FIG. 1A

GGCTGCCGG AGGGGGGCGTGCGTGGGTGGGGGGGGGTGGAAGCCTCGAGCAGCCGGCGCCTTCT CTGGCCCCGGCCCATATGGCTTGAAGAGCCGTGCCACCCAGTGGCCCCACTGCCCCA

Glu Arg 30 Asp GAC 90 Glu Gly Lys Ala GAA GGG AAG GCA Asp Pro Leu Asn Leu Ser Trp Tyr Asp Asp Leu GAT CCA CTG AAC CTG TCC TGG TAC GAT GAC GAT CTG Ser $^{
m G1y}_{
m GGG}$ Asn AAT Phe Pro CCC Trp Ser Arg TGG AGC CGG Asn AAC Met ATG 1 Gln CAG

 Γ eu Leu t Leu Leu Thr I G CTG CTC ACC (Ala Met GCC ATG Tyr Tyr TACTyr Asn TAC AAC Pro His CCC CAC Arg AGG

Ser TCC 180 Val GTA Ala GCT Met Gly Asn Val Leu Val Cys GGC AAL-GTG CTG GTG TGC 50 Phe TTT Val GTC Ile ATC $_{
m \Gamma}^{
m Phe}$

H O	0.075	.				
Se ₁	90 Trp TGG	\ ii	120 A1a GCA	G L G	150 Arg	2
Val GTC	Pro	Arg AGG	$\operatorname{Th}_{\mathcal{L}}$	Thr_{ACA}	Lys	
Ile ATA	Met ATG	Ser AGC	Cys TGC	Tyr TAC	Ser))
Leu TTG	Val GTA	Phe TTC	Met ATG	Arg AGG	Ser	
${ t Tyr} \\ { t TAC}$	Leu	Lys AAA	Met ATG	Asp	Tyr TAC	
70 Asn AAC	Thr_{ACA}	$\frac{100}{\text{Trp}}$	Val GTC	130 Ile ATT	Arg '	
Thr	Ala GCC	Glu GAG	Asp	Ser	Thr A	
$\operatorname{Th}_{\mathcal{L}}$	Val GTG	$^{ m G1y}_{ m GGT}$	Leu CTG	Ile ATC	Asn	
$\operatorname{Thr}_{\operatorname{ACC}}$	Leu	Val GTG	${ m Thr}$	Ala GCC	Tyr TAŢ	
Gln	Leu CTT	Val GTG	Val GTC	Cys TGT	Leu CTG	
Leu TTG	80 Asp GAT	Glu GAG	110 Phe TTT	Leu	140 Met ATG	
Ala GCT	Ala GCT	Leu	Ile ATC	Asn AAC	Pro	
Lys AAG	Val GTG	Tyr TAC	Asp GAC	Leu CTG	Met ATG	
Glu GAG	Ala GCT	Val GTC	Cys TGT	Ile ATC	Ala GCA	. 1B
Arg GCA	Leu CTT	Val GTT	His	Ser AGC	Val GTG	FIG

Thr	180 Asn AAT 540	Ile	210 11e ATC	C P	240 Leu CTC	7
Phe TTC	G1n CAG	Ser TCC	\mathtt{Tyr}	Asn AAC	Pro CCA	
Ser	Asp GAC	Ser TCC	Val GTC	Val GTC	Thr_{ACA}	
Leu CTG	Thr ACA	Tyr	Leu	Arg CGG	Lys AAG	
Val GTC	Asn AAT	Val GTC	Leu	Lys AAG	Leu CTG	
160 Trp TGG	Asn AAC	190 Val GTG	$\mathtt{Thr}_{\mathtt{ACT}}$	220 Arg CGG	Asn AAC	
Val GTC	Leu	Phe TTT	Val GTC	Arg CGC	Ala GCC	
Ile ATT	G1y GGA	Ala GCC	Ile	Lys AAG	Arg AGA	
Ala GCC	Phe TTC	Pro CCT	Phe TTC	Arg CGG	Phe TTC	
Ile ATT	Leu	Asn AAC	Pro	Leu	Ala GCT	
Met ATG	170 Leu CTG	Ala GCC	200 Val GTG	Val GTC	230 Arg CGA	
Val GTC	Pro	Ile ATT	Tyr TAC	Ile ATC	Ser	
Thr	Cys TGC	Ile ATC	Phe TTC	Tyr TAC	Ser	•
Val GT.T	Ser TCC	Cys TGT	Ser TCA	Ile ATC	Arg CGC	7
Arg CGA	Ile	Glu GAG	Val GTC	Lys AAA	Lys AAG	FIG.

