Octavian Ganea, Gary Bécigneul, Thomas Hofmann

Presented by Tyler Hattori

Presentation Outline

- Paper Overview
- Mathematical Background
- Hyperbolic Neural Networks
 - MLR, FFNN, RNN, GRU
- Results

Motivation

- Embedding large classes of graphs is difficult with Euclidean geometry
- Hyperbolic geometry is well-suited for handling tree-like data
- However, we lack generalizations of basic operations and objects for hyperbolic geometry, so hyperbolic
 NN layers are unrealizable

Motivation

- Embedding large classes of graphs is difficult with Euclidean geometry
- Hyperbolic geometry is well-suited for handling tree-like data
- However, we lack generalizations of basic operations and objects for hyperbolic geometry, so hyperbolic
 NN layers are unrealizable

https://www.thetruesize.com

Motivation

- Embedding large classes of graphs is difficult with Euclidean geometry
- Hyperbolic geometry is well-suited for handling tree-like data
- However, we lack generalizations of basic operations and objects for hyperbolic geometry, so hyperbolic
 NN layers are unrealizable

Motivation

- Embedding large classes of graphs is difficult with Euclidean geometry
- Hyperbolic geometry is well-suited for handling tree-like data
- However, we lack generalizations of basic operations and objects for hyperbolic geometry, so hyperbolic
 NN layers are unrealizable

Operations

Vector addition

Matrix-vector multiplication

Translation

Inner product

Objects

Distances Geodesics Parallel Transport

2

Hyperbolic Geometry

Contributions

- Developed a framework that parametrizes basic operations and objects in hyperbolic geometry with respect to a constant curvature
- Applied these generalizations to existing
 Euclidean NN models (MLR, FFNN, RNN, GRU)
- Showed improvement for sentence embedding tasks

Riemannian geometry basic definitions

- An n-dim manifold M is a space that can be locally approximated by \mathbb{R}^n
- The tangent space T_xM at $x \in M$ is a first order linear approximation of M around x
- The **exponential map** $\exp_x(v)$ projects a vector v on T_xM to a point on M
- A **geodesic** γ is the shortest smooth path between two points x and y on M. It is parametrized using $\exp_x(v)$ such that $\gamma(0)=x$, $\dot{\gamma}(0)=v$, $\gamma(1)\mapsto \exp_x(v)=y$
- A **Riemannian metric tensor** g_x defines the collection of positive-definite inner products taken on T_xM varying smoothly with x. g_x is used to define many geometric notions of M
- For example, this metric realizes the **distance function** d(x,y) by integrating along the length of the geodesic from 0 to 1. $d(x,y) = \int_0^1 \sqrt{g_{\gamma(t)}(v,v)} dt$

Riemannian metric tensor intuition

https://www.youtube.com/watch?v=Hf-BxbtCg_A

Riemannian geometry basic definitions

- The **parallel transport** $P_{x \to y}$: $T_x M \to T_y M$ takes a vector on $T_x M$ and moves it along the geodesic γ to output a vector on $T_y M$
- Conformal metrics are angle-preserving such that $\tilde{g}_x = \lambda_x^2 g_x$ for all x

Hyperbolic Geometry

- The n-dim hyperbolic space is the unique, simply connected, n-dim, geodesically complete **Riemannian manifold** with constant curvature -1
 - Riemannian manifold → a manifold defined with a Riemannian metric tensor to describe its geometry
 - Unique → there is a unique geodesic between any two points on the manifold
 - Simply connected → no holes
 - Constant curvature $-1 \rightarrow$ intuitive opposite of a sphere
 - Geodesically complete → from any point, can follow a straight line in any direction

