目录

1	极限	2
2	导数 2.1 常见导数 2.2 导数计算公式	
3	泰勒展开	3
4	含导数式子构造辅助函数	4
5	常见特定条件下使用的定理	4
	不定积分 6.1 常见不定积分 6.2 凑微分公式 6.3 常见三角换元	6
7	定积分 7.1 区间再现公式	7 7
8	二维几何	7
9	物理公式	8
10	多元函数微分学	9
11	微分方程求解	10
12	无穷级数 12.1 无穷级数收敛判别 12.2 无穷级数常用结论 12.3 幂级数 12.4 无穷级数的展开 12.5 无穷级数求和特殊情况 12.6 傅里叶级数	12 12 14 14 15 15
13	三维几何 13.1 曲线与曲面	16 16 17 18

14 多元函数积分	18
14.1 三重积分	18
14.2 第一型曲线积分(二维曲线为例)与第一型曲面积分	19
14.3 第二型曲线积分	19
14.4 第二型曲面积分	20
15 其他高等数学公式	21
16 行列式	23
17 矩阵	24
18 线性方程组	26
19 特征值与特征向量	28
20 二次型与正定矩阵	29
21 概率函数	31
22 数字特征	33
23 统计量及其分布	33
24 大数定律与中心极限定理	35
25 参数估计与假设检验	36

1 极限

(1) 等价无穷小:

x	$1 + \alpha x$	$\frac{x^2}{2}$	$\frac{x^3}{2}$	$\frac{x^3}{3}$	$\frac{x^3}{6}$
$\sin x$	$(1+x)^{\alpha}$	$1-\cos x$	$\tan x - \sin x$	$\tan x - x$	$x - \sin x$
$\tan x$		$x - \ln(x+1)$		$x - \arctan x$	$\arcsin x - x$
ln(x+1)					
$e^x - 1$					
$\arcsin x$					
$\arctan x$					
$\ln(x + \sqrt{x^2 + 1})$					

②
$$e$$
 相关的极限: $\lim_{x\to 0} (1-x)^{\frac{1}{x}} = \frac{1}{e}$ $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$ $\lim_{x\to -\infty} (1-x)^{\frac{1}{x}} = 1$ $\lim_{x\to +\infty} (1+x)^{\frac{1}{x}} = 1$

2 导数

2.1 常见导数

$$\widehat{(1)} (x^k)' = kx^{k-1}$$

$$(2) (\ln x)' = \frac{1}{x} \quad (x > 0)$$

(3)
$$(e^x)' = e^x$$
, $(a^x)' = a^x \ln a \quad (a > 0, a \neq 1)$

$$\begin{aligned}
(4) & (\sin x)' = \cos x, & (\cos x)' = \sin x \\
& (\tan x)' = \sec^2 x = \frac{1}{\cos^2 x}, & (\cot x)' = -\csc^2 x = -\frac{1}{\sin^2 x} \\
& (\sec x)' = \sec x \tan x = \frac{\sin x}{\cos^2 x}, & (\csc x)' = -\csc x \cot x = -\frac{\cos x}{\sin^2 x}
\end{aligned}$$

(5)
$$(\ln|\cos x|)' = -\tan x$$
, $(\ln|\sin x|)' = \cot x$
 $(\ln|\sec x + \tan x|)' = \sec x$, $(\ln|\csc x - \cot x|)' = \csc x$

(6)
$$(\arctan x)' = \frac{1}{1+x^2}$$
, $(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$
 $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$, $(\operatorname{arccos} x)' = -\frac{1}{\sqrt{1-x^2}}$

$$(7) (\ln(x + \sqrt{x^2 + a^2}))' = \frac{1}{\sqrt{x^2 + a^2}} \Longrightarrow (\ln(x + \sqrt{x^2 + 1}))' = \frac{1}{\sqrt{x^2 + 1}}$$
$$(\ln(x + \sqrt{x^2 - a^2}))' = \frac{1}{\sqrt{x^2 - a^2}} \Longrightarrow (\ln(x + \sqrt{x^2 - 1}))' = \frac{1}{\sqrt{x^2 - 1}}$$

2.2 导数计算公式

① 反函数求导:
$$x'_y = \frac{1}{y'_x}$$
, $x''_{yy} = -\frac{y''_{xx}}{(y'_x)^3}$

② 莱布尼茨公式:
$$(uv)^{(n)} = \sum_{i=0}^{n} \binom{n}{i} u^{(i)} v^{(n-i)}$$

③ 麦克劳林公式:
$$f(x) = \sum_{i=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{i=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

④ 对 y = y(x), 在 (x_0, y_0) 处切线、法线在坐标轴上的截距:

	切线	法线
<i>x</i> 轴	$x_0 - \frac{y_0}{y'(x_0)}$	$x_0 + y_0 y'(x_0)$
y 轴	$y_0 - x_0 y'(x_0)$	$y_0 + \frac{x_0}{y'(x_0)}$

口诀:"谁轴谁在前,切减与法加, x 切除 y 法, x 法乘 y 切"

3 泰勒展开

(1)
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

$$(2) \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots$$
 (-1 < x < 1)

(3)
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots + x^n + \dots$$
 (-1 < x < 1)

$$(4) \ln(1+x) = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$

$$(5) \sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

$$(6) \cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$(7) (1+x)^{\alpha} = \sum_{n=0}^{\infty} \frac{\prod_{i=0}^{n-1} (\alpha - i)}{n!} x^n = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^3 + \dots + \frac{\alpha(\alpha - 1) \cdots (\alpha - n + 1)}{n!} x^n + \dots$$

(8)
$$\tan x = x + \frac{1}{3}x^3 + o(x^3)$$

(9)
$$\arcsin x = x + \frac{1}{6}x^3 + o(x^3)$$

(10)
$$\arctan x = x - \frac{1}{3}x^3 + o(x^3)$$

4 含导数式子构造辅助函数

- $(1) f(x)f'(x) \Longrightarrow F(x) = f^2(x) \longrightarrow F'(x) = 2f(x)f'(x)$
- $(2) f(x)f''(x) + (f'(x))^2 \Longrightarrow F(x) = f(x)f'(x) \longrightarrow F'(x) = f(x)f''(x) + (f'(x))^2$
- $(3) f'(x) + f(x)\varphi'(x) \Longrightarrow F(x) = f(x)e^{\varphi(x)} \longrightarrow F'(x) = (f'(x) + f(x)\varphi'(x))e^{\varphi(x)}$ $f'(x) + f(x) \Longrightarrow F(x) = f(x)e^x \longrightarrow F'(x) = (f'(x) + f(x))e^x$ $f'(x) f(x) \Longrightarrow F(x) = f(x)e^{-x} \longrightarrow F'(x) = (f'(x) f(x))e^{-x}$ $f'(x) + kf(x) \Longrightarrow F(x) = f(x)e^{kx} \longrightarrow F'(x) = (f'(x) + kf(x))e^{kx}$
- $\underbrace{4} f'(x)x f(x) \Longrightarrow F(x) = \frac{f(x)}{x} \longrightarrow F'(x) = \frac{f'(x)x f(x)}{x^2}$
- $\begin{array}{c}
 \boxed{5} f(x)f''(x) (f'(x))^2 \Longrightarrow F(x) = \frac{f'(x)}{f(x)} \longrightarrow F'(x) = \frac{f(x)f''(x) (f'(x))^2}{f^2(x)} \\
 \frac{f'(x)}{f(x)} \Longrightarrow F(x) = \ln(f(x)) \longrightarrow F'(x) = \frac{f'(x)}{f(x)}
 \end{array}$

5 常见特定条件下使用的定理

- ① 找 $f(c) = 0 \Longrightarrow$ 零点定理: 由 f(a) > 0, f(b) < 0 得到 f(c) = 0
- ② 找 $f(c) = \mu \Longrightarrow$ 介值定理: 由 $f(a) = A, f(b) = B, A < \mu < B$ 得到 $f(c) = \mu$
- (3) 证 $f'(x_0) = 0 \implies$ **费马定理**: f(x) 在 x_0 处可导,且在 x_0 邻域内 f(x) 以 $f(x_0)$ 为极值点,则 $f'(x_0) = 0$
- (4) 证 $f'(\xi) = \varphi(\xi) \Longrightarrow$ 构造成 $F(\xi) = 0$,然后**罗尔定理:** F(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 F(a) = F(b)
- (5) 证 $f^{(n)}(\xi) = 0 \Longrightarrow$ 罗尔定理: $f^{(n-1)}(x)$ 在 [a,b] 上连续,在 (a,b) 内可导,且 $f^{(n-1)}(a) = f^{(n-1)}(b)$
- ⑥ 题设存在 f 和 f' 的关系, 或存在 f(b) f(a): \Longrightarrow 拉格朗日定理: $f'(\xi) = \frac{f(b) f(a)}{b a}$ 或 $f'(\xi)(b a) = f(b) f(a)$
- (7) 证 $f'(\xi) \ge \varphi(\xi)$ ⇒ 构造成 $F(\xi) \ge 0$,然后**拉格朗日定理**: $F'(\xi) = \frac{F(b) F(a)}{b a} \ge 0$
- (8) 证 $f^{(n)}(\xi) \ge 0$ (其一) ⇒ 拉格朗日定理: $f^{(n)}(\xi) = \frac{f^{(n-1)}(b) f^{(n-1)}(a)}{b-a} \ge 0$
- (9) 证 $F(f'(\eta), f'(\tau)) = 0 \Longrightarrow$ 拉格朗日定理: 取 $\xi \in (a, b)$ 使得 $a < \eta < \xi < \tau < b$,将区间 (a, ξ) 和 (ξ, b) 代入拉格朗日定理想办法构造 $F(f'(\eta), f'(\tau))$ (如 $f'(\eta) = \frac{f(\xi) f(a)}{\xi a} = \frac{f(b) f(a)}{b a} = \frac{f(b) f(\xi)}{b \xi} = f'(\tau)$)
- (10) 存在 f 与 $f^{(n)}$ 的关系,或证 $f^{(n)}(\xi) \ge 0$ (其二) \Longrightarrow **泰勒展开**:此处略
- ①11 通过 f''(x) 考查凹凸性 \Longrightarrow 构造出 F(x),然后**泰勒展开:** $F(x) = F(x_0) + (x x_0)F'(x_0) + \frac{(x x_0)^2}{2}F''(\xi)$
- ① 存在两个函数,或是一个具体函数和一个抽象函数 \Longrightarrow 柯西中值定理: $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}$

6 不定积分

6.1 常见不定积分

$$2 \int \frac{1}{x} \, \mathrm{d}x = \ln|x| + C$$

(3)
$$\int e^x dx = e^x + C$$
, $\int a^x dx = \frac{a^x}{\ln a} + C$ $(a > 0, a \neq 1)$

$$4 \int \ln x \, \mathrm{d}x = x(\ln x - 1) + C$$

(5)
$$\int \sin x \, dx = -\cos x + C, \qquad \int \cos x \, dx = \sin x + C$$

$$\int \tan x \, dx = -\ln|\cos x| + C, \qquad \int \cot x \, dx = \ln|\sin x| + C$$

$$\int \frac{1}{\cos x} \, \mathrm{d}x = \int \sec x \, \mathrm{d}x = \ln|\sec x + \tan x| + C$$

$$\int \frac{1}{\sin x} dx = \int \csc x dx = \ln|\csc x - \cot x| + C$$

$$\int \frac{1}{\cos^2 x} dx = \int \sec^2 x dx = \tan x + C, \qquad \int \frac{1}{\sin^2 x} dx = \int \csc^2 x dx = -\cot x + C$$

$$\int \sec x \tan x \, dx = \int \frac{\sin x}{\cos^2 x} \, dx = \sec x + C, \qquad \int \csc x \cot x \, dx = \int \frac{\cos x}{\sin^2 x} \, dx = -\csc x + C$$

$$\begin{cases}
\int \frac{1}{1+x^2} dx = \arctan x + C \\
\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C \quad (a>0)
\end{cases}$$

$$7 \begin{cases} \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C \\ \int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C \quad (a > 0) \end{cases}$$

$$\begin{cases} \int \frac{1}{\sqrt{x^2 + a^2}} \, \mathrm{d}x = \ln(x + \sqrt{x^2 + a^2}) + C \Longrightarrow \int \frac{1}{\sqrt{x^2 + 1}} \, \mathrm{d}x = \ln(x + \sqrt{x^2 + 1}) + C \\ \int \frac{1}{\sqrt{x^2 - a^2}} \, \mathrm{d}x = \ln|x + \sqrt{x^2 - a^2}| + C \quad (|x| > |a|) \Longrightarrow \int \frac{1}{\sqrt{x^2 - 1}} \, \mathrm{d}x = \ln|x + \sqrt{x^2 - 1}| + C \end{cases}$$

$$9 \int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C \Longrightarrow \int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left| \frac{x + a}{x - a} \right| + C$$

①
$$\int \sqrt{a^2 - x^2} \, \mathrm{d}x = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + C \quad (a > |x| \ge 0) \quad (提示: \ x = a \sin t)$$

①
$$\int \sin^2 x \, dx = \frac{x}{2} - \frac{\sin 2x}{4} + C$$
 (提示: $\sin^2 x = \frac{1 - \cos 2x}{2}$)

$$\int \cos^2 x \, dx = \frac{x}{2} + \frac{\sin 2x}{4} + C \quad (\cancel{\cancel{\cancel{4}}} - \cancel{\cancel{4}} - \frac{1}{2})$$

$$\int \tan^2 x \, dx = \tan x - x + C \quad (提示: \tan^2 x = \sec^2 x - 1)$$

$$\int \cot^2 x \, dx = -\cot x - x + C \quad (提示: \cot^2 x = \csc^2 x - 1)$$

6.2 凑微分公式

 $(1) dx = d(x \pm C)$

(3)
$$e^x dx = d(e^x)$$
, $a^x dx = \frac{1}{\ln a} d(a^x)$ $(a > 0, a \ne 1)$

 $(4) \sin x \, dx = d(-\cos x), \qquad \cos x \, dx = d(\sin x)$

$$(5) \frac{\mathrm{d}x}{\cos^2 x} = \sec^2 x \, \mathrm{d}x = \mathrm{d}(\tan x), \qquad \frac{\mathrm{d}x}{\sin^2 x} = \csc^2 x \, \mathrm{d}x = \mathrm{d}(-\cot x)$$

6
$$\frac{1}{1+x^2} dx = d(\arctan x),$$
 $\frac{1}{\sqrt{1-x^2}} dx = d(\arcsin x)$

6.3 常见三角换元

① $x^2 + 1$ 换元:

• $x = \cot u$, $\text{M}\vec{m} \ x^2 + 1 = \csc^2 u$

(2) $x^2 - 1$ 换元:

• $x = \sec u$, $\mathbb{A}\overline{m} x^2 - 1 = \tan^2 u$

• $x = \csc u$, $\mbox{$\mathbb{M}$ fill } x^2 - 1 = \cot^2 u$

• $x = \sin u$, $\mathbb{A} = \sin u$

(3) $1-x^2$ 换元:

• $x = \sin u$, $\mathbb{M}\overline{m} \ 1 - x^2 = \cos^2 u$

• $x = \csc u$,从而 $1 - x^2 = -\cot^2 u$

7 定积分

7.1 区间再现公式

$$(1) \int_a^b f(x) \, \mathrm{d}x = \int_a^b f(a+b-x) \, \mathrm{d}x = \frac{1}{2} \int_a^b (f(x) + f(a+b-x)) \, \mathrm{d}x = \int_a^{\frac{a+b}{2}} (f(x) + f(a+b-x)) \, \mathrm{d}x$$

②
$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} (f(x) + f(-x)) dx$$
 (常用于对称函数积分问题)

7.2 华里士(Wallis)公式

$$\underbrace{1} \int_0^{\frac{\pi}{2}} \sin^n dx = \int_0^{\frac{\pi}{2}} \cos^n dx = \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{2}{3} \cdot 1 & (n \equiv 1 \mod 2, n \geqslant 3) \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2} & (n \equiv 0 \mod 2, n \geqslant 2) \end{cases}$$

$$(2) \int_0^{\pi} \sin^n dx = \begin{cases} 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{2}{3} \cdot 1 & (n \equiv 1 \mod 2, n \geqslant 3) \\ 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2} & (n \equiv 0 \mod 2, n \geqslant 2) \end{cases}$$

(3)
$$\int_0^{\pi} \cos^n dx = \begin{cases} 0 & (n \equiv 1 \mod 2, n \geqslant 3) \\ 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2} & (n \equiv 0 \mod 2, n \geqslant 2) \end{cases}$$

$$\underbrace{4} \int_0^{2\pi} \sin^n dx = \int_0^{2\pi} \cos^n dx = \begin{cases} 0 & (n \equiv 1 \mod 2, n \geqslant 3) \\ 4 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2} & (n \equiv 0 \mod 2, n \geqslant 2) \end{cases}$$

7.3 其他常用含三角函数积分公式

(1)
$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx = \pi \int_0^{\frac{\pi}{2}} f(\sin x) dx$$

(2)
$$\int_0^{\frac{\pi}{2}} f(\sin x) dx = \int_0^{\frac{\pi}{2}} f(\cos x) dx$$

$$\int_0^{\frac{\pi}{2}} f(\sin x, \cos x) \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} f(\cos x, \sin x) \, \mathrm{d}x$$

$$(3) \int_0^{n\pi} x |\sin x| \, \mathrm{d}x = n^2 \pi$$

7.4 区间简化公式

(2)
$$\int_{a}^{b} f(x) dx = \int_{0}^{1} (b-a)f(a+(b-a)t) dt$$

8 二维几何

① 铅垂渐近线:
$$\lim_{x \to x_0^+} f(x) = \infty$$
 或 $\lim_{x \to x_0^-} f(x) = \infty \Longrightarrow x = x_0$ 水平渐近线: $\lim_{x \to +\infty} f(x) = y_0$ 或 $\lim_{x \to -\infty} f(x) = y_0 \Longrightarrow y = y_0$ (注意可能重合) 斜渐近线: $\lim_{x \to +\infty} \frac{f(x)}{x} = k_1$, $\lim_{x \to +\infty} (f(x) - k_1 x) = b_1 \Longrightarrow y = k_1 x + b_1$ 或 $\lim_{x \to -\infty} \frac{f(x)}{x} = k_2$, $\lim_{x \to -\infty} (f(x) - k_2 x) = b_2 \Longrightarrow y = k_2 x + b_2$ (注意可能重合)

② 曲率:
$$k = \frac{|y''|}{(1+(y')^2)^{\frac{3}{2}}}$$
 曲率半径: $R = \frac{1}{k} = \frac{(1+(y')^2)^{\frac{3}{2}}}{|y''|}$

③ 直角坐标系下的积分面积公式:
$$S = \int_a^b |f(x) - g(x)| \, \mathrm{d}x$$
 极坐标系下的积分面积公式: $S = \int_\alpha^\beta \frac{1}{2} |r_2^2(\theta) - r_1^2(\theta)| \, \mathrm{d}\theta$

④ 绕
$$x$$
 轴旋转体体积: $V_x = \int_a^b \pi y^2(x) dx$ 绕 y 轴旋转体体积: $V_y = \int_a^b 2\pi x |y(x)| dx$

⑤ 绕
$$y=x$$
 旋转体的体积: $V_{y=x}\left(=\int_a^b\pi\cdot\sqrt{2}\left(\frac{|f(x)-x|}{\sqrt{2}}\right)^2\mathrm{d}x\right)=\int_a^b\pi\cdot\frac{(f(x)-x)^2}{\sqrt{2}}\,\mathrm{d}x$

⑥ 由
$$y = y(x)$$
 $(a \le x \le b)$ 给出光滑曲线的弧长: $s = \int_a^b \sqrt{1 + (y'(x))^2} \, \mathrm{d}x$ 由 $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ $(\alpha \le t \le \beta)$ 给出光滑曲线的弧长: $s = \int_\alpha^\beta \sqrt{(x'(t))^2 + (y'(t))^2} \, \mathrm{d}x$ 由 $r = r(\theta)$ $(\alpha \le \theta \le \beta)$ 给出光滑曲线的弧长: $s = \int_\alpha^\beta \sqrt{(r(\theta))^2 + (r'(\theta))^2} \, \mathrm{d}\theta$

① 曲线
$$y = y(x)$$
 在 $[a,b]$ 上弧段绕 x 轴旋转得到曲面的面积: $S = 2\pi \int_a^b |y(x)| \sqrt{1 + (y'(x))^2} \, \mathrm{d}x$ 曲线
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 $(x'(t) \neq 0)$ 在 $[\alpha, \beta]$ 上弧段绕 x 轴旋转得到曲面的面积: $S = 2\pi \int_a^b |y(t)| \sqrt{(x'(t))^2 + (y'(t))^2} \, \mathrm{d}x$

(8) 设 $D = \{(x,y) | 0 \le y \le f(x), \ a \le x \le b\}$, f(x) 在 [a,b] 上连续,则 D 的形心坐标 (\bar{x},\bar{y}) 满足:

$$\bar{x} = \frac{\int_a^b x f(x) \, \mathrm{d}x}{\int_a^b f(x) \, \mathrm{d}x}, \qquad \bar{y} = \frac{\frac{1}{2} \int_a^b f^2(x) \, \mathrm{d}x}{\int_a^b f(x) \, \mathrm{d}x}$$

设 $D' = \{(x,y)|g(x) \leqslant y \leqslant f(x), \ a \leqslant x \leqslant b\}$, f(x)、 g(x) 在 [a,b] 上连续,则 D' 的形心坐标 (\bar{x}',\bar{y}') 满足:

$$\bar{x}' = \frac{\int_a^b x(f(x) - g(x)) \, \mathrm{d}x}{\int_a^b (f(x) - g(x)) \, \mathrm{d}x}, \qquad \bar{y}' = \frac{\frac{1}{2} \int_a^b (f(x) - g(x))^2 \, \mathrm{d}x}{\int_a^b (f(x) - g(x)) \, \mathrm{d}x}$$

9 物理公式

- ① 深度为 x 时截面积为 A(x) 的容器,其中全部水抽出所做的功: $W = \rho g \int_a^b x A(x) dx$
- ② 浸没于水中、垂直于水面的平板,深度从 a 到 b,两个侧面坐标 (x,y) 分别为 y=f(x) 和 y=h(x),其一侧受到水的压力: $P=\rho g \int_a^b x |f(x)-h(x)| \,\mathrm{d}x$
- ③ 线密度为 $\rho(x)$ 的细杆质心: $\bar{x} = \frac{\int_a^b x \rho(x) \, \mathrm{d}x}{\int_a^b \rho(x) \, \mathrm{d}x}$, 其他类型的积分同理
- (4) 物体的体密度为 $\rho(x,y,z)$,则其对 x 轴、y 轴、z 轴和原点 O 的转动惯量分别为:

$$\begin{cases} I_x = \iint_{\Omega} (y^2 + z^2) \rho(x, y, z) \, dx \, dy \, dz & I_y = \iint_{\Omega} (z^2 + x^2) \rho(x, y, z) \, dx \, dy \, dz \\ I_z = \iint_{\Omega} (x^2 + y^2) \rho(x, y, z) \, dx \, dy \, dz & I_O = \iint_{\Omega} (x^2 + y^2 + z^2) \rho(x, y, z) \, dx \, dy \, dz \end{cases}$$

(5) 物体的体密度为 $\rho(x,y,z)$,则其对物体外一点 $M_0(x_0,y_0,z_0)$ 处质量为 m 的质点引力 (F_x,F_y,F_z) 满足:

$$\begin{cases} F_x = Gm \iiint_{\varOmega} \frac{\rho(x,y,z)(x-x_0)}{((x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2)^{\frac{3}{2}}} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \\ F_y = Gm \iiint_{\varOmega} \frac{\rho(x,y,z)(y-y_0)}{((x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2)^{\frac{3}{2}}} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \\ F_z = Gm \iiint_{\varOmega} \frac{\rho(x,y,z)(z-z_0)}{((x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2)^{\frac{3}{2}}} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \end{cases}$$

10 多元函数微分学

- ① 多元函数连续的判定: $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x,y) = f(x_0,y_0)$
- (2) 多元函数可微的判定:

$$\lim_{\Delta x \to 0 \atop \Delta y \to 0} \frac{\left[f(x+\Delta x, y+\Delta y) - f(x,y) \right] - \left[f_x'(x,y) \Delta x + f_y'(x,y) \Delta y \right]}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$

若 f(0,0) = 0, 则 f 在 (0,0) 处可微的判定式:

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{f(\Delta x, \Delta y) - [f'_x(0, 0)\Delta x + f'_y(0, 0)\Delta y]}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$

若 $f(0,0) = f'_x(0,0) = f'_y(0,0) = 0$,则 f 在 (0,0) 处可微的判定式:

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{f(\Delta x, \Delta y)}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$

- ③ 偏导数连续的判定: $\lim_{x\to x_0 \atop y\to y_0} f_x'(x,y) = f_x'(x_0,y_0)$ 和 $\lim_{x\to x_0 \atop y\to y_0} f_y'(x,y) = f_y'(x_0,y_0)$ 同时成立
- ④ 二元函数的二阶泰勒展开: $f(x,y) = f(x_0,y_0) + \begin{pmatrix} f'_x & f'_y \end{pmatrix}_{(x_0,y_0)} \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} + \frac{1}{2!} \begin{pmatrix} \Delta x & \Delta y \end{pmatrix} \cdot \begin{pmatrix} f''_{xx} & f''_{xy} \\ f''_{yx} & f''_{yy} \end{pmatrix}_{(x_0,y_0)} \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$
- ⑤ 对 F(x,y,z) = 0,z 的偏导数为: $\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'}$, $\frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'}$

⑥ 对
$$\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$$
,可知 y,z 对 x 的导数为:
$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\frac{\partial(F,G)}{\partial(x,z)}}{\frac{\partial(F,G)}{\partial(y,z)}}, \qquad \frac{\mathrm{d}z}{\mathrm{d}x} = -\frac{\frac{\partial(F,G)}{\partial(y,x)}}{\frac{\partial(F,G)}{\partial(y,z)}},$$

$$\forall \begin{cases} F(x,y,u,v) = 0 \\ G(x,y,u,v) = 0 \end{cases}$$
,可知 u,v 对 x,y 的导数为:

$$\frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{\frac{\partial(F,G)}{\partial(x,v)}}{\frac{\partial(F,G)}{\partial(u,v)}}, \qquad \frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{\frac{\partial(F,G)}{\partial(u,x)}}{\frac{\partial(F,G)}{\partial(u,v)}}, \qquad \frac{\mathrm{d}u}{\mathrm{d}y} = -\frac{\frac{\partial(F,G)}{\partial(y,v)}}{\frac{\partial(F,G)}{\partial(u,v)}}, \qquad \frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{\frac{\partial(F,G)}{\partial(y,u)}}{\frac{\partial(F,G)}{\partial(u,v)}}$$

其中
$$\frac{\partial(F,G)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{vmatrix}$$
, 其他简写同理

其中 $\frac{\partial(F,G)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{vmatrix}$, 其他简写同理 记忆: 分母永远为 $\frac{\partial(F,G)}{\partial(u,v)}$ (对应所有所求导数的分子 u,v, 若所求导数分子为 y,z 则替换为 y,z); 分子为 $\frac{\partial(F,G)}{\partial(u,v)}$ 中,所求导数的被求导变量替换为求导变量(分母变量)的结果(如对 $\frac{\mathrm{d}u}{\mathrm{d}x}$ 就是将 $\frac{\partial(F,G)}{\partial(u,v)}$ 中的 u 替换为 x,得到 $\frac{\partial(F,G)}{\partial(x,v)}$),最后不要忘了取负号

- (7) 二元函数极值的必要条件: $(f'_x \quad f'_y)_{(x_0,y_0)} = (0 \quad 0)$

• 正定条件:
$$(x,y)=(x_0,y_0)$$
 时 $f''_{xx}>0$,且有 $\begin{pmatrix} f''_{xx} & f''_{xy} \\ f''_{yx} & f''_{yy} \end{pmatrix}_{(x_0,y_0)} > 0$,此时 $f(x_0,y_0)$ 为极大值点

• 负定条件:
$$(x,y)=(x_0,y_0)$$
 时 $f''_{xx}<0$,且有 $\begin{pmatrix} f''_{xx} & f''_{xy} \\ f''_{yx} & f''_{yy} \end{pmatrix}_{(x_0,y_0)} < 0$,此时 $f(x_0,y_0)$ 为极小值点

以上两式中,如果
$$f''_{xy} = f''_{yx}$$
,则判定矩阵
$$\begin{pmatrix} f''_{xx} & f''_{xy} \\ f''_{yx} & f''_{yy} \end{pmatrix}_{(x_0,y_0)} = f''_{xx}(x_0,y_0)f''_{yy}(x_0,y_0) - f''^2_{xy}(x_0,y_0)$$

微分方程求解 11

①
$$y' = f(x)g(y) \Longrightarrow \frac{\mathrm{d}y}{g(y)} = f(x)\,\mathrm{d}x$$

$$y' = f(ax + by + c) \Longrightarrow \diamondsuit \ u = ax + by + c, \ \ 则 \ u' = a + bf(u), \ \ 可得 \ \frac{\mathrm{d}u}{a + bf(u)} = \mathrm{d}x$$

