FCC RF Test Report

APPLICANT : BLU Products, Inc.

EQUIPMENT : Smartphone

BRAND NAME : BLU

MODEL NAME : DASH M2

FCC ID : YHLBLUDASHM2

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DSS) Spread Spectrum Transmitter

The product was received on Mar. 01, 2016 and testing was completed on Mar. 24, 2016. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Prepared by: Ken Chen / Manager

lon Cher

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

1F & 2F, Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. China

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 1 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Testing Laboratory 2353

Report No.: FR630104A

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
su	MMAF	RY OF TEST RESULT	4
1	GENI	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	
	1.3	Product Feature of Equipment Under Test	
	1.4	Product Specification of Equipment Under Test	
	1.5	Modification of EUT	
	1.6	Testing Location	
	1.7	Applicable Standards	
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Descriptions of Test Mode	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	Number of Channel Measurement	
	3.2	Hopping Channel Separation Measurement	14
	3.3	Dwell Time Measurement	21
	3.4	20dB and 99% Bandwidth Measurement	24
	3.5	Peak Output Power Measurement	
	3.6	Conducted Band Edges Measurement	39
	3.7	Conducted Spurious Emission Measurement	
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	AC Conducted Emission Measurement	
	3.10	Antenna Requirements	67
4	LIST	OF MEASURING EQUIPMENT	68
5	UNCI	ERTAINTY OF EVALUATION	69
ΑP	PEND	IX A.RADIATED TEST RESULTS	
ΑP	PEND	IX B. SETUP PHOTOGRAPHS	

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 2 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR630104A	Rev. 01	Initial issue of report	Mar. 29, 2016

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 3 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01
Report Template No.: BU5-FR15CBT Version 1.1

Report No.: FR630104A

SUMMARY OF TEST RESULT

Report Section	FCC Rule	IC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	RSS-247 5.1(4)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	RSS-247 5.1(2)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	RSS-247 5.1(4)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	RSS-247 5.1(1)	20dB Bandwidth	NA	Pass	-
3.4	-	RSS-Gen 6.6	99% Bandwidth	-	Pass	-
3.5	15.247(b)(1)	RSS-247 5.4(2)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	RSS-247 5.5	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	RSS-247 5.5	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	RSS-247 5.5	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 3.54 dB at 33.880 MHz
3.9	15.207	RSS-Gen 8.8	AC Conducted Emission	15.207(a)	Pass	Under limit 7.11 dB at 0.480 MHz
3.10	15.203 & 15.247(b)	N/A	Antenna Requirement	N/A	Pass	-

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 4 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 1.1

Report No.: FR630104A

1 General Description

1.1 Applicant

BLU Products, Inc.

10814 NW 33rd St # 100 Doral, FL 33172

1.2 Manufacturer

BLU Products, Inc.

10814 NW 33rd St # 100 Doral, FL 33172

1.3 Product Feature of Equipment Under Test

Product Feature					
Equipment	Smartphone				
Brand Name	BLU				
Model Name	DASH M2				
FCC ID	YHLBLUDASHM2				
EUT supports Radios application	GSM/GPRS/EGPRS/WCDMA/HSPA/HSPA+(16QAM uplink is not supported) WLAN2.4GHz 802.11b/g/n HT20/HT40/ Bluetooth v3.0+EDR/Bluetooth v4.0 LE				
IMEI Code	Conducted: 353919027804354/353919027854359 Conduction: 353919027804263/353919027854268 Radiation: 353919027804347/353919027854342				
HW Version	V1.0				
SW Version	BLU_DASHMII_V02_GENERIC				
EUT Stage	Pre-Production				

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 5 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 5.94 dBm (0.00393 W) Bluetooth EDR (2Mbps) : 5.74 dBm (0.00375 W) Bluetooth EDR (3Mbps) : 5.88 dBm (0.00387 W)			
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.864MHz Bluetooth EDR (2Mbps) : 1.164MHz Bluetooth EDR (3Mbps) : 1.148MHz			
Antenna Type/Gain	PIFA Antenna with gain 1.5 dBi			
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK			

SPORTON INTERNATIONAL (SHENZHEN) INC.

FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2

TEL: 86-755-8637-9589

Page Number : 6 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 1.1

Report No.: FR630104A

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.				
	1F & 2F,Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town,				
	Nanshan District, Shenzhen, Guangdong, P. R. China				
Test Site Location	TEL: +86-755-8637-9589				
	FAX: +86-755-8637-9595				
Took Oiko No	Sportor	n Site No.			
Test Site No.	TH01-SZ	CO01-SZ			

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.				
Test Site Location	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P. R. China				
	TEL: +86-755- 3320-2398				
Took Cita No	Sporton Site No. FCC/IC Registration N				
Test Site No.	03CH02-SZ	566869/4086F			

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 7 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

		В	luetooth RF Output Pow	er
Channel			Data Rate / Modulation	
Chamilei	Frequency	GFSK	π/4-DQPSK	8-DPSK
		1Mbps	2Mbps	3Mbps
Ch00	2402MHz	5.90 dBm	5.70 dBm	5.80 dBm
Ch39	2441MHz	<mark>5.94</mark> dBm	5.74 dBm	5.88 dBm
Ch78	2480MHz	5.45 dBm	5.15 dBm	5.29 dBm

Remark:

- 1. All the test data for each data rate were verified, but only the worst case was reported.
- 2. The data rate was set in 1Mbps for all the test items due to the highest RF output power.
- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels, and different data rates were conducted to determine the final configuration (X plane as worst plane) from all possible combinations, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 8 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
	Data Rate / Modulation					
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps			
	GFSK	π /4-DQPSK	8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
	Bluetooth BR 1Mbps GFSK					
Radiated	Mode 1: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz					
	Mode 3: CH78_2480 MHz					
		Mode 3: CH78_2480 MHz				
AC		_				
AC Conducted	Mode 1 :GSM850 Idle + E	Bluetooth Link + WLAN Link	+ Earphone + USB Cable			

Remark:

- 1. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 2. For radiated test cases, the tests were performed with adapter, earphone and USB cable.

