A MECHANISTIC INTERPRETABILITY BENCHMARK

Aaron Mueller*1, Atticus Geiger*2, Sarah Wiegreffe³, Dana Arad⁴, Iván Arcuschin⁵, Adam Belfki⁶, Yik Siu Chan⁷, Jaden Fiotto-Kaufman⁶, Tal Haklay⁴, Michael Hanna⁸, Jing Huang⁹, Rohan Gupta⁵, Yaniv Nikankin⁴, Hadas Orgad⁴, Nikhil Prakash⁶, Anja Reusch⁴, Aruna Sankaranarayanan¹⁰, Shun Shao¹¹, Alessandro Stolfo¹², Martin Tutek⁴, Amir Zur², David Bau⁶, Yonatan Belinkov⁴

Causal Variable Localization Track

0.38

Faithfulness: do interventions to the variable cause the model's behavior to change in the expected way?

Testing via Interchange Interventions: fixing the "carry-the-one" variable

3 5 0 Original Input: "17+25=[42]" Counterfactual Input: "30+47=[77]" 0000 0000 0000 0000 0000 0000 $\Delta\Delta\Delta\Delta\Delta$ $\Delta\Delta\Delta\Delta\Delta$ 0000 0000 0000 0000 0000 0000 0000 0000

Mean (Best) Interchange Intervention Accuracy for 2 Different Causal Variables across Layers

	ARC (Easy)					
	Gemma-2		Llama-3.1			
Method	O_{Answer}	X_{Order}	O_{Answer}	X_{Order}		
DAS	88 (94)	76 (88)	88 (99)	74 (84)		
DBM	82 (99)	63 (80)	85 (100)	69 (82)		
+PCA	78 (98)	64 (81)	84 (100)	72 (83)		
+SAE	70 (89)	54 (70)	74 (94)	55 (67)		
Full Vector	63 (100)	43 (74)	68 (100)	47 (72)		

Insights:

Supervised methods >>> unsupervised.

Non-basis-aligned subspaces > basisaligned subspaces.

		MCQA							
	Gemma-2		Llama-3.1		Qwen-2.5				
Method	O_{Answer}	X_{Order}	O_{Answer}	X_{Order}	$\overline{O_{ m Answer}}$	$X_{ m Order}$			
DAS	95 (97)	77 (93)	94 (100)	77 (91)	86 (95)	78 (100)			
DBM	84 (99)	63 (84)	86 (100)	66 (73)	46 (94)	60 (99)			
+PCA	57 (96)	52 (81)	65 (99)	53 (74)	22 (76)	54 (100)			
+SAE	73 (90)	51 (65)	80 (99)	58 (65)	_	_			
Full Vector	61 (100)	44 (77)	77 (100)	46 (68)	35 (99)	49 (99)			

Circuit Localization Track

0000

0000

0000

0000

47

0000

0000

0000

0000

30

Faithfulness: does the circuit capture the model's task behavior?

Minimality: does the circuit contain as few components as is necessary?

CMD scores (lower is better) for all tasks except InterpBench (AUROC; higher is better) ARC (E) ARC (C) Arithmetic **MCQA Method**(Ablation) InterpBench (↑) GPT-2 Qwen-2.5 Gemma-2 Llama-3.1 Llama-3.1 Qwen-2.5 Gemma-2 Llama-3.1 Gemma-2 Llama-3.1 Llama-3.1 0.74 0.68 0.74 0.75 0.74 Random 0.44 0.75 0.72 0.69 0.74 0.730.68 EActP (CF) 0.28 0.49 0.36 0.02 0.20 EAP (mean) 0.78 0.29 0.25 0.04 0.21 0.220.28 0.18 0.07 0.20 0.16 0.03 0.18 0.73 EAP (CF) 0.15 0.06 0.01 0.07 0.080.09 0.04 0.11 0.01 0.30 EAP (OA) 0.77 0.16 0.11 0.22 EAP-IG-inp. (CF) 0.14 0.03 0.02 0.04 0.11 0.71 0.04 0.01 0.00 0.080.06 0.03 EAP-IG-act. (CF) 0.01 0.03 0.01 0.05 0.13 0.04 0.30 0.81 0.000.07NAP (CF) 0.69 0.30 0.33 0.37 0.29 0.30 0.35 0.32 0.38 0.33 0.69 0.28NAP-IG (CF) 0.27 0.26 0.33 0.28 0.62 0.20 0.19 0.18 0.29 0.76 **IFR** 0.71 0.420.69 0.75 0.83 0.220.60 0.620.48 0.66 0.64 UGS 0.03 0.20 0.03 0.74

Proportion Edges (k)

Weighted edge count: a way to directly compare the size of neuron- and edge-based circuits

neurons in node

Insights:

0000

0000

17

0000

0000

0000

0000

25

0000

0000

Counterfactual (CF) ablations > mean or optimal ablations. Edge-based circuits > node-based circuits. Attribution with integrated gradients is generally best.

