# **CHEMISTRY**

### 1. CHEMICAL REACTIONS AND EQUATIONS

- 1. **CHEMICAL REACTION:** It is a chemical process in which new substances with new properties are formed due to rearrangement of atoms.
- 2. **CHEMICAL EQUATION:** It is a short hand representation of a chemical reaction with the help of symbols and formulae of the substance in it.
- 3. **LAW OF CONSERVATION OF MASS:** In a chemical reaction, the total mass of reactants is always equal to the total mass of products. (or) Mass (matter) can neither be created nor destroyed in a chemical reaction.
- 4. **PRECIPITATION REACTION:** A chemical reaction in which one of the products formed is a precipitate.
- 5. **CHEMICAL COMBINATION:** A chemical reaction in which two or more substances combine together to form a single new substance.
- Examples for combination reactions

$$\begin{array}{c} {\it CaO}_{(s)} + {\it H}_2{\it O}_{(l)} \rightarrow {\it Ca(OH)}_{2~(aq)} + {\it Heat} \\ {\it (guick~lime)} & {\it (Slaked~lime)} \end{array}$$
 
$$\begin{array}{c} NH_{3(g)} + {\it HCl}_{(g)} \rightarrow NH_4{\it Cl}_{(s)} \\ {\it Ammonia} & {\it Hydrogen~chloride} \end{array}$$

- 6. **CHEMICAL DECOMPOSITION:** A Chemical reaction in which a compound split into two or more simpler substances by the Supply of heat/ light/ electricity.
- 7. **THERMAL DECOMPOSITION:** A Chemical reaction in which a compound split into two or more simpler substances by the supply of heat .
- 8. Examples for thermal decomposition reactions

i) 
$$2 \text{FeSO}_{4(s)} \xrightarrow{\Delta} \text{Fe}_2 \text{O}_{3(s)} + \text{SO}_{2(g)} + \text{SO}_{3(g)}$$
Ferroussulphate Ferricoxide Sulphar Sulphar dioxide Trioxide

ii)  $2 \text{Pb(NO}_3)_{2(s)} \xrightarrow{\Delta} 2 \text{PbO}_{(s)} + 4 \text{NO}_{2(g)} + \text{O}_{2(g)}$ 
Lead nitrate Leadmonoxide Nitrogenoxide Oxygen

(Yellow)

iii) The digestion of food in the body

9. **CHEMICAL DISPLACEMENT:** - A chemical reaction in which a highly reactive element displaces/replaces a low reactive element from its solution.

Examples for displacement reactions

$$\begin{array}{ccccc} CuSO_{4\,(aq)} & + & Zn(s) & \rightarrow & ZnSO_{4\,(aq)} & + & Cu_{(s)} \\ Copper sulphate & Zinc & Zinc sulphate & Copper \\ (Blue) & (Silver white) & (Clour less) & (Red-Brown) \end{array}$$

(Colouless)

$$CuSO_{4(aq)} + Fe \longrightarrow FeSO_4 + Cu$$
 $(Blue) \quad (Silver\ white) \quad (Green) \quad (Re\ d\ - Brown)$ 

- 10. **CHEMICAL DOUBLE DISPLACEMENT:** A chemical reaction in which there will be mutual exchange of ions/radicals between two compounds to form two new compounds.
- 11. Example for double displacement reaction

i) 
$$AgNO_{3(aq)} + NaCl_{(aq)} \longrightarrow AgCl_{(s)} + NaNO_{3(aq)}$$
  
i)  $(Silver\ nitrate)\ (Sodium\ chloride)\ (Silver\ chloride)\ Sodium\ chloride\ (White\ ppt)$ 

- 12. When the metal surface is exposed to atmospheric oxygen, moisture, chemicals such as acids etc; they get deteriorated or corroded.
- 13. **RANCIDITY:** The condition produced by aerial oxidation of oils and fats present in the food materials marked by unpleasant smell and taste..
- 14. When an iron object is left in damp air for a considerable time, it gets covered with a reddish brown flaky substance called rust. This process is called as Rusting of Iron. Chemical formula of rust is Fe<sub>2</sub>O<sub>3</sub>.×H<sub>2</sub>O.
- 15. **GALVANISATION:** Applying a thin coating of zinc or chromium on the surface of the metals to prevent them from corrosion.
- 16. **Oxidation:** The addition of oxygen to a substance or the removal of hydrogen from a substance (or) loss of electrons (or) increase in the oxidation state.
- 17. **Reduction:** The addition of hydrogen to a substance or the removal of oxygen from a substance (or) gain of electrons (or) decrease im the oxidation state.
- 18. **Oxidizing agent:** The substance which gives oxygen for oxidization or the substance which removes hydrogen
- 19. **Reducing agent:** The substance which gives hydrogen for reduction or the substance which removes oxygen
- 20. Example for Redox reaction:-

Removal of oxygen: Reduction



Addition of oxygen: oxidation

Oxidising agent : CuO and Oxydised substance:  $\mathrm{H}_{\scriptscriptstyle 2}$ 

