Коллоквиум по Математическому анализу-2, семестр 2

Виноградова Дарья, Залялов Александр, Миронов Алексей, Стрельцов Артём, Шамаилов Гершон

Содержание

1	Пространство кусочно-непрерывных функций на отрезке как пример евклидова пространства. Неравенство Коши-Буняковского на этом пространстве (б.д.). Ортогональные и ортонормированные системы в евклидовом пространстве. Главный пример: $C([-\pi;\pi])$	4
2	Задача о наилучшем приближении элемента евклидова пространства элементом конечномерного пространства (б.д.). Ряд Фурье по произвольной ортонормированной системе. Ряд Фурье по тригонометрической системе.	5
3	Неравенство Бесселя (идея доказательства). Определения замкнутой и полной ортонормированных систем (ОНС). Тождество Парсеваля для замкнутой ОНС.	5
4	Бывают ли замкнутые ортонормированные системы, но не полные?	5
5	Дайте определение свертки двух функций $f,g:\mathbb{R}^n \to \mathbb{R}$. Докажите, что операция свертки коммутативна. Дайте определение свертки двух 2π -периодических функций $f,g:\mathbb{R} \to \mathbb{R}$.	5
6	Дайте определения ядра Дирихле и ядра Фейера. Какой смысл у свертки произвольной периодической функции с этими ядрами? (б.д.)	6
7	Сформулируйте (б.д.) теоремы о приближении 2π периодической функции тригонометрическими многочленами: о сходимости ядра Фурье в точке, и о приближении функции тригонометрическими многочленами в различных функциональных метриках.	6
8	Сформулируйте (б.д.) лемму Римана. Какова связь между порядком дифференцируемости 2π -периодической функции и асимптотикой ее коэффицинтов Фурье? Ответ поясните.	6
9	Дайте определение преобразования Фурье для функции $\mathbb{R} \to \mathbb{C}$, приведите пример вычисления преобразования Фурье. Пусть $f \in L_1(\mathbb{R})$. Сформулируйте основную теорему об образе преобразования Фурье.	7
10	Что вы можете сказать о функции $\hat{f},$ если (1) f четная и вещественнозначная (2) f нечетная и вещественнозначная.	7
11	Дайте определение интеграла Фурье и обратного преобразования Фурье. Сформулируйте и докажите теорему о свертке. Чему равно преобразование Фурье от произведения двух функций?	7
12	Выведите формулу для производной $\hat{f}(y)$. Какова связь дифференцируемости функции $f(x)$ и асимптотики ее преоразования Фурье $\hat{f}(y)$ при $y \to \infty$	8
13	Сформулируйте и докажите равенство Планшереля для преобразования Фурье.	9
14	Дайте определение гладкого k -мерного подмногообразия в \mathbb{R}^n и сопутствующее определение гладких координат. Приведите пример параметрической кривой, которая параметрически задана дифференцируемыми функциями, но не является гладким 1-мерным многообразием в какой-нибудь точке	9

19	Сформулируите теорему о неявной функции. Допустим кривая $X \subseteq \mathbb{R}^2$ задана уравнением $f(x,y) = 0$, и известно, что $\operatorname{grad} f(x_0,y_0) = (2;0)$. Какую из координат x,y можно использовать в качестве локальной координаты на X в окрестности точки (x_0,y_0) ?	
16	Сформулируйте общую теорему о неявном отображении. Допустим, кривая $X\subseteq\mathbb{R}^3$ задана уравнениями $f(x,y,z)=0,\ g(x,y,z)=0,$ и известно, что $\operatorname{grad} f(x_0,y_0,z_0)=(2;0;0),\ \operatorname{grad} f(x_0,y_0,z_0)=(0;1;3).$ Какие из координат x,y,z можно использовать в качестве локальных координат на X в окрестности точки (x_0,y_0,z_0) ?	=
17	Дайте определение касательного вектора к подмножеству $X \subseteq \mathbb{R}^n$ в точке $A \in X$. Как устроено множество всех касательных векторов к гладкому подмногообразию в фиксированной точке?	
18	Допустим, что все точки множества $X\subset\mathbb{R}^n$ удовлетворяют уравнению $f(x)=0$. Докажите, что в любой точке $x^{(0)}\in X$ любой касательный вектор к X перпендикулярен градиенту $\operatorname{grad} f(x^{(0)})$. Опишите касательное пространство к k -мерному подмногообразию \mathbb{R}^n , заданному системой неявных уравнений (без доказательства).	
19	Необходимое и достаточное условия локального экстремума для функции нескольких переменных (без доказательства).	12
2 0	Дайте определение точки условного минимума	13
21	Сформулируйте теорему о множителях Лагранжа. Объясните идею доказательства в случае, если подмножество $X\subset \mathbb{R}^n$ является гладким многообразием.	13
22	Сформулируйте достаточное условие в методе множителей Лагранжа. Объясните, как на практике проверять это условие (скажем, с помощью примера).	14
23	Сформулируйте теорему Каруша-Куна-Таккера. Объясните, в чём смысл условий дополняющей нежёсткости?	16
24	Дайте определение криволинейного интеграла 1-го рода и объясните, как такие интегралывычисляются.	17
25	Дайте определение криволинейного интеграла 2 -го рода и объясните, как такие интегралывычисляются.	18
26	Объясните, почему криволинейный интеграл 1-го рода не зависит от ориентации кривой, а криволинейный интеграл 2-го рода – зависит.	19
27	Сформулируйте формулу Грина и докажите её для области $\Omega\subset\mathbb{R}^2$ вида $\Omega=[a,b]\times[c,d]$ (прямоугольник).	19
28	Дайте определение элемента площади 2 -мерной поверхности в \mathbb{R}^3 и поверхностного интеграла 1-го рода	20
29	Дайте определение элемента k -мерного объёма k -мерного многообразия в \mathbb{R}^n и интеграла 1-го рода по k -мерному многообразию	21
30	Объясните, что такое грассманово умножение, грассмановы переменные, грассмановы мономы	21
31	Объясните, что такое дифференциальная форма ранга k , и как вычисляется интеграл (2-го рода) от k -формы ω по k -мерному многообразию $\Omega\subseteq\mathbb{R}^n$. Запишите вычислительную формулу для поверхностного интеграла 2-го рода	
32	Что такое ориентация k -мерного многообразия? Как изменится интеграл 2-го рода от дифференциальной формы при смене ориентации многообразия (б. д.)?	22
33	Дайте определение согласованных ориентаций многообразия и его границы. Дайте определение дифференциала от k -формы. Запишите общую формулу Стокса.	23

34 Выведите из общей формулы Стокса частные случаи: формулу Ньютона-Лейбница, формулу Грина, формулу Гаусса-Остроградского.

Реклама

@applied_memes @fcs_channels

1 Пространство кусочно-непрерывных функций на отрезке как пример евклидова пространства. Неравенство Коши-Буняковского на этом пространстве (б.д.). Ортогональные и ортонормированные системы в евклидовом пространстве. Главный пример: $C([-\pi;\pi])$

Напомним, что евклидово пространство - это векторное пространство над полем вещественных чисел со скалярным произведением.

Свойства скалярного произведения:

- 1. $\langle u, v \rangle = \langle v, u \rangle$
- 2. $\langle \lambda_1 u_1 + \lambda_2 u_2, v \rangle = \lambda_1 \langle u_1, v \rangle + \lambda_2 \langle u_1, v \rangle$
- 3. $\langle v,v\rangle \geq 0$
- 3'. $\langle v, v \rangle = 0 \Rightarrow v = 0$

Рассмотрим векторное пространство $V = \hat{C}([a;b])$ - множество кусочно-непрерывных функций на [a;b] (имеющих конечное число точек разрыва первого рода), обладающих также следующим свойством:

$$f(c) = \frac{1}{2} (\lim_{x \to c-0} f(x) + \lim_{x \to c+0} f(x))$$

Определим на \hat{C} скалярное произведение $\langle f,g \rangle = \int\limits_a^b f(x)g(x)dx$ и проверим свойства, чтобы показать его корректность.

1-3 очевидны. З' сначала рассмотрим для непрерывной на отрезке функции. От противного: пусть на отрезке существует какая-то точка c, в которой функция принимает ненулевое значение. Тогда $f^2(c) > 0$. В силу непрерывности есть такая окрестность $(c - \delta; c + \delta)$, в которой $f^2(x) \ge \epsilon > 0$.

$$\int_{a}^{b} f^{2}(x) \ge \int_{c-\delta}^{c+\delta} f^{2}(x) \ge 2\delta\epsilon > 0$$

Для \hat{C} отрезок разваливается на конечное число отрезков непрерывности, применим к ним предыдущее.

Теорема. (неравенство Коши-Буняковского) $\langle f,g \rangle^2 \leq \langle f,f \rangle \cdot \langle g,g \rangle$

Для нашего пространства оно имеет вид

$$\int_{a}^{b} f^{2}(x)g^{2}(x)dx \leq \int_{a}^{b} f^{2}(x)dx \int_{a}^{b} g^{2}(x)dx$$

Определение. Множество элементов $\psi_i \in V$ называется *ортогональной* системой, если для любой пары $\langle \psi_i, \psi_j \rangle = 0$. Если при этом $\|\psi_i\| = 1 \ \forall i$, то система *отронормирована*.

В $C([-\pi;\pi])$ следующая система является ортонормированной: $\{\frac{1}{\sqrt{2\pi}},\frac{1}{\sqrt{\pi}}\cos x,\frac{1}{\sqrt{\pi}}\sin x,\frac{1}{\sqrt{\pi}}\cos 2x,\cdots\}$

Проверим норму на примере соз:

$$\left\| \frac{1}{\sqrt{\pi}} \cos kx \right\| = \frac{1}{\sqrt{\pi}} \sqrt{\int_{-\pi}^{\pi} \cos^2(kx) dx} = \frac{1}{\sqrt{2\pi}} \sqrt{\int_{-\pi}^{\pi} \cos(2kx) + 1} = \frac{1}{\sqrt{2\pi}} \sqrt{2\pi} = 1$$

Любая функция с cos ортогональна любой с sin в силу нечетности. Проверим ортогональность двух функций

4

$$\langle \frac{1}{\sqrt{\pi}} \cos(kx), \frac{1}{\sqrt{\pi}} \cos(lx) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(kx) \cos(lx) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\cos((k+l)x) + \cos((k-l)x)) dx = 0$$

Остальное оставим в качестве упражнения для пытливого читателя.

