6. előadás

Mérai László diái alapján

Komputeralgebra Tanszék

2014. ősz

Felhívás 1.

Vasárnap lesz az ACM országos programozási verseny.

Bővebb információ:

http://people.inf.elte.hu/bzsr/acm/

Felhívás 2.

Csütörtökön Körtvélyessy Gábor (Vision-Software Kft) tart előadást.

A szakterületének érdekes kérdéseit, eredményeit mutatja be a hallgatóságnak.

Bővebb információ:

http://goo.gl/zJqyFL

A logikai műveletek tulajdonságai, ítéletlogikai tételek

Állítás

- $\bullet (A \lor (B \lor C)) \Leftrightarrow ((A \lor B) \lor C), (A \land (B \land C)) \Leftrightarrow ((A \land B) \land C)$ (asszociativitás);
- $(A \land (B \lor C)) \Leftrightarrow ((A \land B) \lor (A \land C)), (A \lor (B \land C)) \Leftrightarrow ((A \lor B) \land (A \lor C))$ (disztributivitás);

A logikai műveletek tulajdonságai, ítéletlogikai tételek

Bizonyítás (példa)

 $\bullet \ A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C \ (a \ logikai \ vagy \ asszociativitása)$

Α	В	C	$B \vee C$	$A \lor (B \lor C)$	$A \vee B$	$(A \lor B) \lor C$	$(A \lor (B \lor C)) \Leftrightarrow ((A \lor B) \lor C)$
I	I	I	I	I	I	I	I
I	Н	I	I	I	I	I	I
H	I	I	I	I	I	I	I
H	Н	I	I	I	Н	I	I
I	I	Н	I	I	I	I	I
I	Н	Н	Н	I	I	I	I
H	I	Н	I	I	I	I	I
H	Н	Н	Н	Н	Н	Н	I

Áttérés algebrai alakról trigonometrikus alakra

$$a + bi = r(\cos \varphi + i \sin \varphi)$$

Áttérés algebrai alakról trigonometrikus alakra

$$a + bi = r(\cos \varphi + i \sin \varphi)$$

$$a = r \cos \varphi$$

$$b = r \sin \varphi$$

Áttérés algebrai alakról trigonometrikus alakra

$$a + bi = r(\cos \varphi + i \sin \varphi)$$

$$a = r \cos \varphi$$

$$b = r \sin \varphi$$

Ha $a \neq 0$, akkor $tg\varphi = \frac{b}{a}$, és így

Attérés algebrai alakról trigonometrikus alakra

$$a+bi=r(\cos\varphi+i\sin\varphi)$$

$$a=r\cos\varphi$$

$$b=r\sin\varphi$$

$$\begin{cases} b=r\sin\varphi \end{cases}$$
 Ha $a\neq 0$, akkor $tg\varphi=\frac{b}{a}$, és így
$$\varphi=\left\{ \begin{array}{l} \arctan \frac{b}{a}, \ \mathrm{ha} \ a>0; \\ \arctan \frac{b}{a}+\pi, \ \mathrm{ha} \ a<0. \end{array} \right.$$