Theoretische Physik II (Hebecker)

Robin Heinemann

16. Mai 2017

Inhaltsverzeichnis

1	Lagi	Lagrange - Formalismus				
	1.1	Grundidee (1788, Joseph-Louis Lagrange)	2			
	1.2	Variationsrechnung: Der Funktionalbegriff	2			
	1.3	Weglänge als Funktional	3			
	1.4	Variationsrechnung: Extremalisierung von Funktionalen	3			
	1.5	Das Hamiltonsche Prinzip (Prinzip der kleinsten Wirkung)	4			
	1.6	Form der Lagrange-Funktion und erste Anwendungen	5			
	1.7	Vereinfachte Herleitung der Lagrange-Gleichungen	7			
	1.8	Kommentare	8			
2	Symmetrien und Erhaltungssätze					
	2.1	Symmetriemotivation der Wirkung	8			
		2.1.1 Freier Massenpunkt	8			
		2.1.2 Mehrere Massenpunkte	9			
	2.2	Homogene Funktionen und Satz von Euler	9			
	2.3	Energieerhaltung	10			
	2.4	Erhaltung von verallgemeinerten Impulsen	11			
	2.5	Noether-Theorem	12			
	2.6	Mechanische Ähnlichkeit	14			
	2.7	Virialsatz	15			
3	Träg	gheitstensor	15			
	3.1	Trägheitsmoment und Satz von Steiner	15			
	3.2	Trägheitstesor	17			
	3.3	Hauptträgheitsachsen	18			
	3.4	Eigenwerte, Eigenvektoren, Diagonlisierbarkeit	19			
	3.5	Trägheitsellipsoid	20			
	3.6	Trägheitstensor und Drehimpuls (mehr zur Geometrie)	21			
4	Kreisel 21					
	4.1	Euler-Gleichungen	21			

4.2	Freier Kreisel	22
4.3	Freier Kreisel analytisch	23
4.4	Schwerer Kreisel (vereinfacht)	23
4.5	Eulersche Winkel	24
4.6	Schwerer Kreisel (exakt)	24

1 Lagrange - Formalismus

1.1 Grundidee (1788, Joseph-Louis Lagrange)

Vorteile gegenüber Newton:

- Flexibilität
- Zwangskräfte
- Zusammenhang zwischen Symmetrie und Erhaltungsgrößen

Zentrales Objekt: Wirkungsfunktional S.

Abbildung S: Trajektorie \mapsto reelle Zahl

(S definiert mittels Lagrange-Funktion L)

Zentrale physikalische Aussage des Formalismus: "Wirkungsprinzip" ("Hamilton-Prinzip")

Letztes besagt: Eine physikalische Bewegung verläuft so, dass das Wirkungsfunktional minimal wird.

 \rightarrow DGL ("Euler-Lagrange-Gleichung"), im einfachen Fall \equiv Newton Gleichung

1.2 Variationsrechnung: Der Funktionalbegriff

Funktion (mehrerer Variablen) *y*;

$$y: \mathbb{R}^n \to \mathbb{R}, y: \vec{x} \mapsto y(\vec{x})$$

Funktional: analog, mit \mathbb{R}^n ersetzt durch eine Menge von Funktionen (Vektorraum \mathbb{V})

$$F: \mathbb{V} \to \mathbb{R}, F: y \mapsto F[y]$$

Beispiel 1.1 $\mathbb V$ seinen differenzierbare Funktionen auf [0,1] mit y(0)=y(1)=0 Diskretisierung:

$$x_1,\dots,x_n \to \{y(x_1),\dots,y(x_n)\}$$

$$\downarrow$$

$$\text{Vektor} \equiv \text{Funktion}$$

 \implies im diskreten Fall ist unser Funktional schlicht eine Funktion mit Vektor-Argument. (Eigentlicher Funktionalbegriff folgt im Limes $n \to \infty$). Beispielfunktionale zu obigem $\mathbb V$.

•
$$F_1[y] = y(0.5)$$

- $F_2[y] = y'(0.3)$
- $F_3[y] = y(0.1) + y(0.5) + y'(0.9)$
- $F_4[y] = \int_0^1 dx (x \cdot y(x)^2 + y'(x)^2)$
- $F_5[y] = \int_0^1 \mathrm{d}x f(y(x), y'(x), x)$

 F_5 hängt von Funktion f (von 3 Variablen) ab. Falls wir $f(a,b,c)=ca^2+b^2$ wählen, folgt F_4 wählen. Noch konkreter: wähle Beispielfunktion (ignoriere zur Einfachheit Randbedingung y(1)=0)

$$y_0: x \mapsto x^2; y_0(x) = x^2; y_0'(x) = 2x;$$

$$\implies F_1[y_0] = 0.25; F_2[y_0] = 0.6, F_3[y_0] = 0.01 + 0.25 + 1.8 = 2.06$$

$$F_4[y_0] = \int_0^1 dx (x^5 + 4x^2) = \frac{1}{6} + \frac{4}{3} = \frac{3}{2}$$

1.3 Weglänge als Funktional

Weg von \vec{y}_a nach \vec{y}_b : $\vec{y}: \tau \mapsto \vec{y}(\tau), \tau \in [0,1]; \vec{y}(0) = \vec{y}_a, \vec{y}(1) = \vec{y}_b$ Weglänge:

$$F[\vec{y}] = \int_{\vec{y}_a}^{\vec{y}_b} |\mathrm{d}\vec{y}| = \int_0^1 \mathrm{d}\tau \sqrt{\left(\frac{\mathrm{d}\vec{y}(\tau)}{\mathrm{d}\tau}\right)^2}$$

(Eigentlich haben wir sogar ein Funktional einer vektorwertigen Funktion beziehungsweise ein Funktional mit 3 Argumenten: $F[y] = F[y^1, y^2, y^3]$)

Etwas interessanter: Weglänge im Gebirge:

Sei $\vec{x}(\tau) = \{x^1(\tau), x^2(\tau)\}$ die Projektion des Weges auf Horizontale. Zu jedem solchen Weg gehört die "echte" Weglänge im Gebirge. Beachte: Höhenfunktion $z: \vec{x} \mapsto z(\vec{x})$ \Longrightarrow 3-d Weg:

$$\vec{y}(\tau) = \{y^1(\tau), y^2(\tau), y^3(\tau)\}$$

$$\equiv \{x^1(\tau), x^2(\tau), z(\vec{x}(\tau))\}$$

$$F_{Geb.}[x] = F[\vec{y}[\vec{x}]] = \int dt \sqrt{\left(\frac{dx^1(\tau)}{d\tau}\right)^2 + \left(\frac{dx^2(\tau)}{d\tau}\right)^2 + \left(\frac{dz(x^1(\tau), x^2(\tau))}{d\tau}\right)}$$

1.4 Variationsrechnung: Extremalisierung von Funktionalen

Funktionen: $y:x\mapsto y(x)$; wir wissen y hat Extremum bei $x_0\Longrightarrow y'(x_0)=0$ Funktionale der Form: $F[y]=\int_0^1\mathrm{d}x f(y,y',x); y:[0,1]\to\mathbb{R}; y(0)=y_a; y(1)=y_b$ Annahme: y_0 extremalisiert F. Sei weiterhin δy eine beliebige 2-fach differenzierbare Funktion mit $\delta y(0)=\delta y(1)=0$

$$\implies \underbrace{y_{\alpha} \equiv y_0 + \alpha \cdot \delta y} \quad (\alpha \in (-\varepsilon, \varepsilon))$$

Ist eine Funktion aus unserem Wertevorrat von ${\cal F}$

 \implies Betrachte Abbildung $(-\varepsilon,\varepsilon)\to\mathbb{R}, \alpha\mapsto F[y_\alpha]$. Per unserer Annahme hat diese Abbildung Extremum bei $\alpha=0$. Also gilt

$$\frac{\mathrm{d}}{\mathrm{d}\alpha}F[y_{\alpha}] = 0\big|_{\alpha=0}$$

Taylor-Entwicklung um $\alpha = 0$:

$$F[y_{\alpha}] = \int_{0}^{1} dx f(y_{0} + \alpha \delta y, y'_{0} + \alpha \delta y', x)$$
$$= F[y_{0}] + \int_{0}^{1} dx \left(\frac{\partial f}{\partial y}(y_{0}, y'_{0}, x) \cdot \alpha \delta y + \frac{\partial f}{\partial y'}(y_{0}, y'_{0}, x) \cdot \alpha \delta y'\right) + \mathcal{O}(\alpha^{2})$$

Term linear in α muss verschwinden:

$$0 = \int_0^1 dx \left(\frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial y'} \frac{d}{dx} (\delta y) \right)$$

$$\frac{\partial f}{\partial y'}\delta y = 0$$
 bei $0, 1$

$$= \int_0^1 dx \left(\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) \right) \delta y = 0$$

für beliebige $\delta y \implies \text{der Koeffizient von } \delta y \text{ im Integral muss verschwinden}$

$$0 = \frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial t}{\partial y'} \right)$$
 (Eulersche Differentialgleichung)

Falls y_0 das Funktional F extremalisiert, so gilt die obige Gleichung für $y_0 \forall x \in [0,1]$

Beispiel 1.2
$$f(y, y', x) = y^2 + y'^2$$

$$\frac{\partial f}{\partial y} = 2y$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right) = \frac{\mathrm{d}}{\mathrm{d}x} 2y' = 2y''$$

$$\implies y_0'' - y_0 = 0$$

Beachte: y und y' sind hier unabhängig, das heißt es spielt für die Herleitung der Eulerschen Differentialgleichung keine Rolle, dass y' die Ableitung von y ist.

