EEE 443/543 - Project #4

Q1)

In this project the task was to design and train a neural network in order to do curve fitting. The first task to randomly draw $x_1,...,x_n$ uniformly form [0, 1] and $v_1,...,v_n$ uniformly form [-0.1, 0.1] where n = 300.

In order to get the same result for each run the numpy random seed is fixed:

np.random.seed(57)

After that, $d_i = sin(20x_i) + 3x_i + v_i$ are calculated and (x_i, d_i) points are plotted where i = 1,...,n.

 $Fig. 1 d_i = sin(20x_i) + 3x_i + v_i$

Psudocode:

- 1. Initialize:
 - 1.1 Number of neurons in hidden layer (N)
 - **1.2** Learning rate (eta)
 - 1.3 Weights (weights input, weights hidden)
 - **1.4** Biases (bias input, bias hidden)
- **2.** Define Activation Function:
 - **2.1** $tanh(x) = (e^x e^(-x)) / (e^x + e^(-x))$
 - **2.2** tanh derivative(x) = $1 \tanh(x)^2$
- **3.** Training Loop (for epoch in 1 to max epochs):
 - **3.1** Initialize mean squared error (MSE) to 0
 - **3.2** For each training sample (xi, di):
 - 3.2.1 Forward Pass:
 - **3.2.1.1** Compute hidden layer input: hidden_input = weights_input * xi + bias input
 - **3.2.1.2** Compute hidden layer output: hidden output = tanh(hidden input)

- **3.2.1.3** Compute final output: output = weights_hidden * hidden_output + bias hidden
- **3.2.1.4** Compute error: error = di output
- **3.2.1.5** Update MSE: MSE += error^2
- **3.2.2** Backward Pass (Gradient Descent Updates):
 - **3.2.2.1** Compute gradient at output layer: delta output = error
 - **3.2.2.2** Compute gradient at hidden layer: delta_hidden = tanh_derivative(hidden_input) * (weights_hidden^T * delta_output)
 - **3.2.2.3** Update output layer weights: weights_hidden += eta * delta_output * hidden output^T
 - **3.2.2.4** Update output layer bias: bias hidden += eta * delta output
 - **3.2.2.5** Update input layer weights: weights_input += eta * delta_hidden * xi^T
 - **3.2.2.6** Update input layer bias: bias input += eta * delta hidden
- **3.3** Compute MSE for the epoch: MSE = MSE / total samples
- **3.4** If MSE increases, reduce learning rate: eta = eta * 0.9 (adaptive learning rate)
- 4. Return the trained weights and biases

The MSE versus number of epochs plot is given below in *Fig.2*, it is clear that as the algorithm runs the MSE goes to zero, which shows that the BP algorithm, in fact, converges to the best fit.

Fig. 2 The number of epochs vs the MSE in the backpropagation algorithm

The plot of the curve $(x, f(x, w_{\theta}))$, $x \in [0, 1]$, where w_{θ} is the weights that the backpropagation algorithm has converged to, is visible in Fig.3:

