CHAPTER IV.

ON THE COHOMOLOGY OF THE CLASSICAL COMPLEX LIE ALGEBRAS OF COMPACT OPERATORS

Let U be a (finite dimensional, simple, compact) classical group, let G be its complexification, let <u>u</u> be the Lie algebra of U and let <u>g</u> be that of G. The following facts are well-known (Cartan [31], Chevalley-Eilenberg [38], Koszul [100]):

The real (or de Rham) cohomology $H^*(U)$ of the group U, the cohomology $H^*(\underline{u})$ of its Lie algebra and the algebra $J^*(\underline{u})$ of invariant cocycles on \underline{u} are isomorphic to each other. Moreover, $J^*(\underline{u})$ is an exterior algebra over the space $P^*(\underline{u})$ of primitive cocycles, which is of dimension \mathcal{L} (\mathcal{L} = rank of U). The same is true for the complex algebras $H^*(G)$, $H^*(\underline{g})$ and $J^*(\underline{g})$; indeed, the inclusion of U in G is a homotopy equivalence, and the relations $H^*(\underline{g}) = H^*(\underline{u}) \otimes_{\mathbb{R}} \mathbb{C}$ and $J^*(\underline{g}) = J^*(\underline{u}) \otimes_{\mathbb{R}} \mathbb{C}$ are true by general principles.

Let now I(U) be the Z-graded algebra of those polynomial functions on \underline{u} with real values which are invariant by the adjoint action of U on \underline{u} . Let $H^*(B_{\underline{U}})$ be the real cohomology of the classifying space $B_{\underline{U}}$ for U-principal bundles. Then I(U) and $H^*(B_{\underline{U}})$ are isomorphic to each other. Moreover, I(U) is a polynomial algebra over ℓ generators.

Finally, there exists a canonical linear map T (denoted by ρ in Cartan [31]) from I(U) to $J*(\underline{u})$ which transforms generators of I(U) into generators of $J*(\underline{u})$. This map plays a crucial role in the study of transgressions.

The purpose of this chapter is to investigate the analogue propositions when g is replaced by a classical complex Lie algebra of compact operators. Indications have been sketched in [82], [83]. In the absence of any general theorem, our only method is to perform explicit computations.

IV.1. - The algebra $J_c^*(g)$ of invariant cochains

This section is an easy consequence of the (classical) computations written up in [81].

Let g be a (possibly infinite dimensional) Lie algebra over K (K is R or C). If $k \in \mathbb{N}^*$, a k-cochain is a multilinear alternating map $g \times \ldots \times g$ (k times) $\longrightarrow K$. The vector space of all k-cochains on g will be denoted by $C^k(g)$ and the algebra of all cochains on g by $C^*(g) = \bigoplus_{k \in \mathbb{N}} C^k(g)$; according to the usual convention, $C^0(g) = K$. The standard explicit formulas for the Lie derivative θ^* and for the "exterior" differentiation d carry over to the infinite dimensional case without change, so that we will not define every notion in detail; see for example Koszul [100]. We will denote by $Z^k(g)$ [resp. $B^k(g)$, $H^k(g)$, $J^k(g)$] the space of the k-cocycles [resp. k-boundaries, k-cohomology classes, k-invariant cocycles] on g.

Let now g be a Banach-Lie algebra over K. The space of continuous k-cochains on g will be denoted by $C_c^k(g)$; similarly for $Z_c^k(g)$, $B_c^k(g)$, $H_c^k(g)$ and $J_c^k(g)$. We now proceed to describe $J_c^*(\underline{u})$ when \underline{u} is the compact form of a classical complex Lie algebra \underline{g} of compact operators on the <u>infinite dimensional separable complex</u> Hilbert space \hbar .

Consider first the associative algebra $\,C_0(\mathcal{H})$. For each $k\in N^*$, define the k-linear alternating map

$$\mathbf{q}_{k}: \left\{ \begin{array}{ccc} \mathbf{C}_{o}(\boldsymbol{\mathcal{H}}) \times \ldots \times \mathbf{C}_{o}(\boldsymbol{\mathcal{H}}) & & & \\ & (\mathbf{X}_{1}, \ldots, \mathbf{X}_{k}) & & & \\ & & & & \\ \end{array} \right. \\ \left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{k}) & & & \\ & & & \\ \end{array}$$

where the sum is taken over all permutations of the symmetric group in k variables $\boldsymbol{\sigma}_k^{\!\!\!\!\!\!\boldsymbol{\nu}}$.

