LAB 7 notebook

Jiajun, Guan

a). Comments on the storing and moving text design:

For the 16 bit CORDIC computer, the design is used to calculate the cosine and sine value of a given value. It will take as input a 16-bit signed binary fixed point number, corresponding to an angle in the range 0 to $\pi/2$. There are two methods available. The first method is calculated in parallel. It require at least 16 full adders at the same time, as well as a large shift register which do not map well into an FPGA. We used the bit-serial design with 3 sets of shift registers, serial adder-subtractor and two input multiplexers. X and y are coupled wire 13 input multiplexers to the serial adder-subtractor in the other register datapath. Z is input to the third serial adder-subtractor along with the corresponding value in TAN_ROM. In my program, the module cordic will be used to calculate the cosine and sine value given x0,y0,z0 in serial. Each time the cordic module will return a new value of x, and y, when the button is pressed, the new x and new y will be sent as the new input.

The top file will be in charge of the display and control. In my file, there are totally four states. The state diagram is shown as followed:

For the state S0, it is the initial state and do nothing. When pushed button is pressed, it entered state S1. For the S1, it will pass the initial value to the cordic module, in which x = 26dd, y = 0, z is read from the 16 switches. After passing the value, the state machine enter S2 until the user release the button. In S2, cordic module will execute the calculation and return a new value of the x, y,z. It will be passed to the module again when enter S3 by pressing the button. When release the button, the state will enter S2 again, and the iteration number increase by 1. If there is more than 14 iteration, the state will finally enter S0 and start from beginning.

B) RTL file and testbench file 1.top file

```
module lab7_top(
        input clk,
        input pushed,
        input [15:0] initial z,
        output [6:0] seven_segl,
        output [3:0] Activate
    );
    reg [15:0] x,y,z;
    wire [15:0] new_x,new_y,new_z;
    reg [3:0] iteration = 4'b00000;
    reg flag = 1'bl;
    parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;
    reg [2:0] state = 2'b00;
    reg [2:0] next state = 2'b00;
    wire coutl;
    wire cout2;
    wire [3:0] Activate display;
    wire [6:0] seven_display;
    clock divider CDIV1 (cout1, clk, 30);
    clock divider CDIV2 (cout2, clk, 10);
    led segment LED7 (cout2, new x[15:12], new x[11:8], new x[7:4], new x[3:0], seven display, Activate display);
    cordic COD(clk,new_x,new_y,new_z,x,y,z,iteration,~flag);
```

```
always @ (posedge coutl)
begin
       case (state)
       S0:begin
      end
    S1: begin
           if (flag==1)
              x <= 16'h26dd;
               y <= 0;
               z <= initial_z;</pre>
               iteration<=0;
               flag <= 0;
      end
      S2: begin
          flag <= 1;
      end
      S3: begin
           if (flag==1) begin
               x <= new_x;
              y <= new_y;
               z <= new_z;
               iteration <= iteration+1;
               flag <= 0;
           end
      end
    endcase
      if (iteration > 13)
       begin
           iteration <= 0;
           state <= S0;
      end
       else
          state <= next_state;
```

```
assign seven_segl = seven_display;
assign Activate = Activate_display;
```

