第六章 非线性规划

- ▶非线性规划数值解法
 - □无约束极值问题
 - ●下降迭代法
 - □有约束极值问题
 - ●可行方向法
 - ●制约函数法
 - ●逐次逼近法

数值求解的一般思路

- ●思想
 - > 迭代法
- ●方法类型
 - ▶基于梯度的方法
 - > 非梯度的方法(直接法、启发式方法)
- ●问题种类
 - > 无约束极值问题
 - > 有约束极值问题

数值解法的流程图

下降迭代法

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \lambda_k \boldsymbol{p}^{(k)} \qquad \Longrightarrow \qquad f(\boldsymbol{x}^{(k+1)}) < f(\boldsymbol{x}^{(k)})$$

- > 迭代方向
 - 基于梯度方法
 - □最速下降法
 - □牛顿法
 - □拟牛顿法
 - □共轭梯度法
 - ■直接法
- ▶ 步长选择(一维搜索)
 - ■基于梯度法
 - ■直接法
- > 迭代终止准则

1、最速下降法

■ 设计思想: 使目标函数值下降

目标函数值: $f(\mathbf{x}^{(k)} + \lambda_k \mathbf{p}^{(k)}) = f(\mathbf{x}^{(k)}) + \lambda_k \nabla f(\mathbf{x}^{(k)})^T \mathbf{p}^{(k)} + O(\lambda_k)$

可选方向: $\nabla f(\mathbf{x}^{(k)})^T \mathbf{p}^{(k)} = \|\nabla f(\mathbf{x}^{(k)})\|_2 \|\mathbf{p}^{(k)}\|_2 \cos \theta < 0$ (方向导数)

下降最快方向: $p^{(k)} = -\nabla f(x^{(k)})$ 负梯度方向

性质: 最优步长时 $\nabla f(\mathbf{x}^{(k+1)}) \perp \nabla f(\mathbf{x}^{(k)})$

优点: 计算量小。

缺点: "之"字迭代路径,接近极值点时尤为严重。

应用场合: 迭代前期。

极小值点附近的等值面

$$f(\mathbf{x}) = f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T \nabla^2 f(\mathbf{x}^*) (\mathbf{x} - \mathbf{x}^*) + O(||\mathbf{x} - \mathbf{x}^*||^2)$$

极值点:
$$\nabla f(\mathbf{x}^*) = 0 \implies f(\mathbf{x}) = f(\mathbf{x}^*) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^*)^T \nabla^2 f(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*) + O(||\mathbf{x} - \mathbf{x}^*||^2)$$

极值点附近等值面
$$f(\mathbf{x}) = c \approx f(\mathbf{x}^*) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^*)^T \nabla^2 f(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*)$$

$$(x-x^*)^T \nabla^2 f(x^*)(x-x^*) \approx c' = 2[c-f(x^*)]$$

问题:如何加速极值点附近的迭代?

$$h(x) = g[f(x)]$$

$$\nabla_{x} h(x) = \nabla_{x} f(x) \nabla_{f} g[f(x)]$$

$$\left[\frac{d(\mathbf{k}^T \mathbf{x})}{d\mathbf{x}}\right]^T = \mathbf{k}$$

2、牛顿法

$$\left[\frac{d(\mathbf{x}^T A \mathbf{x})}{d\mathbf{x}}\right]^T = 2A\mathbf{x}$$

■ 设计思想:近似为二次问题。

$$f(\mathbf{x}) \approx f(\mathbf{x}^{(k)}) + \nabla f(\mathbf{x}^{(k)})^T (\mathbf{x} - \mathbf{x}^{(k)}) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^{(k)})^T \nabla^2 f(\mathbf{x}^{(k)}) (\mathbf{x} - \mathbf{x}^{(k)})$$

驻点条件 \longrightarrow $\nabla f(\mathbf{x}) \approx \nabla f(\mathbf{x}^{(k)}) + \nabla^2 f(\mathbf{x}^{(k)})(\mathbf{x} - \mathbf{x}^{(k)}) \approx 0$

迭代公式 \longrightarrow $\mathbf{x}^{(k+1)} \approx \mathbf{x}^{(k)} - [\nabla^2 f(\mathbf{x}^{(k)})]^{-1} \nabla f(\mathbf{x}^{(k)})$

迭代方向 $p^{(k)} = -[\nabla^2 f(\mathbf{x}^{(k)})]^{-1} \nabla f(\mathbf{x}^{(k)})$ 牛顿方向

优点:极值点附近收敛速率快。

缺点: 计算量大,需要求二阶导数和Hessian矩阵逆。

远离极值点时,不一定是下降方向,需采用进一步修正。

应用场合: 二次目标函数或极值点附近。

二次函数的极小点

- 设A为对称矩阵,二次函数 $f(x) = \frac{1}{2}x^T Ax + b^T x + c$
- 驻点方程: $\nabla f(\bar{x}) = A\bar{x} + b = 0$
- □ 有解: $rankA = rank[A \ b]$
- ightharpoonup Hessian矩阵: $\nabla^2 f(x) = A$
- (1) A > 0 椭球面: $x^* = A^{-1}b$ 唯一极小点
- (2) $A \ge 0$ & rankA < n 椭球柱面/平行超平面: $f(x) = x_1^2$ 无穷多个极小点
- (3) A ≤ 0 (降维) 椭球面: 无界解(极大点)
- (4) A不定 (高维) 马鞍面: $f(x) = x_1^2 x_2^2$ 无界解(鞍点解)

问题: 如何修正牛顿法的迭代方向?

