

Identità

Definiamo prima di tutto cosa è una identità.

Definizione : un'identità è un'uguaglianza, dove compaiono espressioni letterali, verificata per qualunque valore attribuito alle lettere.

Esempi

Sono identità:

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$4 \cdot (a+b) = 4a + 4b$$

Nota

A volte, per stabilire se una data uguaglianza rappresenta un'identità, occorre eseguire alcuni calcoli.

Esempio: $4a \cdot (a+b) = (a+2b)^2 + 3a^2 - 4b^2$ è un'identità?

Sviluppiamo il primo membro (espressione a sinistra) e otteniamo

$$4a \cdot (a+b) = 4a^2 + 4ab$$

Sviluppiamo il secondo membro (espressione a destra) e otteniamo

$$(a+2b)^2 + 3a^2 - 4b^2 = a^2 + 4ab + 4b^2 + 3a^2 - 4b^2 = 4a^2 + 4ab$$

Quindi si tratta di un'identità.

Equazione

Vediamo ora come è definita un'equazione.

Definizione : un'equazione è un'uguaglianza dove compaiono espressioni letterali per le quali si cercano i valori da attribuire a una o più lettere che rendano vera l'uguaglianza.

Nota

La parola "equazione" deriva dal verbo latino "aequare" che significa "rendere uguale".

Noi studieremo equazioni con una sola lettera, chiamata incognita, e di primo grado.

Per esempio

$$2x + 1 = 3x - 2$$

è un'equazione di primo grado nell'incognita x

La parte dell'uguaglianza a sinistra dell'uguale viene chiamata 1° membro dell'equazione e la parte a destra dell'uguale viene detta 2° membro dell'equazione.

I valori che rendono vera l'uguaglianza si chiamano **soluzioni** (o radici) dell'equazione.

Risolvere un'equazione significa determinare tutte le sue soluzioni.

Per esempio 2x+1=3x-2 ha come soluzione x=3.

Infatti se sostituiamo alla lettera *x* il valore 3 otteniamo:

$$2 \cdot 3 + 1 = 3 \cdot 3 - 2$$

$$7 = 7$$

Nota importante

Un'equazione può avere soluzione in un dato insieme numerico, ma non avere soluzione in un insieme numerico più ristretto.

Per esempio l'equazione 2x = 1 ha come soluzione $x = \frac{1}{2}$ nell'insieme \Re ma non avrebbe soluzione nell'insieme dei numeri naturali N.

Noi considereremo come insieme numerico di riferimento l'insieme \Re dei numeri reali.

Principi di "equivalenza" per risolvere un'equazione

Per risolvere un'equazione dobbiamo trasformarla in un'equazione "equivalente" via via più semplice, cioè con le stesse soluzioni dell'equazione di partenza, fino ad arrivare alla soluzione.

Vediamo come si può ottenere un'equazione equivalente.

Primo principio di equivalenza

Se si addiziona ad entrambi i membri di un'equazione uno stesso numero o una stessa espressione, si ottiene un'equazione equivalente.

Applicazione del primo principio

Esempio: consideriamo l'equazione

$$x - 1 = 2$$

Se sommiamo +1 a entrambi i membri avremo: $x / 1 + \chi = 2 + 1$

$$x - 1 + 1 = 2 + 1$$

Quindi semplificando troviamo la soluzione

$$x = 3$$

Regola del "trasporto"

Nel procedimento precedente è come se avessimo trasportato -1 da sinistra a destra, ma cambiandolo di segno

$$x = 2 + 1$$

Abbiamo quindi trovato una regola che possiamo chiamare del "trasporto": data un'equazione se ne ottiene una equivalente se si trasporta un termine da un membro all'altro cambiandolo di segno.

Nota

Il termine "algebra" deriva dal termine arabo "al-jabr", usato dal matematico al- Khuwarizmi (IX sec. d.C.) proprio per indicare la regola del trasporto.

Secondo principio di equivalenza

Se si moltiplicano o si dividono entrambi i membri di un'equazione per uno stesso numero (o una stessa espressione) diverso da zero, si ottiene un'equazione equivalente.

