MATH635 Riemannian Geometry

Pingbang Hu

January 18, 2023

Abstract

This course is taken in Winter 2023, and the date on the covering page is the last updated time.

Contents

1	Maı	nifolds	2
	1.1	Differentiable Manifolds	2
	1.2	Tangent Vectors	9
	1.3	Submanifolds, Immersions, Embeddings	11
	1.4	Vector Fields	13

Chapter 1

Manifolds

Lecture 1: A Foray to Smooth Manifolds

1.1 Differentiable Manifolds

5 Jan. 14:30

1.1.1 Topological Manifolds

Let's start with a common definition.

Definition 1.1.1 (Topological manifold). A topological manifold \mathcal{M} of dimension n is a (topological) Hausdorff space such that each point $p \in \mathcal{M}$ has a neighborhood U homeomorphic via $\varphi \colon U \to U'$ to an open subset $U' \subseteq \mathbb{R}^n$.

Definition 1.1.2 (Local coordinate map). For every $p \in \mathcal{M}$, the corresponding homeomorphism φ is called the *local coordinate map*.

Definition 1.1.3 (Local coordinate). The pull-back (x^1, \ldots, x^n) of the local coordinate map φ from \mathbb{R}^n is called the *local coordinates* on U, given by

$$\varphi(p) = (x^1(p), \dots, x^n(p)).$$

Definition 1.1.4 (Coordinate chart). The pair (U, φ) is called a *(coordinate) chart* on M.

In other words, a topological manifold can be thought of as a space such that it looks like \mathbb{R}^n locally.

Definition 1.1.5 (Atlas). An atlas $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha}$ for a manifold \mathcal{M} is a collection of charts such that $\{U_{\alpha} \subseteq \mathcal{M} \mid U_{\alpha} \text{ open}\}_{\alpha}$ are an open covering of \mathcal{M} , i.e., $\mathcal{M} = \bigcup_{\alpha} U_{\alpha}$.

In other words, for all $p \in \mathcal{M}$, there exists a neighborhood $U \subseteq \mathcal{M}$ and homeomorphism $h: U \to U' \subseteq \mathbb{R}^n$ open.

Definition 1.1.6 (Locally finite). An atlas is said to be *locally finite* if each point $p \in \mathcal{M}$ is contained in only a finite collection of its open sets.

Clearly, without any help of ambient space such as \mathbb{R}^n , there's no clear way to make sense of differentiability of a manifold. But thankfully, we now have an explicit relation to the ambient space \mathbb{R}^n via φ_{α} . To formalize, let \mathcal{A} be an atlas for a manifold \mathcal{M} , and assume that $(U_1, \varphi_1), (U_2, \varphi_2)$ are 2 elements of \mathcal{A} . Then clearly, the map $\varphi_2 \circ \varphi_1^{-1} \colon \varphi_1(U_1 \cap U_2) \to \varphi_2(U_1 \cap U_2)$ is a homeomorphism between 2 open sets of Euclidean spaces since both φ_1 and φ_2 are homeomorphism. Due to this map's importance, it has its own name.

Definition 1.1.7 (Coordinate transition). The map $\varphi_2 \circ \varphi_1^{-1}$ is called the *coordinate transition* of \mathcal{A} for the pair of charts $(U_1, \varphi_1), (U_2, \varphi_2)$.

1.1.2 Differentiable Structures

Notice that the coordinate transitions are from \mathbb{R}^n to \mathbb{R}^n ; hence differentiability makes sense now, which induces the following.

Definition 1.1.8 (Differentiable atlas). The atlas $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}$ is differentiable if all transitions are differentiable.

Remark. Here, the differentiability depends on the content. Sometimes, we may want it to be C^{∞} , and sometimes may be C^k for some finite k. On the other hand, smooth always refers to C^{∞} . We'll use them interchangeably if it's clear which case we're referring to.

Definition 1.1.9 (Equivalence atlas). Two atlases \mathcal{U}, \mathcal{V} of a manifold are equivalent if for every $(U, \varphi) \in \mathcal{U}, (V, \psi) \in \mathcal{V}$,

$$\varphi \circ \psi^{-1} \colon \psi(U \cap V) \to \varphi(U \cap V)$$

and

$$\psi \circ \varphi^{-1} \colon \varphi(U \cap V) \to \psi(U \cap V)$$

are diffeomorphisms between subsets of Euclidean spaces.

Notably, we have the following notation.

Notation (Smoothly compatible). Two charts (U, φ) and (V, ψ) are smoothly compatible if either $U \cap V = \emptyset$ or $\psi \circ \varphi^{-1}$ is a diffeomorphism.

This suggests the following.

