

LEMA DE GAUSS

ALAN REYES-FIGUEROA TEORÍA DE NÚMEROS

(AULA 19) 05.SEPTIEMBRE.2023

Lema de Gauss

Lema (Gauss)

Sea p > 2 un primo impar, y a $\in \mathbb{Z}^+$ un entero positivo, primo relativo con p. Sea s el número de elementos del conjunto

$$S = \{a, 2a, 3a, \dots, \frac{p-1}{2}a\},\$$

tales que su residuo módulo p es mayor que $\frac{p-1}{2}$. Entonces,

$$\left(\frac{a}{p}\right)=(-1)^{s}.$$

<u>Prueba</u>: Imitamos la prueba del Teorema de Euler-Fermat. Como $\{\pm 1, \pm 2, \pm \frac{p-1}{2}\}$ es un sistema completo de invertibles módulo p, para cada $j=1,2,\ldots,\frac{p-1}{2}$ podemos escribir $ja\equiv \varepsilon_j m_j\pmod p$, con $\varepsilon_j\in\{-1,1\}$, y $m_j\in\{1,2,\ldots,\frac{p-1}{2}\}$.

Observe que si $i \neq j$, entonces $m_i \neq m_j$, donde $\{m_1, m_2, \ldots, m_{(p-1)/2}\} = \{1, 2, \ldots, \frac{p-1}{2}\}$. De hecho, si $m_i \equiv m_j \pmod p$, tendríamos $ia \equiv ja \pmod p$ ó $ia \equiv -ja \pmod p$; y como a es

Lema de Gauss

invertible módulo p y o $\leq i, j \leq \frac{p-1}{2}$, entonces el primer caso implica i=j, mientras que el segundo caso es imposible.

Multiplicando las congruencias $ja \equiv \varepsilon_j m_j \pmod{m}$, resulta

$$(a)(2a)(3a)\cdots(\frac{p-1}{2}a) \equiv \varepsilon_1\varepsilon_2\cdots\varepsilon_{(p-1)/2} m_1m_2\cdots m_{(p-1)/2} \pmod{p}$$

$$\iff a^{(p-1)/2}\left(\frac{p-1}{2}\right)! \equiv \varepsilon_1\varepsilon_2\cdots\varepsilon_{(p-1)/2}\left(\frac{p-1}{2}\right)! \pmod{p}$$

$$\iff a^{(p-1)/2} \equiv \varepsilon_1\varepsilon_2\cdots\varepsilon_{(p-1)/2} \pmod{p}.$$

Luego, $a^{(p-1)/2} = \varepsilon_1 \varepsilon_2 \cdots \varepsilon_{(p-1)/2}$, ya que ambos términos son iguales a ± 1 .

De ahí concluímos que $a^{(p-1)/2} = (-1)^s$, donde s es exactamente el número de términos $j \in \{1, 2, \dots, p-12\}$ tales que $\varepsilon_j = -1$.

Este número es precisamente la cardinalidad |S|. \square

Ley de Reciprocidad Cuadrática

El Criterio de Euler ya produce un mecanismo para identificar residuos cuadráticos. Vamos a mostrar ahora un resultado más general.

Teorema (Ley de Reciprocidad Cuadrática)

1. Sea p un primo impar. Entonces

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}} = \begin{cases} 1, & \text{si } p \equiv \pm 1 \pmod{8}; \\ -1, & \text{si } p \equiv \pm 3 \pmod{8}. \end{cases}$$

2. Sean p, q primos impares distintos. Entonces

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}.$$

<u>Prueba</u>: (1) La propiedad es consecuencia del Lema de Gauss. Si $p \equiv 1 \pmod 4$, entonces p=4k+1 y $\frac{p-1}{2}=2k$. Como $1\leq 2j\leq \frac{p-1}{2}$ para $j\leq k$ y $\frac{p-1}{2}<2j\leq p-1$ para $k+1\leq j\leq 2k$,

Ley de Reciprocidad Cuadrática

hay exactamente k elementos en el conjunto $S = \{1 \le j \le 2k : 2j > \frac{p-1}{2}\}$. Pero $p = 4k + 1 \Rightarrow p$ es de la forma p = 8q + 1 ó p = 8q + 5. En el primer caso, $k = \frac{p-1}{h} = \frac{8q}{h} = 2q$, mientras que en el segundo caso, $k = \frac{p-1}{h} = \frac{8q+4}{h} = 2q + 1$. Así. $\left(\frac{2}{p}\right) = (-1)^k = \begin{cases} (-1)^{2q} \\ (-1)^{2q+1} \end{cases} = \begin{cases} 1, & \text{si } p \equiv 1 \pmod{8}; \\ -1, & \text{si } p \equiv 5 \pmod{8}. \end{cases}$ Si $p \equiv 3 \pmod{4}$, entonces p = 4k + 3 y $\frac{p-1}{3} = 2k + 1$. Para $1 \le j \le k$, tenemos $j \le 2j \le \frac{p-1}{2}$ y para $k+1 \le j \le 2k+1$, tenemos $\frac{p-1}{2} \le 2j \le p-1$. Ahora, hay exactamente k+1 elementos en el conjunto $S = \{1 \le j \le 2k+1 : 2j > \frac{p-1}{2}\}$. Como $p = 4k + 3 \Rightarrow p$ es de la forma p = 8q + 3 ó p = 8q + 7. En el primer caso, $k=\frac{p-3}{h}=\frac{8q}{h}=2q$, mientras que en el segundo caso, $k=\frac{p-3}{h}=\frac{8q+4}{h}=2q+1$. De ahí. $\left(\frac{2}{p}\right) = (-1)^{k+1} = \begin{cases} (-1)^{2q+1} \\ (-1)^{2q+2} \end{cases} = \begin{cases} -1, & \text{si } p \equiv 3 \pmod{8}; \\ 1, & \text{si } p \equiv 7 \pmod{8}. \end{cases}$