

INDEX

Entries and page numbers in **bold type** refer to key words which are printed in **bold** in the text. Italics indicate items mainly, or wholly, in a figure or table.

3 α (triple alpha) process, 198, 202

A

aberration, 92, 93

absolute visual magnitude, 111, 116, 133

absorption, 142, 143

absorption lines, 23

atoms, 26

Balmer, 102

chemical elements, 103, 104, 105

interstellar medium, 142

molecules, 146

solar, 28

stellar, 101–4, 112–13, 118

see also H α absorption line

absorption spectrum, 24, 27

stellar, 104–5

accretion, 264

neutron star binaries, 269, 270

stellar remnants, 266

white dwarfs, 268

accretion disc, 266–7

active regions, 64–6, 71

AGB stars, *see* asymptotic giant branch

Aldebaran A, 133

Algol, 97

α - (alpha-) particles, 212

angular diameter, 99–100

angular momentum, 249, 250

binaries, 266

angular speed, 249, 250

apparent visual magnitudes, 110–11, 116, 133

asteroids, 94

astroseismology, 58

astrometric binaries, 123

astronomical names, 86

astronomical unit (AU), 74

asymptotic giant branch (AGB), 200

atoms, 23, 25–6, 28

thermal motion, 143

see also electrons; neutrons

aurora, 43, 79–80

B

Babcock, Horace, 72–3

Balmer absorption lines, 102

Barnard's Star, 87, 88

baryon, 49–50

Bell Burnell, Jocelyn, 257

beryllium, 198

Bessel, Friedrich, 92, 93

β^- (beta minus) decay, 226

Betelgeuse, 100, 209

Bethe, Hans, 47, 49

Biermann, Ludwig, 74

big bang model, 238

binary star, 95, 96–7

conservation of angular

momentum, 266

mass, 120–1, 122

neutron stars, 269–71

novae, 136

stellar remnants within, 264–77

supernovae, 275–7

X-ray, 266, 267

see also black hole candidates; eclipsing binaries; interacting binaries

bipolar outflow, 165–5, 169

black hole candidates, 271–3

black holes, 261–263

black-body radiation curves, 23, 53

black-body spectrum, 21–3, 24, 101

blue-shifts, 90, 215

Boltzmann constant, 33, 143

bow shock, 77–8, 81

Bradley, James, 92, 93

Brahe, Tycho, 85

brightness, *see* apparent visual magnitudes; flux density

broadband spectrum, 36–7

brown dwarfs, 191–3

C

calcium, 19, 27, 29

interstellar medium, 143

Cannon, Annie Jump, 103

carbon, product of helium fusion, 198, 206

carbon burning, 211, 212

carbon monoxide, 144, 145, 155, 165

Carina Nebula, 142

Cassiopeia A, 232–3

cataclysmic variables, 268

centre of mass, 120, 122, 124

Cepheids, 115, 116, 117

H–R diagram, 136

pulsations, 204, 205

Chandrasekhar, Subrahmanyan, 245

Chandrasekhar limit, 245, 246, 247

chemical elements,

absorption lines, 103, 104, 105

abundances, 119, 148, Appendix A5

heavy elements 45, 119, 225–7

in the Galaxy, 239

interstellar medium, 237–40

solar, 45–6

stellar, 118–19

chromosphere, 18–20

structure, 26–9

circular orbits, 120–1, 123

circumstellar disc, 165, 168

circumstellar shell, 221

from stellar winds, 234

radial velocity, 236

clouds, *see* dense clouds; diffuse clouds; hot intercloud medium; warm intercloud medium

CME (coronal mass ejection), 68–9, 70, 78
see also solar flares

CNO cycle, 188, 189, 190

Coal Sack, 142

cobalt, 231–2

cocoon nebula, 159, 167

collisional excitation, 143, 144, 146

colour index, 112, 133

colours, stellar, 132

conduction, 52

conservation of angular momentum, 249

- binaries, 266

constellations, 86

- Great Bear, 87
- Libra, 171
- Ophiuchus, 87
- Orion, 86, 142, 155, 170, 192
- Plough, 86, 87
- Serpens, 167
- Taurus, 98