SPORTON INTERNATIONAL (SHENZHEN) INC.

FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2

TEL: 86-755-8637-9589

Page Number : 9 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 1.1

Report No.: FR630104A

2.3 Connection Diagram of Test System

<Bluetooth Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 10 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	СВТ	N/A	N/A	Unshielded, 1.8 m
2.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
3.	WLAN AP	D-link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
4.	Notebook	Lenovo	E540	FCC DoC	N/A	Shielded cable DC O/P 1.8 m Unshielded AC I/P cable1.2 m
5.	Bluetooth Earphone	Nokia	BH-108	PYAHS-107W	N/A	N/A
6.	Earphone	Lenovo	SH100	N/A	Unshielded, 1.2 m	N/A
7.	Earphone	Apple	N/A	N/A	Unshielded, 1.8 m	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$

= 5 + 10 = 15 (dB)

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 11 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

3.1.5 Test Result of Number of Hopping Frequency

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79 20		> 15	Pass

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 12 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Number of Hopping Channel Plot on Channel 00 - 78

Date: 3.MAR.2016 16:38:24

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 13 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peaks of two adjacent channels;
 - RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 14 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.2.5 Test Result of Hopping Channel Separation

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.002	0.6293	Pass
39	2441	1.314	0.6293	Pass
78	2480	1.002	0.5947	Pass

Channel Separation Plot on Channel 00 - 01

Date: 3.MAR.2016 16:58:44

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 15 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Channel Separation Plot on Channel 39 - 40

Date: 3.MAR.2016 15:33:38

Channel Separation Plot on Channel 77 - 78

Date: 3.MAR.2016 18:41:47

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 16 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.326	0.8440	Pass
39	2441	1.008	0.8440	Pass
78	2480	1.002	0.8160	Pass

Channel Separation Plot on Channel 00 - 01

Date: 3.MAR.2016 15:36:05

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 17 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Channel Separation Plot on Channel 39 - 40

Date: 3.MAR.2016 15:36:53

Channel Separation Plot on Channel 77 - 78

Date: 3.MAR.2016 15:37:54

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 18 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.002	0.8320	Pass
39	2441	1.008	0.8320	Pass
78	2480	1.014	0.8240	Pass

Channel Separation Plot on Channel 00 - 01

Date: 3.MAR.2016 15:38:40

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 19 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Channel Separation Plot on Channel 39 - 40

Date: 3.MAR.2016 15:44:50

Channel Separation Plot on Channel 77 - 78

Date: 3.MAR.2016 15:52:30

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 20 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 21 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.3.5 Test Result of Dwell Time

Test Mode :	DH5	Temperature :	24~26 ℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

Mode	Channel	Hops Over Occupancy Time(hops)		Dwell Time (sec)	Limits (sec)	Pass/Fail
Normal	79	106.67	2.890	0.31	0.4	Pass
AFH	20	53.33	2.890	0.15	0.4	Pass

Remark:

- In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.
 With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s),
 Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 22 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Package Transfer Time Plot

Report No.: FR630104A

Date: 1.MAR.2016 22:55:20

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 23 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;

RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak

Trace = max hold.

- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 99% bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = sample;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589

FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 24 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.4.5 Test Result of 20dB Bandwidth

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	0.944
39	2441	0.944
78	2480	0.892

20 dB Bandwidth Plot on Channel 00

Date: 3.MAR.2016 15:54:55

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 25 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Date: 3.MAR.2016 15:55:11

20 dB Bandwidth Plot on Channel 78

Date: 3.MAR.2016 15:57:07

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 26 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	1.266
39	2441	1.266
78	2480	1.224

Date: 3.MAR.2016 15:57:21

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 27 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Date: 3.MAR.2016 15:58:14

20 dB Bandwidth Plot on Channel 78

Date: 3.MAR.2016 16:01:38

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 28 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Test Mode :	3Mbps	Temperature :	24~26℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	1.248
39	2441	1.248
78	2480	1.236

Date: 3.MAR.2016 16:09:29

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 29 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Date: 3.MAR.2016 16:12:06

20 dB Bandwidth Plot on Channel 78

Date: 3.MAR.2016 16:16:15

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 30 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.4.6 Test Result of 99% Occupied Bandwidth

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)
00	2402	0.844
39	2441	0.864
78	2480	0.864

99% Occupied Bandwidth Plot on Channel 00

Date: 3.MAR.2016 16:22:04

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 31 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Date: 3.MAR.2016 16:22:40

99% Occupied Bandwidth Plot on Channel 78

Date: 3.MAR.2016 16:23:17

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 32 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)
00	2402	1.152
39	2441	1.164
78	2480	1.164

Date: 3.MAR.2016 16:23:53

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 33 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Date: 3.MAR.2016 16:24:29

99% Occupied Bandwidth Plot on Channel 78

Date: 3.MAR.2016 16:25:05

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 34 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)
00	2402	1.140
39	2441	1.148
78	2480	1.148

Date: 3.MAR.2016 16:25:42

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 35 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Date: 3.MAR.2016 16:26:18

99% Occupied Bandwidth Plot on Channel 78

Date: 3.MAR.2016 16:26:54

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 36 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.5 Peak Output Power Measurement

