Ejercicios matriz de una transformación lineal

Adriana Cabana y Patricia Palacios

Departamento de Matemática, Facultad de Ingeniería, UBA

Sean \mathbb{V} y \mathbb{W} dos \mathbb{K} -espacios vectoriales de dimensión finita, $B_1 = \{v_1, \dots, v_n\}$ y B_2 bases de \mathbb{V} y \mathbb{W} , respectivamente, y $T : \mathbb{V} \to \mathbb{W}$ una transformación lineal.

La matriz de T en las bases $B_1, B_2, [T]_{B_1}^{B_2}$, es la matriz cuya columna i es el vector de coordenadas de $T(v_i)$ en la base B_2 , esto es: $[T]_{B_1}^{B_2} = ([T(v_1)]^{B_2} \cdots [T(v_n)]^{B_2})$

Verifica que $[T]_{B_1}^{B_2}[v]^{B_1}=[T(v)]^{B_2}$ para todo $v\in\mathbb{V}$

1. Dadas la transformación lineal $T : \mathbb{R}_2[x] \to \mathbb{R}_2[x], T(p) = x^2 p''(x) + p'(x) + 3p(x)$ y las bases de $\mathbb{R}_2[x], B_1 = \{1 + x, 2 + x^2, x - x^2\}$ y $B_2 = \{x^2, 1 + x, 1 - x\}$, calcular $[T]_{B_1}^{B_2}$.

La matriz pedida es

$$[T]_{B_1}^{B_2} = ([T(1+x)]^{B_2} [T(2+x^2)]^{B_2} [T(x-x^2)]^{B_2})$$

Para armar la matriz necesitamos conocer los transformados de la base B_1 , entonces calculamos, aplicando la fórmula de T:

$$T(1+x) = x^2 \cdot 0 + 1 + 3(1+x) = 4 + 3x$$

$$T(2+x^2) = x^2 \cdot 2 + 2x + 3(2+x^2) = 6 + 2x + 5x^2$$

$$T(x-x^2) = x^2 \cdot (-2) + 1 - 2x + 3(x-x^2) = 1 + x - 5x^2$$

Ahora debemos hallar las coordenadas de estos polinomios en la base B_2 :

Si las coordenadas son $[4+3x]^{B_2} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, planteamos $4+3x = ax^2 + b(1+x) + c(1-x)$.

Igualando ambos polinomios llegamos al siguiente sistema: $\begin{cases} b+c &= 4\\ b-c &= 3\\ a &= 0 \end{cases}$

Resolviendo obtenemos: $a=0,\ b=\frac{7}{2},\ c=\frac{1}{2}$ por lo tanto: $[4+3x]^{B_2}=\begin{pmatrix}0\\\frac{7}{2}\\\frac{1}{2}\end{pmatrix}$

Repetimos el procedimiento con los otros polinomios:

Planteamos $6 + 2x + 5x^2 = ax^2 + b(1+x) + c(1-x)$

Igualando ambos polinomios llegamos al siguiente sistema: $\begin{cases} b+c &= 6\\ b-c &= 2\\ a &= 5 \end{cases}$

Resolviendo obtenemos: a = 5, b = 4, c = 2 por lo tanto: $\begin{bmatrix} 6 + 2x + 5x^2 \end{bmatrix}^{B_2} = \begin{pmatrix} 5 \\ 4 \\ 2 \end{pmatrix}$

Por último planteamos $1+x-5x^2=ax^2+b\left(1+x\right)+c\left(1-x\right)$

Igualando ambos polinomios llegamos al siguiente sistema: $\begin{cases} b+c &= 1\\ b-c &= 1\\ a &= -5 \end{cases}$

Resolviendo obtenemos: a = -5, b = 1, c = 0 por lo tanto: $\begin{bmatrix} 1 + x - 5x^2 \end{bmatrix}^{B_2} = \begin{pmatrix} -5 \\ 1 \\ 0 \end{pmatrix}$

Con esta información ya podemos armar la matriz pedida:

$$[T]_{B_1}^{B_2} = \begin{pmatrix} 0 & 5 & -5 \\ \frac{7}{2} & 4 & 1 \\ \frac{1}{2} & 2 & 0 \end{pmatrix}$$

