Algorithm 1: Select best weights and parameters combinations.

remove element with index $argmin(\mathbf{BW})$ in M, Y, \mathbf{P}

Data: train data X; all parameters combinations P; random weights amount K; final models amount N**Result:** best weights BW; best parameter combinations BP1 M = SARIMAX(p) for all $p \in \mathbf{P}$ 2 Y = m(X) for all m \in M // predicted data from all models $_{3}$ // $_{P}$, $_{M}$, $_{Y}$ should always have the same length while len(M) > N do for $k \in {1, 2, ..., K}$ do w = random weights, sum = 1, length = length of M6 $\bar{y} = \sum_{i=1}^{len(w)} w_i * Y_i$ Score = $MAE(\bar{y}, \mathbf{X})$ 7 8 9 end $\mathbf{BW} = \text{the } w \text{ with lowest } Score \text{ in the loop above}$ 10

12 end

13 BP = P

14 return BW, BP