Eye In The Sky

PRESENTATION 2 - DECEMBER 4, 2014 SPRINT 1&2 RECAP, SPRINT 3 REPORT

Team

Colter Assman: UAV Specialist

Julian Brackins: Scrum Master

Charles Parsons: Nav Specialist

Alex Wulff: Technical Lead / Demolitions Expert

Product Owner & Team Advisor: Dr. Jeff McGough

Overview

Project Overview

Sprint Timeline

Open CV

SLAM

GPS

ROS + Gazebo

Testing

Deliverables

Project Overview

Terms

Terms

UAV – Unmanned Aerial Vehicle

UGV – Unmanned Ground Vehicle

ROS – Robot Operating System

Node – ROS subroutine or program for UAV control

OpenCV – Open Computer Vision

Library for real-time computer vision

SLAM – Simultaneous Location And Mapping

SVO – Fast Semi-Direct Monocular Visual Odometry

User Stories

As a member of a search and rescue team:

- Vehicle to assist with finding missing persons in areas of low radio communication / high human risk
 - Black Hills
 - Forest Fires
 - Radioactive Locations

As a user of the UAV:

- UAV launches from landing pad located on vehicle
- UAV collects data and sends to base station
- UAV autonomously locates landing pad
 - Landing Pad situated on UGV
 - automatically recharges UAV battery

Intellectual Property

The claim to the IP is shared between the Sponsor Jeff McGough and the members of the Eye In the Sky Senior Design Team: Colter Assman, Julian Brackins, Charles Parsons, and Alex Wulff.

System Diagram

Note: omitted UGV design

UAV / UGV Design Details

UAV Specifics

- The UAV is currently equipped as:
- AMP 2.6 flight control board
- 3dr ublox GPS with Compass compass and gps
- R5800X receiver and TXV582 video transmitting
- Sony HAD 520 line camera on board camera
- Spektrum AR7000 7 channel receiver
- 915 MHz radio telemetry with ground station

UGV

- The UGV is to be equipped as:
- GPS Make and model still under investigation
- SLAM Cameras (Asus Xtioc & Microsoft Kinect)
- Recharging Station with mounts
- Tilting platform with LED indicators for low light environments.
- Power supply
- Odroid computation.

Risk Assessment

BUDGET, OBJECTIVES/CONSTRAINTS

Budget

\$1,500 shared between in Sight / EITS

- GPS for UGV + other cameras
- ODROIDS (more than 2 = over budget)
- Allocate budget for vehicle repairs
- UGV Construction
- Colter has bought 2 new battery's and XT-50 connectors for a total of \$75.50.

- InSight Share
- Cameras, GPS, Kinect, etc.
- ODROIDs (current estimate: 2)
- Allocated for Field Test Repairs
- UGV
- Already Spent

Budget Notes

Most of our budget has been mitigated through certain means:

- UAV from Department
 - Needs repairs but cheaper than designing outright
- Cameras from Department
- Simulation
 - Gazebo
 - Lower costs of repairs by fine tuning software in sims

Objectives / Constraints

Objectives:

- Autonomous UAV flight
 - In Progress:
 - Designing ROS nodes to handle UAV nav behavior, routines
 - Python code nodes publish Twist messages through cmd_vel
- Landing Pad detection
 - In Progress:
 - Explored multiple methods for object detection
 - OpenCV (Homography)
 - SLAM (mapping + object detection)
- UAV Auto-Charging
 - Induction plates or charging mechanisms. Not on schedule until Sprint 5.

Objectives / Constraints

Constraints:

- ROS = HARD
 - Setting up environment
 - Ubuntu setup, etc.
 - Familiarizing team with ROS
- UAV needs repairs
- Testing the UAV / UGV could result in vehicle damages
 - Sims will reduce expenditures.
- UAV Weight
 - How many cams, how many computers, gps weight, battery, etc.
 - Stress testing ODROIDs to gauge how may we'll need
 - Running SLAM, navigation nodes, cameras, etc.
- ODROID
 - Current Ubuntu 14.04 does not come with graphical desktop environment on ODROID
 - No graphics, no camera feed...

