ESP32 系列芯片

技术规格书

包括:

ESP32-D0WD-V3

ESP32-D0WDR2-V3

ESP32-U4WDH

ESP32-SOWD - <u>不推荐用于新设计 (NRND)</u>

ESP32-D0WD - 不推荐用于新设计 (NRND)

ESP32-D0WDQ6 - <u>不推荐用于新设计 (NRND)</u>

ESP32-D0WDQ6-V3 - <u>不推荐用于新设计 (NRND)</u>

关于本文档

本文档为用户提供 ESP32 系列芯片的技术规格。

文档版本

请至乐鑫官网 https://www.espressif.com/zh-hans/support/download/documents 下载最新版本文档。

修订历史

请至文档最后页查看修订历史。

文档变更通知

用户可以通过乐鑫官网订阅页面 <u>www.espressif.com/zh-hans/subscribe</u> 订阅技术文档变更的电子邮件通知。您需要更新订阅以接收有关新产品的文档通知。

证书下载

用户可以通过乐鑫官网证书下载页面 www.espressif.com/zh-hans/certificates 下载产品证书。

目录

1	概述	8
1.1	专用解决方案	8
	1.1.1 超低功耗	8
	1.1.2 高集成度	8
1.2	Wi-Fi 主要特性	8
1.3	蓝牙主要特性	9
1.4	MCU 和高级特性	9
	1.4.1 CPU 和存储	9
	1.4.2 时钟和定时器	10
	1.4.3 高级外设接口	10
	1.4.4 安全机制	11
1.5	应用 (部分举例)	11
1.6	功能框图	13
2	管脚定义	14
2.1	管脚布局	14
2.2	管脚描述	16
2.3	电源管理	20
2.4	Strapping 管脚	21
3	功能描述	24
3.1	CPU 和存储	24
	3.1.1 CPU	24
	3.1.2 片上存储	24
	3.1.3 外部 Flash 和 SRAM	25
	3.1.4 存储器映射	25
3.2	定时器和看门狗	27
	3.2.1 64-bit 通用定时器	27
	3.2.2 看门狗定时器	27
3.3	系统时钟	28
	3.3.1 CPU 时钟	28
	3.3.2 RTC 时钟	28
	3.3.3 音频 PLL 时钟	28
3.4	射频	28
	3.4.1 2.4 GHz 接收器	29
	3.4.2 2.4 GHz 发射器	29
	3.4.3 时钟生成器	29
3.5	Wi-Fi	29
	3.5.1 Wi-Fi 射频和基带	29
	3.5.2 Wi-Fi MAC	30
3.6	蓝牙	30
	3.6.1 蓝牙射频和基带	30

	3.6.2 蓝牙接口	31
	3.6.3 蓝牙协议栈	31
	3.6.4 蓝牙链路控制器	31
3.7	RTC 和低功耗管理	32
4	外设接口和传感器	34
4.1	外设和传感器描述	34
	4.1.1 通用输入/输出接口 (GPIO)	34
	4.1.2 模/数转换器 (ADC)	34
	4.1.3 霍尔传感器	35
	4.1.4 数/模转换器 (DAC)	35
	4.1.5 触摸传感器	35
	4.1.6 超低功耗协处理器 (ULP)	35
	4.1.7 以太网 MAC 接口	36
	4.1.8 SD/SDIO/MMC 主机控制器	36
	4.1.9 SDIO/SPI 从机控制器	36
	4.1.10 通用异步收发器 (UART)	37
	4.1.11 I2C 接口	37
	4.1.12 I2S 接口	37
	4.1.13 红外遥控 (RMT)	37
	4.1.14 脉冲计数器	38
	4.1.15 脉冲宽度调制 (PWM)	38
	4.1.16 LED PWM	38
	4.1.17 串行外设接口 (SPI)	38
	4.1.18 TWAI 控制器	38
4.0	4.1.19 硬件加速器	39
4.2	外设管脚分配	39
5	电气特性	44
5.1	绝对最大额定值	44
5.2	建议工作条件	44
5.3	直流电气特性 (3.3 V, 25 °C)	45
5.4	可靠性	45
5.5	射频功耗参数	46
5.6	Wi-Fi 射频	46
5.7	经典蓝牙射频	47
	5.7.1 接收器 - 基础数据率 (BR)	47
	5.7.2 发射器 - 基础数据率 (BR)	47
	5.7.3 接收器 - 增强数据率 (EDR)	48
F. C	5.7.4 发射器 - 增强数据率 (EDR)	48
5.8	低功耗蓝牙射频	49
	5.8.1 接收器	49
	5.8.2 发射器	49
6	封装信息	51

7 产品型号和订购信息	52
8 相关文档和资源	53
附录 A - ESP32 管脚清单	54
A.1. 管脚清单说明	54
A.2. GPIO_Matrix	56
A.3. Ethernet_MAC	61
A.4. IO_MUX	61
修订历史	63

表格

1	管脚描述	16
2	芯片与内置 Flash/PSRAM 的管脚对应关系	19
3	ESP32 和外部 Flash/PSRAM 的连接关系	19
4	ESP32 上电、复位时序图参数说明	21
5	Strapping 管脚	22
6	Strapping 管脚的建立时间和保持时间的参数说明	23
7	存储器和外设地址映射	26
8	不同功耗模式下的功耗	32
9	ADC 特性	34
10	ADC 校准结果	34
11	ESP32 上的电容式传感 GPIO	35
12	外设和传感器表	39
13	绝对最大额定值	44
14	建议工作条件	44
15	直流电气特性 (3.3 V, 25 °C)	45
16	可靠性	45
17	射频功耗参数	46
18	Wi-Fi 射频特性	46
19	接收器特性 - 基础数据率 (BR)	47
20	发射器特性 - 基础数据率 (BR)	47
21	接收器特性 - 增强数据率 (EDR)	48
22	发射器特性 - 增强数据率 (EDR)	48
23	低功耗蓝牙接收器特性	49
24	低功耗蓝牙发射器特性	49
25	订购信息	52
26	管脚清单说明	54
27	GPIO_Matrix	56
28	Ethernet MAC	61

插图

1	功能框图	13
2	ESP32 管脚布局(封装为 QFN 6*6, 顶视图)	14
3	ESP32 管脚布局(封装为 QFN 5*5, 顶视图)	15
4	ESP32 数字电源管理	20
5	ESP32 上电、复位时序图	21
6	Strapping 管脚的建立时间和保持时间	23
7	地址映射结构	25
8	QFN48 (6x6 mm) 封装	51
9	QFN48 (5x5 mm) 封装	51
10	ESP32 产品型号描述	52

概述 1

ESP32 是集成 2.4 GHz Wi-Fi 和蓝牙双模的单芯片方案,采用台积电 (TSMC) 低功耗 40 纳米工艺,具有超高的 射频性能、稳定性、通用性和可靠性,以及超低的功耗、满足不同的功耗需求,适用于各种应用场景。

目前 ESP32 系列的产品型号包括 ESP32-D0WD-V3、ESP32-D0WDR2-V3、ESP32-U4WDH、ESP32-S0WD (NRND)、ESP32-D0WD (NRND)、ESP32-D0WDQ6 (NRND) 和 ESP32-D0WDQ6-V3 (NRND), 其中

- ESP32-S0WD (NRND)、ESP32-D0WD (NRND)、ESP32-D0WDQ6 (NRND) 基于芯片版本 v1.0 或 v1.1;
- ESP32-D0WD-V3、ESP32-D0WDR2-V3、ESP32-U4WDH和 ESP32-D0WDQ6-V3(NRND)基于芯片版本 v3.0 或 v3.1。

产品型号说明和订购信息请参考章节 7。有关芯片版本的更多信息,请参考文档 《ESP32 芯片版本 v3.0 使用指南》和《ESP32系列芯片勘误表》。

1.1 专用解决方案

1.1.1 超低功耗

ESP32 专为移动设备、可穿戴电子产品和物联网 (loT) 应用而设计。作为业内领先的低功耗芯片,ESP32 具有 精细的时钟门控、省电模式和动态电压调整等特性。

例如,在低功耗 IoT 传感器 Hub 应用场景中, ESP32 只有在特定条件下才会被周期性地唤醒。低占空比可以极 大降低 ESP32 芯片的能耗。射频功率放大器的输出功率也可调节,以实现通信距离、数据率和功耗之间的最佳 平衡。

说明:

更多信息请参阅第 3.7 节: RTC 和低功耗管理。

1.1.2 高集成度

ESP32 是业内领先的高度集成的 Wi-Fi + 蓝牙解决方案,外部元器件只需大约 20 个。ESP32 集成了天线开关、 射频 Balun、功率放大器、低噪声放大器、滤波器以及电源管理模块,极大减少了印刷电路板 (PCB) 的面 积。

ESP32 采用 CMOS 工艺实现单芯片集成射频和基带,还集成了先进的自校准电路,实现了动态自动调整,可 以消除外部电路的缺陷、更好地适应外部环境的变化。因此、ESP32的批量生产可以不需要昂贵的专用 Wi-Fi 测试设备。

1.2 Wi-Fi 主要特性

- 802.11 b/a/n
- 802.11 n (2.4 GHz) 速度高达 150 Mbps
- 无线多媒体 (WMM)
- 帧聚合 (TX/RX A-MPDU, RX A-MSDU)
- 立即块确认 (Immediate Block ACK)

- 重组 (Defragmentation)
- Beacon 自动监测 (硬件 TSF)
- 4×虚拟 Wi-Fi 接口
- 同时支持基础结构型网络 (Infrastructure BSS) Station 模式/SoftAP 模式/混杂模式 请注意 ESP32 在 Station 模式下扫描时,SoftAP 信道会同时改变
- 天线分集

说明:

更多信息,请参阅第 3.5 节: Wi-Fi。

1.3 蓝牙主要特性

- 蓝牙 v4.2 完整标准,包含传统蓝牙 (BR/EDR) 和低功耗蓝牙 (Bluetooth LE)
- 支持标准 Class-1、Class-2 和 Class-3, 且无需外部功率放大器
- 增强型功率控制 (Enhanced Power Control)
- 输出功率高达 +9 dBm
- NZIF 接收器具有-94 dBm 的 BLE 接收灵敏度
- 自适应跳频 (AFH)
- 基于 SDIO/SPI/UART 接口的标准 HCI
- 高速 UART HCI,最高可达 4 Mbps
- 支持蓝牙 4.2 BR/EDR 和 Bluetooth LE 双模 controller
- 同步面向连接/扩展同步面向连接 (SCO/eSCO)
- CVSD 和 SBC 音频编解码算法
- 蓝牙微微网 (Piconet) 和散射网 (Scatternet)
- 支持传统蓝牙和低功耗蓝牙的多设备连接
- 支持同时广播和扫描

1.4 MCU 和高级特性

1.4.1 CPU 和存储

- Xtensa® 32-bit LX6 单/双核处理器
- CoreMark® 得分:
 - 单核, 主频 240 MHz: 504.85 CoreMark; 2.10 CoreMark/MHz
 - 双核,主频 240 MHz: 994.26 CoreMark; 4.14 CoreMark/MHz

- 448 KB ROM
- 520 KB SRAM
- 16 KB RTC SRAM
- QSPI 支持多个 flash/SRAM

1.4.2 时钟和定时器

- 内置 8 MHz 振荡器, 支持自校准
- 内置 RC 振荡器, 支持自校准
- 支持外置 2 MHz 至 60 MHz 的主晶振(如果使用 Wi-Fi/蓝牙功能,则目前仅支持 40 MHz 晶振)
- 支持外置 32 kHz 晶振,用于 RTC,支持自校准
- 2个定时器群组,每组包括 2个 64-bit 通用定时器和 1个主系统看门狗
- 1 个 RTC 定时器
- RTC 看门狗

1.4.3 高级外设接口

- 34 个 GPIO 口
- 12-bit SAR ADC, 多达 18 个通道
- 2 个 8-bit D/A 转换器
- 10 个触摸传感器
- 4 个 SPI
- 2 个 I2S
- 2 个 I2C
- 3个UART
- 1 个 Host SD/eMMC/SDIO
- 1 个 Slave SDIO/SPI
- 带有专用 DMA 的以太网 MAC 接口,支持 IEEE 1588
- TWAI[®],兼容 ISO 11898-1(CAN 规范 2.0)
- RMT (TX/RX)
- 电机 PWM
- LED PWM, 多达 16 个通道
- 霍尔传感器

1.4.4 安全机制

- 安全启动
- flash 加密
- 1024-bit OTP, 用户可用的高达 768 bit
- 加密硬件加速器:
 - AES
 - Hash (SHA-2)
 - RSA
 - ECC
 - 随机数生成器 (RNG)

说明:

更多信息请参考第8章:相关文档和资源。

1.5 应用 (部分举例)

- 通用低功耗 IoT 传感器 Hub
- 通用低功耗 IoT 数据记录器
- 摄像头视频流传输
- OTT 电视盒/机顶盒设备
- 语音识别
- 图像识别
- Mesh 网络
- 家庭自动化
 - 智能照明
 - 智能插座
 - 智能门锁
- 智慧楼宇
 - 照明控制
 - 能耗监测
- 工业自动化
 - 工业无线控制

- 工业机器人
- 智慧农业
 - 智能温室大棚
 - 智能灌溉
 - 农业机器人
- 音频设备
 - 网络音乐播放器
 - 音频流媒体设备
 - 网络广播
- 健康/医疗/看护
 - 健康监测
 - 婴儿监控器
- Wi-Fi 玩具
 - 遥控玩具
 - 距离感应玩具
 - 早教机

- 可穿戴电子产品
 - 智能手表
 - 智能手环

- 零售 & 餐饮
 - POS 系统
 - 服务机器人

1.6 功能框图

图 1: 功能框图

说明:

Embedded flash/PSRAM 和 CPU 数量在不同型号的芯片之间有差异,详见章节产品型号和订购信息。

2 管脚定义

2.1 管脚布局

图 2: ESP32 管脚布局 (封装为 QFN 6*6, 顶视图)

图 3: ESP32 管脚布局 (封装为 QFN 5*5, 顶视图)

说明:

关于 ESP32 芯片型号对应的封装规格,请参考章节产品型号和订购信息。

2.2 管脚描述

表 1: 管脚描述

名称	No.	类型	功能				
	模拟 模拟						
VDDA	1	Р	模拟电源 (2.3 V ~ 3.6 V)				
LNA_IN	2	I/O	射频输入和输出				
VDD3P3	3	Р	模拟电源 (2.3 V ~ 3.6 V)				
VDD3P3	4	Р	模拟电源 (2.3 V ~ 3.6 V)				
			VDD3P3_RTC				
SENSOR_VP	5	I	GPIO36, ADC1_CH0, RTC_GPIO0				
SENSOR_CAPP	6	I	GPIO37, ADC1_CH1, RTC_GPIO1				
SENSOR_CAPN	7	I	GPIO38, ADC1_CH2, RTC_GPIO2				
SENSOR_VN	8	I	GPIO39, ADC1_CH3, RTC_GPIO3				
			高电平: 芯片使能;				
CHIP_PU	9	I	低电平: 芯片关闭;				
			注意:不能让 CHIP_PU 管脚浮空。				
VDET_1	10	I	GPIO34, ADC1_CH6, RTC_GPIO4				
VDET_2	11	I	GPIO35, ADC1_CH7, RTC_GPIO5				
32K_XP	12	I/O	GPIO32, ADC1_CH4, RTC_GPIO9, TOUCH9, 32K_XP (32.768 kHz 晶振输入)				
32K_XN	13	I/O	GPIO33, ADC1_CH5, RTC_GPIO8, TOUCH8, 32K_XN (32.768 kHz 晶振输出)				
GPIO25	14	I/O	GPIO25, ADC2_CH8, RTC_GPIO6, DAC_1, EMAC_RXD0				
GPIO26	15	I/O	GPIO26, ADC2_CH9, RTC_GPIO7, DAC_2, EMAC_RXD1				
GPIO27	16	I/O	GPIO27, ADC2_CH7, RTC_GPIO17, TOUCH7, EMAC_RX_DV				
MTMS	17	I/O	GPIO14, ADC2_CH6, RTC_GPIO16, TOUCH6, EMAC_TXD2, HSPICLK, HS2_CLK, SD_CLK, M	итмs			
MTDI	18	I/O	GPIO12, ADC2_CH5, RTC_GPIO15, TOUCH5, EMAC_TXD3, HSPIQ, HS2_DATA2, SD_DATA2, M	MTDI			
VDD3P3_RTC	19	Р	RTC IO 电源输入 (2.3 V ~ 3.6 V)				
MTCK	20	I/O	GPIO13, ADC2_CH4, RTC_GPIO14, TOUCH4, EMAC_RX_ER, HSPID, HS2_DATA3, SD_DATA3, M	итск			
MTDO	21	I/O	GPIO15, ADC2_CH3, RTC_GPIO13, TOUCH3, EMAC_RXD3, HSPICS0, HS2_CMD, SD_CMD, M	MTDO			

