LA SEMANTIQUE DE KRIPKE

DEFINITION: Soit \mathcal{L} un langage propositionnel. Une structure de Kripke pour \mathcal{L} (ou \mathcal{L} -structure de Kripke) est un triplet $\mathfrak{M} = (M, \leq, D)$, où

- M est un ensemble non vide, dont les éléments (qu'on notera α , β , γ ...), sont appelés états (ou mondes possibles dans le contexte de la logique modale),
- \leq est un ordre sur M,
- D : M $\rightarrow \mathcal{P}(At \{\bot\})$ est une application qui à tout $\alpha \in M$ associe un ensemble d'atomes de \mathscr{L} différents de \bot et qui vérifie : si $\alpha \leq \beta$, alors $D(\alpha) \subseteq D(\beta)$.

DEFINITION: Soient \mathscr{L} un langage d'énoncés, For(\mathscr{L}) l'ensemble des formules de \mathscr{L} et $\mathfrak{M} = (M, \leq, D)$ une \mathscr{L} -structure de Kripke

Pour $\alpha \in M$, on définit $v_{\alpha} : For(\mathcal{L}) \to \{0, 1\}$ par :

- 1. Si φ est atomique, $v_{\alpha}(\varphi) = 1$ ssi $\varphi \in D(\alpha)$.
- 2. Si $\varphi = \psi \wedge \chi$, $v_{\alpha}(\varphi) = 1$ ssi $v_{\alpha}(\psi) = v_{\alpha}(\chi) = 1$.
- 3. Si $\varphi = \psi \vee \chi$, $v_{\alpha}(\varphi) = 1$ ssi $v_{\alpha}(\psi) = 1$ ou $v_{\alpha}(\chi) = 1$.
- 4. Si $\varphi = \psi \rightarrow \chi$, $v_{\alpha}(\varphi) = 1$ ssi $\forall \beta \geq \alpha$ (si $v_{\beta}(\psi) = 1$, alors $v_{\beta}(\chi) = 1$).

De 4. et du fait que $\neg \phi =_{def} \phi \rightarrow \bot$, on obtient

- 5. $v_{\alpha}(\neg \varphi) = 1$ ssi $\forall \beta \ge \alpha \ (v_{\beta}(\varphi) = 0)$.
- Si $v_{\alpha}(\phi)=1$, on dit que ϕ est <u>vraie</u> dans α .
- $\mathfrak{M}=(M, \leq, D)$ est un <u>modèle</u> de φ ($\mathfrak{M}\models\varphi$) ssi pour tout $\alpha\in M$, v_{α} (φ)=1.

THEOREME: Soit \mathscr{L} un langage propositionnel. Pour toute formule φ de \mathscr{L} , $\vdash_{DN}\varphi$ ssi pour toute \mathscr{L} -structure de Kripke \mathfrak{M} , $\mathfrak{M} \models \varphi$.

Pour montrer qu'une formule φ de $\mathscr L$ n'est pas un théorème de DNI, il suffit (en utilisant le théorème précédent) de trouver une $\mathscr L$ -structure de Kripke $\mathfrak M$ telle que $\mathfrak M$ n'est pas modèle de φ , i.e. trouver $\mathfrak M=(M,\leq,D)$ et $\alpha\in M$ tel que $v_\alpha(\varphi)=0$.

EXEMPLES

1. $\psi: \neg \neg \phi \rightarrow \phi$ n'est pas un théorème de DNI.

$$\begin{split} &v_{\alpha}\left(\neg\neg\phi\rightarrow\phi\right)=0 \quad ssi\\ &\exists\beta\geq\alpha\;(\;v_{\beta}\left(\neg\neg\phi\right)=1\quad et\quad v_{\beta}(\phi)=0\;\right)\quad ssi\\ &\exists\beta\geq\alpha(\;(\forall\gamma\geq\beta\;\;v_{\gamma}(\neg\phi)=0\;)\quad et\quad v_{\beta}(\phi)=0\;)\quad ssi\\ &\exists\beta\geq\alpha(\;(\forall\gamma\geq\beta\;\;(\exists\delta\geq\gamma\;\;v_{\delta}(\phi)=1\;)\;)\quad et\quad v_{\beta}(\phi)=0\;). \end{split}$$

Soit $\mathfrak{M}=(\{m_1,m_2\},\leq,D)$, avec $m_1 < m_2$, $D(m_1)=\emptyset$ et $D(m_2)=\{p\}$. On vérifie que $v_{m_1}(\neg \neg p \rightarrow p)=0$.

2. $\psi: (\neg \phi \rightarrow \phi) \rightarrow \phi$ n'est pas un théorème de DNI.

$$\begin{array}{l} v_{\alpha}\left(\neg\phi\rightarrow\phi\right)\rightarrow\phi=0 \ ssi \\ \exists\beta\geq\alpha\left(\ v_{\beta}\left(\neg\phi\rightarrow\phi\right)=1 \ et \ v_{\beta}\left(\phi\right)=0\ \right) \ ssi \\ \exists\beta\geq\alpha(\ (\forall\gamma\geq\beta\ (\ si\ v_{\gamma}\left(\neg\phi\right)=1,\ alors\ v_{\gamma}\left(\phi\right)=1)\) \ et \ v_{\beta}(\phi)=0\) \ ssi \\ \exists\beta\geq\alpha(\ (\forall\gamma\geq\beta\ (\ si\ (\forall\delta\geq\gamma\left(v_{\delta}\left(\phi\right)=0\right),\ alors\ v_{\gamma}\left(\phi\right)=1\) \ et \ v_{\beta}(\phi)=0\). \end{array}$$

Soit $\mathfrak{M} = (\{m_1, m_2\}, \leq, D)$, avec $m_1 < m_2$, $D(m_1) = \emptyset$ et $D(m_2) = \{p\}$. On vérifie que $v_{m_1}((\neg p \rightarrow p) \rightarrow p) = 0$.