Sprint Timeline

Sprint 1 & Sprint 2 Recap

• Sprint 1:

- Largely research / requirements gathering
- ROS environment setup

• Sprint 2:

- OpenCV research
 - Object Distance Estimation
- SVO Analysis

Tasks Completed:

- GPS Tracking publishing through common protocol
- SLAM analysis
- UAV Simulation in Gazebo
- Point cloud generated with Microsoft Kinect (OpenNI Freenect)

Tasks Pushed Back:

- Hardware Stress Testing
- OpenCV Homography for UAV Landing
- UGV
 - Design complete, still need to build
- UAV still in disrepair

Sprinter Break

	GANTT project	$\Rightarrow =$	2	2014	2015 Sprinter Break Begins	S4 Begins
	Name	Begin date	End date	ber	January	Februa
0- 0	Sprint 2	10/21/14	11/5/14			
o- 0	Sprint 3	11/11/14	12/5/14	*		
φ Θ	Sprinter Break	12/22/14	1/16/15			
	Sprinter Break Begins	12/22/14	12/22/14		•	
	 UGV Construction 	12/22/14	12/29/14			
	OpenCV Homography	12/22/14	12/23/14			
	 ROS Node Architecture Setup 	12/29/14	1/2/15			
	 Testing Environment Setup 	12/29/14	1/16/15			
0- 0	Sprint 4	1/19/15	2/12/15			
o- 0	Sprint 5	2/16/15	3/19/15			
o- 0	Sprint 6	3/23/15	4/30/15			

	GANTT project	35	2	2015 S4 Begins S4 Summary
	Name	Begin date	End date	February March
o- e	Sprint 2	10/21/14	11/5/14	
o- e	Sprint 3	11/11/14	12/5/14	
o- e	Sprinter Break	12/22/14	1/16/15	
P 0	Sprint 4	1/19/15	2/12/15	
	S4 Begins	1/19/15	1/19/15	\$
	Finish UGV	1/19/15	1/29/15	
	Finish GPS & NAV	1/19/15	1/29/15	
	Platform & Recharger Design De	1/30/15	2/11/15	
	 UAV best case scenario landing 	1/30/15	2/11/15	
	S4 Summary	2/13/15	2/13/15	+ _
o- e	Sprint 5	2/16/15	3/19/15	
o- e	Sprint 6	3/23/15	4/30/15	

(GANTT project	\rightleftarrows	2	2015 S5 S6 Begins		3 Design Fair		ue for Senior Des	
	Name	Begin date	End date	·	April		May		June
⊶ ⊖ Spr	rint 2	10/21/14	11/5/14						
⊶ ⊝ Spr	rint 3	11/11/14	12/5/14						
⊳ ⊜ Spr	rinter Break	12/22/14	1/16/15						
► • Spr	rint 4	1/19/15	2/12/15	•					
► @ Spr	rint 5	2/16/15	3/19/15						
● Spr	rint 6	3/23/15	4/30/15				٦ .		
0	S6 Begins	3/23/15	3/23/15	•					
0	Handover Documents	3/23/15	4/9/15						
0	S6 Summary	4/10/15	4/10/15		•				
0	Design Fair	4/14/15	4/14/15			•			
0	All Materials Due for Senior Design	5/1/15	5/1/15				*		

OpenCV

RECAP, HOMOGRAPHY, ANALYSIS

OpenCV

Plan:

- Distance Algorithm:
 - Captures distance but not angle/skew
 - Only works in limited distance.
- Homography:
 - Change in angle could be extracted from Homography Matrix
- However, we're using SLAM...
 - SLAM for mapping, would also give us info of the landing pad
- Redundancy
 - OpenCV + SLAM would give us two checks
 - ODROIDs
 - Computing analysis after stress testing

SLAM

SLAM

- With some short fallings of OpenCV by itself, we've found coupling SLAM technology with our ROS nodes, which integrate Hector SLAM with existing UAV functionality.
- Different Types
 - Various SLAM methodologies were considered for the UGV including Hector-SLAM, LSD-SLAM, etc..
- For additional obstacle detection of the UGV, point cloud nodes have been assembled leveraging both Freenect and OpenNi. This combination allows for both Asus Xtion and Microsoft Kinect connectivity.

