DS 4

Exercice 1. Racines carrées matricielles.

1. Racines carrées d'une matrice diagonale.

Dans cette question, on considère la matrice $D = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$.

- (a) Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Que valent DM et MD?

 Montrer que si M commute avec D, elle est diagonale. La réciproque est-elle vraie?
- (b) Soit $X \in M_2(\mathbb{R})$ telle que $X^2 = D$. Justifier que X est diagonale.
- (c) Prouver que l'équation $X^2 = D$ possède exactement quatre solutions dans $M_2(\mathbb{R})$ que l'on explicitera.

2. Racines carrées d'une matrice diagonalisable.

Dans cette question, on considère les matrices $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$.

- (a) Prouver que P est inversible et calculer P^{-1} . Vérifier que $A = PDP^{-1}$.
- (b) Soit $X \in M_2(\mathbb{R})$. Établir que

$$X^2 = A \quad \Longleftrightarrow \quad \left(P^{-1}XP\right)^2 = D.$$

(c) Résoudre sur $M_2(\mathbb{R})$ l'équation $X^2 = A$.

Exercice 2. Matrices de permutations.

Dans cet exercice, n est un entier naturel non nul.

On note S_n l'ensemble des permutations de [1, n], c'est-à-dire des bijections de cet intervalle d'entiers vers lui-même. Nous savons que (S_n, \circ) est un groupe, la loi \circ étant la composition des applications.

Soit $\sigma \in S_n$. On note $P_{\sigma} = (a_{i,j})_{1 \leq i,j \leq n}$ la matrice de $M_n(\mathbb{R})$ définie par

$$\forall (i,j) \in [1,n]^2 \quad a_{i,j} = \delta_{i,\sigma(j)} = \begin{cases} 1 & \text{si } \sigma(j) = i \\ 0 & \text{sinon.} \end{cases}$$

- 1. Exemples.
 - (a) Dans cette question (seulement), n=3. On définit $\gamma \in S_3$ par

$$\gamma(1) = 2$$
, $\gamma(2) = 3$, $\gamma(3) = 1$.

Écrire la matrice P_{γ} .

- (b) Retour à n quelconque. Que vaut P_{id} ?
- (c) Comment s'interprète la trace d'une matrice de permutation ?
- 2. Montrer que

$$\forall (\sigma, \sigma') \in (S_n)^2 \quad P_{\sigma} P_{\sigma'} = P_{\sigma \circ \sigma'}.$$

3. Montrer que

$$\forall \sigma \in S_n \quad P_{\sigma} \in GL_n(\mathbb{K}) \quad \text{et} \quad (P_{\sigma})^{-1} = P_{\sigma^{-1}}.$$

4. Notons $P_n(\mathbb{R})$ l'ensemble $\{P_{\sigma} \mid \sigma \in S_n\}$. Justifier qu'il s'agit d'un sous-groupe de $GL_n(\mathbb{R})$ isomorphe à S_n .

Problème: Entiers sommes de deux carrés.

L'objectif de ce problème est de déterminer quels sont les entiers naturels qui sont somme de deux carrés.

On pose $\mathbb{Z}[i] = \{a + ib \mid a \in \mathbb{Z}, b \in \mathbb{Z}\} \subset \mathbb{C} \text{ et } \mathbb{Z}[i]^* = \mathbb{Z}[i] \setminus \{0\}.$

Pour $z \in \mathbb{C}$, on pose $N(z) = z\overline{z}$.

Partie I : Présentation de l'anneau $\mathbb{Z}[i]$.

1. Propriétés générales.

- (a) Vérifier que $\mathbb{Z}[i]$ est un sous-anneau de $(\mathbb{C}, +, \times)$.
- (b) i. Établir que pour tout $u \in \mathbb{Z}[i], N(u) \in \mathbb{N}$.
 - ii. Établir que pour tout $(u, v) \in (\mathbb{Z}[i])^2$, N(uv) = N(u)N(v).
- (c) Un élément $u \in \mathbb{Z}[i]$ est dit inversible ssi il existe $v \in \mathbb{Z}[i]$ tel que uv = 1. Montrer que si u est inversible alors N(u) = 1. Déterminer alors l'ensemble, noté U, des éléments inversibles de $\mathbb{Z}[i]$.

2. Divisibilité dans l'anneau $\mathbb{Z}[i]$.

Pour u et v dans $\mathbb{Z}[i]$, on dit que u divise v dans $\mathbb{Z}[i]$ ssi il existe $s \in \mathbb{Z}[i]$ tel que v = su. On note alors $u \mid v$. Soit $(u, v, w) \in (\mathbb{Z}[i])^3$.

- (a) Montrer que la relation | est transitive.
- (b) Montrer que si $u \mid v$ et $u \mid w$ alors $\forall (z, z') \in (\mathbb{Z}[i])^2 \ u \mid (vz + wz')$.
- (c) Montrer que si $u \mid v$ et $v \mid u$ alors $u = \pm v$ ou $u = \pm iv$.
- (d) Montrer que si $u \mid v$ alors $N(u) \mid N(v)$ dans \mathbb{Z} .
- (e) Déterminer les diviseurs de 1 + i dans $\mathbb{Z}[i]$.

3. Division euclidienne dans $\mathbb{Z}[i]$.

- (a) Montrer que pour tout $z \in \mathbb{C}$, il existe $u \in \mathbb{Z}[i]$ tel que N(z-u) < 1. Ce u est-il unique?
- (b) Montrer que pour tout $u \in \mathbb{Z}[i]$ et tout $v \in \mathbb{Z}[i]^*$, il existe un couple (q,r) dans $\mathbb{Z}[i] \times \mathbb{Z}[i]$ tel que u = vq + r et N(r) < N(v).

