Author: Liu Jian

Time: 2020-05-16

机器学习皿-计算学习理论

- 1 概念说明
- 2 PAC 可学习的定义
- 3 假设空间有限可分
- 4 假设空间有限不可分
 - 4.1 \mathcal{H} 中所有假设的泛化误差界/ h_S 的泛化误差界
 - 4.2 泛化误差界 + EMR 推导可学习性
- 5 假设空间无限
 - 5.1 增长函数与 VC 维
 - 5.2 Rademacher 复杂度
 - 5.3 算法稳定性

机器学习皿-计算学习理论

参考文献:

- 1. pluskid 机器学习物语(4): PAC Learnability
- 2. Foundations of Machine Learning Mehryar Mohri 2018
- 3. An Introduction to Computational Learning Theory Michael J. Kearns 1994

西瓜书上本章内容晦涩难懂, 且存在很多错误, 建议以参考文献 [2] 为主。

一般情况下,我们这里讨论的都是**二分类的确定性问题**,所谓确定性是指对任意输入 $x\sim\mathcal{D}$,其输出 y 是确定的,我们这里假设由目标概念 $c_{obj}(x)$ 给出,即 $y=c_{obj}(x)$; 更一般的情况是输入输出服从某一联合概率分布: $(x,y)\sim\mathcal{D}$,此时,给定 x 后, y 的值并不确定,服从一定的概率分布。

1 概念说明

1. 泛化误差、经验误差

某个具体函数 $h(\cdot): \mathbb{X} \to \mathbb{Y}$ 的**泛化误差**:

$$R(h) = \mathbb{P}_{oldsymbol{x} \sim \mathcal{D}}(h(oldsymbol{x})
eq y) = \mathbb{E}_{oldsymbol{x} \sim \mathcal{D}}\{\mathbb{I}(h(oldsymbol{x})
eq y)\}$$

其中, $\mathcal D$ 为自变量 x 服从的真实分布;y为 x 的真实标记,由某个未知的映射 $c_{obj}(\cdot)$ 给出,该映射也称目标映射; $\mathbb P_{x\sim\mathcal D}(h(x)\neq y)$ 中 $\mathbb P$ 并不是指 x 的分布,x 分布的自变量显然不能为事件 $h(x)\neq y$,因此这里是指 $h(x)\neq y$ 这一事件发生时对应的 x 的概率之和,但显然这一概率大小依赖于 x 的分布。

分布 $\mathcal D$ 的一个独立同分布采样为 S , 当然我们也会得到 S 中自变量的标记, S 的容量为 N ,则 h 在数据集 S 上的**经验误差**:

$$\hat{R}_S(h) = rac{1}{N} \sum_{i=1}^N \mathbb{I}(h(oldsymbol{x}_i)
eq y_i)$$

我们需要说明的是,下文中,有时候 S 只表示对输入 x 的采样 (西瓜书上称之为示例),对于确定性问题,已知输入,对应标记也就唯一确定了;而有时候 S 还包括标记,即 (x,y) ,需根据具体语境确定。

二者之间的关系: h 经验误差的期望等于泛化误差 $\mathbb{E}_{S\sim\mathcal{D}^N}\{\hat{R}_S(h)\}=R(h)$ 。因此,我们会用经验误差去估计泛化误差,构建泛化误差界。

2. 概念类、假设空间

假设空间 \mathcal{H} : 我们使用某个模型对样本数据进行学习,以确定模型中的待定参数,但实际上这个模型含有未知参数,并不是一个具体的模型,而是代表了一类模型,机器学习或者说算法 \mathcal{L} 做的就是从这一类模型中找到最优的那一个,我们把这一类模型张成的空间称为假设空间 \mathcal{H} 。当 \mathcal{H} 中模型的个数有限时, \mathcal{H} 为**有限假设空间**;当 \mathcal{H} 中模型的个数无限时, \mathcal{H} 为**无限假设空间**。

概念类 \mathcal{C} : 前面我们提到目标概念 (target concept) $c_{obj}(\cdot)$: $\mathbb{X} \to \mathbb{Y}$ 是一个函数,给出了输入空间 \mathbb{X} 中所有点的真实标记,即 $c(\boldsymbol{x}) = y$, y 为 \boldsymbol{x} 的真实标记。但是,和假设空间类似,我们只知道目标概念 c_{obj} 属于某一个模型空间,但具体是其中的哪一个模型我们并不知道,这一模型空间被称为概念类 \mathcal{C} 。

当 $c_{obj}\in\mathcal{H}$ 时,也就是说 \mathcal{H} 存在一个模型能将所有的自变量 \boldsymbol{x} 正确地映射到其真实标记上,这种情况 称为**可分的** (separable) **或一致的** (consistent); 当 $c_{obj}\notin\mathcal{H}$ 时,为**不可分的** (non-separable) **或不一致的** (non-consistent)。

3. Hoeffding 不等式: 若 $x^{(1)},x^{(2)},\cdots,x^{(n)}$ 为 n 个独立随机变量,且满足 $0\leqslant x^{(i)}\leqslant 1$,则对任意 $\epsilon>0$,有

$$\mathbb{P}\left(rac{1}{n}\sum_{i=1}^n x^{(i)} - rac{1}{n}\sum_{i=1}^n \mathbb{E}\{x^{(i)}\} \geqslant \epsilon
ight) \leqslant \exp\left(-2n\epsilon^2
ight) \ \mathbb{P}\left(\left|rac{1}{n}\sum_{i=1}^n x^{(i)} - rac{1}{n}\sum_{i=1}^n \mathbb{E}\{x^{(i)}\}
ight| \geqslant \epsilon
ight) \leqslant 2\exp\left(-2n\epsilon^2
ight)$$

4. **机器学习的过程就是**: 算法 $\mathcal L$ 根据数据集 S 从 $\mathcal H$ 中返回一个模型,记为 h_S 。可以看到, h_S 除了依赖于数据集 S 还依赖于算法 $\mathcal L$,但 PAC 讨论的是问题的可学习性,并不依赖于具体的算法,因此为了简便起见,我们在 h_S 中忽略算法标记 $\mathcal L$,即不使用类似于 $h_{S,\mathcal L}$ 的标记。