see also Appendix A2

continuous spectra, 20–1, 24, 25

convection, 52

convection cells, 54

convection currents, 52, 54

convective core, 181

convective envelope, 181

convective zone, 55, 58, 203

Copernicus, Nicolaus, 11

core, 44, 46, 51, 53
see also solar interior

corona, 18, 30–4, 68–9

- radiation, 38
- solar magnetic field, 75–6

coronagraph, 30, 68

coronal hole, 38

coronal loop, 65–6, 70

coronal mass ejections (CMEs), 68–9, 70, 78
see also solar flares

Crab Nebula, 232–3

Crutchfield, Charles, 47, 49

D

degeneracy, 201–2

dense clouds, 153, 154, 156, 167

- star formation, 157–60

differential rotation, 13, 59, 72, 73

diffuse clouds, 153, 154

dipole field, 63, 72, 75

dissociation, 143

- carbon monoxide, 144
- hydrogen, 166

distances,

- 100 nearest stars, Appendix A3
- luminosity relationship, 107, 115–17
- measurement, 90–2, 114
- stellar, 2, 87–8, 94

Doppler, Christian, 88

Doppler effect, 89

- in pulsars, 259

Doppler shifts, 90, 124

- binary stars, 97
- interstellar gas, 148
- planetary systems, 172
- protostars, 165

dust,

- interstellar, 142, 146–7, 148
- planetary systems, 170, 171

dwarf novae, 268

E

Eagle Nebula, 167

Earth,

- atmosphere, 37, 44, 157
- solar interactions, 77–80

eccentricity, 121

eclipsing binaries, 97, 124–5

- light curve, 116

Eddington, Arthur, 179

Edlén, Bengt, 31

electric field, 15, 16

electromagnetic radiation, 34, 35

electromagnetic spectrum, 34–5

see also absorption spectrum; emission spectrum

electromagnetic wave model of light, 15, 17, 34

electromagnetic waves, 16, 34

electron degeneracy pressure, 201, 223

- white dwarfs, 244, 245

electron transitions,

- in atoms, 25
- in molecules, 143–6, 156

electrons, 25, 26, 31, 47

electronvolt, 17, 25, 33

elements, *see* chemical elements

elliptical orbits, 121, 122

emission lines, 24, 26

- corona, 30–1, 33
- solar, 28

emission spectrum, 24, 26

- interstellar medium, 146, 147

endothermic reactions, 184–5

energy release,

- accretion, 264
- nuclear reactions, 184–6, 189
- supernovae, 235

energy transfer, *see* conduction; convection; radiation

energy-level diagram, 25

equations of stellar structure, 175

equivalent width, 102, 113

escape speed, 262–3

evolution,

- from cloud fragments, 163–4
- from dense clouds, 157–9
- interacting binaries, 273–5
- interstellar medium, 237–9
- massive stars, 214–15
- pulsars, 256
- red giants, 138
- star clusters, 139–40
- stellar, 135–6, 137–8
- stellar clouds, 160–2
- stellar model, 138–9, 140
- stellar timescale, 282

excited state, 25

- molecules, 144–5

exothermic reactions, 184–5
extinction, 142, 143
 interstellar dust, 147
extrasolar planets, 172
extrinsic variables, 115

F

faculae, 65
filament, 19, 65
flux density, 107–8, 112, 114
 see also spectral flux density
foci, 121
focus, 121
fractional radius, 44
fragmentation, 162–4
frequency, 16, 35
 frequency change, 88, 89

G

Gaia satellite, 94
Galaxy (Milky Way), 1, 4, 5, 98
 distribution of elements, 239
 supernova explosions, 228
 X-ray map, 267
Galileo Galilei, 11
γ-rays (gamma-rays), 35, 37, 48, 60, 212
 generation, 53, 60
gas pressure,
 red giants, 201
 stellar, 176–8
 see also ideal gas law
gases,
 coronal, 31
 interstellar, 143–6, 152
 see also plasma
geomagnetic disturbances, 78
geomagnetic storms, 78–9
giant molecular cloud (GMC)
complexes, 156
giants, 134
 nuclear reactions, 206–8
global oscillations, 56, 57, 204

globular clusters, 99

H–R diagram, 200
 47 Tucanae, 99
 see also star cluster

Goodricke, John, 115

granules, 14, 15

see also solar granulation;
 supergranulation
 gravitational force,
 binaries, 264–5
 contraction, 160–2, 163
 interstellar medium, 159, 160
 low-mass stars, 197–8
 main sequence stars, 181–2
 neutron stars, 261–2
 planetary systems, 172
 protostars, 169
 Great Bear, 87

ground state, 25, 26**H**

Halley, Edmund, 87, 92, 93
 Halley's comet, 93
Hα absorption line, 27, 38
Hα image (of the Sun), 19, 20, 27
Harvard Spectral Classification, 103–4
Hayashi tracks, 164, 165, 168
heavy elements, 45, 119
 supernova explosions, 225–7
heliospause, 80–1
helioseismology, 58–61
heliosphere, 80–1
 helium, 28, 47, 48, 118–19
 CNO cycle, 188, 189
 interstellar, 148
 ionization, 204
 pp cycle, 186–7
 helium burning, 198, 201–2, 203
 giants, 206–7
helium flash, 201–202
 see also shell helium flashes
helium fusion, 198, 199, 200, 210
helium mass fraction, 45, 46
 Helix Nebula, 138

