EC708 Discussion 13 Trinity

Yan Liu

Department of Economics
Boston University

April 22, 2022

Outline

Trinity of Tests in Classical Linear Model

- 2 LM Test for Model Misspecification
 - Testing for Heteroskedasticity: Breush-Pagan LM
 - LM Test for AR(p) Errors

Classical Linear Model

Consider the linear model

$$y = X\beta + u, \quad u|X \sim N(0, \sigma^2 I)$$

where $\dim(\beta) = k$. We are interested in testing linear restrictions

$$R\beta - r = 0$$
,

where R is $q \times k$ and r is $q \times 1$.

1/20

Wald Test in Classical Linear Model

• Let $(\hat{\beta}_T, \hat{\sigma}_T^2)$ be the unrestricted MLE of (β, σ^2) . Then,

$$\hat{\beta}_T = (X'X)^{-1}X'y \quad \text{and} \quad \hat{\sigma}_T^2 = \frac{1}{T}(y - X\hat{\beta}_T)'(y - X\hat{\beta}_T).$$

We can show $\sqrt{T}(\hat{\beta}_T - \beta) \stackrel{d}{\to} N(0, \sigma^2 E[X_t X_t']^{-1})$ and $\hat{\sigma}_T^2 \stackrel{p}{\to} \sigma^2$.

• Under $H_0: R\beta - r = 0$, $\sqrt{T}(R\hat{\beta}_T - r) \stackrel{d}{\to} N(0, \sigma^2 RE[X_t X_t']^{-1}R')$. Then, the Wald statistic is

$$W_T = (R\hat{\beta}_T - r)'[\hat{\sigma}_T^2 R(X'X)^{-1} R']^{-1} (R\hat{\beta}_T - r) \xrightarrow{d} \chi_q^2$$
 under H_0 .

an Liu April 22, 2022 2/20

LM Test in Classical Linear Model

- Let $(\tilde{\beta}_T, \tilde{\sigma}_T^2)$ be the restricted MLE of (β, σ^2) and $\tilde{\lambda}_T$ be the vector of associated Lagrange multipliers.
- The FOCs for $\tilde{\beta}_T$ and $\hat{\beta}_T$ are respectively

$$\frac{1}{\tilde{\sigma}_T^2} X'(y - X\tilde{\beta}_T) - R'\tilde{\lambda}_T = 0, \tag{1}$$

$$\frac{1}{\hat{\sigma}_T^2} X'(y - X\hat{\beta}_T) = 0. \tag{2}$$

3/20

Plugging (2) into the RHS of (1),

$$\frac{1}{\tilde{\sigma}_T^2} X' X (\hat{\beta}_T - \tilde{\beta}_T) = R' \tilde{\lambda}_T$$

$$\Rightarrow \frac{1}{\tilde{\sigma}_T^2} R (\hat{\beta}_T - \tilde{\beta}_T) = R (X' X)^{-1} R' \tilde{\lambda}_T$$

$$\Rightarrow \tilde{\lambda}_T = \frac{1}{\tilde{\sigma}_T^2} [R (X' X)^{-1} R']^{-1} (R \hat{\beta}_T - r).$$

LM Test in Classical Linear Model

• Plugging the expression for $\hat{\lambda}_T$ into (1), we have

$$\tilde{\beta}_T = \hat{\beta}_T - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(R\hat{\beta}_T - r) \xrightarrow{p} \beta$$

under H_0 and thus $\tilde{\sigma}_T^2 = \frac{1}{T}(y - X\tilde{\beta}_T)'(y - X\tilde{\beta}_T) \stackrel{p}{\to} \sigma^2$.

- Hence, $T^{-1/2}\tilde{\lambda}_T \stackrel{d}{\to} N(0, (\sigma^2 RE[X_t X_t']^{-1}R')^{-1}).$
- Then, the LM statistic is

$$LM = (R\hat{\beta}_T - r)' [\tilde{\sigma}_T^2 R(X'X)^{-1} R']^{-1} (R\hat{\beta}_T - r) \xrightarrow{d} \chi_q^2 \quad \text{under } H_0.$$

Remark:

Recall Wald test:

$$W_T = (R\hat{\beta}_T - r)'[\hat{\sigma}_T^2 R(X'X)^{-1} R']^{-1} (R\hat{\beta}_T - r).$$

4/20

Differ in terms of estimator of σ^2 .