可以看到,对于不同的采样 S ,算法输出的假设 h_S 并不固定,因此, h_S 而是一个随机变量。前面我们说,对于一个给定的假设 (a fixed hypothesis) h ,我们有 $\mathbb{E}_{S\sim\mathcal{D}^N}\{\hat{R}_S(h)\}=R(h)$,但对于随机假设 h_S , $R(h_S)$ 也是一个随机变量,而 $\mathbb{E}_{S\sim\mathcal{D}^N}\{\hat{R}_S(h_S)\}$ 是一个常数,二者显然不会相等,即 $\mathbb{E}_{S\sim\mathcal{D}^N}\{\hat{R}_S(h_S)\}\neq R(h_S)$,故对于 h_S 不能直接使用 Hoeffding 不等式。考虑到假设空间 \mathcal{H} 中的所有假设都有可能成为 h_S ,我们可以看到,在下文中,为了得到 h_S 的泛化误差界,我们在一定概率保证下,基于 Hoeffding 不等式推得了 \mathcal{H} 中所有假设的泛化误差界。

2 PAC 可学习的定义

PAC 可学习的定义:

A concept class $\mathcal C$ is said to be **PAC-learnable** if there exists an algorithm $\mathcal L$ and a polynomial function $\operatorname{poly}(\cdot;\cdot;\cdot;\cdot)$ such that for any $\epsilon>0$ and $\delta>0$, for all distributions $\mathcal D$ on $\mathbb X$ and for any target concept $c\in\mathcal C$, the following holds for any sample size $N\geqslant\operatorname{poly}(1/\epsilon;1/\delta;\operatorname{size}(\boldsymbol x);\operatorname{size}(c))$:

$$\mathbb{P}_{S \sim \mathcal{D}^N}(R(h_S) \leqslant \epsilon) \geqslant 1 - \delta$$

If \mathcal{L} further runs in $\operatorname{poly}(1/\epsilon; 1/\delta; \operatorname{size}(\boldsymbol{x}); \operatorname{size}(c))$, then \mathcal{C} is said to be **efficiently PAC-learnable**. When such an algorithm \mathcal{L} exists, it is called **a PAC-learning algorithm for** \mathcal{C} .

如果存在一个算法 $\mathcal L$ 和多项式函数 $\operatorname{poly}(\cdot;\cdot;\cdot;\cdot)$,使得对输入空间 $\mathbb X$ 上的任意分布 $\mathcal D$ 和目标概念 c_{obj} 为概念类 $\mathcal C$ 中的任何一个概念 c 时,当样本 $N \geqslant \operatorname{poly}(1/\epsilon;1/\delta;\operatorname{size}(\boldsymbol x);\operatorname{size}(\boldsymbol c))$,算法 $\mathcal L$ 在样本 S 上所学得模型的泛化误差小于任意给定 $\epsilon > 0$ 的概率尽可能大,不低于 $1-\delta$,其中 δ 为任意给定的置信度:

$$\mathbb{P}_{S \sim \mathcal{D}^N}(R(h_S) \leqslant \epsilon) \geqslant 1 - \delta$$

那么我们就说**概念类** \mathcal{C} **是 PAC 可学习的**,进一步地,若这个算法的运行时间也是多项式时间 $\operatorname{poly}(1/\epsilon;1/\delta;\operatorname{size}(x);\operatorname{size}(c))$,那么概念类 \mathcal{C} 为高效 PAC 可学习的,这样的算法 \mathcal{L} 被称为概念类 \mathcal{C} 的 PAC 学习算法。

- PAC 研究的是概念类 $\mathcal C$ 的可学习性,也就是说不论目标概念 c_{obj} 为 $\mathcal C$ 中的哪一个概念,是否存在一个算法均能"很好地"对其进行学习。注意,PAC 关心的是算法的存在性,并不关心这个算法具体是什么;
- "很好地学习"意味着当样本数量也就是样本复杂度 (sample complexity) $N \geqslant \operatorname{poly}(1/\epsilon; 1/\delta; \operatorname{size}(\boldsymbol{x}); \operatorname{size}(c))$ 时,会以很大的概率 $\geqslant 1-\delta$ 学得泛化误差足够小 $\leqslant \epsilon$ 的模型;
- $\operatorname{size}(\boldsymbol{x})$ 表示输入 \boldsymbol{x} 的复杂度,比如 \boldsymbol{x} 的维度 n; 而 $\operatorname{size}(c)$ 表示概念类 \mathcal{C} 中概念的最大复杂度; 当考虑运行时间时, $\operatorname{size}(\boldsymbol{x})$, $\operatorname{size}(c)$ 就为对应的处理时间,比如 $\operatorname{size}(c)$ 就表示概念类 \mathcal{C} 中的概念 c 输出一个样本标记所花的最大的时间。参考文献 [2] 中给出了两个学习问题,其目标概念是等价的,但表示形式不同,即对于相同输入,输出的标记相同,但计算输出所用时间不同,由此,虽然它们都是 PAC 可学习的,但一个是高效可学习的,一个则不是高效可学习的。可以看到,PAC 可学习性考察的是样本复杂度,而高效 PAC 可学习性还需进一步考察运行时间,这二者是不同的;
- 算法分析中,我们一般考察的是事件复杂度 (运行时间) 和空间复杂度 (占用内存),而 PAC 更关注样本的复杂度 N 。

我们可以根据假设空间 ${\cal H}$ 是否有限,目标概念 c_{obj} 是否属于假设空间 ${\cal H}$ 即是否可分,分情况讨论 PAC 可学习性:

• 不可分时 $c_{obj} \notin \mathcal{H}$,前面关于 PAC 学习的定义不再适用,比如,我们无法在有限的假设假设空间 \mathcal{H} 中找到泛化误差无限小或为 0 的假设。此外,对于非确定性问题即 $(\boldsymbol{x},y) \sim \mathcal{D}$,泛化误差也不可能达到 0 。但我们可以放宽条件,试图去寻找假设空间中泛化误差最小的假设而不是泛化误差为 0 的假设。由此,我们可以对 PAC 学习的定义进行推广,引入了**不可知 PAC 学习** (agnostic PAC learning),**其定义如下**:

Let \mathcal{H} be a hypothesis set. \mathcal{L} is an agnostic PAC-learning algorithm if there exists a polynomial function $\operatorname{poly}(\cdot;\cdot;\cdot;\cdot)$ such that for any $\epsilon>0$ and $\delta>0$, for all distributions \mathcal{D} over $\mathbb{X}\times\mathbb{Y}$, the following holds for any sample size $N\geqslant\operatorname{poly}(1/\epsilon;1/\delta;\operatorname{size}(\boldsymbol{x});\operatorname{size}(c))$:

$$\mathbb{P}_{S \sim \mathcal{D}^N} \left(R(h_S) - \min_{h \in \mathcal{H}} R(h) \leqslant \epsilon
ight) \geqslant 1 - \delta$$

If \mathcal{L} further runs in $\operatorname{poly}(1/\epsilon; 1/\delta; \operatorname{size}(\boldsymbol{x}); \operatorname{size}(c))$, then it is said to be an efficient agnostic PAC-learning algorithm.

