Билет 1

Определение. Упорядоченный набор - функция, которая ставит в соответствие каждому элементу множества $\{1, \ldots, n\}$ элемент из множества $\{a_1, \ldots, a_n\} : 1 \to a_1, \ldots, n \to a_n$.

Декартовое произведение множеств $A_1 \times \ldots \times A_n = (a_1, \ldots, a_n) : a_i \in A_i$.

Определение. Пусть функция f определена на $A_1 \times \ldots \times A_n$, тогда f - n-местная функция.

Определение. Множество $B_n = E_2 \times ... \times E_n$, где $E_i = \{0, 1\}$, называется n-мерным булевым кубом.

Определение. Функция $f: B_n \to E_2$ называется функцией алгебры логики. Множество всех таких функций обозначим P_2 .

Представление функции $f(x_1,\ldots,x_n)$ в виде таблицы, имеющей n+1 столбец:

```
x_1 \dots x_{n-1} x_n f
0 \dots 0 0 0
0 \dots 0 1
0 \dots 0 1 0
\vdots \vdots \vdots \vdots
1 \dots 1 1 1
```

Так как число различных первых n столбцов 2^n , так как в каждой ячейке одного столбца может быть либо 0, либо 1. \Longrightarrow число функций будет 2^{2^n} , так как для каждого набора значение функции может быть либо 0, либо 1.

Определение. Переменная x_i называется существенной, если существуют наборы $\alpha_1, \ldots, \alpha_{i-1}, 1, \alpha_{i+1}, \ldots, \alpha_n$ и $\alpha_1, \ldots, \alpha_{i-1}, 0, \alpha_{i+1}, \ldots, \alpha_n$, на которых функция принимает различные значения. В противном случае переменная x_i называется несущественной (фиктивной).

Определение. Пусть x_i - фиктивная переменная, тогда если функция $f(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) = g(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n)$, то функция g называется полученной из f добавлением фиктивной переменной. Функция удаления фиктивной переменной определяется аналогично.

Определение. Функция называется симметрической, если при любых перестановках переменных x_{i_1}, \ldots, x_{i_n} значение функции не меняется.

Элементарные функции в алгебре логики:

- 1. константы 0, 1
- 2. тождественный x
- 3. отрицание \overline{x}
- 4. конъюнкция $x \wedge y$
- 5. дизъюнкция $x \lor y$
- 6. имплекация $x \to y$
- 7. штрих Шеффера x|y
- 8. стрелка Пирса $x \downarrow y$

- 9. сложение по модулю 2
- 10. эквивалентность

Билет 2

Определение. Формула - слово в некотором алфавите A.

Определение. Алфавит - конечное или бесконечное множество.

Определение. Слово - произвольная функция, определённая на начальном отрезке натурального ряда и принимающая на нём значения из A.

Определение. Пусть F - множество функций алгебры логики, S - множество символов, обозначающих функции из F, тогда отображение $\Sigma: S \to F$ - сигнатура для F.

Определение. Пусть $X = \{x_1, \ldots\}$ - символы переменных.

База индукция: если x_i - символ переменной, то однобуквенное слово, состоящее из x_i - формула в сигнатуре Σ .

Пусть $s \in S$, $f = \Sigma(s)$ - функция от n переменных, Φ_1, \ldots, Φ_n - формулы в сигнатуре Σ , тогда слово $s(\Phi_1, \ldots, \Phi_n)$ - формула в сигнатуре Σ .

Определение. Пусть Φ - формула, \tilde{x} - упорядоченный набор $(x_{i_1}, \ldots, x_{i_n})$, содержащий все переменные формулы Φ , $\tilde{\alpha} = (\alpha_1, \ldots, \alpha_n)$ - двоичный набор.

База индукции: Φ - однобуквенное слово x_{i_j} , тогда $\Phi[\tilde{x},\tilde{\alpha}]=\alpha_j$ - значение формулы на наборе $\tilde{\alpha}$.

Пусть F - $s(\Phi_1, ..., \Phi_n)$, $f = \Sigma(s)$, причём $\Phi_1[\tilde{x}, \tilde{\alpha}] = \beta_1, ..., \Phi_n[\tilde{x}, \tilde{\alpha}] = \beta_n$, тогда $f(\beta_1, ..., \beta_n)$ - значение формулы на наборе значений переменных.

Определение. Формулой, определяющей функцию f алгебры логики, определённой на B_n , называется формула Φ такая, что \forall набора $\tilde{\alpha} = (\alpha_1, \ldots, \alpha_n) \in B_n$ $f(\tilde{\alpha}) = \Phi[\tilde{x}, \tilde{\alpha}]$.

Определение. Формулы в сигнатуре, представляющие собой переменные, называются вырожденными, остальные - невырожденными. Если функция определяется невырожденной формулой в сигнатуре $\Sigma: S \to F$, то она получена суперпозициями над F, где F - множество функций.

Определение. (Другое определение суперпозиции) Если одну функцию можно получить с помощью конечного числа применений следующих трёх операций, то данная функция называется функцией, полученной суперпозициями над F. Операции:

- 1. Операция подстановки переменных. Пусть $f(x_1, ..., x_n) \in P_2, g(x_1, ..., x_n)$ функция, определённая на B_n , такая, что $g(x_1, ..., x_n) = f(x_{i_1}, ..., x_{i_n})$, где набор $(i_1, ..., i_n)$ набор элементов (1, ..., n) (они необязательно различны). Тогда g получена из f операцией подстановки переменных.
- 2. Операция подстановки функции в функцию. Пусть $f(x_1, ..., x_n), g(x_1, ..., x_m), h$ определена на B_{n+m-1} и $h(x_1, ..., x_{n+m-1}) = f(x_1, ..., x_{n-1}, g(x_n, ..., x_{n+m-1}))$, тогда функция h получена из функций f и g операцией подстановки одной функции в другую.
- 3. Операция добавления или удаления фиктивных переменных. Пусть x_i фиктивная переменная, тогда если функция $f(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) = g(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n)$, то функция g называется полученной из f добавлением фиктивной переменной. Функция удаления фиктивной переменной определяется аналогично.

Билет 3

Определение. Формулы F_1 и F_2 называются эквивалентными, если они определяют равные функции относительно объединения их переменных. Функции называются равными, если их области определения равны и $\forall x \in D_f(x) \ f(x) = g(x)$. Слово $F_1 = F_2$, если формулы F_1 и F_2 эквивалентны, называется тождеством.

