සියලු ම හිමිකම් ඇවිරිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved)

ලංකා විතාශ දෙපාර්ගමේන්තුව ලී ලංකා විතාශ දෙපාර්**ලාම්ද්යමුදුම් නිසා දිලාල් පැහැරිල් මේ දැන්වා දෙන දැන්වා දැන** ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව லங்கைப் பரீட்சைத் திணைக்களம் இலங்கை**ப் டிற்காரு நில்லாக்களில் நிலுக்கு** திணைக்களில் இலங்கைப் பரீட்சைத் திணைக்களில்

> අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2017

රසායන විදහාව இரசாயனவியல் I Chemistry

පැය දෙකයි இரண்டு மணித்தியாலம் Two hours

கவனிக்க :

- * ஆவர்த்தன அட்டவணை வழங்கப்பட்டுள்ளது.
- * இவ்வினாத்தாள் 08 பக்கங்களைக் கொண்டுள்ளது.
- 🛪 எல்லா வினாக்களுக்கும் விடை எழுதுக.
- * கணிப்பானைப் பயன்படுத்தக்கூடாது.
- * விடைத்தாளில் தரப்பட்டுள்ள இடத்தில் உமது **சுட்டெண்ணை** எழுதுக.
- 🛠 விடைத்தாளின் பிற்பக்கத்தில் தரப்பட்டுள்ள அறிவுறுத்தல்களைக் கவனமாகப் பின்பற்றுக.
- * 1 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (1),(2),(3),(4),(5) என இலக்கமிடப்பட்ட விடைகளில் சரியான அல்லது மிகப் பொருத்தமான விடையைத் தெரிந்தெடுத்து, அதனைக் குறித்து நிற்கும் இலக்கத்தில் தரப்பட்டுள்ள அறிவுறுத்தல்களுக்கு அமைய விடைத்தாளில் புள்ளடி (x) இடுக.

அகில வாயு மாநிலி $R = 8.314 \,\mathrm{J \, K}^{-1} \,\mathrm{mol}^{-1}$ அவகாதரோ மாறிலி $N_A = 6.022 \times 10^{23} \, \mathrm{mol}^{-1}$ பிளாங்கின் மாறிலி $h = 6.626 \times 10^{-34} \, \mathrm{J s}$ ஒளியின் வேகம்

- 1. அணுக் கட்டமைப்பு தொடர்பான தொம்சனின் 'ப்ளம் புடிங்' மாதிரியுருவைப் பிழையென நிருபித்த விஞ்ஞானி
 - (1) ஏர்னஸ்ட் இரதபோர்ட்

- (2) ரொபர்ட் மில்லிக்கன்
- (3) நீல்ஸ் போர்

- (4) இயூஜின் கோல்ட்ஸ்ரைன்
- (5) ஹென்றி மோஸ்லி
- 2. கீழே தரப்பட்டுள்ள மூலக்கூறுகள் தொடர்பாகப் பின்வருவனவற்றுள் **பொய்யான** கூற்று எது ?

- (1) எல்லா மூலக்கூறுகளும் முனைவுப் பங்கீட்டுவலுப் பிணைப்புகளைக் கொண்டுள்ளன.
- (2) எல்லா மூலக்கூறுகளும் வெவ்வேறு வடிவங்களைக் கொண்டுள்ளன.
- (3) எல்லா மூலக்கூறுகளும் அட்டம விதிக்குக் கீழ்ப்படிவதில்லை.
- (4) எல்லா மூலக்கூறுகளும் முனைவற்றன.
- (5) இரண்டு மூலக்கூறுகள் மாத்திரம் அவற்றின் மத்திய அணுக்களில் தனிச் சோடி இலத்திரன்களைக் கொண்டுள்ளன.
- 3. பின்வரும் சேர்வையின் IUPAC பெயர் யாது ?

H-C≡C-CH-CH-CH₂CH

- (1) 4-formylhex-1-vn-3-ol
- (2) 4-formyl-3-hydroxyhex-1-yne
- (3) 2-ethyl-3-hydroxy-4-ynepentanal
- (4) 3-hydroxy-4-ethyl-1-ynepentanal
- (5) 2-ethyl-3-hydroxypent-4-ynal
- 4. நைதரசனின் ஒட்சியேற்ற நிலை -1 ஆக இருப்பது
 - (1) N₂O₄ இல்
- (2) N₂O இல்
- (3) NO₂F இல்
- (4) NH₂ இல்
- (5) NH₂OH இல்
- 5. மத்திய அணுவைச் சூழ முக்கோண இரு கூம்பக இலத்திரன் சோடிக் கேத்திரகணிதத்தை அடிப்படையாகக் கொண்டு பல மூலக்கூறுகளின் வடிவங்கள் உருவாகியுள்ளன. அவை
 - (1) நேர்கோடு, கோணம், சீ-சோ
- (2) நேர்கோடு, T வடிவம், சீ-சோ
- (3) நேர்கோடு, முக்கோணக் கூம்பகம், T வடிவம் (4) தள முக்கோணம், கோணம், T வடிவம்
- (5) நேர்கோடு, தள முக்கோணம், சீ-சோ
- 6. அமோனியம் நைத்திரேற்றானது உயர் வெப்பநிலையில் நைதரசன் வாயு, ஒட்சிசன் வாயு, நீராவி ஆகியவற்றை உருவாக்கியவாறு வெடித்துப் பிரிகையடையும். நியம வெப்பநிலையிலும் அமுக்கத்திலும் 240 g அமோனியம் நைத்திரேற்று பிரிகையடைந்து உருவாகும் வாயுக்களின் மொத்த லீற்றர்களின் எண்ணிக்கை

(H=1,N=14,O=16, நியம வெப்பநிலையிலும் அமுக்கத்திலும் ஒரு மூல் வாயுவின் கனவளவு 22.4 லீற்றர் ஆகும்.)

- (1) 33.6
- (2) 67.2
- (3) 100.8
- (4) 134.4
- (5) 235.2

7.	$\mathbf{AX},\mathbf{BX}_2$ ஆகியன நீரில் அரிதாகக் கரையும் இரு உப்புகளாகும். அறை வெப்பநிலையில் அவற்றின் கரைதிற	தன்
	பெருக்கங்கள் முறையே $K_{ m sp_1},K_{ m sp_2}$ ஆகும். ${f AX}$ இன் கரைதிறன் p ஆவதோடு ${f BX}_2$ இன் அப்பெறுமானம் q ஆகு	jib.
	பெருக்கங்கள் முறையே $K_{ m sp_1}, K_{ m sp_2}$ ஆகும். ${f AX}$ இன் கரைதிறன் p ஆவதோடு ${f BX}_2$ இன் அப்பெறுமானம் q ஆகு ஒவ்வோர் உப்பும் அதன் நிரம்பற் கரைசலுடன் சமநிலையில் உள்ளபோது $\dfrac{K_{ m sp_1}}{{f A}_{ m (aq)}^+}=\dfrac{K_{ m sp_2}}{{f B}_{ m (aq)}^{2+}}$ ஆகுமெனி பின்வருவனவற்றுள் சரியானது எது ?	कां,

- $(1) \quad p = a^2$
- $(2) p^2 = q$

- (3) $4p = q^2$ (4) $p = 4q^2$ (5) $p = 2q^2$
- ${f 8.}$ பின்வருவனவற்றுள் கார, கார மண் உலோகங்கள் தொடர்பாகப் **பொப்பான** கூற்று எது ?
 - (1) எல்லாக் காரமண் உலோகங்களும் N_2 வாயுவுடன் உயர் வெப்பநிலையில் தாக்கம்புரியும்.
 - (2) காரமண் உலோகங்களின் உருகுநிலைகள் அவ் ஆவர்த்தனத்தில் உள்ள கார உலோகங்களின் உருகுநிலைகளை விட அதிகமாகும்.
 - (3) கார உலோகங்களின் இரண்டாம் அயனாக்கற் சக்திகள் அவ் ஆவர்த்தனத்தில் உள்ள காரமண் உலோகங்களின் அப்பெறுமானங்களை விட மிக அதிகமாகும்.
 - (4) காரமண் உலோகங்கள் உருவாக்கும் எல்லா ஐதரொட்சைட்டுகளும் வலிமையான மூலங்களாகும்.
 - (5) கார உலோக ஐதரொட்சைட்டுகளின் கரைதிறன் கூட்டத்தின் வழியே கீழ்நோக்கிச் செல்ல அதிகரிக்கும்.
- 9. லித்தியத்தின் (Li) வலுவளவு இலத்திரன் உணரும் பயன்படு கரு ஏற்றம்
 - (Li, Z = 3,சார் அணுத் திணிவு = 7)
 - (1) +3 இற்குச் சமனாகும்.
- (2) +3 இலும் குறைவாகும்.
- (3) +3 இலும் அதிகமாகும்.

- (4) +7 இந்குச் சமணகும்.
- (5) +7 இலும் குறைவாகும்.
- 10. தரப்பட்டுள்ள ஒரு வெப்பநிலையில் மூடிய விறைத்த கொள்கலத்தில் பின்வரும் சமநிலை இருக்கும். $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$

அவ்வெப்பநிலையில் கொள்கலத்தினுள் மேலதிக அளவு Oှ(g) சேர்க்கப்பட்டது. சமநிலையை மீண்டும் அடைந்த பின்னர் தொடக்கச் சமநிலையில் இருந்த பெறுமானத்திலும் ஒப்பீட்டளவில குறைந்த பெறுமானத்தைக் கொண்டிருப்பது பின்வருவனவற்றுள் எது ?

- (1) தாக்கத்தின் சமநிலை மாறிலி
- (2) தொகுதியின் மொத்த அமுக்கம்
- (3) தொகுதியிலுள்ள SO₂(g) இன் அளவு
- (4) தொகுதியிலுள்ள $\mathrm{SO}_3(\mathsf{g})$ இன் அளவு
- (5) தொகுதியிலுள்ள O₂(g) இன் அளவு
- நைதரசன் இனங்களின் O—N—O கோணம் தொடர்பாகப் பின்வருவனவற்றுள் உண்மையானது எது ?
- (1) $NO_{2}^{+} > NO_{2}^{-} > NO_{2} > NO_{4}^{3-}$ (2) $NO_{4}^{3-} > NO_{2}^{+} > NO_{2}^{-} > NO_{2}^{-}$ (3) $NO_{2}^{+} > NO_{2}^{-} > NO_{2}^{-} > NO_{4}^{3-}$ (4) $NO_{4}^{3-} > NO_{2} > NO_{2}^{-} > NO_{2}^{+}$
- (5) $NO_3^+ > NO_3^- > NO_4^{3-} > NO_3^{3-}$
- 12. ஒரு விளக்கு செக்கனுக்கு 6.0 J சக்தியைக் கட்புல ஒளியின் நீலப் பிரதேசத்தில் (470 nm) உற்பத்தி செய்யும். $1.0 imes 10^{20}$ போட்டன்களைப் பிறப்பிப்பதற்கு விளக்கு எவ்வளவு நேரம் ஒளிர வேண்டும் ?
- (3) 8.5 s
- (4) 9.2 s
- 13. ஒரு தாக்கம் 298 K இலும் 100 kPa அமுக்கத்திலும் சுபமாக நடைபெறும் அதே வேளை அது உயர் வெப்பநிலையிலும் அதே அமுக்கத்திலும் சுயமாக நடைபெறாது. 298 K இலும் 100 kPa அமுக்கத்திலும் இத்தாக்கத்திற்காகப் பின்வருவனவற்றுள் எது **உண்மையானது** ?

	ΔG	ΔH	ΔS
(1)	நேர்	நேர்	நேர்
(2)	மறை	மறை	மறை
(3)	ന യു	மறை	நேர்
(4)	ഥത്വെ	நேர்	மறை
(5)	நேர்	நேர்	மறை

More Past Papers at tamilguru.lk

- 🗴 என்னும் ஓர் அறியப்படாத வாயுவின் மூலர்த் திணிவைத் துணிவதற்குப் பின்வரும் நடைமுறை பயன்படுத்தப்பட்டது. முதலில் உலர் வளியைக் கொண்ட V என்னும் கனவளவுடைய ஒரு விறைத்த கொள்கலத்தின் திணிவு m, என அளவிடப்பட்டது. பின்னர் உலர் வளி அகற்றப்பட்டு கொள்கலம் ஓர் அறியப்படாத வாயு ${f X}$ இனால் நிரப்பப்பட்டு திணிவு $m_{_{\! 2}}$ என அளவிடப்பட்டது. உலர் வளி, அறியப்படாத வாயு ஆகிய இரண்டும் ஒரே வெப்பநிலையிலும் (T)அமுக்கத்திலும் (P) உள்ளன. உலர் வளியின் அடர்த்தி d ஆகும். பின்வரும் எக்கோவை அறியப்படாத வாயுவின் மூலர்த் திணிவைத் தரும் ?
 - (1) $\frac{dRT}{P}$

- (2) $\frac{\left[m_2 \left(m_1 dV\right)\right]RT}{PV}$ (3) $\frac{\left(m_1 m_2\right)RT}{PV}$

 $(4) \quad \frac{\left(m_2 - m_1\right)RT}{PV}$

(5) $\frac{\left[m_1 - \left(m_2 - dV\right)\right]RT}{PV}$

15.	ஓர் ஒருமூல மென்னமிலத்தின் கனவளவு $V_{_1}$ ஐ ஓர் ஓரமில வலிமையான மூலத்தின் கனவளவு $V_{_2}$ உடன்	கலப்பதன்
	மூலம் தாங்கற் கரைசலொன்று தயாரிக்கப்படுகிறது. மென்னமிலம், வலிமையான மூலம் ஆகியவற்றின்	தொடக்கச்
	செறிவுகள் முறையே C_1,C_2 ஆகும். மென்னமிலத்தின் அமிலக் கூட்டப்பிரிகை மாறிலி $K_{ m a}$ ஆகும். தாங்கற்	கரைசலின்
	pH பெறுமானத்தை pK_a-1 இற்கும் pK_a+1 இற்குமிடையே பேணவேண்டுமாயின், பின்வரும் எக்கோவை	$C_{1}, C_{2}, V_{1},$
	$V_{f z}$ ஆகியவற்றுக்கான சரியான தொடர்புடைமையைத் தரும் $?$	

$$(1) \quad \frac{1}{10} < \frac{C_2 V_2}{C_1 V_1 - C_2 V_2} < 10$$

$$(1) \quad \frac{1}{10} < \frac{C_2 V_2}{C_1 V_1 - C_2 V_2} < 10 \qquad (2) \quad \frac{1}{10} < \frac{C_1 V_1}{C_1 V_1 - C_2 V_2} < 10 \qquad (3) \quad \frac{1}{10} < \frac{C_2 V_2}{C_1 V_1} < 10$$

$$(3) \quad \frac{1}{10} < \frac{C_2 V_2}{C_1 V_1} < 10$$

(4)
$$\frac{1}{10} < \frac{C_1 V_1 - C_2 V_2}{C_2 V_2} < 10$$
 (5) $1 < \frac{C_1 V_1}{C_2 V_2} < 10$

$$(5) \quad 1 < \frac{C_1 V_1}{C_2 V_2} < 10$$

16. பின்வருவனவற்றுள் அனிலினின் ஒரு பரிவுக் கட்டமைப்பு **அல்லாதது** எது ?

