Shadows of Computation, Lecture 5

Will Troiani

September 2022

1 The untyped λ -calculus

Definition 1.1. Let $\mathscr V$ be a (countably) infinite set of variables, and let $\mathscr L$ be the language consisting of $\mathscr V$ along with the special symbols

$$\lambda$$
 . ()

Let \mathcal{L}^* be the set of words of \mathcal{L} , more precisely, an element $w \in \mathcal{L}^*$ is a finite sequence $(w_1, ..., w_n)$ where each w_i is in \mathcal{L} , for convenience, such an element will be written as $w_1...w_n$. Now let Λ_p denote the smallest subset of \mathcal{L}^* such that

- if $x \in \mathscr{V}$ then $x \in \Lambda_p$,
- if $M, N \in \Lambda_p$ then $(MN) \in \Lambda_p$,
- if $x \in \mathcal{V}$ and $M \in \Lambda_p$ then $(\lambda x.M) \in \Lambda_p$

 Λ_p is the set of **preterms**. A preterm M such that $M \in \mathcal{V}$ is a **variable**, if $M = (M_1 M_2)$ for some preterms M_1, M_2 , then M is an **application**, and if $M = (\lambda x, M')$ for some $x \in \mathcal{V}$ and $M' \in \Lambda_p$ then M is an **abstraction**.

In practice, it becomes unwieldy to use this notation for the preterms exactly, and so the following notation is adopted:

Definition 1.2. • For preterms M_1, M_2, M_3 , the preterm $M_1M_2M_3$ means $((M_1M_2)M_3))$,

• For variables x, y and a preterm M, the preterm $\lambda xy.M$ means $(\lambda x.(\lambda y.M))$.

The variables x which appear in the subpreterm M of a preterm $\lambda x.M$ are viewed as "markers for substitution", (see Remark 1.9). For this reason, a distinction is made between the variable x and the variable y in, for example, the preterm $\lambda x.xy$:

Definition 1.3. Given a preterm M, let FV(M) be the following set of variables, defined recursively

- if M = x where x is a variable then $FV(M) = \{x\}$,
- if $M = M_1M_2$ then $FV(M) = FV(M_1) \cup FV(M_2)$,
- if $M = \lambda x.M'$ then $FV(M) = FV(M') \setminus \{x\}$.

A variable $x \in FV(M)$ is a **free variable** of M, a variable x which appears in M but is not a free variable is a **bound variable**.

As mentioned, bound variables will be viewed as "markers for substitution", so we define the following equivalence relation on Λ_p which relates a preterm M to M' if M can be obtained by replacing every bound occurrence of a variable x in M' with another variable y:

Definition 1.4. For any term M, let M[x := y] be the preterm given by replacing every bound occurrence of x in M with y. Define the following equivalence relation on Λ_p : $M \sim_{\alpha} M'$ if there exists $x, y \in \mathcal{V}$ such that M[x := y] = M', where no free variable of M becomes bound in M[x := y]. In such a case, we say that M is α -equivalent to M'.

Remark 1.5. The reason why we need to let x and y be such that no free variable of M becomes bound in M[x := y] is so that a preterm such as $\lambda x.y$ does not get identified with the preterm $\lambda y.y$.

We are now in a position to define the underlying language of λ -calculus:

Definition 1.6. Let $\Lambda = {}^{\Lambda_p}/_{\sim_{\alpha}}$ be the set of λ -terms. The set of **free variables** of a λ -term [M] is FV(M), which can be shown to be well defined. For convenience, M will be written instead of [M].

Now the dynamics of the computation of λ -terms will be defined.

Definition 1.7. Single step β -reduction \rightarrow_{β} is the smallest relation on Λ satisfying:

- the **reduction axiom**:
 - for all variables x and λ -terms M, M', $(\lambda x.M)M' \to_{\beta} M[x := M']$, where M[x := M'] is the term given by replacing every free occurrence of x in M with M',
- the following compatibility axioms:
 - if $M \to_{\beta} M'$ then $(MN) \to_{\beta} (M'N)$ and $(NM) \to_{\beta} (NM')$,
 - if $M \to_{\beta} M'$ then for any variable x, $\lambda x.M \to_{\beta} \lambda xM'$.

