Fan-Beam Computed Tomography

Presented by: Mahri Kadyrova

SR

Course Instructor:

Dr. Hanli Liu

Introduction to Fan-Beam Computed Tomography

- Medical imaging scan
- Non-invasive technique
- X-ray ionization
- Third generation CT scan
 - Detector array
 - X-ray tube
 - Fan shaped beam
 - Scan time reduced

Motivation for Third Generation CT Scan

- Scan field of view determines the size of the fan beam
- Fan beam determines the number of detector elements that collect the data
- Less time-consuming scans
- Incorporated detector array
- Improved image quality

Figure 1. Amount of detector cells determined by the selection field of view.

Figure 2. Amount of detector cells determined by the selection field of view.

Challenges of Fan-Beam Computed Tomography

- Ionizing radiation
 - X-ray
- Time
 - Less time consuming but still is long
- Ring artifacts
 - Due to having the same bank of detectors being used repeatedly, small misalignment of a single detector results in visible ring artifact

Figure 3. Strong ring artifact of cerebral CT scan.

Working Principle: Setup

Working Principle: Parallel Beam

The projection data $p(r,\Theta)$ is the line integral along the x-ray path represented by the equation:

 $r = x \cos\theta + y \cos\theta$

Obtaining Original Image $\mu(x,y)$ from $p(r,\Theta)$

We know, for parallel beam CT reconstruction:

Most CT scanners work in the spatial domain via convolutions:

convolution in space domain = multiplication in frequency domain

$$\mu(x,y) = \int_0^{\pi} \int_{-\infty}^{\infty} s(x\cos\theta + y\sin\theta - r, \theta)p(r, \theta)dr d\theta$$
Convolution

Backprojection

Parameters for Fan beam CT

Defining parameters:

- β = angle between vertical axis and center beam
- α = angle between center beam and any other beam produced by the source at angle β
- d = distance of the source from C(x,y)

Projection Data for Fan-Beam: $p(\alpha,\beta)$

 $r = x \cos\theta + y \cos\theta$??

Data collected by detectors at each angle β represents a projection function $p(\alpha,\beta)$.

The range of values for α is determined by **fan range** and **spacing between detectors.**

In projection function $p(\alpha,\beta)$:

X- axis = values of α

Y- axis = Intensity(I_0)

Representing X-ray Path in Terms of Θ , d and β

Geometrically:

$$Θ = β + α$$

$$r = d sin α$$

Equation of the line:

$$r = x \cos\theta + y \cos\theta$$

Replacing r and \Theta with Θ , d and β we get:

$$d \sin \alpha = x \cos(\beta + \alpha) + y \cos(\beta + \alpha)$$

 $d \sin \alpha = x \cos(\beta + \alpha) + y \cos(\beta + \alpha)$

This is the equation of the x-ray path along which signal is attenuated.

Obtaining Original Image $\mu(x,y)$ from $p(\alpha,\beta)$

Replacing B(Rf) and with convolution formula we get:

$$\mu(x,y) = \int_0^{\pi} \int_{-\infty}^{\infty} s(x\cos\theta + y\sin\theta - r,\theta)p(r,\theta)dr d\theta$$
(i)
Convolution

Backprojection

For fan beam projections we have,

- $p(\alpha,\beta)$ instead of $p(r,\Theta)$
- $\Theta = \beta + \alpha$
- $r = d \sin \alpha$
- $\mu(\rho, \phi)$ instead of $\mu(x,y)$ in polar coordinates
- $x = \rho \cos \phi$ and $y = \rho \sin \phi$

F: Fourier Transform; IF: Inverse Fourier Transform Image acquired from: https://seos-project.eu/laser-rs/laser-rs-c03-s01-p01.html

Obtaining Original Image $\mu(\rho, \phi)$ from $\rho(\alpha, \beta)$

Replacing all required variables for fan beam geometry we get:

$$\mu(\rho,\varphi) = \frac{1}{2} \int_0^{2\pi} \int_{-\infty}^{\infty} s(\rho \cos\varphi \cos(\alpha + \beta) + \rho \sin\varphi \sin(\alpha + \beta) - d\sin\alpha) p(\alpha,\beta) \, d\cos\alpha \, d\alpha \, d\beta$$

With further simplification using trigonomeric identities:

$$\mu(\rho,\varphi) = \frac{1}{2} \int_0^{2\pi} \int_{-\infty}^{\infty} s(\rho\cos(\beta + \alpha - \varphi) - d\sin\alpha) p(\infty,\beta) \, d\cos\alpha \, d\alpha \, d\beta$$

To convert the above notation into convolution form we define two terms:

 α' : It is angle between the central beam and x-ray beam passing through the point $\mu(\rho,\phi)$ and α' : It is the distance between Source and $\mu(\rho,\phi)$.

