EE101: Circuit Analysis

S. Lodha

References: L. Bobrow

Outline

- Nodal analysis
- Mesh analysis
- Thevenin and Norton theorems
- Maximum power transfer
- Linearity and superposition

Nodal analysis

- Application of Kirchoff's current law (KCL)
- Variables are voltages
- Solve a set of simultaneous equations
- Can be used for any circuit
 - Non-planar also → element crossing over another

Nodal analysis: Example

- Define a reference node: "0"
- Define node voltages V₁, V₂ for other nodes
- Write KCL for the non-reference nodes in terms of node voltages

$$\frac{1}{R_1}(V_1 - V_2) - I_0 - k(V_2 - V_3) = 0,$$

$$\frac{1}{R_1}(V_2 - V_1) + \frac{1}{R_3}(V_2 - V_3) + \frac{1}{R_2}(V_2) = 0,$$

$$k(V_2 - V_3) + \frac{1}{R_3}(V_3 - V_2) + \frac{1}{R_4}(V_3) = 0.$$

 Solve (n-1) simultaneous eqns for the node voltages → currents

Nodal analysis with voltage sources

- Voltage source where one terminal is connected to reference node
- By inspection, V₁=9 V
- Only two unknown variables remain
 - $-V_2$ and V_3

Nodal analysis with voltage sources

- Voltage source between two non-reference nodes
- By inspection, V₂-V₁=12 V

Mesh analysis

- Application of Kirchoff's voltage law (KVL)
- Variables are currents
- Solve a set of simultaneous equations
- Cannot be used for any circuit
 - Planar circuits → element not crossing over another

Mesh analysis: An example

- 2D space divided into finite and infinite windows (surrounding the ckt) → meshes
- i₁ and i₂ are mesh currents (clock or anti-clockwise)
 - Current through R_3 is $i_s = i_1 i_2$
- Write KVL for the meshes and solve for i₁ and i₂ (m equations for m meshes)

$$-V_s + i_1 R_1 + (i_1 - i_2) R_3 = 0,$$

$$R_2 i_2 + r_1 (i_1 - i_2) + (i_2 - i_1) R_3 = 0.$$

Mesh analysis with current sources

- Current source part of a single mesh
- By inspection, i₁=-6A
- Only one unknown quantity

 i, one mesh

Mesh analysis with current sources

- Current source is part of two meshes
- By inspection,

$$-i_3-i_2=2$$

 Remaining two equations can be obtained from meshes for i₁ and i₂

Thevenin's theorem

- Circuit A contains no dependent source that depends on a variable in Circuit B and vice versa
- Series combination of voltage source V_{Th} and R_{Th} is called the Thevenin equivalent of circuit A
 - $V_{Th} \rightarrow$ Open circuit voltage, also called V_{oc}
 - $-R_{Th} \rightarrow$ Output resistance or Thevenin Resistance, also called R_o

How to find V_{Th} ?

 Simply find the open circuit voltage between a and b.

- R_o is the effective resistance of Ckt A as "seen" from a-b
- Method 1:
 - Deactivate all independent sources short ckt for voltage sources and open ckt for current sources
 - R_{Th} can be found by inspection
- Method 2:
 - Apply an independent voltage test source and taking ratio of voltage to current

R_{Th} (R_o) Example

Series and parallel combination of resistors

Example

Note: i = 0 (since there is no return path).

$$V_{AB} = V_A - V_B$$

= $(V_A - V_C) + (V_C - V_B)$
= $V_{AC} + V_{CB}$
= $24 V + 36 V = 60 V$

Norton's Theorem

- The two circuits above are equivalent
- I_N is also called "short circuit" current I_{sc}
- Note that $R_{Th}=V_{Th}/I_N \rightarrow R_{Th}=V_{oc}/I_{sc}$

Method 3 for finding R_{TH}

$$R_{TH} = V_{TH}/I_N \rightarrow R_{TH} = V_{oc}/I_{sc}$$

- Find V_{oc}
- Find I_{sc}
- $R_{TH} = V_{oc}/I_{sc}$
- Note that no sources are deactivated in this method

