Learning Objectives

<u>Describe</u> the four possible decisions in the *Null* Hypothesis Statistical Testing (NHST) framework

• <u>Identify</u> factors that increase the likelihood of rejecting the null hypothesis (H_0)

Justify decisions to manage error

Visualize statistical power

Announcements

- Midterm exam reviews ongoing
 - See corrected item in announcements
 - Even if you missed the midterm

SPSS/Jamovi 4 is available (Sign Test)

No video for Monday

• Ch. 10 is important (for Ch. 11 focus on lecture)

Inferential Statistics

- Quantify <u>confidence</u> in whether our pattern of observations will replicate
 - Goal: Rule <u>out</u> random chance as potential cause
 - a.k.a, reject H_0
 - "My estimates will fluctuate but the pattern is reliable; (it would replicate if I sampled again)"

Possible conclusions:

- 1. We can rule out random chance
 - "The relationship is probably real"
- 2. We cannot rule out random chance*
 - "The relationship could easily be random"

^{*}Note: We do not conclude that chance is the cause, but it could be

Inference: Which distribution did our observation come from?

Truth/Reality

Inference: Which distribution did our observation come from?

Distribution $|H_0$: Red curve Distribution $|H_1$: Blue curve

Chosen value for α

	effect	effect
Don't reject H ₀	Correct! (1 - α)	Type II Error β
Reject H ₀	Type I Error α	Correct! (1 - β)

Alpha and Beta

Beta (β) is the probability of Type II error

We say "there is no effect", but there <u>is</u> an effect

Alpha (α) is the probability of Type I error

We say "there is an effect", but there is not an effect

Mathematical Formulae

When H_0 is true, in reality there is **no effect**

- We reject H_0 , a *Type I* error, or
- We correctly retain H_0

$$1 = \alpha + (1 - \alpha)$$

When H_0 is not true, in reality there is an effect

- We retain H_0 , a *Type II* error, or
- We correctly reject H_0

$$1 = \beta + (1 - \beta)$$

Error Management

- Goal: Be correct all the time!
 - Impossible goal
- Reality: Manage errors in a systematic way

- Which errors are worse? Type I or Type II?
 - Verdict: Guilty vs. not guilty
 - Medicine: New Coronavirus test
 - Type I error: Test says you are sick, but you aren't sick
 - Type II error: Test says you aren't sick, but you are

Controlling Error rates

Controlling Type II (or β) errors:

- Type II errors less likely with more statistical power (1- β)
 - Larger N

more likely to reject the null hypothesis

- Smaller σ_{pop}
- Larger difference between means
- Larger α , or 1-tail test

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{N}}$$

$$z_{\text{obt}} = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}}$$

When do we reject the null?

- Reject when z_{obt} gets large enough
 - Specifically when ± 1.96 (for 2-tail tests)
 - Because z_{crit} is always ± 1.96 or ± 1.645 (for 1-tail)
 - Critical values change for other test statistics (e.g., t, F)
- Larger N increases z_{obt} (because it reduces $\sigma_{\bar{X}}$)
- Smaller σ_{pop} increases z_{obt} (b/c it reduces $\sigma_{\bar{X}}$)
- Larger difference $(\bar{X} \mu)$
- Larger α , b/c it reduces z_{crit}

 $(z_{obt} does not need to be as extreme to reject <math>H_0$)

• Directional H_0/H_1 , b/c it reduces z_{crit}

 $(z_{obt} does not need to be as extreme to reject <math>H_0$)

$z_{\rm obt}$ & $z_{\rm crit}$ are the moving parts:

Type I vs. Type II errors

Reducing Type I errors <u>increases</u> Type II errors

Note: Reducing Type II errors does not increase Type I errors

- We need to balance errors:
 - What are the consequences of failing to find a real effect?
 - What are the consequences of "finding" an effect that is not real?

We choose acceptable rates of Type I error:

• Psychology: $\alpha = .05$

• Physics: $\alpha = .00000003$

• Biology (macro): $\alpha = .05$

• Biology (micro): $\alpha = .000001$

$$(1 - \beta) = \underline{Power}$$

- Research seeks at least 80% power
 - Not 40-60%!!

- Visualize in G*Power (or Laken's Shiny)
 - Most common tool for calculating power
 - Normal distribution (or z-distribution)
 - What is/are the z-score for: $\alpha_{2-tail} = .05$

Red =
$$H_0$$
 Distribution (If H_0 were true)
Blue = H_1 Distribution (If H_1 were true)

$$\alpha_{2-tail} = .05$$
 $\beta = .15$

Power = .85

$$\bar{X}$$
- μ = 3 units $\sigma_{\bar{X}}$ = 1 unit

Red = If H_0 is true Blue = If H_1 is true

$$\alpha_{2-tail} = .05$$
 $\beta = .15$
Power = .85

$$\bar{X}$$
 - μ = 3 units $\sigma_{\bar{X}}$ = 1 unit

Power when effect size is smaller!

Red = If H_0 is true **Blue** = If H_1 is true

$$\alpha_{2-tail} = .05$$
 $\beta = .83$
Power = .17

$$\overline{X}$$
 - μ = 1 unit (was 3) $\sigma_{\overline{X}}$ = 1 unit

Power when variability is greater!

Red = If
$$H_0$$
 is true
Blue = If H_1 is true

$$\alpha_{2-tail} = .05$$
 $\beta = .29$
Power = .71

$$\overline{X}$$
 - μ = 3 units $\sigma_{\overline{X}}$ = 2 units (was 1)

Power when 1-tail (vs. 2-tail) test!

Red = If H_0 is true **Blue** = If H_1 is true

$$\alpha_{1-tail} = .05$$
 $\beta = .09$
Power = .91.

$$\bar{X}$$
 - μ = 3 units $\sigma_{\bar{X}}$ = 1 unit

Power when α is large!

Red = If H_0 is true **Blue** = If H_1 is true

$$\alpha_{1-tail} = .20$$

$$\beta = .01$$
Power = .99

$$\overline{X}$$
 - μ = 3 units $\sigma_{\overline{X}}$ = 1 unit

3 Common Types of Power

- 1. a priori − Before data, find N given:
 - $-\alpha$, (1 β), expected effect size

- 2. post hoc After data, find power given:
 - $-\alpha$, N, observed effect size

- 3. Sensitivity Before/after data, find detectable effect size given:
 - $-\alpha$, (1β) , N

Setting Power

• **Exp. 1**: "We sought to collect 80 participants... Sensitivity analysis indicated with power set at .80, we could detect an effect size as small as $d_z = .317$ "

- 3. Sensitivity power b/c we don't know the size of the effect
 - $\alpha = .05$
 - $(1-\beta) = .80$
 - N = 80

Setting Power

• Exp. 2: "Based on the observed effect size of d_z = .430 in Experiment 1, we sampled from 48 participants to set power at .80"

- 1. Use *a priori* power after getting an estimate of effect size in Exp. 1
 - $\alpha = .05$
 - $(1-\beta) = .80$
 - Effect size = d_z = .430