Задача о наилучшем приближении элемента евклидова пространства 2 элементом конечномерного пространства (б.д.). Ряд Фурье по произвольной ортонормированной системе. Ряд Фурье по тригонометрической системе.

Пусть имеется ортонормированная система $\{\psi_i\}$ в векторном пространстве V. Хотим найти наилучшее приближение элемента f этого пространства вида $\sum c_k \psi_k$ (т.е. $||f - \sum c_k \psi_k|| \to min$). Утверждается, что $c_k = \langle f, \psi_k \rangle$.

Определение. Ряд Фурье по произвольной ортонормированной системе $\{\psi_i\}$ - это сумма вида $\sum c_k \psi_k$

Определение. Ряд Фурье по тригонометрической системе - это сумма вида $\frac{f_0}{\sqrt{2\pi}} + \sum \frac{f_k}{\sqrt{\pi}} cos(kx) + \frac{\hat{f}_k}{\sqrt{\pi}} sin(kx)$, где $f_0 = \frac{1}{\sqrt{2\pi}} \int\limits_{-\pi}^{\pi} f(x) dx$, $f_k = \frac{1}{\sqrt{\pi}} \int\limits_{-\pi}^{\pi} f(x) cos(kx)$, $\hat{f}_k = \frac{1}{\sqrt{\pi}} \int\limits_{-\pi}^{\pi} f(x) sin(kx) dx$

Обычно ряд Фурье записывают как $\frac{a_0}{2} + \sum a_k cos(kx) + b_k sin(kx)$, где $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$, $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) cos(kx)$, $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) sin(kx) dx$

Неравенство Бесселя (идея доказательства). Определения замкнутой 3 и полной ортонормированных систем (ОНС). Тождество Парсеваля для замкнутой ОНС.

Теорема. (неравенство Бесселя) $\sum_{i=1}^{\infty} \langle f, \psi_i \rangle^2 \le \|f\|^2$, где f - элемент векторного пространства V c ортонормированной системой $\{\psi_i\}$

Доказательство. $0 \le \|f - \sum_{i=1}^{n} \langle f \psi_i \rangle\|^2 = \|f\|^2 - \sum_{i=1}^{n} \|\langle f, \psi_i \rangle\|^2 = \|f\|^2 - \sum_{i=1}^{n} f_i^2$ ограничена сверху $\|f\|^2 \Rightarrow$ сходится. Переходим к пределу, получаем требуемое.

Определение. Ортонормированная система замкнута, если $\forall \epsilon > 0 \; \exists n \in \mathbb{N} \; \exists c1, \cdots, c_n \; \|f - \sum_{i=1}^n c_k \psi_k\| < \epsilon$

Определение. Ортонормированная система *полна*, если $[\forall k \in \mathbb{N} \Rightarrow f \perp \psi_k] \Rightarrow f \equiv 0$

Теорема. (тождество Парсеваля) Для замкнутой ортонормированной системы $\sum_{i=1}^{\infty} f_k^2 = \|f\|^2$

Доказательство. Зафиксируем ϵ . Из определения замкнутости $\exists n \in \mathbb{N} \ \exists c1, \cdots, c_n \ \|f - \sum_{i=1}^n c_k \psi_k\| < \epsilon$. Из неравенства Бесселя $\|f\|^2 - \sum_{i=1}^n f_i^2 \le \|f - \sum_{i=1}^n c_k \psi_k\|^2 \le \epsilon^2$. Тогда для $m \ge n$ и подавно $\|f\|^2 - \sum_{i=1}^m f_i^2 \le \|f - \sum_{i=1}^n c_k \psi_k\|^2 \le \epsilon^2$. Значит, $\forall \epsilon > 0 \ \exists n \in \mathbb{N} \ \forall m \ge n \ \|f\|^2 - \sum_{i=1}^m f_i^2 \le \epsilon^2$, и из этого и следует равенство в пределе.

Бывают ли замкнутые ортонормированные системы, но не полные?

Не бывает. Пусть $\forall i \ f \perp \psi_i$. Значит, $f_i = 0$. В силу замкнутости справедливо тождество Парсеваля. то есть $||f||^2 = \sum_{i=1}^{\infty} f_i = 0$

Дайте определение свертки двух функций $f,g:\mathbb{R}^n \to \mathbb{R}$. Докажите, что операция свертки коммутативна. Дайте определение свертки двух 2π -периодических функций $f, g: \mathbb{R} \to \mathbb{R}$.

Определение. Сверткой функций $f,g:\mathbb{R}^n \to \mathbb{R}$ называется $(f*g)(t) = \int\limits_{\mathbb{R}^n} f(x)g(t-x)dx$

Teopema. $(f * g) \equiv (g * f)$

Доказательство. Положим $\tau = t - x$.

 $\int\limits_{\mathbb{R}^n} f(x)g(t-x)dx = \int\limits_{\mathbb{R}^n} f(t-\tau)g(\tau)d\tau$ - область интегрирования не поменялась, а функция домножилась на модуль якобиана замены. В данном случае он равен 1. **Определение.** Сверткой 2π -периодических функций $f,g:\mathbb{R}\to\mathbb{R}$ называется $(f*g)(t)=\int\limits_{-\pi}^{\pi}f(x)g(t-x)dx$

6 Дайте определения ядра Дирихле и ядра Фейера. Какой смысл у свертки произвольной периодической функции с этими ядрами? (б.д.)

Определение. Ядром Дирихле называется $D_n(t)=rac{\sin[(n+\frac{1}{2})t]}{2\sin{\frac{t}{2}}}$

Обозначим $S_n(x,f) = \frac{a_0}{2} + \sum_{k=1}^n a_k cos(kx) + b_k sin(kx)$, где f - 2π -периодическая и интегрируемая на $[-\pi;\pi]$.

Тогда справедливо $S_n(x,f)=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x+t)D_n(t)dt$ - то есть свертка с ядром Дирихле дает нам n-ю частичную сумму ряда Фурье.

Определение. Ядром Фейера называется $\Phi_n(t)=rac{\sin^2(rac{t_n}{2})}{2\sin^2rac{t}{2}}$

Обозначим $\sigma_n(x,f)=\frac{S_0(x,f)+\cdots+S_{n-1}(x,f)}{n}$ - среднее арифметическое ряда Фурье.

Для f с теми же свойствами будет верно $\sigma_n(x,f)=\frac{1}{n\pi}\int\limits_{-\pi}^{\pi}f(x+t)\Phi_n(t)dt$

7 Сформулируйте (б.д.) теоремы о приближении 2π периодической функции тригонометрическими многочленами: о сходимости ядра Фурье в точке, и о приближении функции тригонометрическими многочленами в различных функциональных метриках.

Теорема. Если 2π -периодическая функция имеет в точке производную слева и справа, то ряд Фурье в ней сходится к среднему арифметическому этих производных.

Заметим, что в условиях данной теоремы функция может быть разрывной.

Еще раз напомним, что $\sigma_n(x,f) = \frac{S_0(x,f) + \dots + S_{n-1}(x,f)}{n}$

Теорема. Пусть f - непрерывная 2π -периодическая функция. Тогда $\sigma_n \to f$ на $[-\pi,\pi]$ в смысле метрики d_∞

Теорема. Пусть f - кусочно-непрерывная. Тогда ее можно приблизить тригонометрическим многочленом в смысле метрики d_2 .

8 Сформулируйте (б.д.) лемму Римана. Какова связь между порядком дифференцируемости 2π -периодической функции и асимптотикой ее коэффицинтов Фурье? Ответ поясните.

Лемма. (Риман). Пусть f абсолютно интегрируема на промежутке (a,b). Тогда

$$\lim_{\omega \to \infty} \int_{a}^{b} f(x) \sin(\omega x) dx = 0$$

$$\lim_{\omega \to \infty} \int_{a}^{b} f(x) \cos(\omega x) dx = 0$$

Теорема. Если f интегрируемая и 2π -периодическая, то ее коэффициенты a_n, b_n ряда Фурье стремятся к 0ю

Теорема. Пусть $f-2\pi$ -периодическая и имеет s-1 производную, а $f^{(s-1)}$ – кусочно-гладкая. Тогда ряд Фурье для $f^{(s)}$ получается s-кратным почленным дифференцированием ряда Фурье для f. При этом, $a_n, b_n = \overline{o}\left(\frac{1}{k^s}\right)$ при $k \to \infty$

Почему второе следствие верно? Интуитивно: чтобы выполнялась лемма Римама, требуется, чтобы коэффициенты стремились к 0. При дифференцировании s-1 раз у нас столько же раз «вылезет» k из косинуса и синуса, поэтому, чтобы все еще выполнялась сходимость к 0, нужно, чтобы $a_n, b_n = \overline{o}\left(\frac{1}{k^s}\right)$.

9 Дайте определение преобразования Фурье для функции $\mathbb{R} \to \mathbb{C}$, приведите пример вычисления преобразования Фурье. Пусть $f \in L_1(\mathbb{R})$. Сформулируйте основную теорему об образе преобразования Фурье.

Определение. Пусть $f \colon \mathbb{R} \to \mathbb{C}$. Если выражение

$$\hat{f}(y) = F[f](y) = v.p. \int_{-\infty}^{+\infty} f(x)e^{ixy}dx$$

определено для всех $y \in \mathbb{R},$ то $\hat{f} \colon \mathbb{R} \to \mathbb{C}$ называется преобразованием Фурье.

Например, пусть $f(x) = I_{[-1,1]}(x)$. Тогда

$$\hat{f}(y) = \int_{-\infty}^{+\infty} I_{[-1,1]}(x)e^{ixy}dx = \int_{-1}^{1} e^{ixy}dx = \int_{-1}^{1} \cos(xy)dx + i\int_{-1}^{1} \sin(xy)dx = \frac{\sin(xy)}{y}\Big|_{-1}^{1} = 2\frac{\sin y}{y}$$

Определение. $L_1(\mathbb{R})$ – пространство функций, абслолютно интегрируемых на \mathbb{R} .

