Chapter 4

Orthogonality

4.1 Orthogonality

4.1.1 Definition of Orthogonality

1. Definition of Orthogonal Vectors

 \forall two *n*-dimensional vectors **u** and **v** where $n \in \mathbb{N}^+$, if

$$\mathbf{u}^{\mathrm{T}}\mathbf{v} = \mathbf{u} \cdot \mathbf{v} = 0,$$

then the vectors \mathbf{u} and \mathbf{v} are orthogonal.

2. Definition of Orthogonality of Subspaces

Two subspaces U and V of a vector space are orthogonal if every vector \mathbf{u} in U is perpendicular to every vector \mathbf{v} in V, which is also that $\mathbf{u}^{\mathrm{T}}\mathbf{v} = 0$ for all \mathbf{u} in U and all \mathbf{v} in V.

3. Definition of Orthogonal Complements

The orthogonal complements of a subspace V contains every vector that is perpendicular to V. This orthogonal subspace is denoted by V^{\perp} .

4.1.2 Properties of Orthogonal Subspaces \square

1. Independence

 \forall two orthogonal subspaces \boldsymbol{U} and \boldsymbol{V} , assume that a set of vectors $S_u = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_m\}$ is a basis of \boldsymbol{U} and a set of vectors $S_v = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ is a basis of \boldsymbol{V} , where

 $m, n \in \mathbb{N}^+$. Then the vectors in the set $S = S_u \cup S_v = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_m, \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ are linearly independent.

2. Symmetry

 \forall subspaces V, its orthogonal complement is V^{\perp} . Then the orthogonal complement of V^{\perp} is V, which means that $(V^{\perp})^{\perp} = V$.

3. Complementarity

 \forall subspaces V, its orthogonal complement is V^{\perp} . Assume that the vectors in V and V^{\perp} are n-dimensional, where $h \in \mathbb{N}^+$. Then if a set of vectors S_v is a basis of V and a set of vectors $S_{v^{\perp}}$ is a basis of V^{\perp} , then the set of vectors $S = S_v \cup S_{v^{\perp}}$ is a basis of \mathbb{R}^n .

4.1.3 Fundamental Theorem of Linear Algebra, Part 2 □

 $\forall m \times n \text{ matrix } A \text{ where } m, n \in \mathbb{N}^+,$

- 1. N(A) is the orthogonal complement of $C(A^{T})$, which is in \mathbb{R}^{n} .
- 2. $C(A^{T})$ is the orthogonal complement of N(A), which is in \mathbb{R}^{n} .
- 3. $N(A^{T})$ is the orthogonal complement of C(A), which is in \mathbb{R}^{m} .
- 4. C(A) is the orthogonal complement of $N(A^{T})$, which is in \mathbb{R}^{m} .

4.1.4 The Decomposition of The Solution to Ax = b

 $\forall m \times n \text{ matrix } A \text{ where } m, n \in \mathbb{N}^+, \ \forall \text{ vector } \mathbf{b} \in \mathbf{C}(A) \text{ and } \mathbf{b} \neq \mathbf{0}.$ For the linear equations $A\mathbf{x} = \mathbf{b}$:

- 1. \exists a unique n-dimensional vector $\mathbf{x}_r \in C(A^T)$ such that $A\mathbf{x}_r = \mathbf{b}$.
- 2. \forall solution \mathbf{x}_c to $A\mathbf{x} = \mathbf{0}$ can be decomposed as $\mathbf{x}_c = \mathbf{x}_r + \mathbf{x}_n$, where $\mathbf{x}_n \in \mathbf{N}(A)$.

4.2 Projections

4.2.1 Property of $A^{T}A$ and AA^{T}

 \forall matrix A,

- 1. $A^{T}A$ and AA^{T} are square and symmetric.
- 2. $A^{T}A$ is invertible if and only if A has linearly independent columns.
- 3. AA^{T} is invertible if and only if A has linearly independent rows.

4.2.2 Definition of Projection

 $\forall m, n \in \mathbb{N}^+$ such that m > n, assume that vectors $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n \in \mathbf{R}^m$ and they are a basis of a subspace \mathbf{V} . \forall vector $\mathbf{b} \in \mathbf{R}^m$ but $\mathbf{b} \notin \mathbf{V}$. \exists a vector $\mathbf{p} \in \mathbf{V}$ and a vector $\mathbf{e} \in \mathbf{V}^{\perp}$ such that

$$\mathbf{p} + \mathbf{e} = \mathbf{b}$$
.

