- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

18 febbraio 2010

(Cognome)													(N	ome)				ume	i ma	trice					

Α	R	C	D	\mathbf{E}
4 1	ப	\sim	$\boldsymbol{\mathcal{L}}$	

1	00000
2	
3	0000
4	0000
5	0000
6	00000
7	
8	00000
9	00000
10	00000

1. Una primitiva della funzione $x(t) = t e^{2t}$ è

A:
$$e^{t}(t+1) - 4$$
 B: N.A. C: $\frac{t^{2}}{2} + e^{2t}$ D: $\frac{1}{4}e^{2t}(2t-1) - \log(\pi)$ E: $t \log(t)$

2. Il polinomio di Taylor di grado 2 relativo al punto $x_0 = 1$ della funzione $f(x) = \log(x^2)$ vale A: N.A. B: $-3 + 2x - 2x^2$ C: $\log(x^2) \frac{(x-1)^2}{2}$ D: $2(x-1) - (x-1)^2$ E: $1 + \log(x^2)^2$

3. La funzione
$$f(x) = \begin{cases} \log(1+x) & \text{per } x > 1 \\ \\ \frac{x}{2} - \frac{1}{2} & \text{per } x \leq 1 \end{cases}$$

A: è derivabile, ma non continua. B: non è né continua né derivabile. C: è continua, ma non derivabile. D: N.A. E: è continua e derivabile.

4. Dato $\alpha \geq 0$, la serie a termini non-negativi

$$\sum_{n=0}^{\infty} \frac{\alpha}{\sqrt[3]{n^{\alpha} + 1}}$$

converge per

A:
$$\alpha \ge 1/3 \cup \{\alpha = 0\}$$
 B: N.A. C: $\alpha > 3 \cup \{\alpha = 0\}$ D: $\alpha > 2 \cup \{\alpha = 1\}$ E: $3 < \alpha < \pi$

5. Modulo e argomento del numero complesso $z=-i-\sqrt{3}$ sono

A:
$$(2, 5\pi/4)$$
 B: $(1, -5\pi/6)$ C: N.A. D: $(\sqrt{3}, 4\pi/3)$ E: $(2, -5\pi/6)$

6. La funzione $f:\ \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \mathrm{e}^{|x|}$ è

A: surgettiva B: limitata inferiormente C: monotona crescente D: N.A. E: iniettiva

7. Il limite

$$\lim_{x \to +\infty} x \sin\left(\frac{1}{x^2}\right)$$

vale

A: N.E. B:
$$-\infty$$
 C: 1 D: N.A. E: $\pi/2$

8. L'integrale

$$\int_0^{\pi/2} \sin(3x) \, dx$$

vale

A: N.A. B:
$$\frac{\sqrt{\pi}}{2}$$
 C: 1/3 D: -1 E: $-\pi/2$

9. Data $f(x) = \tan(\pi x/2)$. Allora f'(1/2) è uguale a

A:
$$\frac{\pi}{6}$$
 B: N.A. C: $\frac{\sqrt{2}}{3}$ D: π E: -1

10. Inf, min, sup e max dell'insieme

$$A = \{ \log(\log(x)) \text{ per } x \ge e \}$$

valgono

A:
$$\{0,0,{\rm e},N.E.\}$$
 B: $\{{\rm e},{\rm e},+\infty,N.E.\}$ C: $\{0,0,+\infty,N.E.\}$ D: $\{0,1,+\infty,N.E.\}$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

18 febbraio 2010

			(Co	gno	me)						(No	me)			(N	ume	ro d	i ma	trice	ola)

A	В	С	D	\mathbf{E}	

1	00000
2	
3	
4	
5	
6	
7	
8	
9	
10	

1. La funzione $f(x) = \begin{cases} \log(1+x) & \text{per } x > 1 \\ \frac{x}{2} - \frac{1}{2} & \text{per } x \leq 1 \end{cases}$

A: N.A. B: è derivabile, ma non continua. C: non è né continua né derivabile. D: è continua, ma non derivabile. E: è continua e derivabile.

