HOMEWORK 1: NUMBER SYSTEMS AND BINARY ARITHMETICS

Module: Informational technologies FMISB18100 Vilnius Gediminas Technical University

Department of Information Systems

Lecturer: Dr. D.Zabulionis

Abstract

This is the 1st homework for Information Technologies module. In this assignment there are calculations for conversion of numbers of different radix to decimal numbers, conversion of decimal numbers to the numbers of different radix and direct conversion of the integer numbers of different radix. To complete this assignment the recordings of lectures as well as online resources were used. References are provided at the end of the paper.

Liene Malkalne

liene.malkalne@gmail.com

Contents

Assignment	2
Part I. Conversion of numbers of different radix to the decimal numbers	3
1. Binary number X2 = 1101110.1111012	3
2. Quaternary X4 = 201311321.1103234	3
3. Octal X8 = 75012575.0235058	3
4. Hexadecimal X16 = 8EFBAA.ECD10816	4
Part II. Conversion of the decimal numbers to the numbers of the different radix	4
1. Decimal number X10 = 12222.515110 into a number Y2 of radix r = 2	4
2. Decimal number X10 = 1455782.1541510 into a number Y4 of radix r = 4	5
3. Decimal number X10 = 2585802.26548510 into a number Y8 of radix r = 8	5
4. Decimal number X10 = 235662524665.1232459810 into a number Y16 of radix r = 16	6
Part III. Direct conversion of the integer numbers of different radix	7
III.1 Convert directly the integer numbers of radix $r \in \{4, 8, 16\}$ into the binary numbers X2	7
1. Quaternary X4 = 21301.121334	7
2. Octal X8 = 77564.62558	7
3. Hexadecimal X16 = E10D.F8ED16	7
III.2 Convert directly the integer binary numbers to the numbers of radix $r \in \{4, 8, 16\}$	8
1. Binary number X2,1 = 1110.011012 to the quaternary Y4	8
2. Binary number X2,2 = 1110011.101102 to the octal Y8	8
3. Binary number X2,3 = 1110111011.0110012 to the hexadecimal Y16	8
Tables	9
References	11

Assignment

Homework 1. Student: LIENE MALKALNE group: 2 group 1 Module: Informational technologies FMISB18100; Date: Thursday 10th February, 2022 Vilnius Gediminas Technical University Department of Information Systems Assignment of homework 1: Number systems and binary aritmetics Part I. Conversion of numbers of different radix to the decimal numbers Convert the following numbers $X_{r,i}$ of radix $r \in \{2, 3, 4, ..., 16, ..., 32\}$, $i \in \{1, 2, 3, 4\}$ into the decimal numbers $Y_{10,i}$. 1. Binary number $X_2 = 1101110.111101_2$ 3. Octal $X_8 = 75012575.023505_8$ 2. Quaternary $X_4 = 201311321.110323_4$ Hexadecimal X₁₆ = 8EFBAA.ECD108₁₆ Part II. Conversion of the decimal numbers to the numbers of the different radix Convert the following decimal numbers $X_{10,i}$ into the numbers $Y_{10,i}$ of the different radix r: $r \in \{2, 3, 4, ..., 16\}, i \in \{1, 2, 3, 4\}$. The number of the significant numerals after the radix point (decimal places) should be bigger than 6. 1. Decimal number $X_{10} = 12222.5151_{10}$ into a number Y_2 of radix r = 22. Decimal number $X_{10} = 1455782.15415_{10}$ into a number Y_4 of radix r = 43. Decimal number $X_{10} = 2585802.265485_{10}$ into a number Y_8 of radix r = 84. Decimal number $X_{10} = 235662524665.12324598_{10}$ into a number Y_{16} of radix r = 16Part III. Direct conversion of the integer numbers of different radix III.1 Convert directly the integer numbers of radix $r \in \{4, 8, 16\}$ into the binary numbers X_2 . Quaternary X₄ = 21301.12133₄ 3. Hexadecimal $X_{16} = E10D.F8ED_{16}$ 2. Octal $X_8 = 77564.6255_8$ III.2 Convert directly the integer binary numbers to the numbers of radix $r \in \{4, 8, 16\}$. Binary number X_{2,1} = 1110.01101₂ to the quaternary Y₄ Binary number X_{2,2} = 1110011.10110₂ to the octal Y₈ Binary number X_{2,3} = 1110111011.011001₂ to the hexadecimal Y₁₆

Remarks

The report of the homework must contain: the title page, assignment, abstract page, table of contents, the main text of the homework whose chapters and numbering of the chapters correspond to the above listed items, the list of the references (if literature were used)

All calculations, derivations of formulas assumptions etc. must be commented in the text of the report; variables of the formulas must be explained when they are used for the first time in the text; figures and tables must be labelled and numbered in the text of the report.

