Emergence in free and correlated fermions: from impurity models to the bulk

JRF-to-SRF Presentation

August 11, 2022

Abhirup Mukherjee

Supervisor: Dr. Siddhartha Lal

Department of Physical Sciences, IISER Kolkata, Mohanpur

Summary of Work

Summary of Work

Completed Projects

✓ Unveiling the Kondo cloud: Unitary renormalization-group study of the Kondo model Phys. Rev. B 105, 085119, arXiv:2111.10580v3

A. Mukherjee, Abhirup Mukherjee, N. S. Vidhyadhiraja, A. Taraphder, and S. Lal

✓ Frustration shapes multi-channel Kondo physics: A star graph perspective under review at PRB, arXiv:2205.00790 S. Patra, Abhirup Mukherjee, A. Mukherjee, N. S. Vidhyadhiraja, A. Taraphder, S. Lal

Ongoing Projects

- ✓ Metal-insulator transition in an extended Anderson impurity model (manuscript in preparation)
- ✓ Holography and topology of entanglement scaling in free fermions (manuscript in preparation)
- ✓ URG-based auxiliary model approach to correlated systems (ongoing)

Local MIT in an extended Anderson impurity model

Introducing the extended Anderson impurity model

Introducing the extended Anderson impurity model

Standard Anderson impurity model

- no local-moment phase, $A(\omega)$ gapless
- · cannot explain insulating phase of DMFT

Gap in spectral function requires additional physics!

Extended Anderson impurity model

- impurity-bath spin correlation: J
- bath zeroth site local correlation: U_b

Anderson 1961; Anderson 1978; Wilson et al. 1974; Nozieres 1974; Krishna-murthy et al. 1980; Andrei 1980; Tsvelick et al. 1983; Hewson 1993; Costi et al. 1990; Costi 2000; Kuramoto et al. 1987; Cox et al. 1988; Metzner et al. 1989; Georges et al. 1992; Parcollet et al. 2004; Maier et al. 2005; Kotliar et al. 2006; Ohashi et al. 2008.

Phase Diagram & Ground-States

Phase Diagram & Nature of Ground-States

Local MIT in an extended Anderson impurity model

- Competition between J and U_b leads to phase transition from screened singlet phase at $|U_b| \le 4J$ to unscreened local moment phase at $|U_b| > 4J$.
- Impurity spectral function becomes gapped beyond the critical point.
- Decoupling the impurity model leads to an effective model with the zeroth site as the correlated impurity, demonstrating the symmetry between the impurity and zeroth site.
- Geometric entanglement and mutual information track the transition by vanishing beyond the critical point.
- Subdominant pairing tendencies are observed near the quantum critical point.

RG Phase Diagram

RG equations reveal critical point where J, V become irrelevant

- 1. orange phase: J is relevant: strong-coupling
- 2. blue phase: J is irrelevant: local moment
- 3. yellow phase: spin+charge liquid
- 4. gray phase: all couplings irrelevant

Presence of a phase transition

 $singlet \longrightarrow spin+charge liquid \longrightarrow local moment$

impurity spectral function gaps out

$$r = -U_b/J$$

$$|SS\rangle = |\uparrow, \downarrow\rangle - |\downarrow, \uparrow\rangle$$

$$|CT\rangle = |2, 0\rangle + |0, 2\rangle$$

Bath spectral function: towards self-consistency

• Decoupling the impurity site leads to an Anderson impurity model

$$H_{0+\text{rest}} = \underbrace{-\left(U_0 + U_b\right) \left(\hat{n}_{0\uparrow} - \hat{n}_{0\downarrow}\right)^2}_{\text{new correlated impurity}} \underbrace{-t\sum_{\substack{j \in \text{n.n. of } 0, \\ \sigma}} \left(c_{0\sigma}^{\dagger}c_{j\sigma} + \text{h.c.}\right)}_{\text{hopping between new impurity \& new bath}} \underbrace{-t\sum_{\langle i,j\rangle} \left(c_{i\sigma}^{\dagger}c_{j\sigma} + \text{h.c.}\right)}_{\text{K.E. of new bath}}$$

- correlated, dominant spin-flip processes lead to repulsive $U_{\text{eff}} = U_0 + U_b \sim J^*/8$
- ullet J symmetrises the two sites, leading to similar spectral functions \longrightarrow essence of self-consistency

