Resampling Techniques and their Application

-Class 10-

Frank Konietschke

Institut für Biometrie und Klinische Epidemiologie Charité - Universitätsmedizin Berlin, Berlin frank.konietschke@charite.de

• Panic disorder longitudinal trial

- Panic disorder longitudinal trial
 - Specific physical exercise therapy

- Panic disorder longitudinal trial
 - Specific physical exercise therapy
 - n = 15 patients

- Panic disorder longitudinal trial
 - Specific physical exercise therapy
 - *n* = 15 patients
 - Response: CGI-score before and after 4 weeks of treatment

- Panic disorder longitudinal trial
 - Specific physical exercise therapy
 - n = 15 patients
 - Response: CGI-score before and after 4 weeks of treatment
 - 0 = patient is healthy,..., 6 = patient is critically ill

- Panic disorder longitudinal trial
 - Specific physical exercise therapy
 - n = 15 patients
 - Response: CGI-score before and after 4 weeks of treatment
 - 0 = patient is healthy,..., 6 = patient is critically ill

Example: Discussion

• What is the research question?

Example: Discussion

• What is the research question?

• What is the data scale?

Example: Discussion

• What is the research question?

• What is the data scale?

Are means appropriate?

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$
- F_i is any distribution

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$
- F_i is any distribution
 - How to define an effect? ("Difference between the samples")

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$
- F_i is any distribution
 - How to define an effect? ("Difference between the samples")
 - Means are not defined

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$
- F_i is any distribution
 - How to define an effect? ("Difference between the samples")
 - Means are not defined
 - Other options?

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

•
$$X_k \sim F_1$$
, $Y_k \sim F_2$

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect: Difference of the Medians

$$x=c(6,3,5,4,5,3,4,5,5,4,6,4,4,5,6)$$

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect: Difference of the Medians
 - $\theta = Median(X) Median(Y)$

$$x=c(6,3,5,4,5,3,4,5,5,4,6,4,4,5,6)$$

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect: Difference of the Medians

•
$$\theta = Median(X) - Median(Y)$$

```
x=c(6,3,5,4,5,3,4,5,5,4,
6.4.4.5.6
y=c(4,1,3,4,6,3,3,4,3,3,
5.5.3.4.5
xM < -median(x)
xY<-median(y)
theta<- xM-xY
```

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect: Difference of the Medians
 - $\theta = Median(X) Median(Y)$
 - Crude Measure

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect: Difference of the Medians
 - $\theta = Median(X) Median(Y)$
 - Crude Measure
 - What else could we measure?

theta<- xM-xY

xY<-median(y)

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect: %{X is smaller than Y}

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect: %{X is smaller than Y}
 - p = Proportion of X < Y

- $\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect: %{X is smaller than Y}
 - p = Proportion of X < Y
 - Issue: Equal observations

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect: %{X is smaller than Y}
 - p = Proportion of X < Y
 - Issue: Equal observations
 - %(X < Y) + %(X > Y) + %(X = Y) = 100%

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect: %{X is smaller than Y}
 - p = Proportion of X < Y
 - Issue: Equal observations
 - %(X < Y) + %(X > Y) + %(X = Y) = 100%
 - Reasonable:

$$\%(X < Y) + \frac{1}{2}\%(X = Y)$$

•
$$\mathbf{X}_k = (X_k, Y_k)', k = 1, ..., n$$

- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect: %{X is smaller than Y}
 - p = Proportion of X < Y
 - Issue: Equal observations
 - %(X < Y) + %(X > Y) + %(X = Y) = 100%
 - Reasonable:

$$\%(X < Y) + \frac{1}{2}\%(X = Y)$$

```
\#X < Y + 1/2(X = Y)
grid1=expand.grid(x,v)
prop1 = (grid1[,1] < grid1[,2]) +
1/2*(grid1[,1]==grid1[,2])
p=mean(prop1)
\#Y < X + 1/2(X = Y)
prop2 = (grid1[,2]<grid1[,1]) +
1/2*(grid1[,2]==grid1[,1])
q=mean(prop2)
p+q
```