ದ ೧	0000	> >U	O > 5 h			
Le	27 Pr	ري ل	300 G1y GGG	Hin o	330 Met ATG	0
Met ATG	Ile ATC	His CAC	Asn AAT	Glu GAG	Thr ACG)
Glu GAG	Pro	His	Lys	Phe TTT	Lys AAG	
Met ATG	Ser AGC	Ser TCC	Gly GAG	Phe TTC	Leu CTT	
Glu GAA	${\tt Tyr} \\ {\tt TAT}$	Pro	Pro CCA	Lys AAG	Ser TCC	
250 Leu CTG	Arg	280 Asp GAT	Lys AAA	310 Ala GCC	${ m Thr}$	
Glu GAG	Thr	Pro	Ala GCC	Ile ATT	Arg CGG	
Gln CAG	Arg AGG	Leu	Pro CCT	Arg AGG	Thr ACC	
Ala GCT	Glu GAG	Thr	Ser AGT	Pro	Lys AAA	
Arg CGA	Pro	Leu	Asp GAC	Asn AAT	Gly GGC	
Arg	260 Pro CCC	Gln CAG	290 Pro CCT	Val GTC	320 Asn AAT	
Ala GCC	Ser AGC	His	Asn AAC	Ile ATT	Pro	
Ala GCT	Thr	His CAC	Ser AGC	Lys AAG	Met ATG	
Asp GAT	Ser AGC	Ser AGT	His	Ala GCC	$\mathtt{Th}_{\mathcal{L}}$	FIG. 1D
Lys	Ser TCA	Pro	Leu CTA	His CAC	Gln CAG	FIG

Gln CAG	360 Pro CCC	II AT	390 Asn AAC	170 Phe TTC	CT	764
${ t Thr}$	Leu CTG	Asn	Val GTC	Glu GAG	TTGC	12
Ala GCC	$\operatorname{Trp}_{\operatorname{TGG}}$	Cys TGC	\mathtt{Tyr}	Ile	\mathcal{C}	
Lys AAA	Cys TGC	Asp GAT	Gly GGC	Asn AAC	TCTGC	
Lys AAG	Ile ATC	Cys TGT	Leu	Phe TTC	TGAGT	
340 Glu GAG	Ile	370 His CAC	Trp TGG	400 Thr ACC	415 Cys TGC	
Lys AAG	Phe TTC	Ile ATA	Thr ACA	Thr	His	
Gln CAG	Val GTG	Asn AAT	Phe TTC	Tyr TAC	Leu	
Gln CAG	Gly GGT	Leu CTG	Ala GCC	Ile ATC	Ile	
Ser TCC	Leu	Ile ATC	Ser AGC	Ile	Lys AAG	
Leu	350 Val GTT	His	380 Tyr TAC	Pro	410 Met ATG	
Lys AAG	Ile ATT	$\operatorname{Thr}_{\operatorname{ACG}}$	Leu	Asn AAC	Phe TTC	
Arg AGA	Ala GCC	Ile ATC	Val GTC	Val GTC	Ala GCC	Ц
Arg	Leu	Phe TTC	Pro	Ala GCC	Lys	FIG 1
Ser AGC	Met ATG	Phe TTC	Pro	Ser AGT	Arg	II.

