A NOVEL METHOD FOR HADNWRITTEN DIGIT RECOGNITION SYSTEM

THE PROJECT REPORT

Submitted by

Team ID: PNT2022TMID22012

KANIMOZHI.M(113019104042)

DHIVYA.V(113019104025)

INDHIRA.K(113019104035)

ANKAM USHA SHREE(113019104009)

BACHELOR OF ENGINEEERING

IN

COMPUTER SCIENCE AND ENGINEERING

TABLE OF CONTENTS

CHAPTER NO	TITLE	PAGE NO:
1	INTRODUCTION	1-6
1.1	Project Overview	6
1.2	Purpose	6
2	LITERATURE SURVEY	7-9
2.1	Existing problem	7
2.2	References	7
2.3	Problem Statement Definition	9
3	IDEATION & PROPOSED SOLUTION	10-14
3.1	Empathy map Canvas	10
3.2	Ideation and Brainstroming	11
3.3	Proposed Solution	12
3.4	Problrm Solution Fit	14
4	REQUIREMENT ANALYSIS	15-16
4.1	Functional requirements	15
4.2	Non-Functional Requirements	16
5	PROJECT DESIGN	17-19
5.1	Data Flow daigrams	17
5.2	Solution and Technical Architecture	18
5.3	user Stories	19
6	PROJECT PLANNING & SCHEDULING	20-22
6.1	Spirint planning & Estimation	20
6.2	Spirint Delivery Schedule	21
6.3	Report from JIRA	22

7	CODING & SOLUTIONING	23-28
7.1	Feature1	23
7.2	Feature2	26
8	TESTING	29-31
8.1	Test Cases	29
8.2	User Acceptance Testing	30
9	RESULTS	31-33
9.1	performance Metrics	31
10	ADVANTAGES & DISADVANTAGES	34
11	CONCLUSION	35
12	FUTURE SCOPE	36
13	APPENDIX	37-40
13.1	Source Code	37
13.2	GitHub & Project Demo Link	40

ABSTRACT

Handwritten digit recognition is one of the practically important issues in pattern recognition applications. The applications of digit recognition includes in postal mail sorting, bank check processing, from data entry, etc. The heart of the problem lies within the ability to users by the way of a scanner, tablet and other digital devices. This paper presents an approach to off-line handwritten digit recognition based on different techniques The main objective of this paper is to ensure effective and reliable approaches for recognition of handwritten digits

LIST OF FIGURES

S.NO	FIGURE	NAME
1.	3.1 and 3.2	Empathy map canvas ,Ideation And
		Brainstorming.
2.	5.1 , 5.2 ,5.3 and 5.4	Data Flow Diagrams, Industry
		Standard and Solution and Technical
		Architecture
3.	6.1,6.2 and 6.3	Sprint Planning & Estimation, Sprint
		Delivery Schedule and Reports from
		JIRA
4.	7.1, 7.2	Feature 1,Featue2
5.	9.1	Performance metrics

Chapter 1 INTRODUCTION

1.1Project Overview:

Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort.

Hence, there comes a need for handwritten digit recognition in many real-time applications. MNIST data set is widely used for this recognition process and it has 70000 handwritten digits. We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit. this image is analyzed by the model and the detected result is returned on to UI.

1.2 Purpose:

The applications of digit recognition include in **postal mail sorting, bank check processing, form data entry**, etc. The main problem lies within the ability on developing an efficient algorithm that can recognize hand written digits, which is submitted by users by the way of a scanner, tablet, and other digital devices.

Chapter 2

LITERATURE SURVEY

2.1 Existing problem:

In this digital age, many companies are working to reduce the amount of paper driving the business. A natural extension of this is to tackle handwritten documents and forms that are still needed today. Many forms are still being sent out via post where electronic methods are practical. There are a significant number of people who do not have access to a personal computer, the internet, websites and on-line portals and there are some cases where email addresses are not known or don't exist. In these cases accurate handwriting recognition can still be a problem for many businesses.