名称	No.	类型	功能							
GPIO2	22	I/O	GPIO2,	ADC2_CH2,	RTC_GPIO12,	TOUCH2,		HSPIWP,	HS2_DATA0,	SD_DATA0
GPIO0	23	I/O	GPIO0,	ADC2_CH1,	RTC_GPIO11,	TOUCH1,	EMAC_TX_CLK	, CLK_OUT1	ı	
GPIO4	24	I/O	GPIO4,	ADC2_CH0,	RTC_GPIO10,	TOUCH0,	EMAC_TX_ER,	HSPIHD,	HS2_DATA1,	SD_DATA1
				VI	DD_SDIO					
GPIO16	25	I/O	GPIO16,	HS1_DATA4,	U2RXD,	EMAC_CLK_	OUT			
VDD_SDIO	26	Р	1.8 V 或 \	VDD3P3_RTC 电	1源输出					
GPIO17	27	I/O	GPIO17,	HS1_DATA5,	U2TXD,	EMAC_CLK_	OUT_180			
SD_DATA_2	28	I/O	GPIO9,	HS1_DATA2,	U1RXD,	SD_DATA2,	SPIHD			
SD_DATA_3	29	I/O	GPIO10,	HS1_DATA3,	U1TXD,	SD_DATA3,	SPIWP			
SD_CMD	30	I/O	GPIO11,	HS1_CMD,	U1RTS,	SD_CMD,	SPICS0			
SD_CLK	31	I/O	GPIO6,	HS1_CLK,	U1CTS,	SD_CLK,	SPICLK			
SD_DATA_0	32	I/O	GPIO7,	HS1_DATA0,	U2RTS,	SD_DATA0,	SPIQ			
SD_DATA_1	33	I/O	GPIO8,	HS1_DATA1,	U2CTS,	SD_DATA1,	SPID			
					VDE	D3P3_CPU				
GPIO5	34	I/O	GPIO5,	HS1_DATA6,	VSPICS0,	EMAC_RX_C	LK			
GPIO18	35	I/O	GPIO18,	HS1_DATA7,	VSPICLK					
GPIO23	36	I/O	GPIO23,	HS1_STROBE	, VSPID					
VDD3P3_CPU	37	Р	CPU IO	追源输入 (1.8 Ⅴ ~	~ 3.6 V)					
GPIO19	38	I/O	GPIO19,	U0CTS,	VSPIQ,	EMAC_TXD0				
GPIO22	39	I/O	GPIO22,	UORTS,	VSPIWP,	EMAC_TXD1				
U0RXD	40	I/O	GPIO3,	U0RXD,	CLK_OUT2					
U0TXD	41	I/O	GPIO1,	U0TXD,	CLK_OUT3,	EMAC_RXD2				
GPIO21	42	I/O	GPIO21,		VSPIHD,	EMAC_TX_E	V			
						模拟				
VDDA	43	Р	模拟电源	(2.3 V \sim 3.6 V)						
XTAL_N	44	0	外部主晶	振输出						
XTAL_P	45	I	外部主晶	振输入						
VDDA	46	Р	模拟电源	(2.3 V \sim 3.6 V)						
CAP2	47	I	并联 3.3	nF (10%) 电容和	I 20 kΩ 电阻到 (CAP1		<u> </u>		

名称	No.	类型	功能
CAP1	48	I	串联 10 nF 电容到地
GND	49	Р	接地

说明:

IO_MUX、Ethernet MAC、GIPO Matrix 请见附件管脚清单。

表 2 列出了芯片与内置 flash/PSRAM 的管脚对应关系,这些管脚不建议用于其它功能。ESP32 与外部 flash/PSRAM 的数据端口连接关系见表 3。

表 2: 芯片与内置 Flash/PSRAM 的管脚对应关系

ESP32-U4WDH	内置 Flash (4 MB)		
SD_DATA_1	IO0/DI		
GPIO17	IO1/DO		
SD_DATA_0	IO2/WP#		
SD_CMD	IO3/HOLD#		
SD_CLK	CLK		
GPIO16	CS#		
GND	VSS		
VDD_SDIO	VDD		
ESP32-D0WDR2-V3	内置 PSRAM (2 MB)		
ESP32-D0WDR2-V3 SD_DATA_1	内置 PSRAM (2 MB) SIOO/SI		
SD_DATA_1	SIO0/SI		
SD_DATA_1 SD_DATA_0	SIO0/SI SIO1/SO		
SD_DATA_1 SD_DATA_0 SD_DATA_3	SIO0/SI SIO1/SO SIO2		
SD_DATA_1 SD_DATA_0 SD_DATA_3 SD_DATA_2	SIO0/SI SIO1/SO SIO2 SIO3		
SD_DATA_1 SD_DATA_0 SD_DATA_3 SD_DATA_2 SD_CLK	SIO0/SI SIO1/SO SIO2 SIO3 SCLK		

表 3: ESP32 和外部 Flash/PSRAM 的连接关系

芯片管脚	外部 Flash
SD_DATA_1/SPID	IO0/DI
SD_DATA_0/SPIQ	IO1/DO
SD_DATA_3/SPIWP	IO2/WP#
SD_DATA_2/SPIHD	IO3/HOLD#
SD_CLK	CLK
SD_CMD	CS#
GND	VSS
VDD_SDIO	VDD
芯片管脚	外部 PSRAM
芯片管脚 SD_DATA_1	外部 PSRAM SIO0/SI
SD_DATA_1	SIO0/SI
SD_DATA_1 SD_DATA_0	SIO0/SI SIO1/SO
SD_DATA_1 SD_DATA_0 SD_DATA_3	SIO0/SI SIO1/SO SIO2
SD_DATA_1 SD_DATA_0 SD_DATA_3 SD_DATA_2	SIO0/SI SIO1/SO SIO2 SIO3
SD_DATA_1 SD_DATA_0 SD_DATA_3 SD_DATA_2 SD_CLK/GPIO17*	SIO0/SI SIO1/SO SIO2 SIO3 SCLK

- 1. 连接外部 PSRAM 的 SCLK 信号时,可使用芯片的 SD_CLK 管脚或 GPIO17 管脚。
 - 如果选择使用 SD_CLK 管脚,则可以节省一个 GPIO 管脚,即 GPIO17。节省出来的 GPIO 可用于其它用途。该连接方式已通过内部测试,但相关认证尚未完成。
 - 或者选择使用 GPIO17 管脚。该连接方式已通过相关认证,请参考 <u>ESP32-WROVER-E</u> 证书。请根据具体的应用需求,选择合适的管脚。
- 2. 使用 GPIO16 连接 PSRAM 的 CE# 信号时,请在 GPIO16 处增加一个上拉电阻。请参考 <u>ESP32-WROVER-E</u> 原理图。
- 3. ESP32-U4WDH 内置的 flash 以及 ESP32-D0WDR2-V3 内置的 PSRAM 均运行在 3.3 V 电压下。此时,VDD_SDIO 会通过 $6\,\Omega$ 的电阻从 VDD3P3_RTC 取电。见图 4。

2.3 电源管理

ESP32 的数字管脚可分为 3 种不同的电源域:

- VDD3P3_RTC
- VDD3P3_CPU
- VDD_SDIO

VDD3P3_RTC 同时是 RTC 和 CPU 的输入电源。VDD3P3_CPU 是 CPU 的输入电源。VDD_SDIO 与一个内置 LDO 的输出相连,该内置 LDO 的输入是 VDD3P3_RTC。当 VDD_SDIO 与 VDD3P3_RTC 连接在相同的电源上,内置 LDO 会自动关闭。ESP32 的数字电源管理示意图如下所示:

图 4: ESP32 数字电源管理

内置 LDO 可被配置成 1.8 V 或与 VDD3P3_RTC 相同的电压。在 Deep-sleep 模式下,为了使 flash 电流降到最 低,可以通过软件关闭内置 LDO。

关于 CHIP_PU 的说明:

• 下图为 ESP32 上电、复位时序图。各参数说明如表 4 所示。

图 5: ESP32 上电、复位时序图

表 4: ESP32 上电、复位时序图参数说明

参数	说明	最小值	单位
t_0	CHIP_PU 管脚上电晚于系统电源 3.3 V 上电的延时时间	50	μs
t_1	CHIP_PU 电平低于 V_{IL_nRST} (其值可在表 15 直流电气特性中查看) 的时间	50	μ s

- 在实际应用中,如果需要快速反复开关 VDD33,且 VDD33 外围电路上有大电容,且 CHIP PU 与 VDD33 相连,在先关后开的动作中,CHIP_PU 电平降到 0 的过程会非常缓慢,在下一次重新上电时,CHIP_PU 还来不及降到足够低的电平,从而导致不能充分复位芯片。此时需要额外的放电电路来加速 VDD33 上大 电容的放电。
- 当使用电池给 ESP32 系列芯片和模组供电时,为避免电池电压过低导致芯片进入异常状态不能正常启动, 一般推荐外接 Power Supply Supervisor。建议检测到供给 ESP32 的电压低于 2.3 V 时将 ESP32 的 CHIP PU 脚拉低。

关于电源电压的说明:

- ESP32 工作电压范围为 2.3 V~3.6 V;使用单电源供电时,建议电源电压为 3.3 V,输出电流需要达到 500 mA 及以上。
- PSRAM 和 flash 均由 VDD_SDIO 进行供电。如果芯片已经内置了 flash,则 VDD_SDIO 的电压既已确定。 此时,如果芯片需要另外连接外部 PSRAM 时,则外部 PSRAM 电压应与内置 flash 的工作电压匹配。上 述情况同时也适用于内置了 PSRAM, 但需要外接 flash 的情况。
- 当使用 VDD_SDIO 的 1.8 V 模式给 flash/PSRAM 等外设供电时,需要在 VDD_SDIO 上接个对地 2 kΩ 的 电阻,参考《ESP32-WROVER 技术规格书》中原理图。
- 在使用这些数字电源为外设供电的使用场景中,比如3.3 V flash,电源电压还应满足外设的使用要求。

Strapping 管脚

芯片共有 5 个 Strapping 管脚。

MTDI

- GPI00
- GPIO2
- MTDO
- GPI05

软件可以读取寄存器 "GPIO_STRAPPING"中这 5 个管脚 strapping 的值。

在芯片的系统复位(上电复位、RTC 看门狗复位、欠压复位)放开的过程中,Strapping 管脚对电平采样并存储到锁存器中,锁存为"0"或"1",并一直保持到芯片掉电或关闭。

每一个 Strapping 管脚都会连接内部上拉/下拉。如果一个 Strapping 管脚没有外部连接或者连接的外部线路处于高阻抗状态,内部弱上拉/下拉将决定 Strapping 管脚输入电平的默认值。

为改变 Strapping 的值,用户可以应用外部下拉/上拉电阻,或者应用主机 MCU 的 GPIO 控制芯片上电复位放开时的 Strapping 管脚电平。

复位放开后, Strapping 管脚和普通管脚功能相同。配置 Strapping 管脚的详细启动模式请参阅表 5。

内置 LDO (VDD_SDIO) 电压 管脚 3.3 V 1.8 V 默认 MTDI 下拉 0 1 系统启动模式 默认 SPI 启动模式 下载启动模式 管脚 GPI00 上拉 1 0 GPIO₂ 下拉 无关项 0 系统启动过程中,控制 UOTXD 打印 管脚 默认 UOTXD 正常打印 UOTXD 上电不打印 **MTDO** 上拉 \cap 1 SDIO 从机信号输入输出时序 下降沿采样 下降沿采样 上升沿采样 上升沿采样 默认 管脚 下降沿输出 上升沿输出 下降沿输出 上升沿输出 **MTDO** 上拉 0 1 GPIO5 上拉 0 1 0 1

表 5: Strapping 管脚

说明:

- 固件可以通过配置寄存器,在启动后改变"内置 LDO (VDD_SDIO) 电压"和"SDIO 从机信号输入输出时序"的设定。
- 带有内置 flash 或 PSRAM 的芯片型号需要注意上电时的 MTDI 电平。例如 ESP32-U4WDH 的内置 flash 的工作电压是 3.3 V,上电时需要将 MTDI 拉低。

图 6 显示了 CHIP_PU 上电前和上电后 Strapping 管脚的建立时间和保持时间。各参数说明如表 6 所示。

图 6: Strapping 管脚的建立时间和保持时间

表 6: Strapping 管脚的建立时间和保持时间的参数说明

参数	说明	最小值	单位
t_0	CHIP_PU 上电前的建立时间	0	ms
t_1	CHIP_PU 上电后的保持时间	1	ms

功能描述 3

本章描述 ESP32 的具体功能。

3.1 CPU 和存储

3.1.1 CPU

ESP32 搭载低功耗 Xtensa® LX6 32-bit 单/双核处理器,具有以下特性:

- 7级流水线架构,支持高达 240 MHz 的时钟频率(除 ESP32-SOWD (NRND)为 160 MHz)
- 16-bit/24-bit 指令集提供高代码密度
- 支持浮点单元 (FPU)
- 支持 DSP 指今, 例如 32-bit 乘法器、32-bit 除法器和 40-bit 累加乘法器 (MAC)
- 支持来自约 70 个中断源的 32 个中断向量

单/双核处理器接口包括:

- Xtensa RAM/ROM 指令和数据接口
- 用于快速访问外部寄存器的 Xtensa 本地存储接口
- 具有内外中断源的中断接口
- 用于调试的 JTAG 接口

3.1.2 片上存储

ESP32 片上存储包括:

- 448 KB 的 ROM, 用于程序启动和内核功能调用
- 用于数据和指令存储的 520 KB 片上 SRAM
- RTC 快速存储器,为 8 KB 的 SRAM,可以在 Deep-sleep 模式下 RTC 启动时用于数据存储以及被主 CPU 访问
- RTC 慢速存储器,为 8 KB 的 SRAM,可以在 Deep-sleep 模式下被协处理器访问
- 1 Kbit 的 eFuse, 其中 256 bit 为系统专用(MAC 地址和芯片设置); 其余 768 bit 保留给用户程序, 这些 程序包括 flash 加密和芯片 ID
- 嵌入式 flash 或 PSRAM

说明:

ESP32 芯片是否有嵌入式 flash/PSRAM,以及嵌入式 flash/PSRAM的大小与芯片型号有关。详见章节产品型号和订购 信息。

3.1.3 外部 Flash 和 SRAM

ESP32 支持多个外部 QSPI flash 和静态随机存储器 (SRAM)。详情可参考<u>《ESP32 技术参考手册》</u>中的 SPI 章节。ESP32 还支持基于 AES 的硬件加解密功能,从而保护开发者 flash 中的程序和数据。

ESP32 可通过高速缓存访问外部 QSPI flash 和 SRAM:

- 外部 flash 可以同时映射到 CPU 指令和只读数据空间。外部 flash 最大可支持 16 MB。
 - 当映射到 CPU 指令空间时,一次最多可映射 11 MB + 248 KB。如果一次映射超过 3 MB + 248 KB,则 cache 性能可能由于 CPU 的推测性读取而降低。
 - 当映射到只读数据空间时,一次最多可以映射 4 MB。支持 8-bit、16-bit 和 32-bit 读取。
- 外部 SRAM 可映射到 CPU 数据空间。外部 SRAM 最大可支持 8 MB。一次最多可映射 4 MB。支持 8-bit、16-bit 和 32-bit 访问。

说明:

芯片启动完成后,软件可以自定义外部 SRAM 或 flash 到 CPU 地址空间的映射。

3.1.4 存储器映射

ESP32 的地址映射结构如图 7 所示。ESP32 存储器和外设地址映射如表 7 所示。

图 7: 地址映射结构

表 7: 存储器和外设地址映射

种类	目标	开始地址	结束地址	大小
	内部 ROM 0	0x4000_0000	0x4005_FFFF	384 KB
	内部 ROM 1	0x3FF9_0000	0x3FF9_FFFF	64 KB
	内部 SRAM 0	0x4007_0000	0x4009_FFFF	192 KB
	H TO COAMA	0x3FFE_0000	0x3FFF_FFFF	100 KD
片上存储器	内部 SRAM 1	0x400A_0000	0x400B_FFFF	— 128 KB
	内部 SRAM 2	0x3FFA_E000	0x3FFD_FFFF	200 KB
	DTO 地本大地明	0x3FF8_0000	0x3FF8_1FFF	O ICD
	RTC 快速存储器	0x400C_0000	0x400C_1FFF	── 8 KB
	RTC 慢速存储器	0x5000_0000	0x5000_1FFF	8 KB
	ti 対t fleele	0x3F40_0000	0x3F7F_FFFF	4 MB
片外存储器	外部 flash	0x400C_2000	0x40BF_FFFF	11 MB+248 KB
	片外 RAM	0x3F80_0000	0x3FBF_FFFF	4 MB
	DPort 寄存器	0x3FF0_0000	0x3FF0_0FFF	4 KB
	AES 加速器	0x3FF0_1000	0x3FF0_1FFF	4 KB
	RSA 加速器	0x3FF0_2000	0x3FF0_2FFF	4 KB
	SHA 加速器	0x3FF0_3000	0x3FF0_3FFF	4 KB
	安全启动	0x3FF0_4000	0x3FF0_4FFF	4 KB
	Cache MMU Table	0x3FF1_0000	0x3FF1_3FFF	16 KB
	PID 控制器	0x3FF1_F000	0x3FF1_FFFF	4 KB
	UART0	0x3FF4_0000	0x3FF4_0FFF	4 KB
	SPI1	0x3FF4_2000	0x3FF4_2FFF	4 KB
	SPI0	0x3FF4_3000	0x3FF4_3FFF	4 KB
	GPIO	0x3FF4_4000	0x3FF4_4FFF	4 KB
	RTC	0x3FF4_8000	0x3FF4_8FFF	4 KB
	IO MUX	0x3FF4_9000	0x3FF4_9FFF	4 KB
	SDIO Slave	0x3FF4_B000	0x3FF4_BFFF	4 KB
	UDMA1	0x3FF4_C000	0x3FF4_CFFF	4 KB
外设	12S0	0x3FF4_F000	0x3FF4_FFFF	4 KB
	UART1	0x3FF5_0000	0x3FF5_0FFF	4 KB
	I2C0	0x3FF5_3000	0x3FF5_3FFF	4 KB
	UDMA0	0x3FF5_4000	0x3FF5_4FFF	4 KB
	SDIO Slave	0x3FF5_5000	0x3FF5_5FFF	4 KB
	RMT	0x3FF5_6000	0x3FF5_6FFF	4 KB
	PCNT	0x3FF5_7000	0x3FF5_7FFF	4 KB
	SDIO Slave	0x3FF5_8000	0x3FF5_8FFF	4 KB
	LED PWM	0x3FF5_9000	0x3FF5_9FFF	4 KB
	eFuse 控制器	0x3FF5_A000	0x3FF5_AFFF	4 KB
	Flash 加密	0x3FF5_B000	0x3FF5_BFFF	4 KB
	PWM0	0x3FF5_E000	0x3FF5_EFFF	4 KB
	TIMG0	0x3FF5_F000	0x3FF5_FFFF	4 KB
	TIMG1	0x3FF6_0000	0x3FF6_0FFF	4 KB
	SPI2	0x3FF6_4000	0x3FF6_4FFF	4 KB
	SPI3	0x3FF6_5000	0x3FF6_5FFF	4 KB

