A Runge-Kutta-Fehlberg solver using traits and concepts (part I)

Alberto Artoni

19/04/2024

Runge Kutta methods

Consider an ODE of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t, y).$$

Given the Butcher coefficients b_i , a_{ij} , c_i , a generic Runge Kutta method with p steps has the following update rule:

$$u_{n+1} = u_n + h_n \sum_{i=1}^{p} b_i k_i,$$

where $h_n=t_{n+1}-t_n$, and where $k_i=f\left(t_n+c_ih_n,\ y_n+h_n\sum_{j=1}^{i-1}a_{ij}k_j\right)$.

1/9

Runge Kutta Fehlberg (RK45)

RKF methods try to adaptively choose the step size. The strategy computes a low order y_{n+1}^* approximation and a high order approximation y_{n+1} .

If the difference between the two approximations is too large, we decrease the step size.

If the difference between the two step size is too small, we increase the step size.

RKF - The Algorithm

Given the Butcher coefficients b_i, b_i^*, c_i, a_{ij} , and by denoting $h_n = t_{n+1} - t_n$, the RKF algorithm reads:

- 1. Compute $k_i = f(t_n + c_i h_n, y_n + h_n \sum_{j=1}^{i-1} a_{ij} k_j)$.
- 2. Compute the high-order solution $y_{n+1} = y_n + h_n \sum_{i=1}^p b_i k_i$.
- 3. Compute the low-order solution $y_{n+1}^* = y_n + h_n \sum_{i=1}^p b_i^* k_i$.
- 4. Compute the error $\varepsilon_{n+1}=y_{n+1}-y_{n+1}^*=h_n\sum_{i=1}^p(b_i-b_i^*)k_i$.
- 5. Adapt the step size $h_{n+1} = \tau_n h_n$, where τ_n is a prescribed reduction (< 1)/expansion (> 1) factor depending on whether ε_{n+1} is larger or smaller than a prescribed tolerance.

RKF solver

This exercise (a modified version of Examples/src/RKFSolver) is about a set of tools that implements embedded Runge-Kutta-Fehlberg (explicit) methods to solve non-linear scalar and vector Ordinary Differential Equations, based on the Eigen library.

Exercise: RKF solver

The code structure is the following:

- ButcherRKF contains the definition of the Butcher tableaux for some common RKF methods.
- RKFTraits defines the basic structure that enables to bind the type of the equation(s) to be solved (i.e. scalar or vector).
- ▶ RKFResult is a data structure containing the output of the RKF solver.
- RKF implements a generic RKF solver interface, filling a proper RKFResult object.

Exercise: RKF solver

Starting from the provided solution sketch:

- 1. Implement the concept(s) defining a scalar and a vector in RKFTraits.hpp.
- 2. Implement the RKF::RKFstep method, performing just one timestep of the RKF method.
- 3. Implement the RKF::solve() time-advancing method, without error correction.
- 4. Use the just implemented solver to solve the model problem and the Van der Pol oscillator problem defined in the main.cpp file.
- 5. Include error correction into the solver and compare the results.

Motivations: why do we employ concepts?

Using concepts allows you to write more expressive and robust code by specifying requirements on template parameters.

- ▶ Improved Readability: Concepts help make your code more readable by explicitly stating the requirements of template parameters.
- Compile-Time Constraints: Concepts allow you to enforce constraints on template arguments at compile time.

Test the code to solve following problem:

$$\frac{dy}{dt} = f, (1)$$

where

- ▶ Source term: f = -10y.
- ▶ Analytical solution: $y = \exp(-10t)$
- $t_0 = 0.$
- $t_f = 10.$
- $y_0 = 1$.

For the numerical scheme, use $h_0=0.2$ and $\epsilon=10^{-4}$.

Additional work

Maybe you want to extend the class to include Diagonally Implicit Runge Kutta Methods (DIRK), where the A matrix of the Butcher array satisfies $A_{ij}=0$ if j < i, but A_{ii} may be different from 0.

In this case, at each stage we need to solve a non-linear system. Try to investigate the changes needed to implement a DIRK starting from the already implemented RKF solution.

A possible implementation is in Examples/src/RKFSolver/.