小结: 常见半导体能带的规律

- 原子序数越大, 化学键共价性越强, 带隙越小
 - 此时,在相同波矢处有效质量越低
- 常见半导体的价带顶通常都位于「点附近,导带底则不确定
 - IV族半导体通常为间接带隙
 - III-V族半导体除AIX和GaP为间接带隙以外,其它通常 为直接带隙
 - II-VI族半导体通常为直接带隙
- 常见半导体的价带顶通常包含重空穴带、轻空穴带、自旋-轨道耦合带,导带底通常只有一个带
 - 自旋-轨道耦合分裂能随原子序数增大而增大

半导体能带结构比较

纵向比较: 从上到下原子序数增大, 近邻原子波函数交叠更多, 能带展宽更大

此时, <u>带隙变小, 相同k值附近有效质量降低</u> 远离: 价带顶

	导带底	价带顶	带隙	电子纵	电子横	重空穴	轻空穴	3号带
金刚石								
Si	ΓX某处	Γ	1.12	0.92	0.19	0.53	0.16	0.245
Ge	L	Γ	0.6	1.64	0.082	0.28	0.044	0.077
闪锌矿								
GaP	ΓX某处	Γ	2.27	0.91	0.25	0.67	0.17	远离
InP	Γ	Γ	1.34	0.073		0.45	0.12	远离
GaAs	Γ	Γ	1.42	0.063		0.50	0.076	远离
InSb	Γ	Γ	0.18	0.0118		~0.4	0.016	远离
纤锌矿								
AIN	Γ	Γ	6.2	0.4		3.5-10	0.2-3.5	0.2-3.8
GaN	Γ	Γ	3.39	0.20		1.4	0.3	0.6

半导体能带结构比较

横向比较: 从上到下键的极性增大

远离:价带顶

	导带底	价带顶	带隙	电子纵	电子横	重空穴	轻空穴	3号带
三周期								
Si	ΓX某处	Γ	1.12	0.92	0.19	0.53	0.16	0.245
AIP	ΓX某处	Γ	2.52	3.67	0.212	0.71	0.19	0.30
GaN	Γ	Γ	3.39	0.20		1.4	0.3	0.6
四周期								
Ge	L	Γ	0.6	1.64	0.082	0.28	0.044	0.077
GaAs	Γ	Γ	1.42	0.063		0.50	0.076	远离
ZnSe	Γ	Γ	2.60	0.2		>0.6	?	远离

J. Appl. Phys. **89**, 5815 (2001).

键的极性增大,近邻原子波函数交叠造成的能带展宽更小此时,带隙变大,相同k值附近有效质量提高

小结: 半导体能带参数

混合晶体: 连续调节能带参量

- 混合晶体是单晶<u>固溶体</u>(固体溶液solid solution)
- 一种晶体中的原子被另一种随机取代(掺杂)
- 要求: 掺杂和被掺杂原子价态(族)相同

图 23 金刚石型晶体结构。图中显示了四面体键合的排列方式。

例如: Si晶体中的25%的硅原子随机被Ge取代, 就构成了混合晶体Si_{0.75}Ge_{0.25}

溶解度? Si_{1-x}Ge_x(x=0-1)

制备方法?

混合晶体

Si_{1-x}Ge_x"绪硅"

- •x称为混晶比
 - 0.85≤x≤1, 能带结构为类锗型(导带底L);
 - 0≤x≤0.85, 能带结构为类硅型(导带底「X)。

图 1-35 Si, Ge, 合金的能带结构

图 1-36 应变和无应变的 $Si_{1-x}Ge_x$ 的 禁带宽度与锗组分 x 的关系 [13]

III-V族化合物构成的混合晶体

- 混合晶体的能带结构和晶格常数都随组分的变化 而变化
 - 例如: 三元化合物GaAs_{1-x}P_x
- 四元化合物还可以调节其他材料性质(如热膨胀系数、机械性能等)
 - 例如: Ga_{1-x}In_xP_{1-y}As_y

