第十三章 多元函数的极限和连续

13.1 欧式空间 Rⁿ

定义: 对某一非空集合 E,如果存在一个 E×E 到 R 上的二元关系 d,d: E×E→R,(x,y)→d(x,y)满足下述三个性质: 1°正定性,d(x,y) \geq 0, \forall x,y∈E 并且 d(x,y)=0 \Leftrightarrow x=y; 2°对称性,d(x,y)=d(y,x); 3°三角不等式,d(x,y) \leq d(x,z)+d(z,y)。则称二元关系 d 为 E 上的一个距离。此时 E 和 d 作为一个整体称为距离/度量空间,记作(E,d)。

定义:对某一线性空间 E(这里默认数域为 R),如果存在一个 E 到 R 上的一元关系||・||,||・||: E→R,x→||x||满足下述三个性质: 1°正定性,||x|| \geqslant 0, \forall x \in E 并且||x||=0 \Leftrightarrow x=0; 2°正齐次性,||cx||=|c|||x||, \forall x \in E, \forall c \in R; 3°次可加性,||x+y|| \leqslant ||x||+||y||。则称一元关系||・||为 E 上的一个范数,此时 E 和||・||作为一个整体称为赋范线性空间,记作(E,||・||)。

注意:一个线性空间上,可以定义多种范数。

性质:若在(E,||•||)上定义 d(x,y)=||x-y||, $\forall x,y \in E$,则容易验证 d 是距离。所以,赋范线性空间一定是距离空间,即范数诱导出距离。

定义: 如果存在 E×E 到 R 上的二元关系(,),(,): E×E→R,(x,y)→(x,y),满足下面四条性质: 1°正定性,(x,x) \geq 0, \forall x \in E 并且(x,x)=0 \Leftrightarrow x=0; 2° 对称性,(x,y)=(y,x), \forall x,y \in E; 3° 关于数的线性性,(cx,y)=c(x,y), \forall x,y \in E,c \in R;4° 关于元素的线性性,(x,y+z)=(x,y)+(x,z), \forall x,y,z \in E,则称二元关系(,)为 E 上的一个内积,即内积是一个正定双线性关系,此时 E 和(,)作为一个整体称为内积空间,记作(E,(,))。

性质: 容易看出, E上的内积诱导出一个范数, ||x||=(x,x)^{1/2}。

定义: 带有内积(范数、距离)的 Rⁿ 称为 n 维欧几里得空间。

定义: $N(x_0,\delta)=\{x\in R^n||x_j-x_j^0|<\delta\}$ 为方形邻域,显然 $U(x_0,\delta)\subset N(x_0,\delta)\subset U(x_0,\sqrt{n}\delta)$ 。 所以,一般的结论在使用二者中的任何一个进行讨论都是等价的。

定义: 设点列 $\{x_k\}\subset R^n$,若存在 $x_0\in R^n$ 使得 $\lim_{k\to+\infty}|x_k-x_0|=0$,则称点列 $\{x_k\}$ 收敛于

点 x_0 ,也称 x_0 为点列 $\{x_k\}$ 的极限点。存在极限的点列称为收敛点列,不存在极限的点列称为发散点列。

定理: 设{ x_k }是 R^n 中的点列, $x_0=\{x_1^0,\cdots,x_n^0\}\in R^n$,则 $\lim_{k\to+\infty}x_k=x_0\Leftrightarrow \lim_{k\to+\infty}x_j^k=x_j^0, \forall j$ 。

定义: 称集合 $E \subset \mathbb{R}^n$ 有界,如果 $\exists M > 0$,s.t. $|x| \leq M$, $\forall x \in E$ 。

高维空间中的点列极限的性质: 1°极限唯一; 2°收敛有界; 3°线性性。

定义: 对 R^n 的非空集合 E,如果 $U_0(x,\delta) \cap E \neq 0$, $\forall \delta > 0$,则称 x 为 E 的一个聚点。

定理: 点 P_0 是 E 的聚点的充要条件是存在点列 $\{P_n\}\subset E$, $P_n\neq P_0$, \forall $n\in N$ 使得 $\lim_{n\to\infty}P_n$

 $=P_0$

定义: 若 $x \in E$ 而不是 E 的聚点,则 ∃ δ > 0 使得 $U_0(x,δ) \cap E = 0$,此时称 x 为 E 的孤立点。

性质: 所以, 一个集合中的点, 要么是聚点, 要么是孤立点。

定义:对于两个无限集 A,B 来说,若 B \subset A 且 A 中的任何点的任何邻域都有 B 的 点,则称 B 在 A 中稠密。

定义: 设集合 E ⊂ Rⁿ, 点 P 称为 E 的内点, 如果 3 > 0 使得 $U(P,\delta)$ ⊂ E。

定义: 显然, E 的内点一定是聚点。所有内点的集合称为 E 的内部, 记为 E°。

定义: 点 P 称为 E 的外点,如果 \exists δ>0 使得 U(P,δ) \cap E=0。

定义: Rⁿ\E 称为 E 的余集,记作 E^c。

<mark>定义</mark>:点 P 称为 E 的边界点,如果 \forall ε>0,U(P,ε) \cap E \neq 0,U(P,ε) \cap Ec \neq 0。E 的所有边界点的集合称为 E 的边界,记作 ∂ E。

定义:如果 E°=E,则称 E为开集。开集所有点都是内点。集合 E的所有聚点构成的集合称为 E的导集,记作 E'。集合 E和它的所有聚点构成的集合称为 E的闭

包,记作 \overline{E} ,即 $\overline{E} = E \cup E'$ 。集合 E 称作闭集,如果 $E = \overline{E}$ 。规定空集 0 和 \mathbb{R}^n 既 开又闭。

定理:有限个开集的交集是开集,任意多个开集的并集是开集。有限个闭集的并是闭集,任意多个闭集的交集是闭集。 $E \subset \mathbb{R}^n$ 开 \Leftrightarrow E^c 闭。

定义:如果集合 E 中任意两点都能用属于 E 的连续曲线连接,则称 E 是道路连通集。道路连通的开集称为区域。若 D 是区域,则称 D 是闭区域。

定义: 如果 E 内任意两点间的直线也属于 E, 则称 E 为凸集。凸的区域称为凸域。

定理: 设入为一指标集,
$$E_{\lambda} \subset \mathbb{R}^{n}$$
, $\forall \lambda \in \Lambda$,则 $\left(\bigcup_{\lambda \in \Lambda} E_{\lambda}\right)^{c} = \bigcap_{\lambda \in \Lambda} E_{\lambda}^{c}$, $\left(\bigcap_{\lambda \in \Lambda} E_{\lambda}\right)^{c} = \bigcup_{\lambda \in \Lambda} E_{\lambda}^{c}$ 。

定义: 设点列 $\{P_n\}\subset R^n$,若 \forall ε>0,存在 K \in N 使得 d $(P_k,P_m)<$ ε, \forall k,m>K,则称 $\{P_k\}$ 为 Cauchy 列。

定理: Cauchy 列⇔收敛。

定义:集合 E 的直径定义为 diam(E)=sup d(P₁,P₂), P₁,P₂∈E。

定理: 设 $\{F_k\}$ 是非空闭集列,满足 1° $F_1 \supset F_2 \supset \cdots \cdots \supset F_k \supset \cdots \cdots$; 2° diam $\{F_k\} \to 0$ (k

$$\rightarrow \infty$$
),则存在唯一一点 $P_0 \subset F_k$, $\forall k$,即 $\{P_0\} = \bigcap_{k=1}^{+\infty} F_k$ 。

定义: 就一个有距离的空间 X 来说,如果其任一 Cauchy 列都有极限点,则称 X 是完备的。

定理: 有界点列必有收敛子列, Rⁿ中任何有界无穷集必有聚点。

定义: 开集族 $\Theta = \{G_{\alpha}\}$ 称为 E 的一个开覆盖,如果 E 中的每一个点至少属于 Θ 中的某一个开集,即 $E = \bigcup_{\alpha} G_{\alpha}$,其中 α 为指标,它属于某个指标集。

定理:设 $E \subset \mathbb{R}^n$ 是非空有界闭集, $\Theta = \{G_\alpha\}$ 是 E 的一个开覆盖,则从 Θ 中必能选

