Programação em lógica:

O programador descreve as propriedades lógicas do problema a resolver. Esta descrição é utilizada pelo sistema para *inferir* uma solução para o problema.

Por questões de eficiência utiliza-se

- um tipo especial de cláusulas: as cláusulas de Horn,
- uma estratégia de resolução particular: a resolução SLD.

6.1 Cláusulas de Horn

Definição 6.1.1 (Cláusula de Horn)

Cláusula que contém, no máximo, um literal positivo.

Numa cláusula de Horn:

- O literal positivo (se existir) é chamado a cabeça da cláusula.
- Os literais negativos (se existirem) são chamados o *corpo* da cláusula.

Exemplos:

```
\{C, \neg P_1, \neg P_2\}
\{C\}
\{\neg P_1, \neg P_2\}
\{\}
```

6.1 Cláusulas de Horn

Notação:

Dada a equivalência entre $(\alpha_1 \wedge \ldots \wedge \alpha_n) \to \beta$ e a cláusula de Horn $\{\neg \alpha_1, \ldots, \neg \alpha_n, \beta\}$, é vulgar escrever esta cláusula como $\beta \leftarrow \alpha_1, \ldots, \alpha_n$. Usando esta notação, a cláusula vazia é representada pelo símbolo \square .

Exemplos:

$$C \leftarrow P_1, P_2$$

$$C \leftarrow$$

$$\leftarrow P_1, P_2$$

6.1 Cláusulas de Horn

Tipos de cláusulas de Horn:

- Regras ou implicações: tanto a cabeça como o corpo contêm literais.
 - Afirmações ou factos: o corpo é vazio, mas a cabeça contém um literal.
- Objetivos: a cabeça é vazia, mas o corpo não. Cada um dos literais que constituem um objetivo tem o nome de sub-objetivo.
- A cláusula vazia.

6.1 Cláusulas de Horn

Definição 6.1.2 (Cláusula determinada)

As regras e as afirmações, isto é, as cláusulas com cabeça, têm o nome de cláusulas determinadas.

Exemplo:

$$Ant(x,y) \leftarrow AD(x,y)$$
 Regra
 $Ant(x,z) \leftarrow Ant(x,y), \ AD(y,z)$ Regra
 $AD(Marge, Bart) \leftarrow$ Afirmação
 $AD(Sr.B, Marge) \leftarrow$ Afirmação
 $\leftarrow Ant(Sr.B, Bart)$ Objetivo

As 4 primeiras cláusulas são cláusulas determinadas.

6.1 Cláusulas de Horn

Usando a resolução com cláusulas de Horn, um dos resolventes é obrigatoriamente uma cláusula determinada, pois só estas contêm literais positivos.

Assumindo que s é o unificador mais geral dos literais α e β_i , a regra da resolução com cláusulas de Horn é:

$$\begin{array}{lll} n & \alpha \leftarrow \gamma_1, \ldots, \gamma_m \\ m & \delta \leftarrow \beta_1, \ldots, \beta_{i-1}, \ \beta_i, \ \beta_{i+1}, \ldots, \beta_n \\ m+1 & \left(\delta \leftarrow \beta_1, \ldots, \beta_{i-1}, \gamma_1, \ldots, \gamma_m, \beta_{i+1}, \ldots, \beta_n\right) \cdot s \end{array} \quad \text{Res, } (\textit{n, m})$$

6.1 Cláusulas de Horn

 $\Lambda_{n+}(x,y) \neq \Lambda_{n}(x,y)$

Exemplo:

1

T	$Ant(x,y) \leftarrow AD(x,y)$	Prem
2	$Ant(x,z) \leftarrow Ant(x,y), \ AD(y,z)$	Prem
3	$AD(\mathit{Marge}, \mathit{Bart}) \leftarrow$	Prem
4	$AD(Sr.B, Marge) \leftarrow$	Prem
5	\leftarrow Ant(Sr.B, Bart)	Prem
6	$Ant(Sr.B, Marge) \leftarrow$	Res, $(1, 4)$, $\{Sr.B/x, Marge/y\}$
7	$Ant(Sr.B,z) \leftarrow AD(Marge,z)$	Res, $(2, 6)$, $\{Sr.B/x, Marge/y\}$
8	$Ant(Sr.B, Bart) \leftarrow$	Res, $(3, 7)$, $\{Bart/z\}$
9		Res, (5, 8), ε

D.

