CSE 250A. Principles of Al

Probabilistic Reasoning and Decision-Making

Lecture 5 – Inference in polytrees

Lawrence Saul Department of Computer Science and Engineering University of California, San Diego

Fall 2021

Outline

Review

2 Polytrees

Inference

d-separation and conditional independence

Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

Definition

A path π is **blocked** if there exists a node $Z \in \pi$ for which one of three conditions holds:

Inference

Problem

Given a set E of evidence nodes, and a set Q of query nodes, how to compute the posterior distribution P(Q|E)?

More precisely

How to express P(Q|E) in terms of the CPTs $P(X_i|pa(X_i))$ of the BN, which are assumed to be given?

Tools at our disposal

Bayes rule marginalization product rule and their conditionalized versions

marginal independence conditional independence that we can test via d-separation

Strategy to compute P(Q|E)

_			
Bay	es	ru	le

Use to express P(Q|E) in terms of conditional probabilities that respect the order of the DAG.

marginalization

Use to introduce nodes on the left side of the conditioning bar when they need to appear as parents.

product rule

Use to express joint predictions (over multiple variables) in terms of simpler individual predictions.

marginal and conditional independence

Use to remove non-informative variables from the right side of the conditioning bar.

Questions for today

[Q1] In what type(s) of BNs is exact inference tractable?

[Q2] What makes exact inference tractable in these BNs?

[Q3] How does it scale with the size of the DAG and CPTs?

Questions?

Outline

- Review
- Polytrees
- Inference

Polytrees

Definition

A **polytree** is a singly connected belief network: between any two nodes there is at most one path.

Alternatively, a polytree is a belief network without any loops (i.e., undirected cycles).

Examples

All trees are polytrees.

Polytrees

Definition

A **polytree** is a singly connected belief network: between any two nodes there is at most one path.

Alternatively, a polytree is a belief network without any loops (i.e., undirected cycles).

Examples

All trees are polytrees.

But not vice versa!
A node in a polytree may have multiple parents.

Setup

Notation

Let X be a node in a polytree. Let U_1, \ldots, U_m denote its parents. Let Y_1, \ldots, Y_n denote its children.

Subgraphs

Draw a box around each parent U_i and all nodes connected to it **not** via X.

Draw a box around each child Y_j and all nodes connected to it **not** via X.

Key property

Claim

In any polytree, these subgraphs have no common nodes.

Put another way, these boxes do not overlap.

?

Proof

The parents and children of X are connected via X. A common node in different boxes would create a **loop**. But there are no loops in polytrees.

Divide and conquer

Of course each subgraph is also a polytree in its own right. This suggests a **recursive** strategy for efficient inference ...

Questions?

Outline

- Review
- Polytrees
- **Inference**

Inference in polytrees

Let X denote a node in a polytree with parents U_1, U_2, \ldots, U_m and children Y_1, Y_2, \ldots, Y_n .

Let E denote a set of evidence nodes. Assume $X \notin E$.

How to compute P(X=x|E)?

Types of evidence

$$E = E_X^+ \cup E_X^-$$

Evidence from above

Let E_X^+ denote the evidence nodes connected to X through its parents (in the pink/yellow/green boxes).

Evidence from <u>below</u>

Let E_X^- denote the evidence nodes connected to X through its children (in the gray/purple/blue boxes).

Inference — first steps

$$P(X=x|E)$$
= $P(X=x|E_X^-, E_X^+)$
= $\frac{P(E_X^-|X=x, E_X^+) P(X=x|E_X^+)}{P(E_X^-|E_X^+)}$

$$P(E_X^-|X=x) P(X=x|E_X^+)$$

Bayes rule

$$= \frac{P(E_X^-|X=x) P(X=x|E_X^+)}{P(E_X^-|E_X^+)}$$

conditional independence

(Node X blocks all paths from E_X^+ to E_X^- by case 1 of d-separation.)

Plan of attack

$$P(X=x|E) = \frac{P(E_X^-|X=x)P(X=x|E_X^+)}{P(E_X^-|E_X^+)}$$

Numerator

The first term only involves the subgraphs below X. The second term only involves the subgraphs above X.

Denominator

If we know how to compute the numerator (for any x), then the denominator follows easily:

$$\sum_{x} P(X = x | E) = 1$$
 normalized

$$\Rightarrow \underbrace{P(E_{X}^{-} | E_{X}^{+})}_{\text{denominator}} = \sum_{x} \underbrace{P(E_{X}^{-} | X = x) P(X = x | E_{X}^{+})}_{\text{numerator}}$$

Questions?

