Lineaire Algebra

(September 2010)

 $\boxed{1}$ Geef en bewijs de dimensiestelling voor een lineaire afbeelding $\mathcal{A}:V\to W.$

- 2 1. Bewijs dat een maximaal vrij deel van een vectorruimte V ook een basis is van V.
 - 2. Zij $\mathcal{A}:V\to V$ een lineaire transformatie. Oordeel of volgende implicaties juist zijn. Leg uit!
 - (a) Als \mathcal{A} orthogonaal is, dan is \mathcal{A} inverteerbaar.
 - (b) Als \mathcal{A} symmetrisch is, dan is \mathcal{A} inverteerbaar.

[3] Zij φ een lineaire afbeelding, gegeven door

$$\varphi: \mathbb{R}^3 \to \mathbb{R}^3: (x, y, z) \mapsto (2x + y - z, y - 2z, -2x - z).$$

Gegeven is een lineaire deelverzameling U van \mathbb{R}^3 , met $U = \langle (0,0,1), (1,1,1) \rangle$. Bepaal $\varphi^{-1}(U)$.

- [4] Zij $\varphi: V \to V'$ een lineaire afbeelding. De vectorruimte W is een lineaire deelruimte van V. We weten dat $W = W_1 \oplus W_2$, met W_1 en W_2 deelruimten van V.
 - 1. Bewijs dat wanneer φ injectief is, $\varphi(W) = \varphi(W_1) \oplus \varphi(W_2)$.
 - 2. Geldt de omgekeerde implicatie ook? Toon aan of geef een tegenvoorbeeld.
- [5] Zij $P, N \in \mathbb{R}^{n \times n}$ met P niet de nulmatrix. We weten ook dat P = NP met P een diagonaliseerbare matrix. Bewijs dat N een eigenruimte heeft met als dimensie minstens rang(P).
- 6 Oordeel of volgende uitspraken juist of fout zijn. Bewijs of geen een tegenvoorbeeld.
 - 1. Zij V een n-dimensionale vectorruimte. Voor deelruimten U_i , voor elke i, van V geldt dat $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_r$. Als nu r > n+1, dan is er een $i \in \{1 \dots r\}$ waarvoor geldt dat $U_i = U_{i+1}$.
 - 2. Zij V een vectorruimte met basis $\mathcal{E} = \{e_1, e_2, e_3\}$. We weten dat W een lineaire deelruimte is van V die voortgebracht wordt door $\{e_1, e_2\}$. Dan bestaat er een basis $\mathcal{V} = \{v_1, v_2, v_3\}$, waarbij $v_1 \notin W$, $v_2 \notin W$ en $v_3 \notin W$.
- [7] Gegeven is de matrix M_a waar $a \in \mathbb{R}$. Bepaal een orthogonale basis van eigenvectoren die geldt voor alle a.

$$M_a = \begin{pmatrix} a & 1 & -a \\ 1 & 1 & 1 \\ -a & 1 & a \end{pmatrix}$$

We be schouwen als inproduct het standaard inproduct op \mathbb{R}^3 .