2.2 References:

- 12 June 2020 Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN), Savita Ahlawat, Amit Choudhary, Anand Nayyar, Saurabh Singh, and Byungun Yoon.
- 2. 4 July 2020 Handwritten Digit Recognition Using Various Machine Learning Algorithms and Models, Pranit Patil and Bhupinder Kaur.
- 3. 2020 Handwritten Digit Recognition Using Computer Vision, Ashish Shekhar and Ajay Kaushik

- 4. 6 June 2019 Handwritten Digit Recognition using CNN, Vijayalaxmi R Rudraswamimath and Bhavanishankar K.
- 5. 2019 Recognition of Handwritten Digit using Convolutional Neural Network (CNN), Md. Anwar Hossain & Md. Mohon Ali.
- 6. 31 August 2019 An efficient and improved scheme for handwritten digit recognition based on convolutional neural network, Saqib Ali, Zeeshan Shaukat, Muhammad Azeem, Zareen Sakhawat, Tariq Mahmood & Khalil ur Rehman.
- 7. 2018 Handwritten Digit Recognition using Machine Learning Algorithms, S M Shamim, Mohammad Badrul Alam Miah, Angona Sarker, Masud Rana & Abdullah Al Jobair.
- 8. 2018 A Review of Various Handwriting Recognition Methods, Salma Shofia Rosyda and Tito Waluyo Purboyo.
- 9. April, 2013 [9] Improving Offline Handwritten Digit Recognition Using Concavity-Based Features, M. Karic and G. Martinovic.
- 10.2011 A Statistical Approach for Latin Handwritten Digit Recognition, Ihab Zaqout.

2.3 Problem Statement Definition:

The handwritten digit recognition is the capability of computer applications to recognize the human handwritten digits. It is a hard task for the machine because handwritten digits are not perfect and can be made with many different shapes and sizes. The handwritten digit recognition system is a way to tackle thisproblem which uses the image of a digit and recognizes the digit present in the image. Convolutional Neural Network model created using flask over the MNIST dataset to recognize handwritten digits .

Chapter 3 IDEATION AND PROPOSED SOLUTION

3.1 Empathy Map Canvas:

Fig3.1 : Empathy map canvas

3.2 Ideation & Brainstorming:

Fig .3.2: Ideation And Brainstorming

3.3 Proposed Solution:

S.NO	PARAMETERS	DESCRIPTION			
1	Problem Statement	Physically composed digits are of an alternate size,			
	(Problem to be solved)	thickness, position and bearing. The machine has a			
		troublesome obligation on the grounds that written by			
		hand digits are not perfect and can be created with			
		various flavours. The Handwritten digit recognition is			
		the capacity of PC applications to perceive the human			
		transcribed digits. The solution for this issue is			
		written by hand digit acknowledgment, which utilizes			
		a picture of a digit and distinguishes the digit			
		addressed in the picture.			
2	Idea / Solution	It is the capacity of a PC to fete the mortal manually			
	description	written whole numbers from various sources like			
		pictures, papers, contact guards. It permits client to			
		decipher every one of those mark furthermore, notes			
		into electronic words in a text report organization and			
		this information just expects far less actual space than			
		the capacity of the actual duplicates.			
3	Novelty / Uniqueness	To enhance the accuracy, we provided more			
		datasets.			
		The uniqueness and combination in the synthesis			
		styles of different people furthermore impact the			
		model and presence of the digits.			

