Lesson Objectives

- 1. Greatest Common Factor
- 2. Factor Out a Greatest Common Factor
- 3. Factor a Quadratic Trinomial $x^2 + bx + c$
- 4. Factor a Difference of Squares $x^2 m^2$

A. Greatest Common Factor

press MATH, →(NUM), 9:gcd(

Greatest: the biggest Common: shared
Factor: numbers that "into" (also called divisors)
Easiest way to see if a number is a factor is to divide it in your head or on a calculator.
For example, with $8 \div 2 = 4$, since there is no decimal part or remainder,
then both 2 and 4 are of 8.
• EXAMPLE: Find the greatest common factor for the list of terms: $30x^5, 110x^7, 60x^9$ [*Akst 16.1.9] I recommend if necessary, use the calculator for the coefficients. Here's how you do that: Greatest Common Factor (GCF) on calculator (TI-84 Plus or TI-83 Plus) is actually called the Greatest Common (abbreviated gcd)
The gcd(command on the calculator (TI-84 Plus or TI-83 Plus) has limitations:
1. only, not variables
2. only numbers at a time
3. only numbers
To access Greatest Common Divisor (gcd) on calculator:

Here'	's	the	problem	again	for	reference:
	•		PIODICIII	agaiii		i Ci Ci Ci i Cc.

• **EXAMPLE:** Find the greatest common factor for the list of terms: $30x^5$, $110x^7$, $60x^9$

To find the GCF of the coefficients 30, 110, 60, we will use calculator (TI-83/84 Plus):

gcd(30,110) = 10 then take that answer and do it again

9cd(30,110) 10 gcd(10,60) = 10 gcd(10,60) 10

The GCF of the coefficients 30, 110, and 60 is ______.

Here's the problem again for reference:

• **EXAMPLE:** Find the greatest common factor for the list of terms: $30x^5$, $110x^7$, $60x^9$

For the variable part: x^5 , x^7 , x^9

You can only include variables in GCF if ______ the terms include that _____ variable.

Since all 3 terms have ____, use the _____ listed (only what's shared), which is ____.

The overall GCF for $30x^5$, $110x^7$, $60x^9$ is ______.

B. Factor Out the Greatest Common Factor

Factoring out the GCF should always be tried ______, before trying other methods.

Factoring out the GCF is sort of like doing the ______ property in reverse.

• **EXAMPLE:** Factor out the greatest common factor.

$$12x^3 + 8x^2 - 16x$$

[R.4.9]

• STEP 1. Find GCF of coefficients.

GCF coeff. =

- \circ gcd(12,8) = ____
- \circ gcd(4,16) = _____
- STEP 2. Find GCF of variables.
 - Do all terms have same variable?
 All have an
 - o If YES, what is the **SMALLEST** of the ones listed? smallest of x^3 , x^2 , and x is _____.

(continued from the previous page ... here is the problem again for reference)

• **EXAMPLE:** Factor out the greatest common factor.

$$12x^3 + 8x^2 - 16x$$

• STEP 3. Multiply the coefficient and variable GCF's together.

Coefficient GCF = ____, variable GCF = ____ Product = ____

- o The overall GCF is ______.
- STEP 4. Skip a line and write the GCF with a "reverse-indent."

Open a set of parentheses the SAME WIDTH as the expression.

[R.4.9]

$$12x^3 + 8x^2 - 16x$$

____(

• **STEP 5.** To determine what goes INSIDE the parentheses, simply ______ each term of the expression **by the GCF** and simplify. Write the simplified result in parentheses.

$$\frac{12x^3}{1} + \frac{8x^2}{1} - \frac{16x}{1}$$

4x(+-) (ANSWER)

The entire expression is in "factored form."

$$12x^3 + 8x^2 - 16x$$

 $4x (3x^2 + 2x - 4)$

Original expression

Factored expression

_____ terms

____ terms

Addition & Subtraction

Multiplication

Factoring is a process that converts addition & subtraction into ______

This allows the opportunity to ______ – most common are fractions and roots.

C. Factor a trinomial of the form $x^2 + bx + c$

- Review of Multiplying Binomials (x + p)(x + q) Use the FOIL method
- **EXAMPLE:** Multiply. (x + 5)(x 3)

[R.3.55]

$$(x + 5)(x - 3)$$

F: ____ = ___

Write all the terms connected together:

0: ____= ___

Simplify – combine like terms:

l: _____ : ___ = ____ L: ____ : ___ = ____

ANSWER:

• Factor a trinomial of the form $x^2 + bx + c$

Factoring a trinomial in this form is sort of like doing FOIL ______.

