DÉRIVATION

■ Tout le cours en vidéo : https://youtu.be/XAgdHblbajE

Partie 1: Rappels sur la dérivation

Playlist https://www.youtube.com/playlist?list=PLVUDmbpupCaoY7qihLa2dHc9-rBgVrgWJ

Formules de dérivation :

Fonction	Dérivée
$a, a \in \mathbb{R}$	0
$ax, a \in \mathbb{R}$	а
x^2	2 <i>x</i>
x^n $n \ge 1 \text{ entier}$	nx^{n-1}
$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{1}{x^n}$ $n \ge 1 \text{ entier}$	$-\frac{n}{x^{n+1}}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$ e^x
e^x	e^x
$e^{kx}, k \in \mathbb{R}$	ke ^{kx}

Fonction	Dérivée
u + v	u' + v'
$ku, k \in \mathbb{R}$	ku'
uv	u'v + uv'
1	u'
\overline{u}	$-\frac{1}{u^2}$
<u>u</u>	u'v - uv'
v	$\overline{v^2}$

<u>Propriété</u>: Une équation de la tangente à la courbe de la fonction f au point d'abscisse a est : y = f'(a)(x - a) + f(a).

Théorème : Soit une fonction f définie et dérivable sur un intervalle I.

- Si $f'(x) \le 0$, alors f est décroissante sur I.
- Si $f'(x) \ge 0$, alors f est croissante sur I.

Méthode: Étudier les variations d'une fonction

Vidéo https://youtu.be/23_Ba3N0fu4

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 + \frac{9}{2}x^2 - 12x + 5$.

- a) Calculer la fonction dérivée f de f.
- b) Déterminer le signe de f' en fonction de x.
- c) Dresser le tableau de variations de f.

Correction

a)
$$f'(x) = 3x^2 + \frac{9}{2} \times 2x - 12 = 3x^2 + 9x - 12$$
.

b) On commence par résoudre l'équation f'(x) = 0:

Le discriminant du trinôme $3x^2 + 9x - 12$ est égal à $\Delta = 9^2 - 4 \times 3 \times (-12) = 225$

L'équation possède deux solutions :
$$x_1 = \frac{-9 - \sqrt{225}}{2 \times 3} = -4$$
 et $x_2 = \frac{-9 + \sqrt{225}}{2 \times 3} = 1$

Comme a = 3 > 0, les branches de la parabole représentant la fonction dérivée sont tournées vers le haut (position « $\stackrel{\bigcirc}{\circ}$ »). La dérivée est donc d'abord positive, puis négative, puis positive.

c) On dresse le tableau de variations :

$$f(-4) = (-4)^3 + \frac{9}{2}(-4)^2 - 12 \times (-4) + 5 = 61$$

$$f(1) = 1^3 + \frac{9}{2} \times 1^2 - 12 \times 1 + 5 = -\frac{3}{2}$$

Partie 2 : Dérivée d'une fonction composée

1) Définition d'une fonction composée

Méthode : Identifier la composée de deux fonctions

Vidéo https://youtu.be/08HgDgD6XL8

On considère la fonction f définie par $f(x) = \sqrt{x-3}$. Identifier la composée de deux fonctions dans la fonction f.

Correction

On peut décomposer la fonction f en deux fonctions u et v telles que :

$$f: x \mapsto x - 3 \mapsto \sqrt{x - 3}$$

Les fonctions u et v sont définies par : u(x) = x - 3 et $v(x) = \sqrt{x}$

On dit que la fonction f est la composée de u par v et on note :

$$f(x) = v \circ u(x) = v(u(x)) = \sqrt{x-3}$$

Définition:

On appelle **fonction composée** des fonctions u par v la fonction notée $v \circ u$ définie par : $v \circ u$ (x) = v(u(x)).

Méthode: Composer deux fonctions

Vidéo https://youtu.be/sZ2zqEz4hug

a) On considère les fonctions u et v définies par : $u(x) = \frac{1}{x}$ et $v(x) = \sqrt{x}$.

