NMFS Method (2009-2023) of Columbia River System Adult Conversion Rates

Documentation of Methods, Access via DART, and Next Steps...

Blane Bellerud (NMFS, West Coast Regional Office, Portland OR),
Russell Scranton (Bonneville Power Administration),
Jennifer L. Gosselin, Matt Carter, Susannah Iltis (UW CBR DART),
Kate Self (Northwest Power and Conservation Council), and
Brian Maschhoff (Salmonetics)

Background

- Conversion Rates are reported (e.g., BiOp reporting) and and an important salmon metric in the region
- Method first developed by Charlie Paulsen in early 2000's (Paulsen Environmental Research)
- Method passed on to Blane Bellerud in 2008 (NMFS, West Coast Regional Office, Portland OR)
- UW CBR DART asked to help maintain the method in 2024, for continuation of the NMFS-Method of Conversion Rates

Outline

I. NMFS WRCO Methods of Conversion Rates

- Overview of methods
- Written documentation
- Historical data sets & estimates

II. Documentation, Data, and Estimates of Conversion Rates

- NMFS-Method (2009-2023)
- DART-Applied NMFS-Method (2009-present)
- Written documentation
- Data sets & estimates

III. Access to Estimates & Data Visualizations

NPCC SPI, DART, OneFishTwoFish

IV. Potential Next steps & Discussion

- Improvements related to data and analysis
- Regional collaboration

I. NMFS West Coast Regional Office Methods of Conversion Rates

Blane Bellerud

OBJECTIVES FOR ESTIMATING ADULT UPSTREAM SURVIVAL

- Adaptive Management: Detect changes in adult upstream survival
- BiOp Adult upstream survival standards monitoring
- CRS BiOp analysis and baseline
- More detailed explorations of survival and

The Columbia basin has unique advantages for estimating upstream survival

Series of high efficiency detectors (97-100%) along reaches of primary interest, BON to MCN, MCN to LGR, BON to LGR

PTAGIS database and Columbia Basin PIT tag network

Large numbers of known origin PIT tagged adults arriving at Bonneville Dam every year

Methodology used in adult survival estimates The "Binomial" method

#upstream / # downstream = conversion estimate

Conversion = survival x detection probability

Since ladder detectors are 97-100% efficient, conversion is a good estimate of survival

Key Assumption: All fish expected to arrive at upstream detector (no turnoff- use fish of known origin)

Databases used for Estimates

PTAGIS- data query, basic filtering, downloads

- Downloaded data entered into custom Access database, for further filtering, data assembly, and analysis
- Reporting by Excel Spreadsheet (legacy product)

Selecting data for analysis

- 1. Query PTAGIS for a list of detections at Bonneville for a particular year for the species/ run of interest
- 2. Eliminate duplicates (Bonneville has 4 detectors, also potential fallback/re-ascensions)

Applying filters to data list (Microsoft Access)

- 1. Filter by age (mini-Jacks, Jacks, and adults)- PTAGIS metadata: "First Year"-"Migration Year" = ocean age. Adults >1 ocean year
- 2. Assign fish to ESU: PTAGIS metadata "release site" x custom access crosstalk table
- 3. Identify juvenile migration history (IR, Transp) from DART transport history files.

Differences in Survival by age

Not corrected for harvest or straying

Conversion analysis

- Upload Bonneville tag list to PTAGIS, query for all observations in year they were observed at Bonneville
- Download list to Access database
- Using queries assemble a CRS trace for each PIT tag in Bonneville list (beware of duplicate observations at upstream dams). Compile traces into number of fish observed at each ladder
- Calculate reach survivals using binomial method

Sample Size considerations

Reporting ESU, DPS and Reaches

BON to LGR, BON to MCN, MCN to LGR

Snake River Spring/Summer Chinook (IR/TR)

Snake River Steelhead (IR/TR)

Snake River Fall Chinook (IR/TR)

Snake River Steelhead(IR/TR)

Snake River Sockeye

BON to MCN

Upper Columbia Spring Chinook
Upper Columbia Steelhead
Middle Columbia Steelhead

Reporting Spreadsheet

Snake River Spring Summer Chinook

SR Spring/Summer Chinook - Conversion Rate Estimates from Bonneville to McNary and Lower Granite Dams Red values represent changes from values used in the 2008 FCRPS BIOp.

