TRANSFORMAÇÕES LINEARES

- 1. Em cada uma das alíneas seguintes verifique se a função dada é uma transformação linear:
 - **d**) $J: \mathbb{R}^2 \to \mathbb{R}^2$, em que $J(x, y) = (y^2, x^2)$.
 - e) $K : \mathbb{R} \to \mathbb{R}^2$, em que K(x) = (3x, x).
 - **f**) $L : \mathbb{R}^2 \to \mathbb{R}^4$, em que L(x, y) = (2y, 0, 3x, 0).
 - **g**) $M: \mathbb{R}^3 \to \mathbb{R}^3$, em que M(x, y, z) = (x y, y z, x + y + z).
 - **h**) $N : \mathbb{R}^3 \to \mathbb{R}^3$, em que N(x, y, z) = (yz, xz, x).
 - i) $P: \mathbb{R}^3 \to \mathbb{R}^3$, em que P(x, y, z) = (x-2, y, z+1).
- 5. Para cada uma das transformações lineares seguintes, determine o núcleo e o contradomínio e indique, para cada um destes subespaços, uma base e a respectiva dimensão (nulidade e ordem). Além disso, verifique se a transformação linear é injectiva e/ou sobrejectiva e obtenha, se tal for possível, a sua transformação inversa.
 - **f**) $L: \mathbb{R}^2 \to \mathbb{R}^4$, em que L(x, y) = (2y, 0, 3x, 0).
 - **g**) $M : \mathbb{R}^3 \to \mathbb{R}^3$, em que M(x, y, z) = (x y, y z, x + y + z).
 - **h**) $N: \mathbb{R}^2 \to \mathbb{R}^2$, em que N(x, y) = (y, y).
 - i) $P: \mathbb{R}^2 \to \mathbb{R}^2$, em que P(x, y) = (x + 2y, x y).
 - **m**) $T: \mathbb{R}^3 \to \mathbb{R}^2$, em que T(x, y, z) = (2x 3z, y z).
 - **n**) $U : \mathbb{R}^2 \to \mathbb{R}^3$, em que U(x, y) = (x 3y, x + 2y, 2x + y).
 - $\mathbf{o}) \ V : \mathbb{R}^3 \to \mathbb{R}^3, \text{ em que } V(x, y, z) = (x z, 0, x y).$
 - **p**) $W : \mathbb{R}^3 \to \mathbb{R}^4$, em que W(x, y, z) = (x + y, y + z, x + z, x + y + z).

- **17.** Em cada uma das alíneas seguintes obtenha a transformação composta possível das transformações lineares dadas.
 - **a**) $K : \mathbb{R} \to \mathbb{R}^2$, em que K(x) = (3x, x);

$$L: \mathbb{R}^2 \to \mathbb{R}^4$$
, em que $L(x, y) = (2y, 0, 3x, 0)$.

b)
$$W : \mathbb{R}^3 \to \mathbb{R}^4$$
, em que $W(x, y, z) = (x + y, y + z, x + z, x + y + z)$;

$$Q: \mathbb{R}^3 \to \mathbb{R}^3$$
, em que $Q(x, y, z) = (x + y, y + z, x + z)$.

c)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, em que $T(x, y, z) = (2x - 3z, y - z)$;

$$Q: \mathbb{R}^3 \to \mathbb{R}^3$$
, em que $Q(x, y, z) = (x + y, y + z, x + z)$.

d)
$$S: \mathbb{R}^3 \to \mathbb{R}^2$$
, em que $S(x, y, z) = (x - y, y - z)$;

$$J: \mathbb{R}^2 \to \mathbb{R}^2$$
, em que $J(x, y) = (2y, x)$;

$$L: \mathbb{R}^2 \to \mathbb{R}^4$$
, em que $L(x, y) = (2y, 0, 3x, 0)$.