Geometrically,
$$\rho\cos(\beta + \alpha - \varphi) - d\sin\alpha = d'\sin(\alpha' - \alpha)$$

Image acquired from: Zeng, G. L. (2010). Medical image reconstruction: A conceptual tutorial. Higher Education Press. Pages: 58

Obtaining Original Image $\mu(\rho, \phi)$ from $p(\alpha, \beta)$

Now, we have,

$$\mu(\rho,\varphi) = \frac{1}{2} \int_0^{2\pi} \int_{-\infty}^{\infty} s(d'\sin(\alpha' - \alpha)) \ p(\infty,\beta) \ d\cos\alpha \ d\alpha \ d\beta$$

Using a special property of the ramp filter: $h(D'\sin\gamma) = \left(\frac{\gamma}{D'\sin\gamma}\right)^2 h(\gamma)$ for ds(d'sin(α '- α)) we get

$$\mu(\rho,\varphi) = \int_0^{2\pi} \frac{1}{(d')^2} \int_{-\pi/2}^{\pi/2} s_- fan(\alpha' - \alpha) \ p(\infty,\beta) \cos\alpha \ d\alpha \ d\beta$$
Convolution

Backprojection

where,

This is the fan beam convolution backprojection algorithm.

$$s_{f}an(\alpha) = \frac{d}{2} \left(\frac{\alpha}{\sin \alpha}\right)^{2} s(\alpha)$$

Creating Fan-Beam Projections on MATLAB

Fig. 3.6. Flat and curved detector fan-beam geometries.

Parallel vs Fan-Beam Sinogram (d = 220)

Observation: The central part of all sinograms are similar but the edges seem to have shifted. **Cause:** As we move farther away from the central beam, projection values for parallel and fan beam rays start varying more.

Parallel vs. Fan-Beam Projection Values

Parallel vs Fan-Beam Sinogram (d = 1000)

Observation: All sinograms look similar.

Cause: Greatly increasing distance of the source from the center makes fan beam behave like parallel beams

Image Reconstruction

References

- [1]."CT Scanner (Evolution) | Radiology Reference Article | Radiopaedia.Org." *Radiopaedia*, https://radiopaedia.org/articles/ct-scanner-evolution?lang=us. Accessed 18 Dec. 2021.
- [2].Dawes, Laughlin. "Ring Artifact | Radiology Case | Radiopaedia.Org." *Radiopaedia*, https://radiopaedia.org/cases/ring-artifact-3. Accessed 18 Dec. 2021.
- [3]. Khan, A. H., & Chaudhuri, R. A. (2014). Fan-beam geometry based inversion algorithm in computed tomography (CT) for imaging of composite materials. *Composite Structures*, 110, 297-304. https://doi.org/10.1016/j.compstruct.2013.11.019
- [4].Nadrljanski, Mirjan M. "Computed Tomography | Radiology Reference Article | Radiopaedia.Org." Radiopaedia, https://radiopaedia.org/articles/computed-tomography?lang=us. Accessed 18 Dec. 2021.
- [5]. N, A., & Murali, S. (2007). Correction for camera roll in a perspectively distorted image: Cases for 2 and 3 point perspectives. *Electronic Letters on Computer Vision and Image Analysis*, 6(3)https://doi.org/10.5565/rev/elcvia.159
- [6]. Romans, Lois E. Computed Tomography for Technologists: A Comprehensive Text. Wollters Kluwer Health/Lippincott Williams & Wilkins, 2011.
- [7]. "Ring Artifact | Radiology Reference Article | Radiopaedia. Org." Radiopaedia, https://radiopaedia.org/articles/ring-artifact-1?lang=us. Accessed 18 Dec. 2021.
- [8]. Shetty, Aditya. "CT Scanner (Evolution) | Radiology Reference Article | Radiopaedia. Org." Radiopaedia, https://radiopaedia.org/articles/ct-scanner-evolution?lang=us. Accessed 18 Dec. 2021.
- [9].Taubmann O, Berger M, Bögel M, et al. Computed Tomography. 2018 Aug 3. In: Maier A, Steidl S, Christlein V, et al., editors. Medical Imaging Systems: An Introductory Guide [Internet]. Cham (CH): Springer; 2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK546157/figure/ch8.fig16a/ doi: 10.1007/978-3-319-96520-8_8
- [10]. Zeng, G. L. (2010). Medical image reconstruction: A conceptual tutorial. Higher Education Press.