1. Базис

Множество элементов называется *замкнутым* относительно некоторой операции, если результат применения этой операции к элементам множества принадлежит этому же множеству.

Например, множество целых чисел замкнуто относительно операций сложения и умножения, но не замкнуто относительно операции деления.

Множество векторов замкнутое относительно операций сложения векторов и умножения вектора на число называется *векторным пространством*.

Примерами векторных пространств являются следующие множества:

- 1. V_1 множество векторов коллинеарных заданной прямой.
- 2. V_2 множество векторов компланарных заданной плоскости.
- 3. V_3 множество векторов пространства.

Упорядоченная совокупность линейно независимых векторов { \mathbf{e}_1 , \mathbf{e}_2 ,..., \mathbf{e}_n } векторного пространства V_n называется базисом, если всякий вектор \mathbf{a} из этого пространства может быть разложен по базису, т.е. представлен в виде $\mathbf{a} = \lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 + ... + \lambda_n \mathbf{e}_n$.

В определении базиса содержатся следующие требования:

- 1. Требование упорядоченности совокупности векторов, входящих в базис, означает, что порядок перечисления векторов существенен. Например, $\{\mathbf{e}_1, \mathbf{e}_2\}$ и $\{\mathbf{e}_2, \mathbf{e}_1\}$ это разные базисы, состоящие из одних и тех же векторов.
- 2. Требование полноты, гарантирующее возможность разложения по базису каждого вектора пространства.
- 3. Требование линейной независимости базисных векторов гарантирует компактность базиса в том смысле, что в базисе присутствуют только те векторы, которые необходимы для разложения каждого вектора по базису, и никаких других "лишних" векторов нет, что, в свою очередь, гарантирует единственность разложения вектора по базису, как это утверждается в следующей теореме.

Теорема (о единственности разложения вектора по базису)

Коэффициенты разложения вектора по базису определяются единственным образом.

Индекс n в обозначении V_n называется pазмерностью npостранства u, как это видно из определения базиса, совпадает с количеством базисных векторов, кроме того, из теоремы о признаках линейной зависимости следует, что в пространстве V_n найдётся n линейно независимых векторов, а всякие n+1 векторы будут линейно зависимыми.

Следующая теорема даёт описание базисов пространств V_1 , V_2 и V_3 .

Теорема (о базисе)

Справедливы следующие утверждения:

- 1. Всякий ненулевой вектор, коллинеарный данной прямой, образует базис на этой прямой.
- 2. Любые два неколлинеарных вектора компланарных данной плоскости, образуют базис на этой плоскости.
- 3. Любые три некомпланарных вектора образуют базис в пространстве.

11.09.2014 18:48:20 crp. 1 u3 3

2. Координаты вектора

Пусть в пространстве V_n выбран базис $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$, тогда любой вектор \mathbf{a} пространства представим в виде $\mathbf{a} = \lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 + ... + \lambda_n \mathbf{e}_n$. Коэффициенты λ_1 , λ_2 , ..., λ_n в разложении вектора по базису называются *координатами вектора* \mathbf{a} в базисе $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$. Факт того, что вектор \mathbf{a} в выбранном базисе имеет координаты λ_1 , λ_2 , ..., λ_n будем обозначать, как $\mathbf{a} = \{\lambda_1, \lambda_2, ..., \lambda_n\}$.

Теорема (о выражении линейных операций над векторами через их координаты) При сложении векторов их координаты складываются, при умножении вектора на число его координаты умножаются на это число.

3. Аффинная и декартова прямоугольная системы координат

Процесс построения аффинной системы координат рассмотрим на примере пространства (построения аффинных систем координат на плоскости и на прямой осуществляются аналогичным образом).

Пусть в пространстве выбраны точка O, которую будем называть началом omc v = ma, и базис $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, тогда каждой точке M пространства можно поставить во взаимно однозначное соответствие её радиус-вектор, разложение которого базису имеет вид $\overline{OM} = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$. Так как коэффициенты разложения вектора по базису определены однозначно, то это означает, что каждой точке M пространства могут быть поставлены во взаимно однозначное соответствие координаты её радиус-вектора — числа x, y и z. Факт того, что радиус-вектор точки M имеет координаты x, y и z, будем обозначать, как M(x,y,z), сами числа x, y и z будем называть adp инными координатыми мочки M в выбранном базисе, совокупность точки M и базиса $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ будем называть adp инной системой координати, а прямые, проходящие через точку M в направлении базисных векторов, — осями координати.