②
$$y' = f\left(\frac{y}{x}\right) \Longrightarrow \diamondsuit \frac{y}{x} = u$$
,则 $\frac{\mathrm{d}y}{\mathrm{d}x} = u + x\frac{\mathrm{d}u}{\mathrm{d}x}$,从而原方程化为 $x\frac{\mathrm{d}u}{\mathrm{d}x} + u = f(u) \longrightarrow \frac{\mathrm{d}u}{f(u) - u} = \frac{\mathrm{d}x}{x}$ $\frac{1}{y'} = f\left(\frac{x}{y}\right) \Longrightarrow \diamondsuit \frac{x}{y} = u$,则 $\frac{\mathrm{d}x}{\mathrm{d}y} = u + y\frac{\mathrm{d}u}{\mathrm{d}y}$,从而原方程化为 $y\frac{\mathrm{d}u}{\mathrm{d}y} + u = f(u) \longrightarrow \frac{\mathrm{d}u}{f(u) - u} = \frac{\mathrm{d}y}{y}$

③
$$y' + p(x)y = q(x) \Longrightarrow y = e^{-\int p(x) dx} \left(\int e^{\int p(x) dx} \cdot q(x) dx + C \right)$$

 $y' + p(x)y = q(x)$ 且 $p(x) = \frac{\varphi'(x)}{\varphi(x)} \Longrightarrow$ 注意到 $\int p(x) dx = \ln |\varphi(x)|$, 从而 $y = \frac{1}{\varphi(x)} \left(\int \varphi(x) q(x) dx + C \right)$

- ① $y' + p(x)y = q(x)y^n \ (n \neq 0, 1)$ ⇒ 变形为 $y^{-n} \cdot y' + p(x)y^{1-n} = q(x)$, 令 $z = y^{1-n}$, 得 $z' = \frac{\mathrm{d}z}{\mathrm{d}x} = (1-n)y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x}$, 即 $y' = y^n \frac{z'}{1-n}$; 代入原方程, 两边同乘 (1-n) 得 z' + (1-n)p(x)z = (1-n)q(x), 使用 "y' + p(x)y = q(x)" 形
- (5) $y'' = f(x, y') \Longrightarrow$ 令 y' = p, y'' = p',转化为" $\frac{\mathrm{d}p}{\mathrm{d}x} = f(x, p)$ "形式

⑥
$$y'' = f(y, y') \Longrightarrow$$
 令 $y' = p, y'' = \frac{\mathrm{d}p}{\mathrm{d}y} \cdot p$,转化为" $\frac{\mathrm{d}p}{\mathrm{d}y} = \frac{f(y, p)}{p}$ "形式;解得 $p = \frac{\mathrm{d}y}{\mathrm{d}x} = \varphi(y, C_1)$ 后有 $\int \frac{\mathrm{d}y}{\varphi(y, C_1)} = x + C_2$,求解可得最终结果 y

(8) y'' + py' + qy = f(x) ⇒ 先求解 y'' + py' + qy = 0,之后根据 f(x) 给出特解的特定形式

上式中 $P_k(x)$, $Q_k(x)$ 代表某个 k 次多项式;将特解形式代入原方程,得到最终特解和通解

⑨
$$y'' + py' + qy = f_1(x) + f_2(x) \Longrightarrow$$
 分别求解
$$\begin{cases} y'' + py' + qy = f_1(x) \\ y'' + py' + qy = f_2(x) \end{cases}$$
 得特解 y_1^* 和 y_2^* 后,相加得原问题特解 $y_1^* + y_2^*$

①
$$y^{(n)} + p_{n-1}y^{(n-1)} + \dots + p_2y'' + p_1y' + p_0y = 0 \Leftrightarrow y^{(n)} + \sum_{i=0}^{n-1} p_iy^{(i)} = 0 \Longrightarrow$$
 求解 $\lambda^n + p_{n-1}\lambda^{n-1} + \dots + p_2\lambda^2 + p_1\lambda + p_0\lambda = 0$ 得到若干个不同的解 λ_k , $k = 1, 2, \dots, l$, $l \leq n$, 对每个解考查

- 若 λ_k 为单实根,则写 $Ce^{\lambda_k x}$
- 若 λ_k 为 r 重实根,则写 $(C_0 + C_1 x + \dots + C_{r-1} x^{r-1}) e^{\lambda_k x} = \sum_{i=0}^{r-1} C_i x^i e^{\lambda_k x}$
- 若 λ_k 为单复根 $\alpha \pm \beta i$,则写 $e^{\alpha x}(C_1 \cos \beta x + C_2 \sin \beta x)$

将其相加组合起来,代入原方程得到特解,最后再转化为通解

$$\widehat{(11)} \ x^2y'' + pxy' + qy = f(x) \Longrightarrow$$

•
$$x > 0$$
 时,令 $x = e^t$,代入原方程得 $\frac{\mathrm{d}^2 y}{\mathrm{d} t^2} + (p-1)\frac{\mathrm{d} y}{\mathrm{d} t} + qy = f(e^t)$,即解 $y'' + (p-1)y' + qy = f(e^t)$

•
$$x < 0$$
 时, 令 $x = -e^t$,代入原方程得 $\frac{d^2y}{dt^2} + (p-1)\frac{dy}{dt} + qy = f(-e^t)$,即解 $y'' + (p-1)y' + qy = f(-e^t)$

① 欧拉方程:
$$x^n y^{(n)} + p_{n-1} x^{n-1} y^{(n-1)} + \dots + p_1 x y' + p_0 y = f(x), \quad x > 0 \Longrightarrow$$
 令 $x = e^t$,记 $D = \frac{\mathrm{d}}{\mathrm{d}t}$, $D^k = \frac{\mathrm{d}^k}{\mathrm{d}t^k}$,可得 $x^k y^{(k)} = D(D-1)(D-2) \cdots (D-k+1) y$ (如 $x^3 y''' = \frac{\mathrm{d}^3 y}{\mathrm{d}t^3} - 3 \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 2 \frac{\mathrm{d}y}{\mathrm{d}t}$) 代入原方程,化为类似于 ① 的形式后求解

12 无穷级数

12.1 无穷级数收敛判别

(1) 比较判别法: 此处略; 补充重要尺度

• 等比级数:
$$\sum_{n=1}^{\infty}aq^{n-1}\Longrightarrow egin{cases} \dfrac{a}{1-q} & |q|<1 \\$$
 发散 $|q|\geqslant 1$

•
$$p$$
 级数: $\sum_{n=1}^{\infty} \frac{1}{n^p} \Longrightarrow \begin{cases} \psi \otimes p > 1 \\ \xi \otimes p \leqslant 1 \end{cases}$

• 交错
$$p$$
 级数:
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^p} \Longrightarrow \begin{cases} \text{绝对收敛} & p>1\\ \text{条件收敛} & 0< p\leqslant 1 \end{cases}$$

② **达朗贝尔判别法(比值判别法):**
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho \begin{cases} < 1 & 收敛 \\ > 1 & 发散 \\ = 1 & 无法判定 \end{cases}$$

③ 柯西根值判别法:
$$\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$$
 $\begin{cases} < 1 & 收敛 \\ > 1 & 发散 \\ = 1 & 无法判定 \end{cases}$

④ 柯西积分判别法: 若能找到
$$f(x), x \in [1, +\infty)$$
 满足 $u_n = f(n)$,则 $\lim_{n \to \infty} u_n$ 与 $\int_1^{+\infty} f(x) dx$ 敛散性相同

⑤ 交错级数
$$\rightarrow$$
 莱布尼茨判别法:对交错级数 $\lim_{n\to\infty}(-1)^{n-1}u_n,\ n>0$,若同时满足 $\begin{cases} \lim_{n\to\infty}u_n=0\\ u_n\geqslant u_{n+1} \end{cases}$ 则该交错级数收敛

12.2 无穷级数常用结论

① 常用反例:
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 (不收敛)、 $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ (不收敛)、 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ (不收敛) 等及其变形(如交错级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ (收敛))

①
$$\sum_{n=1}^{\infty} |u_n|$$
 收敛 $\longrightarrow \sum_{n=1}^{\infty} u_n$ 收敛

$$\sum_{n=1}^{\infty} u_n$$
 收敛 $\longrightarrow \sum_{n=1}^{\infty} |u_n|$ 无法确定

$$② \sum_{n=1}^{\infty} u_n \text{ 收敛} \longrightarrow \begin{cases} u_n \geqslant 0 & \longrightarrow \sum_{n=1}^{\infty} u_n^2 \text{ 收敛} \\ \\ u_n \text{ 无限制} & \longrightarrow \sum_{n=1}^{\infty} u_n^2 \text{ 无法确定} \end{cases}$$

$$(4)$$
 $\sum_{n=1}^{\infty} u_n$ 收敛 $\longrightarrow \sum_{n=1}^{\infty} (-1)^n u_n$ 无法确定

$$(5)$$
 $\sum_{n=1}^{\infty} u_n$ 收敛 $\longrightarrow \sum_{n=1}^{\infty} (-1)^n \frac{u_n}{n}$ 无法确定

(7) $\sum_{n=1}^{\infty} u_n$ 收敛 $\longrightarrow \sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$ 收敛; 事实上,任意加括号、改变求和顺序等得到的新级数仍然收敛,且和不变

$$\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n}) \, \, \text{收敛} \longrightarrow \begin{cases} \lim_{n \to \infty} u_n = 0 & \longrightarrow \sum_{n=1}^{\infty} u_n \, \, \text{收敛} \\ u_n \, \, \text{无限制} & \longrightarrow \sum_{n=1}^{\infty} u_n \, \, \text{无法确定} \end{cases}$$

$$(8)$$
 $\sum_{n=1}^{\infty} u_n$ 收敛 $\longrightarrow \sum_{n=1}^{\infty} (u_{2n-1} - u_{2n})$ 无法确定

$$(10)$$
 $\sum_{n=1}^{\infty} u_n^2$ 收敛 $\longrightarrow \sum_{n=1}^{\infty} \frac{u_n}{n}$ 绝对收敛

①1)设
$$a, b, c$$
 为非零常数,且 $au_n + bv_n + cw_n = 0$,则 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$, $\sum_{n=1}^{\infty} w_n$ 中只要有两个级数收敛,则剩下一个也收敛

$$\sum_{n=1}^{\infty} u_n$$
 收敛, $\sum_{n=1}^{\infty} v_n$ 发散 $\longrightarrow \sum_{n=1}^{\infty} (u_n \pm v_n)$ 发散

$$\sum_{n=1}^{\infty} u_n, \sum_{n=1}^{\infty} v_n 发散 \longrightarrow \begin{cases} u_n \geqslant 0, v_n \geqslant 0 & \longrightarrow \sum_{n=1}^{\infty} (u_n + v_n) 发散 \\ u_n, v_n 无限制 & \longrightarrow \sum_{n=1}^{\infty} (u_n \pm v_n) 无法确定 \end{cases}$$

$$\underbrace{ \left(13 \right) \, \sum_{n=1}^{\infty} u_n, \, \sum_{n=1}^{\infty} v_n \, \, \text{收敛} \longrightarrow \left\{ \begin{aligned} & u_n \geqslant 0, v_n \geqslant 0 & \longrightarrow \sum_{n=1}^{\infty} u_n v_n \, \, \text{收敛} \\ & u_n \, \, \text{无限制}, v_n \geqslant 0 & \longrightarrow \sum_{n=1}^{\infty} |u_n| v_n \, \, \text{收敛}, \sum_{n=1}^{\infty} u_n v_n \, \, \text{无法确定} \\ & u_n, v_n \, \, \text{均无限制} & \longrightarrow \sum_{n=1}^{\infty} u_n v_n \, \, \text{无法确定} \end{aligned} \right.$$

12.3 幂级数

①
$$\sum_{n=0}^{\infty} a_n x^n$$
 的**收敛半径**: 若 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$,则收敛半径 $R = \begin{cases} \frac{1}{\rho} & \rho \neq 0, +\infty \\ +\infty & \rho = 0 \\ 0 & \rho = +\infty \end{cases}$,同时收敛区间为 $(-R, R)$,具体收

敛域则需要考查各端点收敛性

- ② 缺项幂级数 $\sum_{n} u_n(x)$ 的收敛半径:
 - (1) 加绝对值,转化为 $\sum_{n} |u_n(x)|$
 - (2) 将 x 视为常数 (即 $u'(n;x) = u_n(x)$),用正项级数的达朗贝尔判别法(比值判别法) $\lim_{n \to \infty} \left| \frac{u'(n+1;x)}{u'(n;x)} \right|$ 或柯西根值判别法 $\lim_{n \to \infty} \sqrt[n]{|u'(n;x)|}$,并要求该极限 < 1;求解不等式,得到 x 的收敛区间 (a,b)
 - (3) 单独讨论 x = a, x = b 时 $\sum_{n} u_n(x)$ 的收敛性,从而确定收敛域
- ③ 阿贝尔定理: 当幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在点 $x = x_1 \ (x_1 \neq 0)$ 处收敛时,对 $\forall x, |x| < |x_1|$,幂级数**绝对收敛**; 当幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在点 $x = x_1 \ (x_1 \neq 0)$ 处发散时,对 $\forall x, |x| > |x_1|$,幂级数**发散**; 其重要推论有
 - 幂级数 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ 若在 x_1 处收敛,则收敛半径 $R \geqslant |x_1-x_0|$
 - 幂级数 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ 若在 x_1 处发散,则收敛半径 $R \leq |x_1-x_0|$
 - 幂级数 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ 若在 x_1 处条件收敛,则收敛半径 $R=|x_1-x_0|$
- ④ 从幂级数 $\sum_{n} a_n(x-x_1)^n$ 变换到幂级数 $\sum_{n} a_n(x-x_2)^n$,其常见变换方式有
 - 对 $(x-x_1)^n$ 做平移变换,收敛半径不变
 - 对 $(x-x_1)^n$ 乘以因式 $(x-x_1)^k$, 收敛半径不变
 - 对 $a_n(x-x_1)^n$ 逐项(多次) 求导,收敛半径不变,收敛域可能缩小
 - 对 $a_n(x-x_1)^n$ 逐项(多次)积分、收敛半径不变、收敛域可能扩大

12.4 无穷级数的展开

 $\bigcirc{0}$ 常用方法: 积分 \rightarrow 展开 \rightarrow 逐项求导、求导 \rightarrow 展开 \rightarrow 逐项积分

(1)
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, -1 \leqslant x < 1$$

(2)
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, \quad -1 < x \le 1$$

(3)
$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, -1 < x \le 1$$

(4)
$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}, \quad -1 \le x < 1$$

(5)
$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \quad -1 < x \le 1$$

$$(6) e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad -\infty < x < \infty$$