Recursion through parents of X

Let \vec{U} denote the parents (U_1, U_2, \dots, U_m) of X. Let \vec{u} denote values (u_1, u_2, \dots, u_m) for \vec{U} .

$$P(X = x | E_X^+)$$

$$= \sum_{\vec{u}} P(X = x, \vec{U} = \vec{u} | E_X^+) \quad \text{marginalization}$$

$$= \sum_{\vec{u}} P(\vec{U} = \vec{u} | E_X^+) P(X = x | \vec{U} = \vec{u}, E_X^+) \quad \text{product rule}$$

$$= \sum_{\vec{u}} P(\vec{U} = \vec{u} | E_X^+) P(X = x | \vec{U} = \vec{u}) \quad \text{conditional independence}$$

$$= \sum_{\vec{u}} P(\vec{U} = \vec{u} | E_X^+) P(X = x | \vec{U} = \vec{u}) \quad \text{conditional independence}$$

Boxing in the evidence

Let $E_{U_i \setminus X} \subset E_X^+$ denote the evidence in the i^{th} parent's box; it is the evidence connected to U_i , but not through X.

$$E_X^+ = E_{U_1 \setminus X} \cup E_{U_2 \setminus X} \cup \cdots \cup E_{U_m \setminus X}$$

Completing the recursion

If node X and its descendants are not observed, then X blocks every path between different boxes by case 3 of d-separation.

$$P(\vec{U} = \vec{u} | E_X^+) = \prod_{i=1}^m P(U_i = u_i | E_X^+)$$
 conditional independence

$$= \prod_{i=1}^m P(U_i = u_i | E_{U_i \setminus X})$$
 conditional independence

recursive instance of original problem!

Recap

How to compute P(X=x|E)?

Terms from subgraphs

$$P(X=x|E) \propto \underbrace{P(X=x|E_X^+)}_{\text{from above}} \underbrace{P(E_X^-|X=x)}_{\text{from below}}$$

Recursion through parents

$$P(X = x | E_X^+) = \sum_{\vec{u}} \underbrace{P(X = x | \vec{U} = \vec{u})}_{\text{CPT (given)}} \prod_{i=1}^{m} \underbrace{P(U_i = u_i | E_{U_i \setminus X})}_{\text{recursive instance}}$$

Questions?

Recursion through children

$$P(E_X^-|X=x) = \prod_{i=1}^n P(E_{Y_i\setminus X}|X=x)$$
 conditional independence

When node X is observed, it blocks every path between different boxes by case 2 of d-separation.

More terminology and notation

Let Z_{jk} denote the k^{th} parent of Y_j (excluding X itself). The nodes Z_{jk} are sometimes called the **spouses** of X.

Let \vec{Z}_j denote the other parents of Y_j (excluding X). Let \vec{z}_i denote a vector of instantiated values for these nodes.

Completing the recursion

$$P(E_X^-|X=x) = \prod_{j=1}^n P(E_{Y_j\setminus X}|X=x)$$

Stated without proof:

$$P(E_{Y_{j}\backslash X}|X=x) \propto \sum_{y_{j}} \underbrace{P(E_{Y_{j}}^{-}|Y_{j}=y_{j})}_{\text{recursive instance}} \sum_{\vec{z}_{j}} \underbrace{P(y_{j}|\vec{z}_{j},x)}_{\text{CPT(given)}} \prod_{k} \underbrace{P(z_{jk}|E_{Z_{jk}\backslash Y_{j}})}_{\text{recursive instance}}$$

Now we just need to make sure these recursions terminate ...

Termination conditions for polytree algorithm

Where does it end?

- Root nodes (no parents)
- Leaf nodes (no children)
- Evidence nodes

To begin we assumed that $X \notin E$. Otherwise the inference P(X=x|E) was trivial.

A polytree has no loops, so the process cannot cycle.

Runtime analysis

Before terminating:

The algorithm may visit each node in the BN. The algorithm may sum over the CPT at each node.

• Thus the runtime is:

Linear in the number of nodes of the BN. *Linear* in the size of the CPTs.

Key takeaways

Relax

You will never be asked (in this class) to derive or implement the polytree algorithm in its full generality.

So why is this algorithm important?

It showcases the usefulness of d-separation. It is the basis of many algorithms for inference in BNs.

What you need to understand

[HW 2] Enough for guided calculations in small BNs.
[HW 7] Enough for full implementations in simpler BNs.

Questions?

Next lecture ...

Many interesting BNs are not polytrees.

What are strategies for inference in these BNs?