

Workshop Unit 6

Interfacing & Controlling your Robotic Hand

Manuel Knecht

23 October 2023

Overview

- 1. Required Materials
- 2. Structure of the Code Framework
- 3. Setup and running the example code

Required Material

Code Framework

tendon lengths

motor positions

gripper definitions

→ motor information

Gripper Defs:

- Definitions of the Gripper
- Stores joint, tendon and motor definitions

example.py

Define your joint-level motions and poses.

Gripper Controller:

- Calculate motor positions
- Initialize & terminate motors
- Calibrate hand & read config

Finger Kinematics:

- Calculate free tendon length from joint position

Dynamixel Client:

- Read & Write motor param.
- Communication w/ motors

Setup and running the example code

- Setup the Dynamixel motors
 - Set unique IDs for each motor
 - Set baudrate to 3 Mbps
- Run the example code
 - Run example.py and check if everything works
- Adjust the framework to your application
 - Implement your kinematics

TH zürich

