Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fakultät für Maschinenbau und Bauingenieurwesen

Prof. Dr. Thomas Carraro M.Sc Janna Puderbach

Mathematik II/B (WI/ET)

Blatt 8

1

WT 2024

Integration, partielle Ableitungen

Einführende Bemerkungen

• Vermeiden Sie die Verwendung von Taschenrechnern oder Online-Ressourcen.

Aufgabe 8.1: Uneigentliche Integrale

Uberprüfen Sie, ob die folgenden uneigentlichen Integrale existieren (d. h. einen endlichen Wert annehmen). Berechnen Sie für das dritte Beispiel den Wert des Integrals.

$$I_1 = \int_1^\infty \frac{\sin\frac{1}{x^2}}{x^2} dx$$

$$I_2 = \int_0^1 \frac{\cos x^2}{1 - x} dx$$

$$I_3 = \int_0^\infty \frac{\arctan x}{x^2 + 1} dx$$

Lösung 8.1:

• Das erste Integral hat einen endlichen Wert, man kann seinen Wert nach oben abschätzen, indem man den Integranden durch eine größere Funktion ersetzt:

$$I_{1} = \int_{1}^{\infty} \frac{\sin\frac{1}{x^{2}}}{x^{2}} dx \le \int_{1}^{\infty} \left| \frac{\sin\frac{1}{x^{2}}}{x^{2}} \right| dx$$
$$\le \int_{1}^{\infty} \left| \frac{1}{x^{2}} \right| dx \qquad \text{(weil } |\sin(1/x^{2})| \le 1\text{)}$$
$$= \left[\frac{-1}{x} \right]_{1}^{\infty} = \lim_{b \to \infty} \frac{-1}{b} - \frac{-1}{1} = 1$$

Damit hat I_1 einen endlichen Wert, der an dieser Stelle jedoch nicht berechnet werden soll.

• Das zweite Integral wird nach unten abgeschätzt, indem man die Integrandenfunktion durch eine geringere Funktion abschätzt:

$$\begin{split} I_2 &= \int\limits_0^1 \frac{\cos x^2}{1-x} \mathrm{d}x \\ &\geq \int\limits_0^1 \frac{\cos 1}{1-x} \mathrm{d}x \qquad \text{(weil cos auf dem Intervall [0,1] monoton fällt)} \\ &= \cos 1 \Big[-\ln|1-x| \Big]_0^1 = \cos 1 \cdot \left(-\lim_{b \to 1} \ln|1-b| - (-\ln|1-0|) \right) = \infty \end{split}$$

Damit hat auch das Integral I_2 keinen endlichen Wert.

• Für den Integranden $f(x) = \frac{\arctan x}{1+x^2}$ des dritten Integrals kann man mittels par-

tieller Integration eine Stammfunktion ermittelt werden:

$$F(x) = \int_{0}^{x} f(t) dt = \int_{0}^{x} \underbrace{\arctan t}_{u(t)} \underbrace{\frac{1}{1+t^{2}}}_{v'(t)} dt$$

$$= \underbrace{\arctan t}_{u(t)} \underbrace{\arctan t}_{v(t)} \Big|_{0}^{x} - \int_{0}^{x} \underbrace{\frac{1}{1+t^{2}}}_{u'(t)} \underbrace{\arctan t}_{v(t)} dt$$

$$= \arctan^{2} x - F(x)$$

$$\Rightarrow \qquad 2F(x) = \arctan^{2} x$$

$$\Rightarrow \qquad F(x) = \frac{\arctan^{2} x}{2}$$

Den Wert des Integrals I_3 erhält man dann durch den Grenzübergang:

$$I_3 = \lim_{b \to \infty} F(b) - F(0) = \frac{1}{2} \left(\frac{\pi}{2}\right)^2 - 0 = \frac{\pi^2}{8}.$$

Aufgabe 8.2: Uneigentliche Integrale

Welche der folgenden uneigentlichen Integrale besitzen einen endlichen Wert? Bestimmen Sie den Wert dieser Integrale.

$$\int_{0}^{1} \frac{1}{x^{1/4}} \, \mathrm{d}x \qquad \qquad \text{b)} \qquad \int_{0}^{1} \frac{1}{x} \, \mathrm{d}x$$

a)
$$\int_{0}^{1} \frac{1}{x^{1/4}} dx$$
 b)
$$\int_{0}^{1} \frac{1}{x} dx$$
 c)
$$\int_{0}^{1/\pi} \frac{1}{x^{2}} \sin \frac{1}{x} dx$$
 d)
$$\int_{0}^{\infty} 2x e^{-x^{2}} dx$$

