Chapter 5 (Answer to Excercises)

5.1.1 (a)
$$e^{-2}$$
; (b) e^{-2} .

5.1.2
$$(p_k/p_{k-1}) = \lambda/k$$
, $k = 0, 1, ...$

5.1.3
$$\Pr\{X = k | N = n\} = \binom{n}{k} p^k (1 - p)^{n-k}, \quad p = \frac{\alpha}{\alpha + \beta}.$$

5.1.4 (a)
$$\frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
, $k = 0, 1, ...$;

(b)
$$\Pr\{X(t) = n + k | X(s) = n\} = \frac{[\lambda(t-s)]^k e^{-\lambda(t-s)}}{k!},$$

 $E[X(t)X(s)] = \lambda^2 t s + \lambda s.$

5.1.5
$$Pr\{X = k\} = (1 - p)p^k$$
 for $k = 0, 1, ...$ where $p = 1/(1 + \theta)$.

5.1.6 (a)
$$e^{-12}$$
;

(b) Exponential, parameter
$$\lambda = 3$$
.

5.1.7 (a)
$$2e^{-2}$$
;

(b)
$$\frac{64}{3}e^{-6}$$
;

(c)
$$\left(\frac{6}{2}\right)\left(\frac{1}{3}\right)^2\left(\frac{2}{3}\right)^4$$
;

(d)
$$\frac{32}{3}e^{-4}$$
.

5.1.8 (a)
$$5e^{-2}$$
;

(b)
$$4e^{-4}$$
;

(c)
$$\frac{1-3e^{-2}}{1-e^{-2}}$$
.

- **5.2.2** Law of rare events, e.g., (a) Many potential customers who could enter store, small probability for each to actually enter.
- **5.2.3** The number of distinct pairs is large; the probability of any particular pair being in sample is small.
- **5.2.4** Pr{Three pages error free} $\approx e^{-12}$.

5.3.1
$$e^{-6}$$
.

5.3.2 (a)
$$e^{-6} - e^{-10}$$
;

(b)
$$4e^{-4}$$
.

5.3.3
$$\frac{1}{4}$$
.

5.3.4
$$\binom{5}{2} \left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^3 = \frac{80}{243}$$
.

5.3.5
$$\binom{n}{m} \left(\frac{t}{T}\right)^m \left(1 - \frac{t}{T}\right)^{n-m}, \quad m = 0, 1, \dots, n.$$

5.3.6
$$F(t) = (1 - e^{-\lambda t})^n$$
.

5.3.7
$$t + \frac{2}{\lambda}$$
.

5.3.8
$$\binom{12}{5} \left(\frac{1}{2}\right)^5 \left(\frac{1}{2}\right)^7$$
.

5.3.9
$$\Pr\{W_r \le t\} = 1 - \sum_{k=0}^{r-1} \frac{(\lambda t)^k e^{-\lambda t}}{k!}.$$

5.4.1
$$\frac{1}{n+1}$$
.

5.4.2
$$\frac{1}{4}$$
.

5.4.3
$$\frac{5}{2}$$
.

$$5.4.5 \left[1 - \frac{1 - e^{-\alpha}}{\alpha}\right]^5.$$

5.6.2 Mean =
$$\frac{\lambda t}{\theta}$$
, Variance = $\frac{2\lambda t}{\theta^2}$.

5.6.3
$$\frac{e^{-\lambda G(z)t} - e^{-\lambda t}}{1 - e^{-\lambda t}}$$
.

5.6.4 (a)
$$\frac{1}{9}$$
;

(b)
$$\frac{11}{27}$$
.

5.6.5
$$\Pr\{M(t) = k\} = \frac{\Lambda(t)^k e^{-\Lambda(t)}}{k!}$$
, where $\Lambda(t) = \lambda \int_0^t [1 - G(u)] du$.