Devoir Surveillé 1 : Mercredi 16 Septembre 2020

Durée 2h30.

- Les calculatrices sont <u>interdites</u> durant les cours, TD et a fortiori durant les DS de mathématiques.
- Si vous pensez avoir découvert une erreur, indiquez-le clairement sur la copie et justifiez les initiatives que vous êtes amenés à prendre.
- Une grande attention sera apportée à la clarté de la rédaction et à la présentations des solutions. (Inscrivez clairement en titre le numéro de l'exercice, vous pouvez aussi encadrer les résultats...)

Exercice 1. 1. Comparer (avec une inégalité large) pour tout $n \in \mathbb{N}$, les nombres n et 3^n . (Prouver cette inégalité)

2. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1,\ u_1=3$ et pour tout $n\in\mathbb{N}$:

$$u_{n+2} = 3u_{n+1} - 2u_n$$

- (a) Enoncer l'inégalité triangulaire.
- (b) Montrer que : $\forall n \in \mathbb{N}, |u_n| \leq 4^n$.

Correction.

1. On va montrer par récurrence que $\mathcal{P}(n)$: $n \leq 3^n$ pour tout $n \in \mathbb{N}$.

Initialisation : Pour n=0, on a bien $0 \le 3^0=1$. La propriété $\mathcal P$ est donc vraie au rang 0. **Hérédité :**

Soit $n \ge 0$ fixé. On suppose la propriété vraie à l'ordre n. Montrons qu'alors $\mathcal{P}(n+1)$ est vraie.

On a par hypothèse de récurrence :

$$n+1 \le 3^n+1$$

Or pour tout $n \in \mathbb{N}$, $1 \le 2 \times 3^n$ donc

$$3^n + 1 \le 3 \times 3^n = 3^{n+1}$$

La propriété \mathcal{P} est donc vraie au rang n+1.

Conclusion:

Il résulte du principe de récurrence que pour tout n > 0:

$$\mathcal{P}(n): n \le 3^n$$

2. (a) Cf cours $\forall x, y \in \mathbb{R}^2$:

$$|x+y| < |x| + |y|.$$

(b) On va montrer par récurrence que $\mathcal{P}(n): |u_n| \leq 4^n$ et $|u_{n+1}| \leq 4^{n+1}$.

Initialisation : Pour n=0, on a $|u_0|=1\leq 4^0=1$ et $|u_1|=3\leq 4^1$. La propriété est vraie au rang 0.

Hérédité:

Soit $n \geq 0$ fixé. On suppose la propriété vraie à l'ordre n. Montrons qu'alors $\mathcal{P}(n+1)$: « $|u_{n+1}| \leq 4^{n+1}$ et $|u_{n+2}| \leq 4^{n+2}$ » est vraie.

1

 $u_{n+1} \le 4^{n+1}$ par hypothèse de récurrence. Il suffit donc de montrer que $|u_{n+2}| \le 4^{n+2}$. On a

$$|u_{n+2}| = |3u_{n+1} - 2u_n| \quad \text{par d\'efinition de } (u_n)_{n \in \mathbb{N}}$$

$$= |3u_{n+1}| + |2u_n| \quad \text{par l'in\'egalit\'e triangulaire}$$

$$\leq 3 * 4^{n+1} + 2 * 4^n \quad \text{par hypoth\`ese de r\'ecurrence}$$

$$\leq 4^n (3 * 4 + 2)$$

$$\leq 4^n (14)$$

$$\leq 4^n (4^2)$$

$$< 4^{n+2}$$

La propriété \mathcal{P} est donc vraie au rang n+1.

Conclusion:

Il résulte du principe de récurrence que pour tout $n \geq 0$:

$$\mathcal{P}(n): |u_n| \le 4^n$$

Exercice 2 (Suite de Fibonacci). Soit $(F_n)_{n\in\mathbb{N}}$ la suite définie par $F_0=0,\ F_1=1$ et pour tout $n\geq 0$

$$F_{n+2} = F_{n+1} + F_n$$
.