2. Sea $T: \mathbb{R}^3 \to \mathbb{R}_2[x]$ la transformación lineal tal que $[T]_{B_1}^{B_2} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ para

$$B_1 = \{(1,1,0), (1,0,1), (0,1,1)\} \text{ y } B_2 = \{1, x - x^2, x^2\}.$$

- a) Hallar bases de Nu(T) e Im(T).
- b) Hallar todos los $\mathbf{x} \in \mathbb{R}^3$ tales que $T(\mathbf{x}) = 2x x^2$.
- c) Dado el subespacio $S = gen\{(1,0,1),(2,1,-1)\}$, hallar una base de T(S).
- a) Comencemos calculando $Nu(T) = \{x \in \mathbb{R}^3/T(x) = \mathbf{0}_{P_2}\}.$ Usaremos la matriz de la transformación para hallar los vectores que cumplen esta condición, para ello recordemos que:

$$[T]_{B_1}^{B_2}[x]^{B_1} = [T(x)]^{B_2}$$

Nos conviene plantear el vector \mathbf{x} buscado como combinación lineal de los vectores de la base B_1 :

$$\mathbf{x} = a(1, 1, 0) + b(1, 0, 1) + c(0, 1, 1)$$

Así sus coordenadas en esta base son: $[\mathbf{x}]^{B_1} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

Reemplazando en $[T]_{B_1}^{B_2}[x]^{B_1} = [T(x)]^{B_2}$, tenemos que:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Si resolvemos este sistema de ecuaciones homogéneo, obtenemos: $a=-2c,\,b=c,\,c\in\mathbb{R}$. Con esta información volvemos al vector \mathbf{x} :

$$\mathbf{x} = (-2c)\left(1,1,0\right) + c\left(1,0,1\right) + c\left(0,1,1\right) = c\left(-1,-1,2\right)$$

Concluimos que

$$Nu(T) = gen\{(-1, -1, 2)\}$$

Como el conjunto $\{(-1, -1, 2)\}$ es linealmente independiente y genera Nu (T), este conjunto es base de Nu (T) y dim (Nu (T)) = 1.

Para hallar la imagen de T recordemos que las columnas de la matriz son las coordenadas en base B_2 de los vectores trasformados de la base B_1 o sea son las coordenadas de vectores que generan Im(T).

Recontruyamos esos vectores:

- $[T(1,1,0)]^{B_2} = (1 \ 1 \ 2)^T \text{ entonces } T(1,1,0) = 1 \cdot 1 + 1 (x-x^2) + 2x^2 = 1 + x + x^2$
- $[T(1,0,1)]^{B_2} = (1-11)^T$ entonces $T(1,0,1) = 1 \cdot 1 + (-1)(x-x^2) + 1x^2 = 1 x + 2x^2$
- $T(0,1,1)^{B_2} = (1\ 3\ 3)^T$ entonces $T(0,1,1) = 1 \cdot 1 + 3(x-x^2) + 3x^2 = 1 + 3x$

Con esto tenemos:

$$Im(T) = gen \left\{ 1 + x + x^2, 1 - x + 2x^2, 1 + 3x \right\}$$

El teorema de la dimensión nos dice: $\dim (\mathbb{R}^3) = \dim (\operatorname{Nu}(T)) + \dim (\operatorname{Im}(T))$.

Como ya calculamos Nu(T), deducimos que dim (Im(T)) = 2, por lo que el conjunto generador anterior resulta un conjunto LD.

Observemos que en este caso, $1 + 3x = 2(1 + x + x^2) - (1 - x + 2x^2)$.

Para dar una base de $\operatorname{Im}(T)$ necesitamos dos vectores linealmente independientes, por ejemplo: $\{1+x-x^2,1-x+2x^2\}$.

b) Para hallar todos los $\mathbf{x} \in \mathbb{R}^3$ tales que $T(\mathbf{x}) = 2x - x^2$, usaremos la matriz de T, ya que sabemos que: $[T]_{B_1}^{B_2}[x]^{B_1} = [T(x)]^{B_2}$.

En este caso buscamos los $\mathbf{x} \in \mathbb{R}^3$ tales que

$$[T]_{B_1}^{B_2}[\mathbf{x}]^{B_1} = [T(\mathbf{x})]^{B_2} = [2x - x^2]^{B_2}$$

Planteamos el vector que buscamos: $\mathbf{x} = a(1, 1, 0) + b(1, 0, 1) + c(0, 1, 1)$.

Entonces sus coordenadas en base B_1 son: $[x]^{B_1} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

Además necesitamos conocer $[2x - x^2]^{B_2} = (\alpha \beta \gamma)^T$:

Planteamos $2x - x^2 = \alpha \cdot 1 + \beta (x - x^2) + \gamma x^2$ e igualando estos polinomios obtenemos: $\alpha = 0, \beta = 2, \gamma = 1.$

Reemplazando en $[T]_{B_1}^{B_2}[\mathbf{x}]^{B_1}=[T(\mathbf{x})]^{B_2}=[2x-x^2]^{B_2}$ llegamos al sistema:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$$

Resolvemos este sistema no homegéneo (escalonando la matriz ampliada) y obtenemos:

$$a = 1 - 2c, b = c - 1, c \in \mathbb{R}$$
, entonces las coordenadas de \mathbf{x} son $[\mathbf{x}]^{B_1} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 - 2c \\ c - 1 \\ c \end{pmatrix}$.