Если при построении аффинной системы координат в качестве базисных были выбраны взаимно ортогональные векторы единичной длины, то такую систему координат называют декартовой прямоугольной системой координат. В этом случае базисные векторы принято обозначать латинскими буквами \mathbf{i} , \mathbf{j} и \mathbf{k} . Координатные оси в декартовой прямоугольной системе координат обозначаются и называются так: Ox - ocь абсиисс, направлена вдоль вектора \mathbf{i} ; Oy - ocь ординат, направлена вдоль вектора \mathbf{j} ; Oz - ocь аппликат, направлена вдоль вектора \mathbf{k} .

4. Ортогональная проекция вектора на ось

Ортогональной проекцией точки A *на прямую* L [*на плоскость* S] называется основание перпендикуляра A', опущенного из этой точки на прямую L [на плоскость S].

11.09.2014 18:48:20

Oртогональной проекцией вектора AB на прямую L [на плоскость S] называется вектор $\overline{A'B'}$, соединяющий основания перпендикуляров A' и B', опущенных из точек A и B на прямую L [на плоскость S].

Пусть имеется прямая линия L, на которой выбраны точка O – начало отсчёта и базисный вектор e, определяющий направление на прямой L, т.е. имеется ocb. Ортогональной проекцией вектора AB на ось L (на вектор e) называется число

$$\Pr_L(\overline{AB}) = \Pr_{\mathbf{e}}(\overline{AB}) = \begin{cases} \mid \overline{A'B'} \mid, \ \textit{если векторы} \ \ \overline{A'B'} \ \textit{и} \ \ \mathbf{e} \ \textit{сонаправлены}, \\ -\mid \overline{A'B'} \mid, \ \textit{если векторы} \ \ \overline{A'B'} \ \textit{и} \ \ \mathbf{e} \ \textit{разнонаправлены}. \end{cases}$$

Заметим, что ортогональная проекция вектора на прямую – это вектор, а ортогональная проекция вектора на ось – это число.

Свойства ортогональной проекции вектора на ось

1. $Pr_{\tau}(\mathbf{a}) = |\mathbf{a}| \cos(\varphi)$, где φ – угол между вектором \mathbf{a} и осью L – наименьший угол, на который необходимо повернуть вектор \mathbf{a} , чтобы его направление совпало с направлением оси L.

- 2. $Pr_{I}(\lambda \mathbf{a}) = \lambda Pr_{I}(\mathbf{a})$.
- 3. $Pr_{I}(\mathbf{a} + \mathbf{b}) = Pr_{I}(\mathbf{a}) + Pr_{I}(\mathbf{b})$.

5. Направляющие косинусы

Пусть на плоскости выбрана декартова прямоугольная система координат Oxy. Рассмотрим ненулевой вектор **a**, начало которого совмещено с точкой O. Обозначим углы между вектором \mathbf{a} и координатными осями Ox и Oy через α и β соответственно. Направляющими косинусами вектора а называются величины $\cos(\alpha)$ и $\cos(\beta)$.

Аналогичным образом вводятся направляющие косинусы вектора в пространстве: пусть α , β и γ – углы между вектором \mathbf{a} и координатными осями Ox, Oy и Oz декартовой прямоугольной системы координат. Тогда направляющими косинусами вектора а называются величины $\cos(\alpha)$, $\cos(\beta)$ и $\cos(\gamma)$.

стр. 3 из 3

Имеют место следующие соотношения.

На плоскости:

1.
$$\cos(\alpha) = \frac{x}{|\mathbf{a}|}, \cos(\beta) = \frac{y}{|\mathbf{a}|}.$$

2.
$$\cos^2(\alpha) + \cos^2(\beta) = 1$$
.

1.
$$\cos(\alpha) = \frac{x}{|\mathbf{a}|}$$
, $\cos(\beta) = \frac{y}{|\mathbf{a}|}$.
2. $\cos^2(\alpha) + \cos^2(\beta) = 1$.
1. $\cos(\alpha) = \frac{x}{|\mathbf{a}|}$, $\cos(\beta) = \frac{y}{|\mathbf{a}|}$, $\cos(\gamma) = \frac{z}{|\mathbf{a}|}$.
2. $\cos^2(\alpha) + \cos^2(\beta) = 1$.

2.
$$\cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) = 1$$

11.09.2014 18:48:20