混合晶体

可连续调节能隙;还能调节导带底的位置

发光二极管的常用材料

第二部分: 能带结构

- 晶体能带的严谨处理方法
- 实际半导体的能带结构
 - 硅的能带结构
 - 金刚石晶体的能带结构
 - 闪锌矿晶体的能带结构
 - 纤锌矿晶体的能带结构
- 实际半导体能带结构的规律

小结: 常见半导体的能带结构

- •导带底、价带顶、能隙/带隙/禁带宽度
 - (平均)原子序数越大,带隙越小,有效质量越小
 - 化学键极性(离子性)越低,带隙越小,有效质量越小
- 直接带隙和间接带隙
 - IV族、III-V族、II-VI族的特征
- 导带底的位置和能谷的简并度
- 价带顶的结构: 重空穴带、轻空穴带、第三个带
- 混合晶体

能带结构是真实存在的吗?

能带结构的测量方法

- 高能谱学手段
 - 紫外光电能谱(UPS, ultraviolet photoemission spectroscopy)、X射线光电能谱(XPS, X-ray photoemission spectroscopy)、X射线吸收谱(XAS, Xray absorption spectroscopy)
 - 角分辨光电能谱(ARPES, angular-resolved photoemission spectroscopy)
 - 粗略、全面
- 回旋共振(CR, cyclotron resonance)
 - 精确测定有效质量
- 紫外-可见-红外吸收光谱(UV-Vis-IR absorption spectroscopy)
 - 精确测定带隙宽度和类型

紫外/X射线光电能谱UPS/XPS

Ultraviolet/X-ray photoemission spectroscopy

X射线吸收谱XAS

X-ray absorption spectroscopy

XAS

XAS: 测量导带DOS

例子: GaN的价带测量

测量的XPS强度和价带的DOS对比

X射线能量并不准确,存在增宽,只能测量大致的DOS

角分辨光电能谱(ARPES)

是UPS/XPS的一种 入射光子→出射电子→分析角度、能量→反推能带

能量守恒 (准) 动量守恒 $\hbar\omega + \hbar\omega_{e0} = \hbar\omega_{e} \qquad \hbar\mathbf{k} + \hbar\mathbf{k}_{e0} = \hbar\mathbf{k}_{e}$

ARPES测量砷化镓的能带

计算的砷化镓能带

[100]

[111]

测量的砷化镓能带 (价带)

A. X. Gray et al., Nat. Mater. 10, 759 (2011).

能带结构能测量得很精确吗?

能带结构的测量方法

- 高能谱学手段
 - 紫外光电能谱(UPS, ultraviolet photoemission spectroscopy)、X射线光电能谱(XPS, X-ray photoemission spectroscopy)、X射线吸收谱(XAS, Xray absorption spectroscopy)
 - 角分辨光电能谱(ARPES, angular-resolved photoemission spectroscopy)
 - 粗略、全面
- 回旋共振(CR, cyclotron resonance)
 - 精确测定有效质量
- 紫外-可见-红外吸收光谱(UV-Vis-IR absorption spectroscopy)
 - 精确测定带隙宽度和类型

电子在磁场中的运动

准经典近似

平面德布罗意波 $e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)}$

线性组合形成波包

示例: 自由电子在磁场中的运动

B = 0

B > 0, 圆周运动

回旋共振: 准经典近似

- 回旋共振
 - 电子在垂直于速度的匀强磁场中做圆周运动

牛顿第二定律
$$q\mathbf{v} \times \mathbf{B} = m\omega_c^2\mathbf{R}$$
 易得 $g\mathbf{B} = m\omega_c$ 即 周期 $T_c = \frac{2\pi m}{gB}$

