Transformation Networks for Target-Oriented Sentiment Classification¹

Xin Li¹, Lidong Bing², Wai Lam¹, Bei Shi¹

¹The Chinese University of Hong Kong

²Tencent Al Lab

ACL 2018

¹Joint work with Tencent AI Lab

- Target-Oriented Sentiment Classification
 - Introduction
 - Problem Formulation
- Transformation Networks for Target-Oriented Sentiment Classification
 - Motivation
 - The proposed model
- Seriment
 - Settings
 - Comparative Study

- Target-Oriented Sentiment Classification
 - Introduction
 - Problem Formulation
- 2 Transformation Networks for Target-Oriented Sentiment Classification
 - Motivation
 - The proposed model
- 3 Experiment
 - Settings
 - Comparative Study

Introduction

Target-Oriented Sentiment Classification (TOSC) is to detect the overall opinions / sentiments of the user review towards the given opinion target.

- TOSC is a supporting task of Target / Aspect-based Sentiment Analysis [5].
- TOSC has been investigated extensively in other names:
 - Aspect-level Sentiment Classification [1, 7, 10, 11, 12].
 - Targeted Sentiment Prediction [6, 14].
 - Target-Dependent Sentiment Classification [2, 9].

- Target-Oriented Sentiment Classification
 - Introduction
 - Problem Formulation
- - Motivation
 - The proposed model
- - Settings
 - Comparative Study

Problem Formulation

- TOSC is a typical classification task but the input texts come from two sources:
 - Target: explicitly mentioned phrase of opinion target, also called "aspect term" or "aspect".
 - Ontext: the original review sentence or the sentence without target phrase.
- TOSC is to predict the overall sentiment of the context towards the target.

Example

- [Boot time] is super fast, around anywhere from 35 seconds to 1 minute.
 - This review conveys positive sentiment over the input "Boot time".
- Great [food] but the [service] is dreadful.
 - Given the target "food", the sentiment polarity is positive while if the input target is "service", it becomes negative.

- - Introduction
 - Problem Formulation
- Transformation Networks for Target-Oriented Sentiment Classification
 - Motivation
 - The proposed model
- - Settings
 - Comparative Study

Motivation

- Convolutional Neural Network (CNN) is more suitable for this task than Attention-based Models [1, 6, 7, 10, 11, 12, 13].
 - Sentiments towards the targets are usually determined by key phrases.
 - Example: This [dish] is my favorite and I always get it and never get tired of it.
 - CNN whose aim is to capture the most informative n-grams (e.g., "is my favorite") in the sentence should be a suitable model.
 - Attention-based weighted combination of the entire word-level features may introduce some noises (e.g., "never" and "tired" in above sentence).
 - We employ proximity-based CNN rather than attention-based RNN as the top-most feature extractor.

Motivation

- 2 CNN likely fails in cases where a sentence expresses different sentiments over multiple targets.
 - Example: great [food] but the [service] was dreadful!
 - CNN cannot fully explore the target information via vector concatenation.
 - Combining context information and word embedding is an effective way to represent a word in the convolution-based architecture [4]
 - Our Solution:
 - (i) We propose a <u>"Target-Specific Transformation"</u> (TST) component to better consolidate the target information with word representations.
 - (ii) We design two context-preserving mechanisms <u>"Adaptive Scaling"</u> (AS) and <u>"Loseless Forwarding"</u> (LF) to combine the contextualized representations and the transformed representations.

Motivation

- Most of the existing works do not discriminate different words in the same target phrase
 - In the target phrase, different words would not contribute equally to the target representation.
 - For example, in "amd turin processor", phrase head "processor" is more important than "amd" and "turin".
 - Our TST solves this problem in two steps:
 - (i) Explicitly calculating the importance scores of the target words.
 - (ii) Conducting word-level association between the target and its context.

- Target-Oriented Sentiment Classification
 - Introduction
 - Problem Formulation
- Transformation Networks for Target-Oriented Sentiment Classification
 - Motivation
 - The proposed model
- 3 Experiment
 - Settings
 - Comparative Study

Model Overview

Figure: Architecture of TNet.

Model Overview

The proposed TNet consists of the following three components:

- (BOTTOM) Bi-directional LSTM for memory building
 - Generating contextualized word representations.
- (MIDDLE) Deep Transformation architecture for learning target-specific word representations
 - Refining word-level representations with the input target and the contextual information.
- (TOP) Proximity-based convolutional feature extractor.
 - Introducing position information to detect the most salient features more accurately.

Deep Transformation Architecture

Deep Transformation Architecture stacks multiple Context-Preserving Transformation (CPT) layers

 Deeper network helps to learn more abstract features (He et al., CVPR 2016; Lecun et al., Nature 2015).

