UCB CS70: DIS 0A

Leo Zhang

January 24, 2025

1. Propositional Practice

- (a) F (The correct answer is T. For example, π is an irrational number.) $\exists x \in \mathbb{R} \ (x \notin \mathbb{Q})$
- **(b)** T $\forall x \in \mathbb{Z}(((x \in \mathbb{N}) \lor (x < 0)) \land \neg((x \in \mathbb{N}) \land (x < 0)))$
- (c) T $(\forall x \in \mathbb{N})((6 \mid x) \implies ((2 \mid x) \lor (3 \mid x)))$
- (d) T

 All integers are rational numbers.
- (e) F

 If a integers is divisable by 2 or is divisable by 3,then it's divisable by 6.
- (f) T

 If a natural number x is larger than 7, then it's can be a sum of two natural numbers.

2.Truth table

• (a) $P \wedge (Q \vee P) \equiv P \wedge Q$ is not equivalent.

$\mid P \mid$	Q	$P \wedge (Q \vee P)$	$P \wedge Q$
Τ	T	T	Τ
$\mid T \mid$	F	Γ	\mathbf{F}
F	Γ	F	\mathbf{F}
F	F	F	F

• (b) $(P \lor Q) \land R \equiv (P \land R) \lor (Q \land R)$ is equivalent.

P	Q	R	$(P \lor Q) \land R$	$(P \land R) \lor (Q \land R)$
T	Т	Т	Τ	T
T	Τ	F	\mathbf{F}	F
T	F	Γ	${ m T}$	${ m T}$
T	F	F	${ m F}$	F
F	Τ	Т	${ m T}$	m T
F	Τ	F	${ m F}$	F
F	F	Т	${ m F}$	F
F	F	F	${ m F}$	F

• (c) $(P \wedge Q) \vee R \equiv (P \vee R) \wedge (Q \vee R)$ is equivalent.

P	Q	R	$(P \wedge Q) \vee R$	$(P \vee R) \wedge (Q \vee R)$
Т	Т	Т	Τ	T
T	Τ	F	${ m T}$	T
T	F	Т	${ m T}$	T
T	F	F	${ m F}$	F
F	Τ	Т	${ m T}$	T
F	Τ	F	${ m F}$	F
F	F	Т	${ m T}$	T
F	F	F	${ m F}$	F

3.Implication

- (a) $\forall x \forall y P(x,y) \implies \forall y \forall x P(x,y) \text{ T}$
- **(b)** $\forall x \exists y P(x, y) \implies \exists y \forall y P(x, y) \text{ F}$ eg.P(x,y) is that y > x.
- (c) $\exists x \forall y P(x,y) \implies \forall y \exists x P(x,y) \text{ T}$