Reducing agent: H2 and Reduced substance: CuO

21. Examples of Electrolytic precipitation reactions :-

i) 
$$H_2SO_4 + BaCl_2 \longrightarrow BaSO_4 + 2HCl$$
  
Sulphuric acid Barium chloride Barium sulphate Hydrochoric Acid

ii) 
$$Pb(NO_3)_2 + 2KI \longrightarrow PbI_2 + 2KNO_3$$
  
Lead nitrate Potassium Iodine Yellow ppt Pottasium Nitrate

22. Example of electrolytic decomposition reactions :-

i) 
$$2H_2O_{(l)} \xrightarrow{Electricity} 2H_{2(g)} + O_{2(g)}$$

ii) Aluminium oxide (Mortar) 
$$\begin{array}{c} 2Al_2O_{3(l)} & \xrightarrow{Electricity} & 4Al_{(l)} & + 3O_{2(g)} \\ & & \text{Aluminium oxygen} \\ & & (metal) \end{array}$$

- 23. An unbalanced chemical equation is called a skeletal equation.
- 24. Reactions in which heat is given out along with the products are called Exothermic reactions.
- 25. Reactions in which energy is absorbed are known as Endo-thermic reactions.

## 2. ACIDS, BASES AND SALTS

**1.** Acids: Acids are sour to taste, turn blue litmus to red, and dissolve in water to release  $H^+$  ions.

Eg:- Vinegar, Hydrochloric acid and Sulphuric acid.

- **2. BASES:** These are the substances which are bitter to taste and soapy to touch. They turn red litmus solution blue. They give "OH-" ions in aqueous solution.
- **3.** Indicators are the substances which change their colour/smell in different types of substances.

#### 4. TYPES OF INDICATORS

| Natural indicators                                                                                           | Synthetic indicators | Olfactory indicators                                     |
|--------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------|
| Found in nature in plants<br>Litmus, red cabbage leaves<br>extract, flowers of<br>hydrangea plant, turmeric. | Methyl orange,       | These substances have different odour in acid and bases. |

- 5. **Pop test:** When a burning candle is brought near a test tube containing hydrogen gas ,it put off with a 'Pop' sound. This test is conducted for examining the presence of hydrogen gas.
- 6. **Neutralization Reaction:** Reaction of acid with base is called as neutralization reaction.

- 7. While diluting acids, it is recommended that the acid should be added to water and not water to acid because the process of dissolving an acid or a base in water is highly exothermic.
- 8. Mixing an acid or a base with  $H_2O$  results in decrease of concentration of ions  $(H_3O^+/OH^-)$  per unit volume. Such a process is called as dilution.
- 9. Strength of acid or base can be estimated by using universal indicator.
- 10. **pH Scale:** A scale for measuring H<sup>+</sup> ion concentration in a solution.

P in pH stands for 'potenz' a German word which means power.

pH = 
$$7 \rightarrow$$
 neutral solution  
pH lessthan  $7 \rightarrow$  acidic solution  
pH morethan  $7 \rightarrow$  basic solution

- 11. When pH of rain water is less than 5.6, it is called acid rain.
- 12. Acids react with metals& gives salt and hydrogen

$$Zn(s) + H_2SO_{4(aq)} \longrightarrow ZnSO_{4(aq)} + H_{2(g)}$$
 $Zinc$  Sulphuric acid Zinc sulphate Hydrogen (Metal) (dilute) (salt)

13. Acids react with carbonates [CO<sub>3</sub><sup>2</sup>-] or Hydrogen carbonates [HCO<sub>3</sub><sup>-</sup>] and Gives salt, carbon dioxide, and water

$$2Na_2CO_{3(s)} + 2HCl_{(aq)} \longrightarrow 2NaCl_{(aq)} + CO_{2(g)} + H_2O_{(l)}$$
 Sodium carbonate Sodium chloride Carbon dioxide

$$NaHCO_{3(s)} + HCl_{(aq)} \xrightarrow{} NaCl_{(aq)} + CO_{2(q)} + H_2O_{(l)}$$
  
Sodium hydrogen Carbonate

### Class X\_Text Book\_CDF (CBSE)

= MPCBES ====

14. Antacids:- Cure indigestion and get rid of pain

Examples: Mg(OH)<sub>2</sub> (Milk of magnesia)

NaHCO<sub>3</sub> (Baking soda)

- 15. An ants sting injects: Methanoic acid, it can be neutralized by rubbing the affected part with baking soda.
- 16. Equation for Chlor-alkali process

$$2NaCl_{(aq)} + 2H_2O_{(l)} \longrightarrow 2NaOH_{(aq)} + Cl_{2(g)} + H_{2(g)}$$

$$At \ anode \quad At \ Cathode$$

17. Formula for Bleaching powder: CaOCl<sub>2</sub>

Calcium oxychloride (or) Bleaching powder

18. Plaster of Paris (POP):

$$\begin{array}{c} \textit{CaSO}_4.2H_2O \xrightarrow{\textit{Heat}} \textit{CaSO}_4.\frac{1}{2} \; H_2O + 1\frac{1}{2} \; H_2O \\ \textit{Gypsum} & \textit{Plaster of paris} \end{array}$$

- 19. Baking powder is a mixture of baking soda (sodiumm hydrogen carbonate) and a mild edible acid such as tartaric acid.
- 20. Sodium hydrogen carbonate NaHCO3: is used in soda acid fire extinguishers.
- 21. Washing soda:- Na<sub>2</sub>CO<sub>3</sub>.10H<sub>2</sub>O

can be obtained by recrystallization of sodium carbonate.

