Operaciones con radicales

Caso	Ejemplo	Explicación	Notas	Resultado
Extraer factores exponente < índice	$\sqrt[3]{2^2}$	2 < 3, no se puede simplificar		$\sqrt[3]{2^2}$
Extraer factores exponente = índice	$\sqrt[3]{5^3}$	3 = 3, el factor sale completo		5
Extraer factores exponente > índice	⁵ √717	Se divide el exponente entre el índice y el cociente sale y el resto se queda	$17 \div 5$ $3 = \text{cociente}$ $2 = \text{resto}$	$7^3 \cdot \sqrt[5]{7^2}$
Introducir factores	$2\sqrt{3}$	El número fuera del radical se mete dentro elevándolo al índice y multiplicando.		$\sqrt{2^2 \cdot 3}$

Caso	Ejemplo	Explicación	Notas	Resultado
Radicales semejantes directos Sumar, restar	$5\sqrt{2} + 5\sqrt{2} - 3\sqrt{2}$	Se pueden sumar o restar porque tienen el mismo índice y radicando (incluye base y exponente)	$(5+5-3)\sqrt{2}$	$7\sqrt{2}$
Radicales no semejantes al inicio Sumary, restar	$\sqrt{50} + \sqrt{8}$	Al inicio son distintos, pero al descomponer se transforman en semejantes	$\sqrt{50} = \sqrt{2 \cdot 5^2}$ $\sqrt{8} = \sqrt{2^3}$ $\sqrt{2 \cdot 5^2} = 5\sqrt{2}$ $\sqrt{2^3} = \sqrt{2^2 \cdot 2} = 2\sqrt{2}$	$7\sqrt{2}$
División de radicales	$\sqrt[5]{4}:\sqrt[3]{2}$	Es necesario mismo índice. $mcm(5,3) = 15$.	$5\sqrt{2} + 2\sqrt{2}$ $\sqrt[15]{(2^2)^3} : \sqrt[15]{2^5} =$ $\sqrt[15]{2^6 : 2^5} =$ $\sqrt[15]{2^{6-5}}$	¹⁵ √2

Caso	Ejemplo	Explicación	Notas	Resultado
Multiplicación de radicales	$\sqrt{3} \cdot \sqrt[3]{2}$	Es necesario mismo índice. $mcm(2,3) = 6$.	$ \sqrt[6]{3^3} \sqrt[6]{2^2} = \sqrt[6]{3^3 \cdot 2^2} = \sqrt[6]{27 \cdot 4}. $	6√108
Potencia de una raíz	$(\sqrt{5})^2$	El exponente solo afecta al radicando.	$(\sqrt{5})^2 = \sqrt{25}$	5
Raíz de una raíz	$\sqrt[2]{\sqrt[3]{7}}$	Los índices se multiplican.	$\sqrt[2]{\sqrt[3]{7}} = \sqrt[6]{7}$	⁶ √7

Descomponer un número

• Como producto de sus números primos.

$$-72 = 2 \times 2 \times 2 \times 3 \times 3$$

• Como potencia (lo que queremos para trabajar con radicales).

$$-72 = 2^3 \cdot 3^2$$

Números primos

Un **número primo** es un número natural mayor que 1 que tiene únicamente dos divisores positivos distintos: él mismo y el 1.

Regla

Para descomponer cualquier número N:

- Intenta dividirlo entre el primo más pequeño (2).
- Si se puede (el resultado es natural), sigues dividiendo hasta que ya no se pueda.
- Si no se puede, pasas al siguiente primo (3).
- Repite el proceso con primos cada vez mayores (2, 3, 5, 7, 11, ...) hasta llegar a 1.
- El resultado son los factores primos con sus exponentes.

Ejemplo

45

- No se puede dividir entre 2, probamos con 3.
 - $-45 \div 3 = 15$
 - $-15 \div 3 = 5$
- Ahora ya no se puede dividir entre 3, probamos con 5:

$$-5 \div 5 = 1$$

El resultado es $45 = 3^2 \cdot 5$

mcm y MCD

mcm, mínimo común múltiplo

Es el número más pequeño que es múltiplo de dos o más números.

- mcm(4,6)
 - Múltiplos de 4: 4, 8, 12, 16...
 - Múltiplos de 6: 6, 12, 18, 24...
 - El menor es 12, luego mcm(4,6) = 12

Cálculo de mcm con descomposición en factores primos

- Se descomponen los números en factores primos.
- Tomas cada primo que aparezca, con el exponente mayor con el que se presente.
- Multiplicas todo.

$$6 = 2 \cdot 3$$

$$8 = 2^3$$

$$10 = 2 \cdot 5$$

$$mcm(6, 8, 10) = 2^3 \cdot 3 \cdot 5 = 120$$

MCD, máximo común divisor

Es el mayor número que divide a dos o más números sin dejar resto.