Теорема. (Основная теорема об образе Фурье) Если $f \in L_1(\mathbb{R})$, то

- 1. Функция \hat{f} корректно определена.
- 2. Функция \hat{f} непрерывна.
- 3. $\lim_{y \to \pm \infty} \hat{f}(y) = 0$
- 10 Что вы можете сказать о функции \hat{f} , если (1) f четная и вещественнозначная (2) f нечетная и вещественнозначная.

Пемма. 1. Если f – четная, то F[f] – четная u вещественнозначная.

2. Если f – нечетная, то F[f] – нечетная мнимозначная

Доказательство. Напрямую следует из того, что

$$F[f](y) = \int_{-\infty}^{\infty} f(x)e^{ixy}dx = \int_{-\infty}^{\infty} f(x)\cos(xy)dx + i\int_{-\infty}^{\infty} f(x)\sin(xy)dx$$

Если f четная, то второй слагаемое зануляется, тогда Фурье-образ вещественнозначный и вещественнозначный и четный (не забываем, что четность смотрим по y, а не по x). Аналогично, если f нечетная, то зануляется первое, а Фурье-образ будет нечетный и мнимозначный.

11 Дайте определение интеграла Фурье и обратного преобразования Фурье. Сформулируйте и докажите теорему о свертке. Чему равно преобразование Фурье от произведения двух функций?

Определение. Интегралом Фурье от функции $f \colon \mathbb{R} \to \mathbb{C}$ в точке x называется выражение

$$\frac{1}{2\pi}v.p.\int_{-\infty}^{\infty}\hat{f}(y)e^{-ixy}dy$$

Определение. Пусть f дифференцируемая функция, тогда преобразование

$$\hat{f}(y) \mapsto f(x) = \frac{1}{2\pi} v.p. \int_{-\infty}^{\infty} \hat{f}(y)e^{-ixy}dy$$

называется обратным преобразованием Фурье.

Теорема. (О свертке) Если $f, g \in L_1(\mathbb{R})$, то $F(f \star g) = F[f] \cdot f[g]$.

Доказательство.

$$F[f \star g](y) = \int_{-\infty}^{+\infty} (f - g)(x)e^{ixy}dx = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(s)g(x - s)ds\right)e^{ixy}dx$$

Благодаря абсолютной интегрируемости, можем поменять порядки интегрирования, а следовательно, просто в виде кратного:

$$\iint_{\mathbb{R}^2} f(s)g(x-s)e^{ixy}dxds = \begin{bmatrix} u=s \\ v=x-s \\ dxds = dudv \end{bmatrix} = \int_{-\infty}^{+\infty} f(u)e^{iuy}du \cdot \int_{-\infty}^{+\infty} g(v)e^{ivy}dv = F[f] \cdot F[g].$$

П

Аналогично можно доказать для обратного преобразования.

Теорема. $F[f \cdot g] = \frac{1}{2\pi} F[f] \star F[g]$

12 Выведите формулу для производной $\hat{f}(y)$. Какова связь дифференцируемости функции f(x) и асимптотики ее преоразования Фурье $\hat{f}(y)$ при $y \to \infty$

Утверждение. Пусть f(x) такова, что $f(x)(1+|x|)^k \in L_1(\mathbb{R})$. Тогда $\hat{f} = F[f]$ дифференцируема k раз, причем производные \hat{f} можно вычислить дифференцированием под знаком интеграла.

Доказательство. Это следует из теорем прошлого семестра (что можно дифференцировать по параметру, в нашем случае по y, под знаком интеграла, если есть равномерная сходимость по x).

$$F[f](y) = v.p. \int_{-\infty}^{+\infty} f(x)e^{ixy}dx$$

 $\forall m \leq k$ верно

$$\left| f(x)e^{ixy}(ix)^m \right| \le \left| f(x) \right| (1+|x|)^m$$

В левой части стоит просто продифференцированное m раз подынтегральное выражение в преобразовании Фурье. Неравенство следует из ограниченности $\left|e^{ixy}\cdot i^m\right|\leq 1$. В правой части стоит функция, интегрируемая на $\mathbb R$ (по условию).

При этом левая часть сходится равномерно по у. Значит, можем пользоваться теоремой из прошлого семестра:

$$\frac{d^m}{dy^m}\hat{f}(y) = \int_{-\infty}^{+\infty} f(x)e^{ixy}(ix)^m dx$$

Отсюда же получаем формулу:

$$\frac{d^m}{dy^m}F[f](y) = F[(ix)^m f(x)]$$

Утверждение. Пусть f дифференцируема k раз во всех точках, причем $f^{(m)} \in L_1(\mathbb{R})$ при $m = 0, \dots, k$ и $f^{(m)}(x) \to 0$ при $x \to \infty$ и $m = 0, \dots, k$, тогда $\hat{f}(y) = \overline{o}\left(\frac{1}{|y|^k}\right)$ при $t \to \infty$

Доказательство. Запишем $F[f^{(k)}]$:

$$\int_{-\infty}^{+\infty} f^{(k)}(x) e^{ixy} dx = \int_{-\infty}^{+\infty} e^{ixy} df^(k-1) = e^{ixy} f^{(k-1)}(x) \Big|_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} f^{(k-1)}(x) \cdot (iy) e^{ixy} dx = \begin{bmatrix} \text{Далее аналогично.} \\ \text{Также пользуемся тем, что} \\ \lim_{x \to \infty} f^{(m)} = 0 \ \forall m = 0, \dots, k \end{bmatrix}$$

$$= \int_{-\infty}^{+\infty} f(x)e^{ixy}(-1)^m (iy)^m dx = (-iy)^k F[f](y) = (-iy)^k \hat{f}(y)$$

8

Также мы знаем, что если функция абсолютно интегрируемая, то ее Фурье-образ стремится к 0 (см. билет 9). Тогда

$$f^{(k)} \in L_1(\mathbb{R}) \Rightarrow \left| F[f^(k)](y) \right| = y^k F[f](y) \to 0 \Rightarrow \hat{f}(y) = \overline{o}\left(\frac{1}{|y^k|}\right)$$

Р.S. И также, абсолютно аналогично с предыдущим пунктом выведем:

$$F\left[\frac{d^m}{dx^m}f(x)\right] = (-iy)^m F[f]$$

13 Сформулируйте и докажите равенство Планшереля для преобразования Фурье.

Теорема. (Равенство Планшереля) Пусть $f,g\in L_1(\mathbb{R})$ $(f,g\colon\mathbb{R}\to\mathbb{C})$ и, кроме того, $f''\in L_1(\mathbb{R})$, а также $f(x),f'(x)\to 0$ при $x\to\infty$. Тогда

$$\int_{-\infty}^{+\infty} f(x)\overline{g(x)}dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(y)\overline{\hat{g}(y)}dy$$

Доказательство. Функция дифференцируема, поэтому для нее работает формула обращения Фурье:

$$f(x) = \frac{1}{2\pi} v.p. \int_{-\infty}^{+\infty} \hat{f}(y)e^{-ixy}dy$$

Тогда

$$\int_{-\infty}^{+\infty} f(x)\overline{g(x)}dx = \int_{-\infty}^{+\infty} \frac{1}{2\pi} \left(\int_{-\infty}^{+\infty} \hat{f}(y)e^{ixy}dy \right) \overline{g(x)}dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(y) \left(\int_{-\infty}^{+\infty} \overline{g(x)} \cdot \overline{e^{ixy}}dx \right) dy$$
$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(y) \overline{\left(\int_{-\infty}^{+\infty} g(x)e^{ixy}dx \right)} dy = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(y) \overline{\hat{g}(y)}dy$$

14 Дайте определение гладкого k-мерного подмногообразия в \mathbb{R}^n и сопутствующее определение гладких координат. Приведите пример параметрической кривой, которая параметрически задана дифференцируемыми функциями, но не является гладким 1-мерным многообразием в какой-нибудь точке

Определение. Подмножество $M \subseteq \mathbb{R}^n$ называется гладким k-мерным (nod)многообразием в \mathbb{R}^n , если $\forall x \in M$ существует окрестность $U, x \in U$, такая что на $M \cap U$ можно задать гладкие координаты.

Определение. Гладкие координаты — отображение $\Phi:V\to M$, где $V\subseteq\mathbb{R}^k$, задаваемое уравнениями

$$\begin{cases} x_1 = \phi_1(t_1, \dots, t_k) \\ \vdots \\ x_n = \phi_n(t_1, \dots, t_k) \end{cases}$$

где (x_1,\ldots,x_n) — координаты в $\mathbb{R}^n,\;(t_1,\ldots,t_k)$ — координаты в $\mathbb{R}^k,\;$ при этом $(t_1,\ldots,t_k)\in V$ тогда и только тогда, когда $(x_1, \ldots, x_n) \in M$. При этом ϕ_1, \ldots, ϕ_n дифференцируемы по каждой переменной и матрица частных производных невырождена.

$$\begin{pmatrix} \frac{\partial \phi_1}{\partial t_1} & \frac{\partial \phi_2}{\partial t_1} & \dots & \frac{\partial \phi_n}{\partial t_1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \phi_1}{\partial t_k} & \frac{\partial \phi_2}{\partial t_k} & \dots & \frac{\partial \phi_n}{\partial t_k} \end{pmatrix}$$

Ранг этой матрицы должен быть k в любой точке $t \in V$ (то есть все строки должны быть линейно независимы).

Пример:

$$\begin{cases} x = t^2 \\ y = t^3 \end{cases}$$

Обе функции дифференцируемые, но в точке t=0 обе производные обращаются в ноль. Поэтому кривая не гладкая.

Сформулируйте теорему о неявной функции. Допустим кривая $X \subseteq$ 15 \mathbb{R}^2 задана уравнением f(x,y) = 0, и известно, что grad $f(x_0,y_0) = (2;0)$. Какую из координат x,y можно использовать в качестве локальной координаты на X в окрестности точки (x_0,y_0) ?

Теорема. Пусть есть функция $F: \mathbb{R}^2 \to \mathbb{R}$, для которой выполнены условия:

- 1. F определена и непрерывна в окрестности (x_0, y_0)
- 2. $F'_{y}(x_{0},y_{0}) \neq 0$ и F'_{y} непрерывна в (x_{0},y_{0})
- 3. $F(x_0, y_0) = 0$.

