Содержание

1.	Модель идеального газа котов	1
2	Теория броуновских котов	2

1. Модель идеального газа котов

Для начала обрисуем проблему: расчет потока котов через окна из замкнутого объема. В нашей работе в качестве такого объема выступает Главное здание МГУ (далее - ГЗ), точнее сектор "В"этого здания, в рамках которого без уменьшения общности мы и будем в дальнейшем проводить наши рассуждения, а также мыслимые и немыслимые эксперименты.

Построим простейшую модель движения котов, когда коты представляют из себя идеальный газ отдельных коточастиц, каждая из которых обладает энергией \mathfrak{K} (читается "котэ"). Кот представляет из себя идеальный шар и имеет по 3 поступательных и вращательных степени свободы, любая из которых обладает энергией $\frac{\mathfrak{K}}{6}$. Форма ГЗ (мы уже оговаривали, что под ГЗ мы понимаем в нашей работе сектор "В"этого прекраснейшего из зданий) в данной модели не представляет особого значения, поэтому представим ее как параллелепипед, заполненный жилыми блоками с объемом порядка 100 м^3 . Поверхность ГЗ остоит из стен и окон, причем отношение соответствующих площадей составляет $S_{\text{окон}}/S_{\text{стен}} \simeq 0.3 \, \sigma$, где σ - степень открытости окон, варьирующаяся в пределах от 0 (все окна закрыты) до 1 (все окна открыты).

В данной модели предлагается следующий способ оценки суммарного потока котов за время τ через участок поверхности ГЗ площадью S: рассматривается цилиндр с основанием S и длиной $v_x\tau$, где v_x - средняя скорость кота в определенном направлении x. В объеме V этого цилиндра содержится Vn котов, где n - концентрация котов, а $V=Sv_x\tau$. Через время τ половина этих котов (те, у которых скорость сонаправлена с осью x) пересекут площадку S и обеспечат интенсивность потока $I=\frac{1/2Vn}{\tau S}=\frac{1}{2}v_xn=\frac{1}{2\sqrt{3}}vn$, где v - среднеквадратичная скорость кота.

Оценим полученный результат. В ГЗ около 10^3 блоков и около 50 котов (данная цифра может быть подвергнута сомнению, но для оценки она вполне реалистична). Таким образом, концентрация исследуемых объектов (котов) в ГЗ составляет $n=\frac{50\,\mathrm{котов}}{100\,\mathrm{m}^3\cdot 10^3\,\mathrm{комнат}}=5\cdot 10^{-4}\,\mathrm{kot/m}^3$, а интенсивность их потока составляет $I=\frac{1}{2\sqrt{3}}vn\simeq 10^{-5}\,\mathrm{kot/c}\cdot\mathrm{m}^2$. Таким образом, суммарный поток котов из ГЗ равен $\Pi=IS_{\mathrm{окон}}\sigma\simeq 10^{-5}\frac{\mathrm{kot}}{\mathrm{c\cdot m}^2}\cdot 10^3\,\mathrm{комнат}\cdot 2\,\mathrm{m}^2\cdot\sigma\simeq 10^{-2}\,\mathrm{kot/c}$ при степени открытости окон $\sigma\simeq 1/2$.

Итак, можно утверждать, что можель дает слишком завышенную оценку: 1 кот вылетает из окон ГЗ за характерное время в 100 секунд.

Это приведет к тому, что за весьма короткий срок (около 1,5 часов) из ГЗ исчезнут все коты, что весьма прискорбно, невзирая на весьма отвлеченный характер теории.

2. Теория броуновских котов

Достаточно очевидно, что введение дополнительных параметров не спасает теорию идеального газа котов. Если ввести коэффициент боязни котов перед окнами и возвращения котов обратно в Γ 3, то это способно снизить суммарный поток до величин порядка 10^{-3} кот/сек, что принципиально не удовлетворяет экспериментальным данным.

Следующая смелая гипотеза способна разрешить проблему излишней активности котов. Рассмотрим среду виртуальных котов (состоящую из виртульных котов и антикотов), в которой реальный кот совершает броуновское движение. В качестве основной характеристики этой среды выберем ее вязкость η . Нам также придется несколько видоизменить модель ГЗ в рамках представления о броуновских котах. Введем некий характерный параметр длины г, который необходимо преодолеть коту, чтобы испытать соударение со стенкой ГЗ (или вылететь в окно). Введением этого параметра мы по сути придаем ГЗ шарообразную форму радиуса г, что не должно смущать читателя, т. к., во-первых, для получения оценки такая модель должна дать вполне адекватные результаты, а, во-вторых, в случае успеха данной теории ничто не запрещает перестроить ГЗ в форме шара для проведения более точных экспериментов.

Итак, рассмотрим реального кота, который находится в центре шарообразного ГЗ и совершает броуновское движение в среде виртуальных котов. Воспользуемся формулой Эйнштейна для оценки удаления X кота от начальной точки за время $\mathbf{t}: \langle x^2 \rangle = k \cdot t$, где $k \sim \frac{1}{\eta}$. Кот достигает поверхности ГЗ за время $\tau = \frac{r^2}{k} \sim \eta r^2$ и с вероятностью $P = S_{\text{окон}}/S_{\text{стен}} \simeq 0.3\,\sigma$ попадает в окно. Таким образом, рассмотрев совокупность из N котов, получаем, что за время τ в окно попадут NP котов, т. е. поток котов из ГЗ равен:

$$\Pi = \frac{NP}{\tau} \simeq \frac{0.3N\sigma}{\eta r^2}.\tag{1}$$

Исходя из того, что объем ГЗ составляет порядка $10^5\,{\rm m}^3$, получаем характерный радиус $r\simeq 30\,{\rm m}$. Из грубой оценки потока котов $\Pi\sim 1\,{\rm кот/месяц}\simeq$

 $5\cdot 10^{-7}\,{\rm кот/c}$ можно получить приближенное значение для вязкости среды виртуальных котов: $\eta\simeq\frac{N}{\Pi r^2}\simeq 10^5\,{\rm m}^2/{\rm c}$. Такое большое значение говорит об уникальных свойствах среды виртуальных котов: она представляет собой жидкость!