1. Montrer que pour tout $n \in \mathbb{N}$ on a : $\sum_{k=0}^{n} F_{2k+1} = F_{2n+2}$ et $\sum_{k=0}^{n} F_{2k} = F_{2n+1} - 1$.

2. Montrer que pout tout $n \in \mathbb{N}$ on a $\sum_{k=0}^{n} F_k^2 = F_n F_{n+1}$.

3. (a) On note $\varphi = \frac{1+\sqrt{5}}{2}$ et $\psi = \frac{1-\sqrt{5}}{2}$. Montrer que $\varphi^2 = \varphi + 1$ et $\psi^2 = \psi + 1$.

(b) Montrer que l'expression explicite de F_n st donnée par $F_n = \frac{1}{\sqrt{5}}(\varphi^n - \psi^n)$.

(c) En déduire que $\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = \varphi$.

Correction.

1. Nous allons montrer ces propriétés par récurrence sur l'entier $n \in \mathbb{N}$. Soit $\mathcal{P}(n)$ la prorpriété définie pour tout $n \in \mathbb{N}$ par :

$$\mathcal{P}(n) := \left(\sum_{k=0}^{n} F_{2k+1} = F_{2n+2} \text{ et } \sum_{k=0}^{n} F_{2k} = F_{2n+1} - 1 \right).$$

Montrons $\mathcal{P}(0)$. Vérifions la première égalité :

$$\sum_{k=0}^{0} F_{2k+1} = F_{0+1} = F_1 = 1$$

et

$$F_2 = F_1 + F_0 = 1$$

Donc la première égalité est vraie au rang 0.

Vérifions la sedonde égalité :

$$\sum_{k=0}^{0} F_{2k} = F_0 = 0$$

et

$$F_{2*0+1} - 1 = F_1 - 1 = 0$$

Donc la seconde égalité est vraie au rang 0. Ainsi $\mathcal{P}(0)$ est vraie.

Hérédité:

Soit $n \geq 0$ fixé. On suppose la propriété vraie à l'ordre n. Montrons qu'alors $\mathcal{P}(n+1)$ est vraie.

Considérons la première égalité de $\mathcal{P}(n+1)$. Son membre de gauche vaut :

$$\sum_{k=0}^{n+1} F_{2k+1} = \sum_{k=0}^{n} F_{2k+1} + F_{2n+3}$$

Par hypothèse de récurrence on a $\sum_{k=0}^{n} F_{2k+1} = F_{2n+2}$, donc

$$\sum_{k=0}^{n+1} F_{2k+1} = F_{2n+2} + F_{2n+3}.$$

$$= F_{2n+4}. \quad \text{d'après la définition de } (F_n)_{n \in \mathbb{N}}$$

$$= F_{2(n+1)+2}.$$

La première égalité est donc héréditaire.

Considérons la sedonde égalité de $\mathcal{P}(n+1)$. Son membre de gauche vaut :

$$\sum_{k=0}^{n+1} F_{2k} = \sum_{k=0}^{n} F_{2k} + F_{2n+2}$$

Par hypothèse de récurrence on a $\sum_{k=0}^{n} F_{2k} = F_{2n+1} - 1$, donc

$$\sum_{k=0}^{n+1} F_{2k} = F_{2n+1} - 1 + F_{2n+2}.$$

$$= F_{2n+3} - 1. \quad \text{d'après la définition de } (F_n)_{n \in \mathbb{N}}$$

$$= F_{2(n+1)+1} - 1.$$

La seconde égalité est donc héréditaire. Finalement la propriété $\mathcal{P}(n+1)$ est vraie.

Conclusion:

Il résulte du principe de récurrence que pour tout $n \geq 0$:

$$\sum_{k=0}^{n} F_{2k+1} = F_{2n+2} \text{ et } \sum_{k=0}^{n} F_{2k} = F_{2n+1} - 1$$

2. On va montrer par récurrence que $\mathcal{P}(n)$: $\sum_{k=0}^{n} F_k^2 = F_n F_{n+1}$.

Initialisation : Pour n = 0, on a $\sum_{k=0}^{0} F_k^2 = F_0^2 = 0$ et $F_0F_1 = 0$. La propriété est donc vraie au rang 0.