1.5 Das Hamiltonsche Prinzip (Prinzip der kleinsten Wirkung)

Die Lage einer sehr großen Klasse von Systemen beschreiben durch verallgemeinerte Koordinaten $(q_1, \ldots, q_s), s$: Zahl der Freiheitsgrade.

Beispiel 1.3 • N Massenpunkte:
$$s = 3N, (q_1, \dots, q_{3N}) = \left(x_1^1, x_1^2, x_1^3, \dots, x_N^1, x_N^2, x_N^3\right)$$

• 1 Massenpunkt in Kugelkoordinaten: $s = 3, (q_1, q_2, q_3) = (r, \theta, \varphi)$

- eine dünne Stange: s=5. Schwerpunktskoordinaten x_s^1, x_s^2, x_s^3 . 2 Winkel zur Ausrichtung θ, φ
- Rad auf einer Welle: $s=1, q_1=\varphi$
- Perle auf einem Draht: $s = 1, q_1 = s$ (Bogenlänge)

Hamiltonsches Prinzip:

Für jedes (in einer sehr großen Klasse) mechanische System s Freiheitsgraden existiert die Lagrange-Funktion $L(q_1, \ldots, q_s, \dot{q}_1, \ldots, \dot{q}_s, t)$ (kurz $L(q, \dot{q}, t)$), für die gilt:

Die physikalische Bewegung aus einer Lage $q(t_1)=q^{(1)}$ in eine Lage $q(t_2)=q^{(2)}$ verläuft so, dass das Wirkungsfunktional

$$S[q] = \int_{t_1}^{t_2} \mathrm{d}t L(q, \dot{q}, t)$$

extremal wird.

Anmerkung 1.4 • für kleine Bahnabschnitte: Minimalität

- DGL. aus Stationalität
- Wirkung: Dimensionsgründe $[S] = \text{Zeit} \cdot \text{Wirkung}$
- Bedeutung des Wirkungsprinzip kann man kaum überschätzen. [spezielle + allgemeine Relativitätstheorie, Feldtheorie (Elektro-Dynamik), Quantenfeldtheorie (Teilchenphysik, kondensierte Materie), Quantengravitation]

für s = 1 folgt aus dem Hamiltonschen Prinzip:

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\dot{q}} - \frac{\partial L}{\partial q} = 0$$

(Euler-Lagrange-Gleichung, oder Lagrange-Gleichung der 2. Art)

für $s \ge 1$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\dot{q}_i} - \frac{\partial L}{\partial q_i} = 0, i = 1, \dots, s$$

1.6 Form der Lagrange-Funktion und erste Anwendungen

Fundamentaler Fakt:

$$L = T - V$$

- T: kinetische Energie
- V: potentielle Energie

Beispiel 1.5 (Massenpunkt im Potenzial)

$$L(\vec{x}, \dot{\vec{x}}, t) = \frac{m}{2} \dot{\vec{x}}^2 - V(\vec{x})$$
$$\frac{d}{dt} \frac{\partial L}{\partial \dot{x}^i} - \frac{\partial}{\partial x^i} L = 0$$
$$\frac{d}{dt} (m\dot{x}^i) - \left(-\frac{\partial V}{\partial x_i} \right) = 0$$
$$m\ddot{\vec{x}}^i - F^i = 0$$
$$m\ddot{\vec{x}}^i - \vec{F} = 0$$

Beispiel 1.6 (System wechselwirkender Massenpunkte)

$$T = \sum_{a} T_a = \sum_{a} \frac{m_a}{2} \dot{\vec{x}}_a^2$$
$$V = \sum_{\substack{a,b \ a < b}} V_{ab}(|x_a - x_b|)$$

Lagrange Gleichung für x_a^i :

$$m_a \ddot{x}_a^i - \frac{\partial}{\partial x_a^i} \left(\sum_b V_{ab}(|\vec{x}_a - \vec{x}_b|) \right) = 0$$
$$m_a \ddot{\vec{x}}_a - \vec{\nabla}_a \sum_b V_{ab}(|\vec{x}_a - \vec{x}_b|) = 0$$

Beispiel 1.7 (Perle auf Draht) Draht: beschrieben durch $\vec{x}(s)$ (s: Bogenlänge)

$$L = \frac{m}{2}v^2 - V(\vec{x}(s))$$

$$v = \left|\frac{\mathrm{d}\vec{x}}{\mathrm{d}s}\right| \frac{\mathrm{d}s}{\mathrm{d}t}$$

$$L = \frac{m}{2}\dot{s}^2 - V(\vec{x}(s))$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{s}} - \frac{\partial L}{\partial s} = 0$$

$$m\ddot{s} - \sum_{i} \underbrace{\frac{\partial L}{\partial x^i}}_{-\frac{\partial V}{\partial x^i}} \frac{\partial x^i}{\partial s} = 0$$

$$m\ddot{s} - \vec{F} \cdot \frac{\vec{x}}{s} = 0$$

Beispiel 1.8 (Mathematisches Pendel im Fahrstuhl) Beschleunigung des Fahrstuhls: $v_y = a \cdot t$

$$\begin{split} L &= \frac{m}{2} \vec{v}^2 - V \\ \vec{v} &= \left(\frac{\mathrm{d}}{\mathrm{d}t} (l \sin \varphi), at - \frac{\mathrm{d}}{\mathrm{d}t} (l \cos \varphi) \right) \\ &= (l \cos(\varphi) \dot{\varphi}, at + l \sin \varphi \dot{\varphi}) \\ V &= mg \Big(\frac{a}{2} t^2 - l \cos \varphi \Big) \\ 0 &= \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{\varphi}} - \frac{\partial L}{\partial \varphi} \end{split}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{m}{2} \left(l^2 \cos^2 \varphi 2\dot{\varphi} + 2atl \sin \varphi + l^2 \sin^2 \varphi 2\dot{\varphi} \right) \right) - \left(\frac{m}{2} \left(l^2 \dot{\varphi}^2 2 \cos \varphi (-\sin \varphi) + 2atl \dot{\varphi} \cos \varphi + l^2 \dot{\varphi}^2 2 \sin \varphi \cos \varphi \right) - mgl \sin \varphi \right)$$

$$0 = \left(2l^2\cos\varphi(-\sin\varphi)\dot{\varphi}^2 + l^2\cos^2\varphi\ddot{\varphi} + al\sin\varphi + atl\cos\varphi\dot{\varphi} + l^22\sin\varphi\cos\varphi\dot{\varphi}^2 + l^2\sin^2\varphi\ddot{\varphi}\right) - tal\dot{\varphi}\cos\varphi + gl\sin\varphi$$

$$0 = l^2 \ddot{\varphi} + l \sin \varphi (a+g)$$

1.7 Vereinfachte Herleitung der Lagrange-Gleichungen

q(t) Trajektorie, Variation der Trajektorie: $\delta q(t)$

- neue Trajektorie: $q(t) + \delta q(t)$.
- neue Wirkung $S+\delta S$ Anders gesagt: $\delta S\equiv S[q+\delta q]-S[q].$

Extremalität:

$$0 = \delta S = \int_{t_1}^{t_2} dt \delta L(q, \dot{q}, t)$$

$$= \int_{t_1}^{t_2} dt \left[\frac{\partial L(q, \dot{q}, t)}{\partial q} \delta q + \frac{\partial L(q, \dot{q}, t)}{\partial \dot{q}} \delta \dot{q} \right]$$

$$= \int_{t_1}^{t_2} dt \left[\frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \frac{d}{dt} (\delta q) \right]$$

Partielle Integration, nutze $\delta q(t_1) = \delta q(t_2) = 0$

$$0 = \int_{t_1}^{t_2} dt \left(\frac{\partial L}{\partial q} \delta q - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \delta q \right)$$
$$0 = \int_{t_1}^{t_2} dt \left(\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} \right) \delta q$$

 δq beliebig \Longrightarrow Term muss verschwinden

$$0 = \frac{\partial L}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}} = 0 \checkmark$$

1.8 Kommentare

Argumente von L: \ddot{q} , \ddot{q} , etc. dürfen nicht in L vorkommen, weil sonst \ddot{q} , \dddot{q} , etc. in den Bewegungsgleichungen vorkommen würden. Dann reichen $\vec{x}(t_0) \wedge \vec{v}(t_0)$ nicht mehr zur Lösung des Anfangswertproblems.