Herschel family, 95

hertz (Hz), 16

Hertzsprung, Ejnar, 130

Hertzsprung–Russell (H–R) diagram, 129–34

AGB phase, 200, 220
 brown dwarfs, 191
 Cepheids, 136
 cloud fragments, 164
 giants, 134
 globular cluster, 200
 horizontal branch, 200
 instability strip, 205
 interstellar material, effect of, 147
 main sequence, 133
 Orion, 157
 planetary nebulae, 244
 red giant, 133
 red giant branch, 200
 star clusters, 139
 stellar evolution, 282
 stellar mass, 137
 subgiant, 200
 supergiant, 133
 T Tauri, 136, 169
 white dwarfs, 134
 high-mass stars,
 collapse of, 261–3
 post main sequence, 208–15
HII regions, 153, 154, 156
 Hipparchus, 109
 Hipparcos satellite, 94
 Homestake mine experiment, 59–60
horizontal branch, 200
hot intercloud medium, 152, 153
 formation of, 237
 H–R diagram, *see* Hertzsprung–Russell diagram
 Hubble Space Telescope, 99, 100
 hydrogen, 118–19
 absorption lines, 102, 113
 abundances, 148
 conversion to helium, 186–7, 188, 189
 dense clouds, 161

- dissociation, 166
 fusion, 199, 200
 hydrogen atoms, 19, 25, 28
 interstellar gas, 153
 ionization, 144, 155, 178
 nuclides, 47–8
 number density, 29, 32
 recombination, 156
see also H α absorption line
- hydrogen burning**, 186–7, 197–8, 203
- hydrogen mass fraction**, 45, 46
- hydrostatic equilibrium**, 177
- I**
- ideal gas**, 176, 177, 201
- ideal gas law**, 177, 178
- Infrared Astronomical Satellite (IRAS), 170, 234
- infrared images,
 protostars, 171
 sky survey, 190, 191
 star formation, 158, 159
- infrared radiation**, 34, 35
 stars, 170
- inner Lagrangian point**, 265–6
- instability strip**, 204–5
- interacting binaries, 264–8
 evolution, 273–5
 masses, 120–1, 271, 273–4
- interferometry, 100
- interstellar cirrus**, 234
- interstellar dust, 142, 146–7, 148
- interstellar gas, 143–6, 152
 number density, 153
- interstellar medium (ISM)**, 80–1, 141–143, 152–7
 evolution of, 237–9
 properties, 148
 recycling, 283
 regions, 153, 154
 return of stellar material, 234–40
- interstellar reddening**, 146, 147, 156
- intrinsic variables**, 115, 204–5
- ionization energy**, 25, 31
- IRAS (Infrared Astronomical Satellite), 170, 234
- iron group elements**, 213
 supernova explosions, 223
- irregular variables**, 115, 117
- ISM, *see* interstellar medium
- isotopes, 225, 226
- J**
- Jeans, James, 151, 159, 160
- Jeans mass**, 160, 161
- Jupiter, 192
- K**
- Kamiokande II neutrino detector, 230
- kinetic energy**, 50, 54, 69
 supernova explosions 235
- L**
- Lagrangian points**, 265
- Large Magellanic Clouds, 115–16, 229, 230
- Leavitt, Henrietta, 115, 117
- Libra, 171
- lifetimes, *see* timescale
- light, *see* visible light
- light curves**, 115–17, 124, 125
 dwarf nova, 268
 SN 1987A, 231
 Type II supernova, 227–8
- light-year**, 94
- limb darkening**, 9–10
- line spectra**, 23, 24–6, 64
 binary stars, 97
 stellar, 88
see also absorption lines; emission lines
- lithium, 168
- local thermodynamic equilibrium**, 54
- Lockyer, Sir Norman, 28
- logarithms, 109
- lower main sequence stars**, 180, 183, 189
- low-mass stars,
 post main sequence, 197–208
- luminosity**, 106
 H–R diagrams, 129, 133, 134
 main sequence stars, 183, 189
 mass–luminosity relationship, 137, 179, 182
 novae, 268
 protostars, 164, 165
 pulsars, 254–5
 red giants, 199
 SN 1987A, 231–2
 supernova, 224, 228
 temperature–luminosity relationship, 137
 Type I supernova, 277
 variable stars, 115–17
see also absolute visual magnitudes; solar luminosity
- luminosity class**, 133, 134
- M**
- Magellanic Clouds, 115–16, 229, 230
- magnesium, 211, 212
- magnetic field**, 15, 16, 43
 corona, 32, 66, 69
 neutron star, 251–2, 269, 270
 sunspots, 62, 64
see also dipole field; polarities
- magnetic field lines**, 63
 aurora, 79–80
 solar, 66, 70, 72, 73, 75–6
- magnetic reconnection**, 69–70, 78
- magnetogram**, 64, 65, 71
- magnetograph**, 64
- magnetosphere**, 77–9
- magnitude, *see* absolute visual magnitude; apparent visual magnitude
- main sequence**, 133, 136, 138, 181–3
see also lower main sequence stars; upper main sequence stars
- main sequence turn-off**, 140
- mass,
 black hole candidates, 272, 273
 giants, 207
 interacting binaries, 120–1, 271, 273–4
 largest stars, 193