It is easy to check that q_k vanishes whenever k is even.

Let then \underline{u}_{0} denote for short the Lie algebra of finite rank operators $\underline{u}(\pmb{\mathcal{H}};\, C_{0})$ and define for each $k\in N^*$

<u>Proposition 1A.</u> The cochains $(\hat{\rho}_k)_{k \in \mathbb{N}^*}$ are primitive cocycles on $\underline{u}_{\underline{o}}$. The algebra $J^*(\underline{u}_{\underline{o}})$ is an exterior algebra generated by $(\hat{\rho}_k)_{k \in \mathbb{N}^*}$; moreover, these primitive generators are unique up to multiplication by non-zero real numbers.

Proof.

Step one: Let F be an n-dimensional subspace of \mathcal{R} and let $\underline{u}(F)$ be the subalgebra of \underline{u}_{0} consisting of those operators which map F into itself and its orthogonal complement onto zero. Let $\hat{\rho}_{k}^{F}$ be the restriction of $\hat{\rho}_{k}$ to $\underline{u}(F)$ for all $k \in \mathbb{N}^{*}$. Then $(\hat{\rho}_{1}^{F}, \dots, \hat{\rho}_{n}^{F})$ are primitive cocycles on $\underline{u}(F)$, they generate $J^{*}(\underline{u}(F))$, and they are the unique primitive generators of $J^{*}(\underline{u}(F))$ up to multiplication by a non-zero real numbers. The proof of this step is classical; the explicit form of the $\hat{\rho}_{k}^{F}$'s is apparently due to Dynkin [52]; references and pedestrian computations have been collected in [81].

Step two. Let γ be an invariant ℓ -cochain on \underline{u}_0 . According to the results recalled under step one, for any subspace F of $\mathcal H$ as above, there are constants (a priority depending on F) such that the restriction of γ to $\underline{u}(F)$ can be written as

$$\gamma^{F} = \sum_{1 \leq k \leq \ell} c_{F}^{k} \hat{\rho}_{k}^{F} + \sum_{1 \leq k_{1} < k_{2} \leq \ell} c_{F}^{k_{1}, k_{2}} \hat{\rho}_{k_{1}}^{F} \wedge \hat{\rho}_{k_{2}}^{F} + \cdots$$

(finite sum).

But if $F_1\subset F_2$, γ^{F_1} is the restriction of γ^{F_2} to $\underline{u}(F_1)$. It follows clearly from the finite dimensional case that the constants c 's do not depend on F for dimF large enough. Hence $J^*(\underline{u}_0)$ is

an exterior algebra generated by the $\; \boldsymbol{\hat{\rho}_k} \;$'s .

Step three. The primitivity and the unicity of the generators $\hat{\rho}_k$'s can be proved similarly, using finite dimensional subalgebras of $\,u_0^{}$. \blacksquare

Let now $p \in \overline{\mathbb{R}}$ with $1 \leq p \leq \boldsymbol{\omega}$, and let \underline{u}_p denote for short the Lie algebra of compact operators $\underline{u}(\mathcal{H}; C_p)$. For each $k \in \mathbb{N}^*$ with $2k-1 \geq p$, $\hat{\rho}_k$ extends uniquely to a continuous (2k-1)-cochain on \underline{u}_p which will be denoted by the same letter.

Corollary. The cochains $(\hat{\rho}_k)_{k \in \mathbb{N}^*}$ are primitive cocycles on \underline{u}_p . The algebra $J_c^*(\underline{u}_p)$ is an exterior algebra generated by $(\hat{\rho}_k)_{k \in \mathbb{N}^*}$, $2k-1\geqslant p$; moreover, these primitive generators are unique up to multiplication by non-zero real numbers. In particular $J_c^*(u_\infty) = J^O(u_\infty) = \mathbb{R}$.

<u>Proof</u>: clear, as \underline{u}_{o} is dense in \underline{u}_{p} and as those $\hat{\rho}_{k}$'s which are defined must be continuous.

Remarks.

