PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-227402

(43)Date of publication of application: 24.08.2001

(51)Int.CI.

F02D 45/00 G06F 11/10 G06F 12/16

(21)Application number : 2000-035229

.....

(22)Date of filing:

14.02.2000

(71)Applicant : DENSO CORP

(72)Inventor: KONDO HIROSHI

(54) ON-VEHICLE ELECTRONIC CONTROL DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To efficiently operate a microcomputer and shorten a time till completion of calculation of a check sum.

SOLUTION: An ECU 10 is provided with a microcomputer 11 consisting of a CPU 12, RAM 13, etc., and a ROM 14 storing a control program, a data for deciding comparison, etc. The CPU 12 executes various engine controls such as fuel injection control and ignition timing control. The CPU 12 calculates a check sum for a specified address of the ROM 14. This check sum calculation is performed by time division, a number of addition bites is changed in accordance with a processing load of the CPU 12. For instance, a number of the addition bites is increased at low rotation time of an engine, in reverse, decreased at high rotation time of the engine.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

転数であり、全CPU使用等が100%を超えると、本

ន

可能性がある(18015031-5のmode\$0

ACAREM -50

ECSTERNA - SS

21~ **EME** 2.5

特許公報(4) (12) 公開 (18) 日本国物幣庁 (1 P)

特開2001-227402 (11) 特許出層公開番号

(ACOLLOC)

(F2001 — ZZ/40ZA) (43)公爾日 平成13年8月24日(2001.8.24)	子石	372F 3G084	372C 5B001	330K 5B018	320B 9A001
(43)公開日		45/00		11/10	12/16
	FI	F02D		GOGF	
	40000000000000000000000000000000000000	372		330	320
		45/00		11/10	12/16
	(SI) Int.C.	F 0 2D		G 0 6 F	

米部状 部状項の数6 01 (全9頁)

	(71)出版人 000004280 株式会社デンソー	爱知果以谷市知和町1丁目1番地 (72)発明者近期 格	東西東送谷市田和町17日1番西 株式会社デンシー方	(74)代型人 100068755 井理士 原田 博宜 (外1名)	ドターム(事号) 3(2084 BA13 BA15 BA17 CA09 DA06 cons cons cons cons cons cons cons cons	FAZO FAZO FAZO FAZO	59001 AA14 AD03 59018 GAD1 HA13 JA2S NAD4 RA11	8A001 BB06 E302 IDI3A
,	特置2000-35228(P2000-35229)	平成12年2月14日(2000.2.14)						
	(21)田職兼中	(22) 附属日						

中裁局子妇籍批准 (54) [発明の名称]

【哎題】マイクロコンピュータを効率良く動作させ、且 [解決手段] ECU10は、CPU12、RAM13等 からなるマイコン11と、同節プログラムや比較判定用 ゲータ等を格納したROM14とを備える。CPU12 は、燃料噴射制御や点火時期制御といった各種エンジン 制御を英稿する。また、CPU12は、ROM14の規 定されたアドレスについてチェックサムを算出する。 こ のチェックサム算出は時分割で行い、CPU12の処理 負荷に応じて加算パイト数を変更する。例えば、エンジ **ソの低回気能だは加算にイト数や大きへつ、逆に、エン つチェックサムの算出完了までの時間を短縮する。** ジンの箱回板時には加算スイト数を小さくする。

MAR Et~ --------くこと DDE

TS~ CELYT 429 -26

(請求項1) メンジン又は単戦機器の各種制御に関する タがメモリ内のチェックサムを分割して算出する車載電 し、故定期的に実施される処理毎にマイクロコンピュー **処理を定期的に実施するマイクロコンピュータを搭載** 【特許請求の範囲】 子制御装置であり、

け、故回転数が高いほど、チェックサム算出時の加算パ マイクロコンピュータの処理負荷に応じて、チェックサ ムの算出時に1度に加算するパイト数を変更することを [請求項2] エンジンの回転数をモニタする手段を数 イト数を小さくする請求項1に記載の車載電子制御数 特徴とする車載電子制御装置。