2. Una primitiva della funzione $x(t) = t e^{2t}$ è

A: $t \log(t)$ B: $\frac{1}{4}e^{2t}(2t-1) - \log(\pi)$ C: $\frac{t^2}{2} + e^{2t}$ D: N.A. E: $e^t(t+1) - 4$

3. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^{|x|}$ è

A: monotona crescente B: iniettiva C: N.A. D: surgettiva E: limitata inferiormente

4. Dato $\alpha \geq 0,$ la serie a termini non-negativi

$$\sum_{n=0}^{\infty} \frac{\alpha}{\sqrt[3]{n^{\alpha} + 1}}$$

converge per

A: N.A. B: $\alpha > 3 \cup \{\alpha = 0\}$ C: $\alpha \ge 1/3 \cup \{\alpha = 0\}$ D: $3 < \alpha < \pi$ E: $\alpha > 2 \cup \{\alpha = 1\}$

5. Il polinomio di Taylor di grado 2 relativo al punto $x_0 = 1$ della funzione $f(x) = \log(x^2)$ vale A: $\log(x^2)\frac{(x-1)^2}{2}$ B: $1 + \log(x^2)^2$ C: $-3 + 2x - 2x^2$ D: $2(x-1) - (x-1)^2$ E: N.A.

6. Il limite

$$\lim_{x \to +\infty} x \sin\left(\frac{1}{x^2}\right)$$

vale

A: $-\infty$ B: N.E. C: N.A. D: $\pi/2$ E: 1

7. Data $f(x) = \tan(\pi x/2)$. Allora f'(1/2) è uguale a A: π B: $\frac{\sqrt{2}}{3}$ C: $\frac{\pi}{6}$ D: -1 E: N.A.

8. Inf, min, sup e max dell'insieme

$$A = \{ \log(\log(x)) \text{ per } x \ge e \}$$

valgono

A: $\{e, e, +\infty, N.E.\}$ B: $\{0, 0, e, N.E.\}$ C: $\{0, 0, +\infty, N.E.\}$ D: $\{0, 1, +\infty, N.E.\}$ E: N.A.

9. L'integrale

$$\int_0^{\pi/2} \sin(3x) \, dx$$

vale

A: $-\pi/2$ B: -1 C: N.A. D: 1/3 E: $\frac{\sqrt{\pi}}{2}$

10. Modulo e argomento del numero complesso $z=-i-\sqrt{3}$ sono

A: $(2, 5\pi/4)$ B: $(\sqrt{3}, 4\pi/3)$ C: $(2, -5\pi/6)$ D: N.A. E: $(1, -5\pi/6)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

18 febbraio 2010

(Cognome)									_			(No	me)			(N	ume	ro di	ma	trico	ola)						

A	В	С	D	\mathbf{E}	

1	00000
2	00000
3	00000
4	
5	
6	0000
7	
8	
9	
10	

- 1. Il polinomio di Taylor di grado 2 relativo al punto $x_0 = 1$ della funzione $f(x) = \log(x^2)$ vale A: $1 + \log(x^2)^2$ B: N.A. C: $\log(x^2) \frac{(x-1)^2}{2}$ D: $2(x-1) (x-1)^2$ E: $-3 + 2x 2x^2$
- 2. Dato $\alpha \geq 0,$ la serie a termini non-negativi

$$\sum_{n=0}^{\infty} \frac{\alpha}{\sqrt[3]{n^{\alpha} + 1}}$$

converge per

A: $\alpha > 2 \cup \{\alpha = 1\}$ B: $\alpha \ge 1/3 \cup \{\alpha = 0\}$ C: N.A. D: $3 < \alpha < \pi$ E: $\alpha > 3 \cup \{\alpha = 0\}$

3. Una primitiva della funzione $x(t) = t e^{2t}$ è

A:
$$\frac{t^2}{2} + e^{2t}$$
 B: N.A. C: $e^t(t+1) - 4$ D: $\frac{1}{4}e^{2t}(2t-1) - \log(\pi)$ E: $t \log(t)$

4. Il limite

$$\lim_{x \to +\infty} x \sin\left(\frac{1}{x^2}\right)$$

vale

A: N.E. B: 1 C: N.A. D: $\pi/2$ E: $-\infty$

5. Inf, min, sup e max dell'insieme

$$A = \{\log(\log(x)) \text{ per } x \ge e\}$$

valgono

A: $\{0, 1, +\infty, N.E.\}$ B: $\{e, e, +\infty, N.E.\}$ C: $\{0, 0, +\infty, N.E.\}$ D: N.A. E: $\{0, 0, e, N.E.\}$

6. La funzione $f(x) = \begin{cases} \log(1+x) & \text{per } x > 1 \\ \frac{x}{2} - \frac{1}{2} & \text{per } x \leq 1 \end{cases}$

A: non è né continua né derivabile. B: è derivabile, ma non continua. C: è continua, ma non derivabile. D: è continua e derivabile. E: N.A.

