Gépelemek mechatronikai mérnököknek

Vári Gergő (MQHJ0H)

2025. október 1.

Karimás csőkötés tervezése

1. ábra: Összeállított modell

Gépelemek mechatronikai mérnököknek

BMEGEGIBMGE

4	TT/	• •	• •	1 4
Ι.	Haz	ZI T	ela	dat

Név: Vari Gergo			
Neptun kód: MQHJ0H			
Gyakorlatyczető: Szabó Gyula			

1. A feladat bevezetése

A megadott adatokkal tervezzen egy csővéget vakkarimával lezáró csavarkötést és szilárdságilag ellenőrizze az elemeket.

2. A feladat értékelése

Az elérhető maximális pontszám 15 pont.

3. Adatok

A vezeték folyadékot szállít.

4. A feladat részletezése

- a) Vázolja fel méretarányosan a konstrukció előtervét!
- b) Számítsa ki a vakkarima minimálisan szükséges vastagságát, majd válasszon szabványos méretű lemezvastagságot!
- c) Válasszon megfelelő méretű lapos tömítést és számítsa ki a minimálisan szükséges tömítő erőt!
- d) Számítsa ki az üzemi nyomásból a csavarra jutó terhelést!
- e) Egy reális biztonsági tényező felvételével határozza meg a csavar előfeszítését és számítsa ki a szükséges meghúzási nyomatékot!
- f) Határozza meg a csavarban ébredő egyenértékű feszültséget és válassza ki a csavar megfelelő anyagát!
- g) Készítse el a kötés összeállítási rajzát! Jelölje rajta a főbb méreteket!

Beadási határidő: a hallgatói tájékoztatóban leírtaknak megfelelően

A feladat beadásával kijelentem, hogy ezt a feladatot meg nem engedett segítség nélkül, saját magam készítettem, és abban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint idéztem, vagy azonos tartalomban, de átfogalmazva más tartalomból átvettem, egyértelműen, a forrás megadásával jelöltem. Ennek megszegése a TVSZ 135§ értelmében kerül szankcionálásra!

Tartalomjegyzék

1	Reakció komponensek	1								
	1.1 Egyensúlyi képletek	4								
2	Csuklók és rudak									
	2.1 1-es rúd	•								
	2.1.1 Egyensúlyi képletek									
	2.2 2-es rúd	4								
	2.2.1 Egyensúlyi képletek	4								
	2.3 3-as rúd	ļ								
	2.3.1 Egyensúlyi képletek	ļ								
	2.4 B pont	(
	2.4.1 Egyensúlyi képletek	(
	2.5 Összegzés	(
	2. 0 000208,200	•								
3	1-es rúd igénybevételei	7								
	3.1 Függvények	,								
	3.2 Ábrázolás	8								
4	Méretezés	(
	4.1 Veszélyes keresztmetszet	Ç								
	4.2 Keresztmetszeti tényező	Ç								
5	Helyettesítés U-szelvénnyel	(
6	U-szelvény ellenőrzése normálerő hatására	ę								
	6.1 Ellenőrzés	(
	6.2 Normálerő ábrázolása	1(
7	5	11								
		1.								
	•	1.								
	7.2 Ábrázolás	12								
8	2-es rúd igénybevételei	1:								
G		1:								
	96 V	14								
		14								
	o.o maximans normaneszunseg	14								
9	3-as rúd hajlítása	1								
	9.1 Zérus és y_3 tengely szöge	1								
		15								