18. Mostre que se duas transformações lineares *S* e *T*, que possuem o espaço linear V como domínio e conjunto de chegada, são comutativas, então verificam-se as seguintes relações:

$$(S+T)^2 = S^2 + 2ST + T^2$$
 e $(S+T)^3 = S^3 + 3S^2T + 3ST^2 + T^3$

Indique como deveriam ser reescritas as referidas relações, se S e T não fossem comutativas, isto é, se $ST \neq TS$.

19. Sejam as transformações lineares $M,Q \in L(\mathbb{R}^3,\mathbb{R}^3)$, definidas por:

$$Q(x, y, z) = (x + y, y + z, x + z)$$
 e $M(x, y, z) = (x - y, y - z, x + y + z)$

- a) Determine as transformações compostas QM, MQ, QM MQ, $(QM)^2$, $(MQ)^2$, Q^2M^2 , M^2Q^2 e $(QM MQ)^2$.
- **b**) Mostre que *QM* e *MQ* são injectivas e obtenha as suas transformações inversas.

- **21.** Mostre que se duas transformações lineares S e T, que possuem o espaço linear V como domínio e conjunto de chegada, são comutativas, então $(ST)^n = S^n T^n$, $n \in \mathbb{N}$.
- **23.** Seja $h: \mathbb{R} \to \mathbb{R}$ uma transformação linear injectiva e seja $G: \mathbb{R}^3 \to \mathbb{R}^3$ uma aplicação, tal que G(x, y, z) = (x z, h(z), 2y). Mostre que:
 - a) G é uma transformação linear.
- **b**) *G* é bijectiva.
- **30.** Seja $G: \mathbb{R} \to \mathbb{R}$ uma transformação linear injectiva e considere a função $T: \mathbb{R}^2 \to \mathbb{R}^2$, tal que T(x, y) = (w, x 2y), em que w = G(y). Mostre que:
 - **a**) *T* é uma transformação linear.
- **b**) *T* é injectiva.

- **c**) *T* é bijectiva.
- **32.** Em cada uma das alíneas seguintes defina a transformação linear dada, indicando a sua lei de transformação em relação às bases canónicas, a partir das imagens dos elementos do domínio considerados.

a)
$$S: \mathbb{R}^3 \to \mathbb{R}^2$$
, em que $S(1,-1,0) = (2,-1)$, $S(0,-1,1) = (1,-2)$ e $S(1,0,1) = (1,-1)$.

b)
$$R: \mathbb{R}^3 \to \mathbb{R}^3$$
, em que $R(1,-1,1) = (0,-1,2)$, $R(2,3,2) = (1,1,-2)$ e $R(1,4,1) = (3,-1,0)$.

c)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, em que $T(0,1,2) = (1,3,2)$, $T(1,2,2) = (3,5,3)$ e $T(1,1,1) = (2,3,2)$.

d)
$$P: \mathbb{R}^3 \to \mathbb{R}^4$$
, em que $P(1,0,0) = (1,0,1,1)$, $P(1,0,1) = (1,-1,2,2)$ e $P(0,1,1) = (1,0,1,2)$.

e)
$$Y : \mathbb{R}^2 \to \mathbb{R}^3$$
, em que $Y(1,2) = (4,5,3)$ e $Y(-1,1) = (-1,4,0)$.

- **33.** Para cada uma das transformações lineares seguintes, determine a sua representação matricial em relação às bases canónicas (do domínio e do conjunto de chegada).
 - **a**) $F: \mathbb{R}^2 \to \mathbb{R}^2$, em que F(x, y) = (0, y).
 - e) $K : \mathbb{R} \to \mathbb{R}^2$, em que K(x) = (3x, x).
 - **f**) $L : \mathbb{R}^2 \to \mathbb{R}^4$, em que L(x, y) = (2y, 0, 3x, 0).
 - **g**) $M : \mathbb{R}^3 \to \mathbb{R}^3$, em que M(x, y, z) = (x y, y z, x + y + z).
 - **h**) $N : \mathbb{R}^2 \to \mathbb{R}^2$, em que N(x, y) = (y, y).
 - i) $P: \mathbb{R}^2 \to \mathbb{R}^2$, em que P(x, y) = (x + 2y, x y).
 - **m**) $T: \mathbb{R}^3 \to \mathbb{R}^2$, em que T(x, y, z) = (2x 3z, y z).
 - **n**) $U : \mathbb{R}^2 \to \mathbb{R}^3$, em que U(x, y) = (x 3y, x + 2y, 2x + y).
 - **o**) $V: \mathbb{R}^3 \to \mathbb{R}^3$, em que V(x, y, z) = (x z, 0, x y).
 - **p**) $W : \mathbb{R}^3 \to \mathbb{R}^4$, em que W(x, y, z) = (x + y, y + z, x + z, x + y + z).
- **41.** Seja a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$, tal que:

$$T(\vec{j}) = -\vec{i} - 3\vec{j} - 5\vec{k}$$
, $T(\vec{i} - \vec{j}) = 4\vec{j} + 4\vec{k}$ e $T(\vec{i} + \vec{j} + 2\vec{k}) = 2\vec{i} + 4\vec{j} + 4\vec{k}$

- a) Obtenha a representação matricial de T em relação à base canónica para \mathbb{R}^3 e escreva a lei de transformação que lhe está associada.
- **b**) Calcule a imagem de $2\vec{i} + 4\vec{j} + 6\vec{k}$ através de T.
- **c**) Determine o núcleo e o contradomínio de *T*. Identifique, para cada um destes subespaços, uma base e conclua em relação às suas dimensões.
- **d**) Mostre que T é bijectiva e caracterize devidamente a sua transformação inversa.

42. Considere a transformação linear $T : \mathbb{R}^3 \to \mathbb{R}^4$, tal que:

$$T(-1,0,1) = (0,-1,1,0)$$
, $T(0,-1,1) = (1,0,1,1)$ e $T(0,0,1) = (1,1,2,1)$

- **a**) Obtenha a sua representação matricial, T = m(T), em relação às bases canónicas e escreva a lei de transformação que lhe está associada.
- **b**) Recorrendo ao *método da condensação da matriz*, calcule a característica de T = m(T) e conclua em relação às dimensões do núcleo e do contradomínio de T.
- c) Caracterize o núcleo e o contradomínio de T.
- **d**) Mostre que *T* é injectiva e determine a sua transformação inversa.
- **44.** Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$, tal que $T(\vec{i}) = (0,0)$, $T(\vec{j}) = (1,1)$ e $T(\vec{k}) = (1,-1)$. Determine:
 - a) A representação matricial de T em relação às bases canónicas para os espaços \mathbb{R}^3 e \mathbb{R}^2 ; escreva a lei de transformação que lhe está associada.
 - **b**) A imagem de $3\vec{i} 5\vec{j} + 4\vec{k}$ através de T.
 - **c**) O núcleo e o contradomínio de *T*; identifique, para cada um destes subespaços, uma base e conclua em relação às suas dimensões.
 - e) A matriz que representa T em relação às bases ordenadas $E_3 = \{\vec{i}, \vec{j}, \vec{k}\} \subset \mathbb{R}^3$ e $B = \{(1,2), (-1,-1)\} \subset \mathbb{R}^2$.
- **46.** Sejam as transformações lineares $R: \mathbb{R}^3 \to \mathbb{R}^2$, $S: \mathbb{R}^2 \to \mathbb{R}^3$ e $T: \mathbb{R}^3 \to \mathbb{R}^3$, que possuem as representações matriciais

$$\mathbf{R} = m(R) = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \end{bmatrix}, \ \mathbf{S} = m(S) = \begin{bmatrix} -1 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix} \ \mathbf{e} \ \mathbf{T} = m(T) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \end{bmatrix}$$

em relação às bases canónicas $E_2 = \{\vec{i}_1, \vec{j}_1\} \subset \mathbb{R}^2 \ e \ E_3 = \{\vec{i}, \vec{j}, \vec{k}\} \subset \mathbb{R}^3$.