•
$$\mathbf{X}_k = (X_1, Y_k)', k = 1, ..., n$$

- $\mathbf{X}_k = (X_1, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$

- $\mathbf{X}_k = (X_1, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect and hypothesis

- $\mathbf{X}_k = (X_1, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect and hypothesis
 - Relative marginal effect $p = P(X_1 < Y_2) + 0.5P(X_1 = Y_2)$

- $\mathbf{X}_k = (X_1, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect and hypothesis
 - Relative marginal effect $p = P(X_1 < Y_2) + 0.5P(X_1 = Y_2)$
 - Interpretation

- $\mathbf{X}_k = (X_1, Y_k)', k = 1, ..., n$
- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect and hypothesis
 - Relative marginal effect $p = P(X_1 < Y_2) + 0.5P(X_1 = Y_2)$
 - Interpretation
 - If $p < \frac{1}{2}$: X tends to be larger than Y

•
$$\mathbf{X}_k = (X_1, Y_k)', k = 1, ..., n$$

- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect and hypothesis
 - Relative marginal effect $p = P(X_1 < Y_2) + 0.5P(X_1 = Y_2)$
 - Interpretation
 - If $p < \frac{1}{2}$: X tends to be larger than Y
 - If p = 1/2: No tendency to smaller or larger values

•
$$\mathbf{X}_k = (X_1, Y_k)', k = 1, ..., n$$

- $X_k \sim F_1$, $Y_k \sim F_2$
- Effect and hypothesis
 - Relative marginal effect $p = P(X_1 < Y_2) + 0.5P(X_1 = Y_2)$
 - Interpretation
 - If $p < \frac{1}{2}$: X tends to be larger than Y
 - If p = 1/2: No tendency to smaller or larger values
 - Hypothesis:

$$H_0: p = 1/2$$

• Two samples: What is the chance, data in the first are smaller than in the second?

- Two samples: What is the chance, data in the first are smaller than in the second?
- What is the probability that men are taller than women?

- Two samples: What is the chance, data in the first are smaller than in the second?
- What is the probability that men are taller than women?
- What is the probability, blood pressure under treatment is higher than under control?

- Two samples: What is the chance, data in the first are smaller than in the second?
- What is the probability that men are taller than women?
- What is the probability, blood pressure under treatment is higher than under control?
- What is the probability, that scores after 4 weeks of treatment are smaller than at the beginning?

- Two samples: What is the chance, data in the first are smaller than in the second?
- What is the probability that men are taller than women?
- What is the probability, blood pressure under treatment is higher than under control?
- What is the probability, that scores after 4 weeks of treatment are smaller than at the beginning?
- The relative effect thus measures, whether scores are smaller/larger between the groups

- Ranks of the data
 - Sort the data

- Ranks of the data
 - Sort the data
 - Smallest number gets rank 1, largest gets rank 2n

- Sort the data
- Smallest number gets rank 1, largest gets rank 2n
- Mid-ranks are used to adjust for ties

- Sort the data
- Smallest number gets rank 1, largest gets rank 2n
- Mid-ranks are used to adjust for ties
- In R: rank(x)

- Sort the data
- Smallest number gets rank 1, largest gets rank 2n
- Mid-ranks are used to adjust for ties
- In R: rank(x)

```
x < -c(5,3,2,1,4)
rank(x)
Two samples:
x=c(6,3,5,4,5,3,4,5,5,4,
6.4.4.5.6
y=c(4,1,3,4,6,3,3,4,3,3,
5.5.3.4.5
xy=c(x,y)
rank(xy)
```

• Combine the two samples in a joint sample

- Combine the two samples in a joint sample
- $X_1, ..., X_n, Y_1, ..., Y_n$

- Combine the two samples in a joint sample
- $X_1, \ldots, X_n, Y_1, \ldots, Y_n$
- Assign Ranks: $R_{x1}, \ldots, R_{xn}, R_{y1}, \ldots, R_{yn}$