6.2 Programas

Em programação em lógica:

- informação disponível (premissas) é representada por um conjunto de cláusulas determinadas.
- cláusula cujas instâncias se pretendem derivar a partir desse programa é representada por um objetivo.

Definição 6.2.1(Programa)

Um programa é qualquer conjunto finito de cláusulas determinadas.

6.2 Programas

Exemplo de programa:

$$Ant(x,y) \leftarrow AD(x,y)$$
 $Ant(x,z) \leftarrow Ant(x,y), \ AD(y,z)$
 $AD(Marge, Bart) \leftarrow$
 $AD(Sr.B, Marge) \leftarrow$

Exemplo de objetivo:

$$\leftarrow$$
 Ant(Sr.B, Bart)

6.2 Programas

Definição 6.2.2 (Definição de um predicado)

Num programa, o conjunto de todas as cláusulas cuja cabeça corresponde a um literal contendo a letra de predicado P, diz-se a definição de P.

Exemplo:

No programa anterior, a definição de Ant é dada pelo conjunto:

$$\{Ant(x,y) \leftarrow AD(x,y), \quad Ant(x,z) \leftarrow Ant(x,y), \quad AD(y,z)\}.$$

No mesmo programa, a definição de AD é dada pelo conjunto:

$$\{AD(Marge, Bart) \leftarrow, AD(Sr.B, Marge) \leftarrow\}.$$

6.2 Programas

Definição 6.2.3 (Base de dados)

Uma definição de um predicado que contenha apenas cláusulas fechadas chama-se uma *base de dados* para esse predicado.

Exemplo:

No programa anterior, o conjunto

$$\{AD(Marge, Bart) \leftarrow, AD(Sr.B, Marge) \leftarrow\}$$

é uma base de dados para AD.

Definição 6.2.4 (Resposta de um programa a um objetivo)

Sendo Δ um programa e α um objetivo, uma *resposta* de Δ ao objetivo α é uma substituição s para as variáveis de α .

Definição 6.2.5 (Restrição de uma substituição a variáveis)

Sendo s uma substituição e $\{x_1,\ldots,x_m\}$ um conjunto de variáveis, define-se a restrição de s ao conjunto de variáveis $\{x_1,\ldots,x_m\}$, escrita $s\mid_{\{x_1,\ldots,x_m\}}$, como sendo o conjunto

$$s \mid_{\{x_1,\ldots,x_m\}} = \{t_i/x_i \in s : x_i \in \{x_1,\ldots,x_m\}\}.$$

Definição 6.2.6 (Resposta correta de um programa)

Uma resposta s de Δ ao objetivo α diz-se correta se $\Delta \models (\alpha \cdot s)$.

6.2 Programas

Exemplos:

Dado o programa

$$Ant(x,y) \leftarrow AD(x,y)$$
 $Ant(x,z) \leftarrow Ant(x,y), \ AD(y,z)$
 $AD(Marge, Bart) \leftarrow$
 $AD(Sr.B, Marge) \leftarrow$

e o objetivo \leftarrow Ant(x, Bart), tanto $s_1 = \{Homer/x\}$, como $s_2 = \{Sr.B/x\}$ são respostas do programa ao objetivo.

No entanto, só s_2 é uma resposta correta.

6.3 Resolução SLD

A utilização do princípio da resolução origina um processo não determinístico: não estão definidas quais a cláusulas a resolver, nem estão determinados quais os literais a resolver depois de escolhidas duas cláusulas para resolver.

As estratégias de resolução apresentadas resolvem parcialmente este problema.

Para o resolver na totalidade precisamos de introduzir os seguintes conceitos:

- função de seleção
- regra de procura

6.3 Resolução SLD

Definição 6.3.1 (Função de seleção)

Uma função de seleção, S, é uma regra para escolher um literal num objetivo: $S(\leftarrow \alpha_1, \ldots, \alpha_n) \in \{\alpha_1, \ldots, \alpha_n\}$.

