	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Exame Teórico – Época Normal	Ano letivo 2021/2022	Data 23-06-2022	
P.PORTO		Licenciatura em Engenharia Informática		Hora 10:00	
		Unidade Curricular Inteligência Artificial		Duração 2:30 horas	

Observações:

- Pode trocar a ordem das questões, desde que as identifique convenientemente.
- Qualquer tentativa de fraude implica a anulação do exame.
- A Parte 1 deste exame é constituída por questões de escolha múltipla. As mesmas devem ser respondidas na folha de resposta. Cada resposta errada desconta 0.25 valores da Parte 1.
- O enunciado deve ser entregue juntamente com a folha de resposta.

Número:	Nome:							
	PARTE I – Escolha Múltipla (10V)							
1. (1V)	Numa árvore de decisão:							
1. (1 V)	A. Uma folha pode ser constituída por instâncias com diferentes valores na variáve)							
	 dependente B. A profundidade da árvore não tem qualquer relação com a sua tendência para overfitting C. Não é possível ter folhas com apenas uma instância D. Os nós representam decisões tomadas com base numa instância dos dados de treino 							
2. (1V)	Assinale o algoritmo que, quando aplicado com a mesma configuração aos mesmos dados, resulta sempre no mesmo modelo:							
	A. Rede Neuronal B. Random Forest C. Naïve Bayes D. Nenhum dos restantes							
3. (1V)	Numa Random Forest de regressão:							
Σ. (,	 A. A previsão é calculada através do valor mais frequente nas previsões de cada árvore B. A previsão é calculada através do valor médio das previsões de cada árvore C. A previsão é calculada somando os valores das funções de ativação D. A previsão é calculada utilizando o teorema de Bayes 							
4. (1V)	Assinale o algoritmo em que a complexidade de fazer previsões cresce com o nº de instâncias do dataset de treino:							
	 A. Árvores de Decisão B. Random Forest C. Nenhuma das restantes, a complexidade de fazer previsões depende sempre e apenas do tamanho do dataset para o qual se está a prever, e não do dataset de treino 							

5. (1V)

Considere a rede neuronal que se apresenta à direita:

D. K-Nearest Neighbours

- A. O dataset utilizado no seu treino tem, no máximo, 12 variáveis
- B. O dataset utilizado no seu treino tem, no máximo, 9 variáveis
- C. O dataset utilizado no seu treino tem, no máximo, 8 variáveis
- D. O dataset utilizado no seu treino tem, no

Página 1 de4

ESTG-PR05-Mod013V2

	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Exame Teórico – Época Normal	Ano letivo 2021/2022	Data 23-06-2022
P.PORTO		^{Curso} Licenciatura em Engenharia Informática		Hora 10:00
		Unidade Curricular Inteligência Artificial		Duração 2:30 horas

máximo, 4 variáveis

6. (1V) Considere que, para um determinado problema de Machine Learning, tem uma quantidade de dados considerada mais que suficiente, e pouco tempo disponível para treinar o modelo. Das seguintes opções, assinale a metodologia de treino e avaliação de modelos mais adequada para este cenário:

- A. N-fold cross validation
- B. Train-test split ou hold-out method
- C. Backpropagation
- D. Gradient Descent
- 7. (1V) Assinale a métrica de performance mais adequada para avaliar a qualidade de um modelo de regressão:
 - A. Nenhuma das restantes
 - B. AUC
 - C. Precision
 - D. Recall
- 8. (1V) Considere a base de conhecimento Prolog apresentada à direita. A questão passa(joao, Z):
 - A. Falha, pelo princípio do mundo fechado
 - B. Falha, porque a questão está mal formulada
 - C. Tem sucesso, com Z = 12
 - D. Tem sucesso, com Y = 12.

```
passa(X, Y):= aluno(X),
    nota(X,Y),
    Y > 9.5.

aluno(baião).
aluno(maria).
aluno(carlos).

nota(joao, 12).
nota(maria, 8).
nota(carlos, 15).
```

- 9. (1V) Uma das vantagens das redes neuronais profundas (Deep Learning), quando comparadas com outros modelos mais simples é que:
 - A. Permite automatizar o processo de treino de um modelo
 - B. Permite automatizar o processo de *feature extraction*
 - C. Permite treinar modelos de forma mais rápida
 - D. Permite treinar ensembles constituídos por conjuntos de redes neuronais
- 10. (1V) Indique qual das seguintes é uma característica dos Algoritmos Genéticos:
 - A. Precisam de um grande conjunto de dados de treino
 - B. O tempo de treino do modelo é elevado
 - C. Não garantem uma solução ótima
 - D. Assumem que as variáveis são independentes

