

投诉线索 智能筛查系统

接包方: 996ICU

投诉残索智能筛查系统

目录

S1B 1	目标问题]
1. 1	项目背景	1
1. 2	项目目标	1
S1B 2	解决方案	2
2. 1	业务功能	2
2. 2	系统架构	3
2.3	技术选型	3
2. 4	关键技术	4
S1B 3	实现过程	6
3. 1	团队分工	6
3. 2	流程安排	7
S1B 4	项目亮点	8
4. 1	优化了文本相似度算法	8
4. 2	构建了智能化事件评级模型	9
4.3	形成了热点问题的跟踪预警机制	.10

S1B1目标问题

1.1 项目背景

随着社会的进步,市民对民生质量的要求越来越高,维权意识也日益增强,导致各类投诉案件井喷式增长,投诉信息海量化,投诉类型多样化,投诉内容精细化,无效投诉和重复投诉等情况也时有发生。而现有投诉平台所采用的人工处理模式,在应对目前的投诉信息时,主要存在以下问题:

- 1. 无法快速定位紧急优先的投诉案件
- 2. 无法自动合并同时同类的投诉案件
- 3. 无法有效判定重复出现的投诉案件
- 4. 无法基于投诉数据统计形成事件预警机制

为了解决以上问题,发包方决定开发一个投诉线索智能筛查系统,用来协助 工作人员更加高效地处理投诉案件。

1.2 项目目标

通过对发包方需求的调研,本项目所研发的投诉线索智能筛查系统,应具备以下特性:

S1B 2 解决方案

2.1 业务功能

本系统主要为 12345 热线和对口部门提供投诉线索智能筛查服务,用来对社会上的投诉进行高效处理和跟踪预警。

系统功能图如下:

2.2 系统架构

系统架设在云平台上,采用了前后端分离的架构,因投诉量过多所以将大量 计算放在前端,并实现负载均衡。

2.3 技术选型

根据项目的架构特性,我们采取了以下关键技术:

2.4 关键技术

1. 基于 Hanlp 分词技术的线索提取模型

利用 Hanlp 中的 TextRank 算法提取投诉对象、投诉地点等关键信息,使得 关键信息更加清晰直观,系统通过这些关键线索快速定位紧急优先的投诉案件。

2. 基于 Keras 框架的投诉文本智能分类模型

根据现有部门及其所管辖的投诉事件类型进行初步建模,结合 **12345** 投诉平台的数据(**5**万条左右)进行训练,得到一个神经网络模型,从而实现自动合并同类投诉案件。

3. 基于知识图谱的文本相似度算法

通过分词、关键词抽取等方式在大量语料中抽出实体,然后进行纠错、去重和消歧。在此基础上,建立实体之间的关系,定义实体间关系的权重,最后根据边关系权重,计算文本与文本之间的相似度,实现同一投诉案件合并。

4. 基于 websocket 的热点实时推送

24 小时实时监控投诉平台,通过监控知识库的分析和判断,及时发现问题产生 预警消息,通过 websocket 快速推送给投诉部门,使之及时掌握投诉热点信息和热点问题的发展趋势。

S1B3 实现过程

3.1 团队分工

依据项目规模组建以下团队, 团队成员各司其职, 分工明确。

成员名称	任务分配	个人特点
小刘	项目经理	担任学校创业协会会长,拥有丰富的 实践经验和团队合作经验
小彭	客户经理	性格随和、具备良好的沟通能力和调 研协调能力
小高	技术经理	熟悉掌握多种优秀框架,多次外接项目,项目经验丰富
小丁	软件测试师	具备良好的逻辑分析能力及优秀的沟 通能力、能精炼准确的描述问题
小任	UI工程师	具有一定的美学功底、熟悉PS、H5等 技术,紧跟国内设计潮流

3.2 流程安排

利用 Git 进行版本控制,项目开发严格按照如下甘特图执行。

S1B 4 项目亮点

4.1 优化了文本相似度算法

01文本相似度算法优化

统计词频时将汉字编码转换后进行存储,并排除了标点符号的影响从而实现余弦相似度算法优化,在很多场景中使用效果不错。

下图为与其他文本相似算法的效率对比。

算法	准确度	耗时
SimHash	0.99525095	144mm
余弦相似度算法	0.99425095	322mm
改进余弦相似算法	0.9954971	22mm

4.2 构建了智能化事件评级模型

对于一个投诉事件,我们从关键词、投诉频率、投诉时间、影响范围四个维度进行事件评级,每个维度所占权重比不同,通过计算得到五个等级评分,评分越高事件评定越紧急。

02智能化事件评级模型

4.3 形成了热点问题的跟踪预警机制

03热点问题跟踪预警机制

项目经理: 小刘

技术经理: 小高

软件测试师: 小丁

UI工程师: 小任

客户经理:小彭

996ICU