Lösung 8.2:

Dieses Integral existiert:

$$\int_{0}^{1} x^{-\frac{1}{4}} dx = \lim_{a \to 0} \int_{a}^{1} x^{-\frac{1}{4}} dx = \lim_{a \to 0} \left(\frac{4}{3} x^{\frac{3}{4}} \Big|_{a}^{1} \right) = \frac{4}{3} \lim_{a \to 0} (1 - a^{3/4}) = \frac{4}{3}.$$

Dieses Integral existiert nicht:

$$\int_{0}^{1} \frac{1}{x} dx = \lim_{a \to 0} \int_{a}^{1} \frac{1}{x} dx = \lim_{a \to 0} \left(\ln|x| \Big|_{a}^{1} \right) = \lim_{a \to 0} (\ln 1 - \ln a) = +\infty.$$

 $\mathbf{c})$ Hier ist

$$\int_{0}^{1/\pi} \frac{1}{x^2} \sin \frac{1}{x} dx = \lim_{a \to 0} \int_{a}^{1/\pi} \frac{1}{x^2} \sin \frac{1}{x} dx = \lim_{a \to 0} \cos \frac{1}{x} \Big|_{a}^{1/\pi} = \lim_{a \to 0} \left(\cos(\pi) - \cos \frac{1}{a} \right).$$

Der Grenzwert existiert nicht, da $\cos(1/a)$ für $a \to 0$ immer wieder alle Werte zwischen -1 und +1 annimmt. Also existiert auch kein Wert für das Integral.

Dieses Integral existiert:

$$\int_{0}^{\infty} 2x e^{-x^{2}} dx = \lim_{a \to \infty} \int_{0}^{a} 2x e^{-x^{2}} dx = \lim_{a \to \infty} \left(-e^{-x^{2}} \Big|_{0}^{a} \right)$$
$$= \lim_{a \to \infty} \left(-e^{-a^{2}} + e^{0} \right) = 0 + 1 = 1.$$

Aufgabe 8.3: Äquipotentialfläche und Tangentialebene

Gegeben seien die Funktion $f(x, y, z) = y^2 - xz$ und der Punkt $\mathbf{p}_0 = (1, -2, 3)^{\top}$.

a) Bestimmen Sie die Äquipotentialfläche der Funktion f durch den Punkt p_0 :

$$F = \{x \in \mathbb{R}^3 | f(x, y, z) = f(p_0)\}.$$

Skizzieren Sie die Schnitte der Fläche F mit zur xy-Ebene parallelen Ebenen, d. h. für konstante z-Werte. (z. B. $z=0\pm,\,1\pm,\,2\pm,\,3\pm$ und $z\to\infty$)

- **b**) Bestimmen Sie $\nabla f(\mathbf{p}_0)$.
- c) Bestimmen Sie die Hessesche Normalform der Tangentialebene ${\pmb E}$ an ${\pmb F}$ im Punkt ${\pmb p}_0.$
- d) Bestimmen Sie den Abstand der Tangentialebene \boldsymbol{E} zum kritischen Punkt der Funktion f.

Lösung 8.3:

a) Mit $f(\mathbf{p}_0) = 1$ ergibt sich die Äquipotentialfläche zu

$$\mathbf{F} = \left\{ \mathbf{x} \in \mathbb{R}^3 \mid y^2 - xz = 1 \right\}.$$

Für konstante z-Werte ergeben sich für die Schnittkurven Parabeln $(z \neq 0)$:

$$x = \frac{y^2 - 1}{z},$$

während sich für z=0 die Geraden $y=\pm 1$ ergeben:

b) Es ist

$$\nabla f(x, y, z) = (-z, 2y, -x)^{\top}$$
 und damit $\nabla f(\mathbf{p}_0) = (-3, -4, -1)^{\top}$.