- Combine the two samples in a joint sample
- $X_1, ..., X_n, Y_1, ..., Y_n$
- Assign Ranks: $R_{x1}, \ldots, R_{xn}, R_{y1}, \ldots, R_{yn}$
- Compute

$$\overline{R}_{x}$$
. = $\frac{1}{n} \sum_{k=1}^{n} R_{xk}$ "Mean of the first"

$$\overline{R}_{y}$$
. = $\frac{1}{n} \sum_{k=1}^{n} R_{yk}$ "Mean of the second"

- Combine the two samples in a joint sample
- $X_1, ..., X_n, Y_1, ..., Y_n$
- Assign Ranks: $R_{x1}, \ldots, R_{xn}, R_{y1}, \ldots, R_{yn}$
- Compute

$$\overline{R}_{x}$$
. = $\frac{1}{n} \sum_{k=1}^{n} R_{xk}$ "Mean of the first"

$$\overline{R}_{y}$$
. = $\frac{1}{n} \sum_{k=1}^{n} R_{yk}$ "Mean of the second"

Estimator:

$$\widehat{p} = \frac{1}{2n} (\overline{R}_{y \cdot} - \overline{R}_{x \cdot}) + 1/2$$

- Combine the two samples in a joint sample
- \bullet $X_1, \ldots, X_n, Y_1, \ldots, Y_n$
- Assign Ranks: $R_{x1}, \ldots, R_{xn}, R_{y1}, \ldots, R_{yn}$
- Compute

$$\overline{R}_{x}$$
. = $\frac{1}{n} \sum_{k=1}^{n} R_{xk}$ "Mean of the first"

$$\overline{R}_{y}$$
. = $\frac{1}{n} \sum_{k=1}^{n} R_{yk}$ "Mean of the second"

n<-length(x)

xy<-c(x,y)
rxy <- rank(xy)</pre>

mRx <-mean(rxy[1:n])
mRy <-mean(rxy[(n+1):(2*n)])

Estimator:

$$\widehat{p} = \frac{1}{2n} (\overline{R}_{y \cdot} - \overline{R}_{x \cdot}) + 1/2$$

phat<-1/(2*n)*(mRy-mRx)+1/2

• Need to estimate the variance of \hat{p}

- Need to estimate the variance of \hat{p}
- Needed: Ranks and internal ranks per sample

- Need to estimate the variance of \hat{p}
- Needed: Ranks and internal ranks per sample
- Ranks internal (only x): $R_{x1}^{(x)}, \dots, R_{xn}^{(x)}$

- Need to estimate the variance of \hat{p}
- Needed: Ranks and internal ranks per sample
- Ranks internal (only x): R_{x1}^(x),..., R_{xn}^(x)
 Ranks internal (only y): R_{y1}^(y),..., R_{yn}^(y)

- Need to estimate the variance of \hat{p}
- Needed: Ranks and internal ranks per sample
- Ranks internal (only x): $R_{x1}^{(x)}, \dots, R_{xn}^{(x)}$
- Ranks internal (only y): $R_{v1}^{(y)}, \dots, R_{yn}^{(y)}$
- Compute

$$Z_{xk} = \frac{1}{n} * (R_{xk} - R_{xk}^{(x)})$$

$$Z_{yk} = \frac{1}{n} * (R_{yk} - R_{yk}^{(y)})$$

$$D_k = Z_{xk} - Z_{yk}$$

- Need to estimate the variance of \hat{p}
- Needed: Ranks and internal ranks per sample
- Ranks internal (only x): $R_{x1}^{(x)}, \dots, R_{xn}^{(x)}$
- Ranks internal (only y): $R_{v1}^{(y)}, \dots, R_{vn}^{(y)}$
- Compute

$$Z_{xk} = \frac{1}{n} * (R_{xk} - R_{xk}^{(x)})$$

$$Z_{yk} = \frac{1}{n} * (R_{yk} - R_{yk}^{(y)})$$

$$D_{k} = Z_{xk} - Z_{yk}$$

Estimator:

$$\widehat{\sigma}^2 = \frac{1}{n-1} \sum_{k=1}^{n} (D_k - \overline{D}_k)^2$$

- Need to estimate the variance of \widehat{p}
- Needed: Ranks and internal ranks per sample
- Ranks internal (only x): $R_{x1}^{(x)}, \dots, R_{xn}^{(x)}$
- Ranks internal (only y): $R_{v1}^{(y)}, \dots, R_{vn}^{(y)}$
- Compute

$$Z_{xk} = \frac{1}{n} * (R_{xk} - R_{xk}^{(x)})$$

$$Z_{yk} = \frac{1}{n} * (R_{yk} - R_{yk}^{(y)})$$

$$D_k = Z_{xk} - Z_{yk}$$

Estimator:

$$\widehat{\sigma}^2 = \frac{1}{n-1} \sum_{k=1}^{n} (D_k - \overline{D}_k)^2$$

sigmahat <-var(Dk)

Test Statistic

$$T = \sqrt{n} \frac{(\widehat{p} - 1/2)}{\widehat{\sigma}}$$

Test Statistic

$$T = \sqrt{n} \frac{(\widehat{p} - 1/2)}{\widehat{\sigma}}$$

 p-values and critical values are computed from a t-distribution with n - 1 degrees of freedom

Test Statistic

$$T=\sqrt{n}\frac{(\widehat{p}-1/2)}{\widehat{\sigma}}$$

- p-values and critical values are computed from a t-distribution with n - 1 degrees of freedom
- $(1 \alpha)100\%$ Confidence Intervals:

$$\widehat{p} \pm t_{1-\alpha/2}(n-1)\widehat{\sigma}/\sqrt{n}$$

Test Statistic

$$T = \sqrt{n} \frac{(\widehat{p} - 1/2)}{\widehat{\sigma}}$$

- p-values and critical values are computed from a t-distribution with n - 1 degrees of freedom
- $(1 \alpha)100\%$ Confidence Intervals:

$$\widehat{p} \pm t_{1-\alpha/2}(n-1)\widehat{\sigma}/\sqrt{n}$$

```
T=sqrt(n)*(phat-1/2)/sqrt(sigmahat)
pvalue=2*min(pt(T,n-1),1-pt(T,n-1))
crit <-qt(0.975,n-1)
SE <- sqrt(sigmahat)/sqrt(n)</pre>
```

Test Statistic

$$T = \sqrt{n} \frac{(\widehat{p} - 1/2)}{\widehat{\sigma}}$$

- p-values and critical values are computed from a t-distribution with n - 1 degrees of freedom
- $(1 \alpha)100\%$ Confidence Intervals:

$$\widehat{p} \pm t_{1-\alpha/2}(n-1)\widehat{\sigma}/\sqrt{n}$$

T=sqrt(n)*(phat-1/2)/sqrt(sigmahat)
pvalue=2*min(pt(T,n-1),1-pt(T,n-1))

crit <-qt(0.975,n-1)
SE <- sqrt(sigmahat)/sqrt(n)</pre>

Lower = phat -crit*SE
Upper = phat +crit*SE

Is the method applicable when samples are small?

Simulation: Munzel's test (1999)

• Type-1 error simulation ($\alpha = 5\%$, $n_{sim} = 10,000$)

Simulation: Munzel's test (1999)

- Type-1 error simulation ($\alpha = 5\%$, $n_{sim} = 10,000$)
- $\mathbf{X}_k = (X_{1k}, X_{2k}) \sim N(\mathbf{0}, \mathbf{V}), k = 1, \dots, 10$

Simulation: Munzel's test (1999)

- Type-1 error simulation ($\alpha = 5\%$, $n_{sim} = 10,000$)
- $\mathbf{X}_k = (X_{1k}, X_{2k}) \sim N(\mathbf{0}, \mathbf{V}), k = 1, \dots, 10$
- **V**: compound symmetric (variance = 1, covariance = ρ)

Simulation: Munzel's test (1999)

- Type-1 error simulation ($\alpha = 5\%$, $n_{sim} = 10,000$)
- $\mathbf{X}_k = (X_{1k}, X_{2k}) \sim N(\mathbf{0}, \mathbf{V}), k = 1, \dots, 10$
- **V**: compound symmetric (variance = 1, covariance = ρ)

• How?

