FRI
Fast
Reed-Solomon (RS)
Interactive Oracle Proofs of Proximity (IOPP)
From ICALP 2018 presentation

Eli Ben-Sasson Iddo Bentov Yinon Horesh Michael Riabzev

February 2019

Overview

tl;dr: FRI is a fast, FFT-like, IOP solution for verifying deg(f) < d

- motivation
- main result, applications
- ► FRI protocol dive-in

Reed Solomon (RS) codes [RS60]

- prominent role in algebraic coding and computational complexity
- ▶ For $S \subset \mathbb{F}$ a finite field and $\rho \in (0,1]$ a *rate* parameter

$$\mathsf{RS}[\mathbb{F}, \mathcal{S}, \rho] = \{ f: \mathcal{S} \to \mathbb{F} \mid \mathsf{deg}(f) < \rho |\mathcal{S}| \}$$

Reed Solomon (RS) codes [RS60]

- prominent role in algebraic coding and computational complexity
- ▶ For $S \subset \mathbb{F}$ a finite field and $\rho \in (0,1]$ a *rate* parameter

$$\mathsf{RS}[\mathbb{F}, S, \rho] = \{ f : S \to \mathbb{F} \mid \mathsf{deg}(f) < \rho |S| \}$$

- RS codes have many desirable properties, like
 - lacktriangle maximum distance separable (MDS): rel. Hamming distance 1ho
 - efficient, quasi-linear time encoding via FFT
 - efficient unique decoding [BW83] and list decoding [GS99]
 - used in quasi-linear PCPs [BS05] and constant rate IOPs [BCGRS16]

Reed Solomon (RS) codes [RS60]

- prominent role in algebraic coding and computational complexity
- ▶ For $S \subset \mathbb{F}$ a finite field and $\rho \in (0,1]$ a *rate* parameter

$$\mathsf{RS}[\mathbb{F}, S, \rho] = \{ f : S \to \mathbb{F} \mid \mathsf{deg}(f) < \rho |S| \}$$

- RS codes have many desirable properties, like
 - lacktriangle maximum distance separable (MDS): rel. Hamming distance 1ho
 - efficient, quasi-linear time encoding via FFT
 - efficient unique decoding [BW83] and list decoding [GS99]
 - used in quasi-linear PCPs [BS05] and constant rate IOPs [BCGRS16]
- notation:
 - ▶ $d = \rho |S| 1$ is degree;
 - ightharpoonup n = |S| is blocklength;
 - $ightharpoonup \Delta$ is relative Hamming distance

- Question: Construct a verifier V that has
 - oracle access to $f^{(0)}: S^{(0)} \to \mathbb{F}$
 - ▶ completeness: If $f^{(0)} \in \mathsf{RS}[\mathbb{F}, S, \rho]$, then $\mathsf{Pr}[V \text{ accepts } f^{(0)}] = 1$
 - ▶ soundness: otherwise, $\Pr[V \text{ rejects } f^{(0)}] \ge \Delta(f^{(0)}, RS[\mathbb{F}, S^{(0)}, \rho])$

- Question: Construct a verifier V that has
 - oracle access to $f^{(0)}: S^{(0)} \to \mathbb{F}$
 - ▶ completeness: If $f^{(0)} \in RS[\mathbb{F}, S, \rho]$, then $Pr[V \text{ accepts } f^{(0)}] = 1$
 - ▶ soundness: otherwise, $\Pr[V \text{ rejects } f^{(0)}] \ge \Delta(f^{(0)}, RS[\mathbb{F}, S^{(0)}, \rho])$

- Answers:
 - ightharpoonup q = d + 1 required and sufficient [folklore]

- Question: Construct a verifier V that has
 - oracle access to $f^{(0)}: S^{(0)} \to \mathbb{F}$ and PCPP $\pi: S^{(1)} \to \mathbb{F}$
 - ▶ completeness: If $f^{(0)} \in \mathsf{RS}[\mathbb{F}, \mathcal{S}, \rho]$, then $\mathsf{Pr}[V \text{ accepts } f^{(0)}] = 1$
 - ▶ soundness: otherwise, $\Pr[V \text{ rejects } f^{(0)}] \ge \Delta(f^{(0)}, RS[\mathbb{F}, S^{(0)}, \rho])$

- Answers:
 - ightharpoonup q = d+1 required and sufficient [folklore]
 - ightharpoonup q = $O(1/\delta)$, if verifier has oracle access to PCPP [AS+ALMSS98]

- Question: Construct a verifier V that has
 - oracle access to $f^{(0)}: S^{(0)} \to \mathbb{F}$ and PCPP $\pi: S^{(1)} \to \mathbb{F}$
 - ▶ completeness: If $f^{(0)} \in \mathsf{RS}[\mathbb{F}, S, \rho]$, then $\mathsf{Pr}[V \text{ accepts } f^{(0)}] = 1$
 - ▶ soundness: otherwise, $\Pr[V \text{ rejects } f^{(0)}] \ge \Delta(f^{(0)}, \mathsf{RS}[\mathbb{F}, S^{(0)}, \rho])$