7. L'integrale

$$\int_0^{\pi/2} \sin(3x) \, dx$$

vale

A:
$$\frac{\sqrt{\pi}}{2}$$
 B: N.A. C: -1 D: $-\pi/2$ E: 1/3

8. Modulo e argomento del numero complesso $z=-i-\sqrt{3}$ sono

A:
$$(\sqrt{3}, 4\pi/3)$$
 B: N.A. C: $(2, 5\pi/4)$ D: $(1, -5\pi/6)$ E: $(2, -5\pi/6)$

9. Data $f(x) = \tan(\pi x/2)$. Allora f'(1/2) è uguale a

A:
$$\frac{\pi}{6}$$
 B: -1 C: $\frac{\sqrt{2}}{3}$ D: π E: N.A.

10. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^{|x|}$ è

A: N.A. B: surgettiva C: iniettiva D: limitata inferiormente E: monotona crescente

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

18 febbraio 2010

(Cognome)													(N	ome)				ume	i ma	trice					

A	В	С	D	\mathbf{E}	

1	00000
2	
3	
4	
5	
6	
7	
8	
9	
10	0000

1. Inf, min, sup e max dell'insieme

$$A = {\log(\log(x)) \text{ per } x \ge e}$$

valgono

A: $\{0,0,{\rm e},N.E.\}$ B: $\{{\rm e},{\rm e},+\infty,N.E.\}$ C: $\{0,0,+\infty,N.E.\}$ D: $\{0,1,+\infty,N.E.\}$ E: N.A.

2. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^{|x|}$ è
A: monotona crescente B: N.A. C: limitata inferiormente D: surgettiva E: iniettiva

3. Data $f(x)=\tan(\pi x/2)$. Allora f'(1/2) è uguale a A: -1 B: $\frac{\pi}{6}$ C: N.A. D: π E: $\frac{\sqrt{2}}{3}$

4. Modulo e argomento del numero complesso $z=-i-\sqrt{3}$ sono A: N.A. B: $(2,-5\pi/6)$ C: $(2,5\pi/4)$ D: $(\sqrt{3},4\pi/3)$ E: $(1,-5\pi/6)$

5. L'integrale

$$\int_0^{\pi/2} \sin(3x) \, dx$$

vale

A: N.A. B: $\frac{\sqrt{\pi}}{2}$ C: -1 D: $-\pi/2$ E: 1/3

6. Una primitiva della funzione $x(t) = t e^{2t}$ è

A:
$$\frac{1}{4}e^{2t}(2t-1) - \log(\pi)$$
 B: $\frac{t^2}{2} + e^{2t}$ C: $e^t(t+1) - 4$ D: $t \log(t)$ E: N.A.

7. La funzione $f(x) = \begin{cases} \log(1+x) & \text{per } x > 1 \\ \frac{x}{2} - \frac{1}{2} & \text{per } x \leq 1 \end{cases}$

A: è continua e derivabile. B: è continua, ma non derivabile. C: è derivabile, ma non continua. D: N.A. E: non è né continua né derivabile.

8. Il limite

$$\lim_{x \to +\infty} x \sin\left(\frac{1}{x^2}\right)$$

vale

A: N.A. B: N.E. C: $-\infty$ D: $\pi/2$ E: 1

9. Dato $\alpha \geq 0$, la serie a termini non-negativi

$$\sum_{n=0}^{\infty} \frac{\alpha}{\sqrt[3]{n^{\alpha} + 1}}$$

converge per

 $A: \alpha \geq 1/3 \cup \{\alpha = 0\} \quad B: 3 < \alpha < \pi \quad C: \alpha > 2 \cup \{\alpha = 1\} \quad D: N.A. \quad E: \alpha > 3 \cup \{\alpha = 0\}$

10. Il polinomio di Taylor di grado 2 relativo al punto $x_0 = 1$ della funzione $f(x) = \log(x^2)$ vale A: $\log(x^2)\frac{(x-1)^2}{2}$ B: $-3 + 2x - 2x^2$ C: $2(x-1) - (x-1)^2$ D: N.A. E: $1 + \log(x^2)^2$