Основные тождества:

- 1. Ассоциативность операций: \land , \lor , \neg , \leftrightarrow .
- 2. Дистрибутивности:

(a)
$$(x \lor y) \land z = (x \land z) \lor (y \land z)$$

(b)
$$(x \wedge y) \vee z = (x \vee z) \wedge (y \vee z)$$

(c)
$$(x+y) \cdot z = x \cdot z + y \cdot z$$

- 3. Тождества для отрицания:
 - (a) $\overline{\overline{x}} = x$
 - (b) $\overline{x \wedge y} = \overline{x} \vee \overline{y}$
 - (c) $\overline{x \vee y} = \overline{x} \wedge \overline{y}$
 - (d) $x \cdot \overline{x} = 0$
 - (e) $x \vee \overline{x} = 1$
 - (f) $\overline{x \to y} = x \cdot \overline{y}$
- 4. Тождества для эдентичных операндов
- 5. Тождества с константным операндом

Определение. Функция g называется двойственной к f, если $g(x_1, \ldots, x_n) = \overline{f}(\overline{x_1}, \ldots, \overline{x_n})$. Обозначение $g = f^*$.

Определение. Если функция двойственна к самой себе, то она называется самодвойственной.

Теорема. (принцип двойственности) Если Φ - формула в сигнатуре $\Sigma: S \to F$, определяющая некоторую функцию g, то эта формула в сигнатуре $\Sigma^*:S\to F^*$ определяет двойственную функцию g^* .

Доказательство. База индукции: пусть x_i - символ переменной, тогда однобуквенное слово, состоящее из x_i - формула в сигатуре Σ , определяющая одноместную функцию g. Эта формула в сигнатуре Σ^* имеет вид $\overline{x_i}$, то есть она определяет функцию, двойственную к g. Пусть $s \in S$, $f = \Sigma(s)$ - формула от n переменных, Φ_1, \ldots, Φ_n - формулы в сигнатуре Σ , тогда слово $s(\Phi_1, ..., \Phi_n)$ - формула в сигнатуре Σ . В $\Sigma^*(s) = (\Sigma(s))^* = (\Sigma(s(\Phi_1, ..., \Phi_n)))^* = f^*$, то есть данная формула определяет в двойственной сигнатуре двойственную функцию.

Билет 4

Определение. Выражение $f(x_1, \ldots, x_n) = \bigvee_{(\sigma_1, \ldots, \sigma_n): f(\sigma_1, \ldots, \sigma_n) = 1} x_1^{\sigma_1} \cdot \ldots \cdot x_n^{\sigma_n}$ называется совершенной дизъюнктивной нормальной формой. $x_i^{\sigma_i} = \begin{cases} x_i, \sigma_i = 1 \\ \overline{x_i}, \sigma_i = 0 \end{cases}$.

Теорема. Для любой функции $f(x_1, ..., x_n)$ алгебры логики верно равенство: $f(x_1, ..., x_n) = \bigvee_{(\sigma_1, ..., \sigma_m) \in B_m} x_1^{\sigma_1} \cdot ... \cdot x_m^{\sigma_m} \cdot f(\sigma_1, ..., \sigma_m, \sigma_{m+1}, ..., \sigma_n).$

 \mathcal{A} оказательство. Рассмотрим прозвольный набор $(\alpha_1,\ldots,\alpha_m)$, если $(\alpha_1,\ldots,\alpha_m)\neq (\sigma_1,\ldots,\sigma_m)$, то $\exists \alpha_i \neq \sigma_i \Longrightarrow \alpha_i^{\sigma_i} = 0 \Longrightarrow$ данное слагаемое будет равно нулю. Тогда единственным не нулевым членом будет $(\alpha_1^{\alpha_1}\cdot\ldots\cdot\alpha_m^{\alpha_m})\cdot f(\alpha_1,\ldots,\alpha_m,\alpha_{m+1},\ldots,\alpha_n) = f(\alpha_1,\ldots,\alpha_n)$.

Теорема. Любую функцию алгебры логики можно представить с помощью суперпозиций конъюнкции, дизъюнкции и отрицания.

Доказательство. Так как любая функция алгебры логики, кроме тождественного нуля, реализуется совершенной д.н.ф., значит она представима суперпозициями конъюнкции, дизьюнкции и отрицания. Тождественный ноль можно представить так: $x \wedge \overline{x} = 0$.

Теорема. Любая функция алгебры логики, кроме тождественной единицы, представима в виде совершенной конъюнктивной нормальной формы.

Доказательство. Так как любая функция алгебры логики, кроме тождественного нуля, представима в виде совершенной д.н.ф., тогда по принципу двойственности

$$f(x_1, \ldots, x_n) = \bigwedge_{\substack{(\sigma_1, \ldots, \sigma_n): f^*(\sigma_1, \ldots, \sigma_n) = 1\\ (\delta_1, \ldots, \delta_n): f(\delta_1, \ldots, \delta_n) = 1}} x_1^{\overline{\delta_1}} \vee \ldots \vee x_n^{\overline{\delta_n}} \Longrightarrow$$

$$f(x_1, \ldots, x_n) = \bigwedge_{\substack{(\delta_1, \ldots, \delta_n): f(\delta_1, \ldots, \delta_n) = 1}} x_1^{\overline{\delta_1}} \vee \ldots \vee x_n^{\overline{\delta_n}}.$$

Билет 5

Определение. Система функций называется полной в P_2 , если через них выражаются все функции в P_2 .

Примеры. 1. \wedge и \neg

- 2. ∨и¬
- 3. x|y
- 4. $x \downarrow y$

Определение. Полиномы по модулю 2 вида: $\sum_{\{i_1,\dots,i_s\}\subseteq 1,\dots,n} a_{i_1,\dots,i_s}\cdot x_{i_1}\cdot\dots\cdot x_{i_s}$ называются полиномами Жегалкина.

Теорема. (Жегалкина)

Любая функция алгебры логики представима полиномом Жегалкина, причём единственным образом.

Доказательство. Так как в каждом мономе полинома Жегалкина n перменных, каждая из которых может быть либо 0, либо 1, а коэффициент перед каждым мономом может принимать значение 0 или $1 \Longrightarrow$ всего есть 2^{2^n} различных полиномов Жегалкина.