Based on PIT tag detections of known origin adults (excluding one ocean jacks) that migrated inriver or were transported as juveniles.

Adjusted conversion rates are calculated as (# at MON or LGR / # at BON) / ([1-Harvest Rate]* [1-Stray Rate])

	Adults (wild a	nd hatche	ery) that r	nigrated i	nriver as	juveniles									
	PIT Tag Detections at BON and unstream redetections			Unadjusted Conversion Rate			Adjustment Estimates			Adjusted Conversion Rates			Adi. Conversion Rates		
Year	Number at BON	Redet. @ MCN*	Redet. @ LGR	BON to MCN (%)	MCN to LGR (%)	BON to LGR (%)	Zone 6 Harvest Rate**	MCN Harvest Rate'	Stray Rate	BON to MCN (%)	MCN to LGR (%)	BON to LGR (%)	BON to MCN (3rd root)	MCN to LGR (4th root)	BON to LGR (7th root)
2002*	1136	989	963	87.1%	84.8%	84.8%	11.4%	1.1%	2.0%	100.2%	98.4%	98.7%	100.1%	99.6%	99.8%
2003	913	774	749	84.8%	96.8%	82.0%	8.5%	0.7%	2.0%	94.6%	97.5%	92.2%	98.2%	99.4%	98.8%
2004	1774	1527	1481	86.1%	97.0%	83.5%	9.5%	1.6%	2.0%	97.1%	98.6%	95.7%	99.0%	99.6%	99.4%
2005	608	533	509	87.7%	95.5%	83.7%	6.8%	0.3%	2.0%	96.0%	95.8%	91.9%	98.6%	98.9%	98.8%
2006 2007	267 168	213 142	198	79.8% 84.5%	93.0%	74.2% 79.2%	7.2% 8.4%	0.8%	2.0%	87.7% 94.1%	93.7%	82.2% 89.1%	95.7% 98.0%	98.4%	97.2% 98.4%
BiOp Ava	100	146	100	85.0%	93.4%	81.2%	8.6%	0.9%	2.0%	94.9%	96.4%	91.6%	98.3%	99,1%	98.7%
2008	1115	829	794		95.8%	71.2%	14.7%	1.0%	2.0%	88.9%	96.7%	86.0%	96.2%	99.2%	97.9%
2009	916	711	659		92.7%	71.9%	7.7%	0.8%	2.0%	85.8%	93.4%	80.2%	95.0%	98.3%	96.9%
2010	840	634	587	75.5%	92.6%	69.9%	14.9%	1.6%	2.0%	90.5%	94.1%	85.2%	96.7%	98.5%	97.7%
2011	1874	1363	1259	72.7%	92.4%	67.2%	8.7%	2.8%	2.0%	81,3%	95.0%	77.2%	93.3%	98.7%	96.4%
2012	1691	1352	1279	80.0%	94.6%	75.6%	10.6%	3.2%	2.0%	91.3%	97.7%	89.2%	97.0%	99.4%	98.4%
2013	719	612	560	85.1%	91.5%	77.9%	6.1%	0.9%	2.0%	92.5%	92.3%	85.4%	97.4%	98.0%	97.8%
2014	1649	1221	1169		95.7%	70.9%	11.9%	1.8%	2.0%		97.5%	83.6%	95.0%	99.4%	97.5%
2015	2210	2042	1737	92.4%	85.1%	78.6%	12.4%	2.1%	2.0%		86.9%	93.5%	102.5%	96.5%	99.0%
2016	1143	894	836		93.5%	73.1%	9,9%	2.1%	2.0%		95.5%	84.6%	96.0%	98,9%	97.6%
2017	747	561	528	75.1%	94.1%	70.7%	7.5%		2.0%	82.8%	94.1%	78.0%	93.9%	98.5%	96.5%
2018 2019	525 432	387 336	350 307	73.7%	90.4%	66.7% 71.1%	10.2%	1.1%	2.0%	83.8%	91.4%	76.6% 78.7%	94.3%	97.8%	96.3%
2020	330	278	265	84.2%	95.3%	80.3%	5.9%	1.4%	2.0%	91.4%	96.7%	88.3%	97.0%	99.2%	98.2%
2021	418	337	322	80.6%	95.5%	77.0%	6.3%	1.5%	2.0%	87.8%	97.0%	85.2%	95.8%	99.2%	97.7%
2022	864	685	644	79.3%	94.0%	74.5%	10.2%	2.3%	2.0%	90.1%	96.2%	86.7%	96.6%	99.0%	98.0%
