Relations and Functions

1. Relation and Its types

the relation is

Q1.	If R is a relation from a set A to a set B a	nd S is a relation from B to a set C, their	n the relation SoR
(A)	Is from A to C		
(B)	Is from C to A		
(C)	Does not exist		
(D)	None of these		
Corr	rect Answer: (A)	Level: Easy	Tagging: Analyzing
Q2.	If $R = \{ (a, b) : a + b = a + b \}$ is a re	lation defined on a set {-1, 0,1}, then R	R is
(A)	Reflexive		
(B)	Symmetric		
(C)	Anti symmetric		
(D)	Transitive		
Corr	rect Answer: (C)	Level: Easy	Tagging: Evaluating
Q3.	If $R=\{(a, b) : a + b = 4\}$ is a relation on	N, then R is	
(A)	Reflexive		
(B)	Symmetric		
(C)	Antisymmetric		
(D)	Transitive		
Corr	rect Answer: (B)	Level: Easy	Tagging: Evaluating
Q4.	If relation R is defined as : aRb if "a is the	e father of b". Then, R is	
(A)	Reflexive		
(B)	Symmetric		
(C)	Transitive		
(D)	None of these		
Corr	rect Answer: (B)	Level: Easy	Tagging: Analyzing
_	If two sets A and B are having 99 elemente sets $A \times B$ and $B \times A$ are	its in common, then the number of elem	nents common to each
(A)	2 ⁹⁹		
(B)	18		
(C)	100		
(D)	99 ²		
Corr	rect Answer: (D)	Level: Easy	Tagging: Evaluating

Q6. In a set of ants in a locality, two ants are said to be related iff they walk on a same straight line, then

(A)	Reflexive and symmetric		
(B)	Symmetric and transitive		
(C)	Reflexive and transitive		
(D)	Equivalence		
Corr	rect Answer: (B)	Level: Easy	Tagging: Analyzing
Q7.	In a set of teachers of a school, two teach	ers are said to be related if they "teach	the same subject",
then	the relation is		
(A)	Reflexive and symmetric		
(B)	Symmetric and transitive		
(C)	Reflexive and transitive		
(D)	None of these		
Corr	rect Answer: (D)	Level: Easy	Tagging: Evaluating
Q8.	In order that a relation R defined on a non	-empty set A is an equivalence relation	, it is sufficient, if R
(A)	Is reflective		
(B)	Is symmetric		
(C)	Is transitive		
(D)	Possesses all the above three properties		
Corr	rect Answer: (D)	Level: Easy	Tagging: Analyzing
Q9.	In the set $A=\{1, 2, 3, 4, 5\}$, a relation R is	s defined by $R = \{(x, y) : x, y \in A \text{ and } x\}$	< y}. Then, R is
(A)	Reflexive		
(B)	Symmetric		
(C)	Transitive		
(D)	None of these		
Corr	ect Answer: (C)	Level: Easy	Tagging: Analyzing
Q10	Let $A = \{1, 2, 3, 4\}$, and let $R = \{(2, 2), (2, 2),$	(3, 3), (4, 4), (1, 2)} be a relation on	A. Then, R is
(A)	Reflexive		
(B)	Symmetric		
(C)	Transitive		
(D)	None of these		
Corr	rect Answer: (D)	Level: Easy	Tagging: Analyzing
	 Let A be a set of compartments in a train ink between them", then which of the follow 		Rb iff "a and b have
(A)	Reflexive		
(B)	Symmetric		
(C)	Transitive		
(D)	Equivalence		

Cor	rect Answer: (B)	Level: Easy	Tagging: Analyzing
Q12 (A)	 Let A be the non-void set of the children Reflexive 	in a family. The relation 'x is a brother o	of y' on A is
(B)	Symmetric		
(C)	Transitive		
(D)	None of these		
Cor	rect Answer: (C)	Level: Easy	Tagging: Analyzing
_	Let A be the set of all animals. A relation s". Then R is	nR is defined as "aRb iff a and b are in d	ifferent zoological
(A)	Only reflexive		
(B)	Only symmetric		
(C)	Only transitive		
(D)	Equivalence		
Cor	rect Answer: (B)	Level: Easy	Tagging: Analyzing
"aRt (A) (B) (C) (D) Corr		Level: Easy e Euclidean plane. Two lines I ₁ and I ₂ are	Tagging: Analyzing
	None of these		
Cor	rect Answer: (D)	Level: Easy	Tagging: Evaluating
Q16 is no	Let n be a fixed positive integer. Define a	a relation R on the set Z of integers by, ϵ	ıRb⇔n a-b. Then, R
(A)	Reflexive		
(B)	Symmetric		
(C)	Transitive		
(D)	None of these		
Cor	rect Answer: (D)	Level: Easy	Tagging: Analyzing