Luego, los vectores \mathbf{x} que buscamos son:

$$\mathbf{x} = (1 - 2c)(1, 1, 0) + (c - 1)(1, 0, 1) + c(0, 1, 1) = (0, 1, -1) + c(-1, -1, 2)$$

 $con c \in \mathbb{R}.$

Observemos que la solución está formada por una solución particular más vectores del núcleo.

c) Dado el subespacio $S = gen\{(1,0,1),(2,1,-1)\}$, queremos hallar una base de T(S).

Sabemos que $T(S) = gen \{T(1,0,1), T(2,1,-1)\}$, sólo resta calcular T(1,0,1) y T(2,1,-1). Observemos que (1,0,1) es uno de los vectores de la base B_1 y su imagen ya la calculamos cuando hallamos la imagen de T obteniendo $T(1,0,1) = 1 - x + 2x^2$.

Para calcular T(2,1,-1) usaremos la matriz de T ya que: $[T]_{B_1}^{B_2}[x]^{B_1}=[T(x)]^{B_2}$.

Necesitamos las coordenadas en base B_1 del vector (2,1,-1), entonces planteamos:

$$(2,1,-1) = a\,(1,1,0) + b\,(1,0,1) + c\,(0,1,1)$$

Resolviendo el sistema:
$$\begin{cases} a+b &= 2\\ a+c &= 1\\ b+c &= -1 \end{cases}, \text{ obtenemos } [(2,1,-1)]^{B_1} = \begin{pmatrix} 2\\0\\-1 \end{pmatrix}.$$

Reemplazando en $[T]_{B_1}^{B_2}[x]^{B_1}=[T(x)]^{B_2}$ obtenemos:

$$[T]_{B_1}^{B_2}[(2,1,-1)]^{B_1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = [T(2,1,-1)]^{B_2}$$

Obtenemos las coordenadas de T(2,1,-1) en base B_2 , recontruimos el vector:

$$T(2,1,-1) = 1 \cdot 1 + (-1)(x-x^2) + 1x^2 = 1 - x + 2x^2$$
 (el mismo!!!)

Por lo tanto: $T(S) = gen\{1 - x + 2x^2\}$ y una base de T(S) es $\{1 - x + 2x^2\}$.

3. Dada la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x,y,z) = (3x+y-z,y+2z). Hallar bases B de \mathbb{R}^3 y B' de \mathbb{R}^2 de modo tal que $[T]_B^{B'} = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 1 & 0 \end{pmatrix}$

Buscamos bases $B=\{v_1,v_2,v_3\}$ de \mathbb{R}^3 y $B'=\{w_1,w_2\}$ de \mathbb{R}^2 de modo tal que

$$[T]_B^{B'} = ([T(v_1)]^{B'} \quad [T(v_2)]^{B'} \quad [T(v_3)]^{B'}) = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 1 & 0 \end{pmatrix}$$

Entonces,

- $T(v_1)^{B'} = (1 1)^T, \text{ es decir } T(v_1) = w_1 w_2.$
- $T(v_2)^{B'} = (2\ 1)^T, \text{ es decir } T(v_2) = 2w_1 + w_2.$
- $[T(v_3)]^{B'} = (0\ 0)^T$, es decir $T(v_3) = (0,0)$ y entonces $v_3 \in Nu(T)$.

Observemos que no hay únicas bases B y B' que verifiquen estas condiciones. El ejercicio sólo pide dar una base B y una base B' que las cumplan.

Para elegir v_3 es necesario conocer el núcleo de T.

En este caso, $Nu(T) = \{(x, y, z) \in \mathbb{R}^3 / T(x, y, z) = (0, 0)\}.$

Por lo tanto, $(x, y, z) \in Nu(T) \Leftrightarrow T(x, y, z) = (3x + y - z, y + 2z) = (0, 0)$

O sea, los elementos de Nu(T) son las soluciones del sistema: $\begin{cases} 3x+y-z=0\\ y+2z=0 \end{cases}$

Resolviendo el sistema obtenemos $x=z,\,y=-2z,\,z\in\mathbb{R}.$ Entonces los vectores del núcleo de T son de la forma (x,y,z)=(z,-2z,z)=z(1,-2,1) y $Nu(T)=gen\{(1,-2,1)\}.$

Podemos elegir, por ejemplo, $v_3 = (1, -2, 1)$.

Ahora, podemos elegir v_1 y v_2 y, a partir de esta elección, determinar w_1 y w_2 o hacer al revés, elegir w_1 y w_2 y a partir de esta elección determinar v_1 y v_2 . Vamos a optar por la primera posibilidad porque es más sencilla.

