Complementos de Análise Matemática - EE

$\begin{array}{c} \text{MIETI, MIEMAT, MIETEX} \\ 2016/2017 \end{array}$

Folha de Exercícios 2

Resolução analítica de equações diferenciais de primeira ordem

Equações diferenciais exactas

- 1. Averigúe quais das seguintes equações diferenciais são exactas.
 - (a) $2xy dx + (1+x^2) dy = 0$.
 - (b) 3s dt 3t ds = 0.
 - (c) $(x + \sin y) dx + (x \cos y 2y) dy = 0$.

(d)
$$\left(\frac{2x-1}{y}\right)dx + \left(\frac{x-x^2}{y^2}\right)dy = 0.$$

- 2. Resolva as equações diferenciais exactas dadas no exercício anterior.
- 3. Determine a solução dos seguintes problemas de valor inicial.

(a)
$$(2x^2t - 2x^3) dt + (4x^3 - 6x^2t + 2xt^2) dx = 0, x(2) = 3.$$

(b)
$$(x + e^{x/y}) dx + e^{x/y} \left(1 - \frac{x}{y}\right) dy = 0, y(1) = 1.$$

4. Para cada uma das equações diferenciais seguintes determine a função mais geral $P\left(x,y\right)$ por forma a que sejam equações diferenciais exactas.

(a)
$$P(x,y) dx + (xe^y + 2xy + 1) dy = 0$$
.

(b)
$$(y^2 + 1) \cos x \, dx + P(x, y) \, dy = 0.$$

5. Para cada alínea que se segue, verifique que a equação diferencial dada não é exacta, que μ é um factor integrante e, com base nisso, obtenha uma família de soluções.

(a)
$$(2x^2 + y) dx + (x^2y - x) dy = 0, \qquad \mu(x) = \frac{1}{x^2}.$$

(b)
$$x^2y^3 dx + x(1+y^2) dy = 0$$
, $\mu(x,y) = \frac{1}{xy^3}$.

(c)
$$\left(\frac{\sin y}{y} - 2e^{-x}\sin x\right) dx + \left(\frac{\cos y + 2e^{-x}\cos x}{y}\right) dy = 0, \qquad \mu(x,y) = ye^x.$$

Equações diferenciais separáveis

- 6. Determine uma família de soluções de cada uma das seguintes equações diferenciais.
 - (a) $4xy dx + (x^2 + 1) dy = 0$.
 - (b) $(x+4)(y^2-1) dx + y(x^2+8x) dy = 0$.
 - (c) $\frac{dt}{dr} = \frac{r+1}{t^4+1}$.
 - (d) $\tan \theta \, dr + 2r \, d\theta = 0$.
 - (e) $(e^{2y} + y) dy + e^{-y} \sin x dx = 0$.
- 7. Determine a solução dos seguintes problemas de valor inicial.
 - (a) $e^x dx y dy = 0$, y(0) = 1.
 - (b) $x \cos x \, dx + (1 6y^5) \, dy = 0, \quad y(\pi) = 0.$
 - (c) $8(\cos^2 y) dx + (\csc^2 x) dy = 0$, $y\left(\frac{\pi}{12}\right) = \frac{\pi}{4}$.
- 8. Determine uma família de soluções das seguintes equações diferenciais realizando uma mudança de variável adequada.
 - (a) $\frac{dy}{dx} = x y$.
 - (b) $\frac{dy}{dx} = (y+x)^2.$

Equações diferenciais homogéneas

9. (a) Averigúe quais das seguintes equações diferenciais são homogéneas.

i.
$$(x+y) dx - x dy = 0, x > 0$$
.

ii.
$$(2xy - x^2) dx + x^2 dy = 0, x > 0$$
.

iii.
$$\frac{dy}{dx} = \ln(x/y) + xy$$
.

iv.
$$y' = \frac{2xy}{x^2 - y^2}$$
.

- (b) Mostre que a mudança de variável y=vx transforma a equação diferencial homogénea y'=f(x,y) na seguinte equação de variáveis separáveis xv'=f(1,v)-v.
- (c) Usando o resultado obtido na alínea anterior resolva as equações diferenciais da alínea (a).
- 10. Determine a solução dos seguintes problemas de valor inicial.

(a)
$$y' = \frac{5y - 2x}{4x - y}$$
, $y(0) = 12$.

(b)
$$y' = \frac{x^2 + y^2}{xy}$$
, $y(1) = -2$.

11. Resolva as seguintes equações diferenciais usando dois métodos diferentes.

2

(a)
$$(2x - y)y' + x + 2y = 0$$
.

(b)
$$(4xy - y^2) \frac{dy}{dx} + x^2 + 2y^2 = 0.$$

Equações diferenciais lineares

12. Averigúe quais das seguintes equações diferenciais são lineares.

(a)
$$\frac{dx}{dt} + \frac{x}{t^2} = \frac{1}{t^2}$$
.