ータがペース処理を繰り返し英値する際、数ペース処理 [数水項3] メンジン運転時におこてマイクロコンビュ の1回当たりの所要時間を計断し、その所要時間が大き いほど、チェックサム算出時の加算パイト数を小さくす 5請求項1に記載の車載電子制御装置。

タし、その状態がマイクロコンピュータの処理負荷を減 じる状態にあれば、チェックサム貸出時の加算パイト数 【精水項5】各種制御に関する複数の処理について、 英 笛されるエンジン回転数領域が各々相違する車載電子制 【請求項4】エンジン選帳状態又は車両走行状態をモニ を大きくする精水項1に記載の車載電子制御装置。

処理の実施/非実施が切り換えられるエンジン回転数に サムの算出を禁止する精求項1に記載の車載電子制御装 応じて、チェックサムの算出時に1度に加算するパイト [観水項8] エンジンの所定の高回転域では、チェック 数を変更する酵水項1に配設の車級電子制御装置。

卸装置いあった。

発明の詳細な説明】

[発明の属する技術分野] 本発明は、エンジン又は車載 数器の各種制御を実施する機能と、メモリ内のデータを 加算してチェックサム(メモリデータ加算値)を算出す る機能とを併せ持つ並載電子制御装置に関する。 [000]

坊止 (タンパリング防止)を目的として、メモリのチェ 真のサム値であるかどうかを判定してメモリの異常検出 【従来の技術】従来より、メモリの異常検出や不正改造 具体化されている。例えば、工場出荷時のメモリ被蛮等 アメモリのチェックサムを算出し、そのチェックサムが が知られている。 なお今後は、メモリのチェックサム値 そのチェックサムからメモリの不正改造を検出する技術 を所定のダイアグテスタに出力することが法規化される ックサムを算出する車載電子制御装置が各種提案され、 車両情報の一部としてメモリのチェックサムを算出し、 を行う技術が知られている。また、一般市場において、 [0002]

特開2001-227402

3

れると、CPU処理負荷の増加をもたらず。それ故通常 U) にはマイクロコンピュータが搭載され、数マイクロ コンドュータ内のC P Uにより 布集のエンジン 慰留が釈 施されると共に、チェックサム算出が収賄される。この 場合、エンジン制御に加えてチェックサム算出が契結さ [0003]ところで、車銭電子制御装置 (単載EC

・ イグニッションキー(I Gキー)のON直後における ・問1GキーのOFF直後におけるメインリレー制御 10 エンジン治療時、

さい状態でチェックサムが算出される。

【0004】上記の通りエンジン勉勁時にチェックサム を禁出する場合、メモリ容費が比較的小さくチェックサ ム算出の所要時間が短ければチェックサムの算出完了ま ち、各種属子制御の高機能化に伴いメモリ容量が増大す る傾向にあることを考えると、チェックサム算出の所扱 時間が地加り、木の分、エンジン制御の配名時間も運動 される。従って、エンジン拾動性が悪化することが懸念 **たメソシン整御の区部や省の中トもよい。 つをつな**が される。 2

を貸出する場合、1GキーがOFFされるまでの期間は 【0005】また、メインリレー勧御中にチェックサム チェックサムが算出されず、メモリ異宗があっても1G キーOFFまではそれが検出できないという不都合があ 【0006】そこで近年では、上記の如くエンジン始動 30 時やメインリレー勧御時にチェックサムを算出する技術 **に代えて、通体のエンジン選院途中におこて、時少数**た り、時分割でチェックサムを算出してCPUの処理負荷 を分散させることにより、エンジン制御に並行してチェ チェックサムを算出する技術が推案されている。つま