(7)
$$\cosh x = \frac{e^x + e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, \quad -\infty < x < \infty$$

(8)
$$\sinh x = \frac{e^x - e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, \quad -\infty < x < \infty$$

(9)
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad -\infty < x < \infty$$

$$(10) \sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad -\infty < x < \infty$$

12.5 无穷级数求和特殊情况

- ① $\sum_{n} (an + b)x^{an}$ 形式 \Longrightarrow 先逐项积分,求和,再求导
- ② $\sum_{n} \frac{x^{an}}{an+b}$ 形式 \Longrightarrow 先逐项求导,求和,再积分

$$\widehat{\text{ (3)}} \ \sum_n \frac{cn^2 + dn + e}{an + b} x^{an} \ \mathbb{H} \ \text{式} \Longrightarrow \ \\ \text{拆开为两项:} \ \sum_n \frac{cn^2 + dn + e}{an + b} x^{an} = \sum_n (a'n + b') x^{an} + \sum_n \frac{x^{an}}{a''n + b''} \ (\ \text{通常无常数项} \)$$

④ 对存在 a_{n-1}, a_n, a_{n+1} 的数列 $\{a_n\}$ 的递推式及类似形式,令其幂级数 $\sum_{n=1}^{\infty} a_n x^n = S(x)$,获得 S'(x)、S''(x) 后,构建微分方程求解 S(x),最后再将 S(x) 展开后化为 $\sum_{n=1}^{\infty} a_n x^n$ 的形式求得 a_n

12.6 傅里叶级数

① **狄利克雷收敛定理**:设 f(x) 为以 2l 为周期的可积函数,且在 [-l,l] 上 f(x) 满足:①连续,或只有有限个第一类间断点;②至多只有有限个极值点;则 f(x) 的傅里叶级数在 [-l,l] 上处处收敛,且每一点的和函数 S(x) 满足

$$S(x) = \begin{cases} f(x) & x$$
 连续点
$$\frac{f(x-0) + f(x+0)}{2} & x$$
 为间断点
$$\frac{f(-l+0) + f(l-0)}{2} & x = \pm l \end{cases}$$

② 傅里叶级数:
$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$
,
$$\begin{cases} a_0 = \frac{1}{l} \int_{-l}^{l} f(x) \, \mathrm{d}x \\ a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} \, \mathrm{d}x \end{cases}$$
 当 $f(x)$ 为奇函数时,傅里叶展开为正弦级数: $f(x) \sim \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l}$, $b_n = \frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n\pi x}{l} \, \mathrm{d}x$ 当 $f(x)$ 为偶函数时,傅里叶展开为余弦级数: $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l}$,
$$\begin{cases} a_0 = \frac{2}{l} \int_{0}^{l} f(x) \, \mathrm{d}x \\ a_n = \frac{2}{l} \int_{0}^{l} f(x) \, \mathrm{d}x \end{cases}$$

13 三维几何

曲线与曲面

① 参数方程
$$\begin{cases} x = x(t) \\ y = y(t) & t \in I \text{ 给出的曲线在 } P(x(t_0), y(t_0), z(t_0)) \text{ 处的切向量 } \boldsymbol{\tau} = (x'(t_0), y'(t_0), z'(t_0)), \\ z = z(t) & \\ \text{切线方程 } \frac{x - x(t_0)}{x'(t_0)} = \frac{y - y(t_0)}{y'(t_0)} = \frac{z - z(t_0)}{z'(t_0)}, \text{ 法平面方程 } x'(t_0)(x - x(t_0)) + y'(t_0)(y - y(t_0)) + z'(t_0)(z - z(t_0)) = 0 \end{cases}$$

② 隐式方程组
$$\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$$
 给出的曲线在 $P_0(x_0,y_0,z_0)$ 处的切向量 $\boldsymbol{\tau} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ F_x' & F_y' & F_z' \\ G_x' & G_y' & G_z' \end{vmatrix}_{P_0}$; 若 $\boldsymbol{\tau} = (\tau_x, \tau_y, \tau_z)$,则切线方程 $\frac{x-x_0}{\tau_x} = \frac{y-y_0}{\tau_y} = \frac{z-z_0}{\tau_z}$,法平面方程 $\tau_x(x-x_0) + \tau_y(y-y_0) + \tau_z(z-z_0) = 0$

③ 隐式方程
$$F(x,y,z) = 0$$
 给出的曲面在 $P_0(x_0,y_0,z_0)$ 处的法向量 $\mathbf{n} = \left(F_x'\Big|_{P_0}, F_y'\Big|_{P_0}, F_z'\Big|_{P_0}\right)$, 切平面方程 $F_x'\Big|_{P_0}(x-x_0) + F_y'\Big|_{P_0}(y-y_0) + F_z'\Big|_{P_0}(z-z_0)$, 法线方程 $\frac{x-x_0}{|F_x'|_{P_0}} = \frac{y-y_0}{|F_y'|_{P_0}} = \frac{z-z_0}{|F_z'|_{P_0}}$

④ 显式函数
$$z = f(x,y)$$
 或 $f(x,y) - z = 0$ 给出的曲面在 $P_0(x_0,y_0,z_0)$ 处的法向量 $\mathbf{n} = (f'_x(x_0,y_0), f'_y(x_0,y_0), -1)$ 切平面方程 $f'_x(x_0,y_0)(x-x_0) + f'_y(x_0,y_0)(y-y_0) - (z-z_0) = 0$,法线方程 $\frac{x-x_0}{f'_x(x_0,y_0)} = \frac{y-y_0}{f'_y(x_0,y_0)} = -(z-z_0)$

⑤ 参数方程
$$\begin{cases} x = x(u,v) \\ y = y(u,v) \end{cases}$$
 给出的曲面上,记 $x_0 = x(u_0,v_0), y_0 = y(u_0,v_0), z_0 = z(u_0,v_0), \ \mathbb{Q}$ 固定 $v = v_0$, u 曲线在 $P_0(x_0,y_0,z_0)$ 处切向量 $\boldsymbol{\tau}_u = (x_u',y_u',z_u')\Big|_{P_0}$;

固定
$$u = u_0$$
, v 曲线在 $P_0(x_0, y_0, z_0)$ 处切向量 $\boldsymbol{\tau}_v = (x'_v, y'_v, z'_v)\Big|_{P_0}^{P_0}$ 曲面法向量垂直于 $\boldsymbol{\tau}_u, \boldsymbol{\tau}_v$,即 $\boldsymbol{n} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ x'_u & y'_u & z'_u \\ x'_v & y'_v & z'_v \end{vmatrix}_{P_0}$;

若
$$\mathbf{n} = (A, B, C)$$
,则切平面方程 $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$,法线方程 $\frac{x - x_0}{A} = \frac{y - y_0}{B} = \frac{z - z_0}{C}$

⑥ 隐式方程组
$$\begin{cases} F(x,y,z)=0 \\ G(x,y,z)=0 \end{cases}$$
 给出的曲线 Γ 在 xOy 平面上的投影曲线:

⑥ 隐式方程组
$$\begin{cases} F(x,y,z)=0\\ G(x,y,z)=0 \end{cases}$$
 给出的曲线 Γ 在 xOy 平面上的投影曲线:
$$\begin{cases} F(x,y,z)=0\\ G(x,y,z)=0 \end{cases}$$
 中的 z 消去得到 $\varphi(x,y)=0$,则投影曲线包含于
$$\begin{cases} \varphi(x,y)=0\\ z=0 \end{cases}$$
 之中

⑦ 隐式方程组
$$\begin{cases} F(x,y,z)=0\\ G(x,y,z)=0 \end{cases}$$
 给出的曲线 Γ 绕直线 $L:\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}$ 旋转一周形成的旋转曲面求法:

 (z_0) ,L 的方向向量 $oldsymbol{s}=(m,n,p)$,对母线 Γ 上任意一点 $M_1(x_1,y_1,z_1)$,则过 M_1 的纬 圆上任意一点 P(x,y,z) 满足条件 $\overrightarrow{M_1P} \perp s |\overrightarrow{M_0P}| = |\overrightarrow{M_0M_1}|$, 即

$$\begin{cases} m(x-x_1) + n(y-y_1) + p(z-z_1) = 0\\ (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = (x_1-x_0)^2 + (y_1-y_0)^2 + (z_1-z_0)^2 \end{cases}$$

- 将其与方程组 $\begin{cases} F(x_1,y_1,z_1)=0\\ G(x_1,y_1,z_1)=0 \end{cases}$ 联立消去 x_1,y_1,z_1 ,得到旋转曲面方程 $\begin{cases} F(x,y,z)=0\\ G(x,y,z)=0 \end{cases}$ 给出的曲线 Γ 绕 z 轴旋转一周形成的旋转曲面求法:
 - $(1) 能够从方程组 \begin{cases} F(x,y,z)=0 \\ G(x,y,z)=0 \end{cases} \quad \text{中分离出} \begin{cases} x_1=\varphi(z) \\ y_1=\psi(z) \end{cases} , \; 则旋转曲面方程为 \; x^2+y^2=\varphi^2(z)+\psi^2(z)$
 - (2) 对母线 Γ 上任意一点 $M_1(x_1,y_1,z_1)$,则过 M_1 的纬圆上任意一点 P(x,y,z) 满足条件 $z=z_1, |\overrightarrow{OP}|=|\overrightarrow{OM_1}|$,即

$$\begin{cases} x^2 + y^2 + z^2 = x_1^2 + y_1^2 + z_1^2 \\ z = z_1 \end{cases} \implies x^2 + y^2 = x_1^2 + y_1^2$$

 $\begin{cases} x^2+y^2+z^2=x_1^2+y_1^2+z_1^2\\ z=z_1 \end{cases} \Longrightarrow x^2+y^2=x_1^2+y_1^2$ 将其与方程组 $\begin{cases} F(x_1,y_1,z)=0\\ G(x_1,y_1,z)=0 \end{cases}$ 联立消去 x_1,y_1 ,得到旋转曲面方程

平面,直线与位置关系 13.2

① 设平面法向量 $\mathbf{n} = (A, B, C)$,则平面**一般式**: Ax + By + Cz + D = 0 点法式: $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$

三点式:
$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x - x_2 & y - y_2 & z - z_2 \\ x - x_3 & y - y_3 & z - z_3 \end{vmatrix} = 0$$
 截距式:
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

平面束方程: 对两个非平行平面 $\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$, 平面

$$\mu(A_1x + B_1y + C_1z + D_1) + \lambda(A_2x + B_2y + C_2z + D_2) = 0$$

必定过二者交线 L:根据题目条件,可取 $\mu = 1$ 或 $\lambda = 1$ 来排除掉原始二平面中的一个

② 设直线方向向量
$$\tau = (l, m, n)$$
,则直线**一般式**:
$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$
 其中 $(A_1, B_1, C_1) \not \parallel (A_2, B_2, C_2)$

点向式 (标准式、对称式):
$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$
 参数式:
$$\begin{cases} x = x_0 + lt \\ y = y_0 + lt \\ z = z_0 + lt \end{cases}$$

两点式:
$$\frac{x-x_0}{x_1-x_0} = \frac{y-y_0}{y_1-y_0} = \frac{z-z_0}{z_1-z_0}$$

③ 点
$$P_0(x_0, y_0, z_0)$$
 到平面 $Ax + By + Cz + D = 0$ 的距离 $d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$

④ 方向向量分别为
$$\boldsymbol{\tau}_1, \boldsymbol{\tau}_2$$
 的两条直线夹角 $\boldsymbol{\theta} = \arccos \frac{|\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2|}{|\boldsymbol{\tau}_1||\boldsymbol{\tau}_2|}$ 且 $\boldsymbol{\theta} \in [0, \frac{\pi}{2}]$ 法向量分别为 $\boldsymbol{n}_1, \boldsymbol{n}_2$ 的两个平面夹角 $\boldsymbol{\theta} = \arccos \frac{|\boldsymbol{n}_1 \cdot \boldsymbol{n}_2|}{|\boldsymbol{n}_1||\boldsymbol{n}_2|}$ 且 $\boldsymbol{\theta} \in [0, \frac{\pi}{2}]$ 方向向量为 $\boldsymbol{\tau}$ 和法向量为 \boldsymbol{n} 的平面夹角 $\boldsymbol{\theta} = \arcsin \frac{|\boldsymbol{\tau} \cdot \boldsymbol{n}|}{|\boldsymbol{\tau}||\boldsymbol{n}|}$ 且 $\boldsymbol{\theta} \in [0, \frac{\pi}{2}]$

13.3 场论相关

① 方向导数: 设三元函数 u = v(x, y, z) 在点 $P_0(x_0, y_0, z_0)$ 处可微,则其沿任一方向 l 的导数为

$$\frac{\partial u}{\partial l}\Big|_{P_0} = u'_x(P_0)\cos\alpha + u'_y(P_0)\cos\beta + u'_z(P_0)\cos\gamma$$

其中, $\cos \alpha$, $\cos \beta$, $\cos \gamma$ 为沿方向 l 的方向余弦

(2) 梯度: 设三元函数 u=u(x,y,z) 在点 $P_0(x_0,y_0,z_0)$ 处一阶可微,则定义函数 u=u(x,y,z) 在点 P_0 处的梯度

grad
$$u\Big|_{P_0} = \nabla_{(x_0, y_0, z_0)} u = (u'_x(P_0), u'_y(P_0), u'_z(P_0))$$

梯度向量方向与取得最大方向导数的方向一致, 其模 $|(u_x'(P_0), u_y'(P_0), u_z'(P_0))|$ 为方向导数最大值

(3) 散度: 设向量场 $\mathbf{A}(x,y,z) = P(x,y,z)\mathbf{E} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k}$, 则向量场 \mathbf{A} 的散度为

$$\operatorname{div} \mathbf{A} = \nabla \cdot \mathbf{A} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

4 旋度: 设向量场 $\mathbf{A}(x,y,z) = P(x,y,z)\mathbf{E} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k}$, 则向量场 \mathbf{A} 的旋度为

$$\operatorname{rot} \mathbf{A} = \nabla \times \mathbf{A} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

14 多元函数积分

14.1 三重积分

① **轮换对称性:** 如果将 x 和 y 对调后 Ω 不变,则 $\iiint_{\Omega} f(x,y,z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \iiint_{\Omega} f(y,x,z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z;$ 如果 Ω 对 x,y,z 均具有轮换对称性,则有

$$\iiint_{\Omega} f(x) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \iiint_{\Omega} f(y) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \iiint_{\Omega} f(z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \iiint_{\Omega} \frac{f(x) + f(y) + f(z)}{3} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

(2)
$$\iiint_{\Omega} f(x, y, z) \, dx \, dy \, dz = \iint_{D_{xy}} dx \, dy \int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) \, dz = \int_a^b dz \iint_{D_z} f(x, y, z) \, dx \, dy$$

