Name: _____

GCSE (1 - 9)

Iteration

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- · Check your answers if you have time at the end

1. The equation $x^3 + 7x - 2 = 55$ has a solution between 3 and 4.

Use trial and improvement to find this solution. Give your answer to 1 decimal place.

2. Use trial and improvement to solve $x^3 - x^2 = 85$ Give your answer to 1 decimal place. 3. Use trial and improvement to solve $x^3 + 5x = 70$ Give your answer to 1 decimal place.

4.	An approximate solution to an equation is found using this		
iterative process:			

$$x_{n+1} = \sqrt{(x_n) + 10}$$
 and $x_1 = 3$

a) Work out the values of x_2 and x_3

b) Work out the solution to 3 decimal places

5.	An approximate solution to an equation is found using the	his	
iterative process:			

$$x_{n+1} = \frac{(x_n)^3 - 3}{8}$$
 and $x_1 = -1$

a) Work out the values of x_2 and x_3

b) Work out the solution to 6 decimal places

6. A sequence is defined by the term-to-term rule: $U_{n+1} = U_n^2 - 8U_n + 17$	
a) Given that $U_1 = 4$, find U_2 and U_3	
	(-)
••••••••••••	(2)
b) Given instead that U_1 =2, find U_2 , U_3 and U_{100}	

..... (3)

.....(2)

(b) Show that the equation $x^3 + 4x = 1$ can be rearranged to give $x = \frac{1}{4} - \frac{x^3}{4}$

.....(1)

(c) Starting with $x_0 = 0$, use the iteration formula $x_{n+1} = \frac{1}{4} - \frac{x_n^3}{4}$ twice, to find an estimate to the solution of $x^3 + 4x = 1$

.....(3)