A subterm of the form $(\lambda x.M)M'$ is a β -redex, and $(\lambda x.M)M'$ single step β -reduces to M[x := M'].

Remark 1.8. Strictly, single step β -reduction should be defined on preterms and then shown that a well defined relation is induced on terms, but this level of detail has been omitted for the sake of clarity.

Remark 1.9. The reduction axiom shows precisely in what sense a bound variable is a "marker for substitution". For example, $(\lambda x.x)M \to_{\beta} M$ and $(\lambda y.y)M \to_{\beta} M$, which is why $\lambda x.x$ is identified with $\lambda y.y$.

It is through single step β -reduction that computation may be performed. In fact, λ -calculus is capable of performing natural number addition:

Example 1.10. Define the following λ -terms:

- ONE := $\lambda f x. f x$,
- TWO := $\lambda fx.ffx$,
- THREE := $\lambda fx.fffx$,
- PLUS := $\lambda mnfx.mf(nfx)$

then

PLUS ONE TWO =
$$(\lambda mnfx.\underline{m}f(nfx))(\underline{\lambda}fx.fx)(\lambda fx.ffx)$$

 $\rightarrow_{\beta} (\lambda nfx.(\lambda fx.\underline{f}x)\underline{f}(nfx))(\lambda fx.ffx)$
 $\rightarrow_{\beta} (\lambda nfx.(\lambda x.f\underline{x})(\underline{nfx}))(\lambda fx.ffx)$
 $\rightarrow_{\beta} (\lambda nfx.f\underline{n}fx)(\underline{\lambda}fx.ffx)$
 $\rightarrow_{\beta} (\lambda fx.f(\lambda fx.\underline{f}fx)\underline{f}x)$
 $\rightarrow_{\beta} (\lambda fx.f(\lambda x.ff\underline{x})\underline{x})$
 $\rightarrow_{\beta} (\lambda fx.fffx) = THREE$

where each step is obtained by substituting the right most underlined λ -term inplace of the left most underlined variable.

Historically, this is how Church first defined computable functions.

There is also η -expansion, which is defined similarly.

Definition 1.11. Single step η -expansion \longrightarrow_{η} is the smallest, compatible relation on Λ satisfying:

$$(1.1) M \longrightarrow_{\eta} \lambda x. Mx$$

where x is a variable not in the free variable set of M. Multi step η -expansion is the reflexive closure of single step η -expansion. η -equivalence is the reflexive, symmetric closure of multi step η -expansion.

 $\beta \eta$ -equivalence is the union of η -equivalence and β -equivalence.

2 Simply typed λ -calculus

In the simply-typed λ -calculus [29, Chapter 3] there is an infinite set of atomic types and the set Φ_{\to} of simple types is built up from the atomic types using \to . Let Λ' denote the set of untyped λ -calculus preterms in these variables, as defined in [29, Chapter 1]. We define a subset $\Lambda'_{wt} \subseteq \Lambda'$ of well-typed preterms, together with a function $t : \Lambda'_{wt} \longrightarrow \Phi_{\to}$ by induction:

- all variables $x : \sigma$ are well-typed and $t(x) = \sigma$,
- if M = (PQ) and P, Q are well-typed with $t(P) = \sigma \to \tau$ and $t(Q) = \sigma$ for some σ, τ then M is well-typed and $t(M) = \tau$,
- if $M = \lambda x$. N with N well-typed, then M is well-typed and $T(M) = t(x) \to t(N)$.

We define $\Lambda'_{\sigma} = \{M \in \Lambda'_{wt} \mid t(M) = \sigma\}$ and call these preterms of type σ . Next we observe that $\Lambda'_{wt} \subseteq \Lambda'$ is closed under the relation of α -equivalence on Λ' , as long as we understand α -equivalence type by type, that is, we take

$$\lambda x \cdot M =_{\alpha} \lambda y \cdot M[x := y]$$

as long as t(x) = t(y). Denoting this relation by $=_{\alpha}$, we may therefore define the sets of well-typed λ -terms and well-typed λ -terms of type σ , respectively:

(2.1)
$$\Lambda_{wt} = \Lambda'_{wt} / =_{\alpha}$$

(2.2)
$$\Lambda_{\sigma} = \Lambda_{\sigma}' / =_{\alpha}.$$

Note that Λ_{wt} is the disjoint union over all $\sigma \in \Phi_{\to}$ of Λ_{σ} . We write $M : \sigma$ as a synonym for $[M] \in \Lambda_{\sigma}$, and call these equivalence classes terms of type σ . Since terms are, by definition, α -equivalence classes, the expression M = N henceforth means $M =_{\alpha} N$ unless indicated otherwise. We denote the set of free variables of a term M by FV(M).

