TP3 – Classification bayésienne

Rappels de cours

La segmentation d'une image en niveaux de gris $\mathbf{x}=(x_s)_{s\in\mathcal{S}}$ peut être effectuée par classification. En choisissant un nombre N de classes, supposées gaussiennes, et en supposant connues les moyennes μ_1,\ldots,μ_N et les écarts-types σ_1,\ldots,σ_N des différentes classes, le résultat est la configuration $\hat{\mathbf{k}}=(\hat{k}_s)_{s\in\mathcal{S}}$ qui maximise la probabilité a posteriori de la configuration $\mathbf{k}=(k_s)_{s\in\mathcal{S}}$, sachant \mathbf{x} . Or, d'après le théorème de Bayes :

$$p(\mathbf{K} = \mathbf{k}|\mathbf{X} = \mathbf{x}) = \frac{p(\mathbf{X} = \mathbf{x}|\mathbf{K} = \mathbf{k}) p(\mathbf{K} = \mathbf{k})}{p(\mathbf{X} = \mathbf{x})} \propto p(\mathbf{X} = \mathbf{x}|\mathbf{K} = \mathbf{k}) p(\mathbf{K} = \mathbf{k})$$
(1)

L'hypothèse d'indépendance des données permet d'écrire la vraisemblance sous la forme d'un produit :

$$p(\mathbf{X} = \mathbf{x} | \mathbf{K} = \mathbf{k}) = \prod_{s \in S} p(X_s = x_s | K_s = k_s) = \prod_{s \in S} \frac{1}{\sigma_{k_s} \sqrt{2\pi}} \exp\left\{ -\frac{(x_s - \mu_{k_s})^2}{2\sigma_{k_s}^2} \right\}$$
(2)

Quant à la probabilit'e a priori de la configuration ${\bf k}$, elle est donnée par le $mod\`ele$ de Potts :

$$p(\mathbf{K} = \mathbf{k}) \propto \exp \left\{ -\beta \sum_{\{s,t\} \in \mathcal{C}_2} [1 - \delta(k_s, k_t)] \right\}$$
 (3)

où C_2 contient les paires $\{s,t\}$ de pixels voisins (« 8 plus proches voisins »). De (1), (2) et (3), il vient :

$$p(\mathbf{K} = \mathbf{k}|\mathbf{X} = \mathbf{x}) \propto \exp\left\{-\frac{1}{2}\sum_{s \in \mathcal{S}} \left[\ln \sigma_{k_s}^2 + \frac{(x_s - \mu_{k_s})^2}{\sigma_{k_s}^2}\right] - \beta \sum_{\{s,t\} \in \mathcal{C}_2} [1 - \delta(k_s, k_t)]\right\}$$
(4)

Chercher le maximum de $p(\mathbf{k}|\mathbf{x})$ équivaut à chercher le minimum de l'énergie $U(\mathbf{k})$:

$$U(\mathbf{k}) = \frac{1}{2} \sum_{s \in \mathcal{S}} \left[\ln \sigma_{k_s}^2 + \frac{(x_s - \mu_{k_s})^2}{\sigma_{k_s}^2} \right] + \beta \sum_{\{s,t\} \in C_2} \left[1 - \delta(k_s, k_t) \right]$$
 (5)

Étant donné qu'il est impossible, en pratique, de tester les $N^{\operatorname{card}(S)}$ configurations \mathbf{k} , il faut recourir à une méta-heuristique, en l'occurrence le recuit simulé, qui fait décroître un paramètre T appelé température, à chaque itération. L'algorithme complet s'écrit :

- 1. **Initialisations**: $T \leftarrow T_0$; $\mathbf{k} \leftarrow$ Configuration obtenue par maximisation de la vraisemblance.
- 2. Parcours de tous les pixels s de l'image, visitée ligne par ligne et colonne par colonne :
 - Tirer une valeur $k'_s \in E \setminus \{k_s\}$, où $E = \{1, \dots, N\}$, et calculer les deux énergies locales suivantes :

$$\begin{cases}
U_s = \frac{1}{2} \left[\ln \sigma_{k_s}^2 + \frac{(x_s - \mu_{k_s})^2}{\sigma_{k_s}^2} \right] + \beta \sum_{t \in \mathcal{V}(s)} \left[1 - \delta(k_s, k_t) \right] \\
U_s' = \frac{1}{2} \left[\ln \sigma_{k_s'}^2 + \frac{(x_s - \mu_{k_s'})^2}{\sigma_{k_s'}^2} \right] + \beta \sum_{t \in \mathcal{V}(s)} \left[1 - \delta(k_s', k_t) \right]
\end{cases}$$
(6)

où $\mathcal{V}(s)$ désigne l'ensemble des pixels voisins de s.

