

FIGURE 1

ACTGCACCTCGGTTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGACCTCGA
CCCACGCGTCCGGGCCGGAGCAGCACGGCCGAGGACCTGGAGCTCCGGCTCGTCTTCCCG
CAGCGCTACCGCCATGCGCCTGCCCGCCGGCGCTGGGCTCCTGCCGCTCTGCTG
CTGCTGCCGCCGGAGGCGCCAAGAACGCGACGCCCTGCCACCGGTGCCGGGGCT
GGTGGACAAGTTAACCAAGGGATGGTGGACACCGCAAAGAACAAACTTGGCGGCGGGAAACA
CGGCTTGGAGGAAAAGACGCTGTCCAAGTACGAGTCCAGCGAGATTGCCCTGCTGGAGATC
CTGGAGGGCTGTGCAGAGCAGCAGTCGAATGCAATCAGATGCTAGAGGCGCAGGAGGA
GCACCTGGAGGCCTGGCTGCAGCTGAAGAGCGAATATCCTGACTTATTGAGTGGTTT
GTGTGAAGACACTGAAAGTGTGCTGCTCTCCAGGAACCTACGGTCCCAGTCTCGCATGC
CAGGGCGGATCCCAGAGGCCCTGCAGCGGAATGCCACTGCAGCGGAGATGGAGCAGACA
GGGCGACGGGTCTGCCGGTGCACATGGGTACCAGGGCCGCTGTGCAGTGACTGCATGG
ACGGCTACTTCAGCTCGCTCCGAACGAGACCCACAGCATCTGCACAGCCTGTGACGAGTCC
TGCAAGACGTGCTGGGCTGACCAACAGAGACTGCGCGAGTGTGAAGTGGCTGGGTGCT
GGACGAGGGCGCCTGTGGATGTGGACGAGTGTGCAGGCCGAGCCGCTCCCTGCAGCGCTG
CGCAGTTCTGTAAGAACGCCAACGGCTCCTACACGTGCGAAGAGTGTGACTCCAGCTGTG
GGCTGCACAGGGAAAGGCCAGGAAACTGTAAAGAGTGTATCTCTGGCTACGCAGGGAGCA
CGGACAGTGTGCAGATGTGGACGAGTGTGCTCACTAGCAGAAAAACCTGTGTGAGGAAAAACG
AAAATGCTACAATACTCCAGGGAGCTACGTCTGTGTGCTGACGGCTCGAACAGAAAC
GAAGATGCCTGTGCGGCCGGCAGAGGCTGAAGCCACAGAAGGAGAAAGCCGACACAGCT
GCCCTCCCGGAAGACTGTAATGTGCCGGACTTACCCTTAAATTATTCAAGAAGGATGTCC
CGTGGAAAATGTGGCCTGAGGATGCCGTCTCCTGCAGTGGACAGCGGGGGAGAGGCTGC
CTGCTCTCTAACGGTTGATTCTCATTGTCCCTAAACAGCTGCATTCTGGTTGTTCTTA
AACAGACTTGTATTTGATACTGTTCTTGTAATAAAATTGACCATTGTAGGTAATCAGG
AGGAAAAAAAGGGCGGCCGCACTCTAGAGTGCACCTGCAAGAACAGCAATAGCA
TCACAAATTCAACAAATAAGCATTCTTCACTGCATTCTAGTTGTGGTTGTCACAAACTC
ATCAATGTATCTTATCATGCTGGATCGGAATTAATTGGCGCAGCACCATGGCCTGAAAT
AACCTCTGAAAGAGGAACCTGGTTAGGTACCTCTGAGGCGGAAAGAACCAAGCTGTGGAATG
TGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAGCATGC
ATCTCAATTAGTCAGCAACCCAGTTT

FIGURE 2

><subunit 1 of 1, 353 aa, 0 stop

><MW: 38192, pI: 4.53, NX(S/T): 2

MRLPRRAALGLLPLLLLPPAPEAKKPTPCHRCRGLVDKFNQGMVDTAKKNFGGGNTAEEKTLSKYESSEIRL
LEILEGLCESSDFECNQMLEAQEEHLEAWWLQLKSEYPDLFEWFCVKTLVCCSPGTYGPDCLACQGGSQRPCSG
NGHCSGDGSRQDGSCRHMGYQGPLCTDCMDGYFSSLRNETHSICTACDESCKTCGTLNRDCGECEVGWLDE
GACVDVDECAAEPPPCSAAQFCKNANGSYTCEECDSSCVGCTGEGPGNCKECISGYAREHGQCADVDEC SLAEKT
CVRKNENCYNTPGSYVCVCPDGFEETEDACVPPAEEATEGESPTQLPSREDL

Signal peptide:

amino acids 1-24

N-glycosylation sites.

amino acids 190-194 and 251-255

Glycosaminoglycan attachment sites.

amino acids 149-153 and 155-159

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 26-30

Casein kinase II phosphorylation sites.

amino acids 58-62, 66-70, 86-90, 197-201, 210-214, 255-259, 295-299, 339-343
and 349-353

Tyrosine kinase phosphorylation site.

amino acids 303-310

N-myristoylation sites.

amino acids 44-50, 54-60, 55-61, 81-87, 150-156, 158-164, 164-170, 252-258 and
313-319

Aspartic acid and asparagine hydroxylation site.

amino acids 308-320

EGF-like domain cysteine pattern signature.

amino acids 166-178

Leucine zipper pattern.

amino acids 94-116

FIGURE 3

CAGGTCCAAC TGCACCTCGTTCTATCGATTGAATTCCCCGGGATCCTCTAGAGATCCCTC
GACCTCGACCCACCGCGTCCGCCAGGCCGGAGGCAGCGCCCAGCGTCTAAACGGGAACA
GCCCTGGCTGAGGGAGCTGCAGCGCAGCAGAGTATCTGACGGGCCAGGGTGCCTAGGTGCG
GCACGAGGAGTTTCCCGCAGCGAGGAGGTCTGAGCAGCAGC**ATG**CCCAGGAGCGCCTTC
CCTGCCGCCCGCTCTGGCTCTGGAGCATCCTCCTGTGCCTGCCACTGCAGGGAGGC
CGGGCCGCCAGGAGGAGGCCTGTACCTATGGATCGATGCTCACCAAGGCAAGAGTACTCA
TAGGATTGAAGAAGATATCCTGATTGTTAGAGGGAAAATGGCACCTTTACACATGAT
TTCAGAAAAGCGAACAGAGAATGCCAGCTATTCTGTCAATATCCATTCCATGAATTTCAC
CTGGCAAGCTGCAGGGCAGGCAGAATACTTCTATGAATTCTGTCCCTGCGCTCCCTGGATA
AAGGCATCATGGCAGATCCAACCGTCATGTCCCTGTGGAACAGTGCTCACAGGCA
TCAGTTGTTCAAGTTGGTTCCATGTCTTGAAAACAGGATGGGTGGCAGCATTGAAGT
GGATGTGATTGTTATGAATTCTGAAGGCAACACCATTCTCAAACACCTCAAATGCTATCT
TCTTAAAACATGTCAACAAGCTGAGTGCCCAGGCCGGTGCAGGAAATGGAGGCTTTGTAAT
GAAAGACGCATCTGCAGTGCTGATGGGTTCCACGGACCTCACTGTGAGAAAGCCCTTG
TACCCCACGATGTATGAATGGTGGACTTGTGTGACTCTGGTTCTGCATCTGCCAACCTG
GATTCTATGGAGTGAAC TGACAAGCAA ACTGCTCAACCACCTGCTTAATGGAGGACC
TGTTTCTACCCCTGGAAAATGTATTGCCCTCCAGGACTAGAGGGAGAGCAGTGTGAAATCAG
CAAATGCCACAACCCCTGCAAATGGAGGTAAATGCATTGGTAAAAGCAAATGTAAGTGT
CCAAAGGTTACCAGGGAGACCTCTGTCAAAGCCTGTGCGAGCCTGGCTGGTGCACAT
GGAACCTGCCATGAACCCAAACAATGCCAATGTCAAGAAGGTTGGCATGGAAGACACTGCAA
TAAAAGGTACGAAGCCAGCCTCATACATGCCCTGAGGCCAGCAGGCGCCAGCTCAGGCAGC
ACACGCCTTCACTTAAAAAGGCCGAGGAGCGGGATCCACCTGAATCCAATTACATCTGG
TGAACTCCGACATCTGAAACGTTTAAGTTACACCAAGTTACAGCTTGTGAACTTTCA
TGTGTTGAATGTTCAAATAATGTTATTACACTTAAGAATACTGGCCTGAAATTATTAGCT
TCATTATAAATCACTGAGCTGATATTACTCTTCCTTTAAGTTCTAAGTACGTCTGTAG
CATGATGGTATAGATTCTGTTCACTGAGCTGCTTGGACAGATTATATTATGTCAATTGA
TCAGGTTAAAATTCAGTGTGAGTGGCAGATATTCTAAAATTACAATGCATTATGGT
GTCTGGGGCAGGGAAACATCAGAAAGGTTAAATTGGGAAAATGCGTAAGTCACAAGAAT
TTGGATGGTGCAGTTAATGTTGAAGTTACAGCATTCAAGATTATTGTCAGATATTAGAT
GTTGTTACATTAAAATTGCTCTTAATTAAACTCTCAATAACATATTGACCT
TTACCAATTCCAGAGATTCACTGTTAAACAAAAAAATTACACTGTGGTAGTGGCATT
AAACAATATAATATTCTAAACACAATGAAATAGGGAATATAATGTATGAACCTTTGCAT
TGGCTTGAAGCAATATAATATTGTAACAAAACACAGCTTACCTAATAACATT
ACTGTTGTATGTATAAAATAAGGTGCTGCTTAGTTTTGGAAAAA
AAAAAAAAAAAAAAAAAAGGGCGGCCGCACTCTAGAGTCGACCTGCAGAAGCTGGC
CGCCATGGCCCAACTGTTATTGCAGCTTATAATG

FIGURE 4

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33094
><subunit 1 of 1, 379 aa, 0 stop
><MW: 41528, pI: 7.97, NX(S/T): 2
MARRSAFPAAALWLWSILLCLLALRAEAGPPQEEESLYLWIDAHQARVLIGFEEDILIVSEGK
MAPFTHDFRKAQQRMPAI PVNIHSMNFTWQAAGQAEYFYEFLSLRSLDKGIMADPTVNVPPLL
GTVPHKASVVQVGFPCLGKQDGVAAFEVDVIVMNSEGNTILQTPQNAIFFKTCQQAECPGGC
RNNGFCNERRICECPDGFHGPCEKALCTPRCMNGGLCVTPGFCICPPGFYGVNCNKANCST
TCFNGGTCFYPGKCICPPGLEGEQCEISKCPQPCRNGGKICIGKSCKCSKGYQGDLCSPVVC
EPGCAHGTCHEPNKCQCQEGWHGRHCNKRYEASLIHALRPAGAQLRQHTPSLKKAERRDP
PESNYIW

Signal peptide:

amino acids 1-28

N-glycosylation site.

amino acids 88-92, 245-249

Casein kinase II phosphorylation site.

amino acids 319-323

Tyrosine kinase phosphorylation site.

amino acids 370-378

N-myristoylation sites.

amino acids 184-190, 185-191, 189-195, 315-321

ATP/GTP-binding site motif A (P-loop).

amino acids 285-293

EGF-like domain cysteine pattern signature.

amino acids 198-210, 230-242, 262-274, 294-306, 326-338

FIGURE 5

CGGACGCGTGGCGTCCGGCGGTGCAGAGCCAGGAGGCCAGGGCAGCCTGGG
CCCCAGCCCACACCTCACCAAGGGCCAGGAGCCACCATGTGGCGATGCCACTGGGCTAC
TGCTGTTGCTGCCGTGGCTGCCACTTGGCTCTGGGTGCCAGCAGGGCGTGGCGCCGG
GAGCTAGCACCGGGTCTGCACCTGCAGGGCATCCGGACGCAGGGAGGCCGGTACTGCCAGGA
GCAGGGACCTGTGCTGCCGGCGTGCACGACTGTGCCCTGCCACTCTGGCGCCATCT
GTTACTGTGACCTCTCTGCAACCGCACGGTCTCGACTGCTGCCCTGACTTCTGGGACTTC
TGCCTCGGCGTGCCACCCCTTCCCCGATCCAAGGATGTATGCATGGAGGTGCTATCTA
TCCAGTCTTGGGAACGTACTGGACAACGTAACTGTAACCGTTGCACCTGCCAGGAGAACAGGCAGT
GGCATGGTGGATCCAGACATGATCAAAGCCATCAACCAGGGCAACTATGGCTGGCAGGCTGG
GAACCACAGCGCCTCTGGGCATGACCCTGAGGGCATTGCCTACCGCCTGGGCACCA
TCCGCCATCTCCTCGGTATGAACATGCATGAAATTATAACAGTGTGAACCCAGGGAG
GTGCTTCCCACAGCCTCGAGGCCTCTGAGAAGTGGCCAACCTGATTGAGCCTTGA
CCAAGGCAACTGTGCAAGGCTCCTGGGCCTCTCCACAGCAGCTGTGGCATCCGATCGTCT
CAATCCATTCTCTGGGACACATGACGCCCTGTCTGCCCCAGAACCTGCTGTCTTGAC
ACCCACCAGCAGCAGGGCTGCCCGGTGGCGTCTGATGGTGCTGGTGGTTCTCGCTCG
CCGAGGGGTGGTGTGACCACTGCTACCCCTCTGGGCCGTGAACGAGACGAGGCTGGCC
CTGCGCCCCCTGTATGATGCACAGCCGAGCCATGGTCGGGCAAGGCCAGGCCACTGCC
CACTGCCCAACAGCTATGTTAATAACAATGACATCTACAGGTCACTCCTGCTACCGCCT
CGGCTCCAACGACAAGGAGATCATGAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTCA
TGGAGGTGATGAGGACTTCTCCTATAACAGGGAGGCATCTACAGCCACAGCCAGTGAGC
CTTGGGAGGCCAGAGAGATACCGCCGGCATGGGACCCACTCAGTCAAGATCACAGGATGGGG
AGAGGAGACGCTGCCAGATGAAAGGACGCTCAAATACTGGACTGCGGCCACTCCTGGGCC
CAGCCTGGGCGAGAGGGCCACTTCCGATCGCGCCGTCAATGAGTGCACATCGAG
AGCTTCGTGCTGGCGTCTGGGCCCGTGGCATGGAGGACATGGTCATCACTGAGGCTG
CGGGCACACGCGGGTCCGGCTGGGATCCAGGCTAACGGCCGGGAAGAGGCCCAATG
GGCGGTGACCCAGCCTCGCCGACAGAGGCCGGCGCAGGCCGGCAGGGCCTAAAT
CCCGCGCGGGTTCCGCTGACGCAAGGCCCTGGAGGCCGGCAGGGCAGGCGAGACTGGCG
GAGCCCCAGACCTCCCAGTGGGACGGGGCAGGGCTGGGAAGAGCACAGCTGAG
ATCCCAGGCCTCTGGGCCCAACTCAAGACTACCAAAGCCAGGACACCTCAAGTCTCCAGC
CCCAATAACCCACCCAATCCGTATTCTTTTTTTTTAGACAGGGTCTGCTCCG
TTGCCAGGTTGGAGTGCAGTGGCCATCAGGGCTCACTGTAACCTCCGACTCTGGTTCA
AGTGACCCCTCCCACCTCAGCCTCTCAAGTAGCTGGACTACAGGTGCACCAACACCTGGC
TAATTTTGATTTTGAAAGAGGGGGTCTCACTGTGTTGCCAGGCTGGTTCGAAGT
CCTGGCTCAAGCGGTCCACCTGCCTCCCAAAGTGTGGATTGCAGGCATGAGCC
ACTGCACCCAGCCCTGTATTCTTATTCTCAGATATTATTTTCACTGTTAAAAA
TAAAACCAAAGTATTGATAAAAAAAA

FIGURE 6

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33223
><subunit 1 of 1, 164 aa, 1 stop
><MW: 18359, pI: 7.45, NX(S/T): 1
MWRCPLGLLLLLPLAGHLALGAQQGRGRRELAPGLHLRGIRDAAGGRYEQDLCCRGRADDC
ALPYLGAIKYCDLFCNRTVSDCCPDFWDFCLGVPPPFPIQGCMHGGRIYPVLGTYWDNCNR
CTCQENRQWHGGSRHDQSHQPGQLWLAGWEQPQRLLGHDPG

N-glycosylation site.

amino acids 78-82, 161-165

Casein kinase II phosphorylation site.

amino acids 80-84, 117-121, 126-130, 169-173, 205-209, 296-300,
411-415

N-myristoylation site.

amino acids 21-27, 39-45, 44-50, 104-110, 160-164, 224-230,
269-275, 378-384, 442-448

Amidation site.

amino acids 26-30, 318-322

Eukaryotic thiol (cysteine) proteases histidine active site.

amino acids 398-409

FIGURE 7

AGGCTCCTGGCCCTTTCCACAGCAAGCTTNTGCNATCCGATTCGTTGTCTCAAATCCA
ATTCTCTTGGGACACATNACGCCGTCTGCTTNGCCCCAGAACCTGCTGTCTGTACACCCAC
CAGCAGCAGGGCTGCCCGNTGGCGTCTCGATGGTGCCTGGTGGTCTGCGTCGCCGAGG
GNTGGTGTCTGACCACTGCTACCCCTCTCGGGCCGTGAACGAGACGAGGCTGGCCCTGCGC
CCCCCTGTATGATGCACAGCCGAGCCATGGTCGGGCAAGGCCAGGCCACTGCCACTGC
CCCAACAGCTATGTTAATAACAATGACATCTACCAGGTCACTCCTGTCTACGCCCTGGCTC
CAACGACAAGGAGATCATGAAGGAGCTGATGGAGAATGCCCTGTCCAAGCCCTATGGAGG
TGCATGAGGACTTCTCCTATAACAAGGGAGGCATCTACGCCACGCCAGTGAGCCTGGG
AGGCCAGAGAGATACCGCCGGCATGGACCCACTCAG

FIGURE 8

GCTGCTTGCCTGTTGATGGCAGGCTGGCCCTGCAGCCAGGCACTGCCCTGCTGTGCTACT
CCTGCAAAGCCCAGGTGAGCAACGAGGA~~T~~CTGCAGGTGGAGAACTGCACCCAGCTGGGG
GAGCAGTGCTGGACC CGCGCATCCGCGCAGTTGGCCTCCTGACCGTCATCAGCAAAGGCTG
CAGCTTGA~~A~~CTGCGTGGATGACTCACAGGACTACTACGTGGCAAGAAGAACATCACGTGCT
GTGACACCGACTTGTGCAACGCCAGCGGGGCCATGCCCTGCAGCCGGCTGCCGCATCCTT
GCGCTGCTCCCTGCACTCGGCCTGCTGCTCTGGGACCCGGCCAGCTATAAGGCTCTGGGGGG
CCCCGCTGCAGCCCACACTGGGTGTGGTGC~~CC~~CAGGCCTCTGTGCCACTCCTCACAGACCTG
GCCAGTGGGAGCCTGTCC~~T~~GGTCC~~T~~GAGGCACATCTAACGCAAGTCTGACCATGTATGT
CTGCACCCCTGTCCCCCACCC~~T~~GACCC~~T~~CCATGCCCTCTCCAGGACTCCCACCCGGCAGA
TCAGCTCTAGTGACACAGATCCGCCTGCAGATGGCCCTCCAACCCTCTGCTGCTGTTTC
CATGGCCCAGCATTCTCCACCC~~T~~TAACCCTGTGCTCAGGCACCTCTCCCCAGGAAGCCTT
CCCTGCCACCC~~T~~ATCTATGACTTGAGCCAGGTCTGGTCCGTGGTCC~~T~~CCCCGCA~~CC~~CAGCA
GGGGACAGGC~~A~~CTCAGGAGGGCC~~A~~AG~~TAA~~AGGCTGAGATGAAGTGGACTGAGTAGAA~~CT~~TGGA
GGACAAGAGTCGACGTGAGTTCC~~T~~GGAGTCTCCAGAGATGGGCCTGGAGGC~~T~~GGAGGAA
GGGCCAGGC~~T~~CACATT~~T~~GTGGGCTCC~~T~~GAATGGCAGCCTGAGCACAGCGTAGGCC~~T~~
AATAAACACCTGTTGGATAAGCCAAAAAAA

FIGURE 9

MTHRTTWARRTSRAVTPTCATPAGPMPCSRLPPSLRCSLHSACCSGDPASYRLWGAPLQPT
LGVVPQASVPLLTDLAQWEPVLVPEAHPNASLTMYVCTPVPHDPPMALSRTPTRQISSDT
DPPADGPSNPLCCCFHGPADFSTLNPVLRHLFPQEAFPAHPIYDLSQVWSVVSPAPSRGQALRRAQ

Signal peptide:

amino acids 1-47

N-glycosylation site.

amino acids 31-35, 74-78, 84-88

Casein kinase II phosphorylation site.

amino acids 22-26, 76-80

N-myristoylation site.

amino acids 56-60

Amidation site.

amino acids 70-74

FIGURE 10

CCCAACGCGTCCGAACCTCTCCAGCGATGGGAGCCGCCCTGCTGCCAACCTCACTCTGT
GCTTACAGCTGCTGATTCTCTGCTGTCAAACACTCAGTACGTGAGGGACCAGGGCGCCATGACC
GACCAGCTGAGCAGGCGGCAGATCCCGAGTACCAACTCTACAGCAGGACCAGTGGCAAGCA
CGTGCAGGTCAACGGCGTCGCATCTCCGCCACGCCGAGGACGGCAACAAGTTGCCAAGC
TCATAGTGGAGACGGACACGTTGGCAGCCGGTTCGCATCAAAGGGCTGAGAGTGAGAAG
TACATCTGTATGAACAAGAGGGCAAGCTCATCGGAAGGCCAGCGGGAAAGAGCAAAGACTG
CGTGTTCACGGAGATCGTGTGGAGAACAACTATAACGCCCTCCAGAACGCCGGCACGAGG
GCTGGTTCATGGCCTTCACGCCAGGGCGGCCGCCAGGCTCCGCAGGCCAGAAC
CAGCGCGAGGCCACTTCATCAAGGCCCTCTACCAAGGCCAGCTGCCCTCCCCAACACGC
CGAGAACAGCAGTCAGTTGAGTTGTGGCTCCGCCACCGCCGGACCAAGCGCACAC
GGCGGCCAGGCCCTCACGTAGTCTGGAGGCAGGGGCAGCAGCCCTGGCCGCCTCCC
CACCCCTTCCCTTTAATCCAAGGACTGGCTGGGTGGCGGGAGGGCAGGAGATCCCC
GAGGGAGGACCTGAGGCCCGAAGCATCCGAGCCCCCAGCTGGGAAGGGCAGGCCGGTG
CCCCAGGGCGGCTGGCACAGTGCCCTCCGGACGGTGGCAGGCCCTGGAGAGGAAC
GAGTGTACCCCTGATCTCAGGCCACCAGCCTCTGCCGCCCTCCAGCCGGCTCTGAAGCC
CGCTGAAAGGTCAAGCAGTGAAGGCCTTGAGACAACCGTCTGGAGGTGGCTGTCTAAAA
TCTGCTTCTCGGATCTCCCTCAGTCTGCCCTAGGCCAGCCCCAAACTCCTCTGGTAGACTGTA
GGAAGGGACTTTGTTGTTGTTGTTAGGAAAAAAAGAAAGGGAGAGAGAGGAAAATAG
AGGGTTGTCACCTCCTCACATTCCACGCCAGGCCTGCACCCACCCCCAACTCCCAGCCC
CGGAATAAAACCATTTCCTGC

FIGURE 11

MGAARLLPNLTLCLQLLILCCQTQYVRDQGAMTDQLSRRQIREYQLYSRTSGKHVQVTGRRI
SATAEDGNKFAKLIVETDTFGSRVRIKGAESEKYICMNKRGKLIGKPSGKS KDCVFTEIVLE
NNYTAFQNARHEGWFMAFTRQGRPRQASRSRQNQREAHFIKRLYQGQLPFPNHAEKQKQFEF
VGSAPTRRTKRTRRPQPLT

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 9-13, 126-130

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 60-64

Casein kinase II phosphorylation site.

amino acids 65-69

Tyrosine kinase phosphorylation site.

amino acids 39-48, 89-97

N-myristoylation site.

amino acids 69-75, 188-194

Amidation site.

amino acids 58-62

HBGF/FGF family signature.

amino acids 103-128

FIGURE 12

ACTTGCCATCACCTGTTGCCAGTGTGGAAAAATTCTCCCTGTTGAATTTTGACATGGAG
GACAGCAGCAAAGAGGGCAACACAGGCTGATAAGACCAGAGACAGCAGGGAGATTATTTAC
CATACGCCCTCAGGACGTTCCCTCTAGCTGGAGTTCTGGACTTCACAGAACCCCACATCCAGT
CATTGATTTGCTGTTATTTTTCTTTCTTTCCCACACATTGTATTTAT
TTCCGTACTCAGAA**ATGGG**CTACAGACCACAAAGTGGCCAGGCATGGGCTTTTCCT
GAAGTCTTGGCTTATCATTTCCCTGGGGCTCTACTCACAGGTGCTCAAACCTCTGGCCTGCC
CTAGTGTGTGCCGCTCGACAGGAACCTTGCTACTGTAATGAGCGAAGCTTGACCTCAGTG
CCTCTGGGATCCCGGAGGGCGTAACCGTACTCTACCTCACAAACAACCAAATTAAATGC
TGGATTTCCTGCAGAACTGCACAATGTACAGTCGGTGACACGGCTACCTGTATGGCAACC
AACTGGACGAATTCCCCATGAACCTTCCAAGAAATGTCAGAGTTCTCCATTGCAAGGAAAAC
AATATTGACACCATTTCACGGGCTGCTTGCCCAGCTTGAAGCTGAAGAGCTGCACCT
GGATGACAACCTCATATCCACAGTGGGGTGGAAAGACGGGCTTCCGGGAGGCTATTAGCC
TCAAATTGTTGTTTGTCTAAGAATCACCTGAGCAGTGTGCCTGTTGGCTTCCGTGGAC
TTGCAAGAGCTGAGAGTGGATGAAAATCGAATTGCTGTATATCCGACATGGCCTTCCAGAA
TCTCACGAGCTTGGAGCGTCTATTGTTGACAGGAAACCTCCTGACCAACAAGGGTATGCCG
AGGGCACCTCAGCCATCTCACCAAGCTCAAGGAATTTCATTGTAATTGTAATTGCTGTCC
CACCCCTCCCGATCTCCAGGTACGCATCTGATCAGGCTCTATTGCAAGGACAACAGAT
AAACACATTCCTTGAACAGCCTCTCAAATCTCGTAAGCTGGAACGGCTGGATATATCCA
ACAACCAACTCGGGATGCTGACTCAAGGGTTTTGATAATCTCTCCAACCTGAAGCAGCTC
ACTGCTCGGAATAACCTTGGTTTGACTGCAGTATTAAATGGGTACAGAAATGGCTCAA
ATATATCCCTTCATCTCTCACGTGGGGTTTCACTGTGCCAAGGTCTGAACAAGTCCGGG
GGATGGCCGTCAAGGAATTAAATATGAATCTTGTCCCTGACCAACGACCCCCGGCCTG
CCTCTTCAACCCAGCCCCAAGTACAGCTCTCGACCACTCAGCCTCCACCCCTCTAT
TCCAAACCTAGCAGAAGCTACACGCCTCAAACCTCCTACACATCGAAACTTCCCACGATT
CTGACTGGATGGCAGAGAAAGAGTGAACCCACCTATTCTGAACGGATCCAGCTCTCTATC
CATTGTAATGATACTTCATTCAAGTCAGCTGGCTCTCTCTCACCCTGATGGCATA
CAAACTCACATGGGTGAAAATGGGCCACAGTTAGTAGGGGCACTGTTAGGAGCGCATAG
TCAGCGGTGAGAAGCAACACCTGAGCCTGGTTAACTTAGAGCCCCGATCCACCTATCGGATT
TGTTAGTGCCTGGATGCTTTAACTACCGCGCGTAGAAGACACCATTGTTAGGAGGC
CACCAACCATGCCTCTATCTGAACAAACGGCAGCAACACAGCGTCCAGCCATGAGCAGACGA
CGTCCCACAGCATGGCTCCCCCTTCTGCTGGCGGGCTTGATGGGGCGCGGTGATATT
GTGCTGGTGGCTTGCTCAGCGTCTTGCTGGCATATGCACAAAAGGGCGCTACACCTC
CCAGAAGTGGAAATACAACCGGGCCGGAAAGATGATTATTGCGAGGCAGGCACCAAGA
AGGACAACCTCATCTGGAGATGACAGAAACAGTTCAAGTCAGCTCTCTAAATAACGAT
CAAACCTTAAAGGAGATTCAGACTGCAGCCATTACACCCAAATGGGGCAATTAA
CACAGACTGCCATATCCCCAACACATGCGATACTGCAACAGCAGCGTGCCAGACCTGGAGC
ACTGCCATACG**TGAC**CAGCCAGAGGCCAGCGTTATCAAGCGGACAATTAGACTCTTGAGAA
CACACTCGTGTGTCACATAAGACACGCAGATTACATTGATAAAATGTTACACAGATGCAT
TTGTCATTGAATACTCTGTAATTATACGGTGTACTATATAATGGGATTAAAAAGTG
CTATCTTCTATTCAAGTTAATTACAAACAGTTGTAACTCTTGCTTTAAATCTT

FIGURE 13

MGLQTTKWPShGAFFLKS~~WLI~~ISLGLYSQVS~~KLLACPSVCRCDRNFVYCNERSLTSVPLGIP~~
EGVT~~VLYLHNNQINNAGFP~~AELHN~~VQSVHTVYLYGNQLDEFPMNLPKNVRLHLQENNIQTI~~
SRAALAQLLKLEELH~~DDNSISTVGVEDGAFREAI~~SLKLLFLSKNH~~LSSVPVGLPVDLQELR~~
VDENRIAVI~~SDMAFQNLTSLERLIVDGNLLTNKGIAEGTFSHLT~~KLKEFSIVRN~~SLSHPPD~~
LP~~GTHLIRILYLDNQINHIPLTAFSNLRKLERLDISNNQLRMLTQGVFDNL~~LSNLKQLTARNN
PWFCDCSIK~~WVTEWLKYIPSSLNVRGFMCGPEQVRGM~~AVRELNMNLLSCPTTPGLPLFTP
APSTASPTTQPPTLSIPN~~PSRSYTPPT~~SKLPTI PDWDGRERVT~~PP~~ISERIQLSIHFVND
TSIQVSWL~~SLFTVMAYKLTWVKMGHSLVGGIVQERIVSGE~~KQHLSLVNLEPRSTYRICLVPL
DAFN~~YRAVEDTICSEATTHASYLNNGNTASSHE~~QTTS~~HSMGS~~P~~FLLAGLIGGAVIFV~~LVL
LSVFCWHMHKKGRY~~TSQWKYNRGRRKDDYCEAGTKKD~~N~~SILEMTETSFQIVSLNN~~DQ~~LLKG~~
DFRLQPIYTPNGGINYTDCHI P~~NNMRYCNSSVPD~~LEH~~CHT~~

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 542-561

N-glycosylation site.

amino acids 202-206, 298-302, 433-437, 521-525, 635-639, 649-653

Casein kinase II phosphorylation site.

amino acids 204-208, 407-411, 527-531, 593-597, 598-602, 651-655

Tyrosine kinase phosphorylation site.

amino acids 319-328

N-myristoylation site.

amino acids 2-8, 60-66, 149-155, 213-219, 220-226, 294-300,
522-528, 545-551, 633-639

Amidation site.

amino acids 581-585

Leucine zipper pattern.

amino acids 164-186

Phospholipase A2 aspartic acid active site.

amino acids 39-50

FIGURE 14

ACTTGGAGCAAGCGGCGCGGGAGACAGAGGCAGAGGCAGAAGCTGGGGCTCCGTCCCGCTCCCACGAGCG
ATCCCCGAGGAGAGCCGCGGCCCTGGCGAGGCAGAGGCCAGAGGAAGACCCGGGTGGCTCGCCCGCTGCC
TCGCTCCCAGGCAGGCCGGCTGCAGCCTGCCCTCTGCTGCCCTGAAAATGGAAAAGATGCTCGCAGGCT
GCTTCCTGCTGATCCTCGGACAGATCGTCCTCCCTGCCAGGGCAGGGCAGGGAGCGGTCACTGGAGAGTT
CTAGGGGAGACACGCTCGGACCCACCGCAGACGCCCTCTGGAGAGTTCTGTGAGAACACAAGCGGGAGACC
TGGTTTCATCATTGACAGCTCGCAGTGTCAACACCCATGACTATGCAAAGGTCAAGGAGTTCATCGTG
A G C A T C T G C A T T G G A C A T T G G T C T G A T G T C A C C G A G T G G G C T G C T C C A A T G G C A G C A T G T C A A G A A T G
A G T C T C C C T C A A G A C C T C A A G A G G A A G T C C G A G G T G G A G C G T G C T G C A A G A G G A T G C G G C A T C T G T C C A C C G
G C A C C A T G A C T G G G C T G G C A T C C A G T A T G C C C T G A C A C A T C G C A T T C A G A A G C A G A G G G G G C C G C C C T G A
G G G A A T G T G C C A C G G G C T A T A A T G A T C T G C A C A G A T G G G A G A C T C C A G G A C T C C A G G A C G G T G G C T G C T A
A G G C A C G G G A C A C G G G C A T C C T A A T C T T G C A T T G G C A T T G G C A G G A C T C C A C C T T G A A G T C C A T T G
G G A G T G A G G C C C A T G A G G A C C A T G T G C A G C A C C T G G A G C A T A C T G T G C C C A C T T C T G C A T C A A C A T C C C T G
A G A A G A A G T G T G C A C G G G C C A C A T G T G C A G C A C C T G G A G C A T A C T G T G C C C A C T T C T G C A T C A A C A T C C C T G
G C T C A T C G T C T G C A G G T G C A A A C A A G G C T A C T T C T C A A C T C G G A T C A G A C G A C T T G C A G A A T C C A G G A T C T G T
G T G C C A T G G A G G A C C A A C T G T G A G C A G C T C T G T G A A T G T G C C G G G C T C T T C G T C T G C C A G T G C T A C A G T G
G C T A C G C C C T G G C T G A G G A T G G G A A G G G A C T G T G C T G G A C T A C T G T G C C T C A G A A A A C C A C G G A T G T G A A C
A T G A G T G T G T A A A T G C T G A T G G C T C T A C C T T G C C A G T G C C A T G A A G G A T T T G C T C T T A A C C C A G A T G A A A A A
C G T C C A A C A G G A T C A A C T A C T G T G C A C T G A C A A C A A C C G G G C T G T G A G G A C A C G T G C T C C G A C G G A G A C G T G T G
A C T A C T G C C G T G C C A C C G T G G C T A C A C T C T G G A C C C C A T G G C A A A A C C T G C A G C G A G T G G A C C A C T G T G C A C
A G C A G G A C C A T G G C T G T G A G C A G C T G T G C A A C A C G G A G G A T T C C T C G T C T G C C A G T G C T C A G A A G G C T T C
T C A T C A A C G A G G A C C T C A A G A C C T G C T C C C G G G T G G A T T A C T G C C T G C T G A G T G A C C A T G G T T G T G A A A T A C T C C T
G T G C A A C A T G G A C A G A T C C T T G C C T G T C A G T G T C C T G A G G G A C A C G T G C T C C G A C G G A T G G G A A G A C G T G T G
C A A A T T G G A C T C T T G C T C T G G G G A C C A C G G T T G T G A A C A T T C G T G T G A A G C A G T G A A G A G A T T C G T T G T G
G C C A G T G C T T G A A G G T T A T A A T C T C G T G A A G A T G G A A A A A C C T G C A G A A G G A A G A T G T C T G C C A A G C T A T A G
A C C A T G G C T G T G A A C A C A T T T G T G T G A A C A G T G A C G A C T C A T A C A C G T G C G A G T G C T T G G A G G G A T T C C G G C T C
C T G A G G A T G G G A A A C G T G C C G A A G G A A G G A T G T C T G C A A A T C A A C C A C C A T G G C T G C G A A C A C A T T T G T G T T A
A T A A T G G G A A T T C C T A C A T C T G C A A A T G C T C A G A G G G A T T T G T T C A G G T G A G G A C G G A A G C G G T G C A A G A A A T
G C A C T G A A G G C C A A T T G A C C T G G G C T T T G T G A T C G A T G G A T C C A A G A G G T C T G G A G A A G A G A A T T T G A G G T C G
T G A A G C A G T T G T G C A T G G A A T T A T A G A T T C C T T G A C A A T T T C C C C A A A G C C G C T C G A G T G G G G C T G C T C C A G T
A T T C C A C A C A G G T C C A C A C A G A G T T C A C T G T G A G G A A C T C A C T G C C A A A G A C A T G A A A A A G C C G T G G C C C
A C A T G G A A A T A C T G G G A A A G G G C T C A T G A C T G G G G C T C T G A A C A C A C A T G T T G A G G A A G A G T T T A C C C A A G
G A G A A G G G C C A G G C C C T T C C A A G G G T G C C C A G A G C A G C C A T T G T G T T C A C C G A C G G A C G G G C T C A G G A T G
A C G T C C G A G T G G G C C A G T A A A G C C A A G G C C A A T G G T A T C A C T A T G T A T G C T G T G T G G G G T A G G A A A A G C C A T T G
A G G A G G A A C T A C A A G A G A T T G C C T C G A G C C C A C A A C A A G C A T C T C T C A T G C C G A A G A C A T T C A G C A C A A T G G
A T G A G A T A A G T G A A A A A C T C A A G A A A G G C A T C T G T G A A G C T C T A G A A G A C T C C G A T G G A A G A C A G G A C T C T C C A G
C A G G G G A C T G C C A A A A C G G T C C A A C A G C C A A C A G A A T C T G A G G C A G T C A C C A T A A A T A T C C A A G A C C T A C T T
C C T G T T C T A A T T T G C A G T G C A A C A C A G A T A T C T G T T G A A G A A G A C A A T C T T T A C G G T C T A C A C A A A G C T T
C C C A T T C A A C A A A A C C T C A G G A A G G C C T T T G G A A G A A A A A C A C G A T C A A T G C C A A A T G T G A A A A C C T T A T A T G T
T C C A G A A C C T T G C C A A A C G A A A G G T A A G A A A A T T A A C A C A G C G C T T A G A A G A A A T G A C A C A G A G A A T G G A A G C C
T G G A A A A T C G C T G A G A T A C A G A T T G A A G A A A T C C G C A C A C T T G T A G T C A T T G T A T C A C G G A T T A C A A T
G A A C G C A G T G C A G A G C C C A A A G C T C A G G C T A T T G T T A A T C A A T A A T G T G A A G T A A A A C A T C A G T A C T G A
G A A A C C T G G G T T T G C C A C A G A A A C A A G A C A A G A A G T A T A C A C T A A T T G T A T A A T T T A T C A G G A A A A A A C C T
T C A G A A T T C T A A G T G A A T T T A C C A G G T G A G A A T G A A T A A G C T A T G C A A G G T A T T T G T A A T A T A C T G T G G A C A C
A A C T T G C T T C G C C T C A T C C T G C C T T A G T G T G C A A T C T C A T T G A C T A T A C G A T A A A G T T G C A C A G T C T T A C T T
C T G T A G A A A C A C T G G C C A T A G G A A A T G C T G T T T T T G T A C T G G A C T T T A C C T T G A T A T A T G T A T A T G G A T G T A T G
C A T A A A A T C A T A G G A C A T A T G T A C T T G T G G A A C A A G T T G G A T T T T T A T A C A A T A T T A A A A T T C A C C A C T T C A G

FIGURE 15

MEKMLAGCFLLILGQIVLLPAEARERSGRSISRGHRARTHPTALLESSCENKRADLVFIDSSRSVNTHDYAKVKEFIVDILQFLDIGPDVTRVGLLQYGSTVKNEFSLKTFRKSEVERAVKMRHLSTGTMTGLAIQYALNIAFSEAEGARPLRENVPRVIMIVTDGRPQDSVAEVAAKARDTGILIFAIGVGQVDFNTLKSIGSEPHEDHVFLVANFSQIETLTSVFQKKLCTAHMCSTLEHNCAHFCINIPIGSYVCRCKQGYILNSDQTTCRIQDLCAMEDHNCEQLCVNPVGSFVCQCYSGYALAEDGKRCVAVDYCASENHGCEHECVNADGSYLCQCHEGFALNPDEKTCTRINYCALNKGCEEHECVNMEESYYCRCHRGYTLDPNGKTCRSRVDHCAQQDHGCEQLCLNTEDSFVCQCSEGFLINEDLKTCSRVDYCLLSDHGCEYSCVNMDRSFACQCPEGHVLRSRGKTCAKLDSCALGDHGCEHSCVSSEDHFVCQCFCFGYILREDGKTCRRKDVCQAIDHGCEHICVNSDDSYTCECLEGFRLAEDGKRCRRKDVKSTHGCEHICVNNNGNSYICKCSEGFLAEDGRRCKKCTEGPIDLVFVIDGSKSLGEENFEVVVKQFVTGIIDSLTISPKAARVGLLQYSTQVHTEFTLRNFNSAKDMKKAVAHMKYMGKGSMTGLALKHMFERSFTQGEGARPLSTRVPRAAIVFTDGRAQDDVSEWASKAKANGITMYAVGVGKAIEEELQEIASEPTNKHLFYAEDFSTMDEISEKLKKGICEALEDSDGRQDSPAGELPKTVQQPTESEPVTINIQDLLSCSNFAVQHRYLFEEDENLRLSTQKLSHSTKPSGPLEEKHDQCKCENLIMFQNLANEEVRKLTQRLEEMTQRMEALENRLRYR

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 221-225

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 115-119, 606-610, 892-896

Casein kinase II phosphorylation site.

amino acids 49-53, 118-122, 149-153, 176-180, 223-227, 243-247, 401-405, 442-446, 501-505, 624-628, 673-677, 706-710, 780-784, 781-785, 819-823, 866-870

N-myristoylation site.

amino acids 133-139, 258-264, 299-305, 340-346, 453-459, 494-500, 639-645, 690-696, 752-758, 792-798

Amidation site.

amino acids 314-318, 560-564, 601-605

Aspartic acid and asparagine hydroxylation site.

amino acids 253-265, 294-306, 335-347, 376-388, 417-423, 458-464, 540-546, 581-587

FIGURE 16

GGAGCCGCCCTGGGTGTCAGCGCTCGCTCCCGCGCACGCTCCGGCGTCGCGCAGCCTCG
GCACCTGCAGGTCCCGTGCCTCCCGCGCTGGCGCCCTGACTCCGTCCGGCCAGGGAGGGC
CATGATTTCCCTCCGGGCCCCCTGGTGACCAACTTGCTGCGTTTTGTTCTGGGCTGA
GTGCCCTCGCGCCCCCTCGCGGGCCCAGCTGCAACTGCACTTGCCGCCAACCGGTTGCAG
GCGGTGGAGGGAGGGAAAGTGGTGCTCCAGCGTGGTACACCTGCACGGGAGGTGTCTTC
ATCCCAGCCATGGGAGGTGCCCTTGTGATGTGGTTCTCAAACAGAAAAGGAGGATC
AGGTGTTGTCCTACATCAATGGGTACAACAAGCAAACCTGGAGTATCCTGGTCTACTCC
ATGCCCTCCCGAACCTGTCCTCGCGCTGGAGGGCTCCAGGAGAAAGACTCTGGCCCTA
CAGCTGCTCCGTGAATGTGCAAGACAAACAAGGCAAATCTAGGGGCCACAGCATAAAACCT
TAGAACTCAATGTACTGGTTCCAGCTCCTCCATCCTGCCGTCTCCAGGGTGTGCCCAT
GTGGGGCAAACGTGACCTGAGCTGCCAGTCTCCAAGGAGTAAGCCGCTGTCCAATACCA
GTGGGATCGGCAGCTCCATCCTCCAGACTTCTTGACCAGCATTAGATGTCATCCGTG
GGTCTTAAGCCTCACCAACCTTCGTCTCCATGGCTGGAGTCTATGTCAGGCCCAC
AATGAGGTGGCACTGCCAATGTAATGTGACGCTGGAAGTGAGCACAGGGCTGGAGCTGC
AGTGGTTGCTGGAGCTGTTGGTACCCCTGGTTGGACTGGGTTGCTGGCTGGCTGGTCC
TCTTGTACCACCGCCGGCAAGGCCCTGGGAGGCCAGCAATGATATCAAGGAGGATGCC
ATTGCTCCCCGGACCCTGCCCTGGCCAAGAGCTCAGACACAATCTCCAAGAATGGGACCCT
TTCCTCTGTCACCTCCGCACGAGCCCTCCGGCCACCCATGCCCTCCAGGCCTGGTCAT
TGACCCCCACGCCAGTCTCCAGCCAGGCCCTGCCCTCACCAAGACTGCCACGACAGAT
GGGGCCACCCCTCAACCAATATCCCCATCCCTGGTGGGTTCTCCTCTGGCTGAGCCG
CATGGGTGCTGTGCCTGTGATGGTGCCCTGCCAGAGTCAGCTGGCTCTGGTAT**TGATGAC**
CCCACCACTCATTGGCTAAAGGATTGGGTTCTCCTCTATAAGGGTCACCTCTAGCAC
AGAGGCCTGAGTCATGGAAAGAGTCACACTCCTGACCCCTAGTACTCTGCCAACCTCTC
TTTACTGTGGAAAACCATCTCAGTAAGACCTAAGTGTCCAGGAGACAGAAGGAGAAGAGGA
AGTGGATCTGGAATTGGGAGGAGCCTCCACCCACCCCTGACTCCTCCTTATGAAGCCAGCTG
CTGAAATTAGCTACTCACCAAGAGTGAGGGCAGAGACTTCCAGTCAGTCTGGCTCCAGGC
CCCCTGATCTGACCCACCCCTATCTAACACCACCCCTGGCTCCACTCCAGCTCCCTGT
ATTGATATAACCTGTCAGGCTGGTTGGTTAGGTTACTGGGGCAGAGGATAGGAAATCTC
TTATTAAGACTAACATGAAATATGTGTTGTTCTATTGCAAATTAAATAAGATAACATAA
TGTTTGTATGAAAAA

