Tutorato MMI - Resto 1 19/05/2023

Definizione ricorsiva

Sia L l'insieme delle stringhe sull'alfabeto $\Sigma = \{a, b\}$ che iniziano per a. Dare una definizione ricorsiva di L.

Esercizio 1 - Soluzione

Soluzione

- Passo base. $a \in L$.
- Passo ricorsivo. Se $w \in L$, allora $wa, wb \in L$.

Definizione ricorsiva

Sia $L := \{ w \in \{a, b\}^* \mid w = aw', w' \in \{a, b\}^*, |w| = 2h, h \ge 0 \}.$ Dare una definizione ricorsiva dell'insieme L.

Esercizio 2 - Soluzione

Soluzione

- Passo base. $aa, ab \in L$.
- **Passo ricorsivo.** Se $w \in L$, allora waa, wab, wba, $wbb \in L$.

Definizione ricorsiva

Sia $\mathbb N$ l'insieme dei numeri interi non negativi. Fornire una definizione ricorsiva dell'insiesme $L:=\{a^{n+2}b^{2n+1}\in\Sigma^*\mid n\in\mathbb N\}$, dove $\Sigma=\{a,b\}$.

Esercizio 3 - Soluzione

Soluzione

- Passo base. $aab \in L$.
- Passo ricorsivo. Se $w \in L$, allora $awbb \in L$.

Induzione strutturale

Si consideri la seguente definizione ricorsiva di un insieme X di stringhe sull'alfabeto $\{a,b\}$.

- Passo base. $b \in X$.
- Passo ricorsivo. Se $x \in X$, allora $xa, ax \in X$.

Utilizzando il principio di induzione strutturale, provare che ogni stringa $x \in X$ ha un sola occorrenza della lettera b.

Esercizio 4 - Soluzione

Soluzione:

- Passo base. Sia x = b, allora $|x|_b = |b|_b = 1$.
- Passo induttivo. Supponiamo per *ipotesi induttiva* che P(x) sia vera, cioè che $|x|_b = 1$.

Dimostriamo ora che vale P(ax) e anche P(xa).

$$|ax|_b = |a|_b + |x|_b = |a|_b + 1 = 0 + 1 = 1.$$

$$|xa|_b = |x|_b + |a|_b = 1 + |a|_b = 1 + 0 = 1.$$

Avendo provato il passo base e il passo induttivo, per il principio di induzione l'asserto è vero $\forall x \in X$.

Induzione strutturale

Si consideri la seguente definizione ricorsiva di un insieme S di terne di numeri positivi.

- Passo base. $(1,1,1) \in S$.
- Passo ricorsivo. Se $(x, y, z) \in S$, allora $(x + 1, y + 1, z + 1) \in S$.

Utilizzando il principio di induzione strutturale, provare che per ogni terna $(x, y, z) \in S$, il numero x + y + z è un multiplo di 3.

Esercizio 5 - Soluzione

Soluzione:

- **Passo base.** Sia (x, y, z) = (1, 1, 1), allora x + y + z = 1 + 1 + 1 = 3, che è multiplo di 3.
- Passo induttivo. Supponiamo per *ipotesi induttiva* che P((x,y,z)) sia vera, cioè che $x+y+z=3k, \ k\geq 0$. Dimostriamo ora che vale P((x+1,y+1,z+1)). x+1+y+1+z+1=(x+y+z)+3=3k+3=3(k+1), che è multiplo di 3.

Avendo provato il passo base e il passo induttivo, per il principio di induzione l'asserto è vero $\forall (x, y, z) \in S$.

Induzione strutturale

Si consideri la seguente definizione ricorsiva di un insieme B di stringhe sull'alfabeto $\{a, b\}$.

- Passo base. $\lambda \in B$.
- Passo ricorsivo. Se $x \in B$, allora $0x11 \in B$.

Utilizzando il principio di induzione strutturale, dimostrare l'affermazione seguente: $\forall w \in B, |w|_1 = 2|w|_0$.

Esercizio 6 - Soluzione

Soluzione:

- Passo base. Sia $w = \lambda$, $|w|_1 = |\lambda|_1 = 0 = 2 \cdot 0 = 2|\lambda|_0 = 2|w|_0$.
- Passo induttivo. Supponiamo per ipotesi induttiva che P(w) sia vera, cioè che $|w|_1=2|w|_0$. Dimostriamo ora che vale P(0w11). $|0w11|_1=|0|_1+|w|_1+|11|_1=0+|w|_1+2=|w|_1+2$. $|0w11|_0=|0|_0+|w|_0+|11|_0=1+|w|_0+0=|w|_0+1$. $|0w11|_1=|w|_1+2=2|w|_0+2=2(|w|_0+1)=2|0w11|_0$.

Avendo provato il passo base e il passo induttivo, per il principio di induzione l'asserto è vero $\forall w \in B$.