出有限个开集 G_1, \dots, G_n 使得 $E = \bigcup_{i=1}^n G_i$ 。

定义: 如果集合 K 的每一个开覆盖都含有一个有限子覆盖,则称 K 为紧集。

定理: E⊂Rⁿ是紧集的充要条件是E是有界闭集。

13.2 多元函数与向量函数的极限

定义: 如果 $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$,则称 f 为单射。如果 f(X)=Y,则称 f 是满射。既 单又满的映射称为双射。如果 $x \subset R^n$, $Y \subset R$,则称映射 f 为 n 元函数。

性质: 设 f: X → Y 为映射, $A_{\alpha} \subset X$, $B_{\alpha} \subset Y$, α 为属于某指标集的指标。则 $f(\bigcup_{\alpha} A_{\alpha}) = \bigcup_{\alpha} f(A_{\alpha})$ 。

定义:设 f(P)定义于集合 $E \subset R^n$ 上, P_0 是 E 的一个聚点。若有常数 A 满足 $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $|f(P)-A| < \varepsilon$, $\forall P \in U_0(P_0,\delta) \cap E$,则称 P 趋于 P_0 时,函数 f(P)以 A 为极限,记作 $\lim_{P \in E \to P_0} f(P) = A$ 。

定义:设 f(x,y)在{(x,y)|0<|x-x₀|<a,0<|y-y₀|<a}上有定义,若对任意固定的 y \in (y₀-a,y₀+a)\{y₀}, $\lim_{\substack{x\to x_0\\y\to y_0}} f(x,y) = \varphi(y)$ 存在,且 $\lim_{\substack{y\to y_0\\y\to y_0}} \varphi(y) = A$ 存在,则称 A 是函数

f(x,y)的一个累次极限,记作 $\lim_{y \to y_0} \lim_{x \to x_0} f(x,y) = \lim_{y \to y_0} \varphi(y) = A$ 。

定理: 设 f(x,y)在 $\{(x,y)|0<|x-x_0|<a,0<|y-y_0|<a\}$ 上有定义,且 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=a$ A,则:

- 1° \forall fixed y \in (y₀-a,y₀+a)\{y₀}均有 $\lim_{x \to x_0} f(x,y) = \varphi(y)$ 时, $\lim_{y \to y_0} \lim_{x \to x_0} f(x,y) = A$;
- 2° \forall fixed $\mathbf{x} \in (\mathbf{x}_0-\mathbf{a},\mathbf{x}_0+\mathbf{a})\setminus \{\mathbf{x}_0\}$ 均有 $\lim_{y\to y_0} f(x,y) = \phi(x)$ 时, $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y) = \mathbf{A}_{\circ}$

定义: 映射 $\overrightarrow{f}: \mathbb{R}^n \to \mathbb{R}^m$ 称为一个 n 元 m 维向量函数, 简称向量函数, 记作 $u = \overrightarrow{f}(x)$ 。

 \overrightarrow{f} (E)是 R^m中的有界集,则称 \overrightarrow{f} (E)是 E 上的有界向量函数。

定义: $\lim_{x \to x_0} \overrightarrow{f}(x) = (A_1, \dots, A_m)$ 当且仅当 $\lim_{x \to x_0} \overrightarrow{f}_j(x) = A_j, \forall j$ 。

13.3 多元连续函数

定义:设 x_0 是 n 元函数 y=f(x)的定义域 E 中的一个点,如果 $\lim_{x\in E\to x_0} f(x)=f(x_0)$,

则称 y=f(x)在 x_0 点连续。如果 f(x)在 E 的每一点都连续,则称 f(x)在 E 上连续,记作 f(x) \in C(E)。

性质: 所有初等函数表示的多元函数在其定义域上是连续的。

定义: 对于向量函数 $\vec{f}(x) = (f_1(x), \dots, f_m(x))$, 我们称其在 \mathbf{x}_0 点上连续当且仅当 $\mathbf{f}_j(\mathbf{x})$, $\mathbf{j}=1,2,\dots$,m 都在 \mathbf{x}_0 点连续。

定义: 设 $f(x) \in C(E)$, 如果 $\forall \varepsilon > 0$, $\exists \delta > 0$ 使得 $|f(x_1)-f(x_2)| < \varepsilon$, $\forall x_1, x_2 \in E$ with $|x_1-x_2| < \delta$, 则称 f(x)在 E 上一致连续。

定义: 对于向量函数 $\vec{f}(x) = (f_1(x), \dots, f_m(x))$,我们称其一致连续当且仅当 $f_i(x)$, $j=1,2,\dots,m$ 都一致连续。

定理: $E \subset \mathbb{R}^n$ 是一个紧集,向量函数 $\overrightarrow{f}(x)$ 在 E 上连续,则 $\overrightarrow{f}(E) \subset \mathbb{R}^m$ 紧。从而有

推论: 1° f(x)在 E 上有界; 2° f(x)在 E 上取到最大最小值; 3° f(x)在 E 上一致连续。

定理: 设 $\mathbf{E} \subset \mathbf{R}^{\mathsf{n}}$ 是道路连通集,向量函数 $\vec{f}(x)$ 在 \mathbf{E} 上连续,则 $\vec{f}(E) \subset \mathbf{R}^{\mathsf{m}}$ 连通。

定理: 设 $E \subset R^n$ 是道路连通集, $f(x) \in C(E)$ 且 $\exists x_1, x_2 \in E$ 使得 $f(x_1) < 0$, $f(x_2) > 0$,则 $\exists x_0 \in E$ 使得 $f(x_0) = 0$ 。

定义: 若映射 \vec{f} : $E \subset E^n \to \vec{f}(E) \subset R^m$ 是双射,定义一个 $\vec{f}(E) \to E$ 的映射 \vec{f}^{-1} 如下: $\forall y \in \vec{f}(E)$, $\vec{f}^{-1}(y) = x$,其中 $\vec{f}(x) = y$ 。称 \vec{f}^{-1} 为 \vec{f} 的逆映射,显然 $\vec{f}^{-1} \bullet \vec{f} = id$ 。

定义: 若 \vec{f} : $E \subset E^n \to \vec{f}(E) \subset R^n$ 是双射,且 $\vec{f}^{-1} \to \vec{f}$ 都连续,则称 \vec{f} 为 E 到 \vec{f} (E) 的同胚变换或同胚映射。

注意:一般来说,映射连续和双射,导不出逆映射连续。

第十四章 多元微分学

注意: 在以下所有向量中,梯度▽为行向量,定义域 x、值域 f(x)为列向量。

14.1 偏导数与全微分

定义: 偏导数
$$\frac{\partial f(x_0)}{\partial x_i} = \lim_{x_i \to x_0^i} \frac{f(x_1^0, \dots, x_{i-1}^0, x_i, x_{i+1}^0, \dots, x_n^0) - f(x_1^0, \dots, x_n^0)}{x_i - x_i^0}$$
 (对应坐标轴

上的截线的导数)。

注意: 偏导数也是 n 元函数。

注意: 函数在 x=x₀ 处各个偏导数存在,不能保证函数在 x=x₀ 点连续。

定义: 全增量 $\Delta x = (\Delta x_1, \dots, \Delta x_n)$, $x = x_0 + \Delta x$, 若存在仅依赖于 \mathbf{x}_0 的常数 \mathbf{A}_i 使得

$$\Delta f(x_0) = \sum_{i=1}^n A_i \Delta x_i + o(|\Delta x|)$$
,则称 $f(\mathbf{x})$ 在 \mathbf{x}_0 处可微,称 $\sum_{i=1}^n A_i \Delta x_i$ 为全微分。

定理: 如果 n 元函数 f 可微,则 $\frac{\partial f}{\partial x_i}$ 都存在,且 $df = \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i$ 。

定理: n 元函数 f 可微,则必连续。

定理: 如果 n 元函数 f 的偏导数都存在且连续,则 f 可微。记作 $f(x) \in C^1(D)$,D 是函数的定义域。

定义: 单位向量 $\mathbf{v} = (\cos \theta_1, \cos \theta_2, \cdots, \cos \theta_n)$, $\frac{\partial f(x_0)}{\partial v} = \lim_{t \to 0+0} \frac{f(x_0 + tv) - f(x_0)}{t}$ 定义

为 f(x)在点 x_0 处在方向 v 上的方向导数。

注意:方向导数所说的方向是在底(n维)平面上的,切线是在空中的。

定理: 如果 n 元函数 f 可微,则 $\frac{\partial f(x_0)}{\partial v} = \sum_{i=1}^n \frac{\partial f(x_0)}{\partial x_i} \cos \theta_i$ 。