FIGURE 17

MISLPGPLVTNLLRFLFLGLSALAPPSRAQLQLHL PANRLQAVEGGEVVLPAWYTLHGEVSS
SQPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRLEGHQEKDSGPY
SCSVNVQDKQGKSRGHSIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRSKPAVQYQ
WDRQLPSFQTFFAPALDVIRGSLSLTNLSSMAGVYVCKAHNEVGTACNCVTLEVSTGPGAA
VVAGAVVGTLVGLGLLAGLVLLYHRRGKALEEPANDIKAIAPIRTLPWPKSSDTISKNGTL
SSVTSARALRPPHGPPRPGALTPTPSLSSQALPSPRLPTTDGAHPQPISPPIPGGVSSSGLSR
MGAVPVMVPAQSQAGSLV

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 245-267

N-glycosylation site.

amino acids 108-112, 169-173, 213-217, 236-240, 307-311

N-myristoylation site.

amino acids 90-96, 167-173, 220-226, 231-237, 252-258, 256-262,
262-268, 308-314, 363-369, 364-370

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 164-175

FIGURE 18

CGCCACCACTGCGGCCACCGCCA**ATGAAACGCCTCCGCTCCTAGTGGTTTTCCACTTG**
TTGAATTGTTCTATACTCAAAATTGCACCAAGACACCTGTCTCCAAATGCAAATGTGA
AATACGCAATGGAATTGAAGCCTGCTATTGCAACATGGGATTTCAGGAAATGGTGTACAA
TTTGTGAAGATGATAATGAATGTGGAAATTAACTCAGTCCTGTGGCGAAAATGCTAATTG
ACTAACACAGAAGGAAGTTATTATTGTATGTGTACCTGGCTTCAGATCCAGCAGTAACCA
AGACAGGTTTACTAATGATGGAACCCTGCTGTATAGAAAATGTGAATGCAAATGCCATT
TAGATAATGTCTGTATAGCTGCAAATATTAAATAAAAACCTTAACAAAAATCAGATCCATAAAA
GAACCTGTGGCTTGCTACAAGAAGTCTATAGAAATTCTGTGACAGATCTTCACCAACAGA
TATAATTACATATAGAAATTAGCTGAATCATCTCATTACTAGGTACAGAACAAACA
CTATCTAGCCAAGGGACACCCCTTCTAACTCACTCTTACTGAATTGTAACCCACCGTGAAT
AATTTGTTCAAAGGGATACATTGTAGTTGGACAAGTTACTGTGAATCATAGGAGAAC
ACATCTACAAAACATGCACACTGTTGAACAAGCTACTTTAAGGATATCCCAGAGCTTC
AAAAGACCACAGAGTTGATACAAATTCAACGGATATAGCTCTCAAAGTTTCTTTGAT
TCATATAACATGAAACATATTTCATCCTCATATGAATATGGATGGAGACTACATAAATATT
TCCAAAGAGAAAAGCTGCATATGATTCAAATGGCAATGTTGCAGTTGCATTTTATATTATA
AGAGTATTGGTCCTTGCTTCATCATCTGACAACCTTATTGAAACCTCAAATTATGAT
AATTCTGAAGAGGGAGGAAAGAGTCATATCTTCAGTAATTTCAGTCTCAATGAGCTCAAACCC
ACCCACATTATATGAACCTGAAAAAATAACATTACATTAAGTCATCGAAAGGTACAGATA
GGTATAGGAGTCTATGTGCATTTGAATTACTCACCTGATACCATGAATGGCAGCTGGTCT
TCAGAGGGCTGTGAGCTGACATACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCT
GACACATTTCGAATTTCATGTTGCTTCATCTGGTCCTCCATTGGTATTAAAGATTATAATT
TTACAAGGATCACTCAACTAGGAATAATTATTTCACTGATTGCTTGCCATATGCATTTT
ACCTTCTGGTTCTTCAGTGAATTCAAAGCACCAGGACAACAATTCAAACAAAATCTTGCTG
TAGCCTATTCTTGCTGAACCTGTTCTTGTGGATCAATACAAATAACTAATAAGCTCT
TCTGTTCAATCATTGCCGACTGCTACACTACTCTTTAGCTGCTTGATGGATGTGC
ATTGAAGGCATACATCTCATGTTGTGGGTGTCATCTACAACAAGGGATTTGCA
CAAGAATTTCATCTTGCTATCTAACGCCAGCCGTGGTAGTTGGATTTGGCAGCAC
TAGGATACAGATATTATGGCACAACCAAAGTATGTTGGCTTAGCACCAGAACACTTATT
TGGAGTTTATAGGACCAGCATGCCATAATCATTCTGTTAATCTCTGGCTTGGAGTCAT
CATATACAAAGTTTCGTACACTGCAGGGTTGAAACCAAGAAGTTAGTTGCTTGAGAAC
TAAGGTCTTGCAAGAGGAGCCCTCGCTCTGTTCTCGGCACCACTGGATCTT
GGGTTCTCCATGTTGTGCACGCATCAGTGGTTACAGCTTACCTCTCACAGTCAGCAATGC
TTTCCAGGGATGTTCATTTTATCCTGTGTTTATCTAGAAAGATTCAAGAAGAAT
ATTACAGATTGTTAAAAATGTCCCCTGTTGGATGTTAAGG**TA****A**ATAGAGAAC
GTGGATAATTACAACCTGCACAAAAATAAAATTCCAAGCTGTGGATGACCAATGTATAAAA
TGACTCATCAAATTATCCAATTATTAACACTAGACAAAAAGTATTAAATCAGTTTCT
GTTTATGCTATAGGAACGTAGATAATAAGGAAAATTATGTATCATATAGATATACTATGT
TTTCTATGTAATTAGTTCTGTCAAAATAGTATTGCAAGATATTGAAAGTAATTGGTTT
CTCAGGAGTGTATCACTGCACCCAAAGGAAAGATTCTTCTTAACACAGAGAAGTATGAA
TGTCTGAAGGAAACCACTGGCTGATATTCTGTGACTCGTGTGCTTGAAACTAGTCC
CCTACCACCTCGGTATGAGCTCCATTACAGAAAGTGGAACATAAGAGAACATGAAGGGCAGA
ATATCAAACAGTGAAGGAAAGGAAATGATAAGATGTATTGAAATGAACACTGTTTCTGTAGAC
TAGCTGAGAAATTGTTGACATAAAATAAGAATTGAAGAAACACATTACATTGTGAA
TTGTTCTGAACCTAAATGTCACAAAAACACTAGACTTCTGTTGCTAAATCTGTTCTT
TTCTAATATTCTAAAAAAAAAGGTTACCTCCACAAATTGAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 19

MKRLPLLVVFSTLLNCSYTQNCTKTPCLPNAKEIRNGIEACYCNMGFSGNGVTICEDDNEC
GNLTQSCGENANCTNTEGSYYCMCVPGRSSSNQDRFITNDGTVCIENVNANCHLDNVCIAA
NINKTLTKIRSIKEPVALLQEVEYRNSVTDLSPTDIITYIEILAESSLLGYKNNTISAKDTL
SNSTLTFEVKTVNNFVQRDTFVWDKLSVNHRRTHLTLMHTVEQATLRISQSFKTTEFD
NSTDIALKVFFFDSYNMKHIHPHMNMDGYINIIFPKRKAAYDSNGNVAVAFLYYKSIGPLLS
SSDNFLLKPQNYDNSEEERVISSVISVSMSSNPPTLYELEKITFTLSHRKVTDRYRSLCAF
WNYSPDTMNGWSSEGCELYSNETHTSCRNCNLTHFAILMSGPSIGIKDYNILTRITQLG
IIISLICLAI CIFTWFFSEIQSTRTTIHKNLCCSLFLAELVFLVGINTNTNKLFCSSIAGL
LHYFFLAFAFWMCIEGIHLYLIVVGVIYNKGFLHKNFYIFGYLSPAVVVGFSAAALGYRYYYGT
TKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVRHTAGLKPEVSCFENIRSCARGA
LALLFLLGTTWIFGVVLHVVHASVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNV
PCCFGCLR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 430-450, 465-486, 499-513, 535-549, 573-593, 619-636,
648-664

N-glycosylation site.

amino acids 15-19, 21-25, 64-68, 74-78, 127-131, 177-181,
188-192, 249-253, 381-385, 395-399

Glycosaminoglycan attachment site.

amino acids 49-53

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 360-364

Casein kinase II phosphorylation site.

amino acids 54-58, 68-72, 76-80, 94-98, 135-139, 150-154,
155-159, 161-165, 181-185, 190-194, 244-248, 310-314, 325-329,
346-350, 608-612

Tyrosine kinase phosphorylation site.

amino acids 36-44, 669-677, 670-678

N-myristoylation site.

amino acids 38-44, 50-56, 52-58, 80-86, 382-388, 388-394,
434-440, 480-486, 521-527

Aspartic acid and asparagine hydroxylation site.

amino acids 75-87

FIGURE 20

TGGAAACATATCCTCCCTCATATGAATATGGATGGAGACTACATAAATATATTCCAAAGNG
AAAAGCCGGCATATGGATTCAAATGGCAATGTTGCAGTGCATTTTATATTATAAGAGTAT
TGGTCCCTTGCTTCATCATCTGACAACCTTATTGAAACCTCAAAATTATGATAATTCT
GAAGAGGAGGAAAGAGTCATATCTTCAGTAATTTCAGTCTCAATGAGCTCAAACCCACCCAC
ATTATATGAACTTGAAAAAACATTACATTAAGTCATCGAAAGGTACAGATAGGTATA
GGAGTCTATGTGGCATTGGAAACTCACCTGATACCATGAATGGCAGCTGGTCTTCAGAG
GGCTGTGAGCTGACACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCTGACACA
TTTGCAATTGATGTCCTGGTCCTTCCATTGGTATTAAAGATTATAATATTCTTACAA
GGATCACTCAACTAGGAATAATTATTCACTGATTGTCTGCCATATGCATTTACCTTC
TGGTTCTTCAGTGAATTCAAAGCACCAGGA

FIGURE 21

GCTCCCAGCCAAGAACCTCGGGGCCGCTGCGCGGTGGGGAGGAGTCCCCGAAACCCGGCCG
CTAAGCGAGGCCTCCTCCTCCGCAGATCCGAACGGCCTGGGCGGGTCACCCCGGCTGGGA
CAAGAACGCCGCCCTGCCTGCCGGGGGGAGGGGGCTGGGCTGGGCGGGAGGCGG
GGTGTGAGTGGGTGTGTGCGGGGGCGGAGGCTTGATGCAATCCGATAAGAAATGCTCGGG
TGTCTTGGGCACCTACCGTGGGCCGTAAGCGCTACTATATAAGGCTGCCGGCCGGAG
CCGCCGCCGTCAAGCAGGAGCGCTCGCTCAGGATCTAGGCCACGACCATCCAAACCC
GGCACTCACAGCCCCGAGCGCATCCGGTCGCCGCCAGCCTCCGCACCCCCATGCCGG
AGCTCGGCCAGAGCCCCAGGGAGGTGCCATTCGGAGCGGGTGTGTGGTCCACGTATGG
ATCCTGGCCGGCCTCTGGCTGGCCGTGGCCGGCGCCCCCTGCCCTCTCGGACGCCGGGC
CCACGTGCACTACGGCTGGGCACCCATCCGCCTGCCGCACCTGTACACCTCCGGCCCC
ACGGGCTCTCAGCTGCTCCTGCGCATCCGTGCCGACGGCGTGTGGACTGCCGCCGGC
CAGAGCGCCACAGTTGCTGGAGATCAAGGCAGTCGCTCTGCCGACCGTGGCCATCAAGGG
CGTGCACAGCGTGCCTGACCTCTGCATGGCGCCGACGGCAAGATGCAGGGCTGCTTCAGT
ACTCGGAGGAAGACTGTGCTTCAGGGAGGAGATCCGCCAGATGGCTACAATGTGTACCGA
TCCGAGAACGCCCTCCGGTCTCCCTGAGCAGTGCACAGCAGCTGTACAAGAA
CAGAGGCTTCTTCCACTCTCATTTGCCATGCTGCCATGGTCCCAGAGGAGCCTG
AGGACCTCAGGGCCACTTGAATCTGACATGTTCTTCGCCCTGGAGACGACAGCATG
GACCCATTGGCTTGTACCGGACTGGAGGCCGTGAGGAGTCCAGCTTGAGAAGTAACT
GAGACCATGCCGGCCTTCACTGCTGCCAGGGCTGTGGTACCTGCAGCGTGGGGACG
TGCTTCTACAAGAACAGTCCTGAGTCACGTTCTGTTAGCTTAGGAAGAAACATCTAGAA
GTTGTACATATTCAAGAGTTCCATTGGCAGTGCCTAGTTCTAGCCAATAGACTTGTCTGAT
CATAACATTGTAAGCCTGTAGCTGCCAGCTGCTGCCGGCCCCATTCTGCCCTCGA
GGTTGCTGGACAAGCTGCTGCACTGCTCAGTTCTGCTGAATACCTCCATCGATGGGAAC
TCACCTCCTTGGAAAAATTCTTATGTCAAGCTGAAATTCTTAATTCTCATCACTTC
CCCAGGAGCAGCCAGAACAGACAGGAGTAGTTAATTCAAGGAACAGGTGATCCACTCTGTA
AAACAGCAGGTAAATTCACTCAACCCATGTGGAAATTGATCTATCTACTTCCAGGG
ACCATTGCCCTCCCAAATCCCTCCAGGCCAGAACACTGACTGGAGCAGGCATGCCACCAG
GCTCAGGAGTAGGGGAAGCCTGGAGCCCCACTCCAGGCCCTGGGACAATTGAGAATTCCCC
CTGAGGCCAGTTCTGTCATGGATGCTGCTCTGAGAATAACTTGCTGTCCGGTGTACCTGC
TTCCATCTCCCAGCCCACCAGCCCTGCCACCTCACATGCCCTCCCATGGATTGGGCCT
CCCAGGCCCCCACCTTATGTCAACCTGCACTCTGTTCAAAAATCAGGAAAAGAAAAGAT
TTGAAGACCCCAAGTCTGTCAATAACTTGCTGTGGAGCAGCGGGGAAGACCTAGAAC
CCTTCCCCAGCACTGGTTCCAACATGATATTATGAGTAATTATTTGATATGTACA
TCTCTTATTCTTACATTATTATGCCCCAAATTATATTATGTATGTAAGTGAGGTTG
TTTGTATATTAAAATGGAGTTGTTGT

FIGURE 22

MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWDPIRLRHYTSGPHGLSSCFLRI
RADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLQYSEEDCAFE
EIRPDGYNVYRSEKHLPLVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLES
MFSSPLETDSDMPFGLVTGLEAVRSPSFEK

Signal peptide:

amino acids 1-22

Casein kinase II phosphorylation site.

amino acids 78-82, 116-120, 190-194, 204-208

N-myristoylation site.

amino acids 15-21, 54-60, 66-72, 201-207

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 48-59

FIGURE 23

CCAGAAGTTCAAGGGCCCCGGCCTCCTGCGCTCCTGCCGCCGGACCCCTGACCTCCTCA
GAGCAGCCGGCTGCCGCCGGAAAGATGGCGAGGAGGAGGCCACCGCTCCTGCTG
CTGCTGCGCTACCTGGTGGTCGCCCTGGCTATCATAAGGCCTATGGGTTTCTGCCCAA
AGACCAACAAGTAGTCACAGCAGTAGAGTACCAAGAGGCTATTTAGCCTGAAAACCCAA
AGAAGACTGTTCCAGATTAGAGTGGAAAGAAACTGGTCGGAGTGTCTCCTTGTCTAC
TATCAACAGACTCTCAAGGTGATTTAAAAATCGAGCTGAGATGATAGATTCAATATCCG
GATCAAAAATGTGACAAGAAGTGATGCCGGAAATATCGTTGTGAAGTTAGTGC
AGCAAGGCCAAACCTGGAAGAGGATACAGTCACTCTGGAAGTATTAGTGGCTCCAGCAGTT
CCATCATGTGAAGTACCCCTCTGCTCTGAGTGGAACTGTGGTAGAGCTACGATGTCAAGA
CAAAGAAGGAAATCCAGCTCCTGAATACACATGGTTAAGGATGGCATCCGTTGCTAGAAA
ATCCCAGACTGGCTCCAAAGCACCAACAGCTCATACACAATGAATACAAAAACTGGAACT
CTGCAATTAAACTGTTCCAACTGGACACTGGAGAAATATTCCTGTGAAGCCCGCAATT
TGTTGGATATCGCAGGTGTCTGGAAACGAATGCAAGTAGATGATCTCAACATAAGTGGCA
TCATAGCAGCGTAGTAGTTGTGGCCTAGTGATTTCCGTTGTGGCCTGGTATGCTAT
GCTCAGAGGAAAGGCTACTTTCAAAAAGAACCTCCTCCAGAAGAGTAATTCTCATCTAA
AGCCACGACAATGAGTGGAAATGTGCAGTGGCTACGCCTGTAATCCAGCACTTGGAAAGG
CCGGCGGGCGGATCACGAGGTCAGGAGTTCTAGACCAGTCTGGCCAATATGGTGAACCC
CATCTCTACTAAAATACAAAAATTAGCTGGCATGGTGGCATGTGCCTGCAGTTCCAGCTGC
TTGGGAGACAGGAGAAACTTGAACCGGAGGCGGAGGTTGCAGTGAGCTGAGATCACGC
CACTGCAGTCCAGCCTGGTAACAGAGCAAGATTCCATCTCAAAAATAAAATAATA
AATAAAACTGGTTTACCTGTAGAATTCTTACAATAAATATAGCTTGATATTC

FIGURE 24

MARRSRHRLLLLLLRYLVVALGYHKAYGFSAPKDQQVVTAVEYQEAILACKTPKKT
VSSRLEWKKLGRSVSFVYYQQTLQGDFKNRAEMIDFNIRIKNVTRSDAGKYRCEVSAPSE
QGQNLEEDTVTLEVLVAPAVPSCEVPSSALSGTVVELRCQDKEGNPAPEYTWFKD
GIRLLENPRLGSQSTNSSYTMNTKTGTLQFNTVSKLDTGEYSCEARN
SVGYRRCPGKRMQVDDLNIISGIIIAAVVVVA
LVI
SVCGLGVCYAQRKG
YFSKETSFQKSNSSSKATTMSENVQWLTPVIPALWKA
AAAGGSRGQEF

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 130-144, 238-258

N-glycosylation site.

amino acids 98-102, 187-191, 236-240, 277-281

Casein kinase II phosphorylation site.

amino acids 39-43, 59-63, 100-104, 149-153, 205-209, 284-288

N-myristoylation site.

amino acids 182-188, 239-245, 255-261, 257-263, 305-311

Amidation site.

amino acids 226-230

FIGURE 25

GACATCGGAGGTGGCTAGCACTGAAACTGCTTTCAAGACGAGGAAGAGGAGGAGAAAGAG
AAAGAAGAGGAAGATGTTGGGCAACATTATTAAACATGCTCCACAGCCGGACCTGGCAT
CATGCTGCTATTCTGCAAATACTGAAGAAGCATGGGATTAAATATTACTTCTAAATAA
ATGAATTACTCAATCTCCTATGACCATCTACATACTCCACCTCAAAAAGTACATCAATA
TTATATCATTAAGGAAATAGTAACCTCTTCTCCAATATGCATGACATTGGACAATG
CAATTGTGGCACTGGCACTTATTTCAGTGAAGAAAAACTTGTGGTCTATGGCATTCA
TTTGACAAATGCAAGCATTCCCTTATCAATCAGCTCCTATTGAACCTACTAGCACTGACTG
TGGAACTCCTTAAGGGCCCATTACATTCTGAAGAAGAAAGCTAAGATGAAGGACATGCCACT
CCGAATTCTATGTGCTACTTGGCCTAGCTATCACTACACTAGTACAAGCTGTAGATAAAAAAG
TGGATTGTCCACGGTTATGTACGTGTGAAATCAGGCCTGGTTACACCCAGATCATTAT
ATGGAAGCATCTACAGTGGATTGTAATGATTAGGTCTTTAACCTTCCCAGCCAGATTGCC
AGCTAACACACAGATTCTCCTACAGACTAACAAATTGCAAAATTGAATACTCCACAG
ACTTTCCAGTAAACCTTACTGGCCTGGATTATCTCAAAACAATTATCTTCAGTCACCAAT
ATTAATGTAAGGAAAGATGCCTCAGCTCCTTCTGTGTACCTAGAGGAAACAAACTACTGA
ACTGCTGAAAAATGTCGTCCGAACTGAGCAACTTACAAGAACTCTATATTACACA
TGCTTCTACAATTTCACCTGGAGCCTTATTGGCCTACATAATCTTCTCGACTTCATCTC
AATTCAAATAGATTGCAGATGATCAACAGTAAGTGGTTGATGCTCTTCAAATCTAGAGAT
TCTGATGATTGGGAAAATCCAATTATCAGAACAGACATGAACCTTAAGCCTTATCA
ATCTTCGAGCCTGGTTAGCTGGTATAAACCTCACAGAAATACAGATAACGCCCTGGT
GGACTGGAAAACCTAGAAAGCATCTCTTTACGATAACAGGCTTATTAAAGTACCCATGT
TGCTCTCAAAAGTTGTAATCTCAAATTGGATCTAAATAAAACTCTATTAAATAGAA
TACGAAGGGGTGATTAGCAATATGCTACACTAAAGAGTTGGGATAAAATAATGCCT
GAGCTGATTCCATCGATAGTCTGCTGGATAACCTGCCAGATTAAAGAAAAATAGAAC
TACTAACAAACCTAGATTGCTTACATTCAACCCATGCATTTTCAGACTCCCCAGCTGG
AATCACTCATGCTGAACAGCAATGCTCTCAGTGCCTGTACCATGGTACATTGAGTCTG
CCAAACCTCAAGGAAATCAGCATCACAGTAACCCATCAGGTGTGACTGTGTCATCCGTTG
GATGAACATGAACAAAACCAACATTGATTGAGCCAGATTCACTGTTGCGTGGACC
CACCTGAATTCCAAGGTAGAAATGTTGGCAAGTGCATTTCAGGGACATGATGAAATTGT
CTCCCTTCTTATAGCTCCTGAGAGCTTCTTCTAAATCTAAATGTAGAAGCTGGAGCTATGT
TTCCCTTCACTGTAGAGCTACTGCAGAACACAGCCTGAAATCTACTGGATAACACCTCTG
GTCAAAAACCTTGCCTAATACCCCTGACAGACAAGTTCTATGTCATTCTGAGGGAAACACTA
GATATAAATGGCGTAACCTCCAAAGAAGGGGTTATATACTTGTATAGCAACTAACCTAGT
TGGCGCTGACTGAACTGTTATGATCAAAGTGGATGGATCTTCCACAAGATAACAATG
GCTCTTGAATATTAAAGAGATATTGAGCCATTGAGCTTGGTGTGAAATTCTCA
AGTTCTAAATTCTCAAATCTAGTGTAAATGGACAGCCTTGCAAGACTGAAATTCTCA
TGCTGCGCAAAGTGCCTGAATACCCTGATGTCAAGGTATATAATCTTACTCATCTGAATC
CATCAACTGAGTATAAAATTGTATTGATATTCCCACCATCTACAGAAAAACAGAAAAAA
TGTGTAATGTCACCAACCAAGGTTGCACCCCTGATCAAAAGAGTATGAAAGAATAATAC
CACAACACTTATGGCCTGTCTGGAGGCCTCTGGGGATTATTGGTGTGATATGTCTTATCA
GCTGCCCTCTCCAGAAATGAACTGAGCTGATGGTGGACACAGCTATGTGAGGAATTACTACAG
AAACCAACCTTGCAATTAGGTGAGCTTATCCTCTGATAAAATCTCTGGGAAGCAGGAAA
AGAAAAAAAGTACATCACTGAAAGTAAAGCAACTGTTAGGTTACCAACAAATATGTCCT
AAAAACCAAGGAAACCTACTCCAAAATGAAC

FIGURE 26

MKDMLPRIHVLLGLAITTLVQAVDKKVDPCRLCTCEIRPWFTPRTSIYMEASTVDCNDLGLLT
FPARLPANTQILLQTNNAKIEYEYSTDFPVNLTGQLDLSQNNLSSVTNINVKKMPQLLSVYLE
ENKLTELPEKCLSELSNLQELYINHNLSTISPGAFIGLHNLLRLHLNSNRQMINSKWFDA
LPNLEILMIGENPIIRIKDMNFKPPLINRLSLVIAGINLTEIPDNAVGLENLESISFYDNRL
IKVPHVALQKVNLKFLLDNKNPINRIRRGDFSNMLHLKELGINNMPPELISIDS LAVDNLPD
LRKIEATNNPRLSYIHPNAFFRLPKLESLMLNSNALSA LYHGTIESLPNLKEISIHSNPIRC
DCVIRWMNMNKTNIRFMEPDSLFCVDPPEFQGQNVRQVHFRDMMEICLPLIAPESFPSNLNV
EAGSYVSFHC RATAEPQPEIYWITPSGQKLLPNTLTDKFYVHSEGTL DINGVTPKEGGLYTC
IATNLVGADLKSVMIKVDGSFPQDNNGSLNIKIRDIQANSVLVSWKASSKILKSSVKWTAFV
KTENSHAAQSARI PSDVKVYNLTHLN PSTEYKICIDIPTIYQKNRKKCVNVT KGLHPDQKE
YEKNNTTLMACLGGLLGIIGVICLISCLSPEMNC DGGHSYVRNYLQKPTFALGELYPP LIN
LWEAGKEKSTSLKVKATVIGLPTNMS

Signal sequence:

amino acids 1-22

Transmembrane domain:

amino acids 633-650

N-glycosylation site.

amino acids 93-97, 103-107, 223-227, 382-386, 522-526, 579-583,
608-612, 624-628, 625-629

Casein kinase II phosphorylation site.

amino acids 51-55, 95-99, 242-246, 468-472, 487-491

Tyrosine kinase phosphorylation site.

amino acids 570-579

N-myristoylation site.

amino acids 13-19, 96-102, 158-164, 221-227, 352-358, 437-443,
491-497, 492-498, 634-640, 702-708

Cell attachment sequence.

amino acids 277-280

FIGURE 27

GCCCCGGACTGGCGAAGGTGCCAAGCAAGGAAAGAAATAATGAAGAGACACATGTGTTAG
CTGCAGCCTTTGAAACACGCAAGAAGGAAATCAATAGTGTGGACAGGGCTGGAACCTTTAC
CACGCTTGTGGAGTAGATGAGGAATGGGCTCGTATTGCTGACATTCCAGC**ATGAATCT**
GGTAGACCTGTGGTTAACCGTTCCCTCCATGTGTCTCCTCCTACAAAGTTGTTCTTA
TGATACTGTGCTTCATTCTGCCAGTATGTGTCCAAGGGCTGTCTTGTCTCCTCTGGG
GGTTAAATGTCACCTGTAGCAATGCAAATCTCAAGGAAATACCTAGAGATCTCCTCCTGA
AACAGTCTTACTGTATCTGGACTCCAATCAGATCACATCTATTCCAATGAAATTAAAGG
ACCTCCATCAA**CTGAGAGTTCTCAACCTGTCCAAAATGGCATTGAGTTATCGATGAGCAT**
GCCTTCAAAGGAGTAGCTGAAACCTTGAGACTCTGGACTTGTCCGACAATGGATTCAAAG
TGTGCACAAAATGCCTCAATAACCTGAAGGCCAGGGCAGATTGCAACAACCCCTGGC
ACTGCGACTGTACTCTACAGCAAGTTCTGAGGAGCATGGCGTCCAATCATGAGACAGCCCAC
AACGTGATCTGTAAAACGTCCGTGTTGGATGAACATGCTGGCAGACCATTCTCAATGCTGC
CAACGACGCTGACCTTGTAAACCTCCCTAAAAAAACTACCGATTGCCATGCTGGTCACCA
TGTTGGCTGGTTCACTATGGTATCTCATATGTGGTATATTATGTGAGGCAAAATCAGGAG
GATGCCCGGAGACACCTCGAATACTTGAAATCCCTGCCAAGCAGGCAGAAGAAAGCAGATGA
ACCTGATGATATTAGCACTGTGGT**AAGTGTCCAAACTGACTGT**CATTGAGAAAGAAAGAAA
GTAGTTGGCATTGCACTAGAAATAAGTGGTTACTTCTCCCATCCATTGTAAACATTGAA
ACTTTGTATTCAGTTTTGAATTATGCCACTGCTGAACCTTAACAAACACTACAACA
TAAATAATTGAGTTAGGTGATCCACCCCTTAATTGTACCCCCGATGGTATATTCTGAGT
AAGCTACTATCTGAACATTAGTTAGATCCATCTCACTATTTAATAATGAAATTATTTTT
AATTAAAAGCAAATAAGCTTAACTTGAACCATTGGGAAAAAAAAAAAAAAACA

FIGURE 28

MNLVDLWLTRSLSMCLLQSFVLMILCFHSASMCPKGCLCSSSGGLNVTCASNANLKEIPRDL
PPETVLLYLDSNQITSIPNEIFKDLHQRLRVLNLSKNGIEFIDEHAFKGVAETLQTLDSLDR
IQSVHKNAFFNNLKARARIANNPWHCDCTLQQVLRSMASNHETAHNVICKTSVLDEHAGRPF
NAANDADLCNLPKKTTDYAMLVTMFGWFTMVISYVVYYVRQNQEDARRHLEYLKSLPSRQKK
ADEPDDISTVV

Signal sequence:

amino acids 1-33

Transmembrane domain:

amino acids 205-220

N-glycosylation site.

amino acids 47-51, 94-98

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 199-203

Casein kinase II phosphorylation site.

amino acids 162-166, 175-179

N-myristoylation site.

amino acids 37-43, 45-51, 110-116

FIGURE 29

ACCGAGCCGAGCGAACCGAAGGCAGGCCGGAGATGCAGGTGAGCAAGAGGATGCTGGCGGG
GGCGTGAGGAGCATGCCAGCCCCCTCCTGGCCTGCTGGCAGCCCACCTCCTGCTGGTGC
GGGCTCAGTGTGTCAGGCTGGCCACGGCTGCCGCCCCGCTGCGAGTGCCTCCGCCAGG
ACCGCGCTGTGCTGTGCCACCGCAAGTGTGCTGGCAGTCCCCGAGGGCATCCCCACCGAG
ACCGCCTGCTGGACCTAGGCAAGAACCGCATAAAACGCTCAACCAGGACGAGTTGCCAG
CTTCCCGCACCTGGAGGGAGCTGGAGCTCAACGAGAACATCGTGAGCGCCGTGGAGGCCGG
CCTTCACAAACACTCTCAACCTCCGGACGCTGGGTCTCCGAGCAACGCCCTGAAGCTCATC
CCGCTAGGCGTCTTCACTGGCTCAGCAACCTGACCAAGCAGGACATCAGCGAGAACAGAT
CGTTATCCTACTGGACTACATGTTCAGGACCTGTACAACCTCAAGTCACTGGAGGTTGGCG
ACAATGACCTCGTCTACATCTCACCGCGCTCAGCGCCTCAACAGCCTGGAGCAGCTG
ACGCTGGAGAAATGCAACCTGACCTCATCCCCACCGAGGCGTGTCCCACCTGCACGCC
CATCGTCCCTGAGGCTCCGGCACCTCAACATCAATGCCATCCGGACTACTCCTCAAGAGGC
TGTACCGACTCAAGGTCTTGGAGATCTCCACTGGCCCTACTTGGACACCATGACACCCAAC
TGCCTCTACGGCTCAACCTGACGTCCCTGTCCATCACACACTGCAATCTGACCGCTGTGCC
CTACCTGGCGTCCGCCACCTAGTCTATCTCCGCTTCAACCTCTTACAACCCCCATCA
GCACCAATTGAGGGCTCCATGTTGCATGAGCTGCTCCGGCTGCAGGAGATCCAGCTGGTGGC
GGGCAGCTGGCGTGGTGGAGCCCTATGCCTTCCCGCGCCTCAACTACCTGCGCGTGTCAA
TGTCTCTGGCAACCAGCTGACCAACACTGGAGGAATCAGTCTTCACTCGGTGGCAACCTGG
AGACACTCATCCTGGACTCCAACCCGCTGGCCTGCGACTGTCGGCTCTGTGGGTGTTCCGG
CGCCGCTGGCGCTCAACTCAACCGCAGCAGGCCACGTGCGCCACGCCAGTTGTCCA
GGGCAAGGAGTTCAAGGACTCCCTGATGTGCTACTGCCAACTACTTCACCTGCCGCC
CCCGCATCGGGACCGCAAGGCCAGCAGGTGTTGTGGACGAGGGCACACGGTGCAGTT
GTGTGCCGGCGATGGCGACCCGCCATCCTCTGGCTCTCACCCGAAAGCACCT
GGTCTCAGCCAAGAGCAATGGCGGCTCACAGTCTCCCTGATGGCACGCTGGAGGTGCGCT
ACGCCAGGTACAGGACAACGGCACGTACCTGTGCATCGCCACCACTGGCTCATCTTTC
TCCATGCCGCCACCTGCATGTGCGCAGCTACTGCCGACTGCCCTCATCAGCCAAACAA
GACCTTCGCTTCATCTCAACCAGCGGGCGAGGGAGAGGCCAACAGCACCCGCCACTG
TGCCTTCCCTCGACATCAAGACCTCATCATGCCACCACTGGCTCATCTTTC
CTGGCGTGTCTCTGCCTGGTGTGCTGTTCTGGAGCCGGCAAGGGCAACAC
AAAGCACAACATCGAGATCGAGTATGTGCCCGAAAGTCGGACGCAGGCATCAGCTCCGCC
ACGCCTCCGCAAGTTCAACATGAAGATGATATGAAGCCGGGGGGGGCAGGGACCCCCG
GGCGGCCGGCAGGGGAAGGGGCTGGTCGCCACCTGCTCACTCTCCAGTCTCCACCTC
CTCCCTACCTCTACACACGTTCTTTCTCCCTCCGCCCTCGTCCCTGCTGCC
CCAGCCCTCACCACCTGCCCTCTTCTACAGGACCTCAGAACGCCAGACCTGGGACCCCA
CCTACACAGGGGATTGACAGACTGGAGTTGAAAGCCGACGAACCGACACGCCAGAGTCA
ATAATTCAATAAAAAAGTTACGAACCTTCTGTAACTTGGGTTCAATAATTATGGATT
TATGAAAACCTGAAATAATAAAAAGAGAAAAAAACTAAAAAAAAAAAAAA

FIGURE 30

MQVSKRMLAGGVRSMPSPLLACWQPILLVLGSVLSGSATGCPPRCECSAQDRAVLCHRKCF
VAVPEGIPTETRLLDLGKNRIKTLNQDEFASFPHLEELELENENIVSAVEPGAFNNLFNLRTL
GLRSNRKLIPLGVFTGLSNLTKQDISENKIVILLDYMFQDLYNLKSLEVGDNDLVYISHRA
FSGLNSLEQLTLEKCNLTSIPTEALSHLHGLIVRLRLHLNINAIRDYSFKRLYRLKVLEISH
WPYLDLMTTPNCLYGLNLTSLSITHCNLTAVPYLAVRHLYLRFLNLSYNPISTIEGSMLHEL
LRLQEIQLVGGQLAVVEPYAFRGLNYLRVNVSGNQLTTLEESVFHSVGNLETLLIDSNPLA
CDCRLLWVFRRWRLNFNRQQPTCATPEFVQGKEFKDFPDVLLPNYFTCRRARIRDRKAQQV
FVDEGHTVQFVCRADGDPPPAILWLSPRKHLVSAKSNGRLTVFPDGTLLEVRYAQVQDNGTYL
CIAANAGGNDNSMPAHLHRSYSPDWPHQPNKTFAFISNQPGEGEANSTRATVPFPFDIKTLI
IATTMGFISFLGVVLFCVLFLWSRGKGNTKHNIEIEYVPRKSDAGISSADAPRKFNMKMI

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 556-578

N-glycosylation site.

amino acids 144-148, 202-206, 264-268, 274-278, 293-297, 341-345,
492-496, 505-509, 526-530, 542-546

Casein kinase II phosphorylation site.

amino acids 49-53, 108-112, 146-150, 300-304, 348-352, 349-353,
607-611

Tyrosine kinase phosphorylation site.

amino acids 590-598

N-myristoylation site.

amino acids 10-16, 32-38, 37-43, 113-119, 125-131, 137-143,
262-268, 320-326, 344-350, 359-365, 493-499, 503-509, 605-611

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 32-43

FIGURE 31

CCACCGCGTCCGACCTGGCCCCGGGCTCCGAAGCGGCTCGGGGGCGCCCTTCGGTCAAC
ATCGTAGTCCACCCCCCTCCCATCCCCAGCCCCGGGATTCAAGGCTGCCAGCGCCAGCC
AGGGAGCCGGCGGGAAAGCGCGATGGGGCCCCAGCCGCCTCGCTCCTGCTCCTGC
TGTCGCCTGCTGGCGCCGGGGCAACCTCTCCAGGACGACAGCCAGCCCTGG
ACATCTGATGAAACAGTGGTGGCTGGCACCGTGGCTCAAGTCCAAGTGAAAGATCA
CGAGGACTCATCCCTGCAATGGTCTAACCTGCTCAGCAGACTCTACTTTGGGAGAAGA
GAGCCCTTCGAGATAATCGAATTCACTGGTTACCTCTACGCCAACGAGCTCAGCATCAGC
ATCAGCAATGTGGCCCTGGCAGACGAGGGCGAGTACACCTGCTCAATCTCACTATGCCTGT
GCGAACTGCCAAGTCCCTCGTCACTGTCTAGGAATTCCACAGAAGCCCATCATCACTGGTT
ATAAAATCTTCATTACGGAAAAAGACACAGCCACCCCTAAACTGTCAGTCTCTGGGAGCAAG
CCTGCAGCCGGCTCACCTGGAGAAAGGGTACCAAGAACTCCACGGAGAACCAACCCGCAT
ACAGGAAGATCCCAATGGTAAAACCTCACTGTCAGCAGCTCGGTGACATTCCAGGTTACCC
GGGAGGATGATGGGGAGCATCGTGTGCTCTGTGAACCATGAATCTCTAAAGGGAGCTGAC
AGATCCACCTCTAACGCATTGAAGTTTATACACACCAACTGCGATGATTAGGCCAGACCC
TCCCCATCCTCGTGGGCCAGAAGCTGTTGCTACACTGTGAGGGTCGCGGCAATCCAGTCC
CCCAGCAGTACCTATGGGAGAAGGAGGGCAGTGTGCCACCCCTGAAGATGACCCAGGAGAGT
GCCCTGATCTCCCTTCCTAACAAAGAGTGACAGTGGCACCTACGGCTGCACAGCCACCAG
AACATGGCAGCTACAAGGCCTACTACACCCCTCAATGTTAATGACCCAGTCCGGTGCCT
CCTCCTCCAGCACCTACCACGCCATCATCGTGGGATCGTGGCTTCATTGTCTCCTGCTG
CTCATCATGCTCATCTCCTGGCCACTACTTGATCCGGCACAAAGGAACCTACCTGACACA
TGAGGCAAAAGGCTCCGACGATGCTCCAGACGGACACGCCATCATCAATGAGAAGGG
GGCAGTCAGGAGGGGAGCACAAGAAGGAATATTCATCTAGAGGCGCTGCCACTCCTGC
GCCCCCCAGGGGCCCTGTGGGACTGCTGGGCCGTACCAACCCGGACTTGTACAGAGCAA
CCGCAGGGCCGCCCTCCGCTTGCTCCCCAGCCCACCCACCCCTGTACAGAAATGCTGC
TTGGGTGCGGTTTGACTCGGTTGGAATGGGAGGGAGGAGGGCGGGGGAGGGGAGGG
TTGCCCTAGCCCTTCCGTGGCTCTGCATTGGTTATTATTATTTGTAACAATCC
CAAATCAAATCTGCTCCAGGCTGGAGAGGCAGGAGCCCTGGGTTGAGAAAAGCAAAAAACA
AACAAAAAACA

FIGURE 32

MGAPAASLLLLLFFACCWAPGGANLSQDDSQPWTSDETVVAGGTVVLKCQVKDHEDSSLQW
SNPAQQTLYFGEKRALRDNRIQLVTSTPHELSIISNVALADEGEYTCSIFTMPVRTAKSLV
TVLGIPQKPIITGYKSSLREKDTATLNCQSSGSKPAARLTWRKGQELHGEPTRIQEDPNGK
TFTVSSSVTFQVTREDDGASIVCSVNHESLKGADRSTSQRIEVLYTPTAMIRPDPPHPREGQ
KLLLHCEGRGNPVPQQYLWEKEGSVPPLKMTQESALIFPFLNKSDSGTYGCTATSNMGSYKA
YYTLNVNDPSPVPSSSSTYHAIIGGIVAFIVFLLLIMLIFLGHYLIRHKGTYLTHEAKGSDD
APDADTAIINAEGGQSGGDDKKEYFI

Signal sequence:

amino acids 1-20

Transmembrane domain:

amino acids 331-352

N-glycosylation site.

amino acids 25-29, 290-294

Casein kinase II phosphorylation site.

amino acids 27-31, 35-39, 89-93, 141-145, 199-203, 388-392

N-myristoylation site.

amino acids 2-8, 23-29, 156-162, 218-224, 295-301, 298-304,
306-310, 334-340, 360-364, 385-389, 386-390