17. பூச்சிய வரிசைத் தாக்கமொன்றின் தொடக்க வீதம் $R_{_{m 0}}$ உம் அதன் வீத மாறிலி k உம் ஆகும். தொடக்கச் செறிவு 50% இனால் குறையும்போது தாக்கத்தின் வீதம்

 $18.~~{
m Ni}^{2+}({
m aq},1.0~{
m M})/{
m Ni}({
m s}), {
m Cu}^{2+}({
m aq},1.0~{
m M})/{
m Cu}({
m s})$ ஆகிய அரைக் கலங்களை ஒரு வோல்ற்றுமானியுடனும் ஓர் உப்புப் பாலத்துடனும் இணைப்பதன் மூலம் மின்னிரசாயனக் கலமொன்று உருவாக்கப்பட்டது. ஒட்டுமொத்தக் கலத் தாக்கம், இவ்விரு அரைக் கலங்களையும் இணைத்தபோது வோல்ற்றுமானியின் தொடக்க வாசிப்பு ஆவன

$$\left(E_{\text{Ni}^{2+}/\text{Ni}}^{\circ} = -0.24 \text{ V}, E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = +0.34 \text{ V}\right)$$

- (1) $\operatorname{Ni}^{2+}(\operatorname{aq}) + \operatorname{Cu}(\operatorname{s}) \longrightarrow \operatorname{Ni}(\operatorname{s}) + \operatorname{Cu}^{2+}(\operatorname{aq})$
- (2) $Cu^{2+}(aq) + Ni(s) \longrightarrow Cu(s) + Ni^{2+}(aq)$
- (3) $Cu^{2+}(aq) + Ni(s) \longrightarrow Cu(s) + Ni^{2+}(aq)$
- (4) $Cu^{2+}(aq) + Ni(s) \longrightarrow Cu(s) + Ni^{2+}(aq)$

- (5) $Cu(s) + Ni(s) \longrightarrow Cu^{2+}(aq) + Ni^{2+}(aq) + 4e ; +0.58 V$
- **19.** அறை வெப்பநிலையில் திண்ம ஈர்அயடீன் பென்ரொக்சைட்டு (I_2O_5) ஆனது காபனோரொட்சைட்டுடன் தாக்கம்புரிந்து காபனீரொட்சைட்டு, அயடீன் என்பவற்றைத் தரும். இதனை வளி மாதிரியொன்றில் உள்ள காபனோரொட்சைட்டின் அளவை அளப்பதற்குப் பயன்படுத்தலாம். $5.0~\mathrm{dm}^3$ வளி மாதிரியை $\mathrm{I}_2\mathrm{O}_5$ அடங்கிய ஒரு குழாயினூடாக அனுப்பி வெளிவிடப்படுகின்ற அயடின் ஆனது நீர் KI கரைசலில் (மிகை KI உண்டு) சேர்க்கப்பட்டது. கிடைக்கும் கரைசல் மாப்பொருளைக் காட்டியாகக் கொண்டு $0.005\,\mathrm{mol}\,\mathrm{dm}^{-3}\,\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3\,$ கரைசலுடன் நியமிப்புச் செய்யப்பட்டது. தேவைப்பட்ட $Na_{3}S_{2}O_{3}$ இன் கனவளவு $10.00~{
 m cm}^{3}$ ஆகும். வளி மாதிரியில் காபனோரொட்சைட்டுச் செநிவு (ppm இல்) (C=12, O=16, வளி மாதிரியின் அடர்த்தி $=1.40\times10^{-3}~{
 m g~cm}^{-3}$)
 - (1) 100
- (2) 250
- (3) 500

- ்பின்வருவனவற்றில் கந்தகம் மற்றும் அதன் சேர்வைகள் தொடர்பாகப் **பொய்யான** கூற்று எது ?
 - (1) S ஆனது ஒட்சியேற்ற நிலைகள் -2 தொடக்கம் +6 வரை உடைய ஓர் அல்லுலோகமாகும்.
 - (2) S ஆனது செறி. H_2SO_4 உடன் தாக்கம்புரிந்து SO_3 ஐ விளைபொருள்களில் ஒன்றாகத் தரும்.
 - (3) SO இற்கு ஒட்சியேற்றியாகவும் தாழ்த்தியாகவும் தொழிற்பட முடியும்.
 - (4) பெருமளவான S இன் தகனம் அமில மழைக்குப் பங்களிப்புச் செய்யும்.
 - (5) செநி. $\mathrm{H_{2}SO_{4}}$ இந்கு ஒரு வன்னமிலமாகவும், ஓர் ஓட்சியேற்றும் கருவியாகவும், ஒரு நீரகற்றும் கருவியாகவும் தொழிற்பட் முடியும்.
- 21. 298 K இல் $N_2(g) + 3 F_2(g) \longrightarrow 2 N F_3(g)$ என்னும் தாக்கத்துக்கான $\Delta H^\circ = -263 \text{ kJ mol}^{-1}$ ஆகும். $N \equiv N$, $N \longrightarrow F$ ஆகியவற்றின் பிணைப்புக் கூட்டப்பிரிவு வெப்பவுள்ளுறைகள் முறையே $946~\mathrm{kJ~mol}^{-1}$, $272~\mathrm{kJ~mol}^{-1}$ ஆகும். F—F பிணைப்பின் பிணைப்புக் கூட்டப்பிரிவு வெப்பவுள்ளுறைப் பெறுமானம் (kJ mol⁻¹ இல்)
 - (1) -423
- (2) -393
- (3) -141
- (4) 141

- $oldsymbol{22.}$ பின்வருவனவற்றுள் 3d தொகுப்பு மூலகங்கள் தொடர்பாக **பொய்யான** கூற்று எது ?
 - (1) Sc, Ti, Zn ஆகியன மாறும் வலுவளவுகளை வெளிப்படுத்துவதில்லை.
 - (2) 3*d* தொகுப்பு மூலகங்கள் சிறந்த கைத்தொழில் ஊக்கிகளாகும்.
 - (3) Mn ஆனது அமில, ஈரியல்புடைய, மூல ஒட்சைட்டுகளை உருவாக்கும்.
 - (4) எல்லா 3d தொகுப்பு மூலகங்களிலும் குறைந்த உருகுநிலையைக் கொண்டது ${\bf Zn}$ ஆகும்.
 - (5) V இன் நேர் ஒட்சியேற்ற நிலைகள் +2 தொடக்கம் +5 வரை ஆகும்.
- **23.** $3NO(g) \rightleftharpoons NO_2(g) + N_2O(g)$ என்னும் தாக்கத்திற்காகப் பின்வரும் வெப்பவிரசாயனத் தரவுகள் தரப்பட்டுள்ளன.

$$\Delta H_{f_{\text{NO}_2(g)}}^{\circ} = 35 \text{ kJ mol}^{-1}, \ \Delta H_{f_{\text{N}_2\text{O}(g)}}^{\circ} = 80 \text{ kJ mol}^{-1}, \ \Delta H_{f_{\text{NO}(g)}}^{\circ} = 90 \text{ kJ mol}^{-1}$$

மேற்குறித்த தாக்கம் தொடர்பாகப் பின்வருவனவற்றுள் **உண்மையான** கூற்று எது ?

- (1) $\Delta H^{\circ} = -155 \text{ kJ mol}^{-1}$ ஆவதோடு வெப்பநிலை அதிகரிப்புடன் தாக்கத்தின் சமநிலை மாறிலியின் பெறுமானம் குறைவடையும்.
- (2) $\Delta H^\circ = 155 \text{ kJ mol}^{-1}$ ஆவதோடு வெப்பநிலை அதிகரிப்புடன் தாக்கத்தின் சமநிலை மாநிலியின் பெறுமானம் குறைவடையும்.
- (3) $\Delta H^{\circ} = -25 \text{ kJ mol}^{-1}$ ஆவதோடு வெப்பநிலை அதிகரிப்புடன் தாக்கத்தின் சமநிலை மாறிலியின் பெறுமானம் குறைவடையும்.
- (4) $\Delta H^{\circ} = 25 \text{ kJ mol}^{-1}$ ஆவதோடு வெப்பநிலை அதிகரிப்புடன் தாக்கத்தின் சமநிலை மாநிலியின் பெறுமானம் குறைவடையும்.
- (5) $\Delta H^{\circ} = -155 \text{ kJ mol}^{-1}$ ஆவதோடு வெப்பநிலை அதிகரிப்புடன் தாக்கத்தின் சமநிலை மாறிலியின் பெறுமானம் அதிகரிக்கும்.
- 24. பின்வரும் தாக்கத்தைக் கருதுக.

D இன் கட்டமைப்பாக இருக்கக்கூடியது

(1)
$$\bigcirc C - CH_2 - O - \bigcirc C - CH_2 - O -$$

25. சேர்வை $\bf A$ ஆனது ${\rm LiAlH}_4$ உடன் தாக்கம்புரிந்து $\bf B$ ஐத் தரும். $\bf A$ இலும் $\bf B$ மூலத்தன்மை கூடியது. $0-5\,^{\circ}{\rm C}$ இல் $\bf B$ ஐ ${\rm NaNO}_2/{\rm HCl}$ உடன் பரிகரிக்கும்போது $\bf B$ ஆனது ${\rm N}_2$ ஐ வெளிவிடும். $\bf A$, $\bf B$ ஆகிய இரண்டும் அமோனியம்சேர் ${\rm AgNO}_4$ உடன் தாக்கம்புரிந்து வீழ்படிவுகளைத் தரும். $\bf A$ இன் கட்டமைப்பாக இருக்கக்கூடியது

$$(1) \qquad \begin{array}{c} \text{CONH}_2 \\ \text{CH}_2\text{C} \equiv \text{CH} \\ \text{CH}_2\text{C} \equiv \text{CH} \\ \end{array} \qquad \begin{array}{c} \text{CONH}_2 \\ \text{C} \equiv \text{C} - \text{CH}_3 \\ \text{CONH}_2 \\ \text{C} = \text{C} - \text{CH}_3 \\ \text{C} = \text{C} - \text{C} + \text{C} \\ \text{C} = \text{C} + \text{C} + \text{C} \\ \text{C} = \text{C} - \text{C} + \text{C} \\ \text{C} = \text{C} + \text{C} \\ \text{C} = \text{C} + \text{C} + \text{C} + \text{C} \\ \text{C} = \text{C} + \text{C} \\ \text{C} = \text{C} + \text{C} + \text{C} + \text{C} \\ \text{C} = \text{C} + \text{C} +$$

- **26.** பின்வருவனவற்றுள் ஓசோன் படை நலிவடைதல் பற்றிய **உண்மையான** கூற்று எது ?
 - (1) ஓசோனுடன் குளோரோபுளோரோகாபன்கள் (CFCs) நேரடியாகத் தாக்கம்புரிந்து ஓசோன் படையை நலிவடையச் செய்யும்.
 - (2) ஓசோன் படை நலிவடைதலினால் புவி மேற்பரப்பின் மீது IR கதிர்வீசல் விழுதல் ஊக்குவிக்கப்படும்.
 - (3) ஓசோன் படை நலிவடைதலுக்கு ஐதரோபுளோரோகாபன்கள் (HFCs) பங்களிப்புச் செய்யும்.
 - (4) கழியூதாக் கதிர்வீசல் உள்ளபோது ஓசோன் படையிலுள்ள ஓசோன் இயற்கையாகப் பிரிகைக்கு உட்படும்.
 - (5) CIO ் சுபாதீன மூலிகங்களினால் மாத்திரம் ஓசோன் படை நலிவடைதல் நிகழும்.

- **27.** மின்பகுப்புக் கலமொன்றில் நடைபெறும் ${\rm AIF}^{3-}_{6}({\rm aq}) + 3{\rm e} \rightarrow {\rm Al}({\rm s}) + 6~{\rm F}^{-}({\rm aq})$ என்னும் அரைத்தாக்கம் தொடர்பான பின்வரும் கூற்றுகளில் **உண்மையானது** எது ?
 - (1) Al ஒட்சியேற்றப்படும்.
 - (2) AlF_6^{3-} தாழ்த்தப்படும்.
 - (3) Al இன் ஒட்சியேற்ற நிலை -3 இலிருந்து 0 இற்கு மாற்றமடையும்.
 - (4) F⁻ தாழ்த்தியாகத் தொழிற்படும்.

(5) F தாழ்த்தப்படும்.

More Past Papers at

tamilguru.lk

28.
$$CH_3CHO \xrightarrow{OH^-} P \xrightarrow{H^+} Q \xrightarrow{(1) CH_3MgBr} R$$

மேற்குறித்த தாக்கத் திட்டத்தில் $\mathbf{P},\mathbf{Q},\mathbf{R}$ என்பவற்றின் கட்டமைப்புகள் முறையே

29. இயற்கை இறப்பரின் மீள்வரும் அலகு

(1)
$$\begin{array}{c} CH_{3} & H \\ CC - CC \\ CH \end{array}$$
(2)
$$\begin{array}{c} CH_{3} & CH_{2} \\ CH_{2} & CH_{2} \end{array}$$
(3)
$$\begin{array}{c} CH_{3} & H \\ CE - CC \\ CH_{2} & CH_{2} \end{array}$$
(4)
$$\begin{array}{c} CH_{3} & CH_{2} \\ CH_{2} & CH_{2} \end{array}$$
(5)
$$\begin{array}{c} CH_{3} & H \\ CH_{2} & CH_{2} \end{array}$$

- 30. மூலகமொன்றின் அவத்தை வரிப்படம் உருவில் காட்டப்பட்டுள்ளது. பின்வருவனவற்றுள் இம்மூலகத்தின் அவத்தை வரிப்படம் தொடர்பான போய்யான கூற்று யாது ?
 - (1) $S_1^{}, S_2^{}, G$ ஆகிய அவத்தைகள் சமநிலையில் இருக்கும் ஒரு T, P நிலைமை P உள்ளது.
 - (2) S_1, S_2, L ஆகிய அவத்தைகள் சமநிலையில் இருக்கும் ஒரு T, P நிலைமை உள்ளது.
 - (3) S_2 , L, G ஆகிய அவத்தைகள் சமநிலையில் இருக்கும் ஒரு T, P நிலைமை உள்ளது.
 - (4) S_1, L, G ஆகிய அவத்தைகள் சமநிலையில் இருக்கும் ஒரு T, P நிலைமை உள்ளது.
 - (5) இரண்டிற்கும் மேற்பட்ட அவத்தைகள் சமநிலையில் இருக்கும் மூன்று T,P நிலைமைகள் அவத்தை வரிப்படத்தில் காட்டப்பட்டுள்ளன.

