Cyclistic Case Study Q3_2021

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for 2021's third quarter.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

```
library(tidyverse)
library(lubridate)
library(data.table)
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Jul21 <- read_csv("202107-divvy-tripdata.csv")
Aug21 <- read_csv("202108-divvy-tripdata.csv")
Sep21 <- read_csv("202109-divvy-tripdata.csv")</pre>
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**. Then, we need to combine all data one dataframe. Then we examine dataframes to find dimensions, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
colnames(Aug21)
```

```
colnames(Sep21)
```

Since all column names are the same. We can combine the data for each month into quarters.

```
q3_2021 <- bind_rows(Jul21, Aug21, Sep21)

View(q3 2021)
```

```
nrow(q3_2021)
```

```
## [1] 2382909
```

```
dim(q3_2021)
```

```
## [1] 2382909 13
```

head(q3_2021)

```
## # A tibble: 6 × 13
##
                     ridea…¹ started_at
   ride id
                                                    ended at
                                                                          start...2 start...3
                     <chr> <dttm>
## 1 0A1B623926EF4... docked... 2021-07-02 14:44:36 2021-07-02 15:19:58 Michig... 13001
## 2 B2D5583A5A5E7... classi... 2021-07-07 16:57:42 2021-07-07 17:16:09 Califo... 17660
## 3 6F264597DDBF4... classi... 2021-07-25 11:30:55 2021-07-25 11:48:45 Wabash... SL-012
## 4 379B58EAB20E8... classi... 2021-07-08 22:08:30 2021-07-08 22:23:32 Califo... 17660
## 5 6615C1E4EB08E... electr... 2021-07-28 16:08:06 2021-07-28 16:27:09 Califo... 17660
## 6 62DC2B32872F9... electr... 2021-07-29 17:09:08 2021-07-29 17:15:00 Califo... 17660
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
     start lat <dbl>, start lng <dbl>, end lat <dbl>, end lng <dbl>,
       {\tt member\_casual~<chr>,~and~abbreviated~variable~names~^1rideable\_type,}
## #
       <sup>2</sup>start station name, <sup>3</sup>start station id
```

tail(q3 2021)

```
## # A tibble: 6 × 13
                     ridea…¹ started_at
##
                                                    ended at
    ride id
                                                                          start...2 start...3
##
     <chr>
                     <chr> <dttm>
                                                    <dttm>
                                                                          <chr>
## 1 0A6AA3B1A1EC5... classi... 2021-09-14 23:00:37 2021-09-14 23:10:55 Ellis ... KA1503...
## 2 FA66BCAB0D73D... classi... 2021-09-22 15:46:57 2021-09-22 16:01:15 Ellis ... 584
## 3 1D44DEFB5D36C... classi... 2021-09-25 16:25:23 2021-09-25 16:40:29 Ellis ... KA1503...
## 4 6A346EA57FC23... classi... 2021-09-25 16:26:05 2021-09-25 16:40:30 Ellis ... KA1503...
## 5 49360AFD77110... classi... 2021-09-15 17:57:48 2021-09-15 18:24:06 Ellis ... KA1503...
## 6 343190A2DC023... electr... 2021-09-11 18:01:06 2021-09-11 18:08:26 Wells ... TA1306...
## # ... with 7 more variables: end_station_name <chr>, end_station_id <chr>,
     start lat <dbl>, start lng <dbl>, end lat <dbl>, end lng <dbl>,
## #
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
       <sup>2</sup>start station name, <sup>3</sup>start station id
```