□ 无解: $rankA \neq rank[A b]$

例: 抛物面

 $f(\mathbf{x}) = x_1^2 + x_2 + c$ 无界解 (无驻点解)

Levenberg-Marquardt修正

■ 设计思想:将 $\nabla^2 f(\mathbf{x}^{(k)})$ 变为正定矩阵,保证 \mathbf{p} 是下降方向

L-M修正方向:
$$p^{(k)} = -[\nabla^2 f(x^{(k)}) + \mu_k I]^{-1} \nabla f(x^{(k)})$$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - [\nabla^2 f(\mathbf{x}^{(k)}) + \mu_k \mathbf{I}]^{-1} \nabla f(\mathbf{x}^{(k)})$$

$$\mu_k > |\lambda_{\min}^-|$$
 λ_{\min}^- 为 $\nabla^2 f(\mathbf{x}^{(k)})$ 最小负特征值

 $\mu \rightarrow 0$: 牛顿法

 μ → ∞ : 最速下降法

如果不求特征值,可以从较小的μ值试探

3、拟牛顿法

■ 设计思想:数值法求Hessian矩阵的逆。

$$f(x) \approx f(x^{(k+1)}) + \nabla f(x^{(k+1)})^{T} (x - x^{(k+1)}) + \frac{1}{2} (x - x^{(k+1)})^{T} \nabla^{2} f(x^{(k+1)}) (x - x^{(k+1)})$$

$$\nabla f(x) \approx \nabla f(x^{(k+1)}) + \nabla^{2} f(x^{(k+1)}) (x - x^{(k+1)})$$

$$x = x^{(k)}$$

$$\nabla f(x^{(k)}) \approx \nabla f(x^{(k+1)}) + \nabla^{2} f(x^{(k+1)}) (x^{(k)} - x^{(k+1)})$$

Hessian矩阵的数值关系

$$\nabla f(\mathbf{x}^{(k)}) - \nabla f(\mathbf{x}^{(k+1)}) \approx \nabla^2 f(\mathbf{x}^{(k+1)})(\mathbf{x}^{(k)} - \mathbf{x}^{(k+1)})$$

Hessian逆的数值关系

$$\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \approx \left[\nabla^2 f(\mathbf{x}^{(k+1)})\right]^{-1} \left[\nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^{(k)})\right]$$

$$\boldsymbol{\delta}_{k} \triangleq \boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}$$
$$\boldsymbol{H}_{k} \approx \left[\nabla^{2} f(\boldsymbol{x}^{(k)}) \right]^{-1}$$
$$\boldsymbol{\gamma}_{k} \triangleq \nabla f(\boldsymbol{x}^{(k+1)}) - \nabla f(\boldsymbol{x}^{(k)})$$

$$\delta_k = H_{k+1} \gamma_k$$
 拟牛顿条件

变尺度法

◆目标:数值法求解Hessian矩阵的逆

由Davidon提出,Fletcher和Powell改进,也称DFP算法。

迭代方向:
$$p^{(k)} = -H_k \nabla f(\mathbf{x}^{(k)})$$

$$p^{(k)} = -[\nabla^2 f(\mathbf{x}^{(k)})]^{-1} \nabla f(\mathbf{x}^{(k)})$$

$$H_{k+1} = H_k + \Delta H_k$$

$$H_1 = I$$

$$\Delta H_k = \frac{\boldsymbol{\delta}_k \boldsymbol{\delta}_k^T}{\boldsymbol{\delta}_k^T \boldsymbol{\gamma}_k} - \frac{H_k \boldsymbol{\gamma}_k \boldsymbol{\gamma}_k^T H_k}{\boldsymbol{\gamma}_k^T H_k \boldsymbol{\gamma}_k}$$

$$\frac{\boldsymbol{\delta}_k \triangleq \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}}{\boldsymbol{\gamma}_k \triangleq \nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^{(k)})}$$

可以证明: 1、 H_k 满足拟牛顿条件,为Hessian矩阵的逆。 2、当目标函数为严格凸二次函数时,可经有限步迭代收敛于极值(二次终止性)。为什么不是1步?