Hérédité:

Soit $n \ge 0$ fixé. On suppose la propriété vraie à l'ordre n.

On a $\sum_{k=0}^{n+1} F_k^2 = \sum_{k=0}^n F_k^2 + F_{n+1}^2$ Par hypothèse de récurrence on a $\sum_{k=0}^n F_k^2 = F_n F_{n+1}$ donc :

$$\sum_{k=0}^{n+1} F_k^2 = F_n F_{n+1} + F_{n+1}^2$$

$$= F_{n+1} (F_n + F_{n+1})$$

$$= F_{n+1} F_{n+2} \quad \text{par definition de } (F_n)_{n \in \mathbb{N}}$$

La propriété \mathcal{P} est donc vraie au rang n+1.

Conclusion:

Il résulte du principe de récurrence que pour tout $n \ge 0$:

$$\mathcal{P}(n) : \sum_{k=0}^{n} F_k^2 = F_n F_{n+1}$$

3. Le polynôme du second degrès X^2-X-1 a pour discriminant $\Delta=1+4=5$ les racines sont donc $\varphi=\frac{1+\sqrt{5}}{2}$ et $\psi=\frac{1-\sqrt{5}}{2}$. En particulier, ces nombres vérifient : $\varphi^2-\varphi-1=0$ et $\psi^2-\psi-1=0$, c'est-à-dire

$$\varphi^2 = \varphi + 1 \text{ et } \psi^2 = \psi + 1.$$

4. Notons $:u_n=\frac{1}{\sqrt{5}}(\varphi^n-\psi^n)$ On a

$$u_0 = \frac{1}{\sqrt{5}}(\varphi^0 - \psi^0) = 0$$
$$u_1 = \frac{1}{\sqrt{5}}(\varphi^1 - \psi^1) = 1$$

et pour tout $n \in \mathbb{N}$ on a

$$u_{n+2} = \frac{1}{\sqrt{5}} (\varphi^{n+2} - \psi^{n+2})$$

$$= \frac{1}{\sqrt{5}} (\varphi^n (\varphi^2) - \psi^n (\psi^2))$$

$$= \frac{1}{\sqrt{5}} (\varphi^n (\varphi + 1) - \psi^n (\psi + 1)) \quad \text{D'après la question précédente}$$

$$= \frac{1}{\sqrt{5}} (\varphi^{n+1} + \varphi^n - \psi^{n+1} - \psi^n)$$

$$= \frac{1}{\sqrt{5}} (\varphi^{n+1} - \psi^{n+1}) + \frac{1}{\sqrt{5}} \varphi^n - \psi^n)$$

$$= u_{n+1} + u_n$$

Donc u_n satisfait aussi la relation de récrurrence. Ainsi pour tout $n \in \mathbb{N}$, $u_n = F_n = \frac{1}{\sqrt{5}}(\varphi^n - \psi^n)$.

5. D'après la question précédente on a pour tout $n \in \mathbb{N}$:

$$\frac{F_{n+1}}{F_n} = \frac{\varphi^{n+1} - \psi^{n+1}}{\varphi^n - \psi^n}$$

Donc,

$$\frac{F_{n+1}}{F_n} = \varphi \frac{\varphi^n \left(1 - \frac{\psi^{n+1}}{\varphi^{n+1}}\right)}{\varphi^n \left(1 - \frac{\psi^n}{\varphi^n}\right)}$$
$$= \varphi \frac{1 - \left(\frac{\psi}{\varphi}\right)^{n+1}}{1 - \left(\frac{\psi}{\varphi}\right)^n}$$

Remarquons que $|\varphi| > |\psi|$ en particulier $|\frac{\psi}{\varphi}| < 1$ et donc

$$\lim_{n\to\infty} \left(\frac{\psi}{\varphi}\right)^{n+1} = 0.$$

Finalemetn

$$\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = \varphi.$$

Exercice 3 (Equation à paramètre). On note $\Delta(m) = m^2 - 8m + 12$.