Definition 1.1.10 (Smooth structure). A *smooth structure* on \mathcal{M} is an equivalence class \mathcal{U} of coordinate atlas with the property that all transition functions are diffeomorphisms.

Remark. We can also use the maximal differentiable atlas to be our differentiable structure.

Definition 1.1.11 (Smooth manifold). A smooth manifold is a manifold \mathcal{M} with a smooth structure.

In this way, we can do calculus on smooth manifolds! Furthermore, it now makes sense to say that a function $f: \mathcal{M} \to \mathbb{R}$ is differentiable (or C^{∞}) by considering differentiability of $f \circ \varphi^{-1}$ around p.

Notation. The collection of smooth functions on smooth manifold \mathcal{M} is denoted by $C^{\infty}(\mathcal{M}, \mathbb{R})$, or $C^k(\mathcal{M}, \mathbb{R})$.

Remark. The class $C^{\infty}(\mathcal{M}, \mathbb{R})$ consists of functions with property is well-defined.

Proof. Let \mathcal{A} be any given atlas from equivalence class that defines the smooth structure, and as we have shown, if $(U, \varphi) \in \mathcal{A}$, then $f \circ \varphi^{-1}$ is a smooth function on \mathbb{R}^n . This requirement defines the same set of smooth functions no matter the choice of representative atlas by the nature of Definition 1.1.9 requirement that defines the equivalent manifolds.

1.1.3 Orientation

Another essential property of a manifold is its orientability.

Definition. Consider an atlas \mathcal{A} for a differentiable manifold \mathcal{M} .

Definition 1.1.12 (Oriented). A is *oriented* if all transitions have positive functional determinant.

Definition 1.1.13 (Orientable). \mathcal{M} is orientable if \mathcal{A} is an oriented atlas.

Motivated by the above definitions, we see that we can actually use an atlas to define an orientation.

Definition 1.1.14 (Orientation). Let \mathcal{M} be an orientable manifold. Then a oriented differentiable structure is called an *orientation* of \mathcal{M} .

If \mathcal{M} possesses an orientation, we can also say that it's *oriented*. But we don't bother to make a new definition to confuse ourselves with Definition 1.1.12.

Remark. Two differentiable structures obeying Definition 1.1.12 determine the same orientation if the union again satisfying Definition 1.1.12.

Remark. If \mathcal{M} is orientable and connected, then there exists exactly 2 distinct orientations on \mathcal{M} .

Now, we can see some examples of smooth manifolds.

Example (Sphere). The sphere $S^n \subseteq \mathbb{R}^{n+1}$ given by

$$S^{n} = \{(x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_{1}^{2} + \dots + x_{n+1}^{2} = 1\}.$$

Consider $U_i^+ = \{x \in S^n \mid x_i > 0\}, \ U_i^- = \{x \in S^n \mid x_i < 0\} \text{ for } i = 1, \dots, n+1, \text{ and } h_i^{\pm} : U_i^{\pm} \to \mathbb{R}^n \text{ such that}$

$$h_i^{\pm}(x_1,\ldots,x_{n+1}) = (x_1,\ldots,\hat{x}_i,\ldots,x_{n+1}).$$

Note that the minimum charts needed to cover S^n is 2.

Example. Let $\mathcal{M} = U \subseteq \mathbb{R}^n$, then $\{(U, \varphi)\}$ is a smooth structure with $\varphi = 1$.

Example. Open sets of C^{∞} -manifolds are C^{∞} -manifolds.

*

10 Jan. 14:30

Example (General linear group). $GL(n) = \{A \in M_n(\mathbb{R}) \mid \det A \neq 0\} \subseteq M_n(\mathbb{R}) = \mathbb{R}^{n^2}$, open.

Example (Real projective space). $\mathbb{R}P^n = S^n / \sim \text{where } x \sim -x \text{ with } \pi \colon S^n \to \mathbb{R}P^n, x \mapsto [x]$.

Proof. π is a homeomorphism on each U_i^+ for i = 1, ..., n+1, with

$$\{(\pi(U_i^+), \varphi_i^+ \circ \pi^{-1}), i = 1, \dots, n+1\}$$

is a C^{∞} -atlas for $\mathbb{R}P^n$

Note. Observe that $\mathbb{R}P^n = \mathbb{R}^{n+1} \setminus \{0\} / \sim$.

Lecture 2: Maps Between Smooth Manifolds

1.1.4 Smooth Maps

We can now consider the maps between manifolds, specifically, the smooth manifolds.