4、共轭梯度法

- 共轭方向定义: 若A正定,且 $p^{(1)}$ 和 $p^{(2)}$ 满足 $p^{(1)}$ TA $p^{(2)}$ =0,则 $p^{(1)}$ 、 $p^{(2)}$ 关于A共轭。(共轭是正交概念的推广) ⇒ 若 $p^{(1)}$ 、 $p^{(2)}$ 称关于A共轭,则 $p^{(1)}$ 和A $p^{(2)}$ 正交。
- 二次严格凸函数: $f(x)=1/2*(x-x*)^{T}A(x-x*)$
- $\nabla f(x) = A(x-x^*)$ $p^{(1)} := p_t (x^{(2)} 点 切线方向)$ $p^{(2)} := -(x^{(2)}-x^*)$

 $p^{(1)T}Ap^{(2)} = -p_t^T \nabla f(x^{(2)}) = 0$

问题:如何保证 $p^{(1)}$ 为 $x^{(2)}$ 的切线方向?

Fletcher-Reeves法

■ 设计思想: 利用梯度构造共轭方向进行迭代

迭代方向:
$$p^{(k+1)} = -\nabla f(x^{(k+1)}) + \beta_k p^{(k)}$$
 $p^{(1)} = -\nabla f(x^{(1)})$

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \lambda_k^* \boldsymbol{p}^{(k)}$$

将
$$p^{(k+1)}$$
代入 共轭方程 $p^{(k)T}\nabla^2 f(x^{(k)})p^{(k+1)} = 0$

$$-\boldsymbol{p}^{(k)T}\nabla^2 f(\boldsymbol{x}^{(k)})\nabla f(\boldsymbol{x}^{(k+1)}) + \beta_k \boldsymbol{p}^{(k)T}\nabla^2 f(\boldsymbol{x}^{(k)})\boldsymbol{p}^{(k)} = 0$$

$$\beta_k = \frac{p^{(k)T} \nabla^2 f(\mathbf{x}^{(k)}) \nabla f(\mathbf{x}^{(k+1)})}{p^{(k)T} \nabla^2 f(\mathbf{x}^{(k)}) p^{(k)}}$$
 Fletcher-Reeves $\not\cong$

注意: $\mathbf{n} > 2$ 时, $p^{(1)}$ 的共轭方向不止1个, $-\nabla f(x^{(2)}) + \beta_1 p^{(1)}$ 未必指 **向 x***

二次终止性

- 共轭方向组: 若A是n阶正定矩阵,且 $p^{(1)}, p^{(2)}...p^{(k)}$ 为k个关于A两两共轭的方向, $k \le n$,则称这组方向关于A共轭。
- ◆性质1: k≤n,则A的k个非零共轭方向线性无关。(反证法)

线性相关
$$\sum_{i=1}^{k} \alpha_{i} \boldsymbol{p}^{(i)} = 0 \quad \Longrightarrow \quad \sum_{i=1}^{k} \alpha_{i} \boldsymbol{p}^{(i)T} A \boldsymbol{p}^{(j)} = \alpha_{j} \boldsymbol{p}^{(j)T} A \boldsymbol{p}^{(j)} = 0 \quad \Longrightarrow \quad \alpha_{j} = 0 \quad$$

◆性质2: 若f(x)为严格凸二次函数,则 $\nabla f(x^{(k+1)})^T p^{(j)} = 0$ $1 \le j \le k \le n$

$$\nabla f(\mathbf{x}^{(k+1)}) = A\mathbf{x}^{(k+1)} + \mathbf{b} = A\mathbf{x}^{(k)} + \mathbf{b} + \lambda_k^* A\mathbf{p}^{(k)} = \nabla f(\mathbf{x}^{(k)}) + \lambda_k^* A\mathbf{p}^{(k)} \qquad \Longrightarrow \qquad \nabla f(\mathbf{x}^{(k+1)})^T \mathbf{p}^{(k-1)} = 0$$

■ 定理:沿着A的n个非零共轭方向依次做一维最优步长搜索,则最多经过n步可找到二次严格凸函数的极小值。

性质2
$$\nabla f(\mathbf{x}^{(k+1)})^T \mathbf{p}^{(j)} = 0$$

$$1 \le j \le k \le n$$

$$\nabla f(\mathbf{x}^{(n+1)})^T \left(\sum_{i=1}^n \alpha_i \mathbf{p}^{(i)}\right) = 0$$

$$\nabla f(\mathbf{x}^{(n+1)}) = \sum_{i=1}^n \alpha_i \mathbf{p}^{(i)}$$

等价公式

◆目的:避免求取二阶导数

共轭梯度法迭代方向:

$$\boldsymbol{p}^{(k+1)} = -\nabla f(\boldsymbol{x}^{(k+1)}) + \beta_k \boldsymbol{p}^{(k)}$$

Crowder-Wolfe公式:

$$\beta_k = \frac{\nabla f(\boldsymbol{x}^{(k+1)})^T [\nabla f(\boldsymbol{x}^{(k+1)}) - \nabla f(\boldsymbol{x}^{(k)})]}{\boldsymbol{p}^{(k)T} [\nabla f(\boldsymbol{x}^{(k+1)}) - \nabla f(\boldsymbol{x}^{(k)})]}$$