summary(q3_2021)

```
##
      ride id
                      rideable_type
                                           started at
                                         Min. :2021-07-01 00:00:22.00
   Length: 2382909
                      Length: 2382909
##
##
   Class :character
                      Class :character
                                         1st Ou.:2021-07-24 05:40:49.00
##
   Mode :character
                      Mode :character
                                         Median :2021-08-15 00:35:16.00
##
                                         Mean :2021-08-15 12:51:39.25
##
                                         3rd Qu.:2021-09-06 19:30:07.00
##
                                              :2021-09-30 23:59:48.00
##
##
      ended at
                                    start station name start station id
                                                      Length:2382909
##
   Min. :2021-07-01 00:04:51.00
                                    Length: 2382909
   1st Qu.:2021-07-24 06:21:28.00
##
                                    Class :character
                                                      Class :character
   Median :2021-08-15 00:58:46.00
                                                      Mode :character
                                    Mode :character
##
   Mean :2021-08-15 13:13:49.28
##
##
   3rd Qu.:2021-09-06 19:55:00.00
   Max. :2021-10-01 22:55:35.00
##
##
##
                      end station id
                                           start_lat
   end_station_name
                                                          start_lng
##
                                         Min. :41.65 Min. :-87.84
   Lenath: 2382909
                      Length: 2382909
   Class :character Class :character
                                         1st Qu.:41.88
                                                        1st Qu.:-87.66
##
   Mode :character Mode :character
                                         Median :41.90
                                                        Median :-87.64
                                         Mean :41.90
##
                                                        Mean :-87.65
##
                                         3rd Qu.:41.93
                                                        3rd Qu.:-87.63
##
                                               :42.07
                                                        Max. :-87.52
                                         Max.
##
##
      end lat
                      end_lng
                                    member casual
##
   Min. :41.57
                   Min. :-87.87
                                    Length: 2382909
##
   1st Qu.:41.88
                  1st Qu.:-87.66
                                    Class : character
   Median :41.90
##
                   Median :-87.64
                                    Mode :character
##
   Mean :41.90
                   Mean :-87.65
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
                   Max. :-87.49
   Max. :42.17
##
   NA's
         :2032
                   NA's :2032
```

```
## spc_tbl_ [2,382,909 x 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ ride_id
                       : chr [1:2382909] "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8
AA5" ..
                       : chr [1:2382909] "docked bike" "classic bike" "classic bike" "classic bike" ...
## $ rideable_type
                       : POSIXct[1:2382909], format: "2021-07-02 14:44:36" "2021-07-07 16:57:42" ...
##
   $ started at
                       : POSIXct[1:2382909], format: "2021-07-02 15:19:58" "2021-07-07 17:16:09"
##
   $ ended at
## $ start_station_name: chr [1:2382909] "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave
& 16th St" "California Ave & Cortez St" ..
## $ start station id : chr [1:2382909] "13001" "17660" "SL-012" "17660" ...
## $ end station name : chr [1:2382909] "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbar
d St" "Carpenter St & Huron St" ...
   $ end_station_id : chr [1:2382909] "KA1504000117" "13432" "KA1503000044" "13196" ...
##
##
    $ start_lat
                       : num [1:2382909] 41.9 41.9 41.9 41.9 ...
##
   $ start_lng
                       : num [1:2382909] -87.6 -87.7 -87.6 -87.7 -87.7 ...
                       : num [1:2382909] 41.9 41.9 41.9 41.9 ...
##
   $ end lat
   $ end lng
                      : num [1:2382909] -87.6 -87.7 -87.6 -87.7 -87.7 ...
                      : chr [1:2382909] "casual" "casual" "member" "member" ...
##
   $ member_casual
    - attr(*, "spec")=
##
##
     .. cols(
##
          ride_id = col_character(),
     . .
##
     . .
         rideable type = col character(),
##
        started at = col datetime(format = ""),
     .. ended at = col datetime(format = ""),
##
##
         start_station_name = col_character(),
##
         start_station_id = col_character(),
     . .
##
         end station name = col character(),
     . .
##
         end station id = col_character(),
##
         start_lat = col_double(),
     . .
         start_lng = col_double(),
##
     . .
##
         end_lat = col_double(),
     . .
##
     . .
         end_lng = col_double(),
##
         member casual = col character()
     . .
##
     ..)
    - attr(*, "problems")=<externalptr>
##
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
q3_2021$date <- as.Date(q3_2021$started_at)
q3_2021$month <- format(as.Date(q3_2021$date), "%m")
q3_2021$month <- month.name[as.numeric(q3_2021$month)]
q3_2021$day <- format(as.Date(q3_2021$date), "%d")
q3_2021$year <- format(as.Date(q3_2021$date), "%Y")
q3_2021$day_of_week <- format(as.Date(q3_2021$date), "%A")
q3_2021$ride_length <- difftime(q3_2021$ended_at,q3_2021$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(q3_2021$ride_length)
```

```
Recheck ride_length data type.
```

[1] FALSE

recificating in data type.

```
q3_2021$ride_length <- as.numeric(as.character(q3_2021$ride_length))
is.numeric(q3_2021$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
q3_2021 <- na.omit(q3_2021)
```

Remove rows with the ride id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
q3_2021 <- subset(q3_2021, nchar(as.character(ride_id)) == 16)
```

Remove rows with the ride_length less than 60 seconds or 1 minute.

```
q3_2021 <- subset (q3_2021, ride_length > 59)
```

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(q3_2021$ride_length)
```

```
## [1] 1331.096
```

```
median(q3_2021$ride_length)
```

```
## [1] 779
```

```
max(q3_2021$ride_length)
```

```
## [1] 2946429
```

```
min(q3_2021$ride_length)
```

```
## [1] 60
```

Run a statistical summary of the ride length.

```
summary(q3_2021$ride_length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 60 452 779 1331 1383 2946429
```