Part I. Conversion of numbers of different radix to the decimal numbers

Convert the following numbers $X_{r,i}$ of radix $r \in \{2, 3, 4, ..., 16, ..., 32\}$, $i \in \{1, 2, 3, 4\}$ into the decimal numbers $Y_{10,i}$.

1. Binary number $X_2 = 1101110.111101_2$

Calculations:

 $(1x2^{5})+(1x2^{5})+(0x2^{4})+(1x2^{3})+(1x2^{2})+(1x2^{1})+(0x2^{0})+(1x2^{-1})+(1x2^{-2})+(1x2^{-3})+(1x2^{-4})+(0x2^{-5})+(1x2^{-6}) = (1x65)+(1x32)+(0x16)+(1x8)+(1x4)+(1x2)+(0x1)+(1x0.5)+(1x0.25)+(1x0.125)+(1x0.062$

Answer: (111.953125)₁₀

2. Quaternary X₄ = 201311321.110323₄

Calculations:

 $(2x4^8) + (0x4^7) + (1x4^6) + (3x4^5) + (1x4^4) + (1x4^3) + (3x4^2) + (2x4^1) + (1x4^0) + (1x4^{-1}) + (1x4^{-2}) + (0x4^{-3}) + (3x4^{-4}) + \\ + (2x4^{-5}) + (3x4^{-6}) = \\ (2x65536) + (0x16384) + (1x4096) + (3x1024) + (1x256) + (1x64) + (3x16) + (2x4) + (1x1) + (1x0.25) + (1x0.0625) + \\ + (0x0.015625) + (3x0.00390625) + (2x0.0009765625) + (3x0.000244140625) = \\ 131072 + 0 + 4096 + 3072 + 256 + 64 + 48 + 8 + 1 + 0.25 + 0.0625 + 0 + 0.01171875 + 0.001953125 + 0.000732421875 = \\ 138617.326904296875$

Answer: (138617.326904296875)₁₀

3. Octal $X_8 = 75012575.023505_8$

Calculations:

 $(7x8^7) + (5x8^6) + (0x8^5) + (1x8^4) + (2x8^3) + (5x8^2) + (7x8^1) + (5x8^0) + (0x8^{-1}) + (2x8^{-2}) + (3x8^{-3}) + (5x8^{-4}) + (0x8^{-5}) + (5x8^{-6}) = (7x2097152) + (5x262144) + (0x32768) + (1x4096) + (2x512) + (5x64) + (7x8) + (5x1) + (0x0.125) + (2x0.015625) + (3x0.001953125) + (5x0.000244140625) + (0x0.000030517578125) + (5x0.000003814697265625) = 14680064 + 1310720 + 0 + 4096 + 1024 + 320 + 56 + 5 + 0 + 0.03125 + 0.005859375 + 0.001220703125 + 0 + 0.000019073486328125 = 15996285.038349151611328125$

Answer: (15996285.038349151611328125)₁₀

4. Hexadecimal X₁₆ = 8EFBAA.ECD108₁₆

Calculations:

 $(8x16^5)+(14x16^4)+(15x16^3)+(11x16^2)+(10x16^1)+(10x16^0)+(14x16^{-1})+(12x16^{-2})+(13x16^{-3})+(1x16^{-4})+(0x16^{-5})+(8x16^{-6}) =$ (8x1048576)+(14x65536)+(15x4096)+(11x256)+(10x16)+(10x1)+(14x0.0625)+(12x0.00390625)+

(0.10 10370) (111003330) (13010330) (110010) (10011) (11000023) (120000330023)

+(13x0.000244140625)+(1x0.000015258789063)+(0/1048576)+(8x0.000000059604644775390625) = 8388608+917504+61440+2816+160+10+0.875+0.046875+

+0.003173828125+0.000015258789063+0+0.000000476837158203125 = 9370538.92506456375122<mark>1203125</mark>

Answer: (9370538.92506456375122070313)₁₀

Comment: There is a discrepancy in last 6 numerals

Part II. Conversion of the decimal numbers to the numbers of the different radix

Convert the following decimal numbers $X_{10,i}$ into the numbers $Y_{10,i}$ of the different radix r: $r \in \{2, 3, 4, ..., 16\}$, $i \in \{1, 2, 3, 4\}$. The number of the significant numerals after the radix point (decimal places) should be bigger than 6

1. Decimal number $X_{10} = 12222.5151_{10}$ into a number Y_2 of radix $Y_2 = 12222.5151_{10}$ into a number $Y_2 = 12222.5151_{10}$