- Answers:
 - ightharpoonup q = d + 1 required and sufficient [folklore]
 - ightharpoonup q = $O(1/\delta)$, if verifier has oracle access to PCPP [AS+ALMSS98]
 - ▶ PCPP can have quasi-linear length $n \log^{O(1)} n$ [BS08, D07]
 - ▶ IOPP can have linear length O(n) [BCF⁺16, BBGR16]

- Question: Construct a verifier V that has
 - oracle access to $f^{(0)}:S^{(0)}\to\mathbb{F}$ and PCPP $\pi:S^{(1)}\to\mathbb{F}$
 - ▶ completeness: If $f^{(0)} \in \mathsf{RS}[\mathbb{F}, \mathcal{S}, \rho]$, then $\mathsf{Pr}[V \text{ accepts } f^{(0)}] = 1$
 - ▶ soundness: otherwise, $\Pr[V \text{ rejects } f^{(0)}] \ge \Delta(f^{(0)}, RS[\mathbb{F}, S^{(0)}, \rho])$

- Answers:
 - ightharpoonup q = d + 1 required and sufficient [folklore]
 - ightharpoonup q = $O(1/\delta)$, if verifier has oracle access to PCPP [AS+ALMSS98]
 - ▶ PCPP can have quasi-linear length $n \log^{O(1)} n$ [BS08, D07]
 - ▶ IOPP can have linear length O(n) [BCF⁺16, BBGR16]
- ► Interactive Oracle Proof of Proximity (IOPP) model [BCS16,RRR16,BCF+16]
 - ▶ prover sends $f^{(0)}: S^{(0)} \to \mathbb{F}$; verifier sends random $x^{(0)}$
 - prover sends $f^{(1)}: S^{(1)} \to \mathbb{F}$; verifier sends random $x^{(1)}$
 - repeat for r rounds
 - verifier queries $f^{(0)}, \ldots, f^{(r)}$; based on answers and $(x^{(0)}, \ldots, x^{(r-1)})$ verifier decides to accept/reject claim " $f^{(0)} \in \mathsf{RS}\left[\mathbb{F}, S^{(0)}, \rho\right]$ "

- Question: Construct a verifier V that has
 - oracle access to $f^{(0)}: S^{(0)} \to \mathbb{F}$ and PCPP $\pi: S^{(1)} \to \mathbb{F}$
 - lacktriangle completeness: If $f^{(0)} \in \mathsf{RS}[\mathbb{F}, \mathcal{S},
 ho]$, then $\mathsf{Pr}[V]$ accepts $f^{(0)}] = 1$
 - soundness: otherwise, $\Pr[V \text{ rejects } f^{(0)}] \ge \Delta(f^{(0)}, \mathsf{RS}[\mathbb{F}, S^{(0)}, \rho])$

- Answers:
 - ightharpoonup q = d + 1 required and sufficient [folklore]
 - ightharpoonup q = $O(1/\delta)$, if verifier has oracle access to PCPP [AS+ALMSS98]
 - ▶ PCPP can have quasi-linear length $n \log^{O(1)} n$ [BS08, D07]
 - ▶ IOPP can have linear length O(n) [BCF⁺16, BBGR16]
- ► This work: IOPP model, minimize q and
 - 1. total proof length $\ell = |\pi_1| + \ldots + |\pi_r|$
 - 2. prover arithmetic complexity tp
 - 3. verifier arithmetic complexity t_{ν}

- Question: Construct a verifier V that has
 - oracle access to $f^{(0)}: S^{(0)} \to \mathbb{F}$ and PCPP $\pi: S^{(1)} \to \mathbb{F}$
 - ▶ completeness: If $f^{(0)} \in \mathsf{RS}[\mathbb{F}, S, \rho]$, then $\mathsf{Pr}[V \text{ accepts } f^{(0)}] = 1$
 - ▶ soundness: otherwise, $\Pr[V \text{ rejects } f^{(0)}] \ge \Delta(f^{(0)}, \mathsf{RS}[\mathbb{F}, S^{(0)}, \rho])$

- Answers:
 - ightharpoonup q = d + 1 required and sufficient [folklore]
 - $q = O(1/\delta)$, if verifier has oracle access to PCPP [AS+ALMSS98]
 - ▶ PCPP can have quasi-linear length $n \log^{O(1)} n$ [BS08, D07]
 - ▶ IOPP can have linear length O(n) [BCF⁺16, BBGR16]
- ► This work: IOPP model, minimize q and
 - 1. total proof length $\ell = |\pi_1| + \ldots + |\pi_r|$
 - 2. prover arithmetic complexity tp
 - 3. verifier arithmetic complexity t_{ν}
 - 4. for "small", concrete, non-asymptotic values of n, ($< 2^{50}$), using non-asymptotic bounds $(\varnothing, \varnothing, \varnothing)$

- Question: Construct a verifier V that has
 - oracle access to $f^{(0)}: S^{(0)} \to \mathbb{F}$ and PCPP $\pi: S^{(1)} \to \mathbb{F}$
 - ▶ completeness: If $f^{(0)} \in \mathsf{RS}[\mathbb{F}, S, \rho]$, then $\mathsf{Pr}[V \text{ accepts } f^{(0)}] = 1$
 - soundness: otherwise, $\Pr[V \text{ rejects } f^{(0)}] \ge \Delta(f^{(0)}, \mathsf{RS}[\mathbb{F}, S^{(0)}, \rho])$

