ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEOMATIKY

KATEDRA GEOMATIKY					
název předn	název předmětu				
GEOINFORMATIKA					
číslo	název úlohy				
úlohy					
1	JPEG komprese a dekomprese rastru				
školní rok	studijní skup.	číslo zadání	Zpracovali:	datum	klasifikace
2023	C-101	-	Kateřina Chromá Josef Jehlička Štěpán Šedivý	24.10. 2023	

TECHNICKÁ ZPRÁVA

ZADÁNÍ:

Implementujte algoritmus JPEG kompresi a rastru v prostředí MATLAB (popř. v programovacím jazyce dle vlastního výběru), zahrnující tyto fáze:

- transformaci do YC_BC_R modelu,
- diskrétní kosinovou transformaci,
- kvantizaci koeficientů,

a to bez využití vestavěných funkcí.

Kompresní algoritmus otestujte n a různých typech rastru: rastr v odstínech šedi, barevný rastr (viz. tabulka) vhodného rozlišení a velikosti (max 128x128 pixelů) s různými hodnotami faktoru komprese q = 10, 50, 70.

Pro každou variantu spočtěte střední kvadratickou odchylku *m* jednotlivých *RGB* složek.

$$m = \sqrt{\left(\frac{\sum_{i=0}^{m*n}(z-z')^2}{m*n}\right)}.$$

Výsledky umístěte do přehledných tabulek pro jednotlivá q. Na základě výše vypočtených zhodnoťte, ke kterým typům dat JPEG komprese nejvíce a naopak nejméně vhodná.

VYPRACOVANÉ BONUSOVÉ ÚLOHY:

- Konverze pixelů ZIG-ZAG sekvencí
- JPG dekomprese

Popis a rozbor problému

- 1. JPG komprese
- Konverze RGB na YCBCR

$$\begin{pmatrix} Y \\ C_B \\ C_R \end{pmatrix} = \begin{pmatrix} 0.2990 & 0.5870 & 0.1140 \\ -0.1687 & -0.3313 & 0.5000 \\ 0.5000 & -0.4187 & -0.0813 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix} + \begin{pmatrix} 0 \\ 128 \\ 128 \end{pmatrix}$$

- Převzorkování na submatice 8x8
- Diskrétní kosinová transformace

$$F(u,v) = \frac{1}{4}C(u) * C(v) \left[\sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y) * \cos \frac{(2x+1)u\pi}{16} * \frac{(2y+1)v\pi}{16} \right]$$

Kde

$$C(u) = \begin{cases} \frac{\sqrt{2}}{2}, & u = 0, \\ 1, & u \neq 0. \end{cases},$$

$$C(v) = \begin{cases} \frac{\sqrt{2}}{2}, & v = 0, \\ 1, & v \neq 0. \end{cases}.$$

Kvantizace DCT koeficientů

$$F_Q(u,v) = \frac{F(u,v)}{Q(u,v)},$$

Kde Q(u,v) je rozdílné pro složky Y a C

$$Q(u,v)_{50}^{Y} = \begin{pmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 87 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 26 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{pmatrix}$$

$$Q(u,v) = \frac{50 * Q(u,v)_{50}}{a}$$

- Uložení zkompresované submatice

2. Konverze pixelů do ZIG-ZAG sekvencí

Kompresované barevné složky *YC_BC_R* byly převedeny z matic do jedné řady pomocí Zig-zag sekvence. Tím byla převedena 2D data na 1D. Funkce konverze je vyznačena na následujícím obrázku.

Pro účely dekomprese byly hodnoty barevných složek z jedné řady (1D) převedeny zpět na původní matice(2D).

3. JPG dekomprese

- JPG dekomprese postupuje po submaticích stejně jako JPG komprese
- Inverzní diskrétní kosinová transformace

$$F(x,y) = \frac{1}{4} \left[\sum_{v=0}^{7} \sum_{v=0}^{7} C(u) * C(v) f(u,v) * \cos \frac{(2x+1)u\pi}{16} * \frac{(2y+1)v\pi}{16} \right]$$

kde

$$C(u) = \begin{cases} \frac{\sqrt{2}}{2}, & u = 0, \\ 1, & u \neq 0. \end{cases},$$

$$C(v) = \begin{cases} \frac{\sqrt{2}}{2}, & v = 0, \\ 1, & v \neq 0. \end{cases}.$$

Převod YC_BC_R na RGB

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 1.0091 & -0.0032 & 1.3955 \\ 1.0091 & -0.3472 & -0.7206 \\ 1.0091 & 1.7689 & -0.0066 \end{pmatrix} \begin{pmatrix} Y \\ C_B \\ C_R \end{pmatrix} - \begin{pmatrix} 0 \\ 128 \\ 128 \end{pmatrix}.$$

VÝSTUPY:

STŘEDNÍ KVADRATICKÉ ROZDÍLY RGB SLOŽEK U JEDNOTLIVÝCH RASTRŮ:

Barevný přechod			
q	m R	m G	m B
10	6.9176	5.8898	7.6127
50	1.3830	1.5802	1.4239
70	1.5584	1.2253	1.8471

Fotografie				
q	m R	m G	m B	
10	24.8709	18.5183	18.4788	
50	14.5617	11.9530	11.8101	
70	12.3691	10.3868	10.8524	

Barva				
q	m R	m G	m B	
10	1.0518	0.7839	10.7503	
50	1.0785	0.1448	1.6011	
70	0.4614	0.6022	1.7733	

Vektorová kresba				
q	m R	m G	m B	
10	29.3531	21.2747	31.0191	
50	14.6640	10.5718	15.2256	
70	12.0683	8.5931	12.8919	

ZÁVĚR:

Díky výše uvedených tabulek vidíme, že JPG komprese je nejvíce vhodná pro rastry o jedné barvě. Nejméně vhodná je pro rastry vektorové kresby, jelikož vektorový obrázek má ostré rasty, které se díky kompresi "rozmažou".

Dne 24.10.2023 v Praze

Kateřina Chromá, Josef Jehlička, Štěpán Šedivý