- i) Proposition 1A still holds for the algebra $\underline{su}(\mathcal{H}; C_0)$ and the set of generators $(\hat{\rho}_k)_{k \in \mathbb{N}^*, k \geqslant 2}$; the corollary still holds for $\underline{su}(\mathcal{H}; C_1)$ in the same way.
- ii) The same description as above is also valid for the complex Lie algebras $\underline{gl}(\mathcal{H}; C_p)$, $p \in \overline{\mathbb{R}}$ with p=0 or $1 \leqslant p \leqslant \infty$, and $\underline{sl}(\mathcal{H}; C_p)$, p=0 or p=1.

Let now $\mathcal{H}_{\mathbb{R}}$ be a real Hilbert space, which can be considered as the set of fixed points of a conjugation in \mathcal{H} . Let \underline{so}_{0} be the Lie algebra of finite rank operators $\underline{o}(\mathcal{H}_{\mathbb{R}}; C_{0})$. It is easy to check

that the restriction of q_k to <u>so</u> vanishes when $k\equiv 1 \pmod{4}$. For each $k\in \mathbb{N}^*$, let $\hat{\sigma}_{2k}$ be the restriction of q_{4k-1} to so.

<u>Proposition 1B</u>. The ∞ chains $(\hat{\sigma}_{2k})_{k \in \mathbb{N}^*}$ are primitive cocycles on \underline{so}_{0} . The algebra $J^*(\underline{so}_{0})$ is an exterior algebra generated by $(\hat{\sigma}_{2k})_{k \in \mathbb{N}^*}$; moreover, these primitive generators are unique up to multiplication by non-zero real numbers.

Proof: as for proposition 1A.

Let $p \in \mathbb{R}$ with $1 \le p \le \infty$, and let o_p denote for short the Lie algebra of compact operators $o(\mathcal{H}_R; C_p)$ (o_p is also denoted by so_1 when p = 1). For each $k \in \mathbb{N}^*$ with 4k-1 > p, \hat{o}_{2k} extends uniquely to a continuous (4k-1)-cochain on o_p which will be denoted by the same letter.

Corollary. Proposition 1B holds if so is replaced by o_p , $J^*(so_0)$ by $J^*_c(o_p)$, and $(\hat{\sigma}_{2k})_{k \in \mathbb{N}^*}$ by $(\hat{\sigma}_{2k})_{k \in \mathbb{N}^*}$, $4k-1 \geqslant p$. In particular $J^*_c(o_p) = \mathbb{R}$.

Let now $\mathcal{H}_{\mathbb{Q}}$ be a quaternionic Hilbert space, which can be considered as \mathcal{H} furnished with an anticonjugation. Let \underline{sp}_{0} be the Lie algebra of finite rank operators $\underline{sp}(\mathcal{H}_{\mathbb{Q}}; C_{0})$. It is again easy to check that the restriction of q_{k} to \underline{sp}_{0} vanishes when $k=1 \pmod{4}$. For each $k\in\mathbb{N}^*$, let $\hat{\tau}_{2k}$ be the restriction of $2q_{kk-1}$ to \underline{sp}_{0} .

<u>Proposition 1C</u>. The cochains $(\hat{\tau}_{2k})_{k \in \mathbb{N}^*}$ are primitive cocycles on \underline{sp}_{0} . The algebra $J^*(\underline{sp}_{0})$ is an exterior algebra generated by $(\hat{\tau}_{2k})_{k \in \mathbb{N}^*}$; moreover, these primitive generators are unique up to multiplication by non-zero real numbers.

Proof: as for proposition 1A.

Let $p \in \mathbb{R}$ with $1 \le p \le \infty$, and let \underline{sp}_p denote for short the Lie algebra of compact operators $\underline{sp}(\mathcal{H}_{\mathbb{Q}}; C_p)$. For each $k \in \mathbb{N}^*$ with $4k-1 \ge p$, $\hat{\tau}_{2k}$ extends uniquely to a continuous (4k-1)-cochain on \underline{sp}_p which will be denoted by the same letter.

Corollary. Proposition 1C holds if sp_0 is replaced by sp_p , $J^*(sp_0)$ by $J^*_c(sp_p)$, and $(\hat{\tau}_{2k})_{k \in \mathbb{N}^*}$ by $(\hat{\tau}_{2k})_{k \in \mathbb{N}^*}$, $\mu_{k-1 \geqslant p}$. In particular $J^*_c(sp_0) = \mathbb{R}$.

