PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 0:							
	C12N	15/12,	5/10,	1/21, (C07K 1	4/47,	
					14/47,		
					33/53,		
	A61K	38/17		•	•	•	

(11) International Publication Number:

WO 98/39448

(43) International Publication Date: 11 September 1998 (11.09.98)

(21) International Application Number:

PCT/US98/04493

A2

(22) International Filing Date:

6 March 1998 (06.03.98)

(30) Priority Data:

60/040,162	7 March 1997 (07.03.97)	US
60/040,333	7 March 1997 (07.03.97)	US
60/038,621	7 March 1997 (07.03.97)	US
60/040,161	7 March 1997 (07.03.97)	US
60/040,626	7 March 1997 (07.03.97)	US
60/040.334	7 March 1997 (07.03.97)	US
60/040,336	7 March 1997 (07.03.97)	US
60/040,163	7 March 1997 (07.03.97)	US
60/043,580	11 April 1997 (11.04.97)	US
60/043,568	11 April 1997 (11.04.97)	US

(Continued on the following page)

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hills Road, Laytonsville, MD 20882 (US). FISCHER, Carrie, L. [US/US]; 5810 Hall Street, Burke, VA 22015 (US). SOP-PET, Daniel, R. [US/US]; 15050 Stillfield, Place, Centreville, VA 22020 (US). CARTER, Kenneth, C. [US/US]; 11601 Brandy Hall Lane, North Potomac, MD 20878 (US). BEDNARIK, Daniel, P. [US/US]; 8822 Blue Sea Drive, Columbia, MD 21046 (US). ENDRESS, Gregory, A. [US/US]; 9729 Clagett Farm Drive, Potomac, MD 20854 (US). YU, Guo-Liang [CN/US]; 13524 Straw Bale Lane, Darnestown, MD 20878 (US). NI, Jian [CN/US]; 5502 Manorfield Road, Rockville, MD 20853 (US). FENG, Ping [CN/US]; 4 Relda Court, Gaithersburg, MD 20878 (US). YOUNG, Paul, E. [US/US]; 122 Beckwith Street, Gaithersburg, MD 20878 (US). GREENE, John, M. [US/US]; 872 Diamond Drive, Gaithersburg, MD 20878 (US). FERRIE, Ann, M. [US/US]; 13203 L Astoria Hill Court, Germantown, MD 20874 (US). DUAN, Roxanne [US/US]; 4541 Fairfield Drive, Bethesda, MD 20814 (US). HU, Jing-Shan [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). FLORENCE, Kimberly, A. [US/US]; 12805 Atlantic Avenue, Rockville, MD 20851 (US). OLSEN, Henrik, S. [DK/US]; 182 Kendrick Place #24, Gaithersburg, MD 20878 (US). EBNER, Reinhard [DE/US]; 9906 Shelburne Terrace #316, Gaithersburg, MD 20878 (US). BREWER, Laurie, A. [US/US]; 14920 Mount Nebo Road, Poolesville, MD 20837 (US). MOORE, Paul, A. [GB/US]; Apartment #104, 1908 Holly Ridge Drive, McLean, VA 22102 (US). SHI, Yanggu [CN/US]; 437 West Side Drive, Gaithersburg, MD 20878 (US). LAFLEUR, David, W. [US/US]; 1615 Q Street, N.W. #807, Washington, DC 20009 (US). LI, Yi [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). ZENG, Zhizhen [CN/US]; 13950 Saddleview Drive, Gaithersburg, MD 20878 (US). KYAW, Hla [BU/US]; 520 Sugarbush Circle, Frederick, MD 21703 (US).

- (74) Agents: BROOKES, Anders, A. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 10850 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: 186 HUMAN SECRETED PROTEINS

(57) Abstract

The present invention relates to 186 novel human secreted proteins and isolated nucleic acids containing the coding regions of the genes encoding such proteins. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human secreted proteins. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating disorders related to these novel human secreted proteins.

60/043,314	11 april 1997 (11.04.97)	US	60/047,596	23 May 1997 (23.05.97)	US	60/056,637	22 August 1997 (22.08.97)	US
60/043,569	11 april 1997 (11.04.97)	US	60/047,612	23 May 1997 (23.05.97)	US	60/056,903	22 August 1997 (22.08.97)	US
60/043,311	11 april 1997 (11.04.97)	US	60/047,632	23 May 1997 (23.05.97)	US	60/056,888	22 August 1997 (22.08.97)	US
60/043,671	11 april 1997 (11.04.97)	US	60/047,601	23 May 1997 (23.05.97)	US	60/056,879	22 August 1997 (22.08.97)	US
60/043,674	11 april 1997 (11.04.97)	US	60/047,595	23 May 1997 (23.05.97)	US	60/056,880	22 August 1997 (22.08.97)	US
60/043,669	11 april 1997 (11.04.97)	US	60/047,599	23 May 1997 (23.05.97)	US	60/056,894	22 August 1997 (22.08.97)	US
60/043,312	11 april 1997 (11.04.97)	US	60/047,588	23 May 1997 (23.05.97)	US	60/056,911	22 August 1997 (22.08.97)	US
60/043,313	11 april 1997 (11.04.97)	US	60/047,585	23 May 1997 (23.05.97)	US	60/056,636	22 August 1997 (22.08.97)	US
60/043,672	11 april 1997 (11.04.97)	US	60/047,586	23 May 1997 (23.05.97)	US	60/056,874	22 August 1997 (22.08.97)	US
60/043,578	11 april 1997 (11.04.97)	US	60/047,590	23 May 1997 (23.05.97)	us	60/056,910	22 August 1997 (22.08.97)	US
60/043,576	11 april 1997 (11.04.97)	US	60/047,594	23 May 1997 (23.05.97)	US	60/056,864	22 August 1997 (22.08.97).	US
60/043,670	11 april 1997 (11.04.97)	US	60/047,589	23 May 1997 (23.05.97)	US	60/056,631	22 August 1997 (22.08.97)	US
60/047,600	23 May 1997 (23.05.97)	US	60/047,593	23 May 1997 (23.05.97)	US	60/056,845	22 August 1997 (22.08.97)	US
60/047,615	23 May 1997 (23.05.97)	US	60/047,614	23 May 1997 (23.05.97)	US	60/056,892	22 August 1997 (22.08.97)	US
60/047,597	23 May 1997 (23.05.97)	US	60/047,501	23 May 1997 (23.05.97)	US	60/056,632	22 August 1997 (22.08.97)	US
60/047,502	23 May 1997 (23.05.97)	US	60/048,974	06 June 1997 (06.06.97)	US	60/056,664	22 August 1997 (22.08.97)	US
60/047,633	23 May 1997 (23.05.97)	US	60/048,964	06 June 1997 (06.06.97)	US	60/056,876	22 August 1997 (22.08.97)	US
60/047,583	23 May 1997 (23.05.97)	US	60/049,610	13 June 1997 (13.06.97)	US	60/056,881	22 August 1997 (22.08.97)	US
60/047,617	23 May 1997 (23.05.97)	US	60/051,926	08 July 1997 (08.07.97)	US	60/056,909	22 August 1997 (22.08.97)	US
60/047,618	23 May 1997 (23.05.97)	US	60/052,874	16 July 1997 (16.07.97)	US	60/056,875	22 August 1997 (22.08.97)	US
60/047,503	23 May 1997 (23.05.97)	US	60/055,724	18 August 1997 (18.08.97)	US	60/056,862	22 August 1997 (22.08.97)	US
60/047,592	23 May 1997 (23.05.97)	US	60/056,886	22 August 1997 (22.08.97)	US	60/056,887	22 August 1997 (22.08.97)	US
60/047,581	23 May 1997 (23.05.97)	US	60/056,877	22 August 1997 (22.08.97)	US	60/056,908	22 August 1997 (22.08.97)	US
60/047,584	23 May 1997 (23.05.97)	US	60/056,889	22 August 1997 (22.08.97)	US	60/056,884	22 August 1997 (22.08.97)	US
60/047,500	23 May 1997 (23.05.97)	US	60/056,893	22 August 1997 (22.08.97)	US	60/057,761	05 September 1997 (05 09.97	7).US
60/047,587	23 May 1997 (23.05.97)	US	60/056,630	22 August 1997 (22.08.97)	US	60/057,650	05 September 1997 (05 09.93	7).US
60/047,492	23 May 1997 (23.05.97)	US	60/056,878	22 August 1997 (22.08.97)	US	60/057,669	05 September 1997 (05 09.93	7).US
60/047,598	23 May 1997 (23.05.97)	US	60/056,662	22 August 1997 (22.08.97)	US	60/058,785	12 September 1997 (12.09.97	7) US
60/047,613	23 May 1997 (23.05.97)	US	60/056,872	22 August 1997 (22.08.97)	US	60/061,060	02 October 1997 (02.10.97)	US
60/047,582	23 May 1997 (23.05.97)	US	60/056,882	22 August 1997 (22.08.97)	US			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

							••
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Тодо
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	тт	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	us	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	I.R	Liberia	SG	Singapore		

WO 98/39448 PCT/US98/04493

186 Human Secreted Proteins

Field of the Invention

This invention relates to newly identified polynucleotides and the polypeptides encoded by these polynucleotides, uses of such polynucleotides and polypeptides, and their production.

5

10

15

20

25

30

35

Background of the Invention

Unlike bacterium, which exist as a single compartment surrounded by a membrane, human cells and other eucaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles.

One type of sorting signal, called a signal sequence, a signal peptide, or a leader sequence, directs a class of proteins to an organelle called the endoplasmic reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.

Proteins targeted to the ER by a signal sequence can be released into the extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the membrane.

Despite the great progress made in recent years, only a small number of genes encoding human secreted proteins have been identified. These secreted proteins include the commercially valuable human insulin, interferon, Factor VIII, human growth hormone, tissue plasminogen activator, and erythropoeitin. Thus, in light of the pervasive role of secreted proteins in human physiology, a need exists for identifying and characterizing novel human secreted proteins and the genes that encode them. This knowledge will allow one to detect, to treat, and to prevent medical disorders by using secreted proteins or the genes that encode them.

Summary of the Invention

The present invention relates to novel polynucleotides and the encoded polypeptides. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant methods for producing the polypeptides and polynucleotides. Also provided are diagnostic methods for detecting disorders related to the polypeptides, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying binding partners of the polypeptides.

Detailed Description

Definitions

10

15

20

25

30

35

The following definitions are provided to facilitate understanding of certain terms used throughout this specification.

In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.

In the present invention, a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.

As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:X or the cDNA contained within the clone deposited with the ATCC. For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined.

In the present invention, the full length sequence identified as SEQ ID NO:X was often generated by overlapping sequences contained in multiple clones (contig

WO 98/39448 PCT/US98/04493

analysis). A representative clone containing all or most of the sequence for SEQ ID NO:X was deposited with the American Type Culture Collection ("ATCC"). As shown in Table 1, each clone is identified by a cDNA Clone ID (Identifier) and the ATCC Deposit Number. The ATCC is located at 12301 Park Lawn Drive, Rockville, Maryland 20852, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.

5

10

15

20

25

30

35

A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, the complement thereof, or the cDNA contained within the clone deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37°C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50°C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a

WO 98/39448 PCT/US98/04493

complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

5

10

15

20

25

30

35

The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single-and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

The polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine,

formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)

"SEQ ID NO:X" refers to a polynucleotide sequence while "SEQ ID NO:Y" refers to a polypeptide sequence, both sequences identified by an integer specified in Table 1.

"A polypeptide having biological activity" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention.)

25 Polynucleotides and Polypeptides of the Invention

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 1

This gene is expressed primarily in testes tumor and to a lesser extent in fetal brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly of the testes, and defects of the central nervous system such as seizure and neurodegenerative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly cancer of the testes and central nervous system,

expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., testes and other reproductive tissue, brain and other tissue of the nervous system, and blood cells, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of testicular cancer and treatment of central nervous system disorders since this gene is primarily expressed in the testes tumor and developing brain.

FEATURES OF PROTEIN ENCODED BY GENE NO: 2

5

10

15

20

25

30

35

This gene is expressed primarily in cancer tissues, such as breast cancer and Wilm's tumor, and to a lesser extent in fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, and/or tumors, particularly, those found in the breast, and developmental abnormalities or disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the glandular tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, and fetal tissue and, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 314 as residues: Pro-11 to Thr-18, Leu-43 to Pro-50, Gly-64 to Leu-72, and Leu-81 to Lys-86.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of cancers and/or tumors, particularly, those found in the breast since expression is mainly in cancer/tumor tissues. May serve as therapeutic proteins for proliferation/differentiation of fetal tissues.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 3

This gene is expressed primarily in CD34 depleted buffy coat and to a lesser extent in spleen, chronic lymphocytic leukemia.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood disorders or leukemias, diseases of the immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders or leukemias, diseases of the immune system since expression is in tissues related to immune function.

FEATURES OF PROTEIN ENCODED BY GENE NO: 4

This gene is expressed primarily in CD34 depleted buffy coat.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood disorders or lymphocytic diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders since expression is in tissues related to immune function.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 5

10

15

20

30

35

This gene is expressed primarily in CD34 depleted buffy coat.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood or immune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 317 as residues: Pro-13 to Lys-21.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders since expression is in tissues related to immune function.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 6

This gene is expressed primarily in CD34 depleted buffy coat.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood or immune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level

in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 318 as residues: Lys-31 to Lys-39.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood diseases since it is expressed in tissues related to immune function.

FEATURES OF PROTEIN ENCODED BY GENE NO: 7

5

10

15

20

25

30

35

This gene is expressed primarily in CD34 depleted buffy coat and to a lesser extent in pineal gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases of the immune system and brain associated diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and pineal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders, immune diseases or brain associated diseases (specifically of the pineal gland) since expression is in tissues related to immune function.

FEATURES OF PROTEIN ENCODED BY GENE NO: 8

The translation product of this gene shares sequence homology with an organic cation transporter which is thought to be important in organic cation uptake in the kidney and liver. (See Accession No. 2343059.) Preferred polypeptide fragments comprise the amino acid sequence ITIAIQMICLVNXELYPTFVRNXGVMVCSSLCDIGGIITP FIVFRLREVWQALPLILFAVLGLLAAGVTLLLPETKGVALPETMKDAENLGRKAKPKENTIYLK VQTSEPSGT (SEQ ID NO: 615) or TMKDAENLGRKAKPKENT (SEQ ID NO: 616) as well as N-terminal and C-terminal deletions of these fragments. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in liver.

5

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hepatic and renal diseases where drug elimination/cation exchange (organic cation uptake) in the liver and kidney are problematic. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic or renal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 320 as residues: Asn-64 to Asn-74, and Gln-81 to Gly-87.

The tissue distribution and homology to organic cation transporter indicate that polynucleotides and polypeptides corresponding to this gene are useful as a polyspecific transporter that is important for drug elimination in the liver (and possibly kidney) since expression is found in the liver.

FEATURES OF PROTEIN ENCODED BY GENE NO: 9

This gene is expressed primarily in eosinophil induced with IL-5 and to a lesser extent in fetal liver and spleen. This gene also maps to chromosome 15, and therefore can be used in linkage analysis as a marker for chromosome 15.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases of the immune system, particularly allergies or asthma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the

standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating/diagnosis of diseases involving esosinphil reactions since expression seems to be concentrated in eosinophils and other tissues involved in immunity such as the liver and spleen.

FEATURES OF PROTEIN ENCODED BY GENE NO: 10

5

10

15

20

25

35

This gene is expressed primarily in tissues of hematopoietic lineage and to a lesser extent in Hodgkins lymphoma. Any frame shifts in this sequence can easily be clarified using known molecular biology techniques.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, and immune deficiency or dysfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, lymphoid and reticuloendothelial tissues, and cancerous tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/ diagnosis for lymphomas or immune dysfuction or as a therapeutic protein useful in immune modulation based on expression in anergic T-cells and lymphomas.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 11

This gene is expressed primarily in neutrophils and to a lesser extent in activated lymphoid cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the cell type present in a biological sample and for diagnosis of diseases and conditions: inflamation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders

of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 323 as residues: Glu-40 to Lys-46.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for modulation of an immune reaction or as a growth factor for the differentiation or proliferation of neutrophils for the treatment of neutropenia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 12

5

10

15

20

25

30

35

This gene is expressed primarily in brain and to a lesser extent in activated T-cells. It is likely that the open reading frame containing the predicted signal peptide continues in the 5' direction. Preferred polypeptide fragments comprise the amino acid sequence PRVRNSPEDLGLSLTGDSCKL (SEQ ID NO:617).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurodegenerative disorders including ischemic shock, alzheimers and cognitive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and brain, and other tissue of the nervous system and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 324 as residues: Ser-5 to Glu-14, Ile-21 to Pro-35, Ser-65 to Asp-81, Cys-89 to Val-96, Lys-136 to Ser-145, Ile-152 to Met-169, and Arg-189 to Lys-196.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnostic/treatment for cancers of the given tissue or in the treatment of neurological disorders of the CNS.

WO 98/39448 PCT/US98/04493

FEATURES OF PROTEIN ENCODED BY GENE NO: 13

This gene was also recently cloned by other groups, naming this calcium-activated potassium channel gene, hKCa4. (See Accession No. AF033021, see also, Accession No. 2584866.) This gene is mapped to human chromosome 19q13.2. A second signal sequence likely exists upstream from the predicted signal sequence as described in Table 1. Preferred polypeptide fragments comprise: QADDLQATVAALCVLRGGGPWAG SWLSPKTPGAMGGDLVLGLGALRRRKRLL (SEQ NO: 618); or EQEKSLAGWALVLAXXGIGL MVLHAEMLWFGGCSAVNATGHLSDTLWLIPITFLTIGYGDVVPGTMWGKIVCLCTGVMGVCC TALLVAVVARKLEFNKAEKHVHNFMMDIQYTKEMKESAARVLQEAWMFYKHTRRKESHAAR XHQRXLLAAINAFRQVRLKHRKLREQVNSMVDISKMHMILYDLQQNLSSSHRALEKQIDTLAG KLDALTELLSTALGPRQLPEPSQQSK (SEQ ID NO: 619), as well as N-terminal and C-terminal deletions. Also preferred are polynulcleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in breast lymph node and T-cells, and to a lesser extent in placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hematologic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lymphoid tissue, blood cells and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 325 as residues: Arg-13 to Lys-23.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment/diagnosis of hematologic and diseases involving immune modulation based or distribution in the lymph node and T-cells.

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 14

5

10

15

20

25

30

35

This gene was recently cloned by another group, calling it PAPS synethase. (See Accession No. e1204135.) Preferred polypeptide fragments comprise the amino acid sequence YQAHHVSRNKRGQVVGTRGGFRGCTVWLTGLSGAGK (SEO ID NO: 620).

Also preferred are the polynucleotide fragments encoding this polypeptide fragment.

It has been discovered that this gene is expressed primarily in benign prostate hyperplasia, Human Umbilical Vein Endothelial Cells and to a lesser extent in smooth muscle and Human endometrial stromal cells-treated with estradiol.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: inflamation, ischemia, and restenosis, based on endothelial cell and smooth muscle cell expression, and prostate diseases such as benign prostate hyperplasia or prostate cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate or vessels of the circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., prostate, endothelial cells, smooth muscle, and endometrium, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 326 as residues: Arg-21 to Asp-26, Lys-35 to Lys-44, Glu-49 to Asn-58.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating/diagnosing diseases or conditions where the endothelial cell lining of the veins and arteries of underlying smooth muscle are involved.

FEATURES OF PROTEIN ENCODED BY GENE NO: 15

This gene is expressed primarily in human 6 week embryo and to a lesser extent in placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: developmental anomalies or fetal deficiencies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly developmental in nature, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 327 as residues Lys-50 to Glu-57.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection of developmental abnormalities.

FEATURES OF PROTEIN ENCODED BY GENE NO: 16

10

15

20

25

30

This gene is expressed primarily in kidney and amygdala and to a lesser extent in fetal tissues. This gene is mapped to chromosome 14, and therefore is useful in linkage analysis as a marker for chromosome 14.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) present in a biological sample and for diagnosis of diseases and conditions: kidney diseases, neurological disorders and developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s). For a number of disorders of the above tissues, particularly of the renal system or developing fetal tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney, amygdala, and fetal tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of conditions affecting the brain, kidneys and fetal development.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 17

This gene is expressed primarily in ovarian cancer.

WO 98/39448 PCT/US98/04493

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: solid tumors similar to ovarian cancer Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovarian and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 329 as residues Ser-51 to Val-56.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of solid tumors of the reproductive system such as ovarian cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 18

5

10

15

20

25

30

This gene is expressed primarily in brain medulloblastoma. Preferred polypeptide fragments comprise the amino acid sequence: IRHEQHPNFSLEMHSKGSSLLLFLPQL ILILPVCAHLHEELNC (SEQ ID NO: 643) and SFFISEEKGHLLLQAERHPWVAGALVGVSG GLTLTTCSGPTEKPATKNYFLKRLLQEMHIRAN (SEQ ID NO: 644), as well as N-terminal and C-terminal deletions. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors particularly of the CNS or Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the Central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene

expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

PCT/US98/04493

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating medulloblastoma or similar tumors.

5

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 19

This gene is expressed primarily in adipocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: obesity. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the adipose tissues expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipocytes and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating obesity by regulating the function and number of adipocytes

FEATURES OF PROTEIN ENCODED BY GENE NO: 20

This gene is expressed primarily in B cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, of the immune system with an emphasis on B cell lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tumors of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of B cell derived tumors based on its expression in b cell lymphomas

FEATURES OF PROTEIN ENCODED BY GENE NO: 21

This gene is expressed primarily in immune cells and to a lesser extent in fetal tissues

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: inflammatory diseases Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., cells of the immune system, and fetal tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:333 as residues Asp-10 to Pro-19, Ser-74 to Tyr-79, Glu-95 to Lys-110.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of diseases involving alterations in T cell activity.

FEATURES OF PROTEIN ENCODED BY GENE NO: 22

It has been discovered that this gene is expressed primarily in ovarian tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors particularly of the ovary. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of tumors of the reproductive organs. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovarian

and other reproductive tissue and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 334 as residues: Leu-22 to Gln-27.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of ovarian tumors as it has only been identified in ovarian tumors.

10

15

20

25

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 23

It has been discovered that this gene is expressed primarily in fetal tissues and to a lesser extent in osteoclastoma cell line

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: osteoporosis or arthritis Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone cells, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of conditions of abnormal bone remodeling due to enhanced activity of osteoclasts. This may be useful as a specific marker for malignancies derived from osteoclasts or their precursors.

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 24

The translation product of this gene shares sequence homology with a periplasmic ribonuclease which is thought to be important in degrading extracellular polynucleotides

35 It has been discovered that this gene is expressed primarily in serum treated smooth muscle cells

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: vascular disease such as restenosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vasculature expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 336 as residues: Gln-30 to Lys-36, and Pro-41 to Arg-48.

The tissue distribution and homology to ribonucleases indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of pathological conditions of smooth muscle associated with bacterial or viral infiltration

FEATURES OF PROTEIN ENCODED BY GENE NO: 25

This gene is expressed primarily in Early Stage Human Brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: human brain development and related diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the human brain development and related diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to this gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases affecting human brain development and related diseases.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 26

It has been discovered that this gene is expressed primarily in human brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: human brain diseases and other diseases related to brain diseases, which may be caused by brain diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the human brain diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of human brain diseases and other diseases related.

FEATURES OF PROTEIN ENCODED BY GENE NO: 27

It has been discovered that this gene is expressed primarily in Anergic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune diseases, inflammatory diseases and diseases related to T lymph cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune diseases, inflammatory diseases and diseases related to T lymph cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene

expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

22

The tissue distribution and homology to the gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for immune diseases, inflammatory diseases and diseases related to T lymph cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 28

5

10

15

20

25

30

35

The translation product of this gene shares sequence homology with *Shigella flexneri* positive transcriptional regulator CriR (criR) gene which is thought to be important in regulation of gene expression.

This gene is expressed primarily in human synovial sarcoma and normal human brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: human brain diseases particularly sarcomas of the synovium. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the human brain and synovium and other related human brain diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., synovial tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of human synovial sarcoma and other related human brain diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 29

This gene is expressed in bone marrow, infant brain, fetal liver and spleen, prostate and to a lesser extent in pineal gland, adipose tissue, kidney, adrenal gland, umbilical vein endothelial cells, and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases related to bone marrow or

hematoplastic tissues, prostate, kidney, adrenal gland, and cardiovascular tissue or organs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the diseases related to hematoplastic tissues, immune system, prostate, kidney, adrenal gland, and cardiovascular tissue or organs, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, hematopoietic cells, pineal gland, adipose tissue, kidney, adrenal gland, endothelial cells, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases related to hematoplastic tissues, immune system, prostate, kidney, adrenal gland, and cardiovascular tissue or organs.

FEATURES OF PROTEIN ENCODED BY GENE NO: 30

5

10

15

20

25

30

35

This gene is expressed primarily in meningea and to a lesser extent in breast and adult brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Diseases of the meningea and related brain diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the meningea and related brain diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., miningea, mammary tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases of the meningea and related brain diseases.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 31

This gene is expressed in meningea, fetal spleen, osteoblast and to a lesser extent in activated T-cells, endometrial stromal cells, fetal lung, HL-60, thymus, testis and endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: meningeal disease, osteoporosis, immune diseases, and hematoplastic diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the meningeal diseases, osteoporosis, immune diseases, and hematoplastic diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, endometrium, lung, thymus, testis, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of meningeal, osteoporosis, immune diseases, hematoplastic diseases, testis diseases and lung diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 32

This gene is expressed primarily in human thymus and to a much lesser extent in infant brain, T-cells, smooth muscle, endothelial cells, bone marrow, human ovarian tumor and keratinocytes testes, osteoclastoma, breast, and tonsils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Diseases involving the thymus, particularly thymic cancer and diseases involving T-cell maturation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a

WO 98/39448 PCT/US98/04493

25

number of disorders of the above tissues or cells, particularly of the thymus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., thymus, brain, and other tissue of the nervous system, blood cells, bone marrow, ovaries, and testes, and other reproductive tissue, mammary tissue, tonsils, melanocytes and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases of the thymus particularly thymic cancer and diseases involving T-cell maturation.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 33

This gene is expressed primarily in human tonsils, and placenta, and to a lesser extent in adipocytes, melanocyte, and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: inflammatory diseases, immune diseases, and obesity. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the inflammatory diseases, immune diseases, and obesity, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., tonsils, placenta, adipocytes, melanocytes, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to this gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases such as inflammation, immune diseases, and obesity.

30

10

20

25

10

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 34

This gene is expressed in activated T cells, and to a lesser extent in pituitary, testis, and breast lymph node.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases relating to T cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the disorders of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., pituitary, testes and other reproductive tissue, mammary tissue, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of immune disorders.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 35

This gene is expressed primarily in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the diseases relating to neurological disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain, and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neurological disorders.

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 36

This gene is expressed primarily in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the diseases relating to neurological disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neurological disorders.

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 37

This gene is expressed primarily in human ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ovarian cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the ovarian disorders such as those involving germ cells, ovarian follicles, stromal cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovary and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of ovariopathy.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 38

This gene is expressed primarily in lymph node breast cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the breast cancer, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

PCT/US98/04493

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for used as a diagnostic marker for breast cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 39

This gene is expressed primarily in brain and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuronal disorders such as trauma, brain degeneration, and brain tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and therapeutic treatment of neuronal disorders.

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 40

This gene is expressed in early stage human embryo, adrenal gland tumor, and immune tissues such as fetal liver, fetal spleen, T-cell, and myoloid progenitor cell line and to a lesser extent in ovary, colon cancer, and a few orther tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumorigenesis including adrenal gland tumor, colon cancer and various other tumors, developmental and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cancer tissues, early stage human tissues, and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, blood cells, bone marrow, ovary and other reproductive tissue, and colon, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and therapeutic treatment of immune and developmental disorders, and tumorigenesis.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 41

This gene is expressed primarily in fetal lung, endothelial cells, liver, thymus and a few other immune tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders such as immune deficiency and autoimmune diseases, pulmonary diseases, liver diseases, and tumor matasis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal lung, liver, endothelial cells, and immune tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain

tissues and cell types (e.g., lung, endothelial cells, liver, thymus, and other tissue of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of immune disorders and pulmonary and hepatic diseases. Its promoter may also be used for immune system and lung-specific gene therapies. The expression of this gene in endothelial cells indicates that it may also involve in angiogenesis which therefore may play role in tumor matasis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 42

5

10

15

20

25

30

This gene is expressed primarily in liver, thyroid, parathyroid and to a lesser extent in fetal lung, stomach and early embryos.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: metabolic regulation, obesity, heptic failure, heptacellular tumors or thyroiditis and thyroid tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive/endocrine system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, thyroid, parathyroid, lung, stomach, and embryonic tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and the extracellular locations indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of digestive/endocrine disorders, including metabolic regulation, heptic failure, malabsortion, gastritis and neoplasms.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 43

This gene is expressed primarily in Schizophrenic adult brain, pituitary, front cortex, hypothalmus and to a lesser extent in retina, adipose and stomach cancer and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: schizophrenia and other neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nerve system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., retinal tissue, adipose, stomach, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in treatment/detection of disorders in the nerve system, including schizophrenia, neurodegeneration, and neoplasia. Additionally, a secreted protein in brain may serve as an endocrine.

FEATURES OF PROTEIN ENCODED BY GENE NO: 44

The translation product of this gene shares sequence homology with GTP binding proteins which are thought to be important in signal transduction and protein transport.

This gene is expressed primarily in umbilical vein and microvascular endothelial cells, GM-CSF treated macrophage, anergic T cells, osteoblast, osteoclast, CD34+ cells and to a lesser extent in gall bladder.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: bone formation and growth, osteonecrosis, osteoporosis, angiogenesis and/or hematopoeisis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal and hematopoeisis systems, expression of this gene at significantly higher or lower levels

10

15

20

25

30

may be routinely detected in certain tissues and cell types (e.g., endothelial cells, blood cells, bone, and gall bladder, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to GTP binding proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment/detection of bone formation and growth, osteonecrosis, osteoporosis, and/or hematopoeisis because its involvement in the growth signaling or angiogenesis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 45

The translation product of this gene shares sequence homology with signal sequence receptor gamma subunit which is thought to be important in protein translocation on endoplasmic reticulum.

This gene is expressed primarily in adrenal gland, salivary gland, prostate, and to a lesser extent in endothelial cells and smooth muscle.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: protein secretion. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the secretory organs, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adrenal gland, salivary gland, prostate, endothelial cells, and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to SSR gamma subunit indicate that polynucleotides and polypeptides corresponding to this gene are useful for endocrine disorders, prostate cancer, xerostomia or sialorrhea.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 46

This gene is expressed primarily in osteoclastoma cells and to a lesser extent in melanocyte, amygdala, brain, and stomach.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ossification, osteoporosis, fracture, osteonecrosis, osteosarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., melanocytes, amygdala, brain and other tissue of the nervous system, and stomach, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in intervention of ossification, osteoporosis, fracture, osteonecrosis and osteosarcoma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 48

The translation product of this gene shares sequence homology with proline rich proteins which is thought to be important in protein-protein interaction.

This gene is expressed primarily in brain.

5

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological and psychological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nerve system and endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to proline-rich proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful in intervention

15

20

25

30

35

and detection of neurological diseases, including trauma, neoplasia, degenerative or metabolic conditions in the central nerve system. Additionally, the gene product may be a secreted by the brain as an endocrine.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 49

The translation product of this gene shares sequence homology with the AOCB gene from Aspergillus nidulans which is important in asexual development.

This gene is expressed primarily in infant brain and to a lesser extent in the developing embryo, trachea tumors, B-cell lymphoma and synovial sarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurodegenerative diseases, leukemia and sarcoma's. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, blood cells, trachea, and synovial tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in infant brain and sarcoma's and homology to a gene involved in a key step of eukaryotive development (fungal spore formation) indicates that the protein product of this clone could play a role in neurological diseases such as schizophrenia, particularly in infants. The existence of the gene in a B-cell lymphoma indicates the gene may be used in the treatment and detection of leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 50

This gene is expressed primarily in fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: pulmonary disorders including lung cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the pulmonary system, expression of this gene at significantly higher or

10

15

20

25

30

lower levels may be routinely detected in certain tissues and cell types (e.g., lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene only in fetal lung indicates that it plays a key role in development of the pulmonary system. This would suggest that misregulation of the expression of this protein product in the adult could lead to lymphoma or sarcoma formation, particularly in the lung. It may also be involved in predisposition to certain pulmonary defects such as pulmonary edema and embolism, bronchitis and cystic fibrosis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 51

This gene is expressed primarily in hematopoietic cell types and fetal cells and to a lesser extent in all tissue types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects in the immune system and hematopoeisis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene predominantly in hematopoeitic cells and in the developing embryo indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of lymphomas and disease states affecting the immune system or hematopoeisis disorders such as leukemia, AIDS, arthritis and asthma..

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 52

This gene is expressed primarily in prostate and to a lesser extent in fetal spleen, fetal liver, infant brain and T cell leukemias.

WO 98/39448 PCT/US98/04493

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: prostate disorders, prostate cancer, leukemia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, and/or prostate gland expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., thymus, spleen, liver, brain and other tissue of the nervous system, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene in prostate indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection or treatment of prostate disorders or prostate cancer. Its distribution in fetal liver and fetal spleen indicates it may play a role in the immune system and its misregulation could lead to immune disorders such as leukemia, arthritis and asthma.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 53

The translation product of this gene shares sequence homology with dynein. This gene is expressed primarily in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuro-degenerative diseases of the brain. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly neuro-degenerative diseases expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.c., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The predominant tissue distribution in the brain and homology to dynein, a microtubule motor protein involved in the positioning of cellular organelles and molecules indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection/treatment of neurodegenerative diseases, such as Alzheimers,

Huntigtons, Parkinsons diseases and shizophrenia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 54

5

10

15

20

25

30

35

The translation product of this gene shares sequence homology with ubiquitinconjugation protein, an enzyme which is thought to be important in the processing of the Huntingtons Disease causing gene.

This gene is expressed primarily in brain and to a lesser extent in activated macrophages.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurodegenerative disease states including Huntington's disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of brain tissues. For a number of disorders of the above tissues or cells, particularly of the neurological systems expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The predominant tissue distribution of this gene in the brain and its homology to a Huntington interacting protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the regulation of the expression of the Huntington disease gene and other neurodegenerative diseases including spinocerebullar ataxia types I and III, dentatorubropallidoluysian and spinal bulbar muscular atrophy. In addition, the existence of elevated levels of free ubiquitin pools in Alzheimer's disease, Parkinson's disease and amylotrophic lateral sclerosis indicates that the ubiquitin pathway of protein degradation plays a role in these disease states. Thus, considering the gene described here is homologous to a ubiquitin-conjugation protein it may play a general role in neurodegenarative conditions.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 56

This gene is expressed primarily in T-cells (anergic T-cells, resting T-Cells, apoptotic T-cells) and lymph node (breast), as well as brain (hypothalamus, hippocampus, pituitary, infant brain, early-stage brain).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune (e.g. immunodeficiencies, autoimmunities, inflammation, leukemias & lymphomas) and neurological (e.g. Alzheimer's disease, dementia, schizophrenia) disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous, hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, lymphoid tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in the intervention or detection of pathologies associated with the hematopoietic and immune systems, such as anemias (leukemias). In addition, the expression in brain (including fetal) might suggest a role in developmental brain defects, neuro-degenerative diseases or behavioral abnomalities (e.g. schizophrenia, Alzheimer's, dementia, depression, etc.).

FEATURES OF PROTEIN ENCODED BY GENE NO: 57

This gene is expressed primarily in lung, and to a lesser extent in a variety of other hematological cell types (e.g. Raji cells, bone marrow cell line, activated monocytes).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: pulmonary and/or hematological disfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vasculo-pulmonary and hematopoietic systems, expression of this

10

15

20

25

30

35

gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lung and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

39

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in the intervention and detection of pathologies associated with the vasculo-pulmonary system. In addition the expression of this gene in a variety of leukocytic cell types and a bone marrow cell line might suggest a role in hematopoietic and immune system disorders, such as leukemias & lymphomas, inflammation, immunodeficiencies and autoimmunities.

FEATURES OF PROTEIN ENCODED BY GENE NO: 58

The translation product of this gene shares sequence homology with adenylate kinase isozyme 3 (gil163528 GTP:AMP phosphotransferase (EC 2.7.4.10) [Bos taurus]), which is thought to be important in catalyzing the phosphorylation of AMP to ADP in the presence of ATP or inorganic triphosphate.

This gene is expressed primarily in fetal liver, heart and placenta, and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hepatic, cardiovascular or reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic, cardiovascular and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, heart, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of conditions related to hepatic function and pathogenesis, in particular, those dealing with liver development and the differentiation of hepatocyte progenitor cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 59

5

10

15

20

25

30

35

This gene is expressed primarily in CD34 positive cells (Cord Blood).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hematopoietic differentiation and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in the detection and treatment of conditions associated with CD34-positive cells, and therefore as a marker for cell differentiation in hematapoiesis, as well as immunological disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 60

The translation product of the predicted open reading frame of this contig has sequence identity to the murine gene designated Insulin-Like Growth Factor-Binding Protein (IGFBP)-1 as described by Lee and colleagues (Hepatology 19 (3), 656-665 (1994)).

This gene is expressed exclusively in hemangiopericytoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of hemangiopericytoma and other pericyte or endothelial cell proliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory and immune systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., pericyte or endothelial cells, and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Polynucleotides and polypeptides corresponding to this gene are useful as cell growth regulators since IGFBP-1-like molecules function as modulators of insulin-like growth factor activity. In addition, since IGFBP-1 is expressed at high levels following hepatectomy and during fetal liver development, polynucleotides of the present invention may also be used for the diagnosis of developmental disorders. Further, polypeptides of the present invention may be used therapeutically to treat developmental liver disorders as well as to regulate hepatocyte and supporting cell growth following hepatectomy or to treat liver disorders.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hemangiopericytoma and liver disorders.

15

20

25

30

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 61

This gene is expressed primarily in schizophrenic frontal cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: nervous system and cognitive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the frontal cortex and CNS expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, treatment and diagnosis of frontal cortex, neuro-degenerative and CNS disorders

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 62

This gene is expressed primarily in human adrenal gland tumor, and to a lesser extent in human kidney, medulla and adult pulmonary tissue.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: metabolic, endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine and nervous system disorders and neoplasia, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adrenal gland, kidney, brain and other tissue of the nervous system, pulmonary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, treatment and diagnosis of neurological and endocrine disorders including neoplasia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 63

This gene is expressed primarily in human adipocytes, and to a lesser extent in spleen, 12-week old human, and testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune, metabolic and growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipocytes, spleen, and testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.c., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis and treatment of immune, developmental and metabolic disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 64

10

15

20

25

30

35

One translated product of this clone is homologous to the mouse zinc finger protein PZF. (See Accession No. 453376; see also Gene 152 (2), 233-238 (1995).) Preferred polypeptide fragments correspond to the highly conserved domains shared between mouse and man. For example, preferred polypeptide fragments comprise the amino acid sequence: LQCEICGFTCRQKASLNWHMKKHDADSFYQFSCNICGKKFEKKDSVVAHKAKSH PEV (SEQ ID NO: 621); ITSTDILGTNPESLTQPSD (SEQ ID NO: 622); NSTSGECLLLEAEGM SKSY (SEQ ID NO: 623); CSGTERVSLMADGKIFVGSGSSGGTEGLVMNSDILGATTEVLIEDSD SAGP (SEQ ID NO: 624); IQYVRCEMEGCGTVLAHPRYLQHHIKYQHLLKKKYVCPHPSCGRLF RLQKQLLRHAKHHT (SEQ ID NO: 625); DQRDYICEYCARAFKSSHNLAVHRMIHTGEK (SEQ ID NO: 626); RSSRTSVSRHRDTENTRSSRSKTGSLQLICKSEPNTDQLDY (SEQ ID NO: 627); PFKDDPRDETYKPHLERETPKPRRKSG (SEQ ID NO: 630); QYVRCEMEGCGTVLAHPRYLQ HHIKYQHLLKKKYVCPHPSCGRLFRLQKQLLRHAKHHTD (SEQ ID NO: 629); or residues 151-182 of QRDYICEYCARAFKSSHNLAVHRMIHTGEKHY (SEQ ID NO: 628). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in Rhabdomyosarcoma, melanocyte and colon cancer tissue and to a lesser extent in smooth muscle, pancreatic tumor, and apoptotic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hemopoetic, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., striated muscle, melanocytes, colon, smooth muscle, pancreas, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis and treatment of cancer and hemopoetic disorders.

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 65

This gene is expressed primarily in human adipose and salivary gland tissue and to a lesser extent in human bone marrow and fetal kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: metabolic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the metabolic and hemopoetic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipose, salivary gland, bone marrow, and kidney, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis of metabolic and immune disorders.

20

25

30

35

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 66

This translated product of this gene was recently identified as oxytocinase splice variant 1. (See Accession Nos. 2209276 and d1010078.) Preferred polypeptide fragments comprise the amino acid sequence: EMFDSLSYFKGSSLLLMLKTYLSEDVFQHAVVLYLHN HSYASIQSDDLWDSFNEVTNQTLDVKRMMKTWTLQKGFPLVTVQKKGKELFIQQERFFLNMK PEIQPSDTRYM (SEQ ID NO: 631). Also preferred are polynucleotide fragments encoding this polypeptide fragment.

FEATURES OF PROTEIN ENCODED BY GENE NO: 67

This gene is expressed primarily in hemopoetic cells, particularly apoptotic T-cells, and to lesser extent in primary dendritic cells and adipose tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of apoptotic T-cells, primary denritic cells, and adipose tissue present in a biological sample and for diagnosis of diseases and conditions: hemopoetic diseases including cancer and general immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

type(s). For a number of disorders of the above tissues or cells, particularly of the oral and intestinal mucosa as well as hemopoetic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of diseases of the immune system, including cancer, hemopoetic and infectious diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 68

5

10

15

20

25

30

35

This gene is expressed primarily in kidney cortex and to a lesser extent in infant brain, heart, uterus, and blood.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of kidney tissue present in a biological sample and for diagnosis of diseases and conditions: soft tissue cancer, inflammation, kidney fibrosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and endocrines systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney, brain, and other nervous tissue, heart, uterus, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of cancer and fibroses.

FEATURES OF PROTEIN ENCODED BY GENE NO: 69

The translation product of this gene shares strong sequence homology with vertebrate and invertebrate protein tyrosine phosphatases.

This gene is expressed primarily in endometrial tumors, melanocytes, myeloid progenitors and to a lesser extent in infant brain, adipocytes, and several hematopoietic stem cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of transformed hematopoietic and epithelial cells present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, of skin and endometrium, leukemia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and hemopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, melanocytes, bone marrow, adipocytes, hematopoietic cells, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an

The tissue distribution and sequence similarity with tyrosine phosphatases indicate that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of cancer and hematopoietic disorders.

individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 70

5

10

15

25

30

35

disorder.

This gene is expressed primarily in osteoclastoma, breast, and infant brain and to a lesser extent in various fetal and transformed bone, ovarian, and neuronal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: degenerative conditions of the brain and skeleton. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone, mammary tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of degenerative, neurological and skeletal disorders.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 71

This gene was originally cloned from tumor cell lines. Recently another group has also cloned this gene, calling it the human malignant melanoma metastasis-suppressor (KiSS-1) gene. (See Accession No. U43527.) Preferred polypeptide fragments comprise the amino acid sequence: LEKVASVGNSRPTGQQLESLGLLA (SEQ ID NO: 632); VHREEASCYCQAEPSGDL (SEQ ID NO: 633); RPALRQAGGGTREPRQKRWAGL (SEQ ID NO: 634); and AVNFRPQRSQSM (SEQ ID NO: 635). Any frame shifts can easily be resolved using known molecular biology techniques.

This gene is expressed primarily in many types of carcinomas and to a lesser extent in many normal organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissues(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly melanomas, and other hyperproliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of transformed organ tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. As a tumor suppressor gene, increase amounts of the polypeptide can be used to treat patients having a particular cancer.

The tissue distribution indicates that this gene and the translated product is useful for diagnosing and study of cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 72

This gene is expressed primarily in striatum and to a lesser extent in adipocytes and hemangioperiocytoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of striatal cells present in a biological sample and for diagnosis of diseases and conditions: neurological, fat and lysosomal storage

WO 98/39448 PCT/US98/04493

48

diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., striatal tissue, adipocytes, and vascular tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis, study and treatment of neurodegenerative and growth disorders.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 73

This gene is expressed primarily in bone marrow stromal cells and to a lesser extent in smooth muscle, testes, endothelium, and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of bone marrow present in a biological sample and for diagnosis of diseases and conditions: connective tissue and hematopoietic diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, stromal cells, smooth muscle, testes and other reproductive tissue, endothelium, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis, and treatment of connective tissue and blood diseases.

5

10

20

25

30

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 74

This gene is expressed primarily in brain, fetal liver and lung and to a lesser extent in retina, spinal chord, activated T-cells and endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of brain and regenerating liver present in a biological sample and for diagnosis of diseases and conditions: CNS and spinal chord injuries, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, pulmonary tissue, blood cells, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of hematopoietic and neurological conditions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 75

The translation product of this gene shares sequence homology with GTP binding proteins (intracellular).

This gene is expressed primarily in bone marrow, brain, and melanocytes and to a lesser extent in various endocrine and hematopoietic tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hematopietic and nervous system conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, melanocytes, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder,

10

15

20

25

30

35

relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to nucleotide binding factors indicate that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis, and treatment of brain degenerative, skin and blood diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 76

This gene is expressed primarily in activated T-cells and to a lesser extent in retina, brain, and fetal bone.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of activated T-cells and developing brain present in a biological sample and for diagnosis of diseases and conditions: immune deficiencies and skeletal and neuronal growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous, immune, and skeletomuscular sustems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, brain and other tissue of the nervous system, retinal tissue, and bone, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis, study and treatment of cancer, urogenital, and brain degenerative diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 77

This gene is expressed primarily in fetal liver, activated monocytes, osteoblasts and to a lesser extent in synovial, brain, and lymphoid tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of myeloid and lymphoid present in a biological sample and for diagnosis of diseases and conditions: inflammation, immune deficiencies, cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and skeleton, expression of this gene at significantly

15

20

25

30

higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, blood cells, bone, synovial tissue, brain and other tissue of the nervous system, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis, and treatment of lymphoid and mesenchymal cancers and nervous system diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 78

The translation product of this gene shares sequence homology with polymerase polyprotein precursor which is thought to be important in DNA repair and replication

This gene is expressed primarily in infant brain and to a lesser extent in tumors and tumor cell lines

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, especially of the neural system and developing organs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural system expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to polymerase polyprotein precursor indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers especially of the neural system and developing organs

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 79

This gene is expressed primarily in muscle and endothelial cells and to a lesser extent in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: vascular diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., muscle, endothelial cells, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of disorders of the vascular and neural system including cardiovascular and endothelial.

FEATURES OF PROTEIN ENCODED BY GENE NO: 80

10

15

20

25

30

35

This gene is expressed primarily in placenta and to a lesser extent in fetal liver. Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: developmental disorders and disorder of the haemopoietic system, fetal liver and placenta. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of developmental disorders and disorder of the haemopoietic system, fetal liver and placenta, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of developmental disorders and disorders of the haemopoietic system, fetal liver and placenta.

FEATURES OF PROTEIN ENCODED BY GENE NO: 81

5

10

15

20

25

30

35

This gene is expressed primarily in bone marrow, placenta and tissues and organs of the hematopoietic system.

PCT/US98/04493

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disorders of the bone and haemopoietic system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, bone and hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, placenta, and hematopoietic cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders of the immune, bone and hematopoietic system

FEATURES OF PROTEIN ENCODED BY GENE NO: 82

The translation product of this gene shares sequence homology with secretory carrier membrane protein which is thought to be important in protein transport and export. Any frame shifts in coding sequence can be easily resolved using standard molecular biology techniques. Another group recently cloned this gene, calling it SCAMP. (See Accession No. 2232243.)

This gene is expressed primarily in prostate, breast and spleen, and to a lesser extent in several other tissues and organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disorders of the breast prostate and spleen. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly disorders of the breast prostate and spleen, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell

15

20

25

30

35

types (e.g., prostate, mammary tissue, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to secretory carrier membrane protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders of the breast, prostate and spleen.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 83

This gene is expressed primarily in developing organs and tissue like placenta and infant brain and to a lesser extent in developed organs and tissue like cerebellum and heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, heart, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases of the neural system including neurological disorders and cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 84

The translation product of this gene shares sequence homology with ATPase 6 in Trypanosoma brucei which is thought to be important in metabolism.

This gene is expressed primarily in tumor and fetal tissues and to a lesser extent in melanocytes, kidney cortex, monocytes and ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

biological sample and for diagnosis of diseases and conditions: metabolism disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissues, melanocytes, kidney, blood cells, ovary and other tissue of the reproductive system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ATPase indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of metabolism disorders, especially in fetal and tumor tissue growth.

15

20

25

30

35

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 85

The translation product of this gene shares sequence homology with the immunoglobulin superfamily of proteins which are known to be important in immune response and immunity.

This gene is expressed primarily in stromal cells, colon cancer, lung, amygdala, melanocyte and to a lesser extent in a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of stromal cell development and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the stromal cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., stromal cells, colon, lung, amygdala, and melanocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to immunoglobulin indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of immune system disorders.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 86

The translation product of this gene shares sequence homology with transcription iniation factor eIF-4 gamma which is thought to be important in gene transcription.

This gene is expressed primarily in tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumorigenesis.

Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly in tumor tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to transcription iniation factor eIF-4 gamma indicate that polynucleotides and polypeptides corresponding to this gene are useful for gene regulation in tumorigenesis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 87

The translation product of this gene shares sequence homology at low level in prolines with secreted basic proline-rich peptide II-2 which is thought to be important in protein structure or inhibiting hydroxyapatite formation in vitro.

This gene is expressed primarily in endometrial tumor and fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: endometrial tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the muscular/skeletal and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample

taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to secreted basic proline-rich peptide II-2 indicate that polynucleotides and polypeptides corresponding to this gene are useful for inhibiting hydroxyapatite formation or establishing cell/tissue structure.

FEATURES OF PROTEIN ENCODED BY GENE NO: 88

5

10

15

20

25

30

35

This gene is expressed primarily in: amniotic cells inducted with TNF in culture; and to a lesser extent in colon tissue from a patient with Crohn's Disease; parathyroid tumor; activated T-cells; cells of the human Caco-2 cell line; adenocarcinoma; colon; corpus colosum; fetal kidney; pancreas tumor; fetal brain; early stage brain, and anergic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system; e.g., tumors, expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., amniotic cells, colon, kidney, pancreas, parathyroid, brain and other tissue of the nervous system, blood cells, hematopoietic cells, liver, spleen, bone, testes and other reproductive tissue, brain and other tissue of the nervous system, and epithelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for modulating tumorigenesis and other immune system conditions such as disorders in immune response.

FEATURES OF PROTEIN ENCODED BY GENE NO: 89

This gene is expressed primarily in fetal liver/spleen and hematopoietic cells and to a lesser extent in brain, osteosarcoma, and testis tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

biological sample and for diagnosis of diseases and conditions: leukemia and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, liver, spleen, bone, testes, and other reproductive tissue, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hematopoietic and immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 90

10

15

20

25

30

35

The translation product of this gene shares weak sequence homology with mouse Gcap1 protein which is developmentally regulated in brain.

This gene is expressed primarily in infant and adult brain and fetal liver/spleen and to a lesser extent in smooth muscle, T cells, and a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological or hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous, hematopoietic, immune, and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, blood cells, liver, spleen ,and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and its homology to Gcap1 protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatubg and diagnosis of disorders in neuronal, hematopoietic, immune, and endocrine systems.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 91

This gene is expressed primarily in brain and hematopoietic cells and to a lesser extent in tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disorder in nervous, hematopoietic, immune systems and tumorigenesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the in nervous, hematopoietic, immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of disorders in the nervous, hematopoietic, and immune systems.

25

35

20

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 92

The translation product of this gene shares sequence homology with neuroendocrine-specific protein A which is thought to be important in neurologic systems.

This gene is expressed primarily in brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neural disorders and degeneration disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central or peripheral nervous systems, expression of this gene at

significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to neuroendocrine-specific protein A indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of neural disorders and degeneration disease.

10

15

20

25

30

35

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 93

The translation product of this gene shares sequence homology with collagenlike protein and prolin-rich protein which are thought to be important in connective tissue function and tissue structure.

This gene is expressed primarily in fetal liver/spleen and brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuronal or hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to collagen-like protein and proline-rich proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful for supporting brain and hematopoietic tissue function and diagnosis and treatment of disorders in these functions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 94

This gene is expressed primarily in embryonic tissues and tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

biological sample and for diagnosis of diseases and conditions which include, but are not limited to,. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system (e.g., tumors), expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancer.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 95

10

20

25

30

35

This gene is expressed primarily in brain tumor, placenta, and melanoma. Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: brain tumor or melanoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain or melanocytes, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, placenta, and melanocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the translation product of this gene is useful in the diagnosis and treatment of brain tumors and melanoma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 96

The translation product of this gene shares sequence homology with a yeast membrane protein, SUR4, which encodes for APA1 that acts on a glucose-signaling pathway that controls the expression of several genes that are transcriptionally regulated by glucose.

This gene is expressed primarily in fetal liver, and to a lesser extent in placenta and breast tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of fetal liver or defects of glucose-regulated ATPase activities in tissues. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal immune/hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, placenta, and mammary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to yeast SUR4 membrane protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of defects of fetal liver or defects of glucose-regulated ATPase activities.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 97

This gene is expressed primarily in fetal liver, brain, and amniotic fluid.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of the fetal immune system and adult brain. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal immune system and adult brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., amniotic fluid, serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for detecting defects of the fetal immune and hematopoietic systems since fetal liver is

15

20

25

30

35

the predominant organ responsible for hematopoiesis in the fetus. In addition, the gene product of this gene is thought to be useful for detecting certain neurological defects of the brain.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 98

The translation product of this gene shares sequence homology with an yolk protein precursor, Vitellogenin which is thought to be important in binding lipids such as phosvitin.

This gene is expressed primarily in amniotic cells and fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects in amniotic cells, fetal liver development and the fetal immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the [insert system where a related disease state is likely, e.g., immune], expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., amniotic cells, and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to vitellogenin indicate that the protein product of this clone is useful for treatment and diagnosis of defects in amniotic cells, fetal liver development and the fetal immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 99

This gene is expressed primarily in placenta, endometrial tumor, osteosarcoma and stromal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumor of the endometrium or bone, and osteosarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the obstetric system (e.g. placenta,

15

20

25

30

35

endometrium) and the bones, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, endometrium, bone, and stromal cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of tumors and abnormalities of the endometrium, and the bones because of its abundance in the aforementioned tissues...

FEATURES OF PROTEIN ENCODED BY GENE NO: 100

This gene is expressed primarily in hepatocellular tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hepatocellular tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of hepatocellular cancer because of its abundant expression in this tissue.

FEATURES OF PROTEIN ENCODED BY GENE NO: 101

This gene is expressed primarily in Corpus Colosum, fetal lung and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of the Corpus Colosum or defects of the fetal lung. Similarly, polypeptides and antibodies directed to

10

20

25

30

these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the Corpus Colosum and brain in general, and fetal lung, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lung, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

PCT/US98/04493

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of defects of the Corpus Colosum and brain in general, and defects of fetal lung.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 102

This gene is expressed primarily in T cells and stromal cells, and to a lesser extent in adrenal gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of T cell immunity and stromal cell development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, stromal cells, and adrenal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of defects of T cell immunity and stromal cell development because of its abundant expression in these tissues.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 103

This gene is expressed primarily in infant brain and placenta.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of the brain and nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, especially brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and placenta, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for detecting defects of the brain, especially in young children.

FEATURES OF PROTEIN ENCODED BY GENE NO: 105

This gene is expressed primarily in human osteoclastoma and to a lesser extent in human pancreas tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly osteoclastoma and pancreatic tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly in transformed tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone and pancreas, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of some types of tumors, particularly pancreatic cancer and osteoclastoma.

10

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 106

This gene is expressed primarily in fetal liver/spleen, and to a lesser extent in activated T-Cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of immune disorders.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 107

This gene is expressed primarily in human embryo and to a lesser extent in spleen and chronic lymphocytic leukemia.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: leukemia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune or hemopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, spleen, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for the diagnosis and treatment of leukemia.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 108

This gene is expressed primarily in placenta, and to a lesser extent in early stage human brain and in lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: fetal developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly in fetal and amniotic tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, brain and other tissue of the nervous system, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this is useful for production of growth factor(s) associated with fetal development. Preferred polypeptides comprise the full-length polypeptide shown in the sequence listing, truncated however, at the amino terminus and beginning with QTIE.

FEATURES OF PROTEIN ENCODED BY GENE NO: 109

This gene is expressed primarily in fetal spleen, and to a lesser extent in B-Cell lymphoma and T-Cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., spleen and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

35

The tissue distribution indicates that the protein product of this clone is useful for the treatment and diagnosis of human lymphomas.

FEATURES OF PROTEIN ENCODED BY GENE NO: 110

The translation product of this gene shares sequence homology with sarcoma amplified sequence (SAS), a tetraspan receptor which is thought to be important in malignant fibrous histiocytoma and liposarcoma.

This gene is expressed primarily in human osteoclastoma, and to a lesser extent in pineal gland and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: malignant fibrous histiocytoma and liposarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone, pineal gland, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to sarcoma amplified sequence (SAS) indicate that the protein product of this clone is useful for treatment of, osteosarcoma, malignant fibrous histiocytoma and liposarcoma and related cancers, particularly sarcomas.

FEATURES OF PROTEIN ENCODED BY GENE NO: 111

The translation product of this gene shares sequence homology with 6.8K proteolipid protein, mitochondrial - bovine.

This gene is expressed primarily in Wilm's tumor and to a lesser extent in cerebellum and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Wilm's tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

type(s). For a number of disorders of the above tissues or cells, particularly of the immune or renal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to 6.8K proteolipid protein indicate that the protein product of this clone is useful for diagnostic and therapeutics associated with tumors, particularly Wilm's tumor disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 112

10

15

20

25

30

35

This gene is expressed primarily in embryonic tissue and to a lesser extent in osteoblasts, endothelial cells, macrophages (GM-CSF treated), and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, bone, endothelial cells, blood cells and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of immune disorders. Preferred polypeptides encoded by this gene comprise the following amino acid sequence: MITDVQLAIFANMLGVSLFLLVVLYHYVAVNNPKKQE (SEQ ID NO: 636).

FEATURES OF PROTEIN ENCODED BY GENE NO: 113

This gene is expressed primarily in hepatocellular tumor, and to a lesser extent in fetal liver/spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors, particularly hepatocellular tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of tumors, particularly hepatocellular tumors.

FEATURES OF PROTEIN ENCODED BY GENE NO: 114

5

10

15

20

25

30

35

The translation product of this gene exhibits a very high degree of sequence identity with the human Pig8 gene which is thought to be important in p53 mediated apoptosis. The sequence of this gene has since been published by Polyak and colleagues (Nature 389, 300-306 (1997)). In addition, the predicted translation product of this contig exhibits very high sequence homology with a murine gene denoted as EI24 which is also thought to be important in p53 mediated apoptosis.

This gene is expressed primarily in infant brain and activated T-cells and to a lesser extent in bone marrow, fetal liver, and prostate.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, and tissue damage by radiation and anti-cancer drugs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, blood cells, bone marrow, liver, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder,

15

25

30

35

relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to human Pig8 and murine EI24 genes indicate that polynucleotides and polypeptides corresponding to this gene are useful for preventing apoptosis in patients being treated with anti-oncogenic drugs such as etoposide, hydroperoxycyclophosphamide, and X-irradiation, since this protein product is upregulated in cells undergoing such treatment where p53 was overexpressed. It may also be useful in the treatment of hematopoietic disorders and in boosting numbers of hematopoietic stem cells by interfering with the apoptosis of progenitor cells. The mature polypeptide is predicted to comprise the following amino acid sequence: EEMADSVKTFLQDLARGIKDSIWGICTISKLDARIQQKREEQRRRASSVLAQRRAQSIERKQES **EPRIVSRIFQCCAWNGGVFWFSLLLFYRVFIPVLQSVTARIIGDPSLHGDVWSWLEFFLTSIFSA** LWVLPLFVLSKVVNAIWFQDIADLAFEVSGRKPHPFPSVSKIIADMLFNLLLQALFLIQGMFVSL FPIHLVGQLVSLLHMSLLYSLYCFEYRWFNKGIEMHORLSNIERNWPYYFGFGLPLAFLTAMO SSYIISGCLFSILFPLFIISANEAKTPGKAYLFQLRLFSLVVFLSNRLFHKTVYLQSALSSSTSAEK FPSPHPSPAKLKATAGH (SEQ ID NO: 637). Accordingly, polypeptides comprising the foregoing amino acid sequence are provided as are polynucleotides encoded such polypeptides.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 115

This gene is expressed primarily in stromal cells and to a lesser extent in multiple sclerosis.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: affecting the nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., stromal cells and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of multiple sclerosis and other autoimmune diseases.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 116

This gene is expressed primarily in the gall bladder

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: gall stones or infection of the digestive system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system or renal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., gall bladder and tissue of the digestive system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for possible prevention of digestive disorders where there may be a lack of digestive enzymes produced or in the detection and possible prevention of gall stones.

FEATURES OF PROTEIN ENCODED BY GENE NO: 117

The translation product of this gene shares sequence homology with dystrophin gene which is thought to be important in building and maintenance of muscles.

This gene is expressed primarily in placenta and to a lesser extent in fetal brain and fetal liver, and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: muscular dystropy, Duchenne and Becker's muscular dystropies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal muscle system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, brain and other tissue of the nervous system, muscle, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from

an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the dystrophin gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diseases related the degenerative myopathies that are characterized by the weakness and atrophy of muscles without neural degradation; such as Duchenne and Becker's muscular dystropies.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 118

5

15

20

25

35

This gene is expressed primarily in olfactory tissue and to a lesser extent in cartilage.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: connective tissue diseases; chondrosarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the connective tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., olfactory tissue and cartilage, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for tumors of connective tissues, osteoarthritis and the treatment and diagnosis of chondrosarcoma.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 119

This gene is expressed primarily in Activated Neutrophils and to a lesser extent in fetal spleen, and CD34 positive cells from cord blood.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: allergies, defects in hematopoiesis and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential

identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and hematopoiesis system the, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for reducing the allergic effects felt by allergy suffers by neutralizing the activity of the immune system, especially since neutrophils are abundant in persons suffering from allergies and other inflammatory conditions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 120

10

15

20

25

30

35

The translation product of this gene shares sequence homology with poly A binding protein II which is thought to be important in RNA binding for transcription of RNA to DNA

This gene is expressed primarily in colon and to a lesser extent in brain and immune system.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: colon cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., colon, tissue and cells of the immune system, and brain or other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to poly A binding protein II indicate that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of colon cancer and other disorders of the digestive system..

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 121

The translation product of this gene shares sequence homology with thymidine diphosphoglucose 4.6 dehydrase which is thought to be important in the metabolism of sugar.

76

This gene is expressed primarily in fetal liver and spleen and to a lesser extent in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diabetes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to thymidine diphospoglucose 4.6 dehydrase indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of persons with diabetes since it appears that this protein is needed in the metabolism of sugar in to its more basic components.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 122

The translation product of this gene shares sequence homology with ceruloplasmin which is thought to be important in the metabolism and transport of iron and copper. Ceruloplasmin also contains domains with homology to clotting factors V and VIII. Defects in the circulating levels of ceruloplasmin (aceruloplasminemia) have been associated with certain disease conditions such as Wilson disease, and the accompanying hepatolenticular degeneration.

This gene is expressed primarily in brain and retina and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases marked by defects in iron metabolism; aceruloplasminemia not characterized by defects in the

known ceruloplasmin gene locus; nonclassical Wilson disease; movement disorders; and tumors derived from a brain tissue origin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, retina, and nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, retinal tissue, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

5

10

15

20

25

30

35

The tissue distribution and homology to ceruloplasmin indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of patients with aceruloplasminemia, or other defects in iron and/or copper metabolism. Mutations in this locus could also be diagnostic for patients currently experiencing or predicted to experience aceruloplasminemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 123

This gene is expressed primarily in brain and B cell lymphoma and to a lesser extent in fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: B cell lymphoma; tumors and diseases of the brain and/or spleen; hematopoietic defects. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, blood cells, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of disorders in neuronal,

15

20

25

30

35

PCT/US98/04493

78

hematopoietic, and immune systems. It could potentially be useful for neurodegenerative disorders and neuronal and/or hematopoietic cell survival or proliferation.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 124

This gene is expressed primarily in osteoclastoma, dermatofibrosarcoma, and B cell lymphoma and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer in particular osteoclastoma, dermatofibrosarcoma, and B cell lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone, immune, and circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone, epidermis, blood cells, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers and lymphoma; osteoporosis; and the control of cell proliferation and/or differentiation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 125

This gene is expressed primarily in immune tissues and hematopoietic cells, particularly in activated T cells and neutrophils, spleen, and fetal liver, and to a lesser extent in infant adrenal gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects in T cell activation; hematopoietic disorders; tumors of a hematopoietic and/or adrenal gland origin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and/or endocrine systems, expression of this gene at significantly higher WO 98/39448

10

15

20

25

30

or lower levels may be routinely detected in certain tissues and cell types (e.g., cells and tissues of the immune system, hematopoietic cells, blood cells, liver, and adrenal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for immune and/or hematopoietic disorders; diseases related to proliferation and/or differentiation of hematopoietic cells; defects in T cell and neutrophil activation and responsiveness; and endocrine and/or metabolic disorders, particularly of early childhood.

FEATURES OF PROTEIN ENCODED BY GENE NO: 126

This gene is expressed primarily in placenta and endothelial cells and to a lesser extent in melanocytes and embryonic tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of an endothelial cell origin; angiogenesis associated with tumor development and metastasis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system and developing embryo, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, endothelial cells, melanocytes, and embryonic tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of developmental disorders; inhibition of angiogenesis; and vascular patterning.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 127

This gene is expressed primarily in endothelial cells and hematopoietic tissues, including spleen, tonsils, leukocytes, and both B- and T-cell lymphomas.

WO 98/39448 PCT/US98/04493 80

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of an endothelial cell and/or hematopoietic origin; leukemias and lymphomas. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and vascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endothelial cells, hematopoietic cells, spleen, tonsils, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the manipulation of angiogenesis; the differentiation and morphogenesis of endothelial cells; the proliferation and/or differentiation of hematopoietic cells; and the commitment of hematopoietic cells to distinct cell lineages.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 128

This gene is expressed primarily in kidney medulla and to a lesser extent in spleen from chronic myelogenous leukemia patients, prostate cancer, and some other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of a kidney origin; chromic myelogenous leukemia; prostate cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the kidney and spleen, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney, spleen, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of kidney disorders and cancer, particularly chromic myelogenous leukemia and prostate cancer. It may also be useful for the enhancement of kidney tubule regeneration in the treatment of acute renal failure.

FEATURES OF PROTEIN ENCODED BY GENE NO: 129

This gene is expressed primarily in adult and infant brain and to a lesser extent in mesenchymal or fibroblast cells, as well as tissues with a mesenchymal origin.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of a brain and/or mesenchymal origin; neurodegenerative disorders; cancer; fibrosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and of mesenchymal cells and tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis of tumors of a brain and/or mesenchymal origin; neurodegenerative disorders; cancer; and fibrosis, based upon the expression of this gene within those tissues. Fibrosis is considered as mesenchymal cells and fibroblasts are the primary cellular targets involved in this pathological condition.

30

35

5

10

15

20

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 130

This gene is expressed primarily in hepatocellular cancer and to a lesser extent in fetal tissues as well as testes tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: liver cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing

immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, fetal tissue, and testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of liver cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 131

This gene is expressed only in infant early brain.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: development and diseases of the nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases of the brain in children and in treating nervous system disorders such as Alzheimer's disease, schizophrenia, dementia, depression, etc.

FEATURES OF PROTEIN ENCODED BY GENE NO: 132

This gene is expressed primarily in brain and to a lesser extent in glioblastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Alzheimer's disease,

WO 98/39448 PCT/US98/04493

83

schizophrenia, depression, mania, and dementia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating brain disorders such as Alzheimer's disease, schizophrenia, depression, mania, and dementia.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 133

10

20

25

30

35

The translation product of this gene shares sequence homology with ribitol dehydrogenase of bacteria which is thought to be important in metabolism of sugars.

This gene is expressed primarily in macrophage and to a lesser extent in T-cell lymphoma and lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tissue destruction in inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ribitol dehydrogenase indicate that polynucleotides and polypeptides corresponding to this gene are useful for altering macrophage metabolism in diseases such as inflammation where macrophages are causing excess tissue destruction.

FEATURES OF PROTEIN ENCODED BY GENE NO: 134

5

10

15

25

30

35

This gene is expressed primarily in pancreatic tumor and to a lesser extent in synovial sarcoma.

84

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine and connective tissue systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., pancreas, and synovial tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating and diagnosing various cancers.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 135

This gene is expressed primarily in T cell lines such as Raji and to a lesser extent in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune system disorders and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating and diagnosing inflammatory diseases

such as rheumatoid arthritis, sepsis, inflammatory bowel disease, and psoriasis, as well

85

PCT/US98/04493

FEATURES OF PROTEIN ENCODED BY GENE NO: 136

as neutropenia.

5

10

15

20

25

30

35

The translation product of this gene shares high sequence homology with SAR1 subfamily of GTP-binding proteins which is thought to be important in vesicular transport in mammalian cells.

This gene is expressed primarily in serum-stimulated smooth muscle cells and to a lesser extent in a T-cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases affecting vesicular transport. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the muscular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to GTP-binding proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful for gene therapy in treating the large number of diseases involved in defective vesicular transport within cells..

FEATURES OF PROTEIN ENCODED BY GENE NO: 137

The translation product of this gene shares sequence homology with a protein found in *C. elegans* cosmid F25B5.

This gene is expressed primarily in a fetal tissues and to a lesser extent in melanocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: abnormal fetal development, especially of the pulmonary system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

15

20

25

30

35

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal pulmonary system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissue, pulmonary tissue, and melanocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases affecting the pulmonary system, such as emphysema.

FEATURES OF PROTEIN ENCODED BY GENE NO: 138

This gene is expressed primarily in gall bladder and to a lesser extent in smooth muscle.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: digestive system disease and gall bladder problems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., gall bladder and tissue of the digestive system, and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases of the digestive system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 139

This gene is expressed primarily in placenta and to a lesser extent in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: abnormal fetal development. Similarly, polypeptides and antibodies directed to these polypeptides are

15

20

25

30

35

WO 98/39448 PCT/US98/04493

87

useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of developing tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating and diagnosing abnormal fetal development.

FEATURES OF PROTEIN ENCODED BY GENE NO: 140

This gene is expressed primarily in smooth muscle and to a lesser extent in ovary, prostate cancer, and activated monocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hypertension and atherosclerosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., smooth muscle, ovary and other reproductive tissue, prostate, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases of the circulatory system, such as hypertension, atherosclerosis, etc.

FEATURES OF PROTEIN ENCODED BY GENE NO: 141

This gene is expressed primarily in fetal spleen and to a lesser extent in placenta and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: anemia and other diseases affecting blood cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory and pulmonary systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., spleen, placenta, bone marrow, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the generation of red and white blood cells and for the diagnosis of disease of these cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 142

5

10

15

20

25

30

35

The predicted translation product of this contig is a human homolog of the murine tetracycline/sugar transporter molecule recently reported by Matsuo and colleagues (Biochem. Biophys. Res. Commun. 238 (1), 126-129 (1997)).

This gene is expressed primarily in synovium and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: rheumatoid arthritis and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and lymphatic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., synovial tissue, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of inflammatory diseases, such as rheumatoid arthritis, leukemia, neutropenia, inflammatory bowel disease, psoriasis, sepsis, and the like.

5

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 143

This gene is expressed primarily in placenta and to a lesser extent in melanocyte, fetal liver and spleen, and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: abnormal early development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, melanocytes, liver, spleen, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of abnormal early development phenomena and diseases.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 144

This gene is expressed primarily in fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: anemia and neutropenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and blood systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the

expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in hematopoeisis and bone marrow regeneration as it is most abundant in fetal tissues responsible for the generation of hematopoeitic cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 145

5

10

15

20

25

30

35

The translation product of this gene shares sequence homology with protein tyrosine phosphatase which is thought to be important in transducing signal to activate cells such as T cell, B cell and other cell types.

This gene is expressed primarily in T cells and tissues in early stages of development and to a lesser extent in cancers.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immuno-related diseases and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic and fetal tissue, undifferentiated cells, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the protein tyrosine phosphatase family indicate that polynucleotides and polypeptides corresponding to this gene are useful for modulating the immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 146

This gene is expressed primarily in T cell and to a lesser extent in B cell, macrophages and tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immuno-disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in

10

15

20

25

30

35

providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating the immune system therefore can be used in treating diseases such as autoimmune diseases and cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 147

This gene is expressed primarily in placenta and to a lesser extent in endothelial cells, testis tumor, ovarian cancer, uterine cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, endothelial cells, testis and ovary and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 148

This sequence has significant homology to mouse torsin A. Recently, another group cloned the human Torsin A gene. (See, Accession No. 2358279; see also Nature Genet. 17, 40-48 (1997).)

This gene is expressed primarily in osteoclastoma, T-cell, and placenta and to a lesser extent in fetal lung, fetal liver, fetal brain, adult brain and tumor tissues

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disease conditions in hematopoiesis and cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoiesis system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, bone, placenta, lung, liver, and brain and other tissues of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating blood related diseases such as deficiencies in red blood cell, white blood cell, platelet and other hematopoiesis cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 149

This gene is expressed primarily in T cell, prostate and prostate cancer, endothelial cells and to a lesser extent in monocyte, dendritic cell, bone marrow, salivary gland, colon cancer, stomach cancer, pancreatic tumor, uterine cancer, fetal spleen and osteoclastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immuno-related diseases and cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, prostate, endothelial cells, dendritic cells, bone marrow, salivary gland, colon, stomach, pancreas, uterus, spleen and bone, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

WO 98/39448 PCT/US98/04493

93

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 150

This gene was recently cloned by another group, calling it eIF3-p66. (See Accession No. 2351378.) This gene plays a role in RNA binding and macromolecular assembly, and therefore, any mutations in this gene would likely result in a diseased phenotype. Preferred polypeptide fragments comprise the amino acid sequence:

MAKFMTPVIQDNPSGWGPCAVPEQFRDMPYQPFSKGDRLGKVADWTGATYQDKRYTNKYSS QFGGGSQYAYFHEEDESSFQLVDTARTQKTAYQRNRMRFAQRNLRRDKDRRNMLQFNLQILP KSAKQKERERIRLQKKFQKQFGVRQKWDQKSQKPRDSSVEVRSDWEVKEEMDFPQLMKMRY LEVSEPQDIECCGALEYYDKAFDRITTRSEKPLRXXKRIFHTVTTTDDPVIRKLAKTQGNVFATD AILATLMSCTRSVYSWDIVVQRVGSKLFFDKRDNSDFDLLTVSETANEPPQDEGNSFNSPRNL AMEATYINHNFSQQCLRMGKERYNFPNPNPFVEDDMDKNEIASVAYRYRSGKLGDDIDLIVRC EHDGVMTGANGEVSFINIKTLNEWDSRHCNGVDWRQKLDSQRGAVIATELKNNSYKLARWTC CALLAGSEYLKLGYVSRYHVKDSSRHVILGTQQFKPNEFASQINLSVENAWGILRCVIDICMKL EEGKYLILKDPNKQVIRVYSLPDGTFSS (SEQ ID NO: 638), as well as N-terminal and C-terminal deletions of this polypeptide fragment.

This gene is expressed primarily in T cell, bone marrow, embryo and endothelial cells and to a lesser extent in testis tumor and endometrial tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune diseases and tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., scrum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for immune disorders and cancers.

30

5

10

15

20

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 151

5

10

15

20

25

30

35

This gene is expressed primarily in testis and to a lesser extent in T cell, spinal cord, placenta, neutrophil and monocyte.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: male reproductive and endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive, immune and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., testis and other reproductive tissue, blood cells, tissue of the nervous system, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating immune and reproductive functions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 152

The translation product of this gene shares sequence homology with tyrosyltRNA synthetase which is thought to be important in cell growth.

This gene is expressed primarily in brain, liver, keratinocytes, tonsils, and heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer autoimmune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, liver, keratinocytes, tonsils, heart expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissues of the nervous system, liver, keratinocytes, tonsils and heart, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard

10

15

20

25

30

gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

95

The tissue distribution and homology to tyrosyl-tRNA synthetase indicate that polynucleotides and polypeptides corresponding to this gene are useful for modulating cell growth.

FEATURES OF PROTEIN ENCODED BY GENE NO: 153

This gene is homologous to the Drosophila transcriptional regulator dre4. (See Accession No. 2511745.) Dre4 is a gene required for steroidogenesis in Drosophila melanogaster and encodes a developmentally expressed homologue of the yeast transcriptional regulator CDC68. Preferred polypeptide fragments comprise the amino acid sequence: KKRHTDVQFYTEVGEITTDLGKHQHMHDRDDLYAEQMEREMRHKLKTAFKN FIEKVEALTKEELEFEVPFRDLGFNGAPYRSTCLLQPTSSALVNATEWPPFVVTLDEVELIHFXR VQFHLKNFDMVIVYKDYSKKVTMINAIPVASLDPIKEWLNSCDLKYTEGVQSLNWTKIMKTIVD DPEGFFEQGGWSFL (SEQ ID NO: 639), as well as N-terminal and C-terminal deletions of this fragments. Also preferred are polynucleotide fragments encoding this polypeptide fragment.

This gene is expressed primarily in fetal liver, spleen, placenta, lung, T cell, thyroid, testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: brain tumor, heart and liver diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal liver, spleen, placenta, lung, T cell, thyroid, testes expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, placenta, lung, blood cells, thyroid, and testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 154

This gene is expressed primarily in brain and to a lesser extent in fetal heart, testis, spleen, lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: heart, liver and spleen diseases, immunological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, fetal heart, testis, spleen, lung expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, heart, testes and other reproductive tissue, spleen, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 155

Activation of T cells through the T cell antigen receptor (TCR) results in the rapid tyrosine phosphorylation of a number of cellular proteins, one of the earliest being a 100 kDa protein. This gene is the human equivalent of murine valosin containing protein (VCP). VCP is a member of a family of ATP binding, homo-oligomeric proteins, and the mammalian homolog of Saccharomyces cerevisiae cdc48p, a protein essential to the completion of mitosis in yeast. Both endogenous and expressed murine VCP are tyrosine phosphorylated in response to T cell activation. Thus we have identified a novel component of the TCR mediated tyrosine kinase activation pathway that may provide a link between TCR activation and cell cycle control.

This gene is expressed primarily in brain, liver, spleen, placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, liver, spleen, placenta expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, spleen, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from

WO 98/39448 PCT/US98/04493

97

an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to VCR indicate that polynucleotides and polypeptides corresponding to this gene are useful for treating cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 156

The translation product of this gene shares sequence homology with rat growth response protein which is thought to be important in cell growth. A group recently cloned the human homolog of this gene, calling it insulin induced protein 1. (See Accession No. 2358269, see also, Genomics 43 (3), 278-284 (1997).) Preferred polypeptide fragments comprise the amino acid sequence: RSGLGLGITIAFLATLITQF LVYNGVYQYTSPDFLYIRSWLPCIFFSGGVTVGNIGRQLAMGVPEKPHSD (SEQ ID NO: 640), as well as N-terminal and C-terminal deletions of this polypeptide fragment. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in brain, liver, placenta, heart, spleen, lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, liver, placenta, heart, spleen. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, placenta, heart, spleen, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to growth-response protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for modulating cell growth.

5

10

15

20

25

30

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 157

This gene is expressed primarily in Glioblastoma, endometrial tumor, lymphoma and pancreas tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Glioblastoma, Endometrial tumor, lymphoma and pancreas tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, lymphoid tissue, pancreas, and tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 158

The translation product of this gene shares sequence homology with IGE receptor which is thought to be important in allergy and asthma.

This gene is expressed primarily in T cell, and fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: allergy and asthma and other immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

The tissue distribution and homology to IgE receptor indicate that polynucleotides and polypeptides corresponding to this gene are useful for allergy and asthma.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 159

The translation product of this gene shares sequence homology with immunoglobin heavy chain which is thought to be important in immune response to the antigen.

This gene is expressed primarily in activated neutrophil and to a lesser extent in activated T cell, monocyte and heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: infection, inflammation and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and heart, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to immunoglobin heavy chain variable region indicate that polynucleotides and polypeptides corresponding to this gene are useful for making the ligand to block specific antigen which cause certain disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 160

The translation product of this gene shares sequence homology with mouse X inactive specific transcript protein which is thought to be important in X chromosome inactivation.

This gene is expressed primarily in HSA172 cell and to a lesser extent in normal ovary tissue, ovarian cancer, frontal cortex and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ovarian tumor, schizophrenia and other neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for

differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovary and other reproductive tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to X inactive specific transcript protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of reproductive system tumors and CNS tumors.

FEATURES OF PROTEIN ENCODED BY GENE NO: 161

10

15

20

25

30

35

This gene is expressed primarily in adipose cell and to a lesser extent in liver and prostate.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: obesity and liver disorder. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the adipose cell, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipose cells, liver, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of obesity and liver disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 162

The translation product of this gene shares sequence homology with yeast ubiquitin activating enzyme homolog which is thought to be important in protein posttraslation processing.

This gene is expressed primarily in stromal cell and to a lesser extent in retina, H. Atrophic Endometrium, colon carcinoma and myeloid progenitor cell.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of stromal cell development, neuronal growth disorders and tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., retinal cells, endometrium, colon, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ubiquitin-activating enzyme homolog indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of some type of tumors, fucosidosis and neuronal growth disorders.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 163

This gene is expressed primarily in primary breast cancer and hemangiopericytoma and to a lesser extent in adult brain and cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: breast cancer, leukemia and cerebellum disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of various tumors and disease involved in neural system.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 164

The translation product of this gene shares sequence homology with proline rich proteins. Recently, another group has also cloned this gene, calling it CD84 leukocyte antigen, a new member of the Ig superfamily. (See Accession No. U82988, see also, Blood 90 (6), 2398-2405 (1997).)

This gene is expressed primarily in Weizmann olfactory tissue and osteoclastoma and to a lesser extent in anergic T-cell.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ostsis and immune disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., olfactory tissue, bone, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the Ig superfamily indicate that the protein product of this clone is useful for treatment of osteoporosis, autoimmune disease, and other immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 165

This gene is expressed primarily in atrophic endometrium and colon cancer and to a lesser extent in some fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system,

expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, colon, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of tumors, specifically endometrium and colon tumors.

10

15

20

25

30

35

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 166

This gene is expressed primarily in human primary breast cancer and to a lesser extent in activated monocyte. Although the predicted signal sequence is identified in Table 1, other upstream sequences are also relevant. Preferred polypeptide fragments comprise the amino acid sequence: VTQPKHLSASMGGSVEIPFSFYYPWELAXXPXVRISWRRGHFHG QSFYSTRPPSIHKDYVNRLFLNWTEGQESGFLRISNLRKEDQSVYFCRVELDTRRSG (SEQ ID NO: 641), as well as N-terminal and C-terminal deletions. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of breast cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 167

This gene is expressed primarily in fetal tissues and to a lesser extent in adult lung. This gene has also been mapped to chromosomal location 9q34, and thus, can be used as a marker for linkage analysis for chromosome 9.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the embryo tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissues, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 168

5

10

15

20

25

30

35

The translation product of this gene shares sequence homology with Ig Heavy Chain which is thought to be important in immune response.

This gene is expressed primarily in prostate cancer tissue specifically
Therefore, polynucleotides and polypeptides of the invention are useful as
reagents for differential identification of the tissue(s) or cell type(s) present in a
biological sample and for diagnosis of diseases and conditions: prostate cancer.
Similarly, polypeptides and antibodies directed to these polypeptides are useful in
providing immunological probes for differential identification of the tissue(s) or cell
type(s). For a number of disorders of the above tissues or cells, particularly of the
prostate, expression of this gene at significantly higher or lower levels may be routinely
detected in certain tissues and cell types (e.g., prostate, tissue and cells of the immune
system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma,
urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an
individual having such a disorder, relative to the standard gene expression level, i.e.,
the expression level in healthy tissue or bodily fluid from an individual not having the
disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 169

The translation product of this gene shares sequence homology with cytosolic acyl coenzyme-A hydrolase, which is thought to be important in neuron-specific fatty acid metabolism. The gene represented by this contig has since been published by Hajra and colleagues (GenBank Accession No. U91316).

This gene is expressed primarily in human pituitary gland and to a lesser extent in colorectal cancer tissue. This gene has also been observed in the LNCAP cell line.

105

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hyperlipidemias of familial and/or idiopathic origins. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly blood, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., pituitary and colon, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to rat cytosolic acyl coenzyme-A hydrolase indicate that polynucleotides and polypeptides corresponding to this gene are useful for the detection or treatment of hyperlipidemia disease states by virtue of the ability of specific drugs to activate the enzyme.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 170

The translation product of this gene shares sequence homology with a *Caenorhabditis elegans* gene which is thought to be important in organism development.

This gene is expressed primarily in human synovial sarcoma tissue, bone marrow, and to a lesser extent in human brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, of bone, specifically synovial sarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone, connective tissues and possibly immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., synovial tissue, bone marrow, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another

tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Caenorhabditis elegans indicate that polynucleotides and polypeptides corresponding to this gene are useful as a diagnostic and/or therapeutic modality directed at the detection and/or treatment of connective tissue sarcomas or other related bone diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 171

5

10

15

20

25

30

35

The translation product of this gene shares sequence homology with beta1-6GlcNAc transferase which is thought to be important in the transfer and metabolism of beta1-6, N-acetylglucosamine. This gene product has previously been shown to suppress melanoma lung metastasis in both syngeneic and nude mice, decreased invasiveness into the matrigel, and inhibition of cell attachment to collagen and laminin without affecting cell growth.

This gene is expressed primarily in human testes and prostate tissues, and to a lesser extent in kidney, medulla, and pancreas.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly melanoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., testes and other reproductive tissue, prostate, kidney, pancreas, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to beta 1-6GlcNAc transferase indicate that the protein product of this clone is useful for the development of diagnostic and/or therapeutic modalities directed at the detection and/or treatment of cancer, the metastasis of malignant tissue or cells. Defects in this potentially secreted enzyme may play a role in metastasis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 172

This gene is expressed primarily in fetal spleen and liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders, Wilm's tumor disease, hepatic disorders, and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoiesis and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., spleen and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and identification of fetal defects along with correcting diseases that affect hematopoiesis and the immune system.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 173

The translation product of this gene shares sequence homology with ret II oncogene which is thought to be important in Hirschsprung disease and many types of cancers.

This gene is expressed in multiple tissues including the lymphatic system, brain, and thyroid.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Hirschsprung disease and multiple cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lymphoid tissue, thyroid, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to

10

15

20

25

30

35

the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ret II oncogene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of various cancers. It would also be useful for the diagnosis and treatment of Hirschsprung disease. Preferred polypeptides of the invention comprise the amino acid sequence: MEAQQVNEAESAREQLQXLHDQIAGQKASKQELETELERLKQEFHYIEEDLY RTKNTLQSRIKDRDEEIQKLRNQLTNKTLSNSSQSELENRLHQLTETLIQKQTMLESLSTEKNSL VFQLERLEQQMNSASGSSSNGSSINMSGIDNGEGTRLRNVPVLFNDTETNLAGMYGKVRKAAS SIDQFSIRLGIFLRRYPIARVFVIIYMALLHLWVMIVLLTYTPEM HHDQPYGK (SEQ ID NO: 642).

FEATURES OF PROTEIN ENCODED BY GENE NO: 174

The translation product of this gene shares sequence homology with testis enhanced gene transcript which is thought to be important in regulation of human development.

This gene is expressed primarily in infant brain and to a lesser extent in a variety of other tissues and cell types, including the prostate, testes, monocytes, macrophages, dendritic cells, keratinocytes, and adipocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological, developmental, immune and inflammation disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, prostate, testes and other reproductive tissue, blood cells, keratinocytes, and adipocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to testis enhanced gene transcript indicate that the protein product of this clone is useful for diagnosis and treatment of disorders involving the developing brain and the immune system.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 175

This gene is expressed primarily in prostate and to a lesser extent in various other tissues, including placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancers, especially of the prostate. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., prostate and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of prostate disorders and cancer. It may also be useful for the diagnosis and treatment of endocrine disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 176

The translation product of this gene shares sequence homology with *Sacchromyces cerevisiae* YNT20 gene which is thought to be important in mitochondrial function.

This gene is expressed at a particularly high level in muscle tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases related to such tissues and cell types including: muscle wasting diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuromuscular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., muscle and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the YNT20 gene indicate that this protein is useful for treatment and detection of neuromuscular diseases caused by loss of mitochondrial function. For example this gene or its protein product could be used in replacement therapy for such diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 177

5

10

15

20

25

30

35

This gene is expressed primarily in the brain and to a lesser extent in kidney, placenta, smooth muscle, heart and lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuromuscular diseases, degenerative diseases of the central nervous system, and heart disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuromuscular system, central nervous system, and heart, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, kidney, placenta, muscle, heart and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

This gene or its protein product could also be used for replacement therapy for the above mentioned diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 178

The translation product of this gene shares sequence homology with caldesmon which is thought to be important in the cellular response to changes in glucose levels.

This gene is expressed primarily in multiple tissues including brain and retina.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: central nervous system disorders and retinopathy. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell

10

15

20

25

30

35

type(s). For a number of disorders of the above tissues or cells, particularly of the CNS disorders and retinopathy, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and retinal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to caldesmon indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of retinopathies.

FEATURES OF PROTEIN ENCODED BY GENE NO: 179

The translation product of this gene shares sequence homology with mouse fibrosin protein which is thought to be important in regulation of fibrinogenesis in certain chronic inflammatory diseases.

This gene is expressed primarily in amniotic cells and breast tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of breast cancer and abnormal embryo development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., amniotic cells, and mammary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to fibrosin indicate that the protein product of this clone is useful for treatment of breast cancer. This gene or its protein product could be used in replacement therapy for breast cancer. In addition the protein product of this gene is useful in the treatment of chronic inflammatory diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 180

This gene is expressed several infant tissues including brain and liver and various adult tissues including brain, lung, liver, testes, and prostate.

10

15

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, brain cancer, lung cancer, liver cancer and cancers of the reproductive system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, hepatic system, and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, lung, liver, testes and other reproductive tissue, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene product indicates that the protein product of this clone is involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 181

This gene is expressed primarily in activated monocytes and to a lesser extent in melanocytes and dendritic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of immune system diseases and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, melanocytes, and dendritic cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 182

This gene is expressed primarily in placenta and several tumors of various tissue origin and to a lesser extent in normal tissues including liver, lung, brain, and skin,

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of cancers of all kinds. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, respiratory system and skin, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, lung, brain and other tissues of the nervous system, and skin, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The high expression of this gene in multiple tumors indicates that the protein product of the clone may be involved in cell growth control and therefore would be useful for treatment of certain cancers. Likewise molecules developed to block the activity of the protein product of this clone could be used to block its potential role in tumor growth promotion.

FEATURES OF PROTEIN ENCODED BY GENE NO: 183

The translation product of this gene shares sequence homology with the mouse Ndr1 gene which is thought to be important in cancer progression.

This gene is expressed multiple cell types and tissues including brain, lung, kidney, bone marrow, liver, and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of all types of cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous, immune, and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, lung, kidney, bone marrow, liver and spleen, and cancerous and wounded

WO 98/39448 PCT/US98/04493

114

tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Ndr1 gene, which is thought to be involved in cancer progression, indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of certain cancers. Likewise molecules developed to block the activity of the protein product of this clone could be used to block its potential role in tumor growth promotion.

10

15

20

25

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 184

This gene is expressed primarily in early stage human brain and liver and to a lesser extent in several other fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: brain and liver cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The expression of this gene in embryonic tissues indicates that the protein could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 185

This gene is expressed primarily in infant and embryonic brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of degenerative nervous system disorders and brain cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an

The expression of this gene in embryonic tissues indicates that the protein could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 186

individual not having the disorder.

5

10

15

20

25

30

This gene is expressed primarily in multiple tissues including placenta, fetal lung, fetal liver, and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of all types of cancers including liver, brain and lung. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, pulmonary system, and hepatic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, lung, liver, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The expression of this gene in embryonic tissues indicates that the protein could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

			······································			
Last AA of ORF	22	22	128	33	28	28
First Last Predicted AA AA First AA I of of of of Sig Secreted Pep Pep Portion (19	19	31	21	25	25
Last AA of Sig Pep	18	18	30	20	24	24
First AA of Sig Pep	1	1	l	1		
AA SEQ ID NO: Y	313	499	314	200	315	501
5' NT of AA F First SEQ AA of ID Signal NO: Pep Y	177	442	81	196		35
of of Start Sodon	177	442	81		1	35
3' NT of Clone Seq.	582	830	465	343	474	319
S' NT 3' NT of of Clone Clone Seq. C	I	296	•	229		_
Total NT Seq.	582	1020	465	524	474	332
X SEQ	11	197	12	861	13	199
Vector		Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	ZAP Express
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HTTEZ21	HTTEZ21	HBGBW52	HBGBW52	HCUFM41	HCUFM41
Gene No.	-	_	2	2	r	က

Last AA of ORF	\$	21	39	33	88	23
AA First Last Predicted SEQ AA AA First AA Of Of Of Of Of Of Of AA SECRETED AY Pep Pep Portion	35	19	23	27	45	22
Last AA of Sig Pep	34	18	22	26	4	21
First AA of Sig Pep	-	_	-	-	-	_
AA SEQ NÖ: Y	316	317	318	319	320	321
S' NT of AA F First SEQ AA of ID Signal NO: Pep Y	122	30	239	278	77	129
S' NT of Start Codon	122	30	239	278	11	129
3' NT of Clone Seq.	298	613	356	414	469	550
5' NT of Clone Seq.	1	1		185	 4	_
Total NT Seq.	314	613	356	414	469	550
NÖ BÖ	14	15	16	17	81	61
Vector	ZAP Express	ZAP Express	ZAP Express	ZAP Express	pCMVSport 3.0	Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
	нсиғ022	HCUFV01	HCUGA50	4	HLDOU93	HEIAX07
Gene No.	4	V	9	7	∞	6

Last AA of ORF	15	27	8	6]	961	29
5' NT of AA First Last Predicted of AA of ID of of of of of AA AA Screted of Signal NO: Sig Sign Secreted of Pep Pep Portion Ol	6		31		31	
Last AA of Sig Pep	8		30		30	
First AA of Sig Pep	-	-	-	_	-	1
AA SEQ DO: Y	502	322	323	503	324	504
5' NT of First AA of Signal Pep	I	190	62	409	22	109
ode of N		190	62		64	109
3' NT of Clone Seq.	376	741	166	1137	653	513
S NT 3' NT of S' NT S' NT S' NT S'	6	52	-	253	1	-
Total NT Seq.	376	741	166	1192	653	589
SEQ NÖ:	200	20	21	201	22	202
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HEIAX07	HSAXR76	HNGJJ68	HNGJJ68	HCFAW04	HCFAW04
Gene No.	6	10		=	12	12

Last AA of ORF	252	75	10	207	89	36	84
Predicted First AA of Secreted Portion	55	31		34	22	26	31
Last AA of Sig Pep	54	30		33	21	25	30
First AA of Sig Pep	-	1	I	1	1		
AA SEQ NO: Y	325	505	206	507	326	208	327
S' NT	102	87	069	100	1242	303	304
5' N of Star Code	102	87		100	1242	303	304
3' NT of Clone Seq.	1418	628	850	1354	2059	1226	683
5' NT of Clone Seq.	969		7.5	54	1017 2059	113	
Total NT Seq.	1486	847	852	1354	2323	1378	683
NO:	23	203	204	205	24	206	25
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	209235 09/04/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HLMAV65	HLMAV65	HLMAV65	HTXEF04	HPMFD84	HPMFD84	HE6DB26
Gene No.	13	13	13	13	14	14	15

Last AA of ORF	19	36	63	32	35	23
S' NT of AA First Last Predicted of AA of D of Of Of Of Of Start Signal NO: Sig Sig Secreted Codon Pep Y Pep Pep Portion (19	21	31	32	25	50
Last AA of Sig Pep	18	20	30	31	24	19
First AA of Sig Pep	-			-	-	1
¥ŠĕŠ;⊁	509	328	329	210	330	331
5' NT of First AA of Signal Pep	567	214	70	33	39	116
5' NT of Start Codon	267	214	70	33	39	116
3' NT of Clone Seq.	884	1959	717	697	495	556
S' NT 3' NT of of Clone Clone Seq. Seq.	281	14		2		_
Total NT Seq.	1166	2036	717	<i>L</i> 69	495	556
× Se	207	26	27	208	28	29
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HE6DB26	HHFFL33	HODBD33	HODBD33	HMDAE90	HOUAW01
Gene No.	15	16	17	17	18	19

Last AA of ORF	40	=	78	106	20	26
First Last Predicted AA AA First AA I of of of of Sig Sig Secreted Pep Pep Portion C	36	31	28	22	31	26
Last AA of Sig Pep	35	30	27	21	30	25
First AA of Sig Pep	1	1	1	1	1	-
AA SEQ NÖ: Y	332	333	511	334	335	512
S' NT AA F of First SEQ / AA of D Signal NO: S	78	28	387	137	436	81
of of Start Codor	78	87	387	137	436	81
3' NT of Clone Seq.	434	715	932	486	725	647
5' NT of Clone Seq.	Ī		274	-	-	-
Total NT Seq.	434	715	932	486	725	199
X SEQUENT NO SEQUENT N	30	31	209	32	33	210
Vector	Uni-ZAP XR	pSport1	pSport1	pCMVSport 2.0	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HBJAE44	HCFME41	HCFME41	H0GC071	HOSEX08	HOSEX08
Gene No.	20	21	21	22	23	23

17		· · · · · · · · · · · · · · · · · · ·		r	τ	г
Last AA of ORF	48	4	33	76	47	31
First Last Predicted AA AA First AA of of of Sig Secreted Pep Pep Portion	31	31	25	21	31	21
Last AA of Sig Pep	30	30	24	20	30	20
First AA of Sig Pep	-	1		-	-	ı
SEQ NO:	336	337	513	338	514	339
S' NT of First AA of Signal Pep	\$8	961	72	375	17	201
of of Start	85	196	72	375		
3' NT of Clone Seq.	437	943	534	409	509	349
S' NT 3' NT of of of Clone Clone Seq.			-	 4		
Total NT Seq.	437	943	592	604	938	349
SEQ SEQ NO:	34	35	211	36	212	37
Vector	pBluescript	Uni-ZAP XR				
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97
	HSKNJ72	HEBEB69	HEBEB69	не6ен18	не6ЕН18	HSAUZ47
Gene No.	24	25	25	56	26	27

		ATCC		NT SEQ		5' NT of	3' NT of	S' NT	5' NT of First	AA SEQ	First	\ \$\	AA First Last Predicted SEQ AA AA First AA	Last
Gene No.		Deposit No: Z and Date	Vector	дё×	Total NT Seq.	Clone Seq.	Clone Seq.	Clone Clone of A	AA of ID of Signal NO: Sig S Pep Y Pep F	, BŠ≻	of Sig Pep	of Sig	of Secreted Portion	AA of ORF
28	HSSDM73	97898 02/26/97 209044 05/15/97	Uni-ZAP XR	38	672	1	672	22	22	340	-	38	39	42
29	HBMVK68	97898 02/26/97 209044 05/15/97	Uni-ZAP XR	39	1908	135	8061	309	309	341	_	20	21	26
30	HMKDC66	97898 02/26/97 209044 05/15/97	pSport1	40	458	93	458	147	147	342	_	24	25	26
31	46	97898 02/26/97 209044 05/15/97	pSport1	41	1153	200	1153	427	427	343	_	30	31	157
31	4	97898 02/26/97 209044 05/15/97	pSport1		1079	205	968		739	515	-	23	24	43
32	HRDEW41	97898 02/26/97 209044 05/15/97	Uni-ZAP XR	42	1983	1092	1983	27	27	344	-	=	12	520

Last AA of ORF	3	39	234	174	691	43
NT of AA First Last Predicted of AA of D of of of of of AA of D of Start Signal NO: Sig Sig Secreted of Codon Pep Y Pep Pep Portion Ol		20	31	61	20	33
Last AA of Sig Pep		61	30	18	61	32
First AA of Sig Pep	1	1	-	1	_	1
AA SEQ DD NO: Y	516	345	346	517	347	518
5' NT of First AA of Signal Pep	2030	19	74	638	14	844
5' NT of Start Codon			74		14	844
3' NT of Clone Seq.	3357	569	1153	1036	1569	1404
S' NT 3' NT of of Clone Clone Seq.	2757 3357		851	822	768	770 1404
Total NT Seq.	214 3791	1406	1391	1334	1569	216 1511
XÖ BÖY	214	43	4	215	45	216
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97
cDNA Clone ID	HRDEW41	HTOJN06	HBGDA21	HBGDA21	HFGAK75	HFGAK75
Gene No.	32	33	34	34	35	35

			r			
Last AA of ORF	43	78	24	274	13	47
Last Predicted AA First AA of of Sig Secreted Pep Portion	20	38	20	31		31
Last AA of Sig Pep	19	37	61	30		30
First AA of Sig Pep	1	1	1	-	I	I
¥ŠBŠ ¥ÄBŠ	348	349	350	351	519	352
S' NT of First SEQ AA of D Signal NO: 3 Pep Y F	62	141	61	177	448	19
of of Start Codon	62	141	61	177		61
3' NT of Clone Seq.	1681	396	346	1300	581	1404
S' NT 3' NT of of Clone Clone Seq.	_	252	-	1	192	110
Total NT Seq.	1924	475	346	1366	642	1405
× Še Še X	46	47	48	49	217	50
Vector	Uni-ZAP XR	pSport1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97
cDNA Clone ID	ннРВD40	HOVCL83	HBCAY62	HBICM48	HBICM48	HLTCL35
Gene No.	36	37	38	39	39	40

Last AA of ORF	30	3	52	132	47	204
AA First Last Predicted SEQ AA AA First AA D of of of of NO: Sig Sig Secreted Y Pep Pep Portion	22		25	09	27	31
Last AA of Sig Pep	21		24	59	26	30
First AA of Sig Pep	1	1		-	1	1
¥ŠÐŞ¥	520	353	354	355	521	356
S' NT of Hirst I of AA of Dof Signal NO: Sign I Pep I	172	222	113	41	399	991
of of Start Codor	172	222	113	41	399	166
S' NT 3' NT of of Clone Clone Seq. Seq.	1241	485	214	419	989	1749
S' NT 3' NT of of Olone Clone Seq.	1	207	_	1	186	222
Total NT Seq.	1241	504	777	602	0801	1749
X S B S S X	218	51	52	53	219	54
Vector	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HLTCL35	HLHCK50	HRSAN45	HSNBB14	HSNBB14	HMABL38
Gene No.	40	41	42	43	43	4

Last AA ORF	26	47	73	58	102	61
of AA First Last Predicted of AA of ID of of of Signal NO: Sig Sig Secreted of Pep Portion Of	61	34	19	26	31	
Last AA of Sig Pep	18	33	18	25	30	
First AA of Sig Pep	-			–		
₹ŘÐÖ⊁	522	357	358	523	359	524
5' NT of First AA of Signal Pep	254	059	414	226	128	1097
of Of Start	254	650	414		128	
3' NT of Clone Seq.	1190	1614	1753	1693	1024	1163
S' NT 3' NT of of Clone Clone Seq.		965	555	554	069	712
Total NT Seq.	1258	1896	1753	1693	1220	1196
X S D S X	220	25	56	221	57	222
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 2.0	pCMVSpon 2.0
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HMABL38	HSKDK47	HOSFH03	HOSFH03	HOGAV75	HOGAV75
Gene No.	44	45	46	46	47	47

	1	 		· · · · · · · · ·	,	
Last AA of ORF	48	179	9	25	224	57
of AA First Last Predicted Of AA First Last Predicted AA of D of of of of Signal NO: Sig Sig Secreted Of Pep Y Pep Pep Portion	34	31	61	22	31	19
Last AA of Sig Pep	33	30	18	21	30	<u>&</u>
First AA of Sig Pep	1	-	-	_	-	-
¥ŠÐŠ. ¥ÖÐÖ.	360	361	525	362	363	526
S' NT of First AA of Signal Pep	335	189	1164	<u>2</u>	06	1953
of of Start	335	189	1164	164	06	1953
3' NT of Clone Seq.	1049	1737	1791	443	2888	2517
S' NT 3' NT of of of Clone Clone Seq.	362	854	979		1909 2888	1597 2517
Total NT Seq.	1049	1776	1791	443	2888	224 2517
NT SEQ DD NO:	58	59	223	09	61	224
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
	HFCAI74	HAGBI17	HAGBI17	HLFBC91	I	HPRCA31
Gene No.	48	49	49	50	51	51

:

Last AA of ORF	349	21	467	152	39	373
Predicted First AA of Secreted Portion	31	18	26	31	25	31
Last AA of Sig Pep	30	17	25	30	24	30
First AA of Sig Pep	I	Ī	1	I	Ī	1
AA SEQ DO: Y	364	527	365	366	528	367
5' NT of AA IFirst SEQ AA of ID Signal NO: Pep Y	139	230	964	229	436	236
s' NT of Start Codon	139		964	229	436	236
3' NT of Clone Seq.	1736	2309	3492	883	1033	1541
5' NT 3' NT of of Clone Clone Seq.	1568	299	883		242	-
Total NT Seq.	1851	2424	3542	883	1080	1541
X S B S S S S S S S S S S S S S S S S S	62	225	63	\$	226	65
Vector	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HPRCE95	6	HHTLC66	HMADJ02	HMADJ02	HPRCU93
Gene No.	52	52	53	54	54	55

Last AA of ORF	128	8	7	_	70		79
	12	83	82	21	2	227	7
Pre Se Pc	26	61	21			20	31
Last AA of Sig Pep	25	18	20			19	30
First AA of Sig Pep	1	1	-		***		-
¥SEQ ∀ÖÖÖ.	529	398	530	369	531	370	371
5' NT of First S AA of Signal Pep	946	163	1262	264	227	56	22
5' NT of Start Codon	946	163	1262	264	227	\$6	22
3' NT of Clone Seq.	1336	869	1756	629	536	1751	508
5' NT 3' NT of of Clone Clone Seq. Seq.	4	41	1133	-	25	375	-
Total NT Seq.	1336	732	2043	629	540	1751	508
X SEQ	227	99	228	<i>L</i> 9	229	89	69
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	ZAP Express
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	209011 04/28/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HPRCU93	HSAXS65	HSAXS65	HKTAG35	HMEFX42	HHFHN61	HCWEF90
Gene No.	55	56	56	57	57	58	59

Last AA of ORF	75	51	19	99	9	39
First Last Predicted AA AA First AA I of of of of Sig Sig Secreted Pep Pep Portion C	23	2	31	∞_	31	59
Last AA of Sig Pep	22		30	17	30	28
First AA of Sig Pep	_	-	_		I	1
¥ŠBŠ ∀ÖBŠ¥	532	372	373	533	374	534
of AA For Signal NO: S	_	93	_	210	169	329
of of Start		93		210	691	329
3' NT of Clone Seq.	448	245	361	407	713	580
S' NT 3' NT of of SCIONE Clone Seq.	6				8	190
Total NT Seq.	448	245	361	407	713	830
× Še Še Ž	230	97	71	231	72	232
Vector	ZAP Express	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HCWEF90	HHGCM20	HFRAU10	HFRAU10	HATDT67	HATDT67
Gene No.	59	09	19	19	62	62

Last AA of ORF	4	7	203	36	29	136
of AA First Last Predicted Of AA of ID of of of Of Signal NO: Sign Signal NO: Sign Sign Secreted No: Of	31		31	23	29	31
Last AA of Sig Pep	30		30	22	28	30
First AA of Sig Pep		_	-		-	1
¥ŠĐŠ¥	375	535	376	536	377	378
5' NT of First AA of Signal Pep	<i>L</i> 9	287	730	2577	112	13
of of Start	<i>6</i> 7	287	730	2577	112	13
3' NT of Clone Seq.	862	905	4525	2739	1195	475
S' NT 3' NT of of Clone Clone Seq. Ceq.	-	138	4162 4525	2406 2739	-	-
Total NT Seq.	862	932	4602	2786	1255	475
SEQ NÖ:	73	233	74		75	76
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HOUBG93	HOUBG93	HMWEX24	HMWEX24	HSGBA84	HTOCD52
Gene No.	63	63	2	2	9	99

Last AA ORF	4.	14	468	<u>8</u>	29	29
First Last Predicted of of Sig Sig Secreted Pep Portion C		34	31		21	28
Last AA of Sig Pep		33	30		20	27
First AA of Sig Pep	-	1	_	_	_	-
¥SeQ XeQ	537	379	380	538	381	382
S' NT of First SEQ AA of D Signal NO: SPep Y	26	74	26	251	267	292
of of Start	26	74	26	251	267	292
3' NT of Clone Seq.	458	299	1730	444	8911	1285
S' NT 3' NT of of Clone Clone Seq. Seq.	_	25	1627		136	132
Total NT Seq.	458	465	1907	591	1168	1285
XÖBÖN XÖBÖ	235	77	78	236	79	08
Vector	Uni-ZAP XR	Uni-ZAP XR	pBluescript	pBluescript	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HTOCD52	HTGCP16	HKIXR69	HKIXR69	HETGJ09	HOBNC61
Gene No.	99	29	89	89	69	70

Last AA of ORF	138	74	521	=	137	186
Predicted First AA of Secreted Portion	22	31	31	10	56	31
Last AA of Sig Pep	21	30	30	6	25	30
First AA of Sig Pep		-	_	-	-	I
\$8 BBBS≻	383	384	385	539	386	387
of AA F of First SEQ AA of D Signal NO: Sep Pep Y	701	119	700	1204	82	99
S' NT 3' NT of of of Clone Clone of Seq. Seq. Start Scoon	701	119	200		85	99
3' NT of Clone Seq.	1054	684	1953	959	537	802
S' NT of Clone Seq.	768		1609	391	14	59
Total NT Seq.	1290	684	2024	1286	931	825
X S B S X	81	82	83	237	84	85
Vector	Lambda ZAP II	Uni-ZAP XR				
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HFFAH94	HBIAI95	HSQEL25	HSQEL25	HEBEG68	HBIAB39
Gene No.	71	72	73	73	74	75

Last AA of ORF	108	106		299	136	424
Signal NO: Sig Sig Secreted N Pep Portion C	38	16		54	74	36
Last AA of Sig Pep	37	15		53	43	35
First AA of Sig Pep	1	1	-		1	
¥SEQ ∀ÖÖĞ	540	541	388	389	542	543
5' NT of First AA of Signal Pep	1	294	<i>L</i> 1	166	507	390
of of Start	1		11	166	507	390
S' NT 3' NT of of Clone Clone Seq. Seq.	734	794	918	1458	2080	1520
S' NT 3' NT of of Clone Clone Seq.		08	36	6	841	311
Total NT Seq.	734	608	1238	1460	2201	1661
× Še Še Š	238	239	86	87	240	241
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HBIAB39	HBIAB39	HTXDU73	HOEAS24	HOEAS24	HOEAS24
Gene No.	75	75	76	77	77	77

Last AA of ORF	49	19	39	79	36	081
Predicted First AA of Secreted Portion	37	20	22	31	33	31
AAA of Sig	36	49	21	30	32	30
First AA of Sig Pep	_	_	_	1	-	1
AS BO	390	391	544	392	393	394
5' NT of AA First I First SEQ AA AA of ID of Signal NO: Sign Sign AA Bep Y Pep I	639	540	564	1503	326	86
of of Start Codon	639	540	564	1503	329	86
3' NT of Clone Seq.	1395	1186	1146	1614	862	969
S' NT of Clone Seq.	567	352	329		253	349
Total NT Seq.	1395	1186	1146	1821	862	969
X S B S S S S S S S S S S S S S S S S S	88	68	242	06	16	92
Vector	Uni-ZAP XR	pBluescript	pBluescript	Uni-ZAP XR	Uni-Zap XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HTEIY30	HSKNE46	HSKNE46	HPMFL27	HMWDN32	HPRAX55
Gene No.	78	79	79	80	81	82

Last AA of ORF	58	21	99	152	33	480	367
Predicted First AA of Secreted Portion	33		22	33	21	31	22
Last AA of Sig Pep	32		21	32	20	30	21
First AA of Sig Pep	1		-	-	-	-	1
AA SEQ ID NO: Y	545	395	396	397	546	368	547
5' NT of AA I First SEQ AA of ID Signal NO: Pep Y	348	197	785	206	191	234	125
5' NT of Start Codon	348	197	785	206	191	234	125
3' NT of Clone Seq.	1230	1759	1772	1648	911	2801	1537
5' NT of Clone Seq.	265		742	-	72	418	
Total NT Seq.	1350	1886	1774	2503	1529	2801	1537
X S B S B S B S B S B S B S B S B S B S	243	93	94	95	244	96	245
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97901 02/26/97 209047 05/15/97	209076 05/22/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HPRAX55	ННFFW36	HE2PL77	HSDFV29	HCQAV53	HTPEG42	HTPEG42
Gene No.	82	83	84	85	85	98	98

Last AA of ORF	423	78	11	74	47	20
of AA First Last Predicted First SEQ AA AA First AA I AA of ID of of of of Signal NO: Sig Sig Secreted Pep Pep Portion C	2	24	33	6]	22	
Last AA of Sig Pep	1	23	32	18	21	
First AA of Sig Pep	1	1	1	1	-	-
AA SEQ DO: Y	399	400	548	401	549	402
5' NT of First AA of Signal Pep	1	<i>1</i> 61	183	456	363	2
of of Start		197	183	456	363	
S' NT 3' NT of of Clone Clone Seq. Seq.	1631	504	499	1416	1348	2847
	916	56	_	145	84	-
Total NT Seq.	1631	504	506	1416	1348	2847
× Še Še Š	76	86	246	66	247	100
Vector	Uni-ZAP XR	Uni-ZAP XR	1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HLHDR57	HAUAV32	HAUAV32	HNEBI60	HNEBI60	HSHCJ16
Gene No.	87	& &	88	68	68	06

Last AA of ORF	87	92	168	124	21	174
First SEQ AA First Last Predicted AA of ID of of of of of Signal NO: Sig Signed Secreted ID Pep Pep Portion C	24	31	31	61		32
Last AA of Sig Pep	23	30	30	18		34
First AA of Sig Pep	1		u	1	1	1
AS SEQ NO.	403	404	550	551	405	406
5' NT of First AA of Signal Pep	602	518	356	147	975	248
of Start	602	518	356		516	248
3' NT of Clone Seq.	1346	794	1766	1708	1531	871
5' NT of Clone Seq.	809		42	47	868	106
Total NT Seq.	1394	794	1766	2664		871
× Šega Šega Šega Šega Šega Šega Šega Šega	101	102	248	249	103	104
Vector	pBluescript	Uni-ZAP XR				
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HTSEL31	HAUBL57	HAUBL57	HAUBL57		HE6CT48
Gene No.	91	92	92	92	93	94

Last AA of ORF	177	\$	72	280	45	251	284
Last Predicted AA First AA of of Sig Secreted Pep Portion	20	22	23	52	16	41	31
AA of of Sig	19	21	22	51	15	40	30
First AA of Sig Pep	_	Ī	-	-	_	I	_
AA SEQ D NO: Y	552	407	553	408	554	555	409
S' NT	258	16	829	122	633	82	465
of of Start Sodon	258	16	829	122		82	465
3' NT of Clone Seq.	\$98	404	2074	1542	1482	834	2327
S' NT3' NT of of Clone Clone Clone Seq. Seq.	26	-	852	909	208	_	1528
Total NT Seq.	865	404	2082	1542	1482	834	2327
NT SEQ D NO:	250	105	251		252	253	107
Vector	Uni-ZAP XR	ZAP Express	Uni-ZAP XR				
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	209215 08/21/97	97901 02/26/97 209047 05/15/97
	HE6CT48	HMDAA61	HMDAA61	HAQBK61	HAQBK61	нсонво!	HAQBF73
Gene No.	94	95	95	96	96	96	97

Last AA of ORF	61	187	237	217	82	192
First Last Predicted AA AA First AA of of of Sig Sig Secreted Pep Pep Portion (29	31	31	13	47
Last AA of Sig Pep		28	30	30	12	46
First AA of Sig Pep	1	-	1	_	I	
AA SEQ DO: Y	556	410	411	557	258	412
S' NT of AA F First SEQ AA of D Signal NO: S	886	172	903	176	1151	4
of of Start Codon		172	903	176		4
3' NT of Clone Seq.	1508	1062	2501	2431	2288	1751
Sop. Seq.	885	157	275		465	696
Total NT Seq.	1508	1062	2539	2514	256 2357	1751
SEQ NÖ: NÖ:	254	108	601	255	256	110
Vector	Uni-ZAP XR	Lambda ZAP II				
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HAQBF73	НАQВТ94	нетнео7	нетнео7	нетне07	HLQAB52
Gene No.	26	86	66	66	66	001

Last AA of ORF	95	22	21	108	51	50	32
	5	4,					
First Last Predicted AA AA First AA of of of Sig Sig Secreted Pep Portion	19	29	20	25	31	36	
Last AA of Sig Pep	18	28	61	24	30	35	
First AA of Sig Pep	Ī	1	1	-			
ASEQ NÖ: ∀:	559	560	413	561	414	262	415
S' NT Of AA Fi Of AA of ID AA of ID AA of ID AA of ID A Signal NO: S	314	25	1	242	271	35	709
S' NJ of Start	314	25		242	271	35	709
3' NT of Clone Seq.	655	2377	1117	1135	1313	1262	1654
S' NT 3' NT of of Clone Clone Seq. Seq.	218	5	_	69	128	26	553
Total NT Seq.	689	2377	1117	1193	1313	1262	1654
Z B B S ×	257	258		259	112	260	113
Vector	Lambda ZAP II	pSport1	Uni-ZAP XR	Other	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	209119	97901 02/26/97 209047 05/15/97	209627	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HLQAB52	HEONN58	HCRAM28	HIBEK16	HE2BG03	HE2BG03	НЕВDJ82
Gene No.	100	100	101	101	102	102	103

Last AA of ORF	163	253	<u>&</u>	174		73
Predicted First AA of Secreted Portion	31	31		99		34
Last AA of Sig Pep	30	30		65		33
First AA of Sig Pep	1	-	+I	1	-	I
AA SEQ ID NO: Y	416	563	564	417	265	266
of AA F First SEQ AA of ID Signal NO: S	337	335	942	100		413
S' NT of Start Codon	337	335	942	100		
3' NT of Clone Seq.	11711	1161	1131	800	735	783
S' NT 3' NT of of Clone Clone Seq.	540	979	629	373	290	416
Total NT Seq.	1171	1179	1162	842	735	783
X S B S S X	114	261	262	115	263	264
Vector	ZAP Express	ZAP Express	ZAP Express	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	нсивс79	HCUBC79	HCUBC79	HSVAF07	HSVAF07	HSVAF07
Gene No.	104	9	2	105	105	105

Last AA of ORF	50	263	92	120	159	34
First SEQ AA First Last Predicted AA of ID of	31	31	25	29	31	24
Last AA of Sig Pep	30	30	24	28	30	23
First AA of Sig Pep	Ī	I	1		I	Ī
AA SEQ DO: Y	418	292	568	419	420	695
5' NT of First AA of Signal Pep	581	119	438	499	301	227
S' NT 3' NT of of of of clone Clone of Seq. Seq. Start Scoon	581	119	438	499	301	227
3' NT of Clone Seq.	1470	1405	1188	906	6/01	1050
5' NT of Clone Seq.	187	301	148	418	21	25
Total NT Seq.	1640	1638	1455	952	118 1256	267 1086
SEQ X	116	265	266	117	118	267
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HT3AM65	HT3AM65	HT3AM65	HE6DK18	НЕВЕК93	HEBEK93
Gene No.	106	106	901	107	108	108

Last AA of ORF	154	<u> </u>	132	204	19	32
First Last Predicted AA AA First AA I of Of Of Of Sig Sig Secreted Pep Pep Portion C	51	35	28	33	31	28
Last AA of Sig Pep	50	34	27	32	30	27
First AA of Sig Pep	_	-	-		-	_
AS BO	421	570	571	422	423	<i>57</i> 2
S' NT AA For SEQ AA of D Signal NO: Sep Y Fep	175	115	232	138	50	337
S' NT3' NT of of S' NT I Clone Clone of Seq. Seq. Start S	175	115	232	138	50	337
3' NT of Clone Seq.	1051	1003	1015	1720	609	995
5' NT of Clone Seq.	171	21	174		81	-
Tota NT Seq.	1143	1003	1234	1782	610	574
SEQ NÖ: NÖ:	119	268	269	120	121	270
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HJPCM10	HJPCM10	HJPCM10	HSXBL78	HOEAW81	HOEAW81
Gene No.	109	109	109	110	=	=

Last AA of ORF	25	299	28	13	198	40
Predicted First AA of Secreted Portion	22	31	61		16	23
Last AA of Sig Pep	21	30	<u>&</u>		15	22
First AA of Sig Pep	-	_	_		1	I
¥ŠBŠ ¥ÿBŠ	424	425	573	426	427	574
5' NT of First SEQ AA of ID Signal NO: Pep	143	48	886	76	145	280
of of Start Sodon	143	48	886	76	145	280
3' NT of Clone Seq.	375	9261	1626	1640	804	637
S' NT of Clone Seq.	185	1179	688	764	I	11
Total NT Seq.	526	2081	1731	1717	804	1320
X SEQ	122	123	271	124	125	272
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HOEAP41	HEAAR60	HEAAR60	HTXGS75	HOVBA03	HOVBA03
Gene No.	112	113	113	114	115	115

Last AA of ORF	47	30	370	29	30	24
First Last Predicted AA AA First AA I of of of of Sig Secreted Pep Pep Portion C	39	21	31	61		
Last AA of Sig Pep	38	20	30	18		
First AA of Sig Pep	1		_	-	-	1
SEQ YO.	428	575	429	576	430	431
5' NT of AA F First SEQ / AA of DD Signal NO: S Pep Y P	73	43	748	2777	968	1265
S' NT of Start	73	43	748	2777	968	1265
3' NT of Clone Seq.	431	515	3752	2995	1144	1830
S' NT 3' NT of of Clone Clone Seq.	I		3465	2738	699	1234 1830
Total NT Seq.	431	515	3752	2995	1144	1830
X SEQ	126	273	127	274	128	129
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HGBGK76	HGBGK76	HBMUW78	HBMUW78	4	HSIDN55
Gene No.	116	116	117	117	118	119

Last AA of ORF	53	176	92	11	32	30
redicted irst AA of ecreted ortion	38	36	17	23	26	26
Last AA of Sig Pep	37	35	16	22	25	25
First AA of Sig Pep	1		-	-		-
¥ŠĐŠ;⊁	432	433	577	434	435	436
S' NT of First Last Properties SEQ AA AA From Properties SEQ AA AA From Properties Signal NO: Signa	1578	46	71	1127	962	274
5' NT3' NT of of 5' NT 1 al Clone Clone of A Seq. Seq. Start S Codon	1578	46	71	1127	962	274
3' NT of Clone Seq.	1741	1214	1128	1986	1632	1565
5' NT of Clone Seq.	1505 1741	_	∞	853	0.29	281
Tot. Sec Sec	1864	2041	1990	2012	1669	1565
X SEQ	130	131	275	132	133	134
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HGBGZ64	H6EBJ64		HOECP43	H2CBV31	HPCAD23
Gene No.	120	121	121	122	123	124

Last AA of	69	19	43	42	33	53
First Last Predicted AA AA First AA Last of of of AA Sig Secreted of Pep Pep Portion ORF	40		31	31	J	26
Last AA of Sig Pep	39		30	30	18	25
First AA of Sig Pep	1	Ī	1			-
SEQ NÖ: Y		438	439	578	440	1 4
5' NT of First AA of Signal Pep	1124	<i>1</i> 01	184	726	1183	585
S' NT First SEQ / Of AA of D Start Signal NO: SCOOOL PEP Y F	1124	107	184	726	1183	585
3' NT of Clone Seq.		1180	1906	2436	1794	1347
S' NT3' NT of of Clone Clone Seq. Seq.	135 2007 1101 2007			572	1044 1794	572
Total NT Seq.	2007	1291	1906	276 2436	1935	1446
× Še Še	135	136	137	276	138	139
Vector	pSport1	Uni-ZAP XR	Lambda ZAP II	Lambda ZAP II	pSport1	Uni-ZAP XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HSPAG15	несснзі	HUSHH48	HUSHH48	HLYAU95	HHSCV65
Gene No.	125	126	127	127	128	129

Last AA of ORF	64	34	68	70	350	49
Predicted First AA of Secreted Portion	25		31	32	26	17
First Last I AA AA I of of Sig Sig Pep	24	•	30	31	25	16
First AA of Sig Pep	1		1	1	1	-
AA SEQ ID NO: Y	442	443	444	579		446
S' NT of AA F First SEQ AA F AA of ID Signal NO: 1	9/9	56	1	571	22	306
S' NT of Start Codor	929	95	-		55	306
3' NT of Clone Seq.	1109	497	269	781	1262	1871
S' NT 3' NT of of Clone Clone Seq. Seq.	639	6	_	408	55	26
Total NT Seq.	1109	497	269	782	1269	1944
K Š B Š ×	140	141	142	277	143	144
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Lambda ZAP II	Uni-ZAP XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HTTAD57	HEBGA37	HEBFU93	невг093	HSGSC60	HPMGD24
Gene No.	130	131	132	132	133	134

Last AA of ORF	278	011	199	30	258	71
Predicted First AA of Secreted Portion	31	24	31	27	31	24
Last AA of Sig Pep	30	23	30	26	30	23
First AA of Sig Pep	•	_		-	_	1
¥äθĕ¥	447	580	448	581	449	582
S' NT of AA IF First SEQ AA of ID Signal NO: Pep Y	74	545	116	324	165	160
of of Start Sodon	74	545	116	324	165	160
3' NT of Clone Seq.	1021	961	1285	1228	1272	1208
S' NT 3' NT of of Clone Clone Seq.	526	524	5	6	169	169
Total NT Seq.	1021	196	1285	1228	1386	1327
SEQ NÖ: NÖ:	145	278	146	279	147	280
Vector	pBluescript	pBluescript	pBluescript	pBluescript	Uni-Zap XR	Uni-Zap XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HPTVC60	HPTVC60	HSKNE18	HSKNE18	HMWIF35	HMWIF35
Gene No.	135	135	136	136	137	137

Last AA of ORF	87	315	47	52	383	39
First Last Predicted AA AA First AA 1 of of of of Sig Sig Secreted Pep Pep Portion C	19	34	13	73	31	33
Last AA of Sig Pep	81	33	12	21	30	32
First AA of Sig Pep	-	-	_	_	_	-
&ä ĕĕ ĕĕ ¥	450	451	583	452	453	584
S' NT of AA First SEQ AA of DO Signal NO: SPep Y	784	241	243	417	48	294
of of Start Sodon	784	241		417	48	294
3' NT of Clone Seq.	2044	1847	799	1517	1540	2196
s' NT of Clone Seq.	721	1689		113	538	270
Total NT Seq.	2098	1847	799	1569	1540	2196
SEQ BD NO:	148	149	281	150	151	282
Vector	Uni-Zap XR	pBluescript	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
	HMWGI25	l.	HSKGF03	1	HCMSH30	HCMSH30
Gene No.	138	139	139	140	141	141

Last AA of	186	163	61	46	105	23
First Last Predicted AA AA First AA Last of of of AA Sig Secreted of Pep Pep Portion ORF	53	27		22	24	21
Last AA of Sig Pep	52	26		21	23	20
First AA of Sig Pep		-	-	1	-	
¥ŠΘŠ¥	454	455	585	456	457	586
5' NT of First AA of Signal Pep	9	195	621	40	411	878
S' NT 3' NT of	9	195	621	40	411	878
3' NT of Clone Seq.	1575	863	1166	512	2031	1485
5' NT of Clone Seq.	069	_	277	-	699	615
Total NT Seq.	1719	863	1185	1011	2031	1634
NT SEQ BD NO:	152	153	283	154	155 2031	284
Vector	pSport1	pBluescript	pBluescript	Uni-ZAP XR	Lambda ZAP II	Lambda ZAP II
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HTWCB92	46	HBMDM46		HFXHL79	HFXHL79
Gene No.	142	143	143	-	145	145

Last AA of ORF	70	69	155	77	155	332	N
Predicted First AA of Secreted Portion	24	34	23	31	23	24	
Last AA of Sig Pep	23	33	22	30	22	23	
First AA of Sig Pep			-	_	_	-	-
AA SEQ ID NO: Y	458	587	459	588	589	460	461
5' NT of AA F First SEQ AA of ID Signal NO: Pep Y	1592	1562	22	224	22	32	1440
S' NT of Start Codon	1592	1562	22	224	22	32	1440
3' NT of Clone Seq.	1809	1749	912	858	915	1422	2382
S' NT 3' NT of Of Clone Clone Seq.	1458	1458	45	46	I	51	1509 2382
Total NT Seq.	1861	1795	915	858	915	2117	2395
NT SEQ D NO:	156	285	157	286	287	158	159
Vector	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1	Uni-ZAP XR	pBluescript	Lambda ZAP II
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	209139 07/03/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HSNAK17	HSNAK17	HCFBC03	HCFBC03	HSJAP03		HCQAV96
Gene	146	146	147	147	147	148	149

Last AA of ORF	4.	285	24	08	38	47
5' NT of AA First Last Predicted Of AA of ID of		31		31	17	31
Last AA of Sig Pep		30		30	16	30
First AA of Sig Pep	-		_	_	-	-
&BÖÐÖ⊁ ₩ÖÐÖ×	462	463	590	4 64	591	465
5' NT of First AA of Signal Pep	1416	46	1062	288	281	1611
S' NT3' NT of of S' NT I of Clone Clone of A Start Seq. Seq. Codon	1416	46	1062	288	281	1611
S' NT3' NT of of Clone Clone Seq. Seq.	1223 2108	006	1517	1003	5611	1607 2180
5' NT of Clone Seq.		482	783	_	217	
Tota NT Seq		006	1517	1003	3865	2196
SEQ NÖ:	160	161	288	162	289	163
Vector	Uni-ZAP XR	pBluescript				
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	_	HTLEF62	2	HTLAD94	HTLAD94	HTSFQ12
Gene No.	150	151	151	152	152	153

Last AA of ORF	96	69	399	308		273
of AA First Last Predicted of First SEQ AA AA First AA I AA Of ID of of of Signal NO: Sig Sig Secreted Pep Portion C	2	40	31	46		32
Last AA of Sig Pep	63	39	30	45		31
First AA of Sig Pep	I	I	-	-	-	-
AA SEQ ID NO: Y	466	592	467	593	468	469
5' NT of First AA of Signal Pep	299	355	258	525	341	284
of of Start Codoi	299	355	258			284
3' NT of Clone Seq.	1840	1818	2871	2838	2221	1816
S' NT 3' NT of of S Clone Clone Seq. Seq.		279	489	486	343	1130 1816
Total NT Seq.	1945	0161	2933	3276	166 2243	167 1816
NT SEQ ID NO:	164	290	165	291	166	
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	НЕ6FL83	HE6FL83	HTXFJ55	HTXFJ55	HJPCJ76	HLTED27
Gene No.	154	154	155	155	156	157

Last AA of ORF	22	192	234	105	24	32
First Last Predicted AA AA First AA I of Of Of Of Sig Sig Secreted Pep Portion C		19	27	46		
Last AA of Sig Pep		18	26	45		23
First AA of Sig Pep		1	-	-	_	•••
AA SEQ NO: Y	594	470	471	472	565	473
S' NT of AA F First SEQ AA of D AA of D Signal NO: S	1306	208	19	1001	510	1722
of of Start Sodon	1306	208	19		510	1722
3' NT of Clone Seq.	1548	787	816	1869	1501	2100
s' NT of Clone Seq.	1098		46		438	1642 2100
Total NT Seq.	1695	945	902	1883	293 1501	2100
SEQ NÖ:	292	168	691	170	293	171
Vector	Uni-ZAP XR	pSport1	pBluescript	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HLTED27		HNFIP24	HCELB21	HCELB21	HAWBA28
Gene No.	157	158	159	160	160	161

Last AA of ORF	571	24	312	_	329	∞
of AA First Last Predicted C First SEQ AA AA First AA L AA of ID of of of of Signal NO: Sig Sig Secreted C Pep Pep Portion O	31		31		22	
Last AA of Sig Pep	30		30		21	
First AA of Sig Pep	-	-	_			_
ŞEŞ ŞEŞ Y.Ö.⊟Ş	474	596	475	597	476	598
5' NT of First AA of Signal Pep	59	431	122	976	51	305
Zarg	59	431	122	976	51	305
3' NT of Clone Seq.	1930	2683	1451	1420	2972	828
S' NT 3' NT of of of S' of Clone Clone Core Seq. Seq. Seq. Core	187	183	796	961	3173 2197 2972	52
Tota NT Seq	1930	2683	1509	1454	3173	828
NT SEQ ID NO:	172	294	173	295	174	296
Vector	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HSAAS44	HSAAS44	HAFAL73	HAFAL73	HSAWF26	HSAWF26
Gene No.	162	162	163	163	164	<u>\$</u>

Last AA of ORF	178	25	52	62	27	27
S' NT of AA First Last Predicted Of AA of ID of of of Of Signal NO: Sig Sig Secreted Peption C	25	19	26	23	22	22
Last AA of Sig Pep	24	18	25	22	21	21
First AA of Sig Pep	-	I	-	-		1
¥SEQ YÖBĞ	477	665	478	479	480	009
5' NT of First AA of Signal Pep	09	1473	889	173	11	11
of of Start Codol	09	1473		173	11	17
3' NT of Clone Seq.	970	2413	1290	2290	549	545
5' NT of Clone Seq.	374	1387	499		_	1
Total NT Seq.	991	2416	1290	2290	549	545
NS BO	175	297	176		178	298
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HEAAL31	HEAAL31	HFKFX55		HPFDZ95	HPFDZ95
Gene No.	165	165	166	167	168	168

Last AA of ORF	339	19	32	48	29	38
Signal NO: Sig Sig Secreted NP Pep Portion O	31	24	27	31	24	30
Last AA of Sig Pep	30	23	26	30	23	29
First AA of Sig Pep	_	-	_	-	I	I
¥ŠΘŠ ∀ÖÖĞ	481	109	482	483	602	484
5' NT of First AA of Signal Pep	65	562	995	51	300	14
of of Start Codol	92	562	995	51	300	14
5' NT 3' NT of of Clone Clone Seq.	1352	1530	1250	717	997	791
	294	385	985	_	244	
Total NT Seq.	1509	1530	1316	777	766	16/
X S D S S S S S S S S S S S S S S S S S	179	299	180	181	300	182
Vector	Uni-ZAP XR	Uni-ZAP XR	pSport1		Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HPTTÜII	HPTTUII	HCFAE79	HTEDJ34	HTEDJ34	HODCW06
Gene No.	169	691	170	171	171	172

Last AA of ORF	61	346	69	237	24	200
Last Predicted AA First AA of of Sig Secreted Pep Portion (21	25	57	31	01	31
Last AA of Sig Pep	20	24	56	30	6	30
irst of of ep	-		-		_	1
¥ŠΘŠ⊁	485	486	603	487	. 604	488
S' NT Of Errst SEQ AA F AA of ID Signal NO: S Pep Y P	575	131	233	19	09	257
of of Start	575	131	233	67		257
3' NT of Clone Seq.	1405	1596	2345	2288	1946	1180
S' NT 3' NT of of Clone Clone Seq.	346	75	75	355	2	462
Total NT Seq.	1405	1596	2345	2293	2369	1212
SEQ NÖ:	183	184	301	185	302	186
Vector	Uni-ZAP XR	pBluescript SK-	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HFTAR26	H2MBF44	H2MBF44	HE8B192	HE8BI92	HFTBR48
Gene No.	173	174	174	175	175	176

Last AA of ORF	35	351	081	265	23	25
of AA First Last Predicted of AA of ID of of of of Signal NO: Sig Sig Secreted Pep Portion O	24	31	44	31	6]	
Last AA of Sig Pep	23	30	43	30	18	
First AA of Sig Pep	1	1	1	I	-	I
AA SEQ ID NO: Y	909	489	909	490		491
5' NT of First AA of Signal Pep	663	166	787	8	54	401
of of Start Codor	663	166		8	54	
3' NT of Clone Seq.	1149	1554	1515	1516	1261	681
S' NT 3' NT of of SCIONE Clone Seq. Seq.	424	770	719	096		287
Total NT Seq.	1181	1605	1537	1516	1493	681
׊eŠeš	303	187	304	188	305	681
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HFTBR48	HE9CM64	HE9CM64	HATAVSI	HATAVSI	HAQAF27
Gene No.	176	177	177	178	178	179

Last AA of ORF	159	9	279	232	34	193
Predicted First AA of Secreted Portion	31		31	31	33	34
Last AA of Sig Pep	30		30	30	32	33
First AA of Sig Pep	-	_	_	-	_	1
&äÖĕö.⊁	492	809	493	609	019	494
S' NT of AA F First SEQ AA of ID Signal NO: S	360	175	1153	21	302	45
NT of tart odon	360		1153	21	302	45
3' NT of Clone Seq.	1014	577	2630	2860	876	1923
S NT 3' NT of of S' Or S	703		2207	163	275	30
Total NT Seq.	1014	577	2779	2860	876	1923
X SEQ SEQ SEQ	190	306	191	307	308	192
Vector	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	pBluescript SK-	pBluescript SK-	Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HCEEK08	HCEEK08	HAFAU18	HAFAU18	HAFAU18	HETBY74
Gene No.	180	180	181	181	181	182

Last AA of ORF	205	21	147	6	8	29
Last Predicted AA First AA of of Sig Secreted Pep Portion (31	61	12		31	61
Last AA of Sig Pep	30	<u>∞</u>	Ξ		30	18
First AA of Sig Pep	-			_	-	_
XÖBÖ. ∀Ö.	495	611	496	612	497	613
Signal NO: Sig Sig Sig Pep P	178	971	434	2131	297	107
of of Start Sodor	178	971	434		297	107
3' NT of Clone Seq.	2286	2025	3054	3026	907	712
S' NT 3' NT of of Clone Clone Seq. Seq.	1160 2286	840	2004		152	67
Total NT Seq.	2346	2025	3054	3026	907	712
SEQ NO:	193	309	194	310	195	311
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HTOAF35	HTOAF35	HCRBX32	HCRBX32	HEBGB80	HEBGB80
Gene No.	183	183	184	184	185	185

		
Last AA of ORF	8	30
5' NT 3' NT of AA First Last Predicted of S' NT First SEQ AA AA First AA Last Clone Clone of AA of ID of of of AA Strat Signal NO: Sig Sig Secreted of Codon Pep Y Pep Pep Portion ORF	31	29
Last AA of Sig Pep	30	28
First AA of Sig Pep		1
AA SEQ ID NO: Y	498	614
5' NT of First AA of Signal Pep	225 498	927
5' NT of Start Codon	225	927
3' NT of Clone Seq.	608	1289
5' NT of Clone Seq.	84	785
Total NT Seq.	1290	1289
NT SEQ ID NO:	961	312
Vector	97904 Uni-ZAP XR 196 1290 02/26/97 209050 05/15/97	97904 Uni-ZAP XR 312 1289 785 1289 927 927 614 02/26/97 209050 05/15/97
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HFAMH74	186 HFAMH74
Gene No.	186	186

5

10

15

20

25

30

35

166

Table 1 summarizes the information corresponding to each "Gene No." described above. The nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the "cDNA clone ID" identified in Table 1 and, in some cases, from additional related DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.

The cDNA Clone ID was deposited on the date and given the corresponding deposit number listed in "ATCC Deposit No:Z and Date." Some of the deposits contain multiple different clones corresponding to the same gene. "Vector" refers to the type of vector contained in the cDNA Clone ID.

"Total NT Seq." refers to the total number of nucleotides in the contig identified by "Gene No." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." and the "3' NT of Clone Seq." of SEQ ID NO:X. The nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep."

The translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be easily translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

The first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." The predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion." Finally, the amino acid position of SEQ ID NO:Y of the last amino acid in the open reading frame is identified as "Last AA of ORF."

SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used to generate antibodies which bind specifically to the secreted proteins encoded by the cDNA clones identified in Table 1.

5

10

15

20

25

30

35

Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1. The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.

The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, or the deposited clone. The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

Also provided in the present invention are species homologs. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.

The polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below).

It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies of the invention raised against the secreted protein in methods which are well known in the art.

Signal Sequences

5

10

15

20

25

30

35

Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table 1.

As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty. Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO:Y which have an N-terminus beginning within 5 residues (i.e., + or - 5 residues) of the predicted cleavage point. Similarly, it is also recognized that in some cases, cleavage of the signal sequence from a secreted protein is not entirely

10

35

uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Polynucleotide and Polypeptide Variants

"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

15 "Identity" per se has an art-recognized meaning and can be calculated using published techniques. (See, e.g.: (COMPUTATIONAL MOLECULAR BIOLOGY, Lesk, A.M., ed., Oxford University Press, New York, (1988); BIOCOMPUTING: INFORMATICS AND GENOME PROJECTS, Smith, D.W., ed., Academic Press, New York, (1993); COMPUTER ANALYSIS OF SEQUENCE DATA, PART I, 20 Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, (1994); SEQUENCE ANALYSIS IN MOLECULAR BIOLOGY, von Heinje, G., Academic Press, (1987); and SEQUENCE ANALYSIS PRIMER, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, (1991).) While there exists a number of methods to measure identity between two polynucleotide or polypeptide sequences, the 25 term "identity" is well known to skilled artisans. (Carillo, H., and Lipton, D., SIAM J Applied Math 48:1073 (1988).) Methods commonly employed to determine identity or similarity between two sequences include, but are not limited to, those disclosed in "Guide to Huge Computers," Martin J. Bishop, ed., Academic Press, San Diego, (1994), and Carillo, H., and Lipton, D., SIAM J Applied Math 48:1073 (1988). Methods for aligning polynucleotides or polypeptides are codified in computer 30 programs, including the GCG program package (Devereux, J., et al., Nucleic Acids

Research (1984) 12(1):387 (1984)), BLASTP, BLASTN, FASTA (Atschul, S.F. et al., J. Molec. Biol. 215:403 (1990), Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711 (using the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2:482-489 (1981).)

When using any of the sequence alignment programs to determine whether a particular sequence is, for instance, 95% identical to a reference sequence, the

parameters are set so that the percentage of identity is calculated over the full length of the reference polynucleotide and that gaps in identity of up to 5% of the total number of

nucleotides in the reference polynucleotide are allowed.

5

10

15

20

25

30

35

A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245 (1990).) The term "sequence" includes nucleotide and amino acid sequences. In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB search of a DNA sequence to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, and Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, and Window Size=500 or query sequence length in nucleotide bases, whichever is shorter. Preferred parameters employed to calculate percent identity and similarity of an amino acid alignment are: Matrix=PAM 150, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty=0.05, and Window Size=500 or query sequence length in amino acid residues, whichever is shorter.

As an illustration, a polynucleotide having a nucleotide sequence of at least 95% "identity" to a sequence contained in SEQ ID NO:X or the cDNA contained in the deposited clone, means that the polynucleotide is identical to a sequence contained in SEQ ID NO:X or the cDNA except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the total length (not just within a given 100 nucleotide stretch). In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to SEQ ID NO:X or the deposited clone, up to 5% of the nucleotides in the sequence contained in SEQ ID NO:X or the cDNA can be deleted, inserted, or substituted with other nucleotides. These changes may occur anywhere throughout the polynucleotide.

Further embodiments of the present invention include polynucleotides having at least 85% identity, more preferably at least 90% identity, and most preferably at least 95%, 96%, 97%, 98% or 99% identity to a sequence contained in SEQ ID NO:X or the cDNA contained in the deposited clone. Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the polynucleotides having at least 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity

5

10

15

20

25

30

35

will encode a polypeptide identical to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone.

PCT/US98/04493

Similarly, by a polypeptide having an amino acid sequence having at least, for example, 95% "identity" to a reference polypeptide, is intended that the amino acid sequence of the polypeptide is identical to the reference polypeptide except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the total length of the reference polypeptide. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

Further embodiments of the present invention include polypeptides having at least 80% identity, more preferably at least 85% identity, more preferably at least 90% identity, and most preferably at least 95%, 96%, 97%, 98% or 99% identity to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone. Preferably, the above polypeptides should exhibit at least one biological activity of the protein.

In a preferred embodiment, polypeptides of the present invention include polypeptides having at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98%, or 99% similarity to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone.

The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).

Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an

10

15

20

25

30

35

organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988 (1993), reported variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)

Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.

Thus, the invention further includes polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make

10

15

20

25

30

35

phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification. Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic

PCT/US98/04493

Polynucleotide and Polypeptide Fragments

Drug Carrier Systems 10:307-377 (1993).)

5

10

15

20

25

30

35

In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence contained in the deposited clone or shown in SEQ ID NO:X. The short nucleotide fragments are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in the deposited clone or the nucleotide sequence shown in SEQ ID NO:X. These nucleotide fragments are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred.

Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments having a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, and 701 to the end of SEQ ID NO:X or the cDNA contained in the deposited clone. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has biological activity.

In the present invention, a "polypeptide fragment" refers to a short amino acid sequence contained in SEQ ID NO:Y or encoded by the cDNA contained in the deposited clone. Protein fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, and 161 to the end of the coding region. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about"

10

15

20

25

30

35

175

includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.

Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotide fragments encoding these polypeptide fragments are also preferred.

Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.

Polypeptide fragments of SEQ ID NO:Y falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotide fragments encoding these domains are also contemplated.

Other preferred fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

Epitopes & Antibodies

In the present invention, "epitopes" refer to polypeptide fragments having antigenic or immunogenic activity in an animal, especially in a human. A preferred embodiment of the present invention relates to a polypeptide fragment comprising an epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998- 4002 (1983).)

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

176

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe, J. G. et al., Science 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

Fusion Proteins

5

10

15

20

25

30

35

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, the polypeptides of the present invention can be used as targeting molecules once fused to other proteins.

5

10

15

20

25

30

35

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).)

Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In

preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).)

178

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the claimed invention.

5

10

15

20

25

30

35

Vectors, Host Cells, and Protein Production

The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS,

10

15

20

25

30

35

293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

10

15

20

25

30

35

Uses of the Polynucleotides

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each polynucleotide of the present invention can be used as a chromosome marker.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.

Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage

10

15

20

25

30

35

analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using polynucleotides of the present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques are effective in model systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease.

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the

present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

5

10

15

20

25

30

35

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences of the present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

10

15

20

25

30

35

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

Uses of the Polypeptides

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell. Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

In addition to assaying secreted protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131I, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20

10

15

20

25

30

35

millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).)

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide of the present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder.

Moreover, polypeptides of the present invention can be used to treat disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease. For example, administration of an antibody directed to a polypeptide of the present invention can bind and reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention could be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

Biological Activities

The polynucleotides and polypeptides of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules

10

15

20

25

30

35

may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides could be used to treat the associated disease.

Immune Activity

A polypeptide or polynucleotide of the present invention may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, a polynucleotide or polypeptide of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

A polynucleotide or polypeptide of the present invention may be useful in treating or detecting deficiencies or disorders of hematopoietic cells. A polypeptide or polynucleotide of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat those disorders associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

Moreover, a polypeptide or polynucleotide of the present invention could also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation). For example, by increasing hemostatic or thrombolytic activity, a polynucleotide or polypeptide of the present invention could be used to treat blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, a polynucleotide or polypeptide of the present invention that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment of heart attacks (infarction), strokes, or scarring.

A polynucleotide or polypeptide of the present invention may also be useful in treating or detecting autoimmune disorders. Many autoimmune disorders result from WO 98/39448 PCT/US98/04493

186

inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

5

10

15

20

25

30

35

Examples of autoimmune disorders that can be treated or detected by the present invention include, but are not limited to: Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by a polypeptide or polynucleotide of the present invention. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

A polynucleotide or polypeptide of the present invention may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.

Similarly, a polypeptide or polynucleotide of the present invention may also be used to modulate inflammation. For example, the polypeptide or polynucleotide may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)

10

15

20

25

30

35

Hyperproliferative Disorders

A polypeptide or polynucleotide can be used to treat or detect hyperproliferative disorders, including neoplasms. A polypeptide or polynucleotide of the present invention may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, a polypeptide or polynucleotide of the present invention may proliferate other cells which can inhibit the hyperproliferative disorder.

For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

Infectious Disease

A polypeptide or polynucleotide of the present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, the polypeptide or polynucleotide of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

WO 98/39448

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, 5 Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., 10 Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS), 15 pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

20 Similarly, bacterial or fungal agents that can cause disease or symptoms and that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, 25 Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter, Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, Salmonella, Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis, Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Pasteurellacea Infections (e.g., Actinobacillus, 30 Heamophilus, Pasteurella), Pseudomonas, Rickettsiaceae, Chlamydiaceae, Syphilis, and Staphylococcal. These bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related infections, Reiter's Disease, 35 respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria,

WO 98/39448 PCT/US98/04493

189

Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following families: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas. These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), Malaria, pregnancy complications, and toxoplasmosis. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Preferably, treatment using a polypeptide or polynucleotide of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

Regeneration

5

10

15

20

25

30

35

A polynucleotide or polypeptide of the present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac), vascular (including vascular endothelium), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

Moreover, a polynucleotide or polypeptide of the present invention may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. A polynucleotide or polypeptide of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using a polynucleotide or polypeptide of the present invention to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotide or polypeptide of the present invention.

20

25

30

35

5

10

15

Chemotaxis

A polynucleotide or polypeptide of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

A polynucleotide or polypeptide of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

It is also contemplated that a polynucleotide or polypeptide of the present invention may inhibit chemotactic activity. These molecules could also be used to treat

10

15

20

25

30

35

disorders. Thus, a polynucleotide or polypeptide of the present invention could be used as an inhibitor of chemotaxis.

Binding Activity

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The

antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

15

20

25

30

35

10

5

Other Activities

A polypeptide or polynucleotide of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

A polypeptide or polynucleotide of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide or polynucleotide of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

A polypeptide or polynucleotide of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

A polypeptide or polynucleotide of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

10

15

20

25

30

35

Other Preferred Embodiments

Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Start Codon and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.

10

15

20

25

30

35

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

194

Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of the complete open reading frame sequence encoded by said human cDNA clone.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining

WO 98/39448 PCT/US98/04493

195

whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

5

10

15

20

25

30

35

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

15

20

25

30

35

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.

Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of positions beginning with the residue at about the position of the First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid of the Open Reading Frame as set forth for SEQ ID NO:Y in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the

10

15

20

25

30

35

amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an

10

15

20

25

30

35

amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least

10

15

20

25

30

35

90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

PCT/US98/04493

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y beginning with the residue at the position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y wherein Y is an integer set forth in Table 1 and said position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The isolated polypeptide produced by this method is also preferred.

Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated

10

15

30

35

polypeptide, polynucleotide, or antibody of the claimed invention effective to increase the level of said protein activity in said individual.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

Examples

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. Table 1 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 1 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

	Vector Used to Construct Library	Corresponding Deposited Plasmid
	Lambda Zap	pBluescript (pBS)
	Uni-Zap XR	pBluescript (pBS)
20	Zap Express	pBK
	lafmid BA	plafmid BA
	pSport1	pSport1
	pCMVSport 2.0	pCMVSport 2.0
	pCMVSport 3.0	pCMVSport 3.0
25	pCR [®] 2.1	pCR [®] 2.1

pCR®2.1

Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap

XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos.

5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res.

16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res.

17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS. The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which

are the first sites on each respective end of the linker). "+" or "-" refer to the orientation

10

15

20

25

of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 1, as well as the corresponding plasmid vector sequences designated above.

The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.

Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported.
 The oligonucleotide is labeled, for instance, with ³²P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection

WO 98/39448 PCT/US98/04493

202

agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

5

10

15

20

25

30

35

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to

remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

10

15

20

25

30

35

5

Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)

Example 3: Tissue Distribution of Polypeptide

Tissue distribution of mRNA expression of polynucleotides of the present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P³² using the rediprimeTM DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPIN-100TM column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.

Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (IM) (Clontech) are examined with the labeled probe using ExpressHybTM hybridization solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70°C overnight, and the films developed according to standard procedures.

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of

10

15

20

25

30

35

conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

Example 5: Bacterial Expression of a Polypeptide

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^I). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic

10

15

20

25

30

35

agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., supra). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., supra).

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number XXXXXX.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

DNA can be inserted into the pHEa by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

10

15

20

25

30

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

Example 6: Purification of a Polypeptide from an Inclusion Body

The following alternative method can be used to purify a polypeptide expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 μ m membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a

10

15

20

25

30

stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription,

35 translation, secretion and the like, including a signal peptide and an in-frame AUG as

10

15

20

25

30

35

required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. E. coli HB101 or other suitable E. coli hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGold™ baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGold™ virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

10

15

20

30

35

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μ Ci of ³⁵S-methionine and 5 μ Ci ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

25 Example 8: Expression of a Polypeptide in Mammalian Cells

The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden),

WO 98/39448

5

10

15

20

25

30

35

210

PCT/US98/04493

pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No. 209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the vector does not need a second signal peptide. Alternatively, if the

naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

211

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five µg of the expression plasmid pC6 is cotransfected with 0.5 µg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 µM, 2 µM, 5 µM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 -200 µM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

Example 9: Protein Fusions

5

10

15

20

25

30

35

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having

10

15

20

25

30

35

more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (Accession No.209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

Human IgG Fc region:

10

15

20

25

30

35

Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., Nature 256:495 (1975); Köhler et al., Eur. J. Immunol. 6:511 (1976); Köhler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 μg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody

10

15

whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

20

25

30

35

Example 11: Production Of Secreted Protein For High-Throughput Screening Assays

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

WO 98/39448 PCT/US98/04493

215

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37°C for 6 hours.

15

20

25

30

35

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or CHO-5 media (see below) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37°C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 13-20.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

HGS-CHO-5 medium formulation:

Inorganic Salts

CaCl2 (anhyd)	116.6 mg/L
CuSO ₄ -5H ₂ O	0.00130
Fe(NO ₃) ₃ -9H ₂ O	0.050
FeSO ₄ -7H ₂ O	0.417
KCI	311.80
MgCl ₂	28.64
MgSO ₄	48.84
NaCl	6995.50
NaHCO ₃	2400.0
NaH ₂ PO ₄ -H ₂ 0	62.50
Na ₂ HPO4	71.02
ZnSO ₄ -7H ₂ O	.4320

5 Lipids

Arachidonic Acid	.002 mg/L
Cholesterol	1.022
DL-alpha-	.070
Tocopherol-Acetate	
Linoleic Acid	0.0520
Linolenic Acid	0.010
Myristic Acid	0.010
Oleic Acid	0.010
Palmitric Acid	0.010
Palmitic Acid	0.010
Pluronic F-68	100
Stearic Acid	0.010
Tween 80	2.20

Carbon Source

D-Glucose	1551 1
D-Glucose	1 4551 mg/L
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Amino Acids

L- Alanine	130.85 mg/ml
L-Arginine-HCL	147.50
L-Asparagine-H ₂ 0	7.50
L-Aspartic Acid	6.65
L-Cystine-2HCL- H ₂ 0	29.56
L-Cystine-2HCL	31.29
L-Glutamic Acid	7.35
L-Glutamine	365.0
Glycine	18.75
L-Histidine-HCL-	52.48

H ₂ 0	
L-Isoleucine	106.97
L-Leucine	111.45
L-Lysine HCL	163.75
L-Methionine	32.34
L-Phenylalainine	68.48
L-Proline	40.0
L-Serine	26.25
L-Threonine	101.05
L-Tryptophan	19.22
L-Tryrosine-2Na-	91.79
2H ₂ 0	
L-Valine	99.65

Vitamins

Biotin	0.0035 mg/L
D-Ca Pantothenate	3.24
Choline Chloride	11.78
Folic Acid	4.65
i-Inositol	15.60
Niacinamide	3.02
Pyridoxal HCL	3.00
Pyridoxine HCL	0.031
Riboflavin	0.319
Thiamine HCL	3.17
Thymidine	0.365
Vitamin B ₁₂	0.680

Other Components

HEPES Buffer	25 mM
Na Hypoxanthine	2.39 mg/L
Lipoic Acid	0.105
Sodium Putrescine-2HCL	0.081
Sodium Pyruvate	55.0
Sodium Selenite	0.0067
Ethanolamine	20uM
Ferric Citrate	0.122
Methyl-B-Cyclodextrin complexed with Linoleic Acid	41.70
Methyl-B-Cyclodextrin complexed with Oleic Acid	33.33
Methyl-B-Cyclodextrin complexed with Retinal Acetate	10

10

15

20

25

30

35

PCT/US98/04493

Example 12: Construction of GAS Reporter Construct

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

218

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proxial region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:2)).

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

			<u>JAKs</u>			<u>STATS</u>	GAS(elements) or
	<u>ISRE</u>						
	<u>Ligand</u>	tyk2	<u>Jak l</u>	<u>Jak2</u>	<u>Jak3</u>		
5	IFN family						
J	IFN-a/B	+	_		_	1,2,3	ISRE
	IFN-g	Ŧ	+	- +	_	1,2,5	GAS
	(IRF1>Lys6>IFP)		т	T		1	UAS
	II-10	+	?	?	-	1,3	
10		•	•	•		1,5	
	gp130 family						
	IL-6 (Pleiotrohic)	+	+	+	?	1,3	GAS
	(IRF1>Lys6>IFP)					,	
	Il-11(Pleiotrohic)	?	+	?	?	1,3	
15	OnM(Pleiotrohic)	?	+	+	?	1,3	
	LIF(Pleiotrohic)	?	+	+	?	1,3	
	CNTF(Pleiotrohic)	-/+	+	+	?	1,3	
	G-CSF(Pleiotrohic)	?	+	?	?	1,3	•
••	IL-12(Pleiotrohic)	+	-	+	+	1,3	
20	0.6 "						
	g-C family						~ . ~
	IL-2 (lymphocytes)	-	+	-	+	1,3,5	GAS
	IL-4 (lymph/myeloid)	-	+	-	+	6	GAS (IRF1 = IFP)
25	>>Ly6)(IgH) IL-7 (lymphocytes)					5	CAC
23	IL-9 (lymphocytes)	-	+ +	-	+	5 5	GAS
	IL-13 (lymphocytes)	-	+	?	+ ?	6	GAS GAS
	IL-15 (lymphocyte)	2	+	; ?	: +	5	GAS
	15 15	•	7	•	т	3	UAS
30	gp140 family						
	IL-3 (myeloid)	-	-	+	-	5	GAS
	(IRF1>IFP>>Ly6)						
	IL-5 (myeloid)	-	-	+	-	5	GAS
	GM-CSF (myeloid)	-	-	+	-	5	GAS
35							
	Growth hormone fami						
	GH	?	-	+	-	5	
	PRL	?	+/-	+	-	1,3,5	
40	EPO	?	-	+	-	5	GAS(B-
40	CAS>IRF1=IFP>>Ly6	,					
	Receptor Tyrosine Kinases						
	EGF	?	+	+	_	1,3	GAS (IRF1)
	— -	•	•	•		1,5	0/10 (IICI 1)
45	PDGF	?	+	+	_	1,3	
	CSF-1	?	+	+	-	1,3	GAS (not IRF1)
						•	- \

10

15

20

To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is: 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGA

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

25

30

35

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a

10

15

20

25

30

35

neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using SalI and NotI, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 13-14.

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

Example 13: High-Throughput Screening Assay for T-cell Activity.

The following protocol is used to assess T-cell activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI

10

15

20

25

30

+ 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies) with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

During the incubation period, count cell concentration, spin down the required number of cells (10⁷ per transfection), and resuspend in OPTI-MEM to a final concentration of 10⁷ cells/ml. Then add 1ml of 1 x 10⁷ cells in OPTI-MEM to T25 flask and incubate at 37°C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing a polypeptide as produced by the protocol described in Example 11.

On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20°C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4°C and serve as a source of material for repeating the assay on a specific well if desired.

As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

10

15

20

25

30

Example 14: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest 2x10e⁷ U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37°C for 45 min.

Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37°C for 36 hr.

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

These cells are tested by harvesting $1x10^8$ cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of $5x10^5$ cells/ml. Plate 200 ul cells per well in the 96-well plate (or $1x10^5$ cells/well).

Add 50 ul of the supernatant prepared by the protocol described in Example 11. Incubate at 37°C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 17.

10

15

20

25

30

35

Example 15: High-Throughput Screening Assay Identifying Neuronal Activity.

When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed.

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells can be assessed.

The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

- 5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6)
- 5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO:7)

Using the GAS:SEAP/Neo vector produced in Example 12, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes XhoI/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

PCT/US98/04493

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

225

To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as $5x10^5$ cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to 1×10^5 cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.

20

25

30

5

10

15

Example 16: High-Throughput Screening Assay for T-cell Activity

NF-κB (Nuclear Factor κB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-κB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF-κB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

In non-stimulated conditions, NF- κB is retained in the cytoplasm with I- κB (Inhibitor κB). However, upon stimulation, I- κB is phosphorylated and degraded, causing NF- κB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- κB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

10

30

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-κB promoter element are used to screen the supernatants produced in Example 11. Activators or inhibitors of NF-kB would be useful in treating diseases. For example, inhibitors of NF-κB could be used to treat those diseases related to the acute or chronic activation of NF-kB, such as rheumatoid arthritis.

To construct a vector containing the NF-κB promoter element, a PCR based strategy is employed. The upstream primer contains four tandem copies of the NF-κB binding site (GGGGACTTTCCC) (SEQ ID NO:8), 18 bp of sequence complementary to the 5' end of the SV40 early promoter sequence, and is flanked with an XhoI site: 5':GCGGCCTCGAGGGGACTTTCCCGGGGACTTTCCGGGGACTTTCCGGGGACTTTCCATCCTGCCATCTCAATTAG:3' (SEQ ID NO:9)

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

- PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene) Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:
- 5':CTCGAGGGGACTTTCCCGGGGACTTTCCGGGACTTTCC
 ATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCA
 TCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACT
 AATTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTC
 CAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTTGCAAAAAGCTT:
 3' (SEQ ID NO:10)

Next, replace the SV40 minimal promoter element present in the pSEAP2-promoter plasmid (Clontech) with this NF-kB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

In order to generate stable mammalian cell lines, the NF-kB/SV40/SEAP cassette is removed from the above NF-kB/SEAP vector using restriction enzymes Sall and Notl, and inserted into a vector containing neomycin resistance. Particularly, the

10

15

20

25

NF-κB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with SalI and NotI.

Once NF-kB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 17: Assay for SEAP Activity

As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 μ l of 2.5x dilution buffer into Optiplates containing 35 μ l of a supernatant. Seal the plates with a plastic sealer and incubate at 65°C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 μ l Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 μ l Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Buffer Formulation:

# of plates	Rxn buffer diluent (ml)	CSPD (mi)
10	60	3
11	65	3.25
12	70	3.5
13	75	3.75
14	80	4

		228
1.5		
15	85	4.25
16	90	4.5
17	95	4.75
18	100	5
19	105	5.25
20	110	5.5
21	115	5.75
22	120	6
23	125	6.25
24	130	6.5
25	135	6.75
26	140	7
27	145	7.25
28	150	7.5
29	155	7.75
30	160	8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.5
37	195	9.75
38	200	10
39	205	10.25
40	210	10.5
41	215	10.75
42	220	11
43	225	11.25
44	230	11.5
45	235	11.75
46	240	12
47	245	12.25
48	250	12.5
49	255	12.75
50	260	13

15

20

25

30

35

Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-3, used here.

For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO_2 incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

A stock solution of 1 mg/ml fluo-3 is made in 10% pluronic acid DMSO. To load the cells with fluo-3, 50 ul of 12 ug/ml fluo-3 is added to each well. The plate is incubated at 37°C in a CO₂ incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x10⁶ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-3 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37°C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1x10⁶ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.

For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-3. The supernatant is added to the well, and a change in fluorescence is detected.

To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular

10

15

20

25

30

35

signaling even which has resulted in an increase in the intracellular Ca++ concentration.

Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with PBS and stored at 4°C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are

used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

5

10

15

20

25

30

35

To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation. the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4°C at 16,000 x g.

Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.

Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg2+ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂ 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30°C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37°C for 20 min. This

WO 98/39448 PCT/US98/04493

allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37°C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity

5

10

15

20

25

30

35

As a potential alternative and/or compliment to the assay of protein tyrosine kinase activity described in Example 19, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (lug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4° C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.

10

15

20

25

30

35

5

Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky, D., et al., Science 252:706 (1991).

PCR products is then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies). The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

PCR products is cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals is identified by mutations not present in unaffected individuals.

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson, Cg. et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera

5 (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

15

20

25

30

35

For example, antibody-sandwich ELISAs are used to detect soluble polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10. The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.

Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on

10

15

20

25

30

35

the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

Example 23: Formulating a Polypeptide

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1 µg/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 µg/kg/hour to about 50 µg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric

acid (EP 133,988). Sustained-release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

5

10

15

20

25

30

35

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of

10

15

20

25

30

about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

Example 24: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 23.

Example 25: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 23.

10

15

20

25

30

35

approximately one week.

5

Example 26: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin, is added. The flasks are then incubated at 37°C for

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to

transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

5

10

15

20

25

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is being produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference.

(1) GENERAL INFORMATION:

5 (i) APPLICANT: Human Genome Sciences, Inc. et al. (ii) TITLE OF INVENTION: 186 Human Secreted Proteins (iii) NUMBER OF SEQUENCES: 644 10 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Human Genome Sciences, Inc. 15 (B) STREET: 9410 Key West Avenue (C) CITY: Rockville (D) STATE: Maryland 20 (E) COUNTRY: USA (F) ZIP: 20850 25 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage 30 (B) COMPUTER: HP Vectra 486/33 (C) OPERATING SYSTEM: MSDOS version 6.2 35 (D) SOFTWARE: ASCII Text (vi) CURRENT APPLICATION DATA: 40 (A) APPLICATION NUMBER: (B) FILING DATE: March 6, 1998 45 (C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(B) FILING DATE:

(A) APPLICATION NUMBER:

55

WO 98/39448 PCT/US98/04493 241

	(viii) ATTORNEY/AGENT INFORMATION:	
5	(A) NAME: A. Anders Brookes, Esq.	
J	(B) REGISTRATION NUMBER: 36,373	
	(C) REFERENCE/DOCKET NUMBER: PS002.PCT	
10		
	(vi) TELECOMMUNICATION INFORMATION:	
1.5	(A) TELEPHONE: (301) 309-8504	
15	(B) TELEFAX: (301) 309-8439	
20	(2) INFORMATION FOR SEQ ID NO: 1:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 733 base pairs (B) TYPE: nucleic acid	
23	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	GGGATCCGGA GCCCAAATCT TCTGACAAAA CTCACACATG CCCACCGTGC CCAGCACCTG	60
	AATTCGAGGG TGCACCGTCA GTCTTCCTCT TCCCCCCAAA ACCCAAGGAC ACCCTCATGA	120
35	TCTCCCGGAC TCCTGAGGTC ACATGCGTGG TGGTGGACGT AAGCCACGAA GACCCTGAGG	180
	TCAAGTTCAA CTGGTACGTG GACGGCGTGG AGGTGCATAA TGCCAAGACA AAGCCGCGGG	240
40	AGGAGCAGTA CAACAGCACG TACCGTGTGG TCAGCGTCCTT CACCGTCCTG CACCAGGACT	300
	GGCTGAATGG CAAGGAGTAC AAGTGCAAGG TCTCCAACAA AGCCCTCCCA ACCCCCATCG	360
	AGAAAACCAT CTCCAAAGCC AAAGGGCAGC CCCGAGAACC ACAGGTGTAC ACCCTGCCCC	420
45	CATCCCGGGA TGAGCTGACC AAGAACCAGG TCAGCCTGAC CTGCCTGGTC AAAGGCTTCT	480
	ATCCAAGCGA CATCGCCGTG GAGTGGGAGA GCAATGGGCA GCCGGAGAAC AACTACAAGA	540
50	CCACGCCTCC CGTGCTGGAC TCCGACGGCT CCTTCTTCCT CTACAGCAAG CTCACCGTGG	600
_	ACAAGAGCAG GTGGCAGCAG GGGAACGTCT TCTCATGCTC CGTGATGCAT GAGGCTCTGC	660
	ACAACCACTA CACGCAGAAG AGCCTCTCCC TGTCTCCGGG TAAATGAGTG CGACGGCCGC	720
55	GACTYTAGAG GAT	733

	(2) INFORMATION FOR SEQ ID NO: 2:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: Trp Ser Xaa Trp Ser	
	1 5	
15		
	(2) INFORMATION FOR SEQ ID NO: 3:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 86 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
	GCGCCTCGAG ATTTCCCCGA AATCTAGATT TCCCCGAAAT GATTTCCCCG AAATGATTTC	
		60
30	CCCGAAATAT CTGCCATCTC AATTAG	86
35	(2) INFORMATION FOR SEQ ID NO: 4:	
33	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs	
	(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
45	GCGGCAAGCT TTTTGCAAAG CCTAGGC	27
50	(2) INFORMATION FOR SEQ ID NO: 5:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 271 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
60	CTCGAGATTT CCCCGAAATC TAGATTTCCC CGAAATGATT TCCCCGAAAT GATTTCCCCG	60

	AAATATCTGC CATCTCAATT AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGCCCATCCC	120
	GCCCCTAACT CCGCCCAGTT CCGCCCCATTC TCCGCCCCAT GGCTGACTAA TTTTTTTTAT	180
5	TTATGCAGAG GCCGAGGCCG CCTCGGCCTC TGAGCTATTC CAGAAGTAGT GAGGAGGCTT	240
	TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT T	271
10		
10		
	(2) INFORMATION FOR SEQ ID NO: 6:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
	GCGCTCGAGG GATGACAGCG ATAGAACCCC GG	32
25		
	(2) INFORMATION FOR SEQ ID NO: 7:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	GCGAAGCTTC GCGACTCCCC GGATCCGCCT C	31
40		31
	(2) INFORMATION FOR SEQ ID NO: 8:	
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 12 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	GGGGACTTTC CC	12
55		
	(3)	
	(2) INFORMATION FOR SEQ ID NO: 9:	
60	(i) SEQUENCE CHARACTERISTICS:	

	(A) LENGTH: 73 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
5	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	GCGGCCTCGA GGGGACTTTC CCGGGGACTT TCCGGGGACT TTCCATCCTG	60
10	CCATCTCAAT TAG	73
15	(2) INFORMATION FOR SEQ ID NO: 10:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 256 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
25	CTCGAGGGA CTTTCCCGGG GACTTTCCGG GGACTTTCCG GGACTTTCCA TCTGCCATCT	60
23		60
	CAATTAGTCA GCAACCATAG TCCCGCCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC	120
30	CAGTTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTTTT TTTATTTATG CAGAGGCCGA	180
	GGCCGCCTCG GCCTCTGAGC TATTCCAGAA GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG	240
	CTTTIGCAAA AAGCTT	256
35		
	(2) INFORMATION FOR SEQ ID NO: 11:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 582 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
43	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
	GGCACGAGGT AATTTCTACC AGAAATTTCC AGAGCATTAT GTAGGTAGAA AAAAATGCAA	60
50	GCAAGCTGTT AAAGATCTTG GATCCCATTA TATAGTATGT ATAGCTGAAA TCTGTAATTC	120
	AATCACTITT TCTCTTTTAT CCTCTAACCA AAAAATTGTT TAATTTTGCA TCCCAAATGT	180
	TTTTAATCTT TGTATATTTT TTAAAAATCC TTTTCTCCTC ATCATTGCCT TTTTTGTGGT	240
55	TGTAAATAGA CTTACTTGCA CTTTGAAGAT GAGTTACTCC TTGTCATCTT ACAAATATGT	300
60	GATATGGTAA TTTTCATAAC AGATGTCAGT TTTGAACCAA GAATTGGTGA TTTGTTTATA	360
UU.	AGAAAAAAC TOGCTTCATT TCTGTGAAAT TGCTCTTTGA AAATTTCTTT TTACACGTGT	420

	AAGCCAACTG AGATACCGTG ATGGTGTTGA TITCTTTCAA TGATGCTTAC CATCTATTTT	480
5	AGCCACTGAG CCTTTTATTA TTTGTCTATT TGTAAAGTTT ATTTGTCTTA ACTCATTTAA	540
_	талататаст стетатстот тестовалала алалалалал да	582
10	(2) INFORMATION FOR SEQ ID NO: 12:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 465 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
20	CTTTGGGGGT GAGGCCGAGC TGCTGCGGGG CTTCGTCGCC GGCCAGGACA CAGCTACTCG	60
	CACGGCGGGG GCGCCTGGCT ATGATGTTCC TCACCCAGGG CGGGCCTCTG CCCTCTACTC	120
25	GTGCCAGGCC CACTTGCCAG GCAGGAGCCC TCCCCAAGCC TTCAGGGCTG CTCGGAGTCA	180
	CCTGTTGGAA TGGACTAAAA GGACCCTTGT GTGGGAACAG GTGCTCCCCA AACACCCTGC	240
30	TGCTGGCTGC CAGGCAGGCC CTCTGGAAGG GAAGGGGCAG GACTCATCAG GACCTCCCTG	300
30	GACCCCTGCA GGGCAGGCAG CTTGGGCCCG AGCCCAAGCA TTTGGCTCTG CTGCCCCCAA	360
	GGGGACAGGA AGCCTCTTGG GCCTCTTCCC TTCCTGGACA AGGCCCCCTG CCTTTGCCTC	420
35	ACATAAACTG TACAGTATTT TCATTAAAAG CCTCTTTCAT AAAAA	465
40	(2) INFORMATION FOR SEQ ID NO: 13:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 474 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
50	ATGCAATTCC TGCTCACAGC CTTTCTGTTG GTGCCACTTC TGGCTCTTTG TGATGTCCCC	60
	ATATCCCTAG GCTTCTCCCC CTCCTAGAAG GGCTTCTTGA TAGATTAGAA AATAAGAATG	120
55	AGTGACATTT CCTATGTGCA TATAAGAAGG AGCCACAAGA CATGTCTTTT AAATAAAAGG	180
	ACAGTGTCCA TCCTTTTAGC TGCCGAATAG AACCTTGGTC TCATCCTCCT GGAGCTAGGC	240
	CTTTAAAACA GCTTCTGTGT TTCTCATTTG TCTCAGTGTT TTGCCAGGGT TTTATCGGAA	300
60	AGATAATGTT CCGTTTAAAA TATTTCCTAA TGAGGCCGGG CGTGGTGGCT CACGCCTGTA	360

	ACCCTAGCAM TTGGGGGCTG AGCGGGTGGA TCACGAGGTC AGGAGATCGA GACCATCCTG	420
5	GSTAACATGG TGAAACCCCG TCTCTACTAA AAATACAAAA AAAAAAAAAA	474
10	(2) INFORMATION FOR SEQ ID NO: 14:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 314 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
20	TTATGTTGGG GAGCAAGACC TGATAGCCAG CCTTTACATG GGAGTATAAT TCTGTCCTCC	60
	ATCTCATAAG CCCCAGTACC TGAGCCAGAA TGATTATAAC CAACCACACT GTCTCTTTAT	120
	CATGGATGGC TITAGCAGTA GGITATTITC ATCATTGCCA TITGTAGCTC TACAGTGGTT	180
25	TATAGTAATT TCTCATCTTT TAAGTCTCTC CCTCAGTGCC TGTTGTTATC AAACTCATTG	240
	CTCTCTCANG CAGTTGAGCT CTGCATTCTC CCYTATGGGG GAGAGCTGTG TTGGAGAGAG	300
30	AGAATATNAC TTCC	314
	(2) INFORMATION FOR SEQ ID NO: 15:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 613 base pairs	
35 40	(i) SEQUENCE CHARACTERISTICS:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 613 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 613 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 613 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	60 120
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 613 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15: CTCATATTGC CGTCTGGCTA AAAGTGAACA TGCCATTGAT CAATCTGCTT TTATTATATT	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 613 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15: CTCATATTGC CGTCTGGCTA AAAGTGAACA TGCCATTGAT CAATCTGCTT TTATTATATT ATGTTCCTAA TGGTGGCAAG CAAGACAAGA AGTAGAAAGA AAGATGGTGT AAGCTCAAGA	120
40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 613 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15: CTCATATTGC CGTCTGGCTA AAAGTGAACA TGCCATTGAT CAATCTGCTT TTATTATATT ATGTTCCTAA TGGTGGCAAG CAAGACAAGA AGTAGAAAGA AAGATGGTGT AAGCTCAAGA ACCCACTAAA TCTATCCTAT GGCCTGGGTT CACCCAGCCT GCTTTGTGGA TTTTGTCTCA	120 180
40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 613 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15: CTCATATTGC CGTCTGGCTA AAAGTGAACA TGCCATTGAT CAATCTGCTT TTATTATATT ATGTTCCTAA TGGTGGCAAG CAAGACAAGA AGTAGAAAGA AAGATGGTGT AAGCTCAAGA ACCCACTAAAA TCTATCCTAT GGCCTGGGTT CACCCAGCCT GCTTTGTGGA TTTTGTCTCA CTATAACAGA GCTCCCAAGG AGACTGCAGA GTCAGCTCCC TTAAGCACTG TAACTAAAGC	120 180 240
440 445 550	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 613 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15: CTCATATTGC CGTCTGGCTA AAAGTGAACA TGCCATTGAT CAATCTGCTT TTATTATATT ATGTTCCTAA TGGTGGCAAG CAAGACAAGA AGTAGAAAGA AAGATGGTGT AAGCTCAAGA ACCCACTAAA TCTATCCTAT GGCCTGGGTT CACCCAGCCT GCTTTGTGGA TTTTGTCTCA CTATAACAGA GCTCCCAAGG AGACTGCAGA GTCAGCTCCC TTAAGCACTG TAACTAAAGC CTAACTCTTC CGTTCCACCC AACAATGTYC CCAGCTCATC CTCTTTCCCR AAGTCCCCTT	120 180 240 300
440 445 550	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 613 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15: CTCATATTGC CGTCTGGCTA AAAGTGAACA TGCCATTGAT CAATCTGCTT TTATTATATT ATGTTCCTAA TGGTGGCAAG CAAGACAAGA AGTAGAAAGA AAGATGGTGT AAGCTCAAGA ACCCACTAAA TCTATCCTAT GGCCTGGGTT CACCCAGCCT GCTTTGTGGA TTTTGTCTCA CTATAACAGA GCTCCCAAGG AGACTGCAGA GTCAGCTCCC TTAAGCACTG TAACTAAAGC CTAACTCTTC CGTTCCACCC AACAATGTYC CCAGCTCATC CTCTTTCCCR AAGTCCCCTT TCTGCCCCCAG ATGCGAATTG CATTTAACTA ATCCTCAAGT GAAATGTCCA CACAGRATTC	120 180 240 300 360

	ATTIGGCTAGA AGTTGATCCT CCTGTAACTT TTCTGAGTTC TTTACATTTA CTCGTGAAAC	600
5	CCAAATATGC CAC	613
10	(2) INFORMATION FOR SEQ ID NO: 16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 356 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
20	CCCCCCCAT TGAACCCTGG GCTGTGAAAG TTTTTGCCTG TGTGGGTCGT TCTGTGTGGC	60
	GCCTGGTGTG TGGKTCCCAA CTCCTGTTGC AAAGTGGCAG CAGCCAATCA TGAAGCGCCC	120
	TTATTTTTAG TTGCAGATGA CCAGGTCTCC CCCCCACAGC CTCTGTCTGG TCCCTCATTG	180
25	GTGAGTGGTC TGCCTGCCCA AGGAGCCTGA TTGGTGGGAA ATGGCATCAT CTAATATGAT	240
	GGGAAGGCAT TIGGTCCTGG TTATGTTTAT TACAACATCA TIGCACTCTG GGACTCCAGT	300
30	CCCTGAAAAC GTAATTIGTG GTGTTACCAA AGGACCACAG GGGAAAAAA AAAAAA	356
35	(2) INFORMATION FOR SEQ ID NO: 17:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 414 base pairs	
40	(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
45	GAAACTANAT CCCGGGGCTT TTAACNGGTA CTTGGGAAAT AAGTATTGGG TAATCACTAA	60
.5	GNGGACATTG ACTGCACCAA ACCAAAGCTA TAGAAAGAAA TGATTGACTT TTTAAAATAT	120
	ATTCACATTA ACTGTCCTAG GATACTTCTC TTGAGGCTTT GGAAAACTTC TTCCTTGAAA	180
50	TTTGCATATC CACTCCAGTT CTGTCACCAA AGATTTTAAT CTTCAGATCG CAATTTCCTC	240
	TCTCCCAGAA AAAAGTACTA CAACAGGCTC AAGGGATATG CTTTGGTGGT CAAGGGATTA	300
55	CACTATGGTT TTCCTTCTGT TCACAATGGT ATTTACAGGA GACCTTGTCA TCAGAGGACG	360
<i>33</i>	TACTGAACTA TCTTTATGAC TTTGGATTTG ATCAGAGGTT TAAAAAAAAA AAAA	414

WO 98/39448 PCT/US98/04493

	(2) INFORMATION FOR SEQ ID NO: 18:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 469 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
	AATCACCATT GCAATACAAA TGATCTGCCT GGTGAATGYT GAGCTGTACC CCACATTCGT	60
	CAGGAACYTC GGAGTGATGG TGTGTTCCTC CCTGTGTGAC ATAGGTGGGA TAATCACCCC	120
15	CTTCATAGTC TTCAGGCTGA GGGAGGTCTG GCAAGCCTTG CCCCTCATTT TGTTTGCGGT	180
	GTTGGGCCTG CTTGCCGCGG GAGTGACGCT ACTTCTTCCA GAGACCAAGG GGGTCGCTTT	240
20	GCCAGAGACC ATGAAGGACG CCGAGAACCT TGGGAGAAAA GCAAAGCCCA AAGAAAACAC	300
	GATTTACCTT AAGGTCCAAA CCTCAGAACC CTCGGGCACC TGAGAGAGAT GTTTTGCGGC	360
	GATGTCGTGT TGGAGGGATG AAGATGGAGT TATCCTCTGC AGAAATTCCT AGACGCCTTC	420
25	ACTICICIGI ATTCTTCCTC ATACTTGCCT ACCCCCAAAT TAATATCAG	469
35	(2) INFORMATION FOR SEQ ID NO: 19: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 550 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
40	CCCCCCCCC CCCCACACT TTCAGGAGTC ACCCCCCAGC ATTTGGGGTT GGGTTGGCCC	60
	TACTCCAGCC TGGAGCTCCC TGAGGGAGCC TGCACTCCCT GCTCCCAATC CCCGCTACTG	120
45	GTGCAGGGAT GCAGCCTGGA GCTGGCGTCC TTGTTCTGGG CCTGCTGCTG CCGCCACCCC	180
	AGAGCCCCAG CCTGTCCTGA ATTGACATCA GTGCTTCCCT GAACTGCCTC CCCCACCCCT	240
	GGGCATTATC CCAGGAAACT TTATGTTTTC TAGAAGCTAA GCAGCTGCTG GGACTCAGGG	300
50	ACTOGTOCAG GTAGGCTGAG TGGCAGCTCA GTCCTAGAAG GTCTCTGAAG ATCTGGACTG	360
	AGGACCTTGC TACTCCCCAA GCCAGAGCCC ATCAGCCAGG CCTGCTGTGA GCCACCTGCC	420
55	TGTGGAGTGC TGAGCTCAAC CAAAGGCTGG CAAGCTCTGG GCCTCATTTA AGGGATTCTG	480
	ATGAGCCGAT GGGCCCTGGA GGCAGCCCAT TAAAGCATCT GGCTCGTTTT TGGAAAAAA	540
50	АААААААА	550
JU		

	(2) INFORMATION FOR SEQ ID NO: 20:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 741 base pairs (B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
	TCTTGAAGAG TGTACAGTAC AGGATTATTA TAATGAAAGT TTATATCAAC AGGGTTTCGT	60
15	TGGCTCTGCA TATATTATAA GCAAAAGAGA TTGGTAAAGT GCCACAGTAT TCCAGATAAC	120
	TTTTCAGTTG CGGCCTTTCT TCTCGTTCTT TAATTTGAAA CCTAGATACA TGCAGTAAAA	180
20	ACTAGGAGAA TGACTTTTAC CCTTGGGGAC AGCCAAGTTT TGTTGATAAA CCTATTTCCT	240
20	AGCATGCCTT CAGGAAGTTG TGCCAGACCC TAGATTGTGA AGGACCCACT GTTCTTCTGT	300
	TGTACGAGCT CCCTGAACCA TTGTTCAGAG GACCAATGTC ACATCGCTTC ATGGGCATGG	360
25	NCCATGGGAG CATCTGGGTG ATAYCTGTCT ACAGTATTGG CTCTTCTGCG AGGCTGATAC	420
	ACAAGGCCTC TCTTCCACAT GATCATTTGC AAACCTCCCC CAGCCCCTAC CATCCAATGT	480
20	GGAAGGAAAA CAAGAACTGC CTGAAGAAGA GTCCAAGCTA CAGATACACA GCGTGTGCAT	540
30	TECESCITETE ACCITECTEC TECEACITET STATECTEAS AGAINSTINES TEGATETITE	600
-	CTTAACCTCA GCTGACTTCC CTGTGAATGT CTAATGCTAG TTCAGGGCCT CCAGGCATTG	660
35	ATTIGTACAG TGGTAACTCC CAATGAGGCT TCTGTTATCA TTTGGTGTGC TTTTYTCTGTC	720
	ATTAAAAGAA ATGATTYTCC C	741
40		
	(2) INFORMATION FOR SEQ ID NO: 21:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 991 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
	GGCACGAGTC TCCCCTGGGG AAGTTTTTCT TTTTCAGGAG GGAGGAGGGC TTTCCCAGGT	60
55	AATGTGTCTA GAGTGTTGGG CAGAAAATCT GGGACCACAC CACACCAGTT CTCTCCTTAA	120
55	TCCACGTCAT TIGCCTTCTA TCCCAGCTAT GTTTCCAGTG TCCTCTGGGT GTTTCCAAGA	180
	GCAACAAGAA ATGAATAAAT CTCTGGTGAG TTGTTTATTT GTTCTTCACT TTGTTTTACA	240
60	CTGTATTTTC TGAGTTTATG GGTGTCTGTG AATTAAAAAG GAAAAGTACA AATTAAAAA	300

WO 98/39448 PCT/US98/04493 250

,

	ACTCAGGTTG AAGGAAATAT ACATAAATAA GATAAAGCTG ACCTGTAGAT ATAGCAGGTT	360
5	ATAAAGCTTA GAGTTGTCTA AGITGAGTGC AAATTTTCCT CTGATCTTTC TGATGCCGAA	420
	CAAAAAAGCA GTCATGTTTG TTATGTGATT GGAATGGAAC CCGAGAAGAG AGCATGCTGT	480
	GTTCTTGTGG GACAGGAAAG CTTGCGTGCA CCAAGTCTGA ACCACCACCT TCATGGTGAC	540
10	ATAGATTATG TGCTGGAACA TATTTCACAC CGGCCTGGCA GTAAACACTT GTAGTGTTGT	600
	GCAGTGGAAA CGGTCATCTT CCGCTAAAGC ACGGCGTGTT GTGCAGCGGA AATGGTCATC	660
15	TGCTGCTAAA ACACAGCTTC CATCGTAATG TATGCTCCTT ACTCAAAGAG TGTGGTCCCA	720
	AACAGCCTTT GGGAGGTCCT CCTTGATTCA TGGATGAAAC CTGGAACATC TTGAGGACTG	780
	AGTTAACCAT AGGTCCTTAA ATAACTCTCC ACACGTTTTT CTTAGTTTAT CTCTACATGC	840
20	AGGGTGTGCA GCAGCCTGTT CAAAGTCATA TTTTCTGGGA AATATTTCCA GTGTTTATTT	900
	GCACTITAGC CCACTCTGTG TAGCCTTATT TCTTCTAAAC TCACCATTAA TCTGAATAAT	960
25	AGTCAAATTT AGGGGGACTG TATTTGCCTT A	991
	(2) INFORMATION FOR SEQ ID NO: 22:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 653 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
40	CCACGCGTCC GGAATTCCCC TGAGGATCTT GGGCTATCTT TGACAGGGGA TTCTTGCAAG	60
40	TTGATGCTTT CTACAAGTGA ATATAGTCAG TCCCCAAAGA TGGAGAGCTT GAGTTCTCAC	120
	AGAATTGATG AAGATGGAGA AAACACACAG ATTGAGGATA CGGAACCCAT GTCTCCAGTT	180
45	CTCAATTCTA AATTTGTTCC TGCTGAAAAT GATAGTATCC TGATGAATCC AGCACAGGAT	240
	GGTGAAGTAC AACTGAGTCA GAATGATGAC AAAACAAAGG GAGATGATAC AGACACCAGG	300
50	GATGACATTA GTATTTTAGC CACTGGTTGC AAGGGCAGAG AAGAAACGGT AGCAGAAGAA	360
50	GTTTGTATTG ATCTCACTTG TGATTCGGGG AGTCAGGCAG TTCCGTCACC AGCTACTCGA	420
	TCTGAGGCAC TTTCTAGTGT GTTAGATCAG GAGGAAGCTA TGGAAATTAA AGAACACCAT	480
55	CCAGAGGAGG GCTCTTCAGG GTCTGAGGTG GAAGAAATCC CTGAGACACC TTGTGAAAGT	540
	CAAGGAGAGG AACTCAAAGA AGAAAATATG GAGAGTGTTC CGTTGCACCT TTCTCTGACT	600
60	GAAACTCAGT CCCAAGGGTT GTGTCTTCGG AGGCATCCAA AAAAAAAAA AAA	653

(2) INFORMATION FOR SEQ ID NO: 23:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1486 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

15	GGCAGGCTGA	CGACCTGCAA	GCCACAGTGG	CTGCCCTGTG	CGTGCTGCGA	GGTGGGGGAC	60
15	CCTGGGCAGG	AAGCTGGCTG	AGCCCCAAGA	cccccccccc	CATGGGCGGG	GATCTGGTGC	120
	TTGGCCTGGG	GCCTTGAGA	CGCCGAAAGC	GCTTGCTGGA	GCAGGAGAAG	TCTCTRGCCG	180
20	GCTGGGCACT	GGTGCTGGCA	SGARCTGGCA	TTGGACTCAT	GGTGCTGCAT	GCAGAGATGC	240
	TETESTTEES	GGGGTGCTCG	GCTGTCAATG	CCACTGGGCA	CCTTTCAGAC	ACACTTTGGC	300
25	TGATCCCCAT	CACATICCIG	ACCATCGGCT	ATGGTGACGT	GCTGCCGGGC	ACCATGTGGG	360
	GCAAGATCGT	YTGCCTGTGC	ACTGGAGTCA	TGGGTGTCTG	CTGCACAGCC	CIGCIGGIGG	420
	CCCTCCTCCC	CCGGAAGCTG	GAGTTTAACA	AGGCAGAGAA	GCACGTGCAC	AACTTCATGA	480
30	TGGATATCCA	GTATACCAAA	GAGATGAAGG	AGTCCGCTGC	CCGAGTGCTA	CAAGAAGCCT	540
	GGATGTTCTA	CAAACATACT	CGCAGGAAGG	AGTCTCATGC	TGCCCGCANG	CATCAGCGCA	600
35	ANCTGCTGGC	CGCCATCAAC	CCCTTCCCCC	AGGTGCGGCT	GAAACACCGG	AAGCTCCGGG	660
	AACAAGTGAA	CTCCATGGTG	GACATCTCCA	AGATGCACAT	GATCCTGTAT	GACCTGCAGC	720
	AGAATCTGAG	CAGCTCACAC	CCCCCTCC	AGAAACAGAT	TGACACGCTG	GCGGGGAAGC	780
40	TGGATGCCCT	GACTGAGCTG	CTTAGCACTG	CCCTGGGGCC	GAGGCAGCTT	CCAGAACCCA	840
	GCCAGCAGTC	CAAGTAGCTG	GACCCACGAG	GAGGAACCAG	GCTACTTTCC	CCAGTACTGA	900
45	GGTGGTGGAC	ATCGTCTCTG	CCACTCCTGA	CCCAGCCCTG	AACAAAGCAC	CTCAAGTGCA	960
	AGGACCAAAG	GGGCCCTGG	CTTGGAGTGG	GTTGGCTTGC	TGATGGCTGC	TGGAGGGGAC	1020
	GCTGGCTAAA	GTGGGKAGGC	CTTGGCCCAC	CTGAGGCCCC	AGGTGGGAAC	ATGGTCACCC	1080
50	CCACTCTGCA	TACCCTCATC	AAAAACACTC	TCACTATGCT	GCTATGGACG	ACCTCCAGCT	1140
	CTCAGTTACA	AGTGCAGGCG	ACTGGAGGCA	GGACTCCTGG	GTCCCTGGGA	AAGAGGGTAC	1,200
55	TAGGGGCCCG	GATCCAGGAT	TCTGGGAGGC	TTCAGTTACC	GCTGGCCGAG	CTGAAGAACT	1260
	GGCTATGAGG	CTGGGGCGGG	GCTGGAGGTG	GCGCCCCCTG	GTGGGACAAC	AAAGAGGACA	1320
	CCATTTTTCC	AGAGCTGCAG	AGAGCACCTG	GTGGGGAGGA	AGAAGTGTAA	CTCACCAGCC	1380
60	TCTGCTCTTA	TCTTTGTAAT	AAATGTTAAA	GCCAGAAAAA	ААГААААА	AAAAAAAA	1440

252

AACTCGAGGG GGGCCCRKAC CCAATCWCCC TATAGTAKAC GTANNN 1486 5 (2) INFORMATION FOR SEQ ID NO: 24: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 2323 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24: CTTCGCCGTT TCTCCTGCCA GGGGAGGTCC CGGCTTCCCG TGGAGGCTCC GGACCAAGCC 60 CCTTCAGCTT CTCCCTCCGG ATCGATGTGC TGCCGCCGCC GCCGCCGCCG TCCCGCGTCC 120 20 TTCGGTCTCT GCTCCCGGGA CCCGGCTCCG CGCAGCCAGC CAGCATGTCG GGGATCAAGA 180 AGCAAAAGAC GGAGAACCAG CAGAAATCCA CCAATGTAGT CTATCAGGCC CACCATGTGA 240 25 GCAGGAATAA GAGAGGCAA GTGGTTGGAA CAAGGGGTGG GTTCCGAGGA TGTACCGTGT 300 GGCTAACAGG TCTCTCTGGT GCTGGGAAAA ACAACGATAA GTTTTGCCCT GGAGGAGTAC 360 TTGTCTCCCA TGCCATCCCT GTTAATTCCT GGATGGGGAC AATGTCCGTC ATGGCCTTAA 420 30 CAGAATCCCC CAGATGGCTT CATGGCCCCC AAAGCATGGA AGGTCCTGAC AGATTATTAC 480 AGGICCCIGC AGAAGAACTA AGCCITIGGI CCAGAGITIC ITICIGAAGI GCICITIGAI 540 35 TACCTTTTCT ATTTTATGA TTAGATGCTT TGTATTAAAT TGCTTCTCAA TGATGCATTT 600 TAATCTTTA TAATGAAGTA AAAGTTGTGT CTATAATTAA AAAAATATAT ATATATATAC 660 ACACACACAT ATACATACAA AGTCAAACTG AAGACCAAAT CTTAGCAGGT AAAAGCAATA 720 40 TTCTTATACA TTTCATAATA AAATTAGCTC TATGTATTTT CTACTGCACC TGAGCAGGCA 780 GGTCCCAGAT TTCTTAAGGC TTTGTTTGAC CATGTGTCTA GTTACTTGCT GAAAAGTGAA 840

ATATATCAGA TGTGTCCTCT TCTGTACAAT TGACAAAAAA AAAAATTTTT TTTTCTCACT 960 CTAAAAGGG TGTGGCTCAC ATCAAGATTC TTCCTGATAT TTTACCTCAT GCTGTACAAA 1020 50 CCCTTAATGT TGTAATCATA TCTTACGTGT TGAAGACCTG ACTGGAGAAA CAAAATGTGC 1080 AATAACGTGA ATTITATCTT AGAGATCTGT GCAGCCTATT TCTGTCACAA AAGTTATATT 1140 55 GTCTAATAAG AGAAGTCTTA ATGGCCTCTG TGAATAATGT AACTCCAGTT ACACGGTGAC 1200 TTTTAATAGC ATACAGTGAT TTGATGAAAG GACGTCAAAC AATGTGGCGA TGTCGTGGAA 1260 AGTTATCTTT CCCGCTCTTT GCTGTGGTCA TTGTGTCTTG CAGAAAGGAT GGCCCTGATG 1320 60

TATATTTTCC AGCATGTCTT GACAACCTGT ACTCTTCCAA TGTCATTTAT CAGTTGTAAA

900

60

	CAGCAGCAGC GCCAGCTGTA ATAAAAAATA ATTCACACTA TCAGACTAGC AAGGCACTAG	1380
	AACTGGAAAA GACCACAGAA AACAAAGAAT CCAACCCTTT CATCTTACAG GTGAACAAAC	1440
5	TGTGATGATG CACATGTATG TGTTTTGTAA GCTGTGAGCA CCGTAACAAA ATGTAAATTT	1500
	GCCATTATTA GGAAGTGCTG GTGGCAGTGA AGAAGCACCC AGGCCACTTG ACTCCCAGTC	1560
10	TGGTGCCCTG TCTACACCAG ACAACACAGG AGCTGGGTCA GATTCCCCTC AGCTGCTTAA	1620
10	CAAAGTTCCT CGAACAGAAA GTGCTTACAA AGCTGCCTTC TCGGATACTG AAAGGTCGAG	1680
	TTTTCTGAAC TGCACTGATT TTATTGCAGT TGAAAAAAAA AAAAAGCTAT TCCAAAGATT	1740
15	TCAAGCTGTT CTGAGACATC TTCTGATGGC TTTACTTCCT GAGAGGCAAT GTTTTTACTT	1800
	TATGCATAAT TCATTGTTGC CAAGGAATAA AGTGAAGAAA CAGCACCTTT TAATATATAG	1860
20	GTCTCTCTGG AAGAGACCTA AATTAGAAAG AGAAAACTGT GACAATTTTC ATATTCTCAT	1920
20	TCTTAAAAAA CACTAATCTT AACTAACAAA AGTTCTTTTG AGAATAAGTT ACACACAATG	1980
	GCCACAGCAG TITGTCTTTA ATAGTATAGT GCCTATACTC ATGTAATCGG TTACTCACTA	2040
25	CTGCCTTTAA AAAAAAAAC CAGCATATTT ATTGAAAACA TGAGACAGGA TTATAGTGCC	2100
	TTAACCGATA TATTTTGTGA CTTAAAAAAT ACATTTAAAA CTGCTCTTCT GCTCTAGTAC	2160
30	CATGCTTAGT GCAAATGATT ATTICTATGT ACAACTGATG CTTGTTCTTA TTTTAATAAA	2220
50	ТТТАТСАGAG ТGAAAAAAAA ААААААААА ААААААААА ААААААААА АААААА	2280
	AAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA	2323
35		
	(2) INFORMATION FOR SEQ ID NO: 25:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LEWGTH: 683 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
	GGCACGAGCC TGTGTGGTCA TGTTCCTCGT GGTGCAGTAC CTGACATGAG CCAGCCACGC	60
50	TCAGTGGCTG AACAGCATTC CCACAGCCTG CAAGTGTGTG TGTGTGTGAA AGAGAGAGGG	120
	GGCCCCAGAG CCGCCTTTTG AAATGTTTGC CTGTCTGAAC TGTGAAGACA CTTGGGAGTG	180
	ATTGTGGTCT AATTTCCAAC CTGCTCTGTT TTCTGTGACA TCTTGGAGGG GAGCTAGTGC	240
55	CACACCATGC GCGGTGCTTA GAAATGAAAA AGTCCCGGGT CTGTCTCTCT CACTCTCGCT	300
	CTCATGGGGG AGGGAAAGAA TGGCTTTGGT GGCTTTGTTC ACACAGCTGA TGCGTGCTGG	360

GAAGGTGTCC ACAGTGAGCC TGTGTGCAGG ACTGTCCACA CGGTTCACAC TTGTCACCAT

254

	CAGGCCTTTC	TGGTCCTGAT	AGGGTGGAGC	AAAAGTGGAA	AGGAAAGGAA	AGAGGCTTTT	480
5	CTCACAGCCA	ттататтааа	TAGTAGGTCG	ATTCACATCT	CGTGCTCCTG	GCCACCTTCC	540
J	CCTGTGCCTC	AGTGACATGT	AGATGACTGA	CTGCCAATAC	TTGTCACCAT	TCCCTGGAAG	600
	CAGCTACCTA	GGGGAAACAA	GATGTAGTGC	TATTGCCGAT	AACAAGTAAG	ATTTTCCACA	660
10	СТААААААА	АААААААА	AAA				683

15 (2) INFORMATION FOR SEQ ID NO: 26:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2036 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

25 CTGAGAAAGG AAAGCATTCG GATCTGCTGC AAAAACACAT ATATCCATAA AGACTCATGT 60 TATTCAGAAA ACAGATTGTG AACACAATCA CATTCGCATG AATCCTTTAA AAGGAAGAAG 120 ACCTTAAAGT ATCTGCAAAT CTGAATTTCT ATTTATTCCT TCACTGAATA TAGAAACAAT 180 30 GGITATCTGA TTATTAGAGA TATTATTTTG GATATGTTAC TTATTAACTT GCTATGGCTG 240 GTAACCATGA TAAAGTCTGT TATTAATAAC AACATAATTC TTTTTTTAAA GAAGAAAAGC 300 35 TTATTTTCA TTGACAGTGT ATAGATTTAT CTACTTAGTT GTGTTTTGCT ATTAGTGTTT 360 TAATITITT TITAAGITGA GIGITTGATA AATITITAAGA CCCTGTCCCC ACCTTGTTTT 420 GAGTCCTGTG TTGACTACAG GTATATAGCY CAWTTTAAAA ATCCTAAAGC AAAAGAATTT 480 40 TATTTATAAA AGAATCMAMC MGTTGCATGC ATGAGGCTGT GAAGTCAGAT ATTTAGTAAT 540 AAAAGCAGCA GTGCCTTTTT TTGTATTTAC CCATTGACCC CCACCAAATG CAACTGTTTT 600 45 ATATTAAGAA AATAGTAACA ATTTTAAAAT CTCAGAGTAA AATCTATTTC ACTACATGCT 660 TTTCCCCCCT TGTTCTGATT TAAGCAGTGT GTACTTGGCA TCTCTACATT GTCCTAGGGA 720 CAGTOGTGTT CTACAATATT ATCATGTATG ATGTTTTATT GGTGCTTTTT ATTCATAGTG 780 50 GCTTCTTACC AGAAACAGTA GGAAGAAACA CATGAACTGT GTACAAGACA TGAAACATTG CTGCTGATAT GITGTTTTTT CACATGCTTT TGAGTTTTCA CTTTTTAAAC GAGAGCCAGC 900 55 AAGCAAAATA GATGTGGCTG GGTCTGCCTG TCCGGGCGGC TYTTTGCACC GAGCTCTCAA 960 ATCCTGTGTA TTGAGGGTTC CTTTTTGGTA CTCAGGATTG GAGCTACAGC TGGGCCCCCC 1020 TCTCTCCCAT TCGTTTGAAG AGACACTGAG GGAAACAAGG GTTTCTTTTG AGGTGTCCTT 1080 60

WO 98/39448

60

480

	GCCTGCCTTT TACGGGATGG GAGCCTTCTC CGGATCTTTT GTTCTTCTGC ACCTCTTGTA	1140
	GCTACTGCCG GTGCAAGGTT GTAGATGTTA TTCCCCAGGA GCCTGGGCTK GGGGGCTGAG	1200
5	CTGGCCTGAA TGCAAAAGCA TGCAACCAGA AGGCGGCCAA GGGGAGGAAA AGCAGGCCTG	1260
	GCCTCATTGG TCCCCTGGAG ATGTCTGTAG CAGTCAGCTC CAGCTTGGGC CTGGGGAAGC	1320
10	AGCCTGACCA AGGCGCTCAG GTGTGCCTGT TACAAGAAGA ACCTGCAGAA GGATAATTTG	1380
10	CACATGGAGC TGTGATAACA CTAATGTTGA TTTTTTTTTT	1440
	GTTTGCAAAG TGAGTTTTAT TTTTTTGTAA TTCCTTTATC TTTACTTAAA GGTGAATGTG	1500
15	TATTCCTCTG GGAGGAATAG GAAGAAAACA GGAATGTTAA TAATGTCGAA CAGAAAACTT	1560
	CCTCCCTTAT TAATATATAA TCYTCATGTA TTTATGCCNT AATGTAAGCT GACTTTTAAA	1620
20	AAGCTTTCTT TTGTTGCATG CCCTGTGCAG GCATCTGTAT TGTACATGCA TGCCTTTCGT	1680
20	CCTGTTTCC TGTATAAAGT TAGTGAACAA AGAAATATTT TTGCCCTAGT TCATGTTGCC	1740
	AAGCAATGCA TATTTTTTAA ATTTGTCATA TATGGAAAGA GCATGTTTGT TACATGTAAA	1800
25	AGCTTTACTG ATATACAGAT ATACTAATGT TTGAAGATGC TGTTCTTTGC AAGTGTACAG	1860
	TITICAAATG TIGITACCAG IGAAACACCC TIGIGGITTA AACTIGCTAC AATGTATITA	1920
30	TTATTCATTT CCTCCCATGT AACTAAGAAT CATGGCTATA TTTCATATCA ACGTTATATT	1980
30	GAAAGTGAAG GGAAATGATT AATACAAGGT TTTGTAACAA AAAAAAANAA ANNAAA	2036
35		
33	(2) INFORMATION FOR SEQ ID NO: 27:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 717 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
45	GGCACGAGAT AACATAGGCA CAATAATACT GTATGTCTAC TTCTAGGATT ATAAGGAATT	60
	AACATTGAGA TGACATTTCC ATTTGAGAAG AAAATAGTTG CTTTCAGTGC CTTTTATTTG	120
50	ATTCCTGGAG AGAGCAGACT CGCACCAACA TTCAACCCCA GCGCTGATAT GACAGTAATC	180
	CTCAGAGGCA GAGCCCAGCA CAAAACAGCA ATGCTAGAAA GTTACAATTG GAAAGTTTCC	240
55	TGCCAGCTTC GGGAATGACA CTGCAAAGCT GATGCCAGAA ACTGCCAGAG TAATTCTCCT	300
JJ	CATTACTGCT CTACCCACCC ACTTTCAGCT CCCCAAATTA ACTAGTGCAG TTGACTAATC	360
	CTCTTTACCT TTATCATTTA GGTGAGGCAT TGCACAAAAA CTCTCGACTT TGCCATATAA	420

GGGCTGTGGT TCTCTGTGGT CCTGGATAAG AGGCATCACC ATTATCTGGA AACATGCAGT

	AAATGCAGAT TCTTCATCTT CTCCCCAGAC CTCCTGAGTT AGAAATTCAC AAGTTCTCCA	540
5	GGTGATCTCA TACATGCTAA AGTTTGAGAA CCATTGAGTA AAGTTAATGC ATTAAGAAGA	600
J	GATTAGATAG GGATGGTGGC GTATCTTCCT ACAGTTTCCC TGTTAACAAG AAAGTCAGAG	.660
	GTCAGTTGAT CAGACATTAG ATTATTTATT GCTAAAACTA AAAAAAATTA AAAAAAA	717
10		
. ~	(2) INFORMATION FOR SEQ ID NO: 28:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 495 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
	GAATTCGCCA CGAGCAGCAT CCTAATTTTA GTTTGGAGAT GCATTCTAAA GGATCTTCTC	60
25	TATTGCTTTT TCTCCCACAA TTAATCTTGA TTCTGCCTGT CTGTGCACAT TTGCATGAGG	120
	AACTGAACTG TTGTTTTCAT AGGTAAATGA GAGACTGAGT TTTTTCATTT CTGAAGAGAA	180
30	AGGGCATTTG CTCCTACAAG CTGAAAAGGCA CCCCTGGGTG GCTGGGGGCCC TCGTGGGAGT	240
50	TTCTGGGGGA TTGACCCTTA CAACATGCAG TGGCCCTACA GAAAAACCTG CAACTAAAAA	300
	TTATTTTTTA AAAAGGCTCC TCCAGGAAAT GCATATAAGG GCTAATCACC CAGTATTTTG	360
35	ARGCTTCGAA GARGTAATAR AMCCCTGGAG AGAGAAACTG AGACATGTAA GAGGGTGGGA	420
	ATGACTCAGT GGTGGCACAC TATGGAGTCC TGCCCACAAG TAGCACACAT CAACCCACTA	480
40	CACAGAAATC CTAGG	495
	(2) INFORMATION FOR SEQ ID NO: 29:	
45		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 556 base pairs	
	(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(with grounding programmers, and to wo, 20.	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
55	AGCTTAACGT CATGATTCAT TAGGGGAATG CAAGGCAAAA CCATGATGAG AATGCCCCTA	60
	GACACCTCTT AGAAGAGCTG CTAGAAAGGC AGACAGCACC AAGCGCTTAA ATGAGATGGG	120
	GGCACTGGTG CTTCTTCTGT GCCTACTGGT AGGGGTGCAG CAGAGTGGTT CAGTCTGGGA	180
60	ርቅርሞችልርርጥና ሮስርስጥናትርናም ርርትርናናትክርት የልርርናትምምምና ርጥናናናሞችልርም ምክርናት እርርትር	240

5	AATAGAAAGC AGGCAGATCT TTACAGCAGC TCTTACCTGW TTGCAAAACA ATGGAAATGC	300
	CCACATGTCC ACAAACAAGT KTGTGGTCTG CCTGTGCCAT GAAGCACAGT GTGGCTGAGC	360
	GTCAAGAGTC CCCACACTCA AAGGAGGCAG CAGATACAGG GCTGCACACT GTGTGATTCC	420
	ACACATGIGA CATTCTGGAC ACGGACATGC TGGATGGCAA AACGAGCATC GGGCTGAGAG	480
10	GACTGCTGAG AAGGGGAACG GGGCTGCTGG GATGTGGGTT GATTGTAGCA GTAGCTCATG	540
	GAGATGTGAC CTCAAA	556
15		
13	(2) INFORMATION FOR CEO ID NO. 20	
	(2) INFORMATION FOR SEQ ID NO: 30:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 434 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
	CTAAATGGTG ACTGTGGCTT TGTCGAGACA GGCCCCAAAT GGTAGGTGTG AACACAACAT	60
30	GCACAGAATG AGGAGACATG CAGAGTGCTG AAATACTGTC CTGGACAGAT GTGTTACATG	120
	ACTITICTITIT CAGCITATITI CTGTGGCCTG CCTTTGAAGA TAGAGCTTTG TIGATATITA	180
	CATTAAACCA AATTGTATAA YTATGTTCCA TTCTGACATG TTATTTAGCA AARGAAAAAR	240
35	GAGTAATTCT ACATCAGCAT CTTTAGTGCA TGCTAAAAGA TTAAAAATGT CTTTTGGGGA	300
	ACATGITTIG TATACATAAA TGITTAGATA GAAATATTTA TAGAATNCTC TATGIGAGTA	360
40	TTNATCTCCC TATGTATATT TATATCTAGA TGTGTCAATC TTTGTATTGA TATGAAATGC	420
	TATGAATAGT GAGA	434
45	(2) INFORMATION FOR SEO ID NO: 31:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 715 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
-0	CCACGCGTCC GATCTCACAG CTCCGACACT ATTGCGAGCC ATACACAACC TGGTGTCAGG	60
	AAACGTACTC CCAAACTAAG CCCAAGATGC AAAGTTTGGT TCAATGGGGG TTAGACAGCT	120
60	ATGACTATCT CCAAAATGCA CCTCCTGGAT TTTTTCCGAG ACTTGGTGTT ATTGGTTTTG	180