- Answers:
 - ightharpoonup q = d + 1 required and sufficient [folklore]
 - $q = O(1/\delta)$, if verifier has oracle access to PCPP [AS+ALMSS98]
 - ▶ PCPP can have quasi-linear length $n \log^{O(1)} n$ [BS08, D07]
 - ▶ IOPP can have linear length O(n) [BCF⁺16, BBGR16]
- ► This work: IOPP model, minimize q and
 - 1. total proof length $\ell = |\pi_1| + \ldots + |\pi_r|$
 - 2. prover arithmetic complexity tp
 - 3. verifier arithmetic complexity t_{ν}
 - 4. for "small", concrete, non-asymptotic values of n, ($< 2^{50}$), using non-asymptotic bounds ($\mathcal{O}, \mathcal{A}, \mathcal{O}$)
- Why? 1–3 interesting theoretically, 4 important practically, for ZK systems like Ligero [AHIV17], STARK [BBHR18], Aurora [BCRSVW19], ...

Prior RS proximity testing (RPT) results

		_			. 1
	prover	proof	verifier	query	round
	comp.	length	comp.	comp.	comp.
folklore	0	0	$ ilde{O}(ho n)$	hon	0
PCP [ALM+92]	n ^{O(1)}	n ^{O(1)}	n ^{O(1)}	$O\left(\frac{1}{\delta}\right)$	1
PCP [BFL+90]	$n^{1+\epsilon}$	$n^{1+\epsilon}$	$\frac{1}{\delta} \log^{1/\epsilon} n$	$\frac{1}{\delta} \log^{1/\epsilon} n$	1
PCPP [BS+05]	$n\log^{1.5} n$	$n\log^{1.5}n$	$\frac{1}{\delta} \log^{5.8} n$	$\frac{1}{\delta} \log^{5.8} n$	1
PCPP [D07, M09]	n log ^c n	$n\log^c n$	$\frac{1}{\delta}\log^c n$	$O\left(\frac{1}{\delta}\right)$	1
IOPP [BCF+16]	$n\log^c n$	> 4 · n	$\frac{1}{\delta}\log^c n$	$O\left(\frac{1}{\delta}\right)$	log log n
This work	< 6 · n	$< \frac{n}{3}$	$\leq 21 \cdot \log n$	2 log <i>n</i>	log <i>n</i> 2

Overview

- ▶ motivation ✓
- main result, applications
- ► FRI protocol dive-in

Theorem (Informal)

For "nice" RS codes RS $[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \le 6 \cdot n$ and $\ell(n) \le n/3$
- ▶ $t_v(n) \le 21 \cdot \log n$ and $q(n) \le 2 \log n$
- ▶ $r(n) \le \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4}$

Theorem (Informal)

For "nice" RS codes RS $\left[\mathbb{F},S^{(0)},\rho\right]$, the FRI protocol satisfies

- ▶ $t_p(n) \le 6 \cdot n$ and $\ell(n) \le n/3$
- ▶ $t_v(n) \le 21 \cdot \log n$ and $q(n) \le 2 \log n$
- ▶ $r(n) \le \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\delta_0}{4}$

Remarks

- 1. "nice" codes means $S^{(0)}$ is either of following two:
 - 1.1 2-smooth multiplicative group, i.e., $|S^{(0)}| = 2^k, k \in \mathbb{N}$, or
 - 1.2 binary additive groups, i.e., $S^{(0)}$ an \mathbb{F}_2 -linear space
- 2. first PCPP/IOPP for RS codes achieving simultaneous
 - ▶ linear prover complexity, $t_p = O(n)$, and
 - ▶ sub-linear verifier complexity, $t_v = o(n)$

Theorem (Informal)

For "nice" RS codes RS $\left[\mathbb{F},S^{(0)},\rho\right]$, the FRI protocol satisfies

- ▶ $t_p(n) \le 6 \cdot n$ and $\ell(n) \le n/3$
- ▶ $t_v(n) \le 21 \cdot \log n$ and $q(n) \le 2 \log n$
- $ightharpoonup r(n) \le \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4}$ [BGKS19]

Remarks

- 1. "nice" codes means $S^{(0)}$ is either of following two:
 - 1.1 2-smooth multiplicative group, i.e., $|S^{(0)}| = 2^k, k \in \mathbb{N}$, or
 - 1.2 binary additive groups, i.e., $S^{(0)}$ an \mathbb{F}_2 -linear space
- 2. first PCPP/IOPP for RS codes achieving simultaneous
 - linear prover complexity, $t_p = O(n)$, and
 - ▶ sub-linear verifier complexity, $t_v = o(n)$

Theorem (Informal)

For "nice" RS codes RS $\left[\mathbb{F},S^{(0)},\rho\right]$, the FRI protocol satisfies

- ▶ $t_p(n) \le 6 \cdot n$ and $\ell(n) \le n/3$
- ▶ $t_v(n) \le 21 \cdot \log n$ and $q(n) \le 2 \log n$
- $ightharpoonup r(n) \le \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4}$ $1-\rho^{\frac{1}{2}\frac{1}{3}}$ [BGKS19]