Applicazione del 2° principio

Esempio: consideriamo l'equazione

$$2x = 1$$

Se moltiplichiamo entrambi i membri per $\frac{1}{2}$ otteniamo

$$\frac{1}{2} \cdot 2x = \frac{1}{2}$$

Quindi se l'equazione è ridotta nella forma ax = b, con $a \ne 0$, utilizzando il secondo principio di equivalenza possiamo ricavare $x = \frac{b}{a}$ cioè dividiamo il termine noto b per il coefficiente dell'incognita a.

Altre applicazioni dei due principi di equivalenza

• Se in un'equazione sono presenti termini uguali nei due membri, possono essere cancellati Esempio: x+1=2x+1

Aggiungendo -1 ad entrambi i membri possiamo cancellare

$$x + 1 - 1 = 2x + 1 - 1$$

• Se tutti i termini di un'equazione hanno un fattore numerico in comune (diverso da zero), possiamo dividere tutti i termini per quel fattore

Esempio : 3x + 6 = 9x + 3

Dividendo entrambi i membri per 3 abbiamo

$$\frac{3x+6}{3} = \frac{9x+3}{3} \Rightarrow x+2 = 3x+1$$

• Cambiando segno a tutti i termini di un'equazione si ottiene un'equazione equivalente perché cambiare segno equivale a moltiplicare per -1

Esempio: -x-2=-5 è equivalente a x+2=5

Osservazione : il secondo principio viene utilizzato anche per "eliminare" i denominatori nei coefficienti di un'equazione.

Esempio: consideriamo l'equazione $\frac{x}{2} = x + \frac{5}{3}$

Riduciamo i due membri allo stesso denominatore (m.c.m. denominatori):

$$\frac{3x}{6} = \frac{6x+10}{6}$$

Applichiamo il secondo principio moltiplicando per 6:

$$6 \cdot \frac{(3x)}{6} = \frac{(6x+10)}{6} \cdot 6 \Rightarrow 3x = 6x+10$$

Risoluzione di un'equazione di primo grado numerica intera (1)

Esempio 1

Consideriamo la seguente equazione

$$4x-9+(x-1)\cdot(x+1)=(x-3)^2+2x+5$$

Inizialmente dobbiamo sviluppare i calcoli:

$$4x-9+x^2-1=x^2-6x+9+2x+5$$

Operando alcune semplificazioni e somme abbiamo:

$$4x-10 = -4x+14$$

Trasportiamo -4x al primo membro e -10 al secondo (cambiandoli di segno) e sommiamo ottenendo:

$$8x = 24$$

In conclusione ricaviamo l'incognita applicando il secondo principio di equivalenza:

$$x = \frac{24}{8} \Rightarrow x = 3$$

Abbiamo quindi ottenuto una soluzione e l'equazione si dice "determinata".

Nota: possiamo sempre verificare l'esattezza della soluzione sostituendola nell'equazione iniziale: se otteniamo un'identità la soluzione è corretta.

Esempio 2

Consideriamo la seguente equazione

$$4x-12-3x=5+x-17$$

Sviluppando i calcoli abbiamo

$$x-12=x-12$$

$$0 \cdot x = 0$$

In questo caso quindi **l'equazione ha infinite soluzioni** perché qualunque valore dell'incognita verifica l'uguaglianza (si tratta quindi di un'identità).

L'equazione si dice "indeterminata".

Esempio 3

Consideriamo la seguente equazione

$$2(x-1)-2x=0$$

Sviluppando i calcoli abbiamo:

$$2x-2-2x=0$$

$$0 \cdot x - 2 = 0 \Rightarrow 0 \cdot x = 2$$

Non c'è nessun valore dell'incognita che verifichi questa uguaglianza e quindi **l'equazione non ha nessuna soluzione** e viene detta **"impossibile**".

(1) L'incognita non compare al denominatore

Ricapitolando

Utilizzando i due principi di equivalenza, un'equazione numerica intera di 1° grado si può sempre trasformare in un'equazione equivalente scritta nella forma

$$\Rightarrow ax = b$$
coefficiente dell'incognita termine noto

Abbiamo tre casi:

• Se $\underline{a \neq 0}$ allora, usando il 2° principio, avremo $x = \frac{b}{a}$ e l'equazione è determinata;

se anche $\underline{b=0}$ allora abbiamo $0 \cdot x = 0$, equazione indeterminata, cioè con infinite soluzioni

Se $\underline{a=0}$ Se $\underline{b \neq 0}$, poiché abbiamo $0 \cdot x = b \neq 0$, l'equazione è impossibile, cioè non ha soluzioni

Esempi

1)
$$\frac{1}{2}x - 2x + 3 = \frac{1}{3}x + x + 1$$

Spostiamo i termini contenenti l'incognita a sinistra (per esempio) e i numeri al secondo membro:

$$\frac{1}{2}x - 2x - \frac{1}{3}x = 1 - 3$$
Calcoliamo:
$$\frac{3x - 12x - 2x}{6} = -2 \rightarrow \frac{11}{6}x = -2 \rightarrow x = 2 \cdot \frac{6}{11} = \frac{12}{11}$$

2)
$$2(x-3) - \frac{1}{2} = 3x - \frac{13}{2}$$

Sviluppiamo il prodotto:
$$2x - 6 - \frac{1}{2} = 3x - \frac{13}{2}$$

Possiamo spostare 2x a destra (cambiandolo di segno) perché in questo modo evitiamo di avere la x con segno negativo:

$$-\frac{13}{2} = 3x - 2x - \frac{13}{2}$$

In conclusione (eliminando $-\frac{13}{2}$) abbiamo x = 0.

ESERCIZIEOUAZIONI DI PRIMO GRADO

Risolvi le seguenti equazioni numeriche intere ed esegui la verifica di quelle che risultano determinate:

1)
$$3x-1=2x+5$$
 ; $4(1-x)-2x=3x+1$ [6; $\frac{1}{3}$]

2)
$$-6x+7=7-6x$$
 ; $2x-5=x+4+x$ [in det erm; imposs.]

3)
$$8x-3+2x=6x+1+4x$$
; $-3(x+1)-2-4x=2$ [imposs.; -1]

4)
$$\frac{1}{6}(x-1) = 0$$
 ; $\frac{x}{4} - x = 0$ [1; 0]

5)
$$8(x-1) - 2(x+3) = 3(2x-1) - 5 - 17x$$

$$\left[\frac{6}{17}\right]$$

6)
$$(x-2)^2 - 8 + x = x(x-6)$$
 $\left[\frac{4}{3}\right]$

7)
$$(2x+1)(x-3)-2x = 2(x-1)^2+1$$
 [-2]

8)
$$(x-3)(x+3)-[-(2-x)+5] = 2+x(x+1)$$
 [-7]

9)
$$\frac{3}{5}x - \frac{2}{3} = \frac{2}{3} - \frac{2}{5}x + \left(1 + \frac{2}{3}\right)$$
 [3]

10)
$$\frac{x+1}{3} - \frac{2(x-1)}{5} + \frac{2}{3} = \frac{x-4}{5} - \frac{4}{15}x$$
 [imposs.]

11)
$$3\left(\frac{1}{2}x - 1\right) - (1+x) + \frac{1}{3}\left(2x + \frac{1}{2}\right) = \frac{1}{2}x + 1$$

$$\left[\frac{29}{4}\right]$$

12)
$$\frac{x+1}{2} - 3x(x-1) = \frac{-6(x-1)(x+1) - 5}{2}$$
 [0]

13)
$$\frac{1}{3}(x-3) - \left(\frac{x+1}{3} - \frac{3+x}{3}\right) = \frac{1}{3} - \frac{2-x}{3} + \frac{x}{3} + 1$$
 [-3]

14)
$$x + \frac{1 - 6x}{15} + 2 = \frac{3(1 - x)}{5} - \frac{2(x - 1)}{3}$$

$$\left[-\frac{3}{7} \right]$$

15)
$$x + \frac{x(x+2)}{2} - \frac{1}{4}(1-x)(2x+1) = \frac{1}{2}(3x+1) + x^2$$
 [3]

17)
$$\frac{2}{3}[(1-x)(1+x)] + \frac{4}{3}x^2 + 2 = \frac{2}{3}x(1+x) + \frac{1}{3}(x+4)$$
 [\frac{4}{3}]

18)
$$\left[\left(\frac{3}{4} - 3x \right) \left(\frac{4}{3} - 2x \right) \right] = 4x \left(3x + \frac{1}{2} \right) - \left(2x - \frac{3}{2} \right) \left(3x - \frac{1}{2} \right)$$

$$\left[\frac{7}{52} \right]$$

19)
$$\frac{2x-1}{3} \left(x - \frac{1}{3} \right) - \frac{1}{3} \left[x^2 + x \left(x - \frac{1}{4} \right) \right] = \frac{1}{4} \left(x + \frac{2}{3} \right)$$

$$\left[-\frac{1}{13} \right]$$

$$20) \qquad \frac{1}{5}(x-11) - 2x\left(\frac{1}{3} - \frac{1}{5}\right) = \frac{3}{4}x - 2 - x - \frac{1}{60}x$$
 [1]

21)
$$\frac{3x+2}{5} + \frac{1}{2}x - \frac{1}{5} \left[x + 2 - \frac{1}{2} \left(x - \frac{2}{3} \right) \right] = \frac{3x+1}{10} + \frac{2}{3}x$$
 [5]

$$\frac{1-2x}{2} - \frac{(1-4x)(1-2x)}{6} = \frac{5}{6} - \frac{(2x-1)^2}{3}$$

$$\left[-\frac{1}{8} \right]$$

23)
$$\frac{1+x^2}{5} - \frac{1}{4}x - \frac{1}{20} = \frac{(x-1)^2}{5} + \frac{3}{2} - 1$$
 $\left[\frac{11}{3}\right]$

24)
$$\frac{13}{48} + \frac{x}{2} - \frac{2x+1}{6} = 1 - \left(\frac{1}{4} - x\right)\left(x + \frac{1}{4}\right) - \left(x + \frac{1}{2}\right)^2$$
 $\left[\frac{1}{2}\right]$

(25)
$$\left(2x - \frac{1}{3}\right)^2 + (2 - x)\left(2x - \frac{1}{2}\right) - \frac{7}{6}x - 2x(x+1) = 0$$
 [imposs.]

26)
$$\frac{(2x+2)(1-x)}{3} = \frac{2(1-2x)^2 - 6(x-1)^2}{2} - \frac{5}{3}x^2 \qquad \left[\frac{4}{3}\right]$$

27)
$$\frac{1}{3}(x-2)(x+2) - \frac{3x-2}{3} = \frac{(x-3)^2}{3} - \frac{2-5x}{3} \qquad \left[-\frac{9}{2} \right]$$

28)
$$(x-2)^3 + (x+2)(x+1)(x-2) + 13x^2 = 2x(x+2)^2 - 12$$
 [in det erm.]

29)
$$1 - \left(\frac{1+5x}{4} - \frac{1}{2}\right) = \frac{3x+1}{4} - \frac{1}{2}x$$
 $\left[\frac{2}{3}\right]$

30)
$$2x - \frac{(1-x)}{3} + \frac{4-3x}{2} = \frac{1}{2}$$

$$\left[-\frac{7}{5} \right]$$

31)
$$\frac{1-x}{10} + \frac{2x-3}{5} = \frac{1-x}{2} - 1$$
 [0]

32)
$$\frac{1}{12} \cdot (x-1) + \frac{1}{4}x = \frac{x-7}{3}$$
 [impossibile]

33)
$$\frac{1}{4}x - \left[\frac{2}{3}x - \left(\frac{1-x}{2} + 1\right)\right] = \frac{3}{4}(1-x)$$

$$\left[\frac{9}{2}\right]$$

34)
$$(1-x)\cdot(1+x) = 2(x-1)-(x-1)^2$$
 [1]

35)
$$(x+1)^2 = (x-1)(x+2) + x$$
 [impossibile]

36)
$$(x-4)(x+3) = x(x-1)-12$$
 [indeterminata]

37)
$$(5x-1)(2x+1)-(1-x)^2=(1+3x)^2-2x$$
 [3]

38)
$$(x-1)^2 - (x^2 - 4x + 3) - (x+2)(x-2) = (1-x)(1+x) - 4x + 2$$
 $\left[\frac{1}{6}\right]$

39)
$$1 - (3 - 2x)^2 + 4(1 + x^2 - 5x) - (1 - 3x)^2 = (4 - 3x)(4 + 3x)$$

$$\left[-\frac{21}{2} \right]$$

40)
$$\frac{1}{2}(x-2)^2 - (x-2)(x+2) = \frac{1}{2}(1-x)(1+x) + \frac{1}{3}x$$
 $\left[\frac{33}{14}\right]$

41)
$$\frac{1}{3}(x-1)(x-2) + \frac{1}{2}(x-1)^2 = \frac{1}{6}x - 2 + \frac{5}{6}x^2$$

$$\left[\frac{19}{13}\right]$$

42)
$$\left(\frac{1}{2}x+1\right)(x-2)-\left(\frac{1}{2}x+1\right)^2=\frac{1}{4}(1+x)^2$$
 $\left[-\frac{13}{6}\right]$

43)
$$20x + 1 - (x+5)^2 = -(5-x)^2 - 3x$$

$$\left[-\frac{1}{3} \right]$$

44)
$$(x-4)(x+3) = x(x-1)-12$$
 [indeterminata]

PROBLEMIEQUAZIONI DI PRIMO GRADO

- La somma di tre numeri consecutivi è 36. Determina i tre numeri. 1) [11, 12, 13] 2) La somma di due numeri dispari consecutivi è 84. Determina i due numeri. [41, 43] 3) Determina due numeri sapendo che la loro somma è 43 e la loro differenza è 19. [31, 12] 4) Dividi il numero 35 in tre parti tali che la prima sia doppia della seconda e la seconda sia doppia della terza. [5, 10, 20] Dividi il numero 50 in due parti tali che una sia i $\frac{2}{3}$ dell'altra. 5) [20, 30] 6) Determina due numeri naturali consecutivi tali che la differenza dei loro quadrati sia 13. [6, 7]7) E' possibile distribuire 25 persone in due stanze in modo che nella prima ve ne siano il doppio che nella seconda? [no] 8) In un parcheggio ci sono scooter e automobili. Sapendo che le ruote sono 104 e che in tutto ci sono 36 veicoli, calcola il numero degli scooter e quello delle auto. [20, 16] 9) La distanza fra due località è stata percorsa da un autotreno in 9 ore, fra andata e ritorno,
- 10) Considera un trapezio rettangolo ABCD in cui la differenza delle basi AB-CD = 4 e la base minore CD = $\frac{3}{5}$ AB. Sapendo che il lato obliquo misura 5 cm, determina il perimetro del trapezio.

località?

escluse le soste. Nell'andata la velocità media è stata di 56 km/h e nel ritorno di 70 km/h. Ricordando che d = v t, dove v è la velocità e t il tempo, quale è la distanza d fra le due

[24 cm]

[280 km]

11) Sapendo che $\overline{AB} = \frac{7}{4}\overline{BC}$ e che il perimetro è 11 cm, determina l'area del rettangolo ABCD.

 $[7 \text{ cm}^2]$

12)

Nel trapezio isoscele ABCD

$$\overline{AB} = 2\overline{DC}$$

e il perimetro risulta 56 cm.

Sapendo inoltre che il lato obliquo misura 13 cm, determina l'area.

 $[180 \text{ cm}^2]$

13)

Nel rombo ABCD BD-AC = 4 cm e $\overline{BD} = \frac{4}{3}\overline{AC}$.

Determina 2p e area del rombo.

[40 cm, 96 cm²]

Se AB = 6 cm, AD = 2 cm e area(ABHD)= $2 \cdot area(HBC)$, quanto misura DH?

[2 cm]

- Nel triangolo rettangolo ABC il perimetro misura 60 cm e $\overline{AB} = \frac{5}{12} \overline{AC}$. Determina l'area. $[120cm^2]$
- In un rombo la somma delle due diagonali è 84 cm. Sapendo che la differenza tra la diagonale minore e i $\frac{5}{12}$ della maggiore è 16 cm, determina perimetro e area del rombo. [120 cm, 864 cm²]
- Un trapezio rettangolo ha il perimetro di 108 cm e l'altezza è pari ai $\frac{4}{3}$ della proiezione del lato obliquo sulla base maggiore. Se la somma dell'altezza e della proiezione è 49 cm, trova l'area del trapezio.

 [630 cm²]
- In un triangolo isoscele il lato obliquo è $\frac{3}{2}$ della base e supera di 3 cm la base. Determinare il perimetro del triangolo.
- In un trapezio isoscele l'altezza misura 8 cm, l'area 160 cm² e la differenza delle basi è 12 cm. Determina la lunghezza delle basi e il perimetro del trapezio.

 [14 cm; 26 cm; 60 cm]
- Sulla base AB di un rettangolo ABCD considera un punto E tale che l'area del trapezio AECD risulti i $\frac{3}{2}$ dell'area del triangolo CEB. Sapendo che $\overline{AB} = 20cm$ e che $\overline{CB} = 9cm$, determina EB.
- 21) In un triangolo rettangolo ABC retto in A, il perimetro misura 24 cm e $\overline{AC} = \frac{4}{5}\overline{BC}$. Determina cateti ed ipotenusa. [6cm; 8cm; 10cm]
- In un rettangolo il perimetro misura 34 cm e una dimensione è $\frac{5}{12}$ dell'altra. Determina l'area. $[60cm^2]$
- 23) In un trapezio isoscele l'altezza misura 5 cm, la differenza tra le basi è 24 cm e l'area è $85cm^2$. Determina il perimetro. [60cm]

In un triangolo rettangolo ABC, rettangolo in A, il rapporto tra le misure dei cateti è $\frac{3}{4}$ e la somma dei cateti è 42 cm. Determina il perimetro.

[72cm]

25) a) In un rombo la diagonale maggiore supera di 10 cm i $\frac{6}{7}$ della minore e la somma delle due diagonali è 36 cm. Determina l'area del rombo.

 $[154cm^{2}]$

b) Congiungi i punti medi dei lati consecutivi del rombo. Calcola il perimetro del quadrilatero ottenuto.

[36*cm*]

In un cilindro la differenza tra l'altezza e il raggio di base è 12 cm, mentre il loro rapporto è $\frac{7}{3}$. Calcola il volume del cilindro.

 $[1701\pi \ cm^3]$

Una scatola ha la forma di un parallelepipedo rettangolo e la somma delle tre dimensioni è 41 cm. Il lato minore differisce di 3 cm dal secondo, mentre il maggiore è uguale ai $\frac{5}{3}$ del secondo. Se verso nella scatola 2 litri di acqua, questa fuoriesce?

[no]

28) Determina la misura del lato di un quadrato, sapendo che aumentando di 3 cm la lunghezza del lato, l'area aumenta di $51cm^2$.

[7cm]

29) In un trapezio isoscele la somma delle basi è 14 cm e la base maggiore supera di 6 cm la base minore. Sapendo che l'altezza è uguale alla base minore, determina perimetro e area.

$$[2p = 24cm; \quad A = 28cm^2]$$

30) In un parallelepipedo rettangolo la somma delle tre dimensioni è 14 cm. Sapendo che nella base ABCD la dimensione maggiore supera di 2 cm la dimensione minore e che l'altezza è il doppio della dimensione minore, determina superficie totale e volume del parallelepipedo.

$$S = 126cm^2$$
; $V = 90cm^3$

Nel triangolo isoscele ABC, il rapporto tra la misura del lato AB e la misura della base BC è $\frac{3}{2}$ e la lunghezza di AB supera di 3 cm quella della base BC. Determina l'area del quadrato isoperimetrico al triangolo.

 $36cm^2$

32) In un rettangolo di perimetro 24 cm, la lunghezza di una dimensione è i $\frac{5}{7}$ dell'altra. Determina l'area.

 $[35cm^2]$

33) In un rombo la somma delle due diagonali misura 84 cm. Sapendo che la differenza tra la diagonale minore e i $\frac{5}{12}$ della maggiore è 16 cm, trova perimetro e area del rombo.

$$[2p = 120cm; A = 864cm^2]$$

34) In un trapezio isoscele l'altezza misura 12 cm, la differenza tra le basi è 10 cm e l'area misura $204cm^2$. Determina il perimetro.

[60cm]

35) In un parallelepipedo rettangolo nella base ABCD si ha $\overline{AB} = 4\overline{BC}$ e l'altezza è 3a. Sapendo che $S_L = 60a^2$, determina il volume.

 $[48a^{3}]$

36) In un rombo la diagonale maggiore è $\frac{4}{3}$ della diagonale minore. Sapendo che il perimetro è 60 cm, determina l'area.

 $[216cm^{2}]$

37) In un triangolo isoscele il lato obliquo supera di 3*a* la base e il perimetro è 36*a*. Determina l'area del triangolo.

 $|60a^2|$

38) In un trapezio rettangolo la base maggiore supera di 6 cm la base minore, l'altezza è 8 cm e l'area $88cm^2$. Determina il perimetro.

[40cm]

39) In un parallelogramma ABCD si ha $\overline{AB} = 2 \cdot \overline{AD}$ e l'altezza DH=4a. Sapendo che l'area misura $40a^2$, determina il perimetro del trapezio HBCD.

[26a]

40)(Invalsi 2014/15)

Un palo verticale è piantato in uno stagno. Un quinto del palo è interrato nel fondale, un sesto è immerso in acqua e la parte del palo che esce dall'acqua è lunga 8,9 metri. Quale equazione consente di determinare la lunghezza totale *x* del palo? Qual è la lunghezza totale *x* del palo?

$$\left[\frac{1}{5}x + \frac{1}{6}x + 8,9 = x \right]$$
; circa 14 m]

SCHEDA PER IL RECUPERO

EQUAZIONI DI PRIMO GRADO

$$1. \qquad 2x - 3 = 5x - 2$$

2.
$$3x - (x - 1) = 7$$
 [3]

3.
$$-2(x-1)-(2x-3)=5-x$$
 [0]

4.
$$(3x-2)^2 = 3(3x-1)(x-2)$$
 $\left[\frac{2}{9}\right]$

5.
$$\frac{x-1}{2} - \frac{x+3}{4} = \frac{x+2}{3}$$
 [-23]

6.
$$\frac{1}{2}x - \frac{3}{2} = 0$$
 [3]

7.
$$\frac{x+2}{4} = \frac{x}{3}$$
 [6]

$$8. \qquad \frac{1}{3}x = \frac{x-1}{5}$$

9.
$$(x-2)^2 - (x+1)(x-3) = 2(3-x)$$
 [impossibile]

10.
$$\frac{x-2}{4} - \frac{x+2}{2} = -\frac{1}{4}x - \frac{3}{2}$$
 [indeterminata]

Problemi

- 1. Due interi consecutivi sono tali che, sommando al doppio del minore la metà del maggiore, si ottiene come risultato 28. [11, 12]
- 2. Determina due numeri dispari consecutivi sapendo che il minore, sommato a due terzi del maggiore, dà come risultato 23. [13, 15]
- 3. In una classe un terzo degli allievi hanno avuto la sospensione del giudizio e 18 sono stati promossi a Giugno. Da quanti alunni è formata la classe? [27]
- 4. Il prezzo di un paio di pantaloni, dopo aver subito un aumento del 10%, è di 121 euro. Qual era il prezzo dei pantaloni prima dell'aumento? [110 euro]
- 5. Il prezzo di un capo di abbigliamento, dopo aver subito uno sconto del 12%, è di 44 euro. Qual era il prezzo originario? [50 euro]
- 6. Un quadrato e un rettangolo hanno lo stesso perimetro. La base del rettangolo supera di 5 cm il lato del quadrato e l'altezza del rettangolo è la metà del lato del quadrato. Qual è il perimetro del quadrato?

 [40 cm]
- 7. In un rettangolo un lato è il doppio dell'altro e il perimetro è di 42 cm. Determina la lunghezza della base e quella dell'altezza. [7 cm, 14 cm]

TEST IN INGLESE

1)	Idris has c toy cars. Fadl has twice as many cars as Idris. Baasim has three more cars than Fadl.					
	(a) Write down an expression, in terms of c , to complete each statement.					
	Fadl has cars					
	Baasim has cars.					
	(b) Write down an expression, in terms of c , for the total number of cars the three children have. Give your answer in its simplest form.					
	Answer (b)					
	(c) Idris, Fadl and Baasim have 38 cars together. Write down an equation and solve it to find the number of cars each friend has.					
2)	Pavan saves \$x each month. His two brothers each save \$4 more than Pavan each month.					
	Altogether the three boys save \$26 each month.					
	(a) Write down an equation in x.					
	(b) Solve your equation to find the amount Pavan saves each month.					
3)	A rectangular fiels has a lenght of x metres. The width of the field is $(2x-5)$ metres.					
	(a) Show that the perimeter of the field is (6x-10) metres.					
	(b) The perimeter of the field is 50 metres. Find the length of the field.					
4)	Jamil, Kiera and Luther collect badges. Jamil has x badges. Kiera has 12 badges more than Jamil. Luther has 3 times as many badges as Kiera. Altogether they have 123 badges.					

Form an equation and solve it to find the value of x.

5) 120 people are asked how they travel to work.

Here is the information.

	Number of people
Walk	x
Cycle	31
Bus	17 more than the number of people who walk
Car	2 times the number of people who walk

(a)	Use	this	information	to complete	the following	equation, i	in terms	of x
-----	-----	------	-------------	-------------	---------------	-------------	----------	------

- (b) Solve the equation to find the number of people who walk to work.
- 6)

- (a) ABCD is a square. Find the value of x.
- (b) Square ABCD and isosceles triangle EFG have the same perimeter. Work out the length of FG.
- 7) 30 students were asked if they had a bicycle (B), a mobile phone (M) and a computer (C).

The results are shown in the Venn diagram.

Work out the value of x.

8) In this question all the measurements are in centimeters.

The diagram shows a triangle with sides of length 2x+3, 11-x and 3x.

- (a) Explain why x must be less than 11.
- (b) Write down an expression, in terms of x, for the perimeter of the triangle. Give your answer in its simplest possible form.
- (c) The perimeter of the triangle is 32 cm.
 - (i) Write down an equation in terms of x and solve it.
 - (ii) Work out the length of the shortest side of the triangle.
- 9) Joseph is 3 times as old as Amy. In 5 years time Joseph will be 2 times as old as Amy.
 - (a) Amy is now *n* years old. Write down an equation in *n* connecting the ages of Joseph and Amy in 5 years time.
 - (b) Solve the equation to find n.
- 10) The cost C, of a party for n people is calculated using the following formula.

$$C=130+4n$$

- (a) Calculate C when n=25.
- (b) John has a party which costs \$1138. How many people is this party for?
- Sara spends \$x on pens which cost \$2.50 each.

 She also spends \$(x-14.50) on pencils which cost \$0.50 each.

 The **total** of the number of pens and the number of pencils is 19.

Write down and solve an equation in x.