neutron stars, 271
 planetary systems, 172
 protostars, 164–5
 solar, 51
 star clusters, 139–40
 stellar, 3, 120–1, 137–8
 white dwarfs, 246
 mass fraction, 203
mass–luminosity relationship, 137, 179, 182
 mass transfer,
 binaries, 264–6, 267
 interstellar medium, 234–5
 white dwarfs, 268
 Maxwell, James Clerk, 16, 17
medium (for transmission of electromagnetic radiation), 16
metallicity, 45, 238
 ISM, 240
microwaves, 35, 67
 Milky Way (Galaxy), 1, 4, 5, 98
 distribution of elements, 239
 supernova explosions, 228
 X-ray map, 267
Mira variables, 220
 molecules, 143–6
 electron transitions, 143–6, 156
 formation of, 220
 see rotational transition;
 vibrational transition
moment of inertia, 250–1
 Moon, solar eclipses, 18, 28

N

neon, 206, 211, 212
neon burning, 212
 neutrino detectors, 60–1, 230
neutrinos, 47, 48, 54, 59–61
 supernova explosions, 224, 228, 230
neutron degeneracy pressure, 223–4
 neutron stars, 247, 261
neutron star, 224, 232, 247–8
 binaries, 269–71
 non-pulsing, 259–60

properties, 251–4
see also pulsars
 Newton’s laws, 120, 159
non-thermal (sources of radiation), 21
nova, 116, 117, 268
 in binary systems, 136
 nuclear reactions, 184–9
 CNO cycle, 188–90
 energy release, 184–6, 189
 main sequence stars, 180, 181
 nuclear fusion, 47
 pp chain, 186–8
 rate of, 185–8
 solar, 44, 46–51, 53
 supergiants, 210, 213
 supernovae, 275–6
 white dwarfs, 275–6
see also helium fusion; hydrogen fusion; ppI chain; ppII chain; ppIII chain; r-process reactions; s-process reaction
 nuclei, 25, 119
 electric charge, 185, 186
 radioactive, 227
 rest energy, 184

O

OB associations, 162
open cluster, 98
 Ophiuchus, 87
 Oppenheimer, Robert, 252
 optical telescopes, 228
 optical wavelengths, 228
 Orion, 86, 155
 Orion Nebula, 142, 170, 192
 H–R diagram, 157
 oscillations, *see* global oscillations; pulsations
oxygen burning, 212

P

parallactic eclipse, 91, 92
parallax, 91–3, 94
 Parker, Eugene, 74
parsec, 91, 94

penumbra, 62, 64
period–luminosity relationship, 117
photodisintegration, 212
photoemission, 143, 146
photoevaporation, 166
photoexcitation, 143, 144, 146
photometric method, 101
photon model of light, 17, 25, 35
photons, 17
 energy, 32, 33
 solar core, 51, 52, 53–4
photosphere, 8
 absorption lines, 26
 black-body emission, 36, 37
 granulation, 14–15
 limb darkening, 9–10
 magnetic fields, 64–5
 source of energy, 43
 sunspots, 11–13, 14
plagues, 19, 65
Planck constant, 17
Planck curves, 23, 36
 Planck spectrum, *see* black-body spectrum
planetary nebulae, 138, 221–3
 H–R diagram, 244
 shedding of, 234–5
 planets,
 extrasolar, 172
 formation, 170–2
 solar distances, 74
plasma, 46, 51, 53
 in coronal loop, 66, 67
 in solar wind, 74
 magnetic field, 69–70
 Pleiades, 98
 H–R diagram, 139
 Plough, 86, 87
 POLAR satellite, 80
polarities, 64, 70
 sunspots, 71–2
 populations, stars, 240
positrons, 47, 48

