Spring 2013

3/21/13 2:24cpm

signals

信號與系統 Signals and Systems

Chapter SS-4
The Continuous-Time Fourier Transform

Feng-Li Lian NTU-EE Feb13 – Jun13

Figures and images used in these lecture notes are adopted from "Signals & Systems" by Alan V. Oppenheim and Alan S. Willsky, 1997

Outline Feng-Li Lian © 2013 NTUEE-SS4-CTFT-2

- Representation of Aperiodic Signals:
 the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties
 - of the Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by
 Linear Constant-Coefficient Differential Equations

Fourier Series Representation of CT Periodic Signals

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-5

• Example 3.5:

$$Ta_k = T \frac{2\sin(kw_0T_1)}{kw_0T}$$

$$= T_1 \frac{2\sin(kw_0T_1)}{kw_0T_1}$$

$$w_0 = \frac{2\pi}{T}$$

Representation of Aperiodic Signals: CT Fourier Transform

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-6

Page 193, Ex 3.5

CT Fourier Transform of an Aperiodic Signal:

$$\underbrace{x(t)}_{x(t)} = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| < T/2 \end{cases}$$

$$\underbrace{Ta_k}_{w} = \frac{2\sin(wT_1)}{w}\bigg|_{w=kw_0}$$

w as a continuous variable

Feng-Li Lian © 2013

- inverse Fourier transform eqn
- synthesis eqn

$$(X)jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

- X(jw): Fourier Transform of x(t)spectrum
- analysis eqn

$$\frac{a_k}{T} = \frac{1}{T} X(jw) \Big|_{w = kw_0}$$

Representation of Aperiodic Signals: CT Fourier Transform

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-12

Sufficient conditions for the convergence of FT

$$(x(t))^{CTFT} \longrightarrow (X(jw))$$

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$\hat{x}(t) \xleftarrow{\mathcal{CTIFT}} X(jw)$$

$$\hat{\mathbf{x}}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$$

$$e(t) = \hat{x}(t) - x(t)$$

• If x(t) has finite energy

i.e., square integrable,
$$\int_{-\infty}^{+\infty} |x(t)|^2 dt < \infty$$

 $\Rightarrow X(jw)$ is finite

$$\Rightarrow \int_{-\infty}^{+\infty} |e(t)|^2 dt = 0 \qquad \Rightarrow e(t) = \hat{x}(t) - x(t) \qquad = 0 \quad \underbrace{\mathsf{almost}}_{} \forall t$$

$$= 0$$
 almost $\forall t$

- Sufficient conditions for the convergence of FT
 - Dirichlet conditions:
 - 1.x(t) be absolutely integrable; that is, $\int_{-\infty}^{+\infty} |x(t)| dt < \infty$
 - 2.x(t) have a finite number of maxima and minima within any finite interval
 - 3.x(t) have a finite number of discontinuities
 within any finite interval
 Furthermore, each of these discontinuities must be finite

Feng-Li Lian © 2013 $4(atiw) = tan^{-1}(\frac{\omega}{a})$

Example 4.1:

$$\Rightarrow X(jw) = \frac{1}{a+jw}, \quad a > 0$$

$$\Rightarrow |X(jw)| = \frac{1}{\sqrt{\mu^2 + w^2}}$$

$$W = 0$$

$$W = 0$$

$$\sqrt{2\alpha^2}$$

$$W$$

$$W=0$$
 0 $W=\infty$ $-\tan^{-1}(\frac{\alpha}{\alpha})$ $-\tan^{-1}(\frac{\infty}{\alpha})$

Representation of Aperiodic Signals: CT Fourier Transform

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-16

Example 4.2:

$$x(t) = \underbrace{e^{-a|t|}}, \quad \underline{a > 0}$$

$$\Rightarrow X(jw) = \int_{-\infty}^{\infty} e^{-a|t|} e^{-jwt} dt$$

$$= \int_{-\infty}^{0} e^{at} e^{-jwt} dt + \int_{0}^{\infty} e^{-at} e^{-jwt} dt$$

$$= \frac{1}{a - jw} + \frac{1}{a + jw} \quad (Q > D)$$

$$= \frac{2a}{a^2 + w^2} \qquad \begin{array}{c} \omega = 0 \\ \omega = 0 \end{array} \qquad \begin{array}{c} 2\alpha \\ \overline{\alpha^2 + \alpha^2} \end{array}$$

x(t)