Yan Liu Trinity April 22, 2022

LR Test in Classical Linear Model

• The log-likelihood function evaluated at $(\hat{\beta}_T, \hat{\sigma}_T^2)$ is

$$\bar{\ell}_{T}(\hat{\beta}_{T}, \hat{\sigma}_{T}^{2}) = -\frac{T}{2} \ln 2\pi - \frac{T}{2} \ln \hat{\sigma}_{T}^{2} - \frac{1}{2\hat{\sigma}_{T}^{2}} (y - X\hat{\beta}_{T})'(y - X\hat{\beta}_{T})$$

$$= \cos - \frac{T}{2} \ln \hat{\sigma}_{T}^{2}.$$

 \bullet Similarly, the log-likelihood function evaluated at $(\tilde{\beta}_T,\tilde{\sigma}_T^2)$ is

$$\bar{\ell}_T(\tilde{\beta}_T, \tilde{\sigma}_T^2) = \cos - \frac{T}{2} \ln \tilde{\sigma}_T^2.$$

• Then, the LR statistic is

$$LR = 2(\bar{\ell}_T(\hat{\beta}_T, \hat{\sigma}_T^2) - \bar{\ell}_T(\tilde{\beta}_T, \tilde{\sigma}_T^2)) = T \ln \left(\frac{\tilde{\sigma}_T^2}{\hat{\sigma}_T^2}\right) \xrightarrow{d} \chi_q^2 \quad \text{under } H_0.$$

5/20

Yan Liu Trinity April 22, 2022

Inequality $LM \leq LR \leq W$ in Classical Linear Model

For simplicity, normalize $R\beta = 0$. We start with two lemmas.

Lemma 1

Define $\tilde{u} = y - X \tilde{\beta}_T$ and $\hat{u} = y - X \hat{\beta}_T$, then

$$W_T = \frac{\tilde{u}'\tilde{u} - \hat{u}'\hat{u}}{\hat{\sigma}_T^2}, \quad LM_T = \frac{\tilde{u}'\tilde{u} - \hat{u}'\hat{u}}{\tilde{\sigma}_T^2}.$$

Proof: Recall that $\tilde{\beta}_T=\hat{\beta}_T-(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(R\hat{\beta}_T-r),$ $X'\hat{u}=0,$ and r=0. Then,

$$\tilde{u}'\tilde{u} - \hat{u}'\hat{u} = [\hat{u} - X(\tilde{\beta}_T - \hat{\beta}_T)]'[\hat{u} - X(\tilde{\beta}_T - \hat{\beta}_T)] - \hat{u}'\hat{u}$$

$$= (\tilde{\beta}_T - \hat{\beta}_T)'X'X(\tilde{\beta}_T - \hat{\beta}_T)$$

$$= \hat{\beta}_T'R'[R(X'X)^{-1}R']^{-1}R\hat{\beta}_T.$$

Inequality $LM \leq LR \leq W$ in Classical Linear Model

Lemma 2

The Wald, LR, and LM satisfy the following relations:

- $W_T = 2[\bar{\ell}_T(\hat{\beta}_T, \hat{\sigma}_T^2) \bar{\ell}_T(\tilde{\beta}_T, \hat{\sigma}_T^2)];$
- $LM_T = 2[\bar{\ell}_T(\hat{\beta}_T, \tilde{\sigma}_T^2) \bar{\ell}_T(\tilde{\beta}_T, \tilde{\sigma}_T^2)];$
- $LR_T = 2[\bar{\ell}_T(\hat{\beta}_T, \hat{\sigma}_T^2) \bar{\ell}_T(\tilde{\beta}_T, \tilde{\sigma}_T^2)].$

Proof: For any σ^2 ,

$$\bar{\ell}_T(\hat{\beta}_T, \sigma^2) = -\frac{T}{2} \ln \sigma^2 - \frac{T}{2} \ln 2\pi - \frac{1}{2} \frac{\hat{u}'\hat{u}}{\sigma^2},$$
$$\bar{\ell}_T(\tilde{\beta}_T, \sigma^2) = -\frac{T}{2} \ln \sigma^2 - \frac{T}{2} \ln 2\pi - \frac{1}{2} \frac{\tilde{u}'\tilde{u}}{\sigma^2}.$$

Plug in the expressions of Wald and LM statistics in Lemma 1.