Remarks

- 1. "nice" codes means $S^{(0)}$ is either of following two:
 - 1.1 2-smooth multiplicative group, i.e., $|S^{(0)}| = 2^k, k \in \mathbb{N}$, or
 - 1.2 binary additive groups, i.e., $\mathsf{S}^{(0)}$ an \mathbb{F}_2 -linear space
- 2. first PCPP/IOPP for RS codes achieving simultaneous
 - linear prover complexity, $t_p = O(n)$, and
 - sub-linear verifier complexity, $t_v = o(n)$

Theorem (Informal)

For "nice" RS codes RS $[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \le 6 \cdot n$ and $\ell(n) \le n/3$
- ▶ $t_v(n) \le 21 \cdot \log n$ and $q(n) \le 2 \log n$
- $ightharpoonup r(n) \le \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4}$ 1 $-\rho^{\frac{1}{4}\frac{1}{3}}$ [BGKS19]

Definition (Computational Integrity (CI))

is the language of quadruples $(M, \mathcal{T}, x_{\text{in}}, x_{\text{out}})$ such that nondeterministic machine M, on input x_{in} reaches output x_{out} after \mathcal{T} cycles, \mathcal{T} in binary.

Definition (Computational Integrity (CI))

is the language of quadruples $(M, \mathcal{T}, x_{\text{in}}, x_{\text{out}})$ such that nondeterministic machine M, on input x_{in} reaches output x_{out} after \mathcal{T} cycles, \mathcal{T} in binary.

Lemma

CI is NEXP-complete

Definition (Computational Integrity (CI))

is the language of quadruples $(M, \mathcal{T}, x_{\text{in}}, x_{\text{out}})$ such that nondeterministic machine M, on input x_{in} reaches output x_{out} after \mathcal{T} cycles, \mathcal{T} in binary.

Lemma

CI is NEXP-complete

Definition (proof system)

An proof system S for L is a pair S = (V, P) satisfying

- ▶ **efficiency** V is randomized polynomial time; P unbounded item **completeness** $x \in L \Rightarrow \Pr[V(x) \leftrightarrow P(x) \leadsto acc] = 1$
- ▶ soundness $x \notin L \Rightarrow \Pr[V(x) \leftrightarrow P(x) \leadsto acc] \le 1/2$

Definition (Computational Integrity (CI))

is the language of quadruples $(M, \mathcal{T}, x_{\text{in}}, x_{\text{out}})$ such that nondeterministic machine M, on input x_{in} reaches output x_{out} after \mathcal{T} cycles, \mathcal{T} in binary.

Lemma

CI is NEXP-complete

Definition (argument system)

An argument system S for L is a pair S = (V, P) satisfying

- efficiency V is randomized polynomial time; P is similarly bounded
- ▶ completeness $x \in L \Rightarrow \Pr[V(x) \leftrightarrow P(x) \leadsto acc] = 1$
- ▶ soundness $x \notin L \Rightarrow \Pr[V(x) \leftrightarrow P(x) \leadsto acc] \le 1/2$

Definition (Computational Integrity (CI))

is the language of quadruples $(M, \mathcal{T}, x_{\text{in}}, x_{\text{out}})$ such that nondeterministic machine M, on input x_{in} reaches output x_{out} after \mathcal{T} cycles, \mathcal{T} in binary.

Lemma

CI is NEXP-complete

Theorem ([BM88, GMR88, BFL88, BFL91, BGKW88, FLS90, BFLS91, AS92, ALMSS92, K92, M94])

- **succinct:** Verifier run-time poly(n, log \mathcal{T}); this bounds proof length
- ▶ transparent (AM): verifier sends only public random coins
- private (ZK): proof preserves privacy of nondeterministic witness

Theorem ([BM88, GMR88, BFL88, BFL91, BGKW88, FLS90, BFLS91, AS92, ALMSS92, K92, M94])

- **succinct:** Verifier run-time poly(n, log \mathcal{T}); this bounds proof length
- ▶ transparent (AM): verifier sends only public random coins
- private (ZK): proof preserves privacy of nondeterministic witness

Theorem ([BM88, GMR88, BFL88, BFL91, BGKW88, FLS90, BFLS91, AS92, ALMSS92, K92, M94])

- **succinct:** Verifier run-time poly(n, log \mathcal{T}); this bounds proof length
- ▶ transparent (AM): verifier sends only public random coins
- **private (ZK):** proof preserves privacy of nondeterministic witness
- 1. privacy-preserving proof of computational integrity
 - ightharpoonup Proof and verification time may be longer than $\mathcal T$
 - Useful for asserting properties of private, crypto-committed data

Theorem ([BM88, GMR88, BFL88, BFL91, BGKW88, FLS90, BFLS91, AS92, ALMSS92, K92, M94])

- **succinct:** Verifier run-time poly(n, log \mathcal{T}); this bounds proof length
- ▶ transparent (AM): verifier sends only public random coins
- private (ZK): proof preserves privacy of nondeterministic witness
- 1. privacy-preserving proof of computational integrity
 - lacktriangle Proof and verification time may be longer than ${\mathcal T}$
 - Useful for asserting properties of private, crypto-committed data
- 2. compression of computation/data, with computational integrity
 - ▶ meaningful when $t_v \ll T$ or $\ell \ll$ witness-size
 - useful for compressing blockchain history
- Scalable Transparent ARguments of Knowledge [BBHR18]
 - ► C++ implementation: github.com/elibensasson/libSTARK
 - achieves Thm above, quasi-linear tp, "post-quantum secure"
 - FRI is a major contributor to STARK efficiency

