Mud card

- Why would you ever want to train an XGboost reduced-features model if XGboost is good at handling missing values on its own?
 - I use it in class so you see that the plain XGB test score and the reduced-features XGB test score are pretty similar.
 - You might want to compare how the XGB reduced-features test scores compare to e.g., SVM reduced-features or RF reduced-features.
 - But generally speaking, there is no need to use reduced-features with XGB
- What are the pros and cons of using a different machine learning algorithms for the reduced-features submodel that has no
 missing values? In today's lecture it was pointed out that a different function than XGBoost should be used in the
 reduced_feature_xgb function in the lecture notes. Are there shortcomings in using XGboost here? Or it is a matter of the
 choice of model
 - If your dataset has no missing values, there is no need to use reduced-features.
 - If your dataset has missing values, use reduced features and modify the code such that it works with other ML models (like the linear models, SVM, RF, k-nearest neighbor).
- Why should the XGBoost model perform roughly the same when we just use XGBoost versus when we do the reducedfeature model?
 - This is not a general conclusion.
 - XGB and reduced-feature-XGB happens to perform similarly on the kaggle hours price dataset but that does not mean that the performance will be similar on any and all dataset!
 - What this indicates is that maybe the missingness in the house price dataset doesn't correlate with the target variable.
 - Again, this is a conclusion specific to this one dataset!
- Why can't we run sklearn models on gpus? Is there a particular barrier, or are they just not optimized yet?
 - It is a significant amount of work to write GPU-friendly code and the sklearn developers decided not to do so.
 - the work is warranted for deep learning packages because most of the computations are performed on GPUs.
 - It's less beneficial to run sklearn on GPUs because many of the models and techniques in sklearn are not inherently parallelizable.

Global feature importance metrics

By the end of this module, you will be able to

- perform permutation feature importance calculation
- study the coefficients of linear models
- outlook to other metrics

The supervised ML pipeline

The goal: Use the training data (X and y) to develop a model which can accurately predict the target variable (y_new') for previously unseen data (X_new).

- 1. Exploratory Data Analysis (EDA): you need to understand your data and verify that it doesn't contain errors
- do as much EDA as you can!
- 2. Split the data into different sets: most often the sets are train, validation, and test (or holdout)
- practitioners often make errors in this step!
- you can split the data randomly, based on groups, based on time, or any other non-standard way if necessary to answer your ML question
- **3. Preprocess the data**: ML models only work if X and Y are numbers! Some ML models additionally require each feature to have 0 mean and 1 standard deviation (standardized features)
 - often the original features you get contain strings (for example a gender feature would contain 'male', 'female', 'non-binary', 'unknown') which needs to transformed into numbers
 - often the features are not standardized (e.g., age is between 0 and 100) but it needs to be standardized
- 4. Choose an evaluation metric: depends on the priorities of the stakeholders
- often requires quite a bit of thinking and ethical considerations
- 5. Choose one or more ML techniques: it is highly recommended that you try multiple models
- start with simple models like linear or logistic regression
- try also more complex models like nearest neighbors, support vector machines, random forest, etc.
- 6. Tune the hyperparameters of your ML models (aka cross-validation)

- ML techniques have hyperparameters that you need to optimize to achieve best performance
- for each ML model, decide which parameters to tune and what values to try
- loop through each parameter combination
 - train one model for each parameter combination
 - evaluate how well the model performs on the validation set
- take the parameter combo that gives the best validation score
- evaluate that model on the test set to report how well the model is expected to perform on previously unseen data

7. Interpret your model: black boxes are often not useful

- check if your model uses features that make sense (excellent tool for debugging)
- often model predictions are not enough, you need to be able to explain how the model arrived to a particular prediction (e.g., in health care)

Motivation

- · debugging ML models is tough
 - a model that runs without errors/warning is not necessarily correct
- how do you know that your model is correct?
 - check test set predictions
 - o in regression: check points with a large difference between true and predicted values
 - o in classification: confusion matrix, check out FPs and FNs
 - inspect your model
 - o especially useful for non-linear models
 - o metrics to measure how much a model depends on a feature is one way to inspect your model

Global feature importance metrics

By the end of this module, you will be able to

- perform permutation feature importance calculation
- study coefficients of linear models
- outlook to other metrics