- $oldsymbol{31}$ தொடக்கம் $oldsymbol{40}$ வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (a),(b),(c),(d) என்னும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்பட்டவை திருத்தமானவை. திருத்தமான தெரிவை/தெரிவுகளைத் தேர்ந்தெடுக்க.
 - $(a),\ (b)$ ஆகியன மாத்திரம் திருத்தமானவையெனில் (1) இன் மீதும்
 - (b), (c) ஆகியன மாத்திரம் திருத்தமானவையெனில் (2) இன் மீதும்
 - $(c),\;(d)$ ஆகியன மாத்திரம் திருத்தமானவையெனில் (3) இன் மீதும்
 - (d), (a) ஆகியன மாத்திரம் திருத்தமானவையெனில் (4) இன் மீதும்

வேறு தெரிவுகளின் எண்ணோ சேர்மானங்களோ திருத்தமானவையெனில் (5) இன் மீதும்

உமது விடைத்தாளில் கொடுக்கப்பட்ட அறிவுறுத்தல்களுக்கமைய விடையைக் குறிப்பிடுக.

மேற்கூறிய அறிவுறுத்தற் சுருக்கம்

(1)		(2)	(3)	(4)	(5)
(<i>a</i>), (<i>b</i>) ஆ	ம்	(b), (c) ஆகியன	(c), (d) ஆகியன	(<i>d</i>), (<i>a</i>) ஆகியன	வேறு தெரிவுகளின்
மாத்திர		மாத்திரம்	மாத்திரம்	மாத்திரம்	எண்ணோ சேர்மானங்களோ
திருத்தமா		திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை

- ${f 31.} \quad {f T_1, T_2} \ ({f T_2 > T_1})$ ஆகிய இரு வெப்பநிலைகளிலும் மாநா அமுக்கத்திலும் A(g)
 ightleftharpoons B(g) இன் தாக்க அளவு (extent of reaction) உடன் நியம கிப்ஸ் சக்தியின் மாறல் உருவில் காட்டப்பட்டுள்ளது. பின்வருவனவற்றுள் இத்தாக்கம் பற்றிய **சரியான** கூற்று/கூற்றுகள் எது/எவை ?
 - (a) T_2 இல் சமநிலை மாறிலி T_1 இல் இருப்பதை விடப் பெரியதாகும்.
 - (b) தாக்கம் அகவெப்பத்துக்குரியது.
 - (c) தாக்கம் ஒரு நேர் ΔS° பெறுமானத்தைக் கொண்டிருக்கும்.
 - (d) தாக்கம் புறவெப்பத்துக்குரியது.

 $\mathrm{CH_3CH_2CH} = \mathrm{CH_2} \xrightarrow{\mathrm{HBr}} \mathrm{CH_3CH_2CH} + \mathrm{CH_3CH_2CH_2CH_2Br}$

மேற்குறித்த தாக்கம் தொடர்பாகப் பின்வருவனவற்றுள் **சரியான** கூற்று/கூற்றுகள் எது/எவை ?

- (a) இத்தாக்கம் ஒரு கருநாட்டக் கூட்டற் தாக்கமாகும்.
- (b) **P** பிரதான விளைபொருள் ஆகும்.
- (c) தாக்கத்தின் முதற் படிமுறையில் ஒரு காபோகற்றயன் உருவாகிறது.
- (d) **Q** பிரதான விளைபொருள் ஆகும்.
- **33.** பின்வரும் கூற்றுகள் சில கைத்தொழிற் செயன்முறைகள் தொடர்பானவை. இவற்றுள் **சரியான** கூற்று/கூற்றுகள்
 - (a) KOH ஐப் பயன்படுத்திக் குழந்தைகள் சவர்க்காரம் உந்பத்தி செய்யப்படுகிறது.
 - (b) தொடுகை முறையில் SO_3 ஐப் பெற்றுக்கொள்வதற்காக $\mathrm{SO}_2,\,\mathrm{O}_2$ ஆகியவற்றுக்கிடையில் நடைபெறும் தாக்கத்திற்குத் தாழ் அமுக்க நிலைமைகள் சாதகமாக இருக்கின்றன.
 - (c) சோல்வே முறையில் $\mathrm{K_2CO_2}$ ஐத் தொகுக்கலாம்.
 - (d) டவுன்ஸ் கலத்தைப் பய்ன்படுத்தி Na உற்பத்தியில் Na ஆனது குளோரீன் வாயுவுடன் தாக்கமடைதலைத் தவிர்ப்பதற்கு அனோட்டு, கதோட்டு அறைகள் பிரிமென்றகட்டினால் பிரிக்கப்பட்டிருக்கும்.
- 34. பின்வருவனவற்றில் பல்-படிமுறைத் தாக்கம் ஒன்றில் மிக மெதுவாக நடைபெறும் படிமுறை தொடர்பாக எப்போதும் சரியான கூற்று/கூற்றுகள் எது/எவை ?
 - (a) அதன் மூலக்கூற்றுத்திறன் ஒரு முழுவெண் ஆகும்.
 - (b) அதன் மூலக்கூற்றுத்திறன் தாக்கத்தின் ஒட்டுமொத்த வரிசையை விட உயர்வானதாகும்.
 - (c) அதன் வீதத்தில் தாக்கத்தின் ஒட்டுமொத்த வீதமானது தங்கியுள்ளது.
 - (d) அதன் மூலக்கூற்றுத்திறன் தாக்கத்தின் படிமுறைகளின் எண்ணிக்கைக்குச் சமமாகும்.
- 35. ஒளியின் முன்னிலையில் CH உடன் Cl தாக்கம்புரியும்போது பெரும்பாலும் நடைபெற **முடியாத** தாக்கப் படிமுறை/படிமுறைகள் பின்வருவனவற்றுள் எது/எவை ?
- **36.** பின்வருவனவற்றுள் NH_3 , NF_3 ஆகியன தொடர்பாகச் **சரியான** கூற்று/கூற்றுகள் எது/எவை ? (a) NH_3 இலும் பார்க்க NF_3 இல் பிணைப்புச் சோடி தள்ளுகைகள் நலிவானவைகளாகும்.

 - (b) NF ஆனது NH ஐ விட உயர் இருமுனைவுத் திருப்பத்தைக் கொண்டது.
 - ் ஆனது NH_{3} ஐ விட வலிமையான லூயிஸ் மூலமாகும்.
 - (d) NH இல் N, H என்பவற்றுக்கிடையிலான மின்னெதிர்த்தன்மை வேறுபாடு NF இல் N, F என்பவற்றுக்கிடையிலான அப்பெறுமானத்துக்கு ஏறத்தாழச் சமனாகும்.

- 37. 1000 K இல் $2 \text{ NO(g)} + \text{Br}_2(g) \rightleftharpoons 2 \text{ NOBr}(g)$ தாக்கத்துக்கான சமநிலை மாறிலி $1.25 \times 10^{-2} \text{ mol}^{-1} \text{ dm}^3$ ஆகும். இவ்வெப்பநிலையில் பின்வருவனவற்றுள் **சரியான** கூற்று/கூற்றுகள் எது/எவை ?
 - (a) சமநிலைக் கலவையில் பிரதானமாக NO(g) உம் $Br_2(g)$ உம் இருப்பதோடு பின்றாக்கத்துக்கான சமநிலை மாநிலி $80 \; \mathrm{mol} \; \mathrm{dm}^{-3}$ ஆகும்.
 - (b) சமநிலைக் கலவையில் பிரதானமாக NOBr(g) இருப்பதோடு பின்றாக்கத்திற்கான சமநிலை மாறிலி 80 mol dm⁻³ ஆகும்.
 - (c) சமநிலைக் கலவையில் பிரதானமாக NO(g) உம் $Br_2(g)$ உம் இருப்பதோடு பின்றாக்கத்திற்கான சமநிலை மாறிலி $1.25 \times 10^{-2} \, \mathrm{mol}^{-1} \, \mathrm{dm}^3$ ஆகும்.
 - (d) சமநிலைக் கலவையில் பிரதானமாக NOBr(g) இருப்பதோடு பின்றாக்கத்திற்கான சமநிலை மாநிலி $1.25 \times 10^{-2} \, \mathrm{mol}^{-1} \, \mathrm{dm}^3$ ஆகும்.
- 38. வாயு அவத்தையில் நடைபெறும் ஓர் இருமூலக்கூற்று முதன்மைத் தாக்கம் தொடர்பாகப் பின்வருவனவற்றுள் சரியான கூற்று/கூற்றுகள் எது/எவை ?
 - (a) தாக்கிகளின் செறிவுகள் சமமாகும்போது மாத்திரம் தாக்கத்தின் பரிசோதனைரீதியாகத் துணியப்படும் வரிசை இரண்டு ஆக இருக்கும்.
 - (b) தாக்கிகளின் செறிவுகள் 1:3 என்னும் விகிதத்தில் உள்ளபோது தாக்கத்தின் பரிசோதனைரீதியாகத் துணியப்படும் வரிசை மூன்று ஆக வரும்.
 - (c) தாக்கிகள் ஒன்றின் செறிவு மற்றையதை விட ஒப்பீட்டளவில் பெருமளவு அதிகரிக்கும்போது தாக்கத்தின் வீதம் அத்தாக்கியின் செறிவில் தங்கியிருக்காது.
 - (d) மாநா வெப்பநிலையில் தாக்கிகள் அடங்கிய கொள்கலத்தின் கனவளவைக் குறைக்கும்போது தாக்கி மூலக்கூறுகளுக்கிடையிலான மோதுகை வீதம் அதிகரிக்கும்.
- **39.** பின்வருவனவற்றுள் மெதைல் பென்சீன் (தொலுயீன்) தொடர்பாகச் **சரியான** கூற்று/கூற்றுகள் எது/எவை ?

- (a) எல்லாக் காபன் அணுக்களும் ஒரே தளத்தில் இருக்கும்.
- (b) எல்லாக் காபன் காபன் பிணைப்புகளினதும் நீளங்கள் ஒன்றுக்கொன்று சமனாகும்.
- (c) எல்லாக் காபன் ஐதரசன் பிணைப்புகளினதும் நீளங்கள் ஒன்றுக்கொன்று சமனாகும்.
- (d) எந்தவொரு C—C—C பிணைப்புக் கோணமும் 120° ஆகும்.
- $oldsymbol{40.}$ வளி மாசடைதல் தொடர்பாகப் பின்வரும் கூற்றுகளில் **சரியான** கூற்று/கூற்றுகள் எது/எவை ?
 - (a) நீர்நிலைகளிலுள்ள சல்பேற்றுகள் வளிமண்டல $\mathrm{H_{2}S}$ இன் மூலம் ஒன்றாகும்.
 - $\mathrm{SO}_2(\mathrm{g})$ ஆனது $\mathrm{SO}_3(\mathrm{g})$ ஆக மாற்றப்படுதல் $\mathrm{NO}(\mathrm{g})$ இனால் துரிதமாக்கப்படுகிறது.
 - (c) சுவட்டு எரிபொருள்களின் தகனத்தின்போது வெளிவிடப்படும் ${
 m NO}({
 m g})$ ஒரு வளி மாசாக்கியாகக் கருதப்படுவதில்லை.
 - (d) மின்னல் மூலம் வளிமண்டலத்திலுள்ள $\mathrm{SO}_{\mathfrak{p}}(\mathsf{g})$ அகற்றப்படுகிறது.
- 41 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றிலும் இரண்டு கூற்றுகள் தரப்பட்டுள்ளன. அட்டவணையில் உள்ள (1),(2),(3),(4),(5) ஆகிய தெரிவுகளிலிருந்து ஒவ்வொரு வினாவுக்கும் தரப்பட்டுள்ள இரு கூற்றுகளுக்கும் மிகவும் சிறப்பாகப் பொருந்தும் தெரிவைத் தெரிந்து பொருத்தமாக விடைத்தாளிற் குறிப்பிடுக.

தெரிவுகள்	முதலாம் கூற்று	இரண்டாம் கூற்று						
(1)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்குத் திருத்தமான விளக்கத்தைத் தருவது.						
(2)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்குத் திருத்தமான விளக்கத்தைத் தராதது						
(3)	உண்மை	பொய்						
(4)	பொய்	உண்மை						
(5)	பொய்	பொய்						

	முதலாம் கூற்று	இரண்டாம் கூற்று
41.	இருகாபனேற்று அயனில் உள்ள C—O பிணைப்புகள் ஒன்றுக்கொன்று சமமானதாகும்.	இருகாபனேற்று அயன் ஆனது உறுதியான மூன்று பரிவுக் கட்டமைப்புகளின் ஒரு பரிவுக் கலப்பாக்கம் ஆகும்.
42.	HOCH ₂ CH ₂ Br ஆனது உலர் ஈதரில் Mg உடன் தாக்கம்புரிவதால் கிரிக்னாட்டின் சோதனைப் பொருளொன்றைத் தயாரித்துக் கொள்ள முடியாது.	ஐதரொட்சில் கூட்டம் அடங்கும் சேர்வைகளுடன் கிரிக்னாட்டின் சோதனைப்பொருள் தாக்கம்புரிவதில்லை.
43.	மாநா வெப்பநிலையில் $2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g)$ சமநிலைக் கலவையின் அமுக்கத்தை அதிகரித்தல் சமநிலைத் தானத்தை வலப்பக்கத்துக்கு நகர்த்தும்.	மாநா வெப்பநிலையில் இரசாயனச் சமநிலையிலுள்ள வாயுக் கலவையின் அமுக்கத்தை அதிகரிக்கும்போது மூல்களின் எண்ணிக்கை குறைவடையும் விதத்தில் தாக்கம் நடைபெறும்.