If K is now one of R , C , Q , let $\mathrm{Hilb}^+(\mathcal{H}_{\mathrm{K}};\, \mathrm{C_p})$ denote the connected component of the group defined section III.1, and $\underline{\mathrm{hilb}}(\mathcal{H}_{\mathrm{K}};\, \mathrm{C_p})$ its Lie algebra.

<u>Proposition 2.</u> The real cohomology algebra of the Banach-Lie group $\operatorname{Hilb}^+(\mathcal{H}_K; C_p)$ is isomorphic to the algebra of continuous invariant cochains on the Banach-Lie algebra $\operatorname{\underline{hilb}}(\mathcal{H}_K; C_p)$ if and only if p=1.

<u>Proof</u>: Proposition 2 follows by comparison between the corollary to proposition II.16 and the well-known results about the cohomology rings of the finite dimensional classical Lie groups on the one hand, and proposition IV.1 on the other hand.

Remark. In the Riemannian case $\operatorname{Hilb}^+(\mathcal{H}_K; C_2)$, the explicit form of the generators of $J_{\mathbf{C}}^*(\operatorname{\underline{hilb}}(\mathcal{H}_K; C_2))$ provides the harmonic differential forms explicitly on the group; a tiny part of Hodge's theory can be recuperated in this way. The unitary case $U(\mathcal{H}_{\mathbf{C}}; C_2)$ is remarkable in so far as there is no harmonic form to generate the first cohomology group.

IV.2. - The cohomology algebra $H_c^*(\underline{g})$

Let \underline{g} be a Banach-Lie algebra. From the usual conventions, it follows that $H_c^0(\underline{g})$ is identified with the base field. It is an immediate consequence of the definitions that $H_c^1(\underline{g})$ is isomorphic to the topological dual of the Banach space \underline{g} . Hence, as long as scalar-valued cohomology is concerned, real problems start with $H_c^2(\underline{g})$. In this section, $H_c^2(\underline{g})$ is computed when \underline{g} is an infinite dimensional classical complex Lie algebra of compact operators.

Let \mathcal{H} be an <u>infinite dimensional separable</u> complex Hilbert space. Let $p \in \overline{\mathbb{R}}$ with $1 \le p \le \infty$, and let \underline{a} be the Banach-Lie algebra $\underline{gl}(\mathcal{H}; C_p)$. Let $q \in \overline{\mathbb{R}}$ be defined by $\frac{1}{p} + \frac{1}{q} = 1$, and let \underline{b} be the Banach-Lie algebra $\underline{gl}(\mathcal{H}; C_p)$ if $q < \infty$, and the Banach-Lie algebra $\underline{gl}(\mathcal{H}; L)$ if $q = \infty$. Consider as in section II.5 (the last remark) the duality

$$\langle\langle l \rangle\rangle$$
 :
$$\begin{cases} \underline{a} \times \underline{b} & \longrightarrow \mathbf{C} \\ (X,Y) & \longmapsto \operatorname{trace}(XY^*) \end{cases}$$

Let now ω be a 2-cochain on \underline{a} . According to the duality, ω defines a unique continuous linear operator $\Delta:\underline{a}\longrightarrow\underline{b}$ such that $\omega(X,Y)=\left\langle\langle X|\Delta(Y^*)\right\rangle\rangle$ for all $X,Y\in\underline{a}$; naturally, as ω is skewsymmetric, $\left\langle\langle X|\Delta(Y^*)\right\rangle\rangle=-\left\langle\langle Y|\Delta(X^*)\right\rangle$ for all $X,Y\in\underline{a}$. It follows directly from the definitions that ω is a cocycle [resp.a coboundary] if and only if Δ is a derivation [resp. an inner derivation]. Write $\mathrm{Der}(\underline{a},\underline{b})$ the space of all derivations from \underline{a} to \underline{b} and $\mathrm{Int}(\underline{a},\underline{b})$ the subspace of $\mathrm{Der}(\underline{a},\underline{b})$ containing those derivations Δ for which there exists $D\in\underline{b}$ with $\Delta(X)=[D,X]$ for all $X\in\underline{a}$. Hence $\mathrm{H}^2_{\mathbf{C}}(\underline{a})=\mathrm{Der}(\underline{a},\underline{b})$ is explicitly known from section I.2.

