CS244 Winter 2011
Lecture 17
Network Security #2

 SIFF: A Stateless Internet Flow Filter to Mitigate DDoS Flooding Attacks
 [A. Yaar, A. Perrig, D. Song]

Martin Casado

- Destination routing
- Packet based (statistical multiplexing)
- Global addressing (IP addresses)
- Simple to join (as infrastructure)
- Power in end hosts (end-to-end arg)
- "Ad hoc" naming system

- Destination routing
 - Keeps forwarding tables small
 - Simple to maintain forwarding tables
 - How do we know where packets are coming from?
 - Probably simple fix to spoofing, why isn't it in place?
- Packet based (statistical multiplexing)
- Global addressing (IP addresses)
- Simple to join (as infrastructure)
- Power in end hosts (end-to-end arg)
- "Ad hoc" naming system

- Destination Routing
- Packet Based (statistical multiplexing)
 - Simple + Efficient
 - Difficult resource bound per-communication
 - How to keep someone from hogging?
 (remember, we can't rely on source addresses)
- Global Addressing (IP addresses)
- Simple to join (as infrastructure)
- Power in End Hosts (end-to-end arg)
- "Ad hoc" naming system

- Destination routing
- Packet based (statistical multiplexing)
- Global Addressing (IP addresses)
 - Very democratic
 - Even people who don't necessarily want to be talked to ("every psychopath is your next door neighbor" Dan Geer)
- Simple to join (as infrastructure)
- Power in end hosts (end-to-end arg)
- "Ad hoc" naming system

- Destination routing
- Packet based (statistical multiplexing)
- Global addressing (IP addresses)
- Simple to join (as infrastructure)
 - Very democratic
 - Misbehaving routers can do very bad things
 - No model of trust between routers
- Power in End Hosts (end-to-end arg)
- "Ad hoc" naming system

- Destination routing
- Packet based (statistical multiplexing)
- Global addressing (IP addresses)
- Simple to join (as infrastructure)
- Power in end-hosts (end-to-end arg)
 - Decouple hosts and infrastructure = innovation at the edge!
 - Giving power to least trusted actors
 - How to guarantee good behavior?
- "Ad hoc" naming system

- Packet Based (statistical multiplexing)
- Destination Routing
- Global Addressing (IP addresses)
- Simple to join (as infrastructure)
- Power in End Hosts (end-to-end arg)
- "Ad hoc" naming system
 - Seems to work OK
 - Fate sharing w/ hierarchical system
 - Off route = more trusted elements

2 Anecdotes

Life Just Before Slammer

Life Just After Slammer

A Lesson in Economy

- Slammer exploited <u>connectionless</u> UDP service, rather than connection-oriented TCP.
- Entire worm fit in a single packet! (376 bytes)
 - ⇒ When scanning, worm could "fire and forget".
 Stateless!
- Worm infected 75,000+ hosts in <u>10 minutes</u> (despite broken random number generator).
 - At its peak, doubled every 8.5 seconds
- Progress limited by the Internet's carrying capacity
 (= 55 million scans/sec)

Impact

- First victim at 12:15am
- By 12:45, transcontinental links starting to fail
- 300,000 access points downed in Portugal
- All cell and Internet in Korea failed (27 million people)
- 5 root name servers were knocked offline
- 911 didn't respond (Seattle)
- Flights canceled

Blue Security

- Anti-spam software Blue Frog
- Retaliation starting May 1, 2006
- Traffic black-holed by social engineering
- DDoS takes down original site
- Flooding disrupts operations of 5 top-tier hosting providers (including tucows)
- Blue security "folds" (May 15, 2006)
- Reportedly initiated by single attacker

DoS

DoS: Via Resource Exhaustion

DoS: Via Resource Exhaustion

Uplink bandwidth

Downlink bandwidth

Memory (e.g. TCP TCB exhaustion)

DoS: Via Resource Exhaustion

Uplink bandwidth

- Saturate uplink bandwidth using legitimate requests (e.g. download large image)
- Solution: use a CDN (Akamai)
- Solution: admission control at the server (not a network problem ??)

CPU time similar to above

Victim memory

- TCP connections require state, can try to exhaust
- E.g. SYN Flood (next few slides)
 (maybe a networking problem ...)

TCP Handshake

Example: SYN Flooding

Protection against SYN Attacks

- SYN Cookies [Bernstein, Schenk]
 - Client sends SYN
 - Server responds to Client with SYN-ACK cookie
 - sqn = f(src addr, src port, dest addr, dest port, rand)
 - Server does not save state
 - Honest client responds with ACK(sqn)
 - Server checks response
 - If matches SYN-ACK, establishes connection
- SYN caching [Lemmon]
 - Doesn't work very well ...

Other "Networking" DoS Attacks

- Attacker guesses TCP seq. number for an existing connection:
 - Attacker can send Reset packet to close connection. Results in DoS.
 - Most systems allow for a large window of acceptable seq. #'s
 - Only have to a land a packet in
 - Attack is most effective against long lived connections, e.g. BGP.
- Congestion control DoS attack

- Generate TCP flow to force target to repeatedly enter retransmission timeout state
- Difficult to detect because packet rate is low

On to the Paper