Пусть два различных полинома Жегалкина задают одну функцию, тогда мы получим ненулевой полином, задающий нулевую константу ⇒ противоречие ⇒ Любая функция алгебры логики представима полиномом Жегалкина, причём единственным образом. □

Билет 6

Определение. Множество функций, которые можно пулучить из данного множества M функций алгебры логики, называется замыканием множества M и обозначается [M].

Примеры. 1.
$$P_2 = [P_2]$$

1, x + y - множество линейных функций

Свойства. 1. $M \subseteq [M]$

- 2. [[M]] = [M]
- 3. Ecau $M_1 \subseteq M_2$, mo $[M_1] \subseteq [M_2]$
- 4. $[M_1] \cup [M_2] \subseteq [M_1 \cup M_2]$

Доказательство. 1. По определению замыкания.

- 2. Из первого следует, что $[M] \subseteq [[M]]$, а $[[M]] \subseteq [M]$, так как в противном случае существовала бы функция, которая не выражается суперпозициями функций из M, но выражается суперпозициями функций, которые выражаются суперпозициями функций из M, а значит она выражается суперпозициями из $M \Longrightarrow$ противоречие.
- 3. Если функция получается суперепозициями из M_1 , то её можно получить суперпозициями из M_2 , так как все функции M_1 являются функциями M_2 .
- 4. Пусть функция $f \in [M_1] \cap [M_2]$, тогда она получается суперпозициями из M_1 или из M_2 , пусть для определённости она выражается суперпозициями из M_1 , но тогда её можно получить суперпозициями из $M_1 \cup M_2$, то есть $f \in [M_1 \cup M_2]$

Определение. Класс функций M называется замкнутым, если [M] = M.

Примеры. 1. $P_2 = [P_2]$

2. L = [L], L - множество линейных функций.

Билет 7

Определение. Функция f называется функцией, сохраняющей ноль, если на наборе из нулей она принимает значение 0.

Определение. Функция f называется функцией, сохраняющей единицу, если на наборе из единиц она принимает значение 1.

Класс функций, сохраняющих ноль, обозначим T_0 , а класс функций, сохраняющих единицу, обозначим T_1 .

Теорема. *Классы* T_0 *и* T_1 *замкнуты.*

Доказательство. 1. Операция подстановки переменных:

 $g(x_1, \ldots, x_n) = f(x_{i_1}, \ldots, x_{i_n})$, если функция f сохраняла ноль, то и функция g будет сохранять ноль, если функция f сохраняла единицу, то и функция g будет сохранять единицу.

- 2. Операция подстановки одной функции в другую: $h(x_1, \ldots, x_{n+m-1}) = f(x_1, \ldots, x_{n-1}, g(x_n, \ldots, x_{n+m-1}))$, если функции f и h сохраняли ноль, то и функция g будет сохранять ноль, если функции f и g сохраняли единицу, то и функция h будет сохранять единицу.
- 3. Операция добавления или удаления фиктивной переменной, не влияет на способность функции сохранять ноль или сохранять единицу.

Следовательно суперпозициями мы не сможем получить функцию, не принадлежащую данному классу \Longrightarrow классы T_0 и T_1 - замкнуты.

Билет 8

Класс самодвойственных функций обозначим S.

Теорема. Kласс S замкнут.

Доказательство. 1. Операция подстановки переменных:

Пусть $f(x_1, ..., x_n) \in S$, $g(x_1, ..., x_n) = f(x_{i_1}, ..., x_{i_n})$, тогда $\overline{g}(\overline{x}_1, ..., \overline{x}_n) = \overline{f}(\overline{x}_{i_1}, ..., \overline{x}_{i_n}) = f(x_{i_1}, ..., x_{i_n}) = g(x_1, ..., x_n) \Longrightarrow g$ - самодвойственная функция.

- 2. Операция подстановки функции в функцию: Пусть $f(x_1, \ldots, x_n) \in S$, $g(x_1, \ldots, x_m) \in S$, $h(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m-1}) = f(x_1, \ldots, x_{n-1}, g(x_n, \ldots, x_{n+m-1}))$, тогда $\overline{h}(\overline{x}_1, \ldots, \overline{x}_n, \overline{x}_{n+1}, \ldots, \overline{x}_{m+n-1}) = \overline{f}(\overline{x}_1, \ldots, \overline{x}_{n-1}, g(\overline{x}_n, \ldots, \overline{x}_{m+n-1})) = \overline{f}(\overline{x}_1, \ldots, \overline{x}_{n-1}, \overline{g}(x_n, \ldots, x_{m+n-1})) = f(x_1, \ldots, x_{n-1}, g(x_n, \ldots, x_{m+n-1})) = h(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{m+n-1}) \Longrightarrow h$ самодвойственная функция.
- 3. Операция добавления или удаления фиктивных переменных: Пусть $f(x_1, \ldots, x_n) \in S, g(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n) = f(x_1, \ldots, x_n) = g(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n),$ тогда $\overline{g}(\overline{x}_1, \ldots, \overline{x}_{i-1}, 1, \overline{x}_{i+1}, \ldots, \overline{x}_n) = f(x_1, \ldots, x_n) = g(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n) \Longrightarrow g$ самодвойственная функция.

Теорема. Если функция f не является самодвойственной, то с помощью неё и функции отрицания можно получить константу.

Доказательство. Пусть $f(x_1,\ldots,x_n)\notin S$, тогда существует набор $(\alpha_1,\ldots,\alpha_n)$:

$$f(\alpha_1, ..., \alpha_n) = f(\overline{\alpha}_1, ..., \overline{\alpha}_n).$$

Пусть $\varphi_i = x^{\alpha_i}, \, \varphi(x) = f(\varphi_1(x), \, \dots, \, \varphi_n(x)),$

тогда
$$\varphi(0)=f(0^{\alpha_1},\ldots,0^{\alpha_n})=f(\overline{\alpha}_1,\ldots,\overline{\alpha}_n)=f(\alpha_1,\ldots,\alpha_n)=f(1^{\alpha_1},\ldots,1^{\alpha_n})=\varphi(1)\Longrightarrow$$
 $\Longrightarrow \varphi(x)$ - константа, полученная из несамодвойственной функции и отрицания.

Билет 9

Определение. Пусть $\tilde{\alpha} = (\alpha_1, \ldots, \alpha_n), \ \tilde{\beta} = (\beta_1, \ldots, \beta_n)$ - двоичные наборы, тогда $\tilde{\alpha} \leqslant \tilde{\beta}$, если $\forall i = \overline{1, n} \ \alpha_i \leqslant \beta_i$.