Equation:

$$Na_2CO_3$$
 +  $10H_2O$   $\longrightarrow$   $Na_2CO_3.10H_2O$   
sodium carbonate Washing soda

22. Water of crystallization:- is the fixed number of water molecules present in one formula unit of a salt.

Eg:

- i) washing soda:  $Na_2CO_3.10H_2O$
- ii) Plaster of paris :  $CaSO_4 \cdot \frac{1}{2}H_2O$
- iii) Gypsum: CaSO<sub>4</sub>.2H<sub>2</sub>O
- iv) Hydrated copper sulphate :  $CuSO_4.5H_2O$

23. Colour changes in Hydrated copper sulphate (CuSO<sub>4</sub>.5H<sub>2</sub>O):-

$$CuSO_4.5H_2O \xrightarrow{heat} CuSO_4 + 5H_2O$$

Blue White

Hydrated copper sulphate  $CuSO_4.5H_2O$  is Blue in colour.

Anhydrous copper sulphate CuSO<sub>4</sub> is white in colour.

24. Plaster of Paris (POP):-  $CuSO_4 \cdot \frac{1}{2}H_2O$ 

#### **Uses:**

- i) For making toys
- ii) Decoration materials
- iii) Making surfaces smooth.

### 3. METALS AND NON-METALS

- 1. Metals are known as electro positive elements because they can form positive ions by losing electrons
- 2. Nonmetals are known as electronegative elements because they can form negative ions by gaining electrons
- 3. The property of metals to exhibit a shining surface on rubbing their surface with sand paper is known as Metalic lustre.
- 4. The property of metals to be beaten or hammered into thin sheets is known as malleability.
- 5. Ductility is the property of metals to be drawn into thin wires.
- 6. Sonarity is The property of metals to produce a ringing sound on striking them with a hard surface.
- 7. Anodising is the process of forming a thick layer of aluminium oxide (corrosion resistant) by aluminium metal when exposed to air or by electrolysis.
- 8. **REACTIVITY SERIES or ACTIVITY SERIES:** Arrangement of different metals in the decreasing order of their reactivity.
- 9. When metals react with acids, liberates the hydrogen gas.

Ex:- 
$$Zn(s)$$
 +  $H_2SO_{4(aq)} \longrightarrow ZnSO_{4(aq)} + H_{2(g)}$ 

- 10. **IONIC COMPOUNDS:** Compounds formed by transfer of electrons from metal to non-metal and form ionic bond
- 11. Covalent compounds formed by sharing of one or more electrons between two or more atoms and form covalent bond
- 12. **MINERAL:** Naturally occurring state of metals in the form of elements and compounds in the earth's crust.

- 13. **ORE:** A mineral which contains highest percentage of metal from which a metal can be extracted easily, profitably without economic losses.
- 14. **GANGUE or MATRIX:** Unwanted or undesired impurities such as soil, silica, stones, clay etc .which are present along with ores and minerals.
- 15. **CALCINATION:** -The process of strong heating of a concentrated ore to form a metal oxide in the limited supply of air or oxygen.

$$\text{Ex:-ZnCO}_3$$
  $\_$   $\_$   $ZnO+CO_2$ 

16. **ROASTING:** - The process of strong heating of a concentrated ore to form a metal oxide in the excess amount of air or oxygen.

$$\text{Ex:-2ZnS+3O}_2 \xrightarrow{\Delta} 2\text{ZnO+CO}_2$$

- 17. **ALUMINO-THERMITE PROCESS:-** The process of strongly heating an oxide of moderate reactive metals like MnO<sub>2</sub> or Fe<sub>2</sub>O<sub>3</sub> etc by using Aluminium as a reducing agent.
- 18. **REFINING or PURIFICATION OF METALS:** The process of removing the impurities which are still left in the ores to obtain pure metals.
- 19. **Alloys:-** The mixture of two or more metals is called an Alloy. Examples:- Brass, Bronze and Amalgam
- 20. **Aqua regia:-** Aqua-regia is a freshly prepared mixture of 1 part of concentrated nitric acid and 3 parts of concentrated hydro chloric acid
- 21. Amalgam:- If one of the metals in an alloy is Mercury.
- 22. Brass:- An alloy of copper and Zinc(Cu+Zn)
- 23. Bronze:- An alloy of copper and Tin (Cu+Sn)
- 24. Solder:- An alloy of lead and Tin (Pb+Sn)
- 25. 22 Carat gold:- 22 parts of gold is alloyed with 2 parts of either coppper (or) silver.