 ${\bf p}$ is called the projection onto ${\bf V}$ of ${\bf b}$; ${\bf e}$ is called the error vector. Assume that

$$\mathbf{p} = \widehat{x}_1 \mathbf{a}_1 + \widehat{x}_2 \mathbf{a}_2 + \dots + \widehat{x}_n \mathbf{a}_n = \begin{bmatrix} | & | & \dots & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \\ | & | & \dots & | \end{bmatrix} \begin{bmatrix} \widehat{x}_1 \\ \widehat{x}_2 \\ \vdots \\ \widehat{x}_n \end{bmatrix} = A\widehat{\mathbf{x}} = P\mathbf{b}.$$

P is called the projection matrix. It is clear that $\mathbf{p} \in \mathbf{C}(A)$ and $\mathbf{e} \in \mathbf{N}(A^{\mathrm{T}})$.

4.2.3 Existence and Uniqueness of Projection \Box

 $\forall m, n \in \mathbb{N}^+$ such that $m \geq n$, assume that vectors $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n \in \mathbf{R}^m$ and they are a basis of a subspace \mathbf{V} . \forall vector $\mathbf{b} \in \mathbf{R}^m$ but $\mathbf{b} \notin \mathbf{V}$. \exists a vector $\mathbf{p} \in \mathbf{V}$ and a vector $\mathbf{e} \in \mathbf{V}^{\perp}$ such that

$$\mathbf{p} + \mathbf{e} = \mathbf{b}$$
.

In addition, \mathbf{p} and \mathbf{e} are unique.

4.2.4 Process to Calculate Projection

Because $\mathbf{e} \in \mathbf{V}^{\perp}$, there is

$$\mathbf{a}_1^{\mathrm{T}}\mathbf{e} = \mathbf{a}_2^{\mathrm{T}}\mathbf{e} = \cdots = \mathbf{a}_n^{\mathrm{T}}\mathbf{e} = 0 \qquad \Rightarrow \qquad egin{bmatrix} & - & \mathbf{a}_1^{\mathrm{T}} & - \ - & \mathbf{a}_2^{\mathrm{T}} & - \ dots & dots & dots \ - & dots & dots \ - & \mathbf{a}_n^{\mathrm{T}} & - \ \end{bmatrix} \mathbf{e} = A^{\mathrm{T}}\mathbf{e} = \mathbf{0}.$$

Because $\mathbf{e} = \mathbf{b} - \mathbf{p} = \mathbf{b} - A\hat{\mathbf{x}}$, there is

$$A^{\mathrm{T}}(\mathbf{b} - A\widehat{\mathbf{x}}) = \mathbf{0} \qquad \Rightarrow \qquad A^{\mathrm{T}}A\widehat{\mathbf{x}} = A^{\mathrm{T}}\mathbf{b}.$$

Because $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ are linearly independent, which means that N(A) can only have $\mathbf{0}$, and $A^{\mathrm{T}}A$ is invertible. Thus,

$$\widehat{\mathbf{x}} = (A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}\mathbf{b}, \qquad \mathbf{p} = A\widehat{\mathbf{x}} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}\mathbf{b}, \qquad P = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}.$$

In addition,

$$P^{2} = A(A^{T}A)^{-1}A^{T}A(A^{T}A)^{-1}A^{T} = A[(A^{T}A)^{-1}A^{T}A](A^{T}A)^{-1}A^{T} = A(A^{T}A)^{-1}A^{T} = P.$$

Special Case: If V is a line and a vector $\mathbf{a} \in V$, then

$$\widehat{\mathbf{x}} = \frac{\mathbf{a}^{\mathrm{T}}\mathbf{b}}{\mathbf{a}^{\mathrm{T}}\mathbf{a}}, \qquad \mathbf{p} = \mathbf{a}\widehat{\mathbf{x}} = \mathbf{a}\frac{\mathbf{a}^{\mathrm{T}}\mathbf{b}}{\mathbf{a}^{\mathrm{T}}\mathbf{a}}, \qquad P = \frac{\mathbf{a}\mathbf{a}^{\mathrm{T}}}{\mathbf{a}^{\mathrm{T}}\mathbf{a}}.$$

