Laboratorio 2 de Redes 1

2. Objetivo

En esta práctica se plantean los siguientes objetivos:

- Configurar un entorno de red de transporte para dos DCs, mediante VXLAN.
- Emplear GNS3-VM Alpha, así como Cumulus Linux para implementar la prueba de concepto de VXLAN
- Comprender mediante la práctica el concepto de Open Networking, VLXAN, Cumulus Linux y todos los elementos y protocolos que componen este entorno de redes moderno.

3. Materiales

La presente práctica requiere al menos los siguientes materiales:

- Una PC de 64-Bits, con 8GB de RAM
- Software GNS3-VM con imágenes de Cumulus Linux
- Acceso a Internet
- Acceso a manuales de GNS3-VM y Cumulus Linux

4. Procedimiento

No olvide incluir captura de pantallas (las que considere pertinentes) de todas las actividades realizadas durante la práctica.

Paso 1

- Inicialice GNS3-VM con Cumulus Linux
- Ubique la topología a emular según el Anexo A.

Paso 2

• Realice todos los pasos necesarios para lograr conectividad de extremo a extremo (Anexo B).

Paso 3

• Capture todas las pantallas que considere necesarias como evidencia de su trabajo.

5. Cuestionario

Responda a las siguientes preguntas:

- Defina Qué es e indique la importancia de Cumulus Linux para Open Networking.
- ¿Qué es VXLAN y Cuál es su proceso de encapsulación INNER y OUTER?
- ¿En qué se relaciona VXLAN con EVPN?
- ¿En qué se relaciona VXLAN con SDN?
- · Realice un breve resumen sobre las Eras del Networking

6. Conclusiones y Recomendaciones

Exponer al menos tres conclusiones y tres recomendaciones

7. Bibliografía

Indicar la Bibliografía utilizada en formato APA

Iniciamos el programa GNS-3 y creamos un nuevo proyecto llamado "LAB2-Ayerbelgnacio-UNSAM"

Colocamos 3 switches en el área de trabajo que representan la topología "SPINE-LEAF" de VXLAN

El equipo del medio será el SPINE y los dos siguientes sram los LEAVES, para ello cambiamos el nombre de los dispositivos

Luego conectamos los dispositivos de los extremos hacia el SPINE. En este caso concectamos el LEAF-1 con el SPINE en swp1 y el LEAF-2 en swp2.

Agregamos los datos de la infraestructura (IP, interfaces de loopback)

Ahora agregamos una PC (host) para cada LEAF, escogiendo el server VM.

Agregamos la información de la VLAN que pertenece y la dirección IP.

Hasta ahora tenemos 3 Switches, que 2 se conectan al SPINE y a su vez esos 2 switches tiene un host cada uno conectado. Tenemos todo el diagrama hecho pero nos falta conectar los elementos entre sí, con sus direcciones IP y VLANs.

ANEXO B

Ahora encendemos los equipos con el botón Play

Ahora procedemos a configurar las interfaces físicas y Loopbacks de cada equipo: Empezamos por LEAF-1, doy click derecho y selecciono la consola.

Ingresamos Usuario (cumulus) y contraseña (CumulusLinux!)

Configuramos las interfaces físicas:

swp1: 5.5.5.1/30Loopback: 1.1.1.1/32

A lo ultimo de cada configuración de cada dispositivo hacemos un net commit, para poder guardar los cambios hechos.

En LEAF-2 configuramos:

- swp2: 7.7.7.1/30
- Loopback 3.3.3.3/32

solarwinds | Solar-PuTTY free tool

© 2019-2023 SolarWinds Worldwide, LLC. All rights reserved.