Permutation feature importance

- model agnostic, you can use it with any supervised ML model
- steps:
 - train a model and calculate a test score :)
 - randomly shuffle a single feature in the test set
 - recalculate the test score with the shuffled data
 - model score worsens because the shuffling breaks the relationship between feature and target
 - the larger the difference, the more important the feature is

```
In [1]: import numpy as np
        import pandas as pd
        from sklearn.svm import SVC
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.pipeline import make_pipeline
        from sklearn.model_selection import GridSearchCV
        from sklearn.model_selection import train_test_split
        from sklearn.model_selection import StratifiedKFold
        from sklearn.preprocessing import StandardScaler
        from sklearn.compose import ColumnTransformer
        from sklearn.pipeline import Pipeline
        from sklearn.preprocessing import OneHotEncoder
        import matplotlib.pylab as plt
        df = pd.read_csv('data/adult_data.csv')
        label = 'gross-income'
        y = df[label]
        df.drop(columns=[label],inplace=True)
        X = df
        ftr_names = X.columns
        print(X.head())
        print(y)
```

```
13
       1
          50
                Self-emp-not-inc 83311
                                           Bachelors
       2
          38
                        Private 215646
                                            HS-grad
                                                                 9
       3
          53
                        Private 234721
                                                11th
                                                                  7
                                           Bachelors
          28
                        Private 338409
                                                                 13
       4
                                       occupation
               marital-status
                                                    relationship
                                                                     race
                                                                               sex \
               Never-married
       0
                                    Adm-clerical Not-in-family
                                                                   White
                                                                              Male
                                                          Husband White
       1
          Married-civ-spouse
                                 Exec-managerial
                                                                              Male
       2
                    Divorced Handlers-cleaners Not-in-family White
                                                                              Male
       3
          Married-civ-spouse Handlers-cleaners
                                                          Husband Black
                                                                              Male
          Married-civ-spouse
                                   Prof-specialty
                                                             Wife Black Female
          capital-gain capital-loss hours-per-week native-country
       0
                  2174
                                                      United-States
                                   0
                                                  13
       1
                    0
                                   0
                                                      United-States
       2
                    0
                                   0
                                                  40
                                                      United-States
       3
                    0
                                   0
                                                  40
                                                     United-States
       4
                                   0
                                                  40
                                                                Cuba
       0
                 <=50K
       1
                 <=50K
       2
                 <=50K
       3
                 <=50K
       4
                 <=50K
       32556
                 <=50K
       32557
                 >50K
       32558
                 <=50K
       32559
                 <=50K
       32560
                 >50K
       Name: gross-income, Length: 32561, dtype: object
In [2]: def ML_pipeline_kfold(X,y,random_state,n_folds):
            # create a test set
            X_other, X_test, y_other, y_test = train_test_split(X, y, test_size=0.2, random_state = random_state)
            # splitter for _other
            kf = StratifiedKFold(n_splits=n_folds,shuffle=True,random_state=random_state)
            # create the pipeline: preprocessor + supervised ML method
            cat_ftrs = ['workclass','education','marital-status','occupation','relationship','race','sex','native-country']
            cont_ftrs = ['age','fnlwgt','education-num','capital-gain','capital-loss','hours-per-week']
            # one-hot encoder
            categorical_transformer = Pipeline(steps=[
                ('onehot', OneHotEncoder(sparse_output=False, handle_unknown='ignore'))])
            # standard scaler
            numeric_transformer = Pipeline(steps=[
                ('scaler', StandardScaler())])
            preprocessor = ColumnTransformer(
                transformers=[
                    ('num', numeric_transformer, cont_ftrs),
                    ('cat', categorical_transformer, cat_ftrs)])
            pipe = make_pipeline(preprocessor, SVC())
            #pipe = make_pipeline(preprocessor,RandomForestClassifier())
            # the parameter(s) we want to tune
            param_grid = \{ 'svc_C' : [0.01, 0.1, 1, 10, 100], \}
                          'svc__gamma': [0.01, 0.1, 1, 10, 100]}
            # param_grid = {
            #
                           'randomforestclassifier__max_depth': [1, 3, 10, 30, 100], # no upper bound so the values are eve
            #
                           'randomforestclassifier__max_features': [0.25, 0.5,0.75,1.0] # linearly spaced because it is bet
            # prepare gridsearch
            grid = GridSearchCV(pipe, param_grid=param_grid,cv=kf, return_train_score = True,n_jobs=-1,verbose=True)
            # do kfold CV on _other
            grid.fit(X_other, y_other)
            return grid, X_test, y_test
```

