

《数据建模与分析》Homework

实验题目		Homework 4
学生姓名		莫非
学	号	3220103345
班	级	图灵 2201
所在学院		竺可桢学院
提交日期		2024年3月31日

1 Homework 3(3.22)

? 6.2

写出逻辑斯谛回归模型学习的梯度下降算法。

6.2 Solution

直接推广到多项逻辑斯蒂回归。对给定的训练数据集 $T = \{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}$,其中 $x \in \mathbb{R}^n, y \in \{1,2,...,K\}$ 。为了方便,将权重向量和输入向量加以扩充:

$$w = (w^0, w^1, ..., w^n, b)^T, x = (1, x^1, ..., x^n, 1)^T$$

逻辑斯谛回归模型为:

$$\begin{split} P(Y=k|x) &= \frac{\exp(w_k \cdot x)}{1 + \sum_{i=1}^{K-1} \exp(w_i \cdot x)}, \quad k = 1, 2, ..., K-1 \\ P(Y=K|x) &= \frac{1}{1 + \sum_{i=1}^{K-1} \exp(w_i \cdot x)} \end{split} \tag{1.1}$$

对数似然函数为:

$$L(w) = \sum_{i=1}^{N} \sum_{j=1}^{K} I(y_i = j) \log P(Y = j | x_i)$$
(1.2)

注意到 $\sum_{j=1}^K I(y=j)=1$, 上式可化简为:

$$L(w) = \sum_{i=1}^{N} \left(\sum_{j=1}^{K-1} I(y_i = j) \left(w_j \cdot x_i \right) - \log \left(1 + \sum_{j=1}^{K-1} \exp \left(w_j \cdot x_i \right) \right) \right) \tag{1.3}$$

Algorithm 1: (多项)逻辑斯谛回归模型学习的梯度下降法

输入: 目标函数 f(w) = -L(w) , 梯度函数 $g(w) = \nabla L(w)$, 计算精度 ε ;

输出:最优参数值 w^* ;最优模型 $P(y|x;w^*)$ 。

- 1 取初值 $w^{(0)} \in \mathbb{R}^{n+1}$,置 k = 0。
- 2 计算 $f(w^{(k)})$ 。
- 3 计算梯度 $g(w^{(k)})$,当 $\|g_k\|<\varepsilon$ 时,停止迭代,令 $w^*=w^{(k)}$;否则,令 $p_k=-g(w^{(k)})$,求 λ_k ,使

$$f(w^{(k)} + \lambda_k p_k) = \min_{\lambda > 0} f(w^{(k)} + \lambda p_k)$$

- 4 置 $w^{(k+1)}=w^{(k)}+\lambda_k p_k$, 计算 $f\big(w^{(k+1)}\big)$ 。 当 $|f\big(w^{(k+1)}\big)-f\big(w^{(k)}\big)|<\varepsilon$ 或 $\|g\big(w^{(k+1)}\big)\|<\varepsilon$ 时,停止迭代,令 $w^*=w^{(k+1)}$;
- 5 否则, 置 k = k + 1, 转第 3 步。

写出最大熵模型学习的 DFP 算法。(关于一般的 DFP 算法参见附录 B)

6.3 Solution

对最大熵模型而言,

$$P_w(y|x) = \frac{1}{Z_w(x)} \exp\left(\sum_{i=1}^n w_i f_i(x,y)\right) \tag{1.4}$$

其中规范化因子:

$$Z_w(x) = \sum_{y} \exp\left(\sum_{i=1}^{n} w_i f_i(x, y)\right) \tag{1.5}$$

求解对偶问题的外部极大化问题:

$$\max_{w} \Psi(w) = \max_{w} \sum_{x,y} \hat{P}(x,y) w_i f_i(x,y) - \sum_{x} \hat{P}(x) \log Z_w(x) \tag{1.6} \label{eq:1.6}$$

即目标函数为:

$$f(x) = -\Psi(w) = \sum_{x} \hat{P}(x) \log \sum_{y} \exp \left(\sum_{i=1}^{n} w_{i} f_{i}(x, y) \right) - \sum_{x, y} \hat{P}(x, y) w_{i} f_{i}(x, y) \tag{1.7}$$

Algorithm 2: 最大熵模型学习的 DFP 算法

输入: 特征函数 $f_1, f_2, ..., f_n$; 经验分布 $\hat{P}(x,y)$,目标函数 f(w) ,梯度函数 $g(w) = \nabla f(w)$,计算精度 ε 。

输出:最优参数值 w^* ;最优模型 $P(y|x;w^*)$ 。

- 1 取初值 $w^{(0)} \in \mathbb{R}^n$, 取 G_0 为正定对称矩阵, 置 k=0。
- 2 计算 $g_k = g(w^{(k)})$,若 $\|g_k\| < \varepsilon$,则停止迭代,令 $w^* = w^{(k)}$;否则,转第 3 步。
- 3 置 $p_k = -G_k g_k$ 。
- 4 一维搜索: 求 λ_k , 使

$$f(w^{(k)} + \lambda_k p_k) = \min_{\lambda > 0} f(w^{(k)} + \lambda p_k)$$

- 5 置 $w^{(k+1)}=w^{(k)}+\lambda_k p_k$ \circ
- 6 计算 $g_{k+1}=g\left(w^{(k+1)}\right)$,若 $\|g_{k+1}\|<\varepsilon$,则停止迭代,令 $w^*=w^{(k+1)}$; 否则,按下式求出 G_{k+1} :

$$G_{k+1} = G_k + \frac{\delta_k \delta_k^T}{\delta_k^T y_k} - \frac{G_k y_k y_k^T G_k}{y_k^T G_k y_k}$$

其中, $y_k = g_{k+1} - g_k$, $\delta_k = w^{(k+1)} - w^{(k)}$ 。

7 置 k = k + 1, 转第 3 步。