Générateurs de $\mathrm{SL}_n(\mathbb{K})$ et $\mathrm{GL}_n(\mathbb{K})$:

I Le développement

Le but de ce développement est de montrer que $\mathrm{SL}_n(\mathbb{K})$ est engendré par les transvections et que $\mathrm{GL}_n(\mathbb{K})$ est engendré par les transvections et les dilatations et enfin de donner une application topologique.

Dans tout ce développement, on considère K un corps commutatif quelconque.

Théorème 1 : [Rombaldi, p.688]

Toute matrice $A \in GL_n(\mathbb{K})$ s'écrit sous la forme $A = \prod_{k=1}^r P_k D_n(\lambda) \prod_{j=1}^s Q_j$, où les P_k et Q_j sont des matrices de transvections et $\lambda = \det(A)$.

Preuve:

Montrons par récurrence sur $n \in \mathbb{N}^*$ la propriété :

 \mathcal{H}_n : "Toute matrice $A \in \mathrm{GL}_n(\mathbb{K})$ s'écrit sous la forme donnée".

- Initialisation pour n = 1:

On a directement que $A = D_n(\det(A))$ car A peut être identifié à son déterminant et les deux produits sont vides (r = s = 0).

La propriété est donc bien initialisée.

- Hérédité :

On suppose la propriété vraie pour toute matrice de $\mathrm{GL}_{n-1}(\mathbb{K})$ avec $n-1\geq 1$. Qu'en est-il au rang n?

Soit $A = (a_{i,j})_{1 \le i,j \le n} \in GL_n(\mathbb{K}).$

- Si $a_{1,1} \neq 1$, alors comme A est inversible, C_1 est non nulle et il existe donc un entier $i \in [2; n]$ tel que $a_{i,1} \neq 0$ et on se ramène à $a_{1,1} = 1$ via l'opération élémentaire $L_1 \leftarrow L_1 + \frac{1-a_{1,1}}{a_{i,1}} L_i$.
- Ensuite, pour tout entier $i \in [2; n]$, on effectue l'opération $L_i \leftarrow L_i a_{i,1}L_1$ afin d'annuler le coefficient $a_{i,1}$.

Il existe donc des matrices de transvection $R_1, ..., R_r$ telles que :

$$\prod_{k=1}^{r} R_{k} A = \begin{pmatrix} 1 & \alpha_{1,2} & \cdots & \alpha_{1,n} \\ 0 & \alpha_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \alpha_{n,2} & \cdots & \alpha_{n,n} \end{pmatrix}$$

De la même manière, en multipliant à droite par des matrices de transvections $S_1,...,S_s$ on obtient :

$$\prod_{k=1}^{r} R_k A \prod_{j=1}^{s} S_j = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \beta_{2,2} & \cdots & \beta_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \beta_{n,2} & \cdots & \beta_{n,n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{pmatrix}$$

De plus, étant donné que les transvections ont un déterminant égal à 1, on a $\det(A) = 1 \times \det(B) = \det(B) \neq 0$ et donc $B \in \mathrm{GL}_{n-1}(\mathbb{K})$. Par hypothèse de récurrence, il existe des matrices de transvections $P_1, ..., P_t, Q_1, ..., Q_u \in \mathrm{SL}_{n-1}(\mathbb{K})$ telles que :

$$B = \prod_{k=1}^{t} P_k D_{n-1}(\det(B)) \prod_{j=1}^{u} Q_j$$

Posons alors:

$$T_k = \begin{pmatrix} 1 & 0 \\ 0 & P_k \end{pmatrix}$$
 et $T'_j = \begin{pmatrix} 1 & 0 \\ 0 & Q_j \end{pmatrix}$

Ce sont bien des matrices de transvections et le calcul par bloc montre que l'on a :

$$A = \left(\prod_{k=1}^{r} R_k\right)^{-1} \prod_{k=1}^{t} T_k D_n(\det(A)) \prod_{j=1}^{u} T'_j \left(\prod_{j=1}^{s} S_j\right)^{-1}$$

Et puisque l'inverse d'une matrice de transvection est encore une matrice de transvection, on a le résultat voulu.

La propriété est vraie au rang n, elle est donc héréditaire.

On a ainsi montré par récurrence que toute matrice inversible pouvait s'écrire sous la forme énoncée.

Corollaire 2 : [Rombaldi, p.689]

Les groupes $\mathrm{SL}_n(\mathbb{R})$, $\mathrm{SL}_n(\mathbb{C})$ et $\mathrm{GL}_n(\mathbb{C})$ sont connexes par arcs.

Preuve:

* Soit $A \in \mathrm{SL}_n(\mathbb{K})$ avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

La matrice A s'écrit sous la forme $A = \prod_{k=1}^r R_k$, où les R_k sont des matrices de transvections.