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 33

GGGGGTTAGGGAGGAAGGAATCCACCCCCACCCCCCCTTAAACCCTTCTCCTTCTGG
CTTCGGACATTGGAGCACTAAATGAACCTGAATTGTGTCTGTGGCAGCAGGATGGTCGCTG
TTACTTTGTGATGAGATCGGGATGAATTGCTCGCTTAAAATGCTGCTTGGATTCTGTT
GCTGGAGACGTCTTTGCCGCTGGAAACGTTACAGGGACGTTGCAAAGAGAAGA
TCTGTTCTGCAATGAGATAGAAGGGACCTACACGTAGACTGTGAAAAAAAAGGGCTTCACA
AGTCTGCAGCGTTCACTGCCCGACTTCCCAGTTTACCATTTATTCTGCATGGCAATT
CCTCACTCGACTTTCCCTAATGAGTCGCTAACCTTATAATGCGGTTAGTTGCACATGG
AAAACAATGGCTTGATGAAATCGTCCGGGGCTTCTGGGCTGAGCTGGTAAAAGG
CTGCACATCAACAACAAGATCAAGTCTTCGAAAGCAGACTTTCTGGGCTGGACGA
TCTGGAATATCTCCAGGCTGATTTAATTATTACGAGATATA GACCCGGGGCTTCCAGG
ACTTGAACAAGCTGGAGGTGCTCATTAAATGACAATCTCATCAGCACCCACCTGCCAAC
GTGTTCCAGTATGTGCCATACCCACCTCGACCTCCGGGTAACAGGCTGAAAACGCTGCC
CTATGAGGAGGTCTGGAGCAAATCCCTGGTATTGCGGAGATCTGCTAGAGGATAACCCT
GGGACTGCACCTGTGATCTGCTCCCTGAAAGAATGGCTGGAAAACATTCCAAGAATGCC
CTGATCGGCCGAGTGGTCTGCGAAGCCCCACCAAGACTGCAGGTAAAGACCTCAATGAAAC
CACCGAACAGGACTTGTCTTGAAAAACCGAGTGGATTCTAGTCTCCGGCGCCCCCTG
CCCAAGAACAGAACCTTGCTCTGGACCCCTGCCAACTCCTTCAAGACAAATGGCAAGAG
GATCATGCCACACCAGGTCTGCTCCAAACGGAGGTACAAAGATCCCAGGCAACTGGCAGAT
CAAATCAGACCCACAGCAGCGATAGCGACGGTAGCTCCAGGAACAAACCTTAGCTAAC
GTTTACCTGCCCTGGGGCTGCAGCTGCACACATCCCAGGTCGGTTAAAGATGAAC
TGCAACAACAGGAACGTGAGCAGCTGGCTGATTGAAGCCAAGCTCTAACGTGCAGGA
GCTTTCTACGAGATAACAAGATCCACAGCATCCGAAAATCGCACTTGTGGATTACAAGA
ACCTCATTCTGTTGGATCTGGCAACAATAACATCGCTACTGTAGAGAACAAACACTTCAAG
AACCTTTGGACCTCAGGTGGCTATACATGGATAGCAATTACCTGGACACGCTGTCCCAGG
GAAATTGCGGGGCTGCAAAACCTAGAGTACCTGAACGTGGAGTACAACGCTATCCAGCTCA
TCCTCCGGGCACTTCAATGCCATGCCAAACTGAGGATCCTCATTCTAACAAACAACCTG
CTGAGGTCCCTGCCGTGGACGTGTTGCTGGGTCTCGCTCTAAACTCAGCCTGCACAA
CAATTACTCATGTACCTCCGGTGGCAGGGGTGCTGGACCAAGTTAACCTCCATCATCCAGA
TAGACCTCACGGAAACCCCTGGGAGTGCTCTGCACAAATTGTGCCTTCAAGCAGTGG
GAACGCTTGGGTTCCGAAGTGTGATGAGCGACCTCAAGTGTGAGACGCCGGTGAACCTT
TAGAAAGGATTTCATGCTCCTCCAATGACGAGATCTGCCCTAGCTGTACGCTAGGATCT
CGCCCACGTTAACCTCGCACAGTAAAACAGCACTGGGTGGGGAGACCGGGACGCACTCC
AACTCCTACCTAGACACCAAGCAGGGTGTCCATCTCGGTGTTGGTCCCAGGACTGCTGCTGGT
GTTGTCACCTCCGCCCTCACCGTGGGGCATGCTCGTGTGTTACCTGAGGAACCGAAAGC
GGTCCAAGAGAGCAGAGATGCCAACCTCCCGCGTCCGAGGATTAATTCCCTACAGACAGTCTGT
GACTCTCCTACTGGCACAAATGGGCCTTACAACGCAAGATGGGCCACAGAGTGTATGACTG
TGGCTCTACTCGCTCTCAGACTAAAGACCCCAACCCCAATAGGGAGGGCAGAGGAAGGG
ATACATCCTCCCCACCGCAGGCACCCGGGGCTGGAGGGCGTGTACCCAAATCCCGCG
CCATCAGCCTGGATGGGCATAAGTAGATAAAACTGTGAGCTCGCACACCGAAAGGGCCT
GACCCCTTACTTAGCTCCCTCCTGAAACAAAGAGCAGACTGTGGAGAGCTGGAGAGCGCA
GCCAGCTCGCTTTGCTGAGAGCCCTTGTGACAGAAAGCCAGCACGACCCCTGCTGGAAG
AACTGACAGTGCCCTCGCCCTGGCCCCGGGGCTGTGGGTTGGATGCCCGGTTCTATAC
ATATATACATATCCACATCTATATAGAGAGATAGATATCTATTTCCCTGTGGATTAG
CCCCGTGATGGCTCCCTGTTGGCTACGCAGGGATGGCAGTTGCACGAAGGCATGAATGTAT
TGTAAATAAGTAACCTTGACTTCTGAC

FIGURE 34

MLLWILLLETSLCFAAGNVTGDVCKEKICSCNEIEGDLHVDCEKKGFTSLQRFTAFTSQFYH
LFLHGNSLTRLFPNEFANFYNAVSLHMENNGLHEIVPGAFLGLQLVKRLHINNNKIKSFRKQ
TFLGLDDLEYLQADFNLLRIDPGAFQDLNKLEVILILNDNLISTLPANVFQYVPITHLDLRG
NRLKTLPYEEVLEQIPIGIAEILLEDPWDCTCDLLSLKEWLENIPKNALIGRVVCEAPTRLQ
GKDLNETTEQDLCPLKNRVDSSLAPPAPPAQEETFAPGPLPTPFKTNGQEDHATPGSAPNGGT
IPGNWQIKIRPTAAIATGSSRNKPLANS LPCPGGCSDHIPGSGLKMNCNNRNVS SLADLK
KLSNVQELFLRDNKIHSIRKSHFDYKNLILLLDGNNNIATVENNTFKNLLDLRWLYMDSNY
LDTLSREKFAGLQNLEYLNVEYNAIQLILPGTFNAMPKLRILILNNNLLRSLPVDFAGVSL
SKLSLHNYYFMYLPVAGVLDQLTSIIQIDLHGNPWECSCTIVPFKQWAERLGSEVLMSDLKC
ETPVNFFRKDFMLLSNDEICPQLYARISPTLTSHSKNSTGLAETGTHSNSYLDTSRVSISVL
VPGLLLGVFTSAFTVVGMLVFILRNRKRSKRRDANSSASEINSLQTVCDSYWHNGPYNADG
AHRVYDCGSHSLSD

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 618-638

N-glycosylation site.

amino acids 18-22, 253-257, 363-367, 416-420, 595-599, 655-659

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 122-126, 646-650

Casein kinase II phosphorylation site.

amino acids 30-34, 180-184, 222-226, 256-260, 366-370, 573-577,
608-612, 657-661, 666-670, 693-697

N-myristoylation site.

amino acids 17-23, 67-73, 100-106, 302-308, 328-334, 343-349,
354-360, 465-471, 493-499, 598-604, 603-609

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 337-348

FIGURE 35

AGTCGACTGCGTCCCTGTACCCGGGCCAGCTGTGTTCTGACCCCAGAATAACTCAGGGC
TGCACCGGGCTGGCAGCGCTCCGCACACATTCTCTGTCGCGGCCAAGGGAAACTGTTGGC
CGCTGGGCCGCGGGGGATTCTTGGCAGTTGGGGTCCCGTCGGAGCGAGGGCGGAGGG
AAGGGAGGGGGAACCGGTTGGGAAGCCAGCTGTAGAGGGCGGTGACCGCGCTCAGACAC
AGCTCTGCGCTCGAGCGGGACAGATCCAAGTTGGGAGCAGCTCTGCGTGCAGGGCCTCAG
AGA**ATG**AGGGCGGCCTCGCCCTGTGCTCCTCTGGCAGGCGCTCTGGCCCGGGCGGCG
CGCGAACACCCCCTGCGACCGTGCTGGCTCGGCCTCGGGGCGCTGCTACAGCCTGC
ACCACGCTACCATGAAGCGGCAGGGCGAGGGCGAGGGCTGCATCCTGCGAGGTGGGGCGCTC
AGCACCGTGCCTGCAGCTGCGCTGTGCTCGCCTCGAGGGCAGGCCAGG
GCCCGAGGGGCTCAAAGACCTGCTGTTCTGGTGCACGGCGTCCCCACT
GCACCCCTGGAGAACGAGCCTTGCAGGGTTCTCCTGGCTGTCCTCCGACCCGGGTCTC
GAAAGCGACACGCTGCAGTGGGTGGAGGAGCCCCAACGCTCCTGCACCGCGCGAGATGCGC
GGTACTCCAGGCCACCGGTGGGGTCGAGCCCGAGGCTGGAAGGAGATGCGATGCCACCTGC
GCGCAACGGCTACCTGTGCAAGTACCAAGTGTGAGGTCTGTGTCCTGCGCCGCCGG
GCCGCCTCTAACTTGAGCTATCGCGCCCTTCCAGCTGCACAGCGCGCTCTGGACTTCAG
TCCACCTGGGACCGAGGTGAGTGCCTCTGCCGGGACAGCTCCCAGTCTAGTTACTGCA
TCGCGGACGAAATCGCGCTCGCTGGACAAACTCTCGGGCGATGTGTTGTGTCCTGCC
GGGAGGTACCTCCGTGCTGGCAAATGCGCAGAGCTCCCTAAGTGCCTAGACGACTGGGAGG
CTTGCCTGGAATGTGCTACGGGCTCGAGCTGGGAAGGACGGCGCTTTGTGACCA
GTGGGAAGGACAGCCGACCCCTGGGGGACGGGGTGCACCAGGCGCCGCCGCG
GCAACCAGCCCCGTGCCGAGAGAACATGGCAATCAGGGTCGACGAGAACAGCTGGGAGAGAC
ACCACTTGCCCTGAACAAGACAATTCAAGTAACATCTATTCCCTGAGATTCTCGATGGGAT
CACAGAGCACGATGTCTACCCCTCAAATGTCCCTCAAGCGAGTCAGGCCACTATCACC
CCATCAGGGAGCGTGATTCCAAGTTAATTCTACGACTCCTCTGCCACTCCTCAGGCTT
CGACTCCTCCTCTGCCGTGGCTTCATATTGTGAGCACAGCAGTAGTAGTGTGATCT
TGACCATGACAGTACTGGGCTTGTCAAGCTCTGCTTCACGAAAGCCCTCTCCAGCCA
AGGAAGGAGTCTATGGGCCGCCGGCCTGGAGAGTGATCCTGAGCCGCTGCTTGGCTC
CAGTTCTGCACATTGCACAAACAATGGGTGAAAGTCGGGACTGTGATCTGCGGGACAGAG
CAGAGGGTGCCTGCTGGCGAGTCCCTCTGGCTCTAGTGATGCA**AGGAAACAGGGGA**
CATGGGCACTCCTGTGAACAGTTTCACTTTGATGAAACGGGAACCAAGAGGAACATTAC
TTGTGTAACTGACAATTCTGCAGAAATCCCCCTCTAAATTCCCTTACTCCACTGAG
GAGCTAAATCAGAACTGCACACTCCTCCCTGATGATAGAGGAAGTGGAAAGTGCCTTAGGA
TGGTGATACTGGGGACCGGGTAGTGCTGGGAGAGATATTCTTATGTTATTGGAGAA
TTTGGAGAAGTGATTGAACTTTCAAGACATTGGAAACAAATAGAACACAATATAATTACA
TTAAAAAATAATTCTACCAAAATGGAAAGGAAATGTTCTATGTTGTCAGGCTAGGAGTAT
ATTGGTTGAAATCCAGGGAAAAAATAAAAATAAAAATTAAAGGATTGTTGAT

FIGURE 36

MRPAFALCLLWQALWP GP GGG E HPTADRAGCSASGACYSLHHATMKRQAAEEACILRGGALS
TVRAGAELRAVLALLRAGPGPGGGSKDLLFWVALERRSHCTLENEPLRGFSWLSSDPGGL
SDTLQWVEEPQRSCTARRCAVLQATGGVEPAGWKEMRCHLRANGYLCKYQFEVLCPAPRPG
ASNLSYRAPFQLHSAALDFSPPGTEVSALCRGQLPISVTCIADEIGARWDKLSGDVLCPCPG
RYLRAGKCAELPNCLDDLGGFACECATGFELGKDGRSCVTSGEGQPTLGGTGVPTRRPPATA
TSPVPQRTWPIRVDEKLGETPLVPEQDNSVTSIPEIPRWGSQSTMSTLQMSLQAESKATITP
SGSVISKFNSTTSSATPQAFDSSSAVVFIFVSTAVVVLVILMTVLGLVKLCFHESPSSQPR
KESMGPPGLESDPEPAALGSSAHCTNNGVKVGCDLRDRAEGALLAESPLGSSDA

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 189-193, 381-385

Glycosaminoglycan attachment site.

amino acids 289-293

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 98-102, 434-438

Casein kinase II phosphorylation site.

amino acids 275-279, 288-292, 342-346, 445-449

N-myristoylation site.

amino acids 30-36, 35-41, 58-64, 59-65, 121-127, 151-157,
185-191, 209-215, 267-273, 350-356, 374-380, 453-459, 463-469,
477-483

Aspartic acid and asparagine hydroxylation site.

amino acids 262-274

FIGURE 37

CGGACCGCGTGGGATTCAAGCAGTGGCTGTGGCTGCCAGAGCAGCTCCCTCAGGGGAAACTAAG
CGTCGAGTCAGACGGCACCATATACTGCCTTAAAAGTCGCTCCGCCCTGCCGGCGCGTATC
CCCCGGCTACCTGGGCCCGCCCCGGCGGTGCGCGCGTGAAGAGGGAGCGCGGGCAGCGA
GCGCCGGTGTGAGCCAGCGCTGCTGCCAGTGTGAAGCGGGCGTGTGAAGCGCGTGGGTGCGGA
GGGGCGTGTGCGCCGGCGCGCGCCGTTGCAAACCCCGAGCGTCACTGCTGCC**ATGA**
GGGGCGCGAACGCCCTGGCGCCACTCTGCTGCTGGCTGCCGCCACCCAGCTCTCGCGG
CAGCAGTCCCCAGAGAGACCTGTTTACATGTGGTGGCATTCTTAAGTGAGAGTCTGGATT
TATTGGCAGTGAAGGTTCTGGAGTGTACCTCCAATAGCAAATGTACTTGAAAATCA
CAGTTCCCAGGAAAAGTAGTCGTTCTCAATTTCGATTCAAGACCTCGAGAGTGACAAC
CTGTGCCGCTATGACTTGTGGATGTGTACAATGCCATGCCATGGCCAGCGCATTGGCG
CTTCTGTGGCACTTCCGGCTGGAGCCCTGTGTCCAGTGGCAACAAGATGATGGTGCAGA
TGATTCTGATGCCAACACAGCTGGCAATGGCTTCAATGGCCATGTTCTCCGCTGCTGAACCA
AACGAAAAGAGGGGATCAGTATTGTGGAGGACTCCTGACAGACCTCCGGCTTTAAAAC
CCCCAACTGGCCAGACGGGATTACCTGCAGGAGTCACTTGTGTGGCACATTGTAGCCC
CAAAGAACATCAGCTTATAGAATTAAAGTTGAGAAGTTGATGTGGAGCGAGATAACTACTGC
CGATATGATTATGTGGCTGTGTTAATGGCGGGGAAGTCAACGATGCTAGAAGAATTGGAAA
GTATTGTGGTGTAGTCCACCTGCGCCAATTGTGCTGAGAGAAATGAACCTCTTATTCACT
TTTATCAGACTTAAGTTAAGTGCAGATGGTTATTGGTCACTACATATTCAAGGCCAAA
AAACTGCCTACAACACAGAACAGCCTGTCACCACATTCCCTGTAACCACGGGTTAAA
ACCCACCGTGGCTTGTGTCACAAAAAGTGTAGACGGACGGGACTCTGGAGGGCAATTATT
GTTCAAGTGACTTGTATTAGCCGGCACTGTTATCACAAACCATACTCGCGATGGGAGTTG
CACGCCACAGTCGATCATCAACATCTACAAAGAGGGAAATTGGCGATTCAAGCAGGCCGG
CAAGAACATGAGTGCCAGGCTGACTGCGTCTGCAAGCAGTGCCTCTCAGAACAGGTC
TAAATTACATTATTATGGCCAAGTAGGTGAAGATGGCGAGGCAAATCATGCCAACAGC
TTTATCATGATGTTCAAGACCAAGAACATCAGAACAGCTCTGGATGCCTAAAAAATAAGCAATG
TT**AA**CACTGAACTGTGTCATTAAAGCTGTATTCTGCCATTGCCTTGAAAGATCTATGTT
TCTCAGTAGAAAAAAATACCTATAAAATTACATATTCTGAAAGAGGATTCCGAAAGATGG
GACTGGTTGACTCTTCACATGATGGAGGTATGAGGCCCTCCGAGATAGCTGAGGGAAAGTCTT
TGCCTGCTGTCAGAGGAGCAGCTATCTGATTGGAAACCTGCCACTAGTGCAGGTGATAGGA
AGCTAAAAGTGTCAAGCGTTGACAGCTTGAAGCGTTATTATACATCTGTAAAAGGAT
ATTTAGAATTGAGTTGTGTGAAGATGTCAAAAAAGATTAGAAGTGCACATTATTAAGT
GTTATTGTTCACCTCAAGCCTTGCCTGAGGTGTTACAATCTGTCTGCAGTTCTA
AATCAATGCTTAATAAAATATTAAAGGAAAAAA

FIGURE 38

MRGANAWAPLCLLLAAATQLSRQQSPERPVFTCGGILTGESFIGSEGFPGVYPPNSKCTWK
ITVPEGKVVVLNFRFIDLESNDLCRYDFVDVYNGHANGQRIGRFCGTFRPGALVSSGNKMMV
QMISDANTAGNGFMAMFSAAEPNERGDQYCGGLLDRPSGSFKTPNWPDYPAVGTCVWHIV
APKNQLIELKFEKFDVERDNYCRYDYVAVFNGEVNDARRIGKYCGDSPAPIVSERNELLI
QFLSDLSLTADGFIGHYIFRPKKLPTTEQPVTTFPVTTGLKPTVALCQQKCRRGTLEGN
YCSSDFVLAGTVITTITRD GSLHATVSIINIYKEGNLAIQQAGKNMSARLTVVCKQCPLLRR
GLNYIIMGVGEDGRGKIMPNSFIMMFTKNQKLLDALKNKQC

Signal sequence:

amino acids 1-23

N-glycosylation site.

amino acids 355-359

Casein kinase II phosphorylation site.

amino acids 64-68, 142-146, 274-278

Tyrosine kinase phosphorylation site.

amino acids 199-208

N-myristoylation site.

amino acids 34-40, 35-41, 100-106, 113-119, 218-224, 289-295,
305-311, 309-315, 320-326, 330-336

Cell attachment sequence.

amino acids 149-152

FIGURE 39

CGGACGCGTGGCGGACGCGTGGCGGCCACGGCGCCCGGGCTGGGGCGGTGCCTTCTT
CCTTCTCCGTGGCCTACGAGGGTCCCAGCCTGGTAAAGATGGCCCCATGGCCCCGAAGG
GCCTAGTCCCAGCTGTGCTCTGGGCCTCAGCCTCTCCTCAACCTCCAGGACCTATCTGG
CTCCAGCCCTCTCACCTCCCCAGTCTTCTCCCCGCCTCAGCCCCATCCGTGTACACTG
CCGGGGACTGGTTGACAGCTTAACAAGGGCCTGGAGAGAACCATCCGGACAACTTGGAG
GTGGAAACACTGCCTGGGAGGAAGAGAATTGTCAAATACAAAGACAGTGAGACCCGCCTG
GTAGAGGTGCTGGAGGGTGTGCAGCAAGTCAGACTCGAGTGCACCGCCTGCTGGAGCT
GAGTGAGGAGCTGGTGGAGAGCTGGTGGTTACAAGCAGCAGGAGGCCGGACCTCTTCC
AGTGGCTGTGCTCAGATTCCCTGAAGCTCTGCTGCCCGCAGGCACCTCGGGCCCTCCTGC
CTTCCCTGTCCCTGGGGAACAGAGAGGCCCTCGGTGGCTACGGCAGTGTGAAGGAGAAGG
GACACGAGGGGGCAGCGGGCACTGTGACTGCCAAGCCGGTACGGGGTGAGGCCTGTGGCC
AGTGTGGCCTGGCTACTTGAGGCAGAACGCAACGCCAGCCATCTGGTATGTTGGCTTGT
TTTGGCCCTGTGCCGATGCTCAGGACCTGAGGAATCAAACCTGTTGCAATGCAAGAAGGG
CTGGGCCCTGCATCACCTCAAGTGTAGACATTGATGAGTGTGGCACAGAGGGAGCCAAC
GTGGAGCTGACCAATTCTGCGTGAACACTGAGGGCTCCTATGAGTGCCAGACTGTGCCAAG
GCCTGCCTAGGCTGCATGGGGCAGGCCAGGTGCTGTAAGAAGTGTAGCCCTGGCTATCA
GCAGGTGGCTCCAAGTGTCTCGATGTGGATGAGTGTGAGACAGAGGTGTCCGGGAGAGA
ACAAGCAGTGTAAAACACCGAGGGCGTTATCGCTGCATCTGTGCCAGGGCTACAAGCAG
ATGGAAGGCATCTGTGTGAAGGAGCAGATCCCAGAGTCAGCAGGCTTCTCAGAGATGAC
AGAAGACGAGTTGGTGGTGCAGCAGATGTTCTTGGCATCATCTGTGCACTGGCCA
CGCTGGCTGCTAAGGGCAGTGGTGTTCACCGCCATCTCATTGGGCTGTGGCGGCCATG
ACTGGCTACTGGTTGTCAGAGCGCAGTGACCGTGTGGAGGGCTTCATCAAGGGCAGATA
ATCGCGGCCACCACCTGTAGGACCTCCTCCCACCCACGCTGCCCGAGAGCTGGCTGCC
TCCTGCTGGACACTCAGGACAGCTTGGTTATTTTGAGAGTGGGTAAGCACCCTACCTG
CCTTACAGAGCAGCCCAGGTACCCAGGCCGGCAGACAAGGCCCTGGGTAAAAAGTAGC
CCTGAAGGTGGATACCATGAGCTTCACTGGCGGGACTGGCAGGCTTCACAATGTGTGA
ATTCAAAAGTTTCTTAATGGTGGTGCCTAGAGCTTGGCCCTGCTTAGGATTAGGTG
GTCCTCACAGGGTGGGCCATCACAGCTCCCTCTGCCAGCTGCATGCTGCCAGTTCTGT
TCTGTGTTACCAACATCCCCACACCCATTGCCACTTATTATTCATCTCAGGAAATAAGA
AAGGTCTTGGAAAGTTAAAAAAAAAAAAAAAAAAAAAA

FIGURE 40

MAPWPPKGLVPAVLWGLSLFLNLPGPIWLQPSPPPQSSPPPQPHPCHTCRGLVDSFNKGLER
TIRDNFGGGNTAWEENLSKYKDSETRLVEVLEGVCSKSDFECHRLLELSEELVESWWFHKQ
QEAPDLFQWLCSDSLKLCCPAGTFGPSCLPCTGGTERPCGGYGCCEGEGRGGSGHCDCQAG
YGGEACGQCGLGYFEAERNASHLVCASFGPCARCSGPEESNCLQCKKGWALHHLKCVDIDE
CGTEGANCGADQFCVNTEGSYECRDCAKACLGCMGAGPGRCKCSPGYQQVGSKCLDVDECE
TEVCPGENKQCENTEGGYRCICAEGYKQMEGICVKEQIPESAGFFSEMTEDELVVLQQMFFG
IIICALATLAAKGDLVFTAIFIGAVAAMTGYWLSERSDRVLEGFIFIKGR

Signal sequence:

amino acids 1-29

Transmembrane domain:

amino acids 372-395

N-glycosylation site.

amino acids 79-83, 205-209

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 290-294

Casein kinase II phosphorylation site.

amino acids 63-67, 73-77, 99-103, 101-105, 222-226, 359-263

N-myristoylation site.

amino acids 8-14, 51-57, 59-65, 69-75, 70-76, 167-173, 173-179,
177-183, 188-194, 250-256, 253-259, 267-273, 280-286, 283-289,
326-332, 372-378, 395-401

Aspartic acid and asparagine hydroxylation site.

amino acids 321-333

EGF-like domain cysteine pattern signature.

amino acids 181-193

FIGURE 41

TGAGACCCTCCTGCAGCCTCTCAAGGGACAGCCCCACTCTGCCTCTTGCTCCTCCAGGGCA
GCACCATGCAGCCCCCTGTGGCTCTGCTGGGCACTCTGGGTGTTGCCCTGCCAGCCCCGGG
GCCGCCCTGACCGGGGAGCAGCTCCTGGCAGCCTGCTGCCAGCTGCAGCTCAAAGAGGT
GCCCACCCCTGGACAGGGCCGACATGGAGGAGCTGGTACATCCCCACCCACGTGAGGGCCCAGT
ACGTGGCCCTGCTGCAGCGCAGCCACGGGACCGCTCCCGGGAAAGAGGTTCAGCCAGAGC
TTCCGAGAGGTGGCCGGCAGGTTCTGGCGTTGGAGGCCAGCACACACCTGCTGGTGTTCGG
CATGGAGCAGCGGCTGCCGCCAACAGCGAGCTGGTGCAGGCCGTGCTGCCCTTCCAGG
AGCCGGTCCCCAAGGCCGCCGTGCACAGGCACGGGCCGTGCTCCCGCGCAGGCCCGGGCC
CGGGTACCGTCGAGTGGCTGCGCGTCCCGCACAGGCACGGGCCGTGCTCCCGCGCAGGCCCGGGCC
CTCCAGGCTGGTGTCCGTCCACGAGAGCGGCTGGAAGGCCTCGACGTGACCGAGGCCGTGA
ACTTCTGGCAGCAGCTGAGCCGGCCCGCAGCCGCTGCTACAGGTGTCGGTGCAGAGG
GAGCATCTGGGCCGCTGGCGTCCGGCCACAAGCTGGTCCGCTTGCCCTCGCAGGGGGC
GCCAGCCGGCTGGGAGCCCCAGCTGGAGCTGCACACCCCTGGACCTTGGGACTATGGAG
CTCAGGGCGACTGTGACCTGAAGCACCAATGACCGAGGGCACCCGCTGCTGCCGCCAGGAG
ATGTACATTGACCTGCAGGGATGAAGTGGGCCGAGAACTGGGTGCTGGAGCCCCGGCTT
CCTGGCTTATGAGTGTGGCACCTGCCGGCAGCCCCGGAGGCCCTGGCCTTAAGTGGC
CGTTTCTGGGCCTCGACAGTCGATCGCCTCGGAGACTGACTCGCTGCCATGATCGTCAGC
ATCAAGGAGGGAGGCAGGACCAGGCCAGGTGGTCAGCCTGCCAACATGAGGGTGCAGAA
GTGCAGCTGTGCCTCGGATGGTGCCTCGGCCAAGGAGGCTCAGCCATGGCGCTAGTG
TAGCCATCGAGGGACTTGACTTGTGTGTTCTGAAGTGTGCTGGAGGGTACCAAGGAGAGCTG
GCGATGACTGAAGTGTGATGGACAAATGCTCTGTGCTCTAGTGAGCCCTGAATTGCTT
CCTCTGACAAGTTACCTCACCTAACCTAATTTGCTCTCAGGAATGAGAATCTTGGCACTGGA
GAGCCCTGCTCAGTTCTATTACTGACTATATTCTAACGACTTACAT
GTGGAGATACTGTAACCTGAGGGCAGAAAGCCCANTGTGTCATTGTTACTTGTCTGTCAC
TGGATCTGGCTAAAGTCCTCCACCACCTGGAACCTAACGACCTGGGGTTAAGTGTGGGT
TGTGCATCCCCAATCCAGATAATAAGACTTTGTAAAACATGAATAAACACATTATTCT
AAAA

FIGURE 42

MQPLWLCWALWVLPLASPGAAALTGEQLLGSLLRQLQLKEVPTLDRADMEELVIPTHVRAQYV
ALLQRSHGDRSRGKRFQSFRREVAGRFLALEASTHLLVFGMEQRLPPNSELVQAVLRLFQEP
VPKAALHRHGRLSPRSARARVTVEWLVRDDGSNRTSLIDSRLVSVHESGWKAFDVTEAVNF
WQQLSRPRQPLLLQSVQREHLGPLASGAHKLVRFASQGAPAGLGEPQLELHTLDLGDYGAQ
GDCDPEAPMTEGTRCCRQEMYIDLQGMKWAENWVLEPPGFLAYECVGTCRQPPEALAFKWPF
LGPRQCIASETDSLPMIVSIKEGGRTRPQVVSLPNMRVQKCSCASDGALVPRRLQP

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 158-162

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 76-80

Casein kinase II phosphorylation site.

amino acids 68-72, 81-85, 161-165, 169-173, 319-323, 329-333

N-myristoylation site.

amino acids 19-25, 156-162, 225-231, 260-266, 274-280

Amidation site.

amino acids 74-78

TGF-beta family signature.

amino acids 282-298

FIGURE 43

GTCTGTTCCAGGAGTCCTCGGCGGCTGGTGTCAAGTGGCCTGATCGCGATGGGGACAAA
GGCGCAAGTCGAGAGGAAACTGTTGTGCCTCTTCATATTGGCGATCCTGTTGTGCTCCCTGG
CATGGGCAGTGTACAGTGCACTCTTCTGAACCTGAAGTCAGAATTCTGAGAATAATCCT
GTGAAGTTGTCCTGTGCCTACTCGGGCTTTCTTCTCCCCGTGTGGAGTGGAAAGTTGACCA
AGGAGACACCACCAGACTCGTTGCTATAATAACAAGATCACAGCTCCTATGAGGACCGGG
TGACCTTCTGCCAACCTGGTATCACCTCAAGTCCGTGACACGGGAAGACACTGGGACATAC
ACTTGTATGGTCTCTGAGGAAGGCAGCAACAGCTATGGGGAGGTCAAGGTCAAGCTCATCGT
GCTTGTGCCTCCATCCAAGCCTACAGTTAACATCCCCTCCTGCCACCATGGGAACCGGG
CAGTGCTGACATGCTCAGAACAGATGGTCCCCACCTCTGAATACACCTGGTCAAAGAT
GGGATAGTGTGATGCCTACGAATCCAAAAGCACCCGTGCCTCAGCAACTCTCCTATGTCCT
GAATCCCACAAACAGGAGAGCTGGTCTTGATCCCCTGTCAGCCTCTGATACTGGAGAATACA
GCTGTGAGGCACGGAAATGGGTATGGGACACCCATGACTCAAATGCTGTGCGCATGGAAAGCT
GTGGAGCGGAATGTGGGGTCATCGTGGCAGCGCCTGTAACCTGATTCTCCTGGGAAT
CTTGGTTTTGGCATCTGGTTGCCTATAGCCGAGGCCACTTGACAGAACAAAGAAAGGGA
CTTCGAGTAAGAAGGTGATTACAGCCAGCCTAGTGCCGAAGTGAAGGAGAATTCAAACAG
ACCTCGTCATTCTGGTGTTGAGCCTGGTCGGCTCACCGCTATCATCTGCATTGCCTTACT
CAGGTGCTACCGACTCTGGCCCTGATGTCTGTAGTTCACAGGATGCCTTATTGTCTTC
TACACCCACAGGGCCCCCTACTTCTGGATGTGTTTAATAATGTCAGCTATGTGCC
ATCCTCCTTCATGCCCTCCCTCCCTTACCACTGCTGAGTGGCCTGGAACCTGTTAAA
GTGTTATTCCCCATTTCTTGAGGGATCAGGAAGGAATCCTGGGTATGCCATTGACTTCCC
TTCTAAGTAGACAGAAAAATGGCGGGGTCGAGGAATCTGCACTCAACTGCCACCTGGC
TGGCAGGGATCTTGAATAGGTATCTGAGCTGGTTCTGGCTTTCTGTACTGAC
GACCAGGGCCAGCTGTTCTAGAGCGGAATTAGAGGCTAGAGCGGCTGAAATGGTTGG
TGATGACACTGGGTCTTCCATCTCTGGGCCACTCTCTGTCTTCCATGGGAAGTG
CCACTGGGATCCCTCTGCCCTGCTCCTGAATACAAGCTGACTGACATTGACTGTCTGT
GGAAAATGGGAGCTTGTGGAGAGCATAGTAAATTTCAGAGAACTTGAAGCCAAAAG
GATTTAAAACCGCTGCTCTAAAGAAAAGAAAATGGAGGCTGGCGCAGTGGCTACGCC
TAATCCCAGAGGCTGAGGCAGGCAGGATCACCTGAGGTGGAGGATCAGCCTGACCA
ACATGGAGAAACCTACTGGAAATACAAAGTTAGCCAGGCATGGTGGTGCATGCC
CCAGCTGCTCAGGAGCCTGGCAACAAGAGCAAAACTCCAGCTCAAAAAAAAAAAAAA

FIGURE 44

MGTKAQVERKLLCLFILAILLCSLALGSVTVHSSEPEVRIPENNPKLSCAYSGFSSPRVEW
KFDQGDTTRLVCYNNKITASYEDRVTFLPTGITFKSVTREDTGTYTCMVSEEGGNSYGEVKV
KLIVLVPPSKPTVNIPSSATIGNRAVLTCSSEQDGSPPSEYTWFKDGIVMPTNPKSTRAFSNS
SYVLNPTTGELVFDPLSASDTGEYSCEARNGYGTPMTSNAVRMEAVERNFGVIVAAVLVTLI
LLGILVFGIWFAYSRGHFDRTKKGTSSKKVIYSQPSARSEGEFKQTSSFLV

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 238-255

N-glycosylation site.

amino acids 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 270-274

Casein kinase II phosphorylation site.

amino acids 34-38, 82-86, 100-104, 118-122, 152-156, 154-158,
193-197, 203-207, 287-291

N-myristoylation site.

amino acids 105-111, 116-122, 158-164, 219-225, 237-243, 256-262

FIGURE 45

CAGCGCGTGGCCGGCGCGCTGTGGGACAGCATGAGCGCGGTTGGATGGCGCAGGTTGGA
GCGTGGCGAACAGGGGCTCTGGCCTGGCGCTGCTGCTGCTCGGCCTCGGACTAGGCCT
GGAGGCCGCGAGCCGCTTCCACCCGACCTCTGCCAGGCCAGGCCAGCTCAG
GCTCGTCCCCACCCACCAAGTCCAGTGCAGCACCAGTGGCTATGCGTGCCCCCACCTGG
CGCTGCACAGGGACTTGGACTGCAGCGATGGCAGCGATGAGGAGGTGCAGGATTGAGCC
ATGTACCCAGAAAGGGCAATGCCAACCGCCCCCTGGCCTCCCTGCCCTGCACCGCGTCA
GTGACTGCTCTGGGGAACTGACAAGAAACTGCGCAACTGCAGCCGCTGGCCTGCCTAGCA
GGCGAGCTCGTTGCACGCTGAGCGATGACTGCATTCCACTCACGTGGCGTGCACGGCCA
CCCAGACTGTCCCAGCAGCGAGCTCGGCTGTGGAACCAATGAGATCCTCCCGAAG
GGGATGCCACAACCAGGGCCCCCTGTGACCCCTGGAGAGTGTACCTCTCAGGAATGCC
ACAACCAGGGCCCCCTGTGACCCCTGGAGAGTGTCCCCCTGTGCGGAATGCCACATCCTC
CTCTGCCGGAGACCAGTCTGGAAGCCCAACTGCCATGGGTTATTGCAGCTGCTGCCGTGC
TCAGTCAAGCCTGGTACCGCCACCCCTCCTTTGCTCTGGCTCCGAGCCCAGGAGCGC
CTCCGCCACTGGGTTACTGGTGGCATGAAGGAGTCCCTGCTGTCAGAACAGAAC
CTCGCTGCCTGAGGACAAGCAACTGCCACCACCGTCACTCAGCCCTGGCGTAGCCGGACA
GGAGGAGAGCAGTGTGCGGATGGTACCGGGCACACCAGCCCTCAGAGACCTGAGTTCTT
CTGGCCACGTGGAACCTCGAACCCGAGCTCCTGCAGAAGTGGCCCTGGAGATTGAGGGTCCC
TGGACACTCCCTATGGAGATCCGGGAGCTAGGATGGGAACCTGCCACAGCCAGAACTGAG
GGGCTGGCCCCAGGCAGCTCCAGGGGTAGAACGGCCCTGTGCTTAAGACACTCCCTGCTG
CCCCGTCTGAGGGTGGCGATTAAAGTTGCTTC

FIGURE 46

MSGGWMAQVGAWRTGALGLALLLGLGLGLEAAASPLSTPTSAQAAGPSSGSCPPTKFQCR
TSGLCVPLTWRCRDLDSDGSDEEECRIEPCQTKGQC PPPGLPCPCTGVSDCSGGTDKKL
RNC SRLA CLAGELRCTLSDDCIPLTWRCGDGH PDCPDSSDELCGTNEILPEGDATTMGPPVT
LESVTSLRNATTMGPPVTLESVPSVGNATSSSAGDQSGSPTAYGVIAAAAVLSASLVATLL
LLSWLRAQERLRPLGLLVAMKESLLLSEQKTSLP

Signal sequence:

amino acids 1-30

Transmembrane domain:

amino acids 230-246

N-glycosylation site.

amino acids 126-130, 195-199, 213-217

Casein kinase II phosphorylation site.

amino acids 84-88, 140-144, 161-165, 218-222

N-myristoylation site.

amino acids 3-9, 10-16, 26-32, 30-36, 112-118, 166-172, 212-218,
224-230, 230-236, 263-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 44-55

Leucine zipper pattern.

amino acids 17-39

FIGURE 47

CCACCGGTCCGGTCTCGCTCGCGCAGCGGGGGCAGCAGAGGTCGCACAGATGCGG
GTTAGACTGGGGGGGGAGGAGGCGGAGGAAGGAAGCTGCATGCATGAGACCCACAGA
CTCTTGCAGCTGGATGCCCTGTGGATGAAAGATGTTATCATGGAATGAACCCGAGCAATG
GAGATGGATTCTAGAGCAGCAGCAGCAGCACACCTCAGTCCCCCAGAGACTCTTG
GCCGTGATCCTGTGGTTTAGCTGGCGCTGTGCTCGGCCCTGCACAGCTCACGGGGTT
CGATGACCTCAAGTGTGCTGACCCGGATTCCGAGAATGGCTCAGGACCCCCAGCG
GAGGGTTTCTTGAAGGCTCTGTAGCCGATTCACTGCCAAGACGGATTCAAGCTGAAG
GGCCTACAAAGAGACTGTGTTGAAGCATTAAATGGAACCCTAGGCTGGATCCAAGTGA
TAATTCCATCTGTGCAAGAAGATTGCCGTATCCCTCAAATCGAAGATGCTGAGATTATA
ACAAGACATATAGACATGGAGAGAAGCTAACATCACTGTGATGAAGGATTCAAGATCCGG
TACCCGACCTACACAATATGGTTTCAATTATGTCGCGATGGAACGTGGAATAATCTGCC
CATCTGTCAAGGCTGCCGTGAGACCTCTAGCCTCTTAATGGCTATGTAACATCTGAGC
TCCAGACCTCCTCCGGTGGGACTGTGATCTCTATCGCTGCTTCCGGATTTAAACTT
GATGGGTCTCGTATCTTGAGTGCTTACAAAACCTTATCTGGTGTCCAGCCCACCCGGTG
CCTTGCTCTGGAAGCCCAAGTCTGCACTACCTCAAATGGTGAGTCACGGAGATTCGTCT
GCCACCCGGCCTTGTGAGCGCTACAACCACCGAACTGTGGTGGAGTTACTGCCATCCT
GGCTACAGCCTCACAGCGACTACAAGTACATCACCTGCCAGTATGGAGAGTGGTTCCCT
TTATCAAGTCACTGCATCAAATCAGAGCAAACGTGGCCAGCACCCATGAGACCCCTCTGA
CCACGTGGAAGATTGTGGCGTTACGGCAACCAGTGTGCTGCTGGTGTGCTCGTCATC
CTGGCCAGGATGTTCCAGACCAAGTTCAAGGCCACTTCCCCCAGGGGCCTCCCCGGAG
TTCCAGCAGTGACCCCTGACTTGTGGTGGTAGACGGCGTGCCTAGGCCGGTACATGCCCTGTGGCCAG
ACGAAGCTGTGAGTGGCGGCTTGAGTGCCTAGGCCGGTACATGCCCTGTGGCCAG
GGCTGCCCTTACCGTGGACGACCAGAGCCCCCAGCATAACCCGGCTAGGGGACACGGA
CACAGGCCAGGGAGTCAGAAACCTGTGACAGCGTCTCAGGCTTCTGAGCTGCTCCAAA
GTCTGTATTACCTCCAGGTGCCAAGAGAGCACCCACCTGCTCGGACAACCTGACATA
ATTGCCAGCACGGCAGAGGAGGTGGCATCCACCAGCCCAGGCATCCATGCCACTGGGT
GTTGTTCTAAGAAACTGATTGATTTAAAAAATTCCTAAAGTGTCTGAAGTGTCTTTCAA
ATACATGTTGATCTGTGGAGTTGATTCCTTCTCTTGGTTAGACAAATGTAAACAA
AGCTCTGATCCTTAAATTGCTATGCTGATAGAGTGGTGAGGGCTGGAAGCTTGATCAAGTC
CTGTTCTTCTTGACACAGACTGATTTAAAAGNAAAAAA

FIGURE 48

MYHGMNPSNGDFLEQQQQQQQPSPQRLLAVILWFQLALCFGPAQLTGGFDDLQVCADPGI
PENGFRTPSGGVFFEGSVARFHQCQDGFKLKGATKRLCLKHFNGTLGWIPSDNSICVQEDCRI
PQIEDAEIHNKTYRHGEKLIITCHEGFKIRYPDLHNMVSLCRDDGTWNNLPICQGCLRPLAS
SNGYVNISELQTSFPVGTVISYRCFPGFKLDSAYLECLQNLIWSSSPRCLALEAQVCPLP
PMVSHGDFVCHPRPCERYNHGTVVEFYCDPGYSLTSODYITCQYGEWFPSYQVYCIKSEQT
WPSTHETLLTTWKIVAFTATSVLLVLLVILARMFQTKFKAHFPPRGPPRSSSDPDFVVVD
GVPVMLPSYDEAVSGGLSALGPGYMASVGQGCPLPVDDQSPPAYPGSGDTDTGPGESETCDS
VSGSSELLQSLYSPPRCQESTHPASDNPDIIASTAEVASTSPGIHHAHWVLFLRN

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 325-344

N-glycosylation site.

amino acids 104-108, 134-138, 192-196

Casein kinase II phosphorylation site.

amino acids 8-12, 146-150, 252-256, 270-274, 313-317, 362-366,
364-368, 380-384, 467-471, 468-472

N-myristoylation site.

