Modèles des langages de programmation Domaines, catégories, jeux

Programme de cette seconde séance:

Modèle ensembliste du lambda-calcul; Catégories cartésiennes fermées

Synopsis

- 1 the simply-typed λ -calculus,
- 2 the set-theoretic model of the λ -calculus,
- 3 categories and functors
- 4 cartesian categories
- 5 cartesian closed categories
- 6 interprétation of the simply-typed λ -calculus in a ccc

The simply-typed λ -calculus

The pure λ -calculus

Terms
$$M ::= x \mid MN \mid \lambda M$$

The β -reduction:

$$(\lambda x.M) N \longrightarrow M[x := N]$$

The η -expansion:

$$M \longrightarrow \lambda x. (M x)$$

Remark: every term is considered up to renaming \equiv_{α} of the bound variables, typically:

$$\lambda x.\lambda y.x \equiv_{\alpha} \lambda z.\lambda y.z$$

The simply-typed λ -calculus

The simple types A, B are constructed by the grammar:

$$A,B ::= \alpha \mid A \Rightarrow B.$$

A typing context Γ is a finite sequence

$$\Gamma = (x_1 : A_1, ..., x_n : A_n)$$

where each x_i is a variable and each A_i is a simple type.

A sequent is a triple

$$x_1: A_1, ..., x_n: A_n \vdash P: B$$

where

$$x_1 : A_1, ..., x_n : A_n$$

is a typing context, P is a λ -term and B is a simple type.

The simply-typed λ -calculus

Variable
$$\overline{x:A \vdash x:A}$$
Abstraction
$$\frac{\Gamma, x:A \vdash P:B}{\Gamma \vdash \lambda x.P:A \Rightarrow B}$$
Application
$$\frac{\Gamma \vdash P:A \Rightarrow B}{\Gamma, \Delta \vdash PQ:B}$$
Weakening
$$\frac{\Gamma \vdash P:B}{\Gamma, x:A \vdash P:B}$$
Contraction
$$\frac{\Gamma, x:A, y:A \vdash P:B}{\Gamma, x:A, y:B,\Delta \vdash P:C}$$
Exchange
$$\frac{\Gamma, x:A, y:B,\Delta \vdash P:C}{\Gamma, y:B, x:A,\Delta \vdash P:C}$$

Subject reduction

A λ -term P is simply typed when there exists a sequent

$$\Gamma \vdash P : A$$

which may be obtained by a derivation tree.

One establishes that the set of simply typed λ -terms is closed under β -réduction:

Subject Reduction:

If $\Gamma \vdash P : A$ and $P \longrightarrow_{\beta} Q$, then $\Gamma \vdash Q : A$.

The set-theoretic interpretation of the λ -calculus

Interprétation ensembliste

To each atomic type α is associated a set X_{α}

Then, one extends the interpretation to every type:

$$\llbracket \alpha \rrbracket = X_{\alpha} \qquad \llbracket A \Rightarrow B \rrbracket = \llbracket B \rrbracket^{\llbracket A \rrbracket} = \mathbf{Set} (\llbracket A \rrbracket, \llbracket B \rrbracket)$$

A sequent $x_1:A_1,...,x_n:A_n \vdash M:B$

is interpreted as a function $[A_1] \times \cdots \times [A_n] \longrightarrow [B]$

Soundness theorem

Theorem.

The interpretation provides an invariant of λ -terms modulo β and η .

$$ightharpoonup$$
 if $\Gamma \vdash M : A \Rightarrow B$ then

$$\llbracket \Gamma \vdash (\lambda x.Mx) : A \Rightarrow B \rrbracket = \llbracket \Gamma \vdash M : A \Rightarrow B \rrbracket$$

Categories and functors

Categories

A category C is given by

- [0] a class of objects
- [1] a set Hom(A, B) of morphisms

$$f : A \longrightarrow B$$

for every pair of objects (A, B)

- [2] a composition law \circ : $\mathbf{Hom}(B, C) \times \mathbf{Hom}(A, B) \longrightarrow \mathbf{Hom}(A, C)$
- [2] an identity morphism

$$id_A : A \longrightarrow A$$

for every object A,

Categories

satisfying the following properties:

[3] the composition law • is associative:

$$\forall f \in \mathbf{Hom}(A, B)$$

$$\forall g \in \mathbf{Hom}(B, C)$$

$$\forall h \in \mathbf{Hom}(C, D)$$

$$f \circ (g \circ h) = (f \circ g) \circ h$$

[3] the morphisms *id* are neutral elements

$$\forall f \in \mathbf{Hom}(A, B)$$
 $f \circ id_A = f = id_B \circ f$

Examples

- 1. the category **Set** of sets and functions
- 2. the category Ord of partial orders and monotone functions
- 3. the category **Dom** of domains and continuous functions
- 4. the category Coh of coherence spaces and linear maps
- 5. every partial order
- 6. every monoid

Opposite category

The opposite of a category

C

is the category noted

Cop

whose morphisms

$$f : A \longrightarrow B$$

are defined as the morphisms

$$f : B \longrightarrow A$$

of the original category C.

Product category

The product

$$A \times B$$

of two categories

$$\mathcal{A}$$
 \mathcal{B}

is the category

- \triangleright whose objects are the pairs (A,B) of objects of $\mathcal A$ and $\mathcal B$,
- whose morphisms

$$(A,B) \longrightarrow (A',B')$$

are the pairs of morphisms

$$f: A \longrightarrow A'$$
 $g: B \longrightarrow B'$

Product category

with composition and identities defined as expected:

$$(A,B) \xrightarrow{id_{(A,B)}} (A,B) = (A,B) \xrightarrow{(id_A,id_B)} (A,B)$$

$$(A,B) \xrightarrow{(f,g)} (A',B') \xrightarrow{(f',g')} (A'',B'') = (A,B) \xrightarrow{(f'\circ f,g'\circ g)} (A'',B'')$$

Functors

A functor between categories

$$F : \mathcal{C} \longrightarrow \mathcal{D}$$

is defined as the following data:

- [0] an object FA of $\mathfrak D$ for every object A of $\mathfrak C$,
- [1] a function

$$F_{A,B}$$
: $\mathbf{Hom}_{\mathbb{C}}(A,B) \longrightarrow \mathbf{Hom}_{\mathbb{D}}(FA,FB)$

for every pair of objects (A, B) of the category \mathbb{C} .

Functors

One requires moreover

[2] that F preserves composition

$$FA \xrightarrow{Ff} FB \xrightarrow{Fg} FC = FA \xrightarrow{F(g \circ f)} FC$$

[2] that F preserves the identities

$$FA \xrightarrow{Fid_A} FA = FA \xrightarrow{id_{FA}} FA$$

Illustration [orders]

Every ordered set

$$(X, \leq)$$

defines a category

$$[X, \leq]$$

- \triangleright whose objects are the elements of X
- whose hom-sets are defined as

$$\mathbf{Hom}(x,y) = \begin{cases} & \{*\} & \text{if } x \leq y \\ & \emptyset & \text{otherwise} \end{cases}$$

In this category, there exists at most one map between two objects

Illustration [orders]

Exercise: given two ordered sets

$$(X, \leq)$$
 (Y, \leq)

a functor

$$F : [X, \leq] \longrightarrow [Y, \leq]$$

is the same thing as a monotonic function

$$F : (X, \leq) \longrightarrow (Y, \leq)$$

between the underlying ordered sets.

Illustration [monoids]

A monoid (M, \cdot, e) is a set M equipped with a binary operation

$$\cdot : M \times M \longrightarrow M$$

and a neutral element

$$e : \{*\} \longrightarrow M$$

satisfying the two properties below:

Associativity law
$$\forall x, y, z \in M$$
, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

Unit law
$$\forall x \in M$$
, $x \cdot e = x = e \cdot x$.

Illustration [monoids]

Key observation: there is a one-to-one relationship

$$(M, \cdot, e) \mapsto \Sigma(M, \cdot, e)$$

between

- monoids
- categories with one object *

obtained by defining $\Sigma(M,\cdot,e)$ as the category with unique hom-set

$$\Sigma(M,\cdot,e)\ (*,*) \quad = \quad M$$

and composition law and unit defined as

$$g \circ f = g \cdot f$$
 $id_* = e$

Illustration [monoids]

Key observation: given two monoids

$$(M, \cdot, e)$$
 (N, \bullet, u)

a functor

$$F : \Sigma(M, \cdot, e) \longrightarrow \Sigma(N, \bullet, u)$$

is the same thing as a homomorphism

$$f: (M, \cdot, e) \longrightarrow (N, \bullet, u)$$

between the underlying monoids.

