Estimación del Éxito de Videos de YouTube Mediante Enfoques de Machine Learning: Caso DelcaVideography

Mariana Agudelo Zuluaga Andrés Mauricio Cano Campiño Esteban Castro Castaño Juan David Gallego Montoya Vanessa Osorio Urrea

Agenda

- 01. Entendimiento del Problema Pregunta de Negocio
- **02.** Marco Conceptual
- 03. Entendimiento y Preparación de datos
- **04.** Modelado de Variables
- 05. Selección de Variables
- 06. Regresión Logística
- **07.** Conclusiones

Pregunta de negocio

¿Cómo saber si un video que se publicará será exitoso o no?

En promedio, un video publicado tiene 8 horas de trabajo en actividades de producción

Cada **contenido**publicado es **visto por el 0.1% - 0.3% de sus suscriptores**

Ingresos del canal dependen en gran medida del éxito de los videos

Los expertos consideran que un porcentaje de clics en las impresiones mayor al 3% hacen exitoso a un video

No se conocen con exactitud las variables que afectan esta marca de éxito

¿Qué variables son relevantes?

Literatura Científica

- Retención promedio
- Porcentaje promedio visto (APV)
- Duración promedio de visualización (AVD)
- Duración video
- Retención de audiencia relativa (RAR)
- Porcentaje Leal

CRECETUBE (SEO)

- CTR
- Retención de Audiencia
- Posicionamiento Orgánico
- Tráfico Recomendado
- Duración Media de Visualización
- Número de Suscriptores

Entendimiento y Preparación de Datos

Web Scraping + Studio

61 Variables (7 días) 108 Videos

Información Pública y Privada (16Feb21 a 30Ago22)

15 Variables100 Videos

Eliminación Variables Duplicadas

Eliminación Variables tipo objeto

Manejo Nulos: Variables y videos

Análisis Exploratorio - Boxplot

Correlaciones:

0.5

0.4

-0.3

-0.2

-0.1

-0.0

-0.1

- -0.2

- -0.3

- 1. Kendall y Spearman
- 2. Son moderadas
- No son suficientes para realizar predicciones precisas.
- No permiten explicar la variabilidad de los datos
- 5. Se requieren análisis adicionales

Modelado de Variables – Métricas de Evaluación

		Árbol de Decisión	XGBoost	Random Forest	Reg. Logística
Precision	× No Éxito	0.85	0.79	0.80	0.83
	Éxito	0.60	0.67	0.80	0.83
Recall	× No Éxito	0.81	0.90	0.95	0.95
	Éxito	0.67	0.44	0.44	0.56
F1-Score	× No Éxito	0.83	0.84	0.87	0.89
	Éxito	0.63	0.53	0.57	0.67
Accuracy		0.77	0.77	0.80	0.83

Nota: Las etiquetas de los datos se encuentran balanceadas, el 45% de los videos son exitosos (55% no exitosos).

Modelado de Variables – Importancia de Variables

- 1000 Épocas de entrenamiento
- Genoma = [1 0 1 . . . 0 0 1] o [True False True . . . False False True]
- 32 individuos con 20 iteraciones por epoch

Accuracy 0.70 Tradicional 0.83

Regresión Logística – 3 Parámetros

Estimador

Saga

Utiliza el método de descenso de gradiente estocástico y agrega la regularización L1 (LASSO) a la función de costo

Penalidad

L1 (Lasso)

2

Constante

1.34

Matriz de Confusión

Idoneidad de Variables

Aportes

Aprendizajes

48 Variables

15 Variables

Gracias al filtrado de variables, se mejora la interpretabilidad del modelo e idoneidad

Intervenciones NP

Selección de características

Se hicieron intervenciones no paramétricas para evitar las suposiciones sobre los datos y reducción del sesgo en la selección de características

Regularización

Importancia de Características

Flexibilidad