1. Give a context-free grammar for each of the following languages.

```
a) L= {w | w contains even number of 0's}
            S \rightarrow 1S | 0T | \epsilon
           T \rightarrow 0S \mid 1T
b) L={w | w contains twice as many 1s as 0s}
           S→SS|A|B|C
           A \rightarrow A011|0A11|01A1|011A|\epsilon
            B \rightarrow B110 | 1B10 | 11B0 | 110B | \epsilon
            C \rightarrow C101 | 1C01 | 10C1 | 101C | \epsilon
c) L={w | w contains even number of 0s and 1s}
           S \rightarrow 0X | 1Y | \epsilon
           X \rightarrow 0S \mid 1Z
           Y \rightarrow 1S \mid 0Z
           Z\rightarrow 0Y | 1X
d) L={w | where each 0's is followed by at least as many 1's}
           S \rightarrow AS \mid \varepsilon
           A \rightarrow 0A1|1A|\epsilon
e) L(G) = { a^{i}b^{j}c^{k} | i, j, k \ge 0 and i=j or i=k}. \sum = \{a,b,c\}
            S \rightarrow AC \mid S'
            A \rightarrow aAb \mid \epsilon
            C \rightarrow cC \mid \epsilon
            S' \rightarrow aBc|B
            B \rightarrow bB \mid \epsilon
f) ) L(G) = { a^i b^j c^k | j > i+k}. \sum = \{a,b,c\}
           S \rightarrow ABC
           A \rightarrow aAb \mid \epsilon
            B \rightarrow bB \mid b
            C \rightarrow bCc \mid \epsilon
```

```
g) L(G) = { a^nb^m | 0 < n < m < 3n}.\sum = {a,b}
            S \rightarrow aSbb|aSbbb|Zb
            Z \rightarrow aZb \mid ab
h) L(G) = set of all strings w over {a, b} such that w is not palindrome.
            Y \rightarrow aYa|bYb|aZb|bZa
            Z \rightarrow aZ|bZ|E
i) L=\{w \mid w=w^R \text{ AND } |w| \text{ is even, } w \text{ is a palindrome}\}
            S \rightarrow AOA \mid B1B \mid \epsilon
            A \rightarrow 1A |0A| \epsilon
            B \rightarrow 1B | 0B | \epsilon
j) L(G) = { a^i b^j c^k | i, j, k \ge 0 and i=j \text{ or } j=k}. \sum = \{a,b,c\}
            S \rightarrow AC \mid S'
            A \rightarrow aAb \mid C
            C \rightarrow cC \mid \epsilon
            S' \rightarrow A'B
            A' \rightarrow aA' \mid \epsilon
            B \rightarrow bBb \mid A'
k) L(G) = { a^nb^mc^md^{2n} | n \ge 0, m > 0}
            S \rightarrow aBdd \mid A
            A \rightarrow aSdd \mid \epsilon
            B \rightarrow bBc \mid bc
I) L= {w | w contains at least 4 a's}
            S→ RaRaRaRaR
            R \rightarrow bR|aR|\epsilon
```

2. What does the following CFGs do?

- a) $S \rightarrow ZSZ \mid 0$ $Z \rightarrow 0 \mid 1$
- = L={w | the length of w is odd and its middle is 0}
- b) $S \rightarrow 0E0|1E1|\epsilon$ $E \rightarrow 1E|0E|\epsilon$
- = L={w | w starts and ends with the same symbol}

c)
$$S \rightarrow AB$$

$$A \rightarrow 0A1 | \epsilon$$

$$B \rightarrow 1B \mid \epsilon$$

=
$$L(G) = {0^m 1^{m+n} | n, m ≥ 0}$$
 over the terminals ${0,1}$

d) S
$$\rightarrow \epsilon$$
 | 1S1S1S0S | 1S1S0S1S | 1S0S1S1S | 0S1S1S1S

e)
$$S \rightarrow aSbb |aSb| \epsilon$$

=
$$L(G) = {a^nb^m \mid 2n \ge m \ge n \ge 0}$$
 over the terminals ${0,1}$

3. Convert the following Regular expressions to a CFG.

a)
$$a(b|c^*)$$

$$=$$
 $S \rightarrow aX$

$$X \rightarrow b \mid C$$

$$C \rightarrow Cc \mid \epsilon$$

b)
$$0*1(0+1)*$$

$$=$$
 S \rightarrow A1B

$$A \rightarrow 0A \mid \epsilon$$

$$B \rightarrow 0B |1B| \epsilon$$

c)
$$(a + b)*(a* + (ba)*)$$

$$=$$
 $V \rightarrow WX$

$$W \rightarrow aW$$

$$\mathsf{W} \to \mathsf{bW}$$

$$W \to \epsilon$$

$$X \rightarrow Y$$

$$\mathsf{X} \to \mathsf{Z}$$

$$Y \to a Y$$

$$Y \to \epsilon$$

$$Z \rightarrow baZ$$

$$Z \to \epsilon$$

$$A \rightarrow aA |bA| \epsilon$$

e)
$$a^* + a(a|b)^*$$

$$=$$
 $S \rightarrow X | Y$

$$X \rightarrow aX \mid \epsilon$$

$$Y \rightarrow aZ$$

$$Z \rightarrow aZ | bZ | \epsilon$$

4. Consider the following context-free grammar $\sum = \{0,1\}$. Give leftmost and rightmost derivations for the following strings and check parse-tree ambiguity.