Тогда найдётся окрестность $U_{\delta,\epsilon}(x_0,y_0)=\left\{(x,y)\left|\begin{array}{c}x\in(x_0-\delta,x_0+\delta)\\y\in(y_0-\epsilon,y_0+\epsilon)\end{array}\right.\right\}$ и непрерывная функция f такая, что в $U_{\delta,\epsilon}(x_0,y_0)$ $F(x,y)=0\Leftrightarrow y=f(x)$ (то есть можно выразить y от x в данной окрестности при выполненных

выше условиях).

Если кроме всех условий выше F дифференцируема в $U_{\delta,\epsilon}(x_0,y_0)$, то f дифференцируема в $U_{\delta}(x_0)$ и

$$f'(x_0) = -\frac{F'_x(x_0, y_0)}{F'_y(x_0, y_0)}$$

Задача: проверяем условия теоремы, производная по x не равна нулю, а производная по y равна. Значит в качестве координаты можно взять y, а x — нельзя. Обратите внимание, координата — эта не та переменная, по которой дифференцируем.

16 Сформулируйте общую теорему о неявном отображении. Допустим, кривая $X \subseteq \mathbb{R}^3$ задана уравнениями f(x,y,z) = 0, g(x,y,z) = 0, и известно, что $\operatorname{grad} f(x_0,y_0,z_0) = (2;0;0)$, $\operatorname{grad} f(x_0,y_0,z_0) = (0;1;3)$. Какие из координат x,y,z можно использовать в качестве локальных координат на X в окрестности точки (x_0,y_0,z_0) ?

Обозначения: $x=(x_1,\ldots,x_n),\ y=(y_1,\ldots y_m),\ (x,y)=(x_1,\ldots,x_n,y_1,\ldots y_m).$ Ещё обозначения: если функции g_1,\ldots,g_s зависят от t_1,\ldots,t_r , то

$$\frac{D(g_1, \dots, g_s)}{D(t_1, \dots, t_r)} = \begin{pmatrix} \frac{\partial g_1}{\partial t_1} & \frac{\partial g_1}{\partial t_2} & \dots & \frac{\partial g_1}{\partial t_r} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_s}{\partial t_1} & \frac{\partial g_s}{\partial t_2} & \dots & \frac{\partial g_s}{\partial t_r} \end{pmatrix}$$

(по строкам матрицы записаны градиенты (да, в 14 билете градиенты были записаны по столбцам, но так Айз давал на той лекции)).

Разрешим теперь m уравнений относительно m неизвестных.

Теорема. Пусть

- 1. $F_1(x,y), \ldots, F_m(x,y)$ непрерывно дифференцируемы в окрестности точки $(x^{(0)},y^{(0)})$ (здесь верхние индексы, чтобы не путать с координатами)
- 2. $F_j(x^{(0)}, y^{(0)}) = 0 \quad \forall j = 1, \dots, m$
- 3. $\det \frac{D(F_1,\ldots,F_m)}{D(y_1,\ldots,y_m)}|_{(x^{(0)},y^{(0)})} \neq 0$

Тогда существует окрестность $U_{\delta}(x^{(0)}) \times U_{\epsilon}(y^{(0)})$ и набор дифференцируемых функций $f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_m),$ таких что в этой окрестности

$$\{F_j(x,y) = 0\}_{j=1}^m \Leftrightarrow \{y_j = f_j(x)\}_{j=1}^m$$

при этом $f_j(x^{(0)}) = y_j^{(0)}$. Более того,

$$\frac{D(f_1,\ldots,f_m)}{D(x_1,\ldots,x_n)}\Big|_{x^{(0)}} = -\left(\frac{D(F_1,\ldots,F_m)}{D(y_1,\ldots,y_m)}\right)^{-1}\Big|_{(x^{(0)},y^{(0)})} \cdot \frac{D(F_1,\ldots,F_m)}{D(x_1,\ldots,x_n)}\Big|_{x^{(0)}}$$

Задача: Запишем матрицу

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 3 \end{pmatrix}$$

Видим, что линейно независимы первый и второй столбец, и первый и третьей. Значит координатой может быть z или y. Обратите внимание, если матрица производных по x и y невырождена, то подходит как координата z.

17 Дайте определение касательного вектора к подмножеству $X \subseteq \mathbb{R}^n$ в точке $A \in X$. Как устроено множество всех касательных векторов к гладкому подмногообразию в фиксированной точке?

Определение. Пусть $x^{(0)} \in X \subseteq \mathbb{R}^n$. Построим какую-нибудь кривую, которая целиком лежит в X и проходит через $x^{(0)}$. Пусть эта кривая задаётся параметрически $x_i = \psi_i(s), s \in (-\epsilon, \epsilon)$, и $(\psi_1(s), \dots, \psi_n(s)) \in X \ \forall s \in (-\epsilon, \epsilon)$, и $(\psi_1(0), \dots, \psi_n(0)) = x^{(0)}$. Тогда вектор $(\frac{d\psi_1}{ds}(0), \dots, \frac{d\psi_n}{ds}(0))$ называется *касательным* к X в точке $x^{(0)}$ (если такой вектор определён, конечно).

Замечание. Касательных векторов может быть бесконечно много, т. к. бесконечно много таких кривых.

Пусть X теперь — гладкое k-мерное многообразие и $x_i = \phi_i(t_1, \dots, t_k)$ — гладкие координаты в окрестности точки $x^{(0)} = \Phi(t^{(0)})$. Тогда множество касательных векторов в точке $x^{(0)}$ образует k-мерное векторное пространство (обозначается $T_{x^{(0)}}X$), линейно порождённое следующими векторами

$$\left(\frac{\partial \phi_1}{\partial t_1}(t^{(0)}), \dots, \frac{\partial \phi_n}{\partial t_1}(t^{(0)})\right) \\
\vdots \\
\left(\frac{\partial \phi_1}{\partial t_k}(t^{(0)}), \dots, \frac{\partial \phi_n}{\partial t_k}(t^{(0)})\right)$$

Замечание. Эти векторы задают аффинное пространство, чтобы получить геометрическое касательное пространство, нужно сдвинуть $T_{x^{(0)}}X$ в точку $x^{(0)}$.

18 Допустим, что все точки множества $X \subset \mathbb{R}^n$ удовлетворяют уравнению f(x) = 0. Докажите, что в любой точке $x^{(0)} \in X$ любой касательный вектор к X перпендикулярен градиенту $\operatorname{grad} f(x^{(0)})$. Опишите касательное пространство к k-мерному подмногообразию \mathbb{R}^n , заданному системой неявных уравнений (без доказательства).

Имеем $\forall x \in X \ f(x) = 0$. Тогда для любой кривой $\{x_i = \phi_i(s)\} \subset X$ имеем $f(\phi_1(s), \dots, \phi_n(s)) = 0$. продифференцируем это по s, получаем

$$\frac{\partial f}{\partial x_1}\cdot\frac{f\phi_1}{ds}+\ldots+\frac{\partial f}{\partial x_n}\cdot\frac{f\phi_n}{ds}=0$$
 < grad $f(x^{(0)}),~$ касательный вектор к X в точке $x^{(0)}>=0$

Из того, что скалярное произведении равно нулю, следует, что градиент f перпендикулярен касательному вектору к множеству X.

Касательное пространство — ортогональное дополнение к линейной комбинации градиентов неявных уравнений.

19 Необходимое и достаточное условия локального экстремума для функции нескольких переменных (без доказательства).

Определение. Точка $x^{(0)}$ функции f называется cmauuonapuoŭ, когда $\frac{\partial f}{\partial x_i}(x^{(0)}) = 0 \quad \forall x \in [1;n].$

Необходимое условие:

Теорема. Если $f(x^{(0)})$ - локальный экстремум, то $x^{(0)}$ — стационарная.

Определение. Матрицей Гессе называется симметричная квадратичная форма

$$\begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & & & & \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

Определение. *Положительно определённой* квадратичной формой называется такая, что все собственные значения положительны.

Определение. *Отрицательно определённой* квадратичной формой называется такая, что все собственные значения отрицательны.

Теорема. Теперь, пусть дана дважды дифференцируемая функция $f(x_1, \dots, x_n)$, пусть $x^{(0)}$ — стационарная точка. Тогда:

- ullet Если матрица Гессе положительна определена, то $x^{(0)}$ локальный минимум.
- ullet Если матрица Гессе отрицательна определена, то $x^{(0)}$ локальный максимум.
- Если матрица Гессе имеет и положительные и отрицательные собственные значения, но при этом не вырождена, то $x^{(0)}$ не локальный экстремум.
- \bullet В остальных случаях $x^{(0)}$ может как являться локальным экстремумом, так u не являться.

20 Дайте определение точки условного минимума

Определение. Точка $x^{(0)}$ называется *строгим условным минимумом* функции f подмножества $X \subset \mathbb{R}^n$, если $\forall x \in X \quad f(x) > f(x^{(0)})$.

Определение. Точка $x^{(0)}$ называется *условным локальным минимумом* функции f подмножества $X \subset \mathbb{R}^n$, если существует окрестность $U(x^{(0)})$, такая что $\forall x \in U(x^{(0)}) \cap X$ $f(x) > f(x^{(0)})$.

Замечание. Далее будем считать, что такое множество задаётся набором уравнений вида $\phi(x) = 0$.

21 Сформулируйте теорему о множителях Лагранжа. Объясните идею доказательства в случае, если подмножество $X \subset \mathbb{R}^n$ является гладким многообразием.

Пусть у нас есть задача вида

$$\begin{cases} f(x) \to \text{extr} \\ \phi_1(x) = 0 \\ \vdots \\ \phi_m(x) = 0 \\ x \in \mathbb{R}^n \\ m < n \end{cases}$$

Определение. Функцией Лагранжа называется

$$L(x,\lambda) = f(x) - \sum_{i=1}^{m} \lambda_i g_i(x)$$
$$x \in \mathbb{R}^n$$
$$\lambda \in \mathbb{R}^m$$

 λ называют *множителями* Лагранжа.