可以看到 PAC 学习是上述不可知 PAC 学习的特例,此时 $\min_{h\in\mathcal{H}}R(h)=0$ 。因此,对于某个学习问题,我们可以直接讨论其不可知 PAC 可学习性,若是不可知 PAC 可学习的,进一步还有 $c_{obj}\in\mathcal{H}$,则为 PAC 可学习的。不过我们需要说明的是,PAC 可学习针对的是概念类 \mathcal{C} ,即我们会说概念类 \mathcal{C} 是 PAC 可学习的;而不可知 PAC 可学习针对的是假设空间 \mathcal{H} ,即我们会说假设空间 \mathcal{H} 是不可知 PAC 可学习的。虽然有此细微差别,但无妨大局,因此我们常不加区分地使用。

• 假设空间无限时,我们需要引入 VC 维或者 Rademacher 复杂度来衡量假设空间的"大小",更准确地说是假设空间表示能力的大小。

接下来,我们将给出假设空间有限时,可分与不可分这两种情况下的 (不可知) PAC 可学习性的分析,以及假设空间无限时的处理方法。

3 假设空间有限可分

我们指出,有限可分一定是 PAC 可学习的,接下来我们来证明这一结论。

有限可分:假设空间 \mathcal{H} 有限,且 $c_{obj}\in\mathcal{H}$ 。对于这种情况,在训练集 S 上出现标记错误的假设 h 一定不是目标概念 c_{obj} 。因此,我们的可以选择这样一个很简单的**算法,就是排除这些出现错误预测的假设,而只留下那些在训练集** S 上不出错的假设,并任意返回一个作为学得的模型。为了判断这种情况下的 PAC 可学习性,接下来,问题即为推导需要多少样本 N 才能保证通过这种算法所得假设的泛化误差大于 ϵ 的概率小于 δ 。

记 \mathcal{H} 中泛化误差大于 ϵ 的假设组成的集合为 $\mathcal{H}_{\epsilon}=\{h\in\mathcal{H}|R(h)>\epsilon\}$ 。我们并不知道算法会返回经验误差为 0 的假设中的哪一个,但是反过来,我们只需使 \mathcal{H}_{ϵ} 中的假设在样本上表现完美 (即经验误差为 0) 的情况出现的概率尽可能小,小于 δ 即可:

$$\mathbb{P}(\exists h \in \mathcal{H}_{\epsilon}: \hat{R}_{S}(h) = 0) \leqslant \delta$$

而

$$\mathbb{P}(\exists h \in \mathcal{H}_{\epsilon}: \hat{R}_S(h) = 0) = \mathbb{P}\left((\hat{R}_S(h_1) = 0) \lor (\hat{R}_S(h_2) = 0) \lor \dots \lor (\hat{R}_S(h_{|\mathcal{H}_{\epsilon}|}) = 0)\right) \ \leqslant \sum_{h \in \mathcal{H}_{\epsilon}} \mathbb{P}(\hat{R}_S(h) = 0) \leqslant \sum_{h \in \mathcal{H}_{\epsilon}} (1 - \epsilon)^N = |\mathcal{H}_{\epsilon}|(1 - \epsilon)^N \leqslant |\mathcal{H}|(1 - \epsilon)^N \leqslant |\mathcal{H}| \exp\left(-N\epsilon\right)$$

令 $\delta \geqslant |\mathcal{H}| \exp(-N\epsilon)$,解得:

$$N\geqslant rac{1}{\epsilon}igg(\ln|\mathcal{H}|+\lnrac{1}{\delta}igg)$$

可以看到 $rac{1}{\epsilon} \left(\ln |\mathcal{H}| + \ln rac{1}{\delta}
ight)$ 可视为 ϵ, δ 多项式函数,则**有限可分时,一定是 PAC 可学习的**。

最后,我们对算法输出假设 h_S 的泛化误差界进行解读, h_S 的泛化误差

$$R(h_S) \leqslant rac{1}{N} igg(\ln |\mathcal{H}| + \ln rac{1}{\delta} igg)$$

的概率至少为 $1-\delta$ 。可以看到,在一定概率保证下,随着 N 的增大,算法输出假设的泛化误差上界以 O(1/N) 的速率减小,这是一个很可观的收敛速率。此外,为了保证可分性,即 $c_{obj}\in\mathcal{H}$,我们一般会取一个较大的假设空间 \mathcal{H} ,这会使得算法输出假设的泛化误差上界增大,但增大速率是对数的 $\ln |\mathcal{H}|$,并不太大。事实上, $\ln |\mathcal{H}|$ 可视为描述假设空间所需的奈特数。

4 假设空间有限不可分

我们指出,有限不可分一定是不可知 PAC 可学习的,接下来我们来证明这一结论。

有限不可分:假设空间 $\mathcal H$ 有限,但 $c_{obj}
ot\in \mathcal H$ 。我们可以使用遵循经验风险最小化 (empirical risk minimization, EMR) 的算法,算法 $\mathcal L$ 根据样本 S ,返回使经验损失最小的假设:

 $h_S=\min_{h\in\mathcal{H}}R_S(h)$ 。此外,我们无法直接计算不可知 PAC 可学习性定义中涉及到的泛化误差,为此,我们可以先使用经验误差构建泛化误差的界,再结合经验风险最小化进行推导。