1 Reakció komponensek

2. ábra: Léptékhelyes ábra

3. ábra: SZTÁ

1.1 Egyensúlyi képletek

$$\sum F_x := 0 = A_x - F_1 - F_2$$

$$\sum F_y := 0 = A_y + B_y - p(L+R)$$

$$\sum M^A := 0 = B_y(2L+R) + F_1 \frac{R}{2} - F_2 \left(R + \frac{R}{2}\right) - p \frac{(L+R)^2}{2}$$

$$A_x = F_1 + F_2 = 6 \text{ [kN]}$$

$$B_y = F_2 \left(R + \frac{R}{2}\right) - F_1 \frac{R}{2} + p \frac{(L+R)^2}{2} = 1.85 \text{ [kN]}$$

$$A_y = p(L+R) - B_y = 1.074 \text{ [kN]}$$

$$|\mathbf{A}| = 6.1 \,[\mathrm{kN}]$$

$$|\mathbf{B}| = 1.85 \,[\mathrm{kN}]$$

2 Csuklók és rudak

2.1 1-es rúd

4. ábra: SZTÁ

2.1.1 Egyensúlyi képletek

$$\sum F_x := 0 = A_x - F_1 + N_{2_x} + N_{1_x}$$

$$\sum F_y := 0 = A_y - p(L+R) - N_{2_y} - N_{1_Y}$$

$$\sum M^B := 0 = N_{2_y}(L+R) + F_1 \frac{R}{2} + p(L+R) \left(L + \frac{L+R}{2}\right)$$

$$- A_y(2L+R)$$

$$N_{2_y} = \frac{A_y 2L + R - F_1 \frac{R}{2} - p(L+R) \left(L + \frac{L+R}{2}\right)}{L+R} = -2.0775 \, [\mathrm{kN}]$$

2.2 2-es rúd

5. ábra: SZTÁ

2.2.1 Egyensúlyi képletek

$$\sum F_x := 0 = -N_{2_x} + N_{2_x}$$

$$\sum F_y := 0 = -N_{2_y} + N_{2_y}$$

$$\sum M := 0 = 0$$

2.3 3-as rúd

6. ábra: SZTÁ

2.3.1 Egyensúlyi képletek

$$\sum F_x := 0 = -F_2 + N_{3_x} - N_{2_x}$$

$$\sum F_y := 0 = N_{2_y} + N_{3_y}$$

$$\sum M^C := 0 = -F_2 \frac{R}{2} - N_{3_x}(R) + N_{3_y}(L)$$

2.4 B pont

7. ábra: SZTÁ

2.4.1 Egyensúlyi képletek

$$\sum F_x := 0 = -N_{1_x} + N_{3_x}$$
$$\sum F_y := 0 = N_{1_y} + B_y - N_{3_y}$$

2.5 Összegzés

$$\begin{split} N_1 = & \begin{bmatrix} 0.92375 \\ 0.2265 \end{bmatrix} [\text{kN}] \\ N_2 = & \begin{bmatrix} -2.0775 \\ -2.0775 \end{bmatrix} [\text{kN}] \\ N_3 = & \begin{bmatrix} 0.92375 \\ 2.0775 \end{bmatrix} [\text{kN}] \end{split}$$

3 1-es rúd igénybevételei

8. ábra: SZTÁ

3.1 Függvények

x	0 < x < L	L < x < L + R	L + R < x < 2L + R
N	$-A_x$	$-A_x - N_{2_x} + F_1$	$-A_x - N_{2_x} + F_1$
V	$-A_y + px$	$px - A_y + N_{2_y}$	$p(L+R) - A_y + N_{2y}$
M_h	$-A_y x + p \frac{x^2}{2}$	$-A_{y}x + p\frac{x^{2}}{2} + N_{2y}(x - L) + F_{1}\frac{R}{2}$	$-A_{y}x + p(L+R)\left(L - \frac{L+R}{2}\right) + N_{2y}(x-L) + F_{1}\frac{R}{2}$

4 Méretezés

4.1 Veszélyes keresztmetszet

Ugyan V(x) nem metszi az x tengelyt és ezért $M_h(x)$ maximuma nem triviális de ez rajzolás után könnyen megállapítható.

$$M_{h_{\text{max}}} = M_h(L) = 0.35 \,[\text{kNm}]$$

4.2 Keresztmetszeti tényező

$$\begin{split} \left| \frac{M_h}{K_x} \right| &= \sigma \\ K_{x_{\min}} &= \frac{M_{h_{\max}}}{\sigma_{\text{meg}}} = 3.5 \, [\text{cm}^3] \end{split}$$

Tiszta hajlításra méretezve a keresztmetszetet:

$$\sigma = \frac{M_{h_{\text{max}}}}{I_x} y$$
$$e = \frac{b}{2}$$

$$K_{x_{\min}} = \frac{I_x}{e} = \frac{65}{243}b^3$$

 $b = 23.66 \approx 24 \text{ [mm]}$

5 Helyettesítés U-szelvénnyel

Egyszerűen megtalálható az adott táblázatban.