AGACTGGTATCTTACCAGCTCTGGGGTTGGACCCATGGCTCAGGGCAGCTCACAGAGTGC TGGGCAGAAAGGCCCAGATGAACTTGGCCTTCTCGACCCTGCAGGCCCTGCAGTGTTA TICCICITGGGCACAGAAACTAGCICAGIGGICGAGCACACCCTGAICGCIGGCIIGGCC GCTTGGCTCGATGCCCCTCTGCCCACACACCTCCTGCCAGGGTAGGGCCAGGG CACAGCAGCTGCTTCCCACCTCCCTGCCTATGCAGGCCAGACCTCATCCCTGCAAGCTG **ATAGGAACCACATAGGAAAGCAGGGAACACGCCAAGTCCTCCAGGCACATCAGTGTCAGG**

TGTTTTCCACTCCAACTCTAGTGTGCCCTACTTTTCATAGCCATGGGTATTACTATG

AGACACACATAAACACCAGGTAGCTCCATGGACCCCCAGAGAAACTGAGGCTGAAAAATC

FIG. 1F

CTGGCCAGTCAGGCCTTGGACCAGTGTTGGAGCTGGATGTGGTAACTTGGGGCT ATCCTCAAGGGCCCCAAGAATCTGTAAGGAGAAAAATAGGCTGATCTCCCTCTACTCT CCTCTGCCTTAGAAGAGGCTGTGGGGTGCTGGGACTGCTGATACCATTGGGCCTGG TCCTACCTTGTTATAGTATCCCATGGGGTTTCTGTACCATTTGGGGGGAAAACAACTCTA CCAATCCACTCCACTTCTTGATATACCTTGGATGTATCCATTCCTCACAGCAAATG CCCTGAATGAGGGGGAAGCTGCAGTTTGGAGGGTTCTGGGATCCAACTCTAACAT

FIG. 10

SK MG M MG M MG M M M M M M M M M M M M M	MD [PLMISWYDDDLERQNWSRPFNGSEGKADRPHYNYYAMIINEL]. IFI IVFGNVLVCMAVSREKALQTITNY MGP [PGNDSDFLLTTNGSHV PDHDVTEERDEAWVGMAIIMSVIVLAIVFGNVLVITAIAKFERLQTITNY MGP [PGNDSDFLLTTNGSHV PDHDVTEERDEAWVGMAIIMSVIVLAIVFGNVLVITAIAKFERLQTITNY MGP [PGNDSDFLLTTNGSHV PDHDVTEERDEAWVGMAIIMSVIVLAIVFGNVLVITAIAFFRAIKAPQNIL MDVLS. [PGQ. GNNTTSPPAPFE TGGNTTGISDVIVSYQV. ITSLINGTH. IFCAVITGNAGIALERSLONVANY MNTSAPPAVSPNITVLAP MGACV. VMTDINIE SGLDSNATGITAFSNPGWQLALWTAAYLAIL. SLATVIGNIL VI ISFKVNTEINGTVNNY II	2 88888	CIIANPAFVV) ETCCDFFTNQA EPRCEINDQKV PDACTISKDMC QCYIQFLSQPI	6200
	21		21	Ħ

· ·			
· CI	RGB-2		
	Transformed Ltk-Cells	Rat Striatum	= 1
<pre>(+)-Butaclamol (-)-Butaclamol Haloperidol Dopamine + GTP</pre>	0.83 >1,000 3.0 17,000	1.0 >1,000 >1,000 5.3 6,300	
Sulpiride high affinity low affinity		67 (87 >10,000 (13	(87%) (13%)
SCH 23390 high affinity low affinity	1,000	35 (16 780 (84	(16%)
Ketanserin high affinity low affinity	>1,000	27 (25 >1,000 (75	(25%)

