TECH MAHINDRA VS TCS

by Bibhash Kalita

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

import pandas_datareader
import datetime
import pandas_datareader.data as web

start = datetime.datetime(2017, 1, 1)
end = datetime.datetime(2018, 5, 9)

TechM = web.DataReader("NSE/TECHM",'quandl', start, end)
```

	Open	High	Low	Last	Close	TotalTradeQuantity
Date						
2018- 05-08	663.00	666.4	651.05	652.10	653.35	1771130.0
2018- 05-07	671.75	675.5	654.20	657.10	657.40	2770174.0
2018- 05-04	652.95	665.6	636.45	663.00	662.65	3162498.0
2018- 05-03	662.55	667.0	645.90	649.95	652.95	2284475.0
2018- 05-02	674.00	674.0	655.50	661.50	662.55	1745715.0

[15] TechM.info()

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 334 entries, 2018-05-08 to 2017-01-02

Data columns (total 7 columns):

Open 334 non-null float64
High 334 non-null float64
Low 334 non-null float64
Last 334 non-null float64
Close 334 non-null float64
TotalTradeQuantity 334 non-null float64
TurnoverLacs 334 non-null float64

dtypes: float64(7)
memory usage: 20.9 KB

TCS = web.DataReader("NSE/TCS", 'quandl', start, end)

TCS.head()

	Open	High	Low	Last	Close	TotalTradeQuantity
Date						
2018- 05-08	3434.7	3486.5	3396.7	3440.20	3441.20	1496410.0
2018- 05-07	3490.0	3490.0	3410.9	3428.00	3420.95	1742213.0
2018- 05-04	3492.0	3497.0	3470.0	3479.00	3480.75	1173622.0
2018- 05-03	3509.8	3526.0	3470.4	3481.75	3481.85	1880775.0
2018- 05-02	3530.5	3532.2	3471.3	3500.00	3499.75	1579023.0
4						•

[18] TCS.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 334 entries, 2018-05-08 to 2017-01-02

Data columns (total 7 columns):

Open 334 non-null float64
High 334 non-null float64
Low 334 non-null float64
Last 334 non-null float64
Close 334 non-null float64
TotalTradeQuantity 334 non-null float64
TurnoverLacs 334 non-null float64

dtypes: float64(7)
memory usage: 20.9 KB

```
TechM['Open'].plot(label='TECHM', figsize=(16,8), title='Open Price')
TCS['Open'].plot(label='TCS')
plt.legend()
```

<matplotlib.legend.Legend at 0x26e555c1c88>

TechM['TurnoverLacs'].plot(label='TECHM' ,figsize=(16,8),title='Turn Over
TCS['TurnoverLacs'].plot(label='TCS')
plt.legend()

<matplotlib.legend.Legend at 0x26e559685f8>

[22] TCS['TurnoverLacs'].argmax()

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:1:
FutureWarning: 'argmax' is deprecated. Use 'idxmax' instead. The behavior
of 'argmax' will be corrected to return the positional maximum in the
future. Use 'series.values.argmax' to get the position of the maximum now.

```
"""Entry point for launching an IPython kernel. Timestamp('2018-03-13 00:00:00')
```

```
TechM['TotalTradeQuantity'].plot(label='TECHM',figsize=(16,8),title='Volu
TCS['TotalTradeQuantity'].plot(label='TCS')
plt.legend()
```


CandleSticks

```
from matplotlib.finance import candlestick_ohlc
from matplotlib.dates import DateFormatter, date2num, WeekdayLocator, Day
# Rest the index to get a column of January Dates
TechM_reset = TechM.loc['2018-01':'2018-01'].reset_index()
# Create a new column of numerical "date" values for matplotlib to use
TechM_reset['date_ax'] = TechM_reset['Date'].apply(lambda date: date2num(
TechM_values = [tuple(vals) for vals in TechM_reset[['date_ax', 'Open', '
mondays = WeekdayLocator(MONDAY)
                                        # major ticks on the mondays
alldays = DayLocator()
                                    # minor ticks on the days
weekFormatter = DateFormatter('%b %d') # e.g., Jan 12
dayFormatter = DateFormatter('%d')
                                       # e.g., 12
#Plot it
fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.2)
ax.xaxis.set_major_locator(mondays)
ax.xaxis.set_minor_locator(alldays)
ax.xaxis.set_major_formatter(weekFormatter)
```

```
candlestick\_ohlc(ax, TechM\_values, width=0.6, colorup='g', colordown='r');\\
```