- **a**) Caracterize o núcleo e o contradomínio de *S*. Indique, para cada um destes subespaços, uma base e conclua em relação às suas dimensões. Será *S* sobrejectiva? Justifique.
- **b**) Classifique cada um dos operadores dados quanto à injectividade. Para os casos possíveis, determine a respectiva transformação inversa.
- **c**) Em relação aos operadores *RTS*, *TRS* e *SRT*, obtenha os que são possíveis. Escreva a lei de transformação para cada um desses operadores.

47. Considere as transformações lineares $S: \mathbb{R}^3 \to \mathbb{R}^4$ e $T: \mathbb{R}^4 \to \mathbb{R}^3$, definidas por

$$S(x, y, z) = \left(x + y + \frac{4}{3}z, -x - \frac{2}{3}z, 2x - y, y + \frac{1}{2}z\right)$$

$$T(-1,1,0,0) = (1,-1,-2), T(1,0,1,-1) = (0,3,0)$$

$$T(0,1,0,0) = (2,1,-1), T(0,-1,0,1) = (0,-3,1)$$

em relação às bases canónicas para os espaços lineares \mathbb{R}^3 e \mathbb{R}^4 .

- **a**) Determine a representação matricial de *T* em relação às bases canónicas e escreva a lei de transformação que lhe está associada.
- **b**) Caracterize o núcleo e o contradomínio de *T*. Identifique, para cada um destes subespaços, uma base e conclua em relação às suas dimensões.
- **d**) Mostre que *S* é injectiva e caracterize devidamente a sua transformação inversa.
- e) Obtenha as representações matriciais das transformações compostas ST e TS.
- **50.** Seja a transformação linear $S: \mathbb{R}^2 \to \mathbb{R}^2$, tal que $S(\vec{i}) = \vec{i} \vec{j}$ e $S(\vec{j}) = 2\vec{i} + \vec{j}$. Obtenha:
 - a) As representações matriciais de S e S^2 em relação à base canónica para o espaço \mathbb{R}^2 .
 - **b**) As imagens do vector $3\vec{i} 4\vec{j}$ através de S e de S².
 - c) As matrizes que representam as transformações S e S^2 em relação à base ordenada $B = \{\vec{e}_1, \vec{e}_2\}$, em que $\vec{e}_1 = \vec{i} + \vec{j}$ e $\vec{e}_2 = \vec{i} + 2\vec{j}$.
- **51.** Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$, dada por

$$T(x, y, z) = (x-2y+z, x+y, x+y-z)$$

em relação à base canónica $E = \{\vec{i}, \vec{j}, \vec{k}\}$ para o espaço linear \mathbb{R}^3 . Determine:

- a) A representação matricial de T em relação à base E.
- **b**) As matrizes que representam as transformações T e T^2 em relação à base ordenada $B = \{(1,0,1), (1,0,0), (1,1,2)\}$ para \mathbb{R}^3 .

55. Considere as transformações lineares $S: \mathbb{R}^2 \to \mathbb{R}^3$, definida por

$$S(x, y) = (x + y, 2x + 3y, x + 2y)$$

e $T: \mathbb{R}^3 \to \mathbb{R}^3$, representada pela matriz

$$T = m(T) = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{bmatrix}$$

em relação à base canónica, $E_3 = \{\vec{i}, \vec{j}, \vec{k}\}$, para o espaço linear \mathbb{R}^3 .

Seja $V = \{(1,1,0), (0,-1,0), (1,1,-1)\}$ uma base ordenada para \mathbb{R}^3 e designe-se por E_2 a base canónica para o espaço linear \mathbb{R}^2 .