4.1 ${\cal H}$ 中所有假设的泛化误差界/ h_S 的泛化误差界

1. 由 Hoeffding 不等式可知,对任意给定的映射 h (并不是指算法输出的映射 h_S ,事实上映射 h 属不属于 $\mathcal H$ 下面的结论都成立,但这里既然我们讨论的是假设空间中的模型,不妨取 $h\in\mathcal H$),其泛化误差 R(h) 和经验误差 $\hat R_S(h)$ 满足如下的关系:

$$\mathbb{P}_{S \sim \mathcal{D}^N}\left(\left|R(h) - \hat{R}_S(h)
ight| \leqslant \epsilon
ight) \geqslant 1 - 2\exp\left(-2N\epsilon^2
ight)$$

令 $\delta = 2 \exp \left(-2N\epsilon^2 \right)$,可知,对任意的 $\delta > 0$,如下关系以不低于 $1 - \delta$ 的概率成立:

$$\left|R(h) - \hat{R}_S(h)
ight| \leqslant \sqrt{rac{\ln{(2/\delta)}}{2N}}$$

用数学语言表示如下:

$$(a) \ \ orall h \in \mathcal{H}, \ \ \mathbb{P}_{S \sim \mathcal{D}^N} \left(\left| R(h) - \hat{R}_S(h)
ight| \leqslant \sqrt{rac{\ln{(2/\delta)}}{2N}}
ight) \geqslant 1 - \delta$$

可以看到,**结论 (a) 在某一概率保证下,基于经验误差给出了** \mathcal{H} **中某个假设的泛化误差界**。 顺便强调一下, N,ϵ,δ 这三个变量的自由度为二,它们间存在关系式 $\delta=(\geqslant)2\exp\left(-2N\epsilon^2\right)$ 。结论 (a) 中概率不等式中只出现了 N,δ ,我们也可以给出只出现 N,ϵ ,或只出现 ϵ,δ 的概率不等式。

2. 在第一步中,我们得到了某个任意给定的假设 (a fixed hypothesis) $h \in \mathcal{H}$ 的泛化误差界。正如前文所述,采样所得样本 S 不同,算法返回的假设 h_S 也可能不同, h_S 是一个随机变量, \mathcal{H} 中的每一个假设都可能被返回。因此,第一步中所得的结论 (a) 是不够的,我们需要基于 Hoeffding 不等式为 \mathcal{H} 中所有假设推导出一个统一的泛化误差界 (a uniform convergence bound),我们首先给出结论:

Let $\mathcal H$ be a finite hypothesis set. Then, for any $\,\delta>0$, with probability at least $\,1-\delta$, the following inequality holds:

$$orall h \in \mathcal{H}, \;\; \left| R(h) - \hat{R}_S(h)
ight| \leqslant \sqrt{rac{\ln |\mathcal{H}| + \ln \left(2/\delta
ight)}{2N}}$$

用数学语言表述如下:

$$egin{aligned} \left(b
ight) \; \mathbb{P}_{S \sim \mathcal{D}^N} \left(orall h \in \mathcal{H}, \; \; \left| R(h) - \hat{R}_S(h)
ight| \leqslant \sqrt{rac{\ln |\mathcal{H}| + \ln \left(2/\delta
ight)}{2N}}
ight) \geqslant 1 - \delta \end{aligned}$$

注意这里的结论 (b) 和第一步中结论 (a) 区别,这里的 $\forall h \in \mathcal{H}$ 在概率括号内,而上一步的 $\forall h \in \mathcal{H}$ 在括号外。可以看到,结论 (a) 中的 h 虽然可以任意给定,但在讨论概率时, h 是固定的 (fixed);但 (b) 中讨论概率时, h 并不是固定的,针对的是 \mathcal{H} 中所有的假设。结论 (a) 和 (b) 分别等价于:

$$egin{aligned} orall h \in \mathcal{H}, \;\; \mathbb{P}_{S \sim \mathcal{D}^N} \left(\left| R(h) - \hat{R}_S(h)
ight| \geqslant \sqrt{rac{\ln{(2/\delta)}}{2N}}
ight) \leqslant \delta \ & \mathbb{P}_{S \sim \mathcal{D}^N} \left(\exists h \in \mathcal{H}, \;\; \left| R(h) - \hat{R}_S(h)
ight| \geqslant \sqrt{rac{\ln{|\mathcal{H}|} + \ln{(2/\delta)}}{2N}}
ight) \leqslant \delta \end{aligned}$$

二者的区别类似于掷硬币,一共掷了 N 次 $X=(x_1,\cdots,x_N)$,正面记为 1 反面记为 -1 ,那么对于其中任意一次投掷来说,出现正面的概率为 1/2 ,但所有投掷结果均为正面的概率则为 $(1/2)^N$:

$$egin{aligned} orall x_i \in X, & \mathbb{P}(x_i=1) = rac{1}{2} \ & \mathbb{P}(orall x_i \in X, & x_i=1) = \left(rac{1}{2}
ight)^N \end{aligned}$$

接下来,我们来证明结论(b)。我们的目标是得到如下的关系式:

$$\left\|\mathbb{P}_{S\sim\mathcal{D}^N}\left(orall h\in\mathcal{H},\;\;\left|R(h)-\hat{R}_S(h)
ight|\leqslant\epsilon
ight)\geqslant 1-\delta$$

这等价于:

$$\mathbb{P}_{S\sim\mathcal{D}^N}\left(\exists h\in\mathcal{H},\;\;\left|R(h)-\hat{R}_S(h)
ight|\geqslant\epsilon
ight)\leqslant\delta$$

$$egin{aligned} \mathbb{P}_{S\sim\mathcal{D}^N}\left(\exists h\in\mathcal{H},\;\;\left|R(h)-\hat{R}_S(h)
ight|\geqslant\epsilon
ight) \ &=\mathbb{P}_{S\sim\mathcal{D}^N}\left(\left(\left|R(h_1)-\hat{R}_S(h_1)
ight|\geqslant\epsilon
ight)ee\left(\left|R(h_2)-\hat{R}_S(h_2)
ight|\geqslant\epsilon
ight)ee\cdotsee\left(\left|R(h_{|\mathcal{H}|})-\hat{R}_S(h_{|\mathcal{H}|})
ight|\geqslant\epsilon
ight)
ight) \ &\leqslant\sum_{i=1}^{|\mathcal{H}|}\mathbb{P}_{S\sim\mathcal{D}^N}\left(\left|R(h_i)-\hat{R}_S(h_i)
ight|\geqslant\epsilon
ight)\leqslant2|\mathcal{H}|\exp\left(-2N\epsilon^2
ight) \;\; ext{(Hoeffding 不等式)} \end{aligned}$$