いた、 オンジン回転数NE AC P U使用語との整係や図 【0007】時分割でチェックサムを算出する場合にお エンジン創御によるCPU使用略を「A」で表し、チェ ックサム算出によるCPU使用事を「B」で表す。CP U使用率とは、処国される人をタスクが掛位時間内で占 める比率であり、タスクの全処理時間と単位時間とが一 【0008】図10 (a) パポれば、 Hソジン 整個 スポ るC P U使用等(図のA)は、エンジン回転数N Eの増 加に伴いほぼ比例的に増えるのに対し、チェックサム算 出たよるC P U 資用器(図のB)は、 エソジン回航数N Eに関係なく一定幅となる。この場合、全CPU使用率 (図のA+B)が100%に達する回転数が処理限界回 数する時,CPU使用略=100%であると定義する。 10に示す。なね、図10中、全CPU使用率のうち、 ックサム算出を契施できるようにしている。 4

ックサムを算出する手柱では、チェックサム算出完了ま 度に加算するパイト数(時分割された1回の処理量)と ある近年の車載電子制御装置の場合、上記時分割でチェ での所要時間が長引くという問題が生じる。ここで、1 時間が短縮できることが分かるがその反函、CPU処理 PU使用事(図のB)が増え、結果として処理限界回転 数が低下する。こうしたエンジン高回転域での処理限界 を解消するにはCPUの処理能力を向上させることが考 り、1度に加算するパイト数を増加させれば、算出完了 図10(h)に示すように、チェックサム算出によるC **価値が袖加し、メソジン相回表換かの利益限率を払く。** すなわち、1度に加算するパイト数を増加させた場合、 チェックサムの算出完了時間とは、図11の関係にあ えられるが、この対策ではコスト増加を招く。

着目してなされたものであって、その目的とするところ は、マイクロコンピュータを効率良く動作させ、且つチ ェックサムの貸出完了までの時間を短縮することができ (発明が解決しようとする課題) 本発明は、上記問題に る車載電子制御装置を提供することである。 (00100)

[001]

2 じて、チェックサム(サム値)の算出時に1度に加算す コンピュータの処理能力を考慮しつつチェックサム算出 タの処理負荷が比較的小さく、処理負荷の限界(似用率 100%) に対して会裕があれば、チェックサム算出時 **わな使用効率が上がる。その結果、マイクロコンピュー** 【課題を解決するための手段】請求項1に記載の単載電 子制御装置では、マイクロコンピュータの処理負荷に応 るパイト数を変更するので、単位時間当たりのマイクロ の何様パイト数を大きくし、逆に、マイクロコンドュー タの処理負荷が比較的大きく、処理負荷の限界に対して タを効率良く動作させ、且つチェックサムの算出完了ま が実施されることとなる。 つまり、マイクロコンピュー **会裕が無ければ、チェックサム算出時の加算パイト数を** 小さくする。これにより、マイクロコンピュータの展覧 での時間を短縮することができる。

・静水瓜2の記載したよって、エンジンの回転数をモー タする手段を設け、欧回転数が高いほど、チェックサム 早出時の加算パイト数を小さくする。 [0012]また本発明では、

・請求項3に記載したように、ペース処理の1回当たり の所要時間を計測し、その所要時間が大きいほど、チェ ックサム算出時の加算パイト数を小さくする、 といった構成を過算採用すると良い。かかる場合、マイ

数が設備できる。なお、エンジン回転数が高いこと、ス クロコンピュータの処理負荷に応じた最適な加算パイト も、マイクロコンピュータの処理が混み合い、その処理 --ス処理の1回当たりの所要時間が大きいことは何れ

負荷が増大することを意味する。

【0009】しかりながら、メモリが大谷里代されつし

田敷(パイト数)を決定していた。

[0013]また、請求項4に記載したように、エンジ ン運転状態又は車両走行状態をモニタし、その状態がマ チェックサム算出時の加算パイト数を大きくする、とい った構成でも望ましい効果が得られる。なおここで言う は、燃料カット中、始動時判定中、エンスト判定中、ア イクロコンピュータの処理負荷を減じる状態にあれば、 「マイクロコンピュータの処理負荷を減じる状態」と イドル判定中などを指す。

御に関する複数の処理について、実施されるエンジン回 転数領域が各々相違する車級電子制御装置であって、処 **じて、チェックサムの禁田時に1度に加算するパイト数** を変更する。かかる場合にも、マイクロコンビュータの 【0014】また、請求項5に記載の発明では、各種制 理の実施/非実施が切り換えられるエンジン回転数に応 処理負荷に応じた最適な加算パイト数が散定できる。