2023												*****			
	Adults (wild and hatchery) that s PIT Tag Detections at BON and upstream redetections			were transported as juveniles Unadjusted Conversion Rate			Adjustment Estimates			Adjusted Conversion Rates			Adj. Conversion Rates		
Year	Number at BON	Redet. @ MCN*	Redet. @ LGR	BON to MCN (%)	MCN to LGR (%)	BON to LGR (%)	Zone 6 Harvest Rate**	Above MCN Harvest Rate**	Stray Rate	BON to MCN (%)	MCN to LGR (%)	BON to LGR (%)	BON to MCN (3rd root)	MCN to LGR (4th root)	BON to LGR (7th root)
2002*	1142	901	863	78.9%	95.8%	75.6%	11.4%	1.1%	2.0%	90.8%	96.8%	87.9%	96.9%	99.2%	98.2%
2003	1196	952	903	79.6%	94.9%	75.5%	8.5%	0.7%	2.0%	88.8%	95.5%	84.8%	96.1%	98.9%	97.7%
2004	525	424	403		95.0%	76.8%	9.5%	1.6%	2.0%	91.1%	96.6%	88.0%	96.9%	99.1%	98.2%
2005	502	416	403		96.9%	80.3%	6.8%	0.3%	2.0%	90.7%	97.2%	88.2%	96.8%	99.3%	98.2%
2006	396	297	265	75.0%	89.2%	66.9%	7.2%	0.8%	2.0%	82.4%	89.9%	74.1%	93.8%	97.4%	95.8%
2007	416	341	314	82.0%	92.1%	75.5%	8.4%	1.0%	2.0%	91.3%	93.0%	84.9%	97.0%	98.2%	97.7%
BiOp Avq 2008	859	655	618	79.8%	94.0% 94.4%	75.1% 71.9%	8.6%	1.0%	2.0%	89.2%	94.9%	84.7% 86.9%	96.2% 97.0%	98.7%	97.6%
2009	357	287	270		94.1%	75.6%	14.7% 7.7%	0.9%	2.0%	91.2% 88.9%	95.3%	84.4%	96.1%	98.8%	98.0%
2010	3487	2696	2524	77.3%	93.6%	72.4%	14.9%	1.6%	2.0%		95.1%	88.2%	97.5%	98.8%	98.2%
2011	949	712	627	75.0%	88.1%	66.1%	8.7%	2.8%	2.0%	83.9%	90.6%	76.0%	94.3%	97.6%	96.1%
2012	453	350	298	77.3%	85.1%	65,8%	10.6%	3.2%	2.0%	88.2%	88.0%	77.6%	95.9%	96,8%	96.4%
2013	257	192	178	74.7%	92.7%	69,3%	6.1%	0.9%	2.0%	81.2%	93.6%	75,9%	93.3%	98.3%	96.1%
2014	409	291	276	71.1%	94.8%	67.5%	11.9%	1.8%	2.0%		96.6%	79.6%	93.8%	99.1%	96.8%
	668	462	410	69.2%	88.7%	61.4%	12.4%	2.1%	2.0%	80.6%	90.6%	73.0%	93.0%	97.6%	95.6%
2015			04.0	70.00	92.6%	73.7%	0.000	2.1%	2.00	90.1%	94.6%	85.3%	96.6%	98.6%	97.7%
2016	289	230	213				9.9%		2.0%						
2016 2017	218	176	160	80.7%	90.9%	73.4%	7.5%	0.0%	2.0%	89.1%	90.9%	81.0%	96.2%	97.6%	97.0%
2016 2017 2018	218 228	176 160	160 149	80.7% 70.2%	90.9%	73.4% 65.4%	7.5% 10.2%	0.0%	2.0%	89.1% 79.7%	90.9%	81.0% 75.1%	96.2% 92.7%	97.6% 98.5%	97.0% 96.0%
2016 2017 2018 2019	218 228 78	176 160 64	160 149 59	80.7% 70.2% 82.1%	90.9% 93.1% 92.2%	73.4% 65.4% 75.6%	7.5% 10.2% 6.6%	0.0% 1.1% 1.3%	2.0% 2.0% 2.0%	89.1% 79.7% 84.7%	90.9% 94.2% 92.8%	81.0% 75.1% 78.7%	96.2% 92.7% 94.6%	97.6% 98.5% 98.2%	97.0% 96.0% 96.6%
2016 2017 2018	218 228	176 160	160 149	80.7% 70.2% 82.1% 75.5%	90.9%	73.4% 65.4%	7.5% 10.2%	0.0%	2.0%	89.1% 79.7%	90.9%	81.0% 75.1%	96.2% 92.7% 94.6% 97.0%	97.6% 98.5%	97.0% 96.0%