F16.4C

FIG. 6B

FIG. 6C

FIG. 6D

FIG. 7A

GGT GGT GGT CGA 5 CCA CCA CCA GCT3 Ser Pro Pro Glu Arg Thr Arg Tyr Ser Pro Ile Pro Pro Ser His His Gln Leu Ala His Pro Arg GĨy Pro GĨy Thr Ala Pro Ser His Pro Ala Thr Thr Ser

Leu Ser Pro Thr Arg Pro Thr MET Val Ser Thr Ala Leu Pro Thr Ala Pro Pro Thr Leu Pro Asp Pro Ser His His Gly Leu His Ser Thr Pro Asp Ser Pro Ala CTG AGA GGG GCT GGG GGT GGT ACC AGA GGT GTC GTG AGG GCT GTC GGG GCG GCG GCG ACC TCC CGA CCC GTC CCC CGC CGC CGC ASP Ser Pro Arg Pro Val Pro Pro Trp Ser Pro Gln His Ser Arg Gln Pro Arg

GTT TGG TCT CTT ACC CGT ACG GTT TTC CTG GTG GGG TTC CTA ACG GTT CTA CAA GAT CTA CAA AAG GAC CAC CCC AAG GAT TGC CAA GAT GIN Thr Arg Glu Glu Trp Ala Cys Gln Lys Asp His Pro Lys Asp Cys Gln Asp Lys Pro Glu Lys Asn Gly His Ala Lys Arg Thr Thr Pro Arg Ile Ala Lys Ile Asn Gly His Ala Lys Arg Thr Thr Pro Arg Ile Ala Lys Ile Asn Gly His Ala Lys Arg Thr Thr Pro Arg Ile Asn Asn Gly His Ala Lys Arg Thr Thr Pro Arg Ile Asn Gly His Ala Lys Arg Thr Thr Pro Arg Ile Asn Gly Met Pro Lys Gly Pro Glu Gly Leu Pro Arg Ser

GAA ACT CTA GGT CTG GTA CGG GTT ÄCC GTT TTG GGC CTG GAG GGA GTT CTG GTA CTT TGA GAT CCA GAC CAT GCC CAA AAC CCG GAC CTC CCT CAA GAC CAT Leu . Asp Pro Asp His Ala Gln Trp Gln Asn Pro Asp Leu Pro Gln Asp His Pro Ash Gly Lys Thr Arg Thr Ser Leu Lys Thr MET

In the state of th

. 7B FIG.

CTC GGC ATC CTT C6A G55 GGT CGT CTT CCT CTT TCG GTG AGT CTA CGA GCG GAG CCG TAG GAA G3T C44 CCA GCA GCA GAA GGA GAA GAA AGC CAC TCA GAT GCT CGC Glu Pro . Glu C TT Pro Ala Glu Gly Glu Glu Ser His Ser Asp Ala Arg Ser Arg Lys Leu Phe Gln Glu Lys Lys Ala Thr Gln MET Leu Ala Ala Val Gly Ser Arg Arg Arg Arg Arg Arg Arg Lys Pro Leu Arg Ser Pro

GGA CTT GTA TGT GAC ACT GTA GGG CGG ACA GGA CAT GTC GCG GAA GTG CCT GAA CAT GCC GCC TGT CCT GTA CAG CGC CTT CAC Pro Glu His Thr Leu . Leu Gln His Pro Ala Cys Pro Val Gln Arg Leu His Leu Asn Ile His Cys Asn Ile Pro Pro Val Leu Tyr Ser Ala Phe Thr . Thr Tyr Thr Val Thr Ala Thr Ser Arg Leu Ser Cys Thr Ala Pro Ser Arg

Ser Thr Pro Pro Ser Thr CAC CGA CCC GAT ACA GTT GTC GCG GCA CTT GGG GTA GTA GAT GTG GTG GAA GTT Val Ala Gly Leu Cys Gln Gln Arg Arg Glu Pro His His Leu His His Leu Gln Trp Leu Gly Tyr Val Asn Ser Ala Val Asn Pro Ile Ile Tyr Thr Thr Phe Asn Gly Trp Ala MET Ser Thr Ala Pro Thr Pro Ser 405 Gly Trp Ala MET Ser Thr Ala Pro