3.5.1 Limit of Peak Output Power

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 37 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.5.5 Test Result of Peak Output Power

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

		R	RF Power (dBm)	
Channel	Channel Frequency G (MHz)		Max. Limits	Dogg/Egil
	(WITZ)	1 Mbps	(dBm)	Pass/Fail
00	2402	5.90	20.97	Pass
39	2441	5.94	20.97	Pass
78	2480	5.45	20.97	Pass

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

	F	R	F Power (dBm)	
Channel Frequency (MHz)		π/4-DQPSK	Max. Limits	Pass/Fail
	(IVITIZ)	2 Mbps	(dBm)	Pass/Faii
00	2402	5.70	20.97	Pass
39	2441	5.74	20.97	Pass
78	2480	5.15	20.97	Pass

Test Mode :	3Mbps	Temperature :	24~26℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

	Eroguanov	RF Power (dBm)		
Channel			Max. Limits	Pass/Fail
	(MHz)	3 Mbps	(dBm)	Pass/Fall
00	2402	5.80	20.97	Pass
39	2441	5.88	20.97	Pass
78	2480	5.29	20.97	Pass

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 38 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 39 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.6.5 Test Result of Conducted Band Edges

Test Mode :	1Mbps	Temperature :	24~26℃
Test Channel :	00 and 78	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng

Low Band Edge Plot on Channel 00

Date: 3.MAR.2016 16:17:09

High Band Edge Plot on Channel 78

Date: 3.MAR.2016 16:18:00

Report No.: FR630104A

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Channel :	00 and 78	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng

Low Band Edge Plot on Channel 00

Date: 3.MAR.2016 16:18:52

High Band Edge Plot on Channel 78

Date: 3.MAR.2016 16:19:44

Report No.: FR630104A

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Channel :	00 and 78	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng

Low Band Edge Plot on Channel 00

Date: 3.MAR.2016 16:20:35

High Band Edge Plot on Channel 78

Date: 3.MAR.2016 16:21:27

Report No.: FR630104A

3.6.6 Test Result of Conducted Hopping Mode Band Edges

Test Mode :	1Mbps	Temperature :	24~26℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

1Mbps Hopping Mode Low Band Edge Plot

Date: 3.MAR.2016 17:05:27

1Mbps Hopping Mode High Band Edge Plot

Date: 3.MAR.2016 17:11:32

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 43 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

2Mbps Hopping Mode Low Band Edge Plot

Date: 3.MAR.2016 17:30:18

2Mbps Hopping Mode High Band Edge Plot

Date: 3.MAR.2016 18:47:53

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 44 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Engineer :	Sam Zheng	Relative Humidity :	50~53%

3Mbps Hopping Mode Low Band Edge Plot

Date: 3.MAR.2016 19:12:33

3Mbps Hopping Mode High Band Edge Plot

Date: 3.MAR.2016 19:22:50

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 45 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 46 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.7.5 Test Result of Conducted Spurious Emission

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Channel :	00	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng

1Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 3.MAR.2016 17:05:55

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 3.MAR.2016 17:06:16

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 47 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Test Mode :	1Mbps	Temperature :	24~26℃
Test Channel :	39	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng

1Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 3.MAR.2016 18:36:25

1Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 3.MAR.2016 18:36:46

Report No.: FR630104A

Test Mode :	1Mbps	Temperature :	24~26℃
Test Channel :	78	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng

1Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 3.MAR.2016 18:38:51

1Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 3.MAR.2016 18:39:13

Report No.: FR630104A

2Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 3.MAR.2016 17:30:42

2Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 3.MAR.2016 17:31:04

Report No.: FR630104A

Test Mode :	2Mbps	Temperature :	24~26℃
Test Channel :	39	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng

2Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 3.MAR.2016 18:57:44

2Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 3.MAR.2016 18:58:05

Report No.: FR630104A

Test Mode :	2Mbps	Temperature :	24~26℃
Test Channel :	78	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng

2Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 3.MAR.2016 18:53:51

2Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 3.MAR.2016 18:54:12

Report No.: FR630104A

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Channel :	00	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng

3Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 3.MAR.2016 19:23:22

3Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 3.MAR.2016 19:23:43

Report No.: FR630104A

Test Mode :	3Mbps	Temperature :	24~26℃
Test Channel :	39	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng

3Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 3.MAR.2016 19:24:53

3Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 3.MAR.2016 19:25:15

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 54 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Test Mode :	3Mbps	Temperature :	24~26℃
Test Channel :	78	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng

3Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 3.MAR.2016 19:28:04

3Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 3.MAR.2016 19:28:26

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 55 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2

TEL: 86-755-8637-9589

Page Number : 56 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.8.3 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log(Duty cycle)

6. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

Page Number : 57 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.8.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 58 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

For radiated emissions above 1GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 59 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.8.6 Duty cycle correction factor for average measurement

DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 60 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

 $2.88 \text{ ms } \times 20 \text{ channels} = 57.6 \text{ ms}$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.88 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(5.76 \text{ ms/}100\text{ms}) = -24.79 \text{ dB}$

3.8.7 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix A.