 $\Leftrightarrow \delta = 2|\mathcal{H}|\exp\left(-2N\epsilon^2\right)$ 即可得结论 (b)。可以看到,**结论 (b) 在一定的概率保证下,基于经验误差给** 出了 \mathcal{H} 中所有假设的泛化误差界。这样,虽然算法输出的假设 h_S 是一个随机变量,并不固定,可能为 \mathcal{H} 中任意一个假设,但我们通过对 \mathcal{H} 中所有假设求泛化误差界,还是得到了 h_S 的泛化误差界,即由结论 (b) 可得:

$$\left\|\mathbb{P}_{S\sim\mathcal{D}^N}\left(\left|R(h_S)-\hat{R}_S(h_S)
ight|\leqslant\sqrt{rac{\ln|\mathcal{H}|+\ln\left(2/\delta
ight)}{2N}}
ight)\geqslant1-\delta$$

和有限可分时一样,我们来对 h_S **的泛化误差界进行分析**。在一定的概率保证下,我们有:

$$R(h_S) \leqslant \hat{R}_S(h_S) + O\left(\sqrt{rac{\ln |\mathcal{H}|}{2N}}
ight)$$

此时,泛化误差界随样本容量的增大而减小的速率为 $O(\sqrt{1/N})$ 。因此,**为了达到和有限可分时相同的泛化误差界,样本容量大大增加,需为有限可分时的平方**。事实上,对于 1.3 节有限可分的情况,我们也可以先证明其不可知 PAC 可学习性,再由 $c_{obj}\in\mathcal{H}$ 可得其 PAC 可学习,但显然 1.3 节中所得的泛化误差界更好。此外,对于泛化误差界 $\hat{R}_S(h_S)+O\left(\sqrt{\frac{\ln |\mathcal{H}|}{2N}}\right)$,**在第一项经验误差** $\hat{R}_S(h_S)$ 相等的前

提下,较小 (也就是较简单) 的假设空间意味着更小的泛化误差界,这体现了 Occam's Razor principle,即 All other things being equal, a simpler (smaller) hypothesis set is better.

4.2 泛化误差界 + EMR 推导可学习性

在得到 \mathcal{H} 中所有假设的泛化误差界后,我们就可以结合经验风险最小化进行证明了。

记假设空间中泛化误差最小的假设为 $g=\arg\min_{h\in\mathcal{H}}R(h)$,经验风险最小化算法给出的假设 $h_S=\arg\min_{h\in\mathcal{H}}\hat{R}_S(h)$ 。我们将结论 (b) 表述为便于我们使用的形式:

$$ext{if } N\geqslant rac{1}{2\epsilon^2}(\ln 2|\mathcal{H}|-\ln \delta), \ ext{then} \ \mathbb{P}_{S\sim\mathcal{D}^N}\left(orall h\in\mathcal{H}, \ \left|R(h)-\hat{R}_S(h)
ight|\leqslant \epsilon
ight)\geqslant 1-\delta.$$

则,当 N 满足上述条件时,对于 $g\in\mathcal{H},h_S\in\mathcal{H}$,下面二式同时成立的概率不小于 $1-\delta$:

$$\left| R(g) - \hat{R}_S(g) \right| \leqslant \epsilon \ \left| R(h_S) - \hat{R}_S(h_S) \right| \leqslant \epsilon$$

而上述二式成立时, 我们有:

$$egin{split} R(h_S) - R(g) &\leqslant \hat{R}_S(h_S) + \epsilon - \left(\hat{R}_S(g) - \epsilon
ight) \ &= \hat{R}_S(h_S) - \hat{R}_S(g) + 2\epsilon \leqslant 2\epsilon \end{split}$$

则,当 $N\geqslant rac{1}{2\epsilon^2}(\ln 2|\mathcal{H}|-\ln \delta)$ 时,

$$\mathbb{P}_{S \sim \mathcal{D}^N}\left(R(h_S) - R(g) \leqslant 2\epsilon\right) \geqslant 1 - \delta$$

取 $\epsilon \leftarrow 2\epsilon$,则当 $N \geqslant rac{2}{\epsilon^2} (\ln 2 |\mathcal{H}| - \ln \delta)$ 时,

$$\mathbb{P}_{S \sim \mathcal{D}^N}\left(R(h_S) - R(g) \leqslant \epsilon
ight) \geqslant 1 - \delta$$

满足不可知 PAC 可学习的定义,证毕。

5 假设空间无限

当假设空间无限时, $|\mathcal{H}|$ 为无穷大, $|\mathcal{H}|$ 不能很准确地描述假设空间的复杂性或者说表示能力,假设空间有限时基于 $|\mathcal{H}|$ 关于 (不可知) PAC 可学习性的讨论已不再适用。为此,我们可以使用 VC 维、Rademacher 复杂度等指标以描述假设空间无限时的表示能力。**假设空间无限时 (不可知) PAC 可学习性有关结论的证明和假设空间有限时类似:先基于经验误差得到假设空间** \mathcal{H} 中所有假设的泛化误差界,再结合经验风险最小化进行证明。

5.1 增长函数与 VC 维

我们首先给出结论: 任何 VC 维有限的假设空间 \mathcal{H} 都是 (不可知) PAC 可学习的。

在引出 VC 维前,我们先介绍**增长函数 (growth function)**。The growth function $\Pi_{\mathcal{H}}: \mathbb{N} \to \mathbb{N}$ for a hypothesis set \mathcal{H} is defined by:

$$orall N \in \mathbb{N}, \ \ \Pi_{\mathcal{H}}(N) = \max_{\{oldsymbol{x}_1, \cdots, oldsymbol{x}_N\}} |\{(h(oldsymbol{x}_1), \cdots, h(oldsymbol{x}_N)) : h \in \mathcal{H}\}|$$

可见, $\Pi_{\mathcal{H}}(N)$ 表示假设空间对 N 个输入所能赋予标记的最大种数,而标记的每种可能结果称为一个**对 分 (dichotomy)。** 可以看到,This provides a measure of the richness of the hypothesis set \mathcal{H} . And this measure does not depend on the distribution, it is purely combinatorial.