4	Social Impact /	• The really friendly effect of this work is to		
	Customer Satisfaction	guarantee successful and solid methodologies for		
		acknowledgment of transcribed digits and make		
		banking activities simpler and mistake free.		
		Clients will feel calm, as it is simple and		
		advantageous to utilize.		
		• As the precision is acceptable, this can have		
		numerous applications.		
5	Business Model	This novel method for Handwritten Digit Recognition		
	(Revenue Model)	System can be approached by many industries which		
		needs this application including, programmed bank		
		checks, postal locations and tax documents and so on.		
		Humans recognizing the handwritten digits with their		
		naked eye can be difficult at times as it of different		
		sizes, thickness, direction and ca also lead to making		
		errors due to these factors. This is when our proposed		
		solutions comes into help. We provide different data		
		sets which helps in recognition with accuracy, so that		
		human making errors can be avoided respectively.		
6	Scalability of the	Ability to recognise digits in more noisy		
	Solution	environments.		
		• Financial and other business organizations such as		
		banks are facing issues in Recognizing written digits		
		such as in cheques etc.		
		Our proposed solution is scalable as it is dynamic		
		and also trained using AI and deep learning Models.		

3.4Problem Solution Fit:

CHAPTER 4

REQUIREMENT ANALYSIS

4.1 Functional requirement:

Following are the functional requirements of the proposed solution.

FR.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
NO		
1	User Input	GUI allows the user to input image by
		browsing the device storage
2	Model	The MNIST dataset should be trained using
		CNN to create a trained model
3	Prediction	The trained model has to be tested by using
		the test data provided by MNIST and the
		accuracy of the model should be above 90%
4	Evaluation	Ensure that the output produced by the model
		is correct

4.2 Non-Functional requirements :

Following are the non-functional requirements of the proposed solution:

FR.	Non-Functional	Description
NO	Requirement	
1	Usability	Hand written digit recognition is one of the major
		important issues in pattern recognition
		application.

		Some of the applications for digit recognition
		include data entry forms, Bank check processing
		etc.
2	Security	The application of hand written digit recognition
		can be used in the banking sector where it can be
		used to maintain the security pin numbers
		safely.it can be also used for blind-people by
		using sound output.
3	Reliability	Reliability indicates the probability that the
		system will perform its intended function for a
		large period of sufficient time and also it will
		operate in a secured environment without any
		failures.
4	Performance	The standard implementations of neural networks
		achieve an accuracy of approximately(98-99)

CHAPTER 5 PROJECT DESIGN

5.1 Data Flow Diagrams:

Fig 5.1: Data flow diagrams

Industry Standard:

Fig 5.2-Industry Standard

Fig 5.3-Technical Architecture

5.4 User Stories:

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail	I can register the application with Gmail	Medium	Sprint-2
	Login	USN-5	As a user, I can log into the application by entering email & password	I can login to the application	High	Sprint-1
	Home	USN-6	As a user, I can view the application's home page where I can read the instructions to use this application	I can read instructions also and the home page is user-friendly.	Low	Sprint-1
	Upload Image	USN-7	As a user, I can able to input the images of digital documents to the application	As a user, I can able to input the images of digital documents to the application	High	Sprint-3
	Predict	USN-8	As a user I can able to get the <u>recognised</u> digit as output from the images of digital documents or images	I can access the recognized digits from digital document or images	High	Sprint-3
		USN-9	As a user, I will train and test the input to get the maximum accuracy of output.	I can able to train and test the application until it gets maximum accuracy of the result.	Medium	Sprint-4
Customer (Web user)	Accessibility	USN-10	As a user, I can use the web application virtually anywhere.	I can use the application in any device with a browser	Medium	Sprint-4

CHAPTER 6

PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation:

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional	User Story	User Story / Task	Story	Priority	Team Members
_	Requirement (Epic)	Number	-	Points		
Sprint-1	Data Collection	USN-1	As a user, I can collect the dataset from various resources with different handwritings.	10	Low	Kanimozhi M
Sprint-1	Data Preprocessing	USN-2	As a user, I can load the dataset, handling the missing data, scaling and split data into train and test.	10	Medium	Kanimozhi M
Sprint-2	Model Building	USN-3	As a user, I will get an application with ML model which provides high accuracy of recognized handwritten digit.	5	High	Dhivya V
Sprint-2	Add CNN layers	USN-4	Creating the model and adding the input, hidden, and output layers to it.	5	High	Dhivya V
Sprint-2	Compiling the model	USN-5	With both the training data defined and model defined, it's time to configure the	2	Medium	Dhivya V