③ 令
$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$
, 则有 $\iiint_{\Omega} f(x, y, z) \, dx \, dy \, dz = \iiint_{\Omega} f(r\cos\theta, r\sin\theta, z) r \, dr \, d\theta \, dz$, 即 $dx \, dy \, dz = r \, dr \, d\theta \, dz$

(5) 令
$$\begin{cases} x = x(u, v, w) \\ y = y(u, v, w) \end{cases}, \quad \text{則有 } \iiint_{\Omega} f(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \iiint_{\Omega} f(x(u, v, w), y(u, v, w), z(u, v, w)) \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| \, \mathrm{d}u \, \mathrm{d}v \, \mathrm{d}w,$$
$$z = z(u, v, w)$$
$$|z| = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \end{vmatrix} \neq 0$$

$$|z| = \begin{vmatrix} \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial v} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} \neq 0$$

14.2 第一型曲线积分(二维曲线为例)与第一型曲面积分

(1)
$$L \not \supset y = y(x), \ a \leqslant x \leqslant b, \ \iiint_L f(x,y) \, \mathrm{d}s = \int_a^b f(x,y(x)) \sqrt{1 + (y_x')^2} \, \mathrm{d}x$$

③ 平面曲线
$$L$$
 由极坐标 $r=r(\theta),\ \alpha\leqslant\theta\leqslant\beta$ 给出,则
$$\int_L f(x,y)\,\mathrm{d}s=\int_{\alpha}^{\beta}f(r(\theta)\cos\theta,r(\theta)\sin\theta)\sqrt{(r(\theta))^2+(r'(\theta))^2}\,\mathrm{d}\theta$$

$$(4) \iint_{\Sigma} f(x, y, z) \, dS = \iint_{D_{xy}} f(x, y, z(x, y)) \sqrt{1 + (z'_x)^2 + (z'_y)^2} \, dx \, dy$$

14.3 第二型曲线积分

① 定义:
$$\begin{cases} \mathbb{P}\mathbf{a} \colon \int_{L} P(x,y) \, \mathrm{d}x + Q(x,y) \, \mathrm{d}y \\ \\ \mathbb{P}\mathbf{a} \colon \int_{L} P(x,y,z) \, \mathrm{d}x + Q(x,y,z) \, \mathrm{d}y + R(x,y,z) \, \mathrm{d}z \end{cases}$$

② 若有参数方程
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}, \quad \alpha \leqslant t \leqslant \beta, \quad \text{则} \int_{L} P(x,y) \, \mathrm{d}x + Q(x,y) \, \mathrm{d}y = \int_{\alpha}^{\beta} \left(P(x(t),y(t))x'(t) + Q(x(t),y(t))y'(t) \right) \, \mathrm{d}t;$$
 三维情况同理,
$$\int_{L} P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z = \int_{\alpha}^{\beta} \left(P(x(t),y(t),z(t))x'(t) + Q(x(t),y(t),z(t))y'(t) + R(x(t),y(t),z(t))z'(t) \right) \, \mathrm{d}t;$$

③ **格林公式**: 设平面有界区域 D 由分段光滑曲线 L 围成,P(x,y),Q(x,y) 在 D 上具有一阶连续偏导数,L 取正向(即人沿 L 该方向前进时,左手始终在 L 围成的 D 内),则

$$\oint_{L} P(x,y) dx + Q(x,y) dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) d\sigma$$

- $\underbrace{ \left(4 \right) \int_L P \, \mathrm{d} x + Q \, \mathrm{d} y } = \int_L \left(P \cos \alpha + Q \sin \alpha \right) \, \mathrm{d} s , \quad \mathrm{其中} \left(\cos \alpha, \sin \alpha \right) \, \mathrm{为} \ L \ \mathrm{上点} \left(x, y \right) \, \mathrm{处}, \quad \mathrm{与} \ L \ \mathrm{同向的单位切向量}$
- ⑤ **斯托克斯公式**:设 Ω 为某空间区域, Σ 为 Ω 内的分片光滑有向曲面片, Γ 为逐段光滑的 Σ 的边界,其方向与 Σ 的 法向量构成右手系,函数 P(x,y,z),Q(x,y,z),R(x,y,z) 在 Ω 内具有连续一阶偏导数,则

$$\oint_{\Gamma} P \, dx + Q \, dy + R \, dz = \iint_{\Sigma} \begin{vmatrix} dy dz & dz dx & dx dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} dS = \iint_{\Sigma} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} dS$$

其中 $\mathbf{n} = (\cos \alpha, \cos \beta, \cos \gamma)$ 为 Σ 的单位外法线向量

- ⑥ 如果在封闭曲线 L 上存在奇点,但剩下的点 $\frac{\partial Q}{\partial x}\equiv \frac{\partial P}{\partial y}$: 更换一条不含奇点的路径 如果在封闭曲线 L 内存在奇点,但围成区域内剩下的点 $\frac{\partial Q}{\partial x}\equiv \frac{\partial P}{\partial y}$: 用一条位于 D 内、包含奇点的封闭曲线 L_1 代替 L (方向不变),则有 $\oint_L P \, \mathrm{d} x + Q \, \mathrm{d} y = \oint_{L_1} P \, \mathrm{d} x + Q \, \mathrm{d} y$; 选择合适的 L_1 可以简化计算
- ⑦ 如果在非封闭曲线 L 上存在奇点,但剩下的点 $\frac{\partial Q}{\partial x} \equiv \frac{\partial P}{\partial y}$: 更换一条不含奇点、且起点与终点与原曲线相同的新路 径 L_2 ,则有 $\int_L P \, \mathrm{d}x + Q \, \mathrm{d}y = \int_{L_2} P \, \mathrm{d}x + Q \, \mathrm{d}y$
- (8) 对于非封闭曲线 L_{AB} ,可以考虑补一条曲线线 C_{BA} ,使得 $L_{AB}+C_{BA}$ 构成一封闭曲线 L,且其包围区域为一单连通区域 D,在 D 上 P(x,y),Q(x,y) 具有一阶连续偏导数,则有

$$\begin{split} \int_{L_{AB}} P \, \mathrm{d}x + Q \, \mathrm{d}y &= \oint_{L} P \, \mathrm{d}x + Q \, \mathrm{d}y - \int_{C_{BA}} P \, \mathrm{d}x + Q \, \mathrm{d}y \\ &= \pm \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathrm{d}\sigma + \int_{C_{AB}} P \, \mathrm{d}x + Q \, \mathrm{d}y \end{split}$$

- ⑨ P dx + Q dy 为某个二元函数 u(x,y) 的全微分 \iff $\int_{L_{AB}} P(x,y) dx + Q(x,y) dy$ 与路径无关; 之后可选择合适的积分路径(如先沿 x 轴再沿 y 轴)或直接求出 u(x,y) 再 u(B) u(A) 得到结果
- ① 如果向量场 \boldsymbol{F} 旋度为 0 (无旋场),即 rot $\boldsymbol{F} = \nabla \times \boldsymbol{F} = \begin{bmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{bmatrix} = \boldsymbol{0}$,则积分与路径无关,可以更换路径

14.4 第二型曲面积分

- ① 定义: 对空间中的**有向曲面** Σ ,有 $\iint_{\Sigma} P(x,y,z) \,\mathrm{d}y \,\mathrm{d}z + Q(x,y,z) \,\mathrm{d}z \,\mathrm{d}x + R(x,y,z) \,\mathrm{d}x \,\mathrm{d}y$
- ② 对每个积分分别求解: 例如对 $\iint_{\Sigma} R(x,y,z) \,\mathrm{d}x \,\mathrm{d}y$,我们需要将曲面 Σ 投影到 xOy 平面上——
 - 如果 Σ 完全垂直于 xOy 平面,则积分为 0
 - 如果 Σ 上存在至少两点于 xOy 平面上投影重合,则需要将 Σ 划分为若干个投影不重合的曲面片

• 如果 Σ 上不存在投影重合点 (或已经划分好),则令 z=z(x,y),设投影域为 D_{xy} ,则有

$$\iint_{\Sigma} R(x,y,z) \,\mathrm{d}x \,\mathrm{d}y = \pm \iint_{D_{xy}} R(x,y,z(x,y)) \,\mathrm{d}x \,\mathrm{d}y$$

其中,当 Σ 的法向量与 z 轴正方向夹角为锐角时取 "+",反之为钝角时则取 "-"

(3) **转换投影法:** 如果 Σ 投影到 xOy 平面上不是一条线,且投影点不存在重合,则设 Σ 在 xOy 平面上的投影域为 D_{xy} ,曲面方程为 z=z(x,y),则

$$\begin{split} & \iint_{\Sigma} P(x,y,z) \, \mathrm{d}y \, \mathrm{d}z + Q(x,y,z) \, \mathrm{d}z \, \mathrm{d}x + R(x,y,z) \, \mathrm{d}x \, \mathrm{d}y \\ & = \pm \iint_{D_{xy}} \left(-P(x,y,z(x,y)) \frac{\partial z}{\partial x} - Q(x,y,z(x,y)) \frac{\partial z}{\partial y} + R(x,y,z(x,y)) \right) \mathrm{d}x \, \mathrm{d}y \end{split}$$

其中,当 Σ 的法向量与z轴正方向夹角为锐角时取"+",反之为钝角时则取"-"

(4) **高斯公式**: 设空间有界区域 Ω 由有向分片光滑闭曲面 Σ 围成,P(x,y,z),Q(x,y,z),R(x,y,z) 在 Ω 上具有一阶连续偏导数,其中 Σ 取外侧,则有

$$\iint_{\Sigma} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}z \, \mathrm{d}x + R \, \mathrm{d}x \, \mathrm{d}y = \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

此外,如果 P,Q,R 中含有未知连续可微函数 f(x) 且封闭曲面上第二型曲面积分 $\equiv 0$,

则可推出其散度为 0,即 div $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 0$,进而解出 f(x)

- (5) 如果封闭曲面 Σ 围成区域内部有奇点,但剩余点都满足散度为 0,即 div $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 0$,则换内部的一个朝外的封闭曲面 Σ_1 积分,有 $\iint_{\Sigma} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}z \, \mathrm{d}x + R \, \mathrm{d}x \, \mathrm{d}y = \iint_{\Sigma_1} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}z \, \mathrm{d}x + R \, \mathrm{d}x \, \mathrm{d}y$
- ⑥ 对于非封闭曲面 Σ ,若散度为 0,即 $\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 0$,则换边界相同的另一个曲面 Σ_1 积分,有 $\iint_{\Sigma} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}z \, \mathrm{d}x + R \, \mathrm{d}x \, \mathrm{d}y = \iint_{\Sigma_1} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}z \, \mathrm{d}x + R \, \mathrm{d}x \, \mathrm{d}y$
- (7) 对于非封闭曲面 Σ ,也可以先补上曲面 Σ 1 使得其构成封闭曲面再减掉,即

15 其他高等数学公式

- ① $\ln x$ 的放缩: $1 \frac{1}{x} < \ln x < x 1 \quad (x > 0)$ e^x 的放缩: $e^x < \frac{1}{1 x} \quad (x < 1), \qquad e^x > x + 1$
- ② 三角函数的**万能公式:** $\sin x = \frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}, \quad \cos x = \frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}, \quad \tan x = \frac{2\tan\frac{x}{2}}{1-\tan^2\frac{x}{2}}$

$$(3) \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right) \mathrm{d}x = \sqrt{2\pi}\sigma, \qquad \int_{-\infty}^{+\infty} e^{-x^2} \, \mathrm{d}x = 1, \qquad \int_{0}^{+\infty} e^{-x^2} \, \mathrm{d}x = \frac{1}{2}$$

$$\underbrace{4} \sum_{k=1}^{n} \sin kx = \frac{\cos \frac{x}{2} - \cos \left(n + \frac{1}{2}\right) x}{2 \sin \frac{x}{2}}, \qquad \sum_{k=1}^{n} \cos kx = \frac{\sin \left(n + \frac{1}{2}\right) x - \sin \frac{x}{2}}{2 \sin \frac{x}{2}}$$

16 行列式

① **余子式:** 行列式挖去第 i 行第 j 列得到的新行列式 M_{ij} 代数余子式: $A_{ij} = (-1)^{i+j} M_{ij}$

行列式用余子式展开:
$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{i=1}^{n} a_{ki} A_{ki}$$

$$\underbrace{2} \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{j_1 j_2 \cdots j_n} (-1)^{\tau(j_1 j_2 \cdots j_n)} a_{1j_1} a_{2j_2} \cdots a_{nj_n} = \sum_{i=1}^n a_{ki} A_{ki} = \sum_{i=1}^n a_{ik} A_{ik}$$

其中 $\tau(j_1j_2\cdots j_n)$ 表示排列 $j_1j_2\cdots j_n$ 中的**逆序数**,如 25134 中有逆序 21,51,53,54,故 $\tau(25134)=4$

- (3) 行列式性质:
 - 交换两行,行列式反号
 - 某行乘以 k,行列式整体乘以 k (即 k 可以提到行列式外;注意多行分别乘以 k_1, k_2, \cdots, k_i 时需全部提出)
 - 某行所有元素都是两个数的和, 行列式可拆成两个行列式之和
 - 某行乘以 k 加到另一行,行列式不变
 - $|\mathbf{A}^T| = |\mathbf{A}|$
 - $|k\mathbf{A}| = k^n |\mathbf{A}|$
 - |AB| = |A||B|
 - $|A^*| = |A|^{n-1}$, $|A^{-1}| = |A|^{-1}$
 - $|\mathbf{A}| = \prod_{i=1}^n \lambda_i$,其中 λ_i 为 \mathbf{A} 的第 i 个特征值
 - 若 A 和 B 相似,则 |A| = |B|,|A + kE| = |B + kE|

④ 主对角线:
$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = \prod_{i=1}^{n} a_{ii}$$

⑤ 副对角线:
$$\begin{vmatrix} a_{11} & \cdots & a_{1,n-1} & a_{1n} \\ a_{21} & \cdots & a_{2,n-1} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \cdots & 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & \cdots & 0 & a_{1n} \\ 0 & \cdots & a_{2,n-1} & a_{2n} \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \cdots & a_{n,n-1} & a_{nn} \end{vmatrix} = \begin{vmatrix} 0 & \cdots & 0 & a_{1n} \\ 0 & \cdots & a_{2,n-1} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \cdots & 0 & 0 \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} \prod_{i=1}^{n} a_{i,(n+1-i)}$$