基于增长函数,我们有如下结论:Let $\, {\cal H} \,$ be a family of functions taking values in $\, \{-1,1\} \,$. Then, for any $\, 0 < \epsilon < 1 \,$:

$$(c) \ \ \mathbb{P}_{S \sim \mathcal{D}^N} \left(\exists h \in \mathcal{H}, \ \ \left| R(h) - \hat{R}_S(h)
ight| > \epsilon
ight) \leqslant 4 \Pi_{\mathcal{H}}(2N) \exp \left(- rac{N \epsilon^2}{8}
ight)$$

上述结论 (c) 已很接近上一小节的结论 (b),但我们不会直接基于结论 (c) 对 (不可知) PAC 可学习性进行推导,因为增长函数 $\Pi_{\mathcal{H}}(2N)$ 是假设空间表达能力在样本容量为 2N 时的体现,其大小除了与假设空间 \mathcal{H} 的表达能力有关,还与样本容量 N 有关,从其定义可以看出其计算一般比较困难,没有解析的表达式, $N\epsilon^2$

直接令 $\delta=4\Pi_{\mathcal{H}}(2N)\exp\left(-rac{N\epsilon^2}{8}
ight)$ 会因为 $\Pi_{\mathcal{H}}(2N)$ 的存在,而无法解得 N ,也就无从判断 N 是

否服从多项式函数。为此,我们引入 VC 维这样一个标量 (不像增长函数一样是 N 的函数) 来直接表征假设空间的表达能力或者说复杂性。

对**二分类**问题的 VC 维的定义: The VC-dimension of a hypothesis set $\mathcal H$ is the size of the largest set that can be shattered (打散) by $\mathcal H$:

$$\operatorname{VC}(\mathcal{H}) = \max\{N: \Pi_{\mathcal{H}}(N) = 2^N\}$$

对某一 N 个输入的打散 (shattering),是指对这 N 个输入,假设空间能输出所有的可能标记,这里是二分类问题,因此可能标记的个数为 2^N ,而 VC 维就是假设空间能打散输入的最大个数。注意,若某个假设空间 $\mathcal H$ 的 VC 维为 d ,这并不表示 $\mathcal H$ 能打散所有等于或小于 d 的输入,VC 维讨论的是存在性,而不是任意性,是说存在某种 d 个输入,假设空间 $\mathcal H$ 能将这种输入打散。可以看到,若假设空间 $\mathcal H$ 有限,由抽屉原理其 VC 维一定小于 $|\mathcal H|$ 。

Sauer's lemma 给出了 VC 维与增长函数之间的关系:若假设空间 $\mathcal H$ 的 VC维为 d ,对任意的 $N\in\mathbb N$,有:

$$\Pi_{\mathcal{H}}(N) \leqslant \sum_{i=0}^d inom{N}{i}$$

若 $N \geqslant d$,可推得:

$$\Pi_{\mathcal{H}}(N) \leqslant \left(rac{eN}{d}
ight)^d$$

代入结论 (c) 中, 可得:

$$\begin{split} \mathbb{P}_{S \sim \mathcal{D}^N} \left(\exists h \in \mathcal{H}, \quad \left| R(h) - \hat{R}_S(h) \right| > \epsilon \right) \leqslant 4 \Pi_{\mathcal{H}}(2N) \exp\left(-\frac{N\epsilon^2}{8} \right) \\ \leqslant 4 \left(\frac{2eN}{d} \right)^d \exp\left(-\frac{N\epsilon^2}{8} \right) \\ \Leftrightarrow \delta = 4 \left(\frac{2eN}{d} \right)^d \exp\left(-\frac{N\epsilon^2}{8} \right)$$
解得 $\epsilon = \sqrt{\frac{8d \ln{(2eN/d)} + 8 \ln{(4/\delta)}}{N}}$,则:
$$(d) \quad \mathbb{P}_{S \sim \mathcal{D}^N} \left(\forall h \in \mathcal{H}, \quad \left| R(h) - \hat{R}_S(h) \right| \leqslant \epsilon \right) \geqslant 1 - \delta \end{split}$$

结论 (d) 就对应了上一小节的结论 (b),它在某一概率保证下,基于 VC 维给出了无限假设空间 $\mathcal H$ 所有假设的泛化误差界。可以看到,这一泛化误差界 ϵ 只与样本容量 N 有关,收敛速率为 $O(\frac{1}{\sqrt{N}})$,而与分布 $\mathcal D$ 和具体的采样数据 S 无关 (分布无关 distribution-free,数据独立 data-independent;当然,经验误差 $\hat R_S(h)$ 的计算总是依赖于采样数据 S 的,不过我们这里关注的是 ϵ)。

接下来, 仿照上一小节, 结合 EMR 即可证明本小节开头给出的结论。

5.2 Rademacher 复杂度

基于 VC 维的泛化误差界 ϵ 是分布无关、数据独立的,但若考虑数据分布,比如使用本小节将要介绍的 Rademacher 复杂度,那么我们就会得到更"紧"的泛化误差界。类似于极大似然估计使用具体的样本数据 去估计统计量,Rademacher 复杂度使用具体的样本数据得到了一个更"紧"的 ϵ 。西瓜书上本节内容写得 很混乱,相比之下参考文献 [2] 《Foundations of Machine Learning》就写得通俗易懂。

接下来我们将介绍有关 Rademacher 复杂度的一些概念和结论,并给出基于 Rademacher 复杂度的泛化误差界。和前面类似,有了泛化误差界,就可以对 (不可知) PAC 可学习性进行证明,这一部分不再赘述。

给定某个损失函数 $L:\mathbb{Y}\times\mathbb{Y}\to\mathbb{R}$,那么在损失函数 L 和假设空间 \mathcal{H} 的基础上我们可以定义映射集合 $\mathcal{F}_{\mathcal{H}}$,其元素是这样的一些映射 $f_h=L(h(\boldsymbol{x}),y):\mathbb{X}\times\mathbb{Y}\to\mathbb{R}$ 。我们强调, L 为某个给定的损失函数,是不变的,而 $h\in\mathcal{H}$ 是假设空间中任意的假设,是变化的,假设空间中的每个假设 $h\in\mathcal{H}$ 就对应了一个映射 f_h :

$$\mathcal{F}_{\mathcal{H}} = \{f_h : (oldsymbol{x}, y)
ightarrow L(h(oldsymbol{x}), y) : h \in \mathcal{H}\}$$