a)
$$S \rightarrow 0A \mid 1B$$

$$A \rightarrow 0AA \mid 1S \mid 1$$

$$B \rightarrow 0S \mid 1BB \mid 0$$

Strings: 001101

leftmost derivation:	rightmost derivation:	
$S \rightarrow 0A$	$S \rightarrow 0A$	
→00AA	→00AA	
→001A	→00A1	
→0011S	→001S1	
→00110A	→0011B1	
→001101	→001101	

we can find two parse trees for this grammar, so the grammar is ambiguous.

b)
$$S \rightarrow A \ 1 \ B$$

$$A \rightarrow 0A \ | \ \epsilon$$

$$B \rightarrow 0B \ | \ 1B \ | \ \epsilon$$

Strings: 10100, 0010101

= for string 10100:

leftmost	rightmost	Parse Tree:
derivation:	derivation:	
$S \rightarrow A1B$	S→ A1B	, S
\rightarrow ϵ 1B	\rightarrow A10B	
→ 10B	→ A101B	
→ 101B	→ A1010B	l of B
→ 1010 B	→ A10100	
→ 10100 €	→ €10100	ı B
→ 10100	→ 10100	
		0 B
		0 B
		ε

for string 0010101:

leftmost derivation:	rightmost derivation:	Parse Tree:
S→ A1B	S→ A1B	
\rightarrow 0A1B	→ A10B	
→ 00A1B	→ A101B	
→ 00 ε 1 B	\rightarrow A101 ϵ	
→ 001B	→ 0A101	
→ 0010B	→ 00A101	

The grammar is unambiguous since only one parse tree is possible for every string.

c)
$$\begin{split} D \to TL \\ T \to c \mid Tc \\ L \to L.V \mid V \\ V \to a \mid b \mid 0 \mid 1 \mid Va \mid Vb \mid V0 \mid V1 \end{split}$$

Strings: cabb0011.ab1 (Rightmost derivation)

=

The grammar is unambiguous since only one parse tree is possible for every string.

d)
$$S \rightarrow S + S \\ S \rightarrow Sa \mid Sb \mid \epsilon$$

String: abb + aab + baba

Leftmost Derivation:	Rightmost Derivation:
$S \rightarrow S + S$	$S \rightarrow S + S$
\rightarrow Sb + S	→ S + Sa
\rightarrow Sbb + S	\rightarrow S + Sba
\rightarrow Sabb + S	→ S + Saba
\rightarrow abb + S + S	→ S + Sbaba
\rightarrow abb + Sb + S	\rightarrow S + baba
\rightarrow abb + Sab + S	\rightarrow S + S + baba
→ abb + Saab + S	\rightarrow S + Sb + baba
→ abb + aab + Sa	\rightarrow S + Sab + baba
→ abb + aab + Sba	\rightarrow S + Saab + baba
→ abb + aab + Saba	\rightarrow S + aab + baba
→ abb + aab + Sbaba	→ Sb + aab + baba
→ abb + aab + baba	→ Sbb + aab + baba
	→ Sabb + aab + baba
	\rightarrow abb + aab + baba

we can find two parse trees for this grammar, so the grammar is ambiguous.

e)
$$S \rightarrow SA \mid E$$

$$A \rightarrow aa \mid ab \mid ba \mid bb$$

String: aabbba

Leftmost Derivation: S → SA →SAA →SAAA →aaAA →aabbA →aabbba	Rightmost Derivation: S → SA →Sba →SAba →Sbbba →SAbbba →SAbbba →Saabbba →aabbba	S A ba S A bb S A bb
		é aa

The grammar is unambiguous since only one parse tree is possible for every string.

f) $S \rightarrow aEbS \\ S \rightarrow aEbScS \mid \varepsilon \\ E \rightarrow d$

String: adbadbadbc

Leftmost Derivation:	Rightmost Derivation:
$S \rightarrow aEbS$	$S \rightarrow aEbS$
→adbS	→aEbaEbScS
→adbaEbS	→aEbaEbSc€
→adbadbS	→ aEbaEbSc
→adbadbaEbScS	→ aEbaEbaEbSc
→adbadbadbScS	→ aEbaEbaEb€c
→adbadbadbc	→ aEbadbadbc
	→ adbadbadbc

we can find two parse trees for this grammar, so the grammar is ambiguous.

- 5. Are the following CFGs ambiguous? Are they inherently ambiguous? If not, then give its unambiguous representation.
- a) $S \rightarrow Ab \mid AaB$
 - $A \rightarrow a \mid Aa$
 - $B \rightarrow b$
- = For the string aaaaab, we can find two parse trees. So the grammar is ambiguous.

The grammar is ambiguous but not inherently ambiguous. So, equivalent unambiguous CFG:

 $S \rightarrow A'b \mid ab$

 $A' \to A'a \,|\, aa$

- b) $S \rightarrow aS \mid aSbS \mid \epsilon$
- = For the string aab, we can find two parse trees. So the grammar is ambiguous.

The grammar is ambiguous but not inherently ambiguous. So, equivalent unambiguous CFG:

 $S{\longrightarrow}\,aS\,|\,aTbS\,|\,\varepsilon$

 $T \rightarrow aTbT | \epsilon$