	CTGGCCTTAT TGGACTCCTT TTGGCTAGAG GTTCAAAAAT AAAGAAGCTA GTGTATCCGC	240
5	CTGGTTTCAT GGGATTAGCT GCCTCCCTCT ATTATCCACA ACAAGCCATC GTGTTTGCCC	300
3	AGGTCAGTGG GGAGAGATTA TATGACTGGG GTTTACGAGG ATATATAGTC ATAGAAGATT	360
	TGTGGAAGGA GAACTTTCAA AAGCCAGGAA ATGTGAAGAA TTCACCTGGA ACTAAGTAGA	420
10	AAACTCCATG CTCTGCCATC TTAATCAGTT ATAGGTAAAC ATTGGAACTC CATAGAATAA	480
	ATCAGTATIT CTACAGAAAA ATGGCATAGA AGTCAGTATT GAATGTATTA AATTGGCTIT	540
15	CTTCTTCAGG AAAAACTAGA CCAGACCTCT GTTATCTTCT GTGAAATCAT CCTACAAGCA	600
	AACTAACCTG GAATCCCTTC ACCTAGAGAT AATGTACAAG CCTTAGAACT CCTCATTCTC	660
	ATGTTGCTAT TTATGTACCT AATTAAAACC CAAGTTAAAA AAAAAAAAAA	715
20		
	(2) INFORMATION FOR SEQ ID NO: 32:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 486 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
	GAGCCAGTGC CGGCGAAAGG GGACCTTCCT CTACTTCCTG CCACAGACCC TGTCCCCACA	60
35	CACTTCCTGC CCCTGCTCTG CTGGGAGGCC ACTTCCTCCC CCAGTGCTGG ATTCCACCCC	120
	CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTCT GCTCCCTGGA	180
40	GCCTGTTCTG TCCTCCCCTC TTGAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT	240
40	CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG	300
	GTGTCCTGCT TCCCTCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA	360
45	CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA	420
	ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT	480
50	GGGCAC	486
50		
	(3) INFORMATION FOR GEO ID NO. 33	
55	(2) INFORMATION FOR SEQ ID NO: 33:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 725 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
60	(D) TOPOLOGY: linear	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
5	GTTCCTCTGG TAATAATTAG GTTATTCCCA GAAGCACAGT GTCATTCTTT AAATAAAAGC	60
	TITCCTGTTT AAAGCTTTTC AAAGGAGCAG ACCACCTTGA AGATTCCCCC TAGGGTTGAT	120
	ATGTGTCTAA TTCATTTTAT AAAAATTATT CTTGTCTTCA TITTAAAGCT TTGGCTATAT	180
10	AGTCAGAAAT GTCCTAAATA ACAAACTATT TIGTATTTAA TITAGGGAAG ACTAAAGGGA	240
	AGAAAAATGA AAACTCAGTC TTTATGTAAG CTCCAAGGAT ATTAGGGCTT AAAGGGCTTT	300
15	TCTAGTTTTA TGAGAATTTG TACTACTGAT TTTTATATAT TCCTGTTTTT GATGAACAGA	360
	TCTCTGGGGA AATTGTTGAG TTACAATGGC ATTTCACTGT GATCCCTCTC AAGCTCAGAT	420
	CAGTTCTATA ACCCAATGAC AACCTGTCTC TTTGGTTTAC TGTCCTGTGA AATGTCAGCT	480
20	CAAGTTTCCC AGAAGTCGTG TGTTTATGAT GAGTCAGAGT GCTTTTCCTC GGTGGGACAG	540
	TIGCTGGCCC TCTTAATTTT GGTGTATGTG CTTCCAAGTA TCTAAACCTC CAGTCTGATC	600
25	TGTATATGCT ATCCTAACTG TTAATTGTAT TATTGATTAT GTTGATTATC TTGCTTGAAG	660
	GTTCATACTT TTCAATTTGA TAGAAATAAA GTTTTTTTCT GCTTATAAAA AAAAAAAAA	720
	AAAAA	725
30		
	(2) INFORMATION FOR SEQ ID NO: 34:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 437 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
	CACACAGCAT GCTGCCCTCA GACGTGTCCA TCCTGTACCA CATGAAAACG CTGCTGCTCC	
45	TGCAAGATAC TGAGAGATTG AAGCATGCTC TGGAAATGTT CCCAGAACAT TGCACGATGC	60
		120
	CTCCTGCTTT TATTGGCTCT TGTCGAAATC AAATTGGAAG ATCTTCAGTC CCAGCTGCAC	180
50	CCAACGTGGA AAAGTATTCC AGGTCCATCC CCAAGGAACC AACACCGATG ACATGGACTC	240
	AGGAATCTTA TAACCTACGT GGACTCTTTC CATCCGTACA TTGTCGTGCA CATGCCACTC	300
	ATCACCTGGC GTGCCCAGAT CCTCGCARGG CAACACCCTG TGATAATTCC AGGTGATTCT	360
55	CTACATCTGC AGCTTGAGGT TAGCCTCATA TCACATTACA TTCTCACTAN AAACNAAAAA	420

	(2) INFORMATION FOR SEQ ID NO: 35:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 943 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
	GGCACGAGCT GGAACAGAGA CTAAATCCCA CGAAACTGAC ATTGTTAAAC ACACTAAAAC	60
15	AGAAGTACTT ACCTCTTGAA GATTTAATAT ATAATGGTTG ACATGATACA TGTACATGAT	120
1.5	GAATGACCAG ATGCTTATGG TCTACATTTT CCTTTATCCT GTTAGTATTA CCTTCCTTAA	180
	TCTTTGTTCA TTAACATGCT AATTCCTCTT CAGTGTTTAT TTTCTAGTGA CAGAATGCTA	240
20	ACATTTCTTA CACCCTGGCA GAAGGGAGAG AAATGTGTTT TGGGGTGGGT AACTAAATTT	300
	TTGAGTGAAA TATCATAAGA TGANAATGGA AANAAGGAGA CACAAANAGT TATNACAAAA	360
25	AAACAATGGT TTTTTTTAGCC ATTTGACTGG CTCTTTAAAT AGTCTACAAG ACATTCACGT	420
	TTAACATCAC TTTTAGTGAA ATAAAATGTG CCATACTAGT ATGTGCTTCA AAAGGGCAAA	480
	TGTGCTTTAG TGCCCTAAGG CTAAATTTTG GTCATTTGAC ATCAGAGATG TTGTAAGTAT	540
30	TGCACTTAAT ACGCACCTAT TINICAATAG TGITATTITIT TGGNTAGCAT TTTTTTTACC	600
	ACTATIVITGT TGATAGCTTT TTGTTCTNTN AGGTTGNAAN ATGACAGTGC TNATNTCAAA	660
35	CAGATTACCC ATNITGCAGAA CTAAGGGAAG CNATTTATGT ATGAAAGNAA TTNITGAATT	720
	NGTCATTNTC AACCNITGNA TTAAAGCTTA GACTAAATAG TAATATATNG TGGGNAGGAT	780
	TTTGGTTTTG TGATATTTNT GTGNATTAAG GNATAGATGT TAACCNTTAT TTTGTAGNAA	840
40	AGTGANTTGT ATGTGGTTAA TTATAAATAA AACTGGTACC AGGNAAAAAA AAAAAAAAAN	900
	наа алалалаа алалалаа алалалаа ала	943
45		
	(2) INFORMATION FOR SEQ ID NO: 36:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 604 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
	GGCACGAGAA ATCTTCATGC TGTAGTCACT CCAGACCATG GAGTGGCTTT CCAGCTGAAT	60
	GAATCCTATG TCTCGCGTGC AGGTGGTTGG TTTTCAATGT TCTTGCTAAT TTTTTTTCTA	120
60		

	TTGGATCTTG GGAGTTTTCT TTGTTTGCTC CTGTGTTTGC CCAGCTTTAA TAAAACCAGG	180
	CGCAAACAAA AACCATAGCA TTCTGAACAA TAGGGGGCCC ACATTGGACC CAGTATGTCA	240
	CTTTAATGGA CTTCAAGAAA AAATCTGAAT GGGAAAAATG ACACTAGGAA TGTATACTCC	300
	ACACATTTTA TGCCATATAA TGGTGTGTTT TCTTAATTTT GTTTCTTGTG GCGAAATGTG	360
1	GCTTTCAAAT TAAAATGACC TTTTCTTCTT TGAAACTTTT TGTTTTGACT TGTATAATTA	420
	AGGGTTTGGA AAGATTCATA ATTCTGAGAG AGGTTTGCAA CCAGGAGATA CAAAGAAGTC	480
	TCAGTAGTAA TCTTGTTCAT GTGCTTTTAC AGCCAGCTAC ATTTAAGGAT GTATTAGTTA	540
1	CAGAAATTAT ATGTCTGTGT ATGTGTCTCT ACTCAATAAA GTACATGCCT CCACAAAAAA	600
	AAAA	604
2		
	(2) INFORMATION FOR SEQ ID NO: 37:	
	-	
2	(iii) Lationiii 313 babe parro	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
3	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
	GTGAGTGCCC GGGAGCCCCG AGGCCCTGCC CCTAAGAAGG ATATCTYTRA CCGCTCCCTT	60
3	GTCCACACCC TAACCCCCCA GCTGCTCAGG CAGTGGGCAC ATGGCAGGGG CCTCACTGGG	120
	GGCACATAGA GCATTTGGGG GACTGCGAGT GCTCACCTTT GACTTCCTGC AGGTCGGGGG	180
	AAAACCAGAT CATGATGACC AAAGTYTACA TATTCTTGAT CTTCATGGTG CTGATCCTGC	240
4	CCTCCCTGGG TCTCACCAGG TATATGCCAC CACYTTCTGY TCTAAATTCA GAATAAGAGT	300
	CACATCAGGA GAGCACTGTC CCCAGGANAA TGCAAACGGG TTGGCAGCA	349
4		
	(2) INFORMATION FOR SEO ID NO: 38:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 672 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
	GTAGTCGTTG CGGTTGCCGG GATGGCGAAG ATCTCGCCGT TTGAAGTCGT AAAACGCACC	60
,	TCGGTACCGG TGCTTGTTGG TTTGGTGATT GTWATCGTTG CTACAGAGCT GATGGTGCCA	120
6		

	GGAACGGCAG	CAGCGGTCAC	AGGCAAGTAA	ATAGTAATGC	CGGAGCAAGT	TTCCTCCGGC	180
	TTTATCATGT	CACCCACTGT	GGTATATGCG	TIGIGICIC	CCAACTTTGC	CGTGAACAAT	240
5	TTCAGCAATA	ATCAGATGGC	GGCTGGCGCA	ATATTCAAGA	TAACGCCTGG	CAGTGGTGCG	300
	GCTGATGGTT	CAGTGCCTGC	GSCACCGTTT	YTGCCGTATG	TTGCACACCA	GGNICTTTAA	360
10	ACAGTTTTCG	SACCGCGTTT	AGCGTCAAGG	GTTCAATGCC	GGTCGGTAGC	TCGTCCTTAG	420
	GTTCACCGCG	AGCATAAGCA	TTAAACATCT	CATCAATTIG	CTTCTGGCTG	GCGCTATCAA	480
	TACTTTCCAG	CATATGTTTA	CGCTGGCGGA	AACGGGTTAG	CGTTTGCCCC	ARCMGWTCAT	540
15	AGGCAATGGG	CTTAATGAGA	TAATCAAATA	CACCACAACG	TACGGCTTCA	GACACCGTTT	600
	CCATATCGCT	GGCTGCAGTG	GTAAACACCA	CGTCGCCGGG	ATAATGCGCC	TGCACCAGTT	660
20	CATGCAGTAA	AT					672

(2) INFORMATION FOR SEQ ID NO: 39:

25
(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1908 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

30 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

60 AGAGTTGATA TTTTTAGAAA CAGTAATTTT ACTTTTAAGG AAATTGGCTA GCTCTTTGAC 35 TNNAGAGCTG TAGGAAGCTC AACATTTCTT TGTAGAGAAC GTTGCTTTTT TTGGATTGTA 120 180 CAGGTATAAA AACATTGCTT TTGTTGAATT GTATAGGTGT AAAAAGGGAA TAACTGTATG 40 CAGGTTTGAA AAGGAAATGT GCTTTAGGCA TGAGTCATAA GATGCCATTG TACTTGTAGG 240 300 CATTITATTI TCCTTTAGAA ATGGACATCA GCTCTTCTCT TCTGACTGGT AACACATAGC CCCAAAGCAT GAGATTATTT TTCATTGGGT TTTTATTGTT GTTTAGTTTT GGTTTGTTAC 360 45 GCCAGCCCAG TCTGTCTGCG GAACACTGAC TCTGCTCTCT AATGAGAACA AAGTTAGAAA 420 TCTGCCGATA ACCTAAAATA ATTTAGAAAT GAATTAAAAA TGTGAAATCG GGTTAAAGTG 480 50 540 ATGATGATAA AATAGCATGC AAGAAACAAG CTCCTTCCAT CAGACTTGGC TACTGTTTTC TICTOGTACG APPTGGTTTG GAAGAGCCTC TIGTTTCCTT CTCTPTGGGG TATGTCTTCG 600 TTTCTTAATA TGTTTGTAAC ATTATTGAGA TATAATTCAC ATACCTTACA ATTCACTTAT 660 55 TITIAAGGTA CAATITAGTG GTTTTTAGTG TATTCACAAA GTTGTGTAAC CGTGACCACA 720 780 GTCAATTTTA GAACATTTCG TTACCCCAAA AAGAAACCCT GTACCCTTGA GCAGTCACCT 60 CTCATTTTCT CCCAGTGCCC ACCCCATCCC CGAGCCCCKG GAACCACTAA TCTATTTCTC 840

	TCTCTGTAGA TTTGCTTATT CTGGTCATTT CATATAAATG GAATTCTACA ATATTCGGTC	900
5	TTTTGGGACT GGCTTCCCAA ATATGATTTT CTATATGGAG TGAGAAAATT CTTCTCATCT	960
	TGAGAACTCT TATTGCTGTG AAAGGGAGTG GTTGGTAAAA TCAATAGATT TCAGGCAAGA	1020
	GGCCAGATA CCTAACAGGT TTTTCTCCGT GAATCTTATG CTGAGTAGTT TTTCCTCATA	1080
10	ACCAAGCATT TATGATATAT TACTACTTAT AATACTGTGG CTAGTCTCTA GAATGGATGT	1140
	TGAAATCTTT GCCTCCTCAG TCGGGAAGAG TCCTGCTAAA. AATCAGGCTA AAAATCAGGC	1200
15	CAAAAATCAG GCCAAATGAC TTGGCAAATA ATTGACAAAG TGGTTTTCAC GTGTGTCTAT	1260
15	CTTTGCTAGC AGCTTGTATA CCTCAGGCCA GGTGAGCTCC CCAAATTTCT TTTTTCATTT	1320
	ACTCCAGTGA GTTTCTGCTG TCTTTTTCAA GTATGTACCA TAGGACTTAA AGGTGATTTG	1380
20	GATGCGTTGT AACACTGCTA AATATGCTAA GTACAGAATT TTATCTACAG TACTGTGAGA	1440
	CAGTCAATTA TTGCCTAGGG TAGTTCAAAA ATATGATGTG AGCTAGTTAA GCCTTTGCTT	1500
25	GACTGATTTC AGTGATATTC AGAAGTGTGT ACCAATCAAG GCTCTTTAAA ATACGGAACG	1560
23	ACTCACTTAA TAACCAGGGA ACCAGCCAAA TACTGTGCAG CCGCAGAATA TGCATATCAA	1620
	TGAGTTGGAG GTGATTATTC TCTGTAACTC CCTAATGATT GTTTTCTAAG CATTGTGGCT	1680
30	TCTCAGTGGC TTGACAGCAT CTTCCTGGTT GTATGTGGCC TGTTTACATG ATGTATTGAA	1740
	TAATGTTGTT TGTTGTGAGC ATCAATGCCT GTAACACCAA ACTAAACACG TGTTTTTGGG	1800
35	ATATGTTTCC AATCTTTAAA TGACCTTGCC CTGTCCAATA AATAAATGAT TGTCTCACCC	1860
33	TGTTAAAAAA AAAAAAAATT AAAAAAACTG GGNGGGGGGC CCGGTACN	1908
40	(2) INFORMATION FOR SEO ID NO: 40:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 458 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
50	CCTCAAAAAA AAAAANGAAA GGAAAGAGGT CTCTACACAA GCCCGTGATT CTTCATGGCA	60
		60
55	AGGGATAACA TCAGAAATGT TTCATTTYCK GCTATTAGTT TCCATTCCTT TCCCCATCCA	120
33	GGCATAAAGA GAAACAAAAG ACAATGATGG TATTCTCTGT GTCCTCAGCT TTGGCACTIT	180
	TGTTGATGTT GCTAAGGAGC AGTGACCTTG CTAAAAAGAC TGAATAATCC ACCCACTGAA	240
60	TAGCTAACCT GGGGAGGAAA TGAAAATTTC CTTTGTGGAT CTCCCCAAAT CCATTGTTGT	300

264

5	CATAAAACCT	CATATTTTAA	ATNAAGTTGA	AATTTGAA			458
	GCAACCCAAT	AGTATTGTGC	CTCACTTCAC	CTTCCATGGG	CAACTGCCCT	CCCTTCTGGA	420
	CACCAGGCCC	TCCCAGAACC	TCCTCAGTTC	CFFCACAGIG	CAACCCTGTG	TACTIGGCCC	360

10 (2) INFORMATION FOR SEQ ID NO: 41:

15

20

25

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1153 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

GGCACAGAGC	CTCCGACCCA	GGTGGTCTGG	AGCCTGCCGG	GAGAGTGGTG	GCATCTGAGA	60
GGCTGGTCGT	GGACTGTGGT	TGGGGGAGGT	GGGAGCTGTT	TTAACCGTGT	GCCCCCTCTC	120
CTGTGCCGGC	GTGGGCATCC	CCCGGGGCAG	TGGAACCCGG	GCGCTCCTCC	AGCTTCCGAG	180
TCCAGCCAGC	CTGGGCGCGG	ecceccccc	GAGACACCCG	AGGAGTCCGT	TCCTCCCTGG	240
TTACGTGGAC	TGTGGAGCTG	GTCTCTTGTG	GCTCAGCGCC	GTGCGGAGGT	TGAAGCGTAC	300
CTGCGGAGGT	CGCACCAGGG	CGTGAGGAGG	AGGAGGAAGG	GCATGAGCCG	AGCTTGAGGA	360
ATCCGTGCTC	CAAACTCTAC	ACTCAAGGAT	GCACTGCGCA	ACTCTGGTGG	CGATGGGCTG	420
GGGCAGATGT	CCTTGGAGTT	CTACCAGAAG	AAGAAGTCTC	GCTGGCCATT	CTCAGACGAG	480
TGCATCCCAT	GGGAAGTGTG	GACGGTCAAG	GTGCATGTGG	TAGCCCTGGC	CACGGAGCAG	540
GAGCGGCAGA	TCTGCCGGGA	GAAGGTGGGT	GAGAAACTCT	GCGAGAAGAT	CATCAACATC	600
GTGGAGGTGA	TGAATCGGCA	TGAGTACTTG	CCCAAGATGC	CCACACAGTC	GGAGGTGGAT	660
AACGTGTTTG	ACACAGGCTT	GCGGGACGTG	CAGCCCTACC	TGTACAAGAT	CTCCTTCCAG	720
ATCACTGATG	CCCTGGGCAC	CTCAGTCACC	ACCACCATGC	GCAGGCTCAT	CAAAGACACC	780
CTGCCCTCTG	AGCGTCGCTG	GATCTCTGGG	AGCTCCTTGA	TGGCTCCCAG	ACCTTGGCTT	840
TTGGGAATTG	CACTTTTGGG	CCTTTGGGCT	CTGGAACCTG	CTCTGGGTCA	TTGGTGAGAC	900
TTGGAAGGGG	CAGCCCCCGC	TESCTTCTTS	CTTTICTCCT	TGCCAGCCTC	AGGTCATCCT	960
TTTAATCTTT	GCTGACGGTT	CAGTCCTGCC	TCTACTGTCT	CTCCATAGCC	CTGGTGGGGT	1020
CCCCCTTCTT	TCTCCACTGT	ACAGAAGAGC	CACCACTGGG	ATGGGGAATA	AAGTTGAGAA	1080
CATGAGTTTG	GGCTGAAAAA	ааааааааа	ааааааааа	ааааааааа	АААААААА	1140
ааааааааа	AAA					1153

	(2) INFORMATION FOR SEQ ID NO: 42:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1983 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
0	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
	GGCACGAGAG GGGCCGAGCC GACAAGATGT TCTTGCTGCC TCTTCCGGCT GCGGGGCGAG	60
5	TAGTCGTCCG ACGTCTGGCC GTGAGACGTT TCGGGAGCCG GAGTCTCTCC ACCGCAGACA	120
	TGACGAAGGG CCTTGTTTTA GGAATCTATT CCAAAGAAAA AGAAGATGAT GTGCCACAGT	180
20	TCACAAGTGC AGGAGAGAT TTTGATAAAT TGTTAGCTGG AAAGCTGAGA GAGACTTTGA	240
	ACATATCTGG ACCACCTCTG AAGGCAGGGA AGACTCGAAC CTTTTATGGT CTGCATCAGG	300
	ACTTCCCCAG CGTGGTGCTA GTTGGCCTCG GCAAAAAGGC AGCTGGAATC GACGAACAGG	360
25	AAAACTGGCA TGAAGGCAAA GAAAACATCA GAGCTGCTGT TGCAGCGGGG TGCAGGCAGA	420
	TTCAAGACCT GGAGCTCTCG TCTGTGGARG TGGATCCCTG TGGAGACGCT CAGGCTGCTG	480
80	CGGAGGGAGC GGTGCTTGGT CTCTATGAAT ACGATGACCT AAAGCAAAAA AAGAAGATGG	540
	CTGTGTCGGC AAAGCTCTAT GGAAGTGGGG ATCAGGAGGC CTGGCAGAAA GGAGTCCTGT	600
	TTGCTTCTGG GCAGAACTTG GCACGCCAAT TGATGGAGAC GCCAGCCAAT GAGATGACGC	660
35	CAACCAGATT TGCCGAAATT ATTGAGAAGA ATCTCAAAAG TGCTAGTAGT AAAACCGAGG	720
	TCCATATCAG ACCCAAGTCT TGGATTGAGG AACAGGCAAT GGGATCATTC CTCAGTGTGG	780
Ю	CCAAAGGATC TGACGAGCCC CCAGTCTTCT TGGAAATTCA CTACAAAGGC AGCCCCAATG	840
	CAAACGAACC ACCCCTOGTG TTTGTTGGGA AAGGAATTAC CTTTGACAGT GGTGGTATCT	900
	CCATCAAGGC TTCTGCAAAT ATGGACCTCA TGAGGGCTGA CATGGGAGGA GCTGCAACTA	960
15	TATGCTCAGC CATCGTGTCT GCTGCAAAGC TTAATTTGCC CATTAATATT ATAGGTCTGG	1020
	CCCCTCTTTG TGAAAATATG CCCAGCGGCA AGGCCAACAA GCCGGGGGAT GTTGTTAGAG	1080
50	CCAAAAACGG GAAGACCATC CAGGTTGATA ACACTGATGC TGAGGGGAGG CTCATACTGG	1140
	CTGATGCGCT CTGTTACGCA CACACGTTTA ACCCGAAGNT CATCCTCAAT GCCGCCACCT	1200
	TAACAGGTGC CATGGATGTA GCTTTGGGAT CAGGTGCCAC TGGGGTCTTT ACCAATTCAT	1260
55	CCTGGCTCTG GAACAAACTC TTCGAGGCCA GCATTGAAAC AGGGGACCGT GTCTGGAGGA	1320
	TGCCTCTCTT CGAACATTAT ACAAGACAGG TTGTAGATTG CCAGCTTGCT GATGTTAACA	1380
	ACATTGGAAA ATACAGATCT GCAGGAGCAT GTACAGCTGC AGCATTCCTG AAAGAATTCG	1440

266

	TAACTCATCC	TAAGTGGGCA	CATTTAGACA	TAGCAGGCGT	GATGACCAAC	AAAGATGAAG	1500
	TTCCCTATCT	ACGGAAAGGC	ATGACTGGGA	GGCCCACAAG	GACTCTCATT	GAGTTCTTAC	1560
5	TTCGTTTCAG	TCAAGACAAT	GCTTAGTTCA	GATACTCAAA	AATGTCTTCA	CTCTGTCTTA	1620
	AATTGGACAG	TTGAACTTAA	AAGGTTTTTG	AATAAATGGA	TGAAAATCTT	TTAACGGAGA	1680
10	CAAAGGATGG	TATTTAAAA	TGTAGAACAC	AATGAAATTT	GTATGCCTTG	ATTTTTTTT	1740
	CATTTCACAC	AAAGA ['] TTTAT	AAAGGTAAAG	TTAATATCTT	ACTTGATAAG	GATTTTTAAG	1800
	ATACTCTATA	AAATTADTAA	ATTTTTAGAA	CTTCCTAATC	ACTITICAGA	GTATATGTTT	1860
15	TTCATTGAGA	AGCAAAATTG	TAACTCAGAT	TTGTGATGCT	AGGAACATGA	GCAAACTGAA	1920
	AATTACTATG	CACTTGTCAG	АААСААТААА	TGCAACTTGT	TGTGCAAAAA	АААААААА	1980
20	AAA						1983

(2) INFORMATION FOR SEQ ID NO: 43:

25
(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1406 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

30 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

ATGATGATGA CTTTGAAGAC GATTTTATTC CTCTTCCTCC AGCTAAGCGC CTTGAGGTTA 60 35 ATAGTTGGAA AAGACTCTAT AGATATTGAC ATTTCTTCAA GGAGAAGAGA AGATCAGTCT 120 TTAAGGCTTA ATGCCTAAGC NCTTGGTCTT AACTTGACCT GGGATAACTA CTTTAAAGAA 180 40 ATAAAAATT CCAGTCAATT ATTCCTCAAC TGAAAGTTTA GTGGCAGCAC TTCTATTGTC 240 CCTTCACTTA TCAGCATACT ATTGTAGAAA GTGTACAGCA TACTGACTCA ATTCTTAAGT 300 CTGATTTGTG CAAATTTTTA TCGTACTTTT TAAATAGCCT TCTTACGTGC AATTCTGAGT 360 45 TAGAGGTAAA GCCCTGTTGT AAAATAAAGG CTCAAGCAAA ATTGTACAGT GATAGCAACT 420 TTCCACACAG GACGTTGAAA ACAGTAATGT GGCTACACAG TTTTTTTAAC TGTAAGAGCA 480 50 TCAGCTGGCT CTTTAATATA TGACTAAACA ATAATTTAAA ACAAATCATA GTAGCAGCAT 540 ATTAAGGGTT TCTAGTATGC TAATATCACC AGCAATGATC TTTGGCTTTT TGATTTATTT 600 GCTAGATGTT TCCCCCTTGG AGTTTTGTCA GTTTCACACT GTTTGCTGGC CCAGGTGTAC 660 55 TGTTTGTGGC CTTTGTTAAT ATCGCAAACC ATTGGTTGGG AGTCAGATTG GTTTCTTAAA 720 AAAAAAAA AAAACGACAT ACGTGACAGC TCACTTTTCA GTTCATTATA TGTACCGAGG 780 60 GTAGCAGTGT GTGGGATGAG GTTCGATACA GNCGTATTTA TTGCTTGTCA TGTAAATTAA 840

267

	AAACCTTGTA	TTTAACTCTT	TTCAATCCTT	TTAGATAAAA	TIGITCTTIG	CAAGAATGAT	900
5	TGGTGCTTAT	TTTTTCAAAA	ATTTGCTGTG	AACAACGTGA	TGACAACAAG	CAACATTTAT	960
J	CTAATGAACT	ACAGCTATCT	TAATTTGGTT	CTTCAAGTTT	TCTGKTGCAC	TTGTAAAATG	1020
	CTACAAGGAA	TATTAAAAAA	ATCTATTCAC	TTTAACTTAT	aatagtttat	GAAATAAAAA	1080
10	CATGAGTCAC	AGCTTTTGTT	CTGTGGTAAC	СТАТААААА	AGTTTGTCTT	TGAGATTCAA	1140
	TGTAAAGAAC	TGAAAACAAT	GTATATGTTG	TAAATATTTG	TGTGTTGTGA	GAAATTTTTG	1200
15	TCATAAGAAA	TTAAAAGAAC	TTACCAGGAA	GGTTTTTAAG	TTAGAAATAT	TCCATGCCAA	1260
	TAAAATAGGA	ААТТАТАААТ	ATATAGITTT	AAGCCTGCAT	CAGTGGGAGT	CTTGGCTATG	1320
	TAGTTATGTA	GTTATTATGN	AACCACCAAG	ATTTTTTTGG	CTATTTACCG	TAACCAAAGG	1380
20	GGCCGATTAA	NIGGTTTGAA	GNCTTG				1406

25 (2) INFORMATION FOR SEQ ID NO: 44:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1391 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

35 GGGCCTGAAG GCGGCRCGCC AGTCCCGAGC AGTGCTCGCT CCTGCTCGGG GCGCTGCGGC 60 CCCGGGCGTC GCCATGACCA GTGAGCTGGA CATCTTCGTG GGGAACACGA CCCTTATCGA 120 CGAGGACGTG TATCGCCTCT GGCTCGATGG TTACTCGGTG ACCGACGCGG TGGCCCTGCG 180 40 GGTGCGCTCG GGAATCCTGG AGCAGACTGG CGCCACGGCA GCGGTGCTGC AGAGCGACAC 240 CATGGACCAT TACCGCACCT TCCACATGCT CGAGCGGCTG CTGCATGCGC CGCCCAAGCT 300 45 ACTGCACCAG CTCATCTTCC AGATTCCGCC CTCCCGGCAG GCACTACTCA TCGAGAGGTA 360 CTATGCCTTT GATGAGGCCT TTGTTCGGGA GGTGCTGGGC AAGAAGCTGT CCAAAGGCAC 420 CAAGAAAGAC CTGGATGACA TCAGCACCAA AACAGGCATC ACCCTCAAGA GCTGCCGGAG 480 50 ACACTTTGAC AACTTTAAAC GGGTCTTCAA GGTGGTAGAG GAAATGCGGG GCTCCCTGGT 540 GGACAATATT CAGCAACACT TCCTCCTCTC TGACCGGTTG GCCAGGGACT ATGCAGCCAT 600 55 CGTCTTCTTT GCTAACAACC GCTTTGAGAC AGGGAAGAAA AAACTGCAGT ATCTGAGCTT 660 CGGTGACTTT GCCTTCTGCG CTGAGCTCAT GATCCAAAAC TGGACCCTTG GACCCGTCGA CTCACAGATG GATGACATGG ACATGGACTT AGACAGGAAT TTCTCCAGGA CTTGAAGGAG 780 60

268

	CTCAAGGTGC	TAGTGGCTGA	CAAGGACCTT	CTGGACCTGC	ACAAGAGCCT	GGTGTGCACT	840
	GCTCTCCGGG	AAAGCTGGGC	GTCTTCTCTG	AGATGGAAGC	CAACTTCAAG	AACCTGTCCC	900
5	GGGGGCTGGT	GAACGTGCCG	CCAAGCTGAC	CCACAATAAA	GATGTCAGAG	ACCTGTTTGT	960
	GGACCTCGTG	GAGAAGTTTG	TGGAACCCTG	CCCCTCCGAC	CACTGGCCAC	TCAGCGACGT	1020
10	GCGGTTCTTC	CTGAATCAGT	ATTCAGCGTC	TGTCCAATCC	CTCGATGGCT	TCCGACACCA	1080
10	GCCCTCTGG	GACCGCTACA	TGGGCACCCT	CCCCCCCTCC	CTCCTGCGCC	TGTATCATGA	1140
	CTGAGGTGCC	TCCCAACGTC	CGCCCACGCT	GACAATAAAG	TTGCTCTGAG	TTTGGAGACT	1200
15	GGTCCTCGCT	CCGGGGAGCA	ACTGGGGGGC	GTGCAGATGT	GCCTGTGTCT	GTCTCTGAGC	1260
	ACCTGGTGTC	CGTGTACAAG	GATGGATGTG	TNCNGTGGCT	CCTTGGGAAC	TGAGACATAT	1320
20	CTCAGGGAAT	GGTGTCTGTG	CTCAGCCCAT	CCACCAGAAG	AGTCTGCTCA	САААААААА	1380
20	ааааааааа	A					1391

25

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 45:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1569 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

GGCACGAGTG GAGATGCTG CGGCCGTGGC GGGGATGCTG CGAGGGGGTC TCCTGCCCCA 60 GGCGGGCCGG CTGCCTACCC TCCAGACTGT CCGCTATGGC TCCAAGGCTG TTACCCGCCA 120 CCGTCGTGTG ATGCACTTTC AGCGGCAGAA GCTGATGGCT GTGACTGAAT ATATCCCCCC 180 GAAACCAGCC ATCCACCCAT CATGCCTGCC ATCTCCTCCC AGCCCCCCAC AGGAGGAGAT 240 AGGCCTCATC AGGCTTCTCC GCCGGGAGAT AGCAGCAGTT TTCCAGGACA ACCGAATGAT 300 AGCCGTCTGC CAGAATGTGG CTCTGAGTGC AGAGGACAAG CTTCTTATTG CGACACCAGC 360 TGCGGAAACA CAAGATCCTG ATGAAGGTCT TCCCCAACCA GGTCCTGAAA GCCCTTCCTG 420 GAGGATTCCA AGTACCAAAA TCTGCTGCCC CTTTTTGTGG GGCACAACAT GCTGCTGGTC 480 AGTGAAGAGC CCAAGGTCAA GGAGATGGTA CGGATCTTAA GGGACTGTGC CATTCCTGCC 540 GCTGCTAGGT GGCTGCATTG ATGACACCAT CCTCAGCAGG CAGGGCTTTA TCAACTACTC 600 CAAGCTCCCC AGCCTGCCCC TGGTGCAGGG GGAGCTTGTA GGAGGCCTCA CCTGCCTCAC 660 AGCCCAGACC CACTCCCTGC TCCAGCACCA GCCCCTCCAG CTGACCACCC TGTTGGACCA 720 GTACATCAGA GAGCAACGCG AGRAAGGATT CTGTCATGTC GGCCAATGGG AAGCCAGATC 780

WO 98/39448 PCT/US98/04493 269

	CTGACACTGT TCCGGACTCG TAGCCAGCCT GTTTAGCCAG CCCTGCGCAT AAATACACTC	840
5	TECETTATTE ECTETECTCT CCTCAATEGE ACATETEGAA GAACTTEGGE TCGGGGAGTG	900
J	TGTTTGTCAC TTGGTTTTCA CTAGTAATGA TATTGTCAGG TATAGGGCCA CTTGGAGATG	960
	CAGAGGATTC CATTICAGAT GTCAGTCACC GGCTTCGTCC TTAGTTTTCC CAACTTGGGA	1020
10	CGTGATAGGA GCAAAGTCTC TCCATTCTCC AGGTCCAAGG CAGAGATCCT GAAAAGATAG	1080
	GGCTATTGTC CCCTGCCTCC TTGGTCACTG CCTCTTGCTG CACGGGCTCC TGAGCCCACC	1140
15	CCCTTGGGGC ACAACCTGCC ACTGCCACAG TAGCTCAACC AAGCAGTTGT GCTGAGAATG	1200
13	GCACCTGGTG AGAGCCTGCT GTGTGCCAGG CTTTGTGCTG AGTGCTGTTA CATGTATTAG	1260
	TTCCTTTACT GCTGACCACA TTGTACCCAT TTCACAGAGA AGGAGCAGAG AAATTAAGTG	1320
20	GCTTGCTCAA GGTCATGCAG TTAGTAAGTG GCAGAACAGG GACTTGAACC AAGCCCTCTG	1380
	CTCTGAAGAC CGCGTCCTGA ATTTCTTCAC TAGAGCTTCC TCATCAGGTT ACCCAGAAGT	1440
25	GGGTCCCATC CACCATCCAG GTGTGCTTGG ATGTTAGTTC TCCACCCTCG AGGTGTACGC	1500
2,5	TGTGAAAAGT TTGGGAGCAC TGCTTTATAA TAAAATGAAA TATATTCTAA AAAAAAAAA	1560
	AAAAAAA	1569
30		
30	(2) INFORMATION FOR SEC ID NO. 46.	
	(2) INFORMATION FOR SEQ ID NO: 46:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	60
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCC WCGWKTTTTT TTTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG	60
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCCC WCGWKTTTTT TTTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT	120
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCCC WCGWKTTTTT TITTPTTTTT TITTAATTAGG ATAATGCCTT TATTAACGAG AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT GATCCTGCTA GAAACGTTGT CAGTCTGCTT GTGGCTTCCC TCCTTGATTG ACTCACGCTG	120 180
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCCC WCGWKTTTTT TTTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT GATCCTGCTA GAAACGTTGT CAGTCTGCTT GTGGCTTCCC TCCTTGATTG ACTCACGCTG TGTGATGTCT TGAGAAGTAT CTATCCACTT CATGTGAATG AGCACTCCAA TATCAGCCAA	120 180 240
35 40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCCC WCGWKTTTTT TTTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT GATCCTGCTA GAAACGTTGT CAGTCTGCTT GTGGCTTCCC TCCTTGATTG ACTCACGCTG TGTGATGTCT TGAGAAGTAT CTATCCACTT CATGTGAATG AGCACTCCAA TATCAGCCAA CATCAATCAT TCTTACCTAA AGAATAATAA GAAAAAGTTA ATATAAAAGA CAAGGGTATA	120 180 240 300
35 40 45 50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCCC WCGWKTTTTT TTTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT GATCCTGCTA GAAACGTTGT CAGTCTGCTT GTGGCTTCCC TCCTTGATTG ACTCACGCTG TGTGATGTCT TGAGAAGTAT CTATCCACTT CATGTGAATG AGCACTCCAA TATCAGCCAA CATCAATCAT TCTTACCTAA AGAATAATAA GAAAAAGTTA ATATAAAAGA CAAGGGTATA AAATAAAGGT TTGAAAATGC TAGTCAACTT CAAAATTTAA AGAGTAAAAA TCCAGAGATA	120 180 240 300 360
35 40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCCC WCGWKTTTTT TTTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT GATCCTGCTA GAAACGTTGT CAGTCTGCTT GTGGCTTCCC TCCTTGATTG ACTCACGCTG TGTGATGTCT TGAGAAGTAT CTATCCACTT CATGTGAATG AGCACTCCAA TATCAGCCAA CATCAATCAT TCTTACCTAA AGAATAATAA GAAAAAGTTA ATATAAAAGA CAAGGGTATA	120 180 240 300

CTTTAAAATG TAAAAGCCTG ACTCTCAGTT TCACCAGTCT GAGCACAAGT TTGACTGCAA

60

CCCAAAATAT ACTATCCCTT ATGTGAAGGT ATGTGACAAC GTTGACCTCA CCAAATGAGT 600 TTTAACATCA GCTCTTTTTT. CATATGAAAG CACATACCCT GCTCCCCATT CAAGTATGTC 660 TTCCATTGTC AGGCAGGCTG ACCACCTTCA GCAGGAGTCC TCCAAGAGTG CCCAACTCCC 720 CTTCCCACAG TACACAACGC TGTAGTTGTT GTCCTGCAAT CCTTTGTATT TACCTCATTC 780 TITCCCATCT AAGTCCTCAC TGAGTTTTAA AGTTAGGGCT GGAAAAGCTA TGCCTTACTG 840 10 GGACAGCAAG GAACCAATTT TTTTCTGAGG GAGAAGACAT TCACCTTCAC TATATGCCTG 900 GCAGGGCCAC AGTGCACAAA ACAAAGATCA GCCTTCATTC AAGTTCCAGG TTTTTCTTCC 960 15 TCCCTGAATG ATTACTGCAA AGGGTATATG AAGTAAGAGT TCCCTGTTGC ACATGTACCA 1020 TCCATAAGGG ATACTATATC GITTTGCATT CTTCCCCCCA TTCTCCACAT TGTCCTATCT 1080 TAAGTCCAAG CCCTTTTCAC TCTCAAAAAA AAAAAAAAA TATTTTTTTC AGCACTGGTG 1140 20 TTCAAAAGCA ACGTTTTTAT GGTTAATGGT TTACCAGCAA CTGTTGAGAT TTCCAGTTGA 1200 GTCTTAAAAA TTGCCAATCA TTATCTAGCA GCAATGACAG ATGATTAGGA GCAGTCAAAT 1260 25 CCTCTGAATT CTTTCCCTAA TAGGCAGCCA TTTGAGAACT GCACTAGCTG ACATCACTAA 1320 AACATTATCA GCTAAAGCCA AAACCAAATA AAGGCCCAGA CCAACATCCT GGCTCTCTAA 1380 AACCTGTCCA AAATCATTAA GTGAAAGGCA GTAAATGCAG GACTGTGGAT CATGTCACTG 1440 30 CAGCTGACAA TGATTAACAA TAGGAGACAT GCAACCCCCA TTAAGGTTAA AAGTCCAAAA 1500 CTAGTCACAC GCATCTCTTT ATTGGGGAAA AGTGAGACTA TTATGCATTC TTGGTAGGTT 1560 35 TGCAACCITG CATGAAGAGC ACCCATTGCA TTTCTTTCAT CTTTCAGAAA GCACCGGTAT 1620 CTGTTCCAAG GGCCTAACAG TACGAAAATA CATTCTGGCA TCACACCTCT GAACCCAAGA 1680 CTGTTCTCAT TAAAAATAAT TTTGGTTTGT AACAAAATTA TGAAATACAA TGCAAGCACC 1740 40 TCGGTATAGC ATTATTACTG AAACCACTTA ATTCCCAGCT TTTTGAGTTT TTTAAAAAAA 1800 CCCACTGCAC TAAGATTCAC AATTCATTGC TACATACAAA TTAAAGCTAG TAAGAACACA 1860 45 CTAACGTCAC AAGTTTCTCA TTCTAAAGTG CAAAAGCCTA ATCATCTGAA AGTGAACAGG

1920

1924

50

55

GTAA

(2) INFORMATION FOR SEQ ID NO: 47:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 475 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

	TGGTGTGGGG CCCAGAAAMC AAGGGACCAG TGAAAACAMC CCCAGAGACT TGTATCCGCC	60
5	AGGAAAGCCA TTGCCAMTYC TGAGCCCTTG AAGGGCAAGG AGGGAAACAG TGTTACCAGA	120
	GCCCAGTAAG AACTGCTGTC ATGAAGGAGG GGCCACCTTG TAAGAGACAT CATTACTACC	180
	AGAACTGTGG TGCCAAATTG CTGGTGTCTC TCTTTGGAGA AACCAACCAG ATACATCTGC	240
10	TGGAGACCCA GGTGGGCACA GAGAAGGGTG GAGAGAGAAT CTGGGAAGAG AAATGGAGAA	300
	TAAGCAGCAC AGTGTTATTC ATTTCTGTAA ATTCCTATGT AGAAGGCTCA GTGTTAGAAA	360
15	TAAAGITATT CTACTAGITG CAAGITAAGT GITTCTGTTT GITCTGCTTT CCTGTTAGCA	420
	TAAGTAAACT CCCTTTGGAA CTACACAGGT ATGTCTCTCC TTCAACATGT GTGAA	475
20,	(2) INFORMATION FOR SEQ ID NO: 48:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 346 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
50	AAGGGACAGA GACCTGGATT CAGATCTCAT TITTACAATGA AGACCCCAAT GCAGAAAGTC	60
	ATGTCTGAAA TTCTGAGCTT ACTCTTCTGC CTGCTGGGAC CTGCTCTGGA TGAGAGAAGG	120
35	GAGGAAAAGG ACTAATCAGA GGAGCCAATG AAGTCACTCC ATGAGTTTCC TGAACCCTGC	180
	CCAGCTAGAG ATTAACGTYT GACCWTCAAC GTAGGACACT GTGCAGATGG CTACTTGCTG	240
40	GCGCACATGA AGACCAAAGC CAGGACCAAG CCCCMASCCT GCTWAACACG GCAGARTCTT	300
	GCCCAGCCMA CYTCTGTGAR AATCTGCTTC CCTCCACAGC TGACCC	346
45	(2) INFORMATION FOR SEQ ID NO: 49:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1366 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
	TAGGTGTCAG CCGCCACCCC CCCCCCATAT GCAGATTTAC TSGGCATGGT AGTGGCCAGC	60
	TTCTAACACA GCTGGTATTT CAAGTCTCCT GGGACCTCAC TCAGGAATGA TACCCCCTCA	120
60	GTAGAAGCAG CAGGTGATCT TAACTCCTTT CAAAGAGCAG GCCTGTCTGG GAAGCCATGT	180

	CCTCAGCAGG	CACAGCAACC	CCTCTGGAAA	TGGATCACAA	ACTCACTTCT	CAGCCAGGCA	240
5	GGCCAAGCTT	CTATTGTAAC	AGTAGGCACA	GTATAGTCGG	ATCATCACAT	CAGCTGGGTT	300
J	TTTGGTTTAG	TCATCTAGAG	TCGTCTGGAC	TAAAGGTCTT	TCAGGTCTCC	TIGCCCIGIG	360
	AGTGCGTGAA	CCTCCCCACC	CGAATTGCCT	CAGTTGTCCT	GAGCCTCATG	TCTCTCCTGG	420
10	TGGTGGGCCA	GGCCCCTGCA	TGGGAAGGGA	GCCTGCTGCG	GGGCAGGCCA	GCTGGGGGTG	480
	CTCACCTATG	CGCAATGANA	GTTATTGAAG	GACTGGTTGT	TGATGTTGGT	GAGCGTATCC	540
15	TTCATGGCCA	GCGCGAAGTC	GGCCAGGTCA	GCCAGGTGCT	GCCAGCGCTC	TCTCTCGGAC	600
15	TTGTCTTCCT	GTGCCAGGGG	ACCGTGGAGA	AAGTGTCAGG	GCCCCTCAC	TGCAGCAGCC	660
	TGCTCTGCTG	CCTTCCCTGG	CAGTGTTCTG	GGGTGGATT	CCCTACAMCT	AGATGTTCAA	720
20	GGCCTTACTT	TTCCTCCCAC	AAAGGAGTCG	CAGCCACGCT	AGCTCTGACT	TGCCACTGTG	780
	ACAAAGTTCA	CGTAGCAGGT	CTAGGCAAAG	ACTGGGCAAT	TGAGCAGAGG	AGACGGACCT	840
25	GTGAGTCTGA	CCRYGAGSCG	GRCCCCTTCA	CCTTGGCTGG	GCTGGTCCTG	GTCCTTAGGT	900
25	TTTGTCAGGT	TGTCCTTGTT	TGGATCCCTC	AACTAGGTGA	TAAGCACTGG	AGGGGGATGA	960
	CCCGCCTTGG	ACGTGTTTCT	TTAACCTCAT	ССАТАТААТА	GGGCCGTGGG	ATGGTTGTAG	1020
30	AGGTAAAGCA	GGATGATGGT	GTTTTAAGAC	CAGAGCTTGG	GACCAGGGCT	CCTACACCTA	1080
	ATTTTCTCTC	CTGGTAGCTG	AACAAAGGTC	TAAATTAGCT	TAACAAAAGA	ACAGGCTGCC	1140
25	GTCAGCCAGA	GTTCTGAAGG	CCATGCTTTC	AGTTTCCCTT	GTTGACAATT	GCTCTCCAGT	1200
35	TCCTATGAAA	GCACAGAGCC	TTAGGGGGCC	TGGCCACAGA	ACACAACCAT	CTTAGGCCTG	1260
	AGCTGTGAAC	AGCAGGGGGT	TGTGTGTCTG	TTCTGTTTCT	CTGCTTGCCG	AACTTTCTCA	1320
40	АТАААСССТА	TITCTTATTT	АТААААААА	АААААААА	ААААА		1366

45 (2) INFORMATION FOR SEQ ID NO: 50:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1405 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

55	GCAGTAATTC CTGTTAGCCA CTGCATCCAC CAAAACTAGT TTATTTTTCC CCTCAAATTC	60
	ATGATTTTTA CGTCTGTTAC AAAGGGAATT TIGCTGATAG CTCTTTGGGT CCCACTGTTC	120
60	CATTITATGC TAATAGATTC CATTCTAGGG CCCAGCCGTC TCTTGACTGA TGGTGTTCCC	180

	TTTAACCCTT GGCATGTATA ATAGAATTTT GGTGAATGAA AGAACCCAAA TAGGCCAGAT	240				
	AGTCCCCCCA GGCCCTGATA TCCATAAAAG GCTTGGGAAT GCATTATGTA ATTGTCCTTA	300				
5	GTCTTTTTGT TGTTTTAGAA AAAAAAAACA AGATGGGCTC AGATGGATGC CTACGTAAAA	360				
	ATGGTTCCTA GCTGTGTACT CATAACTTTT CTTTGAATTG AGTAGTGAAA GGAAGGAGGA	420				
10	GGAAAGGAAA TTAAATGTCC TTCTAGTATT CTCTGGACTC AAGTCTGACA TATGAGATAA	480				
10	TAACCTATAT TGAAATGCCA AGAATTGTAT CTGAAACAAG AGAACAGTTT GACACATTTA	540				
	TCATGCCTTC ATATTACATA TTAACTGAAA CCAATTAATA AACATATGAA ATATCCATTG	600				
15	CACAAGGCAA AGGCACCTAA ACCTTTTGTT TCTTTTTCTA CATAGCAGAA ATTGATTTTT	660				
	TTTTTATTTT TTTAGGGGAA CCTATATAAT TATGACCCAG TGATGTCTTT TGGTGACTTA	720				
20	AGCTTATGAA TTCAGGTTAC AATTGAGTTG ATTCTAGATG GTTACTACCT TGAAAAGGAT	780				
20	GTTGGTGCCT TATGTGACAC GAGCCAGAGC CTGCTGGGGA ATAAACAAAG CAGGTTTCAT	840				
	GCCAACACCA ACTCGTAGCT TTAGTGGGCA GATGGGGAGT GGTTCACAGA CTTCCCAAAA	900				
25	TGTGGGGGCT TTGGGATTTT CCACACCATC CCACGTGTGT TGTTCATTCT TCCTCTTTTC	960				
	ACACTCTTGG ATGGATWATT TGRAAATGGT GRAAWYMMCY YYKRAATTTG CCCAATAGCC	1020				
30	WIGRGCCACC ATTCTTWATG ACACCATAAC CAAATAGTTC CWTAATGTTG AAATATTAGA	1080				
	AACCTGTTAC CAGCCYKSMA KTWACCCWWA WPTTTCCCAT GTTTGTGGAA TTGATATTGA	1140				
	AATAGCAGGG CTAAGGAATT ACTGGCAAGT TTTAGCCTGT GGGTAATACC TTAGGGTTAT	1200				
35	TTAAATATTT GTAATTTTAT TTAAATGTTC ATGAATGTTT GAAAGGAACA AAATTATCAG	1260				
	GGATGGCTCT TTGCCATGGG TCTTATTTTC ACCCTCTTTT CTGTAAGAAA AAAGAACAAT	1320				
40	GTCTTAATGT ATTTTTAAAG TTTTTGGTAT AGTTTCTAAT TCCAATTTTA ATAAAAGTTT	1380				
	TWTRTAAAA AAAAAAAA AAAAA	1405				
45	(2) INFORMATION FOR SEQ ID NO: 51:					
	(i) SEQUENCE CHARACTERISTICS:					
50	(A) LENGTH: 504 base pairs (B) TYPE: nucleic acid					
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:					
55		- م				
	CGGATTITCT AGGACCCCAA AAAAAAAAA AGGGNAAAAA AAACCCNCAA AACCANCCAA	60				
	AACCCCAAAA AAAAAAAAA TCCACAAAAA CAAAAAAACT ATAAAAAAGA AAGAATTAAA	120				

AACTTICAGA GAATTACTAT TTACTTTATT AACTTACGGA TTTATTATAT AAATATATAT

180

274

	TCACCTAGCA ACATATCTCT GCCGTCTCTC CTGCTCTCAT AATGAAGACA TAGCCGATTC	240
5	TCTGCCCGGG CCCCTTGCTG ATGCTCCTCC GGGTCTGCGT CGGGCGTGGG TCTCTGGGGA	300
	CCCTCCAGAG GTGGAGGTGG GCTGATGGCC TGGCTGCCTG GTGGTTGATG GTTTTGCTCC	360
	CCCTACCTTT TTTTTTTGAG TTTATTCTGA TTGATTTTTT TTCTTGGTTT CTGGATAAAC	420
10	CACCCTCTGG GGACAGGATA ATAAAACATG TAATATTTTT AAGAAGGAAA AAAAAAAAA	480
	AAAAAACTNG GGGGGGCCC CGAA	504
15		
	(2) INFORMATION FOR SEQ ID NO: 52:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 777 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
	NAAGTATCTT GGCCAGTTTA TTACAGAGGA CGATAAATGA TTCCATGTGG ATAGGGCATA	60
30	ACATACAGAG AATGAGACTA TGCCAGAAAT GGGAGGAGGC ATTTGAAACA ACATGAGTAT	120
	CTCAGGGACA GATGGATTGA TTCTGCTATT GGTAGGCCTG GAAGCAANGG TCAGAAGTAG	180
	CAAAAAATGG ATACCAAAAG CACTATTWGT CACCCAAGCT AAGTGGAATA GCTGGCCCAG	240
35	TAGGAGAAAT GCAGGTTTTG CTCTACACTA AGTTCTCCAA CTCTTGATAA GCCTCCAAAA	300
	ACAAATGTTA GGGGAAAAAA ACGCAGCTGG TTATGAAAAG ATATATCTCA TTTCATTAAA	360
40	AAATCAATGT CAATGCTGTT AATAGAATCC TTTTATCTTC AGGACAGAGG CAATGCCCTA	420
	AACAAACACC AGCTCAAGAG CCTCTGATGC CAACCTAGAG GGTACCCAAA CACAAACTTA	480
15	SCATAGAGGT AAGAATCTCT ATGTCTTTTG GTGGAGGCAA AGCCATTTGG TTGGTACTTC	540
45	ACAGGAACAT CTTTCTACCA AGTCTTCATC ATATGGTATG TGCCACGAGT CTCCAGTTGT	600
	TTGCACCACT GTGTCATAGC TGAGAATACG CTGAAAGGTT AGTTTTGATC CTGGAAACCT	660
50	ATTTACAATT GCCAGCTGAT GTCCCTGCTG CCACTTAAAA AAGGCTTGGG TCTGGCATAG	720
	GCAGAMAGGC CTGTGGTCCC CTCGTGCCGA TTCTNGGCTC GAGGCCAATT NCCTTAT	777

55

(2) INFORMATION FOR SEQ ID NO: 53:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 602 base pairs
(B) TYPE: nucleic acid

275

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53: 5 ATGACTACAG TGTTATACCC TCCAATCTTT GCAGGTGGGC ATGGAACACT GCTTGTATCA 60 120 10 CATGGTTTGG GATGAGCAGG TCAATAGTTT TGAGAGGGAG TTTGTTCCTT TTTTTTTTCT 180 CATTATACTC TTAAATTGTT GTCAGTTATC AAACAAACAA ACAGAAAAAT TGTTTGGAAA 240 AACCTTGCAT ACGCCTTTTC TATCAAGTGC TTTAAAATAT AGACTAAATA CACACATCCT 300 15 GCCAGTTTT TCTTACAGTG ACAGTATCCT TACCTGCCAT TTAATATTAG CCTCGTATTT 360 TTCTCACGTA TATTTACCTG TGACTTGTAT TTGTTATTTA AACAGGAAAA AAAACATTCA 420 20 AAAAAAGAAA AATTAACTGT AGCGCTTCAT TATACTATTA TATTATTATT ATTATTGTGA 480 CATTITIGGAA TACTIGIGGAA GITTITATCTC TIGCATATAC TITATACGGA AGTATITACGC CTTAAAAATA CGAAAATAAA TTTTACAAGG TTCCGGTTTT GGTGGTGGAA AGAGTAAATT 600 25 GA 602 30 (2) INFORMATION FOR SEQ ID NO: 54: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1749 base pairs 35 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: 40 AGTCACTGAC TIGGAGCCGC TCGGGGGAAG TCCCGCCCAG ACAGGCGGTG GGTGGGAATG 60 CCTCACTTCA GTTTGAAGAG GGTCCGGATC CAAAGGGGTT AAAACGAGCG AACCCCGATC 120 45 CCCGACCACA CTTCCCGCCT CCCTAAAACG CACACCCCGC TAGCCATGGG CAGCCGCGAC 180 CACCTGTTCA AAGTGCTGGT GGTGGGGGAC GCCGCAGTGG GCAAGACGTC GCTGGTGCAG 240 GATTATTCCC AGGACAGCTT CAGCAAACAC TACAAGTCCA CGGTGGGAGT GGATTTTGCT 300 50 CTGAAGGTTC TCCAGTGGTC TGACTACGAG ATAGTGCGGC TTCAGCTGTG GGATATTGCA 360 GOGCAGGAGC GCTTCACCTC TATGACACGA TTGTATTATC GGGATGCCTC TGCCTGTGTT 55 ATTATGTTTG ACGTTACCAA TGCCACTACC TTCAGCAACA GCCAGAGGTG GAAACAGGAC 480

CTAGACAGCA AGCTCACACT ACCCAATGGA GAGCCGGTGC CCTGCCTGCT CTTGGCCAAC

AAGTGTGATC TGTCCCCTTG GGCAGTGAGC CGGGACCAGA TTGACCGGTT CAGTAAAGAG

60

540

	AACGGTTTCA	CAGGTTGGAC	AGAAACATCA	GTCAAGGAGA	ACAAAAATAT	TAATGAGGCT	660
	ATGAGAGTCC	TCATTGAAAA	GATGATGAGA	AATTCCACAG	AAGATATCAT	GICTITGICC	720
5	ACCCAAGGGG	ACTACATCAA	TCTACAAACC	AAGTCCTCCA	CCTCCTC	CTGCTAGTAG	780
	TGTTTGGCTT	ATTITICCATC	CCAGTTCTGG	GAGGTCTTTT	AAGTCTCTTC	CCTTTCGTTG	840
10	CCCACCTGAC	CATTTTATTA	AGTACATTIG	AATTGTCTCC	TGACTACTGT	CCAGTAAGGA	900
••	GGGCCCATTG	TCACTTAGAA	AAGACACCTG	GAACCCATGT	GCATTTCTGC	ATCTCCTGGA	960
	TTAGCCTTTC	ACATGTTGCT	GRCTCACATT	AGTGCCAGTT	AGTGCCTTCG	GTGTAAGATC	1020
15	TTCTCATCAG	CCCTCAATTT	GTGATCCGGA	ATTTTGTGAG	AAGGATTAGA	AATCAGCACC '	1080
	TGCGTTTTAG	AGATCATAAT	TCTCACCTAC	TTCTGAGCTT	ATTTTTCCAT	TTGATATTCA	1140
20	TTGATATCAT	GACTTCCAAT	TGAGAGGAAA	ATGAGATCAA	ATGTCATTTC	CCAAATTTCT	1200
	TGTAGGCCGT	TGTTTCAGAT	TCTTTCTGTC	TTGGAATGTA	AACATCTGAT	TCTGGAATGC	1260
	AGAAGGAGGG	GTCTGGGCAT	CTGTGGATTT	TTGGCTACTA	GAAGTGTCCC	AGAAGTCACT	1320
25	GTATTTTTGA	AACTTCTAAC	GTCATAATTA	AGTTTCTCTT	GTCTTGGCAT	CAAGAATAGT	1380
	CAAGTTTTTT	GGCCGGGCAT	GGTGGCTCAT	GCCKGTAATC	CCAGCACTTG	GGGAGGCCAA	1440
30	GGCAGGCGGA	TCACATGAGG	CCAGGAATTC	GAGACCAACC	TGGTCAGCAT	GGCAAAACCC	1500
	CGTCTCTACT	AAAAGTACAA	AAATTAGCCA	GCCTGATGG	CACGTGTCTG	TAATCCCAGC	1560
	TACTCTGGAG	ACTGAGGTGG	GAGAATCGCT	TGAGACTGGG	AGGCAGAGGT	TGCAGTGAAC	1620
35	CGAGATCATG	CCACCGCACT	TCAGCCTGGG	TGACAGAGAA	GGACTCCGTC	TCAAAAAAA	1680
	АААААААА	AAAACTCGAG	cccccccc	GTACCCAAAT	CGCCSTGATA	GTGATCGTAW	1740
40	ACAATCNAA						1749

(2) INFORMATION FOR SEQ ID NO: 55:

45
(i) SEQUENCE CHARACTERISTICS:

50

(A) LENGTH: 1896 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

AAAGAGATGG GCTCTTTATT TTCTCGAAAA ACCAATTTGG AGTTACTCAT TTTTCCATAA 60

CATTAAATTT CTTACAGTGA ACTACATATT GTCCATAAGT GCTTCATCAG GACTCATCGC 120

CCTCCTGTCT ACTGGCTCCA AATAGACCAT GTCAGCTTCA CCCCCTGGCT TTGTGTCTAT 180

60 GGGTGGCCTG TGGTATATGG AAAAGTAGCA GGGTGGTCAG GGTGGGAGAC ACAAGATGTT 240

	TITATAGTCT	AGAGCCTTTA	AAAAACCCAG	CAGAATGTAA	TTCAGTATTT	GTTTATTGGC	300
5	TGTTTTTTGA	CAGATTGTTG	AAATTAAATG	AATTGAAAGG	GAAACTCAGA	GTACTAGGAC	360
•	GTTTATTAAA	AGGAAAAAA	TGTCTTGCAA	TGTGCTGTAA	TCACAAGAGG	AGAAAATAAC	420
	TTGTTTCCTT	GATCTGTCAG	AGGTCACAGT	AACCTGGGCC	GAGCTGTTAT	TATTTATTAT	480
10	ATAATAGTAG	TAGGAAGTTA	ATAACTGGTT	CTCTGTGTTC	CAAGCACAAT	ATTACAACTT	540
	CTTTTGAACC	GTAAATATCA	GAATGAATCC	TCTTCCCAGG	GGATTGAACA	GAAGCTTAAT	600
15	GTTTACAAGT	GTTTGAATTT	GTGATCTGAA	ATAACACAAA	ATTAAAAACA	TGATTTCTCT	660
	AATTTTCCAA	CTAGAGGAAG	AGAAACTTGT	GGAAAAGTTC	TTTTTTTTC	TTTTTTTTT	720
	CTTAAAGAAG	GGCAGCCAAG	GTAGTAACCT	AAAAATAGTG	CCCAGGCATA	TGAGAGTTGT	780
20	CCTACGAGGT	TAAAGAACAC	ACTGTTCCAC	TGTATGGCTT	TGGCCCTGAG	TGGCCAGGGA	840
	GGTCAACTTG	ACCCTGCCAT	GTTGGTTTGA	CTTACTAAGA	CACAGGAATC	ATTGTTTTCC	900
25	TTGACCAGGG	TCTCACACCC	TGGAGGAATG	TTAAGTAAGA	GAAAGAACCT	CTTTCCTGAA	960
20	TATTGACATG	TAAAAGACCA	AAGTAATTT	TCTGAACTTC	TGCAATTCTG	AGAACTCTCC	1020
	AAGGAATTTA	CAGTGATTTT	AGTGCTTGTC	AGCATTTTTC	CATGAGGACT	TTCATACATT	1080
30	TGACTCTTTA	GTTCACAGGT	TCCCATTGAT	TGTGAGCAAG	ATATTTATCT	CTTTAGCCCT	1140
	TGGGGATCCA	GCTGAGAGCA	ATCTCTTGCA	TTTTTTTACC	CGTGTATGTA	CAGATATCAT	1200
35	TTCTTGTGTA	TGCCATGACT	TGAAAAAGTT	TGGGAAGCTC	TTTAGCAATA	TCAGCTAAAA	1260
	GGATATGAAA	TCACAGGTGA	TAGCAGTTGT	CATTCAGTAA	TTTCCTACAA	GCAGCACCCC	1320
	AAAGGAAATA	TAGTCCTAAT	CTTTACTATC	CACTTCTAAA	TTTAATGTGA	ATTTCATACA	1380
40	TGTTATTAGT	TGTTTTCTTT	ATAATTTTAT	TTATTAAAAA	CATCGGGAGT	TTAACTTCCA	1440
	CTTCCATGCT	ATCGGATGTG	TTGGGCTCCA	TGCAAGAACT	TGGAAGAAAA	ACAGGCAGGA	1500
45	ATGCATTTGC	ATAATGACCC	AGATCATCAT	TTTCTGCAAC	TGAGAATTAT	ATTICATCAT	1560
,,,	TGCTTCTAGA	AGTCTGCAAT	TCTTTACTTT	TCTTTGGTGC	ATTATTATCT	AGGTGCCATC	1620
	ACTGGATAAT	GTGGAGTGAC	TAGAGAAGTC	AYATATCACT	GTAAGGTACA	GTTAGGGGTA	1680
50	ACACTTTAGA	GGTTTATTAT	ттттаааааа	CTTTTCTTGA	ACTCCTGGGC	CAACATGGGT	1740
	GAAACCCCGT	CTTCTTACTT	AAAAATACCC	AAAATTAGGC	CAGGGGCGTG	GATGGGTGGG	1800
55	GTGCCTGTTA	ATCTTCAGCT	ACTINGGGGA	GGGCTTGAAG	CCAGGGAGGA	ACTGCCCTGG	1860
55	ANCCCCGGGG	NGGGCCAGNA	GGTTTGCCAG	TTGAGT			1896

278

(2) INFORMATION FOR SEQ ID NO: 56:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1753 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10	(xi) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 56:		
10	TCTTTTTAAA	ATAGACATTT	GTGGGGCTCA	CACAATATAT	GAAATAGTAC	ССТСТААААА	60
	AGAGAAAAA	AAAATCAGGC	GGTCAAACTT	AGAGCAACAT	TGTCTTATTA	AAGCATAGTT	120
15	TATTTCACTA	GAAAAAATTT	AATATCAAGG	ACTATTACAT	ACTTCATTAC	TAGGAAGTTC	180
	TTTTTAAAAT	GACACTTAAA	ACAATCACTG	AAAACTTGAT	CCACATCACA	CCCTGTTTAT	240
20	TTICCTTAAA	CATCTTGGAA	GCCTAAGCTT	CTGAGAATCA	TGTGGCAAGT	GTGATGGGCA	300
	GTAAAATACC	AGAGAAGATG	TTTAGTAGCA	ATTAAAGGCT	GTTTGCACCT	TTAAGGACCA	360
	GCTGGGCTGT	AGTGATTCCT	GGGGCCAGAG	TGGCATTATG	ттттасааа	ATAATGACAT	420
25	ATGTCACATG	TTTGCATGTT	TGTTTGCTTG	TIGAATITIT	GAACAGCCAG	TTGACCAATC	480
	ATAGAAAGTA	TTACTTTCTT	TCATATGGTT	TTTGGTTCAC	TGGCTTAAGA	GGTTTCTCAG	540
30	AATATCTATG	GCCACAGCAG	CATACCAGTT	TCCATCCTAA	TAGGAATGAA	ATTAATTTTG	600
	TATCTACTGA	TAACAGAATC	TGGGTCACAT	GAAAAAAAAT	CATTTTATCC	GTCTTTTAAG	660
	TATATGTTTA	ТААТААТААА	TTATGTGTCT	GCATATTGCA	GAACAGCTCT	GAGAGCAACA	720
35	GTTTCCCATT	AACTCTTTCT	GACCAATAGT	GCTGGCACCG	TTGCTTCCTC	TTTGGGAAGA	780
	GGAAAGGGTG	TGTGAACATG	GCTAACAATC	TTCAAATACC	CAAATTGTGA	TAGCATAAAT	840
40	AAAGTATTTA	TTTTATGCCT	CAGTATATTA	TTATTTAATT	TTTTAGGTAA	TGCCTATCTC	900
	TTGGTCTATT	AAGGAAAGAA	GCAATCAGTA	GAGAATTCAG	GATAGTTTTG	TTTAAATTCT	960
	TGCAGATTAC	ATGTTTTTAC	AGTGGCCTGC	TATTGAGGAA	AGGTATTCTT	CYATACAACT	1020
45	TGTTTTAACC	TTTGAGAACA	TTGACAGAAA	TTATGCAATG	GTTTGTTGAG	ATACGGACTT	1080
	GATGGTGCTG	TTTAATCAGT	TTGCTTCCAA	AGTGGCCTAC	TCAAGAGGCC	CTAAGACTGG	1140
50	TAGAAATTAA	AAGGATTTCA	AAAACTTTCT	ATTCCTTTCT	TAAACCTACC	AGCAAACTAG	1200
	GATTGTGATA	GCAATGAATG	GTATGATGAA	GAAAGTTIGA	CCAAATTTGT	TTTTTTGTTG	1260
	TIGITGITGT	TTTGAATTTG	AAATCATTCT	TATTCCCTTT	AAGAATGTTT	ATGTATGAGT	1320
55	GTGAAGATGC	TAGCGAACCT	ATGCTCAGAT	ATTCATCGTA	AGTCTCCCTT	CACCTGTTAC	1380
	AGAGTTTCAG	ATCGGTCACT	GATAGTATGT	ATTTCTTTAG	TAAGAATGTG	TTAAAATTAC	1440
60	AATGATCTTT	TAAAAAGATG	ATGCAGTTCT	GTATTTATTG	TGCTGTGTCT	GGTCCTAAGT	1500

279

GGAGCCAATT	AAACAAGTTT	CATATGTATT	TTTCCAGTGT	TGAATCTCAC	ACACTGTACT	1560
TTGAAAATTT	CCTTCCATCC	TGAATAACGA	ATAGAAGAGG	CCATATATAT	TGCCTCCTTA	1620
TCCTTGAGAT	TTCACTACCT	TTATGTTAAA	AGTTGTGTAT	AATTGTTAAA	ATCTGTGAAA	1680
GAATAAAAAG	TGGATTTAAA	ттаааааааа	АААААААА	АААААААА	АААААААА	1740
AAAAAAAAGG	GGG					1753
	TTGAAAATTT TCCTTGAGAT GAATAAAAAG	TTGAAAATTT CCTTCCATCC TCCTTGAGAT TTCACTACCT	TTGAAAATTT CCTTCCATCC TGAATAACGA TCCTTGAGAT TTCACTACCT TTATGTTAAA GAATAAAAAAG TGGATTTAAA TTAAAAAAAA	TTGAAAATTT CCTTCCATCC TGAATAACGA ATAGAAGAGG TCCTTGAGAT TTCACTACCT TTATGTTAAA AGTTGTGTAT GAATAAAAAA TGGATTTAAA TTAAAAAAAA AAAAAAAA	TTGAAAATTT CCTTCCATCC TGAATAACGA ATAGAAGAGG CCATATATAT TCCTTGAGAT TTCACTACCT TTATGTTAAA AGTTGTGTAT AATTGTTAAA GAATAAAAAA TGGATTTAAA TTAAAAAAAA AAAAAAAA	GGAGCCAATT AAACAAGTTT CATATGTATT TITCCAGTGT TGAATCTCAC ACACTGTACT TTGAAAATTT CCTTCCATCC TGAATAACGA ATAGAAGAGG CCATATATAT TGCCTCCTTA TCCTTGAGAT TTCACTACCT TTATGTTAAA AGTTGTGATA AATTGTTAAA ATCTGTGAAA GAATAAAAAG TGGATTTAAA TTAAAAAAAA AAAAAAAA

(2) INFORMATION FOR SEQ ID NO: 57:

15

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1220 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

GCGGAAGTTA CTGCAGCCGC GGTGTTGTGC TGTGGGGAAG GGAGAAGGAT TTGTAAACCC

25	GCGGAAGTTA	CTGCAGCCGC	GGTGTTGTGC	TGTGGGGAAG	GGAGAAGGAT	TTGTAAACCC	60
23	CGGAGCGAGG	TTCTGCTTAC	CCGAGGCCGC	TGCTGTGCGG	AGACCCCCGG	GTGAAGCCAC	120
	CGTCATCATG	TCTGACCAGG	AGGCAAAACC	TTCAACTGAG	GACTTGGGGG	ATAAGAAGGA	180
30	AGGTGAATAT	ATTAAACTCA	AAGTCATTGG	ACAGGATAGC	AGTGAGATTC	ACTTCAAAGT	240
	GAAAATGACA	ACACATCTCA	AGAAACTCAA	AGAATCATAC	TGTCAAAGAC	AGGGTGTTCC	300
35	AATGAATTCA	CTCAGGTTTC	TCTTTGAGGG	TCAGAGAATT	GCTGATAATC	ATACTCCAAA	360
33	AGAACTGGGA	ATGGAGGAAG	AAGATGTGAT	TGAAGTTTAT	CAGGAACAAA	CGGGGGTCA	420
	TTCAACAGTT	TAGATATTCT	TTTTATTTT	TTTCTTTTCC	CTCAATCCTT	TTTTATTTT	480
40	AAAAATAGTT	CTTTTGTAAT	GTGGTGTTCA	AAACGGAATT	GAAAACTGGC	ACCCCATCTC	540
	TTTGAAACAT	CTGGTAATTT	GAATTCTAGT	GCTCATTATT	CATTATTGTT	TGTTTTCATT	600
45	GTGCTGATTT	TTGGTGATCA	AGCCTCAGTC	CCCTTCATAT	TACCCTCTCC	TTTTTAAAAA	660
43	TTACGTGTGC	ACAGAGAGGT	CACCTTTTTC	AGGACATTGC	ATTITCAGGC	TTGTGGTGAT	720
	AAATAAGATC	GACCAATGCA	AGTGTTCATA	ATGACTTTCC	AATTGGCCCT	GATGTTCTAG	780
50	CATGTGATTA	CTTCACTCCT	GGACTGTGAC	TTTCAGTGGG	AGATGGAAGT	TTTTCAGAGA	840
	ACTGAACTGT	GGAAAAATGA	CCTTTCCTTA	ACTTGAAGCT	АСТІТТАААА	TTTGAGGGTC	900
55	TGGACCAAAA	GAAGAGGAAT	ATCAGGTTGA	AGTCAAGATG	ACAGATAAGG	TGAGAGTAAT	960
33	GACTAACTCC	AAAGATGGCT	TCACTGAAGA	AAAGGCATTT	TAAGATTTT	TAAAAATCTT	1020
	GTCAGAAGAT	CCCAGAAAAG	TTCTAATTTT	CATTAGCAAT	TAATAAAGCT	ATACATGCAG	1080
60	AAATGAATAC	AACAGAACAC	TGCTCTTTTT	GATTTTATTT	GTACTTTTTG	GCCTGGGATA	1140

TGGGTTTTAA ATGGACATTG TCTGTACCAG CTTCATTAAA ATAAACAATA TTTGTAAAAA

5	ТСАМАЛАЛА АЛАЛАЛАЛА	1220
10	(2) INFORMATION FOR SEQ ID NO: 58: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1049 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:	
20	TCGCGCCTGC AGACACAGCA TCTACTCAGC GTGGGTCACC TCTGTGAACA TCACTGACTG	60
	CAAGCCTCCC TCAATTTCTG GTGCAGCCCA TCAGGGACCC ACAGCGCCTG GGAGGATGGT	120
	GCGGATCTTG GCCAATGGGG AAATCGTGCA GGACGACGAC CCCCGAGTGA GGACCACTAC	180
25	CCAGCCACCA AGAGGTAGCA TTCCTCGACA GAGCTTCTTC AATAGGGGCC ATGGTGCTCC	240
	CCCAGGGGT CCTGGCCCCC GCCAGCAGCA GGCAGGTGCC AGGCTGGGTG CTGCTCAGTC	300
20	CCCCTTCAAT GACCTCAACC GGCAGCTGGT GAACATGGGC TTTCCGCAGT GGCATCTCGG	360
30	CAACCATGCT GTGGAGCCGG TGACCTCCAT CCTGCTCCTC TTCCTGCTCA TGATGCTTGG	420
	TGTTCGTGGC CTCCTCCTGG TTGGCCTTGT CTACCTGGTG TCCCACCTGA GTCAGCGGTG	480
35	ACCTCTGAGG GCTGATAGGG GTGGGTTTGT TGAGAGGGAC TTGCTGGGCC TTGGTGTGAG	540
	AGCAGGCATA TTTGGAGGGG ATCTGGTGGT GCCTTGAAGG TATGATCAGA GAGGGGACCA	600
40	CAGGTGTGTG TTTCCCCTTT GTGTTAAGCG TGAGGCAGAG GGAGACGTTA GTCCCAGCAT	660
40	TTCCCAAAGT GTGGGTGGGT CCGTTGGTTC CCGAGATACT TTTAGGTGGT ATGGGGCCTG	720
	CATTAAGTGG CACAAAATCA GAGCAAGAAA GCGATGCCCT TCCCAATTCT CTCAATCCTT	780
45	TTATGCCGAG AAGATCTCAG CTGGATGCCA ACATGTTCCG ATGCCTGTGG AAGACATGCC	840
	GACGTCTCCT CTGCCTAGGG AGCAGGACTT GGGCTTAGGG CAGGTGGAAA AAATTCCAGA	900
50	CTTTTTTAGC ACTGTTTTG TTTTAATGGT ATATTTTTAT TGGCTACTTT ATTGTTTAGG	960
50	ACAAGTGGTA GTGGCATTCT ATTTATTGTG ACCTTTTCAA TAAATAGATT TAAGTAAAAA	1020
	AAAAAAAAA AAAACTCGAG GGGGGGCCC	1049
55		
	(2) INFORMATION FOR SEQ ID NO: 59:	

60

(i) SEQUENCE CHARACTERISTICS:

281

(A) LENGTH: 1776 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

	AAAGAGGATG	TGMAGCTAGA	GGTCCCCGAT	GGCTGGTCGG	ATGGGAAGCA	CAAGGCTGAG	60
10	GGACTGGATT	GTAAAGGCAC	TAAGTCGTTC	TGCGGTGAGA	ATCAGACATG	GGGGACCTCT	120
	AGCTTCACAT	CCTCTTTCCT	TGCAGSTCTG	GACATCCTGA	GCCCAAGTCC	CCCACACTCA	180
15	GTGCAGTGAT	GAGTGCGGAA	GTGAAGGTGA	CAGGGCAGAA	CCAGGAGCAA	TTTCTGCTCC	240
13	TAGCCAAGTC	GGCCAAGGGG	GCAGCGCTGG	CCACACTCAT	CCATCAGGTG	CTGGAGGCCC	300
	CTGGTGTCTA	CGTGTTTGGA	GAACTGCTGG	ACATGCCCAA	TGTTAGAGAG	CTGGCTGAGA	360
20	GTGACTTTGC	CTCTACCTTC	CGGCTGCTCA	CAGTGTTTGC	TTATGGGACA	TACGCTGACT	420
	ACTTAGCTGA	AGCCCGGAAT	CTTCCTCCAC	TAACAGAGGC	TCAGAAGAAT	AAGCTTCGAC	480
25	ACCTCTCAGT	TGTCACCCTG	GCTGCTAAAG	TAAAGTGTAT	CCCATATGCA	GTGTTGCTGG	540
23	AGGCTCTTGC	CCTGCGTAAT	GTGCGGCAGC	TGGAAGACCT	TGTGATTGAG	GCTGTGTATG	600
	CTGACGTGCT	TCGTGGCTCC	CTGGACCAGC	GCAACCAGCG	GCTCGAGGTT	GACTACAGCA	660
30	TCGGGCGGGA	CATCCAGCGC	CAGGACCTCA	GTGCCATTGC	CCGAACCCTK	AANAAAAACC	720
	attaaagita	CGACGCCAGC	AGCAGCCGCA	GCCACATCTC	AGGACCCTGA	GCAACACCTG	780
35	ACTGAGCTGA	GGGAACCAGC	TCCTGGCACC	AACCAGCGCC	ASCCAGCAAG	AAAGCCTCAA	840
	AGGGCAAGGG	GCTCCGAGGG	ANCGCCAAGA	TTTGGTCCAA	GTCGAATTGA	AAGRACTGTC	900
	GTTTCCTCCC	TGGGGATGTG	GGGTCCCAGC	TECCTECCTE	CCTCTTAGGA	GTCCTCAGAG	960
40	AGCCTTCTGT	GCCCCTGGCC	AGCTGATAAT	CCTAGGTTCA	TGACCCTTCA	CCTCCCCTAA	1020
	CCCCAAACAT	AGATCACACC	TTCTCTAGGG	AGGAGKCAAA	TGTAGGTCAT	GTTTTTGTTG	1080
45	GTACTTTCTG	TTTTTGTGA	CTTCATGTGT	TCCATTGCTC	CCCGCTGCCA	TGCTCTCTCC	1140
,,,	CTTGTTTCCT	TAAGAGCTCA	GCATCTGTCC	CTGTTCATTA	CATGTCATTG	ACTACCTCCC	1200
	TAGCCCTGAT	GGGGTCGCT	CTGTCTGGAG	CATAACCCAC	AGGCGTTTTT	TCTGCCACCC	1260
50	CATCCCTGCA	TGCCTGATCC	CCAGTTCCTA	TACCCTACCC	CTGACCTATT	GAGCAGCCTC	1320
	TGAAGAGCCA	TAGGGCCCCC	ACCTTTACTC	ACACCCTGAG	AATTCTGGGA	GCCAGTCTGC	1380
55	CATGCCAGGA	GTCACTGGAC	ATGTTCATCC	TAGAATCCTG	TCACACTACA	GTCATTTCTT	1440
	TTCCTCTCTC	TGGCCCTTGG	GTCCTGGGAA	TGCTGCTGCT	TCAACCCCAG	AGCCTAAGAA	1500
	TGGCAGCCGT	TTCTTAACAT	GTTGAGAGAT	GATTCTTTCT	TGGCCCTGGC	CATCTCGGGA	1560
60	AGCTTGATGG	CAATCCTGGA	AGGGTTTAAT	CTCCTTTTGT	GAGTTTGGTG	GGGAAGGGAA	1620

WO 98/39448

	GGGTATATAG ATTGTATTAA AAAAAAAAG GTATATATGC ATATATCTAT ATATAATATG	1680
5	ACGCAGAAAT AAATCTATGA GAAATCTATC TACAAAMWAA AAAAAAAAAA AAAAAAAAAA	1740
J	AGGAATTCGA TNTCAAGCTT ATCGATACCG TCNACC	1776
10		
	(2) INFORMATION FOR SEQ ID NO: 60:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 443 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
	ACAGATAAAT AAATAAATAA TAAATTAAAT TAAATAAAAA ATCTGAGCTA ATCTGAATAA	60
	ATTGAGAGAT TTCACATGAA AGCCAGGATT TCTGGCTTCC CAGGAACAGT CAGAAGAGCT	120
25	AGCTAGCAAC ACTGGTCTGC TTGGCTACCT TCTTTGGAAC AACATGAAAT CTAGCTCCCT	180
	TTTTTTTTT TTTTTGGCCC ACTTCATCCA TTCACATGAC CTGCCTGGCC TCTGCAGGTA	240
30	AGTGAGTATG CAACAAAAAT GTAGCACAGG TTTTGTCGCT GAACTACGTG GTTTCAGGTC	300
	CAGCTCTGCC ACTTGCTAGC ATGACCTCGT GCCGAATTCC NGCACGAAGT TTTTTTTTTT	360
	TTTTTCAGTG CTCCAGTCCC CCTATTGGAG AATCCTGCCC CCCCTGGGA CAGAATGTTC	420
35	ACCCTGGCCC CGCGANTCCC TGA	443
10	(2) INFORMATION FOR SEQ ID NO: 61:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2888 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
50	TTAATGTTGT CAATAACCAC CAGGCCAAAC AGAATTTATA TGACCTGGAT GAAGATGATG	60
	ATGGTATAGC TTCCGTTCCT ACTAAACAGA TGAAGTTTGC AGCCTCAGGC GNCTTTCTCC	120
55	ACCACATGGC TGGGCTAAGC AGTTCCAAGC TTTCCATGTC CAAGGCCCTC CCTCTCACCA	180
, ,	AAGTGGTTCA GAATGATGCA TACACAGCTC CTGCTCTCCC TTCCTCTATT CGAACAAAAG	240
	CCTTGACCAA CATGTCCCGG ACACTGGTGA ACAAGGAAGA ACCCCCCAAA GAGCTGCCAG	300
60	CTGCTGAGCC TGTTCTCAGC CCATTGGAAG GCACCAAGAT GACTGTGAAT AATCTGCACC	360

	CTCGAGTCAC	TGAGGAGGAC	ATTGTTGAGC	TTTTCTGTGT	GTGTGGGGCC	CTCAAGCGAG	420
5	CTCGACTGGT	CCATCCTGGG	GTAGCGGAGG	TGGTGTTTGT	GAAAAAGGAC	GATGCCATCA	480
J	CCGCATATAA	GAAGTACAAC	AACCGGTGTC	TGGACGGCA	GCCGATGAAG	TGCAACCTTC	540
	ACATGAATGG	GAATGTTATC	ACCTCAGACC	AGCCCATCCT	GCTGCGGCTG	AGTGACAGCC	600
10	CATCAATGAA	AAAGGAGAGC	GAGCTGCCTC	GCAGGGTGAA	CTCTGCCTCC	TCCTCCAACC	660
	CCCCTGCYGA	AGTGGACCCT	GACACCATCC	TGAAGGCACT	CTTCAAGTCC	TCAGGGGCCT	720
15	CTKTGACCAC	GCAGCCCACA	GAATTCAAAA	TCAAGCTTTG	AGCAGGGGAG	TGAGGCAGCC	780
	AGAAGTGGGG	GCAGAGGAGG	GTGGCTCTGT	TTCCCCAAGG	CAAAGCTTAT	GACCAATGGG	840
	CCATCGGACT	GGAGACCCCT	GATTGTGGGA	AGGGTTGCCA	GGGATAAAGA	GCTTCCTCAC	900
20	TOGATOGGAC	CCGCCTTTCT	GTGTTGTGTT	CICCCICIG	CICTICICIC	TACGTTAACG	960
	TTTCCTGTAG	TATGTTTCTT	CATCTCATCG	CCAAGGTAGG	CTTGTGTTTT	TCAGTGTGTG	1020
25	CCTCCCCGAG	CCTCAGCCCC	AAGCTGATTT	CTTATCTGGA	AATGGTACAC	TGAATTCTCT	1080
-5	GGGTGGCTTT	CTTGTGGCCC	CATGGGATGC	AGCGTGGGGG	CTGTCTGAAG	GACCCTGCTT	1140
	TTTCCAGGGG	CCGAGGGGCT	GCCTTTCCTT	TGTGTGTATT	AAGCTTTTCA	AACAATGGAG	1200
30	GGGATGGAGA	GCCCTGGTGT	CCTGACGGGA	GCCAGGTCGG	CCTGAGAGCT	GTGCCGCTCC	1260
	TCTGTCTTGT	CAGTGGAGGT	GCCTGGGTGG	GGAGCAGGTC	TCAGGCCTCT	TGTCCTCTCC	1320
35	CCAGTGGCTC	CAGGCCTCAC	TAGTGGCAAG	GGCAGGATGA	GGCTGCACCG	CTGGGAAGAG	1380
,,	TCTATCTAAG	YTCTTGGCTT	GGAGTCCCGT	GTCGTCTCCR	CCCAGAGGAA	GTTCTCCAGA	1440
	GTTCACCTTT	CCCTTTTCCT	TGAGTTGTGC	TGAATGCCCC	ACCCCAGCTC	TCTTTCCCTT	1500
10	CTGGGTGTCT	TTGCTGGGAG	GGGGCTGTGT	TGTGAGCCCT	CCCGGTTCTC	ACCTCGCCTG	1560
	GCACTTAACC	ACACCCTGGT	TTTGTGTAGC	CGCCAGCTCT	CITCIGGITG	GGCCTTTGAA	1620
15	AGGCTCAGCC	TCCCATTGTG	CAGTGCTTGG	GTTTGGAGCT	TATTTGAATG	GAAGAGGTCA	1680
	GTTTGTTCCT	GGCTCTCCAT	TTCTGGCCTC	AGTTGTCTAC	AGGACAGTGG	TCAGGGATGC	1740
	CTGGAGGCAT	ATATCCAGCT	GCCACCAAGG	GGCACTGTTT	GTTCCCACTT	ATGTGAGTGA	1800
50	CCCCATCCAT	CCATGACCAG	AGGATTATTT	TCCTGCCTTG	GCAGAGGAGG	AGGAGTCAAG	1860
	GGAGCAGGGC	AGCTCTACCA	GGCAAGGTGT	TTCCCCAGCA	TAGGCGCAGA	CAGTTGGGAC	1920
55	GAAACTICAG	AGCCCAGGCA	GTCCCTGAAT	GACCAGGCCA	GTGTTGTCAC	TGAGTGGTCC	1980
-5	CCTGCTGGTT	GGGAGTGAAG	AGAATCCAGG	CTGGCAGAGC	TGGAGCCAGT	TGGGGAGCAC	2040
	GGTTCTGGGA	GCTCTGCAAA	ATCAGTAGCA	AGTGCTGGAA	AAGGCACATG	CCGAAGATAC	2100
60	TCAAGAGCTC	CCAAGATTTG	CTTGAGGCTA	GCCCAGTGAA	RAAAACCAGA	GACTCATGTT	2160

284

	TCCAGGGGTC	AGTCTGTCAG	GCAGGAAGGA	CCCAGGATTT	GAACCCAGCT	TCAGTGTGCA	2220
5	GGCTCTGAGG	CTGCCCAGGA	CGGGAAAGTC	CAAGGAAGGG	CCTGGTGGT	GCTCCACTTG	2280
,	CAGTTCTTTA	AAGAATGCTG	CTTTTTATTC	TCCTAACCCT	TTCAAGTGGG	TGCAGACTTC	2340
	TCGTTAGCAG	CTGGAAGACA	TTCCTCCCAC	ACTITICCCT	TCCTGGCCCA	AGAGAGCATC	2400
10	CAGAAGGCAG	TAGGACCTGG	TTTTTCAGGT	ACTGGGAGCC	GGGGGCTCAC	TGCTTGCACT	2460
	GTGCTTAGGG	TAGGGATGGT	AAATATCCTC	CCTGCATGGC	TTTATCCTCC	CTCTCATCCC	2520
15	AAAGCAGGTA	TCTTCTGGTT	GTCACAGAGT	TTCATTGAGT	CCAGCTGCAG	CCACGTGGCC	2580
13	ATCTGGAGCT	GGTGCTATAG	GTGACCATCT	CAGGAAGGA CCCAGGATTT GAACCCAGCT TCAGTGTGCA GEGAAAGTC CAAGGAAGGG GCCTGGTGGT GCTCCACTTG ITTTTATTC TCCTAACCCT TTCAAGTGGG TGCAGACTTC ICCTCCCAC ACTTTTCCCT TCCTGGCCCA AGAGAGCATC ITTTCAGGT ACTGGGAGCC GGGGGCTCAC TGCTTGCACT AATATCCTC CCTGCATGGC TTTATCCTCC CTCTCATCCC ICACAGAGT TTCATTGAGT CCAGCTGCAG CCACGTGGCC ICACAGAGCT GGTACATTGA GGGGACCTGT TTGCCTCCTC GGGAGACCG GGAGGAGAAG GTGGTGGGCT AGTCCTGTGT CTATGTTAC CCATCTGTGT CTCCTGTGCA GAAGGAGAGG GGTGATTAT GTATTACTTA TCCATTTCTG AATAAACATT AAAAAAAACT CGAGGGGGG CCCGGWACCC AWATCGCCSK	2640		
	CACTCTATAA	GCAGTCATCT	TGGGAGACCG	GGAGGAGAAG	CTCCTCCCCT	AGTCCTGTGT	2700
20	CCTCCTCCAC	TTCCCATGCC	TCTATGTTAC	CCATCTGTGT	CTCCTGTGCA	GAAGGAGAGG	2760
	AAGGGGCATT	AAGAGATGAA	GGGTGATTAT	GTATTACTTA	TCCATTTCTG	AATAAACATT	2820
25	TGTTATTCCT	ааааааааа	ААААААААСТ	CGAGGGGGG	CCCGGWACCC	AWATCGCCSK	2880
23	AAAGTGAG						2888

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 62:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1851 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

CACTAGTATA ATTTATAATT ATAACCTATT CTGATTTCTT TTCAAATATT AGGTGTCCTA 60 GTTGCCTATG AAGGTTTGCC ACTTCATCTT GCACTGTTCC CCAAACTTTG GACTGAGCTA 120 TGCCAGACTC AGTCTGCTAT GTCAAAAAAC TGCATCAAGC TTTTGTGTGA AGATCCTGTT 180 TTCGCAGAAT ATATTAAATG TATCCTAATG GATGAAAGAA CTTTTTTAAA CAACAACATT 240 GTCTACACGT TCATGACACA TTTCCTTCTA AAGGTTCAAA GTCAAGTGTT TTCTGAAGCA 300 AACTGTGCCA ATTTGATCAG CACTCTTATT ACAAACTTGA TAAGCCAGTA TCAGAACCTA 360 CAGTCTGATT TCTCCAACCG AGTTGAAATT TCCAAAGCAA GTGCTTCTTT AAATGGGGAC 420 CTGAGGGCAC TCGCTTTGCT CCTGTCAGTA CACACTCCCA AACAGTTAAA CCCAGCTCTA 480 ATTCCAACTC TGCAAGAGCT TTTAAGCAAA TGCAGGACTT GTCTGCAACA GAGAAACTCA 540 CTCCAAGAGC AAGAAGCCAA AGAAAGAAAA ACTAAAGATG ATGAAGGAGC AACTCCCATT 600 AAAAGGCGGC GTGTTAGCAG TGATGAGGAG CACACTGTAG ACAGCTGCAT CAGTGACATG

AAAACAGAAA CCAGGGAGGT CCTGACCCCA ACGAGCACTT CTGACAATGA GACCAGAGAC

TCCTCAATTA TIGATCCAGG AACTGAGCAA GATCTTCCTT CCCCTGAAAA TAGTTCTGTT

5

660

720

780

	AAAGAATACC GAATGGAAGT TCCATCTTCG TTTTCAGAAG ACATGTCAAA TATC	CAGGTCA 840
10	CAGCATGCAG AAGAACAGTC CAACAATGGT AGATATGACG ATTGTAAAGA ATTT	PAAAGAC 900
	CTCCACTGTT CCAAGGATTC TACCCTAGCC GAGGAAGAAT CTGAGTTCCC TTCT	PACTICIT 960
	ATCTCTCCAG TTCTGTCTGA CTTAGCTGAC TTGAGAAGCT GTGATGGCCA AGCT	TTGCCC 1020
15	TCCCAGGACC CTGAGGTTGC TTTATCTCTC AGTTGTGGCC ATTCCAGAGG ACTC	TTTAGT 1080
	CATATGCAGC AACATGACAT TTTAGATACC CTGTGTAGGA CCATTGAATC TACA	ATCCAT 1140
20	GTCGTCACAA GGATATCTGG CAAAGGAAAC CAAGCTGCTT CTTGACATTA GGTG	TAGCAT 1200
	GTCTACTTTT AAGTCCCTCA CCCCCAACCC CCATGCTGTT TGTATAAGTT TTGC	TTATTT 1260
	GTTTTTGTGC TTCAGTTTGT CCAGTGCTCT CTGCTTGAAT GGCAAGATAG ATTT	TATAGGC 1320
25	TTAATTCTTG GTCAGGCAGA ACTCCAGATG AAAAAAACTT GCATCTTCAG TATA	CTTCCT 1380
	AAAGGCAAT CAGATAATGG ATATGTTTTA TGTAATTAAG AGTTCACTTT AGTG	GCTTTC 1440
30	ATTTAATATG GCTGTCTGGG AAGAACAGGG TTGCCTAGCC CTGTACAATG TAAT	TTAAAC 1500
50	TTACAGCATT TTTACTGTGT ATGATATGGT GTCCTCTGTG CCAGTTTTGT ACCT	TATAGA 1560
	GGCAGATTGC CTCCGATCGC TGTGGTTCTT ATTATCAAAA TTAAGTTTAC TTGT	ATACGG 1620
35	AACAACCACA AGAAATTIGA TICTGTAAAG AATCCTCTIT AGCTGTGGCC TGGC	AGTATA 1680
	TAAATGGTGC TTTATTTAAC AGAATACCTG TGGAGGAAAT AAAGCACACT TGAT	GTAAAA 1740
40	ATAATTGTTT TATTTTATT GACATGACTG ATTGATTGCT ATTCTGTGCA CTTA	ATTAAA 1800
40	СТСАТТСТСЯ ТСАСТТИМАА ААААААААА ААААААААА ААААААААА А	1851
45	(2) INFORMATION FOR SEQ ID NO: 63:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 3542 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
<i>)</i>	TCCAATGCTG ATGAGCGTCT TCGCTGGCAG GCCAGCTCCT TGCCTGCTGA TGAC	CTTTGC 60
	ACAGAAAATG CCATCATGCT GAAACGATTC AATAGGTATC CGCTGATCAT TGAC	CCCTCT 120
60	GGACAGGCCA CAGAATTCAT TATGAATGAA TATAAGGWTC GTAAGATCAC ACGG	ACCAGC 180

	TTCCTGGATC	ACGCCTTCAG	AAAGAACTTA	GAGAGTGCAC	TGAGATTCGG	TAACCCCCTT	240
5	CTGGTCCAGG	ATGTGGAAAG	CTACGATCCA	GTTTTGAACC	CGGTGCTGAA	CCGTGAAGTG	300
	CGGCGAACAC	GGGGGAGAGT	GCTGATCACI	CTCGGGGACC	AGGACATAGA	CCTGTCGCCA	360
	TCGTTTGTCA	TCTTCCTGTC	CACCCGGGAT	' CCAACTGTCG	AGTTCCCACC	AGATCTCTGT	420
10	TCCCGGGTTA	CTTTTGTAAA	CTTCACAGTT	ACCCGTAGCA	GTTTACAAAG	CCAGTGTCTA	480
	AATGAAGTAC	TTAAAGCAGA	AAGACCTGAT	GTGGACGAGA	AACGATCTGA	TCTTCTTAAA	540
15	CTTCAAGGGG	AATTICAGCT	CCGTTTGCGT	CAGCTGGAAA	AATCTCTACT	ACAAGCTCTG	600
	AACGAGGTGA	AAGGGCGCAT	TTTGGATGAC	GACACGATCA	TAACCACTCT	GGAGAACCTG	660
	AAGAGAGAGG	CTGCAGAGGT	CACCAGGAAA	GTTGAGGAGA	CGGACATTGT	CATGCAGGAG	720
20	GTGGAGACCG	TGTCCCAGCA	GTACCTCCCG	CTCTCCACCG	CCTGCAGCAG	CATCTACTTC	780
	ACCATGGAGT	CCCTCAAGCA	GATACACTTC	TTGTACCAGT	ACTCCCTCCA	GTTTTTCCTG	840
25	GACATTTATC	ACAACGTCCT	ATACGAGAAC	CCGAACCTGA	AGGCTGTCAC	CGACCACACA	900
	CAGCGCCTGT	CCATTATAAC	AAAGGACCTC	TTCCAGGTGG	CGTTTAACCG	AGTGGCTCGA	960
	GGCATGCTGC	ATCAGGACCA	CATTACCTTT	GCCATGCTGC	TGGCAAGAAT	CAAACTGAAG	1020
30	GGCACCGTGG	GGGAGCCCAC	CTACGATGCA	GAATTCCAGC	ACTTCTTGAG	AGGAAATGAG	1080
	ATTGTCCTGA	GTGCTGGCTC	CACCCCAGG	ATCCAGGGCC	TGACTGTGGA	GCAGGCGGAG	1140
35	GCGCTGGTGA	GGCTGAGCTG	CCTTCCCGCG	TTTAAGGACT	TGATTGCAAA	GGTTCAGGCA	1200
	GACGAGCAAT	TTGGCATCTG	GCTGGACAGC	AGCTCCCCGG	AGCAGACTGT	GCCCTACCTC	1260
	TGGAGTGAAG	AAACACCTGC	AACACCCATT	OGCCAGGCCA	TCCACCGCCT	GCTCCTGATC	1320
40	CAGGCTTTCC	GGCCCGATCG	CCTGTTGGCC	ATGGCCCACA	TGTTTGTTTC	AACAAACCTT	1380
	GGGGAGTCTT	TCATGTCCAT	CATGGAGCAG	CCCCTCGACC	TGACCCACAT	TGTGGSCACA	1440
45	GAGGTGAAGC	CCAACACTCC	TGTCTTAATG	TGCTCTGTGC	CTGGTTATGA	TGCCAGTGGA	1500
43	CATGTCGAGG	ACCTTGCAGC	CGAGCAGAAC	ACGCAGATCA	CTTCAATTGC	AATCGGCTCT	1560
	GCAGAAGGCT	TTAACCAAGC	AGATAAGGCA	ATAAACACCG	CTGTAAAGTC	GGGCAGGTGG	1620
50	GTGATGCTGA	AGAATGTGCA	TCTGGCCCCA	GGGTGGCTGA	TGCAGCTGGA	GAAGAAGTTG	1680
	CATTCCCTGC	AGCCGCATGC	CTGCTTCCGA	CTCTTCCTCA	CCATGGAGAT	CAACCCCAAG	1740
55	GTGCCTGTGA	ATCTGCTCCG	TGCGGGCCGC	ATCTTTGTGT	TCGAGCCACC	GCCAGGGKTG	1800
<i>33</i>	AAGGCCAACA	TGCTGAGGAC	GTTCAGCAGC	ATTCCCGTCT	CACGGATATG	CAAGTCTCCC	1860
	AACGAGCGTG	CCCGCTTGTA	CTTCCTGCTG	GCCTGGTTTC	ATGCGATCAT	CCAAGAACGC	1920
60	TTACGATACG	CACCACTGGG	GTGGTCAAAG	AAGTATGAAT	TTGGAGAGTC	TGACCTGCGG	1980

	TCANYTTGCG ATACGGTGGA CACGTGGCTG GATGACACGG CCAAGGGCAG GCAGAACATC	2040
5	TCACCGGATA AGATCCCGTG GTCTGCACTA AAGACCTTAA TGGCCCAGTC CATTTATGGC	2100
	GGGCGCGTGG ACAACGAGTT TGACCAGCGT CTGCTCAACA CCTTCCTGGA GCGCCTGTTC	2160
	ACAACCAGGA GTTTCGACAG TGAGTTTAAG CTGGCATGCA AGGTCGACGG ACATAAAGAC	2220
10	ATTCAAATGC CAGATGGCAT GCAGGCGAGA GGAGTTTGTG CAGTGGGTGG AGTTGCTCCC	2280
	CGACACCCAG ACGCCCTCCT GGCTGGGCCT GCCCAACAAC GCCGAGAGAG TCCTCCTTAC	2340
15	CACACAGGGT GTGGACATGA TCAGTAAAAT GCTGAAGATG CAGATGTTGG AGGATGAGGA	2400
	CGACCTGGCC TACGCAGAGA CTGAGAAGAA GACGAGGACA GACTCCACGT CCGACGGGCG	2460
	CCCTGCCTGG ATGCGGACAC TGCACACCAC CGCGTCCAAC TGGCTGCACC TCATCCCCCA	2520
20	GACGCTGAGC CACCTCAAGC GCACCGTGGA GAATATCAAG GATCCTTTGT TCAGGTTCTT	2580
	TGAGAGAGAA GTGAAGATGG GCGCAAAGCT GCTTCAGGAC GTTCGCCAGG ACCTTGCAGA	2640
25	TGTCGTCCAG GTGTGCGAAG GAAAGAAGAA GCAGACCAAC TACTTGCGCA CGCTGATCAA	2700
	CGAGCTAGTG AAAGGGATCT TGCCTCGGAG CTGGTCCCAC TACACGGTGC CTGCCGGCAT	2760
	GACCGTCATC CAGTGGGTGT CCGACTTCAG CGAGAGGATC AAACAGCTGC AGAACATCTC	2820
30	ACTGGCAGCT GCATCTGGTG GCGCCAAGGA GCTAAAGAAC ATCCACGTGT GCCTGGGTGG	2880
	CCTGTTCGTG CCTGAGGCGT ACATCACTGC CACCAGGCAG TATGTGGCCC AGGCCAACAG	2940
35	CTGGTCCCTG GAGGAGCTCT GCCTGGAAGT CAACGTCACC ACCTCACAGG GCGCCACCCT	3000
	TGACGCTTGC AGCTTCGGAG TCACGGGTTT GAAACTTCAA GGGGCCACGT GCAACAACAA	3060
	CAAGCTGTCA CTGTCCAATG CCATCTCAAC CGCCCTTCCC CTGACGCAGC TGCGCTGGGT	3120
40	CAAGCAGACA AACACCGAGA AGAAGGCCAG TGTGGTAACC TTACCTGTCT ACCTGAACTT	3180
	CACCCGTGCA GACCTCATCT TCACCGTGGA CTTCGAAATT GCTACAAAGG AGGATCCTCG	3240
45	CASCTTCTAC GAGCGGGGTG TCGCAGTCTT GTGCACAGAG TAAACTTTTC TAGCTGCCCC	3300
	TITCTGTAAT AGTGAAAGTT GGTATTTAAC ATTTATTCAT TTTTAAAATA TTTGGAAGGT	3360
	CTGAGCTTGT GAAAAGAAAG TGGTTGGTCT GAGGTTGGAG GAAGCTGAAT GGAATCTGAC	3420
50	GGTTGGGAGT GGTGGAAATT GGAAGGATAC CAGGAGGTAT TTGGGAAGGC CAATGGCGTG	3480
	GCTCCTTTGA GGAAATAAAA CACTAAGCAT GAAAAAAAAA AAAAAACTTA CAANCCNCAA	3540
55	GG	3542

⁽²⁾ INFORMATION FOR SEQ ID NO: 64:

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 883 base pairs (B) TYPE: nucleic acid	
_	(C) STRANDEDNESS: double	
5	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
10	AGGTGATTTT AATGATAGGT GTCATATATA GGACGGATAA TCTGTTTACA TTCTGTTCTT	60
	CTCGATGCAC TCACAAGCGG GTAACTAGGT GACAAGAAAA CAAAGATCTT ATTCAAAAGA	120
	GGTCTTACAG CAACCCAACG TCTCATCTTC CCATAGTAAA GATGACGGCG CCTTGAGGTA	180
15	AGCTACAGGC AACACCACTT CCGCGTTTCT CTTGCGCCCT GGTCCAAGAT GGCGGATGAA	240
	GCCACGCGAC GTGTTGTGTC TGAGATCCCG GTGCTGAAGA CTAACGCCGG ACCCCGAGAT	300
20	CGTGAGTTGT GGGTGCAGCG ACTGAAGGAG GAATATCAGT CCCTTATCCG GTATGTGGAG	360
	AACAACAAGA ATGCTGACAA CGATTGGTTC CGACTGGAGT CCAACAAGGA AGGAACTCGG	420
	TGGTTTGGAA AATGCTGGTA TATCCATGAC CTCCTGAAAT ATGAGTTTGA CATCGAGTTT	480
25	GACATTCCTA TCACATATCC TACTACTGCC CCAGAAATTG CAGTTCCTGA GCTGGATGGA	540
	AAGACAGCAA AGATGTACAG GGGTGGCAAA ATATGCCTGA CGGATCATTT CAAACCTTTG	600
30	TGGGGCCAGG AATGTGCCCA AATTTGGACT AGCTCATCTC ATGGCTCTGG GGCTGGGTCC	660
	ATGGSTGGCA GTGGAAATCC CTGATCTGAT TCAGAAGGGC GTCATCCAAC ACAAAGAGAA	720
	ATGCAACCAA TGAAGAATCA AGCCACTGAG GCAGGGCAGA GGGACCTTTG ATAGGCTACG	780
35	ATACTAWITT CCTGTGCATC ACACTTAACT CATCTAACTG TTCCCCGGAC ANCCTCCACT	840
	CTAGTTGTTA CTAAGTANTG CAGTAGCATT NTGGGGAAGA ACA	883
40		
	(2) INFORMATION FOR SEQ ID NO: 65:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 1541 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
	GGCACGAGGT GGCCTCTACC CTGGGCTCAT CTGGCTACAC AGGGACTCTA AACGCTTCCA	60
55	GATTCCCTGG AAACATGCCA CCCGGCATAG CCCTCAACAA GAAGAGGAAA ATACCATTTT	120
,,	TAAGGCCTGG GCTGTAGAGA CAGGGAAGTA CCAGGAAGGG GTGGATGACC CTGACCCAGC	180
	TAAATGGAAG GCCCAGCTGC GCTGTGCTCT CAATAAGAGC AGAGAATTCA ACCTGATGTA	240
60	TGATGGCACC AAGGAGGTGC CCATGAACCC AGTGAAGATA TATCAAGTGT GTGACATCCC	300

	TCAGCCCCAG GGCTCGATCA TTAACCCAGG ATCCACAGGG TCTGCTCCCT GGGATGAGAA	360
5	GGATAATGAT GTGGATGAAG AAGATGAGGA AGATGAGCTG GATCAGTCGC AGCACCATGT	420
	TCCCATCCAG GACACCTTCC CCTTCCTGAA CATCAATGGT TCTCCCATGG CGCCAGCCAG	480
	TGTGGGCAAT TGCAGTGTGG GCAACTGCAG CCCGGAGGCA GTGTGGCCCA AAACTGAACC	540
10	CCTGGAGATG GAAGTACCCC AGGCACCTAT ACAGCCCTTC TATAGCTCTC CAGAACTGTG	600
	GATCAGCTCT CTCCCAATGA CTGACCTGGA CATCAAGTTT CAGTACCGTG GGAAGGAGTA	660
15	CGGGCAGACC ATGACCGTGA GCAACCCTCA GGGCTGCCGA CTCTTCTATG GGGACCTGGG	720
15	TCCCATGCCT GACCAGGAGG AGCTCTTTGG TCCCGTCAGN CTGGAGCAGG TCAAATTCCC	780
	AGGTCCTGAG CATATTACCA ATGAGAAGCA GAAGCTGTTC ACTAGCAAGC TGCTGGACGT	840
20	CATGGACAGA GGACTGATCC TGGAGGTCAG CGGTCATGCC ATTTATGCCA TCAGGCTGTG	900
	CCAGTGCAAG GTGTACTGGT CTGGGCCATG TGCCCCATCA CTTGTTGCTC CCAACCTGAT	960
25	TGAGAGACAA AAGAAGGTCA AGCTATTTTG TCTGGAAACA TTCCTTAGCG ATCTCATTGC	1020
23	CCACCAGAAA GGACAGATAG AGAAGCAGCC ACCGTTTGAG ATCTACTTAT GCTTTGGGGA	1080
	AGAATGCCCA GATGGGAAAC CATTGGAAAG GAAACTCATC TTGGTTCAGG TCATTCCAGT	1140
30	AGRIGOCTOGG ATGATCTACG AGATGTTTTC TGGTGATTTC ACACGATCCT TTGATAGTGG	1200
	CAGTGTCCGC CTGCAGATCT CAACCCCAGA CATCAAGGAT AACATCGTTG CTCAGCTGAA	1260
35	GCAGCTGTAC CGCATCCTTC AAACCCAGGA GAGCTGGCAG CCCATGCAGC CCACCCCCAG	1320
55	CATGCAACTG CCCCCTGCCC TGCCTCCCCA GTAATTGTGA ATGCCATCTT CTTCCTTCTC	1380
	TTTTTTATAA TATTGTACAT ATGGATTTTT TTATTGTTTA GATTTAACCA GCTTTTAAAT	1440
40	CTCTGTTTC TGTGACAGTG TTAGAAGTTT GTGATTCTCC AAATATGCCT AGATTTAAAG	1500
	CTGATTTAAT TTATGGAAAA AAAAAAAAA AAAAAAAAA	1541
45		
13	(2) THEODMATION FOR CEO TO NO. (C.	
	(2) INFORMATION FOR SEQ ID NO: 66:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 732 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:	_
	AGAAAATGAA TGTTAGAAGG TGCCTGCCGA GGCGGGACAG AGTGTTTGCT CGCGCTGGAG	60
60	AAGGCTCTGC TCAGCCCTGA GAGTCCCTTC CTGCCCCACC GATACTGGCA CTTTAAAAAG	120

290

	GAAGCTGACC	GCACAGTGTC	CAGACGAATT	GGCCCCCAGA	AGATGGGGAG	TTCTGTCCTG	180
	CCCTTCTGTG	TCTGCGTGAC	CTCACCCAGC	CTAGGAGGGA	GGTGCATTCA	GGGTAGATTT	240
5	GCCTCTCATT	CAAAGTTCTG	GGGCTTTGGG	CGGAAAACAG	CCAGCTTTGG	CGCTGTTGGG	300
	GAGACTCCTC	CAGACCAGGA	ACCCCAGAAG	GAGACAGAGC	CTGCCACATC	CTCCCACGCC	360
10	AGGCCCTGGG	CCAGGGTGAT	TGGACTGAGA	ATTTGGCCAC	AACCAAATTG	ATGCTGGCTG	420
. •	GAACCAGAGG	CCAGAAAGCC	TOGCCTTGTC	CCCATGTGGG	AGCCCTGTCC	TCAGCCCTCT	480
	TGTCCCCTTG	AGCTCAGTGA	ATTCCCACCA	GGTGCCCACA	GCTCCTGGAC	TTCAAATTCT	540
15	ATATATTGAG	AGAGTTGGAG	AGTATATCAG	AGATATTTTT	GGAAAGGAGT	TGGTCTATGC	600
	AATGTCAGTT	TGGAATCTTC	TTGAAAGTTT	aatgitttta	TTAGGAGATT	TAAAGAAAAT	660
20	AAAGGTCTAC	AATATCAAAA	ааааааааа	АААААААА	аааааааа	АААААААА	720
	аааааааа	AA					732

25

30

40

45

50

55

(2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 629 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

TTAAGGAATT CGGCMCGATC CCGGCAAGTA ACATGACTAA AAAGAAGCGG GAGAATCTGG 60 GCGTCGCTCT AGAGATCGAT GGGCTAGAGG AGAAGCTGTC CCAGTGTCGG AGAGACCTGG 120 AGGCCGTGAA CTCCAGACTC CACAGCCGGG AGCTGAGCCC AGAGGCCAGG AGGTCCCTGG 180 AGAAGGAGAA AAACAGCCTA ATGAACAAAG CCTCCAACTA CGAGAAGGAA CTGAAGTTTC 240 TTCGGCAAGA GAACCGGAAG AACATGCTGC TCTCTGTGGC CATCTTTATC CTCCTGACGC 300 TCGTCTATGC CTACTGGACC ATGTGAGCCT GGCACTTCCC CACAACCAGC ACAGGCTTCC 360 ACTTGGCCCC TTGGTCAGGA TCAAGCAGGC ACTTCAAGCC TCAATAGGAC CAAGGTGCTG 420 GGGTGTTCCC CTCCCAACCT AGTGTTCAAG CATGGCTTCC TGGCGGCCCA GGCCTTGCCT 480 CCCTGGCCTG CTGGGGGGTT CCGGGTCTCC AGAAGGACAT GGTGCTGGTC CCTCCCTTAG 540 CCCAAGGGAG AGGCAATAAA GAACACAAAG CTGAAAAAAA AAAAAAAAA AACTCGTAGG 600 GGGGCCCGT ACCCAATCGC CCTNTCGTG 629

291

(2) INFORMATION FOR SEQ ID NO: 68:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1751 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

10 CTGCTAGCCG GCCGGCGCAG GCTGCCGAGC GGGTGAGCGC GCAGGCCAGG CCAAAGCCCT 60 GGTACCCGCG CGGTGCGGGC CTCAGTCTGC GGCCATGGGG GCGTCCGCGC GGCTGCTGCG 120 15 AGCGGTGATC ATGGGGGCCC CGGGCTCGGG CAAGGGCACC GTGTCGTCGC GCATCACTAC 180 ACACTTCGAG CTGAAGCACC TCTCCAGCGG GGACCTGCTC CGGGACAACA TGCTGCGGGG 240 CACAGAAATT GGCGTGTTAG CCAAGGCTTT CATTGACCAA GGGAAACTCA TCCCAGATGA 300 20 TGTCATGACT CGGCTGGCCC TTCATGAGCT GAAAAATCTC ACCCAGTATA GCTGGCTGTT 360 GGATGGTTTT CCAAGGACAC TTCCACAGGC AGAAGCCCTA GATAGAGCTT ATCAGATCGA 420 25 CACAGTGATT AACCIGAATG TGCCCTTTGA GGTCATTAAA CAACGCCTTA CTGCTCGCTG 480 GATTCATCCC GCCAGTGGCC GAGTCTATAA CATTGAATTC AACCCTCCCA AAACTGTGGG 540 CATTGATGAC CTGACTGGGG AGCCTCTCAT TCAGCGTGAG GATGATAAAC CAGAGACGGT 600 30 TATCAAGAGA CTAAAGGCTT ATGAAGACCA AACAAAGCCA GTCCTGGAAT ATTACCAGAA 660 AAAAGGGTG CTGGAAACAT TCTCCGGAAC AGAAACCAAC AAGATTTGGC CCTATGTATA 720 35 TGCTTTCCTA CAAACTAAAG TTCCACAAAG AAGCCAGAAA GCTTCAGTTA CTCCATGAGG 780 AGAAATGTGT GTAACTATTA ATAGTAAGAT GGGCAAACCT CCTAGTCCTT GCATTTAGAA 840 GCTGCTTTTC CTAGGACTIC TAGTATGTAT GAATTCTTTG AAAATTATAT TACTTTTATT 900 40 TCTACTGATT TTATTTTGGA TACTAAGGAT GTGCCAAATG ATTCGGATAC TAAGATGCAT 960 CGTTTGAAAT CATCTAGTGT GTTGTATGCA GTTATCCTCA AAAACATCAG CGATGTCTGA 1020 45 ACCTTTAAAA CATCTGTTAG AGCAAAATTA AAAGAGCATT TGGTAGTAAT CTAACTTTTT 1080 GTTCAGTTAA TAAGTGGTTG ATAAAGTTTC CATATTTTTC TGGAAAAGTT AAAAAAAGTT 1140 ACATGTCATT TGGAGAAAAT ACGTAATCAG AAATTTGTGC ATAGATTGAT GCCAAAAAAG 1200 50 ACATTTCCAG CATTGTGGAA CATGGTGAGA CACTATATAA AATTCCAGAA AGAAAGCAAC 1260 TGGATTTACA GATTTATTGT GAGACACAAA TTCACTGCTG CCTTTACACT AAGAAATGTA 1320 55 TATGTTAACC ATATATGCTG TATTTATTTT GTCGTTAAGC ATACTTTCAG TTTACTCAGA 1380 ATTTTCAATT TOCTATAAAG ATGTATCAAT TAGCATATAG AAAAATATTA CTTTAAGATG 1440 ACTTGTTTCC TITGAAAATA CCTGTGTACT GAGGGTTATG ATTTGTGTCA AAAATTGACA 1500 60

PCT/US98/04493

	TAAGTGCTTT TACAAGCACC AAAGTTGAAT GAATTTTCAA CAAAATGTAA TTAAAGTCTA	1560
	TGTTTTCAGT TATGACTCAG GTTAAGAAAT GTGTTTTAGG ATCTACTTGC TGGTTTTTCT	1620
5	TTTTGATCCA AATGTGTGAT CTGCCCTGAT AAATAACAAG TTATNGTACC ATCTCCCCCG	1680
	CCAATAAAAA AAAAAAAAAA AAAAAAAAAC TCGAGGGGG GCCCGGTACC CAATTCTCCG	1740
10	NAATAGGNAG T	1751
10		
	(2) INFORMATION FOR SEQ ID NO: 69:	
15	·	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 508 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:	
25	GGCACGAGAT TATGTATTAA AATGTTTTTG AATTGTGAAA TATTAGAATA TTGTTACTAT	60
	TTGACCCAAC TCAAAATCTC CATGGGAAAA TACCTGTCGA TACCCACAGT ATTGTTGAAA	120
	ATAATCAGAT GCAGTATCAC AGCTGTGTCA GACTCTAGTA CCAGTTGGGC AATCAAGGCA	180
30	CASCTAAAAA TTGAAAACAA AGATCTGGAC AACAAAACAG CCAAAGGTGG GGGTCAAGAA	240
	GCTCTGACGI GTACCTAGCT GTAGAATGCT ATGCACACGT GCCAGGTGTA GTGTGCATAT	300
35	CCAGGAAAAA CTGCAGAGAG CCCCAGTCTT CACCTCTGGT TGACCATGAG CTCTGTGTAA	360
	GCAGGAAGTG AAGGCTAAGG CAGATTTAAG CTCTGAAAGC ATTCCACAAC ATACACACAA	420
	ATCGTGCAAA GCATTAAGGA AATCTTGTTA CTGCTAAGTG TTGCTGACCC AGGAACAACT	480
40	CCTACTCAGC TGGACTTAAA AATAAAAA	508
45	(2) INFORMATION FOR SEQ ID NO: 70:	
.5		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 245 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	
55	TACATAGAGC AAAGAGAAAT TTCCAGAATT TCTARAATTC TGGAAAGAGA ATTTTCCTGA	60
	GATTGCAGAT TIGCTTGTGT CCTCAGGTGA TGATGAGGGC TGTTTTCCCC TGTTGTCCTT	120
60	TCCTCACACT CATGCTTCCT CTCCTAGAGT GTCTGGTTGG CATGATCATG TGCTACCTAG	180

VO 98/39448	PCT/US98/04493

	GCATTTCTTT CACTGATACA AGGAAAACTG CAGGGTTAAA AAAAAAAAAA	240
	NCNCG	245
5		
	(2) INFORMATION FOR SEQ ID NO: 71:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 361 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
13	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	
	ATGITCCTCA TGAGGATGCA CTTGTGCTTC TGCAAGTATT GCTGCAGCTT CATAGTGACT	60
20	CCCACCAGCA CCAGCAATAC AGCTAGCTAC CTGTGGCCTT GGATCTCAGC CAGCATGGCT	120
	GGGAGAGGGA GCAGCTGGGC ATGTACCCTA AATGCTGTTA CCAGGGAAGG ACTCCCAGAG	180
25	TGAAGACAAG TAGGGACTTC CTGCAGAGGT GGTACATGTG CTCTCTGTAT CCATACTTTT	240
	TTTTTTTTT TTTTGAGATA GAGTTTCACC CTTGTTGCCC TGGCTGGAGT GCAATGGTGC	300
	GATCTCAGCT CACTGCAACC TCTCTGCCTC CCGGGTTCAA GTGATTCTCC TGCCTCAGCC	360
30	T	361
25		
35	(2) INFORMATION FOR SEQ ID NO: 72:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 713 base pairs	
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
10	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:	
45	AGGATCACAC AATAGAGAAC ACTGTAGTAA CATTTCGGTC TGCTCACAAG ACCCAGAACA	60
	TIGATCAGIT TITGITGITG GITTATTATT TITCIGITAA AAAATTGIGA AAAGTITGIT	120
50	TTAGCTAGAT GATATTITAA TAGCTGCGAG TGCTTTGGAA CTATAAAGAT GTCACTACTT	180
	AACACACATA CCTTATGTTT TGTTTTGTTT TGTTTTACAC TCAGTATAAA TCAGGAGAAG	240
	TTAGCCAACC ATCTAGCATT TAGAATCCTC TTTTTTATTG TCTTCTAAGG ATATGGATGT	300
55	TCCCATAACA GCAACAAAAC AGCAACAAAA ACATTTCATA AATATCACTT GATAGACTGT	360
	AAGCACCTGC TTAACTTTGT GTCCCAAATA TTTAGTGTGT ATATATATAT ATATATATAC	420
60	ACACACAC ACATATATAT TCAACAAATA AAGCAAAATA TAACATGCAT TTCACATTTT	480

294

	GTCTTTCCCT GTTACGATTT TAATAGCAGA ACTGTATGAC AAGTTTAGGT GATCCTAGCA	540
	TATGTTAAAT TCAAATTAAT GTAAAACAGA TTAACAACAA CAAAGAAACT GTCTATTTGA	600
5	GTGAAGTCAT GCTTTCTATT ATAATAACTT GGCTTCGGTT ATCCATCAAA TGCACACTTA	660
	TACTGTTATC TGATTGTTTA TAATAAAGAA TACTGTACTT ATAAAAAAAA AAA	713
10		
	(2) INFORMATION FOR SEQ ID NO: 73:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 862 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:	
	GAAAGTCAGA GCTGTCCAAAT CCCTCAGCAC CTTTTAGATT TGCTCCAAAT TAGAAACGTG	60
25	GGGACTATGT GTTCTGGGCA ATCACAGGTC TGGAAAATGG CTCTGCAGGC TCTTGATAGT	120
	GAGACAGTGG TCATCTTACC AGACATGCAT CTGATTTTAA GCCTCAGGCT AATCCACAAT	180
	GCTCGGCCAT GCCTATGATT AACAAACAAA AGCAAAATCT GCTTTTATAG TTTAGGAAAC	240
30	CTGGATAGAA CAGTATTTT CAGCATTCTT GGATAAAGCA GTTCTGCATT TTTAAATTGG	300
	GACTGCAGAA GTGACTGTCT ATAGITGTGA AATACAAAAA ATGGTATGTT TGATCAGAAA	360
35	AGGAAGCCCG TGCCTGGCAC TTGGAAAGAT ACTGAGCATC ATAACCCTAA TGAGAAAATG	420
	TAGGCTCTGT GAATGTTAAC TACAAATCAG GTTAGGAAAG CATATGACAC CCTTTGTCAA	480
	ACTAAGCTTC ACTAGGAGGA CCTGTGCTCA TAGAAGAATA TGCTTTAAAA GTATCAATTT	540
40	TCCACAGTCG ATGATGGAGA AAAGTTCATT TGCACCAGAA TGCTGATAGT CACAATACAC	600
	AGCCTGACAT ATATAACAAT ACAGTTTTCT GTAAACAGAA GTTCTTCCTC TTCCAATTCA	660
45	GGAGTCAGTC AGAGCATAAA TATTGCATGT TICACTTTAG AAACTGATTC ATTTTAGAAA	720
	GCAGATCTGG ATTATTTTGC AGGGTAGAAA TGAAGGCTAT TTCTGGCATT CTTGCTCAAA	780
	AAGTCAATAT ATGTACATTA AGTATAAAAA AGGGTCTCTT TCACCTCTTT TGTTTCGTAG	840
50	CATTGGCTAC ATAACTCGTG CC	862
55	(2) INFORMATION FOR SEQ ID NO: 74:	
. 0	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 4602 base pairs(B) TYPE: nucleic acid	

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:

5	GCGAGGGGC	GKGGGGAGCA	GCGCCGARGC	CGCCGCCTCC	GCCTCCGCCG	CCTAGGACTA	60
	GGGGGTGGGG	GACGGACAAG	CCCCGATGCC	GGGGGAKACG	GAAGAGCCGA	GACCCCCGGA	120
10	GCAGCAGGAC	CAGGAAGGGG	GAGAGGCGGC	CAAGGCGGCT	CCGGAGGACC	CGCAACAACG	180
10	GCCCCTGAG	GCGGTCGCGG	CGGCGCCTGC	AGGGACCACT	AGCAGCCGCG	TGCTGAGGGG	240
	AGGTCGGGAC	CGAGGCCGGG	CCGCTGCGRC	CCCCCCCCC	CAGCTGTGTC	CCGCCGGAGA	300
15	AGGCCGAGTA	TCCCCGCCGG	CGAGGAGCAG	CCCCAGCGCC	AGGCCTCCCG	ACGTCCCCGG	360
	GCAGCAGCCC	AGGCCGCGAA	GTCCCCGTCT	CCAGTTCAGG	GCAAGAAGAG	TCCGCGACTC	420
20	CTATGCATAG	AAAAAGTAAC	AACTGATAAA	GATCCCAAGG	AAGAAAAGA	GGAAGAAGAC	480
20	GATTCTGCCC	TCCCTCAGGA	AGITTCCATT	GCTGCATCTA	GACCTAGCCG	GGGCTGGCGT	540
	AGTAGTAGGA	CATCTGTTTC	TCGCCATCGT	GATACAGAGA	ACACCCGAAG	CTCTCGGTCC	600
25	AAGACCGGTT	CATTGCAGCT	CATTTGCAAG	TCAGAACCAA	ATACAGACCA	ACTTGATTAT	660
	GATGTTGGAG	AAGAGCATCA	GTCTCCAGGT	GCATTAGTA	GTGAAGAGGA	AGAGGAGGAG	720
30	GAAGAAGAGA	TGTTAATCAG	TGAAGAGGAG	ATACCATTCA	AAGATGATCC	AAGAGATGAG	780
50	ACCTACAAAC	CCCACTTAGA	AAGGGAAACC	CCAAAGCCAC	GGAGAAAATC	AGGGAAGGTA	840
	AAAGAAGAGA	AGGAGAAGAA	GGAAATTAAA	GTGGAAGTAG	AGGTGGAGGT	GAAAGAAGAG	900
35	GAGAATGAAA	TTAGAGAGGA	TGAGGAACCT	CCAAGGAAGA	GAGGAAGAAG	ACGAAAAGAT	960
	GACAAAAGTC	CACGTTTACC	CAAAAGGAGA	AAAAAGCCTC	CAATCCAGTA	TGTCCGTTGT	1020
40	GAGATGGAAG	GATGTGGAAC	TGTCCTTGCC	CATCCTCGCT	ATTTGCAGCA	CCACATTAAA	1080
.0	TACCAGCATT	TGCTGAAGAA	GAAATATGTA	TGTCCCCATC	CCTCCTGTGG	ACGACTCTTC	1140
	AGGCTTCAGA	AGCAACTTCT	GCGACATGCC	AAACATCATA	CAGATCAAAG	GGATTATATC	1200
45	TGTGAATATT	GTGCTCGGGC	CTTCAAGAGT	TCCCACAATC	TGGCAGTGCA	CCGGATGATT	1260
	CACACTGGCG	AGAAGCATTA	CAATGTGAGA	TCTGTGGATT	TACTTGTCGA	CAAAAGGCAT	1320
50	CTCTTAATTG	GCACATGAAG	AAACATGATG	CAGACTCCTT	CTACCAGTTT	TCTTGCAATA	1380
	TCTGTGGCAA	AAAATTTGAG	AAGAAGGACA	GCGTAGTGGC	ACACAAGGCA	AAAAGCCACC	1440
	CTGAGGTGCT	GATTGCAGAA	GCTCTGGCTG	CCAATGCAGG	CGCCCTCATC	ACCAGCACAG	1500
55	ATATCTTGGG	CACTAACCCA	GAGTCCCTGA	CGCAGCCTTC	AGATGGTCAG	GGTCTTCCTC	1560
	TTCTTCCTGA	GCCCTTGGGA	AACTCAACCT	CTGGAGAGTG	CCTACTGTTA	GAAGCTGAAG	1620
60	GGATGTCAAA	GTCATACTGC	AGTGGGACGG	AACGGGTGAG	CCTGATGGCT	GATGGGAAGA	1680

	TCTTTGTGGG	AAGCGGCAGC	AGTGGAGGCA	CTGAAGGGCT	GGTTATGAAC	TCAGATATAC	1740
	TCGGTGCTAC	CACAGAGGTT	CTGATTGAAG	ATTCAGACTC	TGCCGGACCT	TAGTGGACAG	1800
5	GAAGACTTGG	GGCATGGGAC	AGCTCAGACT	TTGTATTTAA	AAGTTAAAAA	GGACAAAAAA	1860
	ААААТСТААА	GCATTTAAAA	TCTAGTGAAA	TAACTGAAGG	GCCTGCTCTT	TCCATTGTGG	1920
10	ATCACAGCAC	ACACATACAT	ACACCCTCCA	CCTCCCCATC	CCCTGTTCTC	CCTCTGTTGC	1980
10	TCCCCTTATA	AAATTGATGT	TGTCTTTACC	AGAAAGGTAG	ACAAAAAAGA	AGCAGCAGCA	2040
	GCTCTTAAAG	TGAGGGTTAT	TCTCATACTC	GGTTCCAGCC	ATCAGCAGAC	TTCCTGCTCA	2100
15	TCGGCAGATC	CCCCTTTCCA	ACCTGTAACT	CTGATGTGCT	CTGGATCAGC	TTTTAACTTT	2160
	TAATCATATA	TTACTGTCTT	CTAAATCCCT	TCTCCTCCTC	TACTGCTGCC	CTATGGTTCT	2220
20	GCTCCTACC	CCCTGCGGCA	CACTTATCTT	CAAATACCAT	AGAATTCTAA	TCTCTGAAAT	2280
20	CATAGCTCTC	CAGTGGCTTT	TAAAGAAAGC	TGGTCCTCAG	CACTAACAAA	ATCACTACAA	2340
	TAGCCTAGTG	CTTTTTTGGA	AGCCTTTTTA	GGGAAGAATG	TTAGGTTCAT	GGTAACTAGT	2400
25	ATGCTCTTTG	AGATTTTTAC	AGTGTTGAAA	CTTAAGAATT	TTGAGAGGGT	GAGGAGGCTT	2460
	GTTCAGAATC	TAAATTACAG	ATAGATGATT	GITTCTTGTG	AATTIGTTIC	TTTTCCTTTT	2520
30	TTTTTGTCCC	TACCATTTCC	TTACATTICC	CTTGGGGCCC	ATCTCTGGCT	CCTTGCTTTT	2580
50	TGTTTCTTGC	TTTGCTTTAT	CAGTTCATTC	CAGCTCCCTG	TTAGTGAAGG	ACACTGCTGT	2640
	TAGTGAAGGA	ACAAAGTCTA	TGAGTCCTAA	aattitaagt	CAAAGAAAAC	TGCTCTGTTT	2700
35	CCCCTTTAGT	AACACTTCTG	AAGAGGAAAA	ACTTCAATAG	CCAAAGTTAA	TAATCCTATA	2760
	TAATAATTGC	TTTGGCTTTC	ACCTAAAATT	CTGGGCATCA	CAATTTCCTT	GGGATAGAGG	2820
40	TTGTGTTGGG	GAATAGATTG	CTTATTGCTG	TTCACTGGAG	AGAAAAGGTA	GIGITITIGI	2880
.0	ACAAGGTCAT	ACCGCCAGAA	GCCCCAAATC	CTATTTTGGC	TCATCTTCAG	GTAAAGAGTA	2940
	ATTCCTATCC	TGTGTGCCTC	AGAAGCTAGA	ATCGAAGGCT	TACCCTATTC	ATTGTTTATT	3000
45	GTCAGAAATG	CATGATGGCT	CTTGGAAAGA	ATGACGTTTT	GCTGGAAAAA	AAAAAAARAA	3060
	CMGTTTGTGT	TTCACAAACA	TGGCTTATCA	ATTTTTCAA	AGAATTCTTT	TTTCCCAAAA	3120
50	AGAGGAGTAA	CAAAATGTCA	TTTCTGAAAG	AGGCTTACTT	TATACCAACT	AGTGTCAGCA	3180
50	TTTGGGATGC	CAGGGAACAG	AGAGTGAGAC	ACCTACAATC	ACCAGTCTCA	AATGCGCTAT	3240
	TGTTTCTTTT	CAGAGTGTTG	CAGATTTGCC	ATTTCTCCAT	AATATGGGGA	TAGAAAATGG	3300
55	AATAAAGATA	GAAGGGATGT	AGAATATGCT	TTCCTGCCAA	CATGGTTTGG	AGTCGACTTT	3360
	GGTATATTGA	CTAGATTTGA	AAATACAAGA	TTGATTAGAT	GAATCTACAA	AAAAGTTGTC	3420
60	CTCCTCTCAG	GICCCTTTTA	CACTTTTTGA	CTAACTAGCA	TCTATATTCC	ACACTTAGCT	3480

297

	TTTTTGTCAC ACTTATCCTT TGTCTCCGTA AATTTCATTT GCAGTGGTTA GTCATCAGAT	3540
	ATTITIAGCCA CCTACACAAA AGCAAACTGC ATTITITAAAA ATCTITICTGA GATGGGAGAA	3600
5	AATGTATTCT CCTTTCCTAT ACCGCTCTCC CAACAAAAA ACAACTAGTT AGTTCTACTA	3660
	ATTAGAAACT TGCTGTACTT TTTCTTTTCT TTTAGGGGTC AAGGACCCTC TTTATAGCTA	3720
0	CCATTIGCCT ACAATAAATT ATTGCAGCAG TITGCAATAC TAAAATATTT TITATAGACT	3780
U	TTATATTTT CCTTTTGATA AAGGGATGCT GCATAGTAGA GTTGGTGTAA TTAAACTATC	3840
	TCAGCCGTTT CCCTGCTTTC CCTTCTGCTC CATATGCCTC ATTGTCCTTC CAGGGAGCTC	3900
15	TITTAATCTT AAAGTTCTAC ATTTCATGCT CTTAGTCAAA TTCTGTTACC TTTTTAATAA	3960
	CTCTTCCCAC TGCATATTTC CATCTTGAAT TGGTGGTTCT AAATTCTGAA ACTGTAGTTG	4020
10	AGATACAGCT ATTTAATATT TCTGGGAGAT GTGCATCCCT CTTCTTTGTG GTTGCCCAAG	4080
20	GTTGTTTTGC GTAACTGAGA CTCCTTGATA TGCTTCAGAG AATTTAGGCA AACACTGGCC	4140
	ATGGCCGTGG GAGTACTGGG AGTAAAATAA AAATATCGAG GTATAGACTA GCATCCACAT	4200
25	AGAGCACTTG AACCTCCTTT GTACCTGTTT GGGGAAAAAG TATAATGAGT GTACTACCAA	4260
	TCTAACTAAG ATTAITATAG TCTGGTTGTT TGAAATACCA TTTTTTTCTC CTTTTGTGTT	4320
30	TTTCCCACTT TCCAATGTAC TCAAGAAAAT TGAACAAATG TAATGGATCA ATTTAAAATA	4380
,0	TITTATTICT TAAAAGCCTT TTTTGCCTGT TGTAATGTGC AGGACCCTTC TCCTTTCATG	4440
	GGAGAGACAG GTAGTTACCT GAATATAGGT TGAAAAGGTT ATGTAAAAAG AAATTATAAT	4500
35	AAAAGGGATA CTTTGCTTTT CAAATCTTTG TTTTCTCTTA TTCTAGGTAA GGCATATTAA	4560
	AAATAAATAT GTAAAGAAGA AAAATAAAAG TIGTCTTCAT GG	4602
10		
	(2) INFORMATION FOR SEQ ID NO: 75:	
	(a) Internation for one and no. 73.	
1 5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1255 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(D) TOLOBOUL ALIGHE	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:	
	CGCGCCCCGG GCCGGCGGGT TTCTCTAACA AATAAACAGA ACCCGCACTG CCCAGGCGAG	60
55	CGTTGCCACT TTCAAAGTGG TCCCCTGGGG GAGCTCAGCC TCATCCTGAT GATGCTGCCA	. 120
	AGGCGCACTT TTTATTTTTA TTTTATTTTT ATTTTTTTT TAGCATCCTT TTGGGGCTTC	180
	ACTCTCAGAG CCAGTTTTTA AGGGACACCA GAGCCGCAGC CTGCTCTGAT TCTATGGCTT	240

GGTTGTTACT ATAAGAGTAA TTGCCTAACT TGATTTTTCA TCTCTTTAAC CAAACTTGTG

300

298

	GCCAAAAGAT	ATTTGACCGT	TTCCAAAATT	CAGATTCTGC	CTCTGCGGAT	AAATATTTGC	360
5	CACGAATGAG	TAACTCCTGT	CACCACTCTG	AAGGTCCAGA	CAGAAGGTTT	TGACACATTC	420
	TTAGCACTGA	ACTCCTCTGT	GATCTAGGAT	GATCTGTTCC	CCCTCTGGAT	GAACATCCTC	480
	TGATGATCAA	GGCTCCCAGC	AGGCTACTTT	GAAGGGAACA	ATCAGATGCA	AAAGCTCTTG	540
10	GGTGTTTATT	таааатаста	GTGTCACTTT	CTGAGTACCC	GCCGCTTCAC	AGGCTGAGTC	600
	CAGGCCTGTG	TGCTTTGTAG	AGCCAGCTGC	TTGCTCACAG	CCACATTTCC	ATTTGCATCA	660
15	TTACTGCCTT	CACCTGCATA	GTCACTCTTT	TGATGCTGGG	GAACCAAAAT	GGTGATGATA	. 720
	TATAGACTTT	ATGTATAGCC	ACAGTTCATC	CCCAACCCTA	GICTTCGAAA	TGTTAATATT	780
	TGATAAATCT	AGAAAATGCA	TTCATACAAT	TACAGAATTC	AAATATTGCA	AAAGGATGTG	840
20	TGTCTTTCTC	CCCGAGCTCC	CCTGTTCCCC	TTCATTGAAA	ACCACCACGG	TGCCATCTCT	900
	TGTGTATGCA	GGGCTATGCA	CCTGCAGGCA	CGTGTGTATG	CACTCCCCGC	TIGIGITTAC	960
25	ACAAGCTGTG	GGGTGTTACG	CATGCCTGCT	TTTTTCACTT	AATAATACAG	CTTGGAGAGA	1020
	TTTTTGTATC	ACATTATAAA	TCCCACTCGC	TCTTTTTGAT	GGCCACATAA	TAACTACTGC	1080
	ATAATATGGA	TACGCCTTAT	TTGATTTAAC	TAGTTCCCTA	ATGATGGACT	TTTAAGTTGT	1140
30	TTCCTTTTTT	TITCTTTTTT	GCTACTGCAA	ACGATGCTAT	AATAAATGTC	CTTATCAAAA	1200
	АААААААА	АААААААА	AAAAAANCCC	NGGGGGGGG	CCCCGGGAAC	NCAAT	1255
35							
	(2) INFORMA	TION FOR SE	O ID NO: 76	i :			
		SEQUENCE CH	_				
10	,	(A) LENC	GTH: 475 bas E: nucleic a	se pairs			
		(C) STRA	ANDEDNESS: O	double			
15	(xi)	SEQUENCE I			. 76.		
	GGCACGAGAG			-		Стистисти	. 60
						CCTGCATAAT	120
50	CACAGCTATG						180
	CAAACACTAG						240
55	GTGACTGTTC						300
-		AAATTCAGCC					360
		- I CAGCC	1 ACHUMINCA	MOGINCATOC	CCICITICIT	TICATOCCAT	300

CTCTTTTGCA CTCTCAGGTG GAAATATTTT GAAGTGTTTT ATAATCATAA GTTCTTGTGA

60

	AACCTAACAA GATTATCCCT TCCTAAGAAT ACTTAACCTT CCTACCAAAT TAAAA	475
5	(2) INFORMATION FOR SEQ ID NO: 77:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 465 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
	TTCTCTCTGC TCTTCGACTG CACCGCACTC GCGCGTGACC CTGACTCCCC CTAGTCAGCT	60
	CAGCGGTGCT GCCATGGCGT GGCGGCGCGC CGAACCRGCG TCGGGGCTCG CGGCGTGTTG	120
20	GCTCTGGCGT TGCTCGCCCT GGCCCTGTGC GTGCCCGGGG CCCGGGGGCCG GGCTCTCGAG	180
	TEGTTCTCGG CCGTGGTAAA CATCGAGTAC GTGGACCCGC AGACCAACCT GACGGTGTGG	240
25	AGCGTCTCGG AGAGTGGCCG CTTCGGCGAC AGCTCGCCCA AGGAGGGCGC GCATGGCCTG	300
23	GTGGGCGTCC CGTGGGCGCC CGGCGGAGAM CTCGARGGCT KCGCGCCCCGA CACGCGCTTC	360
	TTCGTGCCCG AGCCCGGCGG CCGAGGGGCC GCGCCCTGGG TCGCCCTGGT GGTCGTGGGG	420
30	GCTGCACCTT TCAAGGACAA AGTGCTGGTG GCGGCGCNGA ANGAA	465
35	(2) INFORMATION FOR SEQ ID NO: 78:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1907 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:	
73	ACATGCAGCC CAACTACAGA TTCTTATGGA ATTCCTCAAG GTTGCAAGAA GAAATAAGAG	60
	AGAGCAACTG GAACAGATCC AGAAGGAGCT AAGTGTTTTG GAAGAGGATA TTAAGAGAGT	120
50	GGAAGAATG AGTGCCTTAT ACTCTCCTGT CAGTGAGGAT AGCACAGTGC CTCAATTTGA	180
	AGCTCCTTCT CCATCACACA GTAGTATTAT TGATTCCACA GAATACAGCC AACCTCCAGG	240
	TTTCAGTGGC AGTTCTCAGA CAAAGAAACA GCCTTGGTAT AATAGCACGT TAGCATCAAG	300
55	ACGAAAACGA CTTACTGCTC ATTTTGAAGA CTTGGAGCAG TGTTACTTTT CTACAAGGAT	360
	GTCTCGTATC TCAGATGACA GTCGAACTGC AAGCCAGTTG GATGAATTTC AGGAATGCTT	420
60	GTCCAAGITT ACTCGATATA ATTCAGTACG ACCTTTAGCC ACATTGTCAT ATGCTAGTGA	480

	TCTCTATAAT	GGTTCCAGTA	TAGTCTCTAG	TATTGAATTT	GACCGGGATT	GTGACTATTT	540
	TGCGATTGCT	GGAGTTACAA	AGAAGATTAA	AGTCTATGAA	TATGACACTG	TCATCCAGGA	600
5	TGCAGTGGAT	ATTCATTACC	CTGAGAATGA	AATGACCTGC	AATTCGAAAA	TCAGCTGTAT	660
	CAGTTGGAGT	AGTTACCATA	AGAACCTGTT	AGCTAGCAGT	GATTATGAAG	GCACTGTTAT	720
10	TTTATGGGAT	GGATTCACAG	GACAGAGGTC	AAAGGTCTAT	CAGGAGCATG	AGAAGAGGTG	780
	TTGGAGTGTT	GACTTTAATT	TGATGGATCC	TAAACTCTTG	GCTTCAGGTT	CTGATGATGC	840
	AAAAGTGAAG	CTGTGGTCTA	CCAATCTAGA	CAACTCAGTG	GCAAGCATTG	AGGCAAAGGC	900
15	TAATGTGTGC	TGTGTTAAAT	TCAGCCCCTC	TTCCAGATAC	CATTTGGCTT	TCGGCTGTGC	960
	AGATCACTGT	GTCCACTACT	ATGATCTTCG	TAACACTAAA	CAGCCAATCA	TGGTATTCAA	1020
20	AGGACACCGT	AAAGCAGTCT	CTTATGCAAA	GTTTGTGAGT	GGTGAGGAAA	TTGTCTCTGC	1080
	CTCAACAGAC	AGTCAGCTAA	AACTGTGGAA	TGTAGGGAAA	CCATACTGCC	TACGTTCCTT	1140
	CAAGGGTCAT	ATCAATGAAA	AAAACTTTGT	AGGCCTGGCT	TCCAATGGAG	ATTATATAGC	1200
25	TTGTGGAAGT	GAAAATAACT	CTCTCTACCT	GTACTATAAA	GGACTITCTA	AGACTTTGCT	1260
	AACTTTTAAG	TTTGATACAG	TCAAAAGTGT	TCTCGACAAA	GACCGAAAAG	AAGATGATAC	1320
30	AAATGAATTT	GTTAGTGCTG	TGTGCTGGAG	GGCACTACCA	GATGGGGAGT	CCAATGTGCT	1380
	GATTGCTGCT	AACAGTCAGG	GTACAATTAA	GCTGCTAGAA	TTGGTATGAA	GGGTTAACTC	1440
	AAGTCAAATT	GTACTTGATC	CTGCTGAAAT	ACATCTGCAG	CTGACAATGA	GAGAAGAAAC	1500
35	AGAAAATGTC	ATGTGATGTC	TCTCCCCAAA	GTCATCATGG	GITTTGGATT	TGTTTTGAAT	1560
	ATTTTTTCT	TTTTTTCTT	TCCCTCCTTT	ATGACCTTTG	GGACATTGGG	AATACCCAGC	1620
40	CAACTCTCCA	CCATCAATGT	AACTCCATGG	ACATTGCTGC	TCTTGGTGGT	GTTATCTAAT	1680
	TTTTGTGATA	GGGAAACAAA	TTCTTTTGAA	ТААААТААА	TAACAAAACA	ATAAAAGTTT	1740
	ATTGAGCCAC	AGTTGAGCTT	GGAAAGTTTT	TGTCAAATGC	NGCAAGAGAT	AACTCTTTTT	1800
45	ANGAAGTAGC	ATATGTGAAC	TATAATGTAA	CAGTGAATAA	TTTGTAAAGT	TCGTATTTCC	1860
	CAACCTCTTT	GGGAATTACA	CATATCAATA	TAAACAAAAT	ATAAAGT		1907

- (2) INFORMATION FOR SEQ ID NO: 79:
- (i) SEQUENCE CHARACTERISTICS: 55
 - (A) LENGTH: 1168 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

301

	GCTGGGGTGT	CCCCKCSGCC	ACCATCGTCA	TCGCTTACTT	GATGAAGCAC	ACTCGGATGA	60
5	CCCATGACTG	ATGCTTATAA	ATTIGTCAAA	GGCAAACGAC	CAATTATCTC	CCCAAACCTT	120
3	AACTTCATGG	GGCAGTTGCT	AGAGTTCGAG	GAAGACCTAA	ACAACGGTGT	GACACCGAGA	180
	ATCCTTACAC	CAAAGCTGAT	GGCGTGGAG	ACGGITGTGT	GACAATGGTC	TGGATGGAAA	240
10	GGATTGCTGC	TCTCCATTAG	GAGACAATGA	GGAAGGAGGA	TGGATTCTGG	TTTTTTTTCT	300
	TICTITITIT	TTTTGTAGTT	GGGAGTAAGT	TTGTGAATGG	AAACAAACTT	GTTTAAACAC	360
15	TTTATTTTTA	ACAAGTGTAA	GAAGACTATA	ACTTTTGATG	CCATTGAGAT	TCACCTCCCA	420
15	CAAACTGACA	AATTAAGGAG	GTTAAAGAAG	TAATTTTTTT	AAGCCAACAA	ТАААААТАТА	480
	ATACAACTTG	TTTCTCCCCC	TTTTCCTTTT	AAGCTATTTG	TAGAGTTTAT	GACTAAATAG	540
20	TCTGTGCAGG	TTCATAGACC	GAAGATACTA	CACACTTTAA	ACCAATTAAA	AAGAACCAAA	600
	AGTAAATAGA	AAAGACATTG	AATCACCAAG	GCCTGGGATC	AACCTGGGCT	GTCCACACAG	660
25	AAAACAAAAA	CCCAACCAAA	CCAAGCCCTG	TTGTGCTCAC	TGGTGCAAAG	AGAAGATCAG	720
	GGCAGCTTAA	GTGGTCTAAG	RATCCTTCAG	GCATTCTTTA	AGGAGAAAAA	GGATACCTIT	780
	GATTTTGTGT	GTTTCATGCT	CTGGATTTT	TTTTTTTTC	CTTCTCTGGG	TTTAAGAGAT	840
30	TTTTTTTGAA	ATAGTGAGGA	ACTGACCATT	ATATGCCTTC	ACTGGCTTCT	TGTGCAATAA	900
	TATGATGTTT	TAAGTGTGCA	AACAAGTTAG	AGCTGGCAGC	TGAATGATAG	ACAAATAGTG	960
35	CAAATTTGCC	AGCTTGGAGA	TAGAAAGGAA	TTCAACAATA	TATCAAATAC	TTTCCTTCCC	1020
	ACCTTTTTCC	TTTTTTTTT	TTTTTTCTGA	TTTGATTCTG	GTTACAGTGC	CATAAACCTT	1080
	GTTACATATG	TATATCAGAA	TGTAAGAAAA	TATTTAAAAA	TATAAAATT	TTTTCGCAAA	1140
40	AMMAAAAAA	AAAAACTCGA	GGGGGGCC				1168
45	(2) INFORM	ATION FOR SE	Q ID NO: 80):			
	(i)	SEQUENCE CH					
50		(B) TYP (C) STR	GTH: 1285 b E: nucleic a ANDEDNESS: O DLOGY: line	acid double			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:

AGAAAATCAC ATCCTAACAA AGAAGTCTGT CTAAGACAGT ACATCTCCTG TTGAACTTGC

ATCTTTCCAC AGGACTITCT GTTTTTAGGG ATGAGACTAT TCTCTGCTTC ATCAAGGAAA

GAGAAATGTT CAGGGTTGTA GGGATGGCAC ACTTATTAGT TCTGCCTGTC TGAAAGGTTC

60

120

180

55

	CTGCAGGACA	GTTTGGTCAG	AGCTGCAATT	CTTAGTCCAT	GGTCTAATGC	TTGAGTATCT	240
	CTTCTTTCCC	TTTCCTGTCT	CAGGAATCAG	CTGAGAATTC	ATTCGATTGT	CATGCCTCTA	300
5	GCCCCTTACT	GTGATTTGTT	GGTTGCACTT	TCATTTGCTT	TAGTTCTAGA	ATCACCTGTT	360
	GACTCCTCAG	ACTTCACCTA	ACTTTGGAAA	CTCTCTTTTG	GAGGCTTCTC	ATTTCCCCCT	420
10	AATTCTGTGC	TGCCTGAGCC	CTAGAATTTT	CCCACCAACG	AATTATTCCA	GGTAGATCCT	480
10	AAGTTGCTGG	ATCTAGTTGA	TATTTAAACA	ATATCTAGTT	GATATTTCTC	ATTCAGTTGG	540
	ATCCAGAAAC	CAGTATCTCT	NAAAAACAAC	CTCTCATACC	TTGTGGACCT	AATTTTGTGT	600
15	GCGTGTGTGT	GTGCGCGCAT	ATGTATATAG	ACAGGCACAT	CTTTTTTACT	TTTGTAAAAG	660
	CTTATGCCTC	TTTGGTATCT	ATATCTGTGA	aagttttaat	GATCTGCCAT	AATGTCTTGG	720
20	GGACCTTTGT	CTTCTGTGTA	AATGGTACTA	GAGAAAACAC	CTATATTATG	AGTCAATCTA	780
20	GTTGGTTTTA	TTCGACATGA	AGGAAATTTC	CAGATAACAA	САСТААСААА	CTCTCCCTTG	840
	ACTAGGGGGA	CAAAGAAAAG	CAAAACTGAC	CATAAAAAAC	AATTACCTGG	TGAGAAGTTG	900
25	CATAAACAGA	ATTAGGTAGT	ATATTGAAGA	CAGCATCATT	AAACAGTTAT	GITGITCICC	960
	TTGCAAAAAA	CATGTACTGA	CTTCCCGTTG	AGTAATGCCA	AGTTGTTTTT	TTTATTATAA	1020
30	AACTTGCCCT	TCATTACATG	TTTCAAAGIG	CTCTCCTCCC	CCAAAATATT	GAAATGATGG	1080
50	AACTGACTGA	TAAAGCTGTA	CAAATAAGCA	GTGTGCCTAA	CAAGCAACAC	AGTAATGTTG	1140
	ACATGCTTAA	TTCACAAATG	CTAATTTCAT	TATAAATTGT	TTTGCTAAAA	TACACTTTGA	1200
35	AACTATTTT	CTGTATTCCA	AGAGCTGAGA	TCTTAGATTT	TATGTAGTAT	TAAGTGAAAA	1260
	AATACGAAAA	ТААТАААСАТ	TGAAG				1285
40							
10	(2) TNEODM	ATION FOR SE	EO TO NO. 91	١.			
			-				
45	(1)	SEQUENCE CI	GTH: 1290 b				
			E: nucleic ANDEDNESS:				
			OLOGY: line				
50	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 81:		
	TCTCCAGCCC	CAATTTCTAC	GCGCACCGGA	AGACGGAGGT	сстстттсст	TGCCTAACGC	60
55	AGCCATGGCT	CGTGGTCCCA	AGAAGCATCT	GAAGCGGGTG	GCAGCTCCAA	AGCATTGGAT	120
"	GCTGGATAAA	TTGACCGGTG	TGTTTGCTCC	TCGTCCATCC	ACCGGTCCCC	ACAAGTTGAG	180
	AGAGTGTCTC	CCCTCATCA	TTTTCCTGAG	GAACAGACTT	AAGTATGCCC	TGACAGGAGA	240
60	ТСААСТАААС	ል ስር ልጥተተርርር ል	ጥር-ልር-ርር-	СУПТОВОВОТО	CATCCCAACC	тессалется	300

303

	TATAACCTAC CCTGCTGGAT TCATGGATGT CATCAGCATT GACAAGACGG GAGAGAATTT	360
5	CCGTCTGATC TATGACACCA AGGGTCGCTT TGCTGTACAT CGTATTACAC CTGAGGAGGC	420
J	CAAGTACAAG TIGTGCAAAG TGAGAAAGGAT CTTTGTGGGC ACAAAAGGAA TCCCTCATCT	480
	GGTGACTCAT GATGCCCGCA CCATCCGCTA CCCCGATCCC CTCATCAAGG TGAATGATAC	540
10	CATTCAGATT GATTTAGAGA CTGGCAAGAT TACTGATTTC ATCAAGTTCC ATTCACCCAG	600
	CCAGGTGGTC TCGTCACCTC AGAGGCTCCG CAGACTCCTG CCCAGGCCAG GACTGAGGCA	660
15	AGCCTCAAGG CACTTCTAGG ACCTGCCTCT TCTCACCAAG ATGAACTCAC TGGTTTCTTG	720
13	GCAGCTACTG CTTTTCCTCT GTGCCACCCA CTTTGGGGAG CCATTAGAAA AGGTGGCCTC	780
	TGTGGGGAAT TCTAGACCCA CAGGCCAGCA GCTAGAATCC CTGGGCCTCC TGGCCCCSGG	840
20	GGAGCAGAGC CTGCCGTGCA CCGAGAGGAA GCCAGCTGCT ACTGCCAGGC TGAGCCGTCG	900
	GGGACCTCG CTGTCCCCGC CCCCCGAGAG CTCCGGGAGC CCCCAGCAGC CGGGCCTGTC	960
25	CGCCCCCAC AGCCGCCAGA TCCCCGCACC CCAGGGCGCG GTGCTGGTGC AGCGGGAGAA	1020
23	GGACCTGCCG AACTACAACT GGAACTCCTT CGGCCTGCGC TTCGGCAAGC GGGAGGCGGC	1080
	ACCAGGGAAC CACGGCAGAA GCGCTGGGCG GGGCTGAGGG CGCAGGTGCG GGGCAGTGAA	1140
30	CTTCAGACCC CAAAGGAGTC AGAGCATGCG GGGCGGGGGC GGGGGGGGGG	1200
	TAAGGGAGGG GGCGCTGGAG CTTCCAACCC GAGGCAATAA AAGAAATGTT GCGTAACTCA	1260
35	AAAAAAAAA AAAAAAAANC TCGGGGGGGG	1290
40	(2) INFORMATION FOR SEQ ID NO: 82:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 684 base pairs(B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:	
50	TITATIGIAT ICIGIAACTA TAGAACTICT ATTIWATICT TITIIGGACT IGCTAAGTIG	60
50	TCTTIWATGG TTTTWAGTTC CATGCTGAAG TTTTCAGTAT TGACTTATCC CCTTGAACAT	120
	GAGTTGTTTT ATAGACTCTR ATGATTCAAA AATCTTACAT CTTTTGGTAG TCTCTTTCAT	180

TTGTYCACTG TTTCTGTTGA TTCTWACTCA TGGTATTTTA ATTCTTCGTT WTTTTTTTC

TGTTWAGAWA CATTCTTTGA AAAATAATTT GGAGGAATAT TTGATTCTTA TGAACAAGGC

ATTACTCACC AGAGAAGATT TTTTTGTTYT ACCARGTGCC TARGAATGCT AACAGTCTGG

240

300

360

55

	304	
	GAMCACATAG AMCACCAGGT GATGAGACAA TCCTGGGART CCTGTTTTAC TTTGGSCCAT	420
	CTTTTCTCCC AACCCTGTGG GAATARTCAT YCATATCCTA RCTGCAGGCT ARAAGGTGGT	480
5	TTATCAGAGC CCAACTTCGA GGGCTCTGGG CTTTAGCTAC TGTCACCCCA TCATAACTGA	540
	GCTTCATGGA TIGATTCTCT TTTTATCTTT CAGATTTTCT TTTAAAAATC TTTGTTTTTT	600
10	TTTTTCTTCC GAAAGATTCC CCCAACATTA CCATTCCCCA CCTTCCGTTG AATTTTTTTTG	660
10	GCTCTCATTT TGAATTTTTC AAGA	684
15	(2) INFORMATION FOR SEQ ID NO: 83:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2024 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:	
23	CTGCAGGAAT TCGGCACAGC TGCGCTGGAG GCTTCATCTT TGCCGCCGCT GCCGTCGCCT	60
	TCCTGGGATT GGAGTCTCGA GCTTTCTTCG TTCGTTCGYC GGCGGGTTCG CGCCCTTCTC	120
30	CCCCCTCGGG GCTGCGAGGC TGGGGAAGGG GTTGGAGGGG GCTGTTGATC GCCGCGTTTA	180
	AGTTGCGCTC GGGGCGGCCA TGTCGGCCGG CGAGGTCGAG CGCCTAGTGT CGGAGCTGAG	240
25	CGGCGGGACC GGAGGGGATG AGGAGGAAGA GTGGCTCTAT GGCGATGAAA ATGAAGTTGA	300

35 AAGGCCAGAA GAAGAAAATG CCAGTGCTAA TCCTCCATCT GGAATTGAAG ATGAAACTGC 360 TGAAAATGGT GTACCAAAAC CGAAAGTGAC TGAGACCGAA GATGATAGTG ATAGTGACAG 420 40 CGATGATGAT GAAGATGATG TTCATGTCAC TATAGGAGAC ATTAAAACGG GAGCACCACA 480 GTATGGGAGT TATGGTACAG CACCTGTAAA TCTTAACATC AAGACAGGGG GAAGAGTTTA 540 TGGAACTACA GGGACAAAAG TCAAAGGAGT AGACCTTGAT GCACCTGGAA GCATTAATGG 600 45 AGTTCCACTC TTAGAGGTAG ATTTGGATTC TTTTGAAGAT AAACCATGGC GTAAACCTGG 660 TGCTGATCTT TCTGATTATT TTAATTATGG GTTTAATGAA GATACCTGGA AAGCTTACTG 720 50 TGAAAAACAA AAGAGGATAC GAATGGGACT TGAAGTTATA CCAGTAACCT CTACTACAAA 780 TAAAATTACG GTACAGCAGG GAAGAACTGG AAACTCAGAG AAAGAAACTG CCCTTCCATC 840 TACAAAAGCT GAGTTTACTT CTCCTCCTTC TTTGTTCAAG ACTGGGCTTC CACCGAGCAG 900 55 GAGATTACCT GGGGCAATTG ATGTTATCGG TCAGACTATA ACTATCAGCC GAGTAGAAGG 960 CAGGCGACGG GCAAATGAGA ACAGCAACAT ACAGGTCCTT TCTGAAAGAT CTGCTACTGA 1020

AGTAGACAAC AATTTTAGCA AACCACCTCC GTTTTTCCCT CCAGGAGCTC CTCCCACTCA

1080

WO 98/39448

PCT/US98/04493

CCTTCCACCT CCTCCATTTC TTCCACCTCC TCCGACTGTC AGCACTGCTC CACCTCTGAT 1140 TCCACCACCG GGTTTTCCTC CTCCACCAGG CGCTCCACCT CCATCTCTTA TACCAACAAT 1200 AGAAAGTGGA CATTCCTCTG GTTATGATAG TCGTTCTGCA CGTGCATTTC CATATGGCAA 1260 TGTTGCCTTT CCCCATCTTC CTGGTTCTGC TCCTTCGTGG CCTAGTCTTG TGGACACCAG 1320 CAAGCAGTGG GACTATTATG CCAGAAGAGA GAAAGACCGA GATAGAGAGA GAGACAGAGA 1380 CAGAGAGCGA GACCGTGATC GGGACAGAGA AAGAGAACGC ACCAGAGAGA GAGAGAGGGA 1440 GCGTGATCAC AGTCCTACAC CAAGTGTTTT CAACAGCGAT GAAGAACGAT ACAGATACAG 1500 GGAATATGCA GAAAGAGGTT ATGAGCGTCA CAGAGCAAGT CGAGAAAAAG AAGAACGACA 1560 TAGAGAAAGA CGACACAGGG AGAAAGAGGA AACCAGACAT AAGTCTTCTC GAAGTAATAG 1620 TAGACGTCGC CATGAAAGTG AAGAAGGAGA TAGTCACAGG AGACACAAAC ACAAAAAAATC 1680 TAAAAGAAGC AAAGAAGGAA AAGAAGCGGG CAGTGAGCCT GCCCCTGAAC AGGAGAGCAC 1740 CGAAGCTACA CCTGCAGAAT AGGCATGGTT TTGGCCTTTT GTGTATATTA GTACCAGAAG 1800 TAGATACTAT AAATCTTGTT ATTTTTCTGG ATAATGTTTA AGAAATTTAC CTTAAATCTT 1860 GTTCTGTTTG TTAGTATGAA AAGTTAACTT TTTTTCCAAA ATAAAAGAGT GAATTTTTCA 1920 TGTTAAGTTA AAAATCTTTG TCTTGTACTA TTTCAAAAAT AAAAAGACAG CAATGACTTT 1980 ATATCCAAAA AAAAAAAAA AAAAAAAAA AAAAAAGGGC GGCC 2024

305

35

40

50

55

60

30

5

10

15

20

25

(2) INFORMATION FOR SEQ ID NO: 84:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 931 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

CGCGCCMATA GCCGGACGGG GATCTGAGCT GGCAGGATGA ATGTGGGGGT GGCACACAGC 60
GAAGTAAACC CCAACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACATCATC 120
TTGGTAGGAT TGCTGCATAT GGTTCTACTC AGCATCCCCT TCTTCAGCAT TCCTGTTGTC 180
TGGACCCTGA CCAACGTCAT CCATAACCTG GCTACGTATG TCTTCCTTCA TACGGTGAAA 240
GGGACACCCT TTGAGGACTCC TGACCAAGGA AAGGCTCGGC TACTGACACA CTGGGAGCAA 300
ATGGACTATG GGCTCCAGTT TACCTCTTCC CGCAAGTTCC TCAGCATCTC TCCTATTGTG 360
CTCTATCTCC TGGCCAGCTT CTATACCAAG TATGATGCTG CGCACTTCCT CATCAACACA 420

	GCCTCATTGC TAAGTGTACT GCTGCCGAAG TTGCCCCAGT TCCATGGGGT TCGTGTCTTT	480
	GGCATCAACA AATACTGAGG GATGGGTTTT GGGACAGCTC CATGGGCATG GGGAAGGCAC	540
5	TGAAACAGAG GACTATAAAA CATCCTTCTC TTATTCTCCA TACTGTCTTC TACACCTTTA	600
	AAGCCTGAGA ACTATACAAC CTTTCCCAGA CTCCCAAGAA GAGAAGAGAT TGGCAAATGG	660
10	GGCTCCTGGG CCCAGTCCTG CTAGTGGCAA GTTTCTTTGA ATCAGGAAGG CAGGTGAGGT	720
10	AAGGGCCAAA TCACTCTCCT CCATAGCAGG AAGCCATTTG GGCAGCTCCT TTGGTGATTA	780
	CATCTTTCCA TATCTTTTAC ACTTACCACC TTCCAGCTCT GTTTTGCTGT GTATTTTTCT	840
15	TACAATAATT TTTTTCAGCT ATAGCTGCAG TTTAATCAGG ATGGGTAGAG AGCTGTCCTC	900
	ATAAGGCTGG GGGTGGGAAG ATGGAATACT G	931
20		
20		
	(2) INFORMATION FOR SEQ ID NO: 85:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:	
	CGGGGCCGGC GGGGTCTTCA GGGTACCGGG CTGGTTACAG CAGCTCTACC CCTCACGACG	60
35	CAAACATGGC AGCGCAGAAG GACCAGCAGA AAGATGCCGA GGCGGAAGGG CTGAGCGGCA	120
	CGACCCTGCT GCCGAAGCTG ATTCCCTCCG GTGCAGGCCG GGAGTGGCTG GAGCGGCGCC	180
	GCGCGACCAT CCGGCCCTGG AGCACCTTCG TGGACCAGCA GCGCTTCTCA CGGCCCCGCA	240
40	ACCTOGGAGA GCTGTGCCAG CGCCTCGTAC GCAACGTGGA GTACTACCAG AGCAACTATG	300
	TGTTCGTGTT CCTGGGCCTC ATCCTGTACT GTGTGGTGAC GTCCCCTATG TTGCTGGTGG	360
45	CTCTGGCTGT CTTTTTCGGC GCCTGTTACA TTCTCTATCT GCGCACCTTG GAGTCCAAGC	420
	TTGTGCTCTT TGGCCGAGAG GTGAGCCCAG CGCATCAGTA TGCTCTGGCT GGAGGCATCT	480
	CCTTCCCCTT CTTCTGGCTG GCTGGTGCGG GCTCGGCCGT CTTCTGGGTG CTGGGAGCCA	540
50	CCCTGGTGGT CATCGGCTCC CACGCTGCCT TCCACCAGAT TGAGGCTGTG GACGGGGAGG	600
	AGCTGCAGAT GGAACCCGTG TGAGGTGTCT TCTGGGACCT GCCGGCCTCC CGGGCCAGCT	660
55	GCCCCACCCC TGCCCATGCC TGTCCTGCAC GGCTCTGCTG CTCGGGCCCA CAGCGCCGTC	720
	CCATCACAAG CCCGGGGAGG GATCCCGCCT TTGAAAATAA AGCTGTTATG GGTGTCATTC	780
	AGGAAAAAA AAAAAAAAGG GGGCCCCTC TAGGGGTCAA AGTTA	825

60

(2) INFORMATION FO	OR SEQ	ID	NO:	86:
--------------------	--------	----	-----	-----

5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1238 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 10

15

20

25

30

35

40

45

50

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

CATGTAAAAG GATGAAATGT GACTTCTGGT GTTTTTTTAT TTCTATGGAG GGACTTTCTG GGGACGGTTT CTGGCTCTCA GGCTCTGAGA AGCTGCAGTT TATGAGTGGC TCTGTGTGTG 120 CTGCCACCTA CTGGAGAAGC CATAAGCTGC AGCTTTAGGA AAAGGGAACC CGGGGCAGAG 180 TGTGGGGAAG TGGGATGGCA GCATGGCAGG GCTTTGGAAA ATGAGAGGTG AGAGTKTKTC 240 CAGGAAGGT GTAAGGAGAG GATGGATCCT GATACATGGA TTCAGGATCA TTAGGGTCCT 300 GTCTGGGACA CTGGCCTTCC TGCTTACCTG CTCTTTCCTT CCTCCTTGGT CGGAGGAGGG 360 GCTGGCTCAC TGCTCTGGCT TCATTTTCCA GAGCTGCCTG CTGCAGTCAC ACTTAGGTCA 420 TCTTCTCA CTTTTCTCCT TTTGCCGATT AGTGGACGTG ACAGAGATGT GAATGGGGCA 480 GGGATGTCCT TTGATGGCAT CAAGACTTTA GCTTCTGGTG CGCTGTGTCC CAGCTCTGAT 540 TTCAGTTGCA GCCGTGATGG AMAGTTNGCA TGGAAGCTGA GACTCTCACT GACAGTGAAA 600 CCCTCAAATG AACACAATCC CTGCTTTCCT GCCAAGGATC CTTGTAGGGT NCCCCCAGCT 660 TCCCCACITT TTTTCTGTGT CCTGACAAAG AAACACAGAG TAACTTGATT GCCCTGTGAC 720 CTGGCCAGTT GCATTTCCCC TGCAGGCTTG AGCCCAAGCC AGAGCCTTGA AAAGGTATTC 780 AGGTTGTTGC CCAAAACACT GAAAAAAACT GCCCTGGCCC TGAACCAAAT ACCTTGAACC 840 CTCGTAAACT CCATACCCTG ACCCCCTTGT TTTGGATATA CCCAGGTAGA ACAACTCTCT 900 CTCACTGTCT GTTGTGAGGA TACGCTGTAG CCCACTCATT AAGTACATTC TCCTAATAAA 960 TGCTTTGGAC TGATCACCCT GCCAGTCTTT TGTCTTGGGC AATCTATACT TTTNCTCAGA 1020 GGTTCCCAAG GCCTACTGAA GGGACTTAAC ATACTCTTAA TGGCTTTCCT CTCTCTTGTT 1080 TTACCTTATG CCCTCACTTC CTGAGTTAAC CTCCCAAATA CAGGATTCAC CTGTACCCAA 1140 GCCCTTAGCT TCAAGAATAC AGGATCACCT GTACCCAAGC CCTTAGCTCA AGCTCTGCTT 1200 TGGAAGAACC CAAACTAAGA CAGTGCTCCT GGTGCCCT 1238

(2) INFORMATION FOR SEQ ID NO: 87:

60 (i) SEQUENCE CHARACTERISTICS:

308

(A) LENGTH: 1460 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:

		-		-			
	ATTGCCTTCT	GGTCCCTGGT	GACACTGGGG	TCATCCTTCA	TCCCCGGAGA	GCATTTCTGG	60
10	CTGCTCCTCC	TGACCCGGGG	CCTGGTGGGG	GTCGGGGAGG	CCAGTTATTC	CACCATCGCG	120
	CCCACTCTCA	TTGCCGACCT	CTTTGTGGCC	GACCAGCGCG	ACCGGATGCT	CAGCATCTTC	180
15	TACTTTGCCA	TTCCGGTGGG	CAGTGGTCTG	GGCTACATTG	CAGGCTCCAA	AGTGAAGGAT	240
13	ATGGCTGGAG	ACTGGCACTG	GGCTCTGAGG	GTGACACCGG	GTCTAGGAGT	GGTGGCCGTT	300
	CTGCTGCTGT	TCCTGGTAGT	GCGCGAGCCG	CCAAGGGGAG	CCGTGGAGCG	CCACTCAGAT	360
20	TTGCCACCCC	TGAACCCCAC	CTCGTGGTGG	GCAGATCTGA	GGGCTCTGGC	AAGAAATCCT	420
	AGTTTCGTCC	TGTCTTCCCT	GGGCTTCACT	CCTCTCCCCT	TTGTCACGGG	CTCCCTGGCT	480
25	CTGTGGGCTC	CGGCATTCCT	GCTGCGTTCC	CCCCTCCTCC	TTGGGGAGAC	CCCACCCTGC	540
23	CTTCCCGGAG	ACTCCTGCTC	TTCCTCTGAC	AGTCTCATCT	TTGGACTCAT	CACCTGCCTG	600
	ACCGGAGTCC	TGGGTGTGGG	CCTGGGTGTG	GAGATCAGCC	CCCCCTCCC	CCACTCCAAC	660
30	CCCCGGGCTG	ATCCCCTGGT	CTGTGCCACT	GCCTCCTGG	GCTCTGCACC	CTTCCTCTTC	720
	CTGTCCCTTG	CCTGCGCCCG	TGGTAGCATC	GTGGCCACTT	ATATTTTCAT	CTTCATTGGA	780
35	GAGACCCTCC	TGTCCATGAA	CTGGGCCATC	GTGGCCGACA	TTCTGCTGTA	CGTGGTGATC	840
	CCTACCCGAC	GCTCCACCGC	CGAGGCCTTC	CAGATCGTGC	TGTCCCACCT	GCTGGGTGAT	900
	GCTGGGAGCC	CCTACCTCAT	TGGCCTGATC	TCTGACCGCC	TGCGCCGGAA	CTGGCCCCCC	960
40	TCCTTCTTGT	CCGAGTTCCG	GGCTCTGCAG	TTCTCGCTCA	TGCTCTGCGC	GTTTGTTGGG	1020
	GCACTGGGCG	GCGCACTTCC	TGGGCACCGC	CATCTTCATT	GAGGCCGACC	ccccccccc	1080
45	ACAGCTGCAC	GTGCAGGGCC	TGCTGCACGA	AGCAGGGTCC	ACAGACGACC	GGATTGTGGT	1140
	GCCCCAGCGG	GGCCGCTCCA	CCCGCGTGCC	CGTGGCCAGT	GTGCTCATCT	GGAGAGGCTG	1200
	CCGCTCACCT	ACCTGCACAT	CTGCCACAGC	TGGCCCTGGG	CCCACCCCAC	GAAGGCCTG	1260
50	GGCCTAAACC	CCTTGGCCTG	GCCCAGCTTC	CAGAGGGACC	CTGGGCCGTG	TGCCAGCTCC	1320
	CAGACACTAC	ATGGGTAGCT	CAGGGGAGGA	GCTGGGGGTC	CAGGAGGGG	ATCCCTCTCC	1380
55	AACAGGGGCA	GCCCCAAGGG	CTCGGTGCTA	TTTGTAACGG	GATTAAAATT	TGTAGCCAGA	1440
23	АААААААА	АААААААА					1460

309

60

120

180

240

780

1200

(2) INFORMATION FOR SEO ID NO: 88:

5

30

35

40

45

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1395 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88: 10 CAGGTGCAAA GTGGGAAGTG TGAGTCCTCA GTCTTGGGCT ATTCGGCCAC GTGCCTGCCG GACATGGGAC GCTGGAGGGT CAGCAGCGTG GAGTCCTGGC CTTTTGCGTC CACGGGTGGG 15 AAATTGGCCA TTGCCACGGC GGGAACTGGG ACTCAGGCTG CCCCCGGCC GTTTCTCATC

GTATTGTCTC CAGATTAAAG GTACGACATT TGGAGGCCCC AGCGAGAAAC GTCACCGGGA 300 20 GAAACGTCAC CGGGCGAGAG CGGKCCCGCT GTGTGCTCCC CCGGAAGGAC AGCCAGCTTG 360 TAGGGGGGAG TGCCACCTGA AAAAAAAATT TCCAGGTCCC CAAAGGGTGA CCGTCTTCCG 420

CGTCCACCGG AYTCGTGGGC GCTCGCACTG GCGCTGATGT AGTTTCCTGA CCTCTGACCC

25 GAGACAGCGG ATCGACTACC ATGTGGGTGC CCACAAAAAT TYCACCTYTG AGTCCTCAAC 480 TGCTGACCCC GGGGTCAGTT CCAGAGAGAA GGACTCCCTC CTGCTTGGAA GAGACCTCAC 540 ACCGTCATCA CGATGCCAAC GGCTCTGAAG GTGGATGGCA TTCCTGCGTG GATTCATCAC 600

TCCCGCATCA AAAAGGCCAA CRGAGCCCAA CTAGAAACAT GGGTCCCCAG GGCTGGGTCA 660 GGCCCCTTAA AACTGCACCT AAGTTGGGTG AAGCCATTAG ATTAATTCTT TTTCTTAATT 720

TGTTATAACT GAGGGAATCA ATGATTTGAT TCCCCAAAAA CACAAGTGGG GAATGTAGTG 840

TTGTAAAACA ATGCATAGCT TCTGTCAACT TATGTATCTT AAGACTCAAT ATAACCCCCT

TCCAACCTGG TTTTTACTAA CCCTGTTTTT AGACTYTCCC TTTCCTTTAA TCACTCAGCC 900 TTGTTTCCAC CTGAATTGAC TCTCCCTTAG CTAAGAGCGC CAGATGGACT CCATCTTGGC 960

TCTTTCNACT GGCAGCCGCT TCCTYCAAGG ACTTAACTTG TGCAAGCTGA CTCCCAGCAC 1020

ATCCAAGAAT GCAATTAACT GATAAGATAC TGTGGCAAGC TATATCCGCA GTTCCCAGGA 1080

ATTCGTCCAA TTGATTACAC CCMAAAGCCC CGCGTCTATC ACCTTGTAAT AATCTTAAAG 1140 CCCCTGCACC TGGAACTATT AACGTTCCTG TAACCATTTA TCCTTTTAAC TTTTTTGCCT

ACTITATITC TGTAAAATIG TTTTAACTAG ACCCCCCTC TCCTTTCTAA ACCAAAGTAT 1260

AAAAGCAAAT CTAGCCCCTT CTTCAGGCCG AGAGAATTTC GAGCGTTAGC CGTCTCTTGG 1320

55 CCACCAGCTA AATAAACGGA TTCTTCATGT GTAAAAAAAA AAAAAAAAA CTCGGAGGGG 1380

GGGCCCGGTA CCCAA 1395

(2) INFORMATION	FOR	SEQ	ID	NO:	89:
-----------------	-----	-----	----	-----	-----

_	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 1186 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:	
	GGCACGAGCC GGCAAGCCGA GCTAGGGTGA AAACTGGGGG CGCACCAGGA TGTNNGACAG	60
15	AAAAGCAGAA GATGAGACTC TGTTCATTCA CTTTTCCTAG GCCCATCCTG TGGTCATCTT	120
	TCCCCCTCCC ATCATACCTC CTCCTTCCTG GAGCCTCTGC CGGCTTGGCT GTAATGGTGG	180
	CACTTACCTG GATATTTCAG TGGGAGGATG AAAGGCGAGA CTCACCCTAC GCGGTGGGAC	240
20	AGATGGGGAG AGGAAAAAGG CAGAGATGGC CAGGAGAGGG GTGCAGGACA AACCAGAGAG	300
	GTTGGGTCAG GGGAAAAGGG TGGGGAGAAA GAGGGGTGCA GGCCCTGCAG GCCGGTTAGC	360
25	CAGCAGCTGC GGCCTCCCCG GGCCCTTGGC ATCCAACTTC GCAGACAGGG TACCAGCCTC	420
	CTGGTGTGTA TCATAGGATT TGTTCACATA GTGTTATGCA TGATCTTCGT AAGGTTAAGA	480
	AGCCGTGGTG GTGCACCATG ACATCCAACC CGTATATATA AAGATAAATA TATATATATA	540
30	TGTATGTAAA TTATGGCACG AGAAATTATA GCACTGAGGG CCCTGCTGCC CTGCTGGACC	600
	AAGCAAAACT AAGCCTTTTG GTTTGGGTAT TATGTTTCGT TTTGTTATTT GTTTGTTTTT	660
35	GTGGCTTGTC TTATGTCGTG ATAGCACAAG TGCCAGTCGG ATTGCTCTGT ATTACAGAAT	720
	AGIGTTTTTA ATTCATCAAT GTTCTAGTTA ATGTCTACCT CAGCACCTCC TCTTAGCCTA	780
	ATTTTAGGAG GTTGCCCCAAT TITGTTTCTT CAATTTTACT GGTTACTTTT TIGTACAAAT	840
40	CAATCTCTTT CTCTCTTCT CTCCTCCCCA CCTCTCACCC TTGCCCTCTC CATCTCCCTC	900
	TCCCGCCCTC CCCTCCTCCC TCTGGCTCCC CGTCTCATTT CTGTCCACTC CATTCTCTCT	960
45	CCCTCTCTCC TGCCTCCTGC TGCCCCCTCC CCAGCCCACT TCCCCGAGTT GTGCTTGCCG	1020
	CTCCTTATCT GTTCTAGTTC CGAAGCAGTT TCACTCGAAG TTGTGCAGTC CTGGTTGCAG	1080
	CTTTCCGCAT CTGCCTTCGT TTCGTGTAGA TTGACGCGTT TCTTTGTAAT TTCAGTGTTT	1140
50	CTGACAAGAT TTAAAAAAAA AAAAAGGAAA AAAAAAAAAA	1186

55 (2) INFORMATION FOR SEQ ID NO: 90:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1821 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

311

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:

(D) TOPOLOGY: linear

5	AAAACATGCT TTCAGGGCGT CCCCTATGTA TTCGGGGGGC CCACGGACAC TCAGGCTGGA	60
	KATCCGTCCT CACTGCGCTC AAGATGGCCT CAGCAGACAC CAGTTACCCA GCTGAAAGTC	120
10	ACAATCCCTC CCAGAAGTCT CCCAACACTA GTGCTGACCA GAGGTGGGGC TCTCAGGCTA	180
10	GGAGTTTCAC ACACAATGAC AGGCTGCTGG GGGACATTGC AGGACCCCTT TTCCTYTCCT	240
	CTCCATGCTA GAAGCCAGCC CTAGGMAGCT GCAGTTACTC CCTGTGACTC AGCAGCAGGC	300
15	TGATTCAACA CAGCTGCCCA CACAAAGCCA GTGGTAATAC ATCTGTTTAC CTTTCCCTAT	360
	CACCCAGACA CAAGCCCCTT TCCCAGGTCA AACCACAGGC CGATGCATCT CCAGTTTGAC	420
20	AGTCAAATCA CTACTTCCAT TGCTACTTTA GATCAGCCAA AGTGGTGACT GCTGCAGTGT	480
20	GTGGCTATCC CTACAAGGCC CACCCAAGGG ATGCCCAAAG CCCAACCTTC TCCAGGGCTG	540
	CAGCAGNAGC AACCCCACCA GCCTAAGTCC AGCAGAGGAC CTCCCACCCA ATGTCTTGTT	600
25	CTAATTAGAA GGGGAAGTTA GCCACAGAAA ATCAACTTAT CTATAATTAC AAAATTCTCT	660
	TGACTCACCT TAAAGTTCCT ATTGACATCT ACTGCTTTTA AACCTATTTG AAAACTCTGA	720
30	TACTAAAACA AATGACACTC TAAGAAAGTT TGGGAGCCCC ATGCTGAGAA CCATTTCTGT	780
50	GCAGTGAGGA TGTTTCCAGA AGCTACTTAC CTACATGTGA ATGTGCCATT TTCTTTCCTT	840
	TTGTAGAGAA AATCCCCTTT ACTTTTTGGA ACAGTAATGG CAGCTTCTAG TACAGCCATT	900
35	ACAGTITICAT ATGAGAAAAA TTAAGAATAA CTATAAAATT GTTAAAATAT CCAATAATGG	960
	ATAATGATGG CCAGAAGATT TAACATACAA AGTAATTCTC AATGTAAAGC TATTCAGCTC	1020
40	TICCAGGTIG AATGCCCIGT AACCCACCCT GACCTTCCAC ATCATCTTCA AAAAGCAGTT	1080
10	TCTCTGTTCC CCATGATTCT CCTATAAGGT AACTCTTTAG TCCTCCATTT AGCACATTTT	1140
	AAATCCTCCA AAGAATAAGT ATCATGTGAT TATTTTAGCT TTACAAAAAA AAAGTTGAAT	1200
45	GGCGTTTTAT TTTCATGGCC TATAAGCAGG TACCTTAGTA GGGCAGATAT AGGAAAAACA	1260
	AATTAGAGCA AAACAAATCC TCTACAAATC CAAGGCAGGA AAAGTGGTGG CAGAGTGACT	1320
50	CATTCTCCTG TCCCTCCCAT CAGGTCAAAT CAGGAGGCTG CAGTGAATGC CTGTTCTTTG	1380
50	AATGIGTAGC AGTIGTICCT GTAACTCTTT AAAACTTGGC TATAGGCTGT TTAGCACAGT	1440
	ACAGATTAAA GATACAGTTA CGTAAACAGC AAAGTAATTT TATAGTGCTT CATCCATTTA	1500
55	TCATGCTTTG GTTTGCTAAT TTTTTCACAT ACCTTTTTCT ATCACAGTCT GTTGCTTTTG	1560
	TACACATTTC TCATATTGGG GTTCGACAGG TAAACACAAA CTGCTATTTC AGTAGAAAAA	1620
60	GTTATTGTTA TGGAATATTA AACCCAATAA ATTGTATAAA GGGTAAAAAA AAAAAAAAA	1680

	AAAAAAAAA AAAAAAAAA AAAAAAATTC CTGCGGGCCG CANGCTTTTT CCCTTTGGGT	1740
	GAGGGGTTAT TTTNGGCTTG GGCACTGGGC CCTTCGTTTT TACAACGTCG TGANGGGGG	1800
5	AACCCGGGGG GGGTTTCCCC C	1821
10	(2) INFORMATION FOR SEQ ID NO: 91:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 862 base pairs	
15	(B) TYPE: nucleic acid	
13	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	
20	TGCCCTTTTT CCCACCGATT CGGGGCNTGG TGAAGGTGGG AGATGTGAAC TCCAATTAAG	60
	GGACTOGAGA GAGGTGAAGA ATTITGCAGG TGGGAGATTT GGATTTGAAT GTGGACTTGT	120
	AAATGACTIG ACCITGCCAT CIGIGITCAA GGTCACGGIT IGCIGIGGG ITCCIGGGAG	180
25	AGCTTACTCA CCCCGGAGTC TITTCTTTCT CTTGCTCCAA GAAGAGCCCT GTTGGTGCTT	240
	TACCACCGCT TGGAGTCTCC CGAGGACACA AACAGGCAGA GAGGGACGTG TAGGGAGAGT	300
30	TCTTTCCTGT TTTCTGTGCT TTCCTTTTTA CAGGACTCCC GGAAGGCCAC TCATGGCCAT	360
	GCCAGGAGCT TTCTCAGAAA CAGTCATAAA CGATCTCTTG AGTCTCTTTC TTGTCCTCCC	420
	AGCTGAGCTT TCTTATTCCA CCCTTTCTGG TGTCTATAGG AATGCATGAG AAGACCCTGG	480
35	GACGITITIC TGCTCTCTC TGGCCCTCCA TGGAGCCATG GGCCTCGGCC TCGGCGGCTC	540
	CTCACCCTCA CAATTTATTT CCTCCTCCCG TGCCAGCCCT TCTTTTGTGT CTGAAACCGG	600
40	TTITAAAATG TGACTCTCCC AGAGAAGAAG CCGCTGGCTG TATGAAACTT GACGGCGCTT	660
	TTGTAAGGTG CCACCCCAA ACTTTAAGGT AGCTAAACCA ATTTTTAAAA GATTCAATGG	720
	CTTGTTCATC CTCCAGATGT AGCTATTGAT GTACACTTCG CAACGGAGTG TCTGAAATTG	780
45	TGGTGGTCCT GATTTATAGG ATTTCATAAT TAAAATGTCT GCTGAATAAA AAAAAAAAA	840
	AAAAACTCGA GGGGGCCCG GT	862
50		002
	(2) INFORMATION FOR SEQ ID NO: 92:	
55	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 696 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	

313

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:	
	CTGAGGCGAG TGAAGTGGAC TCTGAGGGCT ACCGCTACCG CCACTGCTGC GGCAGGGGCG	60
5	TOGAGGGCAG AGGCCGCGG AGGCCGCAGT TGCAAACATG GCTCAGAGCA GAGACGGCGG	120
	AAACCCGTTC GCCGAGCCCA GCGAGCTTGA CAACCCCTTT CAGGACCCAG CTGTGATCCA	180
10	GCACCGACCC AGCCGGCAGT ATGCCACGCT TGACGTCTAC AACCCTTTTG AGACCCGGGA	240
10	GCCACCACCA GCCTATGAGC CTCCAGCCCC TGCCCCATTG CCTCCACCCT CAGCTCCCTC	300
	CTTGCAGCCC TCGAGAAAGC TCAGCCCCAC AGAACCTAAG AACTATGGCT CATACAGCAC	360
15	TCAGGCCTCA GCTGCAGCAG CCACAGCTGA GCTGCTGAAG AAACAGGAGG AGCTCAACCG	420
	GAAGGCAGAG GAGTTGGACC GAAGGAGCGA GAGCTGCAGC ATGCTGCCCT GGGRGGCACA	480
20	GCTACTCGAC AGAACAATTG GCCCCCTCTA CCTTCTTTTT GTCCAGTTCA GCCCTGCTTT	540
20	TTCCAGGACA TCTCCATGGA GATCCCCCAA GAATTTCAGA AGACTGTATC CACCATGTAC	600
	TACCTCTGGA TGTGCAGCAC GSTGGNTCTT CTCCTGAAYT TCMTCGSCTG CCTGGCCAGT	660
25	TCTGTGTGGA AACCAACAAT GGCGAGGCTT TGGGTT	696
30	(0)	
50	(2) INFORMATION FOR SEQ ID NO: 93:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1886 base pairs	
35	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:	
40	CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT	60
40	<u>-</u>	60 120
40 45	CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT CTGCAGCTTG CCATCTCCAG ACAGATCCCA GAGGCTCTGG GGTATGTCCG CCAAGCTCTT	
	CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT	120
45	CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT CTGCAGCTTG CCATCTCCAG ACAGATCCCA GAGGCTCTGG GGTATGTCCG CCAAGCTCTT	120 180
	CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT CTGCAGCTTG CCATCTCCAG ACAGATCCCA GAGGCTCTGG GGTATGTCCG CCAAGCTCTT CAGCTTCAAG GTGACGATGC CAACTCCCTG CACCTCCTTG CCCTCCTGCT GTCAGCACAG	120 180 240
45	CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT CTGCAGCTTG CCATCTCCAG ACAGATCCCA GAGGCTCTGG GGTATGTCCG CCAAGCTCTT CAGCTTCAAG GTGACGATGC CAACTCCCTG CACCTCCTTG CCCTCCTGCT GTCAGCACAG AAGCATTACC ATGACGCTCT GAACATCATC GACATGGCCC TGAGTGAATA CCCAGAAAAT	120 180 240 300 360
45	CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT CTGCAGCTTG CCATCTCCAG ACAGATCCCA GAGGCTCTGG GGTATGTCCG CCAAGCTCTT CAGCTTCAAG GTGACGATGC CAACTCCCTG CACCTCCTTG CCCTCCTGCT GTCAGCACAG AAGCATTACC ATGACGCTCT GAACATCATC GACATGGCCC TGAGTGAATA CCCAGAAAAT TTCATACTAC TGTTTTCCAA AGTGAAGTTG CAGTCACTCT GCCGAGGCCC GGACGARGCA	120 180 240 300 360
45	CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT CTGCAGCTTG CCATCTCCAG ACAGATCCCA GAGGCTCTGG GGTATGTCCG CCAAGCTCTT CAGCTTCAAG GTGACGATGC CAACTCCCTG CACCTCCTTG CCCTCCTGCT GTCAGCACAG AAGCATTACC ATGACGCTCT GAACATCATC GACATGGCCC TGAGTGAATA CCCAGAAAAT TTCATACTAC TGTTTTCCAA AGTGAAGTTG CAGTCACTCT GCCGAGGCCC GGACGARGCA CTGCTGACTT GTAAGCACAT GCTGCAGATA TGGAAATCCT GCTACAACCT CACCAACCCC	120 180 240 300 360 420

CCCCTAAGCA GGGCCCGCTG CACCCCTGGA TGACGCTGGC ACAGATCTGG CTCCATGCAG

660

314

	CTGAAGTCTA TATCGGCATC GGGAAGCCTG CAGAAGCCAC AGCCTGTACC CAAGAAGCTG	720
5	CCAACCTCTT CCCAATGTCC CACAATGTCC TCTACATGCG CGGCCAGATT GCTGAGCTCC	780
J	GGGGAAGCAT GGACGAGGCG CGGCGGTGGT ATGAAGAGGC CTTAGCCANT CAGCCCCACC	840
	CACGTGAAGA GCATGCAGCG ACTTGGCCCT GATCCTTCAC CAGYTAGGCC GYTACAGTYT	900
10	GGCGGAGAAG ATCCTCCGGG ACGCGGTGCA GGTGAACTCG ACAGCCCACG AGGTCTGGAA	960
	CGGGCTGGGC GAGGTCCTCC AAGCTCAGGG CAACGATGCG GCGGCTACGG AGTGCTTCCT	1020
15	GACAGCCTTG GAGCTGGAGG CCAGCAGCCC CGCCGTGCCC TTCACCATCA TCCCCCGCGT	1080
15	GCTCTGAGCA GGCGCCTGCC AGCCTCACCT GCCGCTCAGC CTNCAGAGGC CCTGCCGGGC	1140
	ACCAGGGCTT GTGCCATCGC CCCAAGGGGA TGAATCTGCC GCACTGAGGC CAGGGACGAG	1200
20	TGTTCAGTGG GCCACAGTGA ACCAACCAAA CCAACCCCGA ATCATCGCTC TCGCCATGTG	1260
	CGTTTCTCTT GTTTTTTTG CCAGCCCAAT GGTAGTTTCT GAACCTATTG ACATTGTTCA	1320
25	AAATOGATCA TGTGCCATAT TTTGTTAGTT GACATCTGAG TTTTCAGTAA AATGATTATG	1380
25	GAATTAATCA GCAAATGTAG AAGAATATAT TCAAAGTTAA AATTCAGTGG CAGCACAGAT	1440
	TATTTTTATC AGAGCTGTAA AGAAAACAAC TGTCCTTTTC TCCCCACCAC CCCTCCTGCC	1500
30	CCACTTTGGC CCAGAAACCA AATGTGAACT TCCTGTCTCC CACCTCAGCA CTAGTCCATG	1560
	CCAGGACACC AGCTGACAAT TTCTTGGTTT TACTGTCAAT AATTGTACCA TGTGATCAAT	1620
35	TACTGTCCTC ACTTAGAACA AAGCCTGAGT CCGAGAATAT TTATATTTTA CCAATATATG	1680
33	CCTGTTACAA GAGAAGGAAA TATGAGTTAT TTAAGTTTAA CTTTTTTATG TGAATTCAGA	1740
	GTTTATTTAT CGAGGGAAAT ATGTACAAAG AAGCTTCAAA TGGAATATTT ACCGACATTC	1800
40	CTTATACATG ACAGACACTT GGCTACATGG GAAGATGATG TTAATAATAA AATGATTTTT	1860
	AAATOGAAAA AAAAAAAAA AAAAAN	1886
45		
73	(2)	
	(2) INFORMATION FOR SEQ ID NO: 94:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1774 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
	CTCAGCTACC GTATACAGTA GGACATAACC CCATTTCACA TGCACTACAC TGAGACTTGC	60

CTCCTCTCCC CCCACATTGA AGATGTTCTT TTTTCATAAC TATATACTAT TCCATTGCAT

60

	GAATATTCTG	TAATTTATTT	AATCCCCTAT	GGATTGATAA	TTAGGTTCAT	TATAGATAGA	180
	AGTGTAATTA	ACATTCCTGT	ACATGTATTT	TGCTACTTGT	GTGGGTATTT	CTGTAGGATG	240
5	AATAACTAGA	AATTTATTGG	ATCAGGTTTC	ACATTTGCAG	TTTTGAAAAC	TACTACCAAA	300
	AAGATTTCAC	CAATTTACAA	CTCCATCATT	AGTAAGAATG	CCTGTTTGCC	TATAGTCTGC	360
10	CAACCCTGAA	TCCTTAAAAA	TTTTTGCCAA	TCTGGTAGGC	AAAATTICTT	TCTTTTCTTT	420
	GAATATTAAT	GAGGAGGAAC	ATCTTTTCAT	GTTTCTTGGC	CATTTGCATT	TCCTATTATG	480
	AATTGCTTTT	GCCCATTITC	СТТТТТТТАА	TTATGAAAGT	CTAATGACTA	CCTTCTCATT	540
15	GTATAAAAAA	CACAGTTCTT	TGAATAGAGA	GACCCTTTTC	TCCAATGCTA	CCAATCACAT	. 600
	TCCACTTACC	ACAGTTTAAC	ATACATCCTC	TAGTCACCTT	TCCGTACGAA	TATACATACA	660
20	САТАААААСА	CTTTTTACAT	AAATAGGATC	TCATATTCTG	TAGCTTTTTA	AAATTTTGGT	720
	СТСАААААА	GATAACAGGT	СТТТАААТТТ	CTTTAATGGT	TGAATATGAT	тааатастат	780
	GAAAATGCCA	TTATTTATTC	CCTTAATITT	TTTCCTCTCG	CTATTACATT	GCCAAAGTAA	840
25	ACATCCTATT	CAGATGTCTT	TGTGCATGTG	TGTGAATATT	TCTTTAGTCT	GGAGTCCAGT	900
	AAGGTGGATT	TTTGGATCAA	AGGGTTTGTT	CTCTGTCCAC	CTTCAGTCTT	CCCAAAGGCC	960
30	TTCATAACTG	TATTTTCACC	AAGTGTATGG	AGAATGTTCA	TTTCCCCATA	TAACCATACC	1020
	TACACTTGAT	AGTTTTTATC	TGTTGGGCGA	AAAAGAACCT	TITCTTATTI	TGCATTTCCC	1080
	TGATTATAAA	AAAAAATGGT	GAGATTGGGG	TTATTTICAT	GTTTATTGGC	CATTTATAGT	1140
35	TTACTGTGGA	TTGTTTGTAT	CCCTTACCTG	CTTTCTATTG	CCTTATCTCT	GGATATATTG	1200
	TTTTTATTTG	TTCAGCATCT	CCTTCCCCAT	CTTCTGGTAA	CACAACCTTT	ATTTATTTGT	1260
40	GGGGAACCTA	TTCCCTGTGG	CTTAGGTGAG	CATGTGACCA	GCCTGCCCT	CCTGAGTCCC	1320
	ACAGCTTCCT	AGCCACAGTG	ATAAAAGAAT	GGGTATATAA	CTTAAGCCAG	GCTAAGGAAA	1380
	GCCCTTAACA	GAACTTCTGC	TGGAACTACT	GGAAAGAAGG	CTTTATGGAG	ATCCCAGGAA	1440
45	CCAAGGACCA	TGTAAGCCTG	AATTTGTGCC	ATGTGGAGAG	AGTCTGTCTG	AGGAGAAACT	1500
	CGGATGCTAG	CAGAAATGGA	AAGAGAACTA	AGTTCTGATG	TCATTTTTCT	GGAGGCCCTA	1560
50	GATCCAGCTG	TGCCTAAAGC	CIGCCCTACT	CCGGACTTTA	AAGTTTTGTG	AGCCAATAAA	1620
	GTCCCTTTCT	TGTTTAAGAT	AATTGAATTG	AGTTTCTGTT	CTGATTAATA	TAGGTTATTT	1680
	GTATTTTCTT	ATTGATTTGT	AGAAAACCTT	TGTAATTTTA	AATTCTAGAC	TTTATGCACT	1740
55	ATATAAGTTA	ATAAAATTAG	CATGGCCTTC	CATG			1774

^{60 (2)} INFORMATION FOR SEQ ID NO: 95:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2503 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:

	1	, crécrice .	DEDCKII I I CIN	. DEQ ID NO	. 33.		
10	GGCACGAGCG	AAGGCAAGGG	GGCACCAGCT	CAGGACTGCA	TCTGCCTGCC	ATTTCCCTTC	60
	CACTCCTCCT	TTCTGGAGTC	TGACATTAGA	AAGCCAGCGA	GAAGGAAGAT	TCAAACAACC	120
15	AACCCTGATT	TCCTGCTTCT	CCTTTTCATG	AGTGTTCCTG	TGGTCTCTGC	ACCTCCTTTC	180
13	TGTCCCCCGG	CAGAGGGCAG	TAGAGATGGC	CGGCCCAAGG	CCTCRGTGGC	GCGACCAGCT	240
	GCTGTTCATG	AGCATCATAG	TCCTCGTGAT	TGTGGTCATC	TGCCTGATGT	TATACGCTCT	300
20	TCTCTGGGAG	GCTGGCAACC	TCACTGACCT	GCCCAACCTG	AGAATCGGCT	TCTATAACTT	360
	CTGCCTGTGG	AATGAGGACA	CCAGCACCCT	ACAGTGTCAC	CAGTTCCCTG	AGCTGGAAGC	420
25	CCTGGGGGTG	CCTCGGGTTG	GCCTGGGCCT	GGCCAGGCTT	GCCGTGTACG	GGTCCCTGGT	480
23	CCTCACCCTC	TTTGCCCCCC	AGCCTCTCCT	CCTAGCCCAG	TGCAACAKTG	ATGAGAGAGC	540
	GTGGCGSCTG	GCAGTGGGCT	TCCTGGCTGT	KTCCTCTGTG	CTGCTGGCAG	GCGGCCTGGG	600
30	CCTCTTCCTC	TCCTATGTGT	GGAATGGGTC	ARGCTCTCCC	TCCCGGGGCC	TGGGTTTCTA	660
	GCTCTGGGCA	GCGCCCAGSC	CTTACTCATC	CTCTTGCTTA	TAGCCATGGC	TGTGTTCCCT	720
35	CTGAGGGCTG	AGAGGGCTGA	GAGCAAGCTT	GAGAGCTGCT	AAAGGCTTAC	GTGATTGCAA	780
55	GGGTTCAGTT	CCAACCATGG	TCAGAGGTGG	CACATCTGCT	CAGCCATCTC	ATTTTACAGC	840
	TAACGCTGAT	CTCCAGCTCC	AGCGATGGAA	CCCACTACAG	AGGAGGTGGG	CCCCTCTCT	900
40	CAAAGAGGCC	GAGGGGCAGC	AAGGCAGMC	AGGGCACCTG	TGACTTCTTA	GTACAAGATT	960
	GTCTGTCCTT	CAGGACTICC	AAGGCTCCCA	AAGACTCCCT	AAACCATGCA	GCTCATTGTC	1020
45	ACACCAATTC	CTGCTTTAAT	TAATGGATCT	GAGCAAATCT	TCCTCTAGCT	TCAGGAGGGT	1080
15	GGGGAGGGAG	TGATTGCTGT	CATGGGGCCA	GACTTCCAGG	CTGATTTGCC	AAATGCCAAA	1140
	ATGAAACCTA	GCAAAGAACT	TACGGCAACA	AACGAGGACA	TTAAAAGAGC	GAGCACCTCA	1200
50	GTGTCTCTCG	GGACATGGTT	AAGGAGCTTC	CACTCAGCCC	ACCATAGTGA	GTGGGCCGCC	1260
	ATAAGCCATC	ACTGGAACTC	CAACCCCAGA	GGTCCAGGAG	TGATCTCTGA	GTGACTCAAC	1320
55	AAAGACAGGA	CACATGGGGT	ACAAAGACAA	GGCTTGACTG	CTTCAAAGCT	TCCCTGGACC	1380
55	TGAAGCCAGA	CAGGGCAGAG	GCGTCCGCTG	ACAAATCACT	CCCATGATGA	GACCCTGGAG	1440
	GACTCCAAAT	CCTCGCTGTG	AACAGGACTG	GACGGTTGCG	CACAAACAAA	CGCTGCCACC	1500
60	CTCCACTTCC	CAACCCAGAA	CTTGGAAAGA	CATTAGCACA	ACTTACGCAT	TGGGGAATTG	1560

	TGTGTATTTT CTAGCACTTG TGTATTGGAA AACCTGTATG GCAGTGATTT ATTCATATAT	1620
5	TCCTGTCCAA AGCCACACTG AAAACAGAGG CAGAGACATG TACTCTGGTG TGATCTCTTG	1680
,	TCCTCAGTGT CTCTTCTGGG CTCCTGTCCC TCTTGCTTTA TAGCTAGCTG CCCGGGGACC	1740
	AAGGTACAGG TGAAAGCAAG GTAGCAGCTT GCGGGAGGAG GCCTGTCTGG CTTACCAGTC	1800
10	TATACACTGT GGCCTCAACC TCCCAGACAG GGCAGAGAAC TGTGGGCAGC TCGTTTGCTT	1860
	TCTAGGCTGG CTGGAGAGGT GGGAGCTCAT TGATAGACTC ATGATGGAAA CTATTTTTGA	1920
15	AACAGGCTTC CTCCTTCAGG AGAGATCATG CGGACTAAAC TGTAGCAATT CCAGTGCACC	1980
13	TGGCAGTGAT CCTTTTCTTT GCAAAGTACT GTCTCTTTGG TTCCAGTAAG TTGGACCACC	2040
	ACATGACATY ATTITCCCTG GAACCTGGTC ACTGACTAAC ACAGACAATT GGGACTCCAG	2100
20	AGCCTCAAGA GCCAGGAGAG GGCACAGTAC ATACAGAGGG AGTCAAATGG GATCTCATTT	2160
	TGAGTCCTGC CTTCCGCACA CTCAGAACGG CANCCCCAAG GCCCGGAGTG TCCAGGGCTT	2220
25	CTGGCCTGAG GTGAATCTGC CAGGCCCAAG AAGGCACAAA GGTAGGAGCA CAGAGAGCCC	2280
	CATTCCCACA GGCGGKCGGC CCAGCAGCAC CAGTGGAAGC TCAGCTGTCC TCCAGCTGCT	2340
	CTCGGCAGAC AGITCAGTGC ACAGTTTATG CCCTAGCTGA AAAAGATCTC CCGGACGTAT	2400
30	TTCAGCACAT CCTCTTCCTC CTCCTCCTCA GGGCTCCTGC TACAGGCAGA GCTGGAACCC	2460
	CCCGGCCTCT GGGAAGGGCT GAGGCCTGGA GYCAGTGCCT GTC	2503
35		
•	(2) INFORMATION FOR SEQ ID NO: 96:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2801 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
1 5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:	
	CTGGAAAGCC GAGGGTAGCC GAGCGGGGCG GGCGCTCTGG AGCGGCGGGT GCTCGGGCTG	60
:n	CCGTCCGCTC CGCCAGAAGC ACCGAGCAGC CGAGCCGGGG CCCGCCGCCC TCCTCCTCCA	120
50	TGAGGCCCGA GTGAGGCGCG GCGCTTATAG CCGACCCGCG GCGCCTTCCC CCCGCGTCCT	180
	ATCGCGAGCG CACGACMAGC GGCCCCTGGA GGAGGAGGCG GAGGAGGAGG AGCATGTCGG	240
55	ACGGTTTCGA TCGGGCCCCA GGTGCTGGTC GGGGCCGGAR CCGGGGCCTG GGCCGCGGAG	300
	GGGCGGGCC TRAGGGCGGC GGTTTYCCGA AMGGARCGGR GCCTGCTGAG CGGRCGCGGC	360
	ACCAGCCGCC GCAACCCAAA GCCCCGGGCT TYCTGCARCC AMCGCCGCTG CGCCARCCCA	420

	GGACGACCCC	GCCGCCAGGG	GCCCAGTGCG	AGGTCCCCGC	CAGCCCCCAG	CGGCCTTCCC	480
	GGCCCGGGGC	GCTCCCAGAG	CAAACGAGGC	CCCTGAGAGC	TCCACCTAGT	TCACAGGATA	540
5	AAATCCCACA	GCAGAACTCG	GAGTCAGCAA	TGGCTAAGCC	CCAGGTGGTT	GTAGCTCCTG	600
	TATTAATGTC	TAAGCTGTCT	GTGAATGCCC	CTGAATTITA	CCCTTCAGGT	TATTCTTCCA	660
10	GTTACACAGA	ATCCTATGAG	GATGGTTGTG	AGGATTATCC	TACTCTATCA	GAATATGTTC	720
10	AGGATTTTTT	GAATCATCTT	ACAGAGCAGC	CTGGCAGTTT	TGAAACTGAA	ATTGAACAGT	780
	TTGCAGAGAC	CCTGAATGGT	TGTGTTACAA	CAGATGATGC	TTTGCAAGAA	CTTGTGGAAC	840
15	TCATCTATCA	ACAGGCCACA	TCTATCCCAA	ATTTCTCTTA	TATGGGAGCT	CGCCTGTGTA	900
	ATTACCTGTC	CCATCATCTG	ACAATTAGCC	CACAGAGTGG	CAACTTCCGC	CAATTGCTAC	960
20	TTCAAAGATG	TCGGACTGAA	TATGAAGTTA	AAGATCAAGC	TGCAAAAGGG	GATGAAGTTA	1020
20	CTCGAAAACG	ATTTCATGCA	TTTGTACTCT	TTCTGGGAGA	ACTITATCIT	AACCTGGAGA	1080
	TCAAGGGAAC	AAATGGACAG	GTTACAAGAG	CAGATATTCT	TCAGGTTGGT	CTTCGAGAAT	1140
25	TGCTGAATGC	CCTGTTTCT	AATCCTATGG	ATGACAATTT	AATTTGTGCA	GTAAAATTGT	1200
	TAAAGTTGAC	AGGATCAGTT	TTGGAAGATG	CTTGGAAGGA	AAAAGGAAAG	ATGGATATGG	1260
30	AAGAAATTAT	TCAGAGAATT	GAAAACGTTG	TCCTAGATGC	AAACTGCAGT	AGAGATGTAA	1320
30	AACAGATGCT	CTTGAAGCTT	GTAGAACTCC	GGTCAAGTAA	CTGGGGCAGA	GTCCATGCAA	1380
	CTTCAACATA	TAGAGAAGCA	ACACCAGAAA	ATGATCCTAA	CTACTITATG	AATGAACCAA	1440
35	CATTTTATAC	ATCTGATGGT	GTTCCTTTCA	CTGCAGCTGA	TCCAGATTAC	CAAGAGAAAT	1500
	ACCAAGAATT	ACTTGAAAGA	GAGGACTTTT	TTCCAGATTA	TGAAGAAAAT	GGAACAGATT	1560
40	TATCCGGGGC	TGGTGATCCA	TACTTGGATG	ATATTGATGA	TGAGATGGAC	CCAGAGATAG	1620
	AAGAAGCTTA	TGAAAAGTTT	TGTTTGGAAT	CAGAGCGTAA	GCGAAAACAG	TAAAGTTAAA	1680
	TTTCAGCATA	TCAGTTTTAT	AAAGCAGTTT	AGGTATGGTG	ATTTAGCAGA	ACACAAGAGA	1740
45	GCAAGAAAAT	GTGTCACATC	TATACCAAAT	TRAGGATGTT	GAGTTATGTT	ACTAATGTAT	1800
	GCAACTTTAA	TTTTGTTTAA	CACTATCTGC	CAAAATAAAC	TTTATTCCCT	ATAACTTAAA	1860
50	ATGTGTATAT	АТАТАТААТА	GTTTATTATG	TACAGTTAAT	TCTACTGTTT	TGGCTGCAAT	1920
	AAAATCGATT	TTGAAATAAA	TGAAATGTTG	AAAATTTTGC	TAGTTGGTTA	GATGCTTATC	1980
	CTTTAAATTC	TACTTTTCTT	GAGGGGAAAA	AGTCTTCGTC	TGGAAATACA	TATTACTGCA	2040
55	AAAATGTAGC	ATCCTTTTTT	AGGTAGGAGT	ATTATAGCTT	YCATTITAGT	TKGACATTTA	2100
	GTGTCCCAAT	GAATTGAATT	TCAAATATGA	ATCATAATCT	TGAAAATCTT	TAGCACTAAA	2160
60	GTCTTGGGAA	TATATCAACA	ACTGATTTAC	ATATGCAGAT	GCTATTTGNA	TACCAAGGC	2220