定义: grad f(x₀)= $\left(\frac{\partial f(x_0)}{\partial x_1}, \dots, \frac{\partial f(x_0)}{\partial x_n}\right)$ 定义为 f(x)的梯度,也记作 ∇f ,梯度方向是

函数值增加速度唯一最大的(水平)方向,最大值为梯度的模长。

注意: 设函数 y=f(x₁,···,x_n), 有
$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} dx_{i} = dy$$
, 即 $\left(\frac{\partial f}{\partial x_{1}}, \dots, \frac{\partial f}{\partial x_{n}}, -1\right) (dx_{1}, \dots, dx_{n}, dy)$

=0,从而任意切向量(dx₁,···,dx_n,dy),都有向量
$$\left(\frac{\partial f}{\partial x_1},\cdots,\frac{\partial f}{\partial x_n},-1\right) \perp \left(dx_1,\cdots,dx_n,dy\right)$$
,

从而过固定点所有方向上的切线都在同一(超)平面内。从而,函数 $y=f(x_1, \dots, x_n)$ 在可微点存在切平面。

定义: 称所有切线所在的平面为切平面,垂直于切平面的矢量称为法向量。

性质:设f和g是n元可微函数,则1°∇C=0;2°∇(af+bg)=a∇f+b∇g;3°

$$\nabla$$
 (fg)=f ∇ g+g ∇ f; 4° ∇ ($\frac{f}{g}$) = $\frac{g\nabla f - f\nabla g}{g^2}$ o

定理:(链式法则)设 u=f(x,y),x=g(s,t),y=h(s,t)构成复合函数, $\frac{\partial x}{\partial s}$, $\frac{\partial x}{\partial t}$, $\frac{\partial y}{\partial s}$, $\frac{\partial y}{\partial t}$ 都存在,f(x,y)可微,则对于 u=f(g(s,t),h(s,t))两个偏导数都存在,且

$$\mathbf{1}^{\circ}$$
 $\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}$; $\mathbf{2}^{\circ}$ $\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$ 。 其余情况同理。

定义: 向量函数 $\overrightarrow{f}(x)$ 的全微分:

$$\Delta \overrightarrow{f}(x) = \begin{pmatrix} \Delta f_1(x) \\ \Delta f_2(x) \\ \vdots \\ \Delta f_m(x) \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \\ \vdots \\ \Delta x_n \end{pmatrix} + \begin{pmatrix} \alpha_1(|\Delta x|) \\ \alpha_2(|\Delta x|) \\ \vdots \\ \alpha_n(|\Delta x|) \end{pmatrix}, \quad \underline{\mathbb{H}} \lim_{|\Delta x| \to 0} \frac{\alpha_i(|\Delta x|)}{|\Delta x|} = 0 .$$

则称 $\vec{f}(x)$ 可微/导,称矩阵 A 为导数/Jacobi 矩阵,记作 $D\vec{f}(x)$ 或者 $\vec{f}'(x)$, $A\Delta x$ 称 为向量函数 $\vec{f}(x)$ 的全微分,记作 $d\vec{f}(x) = \vec{f}'(x) dx$ 。

性质: 可微的充要条件是分量函数可微,从而有 $A_{ij} = \frac{\partial f_i(x)}{\partial x_i}$ 。

定义: 若 A 是方阵, |A|称为 Jacobi 行列式,记作 $|f'(x_0)|$ 或 $\frac{\partial (f_1, \cdots, f_n)}{\partial (x_1, \cdots, x_n)}|_{x_0}$ 。

14.2 多元函数求导法

定理: 导数的四则运算: 1° $(f(x)\pm g(x))'=f'(x)\pm g'(x)$; 2° (f(x)g(x))'=

$$f(x)g'(x) + g(x)f'(x)$$
; $3^{\circ} \left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}$

(以上要求(向量)函数的定义域和值域恰好合适)

定理:
$$\frac{\partial(f_1,\dots,f_p)}{\partial(x_1,\dots,x_n)} = \frac{\partial(f_1,\dots,f_p)}{\partial(u_1,\dots,u_m)} \frac{\partial(u_1,\dots,u_m)}{\partial(x_1,\dots,x_n)}, \quad \text{或 } df(u(x)) = f'(u(x))u'(x)dx \ . \quad \text{ }$$

丽有
$$\frac{\partial f(u(x_0))}{\partial x_i} = \sum_{j=1}^m \frac{\partial f(u_0)}{\partial u_j} \cdot \frac{\partial u_j(x_0)}{\partial x_i}$$
。

定义: 设 \vec{f} :D \subset Rⁿ \to R^m, $\vec{f}(x) \in$ C¹(D), $x_0 \in$ D,如果 rank($\vec{f}'(x_0)$)<min(n,m),则称 x_0 为 $\vec{f}(x)$ 的临界点, $y_0 = \vec{f}(x_0)$ 称为向量函数的临界值。特别地,若 f 是 n 元 函数,则 $x_0 \in$ D 是临界点的充要条件是 $\frac{\partial f(x_0)}{\partial x_i} = 0$,即 $\nabla f(x_0) = f'(x_0) = 0$;若 f 是 n 元 n 维向量函数,则则 $x_0 \in$ D 是临界点的充要条件是 |f'(x_0)|=0。

定义: 多元函数的高阶偏导数: 若 $\frac{\partial f}{\partial x_i}$ 仍有偏导数,则将 $\frac{\partial \left(\frac{\partial f}{\partial x_i}\right)}{\partial x_k}$ 记为 $f_{ki}''(x)$ 或

 $\frac{\partial^2 f}{\partial x_k \partial x_i}$ 。 n 元函数具有 n²个二阶偏导。

定理: 如果二阶偏导数存在且连续,那么 f_{ki} "(x) = f_{ik} "(x) 。进一步,如果 f_{ki} "(x)

或 f_{ik} "(x) 在 x_0 点附近存在且**其中之一**在 x_0 点连续,那么 f_{ki} "(x) = f_{ik} "(x) 。 定义:引入记号 $C^k(D)$ 为区域 D 上的具有直到 k 阶连续偏导数的函数的全体。

定义: 二阶微分: $d^2 f(x) = \sum_{i=1}^n \sum_{k=1}^n \frac{\partial^2 f(x)}{\partial x_k \partial x_i} dx_k dx_i$ 。

定义: 记 $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ 为 \triangle ,称作 Laplace 算子。

定义: 2 元函数的高阶全微分: $d^k u = (dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial y})^k u = \sum_{i=0}^k C_k^i \frac{\partial^k u}{\partial x^i \partial y^{k-i}} dx^i dy^{k-i}$ 。

定义: n 元函数的高阶全微分: $d^k u = \left(\sum_{i=1}^n dx_i \frac{\partial}{\partial x_i}\right)^k u$ 。

14.3 泰勒公式

定理:设 $f(\mathbf{x})$ 在 $\mathbf{x}_0 \in \mathbb{R}^n$ 的邻域 $U(\mathbf{x}_0, \delta_0)$ 内具有 K+1 阶连续偏导数,则对于满足 $\mathbf{x}_0+h=(\mathbf{x}_1+h_1,\mathbf{x}_2+h_2,\cdots,\mathbf{x}_n+h_n) \in U(\mathbf{x}_0,\delta_0)$,有: $(0<\theta<1)$ (Lagrange 余项)

$$f(x_0 + h) = f(x_0) + \sum_{k=1}^{K} \frac{1}{k!} \left(\sum_{i=1}^{n} h_i \frac{\partial}{\partial x_i} \right)^k f(x_0) + \frac{1}{(K+1)!} \left(\sum_{i=1}^{n} h_i \frac{\partial}{\partial x_i} \right)^{K+1} f(x_0 + \theta h)$$

定理: 设 $f(\mathbf{x})$ 在 $\mathbf{x}_0 \in R^n$ 的邻域 $U(\mathbf{x}_0, \delta_0)$ 内具有 K 阶连续偏导数,则对于满足 $\mathbf{x}_0 + h = (\mathbf{x}_1 + h_1, \mathbf{x}_2 + h_2, \cdots, \mathbf{x}_n + h_n) \in U(\mathbf{x}_0, \delta_0)$,有: (Peano 余项)

$$f(x_0 + h) = f(x_0) + \sum_{k=1}^{K} \frac{1}{k!} \left(\sum_{i=1}^{n} h_i \frac{\partial}{\partial x_i} \right)^k f(x_0) + o(|h|^K) \text{ with } |h| \to 0 .$$