种类	目标	开始地址	结束地址	大小
	SYSCON	0x3FF6_6000	0x3FF6_6FFF	4 KB
	I2C1	0x3FF6_7000	0x3FF6_7FFF	4 KB
	SDMMC	0x3FF6_8000	0x3FF6_8FFF	4 KB
	EMAC	0x3FF6_9000	0x3FF6_AFFF	8 KB
 外设	TWAI	0x3FF6_B000	0x3FF6_BFFF	4 KB
外収	PWM1	0x3FF6_C000	0x3FF6_CFFF	4 KB
	I2S1	0x3FF6_D000	0x3FF6_DFFF	4 KB
	UART2	0x3FF6_E000	0x3FF6_EFFF	4 KB
	PWM2	0x3FF6_F000	0x3FF6_FFFF	4 KB
	PWM3	0x3FF7_0000	0x3FF7_0FFF	4 KB
	RNG	0x3FF7_5000	0x3FF7_5FFF	4 KB

定时器和看门狗 3.2

3.2.1 64-bit 通用定时器

芯片内置 4 个 64-bit 通用定时器, 具有 16-bit 分频器和 64-bit 可自动重载的向上/向下计时器。

定时器特性:

- 16-bit 时钟分频器,分频系数为2至65536
- 64-bit 计时器
- 计时器方向可配置: 递增或递减
- 软件控制计数暂停和继续
- 定时器超时自动重载
- 软件控制的即时重载
- 电平触发中断和边沿触发中断

详细信息请参考《ESP32 技术参考手册》中的定时器组 (TIMG) 章节。

3.2.2 看门狗定时器

芯片中有 3 个看门狗定时器: 2 个定时器模块中各有 1 个(称作主看门狗定时器,即 MWDT), RTC 模块中也 有 1 个(称作 RTC 看门狗定时器,即 RWDT)。意外的软件或硬件问题会导致应用程序工作失常,而看门狗定 时器可以帮助系统从中恢复。看门狗定时器有4个阶段。如果当前阶段超过预定时间,但没有喂狗或关闭看门 狗定时器,可能引发以下3到4种动作中的1种。这些动作是:中断、CPU复位、内核复位和系统复位。其中, 只有 RWDT 能够触发系统复位,将复位包括 RTC 在内的整个芯片。每个阶段的超时时间长度均可单独设 置.。

在 flash 启动期间, RWDT 和第一个 MWDT 会自动开启, 以便检测和修复启动问题。

看门狗具有以下特性:

- 4个阶段,每一阶段都可被单独配置或关闭
- 各阶段时间段可被编程

- 如阶段超时,会采取3到4种可能动作中的1种(中断、CPU复位、内核复位和系统复位)
- 32-bit 超时计数器
- 写保护, 防止 RWDT 和 MWDT 配置被误写
- SPI flash 启动保护;如果在预定时间内,来自 SPI flash 的启动过程没有完成,看门狗会重启整个系统。

详细信息请参考《ESP32 技术参考手册》中的看门狗定时器 (WTD) 章节。

3.3 系统时钟

3.3.1 CPU 时钟

一旦重启,外置主晶振时钟源会被选为默认的 CPU 时钟。这个外置晶振也会与 PLL 连接产生一个高频时钟 (通常为 160 MHz)。

另外,ESP32 内置了一个 8 MHz 的振荡器。应用程序可以在外置主晶振、PLL 时钟和内置 8 MHz 时钟中选择一个作为时钟源。根据不同的应用程序,被选择的时钟源直接或在分频之后驱动 CPU 时钟。

3.3.2 RTC 时钟

RTC 时钟有 5 种可能的时钟源:

- 外置低速 (32 kHz) 晶振时钟
- 外置主晶振的 4 分频时钟
- 内置 RC 振荡器 (通常为 150 kHz, 频率可调节)
- 内置 8 MHz 振荡器时钟
- 内置 31.25 kHz 时钟(由内置 8 MHz 振荡器时钟经 256 分频生成)

当芯片处于正常功耗模式且需要更快速的 CPU 访问时,应用程序可选择外置主晶振的 4 分频时钟或者内置 8 MHz 振荡器时钟。当芯片在低功耗模式下运行时,应用程序可选择外部低速 (32 kHz) 晶振时钟、内置 RC 振荡器时钟或内置 31.25 kHz 时钟。

3.3.3 音频 PLL 时钟

音频时钟由超低噪声 fractional-N PLL 生成。详细信息请参考 《ESP32 技术参考手册》中的<u>复位和时钟</u>章节。

3.4 射频

芯片射频包含以下主要模块:

- 2.4 GHz 接收器
- 2.4 GHz 发射器
- 偏置 (bias) 和线性稳压器
- Balun 和收发切换器
- 时钟生成器

3.4.1 2.4 GHz 接收器

2.4 GHz 接收器将 2.4 GHz 射频信号解调为正交基带信号,并用 2 个高精度、高速的 ADC 将后者转为数字信号。为了适应不同的信道情况,芯片集成了 RF 滤波器、自动增益控制 (AGC)、DC 偏移补偿电路和基带滤波器。

3.4.2 2.4 GHz 发射器

2.4 GHz 发射器将正交基带信号调制为 2.4 GHz 射频信号,使用大功率互补金属氧化物半导体 (CMOS) 功率放大器驱动天线。数字校准进一步改善了功率放大器的线性,使得 802.11b 无线传输功率可达 +20.5 dBm, 802.11n 无线传输功率可达 +18 dBm。

为了抵消射频接收器的瑕疵,芯片还另增了校准措施,例如:

- 载波泄露消除
- I/Q 相位匹配
- 基带非线性抑制
- 射频非线性抑制
- 天线匹配

这些内置校准措施缩短了产品的测试时间,不再需要测试设备。

3.4.3 时钟生成器

时钟生成器为接收器和发射器生成 2.4 GHz 正交时钟信号,所有部件均集成于芯片上,包括电感、变容二极管、环路滤波器、线性稳压器和分频器。

时钟生成器含有内置校准电路和自测电路。运用拥有自主知识产权的校准算法,正交时钟相噪特性在片上经过 算法优化处理(该算法拥有自主知识产权),以确保接收器和发射器达到最佳性能。

3.5 Wi-Fi

芯片支持 TCP/IP 协议,完全遵循 802.11 b/g/n Wi-Fi MAC 协议栈,支持分布式控制功能 (DCF) 下的基本服务 集 (BSS) STA 和 SoftAP 操作。支持通过最小化主机交互来优化有效工作时长,以实现功耗管理。

3.5.1 Wi-Fi 射频和基带

Wi-Fi 射频和基带支持以下特性:

- 802.11 b/g/n
- 802.11 n MCS0-7 支持 20 MHz 和 40 MHz 带宽
- 802.11 n MCS32 (RX)
- 802.11 n 0.4 μs 保护间隔
- 数据率高达 150 Mbps
- 接收 STBC 2×1
- 发射功率高达 20.5 dBm

- 可调节的发射功率
- 天线分集

芯片支持带有外部射频开关的天线分集与选择。外部射频开关由一个或多个 GPIO 管脚控制,用来选择最合适的天线以减少信道衰减的影响。

3.5.2 Wi-Fi MAC

Wi-Fi MAC 自行支持的底层协议功能如下:

- 4× 虚拟 Wi-Fi 接口
- 同时支持基础结构型网络 (Infrastructure BSS) Station 模式/SoftAP 模式/混杂模式
- RTS 保护, CTS 保护, 立即块确认 (Immediate Block ACK)
- 重组 (Defragmentation)
- TX/RX A-MPDU, RX A-MSDU
- TXOP
- 无线多媒体 (WMM)
- CCMP (CBC-MAC, 计数器模式)、TKIP (MIC, RC4)、WAPI (SMS4)、WEP (RC4)和 CRC
- 自动 Beacon 监测 (硬件 TSF)

3.6 蓝牙

芯片集成了蓝牙链路控制器和蓝牙基带,支持基带协议和其他底层链路协议,例如调制/解调、包处理、比特流处理和跳频等。

3.6.1 蓝牙射频和基带

芯片蓝牙射频和基带支持以下特性:

- Class-1、Class-2 和 Class-3 发射输出功率,动态控制范围高达 21 dB
- π/4 DQPSK 和 8 DPSK 调制
- NZIF 接收器灵敏度高,最小灵敏度达 -94 dBm
- 无需外部 PA 即可支持 Class-1 操作
- 内置 SRAM 支持全速数据传送、混合语音和数据以及完整的微微网 (Piconet) 运行
- 用于前向纠错、包头错误控制、接入码检查、CRC、解调、加密比特流生成、白化和发送脉冲成形的逻辑 电路
- ACL、SCO、eSCO 和 AFH
- PCM 接口中的 A-law、 μ -law 和 CVSD 数字音频编解码
- SBC 音频编解码
- 低功耗应用的电源管理

• 带有 128-bit AES 的 SMP

3.6.2 蓝牙接口

- 提供 UART HCI 接口,速度高达 4 Mbps
- 提供 SDIO/SPI HCI 接口
- 提供 PCM/I2S 音频接口

3.6.3 蓝牙协议栈

芯片的蓝牙协议栈支持蓝牙 v4.2 BR/EDR 和 Bluetooth LE 标准。

3.6.4 蓝牙链路控制器

链路控制器主要可实现 3 种操作: Standby、Connection 和 Sniff。可实现多路连接以及查询、寻呼和安全简易配对 (SSP) 等操作,因此能够组建微微网 (Piconet) 和散射网 (Scatternet)。以下为链路控制器的主要特性:

- 传统蓝牙
 - 设备发现(查询和查询扫描)
 - 建立连接 (寻呼和寻呼扫描)
 - 多连接
 - 支持异步数据收发
 - 同步连接 (SCO/eSCO)
 - 主从切换
 - 自适应跳频 (AFH) 和信道选择
 - 加密广播
 - 授权和加密
 - 安全简易配对 (SSP)
 - 多点连接和散射网管理
 - Sniff (呼吸) 模式
 - 非连接的从模式广播(收发)
 - 增强型功率控制
 - Ping
- 低功耗蓝牙
 - 广播
 - 扫描
 - 支持同时广播和扫描

- 多连接
- 异步数据收发
- 自适应跳频和信道选择
- 连接参数更新
- 支持扩展的数据包长度
- 链路层加密
- LE Ping

3.7 RTC 和低功耗管理

ESP32 采用了先进的电源管理技术,可以在不同的功耗模式之间切换。

- 功耗模式
 - Active 模式:芯片射频处于工作状态。芯片可以接收、发射和侦听信号。
 - Modem-sleep 模式: CPU 可运行,时钟可被配置。Wi-Fi/蓝牙基带和射频关闭。
 - **Light-sleep 模式**: CPU 暂停运行。RTC 存储器和外设以及 ULP 协处理器运行。任何唤醒事件 (MAC、主机、RTC 定时器或外部中断) 都会唤醒芯片。
 - **Deep-sleep 模式**: CPU 和大部分外设都会掉电,只有 RTC 存储器和 RTC 外设处于工作状态。Wi-Fi 和蓝牙连接数据存储在 RTC 中。ULP 协处理器可以工作。
 - Hibernation 模式: 内置的 8 MHz 振荡器和 ULP 协处理器均被禁用。RTC 内存恢复电源被切断。只有 1 个位于低速时钟上的 RTC 时钟定时器和某些 RTC GPIO 在工作。RTC 时钟定时器或 RTC GPIO 可以将芯片从 Hibernation 模式中唤醒。

设备在不同的功耗模式下有不同的电流消耗,详情请见下表。

表 8: 不同功耗模式下的功耗

功耗模式	描述			功耗
	Wi-Fi Tx packet			
Active (射频工作)	V	详见表 17		
	V	/i-Fi/BT Rx 和侦听		1
		* 240 MHz	双核芯片	30 mA ~ 68 mA
		240 IVIM2 	单核芯片	N/A
Madam alaan	CPU 处于工作状态	160 MHz	双核芯片	27 mA ~ 44 mA
Modem-sleep			单核芯片	27 mA ~ 34 mA
		正常速度: 80 MHz	双核芯片	20 mA ~ 31 mA
			单核芯片	20 mA ~ 25 mA
Light-sleep	-			0.8 mA
	ULP 协处理器处于工作状态			150 μA
Deep-sleep	超低功耗传感器监测方式			100 μA @1% duty
	RTC 定时器 + RTC 存储器			10 <i>μ</i> A
Hibernation	仅有 RTC 定时器处于工作状态			5 μΑ
关闭	CHIP_PU 脚拉低,芯片处于关闭状态			1 μΑ

说明:

- *ESP32 系列芯片中, ESP32-D0WD-V3、ESP32-D0WDR2-V3、ESP32-U4WDH、ESP32-D0WD (NRND)、ESP32-D0WDQ6-V3 (NRND) 和 ESP32-D0WDQ6 (NRND) 的 CPU 最大频率为 240 MHz; ESP32-S0WD (NRND) 的 CPU 最大频率为 160 MHz。
- 在 Wi-Fi 开启的场景中,芯片会在 Active 和 Modem-sleep 模式之间切换,功耗也会在两种模式间变化。
- Modem-sleep 模式下,CPU 频率自动变化,频率取决于 CPU 负载和使用的外设。
- Deep-sleep 模式下,仅 ULP 协处理器处于工作状态时,可以操作 GPIO 及低功耗 I2C。
- 当系统处于超低功耗传感器监测模式时,ULP 协处理器和传感器周期性工作,ADC 以 1% 占空比工作,系统功 耗典型值为 100 μ A。

4 外设接口和传感器

4.1 外设和传感器描述

4.1.1 通用输入/输出接口 (GPIO)

ESP32 共有 34 个 GPIO 管脚,通过配置对应的寄存器,可以为这些管脚分配不同的功能,包括如下几类 GPIO:只有数字功能的 GPIO、带模拟功能的 GPIO、带电容触摸功能的 GPIO 等。带模拟功能的 GPIO 和带电容触摸功能的 GPIO 可以被配置为数字 GPIO。

大部分带数字功能的 GPIO 都可以被配置为内部上拉/下拉,或者被设置为高阻。当被配置为输入时,可通过读取寄存器获取输入值。输入管脚也可以被设置为通过边缘触发或电平触发来产生 CPU 中断。大部分数字 IO 管脚都是双向、非反相和三态的,包括带有三态控制的输入和输出缓冲器。这些管脚可以复用作其他功能,例如SDIO、UART、SPI 等(更多信息请参考附录 IO_MUX)。当芯片低功耗运行时,GPIO 可被设定为保持状态。

详细信息请参考《ESP32 技术参考手册》中的 IO MUX 和 GPIO 交换矩阵 (GPIO, IO MUX) 章节。

4.1.2 模/数转换器 (ADC)

ESP32 集成了 12-bit SAR ADC, 共支持 18 个模拟通道输入。为了实现更低功耗, ESP32 的 ULP 协处理器也可以在睡眠方式下测量电压,此时,可通过设置阈值或其他触发方式唤醒 CPU。

通过适当的设置, 最多可配置 18 个管脚的 ADC, 用于电压模数转换。

表 9 描述了 ADC 特性:

表 9: ADC 特性

参数	描述	最小值	最大值	单位
DNL (差分非线性)	RTC 控制器; ADC 外接 100 nF 电容;	-7	7	LSB
INL (积分非线性)	输入为 DC 信号; 常温 25°C; Wi-Fi&BT 关闭	-12	12	LSB
采样速度	RTC 控制器	-	200	ksps
木件 坯及	DIG 控制器	-	2	Msps

说明:

- Atten = 3 时,测量值大于 3000(电压值约为 2450 mV)之后,精度会比上表所述低。
- 使用过滤器多次采样或计算平均值可以获得更好的 DNL 结果。
- VDD3P3_RTC 电源域的 GPIO 管脚输入电压范围请严格遵守表 15 直流电气特性规范,否则会引入 ADC 测量误差,且影响芯片正常工作。

默认情况下,芯片之间的测量差异会有 ±6%。ESP-IDF 提供了对 ADC1 的多种校准方法。使用 eFuse Vref 参考值校准后的结果如表 10 所示。用户如需要更高的精度可选用其他方法自行校准。

