The Stone-Weierstrass Theorem

Approximating continuous functions by smooth functions

Satvik Saha July 30, 2021

Summer Programme Indian Institute of Science Education and Research, Kolkata

Approximation in metric spaces

Approximation

The object α approximates β , to some degree of accuracy ϵ .

 α lies within a narrow region centred at β .

Approximation

The sequence $\{\alpha_n\}$ converges to β .

\$

Given any ϵ , there exists n_0 such that for all $n \geq n_0$,

$$d(\alpha_n,\beta)<\epsilon$$

 \uparrow

Every neighbourhood of β contains some tail of $\{\alpha_n\}$.

Approximation

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \rightarrow \frac{\pi}{4}$$

$$x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \dots \rightarrow \arctan X$$

This series converges uniformly on [-1, +1].

Approximating arctan *x*

Integrating a uniformly convergent series

A power series converges uniformly on its interval of convergence.

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2k}}{(2k)!}$$
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2k+1}}{(2k+1)!}$$

$$\int_{a}^{b} \cos x \, dx = \sin b - \sin a.$$

Integrating a uniformly convergent series

If $f_n \to f$ uniformly on [a,b], then given $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ and $x \in [a,b]$,

$$|f_n(x) - f(x)| < \epsilon.$$

$$-\epsilon(b-a) < \int_a^b f_n(x) - f(x) \, dx < \epsilon(b-a)$$

$$\lim_{n\to\infty}\int_a^b f_n(x)\,dx=\int_a^b f(x)\,dx$$

Metric spaces of functions

For every pair of functions f, g on E, define

$$d(f,g) = ||f - g||_{\infty} = \sup_{x \in E} |f(x) - g(x)|.$$

- $d(f,g) \ge 0$, and d(f,g) = 0 if and only if f = g.
- $\cdot d(f,g) = d(g,f).$
- $\cdot d(f,h) \leq d(f,g) + d(g,h).$

We require d(f,g) to be finite, so all functions under consideration must be bounded.

Metric spaces of functions

The function g approximates f, to some degree of accuracy ϵ .

The curve g lies within a narrow strip centred at f.

$$f - \epsilon \le g \le f + \epsilon$$

Metric spaces of functions

The sequence $\{f_n\}$ converges to f.

Given any ϵ , there exists n_0 such that for all $n \geq n_0$,

$$d(f_n, f) < \epsilon$$

The sequence $f_n \to f$ uniformly.

Given a real valued function f on a domain X, can we find a sequence of 'nice' functions (typically polynomials) which converge uniformly to f?

Uniform Limit Theorem

Let $\{f_n\}$ be a sequence of continuous, real valued functions on X. If $f_n \to f$ uniformly on X, then f is continuous.

Fix $x_0 \in X$. Then for sufficiently high n, there is a δ neighbourhood of x_0 on which

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)|$$
 $< 3\epsilon.$

The Weierstrass Approximation Theorem

Given any real valued, continuous function on a compact interval [a, b], there exists a sequence of polynomials $\{p_n\}$ such that $p_n \to f$ uniformly on [a, b].

The Bernstein polynomials can be used to prove this constructively.

The Bernstein polynomials are defined as

$$B_n^k(x) = \binom{n}{k} x^k (1-x)^{n-k}$$

Note that B_n^k peaks at x = k/n.

The Bernstein expansion of a function on [0,1] is defined as

$$B_n(f,x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right)$$

Generalizing polynomials

Algebras of functions

A collection of real valued functions $\mathscr A$ on a set E is called an algebra if

- $f \in \mathcal{A}, g \in \mathcal{A} \implies f + g \in \mathcal{A}$
- $f \in \mathcal{A}, g \in \mathcal{A} \implies fg \in \mathcal{A}$
- $f \in \mathcal{A}, c \in \mathbb{R} \implies cf \in \mathcal{A}$

If $f \in \mathcal{A}$ and p is a polynomial, then $p \circ f \in \mathcal{A}$.

Interpolation

An algebra \mathscr{A} vanishes at no point of E if given $x \in E$, there exists $f \in \mathscr{A}$ such that $f(x) \neq 0$.

An algebra separates points of E if given distinct $x_1, x_2 \in E$, there exists $f \in \mathcal{A}$ such that $f(x_1) \neq f(x_2)$.

Let the algebra $\mathscr A$ vanish at no point of E and separate points of E. Given distinct $x_1, x_2 \in E$ and $c_1, c_2 \in \mathbb R$, there exists $f \in \mathscr A$ such that $f(x_1) = c_1$, $f(x_2) = c_2$.