Q17. Let $P = \{(x, y) \mid x^2 + y^2 = 1, x, y \in R\}$.	Then, P is	
(A) Reflexive	,	
(B) Symmetric		
(C) Transitive		
(D) Antisymmetric		
Correct Answer: (D)	Level: Easy	Tagging: Analyzing
Q18. Let $R = \{(a, a)\}$ be a relation on a set	A. Then, R is	
(A) Symmetric	,	
(B) Antisymmetric		
(C) Symmetric and antisymmetric		
(D) Neither symmetric nor antisymmetric		
Correct Answer: (B)	Level: Easy	Tagging: Analyzing
Q19. Let R and S be two equivalence relation	ns on a set A. Then,	
(A) $R \cup S$ is an equivalence relation on A		
(B) $R \cap S$ is an equivalence relation on A		
(C) R - S is an equivalence relation on A		
(D) None of these		
Correct Answer: (B)	Level: Easy	Tagging: Analyzing
Correct Answer: (B) Q20. Let R and S be two relations on a set A	-	
	. Then, which one of the following is not	
Q20. Let R and S be two relations on a set A	. Then, which one of the following is not transitive	
Q20. Let R and S be two relations on a set A (A) R and S are transitive, then $R \cup S$ is also	. Then, which one of the following is not transitive transitive	
Q20. Let R and S be two relations on a set A (A) R and S are transitive, then $R \cup S$ is also (B) R and S are transitive, then $R \cap S$ is also	. Then, which one of the following is not transitive transitive reflexive	
Q20. Let R and S be two relations on a set A (A) R and S are transitive, then $R \cup S$ is also (B) R and S are transitive, then $R \cap S$ is also (C) R and S are reflexive, then $R \cap S$ is also	. Then, which one of the following is not transitive transitive reflexive	
Q20. Let R and S be two relations on a set A (A) R and S are transitive, then $R \cup S$ is also (B) R and S are transitive, then $R \cap S$ is also (C) R and S are reflexive, then $R \cap S$ is also (D) R and S are symmetric, then $R \cup S$ is also	. Then, which one of the following is not transitive transitive reflexive o symmetric Level: Easy	true? Tagging: Analyzing
Q20. Let R and S be two relations on a set A (A) R and S are transitive, then R \cup S is also (B) R and S are transitive, then R \cap S is also (C) R and S are reflexive, then R \cap S is also (D) R and S are symmetric, then R \cup S is also (C) Correct Answer: (A)	. Then, which one of the following is not transitive transitive reflexive o symmetric Level: Easy	true? Tagging: Analyzing
Q20. Let R and S be two relations on a set A (A) R and S are transitive, then R \cup S is also (B) R and S are transitive, then R \cap S is also (C) R and S are reflexive, then R \cap S is also (D) R and S are symmetric, then R \cup S is also Correct Answer: (A)	. Then, which one of the following is not transitive transitive reflexive o symmetric Level: Easy	true? Tagging: Analyzing
Q20. Let R and S be two relations on a set A (A) R and S are transitive, then R \cup S is also (B) R and S are transitive, then R \cap S is also (C) R and S are reflexive, then R \cap S is also (D) R and S are symmetric, then R \cup S is also (D) R and S are symmetric, t	. Then, which one of the following is not transitive transitive reflexive o symmetric Level: Easy	true? Tagging: Analyzing
Q20. Let R and S be two relations on a set A (A) R and S are transitive, then R \cup S is also (B) R and S are transitive, then R \cap S is also (C) R and S are reflexive, then R \cap S is also (D) R and S are symmetric, then R \cup S is also (D) R and S are symmetric, t	. Then, which one of the following is not transitive transitive reflexive o symmetric Level: Easy	true? Tagging: Analyzing
Q20. Let R and S be two relations on a set A (A) R and S are transitive, then R \cup S is also (B) R and S are transitive, then R \cap S is also (C) R and S are reflexive, then R \cap S is also (D) R and S are symmetric, then R \cup S is also (Correct Answer: (A) Q21. Let R be a reflexive relation on a set A (A) R \subset I (B) I \subset R (C) R = I	. Then, which one of the following is not transitive transitive reflexive o symmetric Level: Easy	true? Tagging: Analyzing
Q20. Let R and S be two relations on a set A (A) R and S are transitive, then R \cup S is also (B) R and S are transitive, then R \cap S is also (C) R and S are reflexive, then R \cap S is also (D) R and S are symmetric, then R \cup S is also (Correct Answer: (A) Q21. Let R be a reflexive relation on a set A (A) R \subset I (B) I \subset R (C) R = I (D) None of these	Then, which one of the following is not transitive transitive reflexive o symmetric Level: Easy and I be the identity relation on A. Then Level: Easy	true? Tagging: Analyzing Tagging: Analyzing
 Q20. Let R and S be two relations on a set A (A) R and S are transitive, then R ∪ S is also (B) R and S are transitive, then R ∩ S is also (C) R and S are reflexive, then R ∩ S is also (D) R and S are symmetric, then R ∪ S is also (D) R and S are symmetric, then R ∪ S is also (D) R and S are symmetric, then R ∪ S is also (E) Correct Answer: (A) (A) R ⊂ I (B) I ⊂ R (C) R = I (D) None of these (D) None of these (E) Correct Answer: (B) (C) Q22. Let R be a relation defined on S, the second 	Then, which one of the following is not transitive transitive reflexive o symmetric Level: Easy and I be the identity relation on A. Then Level: Easy	true? Tagging: Analyzing Tagging: Analyzing
 Q20. Let R and S be two relations on a set A (A) R and S are transitive, then R ∪ S is also (B) R and S are transitive, then R ∩ S is also (C) R and S are reflexive, then R ∩ S is also (D) R and S are symmetric, then R ∪ S is also (D) R and S are symmetric, then R ∪ S is also (D) R and S are symmetric, then R ∪ S is also (D) R and S are symmetric, then R ∪ S is also (E) R = I (D) R = I (D) R = I (D) None of these (E) Correct Answer: (B) (D) Let R be a relation defined on S, the second common side. Then, which of the following is formula to the second common side. Then, which of the following is formula to the second common side. 	Then, which one of the following is not transitive transitive reflexive o symmetric Level: Easy and I be the identity relation on A. Then Level: Easy	true? Tagging: Analyzing Tagging: Analyzing

ı	(D)	ΛII	tha	abov	_
J	(U)	~11	LIIC	annv	┖

Correct Answer: (C) Level: Easy Tagging: Analyzing

Q23. Let R be a relation on the set N of natural numbers defined by $nRm \Leftrightarrow n$ is a factor of m (i.e. $n \mid m$). Then, R is

- (A) Reflexive and symmetric
- (B) Transitive and symmetric
- (C) Equivalence
- (D) Reflexive, transitive but not symmetric

Correct Answer: **(D)** Level: **Easy** Tagging: **Analyzing**

- **Q24.** Let R be an equivalence relation on a finite set A having n elements. Then, the number of ordered pairs in R is
- (A) Less than n
- (B) Greater than or equal to n
- (C) Less than or equal to n
- (D) None of these

Correct Answer: (B) Level: Easy Tagging: Analyzing

- **Q25.** Let R_1 be a relation defined by $R_1 = \{(a, b) \mid a \ge b, a, b \in R\}$. Then, R_1 is
- (A) An equivalence relation on R
- (B) Reflexive, transitive but not symmetric
- (C) Symmetric, transitive but not reflexive
- (D) Neither transitive not reflexive but symmetric

Correct Answer: (B) Level: Easy Tagging: Analyzing

Q26. Let $X = \{1, 2, 3, 4, 5\}$ and $Y = \{1, 3, 5, 7, 9\}$. Which of the following is/are not relations from X to Y?