Теорема. Пусть $x^{(0)}$ — точка условного локального экстремума в задаче выше, и пусть в окрестности точки $x^{(0)}$ X — гладкое многообразие. Тогда существуют такие $\lambda^{(0)}$, что точка $(x^{(0)},\lambda^{(0)})=(x_1^{(0)},\dots,x_n^{(0)},\lambda_1^{(0)},\dots,\lambda_m^{(0)})\in\mathbb{R}^{m+n}$ является стационарной для $L(x,\lambda)$.

То есть

$$\frac{\partial L}{\partial x_i}(x^{(0)}, \lambda^{(0)}) = 0 \quad \forall i \in [1; n]$$

$$\frac{\partial L}{\partial \lambda_i}(x^{(0)}, \lambda^{(0)}) = 0 \quad \forall i \in [1; m]$$

Второе в силу линейности по λ эквивалентно $g_i(x^{(0)}) = 0$, что означает, что $x^{(0)} \in X$. Посмотрим теперь на первое

$$\frac{\partial L}{\partial x_j} = \frac{\partial}{\partial x_j} (f(x) - \sum_{i=1}^m \lambda_i g_i(x)) = \frac{\partial f}{\partial x_j} - \sum_{i=1}^m \lambda_i \frac{\partial g_i}{\partial x_j} = 0$$

$$\begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} - \lambda_1 \begin{pmatrix} \frac{\partial g_1}{\partial x_1} \\ \vdots \\ \frac{\partial g_1}{\partial x_n} \end{pmatrix} - \dots - \lambda_m \begin{pmatrix} \frac{\partial g_m}{\partial x_1} \\ \vdots \\ \frac{\partial g_m}{\partial x_n} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Это значит, что

$$\operatorname{grad} f = \sum_{i=1}^{m} \lambda_i \operatorname{grad} g_i$$

Так как, все наши переходы были равносильными, нам осталось доказать, что найдутся такие λ , то есть, что grad f является линейной комбинацией grad g_i в данной точке.

Поскольку X гладкая в точке $x^{(0)}$, будем предполагать, что X удовлетворяет условию теоремы о неявном отображении, то есть градиенты $\operatorname{grad} g_i$ линейно независимы. Без ограничения общности будем считать $x^{(0)} \in X \subset \mathbb{R}^n$ — точка условного локального минимума. Тогда, если возьмём какую-нибудь кривую $\{x_i = \phi(t)\} \subseteq X$, такую, что $\phi_i(0) = x_i^{(0)}$, то на ней это также будет точка локального минимума, запишем касательный вектор

$$u = \left(\frac{d\phi_1}{dt}(0), \dots, \frac{d\phi_n}{dt}(0)\right) \in T_{x^{(0)}}X$$

Функция $\alpha(t) = f(\phi_1(t), \dots, \phi_n(t))$ имеет в t = 0 локальный минимум. По теореме Ферма $\frac{d\alpha}{dt}(0) = 0$. А это

$$\frac{\partial f}{\partial x_1}(x^{(0)}) \cdot \frac{d\phi_1}{dt}(0) + \ldots + \frac{\partial f}{\partial x_n}(x^{(0)}) \cdot \frac{d\phi_n}{dt}(0) = \langle \operatorname{grad} f(x^0), u \rangle = 0$$

Таким образом, градиент целевой функции в точки экстремума перпендикулярен любому касательному вектору $u \in T_{x^{(0)}}X$, то есть $\operatorname{grad} f(x^{(0)}) \perp T_{x^{(0)}}X$. А это значит, что этот градиент лежит в ортогональном дополнении

$$\operatorname{grad} f(x^{(0)}) \in (T_{x^{(0)}}X)^{\perp} = < \operatorname{grad} g_1(x^{(0)}), \dots, \operatorname{grad} g_m(x^{(0)}) >$$

А раз $\operatorname{grad} f(x^{(0)})$ лежит в линейной оболочке $\operatorname{grad} g_i(x^{(0)})$, то он является их линейной комбинацией.

22 Сформулируйте достаточное условие в методе множителей Лагранжа. Объясните, как на практике проверять это условие (скажем, с помощью примера).

Замечание. Пусть $Q = Q(y_1,...,y_n) = \sum_{i,j=1}^n a_{ij}y_iy_j$ – квадратичная форма на $\mathbb{R}^n = V$. Пусть $W \subset V$ – векторное подпространство. Тогда определена операция ограничения Q на подпространство W: $Q|_W$

Теорема. Достаточное условие локального условного экстремума.

Пусть $X = \{g_i(x) = 0 | i = 1,...,m\} \subset \mathbb{R}^n$ в точке $x^{(0)} \in X$ является гладким многообразием и $f : \mathbb{R}^n \to \mathbb{R}$ – целевая функция (та, которую хотим оптимизировать на этом многообразии). Ограничим квадратичную форму d^2L на касательное пространство к X в точке $x^{(0)}$:

$$d^2L(x^{(0)},\lambda^{(0)})|_{T_{-(0)}X}$$

Допустим, в точке $x^{(0)}$ выполнены условия Лагранжа:

$$gradf|_{x^{(0)}} = \sum_{i=1}^{m} \lambda_i^{(0)} gradg_i|_{x^{(0)}} \ u \ g_i(x^{(0)}) = 0$$

Тогда:

- Если квадратичная форма положительно определена при этом ограничении, то $x^{(0)}$ точка условного локального минимума для f:
- Если квадратичная форма отрицательно определена при этом ограничении, то $x^{(0)}$ точка условного локального максимума для f;
- Если квадратичная форма знаконеопределённая при этом ограничении, то $x^{(0)}$ не является точкой условного локального экстремума для f;
- Если квадратичная форма неотрицательно или неположительно определена при этом ограничении, то теорема ничего не говорит о точке $x^{(0)}$.

Пример 1. Оптимизируем f = 3x + 4y на окружности $x^2 + y^2 - 1 = 0$. Запишем функцию Лагранжа:

$$L(x, y, \lambda) = 3x + 4y - \lambda(x^2 + y^2 - 1)$$

Найдём стационарные точки:

$$\begin{cases} L_{x}^{'}=0 \\ L_{y}^{'}=0 \\ L_{\lambda}^{'}=0 \end{cases} \iff \begin{cases} -2\lambda x+3=0 \\ -2\lambda y+4=0 \\ x^{2}+y^{2}-1=0 \end{cases} \iff \begin{cases} x=\frac{3}{2\lambda} \\ y=\frac{4}{2\lambda} \\ \left(\frac{3}{2\lambda}\right)^{2}+\left(\frac{4}{2\lambda}\right)^{2}-1=0 \end{cases} \iff \begin{cases} \lambda_{1}=\frac{5}{2} \\ x_{1}=\frac{3}{5} \text{ или } \begin{cases} \lambda_{2}=-\frac{5}{2} \\ x_{2}=-\frac{3}{5} \end{cases} \\ y_{2}=-\frac{4}{5} \end{cases}$$

Исследуем точку (x_1, y_1) при помощи условия второго порядка:

$$d^2L=L_{xx}^{''}dx^2+2L_{xy}^{''}dxdy+L_{yy}^{''}dy^2+L_{x\lambda}^{''}dxd\lambda+L_{y\lambda}^{''}dyd\lambda+L_{\lambda\lambda}^{''}d\lambda^2$$

Заметим, что $L_{\lambda\lambda}^{''}d\lambda^2=0$, т.к. L линейна по λ (это верно всегда, а не только в этом примере). Теперь найдём полный дифференциал условия:

$$x^{2} + y^{2} - 1 = 0 \Rightarrow d(x^{2} + y^{2} - 1) = d0 \Rightarrow 2xdx + 2ydy = 0$$

Также заметим, что $L_{x\lambda}^{''}=-g_{x}^{'},\,L_{y\lambda}^{''}=-g_{y}^{'}.$ Тогда:

$$L_{x\lambda}^{''}dxd\lambda+L_{y\lambda}^{''}dyd\lambda=d\lambda(g_{x}^{'}dx+g_{y}^{'}dy)=d\lambda dg=0$$
 (это верно всегда)

Вычислим d^2L в точке $(\frac{3}{5}, \frac{4}{5}, \frac{5}{2})$:

$$d^{2}L(\frac{3}{5}, \frac{4}{5}, \frac{5}{2}) = -5dx^{2} - 5dy^{2}$$

Видим, что, без всякого ограничения, квадратичная форма d^2L в нужной точке отрицательно определена \Rightarrow при ограничении форма $d^2L|_{T_{(x_1,y_1)}X}$ тоже определена отрицательно $\Rightarrow (x_1,y_1)$ – точка локального максимума. Вторая точка исследуется аналогично.

Пример 2. Оптимизируем $f = 2x^2 - y^2$ при условии $e^y - \sin x - 1 = 0$. Запишем функцию Лагранжа:

$$L(x, y, \lambda) = 2x^2 - y^2 - \lambda(e^y - \sin x - 1)$$

Найдём стационарные точки (аналогично примеру 1):

$$\begin{cases}
4x + \lambda \cos x = 0 \\
-2y - \lambda e^y = 0 \\
e^y - \sin x - 1 = 0
\end{cases}$$

Исследуем решение $(x_0, y_0, \lambda_0) = (0, 0, 0)$ при помощи условия второго порядка:

$$d^{2}L = (4 - \lambda \sin x)dx^{2} + (-2 - \lambda e^{y})dy^{2}$$

Подставим точку (0, 0, 0):

$$d^2L=4dx^2-2dy^2$$
 — знаконе
определённая квадратичная форма

Необходимо исследовать ограничение $d^2L|_{T_{x_0,y_0}X}$. Возьмём полный дифференциал от уравнения связи:

$$dg = d(e^y - \sin x - 1) = e^y dy - \cos x dx = 0$$

Подставим точку (0, 0):

$$dg(0,0) = dy - dx = 0 \Rightarrow dy = dx$$

Таким образом, «ограничить d^2L на $T_{x^{(0)}}X$ означает «подставить в d^2L линейные соотношения на дифференциалы, полученные из уравнения dg=0». Подставим в $4dx^2-2dy^2$ уравнение dy=dx:

$$d^2L|_{T_{(x_0,y_0)}X}=2dx^2>0\Rightarrow (0,0)$$
 – точка условного локального минимума.

