Hybrid Control and Switched Systems

Lecture #2 How to describe a hybrid system? Formal models for hybrid system

João P. Hespanha

University of California at Santa Barbara

Summary

- 1. Formal models for hybrid systems:
 - Finite automata
 - Differential equations
 - Hybrid automata
 - Open hybrid automaton
- 2. Nondeterministic vs. stochastic systems
 - Non-deterministic hybrid automata
 - Stochastic hybrid automata

Deterministic finite automaton

automata
$$M \begin{cases} \mathcal{Q} \coloneqq \{q_1, q_2, ..., q_n\} & \equiv \text{finite set of states} \\ \Sigma \coloneqq \{\text{a, b, c,...}\} & \equiv \text{finite set of input symbols (alphabet)} \\ \Phi : \mathcal{Q} \times \Sigma \to \mathcal{Q} & \equiv \text{transition function} \end{cases}$$

Example:

$q \in \mathcal{Q}$	$s \in \Sigma$	$\Phi(q,s)$
1	a	2
1	b	Ŏ
2	a	3
2	b	1
3	a	1
3	b	Ŏ
\bigcirc	a/b	Ŏ
blocking	I	l

state

Graph representation:

- one node per state (except for blocking state 🖰)
- one directed edge (arrow) from q to $\Phi(q, s)$ with label sfor each pair (q, s) for which $\Phi(q, s) \neq \emptyset$

Deterministic finite automaton

Notation: Given set A

string \equiv finite sequence of symbols

 $\in \equiv$ empty string

 A^* = set of all strings of symbols in set A

e.g., $A = \{a, b\}$

 $s = abbbbaab \in \mathcal{A}^*$

s[3] = b (3rd element)

|s| = 8 (length of string)

Definition: Given • initial state $q_1 \in \mathcal{Q}$

• set of final states $\mathcal{F} \subset \mathcal{Q}$

M accepts a string $s \in \Sigma^*$ with length n := |s| if

there exists a sequence of states $q \in \mathcal{Q}^*$ with length | q | = n+1 (execution) such that

1. $q[1] = q_1$

(starts at initial state)

2. $q[i+1] = \Phi(q[i], s[i])$, $i \in \{1, 2, ..., n\}$

(follows arrows with correct label)

3. $q[n+1] \in \mathcal{F}$ (ends in set of final states)

Definition: *language* accepted by automaton M $L(M) := \{ \text{ set of all strings accepted by } M \}$ There is no concept of time the whole string is accepted "instantaneously"

Deterministic finite automaton

Example:

$$q_1 := 1$$
 $\mathcal{F} := \{1\}$

 $L(M) = \{ \in, ab, aaa, abab, abaaa, aaaab, ... \}$ = ((ab)* (aaa)*)*

Questions in formal language theory:

Is there a finite automaton that accepts a given language?

Do two given automata accept the same language?

What is the smallest automaton that accepts a given language? etc.

Definition: Given • initial state $q_1 \in \mathcal{Q}$

 \bullet set of final states $\mathcal{F} \subset \mathcal{Q}$

M accepts a string $s \in \Sigma^*$ with length n := |s| if

there exists a sequence of states $q \in \mathcal{Q}^*$ with length |q| = n+1 (execution) such that

1. $q[1] = q_1$ (sta

(starts at initial state)

2. $q[i+1] = \Phi(q[i], s[i])$, $i \in \{1,2,...,n\}$

(follows arrows with correct label)

3. $q[n+1] = \mathcal{F}$ (ends in set of final states)

Definition: *language* accepted by automaton M

 $L(M) := \{ \text{ set of all strings accepted by } M \}$

Differential equation

ordinary differential equation with input
$$\Sigma \qquad \begin{cases} \mathbb{R}^n & \equiv \text{ state space } \\ \mathbb{R}^m & \equiv \text{ input space } \\ f\colon \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n & \equiv \text{ vector field } \end{cases}$$

$$\dot{x} = f(x,u)$$

$$\dot{x} = f(x, u)$$

Definition: Given an input signal $u:[0,\infty)\to\mathbb{R}^m$

A signal $x:[0,\infty)\to\mathbb{R}^n$ is a *solution* to Σ (in the sense of Caratheodory) if

1. x is piecewise differentiable

2.
$$x(t) = x_0 + \int_0^t f(x(\tau), u(\tau)) d\tau \quad \forall t \ge 0$$

If x is a solution then

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = f(x(t), u(t))$$

at any time t for which the derivative exists

Differential equation (no inputs)

$$\dot{x} = f(x)$$

Definition:

A signal $x:[0,\infty)\to\mathbb{R}^n$ is a *solution* to Σ (in the sense of Caratheodory) if