Definition 1.1.15 (Smooth function). Let M, N be two smooth manifolds, and let \mathcal{U} be locally

finite atlas from the equivalence class that gives the smooth structure on M, and let \mathcal{V} be the corresponding for N. A map $h: M \to N$ is said to be *smooth* if each map in the collection

$$\{\psi \circ h \circ \varphi^{-1} \colon h(U) \cap V \neq \varnothing\}$$
,

where $(U, \varphi) \in \mathcal{U}$, $(V, \psi) \in \mathcal{V}$ is C^{∞} -differentiable as a map from one Euclidean space to another.

Remark. Equivalence relation guarantees that Definition 1.1.15 depends only on the smooth structure of M, N, but not on the chosen representative coordinate atlas.

Definition. Consider two smooth manifolds M, N and a smooth homeomorphism $h: M \to N$ with smooth inverse.

Definition 1.1.16 (Diffeomorphic). The two manifolds M, N are said to be diffeomorphic.

Definition 1.1.17 (Diffeomorphism). The map h is said to be a diffeomorphism.

Let M_1, M_2 be two smooth manifolds, and let $\varphi \colon M_1 \to M_2$ be a diffeomorphism. Then the following hold.

Check

- (a) M_1 is orientable if and only if M_2 is orientable.
- (b) If in addition, M_1 and M_2 are both connected and oriented, then φ induces an orientation on M_2 that may or may not coincide with the initial orientation of M_2 .

If the induced orientation coincides, then we say φ preserves the orientation, otherwise φ reverses the orientation.

1.1.5 Grassmannian Manifold

Before proceeding, let's consider an interesting smooth manifold.

Definition 1.1.18 (Grassmannian manifold). Given $m, n \in \mathbb{N}$, the so-called *Grassmannian manifold* G(n, m) is the set of all n-dimensional subspaces of \mathbb{R}^{n+m} .

Note. G(1,m) is just $\mathbb{R}P^m$, and G(0,m), G(n,0) are one-point sets.

As we will soon see, G(n, m) has the smooth structure of an mn-dimensional manifold.

Intuition. We obtain the structure by exhibiting an atlas whose transitions are diffeomorphisms.

Firstly, we give G(n,m) a suitable topology, i.e., the metric topology. Let $\Pi \in G(n,m)$, and let $\mathcal{L}(\Pi,\Pi^{\perp})$ denote the mn-dimensional space of linear maps from Π to Π^{\perp} . Define the map

$$\varphi_{\Pi} \colon \mathcal{L}(\Pi, \Pi^{\perp}) \to G(n, m), \qquad \varphi_{\Pi}(\alpha) = (\mathbb{1}_{\Pi} \oplus \alpha) (\Pi)$$

where $\mathbb{1}_{\Pi} \oplus \alpha$ is regarded as a map $\Pi \to \Pi \oplus \Pi^{\perp} = \mathbb{R}^{n+m}$. Clearly, φ_{Π} is injective, and thus, $(\mathcal{L}(\Pi, \Pi^{\perp}), \varphi_{\Pi})$ is an mn-dimensional chart of G(n, m).

Remark. The images $\varphi_{\Pi}(\mathcal{L}(\Pi,\Pi^{\perp}))$ cover G(n,m).

Example.
$$\Pi = \varphi_{\Pi}(0) \in \varphi_{\Pi}(\mathcal{L}(\Pi, \Pi^{\perp})).$$

We can now prove that these charts are mutually compatible. Let $\Pi, \Pi' \in G(n, m)$, and let P, P' be orthogonal projections from \mathbb{R}^{n+m} onto Π, Π' respectively. Firstly,

$$F = \varphi_{\Pi'}^{-1} \varphi_\Pi \colon \varphi_\Pi^{-1} \left(\varphi_{\Pi'} (\mathcal{L}(\Pi', (\Pi')^\perp)) \right) \to \varphi_{\Pi'}^{-1} \left(\varphi_\Pi (\mathcal{L}(\Pi, \Pi^\perp)) \right)$$

is smooth.

Consider $\alpha \in \mathcal{L}(\Pi, \Pi^{\perp})$, and $\beta \in \mathcal{L}(\Pi', (\Pi')^{\perp})$, then for α, β , the equality $F(\alpha) = \beta$ means that $\varphi_{\Pi}(\alpha) = \varphi_{\Pi'}(\beta)$. Let $f_{\alpha} \colon \Pi \to \Pi'$ be defined by

$$f_{\alpha} = P' \circ (\mathbb{1}_{\Pi} \oplus \alpha).$$

We need to check

- (a) f_{α} is invertible, and
- (b) $\forall y \in \Pi, y + \alpha(y) = f_{\alpha}(y) + \beta(f_{\alpha}(y)).$

¹In other words, $\varphi_{\Pi}(\alpha)$ is the graph of α in $\Pi \oplus \Pi^{\perp} = \mathbb{R}^{n+m}$.