• The Poincaré ball model (\mathbb{D}^n_c, g^c) is a Riemannian manifold $\mathbb{D}^n_c = \{x \in \mathbb{R}^n : c \mid x \mid < 1\}$ with

$$g_x^{\mathbb{D}} = \lambda_x^2 g^E, \quad \lambda_x := \frac{2}{1 - \|x\|^2}$$

• The Poincaré metric tensor $g_x^{\mathbb{D}}$ is conformal to the Euclidean one. From this, we find that the distance and angle functions on the manifold are

$$d_{\mathbb{D}}(x,y) = \cosh^{-1}\left(1 + 2\frac{\|x - y\|^2}{(1 - \|x\|^2)(1 - \|y\|^2)}\right) \qquad \cos(\angle(u,v)) = \frac{g_x^{\mathbb{D}}(u,v)}{\sqrt{g_x^{\mathbb{D}}(u,u)}\sqrt{g_x^{\mathbb{D}}(v,v)}} = \frac{\langle u,v \rangle}{\|u\|\|v\|}$$

- The Poincaré model exists inside the unit circle. All straight lines in the model are perpendicular to the unit circle.
- If $c \to 0$, the manifold becomes Euclidean $(\mathbb{D}^n_c \to \mathbb{R}^n)$. This paper defines a framework for hyperbolic operations parametrized on c so that the Euclidean and hyperbolic geometries can be continuously deformed into one another.

Vector spaces form an algebraic setting for Euclidean space. Likewise, gyrovector spaces
form an algebraic setting for hyperbolic geometries. Just as vector spaces in Euclidean space
operate on groups, gyrovector spaces operate on gyrogroups. A gyrogroup (G,⊕) satisfies
the following axioms

 $gyr[a, b] = \frac{a \oplus b}{b \oplus a} = \frac{1 + a\overline{b}}{1 + \overline{a}b}$

(G1)
$$0 \oplus a = a$$

$$(G2) \ominus a \oplus a = 0$$

(G3)
$$a \oplus (b \oplus c) = (a \oplus b) \oplus \text{gyr}[a, b]c$$

(G4)
$$gyr[a, b] \in Aut(G, \oplus)$$

(G5)
$$gyr[a, b] = gyr[a \oplus b, b]$$

- The operation $gyr[a,b]: G \times G \to Aut(G, \oplus)$ can be thought of as a rotation
- Instead of associativity and communitivity, we have gyroassociativity and gyrocommunitivity

Basic Operations

- The Mobius gyrovector space is used in this paper to define basic operations on the Poincaré manifold.
- Mobius **addition** of elements on \mathbb{D}^n_c :

$$x \oplus_c y := \frac{(1 + 2c\langle x, y \rangle + c\|y\|^2)x + (1 - c\|x\|^2)y}{1 + 2c\langle x, y \rangle + c^2\|x\|^2\|y\|^2}$$

Mobius scalar multiplication

$$r \otimes_c x := (1/\sqrt{c}) \tanh(r \tanh^{-1}(\sqrt{c}||x||)) \frac{x}{||x||}, \quad r \otimes_c \mathbf{0} := \mathbf{0}$$

Hyperbolic distance

$$d_c(x,y) = (2/\sqrt{c}) \tanh^{-1} \left(\sqrt{c} \| -x \oplus_c y \| \right)$$

ullet Considering c=0 for the operations above yields intuitive Euclidean definitions

Paper Contributions

- How can we connect gyrovector spaces with the Riemannian geometry of the Poincaré model?
- We can describe geodesics on the Poincaré model using Mobius operations
- We can then define the exponential map and parallel transport in terms of Mobius operations
- This leads to a much easier representation of Mobius scalar multiplication
- Finally, this representation leads to an easy way of defining matrix vector multiplication on the Poincaré model, which allows us to formulate NN layers in hyperbolic space

Define geodesic using Mobius operations

$$\gamma_{x \to y}(t) := x \oplus_c (-x \oplus_c y) \otimes_c t$$
 $\gamma_{x \to y} : \mathbb{R} \to \mathbb{D}^n_c \text{ s.t. } \gamma_{x \to y}(0) = x \text{ and } \gamma_{x \to y}(1) = y$