c) Die Ebene \boldsymbol{E} hat den Normalenvektor $\nabla f(\boldsymbol{p}_0)$, dessen Normierung

$$\boldsymbol{n}_0 = \frac{1}{\sqrt{26}} \begin{pmatrix} -3\\ -4\\ -1 \end{pmatrix}$$

ergibt und enthält den Punkt p_0 . Ihre Hessesche Normalform ist also

$$E = \{ \boldsymbol{x} \in \mathbb{R}^3 | \langle \boldsymbol{x} - \boldsymbol{p}_0, \, \boldsymbol{n}_0 \rangle = 0 \}$$

$$= \left\{ \boldsymbol{x} \in \mathbb{R}^3 \middle| \left\langle \begin{pmatrix} x - 1 \\ y + 2 \\ z - 3 \end{pmatrix}, \frac{1}{\sqrt{26}} \begin{pmatrix} -3 \\ -4 \\ -1 \end{pmatrix} \right\rangle = 0 \right\}.$$

d) Ein kritischer Punkt erfüllt die Bedingung $\nabla f(x) = 0$. Damit ist x = 0 der einzige kritische Punkt. Der Abstand ergibt sich aus dem Skalarprodukt der Hesseschen Normalform:

$$d = |\langle \mathbf{0} - \mathbf{p}_0, \mathbf{n}_0 \rangle| = \frac{1}{\sqrt{26}} |-2| = \sqrt{\frac{2}{13}}.$$

Aufgabe 8.4: Partielle Ableitungen

Gegeben sei die Funktion

$$f(x,y) = \begin{cases} xy \cdot \frac{x^2 - y^2}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{sonst} \end{cases}.$$

Berechnen Sie $f_{xy}(x,y)$ für alle $(x,y)^{\top} \in \mathbb{R}^2$ und untersuchen Sie, wo

$$f_{xy}(x,y) = f_{yx}(x,y)$$

gilt.

Sind die zweiten Ableitungen von f stetig in $(0,0)^{\top}$?

Hinweis: Berechnen Sie die Ableitungen im Ursprung $(0,0)^{\top}$ über die Grenzwert-Definition.

Lösung 8.4:

Für $(x,y)^{\top} \neq (0,0)^{\top}$ gilt

$$f_x(x,y) = \frac{(3x^2y - y^3)(x^2 + y^2) - 2x(x^3y - y^3x)}{(x^2 + y^2)^2}$$
$$= \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2}.$$

Wegen f(x,y) = -f(y,x) gilt

$$f_y(x,y) = -\partial_1 f(y,x) = \frac{x^5 - 4y^2x^3 - y^4x}{(x^2 + y^2)^2}.$$

Weiterhin gilt

$$f_{xy}(x,y) = \frac{(x^4 + 12x^2y^2 - 5y^4) \cdot (x^2 + y^2)^2 - 2(x^2 + y^2) \cdot 2y \cdot (x^4y + 4x^2y^3 - y^5)}{(x^2 + y^2)^4}$$
$$= \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3}$$

und

$$f_{yx}(x,y) = \frac{\partial}{\partial x} \Big(f_y(x,y) \Big) = \frac{\partial}{\partial x} \Big(-\partial_1 f(y,x) \Big)$$
$$= -\partial_2 \partial_1 f(y,x) = \partial_2 \partial_1 f(x,y) = f_{xy}(x,y).$$

Die zweiten Ableitungen sind für $(x,y)^{\top} \neq (0,0)^{\top}$ stetig, deswegen gilt auch

$$f_{xy}(x,y) = f_{yx}(x,y)$$

Im Ursprung hat man zunächst

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h(h^2 + 0)} = 0$$
$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h(0 + h^2)} = 0.$$

Damit ergibt sich für die zweite Ableitung

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_x(0,h) - f_x(0,0)}{h}$$
$$= \lim_{h \to 0} \left(\frac{1}{h} \left(\frac{-h^5}{h^4} - 0\right)\right) = \lim_{h \to 0} \frac{-h^5}{h^5} = -1.$$

Vertauscht man die Reihenfolge der Ableitungen, ergibt sich

$$f_{yx}(0,0) = \lim_{h \to 0} \frac{f_y(h,0) - f_y(0,0)}{h}$$
$$= \lim_{h \to 0} \left(\frac{1}{h} \left(\frac{h^5}{h^4} - 0\right)\right) = \lim_{h \to 0} \frac{h^5}{h^5} = 1.$$

Also gilt im Ursprung

$$f_{xy}(0,0) \neq f_{yx}(0,0)$$

Die Ableitungen können also nicht stetig sein, da die Reihenfolge gemäß Satz von Schwarz sonst egal wäre.

Aufgabe 8.5: Richtungsableitungen

a) Gegeben seien die skalarwertigen Funktionen

$$f(x, y, z) = y^2 - xz$$
 und $g(x, y, z) = x^2 \sin(y) + \cos(z)$.

Berechnen Sie die Richtungsableitung beider Funktionen in Richtung $\boldsymbol{h} := (-2,3,4)^{\top}$.