Note. The condition that det $f_{\alpha} \neq 0$ gives an exact description of the subset

$$\varphi_{\Pi^{-1}}(\varphi_{\Pi'}(\mathcal{L}(\Pi',(\Pi')^{\perp})))$$

of $\mathcal{L}(\Pi,\Pi^{\perp})$, which is therefore open.

For β , it is $(\mathbb{1}_{\Pi'} \oplus \beta) \circ f_{\alpha} = \mathbb{1}_{\Pi} \oplus \alpha$, and hence

$$\beta = F(\alpha) = (\mathbb{1}_{\Pi} \oplus \alpha) \circ f_{\alpha}^{-1} - \mathbb{1}_{\Pi'}.$$

It follows by the construction that the image of β is contained in $(\Pi')^{\perp}$.

Remark. We obtain an infinite atlas for G(n,m) with charts labeled by $\Pi \in G(n,m)$. But it's suffices to consider only $\binom{n+m}{n}$ charts corresponding to subspaces Π spanned with n coordinate axes

1.1.6 Manifolds with Boundary

We first introduce two notions.

Definition 1.1.19 (Closed manifold). A manifold is closed if it is compact and without boundary.

Definition 1.1.20 (Open manifold). A manifold is *open* if it has only non-compact components without boundary.

Lemma 1.1.1. If M can be covered by two coordinate neighborhoods V_1, V_2 such that $V_1 \cap V_2$ is connected, then M is orientable.

Proof. The determinant of the differential of the coordinate change $\neq 0$, so it does not change sign in $V_1 \cap V_2$. If it's negative at a single point, it's enough to change the sign of one of the coordinates to make it positive at that point, hence on $V_1 \cap V_2$.

Example. Let
$$S^n = \left\{ (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_i^2 = 1 \right\} \subseteq \mathbb{R}^{n+1}$$
 is orientable.

Proof. Let $N=(0,\ldots,0,1)$ and $S=(0,\ldots,0,-1)$, consider given $p=(0,\ldots,0,x_i,0,\ldots,x_{n+1})$ then $\pi_1: S^n \setminus \{N\} \to \mathbb{R}^n$ given by

$$\pi_1(p) = \left(0, \dots, 0, \frac{x_i}{1 - x_{n+1}}, 0, \dots, 0\right)$$

to be the stereographic projection from the north pole N.

More generally, it takes $p(x_1, \ldots, x_{n+1}) \in S^n - \{N\}$ into the intersection at the hyperplane

 $x_{n+1} = 0$ with the line passing through p ad N. In this way, we have

$$\pi_1(x_1,\ldots,x_n) = \left(\frac{x_1}{1-x_{n+1}}, \frac{x_2}{1-x_{n+1}}, \ldots, \frac{x_n}{1-x_{n+1}}\right),$$

hence $\pi_1: S^n \setminus \{N\} \to \mathbb{R}^n$ is differentiable, and is injective. Similarly, $\pi_2: S^n \setminus \{S\} \to \mathbb{R}^n$ for S can also be defined and everything holds similarly. We see that these two parametrizations $(\mathbb{R}^n, \pi_1^{-1}), (\mathbb{R}^n, \pi_2^{-1})$ cover S^n . The change of coordinate is given by

$$y_j = \frac{x_j}{1 - x_{n+1}} \leftrightarrow y'_j = \frac{x_j}{1 + x_{n+1}}, \ (y_1, \dots, y_n) \in \mathbb{R}^n, \ j = 1, \dots, n,$$

where

$$y'_j = \frac{y_j}{\sum_{i=1}^n y_i^2}.$$

This implies that $\{(\mathbb{R}^n, \pi_1^{-1}), (\mathbb{R}^n, \pi_2^{-1})\}$ is a differentiable structure for S^n . Now, consider $\pi_1^{-1}(\mathbb{R}^n) \cap \pi_2^{-1}(\mathbb{R}^n) = S^n \setminus \{N \cup S\}$, which is connected, and hence S^n is orientable, and the above structure gives an orientation of S^n .

Lecture 3: Complex Manifolds, Tangent Spaces and Bundles

Let's look at two more examples about orientation.

12 Jan. 14:30

Example. Let $A: S^n \to S^n$ be the antipodal map given by A(p) = -p for $p \in \mathbb{R}^{n+1}$. It's easy to see that A is differentiable with $A^2 = 1$. Furthermore, A is diffeomorphism of $S^n \subseteq \mathbb{R}^{n+1}$. We see that

- if n is even, A reverses the orientation;
- if n is odd, A preserves the orientation.

Example. G(k, n) is orientable if and only if n is even or n = 1.