Overview

- ▶ motivation ✓
- ▶ main result, applications ✓
- ► FRI protocol dive-in

Theorem (Informal)

For "nice" RS codes RS $[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \le 6 \cdot n$ and $\ell(n) \le n/3$
- ▶ $t_v(n) \le 21 \cdot \log n$ and $q(n) \le 2 \log n$
- ▶ $r(n) \le \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1}{4}$ $1 \rho^{\frac{1}{4}\frac{1}{3}}$ [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)

• evaluate $P(X), \deg(P) < n$ on $\langle \omega \rangle$, ω is root of unity of order $n = 2^k$

Theorem (Informal)

For "nice" RS codes RS $[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \le 6 \cdot n$ and $\ell(n) \le n/3$
- ▶ $t_v(n) \le 21 \cdot \log n$ and $q(n) \le 2 \log n$
- $ightharpoonup r(n) \le \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4}$ $1-\rho^{\frac{1}{4}\frac{1}{3}}$ [BGKS19]

- evaluate P(X), $\deg(P) < n$ on $\langle \omega \rangle$, ω is root of unity of order $n = 2^k$
- write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$

Theorem (Informal)

For "nice" RS codes RS $[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \le 6 \cdot n$ and $\ell(n) \le n/3$
- ▶ $t_v(n) \le 21 \cdot \log n$ and $q(n) \le 2 \log n$
- $ightharpoonup r(n) \le \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4}$ $1-\rho^{\frac{1}{4}\frac{1}{3}}$ [BGKS19]

- evaluate P(X), $\deg(P) < n$ on $\langle \omega \rangle$, ω is root of unity of order $n = 2^k$
- write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$
- equivalently, $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \mod Y X^2$

Theorem (Informal)

For "nice" RS codes RS $[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \le 6 \cdot n$ and $\ell(n) \le n/3$
- ▶ $t_v(n) \le 21 \cdot \log n$ and $q(n) \le 2 \log n$
- $ightharpoonup r(n) \le \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4}$ $1-\rho^{\frac{1}{4}\frac{1}{3}}$ [BGKS19]

- evaluate P(X), $\deg(P) < n$ on $\langle \omega \rangle$, ω is root of unity of order $n = 2^k$
- write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$
- equivalently, $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \mod Y X^2$
- ▶ notice $\langle \omega^2 \rangle$ has size n/2

Theorem (Informal)

For "nice" RS codes RS $[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \le 6 \cdot n$ and $\ell(n) \le n/3$
- ▶ $t_v(n) \le 21 \cdot \log n$ and $q(n) \le 2 \log n$
- $ightharpoonup r(n) \le \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4}$ $1-\rho^{\frac{1}{4}\frac{1}{3}}$ [BGKS19]

- evaluate P(X), $\deg(P) < n$ on $\langle \omega \rangle$, ω is root of unity of order $n = 2^k$
- write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$
- equivalently, $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \mod Y X^2$
- ▶ notice $\langle \omega^2 \rangle$ has size n/2
- \blacktriangleright so evaluate each of $P_0(Y), P_1(Y)$ on $\langle \omega^2 \rangle, \ldots, O(n \log n)$ runtime

FRI Protocol

- ▶ Let $S^{(0)} \subset \mathbb{F}^*$ be 2-smooth mult. group: $|S^{(0)}| = 2^{k^{(0)}}$, $k^{(0)} \in \mathbb{N}$
- ▶ Let $f^{(0)}: S^{(0)} \to \mathbb{F}$, FRI for $\mathsf{RS}^{(0)} = \mathsf{RS}\left[\mathbb{F}, S^{(0)}, \rho = \frac{1}{8}\right]$

FRI Protocol

- Let $S^{(0)} \subset \mathbb{F}^*$ be 2-smooth mult. group: $|S^{(0)}| = 2^{k^{(0)}}$, $k^{(0)} \in \mathbb{N}$
- ▶ Let $f^{(0)}: S^{(0)} \to \mathbb{F}$, FRI for $\mathsf{RS}^{(0)} = \mathsf{RS}\left[\mathbb{F}, S^{(0)}, \rho = \frac{1}{8}\right]$
- Two-phase protocol
 - ► COMMIT: while $i < k^{(0)} \log \frac{1}{\rho}$
 - verifier sends randomness $x^{(i)}$
 - lacksquare prover sends oracle $f^{(i+1)}:S^{(i+1)} o \mathbb{F}, |S^{(i+1)}|=|S^{(i)}|/2$

- Let $S^{(0)} \subset \mathbb{F}^*$ be 2-smooth mult. group: $|S^{(0)}| = 2^{k^{(0)}}$, $k^{(0)} \in \mathbb{N}$
- ▶ Let $f^{(0)}: S^{(0)} \to \mathbb{F}$, FRI for $RS^{(0)} = RS\left[\mathbb{F}, S^{(0)}, \rho = \frac{1}{8}\right]$
- ► Two-phase protocol
 - **COMMIT**: while $i < k^{(0)} \log \frac{1}{\rho}$
 - \triangleright verifier sends randomness $x^{(i)}$
 - lacksquare prover sends oracle $f^{(i+1)}:S^{(i+1)} o \mathbb{F}, |S^{(i+1)}|=|S^{(i)}|/2$
 - ▶ completeness: If $f^{(i)} \in \mathsf{RS}[\mathbb{F}, S^{(i)}, \rho]$ then $f^{(i+1)} \in \mathsf{RS}[\mathbb{F}, S^{(i+1)}, \rho]$