endmodule

2. The cordic module file:

```
'timescale lns/lps
module cordic(clock,new_x,new_y,new_z,x0,y0,z0,iteration,start);
   input clock;
   input signed [15:0] x0, y0;
   input signed [15:0] z0;
   output signed [15:0] new x, new y, new z;
   input [3:0] iteration;
   input start;
   reg [3:0] i = 4'b00000;
   reg signed [15:0] x,y,z;
   reg [15:0] tan rom [15:0];
   reg addflag = 1;
   initial begin
   tan rom[0] = 16'b0011001001000011;
   tan_rom[1] = 16'b0001110110101100;
   tan rom[2] = 16'b00001111110101101;
   tan_rom[3] = 16'b000000111111110101;
   tan rom[4] = 16'b0000000111111111110;
   tan rom[5] = 16'b000000001111111111;
    tan rom[6] = 16'b000000000111111111;
   tan rom[7] = 16'b00000000001111111;
   tan rom[8] = 16'b00000000000111111;
   tan_rom[9] = 16'b00000000000011111;
   tan rom[10] = 16'b00000000000001111;
   tan rom[11] = 16'b00000000000000111;
   tan rom[12] = 16'b00000000000000011;
   tan rom[13] = 16'b000000000000000001;
   tan rom[14] = 16'b00000000000000000;
   tan rom[15] = 16'b00000000000000000;
   end
   wire z signed;
   reg cx = 0;
   reg cy = 0;
   reg cz = 0;
   assign z signed = z0[15];
```

```
always @ (posedge clock)
                        if (start==1) begin
                                                   if (addflag == 1)
                                                                             cx <= 0;
                                                                            cy <= 0;
                                                                            cz <= 0;
                                                                            addflag <= 0;end
                         else if (start == 0)begin
                                                   i <= 0;
                                                   addflag <= 1; end
                        if (addflag==0) begin
                                                    if (i+iteration <16) begin
                                                                            x[i] <= x0[i]^y0[i+iteration]^cx;</pre>
                                                                             y[i] <= y0[i]^x0[i+iteration]^cy;
                                                                            z[i] <= z0[i]^(tan_rom[iteration][i])^cz;</pre>
                                                                         cx \le (z_{signed==0})? ((^x0[i])&y0[i+iteration])|(cx&y0[i+iteration])|(cx&(^x0[i])):
                    (x0[i]&y0[i+iteration])|(cx&y0[i+iteration])|(cx&x0[i]);
                                                                        cy \le (z_signed==0)?
                    (y0[i]&x0[i+iteration])|(cy&x0[i+iteration])|(cy&y0[i]):((~y0[i])&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i+iteration])|(cy&x0[i
                    on])|(cy&(~y0[i]));
                                                                     cz <= (z\_signed == 0)?cz & (tan\_rom[iteration][i])) | (cz & (\sim z0[i])): (z0[i] & (tan\_rom[iteration][i]) | (cz & (\sim z0[i])) |
                  )|(cz&(tan_rom[iteration][i]))|(cz&z0[i]); end
                                                        else begin
                                                                                   x[i] <= x0[i]^y0[15]^cx;
                                                                                    y[i] \le y0[i]^x0[15]^cy;
                                                                                    z[i] <= z0[i]^(tan_rom[iteration][15])^cz;</pre>
                       cx \le (z \text{ signed} = 0)? ((x0[i])&y0[15])|(cx&y0[15])|(cx&x0[i]):
                    (x0[i]&y0[15])|(cx&y0[15])|(cx&x0[i]);
                       cy \le (z_signed==0)?
                    (y0[i]&x0[15])|(cy&x0[15])|(cy&y0[i]):(~y0[i]&x0[15])|(cy&x0[15])|(cy&~y0[i]);
                   cz <= (z\_signed == 0)?(\sim z0[i]\&(tan\_rom[iteration][15])) | (cz\&(tan\_rom[iteration][15])) | (cz\&\sim z0[i]):(cz\&(tan\_rom[iteration][15])) | (cz\&\sim z0[i]):(cz\&(tan\_rom[iteration][15])) | (cz\&\sim z0[i]):(cz\&(tan\_rom[iteration][15])) | (cz\&(tan\_rom[iteration][15])) | (cz\&(tan\_rom[iteration][15]) | (cz\&(tan\_rom[iteration][15])) | (cz\&(tan\_rom[iteration][15]) | (cz\&(tan\_rom[ite
                    z0[i]&(tan_rom[iteration][15]))|(cz&(tan_rom[iteration][15]))|(cz&z0[i]);
```

```
if (i<15) begin
                  i \le i + 1; end
            else begin
                  i <= 15; end
       end
   end
   assign new x = x;
   assign new y = y;
   assign new_z = z;
endmodule
3. Simulation testbench file
module lab7_test;
reg clk;
reg pushed;
reg [15:0] intial_z;
wire [6:0] seven_segl;
wire [3:0] Activate;
```

initial begin clk = 0; forever #0.3 clk = ~clk;

```
initial begin
   intial_z = 16'h0000;
   pushed = 0;
   pushed = #300 1;
   pushed = #200 0;

   pushed = #300 1;
   pushed = #200 0;

   pushed = #300 1;
   pushed = #300 1;
   pushed = #200 0;

   pushed = #300 1;
   pushed = #300 1;
   pushed = #300 1;
   pushed = #300 0;
```

pushed = #300 1; pushed = #200 0;

```
pushed = #300 1;
pushed = #200 0;

pushed = #300 1;
pushed = #200 0;

pushed = #300 1;
pushed = #200 0;

pushed = #200 0;

pushed = #300 1;
pushed = #200 0;

pushed = #200 0;

pushed = #200 0;

pushed = #300 1;
pushed = #200 0;
end

lab7_top LAB7(clk,pushed,intial_z,seven_segl,Activate);

endmodule
```