Recall that a homomorphism is a function f such that

$$\forall x, y \in M, \quad f(x \cdot y) = f(x) \bullet f(y) \qquad f(e) = u$$

Transformations

A transformation

$$\theta : F \xrightarrow{\cdot} G$$

between two functors

$$F,G: \mathcal{A} \longrightarrow \mathcal{B}$$

is a family of morphisms

$$(\theta_A : FA \longrightarrow GA)_{A \in Obj(A)}$$

of the category ${\mathfrak B}$ indexed by the objects of the category ${\mathcal A}$.

Natural transformations

A transformation $\theta : F \Rightarrow G : A \longrightarrow B$

is natural when the diagram

commutes for every morphism $f: A \longrightarrow B$.

Isomorphism

In a category C, a morphism

$$f : A \longrightarrow B$$

is called an isomorphism when there exists a morphism

$$g : B \longrightarrow A$$

satisfying

$$g \circ f = id_A$$
 et $f \circ g = id_B$.

Exercise. Show that $g \circ f : A \longrightarrow C$ is an isomorphism when $f : A \longrightarrow B$ and $g : B \longrightarrow C$ are isomorphisms.

Exercise. Show that every functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ transports an isomorphism of \mathcal{C} into an isomorphism of \mathcal{D} .

Bifunctors

A bifunctor F from \mathcal{C} and \mathcal{D} to \mathcal{E} is given by:

- ho a functor F(A,-) : $\mathcal{D}\longrightarrow \mathcal{E}$ for every object A of the category \mathcal{C}

$$F(A,B) \xrightarrow{F(A,g)} F(A,B')$$

$$F(f,B) \qquad \qquad |F(f,B')|$$

$$F(A',B) \xrightarrow{F(A',g)} F(A',B')$$

commutes for all morphisms $f:A\longrightarrow A'$ in \mathfrak{C} and $g:B\longrightarrow B'$ in \mathfrak{D} .

Cartesian categories

Products

The product of two objects A and B in a category \mathcal{C} is an object $A \times B$ equipped with two morphisms

$$\pi_1: A \times B \longrightarrow A \qquad \qquad \pi_2: A \times B \longrightarrow B$$

such that for every diagram

there exists a unique morphism $h: X \longrightarrow A \times B$ making the diagram

commute.

Illustrations

- 1. The cartesian product in the category Set,
- 2. The lub $a \wedge b$ of two elements a and b in an ordered set (X, \leq) ,
- 3. The cartesian product in the category **Dom**,

Terminal object

An object 1 is terminal in a category \mathcal{C} when $\mathbf{Hom}(A, \mathbf{1})$ is a singleton for all objects A.

One may consider $\bf 1$ as the nullary product in $\cal C$.

Example 1. the singleton {*} in the categories **Set** and **Dom**,

Example 2. the maximum of an ordered set (X, \leq)

Cartesian category

A cartesian category is a category @ equipped with a product

 $A \times B$

for all pairs A, B of objects, and of a terminal object

1

Cartesian categories

In every cartesian category, one finds

- \triangleright weakening maps $\epsilon_A:A\longrightarrow \mathbf{1}$,
- \triangleright diagonal maps $\delta_A:A\longrightarrow A\times A$ obtained as

ightharpoonup symmetry maps $\gamma_{A,B}:A\times B\longrightarrow B\times A$ obtained as

Exercise: Show that $(-\times -)$ defines a bifunctor $\mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$.

Cartesian closed categories

First definition

Ccc

A cartesian closed category is a cartesian category

$$(\mathcal{C}, \times, 1)$$

together with the following data for all objects A and B:

- \triangleright of an object $A \Rightarrow B$
- \triangleright of a morphism $eval_{A,B}: A \times (A \Rightarrow B) \longrightarrow B$

such that for every object X and morphism

$$f: A \times X \longrightarrow B$$

there exists a unique morphism $h: X \longrightarrow A \Rightarrow B$ making the diagram

commute.