Partie II : Arithmétique dans $\mathbb{Z}[i]$.

- 4. Soit $\delta \in \mathbb{Z}[i]$. On définit l'ensemble $\delta \mathbb{Z}[i] = \{\delta u \mid u \in \mathbb{Z}[i]\}$. Montrer que $\delta \mathbb{Z}[i]$ est un sous-groupe de $(\mathbb{Z}[i], +)$.
- 5. Soit $u, v \in \mathbb{Z}[i]$ avec $u \neq 0$ ou $v \neq 0$. On note

$$I(u,v) = \{uz + vz' \mid z, z' \in \mathbb{Z}[i]\}.$$

- (a) Vérifier que u et v appartiennent à l'ensemble I(u,v).
- (b) Justifier que l'ensemble $A=\{N(w)\mid w\in I(u,v)\setminus\{0\}\}$ possède un plus petit élément d>0.
- (c) Soit δ un élément de I(u,v) tel que $N(\delta)=d$. Établir que $I(u,v)=\delta\mathbb{Z}[i]$. On pourra utiliser la division euclidienne présentée en I-3-(b).
- (d) Montrer que δ divise u et v Montrer que pour tout $w \in \mathbb{Z}[i]$,

$$(w \mid u \text{ et } w \mid v) \iff w \mid \delta.$$

On dit que δ est un PGCD de u et v.

6. Soient u et v dans $\mathbb{Z}[i]$ tels que $u \neq 0$ et $v \neq 0$.

On dit que u et v sont **premiers entre eux** si et seulement si leur PGCD δ , défini en II-5-(d) appartient à $\{\pm 1, \pm i\}$.

Dans cette question 6, on suppose que u et v sont premiers entre eux.

- (a) Justifier qu'il existe z et z' dans $\mathbb{Z}[i]$ tels que uz + vz' = 1.
- (b) Soit $w \in \mathbb{Z}[i]$. Montrer que si u divise vw, alors u divise w.
- 7. Soit $u \in \mathbb{Z}[i] \setminus \{0, \pm 1, \pm i\}$.

On dit que u est **irréductible** dans $\mathbb{Z}[i]$ si et seulement si ses seuls diviseurs dans $\mathbb{Z}[i]$ sont ± 1 , $\pm i$, $\pm u$, $\pm iu$.

- (a) Soit $v \in \mathbb{Z}[i]$. On suppose que u est irréductible et ne divise pas v. Montrer que u et v sont premiers entre eux.
- (b) Soient $v, w \in \mathbb{Z}[i]$. On suppose que u est irréductible et divise vw. Montrer que u divise v ou divise w.

Partie III (*): Nombres premiers sommes de deux carrés.

Dans cette partie, on cherche à caractériser les nombres premiers qui sont somme de deux carrés, c'est-à-dire qui s'écrivent $a^2 + b^2$ avec $(a, b) \in \mathbb{Z}^2$.

8. Démontrer l'équivalence

p est une somme de deux carrés \iff p n'est pas irréductible dans $\mathbb{Z}[i]$

- 9. Théorème de Wilson et racine carrée de −1 modulo p.
 - (a) Redémontrer (c'est du cours) que

$$\forall x \in [1, p-1] \quad \exists ! y \in [1, p-1] \mid xy \equiv 1[p].$$

Indication : on pourra appliquer le théorème de Bézout à x et p.

(b) Montrer que 1 et p-1 sont les seuls éléments x de $[\![1,p-1]\!]$ tels que

$$x^2 \equiv 1 \ [p].$$

(c) En déduire le théorème de Wilson :

$$(p-1)! \equiv -1 \ [p].$$

- 10. Montrer que si $p \neq 2$ et si p est somme de deux carrés, alors $p \equiv 1$ [4].
- 11. Supposons que $p \equiv 1$ [4].
 - (a) En utilisant le théorème de Wilson, démontrer que

$$-1 = \left(\prod_{k=1}^{\frac{p-1}{2}} k\right)^2 [p].$$

- (b) Soit a un nombre entier tel que $a^2 = -1$ [p] (a existe d'après 11-(a)). Démontrer que p n'est pas irréductible dans $\mathbb{Z}[i]$. Qu'en conclure?
- 12. Conclure : quels sont les nombres premiers sommes de deux carrés?

Partie IV : Nombres sommes de deux carrés.

On note Σ l'ensemble des sommes de deux carrés.

$$\Sigma = \{a^2 + b^2 \mid a, b \in \mathbb{Z}\}.$$

Notons \mathbb{P} l'ensemble des nombres premiers.

On rappelle que pour $p \in \mathbb{P}$ et $n \in \mathbb{N}^*$, on note $v_p(n)$ la valuation p-adique de n, de sorte que

$$n = \prod_{p \in \mathbb{P}} p^{v_p(n)}.$$

On note $\Upsilon = \{ n \in \mathbb{N}^* \mid \forall p \in \mathbb{P} \mid p \equiv 3 \ [4] \implies v_p(n) \text{ est paire} \}.$

Le but des questions ci-dessous est de démontrer que $\Sigma \setminus \{0\} = \Upsilon$.

- 13. (a) Montrer que Σ est stable par produit.
 - (b) Démontrer que $\Upsilon \subset \Sigma \setminus \{0\}$.
- 14. Soit $(a, b) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$ et $n = a^2 + b^2$. Soit p un nombre premier diviseur de n tel que $p \equiv 3[4]$.
 - (a) Montrer que p divise (a+ib) dans $\mathbb{Z}[i]$.
 - (b) En déduire que p^2 divise n dans \mathbb{Z} et que $\frac{n}{p^2} \in \Sigma$.
 - (c) Prouver que $v_p(n)$ est paire.
- 15. Conclure.

Application : 1789 est-il somme de deux carrés? et 3578? et 5367?