4.3 Orthonormal Bases and Gram-Schmidt

4.3.1 Definition about Orthonormal Concepts

1. Orthonormal Vectors

 \forall m-dimensional vectors $\mathbf{q}_1, \dots, \mathbf{q}_n$ where $m, n \in \mathbb{N}^+$, if

$$\mathbf{q}_{i}^{\mathrm{T}}\mathbf{q}_{j} = \mathbf{q}_{i} \cdot \mathbf{q}_{j} = \begin{cases} 0 & \text{when } i \neq j \quad \text{(orthogonal vectors)} \\ 1 & \text{when } i = j \quad \text{(unit vectors)} : \|\mathbf{q}_{i}\| = 1 \end{cases}$$

where $1 \leq i, j \leq n$ and $i, j \in \mathbb{N}^+$, then the vectors $\mathbf{q}_1, \dots, \mathbf{q}_n$ are orthonormal.

2. Orthogonal Matrices

 $\forall m \times n \text{ matrix } Q \text{ with orthonormal columns is called an orthogonal matrix, where } m, n \in \mathbb{N}^+.$

$$Q = \begin{bmatrix} | & | & \cdots & | \\ \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \\ | & | & \cdots & | \end{bmatrix},$$

where $\mathbf{q}_1, \dots, \mathbf{q}_n$ are *m*-dimensional orthonormal vectors.

4.3.2 Properties of Orthogonal Matrices \square

- 1. \forall orthogonal matrix Q satisfies $Q^{\mathsf{T}}Q = I$.
- 2. \forall square orthogonal matrix Q satisfies $Q^{\mathrm{T}} = Q^{-1}$.
- 3. $\forall m \times n \text{ orthogonal matrix } Q, \text{ where } m, n \in \mathbb{N}^+$
 - (1) $\forall n$ -dimensional vector \mathbf{x} , there is $||Q\mathbf{x}|| = ||\mathbf{x}||$.
 - (2) $\forall n$ -dimensional vectors \mathbf{x} and \mathbf{y} , there is $(Q\mathbf{x})^{\mathrm{T}}Q\mathbf{y} = \mathbf{x}^{\mathrm{T}}\mathbf{y}$.

4.3.3 Projections Using Orthonormal Bases: Q Replaces A

 $\forall m, n \in \mathbb{N}^+$ such that m > n, assume that orthonormal vectors $\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_n \in \mathbf{R}^m$ and they are a basis of a subspace \mathbf{V} . \forall vector $\mathbf{b} \in \mathbf{R}^m$ but $\mathbf{b} \notin \mathbf{V}$. In order to obtain

the projection onto V of \mathbf{b} , there is

$$\mathbf{p} = \widehat{x}_1 \mathbf{q}_1 + \widehat{x}_2 \mathbf{q}_2 + \dots + \widehat{x}_n \mathbf{q}_n = \begin{bmatrix} | & | & \dots & | \\ \mathbf{q}_1 & \mathbf{q}_2 & \dots & \mathbf{q}_n \\ | & | & \dots & | \end{bmatrix} \begin{bmatrix} \widehat{x}_1 \\ \widehat{x}_2 \\ \vdots \\ \widehat{x}_n \end{bmatrix} = Q\widehat{\mathbf{x}} = P\mathbf{b}.$$

Then

$$\widehat{\mathbf{x}} = (Q^{\mathrm{T}}Q)^{-1}Q^{\mathrm{T}}\mathbf{b} = Q^{\mathrm{T}}\mathbf{b},$$

 $\mathbf{p} = Q\widehat{\mathbf{x}} = QQ^{\mathrm{T}}\mathbf{b},$
 $P = QQ^{\mathrm{T}}.$

Specifically,

$$\mathbf{p} = QQ^{\mathrm{T}}\mathbf{b} = \begin{bmatrix} | & | & \cdots & | \\ \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \\ | & | & \cdots & | \end{bmatrix} \begin{bmatrix} - & \mathbf{q}_1^{\mathrm{T}} & - \\ - & \mathbf{q}_2^{\mathrm{T}} & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{q}_n^{\mathrm{T}} & - \end{bmatrix} \mathbf{b}$$

$$= \begin{bmatrix} | & | & \cdots & | \\ \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \\ | & | & \cdots & | \end{bmatrix} \begin{bmatrix} - & \mathbf{q}_1^{\mathrm{T}}\mathbf{b} & - \\ - & \mathbf{q}_2^{\mathrm{T}}\mathbf{b} & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{q}_n^{\mathrm{T}}\mathbf{b} & - \end{bmatrix}$$

$$= (\mathbf{q}_1^{\mathrm{T}}\mathbf{b})\mathbf{q}_1 + (\mathbf{q}_2^{\mathrm{T}}\mathbf{b})\mathbf{q}_2 + \cdots + (\mathbf{q}_n^{\mathrm{T}}\mathbf{b})\mathbf{q}_n.$$