2.3%

2.0%

96.1% 78.6% 10.2%

99.0%

7/23/2008

CORRECTIONS

- Applied to raw survival/conversion estimate to account for known causes of mortality
- Harvest- Harvest % for BON to MCN and MCN to LGR reaches from TAC annual reports
- Straying- Standard percentage applied from study: M.L. Keefer, C.A. Peery, J. Firehammer, and M.L. Moser. 2005 Straying Rates of known-origin adult Chinook salmon and steelhead within the Columbia River basin, 2000-2003. Technical Report 2005-5.

Other issues

- A significant number of SR Steelhead do not cross LGR until the spring after the year they were observed at LGR (assigned spawn year - 1)
- Before 2010 and 2018-2020 insufficient PIT tagged SR Sockeye were observed to make a reliable estimate.
 UC Sockeye were used as surrogates

Limitations

- Survival estimate is an average for the entire migration period of the ESU/DPS
- Is the sample representative of the ESU/DPS? Some populations or portions of the run may be under/over represented
- Not enough tags to get a reliable estimate for small populations (use surrogates?)
- No plan to assure all groups of interest are tagged at rates to provide reliable adult survival estimates (we take what shows up)

Other methodologies/options

- Cormak, Jolly, Seber (CJS) methodology (currently used for juvenile estimates)
- UW CBR DART Conversion Rate tool
- PITTag Pro and SURPH software (UW CBR)

II. Documentation, Data, and Estimates of Conversion Rates:

1) NMFS-Method (2009-2023)

2) DART-Applied NMFS-Method (2009-present)

DART-Applied NMFS-Method

https://www.cbr.washington.edu/dart/query/dart_nmfs_conrate

GitHub repository https://github.com/Columbia-Basin-Research-CBR/ConvRateTools

Access to the NMFS Method & documentation, incl. historical (2009-2023) data, estimates, original files

https://github.com/Columbia-Basin-Research-CBR/ConvRateTools/tree/main/Methods/NMFS-Method

DART-Applied NMFS-Method GitHub repository

https://github.com/Columbia-Basin-Research-CBR/ConvRateTools/tree/main/Methods/DART-Applied%20NMFS-Method

DART-Applied NMFS-Method

- Written documentation of steps of replicating NMFS-Method
 - includes references to specific tables and reports for what rates are used
- Some updates to the method:
 - Incorporating the DART ESU filter
 - (DART Transportation filter already used in NMFS/Blane's Method)
 - Drawing directly from TAC reports' harvest estimates
 - Some slight differences in PIT data and harvest rates (data used in each year vs. latest data currently)
- Versioning of method through GitHub repo & DART documentation

III. Access to Conversion Rates Estimates & Data Visualizations (incl. work in progress & to be developed)

Access to Estimates & Data Visualizations

- Already planned and in development:
 - Northwest Power and Conservation Council
 Strategy Performance Indicators

- In development and planning on how to integrate with existing tools:
 - DART
 - OneFishTwoFish

Strategy Performance Indicators (SPIs)

Adult Reach Survival

Snake River

- Spring/Summer Chinook
- Steelhead
- Fall Chinook
- · Sockeye (in development)

Upper Columbia

- Spring Chinook
- Steelhead

Middle Columbia

Steelhead

Ability to explore data, export charts, and download tables

Program Tracker

Check out the Council's Program Tracker here! •

DART Conversion Rate query interface

https://www.cbr.washington.edu/dart/query/pitadult conrate

Data attribution

Select Reach, Species, Run, Rear type, etc.