Totale Zeitableitungen:

Seinen L, L' zwei Lagrangefunktionen mit

$$L' = L + \frac{\mathrm{d}}{\mathrm{d}t} f(q, t)$$

$$\implies S' = S + \int_{t_1}^{t_2} \mathrm{d}t \frac{\mathrm{d}}{\mathrm{d}t} f(q, t) = S + \underbrace{\left(f(q(t_2), t_2) - f(q(t_1), t_1)\right)}_{\text{variiert nicht}}$$

$$\implies \delta S' = \delta S$$

 $\implies L'$ physikalisch äquivalent zu L (L ist nur bis auf totale Zeitableitungen definiert.)

Bedeutung von S in der QM:

In der Quantenmechanik ist die Wahrscheinlichkeit w für den Übergang von $\left(q^{(1)},t_1\right)$ zu $\left(q^{(2)},t_2\right)$ gegeben durch

$$w \sim |A|^2$$

, $A \in \mathbb{C}$ ist "Amplitude", mit

$$A \sim \int Dq e^{\frac{iS[q]}{\hbar}}$$

 $\int Dq$ - Summe über alle mögliche Trajektorien ("Wege"), ("Pfade").

Im Limes $\hbar \to 0$ dominiert klassischer Weg. Grund: S ist an dieser Stelle stationär. Beiträge von "ganz anderen" Wegen heben sich wegen schneller Oszillation von $\exp[iS/\hbar]$ weg.

2 Symmetrien und Erhaltungssätze

Zentrales Ziel: Noether Theorem (Emmy Noether - 1918)

"Zu jeder Kontinuierlichen Symmetrie eines physikalischen Systems gehört eine Erhaltungsgröße." Idealfall: Symmetrien \implies Form der Wirkung. Wirkung hat Symmetrie \implies Erhaltungsgrößen.

2.1 Symmetriemotivation der Wirkung

2.1.1 Freier Massenpunkt

Homogenität von Raum und Zeit $\implies L(\vec{x}, \vec{v}, t) = L(\vec{v}).$

Isotropie des Raumes $\implies L = L(\vec{v}^2)$.

Betrachte (kleine) Galilei-Boosts: $\vec{v} \rightarrow \vec{v}' = \vec{v} + \vec{\varepsilon}$.

$$L\!\left(\vec{v}^2\right) \to L\!\left(\vec{v}^{2\prime}\right) = L\!\left(\vec{v}^2 + 2\,\vec{v}\cdot\vec{\varepsilon} + \vec{\varepsilon}^2\right)$$

Taylorentwicklung:

$$=L\!\left(\vec{v}^2\right)+\frac{\partial L\!\left(\vec{v}^2\right)}{\partial (\vec{v}^2)}(2\,\vec{v}\,\vec{\varepsilon})+\mathcal{O}\!\left(\vec{\varepsilon}^2\right)$$

Falls nun $(\partial L/\partial \vec{v}^2)$ = const., so gilt

$$\frac{\partial L}{\partial \vec{v}^2}(2\,\vec{v}\,\vec{\varepsilon}) = \frac{\mathrm{d}}{\mathrm{d}t} \bigg(\frac{\partial L}{\partial \vec{v}^2}(2\,\vec{x}\,\vec{\varepsilon}) \bigg)$$

 \implies wir fordern, dass $\partial L/\partial \vec{v}^2$ eine Konstante ist und nennen diese $m/2. \implies L = \frac{m}{2} \vec{v}^2$

2.1.2 Mehrere Massenpunkte

Für unabhängige Systeme können wir die Lagrangefunktionen schlicht addieren:

$$L(q_1, q_2, \dot{q}_1, \dot{q}_2, t) = L_1(q_1, \dot{q}_2, t) + L_2(q_2, \dot{q}_2, t)$$

Dazu rechnen wir nach, dass die Anwendung der Differentialoperatoren

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_i} - \frac{\partial}{\partial q_i} \quad (i = 1, 2)$$

auf L und Nullsetzen äquivalent ist zur Anwendung des Operators "1" auf L_1 und "2" auf L_2 . Dies gibt aber gerade die Lagrangefunktionen und es ist somit egal ob ich $L_1 + L_2$ oder L_1 und L_2 getrennt als Lagrange-Funktionen betrachte

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_1} - \frac{\partial}{\partial q_1}\right)L = \left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_1} - \frac{\partial}{\partial q_1}\right)L_1 = \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L_1}{\partial \dot{q}_1} - \frac{\partial L_1}{\partial q_1} \stackrel{!}{=} 0$$

Also Mehrere Massenpunkte:

$$L = \sum_{a} \frac{m_a}{2} \, \vec{v}_a^2$$

 $\implies L = T$ mit T = kinetische Energie. Hinzunahme von Wechselwirkungen der Form

$$V = \sum_{a < b}^{V_{ab}} (|\vec{x}_a - \vec{x}_b|)$$

respektiert Galilei-Invarianz. Also Vorschlag: L=T-V wie oben eingeführt. Aber: T,V sind im Moment nur Namen.

2.2 Homogene Funktionen und Satz von Euler

Eine Funktion f von n Variablen heißt homogen von Grad k falls $f(\alpha x_1, \ldots, \alpha x_n) = \alpha^k f(x_1, \ldots, x_n)$.

Beispiel 2.1 $f(x) = x^p$ ist homogen von Grad p.

Beispiel 2.2 $f(x,y,z) = \frac{x}{yf} + \frac{1}{z}\cos(\frac{x}{z})$ ist homogen von Grad -1.

Beispiel 2.3 ("Unser Bespiel")

$$T(q_1,\ldots,q_n,\dot{q}_1,\ldots,\dot{q}_n)=rac{1}{2}f_{ij}(q)\dot{q}_i\dot{q}_j$$
 Summe!

homogen **in den** \dot{q}_i vom Grad 2.

Satz 2.4 (Satz von Euler) $f(x_1, \ldots, x_n)$ homogen von Grad k

$$\implies \sum_{i} \frac{\partial f}{\partial x_i} x_i = kf$$

Begründung:

$$\frac{\partial}{\partial \alpha} f(\alpha x_1, \dots, \alpha x_n) = \frac{\partial}{\partial \alpha} \left(\alpha^k f(x_1, \dots, x_n) \right)$$

$$\implies \sum_i \frac{\partial f(\alpha x_1, \dots, \alpha x_n)}{\partial (\alpha x_i)} \frac{\partial \alpha x_i}{\partial \alpha} = k \alpha^{k-1} f(x_1, \dots, x_n)$$

Setze $\alpha = 1$

$$\implies \sum_{i} \frac{\partial f(x_1, \dots, x_n)}{\partial x_i} x_i = k f(x_1, \dots, x_n)$$

2.3 Energieerhaltung

Homogenität von t ,, \Longrightarrow " $L(q,\dot{q},t)=L(q,\dot{q})$

Wir betrachten:

$$\frac{\mathrm{d}}{\mathrm{d}t}L = \frac{\partial L}{\partial q_i}\dot{q}_i + \frac{\partial L}{\partial \dot{q}_i}\ddot{q}_i \qquad (Kettenregel)$$

Euler-Lagrange-Gleichung ($\frac{\partial L}{\partial q_i} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i}$)

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) \dot{q}_i + \frac{\partial L}{\partial \dot{q}_i} \frac{\mathrm{d}}{\mathrm{d}t} \dot{q}_i$$

Produktregel

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \cdot \dot{q}_i \right)$$

$$\implies \frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\left(\sum_i \frac{\partial L}{\partial \dot{q}_i} \dot{q}_i - L \right)}_{=:E} = 0$$

$$\implies \frac{\mathrm{d}}{\mathrm{d}t} E = 0$$

Beispiel 2.5

$$L = \frac{m}{2}\dot{x}^2 - V(x)$$

$$\frac{\partial L}{\partial \dot{x}} - L = m\dot{x}^2 - \left(\frac{m}{2}\dot{x}^2 - V\right)$$

$$= \frac{m}{2}\dot{x}^2 + V$$

Um dies allgemeiner zu zeigen: Satz von Euler. Wir nehmen an, dass L folgende Form hat:

$$L = T - V = \frac{1}{2} f_{ij}(q) \dot{q}_i \dot{q}_j - V(q)$$

Begründung: Diese Form ergibt sich typischerweise, wenn man

$$\sum_{a} \frac{m_a}{2} \dot{\vec{x}}_a^2 - V(\vec{x})$$

in verallgemeinerte Koordinaten umschreibt.