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
			learning process.			
Sprint-2	Train & test the model	USN-6	As a user, let us train our model with our image dataset.	6	Medium	Dhivya V
Sprint-2	Save the model	USN-7	As a user, the model is saved & integrated with an android application or web application in order to predict something.		Low	Dhivya V
Sprint-3	Building UI Application	USN-8	As a user, I will upload the handwritten digit image to the application by clicking a upload button.	5	High	Ankam Usha Shree
Sprint-3		USN-9	As a user, I can know the details of the fundamental usage of the application.	5	Low	Ankam Usha Shree
Sprint-3		USN-10	As a user, I can see the predicted / recognized digits in the application.	5	Medium	Ankam Usha Shree
Sprint-4	Train the model on IBM	USN-11	As a user, I train the model on IBM and integrate flask/Django with scoring end point.	10	High	Indhira K
Sprint-4	Cloud Deployment	USN-12	As a user, I can access the web application and make the use of the product from anywhere.	10	High	Indhira K

6.2 Sprint Delivery Schedule:

Sprint	Total Story	Duration	Sprint Start Date	Sprint End Date	Story Points	Sprint Release Date
	Points			(Planned)	Completed (as on	(Actual)
					Planned End	
					Date)	
Sprint-1	20	6 Days	22 Oct 2022	28 Oct 2022	20	28 Oct 2022
Sprint-2	20	6 Days	27 Oct 2022	01 Nov 2022	20	01 Nov 2022
Sprint-3	20	6 Days	03 Nov 2022	07 Nov 2022	20	07 Nov 2022
Sprint-4	20	6 Days	11 Nov 2022	17 Nov 2022	20	17 Nov 2022

6.3 Reports from JIRA:

CHAPTER 7

CODING & SOLUTIONING

7.1 Feature 1:

```
<html>
<head>
 <title>Digit Recognition WebApp</title>
 <meta name="viewport" content="width=device-width">
 <!-- GoogleFont -->
 k href="https://fonts.googleapis.com/css2?family=Prompt:wght@600&display=swap"
rel="stylesheet">
 <link href="https://fonts.googleapis.com/css2?family=Varela+Round&display=swap"</pre>
rel="stylesheet">
 link
href="https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@500&display=swap"
rel="stylesheet">
 link
href="https://fonts.googleapis.com/css?family=Calistoga|Josefin+Sans:400,700|Pacifico&display
=swap" rel="stylesheet">
 <!-- bootstrap -->
 <link rel="stylesheet"</pre>
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"
integrity="sha384-
ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">
 <link rel="stylesheet" type= "text/css" href= "{{ url_for('static',filename='css/style.css') }}">
 <!-- fontawesome -->
 <script src="https://kit.fontawesome.com/b3aed9cb07.js" crossorigin="anonymous"></script>
 <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-</pre>
q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
```

```
crossorigin="anonymous"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"</pre>
integrity="sha384-
UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
crossorigin="anonymous"></script>
 <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"</pre>
integrity="sha384-
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"></script>
 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
</head>
<script>
 function preview() {
  frame.src=URL.createObjectURL(event.target.files[0]);
}
  $(document).ready(function() {
      $('#clear_button').on('click', function() {
        $('#image').val(");
        $('#frame').attr('src',''');
       });
    });
</script>
<body>
 <h1 class="welcome">IBM PROJECT
 <div id="team_id">TEAM ID : PNT2022TMID22012</div>
 </h1>
 <section id="title">
  <h4 class="heading">Handwritten Digit Recognition Website</h4>
```

24

>
>

```
The website is designed to predict the handwritten digit.<
```

Handwriting recognition is one of the compelling research works going on because every individual in this world

has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progress in the field of science and technology,

everything is being digitalized to reduce human effort.