1. Résoudre l'inéquation d'inconnue m :

$$\Delta(m) > 0 \tag{I_1}$$

- 2. On note $r_{+}(m) = \frac{m + \sqrt{\Delta(m)}}{4}$ et $r_{-}(m) = \frac{m \sqrt{\Delta(m)}}{4}$.
- 3. Résoudre

$$r_{+}(m) \ge 1$$
 et $r_{-}(m) \ge 1$.

4. Résoudre l'inéquation d'inconnue y et de paramétre $m \in \mathbb{R}$

$$\frac{2y^2 - \frac{3}{2}}{y - 1} \ge m \tag{I_2}$$

Correction.

1. Le discriminant réduit de $\Delta(m)$ vaut $\delta(m) = 16 - 12 = 4$. Les racines de $\delta(m)$ valent donc $m_1 = 4 - 2 = 2$ et $m_2 = 4 + 2 = 6$. Donc $\Delta(m) = (m-2)(m-6)$ et les solutions de $\Delta(m) > 0$ sont

$$\mathcal{S} =]-\infty, 2[\cup]6, +\infty[.$$

2. Les expressions $r_+(m)$ et $r_-(m)$ sont définies pour $\Delta(m) \geq 0$ soit $m \in]-\infty,2] \cup [6,+\infty[$. Résolvons $r_+(m) \geq 1$ pour $m \in]-\infty,2] \cup [6,+\infty[$.

$$\frac{m + \sqrt{\Delta(m)}}{4} \ge 1$$

$$\iff m + \sqrt{\Delta(m)} \ge 4$$

$$\iff \sqrt{\Delta(m)} \ge 4 - m$$

Si (4-m) < 0, m est solution car $\sqrt{\Delta(m)} \ge 0$.

Si $(4-m) \ge 0$, l'équation $r_+(m) \ge 1$ est équivalente à

$$\Delta(m) \ge (4 - m)^2$$

$$\iff m^2 - 8m + 12 \ge m^2 - 8m + 16$$

$$\iff 0 \ge 4$$

Donc pour tout $m \leq 4$, m n'est pas solution.

Finalement, les solutions de $r_+(m) \ge 1$ sont

$$S_{+} = [6, +\infty[$$

Résolvons $r_{-}(m) \ge 1$ pour $m \in]-\infty, 2] \cup [6, +\infty[$.

$$\frac{m - \sqrt{\Delta(m)}}{4} \ge 1$$

$$\iff m - \sqrt{\Delta(m)} \ge 4$$

$$\iff m - 4 \ge \sqrt{\Delta(m)}$$

Si (m-4) < 0, m n'est pas solution car $\sqrt{\Delta(m)} \ge 0$.

Si $(m-4) \ge 0$, l'équation $r_{-}(m) \ge 1$ est équivalente à

$$(m-4)^2 \ge \Delta(m)$$

$$\iff m^2 - 8m + 16 \ge m^2 - 8m + 12$$

$$\iff 4 > 0$$

Donc pour tout $m \ge 4$, m est solution.

Finalement, les solutions de $r_{-}(m) \geq 1$ sont

$$\mathcal{S}_{+} = [6, +\infty[.$$

3. L'ensemble de définition de $\frac{2y^2-\frac{3}{2}}{y-1}$ est $D_1=\mathbb{R}\setminus\{1\}.$ On va résoudre

$$\frac{2y^2 - \frac{3}{2}}{y - 1} \ge m \tag{I_4(m)}$$

en fonction de $m \in \mathbb{R}$.

Pour tout $y \in D_1$ on a

$$\frac{2y^2 - \frac{3}{2}}{y - 1} - \frac{m(y - 1)}{y - 1} \ge 0$$
$$\frac{2y^2 - \frac{3}{2} - m(y - 1)}{y - 1} \ge 0$$
$$\frac{2y^2 - my + (-\frac{3}{2} + m)}{y - 1} \ge 0$$

Le discriminant de $2y^2 - my + (\frac{3}{2} + m)$ vaut

$$m^2 - 4(2)(-\frac{3}{2} + m) = m^2 - 8m + 12.$$

On reconnait l'expression de $\Delta(m)$.

