EXHIBIT 14. MPE CALCULATIONS

The following MPE calculations are based on a 1.8 centimeter inverted-F printed circuit board trace antenna, with a measured ERP of 112.2 dB μ V/m, at 3 meters, and conducted RF power of +20.2 dBm as presented to the antenna. The typical gain of this antenna is 3.5 dB.

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	20.20 (dBm)
Maximum peak output power at antenna input terminal:	104.713 (mW)
Antenna gain(typical):	3.5 (dBi)
Maximum antenna gain:	2.239 (numeric)
Prediction distance:	20 (cm)
Prediction frequency:	2405 (MHz)
MPE limit for uncontrolled exposure at prediction frequency.	1 (mW/cm^2)

Power density at prediction frequency: 0.046637 (mW/cm^2)

Maximum allowable antenna gain: 16.8 (dBi)

Margin of Compliance at 20 cm = 13.3 dB

Prepared For: SpeakerCraft®	Model #: HDW14411	LS Research, LLC
EUT: Zigbee™ Base Station Transceiver	SN: 07100672, 07100675	Template: 15.247 DTS TX (V2 9-06-06)
Report #: 307238 TX TCB	Customer FCC ID #: V7W001F40RFM0DULE	Page 55 of 56