定义: 取 K=2,有 $f(x_0+h) = f(x_0) + f'(x_0)h + \frac{1}{2}h^T H_f(x_0)h + o(|h|^2)$ with $|h| \to 0$ 。

其中
$$H_f(x_0) = \left(\frac{\partial^2 f(x_0)}{\partial x_i \partial x_j}\right)$$
 (二次型) 称为 Hesse 矩阵。

14.4 隐函数存在定理

定理:设二元函数 F(x,y)在 $U((x_0,y_0),\delta)$ 内满足以下条件: 1° $F(x_0,y_0)=0$; 2° F(x,y)和 $F_y'(x,y)$ 在 $U((x_0,y_0),\delta)$ 内连续; 3° $F_y'(x_0,y_0)\neq 0$ 。则 $\exists \delta_0 \in (0,\delta)$,s.t.在 $U((x_0,y_0),\delta_0)$ 内存在唯一的连续函数 y=f(x)满足: 1° $y_0=f(x_0)$; 2° F(x,f(x))=0, $\forall x\in U(x_0,\delta_0)$; 3°

如果
$$F_x'(x,y)$$
在 U((x₀,y₀),δ)内连续,则 $f(x) \in C^1$ 且 $f'(x) = -\frac{F_x'(x,f(x))}{F_y'(x,f(x))}$ 。

定理: 记 $\mathbf{x}=(x_1,\dots,x_n)$, $\mathbf{x}_0=(x_{0,1},\dots,x_{0,n})$, 假设函数 $F(\mathbf{x},\mathbf{y})=F(x_1,\dots,x_n,\mathbf{y})$ 在 $U(\mathbf{x}_0,\delta)\times U(\mathbf{y}_0,\delta)$ 内有定义,并满足: 1° $F(\mathbf{x}_0,\mathbf{y}_0)=0$; 2° $F(\mathbf{x},\mathbf{y})$ 和 $F_{\mathbf{y}}'(\mathbf{x},\mathbf{y})$ 在 $U(\mathbf{x}_0,\delta)\times U(\mathbf{y}_0,\delta)$ 内连续; 3° $F_{\mathbf{y}}'(\mathbf{x}_0,\mathbf{y}_0)\neq 0$ 。则存在 $\delta_0>0$ 使得在 $U(\mathbf{x}_0,\delta_0)$ 内存在唯一满足下列条件的连续函数 $\mathbf{y}=f(\mathbf{x})$: 1° $\mathbf{y}_0=f(\mathbf{x}_0)$; 2° $F(\mathbf{x},f(\mathbf{x}))=0$, $\forall \mathbf{x}\in U(\mathbf{x}_0,\delta_0)$; 3° 如果 $F(\mathbf{x},\mathbf{y})$ 的各个偏导

数在
$$U(\mathbf{x_0}, \delta_0) \times U(\mathbf{y_0}, \delta_0)$$
内连续,则 $f(\mathbf{x}) \in C^1$ 且 $f'(\mathbf{x}) = -\frac{F_x'(\mathbf{x}, f(\mathbf{x}))}{F_y'(\mathbf{x}, f(\mathbf{x}))}$ 。

注意: 不用死记隐函数的导数公式,只要求全微分即可。

定理:设向量函数 $F(\mathbf{x},\mathbf{u})=(F_1(\mathbf{x},\mathbf{u}),\cdots,F_m(\mathbf{x},\mathbf{u}))$ 在 $U(\mathbf{x}_0,\delta)\times U(\mathbf{u}_0,\delta)$ 内有定义,其中 $\mathbf{x}=(\mathbf{x}_1,\cdots,\mathbf{x}_n)$, $\mathbf{u}=(\mathbf{u}_1,\cdots,\mathbf{u}_m)$,并且满足: 1° $F_j(\mathbf{x}_0,\mathbf{u}_0)=0$, \forall \mathbf{j} ; 2° $F_j(\mathbf{x},\mathbf{u})$ 以及各个偏

导数在
$$U(\mathbf{x}_0,\delta) \times U(\mathbf{u}_0,\delta)$$
内连续; $\mathbf{3}^{\circ} \frac{\partial (F_1,\cdots,F_m)}{\partial (u_1,\cdots,u_m)}|_{(x_0,u_0)} \neq \mathbf{0}$ 。则存在 $\delta_0 > \mathbf{0}$ 使得在

 $U(\mathbf{x}_0,\delta_0)$ 内存在唯一的 m 维 n 元向量函数 $f(\mathbf{x})=(f_1(\mathbf{x}),\cdots,f_m(\mathbf{x}))$: 1° $\mathbf{u}_0=f(\mathbf{x}_0)$; 2°

$$F_{j}(\mathbf{x},f(\mathbf{x}))=0$$
, $\forall \mathbf{x} \in U(\mathbf{x}_{0},\delta_{0}); \ \mathbf{3}^{\circ} \ f'(\mathbf{x})=-\frac{F_{x}'(\mathbf{x},u)}{F_{u}'(\mathbf{x},u)}$ (分母表示逆)。

定理: (逆映射存在)设 $y=f(x)=(f_1(x),\cdots,f_n(x))$ 是区域 $D\subset R^n$ 到 $\Omega\subset R^n$ 一个 C^1 映射,

且
$$\frac{\partial (f_1,\cdots,f_n)}{\partial (x_1,\cdots,x_n)}|_{x_0}\neq 0$$
,记 $\mathbf{y_0}=\mathbf{f}(\mathbf{x_0})$,则存在 $\mathbf{x_0}$ 的邻域 $\mathbf{U}(\mathbf{x_0},\delta)$ 使得 $\mathbf{y}=\mathbf{f}(\mathbf{x})$ 是 $\mathbf{U}(\mathbf{x_0},\delta)$ 到

 $f(U(\mathbf{x}_0,\delta))$ 的 C^1 同胚映射,其中 $f(U(\mathbf{x}_0,\delta))$ 是包含 \mathbf{y}_0 的一个区域。

14.5 多元函数的极值

定义: 设函数 $u=f(\mathbf{x})$ 在区域 $D \subset \mathbb{R}^n$ 内有定义, $\mathbf{x}_0 \in D$,若存在 \mathbf{x}_0 的邻域 $U(\mathbf{x}_0,\delta)$ 使 得 $f(\mathbf{x}) \leq f(\mathbf{x}_0)$, $\forall \mathbf{x} \in U(\mathbf{x}_0,\delta)$,则称 $f(\mathbf{x})$ 在 \mathbf{x}_0 点取得极大值, \mathbf{x}_0 称为 $f(\mathbf{x})$ 的极大值点。定理: 设函数在 $u=f(\mathbf{x})$ 点 \mathbf{x}_0 处取得极值,且 $f(\mathbf{x})$ 在 \mathbf{x}_0 点各个偏导数存在,则偏导数都为 0; 进一步,如果 $f(\mathbf{x})$ 在极值点 \mathbf{x}_0 点可微,则 $f'(\mathbf{x})=0$ 。

定理: 设函数 $f(\mathbf{x})$ 在区域 $D \subset \mathbb{R}^n$ 内有连续二阶偏导数,且 $f'(\mathbf{x_0})=0$, $\mathbf{x_0} \in D$,且 $H_f(\mathbf{x_0})$ 满秩。则当 $H_f(\mathbf{x_0})$ 正定时, $f(\mathbf{x_0})$ 取极小值; $H_f(\mathbf{x_0})$ 负定时, $f(\mathbf{x_0})$ 取极大值; $H_f(\mathbf{x_0})$ 不定时,不取极值。若 $H_f(\mathbf{x_0})$ 不满秩,则需要使用高阶导数判定 $f(\mathbf{x_0})$ 是否极值。

定理: 【条件极值的必要性条件】设 n 元函数 $f(\mathbf{x})$ 和 m(< n)维 n 元向量函数 $g(\mathbf{x})=(g_1(\mathbf{x}),g_2(\mathbf{x}),\cdots,g_m(\mathbf{x}))$ 在区域 $D\subset R^n(m< n)$ 内 有 各 个 连续偏导数,再设 $\mathbf{x}_0=(\mathbf{x}_1,\cdots,\mathbf{x}_n)\in D$ 为 $f(\mathbf{x})$ 在约束条件 $g(\mathbf{x})=0$ 下的极值点,且 $rank(g'(\mathbf{x}))=m$,则存在常数 $t_1,\cdots,t_m\in R$,使得:

1°g(x₀)=0; (满足约束条件)

$$2^{\circ} \frac{\partial f(x_0)}{\partial x_i} + \sum_{j=1}^m t_j \frac{\partial g_j(x_0)}{\partial x_j} = 0, \forall i = 1, 2, \dots, n, \quad \text{ff f'(x)+(t_1, \dots, t_m)g'(x)=0}.$$

注意: 若构造函数 $F(\mathbf{x}_1, \cdots, \mathbf{x}_n, \mathbf{t}_1, \cdots, \mathbf{t}_m) = f(\mathbf{x}) + \mathbf{t}_1 g_1(\mathbf{x}) + \cdots + \mathbf{t}_m g_m(\mathbf{x})$,则求极值的必要条件为函数 $F(\mathbf{x}, \mathbf{t})$ 取极值的必要条件,即: $\frac{\partial F(x_0)}{\partial x_i} = 0$, $\frac{\partial F(x_0)}{\partial t_i} = 0$ 。 (lagrange 数乘法)

定理: 【条件极值的充分性条件】设(\mathbf{x}_0 , \mathbf{t}_0)为函数 $F(\mathbf{x},\mathbf{t})=f(\mathbf{x})+\mathbf{t}_1g_1(\mathbf{x})+\dots+\mathbf{t}_mg_m(\mathbf{x})$ 的驻点,其中 $\mathbf{x}_0=(\mathbf{x}_1,\dots,\mathbf{x}_n)$, $\mathbf{t}_0=(\mathbf{t}_1,\dots,\mathbf{t}_m)$ 。固定 \mathbf{t}_0 ,考虑函数 $F(\mathbf{x},\mathbf{t}_0)$,则其 Hesse 矩阵

$$\mathsf{H}_{\mathsf{F}}(\mathbf{x}_{0},\mathbf{t}_{0}) = \left(\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}(x_{0},t_{0})\right)_{n \times n} \circ$$

1°如果 $H_F(x_0,t_0)$ 正定或负定,则 x_0 是 $F(x,t_0)$ 的极值点,且 x_0 是 f(x)的条件极值点; **2**°如果 $H_F(x_0,t_0)$ 不定,则 x_0 不是 $F(x,t_0)$ 的极值点,但不能说明 x_0 不是 f(x)的条件极值点。

14.6 多元微分学的几何应用

定义: R^n 中的一条曲线是[α , β] $\rightarrow R^n$ 的一个连续映射 $h(t)=(x_1(t),x_2(t),...,x_n(t))$ 。如果 $h(t_1)\neq h(t_2)$, $\forall t_1,t_2\in [\alpha,\beta]$,则称该曲线是简单曲线;如果 $h(t_1)\neq h(t_2)$, $\forall t_1,t_2\in [\alpha,\beta)$,但是 $h(\alpha)=h(\beta)$,则称该曲线是简单闭曲线,也称为 Jordan 曲线。

定理:设曲线方程为 h=(x(t),y(t),z(t)),其于 $t=t_0$ 点的切线方向为 $(x'(t_0),y'(t_0),z'(t_0))$ 。 定理:考虑参数式曲面 x=x(u,v),y=y(u,v),z=z(u,v), $M_0=(x_0,y_0,z_0)$ 是曲面上一点,其

于
$$M_0$$
 点的法线方向为($\frac{\partial(y,z)}{\partial(u,v)}$, $\frac{\partial(z,x)}{\partial(u,v)}$, $\frac{\partial(x,y)}{\partial(u,v)}$)。

定理: 设曲面由方程 F(x,y,z)=0 给出, $M_0=(x_0,y_0,z_0)$ 是曲面上一点,则 F(x,y,z)=0 作为三元函数 u=F(x,y,z)的零值等位面,其于 M_0 点的法线方向为($\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial u}{\partial z}$)。

定理:设曲线由方程组 F(x,y,z)=0,G(x,y,z)=0 隐式给出, $M_0=(x_0,y_0,z_0)$ 是曲面上一点,

其于
$$M_0$$
 点的切线方向为($\frac{\partial(F,G)}{\partial(y,z)}$, $\frac{\partial(F,G)}{\partial(z,x)}$, $\frac{\partial(F,G)}{\partial(x,y)}$)。

定义: 设 $D \subset R^n$ 是凸区域, $f(\mathbf{x})$ 在 D 上定义。若对于任意的 $\mathbf{x_1}, \mathbf{x_2} \in D$ 有 $f(\mathbf{tx_1} + (1-\mathbf{t})\mathbf{x_2})$ $\leq \mathbf{tf}(\mathbf{x_1}) + (1-\mathbf{t})\mathbf{f}(\mathbf{x_2})$, $\forall \mathbf{t} \in (0,1)$,则称 $f(\mathbf{x})$ 为凸区域 D 上的凸函数。如果 D 上处处严格成立不等式,则称 $f(\mathbf{x})$ 为凸区域 D 上的严格凸函数。

定理: 设 $D \subset \mathbb{R}^n$ 是凸区域, $f(\mathbf{x}) \in \mathbb{C}^2(D)$,则下述三命题等价:

- 1°f(x)是 D 上的凸函数;
- $2^{\circ} \forall x_0, x \in D, f(x) \geqslant f(x_0) + f'(x_0)(x-x_0);$
- 3° ∀ x₀ ∈ D,Hesse 矩阵 H_f(x₀)半正定。

第十五章 重积分

15.1 重积分的定义

定义:对于 $1/n \times 1/n$ 的方体分割 Δn ,记集合 Q_n^- 为内部方体, Q_n^+ 为最小覆盖方

体。如果 $\lim_{n\to\infty} m(Q_n^-) = \lim_{n\to\infty} m(Q_n^+)$,则称集合 A 有面积,并将此极限定义为 A 的

面积,记作 m(A),也称 A 为 Jordan 可测集。

定义: 边界线均为垂直或水平的直线段的闭区域称为简单图形。

定理: 平面有界点集 A 有面积 ⇔ $\forall \varepsilon > 0$,∃包含 ∂A 的简单图形 Q s.t. m(Q)< ε 。

推论: 1° A,B 有面积 \Rightarrow A \cup B 有面积,且当 A° \cap B° = ϕ 时,m(A \cup B)=m(A)+m(B);

2° A,B 有面积 ⇒ A∩B 有面积; 3° A,B 有面积 ⇒ A\B 有面积;

4° A_i有面积
$$\Rightarrow \bigcup_{i=1}^{n} A_{i}$$
, $\bigcap_{i=1}^{n} A_{i}$ 有面积且 $\mathsf{m}(\bigcup_{i=1}^{n} A_{i}) \leqslant \sum_{i=1}^{n} \mathsf{m}(A_{i})$ 。

推论: 平面可求长曲线的面积为 0; 由有限条可求长曲线所围成的区域面积存在; 闭区间上显式表达的连续曲线的面积为 0; 由有限条显式表达的连续曲线所围成的区域面积存在。

定义: 设 D 为平面有界可测集,将 D 分割成有限个集合 $\Delta \sigma_i$ (i=1,2,···,n)之和,且 $\Delta \sigma_i$ 可测, $\Delta \sigma_i$ ° $\cap \Delta \sigma_i$ °= ϕ ,则称 Δ 为 D 的一个分划,称 $\|\Delta\|$ =max{diam($\Delta \sigma_i$)}为分划 Δ 的直径。

定义:设 D 为平面有界可测集,f(x,y)在 D 上定义,如果对于 $\forall \Delta = \{\Delta \sigma_i\}_{i=1,2,...,n}$ 和

 \forall (ξ_i,η_i) $\in \Delta \sigma_i$,对应的 Riemann 和极限存在且唯一,即 $\lim_{\|\Delta\|\to 0} \sum_{i=1}^n f(\xi_i,\eta_i) m(\Delta \sigma_i) = I$,

则称 f(x,y)在 D 上可积,I 称为 f(x,y)在 D 上的二重积分,记作 $I = \iint_D f(x,y) d\sigma$ 或 $I = \iint_D f(x,y) dx dy \text{ o D 上所有可积函数全体记为 R(D)}.$

