d by axis controller design. '

Open Loop 1. isd $G_c(s)$ $R_s + s \circ l_s$ Open Loop T. f., $G_c(s) = G_c(s)$.

Rest $S \circ l_s$ Final open loop T. f. we want is of form $G_c(s) = \frac{1}{1+st}$ $= \frac{1}{1+st} = G_c(s) \cdot \frac{1}{R_s + s \circ l_s}$ $= \frac{1}{1+st} = G_c(s) \cdot \frac{1}{R_s + s \circ l_s}$ $= \frac{1}{1+st} = \frac{1}{1+st}$

S-domain to Z-domain:-

$$G_{c}(S) = \frac{R_{c} + s - L_{s}}{1 + sT}$$

2) pole of $G_{c}(S)$ at $S = -\frac{1}{2} = \frac{1}{2}$ pole of $\frac{Z}{G_{c}(S)} = \frac{Z}{G_{c}(S)} = \frac{Z}{G_{c}(S)}$

2) pole of $G_{c}(S)$ at $S = -\frac{R_{s}}{2} = \frac{1}{2}$ at $Z = e^{-\frac{1}{2}T}$

2) $G_{c}(Z) = \frac{1}{2} = \frac{1}{$