Fletcher-Reeves公式:

$$\beta_k = \frac{\nabla f(\mathbf{x}^{(k+1)})^T \nabla f(\mathbf{x}^{(k+1)})}{\nabla f(\mathbf{x}^{(k)})^T \nabla f(\mathbf{x}^{(k)})}$$

Polak-Ribiere公式:

$$\beta_k = \frac{\nabla f(\boldsymbol{x}^{(k+1)})^T [\nabla f(\boldsymbol{x}^{(k+1)}) - \nabla f(\boldsymbol{x}^{(k)})]}{\nabla f(\boldsymbol{x}^{(k)})^T \nabla f(\boldsymbol{x}^{(k)})}$$

自动重置

◆ 目的: 保证一般f(x)下算法的收敛性

$$\beta_k = \frac{\nabla f(\mathbf{x}^{(k+1)})^T [\nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^{(k)})]}{\nabla f(\mathbf{x}^{(k)})^T \nabla f(\mathbf{x}^{(k)})}$$
Polak-Ribiere \(\precent{\pi}\pi\):

 $\beta_k \leftarrow \max\{\beta_k, 0\}$ 自动重置

$$\boldsymbol{p}^{(k+1)} = -\nabla f(\boldsymbol{x}^{(k+1)}) + \beta_k \boldsymbol{p}^{(k)}$$

共轭梯度法的性能介于最速下降法和牛顿法之间!

下降迭代法

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \lambda_k \boldsymbol{p}^{(k)} \qquad \Longrightarrow \qquad f(\boldsymbol{x}^{(k+1)}) < f(\boldsymbol{x}^{(k)})$$

- > 迭代方向
 - 基于梯度方法
 - □最速下降法
 - □牛顿法
 - □拟牛顿法
 - □共轭梯度法
 - ■直接法
- ▶ 步长选择(一维搜索)
 - ■基于梯度法
 - ■直接法
- > 迭代终止准则

最优迭代步长

■ 设计思想: 沿搜索方向的目标函数值最小

$$\lambda_k = \arg\min_{\lambda} f(\boldsymbol{x}^{(k)} + \lambda \boldsymbol{p}^{(k)})$$

- > 基于梯度方法
- > 直接法
 - ➤ Fibonacci斐波那契法
 - > 0.618法

基于梯度方法

lack 目标: $\lambda_k = \arg\min_{\lambda} f(\mathbf{x}^{(k)} + \lambda \mathbf{p}^{(k)})$

$$f(\mathbf{x}^{(k)} + \lambda \mathbf{p}^{(k)}) = f(\mathbf{x}^{(k)}) + \lambda \nabla f(\mathbf{x}^{(k)})^T \mathbf{p}^{(k)} + \frac{1}{2} \lambda^2 \mathbf{p}^{(k)T} \nabla^2 f(\mathbf{x}^{(k)}) \mathbf{p}^{(k)} + O(\lambda^2)$$

极小值
$$\frac{df(\mathbf{x}^{(k)} + \lambda \mathbf{p}^{(k)})}{d\lambda} \approx \nabla f(\mathbf{x}^{(k)})^T \mathbf{p}^{(k)} + \lambda \mathbf{p}^{(k)T} \nabla^2 f(\mathbf{x}^{(k)}) \mathbf{p}^{(k)} = 0$$

$$\lambda^* = \frac{-\nabla f(\boldsymbol{x}^{(k)})^T \boldsymbol{p}^{(k)}}{\boldsymbol{p}^{(k)T} \nabla^2 f(\boldsymbol{x}^{(k)}) \boldsymbol{p}^{(k)}}$$

- 特点: 1、解析解,不需迭代
 - 2、需求Hessian矩阵
 - 3、x^(k)+λp^(k)未必是极小值

$$h(x) = g[f(x)]$$

$$\nabla_{x} h(x) = \nabla_{x} f(x) \nabla_{f} g[f(x)]$$

最速下降法的性质

- 性质: 最优步长时 $\nabla f(\mathbf{x}^{(k+1)}) \perp \nabla f(\mathbf{x}^{(k)})$
- ■证明

$$\frac{df(\mathbf{x}^{(k)} + \lambda \mathbf{p}^{(k)})}{d\lambda}$$

$$= \left(\frac{df(\mathbf{x}^{(k)} + \lambda \mathbf{p}^{(k)})}{d(\mathbf{x}^{(k)} + \lambda \mathbf{p}^{(k)})}\right)^{T} \frac{d(\mathbf{x}^{(k)} + \lambda \mathbf{p}^{(k)})}{d\lambda}$$

$$= \nabla f(\mathbf{x}^{(k+1)})^{T} \mathbf{p}^{(k)}$$

$$= -\nabla f(\mathbf{x}^{(k+1)})^{T} \nabla f(\mathbf{x}^{(k)})$$

$$= 0$$

下降迭代法

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \lambda_k \boldsymbol{p}^{(k)} \qquad \Longrightarrow \qquad f(\boldsymbol{x}^{(k+1)}) < f(\boldsymbol{x}^{(k)})$$