定义:设 Ω 为空间有界可测集,将 Ω 分割成有限个集合 Δ V_i(i=1,2,...,n)之和,且 Δ V_i可测, Δ V_i° \cap Δ V_j° = ϕ ,则称 Δ 为 Ω 的一个分划,称 $\|\Delta\|$ = max{diam(Δ V_i)}为分划 Δ 的直径。

定义: 设 Ω 为空间有界可测集,f(x,y,z)在 Ω 上定义,如果对于 $\forall \Delta = \{\Delta V_i\}_{i=1,2,...,n}$ 和 $\forall (x_i,y_i,z_i) \in \Delta V_i$,对应的 Riemann 和极限存在且唯一,即 $\lim_{\|\Delta\| \to 0} \sum_{i=1}^n f(x_i,y_i,z_i) \Delta V_i = I$,

则称 f(x,y,z)在 Ω 上可积,I 称为 f(x,y,z)在 Ω 上的三重积分,记作 $I = \iiint_{\Omega} f(x,y,z) dv$

或 $I = \iiint_{\Omega} f(x, y, z) dx dy dz$ 。 Ω 上所有可积函数全体记为 $R(\Omega)$ 。

15.2 多元函数的可积性理论与重积分的性质

定理: 有界可测区域上的可积函数必有界。

定理: 设 D \subset R² 有界可测,f(x,y)于 D 上有界,则 $f(x,y) \in R(D) \Leftrightarrow \lim_{\|\Delta\| \to 0} \sum_{i=1}^{n} \omega_i \Delta \sigma_i = 0 \Leftrightarrow$

$$\forall \varepsilon > 0, \exists \Delta, s.t. \overline{S}(f, \Delta) - \underline{S}(f, \Delta) < \varepsilon \Leftrightarrow \overline{\iint_D f(x, y) d\sigma} = \iint_D f(x, y) d\sigma \ .$$

定理:设 D 是有界可测区域, $E \subset D$,m(E)=0,f(x,y)在 D 上有界,在 D\E 上连续,则 $f(x,y) \in R(D)$ 。特别地,连续函数必可积。

定理:设 D 是有界可测区域, $f(x,y) \in R(D)$, $m \le f(x,y) \le M$,g(z)在[m,M]上连续,则复合函数 $g(f(x,y)) \in R(D)$ 。

性质: (二元可积函数)

- 1. 约定二重积分都是在"正区域"上进行的, $f(x,y) \le (≥)0 \Leftrightarrow \iint_{\mathbb{D}} f(x,y) d\sigma \le (≥)0$
- 2. 有界闭区域 D 上可积的函数 f(x,y)必在 D 上有界;
- 3. 有界闭区域 D上的连续函数和分片连续函数在 D上可积;
- 4. 可积函数的乘积可积;
- 5. 线性性、被积函数可加性、积分区域可加性;
- 6. 积分区域单调性、被积函数单调性;
- 7. 三角不等式;
- 8. 有界闭区域 D 上连续函数∃(x₀,y₀)∈D,s.t. $\iint_{\mathbb{D}} f(x,y)d\sigma$ =f(x₀,y₀)m(D)。

15.3 化重积分为累次积分

定理: 设函数 f(x,y)在 $D=[a,b]\times[c,d]$ 上可积,且对于 $\forall x\in[a,b]$, $I(x)=\int_{c}^{d}f(x,y)dy$ 存

在,则定积分
$$\int_a^b I(x)dx$$
 存在,并且 $\iint_D f(x,y)d\sigma = \int_a^b I(x)dx = \int_a^b dx \int_a^d f(x,y)dy$ 。

定理: 设 D={(x,y)|a \leq x \leq b, g₁(x) \leq y \leq g₂(x)}是 X 型区域,函数 f(x,y)在 D 上可积,且对于 \forall x \in [a,b],I(x)= $\int_{g_1(x)}^{g_2(x)} f(x,y) dy$ 存在,则定积分 $\int_a^b I(x) dx$ 存在,并且

$$\iint_D f(x,y)d\sigma = \int_a^b I(x)dx = \int_a^b dx \int_{g_1(x)}^{g_2(x)} f(x,y)dy .$$

定理: 设 D={(x,y)|c \leq y \leq d, h₁(y) \leq x \leq h₂(y)}是 Y 型区域,函数 f(x,y)在 D 上可积, 且对于 \forall y \in [c,d],I(y)= $\int_{h_1(y)}^{h_2(y)} f(x,y) dx$ 存在,则定积分 $\int_{c}^{d} I(y) dy$ 存在,并且

$$\iint_D f(x,y) d\sigma = \int_a^b I(y) dy = \int_c^d dy \int_{h_1(x)}^{h_2(x)} f(x,y) dx \ .$$

性质:
$$\iint_{\Omega} f(x,y,z) dv = \iint_{D_{xy}} d\sigma_{xy} \int_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) dz$$
 或
$$\iint_{D_{yz}} d\sigma_{yz} \int_{x_{1}(y,z)}^{x_{2}(y,z)} f(x,y,z) dx$$
 或
$$\iint_{D_{xz}} d\sigma_{xz} \int_{y_{1}(x,z)}^{y_{2}(x,z)} f(x,y,z) dy$$
 。 【 线积分+面积分 】

性质:
$$\iiint_{\Omega} f(x,y,z) dv = \int_{z_{1}(x,y)}^{z_{2}(x,y)} dz \iint_{D_{xy}} f(x,y,z) d\sigma_{xy} \stackrel{\mathbf{I}}{older} \int_{x_{1}(y,z)}^{x_{2}(y,z)} dx \iint_{D_{yz}} f(x,y,z) d\sigma_{yz} \stackrel{\mathbf{I}}{older}$$

$$\int_{y_{1}(x,z)}^{y_{2}(x,z)} dz \iint_{D_{xy}} f(x,y,z) d\sigma_{xz} \circ \mathbb{I} \text{ in } \mathbb{R}$$

15.4 重积分的变量替换

定理: 设 D_{xy} , D_{uv} 分别是由逐段光滑曲线围成的 xoy 平面上和 uov 平面上的有界闭区域,即边界可求长,区域可求面积。设变换T: $\begin{cases} x = x(u,v) \\ y = y(u,v) \end{cases}$, $D_{uv} \to D_{xy}$ 是 C^1 同胚

映射并设 $J = \frac{\partial(x,y)}{\partial(u,v)} \neq 0$, \forall (u,v) \in D_{uv}。则 T 把 ∂ D_{uv} 映满边界 ∂ D_{xy}。

定理:如果 σ 为 D_{uv} 内一个闭正方形,左下顶点为(u_0,v_0),边长为 h,经 T 映为 D_{xy} 内以曲边梯形 $T(\sigma)$,则 $m(T(\sigma))=\iint_{\sigma}|J(u,v)|dudv$,

定理: 设 C^1 同胚变换T: $\begin{cases} x = x(u,v) \\ y = y(u,v) \end{cases}$, $D_{uv} \rightarrow D_{xy}$, D_{uv} , D_{xy} 有界可测, $f(x,y) \in R(D_{xy})$,

$$\text{III} \iint_{D_{xy}} f(x,y) dx dy = \iint_{D_{uv}} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv .$$

定理: 设 D_{uvw} , $D_{xyz} \subset R^3$ 是有界可测区域,同胚变换 $T: \begin{cases} x = x(u,v,w) \\ y = y(u,v,w) \in C^1(D_{uvw}), \\ z = z(u,v,w) \end{cases}$

$$f(x,y,z) \in R(D_{uvw})$$
, $J(u,v,w) = \frac{\partial(x,y,z)}{\partial(u,v,w)}$,则(三重积分的变量替换)

15.5 广义重积分

定义:设 $D \subset R^2$ 为一区域, \forall R>0, $D \cap \{x^2+y^2 < R^2\}$ 可测。 $\{D_n\}$ 为一有界可测闭集列,满足 1° $D_1 \subset D_2 \subset \cdots \subset D_n \subset D$; 2° 任意有界闭集 $F \subset D$,存在 m 使得 $F \subset D_m$ 。则称 $\{D_n\}$ 为区域 D 的一个穷竭列。