Inequality $LM \leq LR \leq W$ in Classical Linear Model

Theorem 1

 $LM_T \leq LR_T \leq W_T$ for any T.

Proof:

• $LR_T \ge LM_T$ if

$$\bar{\ell}_T(\hat{\beta}_T, \hat{\sigma}_T^2) \ge \bar{\ell}_T(\hat{\beta}_T, \tilde{\sigma}_T^2).$$

• $W_T \ge LR_T$ if

$$\bar{\ell}_T(\tilde{\beta}_T, \hat{\sigma}_T^2) \leq \bar{\ell}_T(\tilde{\beta}_T, \tilde{\sigma}_T^2).$$

These inequalities hold by the definition of $\hat{\sigma}_T^2$ and $\tilde{\sigma}_T^2$.

Remark: Theorem 1 applies to the GLS model:

$$y|X \sim N(X\beta, \sigma\Omega), \quad \Omega = \Omega(\omega),$$

where ω is a finite estimable parameter vector.

Yan Liu Trinity April 22, 2022

8/20

When Are LM, LR, and Wald the Same?

- ullet Suppose σ^2 is known. Then by Lemma 2, the three are identical.
- More generally, if the log-likelihood has the following form

$$\bar{\ell}_T(\theta) = b - \frac{1}{2}(\theta - \hat{\theta}_T)'A(\theta - \hat{\theta}_T)$$

where A is a symmetric positive definite matrix and $\hat{\theta}_T$ is a function of data, then $LM_T = LR_T = W_T$.

• $LM_T = LR_T = W_T = (\theta_0 - \hat{\theta}_T)'A(\theta_0 - \hat{\theta}_T)$, where θ_0 is subject to the constraint of H_0 .

Remark: In general, whenever the true value of θ is close to θ_0 , the log-likelihood function in the neighborhood of θ_0 is approximately quadratic for large T, hence asymptotic equivalence of the three tests.

Outline

Trinity of Tests in Classical Linear Model

- LM Test for Model Misspecification
 - Testing for Heteroskedasticity: Breush-Pagan LM
 - ullet LM Test for AR(p) Errors

LM Test as A Diagnostic

- We can use hypothesis testing for specification search: null is a specification in favor and alternative is a more general specification.
- Test for this purpose is diagnostic: check if data are well represented by the specification.
- LM test is based on parameter fit under the null, usually expressed as residuals from the estimates under the null.
- Each alternative considered indicates a particular type of non-randomness.

Outline

Trinity of Tests in Classical Linear Model

- LM Test for Model Misspecification
 - Testing for Heteroskedasticity: Breush-Pagan LM
 - LM Test for AR(p) Errors

Testing for Heteroskedasticity: Breush-Pagan LM

Consider the following model:

$$y_t = x_t' \beta + u_t, \quad u_t | x_t, z_t \sim N(0, \sigma_t^2), \quad t = 1, \dots, T.$$

Null and alternative hypothesis:

$$H_0: \sigma_t^2 = \sigma^2 \ \forall t, \quad H_1: \sigma_t^2 = h(z_t'\alpha),$$

where $z_t = (1, z_{1t}, \dots, z_{qt})' \in \mathbb{R}^{q+1}$ and $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_q)'$. The null can be rewritten as

$$H_0: \alpha_1 = \cdots = \alpha_q = 0.$$

- z_t can be a vector function of x_t , e.g. $z_t'\alpha = \alpha_0 + \alpha_1 x_t'\beta$.
- Under both the null and alternative, assume no serial correlation: $E[u_t u_s] = 0$ for $t \neq s$.