18 febbraio 2010

			(Co	gno	me)				_			(No	ome)			_	ume	i ma	trice	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

18 febbraio 2010

							Ì											
	(Cogn	ome)						(Nor	ne)				ume	ero d	i ma	atric	cola)

A	В	С	D	\mathbf{E}	

1	
2	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	

18 febbraio 2010

			(Co	gno	me)				_			(No	ome)			_	ume	i ma	trice	ola)

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

18 febbraio 2010

			(Co	gno	me)				_			(No	ome)			_	ume	i ma	trice	ola)

CODICE = 636609

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

18 febbraio 2010

			(Co	gno	me)				_			(No	me)			(N	ume	ro di	ma	trico	ola)

A	В	С	D	\mathbf{E}	

1	00000
2	
3	
4	
5	
6	
7	
8	
9	
10	0000

1. Per quali valori di $a \in \mathbb{R}$ la funzione

$$f(x) = \begin{cases} x^2 + 2x & \text{se } x \le 0 \\ ax & \text{se } x > 0 \end{cases}$$

è derivabile in x = 0

A: a = 0 B: $a = \frac{1}{2}$ C: a = 1 D: N.E. E: N.A.

2. Il limite

$$\lim_{x \to 0^+} \frac{\log(1+x^{\frac{1}{4}})}{x}$$

vale

A: 0 B: N.E. C: N.A. D: 1 E: $+\infty$

3. Modulo e argomento del numero complesso $z=(1+i\sqrt{3})^6$

A: $\{32, -\frac{\pi}{2}\}$ B: $\{64, \frac{\pi}{2}\}$ C: N.A. D: $\{64, 0\}$ E: $\{1, \pi\}$

4. La funzione $f(x) = \arctan(|x|)$ è

A: è derivabile in ogni punto del suo dominio B: N.A. C: $\inf_{x \in \mathbb{R}} f(x) = -\frac{\pi}{2}$ D: $0 \le f(x) < \frac{\pi}{2}$ E: è discontinua nel punto x = 0

5. Per quali valori di del parametro a > 0 la serie

$$\sum_{n=1}^{+\infty} a^{\ln(n)}$$

A: a = 2 B: N.A. C: $a \le 1$ D: a > 1 E: $a < \frac{1}{e}$

6. Il polinomio di Taylor di grado 1 nel punto $x=\pi$ della funzione $f(x)=x^2-\sin(x)$

A:
$$\pi^2 + (x - \pi) + \frac{1}{2}(x - \pi)^2$$
 B: N.A. C: $-\pi + x + x^2$ D: $x(2\pi + 1) - \pi(1 + \pi)$ E: x^2

7. Inf, min, sup e max del seguente insieme

$$A = \{ y = \frac{x}{x^2 + 4} : x \in \mathbb{R} \text{ e } x \ge 0 \}$$

A: N.A. B: $\{0, N.E., 1, 1\}$ C: $\{N.E., 0, 3, 3\}$ D: $\{0, N.E., \frac{2}{8}, \frac{2}{8}\}$ E: $\{2, 2, 3, 3\}$

8. Una soluzione della seguente equazione differenziale

$$y' = y^2 - 9$$

A: y = 3 B: y = x C: N.A. D: $y = x^2$ E: $y(x) = e^{-x} - e^{3x}$

9. Calcolare la derivata della funzione $f(x) = (\sin(|x|))^2$ nel punto x = 0

A: N.A. B: N.E C: 0 D: -1 E: 1

10. Il seguente integrale

$$\int_0^{\frac{\pi}{2}} \frac{\cos(x)}{1 + (\sin(x))^2} \, dx$$

vale

A: $\frac{\pi}{3}$ B: π C: $\frac{\pi}{2}$ D: N.A. E: $\frac{\pi}{4}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

18 febbraio 2010

(Cognome)											_			(No	me)			-	ume	ma	trico	ola)				

A	В	С	D	\mathbf{E}	

1	00000
2	00000
3	0000
4	00000
5	
6	
7	
8	00000
9	
10	00000

1. Il limite

$$\lim_{x \to 0^+} \frac{\log(1 + x^{\frac{1}{4}})}{x}$$

vale

A: 1 B: N.E. C: N.A. D: 0 E: $+\infty$

2. Inf, min, sup e max del seguente insieme

$$A = \{ y = \frac{x}{x^2 + 4} : x \in \mathbb{R} \text{ e } x \ge 0 \}$$

A: $\{N.E., 0, 3, 3\}$ B: N.A. C: $\{0, N.E., 1, 1\}$ D: $\{2, 2, 3, 3\}$ E: $\{0, N.E., \frac{2}{8}, \frac{2}{8}\}$

