ATM 651 Exam 1 on vocabulary and concepts. Fall 2021.

Name______

50 rows, 2 points for each row. Fill in the empty boxes or <u>follow underlined italic instructions</u>.

	Word/name	<u>Symbol</u>	<u>Units</u>	Definition math or words	Relevant sketch or extra space for more words
1	convergence of flux of watervapor	a is specific	Of Other Kani	q units are: (kg _{water} /kg _{air})	no response here
2	vertical velocity	$w = \dot{z} = dz/dt$	m/s	no response here	no response here
3	Bonudary Layer	18h	no response here	layer in confact with the surfa	no response here
4	shear: give recipe in terms of div, vor, def. and what are units of those?	<u>shear =</u> Vor + def	5-1	straight sheared flow in x,y plane	Klyzz
5	speed of wind whose vector components are u, v	V = V	m/s	sketch concept of	vector magnitude & give formula $V(u,v)$: $ V = \sqrt{u^2 + V^2}$
6	horizontal advection of specific humidity	-V.79	(Kgw/Kgair)	q units are: (kg _{water} /kg _{air})	no response here
7	dot product of a force and a velocity	デジ=	(Kg/52) (m/5)	rate of kinetic energy production	no response here
8	geostrophic wind	Vg	m s ⁻¹	For ac balance fraxis - DI Vg = 1/R X PD WORENTS OK	Sketch relation to ocontours:
9	Wind ward	fill in blanks	m s ⁻¹	<u>S</u> W 'erly wind	•

10	planetary vorticity	f	5-1	typical value: 10 ⁻⁴ 5 ⁻¹ Q43N	no response here
11	streamfunction $\psi(x,y)$ of a nondivergent 2D horizontal flow $(\vec{V} = \hat{k} \times \nabla \psi)$ $ S = N^{-1} \cdot \nabla V $	$\psi(x,y)$	7-15	sketch contours and a few velocity vectors>	
12	wave length	λ	M	an aspect of a spatial wave as indicated	A DA
13	amplitude	A	no response here	indicate on sketo	ch above (2 points)
14	radiative temperature K tendency, 5 ⁻¹	Q _{rad}	Ksil	RHS term in what equation? First Law of themo	no response here (conservation of thermal every)
15	Laplacian of geopotential height Z(x,y)	722	m-1	no response here	no response here
16	Circulation. What is it equal to (Stokes' theorem):	С	m25-1	no response here	write theorem here: Siral (M/s). m = 557 dA (5-1) m²
17	Coriolis force (per unit mass)	f(k x V) 5 M/5	m/S ²	no response here	why does it exist? briefly: Garth is rotating, But no ignore that acceleration when we say ground is "notion!
18	del operator	Vord	W-1	$i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y} + k\frac{\partial}{\partial z}$	no response here 545 fear
19	divergence of wind field V	7.7	5-1	no response here	no response here
20	a partial derivative in vorticity	$\begin{array}{c} \partial v/\partial x _{y,z,t} \\ vs. \\ \partial v/\partial x _{y,p,t} \end{array}$	5-1	no response here	words here: 12 hold constant ?? Vs. p hold constant. Along a height sfc. Vs. a p sarface.

its in there

because 9 21 Mass of 1 cc $M ext{ of } 1cc =$ by no response here = 1 ml of water 10^{-6} m^3 estimate a typical Earthly value (order of magnitude): 22 vertical flux of enthalpy $(C_pT)x(pw)$ 23 amount of vertical flux of meridional meridional momentum no response here WV momentum passing upward thru (PW) V unit area per second 24 indicate where Laplacian of p(x)it is zero, and where p is where is the d^2p/dx^2 pressure largest value (greatest absolute value) in sketch --> 25 sketch a vector field and a streamline: explain in words here: Streamlines are tip-to-tail vector field. what is the difference btw. a trajectory vs. a streamline? trajectories are parcel motions 26 curl operator VX del cross no response here 27 Flow made up of double points one unit of pure m s⁻¹ convergence plus $V_{con} + V_{vor}$ for sketch one unit of pure here ----> vorticity 28 troposphere VS. stratosphere: troposphere dt 20 label on the no no curve, and put response response

approximate z or p values of the tropopause

29	Gradient of geopotential Φ(x,y,t) = gZ of a pressure surface	V	M/52	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	no response here < use i,j,k (Cartesian unit vectors).
30	vertical shear of zonal wind	34	5-1	no response here	this is a u(z) profile
31				sketch a cross sect	rion, labeling your icons and isopleths:
	cool core cyclone	no response here	no response here	C06	0+AO isentropes
32	A flow field with curvature but not vorticity	arrows for vectors apply at their tail point, and length is proportional to speed.	no response here	- 4	J deformation
33	tendency or rate of chave of merid, will		m5-2	no response here	no response here
34	A flow field with vorticity but no curvature	arrows for vectors apply at their tail point, and length is proportional to speed.	no response here	-7 -7 -7	straight shear is one example
35	one name: Corrolls parameter	f	s ⁻¹	$f = 2\Omega \sin(\varphi)$	another name for it: Planetary Vovticity
36	one name: meriditanal flux of tonal momentum	ρυν = (ρυ)ν = (ρν)υ	(m/s) per square meter per second	another name: 2019 FLX 6 F meridiona Momentum	flux of momentum (be specific about direction of both the momentum being carried, and the direction of the flux)
37	Radius of earth in MKS units	а	m	2.00	inference defined the meter: 10^7 m $V = \frac{11 \times 10^7 \text{ m}}{2 \cdot 11}$
					Hofthese is circumference 19000 Km is equipole distance

38	vertical component of vector vorticity	ζ	51	gx - gy	vertical component, measures horizontal swirling motion
39	Explain the meanings of group velocity vs. phase velocity of waves	c and c _g	m/s	ophase ve phase group vel energy	ocity is the speed of features Corests & troughs) ocity is the speed of propagation agroup or packet of a
40	latitude	φ (scalar coordinate of spherical coordinates)	deg, radians	how many km per 1 degree at the surface? O OOO	10,000 Km Chefinition Of the met
41	Gradient of p(x,y) where p is pressure	∇р	Pa/m	sketch some contours with a H and L, & vectors: gradient points uphill	
42	rate of change of Coriolis parameter with time following the flow	Df/Dt = df/dt	5-2	what one term is it equal to? ### ### ############################	
43	PGF	- JP	New tors,	no response here MT-WGSS	no response here
44	vertical advection of meridional momentum	· M 92	ms-2 e	rate of change of v due to advection by vertical wind	of course, I mean momentum per unit mass.
45	what is it equal to? $-\nabla_{\dot{p}}V$ $= -\partial U - \partial V$ $= \partial V \partial U$	∂ω/∂p	5-1	a term in mass continuity equation	no response here
46	confluence without convergence	no response here	no response here		Streamlines and isotachs):

47	Temperature	T(x,y,z,t)	Ki°CiF	a measure of wa	armth
48	omega	ω	Pa/s	dp dt	ω>0 indicates downward motion
49	Local or Eulerian tendency of T(x,y,z,t)	OT Ot	K/s	Rate of change of T with time for a thermometer at a given location	graph of T at a point: time Slope of T(t) curve at a point
50	Diffusive tendency of temperature T	$-\vec{\nabla} \cdot (\vec{K}\vec{\nabla}T)$ $= -\vec{K}\vec{\nabla}^2T$	K/5	convergence of a flux (that is, a tendency due to transport)	what are the units of diffusivity K:
		Kn	2		diffusivity

Kmz