<u>Proposition 3A</u>. Let p, q and <u>a</u> be as above. Then the vector space $H_n^2(\underline{a})$ is isomorphic to:

$$\begin{cases} \{0\} & \text{when } p = \infty \\ \frac{C_r(\mathcal{H}_c)}{C_q(\mathcal{H}_c)}, & \text{with } \frac{1}{r} + \frac{1}{p} = \frac{1}{q} & \text{when } 2$$

<u>Proof</u>: it is an immediate consequence of the considerations which precede the proposition and of the following lemma.

Lemma. Let D be a continuous operator on \mathcal{R} . Let $p \in \overline{\mathbb{R}}$ with $2 , and let <math>q, r \in \overline{\mathbb{R}}$ be such that $\frac{1}{p} + \frac{1}{q} = 1$ and $\frac{1}{r} + \frac{1}{p} = \frac{1}{q}$. Suppose that $[D,X] \in C_q(\mathcal{H})$ for all $X \in C_p(\mathcal{H})$. Then $D \in C_r(\mathcal{H})$.

<u>Proof.</u> Let $\mathcal{X} = \{Y \in L(\mathcal{H}) \mid [Y,X] \in C_q(\mathcal{H}) \text{ for all } X \in C_p(\mathcal{H})\}$; then \mathcal{X} is clearly a non-trivial Lie ideal of $L(\mathcal{H})$ which contains D. Hence (see proposition II.1A), D must be compact (up to a scalar multiple of the identity of \mathcal{H}). It is then sufficient to prove the lemma when D is a compact positive operator.

Let $(e_n)_{n\in\mathbb{N}}$ be an orthonormal basis of \mathcal{H} which diagonalises D and let $\lambda=(\lambda_n)_{n\in\mathbb{N}}$ be a decreasing sequence of positive real numbers such that $D=\sum_{n\in\mathbb{N}}\lambda_ne_n\otimes\overline{e_n}$. We want to show that $\lambda\in\mathcal{L}^r$.

Let f be a map from N into itself such that $\lambda_{f(n)} \leq \frac{1}{2} \lambda_n$ for all $n \in \mathbb{N}$. For each sequence of real numbers $\alpha = (\alpha_n)_{n \in \mathbb{N}} \in \mathcal{L}^p$, let X_α be the operator $\sum_{n \in \mathbb{N}} \alpha_n e_n \otimes \overline{e_{f(n)}}$, which is in $C_p(\mathcal{H})$.

Then $[D,X_\alpha] = \sum_{n \in \mathbb{N}} \alpha_n (\lambda_n - \lambda_{f(n)}) e_n \otimes \overline{e_{f(n)}}$ must be in $C_q(\mathcal{H})$,

hence the sequence of real numbers $\left(\alpha_n(\lambda_n-\lambda_{\mathbf{f}(n)})\right)$ $n\in\mathbb{N}$ must be in ℓ^q , and by the choice of f so must be $\left(\alpha_n\lambda_n\right)_{n\in\mathbb{N}}$. This being true for all $\alpha\in\ell^p$, the sequence λ is in ℓ^r , whence the lemma.

Conjectures

- i) $H_{\bullet}^{*}(\underline{gl}(\mathcal{R}; C_{1}))$ is isomorphic to $J_{\bullet}^{*}(\underline{gl}(\mathcal{R}; C_{1}))$.
- ii) $H_c^*(\underline{gl}(\mathcal{H}; C_2))$ is generated by the canonical image of $J_c^*(\underline{gl}(\mathcal{H}; C_2))$ and by $H_c^2(\underline{gl}(\mathcal{H}; C_2)) \approx (L(\mathcal{H}_c)/Cid_{\mathcal{H}_c})/C_2(\mathcal{H}_c)$.
 - 111) $H_{\mathcal{C}}^*(\underline{\mathfrak{gl}}(\mathcal{H}; C_{\mathfrak{D}})) = H^{\mathcal{C}}(\underline{\mathfrak{gl}}(\mathcal{H}; C_{\mathfrak{D}})) = \mathbb{C}$.

Remarks.