3. Per quali valori di del parametro a > 0 la serie

$$\sum_{n=1}^{+\infty} a^{\ln(n)}$$

A: $a < \frac{1}{e}$ B: N.A. C: $a \le 1$ D: a = 2 E: a > 1

4. La funzione $f(x) = \arctan(|x|)$ è

A: è derivabile in ogni punto del suo dominio B: è discontinua nel punto x=0 C: N.A. D: $\inf_{x\in\mathbb{R}} f(x) = -\frac{\pi}{2}$ E: $0 \le f(x) < \frac{\pi}{2}$

5. Per quali valori di $a \in \mathbb{R}$ la funzione

$$f(x) = \begin{cases} x^2 + 2x & \text{se } x \le 0\\ ax & \text{se } x > 0 \end{cases}$$

è derivabile in x = 0

A: N.E. B: a = 0 C: $a = \frac{1}{2}$ D: a = 1 E: N.A.

6. Il polinomio di Taylor di grado 1 nel punto $x = \pi$ della funzione $f(x) = x^2 - \sin(x)$

A:
$$x^2$$
 B: N.A. C: $\pi^2 + (x - \pi) + \frac{1}{2}(x - \pi)^2$ D: $x(2\pi + 1) - \pi(1 + \pi)$ E: $-\pi + x + x^2$

7. Calcolare la derivata della funzione $f(x)=(\sin(|x|))^2$ nel punto x=0

A: 0 B: -1 C: N.E D: 1 E: N.A.

8. Il seguente integrale

$$\int_0^{\frac{\pi}{2}} \frac{\cos(x)}{1 + (\sin(x))^2} \, dx$$

vale

A: $\frac{\pi}{2}$ B: $\frac{\pi}{4}$ C: π D: N.A. E: $\frac{\pi}{3}$

9. Modulo e argomento del numero complesso $z = (1 + i\sqrt{3})^6$

A: $\{64, \frac{\pi}{2}\}$ B: N.A. C: $\{32, -\frac{\pi}{2}\}$ D: $\{1, \pi\}$ E: $\{64, 0\}$

10. Una soluzione della seguente equazione differenziale

$$y' = y^2 - 9$$

A: y = x B: $y(x) = e^{-x} - e^{3x}$ C: $y = x^2$ D: N.A. E: y = 3

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

18 febbraio 2010

(Cognome)													(No	me)			(N	ume	ro d	i ma	trice	ola)				

A	В	С	D	\mathbf{E}	

1	0000
2	
3	0000
4	0000
5	0000
6	
7	
8	
9	0000
10	0000

1. Una soluzione della seguente equazione differenziale

$$y' = y^2 - 9$$

A: $y = x^2$ B: y = x C: y = 3 D: $y(x) = e^{-x} - e^{3x}$ E: N.A

2. Il limite

$$\lim_{x\to 0^+}\frac{\log(1+x^{\frac{1}{4}})}{x}$$

vale

A: 1 B: N.A. C: N.E. D: $+\infty$ E: 0

3. Modulo e argomento del numero complesso $z=(1+i\sqrt{3})^6$

A:
$$\{1, \pi\}$$
 B: $\{32, -\frac{\pi}{2}\}$ C: $\{64, \frac{\pi}{2}\}$ D: N.A. E: $\{64, 0\}$

4. La funzione $f(x) = \arctan(|x|)$ è

A: N.A. B: è discontinua nel punto x=0 C: $\inf_{x\in\mathbb{R}} f(x) = -\frac{\pi}{2}$ D: è derivabile in ogni punto del suo dominio E: $0 \le f(x) < \frac{\pi}{2}$

5. Il seguente integrale

$$\int_0^{\frac{\pi}{2}} \frac{\cos(x)}{1 + (\sin(x))^2} \, dx$$

vale

A: $\frac{\pi}{4}$ B: π C: $\frac{\pi}{3}$ D: N.A. E: $\frac{\pi}{2}$

6. Il polinomio di Taylor di grado 1 nel punto $x=\pi$ della funzione $f(x)=x^2-\sin(x)$

A:
$$x^2$$
 B: $-\pi + x + x^2$ C: $x(2\pi + 1) - \pi(1 + \pi)$ D: $\pi^2 + (x - \pi) + \frac{1}{2}(x - \pi)^2$ E: N.A.