1. x is piecewise differentiable

2.
$$x(t) = x_0 + \int_0^t f(x(\tau))d\tau \quad \forall t \ge 0$$

If x is a solution then

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = f(x(t))$$

at any time t for which the derivative exists

Hybrid Automaton

(Example #2: Thermostat)

 $x \equiv$ mean temperature

$$\begin{array}{ll} \mathcal{Q} & \equiv \text{ set of discrete states} \\ \mathbb{R}^n & \equiv \text{ continuous state-space} \\ f: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n \equiv \text{ vector field} \end{array}$$

$$\varphi: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n \equiv \text{vector field}$$

 $\varphi: \mathcal{Q} \times \mathbb{R}^n \to \mathcal{Q} \equiv \text{discrete transition}$

Example: $Q := \{ \text{ off, on } \}$ n := 1

$$f(q,x) := \begin{cases} -x + 50 & q = \text{off} \\ -x + 100 & q = \text{on} \end{cases} \qquad \varphi(q,x) := \begin{cases} \text{on,} & q = \text{off, } x \le 73 \\ \text{off} & q = \text{off, } x > 73 \\ \text{off,} & q = \text{on, } x \ge 77 \\ \text{on,} & q = \text{on, } x < 77 \end{cases}$$

note "closed" inequalities associated with jump and "open" inequalities with flow

Hybrid Automaton

 $Q \equiv \text{set of discrete states}$ $\mathbb{R}^n \equiv \text{continuous state-space}$

 $\begin{array}{ll} f\colon \mathcal{Q}\times\mathbb{R}^n\to\mathbb{R}^n & \equiv \text{vector field} \\ \varphi\colon \mathcal{Q}\times\mathbb{R}^n\to\mathcal{Q} & \equiv \text{discrete transition} \end{array}$

 $\rho: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n \equiv \text{reset map}$

Hybrid Automaton

 $Q \equiv \text{set of discrete states}$ $\mathbb{R}^n \equiv \text{continuous state-space}$

 $f: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n$ \equiv vector field

 $\Phi: \mathcal{Q} \times \mathbb{R}^n \to \mathcal{Q} \times \mathbb{R}^n \equiv \text{discrete transition (\& reset map)}$

$$\Phi(q, x) = \begin{bmatrix} \Phi_1(q, x) \\ \Phi_2(q, x) \end{bmatrix} = \begin{bmatrix} \varphi(q, x) \\ \rho(q, x) \end{bmatrix}$$

$$x\coloneqq \Phi_2(q_1,x^-) \qquad \Phi_1(q_1,x^-)=q_2 \ ?$$

$$\text{mode } q_1$$

$$\dot{x}=f(q_2,x)$$

$$\dot{x}=f(q_1,x)$$

$$\dot{x}=f(q_1,x)$$

$$\dot{x}=f(q_3,x)$$

$$\Phi_1(q_1,x^-)=q_3 \ ? \qquad x\coloneqq \Phi_2(q_1,x^-)$$

Compact representation of a hybrid automaton

$$\dot{x} = f(q, x)$$
 $(q, x) = \Phi(q^-, x^-)$ $q \in \mathcal{Q}, x \in \mathbb{R}^n$

Solution to a hybrid automaton

$$\dot{x} = f(q, x)$$
 $(q, x) = \Phi(q^-, x^-)$ $q \in \mathcal{Q}, x \in \mathbb{R}^n$

Definition: A *solution* to the hybrid automaton is a pair of right-continuous signals $x:[0,\infty)\to\mathbb{R}^n$ $q:[0,\infty)\to\mathcal{Q}$

such that

- 1. x is piecewise differentiable & q is piecewise constant
- 2. on any interval (t_1,t_2) on which q is constant and x continuous

$$x(t) = x(t_1) + \int_{t_1}^t f\big(q(t_1), x(\tau)\big) d\tau \qquad \forall t \in [t_1, t_2)$$
 3. $\big(q(t), x(t)\big) = \Phi\big(q^-(t), x^-(t)\big) \quad \forall t \geq 0$ discrete transitions

$$3.\left(q(t),x(t)\right) = \Phi\left(q^{-}(t),x^{-}(t)\right) \quad \forall t \ge 0$$

discrete transitions

Hybrid Automaton

(Example #2: Thermostat)

 $x \equiv$ mean temperature

$$f(q,x) := \begin{cases} -x + 50 & q = \text{off} \\ -x + 100 & q = \text{on} \end{cases} \qquad \varphi(q,x) := \begin{cases} \text{on,} & q = \text{off, } x \le 73 \\ \text{off} & q = \text{off, } x > 73 \\ \text{off,} & q = \text{on, } x \ge 77 \\ \text{on,} & q = \text{on, } x < 77 \end{cases}$$

$$x^{-} = 77, q^{-} = \text{on } \Rightarrow q = \text{off}$$
77
$$q = \text{on} \xrightarrow{\text{off}} \xrightarrow{\text{off}} \xrightarrow{\text{off}} \xrightarrow{\text{off}} \xrightarrow{\text{on}}$$

no transition would occur if the "jump branch" had a strict inequality x > 77

note "closed" inequalities associated with jumps and "open" inequalities with flows