- (A) $R_1 = \{(x, y) \mid y = 2 + x, x \in X, y \in Y\}$
- (B) $R_2 = \{(1, 1), (2, 1), (3, 3), (4, 3), (5, 5)\}$
- (C) $R_3 = \{(1, 1), (1, 3), (3, 5), (3, 7), (5, 7)\}$
- (D) $R_1 = \{(1, 3), (2, 5), (2, 4), (7, 9)\}$

Correct Answer: **(D)** Level: **Easy** Tagging: **Evaluating**

- **Q27.** Let X be a family of sets and R be a relation on X defined by 'A is disjoint from B'. Then, R is
- (A) Reflexive
- (B) Symmetric
- (C) Antisymmetric
- (D) Transitive

Correct Answer: (B) Level: Easy Tagging: Analyzing

Q28. On the set of human beings a relation R brother". Then R is (A) Only reflexive (B) Only symmetric (C) Only transitive (D) Equivalence Correct Answer: (D)	is defined as follows: "aRb iff a and b h Level: Easy	ave the same Tagging: Analyzing
Q29. Set builder form of the relation $R=\{(-2,$	-7), (-1, -4), (0, -1), (1, 2), (2, 5)} is	
(A) $\{(a, b) : b = 2a - 3; a, b, \in Z\}$		
(B) $((x, y) : y = 3x - 1; x, y \in Z)$		
(C) $\{(a, b) : b = 3a - 1; a, b \in N\}$		
(D) $\{(u, v) : v = 3u - 1; -2 \le u < 3 \text{ and } u \in \mathbb{Z}\}$	7}	
Correct Answer: (D)	Level: Easy	Tagging: Evaluating
Q30. The relation "is a factor of" on the set N(A) Reflexive(B) Symmetric(C) Antisymetric(D) Transitive	of all natural numbers is not	
Correct Answer: (B)	Level: Easy	Tagging: Analyzing
Correct Answer: (B) Q31. The relation R defined in N as a R b ⇔ b (A) Reflexive but not symmetric (B) Symmetric but not transitive (C) Symmetric and transitive	-	Tagging: Analyzing
Correct Answer: (B) Q31. The relation R defined in N as a R b ⇔ b (A) Reflexive but not symmetric (B) Symmetric but not transitive (C) Symmetric and transitive	-	Tagging: Analyzing Tagging: Analyzing
Correct Answer: (B) Q31. The relation R defined in N as a R b ⇔ b (A) Reflexive but not symmetric (B) Symmetric but not transitive (C) Symmetric and transitive (D) None of these	tevel: Easy d on the set with minimum number of e	Tagging: Analyzing elements of natural
Correct Answer: (B) Q31. The relation R defined in N as a R b ⇔ b (A) Reflexive but not symmetric (B) Symmetric but not transitive (C) Symmetric and transitive (D) None of these Correct Answer: (A) Q32. The relation R={(1, 3), (3, 5)} is define numbers. The minimum number of elements to (A) 5 (B) 6 (C) 7 (D) 8 Correct Answer: (C)	Level: Easy d on the set with minimum number of e	Tagging: Analyzing elements of natural ence relation, is
Correct Answer: (B) Q31. The relation R defined in N as a R b ⇔ b (A) Reflexive but not symmetric (B) Symmetric but not transitive (C) Symmetric and transitive (D) None of these Correct Answer: (A) Q32. The relation R={(1, 3), (3, 5)} is define numbers. The minimum number of elements to (A) 5 (B) 6 (C) 7 (D) 8 Correct Answer: (C) Q33. The void relation on a set A is	Level: Easy d on the set with minimum number of e	Tagging: Analyzing elements of natural ence relation, is

(D)	Reflexive and transitive		
Cor	rect Answer: (B)	Level: Easy	Tagging: Analyzing
Q34	Two points P and Q in a plane are rel	ated if $OP = OQ$, where O is a fixed poi	nt. This relation is
(A)	Partial order relation		
(B)	Equivalence relation		
(C)	Reflexive but not symmetric		
(D)	Reflexive but not transitive		
Cor	rect Answer: (B)	Level: Easy	Tagging: Analyzing
Q35	• Which of the following is an equivaler	nce relation?	
(A)	Is father of		
(B)	Is less than		
(C)	Is congruent to		
(D)	Is an uncle of		
Cor	rect Answer: (C)	Level: Easy	Tagging: Analyzing
Q36	• Which of the following relations is syr	mmetric and transitive but not reflexive	e for the set $I = \{4, 5\}$?
(A)	$R = \{(4, 4), (5, 4), (5, 5)\}$		
(B)	$R = \{(4, 4), (5, 5)\}$		
(C)	$R = \{(4, 5), (5, 4)\}$		
(D)	$R = \{(4, 5), (5, 4), (4, 4)\}$		
Cor	rect Answer: (D)	Level: Easy	Tagging: Analyzing
Q37	• Which of the following relations is tra	nsitive but not reflexive for the set S =	{3, 4, 6}?
(A)	$R = \{(3, 4), (4, 6), (3, 6)\}$		
(B)	$R = \{(1, 2), (1, 3), (1, 4)\}$		
(C)	$R = \{(3, 3), (4, 4), (6, 6)\}$		
(D)	$R = \{(3, 4), (4, 3)\}$		
Cor	rect Answer: (A)	Level: Easy	Tagging: Remembering
	Which of the following statements is within on kilometre from a?	not correct for the relation R defined by	y aRb, if and only, if b
(A)	R is reflexive		
(B)	R is symmetric		
(C)	R is anti-symmetric		
(D)	None of these		

Level: **Easy**

Tagging: **Analyzing**

Q39. Which of these is not a type of relation?