(a) D'après la question 1, $\Delta(m) > 0$ pour $m \in]-\infty, 2[\cup]6, +\infty[$. Sur cet ensemble le polynôme $2y^2 - my + (-\frac{3}{2} + m)$ admet deux racines, $r_-(m)$ et $r_+(m)$. Donc

$$2y^{2} - my + \left(-\frac{3}{2} + m\right) = 2(y - r_{-}(m))(y - r_{+}(m)).$$

Pour $m \ge 6$, d'après la question 2, on a :

$$r_{+}(m) \ge r_{-}(m) \ge 1$$

On note $q(y) = 2y^2 - my + (-\frac{3}{2} + m)$

y	$-\infty$	1		$r_{-}(m)$		$r_+(m)$		$+\infty$
q(y)		+	+	0	_	0	+	
y-1		- 0	+		+		+	
$\frac{q(y)}{y-1}$		_	+	0	_	0	+	

Les solutions de l'équation $I_4(m)$ pour $m \ge 6$ sont

$$S =]1, r_{-}(m)] \cup [r_{+}(m), +\infty[$$

Pour $m \leq 2$, d'après la question 2, on a :

$$1 \ge r_+(m) \ge r_-(m)$$

y	$-\infty$		$r_{-}(m)$		$r_+(m)$		1		$+\infty$
q(y)		+	0	_	0	+		+	
y-1		_		_		_		+	
$\frac{q(y)}{y-1}$		_	0	+	0	_		+	

Les so-

lutions de l'équation $I_4(m)$ pour $m \leq 2$ sont

$$S = [r_{-}(m), r_{+}(m)] \cup]1, +\infty[.$$

4. Pour $\Delta(m)=0,$ c'est-à-dire $m\in 2,6.$ Pour m=2, on a $r_+(2)=r_-(2)=\frac{1}{2}$ et

$$2y^2-2y+(-\frac{3}{2}+2)=2(y-\frac{1}{2})^2$$

et les solutions de I_2 sont donc

$$S = \{\frac{1}{2}\} \cup]1, +\infty[.$$

Pour m=6, on a $r_+(6)=r_-(6)=\frac{3}{2}$ et

$$2y^2 - 6y + (-\frac{3}{2} + 6) = 2(y - \frac{3}{2})^2$$

et les solutions de I_2 sont donc

$$S =]1, +\infty[.$$

5. Pour $\Delta(m) < 0$, c'est-à-dire $m \in]2, 6[$.

Le polynome q n'a pas de racine réelle. Il est donc strictement positif sur \mathbb{R} . Les solutions de $I_4(m)$ sont donc

$$S =]1, +\infty[.$$

Exercice 4 (Partie entière). On considère l'équation suivante d'inconnue $x \in \mathbb{R}$:

$$\left[2x - \sqrt{5x - 1}\right] = 0\tag{E}$$

- 1. Déterminer le domaine de définition de E.
- 2. Pour tout $a \in \mathbb{R}$, rappeler un encadrement de la partie entière de a en fonction de a.
- 3. Montrer que résoudre (E) revient à résoudre deux inéquations qu'on déterminera.
- 4. Résoudre les deux équations obtenues à la question précédente.
- 5. Résoudre (E).

Correction.

1. La fonction partie entière est définie sur \mathbb{R} . La fonction racine carrée est définie sur \mathbb{R}_+ donc l'expression $|2x - \sqrt{5x - 1}|$ pour tout x tel que $5x - 1 \ge 0$.

L'équation est définie pour
$$x \ge \frac{1}{5}$$
.

2. Cf cours. Par définition, pour tout $a \in \mathbb{R}$, $\lfloor a \rfloor \leq a < \lfloor a \rfloor + 1$ donc

Pour tout
$$a \in \mathbb{R}$$
, $a - 1 < \lfloor a \rfloor \le a$.

