CT1 Report

Module	EE6621 ASICs(Digital ASICs)
Project Number	CT1
Name	Jufeng Yang
ID	20125011
Data	5/12/2021

Declaration of authorship: I confirm that this lab report, submitted for assessment, is my own work

1. Project Features Overview

Modes & Functions	Progress States
Show 'UL' for 1s	Successful
Show 'ECE' for 1s	Successful
Show 'UL ECE' for 1s	Successful
Show 'EE6621' for 1s	Successful
Show 'ct1' for 1s	Successful
Show '125011' for 2s	Successful
Stop Mode	Successful
Start time initial: '0325'	Successful
Alarm Mode	Half Successful
Counter Down	Successful
Set Mode	Half Successful
RIGHT (move to right digit)	Successful
LEFT (move to left digit)	Successful
UP (add 1)	Successful
DOWN (minus 1)	Successful
ESC	Successful
OK	Successful
Reset Function	Successful

2. Code sources

Modules	Source
bcd_counter_4d	Adapted
bcd_counter_digit	Adapted
buzzer	Re-use
clkgen_cmod_a7	Re-use
counter_down_rld	Re-use
ct1	Adapted
debounce	Re-use

display_7s	Re-use
display_7s_mux	Adapted
fpga_wrapper_ct1	Adapted
fsm_game	Adapted
mbutton	Adapted
Synchronizer_3s	Re-use
fsm_game_states	Adapted
timing	Re-used
wordlength	Re-used

3. Project Specification Requirments

The design and code implementation of this project is based on rt2. By adding some modes and functions to rt2, it will be possible to implement CT1. From the interface point of view, the interface of CT1 is the same as rt2 and all additional functions are implemented inside CT1. Some of the modules of the CT1 design are changed accordingly to meet the functionality (e.g. countdown timer, buzzer). From a functional point of view, CT1 includes "show" functions, stopped mode, set mode, countdown mode and alarm mode. Arranging these modes in a certain order will result in the correct display process. The ideal procedure would be to display 'UL', 'UL ECE', 'EE6621', 'ct1', '125011'. Then enter stop mode and display the initial value. Then press PB SS to enter countdown mode and press to write PB SET to enter setup mode. In countdown mode, every second the number will be subtracted by 1. Then when all the numbers are 0, the alarm mode will be entered and the buzzer will alarm. During this time, pressing any button resets the timer and enters Stopped Mode and the timed digits are reset to the value set afterwards. If nothing is done during the alarm, the alarm will stop automatically after 10s and return to the set value. In set mode the digit being set will flash, pressing PB SS will add one to the digit and when the digit is greater than 9 it will change to 0. Pressing PB SET will change the digit being adjusted and when all four digits have been adjusted it will enter Stopped Mode, pressing PB SS and PB SET at the same time will reset the whole system.

In addition to this, we have additional functions. In Set-up mode, the start value of the timer is adjusted by means of 6 buttons. The four buttons up, down, left and right make setting mode even easier.

4. Specification for Advanced Project A

Button	Function
ESC	The ESC button is used to exit the current setup mode and enter
	S_STOPPED mode. The currently changed value does not
	become the initial value, but when entering the setting mode
	again, the modified value is displayed.
OK	The OK button is used to confirm that the current value is set to
	the initial value of the timer.
UP	UP button to add one to the current number

DOWN	The UP button subtracts the current number by one
LEFT	Left is used to change the number of digits being adjusted to the
	left one
RIGHT	RIGHT is used to change the number of digits being adjusted to
	the right one

5. Implement Schematic and FSM Diagram

FPGA Project wrapper schematic.

Figure.1: Schedule of CT1 Project.

As can be seen in Figure 1, the package module combines clkgen_cmod_a7 and ct1. The inputs and outputs are shown in the figure. pio22 is the input signal for the multi-button, and the reset signal for ct1 comes from button1 & button2. button[1:0 is also the input signal for ct1. clk_raw_in is the input to the clock generation module. ct1's output signals are blink, buzzer_p, d7_anodes, d7cathodes respectively.

CT1 Wrapper Schematic:

Figure.2: The whole Schematic Diagram of CT1.

The main functions of the CT1 project are implemented in the CT1 module, which also contains a large number of sub-modules, the inputs and outputs of which are logically connected to achieve the correct functional display.

As can be easily seen from Figure.3, there are three timers in CT1, 100us, 1ms and 1s. 100us is used for the implementation of the buzzer function, 1ms for the time control of fsm_game and 1s for the minimum timing interval of the countdown. The debounce function for the two buttons, debounce_l for button1 and debounce_r for button0. The display_7s_mux module takes as input the LED display value option returned in fsm_game and outputs an 80 bit register variable corresponding to the LED display value of the option. Connect the output of this module to display_7s. This module analyses the 80 binary bits of the variable, parses out the binary bits for blinking and digit decoding and displays these characteristics in the LEDT. bcd_counter_4d is the module used for timing, with four one-bit timers integrated in 4d. Combining the four one-bit timers completes the timing of the four bits. The most important is the fsm_game module, which is used to arrange the display of the LEDs and the transition between modes when the button is pressed. These modules will be explained in detail later in the presentation.

