

UE Opto électronique TD et TP

OpE / Semestre 5
Institut d'Optique

Julien VILLEMEJANE

UE Optoélectronique

UE = Unité d'Enseignement

Volume horaire de 42h pour **4 ECTS**

(European Credit Transfer and Accumulation System)

13 % du S5

Module d'enseignement s'inscrivant dans le

déploiement de l'approche par compétences

Vous serez encouragé·e à

analyser votre progression personnelle

dans l'acquisition de savoirs et savoir-faire

Vous serez amené·e en particulier à

repérer de façon explicite les erreurs

et les maladresses commises

6 séances de TP

4h30 / en binôme

6 séances de TD

1h30

2 séances de TD Machine

1h30

Découverte du langage C++

Responsables

Fabienne BERNARD
Julien VILLEMEJANE

UE Optoélectronique

A l'issue de cette UE, les étudiant es seront capable de :

BLOC 1

caractériser un dipôle (linéaire ou non-linéaire) statiquement et en déduire ses zones de fonctionnement

BLOC 2

caractériser un système linéaire dans les domaines temporel et fréquentiel

BLOC 3

mettre en œuvre des montages de photodétection et de comparer leurs performances fréquentielles et temporelles

documenter un travail scientifique/technique

UE = Unité d'Enseignement

6 séances de TP

4h30 / en binôme

6 séances de TD

1h30

2 séances de TD Machine

1h30

Découverte du langage C++

Responsables

Fabienne BERNARD Julien VILLEMEJANE

UE Optoélectronique / TP

UE = Unité d'Enseignement

6 séances de TP

4h30 / en binôme

Responsables

Fabienne BERNARD
Julien VILLEMEJANE

UE Optoélectronique / TP Intro

TP Introduction / Découverte de la photodétection

découvrir le matériel d'instrumentation à disposition en salle de TP

se familiariser avec **les photodiodes**

câbler des montages avec des **amplificateurs linéaires intégrés** (ALI)

Photodétection

Opto-Electronique / Semestre 5 Institut d'Optique

Julien VILLEMEJANE

Caractéristiques électriques d'une diode

Kingbright

High Efficiency Red

L-53ID

Photodiode, une diode mais...

 $I_{photo} = S_{\lambda} \cdot \eta \cdot \Phi_{photo}$ Sensibilité spectrale

Rendement quantique

https://www.youtube.com/watch?v=KgKcbW77txY

https://www.youtube.com/watch?v=rNoHLOumplk

Photodiode, une diode mais...

Photocurrent/Open-Circuit Voltage

$$I_{P} (V_{R} = 5 V) / V_{O} = f (E_{v})$$

Photodétection

Montage simple

Opto-Electronique / Semestre 5 Institut d'Optique

Julien VILLEMEJANE

Montage de photodétection

Flux

lumineux

Rendement quantique

Sensibilité

spectrale

$$V_{S} = R_{PHD} \cdot I_{photo}$$

Montage de photodétection

quantique

 $V_S = R_{PHD} \cdot I_{photo}$

Tension de polarisation non constante

Modélisation

Bande passante réduite (à cause du système de mesure)