• **EXAMPLE:** Find the binomial factors for the trinomial.

[*Akst *16.2.7]

$$x^2 + 17x + 16$$

F (Firsts): Open up 2 sets of parentheses, with your variable in the _____position.

Next, we need two integers whose _____ is 17 and whose _____ is 16.

O + I
(sum of Outers and Inners)

(Lasts)

To finish factoring, we need 2 numbers:

Product = ____ Sum = ____ Winner?

Α	N	S١	W	Ε	R

$$x^2 + 17x + 16 =$$

(x)

) or

• **EXAMPLE:** Factor the expression.

$$r^2 - 18r + 81$$

[R.4.81]

Open 2 sets of parentheses with variable in the **first** position:

$$r^2 - 18r + 81 = (__)(__)$$

Next, we need 2 integers whose **SUM** is _____ and whose **PRODUCT** is _____

To finish factoring, we need 2 numbers:			
Product = 81	Sum = -18	Winner?	

ANSWER:
$$r^2 - 18r + 81$$

[R.4.37]

EXAMPLE: Factor the expression completely.

$$v^2 + v - 72$$

Open 2 sets of parentheses with variable in the **first** position:

$$v^2 + 1v - 72$$

Next, we need 2 integers whose **SUM** is ____ and whose **PRODUCT** is _____

To finish factoring, we need 2 numbers:			
Product = -72	Sum = +1	Winner?	
((opposite signs means)		
signs)			
$\pm \cdot \mp = -72$	$\pm + (\mp) = \mp$		
\pm $\cdot \mp$ = -72	$\pm + (\mp) = \mp$		
\pm $\cdot \mp$ = -72	$\pm + (\mp) = \mp$		
\pm $\cdot \mp$ = -72	$\pm + (\mp) = \mp$		
\pm $\cdot \mp$ = -72	$\pm + (\mp) = \mp$		
\pm $\cdot \mp$ = -72	$\pm + (\mp) = \mp$		

ANSWER:

$$v^2 + v - 72$$

• **EXAMPLE:** Factor completely, if possible.

[*Akst 16.2-15)

$$x^2 - x - 48$$

Open 2 sets of parentheses with variable in the **first** position:

$$x^2 - 1x - 48$$

Next, we need 2 integers whose **SUM** is _____ and whose **PRODUCT** is _____

To finish factoring, we need 2 numbers:				
Product = -48	Sum = -1	Winner?		
(opposite signs)	(opposite signs means SUBTRACT)			
\pm $\cdot \mp$ = -48	$\pm + (\mp) = \mp$			
\pm $\cdot \mp$ = -48	$\pm + (\mp) = \mp$			
\pm $\cdot \mp$ = -48	$\pm + (\mp) = \mp$			
\pm $\cdot \mp$ = -48	$\pm + (\mp) = \mp$			
\pm $\cdot \mp$ = -48	$\pm + (\mp) = \mp$			

D. Factor a Difference of Squares $x^2 - m^2$

EXAMPLE: Factor. $s^2 - 81$

$$s^2 - 81$$

It's missing the middle term. Rewrite it with zero: Open 2 sets of parentheses with variable in the **first** position:

$$s^2 + 0s - 81 = (___)(___)$$

To finish factoring, we need 2 numbers:				
Product = -81	Sum = 0	Winner?		
(opposite signs)				
\pm $\cdot \mp$ = -81	$\pm + (\mp) = \mp$			
$\pm \cdot \mp = -81$	± + (∓) = ∓			
\pm $\cdot \mp$ = -81	± +(∓)= ∓			

• FORMULA for the Difference of Squares: $x^2 - m^2 = (x - m)(x + m)$

Works as long as the two terms are _____ and they

• **EXAMPLE:** Factor the binomial completely. [R.4.61]

ANSWER: $64r^2 - 49 = (-)(+) \text{ or}(+)(-)$

• **EXAMPLE:** Factor the expression completely, if possible. [R.4-27]

The **SUM** (addition) of perfect squares is always ______ – it **DOES** _____ **FACTOR!!**

Sources Used:

- 1. MyLab Math for *Developmental Mathematics through Applications*, 1st Edition, Akst, Pearson Education Inc.
- 2. MyLab Math for *College Algebra with Modeling and Visualization*, 6th Edition, Rockswold, Pearson Education Inc.
- 3. Wabbitemu calculator emulator version 1.9.5.21 by Revolution Software, BootFree ©2006-2014 Ben Moody, Rom8x ©2005-2014 Andree Chea. Website https://archive.codeplex.com/?p=wabbit