A Simple Gamble

Would you like to pay \$200 to play the following game?

A coin is flipped

- If it is a head, you receive \$300.
- If it is a tail, you receive \$100.
- The coin is even, so it is an actuarially fair game.

A Simple Gamble

之前:付钱就确定有陈西 现在:有不确定性

Would you like to pay \$200 to play the following game?

A coin is flipped

- If it is a head, you receive \$300.
- ⋄ If it is a tail, you receive \$100.
- ⋄ The coin is even, so it is an actuarially fair game.

St. Petersburg Paradox

Flip a coin until a head shows up. If it is the nth toss, you win 2^n

How much would you like to pay to play the game?

St. Petersburg Paradox

- ⋄ Flip a coin until a head shows up. If it is the nth toss, you win $\$2^n$.
- How much would you like to pay to play the game?
- What is the expected value of the game?
- Paradox: people only want to pay \$XX (on average) to play a game with unlimited amount of money as expected payoff! Why?
 - o An uncertain prospect of \$1,000 is different from \$1,000 in hand
 - What is the most likely outcome of the game?
 - Suppose somebody has paid \$1,000 to play the game, what is the probability of winning it back?

$$2^9 = 512; \ 2^{10} = 1024$$

Need at least 9 tails in a row. The chance is about 1 out of 500!

Key Message

When there is uncertainty, need to evaluate

- the outcomes
- feelings about uncertainty in outcomes

Road-map for Decisions under Uncertainty

做决策→概率变化.

- Some basic concepts in probability theory
- Lottery (consumption bundle) 彩票 階局
- Preference over lotteries and expected utility function (EU)
- Attitudes toward risk (risk preference) under the EU framework
- Market for risk example of insurance

Concepts in Probability Theory (1)

Probability distribution

 \diamond Finite number of possible states of nature: 1,2...,S, each with probability p_s . A valid probability distribution satisfies

(1)
$$p_s \ge 0$$
 for $\forall s$; (2) $\sum_{s=1}^{S} p_s = 1$

 \diamond Continuum of states: probability density function f(x). A valid distribution satisfies

(1)
$$f(x) \ge 0$$
 for $\forall x$; (2) $\int_{-\infty}^{+\infty} f(x)d_x = 1$

The related "cumulative density function" is $F(x) = \int_{-\infty}^{x} f(z) d_z$.

Concepts in Probability Theory (2)

 \diamond Expectation (or expected value) of random variable x

$$E(x) = \sum_{s=1}^{S} p_s x_s$$

$$E(x) = \int_{-\infty}^{+\infty} z f(z) d_z$$

Variance (or dispersion) and risk

$$Var(x) = \sum_{s=1}^{S} p_s \left[x_s - E(x) \right]^2$$

$$Var(x) = \int_{-\infty}^{+\infty} \left[z - E(x) \right]^2 f(z) d_z$$

Concepts in Probability Theory (3)

Law of large numbers:

The probability that the mean of an *i.i.d.* sample is close to the population mean can be made as high as wanted by taking a large enough sample.

A probability distribution over the space of potential outcomes.

- ⋄ Set of outcomes $A = \{a_1, ..., a_N\}$
 - a finite set; can be extended to contain infinite outcomes with
- ⋄ A simple lottery on A is

$$L = (p_1 \circ a_1, ..., p_N \circ a_N)$$
 with $\sum_{n=1}^{N} p_n = 1$

 \diamond The set of (simple) lotteries over the set of outcomes A

If (simple) lotteries over the set of outcomes
$$A$$

$$\Delta(A) = \left\{ (p_1, ..., p_N) : p_n \ge 0 \text{ and } \sum_{n=1}^N p_n = 1 \right\}^{\binom{p_1}{2}} + \binom{p_2}{2}$$

- \circ $\Delta(A)$ is convex, i.e, contains all possible linear combinations of its elements.
- \circ $\Delta(A)$ can be represented by a simplex.

Lottery (2)

consumer 只知最终结果

Compound lottery: a lottery with lotteries as outcomes

⋄ K simple lotteries

$$L^{k} = (p_{1}^{k} \circ a_{1}, ..., p_{N}^{k} \circ a_{N})$$

A compound lottery with the K simple lotteries as the outcome set

混览
$$L = (\alpha^1 \circ (L^1) ..., \alpha^K \circ L^K) \text{ with } \sum_{k=1}^K \alpha^k = 1$$

The corresponding reduced simple lottery

$$L' = (p_1 \circ a_1, ..., p_N \circ a_N)$$
 where $p_n = \sum_{k=1}^K \underline{\alpha^k p_n^k}$

Reduction (to simple gamble) axiom of preference

Consequentialists only care about the probability distribution of the final outcomes and it does not matter whether the <u>distribution comes about as</u> a <u>simple lottery or a compound lottery</u>.