【0015】 請求項6に記載の発明では、エンジンの所 定の高回転域でチェックサムの算出を禁止するので、エ ンジン英回転域において、チェックサム算出以外に本来 実施される処理 (タスク) が実施されない、或いは実施 が遅れるといった不都合が解消される。

[0016]

[発明の実施の形態] 本実施の形態では、本発明を重載

の異常被出や不正改造検出を行うべく、メモリデータの エンジンの制御システムとして具体化し、車銭電子制御 装置 (ECU) は、燃料噴射制御や点火時期制御等、各 種のエンジン制御を実施する。また、ECUは、メモリ 下、メモリデータのチェックサムを好過に算出するため チェックサム (メモリデータ加算値)を専出する。以 の一実拍の形態を詳描に説明する。

[0017]図1は、本英商の形態におけるECU10 イコンという)11を中心に構成されており、回マイコ ECU10は、風ဩのマイクロコンピュータ(以下、マ 制御データ等を一時的に記憶するRAM13、その他図 た、ECU10は、制御ブログラムや比較判定用データ ン11は、各種制御ブログラムを実行するCPU12、 の私気的構成を示すブロック図である。図1において、 示しないA/D変換器や入出力ポート等を備える。ま

る吸気管圧力センサ22、空燃比(A/F)を検出する る回転数センサ21、エンジン吸気管内の圧力を検出す A/Fセンサ23、エンジン冷却木の温度を検出する木 [0018] ECU10には、エンジン回転数を検出す 等、各種センナより検出信号が入力され、ECU10 **悩センサ24、吸気温度を検出する吸気温センサ25**

毎を格掛したROM14を備える。

は、これらセンサ後出信号により後知されるエンジン回

w、吸気温丁a等に基づき、燃料噴射制御や点火時期制 シメータに指力にて核性複型的質的であり複数だらス倍 8の駆動を制御する。また、ECU10は、回じく上記 御帯を実施する。すなわち、ECU10は、上配の各バ 号を生成し、この噴射パルス信号によりインジェクタ2 の各バラメータに描づいて点火焰街のための点火信号を 生成し、この点火信号により点火ブラグ27の点火時期 転数NE、吸気管圧力PM、A/F. エンジン水温T を監御する. [0019]図2は、マイコン11内のCPU12が奨 割り込み処理核了後は、中断したペース処理に戻り、ベ と、(b)ベース処理と、(c)強り込み処理とから構 **九以降、ペース処理が繰り返し実行される。また、回転** 行する制御プログラムの概要を示すフローチャートであ る。通常、ブログラムは図2のように(a)初期化処理 或される。つまり、ECU10が超動されると、初期化 **処理—-ベース処理の層に制御プログラムが起動され、そ** 数センサ21から等クランク角毎に回転パルス倍号が入 力されると、その都度割り込み処理が要求され、これに よりペース処理を中断して割り込み処理が実行される。 ース処理が継続的に実行される。

[0020]群しくは、図2(a)の初頃化処理が起動 されると、先ずステップ110では、マイコン11の動 AM13の初期化を行い、その後、図2(b)に示すべ 作環境を設定する。そして、舷くステップ 120 ではR - ス処断へ移行する。

する。続くステップ140では、エンジン水温厂w、吸 K値 La 特に描んいた歴史権に関を貸出り、 Rの数野語 図示しない特性マップを用い、その時々のエンジン回転 数NEと吸気管圧力PMとに基づいて基本項針量を算出 **校出A/Fと来A/Fとの信憩に着らいてフィードバッ** ク栢圧量が算出され、歓栢圧量によるA/Fフィードバ ック制御も併せて実施される。この資業結果に基づいて ップ150では、エンジン回転数NEや吸気管圧力PM インジェクタ26の脳弁時間が制御される。 更に、ステ 正量により前記基本項射量を補正する。またこのとき、 [0021] ペース処理においてステップ 130では、 野に基づいて点火信号を生成する。この点火信号によ り、点火ブラグ27の点火時間が制御される。