- Let $S^{(0)} \subset \mathbb{F}^*$ be 2-smooth mult. group: $|S^{(0)}| = 2^{k^{(0)}}$, $k^{(0)} \in \mathbb{N}$
- ▶ Let $f^{(0)}: S^{(0)} \to \mathbb{F}$, FRI for $RS^{(0)} = RS\left[\mathbb{F}, S^{(0)}, \rho = \frac{1}{8}\right]$
- Two-phase protocol
 - ► COMMIT: while $i < k^{(0)} \log \frac{1}{\rho}$
 - verifier sends randomness $x^{(i)}$
 - lacksquare prover sends oracle $f^{(i+1)}:S^{(i+1)} o \mathbb{F}, |S^{(i+1)}|=|S^{(i)}|/2$
 - ▶ completeness: If $f^{(i)} \in \mathsf{RS}[\mathbb{F}, S^{(i)}, \rho]$ then $f^{(i+1)} \in \mathsf{RS}[\mathbb{F}, S^{(i+1)}, \rho]$
 - each entry of $f^{(i+1)}$ computed from 2 distinct entries of $f^{(i)}$ via O(1) arithmetic operations (so $t_p = O(n)$)

- ▶ Let $S^{(0)} \subset \mathbb{F}^*$ be 2-smooth mult. group: $|S^{(0)}| = 2^{k^{(0)}}$, $k^{(0)} \in \mathbb{N}$
- ▶ Let $f^{(0)}: S^{(0)} \to \mathbb{F}$, FRI for $RS^{(0)} = RS\left[\mathbb{F}, S^{(0)}, \rho = \frac{1}{8}\right]$
- Two-phase protocol
 - **COMMIT**: while $i < k^{(0)} \log \frac{1}{\rho}$
 - verifier sends randomness $x^{(i)}$
 - lacksquare prover sends oracle $f^{(i+1)}:S^{(i+1)} o \mathbb{F}, |S^{(i+1)}|=|S^{(i)}|/2$
 - ▶ completeness: If $f^{(i)} \in \mathsf{RS}[\mathbb{F}, S^{(i)}, \rho]$ then $f^{(i+1)} \in \mathsf{RS}[\mathbb{F}, S^{(i+1)}, \rho]$
 - each entry of $f^{(i+1)}$ computed from 2 distinct entries of $f^{(i)}$ via O(1) arithmetic operations (so $t_p = O(n)$)
 - ightharpoonup #rounds $\leq k^{(0)} = \log n$
 - last round ($i = k^{(0)} \log 1/\rho$): prover sends constant function

- Let $S^{(0)} \subset \mathbb{F}^*$ be 2-smooth mult. group: $|S^{(0)}| = 2^{k^{(0)}}$, $k^{(0)} \in \mathbb{N}$
- ▶ Let $f^{(0)}: S^{(0)} \to \mathbb{F}$, FRI for $RS^{(0)} = RS\left[\mathbb{F}, S^{(0)}, \rho = \frac{1}{8}\right]$
- Two-phase protocol
 - **COMMIT**: while $i < k^{(0)} \log \frac{1}{\rho}$
 - \triangleright verifier sends randomness $x^{(i)}$
 - lacksquare prover sends oracle $f^{(i+1)}:S^{(i+1)} o \mathbb{F}, |S^{(i+1)}|=|S^{(i)}|/2$
 - ▶ completeness: If $f^{(i)} \in RS[\mathbb{F}, S^{(i)}, \rho]$ then $f^{(i+1)} \in RS[\mathbb{F}, S^{(i+1)}, \rho]$
 - each entry of $f^{(i+1)}$ computed from 2 distinct entries of $f^{(i)}$ via O(1) arithmetic operations (so $t_p = O(n)$)
 - #rounds $\leq k^{(0)} = \log n$
 - last round ($i = k^{(0)} \log 1/\rho$): prover sends constant function
 - (notice $|f^{(i+1)}| = |f^{(i)}|/2$ so total proof length O(n))
 - QUERY: verifier queries oracles (prover not involved)

Example:
$$S^{(0)} = \mathbb{F}_{17}^*, n = 2^4, \rho = 2^{-2}$$

- verifier sends random $x^{(i)} \in \mathbb{F}$
- $lackbox{ prover sends next oracle } f^{(i+1)}:S^{(i+1)}
 ightarrow \mathbb{F}$
 - lacksquare $S^{(i+1)}$ is 2-smooth multiplicative group, $|S^{(i+1)}| = |S^{(i)}|/2$
 - each entry of $f^{(i+1)}$ computed from 2 distinct entries of $f^{(i)}$
- **termination**: When $i = k^{(0)} \log 1/\rho$ prover sends constant function

