CS225 Switching Theory

S. Tripathy IIT Patna

Previous Class

Minimization/ Simplification of Switching Functions

K-map (SOP)

Quine-McCluskey (Tabular) Minimization

This Class

Quine-McCluskey (Tabular) Minimization Combinational Circuit logic design

Quine-McCluskey Tabulation Procedure Step 1: to Obtain the Set of All Prime implicants

Example: with don't care condition

Ex.:
$$f_3(v,w,x,y,z) = \sum (13,15,17,18,19,20,21,23,25,27,29,31) + \sum_{\phi} (1,2,12,24)$$

(a) (b)

Step 2: Find the minimal expression(s)

Don't-cares: not listed as column headings in the prime implicant chart

Example:
$$f_3(v,w,x,y,z) = \sum (13,15,17,18,19,20,21,23,25,27,29,31) + \sum_{\phi} (1,2,12,24)$$

Selection of nonessential prime implicants facilitated by listing prime implicants in decreasing order of the number of minterms they cover

Determining the Set of All Irredundant Expressions

Deriving the minimal sum-of-products through prime implicant chart inspection: difficult for more complex cases Example: $f_4(v,w,x,y,z) = \sum (0,1,3,4,7,13,15,19,20,22,23,29,31)$

	0	1	š	4	ź	13	15	1 ₉	20	22	ź3	ź9	₃ 1
VA = wxz						\otimes	×					\otimes	×
B = xyz					×		×				\times		×
$\sqrt{C} = w/yz$			×		×			\otimes			×		
D = vw'xy										×	×		
E = vw'xz'									\times	×			
F = w'xy'z'				×					×				
G = v'w'x'z		×	×										
H = v'w'y'z'	×			×									
I = v'w'x'y'	×	×											

(a) Prime	implicant	chart.
-----------	-----------	--------

(b) Reduced prime implicant chart.

While every irredundant expression must contain A and C, none of them may contain B since it covers minterms already covered by A and C. The reduced chart, obtained after removing A, B, and C, has two x's in each column

Example (Contd.)

Use propositional calculus: define prime implicant function p to be 1 if each column is covered by at least one of the chosen prime implicants, and 0 if not

$$p = (H + I)(G + I)(F + H)(E + F)(D + E)$$

= EHI + EFI + DFI + EGH + DFGH

Since all prime implicants in the reduced chart have the same literal count, there are four minimal sum-of-products:

$$f_4(v,w,x,y,z) = A + C + E + H + I = wxz + w'yz + vw'xz' + v'w'y'z' + v'w'x'y'$$

 $f_4(v,w,x,y,z) = A + C + E + F + I = wxz + w'yz + vw'xz' + w'xy'z' + v'w'x'y'$
 $f_4(v,w,x,y,z) = A + C + D + F + I = wxz + w'yz + vw'xy + w'xy'z' + v'w'x'z'$
 $f_4(v,w,x,y,z) = A + C + E + G + H = wxz + w'yz + vw'xz' + v'w'x'z + v'w'y'z'$

Reduction of the Chart

Aim: find just one minimal expression rather than all such expressions

Example: $f_5(v,w,x,y,z) = \sum (1,3,4,5,6,7,10,11,12,13,14,15,18,19,20,21,22,23,25,26,27)$

	í	á	á	5	é	ź	10	11	12	13	14	15	18	19	20	2 1	22	23	25	26	27
$\checkmark A = w'x$			×	×	×	×									\otimes	\otimes	×	×			
$\checkmark B = v / x$			×	×	×	×			\otimes	\otimes	×	×									
C = vx/y													×	×						×	×
D = vw'y													×	×			×	×			
E = wx/y							×	×												×	×
F = v'wy							×	×			×	×									
G = x/yz		×						×						×							×
H = w/yz		×				×								×				×			
<i>I</i> = <i>v′yz</i>		×				×		×				×									
$\sqrt{J} = v'w'z$	\otimes	×		×		×															
$VK = VWX^{\prime}Z$																			\otimes		×

(a) Prime implicant chart.

Example (Contd.)

Final chart

Reduced prime implicant chart

Dominated row: row U of the chart dominates row V if U covers every column covered by V. If U does not have more literals than V then V can be deleted from the chart.

Example: I is dominated by G, D is dominated by C and F is dominated by E, H is dominated by G, so they can be deleted

From the final chart: $f_5(v,w,x,y,z) = A + B + J + K + C + E$

Dominating Column (Alternative choice)

Reduced prime implicant chart

Dominating column: column i of the chart dominates column j if i has an x in every row in which j has an x. Hence, dominating column i can be deleted.

Example: column 11 dominates column 10. In order to cover column 10, either E or F must be selected, whereby column 11 will also automatically be covered. Similarly, since column 19 covers column 18, column 19 can be deleted.