Определение. Функция алгебры логики называется монотонной, если \forall двоичных наборов $\tilde{\alpha}$ и $\tilde{\beta}$ таких, что $\tilde{\alpha} \leqslant \tilde{\beta}, f(\tilde{\alpha}) \leqslant f(\tilde{\beta})$.

Теорема. *Класс* M *монотонных* функций - замкнут.

Доказательство. 1. Операция подстановки переменных:

$$g(x_1, \ldots, x_n) = f(x_{i_1}, \ldots, x_{i_n})$$
, если функция f монотонна, то $\forall \tilde{\alpha} = (\alpha_1, \ldots, \alpha_n)$ и $\tilde{\beta} = (\beta_1, \ldots, \beta_n) : \tilde{\alpha} \leqslant \tilde{\beta}, f(\tilde{\alpha}) \leqslant f(\tilde{\beta}) \Longrightarrow \alpha_1 \leqslant \beta_1, \ldots, \alpha_n \leqslant \beta_n \Longrightarrow \alpha_i \leqslant \beta_{i_1}, \ldots, \alpha_{i_n} \leqslant \beta_{i_n} \Longrightarrow f(\alpha_{i_1}, \ldots, \alpha_{i_n}) \leqslant f(\beta_{i_1}, \ldots, \beta_{i_n}) \Longrightarrow \Longrightarrow g(\alpha_1, \ldots, \alpha_n) = f(\alpha_{i_1}, \ldots, \alpha_{i_n}) \leqslant f(\beta_{i_1}, \ldots, \beta_{i_n}) = g(\beta_{i_1}, \ldots, \beta_{i_n}) \Longrightarrow g$ - монотонна.

- 2. Операция подстановки одной функции в другую:
 - $f(x_1,\,\ldots,\,x_n),\,g(x_1,\,\ldots,\,x_m)$ монотонные функции, $h(x_1,\,\ldots,\,x_{n+m-1})=f(x_1,\,\ldots,\,x_{n-1},\,g(x_n,\,\ldots,\,x_{n+m-1}))$, так как функции f и g монотонны, $\forall \tilde{\alpha}=(\alpha_1,\,\ldots,\,\alpha_{m+n-1})$ и $\tilde{\beta}=(\beta_1,\,\ldots,\,\beta_{m+n-1}):\tilde{\alpha}\leqslant\tilde{\beta},\,f(\tilde{\alpha})\leqslant f(\tilde{\beta})$ и $g(\alpha_n,\,\ldots,\,\alpha_{m+n-1})=g(\beta_n,\,\ldots,\,\alpha_{m+n-1})\Longrightarrow$ $(\alpha_1,\,\ldots,\,\alpha_{n-1},\,g(\alpha_n,\,\ldots,\,\alpha_{m+n-1}))\leqslant(\beta_1,\,\ldots,\,\beta_{n-1},\,g(\beta_n,\,\ldots,\,\beta_{n+m-1}))\Longrightarrow h(\alpha_1,\,\ldots,\,\alpha_{m+n-1})=f(\alpha_1,\,\ldots,\,\alpha_{n-1},\,g(\alpha_n,\,\ldots,\,\alpha_{m+n-1}))\leqslant f(\beta_1,\,\ldots,\,\beta_{n-1},\,g(\beta_n,\,\ldots,\,\beta_{n+m-1}))=h(\beta_1,\,\ldots,\,\beta_{m+n-1}).$
- 3. Операция добавления или удаления фиктивных переменных:

```
f(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) = g(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n), так как f монотонна \Longrightarrow \forall \tilde{\alpha} = (\alpha_1, ..., \alpha_{i-1}, \alpha_{i+1}, ..., \alpha_n) и \tilde{\beta} = (\beta_1, ..., \beta_{i-1}, \beta_{i+1}, ..., \beta_n) : \tilde{\alpha} \leqslant \tilde{\beta}, верно f(\alpha_1, ..., \alpha_{i-1}, \alpha_{i+1}, ..., \alpha_n) \leqslant f(\beta_1, ..., \beta_{i-1}, \beta_{i+1}, ..., \beta_n).

Тогда \tilde{\alpha}, с добавленной фиктивной переменной, \leqslant \tilde{\beta}, с добавленной фиктивной переменной \Longrightarrow g(\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n) = f(\alpha_1, ..., \alpha_{i-1}, \alpha_{i+1}, ..., \alpha_n) \leqslant f(\beta_1, ..., \beta_{i-1}, \beta_{i+1}, ..., \beta_n) = g(\beta_1, ..., \beta_{i-1}, 0, \beta_{i+1}, ..., \beta_n).
```

Следовательно, суперпозициями мы не сможем получить функцию, не принадлежащую данному классу \Longrightarrow класс M замкнут. \square

Теорема. Если f - немонотонная функция, то из неё и констант можно получить отрицание.

Доказательство. Пусть $f(x_1, ..., x_n)$ - немонотонная функция, тогда $\exists \tilde{\alpha}$ и $\tilde{\beta}: \tilde{\alpha} \leqslant \tilde{\beta}$ и $f(\tilde{\alpha}) = 1$, а $f(\tilde{\beta}) = 0$. Так как наборы различны, то $\exists \alpha_{i_1} = ... = \alpha_{i_k} = 0$ и $\beta_{i_1} = ... = \beta_{i_k} = 1$, а $\forall j \in (1, ..., n) \setminus (i_1, ..., i_k) \ \alpha_j = \beta_j$.

Пусть наборы $\tilde{\gamma}_0, \ldots, \tilde{\gamma}_k$ на позициях $(1, \ldots, n) \setminus (i_1, \ldots, i_k)$ совпадает со значениями набора $\tilde{\alpha}$, на позициях i_1, \ldots, β_j набор $\tilde{\gamma}_j = 1$, а на позициях i_{j+1}, \ldots, i_k принимает значение 0, тогда $\tilde{\gamma}_0 = \tilde{\alpha}$, а $\tilde{\gamma}_k = \tilde{\beta} \Longrightarrow f(\tilde{\gamma}_0) = 1$, $f(\tilde{\gamma}_k) = 0 \Longrightarrow \exists \tilde{\gamma}_j : f(\tilde{\gamma}_j) = 0$, а $f(\tilde{\gamma}_{j-1}) = 1 \Longrightarrow \tilde{\gamma}_{j-1} = (\delta_1, \ldots, \delta_{i_j-1}, 0, \delta_{i_j+1}, \ldots, \delta_n)$, $\tilde{\gamma}_j = (\delta_1, \ldots, \delta_{i_j-1}, 1, \delta_{i_j+1}, \ldots, \delta_n)$.

