Prezentacja przy użyciu klasy Beamer

Karol Lewandowski 30 stycznia 2022

Funkcje

Definicja funkcji

Funkcję definiuje się jako przyporządkowanie każdemu elementowi jednego zbioru, dokładnie jednego elementu drugiego zbioru.

Rysunek 1: przykład funkcji

Funkcje - przykłady

Definicja funkcji wykładniczej

Funkcja wykładnicza ma wzór: $f(x) = a^x$, gdzie a > 0. Nazwa funkcji wykładniczej pochodzi od tego, że x znajduje się w wykładniku.

Rysunek 2: przykład funkcji wykładniczej

Funkcje - przykłady

Definicje funkcji trygonometrycznych w trójkącie prostokątnym

Boki a oraz b - to **przyprostokątne** trójkąta prostokątnego. Bok c - to **przeciwprostokątna** trójkąta prostokątnego.

$$\sin \alpha = \frac{a}{c}$$
 $\cos \alpha = \frac{b}{c}$
 $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

Funkcje - przykłady

Definicja pochodnej funkcji

Pochodna funkcji - miara szybkości (tempa) zmian wartości funkcji względem jej argumentów.

Załóżmy, że mamy daną funkcję f(x) oraz argument x_0 , w otoczeniu którego funkcja f(x) jest określona. Pochodną funkcji f(x) w punkcie x_0 oznaczamy symbolem:

$$f'(x_0)$$

i definiujemy jako granicę:

$$f'(x_0) = \lim_{x o x_0} rac{f(x) - f(x_0)}{x - x_0}$$

Możemy również zdefiniować pochodną jako granicę:

$$f'(x_0)=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$$

Przebieg zmiennosci funkcji

Badanie przebiegu zmiennosci funkcji

Podczas badania przebiegu zmiennosci funkcji należy wyznaczyć:

- 1. Dziedzinę.
- 2. Miejsca zerowe.
- Punkt przecięcia z osią Oy.
- 4. Granice na krańcach dziedziny.
- 5. Asymptoty.
- 6. Przedziały monotoniczności.
- 7. Ekstrema lokalne.

Na końcu rysujemy wykres funkcji i odczytujemy z niego zbiór wartosci funkcji.

Przebieg zmiennosci funkcji

Przykładowa tabela przebiegu zmiennosci funkcji

Х	$(-\infty, -1)$	-1	(-1, 0)	0	(0, 1)	1	$(1, +\infty)$
f'(x)	-		=	-	-		-
f"(x)	-		+	0	-		+
f(x)	0		+∞ ∖ 0	0 p.p.	0		+∞ ∖ 0

Równania kwadratowe

Proste równania kwadratowe

Najprostszymi równaniami kwadratowymi są równania typu:

$$x^2 = a$$

gdzie a - to dowolna liczba rzeczywista.

W zależności od wartości parametru a, równanie może mieć różną liczbę rozwiązań.

- ightharpoonup Jeżeli a>0, to równanie ma dwa rozwiązania: $x=\sqrt{a}$ oraz $x=-\sqrt{a}$.
- ightharpoonup Jeżeli a=0, to równanie ma jedno rozwiązanie: x=0.
- Jeżeli a < 0, to równanie nie ma rozwiązań.</p>

Nierównosci kwadratowe

Metoda rozwiązywania nierównosci kwadratowych

Metodę rozwiązywania nierówności kwadratowej można zapisać w czterech krokach:

- a) wszystkie wyrazy przenosimy na lewą stronę nierówności, tak aby po prawej zostało tylko 0,
- lewą stronę nierówności traktujemy jako wzór funkcji kwadratowej,
- c) wyznaczamy miejsca zerowe tej funkcji kwadratowej (o ile istnieją) i szkicujemy jej wykres,
- d) odczytujemy z wykresu rozwiązanie nierówności.

Netografia i bibliografia

Bibliografia:

- https://www.matemaks.pl/ metoda-rozwiazywania-nierownosci-kwadratowych.html
- https://www.matemaks.pl/pochodne.html
- https://www.matemaks.pl/ funkcje-definicje-i-wlasnosci.html

