Contents

1	Aliasing		2
	1.1	Definitions	2
	1.2	Aliasing Context	2
2	E _{mon}		5
	rra	ming	Э
	2.1	Definitions	5
	2.2	Deciding Framing	5

1 Aliasing

1.1 Definitions

An **object variable** is one of the following:

- a class instance variable i.e. a variable v such that v:C for some class C.
- a class instance field reference i.e. a field reference e.f where e.f:C for some class C.

Let \mathcal{O} be a set of object variables. An $O \subset \mathcal{O}$ aliases if and only if each $o \in O$ refers to the same memory in the heap as each other, written propositionally as

$$\forall o, o' \in O : o = o' \iff \text{aliases}(O)$$

An $O \subset \mathcal{O}$ non-aliases if and only if each $o \in O$ refers to separate memory in the heap as each other, written propositionally as

$$\forall o, \tilde{o} : o \neq \tilde{o} \iff \mathsf{non-aliases}(O)$$

1.2 Aliasing Context

Let ϕ be a formula. The **aliasing context** \mathcal{A} of ϕ is a tree of set of aliasing proposition about aliasing of object variables that appear in ϕ . \mathcal{A} needs to be a tree because the conditional sub-formulas that may appear in ϕ allow for branching aliasing contexts not expressible flatly at the top level. Each node in the tree corresponds to a set of aliasing propositions, and each branch refers to a branch of a unique conditional in ϕ . The parts of the tree are labeled in such a way that modularly allows a specified sub-formula of ϕ to be matched to the unique aliasing sub-context that corresponds to it.

For example, consider the following formula:

$$\phi := (o_1 = o_2) * (\texttt{if}\ (b_1)\ \texttt{then}\ ((o_1 \neq o_3) * (\texttt{if}\ (b_2)\ \texttt{then}\ (o_1 = o_4)\ \texttt{else}\ (b_3)))\ \texttt{else}\ (o_1 = o_3)) * (o_1 = o_4)$$

 ϕ has a formula-structure represented by the following tree:

The formula-structure tree for ϕ corresponds node-for-node and edge-for-edge to the following aliasing context:

where a node inherits all the aliasing assertions of its parents. So for example, the aliasing context for the sub-formula $(o_1 = o_4)$ of ϕ is:

$$\mathcal{A}_{\phi}(o_1=o_4) := \left\{ \mathsf{aliased}\left\{o_1, o_2, o_4\right\}, \sim \mathsf{aliased}\left\{o_1, o_3\right\}, \sim \mathsf{aliased}\left\{o_2, o_3\right\}, \sim \mathsf{aliased}\left\{o_3, o_4\right\} \right\}$$

More generally, for ϕ a formula and ϕ' a sub-formula of ϕ , write $\mathcal{A}_{\phi}(\phi')$ as the total aliasing context of ϕ' , including inheritance from its place in the aliasing context of ϕ . Usually $\mathcal{A}_{\phi}(\phi')$ is abbreviated to $\mathcal{A}(\phi')$ when the top level formula ϕ is implicit.

2 Framing

2.1 Definitions

For framing, a formula is considered inside a **permission context**, a set of permissions, where a **permission** π is to do one of the following:

- to reference e.f, written accessed(e.f).
- to assume $\alpha_C(\overline{e})$, written assumed $(\alpha_C(\overline{e}))$. This allows the a single unrolling of $\alpha_C(\overline{e})$.

Let ϕ be a formula. ϕ may **require** a permission π . For example, the formula e.f = 1 requires accessed(e.f), because it references e.f. The set of all permissions that ϕ requires is called the **requirements** of ϕ . ϕ may also **grant** a permission π . For example, the formula acc(e.f) grants the permission accessed(e.f).

Altogether, ϕ is **framed** by a set of permissions Π if all permissions required by ϕ are either in Π or granted by ϕ . The proposition that Π frames ϕ is written

$$\Pi \vDash_I \phi$$

Of course, ϕ may grant some of the permissions it requires but not all. The set of permissions that ϕ requires but does not grant is called the **footprint** of ϕ . The footprint of ϕ is written

 $|\phi|$

Finally, a ϕ is called **self-framing** if and only if for any set of permissions Π , $\Pi \vDash_I \phi$. The proposition that ϕ is self-framing is written

$$\vdash_{\mathsf{frm}I} \phi$$

Note that $\vdash_{\mathsf{frm}I} \phi \iff \emptyset \vDash_I \phi$, in other words ϕ is self-framing if and only if it grants all the permissions it requires.

2.2 Deciding Framing

Deciding $\Pi \vDash_I \phi$ must take into account the requirements, granteds, and aliases contained in Π and the sub-formulas of ϕ . The following recursive algorithm decides $\Pi \vDash_I \phi_{root}$, where \mathcal{A} is implicitly assumed to be the top-level aliasing context (where the top-level in this context is the level that ϕ_{root} exists at in the program).

```
\Pi \vDash_I \phi \ := \ \mathsf{match} \ \phi \ \mathsf{with}
                                                                     \mapsto
           e_1 \& \& e_2
           e_1 \mid\mid e_2
                                                                     \mapsto
           e_1 \oplus e_2
                                                                     \mapsto
           x = y
                                                                     \mapsto
           e_1.f_1 = e_2.f_2
                                                                     \mapsto
           e.f \neq e'.f'
                                                                    \mapsto
           e_1 \odot e_2
                                                                     \mapsto
           e.f
                                                                     \mapsto
           \mathtt{acc}(e.f)
                                                                    \mapsto
           \phi_1 * \phi_2
                                                                    \mapsto
           \phi_1 \wedge \phi_2
                                                                     \mapsto
           \alpha_C(e_1,\ldots,e_k)
                                                                    \mapsto
           if e then \phi_1 else \phi_2
           unfolding \alpha_C(e_1,\ldots,e_k) in\phi' \mapsto
```