[0022] その後、ステップ 160では、ROMデー タのチェックサムを算出する。つまり、ROM14内の **の不正改造検出に用いられる。なお、チェックサム算出** 後、ステップ130に戻り、以降の処理を繰り返し実行 その和をチェックサム(サム値)とする。このチェック サムの算出値は、ROM14の現実検出や、ROM14 現定されたアドレス領域についてデータを全て加算し、 の詳細な手順については没述する。チェックサム算出

50 本処理を終了する。 例えばエンジンの回転に同期して起動される。本処理の 【0023】また、図2(c)に示す割り込み処理は、

ステップ206では次回の加算開始アドレスを配位し、

4開2001-227402

€

ステップ 170では、回転数センサ21から入力される 回転パルス信号を取り込み、その時々計測される時刻に より本割り込みの周期を算出する。つまり、この割り込 **ゆの函数により エンジン回転数が原出され、核が吸射制** コン11内部のタイマにより超動される定時割り込み等 が、割り込み処理には回転同期の割り込み以外に、マイ 節や点火時期制御に用いられる。なお図示は省略する

【0024】次に、チェックサム算出の手順について図 3のフローチャートを用いて説明する。図3において先 ずステップ201では、チェックサムの加算開始アドレ すなわち、ROM14全体のチェックサム加算を時分割 スを読み込む (但し、初期化処理は図示していない)。 ទ

も含まれる。

[0025] 続くステップ202では、1度に加弾する パイト数(加算パイト数)を決定する。加算パイト数の 決定処理の一例としては、図4に示すサブルーチンを呼 び出し実行する。この図4の処理では、加算パイト数が 16~128パイトの種田内で可変に設定される。 で英枯するための開始アドレスを数定する。

ソジン選続状態であるか否かを判別する。核科カット中 【0028】図4について詳しくは、ステップ211で は今現在、燃料カット中、始動時判定中、エンスト判定 中、アイドル判定中など、CPU負荷が比較的小さいエ など、CPU負荷が比較的小さい場合 (ステップ211 め、ステップ218に飛び、加算パイト数を128パイ がYES)、加算パイト数が比較的大きくても良いた 2

[0021]また、ステップ211がNOの場合、ステ U12は、エンジン回転数NEが何れの回転域にあるか ップ212~218 において、その時のエンジン回転数 NEに応じて加算パイト数を設定する。すなわち、CP を判定し (ステップ213, 215, 217)、その回 転域に応じて加算ハイト数を決定する(ステップ21 2

1633.

ト数との関係を図示すれば、図5のようになる。図5に 【0028】この4台、メンジン回航数NEと近岸パイ よれば、CPU12を効率良く使用するための加算バイ ト数が回転域毎に決定され、チェックサム資算に伴うC 2, 214, 218, 218).

ステップ203では、ステップ201,202にて求め る。すなわち、ROM14内のアドレスiのデータを全 て加算し、チェックサムを算出する。その後、ステップ 205では、前記決定した加算終了アドレスに達したか [0029]加算パイト数が決定されると、図3に戻り られた値より加算終了アドレスを決定する。また、ステ ップ204では、英傑にチェックサム加算処理を英結す 否かを判別し、加算終了判定されるまでステップ20 4. 205を繰り返す。加算終了アドレスに達すると、 PU使用率が最適化できることとなる。

3

林田2001-227402

[0030] 図3の処理により、ROM14の加算開始 アドレスから加算終了アドレスまでを一区分として、チ メックサムが時分割して算出され、その繰り返しによ

[0031] 図6には、時分割によるCPU使用率とエ ノジン回転数NEとの関係を示す。なも図6中、全CP 「A」で費し、チェックサム算仏によるCPU使用率を U使用塔のうち、エンジン結御によるCPU使用権を り、ROM全体のチェックサムが算出される。

