DISCUSSION QUESTIONS

Consider the differential equations

$$y'' + \sin(t)y' + e^{x^2}y = 0$$

$$(\diamondsuit) y'' + \sin(t)y' + e^{x^2}y = \tan(t)$$

- (1) What is the order of these equations? Are they linear? Are the homogeneous?
- (2) Say that we have solutions f(t) and g(t) to equation (\clubsuit) , and a solution h(y) to equation (\diamondsuit) . Which of the following definitely are solutions to (\clubsuit) ? Which definitely are solutions to (\diamondsuit) ?

(a)
$$y = 2f$$

(c)
$$y = 3f - g$$
 (e) $y = 0$ (g) $y = tg$ (d) $y = f^2$ (f) $y = g + h$ (h) $y = h - 4f$

(e)
$$y = 0$$

(g)
$$y = tg$$

(b)
$$y = 2h$$

(d)
$$y = f^2$$

(f)
$$y = a + h$$

(h)
$$y = h - 4t$$

(3) What can you say about existence and uniqueness of the following initial value problems? Are they true on some interval? If so, what's the biggest such interval?

(a) (b) (c)
$$\begin{cases} y'' + \sin(t)y' + e^{x^2}y = 0 \\ y(0.2) = 4 \\ y'(-0.1) = \pi \end{cases} \begin{cases} y'' + \sin(t)y' + e^{x^2}y = \tan(t) \\ y(0.2) = 4 \\ y'(-0.1) = \pi \end{cases} \begin{cases} y'' + \sin(t)y' + e^{x^2}y = 0 \\ y(0.3) = 7 \end{cases}$$

DISCUSSION QUESTIONS

Consider the differential equations

$$y'' + \sin(t)y' + e^{x^2}y = 0$$

$$(\diamondsuit) y'' + \sin(t)y' + e^{x^2}y = \tan(t)$$

- (1) What is the order of these equations? Are they linear? Are the homogeneous?
- (2) Say that we have solutions f(t) and g(t) to equation (\clubsuit) , and a solution h(y) to equation (\diamondsuit) . Which of the following definitely are solutions to (\clubsuit) ? Which definitely are solutions to (\diamondsuit) ?

(a)
$$y = 2f$$

(c)
$$y = 3f - g$$
 (e) $y = 0$ (g) $y = tg$ (d) $y = f^2$ (f) $y = g + h$ (h) $y = h - 4f$

(e)
$$y = 0$$

(g)
$$y = tg$$

(b)
$$y = 2h$$

(d)
$$y = f^2$$

(f)
$$y = g + h$$

$$(h) y = h - 4f$$

(3) What can you say about existence and uniqueness of the following initial value problems? Are they true on some interval? If so, what's the biggest such interval?

(a) (b) (c)
$$\begin{cases} y'' + \sin(t)y' + e^{x^2}y = 0 \\ y(0.2) = 4 \\ y'(-0.1) = \pi \end{cases} \begin{cases} y'' + \sin(t)y' + e^{x^2}y = \tan(t) \\ y(0.2) = 4 \\ y'(-0.1) = \pi \end{cases} \begin{cases} y'' + \sin(t)y' + e^{x^2}y = 0 \\ y(0.3) = 7 \end{cases}$$

Existence and uniqueness theorem for linear IVPs: Given a linear ODE

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = g(x)$$

where $g(x), a_0(x), \dots, a_n(x)$ are continuous and $a_n(x) \neq 0$ for all x, then there exists a unique solution

on some interval containing t_0

Superposition principle for linear ODEs:

(1) Given solutions y_1, \ldots, y_t to a homogeneous linear ODE, any superposition

$$c_1y_1 + \cdots + c_ty_t$$

(for constants c_1, \ldots, c_t) is also a solution.

(2) Give a solution y_p to a nonhomogeneous linear ODE and solutions y_1, \ldots, y_t to the corresponding homogeneous equation, y_p plus any superposition of y_1, \dots, y_t , i.e., a function like

$$y_p + c_1 y_1 + \dots + c_t y_t$$

(for constants c_1, \ldots, c_t) is also a solution.

Existence and uniqueness theorem for linear IVPs: Given a linear ODE

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = g(x)$$

where $g(x), a_0(x), \dots, a_n(x)$ are continuous and $a_n(x) \neq 0$ for all x, then there exists a unique solution

on some interval containing t_0 .

Superposition principle for linear ODEs:

(1) Given solutions y_1, \ldots, y_t to a homogeneous linear ODE, any superposition

$$c_1y_1 + \cdots + c_ty_t$$

(for constants c_1, \ldots, c_t) is also a solution.

(2) Give a solution y_p to a nonhomogeneous linear ODE and solutions y_1, \ldots, y_t to the corresponding homogeneous equation, y_p plus any superposition of y_1, \dots, y_t , i.e., a function like

$$y_p + c_1 y_1 + \cdots + c_t y_t$$

(for constants c_1, \ldots, c_t) is also a solution.