Mit dieser Annahme folgt:

$$\begin{split} \frac{\partial L}{\partial \dot{q}_i} \dot{q}_i &= \frac{\partial T}{\partial \dot{q}_i} \dot{q}_i = \frac{\partial}{\partial \dot{q}_i} \left(\frac{1}{2} f_{jk} \dot{q}_j \dot{q}_k \right) \dot{q}_i \\ &= \frac{1}{2} f_{jk} \delta_{ij} \dot{q}_k \dot{q}_i + \frac{1}{2} f_{jk} \dot{q}_j \delta_{ik} \dot{q}_i \\ &= f_{ik} \dot{q}_i \dot{q}_k = 2T \end{split}$$

Leichter mit Satz von Euler

$$E \equiv \frac{\partial L}{\partial \dot{a}_i} - L = 2T - (T - V) = T + V \checkmark$$

2.4 Erhaltung von verallgemeinerten Impulsen

In einen durch q_1, \ldots, q_s parametrisierten System heißen

$$p_i := \frac{\partial L}{\partial \dot{q}_i}$$

"verallgemeinerte Impulse"

Bekannter Fall:

$$L = \sum_{i=1}^{3} \frac{m}{2} \dot{x}_i^2$$

mit

$$p_i = m\dot{x}_i = \frac{\partial L}{\partial \dot{x}_i}$$

Eine Koordinate heißt "zyklisch", falls die **nicht** explizit in L vorkommt (Ableitung darf vorkommen).

Beispiel 2.6

$$L = L(q_2, \dots, q_s, \dot{q}_1, \dots, \dot{q}_s)$$

In dieser Situation ist die Transformation $q_1 o q_1' = q_1 + \varepsilon$ eine Symmetrie.

Sei q_1 zyklisch. Es gilt

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_1} - \frac{\partial L}{\partial q_1} = 0$$
 (Euler-Lagrange-Gleichung)

 $\partial L/\partial q_1=0$ per Annahme

$$\implies \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_1} = 0$$
$$\frac{\mathrm{d}}{\mathrm{d}t} (p_1) = 0$$

⇒ "Die verallgemeinerten Impulse zyklischer Koordinaten sind erhalten."

Beispiel 2.7 Massenpunkt in Potential, dass nicht von x_1 abhängt. Noch konkreter: schräger Wurf:

$$V(x_1, x_2, x_3) = mgx_3$$

 $\implies x_1, x_2$ zyklisch.

Beispiel 2.8 (Massenpunkt in Ebene mit Zentralpotential)

$$L = \frac{m}{2} \left(r^2 \dot{\varphi}^2 + \dot{r}^2 \right) - V(q)$$

 φ zyklisch

 $ightharpoonup rac{\partial L}{\partial \dot{\varphi}}=mr^2\dot{\varphi}$: Betrag des Drehimpulses. (Dieses Beispiel erklärt den Namen "zyklisch" im Sinne von periodisch)

2.5 Noether-Theorem

Definition 2.9 (kontinuierliche Transformation)

$$q(t) \rightarrow q'(t) = q(t) + \delta q(t)$$

= $q(t) + \varepsilon \chi(t)$

 $\varepsilon \in \mathbb{R}$, sodass $\varepsilon \to 0$ möglich ist.

Definition 2.10 (kontinuierliche Transformation) Damit diese Transformation eine Symmetrie ist, fordern wir **Invarianz der Bewegungsgleichungen**, also

$$\delta L \equiv L(q + \delta q, \dot{q} + \delta; t) - L(q, \dot{q}, t) = \varepsilon \frac{\mathrm{d}}{\mathrm{d}t} f$$

Wir betrachten

$$\varepsilon \frac{\mathrm{d}}{\mathrm{d}t} f = \delta L = \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q}$$

mit Euler-Lagrange:

$$=\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}}\right)\delta q+\frac{\partial L}{\partial \dot{q}}\frac{\mathrm{d}}{\mathrm{d}t}(\delta)=\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}}\delta q\right)$$

$$\Longrightarrow 0=\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}}\delta q-\varepsilon f\right)$$

$$=\varepsilon\frac{\mathrm{d}}{\mathrm{d}t}\underbrace{\left(\frac{\partial L}{\partial \dot{q}}\chi-f\right)}_{\text{Erhaltungsgröße}}$$
 (Erhaltungsgröße)

Satz 2.11 (Noether-Theorem) Noether-Theorem (nach analoger Rechnung mit q_1,\ldots,q_n): Falls $\delta q_i=\varepsilon\chi_i$ Symmetrie (also $\delta L=\varepsilon\frac{\mathrm{d}}{\mathrm{d}t}f$) gilt

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \chi_i - f \right) = 0$$

Beispiel 2.12 (Zeittranslation) $q(t) \rightarrow q'(t) = q(t+\varepsilon) = q(t) + \dot{q}(t)\varepsilon + \mathcal{O}(\varepsilon^2)$ $\delta q = \dot{q}\varepsilon = \varepsilon\chi \implies \chi = \dot{q}$ Berechne δL :

$$\begin{split} \delta L &= \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} = \varepsilon \frac{\partial L}{\partial q} \dot{q} + \frac{\partial L}{\partial \dot{q}} \varepsilon \ddot{q} \\ &= \varepsilon \left(\frac{\partial L}{\partial q} \frac{\mathrm{d}q}{\mathrm{d}t} + \frac{\partial L}{\partial \dot{q}} \frac{\mathrm{d}\dot{q}}{\mathrm{d}t} \right) = \varepsilon \frac{\mathrm{d}}{\mathrm{d}t} L \\ \Longrightarrow \frac{\partial L}{\partial \dot{q}} \chi - f &= \frac{\partial L}{\partial \dot{q}} \dot{q} - L = E \, \checkmark \end{split}$$

Beispiel 2.13 (Verschiebung zyklischer Koordinate)

$$q' = q + \varepsilon \implies \chi = 1, \delta L = 0 \implies f = 0$$

Erhaltungsgröße:

$$\frac{\partial L}{\partial \dot{q}}\chi - f = \frac{\partial L}{\partial \dot{q}} = p \qquad \text{(verallgemeinerter Impuls)}$$

Zusammenstellung zu Galilei Transformationen

Symmetrie	Erhaltungsgröße
Zeittranslation	Energie
Translation	Impuls
Rotation	Drehimpuls
Boosts	$\vec{x}_s - \vec{v}_s \cdot t$

zum Boost:

 $\vec{x}_s - \vec{v}_s \cdot t = \text{const.}$ Schwerpunkt bewegt sich geradlinig und gleichförmig.

2.6 Mechanische Ähnlichkeit

Lagrangefunktion:

$$L = \sum_{a} \frac{m_a}{2} \dot{\vec{x}}_a^2 - V(\vec{x}_1, \dots, \vec{x}_n)$$

Sei V homogen in den x_a^i von Grad k.

Sei $\{\vec{x}_a(t)\}$ beziehungsweise $[t \mapsto \{\vec{x}_a(t)\}]$ eine physikalische Bewegung. Kurz: $t \mapsto x(t)$.

Betrachte Transformation: $x \to \alpha x, t \to \beta t \forall t, x$.

Alte Bewegung: $\{t \to x(t)\}\$, Neue Bewegung $\{\beta t \mapsto \alpha x(t)\}\$.