Page Number : 61 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquonov of omigaion (MUz)	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 62 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.9.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 63 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.9.5 Test Result of AC Conducted Emission

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 64 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Test Engineer: Jacky Yang Relative Humidity: 41~43% Test Voltage: 120Vac / 60Hz Phase: Neutral GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable (Charge from Adapter) + SIM1 Top	Test Mode :	Mode 1			Ten	nperatu	re :	21~2		
Test Voltage: 120Vac / 60Hz Phase: Neutral GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable (Charg from Adapter) + SIM1 Date: 2016-03-23 Time: 14:09:41 100 Evel (GBUV) Date: 2016-03-23 Time: 14:09:41 Site : C001-8Z Condition: FCC 15C QP LISN_20160112 NEUTRAL Mode : Mode 1 IMEI : 35391902780+268/35391902785+268 Over Limit Line Level Factor Loss Remark MHz dBuV dB dBuV dB dBuV dB dB 1 0.37 34.94 - 13.53 48.47 24.20 0.56 10.18 Average 2 0.37 44.04 - 14.43 58.47 33.30 0.56 10.18 QP 2 3 0.43 32.73 - 14.51 47.24 22.00 0.57 10.16 Average 4 0.43 43.23 - 14.01 57.24 92.50 0.57 10.16 Average 5 0.48 35.96 - 10.31 46.27 27.25.20 0.60 10.16 Average 6 4 0.48 49.16 - 7.11 56.27 38.40 0.60 10.16 Average 6 4 0.48 49.16 - 7.11 56.27 38.40 0.60 10.16 QP 7 0.55 34.15 - 11.85 46.00 23.41 0.59 10.15 QP 9 0.61 32.92 - 13.08 46.00 22.20 0.57 10.15 Average 10 0.61 42.32 - 13.68 56.00 35.31 0.59 10.15 QP 9 0.61 32.92 - 13.08 46.00 22.20 0.57 10.15 Average 11 0.70 32.00 - 14.00 46.00 21.30 0.55 10.15 QP 11 0.70 42.70 - 13.05 56.00 35.50 10.55 QP 11 0.70 42.70 - 13.05 56.00 31.00 0.55 10.15 QP 11 0.70 41.70 - 14.10 46.00 21.20 0.55 10.15 QP 11 0.70 41.70 - 14.10 46.00 21.20 0.55 10.15 QP 11 0.90 47.71 - 6.95 56.00 35.00 0.56 10.15 QP 11 0.90 47.71 - 6.95 56.00 35.00 0.56 10.15 QP 11 0.90 47.71 - 6.95 56.00 35.00 0.56 10.15 QP 12 0.97 46.71 - 9.29 56.00 36.00 0.56 10.15 QP 13 0.97 33.51 - 12.49 46.00 22.40 0.56 10.15 QP 14 0.77 41.70 - 14.10 46.00 21.20 0.55 10.15 QP 15 0.86 33.61 - 12.39 46.00 22.00 0.57 10.15 Average 16 0.86 45.31 - 10.95 56.00 36.00 0.56 10.15 QP 17 0.90 33.11 - 12.89 46.00 22.00 0.56 10.15 QP 18 0.90 47.71 - 6.98 56.00 36.00 0.56 10.15 QP 29 0.97 46.71 - 9.29 56.00 36.00 0.56 10.15 QP 20 0.97 46.71 - 9.29 56.00 36.00 0.56 10.15 QP 21 1.04 47.11 - 8.98 56.00 36.00 0.56 10.15 QP 21 1.04 47.11 - 8.98 56.00 36.00 0.56 10.15 QP 21 1.04 47.11 - 8.98 56										
Function Type: GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable (Charge from Adapter) + SIM1 100										
The interior is a second secon	rest voltage :			Bluetoot			link + E			`able (Chargin
Site CO01-SZ Condition: FCC 15C QP F	Function Type :				II LIIIK 1	VVLAIN	LIIK ' L	arprior	ie i 03b C	able (Chargin
Site CO01-SZ Condition: FCC 15C QP F	100 L	evel (dBuV)					Dat	e: 2016-0	3-23 Time: 14:0	9:41
Site CO01-S2 Condition: FCC 15C QP LISN N_20160112 NEUTRAL										
FCC 1SC QP FCC 1SC QP FCC 1SC AV6										
FCC 1SC AVG	70									
Site COO1-SZ Condition: FCC 15C QP LISN_20160112 NEUTRAL	60								FCC 15C_	<u>QP</u>
Site COO1-SZ Condition: FCC SC QP LISN_N_20160112 NEUTRAL	50	4.4	- 10 A	1180	San Malaya	en Alba	مد والمعاد ما	M	FCC 15C_/	AVG
Site C001-SZ Condition: FCC 15C QP LISN_N_20160112 NEUTRAL	40	Afternational property and the second			1000	4143	RIAMES THAT	TO WALL AND A PARTY	HAMAN AND THE PARTY OF THE PART	
Site C001-SZ Condition: FCC 15C QP LISN_N_20160112 NEUTRAL	30	, (///	[]3 []	9 1111314/15	242729333	goell 1.14	51 4 491		П	
Site CO01-SZ Condition: FCC 15C QP LISN_N_20160112 NEUTRAL	20									
Site : C001-SZ Condition: FCC 1SC QP LISN_N_20160112 NEUTRAL	10									
Site : C001-SZ Condition: FCC 1SC QP LISN_N_20160112 NEUTRAL	0	15 .2	.5	1		2	5	10) 20	30
Mode					Frequ	ency (MHz)			
TMEI				SN_N_201	50112 NE	UTRAL				
Note			0278042	63/353919	90278542	68				
MHz dBuV dB dBuV dBuV dBuV dB dB 1 0.37 34.94 -13.53 48.47 24.20 0.56 10.18 Average 2 0.37 44.04 -14.43 58.47 33.30 0.56 10.18 QP 3 0.43 32.73 -14.51 47.24 22.00 0.57 10.16 Average 4 0.43 43.23 -14.01 57.24 32.50 0.57 10.16 QP 5 0.48 35.96 -10.31 46.27 25.20 0.60 10.16 Average 6 * 0.48 49.16 -7.11 56.27 38.40 0.60 10.16 QP 7 0.55 34.15 -11.85 46.00 23.41 0.59 10.15 QP 9 0.61 32.92 -13.08 46.00 22.20 0.57 10.15 QP 10 0.61 42.32 -13.68 56.00 31.60 0.57 10.15 QP 11 0.70 32.00 -14.00 46.00 21.30 0.55 10.15 Average 12 0.70 42.70 -13.30 56.00 32.00 0.55 10.15 QP 13 0.77 31.90 -14.10 46.00 21.20 0.55 10.15 QP 15 0.86 33.61 -12.39 46.00 22.90 0.56 10.15 QP 16 0.86 45.31 -10.69 56.00 31.60 0.56 10.15 QP 17 0.90 33.11 -12.89 46.00 22.90 0.56 10.15 QP 19 0.97 33.51 -12.49 46.00 22.80 0.56 10.15 QP 20 0.97 46.71 -9.29 56.00 37.00 0.56 10.15 QP 21 1.04 34.61 -11.39 46.00 22.80 0.56 10.15 QP 22 1 1.04 34.61 -11.39 46.00 23.90 0.56 10.15 QP 21 1.04 34.61 -11.39 46.00 23.90 0.56 10.15 QP 22 1 1.04 34.61 -11.39 46.00 23.90 0.56 10.15 QP 23 1.15 33.42 -12.58 46.00 22.70 0.56 10.15 QP 24 1.15 43.92 -12.08 56.00 33.20 0.56 10.15 QP				Over	Limit	Read				