FSM Diagram:

The details of the FSM diagram are shown in Figure 3. The FSM diagram shows all the states that the project will likely have to appear in, and the relationships between the different states. As can be seen in Figure 3, the first state is the S_Reset state, which will be entered after pressing both fpga's buttons at the same time. After that the system will automatically enter the S_SHOW_UL state, then the S_SHOW_ECE state, then S_SHOW_MODULE, then S_SHOW_DESIGN, then S_STUID and then S_INITIAL. in the initialised state the initial value of the timer is initialised and the system will automatically jump into the S_STOPPED state. S_STOPPED mode is the key mode for the whole system, pressing button[0] in this mode will put the system into setup mode. Pressing button[1] will enter S_RUN mode. Set mode contains four states, each of which controls a digit, and the size of the digit is adjusted by the additional buttons UP and DOWN, and Left and Right control the state in set mode. The system can be returned directly to S_STOPPED mode regardless of the state of the system in SETUP mode. s_RUN mode will enter S_STOPPED mode if the timer is stopped. If the timer ends, the system enters the alarm mode and the alarm mode ends in S_STOPPE mode.

Figure.3: FSM diagram.

6. Verification Check-List

Features	Fail	Complete	Comments
Show "UL", Duration is 1s		Yes	
Show "UL ECE", Duration is 1s		Yes	
Show "EE6621", Duration is 1s		Yes	
Show " ct1", Duration is 1s		Yes	
Show student ID last six digit "125011", Duration		Yes	The timing parameter
is 2s			WAIT_LONG is 1999.
Initialize the timer with the initial value " 0325".		Yes	
STOPPED mode, keep "0325" displayed and wait		Yes	Press button[0] to enter
for input.			SET mode, button[1]
			to enter RUN mode.
Press button[0] to enter SET mode and the first		Yes	Press UP plus one,
digit flashes.			DOWN minus one.
Press RIGHT and the second digit starts flashing		Yes	
and changes 3 to 0.			
Press RIGHT again and the third digit starts		Yes	
flashing and changes 2 to 0.			
Press RIGHT a third time and the fourth digit		Yes	
starts flashing and keep the value 5.			
Press ESC to exit SET mode and display the initial		Yes	It can exit in anytime in
value "0325".			SET mode.
Enter the setting mode again and display the		Yes	
modified value "0005".			
Press OK to enter STOPPED mode and the initial		Yes	It can conform in any

timer value is modified.			time in SET mode.
Press button[0] to enter RUN mode.		Yes	
Show "c xxxx".			
Press button[1] to pause the timer and enter		Yes	
STOPPED mode. Maintains current digital display			
Press button[1] again to start the timer from the		Yes	
current number.			
After 5s it enters alarm mode, the four digits	NO	Yes	The alarm is a
"0000" flash and a pulse-type alarm starts.			continuous sound, not a
			pulse.
Press any button during an alarm to stop the alarm		Yes	
and redisplay the modified initial value.			
If no button is pressed, the alarm stops		Yes	
automatically after 10s.			
In any mode, press button[0] and button[1] at the		Yes	
same time to enter RESET mode and reset the			
system.			

7. Summary of Implement information

Synthesis: Implement:

Figure.4: Synthesis and Implement.

DRC Violations:

Timing:

Setup | Hold | Pulse Width

Summary: 0 5 warnings

Worst Negative Slack (WNS): 3.5 ns

Implemented DRC Report

Total Negative Slack (TNS): 0 ns

Number of Failing Endpoints: 0

Total Number of Endpoints: 511

Implemented Timing Report

Figure.5: DRC Violations and Timing.

From the compile message above, there are no errors, so the bit file can be generated. We can use simulation to check if the code flow is correct, or use the FPGA to check if the flow makes sense.

The utilization and power:

Figure.6: utilization and power.

Clock information: Package:

Figure.16: Clock information.

The main frequency here is 120Hz. The other modules are synthesised from 120Hz.

8. FPGA Test

After all the compilation is done, we can open the hardware manager and connect to the FPGA and click on tool ->Generate bitstream. After the bit file is generated, the FPGA is programmed. If the logic of the code is in order, it will be ready for operation on the FPGA. The process diagram for the test is shown in the diagram.

Figure.17: Test in FPGA

Part of the process is shown in the diagram. show school number in SHOW mode works fine, initial value shows normal operation. SET mode works fine, set 0325 to 0005, start the timer and when it reaches 0000 in time, the buzzer starts to work. The '0000' is flashing.