amino acids 4-10, 61-67, 169-175, 203-209, 387-393, 418-424,
478-484

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 394-405

FIGURE 49

CCCACGCGTCCGCTCCGCCCTCCCCCGCCTCCCGTGCAGGTCCGTGGCTAGAGA
TGCTGCTGCCCGGGTTGCAGTTGTCGCGCACGCCCTGCCGCCAGCCGCTCCACCGCCGT
AGCGCCCGAGTGTGCGGGGGCGCACCCGAGTCGGGCC**ATG**AGGCCGGAACCGCGCTACAGG
CCGTGCTGCCGTGCTGGTGGGCTGCCGCCGACGGGCGCTGAGTGCCTGAGTGC
TCGGATTGGACCTCAGAGGAGGGCAGCCAGTCTGCCGGGAGGGACACAGAGGCCTGTTA
TAAAGTCATTTACTTCATGATACTTCTGAAGACTGAACACTTGAGGAAGCCAAAGAACGCT
GCAGGAGGGATGGAGGCCAGCTAGTCAGCATCGAGTCTGAAGATGAACAGAAACTGATAGAA
AAGTCATTGAAAACCTCTGCCATCTGATGGTACTTCTGGATTGGCTCAGGAGGCGTGA
GGAGAAACAAAGCAATAGCACAGCCTGCCAGGACCTTATGCTGGACTGATGGCAGCATAT
CACAATTTAGGAACCTGGTATGTGGATGAGCCGTCTGCCAGCGAGGTCTGCGTGGTCA
TACCATCAGCCATCGGCACCCGCTGGCATCGGAGGCCCTACATGTTCCAGTGGAAATGATGA
CCGGTGCAACATGAAGAACATTCATTGCAAATATTCTGATGAGAACCCAGCAGTTCTT
CTAGAGAAGCTGAAGGTGAGGAAACAGAGCTGACAACACCTGTACTTCCAGAAGAACACAG
GAAGAACAGATGCCAAAAAACATTAAAGAAAGTAGAGAACAGCTGCCCTGAATCTGCCCTACAT
CCTAATCCCCAGCATTCCCTCTCCTCCTGTGGTACCCAGCTAGCACAAAGAACACACCAC
GGATCTGTAGAAAAAGAAAACGGGAGCAGCCAGACCTAGCACAAAGAACACACCAC
TGGCCCTCTCCTCACCAAGGAAACAGCCGGACCTAGAGGTCTACAATGTCATAAGAAAACA
AAGCGAAGCTGACTTAGCTGAGACCCGGCAGACCTGAAGAACATTTCAATTCCGAGTGTGTT
CGGGAGAACCACTCCGATGACATGTCTTGACTATGACAACATGGCTGTGAACCCATCA
GAAAGTGGTTGTGACTCTGGTGAGCGTGGAGAGTGGATTGTGACCAATGACATTATGA
GTTCTCCCCAGACCAAATGGGGAGGAGTAAGGAGTCTGGATGGTGGAAAATGAAATATATG
GTTATT**TAG**GACATATAAAAACGAAACTGACAACAATGGAAAAGAAATGATAAGAAAATC
CTCTTATTTCTATAAGGAAAATACACAGAACGGTCTATGAACAAAGCTTAGATCAGGTCTGT
GGATGAGCATGTGGTCCCCACGACCTCTGGACCCACGTTGGCTATCCTTAT
CCCAGCCAGTCATCCAGCTGACCTTATGAGAACGGTACCTTGCCAGGTCTGGCACATAGTA
GAGTCTCAATAATGTCACTGGTTGGTGTATCTAACCTTAAGGGACAGAGCTTACCTG
GCAGTGATAAAAGATGGCTGTGGAGCTTGGAAAACACCTCTGGTGGCTATACAG
CAGCACATATTATCATACAGACAGAAAATCCAGAACATCTTCAAAGCCCACATATGGTAGCACAG
GTTGGCCTGTGCATCGGCAATTCTCATATCTGTTTTCAAAGAACATCAAATAAGA
GCAGGAAAAAAA

FIGURE 50

MRPGTALQAVLLAVLLVGLRAATGRLLSASDLRGGQPVCRGQTQRPCYKVIYFHDTSRRL
NFEEAKEACRRDGGQLVSIESEDEQKLIKEFIENLLPSDGDFWIGLRRREEKQSNSTACQDL
YAWTDGSISQFRNWYVDEPSCGSEVCVVMYHQPSAPAGIGGPYMFQWNDDRCNMKNFICKY
SDEKPAVPSREAEGEETELTPVLPEETQEEDAKKTFKESREAALNAYILIPSIPLLLL
VTTVVCWWICRKRKREQPDPSDKQHTIWPSPHQGNSPDLEVNVIRKQSEADLAETRPDL
KNISFRVCSGEATPDDMSCDYDNMAVNPSSESGFVTLVSVESGFVTNDIYEFPDQMGRSKES
GWVENEIYGY

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 117-121, 312-316

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 296-300

Casein kinase II phosphorylation site.

amino acids 28-32, 30-34, 83-87, 100-104, 214-218, 222-226,
299-303, 306-310, 323-327

N-myristoylation site.

amino acids 18-24, 37-43, 76-82, 146-152

FIGURE 51

GGGGTCTCCCTCAGGGCCGGGAGGCACAGCGGTCCCTGCTGCTGAAGGGCTGGATGTACGC
ATCCGCAGGTTCCC CGGGACTTGGGGCGCCGCTGAGCCCCGGCGCCCGCAGAAGACTTGT
GTTGCCTCCTGCAGCCTCAACCCGGAGGGCAGCGAGGGCTACCACCATGATCACTGGTGT
GTT CAGCATGCGCTTGTGGACCCAGTGGCGTCCTGACCTCGCTGGCGTACTGCCTGCACC
AGCGGCGGGTGGCCCTGGCCGAGCTGCAGGAGGCCATGCCAGTGTCCGGTCACCGCAGC
CTGCTGAAGTTGAAAATGGTGCAGGTGTTGACACGGGGCTCGGAGTCCTCTCAAGCC
GCTCCCGCTGGAGGAGCAGGTAGAGTGGAACCCCCAGCTATTAGAGGTCCCACCCAAACTC
AGTTTGATTACACAGTCACCAATCTAGCTGGTGGTCCGAAACCATATTCTCCTTACGACTCT
CAATACCATGAGACCACCCCTGAAGGGGGCATGTTGCTGGCAGCTGACCAAGGTGGCATT
GCAGCAAATGTTGCCTTGGGAGAGAGACTGAGGAAGAACTATGTGAAGACATTCCCTTTC
TTTCACCAACCTCAACCCACAGGAGGTCTTATTGTTCCACTAACATTTCGGAATCTG
GAGTCCACCCGTTGTTGCTGGCTGGCTTTCCAGTGTCAAGAAAGAAGGACCCATCATCAT
CCACACTGATGAAGCAGATT CAGAAGTCTTGTATCCAACTACCAAAGCTGCTGGAGCCTGA
GGCAGAGAACAGAGGCCGGAGGCAGACTGCCCTTTACAGCCAGGAATCTCAGAGGATTG
AAAAAGGTGAAGGACAGGATGGCATTGACAGTAGTGTATAAGTGGACTTCTTCATCCTCCT
GGACAACGTGGCTGCCGAGCAGGCACACAACCTCCAAAGCTGCCCATGCTGAAGAGATTG
CACGGATGATCGAACAGAGAGCTGTGGACACATCCTGTACATACTGCCAAGGAAGACAGG
GAAAGTCTTCAGATGGCAGTAGGCCATTCTCCACATCCTAGAGAGCAACCTGCTGAAAGC
CATGGACTCTGCCACTGCCCGACAAGATCAGAAAGCTGTATCTCTATGCGGCTCATGATG
TGACCTTCATACCGCTCTTAATGACCCCTGGGATTTTGACCACAAATGCCACCGTTGCT
GTTGACCTGACCATGGAACTTACCAAGCACCTGGAAATCTAAGGAGTGGTTGTGCAGCTCTA
TTACCAACGGGAAGGAGCAGGTGCCAGAGGTTGCCCTGATGGCTCTGCCGCTGGACATGT
TCTTGAATGCCATGTCAGTTATACCTTAAGCCCAGAAAAATACCATGCACTCTGCTCTCAA
ACTCAGGTGATGGAAGTTGGAAATGAAGAGTAACTGATTATAAAAGCAGGATGTGTTGATT
TTAAAATAAAGTGCCTTATACAATG

FIGURE 52

MITGVFSMRLWTPVGVLTSLAYCLHQRRVALAELQEADGQCPVDRSLLKLKMVQVVFRHGAR
SPLKPLPLEEQVEWNPQLLEVPPQTQFDYTVTNLAGGPKPYSPYDSQYHETTLKGGMFAGQL
TKVGMQQMFALGERLRKNYVEDIPFLSPTFNPQEVFIRSTNIFRNLESTRCLLAGLFQCQKE
GPIIIHTDEADSEVLYPNYQSCWSLRQRTRGRRQTASLQPGISEDLKKVKDRMGIDSSDKVD
FFILLDNVAAEQAHLPLSCPMLKRFARMIEQRAVDTSLYILPKEDRESLQMAVGPFLHILES
NLLKAMDSATAPDKIRKLYLYAAHDVTIFIPLLMTLGIFDHKWPPFAVDLTMELYQHLESKEW
FVQLYYHGKEQVPRGCPDGLCPLDMFLNAMSVTLSPEKYHALCSQTQVMEVGNEE

Signal sequence:

amino acids 1-23

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 218-222

Casein kinase II phosphorylation site.

amino acids 87-91, 104-108, 320-324

Tyrosine kinase phosphorylation site.

amino acids 280-288

N-myristoylation site.

amino acids 15-21, 117-123, 118-124, 179-185, 240-246, 387-393

Amidation site.

amino acids 216-220

Leucine zipper pattern.

amino acids 10-32

Histidine acid phosphatases phosphohistidine signature.

amino acids 50-65

FIGURE 53

CTCCTCTAACATACTTGCAGCTAAAACCAAATATTGCTGCTGGGGACCTCCTTAGCCT
TAAATTCAGCTCATCACCTCACCTGCCCTGGTCATGGCTCTGCTATTCTCCTTGATCCTT
GCCATTGACCAGACCTGGATTCCCTAGCGTCTCCATCTGGAGTGCAGCTGGTGGGGCCT
CCACCGCTGTGAAGGGCGGGTGGAGGTGGAACAGAAAGGCCAGTGGGCACCGTGTGATG
ACGGCTGGGACATTAAGGACGTGGCTGTGTTGCCGGAGCTGGCTGTGGAGCTGCCAGC
GGAACCCCTAGTGGTATTTGTATGAGCCACCAGCAGAAAAAGAGCAAAAGGTCTCATCCA
ATCAGTCAGTTGCACAGGAACAGAAGATAACATTGGCTCAGTGTGAGCAAGAAGAAGTTATG
ATTGTTCACATGATGAAGATGCTGGGCATCGTGTGAGAAACCCAGAGAGAGCTTTCTCCCCA
GTCCCAGAGGGTGTCAAGGCTGGCTGACGCCCTGGCATTGCAAGGGACCGTGGAGTGAA
GCACCAGAACCAAGTGGTACCGTGTGCCAGACAGGCTGGAGCCTCCGGGCCGAAAGGTGG
TGTGCCGGCAGCTGGATGTGGAGGGCTGTACTGACTCAAAACGCTGCAACAAGCATGCC
TATGCCGAAAACCCATCTGGCTGAGCCAGATGTCATGCTCAGGACGAGAAGCAACCCCTCA
GGATTGCCCTCTGGCCTTGGGAAAGAACACCTGCAACCAGATGAGACACGTGGTCTGG
AATGTGAAGATCCCTTGACTTGAGACTAGTAGGAGGAGAACACCTCTGCTCTGGCGACTG
GAGGTGCTGCACAAGGGCGTATGGGCTCTGTCTGTGATGACAACACTGGGAGAAAAGGAGGA
CCAGGTGGTATGCAAGCAACTGGGCTGTGGAGTCCCTCTCCCTCCTCAGAGACCGGA
AATGCTATGCCCTGGGTTGCCGATCTGGCTGGATAATGTTGCTCAGGGAGGAG
CAGTCCCTGGAGCAGTGCACAGATTGGGTTTCACGACTGCACCCACCAGGAAGA
TGTGGCTGTCATCTGCTCAGTGTAGGTGGCATCATCTAAATCTGTTGAGTGCCTGAATAGAA
GAAAAACACAGAAGAAGGGAGCATTACTGTCATGACTGCATGGATGAACACTGATCT
TCTTCTGCCCTGGACTGGACTTAACTTGGCTGCCCTGATTCTCAGGCCTCAGAGTTGG
ATCAGAACTTACAACATCAGGTCTAGTTCTCAGGCCATCAGACATAGTTGAACTACATCA
CCACCTTCCTATGTCACATTGCACACAGCAGATTCCAGCCTCCATAATTGTGTAT
CAACTACTAAATACATTCTCACACACACACACACACACACACACACACACACATA
CACCATTGCTCTGGTAAAGGATAAAATTCTGAATTGGTTATGGGTTCTGAAATTG
GCTCTATAATCTAATTAGATATAAAATTCTGGTAACTTATTTACAATAATAAGATAGCAC
TATGTGTTCAAA

FIGURE 54

MALLFSLILAICTRPGLASPSGVRLVGGLHRCEGRVEVEQKGQWGTVCDDGWDIKDVAVLC
RELGCGAASGTPSGILYEPPAEKEQKVLIQSVSCTGTEDTLAQCEQEEVYDCSHDEDAGASC
ENPESSFSPVPEGVRLADGPGHCKGRVEVKHQNWYTVCQGTGWSLRAAKVVCRQLGCGRAVL
TQKRCNKHAYGRKPIWLSQMCSGREATLQDCPSGPWGKNTCNHDEDTWVECEDPFDLRLVG
GDNLCSGRLEVLHKGVWGSVCDDNWGEKEDQVVCKQLGCGKSLSPSFRDRKCYGPVGRIWL
DNVRCSGEEQSLEQCQHRFWGFHDCTHQEDVAVICSV

Signal sequence:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 47-51, 97-101, 115-119, 209-213, 214-218, 234-238,
267-271, 294-298, 316-320, 336-340

N-myristoylation site.

amino acids 29-35, 43-49, 66-72, 68-74, 72-78, 98-104, 137-143,
180-186, 263-269, 286-292

Amidation site.

amino acids 196-200

Speract receptor repeated domain signature.

amino acids 29-67, 249-287

FIGURE 55

ACTGCACTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTGACCTCGAC
CCACCGCGTCCGGACCGGTGGCGGACCGTGGCGCTACCAGGAAGAGTCTGCCGAAG
GTGAAGGCC**ATG**GACTTCATCACCTCACAGCCATCCTGCCCTGCTGTTGGCTGCCTGGG
CGTCTTCGGCCTCTCCGGCTGCTGCAGTGGTGCGCGGAAGGCCTACCTGCGGAATGCTG
TGGTGGTGATCACAGGCGCCACCTCAGGGCTGGCAAAGAATGTGAAAAGTCTTCTATGCT
GCGGGTGCCTAAACTGGTGCTCTGTGGCCGAATGGTGGGCCCTAGAAGAGCTCATCAGAGA
ACTTACCGCTTCTCATGCCACCAAGGTGCAGACACACAAGCCTTACTTGGTGACCTTCGACC
TCACAGACTCTGGGCCATAGTTGCAGCAGCAGCTGAGATCCTGCAGTGCTTGGCTATGTC
GACATACTTGTCAACAATGCTGGATCAGCTACCGTGGTACCATCATGGACACACCAGTGGA
TGTGGACAAGAGGGTCAATGGAGACAAACTACTTGGCCAGTTGCTCTAACGAAAGCACTCC
TGCCCTCCATGATCAAGAGGAGGCAAGGCCACATTGTCGCCATCAGCAGCATCCAGGGCAAG
ATGAGCATTCCCTTCGATCAGCATATGCAGCCTCCAAGCACGCAACCCAGGCTTCTTGA
CTGTCTGCGTGGAGATGGAACAGTATGAAATTGAGGTGACCGTCATCAGCCCCGGCTACA
TCCACACCAACCTCTGTAAATGCCATCACCGCGGATGGATCTAGGTATGGAGTTATGGAC
ACCACCAAGCCCAGGGCGAAGCCCTGTGGAGGTGGCCAGGATGTTCTGCTGCTGTGGG
GAAGAAGAAGAAAGATGTGATCCTGGCTGACTTACTGCCTCCTGGCTGTTATCTCGAA
CTCTGGCTCCTGGCTCTTCAGCCTCATGGCCTCCAGGGCAGAAAGAGCGGAAATCC
AAGAACTCC**TAGT**ACTCTGACCAGCCAGGGCAGGGCAGAGAAGCAGCACTCTAGGCTTGC
TTACTCTACAAGGGACAGTTGCATTGTTGAGACTTTAATGGAGATTGCTCACAAGTGGG
AAAGACTGAAGAACACATCTCGTGCAGATCTGCTGGCAGAGGACAATAAAAACGACAACA
AGCTTCTTCCCAGGGTGAGGGAAACACTTAAGGAATAATGGAGCTGGGTTAACACT
AAAAACTAGAAATAAACATCTCAAACAGTAAAAAAAAAAGGGCGGCCGCGACTCTAG
AGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGGTTATTGCAGCTTATAATGGTTAC

FIGURE 56

MDFITSTAILPLLFGCLGVFGLFRLLQWVRGKAYLRNAVVVITGATSGLGKECAKVFYAAGA
KLVLCGRNGGALEELIRELTASHATKVQTHKPYLVTFDLTDSGAIVAAAAEILQCFGYVDIL
VNNAGISYRGTIMDTTDVVDKRVMETNYFGPVALTKALLPSMIKRRQGHIVAISSIQGKMSI
PFRSAYAASKHATQAFFDCLRAEMEQYEIEVTVISPGYIHTNLSVNAITADGSRYGVMDTTT
AQGRSPVEVAQDVLA AVGKKKDVL IADLLPSL A VYLRT LAPGLF FSLMASRARKERKS KNS

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 104-120, 278-292

N-glycosylation site.

amino acids 228-232

Glycosaminoglycan attachment site.

amino acids 47-51

Casein kinase II phosphorylation site.

amino acids 135-139, 139-143, 253-257

Tyrosine kinase phosphorylation site.

amino acids 145-153, 146-153

N-myristoylation site.

amino acids 44-50, 105-111, 238-244, 242-248, 291-297

Amidation site.

amino acids 265-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 6-17

FIGURE 57

FIGURE 58

MKFLLDILLPLLLIVCSLESFVKLFIPKRRKSVTGEIVLITGAGHGIGRLTAYEFAKLKS
LVLWDINKHGLEETAAKCKGLGAKVHTFVVDCSNREDIYSSAKVKAEIGDVSILVNNAGVV
YTSDLFATQDPQIEKTFEVNVLAHFWTTKAFLPAMTKNNGHIVTVASAAGHVSVPFLAYC
SSKFAAVGFHKTLTDELAALQITGVKTTCLCPNFVNTGFIKNPSTSLGPTLEPEEVVNRLMH
GILTEQKMIFIPSSIAFLTTLERILPERFLAVLKRKISVKFDAVIGYKMKAQ

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30-34, 283-287

Casein kinase II phosphorylation site.

amino acids 52-56, 95-99, 198-202, 267-271

N-myristoylation site.

amino acids 43-49, 72-78, 122-128, 210-216

FIGURE 59

CCCCACCGCGTCCGGGACCGCTGGGTGACTAGTTCTAGATCGCGAGCGGCCGCCGCGGCTC
AGGGAGGAGCACCGACTCGGCCGCACCCCTGAGAGATGGTTGGTGCCATGTGGAAGGTGATTG
TTTCGCTGGTCTGTGATGCCTGGCCCTGTGATGGGCTGTTCGCTCCCTATAAGAAAGT
GTTCCATGCCACCTAACGGAGACTCAGGACAGCATTATTCTCACCCCTAACATTGAAGC
TGGGAAGATCCAAAAGGAAGAGAATTGAGTTGGCGGCCCTTCCAGGACTGAACATGA
AGAGTTATGCCGGCTTCCTCACCGTGAATAAGACTTACAACAGCAACCTCTCTGGTTC
TTCCCAGCTCAGATACAGCCAGAAGATGCCAGTAGTTCTCTGGCTACAGGGTGGGCCGG
AGGTTCATCCATGTTGGACTCTTGTGGAACATGGGCCTTATGTTGTCACAAGTAACATGA
CCTTGCCTGACAGAGACTTCCCCTGGACCACAACGCTCTCATGCTTACATTGACAATCCA
GTGGGCACAGGCTTCAGTTACTGATGATAACCCACGGATATGCAGTCATGAGGACGATGT
AGCACGGGATTTATAACAGTGCACTAATTCACTAGTTCCAGATATTCTGAATATAAAAATA
ATGACTTTTATGTCACTGGGGAGTCTTATGCAGGGAAATATGTGCCAGCATTGCACACCTC
ATCCATTCCCTCAACCCCTGTGAGAGAGGTGAAGATCAACCTGAACGGAAATTGCTATTGGAGA
TGGATATTCTGATCCCGAATCAATTATAGGGGGCTATGCAGAATTCTGTACCAAATTGGCT
TGTTGGATGAGAAGCAAAAAAGTACTTCCAGAAGCAGTGCATGAATGCATAGAACACATC
AGGAAGCAGAACTGGTTGAGGCCTTGAATACTGGATAAACTACTAGATGGCGACTTAAC
AAGTGATCCTTACTTCCAGAATGTTACAGGATGTAGTAATTACTATAACCTTTGCGGT
GCACCGAACCTGAGGATCAGCTTACTATGTGAAATTGTCACTCCAGAGGTGAGACAA
GCCATCCACGTGGGAATCAGACTTTAATGATGAACTATAGTTGAAAAGTACTTGCAGA
AGATAACAGTACAGTCAGTTAACGCCATGGTAACTGAAATCATGAATAATTATAAGGTTCTGA
TCTACAATGGCCAATGGACATCATCGTGGCAGCTGCCCTGACAGAGCGCTCCTGATGGC
ATGGACTGAAAGGATCCAGGAATACAAGAAGGCAGAAAAAAAAAGTTGGAAGATCTTAA
ATCTGACAGTGAAGTGGCTGGTTACATCCGGCAAGCGGTGACTTCCATCAGGTAATTATTC
GAGGGTGGAGGACATATTACCCATGACCAGCCTGAGAGCTTGACATGATTAATCGA
TTCATTATGGAAAAGGATGGGATCCTTATGTTGGATAAACTACCTCCAAAAGAGAACAT
CAGAGGTTTCTTGCTGAAAAGAAAATCGTAAAACAGAAAATGTCATAGGAATAAAAAAA
TTATCTTTCATATCTGCAAGATTTTCTGCAATAAAAATTATCCTGAAACAAGTGGC
TTTGTGTTGGGGAGATGTTACTACAAAATTAAACATGAGTACATGAGTAAGAATTACA
TTATTTAACTAAAGGATGAAAGGTATGGATGATGTGACACTGAGACAAGATGTATAAATGA
AATTTAGGGCTTGAATAGGAAGTTAATTCTCTAAGAGTAAGTGAAGTGCAGTTG
TAACAAACAAAGCTGTAACATCTTCTGCCAATAACAGAAGTTGGCATGCCGTGAAGGT
GTTTGGAAATATTATTGGATAAGAATAGCTCAATTATCCAAAATAATGGATGAAGCTATAA
TAGTTTGGGAAAAGATTCTCAAATGTATAAAGTCTTAGAACAAAAGAATTCTTGAAATA
AAAATATTATATAAAAAGTAAAAAA

FIGURE 60

MVGAMWKVIVSLVLLMPGCDGLFRSLYRSVSMPKGDSQPLFLTPYIEAGKIQKGREL
VGPFPGNMKSYAGFLTVDKTYNSNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEH
GPYVVTTSNMTLRDRDFPWTTLSMLYIDNPVGTGFSFTDDTHGYAVNEDDVARDLYSALIQF
FQIFPEYKNNDFYVTGESYAGKYVPAIAHLIHSLNPVREVKINLNGIAIGDGYSDPESIIGG
YAEFLYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEAFFEILDKLLGDLTSDPSYFQNVTG
CSNYYNFLRCTEPEDQLYYVKFLSLPEVRQAIHVNQTFNDGTIVEKYLREDTVQSVKPWLT
EIMNNYKVLIYNGQLDIIVAALTERSLMGMDWKGSQEYKKAEKVVWKIFKSDSEVAGYIRQ
AGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWDPYVG

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 81-85, 132-136, 307-311, 346-350

Casein kinase II phosphorylation site.

amino acids 134-138, 160-164, 240-244, 321-325, 334-338, 348-352,
353-357, 424-428

Tyrosine kinase phosphorylation site.

amino acids 423-432

N-myristoylation site.

amino acids 22-28, 110-116, 156-162, 232-238

Serine carboxypeptidases, serine active site.

amino acids 200-208

Crystallins beta and gamma 'Greek key' motif signature.

amino acids 375-391

FIGURE 61

CGAGGGCTTCCGGCTCCGAATGGCACATGTGGGAATCCCATGTTGGCTACAACAT
TTTCCTTCTAACAAAGTCTAACAGCTGTCTAACAGCTAGTGATCAGGGTTCTTCTT
GCTGGAGAAGAAAGGGCTGAGGGCAGAGCAGGGCACTCTCACTCAGGGTGACCAGCTCCTT
CCTCTCTGTGGATAACAGAGCATGAGAAAGTGAAGAGATGCAGCGGAGTGAGGTGATGGAAG
TCTAAAATAGGAAGGAATTGTGTGCAATATCAGACTCTGGGAGCAGTTGACCTGGAGAGC
CTGGGGAGGGCTGCCTAACAAAGCTTCAAAAAACAGGAGCAGTCCACTGGCTGGGAT
AAGACGTGCCGGTAGGATAGGGAAAGACTGGGTTAGTCCTAATATCAAATTGACTGGCTGGG
TGAACCTAACAGCCTTTAACCTCTGGGAGATGAAAACGATGGCTTAAGGGGCCAGAAA
TAGAGATGCTTGTAAAATAAATTAAAAAGCAAGTATTATAGCATAAAGGCTAGA
GACCAAAATAGATAACAGGATTCCCTAACATCCTAACAGAGGAGAAAGTATGTTAAAATA
GAAAACCAAAATGCAGAAGGAGGAGACTCACAGAGCTAACACCAGGATGGGACCTGGT
AGGCCAGCCTTTGCTCCTCCGGAAATTATTTGGTCTGACCACTCTGCCTTGTGTTT
GCAGAATCATGTGAGGGCAACCGGGGAAGGTGGAGCAGATGAGCACACACAGGAGCCGTCT
CCTCACCGCCGCCCTCTCAGCATGAAACAGAGGCAGCCCTGGCCCCGGCCCTGGAGGTGG
ACAGCCGCTCTGTGGCTCTCAGTGGCTGGGTGCTGGCCCCCCCAGCAGCCGGC
ATGCCTCAGTCAGCACCTTCACTCTGAGAATCGTACTGGACCTAACCAACTTGACCGT
CCACCAAGGGACGGGGCCGTCTATGTGGGGCCATCAACCGGGCTATAAGCTGACAGGCA
ACCTGACCATCCAGGTGGCTCATAACAGACAGGGCCAGAAGAGGACAACAAGTCTCGTTACCCG
CCCCTCATCGTGCAGCCCTGAGCGAAGTGCTCACCCCTACCAACAATGTCACAAAGCTGCT
CATCATTGACTACTCTGAGAACCGCCTGCTGGCTGTGGAGCCTTACCCAGGGGTCTGCA
AGCTGCTGCGGCTGGATGACCTCTTACATCCTGGTGGAGCCATCCCACAAGAAGGAGCACTAC
CTGTCCAGTGTCAACAAGACGGGACCATGTACGGGTGATTGTGCGCTCTGAGGTGAGGA
TGGCAAGCTTTCATCGGCACGGCTGGATGGGAAGCAGGATTACTTCCGACCTGTCCA
GCCGGAAGCTGCCGAGACCTGAGTCCTCAGCCATGCTGACTATGAGCTACACAGCGAT
TTTGTCTCTCTCATCAAGATCCCTCAGACACCCCTGGCCCTGGTCTCCACTTGACAT
CTTCTACATCTACGGCTTGCTAGTGGGGCTTGCTACTTCTCACTGTCCAGCCGAGA
CCCCTGAGGGTGTGCCATCAACTCCGCTGGAGACCTCTTACACCTCACGCATCGTGC
CTCTGCAAGGATGACCCCAAGTTCCACTCATACGTGTCCCTGCCCTCGCTGCACCCGGG
CGGGGTGGAATACCGCCTCTGCAGGCTGCTTACCTGCCAACGCTGGGACTCACTGGCC
AGGCCTCAATATCACAGCCAGGACGATGTACTCTTGCCATCTCTCAAAGGGCAGAAG
CAGTATCACCACCGCCGATGACTCTGCCCTGTGTCCTCCATCCGGGCATCAACTT
GCAGATCAAGGAGCGCTGCAGTCCTGCTACCGGGCAGGGCACCTGGAGCTCAACTGGC
TGCTGGGAAGGACGTCCAGTGCACCAAGGGCCTGCCCCATCGATGATAACTTCTGTGGA
CTGGACATCAACCAGCCCTGGAGGCTCAACTCCAGTGGAGGGCTGACCCCTGTACACCAC
CAGCAGGGACCGCATGACCTCTGTGGCCTCAGTTACAACGGCTACAGCGTGGTTTG
TGGGGACTAAGAGTGGCAAGCTGAAAAAGGTAAGAGTCTATGAGTTAGTCACTGCC
ATTACACCTCCTCAGCAAAGAGTCCCTTGGAAGGTAAGCTATTGGTGGAGATTAACTATAG
GCAACTTATTCTGGGAACAAAGGTGAAATGGGAGGTAAGAAGGGTTAATTGTG
ACTTAGCTCTAGCTACTTCCAGCCATCAGTCATTGGTATGTAAGGAATGCAAGCGTA
TTCAATATTCCCAAACCTTAAGAAAAACTTAAGAAGGTACATCTGCAAAGCAAA

FIGURE 62

MGTLGQASLFAPPGNYFWSDHSALCFAESCEGQPGKVEQMSTHRSRLLTAAPLSMEQRQPWP
RALEVDSRSVVLSSVVWVLLAPPAAGMPQFSTFHSENRDWTFNHLTVHQGTGAVYVGAINRV
YKL TGNLTIQVAHKTGPEEDNKSRYPPLIVQPCSEVLTLTNNVNKLLI IDYSENRLLAGSL
YQGVCKLLRLDDLFI LVEPSHKKEHYLSSVNKTGTMGYGIVRSEGEGDKLFIGTAVDGKQDY
FPTLSSRKLP RDPESSAMLDYELHSDFVSSLIKIPSDTLALVSHFDIFYIYGFA SGGFVYFL
TVQ PETPEGVAINSAGDLFYTSRIVRLCKDDPKFHSYVSLPFGCTRAGVEYRLLQAAYLAKP
GDSL A QAFNITSQDDVLFAIFSKGQKQYHHPPDDSALCAFPIRAINLQIKERLQSCYQGEQN
LELNWLLGKD VQCTKAPVPIDDNFCGLDINQPLGGSTPVEGLTLYTTSRDRMTSVASYVYNG
YSVVFVGTKSGKLKKVRVYEFRCSNAIHLLSKE SLLEG SYWWRFNYRQLYFLGEQR

Signal sequence:

amino acids 1-32

Transmembrane domain:

amino acids 71-87

N-glycosylation site.

amino acids 130-134, 145-149, 217-221, 381-385

Casein kinase II phosphorylation site.

amino acids 139-143, 229-233, 240-244, 291-295, 324-328, 383-387,
384-388, 471-475, 481-485, 530-534

N-myristoylation site.

amino acids 220-226, 319-325, 353-359, 460-466, 503-509

FIGURE 63

AGGCTCCCGCGGGCTGAGTGGACTGGAAACCGGGCCCCGCTTAGAGAACACGCGATGACCA
CGTGGAGCCTCGCGGAGGCCGGCCGCACGCTGGACTCCTGCTGGCTCTGGGCTTCCTGGCTCC
GCAGGCTGGACTGGAGCACCCCTGGTCCCTCTGGCTCCGCATCGACAGCTGGGCTGCAGGCCAAGGGCTGGA
ACTTCATGCTGGAGGATTCCACCTCTGGATCTCGGGGCTCCATCCACTATTCCGTGCCCCAGGGAGTACT
GGAGGGACGCCGTGCTGAAGATGAAGGCCTGGGCTTGACACCCCTCACCACCTATGTTCCGTGGAACCTGCATG
AGCCAGAAAGAGGCAAATTGACTCTCTGGGAACTGGACCTGGAGGCCCTCGCTCTGATGGCGCAGAGATCG
GGCTGTGGGTGATTCTCGTCCAGGCCCTACATCTGAGTGAGATGGACCTCGGGGCTGCCCAGCTGGCTAC
TCCAAGACCTGGCATGAGGCTGAGGACAACTTACAAGGGCTCACCGAAGCAGTGGACCTTATTGACCACC
TGATGTCCAGGGTGGTGCACCTCCAGTACAAGCTGGGGACCTATCATTGCCGTGCAGGTGGAGAATGAATATG
GTT CCTATAATAAAGACCCGCATACATGCCCTACGTCAAGAAGGACTGGAGGACCGTGGCATTGGAACTGC
TCCTGACTTCAGACAACAAGGATGGCTGAGCAAGGGATTGTCCAGGGAGTCTTGGCCACCATCAACTTGCACT
CAACACACGAGCTGCAGCTACTGACCACCTTCTCTCACCGTCCAGGGACTCAGGCCAAGATGGTATGGAGT
ACTGGACGGGTGGTTGACTCGTGGGGAGGCCCTACAATATCTTGATTCTGTGAGGTTTGAAAACCGTGT
CTGCCATTGTGGACGCCGGCTCCTCCATCAACCTCTACATGTTCCACGGAGGCCAACACTTGCTCATGAATG
GAGCCATGCACTTCATGACTACAAGTCAGATGTCACCAGCTATGACTATGATGCTGTGACAGAACGCCGGCG
ATTACACGCCAAGTACATGAAGCTCGAGACTTCTCGGCTCCATCTCAGGCATCCCTCCTCCCCCACCTG
ACCTTCTCCCAAGATGCCGTATGAGCCCTAACGCCAGTCCTGTACCTGTCTGTGGGACGCCCTCAAGTACC
TGGGGAGCCAATGCTGAAAAGCCATCAACATGGAGAACCTGCCACTCAATGGGAAATGGACAGTCCT
TCGGGTACATTCTATGAGGACCGCATCACCTCGTCTGGCATCCTCAGTGGCCACGTGCATGATGGGGCAGG
TGTGTTGTGAACACAGTACATGGGACTTCTGGGACTACAAGACAACGAAGATTGCTGTCCCCCTGATCCAGGGTT
ACACCGTGTGGAGGATCTGGTGGAGAATCGTGGGAGTCAGCTTACACTATGGGAGAATATTGATGACCAGCGAAAG
GCTTAATTGGAAATCTCTATCTGAATGATTCAACCTCTGAGGAGACGATGGCGGGCCCTGCATTACAGTTACGGAAACCCCCC
ACCTGGGAGGAACCACTGAGGTTGGCCTGGACAAATGGNGTTCCCTCCAGAAAACACCCACATTACCTGTTCTTCTGG
GTAGCTTGTCCATCAGCTCCACGCCCTGTGACACCTTCTGAAGCTGGAGGGCTGGGAGAAGGGGGTTGTATTCA
TCAATGGCCAGAACCTGGACGTTACTGGAACATTGGACCCAGAACAGCCTTACCTCCAGGTCCCTGGTTGA
GCAGCGGAATCAACCAGGTATCGTTTGAGGAGACGATGGCGGGCCCTGCATTACAGTTACGGAAACCCCCC
ACCTGGGAGGAACCACTGAGGTTGGCCTGGACAAATGGNGTTCCCTCCAGAAAACACCCACATTACCTGTTCTTCTGG
CTCTTGACCTGAAGCCTGGTGGCTGTCGCCCCACCCCTACTGCAAAAGCATCTCCTTAAGTAGCAACCTCAGGG
ACTGGGGCTACAGTCTGCCCTGTCTCAGCTCAAAACCTAACGCTGCAGGGAAAGGTGGATGGCTCTGGGCC
TGGTTTGTGATGATGGCTTCTACAGCCCTGCTCTGTGCGGAGGCTGTCGGCTGTCTCTAGGGTGGAGC
AGCTAATCAGATGCCCTGGCCCTCAGAAAAGTGTGAAACGTGCCCTGCACCGGACGTACAGGCC
TGCAGCATCTGCTGGACTCAGGCGTGTCTTGCTGGTCTGGGAGGCTGGCCACATCCCTCATGGCCCCAT
TTTATCCCCGAAATCTGGGTGTGTCACAGTGTAGAGGGTGGGAAGGGGTGTCTCACCTGAGCTGACTTTGTT
CTTCCCTCACAAACCTCTGAGCCTCTTGGGATTCTGGAAGGAACCTGGCGTGGAGAAACATGTGACTTCCCTT
TCCCTTCCACTCGCTGCTTCCACAGGTGACAGGCTGGCTGGAGAAAACAGAAATCCTCACCCCTGGCTCTTCC
CAAGTTAGCAGGTGTCTGGTGTCTGGTGTGTCAGTGAGCAGGAGGACATGTGAGTCTGGCAGAACGCATGGCCCATGTCTGCA
CATCCAGGGAGGAGAACAGAAGGCCAGCTCACATGTGAGTCTGGCAGAACGCCATGGCCCATGTCTGACATCC
AGGGAGGAGGAGAACAGAAGGCCAGCTCACATGTGAGTCTGGCAGAACGCCATGGCCCATGTCTGACATCCAGGG
GGAGGAGAACAGAAGGCCAGCTCACATGTGAGTCTGGCAGAACGCCATGGCCCATGTCTGACATCCAGGGAGGAGG
ACAGAACGGCCAGCTCAGTGGCCCCGCTCCCCACCCCCCAGGCCAACAGCAGGGGAGAGCAGGCCCTCC
GAAGTGTGTCAGTCCGATTTGAGCCTGTTCTGGGCCCAGCCAAACACCTGGCTGGCTACTGTCTGA
GTTGCACTAAAGCTATAACCTTGATCACAA

FIGURE 64

MTTWSLRRR PART LG LLLL VVLGFLV LRR LDW STL VPL RL RQL GLQAK GWN FM LED ST FW
I FGG SI HY FR VP REY WR DR LL KM KAC GL NT LT TY VP PW NL HE PER GKF DF SGN LD LEAF VL MA
AE IGL WVI LRP GP YIC SE MDL GG LPS WL LQD PG MRL RT TY KG FT EAV DLY FD HLM SR VV PL Q
Y KR GG PI IA VQ VEN EY GS YN KDP AY MP YV KKA LE DRG IVE LL TSD NKG LS KG I VQ GV LAT
IN LQ STHE LQL TT FL FN VQ GT QPK MV MEY WT GW FD SW GG PH NI LD SSE VL KT VSA IVD AGS
S IN LY MF HG GT NF GFM NGAM HF HDY KSD VT SY DY DAV L TEA GDY TAK YM KL RD FF GS IS GI P
L PPPP DLL PK MP YE PL TP VL YL SL WD AL KY LGE PI KSE KPI N M EN LP VNG NG QSF GY I LY E
TS IT SSG ILS GHV HD RGQ VF VNT VSI GFL DY KTT KIA VPL I QGY TV LR IL VEN RG RV NY GEN
ID DQR KGL I GN LY LN DS PL KNF RI YSL DM KKS FF QRF GLD KWX SL PET PT LPA FF LGS LS IS
ST PC DT FLK LEG WE KV VF ING QNL GRY WNIG P QKT LY LP GP WL SS GIN QV IV FEET MAG PA
LQFT ET PHL GRN QY IK

Signal sequence:

amino acids 1-27

Casein kinase II phosphorylation site.

amino acids 141-118, 253-257, 340-344, 395-399, 540-544, 560-564

N-myristoylation site.

amino acids 146-152, 236-242, 240-246, 244-250, 287-293, 309-315,
320-326, 366-372, 423-429, 425-431, 441-447, 503-509, 580-586

FIGURE 65

GGGGACGCGGAGCTGAGAGGGCTCCGGGCTAGCTAGGTGTAGGGGTGGACGGGTCCCAGGACC
CTGGTGAGGGTTCTACTTGGCCTCGGTGGGGTCAAGACGCAGGCACCTACGCCAAAGG
GGAGCAAAGCCGGCTCGGCCGAGGGCCCCAGGACCTCCATCTCCAATGTTGGAGGAATC
CGACACGTGACGGTCTGTCCGCCGTCTCAGACTAGAGGAGCGCTGTAAACGCC**ATGGCT**CCC
AAGAAGCTGTCTGCCTCGTCCCTGCTGCTGCCGCTCAGCCTGACGCTACTGCTGCCCA
GGCAGACACTCGGTGTTGCTAGTGGATAGGGTCATGACCGGTTCTCTAGACGGGGCC
CGTTCCGCTATGTGTCTGGCAGCCTGCACTACTTCGGGTACCGCGGGTCTTGGGCCAC
CGGCTTTGAAGATGCGATGGAGCGGCCAACGCCATACAGTTTATGTGCCCTGGAACTA
CCACGAGCCACAGCCTGGGGTCTATAACTTAATGGCAGCCGGACCTCATTGCCCTTCTGA
ATGAGGCAGCTAGCGAACCTGTTGGTCATACTGAGACCAAGGACCTACATCTGTCAGAG
TGGGAGATGGGGGGTCTCCCATCCTGGTGCTCGAAAACCTGAAATTCATCTAAGAACCTC
AGATCCAGACTTCCTGCCGAGTGGACTCTGGTTCAAGGTCTGCTGCCAAGATATATC
CATGGCTTATCACAATGGGGCAACATCATTAGCATTAGCTAGGTGGAGAATGAATATGGTAGC
TACAGAGCCTGTGACTTCAGCTACATGAGGCATTGGCTGGCTCTCCGTGCACTGCTAGG
AGAAAAGATCTTGCTCTCACACAGATGGGCTGAAGGACTCAAGTGTGGCTCCCTCCGG
GACTCTATACCACTGTAGATTGGCCCAGCTGACAACATGACCAAAATCTTACCTGCTT
CGGAAGTATGAACCCATGGCCATTGGTAAACTCTGAGTACTACACAGGCTGGCTGGATTA
CTGGGGCCAGAATCACTCCACACGGTCTGTGTCAGCTGTAACCAAAGGACTAGAGAACATGC
TCAAGTTGGGAGCCAGTGTGAAACATGTACATGTTCCATGGAGGTACCAACTTGGATATTGG
AATGGTGCCGATAAGAAGGGACGCTTCCCTGGATTACTACCACTGACTATGATGCACC
TATATCTGAAGCAGGGGACCCCACACCTAACGCTTTGCTCTCGAGATGTCATCAGCAAGT
TCCAGGAAGTTCCCTTGGGACCTTACCTCCCCGAGCCCCAAGATGATGCTTGGACCTGTG
ACTCTGCACCTGGTTGGCATTACTGGCTTCCTAGACTTGCTTGCCCCGTGGCCCAT
TCATTCAATCTTGCAATGACCTTGAGGCTGTCAAGCAGGACCATGGCTCATGTTGTACC
GAACCTATATGACCCATACCATTGGAGCCAACACCATTCTGGGTGCCAAATAATGGAGTC
CATGACCGTGCCTATGTGATGGATGGGTGTTCCAGGGTGTGTGGAGCGAACATGAG
AGACAAACTATTTGACGGGAAACTGGGTCCAAACTGGATATCTTGGTGGAGAACATGG
GGAGGCTCAGTTGGGTCTAACAGCAGTGAACCTCAAGGGCCTGTTGAAGCCACCAATTCTG
GGCAAACAATCCTACCCAGTGGATGATGTTCCCTCTGAAAATTGATAACCTTGTGAAGTG
GTGGTTCCCTCCAGTTGCCAAAATGCCATATCCTCAAGCTCCTCTGGCCCCACATTCT
ACTCCAAAACATTCCAATTAGGCTCAGTTGGGACACATTCTATATCTACCTGGATGG
ACCAAGGGCCAAGTCTGGATCAATGGGTTAACCTGGCCGGTACTGGACAAAGCAGGGGCC
ACAACAGACCCCTACGTGCCAAGATCCTGCTGTTCCAGGGAGCCCTCAACAAAATT
CATTGCTGGAACTAGAAGATGTACCTCTCCAGCCCCAAGTCCAATTGGATAAGCCTATC
CTCAATAGCACTAGTACTTGCACAGGACACATATCAATTCCCTTCAGCTGATAACACTGAG
TGCCTCTGAACCAATGGAGTTAAGTGGCACT**TGAAAGGTAGGCCGGCATGGTGGCTCATGC**
CTGTAATCCCAGCACTTGGGAGGCTGAGACGGGTGGATTACCTGAGGTCAAGGACTTCAAGA
CCAGCCTGGCCAACATGGTAAACCCCGTCTCCACTAAAAATACAAAATTAGCCGGCGTG
ATGGTGGGCACCTCTAATCCCAGCTACTTGGGAGGCTGAGGGCAGGAGAATTGCTGAATCC
AGGAGGCAGAGGTTGCAGTGAGTGGAGGTTGTACCACTGCACCTCCAGCCTGGCTGACAGTGA
GACACTCCATCTAAAAAAAAAAAAAA

FIGURE 66

MAPKKLSCLRSLLLPLSLTLLPQADTRS FVVRGHDRFLLDGAPFRYVSGSLHYFRVPRVL
WADRLLKMRWSGLNAIQFYVPWNYHEPQPGVYNFNGSRDLIAFLNEAALANLLVILRPGPYI
CAEWEMGGLPSWLLRKPEIHLRTSDPDFLAAVDSWFKVLLPKIYPWLYHNGGNIISIQVENE
YGSYRACDFSYMRHLAGLFRAALLGEKILLFTTDGPEGLKCGSLRGLYTTVDFGPADNMTKIF
TLLRKYEPhGPLVNSEYYTGWLWQNHSRSVAVTKGLENMLKGASVNMYMFHGKTNF
GYWNGADKKGRFLPITTSDYDAPISEAGDPTPKLFALRDVISKQEVPLGPLPPSPKMML
GPVTLHLVGHLLAFLDLLCPRGPIHSILPMTFEAVKQDHGFMLYRTYMHTIFEPTPFWVPN
NGVHDRAYVMVDGVFQGVVERNMRDKLFLTGKLGSKLDILVENMGRLSFGSNSSDFKGLLKP
PILGQTILTQWMMFPLKIDNLVKWFWPLQLPKWPYPQAPSGPTFSKTFFPILGSVGDTFLYL
PGWTKGQVWINGFNLGRYWTQGPQQTLYVPRFLLFPRGALNKITLLELEDVPLQPQVQFLD
KPILNSTSTLHRTHINSLSADTLSASEPMELSGH