3. θ : $\neg(\phi \land \neg \psi) \rightarrow (\phi \rightarrow \psi)$ n'est pas un théorème de DNI.

$$\begin{array}{lll} v_{\alpha}(\neg(\phi \wedge \neg \psi) \rightarrow (\phi \rightarrow \psi)) = 0 & ssi \\ \exists \beta \geq \alpha \ (\ v_{\beta} \ (\neg(\phi \wedge \neg \psi)) = 1 & et & v_{\beta}(\phi \rightarrow \psi) = 0\) & ssi \\ \exists \beta \geq \alpha \ (\ (\forall \gamma \geq \beta \quad v_{\gamma}(\phi \wedge \neg \psi) = 0\) & et & \exists \gamma \geq \beta \ (v_{\gamma}(\phi) = 1 & et & v_{\gamma}(\psi) = 0)\) & ssi \\ \exists \beta \geq \alpha \ (\ (\forall \gamma \geq \beta \ (v_{\gamma}(\phi) = 0 & ou \ v_{\gamma}(\neg \psi) = 0\)\) & et & \exists \gamma \geq \beta \ (\ v_{\gamma}(\phi) = 1 & et \ v_{\gamma}(\psi) = 0)\) \\ \exists \beta \geq \alpha \ (\ (\forall \gamma \geq \beta \ (v_{\gamma}(\phi) = 0 & ou \ \exists \delta \geq \gamma \ v_{\delta}(\psi) = 1)\) & et \ \exists \gamma \geq \beta \ (v_{\gamma}(\phi) = 1 & et \ v_{\gamma}(\psi) = 0)\) \end{array}$$

Soit $\mathfrak{M} = (\{m_1, m_2, m_3\}, \leq, D)$, avec $m_1 < m_2 < m_3$, $D(m_1) = \emptyset$, $D(m_2) = \{p\}$ et $D(m_3) = \{p, q\}$. On vérifie que $v_{m_1}(\neg (p \land \neg q) \to (q \to p)) = 0$.

4. θ : $\neg(\phi \land \psi) \rightarrow (\neg \phi \lor \neg \psi)$ n'est pas un théorème de DNI.

```
\begin{array}{l} v_{\alpha}\left(\neg(\phi\wedge\psi)\rightarrow(\neg\phi\vee\neg\psi)\right)=0 \ ssi \\ \exists\beta\geq\alpha\ (\ v_{\beta}\left(\neg(\phi\wedge\psi)\right)=1 \ et \ v_{\beta}\left(\neg\phi\vee\neg\psi\right)=0\ ) \ ssi \\ \exists\beta\geq\alpha(\ \forall\gamma\geq\beta\ v_{\gamma}(\phi\wedge\psi)=0 \ et \ v_{\beta}\left(\neg\phi\right)=0 \ et \ v_{\beta}\left(\neg\psi\right)=0\ ) \ ssi \\ \exists\beta\geq\alpha(\ (\forall\gamma\geq\beta\ (\ v_{\gamma}(\phi)=0 \ ou \ v_{\gamma}(\psi)=0\ )\ ) \\ et \ (\exists\delta\geq\beta\ v_{\delta}(\phi)=1 \ et \ \exists\delta\geq\beta\ v_{\delta}(\psi)=1)\ ) \end{array}
```

 $\begin{array}{ll} \text{Soit} & \textbf{\mathfrak{M}} = (\ \{m_1, \, m_2, \, m_3\} \ , \leq \ , \ D\) \ , \ \text{avec} \quad m_1 < m_2 \ \ \text{et} \ m_1 < m_3 \\ & D(m_1) = \varnothing \ \ , \quad D(m_2) = \{p\} \ \ , \quad D(m_3) = \{q\}. \\ & \text{On v\'erifie que} \quad v_{m_1} \left(\neg (\ p \land q) \to (\neg p \lor \neg q) \right) = 0. \end{array}$

EXEMPLES de théorèmes et non-théorèmes de DNI.

THEOREMES

1.
$$\neg\neg\neg\phi\rightarrow\neg\phi$$

2.
$$\neg(\phi \rightarrow \psi) \rightarrow \neg\psi$$

3.
$$(\phi \rightarrow \psi) \rightarrow (\neg \psi \rightarrow \neg \phi)$$

4.
$$\neg(\phi \lor \psi) \leftrightarrow (\neg \phi \land \neg \psi)$$

5.
$$\neg(\phi \land \psi) \leftrightarrow (\phi \rightarrow \neg \psi)$$

7.
$$\neg(\phi \rightarrow \psi) \leftrightarrow \neg(\neg \phi \lor \psi)$$

NON-THEOREMES

1.
$$\neg\neg\phi\rightarrow\phi$$

2.
$$\neg(\phi \rightarrow \psi) \rightarrow \phi$$

3.
$$(\neg \phi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \phi)$$

4.
$$\neg(\phi \land \psi) \rightarrow \neg \phi \lor \neg \psi$$

5.
$$\neg(\phi \land \neg \psi) \rightarrow (\phi \rightarrow \psi)$$

7.
$$(\phi \rightarrow \psi) \lor (\psi \rightarrow \phi)$$

1'.
$$\phi \rightarrow \neg \neg \phi$$

$$2'$$
. $\neg(\phi \rightarrow \psi) \rightarrow \neg \neg \phi$

$$3'$$
. $(\phi \rightarrow \neg \psi) \leftrightarrow (\psi \rightarrow \neg \phi)$

4'.
$$\neg(\neg\phi \land \neg\psi) \rightarrow \phi \lor \psi$$