CPT Layer

The functions of the CPT layer are two folds:

- Incorporating opinion target information into the word-level representations.
 - Generating context-aware target representations r_i^{τ} conditioned on the *i*-th word representation $h_i^{(I)}$ fed to the *I*-th layer:

$$r_i^{\tau} = \sum_{j=1}^m h_j^{\tau} * \mathcal{F}(h_i^{(I)}, h_j^{\tau}),$$

$$\mathcal{F}(h_i^{(I)}, h_j^{\tau}) = \frac{\exp\left(h_i^{(I)^{\top}} h_j^{\tau}\right)}{\sum_{k=1}^{m} \exp\left(h_i^{(I)^{\top}} h_k^{\tau}\right)},$$

Obtaining target-specific word representations $\tilde{h}_{i}^{(I)}$:

$$\tilde{h}_{i}^{(I)} = g(W^{\tau}[h_{i}^{(I)}:r_{i}^{\tau}] + b^{\tau}),$$

Figure: Target-Specific Transformation (TST) component

CPT Layer

- Preserving context information for the upper layers
 - We design two Context-Preserving Mechanisms to add context information back to the transformed word features $\tilde{h}_i^{(l)}$
 - (i) Adaptive Scaling (AS) (Similar to Highway Connection [8]):

$$t_i^{(I)} = \sigma(W_{trans}h_i^{(I)} + b_{trans}),$$

$$h_i^{(I+1)} = t_i^{(I)} \odot \tilde{h}_i^{(I)} + (1 - t_i^{(I)}) \odot h_i^{(I)}.$$

(ii) Lossless Forwarding (**LF**) (Similar to Residual Connection [3]):

$$h_i^{(l+1)} = h_i^{(l)} + \tilde{h}_i^{(l)}.$$

Proximity-based Convolutional Feature Extractor

This component aims to capture the most salient feature w.r.t. the current target for sentiment prediction.

- As observed in (Chen et al., 2017; Li and Lam, 2017), distance information is effective for better locating the salient features.
 - Basic idea: Up-weighting the words close to the target and down-weighting those far away from the target.
- Convolutional neural network (Kim, 2014) is used to extract features from the weighted word representations.

- Target-Oriented Sentiment Classification
 - Introduction
 - Problem Formulation
- Transformation Networks for Target-Oriented Sentiment Classification
 - Motivation
 - The proposed model
- 3 Experiment
 - Settings
 - Comparative Study

Settings

Datasets

- LAPTOP, REST: datasets from SemEval14 ABSA challenge, containing the user reviews from laptop domain and restaurant domain respectively.
- TWITTER: a dataset built in (Dong et al., 2014), containing twitter posts and the opinion targets are annotated.

Compared Models

- Traditional Models:
 - SVM (Kiritchenko et al., 2014).
- Attention-based Models:
 - ATAE-LSTM (Wang et al., 2016), MemNet (Tang et al., 2016), IAN (Ma et al., 2017), BILSTM-ATT-G (Liu and Zhang, 2017), RAM (Chen et al., 2017).
- Other Neural Models:
 - AdaRNN (Dong et al., 2014), TD-LSTM (Tang et al., 2016), AE-LSTM (Wang et al., 2016), CNN-ASP

- Target-Oriented Sentiment Classification
 - Introduction
 - Problem Formulation
- 2 Transformation Networks for Target-Oriented Sentiment Classification
 - Motivation
 - The proposed model
- 3 Experiment
 - Settings
 - Comparative Study

Main Results

	Models	LAPTOP		REST		TWITTER	
	ivioueis	ACC	Macro-F1	ACC	Macro-F1	ACC	Macro-F1
TNet variants	TNet-LF	$76.01^{\dagger,\ddagger}$	$71.47^{\dagger,\ddagger}$	80.79 ^{†,‡}	70.84 [‡]	74.68 ^{†,‡}	73.36 ^{†,‡}
	TNet-AS	$76.54^{\dagger,\ddagger}$	$71.75^{\dagger,\ddagger}$	$80.69^{\dagger,\ddagger}$	$71.27^{\dagger,\ddagger}$	74.97 ^{†,‡}	73.60 ^{†,‡}
Baselines	SVM	70.49 [‡]	-	80.16 [‡]	-	63.40*	63.30*
	AdaRNN	-	-	-	-	66.30 [‡]	65.90 [‡]
	AE-LSTM	68.90^{\natural}	-	76.60 [‡]	-	-	-
	ATAE-LSTM	68.70 [‡]	-	77.20 [‡]	-	-	-
	IAN	72.10^{\natural}	-	78.60 [‡]	-	-	-
	CNN-ASP	72.46	65.31	77.82	65.11	73.27	71.77
	TD-LSTM	71.83	68.43	78.00	66.73	66.62	64.01
	MemNet	70.33	64.09	78.16	65.83	68.50	66.91
	BILSTM-ATT-G	74.37	69.90	80.38	70.78	72.70	70.84
	RAM	75.01	70.51	79.79	68.86	71.88	70.33

- The proposed TNet-LF and TNet-AS consistently outperform the baselines.
 - TNet variants perform well on both user reviews (LAPTOP & REST) and twitter posts (TWITTER).

