautology).

The theorem of completeness for propositional logic:

If
$$\models U$$
 then $\mid -U$ (a tautology is a theorem).

The theorem of deduction and its reverse.

7. Definitions: tautology, theorem, logical consequence, syntactic consequence, logical equivalence, consistent/contingent/valid/inconsistent formula, interpretation, model, anti-model.

The axiomatic system of propositional logic.

The axiomatic system of propositional resolution.

8. Propositional reasoning modeling

II First-order (predicate) logic

- 1. Evaluation of a closed predicate formula under a given (proposed by the student) interpretation, with a finite/infinite domain..
- 2. Build a model/ anti-model of a closed predicate formula:
 - from the semantic tableau of $U \Rightarrow$ the models of U are provided by the open branches
 - from the semantic tableau of \neg U => the anti-models of U are provided by the open branches
 - a proposed interpretation that evaluates the formula U as true/false is a model/anti-model of U.
- 3. Check the property of distributivity of a quantifier (\Longrightarrow \checkmark) over a connective (\land , \lor , \rightarrow , \leftrightarrow):

Ex: distributivity of ",
$$\exists$$
" over ".

$$(\exists x)(A(x) \longrightarrow B(x)) \equiv (\exists x)A(x) \longrightarrow (\exists x)B(x)$$
 if and only if $\models (\exists x)(A(x) \longrightarrow B(x)) \longleftrightarrow ((\exists x)A(x) \longrightarrow (\exists x)B(x))$ if and only if

$$\models (\exists x)(A(x) \rightarrow B(x)) \rightarrow ((\exists x)A(x) \rightarrow (\exists x)B(x))$$
 and

$$\models ((\exists x)A(x) \rightarrow (\exists x)B(x)) \rightarrow (\exists x)(A(x) \rightarrow B(x))$$

- 4. Using a proof method:
 - a) semantic method (semantic tableau)
 - b) syntactic method (resolution, definition of deduction, the theorem of deduction and its reverse)
 - c) direct method (definition of deduction, the theorem of deduction and its reverse)
 - d) refutation method (resolution, semantic tableau)

prove that some predicate formulas are tautologies/theorems

- 5. Tranform a predicate formula into prenex, Skolem and clausal normal forms.
- 6. Check the following logical/syntactic consequence:

$$U_1, ..., U_n \models V (|-)$$

- build the deduction of V from the hypothesis $U_1, ..., U_n$ using the axiomatic system;
- semantic tableau for: $U_1 \wedge ... \wedge U_n \wedge \neg V$;
- resolution for: $U_1^C \wedge ... \wedge U_n^C \wedge (V)^C$.
- 7. Definitions: substitutions, the most general unifier of 2 atoms algorithm.
- 8. Prove the inconsistency of a set of predicate clauses using:
 - general resolution
 - level saturation strategy
 - lock resolution
 - linear resolution('unit' or 'input')
- 9. The theorems of soundness and completeness of the proof methods:

The properties of propositional logic: coherence, non-contradiction, semi-decidability (Church).

The theorem of soundness for first-order logic:

If
$$|-U$$
 then $|=U$ (a theorem is a tautology).

The theorem of completeness for first-order logic:

If
$$\vdash U$$
 then $\vdash U$ (a tautology is a theorem).

The theorem of deduction and its reverse.

10. Definitions: tautology, theorem, logical consequence, syntactic consequence, logical equivalence, consistent/contingent/valid/inconsistent formula, interpretation, model, anti-model.

The axiomatic system of first-order logic.

The axiomatic system of first-order resolution.

11. Transformation of a natural language sentence into a predicate formula.

Predicate reasoning modeling.

III Boolean algebras, Boolean functions, logical circuits

1. Boolean algebra: definition+examples

Using "nand"/"nor" express the operations "and", "not", "or".

Definitions: Boolean function, "minterm", "maxterm", "factorization",

"maximal monom", "central monom", "simplification of a Boolean function".

2. Build the canonical conjunctive/disjunctive form of a Boolean function (of 2,3,4 variables) given by its table of values.

Exemples of minterms and maxterms (of 2,3,4 variabiles): notations, expressions, tables of values.

3. Simplification of Boolean functions of 2, 3, 4 variables using Quine's method or Veitch/Karnaugh diagrams.

A Boolean function can be given:

• in canonical disjunctive form using the standard notations for the minterms:

$$f(x_1,x_2,x_3)=m_0\vee m_3\vee m_4\vee m_5\vee m_6\vee m_7;$$

• in canonical disjunctive form using the expressions for the minterms:

• by an expression:

$$f(x_1, x_2, x_3) = x_3(x_1 \lor x_2) \lor x_1(x_2 \lor x_2 x_3) \lor x_1 x_2 x_3,$$
or
$$f(x, y, z) = x(y \oplus z) \lor y(x \oplus z) \lor x(y \downarrow z) \lor (x \downarrow y)z;$$

-apply transformations (distributivity, replace \downarrow , \oplus ,...) to obtain the canonical disjunctive form

• by its table of values,

<u>x</u>	y	z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- from the values 1 of the function the canonical disjunctive form is built
- by its values 1:

$$f_1(1,1,1,1) = f_1(1,1,0,1) = f_1(0,1,1,1) = f_1(1,1,0,0) = f_1(0,1,0,0) = f_1(0,0,0,0) = f_1($$

$$=f_1(0,0,0,1) = f_1(0,0,1,1) = 1;$$

- the canonical disjunctive form is built
- by its values 0: $f_1(0,1,0) = f_1(0,1,1) = f_1(1,0,1) = 0$,
 - from the values 1 of the function the canonical disjunctive form is built
- 4. Using basic and derived gates draw the logical circuit corresponding to a Boolean function given by a Boolean expression.

Write the expression of the Boolean function which models the functionality of a logical circuit with basic and derived gates.

5. Examples of logical circuits used in the hardware: the "coder", the "decoder", the "comparison circuit", the "addition circuit".