表 10: ADC 校准结果

参数	描述	最小值	最大值	单位
	Atten = 0, 有效测量范围 100 ~ 950 mV	-23	23	mV
 总误差	Atten = 1, 有效测量范围 100 ~ 1250 mV	-30	30	mV

Atten = 2, 有效测量范围 150 ~ 1750 mV	-40	40	mV	
Atten = 3, 有效测量范围 150 ~ 2450 mV	-60	60	mV	

详细信息请参考《ESP32技术参考手册》中的片上传感器与模拟信号处理章节。

4.1.3 霍尔传感器

ESP32 集成的霍尔传感器是基于空穴 (N-carrier) 电阻设计的。当芯片置于电磁场中时,霍尔传感器会在电阻上 横向产生一个小电压,这个小电压可由 ADC 直接测量。详细信息请参考 《ESP32 技术参考手册》中 的片上传感器与模拟信号处理章节。

4.1.4 数/模转换器 (DAC)

ESP32 有 2 个 8-bit DAC 通道, 将 2 路数字信号分别转化为 2 个模拟电压信号输出,两个通道可以独立地工 作。DAC 电路由内置电阻串和 1 个缓冲器组成。这 2 个 DAC 可以作为参考电压使用。详细信息请参考 《ESP32 技术参考手册》中的片上传感器与模拟信号处理章节。

4.1.5 触摸传感器

ESP32 提供了多达 10 个电容式传感 GPIO, 能够探测由手指或其他物品直接接触或接近而产生的电容差异。这 种设计的低噪声特性和电路的高灵敏度支持使用相对较小的触摸板。也可以使用触摸板阵列以探测更大区域或 更多点。表 11 列出了 10 个电容式传感 GPIO。

电容式传感信号名称	管脚名称
ТО	GPIO4
T1	GPIO0
T2	GPIO2
T3	MTDO
T4	MTCK
T5	MTDI
T6	MTMS
T7	GPIO27
T8	32K_XN
T9	32K_XP

表 11: ESP32 上的电容式传感 GPIO

详细信息请参考《ESP32技术参考手册》中的片上传感器与模拟信号处理章节。

4.1.6 超低功耗协处理器 (ULP)

ULP 处理器和 RTC 存储器在 Deep-sleep 模式下仍保持工作状态。因此, 开发者可以将 ULP 协处理器的程序存 放在 RTC 慢速存储器中, 使其能够在 Deep-sleep 模式下访问外设、内置定时器和内置传感器。在 CPU 需要由 外部事件、定时器或者这些事件的组合来唤醒的应用中,可用于保持最低的功耗。

详细信息请参考《ESP32 技术参考手册》中的超低功耗协处理器 (ULP) 章节。

4.1.7 以太网 MAC 接口

ESP32 为以太网通信提供了一个符合 IEEE-802.3-2008 标准的媒体访问控制器 (MAC) 接口。ESP32 需要一个外部物理层接口芯片 (PHY) 来连接实体 LAN 总线(双绞线、光纤等)。物理层接口芯片通过 17 个 MII 信号或 9个 RMII 信号与 ESP32 连接。以太网 MAC 接口 (EMAC) 支持以下特性:

- 10 Mbps 和 100 Mbps 的速率
- 专用的 DMA 控制器实现以太网 MAC 接口与专用 SRAM 之间的高速传输
- 带标记的 MAC 帧 (支持 VLAN)
- 半双工 (CSMA/CD) 和全双工操作
- MAC 控制子层(控制帧)
- 32-bit CRC 自动生成和消除
- 用于单播和组播地址(广播和组地址)的多种地址过滤模式
- 记录每个收发帧的 32-bit 状态码
- 内部 FIFO 用于缓存发射和接收帧。发送 FIFO 和接收 FIFO 均为 512 字 (32-bit)
- 符合 IEEE 1588 2008 (PTP V2) 标准的硬件 PTP (精确时间协议)
- 25 MHz/50 MHz 的时钟输出

详细信息请参考《ESP32 技术参考手册》中的以太网 (MAC) 章节。

4.1.8 SD/SDIO/MMC 主机控制器

ESP32 集成一个 SD/SDIO/MMC 主机控制器, 支持:

- SD 卡 3.0 和 3.01 版本
- SDIO 3.0 版本
- CE-ATA 1.1 版本
- 多媒体卡 (MMC 4.41 版本、eMMC 4.5 版本和 4.51 版本)

控制器实现了高达 80 MHz 的时钟输出,并且支持 3 种数据总线模式: 1 bit、4 bit 和 8 bit。在 4-bit 数据总线模式中,可以支持 2 个 SD/SDIO/MMC4.41 卡,还支持 1 个以 1.8 V 电压工作的 SD 卡。

详细信息请参考《ESP32 技术参考手册》中的 SD/MMC 主机控制器章节。

4.1.9 SDIO/SPI 从机控制器

ESP32 集成了符合工业标准 SDIO 2.0 规格的 SD 设备接口,并允许主机控制器使用 SDIO 总线协议访问 SoC 设备。ESP32 用作 SDIO 总线上的从机。主机可以直接访问 SDIO 接口的寄存器并通过使用 DMA 引擎访问设备中的共享内存,从而不需要处理器内核即可使性能最优化。

SDIO/SPI 从机控制器具有以下特性:

- 时钟范围为 0 至 50 MHz, 支持 SPI、1-bit SDIO 和 4-bit SDIO 的传输模式
- 采样和驱动的时钟边沿可配置

- 主机可直接访问的专用寄存器
- 可中断主机, 启动数据传输
- 支持自动填充 SDIO 总线上的发送数据,同样支持自动丢弃 SDIO 总线上的填充数据
- 字节块大小可达 512 字节
- 主机与从机间有中断向量可以相互中断对方
- 用于数据传输的 DMA

详细信息请参考《ESP32 技术参考手册》中的 SDIO 从机控制器章节。

4.1.10 通用异步收发器 (UART)

ESP32 有 3 个 UART 接口,即 UART0、UART1 和 UART2,支持异步通信(RS232 和 RS485)和 IrDA,通信速率可达到 5 Mbps。UART 支持 CTS 和 RTS 信号的硬件管理以及软件流控(XON 和 XOFF)。3 个接口均可被DMA 访问或者 CPU 直接访问。

详细信息请参考《ESP32 技术参考手册》中的 UART 控制器 (UART) 章节。

4.1.11 I2C 接口

ESP32 有 2 个 I2C 总线接口,根据用户的配置,总线接口可以用作 I2C 主机或从机模式。I2C 接口支持:

- 标准模式 (100 Kbit/s)
- 高速模式 (400 Kbit/s)
- 速度最高可达 5 MHz, 但受制于 SDA 上拉强度
- 7-bit/10-bit 寻址模式
- 双寻址模式

用户可以配置指令寄存器来控制 I2C 接口,从而实现更多灵活的应用。

详细信息请参考《ESP32 技术参考手册》中的 I2C 控制器 (I2C) 章节。

4.1.12 I2S 接口

ESP32 有 2 个标准 I2S 接口。这 2 个接口可以以主机或从机模式,在全双工或半双工模式下工作,并且可被配置为 8/16/32/48/64-bit 的输入输出通道,支持频率从 10 kHz 到 40 MHz 的 BCK 时钟。当 1 个或 2 个 I2S 接口被配置为主机模式时,主机时钟可以输出到外部 DAC/CODEC。

2个 I2S 接口都有专用的 DMA 控制器。支持 PDM 和 BT PCM 接口。

详细信息请参考《ESP32 技术参考手册》中的 I2S 控制器 (I2S) 章节。

4.1.13 红外遥控 (RMT)

RMT 支持 8 通道的红外发射和接收。通过程序控制脉冲波形,RMT 可以支持多种红外协议。8 个通道共用 1 个 512 x 32-bit 的存储模块来存放收发的波形。

详细信息请参考《ESP32 技术参考手册》中的红外遥控 (RMT) 章节。

4.1.14 脉冲计数器

脉冲计数器通过7种模式捕捉脉冲并对脉冲边沿计数。内部有8个通道,每个通道一次可同时捕捉4个信号。每组4个输入包括2个脉冲信号和2个控制信号。当计数器达到了设定的阈值,就会产生1个中断。

详细信息请参考《ESP32 技术参考手册》中的脉冲计数控制器 (PCNT) 章节。

4.1.15 脉冲宽度调制 (PWM)

PWM 控制器可以用于驱动数字马达和智能灯。该控制器包含 PWM 定时器、PWM 执行器和 1 个专用的捕捉子模组。定时器可以同步定时,也可以独立运行。每个 PWM 执行器为 1 个 PWM 通道生成波形。专用的捕捉子模组可以精确捕捉外部定时事件。

详细信息请参考《ESP32 技术参考手册》中的电机控制脉宽调制器 (PWM) 章节。

4.1.16 LED PWM

LED PWM 控制器可以生成 16 路独立的数字波形,波形的周期和占空比可配置。

16 路信号在 80 MHz APB 总线时钟下工作,其中 8 路信号还可以选择使用芯片内置的 8 MHz 振荡器时钟,可在 Light-sleep 模式下工作。每路信号可选择 1 个 20-bit 定时器,定时器的计数范围可配置,在输出信号周期为 1 ms 时,占空比的精确度可以高达 16 bit。

通过软件可以实时改变占空比。另外,每路 LED PWM 支持自动步进式地增加或减少占空比,可以用于 LED RGB 彩色梯度发生器。

详细信息请参考《ESP32 技术参考手册》中的 LED PWM 控制器 (LEDC) 章节。

4.1.17 串行外设接口 (SPI)

ESP32 共有 3 组 SPI (SPI、HSPI 和 VSPI) 接口,可以在主机或从机模式,在 1-line 全双工或 1/2/4-line 半双工通信模式下工作,作为通用 SPI 支持以下特性:

- 4 种模式的 SPI 传输格式,模式取决于 SPI 时钟的极性 (CPOL) 和相位 (CPHA)
- 最高支持到 80 MHz (实际可支持频率还受限于所用 pad、PCB 走线、外接器件规格等)
- 最高支持 64 byte 的 FIFO

所有 SPI 接口都可以连接外部 flash/SRAM 和 LCD。每一个 SPI 控制器都可连接到 DMA 通道。

详细信息请参考《ESP32 技术参考手册》中的 SPI 控制器 (SPI) 章节。

4.1.18 TWAI 控制器

ESP32 系列带有一个 TWAI® 控制器,具有如下特性:

- 兼容 ISO 11898-1 协议(CAN 规范 2.0)
- 支持标准格式(11-bit 标识符)和扩展格式(29-bit 标识符)
- 支持速率:
 - 芯片版本 v0.0/v1.0/v1.0 支持 25 Kbit/s ~ 1 Mbit/s 位速率
 - 芯片版本 v3.0/v3.1 支持 12.5 Kbit/s ~ 1 Mbit/s 位速率

• 支持多种操作模式: 正常模式、只听模式和自测模式

• 64 字节接收 FIFO

• 特殊发送: 单次发送和自发自收

• 接收滤波器(支持单滤波器和双滤波器模式)

• 错误检测与处理: 错误计数、错误报警限制可配置、错误代码捕捉和仲裁丢失捕捉

详细信息请参考 《ESP32 技术参考手册》中的双线汽车接口 (TWAI) 章节。

4.1.19 硬件加速器

ESP32 配备硬件加速器,支持一些通用加密算法,比如 AES (FIPS PUB 197)、SHA (FIPS PUB 180-4)、RSA 和 ECC 等,还支持大数乘法、大数模乘等独立运算。硬件加速器支持的 RSA、ECC、大数乘法和大数模乘运算最 大长度可达 4096 bit。

硬件加速器极大提高了运算速度,显著减小了软件的复杂度。硬件加速器还支持对 flash 的加密与动态解密,确保 flash 中的代码不被窃取。

4.2 外设管脚分配

表 12: 外设和传感器表

接口	信号	管脚	功能
	ADC1_CH0	SENSOR_VP	
	ADC1_CH1	SENSOR_CAPP	
	ADC1_CH2	SENSOR_CAPN	
ADC	ADC1_CH3	SENSOR_VN	2 个 12-bit SAR ADC
ADC	ADC1_CH4	32K_XP	2 2 1 12-bit SAN ADO
	ADC1_CH5	32K_XN	
	ADC1_CH6	VDET_1	
	ADC1_CH7	VDET_2	
	ADC2_CH0	GPIO4	
	ADC2_CH1	GPIO0	
	ADC2_CH2	GPIO2	
	ADC2_CH3	MTDO	
ADC	ADC2_CH4	MTCK	2 & 12 bit CAD ADC
ADC	ADC2_CH5	MTDI	2个12-bit SAR ADC
	ADC2_CH6	MTMS	
	ADC2_CH7	GPIO27	
	ADC2_CH8	GPIO25	
	ADC2_CH9	GPIO26	
DAC	DAC_1	GPIO25	2 个 8-bit DAC
DAC	DAC_2	GPIO26	2 / I O-DIL DAO

接口	信号	管脚	功能		
	TOUCH0	GPIO4			
	TOUCH1	GPIO0			
	TOUCH2	GPIO2			
	TOUCH3	MTDO			
施性	TOUCH4	MTCK			
触摸传感器	TOUCH5	MTDI	- 电容式触摸传感器		
	TOUCH6	MTMS			
	TOUCH7	GPIO27			
	TOUCH8	32K_XN			
	TOUCH9	32K_XP			
	MTDI	MTDI			
JTAG	MTCK	MTCK	<i>拉</i> /快運計 ITA ○		
JIAG	MTMS	MTMS	— 软件调试 JTAG		
	MTDO	MTDO			
	HS2_CLK	MTMS			
	HS2_CMD	MTDO			
SD/SDIO/MMC 主机	HS2_DATA0	GPIO2	+#. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
控制器	HS2_DATA1	GPIO4	─ 支持 V3.01 标准 SD 内存卡		
	HS2_DATA2	MTDI			
	HS2_DATA3	MTCK			
	PWM0_OUT0~2				
	PWM1_OUT_IN0~2				
	PWM0_FLT_IN0~2		16-bit 计时器的 3 路通道可产生 PWM 测		
H +H D\\\\\	PWM1_FLT_IN0~2	な金 CDIO 徳剛	形,每路包括1对输出信号、3个故障检		
电机 PWM	PWM0_CAP_IN0~2	任意 GPIO 管脚	测信号、3个事件捕捉信号,及3个同步		
	PWM1_CAP_IN0~2		信号。		
	PWM0_SYNC_IN0~2				
	PWM1_SYNC_IN0~2				
	SD_CLK	MTMS			
	SD_CMD	MTDO			
SDIO/SPI 从机控制器	SD_DATA0	GPIO2	│ │ SDIO 接口,符合 SDIO V2.0 卡行业标准。		
	SD_DATA1	GPIO4	Oble 1g H, All Oble V2.0 Miles		
	SD_DATA2	MTDI			
	SD_DATA3	MTCK			
	U0RXD_in				
	U0CTS_in				
	U0DSR_in				
	U0TXD_out				
	U0RTS_out				
	U0DTR_out				
UART	U1RXD_in	】 · 任意 GPIO 管脚	3 路 UART 设备,支持硬件流控制和 DMA		
O/NITI	U1CTS_in	正志 切 10 日脚	O E O C I Q E , 又 对 实 广		
	U1TXD_out				
	U1RTS_out				
	U2RXD_in				

接口	信号	管脚	功能
	U2CTS_in		
	U2TXD_out		
	U2RTS_out		
	I2CEXT0_SCL_in		
	I2CEXTO_SDA_in		
	I2CEXT1_SCL_in		
12C	I2CEXT1_SDA_in	な辛 ○□○ 然即	
	I2CEXT0_SCL_out	任意 GPIO 管脚	2 路 I2C 设备,支持主机或从机模式
	I2CEXTO_SDA_out		
	I2CEXT1_SCL_out		
	I2CEXT1_SDA_out		
LED PWM	ledc_hs_sig_out0~7	た辛 CDIO 無脚	16 路独立通道;采用 @80 MHz 时钟/RTC
	ledc_ls_sig_out0~7	任意 GPIO 管脚	时钟。占空比精确度: 16-bit。
	I2S0I_DATA_in0~15		
	I2S0O_BCK_in		
	12S0O_WS_in		
	I2S0I_BCK_in		
	12S0I_WS_in		
	I2S0I_H_SYNC		
	I2S0I_V_SYNC		
	I2S0I_H_ENABLE		用于串行立体声数据的输入输出,并行
	I2S0O_BCK_out		LCD 数据的输出,camera 并行数据的输
	12S0O_WS_out		人。
	I2S0I_BCK_out		/(°
	I2S0I_WS_out		注: I2S0_CLK 和 I2S1_CLK 仅可通过 IO
128	I2S0O_DATA_out0~23	 任意 GPIO 管脚	MUX 映射至 GPIO0、U0RXD (GPIO3) 或
120	I2S1I_DATA_in0~15		U0TXD (GPIO1),选择 GPIO 功能
	I2S1O_BCK_in		CLK_OUT1、CLK_OUT2 或 CLK_OUT3。
	I2S1O_WS_in		更多信息,请参考_《ESP32
	I2S1I_BCK_in		技术参考手册》 中的表 4-3. IO MUX Pad
	I2S1I_WS_in		列表。
	I2S1I_H_SYNC		
	I2S1I_V_SYNC		
	I2S1I_H_ENABLE		
	I2S1O_BCK_out		
	I2S10_WS_out		
	I2S1I_BCK_out		
	12S1I_WS_out		
	I2S10_DATA_out0~23	00100	
	I2SO_CLK	GPIOO、UORXD、	
	I2S1_CLK	或 U0TXD	
 红外遥控器	RMT_SIG_IN0~7	 任意 GPIO 管脚	8路IR收发器,支持不同波形标准。
	RMT_SIG_OUT0~7	- 5	