Variablenweschsel: $t' = \beta t$ und anschließend $t' \to t$. Neue Bewegung: $\{t \mapsto \alpha x(t/\beta)\}$

Betrachte nun Transformationen von T, V

$$T, V \to \left((\alpha/\beta)^2 T, \alpha^k V \right)$$

Fordere nun $\alpha^k = (\alpha/\beta)^2 \implies L \rightarrow \alpha^k L$

Beachte:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0$$

ist homogen in L, x, t jeweils vom Grad $\{1, -1, 0\}$

 \implies Falls alte Bewegung Lösung \implies neue Bewegung auch Lösung.(entscheidend: $L \to \alpha_k L$)

⇒ "Mechanische Ähnlichkeit".

Definition 2.14 (Mechanische Ähnlichkeit) $\beta=\beta(\alpha)$ so wählbar, dass $x\to\alpha x, t\to\beta t\implies L\to\alpha^kL$.

Anwendung:

Sei X typische Länge einer Bewegung (Bahnradius, Entfernung von Umkehrpunkten, etc.). Sei T typische Zeit (Periode, Zeit zwischen Umkehrpunkten, etc.). Seien $X' = \alpha X, T' = \beta T$ die entsprechenden Größen ähnlischer Bewegungen. Dann gilt:

$$\frac{T'}{T} = \beta = \alpha^{1-k/2} = \left(\frac{X'}{X}\right)^{1-k/2}$$

Beispiel 2.15 (Harmonischer Oszillator)

$$V \sim x^2 \implies k = 2 \implies \frac{T'}{T} = 1$$

Beispiel 2.16 (Freier Fall)

$$V \sim x \implies k = 1 \implies \frac{T'}{T} = \sqrt{\frac{X'}{X}}$$

Beispiel 2.17 (Gravitation)

$$V \sim \frac{1}{x} \implies k = -1 \implies \frac{T'}{T} = \frac{X'^{3/2}}{X}$$

2.7 Virialsatz

Betrachte Zeitmittel: $< A>:= \lim_{t\to\infty} \frac{1}{t} \int_0^t \mathrm{d}t' At'$ (besonders leicht zu berechnen für totale Zeitableitungen).

Ziel: < T > (kinetische Energie)

Also: Versuche T als totale Zeitableitung zu schreiben. (zur Vereinfachung in 1D, ein Teilchen)

$$\begin{split} 2T &= mv^2 2 = p\dot{x} = \frac{\mathrm{d}}{\mathrm{d}t}(px) - \dot{p}x \\ &= \frac{\mathrm{d}}{\mathrm{d}t}(px) + x\frac{\partial V}{\partial x} \\ \implies 2T - x\frac{\partial V}{\partial x} &= \frac{\mathrm{d}}{\mathrm{d}t}(px) \\ \implies &< 2T - x\frac{\partial V}{\partial x} > = <\frac{\mathrm{d}}{\mathrm{d}t}(px) > \\ &= \lim_{t \to \infty} \frac{1}{t} \left(px \big|_t - px \big|_0 \right) = 0 \end{split} \tag{falls } p, x \text{ beschränkt)} \end{split}$$

Definition 2.18 (Virialsatz) Für Bewegungen in beschränkten Gebieten mit beschränket Geschwindigkeiten gilt:

$$2 < T > = < \sum_{a} \vec{x}_a \frac{\partial V}{\partial \vec{x}_a} > = < \sum_{a} \sum_{i=1}^{3} x_a^i \frac{\partial V}{\partial x_a^i} >$$

Beispiel 2.19 (homogenes Potential) Falls V homogen von Grad k: 2 < T >= k < V >

Beispiel 2.20 (harmonischer Oszillator) < T > = < V >

Beispiel 2.21 (Gravitation) k = -1, 2 < T > = - < V >

3 Trägheitstensor

3.1 Trägheitsmoment und Satz von Steiner

Rotation von Körper um feste Achse A. Körper besteht aus Elementen m_a mit Radius $r_{a,\perp}$. Kontinuierlich: $m_a=\rho\Delta V$. Einzige erlaubte Bewegung sei Drehung um Achse A:

$$T \simeq \sum_{a} \frac{m_a}{2} v_a^2 = \sum_{a} \frac{m_a}{2} \omega_2 r_{a,\perp}^2$$
$$= \frac{1}{2} I_A \omega^2$$
$$\implies I_A \equiv \sum_{a} m_a r_{a,\perp}^2$$

Trägheitsmoment im Kontinuum:

$$I_A = \int \mathrm{d}^2 \vec{r} \rho(\vec{r}) r_\perp^2$$

Einziger Freiheitsgrad: Drehwinkel φ (wobei $\omega = \dot{\varphi}$)

$$L(\varphi, \dots \varphi) = \frac{1}{2} I_A \dot{\varphi}^2 - V(\varphi)$$
$$\implies I_A \ddot{\varphi} = -\frac{\partial V}{\partial \varphi}$$

Annahme: V ergibt sich als Summe der Potentiale aller Teilmassen:

$$V(\varphi) = \sum_{a} V_a(\vec{r}_a(\varphi))$$

Betrachte

$$\begin{split} V(\varphi + \delta \varphi) &= \sum_{a} V_{a}(\vec{r}_{a}(\varphi) + \delta \vec{v}_{a}) \\ &= \sum_{a} V_{a}(\vec{r}_{a}(\varphi) + \delta \vec{\varphi} \times \vec{r}_{a}(\varphi)) \\ &= \sum_{a} V_{a} + \sum_{a} (\delta \vec{\varphi} \times \vec{r}_{a}) \cdot \vec{\nabla} V_{a}(\vec{r}_{a}(\varphi)) \\ V(\varphi + \delta \varphi) - V(\varphi) &= \sum_{a} (\delta \vec{\varphi} \times \vec{r}_{a}) \vec{\nabla} V_{a}(\vec{r}_{a}(\varphi)) \end{split}$$

Limes $\delta \varphi \to 0, \delta \, \vec \varphi = \, \vec e_A \delta \varphi, \, \vec e_A$ Einheitsvektor der Achse

$$-\frac{\mathrm{d}V(\varphi)}{\mathrm{d}\varphi} = -\sum_{a} \frac{\delta \vec{\varphi} \times \vec{r}_{a}}{\delta \varphi} \vec{\nabla}V$$

$$= \sum_{a} \varepsilon_{ijk} (\vec{e}_{A})_{j} (\vec{r}_{a})_{k} \cdot (F_{a})_{i}$$

$$= \sum_{a} (\vec{e}_{A})_{j} (\vec{r}_{a} \times \vec{F}_{a})_{j} = \sum_{a} \vec{e}_{A} \cdot \vec{M}_{a}$$

 \vec{M}_a : Drehmoment auf Punkt "a". Zuletzt: $I_A\ddot{\varphi}=-\frac{\mathrm{d}V}{\mathrm{d}\varphi}$

$$\implies \frac{\mathrm{d}}{\mathrm{d}t}(I_A\dot{\varphi}) = \vec{e}_A\vec{M}$$

 \vec{M} : Gesamtdrehmoment.

Erinnerung: Drehimpuls für Punktmasse: $\vec{L} = m \, \vec{r} imes \vec{v}$

$$\implies \vec{e}_A \cdot \vec{L} = m \vec{e}_A [(\vec{r}_{\parallel} + \vec{r}_{\perp}) \times \vec{r}]$$
$$|\vec{r}_{\perp} \times \vec{v}| = |\vec{r}_{\perp}| |\vec{v}| = |\vec{r}_{\perp}| |\vec{r}_{\perp}| \dot{\varphi}$$
$$\implies \vec{e}_A \vec{L} = mr_{\perp}^2 \dot{\varphi} \implies \vec{e}_A \vec{L} = I_A \dot{\varphi}$$
$$\implies \vec{e}_A \cdot \dot{\vec{L}} = \vec{e}_A \vec{M}$$

Bemerkung: I_A ist besonders einfach zu berechnen falls $A \parallel S$ (Schwerpunktsachse) und I_S bekannt, \vec{R}_{\perp} ist der (senkrechte) Abstand der beiden Achsen.

$$I_A = \sum_a m_a v_{0,\perp}^2 = \sum_a m_a \left(\vec{R}_{\perp} + \vec{r}'_{\perp,a} \right)^2$$

Summe der Mischterme fällt weg

$$I_A = \sum_a m_a \left(\vec{R}_\perp^2 + \vec{r}_{a,\perp}^{\prime 2} \right)$$