	முதலாம் கூற்று	இரண்டாம் கூற்று
44.	II ஆம் கூட்டச் சல்பேற்றுகள், காபனேற்றுகள் ஆகியவற்றின் கரைதிறன் ஆனது கூட்டத்தின் வழியே கீழ்நோக்கிச் செல்லும்போது குறைவடைவதோடு அவற்றின் ஐதரொட்சைட்டுகளுக்கான அவதானிப்பு அதற்கு எதிர்மாறானதாக இருக்கும்.	அயன் சேர்வைபொன்றின் கரைதிறன் அதன் நீரேந்நல் சக்தியில் மாத்திரம் தங்கியுள்ளது.
45.	இலத்திரன் நாடிகளுடன் அற்கேன்களின் தாக்குதிறன் அற்கீன்களை விடக் குறைவாகும்.	காபன், ஐதரசன் அணுக்களுக்கிடையேயான மின்னெதிர்த்தன்மை வித்தியாசம் சிறிதாகையால், ஐதரோகாபன்களில் C—H பிணைப்புகள் குறைவான முனைவுத்தன்மையைக் கொண்டிருக்கும்.
46.	மூடிய ஒரு கொள்கலத்தில் உள்ள நீராவி ஒடுங்கும்போது சுற்றுச்சூழலின் எந்திரப்பி அதிகரிக்கும்.	மூடிய தொகுதியினால் உறிஞ்சப்படும் வெப்பம் சுற்றுச்சூழலின் வெப்ப இயக்கத்தை அதிகரிக்கச் செப்யும்.
47.	NaOH உற்பத்தியில் பயன்படுத்தப்படும் மென்சவ்வுக் கலத்தில் கதோட்டு அறையும் அனோட்டு அறையும் ஓர் அயன் தேர்வுக்குரிய மென்சவ்வினால் பிரிக்கப்பட்டிருக்கும்.	மென்சவ்வுக் கலத்தில் பயன்படுத்தப்படும் அயன் தேர்வுக்குரிய மென்சவ்வு கந்றயன் பரிமாற்றத்திற்கு இடமளிப்பதில்லை.
48.	2-butene ஈர்வெளிமயசமபகுதிச் சேர்வைக் காட்டும்.	ஒன்றுக்கொன்று ஆடி விம்பங்களாக அமையாத இரு கட்டமைப்புகள் 2-butene இற்கு இருக்கலாம்.
49.	அறை வெப்பநிலையில் நீரில் MnS(s) இன் கரைதிறன் ஆனது pH பெறுமானத்தில் தங்கியிருப்பதில்லை.	S ²⁻ (aq) ஆனது மென்னமிலமொன்றின் இணை மூலமாகும்.
50.	d-தொகுப்பு மூலகங்களின் உருகுநிலைகள் s -தொகுப்பு மூலகங்களின் உருகுநிலைகளை விட உயர்வானவை.	d-தொகுப்பு மூலகங்களில் உலோகப் பிணைப்புகளை உருவாக்குகையில் ஓரிடப்பாடடைவதற்காக d, s இலத்திரன்கள் உள்ளன.

* * *

ஆவர்த்தன அட்டவணை

		_																
	1																	2
1	H		_										_					He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	O	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	_Cs_	Ba	Lu	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut]				
			57	58	- 59	60	61	62	63	64	65	66	67	68	69	70	71]
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

ថិយទ្ធ ២ ស៊ី២ីងាមី សុខិប័នា /ហ្វហ្វប់ បង្វាប់ប្បាំចាលយុខាយអ្វា/All Rights Reserved]

ම් ලංකා වතාල දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්ත**ල් අවුණු වේතරාහා පෙළුණුම්පාලිල් නිලා**ත් දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பළුතාල් திணைக்கமும் இனங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of **இலங்கைப் List Illus මෙන් කිරීම් කිරීම් මේ** ඉතා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம்

අධනයන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2017 අනෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2017

රසායන විදාහව II **இரசாயனவியல்** II Chemistry II

පැය තුනයි **மூன்று மணித்தியாலம்** Three hours

More Past Papers at

tamilguru.lk

சுட்டெண்	:	
சுட்டெண்	:	

- * ஆவர்த்தன அட்டவணை பக்கம் 15 இல் வழங்கப்பட்டுள்ளது.
- * கணிப்பானைப் பயன்படுத்தக்கூடாது.
- * அகில வாயு மாறிலி, $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- * அவகாதரோ மாறிலி, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$
- * இவ்வினாத்தாளுக்கு விடை எழுதும்போது அற்கைற் கூட்டங்களைச் சுருக்கமான விதத்தில் காட்டலாம்.

உ**தாரணம்:**
$$H$$
 C C E $CH_3CH_2^-$ எனக் காட்டலாம்.

ப பகுதி A - அமைப்புக் கட்டுரை (பக்கங்கள் 2 - 8)

- 🗱 எல்லா வினாக்களுக்கும் இத்தாளிலேயே விடை எழுதுக.
- * ஒவ்வொரு வினாவுக்குக் கீழும் விடப்பட்டுள்ள இடத்தில் உமது விடைகளை எழுதுக. கொடுக்கப்பட்டுள்ள இடம் விடைகளை எழுதுவதற்குப் போதுமானது என்பதையும் விரிவான விடைகள் எதிர்பார்க்கப்படவில்லை என்பதையும் கவனிக்க.

🗆 பகுதி B யும் பகுதி C யும் - கட்டுரை (பக்கங்கள் 9 - 14)

- * ஒவ்வொரு பகுதியிலிருந்தும் **இரண்டு** வினாக்களைத் தெரிவுசெய்து எல்லாமாக **நான்கு** வினாக்களுக்கு விடை எழுதுக. உமக்கு வழங்கப்படும் எழுதும் தாள்களை இதற்குப் பயன்படுத்துக.
- st இவ்வினாத்தாளுக்கென வழங்கப்பட்ட நேர முடிவிலே பகுதி f A மேலே இருக்கும்படியாக f A, B, C ஆகிய மூன்று பகுதிகளின் விடைத்தாள்களையும் ஒன்றாகச் சேர்த்துக் கட்டியபின் பரீட்சை மேற்பார்வையாளரிடம் கையளிக்க.
- * வினாத்தாளின் **B, C** ஆகிய பகுதிகளை **மாத்திரம்** பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்ல அனுமதிக்கப்படும்.

பரீட்சகர்களின் உபயோகத்திற்கு மட்டும்

பகுதி	வினா இல.	புள்ளிகள்
	1	
A	2	
	3	
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
மொத்த	5LD	
சதவீத	ந ம்	

இறுதிப் புள்ளி

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

வினாத்தாள் பரீட்சகர் 1	
வினாத்தாள் பரீட்சகர் 2	
புள்ளிகளைப் பரீட்சித்தவர்:	
மேற்பார்வை செய்தவர் :	

இப்பகுதியில்

எழுதுதல்

நான்கு வினாக்களுக்கும் விடைகளை இத்தாளிலேயே எழுதுக. (ஒவ்வொரு வினாவின் விடைக்கும் 10 புள்ளிகள் வழங்கப்படும்.)

 $oldsymbol{1}$. (a) (i) $oldsymbol{I}$. ஒரு லூயி கட்டமைப்பிலுள்ள அணுவொன்றின் ஏற்றம் $(oldsymbol{Q})$ ஐத் துணிவதற்குக் கீழே தரப்பட்டுள்ள கோவையைப் பொருத்தமான கட்டங்களில் $oldsymbol{N}_A$, $oldsymbol{N}_{LP}$, $oldsymbol{N}_{BP}$ ஆகிய பதங்களை இடுவதன் மூலம் நிரப்புக. இங்கு

 \hat{N}_A = அணுவிலுள்ள வலுவளவு இலத்திரன்களின் எண்ணிக்கை

 $\hat{\mathbf{N}_{\mathrm{LP}}}$ = தனிச் சோடிகளிலுள்ள இலத்திரன்களின் எண்ணிக்கை

 \mathbf{N}_{BP} = அணுவைச் சூழவுள்ள பிணைப்புச் சோடிகளிலுள்ள இலத்திரன்களின் எண்ணிக்கை

 $Q = \boxed{ - \frac{1}{2} } \boxed{$

II. பொருத்தமான கட்டங்களில் N_A,N_{LP},N_{BP} ஆகியவற்றுக்கான பெறுமானங்களை இடுவதன் மூலம் கீழே தரப்பட்டுள்ள கட்டமைப்பு SOF_2 இல் S இனது ஏற்றம், \mathbf{Q} (சல்பர்) ஐக் கணிக்க.

- (ii) $ext{ClO}_2 ext{F}_2^{\scriptscriptstyle +}$ அயனுக்கு **மிகவும்** ஏற்றுக்கொள்ளத்தக்க லூயி கட்டமைப்பை வரைக.
- (iii) CH₂SO (சல்பின்) மூலக்கூறுக்கான மிகவும் உறுதியான லூயி கட்டமைப்பு கீழே தரப்பட்டுள்ளது. இம்மூலக்கூறுக்கான மேலும் **இர** லூயி கட்டமைப்புகளை (பரிவுக் கட்டமைப்புகளை) வரைக.

- (iv) பின்வரும் கருதுகோள் லூயி கட்டமைப்பை அடிப்படையாகக் கொண்டு கீழே தரப்பட்டுள்ள அட்டவணையில் C, N, O அணுக்களின்
 - I. அணுவைச் சூழ உள்ள VSEPR சோடிகள்
- அணுவைச் சூழ உள்ள இலத்திரன் சோடிக் கேத்திரகணிதம்

III. அணுவைச் சூழ உள்ள வடிவம்

IV. அணுவின் கலப்பாக்கம்

என்பவற்றைக் குறிப்பிடுக.

$$\begin{array}{ccc} :O\colon & H\\ \oplus & \oplus & \parallel & .. & \mid\\ C \equiv N - C - O - N - H \end{array}$$

அணுக்கள் பின்வருமாறு இலக்கமிடப்பட்டுள்ளன.

	O^7		H^6	
C1N2_	_ 	_04_	 _N5_	_H6
C	~-	~~	_1.≰	

		N ²	C³	O ⁴	N ⁵
I.	VSEPR சோடிகள்				
П.	இலத்திரன் சோடிக் கேத்திரகணிதம்				
III-	வடிவம்				
IV.	கலப்பாக்கம்				

·	(A)	coin	
4-1	1411	CONT.	-

(v)						
	சம்பந்த		ച/ക്കப്பി			ப்புகளின் உருவாக்கத்துடன் ல் உள்ளவாறு அணுக்கள்
	I.]	N^2 — C^3	N ²	• • • • • • • • • • • • • • • • • • • •	C ₃	**********
	II.	O ⁴ N ⁵	O ⁴	•••••	N ⁵	
	III.	N ⁵ H ⁶	N ⁵		H ⁶	
	IV.	C^3 — O^7	C ³		O ⁷	
					•	(5. 5 புள்ளிக ள்)
(i)	(அணு6 சொட்ெ ஆகக்க	வுக்குரிய ஒபி டண்/சொட்டெ ஈடிய இலத்தி	ிற்றல்க _ண்கள் 1ரன் என	ளை) அவந்நிலுள்ள த (<i>m_{i)}</i> ஆகியவந்நுடன் ர்ணிக்கை யாது ?	நிசைவிற் சக்திச் சொட்ட இனங்காண்க. ஒவ்வோ	டத்திற்கான உப ஓடுகளை டெண் (<i>l</i>), காந்தச் சக்திச் ர் உப ஓட்டிலும் உள்ள
	உமது	ഖിடെധൈக்	கீழே த	ரப்பட்டுள்ள அட்டவகை	னயில் எழுதுக. 	
		உப ஓடு		திசைவிற் சக்திச் சொட்டெண் (<i>l</i>)	காந்தச் சக்திச் சொட்டெண் $/$ சொட்டெண்கள் (m_{l})	ஒவ்வோர் உப ஓட்டிலும் உள்ள ஆகக்கூடிய இலத்திரன் எண்ணிக்கை
			· ··· ·· .			
		•••••				
			,			
		r ഖന്ധ്വ				
	•••	О வாயு				······································
	•••	О வாயு				
(iii)	 III. சிற "n-பியூ	O வாயு நிதளவு KCl ந்நேன் (C ₄ H ₎ நு உண்மை ய	கரைந்த ₁₀) இன் பானதா,	நிர் மாதிரி கொதிநிலை புரப்பேன் (பொப்யானதா என்பதை	(C ₃ H ₈) இன் கொதிநிலைல தக் காரணங்களுடன் குறி	றய விட உயர்வானதாகும்." ப்பிடுக.
(iii)	 III. சிற "n-பியூ	O வாயு நிதளவு KCI ந்நேன் (C ₄ H ₎ று உண்மை ய	கரைந்த இன் பா னதா,	நிர் மாதிரி கொதிநிலை புரப்பேன் (பொய்யானதா என்பதை	(C ₃ H ₈) இன் கொதிநிலைல நக் காரணங்களுடன் குறி	றய விட உயர்வானதாகும்." ப்பிடுக.
	 III. சிழ "n- பியூ இக்கூற் 	O வாயு நிதளவு KCI ந்றேன் (C ₄ H ₁ று உண்மை ய	கரைந்த ₁₀) இன் பானதா, தரப்பட்	பள்ள நீர் மாதிரி கொதிநிலை புரப்பேன் (பொப்யானதா என்பதை	(C ₃ H ₈) இன் கொதிநிலைல தக் காரணங்களுடன் குறி	றய விட உயர்வானதாகும்." ப்பிடுக.
	 III. சிழ "n- பியூ இக்கூற் அடைப் (காரணா	O வாயு நிதளவு KCl ந்றேன் (C ₄ H ₁ று உண்மை ய புக்குறிகளில் ங்கள் அவசிய	கரைந்த ₁₀) இன் பானதா, தரப்பட் பமல்ல.)	பள்ள நீர் மாதிரி கொதிநிலை புரப்பேன் (பொப்யானதா என்பதை	(C ₃ H ₈) இன் கொதிநிலைல தக் காரணங்களுடன் குறி	றய விட உயர்வானதாகும்." ப்பிடுக.
	 III. சிழ "n- பியூ இக்கூற் அடைப் (காரண் (காரண்	O வாயு நிதளவு KCI நீறேன் (C ₄ H ₁ று உண்மை ய புக்குறிகளில் ங்கள் அவசிய	கரைந்த ₁₀) இன் பானதா, தரப்பட் பமல்ல .) O ₃ , K ₂ O	நிர் மாதிரி கொதிநிலை புரப்பேன் (பொய்யானதா என்பதை டுள்ள இயல்பு குறைய	(C ₃ H ₈) இன் கொதிநிலைவ தக் காரணங்களுடன் குறி ந ம் வரிசையில் பின்வருவ	றய விட உயர்வானதாகும்." ப்பிடுக.
	 III. சிழ "n- பியூ இக்கூற் அடைப் (காரண் I. Li	O வாயு நிதளவு KCl ந்றேன் (C ₄ H ₁ று உண்மை ய புக்குறிகளில் ங்கள் அவசிய ₂ CO ₃ , Na ₂ CO	கரைந்த ₁₀) இன் பானதா, தரப்பட் பமல்ல.) O ₃ , K ₂ O	நிர் மாதிரி கொதிநிலை புரப்பேன் (பொய்யானதா என்பதை .டுள்ள இயல்பு குறைய	(C ₃ H ₈) இன் கொதிநிலைவ தக் காரணங்களுடன் குறி ம் வரிசையில் பின்வருவ	றய விட உயர்வானதாகும்." ப்பிடுக.
	 III. சிழ "n- பியூ இக்கூற் அடைப் (காரணா I. Li	O வாயு நிதளவு KCI ந்றேன் (C ₄ H ₁ று உண்மை புக்குறிகளில் ங்கள் அவசி ய ₂ CO ₃ , Na ₂ CO	கரைந்த ₁₀) இன் பானதா, தரப்பட் பமல்ல.) O ₃ , K ₂ O >	பள்ள நீர் மாதிரி கொதிநிலை புரப்பேன் (பொய்யானதா என்பதை டுள்ள இயல்பு குறைய CO ₃ (நீரில் கரைதிநன்)	(C ₃ H ₈) இன் கொதிநிலைவ தக் காரணங்களுடன் குறி ம் வரிசையில் பின்வருவ	றய விட உயர்வானதாகும்." ப்பிடுக. னவற்றை ஒழுங்குபடுத்துக.
	 III. சிழ "n- பியூ இக்கூற் அடைப் (காரண I. Li	O வாயு நிதளவு KCI ந்றேன் (C ₄ H ₁ று உண்மை புக்குறிகளில் ங்கள் அவசி ய ₂ CO ₃ , Na ₂ CO	கரைந்த ₁₀) இன் பானதா, தரப்பட் பமல்ல.) O ₃ , K ₂ O >	பள்ள நீர் மாதிரி கொதிநிலை புரப்பேன் (பொய்யானதா என்பதை டுள்ள இயல்பு குறைய CO ₃ (நீரில் கரைதிநன்)	(C ₃ H ₈) இன் கொதிநிலைவ தக் காரணங்களுடன் குறி ம் வரிசையில் பின்வருவ ம்)	றய விட உயர்வானதாகும்." ப்பிடுக. னவற்றை ஒழுங்குபடுத்துக.
	 III. சிழ "n- பியூ இக்கூற் அடைப் (காரண் I. Li	O வாயு நிதளவு KCl ந்றேன் (C ₄ H ₁ று உண்மை புக்குறிகளில் ங்கள் அவசி ய ₂ CO ₃ , Na ₂ CO F ₃ , NH ₃ , NC	கரைந்த ₁₀) இன் பானதா, தரப்பட் பமல்ல.) O ₃ , K ₂ O > DCl, NO >	பள்ள நீர் மாதிரி கொதிநிலை புரப்பேன் (பொப்யானதா என்பதை	(C ₃ H ₈) இன் கொதிநிலைவ தக் காரணங்களுடன் குறி ம் வரிசையில் பின்வருவ ம்)	மை விட உயர்வானதாகும்." ப்பிடுக. னவற்றை ஒழுங்குபடுத்துக.

