

How Neutrino Oscillations Change Explodability of Massive Stars? Mariam Gogilashvili

Niels Bohr International Academy and DARK, Niels Bohr Institute, university of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark

Which Massive Stars Explode?

The Force Explosion Condition

$$\int_{R_{NS}} R_{S} + \epsilon \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0$$

$$\rho \left(\frac{\partial v}{\partial t} + (v \cdot \nabla)v \right) = -\nabla p - \rho \nabla \Phi$$

$$\frac{\partial (\rho E)}{\partial t} + \nabla \cdot \left[\rho v \left(\epsilon + \frac{p}{\rho} + \frac{v^{2}}{2} + \Phi \right) \right] = \rho H - \rho C$$
Given the second of the second

Gogilashvili et al. (2021, 2022, 2023)

Flavor Conversions and Explodability

$$n_{\nu_e(\bar{\nu}_e)}^{\text{new}} = \frac{1}{3} (n_{\nu_e(\bar{\nu}_e)}^{\text{old}} + 2n_{\nu_x(\bar{\nu}_x)}^{\text{old}})$$

$$L_{\nu_e(\bar{\nu}_e)}^{\text{new}} = \frac{1}{3} (L_{\nu_e(\bar{\nu}_e)}^{\text{old}} + 2L_{\nu_x(\bar{\nu}_x)}^{\text{old}})$$

$$= \frac{(L_{\nu_e}^{\text{old}} + 2L_{\nu_x}^{\text{old}}) \left(\frac{1}{3}\kappa_{\nu_e}^{\text{old}} + \frac{2}{3}\kappa_{\nu_x}^{\text{old}}\right) + (L_{\bar{\nu}_e}^{\text{old}} + 2L_{\nu_x}^{\text{old}}) \left(\frac{1}{3}\kappa_{\bar{\nu}_e}^{\text{old}} + \frac{2}{3}\kappa_{\nu_x}^{\text{old}}\right)}{(L_{\nu_e}^{\text{old}} + 2L_{\nu_x}^{\text{old}}) + (L_{\bar{\nu}_e}^{\text{old}} + 2L_{\nu_x}^{\text{old}})}$$

Gogilashvili et al. (2025 in prep)