Rational and Continuous

偏级

- 2个组包可比· a>b,b>c ⇒ a>c
- **Axiom 1 & 2**: completeness and transitivity

还是不实真

- Axiom 3: continuity (in probabilities)
 - **Intuition** if L is preferred to L', a small enough deviation from either of the two lotteries does not change the ranking.
 - The preference is continuous if for any three lotteries

$$L^1,\ L^2,\ L^3\in\Delta(A)$$
 with $L^1\succ L^2\succ L^3$

there exits $\overline{\alpha} \in (0,1)$ such that

for
$$\forall \alpha < \overline{\alpha}$$
 we have $\alpha L^3 + (1 - \alpha)L^1 \succ L^2$

The following two sets are open

$$\{\alpha \in [0,1] : \alpha L^3 + (1-\alpha)L^1 \succ L^2\}$$
$$\{\alpha \in [0,1] : L^2 \succ \alpha L^1 + (1-\alpha)L^3\}$$

The following two sets are closed

$$\left\{\alpha \in [0,1] : \alpha L^3 + (1-\alpha)L^1 \succsim L^2\right\}$$
$$\left\{\alpha \in [0,1] : L^2 \succsim \alpha L^1 + (1-\alpha)L^3\right\}$$

⋄ Monotonicity (in probability): if $a_1 \succsim a_N$, for any $\beta, \gamma \in [0, 1]$

好结果棉鸡
$$(\beta \circ a_1, (1-\beta) \circ a_N) \succsim (\gamma \circ a_1, (1-\gamma) \circ a_N) \Leftrightarrow \alpha \geq \beta \gamma$$
 的 赌局更好 Monotonicity also means that if $L \succsim L'$, then for any $\beta, \gamma \in [0,1]$

$$(\beta \circ L, (1-\beta) \circ L') \succsim (\gamma \circ L, (1-\gamma) \circ L') \Leftrightarrow \beta \ge \gamma$$

Monotonicity and continuity together means there exists α such that

$$L^2 \sim \alpha L^3 + (1 - \alpha)L^1$$

• Rank the outcomes such that $z_1 \succsim z_2 \succsim ... \succsim z_N$. Then for $\forall L \in \Delta(A)$ there exists $\alpha \in [0,1]$ such that

$$L \sim \alpha z_1 + (1 - \alpha) z_N$$

 Can always construct an equivalence to any lottery with just the two extreme outcomes z_1 and z_N - an analogy of the intermediate value theorem.

Utility Function

- ⋄ Completeness, transitivity and continuity guarantee the existence of a utility function $U: S_L \to R$ such that $U(L) \ge U(L') \Leftrightarrow L \succsim L'$.
- Need to impose more structure on preference to derive utility functions of a particular form -
 - The utility from a lottery is just the expected value of the utilities from different outcomes.
 - Therefore, what matters for the choice among lotteries is NOT the expected value of the outcomes, BUT the expected value of the utilities from the outcomes.

Substitution Axiom

Li.la的结果无差异十分有相同⇒Li.la元差异

Substitution axiom: for two lotteries

$$L=(p_1\circ a_1,...,p_N\circ a_N)$$
 and $L'=(p_1\circ a_1',...,p_N\circ a_N')$

if $a_n \sim a_n'$ for $\forall n = 1, ..., N$, then $L \sim L'$

- Intuition fixing the probability distribution, indifference over outcomes implies indifference over lotteries
- Replace outcomes with lotteries

$$L = (\alpha \circ L_1, (1 - \alpha) \circ L_2)$$
 and $L' = (\alpha \circ L'_1, (1 - \alpha) \circ L'_2)$

Then $L_i \sim L_i'$, $i = 1, 2 \Rightarrow L \sim L'$

 \diamond If $L \sim L'$, the agent must be indifferent between all linear combinations of L and L'

$$(\alpha \circ L, (1-\alpha) \circ L') \sim (\alpha \circ L, (1-\alpha) \circ L) \Leftrightarrow L \sim L'$$

What is the implication for indifference curves in the lottery space?

Independence Axiom

Independence Axiom: for any lotteries L^1 , L^2 and L, the independence axiom is satisfied if for $\forall \alpha \in (0,1)$

$$L^1 \succsim L^2 \Leftrightarrow (1-\alpha)L^1 + \alpha L \succsim (1-\alpha)L^2 + \alpha L$$

- ⋄ **Intuition** shifting the same probability (α in this case) to L does not change the ranking between L^1 and L^2 .
- Indifference curves are parallel lines there is no counterpart in the preference-based consumer theory without uncertainty
 - Suppose $(2,0) \succsim (0,2)$; mix with (2,2) by the same weights

$$(2,1) = 0.5 \times (2,0) + 0.5 \times (2,2)$$
 and $(1,2) = 0.5 \times (0,2) + 0.5 \times (2,2)$

- \circ It is not necessarily true that $(2,1) \succsim (1,2)$
- \diamond Focus on the difference between L^1 and L^2 the preference ranking of these two lotteries is independent of L and α , this is also called "Independence of Irrelevant Alternatives".

Independence Implies Monotonicity

Suppose $L \succ L'$ and $0 < \beta < \alpha < 0$. Given independence, want to show

$$\alpha L + (1 - \alpha) L' > \beta L + (1 - \beta) L'$$

- ⋄ Independence $\Rightarrow L \succ \beta L + (1 \beta) L'$
- \diamond For any $0 < \gamma < 1$, independence \Rightarrow

$$\gamma L + (1 - \gamma) \left(\beta L + (1 - \beta) L'\right) \succ \beta L + (1 - \beta) L'$$

 \diamond It is sufficient to show that there exists γ such that

$$\alpha L + (1 - \alpha) L' = \gamma L + (1 - \gamma) \left(\beta L + (1 - \beta) L'\right)$$

 \diamond Just let $\gamma = rac{lpha - eta}{1 - eta}$, which satisfies $\gamma \in ig(0,1ig)$

Allais Paradox (1)

How reasonable is the IIA Axiom?

