General Flow Chart

Inputs/Outputs to Python Programs

SER Element	Size			
Α	[(Nc * N) x (Nc * N)]			
В	[(Nc * N) x Nc]			
С	[Nc x (Nc * N)]			
D	[Nc x Nc]			
E	[Nc x Nc]			
R	[Nc x Nc x N]			
poles	[N]			

Nc	Number of Ports
Ns	Number of Freq. Data Points
N	Number of Poles

Inputs/Outputs to Python Programs

SER Element	Size			
Α	[(Nc * N) x (Nc * N)]			
В	[(Nc * N) x Nc]			
С	[Nc x (Nc * N)]			
D	[Nc x Nc]			
E	[Nc x Nc]			
R	[Nc x Nc x N]			
poles	[N]			

Nc	Number of Ports
Ns	Number of Freq. Data Points
N	Number of Poles

3 Port Python/MATLAB Results

Element	RMS Error (Magnitude) – Python	RMS Error (Phase) - Python	RMS Error (Magnitude) – MATLAB	RMS Error (Phase) - MATLAB
Y11	5.91e-5	0.16	2.59e-4	0.11
Y12	6.64e-5	0.33	2.91e-4	0.23
Y13	7.25e-5	0.48	4.06e-4	0.44
Y21	6.64e-5	0.33	1.91e-4	0.23
Y22	6.28e-5	0.14	3.67e-4	0.21
Y23	6.64e-5	0.33	1.91e-4	0.23
Y31	7.25e-5	0.48	4.06e-4	0.44
Y32	6.64e-5	0.33	1.91e-4	0.23
Y33	5.91e-5	0.16	2.59e-4	0.11

References

- [1] B. Gustavsen and A. Semlyen, "Rational approximation of frequency domain responses by Vector Fitting", IEEE Trans. Power Delivery, vol. 14, no. 3, pp. 1052-1061, July 1999.
- [2] B. Gustavsen, "Improving the pole relocating properties of vector fitting", IEEE Trans. Power Delivery, vol. 21, no. 3, pp. 1587-1592, July 2006.
- [3] D. Deschrijver, M. Mrozowski, T. Dhaene, and D. De Zutter, "Macromodeling of Multiport Systems Using a Fast Implementation of the Vector Fitting Method", IEEE Microwave and Wireless Components Letters, vol. 18, no. 6, pp. 383-385, June 2008.
- [4] B. Gustavsen, VFIT3, The Vector Fitting Website. March 20, 2013. Accessed on: Jan. 21, 2020. [Online]. Available: https://www.sintef.no/projectweb/vectfit/downloads/vfut3/.
- [5] VA. Zadehgol, "A semi-analytic and cellular approach to rational system characterization through equivalent circuits", Wiley IJNM, 2015. [Online]. https://doi.org/10.1002/jnm.2119
- [6] V. Avula and A. Zadehgol, "A Novel Method for Equivalent Circuit Synthesis from Frequency Response of Multi-port Networks", EMC EUR, pp. 79-84, 2016. [Online]. Available: ://WOS:000392194100012.
- [7] B. Gustavsen, Matrix Fitting Toolbox, The Vector Fitting Website. March 20, 2013. Accessed on: Feb. 25, 2020. [Online]. Available: https://www.sintef.no/projectweb/vectorfitting/downloads/matrix-fitting-toolbox/.
- [8] B. Gustavsen, "Fast passivity enforcement for S-parameter models by perturbation of residue matrix eigenvalues", IEEE Trans. Advanced Packaging, accepted for publication.
- [9] B. Gustavsen, "Fast Passivity Enforcement for Pole-Residue Models by Perturbation of Residue Matrix Eigenvalues", IEEE Trans. Power Delivery, vol. 23, no. 4, pp. 2278-2285, Oct. 2008.
- [10] A. Semlyen, B. Gustavsen, "A Half-Size Singularity Test Matrix for Fast and Reliable Passivity Assessment of Rational Models," IEEE Trans. Power Delivery, vol. 24, no. 1, pp. 345-351, Jan. 2009.
- [11] divenex, Stack Overflow. Dec. 11, 2019. Accessed on: April 4, 2020. [Online]. Available: https://stackoverflow.com/a/59286910.
- [12] stephane-caron, "Quadratic Programming in Python". Accessed on: May 3, 2020. [Online]. Available: https://scaron.info/blog/quadratic-programming-in-python.html.
- [13] nolfwin, GitHub. March 11, 2018. Accessed on: May 3, 2020. [Online]. Available: https://github.com/nolfwin/cvxopt_quadprog/blob/master/cvxopt_qp.py.