[பக். 4 ஐப் பார்க்க

(i)	$\mathbf{X},\mathbf{Y},\mathbf{Z}$ ஆகியவற்றை இனங்காண்க. (அணுவுக்குரிய குறியீடுகளைத் தருக.)
	$X = \dots Y = \dots Z = \dots$
(ii)	X,Y,Z ஆகியன தொடர்பாகப் பின்வருவனவற்றின் சார் பருமன்களைக் குறிப்பிடுக.
	I. அணுவுக்குரிய பருமன் >
	II. இலத்திரன் நாட்டம் > >
	III. முதலாம் அயனாக்கற் சக்தி > >
(iii)	உமக்கு X,Y,Z ஆகியவற்றின் அனயன்களின் நீர்க் கரைசல்கள் வெவ்வேறாகச் சோதனைக் குழாய்களில் தரப்பட்டுள்ளன. இந்த அனயன்களை இனங்காண்பதற்குப் பயன்படுத்தக்கூடிய தனிச் சோதனைப் பொருளொன்றைத் தெரிவிக்க.
	(குநிப்பு : ஒவ்வோர் அனயனுக்குமான அவதானிப்பை நீங்கள் குறிப்பிட வேண்டும்.)
	சோதனைப்பொருள் :
	அவதானிப்பு : X :
	Z :
(iv)	பின்வருவனவற்றுடன் $\mathbf{X}_2(\mathbf{g})$ இன் தாக்கங்களுக்கான சமன்படுத்திய இரசாயனச் சமன்பாடுகளைத் தருக. I. $\mathrm{NH}_3(\mathbf{g})$
	II. 沒去non NaOH
(v)	🗴 இன் ஒட்சோ அமிலங்கள் இரண்டின் கட்டமைப்புகளை வரைக.
	🗴 இன் ஓர் இயற்கை மூலத்தைப் பெயரிடுக
(vi)	 X அடங்கும் ஒருபகுதியமொன்று நீர்க்குழாய்களின் உற்பத்தியில் பரந்தளவில் பயன்படுத்தப்படும் ஒரு
	கூட்டல் பல்பகுதியமொன்றை உருவாக்கும். ஒருபகுதியுத்தின் கட்டமைப்பை வுரைக.
	கூட்டல் பல்பகுதியமொன்றை உருவாக்கும். ஒருபகுதியத்தின் கட்டமைப்பை வரைக.
	கூட்டல் பல்பகுதியமொன்றை உருவாக்கும். ஒருபகுதியத்தின் கட்டமைப்பை வரைக.
	கூட்டல் பல்பகுதியமொன்றை உருவாக்கும். ஒருபகுதியத்தின் கட்டமைப்பை வரைக.
	கூட்டல் பல்பகுதியமொன்றை உருவாக்கும். ஒருபகுதியத்தின் கட்டமைப்பை வரைக.

இப்பகுதியில் எதனையும் எழுதுதல்

(<i>b</i>) நீர்க் கரைசல்	\mathbf{Q} இல் மூன்று	அனயன்கள்	அடங்கியுள்ளன.	இ ந்த	அனயன்களை	இனங்காண்பதற்குப்	பின்வரும்	
சோதனைகள்	செய்யப்பட்டன	т.					i	

(🛈 தொடக்கம் 🏮 வரையுள்ள ஒவ்வொரு சோதனைக்கும் கரைசல் Q இன் புதிய பகுதிகள் பயன்படுத்தப்பட்டன.)

		சோதனை	அவதானிப்பு		
0	I	ஐதான HCl சேர்க்கப்பட்டது.	ஒரு நிறமந்ற வாயு வெளியேறியது. ஒரு தெளிந்த கரைசல் கிடைத்தது.		
	II	வெளியேறிய வாயு ஈய அசற்றேற்றில் நனைக்கப்பட்ட வடிகட்டித் தாளுடன் சோதிக்கப்பட்டது.	நிறமாற்றம் இல்லை.		
2	I	BaCl ₂ கரைசலொன்று சேர்க்கப்பட்டது.	ஒரு வெண்ணிற வீழ்படிவு கிடைத்தது.		
	II	வெண்ணிற வீழ்படிவு வடிகட்டி வேறாக்கப்பட்டு அதனுடன் ஐதான HCl சேர்க்கப்பட்டது.	வாயுவொன்று வெளிபேறியதோடு வெண்ணிற வீழ்படிவு கரைந்தது.		
	III	அமிலமாக்கப்பட்ட பொற்றாசியம் இருகுரோமேற்றில் நனைத்த வடிகட்டித் தாளுடன் வெளியேறிய வாயு சோதிக்கப்பட்டது.	செம்மஞ்சளிலிருந்து பச்சைக்கு நிறம் மாறியது.		
3	கரை	ந்த HNO ₃ உம் அமோனியம் மொலிப்றேற்றுக் ரசலொன்றின் மிகையளவும் சேர்க்கப்பட்டுக் வை இளஞ் சூடாக்கப்பட்டது.	மஞ்சள் நிற வீழ்படிவொன்று உ_ருவாகவில்லை.		
4		ıjrடா கலப்புலோகம், NaOH கரைசல் என்பன க்கப்பட்டுக் கலவை வெப்பமாக்கப்பட்டது.	நெஸ்லரின் சோதனைப்பொருளைக் கபில நிறமாக மாற்றும் வாயு வெளியேறியது.		
6	FeC	l ₃ கரைசலொன்று சேர்க்கப்பட்டது.	ஒரு குருதிச் சிவப்பு நிறக் கரைசல் கிடைத்தது.		

(i)	கரைசல்	Q @	லுள்ள	அனப	பன்கள்	முன்	ழையும்	இனங்கா	ண்க.		
(ii)									, சமன்படுத்திய		எழுதுக

(5.0 புள்ளிகள்) \\ 100

} .	(a)	மெதைலமைன்,	CH ₃ NH ₂	மென்முலமொன்றாகும்.	மெதைலமைவின்	நீர்க்	கரைசலொன்றில்	பின்வரும்	சமநிலை
		இருக்கும்.							
		CT.		· 11.04\	ATTYTE A COLUMN				

 $CH_3NH_2(aq) + H_2O(1) \Rightarrow CH_3NH_3^+(aq) + OH^-(aq)$

(i)	மெதைலமைனின்	$K_{ m b}$ இற்கான	கோவையை	எழுதுக.

(ii)	കത്തിക്ക.			கரைசலொன்றின்			
		•					
	**************	 	• • • • • •		 	 	

AL,	/201	7/	02	T_TT	(4)
	4 0.	L / /	V4-	1-11	(ZZ)

