1.1 Matematik Analizin Bazı Tanım ve Teoremleri

Tanım 1.1: f reel sayıların X kümesinde tanımlı bir fonksiyon ve $x_0 \in X$ olmak üzere, eğer verilen herhangi bir $\epsilon > 0$ reel sayısı için bir $\delta > 0$ reel sayısı varsa, öyle ki

$$x \in X$$
 ve $0 < |x - x_0| < \delta$ için $|f(x) - L| < \epsilon$

sağlansın. Bu durumda f fonksiyonu x_0 noktasında L limitine sahiptir denir ve

$$\lim_{x \to x_0} f(x) = L$$

ile gösterilir.

Tanım 1.2: f reel sayıların X kümesinde tanımlı bir fonksiyon ve $x_0 \in X$ olmak üzere, eğer

$$\lim_{x \to x_0} f(x) = f(x_0)$$

sağlanıyorsa f fonksiyonu x_0 noktasında süreklidir denir.

Eğer f, X kümesinin her noktasında sürekli ise, f X kümesinde süreklidir deriz. X kümesinde sürekli fonksiyonlar kümesini C(X) ile göstereceğiz. Eğer X reel eksen üzerinde bir aralık ise, örneğin [a,b] aralığı ise gösterilim C[a,b] şeklinde olacaktır.

Tanım 1.3: $\{x_n\}_{n=1}^{\infty}$ reel ya da kompleks sayıların sonsuz bir dizisi olsun. Eğer herhangi bir $\epsilon > 0$ reel sayısı için bir $N(\epsilon)$ pozitif tamsayısı varsa, öyle ki

$$n > N(\in)$$
 için $|x_n - x| < \in$

sağlansın. Bu durumda $\{x_n\}_{n=1}^{\infty}$ dizisi x limitine sahiptir denir ve

$$\lim_{n\to\infty}x_n=x$$

ile gösterilir. Yani $\{x_n\}_{n=1}^{\infty}$ dizisi x' e yakınsar.

Teorem 1.4: f reel sayıların X kümesinde tanımlı bir fonksiyon ve $x_0 \in X$ olmak üzere, aşağıdaki ifadeler eşdeğerdir:

- a. f, x_0 noktasında süreklidir.
- b. Eğer $\{x_n\}_{n=1}^{\infty} X$ kümesinde x_0 'a yakınsayan bir dizi ise, $\lim_{n\to\infty} f(x_n) = f(x_0)$ dır.

Sayısal yöntemleri ele alırken incelediğimiz fonksiyonlar en azından süreklilik özelliğini sağlayan fonksiyonlar olacaktır. Bu özellik daha tahmin edilebilir sonuçlar elde etmemize olanak sağlar.

Tanım 1.5: f, x_0 noktasını içeren bir açık aralıkta tanımlı fonksiyon olsun. Eğer aşağıdaki

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

limit mevcut ise f, x_0 noktasında türevlenebilirdir ve bu türev $f'(x_0)$ ile gösterilir.

Eğer f, bir X kümesinin her noktasında türevlenebilir ise, f X kümesinde türevlenebilirdir deriz.

Teorem 1.6: Eğer f x_0 noktasında türevlenebilir ise, f x_0 noktasında süreklidir.

Bir X kümesinde, n ' inci mertebeden sürekli türeve sahip fonksiyonlar kümesini $C^n(X)$ ile, tüm mertebelerden sürekli türevlere sahip fonksiyonlar kümesini ise $C^{\infty}(X)$ ile göstereceğiz. Verilen küme bir aralık olursa burada X 'in yerini verilen aralık alacaktır.

Rolle Teoremi: Farz edelim ki $f \in C[a, b]$, (a, b) aralığında türevlenebilir bir fonksiyon olsun. Eğer f(a) = f(b) ise, (a, b) aralığında öyle bir c noktası vardır ki f'(c) = 0 dır.

Ortalama Değer Teoremi: Eğer $f \in C[a, b]$, (a, b) aralığında türevlenebilir bir fonksiyon ise, (a, b) aralığında öyle bir c noktası vardır ki

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

dır.

Uçdeğer Teoremi: Eğer $f \in C[a,b]$ ise, öyle $c_1, c_2 \in [a,b]$ noktaları vardır ki, her $x \in [a,b]$ için $f(c_1) \le f(x) \le f(c_2)$ sağlanır. Ek olarak eğer f, (a,b) aralığında türevlenebilir bir fonksiyon ise c_1, c_2 noktaları ya [a,b] aralığının uç noktalarından biridir ya da f' nün sıfır olduğu noktalardan biridir.

Genelleştirilmiş Rolle Teoremi: Farz edelim ki, $f \in C[a,b]$, (a,b) aralığında n kere türevlenebilir bir fonksiyon olsun. Eğer f(x), [a,b] nin n+1 farklı x_0, x_1, \dots, x_n noktasında sıfır ise, (a,b) de öyle bir c noktası vardır ki $f^{(n)}(c) = 0$ dır.