Cartesian closed category

Second definition

Adjunction

An adjunction is a triple consisting of two functors

$$L: \mathcal{A} \longrightarrow \mathcal{B}$$
 $R: \mathcal{B} \longrightarrow \mathcal{A}$

and a family of bijections

$$\phi_{A,B}$$
: $\mathbf{Hom}_{\mathcal{B}}(LA,B) \cong \mathbf{Hom}_{\mathcal{A}}(A,RB)$

natural in A and B, for all pairs of objects A, B of A and B.

$$\frac{LA \xrightarrow{\mathcal{B}} B}{A \xrightarrow{\mathcal{A}} RB} \qquad \phi_{A,B}$$

One writes $L \dashv R$ and one says that L is left adjoint to R.

Example: the free vector space

where

A = Set: the category of sets and functions

 $\mathcal{B} = \mathbf{Vect}$: the category of vector spaces on a field k

R: the « forgetful » functor $V \mapsto U(V)$

: the « free vector space » functor $X \mapsto kX$

$$kX := \left\{ \sum_{x \in X} \lambda_x \ x \mid \lambda_x \in k \text{ null almost everywhere.} \right\}$$

Illustration: the free monoid

where

A = Set: the category of sets and functions

 $\mathcal{B} = \mathbf{Mon}$: the category of monoids and homomorphisms,

R: the « forgetful » functor $M \mapsto U(M)$. L: the « free monoid » functor $A \mapsto A^*$.

$$A := \prod_{n \in \mathbb{N}} A^n$$

What does natural bijection ϕ exactly mean?

By ϕ natural, one means that the two families of sets

$$\mathbf{Hom}_{\mathcal{B}}(LA, B)$$
 $\mathbf{Hom}_{\mathcal{A}}(A, RB)$

define functors

$$\mathbf{Hom}_{\mathcal{B}}(L-,-) : \mathcal{A}^{op} \times \mathcal{B} \longrightarrow \mathbf{Set}$$

$$\mathbf{Hom}_{\mathcal{A}}(-,R-)$$
 : $\mathcal{A}^{op} \times \mathcal{B} \longrightarrow \mathbf{Set}$

and that the family of bijections ϕ defines a **natural transformation**

$$\phi : \mathbf{Hom}_{\mathcal{B}}(L-,-) \cong \mathbf{Hom}_{\mathcal{A}}(-,R-) : \mathcal{A}^{op} \times \mathcal{B} \longrightarrow \mathbf{Set}$$

between them.

What does natural bijection ϕ exactly mean?

Natural in A and B thus means that every commutative diagram

is transformed into a commutative diagram

Cartesian exponentiation

Consider an object A in a cartesian category $(\mathcal{C}, \times, \mathbf{1})$.

A cartesian exponentiation of A is a pair consisting of a functor

$$(A \Rightarrow -) : \mathcal{C} \longrightarrow \mathcal{C}$$

and of a family of bijections

$$\phi_{A,B,C}$$
 : $\mathbf{Hom}(A \times B,C) \longrightarrow \mathbf{Hom}(B,A \Rightarrow C)$

natural in B and C.

In other words, it is an **adjunction** between the functors

$$A \times - + A \Rightarrow -$$

What natural bijection means in that case

Naturality in B and C means that the family of bijections

$$\phi_{A,B,C}$$
 : $\mathbf{Hom}(A \times B,C) \longrightarrow \mathbf{Hom}(B,A \Rightarrow C)$

transforms every commutative diagram

into a commutative diagram

Cartesian closed category

Definition.

A cartesian closed category (ccc) is a cartesian category

$$(\mathcal{C}, \times, 1)$$

equipped with a cartesian exponentation

$$\frac{A \times B \longrightarrow C}{B \longrightarrow A \Longrightarrow C} \quad \phi_{A,B,C}$$

for every object A of the category.

Parameter theorem

We have seen that the cartesian product defines a bifoncteur

$$A, B \mapsto A \times B : \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$$

in every cartesian category. In the same way,

Parameter theorem (MacLane)

The family of cartesian exponentiations

$$(A \Rightarrow -)_A : \mathcal{C} \longrightarrow \mathcal{C}$$

defines a unique bifunctor

$$A, B \mapsto A \Rightarrow B : \mathbb{C}^{op} \times \mathbb{C} \longrightarrow \mathbb{C}$$

such that the bijections $\phi_{A,B,C}$ are natural in A,B,C.