c) Constraint file

```
set property IOSTANDARD LVCMOS33 [get ports clk]
create clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get ports clk]
set property PACKAGE PIN V17 [get ports {initial z[0]}]
set property IOSTANDARD LVCMOS33 [get ports {initial_z[0]}]
set property PACKAGE_PIN V16 [get ports {initial_z[1]}]
set property IOSTANDARD LVCMOS33 [get ports {initial z[1]}]
set property PACKAGE_PIN W16 [get ports {initial_z[2]}]
set property IOSTANDARD LVCMOS33 [get ports {initial z[2]}]
set property PACKAGE PIN W17 [get ports {initial z[3]}]
set property IOSTANDARD LVCMOS33 [get ports {initial z[3]}]
set property PACKAGE PIN W15 [get ports {initial z[4]}]
set property IOSTANDARD LVCMOS33 [get ports {initial z[4]}]
set property PACKAGE_PIN V15 [get ports {initial_z[5]}]
set property IOSTANDARD LVCMOS33 [get_ports {initial_z[5]}]
set property PACKAGE PIN W14 [get ports {initial z[6]}]
set property IOSTANDARD LVCMOS33 [get ports {initial_z[6]}]
set property PACKAGE_PIN W13 [get ports {initial_z[7]}]
set property IOSTANDARD LVCMOS33 [get ports {initial_z[7]}]
set property PACKAGE PIN V2 [get ports {initial z[8]}]
set property IOSTANDARD LVCMOS33 [get_ports {initial_z[8]}]
set property PACKAGE_PIN T3 [get ports {initial_z[9]}]
set property IOSTANDARD LVCMOS33 [get ports {initial_z[9]}]
set property PACKAGE PIN T2 [get ports {initial z[10]}]
set property IOSTANDARD LVCMOS33 [get ports {initial_z[10]}]
set property PACKAGE_PIN R3 [get ports {initial_z[11]}]
set property IOSTANDARD LVCMOS33 [get ports {initial_z[11]}]
set property PACKAGE_PIN W2 [get ports {initial_z[12]}]
set property IOSTANDARD LVCMOS33 [get ports {initial_z[12]}]
set property PACKAGE_PIN Ul [get ports {initial_z[13]}]
set property IOSTANDARD LVCMOS33 [get ports {initial z[13]}]
set property PACKAGE_PIN T1 [get ports {initial_z[14]}]
set property IOSTANDARD LVCMOS33 [get ports {initial z[14]}]
set property PACKAGE PIN R2 [get ports {initial z[15]}]
set property IOSTANDARD LVCMOS33 [get ports {initial_z[15]}]
set property PACKAGE_PIN W7 [get ports {seven_seg1[6]}]
    set property IOSTANDARD LVCMOS33 [get ports {seven seg1[6]}]
set property PACKAGE PIN W6 [get ports {seven seg1[5]}]
    set property IOSTANDARD LVCMOS33 [get ports {seven_seg1[5]}]
set property PACKAGE_PIN U8 [get ports {seven_seg1[4]}]
    set property IOSTANDARD LVCMOS33 [get ports {seven_seg1[4]}]
set property PACKAGE_PIN V8 [get ports {seven_seg1[3]}]
    set property IOSTANDARD LVCMOS33 [get ports {seven_seg1[3]}]
set property PACKAGE_PIN U5 [get ports {seven_seg1[2]}]
    set property IOSTANDARD LVCMOS33 [get ports {seven_seg1[2]}]
set property PACKAGE PIN V5 [get ports {seven seg1[1]}]
    set property IOSTANDARD LVCMOS33 [get ports {seven_seg1[1]}]
set property PACKAGE_PIN U7 [get ports {seven_seg1[0]}]
    set property IOSTANDARD LVCMOS33 [get ports {seven seg1[0]}]
```

```
set_property IOSTANDARD LVCMOS33 [get_ports {Activate[0]}]
set_property PACKAGE_PIN U4 [get_ports {Activate[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {Activate[1]}]
set_property PACKAGE_PIN V4 [get_ports {Activate[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {Activate[2]}]
set_property PACKAGE_PIN W4 [get_ports {Activate[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {Activate[3]}]

#Buttons
set_property PACKAGE_PIN U18 [get_ports pushed]
set_property IOSTANDARD LVCMOS33 [get_ports pushed]

create_clock -period 20.000 -name clk -waveform {0.000 10.000}
set_input_delay -clock [get_clocks clk] 0.000 [get_ports -filter { NAME =~ "*" && DIRECTION == "IN" }]
set_output_delay -clock [get_clocks clk] 0.000 [get_ports -filter { NAME =~ "*" && DIRECTION == "OUT" }]
```

