Chapter 1 Introduction to CMOS Circuits

關志達 台灣大學電機系

MOS Transistor

FIGURE 1.9 nMOS transistor (a) and pMOS transistor (b)

MOS Switches

nMOS

pMOS

FIGURE 1.10 Transistor symbols and switch-level models

CMOS Static Logic

Restored logic

Table 1.3	Output states of CMOS logic gate		
		pull-up OFF	pull-up ON
pull-down OFF		Z	. 1
pull-down ON		0	crowbarred (X)

CMOS Inverter

FIGURE 1.11

Inverter schematic

(a) and symbol

(b)
$$Y = \overline{A}$$

Series Connection of Switches

Parallel Connection of Switches

© Tzi-Dar Chiueh

NAND Gate

FIGURE 1.12 2-input NAND gate schematic (a) and symbol (b) $Y = \overline{A \cdot B}$

8

NOR Gate

FIGURE 1.16 2-input NOR gate schematic (a) and symbol (b) $Y = \overline{A + B}$

Compound Gates

- NMOS first, AND => serial connection, OR => parallel connection
- PMOS is the dual of NMOS.
- Note that the gate has an inverting output.

FIGURE 1.18 CMOS compound gate for function $Y = \overline{(A \cdot B) + (C \cdot D)}$

Another Example

FIGURE 1.19

CMOS compound gate for function $Y = (\overline{A + B + C}) \cdot \overline{D}$

Pass Transistors

nMOS

$$g = 0$$

$$g = 1$$

(a)

0 → strong 0

(c)

pMOS

$$g = 0$$

(d)

Output 0 → degraded 0

$$g = 0$$

1 \rightarrow strong 1

(f)

FIGURE 1.20 Pass transistor strong and degraded outputs

CMOS Switch

Transmission Gate

$$g = 0$$
, $gb = 1$
 $a \longrightarrow b$
 $g = 1$, $gb = 0$
 $a \longrightarrow b$
(b)

Input Output
$$g = 1, gb = 0$$

$$0 \longrightarrow strong 0$$

$$g = 1, gb = 0$$

$$1 \longrightarrow strong 1$$
(c)

(d)

FIGURE 1.21 Transmission gate

Tri-state Inverter

Bus driver

Multiplexer

- Use transmission gates to build a 2-to-1 multiplexer.
- Note that transmission gates are "bilateral" devices, hence this multiplexer can also be looked upon as a 1-to-2 demultiplexer depending on which end is the driving (more forceful) end.

Static Inverting Multiplexer

$$Y = \overline{(D0 \bullet S' + D1 \bullet S)}$$

FIGURE 1.29 Inverting multiplexer

4:1 Multiplexer

FIGURE 1.30 4:1 multiplexer

© Tzi-Dar Chiueh