- Representation of Aperiodic Signals:
 the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties
 of the Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

of a periodic signal

Outline

- Representation of Aperiodic Signals:
 the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Propertiesof the Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

Outline

Section	Property
4.3.1	Linearity
4.3.2	Time Shifting
4.3.6	Frequency Shifting
4.3.3	Conjugation
4.3.5	Time Reversal
4.3.5	Time and Frequency Scaling
4.4	Convolution
4.5	Multiplication
4.3.4	Differentiation in Time
4.3.4	Integration
4.3.6	Differentiation in Frequency
4.3.3	Conjugate Symmetry for Real Signals
4.3.3	Symmetry for Real and Even Signals
4.3.3	Symmetry for Real and Odd Signals
4.3.3	Even-Odd Decomposition for Real Signals
4.3.7	Parseval's Relation for Aperiodic Signals

Outline

			<u> </u>			
Property	CTFS	DTFS	CTFT	DTFT	LT	zT
Linearity	3.5.1		4.3.1	5.3.2	9.5.1	10.5.1
Time Shifting	3.5.2		4.3.2	5.3.3	9.5.2	10.5.2
Frequency Shifting (in s, z)			4.3.6	5.3.3	9.5.3	10.5.3
Conjugation	3.5.6		4.3.3	5.3.4	9.5.5	10.5.6
Time Reversal	3.5.3		4.3.5	5.3.6		10.5.4
Time & Frequency Scaling	3.5.4		4.3.5	5.3.7	9.5.4	10.5.5
(Periodic) Convolution			4.4	5.4	9.5.6	10.5.7
Multiplication	3.5.5	3.7.2	4.5	5.5		
Differentiation/First Difference		3.7.2	4.3.4, 4.3.6	5.3.5, 5.3.8	9.5.7, 9.5.8	10.5.7, 10.5.8
Integration/Running Sum (Accumulation)			4.3.4	5.3.5	9.5.9	10.5.7
Conjugate Symmetry for Real Signals	3.5.6		4.3.3	5.3.4		
Symmetry for Real and Even Signals	3.5.6		4.3.3	5.3.4		
Symmetry for Real and Odd Signals	3.5.6		4.3.3	5.3.4		
Even-Odd Decomposition for Real Signals			4.3.3	5.3.4		
Parseval's Relation for (A)Periodic Signals	3.5.7	3.7.3	4.3.7	5.3.9		
Initial- and Final-Value Theorems					9.5.10	10.5.9

Properties of CT Fourier Transform

Fourier Transform Pair:

- Synthesis equation: $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$
- Analysis equation:
- $X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$

$$X(jw) = \underbrace{\mathcal{F}}_{\{x(t)\}}$$

$$\frac{1}{a+jw} = \mathcal{F}\{e^{-at}u(t)\}\$$

$$x(t) = \mathcal{F}^{-1}\{X(jw)\}\$$

$$e^{-at}u(t) = \mathcal{F}^{-1}\left\{\frac{1}{a+jw}\right\}$$

$$x(t) \stackrel{\checkmark}{\longleftrightarrow} X(jw)$$

$$e^{-at}u(t) \stackrel{\mathcal{CTFT}}{\longleftrightarrow} \frac{1}{a+iw}$$

Properties of CT Fourier Transform

Feng-Li Lian © 2013

Linearity:

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$y(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(jw)$$

$$J_{-\infty}$$

$$\Rightarrow \int_{-\infty}^{\infty} \left(\left| \frac{x(t) + b y(t)}{a x(t) + b y(t)} \right| e^{-\frac{1}{2} \left(\frac{1}{2} \left(\frac{x(jw) + b Y(jw)}{a x(jw) + b Y(jw)} \right) \right) \right) dx$$

$$= \int_{-\infty}^{+\infty} (NX) dt e^{-jwt} dt$$

$$= \underbrace{\frac{1}{2\pi} \int_{-\infty}^{+\infty} (X) \dot{y} dw}_{jwt} dw$$

$$+\int_{-\infty}^{+\infty} |y| dt e^{-jwt} dt$$

$$+\frac{1}{\sqrt{1+\infty}}\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{+\infty}\int_{-\infty}^{$$

$$= 0 \sqrt{\int_{-\infty}^{+\infty} \chi(t) e^{-jwt} dt}$$

$$= 0 \sqrt{\frac{1}{2\pi} \int_{-\infty}^{+\infty} (j\mathbf{v}) e^{jwt} dw}$$

$$= \left(\sqrt{\int_{-\infty}^{+\infty} \chi(t) e^{-jwt} dt} \right) = \chi(\int \omega) = \left(\sqrt{\frac{1}{2\pi} \int_{-\infty}^{+\infty} \chi(t) e^{jwt} dw} \right) + \sqrt{\left(\sqrt{\frac{1}{2\pi} \int_{-\infty}^{+\infty} \chi(t) e^{jwt} dw} \right)} + \sqrt{\left(\sqrt{\frac{1}{2\pi} \int_{-\infty}^{+\infty} \chi(t) e^{jwt} dw} \right)} + \sqrt{\left(\sqrt{\frac{1}{2\pi} \int_{-\infty}^{+\infty} \chi(t) e^{jwt} dw} \right)} = \sqrt{\left(\sqrt{\frac{1}{2\pi} \int_{-\infty}^{+\infty} \chi(t) e^{jwt} dw} \right)} + \sqrt{\left(\sqrt{\frac{1}{2\pi} \int_{-\infty}^{+\infty} \chi(t) e^{jwt} dw} \right)} = \sqrt{\left(\sqrt{\frac{1}{2\pi} \int_{-\infty}^{+\infty} \chi(t) e^{jwt} dw} dw} = \sqrt{\left(\sqrt{\frac{1}{2\pi} \int_{-\infty}^{+\infty} \chi(t) e^{jwt} dw} dw} \right)}$$

$$+\int \frac{1}{2\pi} \int_{-\infty}^{+\infty} \chi(\mathcal{J}_{\nu}) e^{jwt} dw$$

Properties of CT Fourier Transform

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-31

Time Shifting:

 $X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$

Properties of CT Fourier Transform

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-32

Time Shift Phase Shift:

$$\mathcal{F}\{x(t)\} = \underbrace{X(jw)}_{=} = \underbrace{X(jw)}_{=} e^{j \times X(jw)}$$

$$\mathcal{F}\{x(t-t_0)\} = \underbrace{e^{-jwt_0}}_{X(jw)} = |X(jw)| e^{j \times X(jw)}_{=} - wt_0|$$

$$\downarrow t_0$$

Conjugation & Conjugate Symmetry:

$$\begin{array}{cccc}
x(t) & \longleftrightarrow & X(jw) \\
X(t)^* & \longleftrightarrow & X^*(-jw) \\
\hline
x(t) & = x^*(t) & & & \\
\hline
X(t) & = x^*(t) & & & \\
\hline
X(-jw) & & & & \\
X(-jw) & & & & \\
\hline
X($$

$$\bullet x(t) = x^*(t) \Rightarrow X(-jw) = X^*(jw)$$

x(t) is real $\Rightarrow X(jw)$ is conjugate symmetric

$$\begin{array}{c}
\bullet \ x(t) = x^*(t) & x(-t) = x(t) \\
\Rightarrow X(-jw) = X^*(jw) & X(-jw) = X(jw) \\
\Rightarrow X(jw) = X^*(jw)
\end{array}$$

x(t) is real & even $\Rightarrow X(jw)$ are real & even

• x(t) is real & odd $\Rightarrow X(jw)$ are purely imaginary & odd

Properties of CT Fourier Transform

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-36

Conjugation & Conjugate Symmetry:

If
$$x(t)$$
 is a real function
$$x(t) = \mathcal{E}v\{x(t)\} + \mathcal{O}d\{x(t)\} = x_e(t) + x_o(t)$$

$$\Rightarrow \mathcal{F}\{x(t)\} = \mathcal{F}\{x_e(t)\} + \mathcal{F}\{x_o(t)\}$$

$$\Rightarrow \mathcal{F}\{x_e(t)\} : \text{ a real function}$$

$$\Rightarrow \mathcal{F}\{x_o(t)\} : \text{ a purely imaginary function}$$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$\begin{cases} x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw) \\ \vdots \\ x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \mathcal{F} \\ \mathcal{F} \\ \mathcal{O}d\{x(t)\} \stackrel{\mathcal{F}}{\longleftrightarrow} \mathcal{F} \end{cases}$$

$$\Rightarrow \mathcal{F}\{x_o(t)\} : \text{ a purely imaginary function}$$

Feng-Li Lian © 2013

Properties of CT Fourier Transform

| Differentiation & Integration: |
$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$
 | $X(t) \leftarrow \int_{-\infty}^{+\infty} X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$ | $X(t) \leftarrow \int_{-\infty}^{+\infty} X(jw) = \int_{-\infty}^{+\infty} X(jw) dw$ | $X(t) \leftarrow \int_{-\infty}^{+\infty} X(jw) dw$ |

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-41

$$\int_{-\infty}^{\infty} \underbrace{\mathbf{1}(t)} e^{-jwt} dt$$

$$= \int_{0}^{+\infty} e^{-jwt} dt$$

 $\int_{-\infty}^{+\infty} \frac{u(t)}{u(t)} e^{-jwt} dt$

$$= \int_{\mathbf{0}}^{+\infty} e^{-jwt} dt$$

$$= \frac{1}{-jw} e^{-jwt} \Big|_{0}^{+\infty}$$

$$= \underbrace{\frac{1}{jw}} \left(e^{-jw\infty} - \underbrace{\left(e^{-jw0} \right)} \right)$$

$$=\frac{1}{jw}\left(1-e^{-jw\infty}\right)$$

$$=\frac{1}{jw}\left(1-e^{-jw\infty}\right)$$

$$\int_{-\infty}^{\infty} \underbrace{\mathbf{1}(t)} e^{-jwt} dt$$

$$= \frac{1}{-jw} e^{-jwt} \bigg|_{-\infty}^{+\infty}$$

$$= \frac{1}{-jw} \left(e^{-jw\infty} - e^{+jw\infty} \right)$$

$$=\frac{1}{jw}\left(\underbrace{e^{+jw^{\infty}}}_{-}-\underbrace{e^{-jw^{\infty}}}_{-}\right)$$

$$= \frac{1}{jw} \{ [\cos(w\infty) + j\sin(w\infty)]$$

$$-[\cos(-w\infty) + j\sin(-w\infty)] \}$$

$$= \frac{1}{i\overline{w}} \{1 - [\cos(-w\infty) + j\sin(-w\infty)]\}$$

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-39

$$\frac{1}{2}$$

 $\operatorname{sgn}(\mathsf{t}) \stackrel{\mathcal{F}\mathcal{T}}{\longleftrightarrow} S(jw)$

$$u(t)$$

 $1 \xrightarrow{\mathcal{F}\mathcal{T}} 2\pi \delta(jw)$

$$\frac{d}{dt}\operatorname{sgn(t)} \longleftrightarrow \widehat{jw}S(jw)$$

$$\stackrel{\textstyle 2}{=} \stackrel{\delta(t)}{\longleftrightarrow} \stackrel{\mathcal{F}T}{\longleftrightarrow} \widehat{(jw)} S(jw)$$

$$\frac{\delta(t)}{=} \stackrel{\mathcal{FT}}{\longleftrightarrow} 1(j\omega)$$

$$\Rightarrow S(jw) = 2$$

$$\Rightarrow U(jw) = \frac{1}{2} \left(2\pi S(\omega) + \frac{2}{3\omega} \right)$$

