SPRAWOZDANIE NUM7

JAKUB KRECISZ

Treść zadania

Znajdź i wykreśl wielomiany interpolacyjne stopnia n, W_n (x), na przedziale $x \in (-1, 1)$ dla funkcji $y = \frac{1}{1+25x^2}$ dla:

(a) jednorodnych węzłów interpolacji, tj. $x_i = -1 + 2\frac{i}{n+1}$ (i = 0, ..., n)

(b)
$$x_i = \cos\left(\frac{2i+1}{2(n+1)}\pi\right) \quad (i = 0, ..., n)$$

Dla węzłów z pkt. (a) i (b) wybierz kilka wartości n i porównaj zachowanie się tych wielomianów dla dużego n (najlepiej w tym celu wykreślić $W_n(x)$ dla różnych n na jednym wykresie). Zaproponuj również inne funkcje i znajdź dla nich wielomiany interpolacyjne dla węzłów zdefiniowanych w pkt. (a) i (b). Czy nasuwają się jakieś wnioski?

UWAGA: Nie można korzystać z procedur bibliotecznych służących do interpolacji (chyba, że do sprawdzenia wyniku). Algorytm należy zaimplementować samodzielnie.

Omówienie zadania

Naszym zadaniem jest znalezienie i wykreślenie wielomianów interpolacyjnych dla funkcji $y = \frac{1}{1+25x^2}$ oraz innych zaproponowanych przez nas funkcji na zadanym przedziale x. Do interpolacji będziemy używać dwóch zadanych w zadaniu węzłów interpolacji, jednorodnej i niejednorodnej.

Zacznijmy od omówienia czym właściwie jest interpolacja. Interpolacja to znalezienie funkcji, która przechodzi podane odgórnie punkty nazywane węzłami. Punkty zazwyczaj są podane jako funkcja w postaci stabelaryzowanej. Dzięki znalezieniu takiej funkcji, jesteśmy w 'tani' sposób obliczyć jej wartość w danym punkcie, nie musimy przetrzymywać wszystkich wartości w jakichkolwiek tabelkach.

Jednym z rodzajów interpolacji, jest interpolacja wielomianowa, której właśnie w tym zadaniu użyjemy. Skoro wiemy, że wielomian $W_n(x_i) = y_i$, zapiszmy to w postaci macierzowej:

$$\begin{bmatrix} 1 & x_0 & \dots & x_0^n \\ 1 & x_1 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ \vdots \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ \vdots \\ \vdots \\ y_i \end{bmatrix}$$

Rozwiązaniem takiego równania na macierzach, są współczynniki a_n . Macierz ta jest macierzą Vandermonde'a i w niej możemy znaleźć taką zależność, że jeśli punkty x_0, \dots, x_n nie będą się pokrywać to wyznacznik takiej macierzy jest różny od zera i wynosi:

$$\prod_{0 < i < j < n} (x_j - x_i)$$

Dzięki temu, wiemy, że istnieje wielomian interpolacyjny stopnia nie większego niż n.

Do obliczenia naszych wartości wielomianu interpolacyjnego, użyjemy wzór Lagrange'a:

$$W_n(x) = \sum_j y_j \phi_j(x)$$

Gdzie $\phi_i(x)$ to:

$$\phi_j(x) = \prod_{k \neq j} \frac{(x - x_k)}{(x_j - x_k)}$$

Uruchomienie programu

Do uruchomienia programu wykorzystamy Makefile:

Aby uruchomić nasz program i wyświetlić wykresy, wystarczy użyć polecenia:

make show_plots

Aby uruchomić nasz program i zapisać wykresy w postaci plików svg, wystarczy użyć polecenia:

make save_plots

<u>Wyniki</u>

<u>Wnioski</u>

J