Yan Liu Trinity April 22, 2022

11/20

Breush-Pagan Test Statistic

Log-likelihood function:

$$\bar{\ell}_T(\beta,\alpha) = -\frac{T}{2}\ln(2\pi) - \frac{1}{2}\sum_{t=1}^T \ln(h(z_t'\alpha)) - \frac{1}{2}\sum_{t=1}^T \frac{(y_t - x_t'\beta)^2}{h(z_t'\alpha)}.$$

Note that

- FOC for $\tilde{\beta}$ implies $\frac{\partial \bar{\ell}_T}{\partial \tilde{\beta}}\big|_{\alpha=\tilde{\alpha},\beta=\tilde{\beta}}=0;$
- Information matrix is block diagonal: $E\left[\frac{\partial^2 \ell_t(\beta,\alpha)}{\partial \beta \partial \alpha'}\right] = 0.$

We can calculate that the score is

$$\frac{\partial \ell_t(\beta,\alpha)}{\partial \alpha} = \frac{1}{2} z_t \left(\frac{u_t^2}{h(z_t'\alpha)} - 1 \right) \frac{h'(z_t'\alpha)}{h(z_t'\alpha)}$$

and the information matrix is

$$I(\beta,\alpha) = -E\left[\frac{\partial^2 \ell_t(\beta,\alpha)}{\partial \alpha \partial \alpha'}\right] = \frac{1}{2} E\left[z_t z_t' \frac{h'(z_t'\alpha)}{h(z_t'\alpha)}\right].$$

'an Liu April 22, 2022 12 / 20

Breush-Pagan Test Statistic

Evaluated under H_0 , LM test statistic simplifies to $(\frac{h'(\tilde{\alpha}_0)}{h(\tilde{\alpha}_0)})$ is cancelled out)

$$LM_T = \frac{1}{2} \left[\frac{1}{\sqrt{T}} \sum_{t=1}^{T} z_t \left(\frac{\tilde{u}_t^2}{h(\tilde{\alpha}_0)} - 1 \right) \right]' \left(\frac{1}{T} \sum_{t=1}^{T} z_t z_t' \right)^{-1} \left[\frac{1}{\sqrt{T}} \sum_{t=1}^{T} z_t \left(\frac{\tilde{u}_t^2}{h(\tilde{\alpha}_0)} - 1 \right) \right].$$

Let $f=(f_1,\ldots,f_T)'$ with $f_t=\frac{\tilde{u}_t^2}{\tilde{\sigma}^2}-1$, where \tilde{u}_t and $\tilde{\sigma}^2$ are residuals and variance estimates under H_0 . Then,

$$LM_T = \frac{1}{2}f'Z(Z'Z)^{-1}Z'f = \frac{1}{2}f'P_Zf.$$

Trinity April 22, 2022 13 / 20

Breush-Pagan Test Statistic: Procedures

- Apply OLS to $y = X\beta + u$ and obtain residuals \hat{u} .
- ② Compute $f_t = \frac{\hat{u}_t^2}{\hat{\sigma}^2} 1$ where $\hat{\sigma}^2 = \frac{1}{T} \sum_{t=1}^T \hat{u}_t^2$.
- ullet Run OLS of f on Z and compute the LM statistic

$$LM_T = \frac{1}{2}f'P_Zf = \frac{1}{2}ESS.$$

Under the null, $LM_T \stackrel{d}{\rightarrow} \chi_q^2$.

Remark:

- Since $\operatorname{plim}_{T \to \infty} f'f/T = 2$ under H_0 and H_1 , an asymptotically equivalent test statistic is TR^2 from regressing f on Z.
- As long as Z has an intercept, the statistic can be computed by regressing \hat{u} on Z and calculating TR^2 .

Yan Liu Trinity April 22, 2022 14/20

Outline

Trinity of Tests in Classical Linear Model

- 2 LM Test for Model Misspecification
 - Testing for Heteroskedasticity: Breush-Pagan LM
 - ullet LM Test for AR(p) Errors

LM Test for AR(p) Errors

Consider the model with k regressors in X and p lags in error:

$$y = X\beta + u$$

$$u_t = \psi_1 u_{t-1} + \dots + \psi_p u_{t-p} + \varepsilon_t$$

$$\varepsilon_t \sim \text{i.i.d. } N(0, \sigma^2)$$

- The null is $H_0: \psi = (\psi_1, \dots, \psi_p) = \mathbf{0}$.
- Ignore the first p observations and rewrite the model as

$$y_t = x_t'\beta + \sum_{j=1}^p \psi_j(y_{t-j} - x_{t-j}'\beta) + \varepsilon_t.$$