Final solution is still: $f_5(v,w,x,y,z) = A + B + J + K + C + E$

Design with Basic Logic Gates

Logic gates: perform logical operations on input signals

Positive (negative) logic polarity: constant 1 (0) denotes a high voltage and constant 0 a low (high) voltage

Synchronous circuits: driven by a clock that produces a train of equally spaced pulses

Asynchronous circuits: are almost free-running and do not depend on a clock; controlled by initiation and completion signals

Fanout: number of gate inputs driven by the output of a single gate

Fanin: bound on the number of inputs a gate can have

Propagation delay: time to propagate a signal through a gate

Logic Design with Integrated Circuits

Small scale integration (SSI): integrated circuit packages containing a few gates; e.g., AND, OR, NOT, NAND, NOR, XOR

Medium scale integration (MSI): packages containing up to about 100 gates; e.g., code converters, adders

Large scale integration (LSI): packages containing thousands of gates; arithmetic unit

Very large scale integration (VLSI): packages with millions of gates

Combinational Logic Design Process

S	tep	Description							
Step 1: Capture behavior	Capture the function	Create a truth table or equations, whichever is most natural for the given problem, to describe the desired behavior of each output of the combinational logic.							
Step 2: Convert to circuit	2A: Create equations 2B: Implement as	This substep is only necessary if you captured the function using a truth table instead of equations. Create an equation for each output by ORing all the minterms for that output. Simplify the equations if desired. For each output, create a circuit corresponding to							
	a gate-based circuit	the output's equation. (Sharing gates among multiple outputs is OK optionally.)							

n inputs

Analysis of Combinational Circuits

Circuit analysis: determine the Boolean function that describes the circuit

 Done by tracing the output of each gate, starting from circuit inputs and continuing towards each circuit output

Example: a multi-level realization of a full binary adder

$$C_0 = AB + (A + B)C$$

= $AB + AC + BC$
 $S = (A + B + C)[AB + (A + B)C]' + ABC$
= $(A + B + C)(A' + B')(A' + C')(B' + C') + ABC$
= $AB'C' + A'BC' + A'B'C + ABC$
= $A \oplus B \oplus C$

Simple Design Problems

Parallel parity-bit generator: produces output value 1 if and only if an odd number of its inputs have value 1

K-Map

$$P = X'Y'Z + X'YZ' + XY'Z' + XYZ$$

Implementation

Simple Design Problems (Contd.)

Serial-to-parallel converter: distributes a sequence of binary digits on a serial input to a set of different outputs, as specified by external control signals

Со	ntrol	Ou	tput	lin	es	L ogio oguationa			
C1	C2	L1	L2	L3	L4	Logic equations			
0	0	Х	0	0	0	$L_1 = xC1'C2'$			
0	1	0	Х	0	0	$L_2 = xC1'C2$			
1	0	0	0	X	0	$L_3 = xC1C2'$			
1	1	0	0	0	Х	$L_4 = xC1C2$			

Comparators

n-bit comparator: compares the magnitude of two numbers X and Y, and has three outputs f 1 , f 2 , and f 3

•
$$f_1 = 1 \text{ iff } X > Y$$

 $f_2 = 1 \text{ iff } X = Y$ $f_3 = 1 \text{ iff } X < Y$

2-Bit Comparator

K-Map

Logic circuit diagram

Logic Expression

$$f_1 = X_1 X_2 Y_2' + X_2 Y_1' Y_2' + X_1 Y_1'$$

$$= (X_1 + Y_1') X_2 Y_2' + X_1 Y_1'$$

$$f_{2} = X_{1}'X_{2}'Y_{1}'Y_{2}' + X_{1}'X_{2}Y_{1}'Y_{2}$$

$$+ X_{1}X_{2}'Y_{1}Y_{2}' + X_{1}X_{2}Y_{1}Y_{2}$$

$$= X_{1}'Y_{1}'(X_{2}'Y_{2}' + X_{2}Y_{2})$$

$$+ X_{1}Y_{1}(X_{2}'Y_{2}' + X_{2}Y_{2})$$

$$= (X_{1}'Y_{1}' + X_{1}Y_{1}) (X_{2}'Y_{2}' + X_{2}Y_{2})$$

$$f_3 = X_2'Y_1Y_2 + X_1'X_2'Y_2 + X_1'Y_1$$

= $X_2'Y_2 (Y_1 + X_1') + X_1'Y_1$

4-bit/12-bit Comparators

Four-bit comparator: 11 inputs (four for X, four for Y, and three connected to outputs f 1, f 2 and f 3 of the preceding stage)

(a) A 4-bit comparator.

(b) A 12-bit comparator.

Data Selectors

Multiplexer: electronic switch that connects one of n inputs to the output Data selector: application of multiplexer

- n data input lines, D_0 , D_1 , ..., D_{n-1}
- m select digit inputs S_0 , S_1 , ..., s_{m-1}

(b) Logic diagram.

Implementing Switching Functions with Data Selectors

Data selectors: can implement arbitrary switching functions

Example: implementing two-variable functions

$$z = sD_1 + s'D_0$$

 $z = A \oplus B$
If $s = A$, $D_0 = B$, and $D_1 = B'$
 $z = A' + B'$.
If $s = A$, $D_0 = 1$, and $D_1 = B'$,
 $As AB' + A' = A' + B'$

