Pulse decay fit

- pulse decay fit using $f(t) = A_1 \cdot e^{-t/\tau_1} + A_2 \cdot e^{-t/\tau_2}$
- determination of chi-square χ^2 and chi-square per degree of freedom $(\nu) \chi_{\nu}^2$ with $\nu = n m$ equals the number of observations n minus the number of fitted parameters m

Data filtering: outlier cuts

- remove all events with features outside of expected distribution
- pulse height: maximal value baseline
- **baseline:** mean baseline value
- pulse rising time: time between 20-80% of pulse height
- $\chi^2, \chi^2_{\nu}, \tau_1, A_1, \tau_2, A_2$ from fit

Data filtering: outlier cuts

 10^{2}

 10^{1}

0.007

280

6000

260

A1 (ADC counts)

 $\times 10^{4}$

- remove all events with features outside of expected distribution
- pulse height: maximal value baseline
- **baseline:** mean baseline value
- pulse rising time: time between 20-80% of pulse height
- $\chi^2, \chi^2_{\nu}, \tau_1, A_1, \tau_2, A_2$ from fit

3000

0.008

0.009

 10^{2}

10¹

 10^{2}

 10^{1}

200

220

240

4000

Energy calibration by pulse heights

- distribution of pulse heights corresponds to natural line shape of the $^{55}{\rm Mn~K}_{\alpha}$ and ${\rm K}_{\beta}$ lines
- line shape can be used to calibrate the energy

Energy calibration

plot pulse height gauss peak positions over line shape energies and fit

Natural line shape of ⁵⁵Mn

DELight 2023 (R&D data)

spectra from Ka1,2 and Kb1,3 x-ray emission lines of the 3d transition metals (G. Hölzer et.al.)

80

60

40

Comparison energy calibration vs. natural line shape

positions match very well

Greta Heine – DELight meeting

width needs to be broadened by convolution with gauss (instrument resolution)

Backup

Feature correlations

- before filtering: correlations hard to identify
- after filtering:
 - eatures nearly gauss distributed
 - strong correlations between fit parameters (A_1,A_2,τ_1,τ_2) and between χ^2 and χ^2_{ν}
 - baseline mean, pulse amplitude and rising edge time independent from other features