319

	TTTTTAAATG	TCATGGGGG	GAAAAACCCA	ACTTOGTGGA	ACTCCCAGCT	AAACAACCAA	2280
	GACTTCACTG	GAAGATTTAT	TCCAATTCTA	GGAATTGTTC	TTTTTTTTT	TTATTTTTC	2340
5	AACTGRCTAA	CTTCATTACC	TTAAAGCCTA	GAACATTATT	CTGCTTTATT	TATATGGCTT	2400
	TCTCACTTTT	ATTTTGTAGC	AKGGGTTGCA	TCGACTTTTT	TACTAGAGAA	TTTTACTAGA	2460
10	TATTTGTCAT	TCAAGTTTTC	ATCTGCTTTA	TAATTGATAC	ACCTTGAGGG	TCACTTTTCT	2520
	AATACTTTTA	CTATAATGTG	GTACCACCTC	AGCCCTAATA	AATAATATTT	TTACCTAATG	2580
	TCAAATCTTT	TTCCAGCTAA	CTAAAAACTG	TGTACAAAAG	GATTGCTTGT	AAATATGCAT	2640
15	GTAAATAGTT	CTGTTAATAA	CCCACTGTTT	TACATTTGGT	ACATCTGTGT	CTGCTAATAC	2700
	AGTTAGCTTT	CTCACTTTTC	TGCTTGTTTG	TTCAGTCTGA	ATTAAAATTA	GACTTTGAAA	2760
20	ATAAAGCTTA	АААААААА	АААААААА	AAAAACTCGA	G		2801
-0							
	(2) INFORMA	TION FOR SE	:O. TD. N:O ⋅ 97	· •			
25	,		.g 15 110. 5.	•			
	(i)	SEQUENCE CH					
		(W) THEM	TH: 1631 b	ase pairs			

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

30 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

35	ATGGAGCCAA	AGACAATCAC	TGATGCTTTG	GCTTCTAGTA	TAATTAAGAG	TGTGCTGCCT	60
	AATTTICTTC	CATACAATGT	CATGCTCTAC	AGTGATGCTC	CAGTGAGTGA	ACTGTCCCTC	120
	GAGCTGCTTC	TGCTTCAGGT	TGTCTTGCCA	GCATTACTCG	AACAGGGACA	CACGAGGCAG	180
40	TGGCTGAAGG	GCCTGCTGCG	AGCGTGGACT	GTGACCGCCG	GATACTTGCT	GGATCTTCAT	240
	TCTTATTTAT	TGGGAGACCA	GGAAGAAAAT	GAAAACAGTG	CAAATCAACA	AGTTAACAAT	300
45	AATCAGCATG	CTCGAAATAA	CAACGCTATT	CCTGTGGTGG	GAGAAGGCCT	TCATGCAGCC	360
	CACCAAGCCA	TACTCCAGCA	GGGAGGGCCT	GTTGGYTTTC	AGCYTTACCG	CCGACCTTTA	420
	AATTTTCCAC	TCAGGATATT	TCTGTTGATT	GTCTTCATGT	GTATAACATT	ACTGATTGCC	480
50	AGCCTCATCT	GCCTTACTTT	ACCAGTATTT	GCTGGCCGTT	OGTTAATGTC	GTTTTGGACG	540
	GGGACTGCCA	AAATCCATGA	GCTCTACACA	GCTGCTTGTG	GICTCTATGI	TTGCTGGCTA	600
55	ACCATAAGGG	CTGTGACGGT	GATGGTGGCA	TGGATGCCTC	AGGGACGCAG	AGTGATCTTC	660
	CAGAAGGTTA	AAGAGTGGTC	TCTCATGATC	ATGAAGACTT	TGATAGTTGC	GCTGCTGTTG	720
	GCTGGAGTTG	TCCCTCTCCT	TCTGGGGCTC	CTGTTTGAGC	TGGTCATTGT	GCTCCCCTG	780
60	AGGGTTCCCT	TGGATCAGAC	TCCTCTTTTT	TATCCATGGC	AGGACTGGGC	ACTTGGAGTC	840

	CTGCATGCCA AAATCATTGC AGCTATAACA TTGATGGGTC CTCAGTGGTG GTTGAAAACT	900
5	GTAATTGAAC AGGITTACGC AAATGGCATC CGGAACATTG ACCTTCACTA TATTGTTCGT	960
,	AAACTGGCAG CTCCCGTGAT CTCTGTGCTG TTGCTTTCCC TGTGTGTACC TTATGTCATA	1020
	SCTTCTGGTG TTGTTCCTTT ACTAGGTGTT ACTGCGGAAA TGCAAAACTT AGTCCATCGG	1080
10	COGATTTATC CATTTTTACT GATGGTCGTG GTATTGATCG CAATTTTGTC CTTCCAAGTC	1140
	CGCCAGTTTA AGCGCCTTTA TGAACATATT AAAAATGACA AGTACCTTGT GGGTCAACGA	1200
15	CTCGTGAACT ACGAACGGAA ATCTGGCAAA CAAGGCTCAT CTCCACCACC TCCACAGTCA	1260
13	TCCCAAGAAT AAAGTAGTTG TCTCAACAAC TTGACCTTCC CCTTTACATG TCCTTTTTTG	1320
	TGGACTTCTC TCTTTGGAGA TTTTTCCCAG TGATCTCTCA GCGTTGTTTT TAAGTTAAAT	1380
20	GTATTTGACT TGTGTTCTCA GCATTCAGAG AGCAGCGGTG TAAGATTCTG CTGTTCTCCC	1440
	TOGATCTTCT GACATTACTG CTGTCTGAGA TTTGTATATG TGTAAATACA AGTTCCTTGA	1500
25	TACCCTAAAA CCTTGGATTA AACAGAATGT GCATTGTACA TCTTTAAACA AAATGTATAT	1560
23	TAATTTATTA AATCTAGTTG TCACTTTAAA AAAAAAAAAA	1620
	GGTACCCAAA T	1631
30		
	(2) INFORMATION FOR SEQ ID NO: 98:	
35	(i) SEQUENCE CHARACTERISTICS:	
55	(A) LENGTH: 504 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:	
	CCGAGCTGGG CGAGAAGTAG GGGAGGGCAC GAGCCGCCGC GGTGGCGGTT GCTATCGCTT	60
45	CGCAGAACCT ACTCAGGCAG CCAGCTGAGA AGAGTTGAGG GAAAGTGCTG CTGCTGGGTC	120
	TSCAGACGCG ATGGATAACG TGCAGCCGAA AATAAAACAT CGCCCCTTCT GCTTCAGTGT	180
	GAAAGGCCAC GTGAAGATGC TGCGGCTGGA TATTATCAAC TCACTGGTAA CAACAGTATT	240
50		
	CATGCTCATC GTATCTGTGT TGGCACTGAT ACCAGAAACC ACAACATTGA CAGTTGGTGG	300
55	AGGGGTGTTT GCACTIGIGA CAGCAGTATG CTGTCTTGCC GACGGGGCCC TTATTTACCG GAAGCTTCTG TTCAATCCCA GCGGTCCTTA CCAGAAAAAG CCTGTGCATG AAAAAAAAAA	360
J.J		420
	AGTITIGIAA TITTATATIA CITTITAGIT IGATACTAAG TATTAAACAT ATTICIGIAT	480
	TCTTCCAAAA AAAAAAAAA AAAA	504

(2) INFORMATION FOR SEQ ID NO: 99:

5	(2) INFORMATION FOR SEQ ID NO: 99:						
3	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1416 base pairs (B) TYPE: nucleic acid						
10	(C) STRANDEDNESS: double (D) TOPOLOGY: linear						
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:						
15	GGCACGAGGG AGGGAGCCCT CTCCGTTGGG TGACTCTTGT GTGCCCTTTA GACAGGCTGG	60					
15	CCTGCCGGTT CCACAGGGTA CAGTTAGGAC TTGAGTCTTT CTTTTTCTGT TTTGAGTTGG	120					
	TGAGTGAGTG ATAGGGTAAC ATGGGCCTTC AGGATGACCC CTTGGAACTG TGCCGAGTTC	180					
20	CTTAAATCTC AGCTGGGATC CTGGACCTGG GAGGCCCCTG TGAGGGCCAG CTCTGGAAAA	240					
	ACCTGGGAGT TGATGCCGGA GCTGTGGAAG AACTCTGCTC GAGGGCAGGG TGCCCTGGAA	300					
25	CACTGGTAGT TCTGGGGCTG GGAGGGAGAG GGGCTCCGGC TTTCTCTGAA ATGAACACTG	360					
	CTCTTCAGCA GITCAAGTAC TTGTTCTCAA AACATITTCT AATTGATTGG TAGGTTTTCA	420					
	TAAGCATTGT TTCTTTAAGG CATGGAAAGG GAAGAATGCT CAAGCAAGTC ATGTTTGTTT	480					
30	TCAGTGGGAT GGGCCCGCGT TCTCACTGCT GGGGGCTTCC CCTTCATGTG GCACCTTTGT	540					
	GCAGGGCCA CCAGGCAGAC TCTTCCCACC TTCTCCCACT GAAGCACCAA GGGGCTTGGA	600					
35	ACCGTAATTT GGCTAATCAG AGGCATTTTT TTTGTCCTAG TATCTTTCAC ACTTGTCCAA	660					
33	CCGTCTTATT TTTTTAAAAG TTCTGTTGCT TGTATTAACA CGAAACTAGA GAGAAATAGT	720					
	TTCTGAAGCC AGTTTATTGT GAAGATCCCC AAGGGGAGGT TCGGTAGAGA AAAATAGTAA	780					
40	GCTGGTTTAG AAACTGACGA GGGCAAACAG CCAGGACGCA TTGGAGAGGA ATTTGCCAAA	840					
	GATCTACCCT GAGATAACGC CTGTCCAGTG TCTTCACCAC GTGAATAACC AGCGCTCCAA	900					
45	AGTGTTTTC TGCTTTGAAA AAAAAATTC CACAAGCTTT TAAAGGTGCA TTTAAGAATC	960					
40	CATGTGACTT TAGAATGGAA CTGCCGGCCC TGGCAACTGT CACGTGTGCT AGAAGGTTCG	1020					
	ATGCCTCTGG AATGCATGTG ATACTCATCT CCATTTTGTT TCCTTGATTG CATTTTTGTT	1080					
50	CTTTTAGCAG ATCTGTCCCT GTGGGTGGTG TCTAAGAAGT CGGACACCTT GGTTTTTGTG	1140					
	TTAGATTGAG CTGGGCAGCT GCAATCAGCT TCTTTATATG CAAATTAGGC ACGACCCATC	1200					
55	TGTGGTTCCT GGTTGGTGGC TAATGAAGTG AGGGGAGGGA GGGATGTCAC CCCAAAAGTA	1260					
55	GGCCCTCCCA TTGGCTTTGG CCAGGCCAGA CACTTCACAT CGTTTACATG GTTCTGTGTA	1320					
	ATTITAAAGT TTATGTGTAT AAAGCGAAGC TGTTTCTGTG AAACTGTATA TTTTGTAAAT	1380					
60	АААТАТАТТС СТАСТТСААА АААААААА АААААА	1416					

5							
כ	(2)	INFORMATION	FOR	SEO	ID	NO:	100:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2847 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:	
15	GGCTAGGACA ATTTTGGTGC TTTACCTATC TCTGCAAAGA CTGGAGAATT TGGCATACCA	60
	TTAATTACAA CCACCAATCA TATCCAACAA AAGTACCCTA AAAGAAGGAC CAGTGGCCAC	120
20	TCTCGAAAAA ATTTAAGTAT CAGAAGATTA AAAAGATTTT AGGATTTGGA AGCTTGTATT	180
	GTCTTTCCCC AATAATCATT GTTTGATCTC CAAATAGTAG CCTTATATTA GCAATRGACA	240
	GATCATTGGT TCTCCATATC TGATCATATG TTACTACTTT GGAATCAGTA TTTGGGCAAA	300
25	TTCAAGCATT TATGCAGTGG ATATAAATGG AAATATAAAA ATATTTGCCA ACCTGTCTCA	360
	GTAACTTATC ATATCTCTGT GNATCCTCAA GGAAAGCACT TITGCTTTTA CTTAGAAAGC	420
30	GTTTCAGATT TGCTTTATAG ACTCCTGCTG TCTTCAGTAC CTGATAAAAC TTTAACCAGG	480
50	GAAGCATTAA ACACAGTGCA GCAGCTTTTG CCCAGGCTTC TAAGTTCCTG CCGGCAGCAT	540
	TTATCAATGT AAGAACTAGG ATGCTTCCTG CAGTGGCACT ACCTTCCCCT AGAGCTGGAG	600
35	CATGCTGCTT GGCCTTAAGC CCCAGCATGA TGAGGCTTCC CTCCTGCCAG GTCAGTAAAA	660
	GTTAGAGAGC TCAGAATTGG GTCTTGCCTG GGTGCAGGTG GCAGGGTTTG CTGAAACCCC	720
40	TAAAGAGAAG TCACCAAGGG AGGCAGGTAA TGAATGTTTC CAGAATCAGT CKGATACTCA	780
	TAGCAATTTC TGGCTATCTT TCAAATGTTG AATTTCTGGA TGCTGAGAGG GACTTTGATT	840
	TGATATCATT AAATCCAGGA CAGTCCCAAG AAGTGCTTGG AGTCTCGGCT CTGACAGCCC	900
45	AAGAAGGGAA ATAACTTGTA TTAAGGAACA ACTATGAGCC AGGCCCTGAG CTGTCTCTTA	960
	GATAATAAAA CAGATGGGGA GTGGAAGAGT CATTTGCTTC AAGTTATACA GCTAGGAAAT	1020
50	ACTCAAGCCA AATCTTGAAC GCAGCTCCCC CTAATTCTGT GGACAGGCAC TTTGTACCAC	1080
	ACACCATGGT CCACCTAAAA ACAGAAGGAT AAAAAGACTT CAGGTTTTCC CACTGTGTGC	1140
	TGACCATCCC AATTTATGAA TCTTCTTCAA AATGACATTT CACAGTTATA GTTAGGGCTC	1200
55	AGAAATGGCA TTGAGGTAGC CTTATTTCTC CCCTTTAGCA GATGCTTTAA GTACACATTG	1260
	CTGACTTGAG CCCACCCCCA GGAGTTAGGA GAACATTTCC TTTTTCATGC CATCTTCCAT	1320
60	AAATAAGGTG TITCTTGGCC TICAAAGATA TAGAACTTTG CAGCAGTAGT AAAAGTGAAG	1380

	GGTGTTCTGC	TCTCTACTCA	ACTITATITG	AAAATGTCTG	CAGCTTCACT	CCTGTAGAAA	1440
	AGGAAATCTT	CATATTTTAG	TAAACTTAGC	CGCCAGTGTA	CTCTGTGAGG	ATGTGGCAAT	1500
5	TCAAAGTCCA	GTGAATCTGG	CTCTCTTACT	GATTCCTGGT	TTTAGTGTGT	GTGTCGGGGG	1560
	AGTGTGTACC	TATATATAAA	GGACAAGTGT	GATATGTGTG	TATATGTATA	TACATACATA	1620
10	CATGTCCACA	CACACACACA	CAATATTTGA	GAGCTAAGGA	AAACTCAAAG	CAGCCCCTTC	1680
	ATTATCTTGC	GTACTACTTC	AAAGATTICT	GTCAGCCCTA	ATTACAAGTG	TCACCATATA	1740
	CTTCCCCCTT	AGGTACTTGC	TTACAGGAAG	AGCAATTCCC	TAGCAAAGGT	CATTAGCTCC	1800
15	TAAGGCACTG	AGTCAAAGTG	ACAGCCCTGA	AGGAAATTGC	ACTCCAGCCC	TCCTCCAGGA	1860
	TGTCTAATAA	GATGGGAAAC	TTGGATGCCC	AGCCATTTTG	GTGACCTGAG	AGTCTAACTA	1920
20	CTCCAGTTAG	ACCTAAGGGC	ACAAATGCAG	AATTCATGAC	CTTGTAGTTG	TGGCAGGGTC	1980
	TAGGAAGTCC	TCTCTCCCCA	AGTAGAAAAT	ATTCTCTTGC	CATTCCTGAA	ATTCCACATT	2040
	CATATAATGG	CTGTGCAATA	CATGCTTCTC	AATAAGAAAA	TTAACTGCAT	GTTTACTGTG	2100
25	TGCTGATCAC	ATCAGATTTT	TATGTTTAAA	AAAATCTCAT	TATGGNTTGA	GTCCAGCCCA	2160
	GCTCTAAGAG	AAAAAGAAGG	CCCATATGGG	AGACTTCAGT	CTCATTATTA	TTGCCTTTAT	2220
30	CCAGCAGTGC	TTATRAAGCC	CCCTACCCTG	TCCCATTCCA	GAAACCATAA	GACTCAGGCA	2280
	GTTCTTGATT	CTGGAGGCCT	GCCTGGTAAG	ATAAGATAGT	ATAATTTGGA	ACTGAGAACA	2340
	TACCAGAAAC	AGCAGAACGA	GGGCCAGAGC	AGAAAAATGA	AAATAAGTGG	AGACACTTAT	2400
35	GGATACATTG	GTGCAAAAAA	AGCCACGGGS	CCCATACTGG	GCTTGATATG	ACTTTGAGGG	2460
	GACAGCAGAT	ТААТАСТТАА	TGAGGGTTAA	ACCTGACCAG	TCTTTCTACA	GTGACAGGCC	2520
40	ACACTGCATG	AATGGGGAGA	ACCAATGAAT	CCATTGTCCT	CTGCCTATTT	TCCTGTGCAC	2580
	AGTCACATTC	CCTCCTTAGG	AATCTTCCCC	TTCCACCCTT	TACATTAAAC	AAGGGAACAC	2640
	TGAATCTTTC	AAGGGAATTA	CACGTTTGGG	TTAATGTTTC	AGTATATCAT	TTTCATACTG	2700
45	TAAATTATTT	TGTAAGAGAG	ATTTACTGCT	ATCCCAGGAT	GTTCGGACTT	GGTGCCCCTG	2760
	TGCATTTGGA	AATCAATAAA	CTATTACTGG	AAATGCCAAA	AAAAAAAA	ИАААААААА	2820
50	NAAAAAACTC	GAGGGGGGCC	CGTACCC				2847

(2) INFORMATION FOR SEQ ID NO: 101:

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1394 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE	DESCRIPTION:	SEO	ID NO:	101
---------------	--------------	-----	--------	-----

5	GAGATTOGTG GAGGAGAGTA	AATAATCTAG	AGGCAAGAGT	TCAGTGAGGG	CCAAGGGGGA	60
J	CCCCCAGAAA AAGGTATGGA	GCTAACTCAT	CTCTTTTACA	AGGGGTGGCC	ATGACTTACT	120
	GTTGCAAAGT ACTCAGTGTA	TATTTAATGT	TGATTGTTGA	ATTTTAGTTA	CGAGAGGGAA	180
10	GAACAATTIT ACTICTGTCC	TTATTTCACT	TGCTGAAAAG	CTGTGGGACA	AAATGTATGG	240
	AATAGACAAG GCCACTITCT	TTGTGATTTC	TGCTTTTCAT	GCATATTATT	TTATTTACCC	300
15	ATAATITCCA AGAGGTTTGG	CGTTCCGCTC	TCCTGCTTTT	TTCTTTCATC	CACCCCTTTC	360
	CTTTTTTGG AAGGGGGTTA	TATATGAGAG	TTCATTGAAG	AAGTCCAGTG	AGGCTGAAGT	420
	AAAGGGCAA GATAGGGCAG	TTAACTAAAG	AGCACTTTAT	TTCTTTGAAG	CCTTTCTAAG	480
20	AAAGAAATGG GGGTGCGAGT	GGCTTGAATC	TCCCATGATG	TTGGAGGGCA	CTTAGTGGGG	540
	TIGAAGTATG ACATAATATT	TCCCATTGGG	GAAAGGAGAA	TTTCTCTTAG	AGGGTGGCAA	600
25	AATGCCTTTG CCCAGTGTCC	CTATTTTAGG	CATCTTTTCC	TICCITATIC	CTTCCAGTCA	660
	GGGTGTGTCC TATACAAAAC	TTCCCATCAG	TTCTCCTCAA	TATTCCCCAT	TTGTAAATGA	720
	TCACTTCTCT TTTCTAAACC	CTTTTCCTGT	TCAGATCCAT	ACAGGATTTG	CAAGGGTAGG	780
30	ATCATACATG CAAATGCCCC	TIGITCATCT	GTGTCTTCTG	CAAACTAGTC	TCATGAAGAA	840
	TTCTGGCGTG CAGCAGGGTA	GCTGAAGTTT	GGGTCTGGGA	CTGGAGATTG	GCCATTAGGC	900
35	NTCNCTGAGA TTCCAGCTCC	CTTCCACCAA	GCCCAGTCTT	GCTACGTGGC	ACAGGGCAAA	960
	CCTGACTCCC TTTGGGCCTC	AGTTTCCCCT	CCCCTTCATG	AAATGAAAAG	AATACTACTT	1020
	TTTCTTGTTG GTCTAGCATT	GCTGGACACA	AAGTGTAGTC	ATTATTGTTG	TATTGGGTGA	1080
40	TGTGTGCAAA ACTGCAGAAG	CTCACTGCCT	ATAAGAGGAA	ATAAGAGAGA	AAGTGGAGGA	1140
	GAGGGACAAA AGGAGTAATT	ATTTGGTATA	GATCCACCCA	TCCCAACCTT	TCTCTCCTCA	1200
45	GTCCCTGCTC CTCATGTTTC	TGGTTTGGTG	AGTCCTTTGT	GCCACCACCC	ATAATGCTTT	1260
	GCATTGCTGC ATCCTGGGAA	GGGGGTATAT	GGTCTCACAA	GTTGTTGTCA	TTGTTTTTT	1320
	GCATGCTTTC TTAATAAAAA	ААААААА	ATGTTTANAG	ТТТТАТСТТА	АААААААА	1380
50	AAAAAAAAA ACCC					1394

55 (2) INFORMATION FOR SEQ ID NO: 102:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 794 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

325

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:

5	GCMRCGAGGC	GGAGTAAAGG	GACTTGAGCG	AGCCAGTTGC	CGGATTATTC	TATTTCCCCT	60
	CCCTCTCTCC	CGCCCCGTAT	CTCTTTTCAC	CCTTCTCCCA	CCCTCGCTCG	CGTACCATGG	120
10	COGAGCOTCG	GCGGCCACTC	AGTCCCATTC	CATCTCCTCG	TCGTCCTTCG	GAGCCGAGCC	180
	GTCCGCGCCC	GCCGCCGCC	GGAGCCCAGG	AGCCTGCCCC	GCCCTGGGGA	CGAAGAGCTG	240
	CAGCTCCTCC	TGTGCGGTGC	ACGATCTGAT	TTTCTGGAGA	GATGTGAAGA	AGACTGGGTT	300
15	TGTCTTTGGA	CACGCTGATC	ATGCTGCTTT	CCCTGGCAGC	TTTCAGTGTC	ATCARTGTGG	360
	GTTTCTTAMC	TCATCCTGGC	TCTTCTCTCT	GTCACCATCA	RCTTCAGGAT	CTACAAGTCC	420
20	GTCATCCAAG	CTGTWCAGAA	RTCAGAARAA	GGCCATCCAW	TCCAAAGCCT	ACCTGGACGT	480
	AGACATTACT	CTGTCCTCAG	AAGCTTTCCA	TAATTACATG	AATGCTGCCA	TGGTGCACAT	540
	CAACAGGGCC	CTGAAACTCA	TTATTCGTCT	CTTTCTGGTA	GAAGATCTGG	TTGACTCCTT	600
25	GAAGCTGGCT	GTCTTCATGT	GGCTGATGAC	CTATGTTGGT	GCTGTTTTA	ACGGAATCAC	660
	CCTTCTAATT	CTTGCTGAAC	TGCTCATTTT	CAGTGTCCCG	ATTGTCTATG	AGAAGTACAA	720
30	GACCCAGATT	GATCACTATG	TTGGCATCGC	CCGAGATCAG	ACCAAGTCAA	TTGTTGAAAA	780
-	GATCCCAAGC	АААА					794

35

40

(2) INFORMATION FOR SEQ ID NO: 103:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1544 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:

45 TTTGCTTGCT AGTCTGAACC AAAGAGTTGT TTGGGCATTT GCTGTGTTGG CCATTTCTGG 60 AGCAAGAGGG TCTTCTTCCT CCTTCCCCCA GCCAGCCAGC TGTCCTGGGG CCAGGCTTTC 120 50 CTGGGTGGAA AGAAGTATAC CTTTCCCTGG GGCCCTAGGA TAGCAAAGTG AGCCATAGTG 180 GGCCAGGCTG CCCTCCATGC TGGGCCCCAG CCCAGGTCTG CACTCGCCTG GATCACCTTC 240 TTTGAGCCTT AGCCATCTCC TGTCAGGTAG GAATGAACTT GCCAGCCTTC AGGYTCGTTC 300 55 AGCTATGACC ATCTGTGCGG TCAGGGTACA CTCAGCTCTC CTCCCCAACT CCAGCAGCCT 360 TTAAGAAGTG TCCCTTTGGC GCCCCCTGGA GGCAGAGCAC TGAGCTGGAC CCTGGGTAGA 420 60 CTCCCACAGG GAGGACGGAG CTGGCCTCAG GAGTGGGACA CCCAGACTTG GCAGGGCCTT 480

326

	CAAGAGGCCT GTGTGGGGGC CCCAGGAATC CTTAGCTGAA GCGGGGAGAC TCACTCTCCA	540
5	TCTCAGGAAA TTCTAGCCCT TGCCCTCAGG GAGCCACGGT TGAGGGTGAG GCCCAACACC	600
J	TOCCTTAGGG CCCTGGGTGG GCAAGTCTGG GCCCTGGGGT AGGGAGGGAG ACTCAGGCCC	660
	ACACTTGGGT ATTTTCTAAT TTCAGACAAA CACACACTCA GCGCGCACTC ACTGATTCCT	720
10	ACACATTGCC AAGATTTCAC ACATGTGACC AGGGGCCACC AAAGTCCCTG TGACCTTTGT	780
	GACTAGGATC CTAATTTCTC TATTTTCTCC TGGGTGCCTG GGTCTGTGTC ACCTGGGGCA	840
15	GTGTGGATAA TGTTTAGTTC TGTGACACTG TTTTTTGGGG GTGGCACCTG GTTCTCCGAT	900
	GCCTGGGCTG GTGTCACGCC CAGGACTGTA GTGCTGGGAG CAGTAAAGCT CAGCTCTGTG	960
	TAATGAGIGA TGCTATGGCT TGCTCGTGTC TTATGATCCA ATCCTTTTCT ACATCAGCCC	1020
20	TTGTTTTGTT TTATGGCTAG TCTTATCTGG CCTGGTTATT TCCTTGCGGG GAGGAGAGGG	1080
	TITGCTAATC TGCTCCCAGC CCAACCTATT ACCACCCCAC CTCGCTGGGA CCTACTGCTC	1140
25	GGGAGGCAGC AGACAGGGAG CCACCAGCAG TGGCTTCCTG GCCCTGTGCT GGGGGTGGGG	1200
	GGAAGCTGGG GGCACATGTG GCCCTTGCCT TCTGAGCAGC TCCCAGTGCC AGGGCTTTGA	1260
	GACTITCCCA CATGATAAAA GAAAAGGGAG GTACAGAAGT TCCAATTCCC TTTTTATTTT	1320
30	GCTGGTTGGT ATCTGTAAAT GTTTAATAAA TATCTGAGCA TGTATCTATC AACGCCAAGA	1380
	ATTTCAAAGT CTCCTTCAAC AATATGAGGC TTTTAGGATG TTTATATTCC TTCATCCCTC	1440
35	TTGTTTCCCA GGTTTTGCAG GGAAAAAAG TCTGGAATTA TAGATACAGC TTATTATTAA	1500
55	ATTTGTTCTT GCATAAAAA AAAAAAAAA AACNCNNGGG GGGG	1544
40	(2) INFORMATION FOR SEQ ID NO: 104:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 871 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:	
50	ACCCACGCGT CCGNCTTGTC CACCCGGGGG CGTGGGAGTG AGGTACCAGA TTCAGCCCAT	60
	TIGGCCCCGA CGCCTCTGTT CTCGGAATCC GGGTGCTGCG GATTGAGGTC CCGGTTCCTA	120
55	AGGTGGGTCG CTGTCCACCC GGGGGCGTGG GAGTGAGGTA CCAGATTCAG CCCATTTGGC	180
	CCCGACGCCT CTGTTCTCGG AATCCGGGTG CTGCGGATTG AGGTCCCGGT TCCTAACGGA	240

CTGCAAGATG GAGGAAGGCG GGAACCTAGG AGGCCTGATT AAGATGGTCC ATCTACTGGT

60

	CTTGTCAGGT GCCTGGGGCA TGCAAATGTG GGTGACCTTC GTCTCAGGCT TTCCTGCTTT	360
	TCCGAAGCCT TCCCCGACAT ACCTTCGGAC TAGTGCAGAG CAAACTCTTC CCCTTCTACT	420
5	TCCACATCTC CATGGGCTGT GCCTTCATCA ACCTCTGCAT CTTGGCTTCA CAGCATGCTT	480
	GGGCTCAGCT CACATTCTGG GAGGCCAGCC AGCTTTACCT GCTGTTCCTG AGCCTTACGC	540
10	TGGCCACTGT CAACGCCCGC TGGCTGGAAC CCCGCACCAC AGCTGCCATG TGGGCCCTGC	600
10	AAACCGTGGG AGAAGGAGCG AGGCCTGGGT GGGGAGGTAC CAGGCAGCCA ACAGGTTCCC	660
	GATCCTTAAC GCCAGNTGCG AGAGAAGGAC CCCAAGTACA GTGCTCTCCG CCAGAATTTC	720
15	TTCCGCTACC ATGGGCTGTC CTCTCTTTGC AATCTGGGCT GCGTCCTGAG CAATGGGCTC	780
	TGTCTCGCTG GCCTTGCCCT GGAAATAAGG AGCCTCTAGC ATGGGCCCTG CATGCTAATA	840
20	AATGCTTCTT CAGAAAAAAA AAAAAAAAAA A	871
20		
	(2) INTERPRETATION FOR STOLEN AND LOS	
25	(2) INFORMATION FOR SEQ ID NO: 105:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 404 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:	
35	GGCACGAGTT ATAGCATGGC ATTCATACTT TTGTTTTATT GCCTCATGAC TTTTTTGAGT	60
	TTAGAACAAA ACAGTGCAAC CGTAGAGCCT TCTTCCCATG AAATTTTGCA TCTGCTCCAA	120
	AACTGCTTTG AGTTACTCAG AACTTCAACC TCCCAATGCA CTGAAGGCAT TCCTTGTCAA	180
40	AGATACCAGA ATGGGTTACA CATTTAACCT GGCAAACATT GAAGAACTCT TAATGTTTTC	240
	TTTTTAATAA GAATGACGCC CCACTTTGGG GACTAAAATT GTGCTATTGC CGAGAAGCAG	300
45	TCTAAAATTT ATTTTTTAA AAAGAGAAAC TGCCCCATTA TTTTGGTGGG GTTGGTTTTT	360
	AATTINTAAT NIGAAAAATT TTTTTGGGGT TTTTGGGGCC ATGG	404
50	(2) INFORMATION FOR SEQ ID NO: 106:	
	(i) SEQUENCE CHARACTERISTICS:	
55	(A) LENGTH: 1542 base pairs	
JJ	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

	GTCAGACAGG	TGGAGCCGCC	GGGGCAGGAG	TCTCAAAGAG	CCAGGCTCCA	GGAGAGGAAG	60
	GGCTCTRCGA	GAGGAGAGAG	GAGAGCGCTG	GAGAGGAGAG	GCTGGAGAGT	CCTTAGCCAG	120
5	GATGGAGGCT	GTTGTGAACT	TGTACCAAGA	GGTGATGAAG	CACGCAGATC	CCCGGATCCA	180
	GGGCTACCCT	CTGATGGGGT	CCCCCTTGCT	AATGACCTCC	ATTCTCCTGA	CCTACGTGTA	240
10	CTTCGTTCTC	TCACTTGGGC	CTCGCATCAT	GGCTAATCGG	AAGCCCTTCC	AGCTCCGTGG	300
10	CTTCATGATT	GTCTACAACT	TCTCACTGGT	GGCACTCTCC	CTCTACATTG	TCTATGAGTT	360
	CCTGATGTCG	GGCTGGCTGA	GCACCTATAC	CTGGCGCTGT	GACCCTGTGG	ACTATTCCAA	420
15	CAGCCCTGAG	GCACTTAGGA	TGGTTCGGGT	GCCTGCCTC	TTCCTCTTCT	CCAAGTTCAT	480
	TGAGCTGATG	GACACAGTGA	TCTTTATTCT	CCGAAAGAAA	GACGGGCAGG	TGACCTTCCT	540
20	ACATGTCTTC	CATCACTCTG	TGCTTCCCTG	GAGCTGGTGG	TGGGGGTAA	AGATTGCCCC	600
20	GGGAGGAATG	GGCTCTTTCC	ATGCCATGAT	AAACTCTTCC	GIGCATGTCA	TAATGTACCT	660
	GTACTACGGA	TTATCTGCCT	TIGGCCCTGT	GGCACAACCC	TACCTTTGGT	GGAAAAAGCA	720
25	CATGACAGCC	ATTCAGCTGA	TCCAGTTTGT	CCTGGTCTCA	CTGCACATCT	CCCAGTACTA	780
	CTTTATGTCC	AGCTGTAACT	ACCAGTACCC	AGTCATTATT	CACCTCATCT	GGATGTATGG	840
30	CACCATCTTC	TTCATGCTGT	TCTCCAACTT	CTGGTATCAC	TCTTATACCA	AGGGCAAGCG	900
	CCTCCCCCT	GCACTTCAGC	AAAATGGAGC	TCCAGGTATT	GCCAAGGTCA	AGGCCAACTG	960
	AGAAGCATGG	CCTAGATAGG	CGCCCACCTA	AGTGCCTCAG	GACTGCACCT	TAGGGCAGTG	1020
35	TCCGTCAGTG	CCCTCTCCAC	CTACACCTGT	GACCAAGGCT	TATGTGGTCA	GGACTGAGCA	1080
	GGGGACTGGC	CCTCCCCTCC	CCACAGCTGC	TCTACAGGGA	CCACGCCTTT	GGTTCCTCAC	1140
40	CCACTTCCCC	CGGGCAGCTC	CAGGGATGTG	GCCTCATTGC	TGTCTGCCAC	TCCAGAGCTG	1200
	GGGGCTAAAA	GGGCTGTACA	GTTATTTCCC	CCTCCCTGCC	TTAAAACTTG	GGAGAGGAGC	1260
	ACTCAGGGCT	GGCCCCACAA	AGGGTCTCGT	GCCTTTTTC	CTCACACAGA	AGAGGTCAGC	1320
45	AATAATGTCA	CTGTGGACCC	AGTCTCACTC	CTCCACCCCA	CACACTGAAG	CAGTAGCTTC	1380
	TGGGCCAAAG	GTCAGGGTGG	GCGGGGGCCT	GGGAATACAG	CCTGTGGAGG	CTGCTTACTC	1440
50	AACTTGTGTC	ТТААТТАААА	GTGACAGAGG	AAACCANAAA	AAAAAAAA	AAAAACTCGA	1500
	GGGGGCCCG	TACCCAAATC	GCCGGTATGA	TCGTAAACAA	TC		1542

(A) LENGTH: 2327 base pairs

60 (B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 107:

⁽i) SEQUENCE CHARACTERISTICS:

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

5	(XI) SEQUENCE DESCRIPTION. SEQ ID NO: 107:	
J	GGTAGCTCAN TGCAGTGAAA TAGTCTTACT GGAAACAAAG CCCTTTATCA AGAATAATTA	60
	ACTOTTCCCT TETCTTTTTG GAGAGGTGCT TTGTTTCTGA TCGGACCATT TCACTGCAGC	120
10	AAGCAACACA GTATTCTRAG CAGAAGATCG GGACTTGAGG CCATGTTGCG GAGGGCCAGT	180
	RACATTATCT GGACTCTGGA GTGTGAGGAA TATGGACTCC ACTCTTCACT ATATTCACAR	240
15	CGATTCAGAC TTGAGCAACA ATAGCAGTTT TAGCCCTGAT GAGGAAAGGA GAACTAAAGT	300
13	ACAAGATGTT GTACCTCAGG CGTTGTTAGA TCAGTATTTA TCTATGACTG ACCCTTCTCG	360
	TGCACAGACG GTTGACACTG AAATTGCTAA GCACTGTGCA TATAGCCTCC CTGGTGTGGC	420
20	CTTGACACTC GGAAGACAGA ATTGGCACTG CCTGAGAGAG ACGTATGRGA CTYTGGCCTC	480
	AGACATGCAG TOGAAAGTTC GACGGAACTC TAGCATTCTC CATCCACGRG CTTGCAGTTA	540
25	TTCTTGGAGA TCAATTGACA GCTGCAGATC TGGTTCCAAT TTTTAATGGA TTTTTAAAAG	600
23	ACCTCGATGA AGTCAGGATA GGTGTTCTTA AACACTTGCA TGATTTTCTG AAGCTTCTTC	660
	ATATTGACAA AAGAAGAGA TATCTTTATC AACTTCAGGA GTTTTTGGTG ACAGATAATA	720
30	GTAGAAATTG GCGGTTTCGA GCTGAACTGG CTGAACAGCT GATTTTACTT CTAGAGTTAT	780
	ATAGTCCCAG AGATGTTTAT GACTATTTAC GTCCCATTGC TCTGAATCTG TGTGCAGACA	840
35	AAGTITCTIC TGITCGTTGG ATTITCCTACA AGTIGGTCAG CGAGATGGTG AAGAAGCTGC	900
	ACGCGGCAAC ACCACCAACG TTCGGAGTGG ACCTCATCAA TGAGCTTGTG GAGAACTTTG	960
	GCAGATGTCC CAAGTGGTCT GGTCGGCAAG CCTTTGTCTT TGTCTGCCAG ACTGTCATTG	1020
40	AGGATGACTG CCTTCCCATG GACCAGTTTG CTGTGCATCT CATGCCGCAT CTGCTAACCT	1080
	TAGCAAATGA CAGGGTTCCT AACGTGCGAG TGCTGCTTGC AAAGACATTA AGACAAACTC	1140
45	TACTAGAAAA AGACTATTTC TTGGCCTCTG CCAGCTGCCA CCAGGAGGCT GTGGAGCAGA	1200
	CCATCATGC TCTTCAGATG GACCGTGACA GCGATGTCAA GTATTTTGCA AGCATCCACC	1260
	CTGCCAGTAC CAAAATCTCC GAAGATGCCA TGAGCACAGC GTCCTCAACC TACTAGAAGG	1320
50	CTTGAATCTC GGTGTCTTTC CTGCTTCCAT GAGAGCCGAG GTTCAGTGGG CATTCGCCAC	1380
	GCATGTGACC TGGGATAGCT TTCGGGGGGAG GAGAGACCTT CCTCTCCTGC GGACTTCATT	1440
55	GCAGGTGCAA GTTGCCTACA CCCAATACCA GGGATTTCAA GAGTCAAGAG AAAGTACAGT	1500
	AAACACTATT ATCTTATCTT GACTITAAKG KKWAWKMMWW KCTCAGMSRA TTATAMITSW	1560
	CWMMRARGSM WYMAAWSCTK SWECTCYWCC KSRSTGRMKG MMRCTCTAGA AYTRGYRGAK	1620
60	CMYYYKSGCT KMWGGAAKKS GGCASGAGCC AGAGACCTGC ATTGCTTTCT CCTGGTTTTA	1680

330

	TITAACAATC GACAAATGAA ATTCTTACAG CCTGAAGGCA GACGTGTGCC CAGATGTGAA	1740
5	AGAGACCTTC AGTATCAGCC CTAACTCTTC TCTCCCAGGA AGGACTTGCT GGGCTCTGTG	1800
J	GCCAGCTGTC CAGCCCAGCC CTGTGTGTGA ATCGTTTGTG ACGTGTGCAA ATGGGAAAGG	1860
	AGGGGTTTTT ACATCTCCTA AAGGACCTGA TGCCAACACA AGTAGGATTG ACTTAAACTC	1920
10	TTAAGCGCAG CATATTGCTG TACACATTTA CAGAATGGTT GCTGAGTGTC TGTGTCTGAT	1980
	TTTTTCATGC TGGTCATGAC CTGAAGGAAA TTTATTAGAC GTATAATGTA TGTCTGGTGT	2040
15	TTTTAACTTG ATCATGATCA GCTCTGAGGT GCAACTTCTT CACATACTGT ACATACCTGT	2100
15	GACCACTCTT GGGAGTGCTG CAGTCTTTAA TCATGCTGTT TAAACTGTTG TGGCACAAGT	2160
	TCTCTTGTCC AAATAAAATT TATTAATAAG ATCTATAGAG AGAGATATAT ACACTTTTGA	2220
20	TTGTTTTCTA GATGTCTACC AATAAATGCA ATTTGTGACC TGTAAAAAAA AAAWAAAAAA	2280
	ACTCGAGGGG GGCCCGGTAC CCAAATCGCC GATATGATCT AANCATC	2327
25		
	(2) INFORMATION FOR SEQ ID NO: 108:	
	<u>-</u>	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1062 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:	
	GGCCGCCGAG GCGCAACAGC CGTTCTGTCA GCTCTGGGTC CAACCGGACT AGCGAANATC	60
40	TTCCTCATCC TCATCATCGT CTTCCTCATC CCGATCTCGG TCCAGGTCCC TCTCCCCCCC	120
10	ACACAAGAGG TGGCGAAGGT CCAGCTGTAG TTCCTCTGGA CGTTCTCGAA GATGCTCTTC	180
	CTCTTCTTCG TCATCATCTT CCTCTTCGTC TCCTCATCC TCATCATCCA GTTCTCGAAG	240
45	CCGCTCACGA ATCCCCATCC CCCCGCCGGA GRAAGTGACA GGAGGCGGCG GTACAGCTCT	300
	TATCGTTCAC ATGACCATTA CCAAAGGCAA AGAGTGCTAC AAAAGGAGCG TGCAATAGAA	360
50	GAAAGAAGGG TGGTCTTCAT TGGAAAGATA CCTGGCCGCA TGACTCGATC AGAGCTGAAA	420
50	CAGAGGTTCT CCGTTTTTGG AGAGATTGAG GAGTGCACCA TCCACTTCCG TGTCCAAGGG	480
	GACAACTACG GCTTCGTCAC TTATCGCTAT GCTGAGGAGG CATTTGCAGC CATTGAGAGT	540
55	GGCCACAAGC TGCGGCAGGC AGATGAGCAG CCCTTTGATC TCTGCTTTGG GGGCCGAAGG	600
	SWCTNCTGCA AGAGGAGCTA TTCTGATCTT GACTCCAACC GGGAAGACTT TGACCCAGCA	660

CCTGTAAAGA GCAAATTTGA TTCTCTTGAC TTTGACACAT TGTTGAAACA GGCCCAGAAG

60

331

	AACCTCAGGA	GGTAACCTTG	GGCCCTTCCC	TGCTATCCTT	TITCICCITT	GGAGGTGCCC	780
	AACCTCCTCC	ACCCCCTTCC	CCTACTCTAG	GGGAGAGAGC	TGCTAGTGAG	ATGACTGTTT	840
5	TATAAAGAAA	TGGAAAAAAG	TGAAATAAAA	AATATGTTGA	ATCAGATTTT	TTAAAAGGGG	900
	TATTTGTTTT	TTTATAACAG	GTATTGAAAC	AAGTTAACTT	GCATTCCTAT	GTAAGATAGG	960
10	AGGGGCTGAG	GGGATCCCCA	GTGTTTGGAA	CATAAGTCAC	TATGCAGACT	AATAAACATC	1020
	AACTAGAGAG	NAAAAAAA	ААААААААА	AAAAAAA	CT		1062

15

20

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 109:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2539 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:

GAGAGACTCA CACTTCTTTT CCATTATCAC TGACGATGTA GTGGACATAG CAGGGGAAGA 60 GCACCTACCT GTGTTGGTGA GGTTTGTTGA TGAATCTCAT AACCTAAGAG AGGAATTTAT 120 AGGCTTCCTG CCTTATGAAG CCGATGCAGA AATTTTGGCT GTGAAATTTC ACACTATGAT 180 AACTGAGAAG TGGGGATTAA ATATGGAGTA TTGTCGTGGC CAGGCTTACA TTGMCTCTAG 240 TGGATTTTCT TCCAAAATGA AAGTTGTTGC TTCTAGACTT TYAAGMKMRA TWKCCCCMAK YWAWCKGAAC AMAMKCTGSW CYTCCWSYGC SKTRRMKRYC GYKSTATRRC WARWKSAKYM 360 CCYGKKMTGS RRGTAWYTSK TOCAYKAGGG AACAATTGAG GAAGTTTGTT CTTTTTTCCA TCGATCACCA CAACTGCTTT TAGAACTTGA CAACGTAATT TCTGTTCTTT TTCAGAACAG 480 TAAAGAAAGG GGTAAAGAAC TGAAGGAAAT CTGCCATTCT CAGTGGACAG GCAGGCATGA 540 TGCTTTTGAA ATTTTAGTGG AACTCCTGCA AGCACTTGTT TTATGTTTAG ATGGTATAAA 600 TAGTGACACA AATATTAGAT GGAATAACTA TATAGCTGGC CGAGCATTTG TACTCTGAGT 660 GCAGTGTCAG ATTTTGATTT CATTGTTACT ATTGTTGTTC TTAAAAATGT CCTATCTTTT 720 ACAAGAGCCT TTGGGAAAAA CYYCMAGGGG CAAACCTCTG ATGTCTTCTT TGCKKMMSRT 780 ARMTTTTGAY ATRMARYACT RMMTKSAYTY AAYGRWGTGA CWSGAWAATA TTRAASTYTA 840 900 TACAATKAAT YWTRRYTTSM KRMAGMYAAT CCGAAAYTGT GGMAAMYAAA CTTGATATTC AAATGAAACT CCCTGGGAAA TTCCGCAGAG CTCACCAGGG TAACTTGGAA TCTCAGCTAA 960 CCTCTGAGAG TTACTATAAA GAAACCCTAA GTGTCCCAAC AGTGGAGCAC ATTATTCAGG 1020 AACTTAAAGA TATATTCTCA GAACAGCACC TCAAAGCTCT TAAATGCTTA TCTCTGGTAC 1080

	CCTCAGTCAT	GGGACAACTC	AAATTCAATA	CGTCGGAGGA	ACACCATGCT	GACATGTATA	1140
5	GAAGTGACTT	ACCCAATCCT	GACACGCTGT	CAGCTGAGCT	TCATTGTTGG	AGAATCAAAT	1200
•	GGAAACACAG	GGGGAAAGAT	ATAGAGCTTC	CGTCCACCAT	CTATGAAGCC	CTCCACCTGC	1260
	CTGACATCAA	GTTTTTTCCT	AATGTGTATG	CATTGCTGAA	GCTCCTGTGT	ATTCTTCCTG	1320
10	TGATGAAGGT	TGAGAATGAG	CGGTATGAAA	ATGGACGAAA	GCGTCTTAAA	GCATATTTGA	1380
	GGAACACTTT	GACAGACCAA	AGGTCAAGTA	ACTTGGCTTT	GCTTAACATA	AATTTTGATA	1440
15	TAAAACACGA	CCTGGATTTA	ATGGTGGACA	CATATATTAA	ACTCTATACR	AKTAMGTCAG .	1500
10	MGCTYYCTAC	AKAYRAYTCM	SWAWMTGTGG	AAARYWSSTA	MGMSWGCWKK	TAMMRRTMCG	1560
	GMWTYYYMK	RKTYGAYMYW	YGCGWMCGAG	AAAAAGCCGT	AAGGTGTATG	TAGACCACTT	1620
20	AATCACTAAA	TATCTTTGCC	TATAGGACTC	CATTGAATAC	ATTAGCCATT	GATAATCTAC	1680
	CTGTTTAAAT	GCCCCTCTT	TGAACTCTCA	AGCTTTGAAG	ACCTACCTGT	TCTTCCAGAA	1740
25	GAGAACGTTG	AAAGTGCCAT	GTTTCCTTTT	GCGTGATCTC	TGTTGATGGC	ACTCTGGAAT	1800
	TGTTTCCAGT	TTAAKTCATT	TTAGACATAG	CATTTATTAT	CACTGTGGAT	CTCTACTTGT	1860
	TGGGTGTTAT	GAATTCTTTG	AAGAATATAT	TTTGAAGAGG	TGTGGGAGGA	AGGAATACAT	1920
30	TTTATAAAAT	GTTGTAGTGA	AGCCCACAAT	TGACCTTKGA	CTAATAGGAG	TTTTAAGTAT	1980
	GTTAAAAATC	TATACTGGAC	AGTTACAAGA	AATTACCGGA	GAAAAGCTTG	TGAGCTCACC	2040
35	AAACAAGGAT	TTCAGTGTAG	ATTTTGTCTT	TCTTGAACTT	AAAGAAACAA	ATGACAAAGT	2100
	TTGAATGGAA	AAGCCTGCTG	TTGTTCCACA	TCTCGTTGCT	GTTTACATTC	CTTTGTGGAG	2160
	CCTACATCTT	CCTAAGCTTT	TTAGCAGGTA	TATGTTGAAC	ACTTCTGTTT	CATGGTTGAG	2220
40	ACAGAATCAG	AGGCCATGGA	TACTGACAAC	TGATTIGICT	GITTITTTC	TCTGTCTTTT	2280
	TCCATGACTC	TTATATACTG	CCTCATCTTG	ATTTATAAGC	AAAACCTGGA	AAACCTACAA	2340
45	AATAAGTGTT	GTGGTTTATC	TAGAAAAATA	TGGAAAATAT	TGCTGTTATT	TTTGGTGAAG	2400
	AAAATCAATT	TTGTATAGTT	TATTTCAATC	ТАААТААААТ	GTGAATTTTG	AAATTAWWTT	2460
	AATTWGGSAC	AAABTBGHGG	GGGDTCCAAA	CHTWVTCGHG	KAAMPTCTCT	WAARMATYTK	2520
50	ATAAACMSCT	TCACAATTC					2539

55 (2) INFORMATION FOR SEQ ID NO: 110:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1751 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

333

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:

	(AL) SEQUENCE DESCRIPTION, SEQ ID NO: 110:	
5	AGCATGAAGC CGATGGCCGT GGTGGCCAGT ACCGTCCTGG GCCTGGTGCA AAACATGCGT	60
	GCGTTTGGCG GGATCCTGGT GGTGGTCTAC TACGTATTTG CCATCATTGG GATCAACTTG	120
10	TTTAGAGGCG TCATTGTGGC TCTTCCTGGA AACAGCAGCC TGGCCCCTGC CAATGGCTCG	180
10	GCGCCCTGTG GGAGCTTCGA GCAGCTGGAG TACTGGGCCA ACAACTTCGA TGACTTTGCG	240
	GCTGCCCTGG TCACTCTGTG GAACTTGATG GTGGTGAACA ACTGGCAGGT GTTTCTGGAT	300
15	GCATATCGGC GCTACTCAGG CCCGTGGTCC AAGATCTATT TTGTATTGTG GTGGCTGGTG	360
	TCGTCTGTCA TCTGGGTCAA CCTGTTTCTG GCCCTGATTC TGGAGAACTT CCTTCACAAG	420
20	TOGGACCCCC GCAGCCACCT GCAGCCCCTT GCTGGGACCC CAGAGGCCAC CTACCAGATG	480
20	ACTGTGGAGC TCCTGTTCAG GGATATTCTG GAGGAGCCCG GGGAGGATGA GCTCACAGAG	540
	AGGCTGAGCC AGCACCCGCA CCTGTGGCTG TGCAGGTGAC GTCCGGGCTG CCATCCCAGC	600
25	AGGGGCGCA GGAGAGAGA GCTGGCCTAA CACAGGTGCC CATCATGGAA GAGGCGGCCA	660
	TGCTGTGGCC AGCCAGGCAG GAAGAGACCT TTCCTCTGAC GGACCACTAA GCTGGGGACA	720
30	GGAACCAAGT CCTTTGCGTG TGGCCCAACA ACCATCTACA GAACAGCTGC TGGTGCTTCA	780
	GGGAGGCGCC GTGCCCTCCG CTTTCTTTTA TAGCTGCTTC AGTGAGAATT CCCTCGTCGA	840
	CTCCACAGGG ACCTTTCAGA CAAAAATGCA AGAAGCAGCG GCCTCCCCTG TCCCCTGCAG	900
35	CTTCGGTGGT GCCTTTGCTG CCGGCAGCCC TTGGGGACCA CAGGCCTGAC CAGGCCTGC	960
	ACAGGITAAC CGTGAGTCTG TCTCATCTAT TCACAGCTGG GAATGATACT AATACCTCCG	1020
40	ATTITAGCCC AGCACCACAG GGTACGTTCC AGTTTTTCTC TCTTTCCATA GCTGTAAGGC	1080
	CCTTTCTGGG AATGGTTCTC ATTCTCCTTA ATCTATTATT GGGTCAGTTT TCCTGCATGT	1140
	CCCCAGCCTC CCATCACTGC CACCCACTCC CCACAGAGAT GCCCTGCTCA TCCGACTGGG	1200
45	GCTTTGACTC CCACACTGTG TACCCCTCTT GTGTGGACGC CCTGCTGCCA AAACCTTCAG	1260
	CAAACAGCTT TCCAAATGGA AGTTGTCACT GTCAGGCCTT TACAATCAGC AACAGCAAAA	1320
50	TCTACATGCT GCTGAGGGTC CTGCCTCATT AAGATGCAAT AAATATGTAA GTACATAAAA	1380
	ACAGCAATAG AAGAAACGTA ATGCTTTATT CTCAAATATG ATGTCTACAT AGAAAAGCCA	1440
	AAATTATTAA GAATAGTAAG AATTCACCCA GCACTTTGGG AGGCCGAGGC GGGTGGATCA	1500
55	TGAGGTCAGG AGATCGAGAC CATCCTGGCT AACAGGGTGA AACCCCGTCT CTACTAAAAA	1560
	TACAAAAAAT TGGCCGGGG CAGTGGCGGG CGCCTGTGGT CCCAGCTACT GGGGAGGCTG	1620
60	AGGCAGGAGA ATGGCGTGAA CCCGGGAAGC GGAGCTTGCA GTGAGCCGAG ATTGCGCCAC	1680

TGCAGTCCGC AGTCCAGCCT GGGCGACAGA GCGAGACTCC GTCTCAAAAA AAAAAAAAA

334

	AAAAAAAAA A	1751
5		
	(2) INFORMATION FOR SEQ ID NO: 111:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1117 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:	
	AATGITGIGG TGGTAGCATT TGGGTTAATT CTRATTATAG AGTCTCTIGG AGAGCAATGT	60
20	CCATAAACTA ATCCCAAACA ACATTGTCTT TTTRATGTTG TAGTGAACAG CAGAGAATTT	120
	CAAAGGACCT TGCTAATATC TGTAAGACGG CAGCTACAGC AGGCATCATT GGCTGGGTGT	180
25	ATGGGGGAAT ACCAGCTTTT ATTCATGCTA AACAACAATA CATTGAGCAG AGCCAGGCAG	240
20	AAATTTATCA TAACCGGTTT GATGCTGTGC AATCTGCACA TCGTGCTGCC ACACGAGGCT	300
	TCATTCGTTA TGGCTGGCGC TGGGGTTGGA GAACTGCAGT GTTTGTGACT ATATTCAACA	360
30	CAGTGAACAC TAGTCTGAAT GTATACCGAA ATAAAGATGC CTTAAGCCAT TTTGTAATTG	420
	CAGGAGCTGT CACGGGAAGT CTTTTTAGGA TAAACGTAGG CCTGCGTGGC CTGGTGGCTG	480
35	GTGGCATAAT TGGAGCCTTG CTGGGCACTC CTGTAGGAGG CCTGCTGATG GCATTTCAGA	540
J J	AGTACTCTGG TGAGACTGTT CAGGAAAGAA AACAGAAGGA TCGAAAGGCA CTCCATGAGC	600
	TAAAACTGGA AGAGTGGAAA GGCAGACTAC AAGITACTGA GCACCTCCCT GAGAAAATTG	660
40	AAAGTAGTTT ACAGGAAGAT GAACCTGAGA ATGATGCTAA GAAAATTGAA GCACTGCTAA	720
	ACCTTCCTAG AAACCCTTCA GTAATAGATA AACAAGACAA GGACTGAAAG TGCTCTGAAC	780
45	TTGAAACTCA CTGGAGAGCT GAAGGGAGCT GCCATGTCCG ATGAATGCCA ACAGACAGGC	840
45	CACTCTTTGG TCAGCCTGCT GACAAATTTA AGTGCTGGTA CCTGTGGTGG CAGTGGCTTG	900
	CTCTTGTCTT TTTCTTTTCT TTTTAACTAA GAATGGGGCT GTTGTACTCT CACTTTACTT	960
50	ATCCTTAAAT TTAAATACAT ACTTATGTTT GTATTAATCT ATCAATATAT GCATACATGA	1020
	ATATATCCAC CCACCTAGAT TTTAAGCAGT AAATAAAACA TTTCGCAAAA GATTAAAGTT	1080
55	GAATTTTACA GTTAAAAAAA AAAAAAAAA AAAAAAA	1117

⁽²⁾ INFORMATION FOR SEQ ID NO: 112:

335

(1)	SEQUENC	E CHARAC	TERIS	STICS:	:
	(A)	LENGTH:	1313	base	pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:

10	GGCAGAGGTT	TTCTTATATT	TTAAGTAAAT	TTAAAGTGGC	TATCAGAATA	TTTATTCTTG	60
10	TTTGAGACTA	CCAACATAAC	TACGTGTTGA	AGGTGCTTCA	CAGAGAATAT	ATTGCCTTTA	120
	ATGTGAAATA	ATTITCACCA	ATGTTGCTAA	СТТТААТААА	GTATAAAATT	TGTAGAATAT	180
15	TCAGTTAAGT	AGTTGGTAAC	CCTTTTCTAT	TTTAGTAAAA	CTTAATGCAT	GTTTACTTTT	240
	TTTTGAAAGA	TGCAGACAAT	CTCTTTGAAC	ATGAATTGGG	GGCTCTCAAT	ATGGCTGCAT	300
20	TACTACGAAA	AGAAGAAAGA	GCAAGTCTTC	TTAGTAATCT	TGGCCCATGT	TGTAAGGCGT	360
20	TGTGCTTCAG	ACGGGATTCT	GCAATTCGAA	AGCAGCTTGT	TAAAAATGAG	AAGGCACCA	420
	TAAAACAAGC	TTACACGAGT	GCTCCAATGG	TAGACAATGA	ATTACTTCGA	TTGAGTCTTC	480
25	GGTTATTTAA	GCGGAAGACT	ACTTGCCATG	CTCCAGGACA	TGAAAAGACT	GAAGATAATA	540
	AACTITCACA	GTCCAGTATC	CAACAGGAAC	TGTGTGTGTC	TTAAGACCGA	AGTTACAATA	600
30	TOGTATTTTT	GGTACTGTCT	TCCTTCAGCA	GTGCATATTC	TTTTGCAAAG	TTCTTTGGTT	660
30	TGACAAGCAT	TAGTGACAAA	GGCAGAAAAG	ATTTATCAGC	CATGCTAAAA	GAGTGAAGAA	720
	TTTTGATCTT	TAGAGACACT	AGTTTTGGCC	AACTTAAGAT	TTTACGTTAA	TTTTTACATA	780
35	GTATTTGACA	CTCATGCAAA	ATAATGTGAA	AACATCTAGA	TTTAGTAGTT	TATTCTGCGC	840
	CTTTTGTTAA	AACTGAAGAT	TTTGGAAAAT	GGTTGTCACT	GCTCTTCCAG	CCTATGAATA	900
40	TTTTTGTGAA	ATGGAACCAT	GGATTTATGT	CTGGATCATC	CATACAGAAC	CAACAATTTT	960
40	ATTCAAAAAC	AATGTGTTCA	TCAAAGTAAT	TGCTCACATT	GTGCAGTACT	ATGTTGTACA	1020
	GACCACGTGA	AAGGGAATGC	TGGTCTAGCT	GCCTGCTAT	GTTTATAGGC	GAATTTCAGC	1080
45	AGAAGGAAGC	CAAAATAGTT	TTTTCCTTTT	GAAAGTTTTT	TAAAAATTAT	TTCATGGGTC	1140
	ТТТТТТТТАА	TTAATATGTG	TGCATTGTTA	CAATGTATGT	TGGGATGTCT	TTTGACCCTA	1200
50	AATGCTTTTT	TTGTTATCAG	AGATTGTGTA	СТАТТТТТАТ	ТТТТААТААА	TGTATCTTCC	1260
50	СТТТТМАААА	АААААААА	АААААААА	ааааааааа	ААААААААА	AAA	1313

55
(2) INFORMATION FOR SEQ ID NO: 113:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1654 base pairs

60 (B) TYPE: nucleic acid

336

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:	
3	ACAGOGACAG AATACTTTCT TTCCTTCCTT CAAGTACAAG AAGGCTTTCT CTACCATTTG	60
	CGTCTACACT TTATTTTAAA AGCTATCCTT TTCTAGTAGT ATTTTATCAT GGCAATGGCA	120
10	TGATGACAAC AACAGTCTTT CATTACAGAC TGAAGGGAAG CATGTCCTTA CTTAAAATAG	180
	TTCTGCTACT TTCCCTCCTA TTATAAGGAA ATTTTACAGA TTCTAAAAAT ACCTTAATTT	240
16	TICTITGATT TITATITIAC CAAGTCACAA ATGTCTTTTT GATGTTTTGA GAATTGTTCT	300
15	CATAGAATCA CAAATACTGA CATTTCATTA GATGATTATT TTCCTAGAAT CCCCAAAGAG	360
	CAGTGGCAGT CCATGGCTTG GTTGAAGCTA GAAATTTTCC TGCCCCTGGT GACCTGGTAA	420
20	GCCTCCTGCT CGGAACCGTG TGAGTGGGTG AGGAAGATGA GAGATGGTCA GATGGAAGAG	480
	AGRAATACAT GAACTGCTCT GGCCTCTCTG GTTCTGTTCT	540
25	GCAGCGGANA TNGACTGACT TCACATGCTC AGCTTTCTCA GCCTTTTGTT TATTTTGTTG	600
23	TCCTTAGATT TCCCTGTTGT AAAAGGGGCA AGAAAAGTAA CTCATCATCT CTAACACACC	660
	ATGGCAGCTT AGCCAGGTAG TCTTAGTGGT GGTGTTTAGG CATAAGATAT GCTGATCATC	720
30	AGTOTCAGGO CACAGTITICO TICACTAATO GIOCAGCITG AGTGTTOTGT TOTOTTOCTG	780
	CCCATTTCCT TGAACCTCCT GCTCTAGCCT TGGCGGAGGG AGAGTGCTAT TTGCTTTTGT	840
35	TCTCCCTCTG TCTTAGGAAA AGCCATCTTT AATATAGTTC TTCACCACTG TTGGGGTTGT	900
33	TITGTGATIT TTTTTTCTT CCGAAGAACT CCTGGTTGIT AFTGGATTTT GTATTTTAAT	960
	ACAAATTATT GAATTTTATA AGCTTGTACA CAATATTTAA TTAGTGTGAA AGGAAACAAA	1020
40	GAATGCAGGA AAAATAATTT AATATCAACC TCAGTTGACA AGGTGCTCAG ATTATTCAAT	1080
	TCGGGATCCT CCTTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAACTG TGTCACAGAC	1140
45	TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA	1200
,,,	TICTTTATIC CICTTCTIC TGAAGATTAA TGAAGTTGAA AATTGAGGTG GATAAATACA	1260
	AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTTA TATACATCCA	1320
50	TTCAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATGCTGTT	1380
	GAAYCTACTC TGTTCCTTGG CTAGAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC	1440
55	CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG	1500
55	GATTITTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG	1560
	TAAAATCAGT TITGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	1620
60	CAAAAAAAA AAAAAATAAA NTTCGAGGGG GGGC	1654

_							
`	121	INFORMATION	EVD	CEO.	TD	MY.	114.

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1171 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:

15	GGCAAACTTT CCCCCAANGC TTCGAAACTT GCAAGCCGAA ACCTTGAATC GTTAAAAGTT	60
	GGGTTGCGNC GGCGCCCTGG CCCGAAGAAG CGCAATTGGC GTTCCGCGAA CGTTGGCCCT	120
20	CAACGCTCG GCAGCCAGCC ATGTCCTGCA CCCAGGACAG CGGCCCTGGG CTACAAGGAC	180
20	CTGGMCCTCA TCTTCCTGCG CCGACCTGCG CGGGGTAAGG GGWAGTTTCA GACTGTGAAG	240
	GACGTCGTGC TGGACTGCCT GTTGGACTTC TTACCCGAGG GGGTGAACAA AGAGAAGATC	300
25	ACACCACTCA CGCTCAAGGA AGCTTATGTG CAGAAAATGG TTAAAGTGTG CAATGACTCT	360
	GACCGATGGA GTCTTATATC CCTGTCAAAC AACAGTGGCA AAAATGTGGA ACTGAAATTT	420
30	GTGGATTCCC TCCGGAGGCA GTTTGAATTC AGTGTAGATT CTTTTCAAAT CAAATTAGAC	480
50	TCTCTTCTGC TCTTTTATGA ATGTTCAGAG AACCCAATGA CTGAGACATT TCACCCCACA	540
	ATAATCGGGG AGAGCGTCTA TGGCGATTTC CAGGAAGCCT TTGATCACCT TTGTAACAAG	600
35	ATCATTGCCA CCAGGAACCC AGAGGAAATC CGAGGGGGAG GCCTGCTTAA GTACTGCAAC	660
	CTCTTGGTGA GGGGCTTTAG GCCCGCCTCT GATGAAATCA AGACCCTTCA AAGGTATATG	720
40	TGTTCCAGGT TTTTCATCGA CTTCTCAGAC ATTGGAGAGC AGCAGAGAAA ACTGGAGTCC	780
40	TATTIGCAGA ACCACTITIGT GGGAATIGGA AGACCGCAAG TATGAGTATC TCATGACCCT	840
	TCATGGAGTG GTAAATGAGA GCACAGTGTG CCTGATGGGA CATGAAAGAA GACAGACTTT	900
45	AAACCTTATC ACCATGCTGG CTATCCGGGT GTTAGCTGAC CAAAATGTCA TTCCTAATGT	960
	GGCTAATGTC ACTTGCTATT ACCAGCCAGC CCCCTATGTA GCAGATGCCA ACTTTAGCAA	1020
50	TTACTACATT GCACAGGTTC AGCCAGTATT CACGTGCCAG CAACAGACCT ACTCCACTTG	1080
50	GCTACCCTGC AATTAAGAAT CATITAAAAA TGTCCTGTGG GGAAGCCATT TCAGACAAGA	1140
	CAGGAGAGAA AAAAAAAAAA AAAAAAAAAA A	1171

(2) INFORMATION FOR SEQ ID NO: 115:

60 (i) SEQUENCE CHARACTERISTICS:

338

	(A) LENGTH: 842 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:	
	GGTCTGCGCC GGAAGTGCAT GAGCTGCCGA TGTGGTGCTT AGTGATTGCG GTTTCGGTCG	60
10	CTCTCCCGTG TTTCCCGGGC TGGGTATTTG CCTCGCACCA TGGCGCCCAA GGGCAAAGTG	120
	GGCACGAGAG GGAAGAAGCA GATATTTGAA GAGAACAGAG AGACTCTGAA GTTCTACCTG	180
15	COGATCATAC TOGGGGCCAA TOCCATITAC TOCCTTOTGA COTTOGTCTT CTTTTACTCA	240
	TCTGCCTCAT TTTGGGCCTG GTTGGCCCTG GGCTTTAGTC TGGCAGTGTA TGGGGCCAGC	300
	TACCACTCTA TGAGCTCGAT GGCACGAGCA GCGTTCTCTG AGGATGGGGC CCTGATGGAT	360
20	GGTGGCATGG ACCTCAACAT GGAGCAGGGC ATGGCAGAGC ACCTTAAGGA TGTGATCCTA	420
	CTGACAGCCA TCGTGCAGGT GCTCAGCTGC TTCTCTCTCT ATGTCTGGTC CTTCTGGCTT	480
25	CTGGCTCCAG GCCGGCCCT TTACCTCCTG TGGGTGAATG TGCTGGGCCC CTGGTTCACT	540
	GCAGACAGTG GCACCCCAGC ACCAGAGCAC AATGAGAAAC GGCAGCGCCG ACAGGAGCGG	600
	CGGCAGATGA AGCGGTTATA GCCATTGACA TTGTGGCCAC AGGCCACTGG CCCTGGGTGG	660
30	CTCTGTCAGG GTGCACAGCC CCTCATGCCT GGAGCAATGA GGGTCTAGTC CAGGGGCCAA	720
	AAGCAGTCTG AGGTATTGGG TATACTTATA CTCTATAGGG TCGTTGAATA AATGGCTTAG	780
35	AATGTGAAAA AAAAAAAAA AAAAAACTCG AGGGGGCCC GGTACCCAAT TTCNCCTANA	840
	AT	842
40		
+0	(2) INFORMATION FOR SEQ ID NO: 116:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1640 base pairs	
+3	(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEO ID NO: 116:	
50	GGCACGAGGC GGCGCAGCG GTGGCGGCGG CGCCCCCGG CGGAGCCGT TCCCTTTCCC	60
	GTCGGGGAGC GCGGGGYCGG GGCCCAGGGG ACCCCGGGCC ACGGAGAGGGG GGAAGAGGAT	120
55	GGATTGCCCG GCCCTCCCCC CCGGATGGAA GAAGGAGGAA GTGATCCGAA AATCTGGGCT	180
	AAGTGCTGGC AAGAGCGATG TCTACTACTT CAGTCCAAGT GGTAAGAAGT TCAGAAGCAA	240
	and a contract of the	

GCCTCAGTTG GCAAGGTACC TGGGAAATAC TGTTGATCTC AGCAGTTTTG ACTTCAGAAC

60

	TGGAAAGATG	ATGCCTAGTA	AATTACAGAA	GAACAAACAG	AGACTGCGAA	ACGATCCTCT	360
	CAATCAAAAT	AAGGGTAAAC	CAGACTTGAA	ATACAACATT	GCCAATTAGA	CAAACAGCAT	420
5	CAATTTTCAA	ACAACCGGTA	ACCCAAAGTC	ACAAATCATC	СТАСТААТАА	AGTGAAATCA	480
	GACCCACAAC	GAATGAATGA	ACAGCCACGT	CAGCTTTTCT	OGGAGAAGAG	GCTACAAGGA	540
10	CTTTAGTGCA	TCAGATGTAA	CAGAACAAAT	TATAAAAACC	ATGGAACTAC	CCAAAGGTCT	600
10	TCAAGGAGTT	GGTCCAGTAG	CAATGATGAG	ACCCTTTTAT	CTGCTGTTGC	CAGTGCTTTG	660
	CACACAAGCT	CTGCGCCAAT	CACAGGGCAA	GTCTCCGCTG	CTGTGGAAAA	GAACCTGCTG	720
15	TTTGGCTTAA	CACATCTCAA	CCCCTCTGCA	AAGCTTTTAT	TGTCACAGAT	GAAGACTCAG	780
	GAAACAGAAG	AGCGAGTACA	GCAAGTACGC	AAGAAATTGG	AAGAAGCACT	GATGGCAGAC	840
20	ATCTTGTCGC	GAGCTGCTGA	TACAGAAGAG	ATGGATATTG	AAATGGACAG	TGGAGATGAA	900
20	GCCTAAGAAT	ATGATCAGGT	AACTITCGAC	CGACTTTCCC	CAAGAGAAAA	TTCCTAGGAA	960
	ATTGAACAAA	AATGTTTCCA	CIGGCTTIIG	CCTGTAAGAA	AAAAAATGTA	CCCGAGCACA	1020
25	TAGAGCTTTT	TAATAGCACT	AACCAATGCC	TTTTTAGATG	TATTTTTGAT	GTATATATCT	1080
	ATTATTCAAA	AAATCATGTT	TATTTTGAGT	CCTAGGACTT	AAAATTAGTC	TITTGTAATA	1140
30	TCAAGCAGGA	CCCTAAGATG	AAGCTGAGCT	TTTGATGCCA	GGTGCAATCT	ACTGGAAATG	1200
30	TAGCACTTAC	GTAAAACATT	TGTTTCCCCC	ACAGTTITAA	TAAGAACAGA	TCAGGAATTC	1260
	TAAATAAATT	TCCCAGTTAA	AGATTATTGT	GACTTCACTG	TATATAAACA	таттттата	1320
35	CTTTATTGAA	AGGGGACACC	TGTACATTCT	TCCATCGTCA	CTGTAAAGAC	AAATAAATGA	1380
	ттататтсса	CAGAAAAAA	WAAAAAAAA	MWSTYGARRR	GSRGCMCRSW	AYMMARWWCC	1440
40	CCWMRTWRGS	MKTCSTMTKA	YTTACATTCA	ACTCTGATCC	CGGGGCCTTA	GGTTTGACAT	1500
10	GGGAGGTGGG	AGGAAGATAG	CGCATATATT	TGCAGTATGA	ACTATTGCCT	CTGGGACGTT	1560
	GTGAGGAATT	GTGCTTTCAC	CAGAATTTCT	AAGGATTTCT	GGCTTAAATA	TCACCTAGCC	1620
45	TGTGGTAATT	TTTTTTCCCT					1640

50 (2) INFORMATION FOR SEQ ID NO: 117:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 952 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:

60 TGAATTTAGN AAACACTTTG GAAAACTCAT AACCTCATCA GAAACTGCCT TTAGCCACAC

340

	TCCTGACCTT	CTAGATGAGT	AACAAAAAA	TGAAATAAGT	TCTTGGAAAT	TAAGCCATTT	120
5	ATTTTAATTT	GCTATTTTT	TCAATGTTCT	AGGTATCTTT	AAATTTGTTA	TTGTGGAATC	180
3	ATTTTCCTGC	CAGATACCTT	TATCAAAATT	ATTOGCCTCA	TGAGAGCTGA	AGTAAGTCAG	240
	CTTTTTGGTG	AACTTTAGTG	GACTTCTGTG	AGATTGTAGT	TGTACTTTGT	ATCTCTAAAT	300
10	CTAAAGATAG	TTTTTTAAAA	CTCCCAAAGA	AAATCTGCTC	TCCTTTCTGA	TCTAAAAACT	360
	CATCTTTGGG	GTAAAGAGTT	AAGTGTCCAA	AGGTTGTCAC	AGTTCATGAG	GTCAGAGGGA	420
15	GCTAGCCTGG	CACCTGGACT	CTGCCCATCC	ACAGCTGACA	GATTCCAACA	GAAGTGTATT	480
13	TAAATTCTCC	AGTAGACAAT	GCTGGGTAAG	GGAGGGGGTA	GGGCTGGGTT	ATTAAGATAC	540
	AGGCTGCTGT	ATTITACATT	GGTTGTGGGG	GAAGGGGAGC	CTGGAGAAAA	CAAAGTCACT	600
20	ATTCCCTTTT	TTGAAACAGG	AAAAAAATT	ATTTTTTGTT	CAGTAAAAAT	GGTAGAGAAT	660
	TCCAATGTCC	CTAGCCACAA	GGGACCAGTT	CCACTGAGAA	GTGAACAGTG	GGAACTCAAA	720
25	ATTTCAGAAA	CATTGGGGGA	AGGGAAAATT	GGCTTTCTCT	TAATTGGCAG	ATGTTCCAGT	780
2 5	GGGGGGGG	GGCTCTGTTT	TTGTTGGGAT	GTGTTATGTT	GTATGTACGC	ATATATGGAC	840
	CGGAGTCTGC	TGAGTTTATA	AGGTTCCAAA	AATATGGTAA	AATCTTGGTT	TTTGTTAATT	900
30	TATCTCAATA	AAAGCCCACT	GGRACTCCAA	АААААААА	AAAAAAAAGA	NN	952

35 (2) INFORMATION FOR SEQ ID NO: 118:

40

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1256 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:

45 GACGTCATAG GTAAACAGGC TCTGTATCCG TGGCAGCGC CGTGGCAGGC TGGCTGGGTA 60 CCGGCTGTCG CTGACCCAGG AGAAGCTGCC TGTCTACATC AGCCTGGGCT GCAGCGCGCT 120 GCCGCCGCG GGCCGCAGC TGAACTATGT GCTCTTCAGG GCGGCACCG TGTTGCATTC 180 50 ATCTTTGTAC CCCCAGCATC TAGCAGTGTT GGCATGTAGT AGGCACTCAA GAAATGTGTG 240 TTGAATGAAC GATGCCTGTG ACAAGCAAGC GGACTTTATT CTTTCCTGAC CCTTGCTCCT 300 55 ATGACACACC TCCTCCTGAC TGCCACTGTC ACTCCTTCAG AGCAGAACTC CTCTAGGGAA CCTGGATGGG AAACAGCCAT GGCCAAGGAC ATCCTGGGTG AAGCAGGGCT ACACTTTGAT 420 GAACTGAACA AGCTGAGGGT GTTGGACCCA GAGGTTACCC AGCAGACCAT AGAGCTGAAG 480

341

	GAAGAGTGCA	AAGACTTTGT	GGACAAAATT	GGCCAGTTTC	AGAAAATAGT	TGGTGGTTTA	540
	ATTGAGCTTG	TTGATCAACT	TGCAAAAGAA	GCAGAAAATG	AAAAGATGAA	GGCCATCGGT	600
5	GCTCGGAACT	TGCTCAAATC	TATAGCAAAG	CAGAGAGAAG	CTCAACAGCA	GCAACTTCAA	660
	GCCCTAATAG	CAGAAAAGAA	AATGCAGCTA	GAAAGGTATC	GGGTTGAATA	TGAAGCTTTG	720
10	TGTAAAGTAG	AAGCAGAACA	AAATGAATTT	ATTGACCAAT	TTATTTTCA	GAAATGAACT	780
10	GAAAATTTCG	CTTTTATAGT	AGGAAGGCAA	AACAAAAAA	AGCCTCTCAA	AACCAAAAAA	840
	ACCTCTGTAG	CATTCCAGCG	GCTTGACCAA	TGACCTATGT	CACAAGAGGT	GGCGTGTAAG	900
15	GAATGCAGCC	CCCTGAAGAC	AGCACTACAA	GTCTGGGGGA	GCCAGTTTTA	ACATCAGTGC	960
	ACAGCTGCTG	CTGGTGGCCC	TGCAGTGTAC	GTTCTCACCT	CTTATGCTTA	GTTGGAACTA	1020
20	AGCAGTTTGT	AAACTTTCAT	ССТТТТТТТ	GTAAATTCAC	AAAGCTTTGG	AAGGAGAAGC	1080
20	AATAAATTTT	TGTTTTCAAA	TGGCTTGATG	TACCTTTTTT	CCTGTTGCTC	TTGAAATATG	1140
	TTTAACTCCT	CATGAGAGAA	CCCTGGATTC	TCTATCCCCT	AGTCCACAAA	ACAAACCAGG	1200
25	CAGTGGTCAG	CAGCTACCTT	TNATTTGGAT	CACACACGTG	AGTCAGACAG	TACCAC	1256

30 (2) INFORMATION FOR SEQ ID NO: 119:

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1143 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:

60 GCCCTAGCA GCCGGCTGG TCCTGCTGCG AGCCGGCGGC CCGGAGTGGG GCGGCGCAT GTACCITCCA CATTGAGTAT TCAGAAAGAA GTGATCTGAA CTCTGACCAT TCTTTATGGA 120 TACATTAAGT CAAATATAAG AGTCTGACTA CTTGACACAC TGGCTCGAGC AAACATGAAC 180 GTTGGAGTTG CCCACAGTGA AGTGAATCCA AATACCCGTG TCATGAACAG CCGGGGTATG 240 TOGCTGACAT ATGCATTGGG AGTTGGCTTG CTTCATATTG TCTTACTCAG CATTCCCTTC 300 TTCAGTGTTC CTGTTGCTTG GACTTTAACA AATATTATAC ATAATCTGGG GATGTACGTA 360 TTTTTGCATG CAGTGAAAGG AACACCTTTC GAAACTCCTG ACCAGGGTAA AGCAAGGCTC 420 CTAACTCATT GGGAACAACT GGACTATGGA GTACAGTTTA CATCTTCACG GAAGTTTTTC 480 540 ACAATTTCTC CAATAATTCT ATATTTTCTG GCAAGTTTCT ATACGAAGTA TGATCCAACT 600 CACTICATCC TAAACACAGC TICTCTCCTG AGTGTACTAA TICCCAAAAT GCCACAACTA 660 CATGGTGTTC GGATCTTTGG AATTAATAAG TATTGAAATG TTTTGAAACT GAAAAAAAAA

	TTTACAGCTA CTGAATTTCT TATAAGGAAG GAGTGGTTAG TAAACTGCAC TGTTTCTSTG	720
5	ATAATGTGAA ATGAGAAGTA TTTACATTGG AGGGCCAATG GCTGGTCCTT CAAGTGCTGT	780
J	TTTGAAGTGC AGATTTCCAT TAAATGATGC CTCTGTTTAA TACACCTGGT ACATTTCTGA	840
	AGAGGGGCTT TATAAGCAGG CTGGGCAGGC CCAGCTTATA AGTTAAAGGG CATCACAGTG	900
10	AGGGTGTAGT AGATAAATTC AAGGAAATAA GAGATTTGTA AGAAACTAGG ACCAGCTTAA	960
	CTTATAATGA ATGGGCATTG TGTTAAGAAA AGAACATTTC CAGTCATTCA GCTGTGGTTA	1020
15	TTTAAAGCAG ACTTACATGT AAACCGGAAT CCTCTCTATA CAAGTTTATT AAAGATTATT	1080
13	тттаттассс тааааааааа аааааааааа аааааааа	1140
	GAN	1143
20		
	(2) INFORMATION FOR SEQ ID NO: 120:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1782 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:	
	CAGGCCCCGG CCCCCCACCC ACGTCTGCGT TGCTGCCCCG CCTGGGCCRG GCCCCAAAGG	60
35	CAAGGACAAA GCAGCTGTCA GGGAACCTCC GCCGGAGTCG AATTTACGTG CAGCTGCCGG	120
	CAACCACAGG TTCCAAGATG GTTTGCGGGG GCTTCGCGTG TTCCAAGAAC TGCCTGTGCG	180
40	CCCTCAACCT GCTTTACACC TTGGTTAGTC TGCTGCTAAT TGGAATTGCT GCGTGGGGCA	240
	TTGGCTTCGG GCTGATTTCC AGTCTCCGAG TGGTCGGCGT GGTCATTGCA GTGGGCATCT	300
	TCTTGTTCCT GATTGCTTTA GTGGGTCTGA TTGGAGCTGT AAAACATCAT CAGGTGTTGC	360
45	TATTYTTTA TATGATTATT CTGTTACTTG TATTTATTGT TCAGTTTTCT GTATCTTGCG	420
	CTTGTTTAGC CCTGAACCAG GAGCAACAGG GTCAGCTTCT GGAGGTTGGT TGGAACAATA	480
50	CGGCAAGTGC TCGAAATGAC ATCCAGAGAA ATCTAAACTG CTGTGGGTTC CGAAGTGTTA	540
	ACCCAAATGA CACCTGTCTG GCTAGCTGTG TTAAAAGTGA CCACTCGTGC TCGCCATGTG	600
	CTCCAATCAT AGGAGAATAT GCTGGAGAGG TTTTGAGATT TGTTGGTGGC ATTGGCCTGT	660
55	TCTTCAGTTT TACAGAGATC CTGGGTGTTT GGCTGACCTA CAGATACAGG AACCAGAAAG	720
	ACCCCCGCGC RAATCCTAGT GCATTCCTTT GATGAGAAAA CAAGGAAGAT TTCCTTTCGT	780
	ATTATGATCT TGTTCACTTT CTGTAATTTT CTGTTAAGCT CCATTTGCCA GTTTAAGGAA	840

WO 98/39448

	GGAAACACTA	TCTGGAAAAG	TACCTTATTG	ATAGTGGAAT	TATATATTT	TACTCTATGT	900
	TTCTCTACAT	GTTTTTTTCT	TICCGTIGCT	GAAAAATATT	TGAAACTTGT	GGTCTCTGAA	960
5	GCTCGGTGGC	ACCTGGGAAT	TTACTGTATT	CATTGTCGGG	CACTGTCCAC	TGTGGCCTTT	1020
	CTTAGCATTT	TTACCTGCAG	AAAAACTTTG	TATGGTACCA	CIGIGIIGGI	TATATGGTGA	1080
10	ATCTGAACGT	ACATCTCACT	GGTATAATTA	TATGTAGCAC	TGTGCTGTGT	AGATAGTTCC	1140
10	TACTGGAAAA	AGAGTGGRAA	TTTATTAAAA	TCAGAAAGTA	TGAGATCCTG	TTATGTTAAG	1200
	GGAAATCCAA	ATTCCCAATT	TTTTTTGGTC	TTTTTAGGAA	AGATGTGTTG	TGGTAAAAAG	1260
15	TGTTAGTATA	AAAATGATAA	TTWACTKGTA	GTCTTTTATG	ATWACACCAA	TGTATTCTAG	1320
	AAATAGTTAT	GYCYTAGGAA	ATTGTGGTTT	AATTITTGAC	TTTTACAGGT	AAGTGCAAAG	1380
20	GAGAAGTGGT	TTCATGAAAT	GTTCTAATGT	ATAATAACAT	TTACCTTCAG	CCTCCATCAG	1440
20	AATGGAACGA	GTTTTGAGTA	ATCAGGAAGT	АТАТСТАТАТ	GATCTTGATA	TTGTTTTATA	1500
	ATAATTTGAA	GTCTAAAAGA	CTGCATTTT	AAACAAGTTA	GTATTAATGC	GTTGGCCCAC	1560
25	GTAGCAAAAA	GATATTIGAT	TATCTTAAAA	ATTGTTAAAT	ACCGTTTTCA	TGAAAGTTCT	1620
	CAGTATTGTA	ACAGCAACTT	GTYAAACCTA	AGCATATITG	AATATGATCT	CCCATAATTT	1680
30	GAAATTGAAA	TCGTATTGTG	TOGCTCTGTA	TATTCTGTTA	AAATTAAAA	GGACAGAAAC	1740
20	CTTTCTTTGT	GTATGCATGT	TTGAATTAAA	AGAAAGTAAT	GG		1782

35

40

(2) INFORMATION FOR SEQ ID NO: 121:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 610 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:

45 GTTGGCTGCA GATTTGTGGT GCGTTCTGAG CCGTCTGTCC TGCGCCAAGA TGCTTCAAAG 60 TATTATTAAA AACATATGGA TCCCCATGAA GCCCTACTAC ACCAAAGTTT ACCAGGAGAT 120 50 TTGGATAGGA ATGGGCTGA TGGGCTTCAT CGTTTATAAA ATCCGGGCTG CTGATAAAAG 180 AAGTAAGGCT TTGAAAGCTT CAGCGCCTGC TCCTGGTCAT CACAACCAGA TTTACTTGGA 240 GTACATGTGA AAGAAAACGT CAGTCTGCCT GTAAATTTCA GCAAGCCGTG TTAGATGGGG 300 55 AGCGTGGAAC GTCACTGTAC ACTTGTATAA GTACCGTTTA CTTCATGGCA TGAATAAATG 360 GATCTGTGAG ATGCACTGCT ACCTGGTACT GCTTTCAGTG TGTTCCCCCT CAGCCCTCCG 420 60 GCGTGTCAGG CATACTCTGA GTAGATAATT TGTCATGCAG CGCATGCAAT CAGAATCTCA 480

CTGAGCCACC CATCATTGTG AAATAATTAC CTCAGTTGTA CAGGACTTGG TGATCAGGAT	540
CCAGGCACTC ACTTGTATTC TACTGCTCAA TAAACGTTTA TTAAACTTGA AAAAAAAAA	600
AAAAAAAA	610
(2) INFORMATION FOR GEO ID NO. 122	
(A) LENGTH: 526 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:	
GGTACGCCTG CAGGTACCGG TCCGGAATTC CGGGTCGCCC ACGCGTCNGG CCACGCGTCC	60
ACCCACGCGT CCGSCCACGC GTCGGAGCCG AGCCGGACTG GTCAGGATGA TCACGGACGT	120
GCAGCTCGCC ATCTTCGCCA ACATGCTGGG CGTGTCGCTC TTCTTGCTTG TCGTTCTCTA	180
TCACTACGTG GCCGTCAACA ATCCCAAGAA GCAGGAATGA AAGTGGCGCT TTCTCCGCCC	240
CAGGGTTCCA GGACATAGTC TGAGGCAAGA TGGAGGGTAT GAGGGGCCTT CACACTTCAC	300
TTCATCCCTT CTACCCATCA CAACATACAA AGCAACTACA CCTGGATTTT TCCAAACAAC	360
TTTTATTTCC TCAGAGTCTT CCTTAATCCT ATGGAACAAG AAGCTGCCAC TGAATAGGGC	420
CCAGTATAGG GGCTTGCTTT TCTACTCCCT CCCCCCAATA TAAAAATATA GACTTTTTAA	480
AAAAAAAAAA AAAAANTTCG NGGGGGGSCC GGTACCCATC CCCCTA	526
(2) INFORMATION FOR SEQ ID NO: 123:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2081 base pairs	
(B) TYPE: nucleic acid	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:	
TGTACCGGTC CGGAAATTCC CGGGTCGACC CACGTCGTCS GGGGAACATG GCGGCTKCGG	60
AGCCGGCGGT CCTTGCGCTC CCCAACAGCG GCGCCGGGGG CGCGGGGGGC CCGTCGGGCA	120
CAGTCCCGGT GCTCTTCTGT TTCTCAGTCT TCGCGCGACC CTCGTCGGTG CCACACGGG	180
CGGGCTACGA GCTGCTCATC CAGAAGTTCC TCAGCCTGTA CGGCGACCAG ATCGACATGC	240
ACCGCAAATT CGTGGTGCAG CTGTTCGCCG AGGAGTGGGG CCAGTACGTG GACTTGCCCA	300
	CCAGGCACTC ACTIGTATIC TACTGCTCAA TAAACGTTTA TTAAACTTGA AAAAAAAAA AAAAAAAAAA (2) INFORMATION FOR SEQ ID NO: 122: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 526 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122: GGTACGCCTG CAGGTACCGG TCCGGAGTCG CACGCGTCNCG CCACGCGTCC ACCCACGCGT CCGSCCACCC GTCGGAGCCG AGCCGGACTG GTCAGGATGA TCACGGACGT GCAGCTCGCC ATCTTCGCCA ACATGCTGGG CGTGTCGCTC TTCTTGCTTG TCGTTCTCTA TCACTACGTG GCCGTCAACA ATCCCAAGAA GCAGGAATGA AAGTGGCGCT TCTCCGCCC CAGGGTTCCA GGACATAGTC TGAGGCAAGA TGGAGGGTAT GAGGGGCCTT CACACTTCAC TTCATCCCTT CTACCCATCA CAACATACAA AGCAACTACA CCTGGATTTT TCCAAACAAC TTTTATTTCC TCAGAGTCTT CCTTAATCCT ATGGAACAAG AAGCTGCCAC TGAATAGGGC CCAGTATAGG GGCTTGCTTT TCTACTCCCT CCCCCCAATA TAAAAATATA GACTTTTTAA AAAAAAAAAAA AAAAANTTCG NGGGGGGGCC GGTACCCATC CCCCTA (2) INFORMATION FOR SEQ ID NO: 123: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2081 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123: TGTACCGGTC CGGAAATTCC CGGGTCGACC CACGTCGTCS GGGGAACATG GCGGCTKCGG AGCCGGCGGT CCTTGCCTC CCCAACAGCG GCGCCGGGGG CCCGGGGGGC CCGTCCGGCCA CAGTCCCGGT GCTCTTCTGT TTCTCAGTCT TCGGGCGACC CTCGTCGGTG CCACACGGGG CGGGCTACCA GCTGCTCATC CAGAAGTTCC TCAGCCTGTA CGGCGACCAG ATCGACATGC CAGTCCCGGT GCTCTTCTGT TTCTCAGTCT TCGGCGGACC CTCGTCGGTG CCACACGGGG CGGGCTACCA GCTGCTCATC CAGAAGTTCC TCAGCCTGTA CGGCGACCAG ATCGACATGC CAGGCCGCGGT CCTTTCTGT TTCTCAGTCT TCGGCCGGCC CTCGTCGGTG CCACACGGGG CGGGCTACCA GCTGCTCATC CAGAAGTTCC TCAGCCTGTA CGGCGACCAG ATCGACATGC CAGGCCGCGGT CCTTCTCTCT TTCTCAGTCT TCGCCCTGTA CGGCGACCAG ATCGACATGC CGGGCTACCAG GCTGCTCCTC CAGAAGTTCC TCAGCCTGTA CGGCGACCAG ATCGACATGC CGGGCTACCAG GCTGCTCCTC CAGAAGTTCC TCAGCCTGTA CGGCGACCAG ATCGACATGC CGGGCTACCAG GCTGCTCCTC CAGAAGTTCC TCAGCCTGTA CGGCGACCAG ATCGACATGC

	AGGGCTTCGC	GGTRAGCGAG	CGCTGCAAGG	TGCGCCTCGT	GCCGYTGCAG	ATCCAGCTCA	360
5	CTACCCTGGG	AAATCTTACA	CCTTCAAGCA	CIGIGITIIT	CTGCTGTGAT	ATGCAGGAAA	420
,	GGTTCAGACC	AGCCATCAAG	TATTTTGGGG	ATATTATTAG	CGTGGGACAG	AGATTGTTGC	480
	AAGGGGCCCG	GATTTTAGGA	ATTCCTGTTA	TTGTAACAGA	ACAATACCCT	AAAGGTCTTG	540
10	GGAGCACGGT	TCAAGAAATT	GATTTAACAG	GTGTAAAACT	GGTACTTCCA	AAGACCAAGT	600
	TTTCAATGGT	ATTACCAGAA	GTAGAAGCGG	CATTAGCAGA	GATTCCCGGA	GTCAGGAGTG	660
15	TTGTATTATT	TGGAGTAGAA	ACTCATGTGT	GCATCCAACA	AACTGCCCTG	GAGCTAGTTG	720
13	GCCGAGGAGT	CGAGGTTCAC	ATTGTTGCTG	ATGCCACCTC	ATCAAGAAGC	ATGATGGACA	780
	GGATGTTTGC	CCTCGAGCGT	CTCGCTCRAR	CCGGGATCAT	AGTGACCACG	ACTGACCCTC	840
20	TTCTGCTTCA	GCTGGTAGCT	GATAAGGACC	ATCCAAAATT	CAAGGAAATT	CAGAATCTAA	900
	TTAAGGCGAG	TGCTCCAGAG	TCGGGTCTGC	TTTCCAAAGT	ATAGGACATT	TGAAGAACTG	960
25	GTATGCTACT	CACTGGTGAA	GGACAGTCAG	GTGAAGGACT	GTAAGCCCAC	ACAAGCTCTT	1020
23	СТТАТСТСТА	CTAGAATTAA	AATGTTAAGT	CAAAAACGGC	TCCTTTTTTG	CGCCTCCTAG	1080
	TGAAACTTAA	CCAGCTAGAC	CATTTGAGTA	CCAGCATTTA	GITACAAACG	TCAAAGGCTT	1140
30	CCGGTGCTGC	TTACCTTCCT	TTTTTGTTAA	TGTGCTTTTA	TTTATTAAAA	AAAATTACAA	1200
	TGAAGATGCC	TGTTTTGTCT	CTACTGTGTA	CTCTGATCGT	ATCTTTCCAA	AGTGCAGACT	1260
35	CTTGTGAAGT	TTTCTTAAAT	TGTTCACTTT	AAAGAAAATG	ACGTACCAAC	AATGATTTGG	1320
55	CTTTTATATT	ACTGTAAGAT	GTTATAATGT	TAATGTGGAT	GTAGTGCTTT	TACTTTACAG	1380
	ATTGATTGGA	ATAAGATTAT	TGCATATGAA	TTTACCCACA	GGACTCTGAA	TCATGTTACC	1440
40	CACTCCCCTC	ACAATGTTGT	CCACTTAGTG	AGTTGCATTG	ATCTATCCGT	ACCAAATGAT	1500
	GTTGAATAAT	TACATATCTT	TCTTGACTAT	ACTGATTTCT	TATTTTOGTC	ACTATTACTA	1560
45	AATCTCTGTT	AATATICICT	CTTTTAACTG	AAAAGGGATG	GGATAGAAGG	GTTTGCAATG	1620
43	CCATATTATT	GGTGGAGGGC	TGTTTTAACA	TCTTTGAAGT	ATGGCTTGCT	GAATATCTIT	1680
	ACCAACATCT	TGAATATATA	TTCTAGTGTC	CACAAGATTT	AGCAAAAAGA	TAAAGCTTGG	1740
50	GTGGAATATC	ATTTTAAAAT	GTTCATGTTC	TGTTCTATAT	TTTCTTCACC	TACTCTCCAA	1800
	ATATTGTAAT	GCAAAAAGTC	TCAGTAATGA	TTTGGTAGTA	TTAATTTTGT	GGTCATTGTT	1860
55	TCTCTTCGAT	AAATTTATTT	TCATTAAATA	CTTRTTAGAG	GGTTTTGAAA	TGTTTTTCAA	1920
JJ	ATATGTGAAA	TGTGAAACTG	CTGTCTTTTA	TATTAAAGTA	ATTAAAGAAA	ATGTATTGTG	1980
	ATTGAAATTA	TTTTGNCCTC	CACAAGATGG	CTCTATGAGT	ATTCTTCCAG	GGATTCTAAT	2040
60	ATTTATTTAA	GGTNATAAAA	TCTTGACATT	TATAATCTTT	С		2081

346

_							
)	(2)	INFORMATION	FOR	SEO	ID	NO:	124:

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1717 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:	
15	CCCCGGCGGA GCTGGACCCG CGGTGGGCTA GGGGCAGGGC CGGAGCCGCG GCGGCGGAGC	60
	TGTGGATCCT TCATGATGAG AGATTTGGGG ACACTTCTCT CTCCTGTGTG TAGTTGATAG	120
20	TTTGGTGGTG AAGAGATGGC TGACAGTGTC AAAACCTTTC TCCAGGACCT TGCCAGAGGA	180
20	ATCAAAGACT CCATCTGGGG TATTTGTACC ATCTCAAAGC TAGATGCTCG AATCCAGCAA	240
	AAGAGAGG AGCAGCGTCG AAGAAGGGCA AGTAGTGTCT TGGCACAGAG AAGAGCCCAG	300
25	AGTATAGAGC GGAAGCAAGA GAGTGAGCCA CGTATTGTTA GTAGAATTTT CCAGTGTTGT	360
	SCTTSGAATG GTSGAGTGTT CTSGTTCAGT CTCCTCTTGT TTTATCGAGT ATTTATTCCT	420
30	GTGCTTCAGT CGGTAACAGC CCGAATTATC GGTGACCCAT CACTACATGG AGATGTTTGG	480
•	TCGTGGCTGG AATTCTTCCT CACGTCAATT TTCAGTGCTC TTTGGGTGCT CCCCTTGTTT	540
	GTGCTTAGCA AAGTGGTGAA TGCCATTTGG TTTCAGGATA TAGCTGACCT GGCATTTGAG	600
35	GTATCAGGGA GGAAGCCTCA CCCATTCCCT AGTGTCAGCA AAATAATTGC TGACATGCTC	660
	TTCAACCTTT TGCTGCAGGC TCTTTTCCTC ATTCAGGGAA TGTTTGTGAG TCTCTTTCCC	720
40	ATCCATCTIG TCGGTCAGCT GGITAGTCTC CTGCATATGT CCCTTCTCTA CTCACTGTAC	780
	TGCTTTGAAT ATCGTTGGTT CAATAAAGGA ATTGAAATGC ACCAGCGGTT GTCTAACATA	840
	GAAAGGAATT GGCCTTACTA CTFTGGGTTT GGTTTGCCCT TGGCTFTTCT CACAGCAATG	900
45	CAGTCCTCAT ATATTATCAG TGGCTGCCTT TTCTCTATCC TCTTTCCTTT ATTCATTATC	960
	AGCGCCAATG AAGCAAAGAC CCCTGGCAAA GCRTATCTCT TCCAGTTGCG CCTCTTCTCC	1020
50	TTGGTGGTCT TCTTAAGCAA CAGACTCTTC CACAAGACAG TCTACCTGCA GTCGGCCCTG	1080
50	AGCAGCTCTA CTTCTGCAGA GAAGTTCCCT TCACCGCATC CGTCGCCTGC CAAACTGAAG	1140
	GCTACTGCAG GTCACTGAGT TGCCTGCCAT CCAAAGGGGA TGGGCGGGAT TGGAAGAAGC	1200
55	TGTGGCAGCT CTTTTCCCTG TTCACCTCCC GCCTGCCAGG GAAGGCAGGA CCCGCTCTGC	1260
	CAAGGGCCCT CTGCGTATTC CCTTCTCTCT GAGGAATTGA AATTTTTGTC TCTGGTGCAC	1320
60	GTAAGGCAGA ATGTTCCCTG ACACCAGTGT GTGGATTTTT AACATCACCG TGAGTCTGAA	1380

347

	AGGACCACAG GTITTTCTGC AGCTATTTTC TAGCATTTGC CAGTCCCTGT GCCTGGACTG	1440
	ATTGGAACAC TITGTTTTTC TCCCTGTGCC ATTTACCCTT CCACCTTTCC ATCCTGCCTT	1500
5	CTACCACCCT TGGATGAATG GATTITGTAA TICTAGCTGT TGTATTITGT GAATTTGTTA	1560
	ATTTTGTTGT TTTTCTGTGA AACACATACA TTGGATATGG GAGGTAAAGG AGTGTCCCAG	1620
10	TIGCTCCTGG TCACTCCCTT TATAGCCATT ACTGTCTTGT TICTTGTAAC TCAGGTTAGG	1680
10	TTTTGGTCTC TCTTGCTCCA CTGCAAAAAA AAAAAAA	1717
15	(2) INFORMATION FOR SEQ ID NO: 125:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 804 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:	
23	CCACGCGTCC GGTCACTATG TAGTGGAGGG GCAGACACCC TCCCGCAAAT TCTGGAAGGT	60
	TCTTAGTCTC GACTAGGGCA GTAGCCCCAG GACTCCTAGT CGCCGGCTTC AGGTCACTGC	120
30	CGGCTGAACG GAGCTGCCGT CGCCATGTTT GGCTGCTTGG TGGCGGGGAG GCTGGTGCAA	180
	ACAGCTGCAC AGCAAGTGGC AGAGGATAAA TITGTTTTTG ACTTACCTGA TTATGAAAGT	240
35	ATCAACCATG TTGTGGTTTT TATGCTGGGA ACAATCCCAT TTCCTGAGGG AATGGGAGGA	300
	TCTGTCTACT TTTCTTATCC TGATTCAAAT GGAATGCCAG TATGGCAACT CCTAGGATTT	360
	GTCACGAATG GGAAGCCAAG TGCCATCTTC AAAATTTCAG GTCTTAAATC TGGAGAAGGA	420
40	AGCCAACATC CTTTTGGAGC CATGAATATT GTCCGAACTC CATCTGTTGC TCAGATTGGA	480
	ATTTCAGTGG AATTATTAGA CAGTATGGCT CAGCAGACTC CTGTAGGTAA TGCTGCTGTA	540
45	TCCTCAGTIG ACTCATICAC TCAGTICACA CAAAAGATGT TGGACAATTT CTACAATTTT	600
	GCTTCATCAT TTGCTGTCTC TCAGGCCCAG ATGACACCAA GCCCATCTGA AATGTTCATT	660
	CCGCCAAATG TGGTTCTGAA ATGGTATGAA AACTTTCAAA GACGACTAGC ACAGAACCCT	720
50	NINITITIGGN AAACATAATT TGAATAAAAT AATTITITAAT GGATTNIGNA AAAAAAAAAA	780
	AAAAAAAAA AAAAAAAAA AAAA	804

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 431 base pairs

⁽²⁾ INFORMATION FOR SEQ ID NO: 126:

WO 98/39448

PCT/US98/04493

348

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126: GGCACAGCCC AGGGCCTTGA AGCCAGCTGG CCCTGGAGAG GGGCTGCTGT GCCAGCTTGG 60 GGAGGGTCTG GGATGGGGCT GCCCTGATG GCCCTGATGT GGAGTACCTT GCCAGCATCT 120 10 GCTGGGGTGA ACTITATITT AGCCCTTCCC TTGTTGCTCT TATGGAAGAA CAGAGGAGGG 180 GTGGGCAGGT CAGTGATGTC AGCAGTGGAG TGATTCCCAG CACAGCGGCT TCTGGGAAGA 240 15 GGGCATGGAG GCATTTCTTT CAGGGAAATG GTCCATNATT TCAGCCAGAA GGCATTGCAT 300 TAAGTTAAGT CCNGGACTTT TGTGGCCCAG CTCTGTGTTA TTAAGGGCCC TTGGCGAAGA CTTCAAGGAG GGGCCAAAAN GACCTTTAAG TTTTTAGGTT TAACACAGGG AACCCNCAAA 420 20 GGGTTATTTT G 431 25 (2) INFORMATION FOR SEQ ID NO: 127: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3752 base pairs 30 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TCPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127: 35 NGGCACGAGG AGAGTCACCT GGACTCAGAA CTAGAGATAT CCAATGACCC AGACAAAATT AAACTTCAGC TITCTAAGCA TAAGGAGTTT CAGAAGACTC TIGGTGGCAA GCAGCCTGTG 120 40 TATGATACCA CAATTAGAAC TGGCAGAGCA CTGAAAGAAA AGACTTTGCT TCCCGAAGAT ASTCAGAAAC TTGACAATTT CCTAGGAGAA GTCAGAGACA AATGGGATAC TGTTTGTGGC 240 AAGTCTGTGG AGCGGCAGCA CAAGTTGGAG GAAGCCCTGC TCTTTTCGGG TCAGTTCATG 45 GATGCTTTGC AGGCATTGGT TGACTGGTTA TACAAGGTGG AGCCACAGCT GGCTGAGGAC 360 CAGCCCGTGC ACGGGGGACC TTGACCTCGT CATGAACCTC ATGGATGCAC ACAAGGTTTT 420 50 CCAGAAGGAA CTGGNGAAAG CGAACAGGAA CCGTTCAGGT CCTGAAGCGG TCAGGCCGAG 480 AGCTGATTGA GAATAGTCGA GATGACACCA CTTGGGTAAA AGGACAGCTC CAGGAACTGA 540 GCACTCGCTG GGACACTGTC TGTAAACTCT CTGTTTCCAA ACAAAGCCGG CTTGAGCAGG 600 55 CCTTAAAACA AGCGGAAGTG TTTCGAGACA CAGTCCACAT GCTGTTGGAG TGGCTTTCTG 660 AAGCAGAGCA AACGCTTCGC TTTCGGGGAG CACTTCCTGG ATGACACAGA GGCCCTGCAG 720

TCTCTCATTG ACACCCATAA GGAATTCATG AAGAAAGTAG AAGAAAAGCG AGTGGACGTT

780

	AACTCAGCAG TAGCCATGGG AGAAGTCATC CTGGCTGTCT GCCACCCCGA TTGCATCACA	840
5	ACCATCAAAC ACTGGATCAC CATCATCCGA GCTCGCTTCG AGGAGGTCCT GACATGGGCT	900
3	AAGCAGCACC AGCAGCGTCT TGAAACGGCC TTGTCAGAAC TGGTGGCTAA TGCTGAGCTC	960
	CTGGAAGAAC TTCTGGCATG GATCCAGTGG GCTGAGACCA CCCTCATTCA GCGGGATCAG	1020
10	GAGCCAATCC CGCAGAACAT TGACCGAGTT AAAGCCCTTA TCGCTGAGCA TCAGACATTT	1080
	ATGGAGGAGA TGACTCGCAA ACAGCCTGAC GTGGACCGGG TCACCAAGAC ATACAAAAGG	1140
15	AAAAACATAG AGCCTACTCA CGCGCCTTTC ATAGAGAAAT CCCGCAGCGG AGGCAGGAAA	1200
15	TCCCTAAGTC AGCCAACCCC TCCTCCCATG CCAATCCTTT CACAGTCTGA AGCAAAAAAC	1260
	CCACGGATCA ACCAGCTTTC TGCCCGCTGG CAGCAGGTGT GGCTGTTAGC ACTGGAGCGG	1320
20	CAAAGGAAAC TGAATGATGC CTTGGATCGG CTGGAGGAGT TGAAAGAATT TGCCAACTIT	1380
	GACTITGATG TCTGGAGGAA AAAGTATATG CGTTGGATGA ATCACAAAAA GTCTCGAGTG	1440
25	ATGGATTTCT TCCGGCGCAT TGATAAGGAC CAGGATGGGA AGATAACACG TCAGGAGTTT	1500
20	ATCGATGGCA TITTAGCATC CAAGTTCCCC ACCACCAAGT TAGAGATGAC TGCTGTGGCT	1560
	GACATTITCG ACCGAGATGG GGATGGTTAC ATTGATTATT ATGAATTTGT GGCTGCTCTT	1620
30	CATCCCAACA AGGATGCGTA TCGACCAACA ACCGATGCAG ATAAAATCGA AGATGAGGTT	1680
	ACAAGACAAG TGGCTCAGTG CAAATGTGCA AAAAGGTTTC AGGTGGAGCA GATCGGAGAG	1740
35	AATAAATACC GGTTCTTCCT CGGCAATCAG TTTGGGGATT CTCAGCAGTT GCGGCTGGTC	1800
	CGTATTCTGC GCAACCGTGA TGGTTCGCGT TGGTGGAGGA TGGATGGCCT TGGATGAATT	1860
	TTTAGTGAAA AATGATCCCT GCCGAGCACG AGGTAGAACT AACATTGAAC TTAGAGAGAA	1920
40	ATTCATCCTA CCAGAGGGAG CATCCCAGGG AATGACCCCC TTCCGCTCAC GGGGTCGAAG	1980
	GTCCAAACCA TCTTCCCGGG CAGCTTCCCC TACTCGTTCC AGCTCCAGTG CTAGTCAGAG	2040
45	TAACCACAGC TGTACATCCA TGCCATCTTC TCCAGCCACC CCAGCCAGTG GAACCAAGGT	2100
٠٠.	TATCCCATCA TCAGGTAGCA AGTTGAAACG ACCAACACCA ACTTTTCATT CTAGTCGGAC	2160
	ATCCCTTGCT GGTGATACCA GCAATNAGTT CTTCCCCGGC CTCCACAGGT GCCAAAACTA	2220
50	ATCGGGCAGA CCCTAAAAAG TCTGCCAGTC GCCCTGGGAG TCGGGCTGGG AGTCGAGCCG	2280
	GGAGTCGAGC CAGCAGCCGG CGAGGAAGTG ACGCTTCTGA CTTTGACCTC TTAGAGACGC	2340
55	ATTGCTTGTT CCGACACTTC AGAAAGCAGC GCTGCAGGGG GCCAAGGCAA CTCCAGGAGA	2400
	GGGCTAAACA AACCTTCCAA AATCCCAACC ATGTCTAAGA AGACCACCAC TGCCTCCCCC	2460
	AGGACTCCAG GTCCCAAGCG ATAACACTGT CTAAGCACCC CCAAGCCACT ATCCACTTTG	2520
60	AATCCTGCTC CATACATTGG GTGTATATTT ATTCTGAACG GGAGAAGTTA TATTGTTAAA	2580

350

	AGTGTAAAAG AATAATTGTG TTATGAAGCT GCCTTATTTT TT	TTCTTTTT GTAAGTTACT 2	640
5	ATTITCATGI GAATATITAT GIAGATAAAA TITGCCTCCT GG	TAACCCTG TAATGGATGG 2	700
,	GGCCCAGAAA TGAAATATTT GAGAAAAACA AGTGAAAAGG TC	AAGATACA AATGTGTATT 2	760
	AAAAAAAAA AAGCCTATTA ATAGGGTTTC TGCGCGGTGC AG	GGTTGTAA ACCTGCTTTA 2	820
10	TCTTTTAGGA TTATTCCTAA ATGCATCTTC TTTATAAACT TG	ACTIGCTA TCTCAGCAAG 2	880
	ATAAATTATA TTAAAAAAAT AAGAATCCTG CAGTGTTTAA GG	AACTCTTT TTTTGTAAAT 2	940
15	CACGGACACC TCAATTAGCA AGAACTGAGG GGAGGGCTTT TT	CCATTGTT TAATGTTTTG 3	000
15	TGATTTTTAG CTAAAGAGAG GGAACCTCAT CTAAGTAACA TT	TGCACATG ATACAGCAAA 30	060
	AGGAGTTCAT TGCAATACTG TCTTTGGATA TTGTTTCAGT AC	TGGGTGTT TAAAGGACAA 31	120
20	ATAGCTGCTA GAATTCAGGG GTAAATGTAA GTGTTCAGAA AAG	CGTCAGAA CATTTGGGGT 3	180
	TTTAAACTGA TTTGTTGCTC CCTATCCAGC CTAGACACCA GTY	AACTCTTG TGTTCACCAG 32	240
25	GACCCAGACC CTTGGCAAGG GATAGGCTCG TTGGTGACAT TG	TGAATTTC AGATTTGTTT 33	300
25	TATCCACTIT TITTGCTATT TATTTAAATG GTCGATCAAC TIX	CCCACAAA CTGAGGAATG 33	360
	AATTCCACGA GCCTGTTCTG AAAATGTGGA CGTAAGACAA ACA	ACGTGCTC GTCCTTTAAT 34	420
30	GGAGTTCACC AGCACACTTG TTAACCAGTC CTGTTTGCTT TCC	GTCTTTT TTGTGCGTAA 34	480
	TAAAGTCAAC TGACCAAGTG ACCATGAAAA GGGGCTGTCT GG	GGCTCCTG TTTTTTAGCT 35	540
35	GCTGTTCTTC AGCTCCGACC ATGTTGCTGT GTGATTATCT CA	ATTGGTTT TAATTGAGGC 36	600
55	AGAAACTGAA GCTCTACCAA TGAACTGTTT AGAAACAAGA CAG	CACTTING TATTAAAATT 36	660
	GCTTGCAGTA ACAAAAAAA AAAAAAAAA AAAAAAAAA AA	ACTCGAGG GGGGCCCGGT 37	720
40	ACCCAATTCG CCGTATATGA TCGTAAACAA TC	. 37	752
45	(2) INFORMATION FOR SEQ ID NO: 128:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1144 base pairs		
50	(B) TYPE: nucleic acid		
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1	28:	
55	TGACCCTCTG CCTGCCGGGC TCAGTGCTGG ACGCTTTCTG TT	TTGTCGCA GTCGGTCCTC	60
	GGTAACACCA GCGGCCTGTG GTCCACCACT CCATTCAGCA GC	TCCATTTG GTCCAGCAAC	120

CTTAGCAGCG CCTTCCCTTC ACCACTCCAG CAAACACGCT GGCAAGCATC GGCCTCATGG

60

	GCACAGAAAA	CTCCCCTGCT	CCTCACGCTC	CCTCCACCTC	CAGTCCAGCT	GACGACTTGG	240
	GACAGACCTA	CAACCCGTGG	CGGATATGGA	GCCCCACGAT	TGGAAGAAGA	AGCTCGGACC	300
5	CTTGGTCTAA	TTCGCACTTT	CCTCACGAGA	ATTAAATTAA	GCAAAAAACA	AACAAACATA	360
	GTGGGCCCTC	GTCTAGATCA	TGATGTGCCA	GTTTCTGAGA	CATCTTTTTA	AGGCTCTTAC	420
10	TGCAGCTCCC	CTCCCCACCC	TCCTCTTCTT	TGCAAAACAG	ACCCAAGCAG	GGCAGGCTCA	480
10	GACCACTCGC	TTCTTTCAGA	TCTTTCTTGC	AATTATGATA	ACATGAGATT	TECTETTETE	540
	CTTTTAGAGA	AAAGTCTGGA	CTCAGCCACA	AACTCTAATA	AGACCTGTAC	ATCTGAGAAC	600
15	CTTTCCCGTT	ACTGCGTTTT	CACCACCTGT	CTTCCCCATG	CTTTATTTAT	CTGTATGAAC	660
	ACAGATTIGA	CATTACAGCT	AAGGAAATAA	TTTGAGTTGA	TTCAGAAATC	CTGGCATGTG	720
20	ACAATTTTGT	TAAATTACCA	AGTTTGGTTT	ттаатааттт	СТСААТАТТА	TGCGCCAAGA	780
20	TCTAATTITA	AAACTGTATG	AGGACTTTGT	GCTGAAAATA	GAGTATTTT	TTAAAGTAAG	840
	GCTGTCTTGG	TTTAAAAGCA	GATTACAGAA	ATGTAAGTCA	ACTTAAGAAC	RGTGAATGAA	900
25	TGTAAAAACA	TTCAGTYGAG	ACCATATGCA	TTTTCTGTGC	TGTTTGTACT	TGAGGTATGT	960
	AACATTTGTA	TACCTGAACT	TATTTTAAAG	ATGAACTGAA	ATGCACATAG	CCAAGTCTTG	1020
30	AGATACAAGA	TTGAATGTGT	ATTTCTTAAA	AATACAACTT	TGTGTTGTAC	TTTGAAATAA	1080
50	ATGATGCTTT	TTTCAAAAAA	АААААААА	AAAAAAAAAC	TCGAGGGGGG	GCCCGGTACC	1140
	CAAT						1144
35							
	(2) INFORM	ATION FOR SE	EO ID NO: 12	29:			
40		SEQUENCE CI	_				
	ν-,	(A) LEN	GTH: 1830 b E: nucleic	ase pairs			
		(C) STR	ANDEDNESS: OLOGY: line	double			
45	(xi) SEQUENCE	DESCRIPTION	: SEO ID NO	: 129:		
						GCACGGAGCC	60
50	ACGGGTTGCT	GCCCAAGTGC	ATCATGCAGG	CCACGGACAT	CATGCGGAAC	AGGGCCCAAG	120
	GGTGGAGATT	CTGGCCAAAA	ACCTGCGAGT	CAAGGACCAG	ATGCCCCAGG	GTGCTCCGCG	180
	CCTCTACCGC	CTCTGCCAGC	CGCCGGTGGA	TGGGGACCTC	TGAACACCCA	AATGCCCCAC	240
55	GCTGGGCCGC	GGCCTCTGGA	GCTGGGATTT	GGGAGGACAC	AGCAGGCAGC	GCTGGCCTTC	300
	TCCAGGGATG	GCCCAANGCT	TCCGCARCCG	CCCGTTCCGG	GACCTGCCCA	GCGTCCTCCC	360
60	TGCCTCCTTC	CGGGACAAGC	CTGGCCACCC	TCGCTGTGAT	GACGAGCTGG	CTGATTGGCC	420

	CTGGGCCGGC	CCATTCTTCA	CACGCCTGCC	AGAAGCTGGA	GGGCTGCTGG	AGACCCATAG	480
5	AGCTGATGGG	AGCAGCTGGT	GCCTGGCCTT	CGCCTCCTGC	GTCCCCAGAA	CCCAAGGGAA	540
3	CGTCATGGAG	GCCACATGGG	GCCACCCGGC	TCCCTCGGGA	TGGCTCCGCT	GCACTTTTGA	600
	AACCCCGGTT	TCCTTCAACG	TCCACATTCC	AGGTGACCAC	ACGTGTCTCC	TCCTCCTCAT	660
10	CTTAGCTTCC	AGGTTCACCC	TAACCCTGTA	CTAACCTGCT	TGGTGGACTT	GGAAAAGACT	720
	TGGCTCTGTC	GGGAAAGGAG	AGACGGGGCC	TCCATCACGC	CTGTTACCAG	AGGATCCCCG	780
15	AGAGCCACAC	CAGCTCTGGA	CATCACCGCC	CCTGGAACTG	GGGCCACCAG	CCCTGGGCAC	840
13	GAGATTTGCT	CTGACTTTAT	TTATATGGCA	TGAAATCTCT	GGTTTATTTT	GGGATTTTTT	900
	GTTGTTGGTG	TTGTCAAAGT	TIGITTITIC	TAAAGTTGTG	TGATTATATA	TTTGACATTT	960
20	TACATTTCAA	AGAAAGGTAT	GTTGTCTAAC	AGGGGACCAA	CAGAAGGTAG	TATTGACAAC	1020
	TGTTCCTGCT	тстаставаа	AAAAAAGAGC	ACAAAAGAAA	AACTAAATTA	TTGAAAAATT	1080
25	AAAAAATGTC	ATTGTTTCCT	GTTTGTTAAT	ATTAGGGTTG	TAAGGTGTCG	TTTTGAGGTA	1140
23	TCGACTGTGA	TTCCTTCCCC	CACCCTCCAT	TCTCCAGCGG	TTGGCCGGTG	TTAGAACTCG	1200
	CTCTCTTTGA	GTGACTGGCT	ACAAGGGCCT	GAGAGGTGGC	CAGCCAGGGT	TGGAGCTGGA	1260
30	GGGGATGGAG	CCCCACCTGA	GGTGCCGTGT	CACACGGGTT	AGAGGGTCAC	TGGGAAACAC	1320
	CGGGCGCTGG	CTTCTGTGAT	TTATTTTCTT	GATGGTAACT	TCTCAGAGCA	GGGCRATTGG	1380
35	GACATCACCA	GCCAGAGCAC	AGGAAGCCAC	CCTGCCTGCT	GGGGAGGAGG	GACCCACACA	1440
	AGCCCCCTCG	GCAGTTTGTC	CCCCCAGCTT	CGGTATGCCT	TCAGGGAAAG	GTCACAGCTG	1500
	GGGAGGAAGC	GGGGGACGC	CTGTCACCCC	TGGCAGGTGG	TGAGTTCAGG	TGGGGGCTCC	1560
40	CTGCTKCCCC	CAGGCCTGGG	AGCTTGAAGC	CCTCCCGGCA	TCTGGCATCC	GAGCCTCCCG	1620
	CCCTCCAGGG	TGCGCTTCCC	TCTCTTGCCG	CAGCATACAC	GAGGGCAGGC	AGTGGCCTTG	1680
45	TCACTGTATC	TTGCATCAGA	GACAAAGGAG	GACCCGCTTT	AGCCCTGCTG	CGGGAAATGG	1740
, -	GGGATGGCCC	AGGCCAGCG	CATTGTGCAC	TGGTTTACTT	TAAAATGTAC	AGATTCTTCT	1800
	CGTTAAATTC	TTGATAGATT	TTTTATTATT				1830

(2) INFORMATION FOR SEQ ID NO: 130:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1864 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:	
	GGCCGCCCGG ATGGCGACCC CAGCCTCGGC CCCAGACACA CGGGCTCTGG TGGCAGACTT	60
5	TGTAGGTTAT AAGCTGAGGC AGAAGGGTTA TGTCTGTGGA GCTGGCCCCG GGGAGGGCCC	120
	AGCAGCTGAC CCGCTGCACC AAGCCATGCG GGCAGCKGGA GATGAGTTCG AGACCCGCTT	180
••	CCGGCGCACC TTCTCTGATC TGGCGGCTCA GCTGCATGTG ACCCCAGGCT CAGCCCAACA	240
10	ACGCTTCACC CAGGTCTCCG ATGAACTTTT TCAAGGGGGC CCCAACTGGG GCCGCCTTGT	300
	AGCCTTCTTT GTCTTTGGGG CTGCACTGTG TGCTGAGAGT GTCAACAAGG AGATGGAACC	360
15	ACTOGTOGGA CAAGTGCAGG AGTGGATGGT GGCCTACCTG GAGACGCGGC TGGCTGACTG	420
	GATCCACAGC AGTGGGGGCT GGTTATCCCA GATCACTGAA GCTGAGATGG CTGATGAAGT	480
20	AATTTGCAGT GAAATTTTAA GCGACTGTGA CTCTGCTGCA AGTTCCCCAG ATCTTGAGGA	540
20	GCTGGAAGCT ATCAAAGCTC GAGTCAGGGA GATGGAGGAA GAAGCTGAGA AGCTAAAGGA	600
	GCTACAGAAC GAGGTAGAGA AGCAGATGAA TATGAGTCCA CCTCCAGGCA ATGCTGGCCC	660
25	GGTGATCATG TCCATTGAGG AGAAGATGGA GGCTGATGCC CGTTCCATCT ATGTTGGCAA	720
	TGTGGACTAT GGTGCAACAG CAGAAGAGCT GGAAGCTCAC TTTCATGGCT GTGGTTCAGT	780
20	CAACCGTGTT ACCATACTGT GTGACAAATT TAGTGGCCAT CCCAAAGGGT TTGCGTATAT	840
30	AGAGTTCTCA GACAAAGAGT CAGTGAGGAC TTCCTTGGCC TTAGATGAGT CCCTATTTAG	900
	AGGAAGGCAA ATCAAGGTGA TCCCAAAACG AACCAACAGA CCAGGCATCA GCACAACAGA	960
35	CCGGGGTTTT CCACGAGCCC GCTACCGCGC CCGGACCACC AACTACAACA GCTCCCGCTC	1020
	TCGATTCTAC AGTGGTTTTA ACAGCAGGCC CCGGGGTCGC GTCTACAGGG GCCGGGCTAG	1080
40	AGCGACATCA TGGTATTCCC CȚTACTAAAA AAAGTGTGTA TTAGGAGGAG AGAGAGGAAA	1140
40	AAAAGAGGAA AGAAGGAAAA AAAAAAGAAT TAAAAAAAA	1200
	MCCTTGATGG AAAAAAAATA TTTTTTAAAA AAAAGATATA CTGTGGAAGG GGGGAGAATC	1260
45	CCATAACTAA CTGCTGAGGA GGGACCTGCT TTGGGGAGTA GGGGAAGGCC CAGGGARTGG	1320
	GGCAGGGGGC TGCTTATTCA CTCTGGGGAT TCGCCATGGA CACGTCTCAA CTGCGCAACT	1380
50	GCTTGCCCAT GTTTCCCTGC CCCACCCCAC CCCTCTTCTC CGGCTCCCTG CCCCTCCAGA	1440
30	TIGGGIG ATCTATTITG TITCCTTITG TGTTTCTTTT TCTGTTTTGA GTGTCTTTCT	1500
	TTGCAGGTTT CTGTAGCCGG AAGATCTCCG TTCCGCTCCC AGCGGCTCCA GTGTAAATTC	1560
55	CCCTTCCCCC TGGGGAAATG CACTACCTTG TTTTGGGGGG TTTAGGGGTG TTTTTGTTTT	1620
	TCAGTTGTTT TGTTTTTTIG TTTTTTTNTT TTTCCTTTGC CTTTTTTCCC TTTTATTTGG	1680
	AGGGAATGGG AGGAAGTGGG AACAGGGAGG TGGGAGGTGG ATTTTGTTTA TTTTTTTAGC	1740

354

5	AAAA						1864
	АКААААААА	АААААААА	Алалалала	алааааааа	ааааааааа	АААААААА	1860
	TCATTTCCAG	GGGTGGGAAT	AATTTTTTTAA	TATGTGTCAT	GAATAAAGTT	GTTTTTGAAA	1800

10 (2) INFORMATION FOR SEQ ID NO: 131:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2041 base pairs

(B) TYPE: nucleic acid

15 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:

	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 131:	
20	GGCACGAGGG CGCGGCAGGG CCCTGGACCC GCGCGGCTCC CGGGGATGGT GAGCAAGGCG	60
	CTGCTGCGCC TCGTGTCTGC CGTCAACCGC AGGAGGATGA AGCTGCTGCT GGGCATCGCC	120
25	TTGCTGGCCT ACGTCGCCTC TGTTTGGGGC AACTTCGTTA ATATGAGGTC TATCCAGGAA	180
	AATGGTGAAC TAAAAATTGA AAGCAAGATT GAAGAGATGG TTGAACCACT AAGAGAGAAA	240
	ATCAGAGATT TAGAAAAAAG CTTTACCCAG AAATACCCAC CAGTAAAGTT TTTATCAGAA	300
30	AAGGATCGGA AAAGAATTTT GATAACAGGA GGCGCAGGGT TCGTGGGCTC CCATCTAACT	360
	GACAAACTCA TGATGGACGG CCACGAGGTG ACCGTGGTGG ACAATTTCTT CACGGGCAGG	420
35	AAGAGAAACG TGGAGCACTG GATCGGACAT GAGAACTTCG AGTTGATTAA CCACGACGTG	480
	TGGAGCCCCT CTACATCGAG GTTGACCAGA TATACCATCT GGCATCTCCA GCCTCCCCTC	540
	CAAACTACAT GTATAATCCT ATCAAGACAT TAAAGACCAA TACGATTGGG ACATTAAACA	600
40	TGTTGGGGCT GGCAAAACGA GTCGGTGCCC GTCTGCTCCT GGCCTCCACA TCGGAGGTGT	660
	ATGGAGATCC TGAAGTCCAC CCTCAAAGTG AGGATTACTG GGGCCACGTG AATCCAATAG	720
45	GACCTCGGGC CTGCTACGAT GAAGGCAAAC GTGTTGCAGA GACCATGTGC TATGCCTACA	780
, -	TGAAGCAGGA AGGCGTGGAA GTGCGAGTGG CCAGAATCTT CAACACCTTT GGGCCACGCA	840
	TGCACATGAA CGATGGGCGA GTAGTCAGCA ACTTCATCCT GCAGGCGCTC CAGGGGGAGC	900
50	CACTCACGGT ATACGGATCC GGGTCTCAGA CAAGGGCGTT CCAGTACGTC AGCGATCTAG	960
	TGAATGCCT CGTGCTCTC ATGAACAGCA ACGTCAGCAG CCCGGTCAAC CTGGGGAACC	1020
55	CAGAAGAACA CACAATCCTA GAATTTGCTC AGTTAATTAA AAACCTTGTT GGTAGCGGAA	1080
55	GTGAAATTCA GTTTCTCCC GAAGCCCAGG ATGACCCACA GAAAAGAAAA	1140
	AAAAAGCAAA GCTGATGCTG GGGTGGGAGC CCGTGGTCCC GCTGGAGGAA GGTTTAAACA	1200
60	AAGCAATTCA CTACTTCCGT AAAGAACTCG AGTACCAGGC AAATAATCAG TACATCCCCA	1260

	AACCAAAGCC TO	GCCAGAATA	AAGAAAGGAC	GGACTCGCCA	CAGCTGAACT	CCTCACTTTT	1320
5	AGGACACAAG AG	CTACCATTG	TACACTTGAT	GGGATGTATT	TTTGGCTTTT	TTTTGTTGTC	1380
J	GTTTAAAGAA AG	GACTTTAAC	AGGTGTCATG	AAGAACAAAC	TGGAATTTCA	TTCTGAAGCT	1440
	TGCTTTAATG AA	AATGGATGT	GCCTAAAAGC	TCCCCTCAAA	AAACTGCAGA	TTTTGCCTTG	1500
10	CACTITITICA AT	ICICICITT	TTATGTAAAA	TAGCGTAGAT	GCATCTCTGC	GTATTTTCAA	1560
	GTTTTTTTAT CT	ITGCTGTGA	GAGCATATGT	TGTGACTGTC	GTTGACAGTT	TTATTTACTG	1620
15	GTTTCTTTGT GA	AAGCTGAAA	AGGAACATTA	AGCGGGACAA	AAAATGCCGA	TTTTATTTAT	1680
	AAAAGTGGGT AC	CTTAATAAA	TGAGTCGITA	TACTATGCAT	AAAGAAAAT	CCTAGCAGTA	1740
	TTGTCAGGTG GT	rggrgcgcc	GGCATTGATT	TTAGGGCAGA	TAAAAGAATT	CTGTGTGAGA	1800
20	GCTTTATGTT TO	CTCTTTTAA	TTCAGAGTTT	TTCCAAGGTC	TACTTTTGAG	TTGCAAACTT	1860
	GACTITGAAA TA	ATTCCTGTT	GGTCATGATC	AAGGATATTT	GAAATCACTA	CIGIGITIIG	1920
25	CTGCGTATCT GG	GCCCCCCCCC	CAGGTTGGGG	GGCACAAAGT	TAACATATTC	TTGGTTAACC	1980
	ATGGTTAAAT AT	IGCTATTTT	AATAAAATAT	TGAAACTCAC	САААААААА	ААААААААА	2040
	A						2041
30							
	(2) INFORMATI	ION FOR SE	Q ID NO: 13	12:			
35			Q ID NO: 13				
35		EQUENCE CH		ICS: ase pairs			
		EQUENCE CH (A) LENC (B) TYPI (C) STRA	HARACTERIST	ICS: ase pairs acid double			
35 40	(i) SE	EQUENCE CH (A) LENC (B) TYPH (C) STRA (D) TOPC	HARACTERISTI STH: 2012 b E: nucleic a ANDEDNESS:	ICS: ase pairs acid double ar	: 132:		
	(i) SE	EQUENCE CH (A) LENC (B) TYPH (C) STRA (D) TOPC	HARACTERISTI STH: 2012 b E: nucleic a ANDEDNESS: 0 DLOGY: linea DESCRIPTION:	ICS: ase pairs acid double ar		CTATTGCCCT	60
	(i) SE (xi) S	EQUENCE CH (A) LENC (B) TYPE (C) STRA (D) TOPC SEQUENCE I	HARACTERISTI STH: 2012 b E: nucleic a ANDEDNESS: 0 DLOGY: linea DESCRIPTION: CTATATCATG	CCS: ase pairs acid double ar : SEQ ID NO	TAGAGTGGGA		60
40	(i) SE (xi) S TACCAAGCTG CA	EQUENCE CH (A) LENC (B) TYPE (C) STRA (D) TOPC SEQUENCE I	HARACTERISTI STH: 2012 b E: nucleic a ANDEDNESS: 0 DLOGY: linea DESCRIPTION: CTATATCATG ATGGCACAAC	CCS: ase pairs acid double ar : SEQ ID NO GCAGAAGAAG CAGTCTGAGA	TAGAGTGGGA AGGACAGTTA	TGGTTACATT	
40 45	(xi) SE (xi) S TACCAAGCTG CA GACCGGAGCT GG	EQUENCE CH (A) LENC (B) TYPE (C) STRA (D) TOPC SEQUENCE D AAGAATCTA GGAACGGGA	HARACTERISTI STH: 2012 b E: nucleic a ANDEDNESS: 0 DLOGY: linea DESCRIPTION: CTATATCATG ATGGCACAAC GCTCCTGGGT	ICS: ase pairs acid double ar : SEQ ID NO GCAGAAGAAG CAGTCTGAGA	TAGAGTGGGA AGGACAGTTA AGAAAGCTGT	TGGTTACATT ATTCAGGGAA	120
40	(xi) SE (xi) SE TACCAAGCTG CA GACCGGAGCT GG TTCCTGAGCA AC	EQUENCE CH (A) LENK (B) TYPH (C) STRA (D) TOPK SEQUENCE I AAGAATCTA GGAACGGGA CAAGGATGG	HARACTERISTI STH: 2012 b E: nucleic a ANDEDNESS: 0 DLOGY: linea DESCRIPTION: CTATATCATG ATGGCACAAC GCTCCTGGGT GNTCCCTCGG	CCS: ase pairs acid double ar : SEQ ID NO GCAGAAGAAG CAGTCTGAGA TCCAGATACA CCAAGGACTG	TAGAGTGGA AGGACAGTTA AGAAAGCTGT GACCAGAAGA	TGGTTACATT ATTCAGOGAA ACACTTGGGA	120 180 240
40 45	(xi) SE (xi) SE TACCAAGCTG CA GACCGGAGCT GG TTCCTGAGCA AG TACACTGATG GT	EQUENCE CH (A) LENK (B) TYPH (C) STRA (D) TOPK SEQUENCE I AAGAATCTA SGAACGGGA CAAGGATGG FACATTCAG	HARACTERISTI STH: 2012 b E: nucleic a ANDEDNESS: 0 DLOGY: linea DESCRIPTION: CTATATCATG ATGGCACAAC GCTCCTGGGT GNTCCCTCGG AGGTGAAGTT	CCS: ase pairs acid double ar : SEQ ID NO GCAGAAGAAG CAGTCTGAGA TCCAGATACA CCAAGGACTG	TAGAGTGGGA AGGACAGTTA AGAAAGCTGT GACCAGAAGA TGACTGTGGT	TGGTTACATT ATTCAGGGAA ACACTTGGGA ATTCAAGAAT	120 180 240
40 45	(xi) SE (xi) SE TACCAAGCTG CA GACCGGAGCT GG TTCCTGAGCA AC TACACTGATG GT ATCTTGGGTC CA	EQUENCE CH (A) LENK (B) TYPH (C) STRA (D) TOPK SEQUENCE I AAGAATCTA SGAACGGGA CAAGGATGG FACATTCAG ACTTATCAA	HARACTERISTI STH: 2012 b E: nucleic a ANDEDNESS: 0 DLOGY: linea DESCRIPTION: CTATATCATG ATGGCACAAC GCTCCTGGGT GNTCCCTCGG AGGTGAAGTT TGTGCATGCT	ACS: ase pairs acid double ar SEQ ID NO GCAGAAGAAG CCAGTCTGAGA TCCAGATACA CCAAGGACTG GGTGATATCC CATGGAGTGC	TAGAGTGGGA AGGACAGTTA AGAAAGCTGT GACCAGAAGA TGACTGTGGT TAGAATCTAC	TGGTTACATT ATTCAGGGAA ACACTTGGGA ATTCAAGAAT TACTGTCTGG	120 180 240 300
40 45 50	(xi) SE (xi) SE TACCAAGCTG CA GACCGGAGCT GG TTCCTGAGCA AG TACACTGATG GT ATCTTGGGTC CA AATGCCAGCC GG	EQUENCE CH (A) LENK (B) TYPH (C) STRA (D) TOPK SEQUENCE I AAGAATCTA SGAACGGGA CAAGGATGG FACATTCAG ACTTATCAA CCCCTACTC	HARACTERISTI STH: 2012 b E: nucleic a ANDEDNESS: 0 DLOGY: linea DESCRIPTION: CTATATCATG ATGGCACAAC GCTCCTGGGT GNTCCCTCGG AGGTGAAGTT TGTGCATGCT TGAGGTGGTC	ICS: ase pairs acid double ar : SEQ ID NO GCAGAAGAAG CCAGTCTGAGA TCCAGATACA CCAAGGACTG GGTGATATCC CATGGAGTGC ACTTATCAGT	TAGAGTGGGA AGGACAGTTA AGAAAGCTGT GACCAGAAGA TGACTGTGGT TAGAATCTAC GGAACATCCC	TGGTTACATT ATTCAGGGAA ACACTTGGGA ATTCAAGAAT TACTGTCTGG AGAGAGGTCT	120 180 240 300 360
40 45 50	(xi) SE (xi) SE TACCAAGCTG CA GACCGGAGCT GG TTCCTGAGCA AG TACACTGATG GT ATCTTGGGTC CA AATGCCAGCC GG CCACTGGCTG CT	EQUENCE CH (A) LENC (B) TYPE (C) STRA (D) TOPC SEQUENCE I AAGAATCTA EGAACEGGA CAAGGATEG FACATTCAG ACTTATCAA CCCCTACTC IGAGCCTGG AATGACTCT	HARACTERISTI STH: 2012 b E: nucleic a ANDEDNESS: O DLOGY: linea DESCRIPTION: CTATATCATG ATGCACAAC GCTCCTCGGT GNTCCCTCGG AGGTGAAGTT TGTGCATGCT TGAGGTGGTC GCTTGTGTTT	ICS: ase pairs acid double ar SEQ ID NO GCAGAAGAAG CAGTCTGAGA TCCAGATACA CCAAGGACTG GGTGATATCC CATGGAGTGC ACTTATCAGT CCTGGATCTA	TAGAGTGGGA AGGACAGTTA AGAAAGCTGT GACCAGAAGA TGACTGTGGT TAGAATCTAC GGAACATCCC TTATTCTGCA	TGGTTACATT ATTCAGGGAA ACACTTGGGA ATTCAAGAAT TACTGTCTGG AGAGAGGTCT GTGGATCCCA	120 180 240 300 360 420

	NAGCCCCATG	GAGGACGGAN	TGACATGGAT	CGGGAATTTG	CATTGTTGTT	CTTGATTTTT	600
	GATGAAAATA	AGTCTTGGTA	TTTGGAGGAA	AATGTGGCAA	CCCATGGGTC	CCAGGATCCA	660
5	GGCAGTATTA	ACCTACAGGA	TGAAACTTTC	TTGGAGAGCA	ATAAAATGCA	TGCAATCAAT	720
	GGGAAACTCT	ATGCCAACCT	TAGGGGTCTT	ACCATGTACC	AAGGAGAACG	AGTGGCCTGG	780
10	TACATGCTGG	CCATGGGCCA	AGATGTGGAT	CTACACACCA	TCCACTTTCA	TGCAGAGAGC	840
	TTCCTCTATC	GGAATGGCGA	GAACTACCGG	GCAGATGTGG	TGGATCTGTT	CCCAGGGACT	900
	TTTGAGGTTG	TOGAGATGGT	GGCCAGCAAC	CCTGGGACAT	GGCTGATGCA	CTGCCATGTG	960
15	ACTGACCATG	TCCATGCTGG	CATGGAGACC	CTCTTCACTG	TTTTTTCTCG	AACAGAACAC	1020
	TTAAGCCCTC	TCACCGTCAT	CACCAAAGAG	ACTGAAAAAG	CAGTGCCCCC	CAGAGACATT	1080
20	GAAGAAGGCA	ATGTGAAGAT	GCTGGGCATG	CAGATCCCCA	TAAAGAATGT	TGAGATGCTG	1140
	GCCTCTGTTT	TGGTTGCCAT	TAGTGTCACC	CTTCTGCTCG	TTGTTCTGGC	TCTTGGTGGA	1200
	GTGGTTTGGT	ACCAACATCG	ACAGAGAAAG	CTACGACGCA	ATAGGAGGTC	CATCCTGGAT	1260
25	GACAGCTTCA	AGCTTCTGTC	TTTCAAACAG	TAACATCTGG	AGCCTGGAGA	TATCCTCAGG	1320
	AAGCACATCT	GTAGTGCACT	CCCAGCAGGC	CATGGACTAG	TCACTAACCC	CACACTCAAA	1380
30	GGGGCATGGG	TGGTGGAGAA	GCAGAAGGAG	CAATCAAGCT	TATCTGGATA	TTTCTTTCTT	1440
	TATTTATTTT	ACATGGAAAT	AATATGATTT	CACTITITCT	TTAGTTTCTT	TGCTCTACGT	1500
	GGGCACCTGG	CACTAAGGGA	GTACCTTATT	ATCCTACATC	GCAAATTTCA	ACAGCTACAT	1560
35	TATATTTCCT	TCTGACACTT	GGAAGGTATT	GAAATTTCTA	GAAATGTATC	CTTCTCACAA	1620
	AGTAGAGACC	AAGAGAAAAA	CTCATTGATT	GGGTTTCTAC	TTCTTTCAAG	GACTCAGGAA	1680
40	ATTTCACTIT	GAACTGAGGC	CAAGTGAGCT	GTTAAGATAA	CCCACACTTA	AACTAAAGGC	1740
	TAAGAATATA	GGCTTGATGG	GAAATTGAAG	GTAGGCTGAG	TATTGGGAAT	CCAAATTGAA	1800
	TTTTGATTCT	CCTTGGCAGT	GAACTACTTT	GAAGAAGTGG	TCAATGGGTT	GTTGCTGCCA	1860
45	TGAGCATGTA	CAACCTCTGG	AGCTAGAAGC	TCCTCAGGAA	AGCCAGTTCT	CCAAGTTCTT	1920
	AACCTGTGGC	ACTGAAAGGA	ATGTTGAGTT	ACCTCTTCAT	GTTTTAGACA	GCAAACCCTA	1980
50	TCCATTAAAG	TACTTGTTAG	AACACTGAAA	AA			2012

(2) INFORMATION FOR SEQ ID NO: 133:

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1669 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEO ID NO:	.,) SECULINCE	DESCRIPTION:	SEO	ID NO:	133:
---------------------------------------	----	-------------	--------------	-----	--------	------

				-			
5	GAGCAGTATT	TTAACCAACT	TGTATTACAG	ATGTTACAGT	TCATGTTAGG	AAGTCAGAAA	60
3	AGACTTTGTT	TGTCTTTGTT	CTGCTGATGT	GAGTCATGTT	TTGTGGGGTC	TTCCATGGCA	120
	CATTTACCTG	TTGCTCCGTC	CAGATGTTGA	GGGCCAGTCT	AGGCTGACAC	ATCCTACCCG	180
10	AGGACAAGCC	TGTTCTCCAT	TTCTTCACTC	тессетессе	ATATAGCAAC	TCTCCCAGGT	240
	TTAGATTACC	GTTTTCGACG	ACAGATTAAC	CAAAAATGCC	CCACACAGGT	TTTATTACTG	300
15	ттататаста	TACTTTTAAC	AGTACAGACC	СТАААТТТТА	TTATTIGTIG	CTCCCCCAAT	360
13	CTGATACCAA	ATGTTTAAAG	TIGITIGAAA	TCCAAACATG	GTAGTGTTCA	TGGGTAAATA	420
	TTTTCTAGGC	TATGTAAGAG	TTAGCAGCCC	ATAGCATAGA	AGTAATCAAG	TAGCATCTGA	480
20	GACTGTTGGA	GGCACTAGGG	CCTCTCTGGG	CCTAACAGCC	TCACTTCCCC	AGCCTCACCT	540
	TGCTGTCCTC	TGACACTGCC	ATCAGGGCTG	TTAGTGGCAC	CTGTATGAGG	CCAAGTGTGC	600
25	GTCCAGGGGA	ACAGCACAGG	TTAATGCGTC	TCCCTAGAAC	TCATGAAGTC	AGTITAATTC	660
23	ATGCATGAAC	ATGAGTTCAT	TTTATGTTTT	ATATAGCTTT	CTTAGACATA	CCAAACCATC	720
	АТТСАТАААТ	CAGATAAATT	ATTCAGTTT	TGTGTTTAGA	AAGCTAAGTA	TGTGTAGCTG	780
30	GAAACAAAAA	TGAGCGTGTT	TTCTCTCCTG	TTAATCTAGA	GTGTGCAGTT	ACACATGTGT	840
	GGATAATTTC	ATGTTCCAGG	GCCCCTTGGC	ATCTCCCATG	GACTGATTCC	CAGGAAGAAA	900
35	AGCCCAAAGG	GAAACCCACG	ATTCCTTTCG	AGTAGATGTG	GGAAAGAGCC	CATTGGAGGA	960
33	TATGAGGTCC	TGTGAAATTC	AGTTGTGTGT	GTGGCTCCTT	GTTAGCAGTC	ATGTTGACAT	1020
	GGTGTTAGGA	GGCTCCCCAT	CCACCCTTTA	CATGATGTAG	GGACCAGTGT	CTTGTGAGAT	1080
40	TAACCTTGGG	ACACAGTGGG	TTAGCCTGGA	GAAAATGAGA	GGCCCTGCCT	GGACCCAGGG	1140
	AGAGGAGCCA	GTGACACAGG	CAGAGCGGTG	CAGCCCTCCT	TCCCTTCCAT	TTGGAGGAGG	1200
45	TGGTGCCAGG	AGCCTGCCCG	CTTACCTCTG	CTGAAGCATA	AGTGGACTTT	GCTTTTGGGG	1260
43	CTTATCTCTG	ATACATGCTG	GAGCCCTGCC	TCTCCACTGC	TAGATGGAAC	CTGGAATCTC	1320
	TCATCTACCT	CTTAGTCTGT	CAGTTTCTAC	GTGTGAGAAG	CAAGCTTGTG	GGCCAGTGTC	1380
50	CTTGTACATG	CTGTAGCACT	ТАААААТАА	TTCCAGGGTT	CCCTGGAAAA	CCAGTCCCAG	1440
	GGTTCCTATG	ATCTGTAGTT	TCTACCTGGA	TTATAACTGG	TTTTGGGTAC	CTGAATTTTG	1500
55	ATTGGTTAGC	СТТААТТАТА	GTCTGGCGTG	ATCATGTAGA	ATCTTTTCTG	GTGAACAGAT	1560
55	CATAAAGTTC	TATCAAGGAG	TTCTATCAAG	GCATCCATGT	CAGTGGTGCT	ATGCTGGTTA	1620
	CAACTTGAGA	TTTTTGAAAT	AAAAAATTTG	тсаталала	АААААААА		1669

358

(2) INFORMATION FOR SEQ ID NO: 134:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1565 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:	
	CACTITIGCT ATATAACCTA AGTGATAACC CTCTITTAGT TACCTGCCAA ACTCTGGNCT	60
15	TGGTTTATAT TGCAGTTAAC ACAGTTACAA AGCTGTAATG GTGTCTTTTT TTCCTFTGTA	120
	ACGGAATGTG TAAATCAAAG TATATACATT GTGTGGTGTT CCTGTTTCTG GAGTTTCATG	180
20	AGGATTTACA CATGGCATTC AGTGTTCTGT ATAGATCTGC CTACCTTTGT GAATTCATCT	240
20	GITAACCCCT CTTCCTTTGA GAGAGCACCG GCGATGGTGG TTAACTCCTT GTGTTTTCTC	300
	TCTCTCCTAC TGGTTATTCT TGAATTAAGC ACAGACTCGT CAGCTCGGTT GCTTTATCAT	360
25	GAATAATGTG TGTGACCTTG CAGTTCTTCC ACAGTTCAGC AAACAAGTGC TAGCTTCACT	420
	GACCAAAAAT TAAGGAAGGA AAACACAGTT TTTAAAACGA TCCATCTTTT AACAGCCGAA	480
30	ACCGATGTGT CTATGGTGCT GCACCTTGCT GTTGTACTTC TGAAATCAGA CGTGTGTGAA	540
	CGATCATTIC TGACTTAACC GTGAGATGCT CACGAGTACC CTTCCTGTTG TTTTGTTAGC	600
	ATTGAAATCG AGACTATTTA TTTGGAATAT ATACAACAGT GTTTTTCCAC TGTATTTCAT	660
35	TTGCAAAAGT TGAGAACTGC TTTCTCTACC TTTTGCAAAA TAATTGATAT TCCATATTGG	720
	ATTCTCAAAG ACTTCGATAT GGTGAACCTA TTAAACCTAG AAATTGTATT CATCCTTTCA	780
40	TGACTGTGC CTGAGTTCCC CAGCCCCTCT CCTCCTTTTT TTTAGATGAG ATTTAGCACA	840
	CTCTCAGTTA TTTAAACATG CAACATTTCT TGAGTATGTA TGTTGAGGCC ATCTGAGCTC	900
	ATAGCTGATT CAGTAACCAG TTTCATGCTG TGTCATTCAC ACTCACTACT TAATACTGCC	960
45	ATGGTGAAAA TGTGGAGGAA AAATGTATCC ATGTGTGTCT GGGAAGCATA TACACTTGTA	1020
	CATTTTTAA TACTCTGATT CTGTAACATT TCTGAGTTTT GTTTTGTTTT	1080
50	AAAAAAAGT GATAAAGCAA TCAGAAGACC AAGAGGTTTA CTATTGATGC TTAGGGTCGT	1140
	CTGACCTTGG CTGGCCAATA GACCTACACG GCCAAATTAA TTTACGAGAG TAATAATTTT	1200
	TCAAAAGCCA ATTTTTTTC TGTATTTTCT GTATGAAACT GCCAATATCA TGAATAGAAA	1260
55	GGGAGAACCA TAAAGGAGAA AGAACGTGAT GTTCTGTTAT GTTCATGTAA ACCTAAAGAA	1320
	ACAGTGTGGA GGCAGGCGCG ATCAGCCGAA CTCTAGGGAC TTGGTGTTGC TTGGAAGGCA	1380
60	TCCATACCTG CATTTTGCAT TCTTCGTATG TAATCATATT GCCAAAGACA AACTATTTCA	1440

359

5	CTCGA						1565
	CTTCCAGTTG	CAATAAAAAT	TACTGAGTTG	CATCAATIGA	AGAAAAAAA	AAAAAAAAA	1560
	TCATTTATTG	TAAATAACAC	TTTTCCCCAG	ACCTACCATA	AAGTTTCTGT	GATGTATTGT	1500

10 (2) INFORMATION FOR SEQ ID NO: 135:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2007 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:

20	TCTAAAAGCC	CCCTTATACC	CCACTTTGTG	CAGCAAAGAT	CCCCGTGCAG	GTCACAGCCT	60
	GATTTGTGGC	CAGGCTGGAC	AAATTCCTGA	GGCACAACTT	GGCTTCAGTT	CAGATTTCAA	120
25	GCTGTGTTGG	TGTTGGGACC	AGCAGAAGGC	AAACGTCCAG	CCAACACACA	OGACTGTAAG	180
23	AGGACTCTGA	GCTACGTGCC	CTGTGAAGAC	CCCCAGGCTT	TGTCATAGGA	GGTCGTTCAG	240
	CTTCCCCAAA	GTCAGAGGTG	ATTTGATTTG	GGGAAGACTG	AATATTCACA	CCTAAGTCGT	300
30	GAGCATATCC	TGAGTTTTAC	TTCCTTATGG	CITGCCCTCC	AAGTTCTCTC	TCTCATACAC	360
	ACACACACCC	TTGCTCCAGA	ATCACCAGAC	ACCTCCATGG	CTCCAGCTAT	GGGAACAGCT	420
35	GCATTGGGGC	TGCCTTTCTG	TTTGGCTTAG	GAACTTCTGT	GCTTCTTGTG	GCTCCACTCG	480
	CGAGGCAGCT	CGGAGGTGTG	GACTCCGATT	GGGCTGCAGG	CAGCTCTGGG	ACGGCACAGG	540
	GCGGGCTC	TGATCAGCTC	GTGTAAAACA	CACCGTCTTC	TTGGCCTCCT	GGCAGTTCTT	600
40	TCTGCGAATA	GTCCTCTCCC	TGGCCAGTTG	AATGGGGGAA	GCTGCTGGCA	CAGGAAGGAG	660
	AGGCGATCCC	GGCTGAGGCT	TAGGAAATTG	CTGGAGCCGG	CTCCAAGCAG	ATAATTCACT	720
45	GGGGAGGTTT	TCAGAGTCAA	ACATCATTCT	GCCTGTKTTG	GGGCCAGGT	GTGTCACACA	780
	AGCATCTCAA	AGTCAAAAGC	CATCTGGGGC	TGCTGCTTCT	CTTTCTCAGG	CTCTGGGGAA	840
	AGGAATCTCC	CTCTCCTCTC	ACTTGATTCC	AAGTGTGGTT	GAATTGTCTG	GAGCACTGGG	900
50	ACTITITITC	TCTTTTCCTT	GATGGACCAA	CAGTGCAAAT	GCAATCTCGC	CATTTAACTT	960
	TCAGGTCGAT	TTCCTTTCCT	GATCAGACAT	CTTTGTGCCC	CCTTTAGGAA	GGAAAAGAAT	1020
55	ACACCTACGA	TGTGCCAGGC	ACTGTGTTAG	GCGCTTTTAT	ATAGATCCTC	GTTAGGATGA	1080
	GACTAAGGGA	TGAGGACATC	тстттатааа	AGGCCCCTAA	GTAATGGATA	AACAGAAACA	1140
	CTTAGAGGTG	AGAAGGTCTG	TCTTCAAGAT	CCAAGGTAAG	ATTGCCTTCA	GTCTGATGTT	1200
60	TGTTCTCAAG	GACTTATCCC	CTACAATATT	CTCCCACTCC	ATACTTCTCC	TTCTACCCCA	1260

360

	CCATGTGCTC	CCGTGCACTC	CTCAGATGGT	CAGAGGGGTA	ACCCAAGTCC	TTAGAGAATT	1320
5	TGGGGACCAA	TAGAATATGT	GATGTGTGAA	TTTTCTTTAA	AAAACTTAAG	GAGTCTTTGC	1380
	TACCTTCTGC	TTGTTGAGTT	GTTTTGGCAT	TCATATTAAA	AGCCAGCATC	TCACTATTTA	1440
	TTGACAGGTT	GGGCTGTGTG	TGTGCGCATG	TGTGTATACA	TTTCCAGGCG	TGCCTGTGTC	1500
10	CTGTAGCTTT	TTAAAAGGAA	ACCCAGTCAT	CCCACTATGA	ATCTGGCATC	TTCTTATGCT	1560
	TCTAGTGTTT	TGGCCATACA	TCAACCAAGG	GGTTTAATTT	ATCCAATGCT	TGACGACATG	1620
15	TTCAGGAGGG	GCTGGATCAA	ATTTTGAGAG	GGTTATGGGA	AAGGAGGGG	GAGAAGAAAT	1680
13	TGACATTTAT	TTTATTATTT	ATTTTAAATG	TTTACATCTT	CTTTATGTTG	TATCAAGCCT	1740
	GAATAGAAAC	TGATAGCATT	AAAATACTCC	GTTCCTCTCT	CTCTTCTCGC	TTCCTTTTTT	1800
20	TTTTTTTTTA	AATTTAGGAT	AACACATTTT	TGTTTCTAAA	GTGATTTGTG	ATTTGTGCTG	1860
	TATAAACTGT	ATAAAAGGTT	CTGTTTTTAA	AGGTGGATTT	TCATTCCTCT	GGGGACAGTG	1920
25	GTCGCCAAGA	CATCTACATT	GTAAGAGAAC	ACAGTGGAAG	ATCCTGTCCT	GATTCTCAAA	1980
23	AATTATTTTC	TCTGTATGAT	TAAAAGT				2007

30

35

(2) INFORMATION FOR SEQ ID NO: 136:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1291 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:

40 CTTTTAACCC TCCCCCTTCA CACACATACA TATCAGGTTG TTTTCTAGTT AAAAACCCAA 60 GTAGCTCAGA TTCTACTTTA ATGTCAGTGC AGATTTGCAT TGAATCATGC CATTATGTTT 120 45 TTTCTCATTT TTATGCTGTT GGGTCTTAGT TTTTAAATTG ATATAAAGAA CTCAGCAATG 180 GTTTTATTTT CTACTCATAC TTAGGGTTTA GGAAACACTA CCACTAGTTA TCATTTAATC AACTICAATG GTCTACTGAA ACAAAAATGG TAACTITTCA TTAGTGGATT ATTTAGAGTT 300 50 ATAGTAGTTG TTTCCAGAAA ACACTTCCTC ACAATTGTAC TTCCCAATCA AATCATGTGA TCATACAGTT ATTCCCATGA AAGGCAGAAT GTTTGTTTCA AAATTAATCT AGTTTTCTGT 420 55 ACATTTAAAT TTGAGAAGGT GACAACTGGC TCTTTTCCAG TCTTCCTTCA TGTCAGTTTT 480 CTGATAGACC ACTATTGGCA AACAGTATCT GTCAACTACC AAATGTGTAA AATTTTCTGT 540 ATTTCACTTT GTCTTATTTG TAAATAGTGA ACTAAAACTT TTGGCAGATC AGCAACATTT 600 60

361

	GCTGAGCCTG	TTTTTTAAGC	TAATGTGTAT	TCTTACTAAT	GTTCCTATCA	AGAATGGATT	660
	TGTAATATAT	GCTGTCTATT	TCTAATGTTC	ACATTCATAT	TTTGAGGTTC	TATCTTATTT	720
5	TAATAGAGAA	CAGACTTCTC	AAAAAATCTT	CAGAAGCAGC	TTATTATTGA	AATATCGAAA	780
	TATTGAAATA	AACCCGGTGG	GTTAGATTAC	TCATCTGTCC	ACCAAGTGGG	ACATITGCAT	840
10	GGACTGGGG	CTTAAAGGAC	TTAGAAGAGA	CCTGTAAGTA	AATCCTGAAA	ATGAGCCAAT	900
10	CCCCACTIGA	ATGGTTACTG	GAGTAAACCC	ACCTTTACCA	CCCCAATTAC	AGCACCCGAG	960
	GCCGATAAAC	CAACTTGGCT	CTGGTTCATT	TTTCTTTTCT	TCATTTGTGA	TGCTCAGATT	1020
15	CAAAATGTGT	GTTCTACACT	GTTACAGGCT	TCTCTTTTGT	TTGATTAAAG	ATTTTAGTCC	1080
	TACTTTTGTA	TGGACACATT	AGAATATTCA	GAGACCAAAA	TAGAAGAATT	TGCTGTTAGA	1140
20	TATTTTTCAG	AAGTCAGCAG	ATTTGTGGCA	AATCATTTAT	TIGCCTTITI	AAAAATTCAT	1200
20	TTAAGCAGTT	CAGAGAGTAG	ACTACTCAGA	AAATTATTTC	ACGTAATTGT	CTAAGAGGTC	1260
	AATATTTTTT	AATGCATATT	GAATCAAATA	A			1291
25							

(2) INFORMATION FOR SEQ ID NO: 137:

30 (i) SEQUENCE CHARACTERISTICS:

35

40

45

50

55

60

(A) LENGTH: 1906 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:

GGCACGAGGA CCTACTTTTG TAACAGACCA TGGTTGTGTC CAAGGTAAAA CCACAGTGAT 60 ATTTTTGGAT GCTTTGTCTG CAATCTTGAC TIGTTTTTGC AGTATCATTA TTCAGACTTC 120 AAATTGTGAA TCTTTTAAAC ATCTTGATAA TTTGTTGTTG AGAGCTGTTC ATTCTAAAAT 180 GTAATGAAAT TCAGTCTAGT TCTGCTGATA AAGATCATCA GTTTTGAAAG GTTACTGATT 240 TTCCTCTTCC CTCTTAGTTT TTTACCCAAT ATATGGAGAA GAGTAATGGT CAATCTTAAC 300 ATTTTGTTT AATTGTTTAA TAAAGCTGCT GGGCAGTGGT GCAGCATTCC TACCTAGTGT 360 CATAAAAGCA AAATACTTAC ATAGCTTTCT TAAAATATAG GAATGACATT ACATTTTTAG 420 GAGAAAGTAA GTTGCTTTGC ACCGCCTACT TAATTCCTTT CCATATATTG TGATACAAAC 480 TTTTGAATAT GGAATCTTAC TATTTGAATA GAAATGTGTA TGTATAATAT ACATACATAC 540 ATAAGCATAT ATGTGTGTGT GTGTGTGTAT ATATATATAT ATGCATGCTG TGAAACTTGA 600 CTACACAACA TAAATCACTT TTTAAATTCC AGGAACGGT AGTCTGACAC GGTGATTATC 660 CTTTTGAGGC TGAATCCGTT ATTAACTTGT TATTTAGGTT TTACTCCCAG TAGCAAGGGA 720

	TTCTAAGTTA	GTTGCACTTA	CATGATTATT	GTGATTTAAA	ACTAAGAATA	AAGGCTGCAT	780
5	TTTCAAAGAT	AAATTGGAAT	TGCTGTTGGT	GAAATAACAA	CCAAAATACT	GAATCTGATG	840
,	TACATACAGG	TTTCTACAGG	AAGAGATGGT	ATAATTTACA	ATTTGGAGAT	TTAATAACCA	900
	GGGCTACCCA	GAAAAAGTGA	CTTGATAACA	TGGTACCAAT	AAGTAAGGGA	TGCTCTCTCG	960
10	GTTTGCTTTT	GCCACTTTCA	AGATTTTAAC	TTCTCAGGTT	ATTAATCAAA	ATTATTGTAT	1020
	AAGTTAGCCA	ATAGAATTTT	TAGGTTAAAA	CAACAGATGG	GGGGTTTGTG	GAGTGTTTAA	1080
15	TGTCATGGGC	ATTTTTAGTA	GCATAGACCC	TTTGTTCTGC	ATTTGAATGT	TTCGTATATT	1140
15	TTTGTTTCAC	AGITAATCTT	CCCTCCCCAA	GTTTGCTATT	CAAATCAACT	GCCTGAATGA	1200
	CATTTCTAGT	AGTCTGATGT	ATTTTTCTGA	GGAATAGTTT	GTGATTCCAA	TGCAGGTGTC	1260
20	TTCATTACCA	TTACCTCTAC	ACTGCAGAAG	AAGCAAAACT	CCTTTATTAG	AATTACTGCA	1320
	CATGTGTATG	GGGAAAATAG	TTCTGAAAGG	CTAGAATGAT	ACAAGTGAGC	AAAAGTTGGT	1380
25	CAGCTTGGCT	ATGGAGTGGT	GGCAATAATC	TCTAAACATT	CCAAAAGACC	ATGAGCTGAA	1440
23	CCTAAACTCC	CTTGGGAATC	TGGAACAAAG	GAATATGAAA	ATTGCCATTT	GAAAACTGAC	1500
	CAGCTAATCT	GGACCTCAGA	GATAGATCAG	CCAGTGGCCC	AAAGCCATTT	CAAGTACAGA	1560
30	AATTATAGAG	ACTACAGCTA	AATAAATTTG	AACATTAAAT	ATAATTTTAC	CACTITITGT	1620
	CTTTATAAGC	ATATTTGTAA	ACTCAGAACT	GAGCAGAAGT	GACTTTACTT	TCTCAAGTTT	1680
35	GATACTGAGT	TGACTGTTCC	CTTATCCCTC	ACCCTTCCCC	TICCCTTICC	TAAGGCAATA	1740
33	GTGCACAACT	TAGGTTATTT	TTGCTTCCGA	ATTTGAATGA	AAAACTTAAT	GCCATGGATT	1800
	TTTTTCTTTT	GCAAGACACC	TGTTTATCAT	CTTGTTTAAA	TGTAAATGTC	CCCTTATGCT	1860
40	TTTGAAATAA	ATTICCTTT	GTAAAAAAA	ААААААА	ААААА		1906
45	(2) INFORM	ATION FOR C	EQ ID NO: 13	1 9 -			
••	, 2, 2111 01011						

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1935 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:

55 TCTGAACTAA TGCTAACAGA TCCCCCTGAG GGATTCTTGA TGGGCTGAGC AGCTGGCTGG 60 AGCTAGTACT GACTGACATT CATTGTGATG AGGGCAGCTT TCTGGTACAG GATTCTAAGC 120 TCTATGTTTT ATATACATTT TCATCTGTAC TTGCACCTCA CTTTACACAA GAGGAAACTA 180 60

	TGCAAAGTTA	GCTGGATCGC	TCAAGGTCAC	TTAGGTAAGT	TGGCAAGTCC	ATGCTTCCCA	240
	CTCAGCTCCT	CAGGTCAGCA	AGTCTACTTC	TCTGCCTATT	TIGTATACTC	TCTTTAATAT	300
5	GTGCCTAGCT	TTGGAAAGTC	TAGAATGGGT	CCCTGGTGCY	TTTTTACTTT	GAAGAAATCA	360
	GTTTCTGCCT	CTTTTTGGAA	AAGAAAACAA	AGTGCAATTG	TTTTTTACTG	GAAAGTTACC	420
10	CAATAGCATG	AGGTGAACAG	GACGTAGTTN	AGGCCTTCCT	GTAAACAGAA	AATCATATCA	480
	AAACACTATC	TTCCCATCTG	TTTCTCAATG	CCTGCTACTT	CTTGTAGATA	TTTCATTTCA	540
	GGAGAGCAGC	AGTTAAACCC	GTGGATTTTG	TAGTTAGGAA	CCTGGGKTCA	AACCCTCTTC	600
15	CACTAATTGG	CTATGTCTCT	GGACAAGTTT	TTTTTTTTT	TTTTTTTTAA	ACCCTTTCTG	660
	AACTTTCACT	TTCTATGTCT	ACCTCAAAGA	ATTGTTGTGA	GGCTTGAGAT	AATGCATTTG	720
20	TAAAGGGTCT	GCCAGATAGG	AAGATGCTAG	TTATGGATTT	ACAAGGTTGT	TAAGGCTGTA	780
20	AGAGTCTAAA	ACCTACAGTG	AATCACAATG	CATTTACCCC	CACTGACTTG	GACATAAGTG	840
	AAAACTAGCC	AGAAGTCTCT	TTTTCAAATT	ACTTACAGGT	TATTCAATAT	AAAATTTTTG	900
25	TAATGGATAA	TCTTATTTAT	СТАААСТААА	GCTTCCTGTT	TATACACACT	CCTGTTATTC	960
	TGGGATAAGA	TAAATGACCA	CAGTACCTTA	ATTICTAGGT	GGGTGCCTGT	GATGGTTCAT	1020
30	TGTAGGTAAG	GACATTTTCT	YTTTTTCAGC	AGCTGTGTAG	GTCCAGAGCC	TCTGGGAGAG	1080
	GAGGGGGGTA	GCATGCACCC	AGCAGGGGAC	TGAACTGGGA	AACTCAAGGT	TCTTTTTACT	1140
	GTGGGGTAGT	GAGCTGCCTT	TCTGTGATCG	GTTTCCCTAG	GGATGTTGCT	GTTCCCCTCC	1200
35	TTGCTATTCG	CAGCTACATA	CAACGTGGCC	AACCCCAGTA	GGCTGATCCT	ATATATGATC	1260
	AGTGCTGGTG	CTGACTCTCA	ATAGCCCCAC	CCAAGCTGGC	TATAGGTTTA	CAGATACATT	1320
40	AATTAGGCAA	ССТААААТАТ	TGATGCTGGT	GTTGGTGTGA	CATAATGCTA	TGGCCAGAAC	1380
	TGAAACTTAG	AGTTATAATT	CATGTATTAG	GGTTCTCCAG	AGGGACAGAA	TTAGTAGGAT	1440
	ATATGTATAT	ATGAAAGGGA	GGTTATTAGG	GAGAACTGGC	TCCCACAGTT	AGAAGGCGAA	1500
45	GTCGCACAAT	AGGCCGTCTG	CAAGCTGGGT	TAGAGAGAAG	CCAGTAGTGG	CTCAGCCTGA	1560
	GTTCAAAAAC	CTCAAAACTG	GGGAAGCTGA	CAGTGCAGCC	AGCCTTCAGT	CTGTGGCCAA	1620
50	AGGCCAAGAG	CCCCTGGCAA	CCAACCCACT	GGTGCAAGTC	CTAGATTCCA	AAGGCTGAAG	1680
	AACCTGGAGT	CTGATGTCCA	AGAGCAGGAA	GAGTGGAAGA	AAGCCAGAAG	ACTCAGCAAA	1740
	CAAGGTAGAC	AGTGTCTACC	ACCAYAGTGG	CCATACCAAA	GAGGCTACCG	ATTCCTTCCT	1800
55	GCTACCTGGA	TCCCTGAAGT	TGCCCTGGTC	TCTGCACCTT	CTAAACCTAG	TTCTTAAGAG	1860
	CTTTCCATTA	CATGAGCTGT	CTCAAAGCCC	TCCAATWAAT	TCTCAGTGTA	AGYTTCAAAA	1920
60	АААААААА	AAAAA					1935

(2) INFORMATION FOR SEQ ID NO: 139: 5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1446 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:

15	NGCCCCCTTG	GCACAAGTCA	GATGAAGCAC	GTTCTGCCGG	GGAGGCCCTC	AMCTTCCAGA	60
13	GAGGACAGAC	ACAGATTTCC	TGCTGGGGGA	GGGAGGAGTC	CACGCATCCT	GATGCTGCCT	120
	GGAAGCTTAT	TTTCCCGTGG	CCAGGATGCA	TTTCTCTGAG	TGGAAACAGG	TTCTTGCATG	180
20	TGGATGTGTG	TTTCCCCAGG	CAGACGCCC	CTCTYTTCCC	AGCACTTCCC	TGCCTCCCCC	240
	AGGCCTCAGG	CCAGCACCCA	GTTCCTCCTC	ACATGGCAGG	TGAGCACAGA	CTTCTAGTTG	300
25	GCAGGAGCTG	AGGAGGGTGA	ACAAACCCCG	AGGGAGGCCC	GCCCTTGCT	CCCGAGTTGG	360
2.5	GGGGAGGGG	TGTGGCAACG	TGCCCCCCCC	AGAGGCCACG	CATGTTTGAC	CAAAGCCCTC	420
	ATTGTGGTCC	GAGGACAGCC	TTTTCCCCAG	GCCTCARAGC	ATTGCTCATC	CGTGCCAAAC	480
30	TGGGTAGGTG	GATTTGAGCG	GAAAGACTCC	CAAAATGTGC	CAAGAATTTC	CCRGTCCCAG	540
	GCAGGGCAGG	GGAAACTAAG	GGCAAGCAGG	ATACAGGGCG	AGGGATGTGG	CAGGTGAGGG	600
35	GGCTCCCGCC	TGTGCCCCTT	CTCCTCACCA	TGTCTCCCCC	ACCCTGCCTC	AGTTCTCCGT	660
33	TCCCCTTCAT	CTCCGTCCCC	CTCTTTGAAG	CTGTCCCCAT	CTCAGTGTCA	GACCAGCCTT	720
	CTCCTCAKCT	GACCACCCTC	CTCTGACCSA	CCCCCCCCCC	TTGTCTGAAA	AAAGGAGCCT	780
40	TGAATGGTGG	AGGGAGGCAG	TGGGGAGAAA	GGTCTCACCG	GACAGGTTGG	GAGAATGAGG	840
	TCAGCGGTGC	TGGGGAACAG	ATGGAGGGG	CAGTGGGGAC	AGGGCTTGGG	CAGACACCAG	900
45	CAGGAATAAT	TTGAAATGTG	TGAGGTGACT	CCCCGGAGGC	CTTGGGCTTG	GGCATTTGGG	960
43	AAAAGAATGA	TGTCTGGAAG	GGCTTAAGGG	ACACAGTGGA	CGAGGGGAGA	GTCCTCATCT	1020
	GCTGGCATTT	TGTGGGGTGT	TAGTGCCAAA	CTTGAATAGG	CCTCCCCTC	CTGTCTTCCA	1080
50	CTGACACCCA	AATCCAGAAT	CCCTGGTCTT	GAGTCCCCAG	AACTITGCCT	CTTGACTGTC	1140
	CCTTCTCTTC	CTACCTCCAT	CCATGGAAAA	TTAGTTATTT	TCTGATCCTT	TCCCCTGCCT	1200
55	GGTCTAGCTC	CTCTCCAAAC	AGCCATGCCC	TCCAAATGCT	AGAGACCTGG	GCCCTGAACC	1260
	CTGTAGACAG	ATGCCCTCAG	AATTGGGGCA	TGGGAGGGG	GSTGGGGGAC	CCCATGATTC	1320
	AGCCACGGAC	TCCAATGCCC	AGCTCCTCTC	CCCAAAACAA	TCCCGACAAT	CCCTTATCCC	1380
60	TACCCCAACC	CTTTGCGGCT	CTGTACACAT	TTTTAAACCT	GCAAAAGAT	GAAGAGAATA	1440

365

TTGTAA 1446

5

(2) INFORMATION FOR SEQ ID NO: 140:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1109 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140:

TTTTTTTTT TTTGATATGA AATTGTCTTT CTCCATTGCA GAAATAAGCT AGGGAAACAC 60 TAACCCAAAA ACTITCTGTA GAGCTGTTCC TTTGGAGGCA GCATCACTTA TTGGCAGTAA 120 20 AGACTCAGTA TAAAAGCACC AGCATCCCTA CTTGGGTGAT GGGGATTAAT TTTATAGCAT 180 TCCATTTTCC TAGTGCCACA TGTGAAATTG GATTTTGATG ATCTTAATCT ATATTCTACC 240 25 CTTATAATAA AAGATCAAAA GATATATCTC CTATGAACAG ATTGGAGATA GGAGATGAAA 300 AGTTGGGAGG ATGTCTTTAT TCTAATGTGA GGGTAGGGAA AATGTGGATA ACATTACTGG 360 GGTGARGGAG GCATTGTTCT TTAGTTGGAG TTCTCATTTT TATTCTCCAG TACTGACTTG 420 30 TGGGGAAAGC ATACTTTTC ACTGCCAGGT ACTGAATGCA GAGGCTCAGT GAAGTATATA 480 TGTGGGAAGT GCATGCATTT CGTTTATTAG CAAACATAGC TGGATTAAGA CAAAGTTGTT 540 35 GGTTTGGAAA GGGGTTAAAG CCTTAAGTGA ACAAATCTAG CTAACAGTGA ATGAACTAGG 600 TAATATAACT TGCATATTTT TAATTTCCTT TGGTTAAAGG TCCCCCATAC TTCTCTGTTC 660 GGAGACATGA GAAGTATGAT TACTTCAGTG TTAGTTTTCT TAATTTTTTT TTTCCCCTAT 720 40 TTGTCCCTTG TCACTTTGTT GCAAGCTAGA AATCTGTGGG TTATACATAG GGCAGCTCTT 780 TGTGAAAGTG GTTTATTCCA CTGGAGAAAG GGGATTGAAA ATCAGTTAGA ACCAATGTAT 840 45 TTCTIGCCC ACGGAACACT ATTCCTATAA GATAGCTGAA AGAAGCTGCT GTGAGGAGCT 900 CAGCTCCAAA CACAGGATCA GCACCTTGTA TAGGAATTCC CATGAATTAT GACTTCTCAT 960 TCTGTTTTAT CAGAGTGCAT ATATGTCCTA CTTCAGGAAA AGTAAAACAG TCATTTACGA 1020 50 AAGAAAGTCA ATCTGTATCC TAAGCATTTT AATAAAAAGT TAAAACAAAA AATTAAAAGG 1080 GACACTCGAG GGGGGGCCCG AAACCCAAT 1109

55

60 (i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 141:

366

5	(A) LENGTH: 497 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
,	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:	
	TAGGACTAAC TTAAATTCTT TTATTCATCT TTTATTTATT AAAAAATTTT ATTTCTTTGA	60
10	ATTITCCTGT AATTITCCTTA RGCTCTTCTA TAAAATGTTA TATTCATGIG AACCATACCT	120
	CATTATCCTT AACATTTACT CTCAAAAAGC TTTTTATTTT TATTTTTTTG AAGGTAGTTT	180
15	TICTGIGIGT ACTCTGTAAC ATGATTTTGC TTTCAAATCA TIGTTGTGCC CCCATACAAA	240
13	ATGCCTTTTA TITTTGAGGA TCGTGGACTT TTTAGTATCG CATGAGTGTG CTAAAAGCCA	300
	GATATCTTTC CACATTCACT GGTGGCTTTG ACACCTAGTT TITAATCTCC CATCCTTACT	360
20	TTAAACCCTG ACAGTGCAGT CCTCAGTCAG GGCCAGGACC GGGCTGAGGC CCTTTGTGGA	420
	GATGCTGCAC CACCAGCAGA AGGCTGAGAC CTGGTTACCT GTACCTGTTC ACTTGTAATA	480
25	AAAAGAATTA TCTAAAA	497
45		
30	(2) INFORMATION FOR SEQ ID NO: 142: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 269 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:	
40	ATGAGGCAGA GGCAAGCTGC CTGCCAACCC CCTCCCTCAA GGAATGGCCT TGCCCAGGAA	60
	TGCCCACCAC ACATACCCTC TTCTTTTTT CTAGTCAAAC TCTTGTTTAT TCCTTGGCTT	120
	GCCTCCCTCC TTTCCTCCCC TCTCAACCTT TTACTTCTGG TTTCTATTTC ATGGGATTTG	180
45	GGGTTGAAGT TAAACTTACA ACAGTGCCGC CAACACCAAG TCTTGCAGGA AAAAAATACA	240
	AAGAAATTTA ACAAAAAAAA AAAAAAAAA	269
50		
	(2) INFORMATION FOR SEQ ID NO: 143:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1269 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:

	TTGATTGACT	ATGGTCTCTC	CGCCTACCAG	GAAGAGTCTG	CCGAAGTGAA	GGCCATGGAC	60
5	TTCATCACCT	CCACAGCCAT	CCTGCCCCTG	CTGTTCGGCT	CCTCCCCT	CITCGGCCTC	120
J	TTCCGGCTGC	TGCAGTGGGT	GCGCGGGAAG	GCCTACCTGC	GGAATGCTGT	GGTGGTGATC	180
	ACAGGCGCCA	CCTCAGGGCT	GGGCAAAGAA	TGTGCAAAAG	TCTTCTATGC	TGCGGGTGCT	240
10	AAACTGGTGC	TCTGTGGCCG	GAATGGTGGG	GCCCTAGAAG	AGCTCATCAG	AGAACTCACC	300
	GCTTCTCATG	CCACCAAGGT	GCAGACACAC	AAGCCTTACT	TGGTGACCTT	CGACCTCACA	360
15	GACTCTGGGG	CCATAGTTGC	AGCAGCAGCT	GAGATCCTGC	AGTGCTTTGG	CTATGTCGAC	420
13	ATACTTGTCA	ACAATGCTGG	GATCAGCTAC	CGTGGTACCA	TCATGGACAC	CACAGTGGAT	480
	GTGGACAAGA	GGGTCATGGA	GACAAACTAC	TTTGGCCCAG	TTGCTCTAAC	GAAAGCACTC	540
20	CTGCCCTCCA	TGATCAAGAG	GAGGCAAGGC	CACATTGTCG	CCATCAGCAG	CATCCAGGGC	600
	AAGATGAGCA	TTCCTTTTCG	ATCAGCATAT	GCAGCCTCCA	AGCACGCAAC	CCAGGCTTTC	660
25	TTTGACTGTC	TGCGTGCCGA	GATGGAACAG	TATGAAATTG	AGGTGACCGT	CATCAGCCCC	720
	GGCTACATCC	ACACCAACCT	CTCTGTAAAT	GCCATCACCG	CGGATGGATC	TAGGTATGGA	780
	GTTATGGACA	CCACCACAGC	CCAGGCCGA	AGCCCTGTGG	AGGTGGCCCA	GGATGTTCTT	840
30	CCTCCTCTCC	GGAAGAAGAA	GAAAGATGTG	ATCCTGGCTG	ACTTACTGCC	TTCCTTGGCT	900
	GTTTATCTTC	GAACTCTGGC	TCCTGGGCTC	TTCTTCAGCC	TCATGCCTCC	AGGGCCAGAA	960
35	AAGAGCGGAA	ATCCAAGAAC	TCCTAGTACT	CTGACCAGCC	AGGGCCAGGG	CAGAGAAGCA	1020
	GCACTCTTAG	GCTTGCTTAC	TCTACAAGGG	ACAGTTGCAT	TTGTTGAGAC	TTTAATGGAG	1080
	ATTTGTCTCA	CAAGTGGGAA	AGACTGAAGA	AACACATCTC	GTGCAGATCT	GCTGGCAGAG	1140
40	GACAATCAAA	AACGACAACA	AGCTTCTTCC	CAGGGTGAGG	GGAAACACTT	AAGGAATAAA	1200
	TATGGAGCTG	GGGTTTAACA	СТАААААСТА	GAAATAAACA	TCTCAAACAG	TAAAAAAAA	1260
45	AAAAAAAAC						1269

(2) INFORMATION FOR SEQ ID NO: 144:

50

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1944 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

AAAAGGCAAA CTATAGGATA ACACAGAGCC CTTTTTGAAA ATAAATTGGC ATTGGAGTGT 60

	TTTACCCTCT	AGCTGTTTTA	CTTAGAATGT	AACATATGCT	GCCTACCCAC	CTCAAAATGT	120
	CTGTACTGCA	AGAGGGCCCT	GGCCTCTGC	TTTCCATATT	CACGTTTGGC	CAGAGTTGTA	180
5	GTCCCAAAGA	AGAGCATGGG	TGGCAGATGG	TAGGGAATTG	AACTGGCCTG	TGCAATGGGC	240
	ATGGAGCACA	AGGGGTCACA	GCATGCCTCC	TGCCTTACCG	TGGCAGTACG	GAGACAGTCC	300
10	AGAACATGGT	CTTCTTGCCA	CGCGGTGTTG	TTGTCTCTGG	TGGTGCTGCA	TGTCTGTGGC	360
10	TCACCTTTAT	TCTTGAAACT	GAGGTTTACC	TGGATCTGGC	TACTGAGGCT	AGAGCCCACA	420
	GCAGAATGGG	GTTGGGCCTG	TGGCCCCCAA	ACTAGGGGGT	GTGGGTTCAT	CACAGTGTTG	480
15	CCTTTTGTCT	CCTAAAGATA	GGGATCTACT	TTTGAAGGGA	ATTGTTCCTC	ССАААТАААТ	540
	TTGCTTTACC	TIGGICCITI	CTTTTGTGCC	AGTATTCAAG	TGGTATAGCT	CTGAGCAGGG	600
20	TCACATTTGG	CCAAACCTGA	CACTGTCTTG	CTGCATTCTC	CTTTGGCAAA	CATCAGGGTC	660
20	AGAATTCAGG	ATAGCCCTTC	CTAGGGCACT	GGACTTTCTG	GCATGGGGGC	TGTGTTTGCA	720
	CAAGTTATTT	TCATGTTACC	TGGAGAGTGT	CCAGAGGCTG	CTCTGAGGCT	GAGGTGTGTT	780
25	CCCCCTTGCC	TGGTTCCAGC	TGTCAGAGGG	ATACCATCCT	AGGGTCTGGG	AATCCAAGGC	840
	CACGAGACTC	CTTGGTTTGT	GGTCCGAGAT	CCTGTACTAA	GGAGGGTCTG	GCCAGAGGAA	900
30	CAGACCAGCT	TTTGCACAAT	GAAGCGCAAG	GGAACAAGTG	GTTTGCCTGG	TGTCCTACCT	960
50	GTCCTGAACC	TGGTCCTGTG	GGCCATTGAA	AAGTTAGATC	TGTGATCTCT	GGGGTTTTTG	1020
	TGGCTTTGTT	CAATGCTTCC	ACTCTAGGGC	AGGCAGAGCA	GTCTATACTC	TCCCAAGCCT	1080
35	GCTTGACCTC	CAAGTAGAGC	TGATACAGAG	ATCTGTGAAT	ATTGTGATAG	AAATTCTTTG	1140
	GTATTCATAC	ATTTCAGCTG	CAAGTCAGCA	ATTTCCCAGG	TACCATGTAA	GCTATAAAAC	1200
40	AGTCATTCTT	AAAGACAGAG	GATAGCTGTG	ACTCATGGGA	TCATGAGGTC	CATGGCTGGT	1260
10	TGCAGGTTCC	CTTTTTCCTT	CCTCAGGTTT	TGTCTCTTCC	TGTGTTGTCC	CCAGCAAGGG	1320
	AGAGACTGTG	GGGTGGATTG	GGAGAACAGA	TTAGGAGTAT	AGCAAATGAA	CCCAGAATGG	1380
45	AACAGTGGGG	AGCTAACTGT	GAATGAGGAG	AGTACCTGCT	GCAGGACCTG	GAGGTCAGGT	1440
	GTGAATGCTG	TATTGGCACA	GGGAATAAAT	ATCCTGGCGT	CTGGAGCCTT	CACCTCTCCG	1500
50	TCAAGTCCTT	CCTGTGATAC	TGCCATGGCA	CAGGATCTGA	GTTGCAGCTC	TGCACCCTAA	1560
	ATCACACCCT	GGGCATTGTC	TOGGCTCCAG	GGCTGCCAGG	TTCTGTACTT	GTGTCCAGCT	1620
	GTGGCCCTGG	ATGCTGGAGC	TGGAGGGTTT	TCTGTGCTCA	GACTGTAGCC	TGTAGCTCTT	1680
55	GGCCTGTGTA	GAGCCCCCTC	CTGTGCCCTC	AGTGGCTGTC	GTTTGTTAAC	ATCATCAGGA	1740
	AGATGGGAAA	GGTCAGGCAG	AATTTTTCTG	CCCTACAAAG	GGTGGAAGAG	AAAGGACACA	180
60	GTATTTCAT	GAATITACCA	TATATCTTTG	TTTTTCTTCA	ACGAAAAAGT	TAATTGAGGC	186

369

	AATGICATCT	GCTCAAAGTT	GAGTGGTTTA	TTCACAATAA	ACTGTAAGTT	TCTGATTATA	1920
	ааааааааа	АААААААА	AAAG				1944
;							

(2) INFORMATION FOR SEQ ID NO: 145:

10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1021 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145:

	TCGACCCACG CGTCCGGGGT GCGCAACGGG GAGTTCCGGC TGGAGACCCG TGCTCTGGGC	60
20	CGGCGCCTTC ACCATGGCCT CGGCAGAGCT GGACTACACC ATCGAGATCC CGGATCAGCC	120
	CTGCTGGAGC CAGAAGAACA GCCCCAGCCC AGGTGGGAAG GAGGCAGAAA CTCGGCAGCC	180
25	TGTGGTGATT CTYTTGGGCT GGGGTGGCTG CAAGGACAAG AACCTTGCCA AGTACAGTGC	240
23	CATCTACCAC AAAAGGGGCT GCATCGTAAT CCGATACACA GCCCCGTGGC ACATGGTCTT	300
	CTTCTCCGAG TCACTGGGTA TCCCTTCACT TCGTGTTTTG GCCCAGAAGC TGCTCGAGCT	360
30	CCTCTTTGAT TATGAGATTG AGAAGGAGCC CCTGCTCTTC CATGTCTTCA GCAACGGTGG	420
	CGTCATGCTG TACCGCTACG TGCTGGAGCT CCTGCAGACC CGTCGCTTCT GCCGCCTGCG	480
35	TGTGGTGGGC ACCATCTTTG ACAGCGCTCC TGGTGACAGC AACCTGGTAG GGGCTCTGCG	540
55	GGCCCTGGCA GCCATCCTGG AGCGCCGGGC CGCCATGCTG CGCCTGTTGC TGCTGGTGGC	600
	CTTTGCCCTG GTGGTCGTCC TGTTCCACGT CCTGCTTGCT CCCATCACAG CCNTCTTCCA	660
40	CACCCACTTC TATGACAGGC TACAGGACGC GGGCTCTCGC TGGCCCGAGC TCTACCTCTA	720
	CTCGAGGGCT GACGAAGTAG TCCTGGCCAG AGACATAGAA CGCATGGTGG AGGCACGCCT	780
45	GGCACGCCGG GTCCTGGCGC GTTCTGTGGA TTTCGTGTCA TCTGCACACG TCAGCCACCT	840
73	CCGTGACTAC CCTACTTACT ACACAAGCCT CTGTGTCGAC TTCATGCGCA ACTGCGTCCG	900
	CTGCTGAGGC CATTGCTCCA TCTCACCTCT GCTCCAGAAA TAAATGCCTG ACACCTCCCC	960
50	ACAAAAAAA AAAAAAAAA ACTCGAGGG GGGCCCGGTA CCCAATTCGC CCTATAAAGG	1020
	т	1021

55

(2) INFORMATION FOR SEQ ID NO: 146:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1285 base pairs

370

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5	(xi) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 146:		
	GGCACGAGGA	GGGCCACGGC	AGCCATCGCG	CTTTGCAGTT	CGGTCTCCTG	GTGTACGGCC	60
10	AACGCCAAGT	AGGGGATTGC	GTTCCCTCCA	GTCGCAGACC	CTATCAGATT	TGGATATGTC	120
10	CTTCATATTT	GATTGGATTT	ACAGTGGTTT	CAGCAGTGTG	CTACAGTTTT	TAGGATTATA	180
	TAAGAAAACT	GGTAAACTGG	TATTTCTTGG	ATTGGATAAT	GCAGGAAAAA	CAACATTGCT	240
15	ACACATGCTA	AAAGATGACA	GACTTGGACA	ACATGTCCCA	ACATTACATC	CCACTTCCGA	300
	AGAACTGACC	ATTGCTGGCA	TGACGTTTAC	AACTTTTGAT	CTGGGTGGAC	ATGTTCAAGC	360
20	TCGAAGAGTG	TGGAAAAACT	ACCTTCCTGC	TATCAATGGC	ATTGTATTTC	TGGTGGATTG	420
20	TGCAGACCAC	GAAAGGCTGT	TAGAGTCAAA	AGAAGAACTT	GATTCACTAA	TGACAGATGA	480
	AACCATTGCT	AATGTGCCTA	TACTGATTCT	TGGGAATAAG	ATCGACAGAC	CTGAAGCCAT	540
25	CAGTGAAGAG	AGGTTGCGAG	AGATGTTTGG	TTTATATGGT	CAGACAACAG	GAAAGGGGAG	600
	TATATCTCTG	AAAGAACTGA	ATGCCCGACC	CTTAGAAGTT	TTCATGTGTA	GTGTGCTCAA	660
30	AAGACAAGGT	TACGGAGAAG	GCTTCCGCTG	GATGGCACAG	TACATTGATT	AACACAAACT	720
,,	CACATTOGTT	CCAGGTCTCA	ACGITCAGGC	TTACTCAGAG	ATTIGATIGC	TCAACATGCA	780
	TAACTTGAAT	TCAATAGACT	TTTGCTGGTT	ATAAAACAGA	TGTTTTTTAG	ATTATTAATA	840
35	TTAAATCAAC	TTAATTTGAA	TGAGAATTGA	AAACTGATTC	AAGTAAGTTT	GAGTATCACA	900
	ATGTTAGCTT	TCTAATTCCA	TAAAAGTACT	TGGTTTTTAC	AGTTTATAAT	CTGACATCAC	960
40	CCCAGCGCCA	TTTGTAAAGA	GCAACTTTCC	AGCAGTACAT	TTGAAGCACT	TTTTAACAAC	1020
•	ATGAAACTAT	AAACCATATT	TAAAAGCTCA	TCATGTTAAA	TTTTTTATGT	ACTITICIOG	1080
	AACTAGTTTT	TAAATTTTAG	ATTATATGTC	CACCTATCKT	AAGTGTACAG	ттаатаатта	1140
45	GCTTATTCAA	TGATTGCATG	ATGCCTTACA	GTTTTCAATA	ACTITITITC	TTATGCAAAC	1200
	GTCATGCAAT	AAAACAAACT	CTAATGTTTG	GCAAAAAAAA	ааааааааа	NTCGAGGGGG	1260

1285

(2) INFORMATION FOR SEQ ID NO: 147:

GGCCCGTACC CAATTCGCCC TAAAG

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1386 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

	xi)	SEQUENCE	DESCRIPTION:	SEO	TD NO:	147
--	-----	----------	--------------	-----	--------	-----

5	GGCACGAGGT	GCCCAGGGG	TCAGTGGTTC	TCTCGGGTCT	CGGGACAGGT	GAGCACCCTG	60
,	ATGAAGGCCA	CGGTCCTGAT	GCGGCACCTG	GGCGGGTGCA	GGAGATCGTG	GCCCCCTCC	120
	GCAAGGGCGS	CGGAGACCGG	TTACAGGTGA	TTTCTGATTT	TRACATGACC	TTGAGCAGGT	180
10	TTGCATATAA	TOGAAAGCGA	TGCCCTTCTT	CTTACAATAT	TCTGGATAAT	AGCAAGATCA	240
	TCAGTGAGGA	GTGTCGGAAA	GAGCTCACAG	CGCTCCTTCA	CCACTATTAC	CCAATTGAGA	300
15	TCGACCCACA	CCGGACCGTC	AAGGAGAAGC	TACCTCATAT	GGTGGAATGG	TGGACCAAAG	. 360
	CGCACAATCT	CCTATGTCAG	CAGAAGATTC	AGAAGTTTCA	GATAGCCCAG	GTGGTTAGAG	420
	AGTCCAATGC	AATGCTCAGG	GAGGGATATA	AGACCTTCTT	CAACACACTC	TACCATAACA	480
20	ACATTCCCCT	TITCATCTTT	TCTGCGGGCA	TTGGTGATAT	CCTGGAAGAA	ATTATCCGAC	540
	AGATGAAAGT	GTTCCACCCC	AACATCCACA	TCGTGTCTAA	CTACATGGAT	TTTAATGAAG	600
25	ATGGTTTTCT	CCAGGGATTT	AAGGCCAGC	TGATACACAC	ATACAACAAG	AACAGCTCTG	660
	TGTGTGAGAA	CTSTGGTTAC	TTCCAGCAAC	TTGAGGGCAA	AACCAATGTC	ATCCTGCTGG	720
	GAGACTCTAT	CGGGGACCTC	ACCATGGCCG	ATGGGGTTCC	TGGTGTGCAG	AACATTCTCA	780
30	AAATTGGCTT	CCTGAATGAC	AAGGTGGAGG	AGCGGCGGGA	NCGCTACATG	GACTCCTATG	840
	ACATCGTGCT	GGAGAAGGAC	GAGACTCTGG	ATGTGGTCAA	CGGGCTACTG	CAGCACATCC	900
35	TGTGCCAGGG	GGTCCAGCTG	GAGATGCAAG	GCCCCTGAAG	GCGCAGGCTN	CCAGNCCGCC	960
	TGCAGGCCGT	GGTGAGGAGG	GGCGCCTCCC	CAGAGTCTGC	TCCCCCGTGA	ACACAGAGCA	1020
	GANGCCAGGG	TGGCCAGCAG	TEGETEGETE	CTTCCGCGCC	CCTCCGTCCT	CCTTTCCCTG	1080
40	AGCACCTTCA	TCACCAGAGG	CTTGAAGGAA	CCCCGCCATG	TGGCAGGGCA	CAGGCACTGT	1140
	TCCTGGTGAA	CCTTGGACCA	CAGCATGTCA	GTGCTCTAGG	GATTGTCTAC	TCCAGGGATT	1200
45	TTCTTCAAAA	TTTTTAAACA	TGGGAAGTTC	AAACAAATAT	AATGTGTGAA	ACAGATCAAA	1260
	ATTTTTAAAA	TGAAAAAAA	GCTGCTCTGA	TTCAGGGGAT	GTGGGTCGGG	GTAGAACCTG	1320
	GACCTCTTGG	CCTGGGGGCA	CATGGGATGC	TTCTAGGAAC	ACAGTTTGAG	AACCACCAAA	1380
50	AAAAA						1386

^{55 (2)} INFORMATION FOR SEQ ID NO: 148:

(A) LENGTH: 2098 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

⁽i) SEQUENCE CHARACTERISTICS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:

	(XI) SEQUENCE DESCRIPTION. SEQ ID NO. 140.	
5	AGCCCTTCTC CCCGCGCTTG GGACTCTGAC ATCTTAAGGC TGCACGGTCG TGTCCTTGTC	60
	TOGGTGAGGC CATGTCTGTG ATCCAAGGTT CCTGGAACTG ACACAGGAAG GGGCTGTGAA	120
10	CCCTAAGTGG GTGTMATCTC CTCCRACCGA GGCTTCTMAC CCTGGAGATG GCAGTTACTC	180
10	CTGGCCATGG TTGCTGAGCA TGGGCAGACC AGTGGAGGCC ACCCTACTGT GTTATCTGCG	240
	CCTTCRATGA AGTGAGACCC TTGGGGAGAA CGGGCTGTGG ATGAAGGAGT GGACTGCAGC	300
15	CTTGGCCTAG CCACTGGGCT GGGATCTTCT GGGTCATGTG ACTGTGTATC CAGGAGCAGA	360
	AACTIGTATT CTCAGGATIC AGGATCTACC CAGCACCAAA GATGTATITT CAGGAGAACA	420
20	GACCTAGAAA TGGGCCTGTC TGGCATTTCA GAGTCAGGCA AAGCAGGCAG GGCCAGGGAG	480
20	CTTCTGTGGG TCTACACAAG AAGGTTCCTG TGAGGGCTAT CAGTTGTTGC CTTCTAGCTT	540
	GCTGGTAACT TTGGCGCCTC CGCCAAGCCC TGCCAGACTC CCCTGGCTGT GATGGCATTC	600
25	TGTGCCATCC TGCCTTGTCC CCAGCCTCTG CAGGATGCCC TCCCTACCCA MCTYTYCCTG	660
	GGCCTTCCCT GTCCACTGGG CTGGATTCAT GTTCAAACCA CTGGACTGGC AGGGCAACGA	720
30	CTTCTTCCCA CCTCAAGATG AGGTCCTCGC CCCCTTGTCT TGGCATAAAA ACACCTTTAA	780
50	AGCATGAGCC ATGTGCTTCT TTGCCCTTCT CTGTCCTGTT CCAATCTTCT GCCTCCCAGT	840
	CACTCCCTGG GGACTATGGG ATCACTGTCC CCCCACCTGT GTGGCCACAC CATGTGTCCT	900
35	GTCAATCCAG AACTGCCTCT GAGCTCCAGG CTGACCACAG ATCAGCCACA GCCTGATGCC	960
	TGCAGCCCCA CTTTGCTCAC CCTTCCCTC CCCTCCTCCT TCCTTCCACA CAGCAAGCCT	1020
40	ACCTITYTCC ATCCATGCTC ACCATAGCCC CCTTCCTTGT GACCTGGACC CTCCATTGTA	1080
	CCTGGCTGAG ACTGTCAGCC TCCTGGAGGA GTGGGGTCCA CCTTCTTCTT GCCCTATGCA	1140
	GTGCAAGCTT CACTTCTCAC CCAGCAAGGT TGACTCATCT GCCTCCATGT CTCTGGGGCT	1200
45	TIGCTGTTGC CCTGAAACCT AGCTGGGCTG GTCTTGCTCC CAGCTTGCTT CCCCCTCCTC	1260
	GGATGTCCCT TTGCAGGCCC CTGTCGTTCC TCCGGCACCA GTGTCCTTGG CTGCCATGGC	1320
50	AAGCTCATCA GGGGCTTGTA CCCTGGTCAC CAAGCATGGT AGCAGCTGCC TGCATTGTAT	1380
- 4	CTCCATCTGG TCACTGCAGG TGCCAACCCT TCATCCCCCA TGTTTTCCTG GGCCATGGAG	1440
	GGCTGACCTC CGPTTCTGGG GAATGTGGCT GAGCTGTGGT AACCAGCTAC ACCCCAGGTG	1500
55	CTCTTTCCAT GGTGGTGCCT GCTCATCTTG CTGATGCAAA CTAGGAAGTT AGGCTGCATC	1560
	TCGGAGTGGC TTTCGCTGGA GAGGTGCTTT GCTGTCTCTC AGACTCAGTC ACTGTGTTCC	1620
60	CTCCCCGCCT CTCTTATCTC CATGGCTGTT TGCAGCTCTC CCAGGTACTT TGGGGTCTGA	1680

373

	GCTGGAATTC	CTTTGTGGTT	TGCTCTTCTG	CTTCTCACTC	TTGTATTAAG	AAGGATTCCA	1740
	CAAAGGGAGA	GTGGCATCCC	TGCTGCTGCT	GTGCCAGACC	AGAGTTTCCT	GAGGGGCCCT	1800
5	GACCCTAACC	CTCCAGCTCA	GCCCTGTACA	CCTGACCCTG	TAAATGAGTG	GGGTTTGCTG	1860
	ACTGTAATCC	CTGACACCAG	ТААААССААА	AGGACTCTTG	GGGGCTCAGT	GTGAGAGCCA	1920
10	GGGTTACCTA	CTCTGCCAAG	TGAGGACAAA	CTGCTAGGCT	GTATCCCATA	ATTTCAGGAT	1980
10	GAGAAACATT	AACAATAAAA	ATTTGTAGTA	AACATAACCT	CATGANGACT	АААААААА	2040
	AAAAACTYGG	GGGGGGGCCC	GTAACCCATT	GGGCCCTTNG	GGGGGGTT	TTAAAATT	2098

15

(2) INFORMATION FOR SEQ ID NO: 149:

20 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1847 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

25

30

35

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:

60	GTCTTCGCGT	TTGGKGTCTG	CGGGAGCCGG	GAGGCGGCGG	CGTCCGAACT	TCGACCCACG
120	AGCGGCCTCG	GATGGTGCCK	GCGGGGAGAA	TGCCCCCGGC	GACCAGACGC	ceecccece
180	CCGAGCAGCT	CGGCGTCCG	AGCGCGACCG	GAGTGAGCCC	GCGCCGCCAC	GCCCGCCAC
240	GATCAGAATA	GGGTGGAGCT	cecceeece	GCGCANTGCC	GCCCGGGGC	GCCCGGCTG
300	GCCTCCCCTG	TCAGCAGTCG	AAGGTGTACA	GGAGAACCTG	TCAACCCCCT	ATGTTCAGCA
360	GGGCTACTTC	TCCTGACCCT	GCCATAGCTT	AANGCCCATG	TGATCAGCGT	GTGGTCTTCA
420	TTTTCTGCTA	ATTGGAATAC	ATGGCAGAGG	ATCCCCAGAA	AGGAGATTAA	TTCAAAATCA
480	TCTCACAAAC	CCCTCAAGCA	GAGAATGAAA	GTGTGTATCA	ATTTGGACTT	CGGTTCAATG
540	CACCCAGTCC	CCCGAGCTTC	AGCGGGCAGG	TACAATGACC	CTCCGGAAAG	GACACCACAA
600	CCTAACCCTG	TCTCAATCAC	AATATCTCAG	GGCCCGGTG	TGGAGGACTC	CCCCAGGCCC
660	CTCAACCATC	CCCATCTGTA	CGCAACGTCA	AGGGTATTCC	AACCCTTCGG	GACCCACTGA
720	CATCACCTTC	AGGAGATAAA	GAAGCCCACG	TTCAGGCAGG	AGATTGGACT	TTAGGGCATC
780	TGAGCAGGTG	ACGGTCACTG	TGCGCCCTCC	CTCAGATGAC	CAGCGTGGAG	ACCCTGCCTA
840	CACTGTACAG	TGTTCCCCGT	AGCCCTGGGG	CCTCACGGCC	CCTGCATGAC	GTATTCACAG
900	GATCTTCACA	TCTGGTACAA	AACGCCACGC	CACGTACAGC	GTGTTCCTGA	CCACCGCACT
960	GTGTTATAAG	ATCCTTTCTG	CAAGATTACA	AAAATACGCC	ATGCCAACAC	ACTGCCAGAG
1020	TGTTCCAGAT	TTACAGTGAT	AATCCCAAGC	TCATGCTTTA	GAAAAGTCTA	GGGGCCATTG

	GATGACCGTT CATTAATAAA TTTGCATCTC ATGCACACCA GTTACTTCCT CTTTGTGATG	1080
5	GTGATAACAA TGTTTTGCTA TGCTGTTATC AAGGGCAGAC CTAGCAAATT GCGTCAGAGC	1140
,	AATCCTGAAT TTTGTCCCGA GAAGGTGGCT TTGGCTGAAG CCTAATTCCA CAGCTCCTTG	1200
	TTTTTGAGA GAGACTGAGA GAACCATAAT CCTTGCCTGC TGAACCCAGC CTGGGCCTGG	1260
10	ATGCTCTGTG AATACATTAT CTTGCGATGT TGGGTTATTC CAGCCAAAGA CATTTCAAGT	1320
	GCCTGTAACT GATTTGTACA TATTTATAAA AATCTATTCA GAAATTGGTC CAATAATGCA	1380
15	CGTGCTTTGC CCTGGGTACA GCCAGAGCCC TTCAACCCCA CCTTGGACTT GAGGACCTAC	1440
13	CTGATGGGAC GTTTCCACGT GTCTCTAGAG AAGGATTCCT GGATCTAGCT GGTCACGACG	1500
	ATGTTTTCAC CAAGGTCACA GGAGCATTGC GTCGCTGATG GGGTTGAAGT TTGGTTTCGT	1560
20	TCTTGTTTCA GCCCAATATG TAGAGAACAT TTGAAACAGT CTGCACCTTT GATACGGTAT	1620
	TGCATTTCCA AAGCCACCAA TCCATTTTGT GGATTTTATG TGTCTGTGGC TTAATAATCA	1680
25	TAGTAACAAC AATAATACCT TTTTCTCCAT TTTGCTTGCA GGAAACATAC CTTAAGTTTT	1740
23	TTTTGTTTG TTTTTGTTTT TTTGTTTTTT GTTTTCCTTT ATGAAGAAAA AATAAAATAG	1800
	TCACATTITA ATACTACCAA AAAATGGACA AAAAAAGTCG AGGGGGG	1847
30		
	(2) INFORMATION FOR SEO ID NO: 150:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1569 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:	
	GACGCTGACG AGAGAAGGCC TCTTCCTTGA GGGTTGGTGC TGTGTTGCAG TGACCGTGGC	60
45	GGATTACGCC AACTCGGATC CGGCGGTCGT GAGGTCTGGA CGAGTCAAGA AAGCCGTAGC	120
	CAACGCTGTT CAGCAGGAAG TAAAATCTCT TTGTGGCTTG GAAGCCTCTC AGGTTCCTGC	180
	AGAGGAAGCT CTTTCTGGGG CTGGTGAGCC CTGTGACATC ATCGACAGCA GTGATGAGAT	240
50	GGATGCCCAG GAGGAAAGCA TCCATGAGAG AACTGTCTCC AGAAAAAAGA AAAGCAAGAG	300
	ACACAAAGAA GAACTGGACG GGGCTGGAGG AGAAGAGTAT CCCATGGATA TTTGGCTATT	360
55	GCTGGCCTCC TATATCCGTC CTGAGGACAT TGTGAATTTT TCCCTGATTT GTAAGAATGC	420
	CTGGACTGTC ACTTGCACTG CTGCCTTTTG GACCAGGTTG TACCGAAGCA CTACACGCTG	480

	GCTTGTGTGA	TCCGATCTCT	GTACCATATG	TATGAGCCAT	TTGCTGCTCG	AATCTCCAAG	600
	AATCCAGCCA	TTCCAGAAAG	CACCCCAGC	ACATTAAAGA	ATTCCAAATG	CITACTITIC	660
5	TGGTGCAGAA	AGATTGTTGG	GAACAGACAG	GAACCAATGT	GGGAATTCAA	CTTCAAGTTC	720
	AAAAAACAGT	CCCCTAGGTT	AAAGAGCAAG	TGTACAGGAG	GATTGCAGCC	TCCCGTTCAG	780
10	TACGAAGATG	TTCATACCAA	TCCAGACCAG	GACTGCTGCC	TACTGCAGGT	CACCACCCTC	840
	AATTTCATCT	TTATTCCGAT	TGTCATGGGA	ATGATATTTA	CTCTGTTTAC	TATCAATGTG	900
	AGCACGGACA	TGCGGCATCA	TCGAGTGAGA	CTGGTGTTCC	AAGATTCCCC	TGTCCATGGT	960
15	GGTCGGAAAC	TGCGCAGTGA	ACAGGGTGTG	CAAGTCATCC	TGGACCCAGT	GCACAGCGTT	1020
	CGGCTCTTTG	ACTGGTGGCA	TCCTCAGTAC	CCATTCTCCC	TGAGAGCGTA	GTTACTGCTT	1080
20	CCCATCCCTT	GGGGGCAGCC	TCGAGTGTAG	TCCATTAGTA	ATCAGATTCC	AGTTTGGACA	1140
	GGGTGGCTGG	ATTGTATATC	TCGTTAGTAA	TGTACATGCT	CITCAGGITC	TAGGGCTCCT	1200
	GTTAGGGGAG	GGAGAAATGT	TGAATCAAGA	GGGAAAACAA	CTACTATGAT	ТТАТАААСАТ	1260
25	ATTTTAATGT	AAAAATTTGC	ATTTAAAAGG	AGTGGCCCTG	TTTTCTGTGT	TAAAACCCCA	1320
	TTTGGTGCTA	TTGAGTTTGT	TCTTTATTCT	TTTATCCCAG	TGAAAATTGT	TGATCTTGCT	1380
30	GTAGGGAAAA	ATTAAACTCT	TTGAATCTCC	AAACAAGGAA	GITTCAGCAT	TCCCTTATGG	1440
	ATCAGAGGAA	CCTTAGAGGC	CTGAAATTGT	TGCTTCCAGT	TTAGCTGCCC	CTCAAATTCA	1500
	AGTGAATATT	TTCCCTTCTC	CCTTTACCCT	TCTCCAGAAA	TAAAGCAGGT	GACAGGGTTT	1560
35	CAGAATCTT						1569

40 (2) INFORMATION FOR SEQ ID NO: 151:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1540 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:

50	CCCACGCGTC	CGGAAGGATT	GACCAGTTAA	CCAACATCTT	AGCCCCCATG	GCTGTTGGCC	60
55	AGATTATGAC	ATTTGGCTCC	CCAGTCATCG	GCTGTGGCTT	TATTTCGGGA	TGGAACTTGG	120
	TATCCATGTG	CGTGGAGTAC	GTCCTGCTCT	GGAAGGTTTA	CCAGAAAACC	CCAGCTCTAG	180
	CTGTGAAAGC	TGGTCTTAAA	GAAGAGGAAA	CTGAATTGAA	ACAGCTGAAT	TTACACAAAG	240
	ATACTGAGCC	AAAACCCCTG	GAGGGAACTC	ATCTAATGGG	TGTGAAAGAC	TCTAACATCC	300
60	ATGAGCTTGA	ACATGAGCAA	GAGCCTACTT	GTGCCTCCCA	GATGGCTGAG	CCCTTCCGTA	360

