1 Doob's Martingale Inequality

Consider $\tau = \arg\min_{t < n} \{X_t \ge \alpha\}$ or $\tau = n$ if $\forall 0 \le t \le n, X_t < \alpha$.

Clearly τ is a stopping time because by our definition for any $t \geq 0$, $\mathbb{1}[\tau \leq t]$ is \mathcal{F}_t -measurable. Then denote event $X_{\tau} \geq \alpha$ by A, denote event $\max_{0 \leq t \leq n} X_t \geq \alpha$ by B. We have $B \subset A$ because by our definition of stopping time τ , if $X_{\tau} \geq \alpha$, then if must follows that $\exists k, 0 \leq k \leq n$ such that $X_t \geq \alpha$, hence $\max_{0 \leq t \leq n} X_t \geq \alpha$. We know that if $B \subset A$, then $\Pr(B) \leq \Pr(A)$. This means that

$$\Pr\left[\max_{0 \le t \le n} X_t \ge \alpha\right] \le \Pr\left[X_\tau \ge \alpha\right]$$

Since $X_t \geq 0$, by applying the Markov Inequality we have

$$\Pr\left[X_{\tau} \ge \alpha\right] \le \frac{\mathbb{E}\left[X_{\tau}\right]}{\alpha}$$

By our definition of τ we can easily see $\Pr[\tau \leq n] = 1$, which means that τ is bounded almost surely, satisfying the first condition for Optional Stopping Theorem. Then by OST we have

$$\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0]$$

Adding up all the inequalities together we get

$$\Pr\left[\max_{0 \le t \le n} X_t \ge \alpha\right] \le \frac{\mathbb{E}\left[X_0\right]}{\alpha}$$

which completes our proof.

2 Biased One-dimensional Random Walk

2.1

$$\mathbb{E}(S_{t+1}|\overline{Z_{1,n}}) = \mathbb{E}(S_t + Z_{t+1} + 2p - 1|\overline{Z_{1,n}}) \tag{1}$$

$$= S_t + 2p - 1 + \mathbb{E}(Z_{t+1}|\overline{Z_{1,n}})$$
 (2)

$$= S_t + 2p - 1 + (-1) \cdot p + 1 \cdot (1 - p) \tag{3}$$

$$=S_t \tag{4}$$

So $\{S_t\}$ is a martingale.

2.2

$$\mathbb{E}(P_{t+1}|\overline{Z_{1,n}}) = \mathbb{E}((\frac{p}{1-p})^{X_t + Z_{t+1}}|\overline{Z_{1,n}})$$

$$\tag{5}$$

$$= \mathbb{E}((\frac{p}{1-p})^{X_t} \cdot (\frac{p}{1-p})^{Z_{t+1}} | \overline{Z_{1,n}})$$
 (6)

$$= P_t \cdot \mathbb{E}((\frac{p}{1-p})^{Z_{t+1}} | \overline{Z_{1,n}}) \tag{7}$$

$$= P_t \cdot \left(\frac{p}{1-p} \cdot (1-p) + \frac{1-p}{p} \cdot p\right) \tag{8}$$

$$=P_t \tag{9}$$

So $\{P_t\}$ is a martingale.

2.3

3 Longest Common Subsequence