Intree > parent rertex child = Nocle relationship In Sooph- adjacency (intemotion. if two reflect are V2 V3 V4 V5 connected by en edge. 9, 1-102/->103/->104 DIN 03 - 0- 10- 1- 10- N Adjacency Matosc Space: NIXIVI = O(V2) Adjacency viole Space: 1 V) + [E] = O(N+E) -> Graph with N restices. There are no loops How many max edges can be there? $\overline{u}(x-1)$ Graph Traversal -> BFS: Breadth First Search -> DFS : Deft First Search.

DFS - For a vertex, visit one of its adjacent vertex and repeat DFS until we reach a vertex with no more adjacent vertex not yet visited then backtrack.

DFS(startVertex) - Mark every vertex as not visited.

- if startVertex is not visited then
 - Mark startVertex as visited.
 - Process startVerted.
- For every adjacent vertex to startVertex
 - if vertex is not yet visited then
 - DFS(vertex)

BFS - For a vertex, visit all its adjacent vertex not yet visited. Then repeat the same process for each of the adjacent vertex.

BFS(startVertex)

- Mark every vertex as not visited.
- Initiate the traversal with startVertex => Add startVertex to queue.
- While there are vertex to be visited => queue is not empty do
 - Get a vertex from queue.
 - if vertex is not yet visited then
 - Mark vertex as visited.
 - Process the vertex.
- Add all vertices adjacent to this vertex that are not yet visited, to queue.

=) cook if edge weight is non-negotive. Dijkstoa's shotest bett Greedy approach -> All rester are reof for away from source. -> Set distance A source as O. -> Kreate a set of all Vertices. -> While there are reflere to be processed. > Find ristray with smallest distance. -> Find all is adjacent verterey and update their distance. if cure Diotence [v] >

cure Diotence [v] +

cure Diot [v] = cure Diot [v]

A,6

4 edge(v,v) SABORES

ABORES

ABORES $U \rightarrow S$ $V \rightarrow A$ $V \rightarrow$ weight: 6

Shortest Patt: S-B-D-E

Bell man - Food Shotest Path Algo
Down to some saire edge weight.
The service of the desay 1,0000 2000
→ Set Oliotena of Soll edges in graph. → Fox //- 1 tionso. → Fox //- 1 tionso.
-> For V - 1 times. To For each edge (u, v)
E - distance to Vial + edge (u, v)
(V-1)) it cure Dioience To V siall then
2 cure Diotence A V = Diotene ToV via U
-> Poedeunos of
Edges SA CD SB CE
S S S S S S S S S S S S S S
Curry ent Diotyre
S O A SB
A 00 44 B 00 2
C 00 4 D B
D 00 5 E C)

$$V + 1 + E + (V - 1) * (E * (1++1))$$
 $V + 1 + E + (V - 1) * (3E)$
 $V + 1 + F + 3VE - 3E$
 $V + 1 + F + 3VE - 3E$
 $SVE + V - 2E + 1 \Rightarrow O(VE)$

Max edges in graph = 2

 $\Rightarrow o(N^3)$