- ⋄ Three possible outcomes $A = \{0, 1000, 1100\}$
- How would you rank the two lotteries below?

$$L^{1} = (1\% \circ 0,66\% \circ 1000,33\% \circ 1100)$$

$$L^{2} = (0\% \circ 0,100\% \circ 1000,0\% \circ 1100)$$

How would you rank the two lotteries below?

$$\widehat{L}^1 = (67\% \circ 0, 0\% \circ 1000, 33\% \circ 1100)$$
 $\widehat{L}^2 = (66\% \circ 0, 34\% \circ 1000, 0\% \circ 1100)$

Allais Paradox (1)

How reasonable is the IIA Axiom?

- \diamond Three possible outcomes $A = \{0, 1000, 1100\}$
- How would you rank the two lotteries below?

$$L^{1} = (1\% \circ 0,66\% \circ 1000,33\% \circ 1100)$$

$$L^{2} = (0\% \circ 0,100\% \circ 1000,0\% \circ 1100)$$

How would you rank the two lotteries below?

$$\widehat{L}^1 = (67\% \circ 0, 0\% \circ 1000, 33\% \circ 1100)$$
 $\widehat{L}^2 = (66\% \circ 0, 34\% \circ 1000, 0\% \circ 1100)$

 $\diamond~L^1$ vs. L^2 : (\$0 with 1% and \$1100 with 33%) vs. 1000 with 34%

Allais Paradox (1)

How reasonable is the IIA Axiom?

- \diamond Three possible outcomes $A = \{0, 1000, 1100\}$
- How would you rank the two lotteries below?

$$L^{1} = (1\% \circ 0,66\% \circ 1000,33\% \circ 1100)$$

$$L^{2} = (0\% \circ 0,100\% \circ 1000,0\% \circ 1100)$$

How would you rank the two lotteries below?

$$\widehat{L}^1 = (67\% \circ 0, 0\% \circ 1000, 33\% \circ 1100)$$
 $\widehat{L}^2 = (66\% \circ 0, 34\% \circ 1000, 0\% \circ 1100)$

- $\diamond~L^1$ vs. L^2 : (\$0 with 1% and \$1100 with 33%) vs. 1000 with 34%
- \diamond \widehat{L}^1 vs. \widehat{L}^2 : (\$0 with 1% and \$1100 with 33%) vs. 1000 with 34%

Allais Paradox (2)

Let
$$L = (\frac{0.01}{0.34} \circ 0, \frac{0.33}{0.34} \circ 1100)$$
 and $L' = (1 \circ 1000)$

$$L^{1} = (1\% \circ 0,66\% \circ 1000,33\% \circ 1100) \sim (34\% \circ L,66\% \circ 1000)$$

$$L^{2} = (0\% \circ 0,100\% \circ 1000,0\% \circ 1100) \sim (34\% \circ L',66\% \circ 1000)$$

IIA $\Rightarrow L^1$ vs. L^2 ranking the same as L vs. L' ranking

$$\widehat{L}^1 = (67\% \circ 0, 0\% \circ 1000, 33\% \circ 1100) \sim (66\% \circ 0, 34\% \circ L)$$

$$\widehat{L}^2 = (66\% \circ 0, 34\% \circ 1000, 0\% \circ 1100) \sim (66\% \circ 0, 34\% \circ L')$$

IIA $\Rightarrow \widehat{L}^1$ vs. \widehat{L}^2 ranking the same as L vs. L' ranking

 L^1 vs. L^2 ranking should be the same as \widehat{L}^1 vs. \widehat{L}^2 ranking

Expected Utility Function Form

- The preference is completeness, transitive and continuous ⇒ there exist continuous real-valued utility functions to represent the 伯努利:用钱衡量 preference.
- Expected Utility Function Form

慎量
$$bottery 的故用$$
 $U(L) = \sum_{n=1}^N p_n u_n$

where $L = (p_1 \circ a_1, ..., p_N \circ a_N)$ and u_n is the utility number assigned to the nth outcome.

- $\diamond U: S_I \to R$ is a function from the set of lotteries to real numbers.
- The function form is linear in the probabilities over the outcomes.
- vNM form John von Neumann & Oskar Morgenstern.

EU or vNM Form ⇔ Linear

$$E(u(\pi)) = u(E(\pi))$$

The vNM expected utility form \Leftrightarrow the function is linear, i.e., preserving the operation of adding and multiplying by a constant. For any K lotteries L_k , k=1,2,...,K and probability distribution $(\gamma^1,\gamma^2,...,\gamma^K)\geq 0$ with $\sum_{k=1}^K \gamma^k=1$

$$U(\sum_{k=1}^{K} \gamma^k L^k) = \sum_{k=1}^{K} \gamma^k U(L^k)$$

U(g) = E[u(n)]

- Linear ⇒ vNM form
 Take each outcome as a degenerate lottery
- \diamond vNM form \Rightarrow Linear

$$U(\sum_{k=1}^{K} \gamma^{k} L^{k}) = \sum_{n=1}^{N} \left(\sum_{k=1}^{K} \gamma^{k} p_{n}^{k} \right) u_{n} = \sum_{k=1}^{K} \gamma^{k} \left(\sum_{n=1}^{N} p_{n}^{k} u_{n} \right) = \sum_{k=1}^{K} \gamma^{k} U(L^{k})$$

vNM Form and Affine Transformation

 An affine transformation transforms parallel lines to parallel lines and preserves ratios of distances along parallel lines.

$$\widehat{U}(L) = \beta_0 + \beta_1 U(L)$$

♦ The vNM form can be preserved by and only by positive affine transformation with $\beta_1 \ge 0$.

