

Facial-Recognition, Obstacle-Detection, Omni-Wheel Robot Platform

Advisors: Dr. Chris Kim, Luke Everson

Meet FRODOW!

- Excellent Robot Platform
 - Obstacle-Avoidance Sensors
 - Absolute-Orientation Sensor
 - Pathing Software
 - Facial Recognition Testing
 - ON-Board Processing
- Potential Applications
 - Automation Processes
 - In-home Care
 - Academia
 - Military/Security
- Great Learning Opportunities
 - Programming
 - Control Systems
 - Mechanical Systems
 - Project Management

Robot Operations and Demo

- Flow chart is the basis of robot operations.
- Implements obstacle-avoidance hardware and tracking software on an existing omni-directional platform.
- Project aims to create a fully-autonomous robot to serve as a testing platform for facial-recognition.
- Distance and measurement data are extracted from the sensors to plot obstacle and terminal locations.
- Robot demonstrates its facial-recognition capabilities by locating and plotting a safe course to a targeted individual.

Object Avoidance

- Goal is to map all known objects into memory in the form of a grid
- Objects will be approximations to avoid collisions
- Dynamic mapping of objects
- Environment mapping updates as it is explored
- Basic Node Search Algorithm to plan path to destination(A*)

Ultrasonic Distance Sensors

Pros:

- Range: Up to 1 meters
- Very narrow field of view (<15°)
- Takes 20ms per ping
- Three sensors for 'Field-Of-View'
- Low Cost, \$2.00 Unit Cost
- Cons:
 - Pinging off the floor can be a problem
 - Needs to directly face objects
 - Difficulty with soft or irregular surfaces

Sensor mount prototyped in Autodesk Fusion, created using waterjet cutter in CSE machine shop.

Expanded Movement Capabilities

- Nexus Robot Omni-Wheel Drive Train
 - Only frontal movement to avoid side or rear collisions(limited to no side sensors)
 - Movement library refinement for accurate estimation of distance traveled
 - Wheel 3 needs tuning or replacement
- Adafuit Inertial Measurement Unit (IMU)
 - Needed to accurately map rotations as robot moves

Plib Facial Recognition Software

Faces are encoded Eye distance acquired

Face identification via neural network

Lib Facial Recognition Software

Position Calculation

Requirements Specifications

Movement Patterns

- More robust and expanded movement library
- Optimize PID control
- Calculate path to destination

Obstacle Avoidance (Indoors)

- Additional peripherals and sensors
- Adjust path due to obstacles

Image Processing

Face-tracking recognition and identification of team members

Improve Testing Interface

- Documentation/Schematic of robot
- Storing live-feed data, display on LCD

Requirements Specifications

#	Need #'s	Metric	Units	Ideal Value	Acceptable Range	Importance
1	1,2,3,4	Minimum distance from obstacles	m	0.1	>0.05	1
2	1,2,4	Minimum displacement from rest	m	0.05	<0.1	1
3	4,5,6	Facial recognition in group of N or more	N	5	2	1
4	1,2,6	Time to re-acquire facial tracking	ms	500	<5000	1
5	9	Refresh rate on displaying captured image to LCD	fps	24	>5	2
6	5	Time to run facial Recognition	S	5	<60	1

Budget

				Per Unit		
Item #	Product Description	Vendor	Vendor Part #	Cost (\$)	Qty	Total Cost
1	Raspberry PI 3 Model B 1.2GHz 64-bit quad-core ARMv8 CPU, 1GB RAM	Amazon	See description	35.20	1	35.20
2	Raspberry Pi 7" Touchscreen Display	Amazon	See description	69.99	1	69.99
3	Ultrasonic Sensor HC-SR04 (5-pk) - 8.99	Amazon	See description	8.99	1	8.99
4	Adafruit IMU Fusion Breakout BNO055	Microcenter	See description	37.62	1	37.62
5	Breadboard	ECE Depot	See description	2.36	3	7.08
6	Wire with pre-crimped connectors (long)	ECE Depot	See description	0.45	6	2.70
7	Wire with pre-crimped connectors (med)	ECE Depot	See description	0.35	23	8.05
8	Wire with pre-crimped connectors (short)	ECE Depot	See description	0.20	9	1.80
9	Connector housing (large)	ECE Depot	See description	0.40	2	0.80
10	Connector housing (1x4)	ECE Depot	See description	0.05	9	0.45
11	Connector housing (1x1)	ECE Depot	See description	0.02	28	0.56
12	Cable, USB A male to USB B female	ECE Depot	See description	2.45	1	2.45
13	Plano Case for electronics	ECE Depot	See description	8.99	1	8.99
			Total Cost			184.68

Moving FRODOW Forward

Accomplishments

- Introduction of a path to destination algorithm utilizing ultrasonic sensors
- Through our solution, the Robot has the ability to avoid obstacles and perform facial identification

Recommendations

- More robust sensor package for 360° obstacle avoidance
- Take advantage of omni-directional movements vs using 90° rotations
- Update PID algorithms (tune or replace wheel 3's motor)
- Real time facial-recognition and identification. Use a more powerful alternative to the Raspberry Pi.
 - NVIDIA Jetson TK1
 - Tegra K1 SOC
 - Access to CUDA cores
 - Improve performance of facial recognition API

Question and Answer Session