Exprimer les fonctions $v \circ u$ et $u \circ v$ en fonction de x.

b) Même question avec $u(x) = x^2 + x$ et $v(x) = \frac{x}{x+1}$.

Correction

a) On a :
$$u(x) = \frac{1}{x}$$
 et $v(x) = \sqrt{x}$

$$v \circ u(x) = v(u(x)) = \sqrt{\frac{1}{x}}$$

$$u \circ v(x) = \frac{1}{\sqrt{x}}$$

b) On a :
$$u(x) = x^2 + x$$
 et $v(x) = \frac{x}{x+1}$

$$v \circ u(x) = v(u(x)) = \frac{x^2 + x}{x^2 + x + 1}$$

$$u \circ v(x) = u(v(x)) = \left(\frac{x}{x+1}\right)^2 + \frac{x}{x+1}$$

2) Dérivation d'une fonction composée

Fonction	Dérivée
$v \circ u$	$v' \circ u \times u'$
ou $v(u(x))$	ou $v'(u(x)) \times u'(x)$

Méthode: Déterminer la dérivée d'une fonction composée (cas général)

Vidéo https://youtu.be/lwcFgnbs0Ew

Déterminer la dérivée de la fonction f définie sur \mathbb{R} par $f(x) = e^{x^2+1}$.

Correction

On considère les fonctions u et v définies par : $u(x) = x^2 + 1$ et $v(x) = e^x$

Alors:
$$f(x) = e^{x^2+1} = v(u(x))$$

On a :
$$u'(x) = 2x$$
 et $v'(x) = e^x$

Donc:
$$f'(x) = v'(u(x)) \times u'(x)$$

= $e^{x^2+1} \times 2x$
= $2xe^{x^2+1}$

3) Cas particuliers de fonctions composées

Fonction	Dérivée
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$
u^n avec $n \in \mathbb{Z}^*$	$nu'u^{n-1}$
e^u	$u'e^u$

Démonstrations:

$$-\sqrt{u(x)} = v \circ u(x)$$
 avec $v(x) = \sqrt{x}$

$$\operatorname{Donc}\left(\sqrt{u(x)}\right)' = v'\left(u(x)\right) \times u'(x) = \frac{1}{2\sqrt{u(x)}} \times u'(x), \operatorname{car} v'(x) = \frac{1}{2\sqrt{x}}$$

Soit
$$\left(\sqrt{u(x)}\right)' = \frac{u'(x)}{2\sqrt{u(x)}}$$

$$-(u(x))^n = v \circ u(x) \text{ avec } v(x) = x^n$$

Donc
$$((u(x))^n)' = v'(u(x)) \times u'(x) = n(u(x))^{n-1} \times u'(x)$$
, car $v'(x) = nx^{n-1}$

Soit
$$((u(x))^n)' = nu'(x)(u(x))^{n-1}$$

- Démonstration analogue pour « e^u ».

Méthode: Déterminer la dérivée de fonctions composées (cas particuliers)

Vidéo https://youtu.be/kE32Ek8BXvs

Vidéo https://youtu.be/5G4Aa8gKH o

Déterminer la dérivée des fonctions définies par :

a)
$$f(x) = \sqrt{3x^2 + 4x - 1}$$
 b) $g(x) = (2x^2 + 3x - 3)^4$ c) $h(x) = 2e^{\frac{1}{x}}$

Correction

a) On pose :
$$f(x) = \sqrt{u(x)}$$
 avec $u(x) = 3x^2 + 4x - 1 \rightarrow u'(x) = 6x + 4$