1 0.37 34.94 -13.53 48.47 24.20 0.56 10.18 Average 2 0.37 44.04 -14.43 58.47 33.30 0.56 10.18 QP 3 0.43 32.73 -14.51 47.24 22.00 0.57 10.16 Average 4 0.43 43.23 -14.01 57.24 32.50 0.57 10.16 QP 5 0.48 35.96 -10.31 46.27 25.20 0.60 10.16 QP 6 * 0.48 49.16 -7.11 56.27 38.40 0.60 10.16 QP 7 0.55 34.15 -11.85 46.00 23.41 0.59 10.15 Average 8 0.55 46.05 -9.95 56.00 35.31 0.59 10.15 QP 9 0.61 32.92 -13.08 46.00 22.20 0.57 10.15 Average 10 0.61 42.32 -13.68 56.00 31.60 0.57 10.15 Average 11 0.70 32.00 -14.00 46.00 21.30 0.55 10.15 Average 12 0.70 42.70 -13.30 56.00 32.00 0.55 10.15 Average 13 0.77 31.90 -14.10 46.00 21.20 0.55 10.15 Average 14 0.77 41.70 -14.30 56.00 31.00 0.55 10.15 QP 15 0.86 33.61 -12.39 46.00 22.90 0.56 10.15 QP 17 0.90 33.11 -12.89 46.00 22.90 0.56 10.15 Average 18 0.90 47.71 -8.29 56.00 34.60 0.56 10.15 QP 19 0.97 33.51 -12.49 46.00 22.80 0.56 10.15 Average 20 0.97 46.71 -9.29 56.00 36.00 0.56 10.15 QP 21 1.04 34.61 -11.39 46.00 23.90 0.56 10.15 Average 22 1.04 47.11 -8.89 56.00 36.40 0.56 10.15 QP 23 1.15 33.42 -12.58 46.00 22.70 0.56 10.15 Average 24 1.15 43.92 -12.08 56.00 33.20 0.56 10.16 QP		Freq	Level	Limit	Line	Level	Factor	Loss	Remark	_
2 0.37 44.04 -14.43 58.47 33.30 0.56 10.18 QP 3 0.43 32.73 -14.51 47.24 22.00 0.57 10.16 Average 4 0.43 43.23 -14.01 57.24 32.50 0.57 10.16 QP 5 0.48 35.96 -10.31 46.27 25.20 0.60 10.16 Average 6 4 0.48 49.16 -7.11 56.27 38.40 0.60 10.16 QP 7 0.55 34.15 -11.85 46.00 23.41 0.59 10.15 Average 8 0.55 46.05 -9.95 56.00 35.31 0.59 10.15 QP 9 0.61 32.92 -13.08 46.00 22.20 0.57 10.15 QP 11 0.70 32.00 -14.00 46.00 21.30 0.55 10.15 QP 11 0.70 32.00 -14.00 46.00 21.30 0.55 10.15 QP 13 0.77 31.90 -14.10 46.00 21.20 0.55 10.15 QP 14 0.77 41.70 -14.30 56.00 31.00 0.55 10.15 Average 14 0.77 41.70 -14.30 56.00 31.00 0.55 10.15 QP 15 0.86 33.61 -12.39 46.00 22.90 0.56 10.15 QP 17 0.90 33.11 -12.89 46.00 22.90 0.56 10.15 QP 19 0.97 33.51 -12.49 46.00 22.40 0.56 10.15 QP 19 0.97 33.51 -12.49 46.00 22.80 0.56 10.15 QP 21 1.04 34.61 -11.39 46.00 22.80 0.56 10.15 QP 22 1.04 47.11 -8.89 56.00 36.40 0.56 10.15 QP 23 1.15 33.42 -12.58 46.00 22.70 0.56 10.15 QP 23 1.15 33.42 -12.58 46.00 22.70 0.56 10.16 QP		MHz	dBu∀	dB	dBu∀	dBu∀	dB	dB		
3									_	
5										
6 * 0.48 49.16 -7.11 56.27 38.40 0.60 10.16 QP 7 0.55 34.15 -11.85 46.00 23.41 0.59 10.15 Average 8 0.55 46.05 -9.95 56.00 35.31 0.59 10.15 QP 9 0.61 32.92 -13.08 46.00 22.20 0.57 10.15 Average 10 0.61 42.32 -13.68 56.00 31.60 0.57 10.15 QP 11 0.70 32.00 -14.00 46.00 21.30 0.55 10.15 Average 12 0.70 42.70 -13.30 56.00 32.00 0.55 10.15 Average 13 0.77 31.90 -14.10 46.00 21.20 0.55 10.15 QP 15 0.86 33.61 -12.39 46.00 22.90 0.56 10.15 Average 16 0.86 45.31 -10.69 56.00 31.00 0.55 10.15 QP 17 0.90 33.11 -12.89 46.00 22.90 0.56 10.15 Average 18 0.90 47.71 -8.29 56.00 37.00 0.56 10.15 QP 19 0.97 33.51 -12.49 46.00 22.80 0.56 10.15 QP 20 0.97 46.71 -9.29 56.00 37.00 0.56 10.15 QP 21 1.04 34.61 -11.39 46.00 23.90 0.56 10.15 QP 21 1.04 34.61 -11.39 46.00 23.90 0.56 10.15 QP 22 1.04 47.11 -8.89 56.00 36.40 0.56 10.15 QP 23 1.15 33.42 -12.58 46.00 22.70 0.56 10.16 QP	4	0.43	43.23	-14.01	57.24	32.50			_	
7		0.48	35.96	-10.31	46.27	25.20	0.60	10.16	Average	
8										
9									_	
10	_									
11										
12										
13										
14										
15										
16										
17	16	0.86								
19	17	0.90	33.11	-12.89	46.00	22.40	0.56	10.15	Average	
20 0.97 46.71 -9.29 56.00 36.00 0.56 10.15 QP 21 1.04 34.61 -11.39 46.00 23.90 0.56 10.15 Average 22 1.04 47.11 -8.89 56.00 36.40 0.56 10.15 QP 23 1.15 33.42 -12.58 46.00 22.70 0.56 10.16 Average 24 1.15 43.92 -12.08 56.00 33.20 0.56 10.16 QP										
21 1.04 34.61 -11.39 46.00 23.90 0.56 10.15 Average 22 1.04 47.11 -8.89 56.00 36.40 0.56 10.15 QP 23 1.15 33.42 -12.58 46.00 22.70 0.56 10.16 Average 24 1.15 43.92 -12.08 56.00 33.20 0.56 10.16 QP									_	
22 1.04 47.11 -8.89 56.00 36.40 0.56 10.15 QP 23 1.15 33.42 -12.58 46.00 22.70 0.56 10.16 Average 24 1.15 43.92 -12.08 56.00 33.20 0.56 10.16 QP										
23 1.15 33.42 -12.58 46.00 22.70 0.56 10.16 Average 24 1.15 43.92 -12.08 56.00 33.20 0.56 10.16 QP										
24 1.15 43.92 -12.08 56.00 33.20 0.56 10.16 QP										
25 1.22 33.12 -12.88 46.00 22.40 0.56 10.16 Average										
26 1.22 43.32 -12.68 56.00 32.60 0.56 10.16 Average										
27 1.34 31.73 -14.27 46.00 21.00 0.56 10.17 Average										
28 1.34 44.73 -11.27 56.00 34.00 0.56 10.17 QP										
29 1.46 32.04 -13.96 46.00 21.30 0.57 10.17 Average										