Ara Değer Teoremi: Eğer $f \in C[a,b]$ ve K f(a) ile f(b) arasında herhangi bir sayı ise, (a,b) de öyle bir c noktası vardır ki f(c) = K dır.

Taylor Teoremi: Farz edelim ki $f \in C^n[a, b]$, $f^{(n+1)}[a, b]$ 'de mevcut ve $x_0 \in [a, b]$ olsun. Bu durumda her $x \in [a, b]$ için x_0 ile x arasında öyle bir $\xi(x)$ sayısı vardır ki,

$$f(x) = P_n(x) + R_n(x)$$

dır. Burada

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

ve

$$R_n(x) = \frac{f^{(n+1)}[\xi(x)]}{(n+1)!} (x - x_0)^{n+1}$$

şeklindedir.

 $P_n(x)$, f 'in x_0 noktası civarındaki n'inci mertebeden Taylor polinomu, $R_n(x)$ ise kalan terim olarak adlandırılır.

Örnek: cos(0.01) değerine yaklaşmak için f(x) = cosx fonksiyonunun $x_0 = 0$ noktası civarındaki,

- a) 2. Mertebeden Taylor polinomunu
- b) 3. Mertebeden Taylor polinomunu
- c) $\int_0^{0.1} \cos x \, dx$ integraline yaklaşmak içinse 3. Mertebe Taylor polinomu ve kalan terimini kullanınız.

Cevap: $f \in C^{\infty}(R)$ olduğundan herhangi bir $n \ge 0$ için Taylor teoremi uygulanabilir. Bu durumda,

$$f'(x) = -\sin x$$
 , $f''(x) = -\cos x$, $f'''(x) = \sin x$, $f^{(4)}(x) = \cos x$

ve

$$f(0) = 1$$
 , $f'(0) = 0$, $f''(x) = -1$, $f'''(0) = 0$

olduğundan,

a) $f(x) = cosx = P_2(x) + R_2(x) = 1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 \sin[\xi(x)], \xi(x)$ 0 ile *x* arasında bir sayıdır. x = 0.01 için,

$$cos(0.01) = 1 - \frac{1}{2}(0.01)^2 + \frac{1}{6}(0.01)^3 \sin[\xi(x)]$$
$$= 0.99995 + 0.1\overline{6} \times 10^{-6} \sin[\xi(x)]$$

burada $0 < \xi(x) < 0.01$ dır. Diğer taraftan $|sinx| \le |x|$ olduğundan $|sin\xi(x)| \le 0.01$ dir. Dolayısıyla,

$$|\cos(0.01) - 0.99995| \le 0.1\overline{6} \times 10^{-8}$$

elde ederiz. Sağ taraf yaptığımız yaklaşım için hata sınırını vermektedir.

b) $f(x) = cosx = P_3(x) + R_3(x) = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 \cos[\xi(x)]$, $\xi(x) = 0$ ile x arasında bir sayıdır. x = 0.01 için,

$$cos(0.01) = 1 - \frac{1}{2}(0.01)^2 + \frac{1}{24}(0.01)^4 \cos[\xi(x)]$$
$$= 0.99995 + 4.1\overline{6} \times 10^{-10} \cos[\xi(x)]$$

burada $0 < \xi(x) < 0.01$ dır. Diğer taraftan $|\cos \xi(x)| \le 1$ olduğundan,

$$|\cos(0.01) - 0.99995| \le 4.1\overline{6} \times 10^{-10}$$

elde ederiz. Sağ taraf yaptığımız yaklaşım için hata sınırını vermektedir.

c) 3. Taylor polinomunu kullanırsak,

$$\int_{0}^{0.1} \cos x \, dx = \int_{0}^{0.1} \left(1 - \frac{1}{2}x^{2}\right) dx + \frac{1}{24} \int_{0}^{0.1} x^{4} \cos \xi(x) \, dx$$
$$= 0.1 - \frac{1}{6}(0.1)^{3} + \frac{1}{24} \int_{0}^{0.1} x^{4} \cos \xi(x) \, dx$$

ve sonuç olarak,

$$\left| \int_{0}^{0.1} \cos x \, dx - 0.0998\overline{3} \right| \le \frac{1}{24} \int_{0}^{0.1} x^{4} |\cos \xi(x)| \, dx = 8.\,\overline{3} \times 10^{-8}$$

buluruz. İntegralin gerçek değeri ise,

$$\int_{0}^{0.1} \cos x \, dx = \sin x \Big|_{0}^{0.1} \approx 0.099833417$$

dır. Yani gerçek hata 8.332×10^{-8} olup bizim hata sınırımız içerisindedir.