- > 迭代方向
 - 基于梯度方法
 - □最速下降法
 - □牛顿法
 - □拟牛顿法
 - □共轭梯度法
 - ■直接法
- > 步长选择(一维搜索)
 - ■基于梯度法
 - ■直接法
- > 迭代终止准则

分数法

- 假设: f(x)在[a,b]区间内单峰或无峰。假设是否合理?
- 特点: 取 $x_1, x'_1 \in (a, b)$,将[a,b]分为3个区间。则最小值x*必定位于 x_1, x'_1 两点中目标函数值较小一点所在的两个相邻区间内。
- 算法思想: $将x_1 \ x'_1$ 两点中目标函数值大的点作为新的边界,不断缩小最优值所在区间的范围。

 $x^* \in [a, x'_1]$

搜索点选取

● 目标: 计算量最小

● 技巧: 当前目标区的搜索点可直接用于下一次搜索

问题: 如果单峰点是最大值会怎样?

斐波那契法

● Fibonacci数列

$$F_n = F_{n-1} + F_{n-2}, n \ge 2 \quad F_0 = 1 \quad F_1 = 1$$

n	0	1	2	3	4	5
Fn	1	1	2	3	5	8

0.618法 (黄金分割点法)

$$r*r=1-r$$
 \longrightarrow $r^2+r-1=0$ \longrightarrow $r=0.618$

可以证明:
$$\lim_{n\to\infty} \frac{F_{n-1}}{F_n} = r = 0.618$$

下降迭代法

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \lambda_k \boldsymbol{p}^{(k)} \qquad \Longrightarrow \qquad f(\boldsymbol{x}^{(k+1)}) < f(\boldsymbol{x}^{(k)})$$

- > 迭代方向
 - ■基于梯度方法
 - □最速下降法
 - □牛顿法
 - □拟牛顿法
 - □共轭梯度法
 - 直接法
- > 步长选择(一维搜索)
 - ■基于梯度法
 - ■直接法
- > 迭代终止准则

迭代终止准则

- 迭代收敛准则
 - 绝对误差准则

$$\parallel \boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)} \parallel \leq \varepsilon_1$$

$$|f(\mathbf{x}^{(k+1)}) - f(\mathbf{x}^{(k)})| \le \varepsilon_2$$

● 相对误差准则

$$\frac{\parallel \boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)} \parallel}{\parallel \boldsymbol{x}^{(k)} \parallel} \leq \varepsilon_3$$

$$\frac{|f(\boldsymbol{x}^{(k+1)}) - f(\boldsymbol{x}^{(k)})|}{|f(\boldsymbol{x}^{(k)})|} \leq \varepsilon_4$$

■ 梯度模准则(first-order optimality measure)

$$\|\nabla f(\mathbf{x}^{(k)})\| \leq \varepsilon_5$$

$$\frac{\|\nabla f(\mathbf{x}^{(k)})\|}{\|\nabla f(\mathbf{x}^{(0)})\|} \le \varepsilon_6$$

完整算法举例

- 1、设置初始点 $x^{(1)}$ 、迭代终止阈值 ε , k=1;
- 2、如果 $\|\nabla f(\mathbf{x}^{(k)})\| \leq \varepsilon$, $\mathbf{x}^* = \mathbf{x}^{(k)}$, 迭代结束。
- 3、否则继续迭代

$$p^{(k)} = -\nabla f(x^{(k)})$$
 最速下降法
$$\lambda_k = \arg\min_{\lambda} f(x^{(k)} + \lambda p^{(k)})$$

$$x^{(k+1)} = x^{(k)} + \lambda_k p^{(k)}$$

k←*k*+1,返回第2步。

第六章 非线性规划

- ▶非线性规划数值解法
 - □ 无约束极值问题
 - ●下降迭代法
 - □ 有约束极值问题
 - ●可行方向法
 - ●制约函数法
 - ●逐次逼近法

约束极值问题的数值解法

- ▶可行方向法
 - ➤ Zoutendijk可行方向法
- ▶制约函数法
 - > 外点法
 - > 内点法
 - > 混合法
- >逐次逼近法(近似规划法)
 - > SLP (Sequential Linear Programming)
 - > SQP (Sequential Quadratic Programming)

Zoutendijk可行方向法

可行下降方向

$$\begin{cases}
\nabla f(\mathbf{x}^{k})^T \mathbf{p} < 0 \\
-\nabla g_j(\mathbf{x}^{(k)})^T \mathbf{p} < 0
\end{cases}$$

$$f(1) \qquad \qquad \begin{cases}
\nabla f(\mathbf{x}^{k})^T \mathbf{p} \leq \eta \\
-\nabla g_j(\mathbf{x}^{(k)})^T \mathbf{p} \leq \eta
\end{cases}$$

$$\eta < 0$$

$$\min \eta$$
 $\eta < 0$: 可行下降力 $s.t.$ $\nabla f(\mathbf{x}^{k)})^T \mathbf{p} \le \eta$ $-\nabla g_j(\mathbf{x}^{(k)})^T \mathbf{p} \le \eta$ $j \in J(\mathbf{x}^{k)})$ $\eta = 0$: 迭代结束! $1 \le \mathbf{p} \le 1$ $\eta > 0$: 不会出现

η<0: 可行下降方向

η>0: 不会出现

问题: Zoutendijk法迭代结束时找到的一定是极小点吗?