	CCTTCCGAGA	TGGATGGGTC	TCCTACTACA	ACCAGCCTGT	GTTTCTGGCT	GGCATGGGTC	420
5	TIGCTITCCT	TTATATGACT	CTCCTGGGCT	TTGACTGCAT	CACCACAGGG	TACGCCTACA	480
3	CTCAGGGACT	GAGTGGGTTC	CATCCTCAGT	ATTTTGATGG	GAGCATCAGC	TATAACTGGA	540
	ATAATGGGAA	CTGTAGCTTT	TACTTGGCTA	CGTCGAAAAT	GTGGTTTGGT	TCGGCAGGTC	600
10	TGATCTCAGG	ATTGGCACAG	CTTTCCTGTT	TGATCTTGTG	TGTGATCTCT	GTATTCATGC	660
	CTGGAAGCCC	CCTGGACTTG	TCCGTTTCTC	CTTTTGAAGA	TATCCGATCA	AGGTTCATTC	720
15	AAGGAGAGTC	AATTACACCT	ACCAAGATAC	CTGAAATTAC	AACTGAAATA	TACATGTCTA	. 780
15	ATGGGTCTAA	TTCTGCTAAT	ATTGTCCCGG	AGACAAGTCC	TGAATCTGTG	CCCATAATCT	840
	CTGTCAGTCT	GCTGTTTGCA	GGCGTCATTG	CTGCTAGAAT	CGCTCTTTGG	TCCTTTGATT	900
20	TAACTGTGAC	ACAGTTGCTG	CAAGAAAATG	TAATTGAATC	TGAAAGAGGC	ATTATAAATG	960
	GTGTACAGAA	CTCCATGAAC	TATCTTCTTG	ATCTTCTGCA	TTTCATCATG	GTCATCCTGG	1020
25	CTCCAAATCC	TGAAGCTTTT	GCTTGCTCG	TATTGATTTC	AGTCTCCTTT	GTGGCAATGG	1080
23	GCCACATTAT	GTATTTCCGA	TTTGCCCAAA	ATACTCTGGG	AAACAAGCTC	TTTGCTTGCG	1140
	GTCCTGATGC	AAAAGAAGTT	AGGAAGGAAA	ATCAAGCAAA	TACATCTGTT	GTTTGAGACA	1200
30	GTTTAACTGT	TGCTATCCTG	TTACTAGATT	ATATAGAGCA	CATGTGCTTA	TTTTGTACTG	1260
	CAGAATTCCA	ATAAATGGCT	GGGTGTTTTG	CTCTGTTTT	ACCACAGCTG	TGCCTTGAGA	· 1320
35	ACTAAAAGCT	GTTTAGGAAA	CCTAAGTCAG	CAGAAATTAA	CTGGATTAAT	TTCCCTTATG	1380
55	TTGAGGGCCA	TGGRAAAAA	ATTGGGAAAA	GGAAAAACTC	AGTTTTAAAT	ACGGGAGACT	1440
	ATAATGGATA	ACACTGRATT	CCCCTATTTC	TCATGAGTAG	ATACAATCIT	ACGTAAAAGA	1500
40	GTGGTTAGTC	ACGTGAATTC	AGTTATCATT	TGACAGATTC			1540
45	(2) INFORM	ATION FOR SE	EO ID NO: 15	52 -			
		SEQUENCE CI	-				
	(1)	(A) LEN	GTH: 1719 b	ase pairs			
50			E: nucleic ANDEDNESS:				
		(D) TOP	OLOGY: line	ar			
	(xi) SEQUENCE 1	DESCRIPTION	: SEQ ID NO	: 152:		
55	TACTTATGAG	GTCAATTGGA	AATAAGAACA	CCATTTTACT	GGTCTAGGA	TTTCAAATAT	60
	TACAGTTGGC	ATGGTATGGC	TTTGGTTCAG	AACCTTGGAT	GATGTGGGCT	GCTGGGGCAG	120
60	TAGCAGCCAT	GTCTAGCATC	ACCITICCIG	CTGTCAGTGC	ACTTGTTTCA	CGAACTGCTG	180

	AIGCIGAICA	ACAGGGIGIC	GTTCAAGGAA	TGATAACAGG	AATICGAGGA	Tratgcaarg	240
	GTCTGGGACC	GGCCCTCTAT	GGATTCATTT	TCTACATATT	CCATGTGGAA	CTTAAAGAAC	300
5	TGCCAATAAC	AGGAACAGAC	TTGGGAACAA	ACACAAGCCC	TCAGCACCAC	TTTGAACAGA	360
	ATTCCATCAT	CCCTCGCCCT	CCCTTCCTAT	TIGGAGCCTG	TTCAGTACTG	CIGGCICIGC	420
10	TIGITGCCTT	GTTTATTCCG	GAACATACCA	ATTTAAGCTT	AAGGTCCAGC	AGTTGGAGAA	480
10	AGCACTGTGG	CAGTCACAGC	CATCCTCATA	ATACACAAGC	GCCAGGAGAG	GCCAAAGAAC	540
	CTTTACTCCA	GGACACAAAT	GTGTGACGAC	TGAAATCAGG	AAGATTTTTC	TATCAGCACC	600
15	CAGGTCTTAG	TTTTCACCTC	TAGTTCTGGA	TGTACATTCC	ATTTCCATCC	ACAGTGTACT	660
	TTAAGATIGT	CTTAAGAAAT	GTATCTGCAT	GAACTCCGTG	GGAACTAAAG	GAAGTGGGAA	720
20	CTTAGAACCA	GACAGTTTTC	CAAAGATGTT	ACAATTICTT	TTGAAAAACC	TTTTGTTTAT	780
20	TAGCACCAAT	TTCTYGCCAC	TAAGCTATTT	GTTTTATTAT	ACATCCTTTA	АТТАААААСТ	840
	ATATATGTAA	CTTCTTAGAT	ATTAGCAAAT	GTCTCTGCTA	CCATTTCCTT	AAGGTGTTGA	900
25	GCTTTAACTC	TATGCTGACT	CAGTGAGACA	CAGTAGGTAG	TATGGTTGTG	GACCTATTIG	960
	TTTTAACATT	GTAAAATTTT	GAGTCAGATT	TTAATATTGT	AAAATCTTGG	GTCAAATAAT	1020
30	TCAAAGCCTT	AATGCAGATG	CACTAAAACA	AAGAAATGGT	AAATGAATTG	TTTGCATTTA	1080
	AAAAAAAA	CTCTTAAGAA	AACTGTACTA	AATCTGAATC	ATGTTTTGAG	CTTGTTTGCA	1140
	GTACTTTTAA	ACATTATTCA	CTACTGTTTT	TGAAGTGAGA	AAGTATCAGC	CATTTAGCAT	1200
35	TTAAGTTGGG	GTATTTAGAG	CCTGTAATCT	AAATGCTGGC	TCAAATTTAT	TCCCCAGCTA	1260
	CTTCTTATAC	CACTATTCTT	TTAATGTTTG	CATAATCATA	AGCACCTCAA	CACTTGAATA	1320
40	CATAATCTAA	AAATTATATA	GTAAAGCTGG	TAGCCTTGAA	AATGTCAGTG	TGATATCTAT	1380
	TATGTAGATA	AATATATATA	GTGGCCTTTC	AGGACTGTCA	CAGTAACACT	TTATTTACAG	1440
	AGCTAATGTT	TGTCCTAAAT	TTTCAGGACC	CTAGAGGAGA	GCTTTATACA	ATTACCGATG	1500
45	TGAATTICTC	TAAAGTGTAT	ATTTTTGTGT	CCAGTTATAT	TATTTAAAAA	AGTGTTACTT	1560
	TGTAAAAATT	GTATATAAAG	AACTGTATAG	TTTACACTGT	TTTCATCTTG	TGTGTGGTTA	1620
50	TTGCTTAATG	CTTTTTAAAC	TTGGAACACT	CACTATGGTT	AAATAAGGTC	TTAAAAGAAA	1680
	TGTAAATATT	YTGTTAATAA	AGTTAAATAT	TTTAATGAT			1719

⁽²⁾ INFORMATION FOR SEQ ID NO: 153:

⁽i) SEQUENCE CHARACTERISTICS:

⁽A) LENGTH: 863 base pairs
(B) TYPE: nucleic acid

⁶⁰

378

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153: 5 GGCACGAGGG AAGCCGGGAC GATGTCCGCA TGACAACCGA CGTTGGAGTT TGGAGGTGCT 60 TGCCTTAGAG CAAGGGAAAC AGCTCTCATT CAAAGGAACT AGAAGCCTCT CCCTCAGTGG 120 10 TAGGGAGACA GCCAGGAGCG GTTTTCTGGG AACTGTGGGA TGTGCCCTTG GGGGCCCGAG 180 AAAACAGAAG GAAGATGCTC CAGACCAGTA ACTACAGCCT GGTGCTCTCT CTGCAGTTCC 240 TGCTGCTGTC CTATGACCTC TTTGTCAATT CCTTCTCAGA ACTGCTCCAA AAGACTCCTG 300 15 TCATCCAGCT TGTGCTCTTC ATCATCCAGG ATATTGCAGT CCTCTTCAAC ATCATCATCA 360 TTTTCCTCAT GTTCTTCAAC ACCTTCGTCT TCCAGGCTGG CCTGGTCAAC CTCCTATTCC 420 20 ATAAGTTCAA AGGGACCATC ATCCTGACAG CTGTGTACTT TGCCCTCAGC ATCTCCCTTC 480 ATGTCTGGGT CATGAACTTA CGCTGGAAAA ACTCCAACAG CTTCATATGG ACAGATGGAC 540 TTCAAATGCT GTTTGTATTC CAGAGACTAG CAGCAGTGTT GTACTGCTAC TTCTATAAAC 600 25 GGACAGCCGT AAGACTAGGC GATCCTCACT TCTACCAGGA CTCTTTGTGG CTGCGCAAGG 660 AGTTCATGCA AGTTCGAAGG TGACCTCTTG TCACACTGAT GGATACTTTT CCTTCCTGGA 720 30 TAGRAGGCCA CATTTGCTGC TTTGCAGGGG AGAGTTGGGC CCTATGCATG GGGCAAAACA GGTGGGATTT TCCAAGGGAA GGGTTCAGAA TTAGGCNTGT TGTTTCAGCC ATTTCCAAGG 840 AAGGGGAAGG GTTTCCCTNC CCT 863 35 (2) INFORMATION FOR SEQ ID NO: 154: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1101 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double 45 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154: AACAGCAAAA AAGAATGATT TCTTCTGAAA TTGTGGAACA TGAGGATTCA AGTTTTTATT 60 50 TTGTTACTAG GTGCTGGAGG AACATCCCAG TTCACAAAGC CCCCATCTCT TCCTCTGGAG 120 CCAGAGCCTG COGTOGAATC AAGTCCAACT GAAACATCAG AACAAATAAG AGAGAAATAA 180 55 GAATAGAATG AATGACCCCA AAATARGGTT TTCTTGGGCG AGGATGTGCT GGATTAGGAA 240 AGGTGACATG ACACAGGCAG AGCAGAGTGG CACCCACCAC AGAATACAGT GTGTGTTATT 300 ACGAGGAGCC AGCAGTTGAG CCTAAGGTCC TTCTACCTAC CTGGTATTGG CATTTGAGGT 360 60

379

	CGGAAACCCT	CTACTGCCCC	ATAAGCCAGG	AAAAGTGAAA	AGAGAACACA	GTTCCTTTAA	420
	GAACTGGCAG	CAAGGCTTGA	GGCCTTATGT	ATGTAGCTGA	GTCAGCAAGG	TACATGATGC	480
5	TGTCTGCTTT	CAAAAGGACT	TTTCTCTCCT	AGCTGACTGA	CTCCTTCCTT	AGTTCAAGGA	540
	ACAGCTGAGA	CAGACCTCTG	CTGAGTAGCT	CTGTGATGAC	AAAGCCTTGG	TTTAACTGAG	600
10	GTGATCCTCA	GGTTGTGAGG	TTTATTAGTC	CCCAAGGCAA	ACACAAATAT	TAGATTAATA	660
10	ATCCAACTIT	AATAGTATAC	ATTTAAAAGA	АААААААСАА	AAGCCCTGGA	AGNTTGAGGC	720
	CAAGCCTGCT	GAGTATTGCA	GCTGCATTTG	CCCAAAGGGA	ATCCAGAACA	AGTCCCTCCC	780
15	TGTATTTTGT	TCTTGAGAGG	GGTCAGTCTA	GAAGCTAGAT	CCTATCAGGA	TGAGGAGCAG	840
	CAGCCCAGGG	CTTGTCTGGA	TCAGCACCAA	CGATTTTAAA	GAAAAAAGGA	AGAGTTTCTT	900
20	AGATGAGTAA	TTGTTATTGA	AGATAGTCAG	TGATAACCAC	TGACCAGATG	СТАТСААТАС	960
20	ACTATGTGTC	CTTTTTAGAA	TAAAGATTAC	ATATCATCAT	TCCTTTGGGG	ааааттстта	1020
	TTCAGGTATA	AAAACAAGAG	ATTATAATAA	аааатиаааа	GAACCCTAAA	АААААААААС	1080
25	CTCGTGCCGA	ATTCCCTGCA	G				1101

30 (2) INFORMATION FOR SEQ ID NO: 155:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2031 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155:

40	CAATTAACCC	GTTTGAGGCC	TAGGTTGTTT	GGCAAGCCCC	NGGCCTAAAG	TTTTAATTCG	60
	GCAGAGCCAA	GGGCCTGAAA	GGAAGGGAAA	GGGGAGGGTA	GCGGGAGGGT	AGCAGGTGAG	120
45	TTCCTAGGGC	TGGAAGGTTT	AGCAGCAGCC	TGGTGCAGTG	CCCTGTCATC	AAGACAAACC	180
	CACGGTCCTC	CTGGGTGCCT	ACCAAGCTTG	GTTTGTACAA	AAGCAAGGTG	GGAGTCTATT	240
	TTTGTACATG	AGATACATCA	CACTTACCTG	TGGGCCAGTA	TTGTGAAGTG	AGTCTGAGTT	300
50	GTTTACACTG	ATGCCTTCCC	TGCCCACCAC	AAATTGTGTA	CATAGTCTTC	AGAATGATAC	360
	CACCCCTTTC	CCCAGCTCCC	AACCAAGAGC	TGGTTCTAGG	CCTGTGTTAT	ATGTCATATT	420
55	TAGCGTTTTT	ATATATGACC	TTTGATTTCT	GTTGTTTGTA	TTTTAGCACA	GTGTATGCAC	480
	CTTCATTTAA	ATACATCTGT	GTGCATACAG	ATACGCATAT	ATGTGTGTGC	GTATGCATAT	540
	ATCTCTCATC	TGTAGTTTCC	AAGAGTTCAG	CTGAAGCAGA	TGGAGTCCTG	CAGCCCAGGA	600
60	GACACCCTGC	ATCCCTGCTA	ATAGTGTTTG	CCACAAGTAT	TAGTGAGTCT	TCCTTATTAA	660

	TATTTTCATT	TCAGAAGACT	GAAGCAAAGC	TGATAGTGTT	TGCTGTTTCT	TTGGCAGCTA	720
5	AGTGAGGGTC	TTGGGATGAC	TIGCIGIGIT	CCTCAAGCTG	CACTTTGGGG	CCATCTCTGC	780
J	AGTATTAAGC	CCCCTTTTTG	CTTGGTGGTA	CTCTGTCTGT	GCCTGTGTGT	GTGTGTGATA	840
	GTCACTCTTG	CATGGCTTCC	ATGTCTGGTT	TGTGGCATTT	GGGGATAAGT	GCTGAACCAG	900
10	AGCATTTGCA	GTTTGTTTGA	GGCCTCGTTG	CCAATGATAG	ATCACTCCTG	TTGACCTGGT	960
	ATGTCTGCTT	GCTTGCTGCT	TTTCCTTGCT	TTCTCTTGGA	AGAGGAAAGG	ACTCTGGTCA	1020
15	GGCCCAGGCT	GAGTGAGATG	AGCTGCAGCT	GGCTCATGGC	CTTCTTAGAG	CAGAGAGAGG	1080
13	AGTATGTCAT	TTTACTAAGT	TCCTAAACAA	ACATTTATGC	AGGCAACACT	CCTTGCAGAT	1140
	CCAGAAACTG	AGGCACAATA	GGGTTATGAC	TTGCTCAAGA	ATATGTAGCT	GCTAGGGGGT	1200
20	AAATCAAGGC	ATCACAATTT	CTGTTCAGCG	GCAGGAATA	GGCTGTGAAT	TGCTAGCACT	1260
	ттттттаа	GCAATTACTT	TTTGACTTGT	TCCTCTGAAA	GTGCAAGAGG	CGTACACCTT	1320
25	TCCCAAATGT	AGACTAGAAT	CTGCAGGATG	CCACCCACTG	TATAGTTCTG	CTTTCCCAGA	1380
23	GAGGAAGAAC	TTTTAGAAAC	CAAATGATCT	TAATTGTTAT	TGCCCACCCC	TGGCTTTTCC	1440
	GGGTAGAAAA	TTCACAGTAG	GAATGATTGT	TAAGAGAGAG	TGCTTGGAAC	CATGGGTTAA	1500
30	CAGGAAAGGC	TACCTAACTT	CACATATCTG	CAACCAGAGC	AGCCACCAAG	CATTACTTAG	1560
	CAGCAGGAAA	ATGATTGTAT	TTGAGTTCCT	GTGTGTCCAA	AACTGAGGCA	CCATGTTCTT	1620
35	TGAAAACATG	CCACCTCAAG	GCTGGGCGCG	GTGGĊTCACA	CCTGTTAATC	CCAGCACTTT	1680
50	GGGAGGCCGA	GGCGGGGGA	TCACCGGAGT	CGGGGAGTTT	GAGACCAGCC	TGGACCAACA	1740
	TGGGAGAAAC	CCCATCTCTA	ССТАААААТА	CAAAATTAGC	CGGGCGTGGT	GGCATGCGCC	1800
40	TATAATCTCA	GCTACTTGGG	AGGGYTGAGG	CAGGRGAATT	GCTTGAACCC	RGGANGGCGG	1860
	AGGTTTGCGG	TTGAGTTGAG	GATCGTGCCA	TTGCACTTCC	GGGCCTTGGG	GCAACAACAG	1920
45	CAAAAAYTCC	GTCTTCAAMW	MRTGCCGAAT	TCGATATCAA	GCTTATCGAT	ACCGTCGACC	1980
,,,	TCGAGGGGGG	GCCCGGTACC	CAATTCGCCC	TATAGNGATC	GTATTACAAT	c	2031

(2) INFORMATION FOR SEQ ID NO: 156:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1981 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:

	CCTGCACCCT	GAGCCCTTCA	CCCCTCCGAG	TTCCCCCCAG	GTTGGCTTCC	TTCGATTCCT	60
	TTTCTTGGTA	TCAACGTTTG	ATTGGAAGAA	CAACCCCCTC	TTTGTCAACC	TCAATAATGA	120
5	GCTCACTGTG	GAGGAGCAGC	TCGGGCACAG	CTCMCCGTYA	TGGTCATTGT	TACCCCCAA	180
	GACCGCAAAA	ACTCTGTGTG	GACACAGGAT	GGACCCTCAG	CCCAGATCCT	GCAGCAGCTT	240
10	GTGGTCCTGG	CAGCTGAAGC	CCTGCCCATG	TTAGAGAAGC	AGCTCATGGA	TCCCCGGGGA	300
10	CCTGGGGACA	TCAGGACAGT	GTTCCGGCCG	CCCTTGGACA	TTTACGACGT	GCTGATTCGC	360
	CTGTYTCCTC	GCCATATCCC	GCGGCACCGC	AGGCTTGTGG	ACTCGCCAGY	TECCTCCTTC	420
15	TGCCGGGGCC	TGCTCAGCCA	GCCGGGGCCC	TCATCCCTGA	TGCCCGTGCT	GGGTNATGAT	480
	CCTNCTCAGC	TCTATCTGAC	GCAGCTCAGG	GAGGCCTTTG	GGGATCTGGC	CCTTTTCTTC	540
20	TATGACCAGC	ATGGTGGAGA	GGTGATTGGT	GTCCTCTGGA	AGCCCACCAG	CTTCCAGCCG	600
20	CAGCCCTTCA	AGGCCTCCAG	CACAAAGGGG	CGCATGGTGA	TGTCTCGAGG	TGGGGAGCTA	660
	GTAATGGTGC	CCAATGTTGA	AGCAATCCTG	GAGGACTTTG	CTGTGCTGGG	TGAAGGCCTG	720
25	GTGCAGACTG	TGGAGGCCCG	AAGTGAGAGG	TGGACTGTGT	GATCCCAGCT	CTGGAGCAAG	780
	CTGTAGACGG	ACAGCAGGAC	ATTGGACCTC	TAGAGCAAGA	TGTCAGTAGG	ATGACCTCCA	840
30	CCCTCCTTGG	ACATGAATCC	TCCATGGAGG	GCCTGCTGGC	TGAACATGCT	GAATCATCTC	900
	CAACAAAACC	CAGCCCCAAC	TTTCTCTCTG	ATGCTCCAGC	ATTGGGGCAG	GGGCATGGTG	960
	GCCCATGTAG	TCTCCTGGGC	CTCACCATCC	CAGAAGAGGA	GTGGGAGCCA	GCTCAGAGAA	1020
35	GGAACTGAAC	CCAGGAGATC	CATCCACCTA	TTAGCCCTGG	GCCTGGACCT	CCCTGCGATT	1080
	TCCCACTCCT	TTCTTAGTCT	TCTTCCAGAA	ACAGAGAAGG	GGATGTGTGC	CTGGGAGAGG	1140
40	CTCTCTCTCC	TTCCTGCTGC	CAGGACCTGT	GCCTAGACTT	AGCATGCCCT	TCACTGCAGT	1200
	GTCAGGCCTT	TAGATGGGAC	CCAGCGAAAA	TGTGGCCCTT	CTGAGTCACA	TCACCGACAC	1260
	TGAGCAGTGG	AAAGGGGCTA	TATGTGTATG	AATAGACCAC	ATTGAAGGAG	CACAATGCCC	1320
45	TCCTGTGTTG	ATGCCACTTC	CCAGGGTGGA	GACAGTGGAA	AAGAACCGAG	GACAGGAAAG	1380
	GATTGGGTAG	GTGAAGGGGT	CAGGGGACTG	GTAGTCACCC	AATCTTGGAG	AGGTGCAAAA	1440
50	AGCACTGGGG	GCTACCCGTT	AGCTGCATCT	GCCCTGGCTG	TTTGCCCGTT	CATGTCACAA	1500
	ACTGCCACTA	CTATGTACCT	GCAGTGGGGT	TGCAGAGATG	GGGGAGACTC	AAGTCTTACT	1560
	CCCCAGGAGC	TCCCAGGGCC	CAAGGAGGAG	AATGCTGCCT	CCTTTCAGTC	TGGTCTACAC	1620
55	CCACTTTCTG	GTAGCCTCTC	TGCTTCCTGT	AATTCTGGCT	GTTTTTCCAG	ACTCAGCTCA	1680
	AATAGTGCCC	CTCCTTAAGC	CCATCCCTCG	CCCCCAGCCT	GAGGTGATCT	TTCCCTCCTC	1740
60	TGAACTATTA	GAGCAGTTAC	TGTCTGTTCA	CTTCCTTTCC	CAGGCACACA	CAGTGGCATA	1800

382

	AATTCTATTG TTTTGAACTC TGATTTAAAA TTAAATTGCA GCTGGGCGTG GTGGCTCATG	1860
	CTTGTAATCC CAACACTTAG GGAGTMAGGR GAATCACTTG ASCYCAGGAG TYCTAGACCA	1920
5	ATCTGGGCAA MAGAGAGACC CCATCTCTTT TAAATAAAAA GTTAAATTGC TTAAAAAAAA	1980
	A	1981
10		
10		
	(2) INFORMATION FOR SEQ ID NO: 157:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 915 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157:	
	GAATTCGGCA CGAGCGCGGC CATGGCGCTC CTGCTTTCGG TGCTGCGTGT ACTGCTGGGC	60
25	GGCTTCTTCG CGCTCGTGGG GTTGGCCAAG CTCTCGGAGG AGATCTCGGC TCCAGTTTCG	120
23	GAGCGGATGA ATGCCCTGTT CGTGCAGTTT GCTGAGGTGT TCCCGCTGAA GGTATTTGGC	180
	TACCAGCCAG ATCCCCTGAA CTACCAAATA GCTGTGGGCT TTCTGGAACT GCTGGCTGGG	240
30	TIGCTGCTGG TCATGGGCCC ACCGATGCTG CAAGAGATCA GTAACTTGTT CTTGATTCTG	300
	CTCATGATGG GGGCTATCTT CACCTTGGCA GCTCTGAAAG AGTCACTAAG CACCTGTATC	360
25	CCAGCCATTG TCTGCCTGGG GTTCCTGCTG CTGCTGAATG TCGGCCAGCT CTTAGCCCAG	420
35	ACTAAGAAGG TGGTCAGACC CACTAGGAAG AAGACTCTAA GTACATTCAA GGAATCCTGG	480
	AAGTAGAGCA TCTCTGTCTC TTTATGCCAT GCAGCTGTCA CAGCAGGAAC ATGGTAGAAC	540
40	ACAGAGTCTA TCATCTTGTT ACCAGTATAA TATCCAGGGT CAGCCAGTGT TGAAAGAGAC	600
	ATTITUTETA CETEGCACTE CITTETCTITT TRACCTITAC TACTETITIE TGAGGAGTAC	660
45	ATGTTATGCA TATTAACATT CCTCATGTCA TATGAAAATA CAAAATAAGC AGAAAAGAAA	720
45	TITAAATCAA CCAAAATTCT GATGCCCCAA ATAACCACTT TTAATGCCTT GGTGTAAGTA	780
	TACCTCTGAA CTTTTTTCTG TGCCTTTAAA CAGATATATA TTTTTTTTWA ATGAAAATAA	840
50	AACCATATAT CCTATTITAT TTCCTCCTTT TAAAACCTTA TAAACTATAA MAAAAAAAA	900
	AAAAAAAAA CTCGA	915

55

(2) INFORMATION FOR SEQ ID NO: 158:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2117 base pairs

383

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158: 60 SCTSCTSCTS GCSCCSTCCS TGSTSCASGC GGTGGAGCCC ATCAGCCTGG GACTGGCCCT 120 10 GGCCGGCGTC CTCACCGGCT ACATCTACCC GCGTCTCTAC TGCCTCTTCG CCGAGTGCTG 180 CGGCAGAAG CGGAGCCTTA GCCGGGAGGC ACTGCAGAAG GATCTGGACG ACAACCTCTT 240 15 TGGACAGCAT CTTGCAAAGA AAATCATCTT AAATGCCGTG TTTGGTTTCA TAAACAACCC 300 AAAGCCCAAG AAACCTCTCA CGCTCTCCCT GCACGGGTGG ACAGGCACCG GCAAAAATTT 360 CGTCAGCAAG ATCATCGCAG AGAATATTTA CGAGGGTGGT CTGAACAGTG ACTATGTCCA 420 20 CCTGTTTGTG GCCACATTGC ACTTTCCACA TGCTTCAAAC ATCACCTTGT ACAAGGATCA 480 GTTACAGTTG TOGATTCGAG GCAACGTGAG TGCCTGTGCG AGGTCCATCT TCATATTTGA 540 25 TGAAATGGAT AAGATGCATG CAGGCCTCAT AGATGCCATC AAGCCTTTCC TCGACTATTA 600 TGACCTGGTG GATGGGGTCT CCTACCAGAA AGCCATGTTC ATATTTCTCA GCAATGCTGG 660 AGCAGAAAGG ATCACAGATG TOGCTTTGGA TTTCTGGAGG AGTGGAAAGC AGAGGGAAGA 720 30 CATCAAGCTC AAAGACATTG AACACGCGTT GTCTGTGTCG GTTTTCAATA ACAAGAACAG 780 TOSCTICIGG CACAGCAGCT TAATIGACCG GAACCTCATT GATTATITITG TICCCTICCT 840 35 CCCCTGGAA TACAAACACC TAAAAATGTG TATCCGAGTG GAAATGCAGT CCCGAGGCTA 900 TGAAATTGAT GAAGACATTG TAAGCAGAGT GGCTGAGGAG ATGACATTTT TCCCCAAAGA 960 GGAGAGAGTT TTCTCAGATA AAGGCTGCAA AACGGTGTTC ACCAAGTTAG ATTATTACTA 1020 40 CGATGATTGA CAGTCATGAT TGGCAGCCGG AGTCACTGCC TGGAGTTGGA AAAGAAACAA 1080 CACTCAGTCC TTCCACACTT CCACCCCCAG CTCCTTTCCC TGGAAGAGGA ATCCAGTGAA 1140 45 TGTTCCTGTT TGATGTGACA GGAATTCTCC CTGGCATTGT TTCCACCCCC TGGTGCCTGC 1200 AGGCCACCCA GGGACCACGG GCGAGGACGT GAAGCCTCCC GAACACCCAC AGAAGGAAGG 1260 AGCCAGCTCC CAGCCCACTC ATCGCAGGGC TCATGATTTT TTACAAATTA TGTTTTAATT 1320 50 CCAAGTGTTT CTGTTTCAAG GAAGGATGAA TAAGTTTTAT TGAAAATGTG GTAACTTTAT 1380 TTAAAATGAT TTTTAACATT ATGAGAGACT GCTCAGATTC TAAGTTGTTG GCCTTGTGTG 1440 55 TGTGTTTTT TTTAAGTTCT CATCATTATT ACATAGACTG TGATGTATCT TTACTGGAAA 1500 TGAGCCCAAG CACACATGCA TGGCATTTGT TCCACAGGAG GGCATCCCTG GGGATGTGGC 1560

TGGAGCATGA GCCAGCTCTG TCCCAGGATG GTCCCAGCGG ATGCTGCCAG GGGCAKTGAA

60

384

	GTGTTTAGGT GAAGGACAAG TAGGTAAGAG GACGCCTTCA GGCACCACAG ATAAGCCTGA	1680
	AACAGCCTCT CCAAGGGTTT TCACCTTAGC AACAATGGGA GCTGTGGGAG TGATTTTGGC	1740
5	CACACTGTCA ACATTTGTTA GAACCAGTCT TITGAAAGAA AAGTATTTCC AACTTGTCAC	1800
	TIGCCAGTCA CICCGTITTG CAAAAGGTGG CCCTTCACTG TCCATTCCAA ATAGCCCACA	1860
10	CGTGCTCTCT GCTGGATTCT AAATTATGTG AATTTTGCCA TATTAAATCT TCCTCATTTA	1920
10	TACTATTATT TGTTACGTTC AATCAGAATC CCCGAAACCT CCTATAAAGC TTAGCTGCCC	1980
	CTTCTGAGGA TGCTGAGAAC GGTGTCTTTC TTTATAAATG CAAATGGCTA CCGTTTTACA	2040
15	ATAAAATTTT GCATGTGCAA AAAAAAAAAA ANAAAAAAA AAAATCCCGG GGGGGGCCCG	2100
	GTAACCAATT TGNCCCC	2117
20		
20		
	(2) INFORMATION FOR SEQ ID NO: 159:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2395 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159:	
	TGTTCCTTAA TCCCTTTTCT AAAAAGGGGG GAAAATCCGG ATGGATTTTA GGGATTGGTC	60
35	TOGTGTCAGC TGTGTTTTAT TGCACACCTA AATCCTGATT ATAGGCTTTT CATTTCTCCG	120
	CAAAGCCTTT ATTITIGGCAG TYAAGCCAAA TGTGTTTTCC AGAAAGTTAG TTATTTTCTC	180
	CICTITCITT CCTTICITTC CICCCTTTTT CCCGTCTGAC CCCAAACGIT ATTGTCCAAA	240
40	CATGACTGGA CAGCAGCTTT TGTTTCTTGA CCCTGTAATA TGACAGTCTG CTAATATTGA	300
	CAGAAGGTGC AGTTTTTGGG TTATAGTCGT GATTTTCGCT AATCAATCAT ATTAGCAGGA	360
45	AAAAAAAKGA CTTGTTTCTG TTGTACTTGA GTCTTAAGAA AAAGTGGCCC ATAGTTTAGT	420
	GGACAATTTC CAAAGGCTTT AGTACCACCT GTATTTCAAA ATGGGGGACC CAAACTCCCG	480
	GAAGAAACAA GCTCTGAACA GACTACGTGC TCAGCTTAGA AAGAAAAAAG AATCTCTAGC	540
50	TGACCAGTTT GACTTCAAGA TGTATATTGC CTTTGTATTC AAGGAGAAGA AGAAAAAGTC	600
	AGCACTTTTT GAAGTGTCTG AGGTTATACC AGTCATGACA AATAATTATG AAGAAAATAT	660
55	CCTGAAAGGT GTGCGAGATT CCAGCTATTC CTTGGAAAGT TCCCTAGAGC TTTTACAGAA	720
<i>55</i>	GGATGTGGTA CAGCTCCATG CTCCTCGATA TCAGTCTATG AGAAGGGATG TAATTGGCTG	780

CCTGTTTTCT AGGTGGAAAG AATCTGATGA GCCTTTTAGG CCTGTTCAGG CAAATTTGAG

900

	TTTCATCATG	GTGACTATGA	AAAACAGTTT	CTGCATGTAC	TGAGCCGCAA	GGACAAGACT	960
5	GGAATCGTTG	TCAACAATCC	TAACCAGTCA	GIGTITCICT	TCATTGACAG	ACAGCACTTG	1020
	CAGACTCCAA	AAAACAAAGC	TACAATCTTC	AAGTTATGCA	GCATCTGCCT	CTACCTGCCA	1080
	CAGGAACAGC	TCACCCACTG	GGGCAGTTGG	CACCATAGAG	GRTCACCTCC	GTCCTTATAT	1140
10	GCCAGAGTAG	AGTACTGACC	AGCAAAATGG	AGAAGATCAG	AGAATGCAGC	AGCAGTTTTT	1200
	TTTCTTGTTT	TCTTACCACT	TTATTCTTTC	AGAGTTTAAA	GAAAATGGAC	TCATGCACAG	1260
15	AACACTATGC	ATTTTGAAAC	TTGTTCATCC	TGGATTTTTT	TAAATCATTT	TTATCTCAGA	1320
	ACTTAAACAA	AAATTAGATG	TCGTGCACGG	ACTGTGTGAA	AGAAGATGCT	TTGCATATTT	1380
	GCTGCACTGC	ATCAGTATCT	TACTAAAAAT	GTGAAATGAA	AGGACTATTG	TACACTGAAA	1440
20	TGCTTAAATG	TATCTGAAAG	CACAAGGTGA	TACTCATTTT	TATGGTCTTC	CCATTTGTGC	1500
	TGGTTTTTGC	CTCTTTGACA	TCTGTCATCA	GTATTTAGAG	GGTGAGAAGT	GAATGTAACA	1560
25	GGTATAAATA	ACATTTTTAA	AAACAATAAC	TTTGCTATAA	TCACAGTTGT	TCCAGAGCAC	1620
	TGTCAGATAC	ATTCTAATGA	CCAGAACTGG	AAAAAATTT	GAAAATACAA	CCATGGGAAA	1680
	GAAATCTTAA	ATGAAAAACG	CATCTCATTG	TAGGCATTTT	TGCCTCATAT	TTTACTGGGC	1740
30	CATGTTTGTT	TCCTGGTACT	CATGTATTTT	TTTTTTCCAG	ATCTCTTTCC	CCAAGTTGCT	1800
	ATTGTAAGAG	TATTCTGCTG	CCTCTCCATC	CAGTTATACA	CATTAAAGCA	GATCTGGAGT	1860
35	CTGAAGTAGC	TATAAAGCAG	CTATAAAACA	GAAATACATG	CATAGCTGCA	GAAACCATGA	1920
	TAGGTAGAGG	ACTTITCTTT	TGGTTTTGTT	TIGITITGIT	TIGITITICIT	TTTGGTTTTA	1980
	CAGAGAAGAG	ATTTTTATTA	CAAAGAAAAA	AATTCCAGTG	AATTGTGCAG	AAATGCTGGT	2040
40	TTTTACACCA	TCCTAAAGAA	AAACTTTACA	AGGGTGTTTT	GGAGTAGAAA	AAAGGTTATA	2100
	AAGTTGGAAT	CTTAAATTGT	AAAATTAACC	ATTGAGTGTC	AAAGTTCTAA	AAGCAGAACT	2160
45	CATTTTGTGC	AATGAACATA	AGGAAAGACT	ACTGTATAGG	TTTTTTTTT	TTCTCCTTTT	2220
	AAATGAAGAA	AAGCTTTGCT	TAAGGGTTGC	ATACTTTTAT	TGGAGTAAAT	CTGAATGATC	2280
	CTACTCCTTT	GGAGTAAAAC	TAGTGCTTAC	CAGTTTCCAA	TTGTATTTAG	CTTCTGGTTG	2340
50	GAATTTGAAA	AAAAAAGAAA	AAAAGAAAAA	GAAAACCTAA	ATAAAATAGG	TGAAA	2395

55 (2) INFORMATION FOR SEQ ID NO: 160:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2120 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

386

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:

(D) TOPOLOGY: linear

5	CCCCGGATAC	CGCCTGACGT	AGTGCCAATC	ACACCTCTCG	CGTCTCGGCG	CCTCGGAGGC	60
	TAATGAGGAC	GCCTGGCGAA	ACGCAGTAAC	GGATTTCCGG	GTGGACCTTC	GCTTTACGGC	120
10	TCGTGAGTTC	TTCCGCCCAA	CCCAGAGGAA	GCGGGAGAGC	AGTTTACGAC	AGCGCCGGTC	180
10	GTGTTTACGG	ceececccec	TGCGCGCGCA	TGTTTCCTCT	TTTCCTGGTT	TCTCAAGAGT	240
	GCTGCTGCTA	ACGCGGTCCC	CGGCACGCAC	CATCTGTTGC	CATCCCGGCC	GGCCGAGGCA	300
15	TTGCAGATTT	TGGAAGATGG	CAAAGTTCAT	GACACCCGTG	ATCCAGGACA	ACCCCTCAGG	360
	CTGGGGTCCC	TGTGCGGTTC	CCGAGCAGTT	TCGGGATATG	CCCTACCAGC	CGTTCAGCAA	420
20	AGGAGATCGG	CTAGGAAAGG	TTGCAGACTG	GACAGGAGCC	ACATACCAAG	ATAAGAGGTA	480
20	CACAAATAAG	TACTCCTCTC	AGTTTGGTGG	TGGAAGTCAA	TATGCTTATT	TCCATGAGGA	540
	GGATGAAAGT	AGCTTCCAGC	TGGTGGATAC	AGCGCGCACA	CAGAAGACGG	CCTACCAGCG	600
25	GAATCGAATG	AGATTTGCCC	AGAGGAACCT	CCGCAGAGAC	AAAGATCGTC	GGAACATGTT	660
	GCAGTTCAAC	CTGCAGATCC	TGCCTAAGAG	TGCCAAACAG	AAAGAGAGAG	AACGCATTCG	720
30	ACTGCAGAAA	AAGTTCCAGA	AACAATTTGG	GGTTAGGCAG	AAATGGGATC	AGAAATCACA	780
50	GAAACCCCGA	GACTCTTCAG	TTGAAGTTCG	TAGTGATTGG	GAAGTGAAAG	AGGAAATGGA	840
	TTTTCCTCAG	TTGATGAAGA	TOCGCTACTT	GGAAGTATCA	GAGCCACAGG	ACATTGAGTG	900
35	TTGTGGGGCC	CTAGAATACT	ACGACAAAGC	CTTTGACCGC	ATCACCACGA	GGAGTGAGAA	960
	GCCACTGCGG	ASATNCAAGC	GCATCTTCCA	CACTGTCACC	ACCACAGACG	ACCCTGTCAT	1020
40	CCGCAAGCTG	GCAAAAACTC	AGGGGAATGT	GTTTGCCACT	GATGCCATCC	TGGCCACGCT	1080
. •	GATGAGCTGT	ACCCGCTCAG	TGTATTCCTG	GGATATTGTC	GTCCAGAGAG	TTGGGTCCAA	1140
	ACTCTTCTTT	GACAAGAGAG	ACAACTCTGA	CTTTGACCTC	CTGACAGTGA	GTGAGACTGC	1200
45	CAATGAGCCC	CCTCAAGATG	AAGGTAATTC	CTTCAATTCA	CCCCGCAACC	TGGCCATGGA	1260
	GGCAACCTAC	ATCAACCACA	ATTTCTCCCA	GCAGTGCTTG	AGAATGGGGA	AGGAAAGATA	1320
50	CAACTTCCCC	AACCCAAACC	CGTTTGTGGA	GGACGACATG	GATAAGAATG	AAATCGCCTC	1380
	TGTTGCGTAC	CGTTACCGCA	GTGGNAAGCT	TGGAGATGAT	ATTGACCTTA	TTGTCCGTTG	1440
	TGAGCACGAT	GGCGTCATGA	CTGGAGCCAA	CGGGGAAGTG	TCCTTCATCA	ACATCAAGAC	1500
55	ACTCAATGAG	TGGGATTCCA	GGCACTGTAA	TGGCGTTGAC	TGGCGTCAGA	AGCTGGACTC	1560
	TCAGCGAGGG	GCTGTCATTG	CCACGGAGCT	GAAGAACAAC	AGCTACAAGT	TGGCCCGGTG	1620
60	GACCTGCTGT	GCTTTGCTGG	CTGGATCTGA	GTACCTCAAG	CTTGGTTATG	TGTCTCGGTA	1680

WO 98/39448

PCT/US98/04493

387

	CCACGTGAAA	GACTCCTCAC	GCCACGTCAT	CCTAGGCACC	CAGCAGTTCA	AGCCTAATGA	1740
	GTTTGCCAGC	CAGATCAACC	TGAGCGTGGA	GAATGCCTGG	GGCATTTTAC	GCTGCGTCAT	1800
5	TGACATCTGC	ATGAAGCTGG	AGGAGGGCAA	ATACCTCATC	CTCAAGGACC	CCAACAAGCA	1860
	GGTCATCCGT	GTCTACAGCC	TCCCTGATGG	CACCTTCAGC	TCTGATGAAG	ATGAGGAGGA	1920
10	AGAGGAGGAG	GAAGAAGAGG	AAGAAGAAGA	GGAAGAAACT	TAAACCAGTG	ATGTGGAGCT	1980
10	GGAGTTTGTC	CTTCCACCGA	GACTACGAGG	GCCTTTGATG	CTTAGTGGAA	TGTGTGTCTA	2040
	ACTTGCTCTC	TGACATTTAG	CAGATGAAAT	AAAATATATA	TCTGTTTAGT	СТТАААААА	2100
15	ААААААААА	AAAAAAAA				•	2120

20 (2) INFORMATION FOR SEQ ID NO: 161:

25

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 900 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:

GGAAGCTGAA GTCCTTCCAG ACCAGGGACA ACCAGGGCAT TCTCTATGAA GCTGCACCCA 60 CCTCCACCCT CACCTGTRAC TCAGGACCAC AGAAGCAAAA GTTCTCACTC AAACTGGATG 120 CCAAGGATGG GCGCTTGTTC AATGAGCAGA ACTTCTTCCA GCGGGCCGCC AAGCCTCTGC 180 AAGTCAACAA GTGGAAGAAG CTGTACTCGA CCCCACTGCT GGCCATCCCT ACCTGCATGG 240 GTTTCGGTGT TCACCAGGAC AAATACAGGT TCTTGGTGTT ACCCAGCCTG GGGAGGAGCC 300 TTCAGTCGGC CCTGGATGTC AGCCCAAAGC ATGTGCTGTG CAGAGAGGTC TGTGCTGCAG 360 GTGGCCTGCC GGCTGCTGGA TGCCCTGGAG TTCCTCCATG AGAATGAGTA TGTTCATGGA 420 AATGTGACAG CTGAAAATAT CTTTGTGGAT CCAGAGGACC AGAGTCAGGT GACTTTGGCA 480 GGCTATGGCT TCGCNTTCCG CTATTGCCCA AGTGGCAAAC ACGTGGCCTA CGTGGAAGGC 540 AGCAGGAGCC CTCACGAGGG GGACCTTGAG TTCATTAGCA TGGACCTGCA CAAGGGATGC 600 GGGCCCTCCC GCCGCRGCGA CCTCCAGAGC CTGGGCTACT GCATGCTGAA GTGGCTCTAC 660 GGGTTTCTGC CATGGACAAA TTGCCTTCCC AAMAMTGAGG ACATCATGAA GCAAAAACAG 720 AAGTTTGTTG ATAAGCCGGG GCCCTTCGTG GGACCCTGCG GTCACTGGAT CAGGCCCTCA 780 GAGACCCTGC AGAAGTACCT GAAGGTGGTG ATGGCCCTCA CGTATGAGGA GAAGCCGCCC 840 TACGCCATGC TGAGGAACAA CCTAGAAGCT TTGCTGCAGG ATCTGCGTGT GTCTCCATAT 900

	(2) INFORMATION FOR SEQ ID NO: 162:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1003 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162:	
	GGCACGAGAT GAGGGCACC CAGTGCTTCT AGGGCAGGCT GGGTGGTGGT CCCCTAGGTA	60
15	TCAGCCTCTC TTACTGTACT CTCCGGGAAT GTTAACCTTT CTATTTTCAG CCTGTGCCAC	120
	CTGTCTAGGC AAGCTGGCTT CCCCATTGGC CCCTGTGGGT CCACAGCAGC GTGGCTGCCC	180
20	CCCAGGCCCA CCGCTTCTTT CTTGATCCTC TTTCCTTAAC AGTGACTTGG GCTTGAGTCT	240
20	GGCAAGGAAC CTTGCTTTTA GCTTCACCAC CAAGGAGAGA GGTTGACATG ACCTCCCCGC	300
	CCCCTCACCA AGGCTGGGAA CAGAGGGGAT GTGGTGAGAG CCAGGTTCCT CTGGCCCTCT	360
25	CCAGGGTGTT TTCCACTAGT CACTACTGTC TTCTCCTTGT AGCTAATCAA TCAATATTCT	420
	TCCCTTGCCT GTGGGCAGTG GAGAGGCTGC TGGGTGTACG CTGCACCTGC CCACTGAGTT	480
30	GGGGAAAGAG GATAATCAGT GAGCACTGTT CTGCTCAGAG CTCCTGATCT ACCCCACCCC	540
50	CTAGGATCCA GGACTGGGTC AAAGCTGCAT GAAACCAGGC CCTGGCAGCA AACCTGGGAA	600
	TOGCTOGAGG TOGGAGAGAA CCTGAACTTC TCTTTCCCTC TCCCTCCTCC AACATTACTG	660
35	GAACTCTATC CTGTTAGGAT CTTCTGAGCT TGTTTCCCTG CTGGGTGGGA CAGAGGACAA	720
	AGGAGAAGGG AGGGTCTAGA AGAGGCAGCC CTTCTTTGTC CTCTGGGGTA AATGAGCTTG	780
40	ACCTAGAGTA AATOGAGAGA CCAAAAGCCT CTGATTTTTA ATTTCCATAA AATGTTAGAA	840
+0	GTATATATAT ACATATATAT ATTTCTTTAA ATTTTTGAGT CTTTGATATG TCTAAAAATC	900
	CATTCCCTCT GCCCTGAAGC CTGAGTGAGA CACATGAAGA AAACTGTGTT TCATTTAAAG	960
45	ATGTTAATTA AATGATTGAA ACTTGAAAAA AAAAAAAAAA	1003
50	(2) INFORMATION FOR SEQ ID NO: 163:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2196 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:	

60 AAGAAGCGGC ACACGGATGT GCAGTTCTAC ACAGAAGTGG GAGAGATAAC CACGGACTTG 60

	GGGAAACATC	AGCATATGCA	TGACCGAGAT	GACCTCTATG	CTGAGCAGAT	GGAACGAGAA	120
5	ATGAGGCACA	AACTGAAAAC	AGCCTTTAAA	AATTTCATTG	AGAAAGTAGA	GGCTCTAACT	180
-	AAGGAGGAAC	TGGAATTTGA	AGTGCCTTTT	AGGGACTTGG	GATTTAACGG	AGCTCCCTAT	240
	AGGAGTACCT	GCCTCCTTCA	GCCCACTAGT	AGTGCGCTGG	TAAATGCTAC	GGAATGGCCA	300
10	CCTTTTGTGG	TGACATTGGA	TGAGGTAGAG	CTGATCCACT	TTRAGCGGGT	CCAGTTTCAC	360
	CTGAAGAACT	TTGATATGGT	AATCGTCTAC	AAGGACTACA	GCAAGAAAGT	GACCATGATC	420
15	AACGCCATTC	CTGTAGCCTC	TCTTGACCCC	ATCAAGGAAT	GGTTGAATTC	CTGCGACCTG	480
15	AAATACACAG	AAGGAGTACA	GTCCCTCAAC	TGGACTAAAA	TCATGAAGAC	CATTGTTGAT	540
	GACCCTGAGG	GCTTCTTCGA	ACAAGGTGGC	TGGTCTTTCC	TGGAGCCTGA	GGGTGAGGGG	600
20	AGTGATGCTG	AAGAAGGGGA	TTCAGAGTCT	GAAATTGAAG	ATGAGACTTT	TAATCCTTCA	660
	GAAGATGACT	ATGAAGAGGA	AGAGGAGGAC	AGTGATGAAG	ATTATTCATC	AGAAGCAGAA	720
25	GAGTCAGACT	ATTCTAAGGA	GTCATTGGGT	AGTGAAGAAG	AGAGTGGAAA	GGATTGGGAT	780
	GAACTGGAGG	AAGAAGCCCG	AAAAGCGGAC	CGAGAAAGTC	GTTACGAGGA	AGAAGAAGAA	840
	CAAAGTCGAA	GTATGAGCCG	GAAGAGGAAG	GCATCTGTGC	ACAGTTCGGG	CCGTGGCTCT	900
30	AACCGTGGTT	CCAGACACAG	CTCTGCACCC	CCCAAGAAAA	AGAGGAAGTA	ACTTCTGAAC	960
	TTTGGCCCTG	AGCTCCATTC	TTCCTCCAGC	CAACCCCTGA	AAATTITACA	TGACATAGAA	1020
35	ACTGTATTTT	TCCTTTCGTT	TTCATTTGAA	GTTTTGCCAT	TIGIGITTAT	GGGTTTAGGG	1080
	GGCCATTTGT	GTGGACCAAT	CTACTCGGGG	AATTCCAGGC	CCACCAGGAC	ACGTGCCAAT	1140
	GCCCCATTC	AGATGGCAAG	GGAGGAGGTG	TTCTTGAAGA	CAGGAGGAGG	CTCCCGCTGT	1200
40	TAATAAATAT	TGTTTCATTC	TTCTCTCTTC	CIGICACCIT	CTGCCAAGAC	ATTGATGGCT	1260
	TCTGACATCT	TATTTGGTGT	CTCAAAGCTG	TATTTCCAAG	ACAGTGGTAC	AAGGTGACCC	1320
45	TTAATTACCC	GTATCATGGT	TCTTGACCAG	CACATTCAAT	CCTCCAACCT	ACCCTACTGC	1380
	CATGACCTTC	CGCACATCTC	TAAGTTTTAT	CTTTGCAATA	CTCAAGGTTC	TCGGAAATTT	1440
	GCTAATGGTT	GTGATAAACC	ATACAGCTTG	AGCCAGTGAG	GCAGATTGGG	CTGGTGCCTT	1500
50	CGTCTGAGTT	TICCIGCITT	CCTCCCTCGT	GCAGATTCTG	AGGTATATCT	GCTGCCTTGG	1560
	AAGACATAAG	AAGCAGTGAT	ACTCCCTGGC	TCGGTTATTT	TCTCCATACA	ATGCACACAT	1620
55	GGTACAATGA	TAGAAGGCAA	AATTGCCACT	GTCTTCTTTT	TTTTCTCATA	TATCTAAGGA	1680
55	AGATATATCA	GGTTGTGCCT	CATGTACCGC	TTCTAGTGAA	ATGTAGAGGA	AGGCTCAAAG	1740
	GAGTCAACAT	TTAGATCTGG	AAGGGACAAG	TCATGCCTTG	GGCCTAGAAT	ACCCTGATGA	1800
60	GAAAAGAGAA	GAGGAAGGGA	GGCCATATCT	ACAACANCAN	CCTCTCGGCA	CTGCTGCTCC	1860

390

	TTATTTTAAC TTTGTCTTGC ATTGTCCTGT ATTTATCACA GTTTCTGTTG AACAGCTTTT	1920
5	CAAGTATTTG GGGAGTTTAT CTTGCCATCC TCCCCTTCTG GTTCTCTGCA CCCACCTGTC	1980
,	CCACTGCAGT TCCTTCCGTG CTCTGTGACT TTAAGAGAAG AAGGGGGGAG GGGTCCCGGA	2040
	TTTTATGTTT GTTTGTTTTT TCTCCTTAGC AGTAGGACTT GATATTTTCA ATTTTGGAAG	2100
10	AACTAAAAGA TGAATAAACT GGGTTTTTTT TGTTGTTTGT TTTTGTAAAA AAAAAAAA	2160
	AAAAAA AAAAAAAA AAAAAAAA AAAAAAA	2196
15		
13	(2) INFORMATION FOR SEO ID NO: 164:	
	•	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1945 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164:	
	GCACAGAGTC GOGCOGACGG ACAGGGAGAGA GAGGAGAGGG GGTCTGCGCG CGGCCGCTAC	60
30	CCAGAAGCCA GCGGACGGCA GCACGGAGTG GGCTGTCCCC GAGCCCAGCC CCGAGCGAGC	120
50	CCCCCCCCC CCCCCGMAGG ACGCCCCTYC CAGCCAGCCC GACTYCTAGG AGGAGGGGAG	180
	GCGGGAAAGC AGCTCAAGCC TCACCCACCG CCCTGCCCCC AGCCCCGCCA CTCCCAGGCT	240
35	CCTCGGGACT CGGCGGGTCC TCCTGGGAGT CTCGGAGGGG ACCGGCTGTG CAGACGCCAT	300
	GGAGTTGGTG CTGGTCTTCC TCTGCAGCCT GCTGGCCCCC ATGGTCCTGG CCAGTGCAGC	360
40	TGAAAAGGAG AAGGAAATGG ACCCTTTTCA TTATGATTAC CAGACCCTGA GGATTGGGGG	420
	ACTGGTGTTC GCTGTGGTCC TCTTCTCGGT TGGGATCCTC CTTATCCTAA GTCGCAGGTG	480
	CAAGTGCAGT TTCAATCAGA AGCCCCGGGC CCCAGGAGAT GAGGAAGCCC AGGTGGAGAA	540
45	CCTCATCACC GCCAATGCAA CAGAGCCCCA GAAAGCAGAG AACTGAAGTG CAGCCATCAG	600
	GTGGAAGCCT CTGGAACCTG AGGCGGCTGC TTGAACCTTT GGATGCAAAT GTCGATGCTT	660
50	AAGAAAACCG GCCACTTCAG CAACAGCCCT TTCCCCAGGA GAAGCCAAGA ACTTGTGTGT	720
-	CCCCCACCCT ATCCCCTCTA ACACCATTCC TCCACCTGAT GATGCAACTA ACACTTCCCT	780
	CCCCACTGCA GCCTGCGGTC CTGCCCACCT CCCGTGATGT GTGTGTGTGT GTGTGTGTGT	840
55	GTGACTGTGT GTGTTTGCTA ACTGTGGTCT TTGTGGCTAC TTGTTTGTGG ATGGTATTGT	900
	GTTTGTTAGT GAACTGTGGA CTCGCTTTCC CAGGCAGGGG CTGAGCCACA TGGCCATCTG	960

CTCCTCCCTG CCCCCGTGGC CCTCCATCAC CTTCTGCTCC TAGGAGGCTG CTTGTTGCCC 1020

WO 98/39448

	GAGACCAGCC	ссстсссств	ATTTAGGGAT	GCGTAGGGTA	AGAGCACGGG	CAGTGGTCTT	1080
	CAGTCGTCTT	GGGACCTGGG	AAGGTTTGCA	GCACTTTGTC	ATCATTCTTC	ATGGACTCCT	1140
5	TTCACTCCTT	TAACAAAAAC	CTTGCTTCCT	TATCCCACCT	GATCCCAGTC	TGAAGGTCTC	1200
	TTAGCAACTG	GAGATACAAA	GCAAGGAGCT	GGTGAGCCCA	GCGTTGACGT	CAGGCAGGCT	1260
10	ATGCCCTTCC	GTGGTTAATT	TCTTCCCAGG	GGCTTCCACG	AGGAGTCCCC	ATCTGCCCCG	1320
10	CCCCTTCACA	GAGCGCCCGG	GGATTCCAGG	CCCAGGGCTT	CTACTCTGCC	CCTGGGGAAT	1380
	GTGTCCCCTG	CATATCTTCT	CAGCAATAAC	TCCATGGGCT	CTGGGACCCT	ACCCCTTCCA	1440
15	ACCTTCCCTG	CTTCTGAGAC	TTCAATCTAC	AGCCCAGCTC	ATCCAGATGC	AGACTACAGT	1500
	CCCTGCAATT	GGGTCTCTGG	CAGGCAATAG	TTGAAGGACT	CCTGTTCCGT	TGGGGCCAGC	1560
••	ACACCGGGAT	GGATGGAGGG	AGAGCAGAGG	CCTTTGCTTC	TCTGCCTACG	TCCCCTTAGA	1620
20	TGGGCAGCAG	AGGCAACTCC	CGCATCCTTT	GCTCTGCCTG	TCRGTGGTCA	GAGCGGTGAG	1680
	CGAGGTGGGT	TGGAGACTCA	GCAGGCTCCG	TGCAGCCCTT	GGGAACAGTG	AGAGGTTGAA	1740
25	GGTCATAACG	AGAGTGGGAA	CTCAACCCAG	ATCCCGCCCC	TCCTGTCCTC	TGTGTTCCCG	1800
	CGGAAACCAA	CCAAACCGTG	CGCTGTGACC	CATTGCTGTT	CTCTGTATCG	TGATCTATCC	1860
	тсаасаасаа	CAGAAAAAAG	GAATAAAATA	TCCTTTGTTT	CCTAGTGAAA	ААААААААА	1920
30	ааааааааа	АААААААА	CTCGA				1945

35

(2) INFORMATION FOR SEQ ID NO: 165:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2933 base pairs 40 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:

45 GGGTCGACCC ACGCGTCCGG CAGCCGTCGT TTGAGTCGTT GCTGCCGCTG CCCCCTCCCG 60 GATCAGGAGC CAGTGTATAC COCCCGCCCA CCGCCTTGGT GCCGCTAGAG GAAACGAGAA 120 50 GGAGGCCGCC TGCGGTTTGT CGCCGCAGCT CGCCCMCYGY CYGGRAGAGC CGAGCCCCGG 180 CCCAGTCGGT CGCYTGCCAC CSCTCGTAGC CGTTACCCGC GGGCCGCCAC AGCCGCCGC 240 CGGGAGAGGC GCGCCCATG GCYTCTGGAG CCGATTCAAA AGGTGATGAC CTATCAACAG 300 55 CCATTCTCAA ACAGAAGAAC CGTCCCAATC GGTTAATTGT TGATGAAGCC ATCAATGAGG 360 ACAACAGTGT GGTGTCCTTG TCCCAGCCCA AGATGGATGA ATTGCAGTTG TTCCGAGGTG 420 60 ACACAGTGTT GCTGAAAGGA AAGAAGAGC GAGAAGCTGT TTGCATCGTC CTTTCTGATG 480

	ATACTTGTTC	TGATGAGAAG	ATTCGGATGA	ATAGAGTTGT	TCGGAATAAC	CTTCGTGTAC	540
5	GCCTAGGGGA	TGTCATCAGC	ATCCAGCCAT	GCCCTGATGT	GAAGTACGGC	AAACGTATCC	600
	ATGTGCTGCC	CATTGATGAC	ACAGTGGAAG	GCATTACTGG	TAATCTCTTC	GAGGTATACC	660
	TTAAGCCGTA	CTTCCTGGAA	GCGTATCGAC	CCATCCGGAA	AGGAGACATT	TTTCTTGTCC	720
10	GTGGTGGGAT	GCGTGCTGTG	GAGTTCAAAG	TGGTGGAAAC	AGATCCTAGC	CCTTATTGCA	780
	TIGITGCTCC	AGACACAGTG	ATCCACTGCG	AAGGGGAGCC	TATCAAACGA	GAGGATGAGG	840
15	AAGAGTCCTT	GAATGAAGTA	GGGTATGATG	ACATTGGTGG	CTGCAGGAAG	CAGCTAGCTC	900
	AGATAAAGGA	GATGGTGGAA	CTGCCCCTGA	GACATCCTGC	CCTCTTTAAG	GCAATTGGTG	960
	TGAAGCCTCC	TAGAGGAATC	CTGCTTTACG	GACCTCCTGG	AACAGGAAAG	ACCCTGATTG	1020
20	CTCGAGCTGT	AGCAAATGAG	ACTGGAGCCT	TCTTCTTCTT	GATCAATGGT	CCTGAGATCA	1080
	TGAGCAAATT	GGCTGGTGAG	TCTGAGAGCA	ACCTTCGTAA	AGCCTTTGAG	GAGGCTGAGA	1140
25	AGAATGCTCC	TGCCATCATC	TTCATTGATG	AGCTAGATGC	CATCGCTCCC	AAAAGAGAGA	1200
23	AAACTCATGG	CGAGGTGGAG	CGGCGCATTG	TATCACAGTT	GTTGACCCTC	ATGGATGGCC	1260
	TAAAGCAGAG	GGCACATGTG	ATTGTTATGG	CAGCAACCAA	CAGACCCAAC	AGCATTGACC	1320
30	CAGCTCTACG	GCGATTTGGT	CGCTTTGACA	GGGAGGTAGA	TATTGGAATT	CCTGATGCTA	1380
	CAGGACGCTT	AGAGATTCTT	CAGATCCATA	CCAAGAACAT	GAAGCTGGCA	GATGATGTGG	1440
35	ACCTGGAACA	GTAGCCAATG	AGACTCACGG	GCATGTGGGT	GCTGACTTAG	CAGCCCTGTG	1500
33	CTCAGAGGCT	GCTCTGCAAG	CCATCCGCAA	GAAGATGGAT	CTCATTGACC	TAGAGGATGA	1560
	GACCATTGAT	GCCGAGGTCA	TGAACTCTCT	AGCAGTTACT	ATGGATGACT	TCCGGTGGGC	1620
40	CTTGAGCCAG	AGTAACCCAT	CAGCACTGCG	GGAAACCGTG	GTAGAGGTGC	CACAGGTAAC	1680
	CTGGGAAGAC	ATCGGGGGCC	TAGAGGATGT	CAAACGTGAG	CTACAGGAGC	TGGTCCAGTA	1740
45	TCCTGTGGAG	CACCCAGACA	AATTCCTGAA	GTTTGGCATG	ACACCTTCCA	AGGGAGTTCT	1800
73	GTTCTATGGA	CCTCCTGGCT	GTGGGAAAAC	TTTGTTGGCC	AAAGCCATTG	CTAATGAATG	1860
	CCAGGCCAAC	TTCATCTCCA	TCAAGGGTCC	TGAGCTGCTC	ACCATGTGGT	TTGGGGAGTC	1920
50	TGAGGCCAAT	GTCAGAGAAA	TCTTTGACAA	GCCCGCCAA	GCTGCCCCCT	GTGTGCTATT	1980
55	CTTTGATGAG	CTGGATTCGA	TTGCCAAGGC	TCGTGGAGGT	AACATTGGAG	ATGGTGGTGG	2040
	GGCTGCTGAC	CGAGTCATCA	ACCAGATCCT	GACAGAAATG	GATGGCATGT	CCACAAAAAA	2100
	AAATGTGTTC	ATCATTGGCG	CTACCAACCG	GCCTGACATC	ATTGATCCTG	CCATCCTCAG	2160
	ACCTGGCCGT	CTTGATCAGC	TCATCTACAT	CCCACTTCCT	GATGAGAAGT	CCCGTGTTGC	2220
60	CATCCTCAAG	GCTAACCTGC	GCAAGTCCCC	AGTIGCCAAG	GATGTGGACT	TGGAGTTCCT	2280

393

	GGCTAAAATG ACTAATGGCT TCTCTGGAGC TGACCTGACA GAGATTTGCC AGCGTGCTTG	2340					
5	CAAGCTGGCC ATCCGTGAAT CCATCGAGAG TGAGATTAGG CGAGAACGAG AGAGGCAGAC	2400					
	AAACCCATCA GCCATGGAGG TAGAAGAGGA TGATCCAGTG CCTGAGATCC GTCGAGATCA	2460					
	CTTTGAAGAA GCCATGCGCT TTGCGCGCCG TTCTGTCAGT GACAATGACA TTCGGAAGTA	2520					
10	TGAGATGTTT GCCCAGACCC TTCAGCAGAG TCGGGGCTTT GGCAGCTTCA GATTCCCTTC	2580					
	AGGGAACCAG GGTGGAGCTG GCCCCAGTCA GGGCAGTGGA GGCGGCACAG GTGGCAGTGT	2640					
15	ATACACAGAA GACAATGATG ATGACCTGTA TGGCTAAGTG GTGGTGGCCA GCGTGCAGTG	2700					
	AGCTGGCCTG CCTGGACCTT GTTCCCTGGG GGTGGGGGCC CTTGCCCAGG AGAGGGACCA	2760					
	GGGGTGCGCC CACAGCCTGC TCCATTCTCC AGTCTGAACA GTTCAGCTAC AGTCTGACTC	2820					
20	TGGACAGGGG GTTTCTGTTG CAAAAATACA AAACAAAAGC GATAAAATAA AAGCGATTTT	2880					
	CATTTGGTAA AAAAAAAAA AAAAAAAAAT CCGGGGGGG GCCCGAACCA TTT	2933					
25							
	(2) INFORMATION FOR SEQ ID NO: 166:						
	(a) interest told buy in ity. 100.						
	(i) SEQUENCE CHARACTERISTICS:						
30	(A) LENGTH: 2243 base pairs						
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double						
	(D) TOPOLOGY: linear						
	(5) 101020011 1211002						
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:						
	TCGGAGAGCC GGCGGCGNG CGCCTCTCGG CCAGGAAGCG CCTCTTGGAC GCGTGTNACC	60					
40	GATGCCCAGA AGTGGCCTTG GGCTGGGGAT CACCATAGCT TTTCTAGCTA CGCTGATCAC	120					
	GCAGTTTCTC GTGTATAATG GTGTCTATCA GTATACATCC CCAGATTTCC TCTATATTCG	180					
	TTCTTGGCTC CCTTGTATAT TTTTCTCAGG AGGCGTCACG GTGGGGAACA TAGGACGACA	240					
45	GTTAGCTATG GGTGTTCCTG AAAAGCCCCA TAGTGATTGA GTCTTCAAAA CCACCGATTC	300					
	TGAGAGCAAG GAAGATTTTG GAAGAAAATC TGACTGTGGA TTATGACAAA GATTATCTTT	360					
	TTTCTTAAGT AATCTATTTA GATCGGGCTG ACTGTACAAA TGACTCCTGG AAAAAACTCT	420					

TCACCTAGTC TAGAATAGGG AGGTGGAGAA TGATGACTTA CCCTGAAGTC TTCCCTTGAC

TGCCCGCACT GGCGCCTGTC TGTGCCCTGG AGCATTCTGC CCAGGCTACG TGGGTTCAGG

CAGGTGGCAG CTTCCCAAGT ATTCGATTTC ATTCATGTGA TTAAAACAAG TTGCCATATT

TCAAAGCCTT GAACTAAGAC TCAATTACCA ACCCGCAGTT TTGTGTCAGT GCCCAAAGGA

GGTAGGTTGA TOGTGCTTAA CAAACATGAA GTATGGTGTA ATAGGAATAA TATTTATCCA

480

540

600

660

720

50

55

	AAAGATTTTT	AAAAATAGGG	CTGTGTTTAA	AAAAAAAAAC	AAAACARGAA	AAGCAGCAGT	780
	GATTATAGAG	AGGTCACACT	CTAAGTGGGG	TCGCGGCGTG	GCCACGCTTC	ACGGTCACGC	840
5	TCGTCCGTCC	TGCAGTGGCG	TGTTTACATG	GTCACACGTG	TGTGTATCAC	CAGTGGGTCA	900
	ACTGCTTGTC	ATTCCTCCCG	TGGCAGTTTG	TGTAGACAAT	CTTACTGAGC	AAAAGGCAAT	960
10	GAAAAGTCTT	GGTTCCCACA	CTGCGATATA	TTGGAATTTT	CACCTCAGTT	TATGAAGTIT	1020
	ATTTCGAAAT	CCATAGTCAT	CTAAGAATGA	ATACCTGTCT	GCCATGTATT	TCAATCTTAG	1080
	TGAGCCAAAA	TIGITIGITT	GTTACTACAG	AATAGAGATG	ACTGTTTTTT	GCCACAGCCC	1140
15	TATGGRATTT	GCAATCTGTG	ATTGCCTTGT	AAAAAGGAGA	GTGCATATGG	CACTGCATTA	1200
	AACGTGTGGT	GTTTCTAGTC	AATGATATTG	GTGAGCACAA	TGTATTCATT	TAATGGCATA	1260
20	GACCATACCA	GACCTAATTT	GCAAGTATTG	GGTCTTAAAC	TTCAAGTGCA	ATGTATATGA	1320
	AAACCAATCT	GAGCCTTGTA	TCTCTTAAAT	ATTTATTTT	TTTAACGTGT	GAGATGTTCG	1380
	AGAGAAGGTT	CTCCATTCAT	TTCAGTGCTG	CCTGGAGGAA	ACTCGGCAAT	GATTTCTTTC	1440
25	AGTTGTGAAG	TTCCTTTCGT	GTTACACCCT	CCACTGAACC	CTCAACCTTC	GAAATACTCC	1500
	AGTTTTGTGG	GTTTGGTCAT	TTTTACTTAT	AAATTTACCT	TTTTGTATTT	TGCAATTTAC	1560
30	ATGTGTTTGG	TTTGTTTTAA	ATTCTGTGAA	ACTCCCTTCA	TTAAAAGACT	CCTTTTAAAT	1620
	GGAAGCCACC	AGTCAGCAGA	ATGGAAGCTT	AGAGGAACTT	GCCTGTGAGC	GCTGGTCTTT	1680
	CTCTTTCCTT	TTGTGATGTA	ACGATCTTTG	CTGGGGTTTT	TICCTITCIT	TTGAGGGAAA	1740
35	TGTCTTGGAG	AATTTTAAAT	GTTCCTGGAG	TTAATTTGTT	TTACAGGAAT	TTTGTTTTT	1800
	AAAAAAATAG	GATCATTCTG	AACTTTGGAA	TGACCCCCTT	ATATATTTC	TGAAAATGAA	1860
40	AACAGTTACA	TGAAAAAAT	TTCCAATGAA	GATGTCAGCA	TTTTATGAAA	AACCAGAAGT	1920
	TATTAGATGA	AAGCAGCGAG	TGAATCTTTA	AAACAGACTT	GATCACGCAC	ACACAATAAG	1980
	TCTTTCTCTC	CGAAACCGGA	AGTAAATCTA	TATCTGTTAG	AAATAATGTA	GCCAAAAGAA	2040
45	TGTAAATTTG	AGGATTTTTT	TOCCAATAGT	TTATAGAAAA	TATATGAACC	AAAGTGATTT	2100
	GAGTTTGTAA	AAATGTAAAA	TAGTATGAAC	AAAATTTGCA	CTCTACCAGA	TTTGAACATC	2160
50	TAGTGAGGTT	CACATTCATA	CTAAGTTTTC	AACATTGTGT	TCTTTTTGCA	TTCATTTTTT	2220
-	ACTITITATIA	AAGGTTCAAA	ACC				2243

(A) LENGTH: 1816 base pairs
(B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 167:

⁽i) SEQUENCE CHARACTERISTICS:

395

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:

_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:	
5	GGTGGGNAGC TITNAATTTC CCCTTACWGG GGCGCTNTAA GGGGAAACCT TCCCGGAATT	60
	TTCGGGTCGA CCCACGCGTC CGGCCAGCCT AGGAGAAGAA GTTCGTAGTC CCAGAGGTGA	120
10	GGCAGGAGGC GGCAGTTTCT GGCGGGTGAG GGCGGAGCTG AAGTGACAGC GGAGGCGGAA	180
	GCAACGGTCG GTGGGGCGGA GAAGGGGGCT GGCCCCAGGA GGAGGAGGAA ACCCTTCCGA	240
15	GAAAACAGCA ACAAGCTGAG CTGCTGTGAC AGAGGGGAAC AAGATGGCGG CGCCGAAGGG	300
13	GAGCCTCTGG GTGAGGACCC AACTGGGGCT CCCGCCGCTG CTGCTGCTGA CCATGGCCTT	360
	GGCCGGAGGT TCGGGGACCG CTTCGGCTGA AGCATTTGAC TCGGTCTTGG GTGATACGGC	420
20	GTCTTGCCAC CGGGCCTGTC AGTTGACCTA CCCCTTGCAC ACCTACCCTA AGGAAGAAGA	480
	GTTGTACGCA TGTCAGAGAG GTTGCAGGCT GTTTTCAATT TGTCAGTTTG TGGATGATGG	540
25	AATTGACTTA AATCGAACTA AATTGGAATG TGAATCTGCA TGTACAGAAG CATATTCCCA	600
2.5	ATCTGATGAG CAATATGCTT GCCATCTTGG KTGCCAGAAT CAGCTGCCAT TCGCTGAACT	660
	GAGACAAGAA CAACTTATGT CCCTGATGCC AAAAATGCAC CTACTCTTTC CTCTAACTCT	720
30	GGTGAGGTCA TTCTGGAGTG ACATGATGGA CTCCGCACAG AGCTTCATAA CCTCTTCATG	780
	GACTITITAT CITCAAGCCG ATGACGGAAA AATAGTTATA TICCRGTCTA AGCCCAGRAA	840
35	TCCCAGGTAC GCACCACATT TOGAGCCAGG AGCCCTACCA AATTTGRGRG RAWCMTCTCT	900
55	AAGCAAAATG TCCNTCAKMT CGSMAATGAG AAATTCACAA GCGCACAGGA ATTTTCTTGA	960
	AGATGGAGAA AGTGATGGCT TTTTAAGATG CCTCTCTCTT AACTCTGGGT GGATTTTAAC	1020
40	TACAACTCTT GTCCTCTCGG TGATGGTATT GCTTTGGATT TGTTGTGCAA CTTGTTGCTA	1080
	CACGCTGTTG GACGCAGTAT AGTTTCCCTC TGAGAAGCTG AGTATCTATG GTGACTTGGA	1140
45	GTTTATGAAT GAACAAAAGC TAAACAGATA TCCAGCTTCT TCTCTTGTGG TTGTTAGATC	1200
	TAAAACTGAA GATCATGAAG AAGCAGGGCC TCTACCTACA AAAGTGAATC TTGCTCATTC	1260
	TGAAATTTAA GCATTTTTCT TTTAAAAGAC AAGTGTAATA GACATCTAAA ATTCCACTCC	1320
50	TCATAGAGCT TTTAAAATGG TTTCATTGGA TATAGGCCTT AAGAAATCAC TATAAAATGC	1380
	AAATAAAGTT ACTCAAATCT GTGAAAAAAA AAAAAAAAA AAAAAAAAAC TCGAGGGGG	1440
55	GCCCGTTACC AAKTCGCCCT ATWGTGADTB GTATTMTTAT TTTACTAATA TCTGTAGCTA	1500
	TTTTGTTTTT KGCTTKGGTT ATKGTTTTTY TCCCTTYTCT WAGCTATRAG CTGATCATKG	1560
	CYSCITCICA CCICCIGCCA TGATACTGTC AGITACCITA GITAACAAGC TGAATATITA	1620
60	GTAGAAATGA TGCTTCTGCT CAGGAATGGC CCACAAATCT GTAATTTGAA ATTTAGCAGG	1680

396

	AAATGACCTT	TAATGACACT	ACATTTTCAG	GAACTGAAAT	CATTAAAATT	TTATTTGAAT	1740
5	AATTATGTGC	TGAAAAAAA	АААААААА	AMWMRARASK	RRWWACTCGA	GGGGGGGCCC	1800
•	GGTACCCNAT	TCGCCG					1816
10	(2) INFORMA	ATION FOR SE	EQ ID NO: 16	58:			
15	(i)	(B) TYP (C) STR	HARACTERIST STH: 945 bas E: nucleic a ANDEDNESS: O DLOGY: line	se pairs acid double			
20	(xi)	SEQUENCE I	DESCRIPTION	SEQ ID NO	: 168:		
20	AGAAACCGTT	GATGGGACTG	AGAAACCAGA	GTTAAAACCT	CTTTGGAGCT	TCTGAGGACT	60
	CAGCTGGAAC	CAACGGGCAC	AGTTGGCAAC	ACCATCAACT	TCTCCCAAGC	AGAGAAACCC	120
25	GAACCCACCA	ACCAGGGGCA	GGATAGCCTG	AAGAAACATC	TACACGCAGA	AATCAAAGTT	180
	ATTGGGACTA	TCCAGATCTT	GTGTGGCATG	ATGGTATTGA	GCTTGGGGAT	CATTITIGGCA	240
30	TCTGCTTCCT	TCTCTCCAAA	TTTTACCCAA	GTGACTTCTA	CACTGTTGAA	CICTGCTTAC	300
	CCATTCATAG	GACCCTTTTT	TTTTATCATC	TCTGGCTCTC	TATCAATCGC	CACAGAGAAA	360
	AGGTTRACCA	AGCTTTTGGT	GCATAGCAGC	CTGGTTGGAA	GCATTCTGAG	TGCTCTGTCT	420
35	GCCCTGGTGG	GTTTCATTAT	CCTGTCTGTC	AAACAGGCCA	CCTTAAATCC	TGCCTCACTG	480
	CAGTGTGAGT	TGGACAAAAA	TAATATACCA	ACAAGAAGTT	ATGTTTCTTA	CTTTTATCAT	540
40	GATTCACTTT	ATACCACGGA	CTGCTATACA	GCCAAAGCCA	GTCTGGCTGG	AWCTCTCTCT	600
	CTGATGCTGA	TTTGCACTCT	GCTGGAATTC	TGCCTAGCTG	TGCTCACTGC	TCTCCTCCCC	660
	TGGAAACAGG	CTTACTCTGA	CTTCCCTGGG	AGTGTACTTT	TCCTGCCTCA	CAGTTACATT	720
45	GGTAATTCTG	GCATGTCCTC	AAAAATGACT	CATGACTGTG	GATATGAAGA	ACTATTGACT	780
	TCTTAAGAAA	AAAGGGAGAA	ATATTAATCA	GAAAGTTGAT	TCTTATGATA	ATATGGAAAA	840
50	GTTAACCATT	ATAGAAAAGC	AAAGCTTGAG	TTTCCTAAAT	GTAAGCTTTT	AAAGTAATGA	900
- -	ACATTAAAAA	AAACCATTAT	TTCACTGTCA	TTTAAAGATA	ATGTG		945

55 (2) INFORMATION FOR SEQ ID NO: 169:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 902 base pairs

60 (B) TYPE: nucleic acid

60

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169: 5 GGCAGAGCCA CAGGAAGGAT GAGGAAGACC AGGCTCTGGG GGCTGCTGTG GATGCTCTTT 60 GTCTCAGAAC TCCGAGCTGC AACTAAATTA ACTGAGGAAA AGTATGAACT GAAAGAGGGG 120 10 CAGACCCTGG ATGTGAAATG TGACTACACG CTAGAGAAGT TTGCCAGCAG CCAGAAAGCT 180 TGGCAGATAA TAAGGGACGG AGAGATGCCC AAGACCCTGG CATGCACAGA GAGGCCTTCA 240 AAGAATTCCC ATCCAGTCCA AGTGGGGAGG ATCATACTAG AAGACTACCA TGATCATGGT 300 15 TTACTGCGCG TCCGAATGGT CAACCTTCAA GTGGAAGATT CTGGACTGTA TCAGTGTGTG 360 ATCTACCAGC CTCCCAAGGA GCCTCACATG CTGTTCGATC GCATCCGCTT GGTGGTGACC 420 20 AAGGGTTTTT CAGGGACCCC TGGCTCCAAT GAGAATTCTA CCCAGAATGT GTATAAGATT 480 CCTCCTACCA CCACTAAGGC CTTGTGCCCA CTCTATACCA GCCCCAGAAC TGTGACCCAA 540 GCTCCACCCA AGTCAACTGC CGATGTCTCC ACTCCTGACT CTGAAATCAA CCTTACAAAT 600 25 GTGACAGATA TCATCAGGGT TCCGGTGTTC AACATTGTCA TTCTCCTGGC TGGTGGATTC 660 CTGAGTAAGA GCCTGGTCTT CTCTGTCCTG TTTGCTGTCA CGCTGAGGTC ATTTGTACCC 720 30 TAGGCCCACG AACCCACGAG AATGTCCTCT GACTTCCAGC CACATCCATC TGGCAGTTGT 780 GCCAAGGGAG GAGGGAGGAG GTAAAAGGCA GGGAGTTAAT AACATGAATT AAATCTGTAA 840 TCACCRGCTA AAAAAAAAA AAAAAAAACN CGANCCTNGG TTTTCAGCTC CATCAGCTCC 900 35 902 TT 40 (2) INFORMATION FOR SEQ ID NO: 170: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1883 base pairs 45 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170: 50 AGAAAACAAC TGAAAAACCA CATTTTTCTA CATACAGCTG GGGAGGTAGC TGAGAACTTG 60 GCACTGCGCA CACATACTAG GTTGAAAGAG AGTTGAGGAA ACCAGAAGGC CAAGTGGATC 120 55 TECTOGCAAA CCCTGAACCT GTCTCCTGCG CTTGCTCTAC AGTTCTGAAG TTGAAAATCC 180 TTTTCATGCC TAGCATCTGC TTGAGTTATA AACCCCAAGG CAGCCATGTC ATAGACTAGT 240 GIFTACTCTT GITTIGACTT TGTTTTAATG CITCCTAAGA CCCAAGTGCC TCCTGCTGTT 300

	TCCTCCTTTG	TGGTAGCCTC	TGGCCATCTG	GGACCTCAAT	CCCCAGCTTT	CCCACTTTCA	360
	GCAGTCCTTT	GCTCTCTTTG	CTTCTACCTC	AAATAGCCCC	AGGAGTGGGC	TTTAGTCTCC	420
5	AATATGGAGC	ATYTCAAGCT	TCTCCTGGGG	GATGGGGATT	GGGATGGGCA	GAATCTGTTT	480
	TGGWTCTCCG	GGTTATTTCC	AGTGGGTGTA	AAAGCAGAGC	TGGGCCTTTC	CCTCTCTTAT	540
10	CCCTGAGGGT	GGGTAAGAAG	GACTGTATCT	ACACCTGTTC	TTCCCTACCT	TCTCTTTTGT	600
10	TAGGGAGGCC	TCATTCTAAG	TTCCTCAAGA	GAGTCCTTGG	CTTAAAGCTG	TAGCAAGGGT	660
	GTGCTAGGTG	GGGGATTTGG	AGCAAAACCG	TCGAGTAGGC	ATGATACTGG	TATGGAGTGG	720
15	GCCTGCAAAA	TCAGACAGAA	ATGGCTTGAG	AAGCCGCAGG	GGAGCATGCC	TGTCTCTCAG	780
	TGATAGAGTA	TGGGAGGGAC	CTCCCTAGCT	TGGAAAATGA	GAATTGAAGG	GGTTATGAAC	840
20	AAATAGGATG	CCTAGTTGAG	GATGTTCCCA	AAGTTTTGTC	CAATCTTATC	ATTAGTAGAT	900
20	TTTATAAGCC	ACAGAGACAA	ACCAGAAACG	GAATAATGTT	ACTITIGGATG	CTTTATTTTT	960
	TTGTTCTAGG	TGTGGCTTTG	TACATGCAGA	AGAATGCTAT	ATGCTGCACA	TTTTGCCTTT	1020
25	AAAGTCTTAC	GACTTTCCCC	ATTTTAGTCT	AATGGGAAGA	TACAGATGTG	CAAGTCTGCT	1080
	TTTTTGTTTT	TTGTTATTAT	TTTTTTTTT	TIGCTCTGTG	TTATGGACAT	TTTCAGACAT	1140
30	GCACAGAAGT	GGAGAGGATG	GTCCTTGGAC	CCCATGTGTC	CATCACCTAG	CTGCATCACT	1200
	TATCAGCTAT	GGTCAACCTG	GTTTCATCTG	TATCTCTCTC	TTTTCACCTG	TATTGTTTAT	1260
	TGAAAATCCA	AGACACTATG	CCAATGCAAC	CGTGACTACT	TTGGGAGATT	GGTAGTCTCT	1320
35	TTTGATGGTG	ATAGTGATGG	GGTGCACTAT	CATAATCACA	TCAGGTCTGC	TTTTTGCTTT	1380
	TAATGTTAAC	TAATGAAGTT	CCAGAGATGG	GCCTTAGAAA	TGTGTTTTAA	GAATTAACAA	1440
40	GGAGTCTCAA	AAAGAAATGA	GAGGGATGCT	TCCTTTCCCC	TTGCATCTAC	AAAACAAGAG	1500
	AGAGACTGTT	CTGTTGTAAA	ACTCTTTCAA	AAATTCTGAT	ATGGTAAGGT	ACTTGAGACC	1560
	CTTCACCAGA	ATGTCAATCT	TTTTTTCTGT	GTAACATGGA	AACTTGTGTG	ACCATTAGCA	1620
45	TTGTTATCAG	CTTGTACTGG	TCTCATAACT	CTGGTTTTGG	AAGAATAATT	TGGAAATTGT	1680
	TGCTGTGTTC	TGTGAAAATA	ACCTCCCCAA	AATAATTAGT	AACTGGTTGT	TCTACTTGGT	1740
50	AATTTGACAC	CCTGTTAATA	ACGCAATTAT	TICIGIGITC	TTAAACAGTA	TAAATAGTTG	1800
	TAAGTTTGCA	TGCATGATGG	ААААТАААА	ACCTGTATCT	CTGTTAAAAA	AAAAAAAA	1860
	AAAAAAAAA	ааааааааа	AAA				1883

55

60 (i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 171:

WO 98/39448

(A) LENGTH: 2100 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

	(MI) SEQUENCE DESCRIPTION. SEQ ID NO: 1/1:	
	TACTITITAGA TITACTGCCT TCAAAAAGTG CCTATTCTGA GCAACATAAA CGTTATTCCT	60
10	TACATATGTA TGTACACACG GTACCCAGAG TCGTACTGTG GCAGCCTTCA AAAACATACC	120
	ATCAGAAAGA GTAGGTGCTG AGATAAGGNA ACTTTGCCAA ATGNAAGAAA GTCACTCACT	180
15	TCCAATATCC CCTCTTCAAG CGGCTACCGT GRAASGGGCT GCAAACACAT TCCCTGAGCA	240
13	TCCCTTCCTG ATACAGCTTC TTTATATTTA TATCCTACTG GATGGTAGCA TATTGCTAAG	300
	GTTTCCTGTA CTCTGCTTCA AGGGAATGTA AGYTTTATGG CATTGAAACA TTTAGGAAAA	360
20	AAAAAGATGT TTAAGAGAAT TAATAGAGCC GTAGTCTGTA TTAGGATGTG TGTCATATGT	420
	GTGTTCTATA AACTAAGCAT COGTGGGTTT AGAGTGTTAA AGTGTCAGCA CATTCCTTCT	480
25	CCTTTTGTCT CTCAGGCTAA CATGAGAGAA AATAGAAAAG TCTTGGCTGT GGGGATTGGA	540
23	AGCTCAGGGG GCCAAATGTC CTTGCCAGAT CCTTAGAGCA TTACTTTGAC TCCTAAAAAT	600
	AGTAGTGTAT GTTATTTGAT GGCTTTTGTT TCCATAGTTC CATCACTGAC AAAACTGTCA	660
30	ATACTGTTGA TGGAGCAGCA GCATAGCCTA GAGTGATGCA TTCTTACCCA GAGGTGGCAA	720
	TAGGAGAGG TCCATGTAAA TAGGACGAGG TAGACAGTGC ATGATTGTAG GAGAAGGGTT	780
35	GAAGGGAGGA CATGATTCCA AAAAAGATCG TTCTCAATGT GTCGTCTGAC TCAACCAGCT	840
33	GGCAGATTAC ACTTGCCAAG TCGTTCCCTT TCCTTCTAAG TCAGTTGGCT CCATATTCAC	900
	TIGAATATGC CTCTGTTTGG GCAAAGCAAG ATACCTCCAC TTAACCTTTA TCCAAGGAAG	960
40	CTCTTGGTGT CCTCTTGGTC ATAAAGTTGT CTCCTACCTA ACCCAGTTTT ACCAAATGGA	1020
	AGTAAAAGGG GACAAACTAT GGAAGATGGA CTCCATGCCA TTGCAGTCAG CCACCATTCT	1080
45	CTTTTCCATA TAAGGAGCCC CATTACATAA GCTACGGGTG AGGTTGGAAC AGCTATGTTT	1140
43	CATAATITCA AGAGTGTGAC CACCCTGCTC TAGTCATCAT CATTGGATGA ATCCAGTTGA	1200
	CTCTTTGGCA AAAGGGTGAT ACTTTTCACT AAAAATGCCT ACTCTTCCTG TTGATGTTCC	1260
50	TITTCTGTTF TFACCTTGTC CAATTTCCAC ACTAGTCATT TFTTTTATTT TTTAGAGGAT	1320
	CAGATTITAG COCTOGAAAA TGAGTTCAAA AATTICAGTG TAATGTCATA AGGATGTTGG	1380
55	GATACAGAGA TITTITTTT CCTTGGAAAC AAATGGACTG GGAAGAAACA CAGCATGGCT	1440
JJ	TTGCTCTGAG TTTCAATCTG ATGATTATGA CCATGGAAGA TAGTCTTATG TAAAGGTTAA	1500
	ATGGTGTTTA CAAGTGGATA GATAAGGCGG AGATGGTGAG AAGCCGGGTT TTCTCTATGC	1560
60	TARATGTGTC TACTARGAGC AGCACTTCCT ACTAGCTARG CACAATCATA GCCCCACCGT	1620

400

	GATGAGCTGC TAGTCTGAAT AACATTCCCT GACTTAGGGA AAGGCACACA AAAACATATA	1680
5	AAGAATATGT CTATTTTCAT ATGTGTGATA CTGACAGAGC CATGGTATTC CTAAAATATA	1740
J	GGTTTCTCTT TTTTCTTGTA TTCTTAGCAA ATTGCATTTA TTCACTACAT TACAAACCAT	1800
	CACTGATGTA TCCAAAATAG CACACATAGT TCAGTATGAA AATAAGAGAA TAAAATCTGT	1860
10	TATAAGCAAG TGATTTAGGT ATTITCTTTT GTGTTTATGC ATTATCTGAC TATATTAAAA	1920
	CCTGTTTTC TATTACCTT CTATCAGTTT TCTCTACCAA TTATGTTTTT TCAATGCTCT	1980
	ATAAGAATGA ATATGGAAAT TATATTTCTT TTTTCTGTAA AAGAGTTGCA ACTACTTTAT	2040
15	TATATTTAGA AATCCAATAA ACTTCTTATT ACATTTAAAA AAAAAAAA	2100
20		
	(2) INFORMATION FOR SEQ ID NO: 172:	
36	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1930 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:	
	CCTTTGANTG TGGTCCCGGG TGCNGATTGG CAGCGCCTCC GCCGCGGCTC GTGGTTGTCC	60
	CGCCATGGCA CTGTCGCGGG GGCTGCCCCG GGAGCTGGCT GAGGCGGTGG CCGGGGGCCG	120
35	GGTGCTGGTG GTGGGGGCGG GCGGCATCGG CTGCGAGCTC CTCAAGAATC TCGTGCTCAC	180
	COGTTTCTCC CACATCGACC TGATTGATCT GGATACTATT GATGTAAGCA ACCTCAACAG	240
40	ACAGTTTTG TTTCAAAAGA AACATGTTGG AAGATCAAAG GCACAGGTTG CCAAGGAAAG	300
	TGTACTGCAG TTTTACCCGA AAGCTAATAT CGTTGCCTAC CATGACAGCA TCATGAACCC	360
	TGACTATAAT GTGGAATTTT TCCGACAGTT TATACTGGTT ATGAATGCTT TAGATAACAG	420
45	AGCTGCCCGA AACCATGTTA ATAGAATGTG CCTGGCAGCT GATGTTCCTC TTATTGAAAG	480
	TGGAACAGCT GGGTATCTTG GACAAGTAAC TACTATCAAA AAGGGTGTGA CCGAGTGTTA	540
50	TGAGTGTCAT CCTAAGCCGA CCCAGAGAAC CTTTCCTGGC TGTACAATTC GTAACACACC	600
	TTCAGAACCT ATACATTGCA TCGTTTGGGC AAAGTACTTG TTCAACCAGT TGTTTGGGGA	660
	AGAAGATGCT GATCAAGAAG TATCTCCTGA CAGAGCTGAC CCTGAAGCTG CCTGGGAACC	720

AACGGAAGCC GAAGCCAGAG CTAGAGCATC TAATGAAGAT GGTGACATTA AACGTATTTC

TACTAAGGAA TGGGCTAAAT CAACTGGATA TGATCCAGTT AAACTTTTTA CCAAGCTTTT

TAAAGATGAC ATCAGGTATC TGTTGACAAT GGACAAACTA TGGCGGAAAA GGAAACCTCC

780

840

900

55

401

	ACTITCCCTTC GACTGGCCTC AAGTACAAAG TCAAGGAGAA GAAACGAATG CATCAGATCA	960
	ACAGAATGAA CCCCAGTTAG GCCTGAAAGA CCAGCAGGTT CTAGATGTAA AGAGCTATGC	1020
5	ACGTCTTTTT TCAAAGAGCA TCGAGACTTT GAGAGTTCAT TTAGCAGAAA AGGGGGATGG	1080
	AGCTGAGCTC ATATGGGATA AGGATGACCC ATCTGCAATG GATTTTGTCA CCTCTGCTGC	1140
10	AAACCTCAGG ATGCATATTT TCAGTATGAA TATGAAGAGT AGATTTGATA TCAAATCAAT	1200
	GGCAGGGAAC ATTATTCCTG CTATTGCTAC TACTAATGCA GTAATTGCTG GGTTGATAGT	1260
	ATTGGAAGGA TTGAAGATIT TATCAGGAAA AATAGACCAG TGCAGAACAA TTTTTTTGAA	1320
15	TAAACAACCA AACCCAAGAA AGAAGCTTCT TGTGCCTTGT GCACTGGATC CTCCCAACCC	1380
	CAATTGTTAT GTATGTGCCA GCAAGCCAGA GGTGACTGTG CGGCTGAATG TCCATAAAGT	1440
20	GACTGTTCTC ACCTTACAAG ACAAGATAGT GAAAGAAAAA TTTGCTATGG TAGCACCAGA	1500
	TGTCCAAATT GAAGATGGGA AAGGAACAAT CCTAATATCT TCCGAAGAGG GAGAGACGGA	1560
	AGCTAATAAT CACAAGAAGT TGTCAGAATT TGGAATTAGA AATGGCAGCC GGCTTCAAGC	1620
25	AGATGACTTC CTCCAGGACT ATACTTTATT GATCAACATC CTTCATAGTG AAGACCTAGG	1680
	AAAGGACGTT GAATTTGAAG TTGTTGGTGA TGCCCCGGAA AAAGTGGGGS CCAAACAAGC	1740
30	TGAAGATGCT GCCAAAAGCA TAACCAATGG GCAGTGATGA TGGGAGCTTC AGCCCTCCAC	1800
	CTYCACAGCT TCAAGGAGGC AAGATGGACG TYTCYCATAG TTGATYCGGR TGAAGAAGRT	1860
	TCTCCAATAA TTGCCCGACG TTCATTGAAG GAAGGAGGAG GAGGCCCGCC AAGAGGGGAA	1920
35	TTTAGGNTTG	1930
40	(2) INFORMATION FOR SEQ ID NO: 173:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1509 base pairs (B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:	
50	GGCCCTGGCC TCTGGGCTGA GGCTTGCTAG GGACTCGGGG TGGCTCTAAG GGGCAGGGAT	60
	AGGGCTGGGG AGCGCCGGCC TGTGGCCCTG ACCAGCCCCT TCTCGTGCRG GTTCCACCCC	120
55	GATGCAGGTG GTCACGTGCT TGACGCGGGA CAGCTACCTG ACGCACTGCT TCCTCCAGCA	180
	CCTCATGGTC GTGCTGTCCT CTCTGGAACG CACGCCCTCG CCGGAGCCTG TTGACAAGGA	240
	CTTCTACTCC GAGTTTGGGA ACAAGACCAC AGGGAAGATG GAGAACTACG AGCTGATCCA	300

60 CTCTAGTCGC GTCAAGTTTA CCTACCCCAG TGAGGAGGAG ATTGGGGACC TGACGTTCAC

	TGTGGCCCAA	AAGATGGCTG	AGCCAGAGAA	GCCCCAGCC	CTCAGCATCC	TGCTGTACGT	420
5	GCAGGCCTTC	CAGGTGGGCA	TGCCACCCCC	TGGGTGCTGC	AGGGGCCCCC	TGCGCCCCAA	480
,	GACACTCCTG	CTCACCAGCT	CCGAGATCTT	CCTCCTGGAT	GAGGACTGTG	TCCACTACCC	540
	ACTGCCCGAG	TTTGCCAAAG	AGCCGCCGCA	GAGAGACAGG	TACCGGCTGG	ACGATGGCCG	600
10	CCGCGTCCGG	GACCTGGACC	GAGTGCTCAT	GGGCTACCAG	ACCTACCCGC	AGCCCTCACC	660
	CTCGTCTTCG	ATGACGTGCA	AGGTCATGAC	CTCATGGGCA	GTGTCACCCT	GGACCACTTT	720
15	GGGAGGTGC	CAGGTGGCCC	GGCTAGAGCC	AGCCAGGGCC	GTGAAGTCCA	GTGGCAGGTG	780
	TTTGTCCCCA	GTGCTGAGAG	CAGAGAGAAG	CTCATCTCGC	TGTTGGCTCG	CCAGTGGGAG	840
	GCCCTGTGTG	GCCGTGAGCT	GCCTGTCGAG	CTCACCGGCT	AGCCCAGGCC	ACAGCCAGCC	900
20	TGTCGTGTCC	AGCCTGACGC	CTACTGGGGC	AGGGCAGCAG	GCTTTTGTGT	ТСТСТААААА	960
	TGTTTTATCC	TCCCTTTGGT	ACCTTAATTT	GACTGTCCTC	GCAGAGAATG	TGAACATGTG	1020
25	TGTGTGTTGT	GTTAATTCTT	TCTCATGTTG	GGAGTGAGAA	TGCCGGGCCC	CTCAGGGCTG	1080
-5	TCGGTGTGCT	GTCAGCCTCC	CACAGGTGGT	ACAGCCGTGC	ACACCAGTGT	CGTGTCTGCT	1140
	GTTGTGGGAC	CGTTGTTAAC	ACGTGACACT	GTGGGTCTGA	CTTTCTCTTC	TACACGTCCT	1200
80	TTCCTGAAGT	GTCGAGTCCA	GTCCTTTGTT	GCTGTTGCTG	TTGCTGTTGC	TGTTGCTGTT	1260
	GGCATCTTGC	TGCTAATCCT	GAGGCTGGTA	GCAGAATGCA	CATTGGAAGC	TCCCACCCCA	1320
35	TATTGTTCTT	CAAAGTGGAG	GTCTCCCCTG	ATCCAGACAA	GTGGGAGAGC	CCGTGGGGGC	1380
,,,	AGGGGACCTG	GAGCTGCCAG	CACCAAGCGT	GATTCCTGCT	GCCTGTATTC	TCTATTCCAA	1440
	TAAAGCAGAG	TTTGACACCG	тсаааааааа	АААААААА	ааааааааа	ATTNCTGCGG	1500
10	CCTCAAGGG						1509

45 (2) INFORMATION FOR SEQ ID NO: 174:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3173 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:

55 TCGACCCCAS GCGTCCGTGC TTTTCCACAG AAGGTTAGAC CCTGAAAGAG ATGGCTCAGC 60
ACCACCTATG GATCTTGCTC CTTTGCCTGC AAACCTGGCC GGAAGCAGCT GGAAAAGACT 120
CAGAAATCTT CACAGTGAAT GGGATTCTGG GAGAGTCAGT CACTTTCCCT GTAAATATCC 180

	AAGAACCACG	GCAAGTTAAA	ATCATTGCTT	GGACTTCTAA	AACATCTGTT	GCTTATGTAA	240
	CACCAGGAGA	CTCAGAAACA	GCACCCGTAG	TTACTGTGAC	CCACAGAAAT	TATTATGAAC	300
5	GGATACATGC	CTTAGGTCCG	AACTACAATC	TGGTCATTAG	CGATCTGAGG	ATGGAAGACG	360
	CAGGAGACTA	CAAAGCAGAC	ATAAATACAC	AGGCTGATCC	CTACACCACC	ACCAAGCGCT	420
10	ACAACCTGCA	AATCTATCGT	CGGCTTGGGA	AACCAAAAAT	TACACAGAGT	TTAATGGCAT	480
10	CTGTGAACAG	CACCTGTAAT	GTCACACTGA	CATGCTCTGT	AGAGAAAGAA	GAAAAGAATG	540
	TGACATACAA	TTGGAGTCCC	CTGGGAGAAG	AGGGTAATGT	CCTTCAAATC	TTCCAGACTC	600
15	CTGAGGACCA	AGAGCTGACT	TACACGTGTA	CAGCCCAGAA	CCCTGTCAGC	AACAATTCTG	660
	ACTCCATCTC	TGCCCGGCAG	CTCTGTGCAG	ACATCGCAAT	GGGCTTCCGT	ACTCACCACA	720
20	CCGGGTTGCT	GAGCGTGCTG	GCTATGTTCT	TICIGCITGT	TCTCATTCTG	TCTTCAGTGT	780
20	TTTTGTTCCG	TITGTTCAAG	AGAAGACAAG	ATGCTGCCTC	AAAGAAAACC	ATATACACAT	840
	ATATCATGGC	TTCAAGGAAC	ACCCAGCCAG	CAGAGTCCAG	AATCTATGAT	GAAATCCTGC	900
25	AGTCCAAGGT	GCTTCCCTCC	AAGGAAGAGC	CAGTGAACAC	AGTITATICC	GAAGTGCAGT	960
	TTGCTGATAA	GATGGGGAAA	GCCAGCACAC	AGGACAGTAA	ACCTCCTGGG	ACTTCAAGCT	1020
30	ATGAAATTGT	GATCTAGGCT	GCTGGGCTGA	ATTCTCCCTC	TGGAAACTGA	GTTACAACCA	1080
	CCAATACTGG	CAGGTTCCCT	GGATCCAGAT	CITCTCTGCC	CAACTCTTAC	TGGGAGATTG	1140
	CAAACTGCCA	CATCTCAGCC	TGTAAGCAAA	GCAGGAAACC	TTCTGCTGGG	CATAGCTTGT	1200
35	GCCTAAATGG	ACAAATGGAT	GCATACCCTT	CCTGAAATGA	CTCCCTTCTG	AATGAATGAC	1260
	AAAGCAGGTT	ACCTAGTATA	GTTTTCCCAA	ACTTCTTCCC	ATCATAGCAC	ATGTAGAAAA	1320
40	TAATATTTT	ATGGCACACT	GGGATAAACA	AGCAAGATTG	CTCACTTCTG	GAAGCTGCAT	1380
	ATGACTAGAG	GCCTCTTGTG	ACTGGAGGTA	ACAACCCTGC	CCAGTAACTG	TGGGAGAAGG	1440
	GGATCAATAT	TTTGCACACC	TGTAATAGGC	CATGGCACAC	CAGCCAAGAT	GCTCTGCTCA	1500
45	CAGTCAGTAT	GTGTGAAGAT	CCCTGGTGCG	TGGCCTTCAC	CACGCATCTT	GAGCAAATTA	1560
	GGAAAATGTA	CCCTTCGCTT	GAGGCAGATG	CAGCCCTTCC	CCCGAGTGCA	TGGCTTGGAG	1620
50	AGCAGAATGT	GGGCTGCATA	TAAGCACACT	CATCCCTTTG	TCTGGGAATC	TTTGTGCAGG	1680
	GCATAACAGG	CTTAGTAAGT	CCAAACACAG	ATGACAGTGC	TGTGTGGGTC	TCTGTCAGAG	1740
	TIGTGGCTCT	CAGCCATGTA	GACACACTCT	CCAAATGGAG	TGTTGGAAAA	TGTTCTTTCT	1800
55	GCAGGGTCTA	GAGACTGCTG	GGACACTTTT	CTTGGAGTGC	TACTTCAGAA	GCCTTATAGG	1860
	ATTITCTITC	TGGCCAAGAT	TTCCTTCTGT	ATCACTCCAA	GCAGCCTCAG	CAGAAGAAGC	1920
60	AGCCATGCCC	AGTATTCCCA	CTCTCCAAAA	GGAACTGACC	AGCTTATATT	TCTCACACTT	1980

404

	CTGGGGAACT	GGGTATAATC	CAACCATCAA	AATAGAAGAC	CTTGCAAGAA	GCAGAGTCAT	2040
	TCTCCAGAAG	GAACTTGGGA	GATGATGGTG	CAGATGATGA	AACTGGGTTC	ATCCCAGTTC	2100
5	CAAAGACTCA	GAGAACTAGA	GTTTAACCTG	AGGCAGAGTG	CCGCCACCCT	GGCATGCCCC	2160
	ACAAACAGAT	CACCAGCCAG	CTTACACAGG	CATTAACTCT	CCTCAATGAG	GAAGAATCAT	2220
10	TCACAACTGA	GCAAGACATT	CATATGATCA	TTTAAGGAAG	TGTTTCCCTT	ATGTGTTAGC	2280
10	AAGTATAATC	GGCTAACTCC	TAAATCCCAA	TGAATAGTCC	TAGGCTGGAC	AGCAATGGGC	2340
	TGCAATTAGG	CAGATAAAGA	CATCAGTCCC	AGTAAATGAA	TCCATAGACT	CATCTAGCAC	2400
15	CAACTACCAT	TAGCACTATG	TTAGGAGCTG	CAAGGCCCCA	AAGTAGAAGA	TGTGCATAAT	2460
	GTCTGCTCTT	GTGTAGCTCA	GGAGACAATT	CCAGCACAGA	CACTACAGTT	AACGCTGAAC	2520
20	TGCAGCTGCA	AGTAATAGCA	TGAACAGTCA	GAAAAATACC	TTATGAGGGG	GCAGGGCTGA	2580
20	AGCTGGGCCT	TGAAGGATGG	ATGAAATTTG	GATAGAGAAT	GAGGAAGACA	GAGGGCCTCC	2640
	AAGTGAGAGA	AGCATGAAAA	ATGAGCAGGG	GCCTGGATCA	GTGGGGTGTA	TTCAGAGCAC	2700
25	CTCTCCAGAT	GCACCATGCA	TGCTCACAGT	CCCTTGCCTA	TGTGTGGCAG	AGTGTCCCAG	2760
	CCAGATGTGT	GCCCCACCC	CATGTCCATT	TACATGTCCT	TCAATGCCCA	CCTCAAAAGG	2820
30	TACCTCTTCT	GTAAAGCTTT	CCCTGGTATC	AGGAATCAAA	ATTAATCAGG	GATCTTTTCA	2880
30	CACTGCTGTT	TTTTCCTCTT	TGGTCCTTCT	ATCACTAAAA	CTCATCTCAT	TCAGCCTTAC	2940
	AGCATAACTA	ATTATTTGTT	TTCCTCACTA	CATTGTACAT	GTGGGAATTA	CAGATAAACG	3000
35	GAAGCCKGCT	GGGTGGTGG	CTCACGCCTG	TAATCCCAAC	ACTTTGGGAG	GCCAAGGCAG	3060
	GCGGATCACC	TGAGGTCAGG	ARTTCGAGAT	TARTCTGGCC	AACATGGTGA	AACCCCATNT	3120
40	NTACTAAAAA	TACGAAATTA	GCCAGGTGTG	GTGGCACACA	TCTGTAGTCC	CAG	3173

(2) INFORMATION FOR SEQ ID NO: 175:

45
(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 991 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

50 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175:

AAATTCGGCA CAGCTGAGAG GAGACACAAG GAGCAGCCCG CAAGCACCAA GTGAGAGGCA 60
TGAAGTTACA GTGTGTTTCC CTTTGGCTCC TGGGTACAAT ACTGATATTG TGCTCAGTAG 120
ACAACCACGG TCTCAGGAGA TGTCTGATTT CCACAGACAT GCACCATATA GAAGAGAGTT 180
TCCAAGAAAT CAAAAGAGCC ATCCAAGCTA AGGACACCTT CCCAAATGTC ACTATCCTGT 240

	CCACATTOGA GACTCTGCAG ATCATTAAGC CCTTAGATGT GTGCTGCGTG ACCAAGAACC	300
5	TCCTGGCGTT CTACGTGGAC AGGGTGTTCA AGGATCATCA GGAGCCAAAC CCCAAAATCT	360
•	TGAGAAAAAT CAGCAGCATT GCCAACTCTT TCCTCTACAT GCAGAAAACT CTGCGGCAAT	420
	GTCAGGAACA GAGGCAGTGT CACTGCAGGC AGGAAGCCAC CAATGCCACC AGAGTCATCC	480
10	ATGACAACTA TGATCAGCTG GAGGTCCACG CTGCTGCCAT TAAATCCCTG GGAGAGCTCG	540
	ACGICTITCT AGCCIGGATT AATAAGAATC ATGAAGTAAT GICCTCAGCT TGATGACAAG	600
15	GAACCTGTAT AGTGATCCAG GGATGAACAC CCCCTGTGCG GTTTACTGTG GGAGACAGCC	660
	CACCTTGAAG GGGAAGGAGA TGGGGAAGGC CCCTTGCAGC TGAAAGTCCC ACTGGCTGGC	720
	CTCAGGCTGT CTTATTCCGC TTGAAAATAG CCAAAAAGTC TACTGTGGTA TTTGTAATAA	780
20	ACTCTATCTG CTGAAAGGGC CTGCAGGCCA TCCTGGGAGT AAAGGGCTGC CTTCCCATCT	840
	AATTTATTGT GAAGTCATAT AGTCCATGTC TGTGATGTGA	900
25	ACACATTGTA CTGAGTGGTT TTTCTGAATA AATTCCATAT TTTACCTAAA AAAAAAAAA	960
•	AAAAACTCGA GGGGGGCCC GTACCCAATT T	991
80	(2) INFORMATION FOR SEQ ID NO: 176: (i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 1290 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
Ю	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176:	
ro	ACAGCCCTCT TCGGAGCCTG AGCCCGGCTC TCCTCACTCA CCTCAACCCC CAGGCGGCCC	60
	CTCCACAGGG CCCCTCTCCT GCCTGGACGG CTCTGCTGGT CTCCCCGTCC CCTGGAGAAG	120
15	AACAAGGCCA TGGGTCGGCC CCTGCTGCTG CCCCTRCTGC YCCTGCTGCW GCCGCCAGCA	180
	TTTCTGCAGC CTRGTGGCTC CACAGGATCT GGTCCAAGCT ACCTTTATGG GGTCACTCAA	240
50	CCAAAACACC TCTCAGCCTC CATGGGTGGC TCTGTGGAAA TCCCCTTCTC CTTCTATTAC	300
,,	CCCTGGGAGT TAGCCAYAGY TCCCRACGTG AGAATATCCT GGAGACGGGG CCACTTCCAC	360
	GGGCAGTCCT TCTACAGCAC AAGGCCGCCT TCCATTCACA AGGATTATGT GAACCGGCTC	420
55	TTTCTGAACT GGACAGAGGG TCAGGAGAGC GGCTTCCTCA GGATCTCAAA CCTGCGGAAG	480
	GAGGACCAGT CTGTGTATTT CTGCCGAGTC GAGCTGGACA CCCGGAGATC AGGGAGGCAG	540
	CAGTTGCAGT CCATCAAGGG GACCAAACTC ACCATCACCC AGGCTGTCAC AACCACCACC	600

	ACCTGGAGGC	CCAGCAGCAC	AACCACCATA	GCCGGCCTCA	GGGTCACAGA	AAGCAAAGGG	660
	CACTCAGAAT	CATGGCACCT	AAGTCTGGAC	ACTGCCATCA	GGGTTGCATT	GGCTGTCGCT	720
5	GTGCTCAAAA	CTGTCATTTT	GGGACTGCTG	TGCCTCCTCC	TCTCTCCTCC	AGGAGAAGGA	780
	AAGGTAGCAG	GGCGCCAAGC	AGTGACTTCT	GACCAACAGA	GTGTGGGGAG	AAGGGATGTG	840
10	TATTAGCCCC	GGAGGACGTG	ATGTGAGACC	CGCTTGTGAG	TCCTCCACAC	TCGTTCCCCA	900
10	TTGGCAAGAT	ACATGGAGAG	CACCCTGAGG	ACCTTTAAAA	GGCAAAGCCG	CAAGGCAGAA	960
	GGAGGCTGGG	TCCCTGAATC	ACCGACTGGA	GGAGAGTTAC	CTACAAGAGC	CTTCATCCAG	1020
15	GAGCATCCAC	ACTGCAATGA	TATAGGAATG	AGGTCTGAAC	TCCACTGAAT	TAAACCACTG	1080
	GCATTTGGGG	GCTGTTYATT	ATAGCAGTGC	AAAGAGTTCC	TTTATCCTCC	CCAAGGATGG	1140
20	AAAATACAAT	TTATTTTGCT	TACCATACAC	ссстттетс	CTCGTCCACA	TTTTCCAATC	1200
20	TGTATGGTGG	СТСТСТТСТА	TOGCAGAAGG	TTTTGGGGAA	TAAATAGCGT	GANATGNINC	1260
	TGACTNAAAA	ааааааааа	AAAAACTCGA				1290
25							
	(2) INFORM	ATION FOR SE	20 ID NO. 17				
30			-				
30	(1)	(B) TYP (C) STR	GTH: 2290 b E: nucleic a ANDEDNESS: (ase pairs acid double			
35		(d) TOPO	OLOGY: line	ar			
) SEQUENCE I		~			
40		TTTGGATGCT					60
40	GGAGCTCAGC	ACCCTTGCTG	TGGACCAGTG	AAGGCTGTTC	CAGACCAGGT	GCTTCCAGAC	120
	ATTTCCAGGC	TCCAGGAGAG	AGGCTGGGAG	CCCCCACAGA	AAGCACAGGA	AAATGCAAAA	180
45	AAAAAACAGT	CTTTTTTTT	TTTTTGCTTT	TTATTATGAA	AACAAAACAA	ATGCCCCAGG	240
	AGAAGGGTCC	ATGATTACCA	GAAACATCAA	AGAGTACTTT	CTACCATTTT	TATTCTGTTG	300
	TGTTGAGGCC	AGCATTGCAA	TAAACAAGCT	AAACTACTTA	CATTGGACTC	ATTTTCAGTA	360
50	ACTGACATTT	ACAGGAATAT	ACTAGAAACG	GCACTAAAAA	GTTTAAGAAA	AGTTACGGTA	420
	AACTTGCATG	CACATCATAC	AGAAAAGTAA	CATTTTAAAT	ATAAAAAAGA	AAAACTTCCT	480
55	GGAAGCATTA	TGCCAGTATT	AAGGAACAGT	GCTACTCTGG	ATGTGACAAA	TTCTGTATGT	540
	GGGTGTTACT	CTTTCCCAAA	AGACTGTCAG	AGGCGTGAGT	GCTGCAAAAG	AACAACAACA	600
	AAAACAAACA	САСАААААА	TGTGTCTTAC	AGTTTGTAAG	CAAGATGACA	CTGCCCAACA	660
60	CAAAGAGGGG	TCTGGAGTTC	AGTTCACGCC	CGAAGCCTGC	cccrcccc	TCCAGGGGTC	720

	ATTCAGAGTG	TTCTCAAATC	CAATTCCGAC	ACACGACTTG	TCACTACTCC	TCTCCCCTTG	780
5	AAAAAAGCAT	GTTAGAAGCT	GCCCTACAGG	TCTCAGCAGT	GGGACAATCT	AATTGAATCA	840
3	CCGCAGCCTT	CTAATACAGA	AGAAACGGAC	GTGACTGTCA	CCCTCAGCCC	GCCAGCAAGG	900
	GCGCTGAGGA	AGTCATTAAT	CCTTCGAAAC	TCTGAAAAGA	AACCAGTGTT	GAAGTCTGGA	960
10	CAGAAAGCCT	TAAAAAAGTG	ACAGCACCAA	TGCAGCTGCT	CAGTGTACCC	NCCGTGGGCT	1020
	GTCAGGGTCA	GTGGCTTCTT	TCTAGATGAA	AGGAGCAGAG	GCGAGCCGAC	GCCACCGTCA	1080
15	CAGAGAACCA	GCCGAGAAGG	AAAGGCCCCA	CGATGCTCCC	TGTGCGCTGC	CCCCACAGCC	1140
	GCCGCTCCC	CCGACGGCTC	ACACAGGCAG	CACCTCACTG	CCCTGTGGCT	GGAGGGCCAT	1200
	TGCAAGGAGC	GCCCCCAGC	CCCAGGCACC	CCCGGCTTAG	GGTGTACGTA	TCACCCAGCC	1260
20	CTGTGCTGGC	AGCACGTTAC	CAACCAGCCT	GCGTGAAGAC	CTGTCAACTG	TCGTGTGTGA	1320
	ATTCCTTAAA	TTCGGTTTAA	ATAGTCCATT	AAAGATCTGT	TTAGAAAATA	CCTTTGAAAA	1380
25	CGAGGGTAAC	TTTAAAAAAT	GGAAACTTTC	AAATCCATTT	ATATTTTTAT	ТАТАААСААА	1440
	ACTTAATTAA	AAGTTTAACA	AACTGGCTGA	AAACTCACCA	AGTGTCAGAC	TCACCAGCAA	1500
	TTTAAAAAAT	GATAATTTAC	CAGCATCTCC	TCATCAGAGT	TCCCTCTCCA	GTAAGGGTAT	1560
30	ACCTACATCT	GTAAGGGTCA	GTGGACTCTG	AATCAATTTT	ATGGTTGTTT	TAAAATCACC	1620
	GTGTATTAGG	ATACTAATGA	TAGTCCCTAT	ATCCATCCAG	AAATGCTGGC	AGAAAGCACT	1680
35	GGCCACCATA	CAGGACAGAC	CACACCACAG	CTCCATACCC	AGCGTCTGCC	TGGAGGCTCC	1740
	CCCACGCTGA	GGTCCGGGAG	AATGCCTGGT	TTCAGTCATT	TCCGGACTAA	CTGTGACAAC	1800
	GCGTGAGCAG	GGAGCACCGT	GCGAGTCTCC	GGGAGGGAAT	CCTCCTGGGG	CCCAGAGACT	1860
40	CCTCCACCCC	TGGGGAGGGC	AGACAGGCTC	GGGARGGCCT	GGCCAGGCCA	CTGGAGGCTG	1920
	GCAGGGAGCA	GGCATGTCCA	CCCGCAAGCC	TGGGAGGCTA	ACTCTGGCAT	TCCTGGCCGG	1980
45	AGCCGCCATG	CTCATTGGTG	GGCCAGTTTG	GGACATCCCC	GTACTCAAAG	ACCATATGGC	2040
	AGCCTCTGGG	AAAACAAAAC	CAAAACATCA	CCTTCTATTA	AACTCTGTAT	TTTATTATTT	2100
	TTTACAATAG	AAAGITAAAA	ATCAAGACTT	AGATTTACTA	TACATTTTTT	CTCTCAGATT	2160
50	ACAAAGTTTA	TATTATATAA	CTGGGGTTCC	CTAAATTGAT	TTCTTTTAAA	ACAGTCTTAA	2220
	AGAGACCAGA	AGTGAATACA	AAAGAACTAA	ACAAAATAAA	AAATTAGAAT	GTGCTGTAGC	2280
55	TGAAAGCTGT						2290

⁽²⁾ INFORMATION FOR SEQ ID NO: 178:

WO 98/39448

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 549 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178:	
10	GGCACGAGCC ATGCCTGGCC TCTCCTTGAT TCTTACAGTC ACTTTGTTGG CTGTTTCTGA	60
10	CTCAGCAGCT ACCTGCATTG TGGCCAAAGG ATGACCTATT CCTTCTCAGG AGGGCAAAAA	120
	TGTGGAATAG TGTCTGTCCA TGCCTCTCCT CATGGGCTAC CACCTCTGCC ACCGTGGTTA	180
15	ATCAGTAACA ACCAGGAGAG AAGCTGCTGG AACTGACCTC TGGGAACTCC CTGGGATGGT	240
	TTGGTGCAGG AATGTAGTAG GCATACACGT GGTTGCGTGG ATCTGGGCCC TCCTGATGTG	300
20	AGTAGAGAGG TAAAAGGCCA CCATCTCCTT GACCTCTGGG GAACTCATCC ACAAAGAAGA	360
	TGTTTCCAAG ATGCTTCTGA AGATTGCCTA AAAATAGCCG GTTTCCACCC CCGTGAATGC	420
	ATCCATTCTA GAATGCTCCT TCACCAGGAC CAGAGAACTG ATTTACAGAA GTGACATGAA	480
25	AACATTCCAT CCCAGAATTT GCAGTAGCTC AAATTAAGTT TCTAGCTATT AAAAAGAAAA	540
	алалалал	549
30		
	(2) INFORMATION FOR SEQ ID NO: 179:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1509 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179:	
	GGCACGAGGG CTCATTCATT CCGCGCCGGG CCTGCCAGAC ACCTGCGCCC TTCTGCAGCC	60
45	GCCCGCCGCA TCCGCCGCCG CAGCCCCCAG CATGTCGGGC CCAGACGTCG AGACGCCGTC	120
73	CGCCATCCAG ATCTGCCGGA TCATGCGGCC AGATGATGCC AACGTGGCCG GCAATGTCCA	180
	CGGGGGGACC ATCCTGAAGA TGATCGAGGA GGCAGGCGCC ATCATCAGCA CCCGGCATTG	240
50	CAACAGCCAG AACGGGGAGC GCTGTGTGGC CGCCCTGGCT CGTGTCGAGC GCACCGACTT	300
	CCTGTCTCCC ATGTGCATCG GTGAGGTGGC GCATGTCAGC GCGGAGATCA CCTACACCTC	360
55	CAAGCACTCT GTGGAGGTGC AGGTCAACGT GATGTCCGAA AACATCCTCA CAGGTGCCAA	420
55	AAAGCTGACC AATAAGGCCA CCCTGTGGTA TGTGCCCCTG TCGCTGAAGA ATGTGGACAA	480
	GGTCCTCGAG GTGCCTCCTG TTGTGTATTC CCGGCANGAG CAGGAGGAGG AGGGCCGGAA	540
60	GCGGTATGAA GCCCAGAAGC TGGAGCGCAT GGAGACCAAG TGGAGGAACG GGGACATCGT	600

409

	CCAGCCAGTC CTCAACCCAG AGCCGAACAC TGTCAGCTAC AGCCAGTCCA GCTTGATCCA	660
5	CCTGGTGGGG CCTTCAGACT GCACCCTGCA CGGCTTTGTG CACGGAGGTG TGACCATGAA	720
,	GCTCATGGAT GAGGTCGCCG GGATCGTGGC TGCACGCCAC TGCAAGACCA ACATCGTCAC	780
	AGCTTCCGTG GACGCCATTA ATTITCATGA CAAGATCAGA AAAGGCTGCG TCATCACCAT	840
10	CTCGGGACGC ATGACCTTCA CGAGCAATAA GTCCATGGAG ATCGAGGTGT TGGTGGACGC	900
	CGACCCTGTT GTGGACAGCT CTCAGAAGCG CTACCGGGCC GCCAGTGCCT TCTTCACCTA	960
15	CGTGTCGCTG AGCCAGGAAG GCAGGTCGCT GCCTGTGCCC CAGCTGGTGC CCGAGACCGA	1020
15	GGACGAGAAG AAGCGCTTTG AGGAAGGCAA AGGGCGGTAC CTGCAGATGA AGGCGAAGCR	1080
	ACAGGGCCAC GCGGASCYTC AGCCCTAGAC TCCCTCCTCC TGCCACTGGT GCCTCGAGTA	1140
20	GCCATGGCAA CGGGCCCAGT GTCCAGTCAC TTAGAAGTTC CCCCCTTGGC CAAAAACCCA	1200
	ATTCACATTG AGAGCTGGTG TTGTCTGAAG TTTTCGTATC ACAGTGTTAA CCTGTACTCT	1260
25	CTCCTGCAAA CCTACACACC AAAGCTTTAT TTATATCATT CCAGTATCAA TGCTACACAG	1320
23	TGTTGTCCCG AGCGCCGGGA GGCGTTGGGC AGAAACCCTC GGGAATGCTT CCGAGCACGC	1380
	TGTAGGGTAT GGGAAGAACC CAGCACCACT AATAAAGCTG CTGCTTGGCT GGAAAAAAAA	1440
30	AAAAAAAA AAAAAAAAA AAAAAAAA AAAAAAAA AAAA	1500
	AGAAAAAN	1509
35		
	(2) INFORMATION FOR SEQ ID NO: 180:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1316 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180:	
	AGCTGTATCA TAGGAAAGAT GGCCACACCG GCGGTACCAG TAAGTGCTCC TCCGGCCACG	60
50	CCAACCCCAG TCCCGGCGGC GGCCCCAGCC TCAGTTCCAG CGCCAACGCC AGCACCGGCT	120
50	GCGCTCCGG TTCCCGCTGC GGCTCCAGCC TGCATCCTCA GACCCTGCGG CAGCAGCGGC	180
	TGCAACTGCG GCTCCTGGCC AGACCCCGGC CTCAGCGCAA NTCCAGCGCA GACCCCAGCG	240
55	CCCGCTCTGC CTGGTCCTGC TCTTCCAGGG CCCTTCCCCG GCGGCCGCGT GGTCAGGCTG	300
	CACCCAGTCA TITTGGCCTC CATTGTGGAC AGCTACGAGA GACGCAACGA GGGTGCTGCC	360

CGAGTTATCG GGACCCTGTT GGGAACTGTC GACAAACACT CAGTGGAGGT CACCAATTGC

60

	TTTTCAGTGC	CGCACAATGA	GTCAGAAGAT	GAAGTGGCTG	TTGACATGGA	ATTTGCTAAG	480
	AATATGTATG	AACTGCATAA	AAAAGTTTCT	CCAAATGAGC	TCATCCTGGG	CTGGTACGCT	540
5	ACGGGCCATG	ACATCACAGA	GCACTCTGTG	CTGNATCCAT	GAGTACTACA	GCCGAGAGGC	600
	CCCCAACCCC	ATCCACCTCA	CTGTGGACAC	AAGTCTCCAG	AACGGCCGCA	TGAGCATCAA	660
10	AGCCTACGTC	AGCACTTTAA	TGGGAGTCCC	TGGGAGGACC	ATGGGAGTGA	TGTTCACGCC	720
••	TCTGACAGTG	AAATACGCGT	ACTACGACAC	TGAACGCATC	GGAGTTGACC	TGATCATGAA	780
	GACCTGCTTT	AGCCCCAACA	GAGTGATTGG	ACTCTCAAGT	GACTTGCAGC	AAGTAGGAGG	840
15	GGCATCAGCT	CGCATCCAGG	ATGCCCTGAG	TACAGTGTTG	CAATATGCAG	AGGATGTACT	900
	GTCTGGAAAG	GTGTCAGCTG	ACAATACTGT	GGCCGCTTC	CTGATGAGCC	TGGTTAACCA	960
20	AGTACCGAAA	ATAGTTCCCG	ATGACTTTGA	GACCATGCTC	AACAGCAACA	TCAATGACCT	1020
	TTTGATGGTG	ACCTACCTGG	CCAACCTCAC	ACAGTCACAG	ATTGCACTCA	ATGAAAAACT	1080
	TGTAAACCTG	TGAATGGACC	CCAAGCAGTA	CACTTGCTGG	TCTAGGTATT	AACCCCAGGA	1140
25	CTCAGAAGTG .	AAGGAGAAAT	CCCTTTTTC	TGGTCTTGAG	TCACACTGAG	ATAGTCAGTT	1200
	GTGTGTGACT	CTAATAAACG	GAGCCTACCT	TTTGTAAATT	ааааааааа	AAAAAAACCN	1260
30	SGRGGGGGG	CCCGGTCCCA	TTSSCCCTTT	NGTAATTCGT	NTTACAATCC	CCNGGC	1316
	(2) INFORMA	TION FOR SE	O ID NO: 18	1:			
35			IARACTERIST				
		(A) LENC	TH: 777 bas	se pairs			
			E: nucleic a ANDEDNESS: 0				
Ю			OLOGY: line				
	(xi)	SEQUENCE I	ESCRIPTION:	SEQ ID NO:	: 181:		

45	GGCATGWKCA	GACATGACTT	CTATTGCCAG	GCTGGTCAAG	TGGCAGGGTC	ATGAGGGAGA	60
15	CATCGATAAG	GGTGCTCCTT	ATGCTCCCTG	CTCTGGAATC	CACCAGCGGG	CTATCTGCGT	120
	TTATGGGGCT	GGGGACTAGA	ATTGGATGCT	TCAAAACCAT	CACCTGTTGG	CCAACAAGTT	180
50	TGACCCAAAG	GTAGATGATA	ATGCTCTTCA	GTGCTTAGAA	GAATACCTAC	GTTATAAGGG	240
	CCATTCTATT	GGGACCTGAA	CTTTGAAGAC	CACAMTATTG	AAGAGGCGTT	GCTTACCYGT	300
55	TGGGGCCAA	GAGGCATGTT	ACCAAACATG	GYYCARGAAM	YTTGGYKGGG	AMCARKKKKG	360
33	GKKGGGARRM	CMRGGGYTTG	SCAAWTTCSK	KGGCMWCCYT	TTAGGGTAAR	RRGGGCKGTW	420
	ATTAGATTGT	GGGTAAAGTA	GGATCTTTTG	CCCTTGCAAA	TTTGCTGCCT	GGGTGAATGY	480
60	TGCTTGTTCC	TTCTCMACCC	CTAACCCTAG	TAGTTCCTCC	ACTAACTTTC	TCACTAAGTG	540

WO 98/39448	PCT/US98/04493

	AGAATGAGAA CTGCTGTGAT AGGGAGAGTG AAGGAGGGAT ATGTGGTAGA GCACTTGATT	600
5	TCAGTTGAAT GCCTGCTGGT AGCTTTTCCA TTCTGTGGAG CTGCCGTTCC TAATAATTCC	660
	AGGTTTGGTA GCGTGGAGGA GAACTTTGAT GGAAAGAGAA CCTTCCCTTC	720
	ACTTAAAAAT AAATAGCTCC TGATTCAAAG TAAAAAAAAA AAAAAAAAA AAAAAAA	777
10		
	(2) INFORMATION FOR SEQ ID NO: 182:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 791 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182:	
25	GGCACAGATA ACTATGTACA TGTATTCCTT AAATGTTTTT TTAAGTTTTA TATTCTTGGC	60
25	ACTGGTCTTC AAATGTGTAC ATGTGTGCCA GGGAGCAAAT GCCTTCTTGT TTCTGAAATT	120
	GGTCTTTTAG ACTGTTCTTT TTTCCCATCT TCTCACCTCC TGCCCCTCCT TCAGGGTACT	180
30	TCCGTGGCCA GAACCCCTCC AGGTCAGAGG CAGAAGAGAA GCCTCATGGG TCACAGCAGC	240
	AGATGTGGGC TGGAGATCTA TTCATTTGGT TTTGGCTTGA ATTTTCTGRA TGGTTTACTT	300
	GATCYTGGGA AAGANATATC TTGCCAGGAA AAATGATAGN CCTTGACAAT GTTGAATGAT	360
35	CCTGCACCAC CTTGAAAGAC ATTTCTAATA TGGTTTGTCA GGCAAAGTGG TTAGTAGTCA	420
	TITGTGGCCT GAGGTAGAAG TCCTCAGAAA TCAGCAGACT TCACTGATAA AATGCTGACT	480
40	TGCCCCTGGA CTGGGCTCTG TGAGAGTGGC CTTCTGCACT GTGCACAGTA GGTGTGAACA	540
	CACCACACCT ACAGGACCA CGTGGTGGGC TGTGGACTAG CGGCCAAGCT CCCTGCAGGC	600
	CCACTAATAG AATTCAGCTT TTAGCATGGG CTGTTTCATA CTGTTCTGAT GAAACTGATT	660
45	TOGTTTCTTT CCTCCATACC CCTTCTGCAT TTCAGTGTTT TTGTTTAGTT TTCCTGGTTT	720
	TTAATTATAA CTACAAAATA AAATCTTTAG GCTATTCACC TTAGCTTAGT AAAAAAAAAA	780
5û	AAAAAAACT C	791
30		
55	(2) INFORMATION FOR SEQ ID NO: 183:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1405 base pairs (B) TYPE: nucleic acid	
60	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(b) Tolobodi. Illeaf	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:

5	AAATTGATTA	ACAGCTTGAA	AGAAGGCTCT	GGTTTTGAAG	GCCTAGATAG	CAGCACTGCC	60
J	AGTAGCATGG	AGCTGGAAGA	ACTTCGGCAT	GAGAAAGAGA	TGCAGAGGGA	GGAAATACAG	120
	AAGCTGATGG	GCCAGATACA	TCAGCTCAGA	TCCGAATTAC	AGGATATGGA	GGCACAGCAA	180
10	GTTAATGAAG	CAGAATCAGC	AAGAGAACAG	TTACAGGWTC	TGCATGACCA	AATAGCTGGG	240
	CAGAAAGCAT	CCAAACAAGA	ACTAGAGACA	GAACTGGAGC	GACTGAAGCA	GGAGTTCCAC	300
15	TATATAGAAG	AAGATCTTTA	TCGAACAAAG	AACACATTGC	AAAGCAGAAT	TAAAGATCGA	360
10	GACGAAGAAA	TTCAAAAACT	CAGGAATCAG	CTTACCAATA	AAACTTTAAG	CAATAGCAGT	420
	CAGTCTGAGT	TAGAAAATCG	ACTCCATCAG	CTAACAGAGA	CTCTCATCCA	GAAACAGACC	480
20	ATGCTGGAGA	GTCTCAGCAC	AGAAAAGAAC	TCCCTGGTCT	TTCAACTGGA	GCGCCTCGAA	540
	CAGCAGATGA	ACTCCGCCTC	TGGAAGTAGT	AGTAATGGGT	CTTCGATTAA	TATGTCTGGA	600
25	ATTGACAATG	GTGAAGGCAC	TCGTCTGCGA	AATGTTCCTG	TTCTTTTTAA	TGACACAGAA	660
23	ACTAATCTGG	CAGGAATGTA	CGGAAAAGTT	CGCAAAGCTG	CTAGTTCAAT	TGATCAGTTT	720
	AGTATTCGCC	TGGGAATTT	TCTCCGAAGA	TACCCCATAG	CGCGAGTTTT	TGTAATTATA	780
30	TATATGGCTT	TGCTTCACCT	CTGGGTCATG	ATTGTTCTGT	TGACTTACAC	ACCAGAAATG	840
	CACCACGACC	AACCATATGG	CAAATGAACC	AAGCCCAGTT	GTTGCAGTGA	TIGGTIGICT	900
35	TTTTCTAGAC	TTGGGATCTG	CAAGAAGGCC	AATTGCCTAA	AATTTCTGAG	AACAGTGCAC	960
	AAGATTATTT	TATCACTACA	AGCTTTTAAC	TTTTTAAGTT	ATTGTACAAG	TATTCTACCT	1020
	AAATCTTCCA	ATTTCCTTTA	AATGGTAAGA	GTTTCTAAAA	CAGACAATAA	TTTAACAAGC	1080
40	TCAGCTCTGC	TTTATCTGAG	TTTAGTGGTC	СТААТАТАТА	TGTAGAGAAA	GATGGTGGGG	1140
	TTGTTCACCT	CTGTACAGAC	CATCTGTATG	TTAGGTGACA	TTGATTATGG	GTTATAATCA	1200
45	GGGAAACTAA	TTGTATTTAG	TGACAAAAAT	AAAAAGTTTT	TTTTTTATAA	TTCAGTCTGC	1260
	TTTTGGATTT	TCATATATTT	AACTTTGCAA	AAAGATTTAC	TTTGTACATG	TTACAGGCTT	1320
	GATTGGTGTA	AATCTTTTTA	TAAATACATA	AATAAAAGNA	AAATATGCAT	TTTTCTTTTC	1380
50	ТААААААА	ааааааааа	CTCGA				1405

55 (2) INFORMATION FOR SEQ ID NO: 184:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1596 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

413

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184:

5	GTCATGCAGT GCGCCGGAGA ACTGTGCTCT TTGAGGCCGA CGCTAGGGGC CCGGAAGGGA	60
	AACTGCGAGG CGAAGGTGAC CGGGGACCGA GCATTTCAGA TCTGCTCGGT AGACCTGGTG	120
10	CACCACCACC ATGITGGCTG CAAGGCTGGT GTGTCTCCGG ACACTACCTT CTAGGGTTTT	180
10	CCACCCAGCT TTCACCAAGG CCTCCCCTGT TGTGAAGAAT TCCATCACGA AGAATCAATG	240
	GCTGTTAACA CCTAGCAGGG AATATGCCAC CAAAACAAGA ATTGGGATCC GGCGTGGGAG	300
15	AACTGGCCAA GAACTCAAAG AGGCAGCATT GGAACCATCG ATGGAAAAAA TATTTAAAAT	360
	TGATCAGATG GGAAGATGGT TTGTTGCTGG AGGGGCTGCT GTTGGTCTTG GAGCATTGTG	420
20	CTACTATGCC TTGGGACTGT CTAATGAGAT TGGAGCTATT GAAAAGGCTG TAATTTGGCC	480
20	TCAGTATGTC AAGGATAGAA TTCATTCCAC CTATATGTAC TTAGCAGGGA GTATTGGTTT	540
	AACAGCTTTG TCTGCCATAG CAATCAGCAG AACGCCTGTT CTCATGAACT TCATGATGAG	600
25	AGGCTCTTGG GTGACAATTG GTGTGACCTT TGCAGCCATG GTTGGAGCTG GAATGCTGGT	660
	ACGATCAATA CCATATGACC AGAGCCCAGG CCCAAAGCAT CTTGCTTGGT TGCTACATTC	720
30	TOGTGTGATG GGTGCAGTGG TGGCTCCTCT GACAATATTA GGGGGTCCTC TTCTCATCAG	780
	AGCTGCATGG TACACAGCTG GCATTGTGGG AGGCCTCTCC ACTGTGGCCCA TGTGTGCGCC	840
	CAGTGAAAAG TTTCTGAACA TGGGTGCACC CCTGGGAGTG GGCCTGGGTC TCGTCTTTGT	900
35	GTCCTCATTG GGATCTATGT TTCTTCCACC TACCACCGTG GCTGGTGCCA CTCTTTACTC	960
	AGTGGCAATG TACGGTGGAT TAGTTCTTTT CAGCATGTTC CTTCTGTATG ATACCCAGAA	1020
40	AGTAATCAAG CGTGCAGAAG TATCACCAAT GTATGGAGTT CAAAAATATG ATCCCATTAA	1080
	CTCGATGCTG AGTATCTACA TGGATACATT AAATATATTT ATGCGAGTTG CAACTATGCT	1140
	GCCAACTGGA GCCAACAGAA AGAAATGAAG TGACTCAGCT TCTGGCTTCT CTGCTACATC	1200
45	AAATATCTTG TTTAATGGGG CAGATATGCA TTAAATAGTT TGTACAAGCA GCTTTCGTTG	1260
	AAGTTTAGAA GATAAGAAAC ATGTCATCAT ATTTAAATGT TCCGGTAATG TGATGCCTCA	1320
50	GGICTGCCTT TTTTTCTGGA GAATAAATGC AGTAATCCTC TCCCAAATAA GCACACACAT	1380
	TTTCAATTCT CATGTTTGAG TGATTTTAAA ATGTTTTGGT GAATGTGAAA ACTAAAGTTT	1440
	GTGTCATGAG AATGTAAGTC TTTTTTCTAC TTTAAAATTT AGTAGGTTCA CTGAGTAACT	1500
55	AAAATTTAGC AAACCTGTGT TTGCATATTT TTTKGGAGTG CAGMMTAWTG TAATTARAGC	1560
	ATTCCAGTAA NAGTGTNTTT AAAGTTGNTC TATATN	1596

WO 98/39448

PCT/US98/04493

414

(2) INFORMATION FOR SEQ ID NO: 185:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2293 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185:

••	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 165:	
	GCGCAGAGCC CGYACGAGCA GGACGACGAC GACAAGGCG ACTCCAAGGA AACGCGGCTG	60
15	ACCCTGATGG AGGAAGTGCT CCTGCTGGGC CTCAAGGACC GCGARGGTTA CACATCATTT	120
••	TGGAATGACT GTATATCATC TGGATTACGT GGCTGTATGT TAATTGAATT AGCATTGAGA	180
	GGAAGGTTAC AACTAGAGGC TTGTGGAATG AGACGTAAAA GTCTATTAAC AAGAAAGGTA	240
20	ATCTGTAAGT CAGATGCTCC AACAGGGGAT GTTCTTCTTG ATGAAGCTCT GAAGCATGTT	300
	AAGGAAACTC AGCCTCCAGA AACGGTCCAG AACTGGATTG AATTACTTAG TGGTGAGACA	360
25	TGGAATCCAT TAAAATTGCA TTATCAGTTA AGAAATGTAC GGGAACGATT AGCTAAAAAC	420
	CTGGTGGAAA AGGGTGTATT GACAACAGAG AAACAGAACT TCCTACTTTT TGACATGACA	480
	ACACATCCCC TCACCAATAA CAACATTAAG CAGCGCCTCA TCAAGAAAGT ACAGGAAGCC	540
30	GTTCTTGACA AATGGGTGAA TGACCCTCAC CGCATGGACA GGCGCTTGCT GGCCCTCATT	600
	TACCTGGCTC ATGCCTCGGA CGTCCTGGAG AATGCTTTTG CTCCTCTTCT GGACGAGCAG	660
35	TATGATTTGG CTACCAAGAG AGTGCGGCAG CTTCTCGACT TAGACCCTGA AGTGGAATGT	720
	CTGAAGGCCA ACACCAATGA GGTTCTGTGG GCGGTGGTGG CGGCGTTCAC CAAGTAACTC	780
	TGCTCGGGGT GAACCATTCT CCTTTCTCTC AAGTAAACCA GTAGTTTTC TTCTGTTGAC	840
40	TTCTGGTTTT CTGTAATTTG TACTTTCCCA CACTATAATT GGCTTCTGTT TTACAAAATG	900
	GTGGGTGGCT TTTTCTTTTT TGTACGTGTA CAGGATTCTG CTGGTACGAG AGGCCTTCCT	960
45	CITTCIGIT TTAAAAAAAG TTITACTGCC ATATTGGCAT TCCATTCCCT GTTGCCATCC	1020
	TCACTGTTAC CTGTTTTGGG TTTCTGGTCT ACTTTGACTT TCAAAGTACC TCCAGCCTCC	1080
	TCATACGCAC AGCTTTTGGA TGACCTCAGC TTGAGTTTCT CCATATGTGC ATGTACATCT	1140
50	AGCATTCTGC CTACAGTTCA GACAGAAGTC ACAAAAAGGC CTTCAACTCA CCAAAGGTAA	1200
	ATATCTGTAT CTATTAGGAC ATTTTTTACA TAGACTTCAG TTGAGATGTA TACTTAGCAA	1260
55	AATTATTTTT AAATTGAAAC AGCACAGTAA ATACTTAATA TAAAATGTCC CTTGGATTTT	1320
	GCTTCCCATG TAAATCTATT GTATTATTAC ACTTGTTATA ATTTTAACTA TAAAGGTCCA	1380
	ATTGTTTCAC AGAGCCAGTT TGGGATGGGC TGCATTCCAT TTATGCTGTA TATAGTTTGA	1440
60	ATTATATATA AATTACCCCT TCTTCTGGCC ACCCCTGCTC CCATCTTAGT ATTTTGCAAG	1500

415

	ATCTAATCAG TTGTACACCT GGTGCCCCTC GCTTGCTTCA ATCATGGTTA TTTGATGGCA	1560
5	AAATCGACCT CTTGTCGCTG AAGGAGAGA AAAAGATGTG TGTCTGATTG GTCCTGGGAT	1620
,	TTTTTGAGCT GTGCCATTTA TGGTACTCTT TGCCTATGCA TCCCCTTTTT AGATTTTTTT	1680
	TARATTTTAT CTTACTGTTT TTATAATTTC TATTGGGAAG AGGCTTGTGA CCAGTACCAA	1740
10	TCTTGAGTTT CTTTTTCTGT CCACAAGTAA ATTAATATCT GCTCTGAAAT GTCATTTATC	1800
	TACTCACACA TICTIGGGA AAAAAATCAA ATGTCAGTCC TAGCAGATGT TGCATGTAAA	1860
15	TTGGTAGCAA GTAATGATTA CAACCCAGAG GATTAAGAAT TTTGTAACAG AAAGCTCTAT	1920
13	GTTTTAATTT TTTATATACA ATTAGGATAA TTAGCATTGT CAGACTATAA ACCTTTGCTT	1980
	TTTAAAGTTT ATTTTTACTA TTTCTTTATC ACTTTATTGT ATCATCACCA TTGGTTTCAT	2040
20	AATGTAAATA CTATATGTTG AACAAATTAA ATGTCAAAAT TTTTTATTAC CATAGTCCAT	2100
	GTTAATAGTG GGGCTTTCAG GTGTTTAGAG ATTTTTTTTTG TTGTTGTTAA CATTCATTGC	2160
25	AAAAGTACTA GATGGTGTAT AACTCTAGAG TTGAATTTTA AGGGATTCCC TAATATGTAT	2220
23	ACTATCTTT TATCTGAAGT AATAAATAAA CAATGATCTT GAAAGTGCCY RAAAMAAAAA	2280
	AAAAAAAAA AAA	2293
30		
	(0)	
	(2) INFORMATION FOR SEQ ID NO: 186:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186:	
	GGCACGAGGC GAGCCGGCGC ACCGTACGCT GGGACGTGTG GTTTCAGCTC GTGCGCCTCC	60
45	CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG	120
	GCCGTGGCTG CTGGTCCCGG GTGATGCTAG GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG	180
50	GTGTAGGTGG GAGTCACGGA CGGTTCGGGG CCCGAGGTGT CCGCGAAGGT GGCGCACATG	240
50	GGCGGCAGGG GAGAGCATGG CTCAGCGGAT GGTCTGGGTG GACCTGGAGA TGACAGGATT	300
	GGACATTGAG AAGGACCAGA TTATTGAGAT GGCCTGTCTG ATAACTGACT CTGATCTCAA	360
55	CATTITIGGCT GAAGGTCCTA ACCTGATTAT AAAACAACCA GATGAGTTGC TGGACAGCAT	420
	CTCACAUTICC TOTALACCIACO ATTOLACCIAL CONTROLOGORIA ACCIALOGUA TOLACACIA	400
	GTCAGATTGG TGTAAGGAGC ATCACGGGAA GTCTGGCCTT ACCAAGGCAG TGAAGGAGAG	480

TACAATTACA TTGCAGCAGG CAGAGTATGA ATTTCTGTCC TTTGTACGAC AGCAGACTCC

60

416

	TCCAGGGCTC TGTCCACTTG CAGGAAATTC AGTTCATGAA GATAAGAAGT TTCTTGACAA	600
	ATACATGCCC CAGTTCATGA AACATCTTCA TTATAGAATA ATTGATGTGA GCACTGTTAA	660
5	AGAACTGTGC AGACGCTGGT ATCCAGAAGA ATATGAATTT GCACCAAAGA AGGCTGCTTC	720
	TCATAGGGCA CTTGATGACA TTAGTGAAAG CATCAAAGAG CTTCAGTTTT ACCGAAATAA	780
10	CATCTTCAAG AAAAAATAG ATGAAAAGAA GAGGAAAATT ATAGAAAATG GGGAAAATGA	840
•	GAAGACCGTG AGTTGATGCC AGTTATCATG CTGCCACTAC ATCGTTATCT GGAGGCAACT	900
	TCTGGTGGTT TTTTTTTCTC ACGCTGATGG CTTGGCAGAG CACCTTCGGT TAACTTGCAT	960
15	CTCCAGATTG ATTACTCAAG CAGACAGCAC ACGAAATACT ATTTTTCTCC TAATATGCTG	1020
	TTTCCATTAT GACACAGCAG CTCCTTTGTA AGTACCAGGT CATGTCCATC CCTTGGTACA	1080
20	TATATGCATT TGCTTTTAAA CCATTTCTTT TGTTTAAATA AATAAATAAG TAAATAAAGC	1140
20	ТАСТІСТАТТ САААТССААА ААААААААА ААААААААА АААААААА	1200
	AAAAAAAA AN	1212
25		
30 35	(2) INFORMATION FOR SEQ ID NO: 187: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1605 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187:	
••	GCTTCCGGAA GTTGCTTTTG TCCAAACATC CGGGCTTCTC CTTTTTGTGT TCCGGCCGAT	60
40	CCCACCTCTC CTCGACCCTG GACGTCTACC TTCCGGAGGC CCACATCTTG CCCACTCCGC	120
	GCGCGGGGCT AGCGCGGGTT TCAGCGACGG GAGCCCTCAA GGGACATGGC AACTACAGCG	180
45	GCGCCGGCGG GCGCCCCC AAATGGAGCT GGCCCGGAAT GGGGAGGGTT CGAAGAAAAC	240
	ATCCAGGGCG GAGGCTCAGC TGTGATTGAC ATGGAGAACA TGGATGATAC CTCAGGCTCT	300
	AGCTTCGAGG ATATGGGTGA GCTGCATCAG CGCCTGCGCG AGGAAGAAGT AGACGCTGAT	360
50	GCAGCTGATG CAGCTGCTGC TGAAGAGGAG GATGGAGAGT TCCTGGGCAT GAAGGGCTTT	420
	AAGGGACAGC TGAGCCGGCA GGTGGCAGAT CAGATGTGGC AGGCTGGGAA AAGACAAGCC	480
55	TCCAGGCCT TCAGCTTGTA CGCCAACATC GACATCCTCA GACCCTACTT TGATGTGGAG	540
	CCTGCTCAGG TGCGAACAGG GCTCCTGGAG TCCATGATCC CTATCAAGAT GGTCAACTTC	600
	CCCCAGAAAA TTGCAGGTGA ACTCTATGGA CCTCTCATGC TGGTCTTCAC TCTGGTTGCT	660

ATCCTACTCC ATGGGATGAA GACGTCTGAC ACTATTATCC GGGAGGGCAC CCTGATGGGC

720

417

	ACAGCCATTG	GCACCTGCTT	CGGCTACTGG	CTGGGAGTCT	CATCCTTCAT	TTACTTCCTT	780
5	GCCTACCTGT	GCAACGCCCA	GATCACCATG	CTGCAGATGT	TGGCACTGCT	GGGCTATGGC	840
	CTCTTTGGGC	ATTGCATTGT	CCTGTTCATC	АССТАТААТА	TCCACCTCCA	CCCCTCTTC	900
	TACCTCTTCT	GGCTGTTGGT	GGGTGGACTG	TCCACACTGC	GCATGGTAGC	AGTGTTGGTG	960
10	TCTCGGACCG	TGGGCCCCAC	ACAGCGGCTG	CTCCTCTGTG	GCACCCTGGC	TGCCCTACAC	1020
	ATGCTCTTCC	TGCTCTATCT	GCATTTTGCC	TACCACAAAG	TGGTAGAGGG	GATCCTGGAC	1080
15	ACACTGGAGG	GCCCCAACAT	CCCGCCCATC	CAGAGGGTCC	CCAGAGACAT	CCCTGCCATG	1140
	CTCCCTGCTG	CTCGGCTTCC	CACCACCGTC	CTCAACGCCA	CAGCCAAAGC	TCTTCCCCTC	1200
	ACCCTGCAGT	CACACTGACC	CCACCTGAAA	TTCTTGGCCA	GTCCTCTTTC	CCGCAGCTGC	1260
20	AGAGAGGAGG	AAGACTATTA	AAGGACAGTC	CTGATGACAT	GTTTCGTAGA	TGGGCTTTGC	1320
	AGCTGCCACT	GAGCTGTAGC	TGCGTAAGTA	CCTCCTTGAT	GCNTGTCGGC	ACTTCTGAAA	1380
25	GGCACAAGGC	CAAGAACTCC	TGGCCAGGAC	TGCAAGGCTC	TGCAGCCAAT	GCAGAAAATG	1440
	GGTCAGCTCC	TTTGAGAACC	CCTCCCCACC	TACCCCTTCC	TTCCTCTTTA	TCTCTCCCAC	1500
	ATTGTCTTGC	TAAATATAGA	CTTGGTAATT	AAAATGTTGA	TTGAAGTCTG	GAAAAAAAA	1560
30	АААААААА	AAAAAAAA	АААААААА	AAAAAAAAC	TCGAG		1605

35 (2) INFORMATION FOR SEQ ID NO: 188:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1516 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:

45	ATTCGGCATG AGGGGTCAC G	STOGTGGCTG	GGCCGGGGAA	ATGGCGGCTT	CAGGAGAGAG	60
	CGGGACTTCA GGCGGCGGAG G	GCAGCACCGA	GGAAGCATTT	ATGACCTTCT	ACAGTGAGGT	120
50	GAAACAAATA GAGAAGAGAG A	ACTCGGTTCT	AACTTCGAAA	AATCAGATTG	AAAGACTGAC	180
	CCGTCCTGGT TCCTCTTACT T	ICAATTIGAA	CCCATTTGAG	GTTCTTCAGA	TAGATCCTGA	240
	AGTTACAGAT GAAGAAATAA A	AAAAGAGGTT	TCGGCAGTTA	TCCATCTTGG	TGCATCCTGA	300
55	CAAAAATCAA GATGATGCTG A	ACAGAGCACA	AAAGGCTTTT	GAAGCTGTGG	ACAAAGCTTA	360
	CAAGTTGCTA CTGGATCAGG A	AGCAAAAGAA	GAGGGCCCTG	GATGTAATTC	AGGCAGGAAA	420
60	AGAATACGTG GAACACACTG T	TGAAAGAGCG	AAAAAAACAA	TTAAAGAAGG	AAGGAAAACC	480

	ma Ca ammoma	C1001001ma	\				
	TACAATIGTA	GAGGAGGATG	ATCCTGAGCT	GTTCAAACAA	GCTGTATATA	AACAGACAAT	540
	GAAACTCTTT	GCAGAGCTGG	AAATTAAAAG	GAAAGAGAGA	GAAGCCAAAG	AGATGCATGA	600
5	AAGGAAACGA	CAAAGGGAAG	AAGAGATTGA	AGCTCAAGAA	AAAGCCAAAC	GGGAAAGAGA	660
	GTGGCAGAAA	AACTTTGAGG	AAAGTCGAGA	TEGTEGIGTG	GACAGCTGGC	GAAACTTCCA	720
10	AGCCAATACG	AAGGGGAAGA	AAGAGAAGAA	AAATCGGACC	TTCCTGAGAC	CACCGAAAGT	780
	AAAAATGGAG	CAACGTGAGT	GACCGCCCAA	GGTCACAGGC	ACAGAACCTT	TCCCCTGCTA	840
	TCTCCCTTCC	TGCTTCGAAG	GACTCATTCT	TTCCTCCCAC	TTCCACCCCA	ACATAGAGTA	900
15	GTATTTGCTT	TTTAGTCCAT	TTTGTTTTCA	ATACGATTTA	ATATCGATCA	GAGTAATICT	960
	TTTGTACATT	GAAATGAGGG	GCTTGGTTTA	AAAAAAGACC	TTTCCCTCTC	CCTGCCCCTA	1020
20	GAACAACCAG	TATTAGAAGG	TGCCACCATT	GGTGCTGCCT	TCTCTTCCCA	CAGCCTGTAA	1080
	CTCAGTGTTT	TGTACTTCAC	TGAATTGTGA	TGGTTAGAAA	CTTCGTGGAT	AGTTTGTGGA	1140
	AATCATCCAA	TTAAACATAC	TGCTTAAAAC	AGTGTTGCTG	TGACTTCAGA	GACAAGCCTG	1200
25	GAAGGGGCAC	CITAGGAAGC	CCCTTCGCTT	CAGTTGCTCG	CTTCTGGGTG	TGCTCCCTTC	1260
	GAAGGCCCAG	ATAAGACAGG	GAACACTTGT	GAGCACACAG	AGCAGCATCT	GATGCCCTGT	1320
30	GGTGTTTGGC	ATGTGCCCCC	TGTCTACTGA	CCAATCAGTG	TGGCATGAGG	CCCACGCCAC	1380
50	CCAAACCTTT	CACTTICCAA	AGAGCTAGCC	GTCCTCCACC	CAGTACCATG	TCCTAGCCTG	1440
	TCTGCATTTG	TTAGTGGTAA	TATTCTTTAT	GTATAATAAA	TTTTTATACC	САААААААА	1500
35	ААААААААА	ACTCGA					1516
40	(2) INFORMA	TION FOR SE	EQ ID NO: 18	9:			

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 681 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189:

50	GCTCCCATGT	TGCTGGCTGT	CCCTACATCA	CCCTGTCCCC	TGCAGGAGGG	GGCTACAGGC	60
	CATCTCCCTC	CTGTAGGCCT	CTGACTCCCC	TCCACTTTTG	GCCCTCAGC	TTATCTCGGG	120
55	CAGGGGACCA	TTGCAGCATC	CTCCCCTCCT	CNGGACTCAA	GGTGCTGAGG	TATAAGCCCT	180
<i>55</i>	GGGCCCCAGA	TCCCTGRTKA	CACCTTCCTG	GAGAAGACTC	TCAAAAGTGA	CTGTATATTT	240
	GAGTTCACCA	GCAATAACTC	CCCACACTCG	AAGCAGGTCC	AAACCCMAGG	ATCCCAGGGT	300
60	CCTTGGGCTC	TGTGGCACTG	TCTTCCCAAG	ATCCTTCCTG	TTGCACAATG	GGAAACCTAA	360

419

	GAGGAAAAAG	ACAGGGGCCT	GCTTGCCCAG	CCATGCGAGG	GATTCCATGC	CCACCTGCCC	420
5	TCTGYCTGCC	TCGCTGGAAT	GTGGGCCCCT	CCTCCCCCTC	AGGTTGTGCT	GTCTCTGACC	480
5	TATGTTTACA	TCCCCGAGGG	GTTTCTGCCT	CCTCCCCACC	CAGGTCAGGG	TGTGGTCCAG	540
	CAGCTTGCTG	TGGGGTGCTG	ACATGTGTCA	CCACTGCCCC	CCTTGCCCCC	GGGGGGTCA	600
10	TOGTCTCCTC	CTGGATGCTG	CTCCTTGAAT	YTTTTTTYTT	GAWAAACCYT	TTAMAATTAA	660
	AAAAAAAAA	AAAAAACTCG	A				681
15							
	(2) INFORMA	TION FOR SE	Q ID NO: 19	00:			
	(i)	SEQUENCE CH	!ARACTERIST	ICS:			

(A) LENGTH: 1014 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:

20

30

35

40

45

50

55

60

GCCTCAAGCC ACGCATATGA TAATTTTCTG GAACATTCAA ATTCAGTGTT TCTACAGCCA 60 GTTAGTCTAC AAACCATTGC AGCAGCACCA TCAAACCAGA GTCTGCCACT TTTTGTCATC 120 GCTGGATGAT TGCTGGGCAA AGGTGGCCTT TTAGAGCTCT TAAAAAGCCCA CAAAAAGGCT 180 ATTCGTAGAG CCACAGTCAA CACATTTGGT TATATTGCAA AGGCCATTGG CCTCATGATG 240 TATTGGCTAC ACTTCTGAAC AACCTCAAAG TTCAAGAAAG GCAGAACAGA GTTTGTACCA 300 CTGTAGCAAT AGCTATTGTT GCAGAAACAT GTTCACCCTT TACAGTACTC CCTGCCTTAA 360 TGAATGAATA CAGACTTCCT GAACTGAATG TTCAAAATGG AGTGTTAAAA TCGCTTTCCT 420 TCTTGTTTGA ATATATTGGT GAAATGGGAA AAGACTACAT TTATGCCGTA ACACCGTTAC 480 TTGAAGATGC TTTAATGGAT AGAGACCTTG TACACAGACA GACGCTAGT GCAGTGGTAC 540 AGCACATGTC ACTTGGGGTT TATGGATTTG GTTGTGAAGA TTCGCTGAAT CACTTGTTGA 600 ACTATGTATG GCCCAATGTR TTTGAGACAT CTCCTCATGT AATTCAGGCA GTTATGGGAG 660 CCCTAGAGGG CCTGAGAGTT GCTATTGGAC CATGTAGAAT GTTGCAATAT TGTTTACAGG 720 GTCTGTTTCA CCCAGCCCGG AAAGTCAGAG ATGTATATTG GAAAATTTAC AACTCCATCT 780 ACATTGGTTC CCAGGACGCT CTCATAGCAC ATTACCCAAG AATCTACCAA CGATGATAAG 840 RACACCTATA TTCGTTATGA ACTTGACTAT ATCTTATAAT TTTATTGTTW ATTTKGTGKT 900 TAATGCACAS TACTTCACAC CTTAAACTTG CTTTGATTTG GTGATGTAAA CTTTTAAACA 960 TTGCAGATCA GTGTAGGACT GGTCCATAGG GGAAGAGCTA GGAANTCCAT AGGC 1014

(2)	INFORMATION	FOR	SEO	ID	NO:	191:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2779 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191:

(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 191:						
15	TCGCAGCAGG GTGTGTCCAG ATGGTCAGTC TCTGGTGGCT AGCCTGTCCT GACAGGGGAG	60				
	AGTTAAGCTC CCGYTCTCCA CCGTGCCGGC TGGCCAGGTG GGCTGAGGGT GACCGAGAGA	120				
	CCAGAACCTG CTTGCTGGAG CTTAGTGCTC AGAGCTGGGG AGGGAGGTTC CGCCGCTCCT	180				
20	CTGCTGTCAG CGCCGGCAGC CCCTCCCGGC TTCACTTCCT CCCGCAGCCC CTGCTACTGA	240				
	GAAGCTCCGG GATCCCAGCA GCCGCCACGC CCTGGCCTCA GCCTGCGGGG CTCCAGTCAG	300				
25	GCCAACACCG ACGCGCANTG GGAGGAAGAC AGGACCCTTG ACATCTCCAT CTGCACAGAG	360				
23	GTCCTGGCTG GACCGAGCAG CCTCCTCCTC CTAGGATGAC CTCACCCTCC AGCTCTCCAG	420				
	TTTTCAGGTT GGAGACATTA GATGGAGGCC AAGAAGATGG CTCTGAGGCG GACAGAGGAA	480				
30	AGCTGGATTT TGGGAGCGGG CTGCCTCCCA TGGAGTCACA GTTCCAGGGC GAGGACCGGA	540				
	AATTOGCCCC TCAGATAAGA GTCAACCTCA ACTACCGAAA GGGAACAGGT GCCAGTCAGC	600				
35	CGGATCCAAA CCGATTTGAC CGAGATCGGC TCTTCAATGC GGTCTCCCGG GGTGTCCCCG	660				
33	AGGATCTGCC TGGACTTCCA GAGTACCTGA GCAAGACCAG CAAGTACCTC ACCGACTCGG	720				
	AATACACAGA GGGCTCCACA GGTAAGACGT GCCTGATGAA GGCTGTGCTG AACCTTAAGG	780				
40	ACGGGGTCAA TGCCTGCATT CTGCCACTGC TGCAGATCGA CCGGGACTCT GGCAATCCTC	840				
	AGCCCCTGGT AAATGCCCAG TGCACAGATG ACTATTACCG AGGCCACAGC GCTCTGCACA	900				
45	TCGCCATTGA GAAGAGGAGW CTGCAGTGTG TGAAGCTCCT GGTGGAGAAT GGGGCCAATG	960				
•••	TGCATGCCCG GGTCTGCGGC GCTTCTTCCA GAAGGGCCAA GGGACTTGCT TTTATTTCGG	1020				
	TGAGCTACCC CTCTYTTTGG CCGCTTGCAC CAAGCAGTGG GATGTGGTAA GCTACCTCCT	1080				
50	GGAGAACCCA CACCAGCCCG CCAGCCTGCA GGCACTGACT CCCAGGGCAA CACAGTCCTG	1140				
	CATGCCCTAG TGATGATCTC GGACAACTCA GCTGAGAACA TTGCACTGGT GACCAGCATG	1200				
55	TATGATGGGC TCCTCCAAGC TGGGGCCCGC CTCTGCCCTA CCGTGCAGCT TGAGGACATC	1260				
55	CGCAACCTGC AGGATCTCAC GCCTCTGAAG CTGGCCGCCA AGGAGGGCAA GATCGAGATT	1320				
	TTCAGGCACA TCCTGCAGCG GGAGTTTTCA GGACTGAGCC ACCTTTCCCG AAAGTTCACC	1380				
60	GAGTGGTGCT ATGGGCCTGT CCGGGTGTCG CTGTATGACC TGGCTTCTGT GGACAGCTGT	1440				

	GAGGAGAACT	CAGTGCTGGA	GATCATTGCC	TTTCATTGCA	AGAGCCCGCA	CCGACACCGA	1500
5	ATGGTCGTTT	TGGAGCCCCT	GAACAAACTG	CTGCAGGCGA	AATGGGATCT	GCTCATCCCC	1560
3	AAGTTCTTCT	TAAACTTCCT	GTGTAATCTG	ATCTACATGT	TCATCTTCAC	CCCTCTTCCC	1620
	TACCATCAGC	CTACCCTGAA	GAAGCAGGCC	GCCCCTCACC	TGAAAGCGGA	GGTTGGAAAC	1680
10	TCCATGCTGC	TGACGGGCCA	CATCCTTATC	CTGCTAGGGG	GGATCTACCT	CCTCGTGGGC	1740
	CAGCTGTGGT	ACTICIGGCG	GCGCCACGTG	TTCATCTGGA	TCTCGTTCAT	AGACAGCTAC	1800
15	TTTGAAATCC	TCTTCCTGTT	CCARGCCCTG	CTCACAGTGG	TGTCCCARGT	GCTGTGTTTC	1860
	CTGGSCATCG	AGTGGTACCT	GCCCCTGCTT	GTGTCTGCGC	TOCTCCTCGG	CTGGCTGAAC	1920
	CTGCTTTACT	ATACACGTGG	CTTCCAGCAC	ACAGGCATCT	ACAGTGTCAT	GATCCAGAAG	1980
20	CCCTGGTGAG	CCTGAGCCAG	GANIVITIGGCG	CCCCGAAGCT	CCTACAGGCC	CCAATGCCAC	2040
	AGAGTCAGTG	CAGCCCATGG	AGGGACAGGA	KGACGAKGGC	AACGGGGCCC	AGTACAGGG	2100
25	TATCCTGGAA	GCCTCCTTGG	AGCTCTTCAA	ATTCACCATC	GGCATGGGCG	AGCTGGCCTT	2160
25	CCAGGARCAG	CTGCACTTCC	GCGGCATGGT	GCTGCTGCTG	CTGCTGGSCT	ACGTGCTGCT	2220
	CACCTACATC	CTGCTGCTCA	ACATGCTCAT	CGCCCTCATG	AGCGAGACCG	TCAACAGTGT	2280
30	CGCCACTGAC	AGCTGGAGCA	TCTGGAAGCT	GCAGAAAGCC	ATCTCTGTCC	TGGAGATGGA	2340
	GAATGGCTAT	TGGTGGTGCA	GGAAGAAGCA	GCGGGCAGGT	GIGATGCTGA	CCGTTGGCAC	2400
35	TAAGCCAGAT	GGCAGCCCSG	ATGAGCGCTG	GTGCTTCAGG	GTGGAGGAGG	TGAACTGGGC	2460
	TTCATGGGAG	CAGACGCTGC	CTACGCTGTG	TGAGGACCCG	TCAGGGGCAG	GTGTCCCTCG	2520
	AACTCTCGAG	AACCCTGTCC	TGGCTTCCCC	TCCCAAGGAG	GATGAGGATG	GTGCCTCTGA	2580
40	GGAAAACTAT	GIGCCCGTCC	AGCTCCTCCA	GICCAACTGA	TGGCCCAGAT	GCAGCAGGAG	2640
	GCCAGAGGAC	AGAGCAGAGG	ATCTTTCCAA	CCACATCTGC	TGGCTCTGGG	GTCCCAGTGA	2700
45	ATTCTGGTGG	САААТАТАТА	TTTTCACTAA	СТСАААААА	АААААААА	АААААААА	2760
-+J	ааааааааа	AAAAAAGGC					2779

50

(2) INFORMATION FOR SEQ ID NO: 192:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1923 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:

60

	ACCCGCTCCG	CTCCGCTCCG	CTCGGCCCCG	CGCCGCCCGT	CAACATGATC	CGCTGCGGCC	60
	TGGCCTGCGA	GCGCTGCCGC	TGGATCCTGC	CCCTGCTCCT	ACTCAGCGCC	ATCGCCTTCG	120
5	ACATCATCGC	GCTGGCCGGC	CGCGGCTGGT	TGCAGTCTAG	CGACCACGGC	CAGACGTCCT	180
	CGCTGTGGTG	GAAATGCTCC	CAAGAGGGCG	GCGGCAGCGG	GTCCTACGAG	GAGGGCTGTC	240
10	AGAGCCTCAT	GGAGTACGCG	TGGGGTAGAG	CAGCGGCTGC	CATGCTCTTC	TGTGGCTTCA	300
10	TCATCCTGGT	GATCTGTTTC	ATCCTCTCCT	TCTTCGCCCT	CTGTGGACCC	CAGATGCTTG	360
	TCTTCCTGAG	AGTGATTOGA	CGTCTCCTTG	CCTTGGCTGC	TGTGTTCCAG	ATCATCTCCC	420
15	TGGTAATTTA	CCCCGTGAAG	TACACCCAGA	CCTTCACCCT	TCATGCCAAC	CSTGCTGTCA	480
	CTTACATCTA	TAACTGGGCC	TACGGCTTTG	GGTGGGCAGC	CACGATTATC	CTGATYGGCT	540
20	GTGCCTTCTT	CTTCTGCTGC	CTCCCCAACT	ACGAAGATGA	CCTTCTGGGC	AATGCCAAGC	600
20	CCAGGTACTT	CTACACATCT	GCCTAACTTG	GGAATGAATG	TGGGAGAAAA	TCGCTGCTGC	660
	TGAGATGGAC	TCCAGAAGAA	GAAACTGTTT	CTCCAGGCGA	CTTTGAACCC	ATTTTTTGGC	720
25	AGTGTTCATA	TTATTAAACT	AGTCAAAAAT	GCTAAAATAA	TTTGGGAGAA	TTTTTTATAA	780
	AAGTAGTGTT	ATAGTTTCAT	GTTTATCTTT	TATTATGTTT	TGTGAAGTTG	TGTCTTTTCA	840
30	CTAATTACCT	ATACTATGCC	AATATTTCCT	TATATCTATC	CATAACATTT	ATACTACATT	900
	TGTAAGAGAA	TATGCACGTG	AAACTTAACA	CTTTATAAGG	TAAAAATGAG	GTTTCCAAGA	960
	TTTAATAATC	TGATCAAGTT	CTTGTTATTT	CCAAATAGAA	TGGACTCGGT	CTGTTAAGGG	1020
35	CTAAGGAGAA	GAGGAAGATA	AGGTTAAAAG	TTGTTAATGA	CCAAACATTC	TAAAAGAAAT	1080
	GCAAAAAAA	AGTTTATTTT	CAAGCCTTCG	AACTATTTAA	GGAAAGCAAA	ATCATTTCCT	1140
40	AAATGCATAT	CATTTGTGAG	AATTTCTCAT	TAATATCCTG	AATCATTCAT	TTCAGCTAAG	1200
	GCTTCATGTT	GACTCGATAT	GTCATCTAGG	AAAGTACTAT	TTCATGGTCC	AAACCTGTTG	1260
	CCATAGTTGG	TAAGGCTTTC	CTTTAAGTGT	GAAATATTTA	GATGAAATTT	TCTCTTTTAA	1320
45	AGTTCTTTAT	AGGGTTAGGG	TGTGGGAAAA	TGCTATATTA	ATAAATCTGT	AGTGTTTTGT	1380
	GTTTATATGT	TCAGAACCAG	AGTAGACTGG	ATTGAAAGAT	GGACTGGGTC	TAATTTATCA	1440
50	TGACTGATAG	ATCTGGTTAA	GTTGTGTAGT	AAAGCATTAG	GAGGGTCATT	CTTGTCACAA	1500
	AAGTGCCACT	AAAACAGCCT	CAGGAGAATA	AATGACTTGC	TTTTCTAAAT	CTCAGGTTTA	1560
	TCTGGGCTCT	ATCATATAGA	CAGGCTTCTG	ATAGTTTGCA	ACTGTAAGCA	GAAACCTACA	1620
55	TATAGTTAAA	ATCCTGGTCT	TTCTTGGTAA	ACAGATTTTA	AATGTCTGAT	ATAAAACATG	1680
	CCACAGGAGA	ATTCGGGGAT	TTGAGTTTCT	CTGAATAGCA	TATATATGAT	GCATCGGATA	1740
60	GGTCATTATG	ATTTTTACC	ATTTCGACTT	ACATAATGAA	AACCAATTCA	TTTTAAATAT	1800

423

	CAGATTATTA 1	TTTTGTAAGT	TGTGGAAAAA	GCTAATTGTA	GTTTTCATTA	TGAAGTTTTC	1860
	CCAATAAACC A	AGGTATTCTA	аааааааа	AAAAAAACTN	GAGGGGGGCC	CCGGTACCCA	1920
5	ATT						1923

10 (2) INFORMATION FOR SEQ ID NO: 193:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2346 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEO ID NO: 193:

20 AGGCTCAGGG GGACACTCTC AAAATTACAC AGCTTTTAAC AGGTGGCAGA ATTGGGGTTC 60 AGACCCAGAT CTGGGTTCAA GTCACTCATG GTGTGATTGC GGCATTCCTT CCCGCATCTG 120 GGCCTTGCCA TCTCTCTCTC CGAGTGGACA TGGAGAGGAC GGGGGCCCAG CAGCTGGATG 180 25 GCTGCAGGGG ATCAAGTCTT CTCTGGGGCT GGGCACGTAN AAGAGCATGT GGCTGGTGGA 240 CGGCATGCCT GGCTCCTCAC CTGGCAGTCT GCCTGCCCTG CTAACCGGCT GTCTCTTGTT 300 30 CCCCTAGTGC CCTCGGCTAG CATGACCCGC CTGATGCGWT SCCGCACAGC CTCTGGTTCC 360 AGCGTCATTC TCTGGATGGC ACCCGCAGCC GCTCCCACAC CAGCGAGGGC ACCCGAAGCC 420 GCTCCCACAC CAGCGAGGGC ACCCGCAGCC GCTCGCACAC CAGCGAGGGG GCCCACCTGG 480 35 ACATCACCCC CAACTCGGGT GCTGCTGGGA ACAGNGCCGG GCCCAAGTCC ATGGAGGTCT CCTGCTAGGC GGCCTGCCCA GCTGCCGCCC CCGGACTCTG ATCTCTGTAG TGGCCCCCTC 600 40 CTCCCCGGCC CCTTTTCGCC CCCTGCCTGC CATACTGCGC CTAACTCGGT ATTAATCCAA AGCTTATTT GTAAGAGTGA GCTCTGGTGG AGACAAATGA GGTCTATTAC GTGGGTGCCC 720 780 45 CTCTTCCATT AACCAGTGGC CGGTTGCCAC TCTCCTCCCC TCCCTCAGAG ACACCAAACT 840 GCCAAAAACA AGACGCGTAC AGCACACACT TCACAAAGCC AAGCCTAGGC CGCCCTGAGC 50 ATCCTGGTTC AAACGGGTGC CTGGTCAGAA GGCCAGCCGC CCACTTCCCG TTTCCTCTTT 960 AACTGAGGAG AAGCTGATCC AGTTTCCGGA AACAAAATCC TTTTCTCATT TGGGGAGGGG 1020 GGTAATAGTG ACATGCAGGC ACCTCTTTTA AACAGGCAAA ACAGGAAGGG GGAAAAGGTG 1080 55 GGATTCATGT CGAGGCTAGA GGCATTTGGA ACAACAAATC TACGTAGTTA ACTTGAAGAA 1140 ACCGATTTT AAAGTTGGTG CATCTAGAAA GCTTTGAATG CAGAAGCAAA CAAGCTTGAT 1200 60 TTTTCTAGCA TCCTCTTAAT GTGCAGCAAA AGCAGGCRAC AAAATCTCCT GGCTTTACAG 1260

	ACAAAAATAT	TTCAGCAAAC	GTTGGGCATC	ATGGTTTTTG	AAGGCTTTAG	TTCTGCTTTC	1320
5	TGCCTCTCCT	CCACAGCCCC	AACCTCCCAC	CCCTGATACA	TGAGCCAGTG	ATTATTCTTG	1380
-	TTCAGGGAGA	AGATCATTTA	GATTTGTTTT	GCATTCCTTA	GAATGGAGGG	CAACATTCCA	1440
	CAGCTGCCCT	GGCTGTGATG	AGTGTCCTTG	CAGGGGCCGG	AGTAGGAGCA	CTGGGGTGGG	1500
10	GGCGGAATTG	GGGTTACTCG	ATGTAAGGGA	TTCCTTGTTG	TIGTGTTGAG	ATCCAGTGCA	1560
	GTTGTGATTT	CTGTGGATCC	CAGCTTGGTT	CCAGGAATTT	TGTGTGATTG	GCTTAAATCC	1620
15	AGTTTTCAAT	CTTCGACAGC	TGGGCTGGAA	CGTGAACTCA	GTAGCTGAAC	CTGTCTGACC	1680
	CGGTCACGTT	CTTGGATCCT	CAGAACTCTT	TGCTCTTGTC	GCCTCCCCC	TGGGAACTCA	1740
	CCTCCCGAGC	GCTGGCTGAG	AAAATGTAAG	GATTCTGGAA	TACATATTCC	ATGGGACTTT	1800
20	CCTTCCCTCT	CCTGCTTCCT	CTTTTCCTGC	TCCCTAACCT	TTCGCCGAAT	GGGCAGCAC	1860
	CACTGACGTT	TCTGGGCGGC	CAGTGCGGCT	GCCAGGTTCC	TGTACTACTG	CCTTGTACTT	1920
25	TTCATTTTGG	CTCACCGTGG	ATTTTCTCAT	AGGAAGTTTG	GTCAGAGTGA	ATTGAATATT	1980
	GTAAGTCAGC	CACTGGGACC	CGAGGATTTC	TGGGACCCCG	CAGTTGGGAG	GAGGAAGTAG	2040
	TCCAGCCTTC	CAGGTGGCGT	GAGAGGCAAT	GACTCGTTAC	CTGCCGCCCA	TCACCTTGGA	2100
30	GGCCTTCCCT	GGCCTTGAGT	AGAAAAGTCG	GGGATCGGGG	CAAGAGAGGC	TGAGTACGGA	2160
	TGGGAAACTA	TTGTGCACAA	GTCTTTCCAG	AGGAGTITCT	TAATGAGATA	TTTGTATTTA	2220
35	TTTCCAGACC	AATAAATTT G	TAACTTTGCA	АААААААА	АААААААА	ААААААААА	2280
	АААААААА	AAAAAAAACT	CGAGGGGGGC	CCGTACCCAA	TTCGCCGTAT	ATGATCGTAA	2340
	ACAATC						2346
40							
	(2) INFORM	ATION FOR SE	EO ID NO: 19) 4 :			
45		SEQUENCE CI	~				
	(-)	(A) LEN	GTH: 3054 b	ase pairs			
		(C) STR	ANDEDNESS: O DLOGY: line	double			
50	(vi) SEQUENCE I			. 104.		
		_		~		m.) 00000m)	
55		ACCCTTTATT					60
<i>JJ</i>		GCCCTGTGGN					120
						CAAGGTGCTA	180
60	AAAGGAATAG	GTAGGAGACC	TCTTCTATCT	AATCCTTAAA	AGCATAATGT	TGAACATTCA	240

	TTCAACAGCT	GATGCCCTAT	AACCCCTGCC	TGGATTTCTT	CCTATTAGGC	TATAAGAAGT	300
	AGCAAGATCT	TTACATAATT	CAGAGTGGTT	TCATTGCCTT	CCTACCCTCT	CTAATGGCCC	360
5	CTCCATTTAT	TTGACTAAAG	CATCACACAG	TGGCACTAGC	ATTATACCAA	GAGTATGAGA	420
	AATACAGTGC	TTTATGGCTC	TAACATTACT	GCCTTCAGTA	TCAAGGCTGC	CTGGAGAAAG	480
10	GATGGCAGCC	TCAGGGCTTC	CTTATGTCCT	CCACCACAAG	AGCTCCTTGA	TGAAGGTCAT	540
10	CTTTTTCCCC	TATCCTGTTC	TTCCCCTCCC	CGCTCCTAAT	GGTACGTGGG	TACCCAGGCT	600
	GGTTCTTGGG	CTAGGTAGTG	GGGACCAAGT	TCATTACCTC	CCTATCAGTT	CTAGCATAGT	660
15	AAACTACGGT	ACCAGTGTTA	GTGGGAAGAG	CIGGGTTTTC	CTAGTATACC	CACTGCATCC	720
	TACTCCTACC	TGGTCAACCC	GCTGCTTCCA	GGTATGGGAC	CTGCTAAGTG	TGGAATTACC	780
20	TGATAAGGGA	GAGGGAAATA	CAAGGAGGC	CTCTGGTGTT	CCTGGCCTCA	GCCAGCTGCC	840
20	CACAAGCCAT	AAACCAATAA	AACAAGAATA	CTGAGTCAGT	TTTTTATCTG	GGTTCTCTTC	900
	ATTCCCACTG	CACTTGGTGC	TGCTTTGGCT	GACTGGGAAC	ACCCCATAAC	TACAGAGTCT	960
25	GACAGGAAGA	CTGGAGACTG	TCCACTTCTA	GCTCGGAACT	TACTGTGTAA	ATAAACTTTC	1020
	AGAACTGCTA	CCATGAAGTG	AAAATGCCAC	ATTTTGCTTT	ATAATTTCTA	CCCATGTTGG	1080
30	GAAAAACTGG	CTTTTTCCCA	GCCCTTTCCA	GGGCATAAAA	CTCAACCCCT	TCGATAGCAA	1140
50	GTCCCATCAG	CCTATTATTT	TTTTAAAGAA	AACTTGCACT	TGTTTTTCTT	TTTACAGTTA	1200
	CTTCCTTCCT	GCCCCAAAAT	TATAAACTCT	AAGTGTAAAA	AAAAGTCTTA	ACAACAGCTT	1260
35	CTTGCTTGTA	AAAATATGTA	TTATACATCT	GTATTTTTAA	ATTCTGCTCC	TGAAAAATGA	1320
	CTGTCCCATT	CTCCACTCAC	TGCATTTGGG	GCCTTTCCCA	TIGGTCTGCA	TGTCTTTTAT	1380
40	CATTGCAGGC	CAGTGGACAG	AGGGAGAAGG	GAGAACAGGG	GTCGCCAACA	CTTGTGTTGC	1440
	TTTCTGACTG	ATCCTGAACA	AGAAAGAGTA	ACACTGAGGC	GCTCGCTCCC	ATGCACAACT	1500
	CTCCAAAACA	CTTATCCTCC	TGCAAGAGTG	GGCTTTCCAG	GGTCTTTACT	GGGAAGCAGT	1560
45	TAAGCCCCCT	CCTCACCCCT	TCCTTTTTTC	TTTCTTTACT	CCTTTGGCTT	CAAAGGATTT	1620
	TGGAAAAGAA	ACAATATGCT	TTACACTCAT	TTTCAATTTC	TAAATTTGCA	GGGGATACTG	1680
50	AAAAATACGG	CAGGTGGCCT	AAGGCTGCTG	TAAAGTTGAG	GGGAGAGGAA	ATCTTAAGAT	1740
	TACAAGATAA	AAAACGAATC	CCCTAAACAA	AAAGAACAAT	AGAACTGGTC	TTCCATTTTG	1800
	CCACCTTTCC	TGTTCATGAC	AGCTACTAAC	CTGGAGACAG	TAACATTICA	TTAACCAAAG	1860
55	AAAGTGGGTC	ACCTGACCTC	TGAAGAGCTG	AGTACTCAGG	CCACTCCAAT	CACCCTACAA	1920
	GATGCCAAGG	AGGTCCCAGG	AAGTCCAGCT	CCTTAAACTG	ACGCTAGNCA	ATAAACCTGG	1980
60	GCAAGTGAGG	CAAGAGAAAT	GAGGAAGAAT	CCATCTGTGA	GGTGACAGGC	AAGGATGAAA	2040

	GACAAAGAAG GAAAAGAGTA TCAAAGGCAG AAAGGAGATC ATTTAGTTGG GTCTGAAAGG	2100
	AAAAGTCTTT GCTATCCGAC ATGTACTGCT AGTACCTGTA AGCATTTTAG GTCCCAGAAT	2160
5	GGAAAAAAA ATCAGCTATT GGTAATATAA TAATGTCCTT TCCCTGGAGT CAGTTTTTTT	2220
	AAAAAGITAA CTCTTAGITT TTACTTGTTT AATTCTAAAA GAGAAGGGAG CTGAGGCCAT	2280
10	TCCCTGTAGG AGTAAAGATA AAAGGATAGG AAAAGATTCA AAGCTCTAAT AGAGTCACAG	2340
10	CTTTCCCAGG TATAAAACCT AAAATTAAGA AGTACAATAA GCAGAGGTGG AAAATGATCT	2400
	AGTTCCTGAT AGCTACCCAC AGAGCAAGTG ATTTATAAAT TTGAAATCCA AACTACTTTC	2460
15	TTAATATCAC TTTGGTCTCC ATTTTTCCCA GGACAGGAAA TATGTCCCCC CCTAACTTTC	2520
	TTGCTTCAAA AATTAAAATC CAGCATCCCA AGATCATTCT ACAAGTAATT TTGCACAGAC	2580
20	ATCTCCTCAC CCCAGTGCCT GTCTGGAGCT CACCCAAGGT CACCAAACAA CTTGGTTGTG	2640
20	AACCNAACTG CCTTAACCTT CTGGGGGAGG GGGATTAGCT AGACTAGGAG ACCAGAAGTG	2700
	AATGGGAAAG GGTGAGGACT TCACAATGTT GGCCTGTCAG AGCTTGATTA GAAGCCAAGA	2760
25	CAGTGGCAGC AAAGGAAGAC TTGGCCCAGG AAAAACCTGT GGGTTGTGCT AATTTCTGTC	2820
	CAGAAAATAG GGTGGACAGA AGCTTGTGGG GTGCATGGAG GAATTGGGAC CTGGTTATGT	2880
20	TGITATTCTC GGACTGTGAA TTTTGGTGAT GTAAAACAGA ATATTCTGTA AACCTAATGT	2940
30	CTGTATAAAT AATGAGCGTT AACACAGTAA AATATTCAAT AAGAAGTCAA AAAAAAAAA	3000
	AAAAAACTCG AGGGGGGCC CGGTACCCAA TTTNCCAAAT AGAGATNGTA TTAC	3054
35		
40	(2) INFORMATION FOR SEQ ID NO: 195:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 907 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 195:	
50	GGCAGAGCTC GTGGCCGNAA CTTTTTCTGC TCCTGGCTGC CACCTACTGG CTGGCCGCGG	60
50	CCCTGGCCTG GGCCTGCACC AGCCTGCGNG CGGGCTCCCA CAGCAGCCCC CTTCCAAGCA	120
	GCGTCCCCAC ACCGCGCACC TTCTGCGGGA ACGTGCTCGC CGTGCCGGGG ACCATATGGA	180
55	CGGAAGGCTT TGTGCTCACC TACAAGCTGG GTGAGCAGGG TGCCAGCAGC CTGTTGATCC	240
	TCTTGGCTCC TGCTGGAGCA CGAGCGGCGT TTCTGCTCCC GAGTTGGGAC TGTGGAATGG	300
	TGTGGGTGCT GTGGTCTGCT CCATCGCTGG CTCCTCCCTG GGTGGGACCT TGCTGGCCAA	360
60	GCACTGGAAA CTGCTGCCTC TGTGAGGTCG GTGCTGCGCT TCCGCCTCGG GGGCCTAGCC	420

427

	TGTCAGACTG CCTTGGTCTT CCACCTTGGA CACCCTGGGG GCCAGCATGG ACGCTGGCAC	480
5	AATCTTGAGA GGGTCAGCCT TGCTGAGCCT ATGTCTGCAG CACTTCTTGG GARGCCTGGT	540
	CACCACAGTC ACCTTCACTG GGAATGATGC GCTGCAGCCA GCTGGCCCCC AGGGCCTTGC	600
	AGGCCACACA CTACAGCCTT CTGGCCACGC TGGAGCTGCT GGGGAAGCTG CTGCTGGGCA	660
10	CTYTGGSCGG AGGGCCTGGC TGATGGGTTG GGGCCACATC CCTGCTTCTT GCTCCTGCTC	720
	ATCCTCTCTG CCTTTCCCGT TCTGTACCTG GACCTAGCAC CCAGCACCTT TCTCTGAGCT	780
15	GAGTGGCTGG AGTGGTCAAT AAAGCCACAT GTGCCTGTGG CCCAAAAAAA AAAAAAAAAA	840
13	AAAAAAAAA AAAAAAACTG GAGGGGGGC CCGGTACCCA AATCGCCGGA TATGATCGTA	900
	AACAATC	907
20		
	(2) INFORMATION FOR CEO ID NO. 106.	
	(2) INFORMATION FOR SEQ ID NO: 196:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1290 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:	
	GGCACGAGGA GGGACAGGGA GTGGGCAAGG GGAAGAAGCA GCTTATTTGA CTAACCAGCC	60
35	CCTCTGTGGT CCACCAGCGT CTTGGCTTGG TGGGAGGGCT CTCAATCAGC AGGGCCCCAG	120
	KAGGGCAAGA AGAAGTGGGG CAAAGCCTGG CGCTCGGCCG CGGTCGCGGC AGCTTTGCMA	180
40	TCTGGAGCCA CGCCTCCTCC AGGCCATGCT CCTTGAACTT GGAAATGTCA ACCGGAGCCC	240
	TTAACACCAG CCCTCCAGCA TCTAATAGAC TIGAATCTAC TCTAAACGAA TATTTAATCC	300
	AACCTCAACT ACATTGTAGC TCAGTCCAAC GACTAACCCT GAAATGGGGG TGTTCCAGCC	360
45	TTCAGCGAGA TGGCCAAGCG GTCCCCTGGG GGCTGTGGCA GCGGGCTTAT CCTTCTCTGT	420
	TGCCAACCTT GCCGTCCGAC CTCCTCCGCC CCCATGCGGT GACCCCGTCC GTGTCTGTGT	480
50	CTGTCCATAC GTGTGAGTCC AGCTAAAAAG ACAAAACAGA ACCCGTGGGC CCAGCTCGGA	540
	AGGTGCGTGG AGAAGGCTCC GACGTCTCCG AAGTGCAGCC CTTGGGATGG CATTCCGTTG	600
55	TGTGCCTTAT TCCTGGAGAA TCTGTATACG GCTCGCCTAT AAGAAATATA GCCTCTTCAT	660
	GCTGTATTAA AAGGACTTTT AAAAGCAAAA AAAAAAAAA AAAAACTCGA GGGGGGCCC	720
	OGTACCCAAT TCGCCCAATA GTGAGTCGTA TTACAATTCA CTGGGCCGTC STTTTAACAA	780

CGTCGTGAAC TGGGAAAACC CTGGCGTTTA CCCAACTTAA TCGCCTTGCA GCACATCCCC

60

428

	CTTTCGCCAG CTGGCGTTAA TAGCGAAAAA NGCCCGCACC CGAATCGCCC TTCCCAACAG	900
	TTTGCGCAGC CCTGAATGGC GAAATGGCAA ATTGTAAGCG TTTAATATTT TKKTTAAAAT	960
5	TCCNCGTTWA AWITTTGTT TAAATCARCT CAATTTTTTT AACCCAATAA GSCCGAAATC	1020
	CGGCAAATCC CCYTTATTAA TTCCAAAAAA ATAAACCSAA AAWGGGTTTG AATTTTTTKT	1080
10	TTCCCCAYTT TTGGAAACAA AWTYCCCCCT TTTTAAAAAA GTTGGAACCC CCAMCCYTCC	1140
10	AAAGGGGAAA AAACSYTTTT YTGGGGGGNA ANGGGGCCCC CNTACTTTNA ACAYCCCCC	1200
	CCAAWCAATT TTTTTGGGGG GTCCCCNAAAG GTCCCCCTAA AANCTTTTTT CGGAACCCNA	1260
15	AGGGGANCCC CCCATTTAAA ATTTINGGIN	1290
20	(0)	
20	(2) INFORMATION FOR SEQ ID NO: 197:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1020 base pairs (B) TYPE: nucleic acid (C) STRANDEINESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197:	
30	GGTGTGCCTG GATGGTCGTG TAGGTGAGTT TTACCAAGGA TTATGGTAAC AAATGAGTGA	60
	GACCTCTATG GAGAAAATAT TGAAGNNCAT TAAAGAAGAC CTCATANTAG GAGAGAATGT	120
35	SCTTTGGAGG ATTTGTATTG AGCTTTTACA GTATTCATTT TTCAACTCAA GGCAATGGCT	180
,,	TTCTACACCA ACTCTAATCC ATAAACGGGT CTTATGACAT CTATGAAGTA GTAGCAAGAC	240
	ATGCTTAGTG TGTATTTCTC TCTTTGAGAC ACTGTAATTT CTACCAGAAA TTTCCAGAGC	300
10	ATTATGTAGG TAGAAAAAA TGCAAGCAAG CTGTTAAAGA TCTTGGATCC CATTATATAG	360
	TATGTATAGC TGAAATCTGT AATTCAATCA CTTTTTCTCT TTTATCCTCT AACCAAAAAA	420
15	TIGITITAATT TIGCATCCCA AATGITTITTA ATCTITGTAT ATTITITAAA AAYCCTITIC	480
•	TCCTCATCAT TGCCTTTTTT GTGGTTGTAA ATAGACTTAC TTGCACTTTG AAGATGAGTT	540
	ACTCCTTGTC ATCTTACAAA TATGTGATAT GGTAATTTTC ATAACAGATG TCAGTTTTGA	600
50	ACCAAGAATT GGTGATTTGT TTATAAGAAA AAAACTGGCT TCATTTCTGT GAAATTGCTC	660
	TTTGAAAATT TCTTTTTACA CGTGTAAGCC AACTGAGATA CCGTGATGGT GTTGATTTCT	720
55	TTCAATGATG CTTACCATCT ATTTTAGCCA CTGAGCCTTT TATTATTTGT CTATTTGTAA	780
, ,	AGTITATITG TCTTAACTCA TITAATAAAT ATACTGTTTA TCTGTTTCTG AATGGGGACT	840
	GAACTITITG GATATIGATA TIGATITGAA AATATITIGG AATTITITCT ACTIGAAATT	900

TTAGAAATCT AATKGAAAAT TCTATAATGT ACTGAAAGTA WGGTTGTGTA CAGTGAKCAC

960

	TCTCTAATAA TATGATGNCT TGCCCTAAAN GAGGNGGGAC ATGTCCCACT TTCCACCACG	1020
5		
	(2) INFORMATION FOR SEQ ID NO: 198:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 524 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:	•
	AATTCCCGAA GCTGAGGGTT GTGTGCCNTC GGGCGAGCCA AGTCTTTTGA CCGGACCCTT	60
20	CCCGGCGCAG AAGANCTGAA GTTGATTTGA GAGCCTGTKT TTGGGGTTRA GCCGAGCTGC	120
20	TGCGGGCTTY GTCGCCGGCC AGGACACAAG YTACTTGCAA CGGGGCGGCG CCTGGCTTAT	180
	GATGTTCCTC AACCCAGGGG CGGCCTCTGC CCTCTACTCG TGCCAGGCCC ACTTGCCAGG	240
25	CAGGAGCCCT CCCCAAGCCT TCAGGGCTGC TCGGAGTCAC CTGTTGGAAT GGACTAAAAG	300
	GACCCTTGTG TGGGAACAGG TGCTCCAAAC ACCCTGCTGC TGGCTGCCAG GCAGGCCCTC	360
30	TGGAAGGGAA GGGCAGGAC TCATCAGGAC CTCCCTGGAC CCTGCAGGGC AGGCAGTTGG	420
50	CCCGAGCCCA AGCATTTGGC TCTGCTTGCC CCAAGGGGAC AGGAAGCCTC TTGGGCCTCT	480
	TCCCTTCCTG GACAAGGCCC CCTGCCTTTG CCTCACATAA ACTG	524
35		
	(2) INFORMATION FOR SEQ ID NO: 199:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 332 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199:	
50	GTGATACAAG GAAGGGTGAT CATCATCTGT CACCATGCAA TICCTGCTCA CAGCCTTTCT	60
	GTTGGTGCCA CTTCTGGCTC TTTGTGATGT CCCCATATCC CTAGGCTTCT CCCCCTCCTA	120
	GAAGGCTTC TTGATAGATT AGAAAATAAG AATGAGTGAC ATTTCCTATG TGCATATAAG	180
55	AAGGAGCCAC AAGACATGTC TTTTAAATAA AAGGACAGTG TCCATCCTTT TAGCTGCCGA	240
	ATAGAACCTT GGTCTCATCC TCCTGGAGCT AGGSCTTAAA ACAGCTTCTG TGTTTCTSAT	300
	TKGTCTCART GTTTTGCCAA GGTTTTATTC GG	332
60		

	(2) INFORMATION FOR SEQ ID NO: 200:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 376 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
10	(D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200:	
	CCAGGGAAGC CCCARGCCTG TCCTGAATTG ACATCAGTGC TTCCCTGAAC TGCCTCCCCC	60
15	ACCCCTGGGC ATTATCCCAG GAAACTTATG TTTTCTAGAA GCTAAGCAGC TGCTGGGACT	120
	CAGGGACTGG TGCAGGTAGG CTGAGTGGCA GCTCAGTCCT AGAAGGTCTC TGAAGATCTG	180
20	GACTGAGGAC CYTGCTACTC CCCAAGCCAG AGCCCATCAG CCAGGCCTGC TGTGAGCCAC	240
	CTGCCTGTGG AGTGCTGAGC TCAACCAAAG GCTGGCAAGC TCTGGGCCTC ATTTAAGGGA	300
	TTCTGATGAG CCGATGGGCC CTGGAGGCAG CCCATTAAAG CATCTGGCTC GTTTTTGGAA	360
25	AAAAAAAA AAAAAG	376
30	(2) INFORMATION FOR SEQ ID NO: 201: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201:	
40	CCCAGTATAT TICTATAACA TITATIITAG IGAACTIATA AIGITICIIT GIATTAAATI	60
	ATTAGATTAT ATCTTTAGAT AATATTGTTA CINAATTAGT AGGTAATATA TATTTTATTC	120
45	AAAAATAAAT TGTGCATCTA ATGTCTACCA ATTAATGTAC TTGTAGATGT ATCTTATCTT	180
	AACTTGAGTC TTTGCTGCCC CTAATGAGGT GTGAAGGACT CTTCTCCCCT GGGGAAGTTT	240
	TTCTTTTCA GGAGGAGGA GGGCTTTCCC AGGTAATGTG TCTAGAGTGT TGGGCAGAAR	300
50	AATCTGGGAC CACACCACAC CAGTTCTCTC CTTAATCCAC GTCATTTGCC TTCTATCCCA	360
	GCTATGTTTC CAGTGTCCTC TGGGTGTTTC CAAGAGCAAC AAGAAAYGAA TAAATCTCTG	420
55	KTGAGTTGIT TATTTGTTCT TCACTTTGTT TTACACTGTA WITTCTGAGT TTATGGGTGT	480
	CTGTGAATTA AAAAGGAAAA GTRGAAATAA GTAAAACTCA GGTTGAAGGA AATATACATA	540
	AATAAGATAA AGCTGACCTG TAGATATARR CAGGTTATAA RAGCTTAGAG TTGTCTAAGT	600
60	TCDCTCCAAA VIIIPTCCTCTCTC AUCTITICOCA DOCCCADACA AAAAACCCAAC IIICAIIIICIII	660

431

	WATGTGATTG GAATGGAACC CGARAAGAGA GCAYGCTGTG TTCTTGGGGA CAGGAAAGCT	720
5	TGYGTGCACC AAGTCTKAAC CACCACCTTC ATGGGACATA GRTTATGTGC TGGAACATAT	780
	TICACACCGG CCTGGCAGTA AACACTTGTA GTGTTGTGCA GTGGAAACGG TCATCTTCCG	840
	CTAAAGCACG GCGTGTTGTG CAGCGGAAAT GGTCATCTGC TGCTAAAACA CAGCTTCCAT	900
10	CGTAATGTAT GCTCCTTACT CAAAGAGTGT GGTCCCAAAC AGCCTTTGGG AGGTCCTCCT	960
	TGATTCATGG ATGAAACCTG GAACATCTTG AGGACTGAGT TAACCATAGG TCCTTAAATA	1020
15	ACTOTOCACA COTTTTTOTT AGTTTATOTO TACATGCAGG GTGTGCAGCA GCCTGTTCAA	1080
13	AGTCATATTT TCTGGGAAAT ATTTCCAGTG TTTATTTGCA CTTTAGCCCA CTCTGTGTAG	1140
	CCTTATTTCT TCTAAACTCA CCATTAATCT GAATAATAGT CAAATTTAGG GG	1192
20		
	(2) INFORMATION FOR SEO ID NO: 202:	
	(2) INFORMATION FOR SEQ ID NO: 202:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 589 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202:	
	ATCTTGGGCT ATCTTTGACA GGGGATTCTT GCAAGTTGAT GCTTTCTACA AGTGAATATA	60
35	GTCAGTCCCC AAAGATGGAG AGCTTGAGTT CTCACAGAAT TGATGAAGAT GGAGAAAACA	120
	CACAGATTGA GGATACGGAA CCCATGTCTC CAGTTCTCAA TTCTAAATTT GTTCCTGCTG	180
40	AAAATGATAG TATCCTGATG AATCCAGCAC AGGATGGTGA AGTACAACTG AGTCAGAATG	240
	ATGACAAAAC AAAGGGAGAT GATACAGACA CCMGGGATGA CATTAGTATT TTAGCCACTG	300
	GTTGCAAGGG CAGAGAAGAA ACGGTAGCAG AAGATGTTTG TATTGATCTC ACTTGTGATT	360
45	CGGGGAGTCA GGCAGTTCCG TCACCAGCTA CTCGATCTGA GGCACTTTCT AGTGTGTTAG	420
	ATCAGGAGGA AGCTATGGAA ATTAAAGAAC ACCATCCAGA GGAGGGGTCT TCAGGGTCTG	480
50	AGGTGGAAGA AATCCCTGAG ACACCTTGTG AAAGTCAAGG AGAGGAACTC AAAGAAGAAA	540
	ATATGGAGAG TGTTCCGTTG CACCTTTCTC TGACTGAAAC TCAGTCCCA	589
55		
	(2) INFORMATION FOR SEQ ID NO: 203:	
	(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 847 base pairs

(B) TYPE: nucleic acid

432

(C)	STRANDEDNESS: double
(D)	TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203: 5 GGCACGAGCG CAAGCTGCTG GCCGCCATCA ACGCGTTCCG CCAGGTGCGG CTGAAACACC 60 GGAAGCTCCG GGAACAAGTG AACTCCATGG TGGACATCTC CAAGATGCAC ATGATCCTGT 120 10 ATGACCTGCA GCAGAATCTG AGCAGCTCAC ACCGGGCCCT GGAGAAACAG ATTGACACGC 180 TGGCGGGAA GCTGGATGCC CTGACTGAGC TGCTTAGCAC TGCCCTGGGG CCGAGCAGCT 240 TCCAGAACCC AGCCAGCAGT CCAAGTAGCT GGACCCACGA GGAGGAACCA GGCTACTTTC 300 15 CCCAGTACTG AGTGGTGGAC ATCGTCTCTG CCACTCCTGA CCAGCCTGAA CAAAGCACCT 360 CAAGTGCAAG GACCAAAGGG GGCCTGGCTT GGATGGGTTG GCTTGCTGAT GGCTGCTGGA 420 20 GGGGACGCTG GCTAAAGTGG GGAGGCCTTG GCCCACCTGA GGCCCCAGGT GGGAACATGG 480 TCACCCCCAC TCTGCATACC CTCATCAAAA ACACTCTCAC TATGCTGCTA TGGACGACCT 540 CCAGCTCTCA GTTACAAGTG CAGGCGACTG GAGGCAGGAC TCTTGGGTCC CTGGGAAAGA 600 25 GGGTACTAGG GGCCCGGATC CAGGATTCTG GGAGGCTTCA GTTACCGCTG GCCGAGCTGA 660 AGAACTGGGT ATGAGGCTGG GGCGGGGCTG GAGGTGGCGC CCCCTGGTGG GACAACAAAG 720 30 AGGACACCAT TTTTCCAGAG CTGCAGAGAG CACCTGGTGG GGAGGAAGAA GTGTAACTCA 780 840 аааааа 847 35 (2) INFORMATION FOR SEQ ID NO: 204: 40

(i) SEQUENCE CHARACTERISTICS:

45

50

55

60

(A) LENGTH: 852 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204:

ACAAACATAC TCGCAGGAAG GAGTCTCATG CTGCCCGCAG CATCAGCGCA ACNCNTGGCC 60 GCCATCAACG CGTTCCGCCA GGTGCGGCTG AAACACCGGA AGCTCCGGGA ACAAGTGAAC 120 TCCATGGTGG ACATCTCCAA GATGCACATG ATCCTGTATG ACCTGCAGCA GAATCTGAGC 180 AGCTCACACC GGGCCCTGGA GAAACAGATT GACACGCTGG CGGGGAAGCT GGATGCCCTG 240 ACTGAGCTGC TTAGCACTGC CCTGGGGCCG AGGCAGCTTC CAGAACCCAG CCAGCAGTCC 300 AAGTAGCTGG ACCCACGNAG GAGGAACCAG GCTACTTTCC CCAGTACTGA GGTGGTGGAC 360

433

	ATNOGRETET TGCCACTCCN TGNACCCAGC CCTGAACAAA GCACCTCAAG TGCAAGGACC	420
	AAAGGGGCC CTGCCTTGGA GTGGGTTGGC TTCCTGATGG CTGCTGGAGG GGACGCTGGC	480
5	TAAAGTGGGK AGGCCTTGGC CCACCTGAGG CCCCAGGTGG GAACATGGTC ACCCCCACTC	540
	TGCATACCCT CATCAAAAAC ACTCTCACTA TGCTGCTATG GACGACCTCC AGCTCTCAGT	600
0	TACAAGTGCA GGCGACTGGA GGCAGGACTC CTGGGTCCCT GGGAAAGAGG GTACTAGGGG	660
	CCCGGATCCA GGATTCTGGG AGGCTTCAGT TACCGCTGGC CGAGCTGAAG AACTGGGTAT	720
	GAGGCTGGGG CGGGGCYGGA GGTGGCGCCC CCTGGTGGGA CAACAAAGAG GACACCATTT	780
5	TTCCAGAGCT GCAGAGAGCA CCTGGTGGGG AGGAAGAAGT GTAACTCACC AGCCTCTGCT	840
	CTTATCTTIG TA	852
20		
.0	(2) INFORMATION FOR SEQ ID NO: 205:	
	(2) INFORMATION FOR SEQ ID NO: 205:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1354 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
80	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 205:	
	GATTCGGCAC GAGGCTTGCT GGAGCAGGAG AAGTCTCTRG CCGGCTGGGC ACTGGTGCTG	60
	GCASGARCTG GCATTGGACT CATGGTGCTG CATGCAGAGA TGCTGTGGTT CGGGGGGTGC	120
35	TOGGCTGTCA ATGCCACTGG GCACCTTTCA GACACACTTT GGCTGATCCC CATCACATTC	180
	CTGACCATCG GCTATGGTGA CGTGGTGCCG GGCACCATGT GGGGCAAGAT CGTYTGCCTG	240
10	TGCACTGGAG TCATGGGTGT CTGCTGCACA GCCCTGCTGG TGGCCGTGGT GGCCCGGAAG	300
	CTGGAGTTTA ACAAGGCAGA GAAGCACGTG CACAACTTCA TGATGGATAT CCAGTATACC	360
15	AAAGAGATGA AGGAGTCCGC TGCCCGAGTG CTACAAGAAG CCTGGATGTT CTACAAACAT	420
ы	ACTCGCAGGA AGGAGTCTCA TGCTGCCCGC AGGCATCAGC GCAANCTGCT GGCCGCCATC	480
	AACGCGTTCC GCCAGGTGCG GCTGAAACAC CGGAAGCTCC GGGAACAAGT GAACTCCATG	540
50	GTOGACATCT CCAAGATGCA CATGATCCTG TATGACCTGC AGCAGAATCT GAGCAGCTCA	600
	CACCGGGCCC TGGAGAAACA GATTGACACG CTGGCGGGGA AGCTGGATGC CCTGACTGAG	660
55	CTGCTTAGCA CTGCCCTGGG GCCGAGGCAG CTTCCAGAAC CCAGCCAGCA GTCCAAGTAG	720
	CTGGACCCAC GAGGAGGAAC CAGGCTACTT TCCCCAGTAC TGAGGTGGTG GACATCGTCT	780

CTGCCACTCC TGANCCCAGC CCTGAACAAA GCACCTCAAG TGCAAGGACC AAAGGGGGCC

CTGGCTTGGA GTGGGTTGGC TTGCTGATGG CTGCTGGAGG GGACGCTGGC TAAAGTGGGK

60

840

434

	AGGCCTTGGC	CCACCTGAGG	CCCCAGGTGG	GAACATGGTC	ACCCCCACTC	TGCATACCCT	960	
5	CATCAAAAAC	ACTCTCACTA	TGCTGCTATG	GACGACCTCC	AGCTCTCAGT	TACAAGTGCA	1020	
	GGCGACTGGA	GGCAGGACTC	YTGGGTCCCT	GGGAAAGAGG	GYACTAGGGG	CCCGGATCCA	1080	
	GGATTCTGGG	AGGCTTCAGT	TACCGCTGGC	CGAGCTGAAG	AACTGGGTAT	GAGGCTGGGG	1140	
10	CGGGGCTGGA	GGTGGCGCCC	CCTGGTGGGA	CAACAAAGAG	GACACCATTT	TTCCAGAGCT	1200	
	GCAGAGAGCA	CCTGGTGGGG	AGGAAGAAGT	GTAACTCACC	AGCCTCTGCT	CTTATCTTTG	1260	
15	TAATAAATGT	TAAAGCCAGA	AAAAAAAA	АААААААА	AAAAAACTCG	AGGGGGGCCC	1320	
••	AGACCCAATC	TCCCTATAGT	AAGNCGCCNN	ANAN			1354	
20								
	(2) INFORMATION FOR SEQ ID NO: 206:							

2

25

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1378 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 206:

TCCCCAGGTG CACAGCCAGG GCCCTCCTGT CTGCAGGAGA ATTCACAGCT GGTGTGGGAC 60 TCAGCCCCTA GNCCATTCAA AGCCTTAATG TTGTAATCAT ATCTTACGTG TTGAAGACCT 120 GACTGGAGAA ACAAAATGTG CAATAACGYG AATTTTATCT TAGAGATCTG TGCAGCCTAT 180 TTCTGTCACA AAAGTTATAT TGTCTAATAA GAGAAGTCTT AATGGCCTCT GTGAATAATG 240 TAACTCCAGT TACACGGTGA CTTTTAATAG CATACAGTGA TTTGATGAAA GGACGTCAAA 300 CAATGTGGCG ATGTCGTGGA AAGTTATCTT TCCCGCTCTT TGCTGTGGTC ATTGTGTCTT 360 GCAGAAAGGA TGGCCCTGAT GCAGCAGCAG CGCCAGCTGT ANATAAAAAA TAATTCACAC 420 TATCAGACTA GCAAGGCACT AGAACTGGAA AAGACCACAG AAAACAAAGA ATCCAACCCT 480 TTCATCTTAC AGGTGAACAA ACTGTGATGA TGCACATGTA TGTGTTTTGT AAGCTGTGAG 540 CACCGTAACA AAATGTAAAT TTGCCATTAT TAGGAAGTGC TGGTGGCAGT GAAGAAGCAC 600 CCAGGCCACT TGACTCCCAG TCTGGTGCCC TGTCTACACC AGACAACACA GGAGCTGGGT 660 CAGATTCCCC TCAGCTGCTT AACAAAGTTC CTCGAACAGA AAGTGCTTAC AAAGCTGCCT TCTCGGATAC TGAAAGGTCG AGTTTTCTGA ACTGCACTGA TTTTATTGCA GTTGAAAAAA 780 AAAAAAAGCT ATTCCAAAGA TTTCAAGCTG TTCTGAGACA TCTTCTGATG GCTTTACTTC CTGAGAGGCA ATGTTTTTAC TTTATGCATA ATTCATTGTT GCCAAGGAAT AAAGTGAAGA 900

435

	AACAGCACCT	TTTAATATAT	AGGTCTCTCT	GGAAGAGACC	TAAATTAGAA	AGAGAAAACT	960
	GTGACAATTT	TCATATTCTC	ATTCTTAAAA	AACACTAATC	TTAACTAACA	AAAGTTCTTT	1020
5	TGAGAATAAG	TTACACACAA	TGGCCACAGC	AGTTTGTCTT	TAATAGTATA	GTGCCTATAC	1080
	TCATGTAATC	GGTTACTCAC	TACTGCCTTT	алалалала	ACCAGCATAT	TTATTGAAAA	1140
10	CATGAGACAG	GATTATAGTG	CCTTAACCGA	TATATTTTGT	GACTTAAAAA	ATACATTTAA	1200
10	AACTGCTCTT	CTGCTCTAGT	ACCATGCTTA	GTGCAAATGA	TTATTTCTAT	GTACAACTGA	1260
	TGCTTGTTCT	TATTTTAATA	AATTTATCAG	AGTGAAAAAA	ааааааааа	АААААААА	1320
15	АААААААА	АААААААА	АААААААА	ааааааааа	AAAAAAAGAA	NAAAANAA	1378