(A) Reflexive

Correct Answer: **(C)**

(B)	Surjective
(C)	Symmetric
(D)	Transitive
Corı	rect Answer: (B)

Level: Easy Tagging: Remembering

Q40. Which one of the following relations on R is an equivalence relation?

- (A) $a R_1 b \Leftrightarrow |a| = |b|$
- (B) $a R_2 b \Leftrightarrow a \ge b$
- (C) a R_3 b \Leftrightarrow a divides b
- (D) $a R_4 b \Leftrightarrow a < b$

Correct Answer: (A) Level: Easy Tagging: Analyzing

Q41. Given set A = $\{1, 2, 3\}$ and a relation R = $\{(1, 2), (2, 1)\}$, the relation R will be

- (A) Reflexive if (1, 1) is added
- (B) Symmetric if (2, 3) is added
- (C) Transitive if (1, 1) is added
- (D) Symmetric if (3, 2) is added

Correct Answer: **(C)** Level: **Moderate** Tagging: **Evaluating**

Q42. Let L denote the set of all straight lines in a plane. Let a relation R be defined by α R $\beta \Leftrightarrow \alpha \perp \beta$, α , $\beta \in L$. Then R is

- (A) Reflexive
- (B) Symmetric
- (C) Transitive
- (D) None of these

Correct Answer: **(B)** Level: **Moderate** Tagging: **Applying**

Q43. The relation R in the set Integers given by $R = \{(a, b) : a - b \text{ is divisible by 3}\}$ is

- (A) Reflexive
- (B) Reflexive but not symmetric
- (C) Not symmetric and transitive
- (D) Equivalence relation

Correct Answer: **(D)** Level: **Moderate** Tagging: **Understanding**

Q44. Which of the following relations is reflexive but not transitive for the set $T = \{7, 8, 9\}$?

- (A) $R = \{(7, 7), (8, 8), (9, 9)\}$
- (B) $R = \{(7, 8), (8, 7), (8, 9)\}$
- (C) $R = \{0\}$
- (D) $R = \{(7, 8), (8, 8), (8, 9)\}$

Correct Answer: (A) Level: Moderate Tagging: Creating

Q45. Which of the following relations is symmetric but neither reflexive nor transitive for a set $A = \{1, 2, 3\}$.

- (A) $R = \{(1, 2), (1, 3), (1, 4)\}$
- (B) $R = \{(1, 2), (2, 1)\}$
- (C) $R = \{(1, 1), (2, 2), (3, 3)\}$
- (D) $R = \{(1, 1), (1, 2), (2, 3)\}$

Correct Answer: (B)

Level: **Moderate**

Tagging: **Creating**

Q46. Let L be a set of all lines in a XY plane and R be a relation in L defined as $R = \{(L1, L2) : L1 \text{ is parallel to } L2\}$. What is the type of given relation?

- (A) Reflexive relation
- (B) Transitive relation
- (C) Symmetric relation
- (D) Equivalence relation

Correct Answer: (D)

Level: **Difficult**

Tagging: Understanding

Q47. Let R be a relation in the set N given by $R = \{(a, b): a + b = 5, b > 1\}$. Which of the following will satisfy the given relation?

- (A) $(2,3) \in R$
- (B) $(4,2) \in R$
- (C) $(2,1) \in R$
- (D) $(5,0) \in R$

Correct Answer: (A) Level: Difficult Tagging: Analyzing

2. Functions and Its Classification

The domain of definition of $f(x) = \log_{100 x} \left(\frac{2 \log_{10} x + 1}{-x} \right)$, is

- (A) $(0,10^{-2}) \cup (10^{-2}, 10^{-1/2})$
- (B) $(0,10^{-1/2})$
- (C) $(0,10^{-1})$
- (D) None of these

Correct Answer: (A) Level: Easy Tagging: Evaluating

Q49. A function f(x) is defined as f(x) = |x + 3|. For what values of x is f(x) equal to 0?