(6) 拉普拉斯展开式: 设 A 为 m 阶矩阵,B 为 n 阶矩阵,则

$$\begin{vmatrix} A & O \\ O & B \end{vmatrix} = \begin{vmatrix} A & C \\ O & B \end{vmatrix} = \begin{vmatrix} A & O \\ C & B \end{vmatrix} = |A||B|, \qquad \begin{vmatrix} O & A \\ B & O \end{vmatrix} = \begin{vmatrix} C & A \\ B & O \end{vmatrix} = \begin{vmatrix} O & A \\ B & C \end{vmatrix} = (-1)^{mn}|A||B|$$

其中 * 处可以填任何数,一般填便于通过互换、倍乘、倍加等方式来消去部分数、简化计算的数

17 矩阵

(1) 令 P,Q 为可逆矩阵,则

	充要条件	直观描述	性质
相抵/等价	PAQ = B	矩阵 $m{A}$ 通过 初等变换 能变成 $m{B}$	① $r(A) = r(B)$ ② A 可逆 $\Leftrightarrow B$ 可逆
相似	$m{P}^{-1}m{A}m{P}=m{B}$	矩阵 A 通过 线性变换 能变成 B	① $r(A + kE)$ = $r(B + kE)$ ② A 可逆 $\Leftrightarrow B$ 可逆 ③ $ A = B $ ④ $tr(A) = tr(B)$ ⑤ A, B 特征值相同 ⑥ 特征向量线性无关 的矩阵相似于对角阵
合同	$oldsymbol{P}^Toldsymbol{A}oldsymbol{P}=oldsymbol{B}$	对实对称矩阵 A 和 B , 其为同一个二次型在不同基下的表示	 ① 对称阵相似 = 合同 ② r(A) = r(B) ③ A 可逆 ⇔ B 可逆 ④ 二次型规范型一样 ⑤ 正/负惯性指数一样 ⑥ 正定矩阵合同于 E

- (2) 矩阵 A 可逆充要条件:
 - $|\mathbf{A}| \neq 0$
 - $r(\mathbf{A}) = n$
 - **A** 的行(列)向量组线性无关
 - A 与 E 相抵/等价
 - **A** 特征值全部非零
- (3) 伴随矩阵 **A*** 性质:

•
$$AA^* = A^*A = |A|E$$
, $A^* = |A|A^{-1}$, $|A^*| = |A|^{n-1}$

•
$$(A^*)^{-1} = (A^{-1})^* = \frac{1}{|A|}A, \qquad (A^*)^T = (A^T)^*$$

•
$$(A^*)^* = |A|^{n-2}A$$
, $|(A^*)^*| = |A|^{(n-1)^2}$

•
$$(k\mathbf{A})^* = k^{n-1}\mathbf{A}^*, \qquad (-\mathbf{A})^* = (-1)^{n-1}\mathbf{A}^*$$

•
$$r(\mathbf{A}^*) = \begin{cases} n & r(\mathbf{A}) = n \\ 1 & r(\mathbf{A}) = n - 1 \\ 0 & r(\mathbf{A}) \leqslant n - 2 \end{cases}$$

(4) 正交矩阵 $\mathbf{Q}^T \mathbf{Q} = \mathbf{Q} \mathbf{Q}^T = \mathbf{E}$ 性质:

•
$$Q^{-1} = Q^T$$

•
$$|Q| = \pm 1$$

•
$$\langle Qx, Qy \rangle = \langle x, y \rangle$$

•
$$Q^T, Q^{-1}, Q^*, -Q$$
 均为正交矩阵

• 两个同阶正交矩阵的积 Q_1Q_2 也为正交矩阵

(5) 实对称矩阵 $A^T = A$ 性质:

- 不同特征值 λ_1, λ_2 对应的特征向量 α_1, α_2 必正交
- 特征值均为实数

• 必定存在正交矩阵
$$m{Q}$$
 使得实对称矩阵可以对角化: $m{Q}^{-1}m{A}m{Q} = m{Q}^Tm{A}m{Q} = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$

(6) 秩 $r(\mathbf{A})$ 性质:

•
$$r(\mathbf{A}) = r(\mathbf{A}^T) = r(\mathbf{A}^T \mathbf{A}) = r(k\mathbf{A}) \quad (k \neq 0)$$

•
$$r(\boldsymbol{A} + \boldsymbol{B}) \leqslant r([\boldsymbol{A}, \boldsymbol{B}]) \leqslant r(\boldsymbol{A}) + r(\boldsymbol{B})$$

•
$$r(\mathbf{A}) + r(\mathbf{B}) - n \leqslant r(\mathbf{A}\mathbf{B}) \leqslant \min(r(\mathbf{A}), r(\mathbf{B}))$$

• 若
$$P, Q$$
 可逆, 则 $r(A) = r(PA) = r(AP) = r(PAQ)$

• 若
$$AB = O$$
, 则 $r(A) + r(B) \leqslant n$

•
$$r(A) + r(B) = r \begin{pmatrix} A & O \\ O & B \end{pmatrix}$$

• 若
$$A, B, C$$
 均为 $n \times n$ 的方阵,则 $r(A) + r(B) \leqslant r\left(\begin{bmatrix} A & O \\ C & B \end{bmatrix}\right) \leqslant r(A) + r(B) + r(C)$

• 若
$$A$$
, B 相抵/等价,则 $r(A) = r(B)$; 若 A , B 相似,则 $r(A + kE) = r(B + kE)$

•
$$E$$
 E $E E $E$$

• 若
$$\boldsymbol{A}$$
 可相似对角化,则 λ_i 的代数重数 $n_i = n - r(\lambda_i \boldsymbol{E} - \boldsymbol{A})$

• 若
$$A$$
 可相似对角化,则 $r(A)$ 等于非零特征值的个数(重根按代数重数计算)

(7) 对 $\mathbf{A} = \mathbf{B} + \mathbf{C}$,求 \mathbf{A}^n :

• 若
$$BC = CB$$
,则 $A^n = \sum_{i=0}^n \binom{n}{i} B^{n-i} C^i$

• 若
$$oldsymbol{B} = oldsymbol{E}$$
,则 $oldsymbol{A}^n = \sum_{i=0}^n \binom{n}{i} oldsymbol{C}^i$

- (8) 初等矩阵定义:由单位矩阵经过一次初等变换得到的矩阵,
 - $E_i(k)$ 表示单位矩阵 E 的第 i 行乘上非零常数 k,称为倍乘初等矩阵 (形式: 单位矩阵的第 i 行第 i 列由 1 变为 k)
 - E_{ij} 表示单位矩阵 E 的第 i 行与第 j 行互换,称为互换初等矩阵 (形式:单位矩阵的第 i 行第 i 列、第 j 行第 j 列由 1 变为 0,第 i 行第 j 列、第 j 行第 i 列由 0 变为 k)
 - $E_{ji}(k)$ 表示单位矩阵 E 的第 i 行乘上非零常数 k 加到第 j 行 f 单位矩阵 f 的第 f 列乘上非零常数 f 加到 第 f 列,称为倍加初等矩阵

(形式:单位矩阵的第j行第i列由0变为k)

(9) 初等矩阵性质:

•
$$|E_{ij}| = -1$$
, $|E_{ji}(k)| = 1$, $|E_i(k)| = k$

•
$$E_{ij}^T = E_{ij}, E_{ji}(k)^T = E_{ij}(k), E_{i}(k)^T = E_{i}(k)$$

•
$$E_{ij}^{-1} = E_{ij}$$
, $E_{ji}(k)^{-1} = E_{ji}(-k)$, $E_{i}(k)^{-1} = E_{i}\left(\frac{1}{k}\right)$

•
$$E_{ij}^* = -E_{ij}, \quad E_{ji}^*(k) = E_{ji}(-k), \quad E_i^*(k) = kE_i\left(\frac{1}{k}\right)$$

(10) 在 n 维向量空间给定两组基: $\alpha_1, \alpha_2, \cdots, \alpha_n$ 和 $\beta_1, \beta_2, \cdots, \beta_n$ (都为列向量),则可定义**过渡矩阵** C 满足

$$\boldsymbol{B} = \boldsymbol{A}\boldsymbol{C} \Leftrightarrow (\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{n}) = (\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n})\boldsymbol{C} \Leftrightarrow \begin{pmatrix} \beta_{11} & \beta_{21} & \cdots & \beta_{n1} \\ \beta_{12} & \beta_{22} & \cdots & \beta_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{1n} & \beta_{2n} & \cdots & \beta_{nn} \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{21} & \cdots & \alpha_{n1} \\ \alpha_{12} & \alpha_{22} & \cdots & \alpha_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{1n} & \alpha_{2n} & \cdots & \alpha_{nn} \end{pmatrix} \boldsymbol{C}$$

若向量 γ 在 $\{\alpha_i\}$ 基和 $\{\beta_i\}$ 基上的坐标分别为 $\mathbf{x}=(x_1,x_2,\cdots,x_n)^T$ 和 $\mathbf{y}=(y_1,y_2,\cdots,y_n)^T$,则

$$m{x} = m{C}m{y} \Leftrightarrow (x_1, x_2, \cdots, x_n)^T = m{C}(y_1, y_2, \cdots, y_n)^T \Leftrightarrow egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} = m{C} egin{pmatrix} y_1 \ y_2 \ dots \ y_n \end{pmatrix}$$

• 总结: 在基变换的情况下, $B = AC \Longrightarrow C = A^{-1}B$ (C 在右侧,"新 = 旧 C"); 在坐标变换的情况下,x = Cy (C 在左侧,"旧 = C 新")

18 线性方程组

① $|A| \neq 0 \Leftrightarrow r(A) = n \Leftrightarrow$ 齐次线性方程组 Ax = 0 有唯一零解 \Leftrightarrow 非齐次线性方程组 Ax = b 有唯一解 $|A| = 0 \Leftrightarrow r(A) < n \Leftrightarrow$ 齐次线性方程组 Ax = 0 有非零解 \Leftrightarrow 非齐次线性方程组 Ax = b 无解或有无穷多个解

- (2) 齐次线性方程组 $A_{m\times n}x=0$ 的基础解系由 n-r(A) 个线性无关的解向量构成
- ③ 克拉默法则:对非齐次线性方程组 Ax = b,有 $x_i = \frac{|A_i|}{|A|}$,其中 A_i 为将 A 的第 i 列替换为 b 的新矩阵
- (4) 对 $\mathbf{A} = [\alpha_1, \alpha_2, \cdots, \alpha_n]$ 和 \mathbf{b} 构成的非齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$,以下说法等价:
 - (a) $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有解
 - (b) **b** 能够被向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表示
 - (c) 向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 和向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n, b$ 等价
 - (d) 系数矩阵 $A = [\alpha_1, \alpha_2, \cdots, \alpha_n]$ 与其增广矩阵 $[A, b] = [\alpha_1, \alpha_2, \cdots, \alpha_n, b]$ 的秩相等
- (5) 对非齐次线性方程组 Ax = b,若齐次线性方程组 Ax = 0 的基础解系为 $\xi_1, \xi_2, \dots, \xi_{n-r}$, η^* 为 Ax = b 的一个特解,则通解为

$$x = \eta^* + k_1 \xi_1 + k_2 \xi_2 + \dots + k_{n-r} \xi_{n-r}$$

其中 r = r(A), k_1, k_2, \dots, k_{n-r} 为任意常数;

推论可知, 若 η_1 和 η_2 为 Ax = b 的两个不同解,则 $\eta_1 - \eta_2$ 为 Ax = 0 的解

⑥ 对具有公共解的两个齐次线性方程组 Ax=0 和 Bx=0,其公共解满足 $\begin{bmatrix} A \\ B \end{bmatrix} x=0$ 若 Ax=0 和 Bx=0 的基础解系分别为 $\boldsymbol{\xi}_1,\boldsymbol{\xi}_2,\cdots,\boldsymbol{\xi}_s$ 和 $\boldsymbol{\eta}_1,\boldsymbol{\eta}_2,\cdots,\boldsymbol{\eta}_t$,则公共解应当满足

$$\gamma = k_1 \boldsymbol{\xi}_1 + k_2 \boldsymbol{\xi}_2 + \dots + k_s \boldsymbol{\xi}_s = l_1 \boldsymbol{\eta}_1 + l_2 \boldsymbol{\eta}_2 + \dots + l_t \boldsymbol{\eta}_t$$

即求解 $k_1\xi_1 + k_2\xi_2 + \cdots + k_s\xi_s - (l_1\eta_1 + l_2\eta_2 + \cdots + l_t\eta_t) = 0$ 得到 k_1, k_2, \cdots, k_s 和 l_1, l_2, \cdots, l_t 后代入公共解表达式

- (7) 同解方程组:具有完全相同的解的两个齐次线性方程组 Ax = 0 和 Bx = 0。对同解方程组,以下说法等价:
 - (a) Ax = 0 和 Bx = 0 为同解方程组
 - (b) Ax = 0 的解也是 Bx = 0 的解,且 Bx = 0 的解也是 Ax = 0 的解
 - (c) r(A) = r(B), 且 Ax = 0 的解也是 Bx = 0 的解(或反过来)

(d)
$$r(\mathbf{A}) = r(\mathbf{B}) = r \begin{pmatrix} A \\ B \end{pmatrix}$$

- (8) 对齐次线性方程组 Ax = 0,必定有解且至少包含零解
 - 对齐次线性方程组 $A_{m\times n}x=0$,若 r(A)=n,则只有零解
 - 对齐次线性方程组 $A_{m \times n} x = 0$,若 r(A) < n,则有无穷多个解
 - 对非齐次线性方程组 $A_{m \times n} x = b$, 若 $r(A) \neq r([A, b])$, 则无解
 - 对非齐次线性方程组 $A_{m \times n} x = b$, 若 r(A) = r([A, b]) = n, 则有唯一解
 - 对非齐次线性方程组 $A_{m \times n} x = b$, 若 r(A) = r([A, b]) = r < n, 则有无穷多个解
- (9) **Schmidt 正交化**:对任意向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$,按照以下步骤依此类推:
 - $(1) \, \diamondsuit \, \boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1$
 - (2) 用 α_2 减去其在向量 β_1 上的投影,即 $\beta_2 = \alpha_2 \frac{\langle \beta_1, \alpha_2 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 = \alpha_2 \sum_{i=1}^1 \frac{\langle \beta_i, \alpha_2 \rangle}{\langle \beta_i, \beta_i \rangle} \beta_i$
 - (3) 用 α_3 减去其在向量 β_1 和 β_2 上的投影,即 $\beta_3 = \alpha_3 \frac{\langle \beta_1, \alpha_3 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 \frac{\langle \beta_2, \alpha_3 \rangle}{\langle \beta_2, \beta_2 \rangle} \beta_2 = \alpha_3 \sum_{i=1}^2 \frac{\langle \beta_i, \alpha_3 \rangle}{\langle \beta_i, \beta_i \rangle} \beta_i$

(4) 重复以上步骤,直到得到一组**正交向量组** $oldsymbol{eta}_1, oldsymbol{eta}_2, \cdots, oldsymbol{eta}_n$