Ablation Experiment

	Models	LAPTOP		REST		TWITTER	
	ivioueis	ACC	Macro-F1	ACC	Macro-F1	ACC	Macro-F1
TNet variants	TNet-LF	76.01 ^{†,‡}	71.47 ^{†,‡}	80.79 ^{†,‡}	70.84 [‡]	74.68 ^{†,‡}	73.36 ^{†,‡}
	TNet-AS	$76.54^{\dagger,\ddagger}$	$71.75^{\dagger,\ddagger}$	$80.69^{\dagger,\ddagger}$	$71.27^{\dagger,\ddagger}$	$74.97^{\dagger,\ddagger}$	$73.60^{\dagger,\ddagger}$
CPT Alternatives	LSTM-ATT-CNN	73.37	68.03	78.95	68.71	70.09	67.68
	LSTM-FC-CNN-LF	75.59	70.60	80.41	70.23	73.70	72.82
	LSTM-FC-CNN-AS	75.78	70.72	80.23	70.06	74.28	72.60
Ablated TNet	TNet w/o transformation	73.30	68.25	78.90	65.86	72.10	70.57
	TNet w/o context	73.91	68.87	80.07	69.01	74.51	73.05
	TNet-LF w/o position	75.13	70.63	79.86	69.69	73.83	72.49
	TNet-AS w/o position	75.27	70.03	79.79	69.78	73.84	72.47

- Using attention (ATT) and fully-connected layer (FC) to replace CPT layer makes the performance worse.
- Each component / element in TNet contributes to the overall performance improvement.

Impact of CPT layer number

We conduct experiments on the held-out training data of LAPTOP and vary layer number L from 2 to 10, increased by 2.

• Increasing the layer number can increase the performance but the results will go down when $L \ge 4$ due to the limited training data.

Case Study

Sentence	BILSTM-ATT-G	RAM	TNet-LF	TNet-AS
1. Air has higher [resolution] but the [fonts] are small.	(N ^x , N)	(N ^x , N)	(P, N)	(P, N)
2. Great [food] _P but the [service] _N is dreadful .	(P, N)	(P, N)	(P, N)	(P, N)
3. Sure it 's not light and slim but the [features] p make up for it 100%.	N×	Nx	Р	Р
4. Not only did they have amazing , [sandwiches] p , [soup] p , [pizza] p etc , but their [homemade sorbets] p are out of this world!	(P, O ^x , O ^x , P)	(P, P, O ^x , P)	(P, P, P, P)	(P, P, P, P)
5. [startup times] N are incredibly long : over two minutes .	Px	Px	N	N
6. I am pleased with the fast [log on] _P , speedy [wifi connection] _P and the long [battery life] _P (> 6 hrs).	(P, P, P)	(P, P, P)	(P, P, P)	(P, P, P)
7. The [staff] _N should be a bit more friendly .	Px	Px	Px	Px

- Our TNet can make correct predictions when the opinion is target specific, e.g., "long" in the 5th and the 6th example.
- TNet can capture the salient features for target sentiment prediction accurately.

Summary

- Our TNet employs CNN as feature extractor to detect the salient features, avoiding introducing the noises.
- Armed with target-specific word representation and proximity information, the TNet variants can predict the sentiment w.r.t. the target more accurately.

References:

- [1] P. Chen, Z. Sun, L. Bing, and W. Yang. Recurrent attention network on memory for aspect sentiment analysis. In *Proceedings of EMNLP*, pages 463-472, 2017.
- [2] L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, and K. Xu. Adaptive recursive neural network for target-dependent twitter sentiment classification. In *Proceedings of ACL*, pages 49–54, 2014.
- [3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In *Proceedings of CVPR*, pages 770–778, 2016.
- [4] S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent convolutional neural networks for text classification. In *Proceedings of AAAI*, volume 333, pages 2267-2273, 2015.
- [5] B. Liu. Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1):1–167, 2012.
- [6] J. Liu and Y. Zhang. Attention modeling for targeted sentiment. In Proceedings of EACL, pages 572-577, 2017.
- D. Ma, S. Li, X. Zhang, and H. Wang. Interactive attention networks for aspect-level sentiment classification. In *Proceedings of IJCAI*, pages 4068-4074, 2017.

- [8] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. *arXiv preprint arXiv:1505.00387*, 2015.
- [9] D. Tang, B. Qin, X. Feng, and T. Liu. Effective lstms for target-dependent sentiment classification. In *Proceedings of COLING*, pages 3298–3307, 2016a.
- [10] D. Tang, B. Qin, and T. Liu. Aspect level sentiment classification with deep memory network. In *Proceedings of EMNLP*, pages 214–224, 2016b.
- [11] Y. Tay, A. T. Luu, and S. C. Hui. Learning to attend via word-aspect associative fusion for aspect-based sentiment analysis. *arXiv preprint* arXiv:1712.05403, 2017.
- [12] Y. Wang, M. Huang, x. zhu, and L. Zhao. Attention-based lstm for aspect-level sentiment classification. In *Proceedings of EMNLP*, pages 606–615, 2016.
- [13] M. Yang, W. Tu, J. Wang, F. Xu, and X. Chen. Attention based lstm for target dependent sentiment classification. In *Proceedings of AAAI*, pages 5013–5014, 2017.

[14] M. Zhang, Y. Zhang, and D.-T. Vo. Gated neural networks for targeted sentiment analysis. In *Proceedings of AAAI*, pages 3087–3093, 2016.