定义: 如果函数 f(x,y)在 D 的任何可求面积的有界闭子区域上可积,则称 f(x,y)在 D 上内闭可积。

定义: 设 D 为一个区域, \forall R>0,D \cap { $x^2+y^2 < R^2$ }可测,函数 f(x,y)在 D 上内闭可积。如果对 D 的任意穷竭列{ D_n }都有 $\lim_{n\to +\infty} \iint_{D_n} f(x,y) dx dy$ 存在且唯一,则称积分

 $\iint_D f(x,y) dx dy$ 收敛,并定义上述积分为积分值。如果|f(x,y)|在 D 上的反常积分 $\iint_D |f(x,y)| dx dy$ 收敛,则称 $\iint_D f(x,y) dx dy$ 绝对收敛。

定理: 设 D 为一区域, \forall R>O,D ∩ { $x^2+y^2 < R^2$ }可测,函数 f(x,y)在 D 上内闭可积。

则 $\iint_{\Omega} f(x,y)d\sigma$ 收敛的充要条件是 $\iint_{\Omega} |f(x,y)|d\sigma$ 收敛。

定理: 设区域 $G,D \subset \mathbb{R}^n$, \forall R>0, $G \cap B_R,D \cap B_R$ 可测,同胚变换 $T \in C^1(D)$: $G \to D$, x=x(u,v), y=y(u,v),则 $\iint_D f(x,y) dx dy$ 与 $\iint_G f(x(u,v),y(u,v)) |J(u,v)| du dv$ 同敛散,且收敛时值相等。

定理:设 $D=\{a < x < b, c < y < d\}$,f(x,y)在 D 上内闭可积。则:

$$1^{\circ} \int_{c}^{d} dy \int_{a}^{b} |f(x,y)| dx \stackrel{\text{def}}{=} \iint_{D} f(x,y) d\sigma \stackrel{\text{def}}{=} \iint_{D} f(x,y) d\sigma = \int_{c}^{d} dy \int_{a}^{b} |f(x,y)| dx;$$

$$2^{\circ} \int_{a}^{b} dx \int_{c}^{d} |f(x,y)| dy \stackrel{\text{def}}{\otimes} \Rightarrow \iint_{D} f(x,y) d\sigma \stackrel{\text{def}}{\otimes} \coprod_{D} \int_{D} f(x,y) d\sigma = \int_{a}^{b} dx \int_{c}^{d} |f(x,y)| dy ;$$

3°
$$\int_{c}^{d} dy \int_{a}^{b} |f(x,y)| dx$$
 散 or $\int_{a}^{b} dx \int_{c}^{d} |f(x,y)| dy$ 散 $\Rightarrow \iint_{D} f(x,y) d\sigma$ 散。

第十六章 曲线积分与曲面积分

16.1 第一型曲线积分

定义:设 足平面可求长曲线,f(x,y)在 上有定义, Γ 的两端点为 A,B,对 Γ 作分割、取点。如果对任意分割法,任意取点法(ξ_i,η_i)都有 $\lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i,\eta_i) \Delta s_i$ 存在唯一,则称这一极限值为 f(x,y)在曲线 Γ 上的第一型曲线积分,记作 $\int_{\Gamma} f(x,y) ds$ 。当 Γ 为闭曲线时,也记作 $\int_{\Gamma} f(x,y) ds$ 。

性质: 1° 线性性: $\int_{\Gamma} k_1 f(x,y) + k_2 g(x,y) ds = k_1 \int_{\Gamma} f(x,y) ds + k_2 \int_{\Gamma} g(x,y) ds$;

2° 积分区域可加性:
$$\int_{\Gamma_1} f(x,y) ds + \int_{\Gamma_2} f(x,y) ds = \int_{\Gamma_1 \cup \Gamma_2} f(x,y) ds;$$

3° 无向性: $\int_{AB} f(x,y)ds = \int_{BA} f(x,y)ds$ 。

定理: 当Γ可求长且 $f(x,y) \in C(\Gamma)$ 时, $\int_{\Gamma} f(x,y) ds$ 存在。

定义: 如果参数式曲线 $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ 满足 $x(t),y(t) \in C^1[a,b]$ 且 $x'(t)^2+y'(t)^2>0$,则称该曲线为光滑曲线。

定理: 设Γ为光滑曲线,函数 f(x,y)在Γ上连续,Γ的参数式方程为 $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$,则

$$\int_{\Gamma} f(x, y) ds = \int_{a}^{b} f(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} dt$$

定理: 设光滑曲线 C:x=x(t),y=y(t),z=z(t),t \in [a,b],函数 f(x,y,z)在 C 上连续,则: $\int_{\Gamma} f(x,y,z)ds = \int_{a}^{b} f(x(t),y(t),z(t))\sqrt{x'(t)^{2}+y'(t)^{2}+z'(t)^{2}}dt$ 。

16.2 第二型曲线积分

定义: 设有向连续线段Γ以 A 为起点,B 为终点,记作 AB。定义在 AB 上的矢量 函数 $\vec{F}(x,y,z) = P(x,y,z)$ $\vec{i} + Q(x,y,z)$ $\vec{j} + R(x,y,z)$ \vec{k} 连续。若对任意分割法和取点

法,
$$\sum_{i=1}^{n} [P(\xi_i, \eta_i, \varsigma_i) \Delta x_i + Q(\xi_i, \eta_i, \varsigma_i) \Delta y_i + R(\xi_i, \eta_i, \varsigma_i) \Delta z_i]$$
 在 $\|\Delta\| \to 0$ 时都存在唯一确

定的极限,则称此极限为矢量函数 $\vec{F}(x,y,z)$ 的曲线积分,记作 $\int_{AB} \vec{F}(x,y,z) \cdot d\vec{s}$ 或 $\int_{AB} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz$,其中 $\vec{F}(x,y,z)$ 称为被积向量函数,AB 称为积分路径。

性质: 1° 线性性: $\int_{aB} (k_1 \vec{F} + k_2 \vec{G}) \cdot d\vec{s} = k_1 \int_{aB} \vec{F}(x, y, z) \cdot d\vec{s} + k_2 \int_{aB} \vec{G}(x, y, z) \cdot d\vec{s};$

2° 积分区域可加性:
$$\int_{AB} \overrightarrow{F}(x,y,z) \cdot d\overrightarrow{s} + \int_{BC} \overrightarrow{F}(x,y,z) \cdot d\overrightarrow{s} = \int_{AC} \overrightarrow{F}(x,y,z) \cdot d\overrightarrow{s}$$
;

3° 有向性:
$$\int_{AB} \overrightarrow{F}(x,y,z) \cdot d\overrightarrow{s} = -\int_{BA} \overrightarrow{F}(x,y,z) \cdot d\overrightarrow{s}$$
 。

定理:设Γ=AB 是以 A 为起点,B 为终点的光滑曲线,其参数方程为 Γ :x=x(t),y=y(t), z=z(t),t \in [t₀,t₁],且当 t 从 t₀连续变为 t₁时,对应曲线上的点从 A 连续变为 B。再假设 P(x,y,z),Q(x,y,z),R(x,y,z)在Γ上连续,则 **F**=(P,Q,R)在 AB 上的第二型曲线积分存

在,并且
$$\int_{AB} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz = \int_{t_0}^{t_1} P(x(t),y(t),z(t)) x'(t) dt + \int_{AB} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz = \int_{t_0}^{t_1} P(x(t),y(t),z(t)) x'(t) dt + \int_{AB} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz = \int_{t_0}^{t_1} P(x(t),y(t),z(t)) x'(t) dt + \int_{AB} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz = \int_{t_0}^{t_1} P(x(t),y(t),z(t)) x'(t) dt + \int_{AB} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz = \int_{t_0}^{t_1} P(x(t),y(t),z(t)) x'(t) dt + \int_{AB} P(x,y,z) dx + Q(x,y,z) dx + Q(x$$

$$\int_{t}^{t_{1}} Q(x(t), y(t), z(t)) y'(t) dt + \int_{t}^{t_{1}} R(x(t), y(t), z(t)) z'(t) dt$$

注意: 对切向量(dx,dy,dz)使用切向量方向余弦记法: (dx,dy,dz)=(cosα,cosβ,cosγ)ds,

$$\cos \alpha = \frac{dx}{ds} = \frac{x'(t)}{\sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}}, \quad \cos \beta = \frac{dy}{ds} = \frac{y'(t)}{\sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}},$$

$$\cos \gamma = \frac{dz}{ds} = \frac{z'(t)}{\sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}}$$
,所以 II 型曲线积分计算上类同于 I 型曲线积

$$\mathcal{D}: \int_{\Gamma} P dx + Q dy + R dz = \int_{\Gamma} [P \cos \alpha + Q \cos \beta + R \cos \gamma] ds$$