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 65 of 69 Report Issued Date: Mar. 29, 2016 Report Version : Rev. 01

Report No.: FR630104A

Test Mode :	Mode 1	Temperature :	21~23℃			
Test Engineer :	Jacky Yang	Relative Humidity :	41~43%			
Test Voltage :	120Vac / 60Hz	Phase :	Neutral			
Function Type :	GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable (Charging from Adapter) + SIM1					

Frequency (MHz)

Site : CO01-SZ

0.15 .2

Condition: FCC 15C OP LISN_N_20160112 NEUTRAL

Mode : Mode 1

IMEI : 353919027804263/353919027854268

			Over	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBu∀	dB	dBu∀	dBu∀	dB	dB	
30	1.46		-10.76		34.50			
31	1.60	30.94	-15.06		20.19			Average
32	1.60		-13.56		31.69		10.18	QP
33	1.70	30.95	-15.05	46.00	20.20	0.57	10.18	Average
34	1.70	42.45	-13.55	56.00	31.70	0.57	10.18	QP
35	1.86	31.05	-14.95	46.00	20.30	0.57	10.18	Average
36	1.86	42.35	-13.65	56.00	31.60	0.57	10.18	QP
37	1.95	33.76	-12.24	46.00	23.00	0.57	10.19	Average
38	1.95	45.96	-10.04	56.00	35.20	0.57	10.19	QP
39	2.13	33.37	-12.63	46.00	22.60	0.58	10.19	Average
40	2.13	44.17	-11.83	56.00	33.40	0.58	10.19	QP
41	2.81	35.01	-10.99	46.00	24.20	0.60	10.21	Average
42	2.81	46.31	-9.69	56.00	35.50	0.60	10.21	QP
43	3.09	34.92	-11.08	46.00	24.10	0.61	10.21	Average
44	3.09	44.62	-11.38	56.00	33.80	0.61	10.21	QP
45	3.29	32.13	-13.87	46.00	21.30	0.61	10.22	Average
46	3.29	43.33	-12.67	56.00	32.50	0.61	10.22	QP
47	4.07	30.56	-15.44	46.00	19.70	0.63	10.23	Average
48	4.07	39.46	-16.54	56.00	28.60	0.63	10.23	QP
49	4.41	32.87	-13.13	46.00	22.00	0.64	10.23	Average
50	4.41	42.97	-13.03	56.00	32.10	0.64	10.23	QP
51	4.72	33.28	-12.72	46.00	22.39	0.65	10.24	Average
52	4.72	43.68	-12.32	56.00	32.79	0.65	10.24	QP