Entanglement as a probe for the transition

Geometric entanglement: $\varepsilon(\psi_1, \psi_2) = 1 - |\langle \psi_1 | \psi_2 \rangle|^2$

 $\longrightarrow \sqrt{1-\epsilon_{\rm SS}}\sqrt{1-\epsilon_{\rm CT}}$ is maximised, then vanishes

Mutual information between impurity and cloud vanishes

Presence of subdominant pair fluctuations

- pairing tendencies observed near the quantum critical point
- · might lead to superconductivity with doping
- seen in cuprates, heavy-fermions materials, pnictides, etc

Entanglement scaling in free fermions: holography & topology

Creating subsystems

Free Dirac fermions on torus: $k_x^n = \frac{2\pi}{L_x}n$, $n \in \mathbb{Z}$; define sparsity = $\Delta n = 1$

Simplest choice: the entire set

sparsity = 1
$$\longrightarrow$$
 $n \in \{-N, -(N-1), -(N-2), ..., -1, 0, 1, ..., N-2, N-1, N\}$

Coarser choices: increase sparsity

sparsity = 2
$$\longrightarrow$$
 $n \in \{-N, -(N-2), -(N-4), ..., -2, 0, 2, ..., N-4, N-2, N\}$

sparsity =
$$4 \longrightarrow n \in \{-N, -(N-4), -(N-8), ..., -4, 0, 4, ..., N-8, N-4, N\}$$

Subsystem entanglement entropy: Entanglement hierarchy

$$\begin{split} S_{A_z(j)} &= f_z(j) c \alpha L_x - c \log \left| 2 \sin \left(\pi f_z(j) \phi \right) \right| \\ & i < j, \ \ S_{i \cup j} = \begin{cases} S_i, & z > 0 \\ S_j, & z < 0 \end{cases} \end{split}$$

- presents a hierarchy of entanglement → EE distributed across RG steps
 RG transformation → reveals entanglement
- distribution of entanglement also present in multipartite entanglement

Mutual information:
$$I^2(A:B) \equiv S(A) + S(B) - S(A \cup B)$$
 (non-negative)

Define distances using mut. info.

$$x_z(j) = \log t_z(j), \quad y_z(j) = \log t_z(j\pm 1)$$

$$v_z(j) \equiv \Delta y_z(j)/\Delta x_z(j), \quad v' = \Delta v_z(j)/\Delta x_z(j)$$

Curvature as well:
$$\kappa_z(j) = \frac{v_z'(j)}{\left[1 + v_z(j)^2\right]^{\frac{3}{2}}}$$

Van Raamsdonk 2010; Lee et al. 2016; Mukherjee et al. 2022; Lee 2010; Lee 2014; Qi 2013; Lee et al. 2016; Mukherjee et al. 2020a; Mukherjee et al. 2020b; Ryu et al. 2006b; Ryu et al. 2006a; Nozaki et al. 2012.

RG evolution = emergent distance

- Distances and curvature can be related to an RG beta function
- Amounts to an explicit demonstration of the holographic principle
- Sign of curvature is **topological**, can be written in terms of winding numbers

Topological nature of geometry-independent term

$$S_{A_z(j)} = f_z(j)c\alpha L_x - \underbrace{c\log \left|2\sin\left(\pi f_z(j)\phi\right)\right|}_{=Q(\phi),\text{geometry-independent term}}$$

- $Q(\phi)$ is periodic in the flux ϕ , $\phi = 1$ transports a charge across Fermi surface
- pole structure of $\left(\sin\frac{\pi}{4} |\sin(\pi f_z(j))\phi|\right)^{-1}$ counts number of states \longrightarrow tracks Luttinger volume
- Luttinger volume is topological, so is $Q(\phi)$; $Q(\phi)$ can be expressed in terms of winding numbers

Future Prospects

Future Prospects

- Better model can be obtained by taking multiple impurities and general impurity filling
- novel auxiliary model method can used for studying other models of strong-correlations as well as topologically active or flat band systems
- The URG can be applied to heavy-fermion materials towards a study of phase diagram and unconventional superconductivity, as well as Kondo insulators
- Interacting systems in a magnetic field is also a potential area of study, specifically fractional Chern insulators (e.g. the fractional quantum hall effects)

Acknowledgements

Gracious thanks to

- my collaborators S. Patra, A. Mukherjee, Prof. A. Taraphdar and Prof. N. S. Vidhyadhiraja,
- Prof. Ritesh Singh and Prof. Anandamohan Ghosh for instructive feedback,
- Prof. H. Casini, Prof. N. Banerjee and Shibendu G. Chowdhury for very fruitful discussions, and
- IISER Kolkata for funding.