Signal sequence:

amino acids 1-27

N-glycosylation site.

amino acids 97-101, 243-247, 276-280, 486-490, 625-629

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 4-8

Casein kinase II phosphorylation site.

amino acids 148-152, 234-238, 327-331, 423-427, 469-473, 550-554,
603-607, 644-648

Tyrosine kinase phosphorylation site.

amino acids 191-198

N-myristoylation site.

amino acids 131-137, 176-182, 188-194, 203-209, 223-229, 227-233,
231-237, 274-280, 296-300, 307-313, 447-453, 484-490

FIGURE 67

GCTTGAAACACGTCTGCAAGCCAAAGTTGAGCATCTGATTGGTTATGAGGTATTCAGTGC
ACCCACAATATGGCTTACATGTTAAAAAGCTTCTCATCAGTTACATATCCATTATTCAGTGT
TTATGGCTTATCTGCCTCTACACTCTCTGGTTATTCAAGGATACCTTGAAGGAATATT
CTTCGAAAAAGTCAGAGAAGAGAGCAGTTAGTGACATTCCAGATGTCAAAAACGATTT
GCCTTCCTTCTTCACATGGTAGACCAGTATGACCAGCTATATTCCAAGCGTTGGTGTGTT
CTTGTCAAGAGTTAGTGAAAATAACTAGGGAAATTAGTTGAACCATGAGTGGACATTTG
AAAAACTCAGGCAGCACATTCAACGCCAGGACAAGCAGGAGTTGCATCTGTTCATG
CTGTCGGGGGTGCCGATGCTGTCTTGACCTCACAGACCTGGATGTGCTAAAGCTTGAAC
AATTCCAGAAGCTAAAATTCTGCTAACAGATTCTCAAATGACTAACCTCCAAGAGCTCCACC
TCTGCCACTGCCCTGCAAAAGTTGAACAGACTGCTTTAGCTTCTCGCGATCACTTGAGA
TGCCTTCACGTGAAGTTCACTGATGTGGCTGAAATTCTGCCTGGTGTATTGCTCAAAAAA
CCTTCGAGAGTTGACTTAATAGGCAATTGAACTCTGAAAACAATAAGATGATAGGACTTG
AATCTCTCCGAGAGTTGGCACCTTAAGATTCTCCACGTGAAGAGCAATTGACCAAAGTT
CCCTCCAACATTACAGATGTGGCTCCACATCTTACAAAGTTAGTCATTCAAATGACGGCAC
TAAACTCTGGTACTGAACAGCCTTAAGAAAATGATGAATGTCGCTGAGCTGGAACTCCAGA
ACTGTGAGCTAGAGAGAATCCCACATGCTATTTCAGCCTCTCTAACAGGAACTGGAT
TTAAAGTCCAATAACATTGCAACATTGAGGAAATCATCAGTTCCAGCATTAAAACGACT
GACTTGTAAAATTATGGCATAACAAAATTGTTACTATTCTCCCTCTATTACCATGTCA
AAAACTTGGAGTCACTTATTCTCTAACAAACAAGCTCGAACCTTACAGTGGCAGTATT
AGTTTACAGAAACTCAGATGCTTAGATGTGAGCTACAACAACATTCAATGATTCCAATAGA
AATAGGATTGCTTCAGAACCTGCAGCATTGCAATATCACTGGAACAAAGTGGACATTCTGC
CAAAACAATTGTTAAATGCATAAAGTTGAGGACTTGAATCTGGACAGAACTGCATCACC
TCACTCCCAGAGAAAGTTGGTCAGCTCTCCAGCTCACTCAGCTGGAGCTGAAGGGAACTG
CTTGGACCGCCTGCCAGCCAGCTGGCCAGTGTGGATGCTCAAGAAAAGCGGGCTGTTG
TGGAAAGATCACCTTTGATAACCTGCCACTCGAAGTCAAAGAGGCATTGAATCAAGACATA
AATATTCCCTTGCAAATGGGATTTAAACTAAGATAATATATGCACAGTGTGCAGGAAC
AACTTCCTAGATTGCAAGTGCTCACGTACAAGTTATTACAAGATAATGCATTAGGAGTAG
ATACATCTTTAAAATAACAGAGAGGATGCATAGAAGGCTGATAGAAGACATAACTGAAT
GTTCAATGTTGAGGGTTAAGTCATTCAAATCATTGTTTTAAATTGTTGTAACCTGGAT
AAAGGGAAAGGAAAATTATAACTAAATCTTGGTCTTTAAATTGTTGTAACCTGGAT
GCTGCCGCTACTGAATGTTACAAATTGCTGCCACTAAAGTAAATGATTAAATTGACATT
TTCTTACTAAAAAAAAAAAAAA

FIGURE 68

MAYMLKKLLISYISIICVYGFICLYTLFWLFRIPLKEYSFEKVREESSFSDIPDVKNDFAFL
LHMVDQYDQLYSKRGVFLSEVSENKLREISLNHEWTFEKLRQHISRNAQDKQELHLFMLSG
VPDAVFDLTDLDVLKLELIPEAKIPAKISQMTNLQELHLCHCPAKVEQTAFSFLRDHLRCLH
VKFTDVAEIPA WVYLLKNLRELYLIGNLNSENNKMIGLESLRELRLKILHVKSNLTKVPSN
ITDVAPHLTKLVIHNDGTKLLVLNSLKKMMNVAELELQNCELERIPHAI FSLSNLQELDLKS
NNIRTIEEIISFQHLKRLTCLKLWHNKIVTI PPSITHVKNLES LYFSNNKLES LPVAVFSLQ
KLRCLDVSYNNISMPIEIGLLQNLQHLHITGNKVDILPKQLFKCIKLRTLNLGQNCITSLP
EKVGQLSQLTQLELKGNCNDRLPAQLGQCRMLKKSGLVVEDHLFDTLPLEVKEALNQDINIP
FANGI

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 241-245, 248-252, 383-387

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 326-330

Casein kinase II phosphorylation site.

amino acids 48-52, 133-137, 226-230, 315-319, 432-436, 444-448

Tyrosine kinase phosphorylation site.

amino acids 349-355, 375-381

N-myristoylation site.

amino acids 78-84, 124-130, 212-218, 392-398

FIGURE 69

CCACCGCGTCCGGCCTCTCTGGACTTGACATTGCATTCCATTCTTCAAGACAAACTGACTTTTTATTC
TTTTTCCATCTCTGGGCCAGCTGGGATCCTAGGCCCTGGGAAGACATTGTGTTACACACATAAGGAT
CTGTGTTGGGTTCTTCTCCTCCCCTGACATTGCATTGCTTAGTGGTTGTGAGGGAGGACACGTGG
GCTCAGTGCTTGCTGCACCTATGCCTAGGTACATGAAGTCTTGACCTACAGTGATTATGCCTGTC
ATCGCTGGTGGTACCTGGCCCTGCTCTGCTGATAGTTGCTGCTCTGCTTACTTCAAACACAAAC
GCGCTAAAAGCTGCAAAGAACCTGAAGCTGGCTGAAAAAATCACACCCAGACAAGGTGTGGTGGCCAAG
AACAGCCAGGCCAAACCATTGCCACGGAGCTGTGCTGCCCTGCAGTGAGGATATAGAATGTGTC
AGTTTGATTCCCTGCCACCTTGCTGTCAGACATAAATGAGGGCTCTGAGTTAGGAAAGGCTCCCTCTCAA
GCAGAGCCCTGAAGACTTCAATGATGTCATGAGGCCACCTGTTGTGATGTGAGGCACAGAAGAAAGGCACAG
CTCCCCCATGTTCATGAAAATAACTCAGTGCTGGAACAGCTGCTGGAGATCCCTACAGAGAGCTTC
CACTGGGGCAACCCCTTCAGGAAGGAGTTGGGAGAGAGAACCTCACTGTGGGAATGCTGATAAAACAGTC
CACAGCTGCTCTATTCTCACACAAATCTACCCCTGCTGGACTGACGTTCCCTGGAGGTGTCAGAAA
GCTGATGTAACACAGAGCCTATAAAAGCTGTCGGCTCTAAGGCTGCCAGGCCCTGCCAAA**ATGAGCTTGT**
AGAAGGCTCATGCCATTGACCCCTTAATTCTCCTGTTGGGGAGCTGACAATGGGGAGGCTGAAGGCAAT
GCAAGCTGCACAGTCAGTCTAGGGGTGCAATATGGCAGAGACCCACAAAGCCATGATCTGCAACTCAATCCC
AGTGAGAACTGCACCTGGACAATAGAAAGACAGAAAACAAAGCATCAGAATTATCTTCTATGTCAGCTT
GATCCAGATGAAAGCTGAAAGTGAAAACATAAAGTCTTGACGGAACCTCAGCAATGGGCCTGCTAGGG
CAAGTCTGAGTAAAACGACTATGTTCTGATTTGAATCATCATCCAGTACATTGACGTTCAAATAGTTACT
GACTCAGCAAGAATTCAAAGAACTGCTTTCTACTACTTCTCTCTTAACATCTCTATTCCAAACTGT
GGCGGTTACCTGGATACCTTGGAAAGGATCCTTCACCAGCCCAATTACCCAAAGCCGATCCTGAGCTGGCTTAT
TGTGTTGGCACATACAAGTGGAGAAAAGATTACAAGATAAAACTAACTCAAAGAGATTTCCTAGAAATAGAC
AAACAGTCAAATTGATTTCTGCCATCTATGATGGCCCTCCACCAACTCTGGCTGATTGGACAAGTCTGT
GGCGTGTGACTCCCACCTTCGAATCGTCAACTCTGACTGTCGTGTTGCTACAGATTATGCCAATTCT
TACCGGGGATTCTGCTCCTACACCTCAATTATGCAAGAAACATCAACACTACATCTTAACTTGCTCTCT
GACAGGATGAGAGTATTATAAGCAAATCCTACCTAGAGGTTTAACTCTAAAGGATAACTGCAACTAAA
GACCCAACCTGAGACCAAAATTATCAAATGTTGGAATTCTGCTCCCTCTAATGGATGTTGACAATCAGA
AAGGTAGAAGATCAGTCAATTACACCAATATAATCACCTTCTGCATCTCAACTCTGAAGTGTACCC
CGTCAGAAACAACCTCAGATTATGTGAAGTGTGAAATGGGACATAATTCTACAGTGGAGATAATATAACAA
GAAGATGATGTAATACAAAGTCAAATGCACTGGGAAATAACACCGCATGGCTTTTGAAATCCAATTCA
TTTGGAAAAGACTATACTTGAAATCACCATTATGTGGATTGAAACCAACTCTTGTCAAGTTAGTCTGCAC
ACCTCAGATCAAATTGTTGGGTCTTCTGATACCTGTAAGGCTCTCCACCTCTGACTTTGCATCTCAAACC
TACGACCTAATCAAGAGTGGATGTAAGTGCAGAGTGAAACTGTAAAGGTGATCCCTTATTGGACACTATGGGAGA
TTCCAGTTAACGCTTAAATTCTGAGAAGTATGAGCTGTGATCTGCAGTGTAAAGTTGATATGTGAT
AGCAGTGACCAACAGTCTGCTGCAATCAAGGTTGTCCTCAGAACAGAAACGGAGACATTCTCATATAATGG
AAAACAGATTCCATCATGGACCCATTGCTGAAAAGGGATGCAAGTGCAAGTGGCAATTAGGATTTGAGCAT
GAAACACATGCCAGAAACTCAAACCGCCCTCAACAGTGTGCACTGTTCTCATGGTTAGCTCTG
AATGTGGTGAACAGTGTAGCGACAATCACAGTGAGGCATTGAAATCAACGGGAGACTACAAATACCAAGAGCTG
CAGAACTATT**AA**ACTAACAGGTCCAACCCCTAAGTGAGACATGTTCTCCAGGATGCCAAAGGAAATGTCACCTCGT
GGCTACACATATTGAATAATGAGGAAGGGCTGAAAGTGACACACAGGCCATGTA

FIGURE 70

MELVRRLMPLTLLILSCLAEALTMAEAEGNASCTVSLGGANMAETHKAMILQLNPSENCTWTI
ERPENKSIRIIFSYVQLDPDGSCESENIKVFDGTSSNGPLLGVCSKNDYVPVFESSSSTLT
FQIVTDSARIQRTVFVFYFFSPNISIPNCGGYLDTLEGSFTSPNYPKPHPELAYCVWHIQV
EKDYKIKLNFKEIFLEIDKQCKFDFLAIYDGPSTNSGLIGQVCGRVTPTFESSNSLTVVLS
TDYANSYRGFSASYTSIYAENINTTSLTCSSDRMRVIISKSYLEAFNSNGNNLQLKDPTCRP
KLSNVVEFSPVPLNGCGTIRKVEDQSITYTNIITFSASSTSEVITRQKQLQIIVKCEMGHNST
VEIIYITEDDVIQSQNALGKYNTSMALFESNSFEKTILESPYYVDLNQTLFVQVSLHTSDPN
LVVFLDTCRASPTDFASPTYDLIKSGCSRDETCKVYPLFGHYGRFQFNNAFKFLRSMSSVYL
QCKVLICDSSDHQSRCNQGCVSRSKRDISSYWKTDIIGPIRLKDRSASGNSGFQHETHA
EETPNQPFNSVHLFSFMVLALNVVTVATITVRHFVNQRADYKYQKLQNY

Signal sequence:

amino acids 1-24

Transmembrane domain:

amino acids 571-586

N-glycosylation site.

amino acids 29-33, 57-61, 67-71, 148-152, 271-275, 370-374,
394-398, 419-423

Casein kinase II phosphorylation site.

amino acids 22-26, 108-112, 289-293, 348-352, 371-375, 379-383,
408-412, 463-467, 520-524, 556-560

Tyrosine kinase phosphorylation site.

amino acids 172-180, 407-415, 407-416, 519-528

N-myristoylation site.

amino acids 28-34, 38-44, 83-89, 95-101, 104-110, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 71

GACGGAAGAACAGCGCTCCCGAGGCCGCGGGAGCCTGCAGAGAGGGACAGCCGGCCTGCGCCG
GGAC**AT**GCAGGCCAGGAGCTCCCAGGCTCGCGTCCCGTTGCTGCTGTTGCTGC
TGCTGCCGCCGCCGTGCCCTGCCACAGCGCACCGCCTCGACCCACCTGGGAGTCC
CTGGACGCCGCCAGCTGCCCGCGTGGTTGACCAGGCCAAGTCGGCATCTCATCCACTG
GGGAGTGTTCGCCCAGCTCGTAGCGAGTGGTCTGGTGGATTGGCAAAAGGAAA
AGATACCGAAGTATGTGAATTATGAAAGATAATTACCCCTCTAGTTCAAATATGAAGAT
TTGGACCACTATTACAGAAAATTTTAATGCCAACAGTGGGAGATATTTCAGGC
CTCTGGTCCAATACATTGCTTAACCTCCAAACATCATGAAGGCTTACCTTGTGGGGT
CAGAATATTGGAACTGGAATGCCATAGATGAGGGCCAAAGAGGGACATTGTCAAGGAA
CTTGAGGTAGCCATTAGGAACAGAACCTGACCTGCGTTGGACTGTACTATTCCCTTTGA
ATGGTTCATCCGCTTCTGAGGATGAATCCAGTCATTCCATAAGCGGCAATTCCAG
TTCTAAGACATTGCCAGAGCTATGAGTTAGTGAACAACATCAGCCTGAGGTTCTGTGG
TCGGATGGTGACGGAGGACACGGATCAAACTGGAACAGCACAGGCTTCTGGCCTGGTT
ATATAATGAAAGCCCAGTCGGGCACAGTAGTCACCAATGATCGTTGGGAGCTGGTAGCA
TCTGTAAGCATGGTGGCTTCTACCTGCAGTGATCGTTATAACCCAGGACATTTGCCA
CATAAATGGAAAAGTGCATGACAATAGACAAACTGTCTGGGCTATAGGAGGGAAAGCTGG
AATCTCTGACTATCTACAAATTGAAGAATTGGTGAAGCAACTGTAGAGACAGTTCATGTG
GAGGAAATCTTGATGAATATTGGGCCACACTAGATGGCACCATTCGTAGTTTGAG
GAGCGACTGAGGCAAGTGGGCTGGCTAAAGTCATGGAGAAGCTATTATGAAACCTA
TACCTGGCGATCCCAGAATGACACTGTCACCCAGATGTGTGGTACACATCCAAGCCTAAAG
AAAAATTAGTCTATGCCATTTCCTAAATGGCCACATCAGGACAGCTGTTCTGGCCAT
CCCAAAGCTATTCTGGGGCAACAGAGGTGAAACTACTGGGCCATGGACAGCCACTTAAC TG
GATTCTTGAGCAAATGGCATTATGGTAGAACTGCCACAGCTAACCATTCAGATGC
CGTGTAAATGGGCTGGCTAGCCCTAACTAATGTGATC**TAA**AGTGCAGCAGAGTGGCTG
ATGCTGCAAGTTATGCTAAGGCTAGGAACATCAGGTGTCTATAATTGTAGCACATGGAGA
AAGCAATGTAACGGATAAGAAAATTATTGGCAGTTCAGCCCTTCCCTTTCCACTA
AATTTCCTTAAATTACCCATGTAACCATTAACTCTCCAGTGCACCTTGCCATTAAAGTC
TCTTCACATTGATTGTTCCATGTGACTCAGAGGTGAGAATTTCACATTATAGTAG
CAAGGAATTGGTGGTATTATGGACCGAAGTAAAATTATGTGAAGCCATATCCCCCATG
ATTATATAGTTATGCATCACTTAATATGGGATATTCTGGAAATGCATTGCTAGTCAT
TTTTTTGTGCCAACATCATAGAGTGTATTACAAAATCCTAGATGGCATAGCCTACTACA
CACCTAATGTGTATGGTATAGACTGTTGCTCTAGGCTACAGACATATAAGCATGTTACTG
AATACTGTAGGCAATAGTAACAGTGGTATTGTATATCGAAACATATGGAAACATAGAGAAG
GTACAGTAAAATCTGTAAAATGGTCACCTGTATAGGGCACTTACCAAGCAATGGAG
CTTACAGGACTGGAAGTTGCTCTGGTGAGTCAGTGAGTGAATGTGAAGGCCTAGGACATTA
TTGAACACTGCCAGACGTTATAAAACTGTATGCTTAGGCTACACTACATTTATAAAAAAAA
GTTTTCTTCTCAATTATAAACATAAGTGTACTGTAACCTTACAAACGTTTAATT
TTTAAACCTTTGGCTTTGTAATAACACTAGCTAAACATAAAACTCATTGTGCAA
ATGTAA

FIGURE 72

MRPQELPRLAFPLLLLLLPPPCPAHSATRFDPTWESLDARQLPAWFDQAKFGIFIFIHWG
VFSVPSFGSEWFWWYQKEKIPKYEFMKDNYPPSFKYEDFGPLFTAKFFNANQWADIFQAS
GAKYIVLTSKHHEGFTLWGSEYSWNWNAIDEGPKRDIVKELEVAIRNRTDLRGFLYYSLFEW
FHPLFLEDESSSFHKRQFPVSKTLPELYELVNYYQPEVLWSDGDGGAPDQYWNSTGFLAWLY
NESPVVRGTVVTNDRWGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDKLSWGYRREAGI
SDYLTIEELVKQLVETVSCGGNLLMNIGPTLDGTISVVFEERLRQVGSWLKVNGEAIYETYT
WRSQNDTVTPDVWYTSPKPEKLVYAIIFLKWPMSGQLFLGHPKAILGATEVKLLGHGQPLNWI
SLEQNGIMVELPQLTIHQMPCKWGWALALTNVI

Signal sequence:

amino acids 1-28

N-glycosylation site.

amino acids 171-175, 239-243, 377-381

Casein kinase II phosphorylation site.

amino acids 32-36, 182-186, 209-213, 227-231, 276-280, 315-319,
375-375

Tyrosine kinase phosphorylation site.

amino acids 361-369, 389-397

N-myristoylation site.

amino acids 143-149, 178-184, 255-261, 272-278, 428-434

Leucine zipper pattern.

amino acids 410-432

Alpha-L-fucosidase putative active site.

amino acids 283-295

FIGURE 73

AGCAGGGAAATCCGGATGTCTCGTTATGAAGTGGAGCAGTGAGTGTGAGCCTAACATAGT
TCCAGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCCTCATATCACCAAGTGGCCATC
TGAGGTGTTCCCTGGCTCTGAAGGGTAGGCACGATGGCCAGGTGCTTCAGCCTGGTGTG
CTTCTCACTCCATCTGGACCACGAGGCTCTGGTCCAAGGCTTTGCGTGCAGAAGAGCT
TTCCATCCAGGTGTCACTGCAGAATTATGGGGATCACCCCTGTGAGCAAAAGGCGAACCGAC
AGCTGAATTTCACAGAAGCTAAGGAGGCCTGTAGGCTGCTGGACTAAGTTGGCCGGCAAG
GACCAAGTTGAAACAGCCTGAAAGCTAGCTTGAAACTTGAGCTATGGCTGGGTTGGAGA
TGGATTCTGGTGTCACTCTAGGATTAGCCAAACCCCAAGTGTGGAAAAATGGGGTGGGTG
TCCTGATTGGAAAGGTTCCAGTGAGCCGACAGTTGCAGCCTATTGTTACAACACTCATGAT
ACTTGGACTAACTCGCATTCCAGAAATTATCACCACCAAAGATCCCATTCAACACTCA
AACTGCAACACAAACAGAATTATTGTCAAGTGACAGTACCTACTCGGTGGCATCCCCTT
ACTCTACAATACCTGCCCTACTACTACTCCTCCTGCTCCAGCTCCACTCTATTCCACGG
AGAAAAAAATTGATTGTGTCAAGAAGTTTATGGAAACTAGCACCATGTCTACAGAAAC
TGAACCATTGTTGAAAATAAAGCAGCATTCAAGAATGAAGCTGCTGGGTTGGAGGTGTCC
CCACGGCTCTGCTAGTGCTCTCCTCTTGGTGTGCAAGCTGGTCTGGATTTC
TATGTCAAAAGGTATGTGAAGGCCTCCCTTACAAACAAGAATCAGCAGAAGGAAATGAT
CGAAACCAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCTAATGAGGAATCAAAGA
AAACTGATAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAAACTACCGTGCATGCC
GCTGAAGTTAGATGAGACAGAAATGAGGAGACACACCTGAGGCTGGTTCTTCATGCTCC
TTACCCCTGCCCTAGCTGGGAAATCAAAGGCCAAAGAACCAAAGAAGAAAGTCCACCC
GGTTCTAACTGGAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCACCAAGAGAAC
CCTTCTCCTTATTGTAACCCCTGTCTGATCCTATCCTCTACCTCCAAAGCTCC
TTTCTAGCCTGGCTATGCTTAATAATATCCCACGGAGAAAGGAGTTTGCAAGTGAA
GGACCTAAACATCTCATCAGTATCCAGTGGTAAAAGGCCTCTGGCTGTGAGGCTAGG
TGGGTTGAAAGCCAAGGAGTCACTGAGACCAAGGCTTCTACTGATTCCGCAGCTCAGAC
CCTTCTCAGCTGAAAGAGAACACGTATCCCACCTGACATGCTCTGAGCCCCGGTA
AGAGCAAAAGAATGGCAGAAAAGTTAGCCCTGAAAGCCATGGAGATTCTCATAACTTGAG
ACCTAATCTCTGTAAGCTAAATAAAGAAATAGAACAAAGGCTGAGGATACGACAGTACACT
GTCAGCAGGGACTGTAAACACAGACAGGGTCAAAGTGTGTTCTGAACACATTGAGTTGGA
ATCACTGTTAGAACACACACTTACTTTCTGGTCTCTACCACTGCTGATATTTCTCT
AGGAAATATACTTTACAAGTAACAAAAAATAAAACCTTATAAATTCTATTCTATCTGA
GTTACAGAAATGATTACTAAGGAAGATTACTCAGTAATTGTTAAAAGTAATAAAATTCA
ACAAACATTGCTGAATAGCTACTATATGTCAGTGCTGTGCAAGGTATTACACTCTGTAAT
TGAATATTATTCTCAAAAATTGCACATAGTAGAACGCTATCTGGGAAGCTATTTCT
GTTTGATATTCTAGCTTACTCTCAAACATAATTCTATTCTGAGACTAATCTT
ATTCATTCTCTAATATGGCAACCATTATAACCTTAATTATTAAACACACCAAG
TACATTGTTACCTCTATATACCAAGCACATTAAAAGTGCCTTAACAAATGTACT
GCCCTCTTTCCAACAAGAAGGACTGAGAGATGCAGAAATATTGTGACAAAAATTAA
AGCATTAGAAAATT

FIGURE 74

MARCFSLVLLLTSIWTTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNFTAKEACR
LLGLSLAGKDQVETALKASFETCSYGVGDGFVISRISPNSPKCGKNGVGVLIWKVPVSRQF
AAYCYNSSDTWNTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTPP
APASTSIPRRKKLICVTEVFMETSTMSTETEPFVENKAALKNEAAGFGGVPTALLVLALLFF
GAAAGLGFCYVKRYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKKTDKNPEESKSP
SKTTVRCLEAEV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

FIGURE 75

AGATGGCGGTCTGGCACCTCTAATTGCTCTCGTGTATCGGTGCCCGACTTCACGATGG
CTCGCCCAACCTACTACCTTCTGTCGGCCCTGCTCTGCTGCCTCCTACTCGTGAGGAA
ACTGCCGCCGCTCTGCCACGGTCTGCCACCCAACGCGAAGACGGTAACCGTGTGACTTTG
ACTGGAGAGAAGTGGAGATCCTGATGTTCTCAGTGCCATTGTGATGATGAAGAACCGCAGA
TCCATCACTGTGGAGCAACATATAAGCAACATTTCATGTTAGTAAAGTGGCAACACAAT
TCTTTCTTCCGCTTGGATATTGCATGGGCCTACTTACATCACACTCTGCATAGTGTCC
TGATGACGTGCAAACCCCCCTATATATGGGCCCTGAGTATATCAAGTACTTCAATGATAAA
ACCATTGATGAGGAACTAGAACGGGACAAGAGGGTCACTGGATTGTGGAGTTCTTGCAA
TTGGTCTAATGACTGCCATCATTGCCCTATCTATGCTGACCTCTCCCTAAATACAAC
GTACAGGGCTAAATTTGGAAAGGTGGATGTTGGACGCTATACTGATGTTAGTACGGTAC
AAAGTGAGCACATCACCCCTACCAAGCAACTCCCTACCCGTATCCTGTTCCAAGGTGGCAA
GGAGGCAATGCGCGGCCACAGATTGACAAGAAAGGACGGGCTGTCTATGGACCTCTCTG
AGGAGAATGTGATCCGAGAATTAACTTAAATGAGCTATACCAGCGGGCCAAGAAACTATCA
AAGGCTGGAGACAATATCCCTGAGGAGCAGCCTGTGGCTCAACCCCCACCACAGTGTCA
TGGGGAAAACAAGAAGGATAAATAAGATCCTCAGTTGGCAGTGCTTCTCCTGTCAATT
CCAGGCTTTCCATAACCACAAGCCTGAGGCTGCAGCCTTNATTNATGTTCCCTTGG
CTGNGACTGGNTGGGCAGCATGCAGCTCTGATTAAAGAGGCATCTAGGAATTGTCAG
GCACCCCTACAGGAAGGCCTGCCATGCTGTGCCACTGTTCACTGGAGCAAGAAAGAGATC
TCATAGGACGGAGGGGGAAATGGTTCCCTCCAAGCTTGGTCAGTGTGTTACTGCTTATC
AGCTATTGACACATCTCCATGGTTCTCCATGAAACTCTGTGGTTCATCATTCCCTT
TTGACCTGCACAGCTTGGTAGACCTAGATTAAACCTAAGGTAAGATGCTGGGTATAGAA
CGCTAAGAATTTCCCCAAGGACTCTGCTTCAAGCCCTCTGGCTTGTATGGTC
TTCATTAAAAGTATAAGCCTAACTTGTGCTAGTCCTAAGGAGAAACCTTAACCACAAAG
TTTTATCATTGAAGACAATATTGAACAAACCCCTATTTGTGGGATTGAGAAGGGGTGAA
TAGAGGCTGAGACTTCCCTTGTGTGGTAGGACTTGGAGGAGAAACCCCTGGACTTCAC
TAACCCCTGACATACTCCCCACACCCAGTTGATGGCTTCCGTAATAAAAGATTGGGATT
TCCTTTG

FIGURE 76

MAVLAPLIALVYSVPRLSRWLAQPYYLLSALLSAAFLLVRKLPPCHGLPTQREDGNPCDFD
WREVEILMFLSAIVMMKNRRSITVEQHIGNIFMF SKVANTILFFRLDI RMGLLYITLCIVFL
MTCKPPL YMGPEYIKYFNDKTIDEELERDKRVTWIVEFFANWSNDCQSFAPIYADLSLKYNC
TGLNFGKVDVGRYTDVSTRYKVSTSPLTKQLPTLILFQGGKEAMRRPQIDKKGRAVSWTFSE
ENVIREFNLNELYQRACKLSKAGDNI PEEQPVASTPTTVSDGENKKDK

Signal sequence:

amino acids 1-48

Transmembrane domain:

amino acids 111-125

N-glycosylation site.

amino acids 165-169, 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 154-158, 265-269

Casein kinase II phosphorylation site.

amino acids 51-55, 145-149, 245-249, 286-290, 288-292

N-myristoylation site.

amino acids 188-194, 225-231

Myb DNA-binding domain repeat signature 1.

amino acids 244-253

FIGURE 77

FIGURE 78

MGLLLLVPLLLLPGSYGLPFYNGFYYSNSANDQNLGNHGKDLLNGVKLVVETPEETLFTYQ
GASVILPCRYRYEPALVSPRRVRVKWWKLSENGAPEKDVLAIGLRHRSFGDYQGRVHLRQD
KEHDVSLEIQDLRLEDYGRYRCEVIDGLEDESGLVELELRGVVFVQSPNGRYQFNFHEGQQ
VCAEQAAVVASFEQLFRAWEELDWNCAGWLQDATVQYPIMLPRQPCGGPGLAPGVRSYGPR
HRRLHRYDVFCFATALKGRVYYLEHPEKLTLTEAREACQEDDATIAKVGQLFAAWKFHGLDR
CDAGWLADGSVRYPVVHPHPNCGPPEPGVRSFGFPDPQSRLYGVYCYRQH

Signal sequence:

amino acids 1-17

Casein kinase II phosphorylation site.

amino acids 29-33, 53-57, 111-115, 278-282

Tyrosine kinase phosphorylation site.

amino acids 137-145

N-myristoylation site.

amino acids 36-42, 184-190, 208-214, 237-243, 297-303, 307-313

FIGURE 79

GGAGAGCGGAGCGAAGCTGGATAACAGGGGACCG**A****T**GATGTGGCGACCATCAGTTCTGCTGC
TTCTGTTGCTACTGAGGCACGGGCCAGGGGAAGCCATCCCCAGACGCAGGCCCTCATGGC
CAGGGGAGGGTGCACCAGGCGCCCCCTGAGCGACGCTCCCCATGATGACGCCACGGAA
CTTCCAGTACGACCATGAGGCTTCCTGGACGGGAAGTGGCAAGGAATTGACCAACTCA
CCCCAGAGGAAAGCCAGGCCGTCTGGGCGGATCGTGGACCGCATGGACCGCGGGGAC
GGCGACGGCTGGGTGCGCTGGCGAGCTCGCGTGGATCGCGCACACGCAGCAGCGGA
CATACGGACTCGGTGAGCGCGGCCTGGACACGTACGACACGGACCGCGACGGCGTGTGG
GTTGGGAGGAGCTGCGCAACGCCACCTATGCCACTACGCCACCGCGCTGGATGGAC
GTGGAGGATGCAGAGACCTACAAAAAGATGCTGGCTGGGACGAGCGCGTTCCGGTGGC
CGACCAGGATGGGACTCGATGCCACTCGAGAGGAGCTGACAGCCTCCTGCACCCCGAGG
AGTTCCCTCACATGCGGACATCGTATTGCTGAAACCCCTGGAGGACCTGGACAGAAACAA
GATGGCTATGTCCAGGTGGAGGAGTACATCGGGATCTGTAACGCCAGCCTGGGAGGA
GGAGCCGGCGTGGTGAGACGGAGAGGCAGCAGTTCCGGACTTCCGGATCTGAACAAGG
ATGGGCACCTGGATGGAGTGGAGGTGGCCACTGGGTGCTGCCCTGCCAGGACCGCCC
CTGGTGGAAGCCAACCAACCTGCTGCACGAGAGCGACACGGACAAGGATGGCGGCTGAGCAA
AGCGGAAATCCTGGTAATTGGAACATGTTGTGGCAGTCAGGCCACCAACTATGGCGAGG
ACCTGACCCGGCACCACGATGAGCT**G****A****C**CGCGCACCTGCCACAGCCTCAGAGGCCCG
CACAATGACGGAGGAGGGGCCGTGGTCTGGCCCTCCCTGTCCAGGCCCGCAGGAG
GCAGATGCAGTCCCAGGCATCCTCTGCCCTGGCTCTCAGGGACCCCTGGTCGGCTTC
TGTCCTGTACACCCCCAACCCCAAGGGAGGGCTGTATAGTCCCAGAGGATAAGCAATAC
CTATTTCTGACTGAGTCTCCAGCCAGCCAGGGACCCCTGGCCCAAGCTCAGCTCTAA
GAACCGCCCCAACCCCTCCAGCTCCAAATCTGAGCCTCCACCATAGACTGAAACTCCCCT
GGCCCCAGCCCTCTCTGCCCTGGCCTGGACACCTCCTCTGCCAGGAGGAATAA
AAGCCAGCGCCGGACCTTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

FIGURE 80

MMWRPSVLLLLLRLHGAQGKPSPDAGPHGQGRVHQAAPLSDAPHDDAHGNFQYDHEAFLGR
EVAKEFDQLTPEESQARLGRIVDRMDRAGDGWVSLAELRAWIAHTQQRHIRDSVSAAWDT
YDTDRDGRVGWEELRNATYGHYAPGEFHDVEDAETYKKMLARDERRFRVADQDGDSMATRE
ELTAFLHPEEFPHMRDIVIAETLEDLRNKGYVQVEEYIADLYSAEPGEEPAWVQTERQQ
FRDFRDLNKDGHLDGSEVGHVLPPAQDQPLVEANHLLHESDTDKGRLSKAEILGNWNMFV
GSQATNYGEDLTRHHDEL

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 140-144

Casein kinase II phosphorylation site.

amino acids 72-76, 98-102, 127-131, 184-188, 208-212, 289-293,
291-295, 298-302

N-myristoylation site.

amino acids 263-269, 311-317

Endoplasmic reticulum targeting sequence.

amino acids 325-330

FIGURE 81

GGGGCCTTGCCTTCCGCACTCGGGCGCAGCCGGGTGGATCTCGAGCAGGTGCGGAGCCCCGG
GC GGCGGGCGGGTGCAGGGATCCCTGACGCCTCTGTCCCTGTTCTTGTCGCTCCCAG
CCTGTCTGTCGTTGGCGCCCCGCCTCCCGCGGTGCAGGGTTGCACACCGATCCTG
GGCTTCGCTCGATTGCCGCGAGGCCTCCAGACCTAGAGGGCGCTGGCTGGAGCAG
CGGGTCGTCTGTCTCTCTCGGCCGCCCGGGATCCGAAGGGTGCAGGGCTCT
GAGGAGGTGACGCAGGGCCTCCGCACCCCTGGCCTGCCGATTCTCCCTCTCCCAG
GTGTGAGCAGCCTATCAGTCACCATGTCCGCAGCCTGGATCCGGCTCTCGGCCTCGGTGTG
TGTCTGCTGCTGCTGCCGGGCCGGCAGCGAGGGAGCCGCTCCATTGCTATCACATG
TTTACAGAGGCTGGACATCAGGAAAGAGAAAGCAGATGTCTCTGCCAGGGGGCTGCC
CTCTTGAGGAATTCTCTGTGTATGGGAACATAGTATATGCTTCTGTATCGAGCATATGTGGG
GCTGCTGTCCACAGGGAGTAATCAGCAACTCAGGGGACCTGTACGAGTCTATA
GGCGAGAAAATTCCTCAGTAGATGCCAATGGCATCCAGTCTCAAATGCTTCTAGAT
GGTCTGCTTCTTCACAGTAACAAAGGCAAAGTAGTACACAGGAGGCCACAGGACAAGCA
GTGTCCACAGCACATCCACCAACAGGTAACAGACTAAAGAAAACACCCGAGAAGAAA
CAATAAGAGATTGAAAGCAGACATTGCATTCTGATTGATGGAGCTTAAATATTGGCAGC
GCCGATTTAACAGAAGAATTGTTGGAAAAGTGGCTCTAATGTTGGAAATTGGAACA
GAAGGACACATGTGGCCTTGTCAAGCCAGTGAACATCCAAAATAGAATT
AAACTTACATCAGCCAAAGATGTTGTTGCCATAAGGAAGTAGGTTCAGAGGGGTA
ATTCCAATACAGGAAAAGCCTGAAGCATACTGCTCAGAAATTCTTCACGGTAGATGCTGGA
GTAAGAAAAGGATCCCCAAAGTGGTGGTGGTATTGATGGCTCTGATGACAT
CGAGGAAGCAGGCATTGTGGCCAGAGAGTTGGTGTCAATGTATTATAGTTCTGTGGCCA
AGCCTATCCCTGAAGAACTGGGATGGTCAGGATGTCACATTGTTGACAAGGCTGTCTGT
CGGAATAATGGCTTCTTCTTACACATGCCAACTGGTTGGCACCACAAAATACGTAAA
GCCTCTGGTACAGAAGCTGTCACTCATGAACAAATGATGTGCAAGACCTGTTATAACT
CAGTGAACATTGCCCTTAATTGATGGCTCCAGCAGTGGAGATAGCAATTCCGCCTC
ATGCTGAATTGTTCCAACATAGCCAAGACTTTGAAATCTGGACATTGGTGCCAAGAT
AGCTGCTGTACAGTTACTTATGATCAGCGCACGGAGTTCACTGACTATAGCACCA
AAGAGAATGTCCTAGCTGTCACTCAGAAACATCCGCTATATGAGTGGTGGAAACAGCTACTGGT
GATGCCATTCTTCACTGTTAGAAATGTGTTGGCCCTATAAGGGAGAGGCCAACAGAA
CTTCCTAGTAATTGTCACAGATGGCAGTCCTATGATGATGTCAGGCTGCAGCTGCTG
CACATGATGCAGGAATCACTATCTCTGTGTTGGCTGGCACCTCTGGATGACCTG
AAAGATATGGCTCTAAACCGAAGGAGTCTCACGCTTCTTACAAGAGAGTTCA
AGAACCATTGTTCTGATGTCATCAGAGGCATTGAGAGATTCTTAGAATCCCAGCAAT
AATGGTAACATTGACAACTGAAAGAAAAAGTACAAGGGGATCCAGTGTGAAATTGATT
CTCATAATACTGAAATGCTTCTGATCAGTAAAGCAGATACAAAATATTAAGTATGTCAAC
AGCCATTAGGCAAATAAGCACTCCTTAAAGCCGCTGCCTCTGGTTACAATTACAGTGT
ACTTTGTTAAAACACTGCTGAGGCTTCATAATCATGGCTCTTAGAAA
GATAATGTGGATTAAAACCTTAAGAGTTCTAACCATGCCTACTAAATGTACAGATATGCAA
TTCCATAGCTCAATAAGAATCTGATACTTAGACCAAAAAAAA

FIGURE 82

MSAAWIPALGLGVCLLLLPGPAGSEAAPIAITCFTRGLDIRKEKADVLCPGGCPLEEFSVY
GNIVYASVSSICGAAVHRGVISNSGGPVRYSLPGRENYSSVDANGIQSQMLSRWSASFTVT
KGKSSTQEATGQAVSTAHPPTGKRLKKTPEKKTGNKDCKADIAFLIDGSFNIGQRRFNLQKN
FVGKVALMLGIGTEGPHVGLVQASEHPKIEFYLKNFTSAKDVLFAIKEVGFRGGNSNTGKAL
KHTAQKFFTVDAGVRKGIPKVVVVFIDGWPSSDIEEAGIVAREFGVNVFIVSVAKPIPEELG
MVQDVTFVDKAVCRNNGFFSYHMPNWFGTTKYVKPLVQKLCTHEQMMCSKTCYNSVNIAFLI
DGSSSVGDSNFRLMLEFVSNIAKTFEISDIGAKIAAVQFTYDQRTEFSFTDYSTKENVLAVI
RNIRYMSGGTATGDAISFTVRNVFGPIRESPNKNFLVITDGQSYDDVQGPAAAHDAGITI
FSVGVAWAPLDDLKDMASKPKESHAFFTREFTGLEPIVSDVIRGICRDFLESQQ

Signal sequence:

amino acids 1-24

N-glycosylation site.

amino acids 100-104, 221-225

Casein kinase II phosphorylation site.

amino acids 102-106, 129-133, 224-228, 316-320, 377-381, 420-424,
425-429, 478-482, 528-532

N-myristoylation site.

amino acids 10-16, 23-29, 81-87, 135-141, 158-164, 205-211,
239-245, 240-246, 261-267, 403-409, 442-448, 443-449

Amidation site.