Parameter theorem

Here, natural in A, B, C means that the family of bijections

$$(\phi_{A,B,C})_{A,B,C}$$
 : $\mathbf{Hom}(A \times B,C) \longrightarrow \mathbf{Hom}(B,A \Rightarrow C)$

transforms every commutative diagram

in a commutative diagram:

$$B \xrightarrow{\phi_{A,B,C}(g)} A \Rightarrow C$$

$$h_B \downarrow h_A \Rightarrow h_C$$

$$B' \xrightarrow{\phi_{A',B',C'}(f)} A' \Rightarrow C'$$

Interpretation of the simply-typed λ -calculus in a CCC

The simply-typed λ -calculus

The simple types A, B are constructed by the grammar:

$$A,B ::= \alpha \mid A \Rightarrow B.$$

A typing context Γ is a finite sequence

$$\Gamma = (x_1 : A_1, ..., x_n : A_n)$$

where each x_i is a variable and each A_i is a simple type.

A sequent is a triple

$$x_1: A_1, ..., x_n: A_n \vdash P: B$$

where

$$x_1 : A_1, ..., x_n : A_n$$

is a typing context, P is a λ -term and B is a simple type.

The simply-typed λ -calculus

Variable
$$\overline{x:A \vdash x:A}$$
Abstraction
$$\frac{\Gamma, x:A \vdash P:B}{\Gamma \vdash \lambda x.P:A \Rightarrow B}$$
Application
$$\frac{\Gamma \vdash P:A \Rightarrow B}{\Gamma, \Delta \vdash PQ:B}$$
Weakening
$$\frac{\Gamma \vdash P:B}{\Gamma, x:A \vdash P:B}$$
Contraction
$$\frac{\Gamma, x:A, y:A \vdash P:B}{\Gamma, x:A, y:A \vdash P:B}$$
Exchange
$$\frac{\Gamma, x:A, y:B, \Delta \vdash P:C}{\Gamma, y:B, x:A, \Delta \vdash P:C}$$

Interpretation of the λ -calculus

Step 1. We suppose given a function

$$\xi : \alpha \mapsto \xi(\alpha)$$

which associates an object $\xi(\alpha)$ to every type variable α .

Step 2. Every type A is then interpreted as an object

$$\llbracket A \rrbracket$$

of the cartesian closed category by structural induction:

$$[\![\alpha]\!] = \xi(\alpha)$$

$$[\![A \times B]\!] = [\![A]\!] \times [\![B]\!]$$

$$[\![A \Rightarrow B]\!] = [\![A]\!] \Rightarrow [\![B]\!]$$

Interpretation of the λ -calculus

Step 3. Every sequent

$$x_1:A_1,\ldots,x_n:A_n \vdash t:B$$

is interpreted as a morphism

$$[t]$$
 : $[A_1]$ $\times \cdots \times [A_n]$ \longrightarrow $[B]$

by structural induction on the derivation tree which produced it.

The logical rules

$$\triangleright$$
 Variable: $[A] \xrightarrow{id} [A]$

▶ Lambda:

$$A \times \Gamma \xrightarrow{f} B$$

becomes

$$\Gamma \xrightarrow{\phi_{A,\Gamma,B}(f)} A \Rightarrow B$$

Application:

$$\Gamma \xrightarrow{f} A$$
 and $\Delta \xrightarrow{g} A \Rightarrow B$

become

$$\Gamma \times \Delta \xrightarrow{f \times g} A \times (A \Rightarrow B) \xrightarrow{eval_{A,B}} B$$

The structural rules

Contraction:

$$A \times A \times \Gamma \xrightarrow{f} B$$

becomes

$$A \times \Gamma \xrightarrow{\delta_A \times \Gamma} A \times A \times \Gamma \xrightarrow{f} B$$

▶ Weakening:

$$\Gamma \xrightarrow{f} B$$

becomes

$$A \times \Gamma \xrightarrow{\varepsilon_A \times \Gamma} 1 \times \Gamma \xrightarrow{\sim} \Gamma \xrightarrow{f} B$$

Permutation:

$$\Gamma \times A \times B \times \Delta \xrightarrow{f} B$$

becomes

$$\Gamma \times B \times A \times \Delta \xrightarrow{\Gamma \times \gamma_{A,B} \times \Delta} \Gamma \times A \times B \times \Delta \xrightarrow{f} B$$

Soundness theorem

Theorem.

In every cartesian closed category \mathbb{C} , the interpretation [-] is an invariant modulo β , η .

Exercise. Establish the soundness theorem.