当外加电磁波频率和固有频率 一致时,电子会吸收该频率的 波,提升速度/能量/动能

回旋共振: 准经典近似

- 回旋共振
 - 当外加电磁波频率和周期一致时,电子会吸收该频率的波, 提升速度/能量/动能

频率
$$f_c = \frac{1}{T_c} = \frac{qB}{2\pi m}$$

- 测量电磁波吸收率即可在某频率得到一个吸收峰
- 可计算质量

$$m = \frac{qB}{2\pi}$$

类似的,可以测有效质量(能带的二阶导数)→精确结构

半导体中的回旋共振

准经典近似=波包近似 布洛赫波 $e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)}u_{\mathbf{k}}(\mathbf{x})$ 线性组合形成波包

准经典近似下,量子态的电子也符合经典的"牛顿第二定律" $\mathbf{F} = q\mathbf{v} \times \mathbf{B} = \hbar \frac{d\mathbf{k}}{dt}$

在带边更有 $q\mathbf{v} \times \mathbf{B} = m_n^* \cdot \frac{d\mathbf{v}}{dt}$

因此, 半导体中的电子也做"圆周运动"

当然,对空穴也成立,只需注意电荷和有效质量的符号 实际情况更复杂一些,因为 m^* 是个矩阵

半导体中的回旋共振

运动方程
$$q\mathbf{v} \times \mathbf{B} = m_n^* \cdot \frac{d\mathbf{v}}{dt}$$
 大小 $\cos \alpha$ 方向 磁场改写成方向余弦的形式 $\mathbf{B} = B \begin{pmatrix} \cos \alpha \\ \cos \beta \\ \cos \gamma \end{pmatrix}$ 注意: 教材上类似,但没有 $\cos \beta$

αβγ: B和xyz轴的夹角

代入
$$m_n^* = \begin{pmatrix} m_{nx}^* & 0 & 0 \\ 0 & m_{ny}^* & 0 \\ 0 & 0 & m_{nz}^* \end{pmatrix}$$
 可得共振频 $\alpha_c = qB/m_{cn}^*$ 法见教材)

其中
$$\frac{1}{m_{\text{c}n}^*} = \sqrt{\frac{m_{nx}^* \cos^2 \alpha + m_{ny}^* \cos^2 \beta + m_{nz}^* \cos^2 \gamma}{m_{nx}^* m_{ny}^* m_{nz}^*}}$$

称 m_{cn}^* 回旋共振有效质量。请注意,和态密度有效质量很不相同

电子在实空间中的运动比较复杂。它在倒空间里怎么运动?

 $k-k_0$ 垂直于磁场B方向上做圆周运动

可视为沿着等能面垂直于磁场**B**方 向上的截面边界做圆周运动

电子在实空间中的运动比较复杂。它在倒空间里怎么运动?

$$q\mathbf{v} \times \mathbf{B} = m^* \cdot \frac{d\mathbf{v}}{dt}$$

$$q\mathbf{v} \times \mathbf{B} = m^* \cdot \frac{d\mathbf{v}}{dt} \qquad \qquad q(m_n^{*-1} \cdot (\mathbf{k} - \mathbf{k_0})) \times \mathbf{B} = \frac{d\mathbf{k}}{dt}$$

有效质量为数的时候

 $k - k_0$ 沿着等能面垂直于磁场B 方向上的截面边界做圆周运动

有效质量为矩阵的时候

 $k-k_0$ 沿着等能面垂直于磁场B方 向上的截面边界做椭圆周运动?

电子在实空间中的运动比较复杂。它在倒空间里怎么运动?

可以证明(略)
$$m_{\rm cn}^* = \frac{\hbar^2}{2\pi} \frac{dS}{dE}$$

其中E为等能面的能量, S为该能量对应等能面垂直于磁场B方向上过原点的截面面积

dS/dE正比于等能面垂直于磁场B方向上的截面边界的周长

 $\omega_c = qB/m_{cn}^*$ 反比于等能面垂直于 磁场**B**方向上的截面边界的周长

因此, $T_c = \frac{2\pi m_{cn}^*}{qB}$ 正比于等能面垂直于磁场**B**方向上的截面边界的周长

电子好像在截面边界做匀速率椭圆周运 动一样

图 1 旋转椭球型等能面与垂直于外磁场的平面的截面

朱瑞华等,大学物理,34,3 (2015).