4.3.4 Vectors in A Subspace with an Orthonormal Basis \square

 $\forall n \in \mathbb{N}^+$, assume that orthonormal vectors $\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_n$ are a basis of a subspace V. \forall vector $\mathbf{v} \in V$, there is

$$\mathbf{v} = (\mathbf{q}_1^{\mathrm{T}} \mathbf{v}) \mathbf{q}_1 + (\mathbf{q}_2^{\mathrm{T}} \mathbf{v}) \mathbf{q}_2 + \dots + (\mathbf{q}_n^{\mathrm{T}} \mathbf{v}) \mathbf{q}_n.$$

4.3.5 The Gram-Schmidt Process

 $\forall m, n \in \mathbb{N}^+$ such that $m \geq n$, assume that vectors $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n \in \mathbf{R}^m$ are a basis of a subspace \mathbf{V} . The Gram-Schmidt Process can be used to get an orthonormal basis of \mathbf{V} : $\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_n$.

1. Complement

Let

$$\mathbf{p}_i = \mathbf{a}_{n+1} = \mathbf{0}.$$

2. Recursion

 $\forall \ 1 \leq i \leq n \text{ and } i \in \mathbb{N}^+,$

$$\mathbf{e}_i = \mathbf{a}_i - \mathbf{p}_i, \qquad \mathbf{q}_i = rac{\mathbf{e}_i}{\|\mathbf{e}_i\|}, \ \mathbf{p}_{i+1} = (\mathbf{q}_1^{\mathrm{T}}\mathbf{a}_{i+1})\mathbf{q}_1 + (\mathbf{q}_2^{\mathrm{T}}\mathbf{a}_{i+1})\mathbf{q}_2 + \dots + (\mathbf{q}_i^{\mathrm{T}}\mathbf{a}_{i+1})\mathbf{q}_i.$$

3. Result

The vectors $\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_n$ is an orthonormal basis of V.

4.3.6 The Factorization A = QR

 $\forall m, n \in \mathbb{N}^+$ such that $m \geq n$, assume that vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n \in \mathbf{R}^m$ are a basis of a subspace V. Gram-Schmidt constructs orthonormal vectors $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n$. The matrices with these columns satisfy A = QR. Then $R = Q^TA$ is upper triangular because later \mathbf{q} 's are orthogonal to earlier \mathbf{a} 's.

$$A = \begin{bmatrix} | & | & \cdots & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \\ | & | & \cdots & | \end{bmatrix}, \quad Q = \begin{bmatrix} | & | & \cdots & | \\ \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \\ | & | & \cdots & | \end{bmatrix}, \quad R = \begin{bmatrix} \mathbf{q}_1^{\mathrm{T}} \mathbf{a}_1 & \mathbf{q}_1^{\mathrm{T}} \mathbf{a}_2 & \cdots & \mathbf{q}_1^{\mathrm{T}} \mathbf{a}_n \\ 0 & \mathbf{q}_2^{\mathrm{T}} \mathbf{a}_2 & \cdots & \mathbf{q}_2^{\mathrm{T}} \mathbf{a}_n \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{q}_n^{\mathrm{T}} \mathbf{a}_n \end{bmatrix}.$$

Thus.

$$A = QR$$
.

It is clear that R is invertible.

Special Case: For the projection, if A = QR, there is

$$A^{T}A = (QR)^{T}QR = R^{T}Q^{T}QR = R^{T}(Q^{T}Q)R = R^{T}IR = R^{T}R.$$

Then

$$\widehat{\mathbf{x}} = (A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}\mathbf{b} = (R^{\mathrm{T}}R)^{-1}(QR)^{\mathrm{T}}\mathbf{b} = R^{-1}(R^{\mathrm{T}})^{-1}R^{\mathrm{T}}Q^{\mathrm{T}}\mathbf{b} = R^{-1}Q^{\mathrm{T}}\mathbf{b},$$

$$\mathbf{p} = A\widehat{\mathbf{x}} = QRR^{-1}Q^{\mathrm{T}}\mathbf{b} = QQ^{\mathrm{T}}\mathbf{b},$$

$$P = QQ^{\mathrm{T}}.$$