我们记z=(x,y),则 f_h 就是从 \mathbb{Z} 到 \mathbb{R} 的映射。

- (1) 我们首先以函数集合 $\mathcal{F}_{\mathcal{H}}$ 为例介绍 Rademacher 复杂度的概念:
 - 函数集合 $\mathcal{F}_{\mathcal{H}}$ 的经验 Rademacher 复杂度: 对某个容量为 N 的固定样本 $S=(z_1,\cdots,z_N)$,函数集合 $\mathcal{F}_{\mathcal{H}}$ 关于样本 S 的经验 Rademacher 复杂度为:

$$egin{aligned} \hat{\mathscr{R}}_S(\mathcal{F}_{\mathcal{H}}) &= \mathbb{E}_{oldsymbol{\sigma}} \left\{ \sup_{f_h \in \mathcal{F}} rac{1}{N} \sum_{i=1}^N \sigma_i f_h(oldsymbol{z}_i)
ight\} \ &= \mathbb{E}_{oldsymbol{\sigma}} \left\{ \sup_{f_h \in \mathcal{F}} rac{oldsymbol{\sigma}^T oldsymbol{f}_{h,S}}{N}
ight\} \end{aligned}$$

其中, $\sigma = \langle \sigma_1, \cdots, \sigma_N \rangle^T$, σ_i 为相互独立的算计变量,为 $\{-1, +1\}$ (注意不是区间,而是二值) 上的均匀分布,被称为 Rademacher 变量,表示随机噪声; $f_{h,S} = \langle f_h(z_1), \cdots, f_h(z_N) \rangle^T$;**二者的内积** $\sigma^T f_{h,S}$ **衡量了** $f_{h,S}$ **与随机噪声向量** σ **的相关程度**。Thus, the empirical Rademacher complexity measures on average how well the function class $\mathcal{F}_{\mathcal{H}}$ correlates with random noise on S. This describes the richness of the family $\mathcal{F}_{\mathcal{H}}$: richer or more complex families $\mathcal{F}_{\mathcal{H}}$ can generate more vectors $f_{h,S}$ and thus better correlate with random noise, on average.

• 上述经验 Rademacher 复杂度针对的是某个固定的样本 S ,若对样本 S 求期望,即可得**函数集合** $\mathcal{F}_{\mathcal{H}}$ **的 Rademacher 复杂度**:

$$egin{aligned} \mathscr{R}_N(\mathcal{F}_{\mathcal{H}}) &= \mathbb{E}_{S \sim \mathcal{D}^N} \left\{ \hat{\mathscr{R}}_S(\mathcal{F}_{\mathcal{H}})
ight\} \ &= \mathbb{E}_{S \sim \mathcal{D}^N} \left\{ \mathbb{E}_{oldsymbol{\sigma}} \left\{ \sup_{f_h \in \mathcal{F}} rac{oldsymbol{\sigma}^T oldsymbol{f}_{h,S}}{N}
ight\}
ight\} = \mathbb{E}_{S,oldsymbol{\sigma}} \left\{ \sup_{f_h \in \mathcal{F}} rac{oldsymbol{\sigma}^T oldsymbol{f}_{h,S}}{N}
ight\} \end{aligned}$$

• 我们强调,上述 Rademacher 复杂度的定义并不只是针对 $\mathcal{F}_{\mathcal{H}}$ 这种形式的函数集合,我们这里只是以 $\mathcal{F}_{\mathcal{H}}$ 为例来介绍 Rademacher 复杂度,我们可以求任意一个函数集合的 Rademacher 复杂度,只需将 f_h 换成对应的映射即可。此外,某个函数集合的 Rademacher 复杂度为 $\mathscr{R}_S(\cdot)$,而其经验 Rademacher 复杂度为 $\hat{\mathscr{R}}_S(\cdot)$,其中·表示该函数集合,因为 Rademacher 复杂度与具体样本 S 无关,而与样本容量 N 有关,因此其下标由经验 Rademacher 复杂度中的 S 变为 N 。

(2) 介绍完上述基本概念, 我们有如下结论:

• 我们仍以函数集合 $\mathcal{F}_{\mathcal{H}}$ 为例,给出关于 Rademacher 复杂度的一般结论,即下述结论不仅限于 $\mathcal{F}_{\mathcal{H}}$ 这种形式的函数集合,将函数集合 $\mathcal{F}_{\mathcal{H}}$ 换成任意其他的函数集合也是成立的,我们只是以 $\mathcal{F}_{\mathcal{H}}$ 为例给出结论:若 $\mathcal{F}_{\mathcal{H}}$ 中的函数将 $\mathbb Z$ 映射到区间 [0,1] 上,那么对任意的 $\delta>0$,我们有:

$$egin{aligned} \mathbb{P}\left(orall f_h \in \mathcal{F}_{\mathcal{H}}, \;\; \mathbb{E}_{oldsymbol{z}}\{f_h(oldsymbol{z})\} \leqslant rac{1}{N} \sum_{i=1}^N f_h(oldsymbol{z}_i) + 2\mathscr{R}_N(\mathcal{F}_{\mathcal{H}}) + \sqrt{rac{\ln{(1/\delta)}}{2N}}
ight) \leqslant 1 - \delta \ \mathbb{P}\left(orall f_h \in \mathcal{F}_{\mathcal{H}}, \;\; \mathbb{E}_{oldsymbol{z}}\{f_h(oldsymbol{z})\} \leqslant rac{1}{N} \sum_{i=1}^N f_h(oldsymbol{z}_i) + 2\hat{\mathscr{R}}_S(\mathcal{F}_{\mathcal{H}}) + 3\sqrt{rac{\ln{(2/\delta)}}{2N}}
ight) \leqslant 1 - \delta \end{aligned}$$