Deterministic finite automaton

automata
$$M = \{q_1, q_2, ..., q_n\} \equiv \text{finite set of states}$$
 $\Sigma \coloneqq \{a, b, c, ...\} \equiv \text{finite set of input symbols (alphabet)}$ $\Phi: \mathcal{Q} \times \Sigma \to \mathcal{Q} \equiv \text{transition function}$

Example:

$q\in\mathcal{Q}$	$s \in \Sigma$	$\Phi(q,s)$
1	a	2
1	b	Ö
2	a	3
2	b	1
3	a	1
3	b	Ö
\bigcirc	a/b	Ö

blocking state

Graph representation:

- one node per state (except for blocking state 🖰)
- one directed edge (arrow) from q to $\Phi(q, s)$ with label sfor each pair (q, s) for which $\Phi(q, s) \neq \emptyset$

Nondeterministic finite automaton

automata
$$\mathcal{Q} \coloneqq \{q_1, q_2, ..., q_n\} \equiv \text{finite set of states}$$
 $\Sigma \coloneqq \{a, b, c, ...\} \equiv \text{finite set of input symbols (alphabet)}$ $\Phi : \mathcal{Q} \times \Sigma \to 2^{\mathcal{Q}} \equiv \text{transition set-valued function}$

Example:

$q \in \mathcal{Q}$	$s \in \Sigma$	$\Phi(q,s)$
1 1 2	a b a	{2} {*\omega} {*\omega}
2	b	{1,3}
3	a	{1}
3	b	$\{\circlearrowright\}$
\circ	a/b	{♡}
blocking	'	ı

state

Graph representation:

Notation: Given a set A,

 $2^{\mathcal{A}} \equiv \textit{power-set}$ of \mathcal{A} , i.e., the set of all subsets of \mathcal{A} e.g., $\mathcal{A} = \{1,2\} \Rightarrow 2^{\mathcal{A}} = \{\in, \{1\}, \{2\}, \{1,2\}\}\}$ When \mathcal{A} has $n < \infty$ elements then $2^{\mathcal{A}}$ has 2^n elements

Nondeterministic finite automaton

Example:

$$q_1 := 1$$
 $\mathcal{F} := \{1\}$
 $L(M) = \{ \in, ab, aba, abab, ababa, abaab, ... \}$
 $= ((ab)^* (aba)^*)^*$

Definition: Given \bullet initial state $q_1 \in \mathcal{Q}$

 \bullet set of final states $\mathcal{F} \subset \mathcal{Q}$

M accepts a string $s \in \Sigma^*$ with length n := |s| if

there exists a sequence of states $q \in \mathcal{Q}^*$ with length | q | = n+1 (*execution*) such that

1.
$$q[1] = q_1$$

3. *q*[*n*+1] ∈ \mathcal{F}

(starts at initial state)

2. $q[i+1] \in \Phi(q[i], s[i])$, $i \in \{1, 2, ..., n\}$

(follows arrows with correct label)

(ends in set of final states)

Definition: language accepted by automaton M

 $L(M) := \{ \text{ set of all strings accepted by } M \}$

Determinization

From formal language theory:

For every nondeterministic finite automaton there is a deterministic one that accepts the same language (but generally the deterministic one needs more states)

nondeterministic automaton M

- from 1 only accepts a and goes to 2
- from 2 only accepts b and can go to either 1 or 3
- from 1 or 3 only accepts a and goes to 2 or
- from 1 (or 2) can accepts a and go to 2 from (1 or) 2 can accept b and go to 1 or 3

deterministic automaton N

Same language:

L(M) = L(N) = ((ab)*(aba)*)*

M provides more compact representation

Nondeterministic Hybrid Automaton

$$Q \equiv \text{set of discrete states}$$
 $\mathbb{R}^n \equiv \text{continuous state-space}$

$$f: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n \equiv \text{vector field}$$

Φ: $Q \times \mathbb{R}^n \to 2^{Q \times \mathbb{R}^n} \equiv \text{set-valued}$ discrete transition (& reset & domain)

$$\Phi(q, x) = (\varphi(q, x) \times \rho(q, x)) \cap \Delta$$

Compact representation of a nondeterministic hybrid automaton

$$\dot{x} = f(q, x)$$
 $(q, x) \in \Phi(q^-, x^-)$ $q \in \mathcal{Q}, x \in \mathbb{R}^n$