23 Сформулируйте теорему Каруша-Куна-Таккера. Объясните, в чём смысл условий дополняющей нежёсткости?

Мотивация. Помимо задач с ограничениями типа равенств, часто встречаются задачи с ограничениями типа неравенств. Например, вместо окружности $x^2 + y^2 = 1$ нужно исследовать круг $x^2 + y^2 \leqslant 1$. Такие задачи называются задачами нелинейного программирования. Пусть $x = (x_1, ..., x_n) \in \mathbb{R}^n$, тогда сформулируем задачу:

$$\begin{cases} f(x) \to extr \\ g_i(x) \leqslant 0, \ i=1, \ ..., \ m \ (m \ \text{может быть больше} \ n) \end{cases}$$

Пример.

$$\begin{cases} f(x, y) \to extr \\ g_1(x, y) = x^2 + y^2 - 1 \le 0 \\ g_2(x, y) = -x - y \le 0 \end{cases}$$

Пусть M — множество, которое задаётся ограничениями g_i . Разбор случаев (при помощи метода множителей Лагранжа):

1. Кандидатов в точки экстремума внутри М:

$$\begin{cases} f_{x}^{'} = 0 \\ f_{y}^{'} = 0 \\ g_{1} < 0 \\ g_{2} < 0 \end{cases}$$

2. Кандидаты на дуге окружности:

$$\begin{cases} f'_x - \lambda_1(g_1)'_x = 0 \\ f'_y - \lambda_1(g_2)'_y = 0 \\ g_1 = 0 \\ g_2 < 0 \end{cases}$$

3. Кандидаты на отрезке внутри круга:

$$\begin{cases} f_x^{'} - \lambda_2(g_2)_x^{'} = 0\\ f_y^{'} - \lambda_2(g_2)_y^{'} = 0\\ g_2 = 0\\ g_1 < 0 \end{cases}$$

4. Кандидаты на пересечении окружности и прямой:

$$\begin{cases} f'_{x} - \lambda_{1}(g_{1})'_{x} - \lambda_{2}(g_{2})'_{x} = 0 \\ f'_{y} - \lambda_{1}(g_{1})'_{y} - \lambda_{2}(g_{2})'_{y} = 0 \\ g_{1} = 0 \\ g_{2} = 0 \end{cases}$$

Далее во всех полученных кандидатах вычисляем целевую функцию.

Теорема. Каруша-Куна-Таккера (простая версия для задачи с ограничениями типа неравенств).

Допустим, что
$$x^{(0)}$$
 – решение задачи $\begin{cases} f(x) \to extr \\ g_i(x) \leqslant 0, i=1,...,m \end{cases}$

Допустим, что $x^{(0)}$ – решение задачи $\begin{cases} f(x) \to extr \\ g_i(x) \leqslant 0, i=1,...,m \end{cases}$ Пусть $L(x,\lambda)=f(x)-\sum\limits_{i=1}^m \lambda_i g_i(x)$ – функция Лагранжа. Тогда в точке $x^{(0)}$ выполнено:

$$\begin{cases} L_{x_{j}}^{'}=0, j=1,...,n \\ g_{i}(x)\leqslant 0, i=1,...,m \\ \lambda_{i}g_{i}(x)=0, i=1,...,m-y$$
словия дополняющей нежёсткости

Замечание. В чём смысл условий дополняющей нежёсткости?

Если $\lambda_i > 0$, то соответствующее ограничение $g_i(x) \leqslant 0$ в решении задачи выполняется как равенство $g_i(x) = 0$ (т.е. это ограничение «активно»).

Если же $g_i(x) < 0$, то соответствующий множитель Лагранжа λ_i должен быть равен нулю, и это ограничение не участвует в функции Лагранжа.

24 Дайте определение криволинейного интеграла 1-го рода и объясните, как такие интегралы вычисляются.

Пусть $U \subset \mathbb{R}^n$ и $f: U \to \mathbb{R}$ – непрерывная функция, $\gamma \subset U$ – кривая и $\gamma = \{x_j = \varphi_j(t) | j = 1, ..., n, t \in [a, b]\}$. Пусть (τ, c) – размеченное разбиение отрезка [a, b], т.е. $\tau = (a = t_0 < t_1 < ... < t_m = b), c_i \in [t_{i-1}, t_i]$.

Определение. $| au| = \max_i (t_i - t_{i-1})$ – диаметр разбиения au.

Замечание. Более общее определение: $|\tau| = \max(d_2(\varphi[t_i], \varphi[t_{i-1}]),$ где d_2 — евклидова метрика.

Определение. Определим интегральную сумму (1-го рода) по кривой γ :

$$S_{\tau,f,\gamma}^{I} = \sum_{i=1}^{m} f\left[\varphi(c_i)\right] \Delta l_i$$

$$\Delta l_i = d_2(\varphi(t_i), \, \varphi(t_{i-1})) = \sqrt{\sum_{j=1}^n (\varphi_j(t_i) - \varphi_j(t_{i-1}))^2}$$

Определение. Предел $\lim_{|\tau|\to 0} S^I_{\tau,f,\gamma} = \int\limits_{\gamma} f(x_1,...,x_n) dl$ называется криволинейным интегралом 1-го рода от функции f по кривой γ .

3амечание. $\int\limits_{\gamma} f(x_1,...,x_n)dl$ не зависит от параметризации кривой $\gamma.$

Замечание. dl называется элементом длины кривой. По теореме Пифагора:

$$dl = \sqrt{(dx_1)^2 + \dots + (dx_n)^2} = \left[x_j = \varphi_j(t)\right] = \sqrt{(\varphi_1'(t)dt)^2 + \dots + (\varphi_n'(t)dt)^2} = \sqrt{\varphi_1'(t)^2 + \dots + \varphi_n'(t)^2} dt$$

Утверждение. Пусть γ задана параметрически: $x_j=\varphi_j(t), t\in [a,b]$ и $\varphi_j\in C^1([a,b]).$ Тогда:

$$\int_{\gamma} f(x_1, ..., x_n) dl = \int_{a}^{b} f[\varphi_1(t), ..., \varphi_n(t)] \sqrt{\varphi'_1(t)^2 + ... + \varphi'_n(t)^2} dt$$

Пример.

$$\int\limits_{\gamma}1dl=\int\limits_{a}^{b}\sqrt{\sum_{i}(arphi_{i}^{\prime})^{2}}dt$$
 – длина кривой.

25 Дайте определение криволинейного интеграла 2-го рода и объясните, как такие интегралы вычисляются.

Пусть $U \subset \mathbb{R}^n$ и $f: U \to \mathbb{R}$ – непрерывная функция, $\gamma \subset U$ – кривая и $\gamma = \{x_j = \varphi_j(t) | j=1,...,n,\, t \in [a,b]\}$. Пусть (τ,c) – размеченное разбиение отрезка [a,b], т.е. $\tau = (a=t_0 < t_1 < ... < t_m = b), c_i \in [t_{i-1},t_i]$. Мотивация. Хотим определить $\int\limits_{\mathbb{R}} f(x_1,...,x_n) dx_1$.

Определение. Определим интегральную сумму (2-го рода) по кривой γ :

$$S_{\tau,f,\gamma}^{II, x_1} = \sum_{i=1}^{m} f\left[\varphi(c_i)\right] \Delta x_1$$

$$\Delta x_1 = \varphi_1(t_i) - \varphi_1(t_{i-1})$$

Определение. Предел $\lim_{|\tau|\to 0} S^{II}_{\tau,f,\gamma} = \int\limits_{\gamma} f(x_1,...,x_n) dx_1$ называется криволинейным интегралом 2-го рода от функции f по кривой γ по переменной x_1 .

Замечание. $\int\limits_{\gamma} f(x_1,...,x_n) dx_1$ «почти» (т.е. с точностью до знака) не зависит от параметризации кривой γ .

Замечание. $dx_1=d\varphi_1(t)=\varphi_1^{'}(t)dt$

Утверждение. Пусть γ задана параметрически: $x_j = \varphi_j(t), t \in [a,b]$ и $\varphi_j \in C^1([a,b])$. Тогда:

$$\int_{\gamma} f(x_1, ..., x_n) dx_1 = \int_{a}^{b} f[\varphi_1(t), ..., \varphi_n(t)] \varphi_1'(t) dt$$

Аналогично определяются интегралы по любой другой координате.

Пример.

$$\int\limits_{\gamma}1dx_1=\int\limits_{a}^{b}\varphi_1^{'}(t)dt=\int\limits_{a}^{b}d(\varphi_1(t))=\varphi_1(b)-\varphi_1(a)$$
 – полное изменение первой координаты при движении по кривой.

Замечание. Более общо, можно брать интегралы от выражений вида $P_1(x_1,...,x_n)dx_1 + P_2(x_1,...,x_n)dx_2 + ... + P_n(x_1,...,x_n)dx_n = \omega$:

$$\int_{\gamma} \omega := \int_{\gamma} P_1 dx_1 + \dots + \int_{\gamma} P_n dx_n = \int_{a}^{b} \left[P_1(\varphi(t)) P_1' + P_n(\varphi(t)) P_n' \right] dt$$

Определение. Выражения вида $P_1(x_1,...,x_n)dx_1 + P_2(x_1,...,x_n)dx_2 + ... + P_n(x_1,...,x_n)dx_n$ называются дифференциальными 1-формами (или формами ранга 1).

Определение. Выражения вида $\int\limits_{\gamma}\omega$ называются интегралами 2-го рода от 1-формы ω по кривой γ .

26 Объясните, почему криволинейный интеграл 1-го рода не зависит от ориентации кривой, а криволинейный интеграл 2-го рода — зависит.

Определение. Предел $\lim_{|\tau|\to 0} S^I_{\tau,f,\gamma} = \int_{\gamma} f(x_1,...,x_n) dl$ называется криволинейным интегралом 1-го рода от функции f по кривой γ .

3амечание. dl называется элементом длины кривой. По теореме Пифагора:

$$dl = \sqrt{(dx_1)^2 + \dots + (dx_n)^2} = \left[x_j = \varphi_j(t)\right] = \sqrt{(\varphi_1'(t)dt)^2 + \dots + (\varphi_n'(t)dt)^2} = \sqrt{\varphi_1'(t)^2 + \dots + \varphi_n'(t)^2}dt$$

Определение. Предел $\lim_{|\tau|\to 0} S^{II}_{\tau,f,\gamma} = \int\limits_{\gamma} f(x_1,...,x_n) dx_1$ называется криволинейным интегралом 2-го рода от функции f по кривой γ по переменной x_1 .

