Problema 1 Resoleu el sistema de congruències

$$\begin{cases} x \equiv 1 \pmod{6} \\ x \equiv 2 \pmod{7} \\ x \equiv 3 \pmod{17} \end{cases}$$

Solució 1

El nombre x que satisfà les tres congruències té la forma

$$x = \sum_{i=0}^{k} n_i \cdot M_i \cdot c_i \tag{1}$$

on k és el nombre de congruències del sistema, en el nostre cas k=3. El coeficient c_1 és el nombre al qual igualem la x en l'equació modular. M_i es el producte de tots els m_j tals que $i \neq j, \forall j \in \{1, 2, ..., k\}$. Per últim n_i és el menor nombre positiu tal que $n_i \cdot M_i \equiv 1 \pmod{m_i}$.

Aplicant aquesta tèoria al nostre problema tenim

$$c_1 = 1$$
 $c_2 = 2$ $c_3 = 3$
 $m_1 = 6$ $m_2 = 7$ $m_3 = 17$
 $M_1 = 119$ $M_2 = 102$ $M_3 = 42$

Però encara ens falten tots els n_i . Per a trobar-los, calcularem l'invers módul m_i de M_i , és a dir, utilizarem Identitats de Bézout.

Per a trobar n_1 resolem $119 \cdot n_1 + 6 \cdot y = 1$ i obtenim que $n_1 = 5$. El segon n_2 s'obté amb $102 \cdot n_2 + 7 \cdot z = 1$ i val 2. Per útlim $n_3 = 15$ que s'obté de l'equació $42 \cdot n_3 + 17 \cdot t = 1$.

OBSERVACIÓN: Els valors y, z, t no ens interessen per la resolució del problema.

Bé doncs, ja tenim que

$$n_1 = 5$$
 $n_2 = 2$ $n_3 = 15$

i per tant, podem aplicar (1) per a trobar la $\cdot x$.

Tenim doncs

$$x = \sum_{i=0}^{k} n_i \cdot M_i \cdot c_i$$

$$= \sum_{i=0}^{3} n_i \cdot M_i \cdot c_i$$

$$= n_1 \cdot M_1 \cdot c_1 + n_2 \cdot M_2 \cdot c_2 + n_3 \cdot M_3 \cdot c_3$$

$$= 5 \cdot 119 \cdot 1 + 2 \cdot 102 \cdot 2 + 15 \cdot 42 \cdot 3$$

$$= 595 + 408 + 1890$$

$$= 2893$$

Conclusió: El nombre x que estavem buscant era x = 2893.

OBSERVACIÓN: És fàcil veure que 2893 satisfà les tres congruències alhora.