Donc:
$$f'(x) = \frac{u'(x)}{2\sqrt{u(x)}}$$

= $\frac{6x+4}{2\sqrt{3x^2+4x-1}}$
= $\frac{3x+2}{\sqrt{3x^2+4x-1}}$

b) On pose :
$$g(x) = (u(x))^4$$
 avec $u(x) = 2x^2 + 3x - 3 \rightarrow u'(x) = 4x + 3$
Donc : $g'(x) = 4u'(x)(u(x))^3$

$$= 4(4x+3)(2x^2+3x-3)^3$$

c) On pose :
$$h(x) = 2e^{u(x)}$$
 avec $u(x) = \frac{1}{x} \to u'(x) = -\frac{1}{x^2}$

Donc:
$$h'(x) = 2u'(x)e^{u(x)}$$

= $2 \times \left(-\frac{1}{x^2}\right)e^{\frac{1}{x}}$

$$=-\frac{2}{x^2}e^{\frac{1}{x}}$$

Partie 3 : Étude d'une fonction composée

Méthode: Étudier une fonction composée

- Vidéo https://youtu.be/I4HkvkpqjNw
- Vidéo https://youtu.be/Vx0H1DV3Yqc
- Vidéo https://youtu.be/2RIBQ1LiNYU

Soit f la fonction définie sur \mathbb{R} par $f(x) = xe^{-\frac{x}{2}}$.

- a) Étudier les limites de f à l'infini.
- b) Calculer la dérivée de la fonction f.
- c) Dresser le tableau de variations de la fonction f.
- d) Tracer la courbe représentative de la fonction f.

Correction

- a) Limite en $-\infty$:
- Comme limite d'une fonction composée : $\lim_{x\to -\infty} e^{-\frac{x}{2}} = \lim_{X\to +\infty} e^X = +\infty$. En effet, lorsque $x\to -\infty$, on a : $X=-\frac{x}{2}\to +\infty$.
- Or, $\lim_{x \to -\infty} x = -\infty$.
- Donc, limite d'un produit : $\lim_{x \to -\infty} x e^{-\frac{x}{2}} = -\infty$.

Limite en $+\infty$:

On reconnait une forme indéterminée du type « $\infty \times 0$ ». Levons l'indétermination :

$$xe^{-\frac{x}{2}} = \frac{x}{e^{\frac{x}{2}}} = 2\frac{\frac{x}{2}}{e^{\frac{x}{2}}}$$

Par croissance comparée, on a : $\lim_{x \to +\infty} \frac{e^{\frac{x}{2}}}{\frac{x}{2}} = +\infty$.

En effet, $\lim_{X\to +\infty} \frac{e^X}{X} = +\infty$, en considérant que $X = \frac{x}{2}$.

Donc, $\lim_{x \to +\infty} \frac{\frac{x}{2}}{\frac{x}{e^{\frac{x}{2}}}} = 0$, comme inverse de limite.

Et donc : $\lim_{x \to +\infty} 2 \frac{\frac{x}{2}}{\frac{x}{e^{\frac{x}{2}}}} = 0$

Soit : $\lim_{x \to +\infty} x e^{-\frac{x}{2}} = 0.$

b)
$$f'(x) = 1 \times e^{-\frac{x}{2}} + x \times \left(-\frac{1}{2}\right) e^{-\frac{x}{2}}$$
, en effet : $\left(e^{-\frac{x}{2}}\right)' = \left(-\frac{1}{2}\right) e^{-\frac{x}{2}}$.
 $= e^{-\frac{x}{2}} - \frac{x}{2} e^{-\frac{x}{2}}$
 $= \left(1 - \frac{x}{2}\right) e^{-\frac{x}{2}}$

c) Comme $e^{-\frac{x}{2}} > 0$, f'(x) est du signe de $1 - \frac{x}{2}$.

f'est donc positive sur l'intervalle $]-\infty$; 2] et négative sur l'intervalle $[2; +\infty[$. On dresse le tableau de variations :

x	-∞	2	+∞
f'(x)	+	0	-
f(x)	-8	$\frac{2}{e}$	0

En effet :
$$f(2) = 2e^{-\frac{2}{2}} = 2e^{-1} = \frac{2}{e}$$

d)

© Copyright

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

<u>www.maths-et-tiques.fr/index.php/mentions-legales</u>