电子在实空间中的运动比较复杂。它在倒空间里怎么运动?

- 1. 寻找和磁场B垂直的过原点平面
- 2. 截取等能面,得到一个椭圆周轨道
- 3. 电子波矢 $k k_0$ 可视为沿着截面边界做匀速率椭圆周运动

图 1 旋转椭球型等能面与垂直于外磁场的平面的截面

轨道周长越长,回旋周期 T_c 越长, m_{cn}^* 越大

朱瑞华等,大学物理,34,3 (2015).

半导体中的回旋共振

运动方程
$$q\mathbf{v} \times \mathbf{B} = m_n^* \cdot \frac{d\mathbf{v}}{dt}$$

磁场改写成方向余弦的形式
$$\mathbf{B} = B \begin{pmatrix} \cos \alpha \\ \cos \beta \\ \cos \gamma \end{pmatrix}$$
 注意: 教材上类似,但没有 $\cos \gamma$

代入
$$m_n^* = \begin{pmatrix} m_{nx}^* & 0 & 0 \\ 0 & m_{ny}^* & 0 \\ 0 & 0 & m_{nz}^* \end{pmatrix}$$
 可得共振频 $\alpha_c = qB/m_{cn}^*$ 法见教材)

其中
$$\frac{1}{m_{\text{c}n}^*} = \sqrt{\frac{m_{nx}^* \cos^2 \alpha + m_{ny}^* \cos^2 \beta + m_{nz}^* \cos^2 \gamma}{m_{nx}^* m_{ny}^* m_{nz}^*}}$$

称 m_{cn}^* 回旋共振有效质量。请注意,和态密度有效质量很不相同 m_{cn}^* 正比于等能面垂直于磁场**B**方向上的过原点的截面边界的椭圆周长

- · B沿着z方向时:
 - 上下两个等能面是 小的圆形回旋轨道
 - 其它四个等能面是 大的椭圆回旋轨道
- 有两种回旋共振频率, 两个吸收峰
- •x、y方向类似
- <100>方向有两个峰

图 1-22 硅导带等能面示意图

- B沿着[110]方向时:
 - 上下两个等能面是 大的椭圆回旋轨道
 - 其它四个等能面是 中等的椭圆回旋轨 道
- 有两种回旋共振频率, 两个吸收峰
- <110>方向有两个峰

图 1-22 硅导带等能面示意图

- B沿着[111]方向时:
 - 所有等能面都是中等的椭圆回旋轨道
- 有一种回旋共振频率,一个吸收峰
- <111>方向有一个峰

图 1-22 硅导带等能面示意图

- B沿着非对称轴方向 时:
 - x、y、z三轴上等能面中椭圆回旋轨道大小各不相同
- 有三种回旋共振频率, 三个吸收峰
- 可通过角度和共振 频率计算各向异性 有效质量

图 1-22 硅导带等能面示意图

硅的电子回旋共振频率 (定量)

- 对于硅导带底,有m_{nx}*= m_{ny}*= m_t*为横向 (transverse) 有效质量(较小)
- m_{nz}*= m_l* 为纵向(longitudinal) 有效质量(较大)
- B与z轴的夹角称为θ(=γ)
- 此时

图 1-23 B 相对于 k 空间坐标轴的取向

$$\frac{1}{m_{cn}^*} = \sqrt{\frac{m_{nx}^* \cos^2 \alpha + m_{ny}^* \cos^2 \beta + m_{nz}^* \cos^2 \gamma}{m_{nx}^* m_{ny}^* m_{nz}^*}} = \sqrt{\frac{m_t^* \sin^2 \theta + m_l^* \cos^2 \theta}{m_t^{*2} m_l^*}}$$