amino acids 145-149

FIGURE 83

CGCCGCGCTCCGCACCCGGGCCACCGCGCCGCTCCGCATCTGCACCCGCAGCCC
GGCGGCCTCCGGCGGGAGCGAGCAGATCCAGTCAGTCCGGCCCGCAGCGAACTCGGTCCAGTCG
GGCGCGGGCTGCGGGCGCAGAGCGGAGATGCAGCGGCTGGGCCACCTGCTGTGCCTGC
TGCTGGCGCGGGCTCCACGGCCCCCGCGCCGCTCCGACGGCAGCTCGGCTCCAGTC
AAGCCGGCCGGCTCTCAGCTACCCGAGGAGGCCACCCCTCAATGAGATGTTCCGCGA
GGTTGAGGAAGTGTGGAGGACACGCAGCACAAATTGCGCAGCGCGTGGAAAGAGATGGAGG
CAGAAGAACGCTGCTGCTAAAGCATCATCAGAAGTGAACCTGGCAAACCTACCTCCAGCTAT
ACAATGAGACCAACACAGACACGAAGGTTGAAATAATACCATGCCAGGAGAAAT
TCACAAGATAACCAACAAACAGACTGGACAAATGGTCTTTCAGAGACAGTTATCACATCTG
TGGAGACGAAGAAGGCAGAAGGAGCAGAGTCATCGACGAGGACTGTGGGCCAGC
ATGTAUTGCCAGTTGCCAGCTTCACTACACCTGCCAGCCATGCCAGGGCAGAGGATGCT
CTGCACCCGGGACAGTGAGTGTGGAGACCAGCTGTGTCTGGGTCACTGCACCAAAA
TGGCCACCAGGGGAGCAATGGGACCATCTGTGACAACCAGAGGGACTGCCAGCCGGGCTG
TGCTGTGCCTTCCAGAGAGGGCTGCTGTTCCCTGTGTCACACCCCTGCCGTGGAGGGCGA
GCTTGCATGACCCGCCAGCCGGCTCTGGACCTCATCACCTGGAGCTAGAGCCTGATG
GAGCCTGGACCGATGCCCTGTGCCAGTGGCTCCTGCAAGCCCCACAGCCACAGCCTG
GTGTATGTGCAAGCCACCTCGTGGGGAGCCGTACCAAGATGGGAGATCCTGCTGCC
CAGAGAGGTCCCCGATGAGTATGAAGTTGCCAGCTCATGGAGGAGGTGCCAGGAGCTGG
AGGACCTGGAGAGGAGCCTGACTGAAGAGATGGCGCTGGGGAGCCTGCCGCTGCCGCT
GCACTGCTGGAGGGAAAGAGATTTAGATCTGGACCAAGGCTGTGGTAGATGTGCAATAGAA
ATAGCTAATTATTTCCCCAGGTGTGCTTAGGCGTGGCTGACCAGGCTTCTCCTACA
TCTTCTCCAGTAAGTTCCCTCTGGCTTGACAGCATGAGGTGTTGTCATTGTTCA
TCCCCCAGGCTGTTCTCCAGGCTTCACAGTCTGGCTTGGAGAGTCAGGCAGGGTTAAC
TGCAGGAGCAGTTGCCACCCCTGTCCAGATTATTGGCTGCTTGCCTCTACCAGTTGCCAG
ACAGCCGTTGTTCTACATGGCTTGATAATTGTTGAGGGAGGAGATGGAAACAATGTGG
AGTCTCCCTTGATTGGTTGGGAAATGTGGAGAAGAGTGCCTGCTTGCAACATCAA
CCTGGCAAAATGCAACAAATGAATTTCACCGAGTTCTTCATGGCATAGGTAAGCTG
TGCCTTCAGCTGTTGCAGATGAAATGTTCTGTTCACTACATGTTTATTCA
AGCAGTGTGCTCAGCTCCTACCTCTGTGCCAGGGCAGCATTTCATATCCAAGATCAATT
CCTCTCAGCACAGCCTGGGAGGGGTATTGTTCTCGTCCATCAGGGATCTCAGAG
GCTCAGAGACTGCAAGCTGCTGCCAAGTCACACAGCTAGTGAAGACCAGAGCAGTTCA
CTGGTTGTGACTCTAAGCTCAGTGTCTCTCCACTACCCACACCAGCCTGGTGCCACCAA
AAAGTGTCCCCAAAAGGAAGGAGAATGGATTTTCTTGAGGCATGCACATCTGGAATTAG
GTCAAACATAATTCTCACATCCCTCTAAAGTAAACTACTGTTAGGAACAGCAGTGTCTCAC
AGTGTGGGGAGCCGTCTCTAATGAAGACAATGATATTGACACTGTCCCTTTGGCAGT
TGCATTAGTAACATTGAAAGGTATATGACTGAGCGTAGCATAAGGTAACCTGCAGAAACA
GTACTTAGGTAATTGTAGGGCGAGGATTATAATGAAATTGCAAACACTTAGCAGCAAC
TGAAGACAATTATCACCAACAGTGGAGAAAATCAAACCGAGCAGGGCTGTTGAAACATGGTT
GTAATATGCGACTGCGAACACTGAACCTACGCCACTCCACAAATGATGTTTCAGGTGTCA
TGGACTGTTGCCACCATGTATTGACAGTTCTTAAAGTTAAAGTTGACATGATTGTA
TAAGCATGCTTCTTGAGTTAAATTATGATAAACATAAGTTGCATTAGAAATCAAGC
ATAAAACTCACTGCAAAAAAAAAAAAAAA

FIGURE 84

MQRLGATLLCLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQ
HKLRSAVEEMEAEEAAAKASSEVNLPPSYHNETNTDTKGNNTIHVHREIHKITNNQTG
QMVFSETVITSVGDEEGRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTRDECCG
DQLCVWGHCTKMATRGSNGTICDNQRDCQPGLCQAFQRGLFPVCTPLPVEGELCHDPASRL
LDLITWELEPDGALDRCPASCGLLQPHSHSLVYVCKPTFVGSRDQDGIELLPREVPEYEV
GSFMEEVRQELEDLERSLTEEMALGEPAAAAALLGGEI

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316,
327-331

N-myristoylation site.

amino acids 202-208, 217-223

Amidation site.

amino acids 140-144

FIGURE 85

AAGGAGGGCTGGGAGGAAGAGGTAAGAAAGGTTAGAGAACCTACCTCACATCTCTGGGCTCAGAAGGACTCTG
AAGATAACAATAATTTCAGCCCATCCACTCTCCTTCCCAAACACACATGTGCATGTACACACACACATACA
CACACATACACCTCCTCCTTCACTGAAGACTCACAGTCACTCACTCTGTGAGCAGGTCAAGAAAAGGACAC
TAAAGCCTTAAGGACAGGCCTGCCATTACCTCTGCAGCTCTGGCTTGAGTCAAAAACATGGGAGGG
CCAGGCACGGTCACTCACACCTGTAATCCCAGCATTGGGAGACCGAGGTGAGCAGATCACTTGAGGTCAAGGAG
TTCGAGACCAGCCTGCCAACATGGAGAAACCCCCATCTCTACTAAAATACAAAAATTAGCCAGGAGTGGTGC
AGGTGCCTGTAATCCCAGCTACTCAGGTGGCTGAGGCCAGGAGAATCGCTGTAATCCAGGAGGCCAGGATGCAGT
CAGCTGAGTGCACCGCTGCACTCCAGCCTGGTGCAGAATGAGACTCTGTCTCAAACAAACACACGGGAGGA
GGGGTAGATACTGCTCTGCAACCTCCTTAACCTGATCCTCTTCCAGGGCTGCCCTGATGGGCTG
GCAATGACTGAGCAGGCCAGAGGACAGGAAAGGAGAAGGCATATTGAGGAGGGCAAGAAGTGAACGCCCG
GTGAGAATGACTGCCCTGGGAGGGTCTTGGGAGGGTGGCTGACCCCTACCCCTGCAATGTTCCCTGCCCTCA
AAGAGCAGGACTCCAGACTCTCTTGTAATGGTCCCTGCCACTGCACTGTGCCGTGGTACCCCTGGCATGTTCCCTGCCCTCA
ACTCTGCTAGCTTGGGTGGCTGGCACTGCCACTGCACTGTGCCGTGGTACCCCTGGCATGTTCCCTGCCCTCA
GTGTGCCCTGCCAGATCCGGCCCTGGTATACGCCCGCTGCTCCTACCGCAGGCTACCCACTGTGGACTGCAATGA
CCTATTCCCTGACGGCAGTCCCCCGGCACTCCCCGCAAGCACACAGACCCCTGCTGCAAGAGCAACAGCATTG
CCGTGAGGACAGTGTGATTCCATGCCCTGCCAGCTGCTGAGCCTGCACCTAGAGGAGAACAGCTGACCCGGCT
TGCCCGAGACTGTGATTCCATGCCCTGCCAGCTGCTGAGCCTGCACCTAGAGGAGAACAGCTGACCCGGCT
GGAGGACACAGCTTGCAAGGCTGGCAGCCATAGGAACCTATCTCAACACCACACCAGCTACCGCATTGC
CCCCAGGGCCTTCTGCCCTCAGCAACTTGTGCGGCTGCACCTCAACTCCAACCTCTGAGGGCATTGACAG
CCGCTGGTTGAAATGCTGCCAACTGGAGACTCATGATTGGGGCAACAAAGGTAGATGCCATCTGGACAT
GAACCTCCGGCCCTGCCAACCTGCGTAGCCTGGTCTAGCAGGATGAACCTGCGGGAGATCTCGACTATGC
CCTGGAGGGCTGCAAAGCCTGGAGAGCCTCTCTATGACAACCAGCTGCCCGGGTGCCTAGGGCAGGACT
GGAACAGGTGCCGGCTCAAGTTCTAGACCTCAACAAGAACCCCTCAGCGGGTAGGGCGGGGACTTGC
CAACATGCTGACCTTAAGGAGCTGGGACTGAACAACATGGAGGAGCTGGCTCCATGACAAGTTGCCCTG
GAACCTCCCCGAGCTGACCAAGCTGGACATACCAATAACCCACGGCTGCTCCTCATCCACCCCGCGCCTTCA
CCACCTGCCCGAGATGGAGACCCCTCATGCTCAACAAACACGCTCTCAGTGCCTGCACAGCAGACGGTGGAGTC
CCTGCCCAACCTGCAAGGAGTAGGCTCTCCACGGCAACCCATCCGCTGTGACTGTGTCATCCGCTGGCCAATGC
CACGGGCAACCGTGTCCACGGCAATCCACCCCTGTGCGGAGCTCCAGCAGACGGTGGAGTC
GGTCCGTGAGGTGCCCTTCCGGAGATGACGGACCATGTTGCCCTCATCTCCCCAGGAAGCTTCCCCCAAG
CCTCCAGGTAGCCAGTGGAGAGAGCATGGTGTGCAATTGCCGGCACTGGCGAACCCGAACCCAGAGATCTACTG
GGTCACTCCAGCTGGCTCGACTGACACCTGCCATGCAAGGAGGTACCCGGTGTACCCGAGGGGACCT
GGAGCTGCCAGGGTGACAGCAGAACAGGGCTATACACCTGTGTTGGCCAGAACCTGGTGGGGCTGACAC
TAAGACGGTTAGTGTGGTTGTGGCCGTGCTCTCTCCAGCCAGGAGGGACAGGGAGACAGGGCTGGAGCTCG
GGTCAGGAGACCCACCCCTATCACATCCTGCTATCTGGGTCAACCCACCCAGTGTCCACCAACCTCAC
CTGGTCCAGTGCCTCTCCCTCCGGGCCAGGGGCCACAGCTGGCCCGCTGCCTGGGAACCCACAGCTA
CAACATTACCCGCTCTCAGGCCACGGAGTACTGGGCTGCCGTGCAAGTGGCCTTGCTGATGCCACACCA
GTTGGCTTGTGATGGGCCAGGACAAAGAGGCCACTCTTGCCACAGAGCCTAGGGGATGTCCTGGCTCAT
TGCCATCCTGGCTCTGCTGTGCTCTCTGGCAGCTGGCTAGGGCCACCTTGGCACAGGCCAACCCAGGAA
GGGTGTGGGTGGAGGCGGCCTCTCCCTCAGCCTGGGTTCTGGGCTGGAGTGCCTCTGTGTCGGGTG
GTCTGCTCCCTCGTCCCTGCCCTGGAATCCAGGGAGGAAGCTGCCAGATCCTCAGAAGGGAGACACTGTTGCC
ACCATTGTCTCAAATTCTGAAAGCTCAGCCTGTTCTCAGCAGTAGAGAAATCACTAGGACTACTTTTACCAA
AGAGAACAGTCTGGGCCAGATGCCCTGCCAGGAAGGACATGGACCCACGTGCTGAGGGCTGGCAGCTGGC
CAAGACAGATGGGGTTTGTGGCCCTGGGGTGTCTGCAAGCCTGAAAAAGTTGCCCTACCTCTAGGGTCA
CCTCTGCTGCCATTCTGAGGAACATCTCAAGGAACAGGAGGGACTTTGGCTAGAGCCTCTGCCCTCCCATCTT
CTCTCTGCTGCCAGGGCTCTGGCTGGCTTCTGCCCCACCTGTGCTGCCCCGGGCTGCACCCCTTCCCTCTC
TCTTCTCTGCTACAGTCTGCTGCTCTGTGCTCTGGCACAGGAGGGCTGAAGGAGGCCACTCCATCTCAC
CTCGGGGGCTGCCCTCAATGTGGGAGTGACCCAGCCAGATCTGAAGGACATTGGAGAGGGATGCCAGGAA
CGCCCTCATCTCAGCAGCCTGGCTGGCATTCCGAAGCTGACTTTCTATAGGAAATTGTACCTTGTGGAGAA
ATGTGTCACCTCCCCAACCGATTCACTCTTCTCTGTTGAAAAAATAAAATAACAATAAAA
AAAA

FIGURE 86

MRLLVAPLLLAWVAGATATVPVVPWHVPCPPQCACQIRPWYTPRSSYREATTVDCNDLFLTA
VPPALPAGTQTLLLQSNSIVRVDQSELGYLANLTELDSQNSFSDARDCDFHALPQLLSLHL
EENQLTRLEDHSFAGLASLQEELYLNHNQLYRIAPRAFSGLSNLLRLHLSNLLRAIDSRWFE
MLPNLEILMIGGNKVDAILDMNFRPLANRSLVLAGMNLRREISDYALEGLQSLESLSFYDNQ
LARVPRRALEQVPGKLFDLNKNPLQRVGPGDFANMLHLKELGLNNMEELVSIDKFALVNLP
ELTKLDITNNPRLSFIHPRAFHLPQMELTMLNNNALSALHQQTVESLPNLQEVGLHGNPIR
CDCVIRWANATGTRVRFIEPQSTLCAEPPDLQRLPVREVPFREMTDHCLPLISPRSFPPSLQ
VASGESMVLHCRALAEPEPEIYWVTPAGRLTPAHAGRRYRVYPEGTLELRRVTAAEAGLYT
CVAQNLVGDADTKTVSVVGRALLQPGRDEGQGLELRVQETHPYHILLSWTPPPNTVSTNLTW
SSASSLRGQQATALARLPRGTHSYNITRLLQATEYWACLOVAFADAHTQLACVWARTKEATS
CHRALGDRPGLIAILALAVLLAAGLAHLGTGQPRKGVGGRRLPPAWAFWGWSAPSVRVV
SAPLVLPWNPGRKLPRSSEGETLLPPLSQNS

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 629-648

N-glycosylation site.

amino acids 94-98, 381-385, 555-559, 583-587

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 485-489

Casein kinase II phosphorylation site.

amino acids 46-50, 51-55, 96-100, 104-108, 130-134, 142-146,
243-247, 313-317, 488-492, 700-704

Tyrosine kinase phosphorylation site.

amino acids 532-540

N-myristoylation site.

amino acids 15-21, 493-499, 566-572

Amidation site.

amino acids 470-474, 660-664, 692-696

FIGURE 87

GCAAGCCAAGGCCTGTTGAGAAGGTGAAGAAGTCCGGACCCATGTGGAGGAGGGGGACATTGTGTACCGCCT
CTACATGCGGCAGACCATCATCAAGGTGATCAAGTTCATCCTCATCATCTGCTACACCGTCTACTACGTGCACAA
CATCAAGTTGACGTGGACTGCACCGTGGACATTGAGAGCCTGACGGGCTACCGCACCTACCGCTGTGCCAACCC
CCTGCCACACTCTCAAGATCCTGGCGTCCTCTACATCAGCCTAGTCATCTCTACGCCCATCTGCATGTA
CACACTGTGGTGGATGCTACGGCGCTCCCTCAAGAAGTACTCGTTGAGTCGATCCGTGAGGAGAGCAGCTACAG
CGACATCCCCGACGTCAAGAACGACTTCGCCTCATGCTGACCTCATTGACCAAATCGACCCGCTACTCCAA
GCGCTTCGCCGTCTCTGCGAGGTGAGTGAGAACAGCTGCGGCAGCTGAACCTCAACAACGAGTGGACGCT
GGACAAGCTCCGGCAGCGGCTACCAAGAACCGCAGGACAAGCTGGAGCTGACCTGTTCATGCTCAGTGGCAT
CCCTGACACTGTGTTGACCTGGTGGAGCTGGAGGTCTCAAGCTGGAGCTGATCCCAGCTGACCATCCCGCC
CAGCATTGCCAGCTCACGGCCTCAAGGAGCTGTGGCTTACCAACAGCGGCCAAGATTGAAGCGCCTGCGCT
GGCCTTCCTGCGGAGAACCTGCGGGCGCTGCACATCAAGTTACCGACATCAAGGAGATCCCCTGTGGATCTA
TAGCCTGAAGACACTGGAGGAGCTGCACCTGACGGCAACCTGAGCGCGAGAACACCGCTACATCGTCATCGA
CGGGCTGCGGGAGCTCAAACGCTCAAGGTGCTGCGGCTCAAGAGCAACCTAACGCAAGCTGCCACAGGTGGTCA
AGATGTGGCGTGCACCTGCAGAACGCTGTCCATCAACAATGAGGGCACCAAGCTCATCGTCCTCAACAGCCTCAA
GAAGATGGCGAACCTGACTGAGCTGGAGCTGATCCGCTGCGACCTGGAGCGCATCCCCCATCTTCAGCCT
CCACAACCTGCAAGGAGATTGACCTCAAGGACAACAAACCTCAAGAACCATCGAGGAGATCATCAGCTTCCAGCACCT
GCACCGCCTCACCTGCCCTAACGCTGTTAACACCACATCGCCTACATCCCCATCCAGATCGGCAACCTCACCAA
CCTGGAGGCCCTCTACCTGAAACCGAACAAAGATCGAGAACAGATCCCCACCCAGCTTCTACTGCCGCAAGCTGCG
CTACCTGGACCTCAGCCACAACACCTGACCTTCCCTGCCGACATCGCCTCCTGCGAGAACCTCCAGAACCT
AGCCATCACGGCAACCGGATCGAGACGCTCCCTCCGGAGCTTCCAGTGCCGGAAGCTGCGGGCCCTGCACCT
GGGCAACAACGTGCTGCACTGCCCTCCAGGGTGGCGAGCTGACCAACCTGACGAGATCGAGCTGCGGG
CAACCGCTGGAGTGCCTGCTGTGGAGCTGGCGAGTGCCACTGCTCAAGCGCAGCGGCTTGGTGGAGGA
GGACCTGTTCAACACACTGCCACCCGAGGTGAAGGAGCGCTGTGGAGGGCTGACAAGGAGCAGGCCTGAGCGAG
GCCGGCCAGCACAGCAAGCAGCAGGACCGCTGCCAGTCCTCAGGCCGGAGGGCAGGCCAGCTCTCCAG
AACTCCGGACAGCCAGGACAGCCTCGCGCTGGCAGGGAGCTGGGGCGCTGTGAGTCAGGCCAGAGCGAGA
GGACAGTATCTGTGGGGCTGGCCCTTTCTCCCTCTGAGACTCACGTCCCCCAGGGCAAGTGTGAGGAG
AGCAAGTCTCAAGAGCGCAGTATTGGATAATCAGGGTCTCCTCCCTGGAGGCCAGCTCTGCCAGGGCTGAG
CTGCCACCAGAGGTCTGGACCCCTCACTTTAGTTCTGGTATTATTTCTCCATCTCCACCTCCTTCATCC
AGATAACTTATACATTCCAAGAAAGTTAGCCAGATGGAAGGTGTTCAAGGAAAGGTGGCTGCCCTTCCCC
TTGTCCTTATTAGCGATGCCGCCGGCATTAAACACCCACCTGGACTTCAGCAGAGTGGTCCGGGCGAACAG
CCATGGGACGGTCACCCAGCAGTGCCGGCTGGCTCTCGCGTGCAGTCCACGGGAGAGCAGGCCAGCTGG
AAGGCCAGGCCCTGGAGCTGCCCTCAGTTTGTTGTGGCAGTTAGTTAGTTAGTTAGTTAGTTAGTT
AAACAATTTTTAAAAAAAAGCTTGAAAATGGATGGTTGGGTATTAAAAAGAAAAAAACTAAAAAAA
AAAAGACACTAACGCCAGTGAAGTGGAGTCTCAGGGCAGGGTGGCAGTTCCCTTGAGCAAGGCCAGACGT
TGAAGTGTGTTCTCTTCCCTGGGGAGGGAGGTTTTGTGTTTTGGGTTTTGGTGTCTGTTCTTCTCCT
CTATTGTTCTGGCAGGCACTCATTTCTGTGGCTGTCGGCCAGAGGGAAATGTTCTGGAGCTGCCAAGGAGGGAGGAG
ACTCGGGTTGGCTAATCCCCGGATGAAACGGTGCTCCATTGCACCTCCCTCCTGCGCTGCCCTGCCTCTCCA
CGCACAGTGTAAAGGAGCCAAGAGGAGCCACTTCGCCAGACTTGTGTTCCCCACCTCCTGCCAGGGTGT
CCAGTGCCACCGCTGCCCTCGCTGCTTCCATCAGCCCTGCGCACCTGGTCTTCATGAAGAGCAGACACTTA
GAGGCTGGTGGGAATGGGGAGGTGGCAGGGCAGGGTGGCTGGTCCAGGCCAGGGTCCCTGGCC
CTGGAGTGCACACAGCCCAGTGGCACCTGGTGGCTGGAGGCCAACCTGCTTAGATCACTCGGGTCCCCACCT
AGAAGGGTCCCCGCTTAGATCAATCACGTGGACACTAAGGCACGTTTAGAGTCTTGTCTTAATGATTATGT
CCATCCGTCTGTCGTCCATTGTGTTCTGCGTCGTGTCATTGGATATAATCCTCAGAAATAATGCACACTAG
CCTCTGACAACCATGAAGCAAAAATCCGTTACATGTGGGTCTGAACCTGTAGACTCGGTACAGTATCAAATAA
ATCTATAACAGAAAAAA

FIGURE 88

MRQTI IKVIKFILII CYTVYYVHN IKFDVDCTVDIESLTGYRTYRCAHPLATLFKILASFYI
SLVIFYGLICMYTLWWMLRRSLKKYSFESIREESSYSDIPDVKNDFAFMLHLIDQYDPLYSK
RFAVFLSEVSENKLRLQLNLNEWTLDKLRQRLTKNAQDKLELHLMGLSGIPDTVFVLDLVELEV
LKLELIPDVTIPPSIAQLTGLKELWLYHTAAKIEAPALAFRLRENRLRALHIKFTDIKEIPLWI
YSLKTLEELHLTGNLSAENNRYIVIDGLRELKRLKVLRLKSNLSPQVVTDVGVHLQKLSI
NNEGTKLIVLNSLKKMANLTELELIRCDLERIPHISIFSLHNLQEIDLKDNNLKTIEEIISFQ
HLHRLTCLKLWYNHIAYIPIQIGNLTNLERLYLNRNKIEKIPTQLFYCRKLRYLDLSHNNLT
FLPADIGLLQNLQNLAITANRIETLPPELFQCRKLRALHLGNNVLQSLPSRVGEITNLTQIE
LRGNRLECLPVELGECPLLKRSGLVVEEDLFNTLPPEVKERLWRADKEQA

Transmembrane domain:

amino acids 51-75 (type II)

N-glycosylation site.

amino acids 262-266, 290-294, 328-332, 396-400, 432-436, 491-495

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 85-89

Casein kinase II phosphorylation site.

amino acids 91-95, 97-101, 177-181, 253-257, 330-334, 364-368,
398-402, 493-497

N-myristoylation site.

amino acids 173-179, 261-267, 395-401, 441-447

FIGURE 89

GCCTGTTGCTGATGCTGCCGTGCGGTACTTGTCATGGAGCTGGCACTGCGGCGCTCTCCCGT
CCCGCGGTGGTTGCTGCTGCCGCTGCTGGGCCTGAACGCAGGAGCTGTCAATTGACT
GGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCGCAAGGATGCCTACATG
TTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCTGGTCAT
GTGGCTTCAGGGCGGTCCAGGCAGGTTCTAGCACTGGATTGGAAACTTGAGGAAATTGGC
CCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATT
GTGGATAATCCCGTGGGCACTGGGTTCAAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGA
CCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGAACCTTCTCAGTTGCCACAAAG
AATTCCAGACAGTCCATTCTACATTTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGC
ATTGGTCTAGAGCTTATAAGGCCATTCAAGCGAGGGACCATCAAGTGCAACTTGCAGGGGGT
TGCCTTGGGTGATTCTGGATCTCCCTGTTGATTGGTGCCTCCTGGGGACCTTACCTGT
ACAGCATGTCTCTCGAACGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTA
CTGAATGCCGTAAATAAGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGAAAGCAGAAAT
GATCATTGAACAGAACACAGATGGGTGAACCTCTATAACATCTTAACACTAAAGCACTCCA
CGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGGCCACCTAGTTGTCTTCAGCGC
CACGTGAGACACCTACAACGAGATGCCCTAACGCCAGCTCATGAATGGCCCCATCAGAAAGAA
GCTCAAAATTATTCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTGTAACA
TGGAGGAGGACTTCATGAAGCCAGTCATTGACATTGTGGACGAGTTGCTGGAGGCAGGGATC
AACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAAGGAGGCCTG
GGTGGAAACTGAAGTGGCCAGAACTGCCCTAAATTCAAGTCAGCTGAAGTGGAAAGGCCCTGT
ACAGTGACCCCTAAATCTTGAAACATCTGCTTTGTCAAGTCCTACAAGAACCTTGCTTT
TACTGGATTCTGAAAGCTGGTCATATGGTTCCCTCTGACCAAGGGACATGGCTCTGAAGAT
GATGAGACTGGTGAUCAAGAATTAGGATGGATGGGCTGGAGATGAGCTGGTTGGCCT
TGGGGCACAGAGCTGAGCTGAGGCCGCTGAAGCTGTAGGAAGGCCATTCTCCCTGTATCT
AACTGGGGCTGTGATCAAGAAGGTTCTGACCAAGCTCTGCAGAGGATAAAATCATTGTCT
GGAGGCAATTGGAAATTATTCTGCTTCTTAAAAACCTAAGATTTTAAAAAATTGAT
TTGTTTGATCAAATAAAGGATGATAATAGATATTAA

FIGURE 90

MELALRRSPVPRWLLLLPLLGlnAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSC
KNFSELPLVMWLQGGPGGSSTGFGNFEIGPLSDLKPRKTTWLQAASLLFVDNPVGTGFSY
VNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQR
GTIKCNFAGVALGDSWISPVDVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYRE
ATELGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALS
QLMNGPIRKKLKIIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDL
IVDTMGQEAWVRKLKWPELPKFSQLWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVP
SDQGDMALKMMRLVTQQE

Signal sequence:

amino acids 1-25

N-glycosylation site.

amino acids 64-68, 126-130, 362-366

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 101-105

Casein kinase II phosphorylation site.

amino acids 204-208, 220-224, 280-284, 284-288, 351-355, 449-453

N-myristoylation site.

amino acids 22-28, 76-82, 79-85, 80-86, 119-125, 169-175,
187-193, 195-201, 331-337, 332-338, 360-366

FIGURE 91

GGCCGGGGAGAGGAGGCCATGGCGCGCGGGCGCTGCTGCTGGCGCTGCTGGCTC
GGGCTGGACTCAGGAAGCCGGAGTCGCAGGAGGCAGCGCCGTTATCAGGACCATGCGGCCGA
CGGGTCATCACGTGCATCGTGGTGAGAGGACGCCAAGTCACTCGGGCGTTGGCCGTGGCA
GGGGAGCCTGCGCTGTGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGG
CACTCACGGCGCGCACTGCTTGAAACCTATACTGACCTTAGTGATCCCTCCGGGTGGATG
GTCCAGTTGGCCAGCTGACTTCCATGCCATCCTCTGGAGCCTGCAGGCCTACTACACCCG
TTACTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGAATTCACCTATGACATTG
CCTTGGTGAAGCTGCTGCACCTGTACACTAAACACATCCAGCCATCTGTCTCCAG
GCCTCCACATTTGAGTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGGGGTACATCAA
AGAGGATGAGGCACTGCCATCTCCCCACACCCTCCAGGAAGTTCAGGTGCCATATAAACAA
ACTCTATGTGCAACCACCTCTCCTCAAGTACAGTTCCGCAAGGACATCTTGGAGACATG
GTTTGTGCTGGCAACGCCAACGGCGGAAGGATGCCTGCTCAGTGGACTCAGGTGGACCTT
GGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGAGTGGCTGTG
GTCGGCCAATCGGCCGGTGTACACCAATATCAGCCACCACCTTGAGTGGATCCAGAAG
CTGATGGCCCAGAGTGGCATGTCCCAGCCAGACCCCTCCTGGCACTACTCTTTCCCTCT
TCTCTGGGCTCTCCACTCCTGGGCCGGTCTTGAGCCTACCTGAGCCATGCAGCCTGGGC
CACTGCCAAGTCAGGCCCTGGTTCTCTGTCTTGGTAATAAACACATTCCAGTTGA
TGCCTTGCAGGGCATTCTCAAAAAAAAAAAAAAAA

FIGURE 92

MGARGALLALLARAGLRKPESQEAAPLSGPCGRRVITSRIVGGEDAELGRWPWQGSLRLW
DSHVCGVSLLSHRWALTAAHCFETYSDLSDPSGWMVQFGQLTSMPSFWSLQAYYTRYFVSNI
YLSPRYLGNSPYDIALVKLSAPVTYTKHIQPICLQASTFEFENRTDCWVTGWGYIKEDEALP
SPHTLQEJVQVAIINNSMCNHLFLKYSFRKDIFGDMVCAGNAQGGKDACFGDSGGPLACNKNG
LWYQIGVVSWGVGCGRPNRPGVYTNIHHFEWIQKLMAQSGMSQPDPSWPLLFFPLLWALPL
LGPV

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 167-171, 200-204, 273-277

Casein kinase II phosphorylation site.

amino acids 86-90, 134-138, 161-165, 190-194, 291-295

N-myristoylation site.

amino acids 2-8, 44-50, 101-107, 225-231, 229-235, 239-245,
259-265, 269-275

Amidation site.

amino acids 33-37

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 252-263,

Serine proteases, trypsin family, histidine active site.

amino acids 78-84

FIGURE 93

CCCACGGCTCCGGGACCGTGGGAAGGGCAGAATGGACTCCAAGCCTGCCTCCTAGGGCT
CTTGCCCTCATCCTCTGGCAAATGCAGTTACAGCCGGAGCCGACCAGCGGAGGACGC
TGCCCCCAGGCTGGGTGTCCTGGCGTGCAGGACCCCTGAGGAAGAGCTGAGTCTCACCTT
GCCCTGAGACAGCAGAATGTGGAAAGACTCTCGGAGCTGGTGCAGGCTGTGTCGGATCCCAG
CTCTCCTCAATAACGAAAATACCTGACCCCTAGAGAATGTGGCTGATCTGGTGANGCCATCCC
CACTGACCCCTCACACGGTGCAAAATGGCTCTTGGCAGCCGGAGCCCAGAAGTGCATTCT
GTGATCACACAGGACTTCTGACTTGCTGGCTGAGCATCCGACAAGCAGAGCTGCTGCTCCC
TGGGGCTGAGTTCATCACTATGTGGGAGGACCTACGGAAACCCATGTTGTAAGGTCCCCAC
ATCCCTACCAGCTTCCACAGGCCTTGGCCCCCATGTGGACTTTGTGGGGACTGCACCGT
TTTCCCCAACATCATCCCTGAGGCAACGTCTGAGCCGAGGTGACAGGGACTGTAGGCCT
GCATCTGGGGTAACCCCTGTGATCCGTAAAGCATAACTGACCTACAAGACGTGG
GCTCTGGCACCAGCAATAACAGCCAAGCCTGTGCCAGTTCTGGAGCAGTATTCCATGAC
TCAGACCTGGCTCAGTTCATGCGCTCTCGGTGGCAACTTGACATCAGGCATCAGTAGC
CCGTGTGGTTGGACAACAGGGCCGGGGCCGGGATTGAGGCCAGTCTAGATGTGAGT
ACCTGATGAGTGCTGGTGCACATCTCACCTGGGTCTACAGTAGCCCTGGCCGGCATGAG
GGACAGGAGGCCCTCCTGCAGTGGCTCATGCTGCTCAGTAATGAGTCAGCCCTGCCACATGT
GCATACTGTGAGCTATGGAGATGATGAGGACTCCCTCAGCAGCCCTACATCCAGCGGGTCA
ACACTGAGCTCATGAAGGCTGCCCTGGGTCTCACCTGCTCTCGCCTCAGGTGACAGT
GGGGCCGGGTGTTGGTCTGTCTGGAAAGACACCAGTTCCGCCAACCTCCCTGCCCTCAG
CCCTATGTCACCACAGTGGAGGCACATCCTCCAGGAACCTTCCTCATCACAAATGAAA
TTGTTGACTATATCAGTGGTGGCTTCAGCAATGTGTTCCCACGGCCTTCATACCAGGAG
GAAGCTGTAACGAAGTTCTGAGCTCTAGCCCCCACGCCACATCCAGTTACTTCATG
CAGTGGCGTGCCTACCCAGATGTGGCTGCACTTCTGATGGCTACTGGGTGGTCAGCAACA
GAGTGCCATTCCATGGGTGTCGGAACCTCGGCCTCTACTCCAGTGTGTTGGGGATCCTA
TCCTTGATCAATGAGCACAGGATCCTAGTGGCCGCCCTCTGGCTTCTCAACCCAAAG
GCTCTACCAGCAGCATGGGCAGGTCTTGTGATGTAACCCGTGGCTGCCATGAGTCCTGTC
TGGATGAAGAGGTAGAGGGCAGGGTTCTGCTCTGGCTGGATCCTGTAACAGGC
TGGGGAACACCAACTTCCAGCTTGTTGAAGACTCTACTCAACCCCTGACCCCTTCCTATC
AGGAGAGATGGCTTGTCCCCTGCCCTGAAGCTGGCAGTTCACTTCTTATTCTGCCCTGTTG
GAAGCCCTGCTGAACCCCTCAACTATTGACTGCTGCAGACAGCTTATCTCCCTAACCCCTGAAA
TGCTGTGAGCTTGACTTCACTCCAAACCCCTACCATGCTCCATCATACTCAGGTCTCCCTACT
CCTGCCCTAGATTCTCAATAAGATGCTGTAACTAGCATTTTGATGCCCTCCCTCCGC
ATCTCATCTTCTCTTCAATCAGGCTTCCAAAGGGTTGTATACAGACTCTGTGCACTA
TTTCACTTGATATTCACTCCCAATTCACTGCAAGGAGACCTCTACTGTCACCGTTTACTCT
TTCCTACCCCTGACATCCAGAAACAATGGCCTCCAGTGCATACTTCTCAATCTTGTGTTATG
GCCTTCCATCATAGTTGCCACTCCCTCCCTACTTAGCTCCAGGTCTTAACCTCTCTG
ACTACTCTTGTCTTCTCTCATCAATTCTGCTTCTCATGGAATGCTGACCTTCATTGC
TCCATTGAGATTGCTTCTCAGTTACTCATGCTCCCTGGAAACAAATCACTGACA
TCTACAACCATTACCATCTCACTAAATAAGACTTCTATCCAATAATGATTGATAACCTCAAA
TGTAAAAAA

FIGURE 94

MGLQACLLGLFALILSGKCSYSPEPDQRRTLPPGVSLGRADPEEELSLTFALRQQNVERLS
ELVQAVSDPSSPQYGKYLTLENVA_DLVRPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWL
SIRQAELLPGAEFHYYVGGPTETHVVRSPHPYQLPQALAPHVDFVGLHRFPPSSLRQRP
EPQVTGTVGLHLGVTPSVIRKRYNLTSQDVGSCTSNNSQACAQFLEQYFHDSQLAQFMRLFG
GNFAHQASVARVVGQQGRGRAGIEASLDVQYLMMSAGANISTWVYSSPGRHEGQEPFLQWML
LSNESALPHVHTVSYGDDEDSLSSAYIQRVNTELMKAARGLTLFASGDGAGCWSVSGRH
QFRPTFPASSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVPRPSYQEEAVTKFLSSSP
HLPSSYFNASGRAYPDVAALSDGYWVVSNRVPIPWVSGTSASTPVFGGILSLINEHRILSG
RPPLGFLNPRLYQQHGAGLFDVTRGCHESCLDEEVEGQGFCSGPGWDPVTGWGTPTSQLC

Signal sequence:

amino acids 1-16

N-glycosylation site.

amino acids 210-214, 222-226, 286-290, 313-317, 443-447

Glycosaminoglycan attachment site.

amino acids 361-365, 408-412, 538-542

Casein kinase II phosphorylation site.

amino acids 212-216, 324-328, 392-396, 420-424, 525-529

N-myristoylation site.

amino acids 2-8, 107-113, 195-201, 199-205, 217-223, 219-225,
248-254, 270-276, 284-290, 409-415, 410-416, 473-479, 482-488,
521-527, 533-539, 549-555

FIGURE 95

GGGCTGCTCGCGCGAACAGTGTGCTGGCATGGCAGGGATTCCAGGGCTCCTCTTCCTTCTC
GCCTGCATAACGCCCTCCCTGTCGTCTTGCCCCAGTCTACCCCTCAATTAGCCAAGCCAGACT
TTGGAGCCGAAGCAAATTAGAAGTATCTTCTTCAATGTGGACCCCAGTGTGTCATAAGGGAAC
CCACTGCCCACTTACGAAGAGGCCAAGCAATATCTGTCTTATGAAACGCTCTATGCCAATGG
CAGCCGCACAGAGACGCAGGTGGCATCTACATCCTCAGCAGTAGTGGAGATGGGCCAAC
ACCGAGACTCAGGGTCTCAGGAAAGTCTCGAAGGAAGCGGCAGATTATGGCTATGACAGC
AGGTTCAGCATTGGAAAGGACTTCCTGCTCAACTACCCTTCTAACATCAGTGAAGTT
ATCCACGGGCTGCACCGGCACCCCTGGTGGCAGAGAACGATGTCCTCACAGCTGCCACTGCA
TACACGATGGAAAAACCTATGTGAAAGGAACCCAGAAGCTCGAGTGGCTTCTAAAGCCC
AAGTTAAAGATGGTGGTCGAGGGGCCAACGACTCCACTTCAGCCATGCCAGCAGATGAA
ATTCAGTGGATCCGGTGAAACGCACCCATGTGCCAAGGGTTGGATCAAGGGCAATGCCA
ATGACATCGGCATGGATTATGATTATGCCCTCCTGGAACTCAAAAGCCCCACAAGAGAAAA
TTTATGAAGATTGGGTGAGCCCTCCTGCTAACGAGCTGCCAGGGGCAGAATTCACTTCTC
TGGTTATGACAATGACCGACCAGGCAATTGGTGTATGCTCTGTGACGTCAAAGACGAGA
CCTATGACTTGCTCTACCAGCAATGCGATGCCAGCCAGGGCCAGCGGTCTGGGTCTAT
GTGAGGATGTGGAAGAGACAGCAGCAGAAGTGGAGCGAAAATTATTGGCATTTCAGG
GCACCACTGGTGGACATGAATGGTCCCCACAGGATTCAACGTGGCTGTCAAGATCACTC
CTCTCAAATATGCCAGATTGCTATTGGATTAAAGGAAACTACCTGGATTGTAGGGAGGG
TGACACAGTGTCCCTCCTGGCAGCAATTAGGGCTTCAATGTTCTTATTAGGAGAGGCC
AAATTGTTTTGTCATTGGCGTGACACGTGTGTGTGTGTGTGTGTGTAAAGGTGT
CTTATAATCTTACCTATTCTTACAATTGCAAGATGACTGGCTTACTATTGAAAATCTG
GTTTGTGTATCATATCATATCATTAAAGCAGTTGAAGGCATACTTTGCATAGAAATAA
AAAAAATCTGATTGGGCAATGAGGAATTGACAATTAAAGTTAATCTCACGTTTGT
CAAACTTGATTTATTCTGAACCTGTTCAAAGATTATTAATATTAAATATTGGCATA
CAAGAGATATGAAAAAAAAAAAAAA

FIGURE 96

MAGIPGLLFFLLCAVGQVSPYSAPWKPTWPAYRLPVVLPQSTLNLA
KPDFGAEAKLEVS
SSCGPQCHKGTPLPTYEEAKQYLSYETLYANGSRTELQVGIYILSSSGD
GAQHRDGS
GGKS
RRKRQIYGYDSRFSIFGKDPLLNP
FSTSVKLSTGCTGTLVAEKHVLTA
AAHC
IHDGKTYVKG
TQKLRVGFLPKFKDGGRGANDSTS
SAMPEQM
KFQWIRVKRTHVPKG
WI
GNANDIGMDYDYA
LLELKPKH
RKFMKIGV
SPPAKQLPG
GRIHFSGYDND
RPGNLVYRFCDV
KDETYD
LLYQQCD
AQPGASGSGVYV
RMWKRQQQKWER
KIIGIFSGH
QWDMNGSPQDFN
AVRITPLKYA
QICYW
IKGNYLD
CREG

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 93-97, 207-211

Glycosaminoglycan attachment site.

amino acids 109-113, 316-320

Casein kinase II phosphorylation site.

amino acids 77-81, 95-99, 108-112, 280-284, 351-355

N-myristoylation site.

amino acids 159-165, 162-168, 202-208, 205-211, 314-320, 338-344

Serine proteases, trypsin family, histidine active site.

amino acids 171-177

FIGURE 97

GCATCGCCCTGGTCTCTCGAGCCTGCTGCCGTCCCCCCCCACCAGCCATGGTGGTTT
CTGGAGCGCCCCAGCCCTGGGTGGGGCTGTCTCGCACCTCACCTGCTGCTGCTG
GCGTCGACAGCCATCCTCAATGCGGCCAGGATAACCTGTTCCCCAGCCTGTTGGAAAGCCCCA
GCAGCTGAACC GGTTGTGGCGCGAGGACAGCACTGACAGCGAGTGGCCCTGGATCGTGA
GCATCCAGAAGAATGGGACCCACCACTGCGCAGGTTCTCTGCTCACCAAGCCGCTGGGTGATC
ACTGCTGCCACTGTTCAAGGACAACCTGAACAAACCATACCTGTTCTCTGCTGCTGGG
GGCCTGGCAGCTGGGAACCCCTGGCTCTGGTCCCAGAAGGTGGTGTTGCCTGGGTGGAGC
CCCACCCCTGTGTATT CCTGGAAGGAAGGTGCCTGTGCAGACATTGCCCTGGTGCCTCGAG
CGCTCCATACAGTTCTCAGAGCGGGTCCCTGCCCATCTGCCTACCTGATGCCTCTATCCACCT
CCCTCCAAACACCCACTGCTGGATCTCAGGCTGGGGAGCATCCAAGATGGAGTTCCCTTGC
CCCACCCCTCAGACCCCTGCAGAAGCTGAAGGTTCTATCGACTCGGAAGTCTGCAGCCAT
CTGTA C TGGCGGGGAGCAGGACAGGGACCCATCACTGAGGACATGCTGTGCCGGCTACTT
GGAGGGGGAGCGGGATGCTGTCTGGCGACTCCGGGGCCCTCATGTGCCAGGTGGAGC
GCGCCTGGCTGCTGGCCGGCATCATCAGCTGGGCGAGGGCTGTGCCAGCGAACAGGCC
GGGTCTACATCAGCCTCTCGCGCACCGCTCTGGGTGGAGAAGATCGTCAAGGGTGCA
GCTCCCGGGCGCCTCAGGGGGTGGGCCCTCAGGGCACCGAGCCAGGGCTCTGGGCC
CCCGCGCTCCTAGGGCGCAGCGGACGCGGGCTCGGATCTGAAAGGCGCCAGATCCACA
TCTGGATCTGGATCTCGGGCGCCTCGGGCGTTCCCCCGCCGTAAATAGGCTCATCTACC
TCTACCTCTGGGGGCCGGACGGCTGCTGCGAAAGGAAACCCCTCCCCGACCCGCCGAC
GGCCTCAGGCCCCCCTCCAAGGCATCAGGCCGCCAACGGCCTCATGTCCCCGCCAAC
GACTTCCGGCCCCGCCCGGGCCCCAGCGCTTTGTGTATATAAATGTTAATGATTTTAT
AGGTATTTGTAAACCTGCCACATATCTTATTATTCCCTCCAATTCAATAAATTATTTATT
CTCCAAAAAAA

FIGURE 98

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA43318
><subunit 1 of 1, 317 aa, 1 stop
><MW: 33732, pI: 7.90, NX(S/T): 1
MVVSGAPPALGGGCLGTFTSLLLLASTAILNAARI PVPPACGKPQQLNRVVGGEDSTDSEWP
WIVSIQKNGTHHCAGSLLTSRWVITAAHCFKDNLNKPYLF SVLLGAWQLGNPGSRSQKVGVVA
WVEPHPVYSWKEGACADIALVRLERSIQFSERVLPI CLPDASIHLPPNTHCWISGWGSIQDG
VPLPHPQTLQKLKVPIIDSEVC SHLYWRGAGQGPITEDMLCAGYLEGERDACLGDGGPLMC
QVDGAWLLAGIISWGEGCAERNRPGVYISLSAHRSWVEKIVQGVQLRGRAQGGGALRAPSQG
SGAAARS

Signal sequence:

amino acids 1-32

N-glycosylation site.

amino acids 62-66, 96-100, 214-218, 382-386, 409-413, 455-459,
628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268,
314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653,
671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962,
1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534,
612-618, 623-629, 714-720, 873-879

