

# Sampling in Latent Space for a Multiobjective Estimation of Distribution Algorithm

Bing Dong

Each China Normal University, Shanghai, China

April 19, 2016

## Outline



- Background
- 2 DES
- Experiment results
- Conclusions

#### Definition



Multiobjective optimization problems (MOPs) can be defined as follows in this paper:

$$\min_{\mathbf{s.t}} F(x) = (f_1(x), \dots, f_m(x)) 
\mathbf{s.t} \quad x \in \Omega$$
(1)

- $x = (x_1, \dots, x_n)^T \in R^n$  is a decision variable vector,
- $\Omega = \prod_{i=1}^{n} [a_i, b_i] \subset R^n$  is the feasible region of the search space
- $f_i: R^n \to R, i = 1, \cdots, m$ , is a continuous mapping,
- $\blacksquare$  F(x) is an objective vector.

#### RM-MFDA



Under mild smoothness conditions, the PS of a continuous MOP is a piecewise continuous (m-1)-dimensional manifold (m) is the number of objectives). This regularity property has been applied in the regularity model based multiobjective estimation of distribution algorithm (RM-MEDA)



Figure: An illustration of model building and sampling in RM-MEDA.

#### **RM-MEDA**



#### Algorithm 1: RM-MEDA Framework

```
Initialize a population Pop(0), and set t=0.

while not terminate do

Modeling: Build the probabilistic model \delta in order to model the distribution of the solutions in Pop(t).

Reproduction: Generate a new solution set Q from the probabilistic model.

Selection: Select N solutions from Q \cup Pop(t) to construct a new population Pop(t+1).

t=t+1

end

Return the solutions in Pop(t).
```

#### Figure: The framework of RM-MEDA

- *t* is the generation counter.
- $Pop(t) = \{x^1, x^2, \dots x^N\}$  is the population at generation t.
- $\delta = \zeta + \varepsilon$  is the probabilistic model built in RM-MEDA.
- Q is a new solution set sampled from the probabilistic model.

#### mutation scheme





Figure: The framework of RM-MEDA

$$X = X_{r_1} + rand \cdot (X_{r_2} - X_{r_3}) + F \cdot (X_{r_2} - X_{r_3})$$
 (2)

- $\blacksquare$   $X_{r_1}$ ,  $X_{r_2}$ ,  $X_{r_3}$  are sampled randomly from the population
- $r_1$ ,  $r_2$  and  $r_3$  are mutually exclusive integers selected randomly from 1 to NP
- F is the scaling factor



#### Algorithm 2: DES

1 Compute the covariance matrix C of the given cluster. and decompose it as



$$C = EDE^T$$

where E is the eigenvector matrix of C, and D is a diagonal matrix composed of eigenvalues.

2 For each solution x in the cluster, project it to a latent space as

$$y = x \cdot R$$
.

where R is a matrix that contains the first (m-1)components of the eigenvector matrix E.

3 Generate M points in the latent space as

$$y' = y_{r_1} + rand \cdot (y_{r_2} - y_{r_3}) + F \cdot (y_{r_2} - y_{r_3})$$

where  $r_1$ ,  $r_2$  and  $r_3$  are integers randomly selected from  $\{1, 2, 3, \cdots, M\}$ , M is the size of the cluster. 4 Map y' back to the decision space.

$$x' = y' \cdot R^T$$
.

5 Return the generated solution.

$$x'' = x' + \varepsilon'$$

where  $\varepsilon'$  is the Gaussian noise subjects to the distribution  $\mathcal{N}(0, \sigma_{\tau} I)$  ( $\tau \in \{1, 2, \cdots, K\}$  is a randomly generated integer).

#### Figure: The framework of DES





#### Algorithm 3: DES-RM-MEDA

- 1 Initialize a population Pop(0), and set t = 0.
- 2 while not terminate do
- 3 | Modeling: Build the probabilistic model  $\delta$  in order to model the distribution of the solutions in Pop(t).
- 4 Reproduction: Partition the population into different clusters C<sub>i</sub> according to the probabilistic model. For each cluster, use DES to generate a set of candidate solutions Q<sub>i</sub>. Set Q = ∪<sub>i</sub>Q<sub>i</sub>.
- Selection: Select N solutions from  $Q \cup Pop(t)$  to construct a new population Pop(t+1).
  - t = t + 1
- 7 end
- 8 Return the solutions in Pop(t).

Figure: The framework of DES-RM-MEDA

# Experimental settings



The 10 test instances, F1-F10, introduced in RM-MEDA are used as the benchmark problems.

- Initialization of the population: The initial population in algorithms is randomly generated.
- The number of new trial solutions generated: 100 for instances (F3, F7, F9), and 200 for other instances.
- The number of decision variables: 30
- The number of clusters: 5
- The scaling factor F: 0.4
- The number of runs: 30
- The number of generation: 100 for instances (F1, F2, F5, F6), 200 for instances F4 and F8, and 1000 for instances F3, F7 and F9.

## Extension scale in RM-MEDA





## Extension scale in RM-MEDA





# The sensitivity of the F





# The sensitivity of the F





Figure: The framework of DES-RM-MEDA

# Comparison study





# Comparison study





## Comparison study



TABLE I

STATISTICAL RESULTS OF THE IGD VALUES OF THE FINAL POPULATIONS OBTAINED BY RM-MEDA AND DES-RM-MEDA ON
THE 10 TEST INSTANCES OVER 30 RUNS.

| instance | RM-MEDA    |            |            |            | DES-RM-MEDA |            |          |           |
|----------|------------|------------|------------|------------|-------------|------------|----------|-----------|
|          | mean       | std.       | best       | worst      | mean        | std.       | best     | worst     |
| F1       | 3.90e - 03 | 1.39e - 04 | 3.70e - 03 | 4.20e - 03 | 3.60e-03    | 9.16e - 05 | 3.43e-03 | 3.77e-03  |
| F2       | 3.80e - 03 | 1.43e-0 4  | 3.50e-0 3  | 4.10e-0 3  | 3.60e-03    | 1.01e-04   | 3.35e-03 | 3.82e-03  |
| F3       | 7.20e - 03 | 3.90e-03   | 3.60e-03   | 1.55e-0 2  | 4.90e-03    | 8.09e-4    | 3.90e-03 | 7.31e-03  |
| F4       | 5.03e - 02 | 1.30e-0 3  | 4.82e-0 2  | 5.35e-0 2  | 4.62e-03    | 9.32 - 04  | 4.44e-02 | 4.85e-02  |
| F5       | 5.30e - 03 | 3.00e-03   | 4.40e-03   | 2.12e-0 2  | 4.60e-03    | 1.49e-0 4  | 4.33e-03 | 4.96e-03  |
| F6       | 8.30e - 03 | 2.10e-0 3  | 5.70e-03   | 1.50e-0 2  | 5.60e-03    | 9.04e-04   | 4.52e-03 | 8.30e-03  |
| F7       | 1.60e-01   | 2.35e-0 1  | 7.96e-0 2  | 1.03e+0    | 1.73e - 01  | 2.28e-0 1  | 3.20e-02 | 1.02e+0   |
| F8       | 6.59e - 02 | 3.50e-0 3  | 6.05e-02   | 7.69e-02   | 6.10e-02    | 2.03e-03   | 5.67e-02 | 6.39e-02  |
| F9       | 8.00e-03   | 2.80e-0 3  | 5.80e-0 3  | 1.48e-02   | 8.40e - 03  | 3.20e-0 3  | 5.51e-03 | 2.12e-0 2 |
| F10      | 1.25e + 02 | 2.35e + 01 | 2.27e + 01 | 1.44e + 02 | 1.76e+0     | 1.29e + 01 | 4.73e+0  | 7.15e+01  |

<sup>&</sup>lt;sup>1</sup> The bolder ones mean better.

#### Conclusions



This paper proposed a DES scheme to generate points in the latent space. The basic idea is to project the parent solutions into the latent space, and use a DE mutation operator to generate new points in the latent space based on the projected points, and finally map the points back to to the decision space added with Gaussian noise to generate offspring solutions. The DES is implented into RM-MEDA to improve the performace. The results are impressive.

#### The future work



- To exploit the deeper application of the DES. There is the possibility to apply the DES to other MOEAs.
- It is valuable to explore the hybrid menthod of the DE and EDA. Though DE/EDA has been proposed, it is still interesting to explore the potentical of this method. And the arrange of the resources of DE and EDA is also an interesting topic.



# Thanks!