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 66 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Page Number : 67 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 1.1

Report No.: FR630104A

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark	
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Jan. 12, 2016	Mar. 01, 2016~ Mar. 03, 2016	Jan. 11, 2017	Conducted (TH01-SZ)	
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Jan. 12, 2016	Mar. 01, 2016~ Mar. 03, 2016	Jan. 11, 2017	Conducted (TH01-SZ)	
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Jan. 12, 2016	Mar. 01, 2016~ Mar. 03, 2016	Jan. 11, 2017	Conducted (TH01-SZ)	
EMI Test Receiver	R&S	ESR7	101404	9kHz~7GHz;Ma x 30dBm	Oct. 20, 2015	Mar. 24, 2016	Oct. 19, 2016	Radiation (03CH02-SZ)	
Spectrum Analyzer	R&S	FSV40	101041	10kHz~40GHz; Max 30dBm	Oct. 20, 2015	Mar. 24, 2016	Oct. 19, 2016	Radiation (03CH02-SZ)	
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May 06, 2015	Mar. 24, 2016	May 05, 2016	Radiation (03CH02-SZ)	
Bilog Antenna	TeseQ	CBL6112D	35407	30MHz-2GHz	May 06, 2015	Mar. 24, 2016	May 05, 2016	Radiation (03CH02-SZ)	
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-128 5	1GHz~18GHz	Jan. 11, 2016	Mar. 24, 2016	Jan. 10, 2017	Radiation (03CH02-SZ)	
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Aug. 17, 2015	Mar. 24, 2016	Aug. 16, 2016	Radiation (03CH02-SZ)	
Amplifier	HP	8447F	3113A046 22	9kHz ~1300MHz / 30 dB	Aug. 07, 2015	Mar. 24, 2016	Aug. 06, 2016	Radiation (03CH02-SZ)	
Amplifier	Agilent	8449B	3008A010 23	1GHz~26.5GHz	Oct. 20, 2015	Mar. 24, 2016	Oct. 19, 2016	Radiation (03CH02-SZ)	
AC Power Source	Chroma	61601	616010002 470	N/A	NCR	Mar. 24, 2016	NCR	Radiation (03CH02-SZ)	
Turn Table	Chaintek	T-200	N/A	0~360 degree	NCR	Mar. 24, 2016	NCR	Radiation (03CH02-SZ)	
Antenna Mast	Chaintek	MBS-400	N/A	1 m~4 m	NCR	Mar. 24, 2016	NCR	Radiation (03CH02-SZ)	
EMI Test Receiver	R&S	ESR7	101404	9kHz~7GHz;Ma x 30dBm	Oct. 20, 2015	Mar. 23, 2016	Oct. 19, 2016	Conduction (CO01-SZ)	
AC LISN	EMCO	3816/2SH	00103892	9kHz~30MHz	Jan. 12, 2016	Mar. 23, 2016	Jan. 11, 2017	Conduction (CO01-SZ)	
AC LISN (for auxiliary equipment)	MessTec	3816/2SH	00103912	9kHz~30MHz	Jan. 12, 2016	Mar. 23, 2016	Jan. 11, 2017	Conduction (CO01-SZ)	
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Aug. 07, 2015	Mar. 23, 2016	Aug. 06, 2016	Conduction (CO01-SZ)	
Pulse Limiter	COM-POWER	LIT-153 Transient Limiter	53139	150kHz~30MHz	Oct. 20, 2015	Mar. 23, 2016	Oct. 19, 2016	Conduction (CO01-SZ)	

NCR: No Calibration Required

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 68 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 1.1

Report No.: FR630104A

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of	2.3dB
Confidence of 95% (U = 2Uc(y))	2.3UB

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of	5.0dB
Confidence of 95% (U = 2Uc(y))	3.0db

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : 69 of 69
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 1.1

Report No.: FR630104A

Appendix A. Radiated Spurious Emission

15C 2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2380.33	46.28	-27.72	74	37.97	32.58	5.07	29.34	210	238	Р	Н
		2380.33	21.49	-32.51	54	-	-	-	-	210	238	Α	Н
	*	2402	97.76	1	-	89.47	32.6	5.07	29.38	210	238	Р	Н
BT CH00	*	2402	72.97	ı	-	-	-	ı	-	210	238	Α	Н
2402MHz		2384.49	46.46	-27.54	74	38.15	32.58	5.07	29.34	150	95	Р	V
2402111112		2384.49	21.67	-32.33	54	-	-	ı	-	150	95	Α	V
	*	2402	88.59	1	-	80.3	32.6	5.07	29.38	150	95	Р	V
	*	2402	63.8	-	-	-	-	-	-	150	95	Α	V
		2372.32	45.7	-28.3	74	37.39	32.58	5.07	29.34	223	262	Р	Н
		2372.32	20.91	-33.09	54	-	-	-	-	223	262	Α	Н
	*	2441	99.89	-	-	91.45	32.65	5.12	29.33	223	262	Р	Н
	*	2441	75.1	-	-	-	-	-	-	223	262	Α	Н
		2495.82	45.12	-28.88	74	36.49	32.7	5.21	29.28	223	262	Р	Н
BT		2495.82	20.33	-33.67	54	-	-	-	-	223	262	Α	Н
CH 39 2441MHz		2365.48	45.83	-28.17	74	37.58	32.56	5.03	29.34	207	184	Р	V
277 11811 12		2365.48	21.04	-32.96	54	-	-	-	-	207	184	Α	V
	*	2441	91.47	-	-	83.03	32.65	5.12	29.33	207	184	Р	V
	*	2441	66.68	-	-	-	-	-	-	207	184	Α	V
		2492.59	45.41	-28.59	74	36.78	32.7	5.21	29.28	207	184	Р	٧
		2492.59	20.62	-33.38	54	-	-	-	-	207	184	Α	V

