

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS

Estructuras Discretas

Tarea 1

PRESENTA

Castañon Maldonado Carlos Emilio Bazán Rojas Karina Ivonne

PROFESORA

Araceli Liliana Reyes Cabello

AYUDANTES

Rafael Reyes Sánchez José Eliseo Ortíz Montaño

Estructuras Discretas

Tarea Semanal 1: Sucesiones y conjuntos recursivos

1 Dada la siguientes ecuaciones recursivas, calcula los primeros seis términos de la sucesión. Indica quién es el término t_{15}

$$t_0 = 1$$

$$t_n = 2 * t_{n-1}$$
 Si n es par

$$\stackrel{\circ}{t_n}=2*t_{n-1}$$
 Si n es par $t_n=(-1)*(t_{n-1})^{-1}$ Si n es impar

$$t_1 = (-1) * (t_{1-1})^{-1} = (-1) * (t_0)^{-1} = (-1) * (1)^{-1} = -1$$

$$t_2 = 2 * t_{2-1} = 2 * t_1 = 2 * -1 = -2$$

$$t_3 = (-1) * (t_{3-1})^{-1} = (-1) * (t_2)^{-1} = (-1) * (-2)^{-1} = (-1) * (-\frac{1}{2}) = \frac{1}{2}$$

$$t_4 = 2 * t_{4-1} = 2 * t_3 = 2 * \frac{1}{2} = 1$$

$$t_5 = (-1) * (t_{5-1})^{-1} = (-1) * (t_4)^{-1} = (-1) * (1)^{-1} = (-1)(1) = -1$$

$$t_6 = 2 * t_{6-1} = 2 * t_5 = 2 * -1 = -2$$

Como podemos observar , hay un patrón en la presente sucesión por lo que podemos inferir que t_{15} sera de un valor de $\frac{1}{2}$.

2 Define una regla recursiva para encontrar el n-ésimo término de la siguiente sucesión.

$$A = 1, 4, 7, 10, 13, 16, 19, 22, 25...$$

Caso Base : $S_1 = 1$

Caso Recursivo : $S_n = S_{n-1} + 3$

3 La siguiente sucesión triangular se genera a partir de puntos en un triángulo

Encuentra una regla recursiva que genere todos los términos de la sucesión. Además calcula los primeros doce términos de la sucesión.

Caso Base: $S_1 = 1$

Caso Recursivo:
$$S_n = S_{n-1} + n$$

$$S_6 = S_{6-1} + 6 = S_5 + 6 = 15 + 6 = 21$$

$$S_7 = S_{7-1} + 7 = S_6 + 7 = 21 + 7 = 28$$

$$S_8 = S_{8-1} + 8 = S_7 + 8 = 28 + 8 = 36$$

$$S_9 = S_{9-1} + 9 = S_8 + 9 = 36 + 9 = 45$$

$$S_{10} = S_{10-1} + 10 = S_9 + 10 = 45 + 10 = 55$$

$$S_{11} = S_{11-1} + 11 = S_{10} + 11 = 55 + 11 = 66$$

$$S_{12} = S_{12-1} + 12 = S_{11} + 12 = 66 + 12 = 78$$

4 En el lenguaje de programación P ferd las variables válidas utilizan únicamente los símbolos

Además una variable debe construirse mediante las siguientes reglas.

- a) pf es una variable.
- b) Si v es una variable entonces vff es una variable.
- c) Si v es una variable entonces vp es una variable.

1.1. Primero indica cuál regla corresponde al caso base y cuál al caso recursivo.

La regla correspondientes al caso base es la a)

Las reglas correspondientes a los casos recursivos son b) y c)

1.2. Determinar cuáles de las siguientes cadenas son variables válidas en

```
Pferd: 1)pfffp, 2)fpfp, 3)pfppp, 4)pfppffpf, 5)pfpfp.
En cada caso especifica el motivo por el cual si pertenecen al lenguaje o no, y si es el
caso, da la construcción paso a paso, indicando la regla que utilices.
```

```
1) pfffp
pf \text{ por } a)
v por a)
vff por b)
pfff por a)
vp \text{ por } c)
pfffp por a
\therefore La cadena pfffp es variable valida en Pferd
2) fpfp
pf \text{ por } a)
v por a)
```

Como podemos observar, no disponemos de un caso base que nos genere "fp", solo tenemos uno que nos genera "pf" como el inicio de nuestra cadena.

 \therefore La cadena fpfp no se puede construir en Pferd

```
3) pfppp
pf \text{ por } a)
v por a)
vp \text{ por } c)
pfp \text{ por } a)
v por a)
vp \text{ por } c)
pfpp \text{ por } a)
v por a)
vp por c)
pfppp por a)
\therefore La cadena pfppp es variable valida en Pferd
4) pfppffpf
pf \text{ por } a)
v por a)
vp \text{ por } c)
pfp \text{ por } c)
v \text{ por } c)
vp \text{ por } c)
pfpp \text{ por } c)
```

```
v por c)
vff por b)
pfppff por b)
v por b)
vp \text{ por } c)
pfppffp por c)
\therefore La cadena pfppffpf no se puede construir en Pferd
5) pfpfp
pf \text{ por } a)
v por a)
vp \text{ por } c)
pfp \text{ por } c)
v por c)
vff \text{ por } b)
pfpff por b)
\therefore La cadena pfpfp no se puede construir en Pferd
```