Anand Agricultural University

- **► Module 2** Risk Analysis and Modeling
- **Project Title:** Soil Erosion Mapping with USLE Model and GIS.
 - **Submitted By:**
 - 1. Piyush Pandya Id:202319023
 - 2. Smit Bhuva Id:202319027
 - 3. Parth Patel Id:202319007
 - 4. Viraj Hirpara Id:202319003

- **Submitted To:**
- ☐ Dr. Mukesh Kumar Tiwari

INTRODUCTION

- What is Soil Erosion?
- Soil erosion is the process of the top layer of soil being worn away by natural forces such as water, wind, or human activities. It removes the nutrient-rich topsoil, leading to reduced fertility and negatively affecting agriculture.
- Causes of Soil Erosion
- 1. Water Erosion: Rainfall and surface runoff wash away soil particles.

Rivers and streams can erode riverbanks, contributing to soil loss.

- 2. Wind Erosion: Strong winds carry away loose, dry soil, particularly in arid regions.
- **3. Deforestation:** Removing trees and vegetation leaves soil exposed to erosion.
- **4. Overgrazing:** Livestock grazing removes vegetation cover, leading to soil compaction and erosion.
- **5. Agricultural Practices:** Poor farming techniques like excessive tilling disturb the soil structure and lead to erosion.
- **6. Construction and Urbanization:** Land development disturbs soil, increasing the risk of erosion.

OBJECTIVES

- To use the USLE model within GIS to map soil erosion risk in a Watershed area.
- To evaluate the effectiveness of current soil conservation practices in the region.

■ Importance of Monitoring Soil Erosion

- **Sustainable Agriculture:** ☐ Monitoring helps protect topsoil, ensuring long-term crop productivity and food security. **Environmental Protection:** Prevents habitat loss and protects ecosystems through effective erosion control strategies. **Water Resource Management:** Reduces sedimentation in rivers and reservoirs, ensuring water quality and availability. **Land Use Planning:** ☐ Informed decisions help prevent erosion-prone activities in vulnerable areas. **Climate Change Mitigation:**
 - ☐ Healthy soil stores carbon, and erosion reduces this capacity. Monitoring helps mitigate climate change impacts.

Universal Soil Loss Equation (USLE)

- A = R * K * LS * C * P
 - A = Annual Soil Erosion (t ha⁻¹ yr⁻¹)
 - Estimated soil loss in tons per hectare per year
- **►** Factors Explained:
- Arr = Rainfall Erosivity Factor (MJ mm ha⁻¹ h⁻¹ yr⁻¹)
 - Measures the impact of rainfall intensity and volume on erosion
- **\Leftharpoonup K** = Soil Erodibility Factor (t ha h ha⁻¹ MJ⁻¹ mm⁻¹)
 - Indicates the susceptibility of soil particles to erosion based on soil properties
- **LS** = Slope-Length and Slope-Steepness Factor (Dimensionless)
 - Accounts for the influence of slope length and steepness on erosion rates
- **C** = Crop Management Factor (Dimensionless)
 - Reflects the effect of crop cover and management practices on soil protection
- **❖ P** = Conservation Practice Factor (Dimensionless)
 - Represents the impact of conservation practices in reducing erosion

Data Sources

CHIRPS (Climate Hazards Group InfraRed Precipitation with Station Data)

Source: UCSB CHG

Use: Rainfall data for R Factor calculation.

OpenLandMap Soil Data
Source: OpenLandMap
Use: Soil texture classification for K Factor calculation.

> SRTM (Shuttle Radar Topography Mission)

Source: USGS

Use: Digital Elevation Model (DEM) for LS Factor calculation.

Sentinel-2 (Copernicus)
Source: European Space Agency
Use: NDVI data for C Factor calculation.

MODIS Land Cover Type Source: NASA MODIS

Use: Land cover data for P Factor calculation.

WWF HydroSHEDS

Source: WWF

Use: Basin boundary data for defining the Area of Interest (AOI).

Study Area – Narmada River Basin

Methodology Overview

- Step 1: Data Collection and Preprocessing
 - Import datasets (DEM, Land Use, Rainfall, Soil)
- Step 2: Calculation of USLE Factors using GEE
 - Rainfall Erosivity (R)
 - Soil Erodibility (K)
 - Topographic Factor (LS)
 - Crop Management Factor (C)
 - Conservation Practices Factor (P)
- **Step 3:** Soil Loss Estimation (A)
 - Combine the factors to calculate soil erosion
 - Visualization of erosion risk areas on GEE Map

Implementation In GEE

Code Overview

- 1. Importing the datasets
- 2. Applying calculations for each USLE factor
- 3. Combining them to estimate soil loss
- 4. Example: NDVI for C factor, DEM for LS factor

Code Snippet:

https://code.earthengine.google.com/d338e8bd6e828ebccc5d5a619543b2e3

```
var CHIRPS = ee.ImageCollection("UCSB-CHG/CHIRPS/PENTAD"),
          soil = ee.Image("OpenLandMap/SOL/SOL_TEXTURE-CLASS_USDA-TT_M/v02"),
          DEM = ee.Image("USGS/SRTMGL1_003"),
          s2 = ee.ImageCollection("COPERNICUS/S2"),
                                                                                                                          MADHYA
          modis = ee.ImageCollection("MODIS/006/MCD12Q1");
      //Defining Study Area
      //For Basin Baoundary
     var dataset = ee.FeatureCollection("WWF/HydroSHEDS/v1/Basins/hybas_12")
      //Map.addLayer (dataset)
     // var mainID = 4120031730 // Mahi Basin
      var mainID = 4120031610 //ID for Narmada Basin
                                                                                                                                                            CHHATTISGARH
     // var mainID = 4120025450 //for Ganga
     // var mainID = 4120031730 //for Mahi Basin
     // var mainID = 4120027100 // Mahanadi
     // var mainID = 4120027940 //Krishna Basin
     var main = dataset.filter(ee.Filter.eq('MAIN_BAS', mainID))
     print('No of Subbasins:', main.size());
     var aoi = main;
 23
 24
     // Defining dates/year
     var date1 = '2019-01-01';
     var date2 = '2020-01-01';
i 28 Map.addLayer (aoi, {}, 'aoi')
```

R and K factor Map

LS and C factor Map

11

P factor and Slop Map

Results

Soil Erosion Map

Conclusion

Summary of Findings:

- Identified soil erosion hotspots in the study area.
- Areas with steep slopes and poor vegetation cover experience the highest erosion rates.
- Significant variation in soil loss based on topography, land cover, and rainfall patterns.
- Insights:
- Rainfall is a major contributor to soil erosion, especially in areas with high precipitation.
- Land cover plays a critical role in reducing erosion, with vegetated areas showing lower soil loss.
- Topography affects erosion, with steeper slopes being more prone to higher soil loss.

Thank You!