Affine Transformation \Rightarrow vNM Form

If U(L) has the vNM form and $\widehat{U}(L)$ is the outcome of a positive affine transformation, i.e.,

$$\widehat{U}(L) = \beta_0 + \beta_1 U(L)$$
 with $\beta_1 \ge 0$,

 $\widehat{U}(.)$ is linear thus of the vNM form. That is, for any $(\alpha^1,\alpha^2,...,\alpha^K)\geq 0$ and $\sum_{k=1}^K \alpha^k=1$, it must be

$$\widehat{U}(\sum_{k=1}^{K} \alpha^k L^K) = \sum_{k=1}^{K} \alpha^k \widehat{U}(L^k)$$

Proof:

$$\widehat{U}(\sum_{k=1}^{K} \alpha^k L^k) = \beta_0 + \beta_1 U(\sum_{k=1}^{K} \alpha^k L^k) = \beta_0 + \beta_1 \sum_{k=1}^{K} \alpha^k U(L^k)$$
$$= \sum_{k=1}^{K} \alpha^k \left(\beta_0 + \beta_1 U(L^k)\right) = \sum_{k=1}^{K} \alpha^k \widehat{U}(L^k)$$

vNM Form \Rightarrow Affine Transformation

If both U(L) and its transformation $\widehat{U}(L)$ are of the vNM form, the transformation must be a positive affine transformation, i.e., we can find β_0 and β_1 such that

$$\widehat{U}(L) = \beta_0 + \beta_1 U(L)$$

Proof:

There exists α such that $L \sim \alpha \overline{L} + (1 - \alpha)L$. Thus,

$$U(L) = \alpha U(\overline{L}) + (1 - \alpha)U(\underline{L}), \ \widehat{U}(L) = \alpha \widehat{U}(\overline{L}) + (1 - \alpha)\widehat{U}(\underline{L})$$

Solve for α as a function of $(U(L), U(\overline{L}), U(L))$ and substitute in the expression of $\widehat{U}(L)$

$$\widehat{U}(L) = \frac{U(L) - U(\underline{L})}{U(\overline{L}) - U(\underline{L})} \widehat{U}(\overline{L}) + \frac{U(\overline{L}) - U(L)}{U(\overline{L}) - U(\underline{L})} \widehat{U}(\underline{L})
= \frac{U(\overline{L}) \widehat{U}(\underline{L}) - U(\underline{L}) \widehat{U}(\overline{L})}{U(\overline{L}) - U(\underline{L})} + \frac{\widehat{U}(\overline{L}) - \widehat{U}(\underline{L})}{U(\overline{L}) - U(\underline{L})} U(L)$$

Linear in Probability - a Cardinal Feature

- Positive affine transformation is one special type of monotone transformation
- Since the property of being linear in probabilities only survives positive affine transformation but not monotone transformation in general, this feature is not ordinal but cardinal.
- Cardinal (expected) utility function means the differences in utilities have meanings
- Positive affine transformations preserve the ranking of utility differences

Preserve Ranking in Utility Difference

Consider two lotteries of 4 potential outcomes.

$$L^{a} = (\frac{1}{2} \circ a_{1}, 0 \circ a_{2}, 0 \circ a_{3}, \frac{1}{2} \circ a_{4}) \text{ and } L^{b} = (0 \circ a_{1}, \frac{1}{2} \circ a_{2}, \frac{1}{2} \circ a_{3}, 0 \circ a_{4})$$

If $a_1 \succ a_2 \succ a_3 \succ a_4$ with $u_1 - u_2 > u_3 - u_4$, we have

$$U(L^a) = 0.5u_1 + 0.5u_4 > U(L^b) = 0.5u_2 + 0.5u_3$$
 and $L^a \gtrsim L^b$

With a positive affine transformation of U(.) we still have

$$\widehat{U}(L^{s}) = \beta_{0} + \beta_{1} (0.5u_{1} + 0.5u_{4}) > \beta_{0} + \beta_{1} (0.5u_{2} + 0.5u_{3}) = \widehat{U}(L^{b})$$

Thus the ranking in the difference of utilities is preserved, so is the ranking between L^a and L^b .

Expected Utility Theorem (1)

If a preference on the lottery set $\Delta(A)$ satisfies all the above axioms - completeness, transitivity, continuity, independence of irrelevant alternatives (substitution and monotonicity) and reduction - then there <code>exists</code> a utility function <code>with the vNM form</code> that represents the preference.

Part I: Define the Function

- ⋄ Continuity and completeness ⇒ For $\forall L \in \Delta(A)$, there exists α_L such that $L \sim \alpha_L \overline{L} + (1 \alpha_L)\underline{L}$.
- ⋄ Monotonicity ⇒

$$\forall \alpha, \beta \in [0, 1], \ \beta \overline{L} + (1 - \beta)\underline{L} \succ \alpha \overline{L} + (1 - \alpha)\underline{L} \Leftrightarrow \beta > \alpha$$

Therefore α_L is unique.

