In []: import pandas as pd import numpy as np

In []: df = pd.read_csv('titanic.csv')
 df

Out[]: Passengerld Survived Pclass Name Age SibSp Parch **Ticket** Fare Cabin Embarked Braund, Mr. Owen 0 3 0 1 22 0 1 0 A/5 21171 7.2500 NaN S male Harris Cumings, Mrs. John 2 1 1 0 PC 17599 71.2833 C85 С 1 Bradley (Florence female 38.0 1 Briggs Th... Heikkinen, Miss. STON/O2. 2 3 1 3 female 26.0 0 0 7.9250 NaN S Laina 3101282 Futrelle, Mrs. 3 1 1 Jacques Heath (Lily female 35.0 1 0 113803 53.1000 C123 S May Peel) Allen, Mr. William 5 0 3 4 0 0 8.0500 S male 35.0 373450 NaN Henry Montvila, Rev. 886 887 0 2 male 27.0 0 0 211536 13.0000 NaN S Juozas Graham, Miss. 887 888 0 0 112053 30.0000 B42 S 1 female 19.0 Margaret Edith Johnston, Miss. 888 889 0 3 Catherine Helen NaN 1 2 W./C. 6607 23.4500 NaN S female "Carrie" 889 890 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 С 890 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

891 rows × 12 columns

In []: df.describe()

Out[]:

:		Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In []: df.nunique()

891 Out[]: PassengerId Survived 2 Pclass 3 Name 891 Sex 2 88 Age SibSp 7 7 Parch Ticket 681 Fare 248 Cabin 147 Embarked 3 dtype: int64

Checking for Duplicate rows

In []: df.duplicated().sum()