Satz von Steiner:

$$\implies I_A = M \vec{R}_{\perp}^2 + I_s$$

3.2 Trägheitstesor

Berechne kinetische Energie einen Körpers der sich mit \vec{v} und mit $\vec{\omega}$ um Achse durch Schwerpunkt dreht.

$$T = \sum_{a} \frac{m_a}{2} \vec{v}_a^2 = \sum_{a} \frac{m_a}{2} (\vec{v} + \vec{\omega} \times \vec{r}_a)^2$$
$$= \sum_{a} \frac{m_a}{2} (\vec{v}^2 + 2\vec{v}(\vec{\omega} \times \vec{r}_a) + (\vec{\omega} \times \vec{r}_a)^2)$$

Mischtermfällt weg, da $\sum_a m_a \, \vec{r}_a = 0$, wegen Schwerpunktbedingung

$$= \frac{M}{2}\vec{v}^2 + \sum_a \frac{m_a}{2} (\vec{\omega} + \vec{r}_a)^2$$

$$= \frac{M}{2}\vec{v}^2 + \frac{1}{2}I_{ij}\omega_i\omega_j$$

$$I_{ij} \equiv \sum_a m_a \left(\delta_{ij}\vec{r}_a^2 - (\vec{r}_a)_j(\vec{r}_a)_j\right)$$

Integralform:

$$I_{ij} = \int d^3 \vec{r} \rho(\vec{r}) \left(\delta_{ij} \vec{r}^2 - r_i r_j \right)$$

Speziell für $\vec{r}=(x,y,z)$ findet man:

$$I = \int dx dy dz \rho(\vec{r}) \begin{pmatrix} y^2 + z^2 & -xy & -xz \\ -xy & x^2 + z^2 & -yz \\ -xz & -yz & x^2 + y^2 \end{pmatrix}$$

Beispiel 3.1 (homogener Würfel) $\int dx \rightarrow \int_{-a/2}^{a/2} dx$

$$\int_{-a/2}^{a/2} dx \int_{-a/2}^{a/2} dy y^2 \int_{-a/2}^{a/2} dz = a \cdot \frac{a^3}{12} \cdot a$$

Insgesamt:

$$I = a^{2} \rho \begin{pmatrix} \frac{1}{6} a^{3} & & \\ & \frac{1}{6} a^{3} & \\ & & \frac{1}{6} a^{3} \end{pmatrix} = \frac{1}{6} M a^{2} \mathbb{1}$$

3.3 Hauptträgheitsachsen

Tensor ist (wie) Vektor ein geometrisches Objekt. Er beschreibt Dichte/ Form des Körpers. Bei Drehungen des Körpers: Dreht sich mit: $I'_{ij} = R_{ik}R_{jl}I_{kl} \iff I' = RIR^T = RIR^{-1}$ (aktive Sicht).

Passire Sicht: Für die Komponenten von *I* im gedrehten Koordinatensystem gilt:

$$I'_{ij} = R_{ik}R_{jl}I_{kl}$$

Zentraler Satz: Jede symmetrische, reelle Matrix kann durch eine orthogonale Transformation auf Diagonalform gebracht werden. \implies Wir können als stets den Körper so drehen beziehungsweise das Koordinatensystem so wählen, dass

$$I = \begin{pmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_3 \end{pmatrix}$$

 I_1, I_2, I_3 heißen Hauptträgheitsmonente. Die Koordinaten $\hat{e}_1, \hat{e}_2, \hat{e}_3$ des Systems in dem I diagonal ist heißen Hauptträgheitsachsen. (im Allgemeinen sind dies die Symmetrieachsen des Körpers, soweit vorhanden).

Sei $\vec{v}=0$, sei $\vec{\omega}=\omega\hat{e}$ (\hat{e} beliebiger Einheitsvektor).

$$\implies T = \frac{1}{2}I_{ij}\omega_i\omega_j = \frac{1}{2}I_{ij}\hat{e}_i\hat{e}_j\omega^2 \equiv \frac{1}{2}I_e\omega^2$$

(Daher ist $I_e \equiv I_{ij} \hat{e}_i \hat{e}_j$) das Trägheitsmoment bezüglich \hat{e} .

Sei speziell I diagonal und $\hat{e}=\hat{e}_1=(1,0,0)$. Es folgt $I_e=I_{11}=I_1$, sprich: Die Hauptträgheitsmomente sind also gerade die Trägheitsmomente bezüglich die Hauptträgheitsachsen. Außerdem gilt:

$$I_{ij}(\hat{e}_1)_j = I_{ij}\delta_{j1} = I_{i1} = I_1\delta_{i1} = I_1(\hat{e}_1)_i$$

Matrixschreibweise:

$$I\hat{e}_1 = I_1\hat{e}_1$$

Demnach ist \hat{e}_1 ein **Eigenvektor** von I mit **Eigenwert** I_1 . Die Existenz eines gewissen Eigenvektors und dessen Eigenwert sind **koordinatenunabhängig!** In der Tat:

$$R \cdot I\hat{e}_1 = I_1 R\hat{e}_1$$

$$(RIR^{-1})R = I_1 R\hat{e}_1$$

$$I'\hat{e}'_1 = I_1 \hat{e}'_1 \qquad \hat{e}'_1 = R\hat{e}_1$$

Wir sehen: Die Matrix I hat 3 Eigenvektoren $\hat{e}_{(a)}$. Diese Eigenvektoren definieren die Hauptträgheitsachsen. Die Eigenwerte I_a sind die entsprechenden Hauptträgheitsmomente.

3.4 Eigenwerte, Eigenvektoren, Diagonlisierbarkeit

Sei $\mathbb{V} = \mathbb{C}^n$ ein Vektorraum über \mathbb{C} . Definiere das Skalarprodukt $(\forall x, y \in \mathbb{V})$

$$x, y \mapsto \langle x, y \rangle \equiv x^{\dagger} y \in \mathbb{C}$$

Notation: $M^{\dagger} \equiv \bar{M}^T$ für alle komplexenen Matrizen. Sei H eine hermitesche Matrix $(n \times nn)$, das heißt $H^{\dagger} = H$. Wir können H wie folgt diagonalisieren:

- Löse $\det(H \lambda \mathbb{H}) = 0$. (Fundamentalsatz der Algebra) Nenne diese Lösung λ_1 . Da nun $\det(H \lambda_1 \mathbb{H}) = 0$ hat die Gleichung $(H \lambda_1 \mathbb{H}) \cdot x = 0$ eine nichttriviale Lösung $x_1 \in \mathbb{V}$. (Wegen Nicht-Invertierbarkeit $(H \lambda_1 \mathbb{H})$). Notation: x_1 heißt Eigenvektor von H zum Eigenwert λ_1 . Es gilt $Hx_1 = \lambda_1 x_1$
- Behauptung: H bildet $\{x_1\}_{\perp}$ auf $\{x_1\}_{\perp}$ ab.
- Begründung: Sei $\langle y, x_1 \rangle = 0$. Dann gilt

$$\langle Hy, x_1 \rangle = (Hy)^{\dagger} x_1 = y^{\dagger} H^{\dagger} x_1 = y^{\dagger} H x_1 = \lambda_1 y^{\dagger} x_1 = \lambda_1 \langle y, x_1 \rangle = 0 \checkmark$$

Betrachte jetzt die $(n-1) \times (n-1)$ -Matrix H_1 welce die Wirkung von H auf $\{x_1\}_{\perp}$ beschreibt. Wiedehohle obiges Argument. Finde λ_2, x_2 und so weiter.

- Wähle normierte Basis $e_1, \ldots, e_n \sim x_1, \ldots, x_n$. Diese Basis ist nach obigem auch orthogonal.
- Wir nennen Matrizen welche eine Orthonormalbasis in eine Orthonormalbasis überführen unitär. Ohne Beweis: Für solche Matrizen gilt $U^\dagger=U^{-1}$
- Damit haben wir Diagonalisierbarkeit vod hermitesche Matrizen durch unitäre Transformationen!
- Behauptung: λ_i sind reell.
- Begründung: $< Hx_1, x_1 > = < \lambda x_1, x_1 > = \bar{\lambda} < x_1, x_1 > = < x_1, Hx_1 > = \lambda < x_1, x_1 > \checkmark$

Korollar: Reelle, symmetrische Matrizen $(H=H^{\dagger},H_{ij}\in\mathbb{R})$ können durck orthogonale Transformationen diagonalisiert werden.