FIGURE 99

GACGGCTGGCCACCATGCACGGCTCCTGCAGTTCTGATGCTTCTGCTGCCGCTACTGCTA
CTGCTGGTGGCCACCACAGGCCCCGTTGGAGCCCTCACAGATGAGGAGAACGTTGATGGT
GGAGCTGCACAACCTCTACCGGGCCCAGGTATCCCCGACGGCCTCAGACATGCTCACATGA
GATGGGACGAGGAGCTGGCCGCCTCGCCAAGGCCTACGCACGGCAGTGCCTGTGGGCCAC
AACAAAGGAGCGCGGGCGCCGGCGAGAATCTGTCGCCATCACAGACGAGGGCATGGACGT
GCCGCTGGCCATGGAGGAGTGGCACCACGAGCGTGAGCACTACAACCTCAGGCCGCCACCT
GCAGCCCAGGCCAGATGTGCGGCCACTACACGCAGGTGGTATGGCCAAGACAGAGGAGTC
GGCTGTGGTTCCCACCTCTGTGAGAAAGCTCCAGGGTGTGAGGAGACCAACATCGAATTACT
GGTGTGCAACTATGAGCCTCCGGGAACGTGAAGGGAAACGCCCTACCAGGAGGGACTC
CGTGCCTCCAATGTCCCTCTGGCTACCAACTGCAAGAACTCCCTCTGTGAACCCATCGGAAGC
CCGGAAGATGCTCAGGATTGCCTTACCTGGTAAC TGAGGCCCATCCTCCGGCGACTGA
AGCATCAGACTCTAGGAAAATGGGTACTCCTTCTCCAGCAACGGGATTCCGGCTTCT
TGGTAACAGAGGTCTCAGGCTCCCTGGCAACCAAGGCTCTGCCCTGTGGAAACCCAGGCC
CCAACTTCTTAGCAACGAAAGACCCGCCCTCCATGGCAACAGAGGCTCACCTGCGTAAC
AACTGAGGTCCCTTCCATTGGCAGCTCACAGCCTGCCCTCCTGGATGAGGAGCCAGTTA
CCTTCCCCAAATCGACCCATGTTCTATCCAAAATCAGCAGACAAAGTGACAGACAAAACA
AAAGTCCCTCTAGGAGCCCAGAGAACTCTCTGGACCCAAGATGTCCCTGACAGGGCAAG
GGAACCTCCTACCCATGCCAGGAGGAGGCTGAGGCTGAGGCTGAGTTGCCCTCCAGTG
AGGTCTTGGCCTCAGTTTCCAGGCCAGGACAAGCCAGGTGAGCTGCAGGCCACACTGGAC
CACACGGGGCACACCTCCTCCAAGTCCCTGCCAATTCCCCAATACCTCTGCCACCGCTAA
TGCCACGGGTGGCGTGCCTGGCTCTGCAGTCGTCTGCCAGGTGCAGAGGCCCTGACA
AGCCTAGCGTTGTGTCAGGGCTGAACCTGGGCCCTGGTCATGTGTGGGCCCTCTGGGA
CTACTGCTCCTGCCTCTGGTGTGGCTGGAATCTTCTTGAATGGGATAACCAACTCAAAGGG
TGAAGAGGTCA GCTGTCCTCTGTCA TCTCCCCACCCCTGTCCCCAGGCCCTAAACAAGATA
CTTCTTGGTTAAGGCCCTCGGAAGGGAAAGGCTACGGGCATGTGCCCTCATCACACCATCC
ATCCTGGAGGCACAAGGCCTGGCTGGCTGCGAGCTCAGGAGGCCCTGAGGACTGCACACC
GGGCCACACCTCTCCTGCCCTCCCTCCTGAGTCCTGGGGTGGAGGATTGAGGGAGCT
CACTGCCTACCTGGCCTGGGCTGTCCTGCCACACAGCATGTGCGCTCTCCCTGAGTGCCTG
TGTAGCTGGGATGGGATTCCTAGGGCAGATGAAGGACAAGCCCCACTGGAGTGGGTTCT
TTTGAGTGGGGAGGCAGGGACGAGGAAAGTAACCTGACTCTCCAATAAAACCT
GTCCAACCTGTGAAA

FIGURE 100

MHGSCSFLMLLLPLLLLVATTGPVGALTDEEKRLMVELHNLYRAQVSPTASDMLHMRWDEE
LAAFAKAYARQCVWGNKMERGRGENLFAITDEGMDVPLAMEEWHEREHYNLSAATCSPGQ
MCGHYTQVVWAKTERIGCGSHFCEKLQGVEETNIELLVCNYEPPGNVKGKRPyQEGTPCSQC
PSGYHCKNSLCEPIGSPEDAQDLPYLVTEAPSFRATEASDSRKMGTPSSLATGIPAFLVTEV
SGSLATKALPAVETQAPTSLATKDPPSMATEAPPCVTTEVPSILAHLPSLDEEPVTFPKS
THVPIPKSADKVTDKTVPSPENSLDPKMSLTGARELLPHAQEEAEAAELPPSSEVLAS
VFPAQDKPGELQATLDHTGHTSSKSLPNFPNTSATANATGGRALALQSSLPGAEGPDKPSVV
SGLNSGPGHVWGPLLGLLLPPLVLAGIF

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 114-118, 403-407, 409-413

Glycosaminoglycan attachment site.

amino acids 439-443

Casein kinase II phosphorylation site.

amino acids 29-33, 50-54, 156-160, 195-199, 202-206, 299-303

N-myristoylation site.

amino acids 123-129, 143-149, 152-158, 169-175, 180-186, 231-237,
250-256

Amidation site.

amino acids 82-86, 172-176

Peroxidases proximal heme-ligand signature.

amino acids 287-298

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 1.

amino acids 127-138

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 2.

amino acids 160-172

FIGURE 101

GTA ACT GAG TCA GGG CTT TCAT TGG GAG CCC CCT CAAC AGA ATT CGG TCA TT CCA AGT T **A**T GGT GG ACG T
ACT TCT GTT GTC CCCC TGCT TTT ACATT AGCAG ACC GG ACT TAAGT CACA CAG ATT AT CTT CAT
CAAGG CAAG TCC ATG AGC CAC CT CAAG CTT CGAG AAGT GAAC AA CAA AT GAATT GGAG ACC ATT CC
AAAT CTGGG ACC AGT CTC CGC AAAT ATT AC ACT TCT CTC CT GGCT GGAA ACAGG ATT GTT GAA AT ACT CCCC TG
ACAT CTGAA AGAG TTT CAG TCC CTGAA ACT TT GGAC CT TAG CAG CAAC AA TATT CAG AGC TCC AA ACT GCATT
TCC AGC CCT ACAG CT CAAT AT CTG TAT CT CAAC AGC ACC GAG TCA GCT ACAT CAAT GGAA CCT GG TATT TGACAA
TTTGCCA ACAC ACT CCCC TGTT AAAG CTGAAC AGGAA ACAAG ATT AAAA AT GTAG AT GGACT GAC ATT CCAGG CCTT GG
GCC CA ACT GCA AC AT CTG AAT TGAA CC GA ACAAG ATT AAAA AT GTAG AT GGACT GAC ATT CCAGG CCTT GG
TGCT CTGAA GTCT CTGAAA AT GCAA AGA AT GGAG TAAC GAA ACT TAT GGAT GGAG CTTT GGGG CTGAG CAA
CATGGAA ATT TGCA GCT GGACC ATAACA CCTAACAGAG ATT ACCAAAGG CTGGCTTACGGCTTGCATGCT
GCAGGAAC TT CAT CTG CCAAA ATGCC AT CAAC AGGAT CAG CCTGAT GCTGGGAGTCTGCCAGAAGCTCAG
TGAGCTGGAC TAACTTCAATCACTTATCAAGGTTAGATGATTCAAGCTCCTGGCCTAAGCTTACTAAATAC
ACTGCACATTGGGAAACAACAGAGTCAGCTACATTGCTGATTGCTCTCCGGGGCTTCCAGT TAAAGACTTT
GGATCTGAAAGAACATGAAATTCTGGACTATTGAAGACATGAATGGTCTTCTGGCTTGACAAACTGAG
GCGACTGATACTCCAAGGAAATCGGATCCGTTCTATTACTAAAAAGCCTTCACTGGTTGGATGCATTGGAGCA
TCTAGACCTGAGTGACAACGCAATCATGTC TTTACAAGGCAATGCATTTCACAAATGAAGAAACTGCAACAAATT
GCATT TAAATACATCAAGCCTTGTGCGATTGCCAGCTAAATGGCTCCACAGTGGTGGCGAAAACAACCTT
TCAGAGCTTGTAAATGCCAGTTGCCCCATCCTCAGCTGCTAAAGGAAAGCAGTGGCTTAGCCAGA
TGGCTTGTGAGT GATGATT TCC CAAACCCAGATCACGGTT CAGCCAGAAACACAGTGGCAATAAAAGGTT
CAATT TGAGTTCATCTGCTCAGCTGCCAGCAGT GATGCTTCCCAATGACTTTGCTTGAAAAGACAATGA
ACTACTGCATGATGCTGAAATGGAAAATTATGCACACCTCCGGGCCAAGGTGGCAGGGTATGGAGTATACAC
CATCCTCGGCTGGCGAGGTGGAATTGCCAGTGAGGGGAAATATCAGTGTGTCATCTCAATCATTGGTTC
ATCCTACTCTGCTAAAGCAAGCTTACAGTAAATATGCTTCCCTCATTCAACAGACCCCCATGGATCTCACC
CCGAGCTGGGCCATGGCACGCTGGAGTGCTGCTGTGGGACCCAGCCCCCAGATAGCCTGCCAGAAGGA
TGGGGCACAGACTTCCAGCTGCA CGGGAGAGACGCATGCTGATGCTGGAGGATGACGTGTTCTTATCGT
GGATGTGAA GATAGAGGACATTGGGTATACAGCTGCACAGCTCAGAACAGTGCAGGAAGTATTCAGCAAATGC
AACTCTGACTGTCCTAGAAACACCATCATT TGCGGCCACTGTTGGACCGAACTGTAACCAAGGGAGAACAGC
CGT CCTACAGTGCATTGCTGGAGGAAGGCCCTCCCCCTAAACTGAAC TGACCAAAAGATGATAGCCCATTGGTGG
AACCGAGAGGACTTTTGCA CGCAGGAATCAGCTCTGATTATGTGGACTCAGATGTCA GTGCTGGAA
ATACACATGTGAGATGCTAACACCC TTGGCACTGAGAGAGGAAACGTGCGCCTCAGTGTGATCCCAC TCAAC
CTGC GACT CCC CT CAGATGACAGCCCCATCGTAGACGATGACGGATGGGCCACTGTGGTGTGTCATAGC
CGTGGTTGCTGTGGGGCACGTCACTCGTGTGGTCA TCA TACACACAAGGCGGAGGAATGAAGA
TTG CAGCATTACCAACACAGATGAGACCAACTTGCCAGCAGATATTCTAGTTATGTCA TCTCAGGGAAACGTT
AGCTGACAGG CAGGATGGTACGTGCTT CAGAAAGTGGAGCCACCACAGTTGTCA CATCTCAGGTGCTGG
ATT TTTCTTACCAACACATGACAGTAGTGGGACCTGCCATATTGACAATAGCAGTGAAGCTGATGTGGAAAGCTGC
CACAGATCTGCTTGTGGGGATCCACAGGCCATATTGACAAGTGGAAATGTGATGGCTCAGA
TCCTTTGAAACATATCATACAGGTGCA GTGCTGACCTAGATGCCATTCTCAGAAGAATCCTGCGAACGGAGCTTCA
CATAAAGAAAAGGAGT GCTACCCATGTTCTCATCCTCAGAAGAATCCTGCGAACGGAGCTTCA
GTGCCCTCACATGTGAGGAAGCTACTTAAACACTAGTTACTCTCACAATGAAGGACCTGGAATGAAAATCTGT
TCTAAACAAGTCTCTTGTGAAAGCTCAGGAGACCTCACCTAGATGCCATTCAAGCTTGGACAGC
TACCTTTGGAAAAGCTCTCAGGAGACCTCACCTAGATGCCATTCAAGCTTGGACAGC
AAGAGCCTTATTGAAAGCTCATTCTCCCAGACTTGGACTCTGGTCA GAGGAAGATGGAAAGAAAGGAC
AGATTT CAGGAAGAAAATCACATTGTACCTTAAACAGACTTTAGAAAATACAGGACTCCAAATTTCAGTC
TTATGACTTGAGACACATAGACTGAATGAGACCAAGGAAAAGCTTAACATACTACCTCAAGTGAAC
AAAGAGAGAGAATCTTATGTTTAAATGGAGTTATGAATT TAAAGGATAAAAATGCTTATTATACAGAT
GAACCAAATTAACAAAAGTTATGAAAATT TACTGGGAATGATGCTCATATAAGAATACCTTTAAACTA
TTTTTTAACTTGT TATGCA AAAAAGTATCTTACGTAATTATGATATAATCATGATTATTTATGTATT
TTATAATGCCAGATTCTTTTATGGAAAATGAGTTACTAAAGCATTAAATAACCTGCCCTGTACCA
TTAAATAGAAGTTACTCATTATTTGCACATTATTTAATAAAATGTGCAATTGAA

FIGURE 102

MVDVLLFSLCLLFHISRPDLSHNRLSFIKASSMSHLQSLREVKLNNNELETIPNLGPVSAN
ITLLSLAGNRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEP
GYFDNLANTLLVLKLNRRNRIASIPPKMFKLPQLQHLELRNKIKNVDGLTFQGLGALKSLKM
QRNGVTKLMGAFWGLSNMEILQLDHNNLTEITKGWLGYLLMLQELHLSQNAINRISPDAWE
FCQKLSELDLTFNHLSRLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRLGSSLKTLDLKNE
ISWTIEDMNGAFSGLDKLRRLILQGNRIRSITKKAFTGLDALEHLDLSDNAIMSLQGNAFSQ
MKKLQQLHLNTSSLLCDCQLKWLPQWVAENNFSFVNASCAPQLLKGRSIFAVSPDGFVCD
DFPKPQITVQPETQSAIKGSNLSFICSAASSSDSPMTFAWKDNELLHDAEMENYAHLRAGQ
GEVMEYTTIIRLREVEFASEGKYQCVISNHFGSSYSVKAKLTVNMLPSFTKTPMDLTIRAGA
MARLECAAVGHGPAPQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCQAQN
SAGSISANATLVLETPSFLRPLLDRVTKGETAVLQCIAGGSPPPKNWTKDDSPVVTER
HFFAAGNQLLIIVDSDVS DAGKYTC EMSNTLGTERGNVRLSVIPTPTCDSPQM TAPS LDDDG
WATVGVIIIAVVCCVVGTSLVWVVIYHTRRNEDCSITNTDETNLPADIPSYLSSQGT LAD
RQDG YVSSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEAATDLFLCPFLGSTGP
MYLKGNVYGS DP FETYHTGCSPDPRTVLM DHYEPSYIKK ECP CSHPSE ESCER SFN ISW
PSHVRKLLNTSY SHNEGPGMKNLCLNKS LDFS ANPEP AVASSNS FMGT FGK ALRRPHLDA
YSSFGQPSDCQPR AFYLKAHSSPD LGSEEDG KERTDF QEE NHIC TFK QTLEN YRTPNFQS
YDLDT

Signal sequence:

amino acids 1-19

Transmembrane domain:

amino acids 746-765

N-glycosylation site.

amino acids 62-66, 96-100, 214-220, 382-386, 409-413, 455-459,
628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268,
314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653,
671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962,
1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534,
612-618, 623-629, 714-720, 873-879

FIGURE 103

GGGGAGAGGAATTGACCATGTAAAAGGAGACTTTTTTTGGTGGTGGCTGTTGGTGCCTTGCAAAATG
AAGGATGCAGGACGCAGCTTCTGGAACCGAACGCAATGGATAAAACTGATTGTGCAAGAGAGAAGGAAGAAC
GAAGCTTTCTTGTGAGCCCTGGATCTAACACAAATGTGTATATGTGACACAGGGAGCATTCAAGAATGAAA
TAAACCAGAGTTAGACCCGGGGGGTGGTGTGTTCTGACATAAATAATCTTAAAGCAGCTGTTCCCCTCC
CCACCCCCAAAAAAAGGATGATTGAAATGAAGAACCGAGGATTCAAAGAAAAAGTATGTTCATTTTCTC
TATAAAGGAGAAAGTGAGCCAAGGAGATATTTTGGAAATGAAAAGTTGGGCTTTTAGTAAAGTAAAGAACT
GGTGTGGTGGTTCTTCTTTGAATTCCCACAAGAGGAGAGGAAATTAAATAATACATCTGAAAGAAA
TTTCAGAGAAGAAAAGTTGACCGCGGCAGATTGAGGCATTGATTGGGGAGAGAACAGCAGAGCACAGTTGGA
TTTGTGCCTATGTTGACTAAAATTGACGGATAATTGACGTTGGATTCTCATCAACCTCCTTTTTAAAT
TTTATTCCCTTGGTATCAAGATCATGCGTTCTCTGTTCTAACACCCTGGATTCCATCTGGATGTTGCT
GTGATCAGTCTGAAATACAACACTGTTGAATTCCAGAAGGACCAACACAGATAAAATTATGAATGTTGAACAAGAT
GACCTTACATCCACAGCAGATAATGATAGGTCTAGGTTAACAGGGCCCTATTGACCCCTGCTGTGGTGC
GCTGGCTCTCACTTCTGTGGTGGCTGGTCTGGTGGGGCTCAGACCTGCCCTCTGTGCTCTGCAGCAA
CCAGTTCAGCAAGGTGATTGTGTTGGAAAAACCTGCGTGAGGTCCGGATGGCATCTCCACCAACACAGGCT
GCTGAACCTCCATGAGAACCAAATCCAGATCATCAAAGTGAACAGCTCAAGCAGCTTGAGGCACATTGGAAATCCT
ACAGTTGAGTAGGAACCATATCAGAACCCATTGAAATTGGGGCTTTCAATGGTCTGGCAACCTCAACACTTGGA
ACTCTTGACAAATCGTCTTACTACCATCCCAGAACATTGAGCTTGTATACTTGCTTAAACTGAAGGAGCTCTGGT
GGCAAACAACCCATTGAAAGCATCCCTCTGTTAACAGAAATTCTCTTGGCCGACTAGACTTAGG
GGAATTGAAAAGACTTTCATACATCTCAGAAGGTGCCTTGAAGGTCTGTCCAACCTGAGGTATTGAAACCTTGC
CATGTGAAACCTTCGGAAATCCCTAACCTCACACCGCTCATAAAACACTAGATGAGCTGGATCTTCTGGGAATCA
TTTATCTGCCATCAGGCCCTGGCTTTCCAGGGTTGATGCACCTCAAAACTGTGGATGATACTGCTCCAGAT
TCAAGTGAACGGAATGCCATTGACAACCTCAGTCACTAGTGGAGATCAACCTGGCACACAATAATCTAAC
ATTACTGCCATGACCTCTCACTCCCTGCATCATCTAGAGCGATACATTACATCACAACCCCTGGAACTG
TAACTGTGACATACTGTGGCTCAGCTGGATAAAAGACATGGCCCCCTCGAACACAGCTGTTGCCCCGGT
TAACACTCCTCCAATCTAAAGGGGAGGTACATTGGAGAGCTGACCAGAAATTACTTCACATGCTATGCTCCGGT
GATTGTGGAGCCCCCTGCAGACCTCAATGTCAGTGAAGGCATGGCAGCTGAGCTGAAATGTCGGCCTCCACATC
CCTGACATCTGTATCTGGATTACTCCAAATGGAACAGTCATGACACATGGGGGTACAAAGTGCAGTAGCTGT
GCTCAGTGTGGTACGTTAAATTCAAAATGTAACCTGTGCAAGATAAGGCATGTACACATGTATGGTGAGTAA
TTCCGGTGGAAATACTACTGCTTCAGCCACCTGAATGTTACTGCAAGCAACCAACTCTTCTCTTACTTT
AACCGTCACAGTAGAGACTATGAAACCGTCTCAGGATGAGGCACGGACCACAGATAACAAATGTGGGTCCCACCTC
AGTGGTCAGTGGAGACCAATGTGACCACTCTCACACCCACAGAGCACAGGTGACAGAGAAAACCTT
CACCATCCCAGTGAATGATGAAACTGGGATCCCAGGAATTGATGAGGTGATGAGACTACAAAATCATCAT
TGGGTGTTGTGGCCATCACACTCATGGCTCAGTGAAATTATTAATGTTGATGAGGATGAGGAAAGCAGCACCA
TCGGCAAAACCATCACGCCCAACAAGGACTGTTGAAATTATTAATGTTGATGAGGATGAGGAAAGCAGCACCA
CATGGAAAGCCACCTGCCATGCCTGCTATCGACCATGAGGCACCTAAATCACTATAACTCATACAAATCTCCCTT
CAACACACAAACAGTTAACACAATAATTCAATACACAGTTGCACTGATGAACCGTTATTGATCCGAATGAA
CTCTAAAGACAATGTACAAGAGACTCAAATTAAAACATTACAGAGTTACAAAAAAACAAACAAATCAAAAAAA
GACAGTTTATTAAAAATGACACAAATGACTGGGCTAAATCTACTGTTCAAAAAAGTGTCTTACAAAAAAACAA
AAAAGAAAAGAATTATTATTAAAGCAGACAAAAA

FIGURE 104

MLNKMTLHPQQIMIGPRFNRALFDPLLVLLALQLLVVAGLVRAQTCPSVCSCSNQFSKVIC
VRKNLREVPDGISTNTRLLNLHENQIQIICKVNSFKHLRHLEILQLSRNHIRTIEIGAFNGLA
NLNTLELFDNRLTTIPNGAFVYLSKLKELWLRNNPIESIPSYAFNRIPSLRRLDLGELKRLS
YISEGAFEGLSNLRYLNLCNLREIPNLTPLIKLDELDLSGNHLSAIRPGSFQGLMHLQKL
WMIQSQIQVIERNAFDNLQSLVEINLAHNNLTLLPHDLFTPPLHHLERIHLHHNPWCNCIDIL
WLSWWIKDMAPSNTACCACRNTPPNLKGRYIGELDQNYFTCYAPVIVEPPADLNTEGMAAE
LKCRASTSLTSVSWITPNGTVMTHGAYKVRIAVLSDGTLNFTNVTVQDTGMYTCMVSNSVGN
TTASATLNVTAATTPFSYFSTVTETMEPSQDEARTTDNNVGPTPVVDWETTNVTTSLTPQ
STRSTEKTFTIPVTDINSGIPGIDEVMKTTKIIIGCFVAITLMAAVMLVIFYKMRKQHHRQN
HHAPTRTVEIINVDEITGDTPMESHLPMPAIEHEHLNHNSYKSPFNHTTVNTINSIHSS
VHEPLLIRMNSKDNVQETQI

Signal sequence:

amino acids 1-44

Transmembrane domain:

amino acids 523-543

N-glycosylation site.

amino acids 278-282, 364-368, 390-394, 412-416, 415-419, 434-438,
442-446, 488-492, 606-610

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 183-187

Casein kinase II phosphorylation site.

amino acids 268-272, 417-421, 465-469, 579-583, 620-624

N-myristoylation site.

amino acids 40-46, 73-79, 118-124, 191-197, 228-234, 237-243,
391-397, 422-428, 433-439, 531-537

FIGURE 105

AGCCGACGCTGCTCAAGCTGCAAACCTCTGTTGAGTTGGCAGTTCTTTCGGTTTCCCTCTGCTGTTGGGGCA
TGAAAGGGCTCGCCGCCGGAGTAAAGAAGGAATTGACCGGGCAGCGCAGGGAGGAGCGCGACCGCACCGC
GAGGGCGGGCGTGCACCCCTGGCTGGAAGTTGTGCCGGGCCCGAGCGCGCCGGCTGGAGCTCGGGTAGA
GACCTAGGCCGCTGGACCGCGATGAGCGCGCCGAGCCTCGTGCCGCCGGACTCGGGCAGCCCTCTGGGTAGCGCC
GCGGTGCTGGGCGCGTGGCGTCCGACAGCGCGGTGCGGGGAACTCGGGCAGCCCTCTGGGTAGCGCC
GAGGCCCATGCCCCACTACCTGCCGCTGCCCTGGGACCTGCTGAGTCAGTCGAAGCGGCTAGCGCTT
CCCAGGCCACTCCCGTCTGGCTCGCTGGACTTAAGTCACAACAGATTATCTTCATCAAGGCAAGTCC
ATGAGCCACCTTCAAAGCCTCGAGAAGTGAACAAACAATGAATTGGAGACCATTCAAATCTGGGACCA
GTCTCGGCAAATATTACACTTCTCCTGGCTGGAAACAGGATTGTTGAAATACTCCCTGAACATCTGAAAGAG
TTTCAGTCCCTGAAACTTGGACCTAGCAGCAACAATATTCAAGAGCTCCAAACTGCAATTCCAGCCCTACAG
CTCAAATATCTGTATCTAACAGCAACCGAGTCACATCAATGGAACCTGGTATTTGACAATTGCCAACACA
CTCCTTGTTAAAGCTGAACAGGAACCGAATCTCAGCTATCCACCCAAAGATGTTAACTGCCAACACTGCAA
CATCTCGAATTGAACCGAAACAAGATTAAAATGTAGATGGACTGACATTCCAAGGCCCTGGTCTGAAAGTCT
CTGAAAATGCAAAGAAATGGAGTAACGAAACTTATGGATGGAGCTTTGGGGCTGAGCAACATGGAATTTG
CAGCTGGACCATAACACCTAACAGAGATTACCAAGGGCTGGCTTACGGCTTGTGATGCTGAGCAACTTCAAT
CTCAGCCAAATGCCATCAACAGGATCAGCCCTGATGCCCTGGAGGACTGCCAGAAAGCTCAGTGAGCTGGACCTA
ACTTCATCACTTATCAAGGTTAGATGATTCAAGCTTCTTGGCTTAAGCTTAAACTAACACTGCAATTGGG
AACAAACAGAGTCAGTACATTGCTGATTGTGCCCTCCGGGGCTTCCAGTTAAAGACTTGGATCTGAAAGAAC
AATGAAATTCTGGACTATTGAAGACATGAATGGTCTTCTGGCTTACGAAACTGAGGCGACTGATACTC
CAAGGAAATCGGATCCGGTCTATTACTAAAAAGCCTTCACTGGTTGGATGCAATTGGAGCATCTAGACCTGAGT
GACAACGCAATCATGTCTTACAAGGCAATGCAATTCAAAATGAAGAAACTGCAACAAATTGCAATTAAATACA
TCAAGCCTTGTGCGATTGCCAGCTAAATGGCTCCACAGTGGTGGCGAAAACAATTTCAGAGCTTGT
AATGCCAGTTGTGCCATCCTCAGCTGCTAAAGGAAGAACGATTGGCTGTTAGCCCAGATGGCTTGT
GATGATTTCCTAAACCCAGATCACGGTTAGCCAGAAACACAGTCGGCAATAAAAGGTTCAATTGAGTT
ATCTGCTCAGCTGCCAGCAGCAGTGAATTCCCAATGACTTTGCTGGAAAAAGACAATGAAACTGCA
GCTGAAATGAAAATTATGCAACACTCCGGGCCAAGGTGGCGAGGTGATGGAGTACCACTCCTGGCTG
CGCAGGGTGGAAATTGCCAGTGAAGGGAAATACAGTGTGTCATCTCAACTTGGTTCATCCTACTCTGTC
AAAGCCAAGCTTACAGTAAATATGCTTCCCTATTCAACAGACCCCATGGATCTCACCATCCGAGCTGGGGCC
ATGGCACGCTGGAGTGTGCTGCTGTGGGACCCAGCCCCCAGATAGCCTGGCAGAAGGATGGGGCACAGAC
TTCCAGCTGCACGGAGAGACGCATGATGCCAGGATGACGTGTTCTTATGTTGAGATA
GAGGACATTGGGTATACAGCTGCACAGTCAGAACAGTCAGGAGTATTTCAGCAAATGCAACTCTGACTGTC
CTAGAAACACCATATTGCGGGCACTGTGGACCGAAACTGTAACCAAGGGAGAACAGCCGTCTACAGTGC
ATTGCTGGAGGAAGCCCTCCCCCTAAACTGAACTGGACAAAGATAGCCATTGGTGTGTAACCGAGAGGAC
TTTTTGCAAGCAGGAATCAGCTTGTGATTATTGTGGACTCAGATGTCAGTGTGATGCTGGAAATA
ATGCTAACACCCCTGGCACTGAGAGAGGAAACGTGCGCTCAGTGTGATCCCACCTCAACCTGCA
CAGATGACAGCCCCATGTTAGACGATGACGGATGGGCACTGTGGGTGTCGTGATCATAGCGTGGTTGCTG
GTGGTGGGACGTCACTCGTGTGGTGTGTCATCATATACCACACAAGGGGAGGAATGAAGATTGCA
AACACAGATGAGACCAACTGCCAGCAGATATTCTCTAGTTATTGTCATCTCAGGGAACGTTAGCTGACAGG
GATGGGTACGTGTTCAAGAAAGTGGAGGCCACCAAGTGTGACATCTTCAGGTGCTGGATTTTCTTACCA
CAACATGACAGTAGTGGACCTGCCATATTGACAATAGCAGTGAAGCTGATGGAAGCTGCCACAGATCTGTC
CTTGTCCGTTTGGATCCACAGGCCCTATGTATTGAAAGGGAAATGTGATGGCTCAGATCCTTTGAAACA
TATCATAACAGGTGCACTGCCAGCAGATATTCTCTAGTTATTGTCATCTCAGGGAACGTTAGCTGAC
GAGTGTACCCATGTTCTCATCCTCAGAAGAAATCTGCAAGCAGGGAGGAATGAAGATTGCA
GATGGGTACGTGTTCAAGAAAGTGGAGGCCACCAAGTGTGACATCTTCAGGTGCTGGATTTTCTTACCA
CAACATGACAGTAGTGGACCTGCCATATTGACAATAGCAGTGAAGCTGATGGAAGCTGCCACAGATCTGTC
CTTGTCCGTTTGGATCCACAGGCCCTATGTATTGAAAGGGAAATGTGATGGCTCAGATCCTTTGAAACA
TATCATAACAGGTGCACTGCCAGCAGATATTCTCTAGTTATTGTCATCTCAGGGAACGTTAGCTGAC
GAGTGTACCCATGTTCTCATCCTCAGAAGAAATCTGCAAGCAGGGAGGAATGAAGATTGCA
GAAATCACATTGTACCTTAAACAGACTTAAAGAAACTACAGGACTCCAATTTCAGTCTTATGACTTGGAC
ACATAGACTGAATGAGACCAAGGGAAAGCTTAAACATACTACCTCAAGTGAACCTTTATTAAAGAGAGA
CTTATGTTTTAAATGGAGTTATGAATTAAAGGATAAAATGCTTATTATACAGATGAACCAAAATTAC
AAAAAGTTATGAAATTTTATCTGGGAATGATGCTCATATAAGAATACCTTTAAACTATTTTA
TTTATGCAAAAAGTATCTTACGTAATTATGATATAAATCATGATTATTGATTGTTATGATT
TTTCTTTTATGGAAAATGAGTTACTAAAGCATTAAATAACCTGCCCTGTACCATTTAAATAGAAGTT
ACTCATTATATTGCACTTATATTAAATAAAATGTGCAATTGAAAAA
AAAAAAAAAAAAA
AAAAAAAAA

FIGURE 106

MSAPSLRARAAGLGLLLCAVLGRAGRSDSGRGELQPSGVAERPCPTTCRCLGDLLDCSR
KRLARLPEPLPSWVARLDLSHNRLSFIKASSMSHLQSLREVKLNNELETIPNLGPVSANIT
LLSLAGNRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEPGY
FDNLANTLLVLKLNRRNISAIPPKMFKLPQLQHLELRNKKINV DGLTFQGLGALKSLKMQR
NGVTKLMGAFWG LSNMEILQLDHNNLTEITKGWLYGLLMLQELHLSQNAINRISPDAWEFC
QKLSELDLTFNHLSRLDDSSFLGLSLLNTLHIGNNRVSYIADCAF RGLSSLKTL DLKNNEIS
WTIEDMNGAFSGLDKLRLILQGNRIRSITKAFTGLDALEHLDLSDNAIMS LQGNAFSQM
KLQLHLNTSSLLCDCQLKWLQPQWAENN FQSFVNASC AHPQLLKGRSIFA VSPDGFVCDDF
PKPQITVQPETQSAIKGSNLSFICSAASSSDSPMTFAWKKDNELLHDAEMEN YAHLRAQGGE
VMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVKAKLT VNMLPSFTKTPMDLTIRAGAMA
RLECAAVGHPAPQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCTAQNSA
GSISANATLTVLETPSFLRPLLRTVKGETAVLQCIAGGSPPP KLNWTKDDSPVVTERHF
FAAGNQLLIIVDSVSDAGKYTC EMSNTLGTERGNVRLSVIPTPTCDSPQMTAPS LDDDGWA
TVGVVIIAVVCCVVGTSLVWVVIYHTRRRNEDCSITNTDET NLPADIPS YLSSQGT LADRQ
DGYVSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEAATD LFLCPFLGSTGP MY
LKG NVYGSDFETYHTG CSPD PRTV LMDHYEPSYIKK ECP CSHP SEES CERSFSN ISWPS
HVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDAYS
SFGQPSDCQPRAFYLKAHSSPDLD SGSEEDGKERTDFQEENHICTFKQTLEN YRTPNFQSYDLDT

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 808-828

N-glycosylation site.

amino acids 122-126, 156-160, 274-278, 442-446, 469-473, 515-519,
688-692, 729-733, 905-909, 987-991, 999-1003, 1016-1020

Glycosaminoglycan attachment site.

amino acids 886-890

Casein kinase II phosphorylation site.

amino acids 99-103, 180-184, 263-267, 314-318, 324-328, 374-378,
383-387, 407-411, 524-528, 608-612, 692-696, 709-713, 731-735,
799-803, 843-847, 863-867, 907-911, 1003-1007, 1018-1022,
1073-1077, 1079-1083, 1081-1085

Tyrosine kinase phosphorylation site.

amino acids 667-675

N-myristoylation site.

amino acids 14-20, 36-42, 239-245, 257-263, 380-386, 427-433,
513-519, 588-594, 672-678, 683-687, 774-780, 933-939

Leucine zipper pattern.

amino acids 58-80, 65-87

FIGURE 107

CAAAACTTGCCTCGGGAGAGCGCCAGCTGACTTGAAATGGAAGGGAGCCCCGAGCCCGGGAGCGCAGCTGAGAC
TGGGGAGCGCGTTCGGCCTGTGGGCGCCCTCGCGCCGGGGCGCAGCAGGGAAAGGGAGCTGTTCTGCC
CTGCTCCACAGGGCGCCACTGGTGTGAAACCGGGAGAGCCCCTGGTGGTCCCTCCCTATCCCTCTTATATA
GAAACCTTCCACACTGGGAAGGCAGCGCGAGGCAGGAGGGCTCATGGTGGCAAGGAGGCCGGCTGATCTGCAG
GCGCACAGCATTGGAGTTACAGATTTACAGATACCAAATGGAAGGGAGGGAGGCAGAACAGCCTGCCTGGT
TCCATCAGCCCTGGCGCCAGCGCATCTGACTCGGCACCCCTGCAGGCACCATGGCCCAGAGCCGGTGTGC
TGCTCTGCTGCTGCTGCCACAGCTGCACCTGGGACCTGTGCTTGCGTGGAGGGCCCAAGGATTGGCCGAA
GTGGCGGCCACAGCCTGAGCCCCAAGAGAACGAATTGCGGAGGAGGCCGTGCTGGTACTGAGCCCTGAGG
AGCCGGGCCTGGCCAGCCGCGTCAAGTGCCTGGAGACTGTGCTGTTCCAGGAGGGCGTGGACTGTG
GCGGTATTGACCTGCGTGAGTCCCGGGGACCTGCCTGAGCACACCAACCACCTATCTCTGCAGAACAAACCAGC
TGGAAAAGATCTACCCCTGAGGAGCTCTCCCGGCTGCACCGGCTGGAGACACTGAACCTGCAAACAAACCGCCTGA
CTTCCCAGGGCTCCCAGAGAACGGCTTGAGCATCTGACCAACCTCAATTACCTGTACTTGGCCAATAACAAGC
TGACCTTGGCACCCGCTCCTGCCAACGCCCTGATCAGTGTGGACTTGCTGCCAACTATCTACCAAGATCT
ATGGGCTCACCTTGGCAGAACGCAAACCTGAGGTCTGTGACCTGCACAACAAACAAGCTGGCAGACGCCGGC
TGCGGACAAACATGTTCAACGGCTCAGCAACGTCAGGCTCTCATCTGTCCAGCAACTCTCTGCCACGTGC
CCAAGCACCTGCCCTGCCCTGTACAAGCTGCACCTCAAGAACAAACAAGCTGGAGAACGATCCCCCGGGGCCT
TCAGCGAGCTGAGCAGCTGCGAGCTACACTGAGAACAAACTACCTGACTGACGAGGGCCTGGACAACGAGA
CCTTCTGGAAGCTCTCCAGGCTGGAGTACCTGGATCTGTCCAGCAACAAACCTGCTCTGGGCTCCAGCTGGCTGC
CGCGCAGCCTGGTGTGCTGCACTTGGAGAACGCCCACCGGAGCCTGGAGCAGGGCATCCACCAACTGGCTTCCAGGGC
GCAGCGCTGGAGTACCTGCTGCTGCACAGCAACAGCTGCGGGAGCAGGGCATCCACCAACTGGCTTCCAGGGC
TCAAGCGGTTGACACCGTGCACCTGTACAACAAACGCGCTGGAGCGGTGCCAGTGGCCTGCCACGTG
GCACCCCTCATGATCCTGCACAACCAAGATCACAGCATTGGCGCGAGACTTGGCACCACCTACTTCTGGAGG
AGCTAACCTCAGTACAACCGCATCACAGCCCACAGGTGCACCGCAGCCTCCGCAAGCTGCCCTGCTGC
GCTCGCTGGACTCTGCGGGCAACGGCTGCACACGCTGCCACCTGGCTGCCATGGAAATGTCATGTGCTGAAGG
TCAAGCGAATGAGCTGGCTGCCCTGGCACAGCGCTGGGGCGCTGGCGGGCATGGCTCAGCTGCGTGAGCTGTACCTCA
CCAGCAACCGACTGCGCAGCGAGCCCTGGGCCCCGTGCCTGGTGGACCTGCCCATCTGAGCTGCTGGACA
TCGCCGGAAATCAGTCACAGAGATCCCCGAGGGCTCCCGAGTCAGTGTGACTCTGAGTACCTGCAAGAACACA
AGATTAGTGCGGTGCCGCAATGCCCTCGACTCCACGCCAACCTCAAGGGATCTTCTCAGGTTAACAAAGC
TGGCTGTGGCTCCGTGGACAGTGCCTCCGGAGGCTGAAGCACCTGCAGGTCTTGGACATTGAAGGCAACT
TAGAGTTTGGTACATTCCAAGGACCGTGGCGCTTGGGAAGGAAAAGGAGGAGGAGGAAGAGGAGGAGGAGG
AGGAAGAGGAACAAAGATGACAAGGTGATGCAGATGTGACCTAGGATGATGGACCGCCGACTTTCTGC
AGCACACGCCCTGTGCTGAGCCCCCACTCTGCCGTGCTCACACAGAACACCCAGCTGCACACATGAGGCA
TCCCACATGACACGGCTGACACAGTCTCATATCCCCACCCCTGCCACGGCTGCTCCACGGCCAGACACATGC
ACACACATCACACCCCTAAACACCCAGCTGCCACACAAACTACCCCTCAAACCCACAGTCTGTACAC
CCCCACTACCGCTGCCACGCCCTGTAATCATGCAGGGAAGGGCTGCCCTGCCACACACAGGCACCCA
TTCCCTCCCTGCTGACATGTGATGCTGATGCTACACACACACACATGCACAAGTCATGTGCGAA
CAGCCCTCCAAGCTATGCCACAGACAGCTTGGCCAGGCAATCAGCCATAGCAGCTGCCGTGCTGCC
GTCCATCTGTCGGTCCGTCCCTGGAGAAGACACAAGGGTATCCATGCTCTGTGGCCAGGTGCCACCCCT
GGAACTCACAAAAGCTGGCTTTATTCCCTTCCCATCCTATGGGGACAGGAGCCTTCAGGACTGCTGGCCTGGC
TGGCCCACCTGCTCCCTGCCAGGTGCTGGCAGTCAGTGTCAAGAGTCCCTCCCTGCCACGCCCTGGCAGGACA
CAGGACTTTCAATGGCAAGCCAGTGGAGGGCAGGATGGGAGAGGCCCTGGGTGCTGCTGGGCCTGGGG
CAGGAGTGAAGCAGAGGGTATGGGGCTGGGCTGAGCCAGGGAGGAAGGACCCAGCTGCACCTAGGAGACACCTT
GTTCTCAGGCCTGTGGGGAGTTCCGGTGCCTTATTCTTATTCTAAGGAAAAAAATGATAAAAAAAT
CTAAAGCTGATTTCTGTTATAGAAAACATAATAAAAGCATTATCCCTATCCCTGCAAAAAAA

FIGURE 108

MEGEEAEQPAWFHQWPWRPGASDSAPPAGTMAQSRVLLLLLPPQLHLGPVLAVRAPGFGRS
GGHSLSPPEENEFAEEEPVLVLSPEEPGPGPAAVSCPRDCACSQEGVVDGGIDLREFPGDLP
EHTNHLSLQNNQLEKIYPEELSRLHRLETNLQNNRLTSRGLPEKAFFEHTNLNYLYLANNK
LT LAPRFLPNALISVDFAANYLTKIYGLTFGQKPNLRSVYLHNNKLADAGLPDNMFNGSSNV
EV LILSSNFLRHVPKHLPPALYKLHLKNNKLEKIPPGAFSELSSLRELYLQNNYLTDEGLDN
ET FWKLSSLEYLDLSSNNLSRVPAGLPRSLVLLHLEKNAIRSVDANVLPIRSLEYLLLHSN
QLREQGIHPLAFQGLKRLHTVHLYNNALERVPSGLP RVR TLMILHNQITGIGREDFATTYF
LEELNLSYNRITS PQVHRDAFRKLRLRSLDLSGNRLHTLPPGLPRNVHVLKVKRNEALAALA
RGALAGMAQLRELYLTSNRLRSRALGPRAWVDLAHLQLLDIAGNQLTEIPEGLPESLEYLYL
QNNKISAVPANAFDSTPNLK GIFLRFNKLAVGSVVDSA FRRLKHLQVLDIEGNLEFGDISKD
RGRLGKEKEEEEEEEEEEETR

Signal sequence:

amino acids 1-48

N-glycosylation site.

amino acids 243-247, 310-314, 328-332, 439-443

Casein kinase II phosphorylation site.

amino acids 68-72, 84-88, 246-250, 292-296, 317-321, 591-595

N-myristoylation site.

amino acids 19-25, 107-113, 213-219, 217-223, 236-242, 335-341,
477-483, 498-502, 539-545, 548-554

Leucine zipper pattern.