1.1.7 Complex Manifolds

Here we introduce the notion of complex manifold.

Definition 1.1.21 (Complex manifold). A complex manifold \mathcal{M} of complex dimension d (dim $_{\mathbb{C}} \mathcal{M} = d$) is a differentiable manifold of (real) dimension 2d (dim $_{\mathbb{R}} \mathcal{M} = 2d$) whose charts take values in open subsets of \mathbb{C}^d with holomorphic chart transitions.

As previously seen. The chart transitions $z_{\beta} \circ z_{\alpha}^{-1} \colon z_{\alpha}(U_{\alpha} \cap U_{\beta}) \to z_{\beta}(U_{\alpha} \cap U_{\beta})$ is holomorphic if $\partial z_{\beta}^{j}/\partial \overline{z_{\alpha}^{k}} = 0$ for all j,k where

$$\frac{\partial}{\partial \overline{z^k}} = \frac{1}{2} \left(\frac{\partial}{\partial \overline{x^k}} + i \frac{\partial}{\partial \overline{y^k}} \right).$$

Remark. Complex Grassmannians $G_{\mathbb{C}}(k,n)$ are all orientable. More generally, complex manifolds are always orientable because holomorphic maps always have positive functional determinant.

1.1.8 Partition of Unity

We state, without proof, of an important lemma about the partition of unity.

Definition 1.1.22 (Partition of unity). Let \mathcal{M} be a differentiable manifold, and let $(U_{\alpha})_{\alpha \in \mathcal{A}}$ be an open covering of \mathcal{M} . Then a partition of unity is a locally finite refinement $(V_{\beta})_{\beta \in \mathcal{B}}$ of (U_{α}) and

 C^{∞} -functions $\varphi_{\beta} \colon \mathcal{M} \to \mathbb{R}$ with

- (a) supp $(\varphi_{\beta}) \subseteq V_{\beta}$ for all $\beta \in \mathcal{B}$;
- (b) $0 \le \varphi_{\beta}(x) \le 1$ for all $x \in \mathcal{M}, \beta \in \mathcal{B}$;
- (c) $\sum_{\beta \in \mathcal{B}} \varphi_{\beta} = 1$ for all $x \in \mathcal{M}$.

Lemma 1.1.2 (Partition of unity). Let \mathcal{M} be a differentiable manifold, and let $(U_{\alpha})_{\alpha \in \mathcal{A}}$ be an open covering of \mathcal{M} . Then there exists a partition of unity subordinate to (U_{α}) ,

1.2 Tangent Vectors

1.2.1 Tangent Vectors in Euclidean Spaces

To discuss the concept of calculus between manifolds formally, we start with our discussion in Euclidean spaces, where we naturally have the coordinates for every point.

Definition. Let \mathcal{M} be a Euclidean manifold of dimension d, $x = (x^1, \dots, x^d)$ be Euclidean coordinates of \mathbb{R}^d , and $x_0 \in \Omega \subseteq \mathbb{R}^d$ where Ω is open.

Definition 1.2.1 (Tangent space of Euclidean space). The tangent space $T_{x_0}\Omega$ of Ω at x_0 is the vector space $\{x_0\} \times E^a$ spanned by the basis $(\partial/\partial x^1, \ldots, \partial/\partial x^d)$.

Definition 1.2.2 (Tangent vector of Euclidean space). The elements in the tangent space of Euclidean spaces is called *tangent vectors*.

Before proceeding, we introduce a shorthand notation.

Notation (Einstein notation). The *Einstein notation* abbreviates the summation $\sum_i v^i x_i$ as $v^i x_i$, where we implicitly sum over the upper and lower index.

Definition 1.2.3 (Differential of Euclidean space). If $\Omega \subseteq \mathbb{R}^d$, $\Omega' \subseteq \mathbb{R}^d$ are open, and $f \colon \Omega \to \Omega'$ is differentiable, then the differential $df(x_0)$ for $x_0 \in \Omega$ is the induced linear map between tangent spaces

$$\mathrm{d} f(x_0) \colon T_{x_0}\Omega \to T_{f(x_0)}\Omega', \quad v = v^i \frac{\partial}{\partial x^i} \mapsto v^i \frac{\partial f^j}{\partial x^i}(x_0) \frac{\partial}{\partial f^j}.$$

Definition 1.2.4 (Tangent bundle of Euclidean space). The *tangent bundle* is defined as $T\Omega := \coprod_{x \in \Omega} T_x \Omega \cong \Omega \times E \cong \Omega \times \mathbb{R}^d$, which is an open subset of $\mathbb{R}^d \times \mathbb{R}^d$.

Note (Total space). $T\Omega$ is also called the *total space*.

