Assignment 2

Selection Perturbative Hyper-Heuristics for Aircraft Landing

Quinton Weenink, 13176545¹

¹Department of Computer Science – University of Pretoria Pretoria, South Africa

1. Initial solution creation

Initial solutions are created randomly and are immediately thrown out if invalid. Landing times were randomly selected within the earliest and latest times. After all the planes had a landing time the solution was verified. If the separation time between the plane and the corresponding plane was not met the generated solution was thrown out and a new solution was again attempted.

2. Low-level perturbative heuristics

2.1. Shift up

This low level heuristic sorts the planes in the order that they are currently to land in. In order the heuristic attempts to shift the planes earlier. If a plane can not be moved the next plane in the sorted list is considered if however it can be moved one plane is moved and the low-level heuristic ends. If no plane can be found to be moved up the heuristic will do nothing. The heuristic sorted the solutions in two ways worst to best and best to worst. Each of these were considered separate heuristics.

t:	1	2	3	4	5	6	7	8
before:		x_1					x_2	
after:		x_1			x_2			

2.2. Shift down

Much like the shift up low-level heuristic above, the shift down heuristic shifts planes in there time if possible reducing the time between landings. The shift down heuristic moves planes later in time attempting to reduce the time between planes as far as possible. This heuristic does not change the order of planes just the time at which they land. Again, two different types of sorted lists were used.

t:	1	2	3	4	5	6	7	8
before:		x_1					x_2	
after:				x_1			x_2	

2.3. Move worst to target

The low-level heuristic attempts to move a plane that is least fit to its preferred target landing time. If it fails the next plane in the list of planes is considered. If no plane is found to be able to be moved to its target time or is already at its target landing time the heuristic does nothing.

t:	1	2	3	4	5	6	7	8
before:		x_1				t		
after:						x_1		

2.4. Move best to target

Rather than attempting to move the worst solution to its target solution, as proposed above, this heuristic attempts to move the best solution to its target. It will not consider a plane that is already at the target landing time as a move. Again, if no plane is found to be able to move to its target landing time then the heuristic will do nothing.

t:	1	2	3	4	5	6	7	8
before:		x_1				t		
after:						x_1		

2.5. Swap

This heuristic attempts to swap two planes landing times based on an organized list of planes. One variant uses a list sorted from worst to best the other from best to worst. The heuristic attempts to swap each plane with the next in the list. If the solution is invalid the next plane in the list is attempted.

t:	1	2	3	4	5	6	7	8
before:		x_1				x_2		
after:		x_2				x_1		

3. Genetic algorithm hyper-heuristic

3.1. Population creation

The population is created as a chromosome list of low level heuristics that will be applied in order to the initially randomly generated solution. The chromosomes can be any length from 20 to 30 heuristics in length and are not restricted from growing.

3.2. Chromosome operators

The hyper heuristic genetic algorithm used in this study makes use of genetic operators in order to manipulate the existing population. Two operators were used, namely, crossover at a rate of 30% and mutation at a rate of 50%. These operators only changed which heuristics were applied to the solution and did not mutate the solution itself. The remaining 20% was used as the reproduction rate, where nothing was done chromosome and candidates were just placed into the next generation.

3.3. Selection

Tournament selection was used to determine which individuals were the worst or best and which individuals the operators will be performed on. A tournament size of 3 was used throughout this research to reduce selective pressure.

The below function describes the fitness function that was used by both the single and multi point search algorithms.

$$f_{ALS} = minimize \sum_{i=1}^{P} (g_i \alpha_i + h_i \beta_i)$$
 (1)

4. Experimental setup

An initial solution was generated and remained constant for that sample. The next sample a different starting solution was generated and the algorithm started over again with a new population.

For comparison random single-point search algorithms as well as a standard genetic algorithm was include in the results. The genetic algorithm directly manipulated the solution space by changing the values of the landing time with crossover and mutation techniques.

Each algorithm was run for 100 iterations/generations. A population size of 30 was used for both the hyper-heuristic genetic algorithm as well as the standard genetic algorithm.

Table 1. Problems used to test the selective pertubative hyper-heuristic.

Problem	File	P
P_1	airland1	10
P_2	airland2	15
P_3	airland3	20
P_4	airland4	20
P_5	airland5	20

5. Results

Table 2 indicates that a multi-point search is almost always better than a random heuristic selection hyper-heuristic. One can also observe that for some problems the hyper-heuristic performs suitably and often gets the tresult at a much faster rate.

In problem P_3 the multi-point hyper heuristic can even be seen to outperform the standard genetic algorithm.

Without the ability to change previous heuristics in the solutions the single point random hyper-heuristics are not able to outperform and of the other algorithms. This speaks true to the benefit of multi-point searches but does not mean that a more informed single-point search couldn't do better.

Table 2. P_{1-5} after 100 generations. Means and standard deviations are reported over 30 samples.

		Algoritl	nm	F	Performance	
	Туре	Algorithm	Heuristic Selection	mean	std	min
	hyper heuristic	random	accept all moves	25702.000000	6791.333890	8240.0
		random	improving moves	24824.666667	6048.198483	14780.0
P_1		random	equal or improving moves	24164.000000	4521.671962	17640.0
		genetic	hyper heuristic	10173.333333	4119.201649	4660.0
	standard heuristic	genetic		7428.000000	1497.037964	4280.0
	hyper heuristic	random	accept all moves	39964.000000	11948.348170	20170.0
		random	improving moves	35636.000000	8896.806768	23750.0
P_2		random	equal or improving moves	32386.000000	8342.353625	16880.0
		genetic	hyper heuristic	16870.666667	6366.444813	6260.0
	standard heuristic	genetic		15302.000000	3441.449695	9180.0
	hyper heuristic	random	accept all moves	45847.333333	6945.592815	33880.0
		random	improving moves	38452.666667	12605.453564	22210.0
P_3		random	equal or improving moves	32392.000000	5504.618909	22290.0
		genetic	hyper heuristic	19162.000000	7617.512455	5200.0
	standard heuristic	genetic		21955.333333	4046.571992	15120.0
	hyper heuristic	random	accept all moves	65648.0	7636.684446	52950.0
		random	improving moves	64280.0	12241.595757	43920.0
P_4		random	equal or improving moves	66854.0	10398.229849	44160.0
		genetic	hyper heuristic	53402.0	6752.316343	43250.0
	standard heuristic	genetic		31278.0	3707.846095	24980.0
	hyper heuristic	random	accept all moves	73402.666667	13402.433345	45140.0
		random	improving moves	60447.333333	10544.217035	39170.0
P_5		random	equal or improving moves	62593.333333	9824.264971	41280.0
		genetic	hyper heuristic	54386.000000	3192.363388	49580.0
	standard heuristic	genetic		31503.333333	4555.886546	24320.0

6. Comparison

As can be observed in the figures (1,2,3,4,5) the multi-point algorithm outshines the standard single-point random heuristic selection techniques. And initially outperforms a standard genetic algorithm.

In figure 3 one can observe the benefit and speed of the hyper-heuristic beating the standard genetic algorithm to 100 generations. It should be noted however that given more iterations that standard genetic algorithm would obtain a better performance.

Again the single-point hyper-heuristics fall short but further research should be done on other single-point hyper-heuristics that could potentially outperform the ones examined in this research.

Figure 1. airland1 mean fitness over 30 samples for 100 generations

Figure 2. airland2 mean fitness over 30 samples for 100 generations

Figure 3. airland3 mean fitness over 30 samples for 100 generations

Figure 4. airland4 mean fitness over 30 samples for 100 generations

Figure 5. airland5 mean fitness over 30 samples for 100 generations