Pour toute matrice de transvection $T=T_{i,j}(\lambda)$, on note $T(t)=T_{i,j}(t\lambda)$ et on définit le chemin :

$$\gamma: \mid [0;1] \longrightarrow \operatorname{SL}_n(\mathbb{K})$$
 $t \longmapsto \prod_{k=1}^r R_k(t)$

On a alors $\gamma(0) = I_n$, $\gamma(1) = A$ et γ est continue car l'application T est continue (on peut le vérifier avec la norme du maximum des coefficients en valeur absolue par exemple). Ainsi, $\mathrm{SL}_n(\mathbb{K})$ est connexe par arcs (car on relie deux points quelconques en passant par I_n).

* Soit $A \in \mathrm{GL}_n(\mathbb{C})$.

La matrice A s'écrit sous la forme $A = \prod_{k=1}^r P_k D_n(\det(A)) \prod_{j=1}^s Q_j$, où les P_k et Q_j sont des matrices de transvections.

Comme \mathbb{C}^* est connexe par arcs, il existe une application continue $\varphi:[0;1] \longrightarrow \mathbb{C}^*$ telle que $\varphi(0) = 1$ et $\varphi(1) = \det(A)$. On définit ainsi le chemin :

$$\gamma: \begin{bmatrix} [0;1] & \longrightarrow & \operatorname{GL}_n(\mathbb{C}) \\ t & \longmapsto & \prod_{k=1}^r P_k(t) D_n(\varphi(t)) \prod_{j=1}^s Q_j(t) \end{bmatrix}$$

On a alors $\gamma(0) = I_n$, $\gamma(1) = A$ et γ est continue car φ et T sont continues. Ainsi, $\mathrm{GL}_n(\mathbb{C})$ est connexe par arcs (pour les mêmes raisons qu'au point précédent).

Corollaire 3: [Rombaldi, p.689]

Le groupe $GL_n(\mathbb{R})$ n'est pas connexe et ses deux composantes connexes sont $GL_n^+(\mathbb{R})$ et $GL_n^-(\mathbb{R})$.

Preuve:

- * Par le même argument que le deuxième point du corollaire précédent on a que $\mathrm{GL}_n^+(\mathbb{R})$ et $\mathrm{GL}_n^-(\mathbb{R})$ sont connexes par arcs.
- * $\mathrm{GL}_n(\mathbb{R})$ n'est pas connexe par arcs car il peut s'écrire comme unique disjointe de $\mathrm{GL}_n^+(\mathbb{R})$ et $\mathrm{GL}_n^-(\mathbb{R})$ (qui sont deux ouvert en tant qu'images réciproques d'ouverts par une application continue).
- * Enfin, on a $\mathrm{GL}_n^+(\mathbb{R})$ et $\mathrm{GL}_n^-(\mathbb{R})$ connexes par arcs et $\mathrm{GL}_n(\mathbb{R}) = \mathrm{GL}_n^-(\mathbb{R}) \sqcup \mathrm{GL}_n^+(\mathbb{R})$, donc $\mathrm{GL}_n^+(\mathbb{R})$ et $\mathrm{GL}_n^-(\mathbb{R})$ sont les deux composantes connexes de $\mathrm{GL}_n(\mathbb{R})$.

II Remarques sur le développement

II.1 Résultat(s) utilisé(s)

Dans ce développement, on a utilisé les propriétés de base des transvections et des dilatations ainsi que le lien avec les opérations élémentaires. On donne ci-dessous quelques rappels à ce sujet en posant E un \mathbb{K} -espace vectoriel de dimension finie n:

Définition 4: Transvection [Rombaldi, p.145]:

On considère φ une forme linéaire non nulle sur E.

On appelle transvection d'hyperplan $\mathrm{Ker}(\varphi)$ toute application linéaire u de E dans E définie par :

$$\forall x \in E, \ u(x) = x + \varphi(x)a, \ a \in \text{Ker}(\varphi)$$

Théorème 5 : [Rombaldi, p.146]

- * Un endomorphisme $u \in \mathcal{L}(E)$ est une transvection si, et seulement si, il existe un hyperplan H de E tel que $u|_{H} = \mathrm{Id}_{H}$ et $\mathrm{Im}(u \mathrm{Id}_{E}) \subseteq H$.
- * Pour tout transvection $\tau_{\varphi,a}$, $\tau_{\varphi,2a}^2$ est une transvection.
- * Une transvection $\tau_{\varphi,a}$ est dans $\mathrm{GL}(E)$, son inverse est la transvection $\tau_{\varphi,-a}$, 1 est l'unique valeur propre de $\tau_{\varphi,a}$ et le sous-espace propre associé est $\mathrm{Ker}(\varphi)$ pour $u \neq \mathrm{Id}_E$.
- * Le conjugué dans GL(E) d'une transvection est une transvection.
- * L'ensemble T(H) des transvections d'hyperplan $H = \mathrm{Ker}(\varphi)$ est un sous-groupe multiplicatif de $\mathrm{GL}(E)$ isomorphe au groupe additif (H, +).
- * Une transvection u admet un polynôme minimal qui est (X-1) lorsque $u=\mathrm{Id}_E$ ou $(X-1)^2$ lorsque $u\neq\mathrm{Id}_E$.