166

6 U-szelvény ellenőrzése normálerő hatására

6.1 Ellenőrzés

$$N(L) = -6 \,[\text{kN}]$$

$$\sigma = \frac{N}{A} + \frac{M_h}{I_x} y$$

$$A = 2b \cdot b - f \cdot b = \frac{10}{9} b^2$$

$$I_x = \frac{65}{486} b^4$$

$$\begin{split} \sigma_{\rm max}^{(1)} &= \sigma_e = \frac{N}{A} + \frac{M_{h_{\rm max}}}{I_x} e = -94.66\,[{\rm MPa}] \\ &|\sigma_e| > \sigma_{\rm meg} \Rightarrow b^* = b \end{split}$$

6.2 Normálerő ábrázolása

7 Nyírásból adódó csúsztató feszültség

7.1 Függvény

$$V_{\text{max}} = V_x(L+R) = -1.5765 \,[\text{kN}]$$

A csúsztató feszültséget a VISA képlettel meg lehet kapni. (Előjellel nem foglalkozunk.)

$$\tau_z(y) = \frac{V_{\text{max}} \cdot S(y)}{I_x \cdot a(y)}$$

7.1.1 Kettébontás

A húsvastagság változásánál felbontjuk a keresztmetszetet.

$$S_1(y) = A_1(y) \cdot k_1(y)$$

$$S_2(y) = S_1\left(\frac{2}{3}b\right) + A_2(y) \cdot k_2(y)$$

$$A_1(y) = \left[\frac{b}{6} - \left(y - \left[\frac{b}{2} - \frac{b}{6}\right]\right)\right] \cdot 2b \qquad A_2(y) = 2\left(\frac{b}{3}\left[\left(\frac{b}{2} - \frac{b}{6}\right) - y\right]\right)$$
$$= b^2 - 2by \qquad \qquad = \frac{2}{9}b^2 - \frac{2}{3}by$$

$$k_1(y) = \frac{\frac{b}{2} + y}{2} = \frac{1}{4}b + \frac{1}{2}y$$
 $k_2(y) = \frac{y + (\frac{b}{2} - \frac{b}{6})}{2} = \frac{1}{6}b + \frac{1}{2}y$

$$\tau_{z_1}(y) = -1.776\,841\,346 \times 10^{-5}y^2 + 2.557\,211\,538 \times 10^{-3}$$

$$\tau_{z_2}(y) = -1.776\,404\,748 \times 10^{-5}y^2 + 5.4 \times 10^{-3}$$

$$\tau_{\text{max}}^{(1)} = \tau_{z_2}(0) = 5.4 \,[\text{MPa}]$$

7.2 Ábrázolás

8 2-es rúd igénybevételei

9. ábra: SZTÁ

8.1 Függvények

$$\phi = 30^{\circ}$$

$$\begin{split} N(\phi) &= N_{2_x} \cdot \cos \phi + N_{2_y} \cdot \cos \left(90^\circ - \phi\right) \\ &= N_{2_x} \cdot \cos \phi + N_{2_y} \cdot \sin \phi \\ N(30^\circ) &= -2837.92 \, [\mathrm{N}] \end{split}$$

$$\begin{split} V(\phi) &= -N_{2_x} \cdot \sin \phi + N_{2_y} \cdot \sin \phi \\ V(30^\circ) &= -760.42 \, [\mathrm{N}] \end{split}$$

$$\begin{split} M_h(\phi) &= N_{2_x} \cdot R \left(1 - \cos \phi \right) - N_{2_y} \cdot R \sin \phi \\ M_h(30^\circ) &= 228\,125.3329 \, [\text{Nmm}] \end{split}$$

