Tabelle verità 1- Traccia

Costruire la tabella di verità della seguente espressione

$$W = \overline{(x+y) \cdot z \cdot (y+z)}$$

- **b** Dato il seguente circuito:
 - 1 Calcolare (ed eventualmente semplificare) la funzione logica
 - 2 Calcolare la tabella di verità

Circuito - Traccia

 Disegnare il circuito logico corrispondente alla seguente funzione Booleana, senza semplificarla

$$Y_1 = A \cdot \overline{(B + \overline{C})} + \overline{(B + \overline{C}) \cdot B}$$

- **b** Data la funzione $Y_2 = \bar{A}BCD + ABCD + A\bar{B}CD$:
 - 1 Disegnare circuito corrispondente
 - 2 Semplificare F usando proprietà e teoremi dell'Algebra di Boole.
 - 3 Disegnare nuovo circuito ottenibile da funzione semplificata

Table 2.2 Boolean theorems of one variable				
T	heorem		Dual	Name
T1 B	• 1 = B	T1'	B+0=B	Identity
T2 B	• 0 = 0	T2'	B + 1 = 1	Null Element
T3 B	$\bullet B = B$	T3'	B+B=B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5 B	$\bullet \ \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6'	B+C=C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
Т9	$B \bullet (B + C) = B$	T9′	$B + (B \cdot C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \cdot C) + (\overline{B} \cdot D) + (C \cdot D)$ = $B \cdot C + \overline{B} \cdot D$	T11′	$(B+C) \bullet (\overline{B}+D) \bullet (C+D)$ = $(B+C) \bullet (\overline{B}+D)$	Consensus
T12	$\overline{B_0 \bullet B_1 \bullet B_2}$ = $(\overline{B_0 + \overline{B_1 + \overline{B_2}})$	T12′	$\overline{B_0 + B_1 + B_2}$ = $(\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	De Morgan's Theorem

Algebra Boole 1- Traccia

Semplificare le seguenti espressioni usando i Teoremi dell'algebra Booleana:

$$F_1 : \bar{A} \cdot \bar{B} \cdot \bar{C} + \bar{A} \cdot B + A \cdot B + A \cdot \bar{B} \cdot \bar{C}$$

$$F_2 : A \cdot B \cdot \bar{C} + A \cdot \bar{B} \cdot C + A \cdot B \cdot C$$

$$F_3 = A \cdot B \cdot C + \bar{A} + \bar{B} + \bar{C}$$

Theorem Dual Name T1 $B \cdot 1 = B$ T1' $B + 0 = B$ Identity T2 $B \cdot 0 = 0$ T2' $B + 1 = 1$ Null Element T3 $B \cdot B = B$ T3' $B + B = B$ Idempotency T4 $\overline{B} = B$ Involution T5 $B \cdot \overline{B} = 0$ T5' $B + \overline{B} = 1$ Complements		Table 2.2 Boolean theorems of one variable				
T2 $B \cdot 0 = 0$ T2' $B+1=1$ Null Element T3 $B \cdot B = B$ T3' $B+B=B$ Idempotency T4 $\overline{\overline{B}} = B$ Involution		Theorem		Dual	Name	
T3 $B \cdot B = B$ T3' $B + B = B$ Idempotency T4 $\overline{\overline{B}} = B$ Involution	T1	$B \bullet 1 = B$	T1'	B+0=B	Identity	
T4 $\overline{B} = B$ Involution	T2	<i>B</i> • 0 = 0	T2'	B + 1 = 1	Null Element	
Ti D-D Involution	Т3	$B \bullet B = B$	T3′	B+B=B	Idempotency	
T5 $B \bullet \overline{B} = 0$ T5' $B + \overline{B} = 1$ Complements	T4		$\overline{\overline{B}} = B$		Involution	
	T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements	

Table 2.3 Boolean theorems of several variables				
	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6'	B+C=C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B+C) = B$	T9′	$B + (B \cdot C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ = $B \bullet C + \overline{B} \bullet D$	T11′	$(B+C) \bullet (\overline{B}+D) \bullet (C+D)$ = $(B+C) \bullet (\overline{B}+D)$	Consensus
T12	$\overline{B_0 \bullet B_1 \bullet B_2}$ = $(\overline{B_0 + \overline{B_1} + \overline{B_2}})$	T12′	$\overline{B_0 + B_1 + B_2}$ = $(\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	De Morgan's Theorem

Algebra Boole- Traccia Teorema del consenso

Applicando i teoremi dell'algebra di Boole, verificare se la seguente espressione 'e vera o falsa:

$$(A \cdot B) + (B \cdot C) + (\bar{A} \cdot C) = (A \cdot B) + (\bar{A} \cdot C)$$

Table 2.2 Boolean theorems of one variable				
	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	<i>B</i> • 0 = 0	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3′	B+B=B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6'	B+C=C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9′	$B + (B \cdot C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ = $B \bullet C + \overline{B} \bullet D$	T11′	$(B+C) \bullet (\overline{B}+D) \bullet (C+D)$ = $(B+C) \bullet (\overline{B}+D)$	Consensus
T12	$\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2}$ = $(\overline{B_0} + \overline{B_1} + \overline{B_2})$	T12′	$\overline{B_0 + B_1 + B_2 \dots}$ = $(\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2} \dots)$	De Morgan's Theorem

Algebra Boole- Verifica uguaglianza

Dimostrare se la seguente uguaglianza è vera o falsa:

$$\overline{A \cdot B + B \cdot C + A \cdot C} = \overline{A} \cdot \overline{B} + \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{C}$$

	Table 2.2 Boolean theorems of one variable				
	Theorem		Dual	Name	
T1	<i>B</i> • 1 = <i>B</i>	T1'	B+0=B	Identity	
T2	<i>B</i> • 0 = 0	T2'	B + 1 = 1	Null Element	
Т3	$B \bullet B = B$	T3′	B+B=B	Idempotency	
T4		$\overline{\overline{B}} = B$		Involution	
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements	

Table 2.3 Boolean theorems of several variables				
	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6'	B+C=C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B+C) = B$	T9′	$B + (B \cdot C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \cdot C) + (\overline{B} \cdot D) + (C \cdot D)$ = $B \cdot C + \overline{B} \cdot D$	T11′	$(B+C) \cdot (\overline{B}+D) \cdot (C+D)$ = $(B+C) \cdot (\overline{B}+D)$	Consensus
T12	$\overline{B_0 \bullet B_1 \bullet B_2}$ = $(\overline{B_0} + \overline{B_1} + \overline{B_2})$	T12′	$\overline{B_0 + B_1 + B_2}$ = $(\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	De Morgan's Theorem

Esercizio 1- Da tavola a forme POS/SOP

 Calcolare forme canoniche SOP e POS partendo dalla seguente tabella

A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

• Determinare tabella di verità e forme canoniche SOP e POS di una funzione a tre inputs che dà 1 in output sse riceve un numero pari di 1 in input