Calculations:

12222		5151		
12222/2 = 6111	Rem: 0 (last ↓)	0.5151 x 2 = 1.0302	1 (first ↓)	
6111/2 = 3055.5	Rem: 1	0.0302 x 2 = 0.0604	0	
3055/2 = 1527.5	Rem: 1	0.0604 x 2 = 0.1208	0	
1527/2 = 763.5	Rem: 1	0.1208 x 2 = 0.2416	0	
763/2 = 381.5	Rem: 1	0.2416 x 2 = 0.4832	0	
381/2 = 190.5	Rem: 1	0.4832 x 2 = 0.9664	0	

190/2 = 95	Rem: 0	0.9664 x 2 = 1.9328	1
95/2 = 47.5	Rem: 1	0.9328 x 2 = 1.8656	1
47/2 = 23.5	Rem: 1		
23/2 = 11.5	Rem: 1		
11/2 = 5.5	Rem: 1		
5/2 = 2.5	Rem: 1		
2/2 = 1	Rem: 0		
1/2 = 0.5	Rem: 1 (first 个)		

Answer: (10111110111110.10000011)₂

2. Decimal number $X_{10} = 1455782.15415_{10}$ into a number Y_4 of radix r = 4

Calculations:

145578		15415		
145578/4 = 36394.5	Rem: 2 (last ↓)	0.15415 x 4 = 0.6166	0 (first ↓)	
36394/4 = 9098.5	Rem: 2	0.6166 x 4 = 2.4664	2	
9,098/4 = 2274.5	Rem: 2	0.4664 x 4 = 1.8656	1	
2274/4 = 568.5	Rem: 2	0.8656 x 4 = 3.4624	3	
568.5/4 = 142	Rem: 0	0.4624 x 4 = 1.8496	1	
142/4 = 35.5	Rem: 2	0.8496 x 4 = 3.3984	3	
35/4 = 8.75	Rem: 3	0.3984 x 4 = 1.5936	1	
8/4 = 2	Rem: 0	0.5936 x 4 = 2.3744	2	
2/4 = 0.5	Rem: 2 (first 个)	0.3744 x 4 = 1.4976	1	

Answer: (203202222.021313121)₄

3. Decimal number X_{10} = 2585802.265485₁₀ into a number Y_8 of radix r = 8

Calculations:

2585802	265485
---------	--------

2585802/8 = 323225.25	Rem: 2 (last ↓)	0.265485 x 8 = 2.12388	2 (first ↓)
323225/8 = 40403.125	Rem: 1	0.12388 x 8 = 0.99104	0
40403/8 = 5050.375	Rem: 3	0.99104 x 8 = 7.92832	7
5050/8 = 631.25	Rem: 2	0.92832 x 8 = 7.42656	7
631/8 = 78.875	Rem: 7	0.42656 x 8 = 3.41248	3
78/8 = 9.75	Rem: 6	0.41248 x 8 = 3.29984	3
9/8 = 1.125	Rem: 1	0.29984 x 8 = 2.39872	2
1/8 = 0.125	Rem: 1(first 个)	0.39872 x 8 = 3.18976	3
		0.18976 x 8 = 1.51808	1

(0.125=1; 0.25=2; 0.375=3; 0.5=4; 0.625=5; 0.75=6; 0.875=7)

Answer: (11672312.207733231)₈

4. Decimal number $X_{10} = 235662524665.12324598_{10}$ into a number Y_{16} of radix r = 16

Calculations:

235662524665	12324598		
235662524665/16 = 14728907791.5625	Rem: 9	0.12324598 x 16 = 1.97193568	1 (1st)
14728907791/16 = 920556736.9375	Rem: F	0.97193568 x 16 = 15.55097088	F
920556736/16 = 57534796	Rem: 0	0.55097088 x 16 = 8.81553408	8
57534796/16 = 3595924.75	Rem: C	0.81553408 x 16 = 13.04854528	D
3595924/16 = 224745.25	Rem: 4	0.04854528 x 16 = 0.77672448	0
224745/16 = 14046.5625	Rem: 9	0.77672448 x 16 = 12.42759168	С
14046/16 = 877.875	Rem: E	0.42759168 x 16 = 6.84146688	6
877/16 = 54.8125	Rem: D	0.84146688 x 16 = 13.46347008	D
54/16 = 3.375	Rem: 6	0.46347008 x 16 = 7.41552128	7
3/16 = 0.1875	Rem: 3 (1st)	0.41552128 x 16 = 6.64834048	6

(0=0; 1=0.0625; 2=0.125; 3=0.1875; 4=0.25; 5=0.3125; 6=0.375; 7=0.4375; 8=0.5; 9=0.5625; 10(A)=0.625; 11(B)=0.6875; 12(C)=0.75; 13(D)=0.8125; 14(E)=0.875; 15(F)=0.9375)

Answer: (36DE94C0F9.1F8D0C6D76)₁₆

Part III. Direct conversion of the integer numbers of different radix

III.1 Convert directly the integer numbers of radix $r \in \{4, 8, 16\}$ into the binary numbers X_2 .