20 (2) INFORMATION FOR SEQ ID NO: 207:

25

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1166 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207:

AANCCACTGC ANTITAAACC CCCTCCCCTC CAAGAAAGTT CACAACCGGC CATGGATGAC

60

CCTCATTTTA GATGGGCCNC AATATTTAAG ATGGACTGRG GMCCCCARAG ACTGACCCTT 120 GAAAGGGGGA CTCAGAAGAA AGATCCTTGA CATTGCCMAA CATGCTGGGC TTGTCCAACA 180 35 CAGTGATGCG GCTCATCGAG AARCGGGCTT TCCMAGGACA AGTACTTTAT GATAGGTGGG 240 ATGCTGCTGA CCTGTGGGT CATGTTCCTC GTGGTGCAGT ACCTGACATG AGCCAGCCAC 300 40 GCTCAGTGGC TGAACAGCAT TCCCACAGCC TGCAAGTGTG TGTGTGTGTG AAAGAGAGAG 360 GGGGCCCAGA GGCCGCCTTT TGAAATGTTT GCCTGTCTGA ACTGTGAAGA CACTTGGGAG 420 TGATTGTGGT CTAATTTCCA ACCTGCTCTG TTTTCTGTGA CATCTTGGAG GGGGAGCTAG 480 45 TOCCAMCACC ATGCGCGGTG CTTAGGAAAT GAAAGAAGTC CCGGGTCTGT CTCTCTCACT 540 CTCGCTCTCA MTGGGGGAGG GAAAGAATGG CTTTGGTGGC TTTGTTCACA CAGCTGATGC 600 50 GTGSCCTGGG AAGGTGTCCA CAGTGAGCCC TGTGTGCAGG ACTGTCCACN ACGGTTCACA 660 720 GAAAGAGGCY TTTTCTCACA GCCATTATAT TAAATAGTAG GTCGATTCAC ATCYTCGTGC 780 55 TCCTGGCCAC CCTCCCCTGT GCCTCAGTGA CATGTAGATG ACTGACTGCC AATACTTGTC 840 ACCATTCCCT GGAAGCAGCT ACCTAGGGGA AACAAGATGT AGTGCTATTG CCGATAACAA 900 60 GTAAGATTIT CCACACTACA GCTGGGTGTT TCTCTTTTCT AAAGTGAGGC CAGTGTTATT 960

	TCCCGGGAGT GTTCAGTCTT GACCCTAGTC ACTGATTTTT TCTAGTTGTT AATAGAGTGG	1020
5	TTGGGCTTTT AAGGTTCAGA GACTGTGGGC TTGGGCACCT GCGCCCAGGG STTTTGTGGG	1080
3	GGCCTTTGCC CCTTAGRAAA GTAGCTTTTA GGGGCAAAGA TTTGTTGATT TTCCCCATTA	1140
	CAGTCTTCAG CTCNAGGGTT TTAAAA	1166
10		
	(2) INFORMATION FOR SEQ ID NO: 208:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 697 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEO ID NO: 208:	
	TACTICTAGG ATTATAAGGA ATTAACATTG AGATGACATT TCCATTTGAG AAGGAAAATA	60
25	GTIGCTITCA GIGCCTTTTA TTTGATTCCT GGAGAGAGCA GACTCGCACS AACATTCAAC	120
	CCCAGCGCTG ATATGACAGT AATCCTCAGA GGCAGAGGCCC AGCACAAAAC AGCAATGCTA	180
	GAAAGTTACA ATTGGAAAGT TTCCTGCCAG CTTCGGGAAT GACACTGCAA AGCTGATGCC	240
30	AGAAACTGCC AGRGTAATTC TCCTCATTAC TGCTCTACCC ACCCACTTTC AGCTCCCCAA	300
	ATTAACTAGT GCAGTTGACT AATTCTCTTT ACCTTTATCA TITTARGGTGA RGCATTGCAC	360
35	AAAAACTCTC GACTITGCCA TATAAGGGCT GTGGTTCTCT GTGGTCCCCT GGATAAGAGG	420
55	CATCACCATT ATCTGGAAAC ATGCAGTAAA TGCAGATTNT TCATCTTCTC CCCAGACCTC	480
40	CTGAGTTAGA AATTCACAAG TTCTCCAGGT GATCTCATAC ATGCTAAAGT TTGAGAACCA	540
	TTGAGTAAAG TTAATGCATT AAGAAGAGAT TAGATAGGGA TGGTGGCGTA TCTTCCTACA	600
15	GTTTCCCTGT TAACAAGAAA GTCAGAGGTC AGTTGATCAG ACATTAGATT ATTTATTGCT	660
45	AAAACTAAAA AAAATTAAAA AAAACTGGAG GGGGGCC	697
50	(2) INFORMATION FOR SEQ ID NO: 209:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 932 base pairs(B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEO ID NO: 209:	
60	CGTGAGTCAC CTCTCTATAG TGGGCGTGGC CGAGGCCGGG GTGACCCTGC CGAAGCCTCC	60

437

	GCTGCCAGAA ACCATGTTCA A	GGTAATTAA	AAGGTCCGTG	GGGCCAGCCA	GCCTGAGCTT	120
5	GCTCACCTTC AAAGTCTATG C	AGCACCAAA	AAAGGACTCA	CCTCCCAAAA	ATTCCGTGAA	180
J	GGTTGATGAG CTTTCACTCT A	CTCAGTTCC	TGAGGGTCAA	TCGAAGTATG	TGGAGGAGGC	240
	AAGGAGCCAG CTTGAAGAAA G	CATCTCACA	GCTCCGACAC	TATTGCGAGC	CATACACAAC	300
10	CTGGTGTCAG GAAACGTACT C	CCAAACTAA	GCCCAAGATG	CAAAGTTTGG	TTCAATGGGG	360
	GTTAGACAGC TATGACTATC T	CCAAAATGC	ACCTCCTGGA	TTTTTCCGA	GACTTGGTGT	420
15	TATTGGTTTT GCTGGCCTTA T	TGGACTCCT	TTTGGCTAGA	GGTTCAAAAA	TAAAGAAGCT	480
13	AGTGTATCCG CCTGGTTTCA T	GGGATTAGC	TGCCTCCCTC	TATTATCCAC	AACAAGCCAT	540
	COTOTTTGCC CAGGTCAGTG G	GGAGAGATT	ATATGACTGG	GGTTTACGAG	GATATATAGT	600
20	CATAGAAGAT TTGTGGAAGG A	GAACTTTCA	AAAGCCAGGA	AATGTGAAGA	ATTCACCTGG	660
	AACTAAGTAG AAAACTYCAT G	YTCTGCCAT	CTTAATCAGT	TATRGGTAAA	CATTGGAAAC	720
25	TCCATAGAAT AAATCAGTAT T	TCTACAGAA	AAATGGCATA	GAAGTCAGTA	TTGAATGTAT	780
25	TAAATTGGCT TTCTTCTTCA G	GAAAAACTA	GACCAGACCT	CTGTTATCTT	CTGTGAAATC	840
	ATCCTACAAG CAAACTAACC T	GGAATCCCT	TCACCTAGAG	ATAATGTACA	AGCCTTAGAA	900
30	CTCCTCATTC TCATGTTGCT A	TTTATGTAC	СT			932
35	(2) INFORMATION FOR SEQ	TD NO. 21				
55	(i) SEQUENCE CHA					
	(A) LENGI	TH: 661 bas	se pairs			
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear					
	,-,			. 210.		
45	(xi) SEQUENCE DE		_		NOCA COMMON	60
73	GTCATTCTTT AAATAAAAGC T					
	AGATTCCCCC TAGGGTTGAT A			٠		120
50	TITTAAAGCT TTGGCTATAT A					180
	TTTAGGGAAG ACTAAAGGGA A					240
55	ATTAGGGCTT AAAGGGCTTT T					300
55	TCCTGTTTTT GAGATGAACA G	ATCTCTGGG	GAAATTGTTG	AGTTACAATG	GCATTTCACT	360

GTGATCCCTC TCAAGCTCAG ATCAGTTCTA TAACCCAATG ACAACCTGTC TCTTTGGTTT

ACTGTCCTGT GAAATGTCAG CTCAAGTTTC CCAGAAGTCG TGTGTTTATG ATGAGTCAGA

60

420

WO 98/39448	PCT/US98/04493

	GTGCTTTTCC TCGGTGGGAC AGTTGCTGGC CCTCTTAATT TTGGTGTATG TGCTTCCAAG	540
	TATCTAAACC TCCAGTCTGA TCTGTATATG CTATCCTAAC TGTTAATTGT ATTATTGATT	600
5	ATGTTGATTA TCTTGCTTGA AGGTTCATAC TTTTCAATTT GATAGAAATA AAGTTTTTTT	660
	с	661
10		
10		
	(2) INFORMATION FOR SEQ ID NO: 211:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 592 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211:	
	GAAACTGACA TTGTTAAACA CACTAAAACA GAAGTACTTA CCTCTTGAAG ATTTAATATA	60
25	TAATGGTTGA CATGATACAT GTACATGAAT GGAATGACCA GATGCTTATG GTCTACATTT	120
	TCCTTTATCC TGTTAGTATT ACCTTCCTTA ATCTTTGTTC CTTAACATGC TAAATTCCTC	180
	TTCAGTGTTT ATTTTCTAGT GACAGAATGC TAACATTTCT TACACCCTGG CAGAAGGGAG	240
30	AGAAATGTGT TTTGGGGTGG GTAACTAAAT TTTTGAGTGA AATATCATAA GATGAGAATG	300
	GAAAGAGGGA GACACAAAGA GTTATAACAA AAAAACAATG GTTTTTTTTAG CCATTTGACT	360
35	GGCTCTTTAA ATAGTCTACA AGACATTCAC GTTNAACATC ACTTTTAGTG AAATAAAATG	420
	TGCCATACTA GTATGTGCTT CAAAAGGGCA AATGTGCTTT AGTGCCCTAA GGCTAAATTT	480
	TGGTCATTTG ACATCAGAGA TGTTGTAAGT ATTGCACTTA ATACGCACCT ATTTCTCAAT	540
40	AGTGNTATTT TTTTGGCTAG CATTTNCTTT ACCACTAACC TTGTTGGATA GC	592
45	(2) INFORMATION FOR SEQ ID NO: 212:	
75		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 938 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212:	
55	TGGAGTGGCT TTCCAGCTGA ATGAATCCTA TGTCTCGCGT GCAGGTGGTT GGTTTTCAAT	60
	GTTCTTSCTA ATTTTTTTCC TATTGGCTCT TGGGAGTTTN CTTTGTTTGC TCCTGTGTTT	120
60	GCCCAGCTTT AATAAAACCA GGCGCAAACA AAAACCATAG CATTCTGAAA CAATAGGGGG	180
-		

439

	CCCACATTGG	ACCCAGTATG	TCACTTTAAT	GGACTTCAAG	AAAAAATCTG	AATGGGAAAA	240
	TGACACTAGG	AATGTATACT	CCACACATTT	TATGCCATAT	AATGGTGTGT	TTTCTTAATT	300
5	TIGITICITG	TGGCGAAATG	TGGCTTTCAA	ATTAAAATGM	CCTTTTCTTC	TTKGAAACTT	360
	TTTGTTTKGA	CTKGTATAAT	TAAGGGTTTG	GAAAGATTCA	TAATTMTGAG	AGAGGTTTGC	420
10	AACCAGGAGA	TACAAAGAAG	TCTCAGTAGT	AATCTTGTTC	ATGTGCTTTT	ACAGCCAGCT	480
10	ACATTTAAGR	ATGTATTAGT	TACAGAAATT	ATATGTCTGT	GTATGTGTCT	СТАСТСААТА	540
	AAGTACATGC	CTCCACATAA	TGCGGTGCTG	TCCATCTCGG	CAAATACTGG	CCAAGTCCCT	600
15	TTATGACAGG	CACACAGAAA	CCATAGCATG	GTCTGGCTTT	CAGAAAATGC	CTCTCATCTT	660
	TCCTGGAACC	TTATTTTGCT	AAATGTCTGT	TTTCTTGTGA	TTTGTTGTAC	CTCACAGCAC	720
20	CATTGTGACC	ATGGTGATGC	CTCATTTGCA	TGATATGTAC	CTTGTGTTTA	ATGTGAAATA	780
20	CATTTTCATT	GAAGAGTCTG	ATGACTTGCT	AGCGTTTTAT	TTTTTCTGTA	AGCTCAATGT	840
	GCTGAAACCA	AACCAGGCTT	TTAAAAACCT	GTGTAGAAGA	AAACCAAAAA	ATCCTGTGTG	900
25	GGIGTCCTTT	CCCTGTCAAA	CTCATTAAAA	ATTCCTTT			938

30 (2) INFORMATION FOR SEQ ID NO: 213:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1079 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 213:

40	AGCCTGCCGG	GAGAGTGGTG	GCATCTRARA	GCTGGTCGT	GGACTGTGGT	TGGGGGAGGT	60
	GGGAGCTGTT	TTAACCGTGT	GCCCCTCTC	CTGTGCCKGC	GTGGGCATCC	CCCGGGGCAG	120
45	TGGAACGCGG	GCGCTCCTCC	AGCTTCCGAG	TCCAGCCAGC	CTGGGCGCGG	GCCCCCCC	180
73	CGAGACACCC	GAGGAGTCCG	TTCCTCCCTG	GTTACGTGGA	CTGTGGAGCT	GGTCTCTTGT	240
	GGCTCAGCGC	CGTGCGGAGG	TTGAAGCGTA	CCTGCGGAGG	TCGCACCAGG	GGCGTGAGGA	300
50	GGAGGAGGAA	GGGCATGAGC	CGAGCTTGAG	GAATCCGTGY	TCCAAACTCT	ACACTCAAGG	360
	RTGCMCTGCG	CAACTCTGGT	GGCGATGGGC	TGGGGCAGAT	GTCCTTGGAG	TTCTACCAGA	420
55	AGAAGAAGTC	TCGCTGGCCA	TTCTCAGACG	AGTGCATCCC	ATGGGAAGTG	TGGACGGTCA	480
<i>J</i> J	AGGTGCATGT	GGTAGCCCTG	GCCACGGAGC	AGGAGCGGCA	GATCTGCCGG	GAGAAGGTGG	540
	GTGAGAAACT	CTGCGAGAAG	ATCATCAACA	TCGTGGAGGT	GATGAATCGG	CATGAGTACT	600
60	TGCCCAAGAT	GCCCACACAG	TCGGAGGTGG	ATAACGTGTT	TGACACAGGC	TTGCGGGACG	660

TGCAGCCCTA CCTGTACAAG ATCTCCTTCC AGATCACTGA TGCCCTGGGC ACCTCAGTCA

720
CCACCACCAT GCGCAGGCTC ATCAAAGACA CCCTTGCCCT CTGAGCGTCG CTGGATCTCT

780
GGGAGCTCCT TGATGGCTCC CAGACCTTGG CTTTTGGGAA TTGCACTTTT GGGCCTTTGG

840
GCTCTGGAAC CTGCTCTGGG TCATTGGTGA GACTTGGAAG GGGCAGCCCC CGCTGGCTTC

900
TTGGTTTTGT GGTTGCCAGC CTCAGGTCAT CCTTTTAATC TTTGCTGACG GTTCAGTCCT

960
GCCTCTACTG TCTCTCCATA GCCCTGGTGG GGTCCCCCTT CTTTCTCCAC TGTACAGAAG

1020
AGCCACCACT GGGATGGGGA ATAAAGTTGA GAACATGAGT TTGGGCTGAA AAAAAAAAA

1079

(2) INFORMATION FOR SEQ ID NO: 214:

20

25

30

35

40

45

50

55

60

15

5

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3791 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEOUENCE DESCRIPTION: SEO ID NO: 214:

TGAAGCAGGC GCTCTTGGCT CGGCGCGGCC CGCTGCAATC CGTGGAGGAA CGCGCCGCCG 60 AGCCACCATC ATGCCTGGGC ACTTACAGGA AGGCTTCGGC TGCGTGGTCA CCAACCGATT 120 CGACCAGTTA TTTGACGACG AATCGGACCC CTTCGAGGTG CTGAAGGCAG CAGAGAACAA 180 GAAAAAAGAA GCCGCGGGG GCGCCTTGG GGCCCTGGG GCCAAGAGCG CATCAGGGCC 240 GCGGCCCAGA CCAACTCCAA CGCGGCAGGC AAACAGCTGC GCAAGGAGTC CCAGAAAGAC 300 CGCAAGAACC CGCTGCCCCC CAGCGTTGGC GTGGTTGACA AGAAAGAGGA GACGCAGCCG 360 CCCGTGGCGC TTTAAGAAAG AAGGAATAAG ACGAGTTGGA AGAAGACCTG ATCAACAACT 420 TCAGGGTGAA GGGAAAATAA TTGATAGAAG ACCAGAAAGG CGACCACCTC GTGAACGAAG 480 ATTCGAAAAG CCACTTGAAG AAAAGGGTGA AGGAGGCGAA TTTTCAGTTG ATAGACCGAT 540 TATTGACCGA CCTATTCGAG GTCGTGGTGG TCTTGGAAGA GGTCGAGGG GCCGTGGACG 600 TOGAATGOGC CGAGGAGATG GATTTGATTC TCGTGGCAAA CGTGAATTTG ATAGGCATAG 660 TGGAAGTGAT AGATCTTCTT TTTCACATTA CAGTGGCCTG AAGCACGAGG ACAAACGTGG 720 AGGTAGCGGA TCTCACAACT GGGGAACTGT CAAAGACGAA TTAACTGACT TGGATCAATC AAATGTGACT GAGGAAACAC CTGAAGGTGA AGAACATCAT CCAGTGGCAG ACACTGAAAA 840 TAAGGAGAAT GAAGTTGAAG AGGTAAAAGA GGAGGGTCCA AAAGAGATGA CTTTGGATGA GTGGAAGGCT ATTCAAAATA AGGACCGGC AAAAGTAGAA TTTAATATCC GAAAACCAAA 960

	TGAACGTGCT	GATGGGCAGT	GGAAGAAGGG	ATTIGTTCTT	CATAAATCAA	AGAGTGAAGA	1020
	GGCTCATGCT	GAAGATTCGG	TTATGGACCA	TCATTTCCGG	AAGCCAGCAA	ATGATATAAC	1080
5	GTCTCAGCTG	GAGATCAATT	TTGGAGACCT	TGGCCGCCCA	GGACGTGGCG	GCAGGGGAGG	1140
	ACGAGGTGGA	CGTGGGCGTG	GTGGGCGCCC	AAACCGTGGC	AGCAGGACCG	ACAAGTCAAG	1200
10	TGCTTCTGCT	CCTGATGTGG	ATGACCCAGA	GGCATTCCCA	CCTCTCCCTT	AACTGGATGC	1260
10	CATAAGACAA	CCCTGGTTCC	TTTGTGAACC	CTTCTGTTCA	AAGCTTTTGC	ATGCTTAAGG	1320
	ATTCCAAACG	ACTAAGAAAT	AAAAAAA	AAGACTGTCA	TTCATACCAT	TCACACCTAA	1380
15	AGACTGAATT	TTATCTGTTT	TAAAAATGAA	CTTCTCCCGC	TACACAGAAG	ТААСАААТАТ	1440
	GGTAGTCAGT	TTTGTATTTA	GAAATGTATT	GGTAGCAGGG	ATGTTTTCAT	AATTTTCAGA	1500
20	GATTATGCAT	TCTTCATGAA	TACTTTTGTA	TIGCIGCIIG	CAAATATGCA	TTTCCAAACT	1560
20	TGAAATATAG	GTGTGAACAG	TGTGTACCAG	TTTAAAGCTT	TCACTTCATT	TGTGTTTTTT	1620
	AATTAAGGAT	TTAGAAGTTC	CCCCAATTAC	AAACTGGTTT	TAAATATTGG	ACATACTGGT	1680
25	TTTAATACCT	GCTTTGCATA	TTCACACATG	GTCAACTGGG	ACATGTTAAA	CTTTGATTTG	1740
	TCAAATTITA	TGCTGTGTGG	AATACTAACT	ATATGTATTT	TAACTTAGTT	TTAATATTT	1800
30	CATTTTTGGG	GAAAAATCTT	TTTTCACTTC	TCATGATAGC	TGTTATATAT	ATATGCTAAA	1860
50	TCTTTATATA	CAGAAATATC	AGTACTTGAA	CAAATTCAAA	GCACATTTGG	TTTATTAACC	1920
	CTIGCTCCTT	GCATGGCTCA	TTAGGTTCAA	ATTATAACTG	ATTTACATTT	TCAGCTATAT	1980
35	TTACTTTTTA	AATGCTTGAG	TTTCCCATTT	ТААААТСТАА	ACTAGACATC	TTAATTGGTG	2040
	AAAGTTGTTT	AAACTACTTA	TTGTTGGTAG	GCACATCGTG	TCAAGTGAAG	TAGTTTTATA	2100
40	GGTATGGGTT	TTTTCTCCCC	CTTCACCAGG	GTGGGTGGAA	TAAGTTGATT	TGGCCAATGT	2160
	GTAATATTTA	AACTGTTCTG	TAAAATAAGT	GTCTGGCCAT	TTGGTATGAT	TTCTGTGTGT	2220
	GAAAGGTCCC	AAAATCAAAA	TGGTACATCC	ATAATCAGCC	ACCATTTAAC	CCTTCCTTGT	2280
45	TCTAAAACAA	AAACCAAAGG	GCGCTGGTTG	GTAGGGTGAG	CTCCCCCACT	ATTTTAATTT	2340
	TTGGAATTTG	GGAAGCAGAC	AGCTTTACTT	TGTAAGGTTG	GAACAGCAGC	ACTATACATG	2400
50	AAATATAAAC	CAAAAACCTT	TACTGTTTCT	AAATTTCCTA	GATTGCTATT	ATTIGGTIGT	2460
50	AAGTTGAGTA	TTCCACAGAA	AGTGGTAATT	ATCTCTTCTC	TCTTCCTCCA	TTAGAAAATT	2520
	AGGTAAATAA	TGGATTCCTA	TAATGGGAGC	ATCACCACTT	ATTAAAACAC	ACATAGAATG	2580
55	ATGAATTAAA	AAAGTTTTCT	AGGATTGTCT	TTTATTCTGC	CACATTTATT	GATAAACAGT	2640
	GAAGGAATTT	TTAAAAAATT	TTTAAGAATT	GTTTGTCACG	TCATTTTTAG	AAATGTTCTA	2700
60	CCTGTATATG	GTAATGTCCA	GTTTTAAAAA	TATTGGACAT	CTTCAATCTT	AAACATTTCT	2760

	ATTTAGCTGA	TIGGITCTCA	CATATACTTC	TAAAAGAAAC	TTTTATGTTA	TAAGAGTTAC	2820
	TTTTTGGATA	AGATTTATTA	ATCTCAGTTA	CCTACTATTC	TGACATTITA	GGAAGGAGGT	2880
5	AATTGTTTTT	AATGATGGAT	AAACTTGTGC	TGGTGTTTTG	GATCTTATGA	TGCTGAGCAT	2940
	GTTCTGCACT	GGTGCTAATG	TCTAATATAA	TTTATATTT	ACACACATAC	GTGCTACCCA	3000
10	GAGATTAATT	TAGTCCATAT	GAACTATTGA	CCCATTGTTC	ATTGAGACAG	CAACATACGC	3060
10	ACTCCTAAAT	CAGTGTGTTT	AGACTTTTCA	AGTATCTAAC	TCATTTCCAA	ACATGTACCA	3120
	TGTTTTATAA	ACCTCTTGAT	TTCCAGCAAC	ATACTATAGA	AAACACCTGC	TACTCAAAAC	3180
15	ACAACTTCTC	AGTGTCATCC	ATTGCTGTCG	TGAGAGACAA	CATAGCAATA	TCTGGTATGT	3240
	TGCAAGCTTT	CAAGATAGCC	TGAACTTAAA	AAGTTGGTGC	ATTAGTTGTA	TCTGATGGAT	3300
20	ATAAATTTGC	CTCCTAGTTC	ACTITICITY	AAGAGCTAAA	ACTGTGAACC	TAACTTTCTC	3360
20	TTATIGGIGG	GTAATAACTG	AAAATAAAGA	TTTATTTTCA	TGCTCACTTC	TTAAAAGTCA	3420
	TAAAAACAAT	CAAATAGGRT	CATGTTTATT	GTCATGTGTT	TCCTGGKTTC	TGACCTGTGT	3480
25	GCACACCCCT	GTGTGTTTAT	AATTTTTAAA	TTGAATTTTA	TATGGGGTTT	TTATTTGCTA	3540
	AAAACCAGGC	TGTTGAATCA	CATTTGGGAA	GGGTACTTAT	CTTAATGACT	AATGACTTAA	3600
30	TTGGGAAAGT	TGAATTCTTG	ТААААТАСАА	AATCCAAGGA	CTTCTTQGGA	ТТТААТСТАА	3660
30	TTGTCACTTC	NTTAGGCAGA	TNCACTITIT	TGGATAATGG	AAAGTTAAGC	ATACCGAATG	3720
	CTACTTTTGG	TTGACAAACG	GGCCTAATAG	TCCGGGGGGA	AATCCCTAAC	NGGTAAGGNT	3780
35	CCCAAGTATG	G					3791

40 (2) INFORMATION FOR SEQ ID NO: 215:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1334 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 215:

50	CAGTGCTCGC	TCCTGCTCGG	GCCCTGCGG	CCCCGGGCGT	CGCCATGACC	AGTGAGCTGG	60
	ACATCTTCGT	GGGGAACAGA	CCCTTATCGA	CGAGGACGTG	TATCGCCTCT	GGCTCGATGG	120
55	TTACTCGGTG	ACCGACGCGG	TGGCCCTGCG	GGTGCGCTCG	GGAATCCTGG	AGCAGACTGG	180
	CGCCACGGCA	GCGGTGCTNC	AGAGCGACAC	CATGGACCAT	TACCGCACCT	TCCACATGCT	240
	CGAGCGGCTG	CTGCATGCGC	CGCCCAAGCT	ACTGCACCAG	YTCATCTTCC	AGATTCCGCC	300
60	CTCCCGGCAG	GCACTACTCA	TCGAGAGGTA	CTATGCCTTT	RATGAGGCCT	TTGTTCGGGA	360

443

	GCTGCTGGGC	AAGAAGCTGT	CCAAAGGCAC	CAAGAAAGAC	CTGGATGACA	TCAGCACCAA	420
5	AACAGGCATC	ACCCTCAAGA	GCTGCCGGAG	ACAGTTTGAC	AACTTTAAAC	GGGTCTTCAA	480
,	GGTGGTAGAG	GAAATGCGGG	GCTCCCTGGT	GGACAATATT	CAGCAACACT	TCCTCCTCTC	540
	TGACCGGTTG	GCCAGGGACT	ATGCAGCCAT	CGTCTTCTTT	GCTAACAACC	GCTTTGAGAC	600
10	AGGGAAGAAA	AAACTGCAGT	ATCTGAGCTT	CGGTGACTTT	GCCTTCTGCG	CTGAGCTCAT	660
	GATCCAAAAC	TGGACCCTTG	GAGCCGTCGA	CTCACAGATG	GATGACATGG	ACATGGACTT	720
15	AGACAAGGAA	TTTCTCCAGG	ACTTGAAGGA	GCTCAAGGTG	CTAGTGGCTG	ACAAGGACCT	780
13	TCTGGACCTG	CACAAGAGCC	TGGTGTGCAC	TGCTCTCCGG	GGAAAGCTGG	GCGTCTTCTC	840
	TGAGATGGAA	GCCAACTTCA	AGAACCTGTC	CCGGGGGCTG	GTGAACGTGG	CCGCCAAGCT	900
20	GACCCACAAT	AAAGATGTCA	GAGACCTGTT	TGTGGACCTC	GTGGAGAAGT	TTGTGGAACC	960
	CTGCCGCTCC	GACCACTGGC	CACTCAGCGA	CCTCCCCTTC	TTCCTGAATC	AGTATTCAGC	1020
25	GTCTGTCCAC	TCCCTCGATG	GCTTCCGACA	CCAGGCCTCT	GGGACCGCTA	CATGGGCACC	1080
2,3	CTCCGCGGCT	GCCTCCTGCG	CCTGTATCAT	GACTGAGGTG	CCTCCCAACG	CTCCGCCCAC	1140
	GCTGACAATA	AAGTTGCTCT	GAGTTTGGAG	ACTOGTCCTC	GCTCCGGGGA	GCAAGTGGGG	1200
30	GGCGTGCAGA	TGTGCCTGTG	TCTGTCTCTG	AGCACCTGGT	GTCCGTGTAC	AAGGATGGAT	1260
	GTGTNCNGTG	GCTCCTTGGG	AACTGAGACA	TATCTCAGGG	AATGGTGTCT	GTGCTCAGCC	1320
35	CATCCACCAG	AAGA					1334

(2) INFORMATION FOR SEQ ID NO: 216:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1511 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 216:

50

GTGGCGGGA TGCTGCGAGG GGGTCTCCTG CCCCAGGCGG GCCGGCTGCC TACCCTCCAG 60

ACTGTCCGCT ATGGCTCCAA GGCTGTTACC CGCCACCGTC GTGTGATGCA CTTTCAGCGG 120

CAGAAGCTGA TGGCTGTGAC TGAATATATC CCCCCGAAAC CAGCCATCCA CCCATCATGC 180

55

CTGCCATCTC CTCCCAGCCC CCCACAGGAG GAGATAGGCC TCATCAGGCT TCTCCGCCGG 240

GAGATAGCAG CAGTTTTCCA GGACAACCGA ATGATAGCCG TCTGCCAGAA TGTGGCTCTG 300

AGTGCAGAGG ACAAGCTTCT TATGCGACAC CAGCTGCGGA AACACAAGAT CCTGATGAAG 360

444

	RTCTTCCCCA ACCAGGTCCT GAAGCCCTTC CTGGAGGATT CCAAGTACCA AAATCTGCTG	420
	CCCCTTTTTG TGGGGCACAA CATGCTGCTG GTCAGTGAAG AGCCCAAGGT CAAGGAGATG	480
5	GTACGGATCT TAAGGACTGT GCCATTCCTG CCGCTGCTAG GTGGCTGCAT TGATGACACC	540
	ATCCTCAGCA GGCAGGGCTT TATCAACTAC TCCAAGCTCC CCAGCCTGCC CCTGGTGCAG	600
10	GGGGAGCTTG TAGGAGGCCT CACCTGCCTC ACAGCCCAGA CCCACTCCCT GCTCCAGCAC	660
	CAGCCCCTCC AGCTGACCAC CCTGTTGGAC CAGTACATCA GAGAGCAACG CGAGAAGGAT	720
	TCTGTCATGT CGGCCAATGG GAAGCCAGAT CCTGACACTG TTCCGGACTC GTAGCCAGCC	780
15	TGTTTAGCCA GCCCTGCGCA TAAATACACT CTGCGTTATT GGCTGTGCTC TCCTCAATGG	840
	GACATGTGGA AGAACTTGGG GTCGGGGAGT GTGTTTGTCA CTTGGTTTTC ACTAGTAATG	900
20	ATATTGTCAG GTATAGGGCC ACTTGGAGAT GCAGAGGATT CCATTTCAGA TGTCAGTCAC	960
20	CGSCTTCGTC CITAGTTTTC CCAACTTGGG ACGTGATAGG AGCAAAGTCT CTCCATTCTC	1020
	CAGGTCCAAG GCAGAGATCC TGAAAAGATA GGGCTATTGT CCCCTGCCTC CTTGGTCACT	1080
25	GCCTCTTGCT GCACGGGCTC CTGAGCCACC CCCTTGGGGC ACAACCTGCC ACTGCCACAG	1140
	TAGCTCAACC AAGCAGTTGT GCTGAGAATG GCACCTGGTG AGAGCCTGCT GTGTGCCAGG	1200
30	CTTTGTGCTG AGTGCTGTAC ATGTATTAGT TCCTTTACTG CTGACCACAT TGTACCCATT	1260
,,,	TCACAGAGAA GGAGCAGAGA AATTAAGTGG CTTGCTCAAG GTCATGCAGT TAGTAAGTGG	1320
	CAGAACAGGG ACTTGAACCA AGCCCTCTGC TCTGAAGACC GCGTCCTGAA TTTCTTCACT	1380
35	AGAGCTTCCT CATCAGGTTA CCCAGAAGTG GGTCCCATCC ACCATCCAGG TGTGCTTGGA	1440
	TGITAGTTCT CCACCCTCGA GGTGTACGCT GTGAAAAGTT TGGGAGCACT GCTTTATAAT	1500
10	AAAATGAAAT A	1511
10	•	
	(2) INFORMATION FOR SEQ ID NO: 217:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 642 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
,,	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217:	
55	AGGCCTTACT TTTCCTCCCA CAAAGGAGTC GCAGCCACGC TAGCTCTGAC TTGCCACTGT	60
	GACAAAGTTC ACGTAGCAGG TCTAGGCAAA GACTGGGCAA TTGAGCAGAG GAGACGGACC	120
	TGTGAGTCTG ACCRYGAGSC GGRCCCCTTC ACCTTGGCTG GGCTGGTCCT GGTCCTTAGG	180

TITTGTCAGG TTGTCCTTGT TTGGATCCCT CAACTAGGTG ATAAGCACTG GAGGGGGATG

240

445

	ACCCGCCTTG GACGTGTTTC TTTAACCTCA TCCATATAAT AGGGCCGTGG GATGGTTGTA	300
5	GAGGTAAAGC AGGATGATGG TGTTTTAAGA CCAGAGCTTG GGACCAGGGC TCCTACACCT	360
,	AATTITCTCT CCTGGTAGCT GAACAAAGGT CTAAATTAGC TTAACAAAAG AACAGGCTGC	420
	CGTCAGCCAG AGTTCTGAAG GCCATGCTTT CAGTTTCCCT TGTTGACAAT TGCTCTCCAG	480
10	TTCCTATGAA AGCACAGAGC CTTAGGGGGC CTGGCCACAG AACACAACCA TCTTAGGCCT	540
	GAGCTGTGAA CAGCAGGGG TTGTGTGTCT GTTCTGTTTC TCTGCTTGCC GAACTTTCTC	600
15	AATAAACCCT ATTTCTTATT TTATATTTAC GINGGTGCTG GG	642
20	(2) INFORMATION FOR SEQ ID NO: 218:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1241 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218:	
30	GGTCCCACTG TTCCATTTTA TGCTAATAGA TTCCATTCTA GGGCCCAGCC GTCTCTTGAC	60
	TGATGGTGTT CCCTTTAACC CTTGGCATGT ATAATAGAAT TTTGGTGAAT GAAAGAACCC	120
2.5	AAATAGGCCA GATAGTCCCC CCAGGCCCTG ATATCCATAA AAGGCTTGGG AATGCATTAT	180
35	GTAATTGTCC TTAGTCTTTT TGTTGTTTTA GAAAAAAAA ACAAGATGGG CTCAGATGGA	240
	TGCCTACGTA AAAATGGTTC CTAGCTGTGT ACTCATAACT TTTCTTTGAA TTGAGTAGTG	300
40	AAAGGAAGGA GGAGGAAAGG AAATTAAATG TCCTTCTAGT ATTCTCTGGA CTCAAGTCTG	360
	ACATATGRGA TAATAACCTA TATTGAAATG CCAAGAATTG TATCTGAAAC AAGRGAACAG	420
	TTTGACACAT TTATCATGCC TTCATATTAC ATATTAACTG AAACCAATTA ATAAACATAT	480
45	GAAATATCCA TTGCACAAGG CAAAGGCACC TAAACCTTTT GTTTCTTTTT CTACATAGCA	540
	GAAATTGATT TTTTTTTAT TTTTTTAGGG GAACCTATAT AATTATGACC CAGTGATGTC	600
50	TTTTGGTGAC TTAAGCTTAT GAATTCAGGT TACAATTGAG TTGATTCTAG ATGGTTACTA	660
	CCTTGAAAAG GATGTTGGTG CCTTATGTGA CACGAGCCAG AGCCTGCTGG GAATAAACAA	720
	AGCAGATTCA TOCCAACACC AACTCGTAGC TTTAGTOGCA GATGGGAGTG GTCACAGACT	780
55	CCCAAAATGT GGGGCTTTGG ATTTCCACAC CATCCCACGT GTGTGTCATC TTCCTCTTTC	840

ACACTCTTGA TGATAATTTG AAAATGRTGA AATCACCTCT GAATTTGCCT ATAGCATGAG

CACATTCTTA TGACAACATA ACAAATAGTT CATAATGTGA ATATTAGAAA CTGTTACAGC

60

900

446

	CTGCAGTTAC	CATAATTITC	CATGTTTGTG	GAATTGATAT	TGAAATAGCA	GGGCTAAGGA	1020
	ATTACTGGCA	AGTTTTAGCC	TGTGGGTAAT	ACCTTAGGGT	TATTTAAATA	TTTGTAATTT	1080
5	TATTTAAATG	TTCATGAATG	TTTGAAAGGA	ACAAAATTAT	CAGGGATGGC	TCTTTGCCAT	1140
	GGTCTTATT	TTCACCCTCT	TTTCTGTAAG	AAAAAAGAAC	AATGTCTTAA	TGTATTTTTA	1200
10	AAGTTTTTGG	TATAGTITCT	AATTCCAATT	TTAATAAAAG	T		1241

(2) INFORMATION FOR SEQ ID NO: 219:

15

20

25

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1080 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219:

TGTTTATGTG ACCTAAAACA TACACACATG CACACACAC TACATATCCA TTCATTCATT 60 CATTCAAGTG GTGTTTCCAG TGTCTGTGTG TCACTGTTTA TGCAGTTTCC ATTTCCCAGT 120 GAATTATGAG TGGAGGGCAA CTTTTCTAAC CAGATTGTCT TTTCAGAACA AAGACCKGGG 180 RATTGAGGAA GAGTTTGGAA AGAGGGAGAG GCAAGGAAAG AGAGCTTTAA ATTGAAAGGT 240 TAATTTCCTA AGAGGAACCT GGGCTGAATG ACTACAGTGT TATACCCTCC AATCTTTGCA 300 GGTGGGCATG GAACACTGCT TGTATCACTC TGTGCACGGT ATAAATCCAT ATATCCACAA AAACACACAT CCATCCATCA ACATATACAT GGTTTGGGAT GAGCAGGTCA ATAGTTTTGA 420 GAGGGAGTIT GITCCTIPIT TITICTCATT ATACTCTTAA ATTGTTGTCA GITATCAAAC AAACAAACAG AAAAATTGTT TGGGAAAAAC CTTGCATACG CCTTTTCTAT CMAGTGCTTT 540 AAAATATAGA CTAAATACAC ACATCCTGCC AGTTTTTTCT TACAGTGACA GTATCCTTAC CTGCCATTTA ATATTAGCCT CGTATTTTC TCACGTATAT TTACCTGTGA CTTGTATTTG 660 TTATTTAAAC AGGAAAAAA ACATTCAAAA AAAGAAAAAT TAACTGTAGC GCTTCATTAT 720 ACTATTATAT TATTATTATT ATTGGGACAT TTTGGGAATAC TGTGAAGTTT TATCTCTTGC 780 ATATACTITA TACGGAAGTA TTACGCCTTA AAAATACGAA AATAAATTTT ACAAGGTTTC 840 TGTTTGTGT GGAAGAGTAA TTGATGTTGC TAAGAATGAT GTTTGTTTTT TTGGGGTTTT 900 960 TGTTGTTTT TTTTTAAATG TTACCAGCAC TTTTTTTGTA AGTTTCACTT TCCGAGGTAT 1020 1080 AAACCNCGGG GGGGCCCGG TCCCATTGGN CCCAAGGGGG CGGTTACGGG GTCACGGCCG

447

(i) SE	QUENCE CHARACTERISTICS:
	(A) LENGTH: 1258 base pairs
	(B) TYPE: nucleic acid

(2) INFORMATION FOR SEQ ID NO: 220:

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 220:

	TGAATTGAGG	GCTTAAAGAT	AAACATATGG	GRTTGGAGTT	GTGTGTCCAT	AGGGTTTCAC	60
15	TGCCTATTTG	ATTTGAGTTT	ATCCCTATTA	ATTTTTTACA	GIGAAATTTT	ATTAAAGTAT	120
	AATGTACATA	TATTTTCAGT	GGATTTTGCT	CTGAAGGTTC	TCCAGTGGTC	TGACTACGAG	180
20	ATAGTGCGGC	TICAGCIGIG	GGATATTGCA	GGGCAGGAGC	GCTTCACCTC	TATGACACGA	240
20	TTGTATTATC	GGGATGCCTC	TGCCTGTGTT	ATTATGTTTG	ACGTTACCAA	TGCCACTACC	300
	TTCAGCAACA	GCCAGAGGTG	GAAACAGGAC	CTAGACAGCA	AGCTCACACT	ACCCAATGGA	360
25	GAGCCGGTGC	CCTGCCTGCT	CTTGGCCAAC	AAGTGTGATC	TGTCCCCTTG	GGCAGTGAGC	420
	CGGGASCAGA	TIGACCOGTT	CAGTAAAGAG	AACGGTTTCA	CAGGTTGGAC	AGAAACATCA	480
30	GTCAAGGAGA	ACAAAAATAT	TAATGAGGCT	ATGAGAGTCC	TCATTGAAAA	GATGATGAGA	540
50	AATTCCACAG	AAGATATCAT	GTCTTTGTCC	ACCCAAGGGG	ACTACATCAA	TCTACAAACC	600
	AAGTCCTCCA	GCTGGTCCTG	CTGCTAGTAG	TGTTTGGYTT	ATTTTCCATC	CCAGTTCTGG	660
35	GAGGTCTTTT	AAGTCTCTTC	CCTTTGGTTG	CCCACCTGAC	MATTTTATTA	AGTACATTIG	720
	AATTGTCTCC	TGACTACTGT	CCAGTAAGGA	GGCCCATTGT	CACTTAGAAA	AGACACCTGG	780
40	AACCCAKGTG	CATTTCTGCA	TCTCCTGGAT	TAGCCTTTSA	CATGTTGCTG	RCTCACATTA	840
10	GTGCCAGTTA	GTGCCTTCGG	TGTAAGATCT	TCTCATCAGC	CCTCAATTTG	TGATCCGGAA	900
	TTTTGTGAGA	AGGATKAGAA	ATCAGCACCT	GCGTTTTAGA	GATCATAATT	CTCACCTACT	960
45	TCTGAGCTTA	TTTTTCCATT	TGATATTCAT	TGATATCATG	ACTTCCAATT	GAGAGGAAAA	1020
	TGAGATCAAA	TGTCATTTCC	CAAATTTCTT	GTAGGCCGTT	GTTTCAGATT	CTTTCTGTCT	1080
50	TGGAATGTAA	ACATCTGATT	CTGGAATGCA	GAAGGAGGG	TCTGGGCATC	TGTGGATTTT	1140
50	TGGCTACTAG	AAGTGTCCCA	GAAGTCACTG	TATTTTGAA	ACTTCTAACG	тсатааттаа	1200
	GITTCTCTTG	TCTTGGGCAT	CAAGANTAGT	TCCAATTTTT	TGGGCCGGG	CAGGGTGG	1258

55

60 (i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 221:

(A) LENGTH: 1693 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear 5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221:

	CACAATATAT GAA	ATAGTAC	ССТСТААААА	AGAGAAAAA	AAAATCAGGC	GGTCAAACTT	60	•
10	AGAGCAACAT TGT	CTTATTA	AAGCATAGTT	татттсаста	GAAAAAATTT	AATATCAAGG	120	
	ACTATTACAT ACT	TCATTAC	TAGGAAGTTC	TTTTTAAAAT	GACACTTAAA	ACAATCACTG	180	
15	AAAACTTGAT CCA	CATCACA	CCCTGTTTAT	тттссттала	CATCTTGGAA	GCCTAAGCTT	240	
13	CTGAGAATCA TGT	GGCAAGT	GTGATGGGCA	GTAAAATACC	AGAGAAGATG	TTTAGTAGCA	300	
	ATTAAAGGCT GTT	TGCACCT	TTAAGGACCA	GCTGGGCTGT	AGTGATTCCT	GGGCCAGAG	360	
20	TGGCATTATG TIT	TTACAAA	ATAATGACAT	ATGTCACATG	TTTGCATGTT	TGTTTGCTTG	420	
	TTGAATTTTT GAA	CAGCCAG	TTGACCAATC	ATAGAAAGTA	TTACTTTCTT	TCATATGGTT	480	
25	TTTGGTTCAC TGG	CTTAAGA	GGTTTCTCAG	AATATCTATG	GCCACAGCAG	CATACCAGTT	540	
23	TCCATCCTAA TAG	GAATGAA	ATTAATTTTG	TATCTACTGA	TAACAGAATC	TGGGTCACAT	600	
	GAAAAAAAAT CAT	TTTATCC	GTCTTTTAAG	TATATGTTTA	AAATAATAAA	TTATGTGTCT	660	
30	GCATATTGCA GAA	CAGCTCT	GAGAGCAACA	GTTTCCCATT	AACTCTTTCT	GACCAATAGT	720	
	GCTGGCACCG TTG	CTTCCTC	TTTGGGAAGA	GGAAAGGGTG	TGTGAACATG	GCTAACAATC	780	
35	TTCAAATACC CAA	ATTGTGA	TAGCATAAAT	AAAGTATTTA	TTTTATGCCT	CAGTATATTA	840	
	TTATTTAATT TTT	TAGGTAA	TGCCTATCTC	TTGGTCTATT	AAGGAAAGAA	GCAATCAGTA	900	
	GAGAATTCAG GAT	AGTTTTG	TTTAAATTCT	TGCAGATTAC	ATGTTTTTAC	AGTGGCCTGC	960	
40	TATTGAGGAA AGG	TATTCTT	CYATACAACT	TGTTTTAACC	TTTGAGAACA	TTGACAGAAA	1020	
	TTATGCAATG GTT	TGTTGAG	ATACGGACTT	GATGGTGCTG	TTTAATCAGT	TTGCTTCCAA	1080	
45	AGTGGCCTAC TCA	AGAGGCC	CTAAGACTGG	TAGAAATTAA	AAGGATTTCA	AAAACTTTCT	1140	
	ATTCCTTTCT TAA	ACCTACC	AGCAAACTAG	GATTGTGATA	GCAATGAATG	GTATGATGAA	1200	
	GAAAGTTTGA CCA	AATTTGT	TTTTTTGTTG	TTGTTGTTGT	TTTGAATTTG	AAATCATTCT	1260	
50	TATTCCCTTT AAG	AATGTTT	ATGTATGAGT	GTGAAGATGC	TAGCGAACCT	ATGCTCAGAT	1320	
	ATTCATCGTA AGT	CICCCIT	CACCTGTTAC	AGAGTTTCAG	ATCGGTCACT	GATAGTATGT	1380	
55	ATTTCTTTAG TAA	GAATGTG	TTAAAATTAC	AATGATCTTT	TAAAAAGATG	ATGCAGTTCT	1440	
-	GTATTTATTG TGC	TGTGTCT	GGTCCTAAGT	GGAGCCAATT	AAACAAGTTT	CATATGTATT	1500	
	TTTCCAGTGT TGA	ATCTCAC	ACACTGTACT	TTGAAAATTT	CCTTCCATCC	TGAATAACGA	1560	
60	ATAGAAGAGG CCA	TATATAT	TGCCTCCTTA	TCCTTGAGAT	TTCACTACCT	TTATGTTAAA	1620	

60

449

	AGTTGTGTAT	AATTGTTAAA	ATCTGTGAAA	GAATAAAAAG	TGGATTTAAL.	AAAAAATT	1680
5	АААААААА	AAA					1693

(2) INFORMATION FOR SEQ ID NO: 222:

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1196 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

15

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 222:

ACGCGTGGGT CGACCCACGC GTCCGCGACN TGGCGTGGTG GGGAAGGGAG AAGGATTTGT

20	ACGCGTGGGT	CGACCCACGC	GTCCGCGACN	TEGETEGTE	GGGAAGGGAG	AAGGATTTGT	60
20	AAACCCCGGA	GCGAGGTTCT	GCTTACCCGA	GCCGCTGCT	GTGCGGAGAC	CCCCGGGTGA	120
	AGCCACCGTC	ATCATGTCTG	ACCAGGAGGC	AAAACCTTCA	ACTGAGGACT	TGGGGGATAA	180
25	GAAGGAAGGT	GAATATATTA	AACTCAAAGT	CATTGGACAG	GATAGCAGTG	AGATTCACTT	240
	CAAAGTGAAA	ATGACAACAC	ATCTCAAGAA	ACTCAAAGAA	TCATACTGTC	AAAGACAGGG	300
30	TGTTCCAATG	AATTCACTCA	GGTTTCTCTT	TGAGGGTCAG	AGAATTGCTG	ATAATCATAC	360
30	TCCAAAAGAA	CTGGGAATGG	AGGAAGAAGA	TGTGATTGAA	GTTTATCAGG	AACAAACGGG	420
	GGTCATTCA	ACAGTTTAGA	TATTCTTTTT	ATTTTTTTC	TTTTCCCTCA	ATCCTTTTTT	480
35	АТТТТТАААА	ATAGITCITT	TGTAATGTGG	TGTTCAAAAC	GGAATTGAAA	ACTGGCACCC	540
	CATCTCTTTG	AAACATCTGG	TAATTTGAAT	TCTAGTGCTC	ATTATTCATT	ATTGTTTGTT	600
40	TTCATTGTGC	TGATTTTTGG	TGATCAAGCC	TCAGTCCCCT	TCATATTACC	CICICCITIT	660
40	TAAAAATTAC	GTGTGCACAG	AGAGGTCACC	TTTTTCAGGA	CATTGCATTT	TCAGGCTTGT	720
	GGTGATAAAT	AAGATCGACC	AATGCAAGTG	TTCATAATGA	CTTTCCAATT	GCCCTGATG	780
45	TTCTAGCATG	TGATTACTTC	ACTCCTGGAC	TGTGACTTTC	AGTGGGAGAT	GGAAGTTTTT	840
	CAGAGAACTG	AACTGTGGAA	AAATGACCTT	TCCTTAACTT	GAAGCTACTT	TTAAAATTTG	900
50	AGGGTCTGGA	CCAAAAGAAG	AGGAATATCA	GGTTGAAGTC	AAGATGACAG	ATAAGGTGAG	960
30	AGTAATGACT	AACTCCAAAG	ATGGCTTCAC	TGAAGAAAAG	GCATTTTAAG	AAATTTTTAAA	1020
	AATCTTGTCA	GAAGATCCCA	GAAAAGTTCT	AATTTTCATT	AGCAATTAAT	AAAGCTATAC	1080
55	ATGCAGAAAT	GAATACAACA	GAACACTGCT	CTTTTTGATT	TTATTTGTAC	TTTTTGGCCT	1140
	GGGATATGGG	TTTTAAATGG	ACATTGTCTG	TACCAGCTTC	АТТААААТАА	ACAATA	1196

WO 98/39448

5

PCT/US98/04493

450

ĺ	(2)	INFORMATION	FOR	SEO	TD	NO:	223:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1791 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223:

	TCAGGGAGGT	GGCAGGAAAG	GCTTGGAACA	GCTGCCGGAG	TGACGGAGCG	eceececec	60
	CCGGTTGCGC	TGGAGGTCGA	AGCTTCCAGG	TAGCGGCCCG	CAGAGCCTGA	CCCAGGCTCT	120
15	GGACATCCTG	AGCCCAAGTC	CCCCACACTC	AGTGCAGTGA	TGAGTGCGGA	AGTGAAGGTG	180
	ACAGGGCAGA	ACCAGGAGCA	ATTTCTGCTC	CTAGCCAAGT	CGGCCAAGGG	GGCAGCGCTG	240
20	GCCACACTCA	TCCATCAGGT	GCTGGAGGCC	CCTGGTGTCT	ACGTGTTTGG	AGAACTGCTG	300
			GCTGGCTGAG				360
	ACAGTGTTTG	CTTATGGGAC	ATACGCTGAC	TACTTAGCTG	AAGCCCGGAA	TCTTCCTCCA	420
25	CTAACAGAGG	CTCAGAAGAA	TAAGCTTCGA	CACCTCTCAG	TTGTCACCCT	GGCTGCTAAA	480
	GTAAAGTGTA	TCCCATATGC	AGTGTTGCTG	GAGGTCTTGC	CCTGCGTAAT	GTGCGGCAGC	540
30	TGGAAGACCT	TGTGATTGAG	GCTGTGTATG	CTGACGTGCT	TCGTGGCTCC	CTGGACCAGC	600
	GCAACCAGCG	GCTCGAGGTT	GACTACAGCA	TCGGGCGGGA	CATCCAGCGC	CAGGACCTCA	660
	GTGCCATTGC	CCGAACCCTG	CAGGAATGGT	CTCTCCCCTC	TRAGGTCGTG	CTGTCAGGCA	720
35	TTGAGGAGCA	GGTGAGCCGT	GCCAACCAAC	ACAAGGAGCA	GCAGCTGGGC	CTGAAGCAGC	780
	AGATTGAGAG	TGAGGTTGCC	AACCTTAAAA	AAACCATTAA	AGTTACGACG	GCAGCAGCAG	840
40	CCGCAGCCAC	ATCTCAGGAC	CCTGAGCAAC	ACCTGACTGA	GCTGAGGGAA	CCAGCTCCTG	900
	GCACCAACCA	GCGCCASCCA	GCAAGAAAGC	CTCAAAGGGC	AAGGGGCTCC	GAGGGAGCGC	960
	CAAGATTTGG	TCCAAGTCGA	ATTGAAAGRA	CIGICGITIC	CTCCCTGGGG	ATGTGGGGTC	1020
45	CCAGCTGCCT	GCCTGCCTCT	TAGGAGTCCT	CAGAGAGCCT	TCTGTGCCCC	TGGCCAGCTG	1080
	ATAATCCTAG	GTTCATGACC	CTTCACCTCC	CCTAACCCCA	AACATAGATC	ACACCTTCTC	1140
50	TAGGGAGGAG	KCAAATGTAG	GTCATGTTT	TGTTGGTACT	TICIGITITT	TGTGACTTCA	1200
	TGTGTTCCAT	TGCTCCCCGC	TGCCATGCTC	TCTCCCTTGT	TTCCTTAAGA	GCTCAGCATC	1260
<i></i>	TGTCCCTGTT	CATTACATGT	CATTGAGTAG	GTGGGTAGCC	CTGATGGGGG	TCGCTCTGTC	1320
55	TGGAGCATAA	CCCACAGGCG	TTTTTTCTGC	CACCCCATCC	CTGCATGCCT	GATCCCCAGT	1380
	TCCTATACCC	TACCCCTGAC	CTATTGAGCA	GCCTCTGAAG	AGCCATAGGG	CCCCCACCTT	1440
60	TACTCACACC	CTGAGAATTC	TGGGAGCCAG	TCTGCCATGC	CAGGAGTCAC	TGGACATGTT	1500

451

	CATCCTAGAA TCCTGTCACA CTACAGTCAT TTCTTTTCCT CTCTCTGGCC CTTGGGTCCT	1560
_	GGGAATGCTG CTGCTTCAAC CCCAGAGCCT AAGAATGGCA GCCGTTTCTT AACATGTTGA	1620
5	GAGATGATTC TTTCTTCGCC CTCGCCATCT CCGGAAGCTT GATGCCAATC CTCGAAGGGT	1680
	TTAATCTCCT TTTGTGAGTT TGGTGGGGAA GGGAAGGGTA TATAGATTGT ATTAAAAAAA	1740
10	AAAAGGTATA TATGCATATA TCTATATATA ATATGACGCA GAAATAAATC T	1791
15	(2) INFORMATION FOR SEQ ID NO: 224:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2517 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224:	
25	•	
23	ACACTAGTGG ATCCAAAGAA TTCGGCACAG CGGCACAGCA TTGTTGAGCT TTTCTGTGTG	60
	TGTGGGGCCC TCAAGCGAGC TCGACTGGTC CATCCTGGGG TAGCGASGTG GTGTTTGTGA	120
30	AAAAGGACGA TGCCATCACC GCATAYAAGA AGTACAACAA CCGGTGTCTG GACGGGCAGC	180
	CGATGAAGTG CAACCTTCAC ATGAATGGGA ATGTTATCAC CTCAGACCAG CCCATCCTGC	240
	TGCGGCTGAG TGACAGCCCA TCAATGAAAA AGGAGAGCGA GCTGCCTCGC AGGGTGAACT	300
35	CTGCCTCCTC CTCCAACCCC CCTGCCGAAG TGGACCCTGA CACCATCCTG AAGGCACTCT	360
	TCAAGTCCTC AGGGGCCTCT KTGACCACGC AGCCCACAGA WITCAAAATC AAGCTTTGAG	420
40	CAGGGGAGTR AGGCAGCCAG AAGTGGGGGC AGAGGAGGGT GGCTCTGTTT CCCCAAGGCA	480
	AAGCTTATGA CCAATGGGCC ATCGGACTGG AGACCCCTGA TTGTGGGAAG GGTTGCCAGG	540
	GATAAAGAGC TICCTCACTG GATGGGACCC GCCTTTCTGT GTTGTGTTCT GCCCTGTGCT	600

45 CTTCTCTCTA CGTTAACGTT TCCTGTAGTA TGTTTCTTCA TCTCATCGCC AAGGTAGGCT 660

TGTGTTTTTM AGTGTGGCC TCCCCGAGCC TCAGCCCCAA GCTGATTTCT TATCTGGAAA 720

TGGTACACTG AATTCTCTGG GTGGCTTTCT TGTGGCCCCA TGGGATGCAG CGTGGGGGCT 780

GTCTGAAGGA CCCTGCTTTT TCCAGGGGCC GAGGGGCTGC CTTTCCTTTG TGTGTATTAA 840

GCTTTTCAAA CAATGGAGGG GATGGAGAGC CCTGGTGTCC TGACGGGAGC CAGGTCGGCC 900

55 TGAGAGCTGT GCCGCTCCTC TGTCTTGTCA GTGGAGGTGC CTGGGTGGGG AGCAGGTCTC 960
AGGCCTCTTG TCCTCTCCCC AGTGGCTCCA GGCCTCACTA GTGGCAAGGG CAGGATGAGG 1020

60

452

	CAGAGGAAGT	TCTCCAGAGT	TCACCTTTCC	CTTTTCCTTG	ACTIGTCCIG	AATGCCCCAC	1140
	CCCAGCTCTC	TTTCCCTTCT	GGGTGTCTTT	GCTGGGAGGG	GCTGTGTTG	TGAGCCCTCC	1200
5	CGGTTCTCAC	CTCGCCTGGC	ACTTAACCAC	ACCCTGGTTT	TGTGTAGCCG	CCAGCTCTCT	1260
	TCTCGTTGGG	CCTTTGAAAG	GCTCAGCCTC	CCATTGTGCA	GTGCTTGGGT	TTGGAGCTTA	1320
10	TTTGAATGGA	AGAGGTCAGT	TTGTTCCTGG	CTCTCCATTT	CTGGCCTCAG	TTGTCTACAG	1380
	GACAGTGGTC	AGGGATGCCT	GGAGGCATAT	ATCCAGCTGC	CACCAAGGGG	CACTGTTTGT	1440
	TCCCACTTAT	GTGAGTGACC	CCATCCATCC	ATGACCAGAG	GATTATTTTC	CTGCCTTGGC	1500
15	AGAGGAGGAG	GAGTCAAGGG	AGCAGGGCAG	CTCTACCAGG	CAAGGTGTTT	CCCCAGCATA	1560
	GGCGCAGACA	GTTGGGACGA	AACTTCAGAG	CCCAGGCAGT	CCCTGAATGA	CCAGGCCAGT	1620
20	GTTGTCACTG	AGTGGTCCCC	TGCTGGTTGG	GAGTGAAGAG	AATCCAGGCT	GGCAGAGCTG	1680
	GAGCCAGTTG	GGGAGCACGG	TTCTGGGAGC	TCTGCAAAAT	CAGTAGCAAG	TGCTGGAAAA	1740
	GGCACATGCC	GAAGATACTC	AAGAGCTCCC	AAGATTTGCT	TGAGGCTAGC	CCAGTGAAAA	1800
25	AAACCAGAGA	CTCATGTTTC	CAGGGGTCAG	TCTGTCAGGC	AGGAAGGACC	CAGGATTTGA	1860
	ACCCAGCTTC	AGTGTGCAGG	CTCTGAGGCT	GCCCAGGACG	GGAAAGTCCA	AGGAAGGGC	1920
30	CTGGTGGTGC	TCCACTTGCA	GTTCTTTAAA	GAATGCTGCT	TTTTATTCTC	CTAACCCTTT	1980
	CAAGTGGGTG	CAGACTTCTC	GTTAGCAGCT	GGAAGACATT	CCTCCCACAC	TTTTCCCTTC	2040
	CTGGCCCAAG	AGAGCATCCA	GAAGGCAGTA	GGACCTGGTT	TTTCAGGTAC	TGGGAGCCGG	2100
35	GGGCTCACTG	CTTGCACTGT	GCTTAGGGTA	GGGATGGTAA	ATATCCTCCC	TGCATGGCTT	2160
	TATCCTCCCT	CTCATCCCAA	AGCAGGTATC	TTCTGGTTGT	CACAGAGTTT	CATTGAGTCC	2220
40	AGCTGCAGCC	ACGTGGCCAT	CTGGAGCTGG	TGCTATAGGT	GACCATCTGG	TACATTGAGG	2280
	GGACCTGTTT	GCCTCCTCCA	CTCTATAAGC	AGTCATCTTG	GGAGACCGGG	AGGAGAAGGT	2340
	GGTGGGCTAG	TCCTGTGTCC	TCCTCCACTT	CCCATGCCTC	TATGTTACCC	ATCTGTGTCT	2400
45	CCTGTGCAGA	AGGAGAGGAA	GGGGCATTAA	GAGATGAAGG	GIGATTATGT	ATTACTTATC	2460
	CATTTCTGAA	TAAACATTTG	TTATTCCTAA	АААААААА	AAAAAACTCG	AGGGGGG	2517

50

55

(2) INFORMATION FOR SEQ ID NO: 225:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2424 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225:

	TTGTANCTAA	TCGAGGATTG	ATTCTAATGA	CAGAGTCTTT	CAACACTTTG	CACATGATGT	60
5	ATCACGAAGC	TACAGCTTGC	CATGTGACTG	GAGATTTAGT	AGAACTTCTG	TCAATATTTC	120
_	TTTCGGTTTT	GAAGTCTACA	CGCCCTTATC	TTCAGAGAAA	AGATGTGAAA	CAAGCATTAA	180
	TCCAGTGGCA	GGAGCGAATT	GAATTTGCCC	ATAAACTGTT	AACTCTTCTT	AATTCCTATA	240
10	GTCCTCCAGA	ACTTAGAAAT	GCCTGTATAG	ATGTCCTCAA	GGAACTTGTA	CTTTTGAGTC	300
	CCCATGATTT	TYTTCATACT	CTGGTTCCCT	TTCTACAACA	CAACCATTGT	ACTTACCATC	360
15	ACAGTAATAT	ACCAATGTCT	CTTGGACCTT	ATTTCCCTTG	TCRAGAAAAT	ATCAAGCTAA	420
	TAGGAGGGAA	AAGCAATATT	CGGCCTCCGC	GCCCTGAACT	CAATATGTGC	CTCTTGCCCA	480
	CAATGGTGGA	AACCAGTAAG	GGCAAAGATG	ACGTTTATGA	TCGTATGCTG	CTAGACTACT	540
20	TCTTTTCTTA	TCATCAGTTC	ATCCATCTAT	TATGCCGAGT	TGCAATCAAC	TGTGAAAAAT	600
	TTACTGAAAC	ATTAGTTAAG	CTGAGTGTCC	TAGTTGCCTA	TGAAGGTTTG	CCACTTCATC	660
25	TTGCACTGTT	CCCCAAACTT	TGGACTGAGC	TATGCCAGAC	TCAGTCTGCT	ATGTCAAAAA	720
	ACTGCATCAA	GCTTTTGTGT	GAAGATCCTG	TTTTCGCAGA	АТАТАТТААА	TGTATCCTAA	780
	TGGATGAAAG	AACTTTTTTA	AACAACAACA	TTGTCTACAC	GTTCATGACA	CATTTCCTTC	840
30	TAAAGGTTCA	AAGTCAAGTG	TTTTCTGAAG	CAAACTGTGC	CAATTTGATC	AGCACTCTTA	900
	ттасааастт	GATAAGCCAG	TATCAGAACC	TACAGTCTGA	TTTCTCCAAC	CGAGTTGAAA	960
35	TTTCCAAAGC	AAGTGCTTCT	TTAAATGGGG	ACCTGAGGGC	ACTCGCTTTG	CTCCTGTCAG	1020
	TACACACTCC	CAAACAGTTA	AACCCAGCTC	TAATTCCAAC	TCTGCAAGAG	CTTTTAAGCA	1080
	AATGCAGGAC	TTGTCTGCAA	CAGAGAAACT	CACTCCAAGA	GCAAGAAGCC	AAAGAAAGAA	1140
40	AAACTAAAGA	TGATGAAGGA	GCAACTCCCA	TTAAAAGGCG	GCGTGTTAGC	AGTGATGAGG	1200
	AGCACACTGT	AGACAGCTGC	ATCAGTGACA	TGAAAACAGA	AACCAGGGAG	GTCCTGACCC	1260
45	CAACGAGCAC	TTCTGACAAT	GAGACCAGAG	ACTCCTCAAT	TATTGATCCA	GGAACTGAGC	1320
	AAGATCTTCC	TTCCCCTGAA	AATAGTTCTG	TTAAAGAATA	CCGAATGGAA	GTTCCATCTT	1380
	CGTTTTCAGA	AGACATGTCA	AATATCAGGT	CACAGCATGC	AGAAGAACAG	TCCAACAATG	1440
50	GTAGATATGA	CGATTGTAAA	GAATTTAAAG	ACCTCCACTG	TTCCAAGGAT	TCTACCCTAG	1500
	CCGAGGAAGA	ATCTGAGTTC	CCTTCTACTT	CTATCTCTGC	AGTTCTGTCT	GACTTAGCTG	1560
55	ACTIGAGAAG	CTGTGATGGC	CAAGCTTTGC	CCTCCCAGGA	CCCTGAGGTT	GCTTTATCTC	1620
	TCAGTTGTGG	CCATTCCAGA	GGACTCTTTA	GTCATATGCA	GCAACATGAC	ATTTTAGATA	1680
	CCCTGTGTAG	GACCATTGAA	TCTACAATCC	ATGTCGTCAC	AAGGGATATC	TGGCAAAGGA	1740
60	AACCAAGCTG	CTTCTTGACA	TTAGGTGTAG	CATGTCTACT	TTTAAGTCCC	TCACCCCAA	1800

454

	CCCCCATGCT	GTTTGTATAA	GTTTTGCTTA	TTTGTTTTTG	TGCTTCAGTT	TGTCCAGTGC	1860
5	TCTCTGCTTG	AATGGCAAGA	TAGATTTATA	GCTTAATTC	TTGGTCAGGC	AGAACTCCAG	1920
5	ATGAAAAAA	CTTGCATCTT	CAGTATACTT	CCTAAAGGGC	AATCAGATAA	TGGATATGTT	1980
	TTATGTAATT	AAGAGTTCAC	TTTAGTGGCT	TTCATTTAAT	ATGGCTGTCT	GGGAAGAACA	2040
10	GGGTTGCCTA	GCCCTGTACA	atgtaatita	AACTTACAGC	ATTTTTACTG	TGTATGATAT	2100
	GGTGTCCTCT	GTGCCAGTTT	TGTACCTTAT	AGAGGCAGAT	TGCCTCCGAT	CGCTGTGGTT	2160
15	CTTATTATCA	AAATTAAGTT	TACTTGTATA	CGGAACAACC	ACAAGAAATT	TGATTCTGTA	2220
••	AAGAATCCTC	TTTAGCTGTG	GCCTGGCAGT	ATATAAATGG	TGCTTTATTT	AACAGAATAC	2280
	CTGTGGAGGA	AATAAAGCAC	ACTTGATGTA	AAAATAATIG	TTTTATTTT	ATTGACATGA	2340
20	CTGATTGATT	GCTATTCTGT	GCACTNAATT	AAACTGATTG	TGATGACTTA	АААААААА	2400
	АААААААА	АААААААА	AAAA				2424
25							
	(3) Tamona						

30

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 226:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1080 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 226:

ATATAGGACG GATAATCTGT TTACATTCTG TTCTTCTCGA TGCACTCACA AGCGGGTAAC	60
TAGGTGACAA GAAAACAAAG ATCTTATTCA AAAGAGGTCT TACAGCAACC CAACGTCTCA	120
TCTTCCCATA GTAAAGATGA CGGCGCCTTG AGGTAAGCTA CAGGCAACAC CACTTCCGCG	180
TITCTCTTGC GCCCTGGTCC AAGATGGCGG ATGAAGCCAC GCGACGTGTT GTGTCTGAGA	240
TCCCGGTGCT GAAGACTAAC GCCGGACCCC GAGATCGTGA GTTGTGGGTG CAGCGACTGA	300
AGGAGGAATA TCAGTCCCTT ATCCGGTATG TGGAGAACAA CAAGAATGCT GACAACGATT	360
GGTTCCGACT GGAGTCCAAC AAGGAAGGAA CTCGGTGGTT TGGAAAATGC TGGTATATCC	420
ATGACCTCCT GAAATATGAG TTTGACATCG AGTTTGACAT TCCTATCACA TATCCTACTA	480
CTGCCCCAGA AATTGCAGTT CCTGAGCTGG ATGGAAAGAC AGCAAAGATG TACAGGGGTG	540
GCAAAATATG CCTGACGGAT CATTTCAAAC CTTTGTGGGC CAGGAATGTG CCCAAATTTG	600
GACTAGCTCA TCTCATGGCT CTGGGGCTGG GTCCATGGCT GGCAGTGGAA ATCCCTGATC	660
TGATTCAGAA GGGCGTCATC CAACACAAAG AGAAATGCAA CCAATGAAGA ATCAAGCCAC	720

TGAGGCAGGG CAGAGGGACC TTTGATAGGC TACGATACTA TTTTCCTGTG CATCACACTT 780

AACTCATCTA ACTGCTTCCC CGGACACCCT CCACCTCTAG TTGTTACTAA GTAGCTGCAG 840

TAGGCATTGC TGGGGAAGAA ACAAACACAC ACCAAACAGT ACTGCTACTT AGTTTCTAAG 900

GCTGCACAGG GAAGGGAAAG ACTGGGCTTT GGACAATCTA GAGGTAATTT ATATCCGCCC 960

CCAGGTGGAG CAACATGCGA TTCTGGAGGC ACGGGGGTAA CTGAAAGTGA GTACATATAG 1020

TCTTTCTGGT TTCTGGAGAT AACCCATCAA TAAAAGCTGC TTCCTCTGGG TAAAAAAAAAG

15

20

25

30

35

40

45

50

55

60

10

(2) INFORMATION FOR SEQ ID NO: 227:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1336 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227:

TTGCATTCAC AATTACTGGG AGGCAGGCAG GGGCAGTTGC ATGCTGGGGG TGGCTGCATG 60 GSCTGCCASC TCTCCTGGGT TTGAAGGATG CGGTACASCT GCTTCAGCTG AGCAACGATG 120 TTATCCTTGA TGTCTGGGGT TGAGATCTGC AGGCGGACAC TGCCACTATC AAAGGATCGT 180 GTGAAATCAC CAGAAAACAT CTCGTAGATC ATCCGAGCCA CTACTGGAAT GACCTGAACC 240 AAGATGAGTT TCCTTTCCAA TGGTTTCCCA TCTGGCCATT CTTCCCCAAA GCATAAGTAG 300 ATCTCAAACG GTGGCTGCTT CTCTATCTGT CCTTTCTGGT GGGCAATGAG ATCGCTAAGG 360 AATGTTTCCA GACAAAATAG CTTGACCTTC TTTTGTCTCT CAATCAGGTT GGGAGCAACA 420 AGTGATGGGG CACATGGCCC AGACCAGTAC ACCTTGCACT GGCACAGYCT GATGGCATAA 480 ATGGCATGAC CGCTGACCTC CAGGATCAGT CCTCTGTCCA TGACGTCCAG CAGCTTGCTA 540 GTGAACAGCT TCTGCTTCTC ATTGGTAATA TGCTCAGGAC CTGGGAATTT GACCTGCTCC 600 AGNOTGACGG GACCAAAGAG CTCCTCCTGG TCAGGCATGG GACCCAGGTC CCCATAGAAG 660 AGTCGGCAGC CCTGAGGGTT GCTCACGGTC ATGGTCCTGC CCGTACTCCT TCCCACGGTA 720 CTGAAACTTG ATGTCCAGGT CAGTCATTGG GAGAGAGCTG ATCCACAGTT CTGGAGAGCT 780 ATAGAAGGRC TGTATAGGTG CCTGGGGWAC TTCCATCTCC AGGGGTTCAG TTTTGGGCCA 840 CACTGCCTCC GGSCTGCAGT TGCCCACACT GCAATTGCCC ACACTGGCTG GCGCCATGGG 900 AGAACCATTG ATGTTCAGGA AGGGGAAGGT GTCCTGGATG GGAACATGGT GCTGCGACTG 960 ATCCAGCTCA TCTTCCTCAT CTTCTTCATC CACATCATTA TCCTTCTCAT CCCAGGGAGC 1020 AGACCCTGTG GATCCTGGGT TAATGATCGA SCCCTGGGGC TGAGGGATGT CACACACTTG 1080

ATATATCTTC ACTGGGTTCA TGGGCACCTC CCTTGGTGCC ATCCATACAT CCAGGTTGAA

1140

TTCTCTGCTC TTATTGAGAG CACAGCGCAG CTGGGCCTTC CATTTAGCTG GGTCAGGGTC

1200

ATCCACCCCT TCCTGGTACT TCCCTGTCTC TACAGCCCAG GCCTTAAAAA TGGTATTTTC

1260

CTCTTCTTGT TGAGGGCTAT GCCGGGTGGC ATGTTTCCAG GGAATCTGGA AGCGTTTAGA 1320

10 GTCCCTGTGT AGCCAG 1336

15 (2) INFORMATION FOR SEQ ID NO: 228:

5

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2043 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228:

25 TCAGCTGGTC CCTTCCTTGT GTCCTGGGG ACCTGCTGGC GGCCTCTTCC TGGGAGCCAT 60 GACCTCAGAC CCCACCACA CTCCAGATCG AGACCCCTGC CTCCCCCGG CAAATGTCCT 120 CCCGCTGCCT TGCAGCCTGC ACTTTGCACA TGCTCACCCC CAGCACAGTC CCACTGGCCC 180 30 CTCAMCTCCC CTTCCCTGAG CTCCTTCCCA AGGACTCCTG GTCACTGCCT GCTGTGCAKT 240 CAGAGGCCCA GGGTCCAGCA GCCCGGSGGG AACGGGTGCT GCCTSTTCCT CCAGTTAGCT 300 35 CCAGYTCAGG TCTGAGACCC GTGYTGAGTA AAGGTCTGAG CAMCGACCGT GCCCTCTGCC 360 CAGGGCTGGG TCCTGAGCAG CTGGTTTTCC TGCAGGAAGG TTGGAGCAAG CAAAGTCCTT 420 CTCTGCCCTC AGGGTCAGCT GCCCAGACTG GGGCGGATGC AGAGAGGCAG GTGGGCTGTG 480 40 GCTGGACTGG TCCGGAGCTG GCTTCCTTAC CAGAAAAGCC TCAGCCTTCC TCTGGAAGCA 540 TCCCCCGTTC TGGGCAAGGG GGAAGGGCTC CTTTAAGGGG TGTGCTTTCC CAGTGGGGAG 600 45 CAGTCTGGCC CTGCCCCCTA CTAAAGCCTC TGCTCTCAGC ACTTTCCCCC AAGTCCTTGT 660 AACTTGCTTG AAGGTGGGTT CTGGCTGCCA GCCAGTCCCT GGACAAACTC TCCTGCCCCT 720 TITAAATTTC ACTCATTTTG TATAAACCCA GCAGGCTGGT GTTTACTTAG CCCTGTAGCT 780 50 TTTTCATTT TTTCTTTCCG TCTTTCTTCT TGAGTTCACG GTTCAATATT GCCTCCTCGC 840 CCTGGTGAGG GGAGGTGCTG CTTTTCTGCC CCACCTGCCG GCTGGTTCCA GCAGCGCTGG 900 55 NGCCCAGCTG GGGGGCCGGG ATGGGGGCTT CTCTCTCTGG GAGGGGTGCA GGTGCCCTCC 960 CCAGGCTGGG AGGGTTCCTT CCCTAGCTCC CCATCTGCCC CCGCTGGTGA GAGTTGGGCT 1020 TCTTGGTCTT GGAACTCCCT GGCATTGGGA ACAGAGCATT TCCAGCATTT GTTGTTGTTG 1080 60

	TTTTACTCAC	CTAACCCTTA	GAAAATGAAT	GTTAGAAGGT	GCCTGCCGAG	GCGGGACAGA	1140
	GTGTTTGCTC	GCGCTGGAGA	AGGCTCTGCT	CAGCCCTGAG	AGTCCCTTCC	TGCCCCACCG	1200
5	ATACTOGCAC	TTTAAAAAGG	AAGCTGACCG	CACAGTGTCC	AGACGAATTG	GCCCCCAGAA	1260
	GATGGGGAGT	TCTGTCCTGC	CCTTCTGTGT	CTGCGTGACC	TCACCCAGCC	TAGGAGGGAG	1320
10	GTGCATTCAG	GGTAGATTTG	CCTCTCATTC	AAAGTTCTGG	GGCTTTGGGY	GGAAAACAGC	1380
10	CAGCTTTGGC	GCTGTTGGGG	AGACTCCTCC	AGACCAGGAA	CCCCAGAAGG	AGACAGAGCC	1440
	TGCCACATCC	TCCCACGCCA	GCCCTGGGC	CAGGGTGATT	GGACTGAGAA	TTTGGCCACA	1500
15	ACCAAATTGA	TGCTGGCTGG	AACCAGAGGC	CAGAAAGCCT	OGCCTTGTCC	CCATGTGGGA	1560
	GCCCTGTCCT	CAGCCCTCTT	GTCCCCTTGA	GCTCAGTGAA	TTCCCACCAG	GTGCCCACAG	1620
20	CTCCTGGACT	тсаааттста	TATATTGAGA	GAGTTGGAGA	GTATATCAGA	GATATTTTTG	1680
20	GAAAGGAGTT	GGTCTATGCA	ATGTCAGTTT	GGAATCTTCT	TGAAAGTTTA	ATGTTTTAT	1740
	TAGGAGATTT	AAAGAAAATA	AAGGTCTACA	ATATCTTTAG	GITTITTTT	TTTCCTGTTT	1800
25	ACCGCACAAA	CTGACCACAT	GCCATCTCTA	TCAGGATGGA	GGGTGTCCAT	GTTCTCCTCT	1860
	GTCTTTAGGG	AGGTGATAAG	GAGATGGSCG	RAGGGGTGTT	ттттсттъ	ACTCCCCTCC	1920
30	TTTCTAACAG	AATGTTGCCA	CCACTGCTTG	AGTGGGCTGT	GITIGITCCT	CTGTCCCAGC	1980
50	TTCTGTTGTA	GAAAATAACA	TTGTTAGGGG	AACTCAGGCT	AGTGTCAGCG	TCTTGGTTTG	2040
	GGG						2043
35							

(2) INFORMATION FOR SEQ ID NO: 229:

40 (i) SEQUENCE CHARACTERISTICS:

45

50

55

60

(A) LENGTH: 540 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229:

TAAAAAGAAG CGGGAGAATC TGGGCGTCGC TCTAGAGATC GATGGGCTAG AGGAGAAGCT 60
GTCCCAGTGT CGGAGAGACC TGGAGGCCGT GAACTCCAGA CTCCACAGCC GGGAGCTGAG 120
CCCAGAGGCC AGGAGGTCCC TGGAGAAGGA GAAAAACAGC CTAATGAACA AAGCCTCCAA 180
CTACGAGAAG GAACTGAAGT TTCTTCGGCA AGAGAACCGG AAGAACATGC TGCTCTCTGT 240
GGCCATCTTT ATCCTCCTGA CGCTCGTCTA TGCCTACTGG ACCATGTGAG CCTGGCACTT 300
CCCCACAACC AGCACAGGCT TCCACTTGGC CCCTTGGTCA GGATCAAGCA GGCACTTCAA 360
GCCTCAATAG GACCAAGGTG CTGGGGTGTT CCCCTCCCAA CCTAGTGTTC AAGCATGGCT 420

	TCCTGGCGGC CCAGGCCTTG CCTCCCTGGC CTGCTGGGGG GTTCCGGGTC TCCAGAAGGA	480
5	CATGGTGCTG GTCCCTCCCT TAGCCCAAGG GAGAGGCAWT AAAGACACAA AGCTGGAAAT	540
10	(2) INFORMATION FOR SEQ ID NO: 230: (i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 448 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230:	
	AATTGTGAAA TATTAGAATA TTGTTACTAT TTGACCCAAC TCAAAATCTC CATGGGAAAA	
20		60
	TACCTGTCGA TACCCACAGT ATTGTTGAAA ATAATCAGAT GCAGTATCAC AGCTGTGTCA	120
	GACTCTAGTA CCAGTTGGGC AATCAAGGCA CAGCTAAAAA TTGAAAACAA AGATCTGGAC	180
25	AACAAAACAG CCAAAGGTGG GGGTCAAGAA GCTCTGACGT GTACCTAGCT GTAGAATGCT	240
	ATGCACACGT GCCAGGTGTA GTGTGCATAT CCAGGAAAAA CTGCAGAGAG CCCCAGTCTT	300
30	CAMCTCTGGT TGACCATGAG CTCTGTGTAA GCAGGAAGTG AAGGCTAAGG CAGATTTAAG	360
50	CTCTGAAAGC ATTCCACAAC ATACACACAA ATCGTGCAAA GCATTAAGGA AATCTTGTTA	420
	CTGCTAAGTG TTGCTGACCC AGGAACAA	448
35		
	(2) INFORMATION FOR SEQ ID NO: 231:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 407 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
,,,	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231:	
	GTATGCTGCC CCAAACCAAT ATGTGTGGCT GCCTTTWACC TGACTTCTCC AACATGTAGC	60
50	CCCAAGAGGA GGCCTCTAGA CTRAGGGAGG GGCTGGTGAC CCAGGTGTGG TGGGGCTGCA	120
	TGARACTACC AGAGAGACAG ACATTCTGGA ACTCACCCTG GGGGATCCAG TGGATCTGCC	180
	TATEGTOTES TOCACCOCAG ACCTETEAGA TETTCCTCAT GAGGATECAC TTETECTTCT	240
55	GCAAGTATTG CTGCAGCTTC ATAGTGACTC CCACCAGCAC CAGCAATACA GYTAGCTACC	300
	TOTOGCCTTG GATCTCAGCC AGCATGCCTG GGAGAGGGAG CARCTGCGCA TGTACCCTAA	360
60	ATGCTGTTAC CAGGGAAGGA CTCCCAGAGT GAAGACAAGT AGGGACT	407

5	(2) INFORMATION FOR SEQ ID NO: 232:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 830 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:	
15	GTATTIGATT TCAGGCTGCT AAATGGGCTC ATTTAGCATT CATTCCTTGA TGTAGACATT	60
	AAAAAAAAA CTGAATAGCA TICTITCCAG GWTAACTAAT AAAGCAGACA TGCTAAGCCT	120
20	ATAAATACAT CAGCACTGCA GCACACGTTT AAGGTTGCCA CGGACAAGGA TCACACAATA	180
	GAGAACACTG TAGTTCGGTC TGCTCACAAG ACCCAGAACA TTGATCAGTT TTTGTTGTTG	240
	GTTTATTATT TTTCTGTTAA AAAATTGTGA AAAGTTTGTT TTAGCTAGAT GATATTTTAA	300
25	TAGCTGCGAG TGCTTTGGAA CTATAAAGAT GTCACTACTT AACACACATA CCTTATGTTT	360
	TGTTTTGTTT TGTTTTACAC TCAGTATAAA TCAGGAGAAG TTAGCCAACC ATCTAGCATT	420
30	TAGAATCCTC TTTTTTATTG TCTTCTAAGG ATATGGATGT TCCCATAACA GCAACAAAAC	480
	AGCAACAAAA ACATTTCATA AATATCACTT GATAGACTGT AAGCACCTGC TTAACTTTGT	540
	GTNCCAAATA TTTAGTGTGT ATATATATAT ATATATACAC ACACACAC ATATATAT	600
35	AACAAATAAA GCAAAATATA ACATGCATTT CACATTTTGT CTTTCCCTGT TACGATTTTA	660
	ATAGCAGAAC TGTATGACAA GTTTAGGTGA TCCTAGCATA TGTTAAATTC AAATTAATGT	720
40	AAAACAGATT AACAACAACA AAGAAACTGT CTATTTGAGT GAAGTCATGC TTTCTATTAT	780
	AATAACTIGG CTICGGITAT CCATCAAATG CACACITATA CIGITATCIG	830
45	(2) INFORMATION FOR SEQ ID NO: 233:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 932 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:	
رر	CCAGAAGAAA GACCAATCTA GAATATGGAA CTCTAATCAC TTCTAGTATT TCAACTTCCT	60
	AGCAGAAATG AACTTGGCCC TAGACCTAGG GGATAAGCAA TGTTCTTTAT GTAGCCAATG	120
60	CTACGGAAAC AAAAGAGGTG AAAGAGACCC TTTTTTTATA CTTAATGTAC ATATATTGAC	180

TTTTTGAGCA AGAATGCCAG AAATAGCCTT CATTTCTACC CTGCAAAATA ATCCAGATCT 240 GCTTTCTAAA ATGRANTCAG TTTCTAAAGT GAAACATGCA ATATTTATGC TCTGACTGAC 300 5 TCCTGAATTG GARGAGGAAG RACTTCTGTT TACAGAAAAC YGTATTGTTA TATATGTCAG 360 GCTGTGTATT GTGACTATCA GCATTCTGGT GCAAATGAAC TTTTCTCCAT CATCGACTGT 420 10 GGAAAATTGA TACTTTTAAA GCATATTCTT CTATGAGCAC AGGTCCTCCT AGTGAAACTT 480 AATTTGACAA AGGGTGTCAT ATGCTTTCCT AACCTGAWIT GTATTAACAT TCACAGAGCC 540 TACATTTTCT CATTAGGGTT RTGATGCTCA GTATCTTTCC AAGTGCCAGG CAGRGCTTNC 600 15 CTTTTCTGAT CAAACATACC ATTTTTTGTA TTTCACAACT ATAGACAGTC ACTTCTGCAG 660 TCCCAATITA AAAATGCAGA ACTGCTITAT CCAAGAATGC TGAAAAATAC TGTTCTATCC 720 20 AGGITICCTA AACTATAAAA GCAGATITIG CITTIGITIG TIAATCATAG GCATGGCCGA 780 GCATTGTGGA TTAGCCTGAG GCTTAAAATC AGATGCATGT CTGGTAAGAT GACCACTGTC 840 TCACTATCAA GAGCCTGCAG AGCCATTTTC CAGACCTGTG ATTGCCCAGA ACACATAGTC 900 25 932 CCCACGTTTC TAATTTGGAG CAAATCTAAA AG 30 (2) INFORMATION FOR SEQ ID NO: 234: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2786 base pairs 35 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEO ID NO: 234: 40 TTAGCAGGGT GAGCTGTTAA AACAGCACAC ATCTCTCATC CCCTCTTCCT TTATTCCCCC 60 CTGGGTTTCA GAAAGGAAGG ATATATGGGG ACCACCTCCC CCTTCTTTGA TCCCAGCATC 120 45 TCAGTCCCCC TCCCAACCCT CCATATGGCT CTCAATGGTG CTCACTTGCT TGGAAGCAGG 180 CTCCCAATAG GGAGGGGSCT GCCCTCTACA GTCTCTTTGA CTGTAAGACA GGGCTCTGTA 240 300 TCAGTGAGAC GATGAGAAAA GTCCCAGGCT AATGGCAGAA ATTTGCACTT TGAACATGTG 50 TGTTTTTGTG TTGTGGAACC TGAGATTCCT TATTTATTAA CAGGAAGTCT GATTTTTTTT 360 TTTTGGAGTC TTTGTTGCTA TATTTTGTGG GGCTGGGAGA GAGAGATTAG ATTATTTTGA 420 55 CATGGGATCC CTTCCATAAC AGGTACTTTG AAGGCAAGAC ATAGGGTTGA AGAAGCACAA 480

CCAGCCTCTG AAATCATAGC TCTCCAGTGG CTTTTAAAGA AAGCTGGTCC TCAGCACTAA

CAAAATCACT ACAATAGCCT AGTGCTTTTT TGGAAGCCTT TTTAGGGAAG AATGTTAGGT

60

540

	TCATGGTAAC	TAGTATGCTC	TTTGAGATTT	TTACAGTGTT	GAAACTTAAG	AATTTTGAGA	660
	GGGTGAGGAG	GGTTGTTCAG	AATCTAAATT	ACAGATAGAT	GATTGTTTCT	TGTGAATTTG	720
5	TTTCTTTTCC	TTTTTTTTTG	TCCCTACCAT	TTCCTTACAT	TTCCCTTGGG	GCCCATCTCT	780
	GGCTCCTTGC	TTTTTTTTC	TTGCTTTGCT	TTATCAGTTC	ATTCCAGCTC	CCTGTTAGTG	840
10	AAGGACACTG	CTGTTAGTGA	AGGAACAAAG	TCTATGAGTC	CTAAAATTTT	AAGTCAAAGA	900
10	AAACTGCTCT	GTTTCCCCTT	TAGTAACACT	TCTGAAGAGG	AAAAACTTCA	ATAGCCAAAG	960
	TTAATAATCC	ТАТАТААТАА	TTGCTTTGGC	TTTCACCTAA	AATTCTGGGC	ATCACAATTT	1020
15	CCTTGGGATA	GAGGTTGTGT	TGGGGAATAG	ATTGCTTATT	GCTGTTCACT	GGAGAGAAAA	1080
	GGTAGTGTTT	TTGTACAAGG	TCATACCGCC	AGAAGCCCCA	AATCCTATTT	TGGCTCATCT	1140
20	TCAGGTAAAG	AGTAATTCCT	ATCCTGTGTG	CCTCAGAAGC	TAGAATCGAA	GCTTACCCT	1200
20	ATTCATTGTT	TATTGTCAGA	AATGCATGAT	GGCTCTTGGA	AAGAATGACG	TTTTGCTGGA	1260
	АААААААА	AGAACAGTTT	GTGTTTCACA	AACATGGCTT	ATCAATTTT	TCAAAGAATT	1320
25	CTTTTTTCCC	AAAAAGAGGA	GTAACAAAAT	GTCATTTCTG	AAAGAGGCTT	ACTTTATACC	1380
	AACTAGTGTC	AGCATTTGGG	ATGCCAGGGA	ACAGAGAGTG	AGACACCTAC	AATCACCAGT	1440
30	CTCAAATGCG	CTATTGTTTC	TTTTCAGAGT	GTTGCAGATT	TGCCATTTCT	CCATAATATG	1500
	GGGATAGAAA	ATGGAATAAA	GATAGAAGGG	ATGTAGAATA	TGCTTTCCTG	CCAACATGGT	1560
	TTGGAGTCGA	CTTTGGTATA	TTGACTAGAT	TTGAAAATAC	AAGATTGATT	AGATGAATCT	1620
35	ACAAAAAAGT	TGTCCTCCTC	TCAGGTCCCT	TTTACACTTT	TTGACTAACT	AGCATCTATA	1680
	TTCCACACTT	AGCTTTTTTG	TCACACTTAT	CCTTTGTCTC	CGTAAATTTC	ATTTGCAGTG	1740
40	GTTAGTCATC	AGATATTTTA	GCCACCTACA	CAAAAGCAAA	CTGCATTTTT	AAAAATCTTT	1800
	CTGAGATGGG	AGAAAATGTA	TTCTCCTTTC	CTATACCGCT	CTCCCAACAA	AAAAACAACT	1860
	AGTTAGTTCT	ACTAATTAGA	AACTTGCTGT	ACTITITCTT	TTCTTTTAGG	GGTCAAGGAC	1920
45	CCTCTTTATA	GCTACCATTT	GCCTACAATA	AATTATTGCA	GCAGTTTGCA	ATACTAAAAT	1980
	ATTTTTTATA	GACTTTATAT	TTTTCCTTTT	GATAAAGGGA	TGCTGCATAG	TAGAGTTGGT	2040
50	GTAATTAAAC	TATCTCAGCC	GTTTCCCTGC	TTTCCCTTCT	GCTCCATATG	CCTCATTGTC	2100
	CTTCCAGGGA	GCTCTTTTAA	TCTTAAAGTT	CTACATTTCA	TGCTCTTAGT	CAAATTCTGT	2160
	TACCTTTTTA	ATAACTCTTC	CCACTGCATA	TTTCCATCTT	GAATTGGTGG	TTCTAAATTC	2220
55	TGAAACTGTA	GTTGAGATAC	AGCTATTTAA	TATTTCTGGG	AGATGTGCAT	CCCTCTTCTT	2280
	KGTGGTTGCC	CAAGGTTGTT	TTGCGTAACT	GAGACTCCTT	GATATGCTTC	AGAGAATTTA	2340
60	GGCAAACACT	GGCCATGGCC	GTGGGAGTAC	TGGGAGTAAA	АТАААААТАТ	CGAGGTATAG	2400

	ACTAGCATCC ACATAGAGCA CITGAACCTC CTTTGTACCT GTTTGGGGAA AAAGTATAAT	2460
	GAGTGTACTA CCAATCTAAC TAAGATTATT ATAGTCTGGT TGTTTGAAAT ACCATTTTT	2520
5	TCTCCTTTTG TGTTTTTCCC ACTTTCCAAT GTACTCAAGA AAATTGAACA AATGTAATGG	2580
	ATCAATITAA AATATTITAT TICTTAAAAG CCTITTITGC CTGTTGTAAT GTGCAGGACC	2640
10	CTTCTCCTTT CATGGGAGAG ACAGGTAGTT ACCTGAATAT AGGTTGAAAA GGTTATGTAA	2700
	AAAGAAATTA TAATAAAAGG GATACTITGC TTTTCAAATC TTTGTTTTCT CTTATTCTAG	2760
	GTAAGGCATA TTAAAAATAA ATATGT	2786
15		
	(2) INFORMATION FOR SEQ ID NO: 235:	
20		
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 458 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
25	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 235:	
	GGGTGCAGGA ATTCGGCACG AGAGAATGIT TGATTTTCTT TCCTATTTTA AGGATCTTCT	60
30	CTCTTGTTGA TGTTGAAAAC TTACCTTAGT GAAGATGTGT TTCAACATGC TGTTGTCCTT	120
	TACCTGCATA ATCACAGCTA TGCATCTATT CAAAGTGATG ATCTGTGGGA TAGTTTTAAT	180
35	GAGGTCACAA ACCAAACACT AGATGTAAAG AGAATGATGA AAACCTGGAC CCTGCAGAAA	240
	GGATTTCCTT TAGTGACTGT TCAAAAGAAA GGAAAGGAAC TTTTTATACA ACAAGAGAGA	300
	TTCTTTTTAA ATATGAAGCC TGAAATTCAG CCTTCAGATA CAAGGTACAT GCCCTCTTTC	360
40	TTTTCATGCC ATCTCTTTTG CACTCTCAGG TGGAAATATT TTTAAGTGTT TTATAATCAT	420
	AAGTTCTTGT GAAACCTAAC AAGATTATCC CTTCCTAA	458
45		
	(2) INFORMATION FOR SEQ ID NO: 236:	
	·	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 591 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 236:	
	AGGATGAAGA GGAAATTATC TCTTGGATTG CTCTCCAGGA AATCCTTCTC TATACTTTAA	60
60	AAGCTCTTGT TCTTTTCTAG GARTCCAATG TGCTGATTGC TGCTAACAGT CAGGGTACAA	120

463

	TTAAGGTGCT AGAATTGGTA TGAAGGGTTA ACTCAAGTCA AATTGTACTT GATCCTGCTG	180
	AAATACATCT GCAGCTGACA ATGAGAGARG AAACAGAAAA TGTCATGTGA TGTCTCTCCC	240
5	CAAAGTCATC ATGGGTTTTG GATTTGTTTT GAATATTTTT TCTTTTTTTC TTKTCCCTCC	300
	TTTATGAGCC TTTGGGACAT TGGGAATACC CAGCCAACTC TCCACCATCA ATGTAACTCC	360
10	ATGGACATTG CTGCTCTTGG TGGTGTTATC TAATTTTTGT GATAGGGAAA CAAATTCTTT	420
10	TGAATAAAAA TAAATAACWA AACAATAAAA GTTTATTGAG CCACAGTTGA GCTTGGAAAG	480
	TTTTTGTCAA ATGCNGCAAG AGATAACTCT TTTTANGAAG TAGCATATGT GAACTATAAT	540
15	GTAACAGTGA ATAATTTGTA AAGTTCGTAT TTCCCAACCT CTTTGGGAAT T	591
20	(2) INDOPMATION FOR CEO ID NO. 227	
20	(2) INFORMATION FOR SEQ ID NO: 237:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1286 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237:	
30	TCTTTTTAAG GTACAGCAGG GAAGAACTGG AAACTCAGAG AAAGAAACTG CCCTTCCATC	60
	TACAAAAGCT GAGTTTACTT CTCCTCCTTC TTTGTTCAAG ACTGGGCTTC CACCGAGCAG	120
35	GAGATTACCT GGGGCAATTG ATGTTATCGG TCAGACTATA ACTATCAGCC GAGTAGAAGG	180
-	CAGGCGACGG GCAAATGAGA ACAGCAACAT ACAGGTCCTT TCTGAAAGAT CTGCTACTGA	240
	AGTAGACAAC AATTTTAGCA AACCACCTCC GTTTTTCCCT CCAGGAGCTC CTCCCACTCA	300
10	CCTTCCACCT CCTCCATTTC TTCCACCTCC TCCGACTGTC AGCACTGCTC CACCTCTGAT	360
	TCCACCACCG GGTTTTCCTC CTCCACCAGG CGCTCCACCT CCATCTCTTA TACCAACAAT	420
45	AGAAAGTGGA CATTCCTCTG GTTATGATAG TSGTTCTGCA CGTGCATTTC CATATGGCAA	480
	TGCGATGAAG AACGATACAG ATACAGGGAA TATGCAGAAA GAGGTTATGA GCGTCACAGA	540
	GCAAGTCGAG AAAANGAAGA ACGACATAGA GAAAGACGAC ACAGGGAGAA AGAGGAAACC	600
50	AGACATAAGT CTTCTCGAAG TAATAGTAGA CGTCGCCATG AAAGTGAAGA AGGAGATAGT	660
	CACAGGAGAC ACAAACACAA AAAATCTAAA AGAAGCAAAG AAGGAAAAGA AGCGGGCAGT	720
55	GAGCCTGCCC CTGAACAGGA GAGCACCGAA GCTACACCTG CAGAATAGGC ATGGTTTTGG	780
_	CCTTTTGTGT ATATTAGTAC CAGAAGTAGA TACTATAAAT CTTGTTATTT TTCTGGATAA	840

TGTTTAAGAA ATTTACCTTA AATCTTGTTC TGTTTGTTAG TATGAAAAGT TAACTTTTTT

TCCAAAATAA AAGAGTGAAT TTTTCATGTT AAGTTAAAAA TCTTTGTCTT GTACTATTTC

60

900

464

	AAAAATAAAA AGACAGCAAT GACTTTATAT CCAAGAAAGG AATGTGAATG AGTCACTTAA	1020
5	CAGGGAATCT AAAGAGCTGT GTTAGCTGTG TACATACACA GATTATCTGA GAAAAGGTCA	1080
	AGGGTTCCAC TTGGGCCACA GTTTTTTGT TAATCAAACA CCACTCTCTT AAGRGGCTGC	1140
	ATCACAAARG GCAACCAARG GGCCCCTCTT ARGGCTTTGA GGATTAAAAC TAGTCTTTAT	1200
10	CCATTACTGC TGTGGACACT CTTGGCTTRG TATWITTAGG GGGGNTCCTT ACCTTTTTTT	1260
	GGTTTTCCNC ACCTTTTTGG TTGGGC	1286
15		
	(2) INFORMATION FOR SEQ ID NO: 238:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 734 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238:	
	ATGGCAGCGC AGAAGGACCA GCAGAAAGAT GCCGAGGCGG AAGGGCTGAG CGGCACGACC	60
30	CTGCTGCCGA AGCTGATTCC CTCCGGTGCA GGCCGGGAGT GGCTGGAGCG GCGCCGCGG	120
	ACCATCCGGC CCTGGAGCAC CTTCGTGGAC CAGCAGCGCT TCTCACGGCC CCGCAACCTG	180
	GGAGAGCTGT GCCAGCGCCT CGTACGCAAC GTGGAGTACT ACCAGAGCAA CTATGTGTTC	240
35	GTGTTCCTGG GCCTCATCCT GTACTGTGTG GTGACGTCCC CTATGTTGCT GGTGGCTCTG	300
	GCTGTCTTTT TCGGCGCCTG TTAACATTCT CTATCTGCGC ACCTTGGAGT CCAAGCTTGT	360
40	CCTCTTTGGC CGAAAGGTGA GCCCAGCGCA TCATATGCTC TGGCTGGAGG CATCTCCTTC	420
	CCCTTCTTCT GGCTGGCTGG TGCGGGCTCG GCCGTCTTCT GGGTGCTGGG AGCCACCCTG	480
	GTGGTCATCG GCTCCCACGC TGCCTTCCAC CAGATTGAGG CTGTGGACGG GGAGGAGCTG	540
45	CAGATGGAAC CCGTGTGAGG TGTCTTCTGG GACCTGCCGG CCTCCCGGGC CAGCTGCCCC	600
	ACCCCTGCCC ATGCCTGTCC TGCACGGTCT GCTGCTCGGG CCCACAGCGC CGTCCCATCA	660
50	CAAGCCCGGG GAGGGATCCC GCCTTTGAAA ATAAAGCTGT TATGGGTGTC ATTCAAAAAA	720
	AAAA AAAA AAAA	734
55	(2) INFORMATION FOR SEQ ID NO: 239:	

(i) SEQUENCE CHARACTERISTICS:

60

(A) LENGTH: 809 base pairs(B) TYPE: nucleic acid

465

(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239:	
J	CGGGGTCTTC AGGGTACCGG GCTGGTTACA GCAGCTCTAC CCCTCACGAC GCARACATGG	60
	CAGCGCAGAA GGACCAGCAG AAAGATGCCG AGGCGGAAGG GCTGAGCGGC ACGACCCTGC	120
10	TGCCGAAGCT GATTCCCTCC GGTGCAGGCC GGGAGTGGCT GGAGCGGCGC CGCGCGACCA	180
	TCCGGCCCTG GAGCACCTTC GTGGACCAGC AGCGCTTCTC ACGGCCCCGC AACCTGGGAG	240
15	AGCTGTGCCA GCGCCTCGTA CGCAACGTGG AGTACTACCA GAGCAACTAT GTGTTCGTGT	300
13	TECTGGGCCT CATCCTGTAC TGTGTGGTGA CGTCCCCTAT GTTGCTGGTG GCTCTGGCTG	360
	TCTTTTTCGG CGCCTGTTAC ATTCTCTATC TGCGCACCTT GGAGTCCAAG CTTGTGCTCT	420
20	TTGGCCGAGA GGTGAGCCCA GCGCATCAGT ATGCTCTGGC TGGAGGCATC TCCTTCCCCT	480
	TCTTCTGGCT GGCTGGTGGG GGCTCGGCCG TCTTCTGGGT GCTGGGAGCC ACCCTGGTGG	540
25	TCATCGGCTC CCACGCTGCC TTCCACCAGA TTGAGGCTGT GGACGGGGAG GAGCTGCAGA	600
23	TGGAACCCGT GTGAGGTGTC TTCTGGGACC TGCCGGGCCTC CCGGGCCAGC TGCCCCACCC	660
	CTGCCCATGC CTGTCCTGCA CGGCTCTGCT GCTCGGGCCC ACAGCGCCGT CCCATCACAA	720
30	GCCCGGGGAG GGATCCCGCC TTTGAAAATA AAGCTGTTAT GGGTGTCATT CAGGAAAAAA	780
	AAAAAAAA AAAAAAAA AAAAAAAA	809
35		
33	(2) INFORMATION FOR SEQ ID NO: 240:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2201 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 240:	
	TCGACCCACG CGTCCGGCAA CATGGCGGCT GCCGTGGTGC AGCGCCCGGG CTGAGCGACA	60
	GCAAGTGCAG CGGGCTCCTA CCCCGGGTGA GGGGTGGCCT CCGCGTGGGA TCGTGCCCTC	120
50	TTCAGCCCGC TCCTGTCCCC GACATCACGT GTATTCCGCA CGTCCCCTCC GCGCTGTGTG	180
	TCTACTGAGA CGGGGAGGCG TGACAGGGCC CGGGTCCCTT CTCAGTGGTG CTCTGTGCTT	240
55	CAGGGCAAGC TCCCCGTCTC CGGGCGCACT TCCCTCGCCT GTGTTCGGTC CATCCTCCTT	300
	TCTCCAGCCT CCTCCCCTCG CAGGCGGATG AMCCGGACGA CGGGCCAGTG CCTGGCACCC	360
60	CGGGGTTGCC ARGGTCCAMG GGGAACCCGA AGTCCGAGGA GCCCGARGTC CCGAACCAGG	420

466 ARGGGCTGCA GCGCATCAMC GGCCTGTCTC CCGGCCGTTC GGCTCTCATA GTGGCGGTGC 480 TGTGCTACAT CAATCTCCTG AACTACATGG ACCGCTTCAC CGTGGCTGGC GTCCTTCCCG 540 ACATCGAGCA GTTCTTCAAC ATCGGGGACA GTAGCTCTGG GCTCATCCAG ACCGTGTTCA 600 TCTCCAGTTA CATGGTGTTG GCACCTGTGT TTGGCTACCT GGGTGACAGG TACAATCGGA 660

10

15

20

25

30

35

40

45

50

55

60

AGTATCTCAT GTGCGGGGC ATTGCCTTCT GGTCCCTGGT GACACTGGGG TCATCCTTCA 720 TCCCCGGAGA GCATTTCTGG CTGCTCCTCC TGACCCGGGG CCTGGTGGGG GTCGGGGAGG 780 CCAGTTATTC CACCATCGCG CCCACTCTCA TTGCCGACCT CTTTGTGGCC GACCAGCGGA CCGGATGCTC AGCATCTTCT ACTTTGCCAT TCCGGTGGGC AGTGGTCTGG GCTACATTGC 900 AGGCTCCAAA GTGAAGGATA TGGCTGGAGA CTGGCACTGG GCTCTGAGGG TGACACCGGG 960 TCTAGGAGTG GTGGCCGTTC TGCTGCTGTT CCTGGTAGTG CGGGAGCCGC CAAGGGGAGC 1020 CGTGGAGCGC CACTCAGATT TGCCACCCCT GAACCCCACC TCGTGGTGGG CAGATCTGAG 1080 GGCTCTGGCA AGAAATCCTA GTTTCGTCCT GTCTTCCCTG GGCTTCACTG CTGTGGCCTT 1140 TGTCACGGC TCCCTGGCTC TGTGGGCTCC GGCATTCCTG CTGCGTTCCC GCGTGGTCCT 1200 TOGGGAGACC CCACCCTGCC TTCCCGGAGA CTCCTGCTCT TCCTCTGACA GTCTCATCTT 1260 TGGACTCATC ACCTGCCTGA CCGGAGTCCT GGGTGTGGGC CTGGGTGTGG AGATCAGCCG 1320 CCGGCTCCGC CACTCCAACC CCCGGGCTGA TCCCCTGGTC TGTGCCACTG GCCTCCTGGG 1380 CTCTGCACCC TTCCTCTTCC TGTCCCTTGC CTGCGCCCGT GGTAGCATCG TGGCCACTTA 1440 TATTIMATC TICATIGGAG AGACCCTCCT GTCCATGAAC TGGGCCATCG TGGCCGACAT 1500 TCTGCTGTAC GTGGTGATCC CTACCCGACG CTCCACCGCC GAGGCCTTCC AGATCGTGCT 1560 GTCCCACCTG CTGGGTGATG CTGGGAGCCC CTACCTCATT GGCCTGATCT CTGACCGCCT 1620 GCGCCGGAAC TGGCCCCCCT CCTTCTTGTC CGAGTTCCGG GCTCTGCAGT TCTCGCTCAT 1680 GCTCTGCGCG TTTGTTGGGG CACTGGGCGG CGCACTTTCC TGGGCACCGC CATCTTCATT 1740 GAGGCCGACC GCCGGCGGC ACAGCTGCAC GTGCAGGGCC TGCTGCACGA AGCAGGGTCC 1800 ACAGACGACC GGATTGTGGT GCCCCAGCGG GGCCGCTCCA CCCGCGTGCC CGTGGCCAGT 1860 GTGCTCATCT GAGARGCTGC CGCTCACCTA CCTGCACATC TGCCACAGCT GGCCCTGGGC 1920 CCACCCACG AAGGGCCTGG GCCTAACCCC TTGGCCTGGC CCAGCTTCCA GAGGGACCCT 1980 GGGCCGTGTG CCAGCTCCCA GACACTACMT GGGTAGCTCA GGGGAGGAGG TGGGGGTCCA 2040 GGAGGGGAT CCCTCTCCAC AGGGGCAGCC CCAAGGGCTC GGTGCTATTT GTAACGGAAT 2100 AAAATTTGTA GCCAGACCCC AGGTGCCTGC TCTCGTCTTT CTCTGGGTGG CCTCTGATCT 2160

2201

TGCACCCCGT CTTCACCCCA GGGCTCCTGA AGACTGTGGG T

(2) INFORMATION FOR SEQ ID NO: 241:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1661 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 241:

15	GTCCTTCCCG ACATCGAGCA GTTCTTCAAC ATCGGGGACA GTAGCTCTGG GCTCATCCAG	60
15	ACCGTGTTCA TCTCCAGTTA CATGGTGTTG GCACCTGTGT TTGGCTACCT GGGTGACAGG	120
	TACAATCGGA AGTATCTCAT GTGCGGGGC ATTGCCTTCT GGTCCCTGGT GACACTGGGG	180
20	TCATSCTTCA TCCCCGGAGA GCATTTCTGG CTGCTCCTCC TGACCCGGGG CCTGGTGGGG	240
	GTCGGGGAGG CCAGTTATTC CACCATCGCG CCCACTCTCA TTGCCGACCT CTTTGTGGCC	300
25	GACCAGCGGA SCGGATGCTC AGCATCTTCT ACTTTGCCAT TCCGGTGGGC AGTGGTCTGG	360
	GCTACATTGC AGGCTCCAAA GTGAAGGATA TGGCTGGAGA CTGGCACTGG GCTCTGAGGG	420
	TGACACCGGG TCTAGGAGTG GTGGCCGTTC TGCTGCTGTT CCTGGTAGTG CGGGAGCCGC	480
30	CAAGGGGAGC CGTGGAGCGC CACTCAGATT TGCCACCCCT GAACCCCACC TCGTGGTGGG	540
	CAGATYTGAG GGCTCTGGCA AGAAATCCTA GTTTCGTCCT GTCTTCCCTG GGCTTCACTG	600
35	CTGTGGCCTT TGTCACGGGC TCCCTGGCTC TGTGGGCTCC GGCATTCCTG CTGCGTTCCC	660
	GCGTGGTCCT TGGGGAGACC CCACCCTGCC TTCCCGGAGA CTCCTGCTCT TCCTCTGACA	720
	GTCTCATCTT TGGACTCATC ACCTGCCTGA CCGGAGTCCT GGGTGTGGC CTGGGTGTGG	780
40	AGATCAGCCG CCGGYTCCGC CACTCCAACC CCCGGGCTGA TCCCCTGGTC TGTGCCACTG	840
	GCCTCCTGGG CTCTGCACCC TTCCTCTTCC TGTCCCTTGC CTGCGCCCGT GGTAGCATCG	900
45	TGGCCACTTA TATTITCATC TICATTGGAG AGACCCTCCT GTCCATGAAC TGGGCCATCG	960
	TGGCCGACAT TCTGCTGTAC GTGGTGATCC CTACCCGACG CTCCACCGCC GAGGCCTTCC	1020
	AGATCGTGCT GTCCCACCTG CTGGGTGATG CTGGGAGCCC CTACCTCATT GGCCTGATCT	1080
50	CTGACCGCCT GCGCCGGAAC TGGCCCCCCT CCTTCTTGTC CGAGTTCCGG GCTCTGCAGT	1140
	TCTCGCTCAT GCTCTGCGCG TTTGTTGGGG CACTGGGCGG CGCACTTTCC TGGGCACCGN	1200
55	CATCTTCATT GAGGCCGACC GCCGGCGGC ACAGCTGCAC GTGCAGGGCC TGCTGCACGA	1260
	AGCAGGGTCC ACAGACGACC GGATTGTGGT GCCCCAGCGG GGCCGCTCCA CCCGCGTGCC	1320
	CGTGGCCAGT GTGCTCATCT GAGAGGCTGC CGCTCACCTA CCTGCACATC TGCCACAGCT	1380
60	KGCCCTGGGC CCACCCCACG AAGGGCCTGG GCCTAACCCC TTGGCCTGGC CCAGCTTCCA	1440

	GAGGGACCCT GGGCCGTGTG CCAGCTCCCA GACACTACMT GGGTAGCTCA GGGGAGGAGG	1500
5	TGGGGGTCCA GGAGGGGGAT CCCTCTCCAC AGGGGNCACC CCAAGGGCTC GGTGCTATTT	1560
,	GTAACGGAAT AAAATTTGTA GCCAGACCCC AGGTGCCTGC TCTCGTCTTT CTCTGGGTGG	1620
	CCTCTGATCT TGCACCCCGT CTTCACCCCA GGGCTCCTGA A	1661
10		
	(2) THEODERATION FOR GROUP 120 242	
	(2) INFORMATION FOR SEQ ID NO: 242:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1146 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242:	
	NGACAGAAAA GCAGAAGATG AGACTCTGTT CATTCACTTT TCCTAGGCCC ATCCTGTGGT	60
25	CATCTTTCCC CCTCCCATCA TACCTCCTCC TTCCTGGAGC CTCTGCCGGC TTGGCTGTAA	120
	TGGTGGCACT TACCTGGATA TTTCAGTGGG AGGATGAAAG GCGAGACTCA CCCTACGCGG	180
30	TGGGACAGAT GGGGAGAGGA AAAAGGCAGA GATNGCCAGG AGAGGGGTGC AGGACAAACC	240
	AGAGAGGTTG GGTCAGGGGA AAAGTGTINGG GAGAAAGTGG GGTGCAGGCC CTGCAGGCCG	300
	GTTTAGCCAG CAGCTGCGGC CTCCCCGGGC CCTTGGCATC CAACTTCGCA GACAGGGTAC	360
35	CAGCCTCCTG GTGTGTATCA TAGGATTTGT TCACATAGTG TTATGCATGA TCTTCGTAAG	420
	GTTAAGAAGC CGTGGTGGTG CACCATGACA TCCAACCCGT ATATATAAAG ATAAATATAT	480
40	ATATATATGT ATGTAAATTA TAGCACTGAG GGCCCTGCTG CCCTGCTGGA CCAAGCAAAA	540
	CTAAGCCTTT TGGTTTGGGT ATTATGTTTC GTTTTGTTAT TTGTTTGTTT TTGTGGCTTG	600
	TCTTATGTCG TGATAGCACA AGTGCCAGTC GGATTGCTCT GTATTACAGA ATAGTGTTTT	660
45	TAATTCATCA ATGTTCTAGT TAATGTCTAC CTCAGCACCT CCTCTTAGCC TAATTTTAGG	720
	AGGTTGCCCA ATTTTGTTTC TTCAATTTTA CTGGTTACTT TTTTGTACAA ATCAATCTCT	780
50	TTCTCTCTTT CTCTCCCC CACCTCTCAC CCTTGCCCTC TCCATCTCCC TCTCCCGCCC	840
	TCCCCTCCTC CCTCTGGCTC CCCGTCTCAT TTCTGTCCAC TCCATTCTCT CTCCCTCTCT	900
	CCTGCCTCCT GCTGCCCCCT CCCCAGCCCA CTTSCCCGAG TTGTGCTTGC CGCTCCTTAT	960
55	CTGTTCTAGT TCCGAAGCAG TTTCACTCGA AGTTGTGCAG TCCTGGTTGC AGCTTTCCGC	1020
	ATCTGCCTTC GTTTCGTGTA GATTGACGCG TTTCTTTGTA ATTTCAGTGT TTCTGACAAG	1080

469

CAATTG 1146

5

10

15

20

25

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 243:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1350 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 243:

AACCCACGGC TGCTGCGGCA GGGCGTGGAG GGCAGAGGGC CGCGGAGGCG CAGTTGCAAA 60 CATGGCTCAG AGCAGAGACG GCGGAAACCC GTTCGCCGAG CCCAGCGAGC TTGACAACCC 120 CTTTCAGCCA CCACCAGCCT ATGAGCCTCC AGCCCTGCC CCATTGCCTC CACCCTCAGC 180 TCCCTCCTTG CAGCCCTCGA GAAAGCTCAG CCCCACAGAA CCTAAGAACT ATGGCTCATA 240 008 CAACCGGAAG GCAGAGGAGT TOGACCGAAG GAGNCGAGAG CTGCAGCATG CTGCCCTGGG 360 RGGCACAGCT ACTCGACAGA ACAATTGGCC CCCTCTACCT TCTTTTTGTC CAGTTCAGCC 420 CTGCTTTTC CAGGACATCT CCATGGAGAT CCCCCAAGAA TTTCAGAAGA CTGTATCCAC 480 CATGTACTAC CTCTGGATGT GCAGCACGST GGCTCTTCTC CTGAACTTCC TCGCCTGCCT 540 GGCCAGCTTC TGTGTGGAAA CCAACAATGG CGCAGGCTTT GGGCTTTCTA TCCTCTGGGT 600 CCTCCTTTTC ACTCCCTGCT CCTTTGTCTG CTGGTACCGC CCCATGTATA AGGCTTTCCG 660 GAGTGACAGT TCATTCAATT TCTTCGTTTT CTTCTTCATT TTCTTCGTCC AGGATGTGCT 720 CTTTGTCCTC CAGGCCATTG GTATCCCAGG TTGGGGATTC AGTGGCTGGA TCTCTGCTCT 780 GGTGGTGCCG AAGGCAACAC AGCAGTATCC GTGCTCATGC TGCTGGTCGC CCTGCTCTTC 840 ACTGCCATTG CTGTGCTAGG AATTGTCATG CTGAAACGGA TCCACTCCTT ATACCGCCGC 900 ACAGGTGCCA GCTTTCAGAA GGCCCAGCAA GAATTTGCTG CTGGTGTCTT CTCCAACCCT 960 GCGGTGCGAA CCGCARCTTG CCAATGCAGC CGCTGGGGCT GCTGAAAATG CCTTCCGGGC 1020 CCCGTGACCC CTGACTGGGA TGCCCTGGCC CTGCTACTTG AGGGAGCTGA CTTAGCTCCC 1080 GTCCCTAAGG TCTCTGGGAC TTGGAGAGAC ATCACTAACT GATGGCTCCT CCGTAGTGCT 1140 CCCAATCCTA TGGCCATGAC TGCTGAACCT GACAGGCGTG TGGGGAGTTC ACTGTGACCT 1200 AGTCCCCCA TCAGGCCACA CTGCTGCCAC CTCTCACACG CCCCAACCCA GCTTCCCTCT 1260 GCTGTGCCAC GGCTGTTGCT TCGGTTATTT AAATAAAAAG AAAGTGGAAC TGGAAAAAAA 1320 AAAAAAAAA AAAAAAAAAG GGGGGNCCNC 1350

470

5	121	TATIONALATION		~~~			~
,	(2)	INFORMATION	FUR	SEC	TD	NO:	244:

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1529 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244:

	(,	J	. OLG ID NO	. 433.		
15	TCCCAGAGGC	CGGGGGTTC	CAGCTCTGCC	TGTAGCAGAG	CCCTGAGGAG	GAGGAGGAAG	60
	AGGATGTGCT	GAAATACGTC	CGGGAGATCT	TTTTCAGCTA	GGGCATAAAC	TGTGCACTGA	120
20	ACTGTCTGCC	GAGAGCAGCT	GGAGGACAGC	TGAGCTTCCA	CTGGTGCTGC	TGGGCCGMCC	180
_	GCCTGTGGGA	ATGGGGCTCT	CTCTCCT	ACCTTTGTGC	CTTCTTGGGC	CTGGCAGATT	240
	CACCTCAGGC	CAGAAGCCCC	TGGACACTCC	GGCCTTCGG	GTGCCGTTCT	GAGTGTGCGG	,300
25	AAGGCAGGAC	TCAAAATGAG	ATCCCATTTG	ACTCCCTCTG	TATGTACTGT	GCCCTCTCCT	360
	GGCTCTTGAG	GCTCTGGAGT	CCCAATTGTC	TGTGTTAGTC	AGTGACCAGG	TTCCAGGGAA	420
30	AATRATGTCA	TGTGGTGGTC	CAACTTACTG	GAACCAAAGA	GACAGTACTT	TGCAAAGAAA	480
	AGGATCACTG	CCAGGTGCAC	TGGAATTGCT	ACAGTTTAGT	CCGCATGATC	TCTCCTGAAG	540
	GAGGAAGCCT	GTTTCAAAAA	TAGITTCCAT	CATGAGTCTA	TCAATGAGCT	CCCACCTCTC	600
35	CAGCCAGCCT	AGAAAGCAAA	CGAGCTGCCC	ACAGTTCTCT	GCCCTGTCTG	GGAGGTTGAG	660
	GCCACAGTGT	ATAGACTGGT	AAGCCAGACA	GGCCTCCTCC	CGCAAGCTGC	TACCTIGCTT	720
40	TCACCTGTAC	CTTGGTCCCC	GGGCAGCTAG	CTATAAAGCA	AGAGGGACAG	GAGCCCAGAA	780
	GAGACACTGA	GGACAAGAGA	TCACACCAGA	GTACATGTCT	CTGCCTCTGT	TTTCAGTGTG	840
	GCTTTGGACA	GGAATATATG	AATAAATCAC	TGCCATACAG	GTTTTCCAAT	ACACAAGTGC	900
45	TAGAAAATAC	ACACAATTCC	CCAATGCGTA	AGTTGTGCTA	ATGTCTTTCC	AAGTTCTGGG	960
	TTGGGAAGTG	GAGGGTGGCA	GCGTTTGTTT	GTGCGCAACC	GTCCAGTCCT	GTTCACAGCG	1020
50	AGGATTTGGA	GTCCTCCAGG	GTCTCATCAT	GGGAGTGATT	TGTCAGCGGA	CGCCTCTGCC	1080
	CTGTCTGGCT	TCAGGTCCAG	GGAAGCTTTG	AAGCAGTCAA	CCCTTCTCTT	TGTACCCCAT	1140
	GTGTCCTGTC	TTTGTTGAGT	CACTCAGAGA	TCACTCCTGG	ACCTCTGGGG	TTGGAGTTCC	1200
55	AGTGATGGCT	TATGGCGGCC	CACTCACTAT	GGTGGGCTGA	GTGGAAGCTC	CTTAACCATG	1260
	TCCCCAGAGA	CACTGAGGTG	CTCGCTCTTT	TAATGTCCTC	GTTTGTTGCC	GTAAGTTCTT	1320
60	TGCTAGGTTT	CATTITICGCA	TTTGGCAAAT	CAGCCTGGAA	GTCTGGCCCC	ATGACAGCAA	1380

TCACTCCCTC CCCACCCTCC TGAAGCTAGA GGAAGATITG CTCAGATCCA TTAATTAAAG 1440
CAGGAATTGG TGTGACAATG AGCTGCATGG TTTAGGGAGT CTTTGGGAGC CTTGGAAGTC 1500
5 CTGAAGGACA AACAATCTTG TACTAAGAA 1529

10 (2) INFORMATION FOR SEQ ID NO: 245:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1537 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245:

20 GTGCGAGGTC CCCGCCAGCC CCCAGCGGCC TTCCCGGCCC GGGGCGCTCC CAGAGCAAAC 60 GAGGCCCCTG AGAGCTCCAC CTAGTTCACA GGATAAAATC CCACAGCAGA ACTCGGAGTC 120 AGCANTGGCT AAGCCCCAGG TGGTTGTAGC TCCTGTATTA ATGTCTAAGC TGTCTGTGAA 25 TGCCCCTGAA TTTTACCCTT CAGGTTATTC TTCCAGTTAC ACAGAATCCT ATGAGGATGG 240 TTGTGAGGAT TATCCTACTC TATCAGAATA TGTTCAGGAT TTTTTGAATC ATCTTACAGA 300 30 GCAGCCTGGC AGTTTTGAAA CTGAAATTGA ACAGTTTGCA GAGACCCTGA ATGGTTGTGT 360 TACAACAGAT GATGCTTTGC AAGAACTTGT GGAACTCATC TATCAACAGG CCACATCTAT 420 CCCAAATTTC TCTTATATGG GAGCTCGCCT GTGTAATTAC CTGTCCCATC ATCTGACAAT 480 35 TAGCCCACAG AGTGGCAACT TCCGCCAATT GCTACTTCAA AGATGTCGGA CTGAATATGA 540 AGTTAAAGAT CAAGCTGCAA AAGGGGATGA AGTTACTCGA AAACGATTTC ATGCATTTGT 600 40 ACTOTTOTIC GGAGAACTTT ATCTTAACCT GGAGATCAAG GGAACAAATG GACAGGTTAC 660 AAGAGCAGAT ATTCTTCAGG TTGGTCTTCG AGAATTGCTG AATGCCCTGT TTTCTAATCC 720 TATGGATGAC AATITAATTT GTGCAGTAAA ATTGTTAAAG TIGACAGGAT CAGTTTTGGA 780 45 AGATGCTTGG AAGGAAAAAG GAAAGATGGA TATGGAAGAA ATTATTCAGA GAATTGAAAA 840 CGTTGTCCTA GATGCAAACT GCAGTAGAGA TGTAAAACAG ATGCTCTTGA AGCTTGTAGA 900 50 ACTCCGGTCA AGTAACTGGG GCAGAGTCCA TGCAACTTCA ACATATAGAG AAGCAACACC 960 AGAAAATGAT CCTAACTACT TTATGAATGA ACCAACATTT TATACATCTG ATGGTGTTCC 1020 TTTCACTGCA GCTGATCCAG ATTACCAAGA GAAATACCAA GAATTACTTG AAAGAGAGGA 1080 55 CTTTTTCCA GATTATGAAG AAAATGGAAC AGATTTATCC GGGGCTGGTG ATCCATACTT 1140 GGATGATATT GATGATGAGA TGGACCCAGA GATAGAAGAA GCTTATGAAA AGTTTTGTTT 1200 60 GGAATCAGAG CGTAAGCGAA AACAGTAAAG TTAAATTTCA GCATATCAGT TTTATAAAGC 1260

	AGTTTAGGTA TGGTGATTTA GCAGAACACA AGAGAGCAAG AAAATGTGTC ACATCTATAC	1320
5	CAAATTRAGG ATGITGAGIT ATGITACTAA TGIATGCAAC TITAATTIIG TTTAACACTA	1380
J	TCTGCCAAAA TAAACTITAT TCCCTATAAC TTAAAATGTG TATATATATA TAATAGTTTA	1440
	TTATGTACAG TTAATTCTAC TGTTTTGGCT GCAATAAAAT CGATTTTGAA ATAAAWRAAA	1500
10	AAAAAAAAA AAGGGNGGCC GCTCTAGAGG ANCCAAG	1537
15	(2) INFORMATION FOR SEQ ID NO: 246:	
	•	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 506 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEO ID NO: 246:	
25	TGCAGGATTT GGCCAGGACC CSCCGCGGTG GCGGTTGCTA TCGCTTCGCA GAACCTACTC	60
	AGCCAGCCAG CTGAGAAGAG TTGAGGGAAA GTGCTGCTGC TGGGTCTGCA GACGCGATGG	120
	ATAACCTCCA GCCGAAAATA AAACATCGCC CCTTCTGCTT CAGTGTGAAA GGCCACGTGA	180
30	AGATOCTOCG GCTGGATATT ATCAACTCAC TGGTAACAAC AGTATTCATG CTCATCGTAT	240
	CTGTGTTGGC ACTGATACCA GAAACCACAA CATTGACAGT TGGTGGAGGG GTGTTTGCAC	300
35	TTGTGACAGC AGTATGCTGT CTTGCCGACG GGGCCCTTAT TTACCGGAAG CTTCTGTTCA	360
	ATCCCAGCGG TCCTTACCAG AAAAAGCCTG TGCATGAAAA AAAAGAAGTT TTGTAATTTT	420
	ATATTACTTT TTAGTTTGAT ACTAAGTATT AAACATATTT CTGKATTATT CCAAAAAAA	480
40	AAAAAAAAA AAAAAAAATT TGGTGG	506
•		
45	(2) INFORMATION FOR SEQ ID NO: 247:	
5 0	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1348 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
c c	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247:	
55	GTCTTTCTTT TNCTGTTTTG AGTTGGTGAG TGAGTGAATA GGGTAACATG GGCCTTCAGG	60
	ATGACCCCTT GGAACTGTGC CGAGTTCCTT AAATCTCAGC TGGGATCCTG GACCTGGGAG	120
60	GCCCCTGTGA GGGCCAGCTC TGGAAAAACC TGGGAGTTGA TGCCGGAGGY TGGGAAGAAC	180

	TCTGCTCGAG	GGCAGGGTGC	CCTGGAACAC	TGGTAGTTCT	GGGCTGGGA	GGGAGAGGG	240
5	CTCCGGCTTT	CTCTGAAATG	AACACTGCTC	TTCAGCAGTT	CAAGTACTTG	TTCTCAAAAC	300
3	ATTTTCTAAT	TGATTGGTAG	GTTTTCATAA	GCATTGTTTC	TTTAAGGCAT	GGAAAGGGAA	360
	GAATGCTCAA	GCAAGTCATG	TTTGTTTTCA	GTGGGATGGG	CCCCCCTTCT	CACTGCTGGG	420
10	GGCTTCCCCT	TGCATGTGGC	ACCTTTGTGC	AGGCCACCA	GGCAGACTCT	TCCCACCTTC	480
	TCCCACTGAA	GCACCAAGGG	GCTTGAACCG	TAATTTGGCT	AATCAGAGGC	ATTTTTTTTG	540
15	TCCTAGTATC	TTTCACACTT	GTCCAACCGT	CTTATTTTTT	TAAAAGTTCT	GTTGCTTGTA	600
15	TTAACACGAA	ACTAGAGAGA	AATAGTTTCT	GAAGCCAGTT	TATTGTGAAG	ATCCCCAAGG	660
	GGAGGTTCGG	TAGAGAAAAA	TAGTAAGCTG	GTTTAGAAAC	TGACGAGGGC	AAACAGCCAG	720
20	GACGCATTGG	AGAGGAATTT	GCCAAAGATC	TACCCTGAGA	TAACGCCTGT	CCAGTGTCTT	780
	CACCACGTGA	ATAACCAGCG	CTCCAAAGTG	TTTTTCTGCT	TTGAAAAAA	AAATTCCACA	840
25	AGCTTTTAAA	GGTGCATTTA	AGAATCCATG	TGACTTTAGA	ATGGAACTGC	CGGCCCTGGC	900
23	AACTGTCACG	TGTGCTAGAA	GCTTCGATGC	CTCTGGAATG	CATGTGATAC	TCATCTCCAT	960
	TTTGTTTCCT	TGATTGCATT	TTTGTTCTTT	TAGCAGATCT	GTCCCTGTGG	GTGGTGTCTA	1020
30	AGAAGTCOGA	CACCTTGGTT	TTTGTGTTAG	ATTGAGCTGG	GCAGCTGCAA	TCAGCTTCTT	1080
	TATATGCAAA	TTAGGCACGA	CCCATCTGTG	CTTCCCTGGT	TGGTGGCTAA	TGAAGTGAGG	1140
35	GGAGGGAGGG	ATGTCACCCC	AAAAGTAGGC	CCTCCCATTG	GCTTTGGCCA	GGCCAGACAC	1200
55	TTCACATCGT	TTACATGGTT	CTGTGTAATT	TTAAAGTTTA	TGTGTATAAA	GCGAAGCTGT	1260
	TTCTGTGAAA	CTGTATATTT	тстааатааа	тататтоста	CTTTGAGAWR	АААААААА	1320
40	AAAAACTCGA	cccccccc	GTACCCAA				1348
45	(2) INFORMA	TION FOR SE	EQ ID NO: 24	18:			

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1766 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248:

55 GTGCCGAATC GGCAGAGCGG CACGAGCGGC CACGAGAGCA GGCGGAGTAA AGGGACTTGA 60 GCGAGCCAGT TGCCGGATTA TTCTATTTCC CCTCCCTCTC TCCCGCCCCG TATCTCTTTT 120 CACCCTTCTC CCACCCTCGC TCGCGTASCA TGGCGGAGCG TCGGCGGCCA CTCAGTCCCA 180 60

	TICCATCICC	TCGTCGTCCT	TCGGAGCCGA	GCCGTCCGCG	cccccccccc	GCGGGAGCCC	240
	AGGAGCCTGC	CCCGCCCTGG	GGACGAAGAG	CTGCAGCTCC	TCCTGTGCGG	TGCACGATCT	300
5	GATTTTCTGG	AGAGATGTGA	AGAAGACTGG	GTTTGTCTTT	GGCACCACGC	TGATCATGCT	360
	GCTTTCCCTG	GCAGCTTTCA	GTGTCATCAG	TGTGGTTTCT	TACCTCATCC	TGGCTCTTCT	420
10	CTCTGTCACC	ATCAGCTTCA	GGATCTACAA	GTCCGTCATC	CAAGCTGTAC	AGAAGTCAGA	480
. •	AGAAGGCCAT	CCATTCAAAG	CCTACCTGGA	CGTAGACATT	ACTCTGTCCT	CAGAAGCTTT	540
	CCATAATTAC	ATGAATGCTG	CCATGGTGCA	CATCAACAGG	GCCCTGAAAC	TCATTATTCG	600
15	TCTCTTTCTG	GTAGAAGATC	TGGTTGACTC	CTTGAAGCTG	GCTGTCTTCA	TGTGGCTGAT	660
	GACCTATGTT	GGTGCTGTTT	TTAACGGAAT	CACCCTTCTA	ATTCTTGCTG	AACTGCTCAT	720
20	TTTCAGTGTC	CCGATTGTCT	ATGAGAAGTA	CAAGACCCAG	ATTGATCACT	ATGTTGGCAT	780
•	CGCCCGAGAT	CAGACCAAGT	CAATTGTTGA	AAAGATCCAA	GCAAAACTCC	CTGGAATCGC	840
	CAAAAAAAAG	GCAGAATAAG	TACATGGAAA	CCAGAAATGC	AACAGTTACT	AAAACACCAT	900
25	TTAATAGTTA	TAACGTCGTT	ACTTGTACTA	TGAAGGAAAA	TACTCAGTGT	CAGCTTGAGC	960
	CTGCATTCCA	AGCTTTTTTT	TTAATTTGGT	GTTTTCTCCC	ATCCTTTCCC	TITAACCCTC	1020
30	AGTATCAAGC	ACAAAAATTG	ATGGACTGAT	AAAAGAACTA	TCTTAGAACT	CAGAAGAAGA	1080
	AAGAATCAAA	TTCATAGGAT	AAGTCAATAC	CTTAATGGTG	GTAGAGCCTT	TACCTGTAGC	1140
•	TTGAAAGGGG	AAAGATTGGA	GGTAAGAGAG	AAAATGAAAG	AACACCTCTG	GGTCCTTCTG	1200
35	TCCAGTTTTC	AGCACTAGTC	TTACTCAGCT	ATCCATTATA	GITTIGCCCT	TAAGAAGTCA	1260
	TGATTAACTT	ATGAAAAAAT	TATTTGGGGA	CAGGAGTGTG	ATACCTTCCT	TGGTTTTTT	1320
10	TTGCAGCCCT	CAAATCCTAT	CTTCCTGCCC	CACAATGTGA	GCAGCTACCC	CTGATACTCC	1380
	TTTTCTTTAA	TGATTTAACT	ATCAACTTGA	TAAATAACTT	ATAGGTGATA	GTGATAATTC	1440
	CTGATTCCAA	GAATGCCATC	TGATAAAAA	GAATAGAAAT	GGAAAGTGGG	ACTGAGAGGG	1500
15	AGTCAGCAGG	CATGCTGCGG	TGGCGGTCAC	TCCCTCTGCC	ACTATCCCCA	GGGAAGGAAA	1560
	RGCTCCGCCA	TTTGGGAAAG	TGGTTTCTAC	GTCACTGGAC	ACCOGTTCTG	AGCATTAGTT	1620
50	TGAGAACTCG	TTCCCGAATG	TGCTTTCCTC	CCTCTCCCCT	GCCCACCTCA	AGTTTAATAA	1680
	ATAAGGTTGT	ACTTTTCTTA	СТАТААААТА	АААААААА	AACTCGAGGG	GGCCCGGTA	1740
	CCCAAATCGC	CGGATATGAT	CGTAAA				1766

60

(i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 249:

(A) LENGTH: 2664 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 249:

	AGTGTCCTCG	GAGCAGGCGG	AGTAAAGGGA	CTTGAGCGAG	CCAGTTGCCG	GATTATTCTA	60
10	TITCCCCTCC	CTCTCTCCCG	CCCCGTATCT	CTTTTCACCC	TTCTCCCACC	CTCGCTCGCG	120
	TASCATGGCG	GAGCGTCGGC	GCCACTCAG	TCCCATTCCA	TCTCCTCGTC	GTCCTTCGGA	180
15	GCCGAGCCGT	ccccccccc	ceeceecee	AGCCCAGGAG	CCTGCCCCGC	CCTGGGGACG	240
13	AAGAGCTGCA	GCTCCTCCTG	TGCGGTGCAC	GATCTGATTT	TCTGGAGAGA	TGTGAAGAAG	300
	ACTGGGTTTG	TCTTTGGCAC	CACGCTGATC	ATGCTGCTTT	CCCTGGCAGC	TTTCAGTGTC	360
20	ATCAGTGTGG	TTTCTTACCT	CATCCTGGCT	сттстстств	TCACCATCAG	CTTCAGGATC	420
	TACAAGTCCG	TCATCCAAGC	TGTACAGAAG	TCAGAAGAAG	GCCATCCATT	CAAAGCCTAC	480
25	CTGGACGTAG	ACATTACTCT	GTCCTCAGAA	GCTTTCCATA	ATTACATGAA	TGCTGCCATG	540
23	GTGCACATCA	ACAGGGCCCT	GAAACTCATT	ATTCGTCTCT	TTCTGGTAGA	AGATCTGGTT	600
	GACTCCTTGA	AGCTGGCTGT	CTTCATGIGG	CTGATGACCT	ATGTTGGTGC	TGTTTTTAAC	660
30	GGAATCACCC	TTCTAATICT	TGCTGAACTG	CTCATTTTCA	GTGTCCCGAT	TGTCTATGAG	720
	AAGTACAAGA	CCCAGATTGA	TCACTATGTT	GGCATCGCCC	GAGATCAGAC	CAAGTCAATT	780
35	GTTGAAAAGA	TCCAAGCAAA	ACTCCCTGGA	ATCGCCAAAA	AAAAGGCAGA	ATAAGTACAT	840
	GGAAACCAGA	AATGCAACAG	ТТАСТААААС	ACCATTTAAT	AGTTATAACG	TCGTTACTTG	900
	TACTATGAAG	GAAAATACTC	AGTGTCAGCT	TGAGCCTGCA	TTCCAAGCTT	TTTTTTTAAT	960
40	TIGGIGITIT	CTCCCATCCT	TTCCCTTTAA	CCCTCAGTAT	CAAGCACAAA	AATTGATGGA	1020
	CTGATAAAAG	AACTATCTTA	GAACTCAGAA	GAAGAAAGAA	TCAAATTCAT	AGGATAAGTC	1080
45	AATACCTTAA	TGGTGGTAGA	GCCTTTACCT	GTAGCTTGAA	AGGGGAAAGA	TTGGAGGTAA	1140
45	GAGAGAAAAT	GAAAGAACAC	CTCTGGGTCC	TTCTGTCCAG	TTTTCAGCAC	TAGTCTTACT	1200
	CAGCTATCCA	TTATAGTTTT	GCCCTTAAGA	AGTCATGATT	AACTTATGAA	ТТТАТТАААА	1260
50	GGGGACAGGA	GTGTGATACC	TTCCTTGGTT	TTTTTTTGCA	GCCCTCAAAT	CCTATCTTCC	1320
	TGCCCCACAA	TGTGAGCAGC	TACCCCTGAT	ACTCCTTTTC	TTTAATGATT	ТААСТАТСАА	1380
55	CTTGATAAAT	AACTTATAGG	TGATAGTGAT	AATTCCTGAT	TCCAAGAATG	CCATCTGATA	1440
<i>55</i>	AAAAAGAATA	GAAATGGAAA	GTGGGACTGA	GAGGGAGTCA	GCAGGCATGC	TGCGGTGGCG	1500
	GTCACTCCCT	CTGCCACTAT	CCCCAGGGAA	GGAAARGCTC	CGCCATTTGG	GAAAGTGGTT	1560
60	TCTACGTCAC	TGGACACCGG	TTCTGAGCAT	TAGTTTGAGA	ACTOGTTCCC	GAATGTGCTT	1620

	TCCTCCCTCT CCCCTGCCCA CCTCAAGTTT AATAAATAAG GTTGTACTTT TCTTACTATA	1680
5	AAATAAATGT CTGTAACTGC TGTGCACTGC TGTAAACTTG TTAGAGAAAA AAATAACCTG	1740
	CATGTGGGCT CCTCAGTTAT TGAGTTTTTG TGATCCTATC TCAGTCTGGG GGGGAACATT	1800
	CTCAAGAGGT GAAATACAGA AAGCCTTTTT TTCTTGATCT TTTCCCGAGA TTCAAATCTC	1860
10	CGATTCCCAT TTGGGGGCAA GTTTTTTCT TCACCTTCAA TATGAGAATT CAGCGAACTT	1920
	GAAAGAAAAA TCATCTGTGA GTTCCTTCAG GTTCTCACTC ATAGTCATGA TCCTTCAGAG	1980
15	GGAATATGCA CTGGCGAGTT TAAAGTAAGG GCTATGATAT TTGATGGTCC CAAAGTACGG	2040
	CAGCTGCAAA AAGTAGTGGA AGGAAATTGT CTACGTGTCT TGGAAAAATT AGTTAGGAAT	2100
	TTGGATGGGT AAAAGGTACC CTTGCCTTAC TCCATCTTAT TTTCTTAGCC CCCTTTGAGT	2160
20	GTTTTAACTG GTTTCATGTC CTAGTAGGAA GTGCATTCTC CATCCTCATC CTCTGCCCTC	2220
	CCAGGAAGTC AGTGATTGTC TTTTTGGGCT TCCCCTCCAA AGGACCTTCT GCAGTGGAAG	2280
25	TGCCACATCC AGTTCTTTTC TTTTGTTGCT GCTGTGTTTA GATAATTGAA GAGATCTTTG	2340
	TGCCACACAG GATTTTTTT TTTTTTAAGA AAAACCTATA GATGAAAAAT TACTAATGAA	2400
	ACTGTGTGTA CGTGTCTGTG CGTGCAACAT AAAAATACAG TAGCACCTAA GGAGCTTGAA	2460
30	TCTTGGTTCC TGTAAAATTT CAAATTGATG TGGTATTAAT AAAAAAAAA AAAACAMAAA	2520
	AAAAAAAAA AAAAGGGCGG CCGCTCTAGA GGATCCAAGC TTACGTACGC GTGCATGCGA	2580
35	CGTCCATAGC TCTTTCTATA GGGGTCCCCC AAATTCCATT CANCGGGCCG TCGGTTTTAN	2640
	AAAGGTCGTG ANTGGGGGAA ANCC	2664
	•	
10	(2) INFORMATION FOR SEQ ID NO: 250:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 865 base pairs	
•5	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250:	
	CGTGGGAGTG AGGTACCAGA TTCAGCCCAT TTGGCCCCGA CGCCTCTKTT CTCGGAATCC	60
	GGGTGCTGCG GATTGAGGTC CCGGTTCCTA ACGGTGGGAT CGGTGTCCTC GGGATGAGAT	120
55	TIGGCGTTTC CTCGGGGCTT TGGTGGGATC GGTGTCCTCA GGATGAGATT TAGGGTTTCC	180
	TCGGGGCTTT CGGGATCTTC ACCTAATATC CGGACTGCAA GATGGAGGAA GGCGGGAACC	240
50	TAGGAGGCCT GATTAARATG GTCCATCTAC TGGTCTTGTC AGGTGCCTGG GGCATGCAAA	300

477

	TGTGGGTGAC CTTCGTCTCA GGCTTCCTGC TTTTCCGAAG CCTTCCCCGA CATACCTTCG	360
	GACTAGTGCA GAGCAAACTC TTCCCCTTCT ACTTCCACAT CTCCATGGGC TGTGCCTTCA	420
5	TCAACCTCTG CATCTTGGCT TCACAGCATG CTTGGGCTCA GCTCACATTC TGGGAGGCCA	480
	GCCAGCTTTA CCTGCTGTTC CTGAGCCTTA CGCTGGCCAC TGTCAACGCC CGCTGGCTGG	540
10	AACCCCGCAC CACAGCTGCC ATGTGGGCCC TGCAAACCGT GGAGAAGGAG CGAGGCCTGG	600
10	GTGGGGAGGT ACCAGGCAGC CACCAGGGTC CCGATCCCTA CCGCCAGCTG CGAGAGAAGG	660
	ACCCCAAGTA CAGTGCTCTC CGCCAGAATT TCTTCCGCTA CCATGGGCTG TCCTCTCTTT	720
15	GCAATCTGGG CTGCGTCCTG AGCAATGGGC TCTGTCTCGC TGGCCTTGCC CTGGAAATAA	780
	GGAGCCTCTA GCATGGGCCC TGCATGCTAA TAAATGCTTC TTCAGAAAAA AAAAAAAAAA	840
20	AAACTCGAGG GGGCCCGGT ACCCA	865
	(2) INFORMATION FOR SEQ ID NO: 251:	
25	_	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2082 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251:	
35	TGGGGGGGGN AATGGGTGTC TGGCTCANGG ATTGCCNAAT CTGGAAATTC TCCATAACTT	60
	GCTAGCTTGT TTTTTTTTT TTTTTTTACA CCCCCCGCC CCACCCCCGG ACTTGCACAA	120
	TGTTCAATGA TCTCAGCAGA GTTCTTCATG TGAAACGTTG ATCACCTTTG AAGCCTGCAT	180
40		
••	CATTCACATA TITTTCTTC TTCTTCCCCT TCAGTTCATG AACTGGTGTT CATTTTCTGT	240
••	CATTCACATA TITITTCTTC TICTTCCCCT TCAGTTCATG AACTGGTGTT CATTTTCTGT GTGTGTGTG GTTTTATTTT GTTTGGATTT TTTTTTTT	240 300
1 5		
	GIGIGIGIG GITTIATTIT GITTGGATTT TTTTTTTAA TTTTACTTTT AGAGCTIGCT	300
	GIGTGIGIG GITTTATTTT GTTTGGATTT TTTTTTTTAA TTTTACTTTT AGAGCTIGCT GTGTTGCCCA CCTTTTTTCC AACCTCCACC CTCACTCCTT CTCAACCCAT CTCTTCCGAG	300 360
	GTGTGTGT GTTTATTTT GTTTGGATTT TTTTTTTTAA TTTTACTTTT AGAGCTTGCT GTGTTGCCCA CCTTTTTTCC AACCTCCACC CTCACTCCTT CTCAACCCAT CTCTTCCGAG ATGAAAGAAA AAAAAAAGCA AAGTTTTTTT TTCTTCTCCT GAGTTCTTCA TGTGAGATTG	300 360 420
45	GTGTGTGT GTTTATTTT GTTTGGATTT TTTTTTTAA TTTTACTTTT AGAGCTTGCT GTGTTGCCCA CCTTTTTTCC AACCTCCACC CTCACTCCTT CTCAACCCAT CTCTTCCGAG ATGAAAGAAA AAAAAAAGCA AAGTTTTTTT TTCTTCTCCT GAGTTCTTCA TGTGAGATTG AGCTTGCAAA GGAAAAAAAA ATGTGAAATG TTATAGACTT GCAGCGTGCC GAGTTCCATC	300 360 420 480

GCTACTITGT CTTAGCAACA ATGAACTATA ACTGTTTCAA AGACTTTATG GAAAAGAGAC

ATTATATTAA TAAAAAAAA AAGCCTGCAT GCTGGACATG TATGGTATAA TTATTTTTTC

CTTTTTTTT CCTTTGGCT TGGAAATGGA CGTTCGAAGA CTTATAGCAT GGCATTCATA

60

720

780

	CTTTTGTTTT	ATTGCCTCAT	GACTTTTTTG	AGTTTAGAAC	AAAACAGTGC	AACCGTAGAG	900
5	CCTTCTTCCC	ATGAAATTTT	GCATCTGCTC	CAAAACTGCT	TTGAGTTACT	CAGAACTTCA	960
•	ACCTCCCAAT	GCACTGAAGG	CATTCCTTGT	GCAAAGATAC	CAGAATGGGT	TACACATTTA	1020
	ACCTGGCAAA	CATTGAAGAA	CTCTTRATGT	TTTCTTTTTA	ATAAGAATGA	CGCCCCACTT	1080
10	TGGGGACTAA	AATTGTGCTA	TTGCCGAGAA	GCAGTCTAAA	ATTTATTTT	TAAAAAGAGA	1140
	AACTGCCCCA	TTATTTTTGG	TTTGTTTTAT	TTTTATTTTA	TATTTTTTGG	CTTTTGGTCA	1200
15	TTGTCAAATG	TGGAATGCTC	TGGGTTTCTA	GTATATAATT	TAATTCTAGT	TTTTATAATC	1260
	TGTTAGCCCA	GTTAAAATGT	ATGCTACAGA	TAAAGGAATG	TTATAGATAA	ATTTGAAAGA	1320
	GTTAGGTCTG	TTTAGCTGTA	GATTTTTTAA	ACGATTGATG	CACTAAATTG	TTTACTATTG	1380
20	TGATGTTAAG	GCGCGTAGAG	TTTGCAAGGG	GACTGTTTAA	AAAAAGTAGC	TTATACAGCA	1440
	TGTGCTTGCA	ACTTAAATAT	AAGTTGGGTA	TGTGTAGTCT	TTGCTATACC	ACTGACTGTA	1500
25	TTGAAAACCA	AAGTATTAAG	AGGGGAAACG	CCCCTGTTTA	TATCTGTAGG	GGTATTTTAC	1560
23	ATTCAAAAAT	GTATGTTTT	ттттстттс	aaaattaaag	TATTTGGGAC	TGAATTGCAC	1620
	TAAGATATAA	CCTGCAAGCA	татаатасаа	AAAAAAATTG	CAAAACTGTT	TAGAACGCTA	1680
30	ATAAAATTTA	TGCAGTTATA	AAAATGGCAT	TACTGCACAG	TTTTAAGATG	ATGCAGATTT	1740
	TTTTACAGTT	GTATTGTGGT	GCAGAACTGG	ATTTTCTGTA	АСТТААААА	AAATCCACAG	1800
35	TTTTAAAGGC	AATAATCAGT	AAATGTTATT	TTCAGGGACT	GACATCCTGT	CTTTAAAAAG	1860
33	AAATGAAAAG	TAAATCTTAC	CACAATAAAT	АТААААААТ	CTTGTCAGTT	ACTITICITT	1920
	TACATATTTT	GCTGTGCAAA	ATTGTTTAT	ATCTTGAGTT	ACTAACTAAC	CACGCGTGTT	1980
40	GTTCCTATGT	GCTTTTCTTT	CATTTTCAAT	TCTGGTTATA	TCAAGAAAAG	AATAATCTAC	2040
	AATAATAAAC	GGCATTTTTT	TTTGAAAAAA	ааааааааа	AA		2082
45							
	(2) INFORM	ATION FOR SE	EO ID NO: 2º	52:			
		SEQUENCE CI	_				
50	,-,	(A) LEN	GTH: 1482 b	ase pairs			
		(C) STR	ANDEDNESS: OLOGY: line	double			
55	(xi) SEQUENCE I			· 252·		
		GCCCCGGG				CICCCCCCC	60
		CCCCTACGGA					120
60	~~~~~	CCCCIACOGA	GICCITAGCC	UCCUT COHOO	CIGITGIGAA	CITGIACCAA	120

	GAGGTGATGA	AGCACGCAGA	TCCCCGGATC	CAGGGCTACC	CTCTGATGGG	GICCCCCTIG	180
	CTAATGACCT	CCATTCTCCT	GACCTACGTG	TACTTCGTTC	TCTCACTTGG	GCCTCGCATC	240
5	ATGGCTAATC	GGAAGCCCTT	CCAGCTCCGT	GGCTTCATGA	TTGTCTACAA	CTTCTCACTG	300
	GTGGCACTCT	CCCTCTACAT	TGTCTATGAG	TTCCTGATGT	CGGGCTGGCT	GAGCACCTAT	360
10	ACCTGGCGCT	GTGACCCTGT	GGACTATTCC	AACAGCCCTG	AGGCACTTAG	GATGGTTCGG	420
10	GTGGCCTGGC	TCTTCCTCTT	CTCCAAGTTC	ATTGAGCTGA	TGGACACAGT	GATCTTTATT	480
	CTCCGAAAGA	AAGACGGGCA	GGTGACCTTC	CTACATGTCT	TCCATCACTC	TGTGCTTCCC	540
15	TGGAGCTGGT	GGTGGGGGGT	AAAGATTGCC	CCGGGAGGAA	TGGGCTCTTT	CCATGCCATG	600
	ATAAACTCTT	CCGTGCATGT	CATAATGTAC	CTGTACTACG	GATTATCTGC	CTTTGGCCCT	660
20	GTGGCACAAC	CCTACCTTTG	GTGGAAAAAG	CACATGACAG	CCATTCAGCT	GATCCAGTTT	720
20	GTCCTCGTCT	CACTGCACAT	CTCCCAGTAC	TACTTTATGT	CCAGCTGTAA	CTACCAGTAC	780
	CCAGTCATTA	TTCACCTCAT	CTGGATGTAT	GGCACCATCT	TCTTCATGCT	GTTCTCCAAC	840
25	TTCTGGTATC	ACTCTTATAC	CAAGGGCAAG	CGGCTGCCCC	GTGCACTTCA	GCAAAATGGA	900
	GCTCCAGGTA	TTGCCAAGGT	CAAGGCCAAC	TGAGAAGCAT	GGCCTAGATA	GCCGCCCACC	960
30	TAAGTGCCTC	AGGACTGCAC	CTTAGGGCAG	TGTCCGTCAG	TGCCCTCTCC	ACCTACACCT	1020
50	GTGACCAAGG	CTTATGTGGT	CAGGACTGAG	CAGGGGACTG	GCCCTCCCCT	CCCCACAGCT	1080
	GCTCTACAGG	GACCACGGCT	TIGGITCCTC	ACCCACTTCC	CCCGGGCAGC	TCCAGGGATG	1140
35	TGGCCTCATT	GCTGTCTGCC	ACTCCAGAGC	TGGGGGCTAA	AAGGGCTGTA	CAGTTATTTC	1200
	CCCCTCCCTG	CCTTAAAACT	TGGGAGAGGA	GCACTCAGGG	CTGGCCCCAC	AAAGGGTCTC	1260
40	GTGGCCTTTT	TCCTCACACA	GAAGAGGTCA	GCAATAATGT	CACTGTGGAC	CCAGTCTCAC	1320
	TCCTCCACCC	CACACACTGA	AGCAGTAGCT	TCTGGGCCAA	AGGTCAGGGT	eccececc	1380
	CTGGGAATAC	AGCCTGTGGA	GGCTGCTTAC	TCAACTTGTG	тсттааттаа	AAGTGACAGA	1440
45	GGAAACCAAA	АААААААА	AAAAACTCGA	GGGGGGCCCG	TA		1482

50 (2) INFORMATION FOR SEQ ID NO: 253:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 834 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 253:

60 GGCACGAGGG CCGTTGCCCG CCTGGCCCCT ACGGAGTCCT TAGCCAGGAT GGAGGCTGTT 60

480

	GTGAACTTGT	ACCAAGAGGT	GATGAAGCAC	GCAGATCCCC	GGATCCAGGG	CTACCCTCTG	120
5	ATGGGGTCCC	CCTTGCTAAT	GACCTCCATT	CTCCTGACCT	ACGTGTACTT	CGTTCTCTCA	180
_	CTTGGGCCTC	GCATCATGGC	TAATCGGAAG	CCCTTCCAGC	TCCGTGGCTT	CATGATTGTC	240
	TACAACTTCT	CACTGGTGGC	ACTCTCCCTC	TACATTGTCT	ATGAGTTCCT	GATGTCGGGC	300
10	TGGCTGAGCA	CCTATACCTG	GCGCTGTGAC	CCTCAGGACT	GCACCTTAGG	GCAGTGTCCG	360
	TCAGTGCCCT	CTCCAMCTAC	ACCTGTGACC	AAGGCTTATG	TGGTCAGGAC	TGAGCAGGGG	420
15	ACTGGCCCTC	CCCTCCCCAC	AGCTGCTCTA	CAGGGACCAC	GGCTTTGGTT	CCTCACCCAC	480
	TTCCCCCGGG	CAGCTCCAGG	GATGTGGCCT	CATTGCTGTC	TGCCACTCCA	GAGCTGGGGG	540
	CTAAAAGGGC	TGTACAGTTA	TTTCCCCCTC	CCTGCCTTAA	AACTTGGGAG	AGGAGCACTC	600
20	AGGGCTGGCC	CCACAAAGGG	TCTCGTGGCC	TTTTTCCTCA	CACAGAAGAG	GTCAGCAATA	660
	ATGTCACTGT	GGACCCAGTC	TCACTCCTCC	ACCCCACACA	CTGAAGCAGT	AGCTTCTGGG	720
25	CCAAAGGTCA	GGGTGGGCGG	GGCCTGGGA	ATACAGCCTG	TGGAGGCTGC	TTACTCAACT	780
	TGTGTCTTAA	TTAAAAGTGA	CAGAGGAAAC	CACGAAAAAA	ааааааааа	AAAA	834
30							
	(2) INFORMA	TION FOR SE	Q ID NO: 25	64:			
35		SEQUENCE CH (A) LENG (B) TYPI (C) STR	-	CCS: ase pairs acid double			
35	(i)	SEQUENCE CH (A) LENG (B) TYPI (C) STR	HARACTERIST: STH: 1508 b E: nucleic a ANDEDNESS: O DLOGY: line	ICS: ase pairs acid double ar	: 254:		
35 40	(i)	SEQUENCE CH (A) LENG (B) TYPI (C) STRA (D) TOPG	HARACTERIST: GTH: 1508 b. E: nucleic a ANDEDNESS: 0 DLOGY: line DESCRIPTION:	ICS: ase pairs acid double ar		GCTGTTCCTC	60
	(i) (xi) TIGAACTTT	SEQUENCE CH (A) LENK (B) TYPI (C) STRA (D) TOPK	HARACTERIST: GTH: 1508 b. E: nucleic and and Edness: 0 DLOGY: linean DESCRIPTION: ATCAGCAAAC	ICS: ase pairs acid double ar : SEQ ID NO	TAGAATGGAA		60 120
	(i) (xi) TIGAACTITT ATTICICCAT	SEQUENCE CH (A) LENK (B) TYPI (C) STRJ (D) TOPK SEQUENCE I	HARACTERIST: GTH: 1508 b. E: nucleic and	ICS: ase pairs acid double ar : SEQ ID NO TCTAAGATCC GAGATGGTGA	TAGAATGGAA AGAAGCTGCA	CGCGGCAACA	
40	(i) (xi) TIGAACTITT ATTICICCAT CCACCAACGT	SEQUENCE CH (A) LENK (B) TYPI (C) STRJ (D) TOPK SEQUENCE I AAAATTITAG GCTCACCCTC	HARACTERIST: GTH: 1508 b. E: nucleic and the control of the contro	ICS: ase pairs acid double ar : SEQ ID NO TCTAAGATCC GAGATGGTGA GAGCTTGTGG	TAGAATGGAA AGAAGCTGCA AGAACTTTGG	CGCGGCAACA	120
40 45	(xi) TIGAACTITT ATTICICCAT CCACCAACGT AAGTGGTCTG	SEQUENCE CH (A) LENK (B) TYPI (C) STRJ (D) TOPK SEQUENCE I AAAATTITAG GCTCACCCTC TCGGAGTGGA GTCGGCAAGC	HARACTERIST: GTH: 1508 b. E: nucleic and the control of the contro	ICS: ase pairs acid double ar : SEQ ID NO TCTAAGATCC GAGATGGTGA GAGCTTGTGG GTCTGCCAGA	TAGAATOGAA AGAAGCTGCA AGAACTTTGG CTGTCATTGA	CGCGGCAACA	120 180
40	(xi) TIGAACTITT ATTICICCAT CCACCAACGT AAGTGGTCTG CTICCCATGG	SEQUENCE CHECK (A) LENK (B) TYPI (C) STRUCK (D) TOPK (D) TOPK (D) TOPK (D) SEQUENCE IT AAAATTITAG GCTCACCCTC TCGGAGTGGA GTCGGCAAGC ACCAGTTTGC	HARACTERIST: STH: 1508 b. E: nucleic and the control of the contro	ICS: ase pairs acid double ar : SEQ ID NO TCTAAGATCC GAGATGGTGA GAGCTTGTGG GTCTGCCAGA ATGCCGCATC	TAGAATOGAA AGAAGCTGCA AGAACTTTGG CTGTCATTGA TGCTAACCTT	CGCGGCAACA CAGATGTCCC GGATGACTGC	120 180 240
40 45	(xi) TIGAACTITT ATTICICCAT CCACCAACGT AAGTGGTCTG CTICCCATGG AGGGTTCCTA	SEQUENCE CHECK (A) LENK (B) TYPH (C) STRUCK (D) TOPK (D)	HARACTERIST: STH: 1508 b. E: nucleic and state of the control of t	ICS: ase pairs acid double ar : SEQ ID NO TCTAAGATCC GAGATGGTGA GAGCTTGTGG GTCTGCCAGA ATGCCGCATC	TAGAATOGAA AGAAGCTGCA AGAACTTTGG CTGTCATTGA TGCTAACCTTT GACAAACTCT	CGCGGCAACA CAGATGTCCC GGATGACTGC AGCAAATGAC	120 180 240 300
40 45	(xi) TTGAACTTTT ATTTCTCCAT CCACCAACGT AAGTGGTCTG CTTCCCATGG AGGGTTCCTA GACTATTTCT	SEQUENCE CHECK (A) LENK (B) TYPI (C) STRI (D) TOPK SEQUENCE I AAAATTTTAG GCTCACCCTC TCGGAGTGGA GTCGGCAAGC ACCAGTTTGC ACGTCCGAGT TGGCCTCTGC	HARACTERIST: STH: 1508 b. E: nucleic a ANDEDNESS: O DLOGY: line DESCRIPTION: ATCAGCAAAC CCAGGTCAGC CCTCATCAAT CTTTGTCTTT TGTGCATCTC GCTGCTTGCA CAGCTGCCAC	ACCS: ase pairs acid double ar SEQ ID NO TCTAAGATCC GAGATGGTGA GAGCTTGTGG GTCTGCCAGA ATGCCGCATC AAGACATTAA CAGGAGGGTG	TAGAATOGAA AGAACTTTCG AGAACTTTCG CTGTCATTCGA TGCTAACCTTT GACAAACTCT TGGAGCAGAC	CGCGGCAACA CAGATGTCCC GGATGACTGC AGCAAATGAC ACTAGAAAAA	120 180 240 300 360

GTGTCTTTCC TGCTTCCATG AGAGCCGAGG TTCAGTGGGC ATTCGCCACG CATGTGACCT

60

481

	GGGATAGCTT	TCGGGGGAGG	AGAGACCTTC	CTCTCCTGCG	GACTTCATTG	CAGGTGCAAG	660
	TTGCCTACAC	CCAATACCAG	GGATTTCAAG	AGTCAAGAGA	AAGTACAGTA	AACACTATTA	720
5	TCTTATCTTG	ACTTTAAGGG	GAAATAATTT	CTCAGAGGAT	TATAATTGTC	ACCGAAGCCT	780
	TAAATCCTTC	TGTCTTCCTG	ACTGAATGAA	ACTTGAATTG	GCAGAGCATT	TTCCTTATGG	840
10	AAGGGATGAG	ATTCCCAGAG	ACCTGCATTG	CTTTCTCCTG	GTTTTATTTA	ACAATCGACA	900
10	AATGAAATTC	TTACAGCCTG	AAGGCAGACG	TGTGCCCAGA	TGTGAAAGAG	ACCTTCAGTA	960
	TCAGCCCTAA	CTCTTCTCTC	CCAGGAAGGA	CITCCTCCCC	TCTGTGGCCA	GCTGTCCAGC	1020
15	CCAGCCCTGT	GTGTGAATCG	TTTGTGACGT	GTGCAAATGG	GAAAGGAGGG	GTTTTTACAT	1080
	CTCCTAAAGG	ACCTGATGCC	AACACAAGTA	GGATTGACTT	AAACTCTTAA	GCGCAGCATA	1140
20	TTGCTGTACA	CATTTACAGA	ATGGTTGCTG	AGTGTCTGTG	TCTGATTTTT	TCATGCTGGT	1200
20	CATGACCTGA	AGGAAATTTA	TTAGACGTAT	AATGTATGTC	TGGTGTTTTT	AACTTGATCA	1260
	TGATCAGCTC	TGAGGTGCAA	CTTCTTCACA	TACTGTACAT	ACCTGTGACC	ACTCTTGGGA	1320
25	GTGCTGCAGT	CTTTAATCAT	GCTGTTTAAA	CTGTTGTGGC	ACAAGTTCTC	TTGTCCAAAT	1380
	AAAATTTATT	AATAAGATCT	ATAGAGAGAG	ATATATACAC	TTTTGATTGT	TTTCTAGATG	1440
30	TCTACCAATA	AATGCAATTT	GTGACCTGTA	тгаааааааа	NTAAAAAAAC	TCGAGGGGG	1500
	CCCGGTAC						1508

35

40

(2) INFORMATION FOR SEQ ID NO: 255:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2514 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255:

45 GAGAGACTCA CACTTCTTTT CCATTATCAC TGACGATGTA GTGGACATAG CAGGGGAAGA 60 GCACCTACCT GTGTTGGTGA GGTTTGTTGA TGAATCTCAT AACCTAAGAG AGGAATTTAT 120 50 AGGCTTCCTG CCTTATGAAG CCGATGCAGA AATTTTGGCT GTGAAATTTC ACACTATGAT 180 AACTGAGAAG TGGGGATTAA ATATGGAGTA TTGTCGTGGC CAGGCTTACA TTGWCTCTAG 240 TGGATTTTCT TCCAAAATGA AAGTTGTTGC TTCTAGACTT TTAGAGAAAT ATCCCCAAGC 300 55 TATCTACACA CTCTGCTCTT CCTGTGCCTT AAATATGTGG TTGGCAAAAT CAGTACCTGT 360 TATGGGAGTA TCTGTTGCAT TAGGAACAAT TGAGGAAGTT TGTTCTTTTT TCCATCGATC 420 60 ACCACACTG CTTTTAGAAC TTGACAACGT AATTTCTGTT CTTTTTCAGA ACAGTAAAGA 480

	AAGGGGTAAA	GAACTGAAGG	AAATCTGCCA	TTCTCAGTGG	ACAGGCAGGC	ATGATGCTTT	540
5	TGAAATTTTA	GTGGAACTCC	TGCAAGCACT	TGTTTTATGT	TTAGATGGTA	TAAATAGTGA	600
•	CACAAATATT	AGATGGAATA	ACTATATAGC	TGGCCGAGCA	TTTGTACTCT	GCAGTGCAGT	660
	GTCAGATTTT	GATTTCATTG	TTACTATTGT	TGTTCTTAAA	AATGTCCTAT	CTTTTACAAG	720
10	AGCCTTTGGG	AAAAACCTCC	AGGGGCAAAC	CTCTGATGTC	TTCTTTGCGG	CCGGTAGCTT	780
	GACTGCAGTA	CTGCATTCAC	TCAACGAAGT	GATTGGAAAA	TATTGAAGTT	TATCATGAAT	840
15	TTTGGTTTGA	GGAAGCCACA	AATTTGGCAA	CCAAACTTGA	TATTCAAATG	AAACTCCCTG	900
13	GGAAATTCCG	CAGAGCTCAC	CAGGGTAACT	TGGAATCTCA	GCTAACCTCT	GAGAGTTACT	960
	ATAAAGAAAC	CCTAAGTGTC	CCAACAGTGG	AGCACATTAT	TCAGGAACTT	AAAGATATAT	1020
20	TCTCAGAACA	GCACCTCAAA	GCTCTTAAAT	GCTTATCTCT	GGTACCCTCA	GTCATGGGAC	1080
	AACTCAAATT	CAATACGTCG	GAGGAACACC	ATGCTGACAT	GTATAGAAGT	GACTTACCCA	1140
25	ATCCTGACAC	GCTGTCAGCT	GAGCTTCATT	GTTGGAGAAT	CAAATGGAAA	CACAGGGGGA	1200
2.5	AAGATATAGA	GCTTCCGTCC	ACCATCTATG	AAGCCCTCCA	CCTGCCTGAC	ATCAAGTTTT	1260
	TTCCTAATGT	GTATGCATTG	CTGAAGGTCC	TGTGTATTCT	TCCTGTGATG	AAGGTTGAGA	1320
30	ATGAGCGGTA	TGAAAATGGA	CGAAAGCGTC	TTAAAGCATA	TTTGAGGAAC	ACTTTGACAG	1380
	ACCAAAGGTC	AAGTAACTTG	GCTTTGCTTA	ACATAAATTT	TGATATAAAA	CACGACCTGG	1440
35	ATTTAATGGT	GGACACATAT	ATTAAACTCT	ATACAAGTAA	GTCAGAGCTT	CCTACAGATA	1500
33	ATTCCGAAAC	TGTGGAAAAT	ACCTAAGAGA	СТТТТААААА	TAGGCTTTCT	TATATTTGAT	1560
	ATTTGGAAGA	AAAAGCCGTA	AGTGTATGTA	GACCACTTAA	тсастааата	TCTTTGCCTA	1620
40	TAGGACTCCA	TTGAATACAT	TAGCCATTGA	TAATCTACCT	GTTTAAATGG	CCCCTGTTTG	1680
	AACTCTCAAG	CTTTGAAGAC	CTACCTGTTC	TTCCAGAAGA	GAACGTTGAA	AGTGCCATGT	1740
45	TICCTTITGC	GTGATCTCTG	TTGATGGCAC	TCTGGAATTG	TTTCAGTTAA	GTCATTTTAG	1800
7.5	ACATAGCATT	TATTATCACT	GTGGATCTCT	ACTTGTTGGG	TGTTATGAAT	TCTTTGAAGA	1860
	AATATATTT	GAAGAGGTGT	GGGAGGAAGG	AATACATTTT	аталалтстт	GTAGTGAAGC	1920
50	CCACAATTGA	CCTTTGACTA	ATAGGAGTTT	TAAGTATGTT	ааааатстат	ACTGGACAGT	1980
	TACAAGAAAT	TACCGGAGAA	AAGCTTGTGA	GCTCACCAAA	CAAGGATTTC	AGTGTAGATT	2040
55	TIGICTITCT	TGAACTTAAA	GAAACAAATG	ACAAAGTTTG	AATGGAAAAG	CCTGCTGTTG	2100
JJ	TTCCACATCT	CGTTGCTGTT	TACATTCCTT	TGTGGAGCCT	ACATCTTCCT	AAGCTTTTTA	2160
	GCAGGTATAT	GTTGAACACT	TCTGTTTCAT	GGTTGAGACA	GAATCAGAGG	CCATGGATAC	2220
60	TGACAACTGA	TTTGTCTGTT	тттттстст	GTCTTTTTCC	ATGACTCTTA	TATACTGCCT	2280

483

	CATCTTGATT TATAAGCAAA ACCTGGAAAA CCTACAAAAT AAGTGTTGTG GTTTATCTAG	2340
5	AAAAATATGG AAAATATTGC TGITATTTTT GGTGAAGAAA ATCAATTTTG TATAGTTTAT	2400
3	TICAATCTAA ATAAAATGTG AATTTTGTTT AAAGCTTAGG CACATTATIT TTTGTGGGGT	2460
	CAAAACATTC TIGIGIAAAT TCTCTTAAAC ATTTGATAAA CAGCTTCACA ATTC	2514
10		
	(2) INFORMATION FOR SEQ ID NO: 256:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2357 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 256:	
25	CTGCCTTATG AAGCCGATGC AGAAATTITG GCTGTGAAAT TTCACACTAT GATAACTGAG	60
25	AAGTGGGGAT TAAATATGGA GTATTGTCGT GGCCAGGCTT ACATTGTCTC TAGTGGATTT	120
	TCTTCCAAAA TGAAAGTTGT TGCTTCTAGA CTTTTAGAGA AATATCCCCA AGCTATCTAC	180
30	ACACTCTGCT CTTCCTGTGC CTTAAATATG TGGTTGGCAA AATCAGTACC TGTTATGGGA	240
	GTATCTGTTG CATTAGGAAC AATTGAGGAA GTTTGTTCTT TTTTCCATCG ATCACCACAA	300
	CTGCTTTTAG AACTTGACAA CGTAATTYCT GTTCTTTTTC AGAACAGTAA AGAAAGGGGT	360
35	AAAGAACTGA AGGAAATCTG CCATTCTCAG TGGACAGGCA GGCATGATGC TTTTGAAATT	420
	TTAGTGGAAC TCCTGCAAGC ACTTGTTTTA TGTTTAGATG GTATAAATAG TGACACAAAT	480
40	ATTAGATGGA ATAACTATAT AGCTGGCCGA GCATTTGTAC TCTGCAGTGC AGTGTCAGAT	540
10	TTTGATTTCA TTGTTACTAT TGTTGTTCTT AAAAATGTCC TATCTTTTAC AAGAGCCTTT	600
	GGGAAAAACC TCCAGGGGCA AACCTCTGAT GTCTTCTTTG CGGCCGGTAG CTTGACTGCA	660
45	GTACTGCATT CACTCAACGA AGTGANTGGA AAATATTGAA GTTTATCATG AATTTTGGTT	720
	TGAGGAAGCC ACAAATTTGG CAACCAAACT TGATATTCAA ATGAAACTCC CTGGGAAATT	780
50	CCGCAGAGCT CACCAGGGTA ACTTGGAATC TCAGCTAACC TCTGAGAGTT ACTATAAAGA	840
50	AACCCTAAGT GTCCCAACAG TGGAGCACAT TATTCAGGAA CTTAAAGATA TATTCTCAGA	900
	ACAGCACCTC AAAGCTCTTA AATGCTTATC TCTGGTACCC TCAGTCATGG GACAACTCAA	960

ATTCAATACG TCGGAGGAAC ACCATGCTGA CATGTATAGA AGTGACTTAC CCAATCCTGA

CACGCTGTCA GCTGAGCTTC ATTGTTGGAG AATCAAATGG AAACACAGGG GGAAAGATAT

AGAGCTTCCG TCCACCATCT ATGAAGCCCT CCACCTGCCT GACATCAAGT TTTTTCCTAA

1020

1080

1140

55

TGTGTATGCA TTGCTGAAGG TCCTGTGTAT TCTTCCTGTG ATGAAGGTTG AGAATGAGCG

484

	GTATGAAAAT GGACGAAAGC GTCTTAAAGC ATATTTGAGG AACACTTTGA CAGACCAAAG	1260
5	GTCAAGTAAC TTGGCTTTGC TTAACATAAA TTTTGATATA AAACACGACC TGGATTTAAT	1320
	GGTGGACACA TATATTAAAC TCTATACAAG TAAGTCAGAG CTTCCTACAG ATAATTCCGA	1380
10	AACTGTGGAA AATACCTAAG AGACTTTTAA AAATAGGCTT TCTTATATTT GATATTTGGA	1440
10	AGAAAAAGCC GTAAGTGTAT GTAGACCACT TAATCACTAA ATATCTTTGC CTATAGGACT	1500
	CCATTGAATA CATTAGCCAT TGATAATCTA CCTGTTTAAA TGGCCCCTGT TTGAACTCTC	1560
15	AAGCTTTGAA GACCTACCTG TTCTTCCAGA AGAGAACGTT GAAAGTGCCA TGTTTCCTTT	1620
	TGCGTGATCT CTGTTGATGG CACTCTGGAA TTGTTTCAGT TAAGTCATTT TAGACATAGC	1680
20	ATTTATTATC ACTGTGGATC TCTACTIGTT GGGTGTTATG AATTCTTTGA AGAAATATAT	1740
20	TTTGAAGAGG TGTGGGAGGA AGGAATACAT TTTATAAAAT GTTGTAGTGA AGCCCACAAT	1800
	TGACCTTTGA CTAATAGGAG TTTTAAGTAT GTTAAAAATC TATACTGGAC AGTTACAAGA	1860
25	AATTACCGGA GAAAAGCTTG TGAGCTCACC AAACAAGGAT TTCAGTGTAG ATTTTGTCTT	1920
	TCTTGAACTT AAAGAAACAA ATGACAAAGT TTGAATGGAA AAGCCTGCTG TTGTTCCACA	1980
30	TCTCGTTGCT GTTTACATTC CTTTGTGGAG CCTACATCTT CCTAAGCTTT TTAGCAGGTA	2040
50	TATGTTGAAC ACTTCTGTTT CATGGTTGAG ACAGAATCAG AGGCCATGGA TACTGACAAC	2100
	TGATTTGTCT GTTTTTTTC TCTGTCTTTT TCCATGACTC TTATATACTG CCTCATCTTG	2160
35	ATTTATAAGC AAAACCTGGA AAACCTACAA AATAAGTGTT GTGGTTTATC TAGAAAAATA	2220
	TGGAAAATAT TGCTGTTATT TTTGGTGAAG AAAATCAATT TTGTATAGTT TATTTCAATC	2280
40	TAAATAAAAT GTGAATTITG TITAAAGCTT AGGCACATTA TITITTGTGG GGTCAAAACA	2340
	TTCTTGTGTA AATTCTC	2357
45	(2) INFORMATION FOR SEQ ID NO: 257:	
	•	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 689 base pairs	
30	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 257:	
	ACTITICTGGT GCAAAAAGAT GTTCAAGCCT TATTTTATAC TTGCCTGCCC CTTTCTCTT	60
	CATTTATTGG AGTGAGCTGC AGCTCTAAGA AGACCTGTTC TTTTGAATGG AGAGTAGCAT	120
60	CAGGAACCAG GATGTGGGTG CGAGGCGTGC TCCTGGCTGT TGCAGATTGC TGCACCCGGG	180

	AGCTCTTAGT GGACAGAGCT AGAGGATATG TGCACGTACT TCCATCTCTC TCTCTGTCTC	240
5	CGATTTTAGC CCAGCACCAC AGGGTACGTT CCAGTTTTTC TCTCTTTCCA TAGCTGTAAG	300
3	GCCCTTTCTG GGAATGGTTC TCATTCTCCT TAATCTATTA TIGGGTCAGT TTTCCTGCAT	360
	GTCCCCAGCC TCCCATCACT GCCACCCACT CCCCACAGAG ATGCCCTGCT CATCCGACTG	420
10	GGGCTTTGAC TCCCACACTG TGTACCCCTC TTGTGTGGAC GCCCTGCTGC CAAAACCTTC	480
	AGCAAACAGC TTTCCAAATG GAAGTTGTCA CTGTCARGGS CTTTACAATC AGCAACAGCA	540
15	AAATCTACAT GCTGCTGAGG GTCCTGCCTC ATTAAGATGC AATAAATATG TAAGTACATA	600
13	AAAACAGCAA TAGAAGAAAC GTAATGCTTT ATTCTCAAAT ATGNATGTCT ACATAGAAAA	660
	GCCAAAATTA TTAAGAATAG TAAGGAATT	689
20		
	(0)	
0.5	(2) INFORMATION FOR SEQ ID NO: 258:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2377 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 258:	
	TCGACCCACG CGTCCGCCGA TGTGATGATT CCTGCGTATT CCAAGAACCG GGCCTATGCC	60
35	ATCITCITCA TAGICTICAC TGTGATAGGG GACGCCCCCG GCGCTGTGCT ATCCTGTGCC	120
	GGCCACCCTT GCGTTGGTTT TGCTGCTGTA CTGGTGGCGC CCCTGACCGT GGCTGTCTCC	180
40	TCTTGAAGGA AGCCTGTTTC TGATGAACCT GCTGACAGCC ATCATCTACA GTCAGTTCCG	240
	GGGCTACCTG ATGAAATCTC TCCAGACCTC GCTGTTTCGG AGGCGGGTGG GAACCCGGCT	300
	GCCTTTGAAG TCCTATCCTC CATGGTGGGG GAGGGAGGAG CCTTCCCTCA GGCAGTTGGG	360
45	GTGAAGCCCC AGAACTTGCT GCAGGTGCTT CAGAAGGTCC AGCTGGACAG CTCCCACAGA	420
	CAGGCCATGA TGGAGAAGGT GCGTTCCTAT GGCAGTGTTC TGCTCTCAGC TGAGGAGTTT	480
50	CAGAAGCTCT TCAACGAGCT TGACAGAAGT GTGGTTAAAG AGCACCCGCC GAGGCCCGAG	540
50	TACCAGTCTC CGTTTCTGCA GAGCGNCCCA GTTCCTCTTC GGCCACTNAC TACTTTGACT	600
	ACCTGGGGAA CCTCATCGCC CTGGCAAACC TGGTGTCCAT TTGCGTGTTC CTGGTGCTGG	660
55	ATGCAGATGT TGCTGCCTGC TGAGCGTGAT GACTTCATCC TGGGGGGTCT CAACTGCGTC	720
	TTCATTGTGT ACTACCTGTT GGAGATGCTG GCTCAAGGTC TTTTGCCCTG GGGCCTGCGA	780
	ROGTACYKKT CCTAACCCCA RCAAMGTGTT TTGAACGGGC TCCTCAMCGT TTGTCCTGGC	840

	TGGWWKKGSM	GATCTCAACT	CIGGCIGIGI	ACCGATTGCC	ACACCCAGGC	TGGAGGCCGG	900
	ANATGGTGGG	CCIGCIGICG	CTGTGGGACA	TGACCCGCAT	ACTGAACATG	CTCATCGTGT	960
5	TCCGCTTCCT	GCGTATCATC	CCCAGCATGA	AGCCGATGGC	CCTCCTCCCC	AGTACCGTCC	1020
	TGGGCCTGGT	GCAAAACATG	CGTGCGTTTG	GCGGGATCCT	GGTGGTGGTC	TACTACGTAT	1080
10	TTGCCATCAT	TGGGATCAAC	TTGTTTAGAG	GCGTCATTGT	GGCTCTTCCT	GGAAACAGCA	1140
	CCCTCGCCCC	TGCCAATAGG	TCGGCGCCCT	GTGGGAGCTT	CGAGCAGCTG	GAGTACTGGG	1200
	CCAACAACTT	CGATGACTTT	GCGGCTGCCC	TGGTCACTCT	GTGGAACTTG	ATGGTGGTGA	1260
15	ACAACTGGCA	GGTGTTTCTG	GATGCATATC	GGCGCTACTA	AGGCCCGTGG	TCCAAGATCT	1320
	ATTTTGTATT	GTGGTGGCTG	GTGTCGTCTG	TCATCTGGGT	CAACCTGTTT	CTGGCCCTGA	1380
20	TTCTGGAGAA	CTTCCTTCAC	AAGTGGGACC	CCCGCAGCCA	CCTGCAGCCC	CTTGCTGGGA	1440
	CCCCAGAGGC	CACCTACCAG	ATGACTGTGG	AGCTCCTGTT	CAGGGATATT	CTGGAGGAGC	1500
	CCGGGGAGGA	TGAGCTCACA	GAGAGGCTGA	GCCAGCACCC	GCACCTGTGG	CTGTGCAGGT	1560
25	GACGTCCGGG	TCTGCCATCC	CAGCAGGGGC	GGCAGGAGAG	AGAGGCTGGC	ATAACACAGG	1620
	TGCCCATCAT	GGAAGAGGCG	GCCATGCTGT	GGCCAGCCAG	GCAGGAAGAG	ACCTITECTE	1680
30	TGACGGACCA	CTAAGCTGGG	GACAGGAACC	AAGTCCTTTG	CCTCTCCCC	AACAACCATT	1740
	TACAGAACAG	CTGCTGGTGC	TTCAGGGAGG	CGCCGTGCCC	TCCGCTTTCT	TTTATAGCTG	1800
	CTTCAGTGAG	AATTCCCTTG	TCGACTCCAC	AGGGACCTTT	CAGACAAAAA	TGCAAGAAGC	1860
35	AGCGGCCTCC	CCTGTCCCCT	GCAGCTTCCG	TGGTGCCTTT	GCTGCCGGCA	GCCCTTGGGG	1920
	ACCACAGGCC	TGACCAGGGC	CTGCACAGGT	TAACCGTCAG	ACTTCCGGGG	CATTCAGCTG	1980
40	GGAATGATAC	TAATACCTCC	GATTTTAGCC	CAGCACCACA	GGGTACGTTC	CAGTTTTTAT	2040
	TTCTTTCCAT	AGCTGTAAGG	CCCTTTCTGG	GAATGGTTAT	CATTCTCCTT	AATCTATTAT	2100
	TGGGTCAGTT	TTCCTGCATG	TCCCCAGCCT	CCCATCACTG	CCACCCACTC	CCCACAGAGA	2160
45	TGCCCTGCTC	ATCCGACTGG	GGCTTTGACT	CCCACACTGT	GTACCCCTCT	TGTGTGGACG	2220
	CCCTGCTGCC	AAAACCTTCA	GCAAACAGCT	TTCCAAATGG	AAGTTGTCAC	TGTCAGGGCC	2280
50	TTTACAATCA	GCAACAGCAA	AATCTACATG	CTGCTGAGGG	TCCTGCCTCA	TTAAGATGCA	2340
	ATAAATATGT	AAGTACATAA	ААААААААА	АААААА			2377

⁽²⁾ INFORMATION FOR SEQ ID NO: 259:

⁽i) SEQUENCE CHARACTERISTICS:

⁽A) LENGTH: 1193 base pairs
(B) TYPE: nucleic acid

487

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 259: 5 TCTGNTCGCC GTCGCCCGC CCCTGGCCTT TGCCCGGTCG GGCGGGACTT CCTGTGTCGT 60 ATTTCCAAGG ACTCCAAAGC GAGGCCGGG ACTGAAGGTG TGGGTGTCGA GCCCTCTGGC 120 10 AGAGGGTTAA CCTGGGTCAA ATGCACGGAT TCTCACCTCG TACAGTTACG CTCTCCCGCG 180 GCACGTCCGC GAGGMYTTGA AGTCCTGAGC GCTCAAGTTT GTCCGTAGTC GAGAGAAGGC 240 CATGGAGGTG CCGCCACCGG CACCGCGGAG CTTTCTCTGT AGAGCATTGT GCCTATTTCC 300 15 CCGAGTCTTT GCTGCCGAAG CTGTGACTGC CGATTCGGAA GTCCTTGAGG AGCGTCAGAA 360 GCGGCTTCCC TACGTCCCAG AGCCCTATTA CCCGGAATCT GGATGGGACC GCCTCCGGGA 420 20 GCTGTTTGGC AAAGACACAG TGAACACTAG TCTGAATGTA TACCGAAATA AAGATGCCTT 480 AAGCCATTIT GTAATTGCAG GAGCTGTCAC GGGAAGTCTT TTTAGGATAA ACGTAGGCCT 540 GCGTGGCTGG TGGCTGGTGG CATAATTGGA GCCTTGCTGG GCACTCCTGT AGGAGGCCTG 600 25 CTGATGGCAT TTCAGAAGTA CTCTGGTGAG ACTGTTCAGG AAAGAAAACA GAAGGATCGA 660 AAGGCACTCC ATGAGCTAAA ACTGGAAGGG TGGAAAGGCA GACTACAAGT TACTGAGCAC 720 30 CTCCCTGAGA AAATTGAAAG TAGTTTACAG GAAGATGAAC CTGAGAATGA TGCTAAGAAA 780 ATTGAAGCAC TGCTAAACCT TCCTAGAAAC CCTTCAGTAA TAGATAAACA AGACAAGGAC 840 TGAAAGTGCT CTGAACTTGA AACTCACTGG AGAGCTGAAG GGAGCTGCCA TGTCCGATGA 900 35 ATGCCAACAG ACAGGCCACT CTTTGGTCAG CCTGCTGACA AATTTAAGTG CTGGTACCTG 960 TGGTGGCAGT GGCTTGCTCT TGTCTTTTTC TTTTCTTTTT AACTAAGAAT GGGGCTGTTG 1020 40 1080 ATATATGCAT ACATGAATAT ATCCACCCAC CTAGATTTTA AGCAGTAAAT AAAACATTTC 1140 GCAAAAGATT AAAGTTGAAT TTTACAGTTA AAAAAAAAA AAAAAAAAA AAA 1193 45

(2) INFORMATION FOR SEQ ID NO: 260:

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1262 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 260:

GAAAAACCCA AAGATGCAGA CAATCTCTTT GAACATGAAT TGGGGGCTCT CAATATGGCT 60

	GCATTACTAC GAAAAGAAGA AAGAGCAAGT CTTCTTAGTA ATCTTGGCC	C ATGTTGTAAG	120
	GCGTTGTGCT TCAGACGGGA TTCTGCAATT CGAAAGCAGC TTGTTAAAA	A TGAGAAGGC	180
5	ACCATAAAAC AAGCTTACAC GAGTSCTCCA ATGGTAGACA ATGAATTAC	r tegattgagt	240
	CITCGGTTAT TTAAGCGGAA GACTACTTGC CATGCTCCAG GACATGAAA	A GACTGAAGAT	300
10	AATAAACTTT CACAGTCCAG TATCCAACAG GAACTGTGTG TGTCTTAAG	A CCGAAGTTCA	360
10	ATATGGTATT TTTGGTACTG TCTTCCTTCA GCAGTGCATA TTCTTTTGC	A AAGTTCTTTG	420
	GTTTGACAAG CATTAGTGAC AAAGGCAGAA AAGATTTATC AGCCATGCT	A AAAGAGTGAA	480
15	GAATTITGAT CTTTAGAGAC ACTAGTTTTG GCCAACTTAA GATTTTACG	r taattittac	540
	ATAGTATTTG ACACTCATGC AAAATAATGT GAAAACATCT AGATTTAGT	A GTTTATTCTG	600
20	CGCCTTTTGT TAAAACTGAA GATTTTGGAA AATGGTTGTC ACTGCTCTT	CAGCCTATGA	660
20	ATATTTTTGT GAAATGGAAC CATGGATTTA TGTCTGGATC ATCCATACAG	AACCAACAAT	720
	TITATICAAA AACAATGIGI TCATCAAAGI AATIGCICAC ATIGIGCAG	r actatettet	780
25	ACAGACCACG TGAAAGGGAA TGCTGGTCTA GCTGGCGTGG TATGTTTAT	A GGCGAATTTC	840
	AGCAGAAGGA AGCCAAAATA GTTTTTCCT TTTGAAAGTT TTTTAAAAA	TATTTCATGG	900
30	GTCTTTTTT TAATTAATAT GTGTGCATTG TTACAATGTA TGTTGGATG	r CTTTTGACCC	960
	TAAATGCTTT TTTTGTTATC AGAGATTGTG TACTATTTTT ATTTTTAAT	A AATGTATCTT	1020
	CCCTTTCCTT GTTTTAGATT TACTTTGCTC TTCGTTAATC TTATTCCTG	A TGATCTAGAA	1080
35	CATTAGTCAT CAACATTACA TGTTTCATGC TTCAGATATT TTACTGCTT	G TGTCCTTATT	1140
	GTTGGACAGC TTTAAACAGA GTTGATGGTA CTTCAAATAT AGCTCATTG	TACTTAAGGG	1200
40	CANCTICCTT GGGATGTGGG CTTTTTGGAA GGAAAAAAAT TNCCCCAAAG	GCAAATCCCA	1260
	GT		1262
45	(2) INFORMATION FOR SEQ ID NO: 261:		
	(i) SEQUENCE CHARACTERISTICS:		
50	(A) LENGTH: 1179 base pairs (B) TYPE: nucleic acid		
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261:		

GGCAAACTTT CCCCCAANGC TTCGAAACTT GCAAGCCGAA ACCTTGAATC GTTAAAAGTT 60
GGGTTGCGNC GGCGCCCTGG CCCGAAGAAG CGCAATTGGC GTTCCGCGAA CGTTGGCCCT 120
CAACGGCTCG GCAGCCAGCC ATGTCCTGCA CCCAGGACAG CGGCCCTGGG CTACAAGGAC 180

55

489

	CTGGACCTCA	TCTTCCTGCG	CCGACCTGCG	CGGGGAAGGG	GAGTTTCAGA	CTGTGAAGGA	240
5	CGTCGTGCTG	GACTGCCTGT	TGGACTTCTT	ACCCGAGGGG	GTGAACAAAG	AGAAGATCAC	300
,	ACCACTCACG	CTCAAGGAAG	CTTATGTGCA	GAAAATGGTT	AAAGTGTGCA	ATGACTCTGA	360
	CCGATGGAGT	CTTATATCCC	TGTCAAACAA	CAGTGGCAAA	AATGTGGAAC	TGAAATTTGT	420
10	GGATTCCCTC	CGGAGGCAGT	TTGAATTCAG	TGTAGATTCT	TTTCAAATCA	AATTAGACTC	480
	TCTTCTGCTC	TTTTATGAAT	GTTCAGAGAA	CCCAATGACT	GAGACATTTC	ACCCCACAAT	540
15	AATCGGGGAG	AGCGTCTATG	GCGATTTCCA	GGAAGCCTTT	GATCACCTTT	GTAACAAGAT	600
15	CATTGCCACC	AGGAACCCAG	AGGAAATCCG	AGGGGGAGGC	CTGCTTAAGT	ACTGCAACCT	660
	CTTGGTGAGG	GGCTTTAGGC	CCGCCTCTGA	TGAAATCAAG	ACCCTTCAAA	GGTATATGTG	720
20	TTCCAGGTTT	TTCATCGACT	TCTCAGACAT	TGGAGAGCAG	CAGAGAAAAC	TGGAGTCCTA	780
	TTTGCAGAAC	CACTTTGTGG	GATTGGAAGA	CCGCAAGTAT	GAGTATCTCA	TGACCCTTCA	840
25	TGGAGTGGTA	AATGAGAGCA	CAGTGTGCCT	GATGGGACAT	GAAAGAAGAC	AGACTTTAAA	900
	CCTTATCACC	ATGCTGGCTA	TCCGGGTGTT	AGCTGACCAA	AATGTCATTC	CTAATGTGGC	960
	TAATGTCACT	TGCTATTACC	AGCCAGCCCC	CTATGTAGCA	GATGCCAACT	TTAGCAATTA	1020
30	CTACATTGCA	CAGGTTCAGC	CAGTATTCAC	GTGCCAGCAA	CAGACCTACT	CCACTTGGCT	1080
	ACCCTGCAAT	TAAGAATCAT	TTAAAAATGT	CCTGTGGGGA	AGCCATTTCA	GACAAGACAG	1140
35	GAGAGAAAAA	АААААААА	АААААААА	AAAAAGAGC			1179

(2) INFORMATION FOR SEQ ID NO: 262:

40 (i) SEQUENCE CHARACTERISTICS:

45

(A) LENGTH: 1162 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 262:

GGCAAACTTT CCCCCAANGC TTCGAAACTT GCAAGCCGAA ACCTTGAATC GTTAAAAGTT 60
GGGTTGCGNC GGCGCCCTGG CCCGAAGAAG CGCAATTGGC GTTCCGCGAA CGTTGGCCCT 120
CAACGGCTCG GCAGCCAGCC ATGTCCTGCA CCCAGGACAG CGGCCCTGGG CTACAAGGAC 180
CTGGACCTCA TCTTCCTGCG CCGACCTGCG CGGGAAGGG GAGTTTCAGA CTGTGAAGGA 240
CGTCGTGCTG GACTGCCTGT TGGACTTCTT ACCCGAGGGG GTGAACAAAG AGAAGATCAC 300
ACCACTCACG CTCAAGGAAG CTTATGTGCA GAAAATGGTT AAAGTGTGCA ATGACTCTGA 360

490

	CCGATGGAGT CTTATATCCC TGTCAAACAA CAGTGGCAAA AATGTGGAAC TGAAATTTGT	420					
	GGATTCCCTC CGGAGGCAGT TTGAATTCAG TGTAGATTCT TTTCAAATCA AATTAGACTC	480					
5	TCTTCTGCTC TTTTATGAAT GTTCAGAGAA CCCAATGACT GAGACATTTC ACCCCACAAT	540					
	AATCGGGGAG AGCGTCTATG GCGATTTCCA GGAAGCCTTT GATCACCTTT GTAACAAGAT	600					
10	CATTGCCACC AGGAACCCAG AGGAAATCCG AGGGGGAGGC CTGCTTAAGT ACTGCAACCT	660					
10	CTTGGTGAGG GGCTTTAGGC CCGCCTCTGA TGAAATCAAG ACCCTTCAAA GGTATATGTG	720					
	TTCCAGGTTT TTCATCGACT TCTCAGACAT TGGAGAGCAG CAGAGAAAAC TGGAGTCCTA	780					
15	TITGCAGAAC CACTITGTGG GATTGGAAGA CCGCAAGTAT GAGTATCTCA TGACCCTTCA	840					
	TGGAGTGGTA AATGAGAGCA CAGTGTGCCT GATGGGACAT GAAAGAAGAC AGACTTTAAA	900					
20	CCTTATCACC ATGCTGGCTA TCCGGGTGTT AGCTGACCAA AATGTCATTC CTAATGTGGC	960					
20	TAATGTCACT TGCTATTACC AGCCAGCCCC CTATGTAGCA GATGCCAACT TTAGCAATTA	1020					
	CTACATTGCA CAGGITCAGC CAGTATTCAC GTGCCAGCAA CAGACCTACT CCACTTGGCT	1080					
25	ACCCTGCAAT TAAGAATCAT TTAAAAATGT CCTGTGGGGA AGCCATTICA GACAAGACAG	1140					
	GAGAGAAAA NAANGAAAAG AG	1162					
30							
	(2) INFORMATION FOR SEQ ID NO: 263:						
	(i) SEQUENCE CHARACTERISTICS:						
35	(A) LENGTH: 735 base pairs						
	(B) TYPE: nucleic acid . (C) STRANDEDNESS: double						
	(D) TOPOLOGY: linear						
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 263:						
	CGGGCTGGGT ATTTGCCTCG CACCATGGCG CCCAAGGGCA AAGTGGGCAC GAGAGGGAAG	60					
45	AAGCAGATAT TTGAAGAGAA CAGAGAGACT CTGAAGTTCT ACCTGCGGAT CATACTGGGG	120					
.5	GCCAATGCCA TTTACTGCCT TGTGACGTTG GTCTTCTTTT ACTCATCTGC CTCATTTTGG	180					
	GCCTGGTTGG CCTTGGGCTT TAGTCTGGCA GTGTATGGGG CCAGCTACCA CTCTATGAGC	240					
50	TOGATGCAC GAGCAGCGTT CTTCTGAGGA TGGGGCCCTG ATGGATGGTG GCACGAGCTC	300					
	AACATGGAGC AGGGCATGGC AGAGCACCTT AAGGATGTGA TCCTACTGAC AGCCATCGTG	360					
55	CAGGTGCTCA GCTGCTTCTC TCTCTATGTC TGGTCCTTCT GGCTTCTGGC TCCAGGCCGG	420					
"	GCCCTTTACC TCCTGTGGGT GAATGTGCTG GGCCCCTGGT TCACTGCAGA CAGTGGCACC	480					

TTATAGCCAT TGACATTGTG GCCACAGGCC ACTGGCCCTG GGTGGCTCTG TCAGGGTGCA

600

	CAGCCCCTCA TGCCTGGAGC AATGAGGGTC TAGTCCAGGG GCCAAAAGCA GTCTGAGGTA	660
5	TTGGGTATAC TTATACTCTA TAGGGTCGTT GAATAAATGG CTTAGAATGT GAAAAAAAAA	720
J	AAAAAAAAA ATTTT	735
10		
	(2) INFORMATION FOR SEQ ID NO: 264:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 783 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 264:	
20	AAGTGCATGA GCTGCCGATG TGGTGCTTAG TGATTGCGGT TTCGGTCGCT CTCCCGTGTT	60
	TCCCGGGCTG GGTATTTGCC TCGCACCATG GCGCCCAAGG GCAAAGTGGG CACGAGAGGG	120
25	AAGAAGCAGA TATTTGAAGA GAACAGAGAG ACTCTGAAGT TCTACCTGCG GATCATACTG	180
	GGGGCCAATG CCATTTACTG CCTTGTGACG TTGGTCTTCT TTTACTCATC TGCCTCATTT	240
30	TGGGCCTGGT TGGCCTGGGC TTTAGTCTGG CAGTGTATGG GGCCAGCTAC CACTCTATGA	300
50	GCTCGATGGC ACGAGCAGCG TTCTCTGAGG ATGGGGCCCT GATGGATGGT GGCATGGACC	360
	TCAACATGGA GCAGGCCATG GCAGAGTGAG TGTCCCCCAC CGCCAGCCCA GGCACCTTAA	420
35	GGATGTGATC CTACTGACAG CCATCGTGCA GGTGCTCAGC TGCTTCTCTC TCTATGTCTG	480
	GTCCTTCTGG CTTCTGGCTC CAGGCCGGGC CCTTTACCTC CTGTGGGTGA ATGTGCTGGG	540
40	CCCCTGGTTC ACTGCAGACA GTGGCACCCC AGCACCAGAG CACAATGAGA AACGGCAGCG	600
,,	CCGACAGGAG CGGCGGCAGA TGAAGCGGTT ATAGCCATTG ACGATTTKGC SACNRGCCAC	660
	TGGCCCTGGG TGGCTCTGTC AGGGTGCACA GCCCCTCATG CCTGGAGCAA TGAGGGTCTA	720
45	GTCCAGGGC CAAAAGCAGT CTGAGGTATT GGGTATACTT ATACTCTATA GGGTCGTTGA	780
	ATA	783
50		
50	(0)	
	(2) INFORMATION FOR SEQ ID NO: 265:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1638 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 265:

	GGCACGAGGC	GGCGGCAGCG	CTCCCCCCCC	ceccccccc	CGGGAGCCGT	NCCCTTTCCC	60
5	GTCGGGGAGC	GCGGGGYCGG	GGYCCAGGGG	ANCCCGGGMC	ACGGAGAGCG	GGAAGAGGAT	120
	GGATTGCCCG	GCCCTCCCCC	CCGGATGGAA	GAAGGAGGAA	GTGATCCGAA	AATCTGGGCT	180
	AAGTGCTGGC	AAGAGCGATG	TCTACTACTT	CAGTCCAAGT	GGTAAGAAGT	TCAGAAGCAA	240
10	GCCTCAGTTG	GCAAGGTACC	TGGGAAATAC	TGTTGATCTC	AGCAGTTTTG	ACTTCAGAAC	300
	TGGAAAGATG	ATGCCTAGTA	AATTACAGAA	GAACAAACAG	AGACTGCGAA	ACGATCCTCT	360
15	CAATCAAAAT	AAGGGTAAAC	CAGACTTGAA	TACAACATTG	CCAATTAGAC	AAACAGCATC	420
10	AATTTTCAAA	CAACCGGTAA	CCAAAGTCAC	AAATCATCCT	AGTAATAAAG	TGAAATCAGA	480
	CCCACAACGA	ATGAATGAAC	AGCCACGTCA	GCTTTTCTGG	GAGAAGAGGC	TACAAGGACT	540
20	TAGTGCATCA	GATGTAACAG	AACAAATTAT	AAAAACCATG	GAACTACCCA	AAGGTCTTCA	600
	AGGAGTTGGT	CCAGGTAGCA	ATGATGAGAC	CCTTTTATCT	GCTGTTGCCA	GIGCITIGCA	660
25	CACAAGCTCT	GCGCCAATCA	CAGGGCAAGT	CTCCGCTGCT	GTGGAAAAGA	ACCCTGCTGT	720
	TTGGCTTAAC	ACATCTCAAC	CCCTCTGCAA	AGCTTTTATT	GTCACAGATG	AAGACATCAG	780
	GAAACAGGAA	GAGCGAGTAC	AGCAAGTACG	CAAGAAATTG	GAAGAAGCAC	TGATGGCAGA	840
30	CATCTTGTCG	CGAGCTGCTG	ATACAGAAGA	GATGGATATT	GAAATGGACA	GTGGAGATGA	900
	AGCCTAAGAA	TATGATCAGG	TAACTTTCGA	CCGACTTTCC	CCAAGAGAAA	ATTCCTAGAA	960
35	ATTGAACAAA	AATGTTTCCA	CTGGCTTTTG	CCTGTAAGAA	AAAAAATGTA	CCCGAGCACA	1020
	TAGAGCTTTT	TAATAGCACT	AACCAATGCC	TTTTTAGATG	TATTTTTGAT	GTATATATCT	1080
	ATTATTCAAA	AAATCATGTT	TATTTTGAGT	CCTAGGACTT	AAAATTAGTC	TTTTGTAATA	1140
40	TCAAGCAGGA	CCCTAAGATG	AAGCTGAGCT	TTTGATGCCA	GGTGCAATCT	ACTGGAAATG	1200
	TAGCACTTAC	GTAAAACATT	TGTTTCCCCC	ACAGTTTTAA	TAAGAACAGA	TCAGGAATTC	1260
45	TAAATAAATT	TCCCAGTTAA	AGATTATTGT	GACTTCACTG	тататаласа	ТАТТТТТАТА	1320
	CTTTATTGAA	AGGGGACACC	TGTACATTCT	TCCATCRTCA	CTGTAAAGAC	AAATAAATGA	1380
	TTATATTCAC	AGACTGATTG	GAATTCTTTC	TGTTGAAAAG	CACACACAAT	AAAGAACCCC	1440
50	TCGTTAGCCT	TCCTCTGATT	TACATTCAAC	TCTGATCCCG	GGCCTTAGG	TTTGACATGG	1500
	GAGGTGGGAG	GAAGATAGCG	CATATATTTG	CAGTATGAAC	TATTGCCTCT	GGGACGTTGT	1560
55	GAGGAATTGT	GCTTTCACCA	GAATTTCTAA	GGATTTCTGG	СТТАААТАТС	ACCTAGCCTG	1620
<i></i>	TGGTAATTTT	TTTTCCCT					1638

493

(i) SEQUENCE CHARACTERISTICS:

(2) INFORMATION FOR SEQ ID NO: 266:

5

(A) LENGTH: 1455 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 266:

10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 266:							
10	CGTGCGTACT GCCATGCAGG TACCGGGTCC GGAATTCCCA GGGTCGACCC ACGCGTCCGC	60						
	TCAGTTGGCA AGGTACCTGG GAAATACTGT TGATCTCAGC AGTTTTGACT TCAGAACTGG	120						
15	AAAGATGATG CCTAGTAAAT TACAGAAGAA CAAACAGAGA CTGCGAAACG ATCCTCTCAA	180						
	TCAAAATAAG GGTAAACCAG ACTTGAATAC AACATTGCCA ATTAGACAAA CAGCATCAAT	240						
20	TTTCAAACAA CCGGTAACCA AAGTCACAAA TCATCCTAGT AATAAAGTGA AATCAGACCC	300						
20	ACAACGAATG AATGAACAGC CACGTCAGCT TTTCTGGGAG AAGAGGCTAC AAGGACTTAG	360						
	TGCATCAGAT GTAACAGAAC AAATTATAAA AACCATGGAA CTACCCAAAG GTCTTCAAGG	420						
25	AGTTGGTCCA GGTAGCAATG ATGAGACCCT TTTATCTGCT GTTGCCAGTG CTTTGCACAC	480						
	AAGCTCTGCG CCAATCACAG GGCAAGTCTC CGCTGCTGTG GAAAAGAACC CTGCTGTTTG	540						
30	GCTTAACACA TCTCAACCCC TCTGCAAAGC TTTTATTGTC ACAGATGAAG ACATCAGGAA	600						
30	ACAGGAAGAG CGAGTACAGC AAGTACGCAA GAAATTGGAA GAAGCACTGA TGGCAGACAT	660						
	CTTGTCGCGA GCTGCTGATA CAGAAGAGAT GGATATTGAA ATGGACAGTG GAGATGAAGC	720						
35	CTAAGAATAT GATCAGGTAA CTTTCGACCG ACTTTCCCCCA AGAGAAAATT CCTAGAAATT	780						
	GAACAAAAAT GTTTCCACTG GCTTTTGCCT GTAAGAAAAA AAATGTACCC GAGCACATAG	840						
40	AGCTTTTTAA TAGCACTAAC CAATGCCTTT TTAGATGTAT TTTTGATGTA TATATCTATT	900						
	ATTCAAAAAA TCATGTTTAT TTTGAGTCCT AGGACTTAAA ATTAGTCTTT TGTAATATCA	960						
	AGCAGGACCC TAAGATGAAG CTGAGCTTTT GATGCCAGGT GCAATCTACT GGAAATGTAG	1020						
45	CACTTACGTA AAACATTTGT TTCCCCCACA GTTTTAATAA GAACAGATCA GGAATTCTAA	1080						
	ATAAATTTCC CAGTTAAAGA TTATTGTGAC TTCACTGTAT ATAAACATAT TTTTATACTT	1140						
50	TATTGAAAGG GGACACCTGT ACATTCTTCC ATCRTCACTG TAAAGACAAA TAAATGATTA	1200						
50	TATTCACAGA CTGATTGGAA TTCTTTCTGT TGAAAAGCAC ACACAATAAA GAACCCCTCG	1260						
	TTAGCCTTCC TCTGATTTAC ATTCAACTCT GATCCCGGGG CCTTAGGTTT GACATGGGAG	1320						
55	GTGGGAGGAA GATAGCGCAT ATATTTGCAG TATGAACTAT TGCCTCTGGG ACGTTGTGAG	1380						
	GAATTGTGCT TTCACCAGAA TTTCTAAGGA TTTCTGGCTT AAATATCACC TAGCCTGTGG	1440						
60	TAATTTTTT TCCCT	1455						

5	(2) INFORMATION FOR SEQ ID NO: 267:	
,	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1086 base pairs (B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 267:	
15	CGCCTGCAGT ACCGGTCCGG AATTCCCGGG TCGACCCACG CGTCGCTGAC CCAGGAGAAG	60
	CTGCCTGTCT ACATCAGCCT GGGCTGCAGC GCGCTGCCGC CGCGGGGCCG GCAGCTGAAC	120
	TATGTGCTCT TCAGGGCGGG CACCGTGTTG CATTCATCTT TGTACCCCCA GCATCTAGCA	180
20	GTGTTGGCAT GTAGTAGGCA CTCAAGAAAT GTGTGTTGAA TGAACGATGC CTGTGACAAG	240
	CAAGCGGACT TTATTCTTTC CTGACCCTTG CTCCTATGAC ACACCTCCTC CTGACTGCCA	300
25	CTGTCACTCC TTCAGAGCAG AACTCCTCTA GGGAACCTGG ATGGGAAACA GCCATGGCCA	360
2 .3	AGGACATCCT GGGTGAAGCA GGGCTACACT TTGATGAACT GAACAAGCTG AGGGTGTTGG	420
	ACCCAGAGGT TACCCAGCAG ACCATAGAGC TGAAGGAAGA GTGCAAAGAC TTTGTGGACA	480
30	AAATTGGCCA GTTTCAGAAA ATAGTTGGTG GTTTAATTGA GCTTGTTGAT CAACTTGCAA	540
	AAGAAGCAGA AAATGAAAAG ATGAAGGCCA TCGGTGCTCG GAACTTGCTC AAATCTATAG	600
35	CAAAGCAGAG AGAAGCTCAA CAGCAGCAAC TTCAAGCCCT AATAGCAGAA AAGAAAATGC	660
))	AGCTAGAAAG GTATCGCGTT GAATATGAAG CTTTGTGTAA AGTAGAAGCA GAACAAAATG	720
	AATTTATTGA CCAATTTATT TTTCAGAAAT GAACTGAAAA TTTCGCTTTT ATAGTAGGAA	780
40	GGCAAAACAA AAAAAAGCCT CTCAAAACCA AAAAAACCTC TGTAGCATTC CAGCGGCTTG	840
	ACCAATGACC TATGTCACAA GAGGTGGCGT GTAAGGAATG CAGCCCCCTG AAGACAGCAC	900
A 5	TACAAGTCTG GGGGAGCCAG TTTTAACATC AGTGCACAGC TGCTGCTGGT GGCCCTGCAG	960
45	TGTACGTTCT CACCTCTTAT GCTTAGTTGG AACTAAGCAG TTTGTAAACT TTCATCCTTT	1020
	TTTTTGTAAA TTCACAAAGC TTTGGAAGGA GARGCAATAA ATTTTTGKTT TCNAAATGGC	1080
50	TTGATG	1086

60

(A) LENGTH: 1003 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

^{55 (2)} INFORMATION FOR SEQ ID NO: 268:

⁽i) SEQUENCE CHARACTERISTICS:

495

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 268:

5	GGCACGGGAG	CAGCCGGGCT	GGTCCTGCTG	CGAGCCGGCG	GCCCGGAGTG	GGGCGGCGGA	60
	GCAAACATGA	ACCTTCGACT	TGCCCACAGT	GAAGTGAATC	CAAATACCCG	TGTCATGAAC	120
10	AGCCGGGGTA	TGTGGCTGAC	ATATGCATTG	GGAGTTGGCT	TGCTTCATAT	TGTCTTACTC	180
10	AGCATTCCCT	TCTTCAGTGT	TCCTGTTGCT	TGGACTITAA	CAAATATTAT	ACATAATCTG	240
	GGGATGTACG	TATTTTTGCA	TGCAGTGAAA	GGAACACCTT	TCGAAACTCC	TGACCAGGGT	300
15	AAAAGCAAGG	CTCCTAACTC	ATTGGGAACA	ACTGGACTAT	GGAGTACAGT	TTACATCTTC	360
	ACGGAAGTTT	TTCACAATTT	CTCCAATAAT	TCTATATTTT	CTGGCAAGTT	TCTATACGAA	420
20	GTATGATCCA	ACTCACTTCA	TCCTAAACAC	AGCTTCTCTC	CTGAGTGTAC	TAATTCCCAA	480
20	AATGCCACAA	CTACATGGTG	TTCGGATCTT	TGGAATTAAT	AAGTATTGAA	ATGTTTTGAA	540
	ACTGAAAAAA	AATTTTACAG	CTACTGAATT	TCTTATAAGG	AAGGAGTGGT	TAGTAAACTG	600
25	CACTGTTTCT	CTGATAATGT	GAAATGAGAA	GTATTTACAT	TGGAGGGCCA	ATGGCTGGTC	660
	CTTCAAGTGC	TGTTTTGAAG	TGCAGATTTC	CATTAAATGA	TGCCTCTGTT	TAATACACCT	720
30	GGTACATTTC	TGAAGAGGG	CTTTATAAGC	AGGCTGGGCA	GCCCAGCTT	ATAAGTTAAA	780
30	GGGCATCACA	GTGAGGGTGT	AGTAGATAAA	TTCAAGGAAA	TAAGAGATTT	GTAAGAAACT	840
	AGGACCAGCT	TAACTTATAA	TGAATGGGCA	TTGTGTTAAG	AAAAGAACAT	TTCCAGTCAT	900
35	TCAGCTGTGG	TTATTTAAAG	CAGACTTACA	TGTAAACCGG	AATCCTCTCT	ATACAAGTTT	960
	ATTAAAGATT	ATTTTTATTA	CCGTAAAAAA	ААААААААА	-		1003

40

45

(2) INFORMATION FOR SEQ ID NO: 269:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1234 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 269:

	ATCAGCATCT	ACAAGTAGCA	TATTTTGGAT	GGTGTTTGTG	TGCTACTTCA	AAGTAACTAG	60
55	GAAAAAATAA	TCCTCGCAAC	ACAGGTACCT	TGTCATGTCA	GAATTGGGGG	TGTTAGGTTG	120
	CCAGTTGTAT	CAGTGTTGAT	TCATTTCATT	ACTTCCTACA	GAGCAAACAT	GAACGTTGGA	180
	GTTGCCCACA	GTGAAGTGAA	TCCAAATACC	CGTGTCATGA	ACAGCCGGGG	TATGTGGCTG	240
60	ACATATGCAT	TGGGAGTTGG	CTTGCTTCAT	ATTGTCTTAC	TCAGCATTCC	CTTCTTCAGT	300

	GTTCCTGTTG CTTGGACTTT AACAAATATT ATACATAATC TGGGGATGTA CGTATTTTTG	360
5	CATGCAGTGA AAGGAACACC TTTCGAAACT CCTGACCAGG GTAAAGCAAG GCTCCTAACT	420
J	CATTGGGAAC AACTGGACTA TGGAGTACAG TITACATCTT CACGGAAGTT TITCACAATT	480
	TCTCCAATAA TTCTATATTT TCTGGCAAGT TTCTATACGA AGTATGATCC AACTCACTTC	540
10	ATCCTAAACA CAGCITICTCT CCTGAGTGTA CTAATTCCCA AAATGCCACA ACTACATGGT	600
	GTTCGGATCT TTGGAATTAA TAAGTATTGA AATGTTTTGA AACTGAAAAA AAATTTTACA	660
15	GCTACTGAAT TTCTTATAAG GAAGGAGTGG TTAGTAAACT GCACTGTTTC TSTGATAATG	720
13	TGAAATGAGA AGTATTTACA TTGGAGGGCC AATGGCTGGT CCTTCAAGTG CTGTTTTGAA	780
	GTGCAGATTT CCATTAAATG ATGCCTCTGT TTAATACACC TGGTACATTT CTGAAGAGGG	840
20	GCTTTATAAG CARGCTGGGC AGGCCCAGCT TATAAGTTAA AGGGCATCAC AGTGAGGGTG	900
	TAGTAGATAA ATTCAAGGAA ATAAGAGATT TGTAAGAAAC TAGGACCAGC TTAACTTATA	960
25	ATGAATGGC ATTGTGTTAA GAAAAGAACA TTTCCAGTCA TTCAGCTGTG GTTATTTAAA	1020
23	GCAGACTTAC ATGTAAACCG GAATCCTCTC TATACAAGTT TATTAAAGAT TATTTTTATT	1080
	ACCRTACATA TTTCKCTTGT TTTATGTAAG YGGATGTATA TCCTCTTGTT TTATACAAGC	1140
30	CAGTICCCAC TTATGAGGGT ACTITITIGG TTTTGCTGGG CITAATATIG TGTATTGGTC	1200
	AATGAGGCCA TTTTTACANT TATTAACGTT ACAG	1234
35		
	(2) INFORMATION FOR SEQ ID NO: 270:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 574 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270:	
	NGAGGTGCGT TCTGAGCCGT CTGTCCTGCG CCAAGATGCT TCAAAGTATT ATTAAAAACA	60
50	TATGGATCCC CATGAAGCCC TACTACACCA AAGTTTACCA GGAGATTTGG ATAGGAATGG	120
	GGCTGATGGG CTTCATCGTT TATAAAATCC GGGCTGCTGA TAAAAGAAGT AAGGCTTTGA	180
	AAGCTTCAGC GCCTGCTCCT GGTCATCACT AACCAGATTT ACTTGGAGTA CATGTGAAAG	240
55	AAAACGTCAG TCTGCCTGTA AATTTCAGCA AGCCGTGTTA GATGGGGAGC GTGGAACGTC	300
	ACTGTACACT TGTATAAGTA CCGTTTACTT CATGGCATGA ATAAATGGAT CTGTGAGATG	360
	CACTGCTACC TGGTACTGCT TTCAGTGTGT TCCCCCTCAG CCCTCCGGCG TGTCAGGCAT	420

497

	ACTCTGAGTA	GATAATTTGT	CATGCAGCGC	ATGCAATCAG	AATCTCACTG	AGCCACCCAT	480
	CATTGTGAAA	TAATTACCTC	AGTTGTACAG	GACTTGGTGA	TCAGGATCCA	GGCACTCACT	540
5	TGTATTCTAC	TGCTCAATAA	ACGTTTATTA	AACT			574

10 (2) INFORMATION FOR SEQ ID NO: 271:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1731 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 271:

20	GCTGCAAGGT	GCGCCTCGTG	CCGCTGCAGA	TCCAGCTCAC	TACCCTGGGA	AATCTTACAC	60
	CTTCAAGCAC	TGTGTTTTTC	TGCTGTGATA	TGCAGGAAAG	GTTCAGACCA	GCCATCAAGT	120
25	ATTITGGGGA	TATTATTAGC	GTGGGACAGA	GATTGTTGCA	AGGGGCCCGG	ATTTTAGGAA	180
23	TTCCTGTTAT	TGTAACAGAA	CAATACCCTA	AAGGTCTTGG	GAGCACGGTT	CAAGAAATTG	240
	ATITAACAGG	TGTAAAACTG	GTACTTCCAA	AGACCAAGTT	TTCAATGGTA	TTACCAGAAG	300
30	TAGAAGCGGC	ATTAGCAGAG	ATTCCCGGAG	TCAGGAGTGT	TGTATTATTT	GGAGTAGAAA	360
	CTCATGTGTG	CATCCAACAA	ACTGCCCTGG	AGCTAGTTGG	CCGAGGAGTC	GAGGTTCACA	420
35	TTGTTGCTGA	TGCCACCTCA	TCAAGAAGCA	TGATGGACAG	GATGTTTGCC	CTCGAGCGTC	480
33	TCGCTCRARC	CNGGGATCAT	AGTGACCACG	AGTGNAGGCT	GTTCTGCTTC	AGCTGGTAGC	540
	TGATAAGGAC	CATCCAAAAT	TCAAGGAAAT	TCAGAATCTA	ATTAAGGCGA	GTGCTCCAGA	600
40	CTCCCCTCTC	CTTTCCAAAG	TATAGGACAT	TTGAAGAACT	GGTATGCTAC	TCACTGGTGA	660
	AGGACAGTCA	GGTGAAGGAC	TGTAAGCCCA	CACAAGCTCT	TCTTATCTCT	ACTAGAATTA	720
45	AAATGTTAAG	TCAAAAACGG	CTCCTTTTT	GCGCCTCCTA	GIGAACTTAA	CCAGCTAGAC	780
43	CATTTGAGTA	CCAGCATTTA	GTTACAAACG	TCAAAGGCTT	CCGGTGCTGC	TTACCTTCCT	840
	TTTTTGTTAA	TGTGCTTTTA	тттаттаааа	AAAATTACAA	TGAAGATGCC	TGITTTGICT	900
50	CTACTGTGTA	CTCTGATCGT	ATCTTTCCAA	AGTGCAGACT	CTTGTGAAGT	TTTCTTAAAT	960
	TGTTCACTTT	AAAGAAAATG	ACGTACCAAC	AATGATTTGG	CTTTTATATT	ACTGTAAGAT	1020
<i>-</i> -	GTTATAATGT	TAATGTGGAT	GTAGTGCTTT	TACTTTACAG	ATTGATTGGA	ATAAGATTAT	1080
55	TGCATATGAA	TTTACCCACA	GGACTCTGAA	TCATGTTACC	CACTCCCCTC	ACAATGTTGT	1140
	CCACTTAGTG	AGTTGCATTG	ATCTATCCGT	ACCAAATGAT	GTTGAATAAT	TACATATCTT	1200
60	TCTKGACTAT	ACTGATTTCT	TATTTTGGTC	АСТАТТАСТА	AATCTCTGTT	AATATTCTCT	1260

498

CTTTTAACTG	AAAAGGGATG	GGATAGAAGG	GTTTGCAATG	CCATATTATT	GGTGGAGGGC	1320
TGTTTTAACA	TCTTTGAAGT	ATGGCTTGCT	GAATATCTTT	ACCAACATCT	TGAATATATA	1380
TTCTAGTGTC	CACAAGATTT	AGCAAAAAGA	TAAAGCTTGG	GTGGAATATC	АТТТТААААТ	1440
GTTCATGTTC	TGTTCTATAT	TTTCTTCACC	TACTCTCCAA	ATATTGTAAT	GCAAAAAGTC	1500
TCAGTAATGA	TTTGGTAGTA	TTAATTTGT	GGTCATTGTT	TCTCTTCGAT	AAATTTATTT	1560
TCATTAAATA	CTTRTTAGAG	GGTTTTGAAA	TGTTTTTCAA	ATATGTGAAA	TGTGAAACTG	1620
CTGTCTTTTA	TATTAAAGTA	ATTAAAGAAA	ATGTATTGTG	ATTGAAATTA	TTTTGNCCTC	1680
CACAAGATGG	CTCTATGAGT	ATTCTTCCAG	GGATTCTAAT	ATTTATTTAA	G	1731

20

25

5

10

15

(2) INFORMATION FOR SEQ ID NO: 272:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1320 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

30

35

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272:

CTGCTTAGGA AGAGAAGGTC AGAGTTCGCG GGGGCAGAGG CATTCTTGCC GCTGGCCCAG 60 TCACTATGTA GTGGAGGGC AGACACCCTC CCGCAAATTC TGGAAGGTTC TTAGTCTCGA 120 CTAGGGCAGT ACCCCAGGAC TCCTAGTCGC CGGCTTCAGG TCACTGCCGG CTGAACGGAG 180 CTGCCGTCGC CATGTTTGGC TGCTTGGTGG CGGGGAGGCT GGTGCAAACA GCTGCACAGC 240 AAGTGCAGA GGATAAATTT GTTTTTGACT TACCTGATTA TGAAAGTATC AACCATGTTG 300 TGGTTTTTAT GCTGGGAACA ATCCCATTTC CTGAGGGAAT GGGAGGATCT GTCTACTTTT 360 CTTATCCTGA TTCAAATGGA ATGCCAGTAT GGMAACTCCT AGGATTGTC ACGAATGGGA 420 AGCCAAGTGC CATCTTCAAA ATTTCAGGTC TTAAATCTGG AGAAGGAAGC CAACATCCTT 480 TTGGAGCCAT GAATATTGTC CGAACTCCAT CTGTTGCTCA GATTGGAATT TCAGTGGAAT 540 TATTAGACAG TATGCTCAG CAGACTCCTG TAGGTAATGC TGCTGTATCC TCAGTTGACT 600 CATTCACTCA GTTCACACAA AAGATGTTGG ACAATTTCTA CAATTTTGCT TCATCATTTG 660 CTGTCTCTCA GGCCCAGATG ACACCAAGCC CATCTGAAAT GTTCATTCCG GCAAATGTGG 720 TTCTGCAAAT GGTATGAGGC ATNITICTGTC TCCAATATTA AGGCTTTTTA TAACTGAATA 780 TCTATTTTGT CTATGAATAT ATTCCTTTTT TGACATTTAA ACATATTCTT TTATTGTGAA 840 CATCAGCACT GCATGCCATT AAAGTATGTA CTATAGAGAT CTGATGAGAA ACAGTTCTTA 900

WO 98/39448	PCT/US98/04493

	CCCTAAATAT TITGTTATAT TGTCGCCATT ATGAATTTAT AAAGACAGGA AAATATAGTT	960
	GCCTATGTTT TAGGGACCAC TATTAAAGCT TATAAATATT TGTGTATTIT CATTTAGAAG	1020
5	TACCATCTAT GAGAGTAGTT TATACTGCAC TGTGTACATG AATGGCTAAT GAATCTATTT	1080
	TCCAACTITC CCGTGTTTTA TAGATATTTC TTTTCACTIT GAGTATCCTA GAGATGGGAG	1140
10	GATGCCTAGG AAGAGTTTGT TGAGAAGTGG TACCATGGTG TAGCATGGGA GAGCATTGGG	1200
10	AATGCACTAG GTTTGAATTT GGCATAATGG TAGCTATGTG ACCCTGAGCA AATTTCTCTC	1260
	ATCTGCTCAT CTGANGAATG AGGAAATAGG AGTGAATTTG ATNTTTCCTA GGTCCNTCTA	1320
15		
	(2) INFORMATION FOR SEQ ID NO: 273:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 515 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
23	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 273:	
	CCCTGGAGAG GGGCTGCTGT GCCAGCTTGG GGAGGGTCTG GGATGGGGCT GCCCCTGATG	60
30	GCCCTGATGT GGAGTACCTT GCCAGCATCT GCTGGGGTGA ACTTTATTTT AGCCCTTCCC	120
	TTGTTGYTCT TATGAAGAAC AGAGGAGGGG TGGGCAGGTC AGTGATGTCA GCAGTGAGTA	180
35	TTCCCAGCAC AGCGGCTCTG GAAGAGGCAT GAGGCATTTC TTTCAGGAAA TGRTCATTAT	240
	TCAGCCAGAA GGCATTCATT AAGTAAGTCC TGACTTTGTG CCCAGCTCTG TGTTATAGGC	300
	CCTTGGCGAG ACTCAGGAGG GGCARAGGAC GCTAGKTTKT AGWTAACACG GAACCTCARA	360
40	GGWTATATGG TCCAAGAAGA CCCGGGGGCG GTGAAAACCC TGTGGACTAA TGCTCACGGG	420
	AGCCCGAGGT CACACTITGA CTITGCTACC ATGGGCTGTG TCTANGNACG TATATATGCT	480
45	GCGTAATTAT TACAGAGGCA GTCCATGTGC ATTGT	515
	(2) INFORMATION FOR SEQ ID NO: 274:	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2995 base pairs (B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 274:	
	TGACACCCAT AAGGAATTCA TGAAGAAAGT AGAAGAAAAG CGAGTGGACG TTAACTCAGC	60
60		

	AGTAGCCATG	GGAGAAGTCA	TCCTGGCTGT	CTGCCACCCC	GATTGCATCA	CAACCATCAA	120
	ACACTGGATC	ACCATCATCC	GAGCTCGCTT	CGAGGAGGTC	CTGACATGGG	CTAAGCAGCA	180
5	CCAGCAGCGT	CTTGAAACGG	CCTTGTCAGA	ACTGGTGGCT	AATGCTGAGC	TCCTGGAAGA	240
	ACTTCTGGCA	TGGATCCAGT	GGGCTGAGAC	CACCCTCATT	CAGCGGGATC	AGGAGCCAAT	300
10	CCCGCAGAAC	ATTGACCGAG	TTAAAGCCCT	TATCGCTGAG	CATCAGACAT	TTATGGAGGA	360
10	GATGACTCGC	AAACAGCCTG	ACGTGGACCG	GGTCACCAAG	ACATACAAAA	GGAAAAACAT	420
	AGAGCCTACT	CACGCGCCTT	TCATAGAGAA	ATCCCGCAGC	GGAGGCAGGA	AATCCCTAAG	480
15	TCAGCCAACC	CCTCCTCCCA	TGCCAATCCT	TICACAGICT	GAAGCAAAAA	ACCCACGGAT	540
	CAACCAGCTT	TCTGCCCGCT	GGCAGCAGGT	GTGGCTGTTA	GCACTGGAGC	GGCAAAGGAA	600
20	ACTGAATGAT	GCCTTGGATC	GCTGGAGGA	GTTGAAAGAA	TTTGCCAACT	TTGACTTTGA	660
20	TGTCTGGAGG	AAAAAGTATA	TGCGTTGGAT	GAATCACAAA	AAGTCTCGAG	TGATGGATTT	720
	CTTCCGGCGC	ATTGATAAGG	ACCAGGATGG	GAAGATAACA	CGTCAGGAGT	TTATCGATGG	780
25	CATTITAGCA	TCCAAGTTCC	CCACCACCAA	GTTAGAGATG	ACTGCTGTGG	CTGACATTTT	840
	CGACCGAGAT	GGGGATGGTT	ACATTGATTA	TTATGAATTT	CICCCTCCTC	TTCATCCCAA	900
30	CAAGGATGCG	TATCGACCAA	CAACCGATGC	AGATAAAATC	GAAGATGAGG	TTACAAGACA	960
50	AGTGGCTCAG	TGCAAATGTG	CAAAAAGGTT	TCAGGTGGAG	CAGATCGGAG	AGAATAAATA	1020
	CCGGTTCTTC	CTCGGCAATC	AGTTTGGGGA	TTCTCAGCAG	TTGCGGCTGG	TCCGTATTCT	1080
35	GCGCAACCGT	GATGGTTCGC	GTTGGTGGAG	GATGGATGGC	CTTGGATGAA	TTTTTAGTGA	1140
	AAAATGATCC	CTGCCGAGCA	CGAGGTAGAA	CTAACATTGA	ACTTAGAGAG	AAATTCATCC	1200
40	TACCAGAGGG	AGCATCCCAG	GGAATGACCC	CCTTCCGCTC	ACGGGGTCGA	AGGTCCAAAC	1260
.0	CATCTTCCCG	GGCAGCTTCC	CCTACTCGTT	CCAGCTCCAG	TGCTAGTCAG	AGTAACCACA	1320
	GCTGTACATC	CATGCCATCT	TCTCCAGCCA	CCCCAGCCAG	TGGAACCAAG	GTTATCCCAT	1380
45	CATCAGGTAG	CAAGTTGAAA	CGACCAACAC	CAACTTTTCA	TTCTAGTCGG	ACATCCCTTG	1440
	CTGGTGATAC	CAGCAATTAG	TTCTTCCCCG	GCCTCCACAG	GTGCCAAAAC	TAATCGGGCA	1500
50	GACCCTAAAA	AGTCTGCCAG	TCGCCCTGGG	AGTCGGGCTG	GGAGTCGAGC	CGGGAGTCGA	1560
30	GCCAGCAGCC	GGCGAGGAAG	TGACGCTTCT	GACTTTGACC	TCTTAGAGAC	GCATTGCTTG	1620
	TTCCGACACT	TCAGAAAGCA	GCGCTGCAGG	GGCCAAGGC	AACTCCAGGA	GAGGGCTAAA	1680
55	CAAACCTTCC	AAAATCCCAA	CCATGTCTAA	GAAGACCACC	ACTGCCTCCC	CCAGGACTCC	1740
	AGGTCCCAAG	CGATAACACT	GTCTAAGCAC	CCCCAAGCCA	CTATCCACTT	TGAATCCTGC	1800
60	TCCATACATT	GGTGTATAT	TTATTCTGAA	CGGGAGAAGT	TATATTGTTA	AAAGTGTAAA	1860
00							

501

	AGAATAATTG TGTTATGAAG CTGCCTTATT TTTTTTCTTT TTGTAAGTTA CTATTTTCAT	1920
	GTGAATATTT ATGTAGATAA AATTTGCCTC CTGGTAACCC TGTAATGGAT GGGGCCCAGA	1980
5	AATGAAATAT TTGAGAAAAA CAAGTGAAAA GGTCAAGATA CAAATGTGTA TTAAAAAAAA	2040
	AAAAGCCTAT TAATAGGGTT TCTGCGCGGT GCAGGGTTGT AAACCTGCTT TATCTTTTAG	2100
10	GATTATTCCT AAATGCATCT TCTTTATAAA CTTGACTTGC TATCTCAGCA AGATAAATTA	2160
ı	TATTAAAAAA ATAAGAATCC TGCAGTGTTT AAGGAACTCT TTTTTTGTAA ATCACGGACA	2220
	CCTCAATTAG CAAGAACTGA GGGGAGGGCT TTTTCCATTG TTTAATGTTT TGTGATTTTT	2280
15	AGCTAAAGAG AGGGAACCTC ATCTAAGTAA CATTTGCACA TGGATACAGC AAAAGGAGTT	2340
	CATTGCAATA CTGTCTTTGG ATATTGTTTC AGTACTGGGT GTTTAAAGGA CAAATAGCTG	2400
20	CTAGAATTCA GGGGTAAATG TAAGTGTTCA GAAAACGTCA GAACATTTGG GGTTTTAAAC	2460
20	TGATTTGTTG CTCCCTATCC AGCCTAGACA CCAGTAACTC TTGTGTTCAC CAGGACCCAG	2520
	ACCCTTGGCA AGGGATAGGC TCGTTGGTGA CATTGTGAAT TTCAGATTTG TTTTATCCAC	2580
25	TTTTTTTGCT ATTTATTTAA ATGGTCGATC AACTTCCCAC AAACTGAGGA ATGAATTCCA	2640
	CGAGCCTGTT CTGAAAATGT GGACGTAAGA CAAACACGTG CTCGTCCTTT AATGGAGTTC	2700
30	ACCAGCACAC TTGTTAACCA GTCCTGTTTG CTTTCGTCTT TTTTTGTGCG TAATAAAGTC	2760
,,	AACTGACCAA GTGACCATGA AAAGGGGCTG TCTGGGGCTC CTGTTTTTTA GCTGCTGTTC	2820
	TTCAGCTCCG ACCATGTTGC TGTGTGATTA TCTCAATTGG TTTTAATTGA GGCAGAAACT	2880
35	GAAGCTCTAC CAATGAACTG TTTAGAAACA AGACACACTT TTGTATTAAA ATTGCTTGCA	2940
	GTAACAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAACTCG AGGGGGGCCC GGTAC	2995
10		
	(2) INFORMATION FOR SEQ ID NO: 275:	
	(a) The order to the order to the control of the co	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1990 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 275:	
	GGGACCCGCG CGSCTCCCGG GGATGGTGAG CAAGGCGCTG CTGCNWCGTG TCTGCCGTCA	60
: 5	ACCGCAGAGG ATGAAGCTGC TGCTGGGCAT CGCCTTGCTG GCCTACGTCG CCTCTGTTTG	120
55	GGGCAACTTC GTTAATATGA GGTCTATCCA GGAAAATGGT GAACTAAAAA TTGAAAGCAA	180
	GATTGAAGAG ATGGTTGAAC CACTAAGAGA GAAAATCAGA GATTTAGAAA AAAGCTTTAC	240

CCAGAAATAC CCACCAGTAA AGTTTTTATC AGAAAAGGAT CGGAAAAGAA TTTTGAWTAA

300

	CAGGAGGCGC	AGKGTTCGTG	GGCTCCCATC	TKAACTGACA	AACTCATGAT	GGACGGCCAC	360
5	GAGGTGACCG	TGGTGGACAA	TTTCTTCACG	GGCAGGAAGA	GAAACGTGGA	GCACTGGATC	420
	GGACATGAGA	ACTTCGAGTT	GATTAACCAC	GACGTGTGGG	AGCCCCTCTA	CATCGAGGTT	480
	GACCAGATAT	ACCATCTGGC	ATCTCCAGCC	TCCCCTCCAA	ACTACATGTA	TAATCCTATC	540
10	AAGACATTAA	AGACCAATAC	GATTGGGACA	TTAAACATGT	TGGGGCTGGC	AAAACGAGTC	600
	GGTGCCCGTC	TGCTCCTGGC	CTCCACATCG	GAGGTGTATG	GAGATCCTGA	AGTCCACCCT	660
15	CAAAGTGAGG	ATTACTGGGG	CCACGTGAAT	CCAATAGGAC	CTCGGGCCTG	CTACGATGAA	720
	GGCAAACGTG	TTGCAGAGAC	CATGTGCTAT	GCCTACATGA	AGCAGGAAGG	CCTCGAACTC	780
	CGAGTGGCCA	GAATCTTCAA	CACCTTTGGG	CCACGCATGC	ACATGAACGA	TOGGCGAGTA	840
20	GTCAGCAACT	TCATCCTGCA	GGCGCTCCAG	GGGGAGCCAC	TCACGGTATA	CGGATCCGGG	900
	TCTCAGACAA	GGGCGTTCCA	GTACGTCAGC	GATCTAGTGA	ATGGCCTCGT	GGCTCTCATG	960
25	AACAGCAACG	TCAGCAGCCC	GGTCAACCTG	GGGAACCCAG	AAGAACACAC	AATCCTAGAA	1020
	TTTGCTCAGT	ТААТТАААА	CCTTGTTGGT	AGCGGAAGTG	AAATTCAGTT	TCTCTCCGAA	1080
	GCCCAGGATG	ACCCACAGAA	AAGAAAACCA	GACATCAAAA	AAGCAAAGCT	GATGCTGGGG	1140
30	TGGGAGCCCG	TGGTCCCGCT	GGAGGAAGGT	TTAAACAAAG	CAATTCACTA	CTTCCGTAAA	1200
	GAACTCGAGT	ACCAGGCAAA	TAATCAGTAC	ATCCCCAAAC	CAAAGCCTGC	CAGAATAAAG	1260
35	AAAGGACGGA	CTCGCCACAG	CTGAACTCCT	CACTTTTAGG	ACACAAGACT	ACCATTGTAC	1320
	ACTTGATGGG	ATGTATTTT	GGCTTTTTTT	TGTTGTCGTT	TAAAGAAAGA	CTTTAACAGG	1380
40	TGTCATGAAG	AACAAACTGG	AATTTCATTC	TGAAGCTTGC	TTTAATGAAA	TGGATGTGCC	1440
	TAAAAGCTCC	CCTCAAAAAA	CTGCAGATTT	TGCCTTGCAC	TTTTTGAATC	TCTCTTTTTA	1500
	TGTAAAATAG	CGTAGATGCA	TCTCTGCGTA	TTTTCAAGTT	TTTTTATCTT	GCTGTGAGAG	1560
45	CATATGTTGT	GACTGTCGTT	GACAGTTTTA	TTTACTGGTT	TCTTTGTGAA	GCTGAAAAGG	1620
	AACATTAAGC	GGGACAAAAA	ATGCCGATTT	ТАТТТАТААА	AGTGGGTACT	TAATAAATGA	1680
	GTCGTTATAC	TATGCATAAA	GAAAAAYCCT	AGCAGTATTG	TCAGGTGGTG	GTGCGCCGGC	1740
50	ATTGATTTTA	GGGCAGATAA	AAGAATTCTG	TGTGAGAGCT	TTATGTTTCT	CTTTTAATTC	1800
	AGAGTTTTTC	CAAGGTCTAC	TTTTGAGTTG	CAAACTTGAC	TTTGAAATAT	TCCTGTTGGT	1860
55	CATGATCAAG	GATATTTGAA	ATCACTACTG	TGTTTTGCTG	CGTATCTGGG	GCGGGGGCAG	1920
	CTTCGCGGGC	ACAAAGTTAA	CATATTCTTG	GTTAACCATG	GTTAAATATG	CTATTTTAAT	1980
	AAAATATTGA						1990

503

(2) INFORMATION FOR SEQ ID NO: 276:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2436 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 276:

AACTTCGCTT AGCTCTCCAG GGTNAAACGG GTGAGNCCTT AAAAACAGAA GAGAACAAGA 60 15 TTTAAAGTCC GTTGCATTGA AAATAACAAA CAATATCAAT GTTTTAATCA AGGATCTCTT 120 CCACATTCCT CCTTCTTATA AGAGCACAGT AACACTATCC TGGAAACCTG TACAAAAGGT 180 TGAGATTGGG CAAAAGAGAG CCAGTGAAGA TACAACTTCA GGTTCACCAC CCAAGAAATC 240 20 TTCAGCAGGA CCAAAAAGAG ATGCCAGGCA GATTTATAAC CCTCCCAGTG GGAAATATAG 300 CAGCAATTTG GGCAACTTTA ATTATGAGCA GAGAGGAGCC TTCAGGGGAA GTAGAGGTGG 360 25 CCGAGGTTGG GGCACACGAG GAAATCGTAG TCGGGGAAGA CTCTACTGAA TAAGACATCA 420 GCATTCTTCA GCATTGTCAT GAGCITAATA TACTTAAATT CTACTACTCA TTGGATTGCC 480 GGGGATGTCC CTTTAAACAG ACTGCTGCCT TCAGCTAAAA ACTTAATGTT CTTTATACCT 540 30 TTGTATGTAT GACCTACTTT TGTAACAGAC CATGGTTGTG TCCAAGGTAA AACCACAGTG 600 ATATTTTGG ATGCTTGTC TGCAATCTTG ACTTGTTTTT GCAGTATCAT TATTCAGACT 35 TCAAATTGTG AATCTTTAA ACATCTTGAT AATTTGTTGT TGAGAGCTGT TCATTCTAAA 720 ATGTAATGAA ATTCAGTCTA GITCTGCTGA TAAAGATCAT CAGTTTTGAA AGGTTACTGA TTTTCCTCTT CCCTCTTAGT TTTTTACCCA ATATATGGAG AAGAGTAATG GTCAATCTTA 840 40 ACATTITGTT TTAATTGTTT AATAAAGCTG CTGGGCAGTG GTGCAGCATT CCTACCTAGT GTCATAAAAG CAAAATACTT ACATAGCTTT CTTAAAATAT AGGAATGACA TTACATTTTT 960 45 AGGAGAAAGT AAGTTGCTTT GCACCGCCTA CTTAATTCTT TTCCATATAT TGTGATACAA 1020 ACTITIGAAT ATGGAATCIT ACTATITGAA TAGAAATGTG TATGTATAAT ATACATACAT 1080 ACATAAGCAT ATATGTGTGT GTGTGTGTGT ATATATATAT ATATGCATGC TGTGAAACTT 1140 50 GACTACACAA CATAAATCAC TTTTTAAATT CCAGGAACGG GTAGTCTGAC ACGGTGATTA 1200 TCCTTTGAG GCTGAATCCG TTATTAACTT GTTATTTAGG TTTTTACTCC CAGTAGCAAG 1260 55 GGATTCTAAG TTAGTTGCAC TTACATGATT ATTGTTATTT AAAACTAAGA ATAAAGGCTG 1320 CATTITCAAA GATAAATTGG AATTGCTGTT GGTGAAATAA CAACCAAAAT ACTGAATCTG 1380 ATGTACATAC AGGTTTCTAC AGGAAGAGAT GGTATAATTT ACAATTTGGA GATTTAATAA 1440 60

504

	CCAGGGCTAC CCAGAAAAAG TGACTTGATA ACATGGTACC AATAAGTAAG GGATGCTCTC	1500
	TCGGTTTGCT TTTGCCACTT TCAAGATTTT AACTTCTCAG GTTATTAATC AAAATTATTG	1560
5	TATAAGITAG CCAATAGAAT TITTAGGITA AAACAACAGA TGGGGGGTTT GTGGAGTGTT	1620
	TAATGTCATG GGCATTTTTA GTAGCATAGA CCCTTTGTTC TGCATTTGAA TGTTTCGTAT	1680
10	ATTITIGITT CACAGITAAT CITCCCTCCC CAAGITIGCT ATTCAAATCA ACTGCCTGAA	1740
10	TGACATTTCT AGTAGTCTGA TGTATTTTTC TGAGGAATAG TTTGTGATTC CAATGCAGGT	1800
	GTCTTCATTA CCATTACCTC TACACTGCAG AAGAAGCAAA ACTCCTTTAT TAGAATTACT	1860
15	GCACATGTGT ATGGGGAAAA TAGTTCTGAA AGGCTAGAAT GATACAAGTG AGCAAAAGTT	1920
	GGTCAGCTTG GCTATGGAGT GGTGGCAATA ATCTCTAAAC ATTCCAAAAG ACCATGAGCT	1980
20	GAACCTAAAC TCCCTTGGAA TCTGAACAAA GGAATATAAA ATTGCCATTT GAAAACTGAC	2040
20	CAGCTAATCT GGACCTCAGA GATAGATCAG CCAGTGGCCC AAAGCCATTT CAAGTACAGA	2100
	AATTATAGAG ACTACAGCTA AATAAATTTG AACATTAAAT ATAATTTTAC CACTTTTTGT	2160
25	CTTTATAAGC ATATTTGTAA ACTCAGAACT GAGCAGAAGT GACTTTACTT TCTCAAGTTT	2220
	GATACTGAGT TGACTGTTCC CTTATCCCTC ACCCTTCCCC TTCCCTTTCC TAAGGCAATA	2280
30	GTGCACAACT TAGGTTATTT TTGCTTCCGA ATTTGAATGA AAAACTTAAT GCCATGGATT	2340
30	TTTTTCTTTT GCAAGACACC TGTTTATCAT CTTGTTTAAA TGTAAATGTC CCCTTATGCT	2400
	TTTGAAATAA ATTTCCTTTT GTAATTTTAA AAAAAA	2436
35		
	(2) INFORMATION FOR SEQ ID NO: 277:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 782 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 277:	
50	GCCACTGACT TCTCCCACCC TTCTGTCTCC CCCATAATAG TTTATTTGGT TGGTCTGGAC	60
50	TCACTTGTGG CCTTTRATTA AATTCCTAAG GGGCCTGAAG AAGACATTTC TACTGCAGAG	120
	GGTTAGAGGC ACTTGAGCAA GGCCCCCACA TCCCAACTCT GGGAGTTGTG GTGGGAGGAG	180
55	GCACTTCTGG GGGATAGGAC CAGACAAGAT AACAGGAGCT CACATGGNAA GCAGAAGCTG	240
	TGACAAGTTT AGTAGTCCCA AAATGGGTTA TATCCCTTCC CCCTTTACAT CAGAATCTTG	300
	TGAAATGGGA AAACAACAGA AGGAGGGGAT CAAAGATAGC TGATCTCACA TGCTTCCCAG	360

60 GCAGGCARA GGTGGGAGTC AAACCCGGGT GACAGGTGGG TGGAGAGCCC TGTTTGAGGT

505

	TOTGGCTGAT CCCTCTCTGG TATTAGTTTT TCCCCTGGGA GCAGGAAGCC CTAGGAAGAG	480
5	GOGACTGCAG GGTCCCCRGG GGATCTTTCC TCCCTCCCCT GCATGAGGCA GAGGCAAGCT	540
3	GCCTGCCAAC CCCCTCCCTC AAGGAATGGC CTTGCCCAGG AATGCCCACC ACACATACCC	600
	TCTTCTTTTT TTCTAGTCAA ACTCTTGTTT ATTCCTTGGC TTGCCTCCCT CCTTCCTCCC	660
10	CTCTCAACCT TTACTTCTGA TTTCTATTTC ATGGAATTTG GGATTGAAGT TAAACTACAA	720
	CAGTGCCGCC AACACCAAGT CTTGCAGGAA AAAAATACAA AGAAATTTAA CAAAAAAAA	780
15	AA .	782
13		
20	(2) INFORMATION FOR SEQ ID NO: 278:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 961 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 278:	
20	GAGTITCCGGC TGGAGACCCG TGCTCTGGGC CGGCGCCTTC ACCATGGCCT CGGCAGAGCT	. 60
30	GGACTACACC ATCGAGATCC CGGATCAGCC CTGCTGGAGC CAGAAGAACA GCCCCAGCCC	120
	AGGTGGGAAG GAGGCAGAAA CTCGGCAGCC TGTGGTGATT CTYTTGGGCT GGGGTGGCTG	180

35 CAAGGACAAG AACCTTGCCA AGTACAGTGC CATCTACCAC AAAAGGGGCT GCATCGTAAT 240 300 CCGATACACA GCCCCGTGGC ACATGGTCTT CTTCTCCGAG TCACTGGGTA TCCCTTCACT TCGTGTTTTG GCCCAGAAGC TGCTCGAGCT GCTCTTTGAT TATGAGATTG AGAAGGAGCC 360 40 CCTGCTCTTC CATGTCTTCA GCAACGGTGG CGTCATGCTG TACCGCTACG TGCTGGAGCT 420 CCTGCAGACC CGTCGCTTCT GCCGCCTGCG TGTGGTGGGC ACCATCTTTG ACAGCGCTCC 480 45 TOGTGACAGC AACCTOGTAG GGGCTCTGCG GGCCCTGGCA GCCATCCTGG AGCGCCGGGC 540 CGCCATGCTG CGCCTGTTGC TGCTGGTGGC CTTTGCCCTG GTGGTCGTCC TGTTCCACGT 600 CCTGCTTGCT CCCATCACAG CCCTCTTCCA CACCCACTTC TATGACAGGC TACAGGACGC 660 50 720 GGGCTCTCGC TGGCCCGAGC TCTACCTCTA YTCGAGGGCT GACGAAGTAG TCCTGGCCAG AGACATAGAA CGCATGGTGG AGGCACGCCT GGCACGCCGG GTCCTGGCGC GTTCTGTGGA 780 55 TTTCGTGTCA TCTGCACACG TCAGCCACCT CCGTGACTAC CCTACTTACT ACACAAGCCT 840 CTGTGTCGAC TTCATGCGCA ACTGCGTCCG CTGCTGAGGC CATTGCTCCA TCTCAMCTCT 900 960 GCTCCAGAAA TAAATGCCTG ACAMCTCCCC ACAAAAAAAA AAAAAAAAAA ACTCGAGGGG

506

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

960

1020

1080

1140

G 961

5

10

(2) INFORMATION FOR SEQ ID NO: 279:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1228 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 279:

15 CGCGCTTTGC AGTTCGGTCT CCTGGTGTAC GGCCAACGCC AAGTAGGGGA TTGCGTTCCC TCCAGTCGCA GCCCTATCAG ATTTGGATAT GTCCTTCATA TTTGATTGGA TTTACAGTGG 20 TTTCAGCAGT GTGCTACAGT TTTTAGGATT ATATAAGAAA ACTGGTAAAC TGGTATTTCT TOGATTGGAT AATGCAGGAA AAACAACATT GCTACACATG CTAAAAGATG ACAGACTTGG ACAACATGTC CCAACATTAC ATCCCACTTC CGAAGAACTG ACCATTGCTG GCATGACGTT 25 TACAACTTTT GATCTGGGTG GACATGTTCA AGCTCGAAGA GTGTGGAAAA ACTACCTTCC TGCTATCAAT GGCATTGTAT TTCTGGTGGA TTGTGCAGAC CACGAAAGGC TGTTAGAGTC 30 AAAAGAAGAA CTTGATTCAC TAATGACAGA TGAAACCATT GCTAATGTGC CTATACTGAT TCTTGGGAAT AAGATCGACA GACCTGAAGC CATCAGTGAA GAGAGGTTGC GAGAGATGTT TGGTTTATAT GGTCAGACAA CAGGAAAGGG GAGTATATCT CTGAAAGAAC TGAATGCCCG 35 ACCCTTAGAA GTTTTCATGT GTAGTGTGCT CAAAAGACAA GGTTACGGAG AAGGCTTCCG CTGGATGGCA CAGTACATTG ATTAACACAA ACTCACATTG GTTCCAGGTC TCAACGTTCA 40 GGCTTACTCA GAGATTTGAT TGCTCAACAT GCATAACTTG AATTCAATAG ACTTTTGCTG GTTATAAAAC AGATGTTTTT TAGATTATTA ATATTAAATC AACTTAATTT GAATGAGAAT TGAAAACTGA TTCAAGTAAG TTTGAGTATC ACAATGTTAG CTTTCTAATT CCATAAAAGT 45

ACAGTITICA ATAACTITIT TICTITATGCA AACGTCATGC AATAAAACAA ACTCTAATGT

1200
TTGGCAAAAA AAAAAAAAA AAANICGA

1228

ACTIGGTTT TACAGTTTAT AATCIGACAT CACCCCAGCG CCATTIGTAA AGAGCAACTT

TCCAGCAGTA CATTTGAAGC ACTTTTTAAC AACATGAAAC TATAAACCAT ATTTAAAAGC

TCATCATGTT AAATTTTTTA TGTACTTTC TGGAACTAGT TTTTAAATTT TAGATTATAT

GTCCACCTAT CKTAAGTGTA CAGTTAATAA TTAGCTTATT CAATGATTGC ATGATGCCTT

(2) INFORMATION FOR SEQ ID NO: 280:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1327 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 280:

10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 280:	
10	TCTCGGGTCT CGGGACAGGT GAGCACCCTG ATGAAGGCCA CGGTCCTGAT GCGGCACCTG	60
	GGCGGGTGCA GGAGATCGTG GGCGCCCTCC GCAAGGGCGS CGGAGACCGG TTACAGGTGA	120
15	TTTCTGATTT TRACATGACC TTGAGCAGGT TTGCATATAA TGGAAAGCGA TGCCCTTCTT	180
	CTTACAATAT TCTGGATAAT AGCAAGATCA TCAGTGAGGA GTGTCGGAAA GAGCTCACAG	240
20	CGCTCCTTCA CCACTATTAC CCAATTGAGA TCGACCCACA CCGGACCGTC AAGGAGAAGC	300
20	TACCTCATAT GGTGGAATGG TGGACCAAAG CGCACAATCT CCTATGTCAG CAGAAGATTC	360
	AGAAGTTTCA GATAGCCCAG GTGGTTAGAG AGTCCAATGC AATGCTCAGG GAGGGATATA	420
25	AGACCTTCTT CAACACACTC TACCATAACA ACATTCCCCT TTTCATCTTT TCTGCGGGCA	480
	TTGGTGATAT CCTGGAAGAA ATTATCCGAC AGATGAAAGT GTTCCACCCC AACATCCACA	540
30	TCGTGTCTAA CTACATGGAT TITAATGAAG ATGGTTTTCT CCAGGGATTT AAGGGCCAGC	600
50	TGATACACAC ATACAACAAG AACAGCTCTG TGTGTGAGAA CTGTGGTTAC TTCCAGCAAC	660
	TTGAGGGCAA AACCAATGTC ATCCTGCTGG GAGACTCTAT CGGGGACCTC ACCATGGCCG	720
35	ATGGGGTTCC TGGTGTGCAG AACATTCTCA AAATTGGCTT CCTGAATGAC AAGGTGGAGG	780
	AGCGGCGGGA NCGCTAACAT GGACTCCTAT GACATCGTGC TGGAGAAGGA CGAGACTCTG	840
40	GATGTGGTCA ACGGGCTACT GCAGCACATC CTGTGCCNAG GGGGTCCAGC TGGAGATGCA	900
	AGGCCCCTGA AGGCGCAGGC TCCNAAGKCC SCTGCAGGCC GTGGTGAGGA GGGGCCCTC	960
	CCCAGAGTCT GCTCCCCCGT GAACACAGAG CAGAGCCAGG GTGGCCAGCA GTGGCTGGGT	1020
45	CCTTCCGCGC CCCTCCGTCC TCCTTTCCCT GAGCACCTTC ATCACCAGAG GCTTGAAGGA	1080
	ACCCCGCCAT GTGGCAGGGC ACAGGCACTG TTCCTGGTGA ACCTTGGACC ACAGCATGTC	1140
50	AGIGCTCTAG GGATIGTCTA CTCCAGGGAT TITCTTCAAA ATTTTTAAAC ATGGGAAGTT	1200
	CAAACAAATA TAATGTGTGA AACAGATCAA AATTTTTAAA ATGAAAAAAA AGCTGCTCTG	1260
	ATTCAGGGGA TGTGGGTCGG GGTAGAACCT GGACCTCTTG GCCTGGGGGC ACATGGGATG	1320
55	CTTCTAG	1327

^{60 (2)} INFORMATION FOR SEQ ID NO: 281:

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 799 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 281:	
10	TCACCCTGCC TACAGCGTGG AGCTCAGATG ACTGCGCCCT CCACGGTCAC TGTGAGCAGG	60
	TOGTATTCAC AGCCTGCATG ACCCTCACGG CCAGCCCTGG GGTGTTCCCC GTCACTGTGT	120
15	GGCTTTGGCT GAAGCCTAAT TCCACAGCTC CTTGTTTTTT GAGAGAGCCT GAGAGAACCA	180
13	TAATCCTTGC CTGCTGAACC CAGCCTGGGC CTGGATGCTC TGTGAATACA TTATCTTGCG	240
	ATGTTGGGTT ATTCCAGCCA AAGACATTTC AAGTGCCTGT AACTGATTTG TACATATTTA	300
20	TAAAAATCTA TTCAGAAATT GGTCCAATAA TGCACGTGCT TTGCCCTGGG TACAGCCAGA	360
	GCCCTTCAAC CCCACCTTGG ACTTGAGGAC CTACCTGATG GGACGTTTCC ACGTGTCTCT	420
25	AGAGAAGGAT TCCTGGATCT AGCTGGTCAC GACGATGTTT TCACCAAGGT CACAGGAGCA	480
20	TIGCGTCGCT GATGGGGTTG AAGITTGGTT TGGTTCTTGT TTCAGCCCAA TATGTAGAGA	540
	ACATTIGAAA CAGTCTGCAC CTTTGATACG GTATTGCATT TCCAAAGCCA CCAATCCATT	600
30	TIGIGGATIT TATGIGICIG TGGCTTAATA ATCATAGTAA CAACAATAAT ACCITITICT	660
	CCATTTIGCT TGCAGGAAAC ATACCTTAAG TITTITTIGT TITGTTTTTGTT	720
35	TTTTGTTTC CTTTATGAAG AAAAAATAAA ATAGTCACAT TTTTAATACY AAAAAATGGA	780
33	CAAAAAAGT CGAGGGGGG	799
40	(2) INFORMATION FOR SEQ ID NO: 282:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2196 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 282:	
50	AAAGACTCTA ACATCCATGA GCTTGAACAT GAGCAAGAGC CTACTTGTGC CKSCCAGATG	60
	GCTGAGCCCT TCCGTACCTT CCGAGATGGA TGGGTCTCCT ACTACAACCA GCCTGTGTTT	120
55	CIGGCIGGCA TGGGTCTIGC TTTCCTTTAT ATGACTGICC TGGGCTTIGA CIGCATCACC	180
	ACAGGGTACG CCTACACTCA GGGACTGAGT GGTTCCATCC TCAGTATTTT GATGGGAGCA	240
60	TCAGCTATAA CTGGAATAAT GGGAACTGTA GCTTTTACTT GGCTACGTCG AAAATGTGGT	300

	TTGGTTCGGA	CAGGTCTGAT	CTCAGGATTG	GCACAGCTTT	CCTGTTTGAT	CTTGTGTGTG	360
	ATCTCTGTAT	TCATGCCTGG	AAGCCCCCTG	GACTTGTCCG	TTTCTCCTTT	TGAAGATATC	420
5	CGATCAAGGT	TCATTCAAGG	AGAGTCAATT	ACACCTACCA	AGATACCTGA	AATTACAACT	480
	GAAATATACA	TGTCTAATGG	GTCTAATTCT	GCTAATATTG	TCCCGGAGAC	AAGTCCTGAA	540
10	TCTGTGCCCA	TAATCTCTGT	CAGTCTGCTG	TTTGCAGGCG	TCATTGCTGC	TAGAATCGGT	600
10	CTTTCGTCCT	TTGATTTAAC	TGTGACACAG	TTGCTGCAAG	AAAATGTAAT	TGAATCTGAA	660
	AGAGGCATTA	TAAATGGTGT	ACAGAACTCC	ATGAACTATC	TTCTTGATCT	TCTGCATTTC	720
15	ATCATGGTCA	TCCTGGCTCC	AAATCCTGAA	GCTTTTGGCT	TGCTCGTATT	GATTTCAGTC	780
	TCCTTTGTGG	CAATGGGCCA	CATTATGTAT	TTCCGATTTG	CCCAAAATAC	TCTGGGAAAC	840
20	AAGCTCTTTG	CTTGCGGTCC	TGATGCAAAA	GAAGTTAGGA	AGGAAAATCA	AGCAAATACA	900
20	TCTGTTGTTT	GAGACAGTTT	AACTGTTGCT	ATCCTGTTAC	TAGATTATAT	AGAGCACATG	960
	TGCTTATTTT	GTACTGCAGA	ATTCCAATAA	ATGGCTGGGT	GITTIGCTCT	GTTTTTACCA	1020
25	CAGCTGTGCC	TTGAGAACTA	AAAGCTGTTT	AGGAAACCTA	AGTCAGCAGA	AATTAACTGA	1080
	TTAATTTCCC	TTATGTTGAG	GCATGGAAAA	AAAATTGGAA	AAGAAAAACT	CAGTITAAAT	1140
30	ACGGAGACTA	TAATGATAAC	ACTGAATTCC	CCTATTTCTC	ATGAGTAGAT	ACAATCTTAC	1200
50	GTAAAAGAGT	GGTTAGTCAC	GTGAATTCAG	TTATCATTTG	ACAGATTCTT	ATCTGTACTA	1260
	GAATTCAGAT	ATGTCAGTTT	TCTGCAAAAC	TCACTCTTGT	TCAAGACTAG	CTAATTTATT	1320
35	TTTTTGCATC	TTAGTTATTT	TTAAAAACAA	ATTCTTCAAG	TATGAAGACT	AAATTTTGAT	1380
	AACTAATATT	ATCCTTATTG	ATCCTATTGA	TCTTAAGGTA	TTTACATGTA	TGTGGAAAAA	1440
40	CAAAACACTT	AACTAGAATT	CTCTAATAAG	GTTTATGGTT	TAGCTTAAAG	AGCACCTTTG	1500
	TATTTTTATT	ATCAGATGGG	GCAACATATT	GTATGAAGCA	TATGTAGCAC	TTCACAGCAT	1560
	GGTTATCATG	TAAGCTGCAG	GTAGAAGCAA	AGCTGTAAAG	TAGATTTATC	ACACAATGAC	1620
45	TGCATACAGA	СТТСАААТАТ	GTCAATAGTT	TGGTCATAGA	ACCTAGAAGC	CAAAAGCCAC	1680
	ACAGAAGGGC	AAGAATCCCA	ATTTAACTCA	TGTTATCATC	ATTAGTGATC	TGTGTTGTAG	1740
50	AACATGAGGG	TGTAAGCCTT	CAGCCTGGCA	AGTTACATGT	AGAAAGCCCA	CACTTGTGAA	1800
00	GGTTTTGTTT	TACAAATCAC	TTGATTTAAC	ACACTCAGGT	AGAATATTTT	TATTTTTACT	1860
	GTTTTATACC	CAGAAGTTAT	TTCTACATTG	TTCTACAGCA	AGAATATTCA	TAAAAGTATC	1920
55	CCTTTCAAAT	GCCTTTGAGA	AGAATAGAAG	AAAAAAGTT	TGTATATATT	TTAAAAAATT	1980
	GTTTTAAAAG	TCAGTTTGCA	ACATGTCTGT	ACCAAGATGG	TACTTTGCCT	TAACCGTTTA	2040
60	TATGCACTTT	CATGGAGACT	GCAATACGTT	GCTATGAGCA	CTTTCTTTAT	CCTTGGAGTT	210

	TAATCCTTTG CTTCATCTTT CTACAGTATG ACATAATGAT TTGCTATGTT GTAAAATCTT	2160
	TGTAAAAAT TTCTATATAA AATATTTGAA ACTTAA	2196
5		
	(2) INFORMATION FOR SEQ ID NO: 283:	
10	-	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1185 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 283:	
	GCAGTTAAGG CTTCTGATAA GGAAAGAGAG TCTGAACAGA GCACACACAT CTGGAGCTCC	60
20	AGGAGTOGGG GATGCAGCAT CAGATTCCAT CTTGAATTTC TGCTAAAATA CTTTGTACTC	120
	ATAATGGATC TCAACAAAGA TCTGTATTTC ATCTGTGGCT CCATCTTCCC TCTGGGTCAA	180
25	GTAGATGTTA AGCTGGACCT TGGCACGCCT CTTAACATGA AGAGATCTAG CTAGACAGAC	240
23	AGACTCCCCC ATTTATGGGA ACAAGAATTC AATTTATTCT CTATTTATAA AACATTTTTT	300
	TAAAGTGCCT TGGGTATAAA AATCTAAATG TCTGCGGTGT GATCAGTCAG GAGCACGTAA	360
30	CTATCACTCT TCGCATCCTT TGGTCACTGG GAGATCCTTT GGGGGCTGGG AGGTCCTTCT	420
	GTCCCAGGCT AAAGGAAAAG CTTCACAAGG GTAAGAGCCCA CAGAACCCTC GGCAAGAAAG	480
35	GCCGGTCAGG GAGAATGAAT GGTACAGAGA GGAAAGGAAG GAAAGGGGGT GGAACAGAGG	540
<i>33</i>	TAGAAGGCAA GGAAGGGATG CCGCACTGGA GACCGATGGG GACACTCTAA TTGTGCAAGA	600
	GGGAGGATCT TCCTTCTTGA ATGCTGAACA CAGCTAGTCT GAACCTTCCT TGGAAAGTCC	660
40	AGCTGTTTGC CCATGCATAG GGCCAACTCT CCCTGCAAAG CAGCAAATGT GGCTTCTATC	720
	AGGAAGGAAA AGTATCCATC AGTGTGACAA GAGGTCACCT TCGAACTTGC ATGAACTCCT	780
45	TGCGCAGCCA CAAAGAGTCC TGGTAGAAGT GAGGATCGCC TAGTCTTACG GCTGTCCGTT	840
45	TATAGAAGTA GCAGTACAAC ACTGCTGCTA GTCTCTGGAA TACAAACAGC ATTTGAAGTC	900
	CATCTGTCCA TATGAAGCTG TTGGAGTTTT TCCAGCGTAA GTTCATGACC CAGACATGAA	960
50	GGGAGATGCT GAGGGCAAAG TACACAGCTG TCAGGATGAT GGTCCCTTTG AACTTATGGA	1020
	ATAGGAGGTT GACCAGGCCA GCCTGGAAGA CGAAGGTGTT GAAGAACATG AGGAAAATGA	1080
<i>5 E</i>	TGATGATGTT GAAGAGGACT GCAATATCCT GGATGCACTG AGGGAGAGGY TTCTAGTTCC	1140
55	TITGAATGAG AGCTGTTTCC CTTGCTCTAA GGCAAGCACC TCCAA	1185

511

(i) SEQUENCE CHARACTERISTICS:

(2) INFORMATION FOR SEQ ID NO: 284:

5

(A) LENGTH: 1634 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284:

10 AGGGAAAGGG GAGGGTAGCG GGAGGGTAGC AGGTGAGTTC CTAGGGCTGG AAGGTTTAGC 60 AGCAGCCTGG TGCAGTGCCC TGTCATCAAG ACAAACCCAC GGTCCTMCTG GGTGCCTACC 120 15 AAGCTTGGTT TGTACAAAAG CAAGGTGGGA GTCTATTTTT GTACATGAGA TACATCACAC 180 TTACCTGTGG GCCAGTATTG TGAAGTGAGT CTGAGTTGTT TACACTGATG CCTTCCCTGC 240 CCACCACAAA TTGTGTACAT AGTCTTCAGA TGATACCACC CCTTTCCCCA GCTCCCAACC 300 20 AAGAGCTGGT TCTAGGCCTG TGTTATATGT CATATTTAGC STTTTTTATAT ATGACCTTTG 360 ATTTCTGTTG TTTGTATTTT AGCACAGTGT ATGCACCTTC ATTTAAATAC ATCTGTGTGC 420 25 ATACAGATAC GCATATATGT GTGTGCGTAT GCATATATCT CTCATCTGTA GTTTCCAAGA 480 GTTCAGCTGA AGCAGATGGA GTCCTGCAGC CCAGGAGACA CCCTGCATCC CTGCTAATAG 540 TGTTTGCCAC AAGTATTAGT GAGTCTTCCT TATTAATATT TTCATTTCAG AAGACTGAAG 600 30 CAAAGCTGAT AGTGTTTGCT GTTTCTTTGG CAGCTAAGTG AGGGTCTTGG GATGACTTGC 660 TGTGTTCCTC AAGCTGCACT TTGGGGCCAT CTCTGCAGTA TTAGCCCCCT TTTTGCTTGG 720 35 TEGTACTCTG TCTGTGCCTG TGTGTGTGT TGATAGTCAC TCTTGCATGG CTTCCATGTC 780 TGGTTTGTGG CATTTGGGGA TAAGGTGCTG AAGCCAGAGC ATTTGCAGTT TGTTTGAGGC CTCGTTGCCA ATGATAGATC ACTCCTGTTG ACCTGGTATG TCTGCTTGCT TGCTGCTTTT 900 40 CCTTGCTTTC TCTTGGAAGA GGAAAGGACT CTGGTCAGGC CCAGGCTGAG TGAGATGAGC 960 TGCAGCTGGC TCATGGCCTT CTTAGAGCAG AGAGAGGAGT ATGTCATTTT ACTAAGTTCC 1020 45 TAAACAAACA TTTATGCAGG CAACACTCCT TGCAGATCCA GAAACTGAGG CACAATAGGG 1080 TTATGACTTG CTCAAGAATA TGTAGCTGCT AGGGGGTAAA TCAAGGCATC ACAATTTCTG 1140 TTCAGCGGC AGGAATAGC TGTGAATTGC TAGCACTTTT TTTTTTTAAG CAATTACTTT 1200 50 TIGACTIGIT CCTCTGAAAG TGCAAGAGGC GTACACCTTT CCCAAATGTA GACTAGAATC 1260 1320 TGCAGGATGC CACCCACTGT ATAGTTCTGC TTTCCCAGAG AGGAAGAACT TTTAGAAACC 55 AAATGATCTT AATTGTTATT GCCCACCCCT GGCTTTTCCG GGTAGAAAAT TCACAGTAGG 1380 AATGATTGTT AAGAGAGAGT GCTTGGAACC ATGGGTTAAC AGGAAAGGCT ACCTAACTTC 1440 ACATATCTGC AACCAGAGCA GCCACCAAGC ATTACTTAGC AGCAGGAAAA TGATTGTATT 1500 60

512

5	KTTCACCGGG	GGTC					1634
	CTGGGCGCGG	TGGCTCACAC	CTGTAATCCC	AGCAYTTTGG	GGAGGCCSAG	GCCGGGCCGG	1620
	TGAGTTCCTG	TGTGTCCAAA	ACTGAGGCAC	CATGTTCTTT	GAAAACATGC	CACCTCAAGG	1560

10 (2) INFORMATION FOR SEQ ID NO: 285:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1795 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 285:

20	TTCCCCCCAG	GTTGGCTTCC	TTCGATTCCT	TTTCTTGGTA	TCAACGTTTG	ATTOGAAGAA	60
	CAACCCCCTC	TTTGTCAACC	TCAATAATGA	GCTCACTGTG	GAGGAGCAGC	TCGGGCACAG	120
25	CTCMCCGTYA	TGGTCATTGT	TACCCCCAA	GACCGCAAAA	ACTCTGTGTG	GACACAGGAT	180
23	GGACCCTCAG	CCCAGATCCT	GCAGCAGCTT	GTGGTCCTGG	CAGCTGAAGC	CCTGCCCATG	240
	TTAGAGAAGC	AGCTCATGGA	TCCCCGGGGA	CCTGGGGACA	TCAGGACAGT	GTTCCGGCCG	300
30	CCCTTGGACA	TTTACGACGT	GCTGATTCGC	CTGTYTCCTC	GCCATATCCC	GCGGCACCGC	360
	AGGCTTGTGG	ACTCGCCAGY	TOCCTCCTTC	TGCCGGGGCC	TGCTCAGCCA	ecceeeccc	420
35	TCATCCCTGA	TGCCCGTGCT	GGGTNATGAT	CCTNCTCAGC	TCTATCTGAC	GCAGCTCAGG	480
33	GAGGCCTTTG	GGGATCTGGC	CCTTTTCTTC	TATGACCAGC	ATGGTGGAGA	GCTGATTGGT	540
	GTCCTCTGGA	AGCCCACCAG	CTTCCAGCCG	CAGCCCTTCA	AGGCCTCCAG	CACAAAGGGG	600
40	CGCATGGTGA	TGTCTCGAGG	TGGGGAGCTA	GTAATGGTGC	CCAATGTTGA	AGCAATCCTG	660
	GAGGACTTTG	CTGTGCTGGG	TGAAGGCCTG	GTGCAGACTG	TGGAGGCCCG	AAGTGAGAGG	720
45	TGGACTGTGT	GATCCCAGCT	CTGGAGCAAG	CTGTAGACGG	ACAGCAGGAC	ATTGGACCTC	780
43	TAGAGCAAGA	TGTCAGTAGG	ATGACCTCCA	CCCTCCTTGG	ACATGAATCC	TCCATGGAGG	840
	GCCTGCTGGC	TGAACATGCT	GAATCATCTC	CAACAAAACC	CAGCCCCAAC	TTTCTCTCTG	900
50	ATGCTCCAGC	ATTGGGGCAG	GGCATGGTG	GCCCATGTAG	TCTCCTGGGC	CTCACCATCC	960
	CAGAAGAGGA	GTGGGAGCCA	GCTCAGAGAA	GGAACTGAAC	CCAGGAGATC	CATCCACCTA	1020
55	TTAGCCCTGG	GCCTGGACCT	CCCTGCGATT	TCCCACTCCT	TICTTAGTCT	TCTTCCAGAA	1080
<i>33</i>	ACAGAGAAGG	GGATGTGTGC	CTGGGAGAGG	CTCTGTCTCC	TTCCTGCTGC	CAGGACCTGT	1140
	GCCTAGACTT	AGCATGCCCT	TCACTGCAGT	GTCAGGCCTT	TAGATGGGAC	CCAGCGAAAA	1200
60	TGTGGCCCTT	CTGAGTCACA	TCACCGACAC	TGAGCAGTGG	AAAGGGGCTA	TATGTGTATG	1260

	AATAGACCAC ATTGAAGGAG CACAATGCCC TCCTGTGTTG ATGCCACTTC CCAGGGTGGA	1320
5	GACAGTGGAA AAGAACCGAG GACAGGAAAG GATTGGGTAG GTGAAGGGGT CAGGGGACTG	1380
J	GTAGTCACCC AATCTTGGAG AGGTGCAAAA AGCACTGGGG GCTACCCGTT AGCTGCATCT	1440
	GCCCTGGCTG TTTGCCCGTT CATGTCACAA ACTGCCACTA CTATGTACCT GCAGTGGGGT	1500
10	TCCAGAGATG GGGGAGACTC AAGTCTTACT CCCCAGGAGC TCCCAGGGCC CAAGGAGGAG	1560
	AATGCTGCCT CCTTTCAGTC TGGTCTACAC CCACTTTCTG GTAGCCTCTC TGCTTCCTGT	1620
15	AATTCTGCT GTTTTCCAG ACTCAGCTCA AATAGTGCCC CTCCTTAAGC CCATCCCTCG	1680
15	CCCCCAGCCT GAGGTGATCT TTCCCTCCTC TGAACTATTA GAGCAGTTAC TGTCTGTTCA	1740
	GTTCGTTTGG CAGGCACACA CAGTGGCATA AATTCTATTG TTTTGAACTC TGATT	1795
20		
	(0) 7177711111111111111111111111111111111	
25	(2) INFORMATION FOR SEQ ID NO: 286:	
23	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 858 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 286:	
25	TCTGCTTTCG GTGCTGCGTG TACTGCTGGG CGGCTTCTTC GCGCTCGTGG GGTTGGCCAA	60
35	GCTCTCGGAG GAGATCTCGG CTCCAGTTTC GGAGCGGATG AATGCCCTGT TCGTGCAGTT	120
	TGCTGAGGTG TTCCCGCTGA AGGTATTTGG CTACCAGCCA GATCCCCTGA ACTACCAAAT	180
40	AGCTGTGGGC TTTCTGGAAC TGCTGGCTGG GTTGCTGCTG GTCATGGGCC CACCGATGCT	240
	GCAAGAGATC AGTAACTIGI TCIIGATICI GCICATGATG GGGGCTATCI TCACCTIGGC	300
45	AGCTCTGAAA GAGTCACTAA GCACCTGTAT CCCAGCCATT GTCTGCCTGG GGTTCCTGCT	360
45	GCTGCTGAAT GTCGGCCAGC TCTTAGCCCA GACTAAGAAG GTGGTCAGAC CCACTAGGAA	420
	GAAGACTCTA AGTACATTCA AGGAATCCTG GAAGTAGAGC ATCTCTGTCT CTTTATGCCA	480
50	TGCAGCTGTC ACAGCAGGAA CATGGTAGAA CACAGAGTCT ATCATCTTGT TACCAGTATA	540
	ATATCCAGGG TCAGCCAGTG TTGAAAGAGA CATTITGTCT ACCTGGCACT GCTTTCTCTT	600
	TITAGCTITA CTACTCTITT GTGAGGAGTA CATGITATGC ATATTAACAT TCCTCATGTC	660
55	ATATGAAAAT ACAAAATAAG CAGAAAAGAA ATTTAAATCA ACCAAAATTC TGATGCCCCA	720
	AATAACCACT TTTAATGCCT TGGTGTAAGT ATACCTCTGA ACTTTTTTCT GTGCCTTTAA	780
60	ACAGATATAT ATTTTTTTT AATGAAAATA AAACCATATA TCCTATTTTA TTTCCTCCTT	840

514

	TTAAAACCTT ATAAACTA	858
5	(2) INFORMATION FOR SEQ ID NO: 287:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 915 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 287:	
	GAATTCGGCA CGAGCGCGGC CATGGCGCTC CTGCTTTCGG TGCTGCGTGT ACTGCTGGGC	60
	GGCTTCTTCG CGCTCGTGGG GTTGGCCAAG CTCTCGGAGG AGATCTCGGC TCCAGTTTCG	120
20	GAGCOGATGA ATGCCCTGTT CGTGCAGTTT GCTGAGGTGT TCCCGCTGAA GGTATTTGGC	180
	TACCAGCCAG ATCCCCTGAA CTACCAAATA GCTGTGGGCT TTCTGGAACT GCTGGCTGGG	240
25	TTGCTGCTGG TCATGGGCCC ACCGATGCTG CAAGAGATCA GTAACTTGTT CTTGATTCTG	300
23 .	CTCATGATGG GGGCTATCTT CACCTTGGCA GCTCTGAAAG AGTCACTAAG CACCTGTATC	360
	CCAGCCATTG TCTGCCTGGG GTTCCTGCTG CTGCTGAATG TCGGCCAGCT CTTAGCCCAG	420
30	ACTAAGAAGG TGGTCAGACC CACTAGGAAG AAGACTCTAA GTACATTCAA GGAATCCTGG	480
	AAGTAGAGCA TCTCTGTCTC TTTATGCCAT GCAGCTGTCA CAGCAGGAAC ATGGTAGAAC	540
	ACAGAGTCTA TCATCTTGTT ACCAGTATAA TATCCAGGGT CAGCCAGTGT TGAAAGAGAC	600
35	ATTTIGTCTA CCTGGCACTG CTTTCTCTTT TTAGCTTTAC TACTCTTTTG TGAGGAGTAC	660
	ATGTTATGCA TATTAACATT CCTCATGTCA TATGAAAATA CAAAATAAGC AGAAAAGAAA	720
40	TTTAAATCAA CCAAAATTCT GATGCCCCAA ATAACCACTT TTAATGCCTT GGTGTAAGTA	780
	TACCTCTGAA CTTTTTTCTG TGCCTTTAAA CAGATATATA TTTTTTTTTWA ATGAAAATAA	840
	AACCATATAT CCTATTTTAT TICCTCCTTT TAAAACCTTA TAAACTATAA MAAAAAAAA	900
45	AAAAAAAAA CTCGA	915
50		
	(2) INFORMATION FOR SEQ ID NO: 288:	

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1517 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 288:

60

	CCTTGTGGCA	ACTAGTGGGT	CCCCCGGGCT	GCAGNAATTC	GGGCAGTGGT	TCTGNGTCTG	60
	AAGATACTCT	GAGTTCCTCT	GAGAGATCCA	AAGGCTCCGG	GAGCAGACCC	CCAACCCCCA	120
5	AAAGCAGCCC	TCAGAAGACC	AGGAAGAGCC	CTCAGGTGAC	CAGGGGTAGC	CCTCAGAAGA	180
	CCAGCTGTAG	CCCTCAGAAG	ACCAGGCAGA	GCCCTCAGAC	GCTGAAGCGG	AGCCGAGTGA	240
10	CCACCTCACT	TGAAGCTTTG	CCCACAGGAC	AGTGCTGACA	GACAAGAGTG	GGCGACAGTG	300
10	GAAGCTGAAG	TCCTTCCAGA	CCAGGGACAA	CCAGGGCATT	CTCTATGAAG	CTGCACCCAC	360
	CTCCACCCTC	ACCTGTGACT	CAGGACCACA	GAAGCAAAAG	TTCTCACTCA	AACTGGATGC	420
15	CAAGGATGGG	CGCTTGTTCA	ATGAGCAGAA	CTTCTTCCAG	CGGCCGCCA	AGCCTCTGCA	480
	AGTCAACAAG	TGGAAGAAGC	TGTACTCGAC	CCCACTGCTG	GCCATCCCTA	CCTGCATGGG	540
20	TTTCGGTGTT	CACCAGGACA	AATACAGGTT	CTTGGTGTTA	CCCAGCCTGG	GGAGGAGCCT	600
20	TCAGTCGGCC	CTGGATGTCA	GCCCAAAGCA	TGTGCTGTGC	AGAGAGGTCT	GTGCTGCAGG	660
	TGGCCTGCCG	GCTGCTGGAT	GCCCTGGAGT	TCCTCCATGA	GAATGAGTAT	GTTCATGGAA	720
25	ATGTGACAGC	TGAAAATATC	TTTGTGGATC	CAGAGGACCA	GAGTCAGGTG	ACTITIGGCAG	780
	GCTATGGCTT	CGCNTTCCGC	TATTGCCCAA	GTGGCAAACA	CGTGGCCTAC	GTGGAAGGCA	840
30	GCAGGAGCCY	TCACGAGGG	GACCTTGAGT	TTCATTAGCA	TGGACCTGCA	CAAGGGATGC	900
	GGCCCTCCC	GCCGCRGYGA	CCTCCAGAGC	CTGGGYTAMT	GCATGCTGAA	GTGGYTCTAM	960
	GGGTTTCTGC	CATGGACAAA	TTGCCTTCCA	AMAMTGAGGA	CATCATGAAG	CAAAAACAGA	1020
35	AGTTGCCTTG	GGATTCATTT	TAATGTAAGC	TKGACTTTGT	CATGCCAGAA	ACAAGGCTCG	1080
	GTCACCGTCA	GCAGTTTGCA	GTTTTCCACC	TCCWCCCAGT	TCCTCCGTGT	GGTTGACCCA	1140
40	GATATCTCCG	TTATGCAGCC	GCCTCCGGGG	GACCACCTCC	CTCCCTTTGA	GTCAGCCACA	1200
	GACAGCCTAC	TTGACGGCCC	CCCTCCCCCC	CACATTCCAC	TGAACTGTGC	GGATGCCACA	1260
	GTGACCCCCT	CTCAGGCACA	GCATGACCTC	CTGAAGTCGA	GCCTGCTTGC	TTTGAACCTA	1320
45	CCAGTTAAAA	TCTCCTCAAA	ATGTTTGGAT	ACCGCCCATT	GCCCCTCAC	AGCCACGAGC	1380
	TCCCTGACCA	GTGTGCGTGT	GIGIGIGIGI	GTGTGTCTGT	GTGTGTGCTT	GGGACGCGTG	1440
50	GGGAGGTCAC	CTTTGGGTGT	GCGGTGTGCC	CCCAGGACCT	GTAAGTAATA	AAATCTTTAT	1500
30	ТТССАААААА	АААААА					1517

(2) INFORMATION FOR SEQ ID NO: 289:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3865 base pairs

(B) TYPE: nucleic acid

516

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID NO:	289:
------	----------	--------------	-----	--------	------

5 TGGAGGGGG GAGCTTCCTT GAGCAGTGGG CCCAGGCCTG GCCCTCCACA CTTCATTCTC 60 TGACCTTCT CTCTCCTCAT TTCGGTGCAT GTCCTTTCTG CAGCTGCCTT TCAGCACAGG 120 10 TGGTTCCACT GGGGCCAGCT AACGCTGAGT GACAAGGATG GGAAGCCACA GGTGCATTTT 180 ACTCAAGTCT TCTCTAGTCA ATGAGGGGCA CCCAGTGCTT CTAGGGCAGG CTGGGTGGTG 240 GTCCCCTAGG TATCAGCCTC TCTTACTGTA CTCTCCGGGA ATGTTAACCT TTCTATTTTC 300 15 AGCCTGTGCC ACCTGTCTAG GCAAGCTGGC TTCCCCATTG GCCCCTGTGG GTCCACAGCA 360 GCGTGGCTSC CCCCAGGGC CACCGCTTCT TTCTTGATCC TCTTTCCTTA ACAGTGACTT 420 20 GGGCTTGAGT CTGGCAAGGA ACCTTGCTTT TAGCTTCACC ACCAAGGAGA GAGGTTGACA 480 TGACCTCCCC GCCCCTCAC CAAGGCTGGG AACAGAGGGG ATGTGGTGAG AGCCAGGTTC 540 CTCTGGCCCT CTCCAGGGTG TTTTCCACTA GTCACTACTG TCTTCTCCTT GTAGCTAATC 600 25 AATCAATATT CTTCCCTTGC CTGTGGGCAG TNGGAGAGTG CTGCTGGGTG TACGCTGCAC 660 CTGCCCACTG AGTTGGGGAA AGAGGATAAT CAGTGAGCAC TGTTCTGCTC AGAGCTCCTG 720 30 ATCTACCCCA CCCCCTAGGA TCCAGGACTG GGTCAAAGCT GCATGAAACC AGGCCCTGGC AGCAACCCTG GGAATGGCTG GAGGTGGGAG AGAACCTGAC TTCTCTTTCC CTCTCCCTCC **R40** TCCAACATTA CTGGAACTCT ATCCTGTTAG GATCTTCTGA GCTTGTTTCC CTGCTGGGTG 900 35 GGACAGAGGA CAAAGGAGAA GGGAGGGTCT AGAAGAGGCA GCCCTTCTTT GTCCTCTGGG 960 GTAAATGAGC TIGACCTAGA GTAAATGGAG AGACCAAAAG CCTCTGATTT TTAATTTCCA 1020 40 TAAAATGITA GAAGTATATA TATACATATA TATATTTCTT TAAATTITTG AGTCTTTGAT 1080 ATGTCTAAAA ATCCATTCCC TCTGCCCTGA AGCCTGAGTG AGACACATGA AGAAAACTGT 1140 GTTTCATTTA AAGATGTTAA TTAAATGATT GAAACTTGGC TGTGGCTACT GCTTCTTAAT 1200 45 GTTGGGGGGA CAGGGCAGTG GTCTGGGCCC ACATTTAGAA GGGAAAATGT TTTGCCTGCT 1260 GCACACATTG GACCCAAGTA TGGGCCTCTT CTGCCTAGTA CTGCCAAAGG GACTGTTAAG 1320 50 GTGTCTTGTC CATCTTCTAC CCCCCACCCC CCATTACGGG TAAAGGRAAC CCCAGACTAG 1380 GTGAGGGCC AGCAGCTGCC TCACATTGTG TTCTCTCTG AGATGGTCCA GCTCACATCC 1440 AGACACCTTG TTCAGACATT TTATTTGAAT TTATGACAGT GATGGGGATT TGACTGAGAT 1500 55 GCCTTATGGA GAAGTACCCC ACCCTCTATG AAGACAGAAT CACTCTCTGC CATTCATTCT 1560 GCCTGATGCT AACAACACGC AGCTGATTTA GGGAGTGTCC CAGCCTAGCT GGATCAAGGG 1620 60 1680 AAATTCCAGG AGCCCTGGG CAGGCCCTGG NCCCCAGTGC CAAGCCTCAG AGTAAGCAGA

	CATTGGGAAA	GTTGCCAACC	ACTTGGTAGA	CCACTAGGTT	CTCTGTTTTC	CCTTCCCTTT	1740
5	CCTTTTCAAA	TCCCACAGTT	TCCTGTTGGG	GAGAAGCTGT	AATTAGCCTA	GTCCAGGTAC	1800
J	CAGATCCCAG	CTAGGGGCGC	AGCTGNCTTG	GATAACTCCA	AGAAAACCTG	GGCACCAGTA	1860
	TTTTTCCAAT	TATAAGGACT	GTGGCATAAA	STAAATTTT	AGTTATATTG	AAACCAGATT	1920
10	TCTCCAGCTG	CCAAGGGAAG	AAGGTAGGGC	TGGACTCCCT	GCTGTGGCCC	AGCCCTTGTT	1980
	AGGGGTTGGT	CTCTCACTGC	AGCCAGACAG	GATGATCCTG	GGTTCTGGGG	AGGGTAAGCT	2040
15	GCCCCTTGCC	GAGTTCTGCA	CCGAATAAAG	AGTCCAAACC	CGCTGCTTCC	GTGTCCTGAG	2100
13	AGATGGGTAA	ATGGGTGATG	GATGGAGCAG	ACTGAAGAGA	CAGCAGATGA	CTCAGTGGTG	2160
	GAAGAAGGGG	GGAAGATGCT	GGGCTGGCTA	GCTAATGTTC	CCCCCTTTCA	GCGATTTACA	2220
20	GGAAATGGAG	CCCAGCTTGG	TCATGAAGTT	GGTTTGCTTC	CACTGTGCGA	TGCACTCCTC	2280
	AGAAATTITIG	AAGTCAGCCT	GCAACTTCTC	GAAGACTTTC	TTCTTGGGCT	TGAGCTCCTC	2340
25	ATCTGGTTGG	CCCTTTTCAT	AGCCCTTCAC	AAACACGTGC	TCACCAGGAG	CAGAGCCTGC	2400
23	CGGAGGGTCC	AGAGGTTCAA	CTGGCGGTTT	ATCCCTTCTA	TAGAAGCACA	CAGAAGCATG	2460
	CCTTGGGACT	CGACTCCTCT	CATCTTCTGG	GGTTTCAGGT	TGCACAGCAC	CACTACCAGC	2520
30	CTGTCCTGCA	GTTCCTCCTT	GGGCACGAAC	TGTACCAGGC	CGCTCACCAC	AGTCCGTGGT	2580
	TCAGCTTCCC	CCACGTCAAT	CTTCTCTACA	TACAGGCTGT	CTGCATCTGG	GTGCTTCTCC	2640
35	ACAGTGATGA	TTTTCCCCAC	ACGGATATCC	AGCCGGGATG	GGATGACCTC	CTCTGGTTCT	2700
<i>JJ</i>	GAATTCTTGG	CAGGCCTTTG	GCCATTGGCT	TCTGCTTTGA	GGGATCTGGG	TAGGCAGCGC	2760
	TGGCCAGTTT	TTTCAGGGCA	GGGGTATTAA	ACTITICCCG	GATTGGATCC	AGCAACTTGT	2820
40	TCAGTGCGAC	TTCAACAGAA	TTCTTCAGGT	CTCCAGGATG	TACAACCTCA	GCAGCAAAGT	2880
	CCTTTTCCAG	GTCCACGTAA	GCTGTGTAGG	TTTTGTTTCC	ACCCCATTIC	TCATCTCGTA	2940
45	GGATCACAAA	CTCGGACTTA	AGGGGAAAAA	GGACATGCTT	GATGAAGGAC	AGAACCCCAT	3000
	TGTTCTCCAC	ATTTCCTGGC	TCACAGAAGG	CCTTCTTCAG	TTTTTTCTTC	ACATCCTCCT	3060
	TCCGATCAAG	GAGATCAATC	TTGGACTCCT	CTTCTGAAGA	GCTCATTTTG	CTGCCTGTTA	3120
50	ATCCTGGAAC	CATAGGATTC	ATCAGATGGA	CCCGTTTTGA	ATAGCCAAGT	GCAGGGAGGT	3180
	ACTTCTCTGC	AAAGGTGAAA	ATCTTTCTCT	GATCAATGCC	TCCAAATTGG	GCATCTACTT	3240
55	TTAAATACTC	TTCATCCAAA	GCCTGCAGTC	CGGGGTATAA	GAGGCCACTC	AGCAAAGGGT	3300
	GCTCCACCTG	CTTTACCACC	TCAGCTCCAG	CCTTCTTGGA	ATCGTGCTGT	GTGACCACGG	3360
	AGGAGAGTCT	GTACACATCT	AGTGTGTACT	CTTTGCTGAG	CTGGTAATCA	GTGCCTTTGA	3420
60	TGAACTTGAG	CTTCTCCAAG	GGCACACCAA	TGCTCTCCAG	CATTGCTTTG	ATCACATTCT	3480

518

	CATAGTAACT GAG	CTCGGAGT	TCTAGAAGTT	CCCATGGGGC	TTTCATGTTA	TCCAGGTATG	3540
5	CGTGGAGGTC CGC	CAAACAGA A	ATTGTTACCT	CACACCCTGC	CTTTAAGAAG	TCTGCAATCT	3600
J	TTGACATGGG CAC	CAAAGTAA (GCCACATGTG	GTTTGCCCGT	GCTTGCCCTT	CCCCAGTAAA	3660
	TTTTAAGTTC CCC	GCTCCTTC A	AGTATCTCCT	TCAGCTTCTC	TTCCCCCAGA	ACCTCCTGCA	3720
10	GGTTCCGGGT GAT	PAAGGTGC A	AGTTTCTCTT	CAGGGCTGGG	AGCGTCCCCC	ATGGTCCGCT	3780
	ACCCCTGCTT CCC	CCCGCTCA (GCCCGGCACC	AGAGCCCCTT	CCTGGGTCAC	CCTCCCCCCC	3840
15	GCGTGCCGGG AAC	CTGTCACG (CGACT				3865
15							
	(2) INFORMATION	ON EAD GE	O ID NO. 20	· · ·			
20	(2) INFORMATIO	AV FOR SEA	Q 1D NO: 23				

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1910 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

25 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 290:

AGGGAGAGG GGAGGGGG TCTGCGCGCG GCCGCTACCC AGAAGCCAGC GGACGGCAGC 60 ACGGAGTGGG CTGTCCCCGA GCCCAGCCCC GAGCGAGCCC CCCCCCGCC CCCGMAGGAC 120 GCGCCTYCCA GCCAGCCCGA CTCCTAGGAG GAGGGGAGGC GGGAAAGCAG CTCAAGCCTC 180 ACCCACCGCC CTGCCCCCAG CCCCGCCACT CCCAGGCTCC TCGGGACTCG GCGGGTCCTC 240 CTGGGAGTCT CGGAGGGGAC CGNCTGTGCA GACGCCATGG AGTTGGTGCT GGTCTTCCTC 300 TGCAGCCTGC TGGCCCCCAT GGTCCTGGCC AGTGCAGCTG AAAAGGAGAA GGAAATGGAC 360 CCTTTTCATT ATGATTACCA GACCCTGAGG ATTGGGGGGAC TGGTGTTCGC TGTGGTCCTC TTCTCGGTTG GGATCCTCCT TATCCTAAGT CGCAGGTGCA AGTGCAGTTT CAATCAGAAG 480 CCCCGGCCC CAGGAGATGA GGAAGCCCAG GTGGAGAACC TCATCACCGC CAATGCAACA 540 GAGCCCCAGA AAGCAGAGAA CTGAAGTGCA GCCATCAGGT GGAAGCCTCT GGAACCTGAG 600 GCGGCTGCTT GAACCTTTGG ATGCAAATGT CGATGCTTAA GAAAACCGGC CACTTCAGCA 660 ACAGCCCTTT CCCCAGGAGA AGCCAAGAAC TTGTGTGTCC CCCACCCTAT CCCCTCTAAC 720 ACCATTCCTC CACCTGATGA TGCAACTAAC ACTTGCCTCC CCACTGCAGC CTGCGGTCCT 780 GCCCACCTCC CGTGATGTGT GTGTGTGTGT GTGTGTGTGT GACTGTGTGT GTTTGCTAAC 840 TGTGGTCTTT GTGGCTACTT GTTTGTGGAT GGTATTGTGT TTGTTAGTGA ACTGTGGACT 900 CGCTTTCCCA GGCAGGGCT GAGCCACATG GCCATCTGCT CCTCCCTGCC CCCGTGGCCC 960

519

	TCCATCACCT	TCTGCTCCTA	GGAGGCTGCT	TGTTGCCCGA	GACCAGCCCC	CTCCCCTGAT	1020
	TTAGGGATGC	GTAGGGTAAG	AGCACGGGCA	GTGGTCTTCA	CTCCTCTTCG	GACCTGGGAA	1080
5	GGTTTGCAGC	ACTITICICAT	CATTCTTCAT	GGACTCCTTT	CACTCCTTTA	ACAAAAACCT	1140
	TGCTTCCTTA	TCCCACCTGA	TCCCAGTCTG	AAGGTCTCTT	AGCAACTGGA	GATACAAAGC	1200
10	AAGGAGCTGG	TGAGCCCAGC	GTTGACGTCA	GGCAGGCTAT	GCCCTTCCGT	GGTTAATTTC	1260
•	TTCCCAGGG	CTTCCACGAG	GAGTCCCCAT	CTGCCCGCC	CCTTCACAGA	GCGCCCGGGG	1320
	ATTCCAGGCC	CAGGGCTTCT	ACTCTGCCCC	TGGGGAATGT	GTCCCCTGCA	TATCTTCTCA	1380
15	GCAATAACTC	CATGGGCTCT	GGGACCCTAC	CCCTTCCAAC	CTTCCCTGCT	TCTGAGACTŤ	1440
	CAATCTACAG	CCCAGCTCAT	CCAGATGCAG	ACTACAGTCC	CTGCAATTGG	GTCTCTGGCA	1500
20	GGCAATAGTT	GAAGGACTCC	TGTTCCGTTG	GGGCCAGCAC	ACCGGGATGG	ATGGAGGGAG	1560
	AGCAGAGGCC	TTTGCTTCTC	TGCCTACGTC	CCCTTAGATG	GGCAGCAGAG	GCAACTCCCG	1620
	CATCCTTTGC	TCTGCCTGTC	GGTGGTCAGA	GCGGTGAGCG	AGGTGGGTTG	GAGACTCAGC	1680
25	AGGCTCCGTG	CAGCCCTTGG	GAACAGTGAG	AGGTTGAAGG	TCATAACGAG	AGTGGGAACT	1740
	CAACCCAGAT	CCCGCCCCTC	CTGTCCTCTG	TGTTCCCGCG	GAAACCAACC	AAACCGTGCG	1800
30	CTGTGACCCA	TTGCTGTTCT	CTGTATCGTG	ATCTATCCTC	AACAACAACA	GAAAAAAGGA	1860
	ATAAAATATC	CTTTGTTTCM	TAAAAAAAA	AAAAAAAA	AGGGGGGGG		1910
35	(2) TATEODM	METON DOD GE	50 TD NO. 24	21.			
		ATION FOR SI	_				
40	(i)	(B) TYP (C) STR	HARACTERIST GTH: 3276 b E: nucleic ANDEDNESS: OLOGY: line	ase pairs acid double			
45	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 291:		
73	GCGACCGTCG	TTTGAGTCGT	CCCTCCCCCT	GCCGCTGCCA	CTGCCACTGC	CACCTCGCGG	60
	ATCAGGAGCC	AGCGTTGTTC	GCCCGACGCC	TCGCTGCCGG	TGGGAGGAAG	CGAGAGOGAA	120
50	GCCGCTTGCG	GGTTTGTCGC	CCCTCCTCCC	CCACCGCCTG	GAAGAGCCGA	ecceeeccc	180
	AGTCGGTCGC	TTGCCACCGC	TCGTAGCCGT	TACCCGCGGG	CCGCCACAGC	cecceccee	240
55	GAGAGGCGCG	CGCCATGGCT	TCTGGAGCCG	ATTCAAAAGG	TGATGACCTA	TCAACAGCCA	300
55	TTCTCAAACA	GAAGAACCGT	CCCAATCGGT	TAATTGTTGA	TGAAGCCATC	AATGAGGACA	360
	ACAGTGTGGT	GTCCTTGTCC	CAGCCCAAGA	TGGATGAATT	GCAGTTGTTC	CGAGGTGACA	420

CAGTGTTGCT GAAAGGAAAG AAGAGACGAG AAGCTGTTTG CATCGTCCTT TCTGATGATA

480

	CTTGTTCTGA	TGAGAAGATT	CGGATGAATA	GAGTTGTTCG	GAATAACCTT	CGTGTACGCC	540
5	TAGGGGATGT	CATCAGCATC	CAGCCATGCC	CTGATGTGAA	GTACGGCAAA	CGTATCCATG	600
,	TGCTGCCCAT	TGATGACACA	GTGGAAGGCA	TTACTGGTAA	TCTCTTCGAG	GTATACCTTA	660
	AGCCGTACTT	CCTGGAAGCG	TATCGACCCA	TCCGGAAAGG	AGACATTTTT	CTTGTCCGTG	720
10	GTGGGATGCG	TGCTGTGGAG	TTCAAAGTGG	TGGAAACAGA	TCCTAGCCCT	TATTGCATTG	780
	TTGCTCCAGA	CACAGTGATC	CACTGCGAAG	GGGAGCCTAT	CAAACGAGAG	GATGAGGAAG	840
15	AGTCCTTGAA	TGAAGTAGGG	TATGATGACA	TTGGTGGCTG	CAGGAAGCAG	CTAGCTCAGA	900
15	TAAAGGAGAT	GGTGGAACTG	CCCCTGAGAC	ATCCTGCCCT	CTTTAAGGCA	ATTGGTGTGA	960
	AGCCTCCTAG	AGGAATCCTG	CTTTACGGAC	CTCCTGGAAC	AGGAAAGACC	CTGATTGCTC	1020
20	GAGCTGTAGC	AAATGAGACT	GGAGCCTTCT	TCTTCTTGAT	CAATGGTCCT	GAGATCATGA	1080
	GCAAATTGGC	TGGTGAGTCT	GAGAGCAACC	TTCGTAAAGC	CTTTGAGGAG	GCTGAGAAGA	1140
25	ATGCTCCTGC	CATCATCTTC	ATTGATGAGC	TAGATGCCAT	CGCTCCCAAA	AGAGAGAAAA	1200
23	CTCATGGCGA	GGTGGAGCGG	CGCATTGTAT	CACAGTIGTT	GACCCTCATG	GATGGCCTAA	1260
	AGCAGAGGGC	ACATGTGATT	GTTATGGCAG	CAACCAACAG	ACCCAACAGC	ATTGACCCAG	1320
30	CTCTACGGCG	ATTTGGTCGC	TTTGACAGGG	AGGTAGATAT	TGGAATTCCT	GATGCTACAG	1380
	GACGCTTAGA	GATTCTTCAG	ATCCATACCA	AGAACATGAA	GCTGGCAGAT	GATGTGGACC	1440
35	TGGAACAGTA	GCCAATGAGA	CTCACGGGCA	TGTGGGTGCT	GACTTAGCAG	CCCTGTGCTC	1500
33	AGAGGCTGCT	CTGCAAGCCA	TCCGCAAGAA	GATGGATCTC	ATTGACCTAG	AGGATGAGAC	1560
	CATTGATGCC	GAGGTCATGA	ACTCTCTAGC	AGTTACTATG	GATGACTTCC	GGTGGGCCTT	1620
40	GAGCCAGAGT	AACCCATCAG	CACTGCGGGA	AACCGTGGTA	GAGGTGCCAC	AGGTAACCTG	1680
	GGAAGACATC	GGGGCCTAG	AGGATGTCAA	ACGTGAGCTA	CAGGAGCTGG	TCCAGTATCC	1740
45	TGTGGAGCAC	CCAGACAAAT	TCCTGAAGTT	TGGCATGACA	CCTTCCAAGG	GAGTTCTGTT	1800
43	CTATGGACCT	CCTGGCTGTG	GGAAAACTTT	GTTGGCCAAA	GCCATTGCTA	ATGAATGCCA	1860
	GGCCAACTTC	ATCTCCATCA	AGGGTCCTGA	GCTGCTCACC	ATGTGGTTTG	GGGAGTCTGA	1920
50	GGCCAATGTC	AGAGAAATCT	TTGACAAGGC	CCGCCAAGCT	GCCCCCTGTG	TGCTATTCTT	1980
	TGATGAGCTG	GATTCGATTG	CCAAGGCTCG	TGGAGGTAAC	ATTGGAGATG	GTGGTGGGC	2040
55	TGCTGACCGA	GTCATCAACC	AGATCCTGAC	AGAAATGGAT	GGCATGTCCA	САААААААА	2100
JJ	TGTGTTCATC	ATTGGCGCTA	CCAACCGGCC	TGACATCATT	GATCCTGCCA	TCCTCAGACC	2160
	TGGCCGTCTT	GATCAGCTCA	TCTACATCCC	ACTTCCTGAT	GAGAAGTCCC	GTGTTGCCAT	2220
60	CCTCAAGGCT	AACCTGCGCA	AGTCCCCAGT	TGCCAAGGAT	GTGGACTTGG	AGTTCCTGGC	2280

521

	TAAAATGACT AATGCCTTCT CTGGAGCTGA CCTGACAGAG ATTTGCCAGC GTGCTTGCAA	2340
5	GCTGGCCATC CGTGAATCCA TCGAGAGTGA GATTAGGCGA GAACGAGAGA GGCAGACAAA	2400
J	CCCATCAGCC ATGGAGGTAG AAGAGGATGA TCCAGTGCCT GAGATCCGTC GAGATCACTT	2460
	TGAAGAAGCC ATGCGCTTTG CGCGCCGTTC TGTCAGTGAC AATGACATTC GGAAGTATGA	2520
10	GATGITTGCC CAGACCCTTC AGCAGAGTCG GGGCTTTGGC AGCTTCAGAT TCCCTTCAGG	2580
	GAACCAGGGT GGAGCTGGCC CCAGTCAGGG CAGTGGAGGC GGCACAGGTG GCAGTGTATA	2640
15	CACAGAAGAC AATGATGATG ACCTGTATGG CTAAGTGGTG GTGGCCAGCG TGCAGTGAGC	2700
13	TGGCCTGCCT GGACCTTGTT CCCTGGGGGT GGGGGCGCTT GCCCAGGAGA GGGACCAGGG	2760
	GTGCGCCCAC AGCCTGCTCC ATTCTCCAGT CTGAACAGTT CAGCTACAGT CTGACTCTGG	2820
20	ACAGGGGTT TCTGTTGCAA AAATACAAAA CAAAAGCGAT AAAATAAAAG CGATTTTCAT	2880
	TIGGTAGGCG GAGAGTGAAT TACCAACAGG GAATTGGGCC TIGGGCTATG CCATTTCTGT	2940
25	TGTAGTTTGG GGCAGTGCAG GGGACCTGTG TGGGGTGTGA ACCAAGGCAC TACTGCCACC	3000
23	TGCCACAGTA AAGCATCTGC ACTTGACTCA ATGCTGCCCG AGCCCTCCCT TCCCCCTATC	3060
	CAACCTGGGT AGGTGGGTAG GGGCCACAGT TGCTGGATGT TTATATAGAG AGTAGGTTGA	3120
30	TITATTITAC ATSCTTTIGA GITAATGTIG GAAAACTAAT CACAAGCAGT TICTAAACCA	3180
	AAAAATGACA TGTTGTAAAA GGACAATAAA CGTTGGGTCN AAATGGGWRA AAAAAAAAA	3240
35	AAAAAAGGGG GGCCCCTCTA AAGNNCCANN CTTCGT	3276
55		
	(2) THEODMARTON FOR CEO TO NO. 202.	
40	(2) INFORMATION FOR SEQ ID NO: 292:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1695 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 292:	
	TTGCAATGGT TGAATTCCCC TCCTCACGCC AGCCTAGGAG AAGAAGTTCG TAGTCCCAGA	60
50		

TTGCAATGGT TGAATTCCCC TCCTCACGCC AGCCTAGGAG AAGAAGTTCG TAGTCCCAGA 60

GGTGAGGCAG GAGGCGGCAG TTTCTGGCGG GTGAGGGCGG AGCTGAAGTG ACAGCGGAGG 120

CGGAAGCAAC GGTCGGTGGG GCGGAGAAGG GGGCTGGCCC CAGGAGGAGG AGGAAACCCT 180

TCCGAGAAAA CAGCAACAAG CTGAGCTGCT GTGACAGAGG GGAACAAGAT GGCGGCGCCG 240

AAGGGAGCCT CTGGGTGAGG ACCCAACTGG GGCTCCCGCC GCTGCTGCTG CTGACCATGG 300

CCTTGGCCGG AGGTTCGGGG ACCGCTTCGG CTGAAGCATT TGACTCGGTC TTGGGTGATA 360

55

	CGGCGTCTTG	CCACCGGGCC	TGTCAGTTGA	CCTACCCCTT	GCACACCTAC	CCTAAGGAAG	420
	AGGAGTTGTA	CGCATGTCAG	AGAGGTTGCA	GGCTGTTTTC	AATTTGTCAG	TTTGTGGATG	480
5	ATGGAATTGA	CTTAAATCGA	ACTAAATTGG	AATGTGAATC	TGCATGTACA	GAAGCATATT	540
	CCCAATCTGA	TGAGCAATAT	GCTTGCCATC	TTGGTTGCCA	GAATCAGCTG	CCATTCGCTG	600
10	AACTGAGACA	AGAACAACTT	ATGTCCCTGA	TGCCAAAAAT	GCACCTACTC	ТТТССТСТАА	660
10	CTCTGGTGAG	GTCATTCTGG	AGTGACATGA	TGGACTCCGC	ACAGAGCTTC	ATAACCTCTT	720
	CATGGACTTT	TTATCTTCAA	GCCGATGACG	GAAAAATAGT	TATATTCCAG	TCTAAGCCAG	780
15	AAATCCAGTA	CGCACCACAT	TTGGAGCAGG	AGCCTACAAA	TTTGAGAGAA	TCATCTCTAA	840
	GCAAAATGTC	CTATCTGCAA	ATGAGAAATT	CACAAGCGCA	CAGGAATTTT	CTTGAAGATG	900
20	GAGAAAGTGA	TGGCTTTTTA	AGATGCCTCT	CTCTTAACTC	TGGGTGGATT	ТТААСТАСАА	960
20	CTCTTGTCCT	CTCGGTGATG	GTATTGCTTT	GGATTTGTTG	TGCAACTGTT	GCTACAGCTG	1020
	TGGAGCAGTA	TGTTCCCTCT	GAGAAGCTGA	GTATCTATGG	TGACTTGGAG	TTTATGAATG	1080
25	AACAAAAGCT	AAACAGATAT	CCAGCTTCTT	CTCTTGTGGT	TGTTAGATCT	AAAACTGAAG	1140
	ATCATGAAGA	AGCAGGGCCT	CTACCTACAA	AAGTGAATCT	TGCTCATTCT	GAAATTTAAG	1200
30	CATTITICTT	TTAAAAGACA	agtgtaatag	АСАТСТАААА	TTCCACTCCT	CATAGAGCTT	1260
50	TTAAAATGGT	TTCATTGGAT	ATAGGCCTTA	AGAAATCACT	ATAAAATGCA	aataaagtta	1320
	CTCAAATCIG	TGAAGACTGT	ATTTGCTATA	ACTTTATTGG	TATTGTTTT	GTAGTAATTT	1380
35	AAGAGGTGGA	TGTTTGGGAT	TGTATTATTA	TTTTACTAAT	ATCTGTAGCT	ATTTTGTTTT	1440
	TTGCTTTGGT	TATTGTTTTT	TTCCCTTTTC	TTAGCTATGA	GCTGATCATT	GCTCCTTCTC	1500
40	ACCTCCTGCC	ATGATACTGT	CAGTTACCTT	AGTTAACAAG	CTGAATATTT	AGTAGAAATG	1560
	ATGCTTCTGC	TCAGGAATGG	CCCACAAATC	TGTAATTTGA	AATTTAGCAG	GAAATGACCT	1620
	TTAATGACAC	TACATTTTCA	GGAACTGAAA	TCATTAAAAT	TTTATTTGAA	TAATTAAAA	1680
45	ааааааааа	AANCT					1695

50 (2) INFORMATION FOR SEQ ID NO: 293:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1501 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 293:

60 CACTITCAGC AGTCCTITGC TCTCTITGCT TCTACCTCAA ATAGCCCCAG GAGTGGGCTT

	TAGTCTCCAA	TATGGAGCAT	CTCAAGCTTC	TCCTGGGGGA	TGGGGATTGG	GATGGGCAGA	120
5	ATCTGTTTTG	GWICTCCGGG	TTATTTCCAG	TGGGTGTAAA	AGCAGAGCTG	GGCCTTTCCC	180
J	TCTCTTATCC	CTGAGGGTGG	GTAAGAAGGA	CTGTATCTAC	ACCIGITCIT	CCCTACCTTC	240
	TCTTTTGTTA	GGGAGGCCTC	ATTCTAAGTT	CCTCAAGAGA	GTCCTTGGCT	TAAAGCTGTA	300
10	GCAAGGGTGT	GCTAGGTGGG	GGATTTGGAG	CAAAACCGTC	GAGTAGGCAT	GATACTGGTA	360
	TGGAGTGGGC	CTGCAAAATC	AGACAGAAAT	GGCTTGAGAA	GCCGCAGGGG	AGCATGCCTG	420
15	TCTCTCAGTG	ATAGAGTATG	GGAGGGACCT	CCCTAGCTTG	GAAAATGAGA	ATTGAAGGGG	480
	TTATGAACAA	ATAGGATGCC	TAGTTGAGGA	TGTTCCCAAA	GTTTTGTCCA	ATCTTATCAT	540
	TAGTAGATTT	TATAAGCCAC	AGAGACAAAC	CAGAAACGGA	ATAATGTTAC	TTTGGATGCT	600
20	TTATTTTTTT	GTTCTAGGTG	TGGCTTTGTA	CATGCAGAAG	AATGCTATAT	GCTGCACATT	660
	TTGCCTTTAA	AGTCTTACGA	CTTTCCCCAT	TTTAGTCTAA	TGGGAAGATA	CAGATGTGCA	720
25	AGTCTGCTTT	TTTGTTTTT	GTTATTATTT	TTTTTTTTT	CCTCTCTCTT	ATGGACATTT	780
	TCAGACATGC	ACAGAAGTGG	AGAGGATGGT	CCTTGGACCC	MATGTGTCCA	TCACCTAGCT	840
	GCATCACTTA	TCAGCTATGG	TCAACCTGGT	TTCATCTGTA	TCTCTCTT	TTCACCTGTA	900
30	TTGTTTATTG	AAAATCCAAG	ACACTATGCC	AATGCAACCG	TGACTACTTT	GGGAGATTGG	960
	TAGTCTCTTT	TGATGGTGAT	AGTGATGGGG	TGCACTATCA	TAATCACATC	AGGTCTGCTT	1020
35	TTTGCTTTTA	ATGTTAACTA	ATGAAGTICC	AGAGATGGGC	CTTAGAAATG	TGTTTTAAGA	1080
	ATTAACAAGG	AGTCTCAAAA	AGAAATGAGA	GGGATGCTTC	CTTTNCCCTT	GCATCTACAA	1140
	AACMAGAGAG	AGACIGTICT	GTTGTAAAAC	TCTTTCAAAA	ATTCTGATAT	GGTAAGGTAC	1200
40	TTGAGACCCT	TCACCAGAAT	GTCAATCTTT	TTTTCTGTGT	AACATGGAAA	CTTGTGTGAC	1260
	CATTAGCATT	GTTATCAGCT	TGTACTGGTC	TCATAACTCT	GGTTTTGGAA	GAATAATTTG	1320
45	GAAATTGTTG	CTGTGTTCTG	TGAAAATAAC	CTCCCCAAAA	TAATTAGTAA	CTGGTTGTTC	1380
	TACTTGGTAA	TTTGACACCC	TGTTAATAAC	GCAATTATIT	CTGTGTTCTT	AAACAGTATA	1440
	AATAGTTGTA	AGTTTGCATG	CATGATGGAA	AAATAAAAAC	CTGTATCTCT	GTTAAAAAAA	1500
50	Α						1501

(A) LENGTH: 2683 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

⁵⁵ (2) INFORMATION FOR SEQ ID NO: 294:

⁽i) SEQUENCE CHARACTERISTICS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 294:

5	TGANTGTGGT	CCCGGGTGCN	GATTGGCAGN	GCCTCCGCCG	CGGCTCGTGG	TTGTCCCGCC	60
	ATGGCACTGT	CGCGGGGGCT	GCCCCGGGAG	CTGGCTGAGG	CCCTCCCCCC	GGGCCGGGTR	120
10	CTGGTGGTGG	GGGCGGGCGG	CATCGGCTGC	GAGCTCCTCA	AGAATCTCGT	GCTCACCGGT	180
10	TTCTCCCACA	TCGACCTGAT	TGATCTGGAT	ACTATTGATG	TAAGCAACCT	CAACAGACAG	240
	TTTTTGTTTC	AAAAGAAACA	TGTTGGAAGA	TCAAAGGCAC	AGGTTGCCAA	GGAAAGTGTA	300
15	CTGCAGTTTT	ACCCGAAAGC	TAATATCGTT	GCCTACCATG	ACAGCATCAT	GAACCCTGAC	360
	TATAATGTGG	AATTTTTCCG	ACAGTTTATA	CTGGTTATGA	ATGCTTTAGA	TAACAGAGCT	420
20	GCCCGAAACC	ATGTTAATAG	AATGTGCCTG	GCAGCTGATG	TTCCTCTTAT	TGAAAGTGGA	480
20	ACAGCTGGGT	ATCTTGGACA	AGTAACTACT	ATCAAAAAGG	GTGTGACCGA	GTGTTATGAG	540
	TGTCATCCTA	AGCCGACCCA	GAGAACCTTT	CCTGGCTGTA	CAATTCGTAA	CACACCTTCA	600
25	GAACCTATAC	ATTGCATCGT	TTGGGCAAAG	TACTTGTTCA	ACCAGTTGTT	TGGGGAAGAA	660
	GATGCTGATC	AAGAAGTATC	TCCTGACAGA	GCTGACCCTG	AAGCTGCCTG	GGAACCAACG	720
30	GAAGCCGAAG	CCAGAGCTAG	AGCATCTAAT	GAAGATGGTG	ACATTAAACG	TATTTCTACT	780
30	AAGGAATGGG	CTAAATCAAC	TGGATATGAT	CCAGTINAAA	CTTTTTACCA	AGCTTTTTAA	840
	AGATGACATC	AGGTATCTGT	TGACAATGGA	CAAACTATGG	CGGAAAAGGA	AACCTCCAKT	900
35	TCCGTTGGAC	TGGGCTGAAG	TACAAAGTCA	AGGAGAAGAA	ACGAATGCAT	CAGATCAACA	960
	GAATGAACCC	CAGTTAGGCC	TGAAAGACCA	GCAGGTTCTA	GATGTAAAGA	GCTATGCACG	1020
40	TCTTTTTCA	AAGAGCATCG	AGACTTTGAG	AGTTCATTTA	GCAGAAAAGG	GGGATGGAGC	1080
40	TGAGCTCATA	TGGGATAAGG	ATGACCCATC	TGCAATGGAT	TTTGTCACCT	CTGCTGCAAA	1140
	CCTCAGGATG	CATATTTTCA	GTATGAATAT	GAAGAGTAGA	TTTGATATCA	AATCAATGGC	1200
45	AGGGAACATT	ATTCCTGCTA	TTGCTACTAC	TAATGCAGTA	ATTGCTGGGT	TGATAGTATT	1260
	GGAAGGATTG	AAGATTTTAT	CAGGAAAAAT	AGACCAGTGC	AGAACAATTT	TTTTGAATAA	1320
50	ACAACCAAAC	CCAAGAAAGA	AGCTTCTTGT	GCCTTGTGCA	CTGGATCCTC	CCAACCCCAA	1380
50	TTGTTATGTA	TGTGCCAGCA	AGCCAGAGGT	GACTGTGCGG	CTGAATGTCC	ATAAAGTGAC	1440
	TGTTCTCACC	TTACAAGACA	AGATAGTGAA	AGAAAATTT	GCTATGGTAG	CACCAGATGT	1500
55	CCAAATTGAA	GATGGGAAAG	GAACAATCCT	AATATCTTCC	GAAGAGGGAG	AGACGGAAGC	1560
	TAATAATCAC	AAGAAGTTGT	CAGAATTTGG	AATTAGAAAT	GCAGCCGGC	TTCAAGCAGA	1620
60	TGACTTCCTC	CAGGACTATA	CTTTATTGAT	CAACATCCTT	CATAGTGAAG	ACCTAGGAAA	1680

WO 98/39448 PCT/US98/04493 525

	GGACGTTGAA	TTTGAAGTTG	TTGGTGATGC	CCCGGAAAAA	GTGGGGSCCA	AACAAGCTGA	1740
	AGATGCTGCC	AAAAGCATAA	CCAATGGGCA	GTGATGATGG	AGCTCAGCCC	TCCACCTCCA	1800
5	CAGCTCAAGA	GCAAGATGAC	GTTCTCATAG	TTGATTCGGA	TGAAGAAGAT	TCTTCAAATA	1860
	ATGCCGACGT	CATGAAGAAG	AGAGAAGCCG	CAAGAGGAAA	TTAGATGAGA	AAGAGAATCT	1920
10	CAGTGCAAAG	AGGTCACGTA	TAGAACAGAA	GGAAGAGCTT	GATGATGTCA	TAGCATTAGA	1980
10	TTGAACAGAA	ATGCCTCTAA	ACAGAACCCT	CTTACTATTT	AGTTTATCTG	GGCAGAACCA	2040
	GATTGTTATG	TCCTTTGTTC	CAAAGGGAAA	AAATTGACAG	CAGTGACTTG	AAAATGATTC	2100
15	TGCTCCCTTT	GAAAGCATTC	ATTTTGCTAG	AACTGTTAGA	CACATTGCAG	TATGCTGTAT	2160
	TGAAAGTAGG	AATATAGTTT	TAAAAACCCT	TTGAACAAAG	TGTGTGCATA	ACCAGTCATG	2220
20	AGATAAAACA	ACACAATGCA	TGTTGCCTTT	TTAATGTAAA	TACCCTTAGG	TATCATTAAT	2280
20	AGTTTCAAAA	TATTGTGGTT	TAGTAAAGTT	GATACCTGGT	ТАТАААТАТТ	ATGCCTTTAT	2340
	TTTTGGCTAG	AAGAAGAATT	ATTTTTAGCC	TAGATCTAAC	CATTTTCATA	CICTIAACIG	2400
25	ATTGAAACAG	ATTCAAAGAA	GTATCGAGTG	CTATGCATTG	AAACTTGTTT	TTAAATGTTA	2460
	GATGGCACTA	TGTATATTAA	TGTAAAACAA	TGTTAATTTA	CTCAAGTTTT	CAGTTTGTAC	2520
20	CGCCTGGTAT	GTCTGTGTAA	GAAGCCAATT	TTTGTGTATT	GTTACAGTTT	CAGGTTATTT	2580
30	ATATTCGATG	TTTTGTAAAA	CTCAAATAAC	GACTATACTT	ATGGACCAAA	TAAATGGCAY	2640
	TGCATTCTKG	TKAAAAAAAN	NACAGAAAAA	ааааааааса	AGA		2683
35							
40		SEQUENCE C (A) LEN (B) TYF	EQ ID NO: 29 HARACTERIST IGTH: 1454 b E: nucleic LANDEDNESS:	ICS: ase pairs acid			
45			OLOGY: line				
73	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 295:		
	GGACTCGGGG	TGGCTCTAAG	GGCAGGGAT	AGGGCTGGGG	AGCGCCGGCC	TGTGGCCCTG	60
50	ACCAGCCCCT	TCTCGTGCAG	GTTCCACCCC	GATGCAGGTG	GTCACGTGCT	TGACGCGGGA	120
	CAGCTACCTG	ACGCACTGCT	TCCTCCAGCA	CCTCATGGTC	GIGCIGICCI	CTCTGGAACG	180
55	CACGCCCTCG	CCGGAGCCTG	TTGACAAGGA	CTTCTACTCC	GAGTTTGGGA	ACAAGACCAC	240
,,	AGGGAAGATG	GAGAACTACG	AGCTGATCCA	CTCTAGTCGC	GTCAAGTTTA	CCTACCCCAG	300
	TGAGGAGGAG	ATTGGGGACC	TGACGTTCAC	TGTGGCCCAA	AAGATGGCTG	AGCCAGAGAA	360

60 GCCCCAGCC CTCAGCATCC TGCTGTACGT GCAGGCCTTC CAGGTGGGCA TGCCACCCCC

526

	TOGGTGCTGC AGGGGCCCCC TGCGCCCCAA GACACTCCTG CTCACCAGCT CCGAGATCTT	480
5	CCTCCTGGAT GAGGACTGTG TCCACTACCC ACTGCCCGAG TTTGCCAAAG AGCCGCCGCA	540
J	GAGAGACAGG TACCGGCTGG ACGATGGCCG CCGCGTCCGG GACCTGGACC GAGTGCTCAT	600
	GGCTACCAG ACCTACCCGC AGCCCTCACC CTCGTYTTCG ATGACGTGCA AGGTCATGAC	660
10	CTCATGGGCA GTGTCACCCT GGACCACTTT GGGGAGGTGC CAGGTGGCCC GGCTAGAGCC	720
	AGCCAGGGCC GTGAAGTCCA GTGGCAGGTG TTTGTCCCCA GTGCTGAGAG CAGAGAGAAG	780
15	CTCATCTCGC TGTTGGCTCG CCAGTGGGAG GCCCTGTGTG GCCTGAGCTG CCTGTCGAGC	840
IJ	TCACCGGCTA GCCCAGGCCA CAGCCAGCCT GTCGTGTCCA GCCTGACGCC TACTGGGGCA	900
	GGGCAGCAGG CTTTTGTGTT CTCTAAAAAT GTTTTATCCT CCCTTTGGTA CCTTAATTTG	960
20	ACTGTCCTCG CAGAAATGTG AACATGTGTG TGTGTTGTGT	1020
	AGIGAGAATG CCGGGCCCCT CAGGGCTGTT CGGTGTGCTG TCAGCCTCCC ACAGGTGGTA	1080
25	CAGCCGTGCA CACCAGTGTC GTGTCTGCTG TTGTGGGACC GTTGTTAACA CGTGACACTG	1140
دے	TOGGTCTGAC TTTYTCTTCT ACACGTCCTT TCCTGAAGTG TCGAGTCCAG TCCTTTGTTG	1200
	CTGTTGCTGT TGCTGTTGCT GTTGCTGTTG GCATCTTGCT GCTAATCCTG AGGCTGGTAG	1260
30	CAGAATGCAC ATTGGAAGCT CCCACCCCAT ATTGTTCTTC AAAGTGGAGG TCTCCCCTGA	1320
	TCCAGACAAG TGGGAGAGCC CGTGGGGGCA GGGGACCTGG AGCTGCCAGC ACCAAGCGTG	1380
35	ATTCCTGCTG CCTGTATTCT CTATTCCAAT AAAGCAGAGT TTGACACCGW MAAAAAAAAA	1440
	AAAAAAAAA AACN	1454
	·	
40	(2) INFORMATION FOR SEQ ID NO: 296:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 828 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 296:	
50	ACCCTGGCAT GCCCCACAAA CAGATCACCA GCCAGCTTAC ACAGGCATTA ACTCTCCTCA	60
	ATGAGGAAGA ATCATTCACA ACTGAGCAAG ACATTCATAT GATCATTTAA GGAAGTGTTT	120
55	CCCTTATGTG TTAGCAAGTA TAATCGGCTA ACTCCTAAAT CCCAATGAAT AGTCCTAGGC	180
	TGGACAGCAA TGGGCTGCAA TTAGGCAGAT AAAGACATCA GTCCCAGTAA ATGAATCCAT	240

AGACTCATCT AGCACCAACT ACCATTAGCA CTATGTTAGG AGCTGCAAGG CCCCAAAGTA

60

	GAAGATGTGC ATAATGTCTG CTCTTGTGTA GCTCAGGAGA CAATTCCAGC ACAGACACTA	360
	CAGTTAACGC TGAACTGCAG CTGCAAGTAA TAGCAWGAAC AGTCAGAAAA ATACCTTATG	420
5	AGGGGGCAGG GCTGAAGCTG GGCCTTGAAG GATGGATGAA ATTTGGATAG AGAATGAGGA	480
	AGACAGAGGG NCTCCAAGTG AGAGAAGCAT GAAAAATGAG CARGGGCCTG GATCAGTGGG	540
10	GTGTATTCAG AGCACCTYTC CAGATGCACC ATGCATGCTC ACAGTCCCTT GCCTATGTGT	600
10	GGCAGAGTGT CCCAGCCAGA TGTGTGCCCC CACCCCATGT CCATTTACAT GTCCTTCAAT	660
	GCCCACCTCA AAAGGYACYT CTTCTGTAAA GCTTTCCCTK GGTATCAGGA ATCAAAATTA	720
15	ATCAGGGATC TTTTCACACT GCTGTTTTTT CCTCTTTGGT CCTTCTATCA CTAAAACTCA	780
	TCTCATTCAG CCTTACAGCA TAACTAATTA TITGTTTTCC TCACTACA	828
20		
20	A	
	(2) INFORMATION FOR SEQ ID NO: 297:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2416 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 297:	
	TCAATTTCCA TTAACTCAGA TCAGCCATTG TGATTCACCA TTTGTCAGGC TCTCAGGTTT	60
25	AACAAAACCT ACTATCACCA TCATCCTTCA ACAGCCACAG TCTGAATTGA GCCAACATTT	120
35	TTTTTTCTTT GAGAAAGAAG TGGACTGGGG CACAACTTTT AGTCTGAGGG GAGCTAGTGG	180
	AAATCTAGAC AATAGAAGTC ATCGATAGCA GCTTTTCCTC AAATGTGTGA CTCCTCAGGG	240
40	GCTAAACTGC TCTTAGCTTA GAATTATGCT TTACTAGAGA TCTAGCAGAT AAGTGGGTTA	300
	ATCACTACCA TCCTGTAACT AGTTATATAG CTTCCAGACA TGAGGGAGAC ATCAAACAGG	360
45	GATGGAAGCA ACCCCAAGGA TATGCAAGAA GGGCATGATG AACCCCCTTC CCTCTGGCAG	420
43	GAGAACAAGG CCAACCAAGG GACAGACTGG AAAGCACTTA GATGTTTAAG GAGGAGAAAG	480
	GGGAAGCTTT GACCAGTCCT TGCCTTTTGC CAAGTTCAGC CAGTTCTCCG CTGCTTGCAA	540

CCTCTAGCGC AGTAACATTT GCAGAATTGC AGATTTTCCC CCAGATACTA GGAGGAAAGG

GACTITIGGG GGTGGGAAG GGGTCGTGGT GTTTTAAAAG CATAAGITAC CTGTTTGCAC
TGTTTTAAGA TAGGAAAAAA AAATAGTGGG CAAGGTGAAC ATCAGACGTA AATTTGTGTG

TTTTTATTTT GTCATGCTCT TGAAAATGTT TGACCATTTG TAGTATACAC AGTGAAACTT

GATTCTCTGT TGCATAAAAC ACTATATTTT TTTGGAAATG TTACTGTCCA AAAGCCTCTT

CCCTCCCTTT CCTTTTCCTA TGTACTTCCT TCATACTTGC TTTACTGATC AGCCAGGCAA

	TAGCCATCCA	AGAGCTAGAG	CATGAAACAG	GCCCTTTCC	AAGTAGGCTC	TGGGTGTCCT	960
5	AAGCCAGCGT	GIGCCCICIG	GTTTAGTGAG	TGTAATAGAG	TCCCTGGCAC	CTTTCTTTGC	1020
	AAATGAGGCT	AACAGACCAG	ACTGCAGCAA	GTTATCAGAT	TCCTCAATCA	GATGCACTAG	1080
	GAGTGAGGAG	CCCAGGGATG	GAGGGGGTTC	CTGAAGTATT	GCAGTTGGCT	GTAGTAGCTG	1140
10	AGTTCTTTTC	CATGTTACCG	AAACTGTAGC	CAGTTACAGT	TTACTCAGGA	AAACGGTAGA	1200
	TCAATTCAGC	CATGGTAGTG	CTGGTTGGCA	GGGATTGGTA	ACGGAGAGAA	CTGCTCATCA	1260
15	GCCAAAACTC	AAGCCTTGCC	TTTTAGGAGG	CCACCAGCAG	AGGGACTTGG	TCCTCCTTGT	1320
	CTGGTACTTG	TGTACATGCC	GGTGACCTGA	GGACTCCACT	CACACTGGCG	AGCAAAAAGG	1380
	GAGCAGTGAT	TCTCTTTTCT	CTCCCCACCC	CCTGCCCTTT	GTTACCAACA	CCAGITICCC	1440
20	AGGGGGTACA	TGAGTTTCTG	AAATTTTTAAA	AAATGTTTTT	GCTTTGGTTT	TTCTGGGGAC	1500
	TGATAAGTGC	TTTAAGCAAT	GTCCATACCC	CGTCAAGACT	CCCAGCTTAG	TCATTTTCTT	1560
25	GTATTTTTCT	GTTCACAGTA	TTTGTGTGTG	TGCTTGTTTT	GGCAGCTCAT	TTTGGCTGTA	1620
	TTATATATTG	AGTGATGAAT	TGATCCTCTT	TTTTCCCTAA	GGGATATGAA	TIGITITICI	1680
	TGTGTTATAT	TCTGCTTGTG	AATAGCTGGA	GCAAACCTGG	GGCTGACACG	CGTAAGSTAG	1740
30	GGCTGCAAAR	CGAGAAGAGA	GCCGGTGGAG	TGTACTTGTC	CCTGACAGGC	TGACCTACCT	1800
	GAGTCTCTGA	GCTTTTCAGT	CCAAATCTTT	GCAAGGCTCA	AAATGCCACA	GAACCTCTCC	1860
35	TCTTCTCCCC	ACTCCCCATG	GCAGGGACCG	GACCATCCCT	ACATGCAACA	TGCTGTTCCT	1920
	CCAGCCCCTC	CCATTGCCAT	GGCAAAACAG	GTACCTTTGG	GCCATGGGGG	CATTACATGG	1980
	GATGCTTGTG	TAATCGACCA	CCTAGCCTTC	TCTCTCCCCT	сссстсстсс	CCCAGAATCA	2040
10	CTTCCTAGGA	CACCCGAGCT	GCTTGCCCAG	GGTCCTGTTT	CCCTGCTAAC	TCCAGAGAAG	2100
	CATCCCAGGG	CTTTGTGACA	GTCTCTAATT	CCCTTCCCTT	CTCGTTAAGA	ATCATATIGT	2160
15	ATAGTAGCTT	TCAGACCATA	CAGTATTCAT	TGGGTTACTC	CTATTATTAT	CAAGTAGCTG	2220
	GAATTGTGAA	GGTCGGAGTA	GTTAGATCTT	TAGCTTTTAT	TCCTTATTTT	TTTGTATTAC	2280
	TCTCCATGTG	TATAAATTAT	TGATCATGTT	GCTGGCTTTT	ATAAACTCTA	AGCGAAGGAG	2340
50	GAGCACTGCC	TCAGCCTTTG	CACATGGTAA	TGAAGCACTG	TTTTTAAATA	AAAGRGRGAA	2400
	MCMCCAAAAA	ААААА					2416

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 545 base pairs

⁽²⁾ INFORMATION FOR SEQ ID NO: 298:

529

	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 298:	
	GAATTCGCCA CGAGCCATGC YTGGCCTCTC CTTGATTCTT ACAGTCACTT TGTTGGCTGT	60
10	TTCTGACTCA GCAGCTACCT GCATTGTGGC CAAAGGATGA CCTATTCCTT CTCAGGAGGG	120
	CAAAAATGTG GAATAGTGTC TGTCCATGCC TCTCCTCATG GGCTACCACC TCTGCCACCG	180
	TGGTTAATCA GTAACAACCA GGAGAGAAGC TGCTGGAACT GACCTCTGGG AACTCCCTGG	240
15	ATGGTTTGGT GCAGGAATGT AGTAGGCATA CACGTGGTTG CGTGGATCTG GGCCCTCCTG	300
	ATGTGAGTAG AGAGGTAAAA GGSCACCATC TCCTTGACCT YTGGGGAACT CATCCACAAA	360
20	GAAGATGTTT CCAAGATGCT TCTGAAGATT GSCTAAAAAT AGCCGGTTTC CACCCCGTG	420
	AATGCATCCA TTCTAGAATG CTCCTTCACC AGGACCAGAG AACTGATTTA CAGAAGTGAC	480
	ATGAAAACAT TCCATCCCAG AATTTGCANT ACCTCAAATT NAATTTCTAC CTATTAAAAA	540
25	NAAAA	545
30	(2) INFORMATION FOR SEQ ID NO: 299:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1530 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299:	
40	GGCTCTGCTG GGCATCATAC TTGTCACTGG GTAAACAGTT TGCCCCACTTA CCGCAGATGA	60
	AGCTGCTTGC CAGGGCTCTC CGGCTCTGTG AGTTTGGGAG GCAGGCATCT TCCAGGAGGC	120
	morror character concretato hattitonano ochonici iccharando	
45	TOGTOGCTOG CCAGGGATGT GTGGGGCCCC GGCGAGGGTG CTGCGCTCCC GTCCAGGTGG	180
45		
45	TOGTGGCTGG CCAGGGATGT GTGGGGCCCC GGCGAGGGTG CTGCGCTCCC GTCCAGGTGG	180
4550	TOGTGGCTGG CCAGGGATGT GTGGGGCCCC GGCGAGGGTG CTGCGCTCCC GTCCAGGTGG TTGGGCCCAG GGCTGATCTC CCACCCTGTG GAGCCTGCAT TACTGGAAGG ATCATGCGGC	180 240

CGCATGTCAG CGCGGAGATC ACCTACACCT CCAAGCACTC TGTGGAGGTG CAGGTCAACG

TGATGTCCGA AAACATCCTC ACAGGTGCCA AAAAGCTGAC CAATAAGGCC ACCCTGTGGT

ATGTGCCCCT GTCGCTGAAG AATGTGGACA AGGTCCTCGA GGTGCCTCCT GTTGTGTATT

CCCGCANGA GCAGGAGGAG GAGGGCCGGA AGCGGTATGA AGCCCAGAAG CTGGAGCGCA

55

60

480

540

600

530

	MCCACACCA A	CICCACCAAC	0000101000	MCC3 CCC3 cm		a.aaaaa.	70.0
	TGGAGACCAA	GIGGAGGAAC	GGGGACATCG	TCCAGCCAGT	CCTCAACCCA	GAGCCGAACA	720
5	CTGTCAGCTA	CAGCCAGTCC	AGCTTGATCC	ACCTGGTGGG	GCCTTCAGAC	TGCACCCTGC	780
J	ACGGCTTTGT	GCACGGAGGT	GTGACCATGA	AGCTCATGGA	TGAGGTCGCC	GGGATCGTGG	840
	CTGCACGCCA	CTGCAAGACC	AACATCGTCA	CAGCTTCCGT	GGACGCCATT	AATTTTCATG	900
10	ACAAGATCAG	AAAAGGCTGC	GTCATCACCA	TCTCGGGACG	CATGACCTTC	ACGAGCAATA	960
	AGTCCATGGA	GATCGAGGTG	TTGGTGGACG	CCGACCCTGT	TGTGGACAGC	TCTCAGAAGC	1020
15	GCTACCGGGC	CGCCAGTGCC	TTCTTCACCT	ACGTGTCGCT	GAGCCAGGAA	GGCAGGTCGC	1080
13	TGCCTGTGCC	CCAGCTGGTG	CCCGAGACCG	AGGACGAGAA	GAAGCGCTTT	GAGGAAGGCA	1140
	AAGGCCGCTA	CCTGCAGATG	AAGGCGAAGC	GACAGGGCCA	CGCGGAGCCT	CAGCCCTAGA	1200
20	стесетесте	CTGCCACTGG	TGCCTCGAGT	AGCCATGGCA	ACGGGCCCAG	TGTCCAGTCA	1260
	CTTAGAAGTT	CCCCCCTTGG	CCAAAAACCC	AATTCACATT	GAGAGCTGGT	GTTGTCTGAA	1320
25	GTTTTCGTAT	CACAGTGTTA	ACCTGTACTC	TCTCCTGCAA	ACCTACACAC	CAAAGCTTTA	1380
23	TTTATATCAT	TCCAGTATCA	ATGCTACACA	GTGTTGTCCC	GAGCGCCGGG	AGGCGTTGGG	1440
	CAGAAACCCT	CGGGAATGCT	TCCGAGCACG	CTGTAGGGTA	TGGGAAGAAC	CCAGCACCAC	1500
30	TMATAAAGCT	GNTGCTTGGC	TGGGGAAGNA				1530

35 (2) INFORMATION FOR SEQ ID NO: 300:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 997 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 300:

45	AGGTAGTGAG	AGACACATTA	CACCTAACCA	ACAAGAAGAA	GGATCCTCCC	ССТТАТААТТ	60
	TAACTATGTT	TACAGGGAAT	GCGTACATTG	TGGCTTCCCG	AGNATTTCGT	CCAACATGTT	120
50	TTGAAGAACC	СТАААТСССА	ACAACTGATT	GAATGGGTAA	AAGACACTTA	TAGCCCAGAT	180
50	GAACACCTCT	GGGCCACCCT	TCAGCGTGCA	CGGTGGATGC	CTGGCTCTGT	TCCCAACCAC	240
	CCCAAGTACG	ACATCTTCAG	ACATGACTTC	TATTGCCAGG	CTGGTCAAGT	GGCAGGGTCA	300
55	TGAGGGAGAC	ATCGATAAGG	GIGCTCCTTA	TGCTCCCTGC	TCTGGAATCC	ACCAGCGGGC	360
	TATCTGCGTT	TATGGGGCTG	GGGACTTGAA	TTGGATGCTT	CAAAACCATC	ACCTGTTGGC	420
60	CAACAAGTTT	GACCCAAAGG	TAGATGATAA	TGCTCTTCAG	TGCTTAGAAG	AATACCTACG	480

531

	TTATAAGGCC	ATCTATGGGA	CTGAACTTTG	AGACACACTA	TGAGAGCGTT	GCTACCTGTG	540
	GGGCAAGAGC	ATGTACAAAC	ATGCTCAGAA	CTTGCTGGGA	CAGTGTGGGT	GGGAGACCAG	600
5	GGCTTTGCAA	TTCGTGGCAT	CCTTTAGGAT	AAGAGGGCTG	MTATTAGATT	GTGGGTAAGT	660
	AGATCTTTTG	CCTTGCAAAT	TGCTGCCTGG	GTGRATGCTG	CTTGTTCTCT	CACCCCTAAC	720
10	CCTAGTAGTT	CCTCCACTAA	CTTTCTCACT	AAGTGAGAAT	GAGAACTGCT	GTGATAGGGA	780
10	GAGTGAAGGA	GGGATATGTG	GTAGAGCACT	TGATTTCAGT	TGAATGCCTG	CTGGTAGCTT	840
	TTCCATTCTG	TGGAGCTGCC	GTTCCTAATA	ATTCCAGGTT	TGGTAGCGTG	GAGGAGAACT	900
15	TTGATGGAAA	GAGAACCTTC	CCTTCTGTAC	TGTTAACTTA	ATAAATA	GCTCCTGATT	960
	CAAAGTAAGG	AAAAARAAAA	AAAGAAAAA	AACTCGA			997

20

25

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 301:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2345 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 301:

TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG 60 CATTTCAGAT CTGCTCGGTA GACCTGGTGC ACCACCACCA TGTTGGCTGC AAGGCTGGTG 120 TGTCTCCGGA CACTACCTTC TAGGGTTTTC CACCCAGCTT TCACCAAGGC CTCCCCTGTT 180 GTGAAGAATT CCATCACGAA GAATCAATGG CTGTTAACAC CTAGCAGGGA ATATGCCACC 240 AAAACAAGAA TTGGGATCCG GCGTGGGAGA ACTGGCCAAG AACTCAAAGA GGCAGCATTG 300 GAACCATCGA TGGAAAAAAT ATTTAAAATT GATCAGATGG GAAGATGGTT TGTTGCTGGA 360 GGGGCTGCTG TTGGTCTTGG AGCATTGTGC TACTATGGCT TGGGACTGTC TAATGAGATT 420 GGAGCTATTG AAAAGGCTGT AATTTGGCCT CAGTATGTCA AGGATAGAAT TCATTCCACC 480 TATATGTACT TAGCAGGAG TATTGGTTTA ACAGCTTTGT CTGCCATAGC AATCAGCAGA 540 ACGCCTGTTC TCATGAACTT CATGATGAGA GGCTCTTGGG TGACAATTGG TGTGACCTTT 600 GCAGCCATGG TTGGAGCTGG AATGCTGGTA CGATCAATAC CATATGACCA GAGCCCAGGC 660 CCAAAGCATC TIGCTIGGTT GCTACATTCT GGTGTGATGG GTGCAGTGGT GGCTCCTCTG 720 ACAATATTAG GGGGTCCTCT TCTCATCAGA GCTGCATGGT ACACAGCTGG CATTGTGGGA 780 GGCCTCTCCA CTGTGGCCAT GTGTGCGCCC AGTGAAAAGT TTCTGAACAT GGGTGCACCC 840 900 CTGGGAGTGG GCCTGGGTCT CGTCTTTGTG TCCTCATTGG GATCTATGTT TCTTCCACCT

	ACCACCGTGG	CTGGTGCCAC	TCTTTACTCA	GTGGCAATGT	ACGGTGGATT	AGTTCTTTTC	960
5	AGCATGTTCC	TTCTGTATGA	TACCCAGAAA	GTAATCAAGC	GTGCAGAAGT	ATCACCAATG	1020
J	TATGGAGTTC	AAAAATATGA	TCCCATTAAC	TCGATGCTGA	GTATCTACAT	GGATACATTA	1080
	AATATATTTA	TGCGAGTTGC	AACTATGCTG	GCAACTGGAG	GCAACAGAAA	GAAATGAAGT	1140
10	GACTCAGCTT	CIGGCTICTC	TGCTACATCA	AATATCTTGT	TTAATGGGGC	AGATATGCAT	1200
	TAAATAGTTT	GTACAAGCAG	CTTTCGTTGA	AGTTTAGAAG	ATAAGAAACA	TGTCATCATA	1260
15	TTTAAATGTT	CCGGTAATGT	GATGCCTCAG	GICIGCCTIT	TTTTCTGGAG	AATAAATGCA	1320
13	GTAATCCTCT	CCCAAATAAG	CACACACATT	TTCAATTCTC	ATGTTTGAGT	GATTTTAAAA	1380
	TGTTTTGGTG	AATGTGAAAA	CTAAAGTTTG	TGTCATGAGA	ATGTAAGTCT	TTTTTCTACT	1440
20	ттааааттта	GTAGGTTCAC	TGAGTAACTA	AAATTTAGCA	AACCTGTGTT	TGCATATTTT	1500
	TTTGGAGTGC	AGAATATTGT	AATTAATGTC	ATAAGTGATT	TGGAGCTTTG	GTAAAGGGAC	1560
25	CAGAGAGAAG	GAGTCACCTG	CAGTCTTTTG	ТТТТТТТААА	TACTTAGAAC	TTAGCACTTG	1620
	TGTTATTGAT	TAGTGAGGAG	CCAGTAAGAA	ACATCTGGGT	ATTIGGAAAC	AAGTGGTCAT	1680
	TGTTACATTC	ATCTGCTGAA	CTTAACAAAA	CTGTTCATCC	TGAAACAGGC	ACAGGTGATG	1740
30	CATTCTCCTG	CTGTTGCTTC	TCAGTGCTCT	CTTTCCAATA	TAGATGTGGT	CATGITTGAC	1800
	TTGTACAGAA	TGTTAATCAT	ACAGAGAATC	CTTGATGGAA	TTATATATGT	GTGTTTTACT	1860
35	TTTGAATGTT	ACAAAAGGAA	ATAACTTTAA	AACTATTCTC	AAGAGAAAAT	ATTCAAAGCA	1920
	TGAAATATGT	TGCTTTTTCC	AGAATACAAA	CAGTATACTC	ATGATTGCTA	AGTGTTTTTT	1980
	TATTTTTGCA	TATTTATTGA	ACTGTCTAAT	TGAATACAGC	TIGCICTIGT	CACCTCTTCA	2040
40	AGCTTTCAAG	CCTTTATAGA	AAAGCTTCTT	TGTGGCTTAC	ACTGGAAATT	ATGAAAGCAG	2100
	TTTTTCTCCT	· AAGACTTTTG	GTTTCTCGCA	TIGCCTCTCA	GACTAAGCAC	TAAAAAGCAA	2160
45	AGCAAAACAG	AACTAGTNCT	GTCTTAATGA	AATATATCAA	CCCAAAAGTG	TAATGAGGAA	2220
	AATGCTTCAT	TAGTTTCCCC	TAGCAGACTI	TTACTTCTCT	TACACTGCTA	CACCATTACT	2280
	TTCTTGAGAC	ATTTGTAAGI	CCTTTGATAC	AGAAGAGTTA	TATTTAGGAG	GNCTTTAATG	2340
50	AAGGG						2345

55 (2) INFORMATION FOR SEQ ID NO: 302:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2369 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

533

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 302:

(D) TOPOLOGY: linear

5	TITTITTT	TTTTTTTTT	TTTTTNCAAG	ATCATTGTTT	АТТТАТТАСТ	TCAGATAAAA	60
	AGATAGTATA	CATATTAGGG	AATCCCTTAA	AATTCAACTC	TAGAGTTATA	CACCATCTAG	120
10	TACTTTTGCA	ATGAATGTTA	ACAACAACAA	AAAAAATCTC	TAAACACCTG	AAAGCCCCAC	180
10	TATTAACATG	GACTATGGTA	АТАААААТТ	TTGACATTTA	ATTTGTTCAA	CATATAGTAT	240
	TTACATTATG	AAACCAATGG	TGATGATACA	TADTDAAATA	AAAGAAATAG	TAAAAATAAA	300
15	CTTTAAAAAG	CAAAGGTTTA	TAGTCTGACA	ATGCTAATTA	TCCTAATTGT	ATATAAAAAA	360
	ттаааасата	GAGCTTTCTG	ТТАСААААТТ	CTTAATCCTC	TGGGTTGTAA	TCATTACTTG	420
20	CTACCAATTT	ACATGCAACA	TCTGCTAGGA	CTGACATTTG	ATTTTTTTCC	CCAAGAATGT	480
20	GTGAGTAGAT	AAATGACATT	TCAGAGCAGA	таттааттта	CITGTGGACA	GAAAAAGAAA	540
	CTCAAGATTG	GTACTGGTCA	CAAGCCTCTT	CCCAATAGAA	АТТАТАААА	CAGTAAGATA	600
25	AAATTTAAAA	AAAATCTAAA	AAGGGGATGC	ATAGGCAAAG	AGTACCATAA	ATGGCACAGC	660
	TCAAAAAATC	CCAGGACCAA	TCAGACACAC	ATCTTTTCTC	TCTCCTTCAG	CGACAAGAGG	720
30	TCGATTTTGC	CATCAAATAA	CCATGATTGA	AGCAAGCGAG	GGGCACCAGG	TGTACAACTG	780
30	ATTAGATCTT	GCAAAATACT	AAGATGGGAG	CAGGGGTGGC	CAGAAGAAGG	GGTAATTTAT	840
	ATATAATTCA	AACTATATAC	AGCATAAATG	GAATGCAGCC	CATCCCAAAC	TGGCTCTGTG	900
35	AAACAATTGG	ACCTTTATAG	TTAAAATTAT	AACAAGTGTA	ATAATACAAT	AGATTTACAT	960
	GGGAAGCAAA	ATCCAAGGGA	CATTTTATAT	TAAGTATTTA	CIGIGCIGIT	TCAATTTAAA	1020
40	AATAATTTTG	CTAAGTATAC	ATCTCAACTG	AAGTCTATGT	AAAAAATGTC	CTAATAGATA	1080
	CAGATATTTA	CCTTTGGTGA	GTTGAAGGCC	TTTTTGTGAC	TTCTGTCTGA	ACTGTAGGCA	1140
	GAATGCTAGA	TGTACATGCA	CATATGGAGA	AACTCAAGCT	GAGGTCATCC	AAAAGCTGTG	1200
45	CGTATGAGGA	GGCTGGAGGT	ACTTTGAAAG	TCAAAGTAGA	CCAGAAACCC	AAAACAGGTA	1260
	ACAGTGAGGA	TGGCAACAGG	GAATGGAATG	CCAATATGGC	AGTAAAACTT	TTTTTAAAAA	1320
50	CAGAAAGAGG	AAGGCCTCTC	GTACCAGCAG	AATCCTGTAC	ACGTACAAAA	AAGAAAAAGC	1380
	CACCCACCAT	TTTGTAAAAC	AGAAGCCAAT	TATAGTGTGG	GAAAGTACAA	ATTACAGAAA	1440
	ACCAGAAGTC	AACAGAAGAA	AAACTACTGG	TITACTTGAG	AGAAAGGAGA	ATGGTTCACC	1500
55	CCGACCAGAG	TTACTTGGTG	AACGCCGCCA	CCACCGCCCA	CAGAACCTCA	TIGGIGIIGG	1560
	CCTTCAGACA	TTCCACTTCA	GGGTCTAAGT	CGAGAARNTG	CCGCACTCTC	TTGGTAGCCA	1620
60	AATCATACTG	CTCGTCCAGA	AGAGGAGCAA	AAGCATTCTC	CAGGACGTCC	GAGGCATGAG	1680

534

	CCAGGTAAAT GAGGGCCAGC AAGCGCCTGT CCATGCGGTG AGGGTCATTC ACCCATTTGT	1740
	CAAGAACGGC TICCTGTACT TICTTGATGA GGCGCTGCTT AATGTTGTTA TIGGTGAGGG	1800
5	GATGTGTTGT CATGTCAAAA AGTAGGAAGT TCTGTTTCTC TGTTGTCAAT ACACCCTTTT	1860
	CCACCAGGTT TITAGCTAAT CGTTCCCGTA CATTTCTTAA CTGATAATGC AATTTTAATG	1920
10	GATTCCATGT CTCACCACTA AGTAATTCAA TCCAGTTCTG GACCGTTTCT GGAGGCTGAG	1980
10	TTTCCTTAAC ATGCTTCAGA GCTTCATCAA GAAGAACATC CCCTGTTGGA GCATCTGACT	2040
	TACAGATTAC CTTTCTTGTT AATAGACTTT TACGTCTCAT TCCACAAGCC TCTAGTTGTA	2100
15	ACCTTCCTCT CAATGCTAAT TCAATTAACA TACAGCCACG TAATCCAGAT GATATACAGT	2160
	CATTCCAAAA TGATGTGTAA ACCTTCGCGG TCCTTGAGGC CCAGCAGGAG CACTTCCTCC	2220
20	ATCAGGGTCA GCCGCGTTTC CTTGGAGTCG CCCTTGTCGT CGTCGTCCTG CTCGTCGCGG	2280
20	CGGCTCTGCG CGTCGTCCTC GCTGCTAGCC GCGCCGCCGC CCGCCGCCCG CTCCTTGTCG	2340
	GCGGCGTTGC GGGAGGCCTC GGTGCGCCG	2369
25		
30	(2) INFORMATION FOR SEQ ID NO: 303: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303:	60
40	GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG	60
40	CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGYTG CTGGTCCCGG GTGATGCTAG	120
	GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG GTGTAGGTGG GAGTCACGGA CGGTTCGGGG	
45	CCCGAGGTGT CCGCGAAGGT GGCGCACATG GGCGGCAGGG GAGAGCATGG CTCAGCGGAT	300
	GGTCTGGGTG GACCTGGAGA TGACAGGATT GGACATTGAG AAGGACCAGA TTATTGAGAT	
50	GGCCTGTCTG ATAACTGACT CTGATCTCAA CATTTTGGCT GAAGGTCCTA ACCTGATTAT	360
50	AAAACAACCA GATGAGTTGC TGGACAGCAT GTCAGATTGG TGTAAGGAGC ATCACGGGAA	420
	GTCTGGCCTT ACCAAGGCAG TGAAGGAGAG TACAATTACA TTGCAGCAGG CAGAGTATGA	480
55	ATTICTOTCC TITIGTACGAC AGCAGACTCC TCCAGGGCTC TGTCCACTTG CAGGAAATTC	540
	AGTTCATGAA GATAAGAAGT TTCTTGACAA ATACATGCCC CAGTTCATGA AACATCTTCA	600
	TTATAGAATA ATTGATGTGA GCACTGTTAA AGAACTGTGC AGACGCTGGT ATCCAGAAGA	000

ATATGAATTT GCACCAAAGA AGGCTGCTTC TCATAGGGCA CTTGATGACA TTAGTGAAAG

720

535

	CATCAAAGAG	CTTCAGTTTT	ACCGAAATAA	CATCTTCAAG	AAAAAAATAG	ATGAAAAGAA	780
5	GAGGAAAATT	ATAGAAAATG	GGGAAAATGA	GAAGACCGTG	AGTTGATGCC	AGTTATCATG	840
,	CTGCCACTAC	ATCGTTATCT	GGAGGCAACT	TCTGGTGGTT	TTTTTTCTC	ACGCTGATGG	900
	CTTGGCAGAG	CMCTTCGGTT	AACTTGCATC	TCCAGATTGA	TTACTCAAGC	AGACAGCACA	960
10	CGAAATACTA	TITITCTCCT	AATATGCTGT	TTCCATTATG	ACACAGCAGC	TCCTTTGTAA	1020
	GTACCAGGTC	ATGTCCATCC	CTTGGTACAT	ATATGCATTT	GCTTTTAAAC	CATTTCTTTT	1080
15	GTTTAAATAA	ATAAATAAGT	AAATAAAGCT	AGTTCTATTG	AAATGCAAAA	ааааааааа	1140
	АААААААА	АААААААА	АААААААА	АААААААА	N		1181

20

25

30

(2) INFORMATION FOR SEQ ID NO: 304:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1537 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 304:

CTTTTTGTGT TCCGGCCGAT CCCACCTCTC CTCGACCCTG GACGTCTACC TTCCGGAGGC 60 CCACATCTTG CCCACTCCGC GCGCGGGGCT AGCGCGGGTT TCAGCGACGG GAGCCCTCAA 120 35 GOGACATOGC AACTACAGOG GOGCCGGCGG GCGCGCCCG AANATGGAGC TGGCCCGGAA 180 TGGGGAGGT TCGAAGAAA CATCCAGGC GGAGGCTCAG CTGTGATTGA CATGGAGAAC 240 ATGGATGATA CCTCAGGCTC TAGCTTCGAG GATATGGGTG AGCTGCATCA GCGCCTGCGC 300 40 360 GAGGAGAG TAGACGCTGA TGCAGCTGAT GCAGCTGCTG CTGAAGAGAG GGATGGAGAG TTCCTGGCCA TGAAGGGCTT TAAGGGACAG CTGAGCCGGC AGGTGGCAGA TCAGATGTGG 420 45 CAGGCTGGGA AAAGACAAGC CTCCAGGGCC TTCAGCTTGT ACGCCAACAT CGACATCCTC 480 AGACCCTACT TIGATGIGGA GCCTGCTCAG GIGGGAACAG GGCTCCTGGA GTCCATGATC 540 CCTATCAAGA TGGTCAACTT CCCCCAGAAA ATTGCAGGTG AACTCTATGG ACCTCTCATG 600 50 CTGGTCTTCA CTCTGGTTGC TATCCTACTC CATGGGATGA AGACGTCTGA CACTATTATC 660 720 CGGGAGGCA CCCTGATGGG CACAGCCATT GGCACCTGCT TCGGCTACTG GCTGGGAGTC 55 TCATCCTTCA TTTACTTCCT TGCCTACCTG TGCAACGCCC AGATCACCAT GCTGCAGATG 780 840 ATCCACCTCC ACGCCCTCTT CTACCTCTTC TGGCTGTTGG TGGGTGGACT GTCCACACTG 900 60

PCT/US98/04493 WO 98/39448

536

	CGCATGGTAG	CAGTGTTGGT	GTCTCGGACC	GTGGGCCCCA	CACAGCGGCT	GCTCCTCTCT	960
	GGCACCCTGG	CTGCCCTACA	CATGCTCTTC	CIGCICTATC	TGCATTTTGC	CTACCACAAA	1020
5	GTGNTAGAGG	GGATCCTGGA	CACACTGGAG	GCCCCAACA	TCCCGCCCAT	CCAGAGGGTC	1080
	CCCAGAGACA	TCCCTGCCAT	GCTCCCTGCT	GCTCGGCTTC	CCACCACCGT	CCTCAACGCC	1140
10	ACAGCCAAAG	CTGTTGCGGT	GACCCTGCAG	TCACACTGAC	CCCACCTGAA	ATTCTTGGCC	1200
10	AGTCCTCTTT	CCCGCAGCTG	CAGAGAGGAG	GAAGACTATT	AAAGGACAGT	CCTGATGACA	1260
	TGTTTCGTAG	ATGGGGTTTG	CAGCTGCCAC	TGAGCTGTAG	CTGCGTAAGT	ACCTCCTTGN	1320
15	AGCTGTCGGC	ACTTCTGAAA	GCACAAGGCC	AAGAACTCCT	GGCCAGGACT	GCAAGGCTCT	1380
	GCAGCCAATG	CAGAAAATGG	GTCAGCTCCT	TTGAGAACCC	CTCCCCACCT	ACCCCTTCCT	1440
20	TCCTCTTTAT	CTCTCCCACA	TTGTCTTGCT	AAATATAGAC	TTGGTAATTA	AAAAAAAA	1500
20	АААААААА	АААААААА	AAAAAAGGGG	GGNCCCC			1537

25

30

35

60

(2) INFORMATION FOR SEQ ID NO: 305:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1493 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 305:

TGCATGCCAA AACCAATGCC TGCCAAACAA AATCTTAGAC ATCCCAATAT AATATGTTAG TTATATTCT ATTCACATCA TTATTGAAAA TACCCAGCTC AGTGCCTGGC TTAATAAATG 120 40 TTTAATTCCC TTACCTACTC TTGCTCTATT TTTTTATTTG AAATGGAGAT GAGCAAAATA 180 ACACATTCAT GGCTGAAGCA ATTTTTTGGA CATTTCTTGT TACCAAAAGA TCTATAATCA 240 GGATGATCCT GAGCTGTTCA AACAAGCTGT ATATAAACAG ACAATGAAAC TCTTTGCAGA 300 45 GCTGGAAATT AAAAGGAAAG AGAGAGAAGC CAAAGAGATG CATGAAAGGA AACGACAAAG 360 GGAAGAAGAG ATTGAAGCTC AAGAAAAAGC CAAACGGGAA AGAGAGTGGC AGAAAAACTT 420 50 TGAGGAAAGT CGAGATGGTC GTGTGGACAG CTGGCGAAAC TTCCAAGCCA ATACGAAGGG 480 GAAGAAAGAG AAGAAAAATC GGACCTTCCT GAGACCACCG AAAGTAAAAA TGGAGCAACG 540 600 TGAGTGACCG CCCAAGGTCA CAGGCACAGA ACCTTTCCCC TGCTATCTCC CTTCCTGCTT 55 CGAACGACTC ATTCTTTCCT CCCACTTCCA CCCCAACATA GAGTAGTATT TGCTTTTTAG 660

TCCATTTGT TITCAATACG ATTTAATATC GATCAGAGTA ATTCTTTTGT ACATTGAAAT

GAGGGGCTTG GTTTAAAAAA AGACCTTTCC CTCTCCCTGC CCCTAGAACA ACCAGTATTA

60

537

	GAAGGTGCCA CCATTGGTGC TGCCTTCTCT TCCCACAGCC TGTAACTCAG TGTTTTGTAC	840
5	TTCACTGAAT TGTGATGGTT AGAAACTTCG TGGATAGTTT GTGGAAATCA TCCAATTAAA	900
J	CATACTECTT AAAACAGTET TECTETGACT TCAGAGACAA GCCTEGAAGG GGCACCTTAG	960
	GAAGCCCCTT CGCTTCAGTT GCTCGCTTCT GGGTGTGCTC CCTTCGAAGG CCCAGATAAG	1020
10	ACAGGGAACA CTTGTGAGCA CACAGAGCAG CATCTGATGC CCTGTGGTGT TTGGCATGTG	1080
	CCCCCTGTCT ACTGACCAAT CAGTGTGGCA TGAGGCCCAC GCCACCCAAA CCTTTCACTT	1140
15	TCCAAAGAGC TAGCCGTCCT CCACCCAGTA CCATGTCCTA GCCTGTCTGC ATTTGTTAGT	1200
10	GGTAATATIC TITATGTATA ATAAATTITT ATACCCAAGC CATTGATGTA CTTTTCCTTG	1260
	TACTCTCCCT TGTGGGTCCC TTGTCTGGCT TGGCTGAACC CCAAAATGCT TTGGGGTTGG	1320
20	ACAGACCTGG CTGAACCTTA GTTTCTTCAT CTATGAAATG GGAATATGAA TTACTGCAGC	1380
	AGCTTTTAGG GCAGATTTGC CATGGCATAT ACAAGGTAAC TACCATAGTG CTCCTTGGGT	1440
25	ATTGCCAATA TCCTATTATT TCTGTGTAAA ATGAAGATAC TGATTGTTTT GAG	1493
30	(2) INFORMATION FOR SEQ ID NO: 306: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 577 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30 35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 577 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 577 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 577 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306: AATTCGGCAG AGGNATTATA TACACTATAC TGGCATTTAC TGTTTCACCC AGCCCGGAAA	60
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 577 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306: AATTCGGCAG AGGNATTATA TACACTATAC TGGCATTTAC TGTTTCACCC AGCCCGGAAA GTCAGAGATG TATATTGGAA AATTTACAAC TCCATCTACA TTGGTTCCCA GGACGCTCTC	120
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 577 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306: AATTCGGCAG AGGNATTATA TACACTATAC TGGCATTTAC TGTTTCACCC AGCCCGGAAA GTCAGAGATG TATATTGGAA AATTTACAAC TCCATCTACA TTGGTTCCCA GGACGCTCTC ATAGCACATT ACCCAAGAAT CTACAACGAT GATAAGAACA CCTATATTCG TTATGAACTT	120 180
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 577 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306: AATTCGGCAG AGGNATTATA TACACTATAC TGGCATTTAC TGTTTCACCC AGCCCGGAAA GTCAGAGATG TATATTGGAA AATTTACAAC TCCATCTACA TTGGTTCCCA GGACGCTCTC ATAGCACATT ACCCAAGAAT CTACAACGAT GATAAGAACA CCTATATTCG TTATGAACTT GACTATATCT TATAATTTTA TTGTTTATTT TGTGTTTAAT GCACAGCTAC TTCACACCTT	120 180 240
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 577 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306: AATTCGGCAG AGGNATTATA TACACTATAC TGGCATTTAC TGTTTCACCC AGCCCGGAAA GTCAGAGATG TATATTGGAA AATTTACAAC TCCATCTACA TTGGTTCCCA GGACGCTCTC ATAGCACATT ACCCAAGAAT CTACAACGAT GATAAGAACA CCTATATTCG TTATGAACTT GACTATATCT TATAATTTTA TTGTTTATTT TGTGTTTAAT GCACAGCTAC TTCACACCTT AAACTTGCTT TGATTTGGTG ATGTAAACTT TTAAACATTG CAGATCAGTG TAGAACTGGT	120 180 240 300
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 577 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306: AATTCGGCAG AGGNATTATA TACACTATAC TGGCATTTAC TGTTTCACCC AGCCCGGAAA GTCAGAGATG TATATTGGAA AATTTACAAC TCCATCTACA TTGGTTCCCA GGACGCTCTC ATAGCACATT ACCCAAGAAT CTACAACGAT GATAAGAACA CCTATATTCG TTATGAACTT GACTATATCT TATAATTTTA TTGTTTATTT TGTGTTTAAT GCACAGCTAC TTCACACCTT	120 180 240

AGGGATITICA TITITIAATIC ATCTITATGA AGATITAGAA CICATICCIT GIGITTAAAG

GGAATGTTTA ATTGAGAAAT AAACATTTGT GWACAAAATG YTAAAAAAAA AAAAAAAAAA

АААААААА ААААААААА ААААААААА ААСТССБА

480

540 577

538

(2) INFORMATION FOR SEQ ID NO: 307:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2860 base pairs
(B) TYPE: nucleic acid

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(b) Totobol. Illica	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 307:	
	GTGTNGACCG CTCTCNCAAT ATGGCTCCCC CGGGCTGGCA GRWRKTCRGT CWCKRGTGGC	60
15	TAGCCTGTCC TGACAGGGGA GAGTTAAGCT CCCGTTCTCC ACCGTGCCGG CTGGCCAGGT	120
	GGGCTGAGGG TGACCGAGAG ACCAGAACCT GCTTGCTGGA GCTTAGTGCT CAGAGCTGGG	180
	GAGGGAGGTT CCGCCGCTCC TCTGCTGTCA GCGCCGGCAG CCCCTCCCGG CTTCACTTCC	240
20	TCCCGCAGCC CCTGCTACTG AGAAGCTCCG GGATCCCAGC AGCCGCCACG CCCTGGCCTC	300
	AGCCTGCGGG GCTTCCAGTC AGGCCAACAC CGACGCGCAC TGGGGAGGAA GACAGGACCC	360
25	TTGACATCTC CATCTGCACA GAGGTCCTGG CTGGAACCGA GCAGCCTCCT CCTCCTAGGA	420
	TGACCTCACC CTCCAGCTCT CCAGTTTTCA GGTTGGAGAC ATTAGATGGA GGCCAAGAAG	480
	ATGGCTCTGA GGCGGACAGA GGAAAGCTGG ATTTTGGGAG CGGGCTGCCT CCCATGGAGT	540
30	CACAGITCCA GGGCGAGGAC CGGAAATTCG CCCCTTCAGA TAAGAGTCAA CCTCCAACTA	600
	CCGAAAGGGA ACAGGTGCCA GTCAGCCGGA TCCAAACCGA TTTGACCGAG ATCGGCTCTT	660
35	CAATGCGGTC TCCCGGGGTG TCCCCGAGGA TCTGGCTGGA CTTCCAGAGT ACCTGAGCAA	720
	GACCAGCAAG TACCTCACCG ACTTCGGAAA TACACAGAGG GCTCCACAGG TAAGACGGCC	780
	TGATGAAGGC TGTGCTGAAA CCTTAAGGAC GGGGTCAATG CCTGCATTCT GCCACTGCTG	840
40	CAGATCGACC GGGACTCTGG CAATCCTCAG CCCCTGGTAA ATGCCCAGTG CACAGATGAC	900
	TATTACCGAG GCCACAGCGC TCTGCACATC GCCATTGAGA AAGAGGAGTC TGCAGTGTGT	960
45	GAAGCTCCTG GTGGAGAATG GGGCCAATGT GCATGCCCGG GTCTGCGGCG ACTTCTTCCA	1020
	GAAGGCCAA GGGACTTGCT TTTATTTCGG TGAGCTACCC CTCTCTTTGG CCGCTTGCAC	1080
	CAAGCAGTGG GATGTGGTAA GCTACCTCCT GGAGAACCCA CACCAGCCCG CCAGCCTGCA	1140
50	GGCCACTGAC TCCCAGGGCA ACACAGTCCT GCATGCCCTA GTGGATGATC TCGGACAACT	1200
	CAGCTGAGAA CATTGCACTG GTGACCAGCA TGTATGATGG GCTCCTCCAA GCTKGGGSCC	1260
55	SCCYTCTGCC CTACCGTGCA GCTTGAGGAC ATCCGCAACC TGCAGGATCT CACGCCTCTG	1320
	AAGCTGGCCG CCAAGGAGGG CAAGATCGAG ATTTTCAGGC ACATCCTGCA GCGGGAGTTT	1380
	TCAGGACTGA GCCACCTTTC CCGAAAGTTC ACCGAGTGGT GCTATGGGCC TGTCCGGGTG	1440
60	TCGCTGTATG ACCTGGCTTC TGTGGACAGC TGTGAGGAGA ACTCAGTGCT GGAGATCATT	1500

	GCCTTTCATT	GCAAGAGCCC	GCACCGACAC	CGAATGGTCG	TTTTGGAGCC	CCTGAACAAA	1560
5	CTGCTGCAGG	CGAAATGGGA	TCTGCTCATC	CCCAAGTTCT	TCTTAAACTT	CCTGTGTAAT	1620
,	CTGATCTACA	TGTTCATCTT	CACCGCTGTT	GCCTACCATC	AGCCTACCCT	GAAGAAGCAG	1680
	GCCGCCCCTC	ACCTGAAAGC	GGAGGTTGGA	AACTCCATGC	TGCTGACGGG	CCACATCCTT	1740
10	ATCCTGCTAG	GGGGGATCTA	CCTCCTCGTG	GGCCAGCTG	TGGTACTTCT	GGCGGCGCCA	1800
	CGTGTTCATC	TGGATCTCGT	TCATAGACAG	CTACTTTGGA	AATCCTCTTC	CTGTTCCAGG	1860
15	CCCTGCTTCA	CAGTGGTGTC	CCAGGTGCTG	TGTTTCCTGG	GCCATCGAGT	GGTACCTGCC	1920
13	CCTGCTTGTG	TCTGCGCTGG	TGGCTGGGCT	GGCTGAACCT	GCTTTACTAA	TACACGTGGC	1980
	GTTCCAGCAC	ACAGGCAGTC	TACAGTTTCA	TGWICCCTGA	ACCCTCGTG	AGCCTGAGCC	2040
20	AGGAGGCTTG	GCGCCCGAA	GCTCCTACAG	GCCCCAATGC	CACAGAGTCA	GTGCAGCCCA	2100
	TGGAGGGACA	GGAGGACGAG	GGCAACGGGG	CCCAGTACAG	GGGTATCCTG	GAAGCCTCCT	2160
25	TGGAGCTCTT	CAAATTCACC	ATCGCCATGG	GCGAGCTGGC	CTTCCAGGAG	CAGCTGCACT	2220
2 3	TCCGCGGCAT	GGTGCTGCTG	CTGCTGCTGG	CCTACGTGCT	GCTCACCTAC	ATCCTGCTGC	2280
	TCAACATGCT	CATCGCCCTC	ATGAAGCGAA	CGTCACAGTG	TCGCCACTGA	CAGCTGGAGC	2340
30	ATCTGGAAGC	TGCAGAAAGC	CATCTCTGTC	CTGGAGATGG	AGAATGGCTA	TTGGTGGTGC	2400
	AGGAAAAAGC	AGCGGGCAGG	TGTGATGCTG	ACCGTTGGCA	CTAAGCCCAG	ATGGCAGCCC	2460
35	CGATGAGCGC	TGGTGCTTCA	GGGTGGAGGA	GGTGAACTGG	GCTTCATGGG	GAGCAGACGC	2520
	TGCCTACGCT	GTGTGAGGAC	CCGTCAGGGG	CAGGTGTCCC	TCGAACTCTC	GAGAACCCTG	2580
	TCCTGGCTTC	CCCTCCCAAG	GAGGATGAGG	ATGGTGCCTC	TGAGGAAAAC	TATGTGCCCG	2640
40	TCCAGCTCCT	CCAGTCCAAC	TGATGGCCCA	GATGCAGCAG	GAGGCCAGAG	GACAGAGCAG	2700
	AGGATCTTTC	CAACCACATC	TGCTGGCTCT	GGGGTCCCAG	TGAATTCTGG	TGGCAAATAT	2760
45	ATATTTCAC	таастсаааа	АААААААА	АААААААА	AAAAVGAGGG	GGGGCCCGKT	2820
- •	ASCCAAWITC	GCCCTATAAG	TGAGTGCCWA	TTACGATAAA			2860

55

60

(2) INFORMATION FOR SEQ ID NO: 308:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 876 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 308:

	CTGCTTGTGT CTGCGCTGGT GCTGGGCTGG CTGAACCTGC TTTACTATAC ACGTGGCTTC	60
	CAGCACACAG GCATCTACAG TGTCATGATC CAGAAGCCCT GGTGAGCCTG AGCCAGGANN	120
5	TTGGCGCCCC GAAGCTCCTA CAGGCCCCAA TGCCACAGAG TCAGTGCAGC CCATGGAGGG	180
	ACAGGAGGAC GAGGCCAACG GGGCCCAGTA CAGGGGTATC CTGGAAGCCT CCTTGGAGCT	240
10	CTTCAAATTC ACCATCGGCA TGGGCGAGCT GGCCTTCCAG GAGCAGCTGC ACTTCCGCGG	300
10	CATGGTGCTG CTGCTGCTGC TGGCCTACGT GCTGCTCACC TACATCCTGC TGCTCAACAT	360
	GCTCATCGCC CTCATGNAGC GAGACCGWCA ACAGTGTCGC CACTGACAGC TGGAGCATCT	420
15	GGAAGCTGCA GAAAGCCATC TCTGTCCTGG AGATGGAGAA TGGCTATTGG TGGTGCAGGA	480
	AGAAGCAGCG GGCAGGTGTG ATGCTGACCG TTGGCACTAA GCCAGATGGC AGCCCCGATG	540
20	AGCGCTGGTG CTTCAGGGTG GAGGAGGTGA ACTGGGCTTC ATGGGAGCAG ACGCTGCCTA	600
20	CGCTGTGTGA GGACCCGTCA GGGGCAGGTG TCCCTCGAAC TCTCGAGAAC CCTGTCCTGG	.660
	CTTCCCCTCC CAAGGAGGAT GAGGATGGTG CCTCTGAGGA AAACTATGTG CCCGTCCAGC	720
25	TCCTCCAGTC CAACTGATGG CCCAGATGCA GCAGGAGGCC AGAGGACAGA GCAGAGGATC	780
	TTTCCAACCA CATCTGCTGG CTCTGGGGTC CCAGTGAATT CTGGTGGCAA ATATATATTT	840
30	TCACTAAMWM AAAAAAAAA AAAAAAAAAA ACTCGA	876
50		
	(2) INFORMATION FOR SEQ ID NO: 309:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2025 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 309:	
	- ·	
45	CATGACCCGC CTGATGCGAT CCCGCACAGC CTCTGGTTCC AGCGTCACTT CTCTGGATGG	60
	CACCOGCAGC CGCTCCCACA CCAGCGAGGG CACCCGAAGC CGCTCCCACA CCAGCGAGGG	120
	CACCCGCAGC CGCTCGCACA CCAGCGAGGG GGCCCACCTG GACATCACCC CCAACTCGGG	180
50	TGCTGCTGGG AACASGCCGG GCCCAAGTCC ATGGAGGTCT CCTGCTAGGC GGCCTGCCCA	240
	GCTGCCGCCC CCGGACTCTG ATCTCTGTAG TGGCCCCCTC CTCCCCGGCC CCTTTTCGCC	300
55	CCCTGCCTGC CATACTGCGC CTAACTCGGT ATTAATCCAA AGCTTATTTT GTAAGAGTGA	360
	GCTCTGGTGG AGACAAATGA GGTCTATTAC GTGGGTGCCC TCTCCAAAGG CGGGGTGGCG	420
	GTGGACCAAA GGAAGGAAGC AAGCATCTCC GCATCGCATC	480

CGGTTGCCAC TCTCCTCCCC TCCCTCAGAG ACACCAAACT GCCAAAAACA AGACGCGTAC 540

	AGCACACACT	TCACAAAGCC	AAGCCTAGGC	CGCCCTGAGC	ATCCTGGTTC	AAACGGGTGC	600
5	CTGGTCAGAA	GGCCAGCCGC	CCACTTCCCG	TTTCCTCTTT	AACTGAGGAG	AAGCTGATCC	660
	AGTTTCCGGA	AACAAAATCC	TTTTCTCATT	TGGGGAGGGG	GGTAATAGTG	ACATGCAGGC	720
	ACCTCTTTTA	AACAGGCAAA	ACAGGAAGGG	GGAAAAGGTG	GGATTCATGT	CGAGGCTAGA	780
10	GGCATTTGGA	ACAACAAATC	TACGTAGTTA	ACTTGAAGAA	ACCGATTTTT	AAAGTTGGTG	840
	CATCTAGAAA	GCTTTGAATG	CAGAAGCAAA	CAAGCTTGAT	TTTTCTAGCA	TCCTCTTAAT	900
15	GTGCAGCAAA	AGCAGGCRAC	AAAATCTCCT	GGCTTTACAG	ACAAAAATAT	TTCAGCAAAC	960
	GTTGGGCATC	ATGGTTTTTG	AAGGCTTTAG	TICIGCTITC	TGCCTCTCCT	CCACAGCCCC	1020
	AACCTCCCAC	CCCTGATACA	TGAGCCAGTG	ATTATTCTTG	TTCAGGGAGA	AGATCATTTA	1080
20	GATTIGTTTT	GCATTCCTTA	GAATGGAGGG	CAACATTCCA	CAGCTGCCCT	GGCTGTGATG	1140
	AGTGTCCTTG	CAGGGGCCGG	AGTAGGAGCA	CTGGGGTGGG	GGCGGAATTG	GOGTTACTCG	1200
25	ATGTAAGGGA	TICCITGITG	TTGTGTTGAG	ATCCAGTGCA	GTTGTGATTT	CTGTGGATCC	1260
	CAGCTTGGTT	CCAGGAATTT	TGTGTGATTG	GCTTAAATCC	AGTTTTCAAT	CTTCGACAGC	1320
	TGGGCTGGAA	CGTGAACTCA	GTAGCTGAAC	CTGTCTGACC	CGGTCACGTT	CTTGGATCCT	1380
30	CAGAACTCTT	TGCTCTTGTC	GCCCTGGGCG	TGGGAACTCA	CGTGGGGAGC	GGTGGCTGAG	1440
	AAAATGTAAG	GATTCTGGAA	TACATATTCC	ATGGGACTTT	CCTTCCCTCT	CCTGCTTCCT	1500
35	CTTTTCCTGC	TCCCTAACCT	TTCGCCGAAT	GGGGCAGCAC	CACTGACGTT	TCTGGGCGGC	1560
	CAGTGCGGCT	GCCAGGTTCC	TGTACTACTG	CCTTGTACTT	TTCATTTTGG	CTCACCGTGG	1620
	ATTTTCTCAT	AGGAAGTTTG	GTCAGAGTGA	ATTGAATATT	GTAAGTCAGC	CACTGGGACC	1680
40	CGAGGATTTC	TGGGACCCCG	CAGTTGGGAG	GAGGAAGTAG	TCCAGCCTTC	CAGGTGGCGT	1740
	GAGAGGCAAT	GACTCGTTAC	CTGCCGCCCA	TCACCTTGGA	GCCTTCCCT	GGCCTTGAGT	1800
45	AGAAAAGTCG	GGGATCGGGG	CAAGAGAGGC	TGAGTACGGA	TGGGAAACTA	TTGTGCACAA	1860
	GTCTTTCCAG	AGGAGTTTCT	TAATGAGATA	TTTGTATTTA	TTTCCAGACC	AATAAATTTG	1920
	TAACTTTGCA	АААААААА	ААААААААА	АААААААА	АААААААА	AAAAAACTC	1980
50	GAGGGGGGCC	CGTACCCAAT	TCGCCGTATA	TGATCGTAAA	CAATC		2025

55 (2) INFORMATION FOR SEQ ID NO: 310:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3026 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

542

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 310:

	me, degenion described to the sale	
5	TAGGCAGCAC TGAAATATCC TAACCCCCTA AGCTCCAGGT GCCCTGTGGN ACGAGCAACT	60
	GGACTATAGC AGGGCTGGGC TCTGTCTTCC TGGTCATAGG CTCACTCTTT CCCCCAAATC	120
10	TTCCTCTGGA GCTTTGCAGC CAAGGTGCTA AAAGGAATAG GTAGGAGACC TCTTCTATCT	180
10	AATCCTTAAA AGCATAATGT TGAACATTCA TTCAACAGCT GATGCCCTAT AACCCCTGCC	240
	TGGATTTCTT CCTATTAGGC TATAAGAAGT AGCAAGATCT TTACATAATT CAGAGTGGTT	300
15	TCATTGCCTT CCTACCCTCT CTAATGGCCC CTCCATTTAT TTGACTAAAG CATCACACAG	360
	TGGCACTAGC ATTATACCAA GAGTATGAGA AATACAGTGC TTTATGGCTC TAACATTACT	420
20	GCCTTCAGTA TCAAGGCTGC CTGGAGAAAG GATGGCAGCC TCAGGGCTTC CTTATGTCCT	480
20	CCACCACAAG AGCTCCTTGA TGAAGGTCAT CTTTTTCCCC TATCCTGTTC TTCCCCTCCC	540
	COCTCCTAAT GGTACGTGGG TACCCAGGCT GGTTCTTGGG CTAGGTAGTG GGGACCAAGT	600
25	TCATTACCTC CCTATCAGTT CTAGCATAGT AAACTACGGT ACCAGTGTTA GTGGGAAGAG	660
	CTGGGTTTTC CTAGTATACC CACTGCATCC TACTCCTACC TGGTCAACCC GCTGCTTCCA	720
30	GGTATGGGAC CTGCTAAGTG TGGAATTACC TGATAAGGGA GAGGGAAATA CAAGGAGGGC	780
30	CTCTGGTGTT CCTGGCCTCA GCCAGCTGCC CACAAGCCAT AAACCAATAA AACAAGAATA	840
	CTGAGTCAGT TTTTTATCTG GGTTCTCTTC ATTCCCACTG CACTTGGTGC TGCTTTGGCT	900
35	GACTGGGAAC ACCCCATAAC TACAGAGTCT GACAGGAAGA CTGGAGACTG TCCACTTCTA	960
	GCTCGGAACT TACTGTGTAA ATAAACTTTC AGAACTGCTA CCATGAAGTG AAAATGCCAC	1020
40	ATTITICTIT ATAATTICTA CCCATGITGG GAAAAACTGG CTTTTTCCCA GCCCTTTCCA	1080
40	GGGCATAAAA CTCAACCCCT TCGATAGCAA GTCCCATCAG CCTATTATTT TTTTAAAGAA	1140
	AACTTGCACT TGTTTTTCTT TTTACAGTTA CTTCCTTCCT GCCCCAAAAT TATAAACTCT	1200
45	AAGTGTAAAA AAAAGTCTTA ACAACAGCTT CTTGCTTGTA AAAATATGTA TTATACATCT	1260
	GTATTTTTAA ATTCTGCTCC TGAAAAATGA CTGTCCCATT CTCCACTCAC TGCATTTGGG	1320
50	GCCTTTCCCA TTGGTCTGCA TGTCTTTTAT CATTGCAGGC CAGTGGACAG AGGGAGAAGG	1380
50	GAGAACAGGG GTCGCCAACA CTTGTGTTGC TTTCTGACTG ATCCTGAACA AGAAAGAGTA	1440
	ACACTGAGGC GCTCGCTCCC ATGCACAACT CTCCAAAACA CTTATCCTCC TGCAAGAGTG	1500
55	GGCTTTCCAG GGTCTTTACT GGGAAGCAGT TAAGCCCCCCT CCTCACCCCT TCCTTTTTTC	1560
	TTTCTTTACT CCTTTGGCTT CAAAGGATTT TGGAAAAGAA ACAATATGCT TTACACTCAT	1620
60	TITCAATTTC TAAATTTGCA GGGGATACTG AAAAATACGG CAGGTGGCCT AAGGCTGCTG	1680

	TAAAGTTGAG	GGGAGAGGAA	ATCTTAAGAT	TACAAGATAA	AAAACGAATC	CCCTAAACAA	1740
	AAAGAACAAT	AGAACTGGTC	TTCCATTTTG	CCACCTTTCC	TGTTCATGAC	AGCTACTAAC	1800
5	CTGGAGACAG	TAACATTTCA	TTAACCAAAG	AAAGTGGGTC	ACCTGACCTC	TGAAGAGCTG	1860
	AGTACTCAGG	CCACTCCAAT	CACCCTACAA	GATGCCAAGG	AGGTCCCAGG	AAGTCCAGCT	1920
10	CCTTAAACTG	ACGCTAGNMA	ATAAACCTGG	GCAAGTGAGG	CAAGAGAAAT	GAGGAAGAAT	1980
10	CCATCTGTGA	GGTGAYAGGC	AAGGATGAAA	GACAAAGAAG	GAAAAGAGTA	TCAAAGGCAG	2040
	AAAGGAGATC	ATTTAGTTGG	GTCTGAAAGG	AAAAGTCTTT	GCTATCCGAC	ATGTACTGCT	2100
15	AGTACCTGTA	AGCATTTTAG	GTCCCAGAAT	GGAAAAAAA	ATCAGCTATT	GGTAATATAA	2160
	TAATGTCCTT	TCCCTGGAGT	CAGTTTTTT	AAAAAGTTAA	CTCTTAGTTT	TTACTTGTTT	2220
20	ААТТСТАААА	GAGAAGGGAG	CTGAGGCCAT	TCCCTGTAGG	AGTAAAGATA	AAAGGATAGG	2280
20	AAAAGATTCA	AAGCTCTAAT	AGAGTCACAG	CTTTCCCAGG	TATAAAACCT	AAAATTAAGA	2340
	AGTACAATAA	GCAGAGGTGG	AAAATGATCT	AGTTCCTGAT	AGCTACCCAC	AGAGCAAGTG	2400
25	ATTTATAAAT	TTGAAATCCA	AACTACTITC	TTAATATCAC	TTTGGTCTCC	ATTTTTCCCA	2460
	GGACAGGAAA	TATGTCCCCC	CCTAACTTTC	TIGCTICAAA	AATTAAAATC	CAGCATCCCA	2520
30	AGATCATTCT	ACAAGTAATT	TTGCACAGAC	ATCTCCTCAC	CCCAGTGCCT	GTCTGGAGCT	2580
50	CACCCAAGGT	CANCCAAACA	ACTTGGTTGT	GAACCCAACT	GCCTTAACCT	TCTGGGGGAG	2640
	GGGGATTAGC	TAGACTAGGA	GACCCAGAAG	TGAATGGGAA	AGGGTGAGGA	CTTCACAATG	2700
35	TTGGCCTGTC	AGAGCTTGAT	TAGAAGCCAA	GACAGTGGCA	GCAAAGGAAG	ACTTGGCCCA	2760
	GGAAAAACCT	GTGGGTTGTG	CTAATITCTG	TCCAGAAAAT	AGGGTGGACA	GAAGCTTGTG	2820
40	GGGTGCATGG	AGGAATTGGG	ACCTGGTTAT	GTTGTTATTC	TCGGACTGTG	AATTTTGGTG	2880
	ATGTAAAACA	GAATATICIG	TAAACCTAAT	GTCTGTATAA	ATAATGAGCG	TTAACACAGT	2940
	AAAATATTCA	ATAAGAAGTC	ААААААА	AAAAAAACT	CGAGGGGGGG	CCCGGTACCC	3000
45	AATTTNCCAA	ATAGAGATNG	TATTAC				3026

50 (2) INFORMATION FOR SEQ ID NO: 311:

55

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 712 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 311:
- 60 GCAGGCTTTG TGCTCACCTA CAAGCTGGGT GAGCAGGGTG CCAGCAGCCT GTTTCCTCTT

CTCCTGCTGG ACCACGCGT TTCTGCTCCC GAGTTGGGAC TGTGGAATGG TGTGGGTGCT 120 GTGGTCTGCT CCATCGCTGG CTCCTCCCTG GGTGGGACCT TGCTGGCCAA GCACTGGAAA 180 5 CTGCTGCCTC TGTTGARGTC GGTGCTGCGC TTCCGCCTCG GGGGCCTAGC CTGTCAGACT 240 GCCTTGGTCT TCCACCTGGA CACCCTGGGG GCCAGCATGG ACGCTGGCAC AATCTTGAGA 300 10 GGGTCAGCCT TGCTGAGCCT ATGTCTGCAG CACTTCTTGG GAGGCCTGGT CACCACAGTC 360 ACCTTCACTG GGATGATGCG CTGCAGCCAG CTGCCCCCCA GGGCCTGCAG GCCACACACT 420 ACAGCCTTCT GGCCACGCTG GAGCTGCTGG GGAAGCTGCT GCTGGGCACT CTGCGGAGGC 480 15 CTGGCTGATG GGTTGGGGCC ACATCCCTGC TTCTTGCTCC TGCTCATCCT CTCTGCCTTT 540 CCCGTTCTGT ACCTGGACCT AGCACCCAGC ACCTTTCTCT GAGCTGAGTG GCTGGAGTGG 600 20 TCAATAAAGC CACATGTGCC TGTGGCCCAA AAAAAAAAA AAAAAAAAA AAAAAAAAA 660 AACTGGAGGG GGGCCCGGT ACCCAAATCG CCGGATATGA TCGTAAACAA TC 712

25

30

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 312:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1289 base pairs

(B) TYPE: nucleic acid .