 Reparametrize to unit speed using the distance function. This is the unit speed geodesic from point x in direction v

$$\gamma_{x,v}(t) = x \oplus_c \left(anh\left(\sqrt{c}rac{t}{2}
ight) rac{v}{\sqrt{c}\|v\|}
ight) \qquad \gamma_{x,v}: \mathbb{R} o \mathbb{D}^n ext{ s.t. } \gamma_{x,v}(0) = x ext{ and } \dot{\gamma}_{x,v}(0) = v.$$

• Exponential and logarithmic (inverse) maps

$$\exp_x^c(v) = x \oplus_c \left(\tanh\left(\sqrt{c} \frac{\lambda_x^c \|v\|}{2}\right) \frac{v}{\sqrt{c}\|v\|} \right), \ \log_x^c(y) = \frac{2}{\sqrt{c}\lambda_x^c} \tanh^{-1}(\sqrt{c}\|-x \oplus_c y\|) \frac{-x \oplus_c y}{\|-x \oplus_c y\|}$$

• Simplified mappings for starting at the point $x \in 0$

$$\exp_{\mathbf{0}}^{c}(v) = \tanh(\sqrt{c}\|v\|) \frac{v}{\sqrt{c}\|v\|}, \ \log_{\mathbf{0}}^{c}(y) = \tanh^{-1}(\sqrt{c}\|y\|) \frac{y}{\sqrt{c}\|y\|}$$

• Define Mobius scalar multiplication using these mappings

$$r \otimes_c x = \exp_{\boldsymbol{\theta}}^c(r \log_{\boldsymbol{\theta}}^c(x)), \quad \forall r \in \mathbb{R}, x \in \mathbb{D}_c^n$$

- This means we can project a point on the manifold to the tangent space at 0, scale by r in Euclidean space, and project back to the manifold to achieve Pointcaré scalar multiplication
- We can define the Poincaré geodesic in a similar way

$$\gamma_{x\to y}(t) = x \oplus_c (-x \oplus_c y) \otimes_c t = \exp_x^c(t \log_x^c(y)), \quad t \in [0, 1]$$

The same goes for the parallel transport

$$P_{\boldsymbol{\theta} \to x}^c(v) = \log_x^c(x \oplus_c \exp_{\boldsymbol{\theta}}^c(v)) = \frac{\lambda_{\boldsymbol{\theta}}^c}{\lambda_x^c}v$$

Feed Forward (FFNN)

• For a mapping function $f:\mathbb{R}^n \to \mathbb{R}^m$, the Mobius map is

$$f^{\otimes_c}(x) := \exp_{\mathbf{0}}^c(f(\log_{\mathbf{0}}^c(x)))$$

• The Mobius matrix-vector multiplication is

$$M^{\otimes_c}(x) = (1/\sqrt{c}) \tanh\left(\frac{\|Mx\|}{\|x\|} \tanh^{-1}(\sqrt{c}\|x\|)\right) \frac{Mx}{\|Mx\|}$$

- A hyperbolic pointwise non-linearity $\varphi\colon\mathbb{R}^n\to\mathbb{R}^n$ is also simply defined by its Mobius version $\varphi^{\,\otimes\,\,c}$
- Hyperbolic translation by a bias $b \in \mathbb{D}^n_c$ employs the Mobius parallel transport

$$x \oplus_c b = \exp_x^c(P_{\mathbf{0} \to x}^c(\log_{\mathbf{0}}^c(b))) = \exp_x^c\left(\frac{\lambda_{\mathbf{0}}^c}{\lambda_x^c}\log_{\mathbf{0}}^c(b)\right)$$

Softmax (MLR)

Define a hyperplane on the Poincaré model as

$$\tilde{H}_{a,p}^c := \{ x \in \mathbb{D}_c^n : \langle \log_p^c(x), a \rangle_p = 0 \} = \exp_p^c(\{a\}^\perp) \qquad p \in \mathbb{D}_c^n, \ a \in T_p \mathbb{D}_c^n \setminus \{\mathbf{0}\}$$