- i) If $p \neq 1$, the real cohomology algebra of the Banach-Lie group $U(\mathcal{R}; C_p)$ is <u>not</u> isomorphic to the scalar cohomology $H^*_{\mathbf{C}}(\underline{u}(\mathcal{R}; C_p))$ of its Lie algebra. Indeed, the first Betti number of $U(\mathcal{R}; C_p)$ is then equal to +1, while $H^1_{\mathbf{C}}(\underline{u}(\mathcal{R}; C_p)) = \{0\}$; moreover, if $p \neq \infty$, the second Betti number of $U(\mathcal{R}; C_p)$ vanishes, while $\dim H^2_{\mathbf{C}}(\underline{u}(\mathcal{R}; C_p)) = \infty$.
- ii) If the conjecture i) above was true, then the real cohomology of $U(\mathcal{R}; C_1)$ would be isomorphic to $H_c^*(\underline{u}(\mathcal{R}; C_1))$; similarly for the group $SU(\mathcal{R}; C_1)$.
- iii) In the L*-case p=2, the canonical image of $J_{\mathbf{C}}^*(\underline{gl}(\mathbf{R}; C_2))$ is a proper subalgebra \mathbf{F} in $H_{\mathbf{C}}^*(\underline{gl}(\mathbf{R}; C_2))$ which has the following property: let \underline{s} be a classical simple complex Lie algebra of finite dimension which is a subalgebra of $\underline{gl}(\mathbf{R}; C_2)$; then the restrictions of \mathbf{F} and of $H_{\mathbf{C}}^*(\underline{gl}(\mathbf{R}; C_2))$ to \underline{s} are equal. \mathbf{F} is in this sense a kind of "finite approximation" for $H_{\mathbf{C}}^*(\underline{gl}(\mathbf{R}; C_2))$.
- iv) It is known that the first and second scalar cohomology spaces of the associative C^* -algebra $C(\mathcal{H})$ do vanish; see Guichardet [69].

- v) Proposition II.10 can also be expressed in a cohomology formulation about $H^1(g,g)$ (g-valued cohomology of g).
- vi) Any statement and conjecture about $gl(\mathcal{H}; C_1)$ has an immediate and equivalent counterpart for $sl(\mathcal{H}; C_1)$ which we will not write down explicitly.

<u>Proposition 3B</u>. Let $J_{\mathbb{R}}$ be a conjugation of \mathcal{H} ; let $p \in \overline{\mathbb{R}}$ with $1 \leq p \leq \infty$ and let $q \in \overline{\mathbb{R}}$ be defined by $\frac{1}{p} + \frac{1}{q} = 1$. Consider the Banach-Lie algebra $\underline{a} = \underline{o}(\mathcal{H}, J_{\mathbb{R}}; C_p)$. Then the vector space $H_{\mathbf{c}}^2(\underline{a})$ is isomorphic to

$$\begin{array}{lll} \{0\} & \text{when} & p = & \bullet \\ & \underline{o}(\mathcal{H}, J_{\mathbb{R}}; \, ^{\mathbf{C}}_{\mathbf{r}}) / \underline{o}(\mathcal{H}, J_{\mathbb{R}}; \, ^{\mathbf{C}}_{\mathbf{q}}) \text{, with } \frac{1}{\mathbf{r}} + \frac{1}{\mathbf{p}} = \frac{1}{\mathbf{q}} & \text{when} & 2$$

<u>Proposition 3C</u>. It is obtained by replacing $J_{\mathbb{R}}$ by $J_{\mathbb{Q}}$ and \underline{o} by \underline{sp} in proposition 3B.

Proofs: as for proposition 3A.

Remarks: as those following proposition 3A.

IV. 3. - The algebra I(G) of invariant polynomials

Let \underline{g} be a Lie algebra over K (K is R or C). We will denote by $S_c(\underline{g}) = \bigoplus_{k \in \mathbb{N}} S_c^k(\underline{g})$ the Z-graded commutative K-algebra with unit defined by the continuous symmetric multilinear maps from \underline{g} to K, and by $P_c(\underline{g})$ that defined by the continuous polynomial maps on \underline{g} . It is well-known that $S_c(\underline{g})$ and $P_c(\underline{g})$ are naturally isomorphic (see for example Douady [48] section 1.1).

