Neural Image Captioning

by Amund Vedal, Martin Hwasser, Wojciech Kryściński

References

Show and Tell: A Neural Image Caption Generator

Oriol Vinyals Google

vinyals@google.com

Alexander Toshev Google

toshev@google.com

Samy Bengio Google

bengio@google.com

Dumitru Erhan Google

dumitru@google.com

Dataset Common Object in Context

- Common Object in Context
 - Training set 2014 Contest Training images [83K images/13GB]
 - Validation set 2014 Contest Val images [41K/6GB]
 - Test set 2014 Contest Test images [41K/6GB]
- Each image in the training set had at least 5 reference captions

Dataset Example

the airplane takes off over the picnic tables in a park.
a large aircraft flying in the air above some benches in a field
an airplane flying low in the sky over picnic tables.
an airplane is flying low over a park with picnic tables.
a plane flying over a park, with the washington monument in the back.

Architecture Encoder-Decoder Network

Implementation

Experimental Setup

Training parameters:

- Number of epochs: 3
- Batch size: 128 (3236 batches per epoch)
- Vocabulary size: 15,000 most popular words
- Embedding size: 512 (image summary vector, word embeddings)
- RNN hidden state size: 512 and 1024
- Learning rate: 1e-3, with LR decay every 2000 batches

RNN units: Elman, LSTM, GRU

Evaluation Methodology

- Quantitative evaluation
 - BLEU-1, BLEU-2, BLEU-3, BLEU-4 (precision)
 - ROGUE-L (recall)
 - METEOR (harmonic mean of precision and recall)
 - CIDEr
- Qualitative evaluation
 - Manually analyzing results

Training set loss

Validation set loss

Results Validation set

Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR	ROGUE-L	CIDE
Vinyals et al. (4k subset)	N/A	N/A	N/A	27.7	23.7	N/A	85.5
elman_512	62.5	43.2	29.1	19.8	19.5	45.6	57.7
elman_1024	61.9	42.9	28.8	19.6	19.9	45.9	58.7
gru_512	63.9	44.9	30.5	20.8	20.4	46.6	62.9
gru_1024	64.0	45.3	31.2	21.5	21.1	47.1	66.1
stm_512	62.9	44.3	29.8	20.3	19.9	46.1	60.2
stm_1024	63.4	45.0	31.0	21.4	20.8	47.1	64.4

Results Test set

Model	BLEU-1		BLEU-2		BLEU-3		BLEU-4		METEOR		ROGUE-L		CIDEr	
	с5	c40	с5	c40	с5	c40								
Vinyals et al.	71.3	89.5	54.2	80.2	40.7	69.4	30.9	58.7	25.4	34.6	53.0	68.2	94.3	94.6
elman_1024	61.8	79.9	42.8	66.2	28.7	51.9	19.5	39.8	19.9	26.7	45.7	58.4	58.0	60.0
gru_1024	63.8	81.2	45.0	68.1	30.1	54.4	21.3	42.5	21.0	27.8	47.0	59.5	65.4	66.4
lstm_1024	63.3	81.0	44.8	67.9	30.7	54.0	21.1	42.0	20.7	27.4	46.9	59.2	63.7	64.8

Qualitative evaluation

4 categories:

- 1. No errors
- 2. Minor errors
- 3. Somewhat related
- 4. Not related

a group of giraffes standing in a field .

No errors

No errors

a vase filled with flowers sitting on a table .

Minor errors

a cat sitting on a chair in a living room .

Minor errors

a man flying through the air while riding skis .

Minor errors

a living room with a couch , chair , table and a television .

Somewhat related

a large white vase with a bunch of bananas on it .

Not related

a large white airplane flying in the sky .

Not related

Discussion

- GRU > LSTM > Elman
- Increasing size of hidden state (usually) improves performance
- Embeddings capture semantic similarities (ski / snowboard)
- Shows the power of transfer learning

Follow up work

- Fine-tuning Encoder (Convolutional Network)
- Using pre-trained Word Embeddings (word2vec/GloVe)
- More advanced decoding techniques (Beam Search)

Thank You

Questions?