Example:
$$S^{(0)} = \mathbb{F}_{17}^*, n = 2^4, \rho = 2^{-2}$$

- ightharpoonup verifier sends random $x^{(i)} \in \mathbb{F}$
- ▶ prover sends next oracle $f^{(i+1)}: S^{(i+1)} \to \mathbb{F}$
 - ▶ $S^{(i+1)}$ is 2-smooth multiplicative group, $|S^{(i+1)}| = |S^{(i)}|/2$
 - each entry of $f^{(i+1)}$ computed from 2 distinct entries of $f^{(i)}$
- **termination:** When $i = k^{(0)} \log 1/\rho$ prover sends constant function QUERY phase: pick random $s^{(0)} \in S^{(0)}$ and check path-to-root

Example:
$$S^{(0)} = \mathbb{F}_{17}^*, n = 2^4, \rho = 2^{-2}$$

- ightharpoonup verifier sends random $x^{(i)} \in \mathbb{F}$
- lacktriangledown prover sends next oracle $f^{(i+1)}:S^{(i+1)} o\mathbb{F}$
 - ▶ $S^{(i+1)}$ is 2-smooth multiplicative group, $|S^{(i+1)}| = |S^{(i)}|/2$
 - **•** each entry of $f^{(i+1)}$ computed from 2 distinct entries of $f^{(i)}$
- ▶ termination: When $i = k^{(0)} \log 1/\rho$ prover sends constant function QUERY phase: pick random $s^{(0)} \in S^{(0)}$ and check path-to-root

Example:
$$S^{(0)} = \mathbb{F}_{17}^*, n = 2^4, \rho = 2^{-2}$$

- verifier sends random $x^{(i)} \in \mathbb{F}$
- lacktriangledown prover sends next oracle $f^{(i+1)}:S^{(i+1)}
 ightarrow\mathbb{F}$
 - ▶ $S^{(i+1)}$ is 2-smooth multiplicative group, $|S^{(i+1)}| = |S^{(i)}|/2$
 - each entry of $f^{(i+1)}$ computed from 2 distinct entries of $f^{(i)}$
- ▶ termination: When $i = k^{(0)} \log 1/\rho$ prover sends constant function QUERY phase: pick random $s^{(0)} \in S^{(0)}$ and check path-to-root

lacktriangle suppose $f^{(0)}:\mathbb{F}_{17}^* o\mathbb{F}_{17}$ satisfies $\deg(f^{(0)})<4$

- ▶ suppose $f^{(0)}: \mathbb{F}_{17}^* \to \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ let P(X) interpolate $f^{(0)}$, deg(P) < 4

- lacktriangle suppose $f^{(0)}: \mathbb{F}_{17}^* o \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ let P(X) interpolate $f^{(0)}$, deg(P) < 4
- write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style

- ▶ suppose $f^{(0)}: \mathbb{F}_{17}^* \to \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ let P(X) interpolate $f^{(0)}$, deg(P) < 4
- write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style
- ▶ then $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \mod Y X^2$

- ▶ suppose $f^{(0)}: \mathbb{F}_{17}^* \to \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- let P(X) interpolate $f^{(0)}$, deg(P) < 4
- write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style
- ▶ then $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \mod Y X^2$
- let $Q(X, Y) \triangleq P_0(Y) + X \cdot P_1(Y)$,
 - $Q(X,Y) \equiv P(X) \mod Y X^2$

- ▶ suppose $f^{(0)}: \mathbb{F}_{17}^* \to \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ let P(X) interpolate $f^{(0)}$, deg(P) < 4
- write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style
- ▶ then $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \mod Y X^2$
- ▶ let $Q(X, Y) \triangleq P_0(Y) + X \cdot P_1(Y)$,
 - $Q(X,Y) \equiv P(X) \mod Y X^2$
 - ▶ consider points in $\mathbb{F} \times \mathbb{F}$ on curve $Y X^2$,

- ▶ suppose $f^{(0)}: \mathbb{F}_{17}^* \to \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ let P(X) interpolate $f^{(0)}$, deg(P) < 4
- write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style
- ▶ then $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \mod Y X^2$
- ▶ let $Q(X, Y) \triangleq P_0(Y) + X \cdot P_1(Y)$,
 - $P(X,Y) \equiv P(X) \mod Y X^2$

 - $S^{(1)} = \left\{ x^2 \mid x \in S^{(0)} \right\}$ is mult. group, $|S^{(1)}| = |S^{(0)}|/2$

- ▶ suppose $f^{(0)}: \mathbb{F}_{17}^* \to \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ let P(X) interpolate $f^{(0)}$, deg(P) < 4
- write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style
- ▶ then $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \mod Y X^2$
- let $Q(X, Y) \triangleq P_0(Y) + X \cdot P_1(Y)$,
 - $Q(X,Y) \equiv P(X) \mod Y X^2$

 - $S^{(1)} = \{x^2 \mid x \in S^{(0)}\}$ is mult. group, $|S^{(1)}| = |S^{(0)}|/2$

COMMIT round

- ▶ Verifier picks random $x^{(0)} \in \mathbb{F}$
- $f^{(1)} = Q(x^{(0)}, Y)|_{S^{(1)}}$
- each entry of $f^{(1)}$ interpolated from two entries of $f^{(0)}$
- $ightharpoonup \deg_{Y}(Q) <
 ho|S^{(1)}|$