• *MCD*(8, 12)

- Divisores de 8: 1, 2, 4, 8

- Divisores de 12: 1, 2, 3, 4, 6, 12

– El mayor es 4, luego MCD(8, 12) = 4

Cálculo de MCD con descomposición en factores primos

• Se descomponen los números en factores primos.

• Tomas cada primo que aparezca en todos los números, con el exponente menor.

• Multiplicas.

$$36 = 2^2 \cdot 3^2$$

$$48 = 2^4 \cdot 3$$

$$60 = 2^2 \cdot 3 \cdot 5$$

$$MCD(36, 48, 60) = 2^2 \cdot 3 = 12$$

Racionalizar

Significa pasar de una fracción con raíces en en el denominador a una fracción equivalente sin raíces en el denominador.

Se busca que el denominador sea un número racional (de ahí el nombre).

$\frac{a}{b\sqrt{c}}$ $\frac{2}{3}$	$\frac{2}{\sqrt{2}}$	Se multiplica numerador y denominador por \sqrt{C} .	$\frac{2}{3\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{2\sqrt{2}}{3 \cdot 2}$	$\frac{\sqrt{2}}{3}$
$\frac{a}{b\sqrt[n]{c^m}}$	$\frac{5}{\sqrt{2^2}}$	Si $m < n$, se multiplica por lo que falta para completar la potencia. Si $m >= n$, o bien no hay raíz o bien se puede simplificar y entonces ya no habría raíz en el	$\frac{5}{\sqrt[3]{4}} \cdot \frac{\sqrt[3]{2}}{\sqrt[3]{2}} = \frac{5\sqrt[3]{2}}{\sqrt[3]{8}}$	$\frac{5\sqrt[3]{2}}{2}$

Caso	Ejemplo	Explicación	Desglose	Resultado
$\frac{a}{\sqrt{b} \pm \sqrt{c}}$	$\frac{2}{\sqrt{2}-\sqrt{3}}$	Se multiplica por el conjugado (cambiar el signo entre 2 términos) del denominador.	$\frac{2}{\sqrt{2} - \sqrt{3}} = \frac{2 \cdot (\sqrt{2} + \sqrt{3})}{2 \cdot (\sqrt{2} + \sqrt{3})}$ $\frac{2\sqrt{2} + 2\sqrt{3}}{(\sqrt{2})^2 - (\sqrt{3})^2} = \frac{2\sqrt{2} + 2\sqrt{3}}{2 - 3} = \frac{2\sqrt{2} + 2\sqrt{3}}{-1}$	$-2\sqrt{2} - 2\sqrt{3}$ $= \frac{1}{3}$

Redondeo, cifras significativas y errores

- Aproximar un número real significa sustituirlo por otro con sólo algunas de sus primeras cifras decimales (se denominan *cifras significativas*).
 - Ejemplo: Aproximar π a 3.14 desde 3.141592654...
 - Siempre que se aproxima, se comete un error de aproximación que se puede medir de 2 formas:
 - * Error absoluto: Diferencia entre el valor real y el aproximado.

$$E_A = |x_t - x_a|$$

$$E_A = |3.141592654 - 3.14| = 0.001592654$$

* Error relativo: Cociente entre el error absoluto y el valor real.

$$E_R = \frac{E_A}{x_t}$$

$$E_R = \frac{0.001592654}{3.141592654} = 0.000506957 \Rightarrow 0.05\%$$

Logaritmos

El logaritmo en base a de un número positivo N es el exponente x al que hay que elevar la base a para obtener N.

Se representa por $\log_a N$:

$$\log_a N = x \quad \Leftrightarrow \quad a^x = N$$

- a = base
- N = argumento

Ejemplo básico:

$$\log_3 9 = x \iff 3^x = 9 = 3^2 \implies x = 2$$

Casos especiales: - Los logaritmos con base 10, se llaman logaritmos decimales y se escriben omitiendo la base: $\log_{10} N = \log N$

• Los logaritmos neperianos o naturales tienen por base el número irracional $e \approx 2.718182...$, y se escriben: $\log_e N = \ln N$

Propiedades básicas

- $\log_a(1) = 0$
- $\log_a(a) = 1$
- $\log_a(a^n) = n$

Logaritmo de un producto $\log_a(xy) = \log_a(x) + \log_a(y)$

Logaritmo de un cociente $\log_a \left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$

Logaritmo de una potencia $\log_a(x^m) = m \cdot \log_a(x)$

Logaritmo de una raíz $\log_a(\sqrt[m]{x}) = \frac{\log_a(x)}{m}$