Remark. Given a tangent bundle $T\Omega$, we define π to be the projection $\pi: T\Omega \to \Omega$ given by $\pi(x,v)=x$. This makes $T\Omega$ naturally a differentiable manifold.

With the notion of tangent bundle, given $f: \Omega \to \Omega'$, we can also define $df: T\Omega \to T\Omega'$ as

$$\left(x, v^i \frac{\partial}{\partial x^i}\right) \mapsto \left(f(x), v^i \frac{\partial f^j}{\partial x^i}(x_0) \frac{\partial}{\partial f^j}\right).$$

^aThere are only finitely many non-vanishing summands of each point, since only finitely many φ_{β} are non-zero of any given point as the covering (V_{β}) is locally finite.

 $[^]aE$ is a d-dimensional Euclidean space.

Notation. We often write df(x)(v) instead of df(x,v) to coincide with the notation of differential.

In particular, for $v = v^i \partial / \partial x^i$, we have

$$\mathrm{d}f(x)(v) = v^i \frac{\partial f}{\partial x^i}(x) \in T_{f(x)} \mathbb{R} \cong \mathbb{R},$$

and we write v(f)(x) for df(x)(v).

1.2.2 Tangent Vectors in Manifolds

We now try to formally define the tangent space on a smooth manifold. A natural idea is the following.

Intuition. Let \mathcal{M}^d be a differentiable manifold with a chart $x \colon U \to \Omega \subseteq \mathbb{R}^d$ and $p \in U \subseteq \mathcal{M}$ where U is open. The tangent space $T_p\mathcal{M}$ of \mathcal{M} at p should be represented in the chart x by $T_{x(p)}x(U)$.

To see that the above are well-defined, i.e., $T_p\mathcal{M}$ are independent of the choice of charts, let $x' : U' \to \mathbb{R}^d$ to be another chart with $p \in U' \subseteq \mathcal{M}$ where U' is also open. Denote $\Omega := x(U)$, and $\Omega' := x'(U')$, then the transition map

$$x' \circ x^{-1} \colon x(U \cap U') \to x'(U \cap U')$$

induces a vector space isomorphism

$$L := d(x' \circ x^{-1})(x(p)) : T_{x(p)}\Omega \to T_{x'(p)}\Omega',$$

such that $v \in T_{x(p)}\Omega$ and $L(v) \in T_{x'(p)}\Omega'$ represent the same tangent vector in $T_p\mathcal{M}$.

Remark. A tangent vector in $T_p\mathcal{M}$ is given by the family of the coordinate representations.

Now, we want to define the similar notion of differential of Euclidean spaces. Let consider a simple case first, where we let $f : \mathcal{M} \to \mathbb{R}$ to be a differentiable function, and assume that the tangent vector $w \in T_p \mathcal{M}$ is represented by $v \in T_{x(p)}x(U)$.

Intuition. We want to define df(p) as a linear map from $T_p\mathcal{M} \to \mathbb{R}$. In chart x, let $w \in T_p\mathcal{M}$ be given as $v = v^i \partial/\partial x^i \in T_{x(p)}x(U)$. Say that df(p)(w) in this chart represented by

 $d(f \circ x^{-1})(x(p))(v).$

Remark. $T_p\mathcal{M}$ is a vector space of dimension d isomorphic to \mathbb{R}^d , where the isomorphism depends on choice of chart.

Intuition. Pull functions on \mathcal{M} back by a chart to an open subset of \mathbb{R}^d , differentiate there.

In order to obtain a tangent space which does not depend on charts, we need to have transformation behavior under change of charts. Let $F: \mathcal{M}^d \to \mathcal{N}^c$ be a differentiable map where \mathcal{M}, \mathcal{N} are smooth manifolds. Then we want to represent dF in local charts $x: U \subseteq \mathcal{M} \to \mathbb{R}^d, y: V \subseteq \mathcal{N} \to \mathbb{R}^c$ by $d(y \circ F \circ x^{-1})$. The local coordinates on U is given by (x^1, \dots, x^d) , and on V is (F^1, \dots, F^c) such that

$$F(x) = (F^{1}(x^{1}, \dots, x^{d}), \dots, F^{c}(x^{1}, \dots, x^{d})).$$

Then, dF induces a linear map dF: $T_p\mathcal{M} \to T_{F(x)}\mathcal{N}$ which in our coordinate representation is given by the matrix

$$\left(\frac{\partial F^{\alpha}}{\partial x^{i}}\right)_{\substack{\alpha=1,\ldots,c\\i=1,\ldots,d}},$$

and a change of charts is then just the base change at tangent spaces: if

$$(x^1, \dots, x^d) \mapsto (\xi^1, \dots, \xi^d)$$

 $(F^1, \dots, F^c) \mapsto (\phi^1, \dots, \phi^c)$

are coordinate changes, then dF represented in the new coordinates is given by

$$\left(\frac{\partial \phi^{\beta}}{\partial \xi^{j}}\right) = \left(\frac{\partial \phi^{\beta}}{\partial F^{\alpha}} \frac{\partial F^{\alpha}}{\partial x^{i}} \frac{\partial x^{i}}{\partial \xi^{j}}\right).$$