ESTG-PR05-Mod013V2 Página 2 de

	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Exame Teórico – Época Normal	Ano letivo 2021/2022	Data 23-06-2022	
P.PORTO		^{Curso} Licenciatura em Engenharia Informática	Hora 10:00		
		Unidade Curricular Inteligência Artificial		Duração 2:30 horas	

PARTE II – Prolog (5V)

11. Considere o famoso jogo Tic-Tac-Toe, conhecido em Portugal como o jogo do galo, que se joga num tabuleiro de 3x3. Os jogadores vão colocando as suas peças ou símbolos sucessivamente, com o objetivo de conseguir preencher uma linha, coluna ou diagonal com os seus símbolos. O jogo termina quando isso acontecer, com a vitória desse jogador, ou quando todas as posições estiverem preenchidas, terminando assim num empate.

Pretende-se modelar o funcionamento do jogo do galo em Prolog, utilizando os seguintes factos:

- simbolo(n, s) representa que o jogador n está a utilizar o símbolo s para jogar
- jogada(n, l, c) representa que o jogador n jogou o seu símbolo na posição (l -> linha, c -> coluna)
- próximo(n) representa que o próximo jogador é o n

Apresenta-se de seguida o estado de um jogo, a sua representação em Prolog, e a sua descrição. Assuma que as coordenadas começam em (1,1) no canto superior esquerdo.


```
simbolo(maria, '0').
simbolo(joao, 'X').
jogada(maria,1,2).
jogada(joao,1,1).
jogada(maria,2,1).
jogada(joao,2,2).
```

- O jogo é entre a Maria e o João.
- A Maria usa o símbolo 'O'.
- O loão usa o símbolo 'X'
- Já foram feitas 4 jogadas, sendo que foi a Maria que começou a jogar.
- O próximo jogador a jogar é a Maria.

11.1 Implemente em Prolog a regra valida/4 que, dado o nome de um jogador, um símbolo, e a (1.5V) posição (linha e coluna) em que pretende jogar, determina se essa jogada é válida. Considere as seguintes regras:

Um jogador apenas pode jogar se for a sua vez

proximo(maria).

- Um jogador apenas pode jogar numa posição livre
- Um jogador apenas pode jogar utilizando o seu símbolo

11.2 Implemente em Prolog a regra **terminou/0** que determina se o jogo já terminou

(1.5V)

Implemente em Prolog a regra **vencedor/1** que determina o nome do vencedor do jogo. Caso o jogo ainda não tenha terminado ou tenha terminado em empate, a regra deve falhar.

ESTG-PR05-Mod013V2 Página 3 de

11.3

(2V)

			Tipo de Prova Exame Teórico – Época Normal	Ano letivo 2021/2022	Data 23-06-2022
P.PORTO	P.PORTO su	COLA IPERIOR	^{Curso} Licenciatura em Engenharia Informática		Hora 10:00
		ETECNOLOGIA GESTÃO	Unidade Curricular Inteligência Artificial		Duração 2:30 horas

PARTE III – Desenvolvimento (5V)

12. (2.5V)

Considere o algoritmo Random Forest. Descreva brevemente o seu funcionamento, indicando nomeadamente as diferenças no seu funcionamento entre problemas de regressão e de classificação. Indique ainda se este algoritmo é adequado para evitar overfitting, e que configurações podem ser utilizadas para que tal aconteça.

13. (2.5V)

Considere o dataset cars_origin, utilizado nas aulas práticas de Inteligência Artificial, e cujo excerto se apresenta abaixo. A tarefa de Machine Learning associada consistem em tentar adivinhar a origem de um carro (US, Europe ou Japan) dadas algumas das suas características, tais como o número de cilindros, nº de cavalos ou ano de fabrico.

mpg 🔻	cylinders 🔻	cubicinches 🔻	hp ▼	weightlbs 🔻	time-to-60	year 💌	origin 💌
14	8	350	165	4209	12	1972	US.
31.9	4	89	71	1925	14	1980	Europe.
17	8	302	140	3449	11	1971	US.
15	8	400	150	3761	10	1971	US.
30.5	4	98	63	2051	17	1978	US.
23	8	350	125	3900	17	1980	US.
13	8	351	158	4363	13	1974	US.
14	8	440	215	4312	9	1971	US.
25.4	5	183	77	3530	20	1980	Europe.
37.7	4	89	62	2050	17	1982	Japan.
34	4	108	70	2245	17	1983	Japan.

Desenhe, justificando, uma possível arquitetura de uma Rede Neuronal para o problema proposto. Note que é suficiente desenhar cada uma das camadas que considerar necessárias e os seus neurónios, não sendo necessário desenhar as ligações entre os neurónios.

Indique ainda que métricas e/ou outros elementos poderiam ser utilizados para avaliar a qualidade do modelo resultante.

ESTG-PR05-Mod013V2