GTA ACT CAA GGC GTT CCG GAA GGA CTT CTA GGA GGT GAC GAC TGA GAC GGA CAT TGA GTT CCG CAA GGC CTT CCT GAA GAT CCT CCA CTG CTG ACT CTG CTG CCT His . Val Pro Gln Gly Leu Pro Glu Asp Pro Pro Leu Leu Thr Leu Leu Pro Ile Glu Phe Arg Lys Ala Phe Leu Lys Ile Leu His Cys STOPLeu Cys Cys Leu Leu Ser Ser Ala Arg Pro Ser . Arg Ser Ser Thr Ala Asp Ser Ala Ala Cys

Ser Leu Thr Leu Pro His Ser Ser Leu Leu Pro Thr Ser Leu Pro Ser Ála GĬy Gln Pro His Pro CGG CGT GTC GTC GGA CGA AGG GTG GGA CGG GTC ACG GCC GGT CGG AGT GGG GCC GCA CAG TCC CAC GCC CAC TCA CCC Ala Ala Gln Gln Pro Ala Ser His Leu Pro Ala Gln Cys Arg Pro Ala Ser Pro Arg Thr Ala Ala Cys Phe Pro Pro Pro Cys Pro Val Pro Aía

AAC GCT TGG CAC TCG TCC TTC CGG ACC CAC CTA GCC GGA GGA GAA GAT CGG GGC TTG CGA ACC GTG AAG GCC TGG GTG GAT CGG CCT CCT CTT CTA GCC CCG Leu Arg Thr Val Ser Arg Lys Ala Trp Val Asp Arg Pro Pro Leu Leu Ala Pro Cys Glu Pro . Ala Gly Arg Pro Gly Trp Ile Gly Leu Leu Phe . Pro Arg Ala Asn Arg Glu Gly Leu Gly Leu Gly Gly Ser Ala Ser Ser Ser Pro Gly 567

FIG. 7C

Ýu.				_			1		
	FSK+DA	23.1	14%			VIP+DA.	2.56	3%	
+P,-H		26.7	ļ		+P.T.	DA	0.55	% 0-	 -
+			·		+	VIP	2.68	1	H Q +
	BASAL	1.7				BASAL	0.09	-	
į	FSK+DA	14.3	8-1-8			VIP+DA	0.84	71%	
CONTROL	FSK FS	22.6 2.2		COL	IRUL	DA	0.32	53%	CONTROL
CON				Č	55	VIP	2.41		CON
	BASAL	2.1	***************************************			BASAL	0.60		
_		s. F×i	Ĭ.		L	— -	S.E.	I N	į
		F1G. 12A					128		
		FIG.					FIG. 12B		

	VIP+DA		4 76	0.16		- 08	2 7
+•	DA		0,66	0.03		%	5
+P.T.	VIP		5.29	0.44		1	
	BASAL		0.64	0.0		1	
	VIP+DA		0.76	0.0		88%	T
CONTINCE	DA		0.25	0.03	0	9 2 2 3	
	VIP		ري - رو	4.0			
	BASAL		0.78				
		D	< ب ن	;	Z		
			<u>0</u>) !			
			FIG 120				

71 11(1)

THE PERSON I

-33 AGAGCCTGGCCACCCAGTGGCTCCACCGCCCTG

 ${\tt METAspProLeuAsnLeuSerTrpTyrAspAspAspLeuGluArgGlnAsnTrpSerArg}$

ProPheAsnGlySerAspGlyLysAlaAspArgProHisTyrAsnTyrTyrAlaThrLeu

FIG. 18A

0	1CysMETAlaValSer	GTGCATGGCTGTGTCC
50	LeuThrLeuLeuIleAlaValIleValPheGlyAsnValLeuValCysMETAlaValSer	CTCACCCTGCTCATCGCTGTCATCGTCTTCGGCAACGTGCTGTGTGCATGGCTGTGTCC