Yan Liu Trinity April 22, 2022 15/20

LM Test for AR(p) Errors

• Denote $\theta=(\beta,\psi).$ The log-likelihood after concentrating out σ^2 is

$$\bar{\ell}_T(\theta) = \cos - \frac{T}{2} \ln \frac{1}{T} \varepsilon' \varepsilon = \cos - \frac{T}{2} \ln \frac{1}{T} \sum_{t=1}^{T} \left(u_t - \sum_{j=1}^{p} \psi_j u_{t-j} \right)^2.$$

• Evaluated at the restricted MLE $\tilde{\theta}$, the score and estimated information matrix are

$$\frac{\partial \bar{\ell}_T(\tilde{\theta})}{\partial \theta} = \frac{F'\tilde{u}}{\tilde{\sigma}^2}, \quad \hat{I}_T(\tilde{\theta}) = \frac{1}{T} \frac{F'F}{\tilde{\sigma}^2},$$

where F=(X,U) with U having rows $U_t=(\tilde{u}_{t-1},\ldots,\tilde{u}_{t-p})$ and $\tilde{\sigma}^2=\frac{1}{T}(\tilde{u}-F\tilde{\theta})'(\tilde{u}-F\tilde{\theta}).$

Yan Liu Trinity April 22, 2022 16/20

LM Test for AR(p) Errors

Construct the LM statistic

$$LM_T = \frac{1}{T} \frac{\partial \bar{\ell}_T(\tilde{\theta})}{\partial \theta'} \hat{I}_T(\tilde{\theta})^{-1} \frac{\partial \bar{\ell}_T(\tilde{\theta})}{\partial \theta} = \frac{1}{\tilde{\sigma}^2} \tilde{u}' F(F'F)^{-1} F' \tilde{u}.$$

• $LM_T = TR^2$ where R^2 is calculated from regressing \tilde{u} on F.

LM Test for AR(p) Errors: Procedures

- **1** Run OLS on y against X and get \hat{u} .
- Run OLS on the auxiliary regression

$$\hat{u} = X\tau + U\delta + v.$$

lacktriangle Compute \mathbb{R}^2 from the auxiliary regression and construct LM statistic

$$LM_T = TR^2.$$

Under the null, $LM_T \stackrel{d}{\rightarrow} \chi_p^2$.

Remarks:

- If X includes no lagged dependent variables, then $\operatorname{plim}_{T \to \infty} \frac{X'U}{T} = 0$ and the auxiliary regression will be unaffected by leaving out the X's.
- ullet For p=1, this test is asymptotically equivalent to the Durbin-Watson statistic.

Testing for AR(1) Errors: Durbin-Watson

ullet Consider the model with k regressors

$$y = X\beta + u$$
$$u_t = \rho u_{t-1} + \varepsilon_t$$
$$\varepsilon_t \sim \text{i.i.d.} N(0, \sigma^2)$$

Consider the following test statistic

$$d = \frac{\sum_{t=2}^{T} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{T} \hat{u}_t^2},$$

where \hat{u}_t are OLS residuals.

• Why this statistic? Note that

$$d \approx \frac{2\sum_{t=2}^{T} (\hat{u}_t^2 - \hat{u}_t \hat{u}_{t-1})}{\sum_{t=2}^{T} \hat{u}_{t-1}^2} = 2 - 2\frac{\sum_{t=2}^{T} \hat{u}_t \hat{u}_{t-1}}{\sum_{t=2}^{T} \hat{u}_{t-1}^2} = 2(1 - \hat{\rho}).$$

Testing for AR(1) Errors: Durbin-Watson

- Exact distribution of d depends on X. Can bound this dependence as a function of k and T. Hence critical values depend on k, T, and size α .
- Adding lagged dependent variables in X biases $\hat{\rho}$ downward.
- Durbin's h test provides a correction for the first order case.
 - Denote $\hat{\alpha}_1$ as OLS coefficient on y_{t-1} . Consider the following statistic

$$h = \hat{\rho} \sqrt{\frac{T}{1 - T\hat{V}(\hat{\alpha}_1)}} \approx \left(1 - \frac{2}{d}\right) \sqrt{\frac{T}{1 - T\hat{V}(\hat{\alpha}_1)}},$$

where $\hat{V}(\hat{\alpha}_1)$ is the variance estimator of $\hat{\alpha}_1$.

• Caveat: It may happen that $T\hat{V}(\hat{\alpha}_1) > 1$ because of sampling fluctuation. In this case the test statistic undefined.

Yan Liu Trinity April 22, 2022 20/20