Let \mathcal{C} denote the Cantor set and \mathcal{C}_k denote the k^{th} set in the construction of \mathcal{C} .

1) \mathcal{C} is totally disconnected and perfect.

Proof: Fix $x, y \in \mathcal{C}$ where $x \neq y$. Since $1/3^k \to 0$ as $k \to \infty$, we can fix a nonnegative integer k where $1/3^k < |x-y|$, thus x and y must lie in disjoint intervals in $\mathcal{C}_k \supset \mathcal{C}$ which shows that \mathcal{C} is totally disconnected.

Next, fix $x \in \mathcal{C}$, then $x \in \mathcal{C}_k$ for all nonnegative k, and thus for each k there exists an integer n_k where $[n_k/3^k, (n_k+1)/3^k] \subset \mathcal{C}_k$ and

$$\frac{n_k}{3^k} \le x \le \frac{n_k + 1}{3^k}.$$

Letting $k \to \infty$, we have that $(n_k + 1)/3^k - n_k/3^k = 1/3^k \to 0$, but since

$$0 \le x - \frac{n_k}{3^k} \le \frac{n_k + 1}{3^k} - \frac{n_k}{3^k} = \frac{1}{3^k},$$

we have that $x - n_k/3^k = |x - n_k/3^k| \to 0$. Since $n_k/3^k \in \mathcal{C}$, we have elements in \mathcal{C} that are arbitrarily close to x, thus x is not an isolated point and \mathcal{C} is perfect.

2a) We have that $x \in \mathcal{C}$ if and only if

$$x = \sum_{k=1}^{\infty} a_k 3^{-k}$$

where $a_k = 0$ or $a_k = 2$.

Proof: Fix $x \in \mathcal{C}$.

- 12)
- 14)
- 15)