Lecture 4: Submanifolds, Vector Bundles, and Riemannian metrics

Definition. Let \mathcal{M}^d be a differentiable manifold with a chart $x \colon U \to \Omega \subseteq \mathbb{R}^d$ and $p \in U \subseteq \mathcal{M}$ where U is open. On $\{(x,v) \mid v \in T_{x(p)}\Omega\}$, we define an equivalence relation by $(x,v) \sim (y,w)$ if and only if $w = \mathrm{d}(y \circ x^{-1})v$.

17 Jan. 14:30

Definition 1.2.5 (Tangent space). The space of equivalence classes is called the *tangent space* $T_p\mathcal{M}$ at point p to \mathcal{M} .

Definition 1.2.6 (Tangent vector). The elements in the tangent space is called tangent vectors.

Remark. $T_p\mathcal{M}$ naturally caries the structure of a vector space.

Now, $T\mathcal{M}$ is defined as

$$T\mathcal{M} \coloneqq \coprod_{p \in \mathcal{M}} T_p \mathcal{M}.$$

Recall the projection $\pi: T\mathcal{M} \to \mathcal{M}$ with $\pi(w) = p$ for $w \in T_p\mathcal{M}$. Then we can define the following.

Definition 1.2.7 (Derivation). If $x: U \to \mathbb{R}^d$ be a chart for \mathcal{M} , and let $TU = \coprod_{p \in U} T_p U$. Then we define the *derivation* $dx: TU \to Tx(U) := \coprod_{p \in x(U)} T_p \mathcal{M}$ by $w \mapsto dx(\pi(w))(w) \in T_{x(\pi(w))}x(U)$.

The transition maps

$$dx' \circ (dx)^{-1} = d(x' \circ x^{-1})$$

are differentiable. π is local represented by $x \circ \pi \circ dx^{-1}$ maps $(x_0, v) \in Tx(U)$ to x_0 .

Definition 1.2.8 (Tangent bundle). The triple $(T\mathcal{M}, \pi, \mathcal{M})$ is called the *tangent bundle* of \mathcal{M} of \mathcal{M} .

Definition 1.2.9 (Total space). TM is called the *total space* of the tangent bundle.

1.3 Submanifolds, Immersions, Embeddings

Definition 1.3.1 (Immersion). Let $\mathcal{M}^m \to \mathcal{N}^n$ be smooth manifolds. A differentiable mapping $\varphi \colon \mathcal{M} \to \mathcal{N}$ is an immersion if

$$\mathrm{d}\varphi_p\colon T_p\mathcal{M}\to T_{\varphi(p)}\mathcal{N}$$

is injective for every $p \in \mathcal{M}$.

Definition 1.3.2 (Embedding). An immersion $\varphi \colon \mathcal{M} \to \mathcal{N}$ is an *embedding* if it is also a homeomorphism onto $\varphi(\mathcal{M}) \subseteq \mathcal{N}$, with $\varphi(\mathcal{M})$ having the subspace topology induced from \mathcal{N} .

Definition 1.3.3 (Submanifold). If the inclusion $\iota \colon \mathcal{M} \hookrightarrow \mathcal{N}$ between two manifolds is an embedding, then \mathcal{M} is a *submanifold* of \mathcal{N} .

- (a) Non-differentiable curve.
- (b) Non-immersion curve.
- (c) Non-embedding curve.

Figure 1.1: Three simple examples

Lemma 1.3.1. Let $f: \mathcal{M}^m \to \mathcal{N}^n$ to be an immersion and $x \in \mathcal{M}$. Then there exists a neighborhood U of x and a chart (V, y) on \mathcal{N} with $f(x) \in V$ such that $f|_U$ is a differentiable embedding and $y^{m+1}(p) = \ldots = y^n(p) = 0$ for all $p \in f(U \cap V)$.