education education-num \

13

Bachelors

Be careful, SVM is used on a relatively large dataset

workclass fnlwgt

State-gov 77516

age

39

0

```
In [3]: model, X_test, y_test = ML_pipeline_kfold(X,y,42,4)
    print(model.best_score_)
    print(model.score(X_test,y_test))
    print(model.best_params_)

# save the output so I can use it later
    import pickle
    file = open('results/grid.save', 'wb')
    pickle.dump((model,X_test,y_test),file)
    file.close()

Fitting 4 folds for each of 25 candidates, totalling 100 fits
    0.8545377764127764
    0.8624289881774911
    {'svc_C': 1, 'svc_gamma': 0.1}
```

```
In [4]: import pickle
         file = open('results/grid.save', 'rb')
         model, X_test, y_test = pickle.load(file)
         file.close()
         np.random.seed(42)
         nr_runs = 10
         scores = np.zeros([len(ftr_names),nr_runs])
         test_score = model.score(X_test,y_test)
         print('test score = ',test_score)
         print('test baseline = ',np.sum(y_test == ' <=50K')/len(y_test))</pre>
         # loop through the features
         for i in range(len(ftr_names)):
             print('shuffling '+str(ftr_names[i]))
             acc_scores = []
             for j in range(nr_runs):
                 X_test_shuffled = X_test.copy()
                 X_test_shuffled[ftr_names[i]] = np.random.permutation(X_test[ftr_names[i]].values)
                 acc_scores.append(model.score(X_test_shuffled,y_test))
             print(' shuffled test score:',np.around(np.mean(acc_scores),3),'+/-',np.around(np.std(acc_scores),3))
             scores[i] = acc_scores
        test score = 0.8624289881774911
        test baseline = 0.7587901120835252
        shuffling age
           shuffled test score: 0.851 +/- 0.002
        shuffling workclass
           shuffled test score: 0.861 +/- 0.001
        shuffling fnlwgt
           shuffled test score: 0.862 +/- 0.001
        shuffling education
           shuffled test score: 0.86 +/- 0.001
        shuffling education-num
           shuffled test score: 0.839 +/- 0.002
        shuffling marital-status
           shuffled test score: 0.842 +/- 0.002
        shuffling occupation
           shuffled test score: 0.844 +/- 0.002
        shuffling relationship
           shuffled test score: 0.851 + - 0.003
        shuffling race
           shuffled test score: 0.862 + - 0.0
        shuffling sex
           shuffled test score: 0.862 +/- 0.0
        shuffling capital-gain
           shuffled test score: 0.823 +/- 0.001
        shuffling capital-loss
           shuffled test score: 0.855 +/- 0.001
        shuffling hours-per-week
           shuffled test score: 0.855 + - 0.002
        shuffling native-country
           shuffled test score: 0.862 +/- 0.001
In [10]: | sorted_indcs = np.argsort(np.mean(scores,axis=1))[::-1]
         plt.rcParams.update({'font.size': 11})
         plt.figure(figsize=(5,3))
         plt.boxplot(scores[sorted_indcs].T,tick_labels=ftr_names[sorted_indcs],vert=False)
         plt.axvline(test_score, label='test score')
         plt.title("Permutation Importances (test set)")
         plt.xlabel('score with perturbed feature')
         plt.legend()
         plt.tight_layout()
         plt.show()
                          Permutation Importances (test set)
            capital-gain ·
                                          <u>Б</u>
         education-num
                                          0
          marital-status
             occupation
            relationship
                    age
            capital-loss
        hours-ber-week
              education
              workclass
                    sex
                  fnlwgt
```

0.84

score with perturbed feature

0.85

0.86

test score

0.83

race

0.82

native-country

https://scikit-learn.org/stable/modules/permutation_importance.html#permutation-importance

Cons of permutation feature importance

- strongly correlated features
 - if one of the features is shuffled, the model can still use the other correlated feature
 - both features appear to be less important than they actually are
 - solution:
 - check the correlation matrix plot
 - remove all but one of the strongly correlated features
- no feature interactions
 - one feature might appear unimportant but combined with another feature could be important
 - solution
 - o permute two features to measure how important feature pairs are
 - this can be computationally expensive

Quiz

Global feature importance metrics

By the end of this module, you will be able to

- perform permutation feature importance calculation
- study the coefficients of linear models
- outlook to other metrics

Coefficients of linear models

- the coefficients of linear and logistic regression can be used as a measure of feature importance **ONLY IF** all features have the same mean (usually 0) and the same standard deviation (usually 1)
 - all features meaning that the one-hot encoded and ordinal features as well!
- then the absolute value of the coefficients can be used to rank them