接口	信号	管脚	功能
	HSPIQ_in/_out		
	HSPID_in/_out		
	HSPICLK_in/_out		Standard SPI 接口包括时钟、片选、MOSI
	HSPI_CS0_in/_out		和 MISO。这些接口可连接至 LCD 等外设
	HSPI_CS1_out		设备,支持以下功能:
)3 III ODI	HSPI_CS2_out		• 主机和从机模式;
通用 SPI	VSPIQ_in/_out	任意 GPIO 管脚	• 4 种模式的 SPI 传输格式;
	VSPID_in/_out		• 可配置 SPI 频率;
	VSPICLK_in/_out		● 高达 64 字节 FIFO 和 DMA。
	VSPI_CS0_in/_out		
	VSPI_CS1_out		
	VSPI_CS2_out		
	SPIHD	SD_DATA_2	
	SPIWP	SD_DATA_3	1
	SPICS0	SD_CMD	1
	SPICLK	SD_CLK	1
	SPIQ	SD_DATA_0	1
	SPID	SD_DATA_1	
	HSPICLK	MTMS	
	HSPICS0	MTDO	
** 000	HSPIQ	MTDI	支持 Standard SPI、Dual SPI和 Quad SPI。
并行 QSPI	HSPID	MTCK	可以连接外部 Flash 和 SRAM。
	HSPIHD	GPIO4	
	HSPIWP	GPIO2	
	VSPICLK	GPIO18	
	VSPICS0	GPIO5	
	VSPIQ	GPIO19	
	VSPID	GPIO23	
	VSPIHD	GPIO21	
	VSPIWP	GPIO22	1
	EMAC_TX_CLK	GPIO0	
	EMAC_RX_CLK	GPIO5	1
	EMAC_TX_EN	GPIO21	1
	EMAC_TXD0	GPIO19	1
	EMAC_TXD1	GPIO22	1
	EMAC_TXD2	MTMS	7
	EMAC_TXD3	MTDI	7
	EMAC_RX_ER	MTCK	
	EMAC_RX_DV	GPIO27	
	EMAC_RXD0	GPIO25	
EMAC	EMAC_RXD1	GPIO26	以太网 MAC、MII/RMII 接口
	EMAC_RXD2	U0TXD	
	EMAC_RXD3	MTDO	
	EMAC_CLK_OUT	GPIO16	
	EMAC_CLK_OUT_180	GPIO17	

接口	信号	管脚	功能
	EMAC_TX_ER	GPIO4	
	EMAC_MDC_out	任意 GPIO 管脚	
	EMAC_MDI_in	任意 GPIO 管脚	_
	EMAC_MDO_out	任意 GPIO 管脚	
	EMAC_CRS_out	任意 GPIO 管脚	
	EMAC_COL_out	任意 GPIO 管脚	
	pcnt_sig_ch0_in0		
	pcnt_sig_ch1_in0		
	pcnt_ctrl_ch0_in0		
	pcnt_ctrl_ch1_in0		
	pcnt_sig_ch0_in1		
	pcnt_sig_ch1_in1		
	pcnt_ctrl_ch0_in1		
	pcnt_ctrl_ch1_in1		
	pcnt_sig_ch0_in2		
	pcnt_sig_ch1_in2		
	pcnt_ctrl_ch0_in2		
	pcnt_ctrl_ch1_in2		
	pcnt_sig_ch0_in3	/ A C C D C	
	pcnt_sig_ch1_in3		
	pcnt_ctrl_ch0_in3		
 脉冲计数器	pcnt_ctrl_ch1_in3		脉冲计数器通过7种模式捕捉脉冲并对脉
加小中 11 安人有計	pcnt_sig_ch0_in4	- 任意 GPIO 管脚	冲边沿计数。
	pcnt_sig_ch1_in4		
	pcnt_ctrl_ch0_in4		
	pcnt_ctrl_ch1_in4		
	pcnt_sig_ch0_in5		
	pcnt_sig_ch1_in5		
	pcnt_ctrl_ch0_in5		
	pcnt_ctrl_ch1_in5		
	pcnt_sig_ch0_in6		
	pcnt_sig_ch1_in6		
	pcnt_ctrl_ch0_in6		
	pcnt_ctrl_ch1_in6		
	pcnt_sig_ch0_in7		
	pcnt_sig_ch1_in7		
	pcnt_ctrl_ch0_in7		
	pcnt_ctrl_ch1_in7		
	twai_rx		
T\\/\I	twai_tx	红辛 CDIO 역m	★☆ ICO11909 1 H-W (CAN 桐井 2.0)
TWAI	twai_bus_off_on	- 任意 GPIO 管脚	兼容 ISO11898-1 协议(CAN 规范 2.0)
	twai_clkout		

5 电气特性

5.1 绝对最大额定值

超出绝对最大额定值可能导致器件永久性损坏。这只是强调的额定值,不涉及器件的功能性操作。建议工作条件请参考表 14。

符号	参数	最小值	最大值	单位
VDDA, VDD3P3, VDD3P3_RTC,	电源管脚电压	-0.3	3.6	\/
VDD3P3_CPU, VDD_SDIO	电你官脚电压 	-0.3	3.0	V
l _{output} *	IO 输出总电流	-	1200	mA
T_{store}	存储温度	-40	150	°C

表 13: 绝对最大额定值

5.2 建议工作条件

表 14: 建议工作条件

符号	参数	最小值	典型值	最大值	单位
VDDA, VDD3P3, VDD3P3_RTC note 1, VDD_SDIO (3.3 V mode) note 2	电源管脚电压	2.3/3.0 ^{note 3}	3.3	3.6	V
VDD3P3_CPU	电源管脚电压	1.8	3.3	3.6	V
I_{VDD}	外部电源的供电电流	0.5	-	-	А
T note 4	工作温度	-40	-	125	°C

- 1. 写 eFuse 时, VDD3P3_RTC 应至少 3.3 V。
- 2. VDD_SDIO 为 IO 的供电电源,通常也作为外接设备的供电电源。具体信息可参考附录 IO_MUX。
 - VDD_SDIO 可由 ESP32 的 VDD3P3_RTC 生成:
 - 当 VDD_SDIO 处于 3.3 V 模式时,由 VDD3P3_RTC 通过约 6 Ω 电阻直接供电。因此,VDD_SDIO 相对 VDD3P3_RTC 会有一定电压降。
 - 当 VDD_SDIO 处于 1.8 V 模式时,由 ESP32 内部的 LDO 产生。LDO 能提供的最大电流为 40 mA,输出电 压范围为 1.65 V ~ 2.0 V。
 - VDD_SDIO 也可由外部电源供电。
 - 更多信息请参考章节 2.3 电源管理。
- 3. ◆ 内置了 3.3 V flash/PSRAM 的芯片,此处电压最小值为 3.0 V;
 - 其它无内置 flash/PSRAM 的芯片,此处电压最小值为 2.3 V;
 - 更多信息请查看表 25 产品型号和订购信息。
- 4. 由于 ESP32-U4WDH 的内置 flash 工作温度为–40 °C ~ 105 °C,所以 ESP32-U4WDH 芯片的整体工作温度为–40 °C ~ 105 °C。
 - 由于 ESP32-D0WDR2-V3 的内置 PSRAM 工作温度为-40 °C ~ 85 °C, 所以 ESP32-D0WDR2-V3 芯片的整体工作温度为-40 °C ~ 85 °C。
 - ESP32 系列中其他型号的芯片无内置 flash 或 PSRAM, 工作温度为-40 °C ~ 125 °C。

^{*} 芯片的 IO 输出总电流的测条件为 25 °C 环境温度,VDD3P3_RTC, VDD3P3_CPU, VDD_SDIO 三个电源域的管脚输出高电平且直接接地。此时芯片在保持工作状态 24 小时后,仍能正常工作。

5.3 直流电气特性 (3.3 V, 25 °C)

表 15: 直流电气特性 (3.3 V, 25 °C)

符号	参数		最小值	典型值	最大值	单位
C_{IN}	管脚电容		-	2	-	рF
V_{IH}	高电平输入电压		$0.75 \times VDD^1$	-	VDD ¹ +0.3	V
V_{IL}	低电平输入电压		-0.3	ı	$0.25 \times VDD^1$	V
$ I_{IH} $	高电平输入电流		-	1	50	nA
$ I_{IL} $	低电平输入电流		-	ı	50	nA
V_{OH}	高电平输出电压		0.8×VDD ¹	ı	-	V
V_{OL}	低电平输出电压		-	-	0.1×VDD ¹	V
	高电平拉电流 (VDD ¹ = 3.3 V,	VDD3P3_CPU 电 源域 ^{1, 2}	-	40	-	mA
$ _{OH}$	$V_{OH} >= 2.64 \text{ V},$	VDD3P3_RTC 电 源域 ^{1, 2}	-	40	-	mA
	管脚输出强度设为 最大值)	VDD_SDIO 电源 域 ^{1,3}	-	20	-	mA
I_{OL}	低电平灌电流 $(VDD^1 = 3.3 \text{ V}, V_{OL} = 0.495 \text{ V},$ 管脚输出强度设为最大值)		-	28	-	mA
R_{PU}	上拉电阻		-	45	-	kΩ
R_{PD}	下拉电阻		-	45	-	kΩ
V_{IL_nRST}	CHIP_PU 关闭芯片的低	电平输入电压	-	-	0.6	V

说明:

- 1. VDD 是 I/O 的供电电源,具体请参考附录 IO_MUX。
- 2. VDD3P3_CPU 和 VDD3P3_RTC 电源域的单个管脚的拉电流随管脚数量增加而减小,从约 40 mA 减小到约 29 mA。
- 3. VDD_SDIO 电源域的单个管脚的拉电流随管脚数量增加而减小, 从约 30 减小到约 10 mA。

5.4 可靠性

ESP32 系列芯片已通过表 16 所列的可靠性测试项目。

表 16: 可靠性

测试项目	测试条件	测试标准	
HTOL (高温工作寿命)	125 °C,1000 小时	JESD22-A108	
ESD (静电放电敏感度)	HBM(人体放电模式)1 ± 2000 V	JESD22-A114	
LOD (靜电)以电敏感度)	CDM (充电器件模式) ² ± 500 V	JESD22-C101F	
闩锁测试 (Latch-up)	过电流 ± 200 mA	JESD78	
一	过电压 1.5 × VDD _{max}	JEGD70	
	烘烤: 125°C, 24 小时	J-STD-020	
预处理测试	浸泡:三级 (30°C, 60% RH, 192 小时)	JESD47	
	回流焊: 260 + 0°C, 20 秒, 三次	JESD22-A113	
TCT (温度循环测试)	-65 °C / 150 °C,500 次循环	JESD22-A104	
高压蒸煮试验	121 °C,100% RH,96 小时	JESD22-A102	

测试项目	测试条件	测试标准
uHAST(无偏压高加速温 湿度应力试验)	130 °C,85% RH,96 小时	JESD22-A118
HTSL (高温贮存寿命)	150°C,1000 小时	JESD22-A103

- 1. JEDEC 文档 JEP155 规定: 500 V HBM 能够在标准 ESD 控制流程下安全生产。
- 2. JEDEC 文档 JEP157 规定: 250 V CDM 能够在标准 ESD 控制流程下安全生产。

5.5 射频功耗参数

下列功耗数据是基于 $3.3 \, \text{V}$ 电源、 $25 \, ^{\circ}\text{C}$ 环境温度,在 RF 接口处完成的测试结果。所有发射数据均基于 50% 的占空比测得。

表 17: 射频功耗参数

模式	最小值	典型值	最大值	单位
发送 802.11b,DSSS 1 Mbps,POUT = +19.5 dBm	-	240	1	mA
发送 802.11g,OFDM 54 Mbps,POUT = +16 dBm	-	190	-	mA
发送 802.11n,OFDM MCS7,POUT = +14 dBm	-	180	-	mA
接收 802.11b/g/n	-	95 ~ 100	-	mA
发送 BT/BLE,POUT = 0 dBm	-	130	-	mA
接收 BT/BLE	-	95 ~ 100	-	mA

5.6 Wi-Fi 射频

表 18: Wi-Fi 射频特性

参数	条件	最小值	典型值	最大值	单位
工作信道中心频率范围 1	-	2412	-	2484	MHz
输出阻抗 ²	-	-	见说明 2	-	Ω
输出功率 ³	11n, MCS7	12	13	14	dBm
制山切平	11b 模式	18.5	19.5	20.5	dBm
	11b, 1 Mbps	-	-98	-	dBm
	11b, 11 Mbps	-	-88	-	dBm
	11g, 6 Mbps	-	-93	-	dBm
灵敏度	11g, 54 Mbps	-	-75	-	dBm
火蚁及	11n, HT20, MCS0	-	-93	-	dBm
	11n, HT20, MCS7	-	-73	-	dBm
	11n, HT40, MCS0	-	-90	-	dBm
	11n, HT40, MCS7	-	-70	-	dBm
	11g, 6 Mbps	-	27	-	dB
 邻道抑制	11g, 54 Mbps	-	13	-	dB
対担批削	11n, HT20, MCS0	-	27	-	dB
	11n, HT20, MCS7	-	12	_	dB

1. 工作信道中心频率范围应符合国家或地区的规范标准。软件可以配置工作信道中心频率范围。

- 2. ESP32 Wi-Fi 射频的输出阻抗典型值与封装尺寸有关。封装为 QFN 6×6 的 ESP32 芯片的输出阻抗为 30+j10 Ω ; 封装 为 QFN 5×5 的 ESP32 芯片的输出阻抗为 35+j10 Ω 。
- 3. 根据产品或认证的要求,用户可以配置目标功率。

5.7 经典蓝牙射频

5.7.1 接收器 - 基础数据率 (BR)

表 19: 接收器特性 - 基础数据率 (BR)

参数	条件	最小值	典型值	最大值	单位
灵敏度 @0.1% BER	-	-90	-89	-88	dBm
最大接收信号 @0.1% BER	-	0	-	-	dBm
共信道抑制比 C/I	-	_	+7	1	dB
	F = F0 + 1 MHz	-	-	-6	dB
	F = F0 -1 MHz	-	-	-6	dB
│ 邻道选择性抑制比 C/I	F = F0 + 2 MHz	-	-	-25	dB
李旭延祥任孙明比 O/I	F = F0 -2 MHz	-	-	-33	dB
	F = F0 + 3 MHz	-	-	-25	dB
	F = F0 -3 MHz	-	-	-45	dB
	30 MHz ~ 2000 MHz	-10	-	-	dBm
	2000 MHz ~ 2400 MHz	-27	-	-	dBm
	2500 MHz ~ 3000 MHz	-27	-	-	dBm
	3000 MHz ~ 12.5 GHz	-10	-	-	dBm
互调	-	-36	-	-	dBm

5.7.2 发射器 - 基础数据率 (BR)

表 20: 发射器特性 - 基础数据率 (BR)

参数	条件	最小值	典型值	最大值	单位
射频发射功率(见表 20 下方说明)	-	-	0	-	dBm
增益控制步长	-	-	3	-	dB
射频功率控制范围	-	-12	-	+9	dBm
20 dB 带宽	-	-	0.9	ı	MHz
	$F = F0 \pm 2 MHz$	-	-47	-	dBm
邻道发射功率	$F = F0 \pm 3 \text{ MHz}$	-	-55	-	dBm
	$F = F0 \pm > 3 MHz$	-	-60	ı	dBm
$\Delta f 1_{avg}$	-	-	ı	155	kHz
$\Delta f 2_{\sf max}$	-	133.7	-	-	kHz
$\Delta~f2_{ m avg}/\Delta~f1_{ m avg}$	-	-	0.92	-	-
ICFT	-	-	-7	-	kHz
漂移速率	-	-	0.7	-	kHz/50 μ s
偏移 (DH1)	-	-	6	-	kHz
偏移 (DH5)	-	-	6	-	kHz

说明:

从 0 到 7, 共有 8 个功率级别,发射功率范围从-12 dBm 到 9 dBm。功率电平每增加 1 时,发射功率增加 3 dB。默认 情况下使用功率级别 4,相应的发射功率为 0 dBm。

5.7.3 接收器 - 增强数据率 (EDR)

表 21: 接收器特性 - 增强数据率 (EDR)

参数	条件	最小值	典型值	最大值	单位				
$\pi/4$ DQPSK									
灵敏度 @0.01% BER	-	-90	-89	-88	dBm				
最大接收信号 @0.01% BER	-	-	0	-	dBm				
共信道抑制比 C/I	-	-	11	-	dB				
	F = F0 + 1 MHz	-	-7	-	dB				
	F = F0 -1 MHz	-	-7	-	dB				
邻道选择性抑制比 C/I	F = F0 + 2 MHz	-	-25	-	dB				
→ 利担处件注抑制比 O/1	F = F0 -2 MHz	-	-35	-	dB				
	F = F0 + 3 MHz	-	-25	-	dB				
	F = F0 –3 MHz	-	−45	-	dB				
	8DPSK								
灵敏度 @0.01% BER	-	-84	-83	-82	dBm				
最大接收信号 @0.01% BER	-	-	- 5	-	dBm				
共信道抑制比 C/I	-	-	18	-	dB				
	F = F0 + 1 MHz	-	2	-	dB				
	F = F0 -1 MHz	-	2	-	dB				
邻道抑制比 C/I	F = F0 + 2 MHz	-	-25	-	dB				
□ < □ < □ < □ < □ < □ < □ < □ < □ < □ <	F = F0 -2 MHz	-	-25	-	dB				
	F = F0 + 3 MHz	-	-25	-	dB				
	F = F0 –3 MHz	-	-38	_	dB				

