Resistor Recognition

By: Eitan Klass, Roey Mevorach, Brandon Pragasa and Nathan Jaggers

Introduction

- Electronic circuits are an integral part of everyday life, and resistors are one of the key components in such circuits
- With the use of computer vision technology, it can be leveraged to automate the resistor value detection process and enable us to be more efficient

The Problem and Motivation

- As EEs and CPEs, we have felt the pain of accurately identify resistor values
- Traditional methods are time consuming and prone to human error
- As circuits become more complex, the demand for higher precision and accuracy increases

Data Set

- Resistors with different band colors in different order
- Resistors with same orientation
 - Evolve to different orientations
- Resistors at different distances
- Resistor environment
 - High contrast background
 - Evolve to more complicated backgrounds
- Resistors with four bands
 - Evolve to more bands

Previous Work

- Segmentation and classification of resistors from an image using openCV
 [1]
- Using industrial black and white cameras with a neural network to determine resistor nominal value [2]
- Real-time video analysis resistor band decoder android app [3]

Results from [1] on left

Config from [3] on right

Techniques Used

- Image segmentation, masking, thresholding, Support Vector Machines (SVM) [1]
- Image preprocessing, Retinex algorithm,
 Back Propagation Neural Network
 Classifier [2]
- Nonlinear Image filtering, Photometric Invariants (RGB->HSV), Euclidean distance based clustering strategy

(a) The original image

(b) The Retinex processed image

Lessons Learned

- Reduce illumination variance by either using normalized RGB or HSV
 - HSV seems to be a popular color spaces in the papers explored
- Avoid statistical analysis for location of resistor bands
 - Use edge detection for band position estimation
 - Develop other band detector to know location of band prior to image preprocessing

Algorithm from Previous Work [1]

Step 1: Image Segmentation

- Find and segment the resistor from the image
- Thresholding v. Edge-based v. Region-based
 - Depends on complexity of the image
- Functions:
 - Bwareopen, imclose, imfill, bwpropfilt

High Contrast Background

Noisy/Complex Background

Step 2: Morphological Operations

- Erosion
 - Morphological erosion removes floating pixels and thin lines so that only substantive objects remain. Remaining lines appear thinner and shapes appear smaller.
 - Use to remove wires
- Dilation
 - Morphological dilation makes objects more visible and fills in small holes in objects. Lines appear thicker, and filled shapes appear larger.
 - Use to fill in any holes in resistor

Step 3: Object Representation and Description

 Masking the resistor body out of the original image

Step 4: Resistor Band Location & Color Extraction

- Left End coordinates
- Right End coordinates
- Band coordinates
- Band Feature Vector [Hue, X, Y]
- Ends Feature Vector [-, X, Y]
- Resistor Feature Array:
 - Band Feature Vector [Hue, X, Y]
 - Ends Feature Vector [-, X, Y]

Band # / End	Left End	1st	2nd	3rd	4th	Right End
Hue	-					1
X pos	Х	Х	Х	X	Х	Х
Y Pos	у	у	у	у	у	у

Step 4: Resistor Band Location & Color Extraction

Step 4: Resistor Band Location & Color Extraction

- HSV color space
- Histogram for value in the HSV color space (Value vs. X coordinate)

Band # / End	Left End	1st	2nd	3rd	4th	Right End
Hue	-	0.04	0.15	0.03	0.06	-
X pos	х	х	х	х	х	х
Y Pos	У	У	У	У	У	у

Resistor Color Guide For Classification

	Color	Sign	nficant figures		Multiply	Tolerance (%)	Temp. Coeff. (ppm/K)	Fail Rate
Bad	black	0	0	0	× 1	(10)	250 (U)	1/4/
Beer	brown	1	1	1 1 × 10		1 (F)	100 (S)	1
Rots	red	2	2	2	x 100	2 (G)	50 (R)	0.1
Our	orange	3	3	3	x 1K		15 (P)	0.01
Young	yellow	4	4	4	x 10K		25 (Q)	0.001
Guts	green	5	5	5	x 100K	0.5 (D)	20 (Z)	
But	blue	6	6	6	x 1M	0.25 (C)	10 (Z)	
V odka	violet	7	7	7	x 10M	0.1 (B)	5 (M)	
Goes	grey	8	8	8	x 100M	0.05 (A)	1(K)	3
Well	white	9	9	9	x 1G		70.00	
Get	gold			3th digit	x 0.1	5 (J)		
Some	silver			only for 5 and 6	× 0.01	10 (K)		
	none bands							
Now!				bands		20 (M)		/
Now!	6 b 5 b	and and	-(bands		52	21kΩ 1% 5 1Ω 1% kΩ 5%	/ :0ppm/I

Step 5: Classification

- Use a data set
 - 12 classifiers (12 for band colors)
- Specify Hue range for each index

Band # / End	Left End	1st	2nd	3rd	4th	Right End
Hue	-	2	3	1	7	-
X pos	Х	Х	Х	Х	Х	Х
Y Pos	у	у	у	у	у	у

Color	Black	Brown	Red	Orange	Yellow	Green	Blue	Violet	Grey	White	Gold	Silver
Index	0	1	2	3	4	5	6	7	8	9	10	11

Step 5: Classification

Index	0	1	2	3	4	5	6	7	8	9
Multiplier	x1	x10	x100	x1K	x10K	x100K	x1M	x10M	x100M	x1G
Index	0	1	2	3	4	5	6	7	8	9
Tolerance (%)	-	1	2	-	-	0.5	0.25	0.1	0.05	-

Step 6: Compiling and Labeling

- Binary Image
- Regionprops(, 'BoundingBox')
- Label with the resistance value (Ω) and tolerance (%)

Thank You!

Questions?

References

[1]M. Muminovic and E. Sokic, "Automatic Segmentation and Classification of Resistors in Digital Images," 2019 XXVII International Conference on Information, Communication and Automation Technologies (ICAT), Oct. 2019, doi: https://doi.org/10.1109/icat47117.2019.8939034.

[2]X. Li, Z. Zeng, M. Chen, and S. Che, "A new method of resistor's color rings detection based on machine vision," *IEEE Xplore*, Oct. 01, 2017. https://ieeexplore.ieee.org/document/8242770/ (accessed Mar. 16, 2023).

[3]M. F. Demir, A. Cankirli, B. Karabatak, A. Yavariabdi, E. Mendi, and H. Kusetogullari, "Real-Time Resistor Color Code Recognition using Image Processing in Mobile Devices," *2018 International Conference on Intelligent Systems (IS)*, Sep. 2018, doi: https://doi.org/10.1109/is.2018.8710533.