Y por último en SPINE, configuramos:

- net add interface swp1 ip address 5.5.5.2/30
- net add interface swp2 ip address 7.7.7.2/30
- net add loopback lo ip address 2.2.2.2/32

Configuracion de OSPF, para que OSPF funcione correctamente, es necesario que ciertos servicios esten corriendo en Cumulus Linux, entre ellos FRR:

Para eso ejecutamos:

- sudo systemctl enable frr.service (nos va a pedir la password ya que accedemos al root)
- cd /etc/frr (direccionamiento a carpeta)
- Is (para listar)
- sudo nano daemon (para editar el archivo 'daemon)

Cuando abre el archivo, habilitamos las casillas de 'zebra' y 'ospfd'.

por ultimo reseteamos el servicio:

Configuramos el OSPF en SPINE:

En LEAF-1:

Y en LEAF-2:

Ping to LEAF-2, desde LEAF-1, para comprobar que OSPF este funcionando.

Compruebo la tabla de enrutamiento haciendo: - sudo vtysh y -show ip route

Configurando VLANs: LEAF-1

LEAF-2:

Para que VXLAN LNV (técnica para implementar VLAN sin controlador central) funcione, vxrd tiene que estar corriendo en todos los equipos, hacemos:

- sudo systemct1 start vxrd.service
- sudo systemct1 status vxrd.service

Configuración de Service Node Functionality en SPINE:

En LEAF-1:

En LEAF-2:

Mapeo VLAN-VXLAN en VTEP: Configuración de la VLAN 10 para vincularse con el VNID 1010.

Explicación:

Los VTEP son como los "guardianes" que traducen entre las VLAN y las VXLAN. Configuramos una tabla que dice: "La VLAN 10 se traduce al VNID 1010". Así, los datos de la VLAN 10 pueden viajar por la red VXLAN usando ese VNID.

En LEAF-1:

En LEAF-2:

```
cumulus@cumulus:-5 clear
cumulus@cumulus:-5 net add vxlan vnii010 vxlan id 1010
cumulus@cumulus:-5 net add vxlan vnii010 vxlan local-tunnelig 3.3.3.3
cumulus@cumulus:-5 net add vxlan vnii010 vxlan remoteig 1.1.1.1
cumulus@cumulus:-5 net add vxlan vnii010 vxlan remoteig 1.1.1.1
cumulus@cumulus:-5 net commit
-- /etc/network/interfaces 2024-03-27 19:02:21.405080000 +0000
@ -22,0 2 +22,0 9 @
auto svp2
iface swp0
auto svp2
iface swp0
bridge-access 10
auto bridge
iface bridge
iface bridge
bridge-ports swp6
bridge-ports swp6
bridge-ports swp6
bridge-ports swp6
bridge-vids 10
bridge-vids 10
bridge-vids 10
vlan-naw-device bridge
--auto vnii010
+ bridge-access 10

auto bridge
iface vinii010
+ bridge-access 10

vxlan-local-tunnelig 3.3.3.3
+ vxlan-remoteip 1.1.1.1

**

**Solar-PuTTY free toof**

© 2019-2023 Solar-Winds Worldwide, LLC. All rights reserved. af
```

Comprobación de Conectividad de extremos a extremo:

Configuracion de vPC-1:

Vamos a la consola de la PC-1, y ejecutamos:

- ip 10.10.10.10/24

Lo mismo con la PC-2, pero ejecutamos:

- ip 10.10.10.20/24

Lo que hicimos fue conectar las PCs entre sí dentro de la misma VLAN y bajo la misma subred IP. Ya que le estamos asignando la misma máscara subred de 24 bits (255.255.255.0), con diferentes direcciones IP cada una, les permite comunicarse entre sí.

Captura con Wireshark:

click secundario sobre el enlace que une a LEAF-1 y SPINE, y selecciono 'Start Capture'

En las peticiones ARP o ICMP, se observa la encapsulación adicional de VXLAN con el VNID 1010

Se puede ver cada VTEP, en las direcciones MACs de LEAF-1, ejecutando:

- net show bridge macs

Esto nos muestra que, en el LEAF-1 se ha aprendido la MAC del LEAF-2, atreves de la VNI 1010, a pesar de estar en otro lugar físico y separado por diferentes IPs.