Example 4.11:

$$x(t) = \underbrace{u(t)} \overset{\mathcal{F}}{\longleftrightarrow} X(jw) = ?$$

$$g(t) = \delta(t) \overset{\mathcal{F}}{\longleftrightarrow} G(jw) = 1 \left(\mathcal{F}\right)$$

$$\underline{x(t)} = \underbrace{\int_{-\infty}^{t} g(\tau) d\tau} \qquad \underline{X(jw)} = \frac{1}{jw} G(jw) + \pi G(0) \delta(w)$$

$$= \frac{1}{jw} + \pi \delta(w)$$

$$\delta(t) = \frac{d}{dt}u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} jw\left[\frac{1}{jw} + \pi\delta(w)\right] = 1$$

Properties of CT Fourier Transform

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-45

Time & Frequency Scaling:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$$
$$X(jw) = \int_{-\infty}^{+\infty} x(t) e^{-jwt} dt$$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\underline{jw})$$

$$\frac{1}{|b|} x \left(\frac{t}{b} \right) \stackrel{\mathcal{F}}{\longleftrightarrow} X \left(jbw \right)$$

$$x(-t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(-jw)$$

Properties of CT Fourier Transform

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-46

Time & Frequency Scaling:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$$

$$(x_{jw}) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$(x_{jw}) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$\overline{\omega} = \omega \alpha$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j - \bar{w}) e^{j - \bar{w}} d\bar{w}$$

$$\int \int \int . = \frac{1}{2\pi} \int_{+\infty}^{-\infty} X(j \frac{1}{\alpha} \bar{w}) e^{j \bar{w} t} \frac{1}{\alpha} d\bar{w}$$

$$=\frac{1}{2\pi}\int_{-\infty}^{+\infty} \frac{1}{0} X(j \frac{1}{0} \bar{w}) e^{j\bar{w}t} d\bar{w}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(j - \bar{w}) e^{j \bar{w} t} d\bar{w}$$

$$\frac{\text{Duality:}}{x_1(t)} = \begin{cases} 1, & |t| < T_1 \\ 0, & |t| > T_1 \end{cases} \xrightarrow{\mathcal{F}} X_1(jw) = \underbrace{2\sin(wT_1)}_{w}$$

Properties of CT Fourier Transform

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-44

Duality:

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$

$$\int_{-\infty}^{+\infty} B(s) = \int_{-\infty}^{+\infty} A(\tau)e^{-js\tau}d\tau \qquad B(-s) = \int_{-\infty}^{+\infty} A(\tau)e^{js\tau}d\tau$$

$$A(\tau) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} B(s)e^{js\tau}ds \qquad 7 \to 5$$

$$A(s) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} B(\tau)e^{js\tau}d\tau$$

$$A(-s) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} B(\tau)e^{-js\tau}d\tau$$

Feng-Li Lian © 2013

NTUEE-SS4-CTFT-46

 $X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$

Duality:

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$\underbrace{\frac{1}{jt}x(t)} \overset{\mathcal{F}}{\longleftrightarrow} \underbrace{\frac{d}{dw}X(jw)}_{X(j(w-w_0))}$$

$$\underbrace{\frac{1}{jt}x(t) + \pi x(0)\delta(t)}_{Y} \overset{\mathcal{F}}{\longleftrightarrow} \underbrace{\int_{-\infty}^{w} X(\eta)d\eta}_{X(\eta)d\eta}$$

Properties of CT Fourier Transform

Parseval's relation:

$$\Rightarrow \int_{-\infty}^{+\infty} |x(t)|^2 dt = \underbrace{\frac{1}{2\pi}}_{-\infty} \underbrace{\int_{-\infty}^{+\infty} |X(jw)|^2}_{-\infty} dw$$

$$\int_{-\infty}^{+\infty} \frac{|x(t)|^2}{dt} = \int_{-\infty}^{+\infty} \underbrace{x(t)} \underbrace{x^*(t)} dt$$

- Representation of Aperiodic Signals:
 the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Propertiesof the Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

Convolution Property & Multiplication Property

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-48

Convolution Property:

$$y(t) = \underbrace{x(t) * h(t)}_{\text{--}} \overset{\mathcal{F}}{\longleftrightarrow} Y(jw) = \underbrace{X(jw)H(jw)}_{\text{p(t)}}$$
$$= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