注意: 要得到单位正交向量组,还需要对每个 $oldsymbol{eta}_i$ 进行单位化: $oldsymbol{eta}_i' = rac{oldsymbol{eta}_i}{|oldsymbol{eta}_i|}$

19 特征值与特征向量

- (1) 特征值 & 特征向量性质:
 - λ 为 \boldsymbol{A} 的特征值 $\Leftrightarrow |\lambda \boldsymbol{E} \boldsymbol{A}| = 0$

•
$$|\mathbf{A}| = \prod_{i=1}^{n} \lambda_i, \quad \operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$$

- k 重特征值至多只有 k 个线性无关的特征向量
- 不同特征值对应的特征向量线性无关;同一特征值对应的不同特征向量的线性组合仍为该特征值的特征向量,而不同特征值对应的特征向量的线性组合不是原矩阵的特征向量
- (2) 矩阵变形与特征值、特征向量的变化:

矩阵	特征值	特征向量
\boldsymbol{A}	λ	ξ
$p\boldsymbol{A} + q\boldsymbol{E}$	$p\lambda + q$	ξ
\boldsymbol{A}^k	λ^k	ξ
$f(m{A})$	$f(\lambda)$	ξ
$oldsymbol{A}^{-1}$	$\frac{1}{\lambda}$	ξ
$oldsymbol{A}^*$	$rac{ m{A} }{\lambda}$	ξ
$oldsymbol{A}^T$	λ	重新计算
$P^{-1}AP$	λ	$oldsymbol{P}^{-1}oldsymbol{\xi}$

(3) 特殊矩阵的特征值:

- 对 AB = O,即 $A[\beta_1, \beta_2, \cdots, \beta_m] = [0, 0, \cdots, 0], m \le n$,亦即 $A\beta_i = 0\beta_i$, $i = 1, 2, \cdots, m$,若 β_i 均为非零 列向量,则 β_i 为 A 的属于特征值 $\lambda = 0$ 的特征向量
- $\forall AB = C$, $\exists A[\beta_1, \beta_2, \cdots, \beta_n] = [\gamma_1, \gamma_2, \cdots, \gamma_m], m \leq n$, $\exists [\gamma_1, \gamma_2, \cdots, \gamma_m] = [\lambda_1 \beta_1, \lambda_2 \beta_2, \cdots, \lambda_m \beta_m]$, $\exists A\beta_i = \lambda_i \beta_i, i = 1, 2, \cdots, m$, $\exists A\beta_i = \lambda_i$
- 对 AP = PB 且 P 可逆,可知 $A = PBP^{-1}$ 相似于 B, $\lambda_A = \lambda_B$
- 若 \boldsymbol{A} 每行元素之和均为 k,则 $\boldsymbol{A}\begin{bmatrix}1\\1\\1\\\vdots\\1\end{bmatrix}=k\begin{bmatrix}1\\1\\1\\1\end{bmatrix}$,从而 k 为 \boldsymbol{A} 的特征值, $\begin{bmatrix}1\\1\\1\\\vdots\\1\end{bmatrix}$ 为对应的特征向量
- $A^2 = A \Longrightarrow A$ 的特征值只能为 0 或 1
- 秩为 1 的矩阵, 其唯一非零特征值即为该矩阵的迹

- 证明:由于 $r(\mathbf{A}) = 1$,可知线性方程组 $\mathbf{A}x = \mathbf{0}$ 有 n-1 个线性无关的非零解,而由 $\mathbf{A}x = \mathbf{0} = 0 \cdot x$ 可知 0 为 \mathbf{A} 的特征值,而先前 n-1 个线性无关的非零解恰好为特征值 0 对应的特征向量;又 \mathbf{A} 所有特征值的 和为 $\mathrm{tr}(\mathbf{A})$,从而最后一个特征向量对应的特征值即为 $\mathrm{tr}(\mathbf{A}) - 0 = \mathrm{tr}(\mathbf{A})$

(4) 矩阵可以相似对角化的充要条件:

- (a) A 所有特征向量均线性无关
- (b) $\bf A$ 每个特征值的代数重数(方程 $|\lambda \bf E \bf A| = 0$ 中 λ_i 为几重根)等于其几何重数(该特征值对应特征向量构成 空间的维数;如代数重数为 3 的特征值,对应的所有特征向量构成空间维数为 1,则几何重数为 1)

矩阵可以相似对角化的充分条件:

- (a) A 是实对称矩阵;此外,必定存在正交矩阵 Q 使得 $Q^{-1}AQ = Q^TAQ = \Lambda$ 为对角阵
- (b) $A_{n\times n}$ 有 n 个互异的特征值
- (c) $A^2 = A$
- (d) $A^2 = E$
- (e) r(A) = 1, $tr(A) \neq 0$

矩阵可以相似对角化的必要条件:

- (a) r(A) 等于 A 非零特征值的个数(重根按代数重数计算)
- (b) $A^k \neq O$,其中 k 为任意正整数
- (c) 除 kE 类型的矩阵外,A 相异特征值至少有 2 个
- (5) 用相似矩阵求 A^n : 若 $P^{-1}AP = \Lambda$,其中 Λ 为对角矩阵,则 $A^n = P\Lambda^nP^{-1}$
- ⑥ 特征向量相同的充要条件: AB = BA,且二者都可相似对角化(例: 原矩阵 A 和其伴随矩阵 A^* 、逆矩阵 A^{-1} 特征向量相同)

20 二次型与正定矩阵

- ① 二次型的矩阵表示: $x^T A x$,其中 $A^T = A$ 为实对称矩阵; 若 A 为对角矩阵,此时二次型只含平方项,称为标准型; 若 A 为对角矩阵且对角元素只含 -1,0,1,此时二次型称为规范型
- (2) **正惯性指数:**二次型的标准型中正平方项的个数,**负惯性指数**同理
- (3) 若 n 元二次型 $f(x_1, x_2, \dots, x_n) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 经坐标变换 $\mathbf{x} = \mathbf{C} \mathbf{y}$,新的二次型为 $\mathbf{y}^T \mathbf{B} \mathbf{y}$,则

$$B = C^T A C = C^{-1} A C$$

- (4) 正交变换法:对于 $f = x^T A x$,
 - (1) 求 \mathbf{A} 的特征值 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 及对应特征向量 $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \cdots, \boldsymbol{\xi}_n$ (列向量)
 - (2) 将 $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \cdots, \boldsymbol{\xi}_n$ 单位正交化(如 Schmidt 正交化)为 $\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \cdots, \boldsymbol{\eta}_n$
 - (3) 令 $Q = [\eta_1, \eta_2, \cdots, \eta_n]$,则 $Q^{-1}AQ = Q^TAQ = \Lambda$ 为对角阵,且 Λ 主对角线元素为 A 的特征值
- (5) 若实对称矩阵 **A** 的特征值大小排序为 $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$,则
 - (a) $\lambda_1 \boldsymbol{x}^T \boldsymbol{x} \geqslant \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} \geqslant \lambda_n \boldsymbol{x}^T \boldsymbol{x}$

- (b) 若 $\boldsymbol{x}^T\boldsymbol{x} = 1$,则对 $f = \boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x}$ 有 $f_{\max} = \lambda_1, f_{\min} = \lambda_n$
- (6) 二次曲面 $f(x_1, x_2, x_3) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \lambda_3 x_3^2 = 1$ 的类型:

$\lambda_1, \lambda_2, \lambda_3$ 的符号	类型
(+, +, +)	椭球面
(+, +, -)	单叶双曲面
(+, -, -)	双叶双曲面
(+, +, 0)	椭圆柱面
(+, -, 0)	双曲柱面

- (7) 正定矩阵 **A** 定义 & 性质:
 - 对任何 $x \neq 0$, 必有 $x^T Ax > 0$
 - *A* 为实对称矩阵
 - $a_{ii} > 0$
 - |A| > 0
- (8) 实对称矩阵 $A_{n\times n}$ 正定的充要条件:
 - (a) \boldsymbol{A} 的正惯性指数为 n
 - (b) A与E合同
 - (c) \boldsymbol{A} 的所有特征值均 > 0
 - (d) \mathbf{A} 的各界顺序主子式均 > 0

21 概率函数

1) 离散随机变量:

名称	表示/参数	概率函数 $P(X = k)$	期望	
离散均匀分布	U(a,b)	$\frac{1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2}{12}$
伯努利分布/0-1 分布	$Bern(p)^*$	$\begin{cases} p & k = 1 \\ 1 - p & k = 0 \end{cases}$	p	p(1-p)
二项分布	B(n,p)	$\binom{n}{k}p^k(1-p)^{n-k}$	np	np(1-p)
几何分布	G(p)	$p(1-p)^{k-1}$	$\frac{1}{p}$	$rac{1-p}{p^2}$
超几何分布	n, M, N^*	$\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}$	$n \cdot \frac{M}{N}$	$n \cdot \frac{M(N-M)}{N^2} \cdot \frac{N-n}{N-1}$
泊松分布	$P(\lambda)$	$rac{\lambda^k}{k!}e^{-\lambda}$	λ	λ
* 代表该表示仅供参考, * 代表该分布无常见通用表示				

② 连续随机变量:

名称	表示/参数	概率密度函数 $f(x)$	概率分布函数 $F(x)$	期望	方差	
均匀分布	U(a,b)	$\begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & x \notin [a,b] \end{cases}$	$\begin{cases} 0 & x \in (-\infty, a) \\ \frac{x-a}{b-a} & x \in [a, b] \\ 1 & x \in [b, +\infty) \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
指数分布	$\operatorname{Exp}(\lambda)^*$	$\begin{cases} \lambda e^{-\lambda x} & x \geqslant 0\\ 0 & x < 0 \end{cases}$	$\begin{cases} 1 - e^{-\lambda x} & x \geqslant 0\\ 0 & x < 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	
正态分布	$\mathcal{N}(\mu,\sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$	$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{1}{2} \left(\frac{t-\mu}{\sigma}\right)^{2}\right) dt$	μ	σ^2	
标准正态分布	$\mathcal{N}(0,1)$	$\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x^2}{2}\right)$	$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{t^2}{2}\right) \mathrm{d}t$	0	1	
* 代表该表示仅供参考,* 代表该分布无常见通用表示						

特殊:标准正态分布的概率分布函数 $\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x \exp\left(-\frac{t^2}{2}\right) \mathrm{d}t$ 可记为 $\varPhi(x)$ 或 $\frac{1}{2}\left(1+\mathrm{erf}\left(\frac{x}{\sqrt{2}}\right)\right)$, 这里 $\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2} \mathrm{d}t = \frac{1}{\sqrt{\pi}}\int_{-x}^x e^{-t^2} \mathrm{d}t$

③ 二元正态分布:

• 参数: $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$

• 概率密度函数:
$$\frac{1}{\sigma_1\sigma_2 \cdot 2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left(\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right) \left(\frac{x-\mu_2}{\sigma_2}\right) + \left(\frac{x-\mu_2}{\sigma_2}\right)^2 \right) \right)$$

• 边缘分布: $F_{X_1}(x) \sim \mathcal{N}(\mu_1, \sigma_1^2), F_{X_2}(x) \sim \mathcal{N}(\mu_2, \sigma_2^2)$

• 协方差矩阵:
$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

(4) n 元正态分布:

• 参数: n 维向量 μ (期望), $n \times n$ 的半正定矩阵 Σ (协方差矩阵)

• 概率密度函数:
$$\frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\boldsymbol{x}-\boldsymbol{\mu})\right)$$

• 边缘分布: $F_{X_i}(x) \sim \mathcal{N}(\mu_i, \Sigma_{ii})$

(5) 边缘分布的求解:

目标: 边缘概率分布
$$f_X(x)$$
 目标: 边缘分布 $F_X(x)$ 已知: 联合概率分布 $f(x,y)$
$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y \qquad F_X(x) = \int_{-\infty}^x \mathrm{d}t \int_{-\infty}^{+\infty} f(t,y) \, \mathrm{d}y$$
 已知: 联合分布 $F(x,y)$
$$f_X(x) = \frac{\mathrm{d}\left(\lim_{y \to +\infty} F(x,y)\right)}{\mathrm{d}x} \qquad F_X(x) = \lim_{y \to +\infty} F(x,y)$$

⑥ 最大值函数的分布函数: 对 $Z = \max_{i=1,2,\cdots,n} \{X_i\}$,有 $F_{\max}(z) = \prod_{i=1}^n F_{X_i}(z)$ 最小值函数的分布函数: 对 $Z = \min_{i=1,2,\cdots,n} \{X_i\}$,有 $F_{\min}(z) = 1 - \prod_{i=1}^n (1 - F_{X_i}(z))$ 当 X_i 全部独立同分布(分布函数为 F(x))时,有

	分布函数 F(x)	概率密度函数 $f(x)$
$Z = \max_{i=1,2,\cdots,n} \{X_i\}$	$F_{\max}(z) = F(z)^n$	$f_{\max}(z) = nF(z)^{n-1}f(z)$
$Z = \min_{i=1,2,\cdots,n} \{X_i\}$	$F_{\min}(z) = 1 - (1 - F(z))^n$	$f_{\min}(z) = n(1 - F(z))^{n-1}f(z)$

⑦ 对于正态分布随机向量
$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \boldsymbol{\mu}_X \\ \boldsymbol{\mu}_Y \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{XX} & \boldsymbol{\Sigma}_{XY} \\ \boldsymbol{\Sigma}_{YX} & \boldsymbol{\Sigma}_{YY} \end{pmatrix}\right)$$
, 有
$$P(Y|X=x) \sim \mathcal{N}\left(\boldsymbol{\mu}_Y + \frac{\boldsymbol{\Sigma}_{YX}(x-\boldsymbol{\mu}_X)}{\boldsymbol{\Sigma}_{XX}}, \boldsymbol{\Sigma}_{YY} - \frac{\boldsymbol{\Sigma}_{YX}\boldsymbol{\Sigma}_{XY}}{\boldsymbol{\Sigma}_{XX}}\right)$$
$$P(X|Y=y) \sim \mathcal{N}\left(\boldsymbol{\mu}_X + \frac{\boldsymbol{\Sigma}_{XY}(y-\boldsymbol{\mu}_Y)}{\boldsymbol{\Sigma}_{YY}}, \boldsymbol{\Sigma}_{XX} - \frac{\boldsymbol{\Sigma}_{XY}\boldsymbol{\Sigma}_{YX}}{\boldsymbol{\Sigma}_{YY}}\right)$$

(8) 对连续型随机变量 $X, Y \sim f(x, y)$ 的四则运算:

•
$$Z = X + Y$$
, \mathbb{N}

$$f_Z(z) = \int_{-\infty}^{\infty} f(x, z - x) dx = \int_{-\infty}^{\infty} f(z - y, y) dy \xrightarrow{\underline{\underline{u}}} \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy$$