[0032] 図8によれば、メンジン粒管によるCPU 使用率(図のA)は、エンジン回転数NEの増加に伴い ほぼ比例的に増える。つまり、エンジン高回転数钌域で が痛い角回転機において、チェックサム算出によるCP でC P U使用率が向上するよう加算パイト数が最適化さ 5。これに対し、チェックサム算出によるCPU使用率 (図のB) は、エンジン回転数NEの増加に伴い段略的 **に凝じられている。前記図10 (a)の従来技術と比較** すると、図6では、メソジン慰御によるCPU使用事が Bい低回転域において、チェックサム算出によるCPU 使用率が上がり、逆にエンジン傾倒によるCPU使用率 U使用事が抑えられることが分かる。要するに、CPU 処理負荷の限界(使用率100%)に対する余裕に応じ て加算パイト数が設定されることとなり、回転数の全域 れる。また図6では、前記図10(b)に示す従來技術 とは異なり、システムにおける処理限界回転数が低下す は割り込み処理の頻度が増加し、CPU使用率が増加す 5ことはない。

2

おいて、(a)は走行パターン上のエンジン回転数NE [0033]図7は、所定の走行パターンにおけるチェ ックサム算出時間を示すタイムチャートである。図7に の変化をモデル化して示し、(b)はNEに応じて可変 に数定される加算パイト数を示し、(c)は前記(b) の加算パイト数を債算した無償パイト数を示し、(d) は加算パイト数一定とする場合(従来技術)の緊倒パイ ト数を比較例として示す。

チェックサム算出完了には「t3-t1」の時間を 【0034】(d)に示す結米技法の場合、エンジン回 記数NEの変化に関係なく一定量の加算パイト数が毎回 設定され、時刻11でチェックサム算出が開始された 後、時刻も3でチェックサム算出が完了する。すなわ

に示すようにエンジン回転数NEの変化に応じて1回年 の加算パイト数がその都質決定される。この場合、時刻 1.1でチェックサム算出が開始された後、時刻1.2でチ ェックサム算出が完了する。すなわち、チェックサム算 [0035] これに対し、本英祐の形態の場合、(b)

S パイト数が比較的小さく数定されていたが、本実館の形 【0036】 つまり、従来技術では、エンジン高回転域 このCPU使用事の制限があるため、これを基準に加算 五光アには「t2-t1」の時間を要する。

数が最適化される。

め、1度に計算できる容量が増え、チェックサムの算出 **悠では、特に低回転域での加算パイト数が大きくなるた** 光了時間が短縮できる。

に示す粒果が降られる。CPU12 (マイコン11)の 処理負荷に応じて加算パイト数を変更するので、単位時 国当たりのC P U処理能力を考慮しつしチェックサム算 る。その結果、CPU12を効率良く動作させ、且つチ 【0037】以上詳述した本実施の形態によれば、以下 ェックサムの算出完了までの時間を短縮することができ 出が実施され、CPU12の実質的な使用効率が上が

я

でも、比較的短時間でチェックサム算出が完了できる。 また、CPUの処理能力向上が強いられることがないた [0038] この場合、ROM14が大容異化した場合 め、コストアップを招くこともない。

を簡略化し、第1の実施の形態との相違点を中心に説明 [0039] (第2の実施の形態) 次に、本発明におけ るが2の実結の形態を説明する。但し、本実施の形態で は、上述した第1の実施の形態と同等であるものは説明

に応じてほぼ比例的に上昇する旨を記載したが、実際の て、実施されるエンジン回転数領域が各々相違し、回転 数領域に応じてCPU処理負荷に変極点が存在する。つ rpm)ではA/Fフィードバック制御が実施されるの [0040] 上記第1の疾結の形態では、エンジン制御 エンジン制御では、各種創御に関する複数の処理につい ィードバック制御が禁止される。またその他、失火検出 やアイドル回転数制御の処理も低・中回転域でのみ実施 によるCPU処理負荷(使用率)がエンジン回転数NE まり、一門として、低・中回転域(例えば0~4000 に対し、第回転域 (4000 r p m以上) ではA/Fフ 8

ン制御によるCPU使用率(図のA)がエンジン回転数 [0041]それ故、図B (a) に示すように、エンジ NEに応じて一様に上昇するのではなく、変極点を持つ ことになる。

