Properties of the Laplace Transform

Property	Time Domain	Laplace Domain	ROC
Linearity	$a_1x_1(t) + a_2x_2(t)$	$a_1X_1(s) + a_2X_2(s)$	At least $R_1 \cap R_2$
Time-Domain Shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Laplace-Domain Shifting	$e^{s_0t}x(t)$	$X(s-s_0)$	$R + \operatorname{Re}(s_0)$
Time/Laplace-Domain Scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	aR
Conjugation	$x^*(t)$	$X^*(s^*)$	R
Time-Domain Convolution	$x_1 * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
Time-Domain Differentiation	$\frac{d}{dt}x(t)$	sX(s)	At least R
Laplace-Domain Differentiation	-tx(t)	$\frac{d}{ds}X(s)$	R
Time-Domain Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$	At least $R \cap \{\operatorname{Re}(s) > 0\}$

Property	
Initial Value Theorem	$x(0^+) = \lim_{s \to \infty} sX(s)$
Final Value Theorem	$ \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s) $

Laplace Transform Pairs

Pair	x(t)	X(s)	ROC
1	$\delta(t)$	1	All s
2	u(t)	$\frac{1}{s}$	Re(s) > 0
3	-u(-t)	$\frac{1}{s}$	Re(s) < 0
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$	Re(s) > 0
5	$-t^n u(-t)$	$\frac{n!}{s^{n+1}}$	Re(s) < 0
6	$e^{-at}u(t)$	$\frac{1}{s+a}$	Re(s) > -a
7	$-e^{-at}u(-t)$	$\frac{1}{s+a}$	Re(s) < -a
8	$t^n e^{-at} u(t)$	$\frac{n!}{(s+a)^{n+1}}$	Re(s) > -a
9	$-t^n e^{-at} u(-t)$	$\frac{n!}{(s+a)^{n+1}}$	Re(s) < -a
10	$\cos(\omega_0 t)u(t)$	$\frac{s}{s^2+\omega_0^2}$	Re(s) > 0
11	$\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{s^2+\omega_0^2}$	Re(s) > 0
12	$e^{-at}\cos(\omega_0 t)u(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	Re(s) > -a
13	$e^{-at}\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$	Re(s) > -a

Linearity

- If $x_1(t) \stackrel{\text{LT}}{\longleftrightarrow} X_1(s)$ with ROC R_1 and $x_2(t) \stackrel{\text{LT}}{\longleftrightarrow} X_2(s)$ with ROC R_2 , then $a_1x_1(t) + a_2x_2(t) \stackrel{\text{LT}}{\longleftrightarrow} a_1X_1(s) + a_2X_2(s)$ with ROC R containing $R_1 \cap R_2$, where a_1 and a_2 are arbitrary complex constants.
- This is known as the **linearity property** of the Laplace transform.
- The ROC R always contains $R_1 \cap R_2$ but can be larger (in the case that pole-zero cancellation occurs).

Time-Domain Shifting

If $x(t) \stackrel{\text{LT}}{\longleftrightarrow} X(s)$ with ROC R, then

$$x(t-t_0) \stackrel{\text{\tiny LT}}{\longleftrightarrow} e^{-st_0}X(s)$$
 with ROC R ,

where t_0 is an arbitrary real constant.

This is known as the time-domain shifting property of the Laplace transform.

Laplace-Domain Shifting

If $x(t) \stackrel{\text{LT}}{\longleftrightarrow} X(s)$ with ROC R, then

$$e^{s_0t}x(t) \stackrel{\text{\tiny LT}}{\longleftrightarrow} X(s-s_0)$$
 with ROC $R'=R+\operatorname{Re}(s_0),$

where s_0 is an arbitrary complex constant.

- This is known as the Laplace-domain shifting property of the Laplace transform.
- As illustrated below, the ROC R is *shifted* right by $Re(s_0)$.

Time-Domain/Laplace-Domain Scaling

If $x(t) \stackrel{\text{\tiny LT}}{\longleftrightarrow} X(s)$ with ROC R, then

$$x(at) \stackrel{\text{lt}}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{s}{a}\right) \text{ with ROC } R' = aR,$$

where a is a nonzero real constant.

- This is known as the (time-domain/Laplace-domain) scaling property of the Laplace transform.
- As illustrated below, the ROC R is scaled and possibly flipped left to right.

Conjugation

If $x(t) \stackrel{\text{\tiny LT}}{\longleftrightarrow} X(s)$ with ROC R, then

$$x^*(t) \stackrel{\text{\tiny LT}}{\longleftrightarrow} X^*(s^*)$$
 with ROC R .