References

- Affleck, Ian (1995). "Conformal field theory approach to the Kondo effect". In: Acta Phys. Polon. B 26.1869.
- Affleck, Ian and Andreas W.W. Ludwig (1991). "Critical theory of overscreened Kondo fixed points". In: Nuclear Physics B 360.2, pp. 641-696. ISSN: 0550-3213.
- Affleck, Ian and Andreas WW Ludwig (1993). "Exact conformal-field-theory results on the multichannel Kondo effect: Single-fermion Green's function, self-energy, and resistivity". In: Physical Review B 48.10. p. 7297.
- Anderson, P. W. (1961). "Localized Magnetic States in Metals". In: Phys. Rev. 124 (1), pp. 41–53.
- ► (1978). "Local moments and localized states". In: Rev. Mod. Phys. 50 (2), pp. 191–201.
- Anderson, PW (1970). "A poor man's derivation of scaling laws for the Kondo problem". In: Journal of Physics C: Solid State Physics 3.12, p. 2436.
- Andrei, N. (1980). "Diagonalization of the Kondo Hamiltonian". In: Phys. Rev. Lett. 45 (5), pp. 379-382.
- Andrei, N, K Furuya, and J H Lowenstein (1983). "Solution of the Kondo problem". In: Rev. Mod. Phys. 55, p. 331.
- Arias, Raúl E, David D Blanco, and Horacio Casini (2015). "Entanglement entropy as a witness of the Aharonov-Bohm effect in QFT". In: Journal of Physics A: Mathematical and Theoretical 48.14. p. 145401.
- Bulla, R, A C Hewson, and Th Pruschke (1998). "Numerical renormalization group calculations for the self-energy of the impurity Anderson model". In: Journal of Physics: Condensed Matter 10.37, pp. 8365–8380.
- Calabrese, Pasquale and John Cardy (2004). "Entanglement entropy and quantum field theory". In: Journal of Statistical Mechanics: Theory and Experiment 2004.06, P06002.
- Casini, H, C D Fosco, and M Huerta (2005). "Entanglement and alpha entropies for a massive Dirac field in two dimensions". In: Journal of Statistical Mechanics: Theory and Experiment 2005.07, P07007–P07007.
- Chen, Xiao et al. (2017). "Two-cylinder entanglement entropy under a twist". In: Journal of Statistical Mechanics: Theory and Experiment 2017.4, p. 043104.
- Costi, T. A. (2000). "Kondo Effect in a Magnetic Field and the Magnetoresistivity of Kondo Alloys". In: Phys. Rev. Lett. 85 (7), pp. 1504–1507.
- Costi, T.A. and A.C. Hewson (1990). "A new approach to the calculation of spectra for strongly correlated systems". In: Physica B: Condensed Matter 163.1, pp. 179–181. ISSN: 0921-4526
- Cox. D. L. and N. Grewe (1988), "Transport properties of the Anderson lattice", In: Zeitschrift für Physik B Condensed Matter 71.3, pp. 321–340.
- ▶ Emery, V. J. and S. Kivelson (1992). "Mapping of the two-channel Kondo problem to a resonant-level model". In: Phys. Rev. B 46 (17), pp. 10812–10817.
- Gan, J (1994). "On the multichannel Kondo model". In: 6.24, pp. 4547–4568.
- ► Georges, Antoine and Gabriel Kotliar (1992). "Hubbard model in infinite dimensions". In: Physical Review B 45.12, p. 6479.
- ► Goldhaber-Gordon, D. et al. (1998). "Kondo effect in a single-electron transistor". In: Nature 391.6663, pp. 156–159. ISSN: 1476-4687.
- Heath, Joshuah T and Kevin S Bedell (2020). "Necessary and sufficient conditions for the validity of Luttinger's theorem". In: New Journal of Physics 22.6, p. 063011.
- ► Hewson, A. C. (1993). The Kondo Problem to Heavy Fermions. Cambridge University Press.
 - Holzhey, Christoph, Finn Larsen, and Frank Wilczek (1994). "Geometric and renormalized entropy in conformal field theory". In: Nuclear Physics B 424.3, pp. 443–467. ISSN: 0550-3213.
- Kondo, Jun (1964). "Resistance minimum in dilute magnetic alloys". In: Progress of theoretical physics 32.1, pp. 37–49.

