CORO-IMARO, CORO-SIP, CORO-EPICO, 2020-2021

Autonomous vehicles (IMARO) Statistical Signal Processing and Estimation Theory (SIP, EPICO) Lab work

1 Random variables

Please see the appendix "Matlab, Octave" of the book.

1.1 A few univariate distributions

We consider a zero-mean unit-variance random variable, in the 3 cases below:

- X is normally distributed;
- X is uniformly distributed;
- X is driven by a Gaussian mixture whose both components have the same probability, the same variance; the means are $\pm m$ (necessarily, the variance of each component is $1 m^2$); we take m = 0.95.

In all cases, with N = 100 and N = 4000:

- a) Generate N realizations.¹
- b) Plot the normalized histogram of these N realizations and plot the probability density function on the same figure.
- c) Estimate the mean and the standard deviation (mean, std).
- d) Plot the N realizations as an independent random signal.

1.2 Joint distribution

We consider a zero-mean bivariate normal random variable $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$, where X_1 and X_2 have variances σ_1^2 , σ_2^2 , and correlation coefficient ρ . Use $\sigma_1 = 2$, $\sigma_2 = 5$, $\rho = 0, 9$.

- Generate N = 200 realizations of this random variable.
- Estimate the mean and the variance (mean, cov).
- \bullet plot these realizations together with the 91 % confidence ellipses.

2 Kalman filter

A DC motor is driven by the input voltage u(t). The angular position of the rotor $\theta(t)$ is measured with an incremental encoder (precision L=512 angles per lap) which provides the measure y(t) of $\theta(t)$. $\Omega(t)$ is the angular velocity $\Omega(t) = \dot{\theta}(t)$. To perform a velocity control, we have to estimate online $\theta(t)$ and $\Omega(t)$, from u(t) and y(t).

2.1 Input voltage

The input voltage u(t) is a zero-mean square wave with period $\Delta = 100$ ms, and peak-to-peak amplitude A = 0.1 V. This signal is sampled with sample time $T_s = 1$ ms. Create a MatLab function which provides this sampled input for a duration D: u = inputvoltage(D,A,Delta,Ts), where u is a column vector which contains the sampled input (square).

```
To generate N realizations of a zero-mean unit-variance random variable:

Gauss : x = randn(N,1);

Uniform : x = 2*sqrt(3)*(rand(N,1)-0.5);

Symmetric Gaussian mixture : m=0.95; x=randn(N,1)*sqrt(1-m*m)+m; k=find(rand(N,1)>0.5); x(k) = x(k)-2*m;
```

2.2 System modeling and simulation

With the state vector $x(t) = \begin{bmatrix} \theta(t) \\ \Omega(t) \end{bmatrix}$, we get the state-space representation:

$$\begin{cases} \dot{x} = \begin{bmatrix} 0 & 1\\ 0 & -\frac{1}{T} \end{bmatrix} x + \begin{bmatrix} 0\\ \frac{G}{T} \end{bmatrix} u \\ \theta = \begin{bmatrix} 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \end{bmatrix} u \end{cases}$$

The input-output signals are sampled with the sample time T_s , The input u(t) is constant between 2 sampling times. Thus, the continuous-time above can be sampled without any approximation using the step invariance method (or zero-order-hold method, "zoh") ². For all integer n, and all function f, we note $f_n = f(nT_s)$. The measure y_n provided by the incremental encoder is a quantization of the actual angular position θ_n .

- a) Write a function [y,x] = simulate(u,G,T,Ts,L,x1), where y is a column matrix (same size as u) which contains the evolution of the output y_n , x is a 2-columns matrix which contains the evolution of the state vector; x1 is the initial state vector).
- b) Test the simulator with $G = 50 \text{ rad.s}^{-1}.\text{V}^{-1}$ et T = 20 ms.

2.3 Kalman filter

 w_n is the quantization noise of the incremental encoder, r is its variance $(y_n = \theta_n + w_n)$. To take into account modeling errors, we assumes that the actual input is $u_n + v_n$, where v_n is a white noise with variance q, independent of w_n . The goal is to estimate X_n . The motor is initially stopped, but there is no information on the initial angular position.

- a) Write the equations of the Markov model of the system with input u_n and output y_n .
- b) Propose a value of r (it is usual to model a quantization error as a uniform random variable).
- c) Propose an initialization of the prior information $\hat{X}_{1/0}$ and propose a value for its variance $P_{1/0}$.
- d) Write the Kalman filter⁴ and the stationary Kalman filter⁵, that is two functions xe = kal(y, u, G, T, Ts, L, x1_0, P1_0, q), where xe is a 2-columns matrix which contains the evolution of the state vector estimation.

2.4 Simulations

Compare the estimation of the position and the velocity given by both filters for different values of q (use the initialization $\hat{\theta}_{1/0} = \theta_1 \pm 0.05$) in the following cases:

- the model of the system is perfect: $\begin{cases} G_{\rm actual} = G_{\rm filter} = 50 \text{ rad.s}^{-1}.\text{V}^{-1} \\ T_{\rm actual} = T_{\rm filter} = 20 \text{ ms} \end{cases}$
- the model of the system is rough: $\begin{cases} G_{\rm actual} = G_{\rm filter} = 50 \; {\rm rad.s}^{-1}.{\rm V}^{-1} \\ T_{\rm actual} = 20 \; {\rm ms} \\ T_{\rm filter} = 25 \; {\rm ms} \end{cases}$

"actual" index if for the value used in the simulation, "filter" index is for the value used in the Kalman filter.

$$\begin{cases} \dot{x}(t) = A x(t) + B u(t) \\ y(t) = C x(t) + D u(t) \end{cases}$$

the step invariance sampling with sample time $T_{\rm s}$ writes (see MatLab function c2dm):

$$\begin{cases} x_{n+1} = \tilde{A}\,x_n + \tilde{B}\,u_n \\ y_n = C\,x_n + D\,u_n \end{cases} \text{ with } \begin{cases} \tilde{A} = e^{A\,T_{\mathrm{S}}} \\ \tilde{B} = \int_0^{T_{\mathrm{S}}} e^{A\,\tau}\,B\,d\tau \end{cases}$$

²For a continuous-time system with the state space representation:

 $^{^3}$ With L angles per lap, the precision is $2\pi/L$ rad. With MatLab: y = round(teta*L/2/pi)*2*pi/L

 $^{^4\}mathrm{With}$ time-varying Kalman gain, page 47 of the book.

⁵With constant gain obtained with function dlqe, page 48 of the book.