- How?
 - Explore Resampling Methods

- How?
 - Explore Resampling Methods
 - For example, Wild-Bootstrap Approach

- How?
 - Explore Resampling Methods
 - For example, Wild-Bootstrap Approach
 - Permute data per subject

- How?
 - Explore Resampling Methods
 - For example, Wild-Bootstrap Approach
 - Permute data per subject
- Procedure

- How?
 - Explore Resampling Methods
 - For example, Wild-Bootstrap Approach
 - Permute data per subject
- Procedure
 - Permute randomly X_{1k} and X_{2k} within each pair X_k

- How?
 - Explore Resampling Methods
 - For example, Wild-Bootstrap Approach
 - Permute data per subject
- Procedure
 - Permute randomly X_{1k} and X_{2k} within each pair X_k
 - Assign new ranks for permuted data

- How?
 - Explore Resampling Methods
 - For example, Wild-Bootstrap Approach
 - Permute data per subject
- Procedure
 - Permute randomly X_{1k} and X_{2k} within each pair X_k
 - Assign new ranks for permuted data
 - Compute $T^* = \sqrt{n}(\widehat{p}^* 1/2)/\widehat{\sigma}*$

- How?
 - Explore Resampling Methods
 - For example, Wild-Bootstrap Approach
 - Permute data per subject
- Procedure
 - Permute randomly X_{1k} and X_{2k} within each pair X_k
 - Assign new ranks for permuted data
 - Compute $T^* = \sqrt{n}(\widehat{p}^* 1/2)/\widehat{\sigma}*$
 - Repeat this step several times

- How?
 - Explore Resampling Methods
 - For example, Wild-Bootstrap Approach
 - Permute data per subject
- Procedure
 - Permute randomly X_{1k} and X_{2k} within each pair X_k
 - Assign new ranks for permuted data
 - Compute $T^* = \sqrt{n}(\widehat{p}^* 1/2)/\widehat{\sigma}*$
 - Repeat this step several times
 - CI: $\widehat{p} \pm z_{1-\alpha/2}^* \widehat{\sigma}/\sqrt{n}$

- How?
 - Explore Resampling Methods
 - For example, Wild-Bootstrap Approach
 - Permute data per subject
- Procedure
 - Permute randomly X_{1k} and X_{2k} within each pair X_k
 - Assign new ranks for permuted data
 - Compute $T^* = \sqrt{n}(\widehat{p}^* 1/2)/\widehat{\sigma}*$
 - Repeat this step several times
 - CI: $\widehat{p} \pm z_{1-\alpha/2}^* \widehat{\sigma}/\sqrt{n}$
- Project: Explore other resampling methods

- How?
 - Explore Resampling Methods
 - For example, Wild-Bootstrap Approach
 - Permute data per subject
- Procedure
 - Permute randomly X_{1k} and X_{2k} within each pair X_k
 - Assign new ranks for permuted data
 - Compute $T^* = \sqrt{n}(\widehat{p}^* 1/2)/\widehat{\sigma}*$
 - Repeat this step several times
 - CI: $\widehat{p} \pm z_{1-\alpha/2}^* \widehat{\sigma}/\sqrt{n}$
- Project: Explore other resampling methods
- Note: Permuting data overall is not applicable in this model

Theoretically shown

- Theoretically shown
 - Procedure is asymptotically exact under non-exchangeable data

- Theoretically shown
 - Procedure is asymptotically exact under non-exchangeable data
 - Exact under exchangeability

- Theoretically shown
 - Procedure is asymptotically exact under non-exchangeable data
 - Exact under exchangeability
 - Confidence intervals are asymptotically exact

- Theoretically shown
 - Procedure is asymptotically exact under non-exchangeable data
 - Exact under exchangeability
 - Confidence intervals are asymptotically exact
 - Both procedures have equal power (asymptotically)

