Types of Error

$$\dot{x} = L(x) + \zeta$$
 (Type I)
 $\dot{x} = L(x + \xi)$ (Type II)
 $\dot{x} = L(x + \xi) + \zeta$ (Type III)

For simplicity, we assume that ζ and ξ are both constant in time. when the error is small, they exhibit behaviors similar to those of the system.

$$\zeta_i = A \sin(2\pi \frac{i-1}{N})$$

$$\xi_i = B \sin(2\pi \frac{i-1}{N}), \quad i = 1, ..., N$$

where A and B are constants.

Model 1

$$\dot{x} = L(x) + \zeta$$
 (Type I)
$$b_n = m(x_{n-1}) - \hat{m}(x_{n-1})$$

We therefore incorporate \boldsymbol{b}_n to the augmented system:

$$egin{aligned} oldsymbol{x}_n^f = & \hat{m}(oldsymbol{x}_{n-1}^a) + oldsymbol{b}_n^f \\ oldsymbol{b}_n^f = & f_b(oldsymbol{x}_{n-1}^a, oldsymbol{b}_n^a) \end{aligned}$$

In the case where ζ is constant, we assume \boldsymbol{b}_n is constant too, and then

$$\boldsymbol{b}_{n}^{f} = f_{b}(\boldsymbol{x}_{n-1}^{a}, \boldsymbol{b}_{n-1}^{a}) = \boldsymbol{b}_{n-1}^{a}$$

Model 2

$$\begin{split} \dot{\boldsymbol{x}} = & \boldsymbol{L}(\boldsymbol{x} + \boldsymbol{\xi}) \qquad \text{(Type II)} \\ \boldsymbol{c}_n = & m(\boldsymbol{x}_{n-1}^t) - \hat{m}(\boldsymbol{x}_{n-1}^m) = m(\boldsymbol{x}_{n-1}^t) - \hat{m}(\boldsymbol{x}_{n-1}^t - \boldsymbol{c}_{n-1}) \end{split}$$

The augmented system then becomes

$$egin{aligned} oldsymbol{x}_n^f = & \hat{m}(oldsymbol{x}_{n-1}^a) \ oldsymbol{c}_n^f = & f_c(oldsymbol{x}_{n-1}^a, oldsymbol{c}_n^a) \end{aligned}$$

For simplicity, we assume we know $\boldsymbol{\xi}$ is constant, which means \boldsymbol{c}_n should be constant, and then

$$\boldsymbol{c}_{n}^{f} = f_{c}(\boldsymbol{x}_{n-1}^{a}, \boldsymbol{c}_{n-1}^{a}) = \boldsymbol{c}_{n-1}^{a}$$

The analysis will model the model trajectory \hat{x}_n instead of the true trajectory x_n , and therefore the observation should be:

$$\mathbf{y}_n = H(\hat{\mathbf{x}}_n + \mathbf{c}_n)$$

Model 3

$$\dot{\mathbf{x}} = \mathbf{L}(\mathbf{x} + \boldsymbol{\xi}) + \boldsymbol{\zeta}$$
 (Type III)

Combine the previous two models together, we have the following scheme:

$$\begin{aligned} & \boldsymbol{x}_{n}^{f} = \hat{m}(\boldsymbol{x}_{n-1}^{a}) + \boldsymbol{b}_{n}^{f} \\ & \boldsymbol{b}_{n}^{f} = f_{b}(\boldsymbol{x}_{n-1}^{a}, \boldsymbol{b}_{n-1}^{a}, \boldsymbol{c}_{n-1}^{a}) \\ & \boldsymbol{c}_{n}^{f} = f_{c}(\boldsymbol{x}_{n-1}^{a}, \boldsymbol{b}_{n-1}^{a}, \boldsymbol{c}_{n-1}^{a}) \end{aligned}$$

Again, for simplicity, we assume c_n and b_n are constant, i.e.,

$$m{b}_n^f = f_b(m{x}_{n-1}^a, m{b}_{n-1}^a) = m{b}_{n-1}^a \ m{c}_n^f = f_c(m{x}_{n-1}^a, m{c}_{n-1}^a) = m{c}_{n-1}^a$$

Observation operator:

$$\mathbf{y}_n = H(\hat{\mathbf{x}}_n + \mathbf{c}_n)$$

Experiment Setup

To improve the analyses in our experiments, we employ variance inflation

$$P_n^a \rightarrow P_n^a + \frac{\mu\Lambda}{K} I_K$$

Time Step: $\Delta t = 0.05$

Initial Spread: 1.3 Ensemble Size: 40

Perfect Situation: Settling Time for Error

Perfect Situation: Performance and Inflation

Perfect Situation: Bias Estimation

Type I Model Error: Settling Time for Error

Type I Model Error: Performance and Inflation

Type I Model Error: Bias Estimation

Type II Model Error: Settling Time for Error

Type II Model Error: Performance and Inflation

Type II Model Error: Bias Estimation

Type III Model Error: Settling Time for Error

Type III Model Error: Performance and Inflation

Type III Model Error: Bias Estimation