5.7.4 发射器 - 增强数据率 (EDR)

表 22: 发射器特性 - 增强数据率 (EDR)

参数	条件	最小值	典型值	最大值	单位
射频发射功率(见表 20 下方说明)	-	-	0	-	dBm
增益控制步长	-	-	3	-	dB
射频功率控制范围	-	-12	_	+9	dBm
π /4 DQPSK max w0	-	-	-0.72	-	kHz
π /4 DQPSK max wi	-	-	-6	_	kHz
π /4 DQPSK max lwi + w0l	-	-	-7.42	-	kHz
8DPSK max w0	-	-	0.7	_	kHz
8DPSK max wi	-	-	-9.6	-	kHz
8DPSK max lwi + w0l	-	-	-10	-	kHz

5.8 低功耗蓝牙射频

5.8.1 接收器

表 23: 低功耗蓝牙接收器特性

参数	条件	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	-	-94	-93	-92	dBm
最大接收信号 @30.8% PER	-	0	-	-	dBm
共信道抑制比 C/I	-	-	+10	-	dB
	F = F0 + 1 MHz	_	-5	_	dB
	F = F0 - 1 MHz	_	-5	-	dB
 邻道抑制比 C/I	F = F0 + 2 MHz	_	-25	_	dB
7P但14闸LL O/1	F = F0 -2 MHz	_	-35	_	dB
	F = F0 + 3 MHz	_	-25	_	dB
	F = F0 -3 MHz	-	-45	-	dB
	30 MHz ~ 2000 MHz	-10	_	_	dBm
世 加 阳 奎	2000 MHz ~ 2400 MHz	-27	-	-	dBm
带外阻塞 	2500 MHz ~ 3000 MHz	-27	-	_	dBm
	3000 MHz ~ 12.5 GHz	-10	-	-	dBm
互调	-	-36	_	_	dBm

5.8.2 发射器

表 24: 低功耗蓝牙发射器特性

参数	条件	最小值	典型值	最大值	单位
射频发射功率(见表 20 下方说明)	-	-	0	-	dBm
增益控制步长	-	-	3	_	dB
射频功率控制范围	-	-12	1	+9	dBm
	$F = F0 \pm 2 MHz$	-	-52	_	dBm
邻道发射功率	$F = F0 \pm 3 MHz$	-	-58	-	dBm
	$F = F0 \pm > 3 MHz$	-	-60	-	dBm

参数	条件	最小值	典型值	最大值	单位
$\Delta f1_{ ext{avg}}$	-	-	-	265	kHz
$\Delta~f2_{\sf max}$	-	247	-	-	kHz
$\Delta~f2_{ m avg}/\Delta~f1_{ m avg}$	-	-	0.92	-	-
ICFT	-	-	-10	-	kHz
漂移速率	-	-	0.7	-	kHz/50 μ s
偏移	-	-	2	-	kHz

封装信息 6

图 8: QFN48 (6x6 mm) 封装

图 9: QFN48 (5x5 mm) 封装

说明:

从封装俯视图看,芯片管脚从 Pin 1 位置开始按逆时针方向进行编号。有关卷带、载盘和产品标签的信息,请参阅 《乐鑫芯片包装信息》。

7 产品型号和订购信息

图 10: ESP32 产品型号描述

下表列举 ESP32 各个型号的订购信息。

表 25: 订购信息

订购型号1	内核	芯片版本 ²	嵌入式 flash/PSRAM	封装	VDD_SDIO
					电压
ESP32-D0WD-V3	双核	v3.0/v3.1 ⁴	_	QFN 5*5	1.8 V/3.3 V
ESP32-D0WDR2-V3	双核	v3.0/v3.1 ⁴	2 MB 嵌入式 PSRAM	QFN 5*5	3.3 V
ESP32-U4WDH	双核3	v3.0/v3.1 ⁴	4 MB 嵌入式 flash (80 MHz)	QFN 5*5	3.3 V
ESP32-D0WDQ6-V3 (NRND)	双核	v3.0/v3.1 ⁴	_	QFN 6*6	1.8 V/3.3 V
ESP32-D0WD (NRND)	双核	v1.0/v1.1 ⁵	_	QFN 5*5	1.8 V/3.3 V
ESP32-D0WDQ6 (NRND)	双核	v1.0/v1.1 ⁵	_	QFN 6*6	1.8 V/3.3 V
ESP32-SOWD (NRND)	单核	v1.0/v1.1 ⁵	_	QFN 5*5	1.8 V/3.3 V

¹ 所有芯片型号均支持 Wi-Fi b/g/n + 蓝牙/低功耗蓝牙双模通信模式。

² ESP32 芯片版本信息及其区分方式见_《ESP32 系列芯片勘误表》。

³ ESP32-U4WDH 芯片从单核升级为双核,见 PCN-2021-021(生效日期: 2021年12月2日)。

⁴ 该芯片型号使用的芯片版本由 v3.0 变更为 v3.1, 见 PCN20220901 (生效日期: 2022 年 10 月 13 日)。

⁵ 该芯片型号使用的芯片版本由 v1.0 变更为 v1.1, 见 PCN20220901 (生效日期: 2022 年 10 月 13 日)。

8 相关文档和资源

相关文档

- 《ESP32 技术规格书》 提供 ESP32 芯片的硬件技术规格。
- 《ESP32 技术参考手册》 提供 ESP32 芯片的存储器和外设的详细使用说明。
- 《ESP32 硬件设计指南》 提供基于 ESP32 芯片的产品设计规范。
- 《ESP32 勘误表及解决办法》 提供关于 ESP32 芯片的设计问题的说明和解决方案。
- 证书

http://espressif.com/zh-hans/support/documents/certificates

• ESP32 产品/工艺变更通知 (PCN)

http://espressif.com/zh-hans/support/documents/pcns

- ESP32 公告 提供有关安全、bug、兼容性、器件可靠性的信息 http://espressif.com/zh-hans/support/documents/advisories
- 文档更新和订阅通知
 http://espressif.com/zh-hans/support/download/documents

开发者社区

- 《ESP32 ESP-IDF 编程指南》 ESP-IDF 开发框架的文档中心。
- ESP-IDF 及 GitHub 上的其它开发框架

http://github.com/espressif

- ESP32 论坛 工程师对工程师 (E2E) 的社区,您可以在这里提出问题、解决问题、分享知识、探索观点。 http://esp32.com/
- The ESP Journal 分享乐鑫工程师的最佳实践、技术文章和工作随笔。

http://blog.espressif.com/

 SDK 和演示、App、工具、AT 等下载资源 http://espressif.com/zh-hans/support/download/sdks-demos

产品

- ESP32 系列芯片 ESP32 全系列芯片。
 http://espressif.com/zh-hans/products/socs?id=ESP32
- ESP32 系列模组 ESP32 全系列模组。

http://espressif.com/zh-hans/products/modules?id=ESP32

- ESP32 系列开发板 ESP32 全系列开发板。
 - http://espressif.com/zh-hans/products/devkits?id=ESP32
- ESP Product Selector(乐鑫产品选型工具) 通过筛选性能参数、进行产品对比快速定位您所需要的产品。 http://products.espressif.com/#/product-selector?language=zh

联系我们

• 商务问题、技术支持、电路原理图 & PCB 设计审阅、购买样品(线上商店)、成为供应商、意见与建议 http://espressif.com/zh-hans/contact-us/sales-questions

附录 A - ESP32 管脚清单

A.1. 管脚清单说明

表 26: 管脚清单说明

序号	说明				
1	IO_MUX 表格中,黄色单元格表示这几个 GPIO 管脚仅为输入管脚。				
	以下管脚仅为输入管脚,不带输出驱动器或内置上拉 / 下拉电路: SENSOR_VP (GPIO36)、				
2	SENSOR_CAPP (GPIO37)、SENSOR_CAPN (GPIO38)、SENSOR_VN (GPIO39)、VDET_1				
	(GPIO34)、VDET_2 (GPIO35)。				
	所有管脚分为 4 个电源域: VDDA(模拟电源)、VDD3P3_RTC(RTC 电源)、VDD3P3_CPU				
	(数字 IO 和 CPU 电源)、VDD_SDIO (SDIO IO 电源)。VDD_SDIO 是内置 SDIO-LDO 的输出源。				
3	SDIO-LDO 的配置电压为 1.8 V 或与 VDD3P3_RTC 相同。Strapping 管脚和 eFuse bit 共同决				
	定 SDIO-LDO 的默认电压。此外,软件还可以配置寄存器来强制改变 SDIO-LDO 电压。详见				
	IO_MUX 表格中 "Power Domain" 一栏。				
4	VDD3P3_RTC 域中的功能管脚具有模拟功能,包括 32 kHz 晶体振荡器、ADC、DAC 以及电				
容式触摸传感器。请参考 IO_MUX 表格中 "Analog Function 0~2" 各栏。					
5	这些 VDD3P3_RTC 管脚支持 RTC Function 功能, 能够在 Deep-sleep 模式下使用。例如, RTC-				
	GPIO 可用于 Deep-sleep 模式下的芯片。				
	GPIO 管脚最多支持 IO_MUX 表格中 "Function 0 ~ 5" 各栏中所列的 6 个数字功能。功能选				
	择寄存器应设置为"N",其中 N 为功能编号。以下为常用模块的信号前缀定义:				
	• SD_* 是 SDIO 从机的信号。				
	HS1_* 是 SDIO 主机端口 1 的信号。				
	HS2_* 是 SDIO 主机端口 2 的信号。				
6	● MT* 是 JTAG 的信号。				
	● UO* 是 UARTO 模块的信号。				
	U1* 是 UART1 模块的信号。				
	 U2* 是 UART2 模块的信号。 				
	• SPI* 是 SPI01 模块的信号。				
	● HSPI* 是 SPI2 模块的信号。				
	● VSPI* 是 SPI3 模块的信号。				

序号	说明
	每个数字 Function 栏均对应一列 Type。请参考下列描述来理解每个 Function 所对应 Type 的
	意义。对于任意功能 Function-N 而言,Type 所指的是:
	● I: 仅为输入。如果选择了 Function-N 以外的其他功能,则该管脚的输入信号仍会连接
	到 Function-N 的输入信号。
	● I1: 仅为输入。如果选择了 Function-N 以外的其他功能,则 Function-N 的输入信号恒为
	1.
	• IO: 仅为输入。如果选择 Function-N 以外的其他功能,则 Function-N 的输入信号恒为 0。
7	● O: 仅为输出。
	● T: 高抗阻。
	• I/O/T: 该功能信号包含输入、输出和高抗阻组合。
	• I1/O/T: 该函数信号包含输入、输出和高抗阻组合。如果选择了 Function-N 以外的其他
	功能,则 Function-N 的输入信号恒为 1。
	例如,30 号管脚可作为 HS1_CMD 或 SD_CMD 使用,其中 HS1_CMD 的类型为 I1/O/T。如 用 20 日 等 脚 対 2 体 L
	果 30 号管脚被选作 HS1_CMD,则该管脚的输入和输出均由 SDIO 主机控制。如果 30 号管 脚未被选作 HS1_CMD,则对 SDIO 主机的输入信号总为 1。
	每一个数字输出管脚的驱动强度可以配置。IO_MUX 表格中的 "Drive Strength" 栏列出了默认
	值。其中,驱动强度可通过寄存器配置为以下四种:
	● 0: ~5 mA
	• 1: ~10 mA
8	• 2: ~20 mA
	• 3: ~40 mA
	 默认值为 2。
	内置上拉 (wpu) 和内置下拉 (wpd) 驱动强度为 ~75 μA。
9	IO_MUX 表格中"At Reset"栏列出了复位时每个管脚的状态,包括输入使能 (ie=1)、内置上
9	拉 (wpu) 和内置下拉 (wpd)。复位时,所有管脚都处于输出禁用状态。
	IO_MUX 表格中"After Reset" 栏列出了复位后每个管脚的即刻状态,包括输入使能 (ie=1)、内
10	置上拉 (wpu) 和内置下拉 (wpd)。复位后,每个管脚均设定为 "Function O"。输出使能由其数
	字 Function 0 控制。
	表格 Ethernet_MAC 用于描述 Ethernet MAC 模块内的信号映射。Ethernet MAC 支持 MII 和
11	RMII 两种接口,同时支持内部 PLL 时钟和外部时钟源。对于 MII 接口来说,Ethernet MAC 可
	配 TX_ERR 信号,也可不配 TX_ERR 信号。MDC、MDIO、CRS 和 COL 均为慢速信号,可通
	过 GPIO 矩阵映射到任何 GPIO 管脚。
	表格 GPIO_Matrix 用于描述 GPIO 交换矩阵。片上功能模组所发出的信号可映射到任何 GPIO
12	管脚上。如表格 GPIO_Matrix 中,"信号可经由 IO_MUX 输出" 栏说明的一样,有些信号既可
	通过 IO_MUX, 也可通过 GPIO 矩阵映射到管脚上。
10	*表格 GPIO_Matrix 中,"默认值"一栏表示未分配 GPIO 时,输入信号的默认值。信号的实际
13	值由寄存器位 GPIO_FUNCm_IN_INV_SEL 和寄存器域 GPIO_FUNCm_IN_SEL 共同决定。(m
	的取值范围为 1~255。)

A.2. GPIO_Matrix

表 27: GPIO_Matrix

序号	输入信号	默认值*	信号可经由 IO_MUX 输出	输出信号	输出信号的 输出使能信号
0	SPICLK_in	0	yes	SPICLK_out	SPICLK_oe
1	SPIQ_in	0	yes	SPIQ_out	SPIQ_oe
2	SPID_in	0	yes	SPID_out	SPID_oe
3	SPIHD_in	0	yes	SPIHD_out	SPIHD_oe
4	SPIWP_in	0	yes	SPIWP_out	SPIWP_oe
5	SPICS0_in	0	yes	SPICS0_out	SPICS0_oe
6	SPICS1_in	0	no	SPICS1_out	SPICS1_oe
7	SPICS2_in	0	no	SPICS2_out	SPICS2_oe
8	HSPICLK_in	0	yes	HSPICLK_out	HSPICLK_oe
9	HSPIQ_in	0	yes	HSPIQ_out	HSPIQ_oe
10	HSPID_in	0	yes	HSPID_out	HSPID_oe
11	HSPICS0_in	0	yes	HSPICS0_out	HSPICS0_oe
12	HSPIHD_in	0	yes	HSPIHD_out	HSPIHD_oe
13	HSPIWP_in	0	yes	HSPIWP_out	HSPIWP_oe
14	U0RXD_in	0	yes	U0TXD_out	1'd1
15	U0CTS_in	0	yes	U0RTS_out	1'd1
16	U0DSR_in	0	no	U0DTR_out	1'd1
17	U1RXD_in	0	yes	U1TXD_out	1'd1
18	U1CTS_in	0	yes	U1RTS_out	1'd1
23	I2S0O_BCK_in	0	no	I2S0O_BCK_out	1'd1
24	I2S1O_BCK_in	0	no	I2S1O_BCK_out	1'd1
25	I2S0O_WS_in	0	no	I2S0O_WS_out	1'd1
26	I2S1O_WS_in	0	no	I2S1O_WS_out	1'd1
27	I2S0I_BCK_in	0	no	I2S0I_BCK_out	1'd1
28	I2S0I_WS_in	0	no	I2S0I_WS_out	1'd1
29	I2CEXT0_SCL_in	1	no	I2CEXT0_SCL_out	1'd1
30	I2CEXT0_SDA_in	1	no	I2CEXTO_SDA_out	1'd1
31	pwm0_sync0_in	0	no	sdio_tohost_int_out	1'd1
32	pwm0_sync1_in	0	no	pwm0_out0a	1'd1
33	pwm0_sync2_in	0	no	pwm0_out0b	1'd1
34	pwm0_f0_in	0	no	pwm0_out1a	1'd1
35	pwm0_f1_in	0	no	pwm0_out1b	1'd1
36	pwm0_f2_in	0	no	pwm0_out2a	1'd1
37	-	0	no	pwm0_out2b	1'd1
39	pcnt_sig_ch0_in0	0	no	-	1'd1
40	pcnt_sig_ch1_in0	0	no	-	1'd1
41	pcnt_ctrl_ch0_in0	0	no	-	1'd1
42	pcnt_ctrl_ch1_in0	0	no	-	1'd1
43	pcnt_sig_ch0_in1	0	no	-	1'd1