Lösung 8.5:

a) Zunächst berechnen wir die Gradienten der beiden Funktionen:

$$\nabla f(x, y, z) = (-z, 2y, -x)^{\top} \nabla g(x, y, z) = (2x \sin(y), x^{2} \cos(y), -\sin(z))^{\top}.$$

Desweiteren benötigen wir den Normalenvektor in Richtung \boldsymbol{h} :

$$\hat{\boldsymbol{h}} = \frac{1}{\sqrt{4+9+16}} (-2, 3, 4)^{\top} = \frac{1}{\sqrt{29}} (-2, 3, 4)^{\top}.$$

Damit ergeben sich dann die Richtungsableitungen:

$$\begin{split} \frac{\partial f}{\partial \hat{\boldsymbol{h}}}(x,y,z) &= \left\langle \hat{\boldsymbol{h}}, \, \nabla f(x,y,z) \right\rangle = \frac{1}{\sqrt{29}} \left(2z + 6y - 4x \right) \\ \frac{\partial g}{\partial \hat{\boldsymbol{h}}}(x,y,z) &= \left\langle \hat{\boldsymbol{h}}, \, \nabla g(x,y,z) \right\rangle = \frac{1}{\sqrt{29}} \left(-4x \sin(y) + 3x^2 \cos(y) - 4 \sin(z) \right). \end{split}$$

Aufgabe 8.6: Partielle Ableitungen

Bestimmen Sie zu jeder der folgenden Funktionen $\varphi:\mathbb{R}^n\to\mathbb{R}$ die ersten und zweiten Ableitungen

$$\begin{pmatrix} \frac{\partial \varphi}{\partial x_1} \\ \vdots \\ \frac{\partial \varphi}{\partial x_n} \end{pmatrix}, \qquad \begin{pmatrix} \frac{\partial^2 \varphi}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 \varphi}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 \varphi}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 \varphi}{\partial x_n \partial x_n} \end{pmatrix}.$$

$$f(x,y) = e^{2xy^2}$$

$$h(x,y) = \sin(2x)\cos(3y)$$

$$k(x,y,z) = xy^2 z^3$$

$$l(x,y) = \frac{xy}{xy - 1}$$

Lösung 8.6:

$$\nabla f(x,y) = (2y^{2}e^{2xy^{2}}, 4xye^{2xy^{2}})^{\top}$$

$$\left(\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}\right) = \begin{pmatrix} 4y^{4}e^{2xy^{2}} & (4y + 8xy^{3})e^{2xy^{2}} \\ (4y + 8xy^{3})e^{2xy^{2}} & (4x + 16x^{2}y^{2})e^{2xy^{2}} \end{pmatrix}$$

$$\nabla g(x,y) = (2x\sin(2x+y) + 2x^{2}\cos(2x+y), x^{2}\cos(2x+y))^{\top}$$

$$\left(\frac{\partial^{2}g}{\partial x_{i}\partial x_{j}}\right) = \begin{pmatrix} 2\sin(2x+y) + 8x\cos(2x+y) - 4x^{2}\sin(2x+y) & \dots \\ 2x\cos(2x+y) - 2x^{2}\sin(2x+y) & \dots \\ \dots & 2x\cos(2x+y) - 2x^{2}\sin(2x+y) \end{pmatrix}$$

$$\nabla h(x,y) = (2\cos(2x)\cos(3y), -3\sin(2x)\sin(3y))^{\top}$$

$$\left(\frac{\partial^{2}h}{\partial x_{i}\partial x_{j}}\right) = \begin{pmatrix} -4\sin(2x)\cos(3y) & -6\cos(2x)\sin(3y) \\ -6\cos(2x)\sin(3y) & -9\sin(2x)\cos(3y) \end{pmatrix}$$

$$\nabla k(x,y,z) = (y^{2}z^{3}, 2xyz^{3}, 3xy^{2}z^{2})^{\top}$$

$$\left(\frac{\partial^{2}k}{\partial x_{i}\partial x_{j}}\right) = \begin{pmatrix} 0 & 2yz^{3} & 3y^{2}z^{2} \\ 2yz^{3} & 2xz^{3} & 6xyz^{2} \\ 3y^{2}z^{2} & 6xyz^{2} & 6xy^{2}z \end{pmatrix}$$

$$\nabla l(x,y) = \begin{pmatrix} y(xy-1) - y \cdot xy \\ (xy-1)^{2} \end{pmatrix}, \frac{x(xy-1) - x \cdot xy}{(xy-1)^{2}} \end{pmatrix}^{\top} = \begin{pmatrix} -y & -x \\ (xy-1)^{2} \end{pmatrix}^{\top}$$