- a) Caracterize o núcleo e o contradomínio de T.
- **b**) Classifique *T* e *S* quanto à sua injectividade e sobrejectividade. Obtenha, se tal for possível, as suas transformações inversas.
- c) Determine a transformação composta TS em relação às bases canónicas para \mathbb{R}^3 e \mathbb{R}^2 .
- **d**) Obtenha a representação matricial da transformação TS, considerando a base V para o espaço \mathbb{R}^3 .
- e) Obtenha a representação matricial da transformação TS + S, considerando a base V para o espaço \mathbb{R}^3 .
- **56.** Sejam V um espaço linear real e $E = \{e_1, e_2, e_3\}$ uma base ordenada para V. Considere a transformação linear $T: V \to V$, tal que:

$$T(e_1) = -e_3$$
, $T(e_2) = e_1 - e_3$ e $T(e_3) = e_1 - e_2 + e_3$

- a) Determine a matriz $T_{\rm E} = m(T)_{\rm E}$, que representa T em relação à base E.
- **b**) Mostre que T é injectiva e obtenha a representação matricial de T^{-1} em relação à base E.

57. Sejam as transformações lineares $T: \mathbb{R}^3 \to \mathbb{R}^3$ e $S: \mathbb{R}^3 \to \mathbb{R}^3$, definidas por

$$T(x, y, z) = (x-2z, 0, -2x+4z)$$

$$S(1,0,1) = (2,-1,2)$$
, $S(-1,1,0) = (0,1,-1)$ e $S(0,0,1) = (1,-1,1)$

em relação à base canónica $E = \{\vec{i}, \vec{j}, \vec{k}\}$ para o espaço linear \mathbb{R}^3 . Considere a base ordenada $B = \{(1,0,1), (-1,1,0), (0,0,1)\}$ para \mathbb{R}^3 .

- **a**) Caracterize o núcleo e o contradomínio de *T*. Identifique, para cada um destes subespaços, uma base e conclua em relação às suas dimensões.
- **b**) Obtenha a representação matricial de *S* em relação à base canónica e escreva a lei de transformação que lhe está associada.
- c) Mostre que S é bijectiva e caracterize devidamente a sua transformação inversa.
- **d**) Calcule as matrizes que representam as transformações ST e $S^{-1}T^2$ em relação à base canónica.
- **g**) Obtenha a matriz $S_{B,E} = m(S)_{B,E}$, que representa S em relação às bases ordenadas B e E.
- **h**) Obtenha a matriz $S_{E,B} = m(S)_{E,B}$, que representa S em relação às bases ordenadas E e B.
- i) Obtenha a matriz $S_{\rm B} = m(S)_{\rm B}$, que representa S em relação à base ordenada B.
- **j**) Mostre que a transformação composta *ST* é definida, em relação à base B, através da seguinte lei de transformação

$$ST : \mathbb{R}^3 \to \mathbb{R}^3$$
, em que $ST(a,b,c)_{\rm B} = (-a-b-2c, -2a-2b-4c, 2a+2b+4c)_{\rm B}$

58. Sejam as transformações lineares $R: \mathbb{R}^3 \to \mathbb{R}^3$, tal que

$$R(x, y, z) = (x - y - 2z, 2x - y - 3z, y + z)$$

 $S: \mathbb{R}^3 \to \mathbb{R}^3$, dada por

$$S(1,1,0) = (3,-1,4)$$
, $S(0,-1,1) = (-1,-2,-1)$ e $S(1,-1,1) = (0,-4,0)$

e $T: \mathbb{R}^3 \to \mathbb{R}^2$, representada pela matriz

$$T = m(T) = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \end{bmatrix}$$

todas definidas em relação às bases canónicas $E_3 = \{\vec{i}, \vec{j}, \vec{k}\}\$ e $E_2 = \{\vec{i}_1, \vec{j}_1\}\$ para os espaços lineares \mathbb{R}^3 e \mathbb{R}^2 , respectivamente.

a) Recorrendo à representação matricial, mostre que S é definida pela lei de transformação

$$S(x, y, z) = (x + 2y + z, -2x + y - z, x + 3y + 2z)$$

- **b**) Determine a representação matricial de $TR: \mathbb{R}^3 \to \mathbb{R}^2$ em relação às bases ordenadas $B = \{(1,1,0),(0,1,1),(1,0,1)\}$, para \mathbb{R}^3 , e $C = \{(1,-2),(1,2)\}$, para \mathbb{R}^2 .
- c) Obtenha a representação matricial de $(TR+T): \mathbb{R}^3 \to \mathbb{R}^2$ em relação às bases B e C.