约束极值问题的数值解

- ▶可行方向法
 - ➤ Zoutendijk可行方向法
- ▶制约函数法
 - > 外点法
 - ▶ 内点法
 - > 混合法
- >逐次逼近法(近似规划法)
 - > SLP (Sequential Linear Programming)
 - > SQP (Sequential Quadratic Programming)

制约函数法

- 思想: 化为无约束极值问题求解,
- 名称: 也称为序列无约束极小化技术, SUMT(Sequential Unconstrained Minimization Technique)
- ●制约函数法的种类
 - 外点法
 - > 从可行域外部逼近极值
 - 内点法
 - > 从可行域内部逼近极值
 - 混合法
 - ▶ 内点法和外点法的结合

1、外点法

■ 思想:构造罚函数,惩罚可行域外的迭代点

$$\min P(\mathbf{x}, M) = f(\mathbf{x}) + M \sum_{i=1}^{m} h_i^2(\mathbf{x}) + M \sum_{j=1}^{l} \left[\min(0, g_j(\mathbf{x})) \right]^2$$
Courant 罚 函数

M>0为罚因子,当M趋向无穷时,x*为原问题约束极值解。

解析分析举例

min
$$f(x) = \frac{1}{3}(x_1 + 1)^3 + x_2$$

s.t.
$$x_1 - 1 \ge 0$$

$$x_2 \ge 0$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} (x_1 + 1)^2 \\ 1 \end{bmatrix} \neq 0$$

没有内点极值

求解

构造罚函数:

$$P(\mathbf{x}, M) = \frac{1}{3}(x_1 + 1)^3 + x_2 + M[\min(0, x_1 - 1)]^2 + M[\min(0, x_2)]^2$$

根据一阶驻点条件,有

$$\frac{\partial P}{\partial x_1} = (x_1 + 1)^2 + 2M[\min(0, x_1 - 1)] = 0$$

$$\frac{\partial P}{\partial x_2} = 1 + 2M[\min(0, x_2)] = 0$$

如果 $x_1 \ge 1 \Rightarrow x_1 = -1$,矛盾

如果 $x_2 \ge 0 \Rightarrow 1 = 0$,不成立

所以考虑 $x_1<1, x_2<0$ 区域的驻点。(可行域外的点)

$$\frac{\partial P}{\partial x_1} = (x_1 + 1)^2 + 2M(x_1 - 1) = 0$$

$$\frac{\partial P}{\partial x_2} = 1 + 2Mx_2 = 0$$

可得:

$$\begin{cases} x_1 = -1 - M \pm \sqrt{M^2 + 4M} & \mathbf{M} \to +\infty \\ x_2 = -\frac{1}{2M} & \Rightarrow \end{cases} \begin{cases} x_1^* = 1 \\ x_2^* = 0 \end{cases}$$

$$\nabla^2 P(\mathbf{x}) = \begin{bmatrix} 2(x_1 + 1) + 2M & 0 \\ 0 & 2M \end{bmatrix} > 0$$

故为极小值

外点法的数值解法

● 构造罚函数

$$\min P(\mathbf{x}, M_k) = f(\mathbf{x}) + M_k P(\mathbf{x}) \qquad P(\mathbf{x}) \triangleq \sum_{i=1}^m h_i^2(\mathbf{x}) + \sum_{j=1}^l [\min(0, g_j(\mathbf{x}))]^2$$

- 1、取 $M_1>0$ (通常 $M_1=1$),允许误差ε>0,k:=1
- 2、求 $minP(x,M_k)$,得 $x^{(k)}$ 。
- 3、if $M_k P(x^{(k)}) > \varepsilon$ $M_{k+1} = cM_k \text{ (c>1, 通常取5或10)}$, k := k+1转第2步继续迭代。

else

$$\nabla f(X^*) - \sum_{i=1}^{m} \gamma_i^* \nabla h_i(X^*) - \sum_{g_j(X^*)=0} \mu_j^* \nabla g_j(X^*) = \mathbf{0}$$

外点法收敛性分析

> 罚函数

$$P(\mathbf{x}, M_k) = f(\mathbf{x}) + M_k \sum_{i=1}^m h_i^2(\mathbf{x}) + M_k \sum_{j=1}^l [\min(0, g_j(\mathbf{x}))]^2$$