ArgGluLysAlaLeuGlnThrThrThrAsnTynLeuIleValSerLeuAlaValAlaAsp 80

LeuLeuValAlaThrLeuValMETProTrpValValTyrLeuGluValValGlyGluTrp

FIG. 18B

240

		•	
111 120	alMETMETCysThrAla	TCATGATGTGCACGGCG	TCATGATGTGCACAGCA
110	LysPheSerArgIleHisCysAspIlePheValThrLeuAspValMETMETCysThrAla	AAATTCAGCAGGATTCACTGTGACATCTTCGTCACTCTGGACGTCATGATGTGCACGGCG	AAATTCAGCAGGATTCACTGTGACATCTTTGTCACTCTGGATGTCATGTGCACAGCA

AGCATCCTGAACTTGTGTGCCATCAGCATCGACAGGTACACAGCTGTGGCCATGCCCATG SerIleLeuAsnLeuCysAlaIleSerIleAspArgTyrThrAlaValAlaMETProMET

160 LeuTyrAsnThrArgTyrSerSerLysArgArg<u>ValThr</u>ValMETIleSerIleValTrp

FIG. 18C

ValLeuSerPheThrIleSerCysProLeuLeuPheGlyLeuAsnAsnAlaAspGlnAsn

GluCysIleIleAlaAsn|ProAlaPheValValTyrSerSerIleValSerPheTyrVal

ProPhelleValThrLeuLeuValTyrIleLysIleTyrIleValLeuArgArgArgArg

		100
	840	GGGAGTTTCCCAGTGAACAGGCGGAGGTGGAGCTGCCCGGCGAGCCCAGGAGCTGGAG 11 111111 111111111 CATGCTGCCGAGCTGAGGAGCTGAAAAAAAAAAAAAAA
- .		270 GlySerPheProValAsnArgArgArgArgValGluAlaAlaArgArgArgAlaGluLeuGlu
1		AAG
	•	AAGGCCAACTGTACTCACCCCGAGGACATGAAACTCTGCACCGTTATCATGAAGTCTAAT
		$\overset{*}{\text{LysGlyAsnCysThrHisProGluAspMETLysLeuCysThrValIleMETLysSerAsn}}$
	720	AAGCGAGTCAACACCCAGCAGCCTTTCAGGGCCCTGAGGGCTCCACTĂ 11111 11111111 1111111111111111111
		240 LysArgValAsnThrLysArgSerSerArgAlaPheArgAlaHisLeuArgAlaProLeu