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : A1 of A6
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

	*	2480	100.83	-	-	92.3	32.68	5.16	29.31	246	260	Р	Н
	*	2480	76.04	-	-	-	-	-	-	246	260	Α	Н
		2484.04	46.09	-27.91	74	37.56	32.68	5.16	29.31	246	260	Р	Н
BT CH 78 2480MHz		2484.04	21.3	-32.7	54	-	-	-	-	246	260	Α	Н
	*	2480	91	-	1	82.47	32.68	5.16	29.31	183	119	Р	٧
2400111112	*	2480	66.21	-	-	-	-	-	-	183	119	Α	V
		2484.81	46.22	-27.78	74	37.69	32.68	5.16	29.31	183	119	Р	V
		2484.81	21.43	-32.57	54	-	-	-	-	183	119	Α	٧
Remark		o other spurious for		c and Ave	rage limit line.								

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : A2 of A6
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

15C 2.4GHz 2400~2483.5MHz

BT (Harmonic @ 3m)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
ВТ		4804	44.42	-29.58	74	60.9	34.39	7.43	58.3	153	360	Р	Н
CH 00		4804	19.63	-34.37	54					153	360	Α	Н
2402MHz		4804	44.14	-29.86	74	60.62	34.39	7.43	58.3	153	360	Р	V
2402WIFIZ		4804	19.35	-34.65	54					153	360	Α	V
		4882	43.49	-30.51	74	60.23	34.43	7.49	58.66	153	360	Р	Н
		4882	18.7	-35.3	54					153	360	Α	Н
		7323	46.23	-27.77	74	58.9	36.23	9.7	58.6	153	360	Р	Н
BT		7323	21.44	-32.56	54					153	360	Α	Н
CH 39 2441MHz		4882	42.76	-31.24	74	59.5	34.43	7.49	58.66	153	360	Р	V
244 HVIITIZ		4882	17.97	-36.03	54					153	360	Α	V
		7323	46.22	-27.78	74	58.89	36.23	9.7	58.6	153	360	Р	V
		7323	21.43	-32.57	54					153	360	Α	V
		4960	46.55	-27.45	74	62.81	34.48	7.56	58.3	153	360	Р	Н
		4960	21.76	-32.24	54					153	360	Α	Н
		7440	45.96	-28.04	74	58.28	36.28	9.85	58.45	153	360	Р	Н
BT		7440	21.17	-32.83	54					153	360	Α	Н
CH 78 2480MHz		4960	45.26	-28.74	74	61.52	34.48	7.56	58.3	153	360	Р	V
2400WIF12		4960	20.47	-33.53	54					153	360	Α	V
		7440	45.34	-28.66	74	57.66	36.28	9.85	58.45	153	360	Р	V
		7440	20.55	-33.45	54					153	360	Α	٧

^{2.} All results are PASS against Peak and Average limit line.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : A3 of A6
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

15C Emission below 1GHz

2.4GHz BT (LF)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30.97	29.05	-10.95	40	35.25	19.09	0.77	26.06	100	0	Р	Н
		123.12	24.22	-19.28	43.5	33.76	14.49	1.63	25.66			Р	Н
		169.68	21.61	-21.89	43.5	33.19	11.88	1.95	25.41			Р	Н
		313.24	21.17	-24.83	46	29.32	14.28	2.71	25.14			Р	Н
0.4011-		655.65	27.48	-18.52	46	29.43	20.03	4.42	26.4			Р	Н
2.4GHz BT		803.09	30.35	-15.65	46	29.05	22.47	4.99	26.16			Р	Н
LF		33.88	36.46	-3.54	40	44.14	17.56	8.0	26.04	100	0	Р	V
Li		100.81	23.43	-20.07	43.5	35.86	11.84	1.5	25.77			Р	V
		121.18	20.86	-22.64	43.5	30.34	14.57	1.62	25.67			Р	V
		610.06	27.5	-18.5	46	29.9	19.76	4.27	26.43			Р	V
		847.71	30.17	-15.83	46	28.91	22.07	5.22	26.03			Р	٧
		893.3	30.02	-15.98	46	28.88	21.66	5.37	25.89			Р	V
Remark		other spurious for		line									

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : A4 of A6
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

Note symbol

	Fundamental Frequency which can be ignored. However, the level of any
*	unwanted emissions shall not exceed the level of the fundamental frequency per
	15.209(c).
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHM2 Page Number : A5 of A6
Report Issued Date : Mar. 29, 2016
Report Version : Rev. 01

Report No.: FR630104A

A calculation example for radiated spurious emission is shown as below:

Report No.: FR630104A

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

 SPORTON INTERNATIONAL (SHENZHEN) INC.
 Page Number
 : A6 of A6

 TEL: 86-755-8637-9589
 Report Issued Date
 : Mar. 29, 2016

 FAX: 86-755-8637-9595
 Report Version
 : Rev. 01

FCC ID : YHLBLUDASHM2 Report Template No.: BU5-FR15CBT Version 1.1