SUPELEC Lecture by M. Debbah

Digital Signal Processing

Kilian Demeulemeester & Nicolas Goutay

Gif sur Yvette, November 15, 2012

I. STATISTICAL DESCRIPTION OF SIGNALS

I.1. Notion of random variable

I.1.1. Summary of random variable

I.1.1.1. Notations

 Ω : sample space

 $A:\,\{\omega,\ fulfill\ a\ given\ property\}-A\ \text{forms\ a\ family\ of\ events\ of}\ F.$

 $\forall A \in F, P(A) \in [0,1] \text{ (Probability of the event)}$

The triplet $\{\omega, F, P\}$ forms a probability space.

 $(\Omega, F, P) \rightarrow (\mathbb{R}, B, P_X)$

 $X:\, P[X(\omega) \leq x] = F_X(x) \longleftarrow \text{ Cumulative distribution fonction of the variable X}.$

I.1.1.2. Discret Case

$$\begin{split} X(\omega) &\in \{x_1, ..., x_n\} \\ \text{Let us call } p_i &= P[X(\omega) = x_i] \\ \left\{ \begin{array}{ll} \sum_i p_i &= 1 \\ F_X(x) &= \sum_{i, x_i \leq x} p_i \end{array} \right. \end{split}$$

I.1.1.3. Probability density

$$P_X(x) = \sum_i p_i \delta(x - x_i)$$

I.1.1.4. Continuous case

 $X(\omega)$ continuous ensemble of values and $F_X(x)$ is continuous and derivable. $\frac{dF_X(x)}{dx}=p_X(x)$: probability density of X.

Contents

I.			Description of Signals	4	
	I.1.	Notion	ı of random variable	4	
		I.1.1.	Summary of random variable	4	
		I.1.2.	Random function	6	
	I.2.	Tempo	oral law of random signals	7	
	I.3.	Partia	l characterization	7	
		I.3.1.	One dimension law	7	
		I.3.2.	Law F_n in dimension $2 \dots $	7	
	I.4.	Autoc	orelation and autocovariance functions	7	
	I.5.	Interco	orelation and Intercovariance functions	9	
		I.5.1.	Existence	9	
		I.5.2.	Symetry	10	
		I.5.3.	Extreme values	10	
		I.5.4.	Operations on autocorrelation functions	10	
		I.5.5.	Correlation time	11	
	I.6.	Examp	ples of autocorrelation functions	11	
		I.6.1.	White Noise	11	
		I.6.2.	Exponential function	11	
		I.6.3.	Band limited autocorrelation functions	12	
	I.7.	Applic	eation of autocorrelation functions	12	
		I.7.1.	Source localization	12	
		I.7.2.	Process identification	13	
	I.8.	Mome	nts of higher order (> 2)	13	
	I.9.	Station	nnary random signals	14	
		I.9.1.	Stationnary in the strict sense (SSS)	14	
		I.9.2.	Stationnary at order n	14	
		I.9.3.	Wide-sense stationnarity	15	
		I.9.4.	Mutual stationnarity	15	
		I.9.5.	Cyclostationnarity	15	

Digital Signal Processing, Kilian Demeulemeester & Nicolas Goutay • 3

SUPELEC

$$\begin{array}{rcl} \displaystyle \int_{\mathbb{R}} p_X(x) dx & = & 1 \\ \displaystyle \int_{-\infty}^x p_X(u) du & = & F_x(x) \\ \\ dF_X(x) & = & \underbrace{p_X(x) dx}_{\text{elementary probability}} & = & P[x \leq X \leq x + dx] \\ \\ & \text{elementary probability} \end{array}$$

 $F_X(-\infty) = 0$ and $F_X(+\infty) = 1$

I.1.1.5. Moments of X

$$\begin{split} &m_n = E[x^n] = \int_{\mathbb{R}} x^n dF_X(x) \\ &m_1 = E[X] : \text{ statistical mean} \\ &m_2 = E[X^2] : \text{ moment of second order} \\ &Var(X) = \sigma_X^2 = E[|X - E[X]|^2] \\ &E[f(X)] = \int_{\mathbb{R}} f(x) dF_X(x) \\ &\text{ if } f(X) = e^{ixX} E[f(X)] = \int_{\mathbb{R}} e^{iux} dF_X(x) = \Phi_X(u) \\ &\Phi_X \text{ is the caracteristic function of first order.} \end{split}$$

I.1.1.6. X is continuous

$$\begin{split} &\Phi_X(u) = \int_{\mathbb{R}} e^{iuX} p_X(x) dx \\ &p_X(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-iuX} \Phi_X(u) du \end{split}$$

I.1.1.7. Characteristic function of second order

$$\begin{split} &\Psi_X(u) = \ln \Phi_X(u) \\ &\Psi_X(u) = \sum_{k=0}^{+\infty} \frac{(iu)^k}{k!} C_k, \, C_k \text{ is a cumulant.} \\ &C_1 = m_1 \\ &C_2 = m_2 - m_1^2 \text{ (variance)} \end{split}$$

I.1.1.8. Couple of random real vectors (X,Y)

* In \mathbb{R}^2 :

-
$$E[X,Y^T]=0$$
, if $X\perp Y$
- Let us call $X_c=X-E[X]$:

$$E[X_C,Y_c^T]=Cov(X,Y)=E[(X-E[X])(Y-E[Y))]=E[XY^T]-E[X]E[Y^T]$$
If $Cov(X,Y)=0$ then X and Y are uncorelated.