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 312:

> CAAAATTICA GAACTITCAG GAGGGCAAGA GAATATCAAA CAAAGATTIC TGGAAGTATT 60 120 TTGCCAACCT TCTGGTTGAG CTGCAAGAAA ATATTTATGG TGAGAACTTT TCTGTTTCCC GTTATTGGTT TTTTGGTTGG TTTTTGTTTG TTTTTTACTA TGCTTTGGTC TGTAAAAATA 180 TGCAACTGAA CTACATTCAG AAGGAAATAT TGTCTACATA GAATATTATA TGAAGTTGGT 240 ACATAATTCT GATGAGGAAA AAAAATCTTT GCAATTCTTT AAGCCATATT GTTGTTTTTC 300 360 TGTGTTGTTT TCCCTGGATG AAAATATCAG TATTAAGTAG ACAGCATATT ATTCAAGTGT TTAGACTTAT TAATATGTTC TTGTCCTGTA TTTATACATA TGTGTATTTT GGAAAGTATT GCCTTTTTTA AGGGAAGCTA TAATTCGATA CATAGTGAAA AAGGGAATGG TGACCCCTTT 480 540 GTGCCTCTTC CACTGAGGAT AACAAACAGC ATTGTAATCC ATTCTCTTGC ACCTTCTTCT TCTTATCTTG TTATTACGGT TTTATTAATT TTGTAGAGGG ACAGGGAGTG GGCAAGGGGA 600 660 AGAAGCAGCT TATTTGACTA ACCAGCCCCT CTGTGGTCCA CCAGCGTCTT GGCTTGGTGG GAGGGCTCTC AATCAGCAGG GCCCCAGGAG GGAAGAAGAA GTGGGGCAAA GCCTGGCCTC 720

545

	GCCGCTCGGG AGCTTTGCCA TCTGAGCCAC GCCTCCTCCA GGCCATGCTC CTTGAACTTG	780
	GAAATGTCAA CCGGAGCCCT TACACCAGCC CTCCAGCATC TAATAGACTT GAATCTACTC	840
5	TAAACGAATA TITAATCCAA CCTCACTACA TTGTAGCTCA GTCCAACGAC TAACCCTGAA	900
	ATGGGGGTGT TCCAGCCTTC AGCGAGATGG CCAAGCGGTC CCCTGGGGGC TGTGGCAGCG	960
10	GGCTTATCCT TCTCTGTTGC CAACCTTGCC GTCCGACCTC CTCCGCCCCC ATGCGGTGAC	1020
10	CCCGTCCGTG TCTGTGTCTG TCCATACGTG TGAGTCCAGC TAAAAAGACA AAACAGAACC	1080
	CGTGGGCCCA GCTCGGAAGG TGCGTGGAGA AGGCTCCGAC GTCTCCGAAG TGCAGCCCTT	1140
15	GGGATGGCAT TCCGTTGTGT GCCTTATTCC TGGAGAATCT GTATACGGCT CGCCTATAGA	1200
	AATATAGCCT CTTCATGCTG TATTAAAAGG ACTTTTAAAA GCAAAAAAAA AAAAAAAAA	1260
20	CTTGAGGGG GGNCCGGTAC CCAATTNIC	1289
20		
25	(2) INFORMATION FOR SEQ ID NO: 313:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 amino acids	
	(B) TYPE: amino acid (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 313:	
	Met Phe Leu Ile Phe Val Tyr Phe Leu Lys Ile Leu Phe Ser Ser Ser	
	1 5 10 15	
35	Leu Pro Phe Leu Trp Leu 20	
40	(2) INFORMATION FOR SEO ID NO: 314:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 128 amino acids	
45	(B) TYPE: amino acid (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314:	
	Met Met Phe Leu Thr Gln Gly Gly Pro Leu Pro Ser Thr Arg Ala Arg 1 5 10 15	
50	Pro Thr Cys Gln Ala Gly Ala Leu Pro Lys Pro Ser Gly Leu Leu Gly	
	20 25 30	
55	Val Thr Cys Trp Asn Gly Leu Lys Gly Pro Leu Cys Gly Asn Arg Cys	
JJ	35 40 45	
	Ser Pro Asn Thr Leu Leu Leu Ala Ala Arg Gln Ala Leu Trp Lys Gly 50 55 60	

Arg Gly Arg Thr His Gln Asp Leu Pro Gly Pro Leu Gln Gly Arg Gln

75 70 65 Leu Gly Pro Glu Pro Lys His Leu Ala Leu Leu Pro Pro Arg Gly Gln 85 90 5 Glu Ala Ser Trp Ala Ser Ser Leu Pro Gly Gln Gly Pro Leu Pro Leu 100 Pro His Ile Asn Cys Thr Val Phe Ser Leu Lys Ala Ser Phe Ile Lys 10 120 15 (2) INFORMATION FOR SEQ ID NO: 315: (i) SEQUENCE CHARACTERISTICS: 20 (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 315: Met Gln Phe Leu Leu Thr Ala Phe Leu Leu Val Pro Leu Leu Ala Leu 25 10 1 Cys Asp Val Pro Ile Ser Leu Gly Phe Ser Pro Ser 25 20 30 (2) INFORMATION FOR SEQ ID NO: 316: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 64 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 316: 40 Met Asp Gly Phe Ser Ser Arg Leu Phe Ser Ser Leu Pro Phe Val Ala 10 Leu Gln Trp Phe Ile Val Ile Ser His Leu Leu Ser Leu Ser Leu Ser 45 25 Ala Cys Cys Tyr Gln Thr His Cys Ser Leu Xaa Gln Leu Ser Ser Ala 40 Phe Ser Xaa Met Gly Glu Ser Cys Val Gly Glu Arg Glu Tyr Xaa Phe 50 55 (2) INFORMATION FOR SEQ ID NO: 317: 60 (i) SEQUENCE CHARACTERISTICS:

```
(A) LENGTH: 21 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 317:
 5
     Met Pro Leu Ile Asn Leu Leu Leu Leu Tyr Tyr Val Pro Asn Gly Gly
              5
                               10
     Lys Gln Asp Lys Lys
10
                  20
     (2) INFORMATION FOR SEQ ID NO: 318:
15
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 39 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
20
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 318:
     Met Gly Arg His Leu Val Leu Val Met Phe Ile Thr Thr Ser Leu His
25
     Ser Gly Thr Pro Val Pro Glu Asn Val Ile Cys Gly Val Thr Lys Gly
                               25
     Pro Gln Gly Lys Lys Lys
              35
30
      (2) INFORMATION FOR SEQ ID NO: 319:
35
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 33 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 319:
40
     Met Leu Trp Trp Ser Arg Asp Tyr Thr Met Val Phe Leu Leu Phe Thr
     Met Val Phe Thr Gly Asp Leu Val Ile Arg Gly Arg Thr Glu Leu Ser
45
                  20
                              25
      Leu
50
      (2) INFORMATION FOR SEQ ID NO: 320:
             (i) SEQUENCE CHARACTERISTICS:
55
                    (A) LENGTH: 88 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 320:
60
     Met Val Cys Ser Ser Leu Cys Asp Ile Gly Gly Ile Ile Thr Pro Phe
```

	1				5					10					15	
5	Ile	Val	Phe	Arg 20	Leu	Arg	Glu	Val	Trp 25	Gln	Ala	Leu	Pro	Leu 30	Ile	Leu
3	Phe	Ala	Val 35	Leu	Gly	Leu	Leu	Ala 40	Ala	Gly	Val	Thr	Leu 45	Leu	Leu	Pro
10	Glu	Thr 50	Lys	Gly	Val	Ala	Leu 55	Pro	Glu	Thr	Met	Lys 60	Asp	Ala	Glu	Asn
	Leu 65	Gly	Arg	Lys	Ala	Lys 70	Pro	Lys	Glu	Asn	Thr 75	Ile	Туг	Leu	Lys	Val 80
15	Gln	Thr	Ser	Glu	Pro 85	Ser	Gly	Thr								
20	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 3	321:							
			(i)	SEQU							_					
25			(xi)	(B) T D) T	YPE: OPOL	ami OGY:	3 am no a lin PTIO	cid ear			: 32:	1:			
		Gln	Pro	Gly		Gly	Val	Leu	Val		Gly	Leu	Leu	Leu	Pro	Pro
30	1 Pro	Gln	Ser	Pro 20	5 Ser	Leu	Ser			10					15	
				20												
35	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO: 3	322:							
10				(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	7 am no a lin	ino cid ear	acid		: 32	2:			
1 5	Met 1	Thr	Phe	Thr	Leu 5	Gly	Asp	Ser	Gln	Val 10	Leu	Leu	Ile	Asn	Leu 15	Phe
	Pro	Ser	Met	Pro 20	Ser	Gly	Ser	Cys	Ala 25	Arg	Pro					
50																
	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO:	323:							
55				(A) L B) T D) T	ENGT YPE : OPOL	H: 6 ami OGY:	4 am ino a : lin	ino cid ear	acid): 32	3:			
50	Met	Cvs	Leu	Glu	Cvs	Tro	Ala	Glu	Asn	Leu	Glv	Pro	His	His	Thr	Ser

	1				5					10					12	
5	Ser	Leu	Leu	Asn 20	Pro	Arg	His	Leu	Pro 25	Ser	Ile	Pro	Ala	Met 30	Phe	Pro
J	Val	Ser	Ser 35	Gly	Cys	Phe	Gln	Glu 40	Gln	Gln	Glu	Met	Asn 45	Lys	Ser	Leu
10	Val	Ser 50	Cys	Leu	Phe	Val	Leu 55	His	Phe	Val	Leu	His 60	Cys	Ile	Phe	Xaa
15																
	(2)		ORMAT													
20			(i) :	(,		ENGT	н: 1	96 a	mino		ds					
			(xi)		D) TY JENCI					EQ II	ОИС	: 32	4:			
25	Met 1	Leu	Ser	Thr	Ser 5	Glu	Tyr	Ser	Gln	Ser 10	Pro	Lys	Met	Glu	Ser 15	Leu
30	Ser	Ser	His	Arg 20	Ile	Asp	Glu	Asp	Gly 25	Glu	Asn	Thr	Gln	Ile 30	Glu	Asp
30	Thr	Glu	Pro 35	Met	Ser	Pro	Val	Leu 40	Asn	Ser	Lyś	Phe	Val 45	Pro	Ala	Glu
35	Asn	Asp 50	Ser	Ile	Leu	Met	Asn 55	Pro	Ala	Gln	Asp	Gly 60	Glu	Val	Gln	Leu
	Ser 65	Gln	Asn	Asp	Asp	Lys 70	Thr	Lys	Gly	Asp	Asp 75	Thr	Asp	Thr	Arg	Asp 80
40	Asp	Ile	Ser	Ile	Leu 85	Ala	Thr	Gly	Cys	Lys 90	Gly	Arg	Glu	Glu	Thr 95	Val
45	Ala	Glu	Glu	Val 100	Cys	Ile	Asp	Leu	Thr 105	Cys	Asp	Ser	Gly	Ser 110	Gln	Ala
45	Val	Pro	Ser 115	Pro	Ala	Thr	Arg	Ser 120	Glu	Ala	Leu	Ser	Ser 125	Val	Leu	Asp
50	Gln	Glu 130	Glu	Ala	Met	Glu	Ile 135	Lys	Glu	His	His	Pro	Glu	Glu	Gly	Ser
	Ser 145	Gly	Ser	Glu	Val	Glu 150		Ile	Pro	Glu	Thr 155	Pro	Cys	Glu	Ser	Gln 160
55	Gly	Glu	Glu	Leu	Lys 165	Glu	Glu	Asn	Met	Glu 170	Ser	Val	Pro	Leu	His 175	Leu
60	Ser	Leu	Thr	Glu 180	Thr	Gln	Ser	Gln	Gly 185	Leu	Cys	Leu	Arg	Arg 190	His	Pro

550

Lys Lys Lys 195

5 (2) INFORMATION FOR SEQ ID NO: 325: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 252 amino acids 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 325: Met Gly Gly Asp Leu Val Leu Gly Leu Gly Ala Leu Arg Arg Lys 15 10 Arg Leu Leu Glu Gln Glu Lys Ser Leu Ala Gly Trp Ala Leu Val Leu 20 Ala Xaa Xaa Gly Ile Gly Leu Met Val Leu His Ala Glu Met Leu Trp 40 Phe Gly Gly Cys Ser Ala Val Asn Ala Thr Gly His Leu Ser Asp Thr 55 25 Leu Trp Leu Ile Pro Ile Thr Phe Leu Thr Ile Gly Tyr Gly Asp Val 70 Val Pro Gly Thr Met Trp Gly Lys Ile Val Cys Leu Cys Thr Gly Val 30 90 Met Gly Val Cys Cys Thr Ala Leu Leu Val Ala Val Val Ala Arg Lys 35 Leu Glu Phe Asn Lys Ala Glu Lys His Val His Asn Phe Met Met Asp 120 Ile Gln Tyr Thr Lys Glu Met Lys Glu Ser Ala Ala Arg Val Leu Gln 135 40 Glu Ala Trp Met Phe Tyr Lys His Thr Arg Arg Lys Glu Ser His Ala 150 155 Ala Arg Xaa His Gln Arg Xaa Leu Leu Ala Ala Ile Asn Ala Phe Arg 45 Gln Val Arg Leu Lys His Arg Lys Leu Arg Glu Gln Val Asn Ser Met 185 50 Val Asp Ile Ser Lys Met His Met Ile Leu Tyr Asp Leu Gln Gln Asn 195 200 Leu Ser Ser Ser His Arg Ala Leu Glu Lys Gln Ile Asp Thr Leu Ala 55 Gly Lys Leu Asp Ala Leu Thr Glu Leu Leu Ser Thr Ala Leu Gly Pro

Arg Gln Leu Pro Glu Pro Ser Gln Gln Ser Lys Xaa

245

5	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	VO: 3	326:							
J			(i)	(A) L B) T	ENGT YPE:	RACT H: 6 ami OGY:	8 am no a	ino cid		s					
10			(xi)							EQ I	D NO	: 32	6:			
	Met 1	Trp	Arg	Cys	Arg 5	Gly	Lys	Leu	Ser	Phe 10	Pro	Leu	Phe	Ala	Val 15	Val
15	Ile	Val	Ser	Cys 20	Arg	Lys	Asp	Gly	Pro 25	Asp	Ala	Ala	Ala	Ala 30	Pro	Ala
20	Val	Ile	Lys 35	Asn	Asn	Ser	His	туr 40	Gln	Thr	Ser	Lys	Ala 45	Leu	Glu	Leu
	Glu	Lys 50	Thr	Thr	Glu	Asn	Lys 55	Glu	Ser	Asn	Pro	Phe 60	Ile	Leu	Gln	Val
25	Asn 65	Lys	Leu	Xaa												
••	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	VO: 3	327:							
30			(i)				RACTI H: 8				s					
							ami: OGY:									
35			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ II	ON C	: 32	7:			
	Met 1	Gly	Glu	Gly	Lys 5	Asn	Gly	Phe		Gly 10	Phe	Val	His	Thr	Ala 15	Asp
40	1		Glu		5		_		Gly	10					15	
40 45	1 Ala	Cys		Glu 20	5 Gly	Val	His	Ser	Gly Glu 25	10 Pro	Val	Cys	Arg	Thr 30	15 Val	His
	1 Ala Thr	Cys Val	Trp His 35 Ser	Glu 20 Thr	5 Gly Cys	Val His	His His	Ser Gln 40	Glu 25 Ala	10 Pro	Val Leu	Cys Val	Arg Leu 45	Thr 30	15 Val Gly	His Trp
	1 Ala Thr Ser Leu 65	Cys Val Lys 50 Asn	Trp His 35 Ser	Glu 20 Thr Gly Arg	5 Gly Cys Lys	Val His Glu	His His Arg 55	Ser Gln 40 Lys	Glu 25 Ala Glu	10 Pro Phe Ala	Val Leu Phe	Cys Val Leu 60	Arg Leu 45 Thr	Thr 30 Ile	15 Val Gly Ile	His Trp
45 50	1 Ala Thr Ser Leu 65	Cys Val Lys 50 Asn	Trp His 35 Ser	Glu 20 Thr Gly Arg	5 Gly Cys Lys	Val His Glu Ile	His His Arg 55	Ser Gln 40 Lys	Glu 25 Ala Glu	10 Pro Phe Ala	Val Leu Phe Ser	Cys Val Leu 60	Arg Leu 45 Thr	Thr 30 Ile	15 Val Gly Ile	His Trp Ile
45	Ala Thr Ser Leu 65	Cys Val Lys 50 Asn	Trp His 35 Ser	Glu 20 Thr Gly Arg	5 Gly Cys Lys Ser	Val His Glu Ile 70	His Arg 55 His	Ser Gln 40 Lys	Glu 25 Ala Glu Ser	10 Pro Phe Ala	Val Leu Phe Ser	Cys Val Leu 60	Arg Leu 45 Thr	Thr 30 Ile	15 Val Gly Ile	His Trp Ile

```
(B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEO ID NO: 328:
     Met Leu Leu Ile Asn Leu Leu Trp Leu Val Thr Met Ile Lys Ser Val
     Ile Asn Asn Ile Ile Leu Phe Leu Lys Lys Ser Leu Phe Phe
                  20
                                     25
10
     Ile Asp Ser Val
              35
15
      (2) INFORMATION FOR SEQ ID NO: 329:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 63 amino acids
20
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 329:
     Met Thr Phe Pro Phe Glu Lys Lys Ile Val Ala Phe Ser Ala Phe Tyr
25
     Leu Ile Pro Gly Glu Ser Arg Leu Ala Pro Thr Phe Asn Pro Ser Ala
30
     Asp Met Thr Val Ile Leu Arg Gly Arg Ala Gln His Lys Thr Ala Met
     Leu Glu Ser Tyr Asn Trp Lys Val Ser Cys Gln Leu Arg Glu Xaa
                            55
35
     (2) INFORMATION FOR SEQ ID NO: 330:
40
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 35 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 330:
45
     Met His Ser Lys Gly Ser Ser Leu Leu Phe Leu Pro Gln Leu Ile
                                  10
     Leu Ile Leu Pro Val Cys Ala His Leu His Glu Glu Leu Asn Cys Cys
50
                                     25
     Phe His Arg
              35
55
      (2) INFORMATION FOR SEQ ID NO: 331:
             (i) SEQUENCE CHARACTERISTICS:
60
                    (A) LENGTH: 23 amino acids
```

				(1	3) T	YPE:	ami	no a	cid							
				(1) TY	OPOL	CY:	lin	ear							
			(xi)	SEQU	JENCI	E DES	SCRI	PTIO	1: SI	EQ II	ои с	: 33	l :			
5	Met	Glv	Ala	Leu	Val	Leu	Leu	Leu	Cvs	Leu	Leu	Val	Glv	Val	Gln	Gln
-	1	,			5			200	-,,	10			01,	•	15	
					_											
	Ser	Gly	Ser	Val	Trp	Asp	Ser									
				20	_	•										
10																
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID 1	Ю: 3	132:							
15			(i) S	SEQUE												
								0 am		acıd	S					
								no a								
			(vi)	SEQU				line		- TI	OM C	. 22'	٠.			
20			(**)	عصرر	PIACI	i Dii	SCKI	110	v. 31	2Q 11	JINO		• •			
-0	Met	Gln	Ser	Ala	Glu	Ile	Leu	Ser	Tro	Thr	Asp	Val	Leu	His	Asp	Phe
	1	411.			5					10					15	
					-											
	Leu	Phe	Ser	Leu	Phe	Leu	Trp	Pro	Ala	Phe	Glu	Asp	Arg	Ala	Leu	Leu
25				20					25					30		
	Ile	Phe	Thr	Leu	Asn	Gln	Ile	Val								
			35					40								
20																
30																
	/21	TATES	NEWS (TON.	EOD	CEO	TD N	m. 3								
	(2)	TIME	JRUM I	NOI	FUK	SEQ	י עד	v O: 3	333:							
			(i) !	SEOU	NCE.	CHAI	פאריייו	ERTS	PTCS							
35			,_, ,	_				11 a			ds					
					-			no a								
				(1	D) T	OPOL	OGY:	lin	ear							
			(xi)	SEQ	JENC	E DE	SCRI	PTIO	N: SI	EQ II	ОИО	: 33	3:			
40	Met	Gln	Ser	Leu	Val	Gln	Trp	Gly	Leu		Ser	Tyr	Asp	Tyr		Gln
	1				5					10					15	
	_		_	_				_	_	_				_,	_,	
	Asn	Ala	Pro		GIĄ	Phe	Phe	Pro		Leu	GIY	Val	11e	Gly	Phe	Ala
45				20					25					30		
+5	Clu-	1 011	T10	C1	T ON	Low	T 011	Al-	720	Clv	Sor	Turo	Tla	Lys	Lvc	Low
	GIY	Leu	35	GIY	Leu	Leu	beu	40	ALG	GIY	SEL	цуз	45	цуэ	цуs	Deu
			33					40					9,7			
	Val	ጥህጉ	Pro	Pro	Glv	Phe	Met	Glv	Leu	Ala	Ala	Ser	Leu	Tyr	Tvr	Pro
50	***	50			013		55	01,				60		-3-		
	Gln	Gln	Ala	Ile	Val	Phe	Ala	Gln	Val	Ser	Gly	Glu	Arg	Leu	Tyr	Asp
	65					70					75		_		-	80
55	Trp	Gly	Leu	Arg	Gly	Tyr	Ile	Val	Ile	Glu	Asp	Leu	Trp	Lys	Glu	Asn
					85					90					95	
	Phe	Gln	Lys		Gly	Asn	Val	Lys		Ser	Pro	Gly	Thr	Lys	Xaa	
۷٥				100					105					110		
60																

	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO:	334:							
5			(i)	(A) L B) T	ENGT YPE :	H: 1 ami	ERIS 06 a no a lin	mino cid		ds					
10			(xi)	SEQ						EQ I	D NO	: 33	4 :			
10	Met 1	Ala	Pro	Ser	Leu 5	Leu	Leu	Leu	Ala	Pro 10	Leu	Cys	Ser	Leu	Glu 15	Ala
15	Val	Leu	Ser	Ser 20	Pro	Leu	Glu	Lys	Gln 25	Суѕ	Gln	Leu	Pro	Gly 30	Ile	Phe
	Cys	Gln	Leu 35	Gln	Leu	Pro	Cys	Pro 40	Leu	Leu	Leu	Ser	Ala 45	Gln	Leu	Leu
20	Lys	Gly 50	Ile	Val	Xaa	Pro	Arg 55	Cys	Pro	Ala	Ser	Leu 60	Pro	Gln	Pro	Pro
25	His 65	Pro	Ala	Pro	Ser	Trp 70	His	Leu	Pro	Leu	His 75	Cys	Thr	Glu	Arg	Xaa 80
	Pro	His	His	Leu	Pro 85	Leu	Gln	Gly	Gly	Ser 90	Ser	Asn	Met	Glu	Glu 95	Xaa
30	Asn	Tyr	Arg	Gly 100	Tyr	Xaa	Asp	Ala	Gln 105	Leu						
35	(2)	INF	ORMA	SEQUI)	ENCE A) L B) T	CHAI ENGT YPE:	RACT H: 5 ami	ERIS O am no a	TICS ino cid		s					
40			(xi)	SEQ				lin PTIO		EQ I	D NO	: 33	5:			
	Met 1	Thr	Thr	Cys	Leu 5	Phe	Gly	Leu	Leu	Ser 10	Cys	Glu	Met	Ser	Ala 15	Gln
45	Val	Ser	Gln	Lys 20	Ser	Суѕ	Val	Tyr	Asp 25	Glu	Ser	Glu	Cys	Phe 30	Ser	Ser
50	Val	Gly	Gln 35	Leu	Leu	Ala	Leu	Leu 40	Ile	Leu	Val	Tyr	Val 45	Leu	Pro	Ser
30	Ile	Хаа 50														
55	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO:	336:							
			(i)	SEQU												
60								.no a		acıd	ıs					

0.05 110

WO 98/39448 PCT/US98/04493

555

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 336:

Met Leu Trp Lys Cys Ser Gln Asn Ile Ala Arg Cys Leu Leu Leu Leu 5 1 5 10 15

Leu Ala Leu Val Glu Ile Lys Leu Glu Asp Leu Gln Ser Gln Leu His 20 25 30

10 Pro Thr Trp Lys Ser Ile Pro Gly Pro Ser Pro Arg Asn Gln His Arg

15

- (2) INFORMATION FOR SEQ ID NO: 337:
- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 337:

25

Met Leu Ile Pro Leu Gln Cys Leu Phe Ser Ser Asp Arg Met Leu Thr 1 5 10 15

Phe Leu Thr Pro Trp Gln Lys Gly Glu Lys Cys Val Leu Gly Trp Val 20 25 30

Thr Lys Phe Leu Ser Glu Ile Ser Xaa 35 40

35

40

- (2) INFORMATION FOR SEQ ID NO: 338:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 76 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 338:
- 45 Met Thr Phe Ser Ser Leu Lys Leu Phe Val Leu Thr Cys Ile Ile Lys
 - Gly Leu Glu Arg Phe Ile Ile Leu Arg Glu Val Cys Asn Gln Glu Ile 20 25 30

50 Gln Arg Ser Leu Ser Ser Asn Leu Val

Gln Arg Ser Leu Ser Ser Asn Leu Val His Val Leu Leu Gln Pro Ala 35 40 45

Thr Phe Lys Asp Val Leu Val Thr Glu Ile Ile Cys Leu Cys Met Cys 55 50 55 60

Leu Tyr Ser Ile Lys Tyr Met Pro Pro Gln Lys Lys 65 70 75

```
(2) INFORMATION FOR SEO ID NO: 339:
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 31 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 339:
10
     Lys Val Tyr Ile Phe Leu Ile Phe Met Val Leu Ile Leu Pro Ser Leu
     Gly Leu Thr Arg Tyr Met Pro Pro Xaa Ser Xaa Leu Asn Ser Glu
                       25
                 20
15
     (2) INFORMATION FOR SEQ ID NO: 340:
20
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 42 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 340:
25
     Met Ala Lys Ile Ser Pro Phe Glu Val Val Lys Arg Thr Ser Val Pro
                             10
     Val Leu Val Gly Leu Val Ile Val Ile Val Ala Thr Glu Leu Met Val
30
     Pro Gly Thr Ala Ala Ala Val Thr Gly Lys
             35
35
     (2) INFORMATION FOR SEQ ID NO: 341:
            (i) SEQUENCE CHARACTERISTICS:
40
                   (A) LENGTH: 26 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 341:
45
     Met Arg Leu Phe Phe Ile Gly Phe Leu Leu Phe Ser Phe Gly Leu
            5
                             10
     Leu Arg Gln Pro Ser Leu Ser Ala Glu His
                 20
50
     (2) INFORMATION FOR SEQ ID NO: 342:
55
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 26 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 342:
60
```

	Met 1	Val	Phe	Ser	Val 5	Ser	Ser	Ala	Leu	Ala 10	Leu	Leu	Leu	Met	Leu 15	Leu
5	Arg	Ser	Ser	Asp 20	Leu	Ala	Lys	Lys	Thr 25	Glu						
10	(2)					SEQ										
15				()	A) L B) T D) T	ENGT: YPE: OPOLA	H: 1 ami OGY:	57 a no a lin	mino cid ear	aci		: 34	3:			
	Met 1	Ser	Leu	Glu	Phe 5	Tyr	Gln	Lys	Lys	Lys 10	Ser	Arg	Trp	Pro	Phe 15	Ser
20	Asp	Glu	Cys	Ile 20	Pro	Trp	Glu	Val	Trp 25	Thr	Val	Lys	Val	His 30	Val	Val
25	Ala	Leu	Ala 35	Thr	Glu	Gln	Glu	Arg 40	Gln	Ile	Cys	Arg	Glu 45	Lys	Val	Gly
	Glu	Lys 50	Leu	Cys	Glu	Lys	Ile 55	Ile	Asn	Ile	Val	Glu 60	Val	Met	Asn	Arg
30	His 65	Glu	Tyr	Leu	Pro	Lys 70	Met	Pro	Thr	Gln	Ser 75	Glu	Val	Asp	Asn	Val 80
	Phe	Asp	Thr	Gly	Leu 85	Arg	Asp	Val	Gln	Pro 90	Tyr	Leu	Tyr	Lys	11e 95	Ser
35	Phe	Gln	Ile	Thr 100	Asp	Ala	Leu	Gly	Thr 105	Ser	Val	Thr	Thr	Thr 110	Met	Arg
10	Arg	Leu	Ile 115	Lys	Asp	Thr	Leu	Pro 120	Ser	Glu	Arg	Arg	Trp 125	Ile	Ser	Gly
	Ser	Ser 130	Leu	Met	Ala	Pro	Arg 135	Pro	Trp	Leu	Leu	Gly 140	Ile	Ala	Leu	Leu
1 5	Gly 145	Leu	Ттр	Ala	Leu	Glu 150	Pro	Ala	Leu	Gly	His 155	Trp	Xaa			
50	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 3	344:							
			(i)	(A) L	CHAI ENGT YPE:	H: 5	20 a	mino		ds					
55			(xi)			OPOL				EQ I	D NO	: 34	4:			
	Met 1	Phe	Leu	Leu	Pro 5	Leu	Pro	Ala	Ala	Gly 10	Arg	Val	Val	Val	Arg 15	Arg
50	Leu	Ala	Val	Arg	Arg	Phe	Gly	Ser	Arg	Ser	Leu	Ser	Thr	Ala	Asp	Met

				20					45					30		
5	Thr	Lys	Gly 35	Leu	Val	Leu	Gly	Ile 40	Tyr	Ser	Lys	Glu	Lys 45	Glu	Asp	Asp
	Val	Pro 50	Gln	Phe	Thr	Ser	Ala 55	Gly	Glu	Asn	Phe	Asp 60	Lys	Leu	Leu	Ala
10	Gly 65	Lys	Leu	Arg	Glu	Thr 70	Leu	Asn	Ile	Ser	Gly 75	Pro	Pro	Leu	Lys	Ala 80
	Gly	Lys	Thr	Arg	Thr 85	Phe	Тут	Gly	Leu	His 90	Gln	Asp	Phe	Pro	Ser 95	Val
15	Val	Leu	Val	Gly 100	Leu	Gly	Lys	Lys	Ala 105	Ala	Gly	Ile	Asp	Glu 110	Gln	Glu
20	Asn	Trp	Ніs 115	Glu	Gly	Lys	Glu	Asn 120	Ile	Arg	Ala	Ala	Val 125	Ala	Ala	Gly
	Cys	Arg 130	Gln	Ile	Gln	Asp	Leu 135	Glu	Leu	Ser	Ser	Val 140	Glu	Val	Asp	Pro
25	Cys 145	Gly	Asp	Ala	Gln	Ala 150	Ala	Ala	Glu	Gly	Ala 155	Val	Leu	Gly	Leu	Туг 160
	Glu	Tyr	Asp	Asp	Leu 165	Lys	Gln	Lys	Lys	Lys 170	Met	Ala	Val	Ser	Ala 175	Lys
30	Leu	тут	Gly	Ser 180	Gly	Asp	Gln	Glu	Ala 185	Тгр	Gln	Lys	Gly	Val 190	Leu	Phe
35	Ala	Ser	Gly 195	Gln	Asn	Leu	Ala	Arg 200	Gln	Leu	Met	Glu	Thr 205	Pro	Ala	Asn
	Glu	Met 210	Thr	Pro	Thr	Arg	Phe 215	Ala	Glu	Ile	Ile	Glu 220	Lys	Asn	Leu	Lys
40	Ser 225	Ala	Ser	Ser	Lys	Thr 230	Glu	Val	His	Ile	Arg 235	Pro	Lys	Ser	Trp	Ile 240
	Glu	Glu	Gln	Ala	Met 245	Gly	Ser	Phe	Leu	Ser 250	Val	Ala	Lys	Gly	Ser 255	Asp
45	Glu	Pro	Pro	Val 260	Phe	Leu	Glu	Ile	His 265	Tyr	Lys	Gly	Ser	Pro 270	Asn	Ala
50	Asn	Glu	Pro 275	Pro	Leu	Val	Phe	Val 280	Gly	Lys	Gly	Ile	Thr 285	Phe	Asp	Ser
	Gly	Gly 290	Ile	Ser	Ile	Lys	Ala 295	Ser	Ala	Asn	Met	Asp 300	Leu	Met	Arg	Ala
55	Asp 305	Met	Gly	Gly	Ala	Ala 310	Thr	Ile	Cys	Ser	Ala 315	Ile	Val	Ser	Ala	Ala 320
	Lys	Leu	Asn	Leu	Pro 325	Ile	Asn	Ile	Ile	Gly 330	Leu	Ala	Pro	Leu	Cys 335	Glu
60	Asn	Met	Pro	Ser	Gly	Lys	Ala	Asn	Lys	Pro	Gly	Asp	Val	Val	Arg	Ala

WO 98/39448

			340					345					350		
Lys	Asn	Gly 355	Lys	Thr	Ile	Gln	Val 360	Asp	Asn	Thr	Asp	Ala 365	Glu	Gly	Arg
Leu	Ile 370	Leu	Ala	Asp	Ala	Leu 375	Cys	Tyr	Ala	His	Thr 380	Phe	Asn	Pro	Lys
Xaa 385	Ile	Leu	Asn	Ala	Ala 390	Thr	Leu	Thr	Gly	Ala 395	Met	Asp	Val	Ala	Leu 400
Gly	Ser	Gly	Ala	Thr 405	Gly	Val	Phe	Thr	Asn 410	Ser	Ser	Trp	Leu	Trp 415	Asn
Lys	Leu	Phe	Glu 420	Ala	Ser	Ile	Glu	Thr 425	Gly	·Asp	Arg	Val	Trp 430	Arg	Met
Pro	Leu	Phe 435	Glu	His	Tyr	Thr	Arg 440	Gln	Val	Val	Asp	Cys 445	Gln	Leu	Ala
Asp	Val 450	Asn	Asn	Ile	Gly	Lys 455	Tyr	Arg	Ser	Ala	Gly 460	Ala	Cys	Thr	Ala
Ala 465	Ala	Phe	Leu	Lys	Glu 470	Phe	Val	Thr	His	Pro 475	Lys	Trp	Ala	His	Leu 480
Asp	Ile	Ala	Gly	Val 485	Met	Thr	Asn	Lys	Asp 490	Glu	Val	Pro	Tyr	Leu 495	Arg
Lys	Gly	Met	Thr 500	Gly	Arg	Pro	Thr	Arg 505	Thr	Leu	Ile	Glu	Phe 510	Leu	Leu
Arg	Phe	Ser 515	Gln	Asp	Asn	Ala	Xaa 520								
(2)	INFO	ORMA?	rion	FOR	SEQ	ID 1	1 0: 3	845:							
		(i) :	(A) L B) T	ENGT YPE :	H: 3 ami	9 am no a	ino . cid		s					
		(xi)		-					EQ I	D NO	: 34	5:			
Thr 1	Ile	Leu	Phe	Leu 5	Phe	Leu	Gln	Leu	Ser 10	Ala	Leu	Arg	Leu	Ile 15	Val
Gly	Lys	Asp	Ser 20	Ile	Asp	Ile	Asp	Ile 25	Ser	Ser	Arg	Arg	Arg 30	Glu	Asp
Gln	Ser	Leu 35	Arg	Leu	Asn	Ala									
(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 3	346:							
		(i)								de					
	Leu Xaa 385 Gly Lys Pro Asp Ala 465 Asp (2) Thr 1 Gly Gln	Leu Ile 370 Xaa Ile 385 Gly Ser Lys Leu Pro Leu Asp Val 450 Ala Ala 465 Asp Ile Lys Gly Arg Phe (2) INFO	355 Leu 370 Leu 370 Xaa 11e Leu 385 Gly Ser Gly Lys Leu Phe 435 Asp Val Asn 450 Ala Ala Phe 465 Asp 11e Ala Lys Gly Met Arg Phe Ser 515 (2) INFORMA: (i) : (xi) Thr 11e Leu 35 (2) INFORMA:	Lys Asn Gly Lys 355 Leu Ile Leu Ala 370 Xaa Ile Leu Asn 385 Gly Ser Gly Ala Lys Leu Phe Glu 420 Pro Leu Phe Glu 435 Asp Val Asn Asn 450 Ala Ala Phe Leu 465 Asp Ile Ala Gly Lys Gly Met Thr 500 Arg Phe Ser Gln 515 (2) INFORMATION (1) SEQUITE (1) (2) Clys Asp Ser 20 Gln Ser Leu Arg 35 (2) INFORMATION (1) SEQUITE (1) (1) SEQUITE (1) (2) Lys Asp Ser 20 Gln Ser Leu Arg 35	Lys Asn Gly Lys Thr 355 Leu Ile Leu Ala Asp 370 Xaa Ile Leu Asn Ala 385 Gly Ser Gly Ala Thr 405 Lys Leu Phe Glu Ala 420 Pro Leu Phe Glu His 435 Asp Val Asn Asn Ile 450 Ala Ala Phe Leu Lys 465 Lys Gly Met Thr Gly 500 Arg Phe Ser Gln Asp 515 (2) INFORMATION FOR (i) SEQUENCE (A) L (B) T (xi) SEQUENCE 1 Cal	Lys Asn Gly Lys Thr Ile 355 Leu Ile Leu Ala Asp Ala 370 Xaa Ile Leu Asn Ala Ala 385 Gly Ser Gly Ala Thr Gly 405 Lys Leu Phe Glu Ala Ser 420 Pro Leu Phe Glu His Tyr 435 Asp Val Asn Asn Ile Gly 450 Ala Ala Phe Leu Lys Glu 465 Lys Gly Met Thr Gly Arg 500 Arg Phe Ser Gln Asp Asn 515 (2) INFORMATION FOR SEQ (i) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (Xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (Xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (Xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (Xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (Xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (Xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (D) TOPOL (Xi) SEQUENCE CHAM (A) LENGT (B) TYPE: (B	Lys Asn Gly Lys Thr Ile Gln 355 Leu Ile Leu Ala Asp Ala Leu 370 Xaa Ile Leu Asn Ala Ala Thr 385 Gly Ser Gly Ala Thr Gly Val 405 Lys Leu Phe Glu Ala Ser Ile 420 Pro Leu Phe Glu His Tyr Thr 435 Asp Val Asn Asn Ile Gly Lys 450 Ala Ala Phe Leu Lys Glu Phe 465 Ala Ala Phe Leu Lys Glu Phe 465 Lys Gly Met Thr Gly Arg Pro 500 Arg Phe Ser Gln Asp Asn Ala 515 (2) INFORMATION FOR SEQ ID N (i) SEQUENCE CHARACTI (A) LENGTH: 3 (B) TYPE: ami (D) TOPOLOGY: (xi) SEQUENCE DESCRI: Thr Ile Leu Phe Leu Phe Leu 1 5 Gly Lys Asp Ser Ile Asp Ile 20 Gln Ser Leu Arg Leu Asn Ala 35 (2) INFORMATION FOR SEQ ID N (ii) SEQUENCE CHARACTI (xi) SEQUENCE DESCRI:	Lys Asn Gly Lys Thr Ile Gln Val 355 Leu Ile Leu Ala Asp Ala Leu Cys 370 Xaa Ile Leu Asn Ala Ala Thr Leu 385 Gly Ser Gly Ala Thr Gly Val Phe 405 Lys Leu Phe Glu Ala Ser Ile Glu 420 Pro Leu Phe Glu His Tyr Thr Arg 435 Ala Ala Phe Leu Lys Glu Phe Val 455 Ala Ala Phe Leu Lys Glu Phe Val 465 Lys Gly Met Thr Gly Arg Pro Thr 500 Arg Phe Ser Gln Asp Asn Ala Xaa 515 (a) LENGTH: 39 am (b) TYPE: amino a (c) TOPOLOGY: lin (xi) SEQUENCE CHARACTERIS (xi) SEQUENCE DESCRIPTION Thr Ile Leu Phe Leu Phe Leu Gln 1 Gly Lys Asp Ser Ile Asp Ile Asp 20 Gln Ser Leu Arg Leu Asn Ala (1) SEQUENCE CHARACTERIS (3) LENGTH: 39 (4) LENGTH: 39 (5) TYPE: amino a (6) TOPOLOGY: lin (7) SEQUENCE DESCRIPTION (8) SEQUENCE DESCRIPTION (1) SEQUENCE DESCRIPTION (2) INFORMATION FOR SEQ ID NO: 3 (3) SEQUENCE CHARACTERIS (4) LENGTH: 39 (5) TOPOLOGY: lin (7) SEQUENCE DESCRIPTION (8) TYPE: amino a (9) TOPOLOGY: lin (8) TYPE: amino a (9) TOPOLOGY: lin (9) TOPOLOGY: lin (10) SEQUENCE DESCRIPTION (11) SEQUENCE CHARACTERIS (12) INFORMATION FOR SEQ ID NO: 3 (13) SEQUENCE CHARACTERIS	Lys Asn Gly Lys Thr Ile Gln Val Asp 355 Leu Ile Leu Ala Asp Ala Leu Cys Tyr 370 Xaa Ile Leu Asn Ala Ala Thr Leu Thr 385 Gly Ser Gly Ala Thr Gly Val Phe Thr 405 Lys Leu Phe Glu Ala Ser Ile Glu Thr 420 Asp Val Asn Asn Ile Gly Lys Tyr Arg 450 Ala Ala Phe Leu Lys Glu Phe Val Thr 470 Asp Ile Ala Gly Val Met Thr Asn Lys 485 Lys Gly Met Thr Gly Arg Pro Thr Arg 500 Arg Phe Ser Gln Asp Asn Ala Xaa 515 (i) SEQUENCE CHARACTERISTICS (a) LENGTH: 39 amino (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: Stophen Color (X) SEQUENCE DESCRIPTION: Stophen Color (X) SEQUENCE DESCRIPTION: Stophen Color (X) SEQUENCE CHARACTERISTICS Gly Lys Asp Ser Ile Asp Ile Asp Ile Asp Ile Color (X) SEQUENCE CHARACTERISTICS Gly Lys Asp Ser Ile Asp Ile Asp Ile Seq Ile Asp Ile Asp Ile Seq Ile Asp Ile	Lys Asn Gly Lys Thr Ile Gln Val Asp Asn 355 Leu Ile Leu Ala Asp Ala Leu Cys Tyr Ala 370 Xaa Ile Leu Asn Ala Ala Thr Leu Thr Gly 385 Gly Ser Gly Ala Thr Gly Val Phe Thr Asn 405 Pro Leu Phe Glu Ala Ser Ile Glu Thr Gly 425 Pro Leu Phe Glu His Tyr Thr Arg Gln Val 435 Asp Val Asn Asn Ile Gly Lys Tyr Arg Ser 450 Ala Ala Phe Leu Lys Glu Phe Val Thr His 465 Asp Ile Ala Gly Val Met Thr Asn Lys Asp 485 Lys Gly Met Thr Gly Arg Pro Thr Arg Thr 500 Arg Phe Ser Gln Asp Asn Ala Xaa 515 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 amino acid (B) Type: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ II Thr Ile Leu Phe Leu Phe Leu Gln Leu Ser 10 Gly Lys Asp Ser Ile Asp Ile Asp Ile Ser 20 C1) INFORMATION FOR SEQ ID NO: 346: (i) SEQUENCE CHARACTERISTICS: 25 Gln Ser Leu Arg Leu Asn Ala 35 (2) INFORMATION FOR SEQ ID NO: 346: (i) SEQUENCE CHARACTERISTICS:	Lys Asn Gly Lys Thr Ile Gln Val Asp Asn Thr 355 Leu Ile Leu Ala Asp Ala Leu Cys Tyr Ala His 370 Xaa Ile Leu Asn Ala Ala Thr Leu Thr Gly Ala 385 Gly Ser Gly Ala Thr Gly Val Phe Thr Asn Ser 405 Lys Leu Phe Glu Ala Ser Ile Glu Thr Gly Asp 425 Pro Leu Phe Glu His Tyr Thr Arg Gln Val Val 435 Asp Val Asn Asn Ile Gly Lys Tyr Arg Ser Ala 450 Ala Ala Phe Leu Lys Glu Phe Val Thr His Pro 470 Asp Ile Ala Gly Val Met Thr Asn Lys Asp Glu 485 Lys Gly Met Thr Gly Arg Pro Thr Arg Thr Leu 500 Arg Phe Ser Gln Asp Asn Ala Xaa 515 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO Thr Ile Leu Phe Leu Phe Leu Gln Leu Ser Ala 10 Gly Lys Asp Ser Ile Asp Ile Asp Ile Ser Ser 20 C2) INFORMATION FOR SEQ ID NO: 346:	Lys Asn Gly Lys Thr Ile Gln Val Asp Asn Thr Asp 355 Leu Ile Leu Ala Asp Ala Leu Cys Tyr Ala His Thr 370 Xaa Ile Leu Asn Ala Ala Thr Leu Thr Gly Ala Met 385 Gly Ser Gly Ala Thr Gly Val Phe Thr Asn Ser Ser 405 Lys Leu Phe Glu Ala Ser Ile Glu Thr Gly Asp Arg 420 Pro Leu Phe Glu His Tyr Thr Arg Gln Val Val Asp 435 Asp Val Asn Asn Ile Gly Lys Tyr Arg Ser Ala Gly 450 Ala Ala Phe Leu Lys Glu Phe Val Thr His Pro Lys 470 Asp Ile Ala Gly Val Met Thr Asn Lys Asp Glu Val 485 Lys Gly Met Thr Gly Arg Pro Thr Arg Thr Leu Ile 500 Arg Phe Ser Gln Asp Asn Ala Xaa 515 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 345 Thr Ile Leu Phe Leu Phe Leu Gln Leu Ser Ala Leu 1 5 10 Gly Lys Asp Ser Ile Asp Ile Asp Ile Ser Ser Arg 20 25 Gln Ser Leu Arg Leu Asn Ala 335 (2) INFORMATION FOR SEQ ID NO: 346: (i) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS: (ii) SEQUENCE DESCRIPTION: SEQ ID NO: 346: (ii) SEQUENCE CHARACTERISTICS:	Lys Asn Gly Lys Thr Ile Gln Val Asp Asn Thr Asp Ala 1355 Leu Ile Leu Ala Asp Ala Leu Cys Tyr Ala His Thr Phe 370 Xaa Ile Leu Asn Ala Ala Thr Leu Thr Gly Ala Met Asp 385 Gly Ser Gly Ala Thr Gly Val Phe Thr Asn Ser Ser Trp 405 Lys Leu Phe Glu Ala Ser Ile Glu Thr Gly Asp Arg Val 420 Pro Leu Phe Glu His Tyr Thr Arg Gln Val Val Asp Cys 435 Asp Val Asn Asn Ile Gly Lys Tyr Arg Ser Ala Gly Ala 450 Ala Ala Phe Leu Lys Glu Phe Val Thr His Pro Lys Trp 475 Asp Ile Ala Gly Val Met Thr Asn Lys Asp Glu Val Pro 485 Lys Gly Met Thr Gly Arg Pro Thr Arg Thr Leu Ile Glu 500 Arg Phe Ser Gln Asp Asn Ala Xaa 515 (i) SEQUENCE CHARACTERISTICS: (ii) SEQUENCE CHARACTERISTICS: SEQ ID NO: 345: Thr Ile Leu Phe Leu Phe Leu Gln Leu Ser Ala Leu Arg 1 Cly Sequence CHARACTERISTION: SEQ ID NO: 345: Cly Lys Asp Ser Ile Asp Ile Asp Ile Ser Ser Arg Arg 20 20 Cly INFORMATION FOR SEQ ID NO: 346: (ii) SEQUENCE CHARACTERISTICS: (iv) SEQUENCE CHARACTERISTICS: Seq ID Ser Ser Arg Arg 20 20 Cly Lys Asp Ser Ile Asp Ile Asp Ile Ser Ser Arg Arg 20 Cly Lys Asp Ser Ile Asp Ile Asp Ile Ser Ser Arg Arg 20 Cly INFORMATION FOR SEQ ID NO: 346: (ii) SEQUENCE CHARACTERISTICS:	Lys Asn Gly Lys Thr Ile Gln Val Asp Asn Thr Asp Ala Glu 355 Leu Ile Leu Ala Asp Ala Leu Cys Tyr Ala His Thr Phe Asn 370 Xaa Ile Leu Asn Ala Ala Thr Leu Thr Gly Ala Met Asp Val 385 Gly Ser Gly Ala Thr Gly Val Phe Thr Asn Ser Ser Trp Leu 405 Lys Leu Phe Glu Ala Ser Ile Glu Thr Gly Asp Arg Val Trp 420 Pro Leu Phe Glu His Tyr Thr Arg Gln Val Val Asp Cys Gln 445 Asp Val Asn Asn Ile Gly Lys Tyr Arg Ser Ala Gly Ala Cys 450 Ala Ala Phe Leu Lys Glu Phe Val Thr His Pro Lys Trp Ala 465 Asp Ile Ala Gly Val Met Thr Asn Lys Asp Glu Val Pro Tyr 485 Lys Gly Met Thr Gly Arg Pro Thr Arg Thr Leu Ile Glu Phe 500 Arg Phe Ser Gln Asp Asn Ala Xaa 515 (i) SEQUENCE CHARACTERISTICS: (ii) SEQUENCE CHARACTERISTICN: SEQ ID NO: 345: Thr Ile Leu Phe Leu Phe Leu Gln Leu Ser Ala Leu Arg Leu 1 5 10 Gly Lys Asp Ser Ile Asp Ile Asp Ile Ser Ser Arg Arg Arg 20 25 30 Gln Ser Leu Arg Leu Asn Ala 35 (2) INFORMATION FOR SEQ ID NO: 346: (ii) SEQUENCE CHARACTERISTICS: (iii) SEQUENCE CHARACTERISTICS: (iv) SEQUENCE CHARACTERISTICN: SEQ ID NO: 345: Thr Ile Leu Phe Leu Phe Leu Gln Leu Ser Ala Leu Arg Leu 1 5 30 Gln Ser Leu Arg Leu Asn Ala 35	Lys Asn Gly Lys Thr Ile Gln Val Asp Asn Thr Asp Ala Glu Gly 355 Leu Ile Leu Ala Asp Ala Leu Cys Tyr Ala His Thr Phe Asn Pro 370 Xaa Ile Leu Asn Ala Ala Thr Leu Thr Gly Ala Het Asp Val Ala 385 San Jule Cys Tyr Ala His Thr Phe Asn Pro 370 Xaa Ile Leu Asn Ala Ala Thr Leu Thr Gly Ala Het Asp Val Ala 385 Gly Ser Gly Ala Thr Gly Val Phe Thr Asn Ser Ser Trp Leu Trp 410 Lys Leu Phe Glu Ala Ser Ile Glu Thr Gly Asp Arg Val Trp Arg 420 Pro Leu Phe Glu His Tyr Thr Arg Gln Val Val Asp Cys Gln Leu 435 Asp Val Asn Asn Ile Gly Lys Tyr Arg Ser Ala Gly Ala Cys Thr 450 Ala Ala Phe Leu Lys Glu Phe Val Thr His Pro Lys Trp Ala His 465 Asp Ile Ala Gly Val Met Thr Asn Lys Asp Glu Val Pro Tyr Leu 485 Lys Gly Met Thr Gly Arg Pro Thr Arg Thr Leu Ile Glu Phe Leu 500 Arg Phe Ser Gln Asp Asn Ala Xaa 515 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 345: Thr Ile Leu Phe Leu Phe Leu Gln Leu Ser Ala Leu Arg Leu Ile 1 5 10 Gly Lys Asp Ser Ile Asp Ile Asp Ile Ser Ser Arg Arg Arg Glu 20 25 30 Gln Ser Leu Arg Leu Asn Ala 35 (2) INFORMATION FOR SEQ ID NO: 346: (i) SEQUENCE CHARACTERISTICS: (ii) SEQUENCE CHARACTERISTICS:

WO 98/39448

560

					B) T D) T											
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 34	6 :			
5	Met 1	Thr	Ser	Glu	Leu 5	Asp	Ile	Phe	Val	Gly 10	Asn	Thr	Thr	Leu	Ile 15	Asp
10	Glu	Asp	Val	Туг 20	Arg	Leu	Trp	Leu	Asp 25	Gly	Туг	Ser	Val	Thr 30	Asp	Ala
	Val	Ala	Leu 35	Arg	Val	Arg	Ser	Gly 40	Ile	Leu	Glu	Gln	Thr 45	Gly	Ala	Thr
15	Ala	Ala 50	Val	Leu	Gln	Ser	Asp 55	Thr	Met	Asp	His	Tyr 60	Arg	Thr	Phe	His
	Met 65	Leu	Glu	Arg	Leu	Leu 70	His	Ala	Pro	Pro	Lys 75	Leu	Leu	His	Gln	Leu 80
20	Ile	Phe	Gln	Ile	Pro 85	Pro	Ser	Arg	Gln	Ala 90	Leu	Leu	Ile	Glu	Arg 95	Tyr
25	Tyr	Ala	Phe	Asp 100	Glu	Ala	Phe	Val	Arg 105	Glu	Val	Leu	Gly	Lys 110	Lys	Leu
	Ser	Lys	Gly 115	Thr	Lys	Lys	Asp	Ьеи 120	Asp	Asp	Ile	Ser	Thr 125	Lys	Thr	Gly
30	Ile	Thr 130	Leu	Lys	Ser	Cys	Arg 135	Arg	Gln	Phe	Asp	Asn 140	Phe	Lys	Arg	Val
	Phe 145	Lys	Val	Val	Glu	Glu 150	Met	Arg	Gly	Ser	Leu 155	Val	Asp	Asn	Ile	Gln 160
35	Gln	His	Phe	Leu	Leu 165	Ser	Asp	Arg	Leu	Ala 170	Arg	Asp	Tyr	Ala	Ala 175	Ile
40	Val	Phe	Phe	Ala 180	Asn	Asn	Arg	Phe	Glu 185	Thr	Gly	Lys	Lys	Lys 190	Leu	Gln
	Tyr	Leu	Ser 195	Phe	Gly	Asp	Phe	Ala 200	Phe	Cys	Ala	Glu	Leu 205	Met	Ile	Gln
45	Asn	Trp 210	Thr	Leu	Gly	Pro	Val 215	Asp	Ser	Gln	Met	Asp 220	Asp	Met	Asp	Met
	Asp 225	Leu	Asp	Arg	Asn	Phe 230	Ser	Arg	Thr	Xaa						
50																
	(2)	INF	ORMA!													
55			(1)	(ENCE A) L B) T D) T	ENGT YPE:	H: l ami	69 a no a	mino cid	: aci	ds					
			(xi)							EQ I	D NO	: 34	7:			

 $60\,$ Met Ala Ala Ala Val Ala Gly Met Leu Arg Gly Gly Leu Leu Pro Gln

	1		5	1	.0	15
5	Ala Gly	Arg Leu Pr 20	o Thr Leu	Gln Thr Va 25	l Arg Tyr G	ly Ser Lys Ala 30
,	Val Thr	Arg His Ar 35	g Arg Val	Met His Ph 40	_	ln Lys Leu Met 45
10	Ala Val 50	Thr Glu Ty	r Ile Pro 55	Pro Lys Pr	o Ala Ile H: 60	is Pro Ser Cys
	Leu Pro 65	Ser Pro Pr	Ser Pro 70	Pro Gln Gl	u Glu Ile G 75	ly Leu Ile Arg 80
15	Leu Leu	Arg Arg Gl 8			e Gln Asp As O	sn Arg Met Ile 95
20	Ala Val	Cys Gln As	n Val Ala	Leu Ser Al 105	a Glu Asp Ly	ys Leu Leu Ile 110
	Ala Thr	Pro Ala Al 115	a Glu Thr	Gln Asp Pr 120		ly Leu Pro Gln 25
25	Pro Gly 130	Pro Glu Se	r Pro Ser 135	Trp Arg Il	e Pro Ser Ti 140	hr Lys Ile Cys
	Cys Pro 145	Phe Leu Tr	o Gly Thr 150	Thr Cys Cy	rs Trp Ser Va 155	al Lys Ser Pro 160
30	Arg Ser	Arg Arg Tr		Ser Xaa		
35	(2) INF	ORMATION FO	R SEQ ID 1	NO: 348:		
		(i) SEQUENC		ERISTICS:	ids	
40		(D)	TYPE: ami TOPOLOGY: CE DESCRI	linear	ID NO: 348:	
45	Met Lys 1	_	e Leu Leu 5		eu Leu Val G .0	ly Phe Leu Asp 15
45	Thr Ala	His Leu Il 20	e Leu Leu	Glu Thr Le	eu Ser Val C	ys Leu Trp Leu 30
50	Pro Ser	Leu Ile As 35	p Ser Arg	Cys Val Me 40	et Ser	
55	(2) INF	ORMATION FO	E CHARACT		ids	
60		(D)	TYPE: ami TOPOLOGY: ICE DESCRI	linear	ID NO: 349:	

562

Met Lys Glu Gly Pro Pro Cys Lys Arg His His Tyr Tyr Gln Asn Cys Gly Ala Lys Leu Leu Val Ser Leu Phe Gly Glu Thr Asn Gln Ile His 25 Leu Leu Glu Thr Gln Val Gly Thr Glu Lys Gly Gly Glu Arg Ile Trp 10 Glu Glu Lys Trp Arg Ile Ser Ser Thr Val Leu Phe Ile Ser Val Asn Ser Tyr Val Glu Gly Ser Val Leu Glu Ile Lys Leu Phe Tyr 15 70 (2) INFORMATION FOR SEQ ID NO: 350: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 350: Met Ser Glu Ile Leu Ser Leu Leu Phe Cys Leu Leu Gly Pro Ala Leu 10 30 Asp Glu Arg Arg Glu Glu Lys Asp 20 35 (2) INFORMATION FOR SEQ ID NO: 351: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 274 amino acids (B) TYPE: amino acid 40 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 351: Met Ser Ser Ala Gly Thr Ala Thr Pro Leu Glu Met Asp His Lys Leu 45 Thr Ser Gln Pro Gly Arg Pro Ser Phe Tyr Cys Asn Ser Arg His Ser 25 Ile Val Gly Ser Ser His Gln Leu Gly Phe Trp Phe Ser His Leu Glu 50 Ser Ser Gly Leu Lys Val Phe Gln Val Ser Leu Pro Cys Glu Cys Val 55 Asn Leu Pro Thr Arg Ile Ala Ser Val Val Leu Ser Leu Met Ser Leu 70 75 Leu Val Val Gly Gln Ala Pro Ala Trp Glu Gly Ser Leu Leu Arg Gly 85 90 60

	Arg	Pro	Ala	Gly 100	Gly	Ala	His	Leu	Cys 105	Ala	Met	Xaa	Val	Ile 110	Glu	Gly
5	Leu	Val	Val 115	Asp	Val	Gly	Glu	Arg 120	Ile	Leu	His	Gly	Gln 125	Arg	Glu	Val
	Gly	Gln 130	Val	Ser	Gln	Val	Leu 135	Pro	Ala	Leu	Ser	Leu 140	Gly	Leu	Val	Phe
10	Leu 145	Cys	Gln	Gly	Thr	Val 150	Glu	Lys	Val	Ser	Gly 155	Ala	Ala	His	Суѕ	Ser 160
15	Ser	Leu	Leu	Cys	Cys 165	Leu	Pro	Trp	Gln	Cys 170	Ser	Gly	Gly	Gly	Phe 175	Pro
	Thr	Xaa	Arg	Суs 180	Ser	Arg	Pro	Tyr	Phe 185	Ser	Ser	His	Lys	Gly 190	Val	Ala
20	Ala	Thr	Leu 195	Ala	Leu	Thr	Cys	His 200	Cys	Asp	Lys	Val	His 205	Val	Ala	Gly
	Leu	Gly 210	Lys	Asp	Trp	Ala	11e 215	Glu	Gln	Arg	Arg	Arg 220	Thr	Cys	Glu	Ser
25	Asp 225	Xaa	Glu	Xaa	Xaa	Pro 230	Phe	Thr	Leu	Ala	Gly 235	Leu	Val	Leu	Val	Leu 240
30	Arg	Phe	Cys	Gln	Val 245	Val	Leu	Val	Trp	Ile 250	Pro	Gln	Leu	Gly	Asp 255	Lys
	His	Trp	Arg	Gly 260	Met	Thr	Arg	Leu	Gly 265	Arg	Val	Ser	Leu	Thr 270	Ser	Ser
35	Ile	Xaa														
40	(2)	INF		SEQU)	FOR ENCE A) L	CHA ENGT	RACT H: 4	ERIS	TICS ino		s					
45			(xi)	(B) T D) T UENC	OPOL	OGY:	lin	ear	EQ I	D NO	: 35	2:			
	Met 1		Phe	Thr	Ser 5	Val	Thr	Lys	Gly	Ile 10	Leu	Leu	Ile	Ala	Leu 15	Trp
50	Val	Pro	Leu	Phe 20	His	Phe	Met	Leu	Ile 25	Asp	Ser	Ile	Leu	Gly 30	Pro	Ser
55	Arg	Leu	Leu 35	Thr	Asp	Gly	Val	Pro 40	Phe	Asn	Pro	Trp	His 45	Val	Xaa	
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	353 :							
60			(i)	SEQU	ENCE	СНА	RACT	ERIS	TICS	:						

```
(A) LENGTH: 3 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 353:
 5
     Met Lys Thr
       1
10
      (2) INFORMATION FOR SEQ ID NO: 354:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 52 amino acids
15
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 354:
     Met Ser Ile Ser Gly Thr Asp Gly Leu Ile Leu Leu Leu Val Gly Leu
20
                               10
     Glu Ala Xaa Val Arg Ser Ser Lys Lys Trp Ile Pro Lys Ala Leu Xaa
                                     25
25
     Val Thr Gln Ala Lys Trp Asn Ser Trp Pro Ser Arg Arg Asn Ala Gly
                              40
     Phe Ala Leu His
          50
30
      (2) INFORMATION FOR SEQ ID NO: 355:
35
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 132 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 355:
40
     Met Glu His Cys Leu Tyr His Ser Val His Gly Ile Asn Pro Tyr Ile
     His Lys Asn Thr His Pro Ser Ile Asn Ile Tyr Met Val Trp Asp Glu
45
                           25
     Gln Val Asn Ser Phe Glu Arg Glu Phe Val Pro Phe Phe Leu Ile
                                 40
50
     Ile Leu Leu Asn Cys Cys Gln Leu Ser Asn Lys Gln Thr Glu Lys Leu
     Phe Gly Lys Thr Leu His Thr Pro Phe Leu Ser Ser Ala Leu Lys Tyr
55
     Arg Leu Asn Thr His Ile Leu Pro Val Phe Ser Tyr Ser Asp Ser Ile
                                         90
     Leu Thr Cys His Leu Ile Leu Ala Ser Tyr Phe Ser His Val Tyr Leu
60
                                    105
```

565

Pro Val Thr Cys Ile Cys Tyr Leu Asn Arg Lys Lys Asn Ile Gln Lys 115 120 125

5 Lys Lys Asn Xaa 130

- 10 (2) INFORMATION FOR SEQ ID NO: 356:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 204 amino acids
 - (B) TYPE: amino acid
- 15 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 356:

Met Gly Ser Arg Asp His Leu Phe Lys Val Leu Val Val Gly Asp Ala 1 5 10 15

20

Ala Val Gly Lys Thr Ser Leu Val Gln Asp Tyr Ser Gln Asp Ser Phe
20 25 30

Ser Lys His Tyr Lys Ser Thr Val Gly Val Asp Phe Ala Leu Lys Val 25 35 40 45

Leu Gln Trp Ser Asp Tyr Glu Ile Val Arg Leu Gln Leu Trp Asp Ile 50 55 60

30 Ala Gly Gln Glu Arg Phe Thr Ser Met Thr Arg Leu Tyr Tyr Arg Asp 65 70 75 80

Ala Ser Ala Cys Val Ile Met Phe Asp Val Thr Asn Ala Thr Thr Phe
85 90 95

35

Ser Asn Ser Gln Arg Trp Lys Gln Asp Leu Asp Ser Lys Leu Thr Leu 100 105 110

Pro Asn Gly Glu Pro Val Pro Cys Leu Leu Leu Ala Asn Lys Cys Asp $40 \hspace{1.5cm} \text{115} \hspace{1.5cm} \text{120} \hspace{1.5cm} \text{125}$

Leu Ser Pro Trp Ala Val Ser Arg Asp Gln Ile Asp Arg Phe Ser Lys 130 135 140

45 Glu Asn Gly Phe Thr Gly Trp Thr Glu Thr Ser Val Lys Glu Asn Lys 145 150 150 155 160

Asn Ile Asn Glu Ala Met Arg Val Leu Ile Glu Lys Met Met Arg Asn 165 170 175

50
Ser Thr Glu Asp Ile Met Ser Leu Ser Thr Gln Gly Asp Tyr Ile Asn
180
185
190

Leu Gln Thr Lys Ser Ser Ser Trp Ser Cys Cys Xaa 55 200

(2) INFORMATION FOR SEQ ID NO: 357:

			(i) :	(.	ENCE A) L B) T	ENGT	н: 4	7 am	ino		s					
5			(xi)		D) T UENCI					EQ I	D NO	: 35	7:			
	Met 1	Ile	Ser	Leu	Ile 5	Phe	Gln	Leu	Glu	Glu 10	Glu	Lys	Leu	Val	Glu 15	Lys
10	Phe	Phe	Phe	Phe 20	Leu	Phe	Phe	Phe	Leu 25	Lys	Lys	Gly	Ser	Gln 30	Gly	Ser
15	Asn	Leu	Lys 35	Ile	Val	Pro	Arg	His 40	Met	Arg	Val	Val	Leu 45	Arg	Gly	
20	(2)		ORMAT	SEQUI ()		CHAI ENGT YPE:	RACTI H: 7	ERIS 3 am no a	rICS ino d		S					
25			(xi)							EQ II	ON C	: 358	3:			
	Met 1	Thr	Tyr	Val	Thr 5	Cys	Leu	His	Val	Cys 10	Leu	Leu	Val	Glu	Phe 15	Leu
30	Asn	Ser	Gln	Leu 20	Thr	Asn	His	Arg	Lys 25	Tyr	Tyr	Phe	Leu	Ser 30	Tyr	Gly
	Phe	Trp	Phe 35	Thr	Gly	Leu	Arg	Gly 40	Phe	Ser	Glu	Tyr	Leu 45	Trp	Pro	Gln
35	Gln	His 50	Thr	Ser	Phe	His	Pro 55	Asn	Arg	Asn	Glu	Ile 60	Asn	Phe	Val	Ser
40	Thr 65	Asp	Asn	Arg	Ile	Trp 70	Val	Thr	Xaa							
	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	10: 3	359:							
45			(i) :	(ENCE A) L B) T D) T	ENGT YPE:	H: 1 ami	02 a no a	mino cid		ds					
50			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 35	9 :			
	Met 1	Ser	Asp	Gln	Glu 5	Ala	Lys	Pro	Ser	Thr 10	Glu	Asp	Leu	Gly	Asp 15	Lys
55	Lys	Glu	Gly	Glu 20	Туг	Ile	Lys	Leu	Lys 25	Val	Ile	Gly	Gln	Asp 30	Ser	Ser
	Glu	Ile	His 35	Phe	Lys	Val	Lys	Met 40	Thr	Thr	His	Leu	Lys 45	Lys	Leu	Lys
60	Glu	Ser	Tvr	Cvs	Gln	Ara	Gln	Glv	Val	Pro	Met	Asn	Ser	Leu	Ara	Phe

		50					55					60				
5	Leu 65	Phe	Glu	Gly	Gln	Arg 70	Ile	Ala	Asp	Asn	His 75	Thr	Pro	Lys	Glu	Leu 80
3	Gly	Met	Glu	Glu	Glu 85	Asp	Val	Ile	Glu	Val 90	Tyr	Gln	Glu	Gln	Thr 95	Gly
10	Gly	His	Ser	Thr 100	Val	Xaa										
15	(2)		ORMAT			-				:						
20			(xi)	()	B) T D) T	YPE: OPOL	ami: OGY:	no a	cid ear	acid EQ II		: 36	0 :			
	Met 1	Gly	Phe	Pro	Gln 5	Trp	His	Leu	Gly	Asn 10	His	Ala	Val	Glu	Pro 15	Val
25	Thr	Ser	Ile	Leu 20	Leu	Leu	Phe	Leu	Leu 25	Met	Met	Leu	Gly	Val 30	Arg	Gly
30	Leu	Leu	Leu 35	Val	Gly	Leu	Val	Tyr 40	Leu	Val	Ser	His	Leu 45	Ser	Gln	Arg
35	(2)	INFO	ORMA	rion	FOR	SEQ	ID 1	¥O: 3	361:							
40			(i) : (xi)	· (A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	79 a no a lin	mino cid ear	aci		: 36	1:			
45	Met 1	Ser	Ala	Glu	Val 5	Lys	Val	Thr	Gly	Gln 10	Asn	Gln	Glu	Gln	Phe 15	Leu
	Leu	Leu	Ala	Lys 20	Ser	Ala	Lys	Gly	Ala 25	Ala	Leu	Ala	Thr	Leu 30	Ile	His
50	Gln	Val	Leu 35	Glu	Ala	Pro	Gly	Val 40	Tyr	Val	Phe	Gly	Glu 45	Leu	Leu	Asp
55	Met	Pro 50	Asn	Val	Arg	Glu	Leu 55	Ala	Glu	Ser	Asp	Phe 60	Ala	Ser	Thr	Phe
55	Arg 65	Leu	Leu	Thr	Val	Phe 70	Ala	Тут	Gly	Thr	Туг 75	Ala	Asp	Tyr	Leu	Ala 80
60	Glu	Ala	Arg	Asn	Leu 85	Pro	Pro	Leu	Thr	Glu 90	Ala	Gln	Lys	Asn	Lys 95	Leu

	Arg	His	Leu	Ser 100	Val	Val	Thr	Leu	Ala 105	Ala	Lys	Val	Lys	Суs 110	Ile	Pro
5	Tyr	Ala	Val 115	Leu	Leu	Glu	Ala	Leu 120	Ala	Leu	Arg	Asn	Val 125	Arg	Gln	Leu
10	Glu	Asp 130	Leu	Val	Ile	Glu	Ala 135	Val	Туг	Ala	Asp	Val 140	Leu	Arg	Gly	Ser
	Leu 145	Asp	Gln	Arg	Asn	Gln 150	Arg	Leu	Glu	Val	Asp 155	Tyr	Ser	Ile	Gly	Arg 160
15	Asp	Ile	Gln	Arg	Gln 165	Ąsp	Leu	Ser	Ala	Ile 170	Ala	Arg	Thr	Leu	Xaa 175	Lys
	Asn	His	Xaa													
20																
	(2)	INF	ORMAT	NOI	FOR	SEQ	ID 1	10: 3	62 :							
25			(i) : (xi)	~ (. ()	A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami: OGY:	5 am no a lin	ino a cid ear	acid		: 362	2:			
30	Met 1	Lys	Ser	Ser	Ser 5	Leu	Phe	Phe	Phe	Phe 10	Leu	Ala	His	Phe	Ile 15	His
35	Ser	His	Asp	Leu 20	Pro	Gly	Leu	Cys	Arg 25							
	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID 1	10: 3	63:							
40			(i) !	(.	A) L B) T	ENGT YPE:	H: 2 ami	24 a no a	mino cid		ds					
45			(xi)		D) TY UENCI					EQ II	ои с	: 36	3:			
	Met 1	Lys	Phe	Ala	Ala 5	Ser	Gly	Xaa	Phe	Leu 10	His	His	Met	Ala	Gly 15	Leu
50	Ser	Ser	Ser	Lys 20	Leu	Ser	Met	Ser	Lys 25	Ala	Leu	Pro	Leu	Thr 30	Lys	Val
	Val	Gln	Asn 35	Asp	Ala	Tyr	Thr	Ala 40	Pro	Ala	Leu	Pro	Ser 45	Ser	Ile	Arg
55	Thr	Lys 50	Ala	Leu	Thr	Asn	Met 55	Ser	Arg	Thr	Leu	Val 60	Asn	Lys	Glu	Glu
60	Pro 65	Pro	Lys	Glu	Leu	Pro 70	Ala	Ala	Glu	Pro	Val 75	Leu	Ser	Pro	Leu	Glu 80

	Gly	Thr	Lys	Met	Thr 85	Val	Asn	Asn	Leu	90	Pro	Arg	Val	Thr	Glu 95	Glu
5	Asp	Ile	Val	Glu 100	Leu	Phe	Cys	Val	Cys 105	Gly	Ala	Leu	Lys	Arg 110	Ala	Arg
	Leu	Val	His 115	Pro	Gly	Val	Ala	Glu 120	Val	Val	Phe	Val	Lys 125	Lys	Asp	Asp
10	Ala	Ile 130	Thr	Ala	Tyr	Lys	Lys 135	Туr	Asn	Asn	Arg	Cys 140	Leu	Asp	Gly	Gln
15	Pro 145	Met	Lys	Cys	Asn	Leu 150	His	Met	Asn	Gly	Asn 155	Val	Ile	Thr	Ser	A sp 160
	Gln	Pro	Ile	Leu	Leu 165	Arg	Leu	Ser	Asp	Ser 170	Pro	Ser	Met	Lys	Lys 175	Glu
20	Ser	Glu	Leu	Pro 180	Arg	Arg	Val	Asn	Ser 185	Ala	Ser	Ser	Ser	Asn 190	Pro	Pro
	Ala	Glu	Val 195	Asp	Pro	Asp	Thr	Ile 200	Leu	Lys	Ala	Leu	Phe 205	Lys	Ser	Ser
25	Gly	Ala 210	Ser	Xaa	Thr	Thr	Gln 215	Pro	Thr	Glu	Phe	Lys 220	Ile	Lys	Leu	Xaa
30																
	(2)	INFO	ORMA	rion	FOR	SEQ	ID I	10: 3	364:							
35			(i) :	(ENCE A) L B) T	ENGT YPE:	H: 3 ami	49 a no a	mino cid		ds					
40			(xi)		D) TY UENCI					EQ II	ON 0	: 364	4 :			
	Met 1	Ser	Lys	Asn	Cys 5	Ile	Lys	Leu	Leu	Cys 10	Glu	Asp	Pro	Val	Phe 15	Ala
45	Glu	Tyr	Ile	Lys 20	Cys	Ile	Leu	Met	Asp 25	Glu	Arg	Thr	Phe	Leu 30	Asn	Asn
	Asn	Ile	Val 35	Tyr	Thr	Phe	Met	Thr 40	His	Phe	Leu	Leu	Lys 45	Val	Gln	Ser
50	Gln	Val 50	Phe	Ser	Glu	Ala	Asn 55	Суѕ	Ala	Asn	Leu	Ile 60	Ser	Thr	Leu	Ile
55	Thr 65	Asn	Leu	Ile	Ser	Gln 70	Tyr	Gln	Asn	Leu	Gln 75	Ser	Asp	Phe	Ser	Asn 80
55	65					70					75			Phe Asp		80

	Ala	Leu	Ile 115	Pro	Thr	Leu	Gln	Glu 120	Leu	Leu	Ser	Lys	Cys 125	Arg	Thr	Cys
5	Leu	Gln 130	Gln	Arg	Asn	Ser	Leu 135	Gln	Glu	Gln	Glu	Ala 140	Lys	Glu	Arg	Lys
10	Thr 145	Lys	Asp	Asp	Glu	Gly 150	Ala	Thr	Pro	Ile	Lys 155	Arg	Arg	Arg	Val	Ser 160
	Ser	Asp	Glu	Glu	His 165	Thr	Val	Asp	Ser	Cys 170	Ile	Ser	Asp	Met	Lys 175	Thr
15	Glu	Thr	Arg	Glu 180	Val	Leu	Thr	Pro	Thr 185	Ser	Thr	Ser	Asp	Asn 190	Glu	Thr
	Arg	Asp	Ser 195	Ser	Ile	Ile	Asp	Pro 200	Gly	Thr	Glu	Gln	Asp 205	Leu	Pro	Ser
20	Pro	Glu 210	Asn	Ser	Ser	Val	Lys 215	Glu	Tyr	Arg	Met	G1u 220	Val	Pro	Ser	Ser
25	Phe 225	Ser	Glu	Asp	Met	Ser 230	Asn	Ile	Arg	Ser	Gln 235	His	Ala	Glu	Glu	Gln 240
	Ser	Asn	Asn	Gly	Arg 245	Тут	Asp	Asp	Cys	Lys 250	Glu	Phe	Lys	Asp	Leu 255	His
30	Суѕ	Ser	Lys	Asp 260	Ser	Thr	Leu	Ala	Glu 265	Glu	Glu	Ser	Glu	Phe 270	Pro	Ser
	Thr	Ser	11e 275	Ser	Ala	Val	Leu	Ser 280	Asp	Leu	Ala	Asp	Leu 285	Arg	Ser	Cys
35	Asp	Gly 290	Gln	Ala	Leu	Pro	Ser 295	Gln	Asp	Pro	Glu	Val 300	Ala	Leu	Ser	Leu
40	Ser 305	Cys	Gly	His	Ser	Arg 310	Gly	Leu	Phe	Ser	His 315	Met	Gln	Gln	His	Asp 320
	Ile	Leu	Asp	Thr	Leu 325	Cys	Arg	Thr	Ile	Glu 330	Ser	Thr	Ile	His	Val 335	Val
45	Thr	Arg	Ile	Ser 340	Gly	Lys	Gly	Asn	Gln 345	Ala	Ala	Ser	Xaa			
	(2)	INFO	ORMA'	rion	FOR	SEQ	ID 1	vo: 3	865 :							
50			(i) :	~	ENCE A) L						ds					
55			(xi)	(B) T D) T UENC	OPOL	OGY:	lin	ear	EQ I	D NO	: 36	5:			
	Met 1	Leu	His	Gln	Asp 5	His	Ile	Thr	Phe	Ala 10	Met	Leu	Leu	Ala	Arg 15	Ile
60	Lys	Leu	Lys	Gly	Thr	Val	Gly	Glu	Pro	Thr	Тут	Asp	Ala	Glu	Phe	Gln

				20					25					30		
5	His	Phe	Leu 35	Arg	Gly	Asn	Glu	Ile 40	Val	Leu	Ser	Ala	Gly 45	Ser	Thr	Pro
J	Arg	Ile 50	Gln	Gly	Leu	Thr	Val 55	Glu	Gln	Ala	Glu	Ala 60	Val	Val	Arg	Leu
10	Ser 65	Cys	Leu	Pro	Ala	Phe 70	Lys	Asp	Leu	Ile	Ala 75	Lys	Val	Gln	Ala	Asp 80
	Glu	Gln	Phe	Gly	Ile 85	Trp	Leu	Asp	Ser	Ser 90	Ser	Pro	Glu	Gln	Thr 95	Val
15	Pro	Tyr	Leu	Trp 100	Ser	Glu	Glu	Thr	Pro 105	Ala	Thr	Pro	Ile	Gly 110	Gln	Ala
20	Ile	His	Arg 115	Leu	Leu	Leu	Ile	Gln 120	Ala	Phe	Arg	Pro	Asp 125	Arg	Leu	Leu
20	Ala	Met 130	Ala	His	Met	Phe	Val 135	Ser	Thr	Asn	Leu	Gly 140	Glu	Ser	Phe	Met
25	Ser 145	Ile	Met	Glu	Gln	Pro 150	Leu	Asp	Leu	Thr	His 155	Ile	Val	Xaa	Thr	Glu 160
	Val	Lys	Pro	Asn	Thr 165	Pro	Val	Leu	Met	Cys 170	Ser	Val	Pro	Gly	Туг 175	Asp
30	Ala	Ser	Gly	His 180	Val	G1u	Asp	Leu	Ala 185	Ala	Glu	Gln	Asn	Thr 190	Gln	Ile
35	Thr	Ser	Ile 195	Ala	Ile	Gly	Ser	Ala 200	Glu	Gly	Phe	Asn	Gln 205	Ala	Asp	Lys
	Ala	11e 210	Asn	Thr	Ala	Val	Lys 215	Ser	Gly	Arg	Trp	Val 220	Met	Leu	Lys	Asn
40	Val 225	His	Leu	Ala	Pro	Gly 230	Trp	Leu	Met	Gln	Leu 235	Glu	Lys	Lys	Leu	His 240
	Ser	Leu	Gln	Pro	His 245	Ala	Cys	Phe	Arg	Leu 250	Phe	Leu	Thr	Met	Glu 255	Ile
45	Asn	Pro	Lys	Val 260	Pro	Val	Asn	Leu	Leu 265	Arg	Ala	Gly	Arg	11e 270	Phe	Val
50	Phe	Glu	Pro 275	Pro	Pro	Gly	Xaa	Lys 280	Ala	Asn	Met	Leu	Arg 285	Thr	Phe	Ser
30	Ser	Ile 290		Val	Ser	Arg	Ile 295	Cys	Lys	Ser	Pro	Asn 300	Glu	Arg	Ala	Arg
55	Leu 305	-	Phe	Leu	Leu	Ala 310	Trp	Phe	His	Ala	11e 315	Ile	Gln	Glu	Arg	Leu 320
	Arg	Tyr	Ala	Pro	Leu 325	Gly	Trp	Ser	Lys	Lys 330	Тух	Glu	Phe	Gly	Glu 335	Ser
60	Asp	Leu	Arg	Ser	Xaa	Cys	Asp	Thr	Val	Asp	Thr	Trp	Leu	Asp	Asp	Thr

				340					345					350		
5	Ala	Lys	Gly 355	Arg	Gln	Asn	Ile	Ser 360	Pro	Asp	Lys	Ile	Pro 365	Trp	Ser	Ala
-	Leu	Lys 370	Thr	Leu	Met	Ala	Gln 375	Ser	Ile	Tyr	Gly	Gly 380	Arg	Val	Asp	Asn
10	Glu 385	Phe	Asp	Gln	Arg	Leu 390	Leu	Asn	Thr	Phe	Leu 395	Glu	Arg	Leu	Phe	Thr 400
	Thr	Arg	Ser	Phe	Asp 405	Ser	Glu	Phe	Lys	Leu 410	Ala	Cys	Lys	Val	Asp 415	Gly
15	His	Lys	Asp	Ile 420	Gln	Met	Pro	Asp	Gly 425	Met	Gln	Ala	Arg	Gly 430	Val	Cys
20	Ala	Val	Gly 435	Gly	Val	Ala	Pro	Arg 440	His	Pro	Asp	Ala	Leu 445	Leu	Ala	Gly
	Pro	Ala 450	Gln	Gln	Arg	Arg	Glu 455	Ser	Pro	Pro	Tyr	His 460	Thr	Gly	Cys	Gly
25	His 465	Asp	Gln													
20	(2)	INFO	ORMA	rion	FOR	SEQ	ID 1	NO: 3	166:							
30			(i) :	(A) L	ENGT	н: 1	52 au	mino		ds					
					B) T D) T											
35			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	ON C	: 36	6 :			
	Met 1	Ala	Asp	Glu	Ala 5	Thr	Arg	Arg	Val	Val 10	Ser	Glu	Ile	Pro	Val 15	Leu
40	Lys	Thr	Asn	Ala 20	Gly	Pro	Arg	Asp	Arg 25	Glu	Leu	Trp	Val	Gln 30	Arg	Leu
45	Lys	Glu	Glu 35	Tyr	Gln	Ser	Leu	Ile 40	Arg	Tyr	Val	Glu	Asn 45	Asn	Lys	Asn
	Ala	Asp 50	Asn	Asp	Trp	Phe	Arg 55	Leu	Glu	Ser	Asn	Lys 60	Glu	Gly	Thr	Arg
50	Trp 65		Gly	Lys	Cys	Trp 70	Tyr	Ile	His	Asp	Leu 75	Leu	Lys	Tyr	Glu	Phe 80
	Asp	Ile	Glu	Phe	Asp 85	Ile	Pro	Ile	Thr	Туг 90	Pro	Thr	Thr	Ala	Pro 95	Glu
55	Ile	Ala	Val	Pro 100		Leu	Asp	Gly	Lys 105	Thr	Ala	Lys	Met	Tyr 110	Arg	Gly
	_	_		_	_		_		_	_			m			Glu

	Cys	Ala 130	Gln	Ile	Trp	Thr	Ser 135	Ser	Ser	His	Gly	Ser 140	Gly	Ala	Gly	Ser
5	Met 145	Xaa	Gly	Ser	Gly	Asn 150	Pro	Xaa								
10	(2)				ENCE A) L	CHAI ENGT	RACTI H: 3		rics mino		ds					
15			(xi)	SEQI				lin PTIO		EQ II	ои о	: 36	7:			
	Met 1	Tyr	Asp	Gly	Thr 5	Lys	Glu	Val	Pro	Met 10	Asn	Pro	Val	Lys	Ile 15	Tyr
20	Gln	Val	Cys	Asp 20	Ile	Pro	Gln	Pro	Gln 25	Gly	Ser	Ile	Ile	Asn 30	Pro	Gly
25	Ser	Thr	Gly 35	Ser	Ala	Pro	Trp	Asp 40	Glu	Lys	Asp	Asn	Asp 45	Val	Asp	Glu
	Glu	Asp 50	Glu	Glu	Asp	Glu	Leu 55	Asp	Gln	Ser	Gln	His 60	His	Val	Pro	Ile
30	Gln 65	Asp	Thr	Phe	Pro	Phe 70	Leu	Asn	Ile	Asn	Gly 75	Ser	Pro	Met	Ala	Pro 80
	Ala	Ser	Val	Gly	Asn 85	Cys	Ser	Val	Gly	Asn 90	Cys	Ser	Pro	Glu	Ala 95	Val
35	Trp	Pro	Lys	Thr 100	Glu	Pro	Leu	Glu	Met 105	Glu	Val	Pro	Gln	Ala 110	Pro	Ile
40	Gln	Pro	Phe 115	Tyr	Ser	Ser	Pro	Glu 120	Leu	Trp	Ile	Ser	Ser 125	Leu	Pro	Met
	Thr	Asp 130	Leu	Asp	Ile	Lys	Phe 135	Gln	Tyr	Arg	Gly	Lys 140	Glu	Tyr	Gly	Gln
45	Thr 145	Met	Thr	Val	Ser	Asn 150	Pro	Gln	Gly	Cys	Arg 155	Leu	Phe	Tyr	Gly	Asp 160
	Leu	Gly	Pro	Met	Pro 165	Asp	Gln	Glu	Glu	Leu 170	Phe	Gly	Pro	Val	Хаа 175	Leu
50	Glu	Gln	Val	Lys 180	Phe	Pro	Gly	Pro	Glu 185	His	Ile	Thr	Asn	Glu 190	Lys	Gln
55	Lys	Leu	Phe 195	Thr	Ser	Lys	Leu	Leu 200	Asp	Val	Met	Asp	Arg 205	Gly	Leu	Ile
	Leu	Glu 210	Val	Ser	Gly	His	Ala 215	Ile	Tyr	Ala	Ile	Arg 220	Leu	Cys	Gln	Cys
60	Lys 225	Va1	Tyr	Trp	Ser	Gly 230	Pro	Cys	Ala	Pro	Ser 235	Leu	Val	Ala	Pro	Asn 240

	Leu	Ile	Glu	Arg	Gln 245	Lys	Lys	Val	Lys	Leu 250	Phe	Cys	Leu	Glu	Thr 255	Phe
5	Leu	Ser	Asp	Leu 260	Ile	Ala	His	Gln	Lys 265	Gly	Gln	Ile	Glu	Lys 270	Gln	Pro
10	Pro	Phe	Glu 275	Ile	Tyr	Leu	Cys	Phe 280	Gly	Glu	Glu	Trp	Pro 285	Asp	Gly	Lys
10	Pro	Leu 290	Glu	Arg	Lys	Leu	Ile 295	Leu	Val	Gln	Val	Ile 300	Pro	Val	Val	Ala
15	Arg 305	Met	Ile	Tyr	Glu	Met 310	Phe	Ser	Gly	Asp	Phe 315	Thr	Arg	Ser	Phe	Asp 320
	Ser	Gly	Ser	Val	Arg 325	Leu	Gln	Ile	Ser	Thr 330	Pro	Asp	Ile	Lys	Asp 335	Asn
20	Ile	Val	Ala	Gln 340	Leu	Lys	Gln	Leu	Tyr 345	Arg	Ile	Leu	Gln	Thr 350	Gln	Glu
25	Ser	Trp	Gln 355	Pro	Met	Gln	Pro	Thr 360	Pro	Ser	Met	Gln	Leu 365	Pro	Pro	Ala
23	Leu	Pro 370	Pro	Gln	Xaa											
30	(2)	INFO	ORMA	rion	FOR	SEQ	ID I	vo: 3	368:							
			(i) :	SEOU	ENCE	CHA	RACT	ERTS	rics	•						
35			,	(ENGT	н: 8	3 am	ino	acid	s					
			(xi)		D) T UENCI					EQ I	ои о	: 36	8:			
40	Met 1	Gly	Ser	Ser	Val 5	Leu	Pro	Phe	Cys	Val 10	Cys	Val	Thr	Ser	Pro 15	Ser
	Leu	Gly	Gly	Arg 20	Cys	Ile	Gln	Gly	Arg 25	Phe	Ala	Ser	His	Ser 30	Lys	Phe
45	Trp	Gly	Phe 35	_	_	-				Phe	-			-	Glu	Thr
50	Pro	Pro 50	Asp	Gln	Glu	Pro	Gln 55	Lys	Glu	Thr	Glu	Pro 60	Ala	Thr	Ser	Ser
30	His 65	Ala	Arg	Pro	Trp	Ala 70	Arg	Val	Ile	Gly	Leu 75	Arg	Ile	Trp	Pro	Gln 80
55	Pro	Asn	Xaa													
60	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO:	369:							

WO 98/39448

			(i)	(ENCE A) L B) T D) T	ENGI YPE:	H: 2 ami	l am no a	ino cid		ls					
5			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 36	9:			
	Met 1		Leu	Ser	Val 5	Ala	Ile	Phe	Ile	Leu 10	Leu	Thr	Leu	Val	Туг 15	Ala
10	Tyr	Trp	Thr	Met 20	Xaa											
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	.: OV	370:							
. 20				(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	27 a no a lin	mino cid ear	aci		: 37	0:			
25	Met 1	Gly	Ala	Ser	Ala 5	Arg	Leu	Leu	Arg	Ala 10	Val	Ile	Met	Gly	Ala 15	Pro
	Gly	Ser	Gly	Lys 20	Gly	Thr	Val	Ser	Ser 25	Arg	Ile	Thr	Thr	His 30	Phe	Glu
30	Leu	Lys	His 35	Leu	Ser	Ser	Gly	Asp 40	Leu	Leu	Arg	Asp	Asn 45	Met	Leu	Arg
	Gly	Thr 50	Glu	Ile	Gly	Val	Leu 55	Ala	Lys	Ala	Phe	Ile 60	Asp	Gln	Gly	Lys
35	Leu 65	Ile	Pro	Asp	Asp	V al 70	Met	Thr	Arg	Leu	Ala 75	Leu	His	Glu	Leu	Lys 80
40	Asn	Leu	Thr	Gln	Tyr 85	Ser	Trp	Leu	Leu	Asp 90	Gly	Phe	Pro	Arg	Thr 95	Leu
	Pro	Gln	Ala	Glu 100	Ala	Leu	Asp	Arg	Ala 105	Tyr	Gln	Ile	Asp	Thr 110	Val	Ile
45	Asn	Leu	Asn 115	Val	Pro	Phe	Glu	Val 120	Ile	Lys	Gln	Arg	Leu 125	Thr	Ala	Arg
	Trp	Ile 130	His	Pro	Ala	Ser	Gly 135	Arg	Val	Tyr	Asn	Ile 140	Glu	Phe	Asn	Pro
50	Pro 145	Lys	Thr	Val	Gly	Ile 150	Asp	Asp	Leu	Thr	Gly 155	Glu	Pro	Leu	Ile	Gln 160
55	Arg	Glu	Asp	Asp	Lys 165	Pro	Glu	Thr	Val	Ile 170	Lys	Arg	Leu	Lys	Ala 175	Туг
55	Glu	Asp	Gln	Thr 180	Lys	Pro	Val	Leu	Glu 185	Tyr	Tyr	Gln	Lys	Lys 190	Gly	Val
60	Leu	Glu	Thr 195		Ser	Gly	Thr	Glu 200	Thr	Asn	Lys	Ile	Trp 205	Pro	Tyr	Val

576

Tyr Ala Phe Leu Gln Thr Lys Val Pro Gln Arg Ser Gln Lys Ala Ser 215 5 Val Thr Pro 225 10 (2) INFORMATION FOR SEQ ID NO: 371: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 79 amino acids (B) TYPE: amino acid 15 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 371: Met Phe Leu Asn Cys Glu Ile Leu Glu Tyr Cys Tyr Tyr Leu Thr Gln 20 Leu Lys Ile Ser Met Gly Lys Tyr Leu Ser Ile Pro Thr Val Leu Leu Lys Ile Ile Arg Cys Ser Ile Thr Ala Val Ser Asp Ser Ser Thr Ser 25 40 Trp Ala Ile Lys Ala Gln Leu Lys Ile Glu Asn Lys Asp Leu Asp Asn 30 Lys Thr Ala Lys Gly Gly Gly Glu Ala Leu Thr Cys Thr Xaa 65 70 35 (2) INFORMATION FOR SEQ ID NO: 372: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 amino acids (B) TYPE: amino acid 40 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 372: Met Arg Ala Val Phe Pro Cys Cys Pro Phe Leu Thr Leu Met Leu Pro 10 45 Leu Leu Glu Cys Leu Val Gly Met Ile Met Cys Tyr Leu Gly Ile Ser 20 25 Phe Thr Asp Thr Arg Lys Thr Ala Gly Leu Lys Lys Lys Lys Lys Lys 50 40 Lys Xaa Xaa 50 55 (2) INFORMATION FOR SEQ ID NO: 373: (i) SEQUENCE CHARACTERISTICS: 60 (A) LENGTH: 61 amino acids

	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 373:
5	Met Phe Leu Met Arg Met His Leu Cys Phe Cys Lys Tyr Cys Cys Set 1 5 10 15
10	Phe Ile Val Thr Pro Thr Ser Thr Ser Asn Thr Ala Ser Tyr Leu Tr 20 25 30
	Pro Trp Ile Ser Ala Ser Met Ala Gly Arg Gly Ser Ser Trp Ala Cys 35 40 45
15	Thr Leu Asn Ala Val Thr Arg Glu Gly Leu Pro Glu Xaa 50 55 60
20	(2) INFORMATION FOR SEQ ID NO: 374: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids
25	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 374:
	Met Ser Leu Leu Asn Thr His Thr Leu Cys Phe Val Leu Phe Cys Phe 1 5 10 15
30	Thr Leu Ser Ile Asn Gln Glu Lys Leu Ala Asn His Leu Ala Phe Arg 20 25 30
35	Ile Leu Phe Phe Ile Val Phe Xaa 35 40
40	(2) INFORMATION FOR SEQ ID NO: 375: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 375: Met Cys Ser Gly Gln Ser Gln Val Trp Lys Met Ala Leu Gln Ala Leu
50	1 5 10 15 Asp Ser Glu Thr Val Val Ile Leu Pro Asp Met His Leu Ile Leu Ser 20 25 30
55	Leu Arg Leu Ile His Asn Ala Arg Pro Cys Leu Xaa 35 40
	(2) INFORMATION FOR SEQ ID NO: 376:
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 203 amino acids

			(xi)		B) T D) T UENC	OPOL	OGY:	lin	ear	EQ I	D NO	: 37	6 :			
5	Met 1	Leu	Ile	Ser	Glu 5	Glu	Glu	Ile	Pro	Phe 10	Lys	Asp	Asp	Pro	Arg 15	Asp
10	Glu	Thr	Tyr	Lys 20	Pro	His	Leu	Glu	Arg 25	Glu	Thr	Pro	Lys	Pro 30	Arg	Arg
	Lys	Ser	Gly 35	Lys	Val	Lys	Glu	Glu 40	Lys	Glu	Lys	Lys	Glu 45	Ile	Lys	۷al
15	Glu	Val 50	Glu	Val	Glu	Val	Lys 55	Glu	Glu	Glu	Asn	G1u 60	Ile	Arg	Glu	Asp
	Glu 65	Glu	Pro	Pro	Arg	Lys 70	Arg	Gly	Arg	Arg	Arg 75	Lys	Asp	Asp	Lys	Ser 80
20	Pro	Arg	Leu	Pro	Lys 85	Arg	Arg	Lys	Lys	Pro 90	Pro	Ile	Gln	Tyr	Val 95	Arg
25	Cys	Glu	Met	Glu 100	Gly	Cys	Gly	Thr	Val 105	Leu	Ala	His	Pro	Arg 110	Tyr	Leu
	Gln	His	His 115	Ile	Lys	Tyr	Gln	His 120	Leu	Leu	Lys	Lys	Lys 125	Tyr	Val	Cys
30	Pro	His 130	Pro	Ser	Cys	Gly	Arg 135	Leu	Phe	Arg	Leu	Gln 140	Lys	Gln	Leu	Leu
	Arg 145	His	Ala	Lys	His	His 150	Thr	Asp	Gln	Arg	Asp 155	Tyr	Ile	Cys	Glu	Туг 160
35	Cys	Ala	Arg	Ala	Phe 165	Lys	Ser	Ser	His	Asn 170	Leu	Ala	Val	His	Arg 175	Met
1 0	Ile	His	Thr	Gly 180	Glu	Lys	His	Tyr	Asn 185	Val	Arg	Ser	Val	Asp 190	Leu	Leu
	Val	Asp	Lys 195	Arg	His	Leu	Leu	11e 200	Gly	Thr	Хаа					
15	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	vo: :	377 :							
			(i) :	SEQUI	ENCE A) L						s					
50			(xi)		B) T D) T UENC	OPOL	OGY :	lin	ear	EQ I	D NO	: 37	7:			
55	Met 1	Leu	Pro	Arg	Arg 5	Thr	Phe	Туг	Phe	Tyr 10	Phe	Ile	Phe	Ile	Phe 15	Phe
	Leu	Ala	Ser	Phe 20	Trp	Gly	Phe	Thr	Leu 25	Arg	Ala	Ser	Phe			

	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	W :	378:							
5				(A) L B) T D) T	CHA ENGT YPE: OPOL E DE	H: 1 ami OGY:	36 a no a lin	mino cid ear	aci		. 37	Ω.			
10	Met 1		Asp							-				Leu	Leu 15	Met
15	Leu	Lys	Thr	Туг 20	Leu	Ser	Glu	Asp	Val 25	Phe	Gln	His	Ala	Va1 30	Val	Leu
13	Туг	Leu	His 35	Asn	His	Ser	Тут	Ala 40	Ser	Ile	Gln	Ser	Asp 45	Asp	Leu	Trp
20	Asp	Ser 50	Phe	Asn	Glu	Val	Thr 55	Asn	Gln	Thr	Leu	Asp 60	Val	Lys	Arg	Met
	Met 65	Lys	Thr	Trp	Thr	Leu 70	Gln	Lys	Gly	Phe	Pro 75	Leu	Val	Thr	Val	Gln 80
25	Lys	Lys	Gly	Lys	Glu 85	Leu	Phe	Ile	Gln	Gln 90	Glu	Arg	Phe	Phe	Leu 95	Asn
30	Met	Lys	Pro	Glu 100	Ile	Gln	Pro	Ser	Asp 105	Thr	Arg	Tyr	Met	Pro 110	Ser	Phe
	Phe	Ser	Cys 115	His	Leu	Phe	Cys	Thr 120	Leu	Arg	Trp	Lys	Туг 125	Phe	Glu	Val
35	Phe	Туг 130	Asn	His	Lys	Phe	Leu 135	Xaa								
40	(2)		ORMAT							<u>.</u>						
45				(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	1 am no a lin	ino cid ear	acid		. 27	0 -			
43	Met 1		(xi) Trp	-						_				Ala	Cys 15	Trp
50		Trp	Arg	Cys 20		Pro	Trp	Pro	Cys 25		Cys	Pro	Gly	Pro 30		Ala
55	Gly	Leu	Ser 35	Ser	Gly	Ser	Arg	Pro 40	Trp							
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	380:							
60			(i)	SEQU	ENCE	СНА	RACT	ERIS	TICS	:						

					_					_	_					
			(xi)	() ()	B) T	YPE: OPOL	ami OGY:	68 ai no a line PTIO	cid ear			: 38() :			
5	Met 1	Glu	Phe	Leu	Lys 5	Val	Ala	Arg	Arg	Asn 10	Lys	Arg	Glu	Gln	Leu 15	Glu
10	Gln	Ile	Gln	Lys 20	Glu	Leu	Ser	Val	Leu 25	Glu	Glu	Asp	Ile	Lys 30	Arg	Val
	Glu	Glu	Met 35	Ser	Gly	Leu	Tyr	Ser 40	Pro	Val	Ser	Glu	Asp 45	Ser	Thr	Val
15	Pro	Gln 50	Phe	Glu	Ala	Pro	Ser 55	Pro	Ser	His	Ser	Ser 60	Ile	Ile	Asp	Ser
20	Thr 65	Glu	Tyr	Ser	Gln	Pro 70	Pro	Gly	Phe	Ser	Gly 75	Ser	Ser	Gln	Thr	Lys 80
	Lys	Gln	Pro	Trp	Tyr 85	Asn	Ser	Thr	Leu	Ala 90	Ser	Arg	Arg	Lys	Arg 95	Leu
25	Thr	Ala	His	Phe 100	Glu	Asp	Leu	Glu	Gln 105	Cys	Tyr	Phe	Ser	Thr 110	Arg	Met
	Ser	Arg	Ile 115	Ser	Asp	Asp	Ser	Arg 120	Thr	Ala	Ser	Gln	Leu 125	Asp	Glu	Phe
30	Gln	Glu 130	Cys	Leu	Ser	Lys	Phe 135	Thr	Arg	Tyr	Asn	Ser 140	Val	Arg	Pro	Leu
35	Ala 145	Thr	Leu	Ser	Tyr	Ala 150	Ser	Asp	Leu	Tyr	Asn 155	G1y	Ser	Ser	Ile	Val 160
	Ser	Ser	Ile	Glu	Phe 165	Asp	Arg	Asp	Cys	Asp 170	Tyr	Phe	Ala	Ile	Ala 175	Gly
40	Val	Thr	Lys	Lys 180	Ile	Lys	Val	Tyr	Glu 185	Tyr	Asp	Thr	Val	Ile 190	Gln	Asp
	Ala	Val	Asp 195	Ile	His	Tyr	Pro	Glu 200	Asn	Glu	Met	Thr	Cys 205	Asn	Ser	Lys
45	Ile	Ser 210	Cys	Ile	Ser	Trp	Ser 215	Ser	Tyr	His	Lys	Asn 220	Leu	Leu	Ala	Ser
50	Ser 225	Asp	Тут	Glu	Gly	Thr 230	Val	Ile	Leu	Trp	Asp 235	Gly	Phe	Thr	Gly	Gln 240
	Arg	Ser	Lys	Val	Tyr 245	Gln	Glu	His	Glu	Lys 250	Arg	Cys	Trp	Ser	Val 255	Asp
55	Phe	Asn	Leu	Met 260	_	Pro	Lys	Leu	Leu 265	Ala	Ser	Gly	Ser	Asp 270	Asp	Ala
		Val	Lys 275		Trp	Ser	Thr	Asn 280	Leu	Asp	Asn	Ser	Val 285	Ala	Ser	Ile
60	Glu	Ala	Lvs	Ala	Asn	Val	Cvs	Cvs	Val	Lvs	Phe	Ser	Pro	Ser	Ser	Arg

		290					295					300				
5	Туг 305	His	Leu	Ala	Phe	Gly 310	Cys	Ala	Asp	His	Cys 315	Val	His	Туr	туг	Asp 320
J	Leu	Arg	Asn	Thr	Lys 325	Gln	Pro	Ile	Met	Val 330	Phe	Lys	Gly	His	Arg 335	Lys
10	Ala	Val	Ser	Tyr 340	Ala	Lys	Phe	Val	Ser 345	Gly	Glu	Glu	Ile	Val 350	Ser	Ala
	Ser	Thr	Asp 355	Ser	Gln	Leu	Lys	Leu 360	Trp	Asn	Val	Gly	Lys 365	Pro	Туг	Cys
15	Leu	Arg 370	Ser	Phe	Lys	Gly	His 375	Ile	Asn	Glu	Lys	Asn 380	Phe	Val	Gly	Leu
20	Ala 385	Ser	Asn	Gly	Asp	Туг 390	Ile	Ala	Cys	Gly	Ser 395	Glu	Asn	Asn	Ser	Leu 400
	Tyr	Leu	Тут	Tyr	Lys 405	Gly	Leu	Ser	Lys	Thr 410	Leu	Leu	Thr	Phe	Lys 415	Phe
25	Asp	Thr	Val	Lys 420	Ser	Val	Leu	Asp	Lys 425	Asp	Arg	Lys	Glu	Asp 430	Asp	Thr
	Asn	Glu	Phe 435	Val	Ser	Ala	Val	Cys 440	Trp	Arg	Ala	Leu	Pro 445	Asp	Gly	Glu
30	Ser	Asn 450	Val	Leu	Ile	Ala	Ala 455	Asn	Ser	Gln	Gly	Thr 460	Ile	Lys	Val	Leu
35	Glu 465	Leu	Val	Xaa												
	(2)	INFO	ORMA'	rion	FOR	SEQ	ID I	NO: 3	381:							
40			(i)	(A) L	ENGT	H: 2	ERIS 9 am no a	ino		s					
45			(xi)					lin PTIO		EQ I	D NO	: 38	1:			
43	Met 1	Arg	Lys	Glu	Asp 5	Gly	Phe	Trp	Phe	Phe 10	Phe	Phe	Leu	Phe	Phe 15	Phe
50	Val	Val	Gly	Ser 20	Lys	Phe	Val	Asn	Gly 25	Asn	Lys	Leu	Val			
55	(2)	INF				_		N O:								
			(i)	((A) I (B) 7	ENGI	TH: 2 ami	ERIS 9 an ino a	nino ncid		ls					
60			(xi)					lir Prtc		EO T	D NO): 38	12.			

WO 98/39448	PCT/US98/04493
-------------	----------------

	Met 1	Pro	Leu	Ala	Pro 5	Tyr	Cys	Asp	Leu	Leu 10	Val	Ala	Leu	Ser	Phe	Ala
5	Leu	Val	Leu	Glu 20	Ser	Pro	Val	Asp	Ser 25	Ser	Asp	Phe	Thr			
10	(2)	INFO	ORMAT	rion	FOR	SEQ	ID I	NO: :	383 :							
			(i)	SEQUI	ENCE A) L						ds					
15			(xi)		B) T D) T UENCI	OPOL	OGY:	lin	ear	EQ II	ои о	: 38	3:			
20	Met 1	Asn	Ser	Leu	Val 5	Ser	Trp	Gln	Leu	Leu 10	Leu	Phe	Leu	Cys	Ala 15	Thr
	His	Phe	Gly	Glu 20	Pro	Leu	Glu	Lys	Val 25	Ala	Ser	Val	Gly	Asn 30	Ser	Arg
25	Pro	Thr	Gly 35	Gln	Gln	Leu	Glu	Ser 40	Leu	Gly	Leu	Leu	Ala 45	Pro	Gly	Glu
	Gln	Ser 50	Leu	Pro	Cys	Thr	G1u 55	Arg	Lys	Pro	Ala	Ala 60	Thr	Ala	Arg	Leu
30	Ser 65	Arg	Arg	Gly	Thr	Ser 70	Leu	Ser	Pro	Pro	Pro 75	Glu	Ser	Ser	Gly	Ser 80
35	Pro	Gln	Gln	Pro	Gly 85	Leu	Ser	Ala	Pro	His 90	Ser	Arg	Gln	Ile	Pro 95	Ala
	Pro	Gln	Gly	Ala 100	Val	Leu	Val	Gln	Arg 105	Glu	Lys	Asp	Leu	Pro 110	Asn	Tyr
40	Asn	Trp	Asn 115	Ser	Phe	Gly	Leu	Arg 120	Phe	Gly	Lys	Arg	Glu 125	Ala	Ala	Pro
	Gly	Asn 130	His	Gly	Arg		Ala 135	Gly	Arg	Gly						
45																
	(2)			rion												
50			(1)	(A) L B) T D) T	ENGT YPE :	H: 7 ami	4 am no a	ino cid		s					
<i></i>			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 38	4 :			
55	Met 1	Ser	Cys	Phe	Ile 5	Asp	Ser	Xaa	Asp	Ser 10	Lys	Ile	Leu	His	Leu 15	Leu
60	Val	Val	Ser	Phe 20	Ile	Cys	Xaa	Leu	Phe 25	Leu	Leu	Ile	Leu	Thr 30	His	Gly

WO 98/39448 PCT/US98/04493

	Ile	Leu	11e 35	Leu	Arg	Xaa	Phe	Phe 40	Ser	Val	Xaa	Xaa	His 45	Ser	Leu	Lys
5	Asn	Asn 50	Leu	Glu	Glu	Tyr	Leu 55	Ile	Leu	Met	Asn	Lys 60	Ala	Leu	Leu	Thr
	Arg 65		Asp	Phe	Phe	Val 70	Leu	Pro	Xaa	Ala						
10																
	(2)	INF	ORMA?	rion	FOR	SEQ	ID 1	VO : 3	385 :							
15			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	21 a no a lin	mino cid ear	aci		: 38	5:			
20	Met	Ser	Ala	Gly	Glu	Val	Glu	Arg	Leu	Val	Ser	Glu	Leu	Ser	Gly	Gly
	1				5					10					15	_
25	Thr	Gly	Gly	Asp 20	Glu	Glu	Glu	Glu	Trp 25	Leu	Tyr	Gly	Asp	Glu 30	Asn	Glu
	Val	Glu	Arg 35	Pro	Glu	Glu	Glu	Asn 40	Ala	Ser	Ala	Asn	Pro 45	Pro	Ser	Gly
30	Ile	Glu 50	Asp	Glu	Thr	Ala	Glu 55	Asn	Gly	Val	Pro	Lys 60	Pro	Lys	Val	Thr
	Glu 65	Thr	Glu	Asp	Asp	Ser 70	Asp	Ser	Asp	Ser	Asp 75	Asp	Asp	Glu	Asp	Asp 80
35	Val	His	Val	Thr	Ile 85	Gly	Asp	Ile	Lys	Thr 90	Gly	Ala	Pro	Gln	Туr 95	Gly
40	Ser	Туг	Gly	Thr 100	Ala	Pro	Val	Asn	Leu 105	Asn	Ile	Lys	Thr	Gly 110	Gly	Arg
	Val	Tyr	Gly 115	Thr	Thr	Gly	Thr	Lys 120	Val	Lys	Gly	Val	Asp 125	Leu	Asp	Ala
45	Pro	Gly 130	Ser	Ile	Asn	Gly	Val 135	Pro	Leu	Leu	Glu	Val 140	Asp	Leu	Asp	Ser
	Phe 145	Glu	Asp	Lys	Pro	Trp 150	Arg	Lys	Pro	Gly	Ala 155	Asp	Leu	Ser	Asp	Туг 160
50	Phe	Asn	Tyr	Gly	Phe 165	Asn	Glu	Asp	Thr	Trp 170	Lys	Ala	Tyr	Cys	Glu 175	Lys
55	Gln	Lys	Arg	Ile 180	Arg	Met	Gly	Leu	Glu 185	Val	Ile	Pro	Val	Thr 190	Ser	Thr
	Thr	Asn	Lys 195	Ile	Thr	Val	Gln	Gln 200	Gly	Arg	Thr	Gly	Asn 205	Ser	Glu	Lys
60	Glu	Thr 210	Ala	Leu	Pro	Ser	Thr 215	Lys	Ala	Glu	Phe	Thr 220	Ser	Pro	Pro	Ser

	Leu 225	Phe	Lys	Thr	Gly	Leu 230	Pro	Pro	Ser	Arg	Arg 235	Leu	Pro	Gly	Ala	Ile 240
5	Asp	Val	Ile	Gly	Gln 245	Thr	Ile	Thr	Ile	Ser 250	Arg	Val	Glu	Gly	Arg 255	Arg
10	Arg	Ala	Asn	Glu 260	Asn	Ser	Asn	Ile	Gln 265	Val	Leu	Ser	Glu	Arg 270	Ser	Ala
••	Thr	Glu	Val 275	Asp	Asn	Asn	Phe	Ser 280	Lys	Pro	Pro	Pro	Phe 285	Phe	Pro	Pro
15	Gly	Ala 290	Pro	Pro	Thr	His	Leu 295	Pro	Pro	Pro	Pro	Phe 300	Leu	Pro	Pro	Pro
	Pro 305	Thr	Val	Ser	Thr	Ala 310	Pro	Pro	Leu	Ile	Pro 315	Pro	Pro	Gly	Phe	Pro 320
20	Pro	Pro	Pro	Gly	Ala 325	Pro	Pro	Pro	Ser	Leu 330	Ile	Pro	Thr	Ile	Glu 335	Ser
25	Gly	His	Ser	Ser 340	Gly	Tyr	Asp	Ser	Arg 345	Ser	Ala	Arg	Ala	Phe 350	Pro	Tyr
23	Gly	Asn	Val 355	Ala	Phe	Pro	His	Leu 360	Pro	Gly	Ser	Ala	Pro 365	Ser	Trp	Pro
30	Ser	Leu 370	Val	Asp	Thr	Ser	Lys 375	Gln	Trp	Asp	Tyr	Туг 380	Ala	Arg	Arg	Glu
	Lys 385	Asp	Arg	Asp	Arg	Glu 390	Arg	Asp	Arg	Asp	Arg 395	Glu	Arg	Asp	Arg	Asp 400
35	Arg	Asp	Arg	Glu	Arg 405	Glu	Arg	Thr	Arg	Glu 410	Arg	Glu	Arg	Glu	Arg 415	Asp
40	His	Ser	Pro	Thr 420	Pro	Ser	Val	Phe	Asn 425	Ser	Asp	Glu	Glu	Arg 430	Tyr	Arg
	Tyr	Arg	Glu 435	Tyr	Ala	Glu	Arg	Gly 440	Tyr	Glu	Arg	His	Arg 445	Ala	Ser	Arg
45	Glu	Lys 450	Glu	Glu	Arg	His	Arg 455	Glu	Arg	Arg	His	Arg 460	Glu	Lys	Glu	Glu
	Thr 465	Arg	His	Lys	Ser	Ser 470	Arg	Ser	Asn	Ser	Arg 475	Arg	Arg	His	Glu	Ser 480
50	Glu	Glu	Gly	Asp	Ser 485	His	Arg	Arg	His	Lys 490	His	Lys	Lys	Ser	Lys 495	Arg
55	Ser	Lys	Glu	Gly 500	Lys	Glu	Ala	Gly	Ser 505	Glu	Pro	Ala	Pro	Glu 510	Gln	Glu
	Ser	Thr	Glu 515	Ala	Thr	Pro	Ala	Glu 520	Xaa							

WO 98/39448

585

PCT/US98/04493

	(2)	INF	ORMAT	rion	FOR	SEQ	ID 1	NO: 3	386:							
5				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	ERIST 37 a no a lin PTIO	mino cid ear	aci		: 38	6:			
10	Met 1	Asn	Ser	Arg	Gly 5	Ile	Trp	Leu	Ala	Туг 10	Ile	Ile	Leu	Val	Gly 15	Leu
	Leu	His	Met	Val 20	Leu	Leu	Ser	Ile	Pro 25	Phe	Phe	Ser	Ile	Pro 30	Val	Val
15	Trp	Thr	Leu 35	Thr	Asn	Val	Ile	His 40	Asn	Leu	Ala	Thr	Туг 45	Val	Phe	Leu
20	His	Thr 50	Val	Lys	Gly	Thr	Pro 55	Phe	Glu	Thr	Pro	Asp 60	Gln	Gly	Lys	Ala
	Arg 65	Leu	Leu	Thr	His	Trp 70	Glu	Gln	Met	Asp	Туг 75	Gly	Leu	Gln	Phe	Thr 80
25	Ser	Ser	Arg	Lys	Phe 85	Leu	Ser	Ile	Ser	Pro 90	Ile	Val	Leu	Туг	Leu 95	Leu
	Ala	Ser	Phe	Tyr 100	Thr	Lys	Tyr	Asp	Ala 105	Ala	His	Phe	Leu	11e 110	Asn	Thr
30	Ala	Ser	Leu 115	Leu	Ser	Val	Leu	Leu 120	Pro	Lys	Leu	Pro	Gln 125	Phe	His	Gly
35	Val	Arg 130	Val	Phe	Gly	Ile	Asn 135	Lys	Tyr							
40	(2)	INFO	ORMA	rion	FOR	SEQ	ו מו	NO: 3	887 :							
40			(i) :	(A) L B) T	ENGT YPE :	H: 1 ami	ERIS 86 a no a lin	mino cid		ds		•			
45			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: 5	EQ I	D NO	: 38	7:			
٠	Met 1	Ala	Ala	Gln	Lys 5	Asp	Gln	Gln	Lys	Asp 10	Ala	Glu	Ala	Glu	Gly 15	Leu
50	Ser	Gly	Thr	Thr 20	Leu	Leu	Pro	Lys	Leu 25	Ile	Pro	Ser	Gly	Ala 30	Gly	Arg
	Glu	Trp	Leu 35	Glu	Arg	Arg	Arg	Ala 40	Thr	Ile	Arg	Pro	Trp 45	Ser	Thr	Phe
55	Val	Asp 50		Gln	Arg	Phe	Ser 55	Arg	Pro	Arg	Asn	Leu 60	Gly	Glu	Leu	Cys
60	Gln 65	_	Leu	Val	Arg	Asn 70	Val	Glu	Tyr	Tyr	Gln 75	Ser	Asn	Tyr	Val	Phe 80

PCT/US98/04493

586

WO 98/39448

	Val	Phe	Leu	Gly	Leu 85	Ile	Leu	Tyr	Cys	Val 90	Val	Thr	Ser	Pro	Met 95	Leu
5	Leu	Val	Ala	Leu 100	Ala	Val	Phe	Phe	Gly 105	Ala	Cys	Tyr		Leu 110	тут	Leu
	Arg	Thr	Leu 115	Glu	Ser	Lys	Leu	Val 120	Leu	Phe	Gly	Arg	Glu 125	Val	Ser	Pro
10	Ala	His 130	Gln	Tyr	Ala	Leu	Ala 135	Gly	Gly	Ile	Ser	Phe 140	Pro	Phe	Phe	Ттр
15	Leu 145	Ala	Gly	Ala	Gly	Ser 150	Ala	Val	Phe	Trp	Val 155	Leu	Gly	Ala	Thr	Leu 160
	Val	Val	Ile	Gly	Ser 165	His	Ala	Ala	Phe	His 170	Gln	Ile	Glu	Ala	Val 175	Asp
20	Gly	Glu	Glu	Leu 180	Gln	Met	Glu	Pro	Val 185	Xaa						
	(2)	INFO	ORMA?	rion	FOR	SEO	ID 1	vo: 3	888:							
25				SEQU	ENCE A) L	CHAI	RACT	ERIS	rics							
				(в) т р) т	YPE:	ami	no a	ciđ							
30			(xi)	SEQ	UENC	E DE	SCRI	PTIO	1: S	EQ II	D NO	: 38	8:			
	Met 1															
35																
	(2)	INFO	ORMA'	PION	FOR	SEQ	ID 1	10 : 3	889:							
40				(ENCE A) L B) T D) T UENC	ENGT YPE: OPOL	H: 2 ami OGY:	99 a no a lin	mino cid ear	aci		: 38	9:			
45	Met	Leu	Ser	Ile	Phe	Tyr	Phe	Ala	Ile	Pro	Val	Gly	Ser	Gly	Leu	Gly
	1				5					10					15	
50	Tyr	Ile	Ala	Gly 20	Ser	Lys	Val	Lys	Asp 25	Met	Ala	Gly	Asp	Trp 30	His	Trp
	Ala	Leu	Arg 35		Thr	Pro	Gly	Leu 40	Gly	Val	Val	Ala	Val 45	Leu	Leu	Leu
55	Phe	Leu 50		Val	Arg	Glu	Pro 55	Pro	Arg	Gly	Ala	Val 60	Glu	Arg	His	Ser
	Asp 65		Pro	Pro	Leu	Asn 70		Thr	Ser	Trp	Trp 75	Ala	Asp	Leu	Arg	Ala 80
60	Leu	Ala	Arg	Asn	Pro	Ser	Phe	Val	Leu	Ser	Ser	Leu	Gly	Phe	Thr	Ala

					85					90					95	
5	Val	Ala	Phe	Val 100	Thr	Gly	Ser	Leu	Ala 105	Leu	Trp	Ala	Pro	Ala 110	Phe	Leu
3	Leu	Arg	Ser 115	Arg	Val	Val	Leu	Gly 120	Glu	Thr	Pro	Pro	Cys 125	Leu	Pro	Gly
10	Asp	Ser 130	Cys	Ser	Ser	Ser	Asp 135	Ser	Leu	Ile	Phe	Gly 140	Leu	Ile	Thr	Cys
	Leu 145	Thr	Gly	Val	Leu	Gly 150	Val	Gly	Leu	Gly	Val 155	Glu	Ile	Ser	Arg	Arg 160
15	Leu	Arg	His	Ser	Asn 165	Pro	Arg	Ala	Asp	Pro 170	Leu	Val	Cys	Ala	Thr 175	Gly
20	Leu	Leu	Gly	Ser 180	Ala	Pro	Phe	Leu	Phe 185	Leu	Ser	Leu	Ala	Cys 190	Ala	Arg
20	Gly	Ser	Ile 195	Val	Ala	Thr	Tyr	Ile 200	Phe	Ile	Phe	Ile	Gly 205	Glu	Thr	Leu
25	Leu	Ser 210	Met	Asn	Trp	Ala	Ile 215	Val	Ala	Asp	Ile	Leu 220	Leu	Tyr	Val	Val
	Ile 225	Pro	Thr	Arg	Arg	Ser 230	Thr	Ala	Glu	Ala	Phe 235	Gln	Ile	Val	Leu	Ser 240
30	His	Leu	Leu	Gly	Asp 245	Ala	Gly	Ser	Pro	Tyr 250	Leu	Ile	Gly	Leu	11e 255	Ser
35	Asp	Arg	Leu	Arg 260	Arg	Asn	Trp	Pro	Pro 265	Ser	Phe	Leu	Ser	Glu 270	Phe	Arg
	Ala	Leu	Gln 275	Phe	Ser	Leu	Met	Leu 280	Cys	Ala	Phe	Val	Gly 285	Ala	Leu	Gly
40	Gly	Ala 290	Leu	Pro	Gly	His	Arg 295	His	Leu	His	Xaa					
45	(2)	INF		SEQU	FOR ENCE	CHA	RACT	ERIS	rics							
				(A) L B) T	YPE:	ami	no a	cid	acıq	S					
50			(xi)		D) T UENC					EQ I	D NO	: 39	0:			
	Met 1	Gly	Pro	Gln	Gly 5	Trp	Val	Arg	Pro	Leu 10	Lys	Thr	Ala	Pro	Lys 15	Leu
55	Gly	Glu	Ala	Ile 20	Arg	Leu	Ile	Leu	Phe 25	Leu	Asn	Phe	Val	Lys 30	Gln	Cys
60	Ile	Ala	Ser 35	Val	Asn	Leu	Cys	Ile 40	Leu	Arg	Leu	Asn	Ile 45	Thr	Pro	Leu

Leu

60

5 (2) INFORMATION FOR SEQ ID NO: 391: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 61 amino acids 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 391: Met Tyr Val Asn Tyr Gly Thr Arg Asn Tyr Ser Thr Glu Gly Pro Ala 15 10 Ala Leu Leu Asp Gln Ala Lys Leu Ser Leu Leu Val Trp Val Leu Cys 25 20 Phe Val Leu Leu Phe Val Cys Phe Cys Gly Leu Ser Tyr Val Val Ile Ala Gln Val Pro Val Gly Leu Leu Cys Ile Thr Glu Xaa 55 25 (2) INFORMATION FOR SEQ ID NO: 392: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 79 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 392: 35 Met Leu Trp Phe Ala Asn Phe Phe Thr Tyr Leu Phe Leu Ser Gln Ser 5 10 Val Ala Phe Val His Ile Ser His Ile Gly Val Arg Gln Val Asn Thr 40 Asn Cys Tyr Phe Ser Arg Lys Ser Tyr Cys Tyr Gly Ile Leu Asn Pro 40 45 Ile Asn Cys Ile Lys Gly Lys Ile Pro Ala Gly Arg Xaa Leu Phe Pro Phe Gly 70 50 (2) INFORMATION FOR SEQ ID NO: 393: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 393:

589

	Met 1	Pro	Gly	Ala	Phe 5	Ser	Glu	Thr	Val	Ile 10	Asn	Asp	Leu	Leu	Ser 15	Leu
5	Phe	Leu	Val	Leu 20	Pro	Ala	Glu	Leu	Ser 25	Tyr	Ser	Thr	Leu	Ser 30	Gly	Val
	Tyr	Arg	Asn 35	Ala												
10																
	(2)	INF	ORMAT	MOI	FOR	SEQ	ID I	NO: 3	394:							
15			(i) :	()	A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	80 a no a lin	mino cid ear	aci		20				
••			(xi)	SEQ	UENC	E DE:	SCRI	Prio	N: S	eQ TI	טא ט	: 39	4:			
20	Met 1	Ala	Gln	Ser	Arg 5	Asp	Gly	Gly	Asn	Pro 10	Phe	Ala	Glu	Pro	Ser 15	Glu
25	Leu	Asp	Asn	Pro 20	Phe	Gln	Asp	Pro	Ala 25	Val	Ile	Gln	His	Arg 30	Pro	Ser
23	Arg	Gln	Tyr 35	Ala	Thr	Leu	Asp	Val 40	Tyr	Asn	Pro	Phe	Glu 45	Thr	Arg	Glu
30	Pro	Pro 50	Pro	Ala	Tyr	Glu	Pro 55	Pro	Ala	Pro	Ala	Pro 60	Leu	Pro	Pro	Pro
	Ser 65	Ala	Pro	Ser	Leu	Gln 70	Pro	Ser	Arg	Lys	Leu 75	Ser	Pro	Thr	Glu	Pro 80
35	Lys	Asn	Tyr	Gly	Ser 85	Тут	Ser	Thr	Gln	Ala 90	Ser	Ala	Ala	Ala	Ala 95	Thr
40	Ala	Glu	Leu	Leu 100	Lys	Lys	Gln	Glu	Glu 105	Leu	Asn	Arg	Lys	Ala 110	Glu	Glu
40	Leu	Asp	Arg 115	Arg	Ser	Glu	Ser	Cys 120	Ser	Met	Leu	Pro	Trp 125	Xaa	Ala	Gln
45	Leu	Leu 130	Asp	Arg	Thr	Ile	Gly 135	Pro	Leu	Tyr	Leu	Leu 140	Phe	Val	Gln	Phe
	Ser 145	Pro	Ala	Phe	Ser	Arg 150	Thr	Ser	Pro	Trp	Arg 155	Ser	Pro	Lys	Asn	Phe 160
50	Arg	Arg	Leu	Туг	Pro 165	Pro	Cys	Thr	Thr	Ser 170	Gly	Cys	Ala	Ala	Arg 175	Trp
	Xaa	Phe	Ser													
55				180												
	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO:	395:							

(i) SEQUENCE CHARACTERISTICS:

```
(A) LENGTH: 21 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 395:
 5
     Met Pro Thr Pro Cys Thr Ser Leu Pro Ser Cys Cys Gln His Arg Ser
       1
                      5
                                 . 10
     Ile Thr Met Thr Leu
10
                  20
      (2) INFORMATION FOR SEQ ID NO: 396:
15
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 60 amino acids
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
20
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 396:
     Met Pro Leu Phe Ile Pro Leu Ile Phe Phe Leu Ser Leu Leu His Cys
                                         10
25
     Gln Ser Lys His Pro Ile Gln Met Ser Leu Cys Met Cys Val Asn Ile
                                    25
     Ser Leu Val Trp Ser Pro Val Arg Trp Ile Phe Gly Ser Lys Gly Leu
                         40
30
     Phe Ser Val His Leu Gln Ser Ser Gln Arg Pro Ser
         50
                           55
35
      (2) INFORMATION FOR SEQ ID NO: 397:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 152 amino acids
40
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 397:
     Met Ala Gly Pro Arg Pro Xaa Trp Arg Asp Gln Leu Leu Phe Met Ser
45
     Ile Ile Val Leu Val Ile Val Val Ile Cys Leu Met Leu Tyr Ala Leu
                                     25
50
     Leu Trp Glu Ala Gly Asn Leu Thr Asp Leu Pro Asn Leu Arg Ile Gly
     Phe Tyr Asn Phe Cys Leu Trp Asn Glu Asp Thr Ser Thr Leu Gln Cys
55
     His Gln Phe Pro Glu Leu Glu Ala Leu Gly Val Pro Arg Val Gly Leu
     Gly Leu Ala Arg Leu Gly Val Tyr Gly Ser Leu Val Leu Thr Leu Phe
60
                                  90
```

	Ala	Pro	Gln	Pro 100	Leu	Leu	Leu	Ala	Gln 105	Cys	Asn	Xaa	Asp	Glu 110	Arg	Ala
5	Trp	Arg	Leu 115	Ala	Val	Gly	Phe	Leu 120	Ala	Val	Ser	Ser	Val 125	Leu	Leu	Ala
10	Gly	Gly 130	Leu	Gly	Leu	Phe	Leu 135	Ser	Tyr	Val	Trp	Asn 140	Gly	Ser	Xaa	Ser
	Pro 145	Ser	Arg	Gly	Leu	Gly 150	Phe	Xaa								
15	(2)	INFO	ORMAT	rion	FOR	SEQ	ID I	v o: 3	398:							
20			(i) : (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	80 a no a lin	mino cid ear	aci		. 39	a -			
	Met		Asp							_				Glv	Ara	Хаа
25	1			,	5		3			10		0 -,		0_1	15	
	Arg	Gly	Leu	Gly 20	Arg	Gly	Gly	Gly	Gly 25	Pro	Xaa	Gly	Gly	Gly 30	Phe	Pro
30	Xaa	Gly	Хаа 35	Xaa	Pro	Ala	Glu	Arg 40	Xaa	Arg	His	Gln	Pro 45	Pro	Gln	Pro
35	Lys	Ala 50	Pro	Gly	Phe	Leu	Gln 55	Pro	Xaa	Pro	Leu	Arg 60	Gln	Pro	Arg	Thr
	Thr 65	Pro	Pro	Pro	Gly	Ala 70	Gln	Cys	Glu	Val	Pro 75	Ala	Ser	Pro	Gln	Arg 80
40	Pro	Ser	Arg	Pro	Gly 85	Ala	Leu	Pro	Glu	Gln 90	Thr	Arg	Pro	Leu	Arg 95	Ala
	Pro	Pro	Ser	Ser 100	Gln	Asp	Lys	Ile	Pro 105	Gln	Gln	Asn	Ser	Glu 110	Ser	Ala
45	Met	Ala	Lys 115	Pro	Gln	Val	Val	Val 120	Ala	Pro	Val	Leu	Met 125	Ser	Lys	Leu
50	Ser	Val 130	Asn	Ala	Pro	Glu	Phe 135	Tyr	Pro	Ser	Gly	Tyr 140	Ser	Ser	Ser	Tyr
	Thr 145	Glu	Ser	Tyr	Glu	Asp 150	Gly	Cys	Glu	Asp	Тут 155	Pro	Thr	Leu	Ser	Glu 160
55	Tyr	Val	Gln	Asp	Phe 165	Leu	Asn	His	Leu	Thr 170	Glu	Gln	Pro	Gly	Ser 175	Phe
	Glu	Thr	Glu	11e 180	Glu	Gln	Phe	Ala	Glu 185	Thr	Leu	Asn	Gly	Cys 190	Val	Thr
60	Thr	Asp	Asp	Ala	Leu	Gln	Glu	Leu	Val	Glu	Leu	Ile	Tyr	Gln	Gln	Ala

592

			195					200					205			
5	Thr	Ser 210	Ile	Pro	Asn	Phe	Ser 215	Tyr	Met	Gly	Ala	Arg 220	Leu	Cys	Asn	Tyr
	Leu 225	Ser	His	His	Leu	Thr 230	Ile	Ser	Pro	Gln	Ser 235	Gly	Asn	Phe	Arg	Gln 240
10	Leu	Leu	Leu	Gln	Arg 245	Cys	Arg	Thr	Glu	Тут 250	Glu	Val	Lys	Asp	Gln 255	Ala
	Ala	Lys	Gly	Asp 260	Glu	Val	Thr	Arg	Lys 265	Arg	Phe	His	Ala	Phe 270	Val	Leu
15	Phe	Leu	Gly 275	Glu	Leu	Tyr	Leu	Asn 280	Leu	Glu	Ile	Lys	Gly 285	Thr	Asn	Gly
20	Gln	Val 290	Thr	Arg	Ala	Asp	11e 295	Leu	Gln	Val	Gly	Leu 300	Arg	Glu	Leu	Leu
	Asn 305	Ala	Leu	Phe	Ser	Asn 310	Pro	Met	Asp	Asp	Asn 315	Leu	Ile	Cys	Ala	Val 320
25	Lys	Leu	Leu	Lys	Leu 325	Thr	Gly	Ser	Val	Leu 330	Glu	Asp	Ala	Trp	Lys 335	Glu
	Lys	Gly	Lys	Met 340	Asp	Met	Glu	Glu	11e 345	Ile	Gln	Arg	Ile	Glu 350	Asn	Val
30	Val	Leu	Asp 355	Ala	Asn	Cys	Ser	Arg 360	Asp	Val	Lys	Gln	Met 365	Leu	Leu	Lys
35	Leu	Val 370	Glu	Leu	Arg	Ser	Ser 375	Asn	Trp	Gly	Arg	Val 380	His	Ala	Thr	Ser
	Thr 385	Tyr	Arg	Glu	Ala	Thr 390	Pro	Glu	Asn	Asp	Pro 395	Asn	Tyr	Phe	Met	Asn 400
40	Glu	Pro	Thr	Phe	Tyr 405	Thr	Ser	Asp	Gly	Val 410	Pro	Phe	Thr	Ala	Ala 415	Asp
	Pro	Asp	Tyr	Gln 420	Glu	Lys	Tyr	Gln	Glu 425	Leu	Leu	Glu	Arg	Glu 430	Asp	Phe
45	Phe	Pro	Asp 435	Tyr	Glu	Glu	Asn	Gly 440	Thr	Asp	Leu	Ser	Gly 445	Ala	Gly	Asp
50	Pro	Тут 450	Leu	Asp	Asp	Ile	Asp 455	qzA	Glu	Met	Asp	Pro 460	Glu	Ile	Glu	Glu
	Ala 465		Glu	Lys	Phe	Cys 470	Leu	Glu	Ser	Glu	Arg 4 75	Lys	Arg	Lys	Gln	Xaa 480

(2) INFORMATION FOR SEQ ID NO: 399:

55

			(i)		A) L	ENGT	H: 4	23 a	mino		дs					
5				(B) T D) T	OPOL	OGY:	lin	ear				_			
3			(xi)													
	Met 1	Glu	Pro	Lys	Thr 5	Ile	Thr	Asp	Ala	Leu 10	Ala	Ser	Ser	Ile	Ile 15	Lys
10	Ser	Val	Leu	Pro 20	Asn	Phe	Leu	Pro	Tyr 25	Asn	Val	Met	Leu	Tyr 30	Ser	Asp
15	Ala	Pro	Val 35	Ser	Glu	Leu	Ser	Leu 40	Glu	Leu	Leu	Leu	Leu 45	Gln	Val	Val
13	Leu	Pro 50	Ala	Leu	Leu	Glu	Gln 55	Gly	His	Thr	Arg	Gln 60	Trp	Leu	Lys	Gly
20	Leu 65	Val	Arg	Ala	Trp	Thr 70	Val	Thr	Ala	Gly	Tyr 75	Leu	Leu	Asp	Leu	His 80
	Ser	Tyr	Leu	Leu	Gly 85	Asp	Gln	Glu	Glu	Asn 90	Glu	Asn	Ser	Ala	Asn 95	Gln
25	Gln	Val	Asn	Asn 100	Asn	Gln	His	Ala	Arg 105	Asn	Asn	Asn	Ala	Ile 110	Pro	Val
30	Val	Gly	Glu 115	Gly	Leu	His	Ala	Ala 120	His	Gln	Ala	Ile	Leu 125	Gln	Gln	Gly
50	Gly	Pro 130	Val	Gly	Phe	Gln	Xaa 135	Туг	Arg	Arg	Pro	Leu 140	Asn	Phe	Pro	Leu
35	Arg 145	Ile	Phe	Leu	Leu	Ile 150	Val	Phe	Met	Cys	Ile 155	Thr	Leu	Leu	Ile	Ala 160
	Ser	Leu	Ile	Cys	Leu 165	Thr	Leu	Pro	Val	Phe 170	Ala	Gly	Arg	Trp	Leu 175	Met
40	Ser	Phe	Trp	Thr 180	Gly	Thr	Ala	Lys	Ile 185	His	Glu	Leu	Tyr	Thr 190	Ala	Ala
45	Cys	Gly	Leu 195	Tyr	Val	Cys	Trp	Leu 200	Thr	Ile	Arg	Ala	Val 205	Thr	Val	Met
43	Val	Ala 210	Trp	Met	Pro	Gln	Gly 215	Arg	Arg	Val	Ile	Phe 220	Gln	Lys	Val	Lys
50	Glu 225	Trp	Ser	Leu	Met	Ile 230	Met	Lys	Thr	Leu	Ile 235	Val	Ala	Val	Leu	Leu 240
	Ala	Gly	Val	Val	Pro 245	Leu	Leu	Leu	Gly	Leu 250	Leu	Phe	Glu	Leu	Va1 255	Ile
55	Val	Ala	Pro	Leu 260	Arg	Val	Pro	Leu	Asp 265	Gln	Thr	Pro	Leu	Phe 270	Tyr	Pro
60	Trp	Gln	Asp 275	Trp	Ala	Leu	Gly	Val 280	Leu	His	Ala	Lys	Ile 285	Ile	Ala	Ala

594

	Ile	Thr 290	Leu	Met	Gly	Pro	Gln 295	Trp	Trp	Leu	Lys	Thr 300	Val	Ile	Glu	Gln
5	Val 305	Tyr	Ala	Asn	Gly	Ile 310	Arg	Asn	Ile	Asp	Leu 315	His	Tyr	Ile	Val	Arg 320
	Lys	Leu	Ala	Ala	Pro 325	Val	Ile	Ser	Val	Leu 330	Leu	Leu	Ser	Leu	Cys 335	Val
10	Pro	Tyr	Val	Ile 340	Ala	Ser	Gly	Val	Val 345	Pro	Leu	Leu	Gly	Val 350	Thr	Ala
15	Glu	Met	Gln 355	Asn	Leu	Val	His	Arg 360	Arg	Ile	Tyr	Pro	Phe 365	Leu	Leu	Met
	Val	Val 370	Val	Leu	Met	Ala	Ile 375	Leu	Ser	Phe	Gln	Val 380	Arg	Gln	Phe	Lys
20	Arg 385	Leu	Tyr	Glu	His	11e 390	Lys	Asn	Asp	Lys	Туг 395	Leu	Val	Gly	Gln	Arg 400
	Leu	Val	Asn	Туг	Glu 405	Arg	Lys	Ser	Gly	Lys 410	Gln	Gly	Ser	Ser	Pro 415	Pro
25	Pro	Pro	Gln	Ser 420	Ser	Gln	Glu									
30	(2)	TME	ממשר	PTON	FOR	SEO	י חז	vo. 4	100 -							
	(-,			SEQU	ENCE	СНА	RACT	ERI <i>S</i>	rics		_					
35			(xi)	(A) L B) T D) T UENC	YPE: OPOL	ami OGY:	no a lin	cid ear			: 40	0:			
40	Met 1	Leu	Arg	Leu	Asp 5	Ile	Ile	Asn	Ser	Leu 10	Val	Thr	Thr	Val	Phe 15	Met
40	Leu	Ile	Val	Ser 20	Val	Leu	Ala	Leu	Ile 25	Pro	Glu	Thr	Thr	Thr 30	Leu	Thr
45	Va1	Gly	Gly 35	Gly	Val	Phe	Ala	Leu 40	Val	Thr	Ala	Val	Cys 45	Cys	Leu	Ala
	Asp	Gly 50		Leu	Ile	Tyr	Arg 55	Lys	Leu	Leu	Phe	Asn 60	Pro	Ser	Gly	Pro
50	Тут 65		Lys	Lys	Pro	Val 70	His	Glu	Lys	Lys	Glu 75	Val	Leu	Xaa		
55	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:	401:							
			(i)		ENCE (A) I (B) T	ENGT		4 an	uno		ls					
				,												

(D) TOPOLOGY: linear

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 401:
     Met Leu Lys Gln Val Met Phe Val Phe Ser Gly Met Gly Pro Arg Ser
 5
     His Cys Trp Gly Leu Pro Leu His Val Ala Pro Leu Cys Arg Gly His
                  20
                                      25
     Gln Ala Asp Ser Ser His Leu Leu Pro Leu Lys His Gln Gly Ala Trp
10
     Asn Arg Asn Leu Ala Asn Gln Arg His Phe Phe Cys Pro Ser Ile Phe
                             55
15
     His Thr Cys Pro Thr Val Leu Phe Phe Xaa
                          70
20
      (2) INFORMATION FOR SEQ ID NO: 402:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 20 amino acids
                    (B) TYPE: amino acid
25
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 402:
     Ala Arg Thr Ile Leu Val Leu Tyr Leu Ser Leu Gln Arg Leu Glu Asn
                                        10
30
     Leu Ala Tyr His
35
      (2) INFORMATION FOR SEQ ID NO: 403:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 87 amino acids
40
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 403:
     Met Pro Leu Pro Ser Val Pro Ile Leu Gly Ile Phe Ser Phe Leu Ile
45
                                    10
      Pro Ser Ser Gln Gly Val Ser Tyr Thr Lys Leu Pro Ile Ser Ser Pro
                                     25
50
     Gln Tyr Ser Pro Phe Val Asn Asp His Phe Ser Phe Leu Asn Pro Phe
      Pro Val Gln Ile His Thr Gly Phe Ala Arg Val Gly Ser Tyr Met Gln
                              55
55
     Met Pro Leu Val His Leu Cys Leu Leu Gln Thr Ser Leu Met Lys Asn
                                              75
      Ser Gly Val Gln Gln Gly Ser
60
                       85
```

WO 98/39448

5	(2) INFORMATION FOR SEQ ID NO: 404:
J	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 92 amino acids (B) TYPE: amino acid
10	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 404:
	Met Asn Ala Ala Met Val His Ile Asn Arg Ala Leu Lys Leu Ile Ile
	1 5 10 15
15	Arg Leu Phe Leu Val Glu Asp Leu Val Asp Ser Leu Lys Leu Ala Val 20 25 30
20	Phe Met Trp Leu Met Thr Tyr Val Gly Ala Val Phe Asn Gly Ile Thr 35 40 45
20	Leu Leu Ile Leu Ala Glu Leu Leu Ile Phe Ser Val Pro Ile Val Tyr 50 55 60
25	Glu Lys Tyr Lys Thr Gln Ile Asp His Tyr Val Gly Ile Ala Arg Asp 65 70 75 80
	Gln Thr Lys Ser Ile Val Glu Lys Ile Pro Ser Lys 85 90
30	
	(2) INFORMATION FOR SEQ ID NO: 405:
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids (B) TYPE: amino acid
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 405:
40	Met Ala Cys Ser Cys Leu Met Ile Gln Ser Phe Ser Thr Ser Ala Leu 1 5 10 15
	Val Leu Phe Tyr Gly
45	20
	(2) INFORMATION FOR SEQ ID NO: 406:
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 174 amino acids(B) TYPE: amino acid
_	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 406:
55	Met Glu Glu Gly Gly Asn Leu Gly Gly Leu Ile Lys Met Val His Leu 1 5 10 15
60	Leu Val Leu Ser Gly Ala Trp Gly Met Gln Met Trp Val Thr Phe Val 20 25 30

	Ser	Gly	Phe 35	Pro	Ala	Phe	Pro	Lys 40	Pro	Ser	Pro	Thr	Tyr 45	Leu	Arg	Thr
5	Ser	Ala 50	Glu	Gln	Thr	Leu	Pro 55	Leu	Leu	Leu	Pro	His 60	Leu	His	Gly	Leu
10	Cys 65	Leu	His	Gln	Pro	Leu 70	His	Leu	Gly	Phe	Thr 75	Ala	Cys	Leu	Gly	Ser 80
	Ala	His	Ile	Leu	Gly 85	Gly	Gln	Pro	Ala	Leu 90	Pro	Ala	Val	Pro	Glu 95	Pro
15	Tyr	Ala	Gly	His 100	Cys	Gln	Arg	Pro	Leu 105	Ala	Gly	Thr	Pro	His 110	His	Ser
	Суѕ	His	Val 115	Gly	Pro	Ala	Asn	Arg 120	Gly	Arg	Arg	Ser	Glu 125	Ala	Trp	Val
20	Gly	Arg 130	Tyr	Gln	Ala	Ala	Asn 135	Arg	Phe	Pro	Ile	Leu 140	Asn	Ala	Xaa	Cys
25	Glu 145	Arg	Arg	Thr	Pro	Ser 150	Thr	Val	Leu	Ser	Ala 155	Arg	Ile	Ser	Ser	Ala 160
	Thr	Met	Gly	Cys	Pro 165	Leu	Phe	Ala	Ile	Trp 170	Ala	Ala	Ser	Xaa		
30	(2)	INF	ORMA!	rion	FOR	SEQ	ID N	IO: 4	107:							
35				(A) L B) T D) T	CHA ENGT YPE: OPOL E DE	H: 6 ami: OGY:	4 am no a lin	ino cid ear	acid		: 40°	7:			
40	Met 1	Ala	Phe	Ile	Leu 5	Leu	Phe	Tyr	Cys	Leu 10	Met	Thr	Phe	Leu	Ser 15	Leu
	Glu	Gln	Asn	Ser 20	Ala	Thr	Val	Glu	Pro 25	Ser	Ser	His	Glu	Ile 30	Leu	His
45	Leu	Leu	Gln 35		Cys	Phe		Leu 40		Arg	Thr	Ser	Thr 45	Ser	Gln	Cys
50	Thr	Glu 50		Ile	Pro	Cys	Gln 55	Arg	Туг	Gln	Asn	Gly 60	Leu	His	Ile	Xaa
55	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	WO: '	408:							
				SEQU	ENCE	CHA ENGI	RACT	ERIS	TICS		ds					

(B) TYPE: amino acid

	(D) TO	POLOGY:	linear	r			
(xi)	SEQUENCE	DESCRIP	TION:	SEQ	ID	NO:	408:

5	Met 1	Glu	Ala	Val	Val 5	Asn	Leu	Туг	Gln	Glu 10	Val	Met	Lys	His	Ala 15	Asp
	Pro	Arg	Ile	Gln 20	Gly	Tyr	Pro	Leu	Met 25	Gly	Ser	Pro	Leu	Leu 30	Met	Thr
10	Ser	Ile	Leu 35	Leu	Thr	Tyr	Val	Туг 40	Phe	Val	Leu	Ser	Leu 45	Gly	Pro	Arg
15	Ile	Met 50	Ala	Asn	Arg	Lys	Pro 55	Phe	Gln	Leu	Arg	Gly 60	Phe	Met	Ile	Val
13	Tyr 65	Asn	Phe	Ser	Leu	Val 70	Ala	Leu	Ser	Leu	Tyr 75	Ile	Val	Тут	Glu	Phe 80
20	Leu	Met	Ser	Gly	Trp 85	Leu	Ser	Thr	Tyr	Thr 90	Trp	Arg	Cys	Asp	Pro 95	Val
	Asp	Tyr	Ser	Asn 100	Ser	Pro	Glu	Ala	Leu 105	Arg	Met	Val	Arg	Val 110	Ala	Trp
25	Leu	Phe	Leu 115	Phe	Ser	Lys	Phe	Ile 120	Glu	Leu	Met	Asp	Thr 125	Val	Ile	Phe
30	Ile	Leu 130	Arg	Lys	Lys	Asp	Gly 135	Gln	Val	Thr	Phe	Leu 140	His	Val	Phe	His
50	His 145	Ser	Val	Leu	Pro	Trp 150	Ser	Trp	Trp	Trp	Gly 155	Val	Lys	Ile	Ala	Pro 160
35	Gly	Gly	Met	Gly	Ser 165	Phe	His	Ala	Met	Ile 170	Asn	Ser	Ser	Val	His 175	Val
	Ile	Met	Tyr	Leu 180	Туг	Tyr	Gly	Leu	Ser 185	Ala	Phe	Gly	Pro	Val 190	Ala	Gln
40	Pro	Tyr	Leu 195	Trp	Trp	Lys	Lys	His 200	Met	Thr	Ala	Ile	Gln 205	Leu	Ile	Gln
45	Phe	Val 210	Leu	Val	Ser	Leu	His 215	Ile	Ser	Gln	Tyr	Туг 220	Phe	Met	Ser	Ser
.5	Cys 225	Asn	Tyr	Gln	Tyr	Pro 230	Val	Ile	Ile	His	Leu 235	Ile	Ттр	Met	Tyr	Gly 240
50	Thr	Ile	Phe	Phe	Met 245	Leu	Phe	Ser	Asn	Phe 250	Trp	Тут	His	Ser	Tyr 255	Thr
	Lys	Gly	Lys	Arg 260	Leu	Pro	Arg	Ala	Leu 265	Gln	Gln	Asn	Gly	Ala 270	Pro	Gly
55	Ile	Ala	Lys 275	Val	Lys	Ala	Asn	Хаа 280								

60 (2) INFORMATION FOR SEQ ID NO: 409:

5			(1) :	(A) L B) T	ENGT YPE:	H: 2 ami	84 a no a	mino cid	: aci	ds					
5			(xi)	SEQ			OGY: SCRI			eQ I	D NO	: 40	9:			
10	Met 1	Xaa	Leu	Trp	Pro 5	Gln	Thr	Cys	Ser	Gly 10	Lys	Phe	Asp	Gly	Thr 15	Leu
	Ala	Phe	Ser	Ile 20	His	Xaa	Leu	Ala	Val 25	Ile	Leu	Gly	Asp	Gln 30	Leu	Thr
15	Ala	Ala	Asp 35	Leu	Val	Pro	Ile	Phe 40	Asn	Gly	Phe	Leu	Lys 45	Asp	Leu	Asp
	Glu	Val 50	Arg	Ile	Gly	Val	Leu 55	Lys	His	Leu	His	Asp 60	Phe	Leu	Lys	Leu
20	Leu 65	His	Ile	Asp	Lys	Arg 70	Arg	Glu	Tyr	Leu	Tyr 75	Gln	Leu	Gln	Glu	Phe 80
25	Leu	Val	Thr	Asp	Asn 85	Ser	Arg	Asn	Trp	Arg 90	Phe	Arg	Ala	Glu	Leu 95	Ala
	Glu	Gln	Leu	11e 100	Leu	Leu	Leu	Glu	Leu 105	Tyr	Ser	Pro	Arg	Asp 110	Val	Tyr
30	Asp	Tyr	Leu 115	Arg	Pro	Ile	Ala	Leu 120	Asn	Leu	Cys	Ala	Asp 125	Lys	Val	Ser
	Ser	Val 130	Arg	Trp	Ile	Ser	Tyr 135	Lys	Leu	Val	Ser	Glu 140	Met	Val	Lys	Lys
35	Leu 145	His	Ala	Ala	Thr	Pro 150	Pro	Thr	Phe	Gly	Val 155	Asp	Leu	Ile	Asn	Glu 160
40	Leu	Val	Glu	Asn	Phe 165	Gly	Arg	Суѕ	Pro	Lys 170	Trp	Ser	Gly	Arg	Gln 175	Ala
	Phe	Val	Phe	Val 180	Cys	Gln	Thr	Val	Ile 185	Glu	Asp	Asp	Суѕ	Leu 190	Pro	Met
45	Asp	Gln	Phe 195	Ala	Val	His	Leu	Met 200	Pro	His	Leu	Leu	Thr 205	Leu	Ala	Asn
	Asp	Arg 210	Val	Pro	Asn	Val	Arg 215	Val	Leu	Leu	Ala	Lys 220	Thr	Leu	Arg	Gln
50	Thr 225	Leu	Leu	Glu	Lys	Asp 230	Tyr	Phe	Leu	Ala	Ser 235	Ala	Ser	Cys	His	Gln 240
55	Glu	Ala	Val	Glu	Gln 245	Thr	Ile	Met	Ala	Leu 250	Gln	Met	Asp	Arg	Asp 255	Ser
<i></i>	Asp	Val	Lys	Tyr 260	Phe	Ala	Ser	Ile	His 265	Pro	Ala	Ser	Thr	Lys 270	Ile	Ser
60	Glu	Asp	Ala 275	Met	Ser	Thr	Ala	Ser 280	Ser	Thr	Tyr	Xaa				

5	(2)	INF	ORMA:	rion	FOR	SEQ	ID I	NO: 4	110:							
,			(i)	SEQU	ENCE	CHA	RACT	ERIS	rics	:						
								87 a		aci	ds					
								no a lin								
10			(xi)					PTIO		EQ I	ои о	: 41	0:			
	Met 1	Leu	Phe	Leu	Phe 5	Phe	Val	Ile	Ile	Phe 10	Leu	Phe	Val	Phe	Leu 15	Ile
15	Leu	Ile	Ile	Gln 20	Phe	Ser	Lys	Pro	Leu 25	Thr	Asn	Pro	His	Pro 30	Pro	Ala
20	Gly	Хаа	Ser 35	Asp	Arg	Arg	Arg	Arg 40	Tyr	Ser	Ser	Тут	Arg 45	Ser	His	Asp
	His	Туг 50	Gln	Arg	Gln	Arg	Val 55	Leu	Gln	Lys	Glu	Arg 60	Ala	Ile	Glu	Glu
25	Arg 65	Arg	Val	Val	Phe	Ile 70	Gly	Lys	Ile	Pro	Gly 75	Arg	Met	Thr	Arg	Ser 80
	Glu	Leu	Lys	Gln	Arg 85	Phe	Ser	Val	Phe	Gly 90	Glu	Ile	Glu	Glu	Cys 95	Thr
30	Ile	His	Phe	Arg 100	Val	Gln	Gly	Asp	Asn 105	Tyr	Gly	Phe	Val	Thr 110	Tyr	Arg
35	Tyr	Ala	Glu 115	Glu	Ala	Phe	Ala	Ala 120	Ile	Glu	Ser	Gly	His 125	Lys	Leu	Arg
	Gln	Ala 130	Asp	Glu	Gln	Pro	Phe 135	Asp	Leu	Cys	Phe	Gly 140	Gly	Arg	Arg	Xaa
40	Xaa 145	Cys	Lys	Arg	Ser	Тут 150	Ser	Asp	Leu	Asp	Ser 155	Asn	Arg	Glu	Asp	Phe 160
	Asp	Pro	Ala	Pro	Val 165	Lys	Ser	Lys	Phe	Asp 170	Ser	Leu	Asp	Phe	Asp 175	Thr
45	Leu	Leu	Lys	Gln 180	Ala	Gln	Lys	Asn	Leu 185	Arg	Arg					
50	(2)							NO: 4								
			(i)	_				ERIS. 37 au			ds					
55			(xi)	(B) T D) T	YPE: OPOL	ami OGY:	no a lin	cid ear			: 41	1:			
	Met	Lys	Leu	Pro	Gly	Lys	Phe	Arg	Arg	Ala	His	Gln	Gly	Asn	Leu	Glu
60	1	-			5			_	_	10			-		15	

	Ser	Gln	Leu	Thr 20	Ser	Glu	Ser	Tyr	Туг 25	Lys	Glu	Thr	Leu	Ser 30	Val	Pro
5	Thr	Val	Glu 35	His	Ile	Ile	Gln	Glu 40	Leu	Lys	Asp	Ile	Phe 45	Ser	Glu	Gln
	His	Leu 50	Lys	Ala	Leu	Lys	Cys 55	Leu	Ser	Leu	Val	Pro 60	Ser	Val	Met	Gly
10	Gln 65	Leu	Lys	Phe	Asn	Thr 70	Ser	Glu	Glu	His	His 75	Ala	Asp	Met	Tyr	Arg 80
15	Ser	Asp	Leu	Pro	Asn 85	Pro	Asp	Thr	Leu	Ser 90	Ala	Glu	Leu	His	Суs 95	Trp
	Arg	Ile	Lys	Trp 100	Lys	His	Arg	Gly	Lys 105	Asp	Ile	Glu	Leu	Pro 110	Ser	Thr
20	Ile	Tyr	Glu 115	Ala	Leu	His	Leu	Pro 120	Asp	Ile	Lys	Phe	Phe 125	Pro	Asn	Val
	Tyr	Ala 130 [.]		Leu	Lys	Val	Leu 135	Cys	Ile	Leu	Pro	Val 140	Met	Lys	Val	Glu
25	Asn 145	Glu	Arg	Tyr	Glu	Asn 150	Gly	Arg	Lys	Arg	Leu 155	Lys	Ala	Tyr	Leu	Arg 160
30	Asn	Thr	Leu	Thr	Asp 165	Gln	Arg	Ser	Ser	Asn 170	Leu	Ala	Leu	Leu	Asn 175	Ile
	Asn	Phe	Asp	11e 180	Lys	His	Asp	Leu	Asp 185	Leu	Met	Val	Asp	Thr 190	Tyr	Ile
35	Lys	Leu	Туг 195	Thr	Xaa	Xaa	Ser	Xaa 200	Leu	Xaa	Thr	Xaa	Xaa 205	Ser	Xaa	Xaa
	Val	Glu 210	Xaa	Xaa	Xaa	Xaa	Xaa 215	Xaa	Xaa	Xaa	Xaa	Gly 220	Xaa	Xaa	Xaa	Xaa
40	Asp 225	Xaa	Xaa	Xaa	Arg	G1u 230	Lys	Ala	Val	Arg	Cys 235	Met	Xaa			
45	(2)	INFO	RMAT	rion	FOR	SEQ	ID N	ю: 4	12:							
50			(i) s	() () ()	A) LI B) T	ENGT YPE : OPOLA	H: 1 ami CGY:	92 ar no ao line	mino cid ear	aci						
	Met		(xi) Pro											Leu	Val	Gln
55	1		Arg		5					10					15	
	Ala	Tle	Ile	20 Glv	Τle	Den	t.ev	Dha	25 Ara	Gly	V=1	רוז -	t/al	30	Į.a	D~^
60	-120	116	35	G1 y	116	กอเเ	⊔eu	40	мų	GIY	val	116	45	WIG	⊭eu	PTO

	Gly	Asn 50	Ser	Ser	Leu	Ala	Pro 55	Ala	Asn	Gly	Ser	Ala 60	Pro	Cys	Gly	Ser
5	Phe 65	Glu	Gln	Leu	Glu	Туr 70	Trp	Ala	Asn	Asn	Phe 75	Asp	Asp	Phe	Ala	Ala 80
10	Ala	Leu	Val	Thr	Leu 85	Trp	Asn	Leu	Met	Val 90	Val	Asn	Asn	Trp	Gln 95	Val
	Phe	Leu	Asp	Ala 100	Tyr	Arg	Arg	Tyr	Ser 105	Gly	Pro	Trp	Ser	Lys 110	Ile	Tyr
15	Phe	Val	Leu 115	Trp	Trp	Leu	Val	Ser 120	Ser	Val	Ile	Trp	Val 125	Asn	Leu	Phe
	Leu	Ala 130	Leu	Ile	Leu	Glu	Asn 135	Phe	Leu	His	Lys	Trp 140	Asp	Pro	Arg	Ser
20	His 145	Leu	Gln	Pro	Leu	Ala 150	Gly	Thr	Pro	Glu	Ala 155	Thr	Tyr	Gln	Met	Thr 160
25	Val	Glu	Leu	Leu	Phe 165	Arg	Asp	Ile	Leu	Glu 170	Glu	Pro	Gly	Glu	Asp 175	Glu
	Leu	Thr	Glu	Arg 180	Leu	Ser	Gln	His	Pro 185	His	Leu	Trp	Leu	Суs 190	Arg	Xaa
30																
	(2)	INFO	RMAT	'ION	FOR	SEQ	ID N	10:4	13:							
35			(i) S	()	A) L	ENGT	H: 2	l am	ino a	cid	3					
40		. 1	(xi)	(1	B) TY D) TY JENCI	OPOL	OGY:	line	ear	9Q II	NO:	: 413	ß :			
	Asn 1	Val	Val	Val	Val 5	Ala	Phe	Gly	Leu	Ile 10	Leu	Ile	Ile	Glu	Ser 15	Leu
45	Gly	Glu	Gln	Cys 20	Pro											
50	(2)	INFO	ORMAT	'ION	FOR	SEO	ID N	iO: 4	14:							
			(i) S	EQUI	NCE	CHA	RACTI	ERIST	rics:	: acid:	_					
55			(xi)	(1 (1	B) T	YPE: OPOLA	amiı OGY:	no ac	cid ear			: 414	1:			
60	Met 1	Asn	Trp	Gly	Leu 5	Ser	Ile	Trp	Leu	His 10	Tyr	Tyr	Glu	Lys	Lys 15	Lys

	Glu	Gin	Val	Phe 20	Leu	Val	Ile	Leu	Ala 25		Val	Val	Arg	Arg 30	Cys	Ala
5	Ser	Asp	Gly 35	Ile	Leu	Gln	Phe	Glu 40	Ser	Ser	Leu	Leu	Lys 45	Met	Arg	Arg
	Ala	Pro 50	Хаа													
10																
	(2)	INF	ORMA	rion	FOR	SEQ	I DI	NO: 4	415:							
15			(i) :	(A) L B) T D) T	ENGT YPE : OPOL	H: 3 ami OGY:	2 am no a lin	ino cid ear	acid		: 41	5:			
20	Met 1	Leu	Ile	Ile	Ser 5	Leu	Arg	Pro	Gln	Phe 10	Pro	Ser	Leu	Ile	Val 15	Gln
25	Leu	Glu	Cys	Ser 20	Val	Leu	Phe	Leu	Pro 25	Ile	Ser	Leu	Asn	Leu 30	Leu	Leu
30	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	NO: 4	116:							
			(i) :								a .					
35				(B) T D) T	YPE: OPOL	ami: OGY:	63 a no a lin	cid ear							
	Vat		(xi)												_	_
40	1	Val	Lys	vai	cys 5	ASI	Asp	ser	Asp	10	Trp	Ser	Leu	116	Ser 15	Leu
	Ser	Asn	Asn	Ser 20	Gly	Lys	Asn	Val	Glu 25	Leu	Lys	Phe	Val	Asp 30	Ser	Leu
45	Arg		Gln 35		Glu			Val 40		Ser	Phe	Gln	Ile 45	Lys	Leu	Asp
50	Ser	Leu 50	Leu	Leu	Phe	Tyr	Glu 55	Cys	Ser	Glu	Asn	Pro 60	Met	Thr	Glu	Thr
	Phe 65	His	Pro	Thr	Ile	Ile 70	Gly	Glu	Ser	Val	Tyr 75	Gly	Asp	Phe	Gln	Glu 80
55	Ala	Phe	Asp	His	Leu 85	Cys	Asn	Lys	Ile	Ile 90	Ala	Thr	Arg	Asn	Pro 95	Glu
	Glu	Ile	Arg	Gly 100	Gly	Gly	Leu	Leu	Lys 105	Tyr	Cys	Asn	Leu	Leu 110	Val	Arg
60	Gly	Phe	Arg	Pro	Ala	Ser	Asp	Glu	Ile	Lys	Thr	Leu	Gln	Arg	Tyr	Met

604

			115					120					125			
5	Cys	Ser 130		Phe	Phe	Ile	Asp 135		Ser	Asp	Ile	Gly 140	Glu	Gln	Gln	Arg
	Lys 145		Glu	Ser	Tyr	Leu 150	Gln	Asn	His	Phe	Val 155	Gly	Ile	Gly	Arg	Pro 160
10	Gln	Val	Xaa													
15	(2)	INF	ORMA'					NO: 4								
20				(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	74 a no a lin	mino cid ear	aci EQ II		: 41	7 :			
	Met 1	Ala	Pro	Lys	Gly 5	Lys	Val	Gly	Thr	Arg 10	Gly	Lys	Lys	Gln	Ile 15	Phe
25	Glu	Glu	Asn	Arg 20	Glu	Thr	Leu	Lys	Phe 25	Tyr	Leu	Arg	Ile	Ile 30	Leu	Gly
30	Ala	Asn	Ala 35	Ile	тут	Cys	Leu	Val 40	Thr	Leu	Val	Phe	Phe 45	Тут	Ser	Ser
	Ala	Ser 50	Phe	Trp	Ala	Trp	Leu 55	Ala	Leu	Gly	Phe	Ser 60	Leu	Ala	Val	Tyr
35	Gly 65	Ala	Ser	Tyr	His	Ser 70	Met	Ser	Ser	Met`	Ala 75	Arg	Ala	Ala	Phe	Ser 80
	Glu	Asp	Gly	Ala	Leu 85	Met	Asp	Gly	Gly	Met 90	Asp	Leu	Asn	Met	Glu 95	Gln
10	Gly	Met	Ala	Glu 100	His	Leu	Lys	Asp	Val 105	Ile	Leu	Leu	Thr	Ala 110	Ile	Val
15	Gln	Val	Leu 115	Ser	Cys	Phe	Ser	Leu 120	Tyr	Val	Trp	Ser	Phe 125	Trp	Leu	Leu
	Ala	Pro 130	Gly	Arg	Ala	Leu	Tyr 135	Leu	Leu	Trp	Val	Asn 140	Val	Leu	Gly	Pro
50	Trp 145	Phe	Thr	Ala	Asp	Ser 150	Gly	Thr	Pro	Ala	Pro 155	Glu	His	Asn	Glu	Lys 160
	Arg	Gln	Arg	Arg	Gln 165	Glu	Arg	Arg	Gln	Met 170	Lys	Arg	Leu	Xaa		
55																
	(2)		ORMAT													
			(i) 5	SEQUE	NCE	CHAP	RACTI	ERIST	CICS:	:						

(A) LENGTH: 50 amino acids

```
(B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 418:
      Met Glu Leu Pro Lys Gly Leu Gln Gly Val Gly Pro Val Ala Met Met
                                          10
      Arg Pro Phe Tyr Leu Leu Pro Val Leu Cys Thr Gln Ala Leu Arg
10
      Gln Ser Gln Gly Lys Ser Pro Leu Leu Trp Lys Arg Thr Cys Cys Leu
                                  40
      Ala Xaa
15
          50
      (2) INFORMATION FOR SEQ ID NO: 419:
20
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 120 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
25
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 419:
     Met Leu Gly Lys Gly Gly Gly Arg Ala Gly Leu Leu Arg Tyr Arg Leu
                                          10
30
      Leu Tyr Phe Thr Leu Val Val Gly Glu Gly Glu Pro Gly Glu Asn Lys
      Val Thr Ile Pro Phe Phe Glu Thr Gly Lys Lys Ile Ile Phe Cys Ser
35
      Val Lys Met Val Glu Asn Ser Asn Val Pro Ser His Lys Gly Pro Val
      Pro Leu Arg Ser Glu Gln Trp Glu Leu Lys Ile Ser Glu Thr Leu Gly
40
      Glu Gly Lys Ile Gly Phe Leu Leu Ile Gly Arg Cys Ser Ser Gly Xaa
                      85
45
     Gly Gly Leu Cys Phe Cys Trp Asp Val Leu Cys Cys Met Tyr Ala Tyr
                                105
     Met Asp Arg Ser Leu Leu Ser Leu
             115
                      120
50
      (2) INFORMATION FOR SEQ ID NO: 420:
55
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 159 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 420:
60
```

	Met 1	Thr	His	Leu	Leu 5	Leu	Thr	Ala	Thr	Val 10	Thr	Pro	Ser	Glu	Gln 15	Asn
5	Ser	Ser	Arg	Glu 20	Pro	Gly	Trp	Glu	Thr 25	Ala	Met	Ala	Lys	Asp 30	Ile	Leu
	Gly	Glu	Ala 35	Gly	Leu	His	Phe	Asp 40	Glu	Leu	Asn	Lys	Leu 45	Arg	Val	Leu
10	Asp	Pro 50	Glu	Val	Thr	Gln	Gln 55	Thr	Ile	Glu	Leu	Lys 60	Glu	Glu	Cys	Lys
15	Asp 65	Phe	Val	Asp	Lys	Ile 70	Gly	Gln	Phe	Gln	Lys 75	Ile	Val	Gly	Gly	Leu 80
	Ile	Glu	Leu	Val	Asp 85	Gln	Leu	Ala	Lys	Glu 90	Ala	Glu	Asn	Glu	Lys 95	Met
20	Lys	Ala	Ile	Gly 100	Ala	Arg	Asn	Leu	Leu 105	Lys	Ser	Ile	Ala	Lys 110	Gln	Arg
	Glu	Ala	Gln 115	Gln	Gln	Gln	Leu	Gln 120	Ala	Leu	Ile	Ala	Glu 125	Lys	Lys	Met
25	Gln	Leu 130	Glu	Arg	Tyr	Arg	Val 135	Glu	Tyr	Glu	Ala	Leu 140	Cys	Lys	Val	Glu
30	Ala 145	Glu	Gln	Asn	Glu	Phe 150	Ile	Asp	Gln	Phe	Ile 155	Phe	Gln	Lys	Xaa	
	(2)	INFO	OR MA T	NOI	FOR	SEQ	ID N	ю: 4	121:							
35	(2)		ORMAT	SEQUI ()	ENCE A) LI B) T	CHAI ENGT YPE:	RACTI H: 1	ERIS 54 a no a	rics mino cid		ds					
35 40	(2)			SEQUI () ()	ENCE A) L B) T D) Tv	CHAI ENGT YPE: OPOL	RACTI H: 1 ami: OGY:	ERIS 54 a no a lin	rics mino cid ear	aci		: 42:	1:			
			(i) :	SEQUI () () SEQU	ENCE A) L B) T D) T VENCI	CHAI ENGT YPE: OPOL	RACTI H: 1 ami: OGY: SCRI	ERIST 54 a no a lin PTIO	rics mino cid ear N: Si	aci	ON O			Thr	Arg 15	Val
	Met 1	Asn	(i) : (xi) Val	SEQUI () () SEQU	ENCE A) LA B) T D) T JENCI Val 5	CHAI ENGT YPE: OPOL E DE:	RACTI H: 1 ami: OGY: SCRI:	ERIST 54 at no a lin PTION	rics mino cid ear N: Si	aci EQ II Val 10	O NO Asn	Pro	Asn		15	Val Leu
40	Met 1 Met	Asn Asn	(i) : (xi) Val Ser	SEQUI () () SEQU Gly Arg 20	ENCE A) LA B) T D) T UENCE Val 5 Gly	CHAI ENGT YPE: OPOL E DE: Ala Met	RACTI H: 1 ami: OGY: SCRI: His	ERIST 54 at no a lin PTION Ser Leu	rics mino cid ear N: Si Glu Thr 25	aci EQ II Val 10 Tyr	D NO Asn Ala	Pro Leu	Asn	Val 30	15 Gly	
40	Met 1 Met Leu	Asn Asn His	(i) (xi) Val Ser Ile 35	SEQUI () () SEQU Gly Arg 20 Val	ENCE A) LA B) T D) T JENCI Val 5 Gly Leu	CHAI ENGT YPE: OPOL E DE: Ala Met	RACTI H: 1 ami: OGY: SCRI: His	ERIS' 54 and and line PTION Ser Leu 11e 40	rics mino cid ear N: Si Glu Thr 25	aci EQ II Val 10 Tyr	D NO Asn Ala Phe	Pro Leu Ser	Asn Gly Val 45	Val 30 Pro	15 Gly Val	Leu
40 45	Met 1 Met Leu Trp	Asn His Thr	(i) (xi) Val Ser Ile 35	Gly Arg 20 Val	ENCE A) L B) T D) T JENCI Val Gly Leu Asn	CHAI ENGT YPE: OPOLL E DE: Ala Met Leu	RACTI H: 1 ami: OGY: SCRI: His Trp Ser	ERIS'54 and a linn linn PTION Ser Leu Ile 40	rics mino cid ear N: Sl Glu Thr 25 Pro	aci	D NO Asn Ala Phe	Pro Leu Ser Met 60	Asn Gly Val 45 Tyr	Val 30 Pro Val	15 Gly Val Phe	Leu Ala
40 45 50	Met 1 Met Leu Trp His 65	Asn His Thr 50 Ala	(i) : (xi) Val Ser Ile 35 Leu Val	SEQUI () () () SEQUI Gly Arg 20 Val	ENCE A) L B) T D) T Val 5 Gly Leu Asn	CHAI ENGT YPE: OPOL E DE Ala Met Leu Ile Thr 70	RACTI H: 1 ami: OGY: SCRI: His Trp Ser Ile 55	ERIS: 54 amon among the line PTION Ser Leu His	rics mino cid ear N: SI Glu Thr 25 Pro Asn	acide Value 10 Tyr Phe Leu Thr	D NO Asn Ala Phe Gly Pro 75	Pro Leu Ser Met 60 Asp	Asn Gly Val 45 Tyr	Val 30 Pro Val	15 Gly Val Phe Lys	Leu Ala Leu Ala 80

	Ala	Ser	Phe 115		Thr	Lys	Tyr	Asp 120	Pro	Thr	His	Phe	Ile 125	Leu	Asn	Thr
5	Ala	Ser 130		Leu	Ser	Val	Leu 135	Ile	Pro	Lys	Met	Pro 140	Gln	Leu	His	Gly
10	Val 145	Arg	Ile	Phe	Gly	Ile 150	Asn	Lys	Tyr	Xaa						
15	(2)	INF	ORMA	SĐQU))	ENCE A) L B) T	CHA ENGT YPE:	RACT H: 2		TICS mino cid		ds					
20			(xi)							EQ I	D NO	: 42	2 :			
	Met 1	Val	Cys	Gly	Gly 5	Phe	Ala	Суѕ	Ser	Lys 10	Asn	Cys	Leu	Cys	Ala 15	Leu
25	Asn	Leu	Leu	Туг 20	Thr	Leu	Val	Ser	Leu 25	Leu	Leu	Ile	Gly	Ile 30	Ala	Ala
	Trp	Gly	Ile 35	Gly	Phe	Gly	Leu	Ile 40	Ser	Ser	Leu	Arg	Val 45	Val	Gly	Val
30	Val	Ile 50	Ala	Val	Gly	Ile	Phe 55	Leu	Phe	Leu	Ile	Ala 60	Leu	Val	Gly	Leu
35	Ile 65	Gly	Ala	Val	Lys	His 70	His	Gln	Val	Leu	Leu 75	Phe	Phe	Tyr	Met	Ile 80
	Ile	Leu	Leu	Leu	Val 85	Phe	Ile	Val	Gln	Phe 90	Ser	Val	Ser	Cys	Ala 95	Cys
40	Leu	Ala	Leu	Asn 100	Gln	Glu	Gln	Gln	Gly 105	Gln	Leu	Leu	Glu	Val 110	Gly	Trp
	Asn	Asn	Thr 115	Ala	Ser	Ala	Arg	Asn 120	Asp	Ile	Gln	Arg	Asn 125	Leu	Asn	Cys
45	Cys	Gly 130	Phe	Arg	Ser	Val	Asn 135	Pro	Asn	Asp	Thr	Cys 140	Leu	Ala	Ser	Cys
50	Val 145	Lys	Ser	Asp	His	Ser 150	Cys	Ser	Pro	Cys	Ala 155	Pro	Ile	Ile	Gly	Glu 160
	Tyr	Ala	Gly	Glu	Val 165	Leu	Arg	Phe	Val	Gly 170	Gly	Ile	Gly	Leu	Phe 175	Phe
55	Ser	Phe	Thr	Glu 180	Ile	Leu	Gly	Val	Trp 185	Leu	Thr	Tyr	Arg	Туг 190	Arg	Asn
	Gln	Lys	Asp 195	Pro	Arg	Ala	Asn	Pro 200	Ser	Ala	Phe	Leu				

PCT/US98/04493

WO 98/39448

```
(2) INFORMATION FOR SEQ ID NO: 423:
             (i) SEQUENCE CHARACTERISTICS:
 5
                    (A) LENGTH: 67 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 423:
10
     Met Leu Gln Ser Ile Ile Lys Asn Ile Trp Ile Pro Met Lys Pro Tyr
                                          10
     Tyr Thr Lys Val Tyr Gln Glu Ile Trp Ile Gly Met Gly Leu Met Gly
15
      Phe Ile Val Tyr Lys Ile Arg Ala Ala Asp Lys Arg Ser Lys Ala Leu
                                  40
      Lys Ala Ser Ala Pro Ala Pro Gly His His Asn Gln Ile Tyr Leu Glu
20
      Tyr Met Xaa
      65
25
      (2) INFORMATION FOR SEQ ID NO: 424:
             (i) SEQUENCE CHARACTERISTICS:
30
                    (A) LENGTH: 25 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 424:
35
     Met Leu Gly Val Ser Leu Phe Leu Leu Val Val Leu Tyr His Tyr Val
     Ala Val Asn Asn Pro Lys Lys Gln Glu
                  20
40
      (2) INFORMATION FOR SEO ID NO: 425:
45
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 299 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 425:
50
     Met Ala Ala Xaa Glu Pro Ala Val Leu Ala Leu Pro Asn Ser Gly Ala
                                       10
     Gly Gly Ala Gly Ala Pro Ser Gly Thr Val Pro Val Leu Phe Cys Phe
55
      Ser Val Phe Ala Arg Pro Ser Ser Val Pro His Gly Ala Gly Tyr Glu
              35
                                   40
60
     Leu Leu Ile Gln Lys Phe Leu Ser Leu Tyr Gly Asp Gln Ile Asp Met
```

		50)				55					60				
5	His 65	Arg	Lys	Phe	Val	Val 70		Leu	Phe	Ala	Glu 75	Glu	Ттр	Gly	Gln	Тут 80
	Val	Asp	Leu	Pro	Lys 85	Gly	Phe	Ala	Val	Ser 90	Glu	Arg	Cys	Lys	Val 95	Arg
10	Leu	Val	Pro	Leu 100	Gln	Ile	Gln	Leu	Thr 105		Leu	Gly	Asn	Leu 110	Thr	Pro
	Ser	Ser	Thr 115	Val	Phe	Phe	Суѕ	Cys 120	Asp	Met	Gln	Glu	Arg 125	Phe	Arg	Pro
15	Ala	Ile 130	Lys	Тут	Phe	Gly	Asp 135	Ile	Ile	Ser	Val	Gly 140	Gln	Arg	Leu	Leu
20	Gln 145	Gly	Ala	Arg	Ile	Leu 150	Gly	Ile	Pro	Val	Ile 155	Val	Thr	Glu	Gln	Туг 160
	Pro	Lys	Gly	Leu	Gly 165	Ser	Thr	Val	Gln	Glu 170	Ile	Asp	Leu	Thr	Gly 175	Val
25	Lys	Leu	Val	Leu 180	Pro	Lys	Thr	Lys	Phe 185	Ser	Met	Val	Leu	Pro 190	Glu	Val
	Glu	Ala	Ala 195	Leu	Ala	Glu	Ile	Pro 200	Gly	Val	Arg	Ser	Val 205	Val	Leu	Phe
30	Gly	Val 210	Glu	Thr	His	Val	Cys 215	Ile	Gln	Gln	Thr	Ala 220	Leu	Glu	Leu	Val
35	Gly 225	Arg	Gly	Val	Glu	Val 230	His	Ile	Val	Ala	Asp 235	Ala	Thr	Ser	Ser	Arg 240
	Ser	Met	Met	Asp	Arg 245	Met	Phe	Ala	Leu	Glu 250	Arg	Leu	Ala	Xaa	Xaa 255	Gly
40	Ile	lle	Val	Thr 260	Thr	Ser	Glu	Ala	Val 265	Leu	Leu	Gln	Leu	Val 270	Ala	Asp
	Lys	Asp	His 275	Pro	Lys	Phe	Lys	Glu 280	Ile	Gln	Asn	Leu	Ile 285	Lys	Ala	Ser
45	Ala	Pro 290	Glu	Ser	Gly	Leu	Leu 295	Ser	Lys	Val	Xaa					
50	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	o: 4	26:							
			(i) S		A) LI	ENGT	H: 13	ami	no a		3					
55		,	(xi)		Y (C	POL	amir DGY: SCRIF	line	ar	Q II	NO:	426	i :			
60	Met 1	Arg	Asp	Leu	Gly 5	Thr	Leu	Leu	Ser	Pro 10	Val	Cys	Ser			

	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 4	427:							
5			(i) :	(A) L B) T	ENGT YPE :	H: 1 ami	98 a no a	mino cid		ds					
10			(xi)					lin PTIO		EQ I	D NO	: 42	7:			
10	Met 1	Phe	Gly	Cys	Leu 5	Val	Ala	Gly	Arg	Leu 10	Val	Gln	Thr	Ala	Ala 15	Gln
15	Gln	Val	Ala	Glu 20	Asp	Lys	Phe	Val	Phe 25	Asp	Leu	Pro	Asp	Tyr 30	Glu	Ser
	Ile	Asn	His 35	Val	Val	Val	Phe	Met 40	Leu	Gly	Thr	Ile	Pro 45	Phe	Pro	Glu
20	Gly	Met 50	Gly	Gly	Ser	Val	Tyr 55	Phe	Ser	Tyr	Pro	Asp 60	Ser	Asn	Gly	Met
25	Pro 65	Val	Trp	Gln	Leu	Leu 70	Gly	Phe	Val	Thr	Asn 75	Gly	Lys	Pro	Ser	Ala 80
	Ile	Phe	Lys	Ile	Ser 85	Gly	Leu	Lys	Ser	Gly 90	Glu	Gly	Ser	Gln	His 95	Pro
30	Phe	Gly	Ala	Met 100	Asn	Ile	Val	Arg	Thr 105	Pro	Ser	Val	Ala	Gln 110	Ile	Gly
	Ile	Ser	Val 115	Glu	Leu	Leu	Asp	Ser 120	Met	Ala	Gln	Gln	Thr 125	Pro	Val	Gly
35	Asn	Ala 130	Ala	Val	Ser	Ser	Val 135	Asp	Ser	Phe	Thr	Gln 140	Phe	Thr	Gln	Lys
40	Met 145	Leu	Asp	Asn	Phe	Туг 150	Asn	Phe	Ala	Ser	Ser 155	Phe	Ala	Val	Ser	Gln 160
	Ala	Gln	Met	Thr	Pro 165	Ser	Pro	Ser	Glu	Met 170	Phe	Ile	Pro	Ala	Asn 175	Val
45	Val	Leu	Lys	Trp 180	Tyr	Glu	Asn	Phe	Gln 185	Arg	Arg	Leu	Ala	Gln 190	Asn	Pro
	Xaa	Phe	Trp 195	Xaa	Thr	Xaa										
50																
	(2)	INF	ORMA!	rion	FOR	SEQ	ID	NO: 4	428:							
55			(i) :	(A) L B) T	ENGT YPE :	H: 4	ERIS 7 am no a lin	ino cid		s					
			(xi)					PTIO		EQ I	D NO	: 42	8:			
60	Met	Gly	Leu	Pro	Leu	Met	Ala	Leu	Met	Trp	Ser	Thr	Leu	Pro	Ala	Ser

	1				5					10					15	
5	Ala	Gly	Val	Asn 20	Phe	Ile	Leu	Ala	Leu 25	Pro	Leu	Leu	Leu	Leu 30	Trp	Lys
	Asn	Arg	Gly 35	Gly	Val	Gly	Arg	Ser 40	Val	Met	Ser	Ala	Val 45	Glu	Xaa	
10	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 4	429:							
			(i)	_	ENCE A) L						ds					
15			(xi)	(B) T D) T UENC	OPOL	OGY:	lin	ear	EQ I	ON O	: 42	9:			
20	Met 1	Lys	Lys	Val	Glu 5	Glu	Lys	Arg	Val	Asp 10	Val	Asn	Ser	Ala	Val 15	Ala
	Met	Gly	Glu	Val 20	Ile	Leu	Ala	Val	Cys 25	His	Pro	Asp	Cys	Ile 30	Thr	Thr
25	Ile	Lys	His 35	Trp	Ile	Thr	Ile	Ile 40	Arg	Ala	Arg	Phe	Glu 45	Glu	Val	Leu
30	Thr	Trp 50	Ala	Lys	Gln	His	Gln 55	Gln	Arg	Leu	Glu	Thr 60	Ala	Leu	Ser	Glu
	Leu 65	Val	Ala	Asn	Ala	Glu 70	Leu	Leu	Glu	Glu	Leu 75	Leu	Ala	Trp	Ile	Gln 80
35	Ттр	Ala	Glu	Thr	Thr 85	Leu	Ile	Gln	Arg	Asp 90	Gln	Glu	Pro	Ile	Pro 95	Gln
	Asn	Ile	Asp	Arg 100	Val	Lys	Ala	Leu	Ile 105	Ala	Glu	His	Gln	Thr 110	Phe	Met
40	Glu	Glu	Met 115	Thr	Arg	Lys	Gln	Pro 120	Asp	Val	Asp	Arg	Val 125	Thr	Lys	Thr
45	Tyr	Lys 130	Arg	Lys	Asn	Ile	Glu 135	Pro	Thr	His	Ala	Pro 140	Phe	Ile	Glu	Lys
	Ser 145	Arg	Ser	Gly	Gly	Arg 150	Lys	Ser	Leu	Ser	Gln 155	Pro	Thr	Pro	Pro	Pro 160
50	Met	Pro	Ile	Leu	Ser 165	Gln	Ser	Glu	Ala	Lys 170	Asn	Pro	Arg	Ile	Asn 175	Gln
	Leu	Ser	Ala	Arg 180	Trp	Gln	Gln	Val	Trp 185	Leu	Leu	Ala	Leu	Glu 190	Arg	Gln
55			195					200					205	Lys		
60	Ala	Asn 210	Phe	Asp	Phe	Asp	Val 215	Trp	Arg	Lys	Lys	Tyr 220	Met	Arg	Trp	Met

	Asn 225	His	Lys	Lys	Ser	Arg 230	Val	Met	Asp	Phe	Phe 235	Arg	Arg	Ile	Asp	Lys 240
5	Asp	Gln	Asp	Gly	Lys 245	Ile	Thr	Arg	Gln	Glu 250	Phe	Ile	Asp	Gly	11e 255	Leu
	Ala	Ser	Lys	Phe 260	Pro	Thr	Thr	Lys	Leu 265	Glu	Met	Thr	Ala	Val 270	Ala	Asp
10	Ile	Phe	Asp 275	Arg	Asp	Gly	Asp	Gly 280	Tyr	Ile	Asp	Тут	Tyr 285	Glu	Phe	Val
15	Ala	Ala 290	Leu	His	Pro	Asn	Lys 295	Asp	Ala	Туг	Arg	Pro 300	Thr	Thr	Asp	Ala
	Asp 305	Lys	Ile	Glu	Asp	Glu 310	Val	Thr	Arg	Gln	Val 315	Ala	Gln	Cys	Lys	Cys 320
20					325					330				Tyr	335	
25				340					345					Leu 350		
25			Arg 355	Asn	Arg	Asp	Gly	Ser 360	Arg	Trp	Trp	Arg	Met 365	Asp	Gly	Leu
30	Gly	Xaa 370														
25	(2)				FOR											
35			(i) s	()	ENCE A) Li B) T D) T	ENGT YPE:	H: 3	0 am no a	ino a		5					
40	W				JENCI					-					_	
	met 1	ASN	val	ьуs	Tnr 5	Pne	Ser	хаа	Asp	10	Met	Hıs	Phe	Leu	Cys 15	Cys
45	Leu	Tyr	Leu	Arg 20	Tyr	Val	Thr	Phe	Val 25	Tyr	Leu	Asn	Leu	Phe 30		
50	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10: 4	31:							
			(i) £	()	ENCE A) Li B) T	ENGT YPE:	H: 2	4 am	ino a		5					
55			(xi)		JENCI					EQ II	ONO:	431	l:			
	Met 1	Glu	Pro	His	Leu 5	Arg	Cys	Arg	Val	Thr 10	Arg	Val	Arg	Gly	Ser 15	Leu
60	Gly	Asn	Thr	Gly	Arg	Trp	Leu	Leu								

5	(2)	INF	ORMA'	rion	FOR	SEQ	ID	NO:	432:							
10				((A) I B) T D) T	ENGT YPE : OPOL	H: 5 ami OGY:	ERIS 3 am no a lin PTIO	ino cid ear	acid		: 43	2:			
15	1				5					10					Phe 15 Pro	
20				20					25					30		Gly
25	Phe	Cys 50	Leu	Phe	Phe											
23	(2)	INF	ORMA	NOI	FOR	SEQ	ID I	NO: 4	133:							
30			(i) :	(A) L B) T	ENGT YPE:	H: 1 ami	ERIS 76 a no a	mino cid		ds					
			(vi)				OGY:					42	_			
35	Met 1			SEQ	UENC	E DE	SCRI	PTIO	N: S					Asn	Arg 15	Arg
35 40	1	Val	Ser	SEQ!	Ala 5	E DE: Leu	SCRI Leu	PTIO	N: Si	Val 10	Ser	Ala	Val			
	1 Arg	Val Met	Ser Lys	Lys Leu 20	Ala 5 Leu	E DE: Leu Leu	SCRI Leu Gly	PTIO	N: Si Leu Ala 25	Val 10 Leu	Ser Leu	Ala Ala	Val Tyr	Val 30	15	Ser
	1 Arg Val	Val Met Trp	Ser Lys Gly 35	Lys Leu 20 Asn	Ala 5 Leu Phe	Leu Leu Leu Val	SCRI Leu Gly Asn	PTION Arg Ile Met 40	Leu Ala 25 Arg	Val 10 Leu Ser	Ser Leu Ile	Ala Ala Gln	Val Tyr Glu 45	Val 30 Asn	15 Ala	Ser Glu
40	Arg Val Leu	Val Met Trp Lys 50	Lys Gly 35	Leu 20 Asn	Ala 5 Leu Phe Ser	Leu Leu Val	SCRI Leu Gly Asn Ile 55	PTION Arg Ile Met 40 Glu	N: Si Leu Ala 25 Arg Glu	Val 10 Leu Ser	Ser Leu Ile Val	Ala Ala Gln Glu 60	Val Tyr Glu 45 Pro	Val 30 Asn Leu	15 Ala Gly	Ser Glu Glu
40	Arg Val Leu Lys 65	Val Met Trp Lys 50	Ser Lys Gly 35 Ile	SEQU Lys Leu 20 Asn Glu Asp	Ala 5 Leu Phe Ser	Leu Leu Val Lys Glu 70	SCRI Leu Gly Asn Ile 55 Lys	Arg Ile Met 40 Glu	N: Si Leu Ala 25 Arg Glu	Val 10 Leu Ser Met	Ser Leu Ile Val Gln 75	Ala Gln Glu 60 Lys	Val Tyr Glu 45 Pro	Val 30 Asn Leu Pro	15 Ala Gly Arg	Ser Glu Glu Val 80
40 45	Arg Val Leu Lys 65 Lys	Val Met Trp Lys 50 Ile	Lys Gly 35 Ile Arg	Leu 20 Asn Glu Asp	Ala 5 Leu Phe Ser Leu Glu 85	E DE: Leu Leu Val Lys Glu 70 Lys	SCRI Leu Gly Asn Ile 55 Lys	PTIO Arg Ile Met 40 Glu Ser	N: Si Leu Ala 25 Arg Glu Phe	Val 10 Leu Ser Met Thr	Ser Leu Ile Val Gln 75	Ala Ala Glu 60 Lys Leu	Val Tyr Glu 45 Pro Tyr	Val 30 Asn Leu Pro	15 Ala Gly Arg Pro	Ser Glu Glu Val 80 Gly
40 45 50	Arg Val Leu Lys 65 Lys	Val Met Trp Lys 50 Ile Phe	Ser Lys Gly 35 Ile Arg Leu Phe	Leu 20 Asn Glu Asp Ser Val	Ala 5 Leu Phe Ser Leu Glu 85	Leu Leu Val Lys Glu 70 Lys Ser	SCRI Leu Gly Asn Ile 55 Lys Asp	Arg Ile Met 40 Glu Ser Arg	N: SI Leu Ala 25 Arg Glu Phe Lys	Val 10 Leu Ser Met Thr Arg 90	Ser Leu Ile Val Gln 75 Ile Lys	Ala Ala Gln Glu 60 Lys Leu Leu	Val Tyr Glu 45 Pro Tyr Ile Met	Val 30 Asn Leu Pro Thr Met 110	15 Ala Gly Arg Pro Gly 95	Ser Glu Glu Val 80 Gly

	Val 145	Trp	Ser	Pro	Ser	Thr 150	Ser	Arg	Leu	Thr	Arg 155	Тут	Thr	Ile	Trp	His 160
5	Leu	Gln	Pro	Pro	Leu 165	Gln	Thr	Thr	Cys	Ile 170	Ile	Leu	Ser	Arg	His 175	Xaa
10																
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 4	134:							
15 20				(A) L B) T D) T	ENGT YPE : OPOL	H: 7 ami OGY:	7 am no a lin	ino cid ear	acid		: 43	4:			
20	Met 1	Leu	Arg	Cys	Trp 5	Pro	Leu	Phe	Trp	Leu 10	Pro	Leu	Val	Ser	Pro 15	Phe
25	Cys	Ser	Leu	Phe 20	Trp	Leu	Leu	Val	Glu 25	Trp	Phe	Gly	Thr	Asn 30	Ile	Asp
	Arg	Glu	Ser 35	Tyr	Asp	Ala	Ile	Gly 40	Gly	Pro	Ser	Trp	Met 45	Thr	Ala	Ser
30	Ser	Phe 50	Cys	Leu	Ser	Asn	Ser 55	Asn	Ile	Trp	Ser	Leu 60	Glu	Ile	Ser	Ser
35	Gly 65	Ser	Thr	Ser	Val	Val 70	His	Ser	Gln	Gln	Ala 75	Met	Asp			
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID N	¥O: 4	135 :							
40			(i)	C	A) L B) T	ENGT YPE:	H: 3 ami		ino a	: acid:	3					
45			(xi)	SEQ						EQ II	0И С	: 43!	5:			
	Met 1	Arg	Ser	Cys	Glu 5	Ile	Gln	Leu	Cys	Val 10	Trp	Leu	Leu	Val	Ser 15	Ser
50	His	Val	Asp	Met 20	Val	Leu	Gly	Gly	Ser 25	Pro	Ser	Thr	Leu	Tyr 30	Met	Met
55																
	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	1 0: 4	136:							
60			(i)	S EQ UI						: acid	s					