- Si $U'_s < U_s$, remplacer k_s par k'_s . Sinon, faire de même, mais avec une probabilité $\exp\left\{-\frac{U'_s U_s}{T}\right\}$ qui décroît avec la température T. Une particularité du recuit simulé est donc de ne pas systématiquement rejeter les changements de configuration qui font croître l'énergie.
- 3. Mises à jour : $T \leftarrow \alpha T$, puis retour en 2, tant que le nombre maximal d'itérations n'est pas atteint.

Exercice 1 : segmentation par classification supervisée

Écrivez les fonctions estimation_loi_normale, attache_aux_donnees et recuit_simule, appelées par exercice_1:

- La fonction estimation_loi_normale permet d'estimer la moyenne et la variance de chaque classe à partir d'un échantillon sélectionné par l'utilisateur, d'où le caractère supervisé de la classification.
- La fonction attache_aux_donnees doit retourner une matrice tridimensionnelle contenant, pour chaque pixel s, la valeur de l'attache aux données $\frac{1}{2} \left[\ln \sigma_{k_s}^2 + \frac{(x_s \mu_{k_s})^2}{\sigma_{k_s}^2} \right]$, relativement à chacune des N classes.
- La fonction recuit_simule doit effectuer autant d'itérations de l'algorithme ci-dessus qu'il y a de pixels dans l'image. Utilisez la fonction randi de Matlab pour tirer aléatoirement la nouvelle classe d'un pixel, et l'opérateur ~= (« différent de ») pour calculer le terme de régularisation des expressions (6).

Observez ce qui se passe dans les cas suivants : si le nombre N de classes est différent de 4; lorsque les échantillons sont mal sélectionnés ; si $T_0 = 0$ (dans ce cas, on force l'énergie à décroître à chaque itération).

Classification non supervisée

Pour éviter à l'utilisateur de sélectionner à la main un échantillon de chaque classe, il est envisageable d'estimer les paramètres des N classes, en cherchant un mélange de N gaussiennes coïncidant avec l'histogramme f(x) de l'image en niveaux de gris :

$$f(x) = \sum_{i=1}^{N} \frac{p_i}{\sigma_i \sqrt{2\pi}} \exp\left\{-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right\}, \qquad x \in [0, 255]$$
 (7)

où μ_i , σ_i et p_i désignent, respectivement, la moyenne, l'écart-type et le poids de la $i^{\text{ème}}$ gaussienne. L'estimation des paramètres de ce modèle revient donc à résoudre un problème en moindres carrés linéaire vis-à-vis de p_i , mais non linéaire vis-à-vis de μ_i et σ_i :

$$(\widehat{\mu}_{i}, \widehat{\sigma}_{i}, \widehat{p}_{i})_{i \in E} = \underset{(\mu_{i}, \sigma_{i}, p_{i})_{i \in E}}{\operatorname{arg \, min}} \sum_{x=0}^{255} \left[f(x) - \sum_{i=1}^{N} \frac{p_{i}}{\sigma_{i} \sqrt{2\pi}} \exp\left\{ -\frac{(x - \mu_{i})^{2}}{2 \sigma_{i}^{2}} \right\} \right]^{2}$$
(8)

Exercice 2 : segmentation par classification non supervisée

Lisez le script exercice_2, dans lequel l'estimation des paramètres μ_i et σ_i est effectuée en minimisant l'argument de (8) par tirages aléatoires : les moyennes μ_i sont recherchées dans l'intervalle [0, 25], mais les écarts-types σ_i sont recherchés dans l'intervalle [10, 25] afin d'accélérer la résolution. Quant à l'estimation des poids p_i , elle est facilitée par le fait que le problème en moindres carrés (8) est linéaire en p_i . Pour estimer les poids, à chaque tirage aléatoire de 2N valeurs réelles (μ_i, σ_i) , $i \in \{1, \ldots, N\}$, il faut donc résoudre un système linéaire du type $\mathbf{A} \mathbf{P} = \mathbf{F}$, où $\mathbf{P} = [p_1, \ldots, p_N]^{\top}$ et où \mathbf{F} contient les 256 valeurs de l'histogramme.

Écrivez la fonction estimation_poids, appelée par le script exercice_2, permettant de résoudre la partie linéaire du problème (8), c'est-à-dire relativement aux poids $(p_i)_{i \in E}$.

Bien que beaucoup plus lente, à cause de l'estimation des paramètres par tirages aléatoires, cette méthode doit vous permettre d'atteindre un pourcentage de bonnes classifications comparable à celui de l'exercice 1, et ce de manière entièrement non supervisée!

Exercice 3: segmentation par partitionnement (facultatif)

Écrivez un script, de nom exercice_3, permettant de segmenter l'image de synthèse précédente en vous inspirant d'une des méthodes de partitionnement (clustering) vues en 1A : choisissez comme caractéristiques d'un pixel son niveau de gris et sa position dans l'image, puis étendez cette méthode à des images couleur.