3. On a pour tout $y \in \mathbb{R}$, $\lfloor y \rfloor = 0$ si et seulement si $0 \leq y < 1$. Donc, résoudre E revient à résoudre

$$\begin{cases}
2x - \sqrt{5x - 1} < 1 & (I_1) \\
2x - \sqrt{5x - 1} \ge 0 & (I_2)
\end{cases}$$

4. Résolvons (I_1) :

$$2x - \sqrt{5x - 1} < 1 \iff 2x - 1 < \sqrt{5x - 1}$$

Si $\frac{2x-1<0 \text{ et } x\geq \frac{1}{5}}{x\in [\frac{1}{5},\frac{1}{2}[.]]}$, x est solution de I_1 . Remarquons que 2x-1<0 et $x\geq \frac{1}{5}$ se simplifie en $x\in [\frac{1}{5},\frac{1}{2}[.]]$

Si $2x - 1 \ge 0$ et $x \ge \frac{1}{5}$, (I_1) est équivalente à

$$4x^2 - 4x + 1 < 5x - 1 \iff 4x^2 - 9x + 2 < 0$$

Le discrimant de $4x^2 - 9x + 2$ vaut $\Delta = 81 - 32 = 49$.

Les racines de $4x^2 - 9x + 2$ valent donc

$$r_1 = \frac{9+7}{8} = 2$$
 et $r_2 = \frac{9-7}{8} = \frac{1}{4}$

Donc $4x^2 - 9x + 2 = 4(x-2)(x - \frac{1}{4})$.

Le polynôme $4x^2-9x+2$ est donc strictement négatif sur $U_1=]\frac{1}{4},2[$. Sous la condition $(2x-1\geq 0$ et $x\geq \frac{1}{5})$, les solutions de (I_1) sont donc $S=[\frac{1}{2},2[$.

En conclusion l'ensemble des solutions de (I_1) est

$$\mathcal{S}_1 = \left[\frac{1}{5}, \frac{1}{2}\right] \cup \left[\frac{1}{2}, 2\right] = \left[\frac{1}{5}, 2\right].$$

5. Résolvons (I_2) :

$$2x - \sqrt{5x - 1} \ge 0 \quad \Longleftrightarrow \quad 2x \ge \sqrt{5x - 1}$$

Si 2x < 0 et $x \ge \frac{1}{5}$, x n'est pas solution de I_2 , car $\sqrt{5x - 1} \ge 0$.

Si $2x \geq 0$ et $x \geq \frac{1}{5}, \, (I_2)$ est équivalente à

$$4x^2 > 5x - 1 \iff 4x^2 - 5x + 1 > 0$$

Le discrimant de $4x^2 - 5x + 1$ vaut $\Delta = 25 - 16 = 9$. Les racines de $4x^2 - 5x + 1$ valent donc

$$r_1 = \frac{5+3}{8} = 1$$
 et $r_2 = \frac{5-3}{8} = \frac{1}{4}$.

Donc $4x^2 - 5x + 1 = 4(x-1)(x-\frac{1}{4})$, le polynôme $4x^2 - 5x + 1$ est donc positif sur $U_2 =$

 $[-\infty, \frac{1}{4}] \cup [1, +\infty[$. Sous la condition $(2x \ge 0 \text{ et } x \ge \frac{1}{5})$, les solutions de (I_2) sont donc $S = U_2 \cap [\frac{1}{5}, +\infty[= [\frac{1}{5}, \frac{1}{4}] \cup [1, +\infty[$

En conclusion l'ensemble des solutions de (I_1) est

$$\mathcal{S}_2 = \left[\frac{1}{5}, \frac{1}{4}\right] \cup [1, +\infty[$$

6. Le réel x est solution de l'équation (E) si et seulement si il est solution de (I_1) et (I_2) . C'est-àdire:

$$x \in \mathcal{S}_1 \cap \mathcal{S}_2$$

L'ensemble des solutions de E est donc :

$$\mathcal{S}_2 = \left[\frac{1}{5}, \frac{1}{4}\right] \cup [1, 2[.$$