Short tutorial on ANACONDA, v2

- Installation
- Step-to-step through routines
- future merging with HDF5/MAX IV

Installation (as user)

- Download (clone) from GitHub:

https://github.com/gasfas/ANACONDA_2

D&D in MATLAB cmd window

- Run it, enjoy the errors...

Installation (as dev)

- Install github desktop
- Clone from repository
- Request developer permissions

Data analysis structure

Macro: function that executes subroutines.

One macro for each step: Correct, convert, plot, etc.

Importing (meta) data

Load data:

data = IO.import_raw('full data filename')

And metadata:

mdata = IO.import_metadata('full metadata filename')

If you have no data at hand, use an example:

data = IO.COBOLD.import example();

If metadata is not yet defined: default metadata is defined in the toolbox for each setup. e.g.:

mdata = metadata.defaults.exp.CIEL.md_all_defaults

Quick visualization of imported data

Make histogram of X,Y:

plot.quickhist(data.h.det1.raw(:,1:2))

Make histogram of TOF:

plot.quickhist(data.h.det1.raw(:,3))

Inspect any function:

edit macro.calibrate.TOF_2_m2q

Correct data (t₀, abberations, etc.)

To handle alignment or artefacts issues

Correct data (t_o, abberations, etc.)

To handle alignment or artefacts issues

Calibration needed to determine the correction values (as defined in metadata)

For example to centre detector:

data_correct = macro.correct.dXdY(data, mdata, 'det1');

Or to deal with a spectrometer abberation:

data correct = macro.correct.lensadd(data, mdata, 'det1')

On/off 'flags'

Corrections can be turned on or off in metadata:

```
/home/ina/Documents/Lund/ANACONDA_2_git/ANACONDA_2/package/+metadata/+defaults/+exp/+Laksman_TOF_e_XY/corr.... 🖨 🗈
   EDITOR
1
     □ function [ exp md ] = corr ( exp md )
       % This convenience funciton lists the default correction metadata, and can be
       % read by other experiment-specific metadata files.
       % Correction parameters:
 5
       % Detector 1 %% Detector 1
       % Which corrections should be performed on the data:
 6
       exp md.corr.detl.ifdo.dXdY
                                           = true;% Does this data need detector image translation correction?
       exp md.corr.detl.ifdo.dTheta
                                           = true:%; % Does this data need detector image rotation correction?
       exp md.corr.detl.ifdo.dTOF
 9 -
                                           = true;% Does this data need detector absolute TOF correction?
10 -
       exp md.corr.detl.ifdo.R circle
                                           = true;% is there non-roundness in the cylindrically symmetric data?
11
12
       % The detector image translation parameters:
13 -
       exp md.corr.det1.dX
                                           = 0.0; %[mm] distance the center of detection is displaced left of the or
14 -
       exp md.corr.det1.dY
                                                    %[mm] distance the center of detection is displaced up the origin
                                           = 0.0:
       % The detector image rotation parameters:
15
16 -
       exp md.corr.det1.dTheta
                                           = 0; %[deq] rotation of hits around the raw image centre (anticlockwise);
       % The TOF deadtime correction parameter:
17
       exp md.corr.det1.dTOF
                                           = 0;% [ns] The difference between signal propagation times of trigger and h
18 -
19
       exp md.corr.det1.R circle
                                           = load(fullfile(fileparts(mfilename('fullpath')), 'R circle param.mat'));
20 -
21
22
       % Detector 2 %% Detector 2
23
24
       % Which corrections should be performed on the data:
25 -
       exp md.corr.det2.ifdo.dXdY
                                       = true;% Does this data need detector image translation correction?
       exp md.corr.det2.ifdo.dTheta
26 -
                                           = true;%; % Does this data need detector image rotation correction?
4
                                                                                                          Ln 5
                                                                       corr
```

On/off 'ifdo' flags

These flags exist for the macros:

- Correct
- Convert
- Plot
- Filter

Convert (X, Y, TOF, etc.) to (m, p_x, etc.)