	_	
	•	
-	n	-

(111)	மேலே (ii) இல் உள்ள கரைசலின் $25.00~{ m cm}^3$ கனவளவு $0.20~{ m mol~dm}^{-3}$ HCl உடன் $25~{ m °C}$ இல் நியமிப்புச் செய்யப்பட்டது. சமவலுப் புள்ளியில் கரைசலின் pH பெறுமானத்தைக் கணிக்க. $(25~{ m °C}$ இல் $K_{ m w}=1.0\times10^{-14}~{ m mol}^2~{ m dm}^{-6})$	இப்படு எதன எழுழ ஆக
Coj i	(5.0 புள்ளிகள்) $MX(s)$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு கப்பட்டு $25^\circ\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக்	
சேர்க் கரை	ராதனை ஒன்றில் $MX(s)$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு ககப்பட்டு $25^\circ\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக் ந்து தெளிந்த கரைசலொன்றைத் தந்தது. உருவாகிய HX (aq) மென்னமிலமாகத் தொழிற்படும்.	
சேர்க் கரை	ாதனை ஒன்றில் $\mathbf{MX}(\mathbf{s})$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு கைப்பட்டு $25^{\circ}\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக்	
சேர்க் கரை	ராதனை ஒன்றில் $MX(s)$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு ககப்பட்டு $25^\circ\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக் ந்து தெளிந்த கரைசலொன்றைத் தந்தது. உருவாகிய HX (aq) மென்னமிலமாகத் தொழிற்படும்.	
சேர்க் கரை	ாதனை ஒன்றில் $MX(s)$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு கப்பட்டு $25^\circ\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக் ந்து தெளிந்த கரைசலொன்றைத் தந்தது. உருவாகிய HX (aq) மென்னமிலமாகத் தொழிற்படும். மேற்குறித்த கரைசலில் இருக்கும் சமநிலைகளுக்கான இரசாயனத் தாக்கங்களை எழுதுக.	
சேர்க் கரை (i)	ாதனை ஒன்றில் $MX(s)$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு கப்பட்டு $25^\circ\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக் ந்து தெளிந்த கரைசலொன்றைத் தந்தது. உருவாகிய HX (aq) மென்னமிலமாகத் தொழிற்படும். மேற்குறித்த கரைசலில் இருக்கும் சமநிலைகளுக்கான இரசாயனத் தாக்கங்களை எழுதுக.	THE PARTY CONTRACTOR AND ADDRESS OF THE PARTY CONTRACTOR AND ADDRE
சேர்க் கரை (i)	ாதனை ஒன்றில் $MX(s)$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு கூப்பட்டு $25^{\circ}\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக் ந்து தெளிந்த கரைசலொன்றைத் தந்தது. உருவாகிய HX (aq) மென்னமிலமாகத் தொழிற்படும். மேற்குறித்த கரைசலில் இருக்கும் சமநிலைகளுக்கான இரசாயனத் தாக்கங்களை எழுதுக. HX (aq) இன் கூட்டப்பீரிகையைப் புறக்கணிக்கலாம் எனக் கொண்டு மேற்படி கரைசலிலுள்ள $[X^{-}(aq)]$ ஐக்	THE PROPERTY OF THE PROPERTY O
சேர்க் கரை (i)	ாதனை ஒன்றில் $MX(s)$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு கூப்பட்டு $25^{\circ}\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக் ந்து தெளிந்த கரைசலொன்றைத் தந்தது. உருவாகிய HX (aq) மென்னமிலமாகத் தொழிற்படும். மேற்குறித்த கரைசலில் இருக்கும் சமநிலைகளுக்கான இரசாயனத் தாக்கங்களை எழுதுக. HX (aq) இன் கூட்டப்பீரிகையைப் புறக்கணிக்கலாம் எனக் கொண்டு மேற்படி கரைசலிலுள்ள $[X^{-}(aq)]$ ஐக்	The state of the s
சேர்க் கரை (i)	ாதனை ஒன்றில் $MX(s)$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு கூப்பட்டு $25^{\circ}\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக் ந்து தெளிந்த கரைசலொன்றைத் தந்தது. உருவாகிய HX (aq) மென்னமிலமாகத் தொழிற்படும். மேற்குறித்த கரைசலில் இருக்கும் சமநிலைகளுக்கான இரசாயனத் தாக்கங்களை எழுதுக. HX (aq) இன் கூட்டப்பீரிகையைப் புறக்கணிக்கலாம் எனக் கொண்டு மேற்படி கரைசலிலுள்ள $[X^{-}(aq)]$ ஐக்	
சேர்க் கரை (i)	ாதனை ஒன்றில் $MX(s)$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு கூப்பட்டு $25^{\circ}\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக் ந்து தெளிந்த கரைசலொன்றைத் தந்தது. உருவாகிய HX (aq) மென்னமிலமாகத் தொழிற்படும். மேற்குறித்த கரைசலில் இருக்கும் சமநிலைகளுக்கான இரசாயனத் தாக்கங்களை எழுதுக. HX (aq) இன் கூட்டப்பீரிகையைப் புறக்கணிக்கலாம் எனக் கொண்டு மேற்படி கரைசலிலுள்ள $[X^{-}(aq)]$ ஐக்	THE PARTY LABORATORY AND ADDRESS OF THE PARTY
சேர்க் கரை (i)	ாதனை ஒன்றில் $MX(s)$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு கூப்பட்டு $25^{\circ}\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக் ந்து தெளிந்த கரைசலொன்றைத் தந்தது. உருவாகிய HX (aq) மென்னமிலமாகத் தொழிற்படும். மேற்குறித்த கரைசலில் இருக்கும் சமநிலைகளுக்கான இரசாயனத் தாக்கங்களை எழுதுக. HX (aq) இன் கூட்டப்பீரிகையைப் புறக்கணிக்கலாம் எனக் கொண்டு மேற்படி கரைசலிலுள்ள $[X^{-}(aq)]$ ஐக்	
சேர்க் கரை (i)	ாதனை ஒன்றில் $MX(s)$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு கூப்பட்டு $25^{\circ}\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக் ந்து தெளிந்த கரைசலொன்றைத் தந்தது. உருவாகிய HX (aq) மென்னமிலமாகத் தொழிற்படும். மேற்குறித்த கரைசலில் இருக்கும் சமநிலைகளுக்கான இரசாயனத் தாக்கங்களை எழுதுக. HX (aq) இன் கூட்டப்பீரிகையைப் புறக்கணிக்கலாம் எனக் கொண்டு மேற்படி கரைசலிலுள்ள $[X^{-}(aq)]$ ஐக்	
சேர்க் கரை (i)	ாதனை ஒன்றில் $MX(s)$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு கூப்பட்டு $25^{\circ}\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக் ந்து தெளிந்த கரைசலொன்றைத் தந்தது. உருவாகிய HX (aq) மென்னமிலமாகத் தொழிற்படும். மேற்குறித்த கரைசலில் இருக்கும் சமநிலைகளுக்கான இரசாயனத் தாக்கங்களை எழுதுக. HX (aq) இன் கூட்டப்பீரிகையைப் புறக்கணிக்கலாம் எனக் கொண்டு மேற்படி கரைசலிலுள்ள $[X^{-}(aq)]$ ஐக்	
சேர்க் கரை (i)	ாதனை ஒன்றில் $MX(s)$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு கூப்பட்டு $25^{\circ}\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக் ந்து தெளிந்த கரைசலொன்றைத் தந்தது. உருவாகிய HX (aq) மென்னமிலமாகத் தொழிற்படும். மேற்குறித்த கரைசலில் இருக்கும் சமநிலைகளுக்கான இரசாயனத் தாக்கங்களை எழுதுக. HX (aq) இன் கூட்டப்பீரிகையைப் புறக்கணிக்கலாம் எனக் கொண்டு மேற்படி கரைசலிலுள்ள $[X^{-}(aq)]$ ஐக்	
சேர்க் கரை (i)	ாதனை ஒன்றில் $MX(s)$ என்னும் வீழ்படிவொன்றுடன் $1.00\mathrm{moldm^{-3}HNO_3}$ இன் வரையறுக்கப்பட்ட கனவளவு கூப்பட்டு $25^{\circ}\mathrm{C}$ இல் தொகுதி சமநிலையடையவிடப்பட்டது. இதன்போது வீழ்படிவானது பகுதியாகக் ந்து தெளிந்த கரைசலொன்றைத் தந்தது. உருவாகிய HX (aq) மென்னமிலமாகத் தொழிற்படும். மேற்குறித்த கரைசலில் இருக்கும் சமநிலைகளுக்கான இரசாயனத் தாக்கங்களை எழுதுக. HX (aq) இன் கூட்டப்பீரிகையைப் புறக்கணிக்கலாம் எனக் கொண்டு மேற்படி கரைசலிலுள்ள $[X^{-}(aq)]$ ஐக்	

			D	
(iii)	B, C, D, E, F, H ஆகியவற்றின் க	நட்டமைப்புகளை வரைக.]		
	அதே வேளை \mathbf{C},\mathbf{D} ஆகியவை சமபகுதிச்சேர்வைக் காட்டுகின்றத	G என்னும் ஒரே விளைபொருளை ந. E, F, G ஆகிய மூன்று சேர்வை	ழறையே E, F என்பவற்றைத் தந்த த் தந்தன. G ஆனது ஈர்வெளிமயச் களும் C ₅ H ₁₀ என்னும் மூலக்கூற்றுச் தாக்கம்புரிந்து H என்னும் ஒரே	F
		A		
(ii)	A இன் கட்டமைப்பு யாது ?			
		ள் ${f NaBH_4}$ உடன் தாக்கம்புரியச் ${f G}$	றயே X,Y,Z என்பன உருவாகின்றன செய்வதன் மூலம் அவற்றை முறையே	
(1)	11, 2, 0 to the companion and control of the contro	was decided and sample.		
கட்ட		$,\mathbf{B},\mathbf{C}$ ஆகியவை ஒளியியற் சமப $_{0}$	கிய அற்ககோல்கள் ஒன்றுக்கொன்ற ததிச்சேர்வைக் காட்டும்.	
			(5.0 புள்ளிகள்)	$-1 \setminus$
				$\cdot /$
	••••••			•
		கரைசலொன்றிலுள்ள [X^(aq)] ஆ குனிலும் குறைந்ததா, கூடியதா என்	யதைக் காரணங்கள் தந்து விளக்குக	1 6

F

E

H

	இப்பகுதியில் எதனையும் எழுதுதல் ஆகாது.	
)		
L		
I		

(iv) \mathbf{G} இன் ஈர்வெளிமயச் சமபகுதியங்களின் கட்டமைப்புகளை வரைக.

(4.8 புள்ளிகள்)

(b) பின்வரும் தாக்கத் திட்டங்கள் இரண்டையும் கருதுக.

$$NH_2$$
 NaNO₂/HCl $OHOH$ None $OHOH$ OHO

$$\stackrel{\text{CH}_2\text{Cl}}{\bigcirc}$$
 $\stackrel{\text{CH}_2\text{OH}}{\bigcirc}$ $\stackrel{\text{CHO}}{\bigcirc}$ $\stackrel{\text{CHO}}{\bigcirc}$ $\stackrel{\text{CHO}}{\bigcirc}$ $\stackrel{\text{HCN}}{\bigcirc}$ $\stackrel{\text{Блівьвір 3}}{\bigcirc}$ $\stackrel{\text{I}}{\bigcirc}$

(i) ${f J},{f K},{f L}$ ஆகியவற்றின் கட்டமைப்புகளைக் கீழே தரப்பட்டுள்ள டெட்டிகளில் வரைக.

(ii) **V, W** ஆகிய சோதனைப்பொருள்களைக் கீழே தரப்பட்டுள்ள பெட்டிகளில் எழுதுக.

$$\mathbf{v}$$
 = \mathbf{w} =

(iii) ${\bf A_E},\,{\bf A_N},\,{\bf S_E},\,{\bf S_N}$ அல்லது ${\bf E}$ எனப் பொருத்தமான பெட்டியில் எழுதி, ${\bf 1},\,{\bf 2},\,{\bf 3}$ ஆகிய ஒவ்வொரு தாக்கத்தையும் இலத்திரன் நாட்டக் கூட்டல் $({\bf A_E})$, கருநாட்டக் கூட்டல் $({\bf A_N})$, இலத்திரன் நாட்டப் பிரதியீடு $({\bf S_N})$ அல்லது நீக்கல் $({\bf E})$ தாக்கம் என வகைப்படுத்துக.

- (c) (i) $\mathrm{CH_3CH}\!\!=\!\!\mathrm{CH_2}$ இந்கும் HBr இற்கும் இடையிலான தாக்கத்தின் **பிரதான** விளைபொருளின் கட்டமைப்பு யாது?
 - (ii) மேற்குறித்த தாக்கத்தின் பொறிமுறையை எழுதுக.

(1.2 புள்ளிகள்)

100

ដែលទ្ធ ២ ស៊ី២៣២ ឌុខី០១៧ / ហ្វាហូប៉ា បង្គាប់ប្បវាសាយឃុសាយរដ្ឋា / All Rights Reserved]

ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්**ලේ අඩරියා මෙන්ටාදා ලෙස් නම් මින්නුව**තාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீடன்சத் திணைக்களும் இங்ங்கைப் பரீடன்சத் திணைக்களும் இலங்கைப் பரீடன்சத் திணைக்களும் Department of Examinations, Sri Lanka Department of Sauraism கூட்டு முடியின் கூடிய இலங்கைய் பரீடன் சத் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும்

අධානයන පොදු සහනික පනු (උසස් පෙළ) විභාගය, 2017 අගෝස්කු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஒகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2017

රසායන විදනාව II **இரசாயனவியல்** II Chemistry II 02 T II

* அகில வாயு மாறிலி $R=8.314~\mathrm{J~K^{-1}}$ $\mathrm{mol^{-1}}$ * அவகாதரோ மாறிலி $N_A=6.022\times 10^{23}~\mathrm{mol^{-1}}$

பகுதி B — கட்டுரை

இரு வினாக்களுக்கு மாத்திரம் விடை எழுதுக. (ஒவ்வொரு வினாவின் விடைக்கும் 15 புள்ளிகள் வழங்கப்படும்).

5. (a) NaHCO₃(s) இனை 100 °C இலும் உயர்வான ஒரு வெப்பநிலைக்கு வெப்பமாக்கும்போது பின்வரும் தாக்கம் நடைபெறும்.

$$2 \text{ NaHCO}_3(s) \rightleftharpoons \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g)$$

NaHCO $_3$ (s) மாதிரியொன்று $5.00\,\mathrm{dm^3}$ கனவளவுடைய மூடிய விறைத்த வெற்றுக் கொள்கலத்தில் இடப்பட்டு $328\,^\circ\mathrm{C}$ இற்கு வெப்பமாக்கப்பட்டது. சமநிலையை அடைந்த பின்னர் $\mathrm{NaHCO}_3(\mathrm{s})$ இன் சிறிதளவு இன்னும் கொள்கலத்தில் எஞ்சியிருந்தது. கொள்கலத்தின் அமுக்கம் $1.0\times10^6\,\mathrm{Pa}$ என அறியப்பட்டது. கொள்கலத்தில் எஞ்சியுள்ள திண்மங்களின் கனவளவு புறக்கணிக்கத்தக்கது எனக் கொள்க. $328\,^\circ\mathrm{C}$ இல் $\mathrm{RT} = 5000\,\mathrm{J}\,\mathrm{mol}^{-1}$ ஆகும்.

- (i) 328 °C இல் சமநிலையை அடைந்தபோது கொள்கலத்தில் உள்ள $H_2O(g)$ இன் மூல்களின் எண்ணிக்கையைக் கணிக்க.
- (ii) $328~^{\circ}$ C இல் மேற்குறித்த சமநிலைக்கான $K_{_{\mathrm{D}}}$ ஐக் கணித்து **அதன்மூலம்** $K_{_{\mathrm{C}}}$ ஐக் கணிக்க.
- (iii) மேலே விவரிக்கப்பட்ட கொள்கலத்தில் $328\,^{\circ}$ C இல் $CO_2(g)$ இன் ஒரு மேலதிக அளவு சேர்க்கப்பட்டது. மீண்டும் சமநிலையை அடைந்தபோது $CO_2(g)$ இன் பகுதியமுக்கம் $H_2O(g)$ இன் பகுதியமுக்கத்திலும் நான்கு (4) மடங்காக இருந்தது. இந்நிலைமையின் கீழ் $CO_2(g)$, $H_2O(g)$ என்பவற்றின் பகுதியமுக்கங்களைக் கணிக்க.

(7.5 புள்ளிகள்)

- (b) $2 \text{ NaHCO}_3(s) \rightarrow \text{Na}_2\text{CO}_3(s) + \text{H}_2\text{O}(l) + \text{CO}_2(g)$ என்னும் தாக்கத்தின் நியம் வெப்பவுள்ளுறை மாற்றம் (ΔH^3) ஐத் துணிவதற்கு இரு படிமுறைகளைக் (I, II) கொண்ட பின்வரும் பரிசோதனை அறைவெப்பநிலையில் நடாத்தப்பட்டது.
 - **படிமுறை I :** ஒரு முகவையில் உள்ள $1.0\,\mathrm{mol}\,\,\mathrm{dm}^{-3}\,\mathrm{HCl}$ அமிலக் கரைசலின் $100.00\,\mathrm{cm}^3\,$ இற்கு $\mathrm{NaHCO_3(s)}$ இன் $0.08\,\mathrm{mol}\,\,$ சேர்க்கப்பட்டது. உச்ச வெப்பநிலை **வீழ்ச்சி** $5.0\,\,^\circ\mathrm{C}\,\,$ என அறியப்பட்டது. [நடைபெறும் தாக்கம்: $\mathrm{NaHCO_3(s)} + \mathrm{HCl}(\mathrm{aq}) \to \mathrm{Na^+(aq)} + \mathrm{Cl^-(aq)} + \mathrm{H_2O(l)} + \mathrm{CO_2(g)}]$
 - படி**முறை II :** ஒரு முகவையில் உள்ள $1.0~\text{mol}~\text{dm}^{-3}~\text{HCl}$ அமிலக் கரைசலின் $100.00~\text{cm}^3$ இற்கு $\text{Na}_2\text{CO}_3(s)$ இன் 0.04~mol சேர்க்கப்பட்டது. உச்ச வெப்பநிலை **உயர்ச்சி** $3.5~^\circ\text{C}$ என அறியப்பட்டது. [நடைபெறும் தாக்கம்: $\text{Na}_2\text{CO}_3(s) + 2~\text{HCl}(aq) \rightarrow 2~\text{Na}^+(aq) + 2~\text{Cl}^-(aq) + H_2\text{O}(l) + \text{CO}_2(g)$]

HCl அமிலக் கரைசலின் மாறா அமுக்கத்தில் தன்வெப்பக் கொள்ளளவும் அடர்த்தியும் முறையே $4.0~{
m J~g^{-1}~K^{-1}}$ உம் $1.0~{
m g~cm^{-3}}$ உம் ஆகும். மேற்படி இரண்டு படிமுறைகளிலும் திண்மங்களைச் சேர்த்த பின்னர் கரைசல்களின் கனவளவு, அடர்த்தி மாற்றங்கள் புறக்கணிக்கத்தக்கன எனக் கொள்க.