- Theoretically shown
 - Procedure is asymptotically exact under non-exchangeable data
 - Exact under exchangeability
 - Confidence intervals are asymptotically exact
 - Both procedures have equal power (asymptotically)
 - Reference: Konietschke and Pauly (2012), A studentized permutation test for the Nonparametric Behrens-Fisher Problem in Paired Data

Simulations - Exchangeable data

Type - I Error = 5% (n=10)

Simulations - Non Exchangeable data

Type - I Error = 5% (n=10)

Simulations - 95%-Coverage Probability

• Point estimate $\hat{p} = .29$

- Point estimate $\hat{p} = .29$
 - Scores tend to smaller after 4 weeks than under baseline

- Point estimate $\hat{p} = .29$
 - Scores tend to smaller after 4 weeks than under baseline
- Hypothesis $H_0: p = 1/2 \rightarrow p value = .0006$

- Point estimate $\hat{p} = .29$
 - Scores tend to smaller after 4 weeks than under baseline
- Hypothesis $H_0: p = 1/2 \rightarrow p value = .0006$
- 95%-CI: [0.16; 0.43]

- Point estimate $\hat{p} = .29$
 - Scores tend to smaller after 4 weeks than under baseline
- Hypothesis $H_0: p = 1/2 \rightarrow p value = .0006$
- 95%-CI: [0.16; 0.43]
- Munzel's test: similar results

k	Baseline		Week	4	Baseline W	leek 4
1	6	4			28.5	14.0
2	3	1			5.5	1.0
3	5	3			22.5	5.5
4	4	4			14.0	14.0
5	5	6			22.5	28.5
6	3	3			5.5	5.5
7	4	3			14.0	5.5
8	5	4			22.5	14.0
9	5	3			22.5	5.5
10	4	3			14.0	5.5
11	6	5			28.5	22.5
12	4	5			14.0	22.5
13	4	3			14.0	5.5
14	: 5	4			22.5	14.0
15	6	5			28.5	22.5
		TÉ UNIVERSITÄTSMED	IZIN BERLIN			

Ranks

Patient PGI

• Number of possible permutations: 2ⁿ

- Number of possible permutations: 2ⁿ
- So, for small n, all possible permutations can be performed

- Number of possible permutations: 2ⁿ
- So, for small *n*, all possible permutations can be performed
- How?

- Number of possible permutations: 2ⁿ
- So, for small n, all possible permutations can be performed
- How?
- Need a matrix that contains all possible placement changes within each pair

- Number of possible permutations: 2ⁿ
- So, for small n, all possible permutations can be performed
- How?
- Need a matrix that contains all possible placement changes within each pair
- Notation

$$\mathbf{X}_k = (X_k, X_{k+n})', k = 1, \ldots, n$$

- Number of possible permutations: 2ⁿ
- So, for small n, all possible permutations can be performed
- How?
- Need a matrix that contains all possible placement changes within each pair
- Notation

$$\mathbf{X}_k = (X_k, X_{k+n})', k = 1, \dots, n$$

• *n* = 3

$$\mathbf{X}_k = \left(egin{array}{ccc} X_1 & X_4 \ X_2 & X_5 \ X_3 & X_6 \end{array}
ight) \Rightarrow \mathbf{X}_k = (X_1, X_2, X_3, X_4, X_5, X_6)'$$

• Now, generate a matrix...

- Now, generate a matrix...
 - that has 1 and (n + 1) how often in the first row and in which order?

- Now, generate a matrix...
 - that has 1 and (n + 1) how often in the first row and in which order?
 - that has 2 and (n+2) how often in the second row and in which order?

- Now, generate a matrix...
 - that has 1 and (n + 1) how often in the first row and in which order?
 - that has 2 and (n+2) how often in the second row and in which order?
 - that has 3 and (n+3) how often in the second row and in which order?