7. Per quali valori di $a \in \mathbb{R}$ la funzione

$$f(x) = \begin{cases} x^2 + 2x & \text{se } x \le 0\\ ax & \text{se } x > 0 \end{cases}$$

è derivabile in x = 0

A:
$$a = 0$$
 B: N.E. C: N.A. D: $a = \frac{1}{2}$ E: $a = 1$

8. Calcolare la derivata della funzione $f(x) = (\sin(|x|))^2$ nel punto x = 0

9. Per quali valori di del parametro a > 0 la serie

$$\sum_{n=1}^{+\infty} a^{\ln(n)}$$

A: a=2 B: $a<\frac{1}{e}$ C: N.A. D: a>1 E: $a\leq 1$

10. Inf, min, sup e max del seguente insieme

$$A = \{y = \frac{x}{x^2 + 4} : x \in \mathbb{R} \text{ e } x \ge 0\}$$

A: $\{0, N.E, \frac{2}{8}, \frac{2}{8}\}$ B: $\{N.E., 0, 3, 3\}$ C: $\{2, 2, 3, 3\}$ D: $\{0, N.E., 1, 1\}$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

18 febbraio 2010

(Cognome)													(No	me)			(N	ume	ro d	i ma	trice	ola)				

A	В	С	D	\mathbf{E}	
4 1	ט	\sim	רב	ப	

1	00000
2	
3	0000
4	0000
5	0000
6	00000
7	
8	00000
9	00000
10	00000

1. Per quali valori di del parametro a>0 la serie

$$\sum_{n=1}^{+\infty} a^{\ln(n)}$$

A: a = 2 B: N.A. C: $a < \frac{1}{e}$ D: a > 1 E: $a \le 1$

2. Il seguente integrale

$$\int_0^{\frac{\pi}{2}} \frac{\cos(x)}{1 + (\sin(x))^2} \, dx$$

vale

A: $\frac{\pi}{2}$ B: $\frac{\pi}{3}$ C: π D: N.A. E: $\frac{\pi}{4}$

3. Modulo e argomento del numero complesso $z=(1+i\sqrt{3})^6$

A: $\{1, \pi\}$ B: N.A. C: $\{32, -\frac{\pi}{2}\}$ D: $\{64, 0\}$ E: $\{64, \frac{\pi}{2}\}$

4. Per quali valori di $a \in \mathbb{R}$ la funzione

$$f(x) = \begin{cases} x^2 + 2x & \text{se } x \le 0\\ ax & \text{se } x > 0 \end{cases}$$

è derivabile in x = 0

A: a = 0 B: N.E. C: a = 1 D: $a = \frac{1}{2}$ E: N.A.

5. Il limite

$$\lim_{x \to 0^+} \frac{\log(1+x^{\frac{1}{4}})}{x}$$

vale

A: $+\infty$ B: 0 C: 1 D: N.E. E: N.A.

6. Calcolare la derivata della funzione $f(x) = (\sin(|x|))^2$ nel punto x = 0

A: -1 B: 1 C: 0 D: N.E E: N.A.

7. Il polinomio di Taylor di grado 1 nel punto $x=\pi$ della funzione $f(x)=x^2-\sin(x)$

A: N.A. B:
$$\pi^2 + (x - \pi) + \frac{1}{2}(x - \pi)^2$$
 C: $-\pi + x + x^2$ D: x^2 E: $x(2\pi + 1) - \pi(1 + \pi)$

8. Una soluzione della seguente equazione differenziale

$$y' = y^2 - 9$$

A: N.A. B: y = x C: $y(x) = e^{-x} - e^{3x}$ D: $y = x^2$ E: y = 3

9. Inf, min, sup e max del seguente insieme

$$A = \{ y = \frac{x}{x^2 + 4} : x \in \mathbb{R} \text{ e } x \ge 0 \}$$

A: $\{2,2,3,3\}$ B: N.A. C: $\{0,N.E.,1,1\}$ D: $\{N.E.,0,3,3\}$ E: $\{0,N.E,\frac{2}{8},\frac{2}{8}\}$

10. La funzione $f(x) = \arctan(|x|)$ è

A: $\inf_{x\in\mathbb{R}} f(x) = -\frac{\pi}{2}$ B: è derivabile in ogni punto del suo dominio C: è discontinua nel punto x=0 D: $0\leq f(x)<\frac{\pi}{2}$ E: N.A.