- (i) மேற்படி Iஆம் IIஆம் படிமுறைகளில் தரப்பட்டுள்ள தாக்கங்களின் வெப்பவுள்ளுறை மாற்றங்களைக் (kJ mol⁻¹ இல்) கணிக்க.
- (ii) மேலே (i) இல் கிடைக்கப்பெற்ற பெறுமானங்களையும் ஒரு **வெப்ப இரசாயனச் சக்கரத்தையும்** பயன்படுத்தி, $2 \, \mathrm{NaHCO_3}(\mathrm{s}) o \mathrm{Na_2CO_3}(\mathrm{s}) + \mathrm{H_2O}(\mathrm{l}) + \mathrm{CO_2}(\mathrm{g})$ என்னும் தாக்கத்தின் $\Delta \mathrm{H}^\mathrm{o}$ ஐக் கணிக்க.
- (iii) தாக்கமொன்றின் வெப்ப மாற்றம், எந்நிலைமையின் கீழ் அதன் வெப்பவுள்ளுறை மாற்றத்திற்குச் சமமாகும் என்பதைக் குறிப்பிடுக.
- (iv) மேற்படி பரிசோதனை நடைமுறையில் ஏற்படும் வழுக்களுக்கான மூலகாரணங்கள் **இரண்டை** இனங்காண்க. **(7.5 புள்ளிகள்**)

- **б**. (a) (i) தாக்கிகளின் செறிவுகளை அதிகரிக்கச்செய்யும்போது தாக்கமொன்றின் வீதம் அதிகரிப்பது ஏன் என விளக்குக.
 - (ii) பொதுவாகத் தாக்கமொன்றின் வீதம் ஆனது வெப்பநிலை அதிகரிப்போடு அதிகரிப்பது ஏன் என்பதை விளக்குவதற்கு **இரண்டு** காரணங்களைத் தருக.
 - (iii) முதன்மைத் தாக்கமொன்றின் வரிசைக்கும் மூலக்கூற்றுத்திறனுக்கும் இடையிலான தொடர்பு யாது ?
 - (iv) NO + O₂ → NO₂ + O என்னும் முதன்மைத் தாக்கத்தின் ஏவப்பட்ட சிக்கலின் கட்டமைப்பைப் பருமட்டாக வரைந்து காட்டுக. உருவாகிக் கொண்டிருக்கும் பிணைப்புகளை **'உருவாகும்'** எனவும் உடைக்கப்பட்டுக்கொண்டிருக்கும் பிணைப்புகளை **'உடையும்'** எனவும் பெயரிடுக.
 - (v) வீத மாறிலி k ஆகவும் பீசமானத்துக்குரிய குணகங்கள் x,y,z ஆகவும் உள்ள $x\mathbf{A}+y\mathbf{B} \to z\mathbf{C}$ என்னும் முதன்மைத் தாக்கத்துக்கான வீதக் கோவையை எழுதுக.

(5.0 புள்ளிகள்)

(b) $x\mathbf{A} + y\mathbf{B} \to z\mathbf{C}$ என்னும் தாக்கம் ஒரு சேதனக் கரைப்பான் மற்றும் நீர் அடங்கிய ஓர் ஈர் அவத்தைத் தொகுதியில் கருகப்பட்டது. சேர்வை \mathbf{A} இரு அவத்தைகளிலும் கரைவதோடு சேர்வைகள் \mathbf{B},\mathbf{C} என்பன நீர் அவத்தையில்

மாத்திரம் கரைகின்றன. அவத்தைகளிடையே \mathbf{A} இன் பரம்பலிற்கான பங்கீட்டுக் குணகம், $K_{\mathrm{D}} = \frac{\left[\mathbf{A}_{(\mathrm{org})}\right]}{\left[\mathbf{A}_{(\mathrm{aq})}\right]} = 4.0$ ஆகும்.

சேர்வை **A** ஆனது ஈர் அவத்தைத் தொகுதிக்குச் சேர்க்கப்பட்டுச் சமநிலையடைய விடப்பட்டது. நீர் அவத்தைக்குச் சேர்வை **B** உட்புகுத்தப்பட்டு (injecting) தாக்கம் ஆரம்பிக்கப்பட்டது. தொகுதியின் வெப்பநிலை ஒரு மாநாப் பெறுமானத்தில் பேணப்பட்டது. நடாத்தப்பட்ட பரிசோதனைகளின் பெறுபேறுகள் கீழே தரப்பட்டுள்ளன.

பரிசோதனை இல.	சேதன அவத்தையின் கனவளவு (cm³)	நீர் அவத்தையின் கனவளவு (cm³)	தொகுதிக்குச் சேர்க்கப்பட்ட A இன் அளவு (mol)	உட்புகுத்தப்பட்ட B இன் அளவு (mol)	தொடக்க வீதம், $\left(rac{-oldsymbol{\Delta}C_{f A}}{oldsymbol{\Delta}t} ight)$ (mol dm $^{-3}$ s $^{-1}$)
I		100.00	1.00×10^{-2}	1.00×10^{-2}	1.20×10^{-5}
II	100.00	100.00	1.25×10^{-1}	1.00×10^{-2}	7.50×10^{-5}
III	50.00	50.00	6.25×10^{-2}	1.00×10^{-2}	1.50×10^{-3}

குறிப்பு: I ஆம் பரிசோதனை சேதன அவத்தை இன்றிச் செய்யப்பட்டது.

- (i) மேலே I,II,III ஆகிய பரிசோதனைகளில் நீர் அவத்தையில் ${f A}$ இன் தொடக்கச் செறிவைக் கணிக்க.
- (ii) **A** சார்பாகத் தாக்கத்தின் வரிசையைக் காண்க.
- (iii) **B** சார்பாகத் தாக்கத்தின் வரிசையைக் காண்க.
- (iv) தாக்கத்தின் வீத மாறிலியைக் கணிக்க.
- (v) மேலே பரிசோதனை III இல் A சேர்க்கப்பட்டுச் சமநிலையை அடைவதற்கு விடப்பட்ட பின்னர் சேதன அவத்தையிலிருந்து 10.00 cm³ கனவளவை அகற்றினால், தாக்கத்தின் தொடக்க வீதம் பற்றி யாது கூற முடியும் ? உமது விடைக்கான காரணத்தை/காரணங்களைத் தருக.

(5.0 புள்ளிகள்).

(c) X, Y ஆகிய திரவங்களின் கலவையொன்று இலட்சிய நடத்தையைக் காட்டுகின்றது. ஒரு மாறா வெப்பநிலையில் உள்ள மூடிய விறைத்த பாத்திரத்தில் ஆவி அவத்தையுடன் சமநிலையில் உள்ள திரவ அவத்தையில் 1.2 மூல் X உம் 2.8 மூல் Y உம் இருக்கும்போது மொத்த ஆவியமுக்கம் 3.4 × 10⁴ Pa ஆகும். அதே வெப்பநிலையில் ஆவி அவத்தையுடன் சமநிலையிலுள்ள திரவ அவத்தையின் அமைப்பு X இன் 1.2 மூல்களாகவும் Y இன் 4.8 மூல்களாகவும் இருக்கும்போது மொத்த ஆவியமுக்கம் 3.6 × 10⁴ Pa ஆகும். இவ்வெப்பநிலையில் X, Y ஆகியவற்றின் நிரம்பல் ஆவியமுக்கங்களைக் கணிக்க.

(5.0 புள்ளிகள்)

More Past Papers at tamilguru.lk

7. (*a*) பின்வரும் மாற்றலை **ஐந்து (5) இற்கு மேற்படாத படிமுறைகளில்** எங்ஙனம் நிகழ்த்துவீர் எனக் காட்டுக.

$$\bigcirc \longrightarrow \bigcirc_{NO_2}^{CO_2I}$$

(3.0 புள்ளிகள்)

(b) A, B ஆகிய இரு சேர்வைகளையும் ஆய்வுகூடத்தில் தயாரிக்க வேண்டியுள்ளது.

- (i) X,Y ஆகியவற்றைத் தேவையானவாறு பயன்படுத்தி A,B ஆகிய ஒவ்வொன்றையும் **ஐந்து** (5) **இந்கு மேற்படாத படிமுறைகளில்** எங்ஙனம் தயாரித்துக் கொள்வீர் எனக் காட்டுக.
- (ii) மேலே தரப்பட்டுள்ள A,B ஆகியவற்றைப் பயன்படுத்தி **ஐந்து (5) இற்கு மேற்படாத படிமுறைகளில்** சேர்வை C ஐ எங்ஙனம் தயாரித்துக் கொள்வீர் எனக் காட்டுக.

(9.0 புள்ளிகள்)

(c) அசந்நைல் குளோரைட்டுக்கும் NaOH இந்கும் இடையிலான தாக்கத்தின் பொறிமுறை பற்றிய உமது அறிவைப் பயன்படுக்கி CH.C. இந்கும் NaOH இந்கும் இடையிலான காக்கக்கிற்கான நை பொறிமுறையைப்

பயன்படுத்தி
$$\mathrm{CH_{3}C}$$

பிரேரிக்க. $\mathrm{OCH_{3}}$

இந்கும் NaOH இந்கும் இடையிலான தாக்கத்திற்கான ஒரு பொறிமுறையைப்

(3.0 புள்ளிகள்)

பகுதி С --- கட்டுரை

இரு வினாக்களுக்கு மாத்திரம் விடை எழுதுக (ஒவ்வொரு வினாவின் விடைக்கும் 15 புள்ளிகள் வழங்கப்படும்).

- ${f 8.}$ ${\it (a)}$ கரைசல் ${f Y}$ இல் **மூன்று** கற்றயன்கள் அடங்கியுள்ளன.
 - இக்கற்றபன்களை இனங்காண்பதற்குப் பின்வரும் சோதனைகள் மேற்கொள்ளப்பட்டன.

	சோதனை	அவதானிப்பு					
0	Y இன் சிறிய பகுதிக்கு ஐதான HCl சேர்க்கப்பட்டது.	ஒரு வெண்ணிற வீழ்படிவு (\mathbf{P}_1)					
0	$\mathbf{P_1}$ ஐ வடிகட்டிப் பிரித்தெடுக்கப்பட்ட கரைசலினூடு $\mathrm{H_2S}$ செலுத்தப்பட்டது.	ஒரு கருநிற வீழ்படிவு ($\mathbf{P_2}$)					
3	$oldsymbol{P_2}$ வடிகட்டி வேறாக்கப்பட்டது. $oldsymbol{H_2S}$ ஐ அகற்றுவதற்காக வடிதிரவம் கொதிக்க வைக்கப்பட்டு பின்னர் குளிர்த்தப்பட்டு, $oldsymbol{NH_4OH/NH_4Cl}$ சேர்க்கப்பட்டது.						
4	கரைசலினூடு H ₂ S செலுத்தப்பட்டது.	ஒரு கருநிற வீழ்படிவு $(\mathbf{P_3})$					

 $f B \ P_1, P_2, P_3$ ஆகிய வீழ்படிவுகளுக்குப் பின்வரும் சோதனைகள் மேற்கொள்ளப்பட்டன.

வீழ்படிவு	சோதனை	அவதானிப்பு
P ₁	I. P ₁ இந்கு நீர் சேர்க்கப்பட்டு கலவை கொதிக்கவிடப்பட்டது.	P ₁ இன் ஒரு பகுதி கரைந்தது.
	II. மேலே I இன் கலவை சூடாகவுள்ளபோதே வடிகட்டப்பட்டு வடிதிரவம் (F ₁), மீதி (R ₁) ஆகியவந்றுக்குப் பின்வரும் சோதனைகள் செய்யப்பட்டன.	
	வடிதிரவம் (F ₁)	
	$ullet$ சூடான $oldsymbol{F_1}$ இற்கு ஐதான $oldsymbol{H_2}\mathrm{SO_4}$ சேர்க்கப்பட்டது.	ஒரு வெண்ணிற வீழ்படிவு
	成數 (R ₁)	
	• சூடான நீரில் R ₁ நன்கு கழுவப்பட்டு ஐதான NH ₄ OH சேர்க்கப்பட்டது.	\mathbf{R}_1 கரைந்தது.
	அதன் பின்னர், KI கரைசல் சேர்க்கப்பட்டது.	ஒரு கடும் மஞ்சள் நிற வீழ்படிவு
P ₂	சூடான ஐதான HNO_3 இல் \mathbf{P}_2 கரைக்கப்பட்டு பொற்றாசியம் குரோமேற்றுக் கரைசலொன்று சேர்க்கப்பட்டது.	ஒரு மஞ்சள் நிற வீழ்படிவு
P ₃	I . சூடான செறிந்த $\mathrm{HNO_3}$ இல் $\mathbf{P_3}$ கரைக்கப்பட்டது.	ஓர் இளஞ்சிவப்பு நிறக் கரைசல் (கரைசல் 1)
	II. மேற்படி கரைசல் I இற்குப் பின்வருவன சேர்க்கப்பட்டன. • செறிந்த HCl • ஐதான NH ₄ OH	ஒரு நீல நிறக் கரைசல் (கரைசல் 2) ஒரு மஞ்சட் கபில நிறக் கரைசல் (கரைசல் 3)

- (i) கற்றயன்கள் **மூன்றையும்** இனங்காண்க. (காரணங்கள் **அவசியமல்ல.**)
- (ii) I. ${f P}_1, {f P}_2, {f P}_3$ ஆகிய வீழ்படிவுகளையும்
 - II. **1,2,3** ஆகிய **கரைசல்களில்** நிறங்களுக்குக் காரணமான இனங்களையும் இனங்காண்க.

(**குறிப்பு:** இரசாயனச் சூத்திரங்களை **மாத்திரம்** எழுதுக.)