FRI vs. inverse FFT

- ▶ suppose $f^{(0)}: \mathbb{F}_{17}^* \to \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ find P(X) that interpolates $f^{(0)}$
- write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style
- ▶ then $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \mod Y X^2$
- $\blacktriangleright \text{ let } Q(X,Y) \triangleq P_0(Y) + X \cdot P_1(Y),$
 - $P(X,Y) \equiv P(X) \mod Y X^2$

 - $S^{(1)} = \left\{ x^2 \mid x \in S^{(0)} \right\}$ is mult. group, $|S^{(1)}| = |S^{(0)}|/2$

FRI vs. inverse FFT

- lacksquare suppose $f^{(0)}: \mathbb{F}_{17}^* o \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ find P(X) that interpolates $f^{(0)}$
- write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style
- ▶ then $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \mod Y X^2$
- $\blacktriangleright \text{ let } Q(X,Y) \triangleq P_0(Y) + X \cdot P_1(Y),$
 - $P(X,Y) \equiv P(X) \mod Y X^2$

 - $S^{(1)} = \left\{ x^2 \mid x \in S^{(0)} \right\}$ is mult. group, $|S^{(1)}| = |S^{(0)}|/2$

- $P_0(Y) = Q(0, Y),$ $P_1(Y) = Q(\infty, Y)$
- ► let $g_0 = Q(0, Y)|_{S^{(1)}}$, $g_1 = Q(\infty, Y)|_{S^{(1)}}$
- ightharpoonup compute $g_0, g_1, O(n)$ steps
- ightharpoonup recurse on g_0, g_1

- $y \in S^{(1)}$ good if $f^{(0)}(x_0) = f^{(0)}(x_1) = 0$ for $x_0^2 = x_1^2 = y$
- ▶ otherwise, $y \in S^{(1)}$ bad
- fraction of bad y's in $S^{(1)}$ between δ and 2δ

- $ightharpoonup y \in S^{(1)}$ good if $f^{(0)}(x_0) = f^{(0)}(x_1) = 0$ for $x_0^2 = x_1^2 = y$
- ▶ otherwise, $y \in S^{(1)}$ bad
- fraction of bad y's in $S^{(1)}$ between δ and 2δ
- ▶ interpolant of bad row has at most 1 root

- $ightharpoonup y \in S^{(1)} \text{ good if } f^{(0)}(x_0) = f^{(0)}(x_1) = 0 \text{ for } x_0^2 = x_1^2 = y$
- ▶ otherwise, $y \in S^{(1)}$ bad
- fraction of bad y's in $S^{(1)}$ between δ and 2δ
- ▶ interpolant of bad row has at most 1 root
- w.p. $1 \frac{|S^{(1)}|}{|\mathbb{F}|}$, $x^{(0)}$ misses roots of bad rows; call such $x^{(0)}$ good

- $ightharpoonup y \in S^{(1)} \text{ good if } f^{(0)}(x_0) = f^{(0)}(x_1) = 0 \text{ for } x_0^2 = x_1^2 = y$
- ▶ otherwise, $y \in S^{(1)}$ bad
- fraction of bad y's in $S^{(1)}$ between δ and 2δ
- ▶ interpolant of bad row has at most 1 root
- w.p. $1 \frac{|S^{(1)}|}{|\mathbb{F}|}$, $x^{(0)}$ misses roots of bad rows; call such $x^{(0)}$ good
- prover left with two bad options:
 - let $f^{(1)}$ "jump" to be closer to non-zero RS-codeword; large error;
 - **continue** with $f^{(1)}$ close to **0**;

- first RPT solution with $t_p = O(n)$ and $t_v = O(\log n)$
- \blacktriangleright nearly optimal soundness for $\delta < \delta_0$

- first RPT solution with $t_p = O(n)$ and $t_v = O(\log n)$
- \blacktriangleright nearly optimal soundness for $\delta < \delta_0$
- what's δ_0 ? (higher lines are better)

- first RPT solution with $t_p = O(n)$ and $t_v = O(\log n)$
- lacktriangleright nearly optimal soundness for $\delta < \delta_0$
- what's δ_0 ? (higher lines are better)

- New protocol: DEEP-FRI [B, Goldberg, Kopparty, Saraf 2019]
 - ▶ DEEP-FRI: Domain Extending for Eliminating Pretenders FRI
 - like FRI, has linear proving complexity, logarithmic verifer complexity
 - ▶ DEEP-FRI soundness reaches Johnson bound $\delta_0 \approx 1 \sqrt{\rho}$
 - lacktriangle Under plausible list decoding conjecture, reaches $\delta_0pprox 1ho$

- first RPT solution with $t_p = O(n)$ and $t_v = O(\log n)$
- ▶ nearly optimal soundness for $\delta < \delta_0$
- what's δ_0 ? (higher lines are better)
- Questions
 - \blacktriangleright "sliding scale" soundness-error $\approx 1/\mathsf{poly}(|\mathbb{F}|)$ for RS-IOPPs?

- first RPT solution with $t_p = O(n)$ and $t_v = O(\log n)$
- lacktriangle nearly optimal soundness for $\delta < \delta_0$
- what's δ_0 ? (higher lines are better)
- Questions
 - lacktriangle "sliding scale" soundness-error $pprox 1/\mathsf{poly}(|\mathbb{F}|)$ for RS-IOPPs?
 - want to learn more? workshop@starkware.co
 - want to realize in practice? jobs@starkware.co