• Multiplication Property:

$$r(t) = s(t)p(t) \stackrel{\mathcal{F}}{\longleftrightarrow} R(jw) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(j\theta) P(j(w-\theta)) d\theta$$

$$\frac{1}{2\pi} S(jw) + P(jw)$$

Convolution Property

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-50

From Superposition (or Linearity):

$$\frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jkw_0) e^{jkw_0 t} w_0 \longrightarrow \underbrace{\frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jkw_0) H(jkw_0) e^{jkw_0 t} w_0}_{y(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) H(jw) e^{jwt} dw}$$
Since $y(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} Y(jw) e^{jwt} dw$

$$\Rightarrow Y(jw) = X(jw) H(jw)$$

$$y(t) = x(t) * h(t) \longleftrightarrow Y(jw) = X(jw) H(jw)$$

Convolution Property

 $\Rightarrow Y(jw) = \underbrace{H(jw)X(jw)}_{}$

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-51

 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$

From Convolution Integral:

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$$

$$x(t-t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwt_0}X(jw)$$

$$\Rightarrow Y(jw) = \mathcal{F}\{y(t)\} = \begin{pmatrix} +\infty \\ -\infty \end{pmatrix} x(\tau)h(t-\tau)d\tau \begin{pmatrix} e^{-jwt}dt \end{pmatrix} d\tau$$

$$= \int_{-\infty}^{+\infty} x(\tau) \left[e^{-jw\tau} \right]_{-\infty}^{+\infty} h(\sigma)e^{-jw\sigma}d\sigma d\tau$$

$$= \int_{-\infty}^{+\infty} x(\tau) \left[e^{-jw\tau} H(jw) \right] d\tau$$

$$= H(jw) \begin{pmatrix} +\infty \\ -\infty \end{pmatrix} x(\tau)e^{-jw\tau}d\tau$$

7(t) = h((+) x h2(t) x x1H

Convolution Property

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-53

Example 4.15: Time Shift

$$h(t) = \delta(t - t_0)$$

$$\Rightarrow H(jw) = e^{-jwt_0}$$

$$Y(jw) = \underbrace{H(jw)X(jw)}_{=(e^{-jwt_0}X(jw))}$$

$$\Rightarrow y(t) = x(t-t_0)$$

$$x(t-t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwt_0}X(jw)$$

Convolution Property

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-54

Examples 4.16 & 17: Differentiator & Integrator

$$y(t) = \frac{d}{dt}x(t) \qquad \Rightarrow Y(jw) = \boxed{jw}X(jw)$$

$$x(t) \rightarrow \boxed{} \rightarrow y(t) \qquad \Rightarrow \boxed{H(jw) = \boxed{jw}}$$

$$\underline{y(t)} = \int_{-\infty}^{t} \underline{x(\tau)} d\tau \qquad \Rightarrow h(t) = \underline{u(t)} \qquad \text{impulse response}$$

$$\frac{y(t)}{x(t)} = \int_{-\infty}^{t} \underbrace{x(\tau)} d\tau \qquad \Rightarrow h(t) = \underbrace{u(t)} \qquad \text{impuls}$$

$$\Rightarrow H(jw) = \underbrace{\int_{-\infty}^{t} x(\tau) d\tau} \qquad \Rightarrow H(jw) = \underbrace{\int_{-\infty}^{t} x(\tau) d\tau} \qquad \Rightarrow \frac{1}{jw} + \pi \delta(w)$$

$$\Rightarrow \underbrace{Y(jw)} = \underbrace{\frac{H(jw)X(jw)}{1}}_{x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw}$$

$$= \underbrace{\frac{1}{jw}X(jw) + \pi\delta(w)X(jw)}_{x(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt}$$

$$= \underbrace{\frac{1}{jw}X(jw) + \pi\delta(w)X(0)}_{y(w) = \frac{1}{jw}}$$

Example 4.18: Idea Lowpass Filter

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$$
$$X(jw) = \int_{-\infty}^{+\infty} x(t) e^{-jwt} dt$$