Filters are formed from conditions. e.g.:

 $cond.oil.data_pointer = 'h.det1.m2q_l';$

```
cond.oil.data_pointer = 'h.det1.m2q_l';
cond.oil.type = 'discrete';
```

```
cond.oil.data_pointer = 'h.det1.m2q_l';

cond.oil.type = 'discrete';

cond.oil.value = [72; 73];
```

```
cond.oil.data_pointer = 'h.det1.m2q_l';

cond.oil.type = 'discrete';

cond.oil.value = [72; 73];

cond.oil.translate condition = 'AND';
```

```
cond.oil.data_pointer = 'h.det1.m2q_l';
cond.oil.type = 'discrete';
cond.oil.value = [72; 73];
cond.oil.translate_condition = 'AND';
cond.oil.invert filter = true;
```

Data pointer could be any MATLAB expression:

```
cond.m2q.data_pointer = 'h.det1.m2q_l.*h.det1.TOF+1';
cond.m2q.type = 'discrete';
cond.m2q.value = [72; 73];
cond.m2q.translate_condition = 'AND';
cond.m2q.invert_filter = true;
```

The 1st and/or 2nd and/or 3rd hit can be selected:

```
cond.m2q.data_pointer = 'h.det1.m2q_l.*h.det1.TOF+1';
cond.m2q.type = 'discrete';
cond.m2q.value = [72; 73];
cond.m2q.translate_condition = 'AND';
cond.m2q.invert_filter = true;
cond.m2q.hitselect = [1, 3];
```

Filter on events:

Total Kinetic energy:

```
KER_sum.type = 'continuous';

KER_sum.data_pointer = 'e.det1.KER_sum';

KER sum.value = [0; 80]; % [eV]
```

Merging of conditions:

When merging filters, operators can be defined:

```
cond.combined.m2q = m2q
cond.combined.oil = oil;
cond.combined.KER_sum = KER_sum;
cond.combined.operators = {'AND', 'OR'};
```

Making Plots

Metadata separated in categories:

figure: Figure handle properties

axes: Axes handle properties

hist: Histogram metadata

GraphObj:Graphical Object handle

Cond: (optional) plot condition

What are handles?

```
command Window
>> mdata.plot.det1.m2q

ans =

struct with fields:

figure: [1x1 struct]
    axes: [1x2 struct]
    hist: [1x1 struct]
    GraphObj: [1x1 struct]
```

Calibration

All correction and conversion parameters need calibration.

Calibration

Metadata calibration: macro.calibrate.momentum(data, 1, mdata)

HDF5 dummy file

HDFGridView: events 🛑 📵 🔕					HDFGridView: hits		
dit				Edit			
	0	1	2		0	1	2
0	1	16374549200	0	0	14.2357106652	-15.4965712688	0.0
1	2	33498408400	1	1	-16.4575149984	27.3239613508	0.0
2	3	36610398800	2	2	25.0500673308	7.32857051426	0.0
3	4	59108469200	3	3	-9.79397966569	15.1760362528	0.0
4	5	66322050000	4	4	32.8930096634	9.36751911842	0.0
5	6	75185074000	5	5	-3.31633399967	9.43021992748	0.0
6	7	111851582800	6	6	0.0753693333258	0.628233227764	0.0
7	8	124355662800	7	7	2.53150399975	-0.448619580562	0.0
8	9	127945448400	8	8	-24.4167613309	16.6469022824	0.0
9	10	171710728400	9	9	-6.00801666607	-3.63881314366	0.0
10	11	177175048400	10	10	-37.3707653296	5.99655316627	0.0
11	12	187283429200	11	11	-1.24335199988	20.8794635264	0.0
12	13	197100491600	12	12	-8.7081016658	32.1184159752	0.0
13	14	205114933200	13	13	-34.4201596632	-15.870497322	0.0
14	15	212016181200	14	14	22.0428933311	20.6355353763	0.0
15	16	226913973200	15	15	27.5718726639	9.11326621472	0.0
16	17	227703774800	16	16	24.8353279975	18.8851342777	0.0
17	18	228904549200	17	17	-22.7428959977	12.1271300985	0.0
18	19	235725400400	18	18	8.06141733253	-4.75173763778	0.0
19	20	246668731600	19	19	-29.2130559971	13.5742699217	0.0
20	21	291957614800	20	20	26.8788703306	20.2742174968	0.0
21	22	312806562000	21	21	-34.6499339965	-3.2473743269	0.0
22	23	351951115600	22	22	6.51179566602	26.8627670829	0.0
23	24	358964443600	23	23	28.4108796638	-7.21351097026	0.0
24	25	371575765200	24	24	-10.209241999	24.7262613061	0.0
25	26	374717800400	25	25	20.6262159979	22.4102821781	0.0
26	27	397279154000	26	26	23.3811866643	-25.7729360194	0.0
27	28	410704558800	28	27	22.5126859977	-25.8592602666	147.938
28	29	413822053200	29	28	-23.1197886644	11.7732248183	0.0
29	30	434146174800	30	29	12.3361506654	-3.3943642237	0.0
				30	-31.8734816635	2.03217744101	0.0