Out[]: 0

```
In [ ]: df.isna().sum()
Out[]: PassengerId
         0
   Survived
   Pclass
   Name
         0
         0
   Sex
        177
   Age
   SibSp
         0
   Parch
         0
   Ticket
         0
         0
   Fare
   Cabin
        687
   Embarked
         2
   dtype: int64
   Cabin column is dropped because of too many missing values Name and Ticket dropped because it is unique at each column
In [ ]: df2 = df.drop(columns=['Name', 'Ticket', 'Cabin'])
   Dropped 2 rows where embarked is null
In [ ]: df2.dropna(inplace=True, subset=['Embarked'])
In [ ]: data = df2.values
  X = data[:, 2:]
   print(X)
  [[3 'male' 22.0 ... 0 7.25 'S']
  [1 'female' 38.0 ... 0 71.2833 'C']
  [3 'female' 26.0 ... 0 7.925 'S']
  [3 'female' nan ... 2 23.45 'S']
  [1 'male' 26.0 ... 0 30.0 'C']
  [3 'male' 32.0 ... 0 7.75 'Q']]
In [ ]: y = data[:,1]
   print(y)
  01
In [ ]: from sklearn.model selection import train test split
   Splitting the array into test and train sets
In [ ]: X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state=1)
In [ ]: print(X_train.shape)
   print(X_test.shape)
   print(y_train.shape)
   print(y_test.shape)
```

```
(711, 7)
       (178, 7)
       (711,)
       (178,)
In [ ]: print(X_train)
       [[3 'male' nan ... 0 8.05 'S']
        [3 'male' 19.0 ... 0 10.1708 'S']
        [3 'male' nan ... 0 7.75 'Q']
        [3 'male' 26.0 ... 0 14.4542 'C']
        [2 'male' 44.0 ... 0 26.0 'S']
        [3 'male' 21.0 ... 0 8.05 'S']]
In [ ]: print(X_test)
       [[2 'female' 36.0 ... 0 13.0 'S']
        [2 'female' 50.0 ... 1 26.0 'S']
        [3 'male' 48.0 ... 0 7.8542 'S']
        [1 'male' 22.0 ... 0 135.6333 'C']
        [3 'male' 22.0 ... 0 8.05 'S']
        [2 'male' 24.0 ... 0 10.5 'S']]
In [ ]: from sklearn.impute import SimpleImputer
        Imputer to fill null values using mode
In [ ]: imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
        Replacing null values in age with mode
In [ ]: imputer.fit(X_train[:, 2:3])
Out[ ]: ▼
                       SimpleImputer
        SimpleImputer(strategy='most_frequent')
In [ ]: X_train[:, 2:3] = imputer.transform(X_train[:, 2:3])
        print(X_train)
       [[3 'male' 24.0 ... 0 8.05 'S']
        [3 'male' 19.0 ... 0 10.1708 'S']
        [3 'male' 24.0 ... 0 7.75 'Q']
        [3 'male' 26.0 ... 0 14.4542 'C']
        [2 'male' 44.0 ... 0 26.0 'S']
        [3 'male' 21.0 ... 0 8.05 'S']]
In [ ]: X test[:, 2:3] = imputer.transform(X test[:, 2:3])
        print(X_test)
       [[2 'female' 36.0 ... 0 13.0 'S']
        [2 'female' 50.0 ... 1 26.0 'S']
        [3 'male' 48.0 ... 0 7.8542 'S']
        [1 'male' 22.0 ... 0 135.6333 'C']
        [3 'male' 22.0 ... 0 8.05 'S']
        [2 'male' 24.0 ... 0 10.5 'S']]
        Min Max Feature Scaling on columns Age and Fare
In [ ]: from sklearn.preprocessing import MinMaxScaler
        min_max_scaler = MinMaxScaler(feature_range=(0,1))
In [ ]: X_train[:,(2,5)] = min_max_scaler.fit_transform(X_train[:,(2,5)])
        X_{\text{test}}[:,(2,5)] = \min_{\text{max}} \sum_{\text{scaler}} (X_{\text{test}}[:,(2,5)])
In [ ]: print(X_train)
       [[3 'male' 0.2963056044232219 ... 0 0.03060836501901141 'S']
        [3 'male' 0.2334757476752953 ... 0 0.038672243346007606 'S']
        [3 'male' 0.2963056044232219 ... 0 0.029467680608365018 'Q']
        [3 'male' 0.32143754712239253 ... 0 0.05495893536121673 'C']
        [2 'male' 0.5476250314149284 ... 0 0.09885931558935361 'S']
        [3 'male' 0.2586076903744659 ... 0 0.03060836501901141 'S']]
In [ ]: print(X_test)
```

```
[2 'female' 0.6230208595124404 ... 1 0.09885931558935361 'S']
        [3 'male' 0.5978889168132697 ... 0 0.029863878326996197 'S']
        [1 'male' 0.2711736617240512 ... 0 0.515715969581749 'C']
        [3 'male' 0.2711736617240512 ... 0 0.03060836501901141 'S']
        [2 'male' 0.2963056044232219 ... 0 0.039923954372623575 'S']]
In [ ]: from sklearn.compose import ColumnTransformer
        from sklearn.preprocessing import OneHotEncoder
        Encoding Sex and Embarked columns using OneHotEncoder
In [ ]: ct = ColumnTransformer(transformers=[('encode', OneHotEncoder(),[1,-1])], remainder='passthrough')
In [ ]: X_train = ct.fit_transform(X_train)
        X test = ct.transform(X test)
In [ ]: print(X_train)
       [[0.0 \ 1.0 \ 0.0 \ \dots \ 0 \ 0.03060836501901141]
        [0.0 1.0 0.0 ... 0 0 0.038672243346007606]
        [0.0 \ 1.0 \ 0.0 \ \dots \ 0 \ 0.029467680608365018]
        [0.0 \ 1.0 \ 1.0 \ \dots \ 1 \ 0 \ 0.05495893536121673]
        [0.0 1.0 0.0 ... 1 0 0.09885931558935361]
        [0.0 1.0 0.0 ... 0 0 0.03060836501901141]]
In [ ]: print(X_test)
       [[1.0 0.0 0.0 ... 0 0 0.049429657794676805]
        [1.0 \ 0.0 \ 0.0 \ \dots \ 0 \ 1 \ 0.09885931558935361]
        [0.0 1.0 0.0 ... 0 0 0.029863878326996197]
        [0.0 1.0 1.0 ... 0 0 0.515715969581749]
        [0.0\ 1.0\ 0.0\ \dots\ 0\ 0\ 0.03060836501901141]
        [0.0 \ 1.0 \ 0.0 \ \dots \ 0 \ 0 \ 0.039923954372623575]]
In [ ]: df train = pd.DataFrame(X train)
        df_train
Out[]:
                       2
                           3
                                                           9
          0 0.0 1.0 0.0 0.0 1.0 3 0.296306 0
                                                  0 0.030608
          1 0.0 1.0 0.0 0.0 1.0 3 0.233476
                                              0
                                                  0 0.038672
          2 0.0 1.0 0.0 1.0 0.0 3 0.296306 0
                                                  0 0.029468
          3 0.0 1.0 0.0 0.0 1.0
                                  3 0.296306
                                                  0 0.030608
          4 0.0 1.0 1.0 0.0 0.0 1 0.723549
                                             0
        706 1.0 0.0 1.0 0.0 0.0 1 0.472229 0 0 0.865114
        707 0.0 1.0 0.0 1.0 0.0 3 0.296306
                                                    0.091825
         708 0.0 1.0 1.0 0.0 0.0 3 0.321438
            0.0 1.0 0.0 0.0 1.0 2 0.547625
        710 0.0 1.0 0.0 0.0 1.0 3 0.258608 0 0 0.030608
        711 rows × 10 columns
In [ ]: df_test = pd.DataFrame(X_test)
        df_test
```

[[2 'female' 0.4470972606182458 ... 0 0.049429657794676805 'S']

Out[]:		0	1	2	3	4	5	6	7	8	9
	0	1.0	0.0	0.0	0.0	1.0	2	0.447097	0	0	0.04943
	1	1.0	0.0	0.0	0.0	1.0	2	0.623021	0	1	0.098859
	2	0.0	1.0	0.0	0.0	1.0	3	0.597889	0	0	0.029864
	3	1.0	0.0	0.0	1.0	0.0	3	0.195778	0	0	0.029468
	4	0.0	1.0	0.0	0.0	1.0	3	0.170646	5	2	0.178327
	173	0.0	1.0	0.0	0.0	1.0	3	0.296306	0	0	0.029642
	174	0.0	1.0	1.0	0.0	0.0	3	0.132948	0	0	0.071435
	175	0.0	1.0	1.0	0.0	0.0	1	0.271174	0	0	0.515716
	176	0.0	1.0	0.0	0.0	1.0	3	0.271174	0	0	0.030608
	177	0.0	1.0	0.0	0.0	1.0	2	0.296306	0	0	0.039924

178 rows × 10 columns