Rank-74295 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_0^2 X_1 + X_0^2 X_2 + X_1^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over GF(4) is 1499028073

General information

Number of lines	6
Number of points	29
Number of singular points	1
Number of Eckardt points	1
Number of double points	6
Number of single points	15
Number of points off lines	7
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{6}
Type of lines on points	$3, 2^6, 1^{15}, 0^7$

Singular Points

The surface has 1 singular points:

$$0: P_8 = \mathbf{P}(1,0,1,0) = \mathbf{P}(1,0,1,0)$$

The 6 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{21} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{21} = \mathbf{Pl}(1, 0, 0, 0, 0, 1)_{102}$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{5} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{5} = \mathbf{Pl}(1,0,1,0,1,0)_{33}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & \omega & 1 \end{bmatrix}_{27} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}_{27} = \mathbf{Pl}(1,1,2,0,1,1)_{183}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & \omega^{2} & 1 \end{bmatrix}_{28} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 3 & 1 \end{bmatrix}_{28} = \mathbf{Pl}(1,1,3,0,1,1)_{186}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & \omega & \omega \\ 0 & 1 & \omega & 1 \end{bmatrix}_{216} = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}_{216} = \mathbf{Pl}(2,3,1,1,3,1)_{340}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & \omega^{2} & \omega^{2} \\ 0 & 1 & \omega^{2} & 1 \end{bmatrix}_{322} = \begin{bmatrix} 1 & 0 & 3 & 3 \\ 0 & 1 & 3 & 1 \end{bmatrix}_{322} = \mathbf{Pl}(3,2,1,1,2,1)_{284}$$

Rank of lines: (21, 5, 27, 28, 216, 322)

Rank of points on Klein quadric: (102, 33, 183, 186, 340, 284)

Eckardt Points

The surface has 1 Eckardt points: $0: P_8 = \mathbf{P}(1, 0, 1, 0) = \mathbf{P}(1, 0, 1, 0).$

Double Points

The surface has 6 Double points: The double points on the surface are:

$$P_{16} = (1, 2, 1, 0) = \ell_0 \cap \ell_4$$

$$P_{20} = (1, 3, 1, 0) = \ell_0 \cap \ell_5$$

$$P_{44} = (3, 1, 1, 1) = \ell_1 \cap \ell_2$$

$$P_{43} = (2, 1, 1, 1) = \ell_1 \cap \ell_3$$

 $P_{57} = (0, 1, 2, 1) = \ell_2 \cap \ell_4$ $P_{73} = (0, 1, 3, 1) = \ell_3 \cap \ell_5$

Single Points

The surface has 15 single points: The single points on the surface are:

0: $P_0 = (1,0,0,0)$ lies on line ℓ_1 1: $P_1 = (0,1,0,0)$ lies on line ℓ_0 2: $P_4 = (1,1,1,1)$ lies on line ℓ_1 3: $P_{12} = (1,1,1,0)$ lies on line ℓ_0 4: $P_{28} = (2,1,0,1)$ lies on line ℓ_2 5: $P_{29} = (3,1,0,1)$ lies on line ℓ_3 6: $P_{32} = (2,2,0,1)$ lies on line ℓ_4 7: $P_{37} = (3,3,0,1)$ lies on line ℓ_5 $\begin{array}{l} 8: \ P_{40} = (2,0,1,1) \ \text{lies on line} \ \ell_5 \\ 9: \ P_{41} = (3,0,1,1) \ \text{lies on line} \ \ell_4 \\ 10: \ P_{42} = (0,1,1,1) \ \text{lies on line} \ \ell_1 \\ 11: \ P_{58} = (1,1,2,1) \ \text{lies on line} \ \ell_3 \\ 12: \ P_{62} = (1,2,2,1) \ \text{lies on line} \ \ell_5 \\ 13: \ P_{74} = (1,1,3,1) \ \text{lies on line} \ \ell_2 \\ 14: \ P_{82} = (1,3,3,1) \ \text{lies on line} \ \ell_4 \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 7 points not on any line: The points on the surface but not on lines are:

```
\begin{array}{lll} 0: \ P_3 = (0,0,0,1) & 4: \ P_{35} = (1,3,0,1) \\ 1: \ P_{17} = (2,2,1,0) & 5: \ P_{67} = (2,3,2,1) \\ 2: \ P_{22} = (3,3,1,0) & 6: \ P_{80} = (3,2,3,1) \\ 3: \ P_{31} = (1,2,0,1) & \end{array}
```

Line Intersection Graph

	0	1	2	3	4	5
$\overline{0}$	0	0	1	1	1	1
1	0	0	1	1	0	0
2	1	1	0	1	1	0
3	1	1	1	0	0	1
4	1	0	1	0	0	0
$ \begin{array}{c} \hline 0\\1\\2\\3\\4\\5\end{array} $	1	0	0	1	0	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_2	ℓ_3	ℓ_4	ℓ_5
in point	P_8	P_8	P_{16}	P_{20}

Line 1 intersects

Line	ℓ_2	ℓ_3
in point	P_{44}	P_{43}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4
in point	P_8	P_{44}	P_8	P_{57}

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_5
in point	P_8	P_{43}	P_8	P_{73}

Line 4 intersects

Line	ℓ_0	ℓ_2
in point	P_{16}	P_{57}

Line 5 intersects

Line	ℓ_0	ℓ_3
in point	P_{20}	P_{73}

The surface has 29 points: $\,$

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$10: P_{28} = (2, 1, 0, 1)$	$20: P_{44} = (3, 1, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	$11: P_{29} = (3, 1, 0, 1)$	$21: P_{57} = (0, 1, 2, 1)$
$2: P_3 = (0,0,0,1)$	$12: P_{31} = (1, 2, 0, 1)$	$22: P_{58} = (1, 1, 2, 1)$
$3: P_4 = (1, 1, 1, 1)$	13: $P_{32} = (2, 2, 0, 1)$	$23: P_{62} = (1, 2, 2, 1)$
$4: P_8 = (1,0,1,0)$	$14: P_{35} = (1, 3, 0, 1)$	$24: P_{67} = (2, 3, 2, 1)$
$5: P_{12} = (1, 1, 1, 0)$	$15: P_{37} = (3,3,0,1)$	$25: P_{73} = (0, 1, 3, 1)$
$6: P_{16} = (1, 2, 1, 0)$	16: $P_{40} = (2, 0, 1, 1)$	$26: P_{74} = (1, 1, 3, 1)$
7: $P_{17} = (2, 2, 1, 0)$	17: $P_{41} = (3, 0, 1, 1)$	$27: P_{80} = (3, 2, 3, 1)$
$8: P_{20} = (1, 3, 1, 0)$	$18: P_{42} = (0, 1, 1, 1)$	$28: P_{82} = (1, 3, 3, 1)$
$9: P_{22} = (3, 3, 1, 0)$	19: $P_{43} = (2, 1, 1, 1)$	