Тогда функция $\varphi(f(\delta_1, \ldots, \delta_{i_j-1}, x, \delta_{i_j+1}, \ldots, \delta_n))$, при x=0 функция равна 1, а при x=1, функция равна 0, то есть $\varphi=\overline{x}$, а так как она получена с помощью функции f и констант, значит, это искомая функция.

Билет 10

Определение. Функция f называется линейной, если она представима полиномом Жегалкина степени 1.

Теорема. *Класс* L линейных функций замкнут.

Доказательство. 1. Операция подстановки переменных:

$$g(x_1, \ldots, x_n) = f(x_{i_1}, \ldots, x_{i_n})$$
, если функция f линейна, то $\forall \tilde{\alpha} = (\alpha_1, \ldots, \alpha_n) \ f(\tilde{\alpha}) = c_0 + c_1 \alpha_1 + \ldots + c_n \alpha_n$, тогда $g(\alpha_1, \ldots, \alpha_n) = c_0 + c_1 \alpha_{i_1} + \ldots + c_n \alpha_{i_n} \Longrightarrow g$ - линейная функция.

- 2. Операция подстановки одной функции в другую: $f(x_1, \ldots, x_n), g(x_1, \ldots, x_m)$ линейные функции, $h(x_1, \ldots, x_{n+m-1}) = f(x_1, \ldots, x_{n-1}, g(x_n, \ldots, x_{n+m-1}))$, так как функции f и g линейны, $\forall \tilde{\alpha} = (\alpha_1, \ldots, \alpha_{m+n-1}) f(\alpha_1, \ldots, \alpha_n) = c_0 + c_1\alpha_1 + \ldots + c_n\alpha_n, g(\alpha_1, \ldots, \alpha_m) = c'_0 + c'_1\alpha_1 + \ldots + c'_n\alpha_n \Longrightarrow h(\alpha_1, \ldots, \alpha_{n+m-1}) = c_0 + c_1\alpha_1 + \ldots + c_{n-1}\alpha_{n-1} + c_ng(\alpha_n, \ldots, \alpha_{m+n-1}) = c_0 + c_1\alpha_1 + \ldots + c'_n\alpha_{m+n-1}) \Longrightarrow функция <math>h$ является линейной.
- 3. Операция добавления или удаления фиктивных переменных: $f(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) = g(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n)$, так как f линейна $\Longrightarrow \forall \tilde{\alpha} = (\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_n) \ f(\tilde{\alpha}) = c_0 + c_1\alpha_1 + \ldots + c_{i-1}\alpha_{i-1} + c_{i+1}\alpha_{i+1} + \ldots + c_n\alpha_n$, тогда очевидно, что $g(\alpha_1, \ldots, \alpha_{i-1}, 0, \alpha_{i+1}, \ldots, \alpha_n)$ тоже линейная функция.

Следовательно, суперпозициями мы не сможем получить функцию, не принадлежащую данному классу \Longrightarrow класс L замкнут. \square

Теорема. Eсли функция f нелинейна, то из не \ddot{e} , констант и отрицания можно получить конъюнкцию.

Доказательство. Пусть $f(x_1,\ldots,x_n)$ - нелинейная функция, тогда полином Жегалкина без ограничения общности имеет вид: $x_1x_2f_1(x_3,\ldots,x_n)+x_1f_2(x_3,\ldots,x_n)+x_2f_3(x_3,\ldots,x_n)+f_4(x_3,\ldots,x_n)$. Так как f1 не является тождественно нулевой функцией, существует набор $(\alpha_3,\ldots,\alpha_n): f_1(\alpha_3,\ldots,\alpha_n)=1$, тогда $f=x_1x_2+\alpha x_1+\beta x_2+\gamma\Longrightarrow$ $\Longrightarrow f(x_1+\alpha,x_2+\beta)=(x_1+\alpha)(x_2+\beta)+\alpha(x_1+\alpha)+\beta(x_2+\beta)+\gamma=x_1x_2+\alpha\beta\gamma$, если $\alpha\beta\gamma=1$, то возьмём $\overline{f}(x_1+\alpha,x_2+\beta)=x_1x_2$, так как данная функция получена из f с помощью констант и отрцания, значит это искомая функция.

Билет 11

Теорема. Система функций полна тогда и только тогда, когда она не содержится ни в одном из классов T_0 , T_1 , S, M, L.

Доказательство. \Longrightarrow Если ситсема F функций алгебры логики полна, то $[F] = P_2$. Предположим, что $F \subseteq K$, где K - один из этих классов, тогда $[F] \subseteq [K] \neq P_2$ - противоречие. \longleftarrow Пусть F не лежит ни в одном из этих классов, тогда $\exists f_1, f_2, f_3, f_4, f_5: f_1 \notin T_0, f_2 \notin T_1, f_3 \notin S, f_4 \notin M, f_5 \notin L$.

Рассмотрим $f_1 \notin T_0$, тогда $f_1(0, ..., 0) = 1$. Есть два случая:

- 1. Пусть $f_1 \notin T_1$, тогда $\varphi(x) = f_1(x, ..., x) = \overline{x}$, то есть мы получили из f_1 функцию отрицания. Тогда по лемме о несамодвойственной функции из f_3 и \overline{x} можно получить константы.
- 2. Пусть $f_1 \in T_1$, тогда $\varphi(x) = f_1(x, ..., x) = 1$, то есть $\varphi(x)$ константа 1. Рассмотрим $f_2 \notin T_1$, тогда $f_2(f_1(x, ..., x)) = 0$, то есть мы получили константу 0.

Тогда по лемме о немонотонной функции из f_4 и констант можно получить \overline{x} , а по лемме о нелинейной функции из f_5 , \overline{x} и констант можно получить $x \wedge y$, то есть мы получим полную систему $x \wedge y$, \overline{x} .

Билет 12

Определение. Класс K функций алгебры логики называется предполным, если $[K] \neq P_2$ и если $f \in P_2 \setminus K$, то $[\{f\} \cup K] = P_2$.

Теорема. В P_2 нет предполных классов, отличных от T_0 , T_1 , S, M, L.

Доказательство. Пусть класс K - предполный класс, отличный от данных пяти классов. Этот класс замкнут, так как в противном случае можно было бы выбрать функцию f: $f \in [K]$ и $f \notin K$, тогда $[\{f\} \cup K] = [K]$, но так как класс K является предполным, то $[K] = P_2 \Longrightarrow$ противоречие с тем, что класс K не является полным.

Так как класс K замкнут, то он содержится в одном из классов T_0, T_1, S, M, L (обозначим этот класс Q), иначе по теореме Поста он был бы полным, а он по условию таким не является. Пусть класс K не совпадает с классом Q, тогда $\exists f \in Q \setminus K \Longrightarrow [\{f\} \cup K] \subseteq [Q] \neq P_2$ противоречие.

Пусть $f \in P_2 \setminus Q$, тогда если $[Q \cup \{f\}] = [Q'] \neq P_2$, то Q' содержится в одном из оставшихся классов, что невозможно, а значит, класс Q является предполным.

Билет 13

Теорема. В любой полной системе алгебры логики можно выделить полную подсистему, состоящую из 4 функций.

Доказательство. Пусть система F полна, выберем в ней функции $f_1, f_2, f_3, f_4, f_5: f_1 \notin T_0,$ $f_2 \notin T_1, f_3 \notin S, f_4 \notin M, f_5 \notin L$, по теореме Поста система из этих функций полна. Если $f_1 \in T_1$, тогда $f_1 \notin S$, тогда функцию f_3 можно выбрать равной f_1 , а если $f_1(1, \ldots, 1) = 0$, то $f_1 \notin M$, то есть f_4 можно выбрать равной $f_1 \Longrightarrow$ в обоих случаях мы получаем полную систему из четырёх функций.

Билет 14

Определение. Пусть K - замкнутый класс, F - система функций данного класса, тогда F называется полной, если [F] = K.

Определение. Система функций некоторого класса K называется базисом, если она полна в K, но каждая её собствееная подсистема неполна в K.

Примеры. $\{0, 1, x_1 \cdot x_2, x_1 \lor x_2\}$ - базис в M

Теорема. Каждый замкнутый класс функций алгебры логики имеет конечный базис. (Без доказательства)

Теорема. Число замкнутых классов в P_2 счётно. (Без доказательства)

Билет 15

Определение. Отображение $f: E_k \times \ldots \times E_k \to E_k$ - функция k-значной логики.

Элементарные функции:

1.
$$\overline{x} = x + 1 \pmod{k}$$

$$2. \sim x = k - 1 - x$$

3.
$$J_i(x) = {k-1, \text{ если} x = i \over 0, \text{ если} x \neq i}$$

4.
$$j_i(x) = {1, \text{ если} x = i \atop 0, \text{ если} x \neq i}$$

5.
$$min(x_1, x_2)$$

- 6. $max(x_1, x_2)$
- 7. $x_1 \cdot x_2 \pmod{k}$
- 8. $x_1 + x_2 \pmod{k}$

Определение. Отображение $\Sigma: S \to F$, где S - множество символов, обозначующих функции из P_k , а F - множество функций в P_k называется сигнатурой.

Определение. База индукции: пусть x_i - символ переменной, тогда однобуквенное слово, состоящее из x_i - формула в сигнатуре.

Пусть $s \in S$, $f = \Sigma(s)$ - функция от n переменных, Φ_1, \ldots, Φ_n - формулы в сигнатуре Σ , тогда слово $s(\Phi_1, \ldots, \Phi_n)$ - формула в сигнатуре Σ .

Определение. Пусть Φ - формула, $\tilde{x} = (x_{i_1}, \ldots, x_{i_n})$ - упорядоченный набор, содержащий все переменные формулы Φ , $\tilde{\alpha} = (\alpha_1, \ldots, \alpha_n)$ - двоичный набор.

База индукции: Φ - однобуквенное слово x_{i_j} , тогда $\Phi[\tilde{x}, \tilde{\alpha}] = \alpha_j$ - значение формулы на наборе.

Пусть $\in S$, $f = \Sigma(s)$, Φ_1, \ldots, Φ_n - формулы в сигнатуре. Обозначим $\Phi_1[\tilde{x}, \tilde{\alpha}] = \beta_1, \ldots, \Phi_n[\tilde{x}, \tilde{\alpha}] = \beta_n$, тогда $f(\beta_1, \ldots, \beta_n)$ - значение формулы на наборе $\tilde{\alpha}$.

Определение. Операции:

- 1. Операция подстановки переменных. Пусть $f(x_1, ..., x_n) \in P_k$, $g(x_1, ..., x_n)$ функция, определённая на B_n такая, что $g(x_1, ..., x_n) = f(x_{i_1}, ..., x_{i_n})$, где набор $(i_1, ..., i_n)$ набор элементов (1, ..., n) (они необязательно различны). Тогда g получена из f операцией подстановки переменных.
- 2. Операция подстановки функции в функцию. Пусть $f(x_1, ..., x_n), g(x_1, ..., x_m), h$ определена на B_{n+m-1} и $h(x_1, ..., x_{n+m-1}) = f(x_1, ..., x_{n-1}, g(x_n, ..., x_{n+m-1}))$, тогда функция h получена из функций f и g операцией подстановки одной функции в другую.
- 3. Операция добавления или удаления фиктивных переменных. Пусть x_i фиктивная переменная, тогда если функция $f(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) = g(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n)$, то функция g называется полученной из f добавлением фиктивной переменной. Функция удаления фиктивной переменной определяется аналогично.

Билет 16

Тождества для функций в P_k :

- 1. операции $min(x_1, x_2)$, $max(x_1, x_2)$, $x_1 \cdot x_2 \pmod{k}$, $x_1 + x_2 \pmod{k}$ ассоциативны и коммутативны
- 2. $min(max(x_1, x_2), x_3) = max(min(x_1, x_3), min(x_2, x_3))$
- 3. $(x_1 + x_2) \cdot x_3 = (x_1 \cdot x_3) + (x_2 \cdot x_3)$
- $4. \sim (\sim x) = x$
- 5. $\sim min(x_1, x_2) = max(\sim x_1, \sim x_2)$

Определение. Выражение $\bigvee_{(\sigma_1,...,\sigma_n)\in(E_k)^n} \min(J_{\sigma_1}(x_1),\,...,\,J_{\sigma_n}(x_n),\,f(\sigma_1,\,...,\,\sigma_n))$ - аналог совершенной дизъюнктивной нормальной формы для P_k .