Define the shortest distance between a given point and the hyperplane as

$$d_c(x, \tilde{H}_{a,p}^c) := \inf_{w \in \tilde{H}_{a,p}^c} d_c(x, w) = \frac{1}{\sqrt{c}} \sinh^{-1} \left(\frac{2\sqrt{c} |\langle -p \oplus_c x, a \rangle|}{(1 - c\| - p \oplus_c x\|^2) \|a\|} \right)$$

Hyperbolic MLR formula

$$p(y = k|x) \propto \exp\left(\frac{\lambda_{p_k}^c \|a_k\|}{\sqrt{c}} \sinh^{-1}\left(\frac{2\sqrt{c}\langle -p_k \oplus_c x, a_k\rangle}{(1 - c\| - p_k \oplus_c x\|^2)\|a_k\|}\right)\right), \quad \forall x \in \mathbb{D}_c^n$$

• When c=0, p(y=k|x) becomes the Euclidean Softmax function

$$p(y = k|x) = \exp(\langle -p_k + x, a_k \rangle_0)$$

Softmax (MLR)

Hyperbolic hyperplane used for MLR code example

Recurrent (RNN)

A simple RNN is defined by

$$h_{t+1} = \varphi(Wh_t + Ux_t + b)$$

where arphi is some point non-linearity

After defining the relevant Mobius functions, it is now easy to define a
 Hyperbolic RNN

$$h_{t+1} = \varphi^{\otimes_c}(W \otimes_c h_t \oplus_c U \otimes_c x_t \oplus_c b), \quad h_t \in \mathbb{D}_c^n, \ x_t \in \mathbb{D}_c^d$$

Gated Recurrent (GRU)

A simple GRU is defined by

$$r_t = \sigma(W^r h_{t-1} + U^r x_t + b^r), \qquad z_t = \sigma(W^z h_{t-1} + U^z x_t + b^z),$$

$$\tilde{h}_t = \varphi(W(r_t \odot h_{t-1}) + U x_t + b), \quad h_t = (1-z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t,$$
 where φ is some point wise product

- Ganea et al. adapts the pointwise product $\,r_t\odot h_{t-1}\,$ to $\,{
 m diag}(r_t)\otimes_c h_{t-1}\,$
- They also adapt the update-gate mechanism and independently apply the hyperbolic model
- Therefore, the Hyperbolic GRU is defined by

$$r_{t} = \sigma \log_{\mathbf{0}}^{c} (W^{r} \otimes_{c} h_{t-1} \oplus_{c} U^{r} \otimes_{c} x_{t} \oplus_{c} b^{r})$$

$$\tilde{h}_{t} = \varphi^{\otimes_{c}} ((W \operatorname{diag}(r_{t})) \otimes_{c} h_{t-1} \oplus_{c} U \otimes_{c} x_{t} \oplus b)$$

$$h_{t} = h_{t-1} \oplus_{c} \operatorname{diag}(z_{t}) \otimes_{c} (-h_{t-1} \oplus_{c} \tilde{h}_{t})$$

Experiment 1

Sentence Entailment Binary Classification

- Goal: given two sentences, (1) a premise and (2) a hypothesis, have the model predict if
 the second sentence is inferred from the first one
- Architecture: (1) embed the two sentences using an RNN or GRU, (2) feed the embeddings and their distances to a FFNN, (3) apply binary MLR with cross-entropy loss on top

	SNLI	PREFIX-10%	PREFIX-30%	PREFIX-50%
FULLY EUCLIDEAN RNN	79.34 %	89.62 %	81.71 %	72.10 %
Hyperbolic RNN+FFNN, Eucl MLR	79.18 %	96.36 %	87.83 %	76.50 %
FULLY HYPERBOLIC RNN	78.21 %	96.91 %	87.25 %	62.94 %
FULLY EUCLIDEAN GRU	81.52 %	95.96 %	86.47 %	75.04 %
Hyperbolic GRU+FFNN, Eucl MLR	79.76 %	97.36 %	88.47 %	76.87 %
FULLY HYPERBOLIC GRU	81.19 %	97.14 %	88.26 %	76.44 %

