SOL3070 Análisis de Datos Categóricos

Tarea corta 1, respuestas

Ponderación: 6% de la nota final del curso.

Notar:

- e corresponde al exponente natural
- ln es el logarítmo natural

Problema 1: Simplifica: ln(a) + ln(b)

Solución: $\ln(a) + \ln(b) = \ln(a \times b)$

Problema 2: Simplifica: $ln(c^4)$

Solución: Usando la propiedad de potencias de logaritmos: $\ln(c^4) = 4\ln(c)$

Problema 3: Si $3^x \times 3^{x-2} = 27$ encuentra (x).

Solución: 1. Combinando bases similares: $3^x \times 3^{x-2} = 3^{2x-2}$ 2. Escribiendo 27 en términos de base 3: $27 = 3^3$ 3. Igualando las potencias, tenemos: 2x - 2 = 3 4. Resolviendo para x: $2x = 5 \implies x = \frac{5}{2} = 2.5$

Problema 4: Simplifica: $e^x \times e^{-x}$

Solución: Usando las propiedades de los exponentes: $e^x \times e^{-x} = e^{x-x} = e^0 = 1$

Problema 5: Resuelve por (y): $y = e^{\ln(z)}$

Solución: Usando la propiedad de los logaritmos y exponentes como funciones inversas: y=z

Problema 6: Simplifica: ln(k) - ln(l)

Solución: Usando la propiedad de los logaritmos: $\ln(k) - \ln(l) = \ln\left(\frac{k}{l}\right)$

Problema 7: Resuelve por (x): $e^{2x} = 5$

Solución: 1. Tomando el logaritmo natural de ambos lados: $2x = \ln(5)$ 2. Resolviendo para x: $x = \frac{\ln(5)}{2}$

Problema 8: Simplifica: $\ln(m) + \ln(n) - \ln(o)$

Solución: Usando las propiedades de los logaritmos: $\ln(m) + \ln(n) - \ln(o) = \ln\left(\frac{m \times n}{o}\right)$

Problema 9: Resuelve por x: $y = e^{2x+1}$

Solución:

Para resolver la ecuación $(y = e^{2x+1})$ para (x), debemos despejar (x).

Dado: $y = e^{2x+1}$

Tomamos el logaritmo natural de ambos lados: $ln(y) = ln(e^{2x+1})$

Utilizando la propiedad del logaritmo ($\ln(e^a) = a$), obtenemos: $\ln(y) = 2x + 1$

Ahora, despejamos (x): $2x = \ln(y) - 1$ $x = \frac{\ln(y) - 1}{2}$

Por lo tanto, la solución es: $x = \frac{\ln(y)-1}{2}$

Problema 10: Determine la derivada de: $f(x) = 3x^4 - 5x^3 + 7x - 9$

Solución: Aplicando la regla de potencias: $f'(x) = 12x^3 - 15x^2 + 7$

Problema 11: Encuentre la derivada de: $g(x) = x^5 - 4x^4 + 3x^2 - x + 2$

Solución: Aplicando la regla de potencias: $g'(x) = 5x^4 - 16x^3 + 6x - 1$

Problema 12: Dada la función: $f(x) = 3 - 2x^2$

- 1. Grafica la función.
- 2. Identifica por inspección visual el valor de (x) donde la función alcanza su máximo.
- 3. Determina el valor de la derivada en ese punto.

Solución:

1. Para graficar la función utilizaremos el paquete ggplot2 en R:

```
library(ggplot2)

# Crear una secuencia de valores para x
x_vals <- seq(-2, 2, 0.01)

# Calcular los valores correspondientes de f(x) para cada x
f_vals <- 3 - 2*x_vals^2

# Crear un dataframe con x y f(x)
df <- data.frame(x = x_vals, f = f_vals)

# Graficar usando ggplot</pre>
```

```
ggplot(df, aes(x=x, y=f)) +
  geom_line() +
  labs(title="f(x) = 3 - 2x^2", x="x", y="f(x)") +
  theme_minimal()
```


- 2. Al inspeccionar visualmente la gráfica, se puede identificar que la función alcanza su valor máximo en (x = 0).
- 3. La derivada de (f(x)) es: f'(x) = -4x Evaluando en (x = 0): f'(0) = -4(0) = 0

Por lo tanto, el valor de la derivada en el punto donde la función alcanza su máximo es 0.