(b)
$$\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^3 y^3}$$
.

(c)
$$u \, dv - 2v \, du = (u+1) \, du$$
.

(d)
$$y' - \frac{y}{x} = -\frac{y^2}{x}$$
.

(e)
$$xy' - 2y = x^3 e^x$$

(f)
$$\frac{dx}{dt} + \frac{t+1}{2t}x = \frac{t+1}{tx}.$$

13. Resolva as equações diferenciais lineares dadas no exercício anterior.

14. Determine a solução dos seguintes problemas de valor inicial.

(a)
$$\frac{dz}{dx} - xz = -x$$
, $z(0) = -4$.

(b)
$$y' + y = \sin x$$
, $y(\pi) = -1$.

Exercícios gerais

15. Classifique e resolva as seguintes equações diferenciais determinando uma família de soluções.

(a)
$$e^x dx + x^3 dy + 4x^2y dx = 0$$

(b)
$$2r(s^2+1) dr + (r^4+1) ds = 0$$

(c)
$$y' = y^{\frac{1}{2}}$$
.

(d)
$$(y + \cos x) dx + (x + \sin y) dy = 0$$
.

(e)
$$y' = \frac{x}{y} + \frac{y}{x}$$
.

16. Resolva os seguintes problemas de valor inicial.

(a)
$$\left(\frac{1}{y^2} \ln x - y\right) dy - \frac{1}{xy} dx = 0, x > 0, y(1) = 2$$

(b)
$$\left(x^3 + y^2\sqrt{x^2 + y^2}\right) dx - xy\sqrt{x^2 + y^2} dy = 0, x > 0, y(1) = 0$$

3

(c)
$$\frac{dy}{dx} - y \tan(x) = \sec(x) \quad y(0) = 0$$

Soluções da folha de exercícios 2

- 1. (a), (c) e (d) são exactas e (b) não é exacta.
- 2. (a) $x^2y + y = c$
 - (b) não é exacta
 - (c) $\frac{1}{2}x^2 + x\sin y y^2 = c$
 - (d) $\frac{x^2 x}{y} = c$
- 3. (a) $x^2t^2 2x^3t + x^4 = 9$
 - (b) $\frac{x^2}{2} + ye^{x/y} = \frac{1}{2} + e$
- 4. (a) $P(x,y) = e^y + y^2 + \phi(x)$
 - (b) $P(x, y) = 2y \sin x + \phi(y)$
- 5. (a) $4x^2 2y + xy^2 = cx$
 - (b) $x^2 \frac{1}{y^2} + \ln y^2 = c$, y = 0
 - (c) $e^x \sin y + 2y \cos x = c$
- 6. (a) $y(x^2+1)^2 = c$
 - (b) $(y^2 1)(x^2 + 8x) = c$
 - (c) $\frac{r^2}{2} + r \frac{t^5}{5} t = c$
 - (d) $r \sin^2 \theta = c$
 - (e) $e^{3y} + 3e^y (y-1) = 3\cos x + c$
- 7. (a) $y^2 = 2e^x 1$
 - (b) $x \sin x + \cos x + 1 = y^6 y$
 - (c) $4x 2\sin(2x) + \tan y = \frac{\pi}{2}$
- 8. (a) $y = x 1 + ce^{-x}$
 - (b) $y = \tan(x c) x$
- 9. (a) i., ii., e iv são homogénas, iii. não é homogénea
 - (c) $i. x \ln x cx = y$ $ii. 3yx^2 x^3 = c$ $iv. x^2 + y^2 = cy$
- 10. (a) $y = 6\sqrt{1-x} 2x + 6$
 - (b) $y = -\sqrt{x^2 \ln x^2 + 4x^2}$
- 11. (a) $y^2 4yx x^2 = c$
 - (b) $x^3 + 6xy^2 y^3 = c$
- 12. (a), (c), (e) são lineares, (b), (d), (f) não são lineares
- 13. (a) $x(t) = 1 + ce^{1/t}$

 - (c) $v = cu^2 u \frac{1}{2}$ (e) $y = x^2 e^x + cx^2$

- 14. (a) $z = 1 5e^{x^2/2}$
 - (b) $y = \frac{1}{2} (e^{\pi x} + \sin x \cos x)$
- 15. (a) linear, $y = 1/x^4 ((1-x)e^x + c)$
 - (b) v. separáveis, $arctgr^2 + arctgs = c$
 - (c) v. separáveis, $x 2\sqrt{y} = c$
 - (d) exacta, $xy + \sin x \cos y = c$
 - (e) homogénea, $y^2 = x^2(\ln x^2 + c)$
- 16. (a) $\frac{1}{y} \ln x + \frac{y^2}{2} = 2$
 - (b) $3 \ln x \left(\frac{x^2 + y^2}{x^2}\right)^{3/2} = -1$
 - (c) $y = x \sec x$