Теорема. Любая функция, не являющаяся тож дественно нулевой, имеет аналог совершенной д.н.ф.

Доказательство. Рассмотрим произвольный набор $(\alpha_1, \ldots, \alpha_n)$, так как $J_{\sigma_i}(\alpha_j) = 0 \ \forall j \neq i$, а для $j = i \ J_{\sigma_i}(\alpha_i) = k-1$, значит, все члены, кроме $\alpha_1 = \sigma_1, \ldots, \alpha_n = \sigma_n$, будут равны нулю, а значит, останется тольго $min(J_{\sigma_1}(\alpha_1), \ldots, J_{\sigma_n}(\alpha_n), f(\alpha_1, \ldots, \alpha_n)) = f(\alpha_1, \ldots, \alpha_n)$.

Билет 17

Определение. Система F функций в P_k называется полной, если любая функция из P_k получается суперпозициями из F.

Примеры. 1. P_k

- 2. $\{0, 1, \ldots, k-1, J_0(x), \ldots, J_{k-1}(x), \min(x_1, x_2), \max(x_1, x_2)\}\$
- 3. $max(x_1, x_2), \overline{x}$
- 4. $min(x_1, x_2), \overline{x}$
- 5. $\{0, 1, \ldots, k-1, j_0(x), \ldots, j_{k-1}(x), x_1 + x_2, x_1 \cdot x_2\}$
- 6. $V_k(x_1, x_2) = max(x_1, x_2) + 1 \pmod{k}$

Докажем полноту каждой из систем.

Доказательство. 1. Так как в системе есть отрицание Поста, то из $\forall x$ можно получить $\{x, x+1, ..., x+k-1\}$ все эти числа различны по $(mod\ k) \Longrightarrow max(x, ..., x+k-1) = k-1$, тогда из константы k-1 можно получить все остальные константы, используя отрицание Поста.

Рассмотрим набор $\{x,\ldots,x_{j-1},x_{j+1},\ldots,x_k\}$, тогда функция $\varphi_j(x)=max(x,\ldots,x+j-1,x+j+1,\ldots,x+k-1)=\frac{k-1}{k-2}$, при $x+j\neq k-1$. Тогда функция $\psi_j(x)=max(x,\ldots,x+j-1,x+j+1,\ldots,x+k-1)+1$ (это ожно сделать благодаря отрицанию Поста) \Longrightarrow $\psi_j(x)=\frac{0}{k-1}$, при $x+j\neq k-1$. То есть мы получили все константы, $J_i(x)$ $\forall i$, а значит, получили полную систему из примера 2.

- 2. Аналогично с предыдущим пунктом, с помощью отрицания Поста можно получить все константы, а значит, можем получить отрицание Лукашевича, а по одному из тождеств, $\sim min(x_1, x_2) = max(\sim x_1, \sim x_2)$, то есть мы получили поную систему из предыдущего пункта.
- 3. Из $V_k(x_1, x_2)$ получим отрицание Поста: $V_k(x, x) = x + 1 = \overline{x} \Longrightarrow$ можно получить x + i $\forall i$, тогда $max(x_1, x_2) = V_k(x_1, x_2) + k 1$, то есть мы получили полную систему $\{max(x_1, x_2), \overline{x}\}$.

Билет 18

Определение. Замыканием множества F в P_k называется множество всех функций, которые можно получить суперпозициями из F.

Определение. Если [F] = F, то множество M называется замкнутым.

Определение. Пусть $Q \subseteq E_k$. Множество функций $T_Q : \forall \alpha_1, ..., \alpha_n \in Q \ f(\alpha_1, ..., \alpha_n) \in Q$, называется функцией, сохраняющей множество Q.

Примеры. 1. P_k

 $2. T_Q$

Теорема. *Класс* T_Q *замкнут.*

Доказательство. 1. Операция подстановки переменных:

Пусть функция $f(x_1, ..., x_n)$ сохраняет множество Q, тогда $g(x_1, ..., x_n) = f(x_{i_1}, ..., x_{i_n})$ тоже будет сохранять множество Q, так как при перестановке одинаковых переменных ничего не поменяется.

- 2. Операция подстановки функции в функцию: Пксть функции $f(x_1, ..., x_n)$ и $g(x_1, ..., x_m)$ сохраняют множесво Q, тогда $h(x_1, ..., x_{m+n-1}) = f(x_1, ..., x_{n-1}, g(x_n, ..., x_{m+n-1}))$, так как функция g сохраняет множество Q \Longrightarrow все переменные f принимают одно и то же значение, а значит, и функция h будет сохранять множество Q.
- 3. Операция добавления или удаления фиктивных переменных: Очевидно.

Билет 19

Определение. Определим глубину формулы через индукцию по определению формулы в сигнатуре:

База индукции: пусть x_i - символ переменной, тогда глубина формулы x_i равна 0.

Пусть $s \in S$, $f = \Sigma(s)$, Φ_1, \ldots, Φ_n - формулы сигнатуре, причём m - наибольшая из глубин из этих формул, тогда глубина формулы $s(\Phi_1, \ldots, \Phi_n)$ равна m+1.

Теорема. Существует алгаритм, распознающий поноту конечных систем функций в P_k . Он заключается в построении последовательности Кузнецова и проверке вхожедения в её предел фунции Вебба.

Доказательство. Пусть $F \subseteq P_k$ - конечное множество функций в P_k , $\Sigma: S \to F$ - сигнатура. Рассмотрим последовательность G_1, G_2, \ldots такую, что G_i - множество функций, определяемых невырожденными формулами в сигнатуре Σ , содержащими только переменные x_1, x_2 и имеющими глубину, меньшую i. Данную последовательность назовём последовательностью Кузнецова. Так как все формулы в соответствующем множестве G_i имеют глубину, меньшую $i \Longrightarrow \varnothing \subseteq G_1 \subseteq \ldots$ Так как число функций в P_k от двух переменных равно $k^{k^2} \Longrightarrow |G_i| \leqslant k^{k^2} \Longrightarrow$ последовательность Кузнецова стабилизируется на некотором шаге $G_m = G$, G называется пределом последовательности Кузнецова. Свяжем с каждой функцией из G_i некоторую формулу Φ'_j , содержащую тольо переменные x_1, x_2 и имеющая глубину, меньшую i. Рассмотрим функцию $f \in G_{i+1} \setminus G_i$, она определяется формулой $\Phi = s(\Phi_1, \ldots, \Phi_n)$, где формулы Φ_1, \ldots, Φ_n либо являются переменными, либо определяют некоторые функции в G_i , но эти функции мы уже определили формулами Φ'_j , тогда елси заменить в формуле Φ формулы Φ_j на Φ'_j , то мы получим формулу Φ' , определяющую ту же самую функцию $f \Longrightarrow$ для получения из G_i G_{i+1} достаточно рассмотреть все формулы $\Phi' = s(\Phi'_1, \ldots, \Phi'_n)$. Значит данную последовательность имеет смысл проверять до первого совпадения G_i и G_{i+1} .