パイト数の専出に際し、前記図5の関係に代えて図9の の関係に従い加算パイト数を算出する。実際には、加算 関係を用いる。かかる場合、前記図3のステップ202 [0042] そこで本攻歯の形態では、上記図8(a)

(図4のサンラーチン) 石材ごと、図9の関係に結った

5

加算パイト数を決定する。

図8 (b) によれば、チェックサム算出によるCPU使 [0043] こうして図9の関係に従い加算パイト数を 用等(図のB)は、エンジン回転数NE並びに封御の数 回転数の全域でCPU使用率が向上するよう加算パイト 決定し、チェックサム算出を行う場合、チェックサム算 出も含めた全CPU使用率は図B(b)のようになる。 **拠点に応じて段階的に変化する。この場合にもやはり、**

[0044]以上第2の実施の形態によれば、処理の実 **海/崇英権が200数×のたるメンジン回転数(回転数**に 応じたC P U処理負荷の変価点)に応じてチェックサム 算出のための加算パイト数を変更するので、CPU処理 きる。図9に示すように、エンジン回転数NEと加算バ イト数との関係が単調的な増加又は減少ではなく多様性 を持たせることで、システムへの適用性や汎用性が向上 負荷等に応じて加算パイト数を適正に決定することがで

[0045]なお本発明は、上記以外に次の形態にて具 体化できる。上記集筋の形態では、概ねエンジン回転数 NEに応じて加算パイト数を決定したが、これを以下の

い。なおこの場合、ペース処理の所要時間が大きいこと の所要時間が大きいほど、チェックサム算出時の加算パ 4ト数を小さくする。ペース処理の所要時間を計測する 0→150→160の個に1周する時間を計劃すれば良 の人)と的組みなごと判数的国がステップ130-14 には、例えば、フリーランカウンタを用い、図2(b) (1) ペース処理の1回当たりの所要時間を計劃し、

現界回転数以上の回転域でチェックサムの算出を禁止す 30 (2)単位時間内において、優先度が最も低い処理の実 も回数を数え、その実値回数が多いほど、チェックサム 先度が最も低い処理が数多く実施されることは、単位時 [0048]また、エンジンの所定の独回転換でチェッ **クサムの算出を禁止する。例えば、前記図6に示す処理 肖出時の加算パイト数を大きくする。なおこの場合、優** 間内のCPU処理負荷が比較的低いことを意味する。

9

校院2001-227402

* (図5の関係)において加算パイト数=0とする旨を決 **定する。この場合、エンジン百回転板において、チェッ** クサム算出以外に本来実施される処理(タスク)が実施 されない、或いは実祐が遅れるといった不都合が解消さ ₽3. 【図1】発明の実施の形態における車載ECUの摂更を 【図2】CPUの制御プログラムの哲製を示すフローチ 元子を収回

【図面の簡単な説明】

【図3】チェックサムの算出手順を示すフローチャー

2

[図4] 加算パイト数の決定手頃を示すフローチャー

【図5】 エンジン回転数と加算パイト数との関係を示す 【図6】 メンジン回転数とCPU使用率との関係を示す

【図7】 走行パターンに対応させてチェックサム算出完 了の時間を示すタイムチャート。

【図8】 第2の実施の形態においてエンジン回転数とC PU使用年との関係を示す図。 ឧ

は、その途中に実施される割り込み処理等が増え、CP

U処理負荷が増大することを意味する。

【図8】 第2の実施の形態においてエンジン回転数と加 算パイト数との医係かにす図。

【図10】従来技術においてエンジン回転数とCPU使 【図11】1度に加算するパイト数とチェックサムの算 用率との関係を示す図。

出完了時間との関係を示す図。 (作号の説明)

10-ECU, 11-7432, 12-CPU, 14-

サム算出禁止フラグを立てる、或いは、前配図4の処理*

5。 契際には、所定の高回転域にある場合に、チェック

(⊠2)

82 22- WEEDE 23- AVF EST 26- Mileton 24- tED!

6)

à.