18 febbraio 2010

(Cognome)												_			(No	ome)			_	ume	i ma	trice	ola)			

CODICE = 537190

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

18 febbraio 2010

	(Cogn	ome)					(No	me)				ume	ro d	i ma	trice	ola)

CODICE = 150993

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

18 febbraio 2010

	(Cogn	ome)					(No	me)				ume	ro d	i ma	trice	ola)

CODICE = 837579

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

18 febbraio 2010

	(Cogn	ome)					(No	me)				ume	ro d	i ma	trice	ola)

CODICE = 048920

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

18 febbraio 2010

PARTE B

1. Si consideri la seguente funzione definita per x > 0:

$$f(x) = \frac{x^{\lambda}}{x^2 + 1}.$$

Per i valori significativi del parametro $\lambda \in \mathbb{R}$ si tracci un grafico qualitativo.

Soluzione. Si ha intanto che $\lim_{x\to 0^+} f(x) = 0$ se $\lambda > 0$, $\lim_{x\to 0^+} f(x) = 1$ se $\lambda = 0$ e $\lim_{x\to 0^+} f(x) = +\infty$ se $\lambda < 0$. Inoltre $\lim_{x\to +\infty} f(x) = +\infty$ se $\lambda > 2$, $\lim_{x\to +\infty} f(x) = 1$ se $\lambda = 2$ e $\lim_{x\to +\infty} f(x) = 0$ se $\lambda < 2$. Se $\lambda \leq 0$ la funzione è monotona decrescente (non limitata vicino a zero se $\lambda < 0$).

Figura 1: $\lambda < 0$

Per $0 < \lambda < 1$ la funzione cresce fino a $x = \sqrt{\frac{\lambda}{2-\lambda}}$ e poi decresce.

Per $\lambda=2$ la funzione è strettamente crescente, ma limitata. Per $\lambda>2$ è crescente, ma non limitata all'infinito.

Figura 2: $0 < \lambda < 2$

Figura 3: $2 < \lambda$

2. Calcolare (se converge) il seguente integrale generalizzato

$$\int_{e^2}^{+\infty} \frac{1}{x(\ln(x))^2 - x} \, dx.$$

Soluzione. Con il cambio di variabile $t = \ln(x)$ l'integrale diventa

$$\int_{2}^{+\infty} \frac{dt}{t^2 - 1}$$

e con semplici calcoli si ottiene

$$\int_{e^2}^{+\infty} \frac{1}{x(\ln(x))^2 - x} \, dx = \frac{\ln(3)}{2}.$$

3. Trovare la soluzione del seguente problema con "dati al contorno"

$$\begin{cases} y''(t) - 4y'(t) - 5y(t) = e^{3t} \\ y(0) = 1 \\ y(1) = 0. \end{cases}$$

Soluzione. Le soluzioni dell'equazione caratteristica sono $\lambda_1=-1$ e $\lambda_2=5$. Non c'è risonanza e la soluzione particolare del problema non omogeneo risulta essere $\frac{1}{8}\mathrm{e}^{-3t}$. Imponendo poi le condizioni a t=0 e t=1 si ottiene

$$y(t) = \frac{e^{-t} \left(-e^4 + 9e^6 + e^{4t} - 9e^{6t} - e^{4t+6} + e^{6t+4}\right)}{8(e^6 - 1)}$$

4. Determinare l'intervallo di convergenza della seguente serie di potenze

$$\sum_{n=1}^{+\infty} \frac{x^n}{n2^n}.$$

Chiamato $f(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n2^n}$ quanto vale f'(x) nel punto $x = \frac{1}{2}$?

Soluzione. La serie converge assolutamente per |x| < 2. Si ha convergenza (semplice) per x = -2 e la serie diverge per x = 2 (si riduce alla serie armonica). Dato che 1/2 è interno all'intervallo di convergenza assoluta si può derivare termine a termine e si ottiene

$$f'(x) = \sum_{n=1}^{+\infty} \frac{x^{n-1}}{2^n} = \frac{1}{2} \sum_{n=1}^{+\infty} \left(\frac{x}{2}\right)^{n-1}.$$

che è una progressione geometrica e quindi

$$f'(1/2) = \frac{2}{3}.$$