序号	烩ょ信具	默认值*	信号可经由	松山信 县	输出信号的
	输入信号	款以阻	IO_MUX 输出	输出信号	输出使能信号
44	pcnt_sig_ch1_in1	0	no	-	1'd1
45	pcnt_ctrl_ch0_in1	0	no	-	1'd1
46	pcnt_ctrl_ch1_in1	0	no	-	1'd1
47	pcnt_sig_ch0_in2	0	no	-	1'd1
48	pcnt_sig_ch1_in2	0	no	-	1'd1
49	pcnt_ctrl_ch0_in2	0	no	-	1'd1
50	pcnt_ctrl_ch1_in2	0	no	-	1'd1
51	pcnt_sig_ch0_in3	0	no	-	1'd1
52	pcnt_sig_ch1_in3	0	no	-	1'd1
53	pcnt_ctrl_ch0_in3	0	no	-	1'd1
54	pcnt_ctrl_ch1_in3	0	no	-	1'd1
55	pcnt_sig_ch0_in4	0	no	-	1'd1
56	pcnt_sig_ch1_in4	0	no	-	1'd1
57	pcnt_ctrl_ch0_in4	0	no	-	1'd1
58	pcnt_ctrl_ch1_in4	0	no	-	1'd1
61	HSPICS1_in	0	no	HSPICS1_out	HSPICS1_oe
62	HSPICS2_in	0	no	HSPICS2_out	HSPICS2_oe
63	VSPICLK_in	0	yes	VSPICLK_out_mux	VSPICLK_oe
64	VSPIQ_in	0	yes	VSPIQ_out	VSPIQ_oe
65	VSPID_in	0	yes	VSPID_out	VSPID_oe
66	VSPIHD_in	0	yes	VSPIHD_out	VSPIHD_oe
67	VSPIWP_in	0	yes	VSPIWP_out	VSPIWP_oe
68	VSPICS0_in	0	yes	VSPICS0_out	VSPICS0_oe
69	VSPICS1_in	0	no	VSPICS1_out	VSPICS1_oe
70	VSPICS2_in	0	no	VSPICS2_out	VSPICS2_oe
71	pcnt_sig_ch0_in5	0	no	ledc_hs_sig_out0	1'd1
72	pcnt_sig_ch1_in5	0	no	ledc_hs_sig_out1	1'd1
73	pcnt_ctrl_ch0_in5	0	no	ledc_hs_sig_out2	1'd1
74	pcnt_ctrl_ch1_in5	0	no	ledc_hs_sig_out3	1'd1
75	pcnt_sig_ch0_in6	0	no	ledc_hs_sig_out4	1'd1
76	pcnt_sig_ch1_in6	0	no	ledc_hs_sig_out5	1'd1
77	pcnt_ctrl_ch0_in6	0	no	ledc_hs_sig_out6	1'd1
78	pcnt_ctrl_ch1_in6	0	no	ledc_hs_sig_out7	1'd1
79	pcnt_sig_ch0_in7	0	no	ledc_ls_sig_out0	1'd1
80	pcnt_sig_ch1_in7	0	no	ledc_ls_sig_out1	1'd1
81	pcnt_ctrl_ch0_in7	0	no	ledc_ls_sig_out2	1'd1
82	pcnt_ctrl_ch1_in7	0	no	ledc_ls_sig_out3	1'd1
83	rmt_sig_in0	0	no	ledc_ls_sig_out4	1'd1
84	rmt_sig_in1	0	no	ledc_ls_sig_out5	1'd1
85	rmt_sig_in2	0	no	ledc_ls_sig_out6	1'd1
86	rmt_sig_in3	0	no	ledc_ls_sig_out7	1'd1
87	rmt_sig_in4	0	no	rmt_sig_out0	1'd1

序号	输入信号	默认值*	信号可经由	 输出信 号	输出信号的 输出使能信号		
			IO_MUX 输出				
88	rmt_sig_in5	0	no	rmt_sig_out1	1'd1		
89	rmt_sig_in6	0	no	rmt_sig_out2	1'd1		
90	rmt_sig_in7	0	no	rmt_sig_out3	1'd1		
91	-	-	-	rmt_sig_out4	1'd1		
92	-	-	-	rmt_sig_out6	1'd1		
94	twai_rx	1	no	rmt_sig_out7	1'd1		
95	I2CEXT1_SCL_in	1	no	I2CEXT1_SCL_out	1'd1		
96	I2CEXT1_SDA_in	1	no	I2CEXT1_SDA_out	1'd1		
97	host_card_detect_n_1	0	no	host_ccmd_od_pullup_en_n	1'd1		
98	host_card_detect_n_2	0	no	host_rst_n_1	1'd1		
99	host_card_write_prt_1	0	no	host_rst_n_2	1'd1		
100	host_card_write_prt_2	0	no	gpio_sd0_out	1'd1		
101	host_card_int_n_1	0	no	gpio_sd1_out	1'd1		
102	host_card_int_n_2	0	no	gpio_sd2_out	1'd1		
103	pwm1_sync0_in	0	no	gpio_sd3_out	1'd1		
104	pwm1_sync1_in	0	no	gpio_sd4_out	1'd1		
105	pwm1_sync2_in	0	no	gpio_sd5_out	1'd1		
106	pwm1_f0_in	0	no	gpio_sd6_out	1'd1		
107	pwm1_f1_in	0	no	gpio_sd7_out	1'd1		
108	pwm1_f2_in	0	no	pwm1_out0a	1'd1		
109	pwm0_cap0_in	0	no	pwm1_out0b	1'd1		
110	pwm0_cap1_in	0	no	pwm1_out1a	1'd1		
111	pwm0_cap2_in	0	no	pwm1_out1b	1'd1		
112	pwm1_cap0_in	0	no	pwm1_out2a	1'd1		
113	pwm1_cap1_in	0	no	pwm1_out2b	1'd1		
114	pwm1_cap2_in	0	no	pwm2_out1h	1'd1		
115	pwm2_flta	1	no	pwm2_out1l	1'd1		
116	pwm2_fltb	1	no	pwm2_out2h	1'd1		
117	pwm2_cap1_in	0	no	pwm2_out2l	1'd1		
118	pwm2_cap2_in	0	no	pwm2_out3h	1'd1		
119	pwm2_cap3_in	0	no	pwm2_out3l	1'd1		
120	pwm3_flta	1	no	pwm2 out4h	1'd1		
121	pwm3_fltb	1	no	pwm2_out4l	1'd1		
122	pwm3_cap1_in	0	no	-	1'd1		
123	pwm3_cap2_in	0	no	twai_tx	1'd1		
124	pwm3_cap3_in	0	no	twai_bus_off_on	1'd1		
125	-	-	-	twai_clkout	1'd1		
140	I2S0I_DATA_in0	0	no	I2S0O_DATA_out0	1'd1		
141	I2S0I_DATA_in1	0	no	I2S00_DATA_out1	1'd1		
142	12S0I_DATA_in2	0	no	I2SOO_DATA_out2	1'd1		
143	12S0I_DATA_in3	0	no	I2S00_DATA_out3	1'd1		
144	12S0I_DATA_in4	0	no	12S00_DATA_out4	1'd1		

序号 输入信号		默认值*	信号可经由	输出信号	输出信号的		
1.45	JOCOL DATA inf		IO_MUX 输出	10000 DATA outs	输出使能信号		
145	I2S0I_DATA_in5	0	no	I2S0O_DATA_out5	1'd1		
146	I2S0I_DATA_in6	0	no	I2S00_DATA_out6	1'd1		
147	I2S0I_DATA_in7	0	no	I2S0O_DATA_out7	1'd1		
148	I2S0I_DATA_in8	0	no	I2S0O_DATA_out8	1'd1		
149	I2S0I_DATA_in9	0	no	I2S0O_DATA_out9	1'd1		
150	I2S0I_DATA_in10	0	no	I2S0O_DATA_out10	1'd1		
151	I2S0I_DATA_in11	0	no	I2S0O_DATA_out11	1'd1		
152	I2S0I_DATA_in12	0	no	I2S0O_DATA_out12	1'd1		
153	I2S0I_DATA_in13	0	no	I2S0O_DATA_out13	1'd1		
154	I2S0I_DATA_in14	0	no	I2S0O_DATA_out14	1'd1		
155	I2S0I_DATA_in15	0	no	I2S0O_DATA_out15	1'd1		
156	-	-	-	I2S0O_DATA_out16	1'd1		
157	-	-	-	I2S0O_DATA_out17	1'd1		
158	-	-	-	I2S0O_DATA_out18	1'd1		
159	-	-	-	I2S0O_DATA_out19	1'd1		
160	-	-	-	I2S0O_DATA_out20	1'd1		
161	-	-	-	I2S0O_DATA_out21	1'd1		
162	-	-	-	I2S0O_DATA_out22	1'd1		
163	-	-	-	I2S0O_DATA_out23	1'd1		
164	I2S1I_BCK_in	0	no	I2S1I_BCK_out	1'd1		
165	I2S1I_WS_in	0	no	I2S1I_WS_out	1'd1		
166	I2S1I_DATA_in0	0	no	I2S1O_DATA_out0	1'd1		
167	I2S1I_DATA_in1	0	no	I2S1O_DATA_out1	1'd1		
168	I2S1I_DATA_in2	0	no	I2S1O_DATA_out2	1'd1		
169	I2S1I_DATA_in3	0	no	I2S1O_DATA_out3	1'd1		
170	I2S1I_DATA_in4	0	no	I2S1O_DATA_out4	1'd1		
171	I2S1I_DATA_in5	0	no	I2S1O_DATA_out5	1'd1		
172	I2S1I_DATA_in6	0	no	I2S1O_DATA_out6	1'd1		
173	I2S1I_DATA_in7	0	no	I2S1O_DATA_out7	1'd1		
174	I2S1I DATA in8	0	no	I2S1O_DATA_out8	1'd1		
175	I2S1I_DATA_in9	0	no	I2S1O_DATA_out9	1'd1		
176	I2S1I_DATA_in10	0	no	I2S1O_DATA_out10	1'd1		
177	I2S1I DATA in11	0	no	I2S1O_DATA_out11	1'd1		
178	I2S1I_DATA_in12	0	no	I2S10_DATA_out12	1'd1		
179	I2S1I_DATA_in13	0	no	I2S10_DATA_out13	1'd1		
180	I2S1I_DATA_in14	0	no	I2S10_DATA_out14	1'd1		
181	I2S1I_DATA_in15	0	no	I2S10_DATA_out15	1'd1		
182	-		-	I2S10_DATA_out16	1'd1		
183	_			I2S10_DATA_out17	1'd1		
184	-		-	12S10_DATA_out18	1'd1		
185	-		-	12S10_DATA_out19	1'd1		
186	-	-	-	I2S1O_DATA_out20	1'd1		

序号	输入信号	默认值*	信号可经由 IO_MUX 输出	输出信号	输出信号的 输出使能信号
187	-	-	-	I2S1O_DATA_out21	1'd1
188	-	-	-	I2S1O_DATA_out22	1'd1
189	-	-	-	I2S1O_DATA_out23	1'd1
190	I2S0I_H_SYNC	0	no	pwm3_out1h	1'd1
191	I2S0I_V_SYNC	0	no	pwm3_out1l	1'd1
192	I2S0I_H_ENABLE	0	no	pwm3_out2h	1'd1
193	I2S1I_H_SYNC	0	no	pwm3_out2l	1'd1
194	I2S1I_V_SYNC	0	no	pwm3_out3h	1'd1
195	I2S1I_H_ENABLE	0	no	pwm3_out3l	1'd1
196	-	-	-	pwm3_out4h	1'd1
197	-	-	-	pwm3_out4l	1'd1
198	U2RXD_in	0	yes	U2TXD_out	1'd1
199	U2CTS_in	0	yes	U2RTS_out	1'd1
200	emac_mdc_i	0	no	emac_mdc_o	emac_mdc_oe
201	emac_mdi_i	0	no	emac_mdo_o	emac_mdo_o_e
202	emac_crs_i	0	no	emac_crs_o	emac_crs_oe
203	emac_col_i	0	no	emac_col_o	emac_col_oe
204	pcmfsync_in	0	no	bt_audio0_irq	1'd1
205	pcmclk_in	0	no	bt_audio1_irq	1'd1
206	pcmdin	0	no	bt_audio2_irq	1'd1
207	-	-	-	ble_audio0_irq	1'd1
208	-	-	-	ble_audio1_irq	1'd1
209	-	-	-	ble_audio2_irq	1'd1
210	-	-	-	pcmfsync_out	pcmfsync_en
211	-	-	-	pcmclk_out	pcmclk_en
212	-	-	-	pcmdout	pcmdout_en
213	-	-	-	ble_audio_sync0_p	1'd1
214	-	-	-	ble_audio_sync1_p	1'd1
215	-	-	-	ble_audio_sync2_p	1'd1
224	-	-	-	sig_in_func224	1'd1
225	-	-	-	sig_in_func225	1'd1
226	-	-	-	sig_in_func226	1'd1
227	-	-	-	sig_in_func227	1'd1
228	-	-	-	sig_in_func228	1'd1

A.3. Ethernet_MAC

表 28: Ethernet_MAC

PIN Name	Function6	MII (int_osc)	MII (ext_osc)	RMII (int_osc)	RMII (ext_osc)
GPIO0	EMAC_TX_CLK	TX_CLK (I)	TX_CLK (I)	CLK_OUT(O)	EXT_OSC_CLK(I)
GPIO5	EMAC_RX_CLK	RX_CLK (I)	RX_CLK (I)	-	-
GPIO21	EMAC_TX_EN	TX_EN(O)	TX_EN(O)	TX_EN(O)	TX_EN(O)
GPIO19	EMAC_TXD0	TXD[0](O)	TXD[0](O)	TXD[0](O)	TXD[0](O)
GPIO22	EMAC_TXD1	TXD[1](O)	TXD[1](O)	TXD[1](O)	TXD[1](O)
MTMS	EMAC_TXD2	TXD[2](O)	TXD[2](O)	-	-
MTDI	EMAC_TXD3	TXD[3](O)	TXD[3](O)	-	-
MTCK	EMAC_RX_ER	RX_ER(I)	RX_ER(I)	-	-
GPIO27	EMAC_RX_DV	RX_DV(I)	RX_DV(I)	CRS_DV(I)	CRS_DV(I)
GPIO25	EMAC_RXD0	RXD[0](I)	RXD[0](I)	RXD[0](I)	RXD[0](I)
GPIO26	EMAC_RXD1	RXD[1](I)	RXD[1](I)	RXD[1](I)	RXD[1](I)
U0TXD	EMAC_RXD2	RXD[2](I)	RXD[2](I)	-	-
MTDO	EMAC_RXD3	RXD[3](I)	RXD[3](I)	-	-
GPIO16	EMAC_CLK_OUT	CLK_OUT(O)	-	CLK_OUT(O)	-
GPIO17	EMAC_CLK_OUT_180	CLK_OUT_180(O)	-	CLK_OUT_180(O)	-
GPIO4	EMAC_TX_ER	TX_ERR(O)*	TX_ERR(O)*	-	-
In GPIO Matrix*	-	MDC(O)	MDC(O)	MDC(O)	MDC(O)
In GPIO Matrix*	-	MDIO(IO)	MDIO(IO)	MDIO(IO)	MDIO(IO)
In GPIO Matrix*	-	CRS(I)	CRS(I)	-	-
In GPIO Matrix*	-	COL(I)	COL(I)	-	-
* 说明: 1. GPIO N	Matrix 可以是任意 GPIO。	2. TX_ERR (O) 非	必选。		