- (iii) மேலே 🛕 倒 இல் வீழ்படிவாகும் கற்றயன்/கற்றயன்கள் அமில ஊடகத்தில் ஏன் வீழ்படிவாவதில்லை என்பதைச் **சுருக்கமா**க விளக்குக. (7.5 புள்ளிகள்)
- (b) திண்ம மாதிரியொன்றில் (NH₄)₂SO₄, NH₄NO₃ மற்றும் தாக்குதிறனற்ற பதார்த்தங்கள் அடங்கியுள்ளனவெனக் கண்டறியப்பட்டது. இம்மாதிரியில் உள்ள அமோனியம் உப்புகளின் அளவைத் துணிவதற்குப் பின்வரும் நடைமுறைகள் பயன்படுத்தப்பட்டன.

திண்ம மாதிரியின் $1.00\,\mathrm{g}$ பகுதி நீரில் கரைக்கப்பட்டு $250.00\,\mathrm{cm}^3$ வரை கனமானத்துக்குரிய குடுவையொன்றில் ஜதாக்கப்பட்டது. (இதன் பின்னர் S கரைசல் எனக் குறிப்பிடப்படும்.)

நடைமுறை 1

கரைசல் S இன் $50.00~{\rm cm^3}$ பகுதி ஆனது வலிமையான காரம் (NaOH) ஒன்றின் மிகையளவுடன் பரிகரிக்கப்பட்டு வெளிவிடப்படுகின்ற **வாயுவானது** $0.10~{\rm mol~dm^{-3}~HCl}$ இன் $30.00~{\rm cm^3}$ இனுள் செலுத்தப்பட்டது. எஞ்சியுள்ள HCl ஐ நடுநிலையாக்குவதற்குத் (பினோப்தலினைக் காட்டியாகப் பயன்படுத்தி) தேவைப்பட்ட $0.10~{\rm mol~dm^{-3}~NaOH}$ இன் கனவளவு $10.20~{\rm cm^3}$ ஆகும்.

நடைமுறை 2

கரைசல் S இன் $25.00\,\mathrm{cm^3}$ பகுதிக்கு Al தூளும் அதைத் தொடர்ந்து வலிமையான காரமொன்றின் மிகையளவும் சேர்க்கப்பட்டு கலவை வெப்பமாக்கப்பட்டது. வெளிவிடப்படுகின்ற **வாயுவானது** $0.10\,\mathrm{mol}\ \mathrm{dm^{-3}}\ \mathrm{HCl}$ இன் $30.00\,\mathrm{cm^3}$ இனுள் செலுத்தப்பட்டது. எஞ்சியுள்ள $\mathrm{HCl}\ \mathrm{g}$ நடுநிலையாக்குவதற்குத் (பினோப்தலினைக் காட்டியாகப் பயன்படுத்தி) தேவைப்பட்ட $0.10\,\mathrm{mol}\ \mathrm{dm^{-3}}\ \mathrm{NaOH}$ இன் கனவளவு $15.00\,\mathrm{cm^3}\ \mathrm{g}$ கும்.

(குறிப்பு: பாசிச்சாயத் தாளைப் பயன்படுத்தி $1,\,2$ ஆகிய நடைமுறைகளில் வாயு வெளியேற்றப்படல் நிறைவடைந்துள்ளதா எனச் சோதித்துப்பார்க்கப்பட்டது.)

- (i) நடைமுறை 1 இல் வெளிவிடப்படுகின்ற **வாயுவை** இனங்காண்க.
- (ii) நடைமுறை 2 இல் வெளிவிடப்படுகின்ற **வாயுவை** இனங்காண்க.
- (iii) 1,2 ஆகிய நடைமுறைகளில் நடைபெறும் தாக்கங்களுக்கான சமன்படுத்திய இரசாயனச் சமன்பாடுகளை எழுதுக.
- (iv) திண்ம மாதிரியில் உள்ள (NH_4) $_2SO_4$, NH_4NO_3 ஆகிய ஒவ்வொரு சேர்வையினதும் திணிவுச் சதவீதத்தைக் கணிக்க. (H=1,N=14,O=16,S=32) (7.5 புள்ளிகள்)

- 9. (a) கீழே தரப்பட்டுள்ள கைத்தொழிற் செயன்முறைகளைக் கருதுக.
 - I. வெளிற்றும் தூள் உற்பத்தி
 - II. கல்சியம் காபைட்டு உற்பத்தி
 - III. யூரியா உற்பத்தி
 - IV. சல்பூரிக்கமில உற்பத்தி (தொடுகை முறை)
 - (i) ஒவ்வொரு செயன்முறையிலும் பயன்படுத்தப்படும் தொடங்கு பொருள்களைக் குறிப்பிடுக.
 - (ii) தேவையான இடங்களில் பொருத்தமான நிபந்தனைகளைக் குறிப்பிட்டு, ஒவ்வொரு செயன்முறையிலும் நடைபெறும் தாக்கங்களுக்கான சமன்படுத்திய இரசாயனச் சமன்பாடுகளை எழுதுக.
 - (iii) பின்வரும் ஒவ்வொன்றினதும் பயன்கள் இரண்டு வீதம் குறிப்பிடுக: வெளிற்றும் தூள், கல்சியம் காபைட்டு, யூரியா, சல்பூரிக்கமிலம்

(7.5 புள்ளிகள்)

- (b) ஓசோன் படை நலிவடைதல் (OLD), பூகோள வெப்பமாதல் (GW), அமில மழை (AR) ஆகியவையே தற்காலத்தில் நாம் எதிர்கொள்ளும் பிரதான சூழந் பிரச்சினைகளாகும். கீழே தரப்பட்டுள்ள வினாக்கள் சூழலுடனும் மேலே குறிப்பிடப்பட்டுள்ள பிரச்சினைகளுடனும் தொடர்புபட்டவை.
 - (i) காபன், நைதரசன் வட்டங்கள் சூழலிற் செயற்படும் முக்கியமான இரண்டு இரசாயன வட்டங்கள் ஆகும்.
 - காபன் வட்டம் சம்பந்தமாகப் பின்வரும் ஒவ்வொன்றிலும் காபன் பிரதானமாகக் காணப்படும் விதம் ஒன்று வீதம் குறிப்பிடுக.
 - வளிமண்டலம், தாவரங்கள், நீர், புவியோடு
 - m II. நைதரசன் வட்டத்தில் வளிமண்டலத்திலுள்ள $m N_2$ வாயுவை அகற்றுதல் மற்றும் மீள நிரப்புதல் என்பன எவ்வாறு நடைபெறுகின்றன என்பதைச் சுருக்கமாகக் குறிப்பிடுக.
 - III. காபன் வட்டத்தில் நுண்ணங்கிகள் பங்குபற்றும் **இர** வழிகளைக் குறிப்பிடுக.
 - (ii) அமில மழை உருவாவதில் பங்களிப்புச் செய்யும் வளிமண்டலத்தில் இருக்கும் நைதரசன் அடங்கும் பிரதான சேர்வைகள் **இரண்டையும்** இனங்காண்க. சமன்படுத்திய இரசாயனச் சமன்பாடுகளின் துணையுடன் இச்சேர்வைகள் மழை நீரை எவ்வாறு அமிலமாக்குகின்றன எனக் காட்டுக.
 - (iii) மேற்படி **ஒவ்வொரு** குழற் பிரச்சினை (OLD, GW, AR) இந்கும் பங்களிப்புச் செய்யும் கைத்தொழிற் செயன்முறைகள் **இரண்டு** வீதம் இனங்காண்க. இவ் **ஒவ்வொரு** கைத்தொழிற் செயன்முறை மூலமும் வளிமண்டலத்துக்கு விடுவிக்கப்படும் **ஓர்** இரசாயனச் சேர்வை வீதம் இனங்காண்க.
 - (iv) நீருக்கும் மண்ணுக்கும் நைதரசன் சேர்வைகள் சேர்வதில் கருதத்தக்க வகையில் பங்களிப்புச் செய்யும் பிரதான கைத்தொழிற் செயன்முறையை இனங்காண்க. இச்சேர்வைகள் நீரையும் மண்ணையும் அடையும் வழிகள் தொடர்பாகக் கருத்துரைக்க.
 - (v) மீத்தொடமுல்ல நிகழ்வு போன்ற பொருத்தமற்ற நகரத் திண்மக் கழிவகற்றல் முறை மேலே குறிப்பிடப்பட்டுள்ள மூன்று சூழற் பிரச்சினைகளில் ஒன்றுக்குக் கணிசமானவளவு பங்களிப்புச் செய்கின்றது. அச்சூழற் பிரச்சினையை இனங்கண்டு பொருத்தமற்ற நகரத் திண்மக் கழிவகற்றலானது குறித்த சூழற் பிரச்சினைக்கு எவ்வாறு பங்களிப்புச் செய்கின்றது எனச் சுருக்கமாகக் குறிப்பிடுக.

(7.5 புள்ளிகள்)

 $10. \ (a) \ (i) \ \mathrm{TiCl_3}$ ஓர் ஊதா நிறத் திண்மமாகும். நீரில் $\mathrm{TiCl_3}$ இன் \mathbf{A}, \mathbf{B} என்னும் இரு நீரேற்றப்பட்ட இனங்கள் உருவாகின. \mathbf{A}, \mathbf{B} ஆகியன $\mathrm{H_2O}$ மற்றும் $\mathrm{Cl^-}$ ஆகிய இணையிகள் அடங்கும் எண்கோணக் கேத்திரகணிதத்தைக் கொண்ட தைத்தேனியத்தின் இணைப்புச் சேர்வைகளாகும்.

A, B ஆகியவை வேறுபடுத்தப்பட்டு அவற்றின் அணு அமைப்புகள் துணியப்பட்டன. பின்வரும் நடைமுறைகளைப் பயன்படுத்திச் சேர்வைகள் மேலும் பகுப்பாய்வுச் செய்யப்பட்டன.

${f A}$ இன் பகுப்பாய்வு

f A இன் $0.20~{
m mol~dm^{-3}}$ கரைசலின் $50.00~{
m cm^3}$ இற்கு மிகை ${
m AgNO_3(aq)}$ ஐச் சேர்த்தபோது ஐதான அமோனியாவில் கரையும் ஒரு வெண்ணிற வீழ்படிவு கிடைத்தது. வீழ்படிவைக் கழுவிக் கனலடுப்பில் உலர்த்தியபோது (ஒரு மாறாத் திணிவு பெறப்படும் வரை) திணிவு $4.305~{
m g}$ ஆகும்.

B இன் பகுப்பாய்வு

 ${f B}$ இன் $0.30~{
m mol~dm^{-3}}$ கரைசலின் $50.00~{
m cm^3}$ இற்கு மிகை ${
m AgNO_3(aq)}$ ஐச் சேர்த்தபோது ${f A}$ இன் பகுப்பாய்வில் போன்ற அதே வெண்ணிற வீழ்படிவு கிடைத்தது. வீழ்படிவைக் கழுவி, கனலடுப்பில் உலர்த்தியபோது (ஒரு மாறாத் திணிவு பெறப்படும் வரை) கிடைத்த திணிவும் $4.305~{
m g}$ ஆகும்.

(H = 1, O = 16, Cl = 35.5, Ti = 48, Ag = 108)

- A, B ஆகியவற்றில் தைத்தேனியத்தின் இலத்திரன் நிலையமைப்பை எழுதுக.
- II. A, B ஆகியவற்றின் கட்டமைப்புகளை உய்த்தறிக.
- III. A, B ஆகியவற்றின் IUPAC பெயர்களைத் தருக.

(ii) X,Y,Z ஆகியன உலோக அயன் M(II) இன் இணைப்புச் சேர்வைகளாகும். அவை சதுரத் தளக் கேத்திர கணிதத்தைக் கொண்டவை. X ஒரு நடுநிலைச் சேர்வையாகும். Y இன் நீர்க் கரைசலுக்கு $\operatorname{BaCl}_2(\operatorname{aq})$ ஐச் சேர்க்கும்போது ஐதான அமிலங்களில் கரையாத வெண்ணிற வீழ்படிவொன்று கிடைத்தது. நீர்க் கரைசலில் Z ஆனது மூன்று அயன்களைத் தரும்.

பின்வரும் பட்டியலில் பொருத்தமான இனங்களைத் தெரிவுசெய்து $\mathbf{X},\,\mathbf{Y},\,\mathbf{Z}$ ஆகியவற்றின் கட்டமைப்புச் சூத்திரங்களை எழுதுக.

$$K^+$$
, NH_3 , CN^- , SO_4^{2-}

(7.5 புள்ளிகள்)

(b)

மேலே வரிப்படத்தில் காட்டப்பட்டுள்ளவாறான மின்னிரசாயனக் கலமொன்று தயாரிக்கப்பட்டுள்ளது. பின்வரும் தரவுகள் தரப்பட்டுள்ளன.

$$E^{o} = 0.22 V$$

$$Hg(l) \mid Hg_2Cl_2(s) \mid Cl^-(aq)$$

$$E^{o} = 0.27 V$$

- (i) மேற்படி கலத்தின் தாழ்த்தல் அரைத் தாக்கத்தை எழுதுக.
- (ii) மேற்படி கலத்தின் ஒட்சியேற்ற அரைத் தாக்கத்தை எழுதுக.
- (iii) கலத் தாக்கத்தைக் கட்டியெழுப்புக.
- (iv) தரப்பட்டுள்ள E^o பெறுமானங்களைப் பயன்படுத்திக் கலத்தின் மின்னியக்க விசையைக் கணிக்க.
- (v) மேற்படி மின்னிரசாயனக் கலத்தின் நியமக் கலக் குறியீட்டைத் தருக.
- (vi) மேற்படி மின்னிரசாயனக் கலத்தின் மின்னியக்க விசையானது குளோரைட்டு அயனின் செறிவில் தங்கியுள்ளதா? உமது விடைக்குக் காரணம்/காரணங்கள் தருக.
- (vii) கலத்திலிருந்து $0.10\,A$ ஓட்டமொன்றை $60\,$ நிமிடங்களுக்குப் பெற்றுக்கொள்ளும்போது Ag(s)+AgCl(s) இன் திணிவில் ஏற்படும் மாற்றத்தைக் கணிக்க.
- (viii) மேலே (vii) இல் ஓட்டத்தைப் பெற்றுக்கொண்ட பின்னர் கரைசலில் குளோரைட்டு அயன் செறிவு எவ்வளவாக இருக்கும் ?

பேரடே மாறிலி, F = 96500 C mol⁻¹, Cl = 35.5, Ag = 108)

(7.5 புள்ளிகள்)

More Past Papers at tamilguru.lk

ஆவர்த்தன் அட்டவணை

		1																
	1																	2
1	H																	He
	3	4	İ										5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg			,								Al	Si	P	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	Aŧ	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr