XIII. Nemzetközi Magyar Matematika Verseny

Nagydobrony, 2004. márc. 15-20.

10. osztály

1. feladat: Két gépkocsi halad az autópályán egy irányban. A köztük lévő távolság jelenleg 2 km, és minden n-edik percben $\frac{1}{n^2}$ km-rel csökken. Utoléri-e a második jármű az előtte haladót?

Gecse Frigyes (Ungvár)

2. feladat: A k_1 és k_2 körök az A és B pontokban metszik egymást.

A k_1 kör tetszőleges (A-tól és B-től különböző) K pontját összekötjük az A és B pontokkal. A KA és KB egyenesek a k_2 kört másodszor a P és Q pontokban metszi. Bizonyítsa be, hogy a PQ húr merőleges a k_1 kör KM átmérőjére.

Dr. Pintér Ferenc (Nagykanizsa)

3. feladat: Melyek azok a természetes n számok, melyekre n^2-440 teljes négyzet! $Dr.\ Kántor\ Sándorné\ (Debrecen)$

4. feladat: Létezik-e olyan x és y természetes szám, melyekre $7^x - 5^y = 2004$?

Kacsó Ferenc (Marosvásárhely)

5. feladat: Adott a térben hat tetszőleges pont. Ezeket összekötjük az összes lehetséges módon. Igazolja, hogy azon három szakasz felezőpontjai által alkotott háromszögek súlypontjai, amely szakaszoknak páronként nincs egy közös végpontja, egybeesnek.

Bencze Mihály (Brassó)

6. feladat: Egy trapézba, melynek egyik szára 40 cm, területe 1280 cm², kör írható. A trapéz magassága az alapok mértani közepe. Bizonyítsa be, hogy a trapéz köré is írható kör, és számítsa ki a beírt és köré írt körök középpontjai közötti távolságot!

Gecse Frigyes (Ungvár)

7. feladat: Az $\frac{a}{b}$ közönséges tört tizedes tört alakja olyan végtelen szakaszos tizedes tört, amelynek szakasza (b-1) számjegyből áll. Az a és b számok pozitív egészek. Fejezzük ki az egy szakaszban lévő jegyek összegét b-vel!

Bogdán Zoltán (Cegléd)