Esercitazione di Fisica - 10

Riccardo Nicolaidis

29/05/2025

1 Problema 1

Si considerino due corpi A (massa m_A , calore specifico c_{sA} , temperatura iniziale T_A) B (massa m_B , calore specifico c_{sB} , temperatura iniziale T_B) inizialmente separati. Ad un certo istante vengono messi in contatto termico e raggiungono la temperatura di equilibrio T_F . Calcolare la variazione di entropia dell'intero sistema consistente nei due corpi.

2 Problema 2

Un gas ideale biatomico, a pressione $p_0 = 1.013$ bar, volume $V_0 = 10 \cdot 10^{-3}$ m³, temperatura $T_0 = 293.2$ K, viene compresso adiabaticamente e reversibilmente fino a $V = 1.5 \cdot 10^{-3}$ m³. Dopo un certo tempo il gas ritorna alla temperatura iniziale T_0 a causa dell'imperfetto isolamento termico. Calcolare la massima pressione raggiunta, la massima temperatura, la pressione finale del gas, la variazione di entropia del gas, dell'ambiente e dell'universo. Calcolare l'energia inutilizzabile.

3 Problema 3

Una macchina termica preleva da una sorgente a $T_1=323$ K il calore Q_1 , produce il lavoro W e cede il calore Q_0 ad una sorgente a $T_0=280$ K. Il lavoro W viene integralmente usato per far funzionare un frigorifero che preleva a T_0 il calore Q_0' e cede ad una sorgente a $T_2=373$ K il calore Q_2 . Si sa che al termine di un ciclo delle due macchine $\Delta S_u=87.1$ J/K e $Q_0'+Q_0=-2.95\cdot 10^5$ J. Calcolare i valori di Q_1 e Q_2 .

Figure 1: Problema 2

4 Problema 4

Un blocco di ghiaggio di massa m=2~kg, calore specifico $c_s=2090~J~kg^{-1}K^{-1}$, calore latente $\lambda=3.34\times10^5~Jkg^{-1}$ alla temperatura $T_0=-20^{\circ}C$ viene messo in contatto con un serbatorio alla temperatura di fusione $T_1=1^{\circ}C$. Il ghiaccio si porta alla temperatura T_1 e poi si scioglie completamente. Calcolare il calore assorbito dal cubetto di ghiaccio, la variazione di entropia del ghiaccio, del termostato e dell'universo.

5 Problema 5

n=1.2 moli di un gas ideale monoatomico, tramite l'utilizzo di due sorgenti a temperature $T_A=600$ K e $T_C=300$ K, viene sottoposto ad un ciclo termodinamico tra gli stati A, B, C. La trasformazione AB è una espansione isoterma reversibile a temperatura T_A , BC è un'isocora irreversibile (ma con lavoro nullo) eseguita ponendo il gas a contatto con la sorgente T_C , CA è una compressione adiabatica reversibile. Sapendo che $P_A=8\cdot 10^5$ Pa, si calcoli:

- 1. il volume in C (V_C) ;
- 2. il lavoro fatto in un ciclo;
- 3. il rendimento del ciclo;
- 4. la variazione di entropia dell'universo termodinamico in un ciclo.