Замечание. $dx_1 = d\varphi_1(t) = \varphi_1'(t)dt$

При изменении направления обхода интеграл 2-го рода меняет знак, а интеграл 1-го рода не меняет знак. Почему? Заметим следующее: в интегралах 2-го рода стоят выражения $dx_1,...,dx_n$, которые меняют знак при изменении направления обхода, а элемент длины $dl = \sqrt{(dx_1)^2 + ... + (dx_n)^2}$ не зависит от знаков выражений $dx_1,...,dx_n$.

Замечание. Подробнее про смену знака dx_i (из билета 25). Определим интегральную сумму (2-го рода) по кривой γ :

$$S_{\tau,f,\gamma}^{II,x_1} = \sum_{i=1}^{m} f\left[\varphi(c_i)\right] \Delta x_1$$

$$\Delta x_1 = \varphi_1(t_i) - \varphi_1(t_{i-1})$$

Видим, что Δx_i в определении интегральной суммы зависит от порядка обхода сегментов разбиения.

27 Сформулируйте формулу Грина и докажите её для области $\Omega \subset \mathbb{R}^2$ вида $\Omega = [a,b] \times [c,d]$ (прямоугольник).

Теорема. Формула Грина.

 Π усть $U \subset \mathbb{R}^2$ — связное подмножество, ограниченное кусочно-гладкой кривой $\partial U = \Gamma$ (граница множества U). Зафиксируем ориентацию на Γ , обход вдоль которой всегда оставляет область U слева. Π усть функции P(x,y),Q(x,y) дифференцируемы в некоторой окрестности U. Тогда верно следующее:

1.

$$\int_{\Gamma} P(x,y)dx = \iint_{U} -\frac{\partial P}{\partial y} dxdy$$

2.

$$\int\limits_{\Gamma}Q(x,y)dy=\int\limits_{U}\frac{\partial Q}{\partial x}dxdy$$

3.

$$\int\limits_{\Gamma} P dx + Q dy = \iint\limits_{U} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy - формула Грина$$

Доказательство. План:

- 1. Докажем формулу 1.
- 2. Формула 2 доказывается аналогично при помощи замены $x \leftrightarrow y$.
- 3. Формула 3 суть сумма формул 1 и 2.

Будем предполагать, что $U = \{(x,y) | a \le x \le b, c \le y \le d\}$, т.е. U – прямоугольник. $\Gamma = \partial U = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4$, где Γ_1, Γ_2 – горизонтальные отрезки (y = c, y = d), а Γ_3, Γ_4 – вертикальные отрезки. Тогда:

$$\int\limits_{\Gamma} P dx = \int\limits_{\Gamma_1} P dx + \int\limits_{\Gamma_2} P dx + \int\limits_{\Gamma_3} P dx + \int\limits_{\Gamma_4} P dx$$

Заметим, что $\int_{\Gamma_3} P dx + \int_{\Gamma_4} P dx = 0$, т.к. на вертикальных отрезках выполнено, что $x = const \Rightarrow dx = 0$.

Параметризуем: $\Gamma_1 = \begin{cases} x = t \\ y = c \end{cases}$ $t \in [a,b], \ \Gamma_2 = \begin{cases} x = t \\ y = d \end{cases}$ $t \in [b,a]$. Интегрируем по определению:

$$\int_{a}^{b} P(t,c)dt - \int_{a}^{b} P(t,d)dt = \int_{a}^{b} \left[P(t,c) - P(t,d) \right] dt = \star$$

Заметим, что подынтегральное выражение равно (по формуле Ньютона-Лейбница):

$$\int_{d}^{c} \frac{\partial P}{\partial y}(t, s) ds = -\int_{c}^{d} \frac{\partial P}{\partial y}(t, s) ds$$

Подставим:

$$\star = -\int\limits_a^b \left[\int\limits_c^d \frac{\partial P}{\partial y}(t,s) ds\right] dt = [\Pi \text{ереходим к кратному интегралу}] = -\iint\limits_U \frac{\partial P}{\partial y} dx dy$$

Дайте определение элемента площади 2-мерной поверхности в \mathbb{R}^3 и 28 поверхностного интеграла 1-го рода

Пусть имеется двумерная поверхность $\Omega \subseteq \mathbb{R}^3$ и у неё зафиксирована параметризация $\varphi: M \to \Omega, M \subseteq \mathbb{R}^2$. Будем обозначать координаты в \mathbb{R}^3 как (x,y,z), а в \mathbb{R}^2 — как (u,v). Неформально говоря, элементом площади в точке поверхности называется площадь бесконечно малого параллелограмма со сторонами, направленными параллельно касательным векторам в этой точке. Можно провести аналогию с одномерными интегралами, где мы приближаем функцию с помощью ломаной с маленькими звеньями, и сказать, что мы приближаем поверхность маленькими чешуйками в форме параллелограммов. Запишем теперь формулу для элемента площади в точке (u,v)

$$\mathrm{d}S = S(P(\varphi_u'(u,v),\varphi_v'(u,v)))\mathrm{d}u\mathrm{d}v;$$

Здесь φ_u', φ_v' — трёхмерные векторы (так как φ имеет три координаты), именно они являются касательными в данной точке; $P-\;$ параллелограмм, натянутый на векторы; $S-\;$ площадь. Из линейной алгебры мы знаем, что площадь параллелограмма можно считать как корень из определителя матрицы Грама его сторон. Это даёт нам новую формулу для элемента площади.

$$dS = \sqrt{EG - F^2} du dv;$$

Здесь $E = \langle \varphi'_u, \varphi'_u \rangle = \|\varphi'_u\|^2$, $G = \langle \varphi'_v, \varphi'_v \rangle = \|\varphi'_v\|^2$, $F = \langle \varphi'_u, \varphi'_v \rangle$.

Теперь мы можем естественным образом определить поверхностный интеграл 1-го рода от функции $f:\mathbb{R}^3 o \mathbb{R}$ по Ω.

$$\iint\limits_{\Omega} f(x,y,z)\mathrm{d}S := \iint\limits_{M} f(\varphi(u,v))\sqrt{E(u,v)G(u,v)-F^{2}(u,v)}\mathrm{d}u\mathrm{d}v;$$

Здесь мы опираемся на параметризацию при определении интеграла. Можно проверить, что при смене параметризации значение интеграла 1-го рода не изменится.

29 Дайте определение элемента k-мерного объёма k-мерного многообразия в \mathbb{R}^n и интеграла 1-го рода по k-мерному многообразию

Пусть имеется k-мерное многообразие $\Omega \subseteq \mathbb{R}^n$ и у него зафиксирована параметризация $\varphi: M \to \Omega, M \subseteq \mathbb{R}^k$. Будем обозаначать координаты в \mathbb{R}^n как $x = (x_1, \dots, x_n)$, а в \mathbb{R}^k — как $t = (t_1, \dots, t_k)$. Аналогично предыдущему билету, определим элемент k-мерного объёма в точке t.

$$dVol_k = S(P(\varphi'_{t_1}(t), \dots, \varphi'_{t_k}(t)))dt_1 \dots dt_k;$$

Запишем теперь формулу для интеграла 1-го рода от функции $f: \mathbb{R}^n \to \mathbb{R}$ по Ω .

$$\int_{\Omega} f(x) dVol_k := \int_{M} f(\varphi(t)) S(P(\varphi'_{t_1}(t), \dots, \varphi'_{t_k}(t))) dt_1 \dots dt_k;$$

Опять же, можно проверить, что интеграл 1-го рода не зависит от параметризации.

30 Объясните, что такое грассманово умножение, грассмановы переменные, грассмановы мономы

Пусть у нас имеется набор символов a_1, \ldots, a_n — грассмановых переменных и мы умеем брать их линейные комбинации. То есть, например, у нас есть отдельные элементы $a_2-a_1, 0, -5a_3$ и т. п. Теперь мы хотим ввести новую операцию — научиться умножать наши элементы друг на друга. Наше умножение будет обозначаться символом \wedge и называться грассмановым умножением. Умножение будет удовлетворять всем стандартным требованиям, кроме коммутативности, которую мы заменим на более странное свойство 4:

- 1. $(x \wedge y) \wedge z = x \wedge (y \wedge z)$;
- 2. $(x+y) \wedge z = x \wedge z + y \wedge z$;
- 3. $z \wedge (x + y) = z \wedge x + z \wedge y$;
- 4. $a_i \wedge a_j = -a_j \wedge a_i$;

Обратите внимание, пункты 1-3 относятся к любым элементам, а пункт 4 только к исходным a_1, \ldots, a_n . Простые следствия из свойств: $0 \wedge x = 0, a_i \wedge a_i = 0$. Для примера посчитаем «квадрат» элемента $a_1 \wedge a_2 + a_3$.

$$(a_1 \wedge a_2 + a_3) \wedge (a_1 \wedge a_2 + a_3) = a_1 \wedge a_2 \wedge (a_1 \wedge a_2 + a_3) + a_3 \wedge (a_1 \wedge a_2 + a_3) = 0 + a_1 \wedge a_2 \wedge a_3 + a_3 \wedge a_1 \wedge a_2 + 0 = 0$$

$$= a_1 \wedge a_2 \wedge a_3 - a_1 \wedge a_3 \wedge a_2 = a_1 \wedge a_2 \wedge a_3 + a_1 \wedge a_2 \wedge a_3 = 2a_1 \wedge a_2 \wedge a_3;$$

Определение. Γ рассмановым мономом степени k называется элемент вида $\alpha a_{i_1} \wedge \ldots \wedge a_{i_k}$, где $i_1, \ldots i_k \in \{0, \ldots, n\}$, α — некоторый коэффициент.

Заметим, что если среди $i_1, \dots i_k$ есть повторения, то моном равен нулю. Переменные в грассмановом мономе можно отсортировать, возможно, поменяв при этом знак. Точнее, при сортировке моном домножится на -1 в степени равной числу инверсий, то есть на знак перестановки.