Suppose now that g is the Lie algebra of a Banach-Lie group G. A function $F \in S_c^k(g)$ is invariant by G if $F(gX_1, \ldots, gX_k) = F(X_1, \ldots, X_k)$ for all $X_1, \ldots, X_k \in g$ and for all $g \in G$, where gX denotes the result of the transform of X by g according to the adjoint action of G in g. Invariant functions define a subalgebra of $S_c(g)$ which will be denoted by $S(G) = \bigoplus_{k \in N} S^k(G)$. Similarly, invariant polynomials define a subalgebra I(G) of $P_c(g)$; the natural isomorphism between $S_c(g)$ and $P_c(g)$ induces an isomorphism between S(G) and I(G). In this section, we want to describe I(G) when G is one of the classical Banach-Lie group of compact operators $Hilb(\mathcal{H}_K; C_p)$, with \mathcal{H}_K an infinite dimensional separable Hilbert space over K.

Let first \mathcal{R} be a complex space, let $p \in \overline{\mathbb{R}}$ with $1 \leq p \leq \infty$, and consider the group $U_p = U(\mathcal{R}, C_p)$. To any orthonormal basis $e = (e_n)_{n \in \mathbb{N}}$ in \mathcal{R} corresponds a maximal torus T in U_p , and the Lie algebra of T is isomorphic to the space of real sequences ℓ^p (when $p < \infty$) or c_0 (when $p = \infty$). The inclusion $T \longrightarrow U_p$ induces a morphism $I(U_p) \longrightarrow I(T)$. Hence, functions in $I(U_p)$ can be looked at as continuous polynomial functions on ℓ^p (or c_0 if $p = \infty$) which are invariant with respect to the infinite symmetric group W_A (see proposition I.7A). By following the same method as in

section IV.1, and by using the standard Newton theorem on elementary symmetric functions, it is easy to compute explicitly $I(U_p)$. We will give now the result and leave the easy checking to the reader (see as well [83]).

Let $k\in N^*$, $k\geqslant p$. Let ρ_k be the continuous polynomial function defined by $\rho_k(X)$ = trace $\{(-\sqrt{-1}\ X)^k\}$ for all $X\in\underline{u}(\mbox{\it if}\ C_p)$.

<u>Proposition 4A.</u> The algebra $I(U_p)$ is a polynomial algebra generated by the functions $\left(\rho_k\right)_{k\ \in\ N^{*},k\ \geqslant\ p}$. In particular $I(U_{\varpi}) = I^{O}(U_{\varpi}) = \mathbb{R} \ .$

Remarks.

- i) The generators $(\rho_k)_{k \in \mathbb{N}^*, k \geqslant p}$ are not unique. Indeed, if p=1, other systems of generators are provided by the invariant Chern functions and the dual invariant Chern functions; see Murakami [125].
- ii) Propositions 4B and 4C are analogous to proposition 4A and are left to the reader. Similarly for $I(SU(\mathbf{k}; C_1))$.

 $\mathrm{Hilb}^+(\mathcal{H}_{\mathrm{IK}}; C_{\mathrm{p}})$ being again as in pages III.4 and IV.6, one has :

<u>Proposition 5.</u> The real cohomology algebra of the classifying space of the Banach-Lie group $\mathrm{Hilb}^+(\mathcal{R}_{\mathbb{K}}; C_p)$ is isomorphic to the algebra $\mathrm{I}(\mathrm{Hilb}^+(\mathcal{R}_{\mathbb{K}}; C_p))$ if and only if p=1.

<u>Proof</u>: proposition 5 follows immediately from propositions III.1 and IV.4. \blacksquare

Projects.

- 1. Make explicit the map T from $I(\text{Hilb}^+(\mathcal{H}_K; C_p))$ to $J_{\mathbf{C}}^*(\underline{\text{hilb}}(\mathcal{H}_K; C_p))$ which sends ρ_k to $\hat{\rho}_k$ for all $k \in \mathbb{N}$, $k \geqslant p$ (see the bottom of page IV.1). The image of T will contain the canonical set of generators in $J_{\mathbf{C}}^*(\underline{\text{hilb}}(\mathcal{H}_K; C_p))$ if and only if $1 \le p \le 2$ or $p = \omega$, as it is immediately seen from the corollary to proposition IV.1 and from proposition IV.4.
- 2. Study explicitly the Weil algebras (see Cartan [31], [32]) of the classical complex Banach-Lie algebras of compact operators, especially in the case of nuclear operators (p = 1). This project would best follow some work on conjectures i) and ii) section IV.2.