Dazu: Finde wie oben $\lambda_1 \in \mathbb{C}$. Wir wissen aber, dass auch $\lambda_1 \in \mathbb{R}$. Dann existiert ein reelles x_1 mit $(H - \lambda_1 \mathbb{H})x_1 = 0$. Fortsetzung wie oben, nur "unitär" \to "orthogonal".

3.5 Trägheitsellipsoid

Bisher: $I_{\text{würfel}} = \frac{1}{6}Ma^2 \mathbb{1}$

Nächstes Beispiel: homogene Kugel, ohne Rechnung: $I \sim \mathbb{1}^{K}$, Warum?

Es muss gelten: $I = RIR^{-1} \forall R \in SO(3)$. Fakt: δ_{ij} ist der einzige invariante Tensor von SO(3) mit zwei Indizes (vom Rang 2).

Betrachte nun ein weniger symmetrisches Beispiel:

Beispiel 3.2 (Hantel) Hantel mit masseloser Stange, $m_1 = m_2 = m$

$$I_{ij} = \sum_{m} m \cdot (\delta_{ij} \vec{r}^2 - r_i r_j)$$

$$= 2m (\delta_{ij} \vec{r}^2 - r_i r_j) \qquad \vec{r} = (0, 0, a)$$

$$= 2ma^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{ij}$$

realistische Hantel (keine Punktmassen)

$$=2ma^{2}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \varepsilon \end{pmatrix}_{ij}$$

Vermutung: "einfache" Beziehung zwischen Form des Körpers und Trägheitstensors.

So wie ein Vektor einen Pfeil in \mathbb{R}^3 entspricht, so entspricht ein symmetrischer Tensor vom Rang 2 einer **Fläche 2. Grades**:

$$t_{ij}x_ix_j = 1$$

Wir setzen nun $t \equiv I$ und gehen ins Hauptträgheitsachsensystem.

$$I_{ij}x_ix_j = 1 \implies I_1x_1^2 + I_2x_2^2 + I_3x_3^2 = 1$$

Dies beschreibt einen Ellipsoid. Betrachte beliebige Achse \hat{e} ($\hat{e}^2=1$). Diese schniede Ellipsoid bei \vec{x}_e .

$$\vec{x}_e = \hat{e} \cdot |\vec{x}_e|$$

$$1 = I_{ij}(x_e)_i(x_e)_j$$

$$1 = |\vec{x}_e|^2 I_{ij} \hat{e}_i \hat{e}_j = I_e |\vec{x}_e|^2$$

$$\implies |\vec{x}_e| = \frac{1}{\sqrt{I_e}}$$

 $|\vec{x}_e|$ groß \iff I_e klein \iff Körer hat in den "anderen" Richtungen eine kleine Ausdehnung. \implies Trägheitsellipsoid folgt ungefähr Form des Körpers:

Körper Würfel / Kugel Hantel / Quader gekreutzte Hantel / "Buch"
Ellipsoid Sphäre vertikal gestreckte Sphäre vertikal gestauchte ("abgeflachte") Sphäre

3.6 Trägheitstensor und Drehimpuls (mehr zur Geometrie)

Erinnerung: Tensor t vom Rang 2 ist bilineare Abbildung

$$t: \mathbb{V} \times \mathbb{V} \to \mathbb{R}, (x, y) \mapsto t_{ij}x_iy_j$$

Unser Fall:

$$I: (\vec{\omega}, \vec{\omega}) \mapsto I_{ij}\omega_i\omega_j = 2T$$

 \implies Die formale mathematische Definition vom I hat unmittelbare physikalische Bedeutung. Sie ordnet $\vec{\omega}$ die kinetische Energie zu. Im euklidischen Raum definiert ein Tensor außerdem eine Abbildung

$$t: \mathbb{V} \to \mathbb{V}, \{x_i\} \mapsto \{t_{ij}x_j\}$$
 beziehungsweise $x \to tx$

Auch dies hat bei uns physikalische Bedeutung:

$$I: \{\omega_i\} \mapsto \{I_{ij}\omega_i\} = \{L_i\} \text{ also } \vec{\omega} \mapsto \vec{L}$$

Wir behaupten hier, dass $L_i = I_{ij}\omega_j$ gilt. Das ist leicht zu prüfen: Betrachte Massenpunkt bei der Position \vec{r} . Drehe jetzt um Achse $\vec{\omega}$ mit Winkelgeschwindigkeit $\vec{\omega}$:

$$\vec{L} = \vec{r} \times \vec{p} = m\vec{r} \times \dot{\vec{r}} = m\vec{r} \times (\vec{w} \times \vec{r})$$

$$L_i = m\varepsilon_{ijk}r_j(\varepsilon_{klm}\omega_l r_m) = \dots$$

$$= m(\delta_{ij}\vec{r}^2 - r_1r_j)\omega_j$$

Nach Summation über viele Massenpunkte:

$$L_i = \sum_a m_a \left(\delta_{ij} \vec{r}_a^2 - (r_a)_i (r_a)_j \right) \omega_j = I_{ij} \omega_j, L = I \omega$$

4 Kreisel

4.1 Euler-Gleichungen

Körperfestes System vs. Raumfestes System. Drehmatrix $R(t) \in SO(3)$

$$L' = RL, v' = Rv$$

Bewegungsgleichungen:

$$\dot{\vec{L}}' = \vec{M}'$$
 $\frac{\mathrm{d}}{\mathrm{d}t}(R \cdot L) = RM$ $\dot{R}L + R \to L = RM$

Erinnerung: $\dot{R}r = R(\omega \times r)$

$$R(\omega \times L) + R\dot{L} = RM$$

$$\dot{R} = M + L \times \omega$$

$$L = I\omega$$

$$I\dot{\omega} = M + (I\omega) \times \omega$$

Wähle als körperfestes System speziell das Hauptachsensystem $\implies I = \begin{pmatrix} I_1 & & \\ & I_2 & \\ & & I_3 \end{pmatrix}$. \implies

Euler-Gleichungen

$$I_1 \dot{\omega}_1 = M_1 + \omega_2 \omega_3 (I_2 - I_3)$$

$$I_2 \dot{\omega}_2 = M_2 + \omega_3 \omega_1 (I_3 - I_1)$$

$$I_3 \dot{\omega}_3 = M_3 + \omega_1 \omega_3 (I_1 - I_2)$$

4.2 Freier Kreisel

Energieerhaltung:

$$E = T = \frac{1}{2}\omega^T I\omega = \frac{1}{2} \sum_{i=1}^{3} I_i \omega_i^2$$
$$L_i = I_i \omega_i \implies E = \frac{1}{2} \sum_{i=1}^{3} \frac{L_i^2}{I_i}$$

oder

$$\frac{L_1^2}{2EI_1} + \frac{L_2^2}{2EI_2} + \frac{L_3^2}{2EI_3} = 1$$

 $\implies L$ ist auf ein Ellipsoid ("Binet-Ellipsoid" (Ellipsoid im "L-Raum")) eingeschränkt. Drehimpulserhaltung:

$$L' = \text{const.}, L' = RL, R \in SO(3) \implies |L| = \text{const.}$$

 $\implies L$ bewegt sich im körperfesten System auf Schnittkurven von Binet-Ellipsoid und Sphäre mit Radius $\left| \vec{L} \right| = \left| \vec{L}' \right|$ Ohne Beschränkung der Allgemeinheit: $I_1 > I_2 > I_3$

Fall 1: $\left|\vec{L}\right| < \sqrt{2EI_3} \implies$ Sphäre und Ellipsoid haben keine gemeinsamen Punkte \implies physikalische unmöglich

Fall 2: $|\vec{L}| = \sqrt{2EE_3}$ ("einbeschriebene Kugel") $\implies L = \pm (0, 0, \sqrt{2EI_3})^T, \omega_2 \parallel e_3$ fest.

Fall 3: $\sqrt[]{2EI_3} < \left| \vec{L} \right| < \sqrt{2EI_2} \implies$ Sphäre stößt aus Ellipsoid heraus $\implies L$ bewegt sich im körperfesten System auf einer geschlossenen Kurve \implies kräftefreie Präzession des Kreisels im Laborsystem.