31 Объясните, что такое дифференциальная форма ранга k, и как вычисляется интеграл (2-го рода) от k-формы ω по k-мерному многообразию $\Omega \subseteq \mathbb{R}^n$. Запишите вычислительную формулу для поверхностного интеграла 2-го рода

Определение. Дифференциальной формой ранга k (или дифференциальной k-формой) на $M \subseteq \mathbb{R}^n$ называется выражение вида $\sum_{\{i_1,\ldots,i_k\}\subseteq\{1,\ldots,n\}} f_{i_1\ldots i_k}(x) \mathrm{d} x_{i_1}\wedge\ldots\wedge\mathrm{d} x_{i_k},$ где $f_{i_1\ldots i_k}$ — некоторые дифференцируемые функции

 $^{^{1}}$ Часто ограничиваются гладкими функциями.

Если вам очень понравился предыдущий билет, можно сказать, что это сумма грассмановых мономов степени k от переменных $\mathrm{d}x_1,\ldots\mathrm{d}x_n$ с дифференцируемыми функциями в качестве коэффициентов. Можно считать, что среди чисел i_1,\ldots,i_k нет повторений, так как мономы с повторениями всё равно зануляются.

Пусть имеются k-мерное многообразие $\Omega \subseteq \mathbb{R}^n$ с параметризацией $\varphi: M \to \Omega, M \subseteq \mathbb{R}^k$ и дифференциальная k-форма $\omega = \sum_{\{i_1, \dots, i_k\} \subseteq \{1, \dots, n\}} f_{i_1 \dots i_k}(x) \mathrm{d} x_{i_1} \wedge \dots \wedge \mathrm{d} x_{i_k}$ на Ω . Определим интеграл (2-го рода) ω по Ω .

$$\int_{\Omega} \omega := \int_{M} \sum_{\{i_1, \dots, i_k\} \subseteq \{1, \dots, n\}} f_{i_1 \dots i_k}(\varphi(t)) d\varphi_{i_1} \wedge \dots \wedge d\varphi_{i_k};$$

Поясним, что творится в этой формуле. Во-первых, $\varphi_i:M\to\mathbb{R}$ — это функция, соответствующая i-й координате φ . Во-вторых, $\mathrm{d}\varphi_i$ — это привычный дифференциал функции нескольких переменных, но теперь мы говорим, что это линейная комбинация грассмановых переменных $\mathrm{d}t_1,\ldots,\mathrm{d}t_k$. Когда мы грассманово перемножим эти дифференциалы, у нас останется выражение вида $f(t)\mathrm{d}t_1\wedge\ldots\wedge\mathrm{d}t_k$. Это так, ведь в любом слагаемом результата будут перемножаться k переменных, одинаковые занулятся, останутся только слагаемые с различными, возможно, не в том порядке. Но мы можем привести порядок к правильному. После этих преобразований мы считаем интеграл как обычный кратный интеграл.

$$\int_{M} f dt_1 \wedge \ldots \wedge dt_k = \int_{M} f dt_1 \ldots dt_k;$$

Для случая k=2 это всё можно записать в следующую формулу.

$$\iint_{\Omega} P \, \mathrm{d}y \wedge \, \mathrm{d}z + Q \, \mathrm{d}z \wedge \, \mathrm{d}x + R \, \mathrm{d}x \wedge \, \mathrm{d}y = \iint_{M} \begin{vmatrix} P & Q & R \\ \frac{\partial \varphi_1}{\partial u} & \frac{\partial \varphi_2}{\partial u} & \frac{\partial \varphi_3}{\partial u} \\ \frac{\partial \varphi_1}{\partial v} & \frac{\partial \varphi_2}{\partial v} & \frac{\partial \varphi_3}{\partial v} \end{vmatrix} \mathrm{d}u \, \mathrm{d}v;$$

Обратите внимание, при Q стоит $dz \wedge dx$, а не $dx \wedge dz$.

32 Что такое ориентация k-мерного многообразия? Как изменится интеграл 2-го рода от дифференциальной формы при смене ориентации многообразия (б. д.)?

Пусть $\Omega \subseteq \mathbb{R}^n - k$ -мерное связное многообразие, и у него имеются две параметризации $\varphi: M \to \Omega, \psi: N \to \Omega; M, N \subseteq \mathbb{R}^k$. Предположим, что функция замены координат $c = \varphi^{-1} \circ \psi$ биективна и непрерывно дифференцируема.

Посмотрим на якобиан J(c). Если бы где-то он был равен нулю, в окрестности этой точки c была бы необратима. Значит он не равен нулю нигде. Поскольку J(c) непрерывен и Ω связно, из этого следует, что он имеет постоянный знак. Тогда если он положителен, будем говорить, что φ и ψ задают одну и ту же ориентацию, а если отрицателен — то разные. Таким образом мы определяем ориентацию как отношение эквивалентности с двумя классами на параметризациях многообразия.

Ориентация задаёт ориентацию на любом касательном пространстве $T_x\Omega$ как на векторном пространстве. Если мы назвали ориентацию некоторой параметризации положительной, то назовём положительным базис $T_x\Omega$, полученный из её производных.

При смене параметризации на имеющую противоположную ориентацию интеграл 2-го рода меняет знак.

 $^{^2}$ Напомним, многообразие называется гладким, если любые две его точки можно соединить проходяще по нему непрерывной кривой.

33 Дайте определение согласованных ориентаций многообразия и его границы. Дайте определение дифференциала от k-формы. Запишите общую формулу Стокса.

Будем обозначать границу многообразия Ω как $\partial\Omega$. Заметим, что если у k-мерного многообразия есть граница, то она имеет размерность k-1.

Определение. Будем говорить, что ориентации Ω и $\partial\Omega$ согласованы, если для любой точки $x \in \partial\Omega$ для любого положительного базиса $v_1, \dots v_{k-1}$ в $T_x\partial\Omega$, базис $v_1, \dots, v_{k-1}, \vec{n}$ положителен в $T_x\Omega$, где \vec{n} — это вектор в $T_x\Omega$, перпендикулярный $T_x\partial\Omega$ и смотрящий наружу³ Ω .

Мы привыкли, что дифференциал суммы равен сумме дифференциалов. Поэтому для определения дифференциальной формы достаточно определить дифференциал от грассманова монома.

$$d(f dx_{i_1} \wedge \ldots \wedge dx_{i_k}) := df \wedge dx_{i_1} \wedge \ldots \wedge dx_{i_k};$$

3амечание. Дифференциал k-формы является (k+1)-формой.

Для примера посчитаем дифференциал от дифференциала некоторой функции $f:\mathbb{R}^n \to \mathbb{R}$.

$$d(df) = d\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} dx_j \wedge dx_i;$$

При этом слагаемые вида $\frac{\partial^2 f}{\partial x_i \partial x_i} dx_i \wedge dx_i$ сразу зануляются, а слагаемые вида $\frac{\partial^2 f}{\partial x_i \partial x_j} dx_j \wedge dx_i$ сократятся с $\frac{\partial^2 f}{\partial x_j \partial x_i} dx_i \wedge dx_j$. Значит d(df) = 0.

Пусть теперь $\Omega \subseteq \mathbb{R}^n - k$ -мерное многообразие с согласованными ориентациями на самом многообразии и на границе, а $\omega - \mu$ дифференциальная (k-1)-форма на Ω . Тогда верна (общая) формула Стокса:

$$\int_{\partial \Omega} \omega = \int_{\Omega} d\omega;$$

34 Выведите из общей формулы Стокса частные случаи: формулу Ньютона-Лейбница, формулу Грина, формулу Гаусса-Остроградского.

Формула Ньютона-Лейбница, n = k = 1

Пусть наше многообразие это отрезок на прямой [a;b]. Его границей будет множество из двух точек $\{a,b\}$. Заметим, что точка — это нульмерное многообразие и по нему можно интегрировать 0-формы (то есть просто функции). При чём этот интеграл будет с точностью до знака (знак как всегда определяется ориентацией) равен значению функции в точке. Если на отрезке мы берём стандартную ориентацию «слева направо», то для границы это будет означать взятие b с плюсом и a с минусом. Итак, формула Стокса принимает следующий вид:

$$F(b) - F(a) = \int_{a}^{b} dF;$$

Перепишем в более привычную запись.

$$\int_{a}^{b} F'(x) dx = F(b) - F(a);$$

³Это можно формализовать, например, как отрицательное скалярное произведение с любым вектором, соединяющим x и точку из окрестности x из Ω . Но лектор это никак не формализовал.

Формула Грина, n=k=2

Дифференциальная 1-форма в \mathbb{R}^2 имеет вид $P\mathrm{d}x+Q\mathrm{d}y$. Посчитаем её дифференциал

$$d(Pdx + Qdy) = \left(\frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy\right) \wedge dx + \left(\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial y}dy\right) \wedge dy = \frac{\partial P}{\partial y}dy \wedge dx + \frac{\partial Q}{\partial x}dx \wedge dy =$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)dx \wedge dy;$$

Формула Стокса принимает следующий вид:

$$\int_{\partial U} P dx + Q dy = \iint_{U} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy;$$

Здесь условие согласованности ориентации можно сформулировать как «при обходе ∂U по заданной параметризации U всегда находится слева».

Формула Гаусса-Остроградского, n = k = 3

Дифференциальная 2-форма в \mathbb{R}^3 имеет вид $P\mathrm{d}y\wedge\mathrm{d}x+Q\mathrm{d}z\wedge\mathrm{d}x+R\mathrm{d}x\wedge\mathrm{d}y$. Посчитаем её дифференциал.

$$d(Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy) = \frac{\partial P}{\partial x} dx \wedge dy \wedge dz + \frac{\partial Q}{\partial y} dy \wedge dz \wedge dx + \frac{\partial R}{\partial z} dz \wedge dx \wedge dy =$$

$$= \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dx \wedge dy \wedge dz;$$

Формула Стокса принимает следующий вид:

$$\iint\limits_{\partial V} P \mathrm{d}y \wedge \mathrm{d}x + Q \mathrm{d}z \wedge \mathrm{d}x + R \mathrm{d}x \wedge \mathrm{d}y = \iiint\limits_{V} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \mathrm{d}x \mathrm{d}y \mathrm{d}z;$$