 ${\tt METG1uMETLeuSerSerThrSerProProG1uArgThrArgTyrSerProI1} eProPro$

 ${\tt SerHisHisGlnLeuThrLeuProAspProSerHisHisGlyLeuHisSerThrProAsp}$

096

AspHisProLysIleAlaLys IleValAsn SerProAlaLysProGluLysAsnGlyHisAlaLys

FIG. 18F

 ${\bf IlePheGluIleGlnThrMETProAsnGlyLysThrArgThrSerLeuLysThrMETSer}$

ArgArgLysLeuSerGlnGlnLysGluLysLysAlaThrGlnMETLeuAlalleValLeu 369

GlyValPhellelleCysTrOLeuProPhePhelleThrHisIleLeuAsnIleHisCys 389

1197 6CCGTCAACCCCATCATCACCCCTTCAACATCGAGTTCCGCAAGGCCTTCATGAAG

FIG. 18G

(ET

AspCysAsnIleProProValLeuTyrSerAlaPhéThrTrpLeuGlyTyrValAsnSer

439 AlaValAsnProIleIleTyrThrThrPhe|AsnIleGluPheArgLysAlaPheLeuLys

IleLeuHisCys st

ATCCTCCACTGCTGTGTGCTGCCTGCCGCACAGCAGCCTGCTTCCCACCTCCTGCC

ATCTTGCACTGCTGA

FIG. 18H

CAGGCCGGCCAGCCTCACCCTTGCGAACCGTGAGGCAGGGCCTGGGTGGATCGGCCTC 1437

CTCTTCTTAGCCCCGGCAGGCCCTGCAGTGTTCGCTTGGCTCCATGCTCCTCACTGCCCG

CACACCCTCACTCTGCCAGGGCAGTGCTAGTGAGCTGGGCATGGTACCAGCCCTGGGGGT 1557

GGCCCCAGCTCAGGGGCAGCTCATAGAGTCCCCCCTCCCAGTCCCCCTATCCTT

GGCACCAAAGATGCAGCCGCCTTCCTTGCCTCTGGGGCTCTAGGGTTGCTGGAGC 1677

CTGAGTCAGGGCCCAGAGGCTGAGTTTTCTCTTTGTGGGGCTTGGCGTGGAGCAGGCGGT

CGAGGAGCCAGGCAACTTCAGTCCTGGGAGCCCATGTAAATACCAGACTGCAGGTTGGA

CCCCAAGGATTCCCAAAGCCTTAGCTCCCTCCCGCCCCCGATGTGGACCTCTA 1917

FIG. 1891

CTTTCCAGGCTAGTCCGGACCCACCTCACCCCGTTACAGCTCCCCCAAGTGGTTTCCACAT

GCTCTGAGAGGGGGCCCTCATCTTGAAGGGCCCCAGGAGGGTCTATGGGGAGGAGCT 2037

CCTTGGCCTAGCCCACCCTGCCTTCTGACGGCCCTGCAATGTATCCCTTCTCACAGC

ACATGCTGGCCAGCCTGGGCGTGGGGGGCCCTGGAACTCTATCTGGGCCT 2157

GGGCTAGGGACATCAGAGGTTCTTTGAGGGACTGCCTCTGCCACACTCTGACGCAAAACC

CTCTGCCTTAGAGGCCCCACGGCTAAGAGGCTGCTGAAAACCATCTGGCCTGGCCTGGC

CCTGCCCTGAGGAAGGAGGGCAAGCTGCAGCTTGGGAGAGCCCCTGGGGCCTAGACTCTG 2397

TAACATCACTATCCGATGCACCAAACTAAAACTTTGACGAGTCACCTTC (A)_n 2449

FIG. 18J

1 2 3 4

FIG. 20

30X0	HUMAN D ₂	RAT D ₂	RAT STRIATUM
SPIPERONE	0125	7 × C	(
(+) BUTACL AND)		0.56
	50.0	~	<u>u</u>
HALOPERIDO	70) - . (<u>.</u>
	L.1	_ 	5.8
30EF 1110E	506	091	205
MIANSFRIN (5-HT)	3000		503
	2002	4300	4600
SCH 23390 (DI)	מעוכ) () ()	
	C+17	0062	3300
(+) BUIACLAMOL	V 10.000	00001	
K4 [34] 00M0F010100		000,01	000,01
IN TO IN DOINING BUILDOINE	0.74	0.40	040

FIG. 22

286	tccccagGTGGexon2	cttgcag	533	ccccagACCAexon4	724	tccacagGGCAexon5	811	ggtgcagGAGGexon6	1139	intron6ccccagGCGTexon7	e putative initiator
exonl GGAGGTEGGTEGGTEGGTEGGTEGGTEGGTEGGTEGGTEG	395	exon2ACAGgtgagccintron2.	532	exon3GCAGgtacattintron3.	723	exon4AAAGgtctcaaintron4.	810	exon5AGTGgtaagtgintron5.	1138	exon6CTCGgtgagtcintron6.	Numbering begins with A of the methionine codon (see Fig. 18)