> 第k步罚函数的局部极小值满足

$$\nabla P(\mathbf{x}^{(k)}, M_k) = \nabla f(\mathbf{x}^{(k)}) + 2M_k \sum_{i=1}^m h_i(\mathbf{x}^{(k)}) \nabla h_i(\mathbf{x}^{(k)}) + 2M_k \sum_{g_j(\mathbf{x}^{(k)}) \le 0} g_j(\mathbf{x}^{(k)}) \nabla g_j(\mathbf{x}^{(k)}) = 0$$

$$\nabla P(\mathbf{x}^{(k)}, M_k) = \nabla f(\mathbf{x}^{(k)}) - \sum_{i=1}^m \lambda_i(k) \nabla h_i(\mathbf{x}^{(k)}) - \sum_{g_j(\mathbf{x}^{(k)}) \le 0} \mu_j(\mathbf{x}_k) \nabla g_j(\mathbf{x}^{(k)}) = 0$$

$$\lambda_i(k) = -2M_k h_i(\mathbf{x}^{(k)})$$

$$\mu_i^*(k) = -2M_k g_j(\mathbf{x}^{(k)}) \ge 0$$

> x^(k)迭代收敛时

$$\nabla P(\mathbf{x}^*, M) = \nabla f(\mathbf{x}^*) - \sum_{i=1}^{m} \lambda_i^* \nabla h_i(\mathbf{x}^*) - \sum_{g_j(\mathbf{x}^*) \to 0} \mu_j^* \nabla g_j(\mathbf{x}^*) = 0$$
KKT条件!

如果 $x^{(k)}$ 是 $\min P(x,M_k)$ 的全局极小值,则外点法收敛到全局最优解!

外点法特点

- 1、只有 $M_k \to \infty$,才保证 $\lambda^*(k) \to \lambda^*$ 、 $\mu^*(k) \to \mu^*$, $x^{(k)} \to x^*$ 。
- 2、 M_k 过大,有可能导致Hessian矩阵病态(条件数很大),极小值将位于狭长的深谷,导致目标函数值对搜索方向敏感。

$$cond(\boldsymbol{H}) = \parallel \boldsymbol{H} \parallel \cdot \parallel \boldsymbol{H}^{-1} \parallel \geq \frac{\lambda_{\max}}{\lambda_{\min}}$$

- 3、改进策略
- 1)设计精确罚函数(例如 l_1 罚函数),令有限 M_k 的 $P(x,M_k)$ 驻点恰好为 x^* 。
- 2)构造增广Lagrange函数对罚函数进行修正,在有限 M_k 时也能使 $x^{(k)}$ 逼近最优解 x^* 。

2、内点法

■ 算法思想: 构造障碍函数,阻止迭代点离开可行域。

$$\min_{\mathbf{x} \in R_0} \overline{P}(\mathbf{x}, r) = f(\mathbf{x}) + r \sum_{j=1}^{l} \frac{1}{g_j(\mathbf{x})}$$

或

$$\min_{\mathbf{x} \in R_0} \overline{P}(\mathbf{x}, r) = f(\mathbf{x}) - r \sum_{j=1}^{l} \log g_j(\mathbf{x})$$

其中 $R_0 = \{x \mid g_j(x) > 0, j = 1, 2, \dots, l\}$ 严格内点

r>0为障碍因子,其在迭代中的取值会不断减小,趋向于0,使x可趋向于边界。

解析分析举例

$$\min f(\mathbf{x}) = x_1 + x_2$$

s.t.
$$-x_1^2 + x_2 \ge 0$$

$$x_1 \ge 0$$

求解

构造障碍函数:

$$\overline{P}(\mathbf{x},r) = x_1 + x_2 - r \cdot [\log(-x_1^2 + x_2) + \log(x_1)]$$

根据驻点一阶条件,有

$$\frac{\partial \overline{P}}{\partial x_1} = 1 - r \cdot \frac{-2x_1}{-x_1^2 + x_2} - r \cdot \frac{1}{x_1} = 0$$

$$\frac{\partial \overline{P}}{\partial x_2} = 1 - r \cdot \frac{1}{-x_1^2 + x_2} = 0$$

求解得到:

$$x_{1} = \frac{\sqrt{1+8r}-1}{4}$$

$$x_{2} = \frac{3}{2}r - \frac{\sqrt{1+8r}-1}{8}$$

r→**0**时,有

$$\begin{cases} x_1^* = 0 \\ x_2^* = 0 \end{cases}$$

数值解法

● 构造障碍函数

$$\min_{\mathbf{X} \in R_0} \overline{P}(\mathbf{x}, r_k) = f(\mathbf{x}) - r_k \sum_{j=1}^{l} \log g_j(\mathbf{x})$$

- 1、取 $r_1>0$ (通常 $r_1=1$),允许误差 $\epsilon>0$,k:=1
- 2、求 $minP(x,r_k)$,得 $x^{(k)} \in \mathbb{R}_0$ (须保证是内点)

3、if
$$\left| r_{k} \sum_{j=1}^{l} \log g_{j}(\mathbf{x}^{(k)}) \right| > \varepsilon$$
 $r_{k+1} = r_{k}/\mathbf{c}$, (c>1,通常取5或10) $k := k+1$ 转第2步重新求解。

else

内点法收敛性分析

> 障碍函数

$$\overline{P}(\mathbf{x}, r_k) = f(\mathbf{x}) - r_k \sum_{i=1}^{l} \log g_i(\mathbf{x})$$

