Exercice 1. Question de cours :

- 1) $(u_n)_{\mathbb{N}}$ est de Cauchy si $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n, m \geq N, |u_n u_m| \leq \varepsilon$.
- 2) $(u_n)_{\mathbb{N}}$ tend vers $+\infty$ si $\forall M \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geq N, |u_n| \geq M$.
- 3) On suppose $q \neq 1$. Soit $n \in \mathbb{N}$, alors $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$. Remarque : si q=1 alors $\sum_{k=0}^{n} q^k = n+1$.

Exercice 2. Une gentille étude de suite :

1) Par récurrence : Pour $n=1, u_1=1<2$. Ok. On suppose que $u_n<2$ au rang $n\geq 1$. Alors $\frac{u_n}{2}<1$ donc $1+\frac{u_n}{2}<2$, c'est-à-dire $u_{n+1}<2$. Par récurrence, on en déduit que $\boxed{\forall n\in\mathbb{N}^*, u_n<2}$.

- 2) Soit $n \in \mathbb{N}^*$, $u_{n+1} u_n = 1 \frac{u_n}{2}$. Or, d'après la question précédente, pour $n \in \mathbb{N}^*$, $u_n < 2$ donc $\frac{u_n}{2} < 1 \Rightarrow -\frac{u_n}{2} > -1 \Rightarrow 1 \frac{u_n}{2} > 0$. C'est-à-dire, pour $n \in \mathbb{N}^*$, $u_{n+1} u_n > 0$, donc la suite $(u_n)_{\mathbb{N}^*}$ est croissante.
- 3) $(u_n)_{\mathbb{N}^*}$ est croissante et majorée d'après les 2 questions précédentes, donc $\underline{(u_n)}$ est convergente (et, grâce à la question 1, on a $l:=\lim_{n\to+\infty}u_n\leq 2$).

La suite $(u_{n+1})_{n\in\mathbb{N}^*}$ est une suite extraite de la suite $(u_n)_{n\in\mathbb{N}^*}$ donc elle converge aussi vers l. On déduit alors de $u_{n+1}=1+\frac{u_n}{2}$ que $\lim_{n\to+\infty}u_{n+1}=\lim_{n\to+\infty}\left(1+\frac{u_n}{2}\right)$. D'où $l=1+\frac{l}{2}\Leftrightarrow\frac{l}{2}=1\Leftrightarrow l=2$. Donc la suite $(u_n)_{\mathbb{N}^*}$ converge vers 2.

Exercice 3. Calculs de limites :

1) Soit $n \ge 2$. Comme $-1 \le \cos(n) \le 1$, on $a - \frac{1}{\sqrt{n} + (-1)^n} \le a_n \le \frac{1}{\sqrt{n} + (-1)^n}$.

Mais $\lim_{n\to+\infty}\sqrt{n}+(-1)^n=+\infty$, alors $\lim_{n\to+\infty}\frac{1}{\sqrt{n}+(-1)^n}=0$. Par le théorème d'encadrement des limites, on en déduit que $\lim_{n\to+\infty}a_n=0$.

2) Soit $n \ge 1$. On sait que $\lim_{n \to +\infty} \frac{\ln(n)}{n} = 0$ (croissance comparée) donc, par continuité de la fonction \exp en 0, on en déduit que $\lim_{n \to +\infty} \exp\left(\frac{\ln(n)}{n}\right) = e^0 = 1$. Donc $\lim_{n \to +\infty} b_n = 1$.