$$\begin{array}{c|c} x(t) \\ \hline X(jw) \end{array} \begin{array}{c} h(t) \\ \hline H(jw) \end{array} \begin{array}{c} y(t) \\ \hline Y(jw) \end{array} \begin{array}{c} y(t) \\ \hline y(t) \\ \hline \end{array}$$

$$Y(jw) = H(jw)X(jw)$$

$$H(jw) = \begin{cases} 1, & |w| < w_c \\ 0, & |w| > w_c \end{cases}$$

$$\Rightarrow h(t) = \frac{1}{2\pi} \int_{-w_c}^{+w_c} e^{jwt} dw$$
$$= \frac{\sin(w_c t)}{\pi t}$$

Convolution Property

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-56

Filter Design:

Example 4.19:

Filter

$$\Rightarrow Y(jw) = H(jw)X(jw) = \frac{1}{a+jw} \frac{1}{b+jw}$$

if
$$a \neq b$$

$$= \frac{1}{b-a} \left[\frac{1}{a+jw} - \frac{1}{b+jw} \right]$$

Convolution Property

Feng-Li Lian © 2013 NTUEE-SS4-CTFT-59

Example 4.19:

if
$$a \neq b$$

$$Y(jw) = \frac{1}{b-a} \left[\underbrace{\frac{1}{a+jw}}_{b+jw} \right]$$
$$= \underbrace{y(t)}_{b-a} \left[e^{-at}u(t) - e^{-bt}u(t) \right]$$

if
$$a = b$$
 $Y(jw) = \frac{1}{(a+jw)^2}$

since
$$e^{-at}u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{a+iw}$$

and
$$t e^{-at}u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} j \frac{d}{dw} \left[\frac{1}{a+jw} \right] = \frac{1}{(a+jw)^2}$$

$$\Rightarrow y(t) = te^{-at}u(t)$$

Outline

- Representation of Aperiodic Signals:
 the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of the Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

Convolution & Multiplication:

- Multiplication of One Signal by Another:
 - Scale or modulate the amplitude of the other signal
 - Modulation

Section	Property	Aperiodic signal	Fourier transform	NTUEE-SS4-CTF
/		<i>x</i> (<i>t</i>) <i>y</i> (<i>t</i>)	$X(j\omega)$ $Y(j\omega)$	
4.3.1	Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$	
4.3.2	Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$	
4.3.6 4.3.3	Frequency Shifting	$e^{j\omega_0 t}x(t)$	$X(j(\omega-\omega_0))$	
4.3.5	Conjugation Time Reversal	$x^*(t)$ x(-t)	$X^{\epsilon}(-j\omega)$	
		$\lambda(-l)$	$X(-j\omega)$	
4.3.5	Time and Frequency	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$	
4.4	Scaling Convolution	x(t) * y(t)	, ,	
			$X(j\omega)Y(j\omega)$	
4.5	Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega - \theta)) d\theta$	
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$	
		f'	1	
4.3.4	Integration	x(t)dt	$\frac{1}{i\omega}X(j\omega) + \pi X(0)\delta(\omega)$	
4.3.6	Differentiation in	J=%	J	
4.5.0	Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$	
	requestey		$\int X(j\omega) = X^*(-j\omega)$	
			$\Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\}$	
4.3.3	Conjugate Symmetry	x(t) real	$\begin{cases} \Im m\{X(j\omega)\} = \Im m\{X(-j\omega)\} \\ \Im m\{X(j\omega)\} = -\Im m\{X(-j\omega)\} \end{cases}$	
	for Real Signals	7(1)	$ X(j\omega) = X(-j\omega) $	
			$\langle X(j\omega) \rangle = -\langle X(-j\omega) \rangle$	
4.3.3	Symmetry for Real and	x(t) real and even	$X(j\omega) = -\sqrt{\lambda}(-j\omega)$ $X(j\omega)$ real and even	
	Even Signals	(,)	12 (30) 1001 0110 0 1011	
4.3.3	Symmetry for Real and	x(t) real and odd	$X(j\omega)$ purely imaginary and odd	
	Odd Signals	(0) (0) (1)	0 (20)	
4.3.3	Even-Odd Decompo-	$x_e(t) = \mathcal{E}v\{x(t)\}$ [x(t) real]	$\Re\{X(j\omega)\}$	
	sition for Real Sig-	$x_o(t) = Od\{x(t)\}$ [x(t) real]	$j \mathcal{G}m\{X(j\omega)\}$	
	nals			
4.3.7	Parseval's Relation	on for Aperiodic Signals		
	(+× ,	$\frac{1}{2\pi}\int_{-\infty}^{+\infty} X(j\omega) ^2d\omega$		

