Search for charged Higgs boson with the $extbf{H}^\pm o tb$ decay in fully hadronic final state

B2G Resonances meeting

A. Attikis¹, K. Christoforou¹, M. Kolosova¹, **S. Konstantinou**¹, S. Lehti², C.Leonidou¹, L.Paizanos¹, F. Ptochos¹, H. Saka¹, A. Stepennov¹

¹UCY ²HIP

Friday 25th November, 2022

INTRODUCTION extended Higgs sector

Many BSM theories need to enlarge their Higgs sector to two Higgs doublets

- ► The minimal two-Higgs-doublet models (2HDMs) predict 5 physical states:
 - lacktriangle two neutral, ${\cal CP}$ -even particles h and H ($m_{
 m h} \leq m_{
 m H})$
 - ightharpoonup one neutral, \mathcal{CP} -odd particle A^0
 - ► two charged Higgs bosons H[±]

SM fermion coupling to 2HDs (no FCNCs):

- I All quarks & leptons couple to Φ_2
- II All u-type to Φ_2 and all d-type & ℓ to Φ_1
- X Both u & d types couple to Φ_2 , all ℓ to Φ_1
- Y Roles of two doublets reversed wrt type II

Туре	и	d	ℓ
1	Φ ₂	Φ ₂	Φ ₂
П	Φ ₂	Φ_1	Φ_1
III (X)	Φ ₂	Φ ₂	Φ_1
IV (Y)	Φ ₂	Φ_1	Φ ₂

For each 2HDMs type there are 7 free parameters (incl. $m_{\rm h}$, $m_{\rm H}$, $m_{\rm A}$, $m_{\rm u}\pm$):

- **1** $\beta \equiv \frac{V_2}{V_1}$, the ratio of the Higgs doublet VEVs
- $\sin(\beta \alpha)$, α : the mixing angle of the \mathcal{CP} -even states
- $\mathbf{0} m_{12}$, diagonal term of the mass matrix of the Higgs doublets

Three mass categories are commonly defined in H^{\pm} searches:

$$lacktriangle$$
 Light $m_{
m H^\pm} < m_{
m t} - m_{
m b}$, intermediate $m_{
m H^\pm} \sim m_{
m t}$, heavy $m_{
m H^\pm} > m_{
m t} + m_{
m b}$

Decay BRs model-dependent ⇒ different searches constrain different scenarios.

BRs of $H^{\pm} \rightarrow tb$ dominanates at high $m_{H^{\pm}}$, for wide range of $tan \beta$

INTRODUCTION final state

This analysis searches for a heavy H[±]

Fully-hadronic final state of associated production characterised by:

- ► High jet & b jet multiplicities
- ✓ Large branching ratio $\mathcal{B} \simeq 46\%$
- ✓ Invariant mass reconstruction of H[±]
- ✗ QCD multijet & tt̄ background
- Combinatorial (self-)background

INTRODUCTION topology

Various m_{H^\pm} reconstruction techniques available due to signal process kinematics:

- **Resolved t**: At moderate $m_{\mathrm{H}^{\pm}} \& p_{\mathrm{T},\mathrm{H}^{\pm}}$ the decay products of H^{\pm} are well separated
- ▶ Boosted W/t: As m_H± increases the H[±] decay products become boosted
- ▶ Boosted H^{\pm} : As $p_{TH^{\pm}}$ increases its decay products become collinear

Previous results

- Resolved t, Boosted W/t studied separately by dedicated analyses
- 2016 ReReco data
- ► CADI HIG-18-015

This work

- Resolved t, Boosted t, Boosted W
- ► Full Run II data
- ► This talk: status of 2018 data
- ► Last report (HExtended): 25 Oct 2021

HIG-18-015

Resolved CADI: HIG-18-015

- Resolved t (t^{res}) identification: custom top tagger (BDT)
- ▶ Selected events contain \geq 7 jets, \geq 3 b-tagged, 2 t^{res}
- ▶ H[±]mass reconstruction (m_{bt}) : leading p_T t^{res} + leading p_T b jet
- ► Main background:
 - ► Misid. B: From data using CRs (ABCD method)
 - Genuine B: from simulation
- $ightharpoonup m_{bt}$ is used to extract the signal in the presence of the SM background.

Boosted CADI: HIG-18-015

Events are split in four main categories

t1b

- ▶ Boosted t/W identification:
 - ▶ Based on m_{SD} , τ_N , $N_{b \text{ subjets}}$
- ► Further categorization according to:
 - ▶ $N_b \in [=1, =2, \ge 3]$
 - $N_j^{extra} \in [<3, \ge 3]$
 - ▶ m_{tb} ∈ [below, in, above] of FWHM of signal
- Main background

QCD : from data using CRs (inverted τ_N), sidebands with $m_{\mathrm{tb}} \in [\mathrm{below}, \mathrm{above}])$

 $t\overline{t}~:$ from sim., normalized in CR with 1 ℓ

 $ightharpoonup H_T$ is used to extract the signal from SM background inside the m_{bt} window.

PREVIOUS RESULTS review

Upper limits on $\sigma_{\operatorname{H}^{\pm}t(b)} \times \mathcal{B}(\operatorname{H}^{\pm} \to \operatorname{tb})$

- ► Resolved and Boosted overlayed limits
- ► No excess above the estimated background
- ▶ Interpretation in hMSSM: max. $\tan \beta = 0.88$ excluded for $m_{\rm u}\pm = 0.20$ -0.55 TeV

- Boosted analysis categories
- ► Most sensitive category is *t*1*b*
- Least sensitive category is Wbj

Three main categories with different topology

- 2 resolved tops
- 2 1 resolved & 1 boosted top
- 3 2 boosted tops
- ► This analysis targets full Run II data
- ► This talk presents a study using 2018 data (RunIISummer20UL18)

Datasets	Luminosity (pb^{-1})
JetHT_Run2018A_UL2018_MiniAODv2_v1_315257_316995	14026.95
JetHT_Run2018B_UL2018_MiniAODv2_v1_317080_319310	7060.79
JetHT_Run2018C_UL2018_MiniAODv2_v1_319337_320065	6894.78
JetHT_Run2018D_UL2018_MiniAODv2_v2_320413_325172	31834.89
Total:	59817.41

- MC simulated samples include:
 - ► Signal: $m_{_{\rm H}} \pm 200 3000$ GeV (17 points)
 - ► QCD (*H*_T binned)
 - ► Top (Single top, $t\bar{t}$, $t\bar{t} + X$)
 - ► V+jets, diboson, triboson

Resolved analysis

STRATEGY

Signal region (SR):

Trigger	H_T + multijet + 1 or 2 b jets
$\ell(au_{\it h})$ veto	$p_{ m T} > 10(20)$ GeV, $ \eta < 2.4(2.3)$
\geq 7 jets	$p_T^{6th} >$ 40 GeV, $p_T^{7th} >$ 30 GeV, $ \eta <$ 2.4, Tight ID
$H_T > 500 \text{ GeV}$	
\geq 3 b jets	$p_{ m T} >$ 40 GeV, DeepJet Medium WP
\geq 2 resolved top (t^{res})	$130 < m_{ m t^{res}} < 210 \; { m GeV}$
	medium (loose) WP: 5(10)% misID rate

SR categorization based on t^{res}

- ▶ $1M1L_{t^{res}}$: medium $t_{p_{T,1}}^{res}$ loose-not-medium $t_{p_{T,2}}^{res}$
- ▶ $2M_{t^{res}}$: both t^{res} medium tagged

Invariant H[±] mass reconstruction:

$$m_{\rm tb} = t_{p_{T,1}}^{\rm res} + b_{p_{T,1}}$$

TOP TAGGING

A fully connected NN is developed to reconstruct resolved top-quarks

▶ Distinguishes trijets from top-quark decays and trijets from combinatorial background.

▶ Training on simulated $t\bar{t}$ events

► Signal: truth-matched trijets

► Background: non-matched trijets (> 1 non-matched jet)

background

Mass decorrelation using sample reweighting:

ightharpoonup Background is reweighted such that m_{top} matches the signal.

Calibration performed

HIG-21-010 Submitted to JHEP Documentation: AN 2021/019

Approved by JMAR group

BACKGROUND

Main background for the $H^\pm\!\!\to tb$ fully hadronic final state:

- ► QCD multijet < DATA DRIVEN
- \blacktriangleright EWK processes (mainly $t\bar{t}$) < SIMULATION

QCD background measurement

Defining 3 orthogonal control regions (CR) for each SR

- ▶ t_{assoc}^{res} mass: On-mass \rightarrow Off-mass "sidebands"
- $ightharpoonup t_{H^{\pm}}^{res}$ mva: t-tagged (t) ightharpoonup non t-tagged (!t)

"ABCD" method

$$N_{QCD}^{SR} = \sum_{i}^{\text{bins}} N_{QCD,i}^{CR(off-m,t)} \cdot \left(\frac{N_{QCD,i}^{CR(on-m,t)}}{N_{QCD,i}^{CR(off-m,lt)}} \right)$$

- ▶ Performed in bins of the t_{assoc}^{res} p_{T} :
 - ightharpoonup $2M_{t^{res}}$: $p_{\mathrm{T}} \in [0, 100, 300, \infty]$ GeV
 - ▶ $1M1L_{t^{res}}$: $p_{T} \in [0, 175, \infty]$ GeV

Two validation regions (VRs) for each SR

- ▶ $t\bar{t}$ enriched: == 2 b jets, $m_{t_{\mu^{\pm}}^{res}} \in [145, 195] \text{ GeV}, \Delta R_{min}(bb) > 1.2$
- ▶ QCD enriched: == 2 b jets, $m_{t_{H^{\pm}}}^{res} \notin [145, 195] \text{ GeV}, \Delta R_{min}(bb) < 0.9$

SIGNAL EXTRACTION

A parameterized DNN is developed to extract signal from SM background

- ightharpoonup Signal: $H^\pm o$ tb for different mass hypotheses
- ▶ Background: $t\bar{t} \to SR$, Combinatorial $\to CR^{(\textit{off-m},t)} < t\bar{t}$ MC

Input variables

1
$$\Delta\theta(t_{H+}, b_{H+})$$
 in H^{\pm} CM

- $2 H_{T,3b}$
- $3 p_T(bb_{dRmin})$
- 4 $m(bb_{maxPt})$

5 y23 =
$$p_{T,j3}^2/(p_{T,j1}+p_{T,j2})^2$$

- 6 $p_{T,b(H^{\pm})}/H_{T,3b}$
- $7 m_{\mu^{\pm}}$
- 8 $p_T^{Asym}(H^{\pm}, b_{H^{\pm}})$
- 9 Circularity
- 10 Sphericity
- 11 Aplanarity
- 12 Number of medium tops
- 13 True mass

Parameterized DNN

- ightharpoonup True mass is the θ parameter
- In background events, the true mass is randomly assigned to the same values used for signal
- ► Training (test) is done using 2017 (2018) data

SIGNAL EXTRACTION Parameterized DNN

Parameterized DNN is trained using 6 different mass hypotheses.

- ▶ Training masses = [220, 350, 600, 1000, 1500, 2500] GeV < solid line
- lacktriangle Performance compared to DNNs with fixed $m_{
 m H^\pm}$ dashed line

- ► Each curve is evaluated at the true mass DNN(x,m_H±)
- Comparable results!
- ► Good prediction even for masses not given in the training

SIGNAL REGION

Fri 25th Nov, 2022

Expected limits on
$$\sigma_{\operatorname{H}^\pm t(b)} imes \mathcal{B}(\operatorname{H}^\pm o \operatorname{tb})$$

Preliminary

- Statistical uncertainties only
- lacktriangle Sensitivity comes to a plateau for $m_{\mu^\pm}>1250$ GeV
- ▶ Results improved by a factor of 2 wrt 2016 data analysis

Boosted analysis

STRATEGY

Two SRs based on the number of boosted tops (t^{bst}) :

 $\begin{array}{l} {\rm SR1} \; : \; {\rm N}_{t^{bst}} == 1 \\ {\rm SR2} \; : \; {\rm N}_{t^{bst}} == 2 \end{array}$

Preliminary				
SR1	SR2			
Trigger	Trigger	$H_T + ext{multijet} + 1$ or 2 b jets $H_T + ext{AK8}$ jet $+$ trim mass		
ℓ veto	ℓ veto	same as resolved		
$= 1 t^{bst}$	$= 2 t^{bst}$	$p_{ m T} >$ 400 GeV, $ \eta <$ 2.4, ParticleNet_TvsQCD Medium WP (5% misID rate)		
≥ 4 jets	≥ 2 jets	$ ho_{ m T} >$ 40 GeV, $ \eta <$ 2.4, tight ID, $H_{ m T} >$ 500 GeV		
> 2 b jets	> 1 b jets	DeepJet Medium WP		

custom DNN loose, $130 < m_{\rm t^{res}} < 210$ GeV

Invariant H[±] mass reconstruction:

$$m_{\rm tb} = t_{p_{T,1}}^{bst} + b_{p_{T,1}}$$

 $\Delta R(t^{bst}, b^{ldg}) > 1.2$ $\max(m_{bb}) > 200 \text{ GeV}$

< 2 t^{res}

Boosted top jets t^{bst} identification with ParticleNet_TvsQCD

Designed decorrelated tagger (DDT)

A 3D map of the tagger's score for a fixed mID rate vs $p_{\rm T}$ and $\rho=\ln(m_{SD}^2/p_T^2)$

- ► Calculated with simulation QCD multijet events
- ▶ For each (p_T, ρ) bin: estimate the WP that corresponds to 5% mID rate: X(5%)
- ► Transformed score: $X(DDT) = X_{raw} X(5\%) < p_t$, ρ dependent
- ▶ Selection requirement X(DDT) > 0

BACKGROUND

Main background:

- ▶ tt̄ (merged-t, merged-W, non-merged)
- ▶ QCD multijet
- other (minor)
- ightharpoonup 2D (m_{SD}^t, m_{tb}) templates derived from MC simulation
- ightharpoonup Signal extraction: Signal, background simultaneous fit of $(m_{\rm SD}^t, m_{\rm tb})$

Summary

SUMMARY

Search for $H^\pm\!\!\to tb$ in fully hadronic final state presented with 2018 UL Data

New with respect to the previous results:

- Resolved Analysis:
 - ► Top tagging: custom mass-decorrelated DNN (almost published!)
 - ightharpoonup Event categorization based on the number of medium tagged t^{res}
 - ▶ Very good data-driven QCD background prediction
 - ► Mass parameterized DNN score used as a signal discriminant
 - ▶ Preliminary expected limits using 2018 data with statistical uncertainties only
- Boosted Analysis:
 - boosted top indentification with ParticleNet (mva-based)
 - ▶ New category with 1 boosted and 1 resolved top
 - Designed decorrelated top tagger to eliminate mass sculpting effects

FUTURE WORK

- Resolved Analysis:
 - ► Incorporate the systematic uncertainties < IN PROGRESS
 - ► Final touches on the parameterized DNN ✓ IN PROGRESS
- Boosted Analysis:
 - ► ParticleNet W/t re-calibration (L.Paizanos) IN PROGRESS
 - ► Study the merged-W category < IN PROGRESS
 - \blacktriangleright Categorization based on the top tagging rate and N_{bjets}^{extra} IN PROGRESS
 - Extract QCD and tt templates for the fit IN PROGRESS
 - ▶ Produce first limits with simultaneous 2D-fit in (m_{SD}^{J}, m_{tb}) plane
 - ► Address systematic uncertainties
- Finalize and release documentation
- ► Complete the analysis with entire Run II (target Moriond23)

BACKUP