STAT 315 Chapter 12 Review Questions

1. Three variables, W, X, and Y are observed for a sample. Our goal is to use the predictors W and X to predict the value of the response, Z. Label each statement on the left by selecting one of the options to the right:

If W and X are correlated, then the standard errors of their estimated slopes will be smaller than if they were not correlated	True	False	Impossible To Tell
If W and X are correlated, then their estimated slopes will be larger than if they were not correlated.	True	False	Impossible To Tell
Multiple Regression is only able to model linear relationships between W, X, and Y.	True	False	Impossible To Tell
Rejecting the null hypothesis in the model utility test implies that all the model slopes are significant.	True	False	Impossible To Tell
Rejecting the null hypothesis in the model utility test implies that at least one model slope is significant.	True	False	Impossible To Tell
Rejecting the null hypothesis in the model utility test implies that none of the model slopes are significant.	True	False	Impossible To Tell
To use multiple regression, W and X must be independent.	True	False	Impossible To Tell
To use multiple regression, the errors must be independent and identically distributed.	True	False	Impossible To Tell
To use multiple regression, W must be independent of Y and X must be independent of Y.	True	False	Impossible To Tell
Multiple regression can handle quantitative as well as categorical predictors.	True	False	Impossible To Tell
The purpose of interaction terms is to establish causality	True	False	Impossible To Tell
The intercept in Multiple regression represents the average response when all predictors are 0.	True	False	Impossible To Tell
The purpose of interaction is to model the relationship of one predictor with the response when the value of another predictor is fixed.	True	False	Impossible To Tell
Assume W is categorical, X is continuous, and the proposed model is $Y = \beta_0 + \beta_1 X + \beta_2 W + \epsilon$. The slope for X indicates the change in Y when W is held fixed.	True	False	Impossible To Tell
R^2 indicates the proportion of variability in Y that is explained by W and X.	True	False	Impossible To Tell
Assume the proposed model is $Y = \beta_0 + \beta_1 X + \beta_2 W + \epsilon$ and we have rejected the model utility test, but only the slope for X is significant. Then we must keep both X and W in the model.	True	False	Impossible To Tell

Scenario A:

A structural engineer wishes to maximize the compressive strength of concrete. They mix several batches using different recipes and measure their compressive strength throughout the next year. Here is a summary of the variables:

- Cement: kg of cement per cubic meter
- Blast Furnace Slag: kg of slag per cubic meter
- Fly Ash: kg of ash per cubic meter
- Water: kg of water per cubic meter
- Superplasticizer: kg of superplasticizer per cubic meter
- Coarse Aggregate: kg of coarse aggregate per cubic meter
- Fine Aggregate: kg of fine aggregate per cubic meter
- Age: age in days
- Concrete compressive strength: strength in mega-Pascals

The engineer constructs a few multiple regression models to understand how each variable affects compressive strength. Here is the output from R:

```
Call:
lm(formula = `Concrete compressive strength` ~ Cement, data = df)
Residuals:
   Min
            1Q Median
                           3Q
                        9.992 43.241
-40.594 -10.952 -0.572
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                       <2e-16 ***
(Intercept) 13.442795 1.296925 10.37
                                       <2e-16 ***
          0.079580 0.004324 18.41
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 14.5 on 1028 degrees of freedom
Multiple R-squared: 0.2478,
                             Adjusted R-squared: 0.2471
F-statistic: 338.7 on 1 and 1028 DF, p-value: < 2.2e-16
lm(formula = `Concrete compressive strength` \sim Cement + Superplasticizer +
    Coarse Aggregate`, data = df)
Residuals:
            10 Median
   Min
                            30
                                   Max
-33.279 -10.199 -0.506
                         8.892 44.702
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                  15.751063 5.825309 2.704 0.00697 **
(Intercept)
                   0.074382
                              0.004051 18.363 < 2e-16 ***
Cement
                             0.073082 12.050 < 2e-16 ***
Superplasticizer
                  0.880649
Coarse Aggregate` -0.006485
                             0.005624 -1.153 0.24913
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 13.47 on 1026 degrees of freedom
Multiple R-squared: 0.3519, Adjusted R-squared:
F-statistic: 185.7 on 3 and 1026 DF, p-value: < 2.2e-16
```

```
Call:
lm(formula = `Concrete compressive strength` ~ ., data = df)
Residuals:
   Min
            1Q Median
                            3Q
                                  Мах
-28.653 -6.303
                0.704
                         6.562 34.446
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                    -23.163756 26.588421
                                          -0.871 0.383851
(Intercept)
                                          14.110 < 2e-16 ***
                      0.119785
                                 0.008489
Blast Furnace Slag`
                      0.103847
                                 0.010136
                                          10.245
                                                  < 2e-16 ***
                                           6.988 5.03e-12 ***
`Fly Ash`
                      0.087943
                                 0.012585
                                          -3.741 0.000194 ***
Water
                     -0.150298
                                 0.040179
Superplasticizer
                      0.290687
                                 0.093460
                                           3.110 0.001921 **
                      0.018030
                                 0.009394
                                           1.919 0.055227
Coarse Aggregate`
                                 0.010703
                      0.020154
                                           1.883 0.059968
`Fine Aggregate`
                      0.114226
                                 0.005427
                                          21.046 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.4 on 1021 degrees of freedom
Multiple R-squared: 0.6155,
                              Adjusted R-squared: 0.6125
F-statistic: 204.3 on 8 and 1021 DF, p-value: < 2.2e-16
Call:
lm(formula = `Concrete compressive strength` ~ Cement + Superplasticizer +
    Age + `Blast Furnace Slag` + Water + `Fly Ash`, data = df)
Residuals:
             1Q Median
    Min
                              3Q
                                     Max
-29.014 -6.474
                0.650
                           6.546 34.726
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                                             6.891 9.64e-12 ***
(Intercept)
                     29.030224
                                  4.212476
                                            24.821 < 2e-16 ***
Cement
                      0.105427
                                  0.004248
                                                     0.00481 **
Superplasticizer
                      0.239003
                                  0.084586
                                             2.826
                                                    < 2e-16 ***
                      0.113495
                                  0.005408
                                            20.987
Age
                                                     < 2e-16 ***
`Blast Furnace Slag`
                     0.086494
                                  0.004975
                                            17.386
                                                    < 2e-16 ***
                      -0.218292
                                  0.021128 -10.332
Water
`Fly Ash
                      0.068708
                                  0.007736
                                             8.881 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.41 on 1023 degrees of freedom
                                 Adjusted R-squared: 0.6117
Multiple R-squared: 0.614,
F-statistic: 271.2 on 6 and 1023 DF, p-value: < 2.2e-16
```