TABLE 4.2 BAS	SIC FOURIER TRANSFORM PAIRS	NTUEE-SS4-C
Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{otherwise}$
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$
Periodic square w $x(t) = \begin{cases} 1, & t < T \\ 0, & T_1 < t \end{cases}$ and $x(t+T) = x(t)$	vave $ t \leq \frac{T}{2} \sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
+**	$2\pi \stackrel{+\infty}{\smile} \circ (2\pi k)$	1 6

Outline

- Representation of Aperiodic Signals:
 the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of the Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by
 Linear Constant-Coefficient Differential Equations

Systems Characterized by Linear Constant-Coefficient Differential
$$\sum_{k=0}^{m} \frac{1}{2} \frac{1}{2$$

Systems Characterized by Linear Constant-Coefficient Differential
$$\frac{Y}{Y}$$
 $\frac{1}{Y}$ $\frac{1}{Y}$

$$a_k = \frac{1}{T}X(jw)\Big|_{w=kw_0}$$

$$X(jw) = \sum_{k=-\infty}^{+\infty} 2\pi \ a_k \ \delta(w - kw_0)$$

$$=\sum_{k=-\infty}^{+\infty}2\pi \frac{1}{T}X(jkw_0)\delta(w-kw_0)$$

$$w = mw_0$$

$$X(jmw_0) = \sum_{k=-\infty}^{+\infty} 2\pi \frac{1}{T} X(jkw_0) \delta(mw_0 - kw_0)$$

$$= 2\pi \frac{1}{T} X(jmw_0)$$

$$\Rightarrow 2\pi = T$$

X(jw) of Aperiodic Signals and a_k of Periodic Signals

$$a_k = \frac{1}{T} X_a(jw) \Big|_{w = kw_0}$$

$$X_p(jw) = \sum_{k=-\infty}^{+\infty} 2\pi \ a_k \ \delta(w - kw_0)$$

$$=\sum_{k=-\infty}^{+\infty}2\pi \frac{1}{T}X_a(jkw_0)\delta(w-kw_0)$$

$$w = mw_0$$

$$X_p(jmw_0) = \sum_{k=-\infty}^{+\infty} 2\pi \frac{1}{T} X_a(jkw_0) \delta(mw_0 - kw_0)$$

$$=2\pi \frac{1}{T} X_a(jmw_0)$$

Chapter 4: The Continuous-Time Fourier Transform

- Representation of Aperiodic Signals: the CT FT
- The FT for Periodic Signals
- Properties of the CT FT

 - Conjugation
 Convolution
 Time Reversal
 Multiplication
 - Differentiation in Time Integration Differentiation in Frequency
 - Conjugate Symmetry for Real Signals
 - Symmetry for Real and Even Signals & for Real and Odd Signals
 - Even-Odd Decomposition for Real Signals
 - · Parseval's Relation for Aperiodic Signals
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

Questions for Chapter 4

- Why to study FT
 - · In order to analyze or represent aperiodic signals
- How to develop FT
 - From FS and let T -> infinity
- Do periodic signals have FT
 - · Yes, their FT is function of isolated impulses
- Why to know the properties of FT
 - · Avoid using the fundamental formulas of FT to compute the FT
- What the duality of FT and why
 - FT and IFT have almost identical integration formulas
- Why to know the convolution property
 - To analyze system response and/or design proper circuits
 - To simplify computation
- Why to know the multiplication property
 - · For signal modulation with different-frequency carriers
 - To simplify computation