post main sequence,
high-mass stars, 208–15
low-mass stars, 197–208
pp chain, 186–8
ppI chain, 47–9, 50
ppII chain, 187
ppIII chain, 187
pressure,
in the Sun, 44
see also electron degeneracy pressure; gas pressure; neutron degeneracy pressure; radiation pressure
pressure broadening, 113, 142
primordial nucleosynthesis, 238, 239
prominences, 20, 65
proper motion, 87, 94, 123
protoplanetary discs, 170
protostar, 164
entering main sequence, 164–9
infrared images, 171
masses, 164–5
pulsars, 254, 252–9
see also X-ray pulsars
pulsating variables, 115
pulsations,
intrinsic variables, 204–5
Mira variables, 220

Q

quantum theory, 17, 25, 26

quark star, 260

quasars, 257–8

R

radial velocity, 87, 88, 89, 90

radiation, 52, 53, 55

see also electromagnetic radiation

radiation pressure, 166, 193–4

radiative zone, 55, 58

radio telescopes, 257–8

radio waves, 34, 36, 38

from CO molecules, 155

neutron stars, 253–6

protostar, 165

pulsars, 258
supernova remnants, 237
radioactive decay, 226–7
supergiants, 231–2
supernova explosions, 277
radius,
H–R diagram, 131, 132
solar, 8, 131
stellar, 3, 99–100, 113–14, 203
random walk, 53
recombination, 156
red giant branch (RGB), 200
red giants, 130, 133
circumstellar shell, 221
low mass, 199–201
red-shifts, 90
regular variables, 115
relative spectral flux density, 21, 22, 105
see also spectral flux density
rest energy, 50
nucleons, 214
Rigel, 104
Roche lobe, 265–6, 274
Roche lobe overflow, 265–6, 267
Rossi X-ray Timing Explorer satellite, 267
rotation,
neutron star, 251, 253–4, 256
solar, 13, 59, 251
rotational transition, 145
r-process reaction, 226–7
RR Lyrae variables, 220
Russell, Henry Norris, 130, 182
Russell–Vogt theorem, 182