```
(B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 436:
      Met Val Val Asn Ser Leu Cys Phe Leu Ser Leu Leu Leu Val Ile Leu
      Glu Leu Ser Thr Asp Ser Ser Ala Arg Leu Leu Tyr His Glu
                  20
                                      25
10
      (2) INFORMATION FOR SEQ ID NO: 437:
15
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 69 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 437:
20
     Met Asp Lys Gln Lys His Leu Glu Val Arg Arg Ser Val Phe Lys Ile
     Gln Gly Lys Ile Ala Phe Ser Leu Met Phe Val Leu Lys Asp Leu Ser
25
     Pro Thr Ile Phe Ser His Ser Ile Leu Leu Leu Leu Pro His His Val
30
     Leu Pro Cys Thr Pro Gln Met Val Arg Gly Val Thr Gln Val Leu Arg
                            55
     Glu Phe Gly Asp Gln
      65
35
      (2) INFORMATION FOR SEQ ID NO: 438:
40
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 19 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 438:
45
     Met Pro Leu Cys Phe Phe Ser Phe Leu Cys Cys Trp Val Leu Val Phe
                             10
     Lys Leu Ile
50
      (2) INFORMATION FOR SEQ ID NO: 439:
55
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 43 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
60
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 439:
```

	Met 1	Lys	Phe	Ser	Leu 5	Val	Leu	Leu	Ile	Lys 10	Ile	Ile	Ser	Phe	Glu 15	Arg
5	Leu	Leu	Ile	Phe 20	Leu	Phe	Pro	Leu	Ser 25	Phe	Leu	Pro	Asn	Ile 30	Trp	Arg
10	Arg	Val	Met 35	Val	Asn	Leu	Asn	Ile 40	Leu	Phe	Xaa					
15	(2)		(i)	SEQUI () (ENCE A) L B) T D) T	CHAI ENGT YPE: OPOL	ID N RACTI H: 3 ami: OGY: SCRII	ERIS 3 am no a lin	rics ino cid ear	acid		: 440	0:			
20	Met 1	Leu	Leu	Phe	Pro 5	Ser	Leu	Leu	Phe	Ala 10	Ala	Thr	Tyr	Asn	Val 15	Ala
25	Asn	Pro	Ser	Arg 20	Leu	Ile	Leu	Туг	Met 25	Ile	Ser	Ala	Gly	Ala 30	Asp	Ser
30	Gln															
	(2)	INFO	ORMA	rion	FOR	SEQ	ID N	1 0: 4	41:							
35				(A) L B) T D) T	ENGT YPE: OPOL	RACTI H: 5 ami: OGY: SCRI	3 am no a lin	ino cid ear	acid		: 44:	1:			
40	Met 1	Trp	Gln	Val	Arg 5	Gly	Leu	Pro	Pro	Val 10	Pro	Leu	Leu	Leu	Thr 15	Met
45	Ser	Pro	Pro	Pro 20	Cys	Leu	Ser	Ser	Pro 25	Phe	Pro	Phe	Ile	Ser 30	Val	Pro
	Leu	Phe	Glu 35	Ala	Val	Pro	Ile	Ser 40	Val	Ser	Asp	Gln	Pro 45	Ser	Pro	Xaa
50	Leu	Thr 50	Thr	Leu	Leu											
55	(2)	INF		SEQU)	ENCE A) L	CHA ENGT	ID I RACT H: 6 ami	ERIS	TICS ino		ls					
60			(xi)				OGY: SCRI			EQ I	D NO	: 44	2:			

WO 98/39448

617

PCT/US98/04493

	Met Ile Thr Ser Val Leu Val Phe Leu Ile Phe Phe Phe Pro Tyr Leu 1 5 10 15
5	Ser Leu Val Thr Leu Leu Gln Ala Arg Asn Leu Trp Val Ile His Arg 20 25 30
10	Ala Ala Leu Cys Glu Ser Gly Leu Phe His Trp Arg Lys Gly Ile Glu 35 40 45
	Asn Gln Leu Glu Pro Met Tyr Phe Leu Pro His Gly Thr Leu Phe Leu 50 55 60
15	
20	(2) INFORMATION FOR SEQ ID NO: 443: (i) SEQUENCE CHARACTERISTICS:
25	(A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 443:
	Met Leu Tyr Ser Cys Glu Pro Tyr Leu Ile Ile Leu Asn Ile Tyr Ser 1 5 10 15
30	Gln Lys Ala Phe Tyr Phe Tyr Phe Phe Glu Gly Ser Phe Ser Val Cys 20 25 30
35	Thr Leu
40	(2) INFORMATION FOR SEQ ID NO: 444: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 89 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 444: Met Arg Gln Arg Gln Ala Ala Cys Gln Pro Pro Pro Ser Arg Asn Gly 1 5 10 15
50	Leu Ala Gln Glu Cys Pro Pro His Ile Pro Ser Ser Phe Phe Leu Val 20 25 30
	Lys Leu Leu Phe Ile Pro Trp Leu Ala Ser Leu Leu Ser Ser Pro Leu 35 40 45
55	Asn Leu Leu Leu Val Ser Ile Ser Trp Asp Leu Gly Leu Lys Leu 50 55 60
60	Asn Leu Gln Gln Cys Arg Gln His Gln Val Leu Gln Glu Lys Asn Thr 65 70 75 80

Lys Lys Phe Asn Lys Lys Lys Lys Lys 85

5																
	(2)	INF	ORMA'	rion	FOR	SEQ	ID i	. ON	445:							
10				(A) L B) T D) T	ENGT YPE : OPOL	H: 3 ami OGY:	50 a no a lin	mino cid ear	aci		: 44	5:			
15	Met 1	Asp	Phe	Ile	Thr 5	Ser	Thr	Ala	Ile	Leu 10	Pro	Leu	Leu	Phe	Gly 15	Cys
	Leu	Gly	Val	Phe 20	Gly	Leu	Phe	Arg	Leu 25	Leu	Gln	Trp	Val	Arg 30	Gly	Lys
20	Ala	Tyr	Leu 35	Arg	Asn	Ala	Val	Val 40	Val	Ile	Thr	Gly	Ala 45	Thr	Ser	Gly
25	Leu	Gly 50	Lys	Glu	Суз	Ala	Lys 55	Val	Phe	Tyr	Ala	Ala 60	Gly	Ala	Lys	Leu
	Val 65	Leu	Cys	Gly	Arg	Asn 70	Gly	Gly	Ala	Leu	Glu 75	Glu	Leu	Ile	Arg	Glu 80
30	Leu	Thr	Ala	Ser	His 85	Ala	Thr	Lys	Val	Gln 90	Thr	His	Lys	Pro	Туг 95	Leu
	Val	Thr	Phe	Asp 100	Leu	Thr	Asp	Ser	Gly 105	Ala	Ile	Val	Ala	Ala 110	Ala	Ala
35	Glu	Ile	Leu 115	Gln	Cys	Phe	Gly	Туг 120	Val	Asp	Ile	Leu	Val 125	Asn	Asn	Ala
10	Gly	11e 130	Ser	Tyr	Arg	Gly	Thr 135	Ile	Met	Asp	Thr	Thr 140	Val	Asp	Val	Asp
	Lys 145	Arg	Val	Met	Glu	Thr 150	Asn	Туг	Phe	Gly	Pro 155	Val	Ala	Leu	Thr	Lys 160
15	Ala	Leu	Leu	Pro	Ser 165	Met	Ile	Lys	Arg	Arg 170	Gln	Gly	His	Ile	Val 175	Ala
	Ile	Ser	Ser	Ile 180	Gln	Gly	Lys	Met	Ser 185	Ile	Pro	Phe	Arg	Ser 190	Ala	Tyr
50	Ala	Ala	Ser 195	Lys	His	Ala	Thr	Gln 200	Ala	Phe	Phe	Asp	Cys 205	Leu	Arg	Ala
55	Glu	Met 210	Glu	Gln	Tyr	Glu	Ile 215	Glu	Val	Thr	Val	11e 220	Ser	Pro	Gly	Tyr
	Ile 225	His	Thr	Asn	Leu	Ser 230	Val	Asn	Ala	Ile	Thr 235	Ala	Asp	Gly	Ser	Arg 240
50	Tyr	Gly	Val	Met	Asp 245	Thr	Thr	Thr		Gln 250		Arg	Ser	Pro	Val 255	

	Val	Ala	Gln	Asp 260	Val	Leu	Ala	Ala	Val 265	Gly	Lys	Lys	Lys	Lys 270	Asp	Val
5	Ile	Leu	Ala 275	Asp	Leu	Leu	Pro	Ser 280	Leu	Ala	Val	Tyr	Leu 285	Arg	Thr	Leu
10	Ala	Pro 290	Gly	Leu	Phe	Phe	Ser 295	Leu	Met	Pro	Pro	Gly 300	Pro	Glu	Lys	Ser
	Gly 305	Asn	Pro	Arg	Thr	Pro 310	Ser	Thr	Leu	Thr	Ser 315	Gln	Gly	Gln	Gly	Arg 320
15	Glu	Ala	Ala	Leu	Leu 325	Gly	Leu	Leu	Thr	Leu 330	Gln	Gly	Thr	Val	Ala 335	Phe
	Val	Glu	Thr	Leu 340	Met	Glu	Ile	Cys	Leu 345	Thr	Ser	Gly	Lys	Asp 350		
20																
	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	NO: 4	146 :							
25			(i) : (xi)	() ()	A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	9 am no a lin	ino cid ear	acid		: 44	5 :			
30	Met	Val	Phe	Leu	Pro	Arg	Gly	Val	Val	Val	Ser	Gly	Gly	Ala	Ala	Суз
	1	_			5					10					15	
35	rea	тър	Leu	20	Pne	ile	Leu	Glu	Thr 25	Glu	Val	Tyr	Leu	Asp 30	Leu	Ala
	Thr	Glu	Ala 35	Arg	Ala	His	Ser	Arg 40	Met	Gly	Leu	Gly	Leu 45	Trp	Pro	Pro
40	Asn															
45	(2)		ORMAT	EQUE	NCE	_	RACTE	ERIST	rics		is.					
				(1	в) Т	YPE:	amiı	no a	cid		_					
50			(xi)	SEQU	JENCI	E DES	CRI	PTIO	N: SI	EQ II	ON	447	7:			
	Met 1	Ala	Ser	Ala	Glu 5	Leu	Asp	Tyr	Thr	Ile 10	Glu	Ile	Pro	Asp	Gln 15	Pro
55	Cys	Trp	Ser	Gln 20	Lys	Asn	Ser	Pro	Ser 25	Pro	Gly	Gly	Lys	Glu 30	Ala	Glu
60	Thr	Arg	Gln 35	Pro	Val	Val	Ile	Leu 40	Leu	Gly	Trp	Gly	Gly 45	Cys	Lys	Asp

	Lys	Asn 50	Leu	Ala	Lys	Tyr	Ser 55	Ala	Ile	Tyr	His	Lys 60	Arg	Gly	Суѕ	Ile
5	Val 65	Ile	Arg	Tyr	Thr	Ala 70	Pro	Trp	His	Met	Val 75	Phe	Phe	Ser	Glu	Ser 80
	Leu	Gly	Ile	Pro	Ser 85	Leu	Arg	Val	Leu	Ala 90	Gln	Lys	Leu	Leu	Glu 95	Leu
10	Leu	Phe	Asp	Tyr 100	Glu	Ile	Glu	Lys	Glu 105	Pro	Leu	Leu	Phe	His 110	Val	Phe
15	Ser	Asn	Gly 115	Gly	Val	Met	Leu	Туг 120	Arg	Tyr	Val	Leu	Glu 125	Leu	Leu	Gln
	Thr	Arg 130	Arg	Phe	Cys	Arg	Leu 135	Arg	Val	Val	Gly	Thr 140	Ile	Phe	Asp	Ser
20	Ala 145	Pro	Gly	Asp	Ser	Asn 150	Leu	Val	Gly	Ala	Leu 155	Arg	Ala	Leu	Ala	Ala 160
	Ile	Leu	Glu	Arg	Arg 165	Ala	Ala	Met	Leu	Arg 170	Leu	Leu	Leu	Leu	Val 175	Ala
25	Phe	Ala	Leu	Val 180	Val	Val	Leu	Phe	His 185	Val	Leu	Leu	Ala	Pro 190	Ile	Thr
30	Ala	Xaa	Phe 195	His	Thr	His	Phe	Туг 200	Asp	Arg	Leu	Gln	Asp 205	Ala	Gly	Ser
	Arg	Trp 210	Pro	Glu	Leu	Tyr	Leu 215	Tyr	Ser	Arg	Ala	Asp 220	Glu	Val	Val	Leu
35	Ala 225	Arg	Asp	Ile	Glu	Arg 230	Met	Val	Glu	Ala	Arg 235	Leu	Ala	Arg	Arg	Val 240
	Leu	Ala	Arg	Ser	Val 245	Asp	Phe	Val	Ser	Ser 250	Ala	His	Val	Ser	His 255	Leu
40	Arg	Asp	Tyr	Pro 260	Thr	Tyr	Tyr	Thr	Ser 265	Leu	Cys	Val	Asp	Phe 270	Met	Arg
45	Asn	Cys	Val 275	Arg	Cys	Xaa										
50	(2)							VO: 4								
50			(1)	(A) L B) T	ENGT YPE:	H: 1 ami	ERIS 99 a no a lin	mino cid		ds					
55			(xi)					PTIO		EQ I	D NO	: 44	8 :			
	Met 1	Ser	Phe	Ile	Phe 5	Asp	Trp	Ile	Tyr	Ser 10	Gly	Phe	Ser	Ser	Val 15	Leu
60	Gln	Phe	Leu	Gly 20	Leu	Туг	Lys	Lys	Thr 25	Gly	Lys	Leu	Val	Phe 30	Leu	Gly

WO 98/39448

	Leu	Asp	Asn 35	Ala	Gly	Lys	Thr	Thr 40	Leu	Leu	His	Met	Leu 45	Lys	Asp	Asp
5	Arg	Leu 50		Gln	His	Val	Pro 55		Leu	His	Pro	Thr 60	Ser	Glu	Glu	Leu
10	Thr 65		Ala	Gly	Met	Thr 70	Phe	Thr	Thr	Phe	Asp 75	Leu	Gly	Gly	His	Val 80
	Gln	Ala	Arg	Arg	Val 85	Trp	Lys	Asn	Tyr	Leu 90	Pro	Ala	Ile	Asn	Gly 95	Ile
15	Val	Phe	Leu	Val 100	Asp	Суѕ	Ala	Asp	His 105	Glu	Arg	Leu	Leu	Glu 110	Ser	Lys
	Glu	Glu	Leu 115	Asp	Ser	Leu	Met	Thr 120	Asp	Glu	Thr	Ile	Ala 125	Asn	Val	Pro
20	Ile	Leu 130	Ile	Leu	Gly	Asn	Lys 135	Ile	Asp	Arg	Pro	Glu 140	Ala	Ile	Ser	Glu
25	Glu 145	Arg	Leu	Arg	Glu	Met 150	Phe	Gly	Leu	Tyr	Gly 155	Gln	Thr	Thr	Gly	Lys 160
20	Gly	Ser	Ile	Ser	Leu 165	Lys	Glu	Leu	Asn	Ala 170	Arg	Pro	Leu	Glu	Val 175	Phe
30	Met	Cys	Ser	Val 180	Leu	Lys	Arg	Gln	Gly 185	Туг	Gly	Glu	Gly	Phe 190	Arg	Trp
	Met	Ala	Gln 195	Тут	Ile	Asp	Xaa									
35																
	(2)		ORMAT			_										
40			(i) S	(1	A) L: B) T D) T	ENGT YPE: OPOL	H: 2 ami: OGY:	58 a no a lin	mino cid ear	acio						
			(xi)	SEQ	JENCI	E DES	SCRI	PTIO	V: SI	EQ II	ONO	: 44	€:			
45	Met 1	Thr	Leu	Ser	Arg 5	Phe	Ala	Tyr	Asn	Gly 10	Lys	Arg	Cys	Pro	Ser 15	Ser
50	Tyr	Asn	Ile	Leu 20	Asp	Asn	Ser	Lys	Ile 25	Ile	Ser	Glu	Glu	Cys 30	Arg	Lys
	Glu	Leu	Thr 35	Ala	Leu	Leu	His	His 40	Tyr	Tyr	Pro	Ile	Glu 45	Ile	Asp	Pro
55	His	Arg 50	Thr	Val	Lys	Glu	Lys 55	Leu	Pro	His	Met	Val 60	Glu	Trp	Trp	Thr
	Lys 65	Ala	His	Asn	Leu	Leu 70	Cys	Gln	Gln	Lys	Ile 75	Gln	Lys	Phe	Gln	Ile 80
60	Ala	Gln	Val	Val	Arg	Glu	Ser	Asn	Ala	Met	Leu	Arg	Glu	Gly	Tyr	Lys

					85					90					95	
5	Thr	Phe	Phe	Asn 100		Leu	Tyr	His	Asn 105		Ile	Pro	Leu	Phe 110	Ile	Phe
	Ser	Ala	Gly 115	Ile	Gly	Asp	Ile	Leu 120	Glu	Glu	Ile	Ile	Arg 125	Gln	Met	Lys
10	Val	Phe 130	His	Pro	Asn	Ile	His 135	Ile	Val	Ser	Asn	Туг 140	Met	Asp	Phe	Asn
	Glu 145	Asp	Gly	Phe	Leu	Gln 150	Gly	Phe	Lys	Gly	Gln 155	Leu	Ile	His	Thr	Туг 160
15	Asn	Lys	Asn	Ser	Ser 165	Val	Cys	Glu	Asn	Хаа 170	Gly	Tyr	Phe	Gln	Gln 175	Leu
20	Glu	Gly	Lys	Thr 180	Asn	Val	Ile	Leu	Leu 185	Gly	Asp	Ser	Ile	Gly 190	Asp	Leu
		Met	195					200					205			
25		Leu 210					215					220				
20	225	Asp				230					235					240
30		Leu	Gln	His	11e 245	Leu	Cys	Gln	Gly	Val 250	Gln	Leu	Glu	Met	G1n 255	Gly
35	Pro	Xaa														
40	(2)	INFO		EEQUI	ENCE	SEQ CHAI	RACTI	ERIST	rics		5					
			(xi)	(1	D) T	YPE: OPOLA E DES	OGY:	lin	ear	EO II	O NO:	: 450):			
45	Met 1	Ser												Asn	Leu 15	Leu
50	Pro	Pro	Ser	His 20	Ser	Leu	Gly	Thr	Met 25	Gly	Ser	Leu	Ser	Pro 30	His	Leu
	Cys	Gly	His 35	Thr	Met	Cys	Pro	Val 40	Asn	Pro	Glu	Leu	Pro 45	Leu	Ser	Ser
55	Arg	Leu 50	Thr	Thr	Asp	Gln	Pro 55	Gln	Pro	Asp	Ala	Cys 60	Ser	Pro	Thr	Leu
60	Leu 65	Thr	Leu	Pro	Leu	Pro 70	Ser	Ser	Phe	Leu	Pro 75	His	Ser	Lys	Pro	Thr 80

Phe Xaa His Pro Cys Ser Pro 85

5	(2) INF	ORMAI	rion	FOR	SEQ	ID	NO:	451:							
10		(i) ! (xi)	() ()	A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	15 a no a lin	mino cid ear	aci		: 45	1:			
15	Met Phe 1	Ser	Ile	Asn 5	Pro	Leu	Glu	Asn	Leu 10	Lys	Val	Tyr	Ile	Ser 15	Ser
	Arg Pro	Pro	Leu 20	Val	Val	Phe	Met	Ile 25	Ser	Val	Xaa	Pro	Met 30	Ala	Ile
20	Ala Phe	Leu 35	Thr	Leu	Gly	туг	Phe 40	Phe	Lys	Ile	Lys	Glu 45	Ile	Lys	Ser
25	Pro Glu 50	Met	Ala	Glu	Asp	Trp 55	Asn	Thr	Phe	Leu	Leu 60	Arg	Phe	Asn	Asp
	Leu Asp 65	Leu	Cys	Val	Ser 70	Glu	Asn	Glu	Thr	Leu 75	Lys	His	Leu	Thr	Asn 80
30	Asp Thr	Thr	Thr	Pro 85	Glu	Ser	Thr	Met	Thr 90	Ser	Gly	Gln	Ala	Arg 95	Ala
	Ser Thr		Ser 100	Pro	Gln	Ala	Leu	Glu 105	Asp	Ser	Gly	Pro	Val 110	Asn	Ile
35	Ser Val	Ser 115	Ile	Thr	Leu	Thr	Leu 120	Asp	Pro	Leu	Lys	Pro 125	Phe	Gly	Gly
40	Tyr Ser 130	Arg	Asn	Val	Thr	His 135	Leu	Тут	Ser	Thr	11e 140	Leu	Gly	His	Gln
	Ile Gly 145	Leu	Ser	Gly	Arg 150	Glu	Ala	His	Glu	Glu 155	Ile	Asn	Ile	Thr	Phe 160
45	Thr Leu	Pro	Thr	Ala 165	Trp	Ser	Ser	Asp	Asp 170	Cys	Ala	Leu	His	Gly 175	His
	Cys Glu		Val 180	Val	Phe	Thr	Ala	Cys 185	Met	Thr	Leu	Thr	Ala 190	Ser	Pro
50	Gly Val	Phe 195	Pro	Val	Thr	Val	Gln 200	Pro	Pro	His	Cys	Val 205	Pro	Asp	Thr
55	Tyr Ser 210	Asn	Ala	Thr	Leu	Trp 215	Tyr	Lys	Ile	Phe	Thr 220	Thr	Ala	Arg	Asp
	Ala Asn 225	Thr	Lys	Tyr	Ala 230	Gln	Asp	Tyr	Asn	Pro 235	Phe	Trp	Cys	Tyr	Lys 240
60	Gly Ala	Ile	Gly	Lys 245	Val	Tyr	His	Ala	Leu 250	Asn	Pro	Lys	Leu	Thr 255	Val

624

Ile Val Pro Asp Asp Asp Asg Ser Leu Ile Asn Leu His Leu Met His 260 265 5 Thr Ser Tyr Phe Leu Phe Val Met Val Ile Thr Met Phe Cys Tyr Ala 280 Val Ile Lys Gly Arg Pro Ser Lys Leu Arg Gln Ser Asn Pro Glu Phe 295 10 Cys Pro Glu Lys Val Ala Leu Ala Glu Ala Xaa 310 15 (2) INFORMATION FOR SEQ ID NO: 452: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 52 amino acids 20 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 452: Met Pro Gly Leu Ser Leu Ala Leu Leu Pro Phe Gly Pro Gly Cys Thr 25 Glu Ala Leu His Ala Gly Cys Phe Pro Ala Phe Ala Ser Ala Thr Arg 20 25 30 Val Asn Gly Glu Ala Ala Leu Ser Pro Gly Leu Cys Asp Pro Ile Ser Val Pro Tyr Val 50 35 (2) INFORMATION FOR SEQ ID NO: 453: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 383 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 453: 45 Met Ala Val Gly Gln Ile Met Thr Phe Gly Ser Pro Val Ile Gly Cys 10 Gly Phe Ile Ser Gly Trp Asn Leu Val Ser Met Cys Val Glu Tyr Val 50 25 Leu Leu Trp Lys Val Tyr Gln Lys Thr Pro Ala Leu Ala Val Lys Ala 35 40 55 Gly Leu Lys Glu Glu Glu Thr Glu Leu Lys Gln Leu Asn Leu His Lys Asp Thr Glu Pro Lys Pro Leu Glu Gly Thr His Leu Met Gly Val Lys 70 60

	Asp	Ser	Asn	Ile	His 85	Glu	Leu	Glu	His	Glu 90	Gln	Glu	Pro	Thr	Cys 95	Ala
5	Ser	Gln	Met	Ala 100	Glu	Pro	Phe	Arg	Thr 105		Arg	Asp	Gly	Trp 110	Val	Ser
	Tyr	Tyr	Asn 115	Gln	Pro	Val	Phe	Leu 120	Ala	Gly	Met	Gly	Leu 125	Ala	Phe	Leu
10	Tyr	Met 130	Thr	Val	Leu	Gly	Phe 135	Asp	Cys	Ile	Thr	Thr 140	Gly	Tyr	Ala	Тут
15	Thr 145	Gln	Gly	Leu	Ser	Gly 150	Phe	His	Pro	Gln	Тут 155	Phe	Asp	Gly	Ser	11e 160
	Ser	Tyr	Asn	Trp	Asn 165	Asn	Gly	Asn	Cys	Ser 170	Phe	Tyr	Leu	Ala	Thr 175	Ser
20	Lys	Met	Trp	Phe 180	Gly	Ser	Ala	Gly	Leu 185	Ile	Ser	Gly	Leu	Ala 190	Gln	Leu
	Ser	Cys	Leu 195	Ile	Leu	Cys	Val	Ile 200	Ser	Val	Phe	Met	Pro 205	Gly	Ser	Pro
25	Leu	Asp 210	Leu	Ser	Val	Ser	Pro 215	Phe	Glu	Asp	Ile	Arg 220	Ser	Arg	Phe	Ile
30	Gln 225	Gly	Glu	Ser	Ile	Thr 230	Pro	Thr	Lys	Ile	Pro 235	Glu	Ile	Thr	Thr	Glu 240
	Ile	Тут	Met	Ser	Asn 245	Gly	Ser	Asn	Ser	Ala 250	Asn	Ile	Val	Pro	Glu 255	Thr
35	Ser	Pro	Glu	Ser 260		Pro	Ile	Ile	Ser 265	Val	Ser	Leu	Leu	Phe 270	Ala	Gly
	Val	Ile	Ala 275	Ala	Arg	Ile	Gly	Leu 280	Trp	Ser	Phe	Asp	Leu 285	Thr	Val	Thr
40	Gln	Leu 290	Leu	Gln	Glu	Asn	Val 295	Ile	Glu	Ser	Glu	Arg 300	Gly	Ile	Ile	Asn
45	Gly 305	Val	Gln	Asn	Ser	Met 310	Asn	Tyr	Leu	Leu	Asp 315	Leu	Leu	His	Phe	11e 320
	Met	Val	Ile	Leu	Ala 325	Pro	Asn	Pro	Glu	Ala 330	Phe	Gly	Leu	Leu	Val 335	Leu
50	Ile	Ser	Val	Ser 340	Phe	Val	Ala	Met	Gly 345	His	Ile	Met	Tyr	Phe 350	Arg	Phe
	Ala	Gln	Asn 355	Thr	Leu	Gly	Asn	Lys 360	Leu	Phe	Ala	Cys	Gly 365	Pro	Asp	Ala
55	Lys	Glu 370	Val	Arg	Lys	Glu	Asn 375	Gln	Ala	Asn	Thr	Ser 380	Val	Val	Xaa	

			(i)			CHA					_					
						ENGT				aci	ds					
5						YPE: OPOL										
•			(xi)			E DE				EO I	D NO	: 45	4:			
				_						-						
	Met	Arg	Ser	Ile	Gly	Asn	Lys	Asn	Thr	Ile	Leu	Leu	Gly	Leu	Gly	Phe
10	1				5					10					15	
10	Cln	T30	Lou	Cln.	T on	71 ~	//h	m	~ 1	Dho	C1	C	63	Desa		W -4
	GIII	116	Leu	20	Leu	AIG	пр	ıyı	25	FILE	GIY	261	Giu	30	пр	met
	Met	Trp	Ala	Ala	Gly	Ala	Val	Ala	Ala	Met	Ser	Ser	Ile	Thr	Phe	Pro
15			35					40					45			
	A 1 -	17-1	C	21-	*	17- 1	.	•	m\	.1.				~ 3 ·	-3	~1
	Ald	50	Ser	Ald	Leu	vaı	ser 55	Arg	Thr	Ala	Asp	60	Asp	GIN	GIN	GIY
							7,5					00				
20	Val	Val	Gln	Gly	Met	Ile	Thr	Gly	Ile	Arg	Gly	Leu	Cys	Asn	Gly	Leu
	65					70					75					80
	C1	Dwa	212	T	m	~1	Db.a	71.	Dh.a	m	73 -	Db -	•••	**- 1	~1	
	GIY	PIO	Ala	reu	85	GIÀ	Pne	He	Pne	90	пе	Pne	HIS	vai	95	Leu
25					•					,,,					,,	
	Lys	Glu	Leu	Pro	Ile	Thr	Gly	Thr	Asp	Leu	Gly	Thr	Asn	Thr	Ser	Pro
				100					105					110		
	Gln	wie	His	Pho	Clu	Cln) on	50=	730	T10	Dwo	C1	Dwa	Dwa	Dho	.
30	GIII	1115	115	FILE	GIU	GIII	MSII	120	116	116	PIO	GIY	125	PIO	Pile	Leu
	Phe	Gly	Ala	Cys	Ser	Val	Leu	Leu	Ala	Leu	Leu	Val	Ala	Leu	Phe	Ile
		130					135					140				
35	Pro	Glu	His	Thr	Δen	I.e.i	Sar	Len	Ara	Sor	Sor	Ser	Ф	Ara	Luc	uic
	145					150		200	·ng	JUL	155	JCI	11p	.mg	БуЗ	160
	Cys	Gly	Ser	His		His	Pro	His	Asn		Gln	Ala	Pro	Gly		Ala
40					165					170					175	
70	Lvs	Glu	Pro	Leu	Leu	Gln	Asp	Thr	Asn	Val						
	-			180					185							
45																
45	(2)	TNF	ORMAT	ידרוא	FOR	SEO	א מד	3 0 - 4	155.							
	(2)		J. u		. 0	DLQ										
			(i)	SEQU	ENCE	CHAI	RACTI	ERIS	rics	:						
50						ENGT				aci	ds					
50						YPE:										
			(xi)			OPOL				FO TI) NO	. 45	5.			
			,,	2				201	5	-× +1		. 33	- •			
	Met	Leu	Gln	Thr	Ser	Asn	Tyr	Ser	Leu	Val	Leu	Ser	Leu	Gln	Phe	Leu
55	1				5					10					15	
	T 011	T.CV	c~~	Τι~-	λ ~~	Len	Dh-	V-1	3 ~ -	e~~	n)	C	C1	1	T corr	C1-
	Deu	neu	Ser	20	usb	ren	rne	val	25	ser.	rne	ser	GIU	30	⊔eu	OTII
60	Lys	Thr	Pro	Val	Ile	Gln	Leu	Val	Leu	Phe	Ile	Ile	Gln	Asp	Ile	Ala

			35					40					45			
5	Val	Leu 50		Asn	Ile	Ile	Ile 55	Ile	Phe	Leu	Met	Phe 60	Phe	Asn	Thr	Phe
J	Val 65	Phe	Gln	Ala	Gly	Leu 70	Val	Asn	Leu	Leu	Phe 75	His	Lys	Phe	Lys	80 Gly
10	Thr	Ile	Ile	Leu	Thr 85	Ala	Val	Tyr	Phe	Ala 90	Leu	Ser	Ile	Ser	Leu 95	His
	Val	Trp	Val	Met 100	Asn	Leu	Arg	Trp	Lys 105	Asn	Ser	Asn	Ser	Phe 110	Ile	Trp
15	Thr	Asp	Gly 115	Leu	Gln	Met	Leu	Phe 120	Val	Phe	Gln	Arg	Leu 125	Ala	Ala	Val
20	Leu	Туг 130	Cys	Tyr	Phe	Tyr	Lys 135	Arg	Thr	Ala	Val	Arg 140	Leu	Gly	Asp	Pro
	His 145	Phe	Tyr	Gln	Asp	Ser 150	Leu	Trp	Leu	Arg	Lys 155	Glu	Phe	Met	Gln	Val 160
25	Arg	Arg	Xaa													
30	(2)	INF	ORMA:	rion	FOR	SEQ	ID N	NO: 4	56:							
			(i) :	(.	A) LI B) T	engt Ype :	H: 4 ami:	ERIST 6 am no ac	ino a		s					
35			(xi)					line PTION		ΣQ II	ONO:	: 456	5:			
	Met 1	Arg	Ile	Gln	Val 5	Phe	Ile	Leu	Leu	Leu 10	Gly	Ala	Gly	Gly	Thr 15	Ser
40	Gln	Phe	Thr	Lys 20	Pro	Pro	Ser	Leu	Pro 25	Leu	Glu	Pro	Glu	Pro 30	Ala	Val
45	Glu	Ser	Ser 35	Pro	Thr	Glu	Thr	Ser 40	Glu	Gln	Ile	Arg	Glu 45	Lys		
	(2)	INF	ORMAT	rion	FOR	SEQ	ID 1	NO: 4	57 :							
50	(2)			SEQUI	ENCE A) L B) T	CHAI ENGTI YPE:	RACT H: 1 ami	ERIST 05 au no a	TICS mino cid		ds					
	(2)		(i) :	SEQUI () ()	ENCE A) L B) T D) T	CHAI ENGT YPE: OPOL	RACT H: 1 ami: OGY:	ERIS 05 a	TICS mino cid ear	aci		: 451	7 :			
50 55			(i) : (xi)	SEQUI () () () SEQI	ENCE A) L: B) T D) TV UENCI	CHAI ENGT YPE: OPOLA E DE:	RACT H: 1 ami OGY: SCRI	ERIST 05 ar no ac	TICS mino cid ear N: SI	aci	ON O			Cys	Cys 15	L eu

	Thr	Asp	Thr 35	His	Ile	Cys	Val	Cys 40		Cys	Ile	Tyr	Leu 45	Ser	Ser	Val
5	Val	Ser 50		Ser	Ser	Ala	Glu 55	Ala	Asp	Gly	Val	Leu 60	Gln	Pro	Arg	Arg
10	His 65	Pro	Ala	Ser	Leu	Leu 70		Val	Phe	Ala	Thr 75	Ser	Ile	Ser	Glu	Ser 80
	Ser	Leu	Leu	Ile	Phe 85	Ser	Phe	Gln	Lys	Thr 90	Glu	Ala	Lys	Leu	Ile 95	Val
15	Phe	Ala	Val	Ser 100	Leu	Ala	Ala	Lys	Xaa 105							
20	(2)	INF	ORMAT	SEQU	FOR ENCE A) L	СНА	RACT	ERIS	rics		s					
25			(xi)	0	B) T D) T UENCI	OPOL	OGY:	lin	ear	EQ I	OM O	: 451	B:			
	Met 1	Leu	Pro	Pro	Phe 5	Ser	Leu	Val	Tyr	Thr 10	His	Phe	Leu	Val	Ala 15	Ser
30	Leu	Leu	Pro	Val 20	Ile	Leu	Ala	Val	Phe 25	Pro	Asp	Ser	Ala	Gln 30	Ile	Val
35	Pro	Leu	Leu 35	Lys	Pro	Ile	Pro	Arg 40	Pro	Gln	Pro	Glu	Val 45	Ile	Phe	Pro
	Ser	Ser 50	Glu	Leu	Leu	Glu	Gln 55	Leu	Leu	Ser	Val	Gln 60	Phe	Val	Trp	Gln
40	Ala 65	His	Thr	Val	Ala	Xaa 70										
45	(2)		ORMAT	SEQUE		CHAI ENGT	RACTI	ERIS 55 au	TICS:		is					
50			(xi)		D) TY					SQ II	NO:	459) :			
	Met 1	Ala	Leu	Leu	Leu 5	Ser	Val	Leu	Arg	Val 10	Leu	Leu	Gly	Gly	Phe 15	Phe
55	Ala	Leu	Val	Gly 20	Leu	Ala	Lys	Leu	Ser 25	Glu	Glu	Ile	Ser	Ala 30	Pro	Val
60	Ser	Glu	Arg 35	Met	Asn	Ala	Leu	Phe 40	Val	Gln	Phe	Ala	Glu 45	Val	Phe	Pro

	Leu	Lys 50		Phe	Gly	Tyr	Gln 55	Pro	Asp	Pro	Leu	Asn 60		Gln	Ile	Ala
5	Val 65	Gly	Phe	Leu	Glu	Leu 70	Leu	Ala	Gly	Leu	Leu 75	Leu	Val	Met	Gly	Pro 80
	Pro	Met	Leu	Gln	Glu 85	Ile	Ser	Asn	Leu	Phe 90	Leu	Ile	Leu	Leu	Met 95	Met
10	Gly	Ala	Ile	Phe 100	Thr	Leu	Ala	Ala	Leu 105	Lys	Glu	Ser	Leu	Ser 110	Thr	Суз
15	Ile	Pro	Ala 115	Ile	Val	Cys	Leu	Gly 120	Phe	Leu	Leu	Leu	Leu 125	Asn	Val	Gly
	Gln	Leu 130	Leu	Ala	Gln	Thr	Lys 135	Lys	Val	Val	Arg	Pro 140	Thr	Arg	Lys	Lys
20	Thr 145	Leu	Ser	Thr	Phe	Lys 150	Glu	Ser	Trp	Lys	Xaa 155					
25	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	VO: 4	160:							
25			(i) :	(.	ENCE A) L	ENGT	H: 3	32 a	mino		ds					
30			(xi)	(1	B) T D) TV JENCI	OPOL	OGY:	lin	ear	9Q II	D NO	: 460):			
	Met 1	Lys	Leu	Gly	Arg 5	Ala	Val	Leu	Gly	Leu 10	Leu	Leu	Leu	Ala	Pro 15	Ser
35	Val	Val	Gln	Ala 20	Val	Glu	Pro	Ile	Ser 25	Leu	Gly	Leu	Ala	Leu 30	Ala	Gly
40	Val	Leu	Thr 35	Gly	Тут	Ile	Tyr	Pro 40	Arg	Leu	Тут	Cys	Leu 45	Phe	Ala	Glu
	Cys	Cys 50	Gly	Gln	Lys	Arg	Ser 55	Leu	Ser	Arg	Glu	Ala 60	Leu	Gln	Lys	Asp
45	Leu 65	Asp	Asp	Asn	Leu	Phe 70	Gly	Gln	His	Leu	Ala 75	Lys	Lys	Ile	Ile	Leu 80
	Asn	Ala	Val	Phe	Gly 85	Phe	Ile	Asn	Asn	Pro 90	Lys	Pro	Lys	Lys	Pro 95	Leu
50	Thr	Leu	Ser	Leu 100	His	Gly	Trp	Thr	Gly 105	Thr	Gly	Lys	Asn	Phe 110	Val	Ser
55	Lys	Ile	Ile 115	Ala	Glu	Asn	lle	Туг 120	Glu	Gly	Gly	Leu	Asn 125	Ser	Asp	Tyr
	Val	His 130	Leu	Phe	Val	Ala	Thr 135	Leu	His	Phe	Pro	His 140	Ala	Ser	Asn	Ile
60	Thr 145	Leu	Tyr	Lys	Asp	Gln 150	Leu	Gln	Leu	Trp	Ile 155	Arg	Gly	Asn	Val	Ser 160

	Ala	Суѕ	Ala	Arg	Ser 165	Ile	Phe	Ile	Phe	Asp 170	Glu	Met	Asp	Lys	Met 175	His
5	Ala	Gly	Leu	Ile 180	Asp	Ala	Ile	Lys	Pro 185	Phe	Leu	Asp	Туг	Туг 190	Asp	Leu
10	Val	Asp	Gly 195	Val	Ser	Туг	Gln	Lys 200	Ala	Met	Phe	Ile	Phe 205	Leu	Ser	Asn
	Ala	Gly 210	Ala	Glu	Arg	Ile	Thr 215	Asp	Val	Ala	Leu	Asp 220	Phe	Trp	Arg	Ser
15	Gly 225	Lys	Gln	Arg	Glu	Asp 230	Ile	Lys	Leu	Lys	Asp 235	Ile	Glu	His	Ala	Leu 240
	Ser	Val	Ser	Val	Phe 245	Asn	Asn	Lys	Asn	Ser 250	Gly	Phe	Trp	His	Ser 255	Ser
20	Leu	Ile	Asp	Arg 260	Asn	Leu	Ile	Asp	Tyr 265	Phe	Val	Pro	Phe	Leu 270	Pro	Leu
25	Glu	Tyr	Lys 275	His	Leu	Lys	Met	Суs 280	Ile	Arg	Val	Glu	Met 285	Gln	Ser	Arg
	Gly	Тут 290	Glu	Ile	Asp	Glu	Asp 295	Ile	Val	Ser	Arg	Val 300	Ala	Glu	Glu	Met
30	Thr 305	Phe	Phe	Pro	ГЛЗ	Glu 310	Glu	Arg	Val	Phe	Ser 315	Asp	Lys	Gly	Cys	Lys 320
	Thr	Val	Phe	Thr	Lys 325	Leu	Asp	Tyr	Tyr	Туг 330	Asp	Asp				
35																
	(2)		ORMAT													
40			(xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	ami no a lin	no a cid ear	cids	o no	: 46	1:			
45	Met 1	Leu	Lys	Cys	Ile 5											
50	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	NO: 4	162:							
			(i)	(ENCE A) L B) T	ENGT	H: 1	4 am	ino		s					
55			(xi)	-	D) T UENC					EQ I	D NO	: 46	2:			
60	Met 1		Leu	Thr	Leu 5	Leu	Ser	Val	Val	Ser 10	Thr	Met	Ala	Ser		

WO 98/39448

	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO: 4	463:							
5			(i)	(ENCE A) L B) T D) T	ENGT YPE:	H: 2 ami	85 a no a	mino cid		ds					
10			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 46	3:			
	Met 1	Lys	Leu	His	Pro 5	Pro	Pro	Pro	Ser	Pro 10	Val	Thr	Gln	Asp	His 15	Arg
15	Ser	Lys	Ser	Ser 20	His	Ser	Asn	Trp	Met 25	Pro	Arg	Met	Gly	Ala 30	Cys	Ser
	Met	Ser	Arg 35	Thr	Ser	Ser	Ser	Gly 40	Pro	Pro	Ser	Leu	Cys 45	Lys	Ser	Thr
20	Ser	Gly 50	Arg	Ser	Cys	Thr	Arg 55	Pro	His	Cys	Trp	Pro 60	Ser	Leu	Pro	Ala
25	Trp 65	Val	Ser	Val	Phe	Thr 70	Arg	Thr	Asn	Thr	Gly 75	Ser	Trp	Cys	Tyr	Pro 80
	Ala	Trp	Gly	Gly	Ala 85	Phe	Ser	Arg	Pro	Trp 90	Met	Ser	Ala	Gln	Ser 95	Met
30	Cys	Cys	Ala	Glu 100	Arg	Ser	Val	Leu	Gln 105	Val	Ala	Cys	Arg	Leu 110	Leu	Asp
	Ala	Leu	Glu 115	Phe	Leu	His	Glu	Asn 120	Glu	Tyr	Val	His	Gly 125	Asn	Val	Thr
35	Ala	Glu 130	Asn	Ile	Phe	Val	Asp 135	Pro	Glu	Asp	Gln	Ser 140	Gln	Val	Thr	Leu
40	Ala 145	Gly	Туг	Gly	Phe	Ala 150	Phe	Arg	Тут	Cys	Pro 155	Ser	Gly	Lys	His	Val 160
	Ala	Tyr	Val	Glu	Gly 165	Ser	Arg	Ser	Pro	His 170	Glu	Gly	Asp	Leu	Glu 175	Phe
45	Ile	Ser	Met	Asp 180	Leu	His	Lys	Gly	Cys 185	Gly	Pro	Ser	Arg	Arg 190	Xaa	Asp
	Leu	Gln	Ser 195	Leu	Gly	Tyr	Cys	Met 200	Leu	Lys	Trp	Leu	Tyr 205	Gly	Phe	Leu
50	Pro	Trp 210	Thr	Asn	Cys	Leu	Pro 215	Xaa	Xaa	Glu	Asp	Ile 220	Met	Lys	Gln	Lys
55	Gln 225	Lys	Phe	Val	Asp	Lys 230	Pro	Gly	Pro	Phe	Val 235	Gly	Pro	Cys	Gly	His 240
· -	Trp	Ile	Arg	Pro	Ser 245	Glu	Thr	Leu	Gln	Lys 250	Tyr	Leu	Lys	Val	Val 255	Met
50	Ala	Leu	Thr	Tyr 260	Glu	Glu	Lys	Pro	Pro 265	Tyr	Ala	Met	Leu	Arg 270	Asn	Asn

	Leu	Glu	Ala 275	Leu	Leu	Gln	Asp	Leu 280	Arg	Val	Ser	Pro	Tyr 285			
5																
	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	VO: 4	164 :							
10			(i) :	(A) L B) T D) T	CHAI ENGT YPE: OPOL E DE:	H: 8 ami OGY:	0 am no a lin	ino cid ear	acid		: 46	4:			
15	Met 1	Thr	Ser	Pro	Pro 5	Pro	His	Gln	Gly	Trp 10	Glu	Gln	Arg	Gly	Cys 15	Gly
20	Glu	Ser	Gln	Val 20	Pro	Leu	Ala	Leu	Ser 25	Arg	Val	Phe	Ser	Thr 30	Ser	His
	Tyr	Cys	Leu 35	Leu	Leu	Val	Ala	Asn 40	Gln	Ser	Ile	Phe	Phe 45	Pro	Cys	Leu
25	Trp	Ala 50	Val	Glu	Arg	Leu	Leu 55	Gly	Val	Arg	Cys	Thr 60	Cys	Pro	Leu	Ser
	Trp 65	Gly	Lys	Arg	Ile	Ile 70	Ser	Glu	His	Cys	Ser 75	Ala	Gln	Ser	Ser	Xaa 80
30																
35	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	io: 4	165 :							
40			(i)	() () ()	A) L B) T D) T	ENGT YPE: OPOLA	H: 4 ami: OGY:	7 am no a line	ino a cid ear	acid		: 46!	5:			
45	Met 1	His	Thr	Trp	Tyr 5	Asn	Asp	Arg	Arg	Gln 10	Asn	Cys	His	Cys	Leu 15	Leu
43	Phe	Phe	Leu	Ile 20	Tyr	Leu	Arg	Lys	Ile 25	Туг	Gln	Val	Val	Pro 30	His	Val
50	Pro	Leu	Leu 35	Val	Lys	Cys	Arg	Gly 40	Arg	Leu	Lys	Gly	Val 45	Asn	Ile	
55	(2)		ORMAT			-										
60			(i) : (xi)	()	A) L B) T D) T	ENGT YPE: OPOL	H: 9 ami: OGY:	6 am no a lin	ino a cid ear	acid		: 46	6:			

WO 98/39448

	Met 1		Leu	Val	Leu 5	Val	Phe	Leu	Cys	Ser 10		Leu	Ala	Pro	Met 15	Val
5	Leu	Ala	Ser	Ala 20		Glu	Lys	Glu	Lys 25	Glu	Met	Asp	Pro	Phe 30		Tyr
10	Asp	Тут	Gln 35	Thr	Leu	Arg	Ile	Gly 40	Gly	Leu	Val	Phe	Ala 45		Val	Leu
	Phe	Ser 50		Gly	Ile	Leu	Leu 55	Ile	Leu	Ser	Arg	Arg 60	Cys	Lys	Cys	Ser
15	Phe 65		Gln	Lys	Pro	Arg 70	Ala	Pro	Gly	Asp	Glu 75	Glu	Ala	Gln	Val	Glu 80
	Asn	Leu	Ile	Thr	Ala 85	Asn	Ala	Thr	Glu	Pro 90	Gln	Lys	Ala	Glu	Asn 95	Хаа
20																
25	(2)	TAICY	ODMAR	ntow.	non	ore										
23	(2)				FOR ENCE											
30				(A) Li B) T D) T	YPE: OPOL	amii OGY:	no a	cid ear							
			(xi)	SEO	TENCT	ישות ק	COTI	OTTO:	t. C1	20 TI	2 110	. 46-	7.			
	Met				JENCI Ala									Thr	Ala	Ile
35	1	Ala	Ser	Gly	Ala 5	Asp	Ser	Lys	Gly	Asp 10	Asp	Leu	Ser		15	
35	1	Ala	Ser	Gly	Ala	Asp	Ser	Lys	Gly	Asp 10	Asp	Leu	Ser		15	
35	l Leu	Ala Lys	Ser Gln	Gly Lys 20	Ala 5	Asp Arg	Ser Pro	Lys Asn	Gly Arg 25	Asp 10 Leu	Asp Ile	Leu Val	Ser Asp	Glu 30	15 Ala	Ile
	1 Leu Asn	Ala Lys Glu	Ser Gln Asp 35	Cly Lys 20 Asn	Ala 5 Asn	Asp Arg Val	Ser Pro Val	Lys Asn Ser 40	Gly Arg 25 Leu	Asp 10 Leu Ser	Asp Ile Gln	Leu Val Pro	Ser Asp Lys 45	Glu 30 Met	15 Ala Asp	Ile Glu
	Leu Asn Leu	Ala Lys Glu Gln 50	Ser Gln Asp 35 Leu	Gly Lys 20 Asn Phe	Ala 5 Asn Ser	Asp Arg Val Gly	Ser Pro Val Asp 55	Lys Asn Ser 40 Thr	Gly Arg 25 Leu Val	Asp 10 Leu Ser	Asp Ile Gln Leu	Leu Val Pro Lys 60	Ser Asp Lys 45 Gly	Glu 30 Met Lys	15 Ala Asp Lys	Ile Glu Arg
40 45	Leu Asn Leu Arg 65	Ala Lys Glu Gln 50 Glu	Ser Gln Asp 35 Leu Ala	Gly Lys 20 Asn Phe Val	Ala 5 Asn Ser Arg	Asp Val Gly Ile 70	Ser Pro Val Asp 55	Lys Asn Ser 40 Thr	Arg 25 Leu Val Ser	Asp 10 Leu Ser Leu Asp	Asp Gln Leu Asp 75	Leu Val Pro Lys 60 Thr	Ser Asp Lys 45 Gly Cys	Glu 30 Met Lys Ser	15 Ala Asp Lys Asp	Ile Glu Arg Glu 80
40	Leu Asn Leu Arg 65 Lys	Ala Lys Glu Gln 50 Glu	Ser Gln Asp 35 Leu Ala	Gly Lys 20 Asn Phe Val	Ala 5 Asn Ser Arg Cys	Asp Val Gly Ile 70 Arg	Ser Pro Val Asp 55 Val	Lys Asn Ser 40 Thr Leu	Gly Arg 25 Leu Val Ser	Asp 10 Leu Ser Leu Asp	Asp Ile Gln Leu Asp 75 Asn	Leu Val Pro Lys 60 Thr	Ser Asp Lys 45 Gly Cys	Glu 30 Met Lys Ser	15 Ala Asp Lys Asp	Ile Glu Arg Glu 80 Leu
40 45	Leu Asn Leu Arg 65 Lys	Ala Lys Glu Gln 50 Glu Ile	Ser Gln Asp 35 Leu Ala Arg	Gly Lys 20 Asn Phe Val Met	Ala 5 Asn Ser Arg Cys Asn 85	Asp Val Gly Ile 70 Arg	Ser Pro Val Asp 55 Val Val	Lys Asn Ser 40 Thr Leu Val	Gly Arg 25 Leu Val Ser Arg Cys 105	Asp 10 Leu Ser Leu Asp Asp	Asp Ile Gln Leu Asp 75 Asn	Leu Val Pro Lys 60 Thr Leu Val	Asp Lys 45 Gly Cys Arg	Glu 30 Met Lys Ser Val	15 Ala Asp Lys Asp Arg 95 Gly	Ile Glu Arg Glu 80 Leu
40 45 50	Leu Asn Leu Arg 65 Lys Gly Arg	Ala Lys Glu Gln 50 Glu Ile Asp	Ser Gln Asp 35 Leu Ala Arg Val His 115	Gly Lys 20 Asn Phe Val Met Ile 100 Val	Ala 5 Asn Ser Arg Cys Asn 85 Ser	Asp Val Gly Ile Arg Ile Pro	Ser Pro Val Asp 55 Val Val Gln	Lys Asn Ser 40 Thr Leu Val Pro Asp 120	Gly Arg 25 Leu Val Ser Arg Cys 105 Asp	Asp 10 Leu Ser Leu Asp Pro	Asp Ile Gln Leu Asp 75 Asn Asp	Leu Val Pro Lys 60 Thr Leu Val	Ser Asp Lys 45 Gly Cys Arg Lys Gly 125	Glu 30 Met Lys Ser Val Tyr 110	15 Ala Asp Lys Asp 95 Gly	Ile Glu Arg Glu 80 Leu Lys

	145					150					155					160
5	Val	Glu	Phe	Lys	Val 165	Val	Glu	Thr	Asp	Pro 170	Ser	Pro	Tyr	Суз	Ile 175	Val
,	Ala	Pro	Asp	Thr 180	Val	Ile	His	Cys	Glu 185	Gly	Glu	Pro	Ile	Lys 190	Arg	Glu
10	Asp	Glu	Glu 195	Glu	Ser	Leu	Asn	Glu 200	Val	Gly	Tyr	Asp	Asp 205	Ile	Gly	Gly
	Cys	Arg 210	Lys	Gln	Leu	Ala	Gln 215	Ile	Lys	Glu	Met	Val 220	Glu	Leu	Pro	Leu
15	Arg 225	His	Pro	Ala	Leu	Phe 230	Lys	Ala	Ile	Gly	Val 235	Lys	Pro	Pro	Arg	Gly 240
20	Ile	Leu	Leu	Tyr	Gly 245	Pro	Pro	Gly	Thr	Gly 250	Lys	Thr	Leu	Ile	Ala 255	Arg
	Ala	Val	Ala	Asn 260	Glu	Thr	Gly	Ala	Phe 265	Phe	Phe	Leu	Ile	Asn 270	Gly	Pro
25	Glu	Ile	Met 275	Ser	Lys	Leu	Ala	Gly 280	Glu	Ser	Glu	Ser	Asn 285	Leu	Arg	Lys
	Ala	Phe 290	Glu	Glu	Ala	Glu	Lys 295	Asn	Ala	Pro	Ala	Ile 300	Ile	Phe	Ile	Asp
30	Glu 305	Leu	Asp	Ala	Ile	Ala 310	Pro	Lys	Arg	Glu	Lys 315	Thr	His	Gly	Glu	Val 320
35	Glu	Arg	Arg	Ile	Val 325	Ser	Gln	Leu	Leu	Thr 330	Leu	Met	Asp	Gly	Leu 335	Lys
	Gln	Arg	Ala	His 340	Val	Ile	Val	Met	Ala 345	Ala	Thr	Asn	Arg	Pro 350	Asn	Ser
40	Ile	Asp	Pro 355	Ala	Leu	Arg	Arg	Phe 360	Gly	Arg	Phe	Asp	Arg 365	Glu	Val	Asp
	Ile	Gly 370	Ile	Pro	Asp	Ala	Thr 375	Gly	Arg	Leu	Glu	Ile 380	Leu	Gln	Ile	His
45	Thr 385	Lys	Asn	Met	Lys	Leu 390	Ala	Asp	Asp	Val	Asp 395	Leu	Glu	Gln	Xaa	
50	(2)	INFO	ORMAT	rion	FOR	SEO	ID 1	NO: 4	168:							
			(i) :	_	ENCE A) L											
55			(xi)	(B) T D) T UENC	YPE: OPOL	ami OGY:	no a lin	ciđ ear			: 46	R ·		•	
	Leu 1		,	-					<i>J.</i>	- <u>v</u> -•			-•			

	(2)	INF	ORMAT	NOI	FOR	SEQ	ID I	VO : 4	169:							
5			(i) :	(1	A) L B) T	ENGT YPE:	H: 2 ami		mino cid		ds					
10			(xi)	SEQU	JENC	E DE	SCRI	PTIO	N: S1	EQ I	D NO	: 469	9:			
	Met 1	Ala	Ala	Pro	Lys 5	Gly	Ser	Leu	Trp	Val 10	Arg	Thr	Gln	Leu	Gly 15	Leu
15	Pro	Pro	Leu	Leu 20	Leu	Leu	Thr	Met	Ala 25	Leu	Ala	Gly	Gly	Ser 30	Gly	Thr
	Ala	Ser	Ala 35	Glu	Ala	Phe	Asp	Ser 40	Val	Leu	Gly	Asp	Thr 45	Ala	Ser	Cys
20	His	Arg 50	Ala	Cys	Gln	Leu	Thr 55	Tyr	Pro	Leu	His	Thr 60	Tyr	Pro	Lys	Glu
25	G1u 65	Glu	Leu	Tyr	Ala	Cys 70	Gln	Arg	Gly	Cys	Arg 75	Leu	Phe	Ser	Ile	Cys 80
	Gln	Phe	Val	Asp	Asp 85	Gly	Ile	Asp	Leu	Asn 90	Arg	Thr	Lys	Leu	Glu 95	Cys
30	Glu	Ser	Ala	Cys 100	Thr	Glu	Ala	Tyr	Ser 105	Gln	Ser	Asp	Glu	Gln 110	Tyr	Ala
	Cys	His	Leu 115	Gly	Cys	Gln	Asn	Gln 120	Leu	Pro	Phe	Ala	Glu 125	Leu	Arg	Gln
35	Glu	Gln 130	Leu	Met	Ser	Leu	Met 135	Pro	Lys	Met	His	Leu 140	Leu	Phe	Pro	Leu
40	Thr 145	Leu	Val	Arg	Ser	Phe 150	Ттр	Ser	Asp	Met	Met 155	Asp	Ser	Ala	Gln	Ser 160
	Phe	Ile	Thr	Ser	Ser 165	Trp	Thr	Phe	Tyr	Leu 170	Gln	Ala	Asp	Asp	Gly 175	Lys
45	Ile	Val	Ile	Phe 180	Xaa	Ser	Lys	Pro	Arg 185	Asn	Pro	Arg	Tyr	Ala 190	Pro	His
	Leu	Glu	Pro 195	Gly	Ala	Leu	Pro	Asn 200	Leu	Xaa	Xaa	Xaa	Ser 205	Leu	Ser	Lys
50	Met	Ser 210	Xaa	Xaa	Ser	Xaa	Met 215	Arg	Asn	Ser	Gln	Ala 220	His	Arg	Asn	Phe
55	Leu 225	Glu	Asp	Gly	Glu	Ser 230	Asp	Gly	Phe	Leu	Arg 235	Cys	Leu	Ser	Leu	Asn 240
- -	Ser	Gly	Trp	Ile	Leu 245	Thr	Thr	Thr	Leu	Val 250	Leu	Ser	Val	Met	Val 255	Leu
60	Leu	Trp	Ile	Cys 260	Cys	Ala	Thr	Cys	Cys 265	Тут	Thr	Leu	Leu	Asp 270	Ala	Val

Xaa

5

20

35

(2) INFORMATION FOR SI	EO ID NO: 470
------------------------	---------------

	(i) SEQUENCE CHARACTERISTICS:
10	(A) LENGTH: 192 amino acids
	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 470:

15 Met Met Val Leu Ser Leu Gly Ile Ile Leu Ala Ser Ala Ser Phe Ser 1 5 10 15

Pro Asn Phe Thr Gln Val Thr Ser Thr Leu Leu Asn Ser Ala Tyr Pro \$20\$ \$25\$ \$30

Phe Ile Gly Pro Phe Phe Phe Ile Ile Ser Gly Ser Leu Ser Ile Ala $35 \hspace{1cm} 40 \hspace{1cm} 45$

Thr Glu Lys Arg Leu Thr Lys Leu Leu Val His Ser Ser Leu Val Gly 50 55 60

Ser Ile Leu Ser Ala Leu Ser Ala Leu Val Gly Phe Ile Ile Leu Ser 65 70 75 80

30 Val Lys Gln Ala Thr Leu Asn Pro Ala Ser Leu Gln Cys Glu Leu Asp 85 90 95

Lys Asn Asn Ile Pro Thr Arg Ser Tyr Val Ser Tyr Phe Tyr His Asp 100 105 110

Ser Leu Tyr Thr Thr Asp Cys Tyr Thr Ala Lys Ala Ser Leu Ala Gly
115 120 125

Xaa Leu Ser Leu Met Leu Ile Cys Thr Leu Leu Glu Phe Cys Leu Ala 40 130 135 140

Val Leu Thr Ala Val Leu Arg Trp Lys Gln Ala Tyr Ser Asp Phe Pro 145 150 155 160

45 Gly Ser Val Leu Phe Leu Pro His Ser Tyr Ile Gly Asn Ser Gly Met 165 170 175

Ser Ser Lys Met Thr His Asp Cys Gly Tyr Glu Glu Leu Leu Thr Ser \$180\$ \$185\$ \$190\$

55

(2) INFORMATION FOR SEQ ID NO: 471:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 234 amino acids

60 (B) TYPE: amino acid

			(xi)		D) T UENC					EQ I	D NO	: 47	1:			
5	Met 1	Arg	Lys	Thr	Arg 5	Leu	Trp	Gly	Leu	Leu 10	Trp	Met	Leu	Phe	Val 15	Ser
	Glu	Leu	Arg	Ala 20	Ala	Thr	Lys	Leu	Thr 25	Glu	Glu	Lys	Tyr	Glu 30	Leu	Lys
10	Glu	Gly	Gln 35	Thr	Leu	Asp	Val	Lys 40	Cys	Asp	Tyr	Thr	Leu 45	Glu	Lys	Phe
15	Ala	Ser 50	Ser	Gln	Lys	Ala	Trp 55	Gln	Ile	Ile	Arg	Asp 60	Gly	Glu	Met	Pro
	Lys 65	Thr	Leu	Ala	Суз	Thr 70	Glu	Arg	Pro	Ser	Lys 75	Asn	Ser	His	Pro	Val 80
20	Gln	Val	Gly	Arg	Ile 85	Ile	Leu	Glu	Asp	Туг 90	His	Asp	His	Gly	Leu 95	Leu
	Arg	Val	Arg	Met 100	Val	Asn	Leu	Gln	Val 105	Glu	Asp	Ser	Gly	Leu 110	Tyr	Gln
25	Cys	Val	Ile 115	Tyr	Gln	Pro	Pro	Lys 120	Glu	Pro	His	Met	Leu 125	Phe	Asp	Arg
30	Ile	Arg 130	Leu	Val	Val	Thr	Lys 135	Gly	Phe	Ser	Gly	Thr 140	Pro	Gly	Ser	Asn
	Glu 145	Asn	Ser	Thr	Gln	Asn 150	Val	Tyr	Lys	Ile	Pro 155	Pro	Thr	Thr	Thr	Lys 160
35	Ala	Leu	Cys	Pro	Leu 165	Tyr	Thr	Ser	Pro	Arg 170	Thr	Val	Thr	Gln	Ala 175	Pro
	Pro	Lys	Ser	Thr 180	Ala	Asp	Val	Ser	Thr 185	Pro	Asp	Ser	Glu	Ile 190	Asn	Leu
40	Thr	Asn	Val 195	Thr	Asp	Ile	Ile	Arg 200	Val	Pro	Val	Phe	Asn 205	Ile	Val	Ile
45	Leu	Leu 210	Ala	Gly	Gly	Phe	Leu 215	Ser	Lys	Ser	Leu	Val 220	Phe	Ser	Val	Leu
	Phe 225	Ala	Val	Thr	Leu	Arg 230	Ser	Phe	Val	Pro						
50	(2)	INFO	RMAT	rion	FOR	SEQ	ID N	Ю: 4	172:							
55			(i) :		ENCE A) L						ds					
55			(xi)	(1	B) T D) T UENCI	OPOL	OGY:	lin	ear	9Q II	O NO:	: 47	2:			
60	Met 1	Leu	His	Ile	Leu 5	Pro	Leu	Lys	Ser	Tyr 10	Asp	Phe	Pro	His	Phe 15	Ser

	Leu	Met	Gly	Arg 20	Tyr	Arg	Cys	Ala	Ser 25	Leu	Leu	Phe	Cys	Phe 30	Leu	Leu
5	Leu	Phe	Phe 35	Phe	Phe	Cys	Ser	Val 40	Leu	Trp	Thr	Phe	Ser 45	Asp	Met	His
10	Arg	Ser 50	Gly	Glu	Asp	Gly	Pro 55	Trp	Thr	Pro	Cys	Val 60	His	His	Leu	Ala
	Ala 65	Ser	Leu	Ile	Ser	Tyr 70	Gly	Gln	Pro	Gly	Phe 75	Ile	Суз	Ile	Ser	Leu 80
15	Phe	Ser	Pro	Val	Leu 85	Phe	Ile	Glu	Asn	Pro 90	Arg	His	Туг	Ala	Asn 95	Ala
	Thr	Val	Thr	Thr 100	Leu	Gly	Asp	Trp	Xaa 105							
20																
	(2)	INF	ORMAT	CION	FOR	SEQ	ID N	NO: 4	173 :							
25			(i) s	() ()	A) LI B) T D) T	ENGT YPE : OPOLA	H: 3: ami DGY:	2 am no a lin	ino a cid ear	acid		: 473	ı:			
30	Met 1	Val	Phe	Leu	Lys 5	Tyr	Arg	Phe	Leu	Phe 10	Phe	Leu	Val	Phe	Leu 15	Ala
35	Asn	Суѕ	Ile	Tyr 20	Ser	Leu	His	Tyr	Lys 25	Pro	Ser	Leu	Met	Tyr 30	Pro	Lys
40	(2)		ORMAT													
45			(xi)	() (I (I	A) Li 3) T O) T	ENGTI YPE : OPOLO	i: 5° amir XGY:	71 ar no ac line	mino cid ear	acio		: 4 74	ı:			
50	Met 1	Ala	Leu	Ser	Arg 5	Gly	Leu	Pro	Arg	Glu 10	Leu	Ala	Glu	Ala	Val 15	Ala
	Gly	Gly	Arg	Val 20	Leu	Val	Val	Gly	Ala 25	Gly	Gly	Ile	Gly	Cys 30	Glu	Leu
55	Leu	Lys	Asn 35	Leu	Val	Leu	Thr	Gly 40	Phe	Ser	His	Ile	Asp 45	Leu	Ile	Asp
60	Leu	Asp 50	Thr	Ile	Asp	Val	Ser 55	Asn	Leu	Asn	Arg	Gln 60	Phe	Leu	Phe	Gln

	Ly:	s Ly: 5	s His	s Val	l Gly	Arg 70		: Lys	: Ala	Glr	va] 75		Lys	s Glu	ı Sei	val
5	Le	ı Glı	n Phe	туг	Pro 85		Ala	Asn	Ile	• Val		Тух	His	as,	Sei 95	r Ile
	Mei	. Ası	n Pro	Asp 100	Tyr	Asn	Val	Glu	Phe 105		Arg	Gln	Phe	11e		ı Val
10	Met	: Asr	115	Leu	Asp	Asn	Arg	Ala 120	Ala	Arg	Asn	His	Val 125		Arg	Met
15	Cys	130	Ala	Ala	Asp	Val	Pro 135		Ile	Glu	Ser	Gly 140		Ala	Gly	Tyr
	Leu 145	Gly	Gln	Val	Thr	Thr 150	Ile	Lys	Lys	Gly	Val 155	Thr	Glu	Суз	Тут	Glu 160
20	Cys	His	Pro	Lys	Pro 165	Thr	Gln	Arg	Thr	Phe 170	Pro	Gly	Суз	Thr	Ile 175	
	Asn	Thr	Pro	Ser 180	Glu	Pro	Ile	His	Cys 185	Ile	Val	Trp	Ala	Lys 190	Tyr	Leu
25	Phe	Asn	Gln 195	Leu	Phe	Gly	Glu	Glu 200	Asp	Ala	Asp	Gln	Glu 205	Val	Ser	Pro
30	Asp	Arg 210	Ala	Asp	Pro	Glu	Ala 215	Ala	Trp	Glu	Pro	Thr 220	Glu	Ala	Glu	Ala
	Arg 225	Ala	Arg	Ala	Ser	Asn 230	Glu	Asp	Gly	Asp	Ile 235	Lys	Arg	Ile	Ser	Thr 240
35	Lys	Glu	Trp	Ala	Lys 245	Ser	Thr	Gly	Tyr	Asp 250	Pro	Val	Lys	Leu	Phe 255	Thr
	Lys	Leu	Phe	Lys 260	Asp	Asp	Ile	Arg	Tyr 265	Leu	Leu	Thr	Met	Asp 270	Lys	Leu
40	Trp	Arg	Lys 275	Arg	Lys	Pro	Pro	Val 280	Pro	Leu	Asp	Trp	Ala 285	Glu	Val	Gln
45	Ser	Gln 290	Gly	Glu	Glu		Asn 295	Ala	Ser	Asp	Gln	Gln 300	Asn	Glu	Pro	Gln
	Leu 305	Gly	Leu	Lys	Asp	Gln 310	Gln	Val	Leu .		Val 315	Lys	Ser	Tyr	Ala	Arg 320
50	Leu	Phe	Ser	Lys	Ser 325	Ile	Glu	Thr		Arg 330	Val	His	Leu	Ala	Glu 335	Lys
	Gly	Asp	Gly	Ala 340	Glu :	Leu	Ile		Asp 345	Lys .	Asp	Asp	Pro	Ser 350	Ala	Met
55	Asp	Phe	Val 355	Thr	Ser ,	Ala .		Asn 360	Leu .	Arg	Met		Ile 365	Phe	Ser	Met
60	Asn	Met 370	Lys	Ser	Arg		Asp 375	Ile	Lys :	Ser 1		Ala 380	Gly	Asn	Ile	Ile

	Pro 385		lle	Ala	Thr	Thr 390		Ala	Val	Ile	Ala 395	Gly	Leu	Ile	Val	Leu 400
5	Glu	Gly	Leu	Lys	Ile 405	Leu	Ser	Gly	Lys	Ile 410	Asp	Gln	Cys	Arg	Thr 415	Ile
	Phe	Leu	Asn	Lys 420	Gln	Pro	Asn	Pro	Arg 425	Lys	Lys	Leu	Leu	Val 430	Pro	Cys
10	Ala	Leu	Asp 435	Pro	Pro	Asn	Pro	Asn 440	Cys	Tyr	Val	Cys	Ala 445	Ser	Lys	Pro
15	Glu	Val 450	Thr	Val	Arg	Leu	Asn 455	Val	His	Lys	Val	Thr 460	Val	Leu	Thr	Leu
	Gln 465	Asp	Lys	Ile	Val	Lys 470	Glu	Lys	Phe	Ala	Met 475	Val	Ala	Pro	Asp	Val 480
20	Gln	Ile	Glu	Asp	Gly 485	Lys	Gly	Thr	Ile	Leu 490	Ile	Ser	Ser	Glu	Glu 495	Gly
	Glu	Thr	Glu	Ala 500	Asn	Asn	His	Lys	Lys 505	Leu	Ser	Glu	Phe	Gly 510	Ile	Arg
25	Asn	Gly	Ser 515	Arg	Leu	Gln	Ala	Asp 520	Asp	Phe	Leu	Gln	Asp 525	Tyr	Thr	Leu
30	Leu	Ile 530	Asn	Ile	Leu	His	Ser 535	Glu	Asp	Leu	Gly	Lys 540	Asp	Val	Glu	Phe
	Glu 545	Val	Val	Gly	Asp	A1a 550	Pro	Glu	Lys	Val	Gly 555	Xaa	Lys	Gln	Ala	Glu 560
35	Asp	Ala	Ala	Lys	Ser 565	Ile	Thr	Asn	Gly	Gln 570	Xaa					
40	(2)		ORMAT	EQUE	ENCE A) Li	CHAI ENGT	RACTE	RIST	CICS:		ls					
45			(xi)	(1	B) TY D) TY JENCE	OPOL	OGY:	line	ear	Q II	NO:	475	i :			
	Met 1	Gln	Val	Val	Thr 5	Cys	Leu	Thr	Arg	Asp 10	Ser	Tyr	Leu	Thr	His 15	Cys
50	Phe	Leu	Gln	His 20	Leu	Met	Val	Val	Leu 25	Ser	Ser	Leu	Glu	Arg 30	Thr	Pro
55	Ser	Pro	Glu 35	Pro	Val	Asp	Lys	Asp 40	Phe	Tyr	Ser	Glu	Phe 45	Gly	Asn	Lys
	Thr	Thr 50	Gly	Lys	Met	Glu	Asn 55	Tyr	Glu	Leu	Ile	His 60	Ser	Ser	Arg	Val
60	Lys 65	Phe	Thr	Tyr	Pro	Ser 70	Glu	Glu	Glu	Ile	Gly 75	Asp	Leu	Thr	Phe	Thr 80

	Val	Ala	Gln	Lys	Met 85	Ala	Glu	Pro	Glu	Lys 90	Ala	Pro	Ala	Leu	Ser 95	Ile
5	Leu	Leu	Tyr	Val 100	Gln	Ala	Phe	Gln	Val 105	Gly	Met	Pro	Pro	Pro 110	Gly	Cys
10	Cys	Arg	Gly 115	Pro	Leu	Arg	Pro	Lys 120	Thr	Leu	Leu	Leu	Thr 125	Ser	Ser	Glu
	Ile	Phe 130	Leu	Leu	Asp	Glu	Asp 135	Суѕ	Val	His	Tyr	Pro 140	Leu	Pro	Glu	Phe
15	Ala 145	Lys	Glu	Pro	Pro	Gln 150	Arg	Asp	Arg	Tyr	Arg 155	Leu	Asp	Asp	Gly	Arg 160
	Arg	Val	Arg	Asp	Leu 165	Asp	Arg	Val	Leu	Met 170	Gly	Tyr	Gln	Thr	Туг 175	Pro
20	Gln	Pro	Ser	Pro 180	Ser	Ser	Ser	Met	Thr 185	Cys	Lys	Val	Met	Thr 190	Ser	Trp
25	Ala	Val	Ser 195	Pro	Trp	Thr	Thr	Leu 200	Gly	Arg	Cys	Gln	Val 205	Ala	Arg	Leu
	Glu	Pro 210	Ala	Arg	Ala	Val	Lys 215	Ser	Ser	Gly	Arg	Cys 220	Leu	Ser	Pro	Val
30	225		Ala			230					235					240
	Pro	Cys	Val	Ala	Val 245	Ser	Cys	Leu	Ser	Ser 250	Ser	Pro	Ala	Ser	Pro 255	Gly
35	His	Ser	Gln	Pro 260	Val	Val	Ser	Ser	Leu 265	Thr	Pro	Thr	Gly	Ala 270	Gly	Gln
40	Gln	Ala	Phe 275	Val	Phe	Ser	Lys	Asn 280	Val	Leu	Ser	Ser	Leu 285	Trp	Tyr	Leu
	Asn	Leu 290	Thr	Val	Leu	Ala	Glu 295	Asn	Val	Asn	Met	Cys 300	Val	Cys	Суѕ	Val
45	Asn 305	Ser	Phe	Ser	Cys	Trp 310	Glu	Xaa								
50	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID 1	VO: 4	176:							
30			(i) :	(A) L	ENGT	н: 3	29 a	mino		ds					
55			(xi)	(D) T	YPE: OPOL E DE:	OGY:	lin	ear	EQ II	ои о	: 47	6:			
	Met 1	Ala	Gln	His	His 5	Leu	Trp	Ile	Leu	Leu 10	Leu	Cys	Leu	Gln	Thr 15	Trp
60	Pro	Glu	Ala	Ala	Gly	Lys	Asp	Ser	Glu	Ile	Phe	Thr	Val	Asn	Gly	Ile

				20					25					30		
5	Leu	Gly	Glu 35	Ser	Val	Thr	Phe	Pro 40	Val	Asn	Ile	Gln	Glu 45	Pro	Arg	Gln
5	Val	Lys 50	Ile	Ile	Ala	Trp	Thr 55	Ser	Lys	Thr	Ser	Val 60	Ala	Tyr	Val	Thr
10	Pro 65	Gly	Asp	Ser	Glu	Thr 70	Ala	Pro	Val	Val	Thr 75	Val	Thr	His	Arg	Asn 80
	Tyr	Tyr	Glu	Arg	Ile 85	His	Ala	Leu	Gly	Pro 90	Asn	Tyr	Asn	Leu	V al 95	Ile
15	Ser	Asp	Leu	Arg 100	Met	Glu	Asp	Ala	Gly 105	Asp	Туг	Lys	Ala	Asp 110	Ile	Asn
20	Thr	Gln	Ala 115	Asp	Pro	Туг	Thr	Thr 120	Thr	Lys	Arg	Tyr	Asn 125	Leu	Gln	Ile
	Tyr	Arg 130	Arg	Leu	Gly	Lys	Pro 135	Lys	Ile	Thr	Gln	Ser 140	Leu	Met	Ala	Ser
25	Val 145	Asn	Ser	Thr	Cys	Asn 150	Val	Thr	Leu	Thr	Cys 155	Ser	Val	Glu	Lys	Glu 160
	Glu	Lys	Asn	Val	Thr 165	Tyr	Asn	Trp	Ser	Pro 170	Leu	Gly	Glu	Glu	Gly 175	Asn
30	Val	Leu	Gln	Ile 180	Phe	Gln	Thr	Pro	Glu 185	Asp	Gln	Glu	Leu	Thr 190	Tyr	Thr
35	Cys	Thr	Ala 195	Gln	Asn	Pro	Val	Ser 200	Asn	Asn	Ser	Asp	Ser 205	Ile	Ser	Ala
	Arg	Gln 210	Leu	Cys	Ala	Asp	Ile 215	Ala	Met	Gly	Phe	Arg 220	Thr	His	His	Thr
40	Gly 225	Leu	Leu	Ser	Val	Leu 230	Ala	Met	Phe	Phe	Leu 235	Leu	Val	Leu	Ile	Leu 240
	Ser	Ser	Val	Phe	Leu 245	Phe	Arg	Leu	Phe	Lys 250	Arg	Arg	Gln	Asp	Ala 255	Ala
45	Ser	Lys	Lys	Thr 260	Ile	Tyr	Thr	Tyr	Ile 265	Met	Ala	Ser	Arg	Asn 270	Thr	Gln
50	Pro	Ala	Glu 275	Ser	Arg	Ile	Tyr	Asp 280	Glu	Ile	Leu	Gln	Ser 285	Lys	Val	Leu
	Pro	Ser 290	Lys	Glu	Glu	Pro	Val 295	Asn	Thr	Val	Tyr	Ser 300	Glu	Val	Gln	Phe
55	Ala 305	Asp	Lys	Met	Gly	Lys 310	Ala	Ser	Thr	Gln	Asp 315	Ser	Lys	Pro	Pro	Gly 320
	Thr	Ser	Ser	Tyr	Glu 325	Ile	Val	Ile	Xaa							

(2) INFORMATION FOR SEQ ID NO: 477:

5			(A) L B) T D) T	CHA ENGT YPE: OPOL	H: 1 ami OGY:	78 a no a lin	mino cid ear	aci						
		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 47	7:			
10	Met Lys 1	Leu	Gln	Cys 5	Val	Ser	Leu	Trp	Leu 10	Leu	Gly	Thr	Ile	Leu 15	Ile
15	Leu Cys	Ser	Val 20	Asp	Asn	His	Gly	Leu 25	Arg	Arg	Cys	Leu	Ile 30	Ser	Thr
	Asp Met	His 35	His	Ile	Glu	Glu	Ser 40	Phe	Gln	Glu	Ile	Lys 45	Arg	Ala	Ile
20	Gln Ala 50	Lys	Asp	Thr	Phe	Pro 55	Asn	Val	Thr	Ile	Leu 60	Ser	Thr	Leu	Glu
	Thr Leu 65	Gln	Ile	Ile	Lys 70	Pro	Leu	Asp	Val	Cys 75	Cys	Val	Thr	Lys	Asn 80
25	Leu Leu	Ala	Phe	Tyr 85	Val	Asp	Arg	Val	Phe 90	Lys	Asp	His	Gln	Glu 95	Pro
30	Asn Pro	Lys	Ile 100	Leu	Arg	Lys	Ile	Ser 105	Ser	Ile	Ala	Asn	Ser 110	Phe	Leu
	Tyr Met	Gln 115	Lys	Thr	Leu	Arg	Gln 120	Cys	Gln	Glu	Gln	Arg 125	Gln	Cys	His
35	Cys Arg 130	Gln	Glu	Ala	Thr	Asn 135	Ala	Thr	Arg	Val	Ile 140	His	Asp	Asn	Tyr
	Asp Gln 145	Leu	Glu	Val	His 150	Ala	Ala	Ala	Ile	Lys 155	Ser	Leu	Gly	Glu	Leu 160
40	Asp Val	Phe	Leu	Ala 165	Trp	Ile	Asn	Lys	Asn 170	His	Glu	Val	Met	Ser 175	Ser
	Ala Xaa														
45															
	(2) INF	ORMAI	TION	FOR	SEQ	ID N	ю: 4	78:							
50		(i) :	(,	A) L	CHAI ENGT YPE:	H: 5	2 am	ino .		s					
		(xi)			OPOLA E DES				EQ II	ON C	: 478	B:			
55	Asp Thr 1												Lys	Thr 15	Val
60	Ile Leu	Gly	Leu 20	Leu	Cys	Leu	Leu	Leu 25	Cys	Gly	Gly	Gly	Glu 30	Gly	Lys

644

Val Ala Gly Arg Gln Ala Val Thr Ser Asp Gln Gln Ser Val Gly Arg 35 40 Arg Asp Val Tyr 50 10 (2) INFORMATION FOR SEQ ID NO: 479: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 62 amino acids (B) TYPE: amino acid 15 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 479: Met Gln Lys Lys Asn Ser Leu Phe Phe Phe Phe Ala Phe Tyr Tyr Glu 10 20 Asn Lys Thr Asn Ala Pro Gly Glu Gly Ser Met Ile Thr Arg Asn Ile Lys Glu Tyr Phe Leu Pro Phe Leu Phe Cys Cys Val Glu Ala Ser Ile 25 Ala Ile Asn Lys Leu Asn Tyr Leu His Trp Thr His Phe Gln 55 30 (2) INFORMATION FOR SEQ ID NO: 480: (i) SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 27 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 480: 40 Met Pro Gly Leu Ser Leu Ile Leu Thr Val Thr Leu Leu Ala Val Ser 10 Asp Ser Ala Ala Thr Cys Ile Val Ala Lys Gly 20 25 45 (2) INFORMATION FOR SEQ ID NO: 481: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 339 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 481: 55 Met Ser Gly Pro Asp Val Glu Thr Pro Ser Ala Ile Gln Ile Cys Arg Ile Met Arg Pro Asp Asp Ala Asn Val Ala Gly Asn Val His Gly Gly 60

25

	Thr	Ile	Leu 35	Lys	Met	Ile	Glu	Glu 40	Ala	Gly	Ala	Ile	Ile 45	Ser	Thr	Arg
5	His	Суs 50	Asn	Ser	Gln	Asn	Gly 55	Glu	Arg	Cys	Val	Ala 60	Ala	Leu	Ala	Arg
10	Val 65	Glu	Arg	Thr	Asp	Phe 70	Leu	Ser	Pro	Met	Суs 75	Ile	Gly	Glu	Val	Ala 80
	His	Val	Ser	Ala	Glu 85	Ile	Thr	Tyr	Thr	Ser 90	Lys	His	Ser	Val	Glu 95	Val
15	Gln	Val	Asn	Val 100	Met	Ser	Glu	Asn	11e 105	Leu	Thr	Gly	Ala	Lys 110	Lys	Leu
	Thr	Asn	Lys 115	Ala	Thr	Leu	Trp	Туг 120	Val	Pro	Leu	Ser	Leu 125	Lys	Asn	Val
20	Asp	Lys 130	Val	Leu	Glu	Val	Pro 135	Pro	Val	Val	Tyr	Ser 140	Arg	Xaa	Glu	Gln
25	Glu 145	Glu	Glu	Gly	Arg	Lys 150	Arg	Tyr	Glu	Ala	Gln 155	Lys	Leu	Glu	Arg	Met 160
	Glu	Thr	Lys	Trp	Arg 165	Asn	Gly	Asp	Ile	Val 170	Gln	Pro	Val	Leu	Asn 175	Pro
30	Glu	Pro	Asn	Thr 180	Val	Ser	Tyr	Ser	Gln 185	Ser	Ser	Leu	Ile	His 190	Leu	Val
	Gly	Pro	Ser 195	Asp	Cys	Thr	Leu	His 200	Gly	Phe	Val	His	G1y 205	Gly	Val	Thr
35	Met	Lys 210	Leu	Met	Asp	Glu	Val 215	Ala	Gly	Ile	Val	Ala 220	Ala	Arg	His	Суз
40	Lys 225	Thr	Asn	Ile	Val	Thr 230	Ala	Ser	Val	Asp	Ala 235	Ile	Asn	Phe	His	Asp 240
	Lys	Ile	Arg	Lys	Gly 245	Cys	Val	Ile	Thr	Ile 250	Ser	Gly	Arg	Met	Thr 255	Phe
45	Thr	Ser	Asn	Lys 260	Ser	Met	Glu	Ile	Glu 265	Val	Leu	Val	Asp	Ala 270	Asp	Pro
	Val	Val	Asp 275	Ser	Ser	Gln	Lys	Arg 280	Туг	Arg	Ala	Ala	Ser 285	Ala	Phe	Phe
50	Thr	Туг 290	Val	Ser	Leu	Ser	Gln 295	Glu	Gly	Arg	Ser	Leu 300	Pro	Val	Pro	Gln
55	Leu 305	Val	Pro	Glu	Thr	Glu 310	Asp	Glu	Lys	Lys	Arg 315	Phe	Glu	Glu	Gly	Lys 320
	Gly	Arg	Tyr	Leu	Gln 325	Met	Lys	Ala	Lys	Хаа 330	Gln	Gly	His	Ala	Xaa 335	Xaa
60	Gln	Pro	Хаа													

5	(2) INFORMATION FOR SEQ ID NO: 482:
J	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 482:
	Met Leu Asn Ser Asn Ile Asn Asp Leu Leu Met Val Thr Tyr Leu Ala 1 5 10 15
15	Asn Leu Thr Gln Ser Gln Ile Ala Leu Asn Glu Lys Leu Val Asn Leu 20 25 30
20	
	(2) INFORMATION FOR SEQ ID NO: 483:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 48 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 483:
30	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 465:
	Met Arg Glu Thr Ser Ile Arg Val Leu Leu Met Leu Pro Ala Leu Glu 1 5 10 15
35	Ser Thr Ser Gly Leu Ser Ala Phe Met Gly Leu Gly Thr Arg Ile Gly 20 25 30
40	Cys Phe Lys Thr Ile Thr Cys Trp Pro Thr Ser Leu Thr Gln Arg Xaa 35 40 45
40	
45	(2) INFORMATION FOR SEQ ID NO: 484:
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 484:
55	Met Tyr Met Tyr Ser Leu Asn Val Phe Leu Ser Phe Ile Phe Leu Ala 1 5 10 15
<i>JJ</i>	Leu Val Phe Lys Cys Val His Val Cys Gln Gly Ala Asn Ala Phe Leu 20 25 30
60	Phe Leu Lys Leu Val Phe 35

5	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	VO :	485 :							
J			(i)	SEQU	ENCE	CHA	RACT	ERIS	TICS	:						
							H: 6 ami		ino cid	acid	s					
10				(D) T	OPOL	OGY:	lin	ear				_			
10			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 48	5:			
	Met 1	Gly	Leu	Arg	Leu 5	Ile	Cys	Leu	Glu	Leu 10	Thr	Met	Val	Lys		Leu
	1				,					10					15	
15	Val	Cys	Glu	Met 20	Phe	Leu	Phe	Phe	Leu 25	Met	Thr	Gln	Lys	Leu 30	Ile	Trp
		-1	_	_,	-1		_,			_	_					
	Gin	GIu	Cys 35	Thr	GIu	гуs	Phe	A1a 40	Lys	Leu	Leu	Val	Gln 45	Leu	Ile	Ser
20	I.eu	Val	Phe	A 1 =	Tree.	Glu	Phe	Pho	Cor	Clu	y e.v	mb~	Dwa			
	Deu	50	1110	ΛIα	11p	Giu	55	FILE	Ser	GIU	ASP	60	PIO			
25	(2)	T1117	NEWS C	nT.031	50D		7D.	10	•06							
	(2)	INF	ORMAT	LION	FOR	SEQ	ID	WO: 4	186:							
			(i) :	_					rics mino		ds					
30				(в) т	YPE:	ami	no a	cid							
			(xi)				OGY: SCRII			EQ II	D NO	: 48	6 :			
	Met	Len	Ala	Δla	Ara	Len	Val	C)/e	T.eu	Ara	ሞኮፖ	Levi	Pro	Sor	Δra	Val
35	1				5		142	٠,٥	204	10		DCG	110	JCI	15	***
	Phe	His	Pro	Ala	Phe	Thr	Lys	Ala	Ser	Pro	Val	Val	Lys	Asn	Ser	Ile
				20					25					30		
40	Thr	Lys	Asn	Gln	Trp	Leu	Leu	Thr	Pro	Ser	Arg	Glu	Tyr	Ala	Thr	Lys
			35					40					45			
	Thr	_	Ile	Gly	Ile	Arg	_	Gly	Arg	Thr	Gly		Glu	Leu	Lys	Glu
45		50					55					60				
	Ala 65	Ala	Leu	Glu	Pro	Ser 70	Met	Glu	Lys	Ile	Phe 75	Lys	Ile	Asp	Gln	Met 80
			_						_					_		
50	GIY	Arg	Trp	Phe	Val 85	Ala	Gly	Gly	Ala	Ala 90	Val	Gly	Leu	Gly	Ala 95	Leu
	0.0	™ ~	Тът	Clv.	Lou	C1	T ou	Com	200	C1	71.	c1	21-	710	cl	T 1.00
	Cys	TYL	Tyr	100	Leu	GIY	rea	Ser	105	GIU	He	GIÀ	Ald	110	GIU	Lys
55	Ala	Val	Ile	Tro	Pro	Gln	Tvr	Val	Lvs	Asp	Ara	Ile	His	Ser	Thr	Tvr
			115				-1-	120	_, _		9		125		-	- 4 -
	Met	Tyr	Leu	Ala	Gly	Ser	Ile	Gly	Leu	Thr	Ala	Leu	Ser	Ala	Ile	Ala
60		130					135					140				

	Ile 145	Ser	Arg	Thr	Pro	Val 150	Leu	Met	Asn	Phe	Met 155	Met	Arg	Gly	Ser	Trp 160
5	Val	Thr	Ile	Gly	Val 165	Thr	Phe	Ala	Ala	Met 170	Val	Gly	Ala	Gly	Met 175	Leu
	Val	Arg	Ser	Ile 180	Pro	Tyr	Asp	Gln	Ser 185	Pro	Gly	Pro	Lys	His 190	Leu	Ala
10	Trp	Leu	Leu 195	His	Ser	Gly	Val	Met 200	Gly	Ala	Val	Val	Ala 205	Pro	Leu	Thr
15	Ile	Leu 210	Gly	Gly	Pro	Leu	Leu 215	Ile	Arg	Ala	Ala	Trp 220	Tyr	Thr	Ala	Gly
	Ile 225	Val	Gly	Gly	Leu	Ser 230	Thr	Val	Ala	Met	Cys 235	Ala	Pro	Ser	Glu	Lys 240
20	Phe	Leu	Asn	Met	Gly 245	Ala	Pro	Leu	Gly	Val 250	Gly	Leu	Gly	Leu	Val 255	Phe
	Val	Ser	Ser	Leu 260	Gly	Ser	Met	Phe	Leu 265	Pro	Pro	Thr	Thr	Val 270	Ala	Gly
25	Ala	Thr	Leu 275	Tyr	Ser	Val	Ala	Met 280	Туг	Gly	Gly	Leu	Val 285	Leu	Phe	Ser
30	Met	Phe 290	Leu	Leu	Tyr	Asp	Thr 295	Gln	Lys	Val	Ile	Lys 300	Arg	Ala	Glu	Val
	Ser 305	Pro	Met	Tyr	Gly	Val 310	Gln	Lys	Tyr	Asp	Pro 315	Ile	Asn	Ser	Met	Leu 320
35	Ser	Ile	Tyr	Met	Asp 325	Thr	Leu	Asn	Ile	Phe 330	Met	Arg	Val	Ala	Thr 335	Met
	Leu	Ala	Thr	Gly 340	Gly	Asn	Arg	Lys	Lys 345	Xaa						
40	(2)	INFO	ORMA1	rion	FOR	SEQ	ID 1	NO: 4	187:							
45				(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	37 a no a lin	mino cid ear	aci		: 48	7 :			
50	Met 1	Glu	Glu	Val	Leu 5	Leu	Leu	Gly	Leu	Lys 10	Asp	Arg	Glu	Gly	Tyr 15	Thr
55	Ser	Phe	Trp	Asn 20	Asp	Cys	Ile	Ser	Ser 25	Gly	Leu	Arg	Gly	Cys 30	Met	Leu
<i></i>	Ile	Glu	Leu 35	Ala	Leu	Arg	Gly	Arg 40	Leu	Gln	Leu	Glu	Ala 45	Cys	Gly	Met
60	Arg	Arg 50	Lys	Ser	Leu	Leu	Thr 55	Arg	Lys	Val	Ile	Cys 60	Lys	Ser	Asp	Ala

WO 98/39448

	Pro 65	Thr	Gly	Asp	Val	Leu 70	Leu	Asp	Glu	Ala	Leu 75	Lys	His	Val	Lys	Glu 80
5	Thr	Gln	Pro	Pro	Glu 85	Thr	Val	Gln	Asn	Trp 90	Ile	Glu	Leu	Leu	Ser 95	Glý
10	Glu	Thr	Trp	Asn 100	Pro	Leu	Lys	Leu	His 105	Tyr	Gln	Leu	Arg	Asn 110	Val	Arg
	Glu	Arg	Leu 115	Ala	Lys	Asn	Leu	Val 120	Glu	Lys	Gly	Val	Leu 125	Thr	Thr	Glu
15	Lys	Gln 130	Asn	Phe	Leu	Leu	Phe 135	Asp	Met	Thr	Thr	His 140	Pro	Leu	Thr	Asn
	Asn 145	Asn	Ile	Lys	Gln	Arg 150	Leu	Ile	Lys	Lys	Val 155	Gln	Glu	Ala	Val	Leu 160
20	Asp	Lys	Trp	Val	Asn 165	Asp	Pro	His	Arg	Met 170	Asp	Arg	Arg	Leu	Leu 175	Ala
25	Leu	Ile	Tyr	Leu 180	Ala	His	Ala	Ser	Asp 185	Val	Leu	Glu	Asn	Ala 190	Phe	Ala
	Pro	Leu	Leu 195	Asp	Glu	Gln	Tyr	Asp 200	Leu	Ala	Thr	Lys	Arg 205	Val	Arg	Gln
30	Leu	Leu 210	Asp	Leu	Asp	Pro	Glu 215	Val	Glu	Cys	Leu	Lys 220	Ala	Asn	Thr	Asn
	Glu 225	Val	Leu	Trp	Ala	Val 230	Val	Ala	Ala	Phe	Thr 235	Lys	Xaa			
35																
	(2)	INFO	ORMAT	CION	FOR	SEQ	ID N	IO: 4	188 :							
40			(i) S	()	ENCE A) L B) T D) T	ENGT YPE:	H: 2	00 au no a	mino cid		ds					
			(xi)							EQ II	OM C	: 48	3:			
45	Met 1	Ala	Gln	Arg	Met 5	Val	Trp	Val	Asp	Leu 10	Glu	Met	Thr	Gly	Leu 15	Asp
50	Ile	Glu	Lys	Asp 20	Gln	Ile	Ile	Glu	Met 25	Ala	Cys	Leu	Ile	Thr 30	Asp	Ser
	Asp	Leu	Asn 35	Ile	Leu	Ala	Glu	Gly 40	Pro	Asn	Leu	Ile	Ile 45	Lys	Gln	Pro
55	Asp	Glu 50	Leu	Leu	Asp	Ser	Met 55	Ser	Asp	Trp	Cys	Lys 60	Glu	His	His	Gly
	Lys 65	Ser	Gly	Leu	Thr	Lys 70	Ala	Val	Lys	Glu	Ser 75	Thr	Ile	Thr	Leu	Gln 80
60	Gln	Ala	Glu	Tyr	Glu	Phe	Leu	Ser	Phe	Val	Arg	Gln	Gln	Thr	Pro	Pro

					85					90					95	
5	Gly	Leu	Cys	Pro 100	Leu	Ala	Gly	Asn	Ser 105	Val	His	Glu	Asp	Lys 110	Lys	Phe
J	Leu	Asp	Lys 115	Tyr	Met	Pro	Gln	Phe 120	Met	Lys	His	Leu	His 125	Туг	Arg	Ile
10	Ile	Asp 130	Val	Ser	Thr	Val	Lys 135	Glu	Leu	Cys	Arg	Arg 140	Trp	Tyr	Pro	Glu
	Glu 145	Tyr	Glu	Phe	Ala	Pro 150	Lys	Lys	Ala	Ala	Ser 155	His	Arg	Ala	Leu	Asp 160
15	Asp	Ile	Ser	Glu	Ser 165	Ile	Lys	Glu	Leu	Gln 170	Phe	Tyr	Arg	Asn	Asn 175	Ile
20	Phe	Lys	Lys	Lys 180	Ile	Asp	Glu	Lys	Lys 185	Arg	Lys	Ile	Ile	Glu 190	Asn	Gly
	Glu	Asn	Glu 195	Lys	Thr	Val	Ser	Xaa 200								
25	(2)	INFO	ORMAT	CION	FOR	SEQ	ID 1	NO: 4	189 :							
			(i) :	SEQU	ENCE	CHAI	RACT	ERIST	rics	:						
30			(xi)	(B) T	YPE: OPOL	ami OGY:	51 a no a line PTIO	cid ear			: 48	9:			
35	Met 1	Ala	Thr	Thr	Ala 5	Ala	Pro	Ala	Gly	Gly 10	Ala	Arg	Asn	Gly	Ala 15	Gly
	Pro	Glu	Trp	Gly 20	Gly	Phe	Glu	Glu	Asn 25	Ile	Gln	Gly	Gly	Gly 30	Ser	Ala
40	Val	Ile	Asp 35	Met	Glu	Asn	Met	Asp 40	Asp	Thr	Ser	Gly	Ser 45	Ser	Phe	Glu
45	Asp	Met 50	Gly	Glu	Leu	His	Gln 55	Arg	Leu	Arg	Glu	Glu 60	Glu	Val	Asp	Ala
	Asp 65	Ala	Ala	Asp	Ala	Ala 70	Ala	Ala	Glu	Glu	Glu 75	Asp	Gly	Glu	Phe	Leu 80
50	Gly	Met	Lys	Gly	Phe 85	Lys	Gly	Gln	Leu	Ser 90	Arg	Gln	Val	Ala	Asp 95	Gln
	Met	Trp	Gln	Ala 100	Gly	Lys	Arg	Gln	Ala 105	Ser	Arg	Ala	Phe	Ser 110	Leu	Tyr
55	Ala	Asn	Ile 115	Asp	Ile	Leu	Arg	Pro 120	Tyr	Phe	Asp	Va1	Glu 125	Pro	Ala	Gln
60	Val	Arg 130		Gly	Leu	Leu	Glu 135	Ser	Met	Ile	Pro	Ile 140	Lys	Met	Val	Asn

	Phe 145	Pro	Gln	Lys	Ile	Ala 150	Gly	Glu	Leu	Tyr	Gly 155	Pro	Leu	Met	Leu	Val 160
5	Phe	Thr	Leu	Val	Ala 165	Ile	Leu	Leu	His	Gly 170	Met	Lys	Thr	Ser	Asp 175	Thr
	Ile	Ile	Arg	Glu 180	Gly	Thr	Leu	Met	Gly 185	Thr	Ala	Ile	Gly	Thr 190	Cys	Phe
10	Gly	Tyr	Trp 195	Leu	Gly	Val	Ser	Ser 200	Phe	Ile	Tyr	Phe	Leu 205	Ala	Tyr	Leu
15	Cys	Asn 210	Ala	Gln	Ile	Thr	Met 215	Leu	Gln	Met	Leu	Ala 220	Leu	Leu	Gly	Tyr
	Gly 225	Leu	Phe	Gly	His	Суs 230	Ile	Val	Leu	Phe	11e 235	Thr	Tyr	Asn	Ile	His 240
20	Leu	His	Ala	Leu	Phe 245	Tyr	Leu	Phe	Trp	Leu 250	Leu	Val	Gly	Gly	Leu 255	Ser
	Thr	Leu	Arg	Met 260	Val	Ala	Val	Leu	Val 265	Ser	Arg	Thr	Val	Gly 270	Pro	Thr
25	Gln	Arg	Leu 275	Leu	Leu	Cys	Gly	Thr 280	Leu	Ala	Ala	Leu	His 285	Met	Leu	Phe
30	Leu	Leu 290	Tyr	Leu	His	Phe	Ala 295	Tyr	His	Lys	Val	Val 300	Glu	Gly	Ile	Leu
	Asp 305	Thr	Leu	Glu	Gly	Pro 310	Asn	Ile	Pro	Pro	Ile 315	Gln	Arg	Val	Pro	Arg 320
35	Asp	Ile	Pro	Ala	Met 325	Leu	Pro	Ala	Ala	Arg 330	Leu	Pro	Thr	Thr	Val 335	Leu
	Asn	Ala	Thr	Ala 340	Lys	Ala	Val	Ala	Val 345	Thr	Leu	Gln	Ser	His 350	Xaa	
40	(2)	INFO	ORMA'	rion	FOR	SEQ	ID 1	NO: 4	190:							
45				(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	65 a no a lin	mino cid ear	aci		: 49	0:			
50	Met 1	Arg	Gly	Ser	Arg 5	Gly	Gly	Trp	Ala	Gly 10	Glu	Met	Ala	Ala	Ser 15	Gly
55	Glu	Ser	Gly	Thr 20	Ser	Gly	Gly	Gly	Gly 25	Ser	Thr	Glu	Glu	Ala 30	Phe	Met
<i></i>	Thr	Phe	Tyr 35		Glu	Val	Lys	Gln 40	Ile	Glu	Lys	Arg	Asp 45	Ser	Val	Leu
60	Thr	Ser 50	-	Asn	Gln	Ile	Glu 55	Arg	Leu	Thr	Arg	Pro 60	Gly	Ser	Ser	Tyr

652 `

	Phe 65	Asn	Leu	Asn	Pro	Phe 70	Glu	Val	Leu	Gln	11e 75	Asp	Pro	Glu	Val	Thr 80
5	Asp	Glu	Glu	Ile	Lys 85	Lys	Arg	Phe	Arg	Gln 90	Leu	Ser	Ile	Leu	Val 95	His
10	Pro	Asp	Lys	Asn 100	Gln	Asp	Asp	Ala	Asp 105	Arg	Ala	Gln	Lys	Ala 110	Phe	Glu
10	Ala	Val	Asp 115	Lys	Ala	Tyr	Lys	Leu 120	Leu	Leu	Asp	Gln	Glu 125	Gln	Lys	Lys
15	Arg	Ala 130	Leu	Asp	Val	Ile	Gln 135	Ala	Gly	Lys	Glu	Tyr 140	Val	Glu	His	Thr
	Val 145	Lys	Glu	Arg	Lys	Lys 150	Gln	Leu	Lys	Lys	Glu 155	Gly	Lys	Pro	Thr	Ile 160
20	Val	Glu	Glu	Asp	Asp 165	Pro	Glu	Leu	Phe	Lys 170	Gln	Ala	Val	Tyr	Lys 175	Gln
25	Thr	Met	Lys	Leu 180	Phe	Ala	Glu	Leu	Glu 185	Ile	Lys	Arg	Lys	Glu 190	Arg	Glu
	Ala	Lys	Glu 195	Met	His	Glu	Arg	Lys 200	Arg	Gln	Arg	Glu	Glu 205	Glu	Ile	Glu
30	Ala	Gln 210	Glu	Lys	Ala	Lys	Arg 215	Glu	Arg	Glu	Ттр	Gln 220	Lys	Asn	Phe	Glu
	Glu 225	Ser	Arg	Asp	Gly	Arg 230	Val	Asp	Ser	Trp	Arg 235	Asn	Phe	Gln	Ala	Asn 240
35	Thr	Lys	Gly	Lys	Lys 245	Glu	Lys	Lys	Asn	Arg 250	Thr	Phe	Leu	Arg	Pro 255	Pro
40	Lys	Val	Lys	Met 260	Glu	Gln	Arg	Glu	Хаа 265							
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 4	191:							
45			(i)	(ENCE A) L B) T D) T	ENGT YPE:	H: 2 ami	5 am no a	ino cid	: acid	s					
50	>	5								EQ I				C) in	Clv	D r o
	Asp 1		met	PTO	5	Cys	PTO	ren	хаа	10	ser	Leu	Gin	Cys	15	Pro
55	Leu	Leu	Pro	Val 20	Arg	Leu	Cys	Cys	Leu 25							
60	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	492 :							

			(i)				RACT H: 1				de					
				(в) т	YPE:	ami	no a	cid	44.						
5			(xi)				OGY: SCRI			EQ II	D NO	: 49	2:			
	Mot													0 1	••- •	•
	1	ASII	Glu	ıyı	A19	vai	PIO	GIU	rea	Asn 10	vai	GIN	Asn	GIA	15	ьeu
10	Lve	Sor	Leu	Sor	Pho	Lou	Dho	Clu	There	T10	c1	C1	Mot	C3	T	1
10	Буз	Jei	Deu	20	rne	Deu	FILE	GIU	25	116	GIĀ	GIU	Met	30	ьys	ASP
	Tvr	Ile	Tyr	Ala	Val	Thr	Pro	ī.en	Len	Glu	Asn	Δla	ī.eu	Mot	λen	Ara
1.5			35					40			p		45	****		9
15	Asp	Leu	Val	His	Arq	Gln	Thr	Ala	Ser	Ala	Va1	Val	Gln	His	Met	Ser
	-	50			J		55					60				
	Leu	Gly	Val	Tyr	Gly	Phe	Gly	Cys	Glu	Asp	Ser	Leu	Asn	His	Leu	Leu
20	65					70					7 5					80
	Asn	Tyr	Val	Trp	Pro	Asn	Val	Phe	Glu	Thr	Ser	Pro	His	Val	Ile	Gln
					85					90					95	
25	Ala	Val	Met		Ala	Leu	Glu	Gly	Leu	Arg	Val	Ala	Ile	Gly	Pro	Cys
				100					105					110		
	Arg	Met	Leu	Gln	Tyr	Cys	Leu		Gly	Leu	Phe	His	Pro	Ala	Arg	Lys
30			115					120					125			
	Val		Asp	Val	Tyr	Trp		Ile	Tyr	Asn	Ser		Tyr	Ile	Gly	Ser
		130					135					140				
35	Gln 145	Asp	Ala	Leu	Ile		His	Tyr	Pro	Arg		Tyr	Gln	Arg	Xaa	
33	143					150					155					
40	(2)	INF	ORMA!	PION	FOR	SEQ	ID I	NO: 4	193 :							
40			(i) :	SEOU	ENCE	CHA	RACT	ERIS	TICS	:						
			,_,	(A) L	engt	H: 2	79 a	mino		ds					
					_ • _		ami :OGY									
45			(xi)							EQ I	ON O	: 49	3:			
	Met	Ile	Ser	Asp	Asn	Ser	Ala	Glu	Asn	Ile	Ala	Leu	Val	Thr	Ser	Met
	1				5					10					15	
50	Tyr	Asp	Gly	Leu	Leu	Gln	Ala	Gly	Ala	Arg	Leu	Cys	Pro	Thr	Val	Gln
				20					25					30		
	Leu	Glu	Asp	Ile	Arg	Asn	Leu	Gln	Asp	Leu	Thr	Pro	Leu	Lys	Leu	Ala
55			35					40					45			
	Ala	Lys	Glu	Gly	Lys	Ile	Glu	Ile	Phe	Arg	His	Ile	Leu	Gln	Arg	Glu
		50					55					60				
60		Ser	Gly	Leu	Ser		Leu	Ser	Arg	Lys		Thr	Glu	Trp	Cys	Туг
60	65					70					75					80

	Gly	Pro	Val	Arg	Val 85	Ser	Leu	Туг	Asp	Leu 90	Ala	Ser	Val	Asp	Ser 95	Cys
5	Glu	Glu	Asn	Ser 100	Val	Leu	Glu	Ile	Ile 105	Ala	Phe	His	Cys	Lys 110	Ser	Pro
10	His	Arg	His 115	Arg	Met	Val	Val	Leu 120	Glu	Pro	Leu	Asn	Lys 125	Leu	Leu	Gln
10	Ala	Lys 130	Trp	Asp	Leu	Leu	Ile 135	Pro	Lys	Phe	Phe	Leu 140	Asn	Phe	Leu	Cys
15	Asn 145	Leu	Ile	Туг	Met	Phe 150	Ile	Phe	Thr	Ala	Val 155	Ala	Tyr	His	Gln	Pro 160
	Thr	Leu	Lys	Lys	Gln 165	Ala	Ala	Pro	His	Leu 170	Lys	Ala	Glu	Val	Gly 175	Asn
20	Ser	Met	Leu	Leu 180	Thr	Gly	His	Ile	Leu 185	Ile	Leu	Leu	Gly	Gly 190	Ile	Tyr
25	Leu	Leu	Val 195	Gly	Gln	Leu	Trp	Туг 200	Phe	Trp	Arg	Arg	His 205	Val	Phe	Ile
2.5	Trp	Ile 210	Ser	Phe	Ile	Asp	Ser 215	Tyr	Phe	Glu	Ile	Leu 220	Phe	Leu	Phe	Gln
30	Ala 225	Leu	Leu	Thr	Val	Val 230	Ser	Gln	Val	Leu	Cys 235	Phe	Leu	Xaa	Ile	Glu 240
	Trp	Tyr	Leu	Pro	Leu 245	Leu	Val	Ser	Ala	Leu 250	Val	Leu	Gly	Trp	Leu 255	Asn
35	Leu	Leu	Tyr	Туг 260	Thr	Arg	Gly	Phe	Gln 265	His	Thr	Gly	Ile	Тут 270	Ser	Val
40	Met	Ile	Gln 275	Lys	Pro	Trp	Xaa									
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 4	494:							
45			(i)	(A) L B) T	ENGT YPE:		93 a no a		-	ds					
50			(xi)						N: S	EQ I	D NO	: 49	4:			
50	Met 1	Ile	Arg	Cys	Gly 5	Leu	Ala	Cys	Glu	Arg 10	Cys	Arg	Trp	Ile	Leu 15	Pro
55	Leu	Leu	Leu	Leu 20	Ser	Ala	Ile	Ala	Phe 25	Asp	Ile	Ile	Ala	Leu 30	Ala	Gly
	Arg	Gly	Trp 35	Leu	Gln	Ser	Ser	Asp 40	His	Gly	Gln	Thr	Ser 45	Ser	Leu	Trp
50	Trp	Lys	Cys	Ser	Gln	Glu	Gly	Gly	Gly	Ser	Gly	Ser	Tyr	Glu	Glu	Gly

	50)			55					60				
5	Cys Glr 65	Ser	Leu M	et Glu 70		Ala	Trp	Gly	Arg 75	Ala	Ala	Ala	Ala	Met 80
J	Leu Phe	: Cys		he Ile 85	Ile	Leu	Val	Ile 90	Суѕ	Phe	Ile	Leu	Ser 95	Phe
10	Phe Ala	Leu	Cys G 100	ly Pro	Gln	Met	Leu 105	Val	Phe	Leu	Arg	Val 110	Ile	Gly
	Gly Let	115	Ala L	eu Ala	Ala	Val 120	Phe	Gln	Ile	Ile	Ser 125	Leu	Val	Ile
15	Tyr Pro		Lys T	yr Thr	Gln 135	Thr	Phe	Thr	Leu	His 140	Ala	Asn	Xaa	Ala
20	Val Thi 145	Tyr	Ile T	yr Asn 150		Ala	Тут	Gly	Phe 155	Gly	Trp	Ala	Ala	Thr 160
	Ile Ile	e Leu		ly Cys 65	Ala	Phe	Phe	Phe 170	Cys	Cys	Leu	Pro	Asn 175	Tyr
25	Glu Ası	Asp	Leu L 180	eu Gly	Asn	Ala	Lys 185	Pro	Arg	Tyr	Phe	Туг 190	Thr	Ser
	Ala													
30														
	(2) IN	ORMA'	rion F	OR SEQ	ID	NO:	495:							
35		(i)	(B)	CE CHA LENGI TYPE: TOPOI	TH: 2 ami	:05 a .no a	mino cid		ds					
		(xi)	SEQUE	NCE DE	SCRI	PTIO	N: S	EQ I	D NO	: 49	5:			
40	Met Ala 1	Ala	Gly A	sp Gln 5	Val	Phe	Ser	Gly 10	Ala	Gly	His	Val	Хаа 15	Glu
45	His Va]	Ala	20	ly Arg	His	Ala	Trp 25	Leu	Leu	Thr	Trp	Gln 30	Ser	Ala
	Cys Pro	Ala 35	Asn A	rg Leu	Ser	Leu 40	Val	Pro	Leu	Val	Pro 45	Ser	Ala	Ser
50	Met Thr		Leu M	et Arg	Xaa 55	Arg	Thr	Ala	Ser	Gly 60	Ser	Ser	Val	Ile
	Leu Trp 65	Met	Ala P	ro Ala 70	Ala	Ala	Pro	Thr	Pro 75	Ala	Arg	Ala	Pro	Glu 80
55	Ala Ala	Pro		co Ala 35	Arg	Ala	Pro	Ala 90	Ala	Ala	Arg	Thr	Pro 95	Ala
60	Arg Gly	Pro	Thr T1	p Thr	Ser	Pro	Pro 105	Thr	Arg	Val	Leu	Leu 110	Gly	Thr

	Xaa	Pro	Gly 115	Pro	Ser	Pro	Trp	Arg 120	Ser	Pro	Ala	Arg	Arg 125	Pro	Ala	Gln
5	Leu	Pro 130	Pro	Pro	Asp	Ser	Asp 135	Leu	Cys	Ser	Gly	Pro 140	Leu	Leu	Pro	Gly
	Pro 145	Phe	Ser	Pro	Pro	Ala 150	Cys	His	Thr	Ala	Pro 155	Asn	Ser	Val	Leu	11e 160
10	Gln	Ser	Leu	Phe	Cys 165	Lys	Ser	Glu	Leu	Trp 170	Trp	Arg	Gln	Met	Arg 175	Ser
15	Ile	Thr	Trp	Val 180	Pro	Ser	Pro	Lys	Ala 185	Gly	Trp	Arg	Trp	Thr 190	Lys	Gly
13	Arg	Lys	Gln 195	Ala	Ser	Pro	His	Arg 200	Ile	Leu	Phe	His	Xaa 205			
20	(2)	INF	ORMA'	PTONI	FOR	SEO	י מד	NO. 4	196 •							
	(2)	1141				_										
25				(ENCE A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	47 a no a lin	mino cid ear	aci		40				
			(X1)	SEQ	UENC:	E DE	SCRI	PITO	N: S	PO I	D NO	: 49	b :			
30	Met 1	Ala	Leu	Thr	Leu 5	Leu	Pro	Ser	Val	Ser 10	Arg	Leu	Pro	Gly	Glu 15	Arg
	Met	Ala	Ala	Ser 20	Gly	Leu	Pro	Tyr	Val 25	Leu	His	His	Lys	Ser 30	Ser	Leu
35	Met	Lys	Val 35	Ile	Phe	Phe	Pro	Tyr 40	Pro	Val	Leu	Pro	Leu 45	Pro	Ala	Pro
40	Asn	Gly 50	Thr	Trp	Val	Pro	Arg 55	Leu	Val	Leu	Gly	Leu 60	Gly	Ser	Gly	Asp
	Gln 65	Val	His	Tyr	Leu	Pro 70	Ile	Ser	Ser	Ser	Ile 75	Val	Asn	Tyr	Gly	Thr 80
45	Ser	Val	Ser	Gly	Lys 85		Trp	Val		Leu 90		Tyr	Pro	Leu	His 95	Pro
	Thr	Pro	Thr	Trp 100	Ser	Thr	Arg	Cys	Phe 105	Gln	Val	Trp	Asp	Leu 110	Leu	Ser
50	Val	Glu	Leu 115	Pro	Asp	Lys	Gly	Glu 120	Gly	Asn	Thr	Arg	Arg 125	Ala	Ser	Gly
55	Val	Pro 130	Gly	Leu	Ser	Gln	Leu 135	Pro	Thr	Ser	His	Lys 140	Pro	Ile	Lys	Gln
	Glu 145	Tyr	Xaa													

	(2) INFORMATION FOR SEQ ID NO: 497:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 64 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 497:
10	Met Val Trp Val Leu Trp Ser Ala Pro Ser Leu Ala Pro Pro Trp Val 1 5 10 15
	Gly Pro Cys Trp Pro Ser Thr Gly Asn Cys Cys Leu Cys Glu Val Gly 20 25 30
15	Ala Ala Leu Pro Pro Arg Gly Pro Ser Leu Ser Asp Cys Leu Gly Leu 35 40 45
20	Pro Pro Trp Thr Pro Trp Gly Pro Ala Trp Thr Leu Ala Gln Ser Xaa 50 55 60
25	(2) INFORMATION FOR SEQ ID NO: 498:
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 94 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 498:
35	Met Ser Thr Gly Ala Leu Asn Thr Ser Pro Pro Ala Ser Asn Arg Leu 1 5 10 15
	Glu Ser Thr Leu Asn Glu Tyr Leu Ile Gln Pro Gln Leu His Cys Ser 20 25 30
. 40	Ser Val Gln Arg Leu Thr Leu Lys Trp Gly Cys Ser Ser Leu Gln Arg 35 40 45
45	Asp Gly Gln Ala Val Pro Trp Gly Leu Trp Gln Arg Ala Tyr Pro Ser 50 55 60
	Leu Leu Pro Thr Leu Pro Ser Asp Leu Leu Arg Pro His Ala Val Thr 65 70 75 80
50	Pro Ser Val Ser Val His Thr Cys Glu Ser Ser Xaa 85 90
55	(2) INFORMATION FOR SEQ ID NO: 499: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 amino acids
60	(B) TYPE: amino acid (D) TOPOLOGY: linear
UU	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 499:

	Met Phe Leu Ile Phe Val Tyr Phe Leu Lys Xaa Leu Phe Ser Ser Ser 1 5 10 15
5	Leu Pro Phe Leu Trp Leu 20
10	(2) INFORMATION FOR SEQ ID NO: 500:
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 500:
20	Arg Gly Gly Leu Cys Pro Leu Leu Val Pro Gly Pro Leu Ala Arg Gln 1 5 10 15
20	Glu Pro Ser Pro Ser Leu Gln Gly Cys Ser Glu Ser Pro Val Gly Met 20 25 30
25	Asp
30	(2) INFORMATION FOR SEQ ID NO: 501: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids
35	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 501:
	Met Gln Phe Leu Leu Thr Ala Phe Leu Leu Val Pro Leu Leu Ala Leu 1 5 10 15
40	Cys Asp Val Pro Ile Ser Leu Gly Phe Ser Pro Ser 20 25
45	(2) INFORMATION FOR SEQ ID NO: 502:
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 502:
55	Pro Gly Lys Pro Gln Ala Cys Pro Glu Leu Thr Ser Val Leu Pro 1 5 10 15
	(2) INFORMATION FOR SEQ ID NO: 503:
60	(i) SEQUENCE CHARACTERISTICS:

```
(A) LENGTH: 19 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 503:
5
     Asn Lys Ser Leu Xaa Ser Cys Leu Phe Val Leu His Phe Val Leu His
              5
                             10
     Cys Xaa Phe
10
      (2) INFORMATION FOR SEQ ID NO: 504:
15
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 29 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
20
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 504:
     Met Glu Lys Thr His Arg Leu Arg Ile Arg Asn Pro Cys Leu Gln Phe
25
      Ser Ile Leu Asn Leu Phe Leu Leu Lys Met Ile Val Ser
                  20
30
      (2) INFORMATION FOR SEQ ID NO: 505:
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 75 amino acids
                    (B) TYPE: amino acid
35
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 505:
     Met Val Asp Ile Ser Lys Met His Met Ile Leu Tyr Asp Leu Gln Gln
40
     Asn Leu Ser Ser Ser His Arg Ala Leu Glu Lys Gln Ile Asp Thr Leu
                                    25
     Ala Gly Lys Leu Asp Ala Leu Thr Glu Leu Leu Ser Thr Ala Leu Gly
45
                         40
     Pro Ser Ser Phe Gln Asn Pro Ala Ser Ser Pro Ser Ser Trp Thr His
50
     Glu Glu Glu Pro Gly Tyr Phe Pro Gln Tyr Xaa
                         70
55
      (2) INFORMATION FOR SEQ ID NO: 506:
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 10 amino acids
                   (B) TYPE: amino acid
```

(D) TOPOLOGY: linear

660

			(xi)	SEQ	UENC1	E DES	SCRI	PTIO	N: S	EQ I	ои о	: 50	5 :			
5	Leu 1	Pro	Leu	Ala	Glu 5	Leu	Lys	Asn	Trp	Val 10						
	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	vo: 5	507 :							
10			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	07 a no a lin	mino cid ear	aci						•
15	Met 1	Leu	(xi) Trp		Gly 5									Gly	His 15	Leu
20	Ser	Asp	Thr	Leu 20	Trp	Leu	Ile	Pro	Ile 25	Thr	Phe	Leu	Thr	Ile 30	Gly	Тут
	Gly	Asp	Val 35	Val	Pro	Gly	Thr	Met 40	Trp	Gly	Lys	Ile	Val 45	Cys	Leu	Cys
25	Thr	Gly 50	Val	Met	Gly	Val	Cys 55	Суѕ	Thr	Ala	Leu	Leu 60	Val	Ala	Val	Va]
30	Ala 65	Arg	Lys	Leu	Glu	Phe 70	Asn	Lys	Ala	Glu	Lys 75	His	Val	His	Asn	Phe 80
	Met	Met	Asp	Ile	Gln 85	Tyr	Thr	Lys	Glu	Met 90	Lys	Glu	Ser	Ala	Ala 95	Arg
35	Val	Leu	Gln	Glu 100	Ala	Trp	Met	Phe	Туг 105	Lys	His	Thr	Arg	Arg 110	Lys	Glu
	Ser	His	Ala 115	Ala	Arg	Arg	His	Gln 120	Arg	Xaa	Leu	Leu	Ala 125	Ala	Ile	Asr
40	Ala	Phe 130	Arg	Gln	Val	Arg	Leu 135	Lys	His	Arg	Lys	Leu 140	Arg	Glu	Gln	Va]
45	Asn 145	Ser	Met	Val	Asp	11e 150	Ser	Lys	Met	His	Met 155	Ile	Leu	Tyr	Asp	Le:
	Gln	Gln	Asn	Leu	Ser 165	Ser	Ser	His	Arg	Ala 170	Leu	Glu	Lys	Gln	Ile 175	Asp
50	Thr	Leu	Ala	Gly 180	Lys	Leu	Asp	Ala	Leu 185	Thr	Glu	Leu	Leu	Ser 190	Thr	Ala
55	Leu	Gly	Pro 195	Arg	Gln	Leu	Pro	Glu 200	Pro	Ser	Gln	Gln	Ser 205	Lys	Xaa	
<i>JJ</i>	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	ю: <u>5</u>	: 808							

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 36 amino acids

WO 98/39448

661

PCT/US98/04493

```
(B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 508:
     Met Trp Arg Cys Arg Gly Lys Leu Ser Phe Pro Leu Phe Ala Val Val
     Ile Val Ser Cys Arg Lys Asp Gly Pro Asp Ala Ala Ala Pro Ala
                              25
10
     Val Xaa Lys Lys
              35
15
      (2) INFORMATION FOR SEQ ID NO: 509:
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 19 amino acids
20
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 509:
      Met Ala Leu Val Ala Leu Phe Thr Gln Leu Met Arg Xaa Leu Gly Arg
25
                                        10
     Cys Pro Gln
30
      (2) INFORMATION FOR SEQ ID NO: 510:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 32 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEO ID NO: 510:
40
     Met Thr Phe Pro Phe Glu Lys Glu Asn Ser Cys Phe Gln Cys Leu Leu
                                10
      Phe Asp Ser Trp Arg Glu Gln Thr Arg Thr Asn Ile Gln Pro Gln Arg
                               25
45
50
      (2) INFORMATION FOR SEQ ID NO: 511:
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 28 amino acids
55
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 511:
     Met His Leu Leu Asp Phe Phe Arg Asp Leu Val Leu Leu Val Leu Leu
60
                       5
                                        10
```

662

```
Ala Leu Leu Asp Ser Phe Trp Leu Glu Val Gln Lys
                  20
                                      25
 5
      (2) INFORMATION FOR SEQ ID NO: 512:
             (i) SEQUENCE CHARACTERISTICS:
10
                    (A) LENGTH: 26 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 512:
15
      Met Cys Leu Ile His Phe Ile Lys Ile Ile Leu Val Phe Ile Leu Lys
      Leu Trp Leu Tyr Ser Gln Lys Cys Pro Lys
                  20
20
      (2) INFORMATION FOR SEQ ID NO: 513:
25
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 33 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 513:
30
      Met Ile His Val His Glu Trp Asn Asp Gln Met Leu Met Val Tyr Ile
                      5
                                          10
      Phe Leu Tyr Pro Val Ser Ile Thr Phe Leu Asn Leu Cys Ser Leu Thr
35
                  20
                                      25
      Cys
40
      (2) INFORMATION FOR SEQ ID NO: 514:
             (i) SEQUENCE CHARACTERISTICS:
45
                    (A) LENGTH: 47 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 514:
50
      Leu Asn Glu Ser Tyr Val Ser Arg Ala Gly Gly Trp Phe Ser Met Phe
                                         10
      Xaa Leu Ile Phe Phe Leu Leu Ala Leu Gly Ser Xaa Leu Cys Leu Leu
                                      25
55
      Leu Cys Leu Pro Ser Phe Asn Lys Thr Arg Arg Lys Gln Lys Pro
              35
                      40
```

	(2) INFORMATION FOR SEQ ID NO: 515:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 515:
10	Ser Ser Lys Thr Pro Leu Pro Ser Glu Arg Arg Trp Ile Ser Gly Ser 1 5 10 15
	Ser Leu Met Ala Pro Arg Pro Trp Leu Leu Gly Ile Ala Leu Leu Gly 20 25 30
15	Leu Trp Ala Leu Glu Pro Ala Leu Gly His Trp 35 40
20	(2) INFORMATION FOR SEQ ID NO: 516:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 516:
30	Leu Asn Trp 1
35	(2) INFORMATION FOR SEQ ID NO: 517: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 174 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 517: Phe Ala Phe Cys Ala Glu Leu Met Ile Gln Asn Trp Thr Leu Gly Ala 1 5 10 15
45	Val Asp Ser Gln Met Asp Asp Met Asp Met Asp Leu Asp Lys Glu Phe 20 25 30
	Leu Gln Asp Leu Lys Glu Leu Lys Val Leu Val Ala Asp Lys Asp Leu 35 40 45
50	Leu Asp Leu His Lys Ser Leu Val Cys Thr Ala Leu Arg Gly Lys Leu 50 55 60
55	Gly Val Phe Ser Glu Met Glu Ala Asn Phe Lys Asn Leu Ser Arg Gly 65 70 75 80
	Leu Val Asn Val Ala Ala Lys Leu Thr His Asn Lys Asp Val Arg Asp 85 90 95
60	Leu Phe Val Asp Leu Val Glu Lys Phe Val Glu Pro Cys Arg Ser Asp 100 105 110

WO 98/39448

	His Trp Pro Leu Ser Asp Val Arg Phe Phe Leu Asn Gln Tyr Ser Ala 115 120 125
5	Ser Val His Ser Leu Asp Gly Phe Arg His Gln Ala Ser Gly Thr Ala 130 135 140
10	Thr Trp Ala Pro Ser Ala Ala Ala Ser Cys Ala Cys Ile Met Thr Glu 145 150 155 160
	Val Pro Pro Asn Ala Pro Pro Thr Leu Thr Ile Lys Leu Leu 165 170
15	(2) INFORMATION FOR SEQ ID NO: 518:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 518:
25	Met Trp Lys Asn Leu Gly Ser Gly Ser Val Phe Val Thr Trp Phe Ser 1 5 10 15
	Leu Val Met Ile Leu Ser Gly Ile Gly Pro Leu Gly Asp Ala Glu Asp 20 25 30
30	Ser Ile Ser Asp Val Ser His Arg Leu Arg Pro 35 40
35	(2) INFORMATION FOR SEQ ID NO: 519:
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 13 amino acids(B) TYPE: amino acid
40	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 519:
45	Phe Gln Phe Pro Leu Thr Ile Ala Leu Gln Phe Leu 1 5 10
50	(2) INFORMATION FOR SEQ ID NO: 520:
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid
55	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 520: Met His Tyr Val Ile Val Leu Ser Leu Phe Val Val Leu Glu Lys Lys
	1 5 10 15
60	Asn Lys Met Gly Ser Asp Gly Cys Leu Arg Lys Asn Gly Ser 20 25 30

5	(2)	INF	ORMAT	rion	FOR	SEQ	ID 1	vo: 5	521:							
10			(i) :	()	A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	7 am no a lin	ino cid ear	: acid EQ I		: 52:	1:			
	Met 1	Ser	Arg	Ser	Ile 5	Val	Leu	Arg	Gly	Ser 10	Leu	Phe	Leu	Phe	Phe 15	Ser
15	His	Tyr	Thr	Leu 20	Lys	Leu	Leu	Ser	Val 25	Ile	Lys	Gln	Thr	Asn 30	Arg	Lys
20	Ile	Val	Trp 35	Glu	Lys	Pro	Cys	Ile 40	Arg	Leu	Phe	Tyr	Xaa 45	Val	Leu	
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: !	522:							
25			(i)	(A) L B) T	ENGT YPE:	H: 2 ami	ERIS 6 am no a lin	ino cid	: acid	s					
			(xi)							EQ I	D NO	: 52	2:			
30																
30	Met 1		Leu	Pro	Val 5	Leu	Leu	Cys	Leu	Thr 10	Leu	Pro	Met	Pro	Leu 15	Pro
30 35	1		Leu	•	5					10	Leu	Pro	Met	Pro		Pro
	1 Ser	Ala	Thr ORMA	Ala 20 TION	5 Arg FOR	Gly SEQ	Gly	Asn	Arg 25 523:	10 Thr	Leu	Pro	Met	Pro		Pro
35	1 Ser	Ala	Thr ORMA	Ala 20 FION SEQU	5 Arg FOR ENCE A) L	Gly SEQ CHA ENGT	Gly ID I RACT: H: 5	Asn NO: !	Arg 25 523: PICS ino	10 Thr		Pro	Met	Pro		Pro
35	1 Ser	Ala	Thr ORMA'	Ala 20 FION SEQU. (FOR ENCE A) L B) T D) T	Gly SEQ CHA ENGT YPE:	Gly ID 1 RACT: H: 5 ami OGY:	Asn NO: ! ERIS 8 am no a lin	Arg 25 523: FICS ino cid ear	10 Thr	z			Pro		Pro
35 40	1 Ser (2)	Ala	Thr ORMAT	Ala 20 FION SEQU ((SEQ	FOR ENCE A) L B) T UENCE	Gly SEQ CHALENGT YPE: OPOL E DE	Gly ID 1 RACTH: 5 ami OGY: SCRI	Asn NO: ! ERIS 8 am no a lin PTIO	Arg 25 523: FICS ino cid ear N: S	10 Thr : acid	s D NO Met	: 52:	3: Leu	Ile		Tyr
35 40	1 Ser (2)	Ala	Thr ORMA' (i) (xi)	Ala 20 FION SEQUI	FOR FOR ENCE ENCE B) T D) T UENC: Val	SEQ CHA ENGT YPE: OPOL E DE	ID 1 RACT: ami OGY: SCRI	Asn NO: ! ERIS 8 am no a lin PTIO	Arg 25 523: TICS ino cid ear N: S	Thr : accid	s D NO Met	: 52 Lys	3: Leu	Ile	15 Leu	Туг
35 40 45	1 Ser (2)	Ala INF	Thr ORMAT	Ala 20 FION ((() SEQUE Pro Thr 20	FOR FOR ENCE A) L B) T D) T Val 5	Gly SEQ CHA ENGT YPE: OPOL Ser Ser	Gly ID ! RACT: H: 5 ami OGY: SCRI Ile Gly	Asn NO: ! ERIS 8 am no a lin PTIO	Arg 25 523: FICS ino cid ear N: S Ile His 25	Thr : acid Gly 10 Glu	s D NO Met Lys	: 52. Lys	3: Leu Ser	Ile Phe 30	15 Leu 15	Tyr

666

(2) INFORMATION FOR SEQ ID NO: 524: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids 5 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 524: Asn Arg Thr Leu Leu Phe Leu Ile Leu Phe Val Leu Phe Gly Leu Gly 10 5 Tyr Gly Phe 15 (2) INFORMATION FOR SEQ ID NO: 525: (i) SEQUENCE CHARACTERISTICS: 20 (A) LENGTH: 40 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 525: 25 Met Phe Leu Leu Val Leu Ser Val Phe Cys Asp Phe Met Cys Ser Ile Ala Pro Arg Cys His Ala Leu Ser Leu Val Ser Leu Arg Ala Gln His 30 Leu Ser Leu Phe Ile Thr Cys His 35 35 (2) INFORMATION FOR SEQ ID NO: 526: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 amino acids 40 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 526: Met Leu Leu Phe Ile Leu Leu Thr Leu Ser Ser Gly Cys Arg Leu Leu 45 10 Val Ser Ser Trp Lys Thr Phe Leu Pro His Phe Ser Leu Pro Gly Pro 25 50 Arg Glu His Pro Glu Gly Ser Arg Thr Trp Phe Phe Arg Tyr Trp Glu 40 Pro Gly Ala His Cys Leu His Cys Ala 55 (2) INFORMATION FOR SEQ ID NO: 527: 60 (i) SEQUENCE CHARACTERISTICS:

5			(xi)	() ()	B) T D) T	YPE: OPOL	ami OGY:	no a	cid ear	acid		: 52 [.]	7 :			
5	Ala 1	Arg	Leu	Leu	Leu 5	Phe	Leu	Ser	Ser	Val 10	His	Pro	Ser	Ile	Met 15	Pro
10	Ser	Cys	Asn	Gln 20	Leu											
15	(2)	INF	ORMA!													
			(i) :	(ENGT YPE :	H: 3 ami	9 am no a	ino cid	: acid	s					
20			(xi)							EQ I	D NO	: 52	8:			
	Met 1		Leu	Thr	Ser 5	Ser	Leu	Thr	Phe	Leu 10	Ser	His	Ile	Leu	Leu 15	Leu
25	Pro	Gln	Lys	Leu 20	Gln	Phe	Leu	Ser	Trp 25	Met	Glu	Arg	Gln	Gln 30	Arg	Cys
30	Thr	Gly	Val 35	Ala	Lys	Tyr	Ala									
	(2)	INF	ORMA:	rion	FOR	SEQ	ID	vo: 9	529:							
35	(2)	INF		SEQU))	ENCE A) L B) T	CHA ENGT YPE:	RACT H: 1	ERIS 28 a no a	TICS mino cid	: aci	ds					
	(2)	INF	(i) :	SEQU!)))	ENCE A) L B) T D) T	CHA ENGT YPE: OPOL	RACT H: 1 ami OGY:	ERIS 28 a no a lin	TICS mino cid ear			: 52	9:			
35 40			(i) :	SEQUI))) SEQI	ENCE A) L B) T D) T UENC	CHA ENGT YPE: OPOL E DE	RACT H: 1 ami OGY: SCRI	ERIS 28 a no a lin Prio	TICS mino cid ear N: S	aci	D NO			Phe	Ile 15	His
	Met 1	Val	(i) :	SEQU ((SEQ Arg	ENCE A) L B) T D) T UENC: Leu 5	CHA ENGT YPE: OPOL E DE	RACT H: 1 ami OGY: SCRI Gln	ERIS 28 a no a lin PTIO Leu	TICS mino cid ear N: S	e aci EQ II Phe 10	D NO Leu	Ile	Phe		15	
40	Met 1	Val Ile	(i) (xi) Leu	SEQU ((SEQ Arg Leu 20	ENCE A) L B) T D) T UENC Leu 5	CHA ENGT YPE: OPOL E DE Ile	RACT H: 1 ami OGY: SCRI Gln Pro	ERIS' 28 a no a lin PTIO Leu	TICS mino cid ear N: S Ile Ser 25	EQ II Phe 10 Arg	D NO Leu Pro	Ile Cys	Phe Gly	Ser 30	15 Trp	Val
40	Met 1 Ile Asn	Val Ile Asp	(i) (xi) Leu Ile	SEQU ((SEQ Arg Leu 20	ENCE A) L B) T D) T UENC: Leu 5 Leu Leu	CHA ENGT YPE: OPOL E DE Ile Ile	RACT H: 1 ami OGY: SCRI Gln Pro	ERIS' 28 a no a lin PTIO Leu Gly Arg 40	TICS mino cid ear N: S Ile Ser 25	Phe 10 Arg	D NO Leu Pro Thr	Ile Cys His	Phe Gly Leu 45	Ser 30	15 Trp Tyr	Val Leu
40 45	Met 1 Ile Asn	Val Ile Asp Trp 50	(i) (xi) Leu Ile Arg 35	SEQUIATE SEQ	ENCE A) L B) T D) T UENC Leu 5 Leu Leu Gly	CHAMENGT CHA	RACTH: 1 ami OGY: SCRI Gln Pro Leu Leu 55	ERIS 28 a no a lin PTIO Leu Gly Arg 40	TICS mino cid ear N: S: Ile Ser 25	Phe 10 Arg Val	D NO Leu Pro Thr	Ile Cys His Pro 60	Phe Gly Leu 45 Tyr	Ser 30 Ile	15 Trp Tyr Gln	Val Leu Val
40 45 50	Met 1 Ile Asn His	Val Ile Asp Trp 50	(i) (xi) Leu Ile Arg 35	SEQUIATE (((SEQUIATE) Arg Leu 20 Xaa His	ENCE A) L B) T D) T UENC Leu 5 Leu Gly Leu	CHA ENGT YPE: OPOL E DE Ile Gly His	RACTH: 1 ami OGY: SCRI Gln Pro Leu 55 Glu	ERIS 28 a no a lin PTIO Leu Gly Arg 40 Pro	TICS mino cid ear N: S Ile Ser 25 Asp Trp	Phe 10 Arg Val	D NO Leu Pro Thr His Gln 75	Ile Cys His Pro 60 Leu	Phe Gly Leu 45 Tyr	Ser 30 Ile Ile Leu	15 Trp Tyr Gln Pro	Val Leu Val Phe 80

Pro Gly Gly Met Phe Pro Gly Asn Leu Glu Ala Phe Arg Val Pro Val 120 125 5 10 (2) INFORMATION FOR SEQ ID NO: 530: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 82 amino acids (B) TYPE: amino acid 15 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 530: Met Gly Ser Ser Val Leu Pro Phe Cys Val Cys Val Thr Ser Pro Ser 5 10 20 Leu Gly Gly Arg Cys Ile Gln Gly Arg Phe Ala Ser His Ser Lys Phe Trp Gly Phe Gly Xaa Lys Thr Ala Ser Phe Gly Ala Val Gly Glu Thr 25 Pro Pro Asp Gln Glu Pro Gln Lys Glu Thr Glu Pro Ala Thr Ser Ser 55 30 His Ala Arg Pro Trp Ala Arg Val Ile Gly Leu Arg Ile Trp Pro Gln 70 Pro Asn 35 (2) INFORMATION FOR SEQ ID NO: 531: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 531: 45 Met Leu Leu Ser Val Ala Ile Phe Ile Leu Leu Thr Leu Val Tyr Ala 1 5 10 Tyr Trp Thr Met 50 20 (2) INFORMATION FOR SEQ ID NO: 532: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 75 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 532:

	Asn (Cys	Glu	Ile	Leu 5	Glu	Tyr	Cys	Туг	Туг 10	Leu	Thr	Gln	Leu	Lys 15	Ile
5	Ser 1	Met	Gly	Lys 20	Туг	Leu	Ser	Ile	Pro 25	Thr	Val	Leu	Leu	Lys 30	Ile	Ile
10	Arg (Cys	Ser 35	Ile	Thr	Ala	Val	Ser 40	Asp	Ser	Ser	Thr	Ser 45	Trp	Ala	Ile
10	Lys i	Ala 50	Gln	Leu	Lys	Ile	Glu 55	Asn	Lys	Asp	Leu	Asp 60	Asn	Lys	Thr	Ala
15	Lys (Gly	Gly	Gly	Gln	Glu 70	Ala	Leu	Thr	Cys	Thr 75					
20	(2)						ID 1									
25				(A) L B) T D) T	ENGT YPE : OPOL	H: 6 ami OGY:	0 am no a lin	ino cid ear	acid		: 53	3:			
	Met 1	Phe	Leu	Met	Arg 5	Met	His	Leu	Cys	Phe 10	Cys	Lys	Туг	Cys	Cys 15	Ser
30	Phe :	Ile	Val	Thr 20	Pro	Thr	Ser	Thr	Ser 25	Asn	Thr	Xaa	Ser	Tyr 30	Leu	Trp
35	Pro '	Trp	Ile 35	Ser	Ala	Ser	Met	Ala 40	Gly	Arg	Gly	Ser	Xaa 45	Trp	Ala	'Cys
33	Thr 1	Leu 50	Asn	Ala	Val	Thr	Arg 55	Glu	Gly	Leu	Pro	Glu 60				
40	(2)	INFO	RMAT	rion	FOR	SEQ	ID 1	Ю: <u>5</u>	534:							
45				~ () ()	A) L B) T D) T	ENGT YPE: OPOL	ami: OGY:	9 am no a lin	ino cid ear	: acid EQ I		: 53	4:			
50	Met S	Ser	Leu	Leu	Asn 5	Thr	His	Thr	Leu	Cys 10	Phe	Val	Leu	Phe	Cys 15	Phe
	Thr I	Leu	Ser	Ile 20	Asn	Gln	Glu	Lys	Leu 25	Ala	Asn	His	Leu	Ala 30	Phe	Arg
55	Ile I	Leu	Phe 35	Phe	Ile	Val	Phe									
60	(2) 1	INFO	RMAT	NOI	FOR	SEQ	ID N	10:5	35:							

670

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 2 amino acids
                    (B) TYPE: amino acid
 5
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 535:
      Met Leu
       1
10
      (2) INFORMATION FOR SEQ ID NO: 536:
             (i) SEQUENCE CHARACTERISTICS:
15
                    (A) LENGTH: 36 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 536:
20
      Met Asp Gln Phe Lys Ile Phe Tyr Phe Leu Lys Ala Phe Phe Ala Cys
                       5
                                          10
      Cys Asn Val Gln Asp Pro Ser Pro Phe Met Gly Glu Thr Gly Ser Tyr
25
                                      25
      Leu Asn Ile Gly
             35
30
      (2) INFORMATION FOR SEQ ID NO: 537:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 14 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 537:
40
     Met Phe Asp Phe Leu Ser Tyr Phe Lys Asp Leu Leu Ser Cys
                  5
45
      (2) INFORMATION FOR SEQ ID NO: 538:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 18 amino acids
                    (B) TYPE: amino acid
50
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 538:
     Met Gly Phe Gly Phe Val Leu Asn Ile Phe Ser Phe Phe Leu Xaa Pro
                      5
                                          10
55
     Pro Leu
```

WO 98/39448

671

PCT/US98/04493

	(2)	INFO	ORMAT	MOI	FOR	SEQ	ID N	:O: 5	39:							
5				(1	A) LI B) T	ENGT YPE: OPOL	H: 1: amin DGY:	l am no ad lind	ino a cid ear	acid		: 539	9 :			
10	Leu 1	Leu	Leu	Trp	Thr 5	Leu	Leu	Ala	Xaa	Туг 10	Xaa					
15	(2)	INF		(ENCE A) L B) T	_	RACTI H: 1 ami	ERIST 08 at no a	FICS mino cid		ds					
20			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ II	ON C	: 54	0:			
	Met 1	Ala	Ala	Gln	Lys 5	Asp	Gln	Gln	Lys	Asp 10	Ala	Glu	Ala	Glu	Gly 15	Leu
25	Ser	Gly	Thr	Thr 20	Leu	Leu	Pro	Lys	Leu 25	Ile	Pro	Ser	Gly	Ala 30	Gly	Arg
30	Glu	Trp	Leu 35	Glu	Arg	Arg	Arg	Ala 40	Thr	Ile	Arg	Pro	Trp 45	Ser	Thr	Phe
-	Val	Asp 50		Gln	Arg	Phe	Ser 55	Arg	Pro	Arg	Asn	Leu 60	Gly	Glu	Leu	Cys
35	Gln 65	Arg	Leu	Val	Arg	Asn 70	Val	Glu	Tyr	Tyr	Gln 75	Ser	Asn	Tyr	Val	Phe 80
	Val	Phe	Leu	Gly	Leu 85	Ile	Leu	Tyr	Cys	Val 90	Val	Thr	Ser	Pro	Met 95	Leu
10	Leu	Val	Ala	Leu 100	Ala	Val	Phe	Phe	Gly 105	Ala	Cys	Xaa				
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID N	VO: 5	641:							
50				C	A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	06 a no a lin	mino cid ear	aci		: 54	1:			
55	Phe 1	Val	Phe	Leu	Gly 5	Leu	Ile	Leu	Tyr	Cys 10	Val	Val	Thr	Ser	Pro 15	Met
	Leu	Leu	Val	Ala 20	Leu	Ala	Val	Phe	Phe 25	Gly	Ala	Cys	Tyr	Ile 30	Leu	Tyr
60	Leu	Arg	Thr 35	Leu	Glu	Ser	Lys	Leu 40	Val	Leu	Phe	Gly	Arg 45	Glu	Val	Ser

	Pro	Ala 50	His	Gln	Tyr	Ala	Leu 55	Ala	Gly	Gly	Ile	Ser 60	Phe	Pro	Phe	Phe
5	Trp 65	Leu	Ala	Gly	Ala	Gly 70	Ser	Ala	Val	Phe	Trp 75	Val	Leu	Gly	Ala	Thr 80
10	Leu	Val	Val	Ile	Gly 85	Ser	His	Ala	Ala	Phe 90	His	Gln	Ile	Glu	Ala 95	Val
10	Asp	Gly	Glu	Glu 100	Leu	Gln	Met	Glu	Pro 105	Val						
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: !	542:							
20			(i)	(A) L B) T	ENGT YPE:	RACT H: 1 ami OGY:	36 a no a	mino cid		ds					
			(xi)				SCRI			EQ I	D NO	: 54	2:			
25	Met 1	Asp	Arg	Phe	Thr 5	Val	Ala	Gly	Val	Leu 10	Pro	Asp	Ile	Glu	Gln 15	Phe
	Phe	Asn	Ile	Gly 20	Asp	Ser	Ser	Ser	Gly 25	Leu	Ile	Gln	Thr	Val 30	Phe	Ile
30	Ser	Ser	Туг 35	Met	Val	Leu	Ala	Pro 40	Val	Phe	Gly	Tyr	Leu 45	Gly	Asp	Arg
35	Tyr	Asn 50	Arg	Lys	Туг	Leu	Met 55	Cys	Gly	Gly	Ile	Ala 60	Phe	Trp	Ser	Leu
	Val 65	Thr	Leu	Gly	Ser	Ser 70	Phe	Ile	Pro	Gly	Glu 75	His	Phe	Trp	Leu	Leu 80
40	Leu	Leu	Thr	Arg	Gly 85	Leu	Val	Gly	Va1	Gly 90	Glu	Ala	Ser	Tyr	Ser 95	Thr
	Ile	Ala	Pro	Thr 100	Leu	Ile	Ala	Asp	Leu 105	Phe	Val	Ala	Asp	Gln 110	Arg	Thr
45	GJA	Cys	Ser 115	Ala	Ser	Ser	Thr	Leu 120	Pro	Phe	Arg	Trp	Ala 125	Val	Val	Trp
50	Ala	Thr 130	Leu	Gln	Ala	Pro	Lys 135	Xaa								
	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	vo: 5	543:							
55			(i) :	0	A) L B) T	engt Ype :	H: 4 ami	24 a no a	mino cid		ds					
60			(xi)				OGY: SCRI			EQ II	ои с	: 54	3:			

	Met 1	Ala	Gly	Asp	Trp 5	His	Trp	Ala	Leu	Arg 10	Val	Thr	Pro	Gly	Leu 15	Gly
5	Val	Val	Ala	Val 20	Leu	Leu	Leu	Phe	Leu 25	Val	Val	Arg	Glu	Pro 30	Pro	Arg
	Gly	Ala	Val 35	Glu	Arg	His	Ser	Asp 40	Leu	Pro	Pro	Leu	Asn 45	Pro	Thr	Ser
10	Trp	Trp 50	Ala	Asp	Leu	Arg	Ala 55	Leu	Ala	Arg	Asn	Pro 60	Ser	Phe	Val	Leu
15	Ser 65	Ser	Leu	Gly	Phe	Thr 70	Ala	Val	Ala	Phe	Val 75	Thr	Gly	Ser	Leu	Ala 80
	Leu	Trp	Ala	Pro	Ala 85	Phe	Leu	Leu	Arg	Ser 90	Arg	Val	Val	Leu	Gly 95	Glu
20	Thr	Pro	Pro	Cys 100	Leu	Pro	Gly	Asp	Ser 105	Cys	Ser	Ser	Ser	Asp 110	Ser	Leu
	Ile	Phe	Gly 115		Ile	Thr	Cys	Leu 120	Thr	Gly	Val	Leu	Gly 125	Val	Gly	Leu
25	Gly	Val 130	Glu	Ile	Ser	Arg	Arg 135	Xaa	Arg	His	Ser	Asn 140	Pro	Arg	Ala	Asp
30	Pro 145	Leu	Val	Суз	Ala	Thr 150	Gly	Leu	Leu	Gly	Ser 155	Ala	Pro	Phe	Leu	Phe 160
	Leu	Ser	Leu	Ala	Cys 165	Ala	Arg	Gly	Ser	Ile 170	Val	Ala	Thr	Tyr	Ile 175	Phe
35	Ile	Phe	Ile	Gly 180		Thr	Leu	Leu	Ser 185	Met	Asn	Trp	Ala	11e 190	Val	Ala
	Asp	Ile	Leu 195		Tyr	Val	Val	11e 200	Pro	Thr	Arg	Arg	Ser 205	Thr	Ala	Glu
40	Ala	Phe 210	Gln	Ile	Val	Leu	Ser 215		Leu	Leu	Gly	Asp 220	Ala	Gly	Ser	Pro
45	225					230					235					Pro 240
					245					250					255	Cys
50	Ala	Phe	Val	Gly 260		Leu	Gly	Gly	Ala 265	Leu	Ser	Trp	Ala	Pro 270	Xaa	Ser
	Ser	Leu	Arg 275		Thr	Ala	Gly	Gly 280	His	Ser	Cys	Thr	Cys 285	Arg	Ala	Cys
55	Cys	Thr 290	Lys	Gln	Gly	Pro	Gln 295	Thr	Thr	Gly	Leu	Trp 300	Cys	Pro	Ser	Gly
60	Ala 305	Ala	Pro	Pro	Ala	Cys 310	Pro	Trp	Pro	Val	Cys 315	Ser	Ser	Glu	Arg	Leu 320

	Pro	Leu	Thr	Туг	Leu 325	His	Ile	Cys	His	Ser 330	Xaa	Pro	Trp	Ala	His 335	Pro
5	Thr	Lys	Gly	Leu 340	Gly	Leu	Thr	Pro	Trp 345	Pro	Gly	Pro	Ala	Ser 350	Arg	Gly
	Thr	Leu	Gly 355	Arg	Val	Pro	Ala	Pro 360	Arg	His	Tyr	Xaa	Gly 365	Ser	Ser	Gly
10	Glu	Glu 370	Val	Gly	Val	Gln	Glu 375	Gly	Asp	Pro	Ser	Pro 380	Gln	Gly	Xaa	Pro
15	Gln 385	Gly	Leu	Gly	Ala	Ile 390	Суѕ	Asn	Gly	Ile	Lys 395	Phe	Val	Ala	Arg	Pro 400
15	Gln	Val	Pro	Ala	Leu 405	Val	Phe	Leu	Trp	Val 410	Ala	Ser	Asp	Leu	Ala 415	Pro
20	Arg	Leu	His	Pro 420	Arg	Ala	Pro	Glu								
	(2)	INF	ORMA!	rion	FOR	SEO	ID I	NO:	544:							
25	,_,			SEQU	ENCE	СНА	RACT	ERIS	TICS	: acid	s					
30			(xi)	(B) T D) T	YPE: OPOL	ami OGY:	no a lin	cid ear	EQ I		: 54	4:			
	Met 1		Arg	Phe	Val 5	Ile	Cys	Leu	Phe	Leu 10	Trp	Leu	Val	Leu	Cys 15	Arg
35	Asp	Ser	Thr	Ser 20	Ala	Ser	Arg	Ile	Ala 25	Leu	Tyr	Tyr	Arg	Ile 30	Val	Phe
40	Leu	Ile	His 35	Gln	Cys	Ser	Ser									
	(2)	INF	ORMA!	rion	FOR	SEQ	· ID I	NO: !	545:							
45			(i) :	(A) L B) T	ENGT YPE:	H: 5 ami	8 am no a	cid	: acid	s					
			(xi)					lin PTIO		EQ I	D NO	: 54	5:			
50	Met	î.eu	Pro	Trr	Yaa	Δla	Gln	Len	Len	y en	Ara	ጥ ኮ	Tla	Gly	Pro	I.em
	1				5					10					15	
55	Tyr	Leu	Leu	Phe 20	Val	Gln	Phe	Ser	Pro 25	Ala	Phe	Ser	Arg	Thr 30	Ser	Pro
	Trp	Arg	Ser 35	Pro	Lys	Asn	Phe	Arg 40	Arg	Leu	Тут	Pro	Pro 45	Cys	Thr	Thr
60	Ser	Gly	Cys	Ala	Ala	Arg	Trp	Leu	Phe	Ser						

675

55

50

60

5 (2) INFORMATION FOR SEQ ID NO: 546: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids (B) TYPE: amino acid 10 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 546: Met Gly Leu Ser Val Leu Leu Pro Leu Cys Leu Leu Gly Pro Gly Arg 10 15 Phe Thr Ser Gly Gln Lys Pro Leu Asp Thr Pro Gly Leu Gly Val Pro 25 Phe 20 (2) INFORMATION FOR SEQ ID NO: 547: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 367 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 547: Met Ala Lys Pro Gln Val Val Val Ala Pro Val Leu Met Ser Lys Leu 35 Ser Val Asn Ala Pro Glu Phe Tyr Pro Ser Gly Tyr Ser Ser Ser Tyr Thr Glu Ser Tyr Glu Asp Gly Cys Glu Asp Tyr Pro Thr Leu Ser Glu 40 40 Tyr Val Gln Asp Phe Leu Asn His Leu Thr Glu Gln Pro Gly Ser Phe Glu Thr Glu Ile Glu Gln Phe Ala Glu Thr Leu Asn Gly Cys Val Thr 45 70 75 Thr Asp Asp Ala Leu Gln Glu Leu Val Glu Leu Ile Tyr Gln Gln Ala 50 Thr Ser Ile Pro Asn Phe Ser Tyr Met Gly Ala Arg Leu Cys Asn Tyr 105 100 Leu Ser His His Leu Thr Ile Ser Pro Gln Ser Gly Asn Phe Arg Gln 120 55 Leu Leu Gln Arg Cys Arg Thr Glu Tyr Glu Val Lys Asp Gln Ala Ala Lys Gly Asp Glu Val Thr Arg Lys Arg Phe His Ala Phe Val Leu

WO 98/39448

	Phe	Leu	Gly	Glu	Leu 165	Tyr	Leu	Asn	Leu	Glu 170	Ile	Lys	Gly	Thr	Asn 175	Gly
5	Gln	Val	Thr	Arg 180	Ala	Asp	Ile	Leu	Gln 185	Val	Gly	Leu	Arg	Glu 190	Leu	Leu
10	Asn	Ala	Leu 195	Phe	Ser	Asn	Pro	Met 200	Asp	Asp	Asn	Leu	11e 205	Cys	Ala	Val
10	Lys	Leu 210	Leu	Lys	Leu	Thr	Gly 215	Ser	Val	Leu	Glu	Asp 220	Ala	Trp	Lys	Glu
15	Lys 225	Gly	Lys	Met	Asp	Met 230	Glu	Glu	Ile	Ile	Gln 235	Arg	Ile	Glu	Asn	Val 240
	Val	Leu	Asp	Ala	Asn 245	Cys	Ser	Arg	Asp	Val 250	Lys	Gln	Met	Leu	Leu 255	Lys
20	Leu	Val	Glu	Leu 260	Arg	Ser	Ser	Asn	Trp 265	Gly	Arg	Val	His	Ala 270	Thr	Ser
25	Thr	Tyr	Arg 275	Glu	Ala	Thr	Pro	Glu 280	Asn	Asp	Pro	Asn	Тут 285	Phe	Met	Asn
23	Glu	Pro 290	Thr	Phe	Tyr	Thr	Ser 295	Asp	Gly	Val	Pro	Phe 300	Thr	Ala	Ala	Asp
30	Pro 305	Asp	Tyr	Gln	Glu	Lys 310	Тут	Gln	Glu	Leu	Leu 315	Glu	Arg	Glu	Asp	Phe 320
	Phe	Pro	Asp	Tyr	Glu 325	Glu	Asn	Gly	Thr	Asp 330	Leu	Ser	Gly	Ala	Gly 335	Asp
35	Pro	Tyr	Leu	Asp 340	Asp	Ile	Asp	Asp	Glu 345	Met	Asp	Pro	Glu	Ile 350	Glu	Glu
40	Ala	Тут	Glu 355	Lys	Phe	Cys	Leu	Glu 360	Ser	Glu	Arg	Lys	Arg 365	Lys	Gln	
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	NO: 5	548:							
45			(i) :	(A) L B) T	ENGT YPE :	H: 7 ami	7 am no a	ino cid	: acid	s					
50			(xi)		D) T					EQ I	D NO	: 54	В:			
	Met 1	Leu	Arg	Leu	Asp 5	Ile	Ile	Asn	Ser	Leu 10	Val	Thr	Thr	Val	Phe 15	Met
55	Leu	Ile	Val	Ser 20	Val	Leu	Ala	Leu	11e 25	Pro	Glu	Thr	Thr	Thr 30	Leu	Thr
	Val	Gly	Gly 35	Gly	Val	Phe	Ala	Leu 40	Val	Thr	Ala	Val	Cys 45	Cys	Leu	Ala
60	Asp	Gly	Ala	Leu	Ile	Tyr	Arg	Lys	Leu	Leu	Phe	Asn	Pro	Ser	Gly	Pro

		50					55					60				
5	Tyr G 65	ln 1	Lys	Lys	Pro	Val 70	His	Glu	Lys	Lys	Glu 75	Val	Leu			
	(2) I	NFO	RMAT	NOI	FOR	SEQ	ID 1	: O	549:							
10				0	A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	7 am no a lin		acid		• 54	9 -			
15	Met L									-				Pro	Arg 15	Ser
20	His C	ys '	Trp	Gly 20	Leu	Pro	Leu	Ala	Cys 25	Gly	Thr	Phe	Val	Gln 30	Gly	His
	Gln A	la.	Asp 35	Ser	Ser	His	Leu	Leu 40	Pro	Leu	Lys	His	Gln 45	Gly	Ala	
25																
	(2) I					_										
30				() ()	A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	68 a no a lin		aci		: 55	0:			
35	Met L	eu :	Leu	Ser	Leu 5	Ala	Ala	Phe	Ser	Val 10	Ile	Ser	Val	Val	Ser 15	тут
40	Leu I	le i	Leu	Ala 20	Leu	Leu	Ser	Val	Thr 25	Ile	Ser	Phe	Arg	Ile 30	Туг	Lys
	Ser V	al :	Ile 35	Gln	Ala	Val	Gln	Lys 40	Ser	Glu	Glu	Gly	His 45	Pro	Phe	Lys
45	Ala T	yr 1 50	Leu	_		-			Leu					Phe	His	Asn
	Tyr M 65	et i	Asn	Ala	Ala	Met 70	Val	His	Ile	Asn	Arg 75	Ala	Leu	Lys	Leu	11e 80
50	Ile A	rg 1	Leu	Phe	Leu 85	Val	Glu	Asp	Leu	Val 90	Asp	Ser	Leu	Lys	Leu 95	Ala
55	Val P	he I	Met	Trp 100	Leu	Met	Thr	Tyr	Val 105	Gly	Ala	Val	Phe	Asn 110	Gly	Ile
	Thr L		Leu 115	Ile	Leu	Ala	Glu	Leu 120	Leu	Ile	Phe	Ser	Val 125	Pro	Ile	Val
60	Tyr G	lu I 30	Lys	Tyr	Lys	Thr	Gln 135	Ile	Asp	His	Tyr	Val 140	Gly	Ile	Ala	Arg

PCT/US98/04493

	Asp Gln Thr Lys Ser Ile Val Glu Lys Ile Gln Ala Lys Leu Pro Gly 145 150 155 160														
5	Ile Ala Lys Lys Ala Glu Xaa 165														
10	(2) INFORMATION FOR SEQ ID NO: 551:														
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 124 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 551:														
20	Ser Val Pro Phe His Leu Leu Val Val Leu Arg Ser Arg Ala Val Arg 1 5 10 15	J													
	Ala Arg Arg Arg Glu Pro Arg Ser Leu Pro Arg Pro Gly Asp Glu 20 25 30	1													
25	Glu Leu Gln Leu Leu Cys Gly Ala Arg Ser Asp Phe Leu Glu Arg 35 40 45	j													
	Cys Glu Glu Asp Trp Val Cys Leu Trp His His Ala Asp His Ala Ala 50 55 60	1													
30	Phe Pro Gly Ser Phe Gln Cys His Gln Cys Gly Phe Leu Pro His Pro 65 70 75 80														
35	Gly Ser Ser Leu Cys His His Gln Leu Gln Asp Leu Gln Val Arg His 85 90 95														
	Pro Ser Cys Thr Glu Val Arg Arg Arg Pro Ser Ile Gln Ser Leu Pro 100 105 110	,													
40	Gly Arg Arg His Tyr Ser Val Leu Arg Ser Phe Pro 115 120														
45	(2) INFORMATION FOR SEQ ID NO: 552: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 177 amino acids														
50	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 552:														
	Met Val His Leu Leu Val Leu Ser Gly Ala Trp Gly Met Gln Met Trp 1 5 10 15	,													
55	Val Thr Phe Val Ser Gly Phe Leu Leu Phe Arg Ser Leu Pro Arg His 20 25 30														
60	Thr Phe Gly Leu Val Gln Ser Lys Leu Phe Pro Phe Tyr Phe His Ile 35 40 45														

	Ser	Met 50	Gly	Cys	Ala	Phe	Ile 55	Asn	Leu	Суѕ	Ile	Leu 60	Ala	Ser	Gln	His
5	Ala 65	Trp	Ala	Gln	Leu	Thr 70	Phe	Trp	Glu	Ala	Ser 75	Gln	Leu	Туг	Leu	Leu 80
	Phe	Leu	Ser	Leu	Thr 85	Leu	Ala	Thr	Val	Asn 90	Ala	Arg	Trp	Leu	Glu 95	Pro
10	Arg	Thr	Thr	Ala 100	Ala	Met	Trp	Ala	Leu 105	Gln	Thr	Val	Glu	Lys 110	Glu	Arg
15	Gly	Leu	Gly 115	Gly	Glu	Val	Pro	Gly 120	Ser	His	Gln	Gly	Pro 125	Asp	Pro	Tyr
	Arg	Gln 130		Arg	Glu	Lys	Asp 135	Pro	Lys	Tyr	Ser	Ala 140	Leu	Arg	Gln	Asn
20	Phe 145		Arg	Tyr	His	Gly 150	Leu	Ser	Ser	Leu	Cys 155	Asn	Leu	Gly	Суз	Val 160
	Leu	Ser	Asn	Gly	Leu 165	Cys	Leu	Ala	Gly	Leu 170	Ala	Leu	Glu	Ile	Arg 175	Ser
25	Leu															
30	(2)	INF	ORMA'	TION	FOR	SEQ	ID 1	NO: !	553:							
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 72 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 553:															
40	Met 1	Ala	Phe	Ile	Leu 5	Leu	Phe	Tyr	Cys	Leu 10	Met	Thr	Phe	Leu	Ser 15	Leu
40	Glu	Gln	Asn	Ser 20	Ala	Thr	Val	Glu	Pro 25	Ser	Ser	His	Glu	Ile 30	Leu	His
45	Leu	Leu	Gln 35	Asn	Cys	Phe	Glu	Leu 40	Leu	Arg	Thr	Ser	Thr 45	Ser	Gln	Cys
	Thr	Glu 50	Gly	Ile	Pro	Cys	Ala 55	Lys	Ile	Pro	Glu	Trp 60	Val	Thr	His	Leu
50	Thr 65	Trp	Gln	Thr	Leu	Lys 70	Asn	Ser								
55	(2)	INFO	ORMA	rion	FOR	SEQ	ID 1	10: <u>5</u>	554:							
			(i) :		ENCE A) L					: acid	s					
60					В) Т D) Т											

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 554:															
5	Val 1	Leu	Arg	Ile	Ile 5	Cys	Leu	Trp	Pro	Cys 10	Gly	Thr	Thr	Leu	Pro 15	Leu
,	Val	Glu	Lys	Ala 20	His	Asp	Ser	His	Ser 25	Ala	Asp	Pro	Val	Суs 30	Pro	Gly
10	Leu	Thr	Ala 35	His	Leu	Pro	Val	Leu 40	Leu	Tyr	Val	Gln	Leu 45			
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	.vo: !	555:							
15			(i)	SEQU	ENCE	СНА	אפייי	ERTS	ጥፐርፍ							
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 251 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear															
20			(xi)	SEQ						EQ I	D NO	: 55	5:			
	Met 1	Lys	His	Ala	Asp 5	Pro	Arg	Ile	Gln	Gly 10	Tyr	Pro	Leu	Met	Gly 15	Ser
25	Pro	Leu	Leu	Met 20	Thr	Ser	Ile	Leu	Leu 25	Thr	Tyr	Val	Tyr	Phe 30	Val	Leu
30	Ser	Leu	Gly 35	Pro	Arg	Ile	Met	Ala 40	Asn	Arg	Lys	Pro	Phe 45	Gln	Leu	Arg
	Gly	Phe 50	Met	Ile	Val	Tyr	Asn 55	Phe	Ser	Leu	Val	Ala 60	Leu	Ser	Leu	Tyr
35	Ile 65	Val	Tyr	Glu	Phe	Leu 70	Met	Ser	Gly	Trp	Leu 75	Ser	Thr	Tyr	Thr	Trp 80
	Arg	Cys	Asp	Pro	Gln 85	Asp	Cys	Thr	Leu	Gly 90	Gln	Cys	Pro	Ser	Val 95	Pro
40	Ser	Pro	Xaa	Thr 100	Pro	Val	Thr	Lys	Ala 105	Tyr	Val	Val	Arg	Thr 110	Glu	Gln
45	Gly	Thr	Gly 115	Pro	Pro	Leu	Pro	Thr 120	Ala	Ala	Leu	Gln	Gly 125	Pro	Arg	Leu
	Trp	Phe 130	Leu	Thr	His	Phe	Pro 135	Arg	Ala	Ala	Pro	Gly 140	Met	Trp	Pro	His
50	Cys 145	Cys	Leu	Pro	Leu	Gln 150	Ser	Trp	Gly	Leu	Lys 155	Gly	Leu	Tyr	Ser	Tyr 160
	Phe	Pro	Leu	Pro	Ala 165	Leu	Lys	Leu	Gly	Arg 170	Gly	Ala	Leu	Arg	Ala 175	Gly
55	Pro	Thr	Lys	Gly 180	Leu	Val	Ala	Phe	Phe 185	Leu	Thr	Gln	Lys	Arg 190	Ser	Ala
60	Ile	Met	Ser 195	Leu	Trp	Thr	Gln	Ser 200	His	Ser	Ser	Thr	Pro 205	His	Thr	Glu

	Ala V	Val 210	Ala	Ser	Gly	Pro	Lys 215	Val	Arg	Val	Gly	Gly 220	Gly	Leu	Gly	Ile
5	Gln 1 225	Pro	Val	Glu	Ala	Ala 230	Тут	Ser	Thr	Cys	Val 235	Leu	Ile	Lys	Ser	Asp 240
	Arg (Gly	Asn	His	Glu 245	Lys	Lys	Lys	Lys	Lys 250	Lys					
10																
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	NO: !	556 :							
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 556:															
20	Gly :	Leu	Ala	Gly	Leu 5	Cys	Gly	Gln	Leu	Ser 10	Ser	Pro	Ala	Leu	Cys 15	Val
	Asn .	Arg	Leu													
25																
	(2)	INFO	ORMA'	rion	FOR	SEQ	ID :	NO:	557:							
30			/÷ \	CEOU	enre	СПУ	PACT	ERIS	ጥፕሮፍ							
50			(1)													
30			(1)	(A) L B) T	ENGT YPE:	H: 2 ami	17 a no a	mino cid	aci	ds					
35				(A) L B) T D) T	ENGT YPE : OPOL	H: 2 ami OGY:	17 a no a lin	mino cid ear			: 55	7:			
	Met 1		(xi)	(SEQ	A) L B) T D) T UENC	ENGT YPE: OPOL E DE	H: 2 ami OGY: SCRI	17 a no a lin PTIO	mino cid ear N: S	aci	d no			Arg	Gly 15	Gln
		Ile	(xi) Thr	((SEQ Glu	A) L B) T D) T UENC Lys 5	ENGT YPE: OPOL E DE Trp	H: 2 ami OGY: SCRI Gly	17 a no a lin PTIO	mino cid ear N: S Asn	e aci EQ I Met 10	D NO Glu	Tyr	Cys	_	15	
35	1	Ile Tyr	(xi) Thr Ile	() () () SEQ Glu Xaa 20	A) L B) T D) T UENC Lys 5	ENGT YPE: OPOL E DE Trp	H: 2 ami OGY: SCRI Gly	17 ano a lin PTIO Leu	mino cid ear N: S Asn Ser 25	EQ I Met 10 Ser	D NO Glu Lys	Tyr Met	Cys Lys	Val 30	15 Val	Ala
35	1 Ala :	Ile Tyr Arg	(xi) Thr Ile Leu 35	() () () SEQ Glu Xaa 20 Leu	A) L B) T D) T UENC Lys 5 Ser	ENGT YPE: OPOL E DE Trp Ser	H: 2 ami OGY: SCRI Gly Gly Tyr	17 a no a lin PTIO Leu Phe Pro 40	mino cid ear N: S Asn Ser 25	EQ I Met 10 Ser	D NO Glu Lys Ile	Tyr Met	Cys Lys Thr 45	Val 30 Leu	15 Val Cys	Ala Ser
35 40 45	Ala Ser A	Ile Tyr Arg Cys 50	(xi) Thr Ile Leu 35	((((SEQ SEQ SIVE) Xaa 20 Leu Leu	A) L B) T D) T UENC Lys 5 Ser Glu Asn	ENGT YPE: OPOL E DE Trp Ser Lys	H: 2 ami OGY: SCRI Gly Tyr Trp 55	217 a no a lin prio	mino cid ear N: S Asn Ser 25 Gln	EQ I Met 10 Ser Ala	D NO Glu Lys Ile Ser	Tyr Met Tyr Val 60	Cys Lys Thr 45 Pro	Val 30 Leu Val	15 Val Cys Met	Ala Ser Gly
35 40	Ala : Ser : Ser : Val :	Ile Tyr Arg Cys 50 Ser	(xi) Thr Ile Leu 35 Ala	() () () () () () () () () () () () () (A) L B) T D) T UENC Lys 5 Ser Glu Asn	ENGT YPE: OPOLI E DE Trp Ser Lys Met Gly 70	ami OGY: SCRI Gly Tyr Trp 55 Thr	no a lin a lin Prio Leu Phe Pro 40 Leu Ile	mino cid ear N: S Asn Ser 25 Gln Ala	Met 10 Ser Ala	D NO Glu Lys Ile Ser Val	Tyr Met Tyr Val 60 Cys	Cys Lys Thr 45 Pro	Val 30 Leu Val	15 Val Cys Met	Ala Ser Gly His
35 40 45	Ala Ser A	Ile Tyr Arg Cys 50 Ser	(xi) Thr Ile Leu 35 Ala Val	() () () () () () () () () () () () () (A) L B) T D) T UENC Lys 5 Ser Glu Asn Leu 85	ENGT YPE:: OPPOL E DE Trp Ser Lys Met Gly 70 Leu	ami OGY: SCRI Gly Tyr Trp 55 Thr	no a lin a lin Prio Leu Phe Pro 40 Leu Ile Glu	mino cid ear N: S Asn Ser 25 Gln Ala Glu Leu	Met 10 Ser Ala Lys Glu Asp 90	D NO Glu Lys Ile Ser Val 75 Asn	Tyr Met Tyr Val 60 Cys	Cys Lys Thr 45 Pro Ser	Val 30 Leu Val Phe	15 Val Cys Met Phe Val 95	Ala Ser Gly His 80 Leu
35 40 45 50	Ala Ser A Ser A Val S 65 Arg S	Ile Tyr Arg Cys 50 Ser	(xi) Thr Ile Leu 35 Ala Val Pro	(()()()()()()()()()()()()()()()()()()(A) L B) T D) T UENC Lys 5 Ser Glu Asn Leu 85 Lys	ENGT YPE: OPPOL E DE Trp Ser Lys Met Gly 70 Leu	ami OGY: SCRI Gly Gly Tyr Trp 55 Thr Leu Arg	no a lin Prio Leu Phe Pro 40 Leu Glu Gly	mino cid ear N: S Asn Ser 25 Gln Ala Glu Leu Lys 105	EQ I Met 10 Ser Ala Lys Glu Asp 90	D NO Glu Lys Ile Ser Val 75 Asn	Tyr Met Tyr Val 60 Cys Val	Cys Lys Thr 45 Pro Ser Ile Glu	Val 30 Leu Val Phe Ser Ile 110	15 Val Cys Met Phe Val 95 Cys	Ala Ser Gly His 80 Leu

		130					135					140				
5	Ile 145	Arg	Trp	Asn	Asn	Tyr 150	Ile	Ala	Gly	Arg	Ala 155	Phe	Val	Leu	Cys	Ser 160
3	Ala	Val	Ser	Asp	Phe 165	Asp	Phe	Ile	Val	Thr 170	Ile	Val	Val	Leu	Lys 175	Asn
10	Val	Leu	Ser	Phe 180	Thr	Arg	Ala	Phe	Gly 185	Lys	Asn	Leu	Gln	Gly 190	Gln	Thr
	Ser	Asp	Val 195	Phe	Phe	Ala	Ala	Gly 200	Ser	Leu	Thr	Ala	Val 205	Leu	His	Ser
15	Leu	Asn 210	Glu	Val	Ile	Gly	Lys 215	Tyr	Хаа							
20	(2)	INFO	ORMA'	rion	FOR	SEQ	ID I	NO: 5	558:							
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 82 amino acids															
25			(xi)	(B) T D) T	YPE: OPOL	ami OGY:	no a lin	cid ear			: 55	8:			
			Lys	Val		Cys	Ile	Leu	Pro		Met	Lys	Val	Glu		Glu
30	1		C1v	200	5	3	7	.		10	21-	m	T	1	15	mb
	Arg	TYL	GIU	Asn 20	GIÀ	Arg	ьys	Arg	25	Lys	Ala	туг	Leu	30	ASN	ınr
35	Leu	Thr	Asp 35	Gln	Arg	Ser	Ser	Asn 40	Leu	Ala	Leu	Leu	Asn 45	Ile	Asn	Phe
	Asp	Ile 50	Lys	His	Asp	Leu	Asp 55	Leu	Met	Val	Asp	Thr 60	Tyr	Ile	Lys	Leu
40	Tyr 65	Thr	Ser	Lys	Ser	Glu 70	Leu	Pro	Thr	Asp	Asn 75	Ser	Glu	Thr	Val	Glu 80
45	Asn	Thr														
50	(2)			rion		_										
30			(1) :	()	A) L B) T	engti YPE :	H: 9 ami	5 ami	ino a	: acid	s					
55			(xi)	SEQU				line TION		9Q II	ON C	: 559) :			
	Met 1	Val	Leu	Ile	Leu 5	Leu	Asn	Leu	Leu	Leu 10	Gly	Gln	Phe	Ser	Cys 15	Met
60	Ser	Pro	Aĺa	Ser 20	His	His	Cys	His	Pro 25	Leu	Pro	Thr	Glu	Met 30	Pro	Cys

	Ser	Ser	Asp 35	Trp	Gly	Phe	Asp	Ser 40	His	Thr	Val	Туг	Pro 45	Ser	Cys	Val
5	Asp	Ala 50	Leu	Leu	Pro	Lys	Pro 55	Ser	Ala	Asn	Ser	Phe 60	Pro	Asn	Gly	Ser
10	Cys 65	His	Cys	Gln	Gly	Leu 70	Туг	Asn	Gln	Gln	Gln 75	Gln	Asn	Leu	His	Ala 80
	Ala	Glu	Gly	Pro	Ala 85	Ser	Leu	Arg	Суѕ	Asn 90	Lys	Tyr	Val	Ser	Thr 95	
15	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	NO: 5	560:							
20				(ENCE A) L B) T D) T UENC	ENGT YPE : OPOL	H: 5 ami OGY:	4 am no a lin	ino cid ear	acid		: 56	0 :			
25	Met 1	Ile	Pro	Ala	Tyr 5	Ser	Lys	Asn	Arg	Ala 10	Tyr	Ala	Ile	Phe	Phe 15	Ile
	Val	Phe	Thr	Val 20	Ile	Gly	Asp	Ala	Pro 25	Gly	Ala	Val	Leu	Ser 30	Cys	Ala
30	Gly	His	Pro 35	Суз	Val	Gly	Phe	Ala 40	Ala	Val	Leu	Val	Ala 45	Pro	Leu	Thr
35	Val	Ala 50	Val	Ser	Ser	Xaa										
40	(2)				FOR	_										
70			(1)	(.	ENCE A) L B) T D) T	ENGT YPE :	H: 1 ami	08 a no a	mino cid		ds					
45	Met			SEQ	JENCI	E DE	SCRI	PTIO	vi: Si	_				Ara	Ala	Leu
	1 Cys				5					10					15	
50	Glu			20					25					30		
55	Tyr		35					40					45			
	Asp '	50 Thr	Val	Asn	Thr	Ser	55 Leu	Asn	Val	Tyr	Ara	60 Asn	Lys	Asp	Ala	Leu
60	65		-			70		- 		- , -	75		-,-			80

684

Ser His Phe Val Ile Ala Gly Ala Val Thr Gly Ser Leu Phe Arg Ile 90 Asn Val Gly Leu Arg Gly Trp Trp Leu Val Ala Xaa 5 100 (2) INFORMATION FOR SEQ ID NO: 562: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 562: Met Asn Trp Gly Leu Ser Ile Trp Leu His Tyr Tyr Glu Lys Lys Lys 10 20 Glu Gln Val Phe Leu Val Ile Leu Ala His Val Val Arg Arg Cys Ala 20 25 Ser Asp Gly Ile Leu Gln Phe Glu Ser Ser Leu Leu Lys Met Arg Arg 35 40 25 Ala Pro 50 30 (2) INFORMATION FOR SEQ ID NO: 563: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 253 amino acids 35 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 563: Met Val Lys Val Cys Asn Asp Ser Asp Arg Trp Ser Leu Ile Ser Leu 40 10 Ser Asn Asn Ser Gly Lys Asn Val Glu Leu Lys Phe Val Asp Ser Leu 45 Arg Arg Gln Phe Glu Phe Ser Val Asp Ser Phe Gln Ile Lys Leu Asp Ser Leu Leu Phe Tyr Glu Cys Ser Glu Asn Pro Met Thr Glu Thr 55 60 50 Phe His Pro Thr Ile Ile Gly Glu Ser Val Tyr Gly Asp Phe Gln Glu Ala Phe Asp His Leu Cys Asn Lys Ile Ile Ala Thr Arg Asn Pro Glu 55 Glu Ile Arg Gly Gly Leu Leu Lys Tyr Cys Asn Leu Leu Val Arg 105

Gly Phe Arg Pro Ala Ser Asp Glu Ile Lys Thr Leu Gln Arg Tyr Met

			115					120					125			
5	Cys	Ser 130	Arg	Phe	Phe	Ile	Asp 135	Phe	Ser	Asp	Ile	Gly 140	Glu	Gln	Gln	Arg
J	Lys 145	Leu	Glu	Ser	Туг	Leu 150	Gln	Asn	His	Phe	Val 155	Gly	Leu	Glu	Asp	A rg 160
10	Lys	Тут	Glu	Туг	Leu 165	Met	Thr	Leu	His	Gly 170	Val	Val	Asn	Glu	Ser 175	Thr
	Val	Cys	Leu	Met 180	Gly	His	Glu	Arg	A rg 185	Gln	Thr	Leu	Asn	Leu 190	Ile	Thr
15	Met	Leu	Ala 195	Ile	Arg	Val	Leu	Ala 200	Asp	Gln	Asn	Val	11e 205	Pro	Asn	Val
20	Ala	Asn 210	Val	Thr	Cys	Tyr	Туг 215	Gln	Pro	Ala	Pro	Туг 220	Val	Ala	Asp	Ala
	Asn 225		Ser	Asn	Tyr	Tyr 230		Ala	Gln	Val	Gln 235		Val	Phe	Thr	Cys 240
25	Gln	Gln	Gln	Thr	Тут 245	Ser	Thr	Trp	Leu	Pro 250	Cys	Asn	Xaa			
30	(2)	INF	ORMA:	rion	FOR	SEQ	ID I	NO:	564:							
			(i)	(в) 1	ENGI YPE:	H: 1 ami	.8 am .no a	ino cid	: acid	ls					
35			(xi)		D) I					EQ I	D NC	: 56	4:			
	Met 1		Phe	Leu	Met 5	Trp	Leu	Met	Ser	Leu 10	Ala	Ile	Thr	Ser	Gln 15	Pro
40	Pro	Met														
45	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO:	565:							
50				(B) 1 D) 1	ENGT YPE: OPOL	H: 8 ami OGY:	0 am no a lin	ino cid ear	: acid EQ I		; 56	5:			
55	Met 1		Pro	Lys	Gly 5	Lys	Val	Gly	Thr	Arg 10	Gly	Lys	Lys	Gln	Ile 15	
55	Glu	Glu	Asn	Arg 20	Glu	Thr	Leu	Lys	Phe 25		Leu	Arg	Ile	Ile 30	Leu	Gly
60	Ala	Asn	Ala 35	Ile	Tyr	Cys	Leu	Val 40	Thr	Leu	Val	Phe	Phe 45		Ser	Ser

	Ala	Ser 50	Phe	Trp	Ala	Trp	Leu 55	Ala	Leu	Gly	Phe	Ser 60	Leu	Ala	Val	Tyr
5	Gly 65	Ala	Ser	Tyr	His	Ser 70	Met	Ser	Ser	Met	Ala 75	Arg	Ala	Ala	Phe	Phe 80
10																
15	(2)	INF	ORMA'	SEQU (ENCE A) L B) T	CHA ENGT YPE :	ID I RACT H: 7 ami OGY:	ERIS 3 am no a	TICS ino cid		ls					
20	His 1	Leu	(xi) Lys				SCRI Leu			-				Val	Leu 15	Ser
25	Cys	Phe	Ser	Leu 20	Tyr	Val	Trp	Ser	Phe 25	Trp	Leu	Leu	Ala	Pro 30	Gly	Arg
	Ala	Leu	Tyr 35	Leu	Leu	Trp	Val	Asn 40	Val	Leu	Gly	Pro	Trp 45	Phe	Thr	Ala
30	Ąsp	Ser 50	Gly	Thr	Pro	Ala	Pro 55	Glu	His	Asn	Glu	Lys 60	Arg	Gln	Arg	Arg
35	Gln 65	Glu	Arg	Arg	Gln	Met 70	Lys	Arg	Leu							
40	(2)			SEQU)))	ENCE A) L B) T D) T	CHA ENGT YPE: OPOL	RACT H: 2 ami OGY:	ERIS 63 a no a lin	TICS mino cid ear	aci						
45	Met		(xi) Cys	-			SCRI Pro			_				Glu	Val	Ile
50	1		Ser		5					10					15	
	Pro	Ser	Gly 35	Lys	Lys	Phe	Arg	Ser 40	Lys	Pro	Gln	Leu	Ala 45	Arg	Туг	Leu
55	Gly	Asn 50	Thr	Val	Asp	Leu	Ser 55	Ser	Phe	Asp	Phe	Arg 60	Thr	Gly	Lys	Met
60	Met 65	Pro	Ser	Lys	Leu	Gln 70	Lys	Asn	Lys	Gln	Arg 75	Leu	Arg	Asn	Asp	Pro 80

	Leu	Asn	Gln	Asn	Lys 85	Gly	Lys	Pro	A sp	Leu 90	Asn	Thr	Thr	Leu	Pro 95	Ile
5	Arg	Gln	Thr	Ala 100	Ser	Ile	Phe	Lys	Gln 105	Pro	Val	Thr	Lys	Val 110	Thr	Asn
	His	Pro	Ser 115	Asn	Lys	Val	Lys	Ser 120	Asp	Pro	Gln	Arg	Met 125	Asn	Glu	Gln
10	Pro	Arg 130	Gln	Leu	Phe	Trp	Glu 135	Lys	Arg	Leu	Gln	Gly 140	Leu	Ser	Ala	Ser
15	Asp 145	Val	Thr	Glu	Gln	11e 150	Ile	Lys	Thr	Met	Glu 155	Leu	Pro	Lys	Gly	Leu 160
	Gln	Gly	Val	Gly	Pro 165	Gly	Ser	Asn	Asp	Glu 170	Thr	Leu	Leu	Ser	Ala 175	Val
20	Ala	Ser	Ala	Leu 180	His	Thr	Ser	Ser	Ala 185	Pro	Ile	Thr	Gly	Gln 190	Val	Ser
	Ala	Ala	Val 195	Glu	Lys	Asn	Pro	Ala 200	Val	Trp	Leu	Asn	Thr 205	Ser	Gln	Pro
25	Leu	Cys 210	Lys	Ala	Phe	Ile	Val 215	Thr	Asp	Glu	Asp	11e 220	Arg	Lys	Gln	Glu
30	Glu 225	-	Val	Gln	Gln	Val 230	Arg	Lys	Lys	Leu	Glu 235	Glu	Ala	Leu	Met	Ala 240
	Asp	Ile	Leu	Ser	Arg 245	Ala	Ala	Asp	Thr	Glu 250	Glu	Met	Asp	Ile	Glu 255	Met
35	Asp	Ser	Gly	Asp 260	Glu	Ala	Xaa									
40	(2)	INF		SEQU	ENCE	СНА	ID I	ERIS	TICS		c					
45				(B) T D) T	YPE: OPOL	ami OGY:	no a lin	cid ear				•			
45	Met	Met		_			SCRI:			_				Thr	Gln	Ala
	1		3		5	-3-				10			-,-		15	
50	Leu	Arg	Gln	Ser 20	Gln	Gly	Lys	Ser	Pro 25	Leu	Leu	Trp	Lys	Arg 30	Thr	Leu
55	Leu	Phe	Gly 35	Leu	Thr	His	Leu	Asn 40	Pro	Ser	Ala	Lys	Leu 45	Leu	Leu	Ser
	Gln	Met 50	Lys	Thr	Ser	Gly	Asn 55	Arg	Lys	Ser	Glu	Тут 60	Ser	Lys	Туг	Ala
60	Arg 65	Asn	Trp	Lys	Lys	His 70										

5	(2) INFORMATION FOR SEQ ID NO: 569:
3	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 34 amino acids(B) TYPE: amino acid
10	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 569:
	Met Pro Val Thr Ser Lys Arg Thr Leu Phe Phe Pro Asp Pro Cys Ser 1 5 10 15
15	Tyr Asp Thr Pro Pro Pro Asp Cys His Cys His Ser Phe Arg Ala Glu 20 25 30
	Leu Leu
20	
	(2) INFORMATION FOR SEQ ID NO: 570:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 104 amino acids
	(B) TYPE: amino acid (D) TOPOLOGY: linear
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 570:
	Met Asn Ser Arg Gly Met Trp Leu Thr Tyr Ala Leu Gly Val Gly Leu 1 5 10 15
35	Leu His Ile Val Leu Leu Ser Ile Pro Phe Phe Ser Val Pro Val Ala 20 25 30
	Trp Thr Leu Thr Asn Ile Ile His Asn Leu Gly Met Tyr Val Phe Leu 35 40 45
40	His Ala Val Lys Gly Thr Pro Phe Glu Thr Pro Asp Gln Gly Lys Ser 50 55 60
45	Lys Ala Pro Asn Ser Leu Gly Thr Thr Gly Leu Trp Ser Thr Val Tyr 65 70 75 80
	Ile Phe Thr Glu Val Phe His Asn Phe Ser Asn Asn Ser Ile Phe Ser 85 90 95
50	Gly Lys Phe Leu Tyr Glu Val Xaa 100
55	(2) INFORMATION FOR SEQ ID NO: 571:
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 amino acids (B) TYPE: amino acid
60	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 571:

	Met 1	Trp	Leu	Thr	Tyr 5	Ala	Leu	Gly	Val	Gly 10	Leu	Leu	His	Ile	Val 15	Leu
5	Leu	Ser	Ile	Pro 20	Phe	Phe	Ser	Val	Pro 25	Val	Ala	Trp	Thr	Leu 30	Thr	Asn
10	Ile	Ile	His 35	Asn	Leu	Gly	Met	Tyr 40	Val	Phe	Leu	His	Ala 45	Val	Lys	Gly
10	Thr	Pro 50	Phe	Glu	Thr	Pro	Asp 55	Gln	Gly	Lys	Ala	Arg 60	Leu	Leu	Thr	His
15	Trp 65	Glu	Gln	Leu	Asp	Tyr 70	Gly	Val	Gln	Phe	Thr 75	Ser	Ser	Arg	Lys	Phe 80
	Phe	Thr	Ile	Ser	Pro 85	Ile	Ile	Leu	Tyr	Phe 90	Leu	Ala	Ser	Phe	Тут 95	Thr
20	Lys	Тут	Asp	Pro 100	Thr	His	Phe	Ile	Leu 105	Asn	Thr	Ala	Ser	Leu 110	Leu	Ser
25	Val	Leu	Ile 115	Pro	Lys	Met	Pro	Gln 120	Leu	His	Gly	Val	Arg 125	Ile	Phe	Gly
	Ile	Asn 130	Lys	Tyr												
30	(2)	INF	ORMA!	rion	FOR	SEQ	ID :	NO: !	572 :							
35				(A) L B) T D) T	CHA ENGT YPE: OPOL E DE	H: 3 ami OGY:	2 am no a lin	ino cid ear	acid		: 57	2:			
40	Met 1	Asn	Lys	Trp	Ile 5	Cys	Glu	Met	His	Cys 10	Tyr	Leu	Val	Leu	Leu 15	Ser
	Val	Cys	Ser	Pro 20	Ser	Ala	Leu	Arg	Arg 25	Val	Arg	His	Thr	Leu 30	Ser	Arg
45																
50	(2)	INFO	ORMAT	rion	FOR	SEQ	ID	NO: !	573 :							
55				(A) L B) T D) T	CHANENGT: YPE: OPOLA E DE:	H: 2 ami OGY:	8 am no a lin	ino cid ear	acid		: 57:	3:			
60	Met 1	Pro	Val	Leu	Ser 5	Leu	Leu	Cys	Thr	Leu 10	Ile	Val	Ser	Phe	Gln 15	Ser

690

Ala Asp Ser Cys Glu Val Phe Leu Asn Cys Ser Leu 5 (2) INFORMATION FOR SEQ ID NO: 574: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 574: Met Lys Val Ser Thr Met Leu Trp Phe Leu Cys Trp Glu Gln Ser His 15 1 5 10 Phe Leu Arg Glu Trp Glu Asp Leu Ser Thr Phe Leu Ile Leu Ile Gln 25 20 Met Glu Cys Gln Tyr Gly Asn Ser 35 25 (2) INFORMATION FOR SEQ ID NO: 575: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid 30 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 575: Met Gly Leu Pro Leu Met Ala Leu Met Trp Ser Thr Leu Pro Ala Ser 10 35 Ala Gly Val Asn Phe Ile Leu Ala Leu Pro Leu Leu Xaa Leu 20 25 40 (2) INFORMATION FOR SEQ ID NO: 576: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 amino acids 45 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 576: Met Lys Arg Gly Cys Leu Gly Leu Leu Phe Phe Ser Cys Cys Ser Ser 50 Ala Pro Thr Met Leu Leu Cys Asp Tyr Leu Asn Trp Phe 20 55 (2) INFORMATION FOR SEQ ID NO: 577: (i) SEQUENCE CHARACTERISTICS: 60 (A) LENGTH: 92 amino acids

			(xi)	(D) T	YPE: OPOL E DE:	OGY:	lin	ear	EQ II	ом о	: 57 [.]	7:			
5	Met 1	Lys	Leu	Leu	Leu 5	Gly	Ile	Ala	Leu	Leu 10	Ala	Tyr	Val	Ala	Ser 15	Val
10	Trp	Gly	Asn	Phe 20	Val	Asn	Met	Arg	Ser 25	Ile	Gln	Glu	Asn	Gly 30	Glu	Leu
	Lys	Ile	Glu 35	Ser	Lys	Ile	Glu	Glu 40	Met	Val	Glu	Pro	Leu 45	Arg	Glu	Lys
15	Ile	Arg 50	Asp	Leu	Glu	Lys	Ser 55	Phe	Thr	Gln	Lys	Tyr 60	Pro	Pro	Val	Lys
	Phe 65	Leu	Ser	Glu	Lys	Asp 70	Arg	Lys	Arg	Ile	Leu 75	Xaa	Asn	Arg	Arg	Arg 80
20	Xaa	Val	Arg	Gly	Leu 85	Pro	Ser	Xaa	Leu	Thr 90	Asn	Ser				
25	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: !	578:							
30				- (A) I B) T D) T	YPE: OPOL	H: 4 ami OGY:	2 am no a lin	ino cid ear	: acid EQ I		: 57	8:			
35	Met 1	Lys	Phe	Ser	Leu 5	Val	Leu	Leu	Ile	Lys 10	Ile	Ile	Ser	Phe	Glu 15	Arg
	Leu	Leu	Ile	Phe 20	Leu	Phe	Pro	Leu	Ser 25	Phe	Leu	Pro	Asn	Ile 30	Trp	Arg
40	Arg	Val	Met 35	Val	Asn	Leu	Asn	Ile 40	Leu	Phe						
45	(2)	INF	ORMA													
50			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 7 ami: OGY:	0 am no a lin	ino cid ear	acid			_			
50	Leu		(xi) Gln	_						-				Phe	Leu	Val
55	1 Lys	Leu	Leu	Phe	5 Ile	Pro	Trp	Leu	Ala	10 Ser	Leu	Leu	Pro	Pro	15 Leu	Ser
			Thr	20					25					30		
			35				-1-	40				,	45			-1-

692

Leu Gln Gln Cys Arg Gln His Gln Val Leu Gln Glu Lys Asn Thr Lys 55 Lys Phe Asn Lys Lys Lys 5 65 (2) INFORMATION FOR SEQ ID NO: 580: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 110 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 580: Met Leu Arg Leu Leu Leu Val Ala Phe Ala Leu Val Val Val Leu 20 Phe His Val Leu Leu Ala Pro Ile Thr Ala Leu Phe His Thr His Phe Tyr Asp Arg Leu Gln Asp Ala Gly Ser Arg Trp Pro Glu Leu Tyr Leu 40 25 Tyr Ser Arg Ala Asp Glu Val Val Leu Ala Arg Asp Ile Glu Arg Met Val Glu Ala Arg Leu Ala Arg Arg Val Leu Ala Arg Ser Val Asp Phe 30 70 75 Val Ser Ser Ala His Val Ser His Leu Arg Asp Tyr Pro Thr Tyr Tyr 35 Thr Ser Leu Cys Val Asp Phe Met Arg Asn Cys Val Arg Cys 100 105 40 (2) INFORMATION FOR SEQ ID NO: 581: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid 45 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 581: Met Phe Lys Leu Glu Glu Cys Gly Lys Thr Thr Phe Leu Leu Ser Met 50 Ala Leu Tyr Phe Trp Trp Ile Val Gln Thr Thr Lys Gly Cys 20 25 55 (2) INFORMATION FOR SEQ ID NO: 582: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 amino acids

(B) TYPE: amino acid

WO 98/39448

693

			(xi)					lin PTIO	-	EQ I	ои о	: 582	2:			
5	Met 1	Glu	Ser	Asp	Ala 5	Leu	Leu	Leu	Thr	Ile 10	Phe	Trp	Ile	Ile	Ala 15	Arg
	Ser	Ser	Val	Arg 20	Ser	Val	Gly	Lys	Ser 25	Ser	Gln	Arg	Ser	Phe 30	Thr	Thr
10	Ile	Thr	Gln 35	Leu	Arg	Ser	Thr	His 40	Thr	Gly	Pro	Ser	Arg 45	Arg	Ser	Tyr
15	Leu	Ile 50	Trp	Trp	Asn	Gly	Gly 55	Pro	Lys	Arg	Thr	Ile 60	Ser	Тут	Val	Ser
13	Arg 65	-	Phe	Arg	Ser	Phe 70	Arg									
20	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: !	583:							
								ERIS		:						
25			(xi)	(B) T D) T	YPE: OPOL	ami OGY:	7 am no a lin PTIO	cid ear		-	: 58	3:			
	Val	Glv								_				Thr	Asn	Leu
30	1				5		2,2			10	V	110	vui		15	200
	Tyr	Ile	Phe	Ile 20	Lys	Ile	Tyr	Ser	Glu 25	Ile	Gly	Pro	Ile	Met 30	His	Val
35	Leu	Cys	Pro 35	Gly	Тут	Ser	Gln	Ser 40	Pro	Ser	Thr	Pro	Pro 45	Trp	Thr	
40	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	NO: !	584:							
			(i) :					ERIS			s					
45			(xi)	(B) T	YPE: OPOL	ami OGY:	no a lin PTIO	cid ear			: 58	4:			
50	Met 1	Trp	Phe	Gly	Ser 5	Asp	Arg	Ser	Asp	Leu 10	Arg	Ile	Gly	Thr	Ala 15	Phe
50	Leu	Phe	Asp	Leu 20	Val	Cys	Asp	Leu	Cys 25	Ile	His	Ala	Trp	Lys 30	Pro	Pro
55	Gly	Leu	Val 35	Arg	Phe	Ser	Phe									

(2) INFORMATION FOR SEQ ID NO: 585:

	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 19 amino acids(B) TYPE: amino acid
5	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 585:
	Met Leu Asn Thr Ala Ser Leu Asn Leu Pro Trp Lys Val Gln Leu Phe
	1 5 10 15
10	Ala His Ala
15	(2) INFORMATION FOR SEQ ID NO: 586:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 amino acids
20	(B) TYPE: amino acid
20	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 586:
	Met Ser Ala Cys Leu Leu Phe Leu Ala Phe Ser Trp Lys Arg Lys
25	1 5 10 15
	Gly Leu Trp Ser Gly Pro Gly 20
30	
	(2) INFORMATION FOR SEQ ID NO: 587:
	(i) SEQUENCE CHARACTERISTICS:
35	(A) LENGTH: 69 amino acids(B) TYPE: amino acid
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587:
	Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser
40	1 5 10 15
	Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30
45	Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro 35 40 45
	Ser Ser Glu Leu Leu Glu Gln Leu Leu Ser Val Gln Phe Val Trp Gln 50 55 60
50	Ala His Thr Val Ala
	65
55	
	(2) INFORMATION FOR SEQ ID NO: 588:
	(i) SEQUENCE CHARACTERISTICS:
60	(A) LENGTH: 77 amino acids (B) TYPE: amino acid

			(xi)		D) TO					EQ II	ON C	: 581	B:			
5	Met 1	Gly	Pro	Pro	Met 5	Leu	Gln	Glu	Ile	Ser 10	Asn	Leu	Phe	Leu	Ile 15	Leu
	Leu	Met	Met	Gly 20	Ala	Ile	Phe	Thr	Leu 25	Ala	Ala	Leu	Lys	Glu 30	Ser	Leu
10	Ser	Thr	Cys 35	Ile	Pro	Ala	lle	Val 40	Cys	Leu	Gly	Phe	Leu 45	Leu	Leu	Leu
15	Asn	Val 50	Gly	Gln	Leu	Leu	Ala 55	Gln	Thr	Lys	Lys	Val 60	Val	Arg	Pro	Thr
13	Arg 65	Lys	Lys	Thr	Leu	Ser 70	Thr	Phe	Lys	Glu	Ser 75	Trp	Lys			
20	(2)	TATEV	ימשס∩	PT/NI	FOR	SEO	י חד	vr0 - 1	500.							
	(2)	INF			ENCE	_										
25				(A) L B) T D) T UENC	ENGT YPE : OPOL	H: 1 ami OGY:	55 a no a lin	mino cid ear	aci		• 58	9.			
	Met	λla			Leu					-				Gly	Dha	Phe
30	1	AIU	Deu	DCu	5	Der	Val	Deu	мg	10	Deu	Deu	Gly	GIY	15	FIIC
	Ala	Leu	Val	Gly 20	Leu	Ala	Lys	Leu	Ser 25	Glu	Glu	Ile	Ser	Ala 30	Pro	Val
35	Ser	Glu	Arg 35	Met	Asn	Ala	Leu	Phe 40	Val	Gln	Phe	Ala	Glu 45	Val	Phe	Pro
40	Leu	Lys 50	Val	Phe	Gly	Тут	Gln 55	Pro	Asp	Pro	Leu	Asn 60	Tyr	Gln	Ile	Ala
10	Val 65	Gly	Phe	Leu	Glu	Leu 70	Leu	Ala	Gly	Leu	Leu 75	Leu	Val	Met	Gly	Pro 80
45	Pro	Met	Leu	Gln	Glu 85	Ile	Ser	Asn	Leu	Phe 90	Leu	Ile	Leu	Leu	Met 95	Met
	Gly	Ala	Ile	Phe 100	Thr	Leu	Ala	Ala	Leu 105	Lys	Glu	Ser	Leu	Ser 110	Thr	Cys
50	Ile	Pro	Ala 115	Ile	Val	Cys	Leu	Gly 120	Phe	Leu	Leu	Leu	Leu 125	Asn	Val	Gly
55	Gln	Leu 130	Leu	Ala	Gln	Thr	Lys 135	Lys	Val	Val	Arg	Pro 140	Thr	Arg	Lys	Lys
<i>55</i>	Thr 145	Leu	Ser	Thr	Phe	Lys 150	Glu	Ser	Trp	Lys	Xaa 155					

696

(2) INFORMATION FOR SEQ ID NO: 590:

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 24 amino acids
 5
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 590:
      Met Pro Glu Thr Arg Leu Gly His Arg Gln Gln Phe Ala Val Phe His
10
                                          10
      Leu Xaa Pro Val Pro Pro Cys Gly
                  20
15
      (2) INFORMATION FOR SEQ ID NO: 591:
             (i) SEQUENCE CHARACTERISTICS:
20
                    (A) LENGTH: 38 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 591:
25
      Met Leu Thr Phe Leu Phe Ser Ala Cys Ala Thr Cys Leu Gly Lys Leu
      Ala Ser Pro Leu Ala Pro Val Gly Pro Gln Gln Arg Gly Xaa Pro Pro
30
      Gly Pro Pro Leu Leu Ser
              35
35
      (2) INFORMATION FOR SEQ ID NO: 592:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 69 amino acids
40
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 592:
      Met Asp Pro Phe His Tyr Asp Tyr Gln Thr Leu Arg Ile Gly Gly Leu
45
      Val Phe Ala Val Val Leu Phe Ser Val Gly Ile Leu Leu Ile Leu Ser
                                      25
50
      Arg Arg Cys Lys Cys Ser Phe Asn Gln Lys Pro Arg Ala Pro Gly Asp
                                  40
     Glu Glu Ala Gln Val Glu Asn Leu Ile Thr Ala Asn Ala Thr Glu Pro
                             55
                                                60
55
     Gln Lys Ala Glu Asn
      65
```

WO 98/39448 PCT/US98/04493

	(2) INF	ORMAT	rion	FOR	SEQ	ID N	NO: 5	93 :							
5			(A) L B) T D) T	ENGT YPE : OPOL	RACTI H: 3 amin OGY: SCRI	08 a no a lin	mino cid ear	aci		: 59	3:			
10	Asn Leu 1	Arg	Val	Arg 5	Leu	Gly	Asp	Val	Ile 10	Ser	Ile	Gln	Pro	Cys 15	Pro
	Asp Val	Lys	Tyr 20	Gly	Lys	Arg	Ile	His 25	Val	Leu	Pro	Ile	Asp 30	Asp	Thr
15	Val Glu	Gly 35	Ile	Thr	Gly	Asn	Leu 40	Phe	Glu	Val	Tyr	Leu 45	Lys	Pro	Tyr
20	Phe Leu 50		Ala	Tyr	Arg	Pro 55	Ile	Arg	Lys	Gly	Asp 60	Ile	Phe	Leu	Val
_•	Arg Gly 65	Gly	Met	Arg	Ala 70	Val	Glu	Phe	Lys	Val 75	Val	Glu	Thr	Asp	Pro 80
25	Ser Pro	Tyr	Cys	Ile 85	Val	Ala	Pro	Asp	Thr 90	Val	Ile	His	Cys	Glu 95	Gly
	Glu Pro	Ile	Lys 100	Arg	Glu	Asp	Glu	Glu 105	Glu	Ser	Leu	Asn	Glu 110	Val	Gly
30	Tyr Asp	Asp 115	Ile	Gly	Gly	Cys	Arg 120	Lys	Gln	Leu	Ala	Gln 125	Ile	Lys	Glu
35	Met Val		Leu	Pro	Leu	Arg 135	His	Pro	Ala	Leu	Phe 140	Lys	Ala	Ile	Gly
	Val Lys 145	Pro	Pro	Arg	Gly 150	Ile	Leu	Leu	Tyr	Gly 155	Pro	Pro	Gly	Thr	Gly 160
40	Lys Thr	Leu	Ile	Ala 165	Arg	Ala	Val	Ala	Asn 170	Glu	Thr	Gly	Ala	Phe 175	Phe
	Phe Leu	Ile	Asn 180	Gly	Pro	Glu	Ile	Met 185	Ser	Lys	Leu	Ala	Gly 190	Glu	Ser
45	Glu Ser	Asn 195	Leu	Arg	Lys	Ala	Phe 200	Glu	Glu	Ala	Glu	Lys 205	Asn	Ala	Pro
50	Ala Ile 210		Phe	Ile	Asp	Glu 215	Leu	Asp	Ala	Ile	Ala 220	Pro	Lys	Arg	Glu
	Lys Thr 225	His	Gly	Glu	Val 230	Glu	Arg	Arg	Ile	Val 235	Ser	Gln	Leu	Leu	Thr 240
55	Leu Met	Asp	Gly	Leu 245	Lys	Gln	Arg	Ala	His 250	Val	Ile	Val	Met	Ala 255	Ala
	Thr Asn	Arg	Pro 260	Asn	Ser	Ile	Asp	Pro 265	Ala	Leu	Arg	Arg	Phe 270	Gly	Arg
60	Phe Asp	Arg	Glu	Val	Asp	Ile	Gly	Ile	Pro	Asp	Ala	Thr	Gly	Arg	Leu

```
275
                                 280
                                                      285
      Glu Ile Leu Gln Ile His Thr Lys Asn Met Lys Leu Ala Asp Asp Val
                           295
                                                300
 5
      Asp Leu Glu Gln
      305
10
      (2) INFORMATION FOR SEQ ID NO: 594:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 22 amino acids
15
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 594:
      Met Gln Ile Lys Leu Leu Lys Ser Val Lys Thr Val Phe Ala Ile Thr
20
      Leu Leu Val Leu Phe Leu
                  20
25
      (2) INFORMATION FOR SEQ ID NO: 595:
             (i) SEQUENCE CHARACTERISTICS:
30
                    (A) LENGTH: 24 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595:
35
      Met Phe Pro Lys Phe Cys Pro Ile Leu Ser Leu Val Asp Phe Ile Ser
       1
                                          10
      His Arg Asp Lys Pro Glu Thr Glu
                  20
40
      (2) INFORMATION FOR SEQ ID NO: 596:
45
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 24 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596:
50
     Met Leu Ile Glu Cys Ala Trp Gln Leu Met Phe Leu Leu Leu Lys Val
                       5
                                          10
     Glu Gln Leu Gly Ile Leu Asp Lys
55
                  20
      (2) INFORMATION FOR SEQ ID NO: 597:
60
```

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 1 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
 5
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 597:
      Met
       1
10
      (2) INFORMATION FOR SEQ ID NO: 598:
             (i) SEQUENCE CHARACTERISTICS:
15
                    (A) LENGTH: 8 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 598:
20
      Met Cys Ile Met Ser Ala Leu Val
       1
             5
25
      (2) INFORMATION FOR SEQ ID NO: 599:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 25 amino acids
                    (B) TYPE: amino acid
30
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 599:
      Met Phe Leu Val Trp Phe Phe Trp Gly Leu Ile Ser Ala Leu Ser Asn
                      5
                                         10
35
      Val His Thr Pro Ser Arg Leu Pro Ala
                 20
40
      (2) INFORMATION FOR SEQ ID NO: 600:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 27 amino acids
45
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 600:
     Met Xaa Gly Leu Ser Leu Ile Leu Thr Val Thr Leu Leu Ala Val Ser
50
                       5
                                         10
     Asp Ser Ala Ala Thr Cys Ile Val Ala Lys Gly
                  20
                          25
55
      (2) INFORMATION FOR SEQ ID NO: 601:
             (i) SEQUENCE CHARACTERISTICS:
60
                   (A) LENGTH: 61 amino acids
```

(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 601: Met Trp Thr Arg Ser Ser Arg Cys Leu Leu Cys Ile Pro Gly Xaa 10 Ser Arg Arg Arg Ala Gly Ser Gly Met Lys Pro Arg Ser Trp Ser 10 Ala Trp Arg Pro Ser Gly Gly Thr Gly Thr Ser Ser Ser Gln Ser Ser Thr Gln Ser Arg Thr Leu Ser Ala Thr Ala Ser Pro Ala 15 55 (2) INFORMATION FOR SEQ ID NO: 602: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 602: Met Arg Glu Thr Ser Ile Arg Val Leu Leu Met Leu Pro Ala Leu Glu 10 30 Ser Thr Ser Gly Leu Ser Ala Phe Met Gly Leu Gly Thr 20 25 35 (2) INFORMATION FOR SEQ ID NO: 603: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 amino acids (B) TYPE: amino acid 40 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 603: Met Pro Pro Lys Gln Glu Leu Gly Ser Gly Val Gly Glu Leu Ala Lys 45 Asn Ser Lys Arg Gln His Trp Asn His Arg Trp Lys Lys Tyr Leu Lys 20 25 30 Leu Ile Arg Trp Glu Asp Gly Leu Leu Leu Glu Gly Leu Leu Val 50 Leu Glu His Cys Ala Thr Met Ala Trp Asp Cys Leu Met Arg Leu Glu 50 60 55 Leu Leu Lys Arg Leu

60 (2) INFORMATION FOR SEQ ID NO: 604:

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 604:
10	Lys Ile Val Tyr Ile Leu Gly Asn Pro Leu Lys Phe Asn Ser Arg Val 1 5 10 15 Ile His His Leu Val Leu Leu Gln 20
15	(2) INFORMATION FOR SEQ ID NO: 605:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 605:
25	Met Asn Leu His Gln Arg Arg Leu Leu Leu Ile Gly His Leu Met Thr 1 5 10 15
	Leu Val Lys Ala Ser Lys Ser Phe Ser Phe Thr Glu Ile Thr Ser Ser 20 25 30
30	Arg Lys Lys 35
35	(2) INFORMATION FOR SEQ ID NO: 606:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 606:
45	Leu Leu Gly Tyr Gly Leu Phe Gly His Cys Ile Val Leu Phe Ile Thr 1 5 10 15
43	Tyr Asn Ile His Leu His Ala Leu Phe Tyr Leu Phe Trp Leu Leu Val 20 25 30
50	Gly Gly Leu Ser Thr Leu Arg Met Val Ala Val Leu Val Ser Arg Thr 35 40 45
	Val Gly Pro Thr Gln Arg Leu Leu Cys Gly Thr Leu Ala Ala Leu 50 55 60
55	His Met Leu Phe Leu Leu Tyr Leu His Phe Ala Tyr His Lys Val Xaa 65 70 75 80
60	Glu Gly Ile Leu Asp Thr Leu Glu Gly Pro Asn Ile Pro Pro Ile Gln 85 90 95

Arg Val Pro Arg Asp Ile Pro Ala Met Leu Pro Ala Ala Arg Leu Pro 100 105 Thr Thr Val Leu Asn Ala Thr Ala Lys Ala Val Ala Val Thr Leu Gln 5 120 Ser His 130 10 (2) INFORMATION FOR SEQ ID NO: 607: (i) SEQUENCE CHARACTERISTICS: 15 (A) LENGTH: 23 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 607: 20 Met Leu Val Ile Phe Leu Phe Thr Ser Leu Leu Lys Ile Pro Ser Ser 5 10 Val Pro Gly Leu Ile Asn Val 20 25 (2) INFORMATION FOR SEQ ID NO: 608: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 608: 35 Glu Leu Asp Tyr Ile Leu 5 40 (2) INFORMATION FOR SEQ ID NO: 609: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 232 amino acids 45 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 609: Met Ala Pro Pro Gly Trp Gln Xaa Xaa Xaa Xaa Trp Leu Ala Cys 50 10 Pro Asp Arg Gly Glu Leu Ser Ser Arg Ser Pro Pro Cys Arg Leu Ala 25 55 Arg Trp Ala Glu Gly Asp Arg Glu Thr Arg Thr Cys Leu Leu Glu Leu Ser Ala Gln Ser Trp Gly Gly Arg Phe Arg Arg Ser Ser Ala Val Ser 55 60

	Ala 65	Gly	Ser	Pro	Ser	Arg 70	Leu	His	Phe	Leu	Pro 75	Gln	Pro	Leu	Leu	Leu 80
5	Arg	Ser	Ser	Gly	Ile 85	Pro	Ala	Ala	Ala	Thr 90	Pro	Trp	Pro	Gln	Pro 95	Ala
	Gly	Leu	Pro	Val 100	Arg	Pro	Thr	Pro	Thr 105	Arg	Thr	Gly	Glu	Glu 110	qeA	Arg
10	Thr	Leu	Asp 115	Ile	Ser	Ile	Cys	Thr 120	Glu	Val	Leu	Ala	Gly 125	Thr	Glu	Gln
15	Pro	Pro 130	Pro	Pro	Arg	Met	Thr 135	Ser	Pro	Ser	Ser	Ser 140	Pro	Val	Phe	Arg
15	Leu 145	Glu	Thr	Leu	Asp	Gly 150	Gly	Gln	Glu	Asp	Gly 155	Ser	Glu	Ala	Asp	Arg
20	Gly	Lys	Leu	Asp	Phe 165	Gly	Ser	Gly	Leu	Pro 170	Pro	Met	Glu	Ser	Gln 175	Phe
	Gln	Gly	Glu	Asp 180	Arg	Lys	Phe	Ala	Pro 185	Ser	Asp	Lys	Ser	Gln 190	Pro	Pro
25	Thr	Thr	Glu 195	Arg	Glu	Gln	Val	Pro 200	Val	Ser	Arg	Ile	Gln 205	Thr	Asp	Leu
30	Thr	Glu 210		Gly	Ser	Ser	Met 215	Arg	Ser	Pro	Gly	Val 220	Ser	Pro	Arg	Ile
30	Trp 225	Leu	Asp	Phe	Gln	Ser 230	Thr	Xaa								
35	(2)	INF	ORMA'	rion	FOR	SEO	ID 1	NO: 1	510:							
	,_,			SEQU	ENCE	СНА	RACT		rics		·					
40			(xi)	(B) T D) T	YPE: OPOL	ami OGY:	no a lin	cid ear			. 61	0 :			
	34 - 5-													_		
45	Met 1	vai	Leu	Leu				Ala	_			Leu	Thr	Тут	11e 15	Leu
	Leu	Leu	Asn	Met 20	Leu	Ile	Ala	Leu	Met 25	Xaa	Arg	Asp	Arg	Gln 30	Gln	Cys
50	Arg	His														
55	45.															
55	(2)	INF	ORMA	NOI	FOR	SEQ	ID 1	1 0: 6	11:							
			(i)	SEQUI				ERIS			•					

(B) TYPE: amino acid

(D) TOPOLOGY: linear

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 611:
      Met Val Phe Glu Gly Phe Ser Ser Ala Phe Cys Leu Ser Ser Thr Ala
                                          10
 5
      Pro Thr Ser His Pro
                  20
10
      (2) INFORMATION FOR SEO ID NO: 612:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 9 amino acids
15
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 612:
      Gly Lys Lys Asn Gln Leu Leu Val Ile
20
                       5
      (2) INFORMATION FOR SEQ ID NO: 613:
25
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 29 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
30
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 613:
      Met Val Trp Val Leu Trp Ser Ala Pro Ser Leu Ala Pro Pro Trp Val
                      5
                                         10
35
      Gly Pro Cys Trp Pro Ser Thr Gly Asn Cys Cys Leu Cys
                  20
40
      (2) INFORMATION FOR SEQ ID NO: 614:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 30 amino acids
                    (B) TYPE: amino acid
45
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 614:
      Met Ala Lys Arg Ser Pro Gly Gly Cys Gly Ser Gly Leu Ile Leu Leu
            5
                                          10
50
      Cys Cys Gln Pro Cys Arg Pro Thr Ser Ser Ala Pro Met Arg
                  20
                                      25
55
      (2) INFORMATION FOR SEQ ID NO: 615:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 113 amino acids
60
                    (B) TYPE: amino acid
```

705

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 615: Ile Thr Ile Ala Ile Gln Met Ile Cys Leu Val Asn Xaa Glu Leu Tyr 5 Pro Thr Phe Val Arg Asn Xaa Gly Val Met Val Cys Ser Ser Leu Cys 10 Asp Ile Gly Gly Ile Ile Thr Pro Phe Ile Val Phe Arg Leu Arg Glu 35 40 Val Trp Gln Ala Leu Pro Leu Ile Leu Phe Ala Val Leu Gly Leu Leu 15 Ala Ala Gly Val Thr Leu Leu Leu Pro Glu Thr Lys Gly Val Ala Leu 70 75 Pro Glu Thr Met Lys Asp Ala Glu Asn Leu Gly Arg Lys Ala Lys Pro 20 90 Lys Glu Asn Thr Ile Tyr Leu Lys Val Gln Thr Ser Glu Pro Ser Gly 105 25 Thr 30 (2) INFORMATION FOR SEQ ID NO: 616: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 amino acids (B) TYPE: amino acid 35 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 616: Thr Met Lys Asp Ala Glu Asn Leu Gly Arg Lys Ala Lys Pro Lys Glu 5 10 40 Asn Thr 45 (2) INFORMATION FOR SEQ ID NO: 617: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids 50 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 617: Pro Arg Val Arg Asn Ser Pro Glu Asp Leu Gly Leu Ser Leu Thr Gly 55 10 Asp Ser Cys Lys Leu 20

	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	VO : 0	618:							
5				(A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	2 am no a lin	ino cid ear	acid		: 61	8:			
10	Gln 1	Ala	Asp	Asp	Leu 5	Gln	Ala	Thr	Va1	Ala 10	Ala	Leu	Cys	Val	Leu 15	Arg
15	Gly	Gly	Gly	Pro 20	Trp	Ala	Gly	Ser	Тгр 25	Leu	Ser	Pro	Lys	Thr 30	Pro	Gly
13	Ala	Met	Gly 35	Gly	Asp	Leu	Val	Leu 40	Gly	Leu	Gly	Ala	Leu 45	Arg	Arg	Arg
20	Lys	Arg 50	Leu	Leu												
25	(2)	INF			ENCE A) L	CHA ENGT	RACT H: 2	ERIS	TICS mino	:	ds					
30			(xi)		D) I	OPOL	OGY:	no a lin PTIO	ear	EQ I	D NO	: 61	9:			
	Glu 1		Glu	Lys	Ser 5	Leu	Ala	Gly	Trp	Ala 10	Leu	Val	Leu	Ala	Хаа 15	Xaa
35	Gly	Ile	Gly	Leu 20	Met	Val	Leu	His	Ala 25	Glu	Met	Leu	Trp	Phe 30	Gly	Gly
40	Cys	Ser	Ala 35	Val	Asn	Ala	Thr	Gly 40	His	Leu	Ser	Asp	Thr 45	Leu	Trp	Leu
-	Ile	Pro 50	Ile	Thr	Phe	Ļeu	Thr 55	Ile	Gly	Тут	Gly	Asp 60	Val	Val	Pro	Gly
45	Thr 65	Met	Trp	Gly	Lys	Ile 70	Val	Cys	Leu	Суѕ	Thr 75	Gly	Val	Met	Gly	Val 80
	Cys	Cys	Thr	Ala	Leu 85	Leu	Val	Ala	Val	Val 90	Ala	Arg	Lys	Leu	G1u 95	Phe
50	Asn	Lys	Ala	Glu 100	Lys	His	Val	His	Asn 105	Phe	Met	Met	Asp	Ile 110	Gln	Tyr
55	Thr	Lys	Glu 115	Met	Lys	Glu	Ser	Ala 120	Ala	Arg	Val	Leu	Gln 125	Glu	Ala	Trp
	Met	Phe 130	Tyr	Lys	His	Thr	Arg 135	Arg	Lys	Glu	Ser	His 140	Ala	Ala	Arg	Хаа
60	His 145	Gln	Arg	Xaa	Leu	Leu 150	Ala	Ala	Ile	Asn	Ala 155	Phe	Arg	Gln	Val	Arg 160

707

Leu Lys His Arg Lys Leu Arg Glu Gln Val Asn Ser Met Val Asp Ile 165 170 175 5 Ser Lys Met His Met Ile Leu Tyr Asp Leu Gln Gln Asn Leu Ser Ser 185 Ser His Arg Ala Leu Glu Lys Gln Ile Asp Thr Leu Ala Gly Lys Leu 200 205 10 Asp Ala Leu Thr Glu Leu Leu Ser Thr Ala Leu Gly Pro Arg Gln Leu 215 Pro Glu Pro Ser Gln Gln Ser Lys 15 230 (2) INFORMATION FOR SEQ ID NO: 620: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 620: Tyr Gln Ala His His Val Ser Arg Asn Lys Arg Gly Gln Val Val Gly 30 Thr Arg Gly Gly Phe Arg Gly Cys Thr Val Trp Leu Thr Gly Leu Ser Gly Ala Gly Lys 35 35 (2) INFORMATION FOR SEQ ID NO: 621: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 621: 45 Leu Gln Cys Glu Ile Cys Gly Phe Thr Cys Arg Gln Lys Ala Ser Leu 5 10 Asn Trp His Met Lys Lys His Asp Ala Asp Ser Phe Tyr Gln Phe Ser 50 Cys Asn Ile Cys Gly Lys Lys Phe Glu Lys Lys Asp Ser Val Val Ala 40 55 His Lys Ala Lys Ser His Pro Glu Val 50 60 (2) INFORMATION FOR SEQ ID NO: 622:

```
(i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 19 amino acids
                     (B) TYPE: amino acid
 5
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 622:
      Ile Thr Ser Thr Asp Ile Leu Gly Thr Asn Pro Glu Ser Leu Thr Gln
        1
                        5
                                           10
10
      Pro Ser Asp
15
       (2) INFORMATION FOR SEQ ID NO: 623:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 19 amino acids
20
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 623:
      Asn Ser Thr Ser Gly Glu Cys Leu Leu Leu Glu Ala Glu Gly Met Ser
25
                                          10
      Lys Ser Tyr
30
       (2) INFORMATION FOR SEQ ID NO: 624:
              (i) SEQUENCE CHARACTERISTICS:
35
                     (A) LENGTH: 51 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 624:
40
      Cys Ser Gly Thr Glu Arg Val Ser Leu Met Ala Asp Gly Lys Ile Phe
        1
                        5
      Val Gly Ser Gly Ser Ser Gly Gly Thr Glu Gly Leu Val Met Asn Ser
                                       25
45
      Asp Ile Leu Gly Ala Thr Thr Glu Val Leu Ile Glu Asp Ser Asp Ser
                                   40
      Ala Gly Pro
50
         50
      (2) INFORMATION FOR SEQ ID NO: 625:
55
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 60 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
60
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 625:
```

709

Ile Gln Tyr Val Arg Cys Glu Met Glu Gly Cys Gly Thr Val Leu Ala 5 His Pro Arg Tyr Leu Gln His His Ile Lys Tyr Gln His Leu Leu Lys 25 Lys Lys Tyr Val Cys Pro His Pro Ser Cys Gly Arg Leu Phe Arg Leu 40 10 Gln Lys Gln Leu Leu Arg His Ala Lys His His Thr 15 (2) INFORMATION FOR SEQ ID NO: 626: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids 20 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 626: Asp Gln Arg Asp Tyr Ile Cys Glu Tyr Cys Ala Arg Ala Phe Lys Ser 25 Ser His Asn Leu Ala Val His Arg Met Ile His Thr Gly Glu Lys 30 (2) INFORMATION FOR SEQ ID NO: 627: (i) SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 25 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 627: 40 Arg Ser Ser Arg Ser Lys Thr Gly Ser Leu Gln Leu Ile Cys Lys Ser 5 10 Glu Pro Asn Thr Asp Gln Leu Asp Tyr 45 (2) INFORMATION FOR SEQ ID NO: 628: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 183 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 628: 55 Leu Gln Cys Glu Ile Cys Gly Phe Thr Cys Arg Gln Lys Ala Ser Leu Asn Trp His Met Lys Lys His Asp Ala Asp Ser Phe Tyr Gln Phe Ser 60 25

	Cys	Asn	11e 35	Cys	Gly	Lys	Lys	Phe 40	Glu	Lys	Lys	Asp	Ser 45	Val	Val	Ala
5	His	Lys 50	Ala	Lys	Ser	His	Pro 55	Glu	Val	Xaa	Ile	Thr 60	Ser	Thr	Asp	Ile
10	Leu 65	Gly	Thr	Asn	Pro	Glu 70	Ser	Leu	Thr	Gln	Pro 75	Ser	Asp	Xaa	Asn	Ser 80
10	Thr	Ser	Gly	Glu	Cys 85	Leu	Leu	Leu	Glu	Ala 90	Glu	Gly	Met	Ser	Lys 95	Ser
15	Tyr	Xaa	Cys	Ser 100	Gly	Thr	Glu	Arg	Val 105	Ser	Leu	Met	Ala	Asp 110	Gly	Lys
	Ile	Phe	Val 115	Gly	Ser	Gly	Ser	Ser 120	Gly	Gly	Thr	Glu	Gly 125	Leu	Val	Met
20	Asn	Ser 130	Asp	Ile	Leu	Gly	Ala 135	Thr	Thr	Glu	Val	Leu 140	Ile	Glu	Asp	Ser
25	Asp 145		Ala	Gly	Pro	Xaa 150	Gln	Arg	Asp	Tyr	Ile 155	Cys	Glu	Tyr	Cys	Ala 160
23	Arg	Ala	Phe	Lys	Ser 165	Ser	His	Asn	Leu	Ala 170	Val	His	Arg	Met	Ile 175	His
30	Thr	Gly	Glu	Lys 180	His	Tyr	Xaa									
35	(2)				FOR ENCE											
			(1)	(ENGT	H: 6	0 aum	ino	acid	s					
40			(xi)	(D) T	OPOL	OGY:	lin	ear	EQ I	D NO	: 62	9:			
	Gln 1	Tyr	Val	Arg	Cys 5	Glu	Met	Glu	Gly	Cys 10	Gly	Thr	Val	Leu	Ala 15	His
45	Pro	Arg	Tyr	Leu 20	Gln	His	His	Ile	Lys 25	Tyr	Gln	His	Leu	Leu 30	Lys	Lys
50	Lys	Tyr	Val 35	Cys	Pro	His	Pro	Ser 40	Cys	Gly	Arg	Leu	Phe 45	Arg	Leu	Gln
50	Lys	Gln 50	Leu	Leu	Arg	His	Ala 55	Lys	His	His	Thr	A sp 60				
55	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	: e	i30:							
			(i) 5	_	ENCE											
60					A) LI B) T					acid	5					

711

```
(D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 630:
      Pro Phe Lys Asp Asp Pro Arg Asp Glu Thr Tyr Lys Pro His Leu Glu
 5
      Arg Glu Thr Pro Lys Pro Arg Arg Lys Ser Gly
10
      (2) INFORMATION FOR SEQ ID NO: 631:
             (i) SEQUENCE CHARACTERISTICS:
15
                    (A) LENGTH: 110 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 631:
20
      Glu Met Phe Asp Ser Leu Ser Tyr Phe Lys Gly Ser Ser Leu Leu Leu
      Met Leu Lys Thr Tyr Leu Ser Glu Asp Val Phe Gln His Ala Val Val
                          25
25
      Leu Tyr Leu His Asn His Ser Tyr Ala Ser Ile Gln Ser Asp Asp Leu
                                  40
      Trp Asp Ser Phe Asn Glu Val Thr Asn Gln Thr Leu Asp Val Lys Arg
30
                              55
      Met Met Lys Thr Trp Thr Leu Gln Lys Gly Phe Pro Leu Val Thr Val
35
      Gln Lys Lys Gly Lys Glu Leu Phe Ile Gln Gln Glu Arg Phe Phe Leu
      Asn Met Lys Pro Glu Ile Gln Pro Ser Asp Thr Arg Tyr Met
                100
                                    105
40
      (2) INFORMATION FOR SEQ ID NO: 632:
45
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 24 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 632:
50
     Leu Glu Lys Val Ala Ser Val Gly Asn Ser Arg Pro Thr Gly Gln Gln
                                        10
     Leu Glu Ser Leu Gly Leu Leu Ala
55
                  20
     (2) INFORMATION FOR SEQ ID NO: 633:
```

```
(i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 18 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
 5
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 633:
      Val His Arg Glu Glu Ala Ser Cys Tyr Cys Gln Ala Glu Pro Ser Gly
                                         10
10
      Asp Leu
15
      (2) INFORMATION FOR SEQ ID NO: 634:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 22 amino acids
                     (B) TYPE: amino acid
20
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 634:
      Arg Pro Ala Leu Arg Gln Ala Gly Gly Gly Thr Arg Glu Pro Arg Gln
                        5
25
      Lys Arg Trp Ala Gly Leu
                   20
30
      (2) INFORMATION FOR SEQ ID NO: 635:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 12 amino acids
35
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 635:
      Ala Val Asn Phe Arg Pro Gln Arg Ser Gln Ser Met
40
                       5
      (2) INFORMATION FOR SEQ ID NO: 636:
45
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 37 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
50
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 636:
      Met Ile Thr Asp Val Gln Leu Ala Ile Phe Ala Asn Met Leu Gly Val
                                        10
55
      Ser Leu Phe Leu Leu Val Val Leu Tyr His Tyr Val Ala Val Asn Asn
                                      25
      Pro Lys Lys Gln Glu
              35
60
```

WO 98/39448

	(2)	INP	JRMA'	LION	FUR	SEQ	TD I	VO: 6	37:							
5			(i) :	(A) L B) T	ENGT YPE:	RACT H: 3 ami OGY:	42 a no a	mino cid		ds					
10			(xi)	SEQ	UENC:	E DE	SCRI	PTIO	N: S	EQ I	ON O	: 63	7 :			
10	Glu 1	Glu	Met	Ala	Asp 5	Ser	Val	Lys	Thr	Phe 10	Leu	Gln	Asp	Leu	Ala 15	Arg
15	Gly	Ile	Lys	Asp 20	Ser	Ile	Trp	Gly	Ile 25	Cys	Thr	Ile	Ser	Lys 30	Leu	Asp
	Ala	Arg	Ile 35	Gln	Gln	Lys	Arg	Glu 40	Glu	Gln	Arg	Arg	Arg 45	Arg	Ala	Ser
20	Ser	Val 50	Leu	Ala	Gln	Arg	Arg 55	Ala	Gln	Ser	Ile	Glu 60	Arg	Lys	Gln	Glu
25	Ser 65	Glu	Pro	Arg	Ile	Val 70	Ser	Arg	Ile	Phe	Gln 75	Cys	Cys	Ala	Trp	Asn 80
23	Gly	Gly	Val	Phe	Trp 85	Phe	Ser	Leu	Leu	Leu 90	Phe	Tyr	Arg	Val	Phe 95	Ile
30	Pro	Val	Leu	Gln 100	Ser	Val	Thr	Ala	Arg 105	Ile	Ile	Gly	Asp	Pro 110	Ser	Leu
	His	Gly	Asp 115	Val	Trp	Ser	Trp	Leu 120	Glu	Phe	Phe	Leu	Thr 125	Ser	Ile	Phe
35	Ser	Ala 130	Leu	Trp	Val	Leu	Pro 135	Leu	Phe	Val	Leu	Ser 140	Lys	Val	Val	Asn
40	Ala 145	Ile	Trp	Phe	Gln	Asp 150	Ile	Ala	Asp	Leu	Ala 155	Phe	Glu	Val	Ser	Gly 160
	Arg	Lys	Pro	His	Pro 165	Phe	Pro	Ser	Val	Ser 170	Lys	Ile	Ile	Ala	Asp 175	Met
45	Leu	Phe	Asn	Leu 180	Leu	Leu	Gln	Ala	Leu 185	Phe	Leu	Ile	Gln	Gly 190	Met	Phe
	Val	Ser	Leu 195	Phe	Pro	Ile			Val			Leu	Val 205	Ser	Leu	Leu
50	His	Met 210	Ser	Leu	Leu	Tyr	Ser 215	Leu	Туг	Cys	Phe	Glu 220	Tyr	Arg	Trp	Phe
55	Asn 225	Lys	Gly	Ile	Glu	Met 230	His	Gln	Arg	Leu	Ser 235	Asn	Ile	Glu	Arg	Asn 240
	Trp	Pro	Туг	Tyr	Phe 245	Gly	Phe	Gly	Leu	Pro 250	Leu	Ala	Phe	Leu	Thr 255	Ala
60	Met	Gln	Ser	Ser 260	Tyr	Ile	Ile	Ser	Gly 265	Cys	Leu	Phe	Ser	Ile 270	Leu	Phe

	Pro	Leu	Phe 275	Ile	Ile	Ser	Ala	Asn 280	Glu	Ala	Lys	Thr	Pro 285	Gly	Lys	Ala
5	Tyr	Leu 290	Phe	Gln	Leu	Arg	Leu 295	Phe	Ser	Leu	Val	Val 300	Phe	Leu	Ser	Asn
10	Arg 305	Leu	Phe	His	Lys	Thr 310	Val	Tyr	Leu	Gln	Ser 315	Ala	Leu	Ser	Ser	Ser 320
	Thr	Ser	Ala	Glu	Lys 325	Phe	Pro	Ser	Pro	His 330	Pro	Ser	Pro	Ala	Lys 335	Leu
15	Lys	Ala	Thr	Ala 340	Gly	His										
20	(2)	INF		SEQU	FOR ENCE	СНА	RACT	ERIS	TICS							
				(A) L B) T D) T	YPE:	ami	no a	cid	aci	ds					
25	36-4			_	UENC					_						
	met 1	AIA	ьуs	Pne	Met 5	Thr	Pro	Val	He	10	Asp	Asn	Pro	Ser	15	Trp
30	Gly	Pro	Cys	Ala 20	Val	Pro	Glu	Gln	Phe 25	Arg	Asp	Met	Pro	Tyr 30	Gln	Pro
35	Phe	Ser	Lys 35	Gly	Asp	Arg	Leu	Gly 40	Lys	Val	Ala	Asp	Trp 45	Thr	Gly	Ala
	Thr	Туг 50	Gln	Asp	Lys	Arg	Tyr 55	Thr	Asn	Lys	Тут	Ser 60	Ser	Gln	Phe	Gly
40	Gly 65	Gly	Ser	Gln	Tyr	Ala 70	Тут	Phe	His	Glu	Glu 75	Asp	Glu	Ser	Ser	Phe 80
	Gln	Leu	Val	Asp	Thr 85	Ala	Arg	Thr	Gln	Lys 90	Thr	Ala	Tyr	Gln	Arg 95	Asn
45	Arg	Met	Arg	Phe 100	Ala	Gln	Arg	Asn	Leu 105	Arg	Arg	Asp	Lys	Asp 110	Arg	Arg
50	Asn	Met	Leu 115	Gln	Phe	Asn	Leu	Gln 120	Ile	Leu	Pro	Lys	Ser 125	Ala	Lys	Gln
	Lys	Glu 130	Arg	Glu	Arg	Ile	Arg 135	Leu	Gln	Lys	Lys	Phe 140	Gln	Lys	Gln	Phe
55	Gly 145	Val	Arg	Gln	Lys	Trp 150	Asp	Gln	Lys	Ser	Gln 155	Lys	Pro	Arg	Asp	Ser 160
	Ser	Val	Glu	Val	Arg 165	Ser	Asp	Trp	Glu	Val 170	Lys	Glu	Glu	Met	Asp 175	Phe
60	Pro	Gln	Leu	Met	Lys	Met	Arg	Tyr	Leu	Glu	Val	Ser	Glu	Pro	Gln	Asp

WO 98/39448

PCT/US98/04493

				180					185					190		
5	Ile	Glu	Cys 195	Cys	Gly	Ala	Leu	Glu 200	Tyr	Tyr	Asp	Lys	Ala 205	Phe	Asp	Arg
,	Ile	Thr 210	Thr	Arg	Ser	Glu	Lys 215	Pro	Leu	Arg	Xaa	Xaa 220	Lys	Arg	Ile	Phe
10	His 225	Thr	Val	Thr	Thr	Thr 230	Asp	Asp	Pro	Val	Ile 235	Arg	Lys	Leu	Ala	Lys 240
	Thr	Gln	Gly	Asn	Val 245	Phe	Ala	Thr	Asp	Ala 250	Ile	Leu	Ala	Thr	Leu 255	Met
15	Ser	Cys	Thr	Arg 260	Ser	Val	Tyr	Ser	Trp 265	Asp	Ile	Val	Val	Gln 270	Arg	Val
20	Gly	Ser	Lys 275	Leu	Phe	Phe	Asp	Lys 280	Arg	Asp	Asn	Ser	Asp 285	Phe	Asp	Leu
20	Leu	Thr 290		Ser	Glu	Thr	Ala 295	Asn	Glu	Pro	Pro	Gln 300	Asp	Glu	Gly	Asn
25	Ser 305	Phe	Asn	Ser	Pro	Arg 310	Asn	Leu	Ala	Met	Glu 315	Ala	Thr	Тут	Ile	Asn 320
	His	Asn	.Phe	Ser	Gln 325	Gln	Cys	Leu	Arg	Met 330	Gly	Lys	Glu	Arg	Туг 335	Asn
30	Phe	Pro	Asn	Pro 340	Asn	Pro	Phe	Val	Glu 345	Asp	Asp	Met	Asp	Lys 350	Asn	Glu
35	Ile	Ala	Ser 355	Val	Ala	Tyr	Arg	Туг 360	Arg	Ser	Gly	Lys	Leu 365	Gly	Asp	Asp
	Ile	Asp 370		Ile	Val	Arg	Cys 375	Glu	His	Asp	Gly	Val 380	Met	Thr	Gly	Ala
40	Asn 385	Gly	Glu	Val	Ser	Phe 390	Ile	Asn	Ile	Lys	Thr 395	Leu	Asn	Glu	Trp	Asp 400
	Ser	Arg	His	Cys	Asn 405	Gly	Val	Asp	Trp	Arg 410	Gln	Lys	Leu	Asp	Ser 415	Gln
45	Arg	Gly	Ala	Val 420	Ile	Ala	Thr	Glu	Leu 425	Lys	Asn	Asn	Ser	Tyr 430	Lys	Leu
50	Ala	Arg	Trp 435	Thr	Cys	Cys	Ala	Leu 440	Leu	Ala	Gly	Ser	Glu 445	Tyr	Leu	Lys
	Leu	Gly 450	Tyr	Val	Ser	Arg	Tyr 455	His	Val	Lys	Asp	Ser 460	Ser	Arg	His	Val
55	Ile 465	Leu	Gly	Thr	Gln	Gln 470	Phe	Lys	Pro	Asn	Glu 475	Phe	Ala	Ser	Gln	1le 480
	Asn	Leu	Ser	Val	Glu 485	Asn	Ala	Trp	Gly	Ile 490	Leu	Arg	Cys	Val	Ile 495	Asp
60	Ile	Cys	Met	Lys	Leu	Glu	Glu	Gly	Lys	Tyr	Leu	Ile	Leu	Lys	Asp	Pro

500 505 510 Asn Lys Gln Val Ile Arg Val Tyr Ser Leu Pro Asp Gly Thr Phe Ser 520 5 Ser 10 (2) INFORMATION FOR SEQ ID NO: 639: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 194 amino acids 15 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 639: Lys Lys Arg His Thr Asp Val Gln Phe Tyr Thr Glu Val Gly Glu Ile 20 Thr Thr Asp Leu Gly Lys His Gln His Met His Asp Arg Asp Leu 25 Tyr Ala Glu Gln Met Glu Arg Glu Met Arg His Lys Leu Lys Thr Ala Phe Lys Asn Phe Ile Glu Lys Val Glu Ala Leu Thr Lys Glu Glu Leu 55 30 Glu Phe Glu Val Pro Phe Arg Asp Leu Gly Phe Asn Gly Ala Pro Tyr 70 Arg Ser Thr Cys Leu Leu Gln Pro Thr Ser Ser Ala Leu Val Asn Ala 35 Thr Glu Trp Pro Pro Phe Val Val Thr Leu Asp Glu Val Glu Leu Ile 105 40 His Phe Xaa Arg Val Gln Phe His Leu Lys Asn Phe Asp Met Val Ile 120 Val Tyr Lys Asp Tyr Ser Lys Lys Val Thr Met Ile Asn Ala Ile Pro 135 45 Val Ala Ser Leu Asp Pro Ile Lys Glu Trp Leu Asn Ser Cys Asp Leu Lys Tyr Thr Glu Gly Val Gln Ser Leu Asn Trp Thr Lys Ile Met Lys 50 170 Thr Ile Val Asp Asp Pro Glu Gly Phe Phe Glu Gln Gly Gly Trp Ser 180 185 190 55 Phe Leu

60 (2) INFORMATION FOR SEQ ID NO: 640:

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 amino acids															
-																
3																
			(Xi)	SEC	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NO): 64	10:			
	A				C1		01		1							
	Arg	ser	GIY	Leu	Gly		GIY	Ile	Thr			Phe	Leu	Ala		
10	1	•			5					10					15	
10	714	. m.	. 01	nha	7	**- 1	_	_								
	116	: 1111	GII	PILE	Leu	vaı	TYT	Asn			Тут	Gln	Тут			Pro
				20					25					30		
	Δατ	Dhe	LOU	The second	Ile	7~~	C	Ø	7	D	_				_	
15			35		110	мy	Ser	40		PIO	cys	116			Ser	G17
			33					40					45			
	Gly	, Val	Thr	Val	Gly	Asn	Tle	Glv	Ara	GIn	I.e.i	λla	Mat	Clu	17-1	Dec
	•	50)		2		55	01,	9	O.I.I	Leu	60		GIY	vai	FIC
												•				
20	Glu	Lys	Pro	His	Ser	Asp										
	65	i				70										
0.5																
25	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:	641:							
			(i)		ENCE											
					A) L					aci	ds					
30					B) T											
30			/2 N		D) T											
			(XI)	SEQ	UENC	E DE	SCRI	P1.10	N: S	EQ I	D NO	: 64	1:			
	Val	ጥ ስተ	Gln	Pro	Lys	Hie	Lou	cor	71-	Com	Wat	~ 1	61	0	1	~1
	1		0		5	1113	Deu	Ser	ALG	10	met	GIY	GIĀ	ser		GIU
35	_				_					10					15	
	Ile	Pro	Phe	Ser	Phe	Tvr	Tvr	Pro	Tro	Glu	Len	Ala	Xaa	Yaa	Pro	Yaa
				20		-4	-3-		25	010	D Cu	, niu	164 0	30	rio	Add
	Val	Arg	Ile	Ser	Trp	Arg	Arg	Gly	His	Phe	His	Gly	Gln	Ser	Phe	Tvr
40			35			_	-	40			_		45			-,-
	Ser	Thr	Arg	Pro	Pro	Ser	Ile	His	Lys	Asp	Tyr	Val	Asn	Arg	Leu	Phe
		50					55					60				
45																
45	Leu	Asn	Trp	Thr	Glu	Gly	Gln	Glu	Ser	Gly	Phe	Leu	Arg	Ile	Ser	Asn
	65					70					75					80
	Leu	Arg	Lys	Glu	Asp	Gln	Ser	Val	Tyr	Phe	Суѕ	Arg	Val	Glu	Leu	Asp
50					85					90					95	
50	m.	_	_	_												
	inr	Arg	Arg		Gly											
				100												
55																
	(2)	INFO	יעשק(ידוי	FOR	ሪድሪ	TD N	n. 6	12.							
	,					<u>-</u> 2	10 N	J. 0	44.							
			(i) 9	EQUE	NCE	CHAR	LACTE	RIST	ics.							
					A) LE						ls					
60					3) T						_					

			(xi)					lin PTIO		EQ I	ои о	: 64	2:			
5	Met 1	Glu	Ala	Gln	Gln 5	Val	Asn	Glu	Ala	Glu 10	Ser	Ala	Arg	Glu	Gln 15	Leu
	Gln	Xaa	Leu	His 20	Asp	Gln	Ile	Ala	Gly 25	Gln	Lys	Ala	Ser	Lys 30	Gln	Glu
10	Leu	Glu	Thr 35	Glu	Leu	Glu	Arg	Leu 40	Lys	Gln	Glu	Phe	His 45	Tyr	Ile	Glu
15	Glu	Asp 50		Tyr	Arg	Thr	Lys 55	Asn	Thr	Leu	Gln	Ser 60	Arg	Ile	Lys	Asp
15	Arg 65	Asp	Glu	Glu	Ile	Gln 70	Lys	Leu	Arg	Asn	Gln 75	Leu	Thr	Asn	Lys	Thr 80
20	Leu	Ser	Asn	Ser	Ser 85	Gln	Ser	Glu	Leu	Glu 90	Asn	Arg	Leu	His	Gln 95	Leu
	Thr	Glu	Thr	Leu 100	Ile	Gln	Lys	Gln	Thr 105	Met	Leu	Glu	Ser	Leu 110	Ser	Thr
25	Glu	Lys	Asn 115	Ser	Leu	Val	Phe	Gln 120	Leu	Glu	Arg	Leu	Glu 125	Gln	Gln	Met
30	Asn	Ser 130	Ala	Ser	Gly	Ser	Ser 135	Ser	Asn	Gly	Ser	Ser 140	Ile	Asn	Met	Ser
	Gly 145	Įle	Asp	Asn	Gly	Glu 150	Gly	Thr	Arg	Leu	Arg 155	Asn	Val	Pro	Val	Leu 160
35	Phe	Asn	Asp	Thr	Glu 165	Thr	Asn	Leu	Ala	Gly 170	Met	Туг	Gly	Lys	Val 175	Arg
	Lys	Ala	Ala	Ser 180	Ser	Ile	Asp	Gln	Phe 185	Ser	Ile	Arg	Leu	Gly 190	Ile	Phe
40	Leu	Arg	Arg 195	Туг	Pro	lle	Ala	Arg 200	Val	Phe	Val	Ile	Ile 205	Tyr	Met	Ala
45	Leu	Leu 210	His	Leu	Trp	Val	Met 215	Ile	Val	Leu	Leu	Thr 220	Tyr	Thr	Pro	Glu
	Met 225	His	His	Asp	Gln	Pro 230	Туг	Gly	Lys							
50	(2)	INF	ORMAT	CION	FOR	SEQ	ID 1	vo: 6	543:							
55			(i) :	(.	A) L	ENGT	H: 4	ERIS 3 am	ino a		s					
,,,			(xi)	(1	D) T	OPOL	OGY:	no a lin PTIO	ear	EQ II	O NO	: 64:	3:			
50	Ile 1	Arg	His	Glu	Gln 5	His	Pro	Asn	Phe	Ser 10	Leu	Glu	Met	His	Ser 15	Lys

WO 98/39448 PCT/US98/04493

	Gly	Ser	Ser	Leu 20	Leu	Leu	Phe	Leu	Pro 25	Gln	Leu	Ile	Leu	Ile 30	Leu	Pro
5	Val	Cys	Ala 35	His	Leu	His	Glu	Glu 40	Leu	Asn	Cys					
10	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	₹O: €	544 :							
			(i)	SEQU	ENCE	CHA	RACT	ERIS.	rics	:						
					. –			3 am		acid	s					
15				-				no a								
13			(xi)	SEQ				lin Prio		EO TI	סא מ	. 64	a .			
													••			
	Ser	Phe	Phe	Ile		Glu	Glu	Lys	Gly	His	Leu	Leu	Leu	Gln	Ala	Glu
20	1				5					10					15	
20	Δνα	Hic	Dro	T	U=1	λla	Clve	מות	T 011	1701	C1	1701	C	C1	~ 1	
	AL 9	1113	FIO	Trp 20	vai	MIG	GIY	AIG	25	vai	Gry	Vai	Ser	30	GIY	ren
														-		
25	Thr	Leu		Thr	Cys	Ser	Gly		Thr	Glu	Lys	Pro	Ala	Thr	Lys	Asn
25			35					40					45			
	Tvr	Phe	Leu	Lys	Ara	Leu	Leu	Gln	Glu	Met	Hie	alī	Ara	Δla	Δen	
	- , -	50		, -	3		55			-10-		60	- - - 9			

A. The indications made below relate to the microorganism refer on page 116 , line N/.	•					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Co	ollection					
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	atry)					
Date of deposit February 26, 1997	Accession Number 97897					
C. ADDITIONAL INDICATIONS (leave blank if not applications)	able) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (learn	e blank if not applicable)					
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")						
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application	This sheet was received by the International Bureau on:					
Authorized officer Susan White PCT International Division	Authorized officer					

A. The indications made below relate to the microorganism referred on page 116 , line N/A	d to in the description					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Coll	ection					
Address of depositary institution (including postal code and countred 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	y)					
Date of deposit May 15, 1997	Accession Number 209043					
C. ADDITIONAL INDICATIONS (leave blank if not applicable	le) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (leave						
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")						
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application Authorized officer Susan White PCT International Division	This sheet was received by the International Bureau on: Authorized officer					

(PCT Rule 13bis)

A. The indications made below relate to the microorganism refer on page 119 , line N/A	·				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet				
Name of depositary institution American Type Culture Co	llection				
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	try)				
Date of deposit September 4, 1997	Accession Number 209235				
C. ADDITIONAL INDICATIONS (leave blank if not application)	ble) This information is continued on an additional sheet				
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)					
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)					
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit") .					
For receiving Office use only	For International Bureau use only				
This sheet was received with the international application	This sheet was received by the International Bureau on:				
Authorized officer Suman White PCT International Division	Authorized officer				

A. The indications made below relate to the microorganism refer on page 122 , line N/A	-					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Co	llection					
Address of depositary institution (including postal code and coun 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	itry)					
Date of deposit February 26, 1997	Accession Number 97898					
C. ADDITIONAL INDICATIONS (leave blank if not application)	ble) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (leave	e blank if not applicable)					
The indications listed below will be submitted to the International Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession					
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application	This sheet was received by the International Bureau on:					
Authorized officer Susan White PCT International Division	Authorized officer					

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page 122 , line N/A						
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Collection						
Address of depositary institution (including postal code and country	2)					
12301 Parklawn Drive Rockville, Maryland 20852 United States of America						
Date of deposit May 15, 1997	Accession Number 209044					
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States) . E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)						
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")						
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application Authorized officer	This sheet was received by the International Bureau on:					
Susan White PCT International Division						

A. The indications made below relate to the microorganism referred to in the description on page 126 , line N/A						
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Coll	ection					
Address of depositary institution (including postal code and countr 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	y) .					
Date of deposit February 26, 1997	Accession Number 97899					
C. ADDITIONAL INDICATIONS (leave blank if not applicable	le) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
·						
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)					
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")						
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application	This sheet was received by the International Bureau on:					
Authorized officer Susan White PCT International Division	Authorized officer					

A. The indications made below relate to the microorganism refer on page 126 , line N/A	•				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet				
Name of depositary institution American Type Culture Collection					
Address of depositary institution (including postal code and country) 12301 Parklawn Drive Rockville, Maryland 20852 United States of America					
Date of deposit May 15, 1997	Accession Number 209045				
C. ADDITIONAL INDICATIONS (leave blank if not application)	ble) This information is continued on an additional sheet				
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)					
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)					
The indications listed below will be submitted to the International Bureau later (specify the general nature of the Indications, e.g., "Accession Number of Deposit")					
For receiving Office use only	For International Bureau use only				
This sheet was received with the international application	This sheet was received by the International Bureau on:				
Authorized officer Susan White POT International Division	Authorized officer				

A. The indications made below relate to the microorganism referred to in the description on page 130 , line N/A						
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Collection						
Address of depositary institution (including postal code and country) 12301 Parklawn Drive Rockville, Maryland 20852 United States of America						
Date of deposit April 28, 1997	Accession Number 209011					
C. ADDITIONAL INDICATIONS (leave blank if not applicate	ble) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)						
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")						
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application Authorized officer	This sheet was received by the International Bureau on:					
Susan White PCT International Division	Authorized officer					

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referr on page 131 , line N/A	•					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Collection						
Address of depositary institution (including postal code and count	n)					
12301 Parklawn Drive Rockville, Maryland 20852 United States of America						
Date of deposit February 26, 1997	Accession Number 97900					
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	ole) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")						
This sheet was received with the international application	For International Bureau use only This sheet was received by the International Bureau on:					
Authorized officer Susan White PCT International Division	Authorized officer					

A. The indications made below relate to the microorganism referr on page 137 , line N/A					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet				
Name of depositary institution American Type Culture Collection					
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America					
Date of deposit February 26, 1997	Accession Number 97901				
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet				
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)					
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)					
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")					
For receiving Office use only	For International Bureau use only				
This sheet was received with the international application Authorized officer Susan White	This sheet was received by the International Bureau on:				
PCT International Division	Audition VIIIC				
Form PCT/RO/134 (July 1992)					

A. The indications made below relate to the microorganism refer on page 131 , line N/A	•					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Collection						
Address of depositary institution (including postal code and country) 12301 Parklawn Drive Rockville, Maryland 20852 United States of America						
Date of deposit May 15, 1997	Accession Number 209046					
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)						
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")						
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application	This sheet was received by the International Bureau on:					
Authorized officer Susan White PCT International Division	Authorized officer					

A. The indication on page	tions made below relate to	-	eferred N/A	to in the description
B. IDENTIF	ICATION OF DEPOS	SIT		Further deposits are identified on an additional sheet
Name of depos	itary institution Ame	erican Type Culture	Colle	ection
 12301 Parkla	aryland 20852	ling postal code and c	ountry	·)
Date of deposit	May 15, 1997			Accession Number 209047
C. ADDITIO	ONAL INDICATION	S (leave blank if not app	licable	This information is continued on an additional sheet
D. DESIGNA	ATED STATES FOR	WHICH INDICAT	rion:	S ARE MADE (if the indications are not for all designated States)
E. SEPARA	TE FURNISHING OF	INDICATIONS (eave bi	lank if not applicable)
	listed below will be subn			areau later (specify the general nature of the indications, e.g., "Accession
	For receiving Office	use only	7	For International Bureau use only
This shee	t was received with the inter			This sheet was received by the International Bureau on:

A. The indications made below relate to the microorganism referred to in the description on page 137 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Coll	lection	
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	n)	
Date of deposit May 22, 1997	Accession Number 209076	
C. ADDITIONAL INDICATIONS (leave blank if not applicable	the) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)		
The indications listed below will be submitted to the International F Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession	
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on	
Authorized officer Sugan White PCT International Division	Authorized officer	

WO 98/39448 PCT/US98/04493

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

	A. The indications made below relate to the microorganism referred to in the description on page 140 , line N/A		
B. IDENTIFICA	TION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary	institution American Type Culture Col	lection	
Address of deposita 12301 Parklawn I Rockville, Maryla United States of A	and 20852	(יעי	
Date of deposit	August 21, 1997	Accession Number 209215	
C. ADDITIONA	L INDICATIONS (leave blank if not applicab	This information is continued on an additional sheet	
D. DESIGNATE	D STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE F	TURNISHING OF INDICATIONS (leave	blank if not applicable)	
The indications liste Number of Deposit")	d below will be submitted to the International l	Bureau later (specify the general nature of the indications, e.g., "Accession	
Fo	or receiving Office use only	For International Bureau use only	
	received with the international application	This sheet was received by the International Bureau on:	
	usan White CT International Division	Authorized officer	

A. The indications made below relate to the microorganism referred on page 160 , line N/A	ed to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Col	lection
Address of depositary institution (including postal code and count	7/)
12301 Parklawn Drive Rockville, Maryland 20852 United States of America	
Date of deposit February 26, 1997	Accession Number 97904
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)
The indications listed below will be submitted to the International I Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referred on page 154 , line N/A	•
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Coll	lection
Address of depositary institution (including postal code and count	7)
12301 Parklawn Drive Rockville, Maryland 20852 United States of America	
Date of deposit July 3, 1997	Accession Number 209139
C. ADDITIONAL INDICATIONS (leave blank if not applicab	ole) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if nos applicable)
The indications listed below will be submitted to the International E Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

(PCT Rule 13bis)

A. The indications made below relate to the microorganism refers on page 153 , line N/A	•
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Co.	llection
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	try)
Date of deposit May 15, 1997	Accession Number 209049
C. ADDITIONAL INDICATIONS (leave blank if not applications)	ble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIO	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave The indications listed below will be submitted to the International Number of Deposit")	blank if not applicable) Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referred to in the description on page 153 , line N/A			
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet		
Name of depositary institution American Type Culture Collection			
Address of depositary institution (including postal code and country	77)		
12301 Parklawn Drive Rockville, Maryland 20852 United States of America			
Date of deposit February 26, 1997	Accession Number 97903		
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet		
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)		
E. SEPARATE FURNISHING OF INDICATIONS (leave			
The indications listed below will be submitted to the International E Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession		
For receiving Office use only	For International Bureau use only		
This sheet was received with the international application	This sheet was received by the International Bureau on:		
Authorized officer Susan White PCT International Division	Authorized officer		

A. The indications made below relate to the microorganism referred to in the description on page 142 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Co	llection	
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	try)	
Date of deposit June 12, 1997	Accession Number 209119	
C. ADDITIONAL INDICATIONS (leave blank if not applica-	ble) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATIO	ONS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (leave		
The indications listed below will be submitted to the International Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession .	
For receiving Office use only	For International Bureau use only	
Authorized officer Susan White PCT International Division	This sheet was received by the International Bureau on Authorized officer	

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred on page 146 , line N/A	-
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Col	lection
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	<i>හ</i>)
Date of deposit February 26, 1997	Accession Number 97902
C. ADDITIONAL INDICATIONS (leave blank if not applicab	ble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave The indications listed below will be submitted to the International Number of Deposit")	blank if not applicable) Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susari White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referred on page 146 , line N/A	•
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Col	lection
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	?)
Date of deposit May 15, 1997	Accession Number 209048
C. ADDITIONAL INDICATIONS (leave blank if not applicab	This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	
The indications listed below will be submitted to the International E Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
Authorized officer Susan White PCT International Division	This sheet was received by the International Bureau on: Authorized officer

A. The indications made below relate to the microorganism referred to in the description on page 160 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Col	lection	
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852	ን)	
United States of America		
Date of deposit May 15, 1997	Accession Number 209050	
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)		
The indications listed below will be submitted to the International I Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession	
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer Susan White PCT International Division	Authorized officer	

A. The indications made below relate to the microorganism referred to in the description on page 142 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Coll	ection	
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	ν)	
Date of deposit February 12, 1998	Accession Number 209627	
C. ADDITIONAL INDICATIONS (leave blank if not applicable	te) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (leave		
The indications listed below will be submitted to the International E Number of Deposit")	Burcau later (specify the general nature of the indications, e.g., "Accession	
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer Susan White PCT International Division	Authorized officer	

WO 98/39448 PCT/US98/04493

What Is Claimed Is:

5

10

15

20

25

30

35

1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:

743

- (a) a polynucleotide fragment of SEQ ID NO:X or a polynucleotide fragment of the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X:
- (b) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (c) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y or a polypeptide domain encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (d) a polynucleotide encoding a polypeptide epitope of SEQ ID NO:Y or a polypeptide epitope encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (e) a polynucleotide encoding a polypeptide of SEQ ID NO:Y or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X, having biological activity;
 - (f) a polynucleotide which is a variant of SEQ ID NO:X;
 - (g) a polynucleotide which is an allelic variant of SEO ID NO:X;
 - (h) a polynucleotide which encodes a species homologue of the SEQ ID NO:Y;
- (i) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h), wherein said polynucleotide does not hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence of only A residues or of only T residues.
- 2. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding a secreted protein.
 - 3. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding the sequence identified as SEQ ID NO:Y or the polypeptide encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

PCT/US98/04493 WO 98/39448 744

4. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises the entire nucleotide sequence of SEO ID NO:X or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEO ID NO:X.

5

5. The isolated nucleic acid molecule of claim 2, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the Nterminus.

10

- 6. The isolated nucleic acid molecule of claim 3, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the Nterminus.
- 7. A recombinant vector comprising the isolated nucleic acid molecule of claim 1. 15
 - 8. A method of making a recombinant host cell comprising the isolated nucleic acid molecule of claim 1.

20

- 9. A recombinant host cell produced by the method of claim 8.
- 10. The recombinant host cell of claim 9 comprising vector sequences.
- 11. An isolated polypeptide comprising an amino acid sequence at least 95% 25 identical to a sequence selected from the group consisting of:
 - (a) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (b) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z, having biological activity;

30

35

- (c) a polypeptide domain of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (d) a polypeptide epitope of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (e) a secreted form of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (f) a full length protein of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;

WO 98/39448 PCT/US98/04493

745

- (g) a variant of SEQ ID NO:Y;
- (h) an allelic variant of SEQ ID NO:Y; or
- (i) a species homologue of the SEQ ID NO:Y.
- 12. The isolated polypeptide of claim 11, wherein the secreted form or the full length protein comprises sequential amino acid deletions from either the C-terminus or the N-terminus.
 - 13. An isolated antibody that binds specifically to the isolated polypeptide of claim 11.

·

- 14. A recombinant host cell that expresses the isolated polypeptide of claim 11.
 - 15. A method of making an isolated polypeptide comprising:
- (a) culturing the recombinant host cell of claim 14 under conditions such that said polypeptide is expressed; and
 - (b) recovering said polypeptide.

10

15

20

25

30

35

16. The polypeptide produced by claim 15.

17. A method for preventing, treating, or ameliorating a medical condition,

- comprising administering to a mammalian subject a therapeutically effective amount of the polypeptide of claim 11 or the polynucleotide of claim 1.
- 18. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
 - (a) determining the presence or absence of a mutation in the polynucleotide of claim 1; and
- (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or absence of said mutation.
 - 19. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
- (a) determining the presence or amount of expression of the polypeptide of claim 11 in a biological sample; and
 - (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression of the polypeptide.

WO 98/39448

PCT/US98/04493

746

- 20. A method for identifying a binding partner to the polypeptide of claim 11 comprising:
 - (a) contacting the polypeptide of claim 11 with a binding partner; and
- 5 (b) determining whether the binding partner effects an activity of the polypeptide.
 - 21. The gene corresponding to the cDNA sequence of SEQ ID NO:Y.
- 10 22. A method of identifying an activity in a biological assay, wherein the method comprises:
 - (a) expressing SEQ ID NO:X in a cell;
 - (b) isolating the supernatant;
 - (c) detecting an activity in a biological assay; and
- 15 (d) identifying the protein in the supernatant having the activity.
 - 23. The product produced by the method of claim 22.