- Now, generate a matrix...
 - that has 1 and (n + 1) how often in the first row and in which order?
 - that has 2 and (n+2) how often in the second row and in which order?
 - that has 3 and (n+3) how often in the second row and in which order?
 - ...

n=4

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1	1	1	1	1	1	1	5	5	5	5	5	5	5	5
2	2	2	2	6	6	6	6	2	2	2	2	6	6	6	6
3	3	7	7	3	3	7	7	3	3	7	7	3	3	7	7
4	8	4	8	4	8	4	8	4	8	4	8	4	8	4	8
5	5	5	5	5	5	5	5	1	1	1	1	1	1	1	1
6	6	6	6	2	2	2	2	6	6	6	6	2	2	2	2
7	7	3	3	7	7	3	3	7	7	3	3	7	7	3	3
8	4	8	4	8	4	8	4	8	4	8	4	8	4	8	4

```
permuall <- function (ns im .rho .n) {
#-----Daten einlesen----#
n1 <- n+1
n2<-2*n
x<-matrix(0.ncol=nsim.nrow=n2)
for (h in 1:nsim) {
x11<-rnorm(n)
x22<-rho*x11+sqrt(1-rho^2)*(rnorm(n))
x[,h]<-c(x11,x22)
#----#
tcrit<-qt(0.975,n-1)
x1 < -x[1:n]
x2 < -x[n1:n2]
rx \leftarrow applv(x, 2, rank)
rx1<-rx[1:n.]
rx2<-rx[n1:n2.]
rix1 <-apply(x1,2,rank)
rix2<-apply(x2,2,rank)
BM1 < -1/n*(rv1-riv1)
BM2 < -1/n*(rx2-rix2)
BM3<-BM1-BM2
BM4 < -1/(2*n)*(rx1 - rx2)
pd<-colMeans (BM2)
m<-colMeans(BM3)
v < -(colSums(BM3^2) - n*m^2)/(n-1)
v0 < -(v == 0)
v[v0]<-1/n
T \leftarrow sqrt(n) * (pd-1/2) / sqrt(v)
```

```
-----Studentized Permutation Test---#
 nperm<-2^n
  if(nperm <10000){
 p<-0
 for (i in 1:n){
  a < -rep(c(rep(c(i,i+n),nperm/(2^i)),rep(c(i+n,i),nperm/(2^i))),2^(i-1))
  p<-rbind(p,a)
 p<-p[2:(n+1),]
 P<-matrix(p,ncol=nperm)}
if (nperm >=10000){
```

```
P[,h]<-c(t(apply(cbind(1:n,(n+1):(2*n)),1,sample)))}}
```

P<-matrix(0,nrow=(2*n),ncol=nperm)

nperm=10000

for (h in 1:nperm){

```
#----Beginn der Simulationsschleife----#
BM = PERM = c()
for (s in 1:nsim) {
xs<-x[.s]
rs<-rx[.s]
#----#
xperm<-matrix(xs[P].nrow=n2.ncol=nperm)
rxperm <- matrix (rs [P], nrow = n2, ncol = nperm)
xperm1 < -xperm[1:n.]
xperm2<-xperm[n1:n2,]
rperm1 <- rxperm[1:n,]
rperm2<-rxperm[n1:n2.]
riperm1<-apply(xperm1,2,rank)
riperm2<-apply(xperm2,2,rank)
BMperm2<-1/n*(rperm2-riperm2)
BMperm3<-1/n*(rperm1-riperm1)-BMperm2
pdperm<-colMeans(BMperm2)
mperm3<-colMeans(BMperm3)
vperm3<- (colSums(BMperm3^2)-n*mperm3^2)/(n-1)
vperm30<-(vperm3==0)
vperm3[vperm30] <- 1/n
Tperm<-sqrt(n)*(pdperm-1/2)/sqrt(vperm3)
p1perm<-mean(Tperm<=T[s]); p2perm<-mean(Tperm>=T[s])
pperm<-2*min(p1perm.p2perm)
PERM[s]<-(pperm<0.05)}
ergebnis <- data.frame(nsim=nsim,
nperm=nperm.n=n.rho=rho.BM= mean(abs(T)>tcrit).
PERM=mean (PERM))
ergebnis}
permuall (100.0.7)
```