Matthew Loden

ECEN 474

Lab 07 – Characterization of Inverters

Relevant Data for all values found at end of report.

Current Mirror Load Information:

Schematic:

Dc Operation Point Curve:

Gain/Pole1/Pole2:

Layout:

DRC:

LVS:

File Edit Options Windows

PostLayout Information:

DcOp:

Av/Pole1/Pole2:

CMOS Inverter Information:

Schematic:

Dc Operation Point Curve:

Gain/Pole1/Pole2:

Layout:

DRC:

LVS:

REPORT FILE NAME: CMOSinverter.lvs.report LAYOUT NAME: SOURCE NAME: /home/ugrads/m/matthewloden/CAL/CMOSinverter.sp ('CMOS /home/ugrads/m/matthewloden/LVS/CMOSinverter.netlist.l /home/ugrads/m/matthewloden/CAL/_cmhv7sf.lvs.cal_ RULE FILE: CREATION TIME: Fri Nov 12 01:17:43 2021 /home/ugrads/m/matthewloden/CAL matthewloden CURRENT DIRECTORY: USER NAME: CALIBRE VERSION: v2020.1_17.9 Fri Jan 3 14:53:07 PST 2020 OVERALL COMPARISON RESULTS ************** CORRECT

##################

PostLayout Information:

DcOp:

Av/Pole1/Pole2:

PMOS Biased Information:

Schematic:

Test Bench:

Dc Operation Point Curve:

Gain/Pole1/Pole2:

Layout:

DRC:

LVS:

REPORT FILE NAME: LAYOUT NAME: SOURCE NAME: PMOSbiased.lvs.report /home/ugrads/m/matthewloden/CAL/PMOSbiased.sp ('PMOSbi /home/ugrads/m/matthewloden/LVS/PMOSbiased.netlist.lvs RULE FILE: /home/ugrads/m/matthewloden/CAL/_cmhv7sf.lvs.cal_ CREATION TIME: Fri Nov 12 02:16:13 2021 CURRENT DIRECTORY: /home/ugrads/m/matthewloden/CAL matthewloden USER NAME: CALIBRE VERSION: Fri Jan 3 14:53:07 PST 2020 v2020.1_17.9

OVERALL COMPARISON RESULTS

PostLayout Information:

DcOp:

Av/Pole1/Pole2:

CMOS Biased Information:

Schematic:

Test Bench:

Dc Operation Point Curve:

Gain/Pole1/Pole2:

Layout:

DRC:

LVS:

REPORT FILE NAME: NMOSbiased.lvs.report

LAYOUT NAME: /home/ugrads/m/matthewloden/CAL/NMOSbiased.sp ('NMOSbi SOURCE NAME: /home/ugrads/m/matthewloden/LVS/NMOSbiased.netlist.lvs

RULE FILE: /home/ugrads/m/matthewloden/CAL/_cmhv7sf.lvs.cal_

Fri Nov 12 02:57:12 2021 CREATION TIME:

CURRENT DIRECTORY: /home/ugrads/m/matthewloden/CAL

matthewloden v2020.1_17.9 USER NAME: CALIBRE VERSION: Fri Jan 3 14:53:07 PST 2020

OVERALL COMPARISON RESULTS

PostLayout Information:

DcOp:

Av/Pole1/Pole2:

Data Discussed

Lab09, PreLayout	Av	P1	P2	GBW
Current Mirror Load	23.5165dB	60255kHz	30.690MHz	8.96MHz
CMOS Inverter	23.5165dB	602.56kHz	31.6288MHz	9.02MHz
PMOS Biased	3.206dB	1.148MHz	28.403MHz	1.66MHz
CMOS Self Biased	-1.901dB	5.888MHz	218.77MHz	4.73MHz

PostLab	Av	P1	P2	GBW
CML	20.5885dB	436.516kHz	30.4656MHz	4.6711MHz
CMOS I	23.6153dB	575.44kHz	21.3796MHz	8.709MHz
PMOS B	2.8888dB	1.1749MHz	54.9541MHz	1.638MHz
CMOS B	-769mdB	4.7863MHz	173.78MHz	4.3MHz

In this lab, may different data points were taken. Most data points met the requirements laid out in the lab manual. The major differences came in the Gain of the inverters. The unity gain values were very close to the expected values however the 30dB mark was unattainable for my designs. The Gain Bandwidth was still met due to the pole frequency being large enough to compensate for the lower gain. All pole two frequencies were three times larger than the related pole one frequency so we can safely assume all poles were stable.