59. Considere as transformações lineares $T: \mathbb{R}^2 \to \mathbb{R}^3$ e $S: \mathbb{R}^3 \to \mathbb{R}^3$, definidas por

$$T(x, y) = (x + y, 2x, 2y)$$

$$S(1,1,0) = (1,1,3)$$
, $S(0,1,-1) = (1,-1,-1)$ e $S(0,0,1) = (-1,0,1)$

em relação às bases canónicas $E_3 = \{\vec{i}, \vec{j}, \vec{k}\}$ e $E_2 = \{\vec{i}_1, \vec{j}_1\}$ para os espaços lineares \mathbb{R}^3 e \mathbb{R}^2 , respectivamente. Seja a base ordenada $B = \{(1,0,1), (0,2,0), (1,2,3)\}$ para \mathbb{R}^3 .

- **a**) Obtenha o núcleo e o contradomínio de *T*. Identifique, para cada um destes subespaços, uma base e conclua em relação às suas dimensões. Mostre que *T* não é sobrejectiva.
- **b**) Mostre que T é injectiva e caracterize devidamente a sua transformação inversa.
- **d**) Determine a representação matricial de S em relação à base canónica para \mathbb{R}^3 e escreva a lei de transformação que lhe está associada.
- e) Mostre que S é bijectiva e obtenha uma representação matricial para a sua transformação inversa; caracterize devidamente S^{-1} .
- **f**) Determine a representação matricial, em relação às bases canónicas, da composição possível das transformações lineares *S* e *T*.
- **g**) Obtenha a matriz $S_{B,E_3} = m(S)_{B,E_3}$, que representa S em relação às bases ordenadas B e E_3 .
- **h**) Obtenha a matriz $S_{E_3,B} = m(S)_{E_3,B}$, que representa S em relação às bases ordenadas E_3 e B.
- i) Obtenha a matriz $S_B = m(S)_B$, que representa S em relação à base ordenada B.
- **j**) Determine a matriz que representa a composição possível de *S* com *T*, usando a matriz obtida na alínea anterior; identifique as bases em relação às quais a matriz encontrada se encontra definida.

64. Considere as transformações lineares $S: \mathbb{R}^2 \to \mathbb{R}^3$ e $T: \mathbb{R}^3 \to \mathbb{R}^3$, definidas por

$$S(x, y) = (x + y, 2x, x - y)$$

$$T(1,1,0) = (2,0,-1)$$
, $T(1,-1,0) = (0,0,1)$ e $T(0,0,1) = (0,1,1)$

em relação às bases canónicas $E_3 = \{\vec{i}, \vec{j}, \vec{k}\}$ e $E_2 = \{\vec{i}_1, \vec{j}_1\}$ para os espaços lineares \mathbb{R}^3 e \mathbb{R}^2 , respectivamente. Seja a base ordenada $B = \{(1,1,0), (0,0,1), (1,-1,0)\}$ para \mathbb{R}^3 .

- **a**) Obtenha o núcleo e o contradomínio de *S*. Identifique, para cada um destes subespaços, uma base e conclua em relação às suas dimensões.
- **b**) Mostre que S é injectiva e caracterize devidamente a sua transformação inversa.
- **d**) Defina de forma adequada a transformação composta possível de *S* com *T*, tendo como referência as bases canónicas e apresente a respectiva representação matricial.
- e) Mostre, recorrendo à representação matricial, que a transformação linear *S* é definida, em relação às bases E₂ e B, através da seguinte lei de transformação

$$S: \mathbb{R}^2 \to \mathbb{R}^3$$
, em que $S(x, y) = \frac{1}{2}(3x + y, 2x - 2y, -x + y)_B$

f) Adoptando bases ordenadas adequadas, defina a transformação linear *T* de modo que seja possível obter a transformação composta encontrada em d), se for utilizada, no processo de composição, a lei de transformação para *S* referida na alínea anterior.