- (A) x = -3
- (B) x = 3
- (C) x = -6 or x = 0
- (D) x = -3 or x = 0

Correct Answer: (D) Level: Easy Tagging: Understanding

Q50. A function that assigns	each real number to its cube is an example	e of a:
(A) Linear function		
(B) Quadratic function		
(C) Cubic function		
(D) Exponential function		
Correct Answer: (C)	Level: Easy	Tagging: Understanding
Q51. A function that is both of	one-to-one and onto is called:	
(A) Linear function		
(B) Quadratic function		
(C) Bijective function		
(D) Exponential function		
Correct Answer: (C)	Level: Easy	Tagging: Understanding
Q52. Consider the set A cont	aining n elements. The total number of inje	ective functions from A onto itself is
:		
(A) 1		
(B) n		
(C) 2n		
(D) n!		
(5)		
Correct Answer: (D)	Level: Easy	Tagging: Remembering
Correct Answer: (D)	Level: Easy as $f(x) = x^2$, what is the value of $f(3)$?	Tagging: Remembering
Correct Answer: (D)	-	Tagging: Remembering
Correct Answer: (D) Q53. If a function is defined a	-	Tagging: Remembering
Correct Answer: (D) Q53. If a function is defined at (A) 6	-	Tagging: Remembering
Correct Answer: (D) Q53. If a function is defined at (A) 6 (B) 9	-	Tagging: Remembering
Correct Answer: (D) Q53. If a function is defined at (A) 6 (B) 9 (C) 27	-	Tagging: Remembering Tagging: Understanding
Correct Answer: (D) Q53. If a function is defined at (A) 6 (B) 9 (C) 27 (D) 81 Correct Answer: (B)	as $f(x) = x^2$, what is the value of $f(3)$?	Tagging: Understanding
Correct Answer: (D) Q53. If a function is defined at (A) 6 (B) 9 (C) 27 (D) 81 Correct Answer: (B)	as $f(x) = x^2$, what is the value of $f(3)$? Level: Easy	Tagging: Understanding
Correct Answer: (D) Q53. If a function is defined at (A) 6 (B) 9 (C) 27 (D) 81 Correct Answer: (B) Q54. If a function maps ever	as $f(x) = x^2$, what is the value of $f(3)$? Level: Easy	Tagging: Understanding
Correct Answer: (D) Q53. If a function is defined at (A) 6 (B) 9 (C) 27 (D) 81 Correct Answer: (B) Q54. If a function maps ever (A) One-to-many function	as $f(x) = x^2$, what is the value of $f(3)$? Level: Easy	Tagging: Understanding
Correct Answer: (D) Q53. If a function is defined at (A) 6 (B) 9 (C) 27 (D) 81 Correct Answer: (B) Q54. If a function maps ever (A) One-to-many function (B) Many-to-one function	as $f(x) = x^2$, what is the value of $f(3)$? Level: Easy	Tagging: Understanding
Correct Answer: (D) Q53. If a function is defined at (A) 6 (B) 9 (C) 27 (D) 81 Correct Answer: (B) Q54. If a function maps ever (A) One-to-many function (B) Many-to-one function (C) One-to-one function	as $f(x) = x^2$, what is the value of $f(3)$? Level: Easy	Tagging: Understanding
Correct Answer: (D) Q53. If a function is defined at (A) 6 (B) 9 (C) 27 (D) 81 Correct Answer: (B) Q54. If a function maps ever (A) One-to-many function (B) Many-to-one function (C) One-to-one function (D) Onto function Correct Answer: (C)	as $f(x) = x^2$, what is the value of $f(3)$? Level: Easy y element of its domain to a single, specific	Tagging: Understanding c element in its co-domain, it is: Tagging: Understanding
Correct Answer: (D) Q53. If a function is defined at (A) 6 (B) 9 (C) 27 (D) 81 Correct Answer: (B) Q54. If a function maps ever (A) One-to-many function (B) Many-to-one function (C) One-to-one function (D) Onto function Correct Answer: (C)	as $f(x) = x^2$, what is the value of $f(3)$? Level: Easy y element of its domain to a single, specific Level: Easy	Tagging: Understanding c element in its co-domain, it is: Tagging: Understanding
Correct Answer: (D) Q53. If a function is defined at (A) 6 (B) 9 (C) 27 (D) 81 Correct Answer: (B) Q54. If a function maps ever (A) One-to-many function (B) Many-to-one function (C) One-to-one function (D) Onto function Correct Answer: (C) Q55. If the function is defined at (B) and (C) are considered as function (C) are considered as function (C) one-to-one function (D) Onto function (D) Onto function (C) are considered as function (C)	as $f(x) = x^2$, what is the value of $f(3)$? Level: Easy y element of its domain to a single, specific Level: Easy	Tagging: Understanding c element in its co-domain, it is: Tagging: Understanding

Level: Easy	Tagging: Remembering
fined by $f(x) = 2x$ The function f is a:	
Level: Easy	Tagging: Understanding
mple of a:	
Level: Easy	Tagging: Understanding
its values in the range:	
Level: Easy	Tagging: Understanding
tions from {1, 2, 3} to {1, 2, 3, 4, 5} is	
Level: Easy	Tagging: Evaluating
n f(x) = x ?	
equal to 0	
Level: Easy	Tagging: Understanding
definition of a function?	
	Eined by $f(x) = 2x$ The function f is a: Level: Easy its values in the range: Level: Easy cions from $\{1, 2, 3\}$ to $\{1, 2, 3, 4, 5\}$ is Level: Easy n $f(x) = x $? equal to 0

(B) A relation where each element in the co-domain is associated with exactly one element in the domain.

- (C) A relation where each element in the domain is associated with exactly one element in the co-domain. (D) A relation where there is no connection between elements in the domain and co-domain. Correct Answer: (C) Level: Easy Tagging: Understanding **Q62.** Which type of function has a constant rate of change? (A) Linear function (B) Quadratic function (C) Cubic function (D) Exponential function Correct Answer: (A) Level: Easy Tagging: Understanding **Q63.** Consider the following statements: 1. A function $f: Z \to Z$, defined by f(x) = x + 1, is one-one as well as onto. 2. A function $f: N \to N$, defined by f(x) = x + 1, is one-one but not onto. Which of the above statements is/are correct? (A) 1 only (B) 2 only (C) Both 1 and 2 (D) Neither 1 nor 2 Correct Answer: (C) Level: Moderate Tagging: Analyzing **Q64.** Consider the function $f: R \to \{0, 1\}$ such that $f(x) = \{1 \text{ if } x \text{ is rational and } 0 \text{ if } x \text{ is irrational}\}$ Which one of the following is correct? (A) The function is one-one into (B) The function is many-one into (C) The function is one-one onto (D) The function is many-one onto Correct Answer: (D) Level: Moderate Tagging: Evaluating **Q65.** Find out if function $f: N \to N$, given by f(x) = 4x, is one - one but not onto.
 - (A) False
 - (B) True
 - (C) Can't say
 - (D) None of the above

Correct Answer: (B) Level: Moderate Tagging: Understanding

Q66. Let N be the set of natural numbers and $f: N \to N$ be a function given by $f(x) = x + 1 \ \forall \ x \in N$. Which one of the following is correct?