<hr>

Hence, there comes a need for handwritten digit recognition in many real-time applications.

MNIST data set is widely used for this recognition process and it has 70000 handwritten digits.

We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit. This image is analyzed by the model and the detected result is returned on to UI

7.2 Feature 2:

```
<!DOCTYPE html>
<html lang="en">
<head>
k rel="shortcut icon" href="data:image/x-icon;," type="image/x-icon">
  <meta charset="UTF-8">
  <title>Prediction</title>
</head>
<style>
  body{
  background-image: url('static/images/image1.jpg');
  background-repeat: no-repeat;
  background-size: cover;
  }
  #rectangle{
  width:400px;
  height:150px;
  background-color: #5796a5;
  border-radius: 25px;
  position:absolute;
  top:25%;
  left:50%;
  transform:translate(-50%,-50%);
  }
#ans{
 text-align: center;
 font-size: 40px;
 margin: 0 auto;
 padding: 3% 5%;
 padding-top: 15%;
 color: white;
```

RESULT:

Fig 7.1: Feature 7.1

Fig 7.2:Feature7.2

CHAPTER 8

TESTING

8.1 Test Cases:

2	
3	Expected Result
4	Predict page should open
5	Home page should open
6	Predict page should open properly
7	Choosen File should be uploaded
8	A preview of the image should be viewed in the predic tpage
9	It should move from predict page to result page.
10	it should validate the file uploaded
11	check whether the file is reshaped and stored as avriable in main.py
12	check whether the file loads the dataset and predict the digit
13	check whether the result page is displayed.
	check whether the result page
14	displays the correct answer
	check whether the result page
15	contains the upload again button
16	

8.2 User Acceptance Testing:

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the A Novel Method for Handwritten Digit Recognition project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This reportshows the number of resolved or closed bugs at each severity level, and how they were resolved

Resoluti on	Severi ty 1	Severi ty 2	Severi ty 3	Severi ty 4	Subtotal
By Design	0	4	2	3	9
Duplicate	0	0	3	0	3
External	0	0	0	1	1
Fixed	0	4	5	4	13
Not Reproduced	0	0	0	0	0
Skipped	0	0	0	1	1
Won't Fix	0	0	0	1	1
Totals	0	8	11	10	2 6

Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fa il	Pass
Print Engine	7	0	0	7
Client Application	10	0	0	10
Security	1	0	0	1
Outsource Shipping	2	0	0	2
Exception Reporting	9	0	0	9
Final ReportOutput	4	0	0	4
Version Control	2	0	0	2

CHAPTER 9 RESULTS

9.1 Performance Metrics :

MODEL SUMMARY

Layer (type)	Output Shape	Param #
=========== onv2d (Conv2D)	(None, 26, 26, 64)	640
conv2d_1 (Conv2D)	(None, 24, 24, 32)	18464
Flatten (Flatten)	(None, 18432)	0
dense (Dense)	(None, 10)	184330

ACCURACY

CONTENT	VALUE
Training Accuracy	99.14%
Training Loss	2.70%
Validation Accuracy	97.76%
Validation Loss	10.36%

CLASSIFICATION REPORT

	precision	recall	f1-score	support
ø	1.00	0.97	0.98	980
1	0.99	0.99	0.99	1135
2	0.96	0.99	0.97	1032
3	0.97	1.00	0.98	1010
4	1.00	0.95	0.98	982
5	0.96	1.00	0.98	892
6	0.99	0.96	0.97	958
7	0.99	0.98	0.99	1028
8	0.99	0.99	0.99	974
9	0.97	0.99	0.98	1009
accuracy			0.98	10000
macro avg	0.98	0.98	0.98	10000
weighted avg	0.98	0.98	0.98	10000

CHAPTER 10 ADVANTAGES & DISADVANTAGES

10.1. ADVANTAGES:

- 1. The system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as writing style.
- 2. The generative models can perform recognition driven segmentation.
- 3.Handwriting forces your brain to mentally engage with the information, improving both literacy and reading comprehension.
- 4.Digitalization
- 5.Data Collection.