Point Cloud of McL108

GPS

GPS

Common Ground

- As the UAV is using a 3dr ublox GPS and the UGV's GPS is still undecided, it has been our decision to try and find a way to incorporate an interpretive node that will take many forms of GPS pose and marker topics and relay them to a common topic.
- To test and validate these nodes' data, the Android_Sensors node was added to the build and was then modified to relay data out as specific data using topic names like "GPS_data". This custom topic pushes data as received or every 2 seconds.
- Sample Data
 - header: seq: 25087 stamp: secs: 1417577925 nsecs: 862000000 frame_id: /gpsstatus: status: 0 service: 1 latitude: 44.08800569 longitude: -103.22106451 altitude: 955.5 position_covariance: [256.0, 0.0, 0.0, 0.0, 256.0, 0.0, 0.0, 0.0, 256.0] position_covariance_type: 1

ROS

ROBOTICS IMPLEMENTATION AND SIMULATION

ROS and Gazebo

ROS + Gazebo for simulating UAV + UGV

- Gazebosim.org
- 3D graphics
 - using OGRE (OpenGL 3D game dev)
- Generate sensor data
 - (cameras, gps etc)
- Works with ROS

Simulation helps fine-tune software while keeping costs down

ROS + Gazebo Demo

ROS + Gazebo Demo (video)

Testing

Testing Software

- Project has heavy focus on Research first 3 sprints
 - We had set up in our Sprint timeline that 1-3 were research heavy, with 4-6 being dev / testing
 - As a result, we haven't done a lot with testing
 - Winter break focuses on transitioning from research to development
- Plan for testing UAV
 - Testing Plan on next slide
 - Before Sprint 4:
 - Set up ROS node architecture
 - Complete Unit Test scripts for environment
 - Finish Gazebo environment for robust simulation testing

Testing Diagram

Code Submission

Development Team submits code to the repo

- Documented changes
- Scrum Master notified by email
- Changes based on Sprint Backlog requirements or Field Test Analysis

Code Review Scheduling

Done by the Scrum Master

- Determines Formal or Informal review based on content
 - At least 2 Formal Reviews per Sprint
- For Informal Reviews, team member is picked based on availability
 - Scrum Master can perform Informal Review as well

Code Review (Informal)

Code Reviewed by Team member chosen by Scrum Master

- Approves code for Sim Testing
- Can promote to a Formal Code Review (scheduled by Scrum Master)
- In rare instances, can outright reject code submission

Code Review (Formal)

Code Review performed by entire team

- Less Frequent than Informal Reviews
- Author(s) of code revision detail changes to software to entire team
- Surbeck Board Rooms, or Business Dev. Center
- If the ENTIRE team does not agree on changes, code must be resubmitted.

Sim Test

Team Member tests new build on the Gazebo Simulator

- Newest build does not get added to the physical hardware without passing a Sim Test
- All Code Reviews (Formal and Informal) must be followed up with a Sim Test
 - Sim Test can be performed at Formal Code Review
- Depending on Scheduling issues,
 Sim Tests will not always be followed by Field Tests

Field Test

Minimum of two Members of the team test new software build on UAV / UGV

- Keep Lab Notebooks, document results, report to Scrum Master if they are not present
- Code that has not been approved by a Sim Test absolutely can not be used on vehicles in a Field Test

Field Test Analysis

Team reports Field Test

- What went well, what did not
- Problems in software are added to Sprint Backlog
- Field Notes are integrated into the Design Document
- Field Test Team and Code Dev Team collaborate to determine changes for next build

Deliverables

Deliverables

What we got:

- Testing Environment Sirius.py
 - Node "template" for navigation
 - Verifies scripting works in sim
- Node structure for Nav, SVO, Ptam, SLAM & PointClouds
 - Architecture design will bridge these together
- UAV Design
- UGV Design
- Document
 - Still in progress

Conclusion