Elegimos v_1 y v_2 de modo tal que $B = \{v_1, v_2, (1, -2, 1)\}$ sea una base de \mathbb{R}^3 . Por ejemplo, $v_1 = (1, 0, 0)$ y $v_2 = (0, 1, 0)$.

Es fácil ver que $B = \{(1,0,0), (0,1,0), (1,-2,1)\}$ es un conjunto LI y, como tiene 3 elementos, es una base de \mathbb{R}^3 .

Veamos ahora como obtenemos la base B'. Habíamos dicho que se debe verificar que

$$T(v_1) = w_1 - w_2$$
 y $T(v_2) = 2w_1 + w_2$

Entonces, como $T(v_1) = T(1,0,0) = (3,0)$ y $T(v_2) = T(0,1,0) = (1,1)$, w_1 y w_2 verifican:

$$\begin{cases} w_1 - w_2 = (3,0) \\ 2w_1 + w_2 = (1,1) \end{cases}$$

Sumando ambas ecuaciones tenemos que $3w_1 = (4,1)$, ésto es, $w_1 = \left(\frac{4}{3}, \frac{1}{3}\right)$.

Despejando w_2 de la primera ecuación y reemplazando el w_1 hallado, obtenemos:

$$w_2 = w_1 - (3,0) = \left(\frac{4}{3}, \frac{1}{3}\right) - (3,0) = \left(-\frac{5}{3}, \frac{1}{3}\right)$$

Luego, $B' = \left\{ \left(\frac{4}{3}, \frac{1}{3} \right), \left(-\frac{5}{3}, \frac{1}{3} \right) \right\}$ (es una base de \mathbb{R}^2 porque tiene 2 elementos y es un conjunto LI, al ser sus elementos no múltiplos).

4. Sean $B_1 = \{(1,2),(1,1)\}$ y $B_2 = \{(0,1),(-1,1)\}$ bases de \mathbb{R}^2 y E, E' las bases canónicas de \mathbb{R}^2 y \mathbb{R}^3 , respectivamente. Dadas las transformaciones lineales $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que

$$[T]_{B_1}^{B_2} = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \text{ y } G : \mathbb{R}^2 \to \mathbb{R}^3 \text{ tal que } [G]_{B_1}^{E'} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ -1 & 1 \end{pmatrix}$$

- a) Calcular $[G \circ T]_E^{E'}$
- b) Calcular $[T^{-1}]_{B_2}^{B_1}$ y $[T^{-1}]_E$.

Para resolver este ejercicio recordemos que:

■ Sean $T: \mathbb{V} \to \mathbb{W}$ y $G: \mathbb{W} \to \mathbb{U}$ transformaciones lineales, B_1 , B_2 y B_3 bases de \mathbb{V} , \mathbb{W} y \mathbb{U} , respectivamente. Entonces

$$[G \circ T]_{B_1}^{B_3} = [G]_{B_2}^{B_3} \cdot [T]_{B_1}^{B_2}$$

- Sean $T: \mathbb{V} \to \mathbb{W}$ un isomorfismo y B_1 y B_2 bases de \mathbb{V} y \mathbb{W} , respectivamente. Entonces

$$[T^{-1}]_{B_2}^{B_1} = ([T]_{B_1}^{B_2})^{-1}$$

■ Sean $T: \mathbb{V} \to \mathbb{W}$ una transformación lineal, B_1 , B_1' bases de \mathbb{V} y B_2 , B_2' bases de \mathbb{W} . Entonces

$$[T]_{B_1'}^{B_2'} = M_{B_2}^{B_2'} [T]_{B_1}^{B_2} M_{B_1'}^{B_1}$$

a) Para calcular $[G\circ T]_E^{E'}$, observemos que $G\circ T=G\circ Id_{\mathbb{R}^2}\circ T\circ Id_{\mathbb{R}^2}$, luego:

$$[G \circ T]_E^{E'} = [G]_{B_1}^{E'} M_{B_2}^{B_1} [T]_{B_1}^{B_2} M_E^{B_1}$$

$$[G \circ T]_E^{E'} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 19 & -7 \\ 11 & -4 \\ -46 & 17 \end{pmatrix}$$

b) Veamos primero que T es inversible ya que $det([T]_{B_1}^{B_2})=1\neq 0$. Luego

$$T^{-1}]_{B_2}^{B_1} = ([T]_{B_1}^{B_2})^{-1} = \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix}$$

$$\bullet \ [T^{-1}]_E = M_{B_1}^E [T^{-1}]_{B_2}^{B_1} M_E^{B_2} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 11 & 8 \end{pmatrix}$$