8.2 Normálfeszültség ábrázolása

8.3 Maximális normálfeszültség

$$\frac{R}{d} = 6 \Rightarrow \sigma(y) = \frac{N}{A} + \frac{M_h}{R \cdot A} + \frac{M_h}{I_x} \cdot \frac{R \cdot y}{R + y}$$
$$A = \frac{d^2 \pi}{4} = 625\pi$$
$$I_x = \frac{d^4 \pi}{64} = \frac{390625}{4} \pi$$

$$\begin{split} \sigma(\frac{d}{2}) &= 16.1\,\mathrm{[MPa]}\\ \sigma(0) &= -1.058\,\mathrm{[MPa]}\\ \sigma(-\frac{d}{2}) &= -21.34\,\mathrm{[MPa]} \end{split}$$

$$\sigma^{(2)}_{\mathrm{K,max}} = \sigma(-\frac{d}{2}) = -21.34\,[\mathrm{MPa}]$$

9 3-as rúd hajlítása

$$c = 30 \, [\text{mm}]$$

9.1 Zérus és y_3 tengely szöge

A főfeszültségekből kitudjuk számolni a keresett szöget.

$$I_{x_3} = \frac{(3c)(2c)^3}{36} = 5.4 \times 10^5 \,[\text{mm}^4]$$

$$I_{y_3} = \frac{(2c)(3c)^3}{36} = 1.215 \times 10^6 \,[\text{mm}^4]$$

$$I_{xy_3} = \frac{(2c)^2(3c)^2}{72} = -4.05 \times 10^5 \,[\text{mm}^4]$$

$$I_{1;2} = \frac{I_{x_3} + I_{y_3}}{2} + \frac{1}{2} \sqrt{(I_{x_3} - I_{y_3})^2 + 4I_{xy_3}^2}$$

$$I_1 = 1\,404\,691.853\,[\text{mm}^4]$$

$$I_2 = 350\,308.1469\,[\text{mm}^4]$$

$$\alpha = \arctan\left(\frac{I_{x_3} - I_1}{I_{xy_3}}\right) = 64.9^{\circ}$$

$$\begin{split} M_h &= -F_2 \frac{R}{2} = & -0.45 \, [\text{kNm}] \\ M_{h_\xi} &= |M_h| \cdot \cos \alpha = & 190 \, 889.7402 \, [\text{Nmm}] \\ M_{h_\eta} &= |M_h| \cdot \sin \alpha = & -407 \, 505.9596 \, [\text{Nmm}] \end{split}$$

$$\beta = \arctan\left(\frac{M_{h_{\eta}} \cdot I_{1}}{M_{h_{\xi}} \cdot I_{2}}\right) = -83.3367^{\circ}$$

$$\beta_{0} = \alpha + \beta = -18.437^{\circ}$$

9.2 Maximális normálfeszültség

$$\xi(x; y) = x \cdot \cos \alpha + y \cdot \sin \alpha$$
$$\eta(x; y) = y \cdot \cos \alpha - x \cdot \sin \alpha$$

$$\sigma(x;y) = \frac{M_{h_{\xi}}}{I_1} \eta(x;y) - \frac{M_{h_{\eta}}}{I_2} \xi(x;y)$$

$$\sigma_A = \sigma\left(-c; \frac{4}{3}c\right) = 33.331 [\text{MPa}]$$

$$\sigma_B = \sigma\left(-c; -\frac{2}{3}c\right) = -33.334 [\text{MPa}]$$

$$\sigma_C = \sigma\left(2c; -\frac{2}{3}c\right) = 2.520 \, 804 \, 29 \times 10^{-3} [\text{MPa}]$$

$$\sigma_{C,\text{max}}^{(3)} = \sigma_B = -33.334 [\text{MPa}]$$