

Problem: Consider the problem of maximizing the function $f(x) = x^2$, $0 \le x \le 31$.

Simulated annealing

Given initial temperature, T = 1000

A solution is represented with a 5-bit string.

The initial State (or solution) is 10011 (x = 19 and f(x) = 361).

A neighbouring state is obtained just by flipping a bit randomly.

Candidate state 1: 11011 (x = 27 and f(x) = 729)

Compute
$$\triangle E = 361 - 729 = -368$$

 $\triangle E \leq 0$ accept the state

Candidate state 2: 01011 (x = 11 and f(x) = 121)

Compute
$$\triangle E = 729 - 121 = 608$$

Compute the acceptance probability with T = 1000

$$\exp\left(\frac{-\triangle E}{T}\right) = \exp\left(\frac{-608}{1000}\right) = 0.544$$

Try computing the acceptance probability with T = 100

$$\exp\left(\frac{-\Delta E}{T}\right) = \exp\left(\frac{-608}{100}\right) = 0.002$$

Genetic algorithm

f:/\$t:

Initial Population

String no.	Initial popln.	X value	f(x)	Selec. Prob.	Selection	Stoing 1
1	01101	13	169	0.144	1 -	Selecter
2	11000	24	576	0.492	2 -	- twice
3	01000	8	64	0.054	0 -	not
4	10011	19	361	0.308	1 -	Selecte

Given: Mating pool: 2-1,4-3

Crossover site: 4422

Cross over Sile

Watering proof 2 2 1 cg 3

Significant State of the State of State

 Consider the candy examples as discussed in the class. Show the calculations for the first iteration of EM. [5 marks]

Learning of parameter θ

E-Step

$$\dot{N}(Bag = 1) = \sum_{j=1}^{N} P(Bag = 1|flavor_j, wrapper_j, hole_j)$$

M-step

$$\theta_1 = \frac{\widehat{N}(Bag = 1)}{N}$$

* solution is available in the book.

- 2. Consider a single Boolean random variable Y (the 'classification'). Let the prior probability P(Y = true) be π . Let's try to find π , given a training set $D = (y_1, ..., y_N)$ with N independent samples of Y. Furthermore, suppose p of the N are positive and n of the N are negative. [5 marks]
- (a) Write down an expression for the likelihood of D (i.e. the probability of seeing this particular sequence of examples, given a fixed value of π) in terms of π , p and n.
- (b) By differentiating the log likelihood L, find the value of π that maximizes the likelihood.

Probability of data is TIP (1-11)~

selling the derivative to 0.

$$\frac{\partial L}{\partial \Pi} = \frac{P}{\Pi} - \frac{m}{1-\Pi} = 0$$

so, ML value is TT = p/(p+n) which is the

proportion of positive examples in the date.