3 The category of λ -terms

We define a category \mathcal{L} whose objects are the types of simply-typed λ -calculus, and whose morphisms are the terms of that calculus. The natural desiderata for such a category are that the fundamental algebraic structure of λ -calculus, function application and lambda abstraction, should be realised by categorical algebra.

Following Church's original presentation our λ -calculus only contains function types and Φ_{\to} denotes the set of simple types. We write Λ_{σ} for the set of α -equivalence classes of λ -terms of type σ , and we write $=_{\beta\eta}$ for the equivalence relation generated by $\beta\eta$ equivalence.

Definition 3.1 (Category of λ -terms). The category \mathcal{L} has objects

$$ob(\mathcal{L}) = \Phi_{\rightarrow} \cup \{1\}$$

and morphisms given for types $\sigma, \tau \in \Phi_{\rightarrow}$ by

$$\mathcal{L}(\sigma,\tau) = \Lambda_{\sigma \to \tau}/=_{\beta\eta}$$

$$\mathcal{L}(\mathbf{1},\sigma) = \Lambda_{\sigma}/=_{\beta\eta}$$

$$\mathcal{L}(\sigma,\mathbf{1}) = \{\star\}$$

$$\mathcal{L}(\mathbf{1},\mathbf{1}) = \{\star\}$$

where \star is a new symbol. For $\sigma, \tau, \rho \in \Phi_{\rightarrow}$ the composition rule is the function

(3.1)
$$\mathcal{L}(\tau,\rho) \times \mathcal{L}(\sigma,\tau) \longrightarrow \mathcal{L}(\sigma,\rho)$$

$$(3.2) (N,M) \longmapsto \lambda x^{\sigma} \cdot (N(Mx))$$

where $x \notin FV(N) \cup FV(M)$. We write the composite as $N \circ M$. In the remaining special cases the composite is given by the rules

(3.3)
$$\mathcal{L}(\tau, \rho) \times \mathcal{L}(1, \tau) \longrightarrow \mathcal{L}(1, \rho), \qquad N \circ M = (N M),$$

(3.4)
$$\mathcal{L}(\mathbf{1}, \rho) \times \mathcal{L}(\mathbf{1}, \mathbf{1}) \longrightarrow \mathcal{L}(\mathbf{1}, \rho), \qquad N \circ \star = N,$$

(3.5)
$$\mathcal{L}(\mathbf{1}, \rho) \times \mathcal{L}(\sigma, \mathbf{1}) \longrightarrow \mathcal{L}(\sigma, \rho), \qquad N \circ \star = \lambda t^{\sigma} . N,$$

where in the final rule $t \notin FV(N)$. Notice that these functions, although their rules depend on representatives of equivalence classes, are none-the-less well defined.

For terms M, N the expression M = N always means equality of terms (that is, up to α -equivalence) and we write $M =_{\beta\eta} N$ if we want to indicate equality up to $\beta\eta$ -equivalence (for example as morphisms in the category \mathcal{L}). Let $\twoheadrightarrow_{\beta}$ denote multi-step β -reduction [29, Definition 1.3.3].

Lemma 3.2. If $M \to_{\beta} N$ then $FV(N) \subseteq FV(M)$.

Definition 3.3. Given a term M we define

$$FV_{\beta}(M) = \bigcap_{N=_{\beta}M} FV(N)$$

where the intersection is over all terms N which are β -equivalent to M.

We prove that we have a category.

The following calculation shows that $id_{\sigma} \in \mathcal{L}(\sigma, \sigma)$ is an identity at σ . Observe that for a term $M : \sigma \to \tau$, we have

$$\lambda t^{\sigma} \cdot (M(\mathrm{id}_{\sigma} t)) = \lambda t^{\sigma} \cdot (M((\lambda x^{\sigma} \cdot x)t))$$

$$=_{\beta} \lambda t \cdot (Mt)$$

$$=_{\eta} M,$$

and similarly λs^{τ} . $(\mathrm{id}_{\tau}(Ms)) =_{\beta\eta} M$. Moreover, \star is clearly an identity at **1**. For associativity there are a few cases to check:

• Consider a diagram of objects and morphisms in \mathcal{L} of the form:

(3.6)
$$\delta \leftarrow P \qquad \rho \leftarrow N \qquad \tau \leftarrow M \qquad \sigma.$$

$$P \circ (N \circ M) = \lambda y^{\sigma} \cdot (P(N \circ M y))$$

$$= \lambda y^{\sigma} \cdot (P((\lambda x^{\sigma} \cdot (N(Mx)))y))$$

$$=_{\beta} \lambda y^{\sigma} \cdot (P(N(My)))$$

$$=_{\beta} (P \circ N) \circ M.$$

• Consider a diagram of objects and morphisms in \mathcal{L} of the form

$$\delta \leftarrow P \qquad \rho \leftarrow N \qquad \tau \leftarrow M \qquad \mathbf{1} .$$

$$\begin{split} P \circ (N \circ M) &= P \circ (NM) \\ &= (P(NM)) \\ &= (\lambda y^{\tau} \cdot (P(Ny))M) \\ &= (P \circ N) \circ M \,. \end{split}$$

• Consider a diagram of objects and morphisms in \mathcal{L} of the form

$$\delta \leftarrow P \qquad \rho \leftarrow N \qquad \mathbf{1} \leftarrow \star \qquad \sigma.$$

$$(P \circ N) \circ \star = (PN) \circ \star$$

$$= \lambda t^{\sigma} \cdot (PN)$$

$$= \lambda t^{\sigma} (P((\lambda z^{\sigma} \cdot N)t))$$

$$= P \circ (N \circ \star).$$

• Consider a diagram of objects and morphisms in \mathcal{L} of the form

$$\delta \leftarrow P \quad \mathbf{1} \leftarrow \star \quad \tau \leftarrow M \quad \sigma.$$

$$(P \circ \star) \circ M = (\lambda t^{\tau} \cdot P) \circ M$$
$$= \lambda q^{\sigma} \cdot ((\lambda t^{\tau} \cdot P)(Mq))$$
$$= \lambda q^{\sigma} \cdot P$$
$$= P \circ (\star \circ M).$$

The other cases are trivial.

References

- [1] M. Atiyah, Duality in mathematics and physics, in: lecutre notes from Institut de Matematica de la Universitat de Barcelona (IMUB), (2007) available at: https://fme.upc.edu/ca/arxius/butlleti-digital/riemann/071218_conferencia_atiyah-d_article.pdf.
- [2] M. Borisavljevic, K. Dosen, Z. Petric, On Permuting Cut with Contraction, preprint arXiv:math/9911065v1.
- [3] A. Church, A set of postulates for the foundation of logic, Annals of Mathematics 33, no.2 pp.346–366 (1932).
- [4] H. B. Curry and R. Feys, *Combinatory logic*, volume I, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, (1958).
- [5] K. Došen, Deductive completeness, Bulletin of symbolic logic 2.3, pp.243–283 (1996).
- [6] K. Došen, Abstraction and application in adjunction, arXiv preprint math/0111061 (2001).
- [7] R. Dyckhoff, L. Pinto, Permutability of proofs in intuitionistic sequent calculi, Theoretical Computer Science **212**, pp.141-155, (1999).
- [8] J. H. Gallier, Constructive logics Part I: A tutorial on proof systems and typed lambda-calculi, Theoretical Computer Science, 110(2) pp.249–339, (1993).
- [9] G. Gentzen, Untersuchungen über das logische Schliessen, Mathematische Zeitschrift **39** (1935) 176–210, 405–431, translation in The collected papers of Gerhard Gentzen, edited by M. E. Szabo, 1969.
- [10] J.-Y. Girard, The Blind Spot: lectures on logic, European Mathematical Society, (2011).
- [11] J.-Y. Girard, Y. Lafont, and P. Taylor, *Proofs and Types*, Cambridge Tracts in Theoretical Computer Science 7, Cambridge University Press, 1989.
- [12] H. Herbelin, A Lambda-Calculus structure isomorphic to a Gentzen-style sequent calculus structure, in L. Pacholski and J. Tiuryn, editors, Computer Science Logic, 8th workshop, CSL'94, volume 933 of Lecture Notes in Computer Science, pp.61–75, Springer-Verlag (1995).
- [13] C. Hermida and B. Jacobs, Fibrations with indeterminates: Contextual and functional completeness for polymorphic lambda calculi, Math. Structures Comput. Sci. 5 (1995), 501–531.

- [14] A. Heyting, *Intuitionism*, an introduction, Studies in Logic and the Foundations of Mathematics, North-Holland, (1956). Third edition (1971).
- [15] W. A. Howard, The formulae-as-types notion of construction, in Seldin and Hindley To H.B.Curry: essays on Combinatory logic, Lambda calculus and Formalism, Academic press (1980).
- [16] C. B. Jay, N. Ghani, The virtues of eta-expansion, J. Functional Programming 1 (1): 1–000, Cambridge University Press, (1993).
- [17] S. C. Kleene, Two papers on the predicate calculus, Memoirs of the American Mathematical Society, 10, (1952).
- [18] J. Lambek, Functional completeness of cartesian categories, Annals of Mathematical Logic 6.3-4 pp.259–292, (1974).
- [19] J. Lambek and P.J. Scott, Introduction to higher-order categorical logic, Camrbidge Studies in Advanced Mathematics, Cambridge University Press, (1986).
- [20] F.W. Lawvere, Adjointness in foundations, Dialectica 23 No. 3/4, pp.281–296, (1969).
- [21] S. Mac Lane, *The Lambda Calculus and Adjoint Functors*, Logic, Meaning and Computation, Springer Netherlands, pp.181–184 (2001).
- [22] G. Mints, Normal forms for sequent derivations, in: P. Odifreddi (Ed.), Kreiseliana, A. K. Peters, Wellesley, Massachusetts, 1996, pp. 469–492; also part of Stanford Univ. Report CSLI-94-193, November 1994.
- [23] S. Negri, Varieties of linear calculi, Journal of Philosophical Logic **31**, pp.569–590, (2002).
- [24] S. Negri and J. von Plato, Structural proof theory, Cambridge University Press, (2008).
- [25] G. Pottinger, Normalization as a homomorphic image of cut-elimination, Annals of Mathematical Logic 12 pp.323–357, (1977).
- [26] D. Prawitz, Natural deduction: a proof-theoretical study, Almqvist & Wicksell, Stockholm (1965).
- [27] D. Prawitz, *Philosophical aspects of proof theory*, Contemporary philosophy: a new survey, **1**, pp.235–277, Martinus Nijhoff Publishers, The Hague/Boston/London (1981).

- [28] P. Selinger, Lecture notes on the lambda calculus, preprint [arXiv:0804.3434], (2008).
- [29] M. Sørensen and P. Urzyczyn, Lectures on the Curry-Howard isomorphism, Studies in Logic and the Foundations of Mathematics Vol. 149, Elsevier New York, (2006).
- [30] A. S. Troelstra, Marginalia on Sequent Calculi, Studia Logica 62, pp.291–303, (1999).
- [31] A.S. Troelstra and D. van Dalen, *Constructivism in Mathematics*, Vol. 1, Studies in Logic and the Foundations of Mathematics, 121, Amsterdam: North-Holland, (1988).
- [32] A. S. Troelstra, H. Schwichtenberg, *Basic proof theory*, Cambridge University Press, Cambridge, (1996).
- [33] P. L. Wadler, Proofs are programs: 19th century logic and 21st century computing, Manuscript (2000).
- [34] A. M. Ungar, Normalization, cut-elimination and the theory of proofs, Center for the Study of Language and Information Lecture Notes No. 28, (1992).
- [35] J. Zucker, The correspondence between cut-elimination and normalization, Annals of Mathematical Logic 7 1–112 (1974).