Лемма. Система фикций в P_k полна тогда и только тогда, когда в предел последовательности входит функция Вебба.

Доказательство. \Longrightarrow Пусть $V_k(x_1, x_2) \in G$, тогда функция Вебба получается суперпозициями из функций данной системы \Longrightarrow эта система полна.

 $\stackrel{\longleftarrow}{\longleftarrow}$ Пусть система функций F полна, тогда функция Вебба определяется некоторой формулой в сигнатуре Σ , существенно зависящей от двух переменных и имеющей глубину, меньшую i, то есть $V_k \in G_i$, переобозначим переменные так, чтобы существенными стали только переменные x_1, x_2 , а все остальные несущественные переменные заменим на x_1 , тогда эта формула определяет функцию из G_{i+1} (так как она получена из формул, сопоставленных функциям из G_i) $\Longrightarrow V_k \in G_{i+1} \Longrightarrow V_k \in G$.

Билет 20

Теорема. Из любой полной системы функций в P_k можно выделить конечную полную подсистему.

Доказательство. Пусть F - полная система в P_k , тогда суперпозициями из F можно получить функцию Вебба, то есть полную подсистему, а так как она получается суперпозициями из конечного числа функций, значит, подсистема из этих функций конечна и полна.

Билет 21

Определение. Функции $g_i^p(x_1, ..., x_p) = x_i$, где $i = \overline{1,p}$, называются селекторными функциями.

Определение. Пусть K - множество функций $h(x_1, ..., x_p)$, зависящих от p переменных и содержащих все селекторные функции от p переменных. Если для любых функций $h_1(x_1, ..., x_p), ..., h_n(x_1, ..., x_p)$ функция $f(h_1, ..., h_n) \in K$, то скажем, что функция f сохраняет множество K.

Рассмотрим класс функций в алгебре логики, сохраняющих множество $K = \{x, \overline{x}\}$, то есть в K входят функции $\{x^{\sigma}\}$, где $\sigma = \{0,1\}$. Тогда функция f сохраняет K, если $f(x_1^{\sigma_1}, \ldots, x_n^{\sigma_n}) = x^{\sigma}$, то есть

$$\begin{cases} f(1^{\sigma_1}, \dots, 1^{\sigma_n}) = 1^{\sigma} = \sigma = f(\sigma_1, \dots, \sigma_n) \\ f(0^{\sigma_1}, \dots, 0^{\sigma_n}) = 0^{\sigma} = \overline{\sigma} = f(\overline{\sigma}_1, \dots, \overline{\sigma}_n) \end{cases}$$

 $\Longrightarrow f(\sigma_1,\,\ldots,\,\sigma_n)=\overline{f(\overline{\sigma}_1\ldots\overline{\sigma}_n)}$, то есть мы получили класс S самодвойственных функций.

Определение. Множество всех функций, сохраняющих множество K, называется классом сохранения множества K. Данный класс обозначим U(K).

Теорема. $K \land acc \ U(K)$ замкнут.

Доказательство. 1. Опреация подстановки переменных:

Пусть функция f сохраняет множество K, тогда функция $g(x_1, ..., x_n) = f(x_{i_1}, ..., x_{i_n}), f(h_1(x_1, ..., x_p), ..., h_n(x_1, ..., x_p)) \in K \forall h_1, ..., h_n \in K$, а значит, $f(h_{i_1}(x_1, ..., x_p), ..., h_{i_n}(x_1, ..., x_p)) \in K \Longrightarrow g$ сохраняет множество K.

2. Операция подстановки функции в функцию: Аналогично с предыдущим пунктом.

3. Операция добавления или удаления фиктивных переменных: Пусть $f(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)$ сохраняет множество $K,g(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)$ получена из f добвлением фиктивной переменной, тогда g будет сохранять множество K, так как при подстановке функций $h_j(x_1,\ldots,x_p)$ в функцию g мы получим $g(h_1(x_1,\ldots,x_p),\ldots,h_{i-1}(x_1,\ldots,x_p),0,h_{i+1}(x_1,\ldots,x_p),\ldots,h_n(x_1,\ldots,x_p)) = f(h_1(x_1,\ldots,x_p),\ldots,h_{i-1}(x_1,\ldots,x_p),h_{i+1}(x_1,\ldots,x_p),\ldots,h_n(x_1,\ldots,x_p)) \in K$.

Значит, суперпозициями мы не сможем получить функцию, не сохраняющая множество K. \square

Билет 22

Теорема. Класс функций U(K) не является полным, если множество K не содержит функцию Вебба.

Доказательство. Пусть F - множество функций, сохраняющих множество K, содержащее все селекторные функции и не содержащее функцию Вебба, Σ - сигнатура для F, тогда рассмотрим последовательность Кузнецова G_1, G_2, \ldots и докажем по индукции, что $G \subseteq K$. База индукции: $\varnothing \subseteq K$. Пусть $G_i \subseteq K$, докажем для G_{i+1} . Рассмотрим функцию $h \in G_{i+1} \setminus G_i$, она задаётся формулой $f(A_1, \ldots, A_n)$, где $f \in F$, A_j либо является функцией из G_i , глубина которой меньше i, либо является переменной x_1 , либо является переменной x_2 . В первом случае A_j задаёт некоторую функцию $h_j(x_1, x_2) \in G_i$, во втором случае $h_j(x_1, x_2) = g_1^2(x_1, x_2)$, в третьем случае $h_j(x_1, x_2) = g_2^2(x_1, x_2)$. Так как $G_i \subseteq K$, значит, $\forall j \ A_j \in K$, а значит, $G_{i+1} \subseteq K$. А так как K не содержит функцию Вебба, по критерию K неполно.