➤ 第k步障碍函数局部极小值满足

$$\nabla \overline{P}(\mathbf{x}^{(k)}, r_k) = \nabla f(\mathbf{x}^{(k)}) - r_k \sum_{j=1}^{l} \frac{1}{g_j(\mathbf{x}^{(k)})} \nabla g_j(\mathbf{x}^{(k)}) = 0$$

$$\nabla \overline{P}(\mathbf{x}^{(k)}, r_k) = \nabla f(\mathbf{x}^{(k)}) - \sum_{j=1}^{l} \mu_j(k) \nabla g_j(\mathbf{x}^{(k)}) = 0 \qquad \mu_j(k) = \frac{r_k}{g_j(\mathbf{x}^{(k)})} \ge 0$$

 $> x_k *$ 迭代收敛时

KKT条件!

$$\nabla \overline{P}(\mathbf{x}^*, r) = \nabla f(\mathbf{x}^*) - \sum_{j=1}^{l} \mu_j^* \nabla g_j(\mathbf{x}^*) = 0$$

$$\mu_j^* = \frac{r}{g_j(\boldsymbol{x}^*)} \ge 0$$

$$\mu_j^* g_j(x^*) = r \to 0$$

如果 $x^{(k)}$ 是 $\min P(x,r_k)$ 的全局极小值,则内点法收敛到全局最优解!

混合法

- 内点法不能处理等式约束问题
- 外点法不能处理目标函数在可行域外不存在的问题
- 对等式约束和当前不被满足的不等式约束,使用罚函数法,对满足的不等式约束,使用障碍函数法。

约束极值问题的数值解

- ▶可行方向法
 - ➤ Zoutendijk可行方向法
- ▶制约函数法
 - > 外点法
 - > 内点法
 - > 混合法
- >逐次逼近法(近似规划法)
 - > SLP (Sequential Linear Programming)
 - > SQP (Sequential Quadratic Programming)

逐次逼近法

- 思想: Taylor展开近似为简单规划问题
- □ 序贯线性规划法SLP (Sequential Linear Programming)
- □ 序贯二次规划法SQP (Sequential Quadratic Programming)

一般约束极值问题

$$\min f(x)$$

s.t.
$$h_i(x) = 0$$
 $i = 1, 2, ..., m$ $g_j(x) \ge 0$ $j = 1, 2, ..., l$ $x \in \mathbb{R}^n$

求解思路: 通过低阶近似, 化为容易求解的规划问题

序贯线性规划法SLP

$$\min f(\mathbf{x}) = f(\mathbf{x}^{(k)}) + \nabla f(\mathbf{x}^{(k)})^{T} (\mathbf{x} - \mathbf{x}^{(k)})$$
s.t. $h_{i}(\mathbf{x}^{(k)}) + \nabla h_{i}(\mathbf{x}^{(k)})^{T} (\mathbf{x} - \mathbf{x}^{(k)}) = 0$ $i = 1, 2, ..., m$

$$g_{i}(\mathbf{x}^{(k)}) + \nabla g_{i}(\mathbf{x}^{(k)})^{T} (\mathbf{x} - \mathbf{x}^{(k)}) \ge 0$$
 $j = 1, 2, ..., l$

$$|x_s - x_s^{(k)}| \le \delta_s^{(k)}$$
 $s = 1, 2, ..., n$ $\delta_s^{(k)}$ 是步长限制量

设第k步线性规划的最优解为 $\mathbf{x}^{*(k)}$ 当 $\mathbf{x}^{*(k)}$ 是可行解时,取 $\delta_s^{(k+1)} = \delta_s^{(k)}$, $\mathbf{x}^{(k+1)} = \mathbf{x}^{*(k)}$ 继续迭代; 当 $\mathbf{x}^{*(k)}$ 不是可行解时,取 $\delta_s^{(k)} = \beta \delta_s^{(k)}$, $\beta < 1$,重新寻优; 当 $|\delta_s^{(k)}| < \varepsilon, \forall s = 1, 2, \cdots, n$ 或 $||\nabla f(\mathbf{x}^{(k)})|| < \varepsilon$ 时,迭代结束。

序贯二次规划法SQP

起作用约束集法序贯求解如下近似问题

$$\min f(\Delta \mathbf{x}) = f(\mathbf{x}^{(k)}) + \nabla f(\mathbf{x}^{(k)})^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \nabla^2 f(\mathbf{x}^{(k)}) \Delta \mathbf{x}$$

s.t.
$$h_i(\mathbf{x}^{(k)}) + \nabla h_i(\mathbf{x}^{(k)})^T \Delta \mathbf{x} = 0$$
 $i = 1, 2, ..., m$

$$g_{j}(\mathbf{x}^{(k)}) + \nabla g_{j}(\mathbf{x}^{(k)})^{T} \Delta \mathbf{x} \ge 0$$
 $j = 1, 2, ..., l$

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \Delta \boldsymbol{x}^*$$