Exclude/Include: Upstream detections

Exclude/Include:
Chinook mini-jacks
Release sites below project
Transported juvenile fish

Example of DART Conversion Rates graphical output

DART Conversion Rates outputs include data tables

(Example screenshots)

Data table for release site, RKM, date, sample size, etc.:

Observation Year	Release Site	Release KM	SpRRT	Bonneville Weighted Avg Arrival Date	Bonneville Median Arrival Date	Bonneville Observations	Lower Granite Observations	Conversion Rate	Additional Detection Types	Special Conditions	View
2024 *	BEARVC	522.303.319.170.009	11W	05/27	05/28	3	3	1.00			Detection Details
2024 *	BIG2C	522.303.319.029.059	11W	05/27	05/27	1	0	0.00			Detection Details
2024 *	BIG2CT	522.303.319.029.011	11W	05/31	05/31	17	12	0.71			Detection Details
2024 *	CAPEHC	522.303.319.170.010.002	11W	05/11	05/11	1	1	1.00			Detection Details
2024 *	CATHEC	522.271.232.049	11W	05/06	05/07	7	7	1.00			Detection .

Detection Details:

DART Conversion Rate query tool includes comparisons:

Species, Run, Rear Type Comparison

Reach Comparison

Transport Comparison

Thus lots of customized user selections for access to data, visualizations, and comparison in DART Conversion Rates query

OneFishTwoFish

Analysis and Visualization Concepts

- Summary Performance (Zoom Out)
 - Adult Salmonid Reach Conversion/Loss Rates
 - https://www.onefishtwofish.net/viz/ConversionRate3.html
 - Annual conversion rate summary comparisons across reaches and years
 - Data from DART
- Detailed Fish-Level Analysis (Zoom In)
 - Adult Salmonid FCRPS Reach Conversion and Delay
 - https://salmonetics.shinyapps.io/ConversionRate/
 - Intra-annual analysis of conversion rate and delay at fish level
 - Correlations with environmental covariates (e.g. flow, spill, temperature)
 - Data from PTAGIS

OneFishTwoFish

Adult Salmonid Reach Conversion/Loss Rates

Example: annual conversion rate relative to mean

Example: map display of reach conversion rates

OneFishTwoFish

Adult Salmonid FCRPS Reach Conversion and Delay

Example:

- conversion rate seasonal variation
- spill

Example:

- fate of individual fish (conversion, transit time)
- summary statistics for selected time period

IV. Possible Next Steps...

Data and Methods

Regional Collaboration

Possible next steps: Refinement of methods & tools

• Data

- Update stray rates to more recent years' estimates from reports/papers
- Breakdown ESU/DPS estimates: population, rear-type, passage-type, smaller reaches, etc.
- Compile covariate data: appropriately matched to salmon data and with mechanisms

Analysis

- Apply a CJS model instead of binomial method
- Include **covariates** in conversion rate models
- Incorporate any updated models of harvest rates
- Refine models of stray rates for better estimates

Data visualization tools

- DART
- OneFishTwoFish

Next steps depend on feedback from action agencies and regional comanagers

Possible next steps: regional collaboration

- Respond to FPOM's interest in conversion rates.
 - Identify who to respond to from FPOM
 - Learn about what can be improved in current methods

- Additional meetings or forums for discussions
 - Identify who could coordinate these meetings and process
 - Learn about regional needs related to conversion rates and integrated online tools for centrally located resources

Aiming to assist Action Agencies and regional, State, and Tribal co-managers

Acknowledgments

- PTAGIS for making the data available
- Everyone conducting PIT tagging operations in Columbia River Basin

- Charlie Paulsen for developing and sharing the original method
- Northwest Fisheries Science Center for assisting Blane Bellerud
- Melanie Chen (CBR) for assistance with documentation

- Action agencies (USACE & BPA) and NOAA for your interest and input
- BPA for funding UW CBR DART & OneFishTwoFish