Fall 4: $\left| \vec{L} \right| = sqrt(2EI_2)$ Zwei kreuzende Kurven L sitzt am Kreuzungspunkt (instabil) oder bewegt sich entlang Kurve

Fall 5: $\sqrt{2EI_2} < \left| \vec{L} \right| < \sqrt{2EI_1}$ "Gurke", nur Enden sind abgeschnitten $\implies L$ bewegt sich im körperfisten System auf einer geschlossenen Kurze \implies kräftefreie Präzessions des Kreisels im Laborsystem

Fall 6: $\left| \overrightarrow{L} \right| = \sqrt{2EI_1}$ ("einbeschriebene Kugel"), wie Fall 2

Fall 7: $\sqrt{2EI_1} < \left| \vec{L} \right|$ unmöglich

Auch möglich: Geometrische Diskussion im raumfesten System ⇒ Poinsot-Konstruktion: Ellipse rollt rutschfrei auf Ebene ab.

4.3 Freier Kreisel analytisch

Euler-Gleichungen

$$I_1 \dot{\omega}_1 = \omega_2 \omega_3 (I_2 - I_3)$$

$$I_2 \dot{\omega}_2 = \omega_3 \omega_1 (I_3 - I_1)$$

$$I_3 \dot{\omega}_3 = \omega_1 \omega_3 (I_1 - I_2)$$

 \implies Falls 2 der 3 Komponenten von $\vec{\omega}$ Null sind $\implies \vec{\omega} = \text{const.}$. Jetzt zur Vereinfachung sei $I_1 = I_2 < I_3$. Definiere $I_0 \equiv I_1 = I_2$ (Beispiel: abgeflachte Kugel, wie etwa Erde).

$$I_0\dot{\omega}_1 = \omega_2\omega_3(I_0 - I_3)$$

$$I_0\dot{\omega}_2 = -\omega_3\omega_1(I_0 - I_3)$$

$$I_3\dot{\omega}_3 = 0$$

 $\omega_3={
m const..}$ Definiere $lpha\equiv-\omega_3\Big(1-rac{I_3}{I_0}\Big)={
m const..}$ Man erhält:

$$\dot{\omega}_1 = -\alpha \omega_2$$

$$\dot{\omega}_2 = -a\omega_1$$

$$\implies \ddot{\omega}_1 = -\alpha^2 \omega_1$$

$$\implies \omega_1 = A\cos(\alpha t + \varphi)$$

(ohne Beschränkung der Allgemeinheit $\varphi=0$). \Longrightarrow freie Präzession:

$$\omega_1 = A \cos \alpha t$$
$$\omega_2 = A \sin \alpha t$$
$$\omega_3 = \text{const.}$$

 $\vec{\omega}$ bewegt sich auf Kreis in der $\omega_3=$ const. Ebene.

Konkreter Fall: Erde

$$-\left(1 - \frac{I_3}{I_0}\right) \approx 0.003 \equiv \varepsilon$$

$$\implies \alpha = \omega_3 \cdot \varepsilon \implies T_{\text{Präz}} = \frac{T_{\text{Erde}}}{\varepsilon} \sim 300 \text{Tage}$$

⇒ Realität ist leider komplizierter, "Chandler-Wobble"

4.4 Schwerer Kreisel (vereinfacht)

Raumfestes System!

- \vec{S}' : Schwerpunktsachse des Kreisels
- φ : Winkel der Schräglage des Kreisels

entscheidende Näherung: $\vec{L}' \parallel \vec{S}'$

$$\vec{M}' = \vec{r}' \times \vec{F}' \sim \vec{S}' \times \vec{F}'$$

Also in unserer Näherung: $\vec{L}' \perp \vec{M}'$. Betrachte:

$$\left(\vec{L}'^2\right)^{\cdot} = 2\vec{L}'\dot{\vec{L}}' \qquad \dot{\vec{L}}' = \vec{M}'$$

 $\implies \left(\, \vec{L}'^2 \right)^{\cdot} = 0$ beziehungsweise $\left| \, \vec{L}' \right| =$ const. Weiterhin: $\vec{F}' \parallel \hat{e}'_z \implies \vec{M}'$ liegt in x-y-Ebene.

 \implies Spitze von \vec{L}' bewegt sich auf Kreis in horizontaler Ebene.

Kreisradius = $|\vec{L}'|\sin \varphi$, Geschwindigkeit = $|\vec{M}'|$. Periodendauer:

$$T = \frac{2\pi R}{v} = \frac{2\pi \left| \vec{L}' \right| \sin \varphi}{\left| \vec{M}' \right|} = \frac{2\pi \left| \vec{L}' \right|}{mgl}$$

Anwendung auf Erde: kein fester Punk, stattdessen Drehmoment durch Sonne/Mond und Abflachung der Erde. \implies Präzession der Äquinoktialpunkte (precession of the equinoxes). $T\sim26\,000\,\mathrm{a}$

4.5 Eulersche Winkel

Ziel: exakte Analyse der symmetrischen schweren Kreiseln.

Brauchen: Parametrisierung der relativen Lage zweier Koordinatensysteme.

 \implies Drehe um $\hat{e}'_3 = \hat{e}_3$ um φ , dann Drehe um \hat{e}_1 um θ und dann drehe um \hat{e}_3 um ψ Wichtig: kleine Winkel (als Vektoren) sind bezüglich Drehungen additiv. (folgt aus $\mathbb{R} = \mathbb{1} + \iota(\delta \vec{\varphi})$). \implies Winkelgeschwindigkeiten addieren sich vektoriell.

$$\implies \vec{\omega}' = \dot{\varphi}\hat{e}_3' + \dot{\psi}\hat{e}_3 + \dot{\theta}\hat{e}_N$$

4.6 Schwerer Kreisel (exakt)

Ungestrichenes System - fest verbunden mit Kreisel. ($I_1=I_2\equiv I_0$)

$$\mathcal{L} = \frac{1}{2} [I_0(\omega_1^2 + \omega_2^2) + I_3\omega_3^2] - mgl\cos\theta$$

Wegen Rotationssymmetrie von Schwerefeld und Kreisel sind φ, ψ zyklisch \implies können die Umschreibung von $\{\omega_1, \omega_2, \omega_3\} \rightarrow \{\varphi, \psi, \theta, \dot{\varphi}, \dot{\psi}, \dot{\theta}\}$ bei $\varphi = \psi = 0$ durchführen: Wir haben (bei $\varphi = \psi = 0$):

$$\begin{split} \hat{e}_N &= \hat{e}_1, \hat{e}_3 = \hat{e}_3 \cos \theta + \hat{e}_2 \sin \theta \\ \vec{\omega}' &= \dot{\varphi}(\hat{e}_3 \cos \theta + \hat{e}_2 \sin \theta) + \dot{\psi}\hat{e}_3 + \dot{\theta}\hat{e}_1 \\ &= \hat{e}_1 \underbrace{\dot{\theta}}_{\omega_1} + \hat{e}_2 \underbrace{(\dot{\varphi} \sin \theta)}_{\omega_2} + \hat{e}_3 \underbrace{\left(\dot{\psi} + \dot{\varphi} \cos \theta\right)}_{\omega_3} \\ \mathcal{L} &= \frac{1}{2} \left(I_0 \Big(\dot{\theta}^2 + \dot{\varphi}^2 \sin^2 \theta \Big) + I_3 \Big(\dot{\psi} + \dot{\varphi} \cos \theta \Big)^2 \right) - mgl \cos \theta \end{split}$$

Energie: $E = T + V = \text{const.}_1$

$$\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = L_3' = \text{const.}_2$$
 $\frac{\partial \mathcal{L}}{\partial \dot{\psi}} = L_3 = \text{const.}_3$

Auflösen nach $\dot{\varphi},\dot{\psi}$ und einsetzen in T+V=E gibt:

$$E = \frac{1}{2}I_0\frac{\dot{U}^2}{1 - U^2} + V_{eff}(u), \quad u \equiv \cos\theta$$

$$V_{eff}(u) = mglu + \frac{L_3^2}{2I_3^2} + \frac{(L_3' - L_3 u)^2}{2I_0(1 - u^2)}$$

$$-\dot{U}^2 = \frac{2}{I_0} \left\{ \left(mglu + \frac{L_3^2}{2I_3} - E \right) \left(1 - U^2 \right) + \frac{(L_3' - L_3 U)^2}{2I_0} \right\}$$

 \implies Kurvendiskussion \implies u oszilliert zwischen $u_{min},u_{max}\implies \theta$ oszilliert zwischen $\theta_{min},\theta_{max}$. Währenddessen schreitet φ unregelmäßig voran:

$$\dot{\varphi} = \frac{L_3' - L_3 \cos \theta}{I_0 \sin^2 \theta}$$