Nondeterministic Hybrid Automaton

(Example #3: Semi-automatic transmission)

guard condition (does not force jump, simply allows it) $\omega \geq \varpi_1$? $\begin{array}{c} g=1 \\ \dot{\theta}=\omega \\ \dot{\omega}=\eta_1(\omega)u \\ \omega\leq \omega_2 \\ \end{array}$ $\begin{array}{c} g=2 \\ \dot{\theta}=\omega \\ \dot{\omega}=\eta_2(\omega)u \\ \varpi_1\leq \omega\leq \omega_3 \end{array}$ invariance condition

(must hold to remain in discrete state)

 $Q := \{ 1, 2 \}$ $\mathbb{R}^2 \equiv \text{continuous state-space}$

$$f(q,x) = \begin{bmatrix} \omega \\ \eta_q(\omega)u \end{bmatrix} \qquad \Phi(q,x) = \begin{cases} \{(1,x)\} & q = 1, \omega < \varpi_1 \\ \{(1,x),(2,x)\} & q = 1, \omega \in [\varpi_1,\omega_2] \\ \{(2,x)\} & q = 1, \omega > \omega_2 \\ \{(2,x)\} & q = 2, \omega > \omega_2 \\ \{(1,x),(2,x)\} & q = 2, \omega \in [\varpi_1,\omega_2] \\ \{(1,x)\} & q = 2, \omega < \varpi_1 \end{cases}$$

Solution to a nondeterministic hybrid automaton

$$\dot{x} = f(q, x)$$
 $(q, x) \in \Phi(q, x^{-})$ $q \in \mathcal{Q}, x \in \mathbb{R}^{n}$

Definition: A *solution* to the hybrid automaton is a pair of right-continuous signals $x:[0,\infty)\to\mathbb{R}^n$ $q:[0,\infty)\to\mathcal{Q}$

such that

- 1. x is piecewise differentiable & q is piecewise constant
- 2. on any interval (t_1,t_2) on which q is constant and x continuous

$$x(t) = x(t_1) + \int_{t_1}^t f\big(q(t_1), x(\tau)\big) d\tau \qquad \forall t \in [t_1, t_2)$$

3. $(q(t), x(t)) \in \Phi(q^-(t), x^-(t)) \quad \forall t \ge 0$

discrete transition & resets & domain

Stochastic finite automaton: controlled Markov chain

controlled Markov chain M

 $\Phi(q_1, q_2, s) \equiv \text{probability of transitioning to state } q_2, \text{ when in state } q_1 \text{ and symbol } s \text{ is selected}$

By convention, typically

- edges drawn without probabilities correspond to transitions that occur with probability 1
- self-loops may be omitted

Stochastic finite automaton: controlled Markov chain

By convention, typically

- edges drawn without probabilities correspond to transitions that occur with probability 1
- · self loops may be omitted

$$\mathcal{Q}\coloneqq\{1,2,3\}\ \Sigma\coloneqq\{a,b\}$$

 $\Phi(q_1, q_2, s) \equiv \text{probability of transitioning to state } q_2, \text{ when in state } q_1 \text{ and symbol } s \text{ is selected}$

$$\sum_{q_2 \in \mathcal{Q}} \Phi(q_1, q_2, s) = 1 \qquad \forall q_1 \in Q, \ s \in \Sigma$$

Stochastic Hybrid Automaton

 \mathcal{Q} \equiv set of discrete states \mathbb{R}^n \equiv continuous state-space

 $f: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n$ \equiv vector field

 $\varphi: \mathcal{Q} \times \mathcal{Q} \times \mathbb{R}^n \to [0,\infty] \equiv \text{discrete transition probability}$

 $\rho: \mathcal{Q} \times \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n \equiv \text{reset map (deterministic)}$

$$\varphi(q_1,q_2,x) = \lim_{dt\downarrow 0} \frac{\mathbf{P}\left(q(t+dt) = q_2 \mid q^-(t) = q_1, x^-(t) = x\right)}{dt}$$

(Poisson-like model)

Stochastic Hybrid Automaton

 \mathcal{Q} \equiv set of discrete states \mathbb{R}^n \equiv continuous state-space

 $f: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n$ \equiv vector field

 $\Phi:\mathcal{Q}\times\mathcal{Q}\times\mathbb{R}^n\times\mathbb{R}^n\to[0,\infty]\equiv\text{discrete transition probability \& reset}$

$$\Phi(q_1,q_2,x_1,x_2) = \lim_{dt\downarrow 0} \frac{\mathbf{P}\left(q(t+dt) = q_2, x(t+dt) = x_2\right) \mid q^-(t) = q_1, x^-(t) = x_1\right)}{dt}$$

(Poisson-like model)

More as special topic later...

Next class...

1. Trajectories of hybrid systems:

- Solution to a hybrid system
- Execution of a hybrid system
- 2. Degeneracies
 - Finite escape time
 - Chattering
 - · Zeno trajectories
 - · Non-continuous dependency on initial conditions