Théorème 6: [Rombaldi, p.147]

Soit $u \in \mathcal{L}(E) \setminus \{ \mathrm{Id}_E \}$.

Les assertions suivantes sont équivalentes :

- *u est une transvection.
- \ast Il existe une base de E dans la quelle la matrice de u est de la forme suivante :

$$T_n = \begin{pmatrix} I_{n-2} & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

- * Il existe une base de E dans laquelle la matrice de u est $T_{i,j}(\lambda) = I_n + \lambda E_{i,j}$ avec $\lambda \in \mathbb{K}^*$ et $1 \le i \ne j \le n$.
- * $\operatorname{rg}(u \operatorname{Id}_E) = 1$ et le polynôme caractéristique de u est $(X 1)^n$.

Corollaire 7: [Rombaldi, p.148]

- $\overline{*$ Pour $\mathbb K$ infini, toute transvection différente de Id_E s'écrit comme produit de deux matrices diagonalisables inversibles.
- * Si $n \geq 3,$ alors toutes les transvections différentes de Id_E sont conjugués dans $\mathrm{SL}(E).$

Définition 8 : Dilatation [Rombaldi, p.150] :

On considère φ une forme linéaire non nulle sur E.

On appelle dilatation d'hyperplan $\operatorname{Ker}(\varphi)$ toute application linéaire $u \in \mathcal{L}(E)$ définie par :

$$\forall x \in E, \ u(x) = x + \varphi(x)a, \ a \in E \setminus \text{Ker}(\varphi)$$

Théorème 9 : [Rombaldi, p.150]

Une dilatation $\delta_{\varphi,a}$ est dans GL(E) si, et seulement si, $\lambda = 1 + \varphi(a) \neq 0$.

Théorème 10 : [Rombaldi, p.150]

- * Un automorphisme $u \in \operatorname{GL}(E)$ est une dilatation si, et seulement si, il existe un hyperplan H tel que $u|_H = \operatorname{Id}_H$ et u diagonalisable de valeurs propres 1 et $\lambda \in \mathbb{K} \setminus \{0; 1\}$ (donc $E = \operatorname{Ker}(u \operatorname{Id}_E) \oplus \operatorname{Ker}(u \lambda \operatorname{Id}_E)$).
- * Le conjugué dans GL(E) d'une dilatation est une dilatation de même rapport.
- * Une dilatation u de rapport λ admet un polynôme minimal qui est $(X-1)(X-\lambda)$.
- * L'inverse d'une dilatation de rapport λ est une dilatation de rapport $\frac{1}{\lambda}$.

Théorème 11 : [Rombaldi, p.152]

Soit $u \in GL(E)$.

Les assertions suivantes sont équivalentes :

- * u est une dilatation de rapport λ .
- * Il existe une base de E dans laquelle la matrice de u est de la forme $I_n + (\lambda 1)E_{n,n}$ avec $\lambda \in \mathbb{K} \setminus \{0; 1\}$.

II.2 Pour aller plus loin...

Nous avons montré dans ce développement que $\mathrm{SL}_n(\mathbb{K})$ est engendré par les transvections et que $\mathrm{GL}_n(\mathbb{K})$ est engendré par les transvections et les dilatations, mais cette décomposition n'est pas unique!

On peut également montrer que si \mathbb{K} a au moins trois éléments, alors toute matrice $A \in \mathrm{GL}_n(\mathbb{K})$ peut s'écrire comme produit de matrices de dilatation.

On peut même montrer le résultat suivant :

Corollaire 12: [Francinou, p.343]

Le groupe $GL_n(\mathbb{R})$ est engendré par les matrices diagonalisables inversibles.

En effet, il suffit d'écrire une matrice de transvection comme produit de (deux) matrices diagonalisables inversibles et on a le résultat.

On notera également qu'il existe d'autres manières de montrer que les groupes $\mathrm{SL}_n(\mathbb{R})$, $\mathrm{SL}_n(\mathbb{C})$ et $\mathrm{GL}_n(\mathbb{C})$ sont connexes par arcs, que le groupe $\mathrm{GL}_n(\mathbb{R})$ n'est pas connexe et que ses deux composantes connexes sont $\mathrm{GL}_n^+(\mathbb{R})$ et $\mathrm{GL}_n^-(\mathbb{R})$ (on peut par exemple considérer d'autres chemins).

II.3 Recasages

Recasages: 106 - 108 - 154 - 162 - 204.

III Bibliographie

- Jean-Étienne Rombaldi, Mathématiques pour l'agrégation, Algèbre et Géométrie.
- Serge Francinou, Exercices de mathématiques, Oraux X-ENS, Algèbre 2