• 进一步,对于**二分类确定性问题**,即 $h \in \mathcal{H}$ 将 x 映射到 $\{-1, +1\}$ 上,并且取函数集合 $\mathcal{F}_{\mathcal{H}}$ 中的 损失函数为 0-1 损失,即 $\mathcal{F}_{\mathcal{H}} = \{(x,y) \to \mathbb{I}(h(x) \neq y) : h \in \mathcal{H}\}$,我们有:

$$egin{aligned} \mathbb{E}_{oldsymbol{z}}\{f_h(oldsymbol{z})\} &= \mathbb{E}_{oldsymbol{z}}\{\mathbb{I}(h(oldsymbol{x})
eq y)\} = \mathbb{E}_{oldsymbol{x}}\{\mathbb{I}(h(oldsymbol{x})
eq y)\} = R(h) \ &rac{1}{N}\sum_{i=1}^N f_h(oldsymbol{z}_i) = rac{1}{N}\sum_{i=1}^N \mathbb{I}(h(oldsymbol{x})
eq y) = \hat{R}_S(h) \ &\hat{\mathscr{R}}_S(\mathcal{F}_{\mathcal{H}}) = \mathbb{E}_{oldsymbol{\sigma}}\left\{\sup_{f_h\in\mathcal{F}} rac{\sum_{i=1}^N \sigma_i f_h(oldsymbol{z}_i)}{N}
ight\} = rac{1}{2}\mathbb{E}_{oldsymbol{\sigma}}\left\{\sup_{h\in\mathcal{H}} rac{\sum_{i=1}^N \sigma_i h(oldsymbol{x}_i)}{N}
ight\} = rac{1}{2}\hat{\mathscr{R}}_{S_{\mathbb{X}}}(\mathcal{H}) \ &\mathscr{R}_N(\mathcal{F}_{\mathcal{H}}) = \mathbb{E}_{S,oldsymbol{\sigma}}\left\{\sup_{f_h\in\mathcal{F}} rac{\sum_{i=1}^N \sigma_i f_h(oldsymbol{z}_i)}{N}
ight\} = rac{1}{2}\mathbb{E}_{S_{\mathbb{X}},oldsymbol{\sigma}}\left\{\sup_{h\in\mathcal{H}} rac{\sum_{i=1}^N \sigma_i h(oldsymbol{x}_i)}{N}
ight\} = rac{1}{2}\mathscr{R}_N(\mathcal{H}) \end{aligned}$$

其中,样本 $S=(\boldsymbol{z}_1,\cdots,\boldsymbol{z}_N)=((\boldsymbol{x}_1,y_1),\cdots,(\boldsymbol{x}_N,y_N))$,其在 \mathbb{X} 上的投影 $S_{\mathbb{X}}=(\boldsymbol{x}_1,\cdots,\boldsymbol{x}_N)$;第三个式子给出了函数集合 $\mathcal{F}_{\mathcal{H}}$ 在样本 S 上的经验 Rademacher 复杂度和函数集合 \mathcal{H} 在样本 $S_{\mathbb{X}}=(\boldsymbol{x}_1,\cdots,\boldsymbol{x}_N)$ 上的经验 Rademacher 复杂度的关系,而第四个式子则给出了函数集合 $\mathcal{F}_{\mathcal{H}}$ 关于 \boldsymbol{z} 分布的 Rademacher 复杂度与函数集合 \mathcal{H} 关于 \boldsymbol{x} 分布的 Rademacher 复杂度之间的关系。由此,我

们得到了 \mathcal{H} 中所有假设的两种泛化误差界:

$$\mathbb{P}\left(orall h\in\mathcal{H},\;\;R(h)\leqslant\hat{R}_S(h)+\mathscr{R}_N(\mathcal{H})+\sqrt{rac{\ln{(1/\delta)}}{2N}}
ight)\leqslant 1-\delta \ \mathbb{P}\left(orall h\in\mathcal{H},\;\;R(h)\leqslant\hat{R}_S(h)+\hat{\mathscr{R}}_{S_{\mathbb{X}}}(\mathcal{H})+3\sqrt{rac{\ln{(2/\delta)}}{2N}}
ight)\leqslant 1-\delta$$

其中, $\mathscr{R}_N(\mathcal{H})$ 与分布相关,而 $\hat{\mathscr{R}}_{S_{\mathbb{X}}}(\mathcal{H})$ 则与具体的采样数据相关。However, the computation of the empirical Rademacher complexity $\hat{\mathscr{R}}_{S_{\mathbb{X}}}(\mathcal{H})$ is NP-hard for some hypothesis sets,而 $\mathscr{R}_N(\mathcal{H})$ 显然比 $\hat{\mathscr{R}}_{S_{\mathbb{X}}}(\mathcal{H})$ 更难计算。

基于 Rademacher 复杂度的泛化误差界 $\epsilon_r=\mathscr{R}_N(\mathcal{H})+\sqrt{\dfrac{\ln{(1/\delta)}}{2N}}$ 因包含分布的信息,会比基于 VC 维的泛化误差界 $\epsilon_{vc}=\sqrt{\dfrac{8d\ln{(2eN/d)}+8\ln{(4/\delta)}}{N}}$ 更"紧"。事实上,假设空间 \mathcal{H} 的 Rademacher 复杂度与增长函数有如下关系:

$$\mathscr{R}_N(\mathcal{H}) \leqslant \sqrt{rac{2 \ln \Pi_{\mathcal{H}}(N)}{N}}$$

则:

$$egin{aligned} \epsilon_r &= \mathscr{R}_N(\mathcal{H}) + \sqrt{rac{\ln{(1/\delta)}}{2N}} \leqslant \sqrt{rac{2\ln{\Pi_{\mathcal{H}}(N)}}{N}} + \sqrt{rac{\ln{(1/\delta)}}{2N}} \ &\leqslant \sqrt{rac{2d\ln{(eN/d)}}{N}} + \sqrt{rac{\ln{(1/\delta)}}{2N}} riangleq \epsilon'_{vc} & ext{(Sauer's lemma)} \end{aligned}$$

我们得到了另一种基于 VC 维的泛化误差界 ϵ'_{vc} 。

5.3 算法稳定性

本小节思路如下,具体细节不再赘述:

基于 VC 维的泛化误差界分布无关,数据独立,而基于 Rademacher 复杂度的泛化误差界则考虑了分布和 采样数据,因此相比前者会更"紧"。可以看到,上述二者均不涉及具体的学习算法,但若对某个学习问题,存在某种学习算法 $\mathcal L$ 在采样数据 S 发生变化时,输出的假设不会发生太大变化,即算法具有稳定性,那么我们也可以利用算法的稳定性推得泛化误差界,进而可得如下结论:**若学习算法 \mathcal L 满足经验风险最小化且稳定,则假设空间 \mathcal H 可学习。**