Assignment 3 Theory

Ahmed bakry Ahmed Hagag mohamed elyousfy 20216012 20216010 20216083

CFG rules

1 - Write a CFG for accepting strings with equal number of a's and b's.

2- Write a CFG for accepting strings where the number of b's is twice the number of a's.

3- Write a CFG for accepting strings that is not a palindrome $\Sigma = \{a,b\}$.

4- Write a CFG for accepting a language $\{a \ 2n + 3 \ b \ n \mid n \ge 0\}$.

S -> aaaT
$$\mid \epsilon$$
,
T-> aaTb $\mid \epsilon$

5- Write a CFG for accepting a language $\{a \mid b \mid m \mid n \ge m \text{ and } m \ge 0\}$.

B -> aBb |
$$\epsilon$$

PDA

1. Design a PDA for accepting a language $\{a_nb_mc_n|n,m>=0\}$.

2. Design a PDA for accepting a language $\{a_{3n}b_{2n} n \ge 1\}$.

3. Design a PDA for accepting a language that consists of strings of balanced

4. Design a PDA for accepting a language $\{a_nb_{n+m}c_m|n, m>=1\}$.

5. Design a PDA for language $\{Wc_k \mid W \in \{a,b\}^* \text{ and } n \ge 0 \text{ and } k = |W|_b \text{ (k=the number of b in W)}.$

BONUS - Convert the following CFG to PDA:

