Analiză comparativă a algoritmilor pentru satisfiabilitatea propozițională: Rezoluție, Davis-Putnam și DPLL

Raul-Daniel Chiciudean Facultatea de Matematică și Informatică Universitatea de Vest din Timișoara raul.chiciudean05e-uvt.ro

Rezumat

Lucrarea prezintă o comparație teoretică și experimentală a trei algoritmi clasici pentru satisfiabilitatea formulelor în logica propozițională: Rezoluția, Davis-Putnam (DP) și Davis-Putnam-Logemann-Loveland (DPLL). Sunt analizate complexitatea, strategiile de selecție a literalilor și eficiența practică. Algoritmii sunt implementați în Python, iar performanța lor este testată pe formule CNF generate aleator și benchmarkuri cunoscute. Rezultatele oferă o perspectivă clară asupra aplicabilității fiecărui algoritm în funcție de dimensiunea și structura formulei.

Cuprins

1	Intr	roducere 3
	1.1	Motivație
	1.2	Contextul și problema abordată
	1.3	Descriere informală a soluției
	1.4	Exemplu ilustrativ
	1.5	Declarație de originalitate
	1.6	Instrucțiuni de citire
2	Des	scrierea formală a problemei și soluției
	2.1	Formularea problemei SAT
	2.2	Descrierea algoritmilor
	2.3	Proprietăți teoretice
3	Mo	delarea și implementarea
	3.1	Structuri de date
	3.2	Descrierea arhitecturii
	3.3	Strategii de alegere a literalului
	3.4	Manual de utilizare
4	Stu	diu de caz / Experiment
	4.1	Designul experimentului
	4.2	Date de test
	4.3	Rezultate experimentale
	4.4	Interpretare și analiză
5	Cor	nparație cu literatura
	5.1	Metode similare
	5.2	Avantaje și limitări
	5.3	Contextul aplicabilității

6	Con	ıcluzii și direcții viitoare	-
	6.1	Rezumatul contribuțiilor	5
	6.2	Dificultăți întâmpinate	1
	6.3	Probleme deschise	6
\mathbf{A}	Cod	lul sursă - fragment	6

1 Introducere

1.1 Motivație

Problema satisfiabilității (SAT) este esențială în logica computațională, teoria complexității, inteligența artificială și verificarea formală. Din cauza importanței sale, au fost dezvoltate numeroase algoritmi pentru a determina dacă o formulă booleană este satisfiabilă.

1.2 Contextul și problema abordată

Ne propunem să analizăm teoretic și experimental trei metode clasice de rezolvare SAT: Rezoluția, algoritmul Davis—Putnam (DP) și algoritmul Davis—Putnam—Logemann—Loveland (DPLL). Lucrarea urmărește să determine în ce situații fiecare algoritm oferă cele mai bune performanțe.

1.3 Descriere informală a soluției

Implementăm fiecare algoritm în Python, apoi generăm formule CNF cu număr variabil de variabile și clauze. Colectăm timpii de execuție și rata de succes pentru a evalua eficiența relativă.

1.4 Exemplu ilustrativ

O formulă simplă:

$$(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3) \wedge (x_2 \vee \neg x_3)$$

este satisfiabilă deoarece există o atribuire care face întreaga formulă adevărată.

1.5 Declarație de originalitate

Lucrarea este originală, realizată integral de către autor, fără utilizarea de conținut generat automat neasumat.

1.6 Instrucțiuni de citire

Lucrarea poate fi citită liniar. Implementarea codului este descrisă în secțiunea 3. Codul complet este disponibil pe GitHub.

2 Descrierea formală a problemei și soluției

2.1 Formularea problemei SAT

O formulă booleană este satisfiabilă dacă există o atribuire a valorilor adevărat, fals variabilelor astfel încât formula să fie adevărată. În această lucrare folosim forme normale conjunctive (CNF).

2.2 Descrierea algoritmilor

Rezoluția: Tehnică bazată pe aplicarea regulii de rezoluție până la derivarea clauzei vide sau epuizarea posibilităților.

Davis-Putnam (DP): Elimină variabile prin rezoluție și reduce problema pas cu pas.

DPLL: Extinde DP prin backtracking, alegere euristică a literalilor și propagare a unităților.

2.3 Proprietăți teoretice

- Rezoluția este completă pentru formule în CNF.
- **DP** este corect și complet dar ineficient pe instanțe mari.
- **DPLL** adaugă îmbunătățiri semnificative: backtracking și propagare.