1. Quaternary X₄ = 21301.12133₄

Calculations:

2	1	3	0	1.	1	2	1	3	3
21	21	21	21	21	21	21	21	21	21
10	01	11	00	01.	01	10	01	11	11

Answer: (1001110001.0110011111)₂

2. Octal X₈ = 77564.6255₈

Calculations:

7	7	5	6	4.	6	2	5	5
421	421	421	421	421	421	421	421	421
111	111	101	110	100.	110	010	101	101

Answer: (111111101110100.110010101101)₂

3. Hexadecimal X_{16} = E10D.F8ED₁₆

Calculations:

14	1	0	13.	15	8	14	13
8421	8421	8421	8421	8421	8421	8421	8421
1110	0001	0000	1101.	1111	1000	1110	1101

Answer: (1110000100001101.1111100011101101)₂

III.2 Convert directly the integer binary numbers to the numbers of radix $r \in \{4, 8, 16\}$.

1. Binary number $X_{2,1} = 1110.01101_2$ to the quaternary Y_4

Calculations:

 11
 10.
 01
 10
 10

 21
 21.
 21
 21
 21

 3
 2.
 1
 2
 2

Answer: (32.122)₄

2. Binary number $X_{2,2} = 1110011.10110_2$ to the octal Y_8

Calculations:

001 110 011. 101 100 421 421 421 421 421 1 6 3. 5 4

Answer: (163.54)₈

3. Binary number $X_{2,3}$ = 1110111011.011001₂ to the hexadecimal Y_{16}

Calculations:

0011 1011 1011. 0110 0100 8421 8421 8421 8421 8421 3 11(B) 11(B). 6 4

Answer: (3BB.64)₁₆

Tables

Table 1.

2 Power	4 Power	8 Power	16 Power
21 = 2	41 = 4	81 = 8	161 = 16
22 = 4	42 = 16	82 = 64	16 ² = 256
23 = 8	43 = 64	83 = 512	16 ³ = 4096
24 = 16	44 = 256	84 = 4096	164 = 65536
25 = 32	45 = 1024	85 = 32768	16 ⁵ = 1048576
26 = 64	46 = 4096	86 = 262144	166 = 16777216
27 = 128	47 = 16384	8 ⁷ = 2097152	16 ⁷ = 268435456
28 = 256	48 = 65536	88 = 16777216	168 = 4294967296
29 = 512	49 = 262144	89 = 134217728	16 ⁹ = 68719476736
210 = 1024	410 = 1048576	810 = 1073741824	16 ¹⁰ = 1099511627776

Table 2.

Neg 2 Power	Neg 4 Power	Neg 16 Power
$2^{-1} = 0.5$	$4^{-1} = 0.25$	16-1 = 0.0625
2-2 = 0.25	4-2 = 0.0625	16-2 = 0.00390625
2-3 = 0.125	4-3 = 0.015625	16-3 = 0.000244140625
2-4 = 0.0625	4-4 = 0.00390625	16-4 = 0.000015258789063
2-5 = 0.03125	4-5 = 0.0009765625	16 ⁻⁵ = 9.5367431641e-7
2-6 = 0.015625	4-6 = 0.000244140625	16-6 = 5.9604644775e-8
2-7 = 0.0078125	4-7 = 0.00006103515625	16 ⁻⁷ = 3.7252902985e-9

References

- 1. Number Systems Introduction Decimal, Binary, Octal & Hexadecimal https://www.youtube.com/watch? v=FFDMzbrEXaE
- Representing Numbers and Letters with Binary: Crash Course Computer Science #4 https://www.youtube.com/watch?v=1GSjbWt0c9M
- 3. How To Convert Decimal to Binary https://www.youtube.com/watch?v=rsxT4FfRBaM&t=62s
- 4. How To Convert Hexadecimal to Binary https://www.youtube.com/watch?v=D_YC6DSPpQE
- 5. https://www.rapidtables.com/convert/number/index.html
- 6. https://www.mymathtables.com/numbers/power-exponentiation/power-of-16.html
- 7. https://calculator.name/baseconvert/