- (A) f is one one and onto
- (B) f is one one but not onto
- (C) f is only onto

(D) f is neither one - one nor onto Correct Answer: (B) Level: Moderate Tagging: Understanding **Q67.** Let $P=\{10,20,30\}$ and $Q=\{5,10,15,20\}$. Which one of the following functions is one – one and not onto? (A) $f = \{(10,5),(10,10),(10,15),(10,20)\}$ (B) $f = \{(10,5),(20,10),(30,15)\}$ (C) $f=\{(20,5),(20,10),(30,10)\}$ (D) $f = \{(10,5),(10,10),(20,15),(30,20)\}$ Correct Answer: (B) Level: Moderate Tagging: Applying **Q68.** Let the function 'f' be defined by $f(x) = 5x^2 + 2$, $x \in R$, then 'f' is (A) onto function (B) one-one, onto function (C) one-one, into function (D) many-one into function Correct Answer: (D) Level: Moderate Tagging: Evaluating 3. Composite of Functions and Invertible Function **Q69.** An element is said to be invertible only if there is an identity element in that binary operation. (A) True (B) False (C) undefined (D) None Correct Answer: (A) Level: **Easy** Tagging: Remembering **Q70.** An invertible function is one that: (A) Has the same output for multiple inputs. (B) Has a horizontal asymptote. (C) Has an inverse that is also a function. (D) Is a polynomial function. Correct Answer: (C) Level: Easy Tagging: Understanding **Q71.** For a function to have an inverse, it must be: (A) Continuous

- (B) Discontinuous
- (C) Bijective
- (D) Non-monotonic

Correct Answer: (C) Level: Easy Tagging: Understanding

Q72. If a function f(x) has an inverse $f^{-1}(x)$, what is true about the composition off and its inverse?

(A) $f(f^{-1}(x)) = f^{-1}(f(x)) = x$		
(B) $f(f^{-1}(x)) = f(x)$		
(C) $f(f^{-1}(x)) = x$		
(D) $f^{-1}(f(x)) = 1$		
Correct Answer: (A)	Level: Easy	Tagging: Understanding
Q73. If a function f(x) is such	that $f(f^{-1}(x)) = x$ for all x in the domai	n of f ⁻¹ , then:
(A) $f(x)$ is the inverse of $f^{-1}(x)$:).	
(B) $f^{-1}(x)$ is the inverse of $f(x)$:).	
(C) Both $f(x)$ and $f^{-1}(x)$ are id	lentity functions.	
(D) The composition f o f^{-1} is	not defined.	
Correct Answer: (C)	Level: Easy	Tagging: Understanding
Q74. If function $f(x)$ is define composite function (f o g) (x)?	ed as $f(x) = 2x + 3$ and function $g(x)$ is	defined as $g(x) = x^2$, what is the
(A) $2 x^2 + 3$		
(B) $4x^2 + 3$		
(C) $2 x^2 + 6$		
(D) $4 x^2 + 9$		
Correct Answer: (A)	Level: Easy	Tagging: Understanding
Q75. If function $f(x)$ is invert	ible, what can you say about its domain	and range?
(A) The domain and range of	f(x) are both restricted.	
(B) The domain and range of	f(x) are both unrestricted.	
(C) The domain of f(x) is unr	estricted, but the range is restricted.	
(D) The domain of $f(x)$ is rest	tricted, but the range is unrestricted.	
Correct Answer: (B)	Lovely Engy	
	Level: Easy	Tagging: Understanding
Q76. If functions $f(x)$ and $g(x)$	x) are such that $f(g(x)) = x$ for all x in the	
Q76. If functions $f(x)$ and $g(x)$ (A) $f(x)$ is the inverse of $g(x)$	x) are such that $f(g(x)) = x$ for all x in the	
	x) are such that $f(g(x)) = x$ for all x in the	
(A) $f(x)$ is the inverse of $g(x)$	x) are such that $f(g(x)) = x$ for all x in the .	
(A) f(x) is the inverse of g(x)(B) g(x) is the inverse of f(x)	x) are such that $f(g(x)) = x$ for all x in the such that $f(g(x)) = x$ for a	
 (A) f(x) is the inverse of g(x) (B) g(x) is the inverse of f(x) (C) f(x) and g(x) are both inverse. 	x) are such that $f(g(x)) = x$ for all x in the such that $f(g(x)) = x$ for a	
 (A) f(x) is the inverse of g(x) (B) g(x) is the inverse of f(x) (C) f(x) and g(x) are both inv (D) f(x) and g(x) are identical Correct Answer: (B) 	x) are such that $f(g(x)) = x$ for all x in the such that $f(g(x)) = x$ for a	he domain of g, then: Tagging: Understanding
 (A) f(x) is the inverse of g(x) (B) g(x) is the inverse of f(x) (C) f(x) and g(x) are both inv (D) f(x) and g(x) are identical Correct Answer: (B) 	x) are such that f(g(x)) = x for all x in the content of the conte	he domain of g, then: Tagging: Understanding
 (A) f(x) is the inverse of g(x) (B) g(x) is the inverse of f(x) (C) f(x) and g(x) are both inv (D) f(x) and g(x) are identical Correct Answer: (B) Q77. Let f: A → B and g: B 	x) are such that f(g(x)) = x for all x in the content of the conte	he domain of g, then: Tagging: Understanding
 (A) f(x) is the inverse of g(x) (B) g(x) is the inverse of f(x) (C) f(x) and g(x) are both inv (D) f(x) and g(x) are identical Correct Answer: (B) Q77. Let f: A → B and g: B (A) One-one 	x) are such that f(g(x)) = x for all x in the content of the conte	he domain of g, then: Tagging: Understanding

Q78. Let R be a reflexive relation on a finite set A having n elements, and let there be m ordered pairs in R. Then,

- (A) $m \ge n$
- (B) $m \le n$
- (C) m = n
- (D) None of these

Correct Answer: (A)

Level: **Easy**

Tagging: Evaluating

Q79. The inverse of the function f(x) = 3x + 2 is given by:

- (A) $f^{-1}(x) = 3x + 2$
- (B) $f^{-1}(x) = (x 2) / 3$
- (C) $f^{-1}(x) = 2x + 3$
- (D) $f^{-1}(x) = (x + 2) / 3$

