河海大学 2006~2007 学年第一学期

2004级《概率论与数理统计》试卷(A)(含重修)

2006年12月

专业	<u> </u>		姓名		学号		成绩_		
题	뭉	-	=	三.	四	五	六	+	成绩
得	分								
本	题得:	分	评阅人						
一、填空题(每空3分,共15分)									
	1. □	.知 P(Ā)	=0.2, P(1)	B) = 0.4, 1	$P(A\overline{\mathbf{B}}) = 0$	0.5,则 P	$P(B A\cup \overline{B})$;)=	o
	2. 设	总体X~	$\sim N(\mu, \sigma^2)$), $\sigma^2 \square$.知,检弘	λ 假设 H_0	$: \mu = \mu_0$; $H_1: \mu$	$>\mu_0$,
x_1, I	(x_n)	是 组样	本观察值	[,显著性	生水平为 o	ι,则拒维	色域为_		•
•	3. 设	随机变量	t X 与 Y	相互独立	$\mathcal{L}, \ \mathrm{D}(\mathrm{X}) =$	=3, D(Y)=6,贝	IJD(2X—	Y)
=_	=								
4. 三人独立地去破译一个密码,他们能够破译的概率分别是 0.55、0.60、									
0.50,则此密码被破译的概率是。									
5. 设 X 与 Y 是二个相互独立的随机变量,且 X 在[0,2]上服从均匀分布,									
Y 服从均值为 $1/2$ 的指数分布,则 $E(XY) =$ 。									
本	题得:	分	评阅人						
			·	•					
Ξ,	单项	页选择题	(每小题	3 分, 共	(15分)				
	1. 若	事件 A、	B互不材	月容, 月	P(A)>0,	P(B)>0,	则下列	结论正确	的是:
	(A) P(B	A)=0;		(B)	P(AB)=	P(A)P(E	3);	
	(C) P(B	A) >0 ;		(D)	P(A B)=	=P(A).		
	2. 若	P(X=k)	$=c\lambda^k e^{-\lambda}$	/k!, (k=	0, 2, 4,)是随	机变量:	X 的分布	律,则

λ, c 定满足:

- (A) $\lambda > 0$; (B) c > 0; (C) $c \lambda > 0$; (D) c > 0, $\exists \lambda > 0$.
- 3. 设随机变量 X 与 Y 独立同分布,记 U=X-Y, V=X+Y,则随机变 量U与V必然
 - (A) 不相互独立;
- (B) 相互独立;
- (C) 不相关;
- (D) 相关。

本页得分

4. 设 X~N(1, 3²), X₁, X₂, ..., X₉是 X 的 个样本,

(A)
$$\frac{\overline{X}-1}{3} \sim N(0, 1)$$
;

(A)
$$\frac{\overline{X}-1}{3} \sim N(0, 1);$$
 (B) $\frac{\overline{X}-1}{1} \sim N(0, 1);$

(C)
$$\frac{\overline{X}-1}{9} \sim N(0, 1)$$

(C)
$$\frac{\overline{X}-1}{9} \sim N(0, 1);$$
 (D) $\frac{\overline{X}-1}{\sqrt{3}} \sim N(0, 1);$

分布是两总体相互独立的样本,则有

(A)
$$\overline{X} - \overline{Y} \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$
;

(B)
$$\overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2});$$

(C)
$$\overline{\mathbf{X}} - \overline{\mathbf{Y}} \sim \mathrm{N}(\mu_1 - \mu_2, \frac{\sigma_1^2}{\mathbf{n}_1} - \frac{\sigma_2^2}{\mathbf{n}_2});$$

(D)
$$\overline{\mathbf{X}} - \overline{\mathbf{Y}} \sim N(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}).$$

评阅人 本题得分

- 三、(本题满分12分)有甲乙两个盒子,甲盒中装有8只自球和2只黑球, 乙盒中装有3只白球和4只黑球。今从甲盒中任取3只球放入乙盒中,摇匀 后再从乙盒中任取一只球。
- (1) 求取出的这只球是黑球的概率;
- (2) 若取出的这只球是黑球, 求从甲盒取出放入乙盒的 3 只球中, 恰好有一 只黑球的概率。

	l	
	上迷園人	
	VI 1/41/	

四、(本题满分 10 分) 部件包括 10 部分,每部分的长度是一个正态随机变量,他们相互独立,且服从同一分布,其数学期望为 2mm,均方差为 0.05mm。规定总长度为(20±0.1)mm 时产品合格,试求产品合格的概率(相关值请见卷末附录)。

本页得分

本题得分	泮阅人
------	------------

五、(本题满分 20 分)设二维连续型随机变量(X,Y)的密度函数为:

$$f(x, y) = \begin{cases} A, & 1 - y \le x \le 1, \ 0 \le y \le 1 \\ 0, & 其它 \end{cases}$$

其中 A 为常数。求: (1) A 的值; (2) 关于 X 和 Y 的边缘密度函数 $f_{X}(x)$ 和

 $f_Y(y)$; (3) X与 Y的协方差 Cov(X, Y); (4) Z=X+Y的概率密度函数 $f_Z(z)$ 。

本题得分 评阅人

六. (本题满分 15 分) 设总体 X 的概率函数为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{\frac{x-\mu}{\theta}}, & x > \mu \\ 0, & x \le \mu \end{cases}$$

其中 μ 己知, $\theta > 0$ 为未知参数, X_1 ,…, X_n 为来自总体X的一个样本。

- (1) 试求未知参数 θ 的矩估计量 $\hat{\theta}_{\mathrm{M}}$ 和极大似然估计量 $\hat{\theta}_{\mathrm{MLE}}$;
- (2) 讨论未知参数heta 的极大似然估计量 $\hat{ heta}_{ ext{MLE}}$ 的无偏性,并说明理由。

本题得分	评阅人	
------	-----	--

七、(本题满分 13 分) 用机器包装精盐,假设每袋盐的净重服从正态分布,规定每袋标准重量为 500g. 某天开工后,为检查机器工作是否正常,从装好的各袋中随机地抽取 9 袋,测得其净重(单位: g)为:

497, 507, 510, 475, 484, 488, 524, 491, 515

- (1) 问这天包装机工作是否正常? (α=0.05)
- (2) 若已知均方差 $\sigma=16.0$,试求出该总体均值 μ 的置信度为 0.95 的置信区间。

(相关值请见卷末附录)

附录: $1 \times N(0,1)$ 的部分分布函数值 $\Phi(z)$

Z	0.63	1.25	1.645	1.96
$\Phi(z)$	0.7357	0.8944	0.950	0.975

2、部分 t 分布表 $P\{T > t_{\alpha}(n)\} = \alpha$

$n \alpha$	0.05	0.025
8	1.8695	2.3060
9	1.8331	2,2622