A.4. IO_MUX

IO_MUX 管脚清单详见下一页。

IO_MUX

	Power Supply Pin	Analog Pin	Digital Pin	Power Domain	Analog Function0	Analog Function1	Analog Function2	RTC Function0	RTC Function1	Function0	Туре	Function1	Туре	Function2	Туре	Function3	Туре	Function4	Туре	Function5	Туре	Drive Strength (2'd2: 20 mA)	At Reset	After Reset
١	VDDA			VDDA supply in																				
		LNA_IN		VDD3P3																				
١	VDD3P3			VDD3P3 supply in																				
١	VDD3P3			VDD3P3 supply in																				
		SENSOR_VP		VDD3P3_RTC		ADC1_CH0		RTC_GPIO0		GPIO36	1			GPIO36	1								oe=0, ie=0	oe=0, ie=0
		SENSOR_CAPP		VDD3P3_RTC		ADC1_CH1		RTC_GPIO1		GPIO37	1			GPIO37	1								oe=0, ie=0	oe=0, ie=0
		SENSOR_CAPN		VDD3P3_RTC		ADC1_CH2		RTC_GPIO2		GPIO38	1			GPIO38	1								oe=0, ie=0	oe=0, ie=0
		SENSOR_VN		VDD3P3_RTC		ADC1_CH3		RTC_GPIO3		GPIO39	1			GPIO39	1								oe=0, ie=0	oe=0, ie=0
		CHIP_PU		VDD3P3_RTC																				
		VDET_1		VDD3P3_RTC		ADC1_CH6		RTC_GPIO4		GPIO34	1			GPIO34	1								oe=0, ie=0	oe=0, ie=0
		VDET_2		VDD3P3_RTC		ADC1_CH7		RTC_GPIO5		GPIO35	1			GPIO35	1								oe=0, ie=0	oe=0, ie=0
		32K_XP		VDD3P3_RTC	XTAL 32K P		TOLICHO	RTC_GPIO9		GPIO32	I/O/T			GPIO32	I/O/T						_	2'd2	oe=0, ie=0	oe=0, ie=0
		JZK_AF		VDD3F3_NTC	XIAL_32K_F	ADC1_CH4	TOUCHS	NIC_GFIOS		GFIO32	1/0/1			GFIO32	1/0/1							2 02	0e=0, le=0	0e=0, le=0
		32K_XN		VDD3P3_RTC	XTAL_32K_N	ADC1_CH5	TOUCH8	RTC_GPIO8		GPIO33	I/O/T			GPIO33	I/O/T							2'd2	oe=0, ie=0	oe=0, ie=0
			GPIO25	VDD3P3_RTC	DAC_1	ADC2_CH8		RTC_GPIO6		GPIO25	I/O/T			GPIO25	I/O/T					EMAC_RXD0	1	2'd2	oe=0, ie=0	oe=0, ie=0
			GPIO26	VDD3P3_RTC	DAC 2	ADC2_CH9		RTC_GPIO7		GPIO26	I/O/T			GPIO26	I/O/T					EMAC_RXD1	1	2'd2	oe=0, ie=0	oe=0, ie=0
			GPIO27	VDD3P3_RTC		ADC2_CH7	TOUCH7	RTC_GPIO17		GPIO27	I/O/T			GPIO27	I/O/T					EMAC_RX_DV	1	2'd2	oe=0, ie=0	oe=0, ie=0
			MTMS	VDD3P3 RTC		ADC2 CH6		RTC GPIO16		MTMS	10	HSPICLK	I/O/T	GPIO14		HS2 CLK	0	SD CLK	10	EMAC TXD2	0	2'd2	oe=0, ie=0	oe=0, ie=1
			MTDI	VDD3P3_RTC		ADC2_CH5		RTC_GPIO15		MTDI	11	HSPIQ	I/O/T			HS2_DATA2				EMAC_TXD3	0	2'd2	oe=0, ie=1, wpd	oe=0, ie=1
٠,	VDD3P3_RTC			VDD3P3_RTC supply in		7.000_0110	1000110	1110_01010		III.I DI		110114	001	GITOTE	20,1	TIOE_DI III E	117071	00_0/11/2	117071	ENVIO_17ED		L GL	00-0, 10-1, Wpd	00-0, 10-1
	VDD3F3_NTC		MTCK	VDD3P3_RTC		ADC2_CH4	TOUCH4	RTC_GPIO14		MTCK	l1	HSPID	I/O/T	GPIO13	иол	HS2_DATA3	шот	SD_DATA3	I1/O/T	EMAC RX ER		2'd2	oe=0, ie=0	oe=0, ie=1
			MTDO	_		ADC2_CH4 ADC2_CH3	TOUCH4		100 004	MTDO	O/T	HSPICS0	I/O/T	GPIO15		_			11/O/T	EMAC_RX_ER	1	2'd2		
				VDD3P3_RTC				RTC_GPIO13	I2C_SDA			HSPIWP				HS2_CMD		SD_CMD		EMAC_HXD3	-	-	oe=0, ie=1, wpu	oe=0, ie=1
			GPIO2	VDD3P3_RTC		ADC2_CH2		RTC_GPIO12	I2C_SCL	GPIO2	I/O/T		I/O/T			HS2_DATA0	11/0/1	SD_DATA0	I1/O/T		-	2'd2	oe=0, ie=1, wpd	oe=0, ie=1
			GPIO0	VDD3P3_RTC		ADC2_CH1	TOUCH1	RTC_GPIO11	I2C_SDA	GPIO0	I/O/T	CLK_OUT1	0	GPI00	I/O/T					EMAC_TX_CLK	1	2'd2	oe=0, ie=1, wpu	oe=0, ie=1
			GPIO4	VDD3P3_RTC		ADC2_CH0	TOUCH0	RTC_GPIO10	I2C_SCL	GPIO4	I/O/T	HSPIHD	I/O/T	GPIO4	I/O/T	HS2_DATA1	11/O/T	SD_DATA1	I1/O/T	EMAC_TX_ER	0	2'd2	oe=0, ie=1, wpd	oe=0, ie=1
			GPIO16	VDD_SDIO						GPIO16	I/O/T			GPIO16	I/O/T	HS1_DATA4	I1/O/T	U2RXD	l1	EMAC_CLK_OUT	0	2'd2	oe=0, ie=0	oe=0, ie=1
١	VDD_SDIO			VDD_SDIO supply out/in																				
			GPIO17	VDD_SDIO						GPIO17	I/O/T			GPIO17	I/O/T	HS1_DATA5	I1/O/T	U2TXD	0	EMAC_CLK_OUT_180	0	2'd2	oe=0, ie=0	oe=0, ie=1
			SD DATA 2	VDD_SDIO						SD_DATA2	I1/O/T	SPIHD	I/O/T	GPIO9	I/O/T	HS1_DATA2	I1/O/T	U1RXD	11			2'd2	oe=0, ie=1, wpu	oe=0, ie=1
			SD_DATA_3	VDD_SDIO						SD DATA3	10/O/T	SPIWP	I/O/T	GPIO10		HS1_DATA3		U1TXD	0			2'd2	oe=0, ie=1, wpu	oe=0, ie=1
			SD CMD	VDD_SDIO						SD CMD	11/O/T	SPICS0	I/O/T	GPIO11		HS1 CMD	11/O/T	LITRES	0			2'd2	oe=0, ie=1, wpu	oe=0, ie=1
			SD_CLK	VDD_SDIO		-		-		SD_CLK	10	SPICLK	I/O/T			HS1_CLK		U1CTS	11			2'd2	oe=0, ie=1, wpu	oe=0, ie=1
			SD_DATA_0							SD_DATA0	11/O/T	SPIQ	I/O/T			HS1_DATA0		U2RTS	0		-	2'd2	oe=0, ie=1, wpu	oe=0, ie=1
										SD_DATA0	11/O/T	SPID	I/O/T						11			2'd2		oe=0, ie=1
			SD_DATA_1	VDD_SDIO		-										HS1_DATA1	11/O/T	02018	П	EMAG DV OLK	1		oe=0, ie=1, wpu	
			GPIO5	VDD3P3_CPU						GPIO5	I/O/T	VSPICS0	I/O/T			HS1_DATA6	I1/O/T			EMAC_RX_CLK	1	2'd2	oe=0, ie=1, wpu	oe=0, ie=1
			GPIO18	VDD3P3_CPU						GPIO18	I/O/T	VSPICLK	I/O/T			HS1_DATA7	I1/O/T					2'd2	oe=0, ie=0	oe=0, ie=1
			GPIO23	VDD3P3_CPU						GPIO23	I/O/T	VSPID	I/O/T	GPIO23	I/O/T	HS1_STROBE	10					2'd2	oe=0, ie=0	oe=0, ie=1
١	VDD3P3_CPU			VDD3P3_CPU supply in																				
			GPIO19	VDD3P3_CPU						GPIO19	I/O/T	VSPIQ	I/O/T	GPIO19	I/O/T	U0CTS	11			EMAC_TXD0	0	2'd2	oe=0, ie=0	oe=0, ie=1
			GPIO22	VDD3P3_CPU						GPIO22	I/O/T	VSPIWP	I/O/T	GPIO22		UORTS	0			EMAC_TXD1	0	2'd2	oe=0, ie=0	oe=0, ie=1
			U0RXD	VDD3P3_CPU						U0RXD	11	CLK_OUT2		GPIO3	I/O/T	501110	-			LIII O_IADI	-	2'd2	oe=0, ie=1, wpu	oe=0, ie=1
			UOTXD	VDD3P3_CPU						U0TXD	0	CLK_OUT3	0	GPIO3	I/O/T					EMAC_RXD2	1	2'd2		
			GPIO21							GPIO21	-	VSPIHD	_	GPIO21	I/O/T					EMAC_RXD2	0		oe=0, ie=1, wpu	oe=0, ie=1
			GPI021	VDD3P3_CPU						GPIO21	I/O/T	VSPIHD	I/O/T	GPI021	1/0/1					EMAC_IX_EN	U	2'd2	oe=0, ie=0	oe=0, ie=1
١	VDDA			VDDA supply in																				-
		XTAL_N		VDDA				-											-					
		XTAL_P		VDDA															-					
١	VDDA			VDDA supply in																				
		CAP2		VDDA																				
		CAP1		VDDA																				
		14	26																					

- wpu: weak pull-up;wpd: weak pull-down;ie: input enable;oe: output enable;
- Please see Table: Notes on ESP32 Pin Lists for more information. (请参考表: 管脚清单说明。)

修订历史

日期	版本	发布说明
		更新章节 1 中的部分描述
		在表 3 下面新增两条说明
		在章节 2.3 中新增一条关于对电源电压的说明
2022.10	v4.0	更新图 10
		在表 25 中新增一列 "VDD_SDIO 电压"
		更新章节 4.1.18 中支持的速率
		标注 ESP32-S0WD 芯片型号为 <u>不推荐用于新设计 (NRND)</u>
		新增一款芯片型号: ESP32-D0WDR2-V3
		在章节 3: 功能描述 中添加相关链接
2022.03	v3.9	更新图 9: QFN48 (5x5 mm) 封装
2022.03	V3.9	更新附录 A.4. IO_MUX
		更新表 12: 外设管脚分配
		新增表 2: 管脚布局 和表 3: 管脚布局
		ESP32-U4WDH 芯片从单核升级为双核,见 <u>PCN-2021-021</u> (预计生效日期:
		2021 年 12 月 2 日)。2021 年 12 月 2 日前后为新旧版本过渡,实物情况
		以批次跟踪为准。
2021.10	v3.8	在章节 1.4: MCU 和高级特性 中新增 CoreMark® 得分
2021.10	V3.0	更新章节 4.1.18: TWA/ 控制器
		在章节 6: 封装信息 中添加 《乐鑫芯片包装信息》链接
		标注 ESP32-D0WDQ6-V3 芯片型号为不推荐用于新设计 (NRND)
		更新章节 1.3: 蓝牙主要特性
		移除 ESP32-D2WD 芯片型号
2021.07	v3.7	更新章节 3.6.1 中的描述
2021.07	V3.7	更新管脚功能编号,编号从 Function0 开始
		标注 ESP32-D0WD 和 ESP32-D0WDQ6 芯片型号为不推荐用于新设计 (NRND)
		更新图 1: 功能框图
		更新表 16: 可靠性
2021.03	V3.6	更新表 14: 建议工作条件
2021.03	V3.0	更新表 4: 电源管理下方的说明
		更新图 4: ESP32 数字电源管理
		在表 7、表 12、表 27 和章节 4.1中增加 TWAI® 相关信息
		更新图 1: 功能框图
2021.01	V3.5	在表格 1: 管脚描述 中将 CAP2 并联电容由 3 nF 更新为 3.3 nF
2021.01	V3.5	在章节 1.4.3: 高级外设接口 中增加双线汽车接口 (TWAI®, 兼容 ISO11898-1)
		更新附录 8: IO_MUX 中 MTCK、MTMS、GPIO27 的复位状态
		增加一款芯片型号: ESP32-U4WDH
2020.04	V3.4	更新表格 8, 18, 19, 21, 23, 24 中的一些数据
		在表 20 下方增加一条说明
2020.01	V3.3	增加两个芯片型号: ESP32-D0WD-V3 和 ESP32-D0WDQ6-V3;
2020.01	v3.3	在表 9 下方增加一条说明。
2019.10	V3.2	更新图 5: ESP32 上电、复位时序图。

日期	版本	发布说明
2019.07	V3.1	在表格 1 管脚定义下方增加 ESP32-D2WD 与内置 flash 的管脚对应关系; 更新图 10 ESP32 产品型号。
2019.04	V3.0	在章节 2.4 中增加关于 CHIP_PU 上电前和上电后 Strapping 管脚的建立时间和保持时间的说明。
2019.02	V2.9	更新表 1 "管脚描述"的格式; 修改表 12 中有关 ADC1 管脚映射的笔误。
2019.01	V2.8	将表 20、表 22 和表 24 中的"射频功率控制范围"从-12~+12 改为-12~+9 dBm; 一些文字修改。
2018.11	V2.7	更新章节 1.5; 更新表 IO_MUX 中管脚复位状态。
2018.10	V2.6	更新章节6中两个封装图。
2018.08	V2.5	 在表 13 "绝对最大额定值"中增加 "IO 输出总电流"; 在表 15 "DC 直流电气特性"中增加各个电源域的拉电流平均值; 更新表 IO_MUX 中电源域的名称。
2018.07	V2.4	 删除通信包仲裁 (PTA) 相关内容; 在章节 2.3 电源管理中增加 ESP32 上电、复位时序图和参数说明; 在表 8 "不同功耗模式下的功耗"中增加双核芯片的功耗; 在章节 4.1.2 中增加 ADC 特性和校准结果。
2018.06	V2.3	在表 8 "不同功耗模式下的功耗"中增加 160 MHz 功耗。
2018.05	V2.2	 将表 1 中 VDD3P3_RTC 的电压范围由 1.8-3.6V 改为 2.3-3.6V; 更新章节 2.3 电源管理; 更新章节 3.1.3 外部 Flash 和 SRAM; 更新表 8 不同功耗模式下的功耗; 删除有关温度传感器内容; 电气特性相关的更新: 更新表 13 绝对最大额定值; 增加表 14 建议工作条件; 增加表 15 DC 直流电气特性; 增加表 16 可靠性; 更新表 20 发射器特性-基础数据率中"增益控制步长","邻道发射功率"参数; 更新表 22 发射器特性-增强数据率中"增益控制步长","π/4 DQPSK 调制精度","8 DPSK 调制精度"和"带内杂散发射"参数; 更新表 24 低功耗蓝牙发射器特性中"增益控制步长","邻道发射功率"参数。
2018.01	V2.1	 删除部分软件相关的内容; 删除超低噪声前置模拟放大器相关的内容; 说明 ESP32-D2WD 的 CPU 速率为 160 MHz, 嵌入式 flash 为 40 MHz; 在章节 2.3 电源管理中增加说明。
2017.12	V2.0	在章节6封装信息中,增加管脚方向的说明。

日期	版本	发布说明
2017.10	V1.9	 更新表 1 中管脚 CHIP_PU 的描述; 在章节 2.3 电源管理中增加一条说明; 修改章节 2.4 Strapping 管脚中关于芯片系统复位的描述; 在章节 3.5.1 Wi-Fi 射频和基带中增加天线分集和选择的描述; 删除表 8 中"关联睡眠方式";增加关于 Active sleep 和 Modem-sleep 的说明。
2017.08	V1.8	更新 4 章节,增加表 4.2;更改图 1 中一处笔误。
2017.08	V1.7	 将章节 1.3 中输出功率改为 "高达 12 dBm"; NZIF 接收器的 BLE 接收灵敏度改为 -97 dBm; 增加表 1 管脚描述的说明一条; 增加章节 3.1.1 中 160 MHz 时钟频率; 将章节 3.5.1中发射功率改为 20.5 dBm; 将章节 3.6.1 中的 Class-1、Class-2 和 Class-3 发射输出功率的动态控制范围改为 "高达 24 dB"; 并将 NZIF 接收器的动态控制范围改为 "超过 97 dB"; 更新表 8 不同功耗模式下的功耗,并增加两条说明; 更新表 13 极限参数; 更新表 13 极限参数; 更新表 17 射频功耗参数,并将发射数据所基于的占空比改为 50%; 更新表 18 Wi-Fi 射频特性,并增加关于 "输出阻抗"的说明; 更新表 19、21、23 中的 "灵敏度"参数; 更新表 20、22、24 中的 "射频发射功率","射频功率控制范围"参数,并增加 "增益控制步长"参数; 删除章节触摸传感器和示例代码; 增加产品证书下载链接。
2017.06	V1.6	更改两处描述错误:
2017.06	V1.5	 更新章节 1.4.1 CPU 和存储中供电电压范围; 更新章节 2.3 电源管理中的说明; 更新表 13 极限参数; 更新表 26 管脚清单说明第 8 条中数字输出管脚的驱动强度; 增加文档变更通知。
2017.05	V1.4	 在章节 1.4.2 时钟和定时器中增加对于外置晶振频率的说明; 增加章节 2.4 Strapping 管脚中的说明; 将表 13 极限参数中最大驱动能力由 12 mA 改为 80 mA; 将表 18 Wi-Fi 射频中输入阻抗值 50Ω 改为输出阻抗值 30+j10 Ω; 更新章节 3.7 RTC 和低功耗管理; 在表 26 管脚清单说明第 8 条中增加一条描述; 删除表 IO_MUX 中 GPIO20。
2017.04	V1.3	 増加附录 ESP32 管脚清单; 更新表格 Wi-Fi 射频特性; 更新图 ESP32 管脚布局(封装为 QFN 5*5)。

日期	版本	发布说明
2017.03	V1.2	• 增加表格 管脚描述 的说明;
2017.03	V 1.2	● 更新章节 片上存储 的说明。
		• 增加章节 产品型号和订购信息;
		● 更新章节 MCU 和高级特性;
	V1.1	● 更新章节 功能框图;
		● 更新章节 管脚定义;
2017.02		● 更新章节 CPU 和存储;
		● 更新章节 音频 PLL 时钟;
		● 更新章节 极限参数;
		● 更新章节 封装信息;
		● 更新章节 学习资源。
2016.08	V1.0	首次发布。

免责声明和版权公告

本文档中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

本文档可能引用了第三方的信息,所有引用的信息均为"按现状"提供,乐鑫不对信息的准确性、真实性做任何保证。

乐鑫不对本文档的内容做任何保证,包括内容的适销性、是否适用于特定用途,也不 提供任何其他乐鑫提案、规格书或样品在他处提到的任何保证。

乐鑫不对本文档是否侵犯第三方权利做任何保证,也不对使用本文档内信息导致的任何侵犯知识产权的行为负责。本文档在此未以禁止反言或其他方式授予任何知识产权许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文档中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2022 乐鑫信息科技(上海)股份有限公司。保留所有权利。