References

- Kotliar, G. et al. (2006). "Electronic structure calculations with dynamical mean-field theory". In: Rev. Mod. Phys. 78 (3), pp. 865–951.
- Krishna-murthy, H. R., J. W. Wilkins, and K. G. Wilson (1980). "Renormalization-group approach to the Anderson model of dilute magnetic alloys. I. Static properties for the symmetric case". In: Phys. Rev. B 21 (3), pp. 1003–1043.
- Kuramoto, Y and T Watanabe (1987). "Theory of momentum-dependent magnetic response in heavy-fermion systems". In: Proceedings of the Yamada Conference XVIII on Superconductivity in Highly Correlated Fermion Systems. Elsevier, pp. 80–83.
- Lee, Ching Hua and Xiao-Liang Qi (2016). "Exact holographic mapping in free fermion systems". In: Physical Review B 93.3, p. 035112.
- Lee, Sung-Sik (2010). "Holographic description of quantum field theory". In: Nuclear Physics B 832.3, pp. 567–585.
 - (2014). "Quantum renormalization group and holography". In: Journal of High Energy Physics 2014.1, p. 76.
- Luttinger, JM (1960). "Fermi surface and some simple equilibrium properties of a system of interacting fermions". In: Physical Review 119.4, p. 1153.
- Luttinger, Joaquin Mazdak and John Clive Ward (1960). "Ground-state energy of a many-fermion system. II". In: Physical Review 118.5, p. 1417.
- Maier, Thomas et al. (2005). "Quantum cluster theories". In: Rev. Mod. Phys. 77 (3), pp. 1027–1080.
- Maldacena, Juan (1999). "The large-N limit of superconformal field theories and supergravity". In: International journal of theoretical physics 38.4, pp. 1113–1133.
- Metzner, Walter and Dieter Vollhardt (1989). "Correlated Lattice Fermions in d = ∞ Dimensions". In: Phys. Rev. Lett. 62 (3), pp. 324–327.
- Mukherjee, Anirban and Siddhartha Lal (2020a). "Unitary renormalisation group for correlated electrons-I: a tensor network approach". In: Nuclear Physics B 960, p. 115170.
- (2020b). "Unitary renormalisation group for correlated electrons-II: insights on fermionic criticality". In: Nuclear Physics B 960, p. 115163.
- (2022). "Superconductivity from repulsion in the doped 2D electronic Hubbard model: an entanglement perspective". In: Journal of Physics: Condensed Matter 34.27, p. 275601.
- Murciano, Sara, Paola Ruggiero, and Pasquale Calabrese (2020). "Symmetry resolved entanglement in two-dimensional systems via dimensional reduction". In: Journal of Statistical Mechanics: Theory and Experiment 2020.8, p. 083102.
- Nozaki, Masahiro, Shinsei Ryu, and Tadashi Takayanagi (2012). "Holographic geometry of entanglement renormalization in quantum field theories". In: Journal of High Energy Physics 2012;10. p. 193.
- Nozieres, P (1974). "A "Fermi-liquid" description of the Kondo problem at low temperatures". In: Journal of Low Temperature Physics 17, p. 31.
- Nozières, Ph. and Blandin, A. (1980). "Kondo effect in real metals". In: J. Phys. France 41.3, pp. 193–211.
- b Ohashi, Takuma et al. (2008). "Finite Temperature Mott Transition in Hubbard Model on Anisotropic Triangular Lattice". In: Phys. Rev. Lett. 100 (7), p. 076402.
- Oshikawa, Masaki (2000). "Topological approach to Luttinger's theorem and the Fermi surface of a Kondo lattice". In: Physical Review Letters 84.15, p. 3370.
- Parcollet, O., G. Biroli, and G. Kotliar (2004). "Cluster Dynamical Mean Field Analysis of the Mott Transition". In: Phys. Rev. Lett. 92 (22), p. 226402.
- PQi, Xiao-Liang (2013). "Exact holographic mapping and emergent space-time geometry". In: arXiv preprint arXiv:1309.6282.
- Ryu, Shinsei and Tadashi Takayanagi (2006a). "Aspects of holographic entanglement entropy". In: Journal of High Energy Physics 2006.08, p. 045.
- (2006b). "Holographic derivation of entanglement entropy from the anti-de sitter space/conformal field theory correspondence". In: Physical review letters 96.18, p. 181602.