S

Saturn, 192

scattering, 142, 143

Schwarzschild radius, 263

second law of thermodynamics, 32

seismology, 58–61

semimajor axis, 121

Serpens, 167

shell helium flashes, 207

shock front, 161–2

shock wave,

neutron degeneracy pressure, 223–4

supernova explosion, 232

sidereal period, 12, 13

silicon burning, 213

Sirius, 96, 133, 134

centre of mass, 122

SN 1987A, 228–32, 230

sodium, 211, 212

SOHO (Solar and Heliospheric Observatory), 58–9, 68

solar activity, 13, 30, 37

see also coronal mass ejections; solar cycle; solar flares; sunspots

solar activity cycle, 13, 66, 73, 78

solar cycle, 64, 71–3

see also solar activity cycle

solar flares, 37, 66–7, 69, 70

see also sunspots

solar granulation, 14, 15, 62

see also granules; supergranulation

solar interior, 44–6, 56–61

see also convective zone; core; radiative zone

solar limb, 9–10

solar luminosity, 8, 43, 51

see also luminosity

solar models, 44, 46, 56, 58–61

solar neutrino problem, 60

solar neutrinos, 59–61

solar rotation, 13, 59, 251

Solar System abundance, 119, Appendix A5

solar wind, 38–9, 74–7

Earth interactions, 77–80

in the heliosphere, 80–1

space probes, 76, 81

space velocity, 87, 90

space weather, 78, 79

see also geomagnetic storms

spectral flux density, 21, 37

see also flux density; relative spectral flux density

spectral lines, *see* line spectra

spectrometric method, 101

spectroscopic binaries, 97

spectroscopic parallax, 114

spectroscopy, 20, 21

 solar, 26–9

spectrum, 20–1, 34–5

 aurora, 79

 binary stars, 97

 black-body sources, 21–3, 24, 101

 broadband, 36–7

 classification, 113

 corona, 30–1

 HII region, 154

 interstellar medium, 146, 147

 solar spectrum, 27

see also continuous spectra; electromagnetic spectrum

speed of light in a vacuum, 16

spiral density wave, 162

s-process reaction, 207–8

stability, stellar, 181–2

standard candles, 107, 277

star cluster, 98–9

 evolution, 139–40

 formation, 158, 159

 H–R diagram, 200

 white dwarfs, 246

stars, individual

 Aldebaran A, 133

 Algol, 97

 Barnard's Star, 87, 88

 Betelgeuse, 100, 209

 δ Cephei, 115

 Gliese, 229, 192

 Mira, 220

 Rigel, 104

 RR Lyrae, 205

 Sirius, 96, 133, 134

 T Tauri, 116, 117

 Vega, 170–1

Stefan–Boltzmann constant, 106

stellar classes, 132, 133–5

 L-types, 190, 191

 OB associations, 162

stellar masses, 190–4

stellar parallax, 91–3, 94, 95

stellar remnants, *see* black holes; neutron stars; white dwarfs

stellar wind, 194

 circumstellar shells from, 234

 formation, 138

 radiation pressure, 166, 168

 red giants from, 208

stellar wind accretion, 266–7

strong shock, 236

subgiants, 200

Sudbury Neutrino Observatory (SNO),
60–1

sunspots, 9, 11–13, 14, 62

 pairs, 64, 66, 67, 71–2

see also flares

supergiants, 133, 138, 209–13

 blue, 231

supergranulation, 55

supernovae, 85, 117, 161

 binaries, 275–7

 energy release, 235

 explosions, 223–5

 heavy element creation, 225–7

 nuclear reactions, 275–6

 remnants, 232, 233, 235, 237

 supernova 1987A, 228–33

see also Type I supernova; Type II supernova

synchrotron radiation, 237

T

T Tauri stars, 117, 168

 H–R diagram, 136, 169

 light curve, 116

Taurus, 98

technetium, 207–8

telescopes,

 Hubble Space, 99, 100

 optical, 228

 radio, 257–8

 William Herschel, 100

temperature,

 chromosphere, 29

 corona, 31–2

 dense clouds, 160, 161

 H–R diagrams, 129, 133, 134

 interstellar gas, 152, 153

 luminosity relationship, 137

 main sequence stars, 180, 183, 189–90

 neutron stars, 259

 protostars, 169

 red giants, 199, 201

 solar photosphere, 8

 stellar, 101–5, 176–7, 178–9

 sunspot, 11

 supergiants, 211–12

 supernova binaries, 276

 white dwarfs, 245

termination shock, 80–1

thermal pulse, 207

thermal radiation curves, *see* black-body radiation curves

thermal (sources of radiation), 21, 33

thermalization, 53, 54

timescale,

 giant formation, 208

 main sequence star, 182–3

 nuclear burning phase, 213

 post main sequence, 203

 star formation, 164, 165

 stellar evolution, 282

tin, isotopes, 225, 226

total eclipse of the Sun, 18, 28, 76

TRACE (Transition Region And Coronal Explorer) satellite, 65, 67

transition region, 30

transverse velocity, 87, 88, 90

Trapezium, 142, 155, 192

Trifid Nebula, 167

trigger mechanism, 161

trigonometric parallax, 85, 91

triple alpha (3α) process, 198, 202

Two Micron All Sky Survey (2MASS), 190, 191

Type I supernova, 225, 275–6, 277

Type II supernova, 135, 138, 224, 225

light curve, 227–8

U

UBV system, 112

ultraviolet radiation, 34, 35, 38, 66

Ulysses space probe, 76

umbra, 62, 64

upper main sequence stars, 180, 183,

189

V

V band, 108, 110, 112

variable stars, 115–17

vibrational transition, 145

visible light, 15–17, 34, 35, 228

visual binary systems, 96–7, 122

Vogt, Heinrich, 182

Voyager 1 space probe, 81

W

warm intercloud medium, 153, 154

wavelength, 16

see also spectrum; UBV system;

V band

white dwarfs, 134, 243–6

accretion, 268

nuclear reactions, 275–6

white light image (of the Sun), 18, 30

Wien's displacement law, 22, 23

Wolf–Rayet stars, 215

X

X-ray binaries, 266, 267

X-ray map, Galaxy, 267

X-ray pulsars, 256, 269, 271

X-rays, 35, 37, 38, 39

accretion disc, 266

black hole candidates, 271, 272

from neutron stars, 260

solar flare, 66–7