Correct Answer: (B)

Level: **Easy**

Tagging: Understanding

Q80. $f: R \rightarrow R$ is defined by $f(x) = x^2 - 2x + 1$. Find f[f(x)]

- (A) $x^4 + 4x^3 4x^2$
- (B) $x^4 4x^3 + 4x^2$
- (C) $x^4 + 4x^3 + 4x^2$
- (D) $x^4 4x^3 4x^2$

Correct Answer: (B)

Level: Moderate

Tagging: **Applying**

Q81. If $f: R \rightarrow R$, $f(x) = \cos x$ and $g(x) = 7x^3 + 6$ then $\log(x)$ is

- (A) $\cos(7x^3 + 6)$
- (B) cosx
- (C) $cos(x^3)$
- (D) $\cos(x^3+6)$

Correct Answer: (A)

Level: Moderate

Tagging: Applying

Q82. If $f(x) = \tan^{-1} x$ and $g(x) = \tan(x)$, then (gof)(x) =

- (A) $tan^{-1}x tan(x)$
- (B) $tan^{-1}x cot(x)$
- (C) x
- (D) $tan^{-1}x sin(x)$

Correct Answer: (C)

Level: Moderate

Tagging: **Applying**

Q83. Let $f: Q \rightarrow Q$ be a function given by $f(x) = x^2$, then $f^{-1}(9) = x^2$

(A) {3}		
(B) f		
(C) {-3, 3}		
(D) {-3}		
Correct Answer: (C)	Level: Moderate	Tagging: Applying
Q84. Let $M=\{7,8,9\}$. Determine which of the	e following functions is invertible for $f:M\rightarrow I$	М.
(A) $f = \{(7,7),(8,8),(9,9)\}$		
(B) $f = \{(7,8),(7,9),(8,9)\}$		
(C) $f = \{(8,8),(8,7),(9,8)\}$		
(D) $f = \{(9,7),(9,8),(9,9)\}$		
Correct Answer: (A)	Level: Moderate	Tagging: Creating
Q85. If f : R o R, $g(x) = 3x^2 + 7$ and $f(x) = \sqrt{x}$	x, then gof(x) is equal to	
(A) 3x - 7		
(B) 3x - 9		
(C) $3x + 7$		
(D) 3x - 8		
Correct Answer: (C)	Level: Difficult	Tagging: Applying
Q86. If f: $R \rightarrow R$ and g: $R \rightarrow R$ defined by f(x)	$(x) = 2x + 3$ and $g(x) = x^2 + 7$, then the variables	alue of x for which
f(g(x)) = 25 is		
f(g(x)) = 25 is (A) ± 3		
f(g(x)) = 25 is (A) ± 3 (B) ± 1		
f(g(x)) = 25 is (A) ± 3 (B) ± 1 (C) ± 4	Level: Difficult	Tagging: Applying
$f(g(x)) = 25 \text{ is}$ (A) ± 3 (B) ± 1 (C) ± 4 (D) ± 2 Correct Answer: (D)		
f(g(x)) = 25 is (A) ± 3 (B) ± 1 (C) ± 4 (D) ± 2		
$f(g(x)) = 25 \text{ is}$ (A) ± 3 (B) ± 1 (C) ± 4 (D) ± 2 Correct Answer: (D) Q87. If $f: N \rightarrow N$, $g: N \rightarrow N$ and $h: N \rightarrow R$ is define (A) $tan(6(3x-5))$		
$f(g(x)) = 25 \text{ is}$ (A) ± 3 (B) ± 1 (C) ± 4 (D) ± 2 Correct Answer: (D) Q87. If $f: N \rightarrow N$, $g: N \rightarrow N$ and $h: N \rightarrow R$ is define (A) $tan(6(3x-5))$		
$f(g(x)) = 25 \text{ is}$ (A) ± 3 (B) ± 1 (C) ± 4 (D) ± 2 Correct Answer: (D) Q87. If $f: N \rightarrow N$, $g: N \rightarrow N$ and $h: N \rightarrow R$ is define (A) $tan(6(3x-5))$ (B) $tan(6(3x-5))^2$		
$f(g(x)) = 25 \text{ is}$ (A) ± 3 (B) ± 1 (C) ± 4 (D) ± 2 Correct Answer: (D) Q87. If $f: N \rightarrow N$, $g: N \rightarrow N$ and $h: N \rightarrow R$ is define (A) $\tan(6(3x-5))$ (B) $\tan(6(3x-5))^2$ (C) $\tan(3x-5)$		
$f(g(x)) = 25 \text{ is}$ (A) ± 3 (B) ± 1 (C) ± 4 (D) ± 2 Correct Answer: (D) Q87. If $f: N \rightarrow N$, $g: N \rightarrow N$ and $h: N \rightarrow R$ is define (A) $\tan(6(3x-5))$ (B) $\tan(6(3x-5)^2)$ (C) $\tan(3x-5)$ (D) $6 \tan(3x-5)^2$	d f(x)=3x-5, g(y)=6y ² and h(z) = tan(z) fi Level: Difficult	ind ho(gof)
$f(g(x)) = 25 \text{ is}$ (A) ± 3 (B) ± 1 (C) ± 4 (D) ± 2 Correct Answer: (D) Q87. If $f: N \rightarrow N$, $g: N \rightarrow N$ and $h: N \rightarrow R$ is define (A) $\tan(6(3x-5))$ (B) $\tan(6(3x-5))^2$ (C) $\tan(3x-5)^2$ (D) $6 \tan(3x-5)^2$ Correct Answer: (B)	d f(x)=3x-5, g(y)=6y ² and h(z) = tan(z) fi Level: Difficult	ind ho(gof)
$f(g(x)) = 25 \text{ is}$ (A) ± 3 (B) ± 1 (C) ± 4 (D) ± 2 Correct Answer: (D) Q87. If $f: N \rightarrow N$, $g: N \rightarrow N$ and $h: N \rightarrow R$ is define (A) $\tan(6(3x-5))$ (B) $\tan(6(3x-5))^2$ (C) $\tan(3x-5)$ (D) $6 \tan(3x-5)^2$ Correct Answer: (B) Q88. Let $f = \{(1, 3), (2, 1), (3, 2)\}$ and $g = (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3$	d f(x)=3x-5, g(y)=6y ² and h(z) = tan(z) fi Level: Difficult	ind ho(gof)
$f(g(x)) = 25 \text{ is}$ (A) ± 3 (B) ± 1 (C) ± 4 (D) ± 2 Correct Answer: (D) Q87. If $f: N \rightarrow N$, $g: N \rightarrow N$ and $h: N \rightarrow R$ is define (A) $\tan(6(3x-5))$ (B) $\tan(6(3x-5))$ (C) $\tan(3x-5)$ (D) $6 \tan(3x-5)^2$ Correct Answer: (B) Q88. Let $f = \{(1, 3), (2, 1), (3, 2)\}$ and $g = (A)$ 3	d f(x)=3x-5, g(y)=6y ² and h(z) = tan(z) fi Level: Difficult	ind ho(gof)