D)

1.Schematic

2. Power report

+	+		-+
Total On-Chip Power (W)	1	0.103	1
Dynamic (W)	1	0.032	1
Device Static (W)	1	0.072	1
Effective TJA (C/W)	1	5.0	1
Max Ambient (C)	J	84.5	Ţ
Junction Temperature (C)	1	25.5	1
Confidence Level	1	Low	1
Setting File	1		1
Simulation Activity File	1	1000	1
Design Nets Matched	1	NA	1
ŧ	+		+

3. Utilization report

1.1 Summary of Registers by Type

Asynchronous	Synchronous	Clock Enable	1	Total	
	- 1		1	0	
Set	- 1	_ 1	1	0	
Reset	- J	_ 1	J.	0	
2.2	Set	_ 1	1	0	
_	Reset	_ 1	1	0	
_	- 1	Yes	1	0	
Set	- 1	Yes	1	0	
Reset	- 1	Yes	1	0	
5 5	Set	Yes	1	13	
1 -	Reset	Yes	Ĩ	360	

2. Memory

2000

ĺ	Site Type	T					Available	-	
	Block RAM Tile		0	1	0		50	F	0.00
	RAMB36/FIFO*	1	0	1	0	1	50	1	0.00
	RAMB18	1	0	1	0	1	100	1	0.00

* Note: Each Block RAM Tile only has one FIFO logic available a

3. DSP

1	Site	Type	1	Used	1	Fixed	1	Available	1	Util%	1
+	DSPs		1	0	1	0	1	90	1	0.00	1

5. Clocking

+		4		4		-+		-+		- 4
1	Site Type	1	Used	1	Fixed	1	Available			1
+	BUFGCTRL	+	2	1	0	1	32	1	6.25	1
I	BUFIO	1	0	1	0	1	20	I	0.00	1
1	MMCME2_ADV	1	0	1	0	1	5	1	0.00	1
1	PLLE2_ADV	1	0	1	0	1	5	1	0.00	1
١	BUFMRCE	1	0	1	0	1	10	1	0.00	1
1	BUFHCE	1	0	1	0	1	72	1	0.00	1
1	BUFR	1	0	1	0	1	20	1	0.00	1
								- 1		- 1

| Design Timing Summary

1 -----

WNS (ns)	TNS (ns)	TNS Failing Endpoints	TNS Total Endpoints	WHS (ns)	THS (ns)	THS Failing Endpoints
-2.701	-18.318	7	778	0.131	0.000	0