• Z = X - Y, \mathbb{N}

$$f_Z(z) = \int_{-\infty}^{\infty} f(x, x - z) dx = \int_{-\infty}^{\infty} f(y + z, y) dy \xrightarrow{\underline{\text{Mat}}} \int_{-\infty}^{\infty} f_X(x) f_Y(x - z) dx = \int_{-\infty}^{\infty} f_X(y + z) f_Y(y) dy$$

• Z = XY, 则

$$f_Z(z) = \int_{-\infty}^{\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) dx = \int_{-\infty}^{\infty} \frac{1}{|y|} f\left(\frac{z}{y}, y\right) dy \xrightarrow{\underline{\text{min}}} \int_{-\infty}^{\infty} \frac{1}{|x|} f_X(x) f_Y\left(\frac{z}{x}\right) dx = \int_{-\infty}^{\infty} \frac{1}{|y|} f_X\left(\frac{z}{y}\right) f_Y(y) dy$$

• $Z = \frac{X}{Y}$,则

$$f_Z(z) = \int_{-\infty}^{\infty} |y| f(yz, y) \, \mathrm{d}y \xrightarrow{\underline{\text{Min}}} \int_{-\infty}^{\infty} |y| f_X(yz) f_Y(y) \, \mathrm{d}y$$

记忆:"积谁不换谁,换完求偏导"(偏导完需加绝对值)

22 数字特征

① 协方差: Cov(X,Y) = E(XY) - E(X)E(Y) 相关系数: $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$

② 不相关: Cov(X,Y) = E(XY) - E(X)E(Y) = 0 独立: P(X = x, Y = y) = P(X = x)P(Y = y)

③ 切比雪夫不等式:
$$\begin{cases} P(|X-E(X)| \geqslant \varepsilon) \leqslant \frac{D(X)}{\varepsilon^2} \\ P(|X-E(X)| < \varepsilon) \geqslant 1 - \frac{D(X)}{\varepsilon^2} \end{cases}$$

23 统计量及其分布

(1) 统计量定义:

• 样本均值: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

• 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 - n\bar{X} \right)$ 样本标准差: $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2} = \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 - n\bar{X} \right)}$

• 样本 k 阶原点矩: $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k, \quad k \geqslant 1$

• 样本 k 阶中心矩: $B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k, \quad k \geqslant 2$

- 注意: 样本的二阶中心矩 ≠ 样本方差!

• **顺序统计量:** 将样本的 n 个观测量 X_1, X_2, \cdots, X_n 从小到大排列,得 $X_{(1)} \leqslant X_{(2)} \leqslant \cdots \leqslant X_{(n)}$,其中 $X_{(k)}$ 称为第 k 顺序统计量

(2) 统计量的分布(抽样分布)总结:

 名称	定义	表示/参数	概率密度函数 $f(x)$	期望	方差
正态分布	/	$\mathcal{N}(\mu,\sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$	μ	σ^2
卡方分布	X_1, X_2, \cdots, X_n 相互独立且服从标准正态分布,则 $X = \sum_{i=1}^n X_n^2$ 服从自由度为 n 的卡方分布	$\chi^2(n)$	/	n	2n
t 分布	$X \sim \mathcal{N}(0,1), \ Y \sim \chi^2(n)$ 且 X 与 Y 相互独立, 则 $t = \frac{X}{\sqrt{\frac{Y}{n}}}$ 服从自由度 为 n 的 t 分布	t(n)	/	0	$\frac{n}{n-2}$
F 分布	$X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$ 且 X 与 Y 相互独立, 则 $F = \frac{X}{n_1} / \frac{Y}{n_2}$ 服从自由 度为 (n_1, n_2) 的 F 分布	$F(n_1, n_2)$	/	$\frac{n_2}{n_2 - 2}$	$\frac{2n_2^2(n_1+n_2-2)}{n_1(n_2-2)^2(n_2-4)}$

③ 上 α 分位点(上侧 α 分位数):某分布的上 α 分位点为 μ_{α} ,则服从该分布的随机变量 X 满足 $P(X > \mu_{\alpha}) = \alpha$ 标准正态分布上 α 分位点表示: z_{α} 卡方分布上 α 分位点表示: $\chi^{2}_{\alpha}(n)$ t 分布上 α 分位点表示: $t_{\alpha}(n)$ F 分布上 α 分位点表示: $F_{\alpha}(n_{1},n_{2})$

(4) 标准正态分布:

• 性质:

$$- \ \, \forall \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{t^2}{2}\right) \mathrm{d}t, \ \, \not = \Phi(0) = \frac{1}{2}, \ \, \varPhi(-x) = 1 - \varPhi(x)$$

$$- \Phi(z_{\alpha}) = 1 - \alpha$$

- (5) 卡方分布 $(\chi^2$ 分布)
 - 定义: X_1, X_2, \cdots, X_n 相互独立且服从标准正态分布,则 $X = \sum_{i=1}^n X_n^2$ 服从自由度为 n 的卡方分布
 - 性质: 若 $X_i \sim \chi^2(n_i)$, $i = 1, 2, \dots, k$ 且相互独立,则 $\sum_{i=1}^k X_i \sim \chi^2\left(\sum_{i=1}^k n_k\right)$
- (6) t 分布
 - 定义: $X \sim \mathcal{N}(0,1), \ Y \sim \chi^2(n)$ 且 X 与 Y 相互独立,则 $t = \frac{X}{\sqrt{\frac{Y}{n}}}$ 服从自由度为 n 的 t 分布
 - 性质: 由 t 分布关于 y 轴的对称性, 知 $t_{1-\alpha}(n) = -t_{\alpha}(n)$
- (7) F 分布
 - 定义: $X \sim \chi^2(n_2)$, $Y \sim \chi^2(n_2)$ 且 X 与 Y 相互独立,则 $F = \frac{X}{n_1} / \frac{Y}{n_2}$ 服从自由度为 (n_1, n_2) 的 F 分布

• 性质:

- 若
$$F \sim F(n_1, n_2)$$
,则 $\frac{1}{F} \sim F(n_2, n_1)$
- $F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$

- ⑧ 任意总体下的结论: $E(\bar{X}) = E(X)$, $D(\bar{X}) = \frac{1}{n}D(X)$
- (9) 正态总体下的结论: $(\diamondsuit X_1, X_2, \cdots, X_n$ 取自正态总体 $\mathcal{N}(\mu, \sigma^2)$, \bar{X}, S^2 分别为样本均值和样本方差)
 - $\sum_{i=1}^{n} \left(\frac{X_i \mu}{\sigma} \right)^2 \sim \chi^2(n)$ (此处实际上为将 X_i 标准化,即转化为标准正态分布的过程)
 - $\sum_{i=1}^n \left(\frac{X_i \bar{X}}{\sigma}\right)^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ (μ 未知,用 \bar{X} 代替 μ)
 - \bar{X} 和 S^2 相互独立,且

$$\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} = \frac{\sqrt{n}(\bar{X} - \mu)}{S} \sim t(n - 1), \qquad \left(\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}\right)^2 = \left(\frac{\sqrt{n}(\bar{X} - \mu)}{S}\right)^2 = \frac{n(\bar{X} - \mu)^2}{S^2} \sim F(1, n - 1)$$

• \bar{X} 和 S^2 的分布、期望和方差:

统计量	分布	期望	方差
样本均值 $ar{X}$	$\mathcal{N}(\mu, \frac{\sigma^2}{n})$	μ	$\frac{\sigma^2}{n}$
样本方差 S^2	$\frac{\sigma^2 \chi^2 (n-1)}{n-1}$	σ^2	$2\sigma^2$

24 大数定律与中心极限定理

- ① 切比雪夫大数定律:对随机变量序列 $\{X_n\}$,若
 - (a) $\{X_i\}$ 相互独立
 - (b) $D(X_i)$ 存在且一致有上界,即 \exists 常数 C 使得 $D(X_i) \leqslant C$ 对 \forall i 都成立

则有大数定律:
$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \xrightarrow{P} \frac{1}{n}\sum_{i=1}^{n}E(X_{i})$$
, 即 $\lim_{n\to\infty}P\left(\left|\frac{1}{n}\sum_{i=1}^{n}(X_{i}-E(X_{i}))\right|<\varepsilon\right)=1$

- (2) 辛钦大数定律: 对随机变量序列 $\{X_n\}$,若
 - (a) $\{X_i\}$ 独立同分布
 - (b) 期望 $E(X_i) = \mu$ 存在

则有大数定律:
$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \xrightarrow{P} \mu$$
, 即 $\lim_{n \to \infty}P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu\right| < \varepsilon\right) = 1$

(3) **伯努利大数定律**:设 μ_n 为n 重伯努利实验中事件A发生的次数,在每次实验中事件A发生的概率为p,

则有大数定律:
$$\frac{\mu_n}{n} \xrightarrow{P} p$$
, 即 $\lim_{n \to \infty} P\left(\left|\frac{\mu_n}{n} - p\right| < \varepsilon\right) = 1$

4 列维-林德伯格定理: 设随机变量序列 $\{X_n\}$ 独立同分布,且 $E(X_i) = \mu, D(X_i) = \sigma^2 > 0$,则有中心极限定理:

$$\lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma} \leqslant x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{t^2}{2}\right) dt = \Phi(x)$$

- 推论: 当 n 充分大时,有 $P\left(a < \sum_{i=1}^{n} X_i < b\right) \approx \Phi\left(\frac{b n\mu}{\sqrt{n}\sigma}\right) \Phi\left(\frac{a n\mu}{\sqrt{n}\sigma}\right)$,即近似于正态分布
- (5) **棣莫佛-拉普拉斯定理**: 设随机变量 Y_n 服从参数为 n,p 的二项分布,则有中心极限定理:

$$\lim_{n \to \infty} P\left(\frac{Y_n - np}{\sqrt{np(1-p)}} \leqslant x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp\left(-\frac{t^2}{2}\right) \mathrm{d}t = \varPhi(x)$$

事实上, np 和 np(1-p) 分别为二项分布的期望和方差

• 推论: 当
$$n$$
 充分大时,有 $P(a < X < b) \approx \Phi\left(\frac{b - np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{a - np}{\sqrt{np(1-p)}}\right)$,即近似于正态分布

25 参数估计与假设检验

- ① **点估计**: 设总体 X 的分布函数为 $F(x;\theta)$,其中 θ 为未知参数;根据从总体中取出的样本 X_1, X_2, \cdots, X_n 估计出统 计量 $\hat{\theta}(X_1, X_2, \cdots, X_n)$
 - 矩估计: 如果未知参数只有一个,建立方程 $E(X) = \bar{X}$ 或 $E(X^2) = \frac{1}{n} \sum_{i=1}^n X_i^2$,其中 E(X) 或 $E(X^2)$ 为包含未知参数的式子,求解方程即可得到未知参数;如果未知参数有两个,建立方程组 $\begin{cases} E(X) = \bar{X} \\ E(X^2) = \frac{1}{n} \sum_{i=1}^n X_i^2 \end{cases}$,求解
 - 最大似然估计: 略

方程组即可得到两个未知参数

- (2) 无偏性: $E(\hat{\theta}) = \theta$
- ③ 有效性:对于 θ 的两个无偏估计量 $\hat{\theta}_1, \hat{\theta}_2$,若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效
- ① 一致性/相合性: 对任意 $\varepsilon > 0$,若 $\lim_{n \to \infty} P(|\hat{\theta} \theta| \geqslant \varepsilon) = 0$ 或 $\lim_{n \to \infty} P(|\hat{\theta} \theta| < \varepsilon) = 1$,即 $\hat{\theta} \xrightarrow{P} \theta$ 时,称 $\hat{\theta}$ 为 θ 的一致(相合)估计
- ⑤ **区间估计**: 给定 $\alpha \in (0,1)$,如果由样本确定的两个统计量 $\hat{\theta}_1(X_1,X_2,\cdots,X_n),\hat{\theta}_2(X_1,X_2,\cdots,X_n)$ 满足 $P(\hat{\theta}_1 < \theta < \hat{\theta}_2) = 1 \alpha$,则称 $(\hat{\theta}_1,\hat{\theta}_2)$ 为 θ 的置信度为 1α 的置信**区间**, $\hat{\theta}_1,\hat{\theta}_2$ 分别称为 θ 的置信度为 1α 的**置信下限**和置信上限, 1α 称为置信度/置信水平, α 称为显著性水平
- ⑥ 正态分布的矩估计 / 最大似然估计(二者相同): $\hat{\mu} = \bar{X}$, $\hat{\sigma}^2 = \begin{cases} \frac{1}{n} \sum_{i=1}^n (X_i \mu)^2 & \mu 已知 \\ \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2 & \mu 未知 \end{cases}$
- (7) 正态分布的假设检验: (置信水平为 $1-\alpha$)
 - σ^2 已知,检验 μ : 取检验统计量为 \bar{X} ,则置信区间为 $\left(\bar{X} \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}, \bar{X} + \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}\right)$

•
$$\sigma^2$$
 未知,检验 μ : 取检验统计量为 \bar{X} ,则置信区间为 $\left(\bar{X} - \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1), \bar{X} + \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)\right)$

•
$$\mu$$
 已知,检验 σ^2 : 取检验统计量为 $\sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2$,则置信区间为 $\left(\chi^2_{1-\frac{\alpha}{2}}(n), \chi^2_{\frac{\alpha}{2}}(n)\right)$

•
$$\mu$$
 未知,检验 σ^2 : 取检验统计量为 $\sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma} \right)^2$,则置信区间为 $\left(\chi_{1-\frac{\alpha}{2}}^2 (n-1), \chi_{\frac{\alpha}{2}}^2 (n-1) \right)$

- (8) 第一类错误("弃真"): $\alpha = P($ 拒绝 $H_0|H_0$ 为真)
- $\bigcirc{9}$ 第二类错误("取伪"): $\beta=P($ 接受 $H_0|H_0$ 为假)
- (10) 正态总体下对 μ 的六大检验:(设显著性水平为 lpha,常取 0.01、0.05、0.1 等)

记忆:
$$\mu_0 \begin{cases} + & 边界在\mu_0 右侧 \\ - & 边界在\mu_0 左侧 \end{cases} \frac{\begin{cases} \sigma & \sigma^2 已知 \\ S & \sigma^2 未知 \end{cases}}{\sqrt{n}} \cdot \begin{pmatrix} \text{类型} \begin{cases} z & \sigma^2 已知 \\ t(n-1) & \sigma^2 未知 \end{cases} \begin{pmatrix} \text{分位数下标} \begin{cases} \alpha & 拒绝域为 \geqslant 或 \leqslant \\ \frac{\alpha}{2} & 拒绝域为 \neq \end{cases} \end{cases}$$