⋄ Define $U(L) = \alpha_L$, it represents \succeq because

$$U(L) \geq U(L') \Leftrightarrow \alpha_L \geq \alpha_{L'}$$

Expected Utility Theorem (2)

Part II: Verify the vNM Form (simple case - convex combination of two) $\forall L_1, L_2 \in \Delta(A), t \in (0,1), \text{ for } L_3 = tL_1 + (1-t)L_2, U(L_3) = tU(L_1) + (1-t)U(L_2)$?

 \diamond Based on previous discussion, we can find $lpha_1,lpha_2\in[0,1]$ such that

$$L_1 \sim \alpha_1 \overline{L} + (1 - \alpha_1) \underline{L}$$
, thus $U(L_1) = \alpha_1$
 $L_2 \sim \alpha_2 \overline{L} + (1 - \alpha_2) \underline{L}$, thus $U(L_2) = \alpha_2$

IIA and Reduction \Rightarrow

$$L_{3} \sim t(\alpha_{1}\overline{L} + (1 - \alpha_{1})\underline{L}) + (1 - t)\Phi\alpha_{2}\overline{L} + (1 - \alpha_{2})\underline{L}\Psi$$
$$\sim (t\alpha_{1} + (1 - t)\alpha_{2})\overline{L} + (t(1 - \alpha_{1}) + (1 - t)(1 - \alpha_{2}))\underline{L}$$

By definition,
$$U(L_3) = t\alpha_1 + (1-t)\alpha_2 = tU(L_1) + (1-t)U(L_2)$$
.

 $\diamond U(L)$ is of the vNM form

Expected Utility Theorem (3)

General case - convex combination of many

$$L^{k} \sim U(L^{k})\overline{L} + \left(1 - U(L^{k})\right)\underline{L} \text{ and } \gamma^{k} > 0, \ \forall k = 1, ...K \text{ with } \sum_{k=1}^{K} \gamma^{k} = 1$$

$$\implies U\left(\sum_{k=1}^{K} \gamma^{k} L^{k}\right) = \sum_{k=1}^{K} \gamma^{k} U\left(L^{k}\right)$$

Proof:

$$L^{k} \sim U(L^{k})\overline{L} + \left(1 - U(L^{k})\right)\underline{L} \,\forall k$$

$$\Rightarrow \sum_{k=1}^{K} \gamma^{k} L^{k} \sim \left(\sum_{k=1}^{K} \gamma^{k} U(L^{k})\right)\overline{L} + \left(\sum_{k=1}^{K} \gamma^{k} \left(1 - U(L^{k})\right)\right)\underline{L}$$

$$\Rightarrow U\left(\sum_{k=1}^{K} \gamma^{k} L^{k}\right) = \sum_{k=1}^{K} \gamma^{k} U(L^{k})$$

Risk Attitudes

- The goal of a decision maker is to maximize the expected utility
- Solutions by Daniel Bernoulli and Gabriel Cramer to the St. Petersburg Paradox - use a log or square root function to evaluate the outcomes
- Lotteries with non-negative wealth levels as outcomes
- Two utility functions
 - \circ vNM expected utility function U(L): evaluate lottery
 - \circ Bernoulli utility function u(w): evaluate wealth
 - \circ $u(\cdot)$ is effectively $U(\cdot)$ taking w as a degenerate lottery
- \diamond "Manipulate" $u(\cdot)$ to capture different risk attitudes

Definition

$$\begin{array}{c} \text{W.T.} & \text{W.N.} \\ \text{\downarrow} & \text{\downarrow} & \text{\downarrow} \text{\downarrow} & \text{\downarrow} & \text{\downarrow} & \text{\downarrow} \\ \text{\downarrow} & \text{\downarrow} & \text{\downarrow} & \text{\downarrow} \\ \text{\downarrow} & \text{\downarrow} & \text{\downarrow} & \text{\downarrow} \\ \text{\downarrow} & \text{$$

2\$1 \sharp ረ \mathfrak{g} \circ Concave $u(w) \Leftrightarrow$ decreasing $MU_w \Leftrightarrow$ risk-averse • Linear $u(w) \Leftrightarrow \text{constant } MU_w \Leftrightarrow \text{risk-neutral}$ • Convex $u(w) \Leftrightarrow \text{increasing } MU_w \Leftrightarrow \text{risk-loving}$

Luhang Wang (XMU)

Measure Risk Aversion (1)

Arrow-Pratt measure of absolute risk aversion

$$\left[R_{a}(w) \equiv -\frac{u''(w)}{u'(w)} \right]$$

- The sign: positive for risk aversion
- \diamond The magnitude: u'' describes how fast the slope changes
- ⋄ Division by u': $R_a(w)$ not affected by any affine transformation of $U(\cdot)$
- The value depends on wealth level

DARA: decreasing absolute risk aversion

- o Increasing willingness to accept small gambles at a higher wealth level
- \circ Risky assets are "normal goods": demand for risky assets \Uparrow in w

Measure Risk Aversion (2)