amino acids 116-138, 251-273, 258-280, 322-344, 464-486, 471-493,
535-557

FIGURE 109

GGGAGGGGGCTCGGGCGCCGCGCAGCAGACCTGCTCCGGCGCGCCCTGCCGCTGTCCCTCGGGAGCGGGCAG
CACTAGCCCAGGGCTGGGGTCTCGAGACTCTCAGAGGGCGCCCTCCCATCGCGCCACCACCC
CAACCTGTTCTCGCGCCACTCGCTGCCAGGACCGCTGCCAACATGGATTTCCTGGCGCTGGT
GCTGGTATCCTCGCTCACCTGCAGGCGGCCAGTCAGGGAGGTGGCCAGGCAAATAGTGTATCGAT
TGGCTATGTCGTTATGGTGGAGGATTGACTGCTGCTGGGCTGCCAGTCTGGGACAGTGTAGCC
TGTGCCAACCACGATGCAAACATGGTAATGTATCGGCCAAACAAGTGCAAGTGTATCCTGGTTATGCTGG
AAAAACCTGTAATCAAGATCTAAATGAGTGTGGCTGAAGCCCCGCCCTGTAAGCACAGGTGCATGAACACTTA
CGGAGCTACAAGTGTACTGTCACCGATATGCTCATGCCGATGGTCTCTGCTCAAGTGCCCTGACCTG
CTCCATGGCAAACGTCACTGGCTGTGATGTTAAAGGACAAATACGGGCCAGTGCCATCCCTGGCCT
GCACCTGGCTCTGATGGAGGACCTGTGAGATGTGCTACAGGAAGAGCCTCTGCCCTAGATT
TAGGCAATGTCACACTTGGAGCTACATCTGCAAGTGTATGCTAAAGGCTCGATCTCATGTATATTGGAGG
CAAATATCAATGTCATGACATAGACGAATGCTCACTGGTCACTGTCAGTATCAGTGAGCAGCTTGCTCGATGTTATAA
CGTACGGGCTCTAACAGTCAAAGTAAAGAAGGATACCAGGGTGTGGACTGACTTGTGTATATCCAAA
AGTTATGATGAAACCTCAGGTCATTGACAAAGGAAATGGTACCAATTAAAGGGTGAACACAGGAAA
TAATAATTGGATTCTGATGTTGGAACTTGGTGGCTCCGAAGACACCATATATTCTCTATCATTACCAA
CAGGCCTACTTCTAACAGCAACACAAGACCTACACCAAAGCCAACACCAATTCTACTCCACCAACCCACC
CCTGCCAACAGAGCTCAGAACACCTCTACCCACTACAACCCAGAAAGGCCAACCCGACTGACAACATAGC
ACCACTGCCAGTACACCTCAGGAGGATTACAGTTGACAACAGGGTACAGACAGACACCTCAGAAACCCAGAGG
AGATGTGTCAGTGTCTGGTACACAGTTGTAATTTGACCATGGACTTTGGATGGATCAGGGAGAAAGACAA
TGACTTGCACGGAAACCAATCAGGGACCCAGCAGGTGACAATATCTGACAGTGTGGCAGCCAAGCCCCAGG
GGGAAAGCTGCACGCTGGTGTACCTCTGGCCCTCATGCAATTGGGACCTGTGCTGTGATTAGGCA
CAAGGTGACGGGCTGCACTCTGGCACACTCCAGGTGTTGTGAGAAAACACGGTGCCCACGGAGCAGCCCTGTG
GGGAGAAATGGTGGCATGGTGGAGGCAAACACAGATCACCTTGCAGGGGCTGACATCAAGAGCAATCACA
AAGATGATTAAAGGGTTGGAAAAAAAGATCTATGATGGAAAATTAAAGGAATGGGATTATTGAGCCTGGAGAAG
AGAAGACTGAGGGGAAACCAATTGATGGTTCAAGTATATGAAGGGTGGCACAGAGAGGGTGGGACAGCTG
TTCTCCATATGCACTAACAGAACAGAGGAAACTGGCTTAGACTAGAGTATAAGGGAGCATTCTGGCAGG
GCCATTGTTAGAATACTCTAACAAAAGAAGTGTGAAAATCTCAGTATCTCTCTCTTCTAAAAATTAGA
TAAAAATTGCTATTAAGATGGTAAAGATGTTACCCAAGGAAAAGTAACAAATTATAGAATTCCCAA
AGATGTTTGATCCTACTAGTGTGCACTGAGTAAATCTTACAATAATTGGACAAGGCTTAATTAGG
CATTCCCTTGACCTCTAACGGAGGGATTGAAAGGGGAAGAGGCCACAAATGCTGAGCTACTGAAATA
TCTCTCCATTGGCAATTCTAGCAGTATTAAAGAAAAAGAAACTATTATCCAAATGAGAGTATGATGGAC
AGATATTAGTATCTCAGTAATGTCCTAGTGTGGCGGTGTTCAATGTTCTCATGGTAAAGGTATAAGCC
TTTCATTGTTCAATGGATGATGTTAGATTGTTCAAGATTGTTTAAGAGATCCTCAAGGAACACAGTTCAGAGAG
ATTTCATCGGGTGCATTCTCTGCTTGTGACAAGTTATCTGGCTGCTGAGAAAGAGTGCCCTGCC
ACACCGGCAGACCTTCTCACCTCATCAGTATGATTCAAGTTCTTCAATTGGACTCTCCAGGGTCCAC
AGAACAGTAATTTTGAAACAATAGGTACAATAGAAGGTCTCTGTCATTAAACCTGTAAGGCAGGGCTGG
AGGGGGAAAATAATCATTAAGCCTTGAGTAACGGCAGAATATATGGCTGTAGATCCATTGTTAATGGTTCATT
TCCTTATGGTCATATAACTGCACAGCTGAAGATGAAAGGGAAAATAATGAAAATTGTTACTTGTGATGCCAA
TGATACATTGCACTAAACTGATGGAAGAAGTTATCCAAAGTACTGTATAACATCTGTTATTATTAATGTTT
CTAAAATAAAAATGTTAGTGTGTTCCAAATGGCCTAATAAAAACAATTATGTAATAAAACACTGTTAGTAAT

FIGURE 110

MDFLLALVLVSSLYLQAAAEEFDGRWPRQIVSSIGLCRYGGRIDCCWGWARQSWGQCQPVCQP
RCKHGE CIGPNKCKCHPGYAGKTCNQDLNECGLKPRPC KHRCMNTYGSYKCYCLNGYMLMPD
GSCSSALTCSMANCQYGC DVVKGQIRCQCPSPGLHLAPDGRTCDVDECATGRASCPRFRQC
VNTFGSYICKCHKGFDL MYI GGGKYQCHDIDECSLGQYQCSSFARCYNVRGSYKCKC EGYQG
DGLTCVYIPKVMIEPSGPIHPKGNGTILKGDTGNNNWIPDVGSTWWPPKTPYIPPIITNRP
TSKPTTRPTPKPTPIPTPPPPPPLPTELRTPLPPTT PERPTTGLTTIAPA A ST PPGGITVDN
RVQTDPQKPRGDVF SVLVHSCNF DHGLCGWI REKDNDLHW EPI RDPA GGQYLTV SAAKA PGG
KAARLVLPLGRLMHSGDLCLSFRHKVTGLHS GTLQVFVRKHGA HGA ALWGRNGGHGWRQTQI
TLRGADIKSESQR

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 273-277

Casein kinase II phosphorylation site.

amino acids 166-170, 345-349

Tyrosine kinase phosphorylation site.

amino acids 199-206

N-myristoylation site.

amino acids 109-115, 125-131, 147-153, 191-197, 221-227, 236-242,
421-427, 433-439, 462-468, 476-482

Aspartic acid and asparagine hydroxylation site.

amino acids 104-116, 186-198, 231-243

Cell attachment sequence.

amino acids 382-385

EGF-like domain cysteine pattern signature.

amino acids 75-87

FIGURE 111

CTTCTTTGAAAAGGATTATCACCTGATCAGGTTCTCTGCATTGCCCTTAGATTGTGA
AATGTGGCTCAAGGTCTCACAACTTCCCTTCCTTGCAACAGGTGCTGCTGGGGCTGA
AGGTGACAGTGCCATCACACACTGTCCATGGCGTCAGAGGTCAAGGCCCTACCTACCCGTC
CACTATGGCTTCCACACTCCAGCATCAGACATCCAGATCATGGCTATTGAGAGACCCA
ACAATGCCCAAATACTTACTGGGCTCTGTGAATAAGTCTGTGGTCTGACTTGAATACC
AACACAAGTTCACCATGATGCCACCCAATGCATCTGCTTATCAACCCACTGCAGTTCCCT
GATGAAGGCAATTACATCGTAAGGTCAACATTCAAGGAAATGAACTCTATGCCAGTCA
GAAGATAACAAGTCACGGTTGATGATCCTGTCAAAAGCCAGTGGTGAGATTCATCCTCCCT
CTGGGCTGTGGAGTATGTGGGAACATGACCCCTGACATGCCATGTGGAAGGGGACTCGG
CTAGCTTACCAATGGCTAAAAAATGGGAGACCTGTCCACACCAGCTCCACCTACTCCTTTTC
TCCCCAAAACAATACCCTCATATTGCTCCAGTAACCAAGGAAGACATTGGGAATTACAGCT
GCCTGGTAGGAACCCGTCAAGTGAATGAAAGTGATATCATTATGCCCATCATATTAT
GGACCTTATGGACTTCAAGTGAATTCTGATAAAGGGCTAAAGTAGGGGAAGTGTGTTACTGT
TGACCTTGGAGAGGCCATCCTATTGATTGTTCTGCTGATTCTCATCCCCCAACACCTACT
CCTGGATTAGGAGGACTGACAATACTACATATCATTAAGCATGGGCTCGCTTAGAAGTT
GCATCTGAGAAAGTAGCCCAGAAGACAATGGACTATGTGTGCTGTGTTACAACAAACATAAC
CGGCAGGCAAGATGAAACTCATTCACAGTTACATCACTTCCGTAGGACTGGAGAAGCTG
CACAGAAAGGAAAATCATTGTCACCTTCTAGCAAGTATAACTGGAATATCACTATTGATT
ATATCCATGTGCTTCTCTTCTATGAAAAAAATCAACCCCTACAAAGTTATAAAACAGAA
ACTAGAAGGCAGGCCAGAAACAGAAATACAGGAAAGCTCAAACATTTCAGGCCATGAAGATG
CTCTGGATGACTTCGAATATATGAATTGTTCTCAGATGTTCTGGTGTGTTCCAGG
ATTCCAAGCAGGTCTGTTCCAGCCTCTGATTGTGTATGGGCAAGATTGACAGTACAGT
GTATGAAGTTATTCAAGCACATCCCTGCCAGCAGCAAGACCATTCAAGAG**TGA**ACTTCTG
GCTAAACAGTACATTGAGTGAAAATTCTGAAGAAACATTAAAGGAAAACAGTGGAAAAGT
ATATTAATCTGGAATCAGTGAAGAAACCAGGACCAACACCTCTACTCATTATTCTTTACA
TGCAGAATAGAGGCATTATGCAAATTGAACTGCAGGTTTCAGCATATACACAATGTCTT
GTGCAACAGAAAAACATGTTGGGAATATTCCCTCAGTGGAGAGTCGTTCTCATGCTGACGG
GGAGAACGAAAGTGACAGGGTTCTCATAAGTTGTATGAAATATCTACAAACCTCA
ATTAGTTCTACTCTACACTTCACTATCATCAACACTGAGACTATCCTGTCTCACCTACAAA
TGTGGAAACTTACATTGTTGATTTCTCAGCAGACTTGTGTTATTAAATTGTTATTAGTG
TTAAGAATGCTAAATTATGTTCAATTCTTCAAAATTCTATCTTGTGTTATTGTACAA
CAAAGTAATAAGGATGGTTGTACAAAAACAAACTATGCCCTCTCTTCAATCACC
AGTAGTATTGAGAAGACTTGTGAAACACTTAAGGAAATGACTATTAAAGTCTTATTGTTA
TTTTTTCAAGGAAAGATGGATTCAAATAAATTATTCTGTTTGTGTTAAAAAAAAAAAAAA

FIGURE 112

MWLKVFTTFLSFATGACSGLKVTVPSHTVHGVRGQALYLPVHYGFHTPASDIQIIWLFERPH
TMPKYLLGSVNKSVPDLEYQHKFTMMPPNASLLINPLQFPDEGNYIVKVNIQGNGLTLSASQ
KIQVTVDDPVTKPVVQIHPPSGAVEYVGNTLTCHEGGTRLAYQWLKNGRPVHTSSTYSFS
PQNNTLHIAPVTKEDIGNYSCLVRNPVSEMESDIIMPIIYYGPYGLQVNNSDKGLKVGEVFTV
DLGEAILFDCSADSHPPNTYSWIRRTDNNTYIIKHGPRLEVASEKVAQKTMDYVCCAYNNIT
GRQDETHFTVIITSVGLEKLAQKGKSLSPLASITGISLFLIIISMCLLFLWKKYQPYKVIKQK
LEGRPETEYRKAQTFSGHEDALDDFGIYEFVAFPDVSGVSRIPRSVPASDCVSGQDLHSTV
YEVIQHIPAQQQDHPE

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 341-359

N-glycosylation site.

amino acids 73-77, 92-96, 117-121, 153-157, 189-193, 204-208,
276-280, 308-312

Casein kinase II phosphorylation site.

amino acids 129-133, 198-202, 214-218, 388-392, 426-430, 433-437

Tyrosine kinase phosphorylation site.

amino acids 272-280

N-myristoylation site.

amino acids 15-21, 19-25, 118-124, 163-167, 203-209, 231-237,
239-245

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 113

GCAAGCGGC~~AA~~**A**TGGCCCTCCGGAGTCTGCAGTTCCCCTGGCAGTCCTGGTGTGTT
GCTTGGGGTGCTCCCTGGACGCACGGCGGCGAGCAACGTTCGCGTCATCACGGACGAGA
ACTGGAGAGAACTGCTGGAAGGAGACTGGATGATAGAATTATGCCCGTGGTGCCTGCT
TGTCAAAATCTCAACCGGAATGGGAAAGTTGCTGAATGGGGAGAAAGATCTTGAGGTTAA
TATTGCGAAAGTAGATGTCACAGAGCAGCCAGGACTGAGTGGACGGTTATCATAACTGCTC
TTCTACTATTTATCATTGTAAGATGGTGAATTAGGCGCTATCAGGGTCCAAGGACTAAG
AAGGACTTCATAAAACTTTATAAGTGATAAAGAGTGGAAAGAGTATTGAGGCCGTTCATCATG
GTTGGTCCAGGTTCTGTTCTGATGAGTAGTATGTCAGCACTCTTCAGCTATCTATGTGGA
TCAGGACGTGCCATAACTACTTATTGAAGACCTGGATTGCCAGTGTGGGATCATATACT
GTTTTGCTTAGCAACTCTGTTCCGACTGTTATTAGGACTCTGTATGATATTGTG
AGATTGCCTTGTCCCTCAAAAAGGCGCAGACCACAGCCATACCCATACCCCTCAAAAAAAT
TATTATCAGAACATCTGCACAACCTTGAAAAAAAGTGGAGGAGGAACAAGAGGCGGATGAAGAA
GATGTTCAGAAGAAGCTGAAAGTAAAGAAGGAACAAACAAAGACTTCCACAGAATGC
CATAAAGACAACGCTCTGGTCCATCATTGCCACAGATAAATCCT**AG**TAAATTATAG
TTATCTTAATATTATGATTTGATAAAAACAGAAGATTGATCATTGTTGGTTGAAGTG
AACTGTGACTTTTGATAATTGCAAGGTTCACTAGATTGTCATTAAATTGAAGAGTCTA
CATTCAAACATAAAAGCACTAGGTATACAAGTTGAAATATGATTTAACAGCAGTATGATG
GTTAAATAGTTCTCTAATTGAAAAATCGTCCAAGCAATAAGATTATGATATTG
TTAATAATAACCTATTCAAGTCTGAGTTGAAAATTACATTCCCAAGTATTGCATTAT
TGAGGTATTAAAGAAGATTATTAGAGAAAATATTCTCATTTGATATAATTGTTCTCTG
TTCACTGTGTGAAAAAAAGAAGATATTCCCATAAATGGGAAGTTGCCATTGTCTCAAG
AAATGTGTATTCACTGACAATTCTGGTCTTTAGAGGTATTCCAAAATTCTCTGT
ATTAGTTAGGTTATGCAACTAAACACTACCTTACATTAATTAAATTACAGTTCTACACA
TGGTAATACAGGATATGCTACTGATTAGGAAGTTTAAGTTCACTGGTATTCTCTGATT
CAACAAAGTTGATTCTCTGTATTCTACTATGGTTACATTTTATT
CAAATTGGATGATAATTCTGGAAACATTGTTATGTTTAGAAACAGTATTGTT
GTTCAAAACTGAAGTTACTGAGAGATCCATCAAATTGAACAATCTGTTGAATTAAATT
TTGCCACTTTTCAGATTACATCATTCTGCTGAATTCAACTTGAAATTGTT
TTCTTTGGATGTGAAGGTGAACATTCTGATTGATGTGAAAAGCCTGGTA
TTTACATTGAAATTCAAAGAAGCTTAATATAAAAGTTGCATTCTACTCAGGAAAAG
CATCTCTGTATATGCTTAAATGTATTGTCCTCATACAGAAAGTTCTAATTGAT
TTTACAGTCTGTAATGCTGATGTTAAAATAACATTATTATTAAAAGACAA
ACTCATATTATCCTGTTCTTCTGACTGGTAATTGTTGGGATTCACAGGTAAA
GTCAGTAGGATGGAACATTAGTGTATTCTACTCCTTAAAGAGCTAGAATACATAGTTT
CACCTTAAAGAAGGGGAAATCAAATACAATGAATCAACTGACCATTACGTAGTAGAC
AATTCTGTAATGCCCCCTTCTAGGCTCTGCTGTGAATTGATTAGATTACAG
TATCGTAATATAAGTTCTTAAAGCCCTCTCTAGAATTAAATATTGTACCA
AAAGAGTTGGATGTGTAATTGATGCCTTAGAAAAATACCTAACAGCACAAATAAACCT
TTCTAACCACTTCATTAAGCTGAAAAA

FIGURE 114

MAPSGSLAVPLAVLVLLWGAPWTHGRRSNVRVITDENWRELLEGDWMIEFYAPWCPACQNL
QPEWESFAEWGEDLEVNIAKVDVTEQPGLSGRFIITALPTIYHCKDGEFRRYQGPRTKKDFI
NFISDKEWKSIEPVSSWFGPGSVLMSMSALFQLSMWIRTCHNYFIEDLGLPVWGSYTVFAL
ATLFSGLLLGLCMIFVADCLCPSKRRRPQPYPYPSKKLLSESAQPLKKVEEEQEADEEDVSE
EEAESKEGTNKDFPQNAIRQRSLGPSLATDKS

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 182-201

Casein kinase II phosphorylation site.

amino acids 68-72, 119-123, 128-132, 247-251, 257-261

Tyrosine kinase phosphorylation site.

amino acids 107-115

N-myristoylation site.

amino acids 20-26, 192-198

Amidation site.

amino acids 25-29

FIGURE 115

GCGAGTGTCCAGCTCGGGAGACCCGTGATAATTGTTAACTAATTCAACAAACGGGACCCTT
CTGTGTGCCAGAAACCGCAAGCAGTTGCTAACCCAGTGGGACAGGCAGGATTGGAAGAGCGGG
AAGGTCTGGCCAGAGCAGTGTGACACTTCCTCTGTGACC**ATGAA**ACTCTGGGTGTCTGC
ATTGCTGATGGCTGGTTGGTGTCTGAGCTGTGACAGGCCAATTCTCACCTCTATTG
GGCACATGACTGACCTGATTATGCAGAGAAAGAGCTGGTGAGTCTCTGAAAGAGTACATC
CTTGTGGAGGAAGCCAAGCTTCCAAGATTAAGAGCTGGCCAACAAAATGGAAGCCTTGAC
TAGCAAGTCAGCTGCTGATGCTGAGGGCTACCTGGCTACCCCTGTGAATGCCTACAAACTGG
TGAAGCGGCTAACACACAGACTGGCCTGCGCTGGAGGACCTTGTCTGCAGGACTCAGCTGCA
GGTTTATGCCAACCTCTGTGAGCAGGCTACCTGGCTACCCCTGTGAATGCCTACAAACTGG
AGCTGCCAAAGCCCTGATGAGACTTCAGGACACATACAGGCTGGACCCAGGCACAATTCCA
GAGGGGAACCTCCAGGAACCAAGTACCAAGGCAATGCTGAGTGTGGATGACTGCTTGGATG
GGCGCTCGGCCTACAATGAAGGGACTATTATCATACGGTGTGTGGATGGAGCAGGTGCT
AAAGCAGCTTGATGCCGGGAGGAGGCCACCAACCAAGTCACAGGTGCTGGACTACCTCA
GCTATGCTGCTTCCAGTTGGGTGATCTGCACCGTGCCTGGAGGCTCACCCGCCCTGCTC
TCCCTTGACCCAAGGCCACGAACGAGCTGGAGGGAATCTCGGTACTTGTAGCAGTTATTGGA
GGAAGAGAGAGAAAAACGTTAACAAATCAGACAGAAGCTGAGCTAGCAACCCCAGAAGGCA
TCTATGAGAGGCCTGTGGACTACCTGCCTGAGAGGGATGTTACGAGAGCCTCTGCGTGGG
GAGGGTGTCAAACGTACACCCCCGTAGACAGAAAGAGGCTTCTGTAGGTACCAACCATTGCAA
CAGGGCCCCACAGCTGCTATTGCCCTCAAAGAGGAGGAGGAGTGGGACAGCCCGACA
TCGTCAGGTACTACGATGTATGCTGATGAGGAATCGAGAGGATCAAGGAGATCGAAAAA
CCTAAACTTGACGCCACCGTCTGTGATCCAAGACAGGAGTCCTCACTGTCGCCAGCTA
CCGGGTTCCAAAAGCTCTGGTAGAGGAAGATGATGACCCCTGTTGTGGCCCGAGTAAATC
GTCGGATGCAGCATATCACAGGGTTAACAGTAAAGACTGCAGAATTGTTACAGGTTGCAAAT
TATGGAGTGGGAGGACAGTATGAACCCACTTCGACTTCTCTAGGCGACCTTTGACAGCGG
CCTCAAAACAGAGGGAAATAGTTAGCGACGTTCTTAACATGAGTGTAGAAGCTG
GTGGTGCACCGTCTCCCTGATCTGGGGCTGCAATTGGCTAAGAAGGGTACAGCTGTG
TTCTGGTACAACCTCTTGCGGAGCGGGGAAGGTGACTACCGAACAGACATGCTGCCTGCC
TGTGCTTGTGGCTGCAAGTGGGTCTCCAATAAGTGGTCCATGAACGAGGACAGGAGTTCT
TGAGACCTGTGGATCAACAGAAGTTGACT**TGA**CATCCTTCTGTCTTCCCTGTC
CTTCAGCCCATGTCAACGTGACAGACACCTTGTATGTTCTTGTATGTTCTATCAGGCT
GATTTTGGAGAAATGAATGTTGTCTGGAGCAGAGGGAGACCATACTAGGGCGACTCCTGT
GTGACTGAAGTCCCAGCCCTCATTCAAGCCTGCCCCAAGGCTAGGATCA
AAGTGGCTGCAGCAGAGTTAGCTGTCTAGCGCTAGCAAGGTGCCTTGTACCTCAGGTGTT
TTAGGTGTGAGATGTTCAAGTGAACCAAAGTTCTGTGATACCTGTTACATGTTGTTTAT
GGCATTCTATCTATTGTGGCTTACCAAAAAATGTCCTACCAAGAAAAAAAAAA

FIGURE 116

MKLWVSALLMAWFGVLSCVQAEFFTSIGHMTDLIYAEKELVQSLKEYILVEEAKLSKIKSWA
NKMEALTSKSAADAEGYLAHPVNAYKLVKRLNTDWPALEDLVLQDSAAGFIANLSVQRQFFP
TDEDEIGAAKALMRLQDTYRLDPGTISRGEELPGTKYQAMLSVDDCFGMGRSAYNEGDYYHTV
LWMEQVLKQLDAGEATTTKSQVLDYLSYAVFQLGDLHRALELTTRLLSLDPHERAGGNLR
YFEQLLEEEEREKTLTNQTEAELATPEGIYERPVVDYLPERDVYESLCRGEGVKLTPRRQKRLF
CRYHHGNRAPQOLLIAPFKEEDEWDSPHIIVRYYDVMSDDEEIERIKEIAKPKLARATVRDPKTG
VLTVASYRVSKSSWLEEDDPVVARVNRMQHITGLTVKTAELLQVANYGVGGQYEPHFDFSR
RRPFDSGLKTEGNRLATFLNYMSDVEAGGATVFPDLGAAIWPKKGTAVFWYNLLRSGEVDYR
TRHAACPVLVGCKWVSNKWFHERGQEFLRPCGSTEV

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 115-119, 264-268

Glycosaminoglycan attachment site.

amino acids 490-494

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 477-481

Casein kinase II phosphorylation site.

amino acids 43-47, 72-76, 125-129, 151-155, 165-169, 266-270,
346-350, 365-369, 385-389, 457-461, 530-534

Tyrosine kinase phosphorylation site.

amino acids 71-80, 489-496

N-myristoylation site.

amino acids 14-20, 131-137, 171-177, 446-452

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 8-19

Leucine zipper pattern.

amino acids 213-235

FIGURE 117

GCAGTATTGAGTTTACTCCCTCTTTAGTGGAAAGACAGACCATAATCCAGTGTGAGTGAAATTGATTGT
TTCATTATTACCGTTTGGCTGGGGTAGTCCGACACCTCACAGTTGAAGAGCAGGCCAGAAGGAGTTGTGA
AGACAGGACAATCTTCTTGGGGATGCTGGCTCTGGAAAGCAGCGGGCTTGCTCTGTCTTGGCCTCATGACCC
CAGGTTCTCTGGTAAAACGTAAAGCCTACTAGGCCTGGTGCCTCAATCATTGATCCTTGAGGCTGTGCC
CCTGGGGCACCCACCTGCAGGGCCTACCAACCATGCGACTGAGCTCCTGTTGGCTCTGCTGCCAGCGCTTC
CCCTCATCTAGGGCTGCTCTGGGTGCAGCCTGAGCCTCTGCCGGTTCTGGATCCAGGGGAGGGAGAAAG
ATCCCTGTGAGGCTAGGGGAGCAGGAGGGCCACAGAACATCCAGATTGAGAGCTGGCTAGACCAAAGTG
ATGAAGACTTCAACCCCCGGATTGCCCCTACTACAGGGACCCCAACAAGCCCTACAAAGAAGGTGCTCAGGACTC
GGTACATCCAGACAGAGCTGGCTCCGTGAGCGGTTGCTGGCTGTGACCTCCCAGCTACACTGTCCA
CTTGGCGTGGCTGTGAACCGTACGGTGGCCATCACTCCCTCGTTACTCTACTTCACGGCAGCGGGGG
CCCGGGCTCCAGCAGGGATGCAGGTGGTGTCTCATGGGATGAGCGGCCGCTGGCTATGTCAGAGACCCCTGC
GCCACCTTCACACACACTTGGGGCGACTACGACTGGTCTTCATCATGCAGGATGACACATATGTGAGGCC
CCGCCTGGCAGCCCTGCTGCCACCTCAGCATCAACCAAGACCTGACTTAGGCCGGCAGAGGAGTTCATGG
GCGAGCGAGCAGGCCGGTACTGTCATGGGGCTTGGTACCTGTTGTCAGGAGTCTCTGCTCGTCTGC
GGCACATCTGGATGGCTGCCAGGAGACATTCTCAGTGCCCTGACGAGTGGCTGGACGCTGCCATTG
ACTCTCTGGCGCTGGCTGTCTCACAGCACCAGGGCAGCAGTATGCTCATTTGAACTGGCAAAATAGGG
ACCTGAGAAGGAAGGGAGCTGGTTCTGAGTGCCTCGCCGTGACCCCTGTCCTCGAAGGTACCCCTCATGT
ACCGGCTCCACAAACGCTTCAGCGCTCTGGAGTGGAGCGGGTTACAGTGAATAGAACAACTGCAGGCTCAGA
TCCGAACCTGACCGTGTGACCCCCGAAAGGGGAGGCAGGGCTGAGCTGGCCCTGGGCTCCTGCTCCTTCA
CACACACTCTCGCTTGAGGTGCTGGCTGGACTACTTCACAGGAGCAGCACCTCTCCTGTGAGATGGG
CTCCAAGTGCCACTACAGGGGCTAGCAGGGGAGCTGGTGTGAGCTGGAGACTGCCCTGGAGCAGCTCA
ATCGCGCTATCAGCCCCGCTGCCCTTCAAGACAGGAGCTGCTCAACGGCTATGGCGCTTCGACCCAGCAC
GGGCATGGAGTACACCTGGACCTGTTGGAATGTTGACACAGCGTGGCACCGGGCCCTGGCTCGCA
GGTCAGCCTGCTGCCACTGAGCCGGTGGAAATCCTACCTATGCCCTATGTCACTGAGGCCACCCGAGTGC
AGCTGGTGTGCAACTCCTGGTGGCTGAAGCTGCTGCAGCCCCGGTTCTCGAGGCCGTGAGCAATGTC
TGGAGCCACGAGAACATGCAATTGCTCACCTGTTGCTGGTCTACGGGCCACGAGAACGGTGGCGTGGAGCTCCAG
ACCCATTCTGGGTGAAGGCTGAGCAGGGAGTTAGAGCAGGGTACCCCTGGACGAGGCTGGCTGGCTCG
CTGCGAGCAGAGGCCCTTCCAGGTGCAGACTCATGGACGTGGCTCGAAGAACGACCCCTGTGGACACTCT
TCTCCTTACCAACCGTGTGGACAAGGCCTGGGCCAGTCTCAACCGCTGCGCATGAATGCCATCTCTGGCT
GGCAGGCCCTTTCCAGTCCATTCCAGGAGTTCAATTCTGCCCTGTCACACAGAGATCACCCCAAGGGCCC
CGGGGGCTGGCCCTGACCCCCCTCCCTGGTGTGACCCCTCCGGGGCTCTATAGGGGGAGATTG
ACCGGCAGGCTTCTGCGAGGGCTGCTTCTACAACGCTGACTACCTGGCGGCCAGGCCGGCTGGCAGGTGAAC
TGGCAGGCCAGGAAGAGGAGGAAGCCCTGGAGGGCTGGAGGTGATGGATGTTTCTCGGTTCTCAGGGCTCC
ACCTCTTCGGCCGTAGAGCCAGGGCTGGTGCAGAACAGTTCTCCCTGCGAGACTGCAGCCACGGCTCAGTGAAG
AACTCTACCACCGCTGCCCTCAGCAACCTGGAGGGCTAGGGGGCCGTGCCCCAGCTGGCTATGGCTCTTTG
AGCAGGAGCAGGCCAATAGCACTTAGCCGCTGGGGCCCTAACCTATTACCTTCTGTGCTGCCCTCAGCC
CCAGGAAGGGCAAGGCAAGATGGTGGACAGATAGAGAACATTGTTGCTGTATTAAATGAAATGTTATTAA
ACATGTTCTGCC

FIGURE 118

MRLSSLLALLRPALPLILGLSLGCSLSLLRVSWIQGEGEDPCVEAVGERGPQNPDZRARLD
QSDEDFKPRIVPYYRDPNPKPYKKVLRTRYIQTTELGSRERLLVAVLTSRATLSTLAVAVNRTV
AHHFPRLLYFTGQRGARAPAGMQVVSHGDERPAWLMSETRHLHFGADYDWFFIMQDDTY
VQAPRLAALAGHLSINQDLYLGRAEEFIGAGEQARYCHGGFGYLLRSLLLRLRPHLDGCRC
DILSARPDEWLGRCLIDSLGVGCVSQHQGQQYRSFELAKNRDPEKEGSSAFLSAFAVHPVSE
GTLMYRLHKRFSALELERAYSEIEQLQAQIRNLTVLTPEGEAGLSWPVGLPAPFTPNSRFEV
LGWDYFTEQHTFSCADGAPKCPLQGASRADVGALETALEQLNRRYQPRLRFQKQRLLNGYR
RFDPARGMEYTL DLLECVTQRGHRRALARRVSSLRPLSRVEILPMPYVTEATRVQLVLPLL
VAEAAAAPAFLEAFAAANVLEPREHALLTLVYGPREGGRGAPDPFLGVKA AAAAELEERRYPG
TRLAWLAVRAEAPSQVRLMDVVSKKHPVDTLFFLTWTRPGPEVLRCRMNAISGWQAFFP
VHFQEFPALSPQRSPGPPGAGPDPPSPGADPSRGAPIGGRFDRQASAEGCFYNADYLAA
RARLAGELAGQEEEAELEGLEVMDVFLRFSGLHLFRAVEPGLVQKFSLRDCSPRLSEELYHR
CRLSNLEGLGGRAQLAMALFEQEQANST

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 489-507

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-68, 150-154, 322-326, 331-337, 368-372, 385-389,
399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550,
558-564, 651-657, 657-663, 672-678

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

FIGURE 119

CGGAGTGGTGC~~G~~CCAACGTGAGAGGAACCCGTGCGCGCTGC~~G~~CTTCCTGTCCCCAAGCC
GTTCTAGACGCGGGAAAAATGCTTCTGAAAGCAGCTCCTTTGAAGGGTGTATGCTTGG
AAGCATTCTGTGCTTGATCACTATGCTAGGACACATTAGGATTGGTCATGGAAATAGAA
TGCACCACCATGAGCATCATCACCTACAAGCTCCTAACAAAGAAGATATCTGAAAATTCA
GAGGATGAGCGCATGGAGCTCAGTAAGAGCTTCGAGTATACTGTATTATCCTGTAAAACC
CAAAGATGTGAGTCTTGGGCTGCAGTAAAGGAGACTTGGACAAACACTGTGACAAAGCAG
AGTCTTCAGTTCTGAAAATGTTAAAGTGTGAGTCATTAAATATGGACACAAATGACATG
TGGTTAATGATGAGAAAAGCTTACAAATACGCCCTTGATAAGTATAGAGACCAATACA~~ACT~~G
GTTCTCCTGCACGCCCACTACGTTGCTATCATTGAAAACCTAAAGTATTTTGTAA
AAAAGGATCCATCACAGCCTTCTATCTAGGCCACACTATAAAATCTGGAGACCTGAATAT
GTGGGTATGGAAGGAGGAATTGTCTTAAGTGTAGAATCAATGAAAAGACTTAACAGCCTCT
CAATATCCCAGAAAAGTGTCTGAACAGGGAGGGATGATTGGAAGATATCTGAAGATAAAC
AGCTAGCAGTTGCCTGAAATATGCTGGAGTATTGAGAAAATGCAGAAAGATGCTGATGG
AAAGATGTATTAATACAAATCTGTTGGCTTCTATTAAAGAGGCAATGACTTACACCC
CAACCAGGTAGTAGAAGGCTGTTGTTAGATGGCTGTTACTTTAATGGACTGACTCCAA
ATCAGATGCATGTGATGATGTATGGGTATACCGCCTAGGCATTGGCATATTCAAT
GATGCATTGGTTCTTACCTCAAATGGTCTGACAATGACTTGAGAAGTGGTAGAAAAGCG
TGAATATGATCTTGTATAGGACGTGTTGTCATTATTGAGTAGTAACATACATACCAA
TACAGCTGTATGTTCTTTCTTAATTGGTGGCACTGGTATAACCACACATTAAAG
TCAGTAGTACATTTAAATGAGGGTGGTTCTTAAACACATGAACATTGTAAATG
TGGATAAAATTCTAAATTATGAACATTAGAAATCTGTGGGCACATATTGCTGATTGGTT
AAAAAATTAAACAGGTCTTAGCGTTCTAAGATATGCAAATGATATCTCTAGTTGTGAATT
TGTGATTAAAGTAAAACCTTAGCTGTGTTCCCTTACTTCTAATACTGATTATGTTCT
AAGCCTCCCCAAGTCCAATGGATTGCCTCTCAAATGTACAACTAAGCAACTAAAGAAA
ATTAAAGTGAAGTGGAAAAT

FIGURE 120

MLSSESSFLKGVMLGSIFCALITMLGHIRIGHGNRMHHHEHHHLQAPNKEDILKISEDERME
LSKSFRVYCIILVKPKDVSLAAVKETWTKHCDKAEFFSSENVKFESINMDTNDMWLMMRK
AYKYAFDKYRDQYNWFFLARPTTFAIIENLKYFLLKKDPSQPFYLGHТИSGDLEYVGMEGG
IVLSVESMKRLNSLLNIPEKCPEQGGMIWKISEDKQLAVCLKYAGVFAENAEDADGKDVFNT
KSVGLSIKEAMTYHPNQVVEGCCSDMAVTFNGLTPNQMHVMMYGVYRLRAFGHIFNDALVFL
PPNGSDND

Signal sequence:

amino acids 1-33

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-132, 150-154, 322-326, 331-335, 368-372, 385-389,
399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550,
558-564, 651-657, 657-663, 672-672

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

FIGURE 121

FIGURE 122

MNSSKSSETQCTERGCFSSQMFLWTVAGIPILFLSACFITRCVVTFRIFQTCDEKKFQLPEN
FTELSCNYGGSVKNCCPLNWEYFQSSCYFFSTDТИSWALSLKNCSAMGAHLVVINSQEEQ
EFLSYKKPKMREFFIGLSDQVVEGQWQWVDGTPLTKSLSFWDVGEPPNNIATLEDCATMRDSS
NPRQNWNDVTCFLNYFRICEMVGINPLNKGKSL

Signal sequence:

amino acids 1-42

N-glycosylation site.

amino acids 2-6, 62-66, 107-111

Casein kinase II phosphorylation site.

amino acids 51-55, 120-124, 163-167, 175-179, 181-185

N-myristoylation site.

amino acids 15-21, 74-80, 155-161

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 27-38

FIGURE 123

GGGACTACAAGCCGCGCCCGCTGCCGCTGGCCCCCTCAGCAACCCCTCGACATGGCGCTGAGGCCGCCACCGGCAC
TCCGGCTCTGGCTCGCTGACTTCTTCCTGCTGCTGCTTCAAGGGCTGCCTGATAGGGCTGTAAATC
TCAAATCCAGCAATCGAACCCCACTGGTACAGGAATTGAAAGTGTGGAACTGTCTTGATCATTACGGATTGCG
AGACAAGTGACCCCAAGGATCGAGTGGAAAGAAAATTCAAGATGAACAAACACATATGTGTTTTGACAACAAAA
TTCAGGGAGACTTGGCGGGTCTGCGAGAAATCTGGGGAAAGACATCCCTGAAGATCTGGATGTGACACGGAGAG
ACTCAGCCCTTATCGCTGTGAGGTCGTTGCTGAAATGACCGCAAGGAATTGATGAGATTGTGATCGAGTTA
CTGTCAGTGAAAGCCAGTGCACCCCTGTCTGTAGAGTGGCGAAGGCTGTACAGTAGGCAAGATGGCAACACTGC
ACTGCCAGGAGAGTGAGGGCCACCCCCCGCCCTCACTACAGCTGGTATCGCAATGATGTACCAACTGCCACGGATT
CCAGAGCCAATCCCAGATTGCGAATTCTTCTTCACTTAAACTCTGAAACAGGCACTTGGTGTTCACTGCTG
TTCACAAGGACGACTCTGGCAGTACTACTGCATTGCTTCCAATGACGCAGGCTCAGCCAGGTGAGGAGCAGG
AGATGGAAGTCTATGACCTGAACATTGGCGAATTATTGGGGGGTCTGGTTGCTCTGTACTGGCCCTG
TCACGTTGGCATCTGCTGTGCATAACAGACGTGGCTACTTCATCAACAATAAACAGGATGGAGAAAGTTACAAGA
ACCCAGGGAAACCAGATGGAGTTAACTACATCCGCACTGACGAGGAGGGCAGTCAGACACAAGTCATGTTTG
TGATCTGAGACCCCGGGTGTGGCTGAGAGCGCACAGAGCGCACGTGACATACTCTGCTAGAAACTCCGTCAA
GGCAGCAGAGAGCTGATGCACTGGACAGAGCTAGACACTCATTAGAAGCTTTCGTTTGGCAAAGTTGACCA
CTACTCTCTTACTCTAACACAGCCATGAATAGAAGAATTTCCTCAAGATGGACCCGGAAATAACACAA
GGAAGCGAAACTGGGTGCGTCACTGAGTTGGTCTTAATCTGTTCTGGCTGATTCCGCATGAGTATTAGG
GTGATCTAAAGAGTTGCTCACGTAACAGCCGTCTGGCCCTGTGAAGGCAGCATGTCACCACGGTCGTT
CAGCAGCCACGACAGCACCATGTGAGATGGCGAGGTGGCTGGACAGCACCAGCAGCGCATCCGGGGAAACCA
GAAAAGGCTCTTACACAGCAGCCTTACTTCATGGCCCACAGACACCACCGCAGTTCTTAAAGGCTCTGC
TGATCGGTGTTGCACTGAGTTGGAGAAGCTTTTGATCAGCATTGTAAGGAAACACAAACAAAATCAGGAAG
GTAATTGGTGCTGAGAGGGATCTGCTGAGGAACCTGCTTGTCAAACAGGGTGTCAAGGATTAAAGGAAA
ACCTCTGCTTAAAGCTGAAATGGTACTGAAATGCTTTCTATGGGCTCTGTTATTAAACACAAAC
TACATCTAAATTGGCTAAGGATGTTGGATTATTGAAAAGAAAATTCTATTAAACTGTAATATTGTT
CATACAATGTTAAACACTTTTAAAGGTTCAACTTAAGGTTAGAAGTCAAGCTACTAGTGTAAAT
TGGAAAATCTAATAATTAAAGGTTGGCAACTTACCAAGGAATCCTCTATGGAAGTTACTGTTGATGTTCTTCT
CACACAAGTTTACGGCTTCAAGGAACCTCATACTGTCTACACATCAGACCATAGTTGCTTAGGAAACCTT
TAAAATCCAGTTAAGCAATGTTGAAATCAGTTGCATCTTCAAAAGAAACCTCTCAGGTTAGCTTGA
GCCTCTCTGAGATGACTAGGACAGTCTGTAACCCAGGGCCACCCAGAAGCCCTCAGATGTACATACAGATG
CCAGTCAGCTCTGGGGTGCAGCGCCAGGGCCCCGCTCTAGCTACTGTTGCTCGTCTGCCAGGAGGCC
GCCATCCTGGCCCTGGCAGTGGCTGTCCAGTGAGCTTACTCAGTGGCCCTGCTCATCCAGCACAGC
TCTCAGGTGGCACTGCAGGGACACTGGTGTCTCCATGTAGCGTCCAGCTTGGCTCTGTAACAGACCTCT
TTTGGTTATGGATGGCTCACAAATAGGGCCCCAATGCTATTTTTTAAAGTTGTTATTGGAT
AAGATTGCTAAGGCCAAAGGCAATTGCGAAATCAAGTCTGTCAGTACAATAACATTAAAGAAAATGGAT
CCCACGTCTCTTGCACAGAGAAAGCACCCAGACGCCACAGGCTCTGCGATTCAAACAAACCATGAT
GGAGTGGCGCCAGTCAGCCTTTAAAGAACGTCAGGTGGAGCAGCCAGGTGAAAGGCCCTGGCGGGAGGAAAG
TGAAACGCCGAATCAAAGCAGTTCTAATTGACTTTAAATTCTATCCGCCGGAGACACTGCTCCATT
TGTGGGGGGACATTAGCAACATCACTCAGAAGCCTGTTCTCAAGAGCAGGTGTTCTCAGCCTCACATGCC
GCCGTGCTGGACTCAGGACTGAAAGTGTAAAGCAAGGAGCTGCTGAGAAGGAGCACTTCACTGTTGCT
GAATGGCTCTCACTACTCACCTGTTCTTCAGCTTCCAGGTGCTTGGTTTATACTTGAAGCTTTTT
AATGCAATGAGACTGTGTTGACTTTTTAGTTATGTGAAACACTTGCCTGCCAGGGCCTGGCAGAGGCA
GGAAATGCTCCAGCAGTGGCTCAGTGTCCCTGGTGTCTGCTGCATGGCATCTGGATGCTTAGCATGCAAGTTC
CCTCCATCATGCCACCTTGGTAGAGAGGGATGGCTCCACCTCAGCAGGGGATTACGCTCCAGCCTC
TCTGGTTGTCATAGTGTAGGGTAGCTTATTGCCCTCTTCTATACCCCTAAACCTTCTACACTAGTCCA
TGGGAACCAGGTCTGAAAAAGTAGAGAGAAGTGAAGTAGAGTCTGGAGTAGCTGCCATAACTGAGACTAGA
CGGAAAAGGAATACTCGTGTATTAAAGATATGAATGTGACTCAAGACTCGAGGCCGATACAGGGCTGTGATTCT
GCCCTTGGATGGATGTTGCTGTACACAGATGCTACAGACTTGTACTAACACACCGTAATTGGCATTGTTAAC
CTCATTATAAAAGCTTCAAAAAACCA

FIGURE 124

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77624
><subunit 1 of 1, 310 aa, 1 stop
><MW: 35020, pI: 7.90, NX(S/T): 3
MALRRPPRLRLCARLPDFLFLFRGCLIGAVNLKSSNRTPVVQEFESVELSCIITDSQTSD
PRIEWKKIQDEQTTYVFFDNKIQGDLAGRAEILGKTSLSKIWNVRRDSALYRCEVVARNDRK
EIDEIVIELTVQVKPVTCPVCRVPKAVPGKMATLHCQESEGHPRPHYSWYRNDVPLPTDSRA
NPRFRNSSFHLNSETGTLVFTAVHKDDSGQYYCIASNDAGSARCEEQEMEVYDLNIGGIIGG
VLVVLAVLALITLGICCAVRGGYFINNKQDGESYKNPGKPDGVNYIRTDEEGDFRHKSFVI
```

Important features of the protein:

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 243-263

N-glycosylation sites.

amino acids 104-107, 192-195

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 107-110

Casein kinase II phosphorylation site.

amino acids 106-109, 296-299

Tyrosine kinase phosphorylation site.

amino acids 69-77

N-myristoylation sites.

amino acids 26-31, 215-220, 226-231, 243-248, 244-249, 262-267