- 2. When holding the amount of cement and superplasticizer fixed, does changing the amount of coarse aggregate appear to impact compressive strength?
- 3. How much variability in compressive strength is explained by the amount of cement per cubic meter?
- 4. In the last model, which material(s) tend(s) to decrease the strength of the concrete when added? For each substance, how much does adding 1 kg per cubic meter decrease compressive strength?
- 5. In the last model, which substance appears to have the greatest biggest effect on compressive strength? Quantify the effect of this substance.
- 6. How much variability in strength cannot be explained by the variables considered in the study?
- 7. Which of the models is preferred?

Scenario B:

We are interested in understanding the relationships between four variables: the response, y, and the predictors, x1, x2, and x3. Below are the results of two different multiple regression models:

```
Call:
                                                                           m
lm(formula = y \sim x1 + x2)
                                                                                                                             %
                                                                                                                                0 0000
                                                                                                                            0
Residuals:
              1Q Median
                                                                                                        ∞ ∘
    Min
                                30
                                       Мах
                                                                       Residuals
-3.1211 -0.9458 -0.1267 1.0970
                                   2.5713
                                                                                                      00000
                                                                                                                           00
                                                                                                                         0
                                                                                                                                     0
                                                                                                                °8°
                                                                                                  800
                                                                                                                               0
Coefficients:
                                                                                                                       000
                                                                                                                    0
                                                                                                                                00
                                                                                                          0
                                                                                                                            0
             Estimate Std. Error t value Pr(>|t|)
                                   -6.008 3.28e-08 ***
7.591 1.97e-11 ***
(Intercept)
             -2.42760
                          0.40404
                                                                           7
                                                                                                                      70
              0.34987
                          0.04609
х1
x2
              1.31649
                          0.04653 28.295 < 2e-16 ***
                                                                                                              °57
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
                                                                                     0
                                                                                                        5
                                                                                                                           10
Residual standard error: 1.298 on 97 degrees of freedom
Multiple R-squared: 0.8921,
                                  Adjusted R-squared: 0.8899
                                                                                                         Fitted values
                401 on 2 and 97 DF, p-value: < 2.2e-16
F-statistic:
                                                                                                         Im(y \sim x1 + x2)
Call:
                                                                                                       Residuals vs Fitted
lm(formula = y \sim x1 + x2 + x3)
                                                                             3
                                                                                                                         890
                                                                                                                            °。
Residuals:
                                                                                                                                 0
                                                                                        ۰ 。
               1Q Median
    Min
                                 3Q
                                                                                                                               ° 0000
                                                                                             0
                                                                                                        0
-3.1570 -0.9743 -0.1312 1.0891
                                     2.4908
                                                                                           80
                                                                                                        60
                                                                        Residuals
Coefficients:
                                                                             0
                                                                                                                          00
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
             -2.44374
                           0.40597
                                     -6.020 3.19e-08 ***
                                                                                                         0
                                                                                                                            0
                                                                                                            0 0
               0.51299
                           0.25233
                                      2.033
                                               0.0448 *
х1
                                                                             ņ
x2
              1.31580
                           0.04668
                                    28.191
                                              < 2e-16 ***
                                                                                                                    °700
                           0.24371 -0.658
x3
              -0.16026
                                               0.5124
                                                                                                              °57
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
                                                                                     0
                                                                                                        5
                                                                                                                           10
Residual standard error: 1.301 on 96 degrees of freedom
Multiple R-squared: 0.8926, Adjusted R-squared: 0.F-statistic: 265.9 on 3 and 96 DF, p-value: < 2.2e-16
                                    Adjusted R-squared: 0.8892
                                                                                                          Fitted values
```

Residuals vs Fitted

 $Im(y \sim x1 + x2 + x3)$

- Is there any evidence of unaccounted-for non-linearity?
- Is there any evidence of non-constant variance?
- 10. Is there any evidence of multicollinearity?
- 11. Which model do you prefer and why?
- 12. If you had to design a third model, what would it be?