THS Failing Endpoints	THS Total Endpoints	WPWS (ns)	TPWS (ns)	TPWS Failing Endpoints	TPWS Total Endpoints
0	778	4.500	0.000	0	317

```
Max Delay Paths
                    3.78lns (required time - arrival time)
Slack (MET) :
 Source:
                       CDIV1/count1_reg[1]/C
                          (rising edge-triggered cell FDRE clocked by sys_clk_pin {rise@0.000ns fall@5.000ns period=10.000ns})
                       CDIV1/count3_reg[20]/R
 Destination:
                   (rising ed
sys_clk_pin
Setur
                          (rising edge-triggered cell FDRE clocked by sys_clk_pin {rise@0.000ns fall@5.000ns period=10.000ns})
 Path Group:
 Path Type:
                       Setup (Max at Slow Process Corner)
                       10.000ns (sys_clk_pin rise@10.000ns - sys_clk_pin rise@0.000ns)
5.712ns (logic 0.952ns (16.660%) route 4.760ns (83.332%))
 Requirement:
  Data Path Delay:
 | 5./12ns (logic 0.5 | Logic Levels: 4 (LUT4=2 LUT5=2) | Clock Path Skew: -0.043ns /DCD - SCT
                        -0.043ns (DCD - SCD + CPR)
   Destination Clock Delay (DCD): 4.764ns = ( 14.764 - 10.000 )
Source Clock Delay (SCD): 5.065ns
   Clock Pessimism Removal (CPR):
                                 0.258ns
   lock Uncertainty: 0.035ns ((TSJ)^2 + TIJ^2)^1/2 + DJ) / 2 + PE

Total System Jitter (TSJ): 0.071ns

Total Input Jitter (TIJ): 0.000ns
 Clock Uncertainty:
   Discrete Jitter (DJ): 0.000ns
Phase Error (PE): 0.000ns
                                              Incr(ns) Path(ns) Netlist Resource(s)
   Location
                      Delay type
                       (clock sys_clk_pin rise edge)
                                                   0.000
                                                            0.000 r
   W5
                                                  0.000
                                                            0.000 r clk (IN)
                       net (fo=0)
                                                                    clk
                       W5
   BUFGCTRL_X0Y0
                                                            3.521 r clk_IBUF_BUFG_inst/0
                                  r CDIVI/count1_reg[1]/C
   SLICE_X47Y68
                       FDRE
                    FDRE (Prop_fdre_C_Q) 0.456 5.521 f CDIV1/count1_reg[1]/Q
   SLICE_X47Y68
                                                0.456
1.098
0.124
0.665
0.124
0.876
0.124
                       net (fo=2, routed)
                                                            6.619 CDIV1/count1_reg[1]
                                                           6.743 r CDIV1/d_i_24/0
   SLICE_X45Y71
                       LUT4 (Prop_lut4_I0_0)
                       net (fo=1, routed)
                                                           7.408 CDIV1/d_i_24_n_0
                                                           7.532 r CDIV1/d i 14/0
   SLICE X45Y71
                       LUT5 (Prop_lut5_I4_0)
                                                          8.408 CDIV1/d_i_14_n_0
8.532 f CDIV1/d_i_5/0
                       net (fo=1, routed)
   SLICE_X44Y71
                       LUT4 (Prop_lut4_I0_0)
                              (clock sys_clk_pin rise edge)
                                                               10.000 10.000 r
                                                                0.000 10.000 r clk (IN)
   W5
                                                               0.000 10.000 clk
                             net (fo=0)
                                                               1.388 11.388 r clk_IBUF_inst/0
   W5
                             IBUF (Prop_ibuf_I_0)
                                                         1.862 13.250 clk_IBUF
0.091 13.341 r clk_IBUF_BUFG_inst/C
1.423 14.764 CDIV1/clk_IBUF_BUFG
                             net (fo=1, routed)
   BUFGCTRL X0Y0
                             BUFG (Prop bufg I 0)
                                                                            13.341 r clk IBUF BUFG inst/0
                             net (fo=316, routed)
   SLICE_X41Y72
                            FDRE
                                                                                    r CDIV1/count3_reg[20]/C
                            clock pessimism
                                                                0.258 15.022
                                                           -0.035 14.987
                            clock uncertainty
   SLICE_X41Y72
                            FDRE (Setup_fdre_C_R)
                                                              -0.429 14.558
                                                                                         CDIV1/count3_reg[20]
                                                                            14.558
                            required time
                             arrival time
                                                                              3.781
                              slack
```

E) Simulation waveform

26dd 3a4b 3f26 3fcl 3ff2 3ff9 3ffe 3fff 0000 cdbd eb69 fb16 030b ff0d 010c 000d ff8e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5,000 n	_		4,000 ns	5	3,500 ns	5	3,000 ns		2,500 ns	s	2,000 ns	ıs	1,500 ns	ıs	1,000 ns		
Color Colo																		
26dd																		
26dd																		
0000											#10							0 0
0000	2444		V	066-		0.640	V	2662	-	06-1		2426		0 - 41-			2044	
	X 0035	Name of the last	\sim		$= \leftarrow$	The state of the s	\sim		\sim		\rightarrow		-{>	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the	$\overline{}$		χ χ	0000
0	ffcd	ff8e	χ	000d	$\equiv \chi \equiv$	010c	χ̈́	ff0d	χ	030Ъ		fb16		eb69		dbd	χ̈́	0000
	9	8	X	7	X	6	X	5	X	4	X	3	X	2	X	1	X	0
2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	3 2	(2)	3	2	Х 3	2	(3	2	3	2	3	2	Х 3	2	3	2	3	2
	3 2	(2 X	(3)	2	X 3	2	X 3	2	Х 3	2	Х 3	2	Х 3	2	Х 3	2	3	2

The second line represent the push bottom, and from top to button the hexadecimal number represent the value of x,y,z. In the test case, the intial z is 0, and the x value of each step is 0x26dd,0x3a4b,0x3f26,0x3fc1,0x3ff2,0x3ff9,0x3ffe,0x3fff in 9 iterations. The result totally satisfy the expection(including y and z).

When the initial z is 0x6487 (corresponding to 90 degree)

Finally we have $\cos z = 0x0003$, $\sin z = 0x3$ fff. This is highly closed to the accurate result $\cos 90 = 0$, $\sin 90 = 1$. The waveform demonstrate the program successfully.