Proof. We use the implicit function theorem. In the local coordinates (z^1, \ldots, z^n) on \mathcal{N} , and (x^1, \ldots, x^m) on \mathcal{M} . Without loss of generality, a let

$$\left(\frac{\partial z^{\alpha}(f(x))}{\partial x^{i}}\right)_{i,\alpha=1,\dots,m}$$

be non-singular. Consider

$$F(z,x) := \left(z^1 - f^1(x), \dots, z^n - f^n(x)\right),\,$$

which has maximal rank in $x^1, \ldots, x^m, z^{m+1}, \ldots, z^n$ by the implicit function theorem, locally, there exists a map

$$(z^1,\ldots,z^m)\mapsto(\varphi^1(z^1,\ldots,z^m),\ldots,\varphi^n(z^1,\ldots,z^m))$$

such that F(z,x)=0, i.e.,

$$x^{1} = \varphi^{1}(z^{1}, \dots, z^{m}), \dots, x^{m} = \varphi^{m}(z^{1}, \dots, z^{m}),$$

and

$$z^{m+1} = \varphi^{m+1}(z^1, \dots, z^m), \dots, z^n = \varphi^n(z^1, \dots, z^m),$$

for which

$$\left(\frac{\partial \varphi^i}{\partial z^\alpha}\right)_{\alpha,i=1,...,m}$$

has maximal rank. Now, we choose a new coordinate

$$(y^{1}, \dots, y^{n}) = (\varphi^{1}(z^{1}, \dots, z^{m}), \dots, \varphi^{m}(z^{1}, \dots, z^{m}), z^{m+1} - \varphi^{m+1}(z^{1}, \dots, z^{m}), \dots, z^{n} - \varphi^{n}(z^{1}, \dots, z^{m})).$$

Then, we have $z = f(x) \Leftrightarrow F(z, x) = 0$, i.e.,

$$(y^1, \dots, y^n) = (x^1, \dots, x^n, 0, \dots, 0).$$

^aSince df(x) is injective.

Lemma 1.3.2. Let $f: \mathcal{M}^m \to \mathcal{N}^n$ be a differentiable map such that $m \ge n$ with $p \in \mathcal{N}$. Let $\mathrm{d}f(x)$ has rank n for all $x \in \mathcal{M}$ with f(x) = p. Then $f^{-1}(p)$ is the union of differentiable submanifolds of \mathcal{M} of dimension m - n.

Remark. Let \mathcal{N}^n be a smooth manifold, and let $1 \leq m \leq n$. Then an arbitrary subset $\mathcal{M} \subseteq \mathcal{N}$ has the structure of differentiable submanifold of \mathcal{N} of dimension m if and only if for all $p \in \mathcal{M}$, there exists a smooth chart (U, φ) of \mathcal{N} such that $p \in U$, $\varphi(p) = 0$, $\varphi(U)$ is open, and

$$\varphi(U \cap \mathcal{M}) = (-\epsilon, +\epsilon)^n \times \{0\}^{n-m},$$

where $(-\epsilon, +\epsilon)^n$ is the cube. Noticeably, the C^{∞} -manifold structure of \mathcal{M} is uniquely determined.

Remark. Let $\mathcal{M} \subseteq \mathcal{N}$ be a differentiable submanifold of \mathcal{N} , and let $\iota \colon \mathcal{M} \hookrightarrow \mathcal{N}$ be the inclusion. Then, for $p \in \mathcal{M}$, $T_p \mathcal{M}$ can be considered as subspace of $T_p \mathcal{N}$, namely as the image of $d\iota(T_p \mathcal{M})$.

Lemma 1.3.3. Let $f: \mathcal{M}^m \to \mathcal{N}^n$ be a differentiable map such that $m \ge n$ with $p \in \mathcal{N}$. Let $\mathrm{d} f(x)$ has rank n for all $x \in \mathcal{M}$ with f(x) = p. For the submanifold $X = f^{-1}(p)$ and for $q \in X$, it is true that

$$T_q X = \ker \mathrm{d} f(q) \subseteq T_q \mathcal{M}.$$

1.4 Vector Fields

Definition 1.4.1 (Vector field). A vector field X on a differentiable manifold \mathcal{M} is a correspondence associating to each point $p \in \mathcal{M}$ a vector $X(p) \in T_p \mathcal{M}$, i.e., $X : \mathcal{M} \to T \mathcal{M}$.

Remark. Naturally, we say that the field X is differentiable if the map X is differentiable.

Definition 1.4.2 (Riemannian metric). A Riemannian metric on a differentiable manifold \mathcal{M} is given by a scalar product I on each $T_p\mathcal{M}$ which depends smoothly on the base point p.

Definition 1.4.3. A Riemannian manifold is a smooth manifold equipped with a Riemannian metric.

Appendix

Bibliography

[FC13] F. Flaherty and M.P. do Carmo. *Riemannian Geometry*. Mathematics: Theory & Applications. Birkhäuser Boston, 2013. ISBN: 9780817634902. URL: https://books.google.com/books?id=ct91XCWkWEUC