- Certainty equivalent of a lottery CE(L)
 - Certainty: an amount of money for sure
- Equivalent: to the lottery in terms of utility 消除风险 Risk premium EV(L) - CE(L)

probability premium
$$\pi(w,\epsilon,u)$$

$$L = ((0.5 + \pi) \circ (w + \epsilon), (0.5 - \pi) \circ (w - \epsilon)) \sim w$$

Find the π to make CE(L) = w, that is

$$U(L) = (0.5 + \pi)u(w + \epsilon) + (0.5 - \pi)u(w - \epsilon) = u(w)$$

Solve for $\pi(w, \epsilon; u(\cdot))$ 九切 与风险厌恶。

Compare Risk Aversion across Agents: R_a and CE (1)

For two individuals
$$i=1,2$$
,
$$\begin{array}{ccc} | & & & & & \\ \mathbb{R}^1 \otimes \mathcal{R}^1 \otimes \mathcal{R}$$

 \diamond Outcomes: $w_1, ..., w_N$

For two individuals i = 1, 2,

- \diamond Evaluation by agent 1: $u_1, ..., u_N$
- \diamond Evaluation by agent 2: $v_1, ..., v_N$
- ⋄ Construct function h(.) such that $u_n = h(v_n)$
 - Thus function h(.) captures the connection between u_n and v_n
 - -h(s) represents the utility agent 1 gets from the amount of money that gives agent 2 utility s.

$$h(s) = u\left(v^{-1}(s)\right)$$

- \circ $CE_1(L) \leq CE_2(L)$ for $\forall L \Leftrightarrow h(.)$ is concave $\Leftrightarrow R_a^1(w) \geq R_a^2(w)$
 - Concavity of h(.) means u(.) is the outcome of a concave transformation of v(.) thus "more concave".

Compare Risk Aversion across Agents: R_a and CE (2)

- \diamond Let h(s) = u[f(s)] and $x = f(s) = v^{-1}(s)$
 - Second order derivative of inverse function $\frac{d^2x}{dv^2} = -\frac{y^2}{v^2}$

$$f''(s) = -\frac{v''(x)}{[v'(x)]^3}$$

Second order derivative of composite function

$$h''(s) = u''(x) [f'(s)]^2 + u'(x)f''(s) = \frac{u'(x)}{v'(x)^2} \left(\frac{u''(x)}{u'(x)} - \frac{v''(x)}{v'(x)} \right)$$

- $\Rightarrow R_a^1(w) \ge R_a^2(w) \Leftrightarrow \frac{u''(x)}{v'(x)} \frac{v''(x)}{v'(x)} \le 0 \Leftrightarrow h(.)$ is concave
- By Jensen's inequality

$$u(CE_1) = \sum_{n=1}^{N} p_n u_n = \sum_{n=1}^{N} p_n h(v_n) \le h(\sum_{n=1}^{N} p_n v_n) = u(CE_2)$$

Compare Risk Aversion across Agents: R_a and $\pi(\epsilon, w; u)$

For two individuals i = 1, 2,

 $R_a^1(w) > R_a^2(w)$ for $\forall w \geq 0 \Leftrightarrow \pi(w, \epsilon, u(\cdot) > \pi(w, \epsilon, v(\cdot))$ for $\forall w$ and ϵ ? where $u(\cdot)$ and $v(\cdot)$ are the Bernoulli utility functions for agent 1 and 2 respectively.

 \diamond Use the definition identity, take derivative w.r.t. ϵ twice, then show that

$$R_{a}(w) = 4 \frac{\partial \pi(\epsilon, w; .)}{\partial \epsilon}|_{\epsilon=0}$$

- $\diamond \ R_a^1(w) > R_a^2(w) \Leftrightarrow \frac{\partial \pi(\epsilon; w, u(\cdot))}{\partial \epsilon}|_{\epsilon=0} > \frac{\partial \pi(\epsilon; w, v)}{\partial \epsilon}|_{\epsilon=0}$
- \diamond At wealth level w, the more risk-averse agent as measured by $R_a(w)$ requires a larger probability premium for a small disturbance ϵ to w.

Investment in Risky Asset (1)

- ♦ Wealth: w
- \diamond Investment in risky asset: β
- \diamond Possible (net) returns: r_i , i=1,2,...,N with probability p_i
- \diamond The agent is risk averse, i.e, has concave Bernoulli utility function $u(\cdot)$

Investment in Risky Asset (2)

⋄ List of possible outcomes: $\underline{w + \beta r_i}$

- 最大化.
- ♦ Expected utility: $EU = \sum_{i=1}^{N} \overline{p_i u(w + r_i \beta)}$
- ♦ Constrained optimization: $0 \le \beta \le w$
- \diamond Corner solution: $\beta^* = 0$ or $\beta^* = w$
- ⋄ Interior solution: $0 < \beta^* < w$
- \diamond Wealth effect $\frac{d\beta^*}{dw}$

Investment in Risky Asset (3)

 \diamond Corner solution $\beta^* = 0$ if expected return is negative, i.e

$$\sum_{i=1}^{N} p_i r_i < 0 \quad \text{the high } \delta < 0$$

 \diamond Corner solution $\beta^* = w$ if expected marginal utility of investment is always positive, i.e.

$$\sum_{i=1}^{N} p_i r_i u'(w + r_i w) > 0$$

 Interior solution is achieved where the expected marginal utility of investment is 0 (so it is the optimal investment), i.e,

$$\sum_{i=1}^{N} p_i r_i u'(w + r_i \beta^*) = 0$$

Investment in Risky Asset (4)