O literal escolhido será o candidato à aplicação do princípio da resolução.

Uma vez escolhido o literal, é escolhida uma cláusula do programa cuja cabeça unifique com o literal escolhido.

Definição 6.3.5 (Regra de procura)

Dado um programa Δ e um literal α (correspondente a um sub-objetivo), uma regra de procura escolhe uma cláusula de Δ cuja cabeça unifique com α , se tal cláusula existir: $P(\alpha, \Delta) \in \Delta$.

6.3 Resolução SLD

A resolução SLD é uma estratégia de resolução linear aplicável a um conjunto de cláusulas determinadas e um objetivo, juntamente com uma função de seleção.

("SLD-resolution" - "Linear resolution with S-election function and D-efinite clauses".)

Informalmente, a resolução SLD parte de um objetivo, substituindo sucessivamente, cada sub-objetivo pelo corpo de uma cláusula cuja cabeça seja unificável com o sub-objetivo.

Este processo é sucessivamente repetido até que não existam mais sub-objetivos ou quando o sub-objetivo escolhido não for unificável com a cabeça de nenhuma das cláusulas do programa.

Definição 6.3.3 (Resposta calculada)

Seja Δ um programa, α um objetivo e S uma função de seleção. Se a prova SLD para α usando Δ for finita, $[\gamma_0, \gamma_1, \ldots, \gamma_n]$, a composição das substituições $s_0, s_1, \ldots, s_{n-1}$ restringida às variáveis que ocorrem em α , $(s_0 \circ s_1 \circ \ldots \circ s_{n-1}) \mid_{\mathit{vars}(\alpha)}$, diz-se uma $\mathit{resposta}$ calculada de Δ a α via S. Diz-se também que n é o $\mathit{comprimento}$ da prova SLD.

Definição 6.3.4 (Refutação SLD)

Uma prova SLD diz-se uma refutação SLD se e só o seu último elemento for a cláusula vazia, \Box .

Exemplo: Consideremos o seguinte programa:

$$R(a,b) \leftarrow R(b,c) \leftarrow R(x,y) \leftarrow R(x,z), R(z,y)$$

Suponhamos que a função de seleção escolhia o primeiro literal no objetivo, e que a regra de procura escolhia a cláusula com menos literais.

Prova por refutação para o objetivo $\leftarrow R(a, c)$:

Resposta calculada: $(\{a/x, c/y\} \circ \{b/z\} \circ \varepsilon)|_{\{\}} = \varepsilon$.

Exemplo: Consideremos o seguinte programa:

$$R(a,b) \leftarrow R(b,c) \leftarrow R(x,y) \leftarrow R(x,z), R(z,y)$$

Suponhamos agora que a função de seleção escolhia o último literal no objetivo, e que a regra de procura escolhia a cláusula com mais literais.

Prova por refutação para o objetivo $\leftarrow R(a, c)$:

Este exemplo mostra a importância da escolha da cláusula definida (regra de procura) para aplicar o princípio da resolução.

A mesma função de selecção pode originar várias refutações SLD, dependendo da cláusula escolhida.

Uma árvore SLD mostra todas as alternativas para uma dada função de selecção.

Consideremos o programa

$$P(x,z) \leftarrow Q(x,y), P(y,z)$$

$$P(x,x) \leftarrow$$

$$Q(a,b) \leftarrow$$

e o objetivo

$$\leftarrow P(x, b)$$
.

Vamos usar a função de seleção $S(\leftarrow \alpha_1, \dots, \alpha_n) = \alpha_1$.

Obtivemos:

- 2 ramos bem sucedidos, com respostas $\{a/x\}$ e $\{b/x\}$.
- 1 nó falhado.

Com a função de seleção $S(\leftarrow \alpha_1, \dots, \alpha_n) = \alpha_n$, obteríamos:

- 2 ramos bem sucedidos, com respostas $\{a/x\}$ e $\{b/x\}$.
- infinitos nó falhados.
- ramos infinitos.

Teorema (Independência da função de seleção)

Seja Δ um programa e α um objetivo. Então, independentemente da função de seleção, todas as árvores SLD de Δ e α têm o mesmo número (finito ou infinito) de ramos bem sucedidos.