This is known as the **conjugation property** of the Laplace transform.

Time-Domain Convolution

- If $x_1(t) \stackrel{\iota \tau}{\longleftrightarrow} X_1(s)$ with ROC R_1 and $x_2(t) \stackrel{\iota \tau}{\longleftrightarrow} X_2(s)$ with ROC R_2 , then $x_1 * x_2(t) \stackrel{\text{LT}}{\longleftrightarrow} X_1(s) X_2(s)$ with ROC R containing $R_1 \cap R_2$.
- This is known as the time-domain convolution property of the Laplace transform.
- The ROC R always contains $R_1 \cap R_2$ but can be larger than this intersection (if pole-zero cancellation occurs).
- Convolution in the time domain becomes multiplication in the Laplace domain.
- Consequently, it is often much easier to work with LTI systems in the Laplace domain, rather than the time domain.

Time-Domain Differentiation

If $x(t) \stackrel{\text{LT}}{\longleftrightarrow} X(s)$ with ROC R, then

$$\frac{dx(t)}{dt} \overset{\text{LT}}{\longleftrightarrow} sX(s) \text{ with ROC } R' \text{ containing } R.$$

- This is known as the time-domain differentiation property of the Laplace transform.
- The ROC R' always contains R but can be larger than R (if pole-zero cancellation occurs).
- Differentiation in the time domain becomes *multiplication by s* in the Laplace domain.
- Consequently, it can often be much easier to work with differential equations in the Laplace domain, rather than the time domain.

Laplace-Domain Differentiation

If $x(t) \stackrel{\text{\tiny LT}}{\longleftrightarrow} X(s)$ with ROC R, then

$$-tx(t) \stackrel{\text{\tiny LT}}{\longleftrightarrow} \frac{dX(s)}{ds}$$
 with ROC R .

This is known as the Laplace-domain differentiation property of the Laplace transform.

Time-Domain Integration

If $x(t) \stackrel{\text{LT}}{\longleftrightarrow} X(s)$ with ROC R, then

$$\int_{-\infty}^t x(\tau) d\tau \overset{\text{\tiny LT}}{\longleftrightarrow} \frac{1}{s} X(s) \ \ \text{with ROC} \ R' \ \text{containing} \ R \cap \{ \text{Re}(s) > 0 \}.$$

- This is known as the time-domain integration property of the Laplace transform.
- The ROC R' always contains at least $R \cap \{\text{Re}(s) > 0\}$ but can be larger (if pole-zero cancellation occurs).
- Integration in the time domain becomes division by s in the Laplace domain.
- Consequently, it is often much easier to work with integral equations in the Laplace domain, rather than the time domain.

Initial Value Theorem

For a function x with Laplace transform X, if x is causal and contains no impulses or higher order singularities at the origin, then

$$x(0^+) = \lim_{s \to \infty} sX(s),$$

where $x(0^+)$ denotes the limit of x(t) as t approaches zero from positive values of t.

- This result is known as the initial value theorem.
- In situations where X is known but x is not, the initial value theorem eliminates the need to explicitly find x by an inverse Laplace transform calculation in order to evaluate $x(0^+)$.
- In practice, the values of functions at the origin are frequently of interest, as such values often convey information about the initial state of systems.
- The initial value theorem can sometimes also be helpful in checking for errors in Laplace transform calculations.

Final Value Theorem

For a function x with Laplace transform X, if x is *causal* and x(t) has a *finite limit* as $t \to \infty$, then

$$\lim_{t\to\infty} x(t) = \lim_{s\to 0} sX(s).$$

- This result is known as the final value theorem.
- In situations where X is known but x is not, the final value theorem eliminates the need to explicitly find x by an inverse Laplace transform calculation in order to evaluate $\lim_{t\to\infty} x(t)$.
- In practice, the values of functions at infinity are frequently of interest, as such values often convey information about the steady-state behavior of systems.
- The final value theorem can sometimes also be helpful in checking for errors in Laplace transform calculations.

More Laplace Transform Examples

THIS SLIDE IS INTENTIONALLY LEFT BLANK.

Section 7.4

Determination of Inverse Laplace Transform

Finding Inverse Laplace Transform

Recall that the inverse Laplace transform x of X is given by

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) e^{st} ds,$$

where $Re(s) = \sigma$ is in the ROC of X.