```
620 -

600 -

580 -

540 -

520 -

Jan 01 Jan 08 Jan 15 Jan 22 Jan 29
```

```
# Rest the index to get a column of January Dates
TCS_reset = TCS.loc['2018-01':'2018-01'].reset_index()
# Create a new column of numerical "date" values for matplotlib to use
TCS_reset['date_ax'] = TCS_reset['Date'].apply(lambda date: date2num(date
TCS_values = [tuple(vals) for vals in TCS_reset[['date_ax', 'Open', 'High
mondays = WeekdayLocator(MONDAY)
                                        # major ticks on the mondays
alldays = DayLocator()
                                    # minor ticks on the days
weekFormatter = DateFormatter('%b %d') # e.g., Jan 12
dayFormatter = DateFormatter('%d')
                                       # e.g., 12
#Plot it
fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.2)
ax.xaxis.set_major_locator(mondays)
ax.xaxis.set_minor_locator(alldays)
ax.xaxis.set_major_formatter(weekFormatter)
candlestick_ohlc(ax, TCS_values, width=0.6, colorup='g',colordown='r');
```


Daily percentage Return

```
[30] TechM['returns'] = TechM['Close'].pct_change(1)
```

TechM.head()

	Open	High	Low	Last	Close	TotalTradeQuantity
Date						
2018- 05-08	663.00	666.4	651.05	652.10	653.35	1771130.0
2018- 05-07	671.75	675.5	654.20	657.10	657.40	2770174.0
2018- 05-04	652.95	665.6	636.45	663.00	662.65	3162498.0
2018- 05-03	662.55	667.0	645.90	649.95	652.95	2284475.0
2018- 05-02	674.00	674.0	655.50	661.50	662.55	1745715.0

TCS['returns'] = TCS['Close'].pct_change(1)

TCS.head()

	Open	High	Low	Last	Close	TotalTradeQuantity
Date						
2018- 05-08	3434.7	3486.5	3396.7	3440.20	3441.20	1496410.0
2018- 05-07	3490.0	3490.0	3410.9	3428.00	3420.95	1742213.0
2018- 05-04	3492.0	3497.0	3470.0	3479.00	3480.75	1173622.0
2018- 05-03	3509.8	3526.0	3470.4	3481.75	3481.85	1880775.0

	Open	High	Low	Last	Close	TotalTradeQuantity
Date						
2018- 05-02	3530.5	3532.2	3471.3	3500.00	3499.75	1579023.0
4						•

```
TechM['returns'].plot(kind='kde', label='TechM',figsize=(16,8))
TCS['returns'].plot(kind='kde',label='TCS')
plt.legend()
```

<matplotlib.legend.Legend at 0x26e5667cb00>


```
box_df = pd.concat([TechM['returns'], TCS['returns']],axis=1)
box_df.columns = ['TECHM returns','TCS returns']
box_df.plot(kind='box',figsize=(8,11),colormap='jet')
```

<matplotlib.axes._subplots.AxesSubplot at 0x26e55837e80>

```
0.125 - 0.100 - 0.075 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050 - 0.050
```

from pandas.plotting import scatter_matrix
scatter_matrix(box_df,figsize=(8,8),alpha=0.2,hist_kwds={'bins':50});


```
box_df.plot(kind='scatter',x='TECHM returns',y='TCS returns',alpha=0.4,fi
```


Cumulative Daily Returns

```
[38] TechM['Cumulative Return'] = (1 + TechM['returns']).cumprod()

[39] TCS['Cumulative Return'] = (1 + TCS['returns']).cumprod()

[40] TechM.head()
```

	Open	High	Low	Last	Close	TotalTradeQuantity
Date						
2018- 05-08	663.00	666.4	651.05	652.10	653.35	1771130.0
2018- 05-07	671.75	675.5	654.20	657.10	657.40	2770174.0
2018- 05-04	652.95	665.6	636.45	663.00	662.65	3162498.0

	Open	High	Low	Last	Close	TotalTradeQuantity
Date						
2018- 05-03	662.55	667.0	645.90	649.95	652.95	2284475.0
2018- 05-02	674.00	674.0	655.50	661.50	662.55	1745715.0
4						>

TCS.head()

	Open	High	Low	Last	Close	TotalTradeQuantity
Date						
2018- 05-08	3434.7	3486.5	3396.7	3440.20	3441.20	1496410.0
2018- 05-07	3490.0	3490.0	3410.9	3428.00	3420.95	1742213.0
2018- 05-04	3492.0	3497.0	3470.0	3479.00	3480.75	1173622.0
2018- 05-03	3509.8	3526.0	3470.4	3481.75	3481.85	1880775.0
2018- 05-02	3530.5	3532.2	3471.3	3500.00	3499.75	1579023.0
4						•

TechM['Cumulative Return'].plot(label='TECHM',figsize=(16,8),title='Cumul
TCS['Cumulative Return'].plot(label='TCS')
plt.legend()

<matplotlib.legend.Legend at 0x26e5749ad68>

TECH MAHINDRA VS TCS WHO WINS YOU DECIDE

Г