Let's rewrite the kfold CV function a bit

```
In [6]: from sklearn.linear_model import LogisticRegression
        def ML_pipeline_kfold_LR1(X,y,random_state,n_folds):
            # create a test set
            X_other, X_test, y_other, y_test = train_test_split(X, y, test_size=0.2, random_state = random_state)
            # splitter for _other
            kf = StratifiedKFold(n_splits=n_folds, shuffle=True, random_state=random_state)
            # create the pipeline: preprocessor + supervised ML method
            cat_ftrs = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country']
            cont_ftrs = ['age','fnlwgt','education-num','capital-gain','capital-loss','hours-per-week']
            # one-hot encoder
            categorical_transformer = Pipeline(steps=[
                ('onehot', OneHotEncoder(sparse_output=False, handle_unknown='ignore'))])
            # standard scaler
            numeric_transformer = Pipeline(steps=[
                ('scaler', StandardScaler())])
            preprocessor = ColumnTransformer(
                transformers=[
                    ('num', numeric_transformer, cont_ftrs),
                    ('cat', categorical_transformer, cat_ftrs)])
            pipe = make_pipeline(preprocessor,LogisticRegression(penalty='l2',solver='lbfgs',max_iter=10000000))
            # the parameter(s) we want to tune
            param_grid = {'logisticregression__C': [0.01, 0.1, 1, 10,100]}
            # prepare gridsearch
            grid = GridSearchCV(pipe, param_grid=param_grid,cv=kf, return_train_score = True,n_jobs=-1)
            # do kfold CV on _other
            grid.fit(X_other, y_other)
            feature_names = cont_ftrs + \
                        list(grid.best_estimator_[0].named_transformers_['cat'][0].get_feature_names_out(cat_ftrs))
            return grid, np.array(feature_names), X_test, y_test
```

```
In [7]: grid, feature_names, X_test, y_test = ML_pipeline_kfold_LR1(X,y,42,4)
    print('test score:',grid.score(X_test,y_test))
    coefs = grid.best_estimator_[-1].coef_[0]
    sorted_indcs = np.argsort(np.abs(coefs))

plt.figure(figsize=(5,3))
```

```
plt.rcParams.update({'font.size': 11})
plt.barh(np.arange(10),coefs[sorted_indcs[-10:]])
plt.yticks(np.arange(10),feature_names[sorted_indcs[-10:]])
plt.xlabel('coefficient')
plt.title('not all scaled')
plt.tight_layout()
plt.savefig('figures/LR_coefs_notscaled.png',dpi=300)
plt.show()
```

test score: 0.8581298940580377


```
In [8]: from sklearn.linear_model import LogisticRegression
        def ML_pipeline_kfold_LR2(X,y,random_state,n_folds):
            # create a test set
            X_other, X_test, y_other, y_test = train_test_split(X, y, test_size=0.2, random_state = random_state)
            # splitter for _other
            kf = StratifiedKFold(n_splits=n_folds,shuffle=True,random_state=random_state)
            # create the pipeline: preprocessor + supervised ML method
            cat_ftrs = ['workclass','education','marital-status','occupation','relationship','race','sex','native-country']
            cont_ftrs = ['age','fnlwgt','education-num','capital-gain','capital-loss','hours-per-week']
            # one-hot encoder
            categorical transformer = Pipeline(steps=[
                ('onehot', OneHotEncoder(sparse_output=False,handle_unknown='ignore'))])
            # standard scaler
            numeric_transformer = Pipeline(steps=[
                ('scaler', StandardScaler())])
            preprocessor = ColumnTransformer(
                transformers=[
                    ('num', numeric_transformer, cont_ftrs),
                    ('cat', categorical_transformer, cat_ftrs)])
            final_scaler = StandardScaler()
            pipe = make_pipeline(preprocessor,final_scaler,LogisticRegression(penalty='12',solver='lbfgs'))
            # the parameter(s) we want to tune
            param_grid = {'logisticregression__C': [0.01, 0.1, 1, 10,100]}
            # prepare gridsearch
            grid = GridSearchCV(pipe, param_grid=param_grid,cv=kf, return_train_score = True,n_jobs=-1)
            # do kfold CV on _other
            grid.fit(X_other, y_other)
            feature_names = cont_ftrs + \
                        list(grid.best_estimator_[0].named_transformers_['cat'][0].get_feature_names_out(cat_ftrs))
            return grid, np.array(feature_names), X_test, y_test
```

test score: 0.857976354982343

Global feature importance metrics

By the end of this module, you will be able to

- perform permutation feature importance calculation
- study the coefficients of linear models
- outlook to other metrics
- SVM:
 - SVC.coef_ and SVR.coef_ can be used as a metric of feature importance if all features are standardized
 - for linear SVMs only!
- random forest:
 - RandomForestRegressor.feature_importances_ and RandomForestClassification.feature_importances_
 - gini importance or mean decrease impurity, see here and here
- XGBoost:
 - five different metrics are implemented, see here and here

Quiz

Mudcard