Comparative statics - wealth effect under DARA ($R_a(w) \downarrow in w$)

 \diamond Start with an interior solution, i.e, β^* that satisfies

$$\sum_{i=1}^{N} p_i r_i u'(w + r_i \beta^*) = 0$$

 \diamond Take total derivative w.r.t w and β^* and derive $\frac{d\beta^*}{dw}$

$$\frac{d\beta^*}{dw} = -\frac{\sum_{i=1}^{N} p_i r_i u''(w + r_i \beta^*)}{\sum_{i=1}^{N} p_i r_i^2 u''(w + r_i \beta^*)}$$

$$= \frac{\sum_{i=1}^{N} p_i r_i^2 R_a(w + r_i \beta^*) u'(w + r_i \beta^*)}{\sum_{i=1}^{N} p_i r_i^2 u''(w + r_i \beta^*)}$$

$$\sum_{i=1}^{N} p_i r_i^2 u''(w + r_i \beta^*)$$

$$\sum_{i=1}^{N} p_i r_i^2 u''(w + r_i \beta^*)$$

 \diamond With DARA, $r_i R_a (w + r_i \beta^*) < r_i R_a (w)$ holds for $r_i > 0 \& r_i < 0$

- "Wealth" at risk: health/property/unemployment insurance
- Actuarial cost: expected payment by insurance company
- Fairly priced insurance policy zero expected profit revenue(insurance premium) = actuarial cost
- ⋄ Perfectly competitive insurance market $\gamma = \rho \cdot 1$

How Much Insurance to Buy

- ⋄ An agent has total asset of w₀
- \diamond w_r is under risk
 - if the accident happens, w_r is lost and the agent is left with $(w_0 w_r)$
- \diamond The probability of the accident is p.
- \diamond The insurance premium is r
 - the agent needs to pay r to claim one dollar loss from the insurance company when the accident happens.
- ⋄ The agent is risk averse with Bernoulli utility function $u(\cdot)$ How much of wealth under risk w_r should be insured?

Diagram for Insurance Purchase Problem

Expected utility with I insured

$$EU(I; p, r, w_0, w_r) = (1 - p)u(w_0 - rI) + pu(w_0 - rI - w_r + I)$$

The agent's problem

$$Max_{U}EU(I; p, r, w_0, w_r, w_b)$$

F.O.C
$$(1-p)ru'(w_0-rI^*)=p(1-r)u'(w_0-rI^*-w_r+I^*)$$

"sq" - status quo/no accident; "b" - the bad event has happened

地状
$$w^{sq} = w_0 - rI$$
; $w^b = w_0 - rI - w_r + I$
the fair price r^F of the insurance?

- What is the fair price r^F of the insurance?
- \diamond What is I^* under fair insurance price r^F ?
- What is the consumer's willingness to pay for full insurance?
- \diamond What if the insurance price is higher than the fair one, i.e, $r > r^F$?

Budget Lines

$$fair: \Gamma = p \Rightarrow 2$$
种情况的wealth相同。
o insurance - $(w_0, w_0 - w_r)$ $W_0 - Ir W_0 - Ir + I - W_0$

- ♦ Point representing no insurance $(w_0, w_0 w_r)$
- Points representing no uncertainty 45 degree line
- ♦ Point representing full insurance $(I = w_r)$ $(w_0 rw_r, w_0 rw_r)$
- \diamond Budget line connecting $(w_0, w_0 w_r)$ and $(w_0 rw_r, w_0 rw_r)$
- ♦ Slope of budget line $\frac{1-r}{r}$

$$w^{sq} \downarrow \text{ by r to have 1 more dollar insured}$$

$$\Rightarrow w^b \uparrow \text{ by } \underbrace{-r+1}^{r} \text{ problem}.$$
-r is for paying the premium; 1 is the insurance claim

 If an insurance policy leaves consumer on a budget line flatter than the one implied by the fair price, the insurance company earns positive expected profits.

$$r > p \Rightarrow E\pi = rI - pI$$
 for $\forall I > 0$

BL Graph - No Insurance vs. Full Insurance 麻麻 以為掉工.

BL Graph - Fair Price BL

BL Graph - BL with r > p

BL Graph - Actuarial Cost for Full Insurance

BL Graph - Premium Revenue of Full Insurance under r

BL Graph - Partial Insurance Product

BL Graph - $E(\pi)$ for Partial Insurance Product

Proportional to the vertical distance to fair price BL!

$$Eu = (-p)u(w^{sq}) + pu(wb) \Rightarrow (+p)u'(w^{sq}) \triangle w^{sq} + pu'(w^b) \cdot \triangle w^b = 0$$

- ♦ Slope of indifference curves $\frac{(1-p)u'(w^{sq})}{pu'(w^b)}$ Slope of BL: $\frac{1-p}{p}$ fully insurance
 - Probability of the accident p
 - \circ Concavity of Bernoulli function $u(\cdot)$
- ⋄ Holding p constant More risk averse ⇒ $u(\cdot)$ more concave ⇒ more convex ICs
- \diamond Holding Bernoulli utility function the same Higher $p \Rightarrow$ IC flatter, higher relative value for 1 dollar in w^b
- \diamond Slope of indifference curves at full insurance points $\frac{1-p}{p}$
- ♦ Find "CE certainty equivalent" and "EV expected value" for the uninsured situation