Compare the members and casual users

```
aggregate(q3_2021$ride_length ~ q3_2021$member_casual, FUN = mean)
```

```
## q3_2021$member_casual q3_2021$ride_length
## 1 casual 1827.8248
## 2 member 821.6508
```

```
aggregate(q3_2021$ride_length ~ q3_2021$member_casual, FUN = median)
```

```
## q3_2021$member_casual q3_2021$ride_length
## 1 casual 999
## 2 member 613
```

```
aggregate(q3_2021$ride_length ~ q3_2021$member_casual, FUN = max)
```

```
## q3_2021$member_casual q3_2021$ride_length
## 1 casual 2946429
## 2 member 89183
```

```
aggregate(q3 2021$ride_length ~ q3 2021$member casual, FUN = min)
```

```
## q3_2021$member_casual q3_2021$ride_length
## 1 casual 60
## 2 member 60
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate (q3\_2021\$ride\_length ~ q3\_2021\$member\_casual + q3\_2021\$day\_of\_week, \ FUN = mean)
```

```
\verb|q3_2021$member_casual q3_2021$day_of_week q3_2021$ride_length|
##
## 1
                                          Friday
                                                          1736.7328
                     casual
## 2
                     member
                                          Friday
                                                            804.9539
## 3
                                                           1938.8003
                     casual
                                          Monday
## 4
                                          Monday
                                                           800.5767
                     member
## 5
                     casual
                                        Saturday
                                                           1962.0252
## 6
                     member
                                        Saturday
                                                           928.0573
## 7
                                                           2079.0151
                     casual
                                         Sunday
## 8
                     member
                                          Sunday
                                                            948.1469
## 9
                     casual
                                        Thursday
                                                           1640.8466
## 10
                                        Thursday
                     member
                                                            775.6239
## 11
                     casual
                                        Tuesday
                                                           1562.2486
## 12
                     member
                                         Tuesday
                                                            756.1090
## 13
                     casual
                                      Wednesday
                                                           1565.7359
## 14
                                                            771.5622
                     member
                                      Wednesday
```

Sort the days of the week in order.

```
q3_2021$day_of_week <- ordered(q3_2021$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
 x <- aggregate(q3_2021\$ride_length \sim q3_2021\$member_casual + q3_2021\$day_of_week, \ FUN = mean)   head(x)
```

```
##
     q3_2021$member_casual q3_2021$day_of_week q3_2021$ride_length
## 1
                    casual
                                         Sunday
                                                          2079.0151
## 2
                    member
                                         Sunday
                                                           948.1469
## 3
                    casual
                                         Monday
                                                           1938.8003
## 4
                    member
                                         Monday
                                                           800.5767
## 5
                                        Tuesday
                    casual
                                                          1562.2486
## 6
                    member
                                        Tuesday
                                                           756.1090
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member casual weekday number of rides average duration
##
    <chr>
                    <int>
                                      <int>
                                                        <dbl>
## 1 casual
                                     188413
                                                        2079.
                         1
## 2 casual
                         2
                                     113835
                                                        1939.
## 3 casual
                         3
                                     97744
                                                        1562.
## 4 casual
                         4
                                     104444
                                                       1566.
## 5 casual
                                     123158
                                                        1641.
## 6 casual
                         6
                                     145304
                                                        1737.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(q3_2021$member_casual)
```

```
##
## casual member
## 993729 968923
```

```
table(q3_2021$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 1449642 137277 375733
```

```
table(q3_2021$day_of_week)
```

```
##
##
      Sunday
                          Tuesday Wednesday
                                              Thursday
                                                           Friday
                                                                    Saturday
                 Monday
##
      306195
                 243688
                           238414
                                      252325
                                                 282692
                                                           285537
                                                                      353801
```

```
table(q3_2021$month)
```

```
##
## August July September
## 666084 683203 613365
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Days of the Week

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(q3_2021$day_of_week,q3_2021$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual
                                 Freq
## 1
                        casual 188413
          Sunday
## 2
          Monday
                        casual 113835
## 3
         Tuesday
                        casual 97744
## 4
       Wednesday
                        casual 104444
## 5
        Thursday
                        casual 123158
## 6
          Friday
                        casual 145304
```

Weekday trends (Monday through Friday).

Weekend trends (Sunday and Saturday).

Weekends Trends

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(q3_2021$rideable_type,q3_2021$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
     rideable_type member_casual
## 1 classic bike
                          casual 657549
## 2
      docked bike
                          casual 137277
## 3 electric bike
                          casual 198903
## 4 classic bike
                          member 792093
## 5
      docked bike
                          member
## 6 electric_bike
                          member 176830
```

Plot for bike user vs bike type.

Riders and Ride Types

Create vector of month names for Q3 2021 septmeber

```
q3_months <- c("July", "August", "Septmber")
```

Subset month.name to include only Q3 2021 months

```
q3_month_names <- month.name[match(q3_months, month.name)]
```

Create trips_by_month dataframe with only Q3 2021 months

```
trips_by_month <- data.frame(month = q3_month_names, count = table(q3_2021$month))</pre>
```

Set the levels of the month variable in the trips by month dataframe

```
trips_by_month$month <- factor(trips_by_month$month, levels = c("July", "August", "Septmber"))
ggplot(trips_by_month, aes(x = month, y = count.Freq)) +
geom_bar(stat = "identity", fill = "#F8766D") +
labs(x = "Month", y = "Number of Rides", title = "Number of Rides by Month in Q3 2021")</pre>
```

Number of Rides by Month in Q3 2021

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(q3_2021, "q3_2021.csv")