Level: Difficult Correct Answer: (C) Tagging: Applying 4. Binary Operations **Q89.** In a group, the property where for any elements a and b, (a * $b^{-1} = b^{-1} * a^{-1}$, is called: (A) Associative property (B) Commutative property (C) Inverse property (D) Distributive property Correct Answer: (C) Tagging: Understanding Level: **Easy Q90.** In the operation of matrix multiplication, what is the identity element? (A) A matrix of all ones. (B) A matrix of all zeros. (C) The zero matrix. (D) The identity matrix. Correct Answer: (D) Level: **Easy** Tagging: Understanding **Q91.** Let '*' be defined on the set N. Which of the following are both commutative and associative? (A) a*b = a+b(B) a*b = a-b(C) $a*b = ab^2$ (D) a*b = abCorrect Answer: (A) Level: Easy Tagging: Remembering **Q92.** The operation of subtraction is a binary operation on which of the following sets? (A) Natural numbers (B) Integers (C) Rational numbers (D) All of these Tagging: Understanding Correct Answer: (D) Level: **Easy Q93.** The operation of taking the maximum of two real numbers is a binary operation that is: (A) Associative and commutative. (B) Associative but not commutative. (C) Commutative but not associative. (D) Neither associative nor commutative. Correct Answer: (C) Level: **Easy** Tagging: Understanding **Q94.** What is a binary operation? (A) An operation involving three operands.

(B) An operation that works only with binary numbers.

(C)) An operation that combines two elements to produce a third element.					
(D)	(D) An operation that works exclusively with addition and subtraction.					
Cor	rect Answer: (C)	Level: Easy	Tagging: Understanding			
Q95	Q95. Which of the following binary operations is not associative?					
(A)	Matrix addition					
(B)	Matrix multiplication					
(C)	Integer addition					
(D)	Exponentiation					
Cor	rect Answer: (B)	Level: Easy	Tagging: Understanding			
Q96	. Which of the following is a binary o	peration on the set of real numbers?				
(A)	Square root					
(B)	Cubing					
(C)	Division					
(D)	Absolute value					
Cor	rect Answer: (C)	Level: Easy	Tagging: Understanding			
Q97	. Which of the following is not a type	of binary operation?				
(A)	Transitive					
(B)	Commutative					
(C)	Associative					
(D)	Distributive					
Cor	rect Answer: (A)	Level: Easy	Tagging: Remembering			
Q98	B. Which property states that for elem	ents a and b under a binary operation,	a * b = b * a?			
(A)	Distributive property					
(B)	Associative property					
(C)	Commutative property					
(D)	Closure property					
Cor	rect Answer: (C)	Level: Easy	Tagging: Understanding			
Q99. Let '&' be a binary operation defined on the set N. Which of the following definitions is commutative but not associative?						
(A)	a & b = a-b					
(B)	a & b = a+b					
(C)	a & b = ab - 8					
(D)	a & b = ab					
Cor	rect Answer: (C)	Level: Moderate	Tagging: Analyzing			

Q100. Let '*' be a binary operation defined by a*b = 4ab. Find (a*b)*a.

(A)	4a ² b				
(B)	16a ² b				
(C)	16ab ²				
(D)	4ab ²				
	rect Answer: (B)	Level: Moderate	Tagging: Applying		
Q101. Let '*' be a binary operation defined by a*b=3a ^b +5. Find 8*3.					
	1547				
(B)	1458				
(C)	1448				
	1541				
	rect Answer: (D)	Level: Moderate	Tagging: Applying		
Q102. Let '*' be a binary operation on N defined by $a*b=a-b+ab^2$, then find $4*5$.					
(A)	9				
(B)	88				
(C)	98				
(D)	99				
Cor	rect Answer: (D)	Level: Moderate	Tagging: Applying		
Q103. Let a binary operation '*' be defined on a set A. The operation will be commutative if					
(A)	a*b = b*a				
(B)	(a*b)*c = a*(b*c)				
(C)	$(b \circ c)*a = (b*a) \circ (c*a)$				
(D)	a*b = a				
Cor	rect Answer: (C)	Level: Moderate	Tagging: Remembering		
Q104. Let $a*b = 6a^4-9b^4$ be a binary operation on R, then * is commutative.					
(A)	True				
(B)	False				
(C)	Partially True				
(D)	Can't Say				
Cor	rect Answer: (B)	Level: Moderate	Tagging: Understanding		
Q105. Let '*' and '^' be two binary operations such that $a*b=a^2$ b and a ^ b = 2a+b. Find (2*3) ^ (6*7).					
(A)	256				
(B)	286				
(C)	276				
(D)	275				

Correct Answer: **(C)** Level: **Difficult** Tagging: **Applying**