Example for Norton Equivalent Ckt

$$R_{N} = 5 \Omega$$

$$I_{N} = \frac{20 \text{ V}}{5 \Omega} = 4 R$$

$$i = 3 A \times \frac{5}{5+10}$$
$$= 1 A$$

Maximum Power Transfer,

$$i_{L} = \frac{V_{Th}}{R_{Th} + R_{L}},$$

$$P_{L} = V_{Th}^{2} \times \frac{R_{L}}{(R_{Th} + R_{L})^{2}}$$

For
$$\frac{dP_L}{dR_L}=0$$
, we need
$$\frac{(R_{Th}+R_L)^2-R_L\times 2\left(R_{Th}+R_L\right)}{(R_{Th}+R_L)^4}=0\,,$$

$$R_{Th} + R_L = 2 R_L \Rightarrow R_L = R_{Th}.$$

- Power transferred to the load is P_L=i²_LR_L
- For what value of R₁ will the power transferred be maximum?
- Replace with Thevenin equivalent
- What is the maximum power transferred → P_I^{max}?

Linearity and Superposition

- Circuit containing independent sources, dependent sources, resistors is linear, i.e.
 system of equations describing the circuit is linear
- The dependent sources are assumed to be linear, i.e. v=ai_c²+b will make it non-linear
- For a linear system we can apply the principle of superposition
- For ckts this implies, computing the response for each independent source separately and add the individual contributions to get the final true response.
 - Cannot be applied to dependent sources
 - Superposition corresponds to superposition of response due to independent sources
 - One independent source at a time → deactivate all other independent sources
 - For a current source deactivation $\rightarrow i_s=0 \rightarrow$ replace with an open circuit
 - − For a voltage source deactivation \rightarrow $v_s=0$ \rightarrow replace with a short circuit

Example

$$i_1^{\text{net}} = i_1^{(1)} + i_1^{(2)} = 3 + 1 = 4 \text{ A}$$

Case 1: Keep V_S , deactivate I_S .

Case 2: Keep I_S , deactivate V_S .

Example

$$\begin{array}{c|c}
 & & + \\
 & 12 \text{ V} & \\
 & & \times \\
 &$$

KVL:
$$-12 + 3i + 2i + i = 0$$

 $\Rightarrow i = 2 \text{ A}, \mathbf{v}^{(1)} = 6 \text{ V}.$

Case 2: Keep I_S , deactivate V_S .

$$v^{\text{net}} = v^{(1)} + v^{(2)} = 6 + 9 = 15 \,\text{V}$$

Try the following as HW

• Find R₁ for which P₁ is maximum

Backup

Problem 1

Solution

(a) By KVL,
$$-12 + 5000I_D + V_{DS} + 2000I_D = 0$$

Therefore,
$$V_{DS} = 12 - 7(1.5) = 1.5 \text{ V}.$$

(b) By KVL, -
$$V_G + V_{GS} + 2000I_D = 0$$

Therefore,
$$V_{GS} = V_G - 2(2) = -1 \text{ V}.$$

(a) If ID = 1.5 mA, compute VDS. (b) If ID = 2 mA and VG = 3 V, compute VGS.

Problem 2

Label the dependent source 1.8v3. Find v3 if (a) the 90-V source generates 180 W; (b) the 90-V source absorbs 180 W; (c) the dependent source generates 100 W; (d) the dependent source absorbs 100 W of power.

Applying KVL, we find that -20 + 10i1 + 90 + 40i1 + 1.8v3 = 0 [1] Also, KVL allows us to write v3 = 40i1 + 1.8v3 v3 = -50i1 So that we may write Eq. [1] as 50i1 - 1.8(50)i1 = -70

or i1 = -70/-40 = 1.75 A. Since v3 = -50i1 = -87.5 V, no further information is required to determine its value.

The 90-V source is absorbing (90)(i1) = 157.5 W of power and the dependent source is absorbing (1.8v3)(i1) = -275.6 W of power.

Therefore, none of the conditions specified in (a) to (d) can be met by this circuit.