Interpolation

Let $f_1, f_2 \in \mathcal{A}$ such that $f_1(x_1) \neq 0$ and $f_2(x_2) \neq 0$, and let $g \in \mathcal{A}$ such that $g(x_1) \neq g(x_2)$. Define the functions

$$h_1 = \frac{g - g(x_2)}{g(x_1) - g(x_2)} \frac{f_1}{f_1(x_1)}, \qquad h_2 = \frac{g - g(x_1)}{g(x_2) - g(x_1)} \frac{f_2}{f_2(x_2)}.$$

Note that $h_i(x_j) = \delta_{ij}$. Finally, set

$$f = c_1 h_1 + x_2 h_2. \qquad \Box$$

Note that this can be extended to arbitrarily many points, in the manner of Lagrange interpolation.

Interpolation and continuity

Let f, g be continuous, real valued functions on X such that $f(x_0) = g(x_0)$ for some $x_0 \in X$. Then, g approximates f to an arbitrary degree of accuracy ϵ on some neighbourhood of x_0 .

Note that h=g-f is continuous, hence the pre-image of the open interval $(-\epsilon, +\epsilon)$ is some open set $U \subseteq X$ containing x_0 . Thus, on some neighbourhood $N_{\delta}(x_0) \subseteq U$, we have

$$-\epsilon < g - f < \epsilon$$

$$f - \epsilon < q < f + \epsilon$$

Closure

The set of uniform limits of functions from an algebra is called its uniform closure.

A uniformly closed algebra contains all uniform limits of its functions.

The uniform closure ${\mathcal B}$ of an algebra ${\mathcal A}$ of bounded functions is a uniformly closed algebra.

Closure

Let \mathscr{A} be an algebra of real valued, bounded functions on X, and let \mathscr{B} be its uniform closure. If $f \in \mathscr{B}$, then $|f| \in \mathscr{B}$.

Let $\epsilon > 0$, let M be such that |f| < M. Pick a polynomial p such that for all |x| < M,

$$|p(x)-|x||<\epsilon.$$

Then, for all $x \in X$, we have |f(x)| < M so

$$|p(f(x)) - |f(x)|| < \epsilon.$$

Finally, note that $p \circ f \in \mathcal{B}$.

If $f, g \in \mathcal{B}$, then $\max(f, g) \in \mathcal{B}$ and $\min(f, g) \in \mathcal{B}$.

Note that

$$\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|,$$

$$\min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|.$$

This gives us a way of 'stitching' functions from ${\mathcal B}$ together.

The Stone-Weierstrass Theorem

The Stone-Weierstrass Theorem

Let K be a compact metric space, and let \mathscr{A} be an algebra of real continuous functions on K which separates points of K and vanishes at no point of K. The uniform closure of \mathscr{A} consists of all real valued, continuous functions on K.

In other words, given any real valued continuous function f on K, there exists a sequence of functions $\{f_n\}$ from $\mathscr A$ such that $f_n \to f$ uniformly on K.

$$f - \epsilon < g_{st}$$
 for all $x \in U_{st}$

$$f - \epsilon < g_{st}$$
 for all $x \in U_{st}$

$$f - \epsilon < g_{st}$$
 for all $x \in U_{st}$

$$f - \epsilon < g_{\rm S}$$
 for all $x \in K$

$$f - \epsilon < g_{\rm S} < f + \epsilon$$
 for all $x \in U_{\rm S}$

$$f - \epsilon < g_{\rm S} < f + \epsilon$$
 for all $x \in U_{\rm S}$

$$f - \epsilon < g_{\rm S} < f + \epsilon$$
 for all $x \in U_{\rm S}$

$$f - \epsilon < g < f + \epsilon$$
 for all $x \in K$

Polynomials

Let \mathscr{P} be the set of polynomials on \mathbb{R}^n , for some $n \geq 1$. Then, \mathscr{P} is an algebra of real continuous functions which separates points on \mathbb{R}^n and vanishes at no point of \mathbb{R}^n .

In a sense, \mathscr{P} is the algebra generated by the projection maps, $\pi_i(x_1,\ldots,x_n)=x_i$.

Any real continuous function on \mathbb{R}^n can be uniformly approximated on a *compact subset* of \mathbb{R}^n .

Fourier-like functions

Let \mathcal{F} be the set of functions of the form

$$f: S^1 \to \mathbb{R}, \qquad e^{ix} \mapsto a_0 + \sum_{n=1}^N a_n \cos(nx) + b_n \sin(nx).$$

Here, we identify S^1 with the unit circle in \mathbb{C} ; S^1 is compact. Also, \mathscr{F} is an algebra of real continuous functions which separates points on S^1 and vanishes at no point of S^1 .

Any real continuous function on S^1 can be uniformly approximated by functions from \mathcal{F} .