- Unfortunately, the above contour integration can often be quite tedious to compute.
- Consequently, we do not usually compute the inverse Laplace transform directly using the above equation.
- For rational functions, the inverse Laplace transform can be more easily computed using *partial fraction expansions*.
- Using a partial fraction expansion, we can express a rational function as a sum of lower-order rational functions whose inverse Laplace transforms can typically be found in tables.

Section 7.5

Laplace Transform and LTI Systems

System Function of LTI Systems

- Consider a LTI system with input x, output y, and impulse response h. Let X, Y, and H denote the Laplace transforms of x, y, and h, respectively.
- Since y(t) = x * h(t), the system is characterized in the Laplace domain by

$$Y(s) = X(s)H(s).$$

- As a matter of terminology, we refer to H as the system function (or **transfer function**) of the system (i.e., the system function is the Laplace transform of the impulse response).
- A LTI system is completely characterized by its system function H.
- When viewed in the Laplace domain, a LTI system forms its output by multiplying its input with its system function.
- If the ROC of H includes the imaginary axis, then $H(j\omega)$ is the frequency response of the LTI system.

Block Diagram Representations of LTI Systems

- Consider a LTI system with input x, output y, and impulse response h, and let X, Y, and H denote the Laplace transforms of x, y, and h, respectively.
- Often, it is convenient to represent such a system in block diagram form in the Laplace domain as shown below.

Since a LTI system is completely characterized by its system function, we typically label the system with this quantity.

Interconnection of LTI Systems

The *series* interconnection of the LTI systems with system functions H_1 and H_2 is the LTI system with system function H_1H_2 . That is, we have the equivalence shown below.

$$X \longrightarrow H_1 \longrightarrow H_2 \longrightarrow Y \equiv X \longrightarrow H_1H_2 \longrightarrow Y$$

The *parallel* interconnection of the LTI systems with system functions H_1 and H_2 is the LTI system with the system function $H_1 + H_2$. That is, we have the equivalence shown below.

Causality

- If a LTI system is *causal*, its impulse response is causal, and therefore *right sided*. From this, we have the result below.
- **Theorem.** The ROC associated with the system function of a *causal* LTI system is a *RHP* or the *entire complex plane*.
- In general, the *converse* of the above theorem is *not necessarily true*. That is, if the ROC of the system function is a RHP or the entire complex plane, it is not necessarily true that the system is causal.
- If the system function is rational, however, we have that the converse does hold, as indicated by the theorem below.
- Theorem. For a LTI system with a rational system function H, causality of the system is *equivalent* to the ROC of H being the RHP to the right of the rightmost pole or, if H has no poles, the entire complex plane.

BIBO Stability

- Whether or not a system is BIBO stable depends on the ROC of its system function.
- **Theorem.** A LTI system is **BIBO** stable if and only if the ROC of its system function H contains the *imaginary axis* (i.e., Re(s) = 0).
- Theorem. A causal LTI system with a (proper) rational system function H is BIBO stable if and only if all of the poles of H lie in the left half of the plane (i.e., all of the poles have *negative real parts*).

Invertibility

A LTI system $\mathcal H$ with system function H is invertible if and only if there exists another LTI system with system function H_{inv} such that

$$H(s)H_{\mathsf{inv}}(s) = 1,$$

in which case H_{inv} is the system function of \mathcal{H}^{-1} and

$$H_{\mathsf{inv}}(s) = \frac{1}{H(s)}.$$

- Since distinct systems can have identical system functions (but with differing ROCs), the inverse of a LTI system is not necessarily unique.
- In practice, however, we often desire a stable and/or causal system. So, although multiple inverse systems may exist, we are frequently only interested in *one specific choice* of inverse system (due to these additional constraints of stability and/or causality).

13-2020 Michael D. Adams

LTI Systems and Differential Equations

- Many LTI systems of practical interest can be represented using an Nth-order linear differential equation with constant coefficients.
- Consider a system with input x and output y that is characterized by an equation of the form

$$\sum_{k=0}^{N} b_k \left(\frac{d}{dt}\right)^k y(t) = \sum_{k=0}^{M} a_k \left(\frac{d}{dt}\right)^k x(t),$$

where the a_k and b_k are complex constants and $M \leq N$.

- Let h denote the impulse response of the system, and let X, Y, and H denote the Laplace transforms of x, y, and h, respectively.
- One can show that *H* is given by

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{M} a_k s^k}{\sum_{k=0}^{N} b_k s^k}.$$

Observe that, for a system of the form considered above, the system function is always *rational*.

Section 7.6

Application: Circuit Analysis