Experiment 2

Noun Binary Classification

- Goal: given Poincaré embeddings of nouns, classify the nouns using MLR
- Three MLRs are compared: (1) hyperbolic, (2) Euclidean, and (3) Euclidean after applying the tangent mapping from the Poincaré manifold to the \mathbb{R}^2 plane

WORDNET SUBTREE	Model	D = 2	D = 3	D = 5	D = 10
ANIMAL.N.01 3218 / 798	Hyperbolic	$m{47.43 \pm 1.07\%}$	$91.92 \pm 0.61\%$	$98.07 \pm 0.55\%$	$99.26 \pm 0.59\%$
	DIRECT EUCL	$41.69 \pm 0.19\%$	$68.43 \pm 3.90\%$	$95.59 \pm 1.18\%$	$99.36 \pm 0.18\%$
	\log_0 + Eucl	$38.89 \pm 0.01\%$	$62.57 \pm 0.61\%$	$89.21 \pm 1.34\%$	$98.27 \pm 0.70\%$
GROUP.N.01 6649 / 1727	Hyperbolic	$oxed{81.72 \pm 0.17\%}$	$89.87 \pm 2.73\%$	${f 87.89 \pm 0.80\%}$	$91.91 \pm 3.07\%$
	DIRECT EUCL	$61.13 \pm 0.42\%$	$63.56 \pm 1.22\%$	$67.82 \pm 0.81\%$	$91.38 \pm 1.19\%$
	\log_0 + Eucl	$60.75 \pm 0.24\%$	$61.98 \pm 0.57\%$	$67.92 \pm 0.74\%$	$91.41 \pm 0.18\%$
WORKER.N.01 861 / 254	Hyperbolic	$oxed{12.68 \pm 0.82\%}$	$24.09 \pm 1.49\%$	$55.46 \pm 5.49\%$	$m{66.83 \pm 11.38\%}$
	DIRECT EUCL	$10.86 \pm 0.01\%$	$22.39 \pm 0.04\%$	$35.23 \pm 3.16\%$	$47.29 \pm 3.93\%$
	\log_0 + Eucl	$9.04 \pm 0.06\%$	$22.57 \pm 0.20\%$	$26.47 \pm 0.78\%$	$36.66 \pm 2.74\%$
MAMMAL.N.01 953 / 228	Hyperbolic	$\boldsymbol{32.01 \pm 17.14\%}$	$87.54 \pm 4.55\%$	$88.73 \pm 3.22\%$	$91.37 \pm 6.09\%$
	DIRECT EUCL	${\bf 15.58 \pm 0.04\%}$	$44.68 \pm 1.87\%$	$59.35 \pm 1.31\%$	$77.76 \pm 5.08\%$
	\log_0 + Eucl	$13.10 \pm 0.13\%$	$44.89 \pm 1.18\%$	$52.51 \pm 0.85\%$	$56.11 \pm 2.21\%$

Poincaré Word Embeddings

Code output

Experiment 2 MLR Results

Related Works

- [1] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations. In *Advances in Neural Information Processing Systems (NIPS)*, pages 6341–6350, 2017.
- [2] Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for learning hierarchical embeddings. In *Proceedings of the thirty-fifth international conference on machine learning (ICML)*, 2018.
- [3] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná Hyperbolic geometry of complex networks. *Physical Review E*, 82(3):036106, 2010.
- John Lamping, Ramana Rao, and Peter Pirolli. A focus+ context technique based on hyperbolic geometry for visualizing large hierarchies. In *Proceedings of the SIGCHI conference on Human factors in computing systems*, pages 401–408. ACM Press/Addison-Wesley Publishing Co., 1995.
- [5] Abraham Albert Ungar. A gyrovector space approach to hyperbolic geometry. *Synthesis Lectures on Mathematics and Statistics*, 1(1):1–194, 2008.
- [6] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations. In *Advances in Neural Information Processing Systems (NIPS)*, pages 6341–6350, 2017.