为回旋共振有效质量。再次注意,和态密度有效质量很不相同

硅的电子回旋共振频率 (定量)

- 当B沿<111>方向,对六个能谷,均有cos²θ = 1/3, sin²θ = 2/3
 - 只有一个共振吸收峰
- 当B沿<110>方向,则有θ=45°和θ=90°两类情况
 - 有两个共振吸收峰
- 当B沿<100>方向,则有θ=0°和θ=90°两类情况
 - 有两个共振吸收峰
- 当B对晶轴任意取向,正余弦取值有三类情况
 - 有三个共振吸收峰

$$\frac{1}{m_{cn}^*} = \sqrt{\frac{m_t^* \sin^2 \theta + m_l^* \cos^2 \theta}{m_t^{*2} m_l^*}}$$

锗的电子回旋共振

- 对于锗导带底,m₁*= m₂*= m_t*, m₃*= m_I*
- 习题: B沿着不同方向的时候, 锗的回旋共振有几个峰? 空穴呢?

图 1-24 硅和锗导带等能面示意图

能带结构能测量得很精确吗?

带隙的宽度?

能带结构的测量方法

- 高能谱学手段
 - 紫外光电能谱(UPS, ultraviolet photoemission spectroscopy)、X射线光电能谱(XPS, X-ray photoemission spectroscopy)、X射线吸收谱(XAS, Xray absorption spectroscopy)
 - 角分辨光电能谱(ARPES, angular-resolved photoemission spectroscopy)
 - 粗略、全面
- 回旋共振(CR, cyclotron resonance)
 - 精确测定有效质量
- 紫外-可见-红外吸收光谱(UV-Vis-IR absorption spectroscopy)
 - 精确测定带隙宽度和类型

电子的光学激发

<u>直接带隙半导体</u>:导带底 和价带顶的波矢<u>相同</u> <u>间接带隙半导体</u>:导带底 和价带顶的波矢<u>不同</u>

考虑逆过程?

Beal Romain PhD 2015.

光学吸收谱测量带隙: Tauc图

其中α为吸光度,hv为光子能量

P. Makuła et al., J. Phys. Chem. Lett. 9, 6814 (2018).

小结:测量能带结构的方法

- 高能谱学手段
 - 能带整体特征
 - 测量价带和导带
- 回旋共振
 - 载流子各向异性有效质量
 - 半导体中最常用的测量方法之一
- 吸收光谱
 - 测量不同波长光的吸收
 - 精确确定带隙宽度和类型

习题

- 1.硅的[100]导带底有一个电子。向[110]、[011]、[111]方向分别施加相同的电场力F,求加速度大小之比。电场力和加速度在一个方向上吗?
- 2.写出Ge的[111]导带底电子的有效质量表达式和v-k关系。对于向[100]、[-110]、[110]、[111]方向相同大小的k- k_0 ,v的大小之比为多少?v和k- k_0 一定同向吗?
- 3.在InSb的价带顶缺失了部分电子的情况下,计算重空穴和轻空穴带里空穴数量的比例。需给出DOS的计算过程。取重空穴质量0.4m,轻空穴0.016m。

习题

- 4.列出Si、Ge、GaAs、GaN能带的特征并简要画 出其能带结构。
- 5.教材上说,HgTe是一种"负禁带宽度"材料(- 0.14 eV)。利用我们所学知识,解释"负能隙"的成因。"负能隙"材料是半导体吗?
- 6.ZnO是一种纤锌矿晶型半导体,通常利用电子导电。利用我们所学知识,解释为什么ZnO中空穴很难导电。

习题

- 7.磁场沿着[100]、[110]、[111]方向的时候,锗的电子回旋共振有几个峰?说明理由。空穴的回旋共振有几个峰?说明理由。
- 8.说明为什么GaN是透明的而Si不透明。GaP的带隙约为2.3 eV,它应该是什么颜色?说明理由。