Adv. Micro I - Choice Under Uncertainty

EV = (1-
$$p$$
) W° + p (W° - W°)

TYPE

51 / 60

Optimization

- ⋄ Conditions for full insurance to be optimal $\frac{1-r}{r} = \frac{1-p}{p}$
- \diamond Optimal insurance when r > p

$$r > p \Rightarrow \frac{1-r}{r} < \frac{1-p}{p}$$

- Full insurance point is not a tangency point, thus it is not optimal
- More specifically, the indifference curve through the full insurance point goes beneath the budget line to the right of the full insurance point
- Optimization achieved with partial insurance
- When not to buy insurance at all?

Hidden Information on Insurance Market (1)

- An agent owns total wealth w_0 which includes w_r risky assets. p is the probability of losing w_r .
- \diamond An insurance contract specifies B, the amount the insurance company will pay if the accident happens, and R, the insurance premium.
 - Full insurance means $B = w_r$.
- There are two types of consumers with different probabilities of having the accident, p_H and p_L , and otherwise identical.
- \diamond The proportion of the H-type in the population is α_H and the proportion for the *L*-type is α_I . $\alpha_H + \alpha_I = 1$.

Hidden Information on Insurance Market (2)

哪門是完成.

分别均衡

$$p_L < p_H \Rightarrow \frac{1 - p_L}{p_L} > \frac{1 - p_H}{p_H}$$

At each point in the diagram, the L-type agents have steeper indifference curves.

This is because the L-type is less likely to have the accident, which makes 1 more dollar in the status quo more valuable.

The fair price budget line for the L-type is steeper.

Hidden Information on Insurance Market (3)

- With symmetric information, a situation where the insurance company has the same information as the consumer, the insurance company can charge different insurance premium.
- With asymmetric information, the insurance company knows the distribution of accident probabilities α_H and α_I but cannot identify the type of a particular consumer.

Adverse Selection (1)

- How about setting $R = (\alpha_H p_H + \alpha_L p_L) w_r$? This is the fair insurance price for full insurance based on the average probability of the accident in the population.
- The H-types will buy the insurance and be VERY HAPPY!
 - Note that not only uncertainty is gone, expected value is higher!
 - In other words, this insurance point is beyond their fair price BL.
- The L-types may or may not buy the insurance.
 - If the L-types buy, the L-types are subsidizing the H-types in this pooling situation.
 - \circ If the L-types do not buy, the actual actuarial cost would be $p_H w_r$ which is higher than the insurance price they pay, $R = (\alpha_H p_H + \alpha_I p_I) w_r$. The insurance company loses money.

Adverse Selection (2)

If the L-types are willing to buy the full insurance priced at $R = (\pi_H p_H + \pi_L p_L) w_r$, can the pooling result be the equilibrium on a perfectly competitive insurance market?

No. Another insurance company can attract L-type consumers by offering an option of partial insurance with lower premium.

Adverse Selection (3)

If only the H-types are willing to buy the full insurance priced at $R = (\pi_H p_H + \pi_I p_I) w_r$, the insurance company would have to increase R to $p_H w_r$ to break even. All the L-types are excluded from the market.

More generally, for an agent to pay R to get fully insured, it must be

$$u(w_{0} - R) \ge (1 - p)u(w_{0}) + pu(w_{0} - w_{r})$$

$$\Leftrightarrow pu(w_{0}) - pu(w_{0} - w_{r}) \ge u(w_{0}) - u(w_{0} - R)$$

$$\Leftrightarrow p \ge \frac{u(w_{0}) - u(w_{0} - R)}{u(w_{0}) - u(w_{0} - w_{r})}$$

Adverse selection: an increase in insurance premium R will increase the average level of risk of people who buy insurance and thus increase the actuarial cost of the insurance firm.

Solution to Adverse Selection Problem

Separating equilibrium (does not necessarily exist) - Design a menu with two (B,R) options, one more attractive to the H-type, the other more attractive to the L-type.

- \diamond $(B_1 = w_r, R_1 = p_H w_r)$ a fair-priced full-insurance package for H
- \diamond Design (B_2, R_2) that will only attract the L-type
 - Attract the L-type to buy

$$\begin{aligned} & p_L u(w_0 - R_2) + (1 - p_L) u(w_0 - R_2 - w_r + B_2) \\ & \geq & \max\{p_L u(w_0) + (1 - p_L) u(w_0 - w_r), u(w_0 - p_H w_r)\} \end{aligned}$$

• Not attract the H-type away from (B_1, R_1)

$$p_H u(w_0 - R_1) + (1 - p_H)u(w_0 - R_1 - w_r + B_1)$$

$$\geq p_H u(w_0 - R_2) + (1 - p_H)u(w_0 - R_2 - w_r + B_2)$$

Non-negative profit for the insurance company

$$R_2 \geq p_L B_2$$

Separating Equilibrium Summary

- ♦ H-types are fully insured
- L-types are partially insured: lower premium and lower coverage
- The bad type (high risk type in this example) gets what they can achieve under perfect information.
- The good type (low risk type in this case) bears the cost of asymmetric information.
- There are other examples where asymmetric information hurts the good.