Homework 8

- 1. Let $S \subset \mathbb{R}^m$ be bounded and $f: S \to \mathbb{R}^k$ be **uniformly continuous** on S. Show that f(S) is bounded in \mathbb{R}^k
- 2. Let $S \subset \mathbb{R}^m$ be bounded and $f: \mathbb{R}^m \to \mathbb{R}^k$ be **continuous** on \mathbb{R}^m . Show that
 - (i) f(S) is bounded in \mathbb{R}^k
- (ii) give example why uniform continuity in the problem 1 can not be replaced by continuity.
- 3. Suppose g is a real function on \mathbb{R} with bounded derivative (say $|g'| \leq M$). Fix $\epsilon > 0$, and define $f(x) = x + \epsilon g(x)$. Prove that f is one-to-one if ϵ is small enough.
- 4. Let $f:(a,b)\to\mathbb{R}$ be a differentiable function.
 - (i) If f'(x) = 0 for all $x \in (a, b)$, then f is constant on (a, b).
- (ii) If f'(x) > 0 for all $x \in (a, b)$ except finitely many points at which f'(x) = 0 then f is strictly increasing on (a,b).
- 5. Let $f:[a,b]\to\mathbb{R}$ be continuous such that f(a)=f(b). Then for any number $n\in\mathbb{N}$, there exists $c\in[a,b]$ such that $f(c)=f(c+\frac{b-a}{n})$.