3 Modelarea și implementarea

3.1 Structuri de date

- Liste de liste pentru clauze.
- Dicționar pentru valorile atribuite variabilelor.

3.2 Descrierea arhitecturii

Fiecare algoritm este implementat ca funcție separată în Python, acceptând o formulă CNF ca input. Există un modul de generare a formulelor și un modul de măsurare a timpului de execuție.

3.3 Strategii de alegere a literalului

- DPLL utilizează heuristica "primul literal disponibil".
- Nu am inclus heuristici avansate precum VSIDS.

3.4 Manual de utilizare

Codul sursă complet este disponibil pe GitHub la următoarea adresă: https://github.com/Raul1-7/Activitate-2

Pentru a rula experimentul, clonați repository-ul si executați scriptul principal astfel:

```
git clone https://github.com/Raul1-7/Activitate-2 cd Activitate-2 python DPLL.py
```

4 Studiu de caz / Experiment

4.1 Designul experimentului

Pentru fiecare algoritm, se testează formule cu 10, 20, 50 și 100 de variabile, și un raport clauze/variabile de 4.3 (valoare critică SAT).

4.2 Date de test

Formulele sunt generate aleator folosind metoda:

```
def generare_fnc(num_vars, num_clauze):
    fnc = []
    for _ in range(num_clauze):
        clauze = set()
        while len(clauze) < 3:
        var = random.randint(1, num_vars)
        literal = var if random.random() < 0.5 else -var</pre>
```

```
clauze.add(literal)
fnc.append(list(clauze))
return fnc
```

4.3 Rezultate experimentale

Tabela 1: Timp de execuție mediu (secunde)

Nr. variabile	Rezoluție	DP	DPLL
10	0.01	0.005	0.002
20	0.04	0.015	0.006
50	0.12	0.08	0.03
100	1.3	0.5	0.1

4.4 Interpretare și analiză

Rezoluția devine ineficientă pe instanțe mari din cauza exploziei de clauze. DP reduce timpul, dar DPLL rămâne cel mai rapid datorită propagării și backtracking-ului.

5 Comparație cu literatura

5.1 Metode similare

Lucrarea lui Davis și Putnam (1960) stă la baza DP. DPLL, dezvoltat în 1962, este și astăzi baza solverelor moderne.

5.2 Avantaje și limitări

- Rezoluția: ușor de înțeles dar costisitoare computațional.
- DP: reduce spațiul dar rămâne incomplet în absența strategiei.
- **DPLL:** eficient dar sensibil la alegerea literalilor.

5.3 Contextul aplicabilității

Algoritmii SAT sunt folosiți în verificarea hardware, rezolvarea de puzzle-uri logice, optimizare si AI.

6 Concluzii și direcții viitoare

6.1 Rezumatul contribuțiilor

Lucrarea a comparat teoretic și experimental trei algoritmi SAT. DPLL s-a dovedit superior în majoritatea cazurilor.

6.2 Dificultăți întâmpinate

Implementarea corectă a propagării unităților a fost dificilă. De asemenea, generarea instanțelor CNF relevante a necesitat ajustări fine.

6.3 Probleme deschise

O direcție viitoare este integrarea de heuristici avansate (ex. VSIDS) și comparația cu solve-uri SAT moderne (ex. MiniSAT, Z3).

A Codul sursă - fragment

```
def dpll(clauze, ass=None):
    if ass is None:
        ass = \{\}
    rezultat = propagarea_unitatii(clauze, ass.copy())
    if rezultat is None:
        return False
    clauze, ass = rezultat
    if not clauze:
        return ass
                   \# satisfiabil
    literal = alege_literal(clauze)
    for val in [True, False]:
        ass_nou = ass.copy()
        ass_nou[abs(literal)] = val
        literal\_nou = literal if val else -literal
        clauze_noi = [clause.copy() for clause in clauze] + [[literal_nou]]
        rezultat = dpll(clauze_noi, ass_nou)
        if rezultat:
            return rezultat
    return False
```

Bibliografie

- [1] Martin Davis and Hilary Putnam. A Computing Procedure for Quantification Theory. Journal of the ACM, Vol. 7, No. 3, 1960, pp. 201–215.
- [2] Martin Davis, George Logemann, and Donald Loveland. A Machine Program for Theorem Proving. Communications of the ACM, Vol. 5, No. 7, 1962, pp. 394–397.
- [3] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd Edition, Prentice Hall, 2010.
- [4] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.). *Handbook of Satisfiability*. IOS Press, 2009.
- [5] SATLIB Benchmark Collection. https://www.cs.ubc.ca/~hoos/SATLIB/