10.2. DISADVANTAGES:

- 1. Despite that there are enormous convolutional neural network algorithms proposed for handwritten digit recognition, issues such as recognition accuracy.
- 2. Get alternative, less likely predictions when available.
- 3. Anyway Higher processor is required.
- 4.High cost
- 5. Time consuming
- 6.computation time still require for further improvement.

CHAPTER 11

CONCLUSION

We successfully built a Python artificial intelligence project for handwritten digit recognition. We built and trained a Convolutional Neural Network (CNN) that excels at image classification. Deep Learning Methods for Handwritten Digit Recognition have been developed. The most commonly used Machine learning algorithms CNN were trained and tested on the same data to provide a comparison of classifiers. These deep learning approaches can achieve a high level of accuracy. Unlike other research methodologies, this one is concerned with determining which classifier performs best by increasing accuracy. A CNN model that uses Keras as the backend as well as TensorFlow as the software can achieve 98% accuracy.

CHAPTER 12

FUTURE SCOPE

As a result of the above differentiation and future development, we can achievehigh-level functioning applications that can be used in classified or government agencies as well as for the general public.

We can add fuzzification with Back propagation algoritm. This algorithm can be used to recognize multiple digits at a time and also to recognize characters

CHAPTER 13 APPENDIX

13.1 Source Code:

main.py from flask import Flask,render_template,request from PIL import Image import numpy as np from tensorflow.keras.models import load_model import tensorflow as tf app = Flask(__name__) @app.route('/') def upload_file(): return render_template('index.html') @app.route('/about') def upload_file1(): return render_template('predict.html') @app.route('/upload') def upload_file2():

```
return render_template('predict.html')
@app.route('/upload', methods = ['POST'])
def upload_image_file():
  if request.method=='POST':
    img = Image.open(request.files['file'].stream).convert("L")
    img = img.resize((28,28))
    img2arr = np.array(img)
    img2arr = img2arr.reshape(1,28,28,1)
    model = load_model('mnistCNN.h5')
    #y pred = model.predict classes(img2arr)
    y_pred = np.argmax(model.predict(img2arr), axis=1)
    print(y_pred)
    if(y_pred == 0):
       return render_template("predict.html",msg="0")
    elif(y_pred == 1):
       #return render_template("1.html",shoechase = str(y_pred))
       return render_template("predict.html",msg="1")
    elif(y_pred == 2):
       #return render_template("2.html",shoechase = str(y_pred))
       return render_template("predict.html",msg="2")
    elif(y_pred == 3):
       #return render_template("3.html",shoechase = str(y_pred))
       return render_template("predict.html",msg="3")
```

```
elif(y_pred == 4):
       #return render_template("4.html",shoechase = str(y_pred))
       return render_template("predict.html",msg="4")
     elif(y_pred == 5):
       #return render_template("5.html",shoechase = str(y_pred))
       return render_template("predict.html",msg="5")
     elif(y_pred == 6):
       #return render_template("6.html",shoechase = str(y_pred))
       return render_template("predict.html",msg="6")
    elif(y_pred == 7):
       #return render_template("7.html",shoechase = str(y_pred))
       return render_template("predict.html",msg="7")
    elif(y_pred == 8):
       #return render_template("8.html",shoechase = str(y_pred))
       return render_template("predict.html",msg="8")
    else:
       #return render_template("9.html",shoechase = str(y_pred))
       return render_template("predict.html",msg="9")
  else:
    return None
if __name__=='__main__':
  app.run()
```

13.2 Github And Demo Link:

Youtube Demo Link:

https://youtu.be/MmPPID4ZJQ

Github Link:

https://github.com/IBM-EPBL/IBM-Project-17654-1659674757

Source Code Link:

https://github.com/IBM-EPBL/IBM-Project-17654-1659674757/tree/main/Final%20Deliverables41