References

- Sakai, Osamu, Yukihiro Shimizu, and Tadao Kasuya (1989). "Single-Particle and Magnetic Excitation Spectra of Degenerate Anderson Model with Finite f-f Coulomb Interaction". In: Journal of the Physical Society of Japan 58.10, pp. 3666–3678. eprint: https://doi.org/10.1143/JPSJ.58.3666.
- Seki, Kazuhiro and Seiji Yunoki (2017). "Topological interpretation of the Luttinger theorem". In: Physical Review B 96.8, p. 085124.
- ► Tsvelick, A M and P B Wiegmann (1983). "Exact results in the theory of magnetic alloys". In: Adv. in Phys. 32, p. 453.
- Tsvelick, A. M. and P. B. Wiegmann (1985). "Exact solution of the multichannel Kondo problem, scaling, and integrability". In: Journal of Statistical Physics 38.1, pp. 125–147. ISSN: 1572-9613.
- ▶ V. Borzenets, Ivan et al. (2020). "Observation of the Kondo screening cloud". In: Nature 579.7798, pp. 210–213. ISSN: 1476-4687.
- Van Raamsdonk, Mark (2010). "Building up spacetime with quantum entanglement". In: General Relativity and Gravitation 42.10, pp. 2323–2329.
- Wilson, Kenneth G. (1975). "The renormalization group: Critical phenomena and the Kondo problem". In: Rev. Mod. Phys. 47 (4), pp. 773–840.
- Wilson, Kenneth G. and J. Kogut (1974). "The renormalization group and the ε-expansion". In: Physics Reports 12.2, pp. 75 –199.

Theory for the single-channel Kondo cloud

Phys. Rev. B 105, 085119

Anirban Mukherjee, Abhirup Mukherjee, N. S. Vidhyadhiraja, A. Taraphder, and Siddhartha Lal

Theory for the single-channel Kondo cloud

✓ spectral function & magnetic susceptibility

- ✓ local Fermi liq. & orthogonality catastrophe
- ✓ thermal entropy

Role of degeneracy in the multi-channel Kondo problem

arXiv:2205.00790

Siddhartha Patra, <mark>Abhirup Mukherjee</mark>, Anirban Mukherjee, N. S. Vidhyadhiraja, A. Taraphder, Siddhartha Lal

Role of degeneracy in the multi-channel Kondo problem

- ✓ Intermediate-coupling RG fixed point Hamiltonian and degenerate ground states
- ✓ Degree of compensation, magnetization and susceptibility show incomplete screening

Role of degeneracy in the multi-channel Kondo problem

- ✓ Local marginal Fermi liquid within the low-energy excitations of the bath
- ✓ Duality relations constrain the RG flows of the MCK model

Holography and topology of entanglement scaling in free

fermions

Future Prospects

Improvements to the auxiliary model

- Better model can be obtained by using multiple impurities
- Allows entangled liquid-like insulating phases
- Might also provide k-space resolution
 - partial gapping of Fermi surface?
 - pseudogap phases
- · Introducing general impurity filling
 - · new phases?
 - · dominant pair fluctuations?

A novel auxiliary model approach

• Using local impurity models to create bulk lattice models (Bloch's theorem)

$$H_{\text{bulk}} = \sum_{i} H_{\text{local}}(i), \ \Psi_{\text{bulk}}(\vec{k}) \sim \sum_{i} e^{i\vec{k}\cdot\vec{r}_{i}} \Psi_{\text{local}}(i)$$

- Relates bulk correlation functions to those of the auxiliary model
- phase transition in the extended AIM → phase transition in the bulk model, metal-insulator transition in Hubbard-Heisenberg model

A novel auxiliary model approach

- · Should be useful for studying other models of strong-correlations
 - periodic Anderson/Kondo models
 - · Heisenberg models
- Another potential application: topologically active systems:
 - · Fractional quantum hall systems
- · Extend the formalism towards higher order Greens functions
 - two-particle Greens functions, doublon-holon correlations
 - can provide more info on the MIT

Heavy-fermion materials

- · Materials with very high quasiparticle masses
- Outstanding questions exist about the nature of phases and phase transitions
 - microscopic justification of certain phases
 - · theory for the strange metal excitations
 - · microscopic justification for the origin of unconventional superconductivity

· the URG, MERG and auxiliary model methods should prove useful