INF221 – Algoritmos y Complejidad

Ayudantía 6 Programación dinámica

Aldo Berrios Valenzuela

Jueves 22 de septiembre de 2016

1. Ayudantía

/* Dibujo de un grafo */

Demostración de algoritmo de programación dinámica:

- **Complex choice:** Sea $\hat{p}_i \, \forall i \, \text{con} \, i = 1,...,n$, las posibles primeras elecciones del algoritmo para el problema P, entonces la solución de P incluye a algún elemento de \hat{p}_i . Para el ejemplo del grafo, se tiene que $\hat{p}_i = \{1,5,100\}$.
- Inductive substructure: Sea Π'_i la solución del problema P'_i que se genera al escoger \hat{p}_i . Se debe cumplir que $\hat{p}_i \cup \Pi'_i$ es solución factible de P.
- **Optima substructure:** Sean Π'_i las soluciones óptimas de los problemas P'_i al escoger \hat{p}_i dado, entonces algún $\Pi'_i \cup \hat{p}_i$ es óptima de P.

Ejemplo 1.1. /* Descripcion de algoritmo */

/* Dibujo parecido al grafo de pierola */

Demuestre que es algoritmo de programación dinámica.

Demostración. Demostramos las cosas:

■ Complex choice: Sea C el conjunto de los \hat{p}_i para el problema. Sea n_i el nodo inicial. Entonces n_i y todo n_j conecta $n_i \in C$.

Por contradicción: supongamos que existe una solución Π^* tal que

$$C \cap \Pi^* = \emptyset$$

Entonces $\exists n_k \in \Pi^*$ que esté conectado a n. Entonces $n_i \cup \Pi^*$ es solución factible de P. Luego

$$|n_i \cup \Pi^*| > |\Pi^*|$$

por lo tanto, Π^* no es óptimo. ⇒ ←. Por lo tanto, algún n_i ∈ C forma parte de la solución óptima.

- Subestructura inductiva: Sea Π_i una solución de p'_i que es el subproblema de P que se genera al escoger \hat{p}_i . Como \hat{p}_i es un nodo escogido para la solución y el algoritmo quita todos los nodos conectados a \hat{p}_i , entonces el problema P'_i es un grafo no conectado a \hat{p}_i , por lo tanto ningún nodo $n_k \in \Pi'_i$ está conectado a \hat{p}_i , por lo que siempre es posible unir \hat{p}_i con Π'_i para generar una solución para P. Entonces cumple para todo \hat{p}_i .
- Optimal substructure: Sea Π_i' la solución óptima para el subproblema P_i' que se genera al escoger un \hat{p}_i . Como Π_i' es la mejor solución y al unirla a \hat{p}_i genera una solución aún mejor, entonces, algún $\Pi_i' \cup \hat{p}_i$ debe ser la mejor solución para P, dado que los $\Pi_i' \cup \hat{p}_i$ representa las mejores soluciones para \hat{p}_i dado.