$$\left(\frac{\partial^{2}l}{\partial x_{i}\partial x_{j}}\right) = \begin{pmatrix} \frac{2y^{2}}{(xy-1)^{3}} & \frac{-(xy-1)^{2}-(-y)\cdot2(xy-1)\cdot x}{(xy-1)^{4}} \\ \frac{1+xy}{(xy-1)^{3}} & \frac{-(xy-1)^{2}-(-y)\cdot2(xy-1)\cdot x}{(xy-1)^{3}} \end{pmatrix} = \frac{1}{(xy-1)^{3}} \begin{pmatrix} 2y^{2} & 1+xy \\ 1+xy & 2x^{2} \end{pmatrix}$$

Aufgabe 8.7: Partielle Ableitungen

Bestimmen Sie alle ersten und zweiten partiellen Ableitungen der folgenden reellen Funktionen und geben Sie jeweils die ersten und zweiten Ableitungen in Matrixschreibweise an:

$$f(x,y) = e^{2xy^2}$$

$$\mathbf{ii}) \qquad g(x,y) = x^2 \sin(2x + y)$$

$$iii) h(x,y) = \sin(2x)\cos(3y)$$

iv)
$$k(x, y, z) = x y^2 z^3$$

$$\mathbf{v}) \qquad j(u,v) = \frac{uv}{uv - 1}$$

Lösung 8.7:

Anmerkungen:

1. Die Ableitung (Gradient) einer Funktion mehrer Variablen ist ein Vektor (Spaltenvektor):

$$f(x,y,...) \Rightarrow f'(x,y,...) = \begin{pmatrix} \partial_x f , \partial_y f , ... \end{pmatrix} = (\nabla f(x,y,...))^{\top}$$

$$\Rightarrow f''(x,y,...) = \mathbf{H}(x,y,...) = \begin{pmatrix} \partial_{xx} f & \partial_{xy} f & ... \\ \partial_{yx} f & \partial_{yy} f & ... \\ ... & ... & ... \end{pmatrix}$$

2. Wenn die 2. partiellen Ableitungen **stetig** sind, dann ist die Hesse-Matrix H(x, y, ...) symmetrisch.

 $\mathbf{i})$

$$\nabla f(x,y) = \left(2 y^2 e^{2xy^2}, 4xy e^{2xy^2}\right)^{\top}$$

$$\mathbf{H}_f(x,y) = \begin{pmatrix} 4 y^4 e^{2xy^2} & (4y + 8xy^3) e^{2xy^2} \\ (4y + 8xy^3) e^{2xy^2} & (4x + 16x^2y^2) e^{2xy^2} \end{pmatrix}$$

ii)

$$\nabla g(x,y) = \left(2x\sin(2x+y) + 2x^2\cos(2x+y), \ x^2\cos(2x+y)\right)^{\top}$$

$$\boldsymbol{H}_g(x,y) = \begin{pmatrix} (2-4x^2)\sin(2x+y) + 8x\cos(2x+y), & 2x\cos(2x+y) - 2x^2\sin(2x+y) \\ 2x\cos(2x+y) - 2x^2\sin(2x+y) & -x^2\sin(2x+y) \end{pmatrix}$$

iii)

$$\nabla h(x,y) = \left(2\cos(2x)\cos(3y), -3\sin(2x)\sin(3y)\right)^{\top}$$

$$\boldsymbol{H}_h(x,y) = \begin{pmatrix} -4\sin(2x)\cos(3y) & -6\cos(2x)\sin(3y) \\ -6\cos(2x)\sin(3y) & -9\sin(2x)\cos(3y) \end{pmatrix}$$

iv

$$\nabla k(x,y,z) = (y^2 z^3, 2xyz^3, 3xy^2z^2)^{\top}$$

$$\boldsymbol{H}_k(x,y,z) = \begin{pmatrix} 0 & 2yz^3 & 3y^2z^2 \\ 2yz^3 & 2xz^3 & 6xyz^2 \\ 3y^2z^2 & 6xyz^2 & 6xy^2z \end{pmatrix}$$

 $\mathbf{v})$

$$\nabla j(u,v) = \frac{1}{(uv-1)^2} \cdot \begin{pmatrix} -v, -u \end{pmatrix}^\top,$$
$$\boldsymbol{H}_j(u,v) = \frac{1}{(uv-1)^3} \cdot \begin{pmatrix} 2v^2 & uv+1\\ uv+1 & 2u^2 \end{pmatrix}$$