16.3 第一型曲面积分

定义:设曲面Σ的方程为连续可微函数 z=f(x,y),其在 xoy 平面的投影是区域 D_{xy}。 分割区域 D_{xy}: $\Delta \sigma_1$, $\Delta \sigma_2$, ···, $\Delta \sigma_n$,作小柱体的小曲顶 Δs_i ,任取点(x_i,y_i)∈ $\Delta \sigma_i$,得到点(x_i,y_i,f(x_i,y_i))∈ Δs_i ,过此点作 S 的切平面,此切平面在 $\Delta \sigma_i$ 上的部分为 ΔA_i ,则Σ 的面积 A≈Σ ΔA_i 。又设小切平面的法向量与 z 轴的夹角为γ_i,计算得到 | cos γ_i | = $\left(\sqrt{1+(f_x')^2+(f_y')^2}\right)^{-1}$,则 A≈Σ $\sqrt{1+(f_x')^2+(f_y')^2}$ $\Delta \sigma_i$ = $\iint_{D_x} \sqrt{1+(f_x')^2+(f_y')^2} d\sigma_{xy}$

定义: 考虑参数式曲线Σ:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)
$$\in$$
 D_{uv}, $\overrightarrow{r_1} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right)$,

$$\vec{r_2} = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)$$
 (切线方向),则 $|\Sigma| = \iint_{\Sigma} |\vec{r_1} \times \vec{r_2}| d\sigma_{uv}$ 。

定义: 设函数 f(x,y,z)在分片光滑的曲面Σ上有定义,把Σ任意分割成 n 个互不重叠的小片 Δ S_i ,令 λ =max{diam(Δ S_i)},并在每一小片 Δ S_i 上任取一点(x_i,y_i,z_i),如果对任意的分割法和任意的取点法,极限 $\lim_{\lambda\to 0} \Sigma f(x_i,y_i,z_i) \Delta$ S_i 存在唯一,则称此极限值为函数 f(x,y,z)在曲面Σ上的第一型曲面积分,记作 $\iint_{\Sigma} f(x,y,z) dS$ 。

定理: 如果Σ:z=z(x,y),(x,y)∈D_{xy},则成立

$$\iint_{\Sigma} f(x, y, z) dS = \iint_{D_{xy}} f(x, y, z(x, y)) \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} d\sigma_{xy};$$

如果Σ:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)∈D_{uv},则成立

$$\iint_{\Sigma} f(x,y,z)dS = \iint_{D_{uv}} f(x(u,v),y(u,v),z(u,v)) \mid \overrightarrow{r_1} \times \overrightarrow{r_2} \mid d\sigma_{uv} \circ$$

16.4 第二型曲面积分

定义: 光滑曲面Σ上任取一点 M_0 ,选定在 M_0 点的Σ的一个法向量朝向。当 M_0 点连同法向量沿Σ上任意封闭曲线连续滑行一周后回到初始位置时,法向量的方向不发生改变,则称Σ为双侧曲面。否则,称Σ为单侧曲面,即存在某点、某闭曲线,使得滑行一周回来后,法向量和原来此点的法向量方向相反。

定义:设Σ \subset R³是分片光滑双侧曲面,若它有边界,则它的边界是由有限条光滑曲线组成。给定Σ的一侧,Σ上每点(x,y,z)处的该侧的单位法向量记为 $\mathbf{n}(\mathbf{x},\mathbf{y},\mathbf{z})$,向量函数 $\mathbf{F}(\mathbf{x},\mathbf{y},\mathbf{z})$ =(P(x,y,z),Q(x,y,z),R(x,y,z))在Σ上有定义。对Σ作分割 $\mathbf{T}(\Delta S_1,\cdots,\Delta S_k)$,其中 ΔS_1 是由光滑曲线为边界的小光滑曲面。记 λ (T)= \mathbf{m} ax{diam(ΔS_1)},在 ΔS_1 中任

取一点(x_i,y_i,z_i),若
$$=\lim_{\lambda(T)\to 0}\sum_{i=1}^{k}\overrightarrow{F}(x_{i},y_{i},z_{i})\cdot\overrightarrow{n}(x_{i},y_{i},z_{i})\Delta S_{i}$$
存在唯一,则称 I 是(P,Q,R)

在Σ上的第二型曲面积分,记为 $\iint_{\mathbb{R}} \vec{F}(x,y,z) \cdot \vec{n}(x,y,z) dS$ 。

注意: 当曲面Σ是闭曲面时,通常记为 $\iint_\Sigma \overrightarrow{F}(x,y,z) \cdot \overrightarrow{n}(x,y,z) dS$ 。

定理: $\iint_{\Sigma} \overrightarrow{F}(x,y,z) \cdot \overrightarrow{n}(x,y,z) dS = \iint_{\Sigma} \overrightarrow{F}(x,y,z) \cdot d\overrightarrow{S} = \iint_{\Sigma} (P,Q,R) \cdot (dydz,dzdx,dxdy) \cdot dxdy$

d**S=n**dS=(cosA dS,cosB dS,cosC dS)=(dydz,dzdx,dxdy)。cosA dS 称为 dS 在 yoz 平面上的有向投影,cosB dS 称为 dS 在 xoz 平面上的有向投影,cosC dS 在 xoy 平面上的有向投影。

注意: 在计算第二型曲面积分导出的 $\iint_{\Sigma} R(x,y,z) dx dy$, $\Sigma : z = z(x,y)$ 时,注意区分 dx dy 与 $d\sigma_{xy}$,并考虑法线方向与 z 轴夹角导致的正负性问题。

16.5 各类积分之间的联系

定义:一个平面连通区域 D,如果 D内任一简单闭曲线的内部总包含在 D内。 定义:一个人沿着 D的边界曲线上的一个方向前进时,曲线所围的区域总在他的左边,则称该方向为 ∂D 的正向。

定理: (Green 公式)设平面闭区域 D 是由有限条可求长简单闭曲线围成的, ∂D

表示 D 的正向边界,P(x,y),Q(x,y)∈C¹(D),则有:

$$\mathbf{1}^{\circ} \quad \oint_{\partial D} P dx = \iint_{D} -\frac{\partial P}{\partial y} \, d\sigma \; , \quad \oint_{\partial D} Q \, dy = \iint_{D} \frac{\partial Q}{\partial x} \, d\sigma \; ; \quad \mathbf{2}^{\circ} \quad \oint_{\partial D} P \, dx + Q \, dy = \iint_{D} \frac{\partial Q}{\partial x} \, -\frac{\partial P}{\partial y} \, d\sigma \; .$$

定理: (Gauss 公式)设有界闭区域 $\Omega \subset \mathbb{R}^3$,其边界曲面(外侧) $\partial \Omega$ 是分片光滑

的,P,Q,R,
$$\frac{\partial P}{\partial x}$$
, $\frac{\partial Q}{\partial y}$, $\frac{\partial R}{\partial z} \in C(\Omega)$,则有 $\oint_{\Omega} (P,Q,R) \cdot \overrightarrow{n} \, dS = \iiint_{\Omega} \nabla \cdot (P,Q,R) dv$ 。

定理:(Stokes 公式)设光滑双侧曲面Σ有界有边含于空间区域 Ω ,其边界 ∂ Σ由有限条分段光滑曲线组成,并且Σ的正侧与边界 ∂ Σ正向按右手法则取定,函数 P,Q,R \in C¹(Ω),则有

$$\oint_{\partial \Sigma} P dx + Q dy + R dz = \iint_{\Sigma} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy \ .$$

$$\mathbb{E} \int_{\partial \Sigma} P dx + Q dy + R dz = \iint_{\Sigma} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}.$$

16.7 曲线积分与路径的无关性

定义: 平面连通区域 D, 如果 D 内任一简单闭曲线能收缩成 D 中一点,则称该区域是单连通的。空间连通区域 Ω ,如果 Ω 内任一简单闭曲线能收缩成 Ω 中一点,则称该区域是单连通的。如果区域 Ω 内的任何闭曲线都可以张成(至少)一张完全属于 Ω 的曲面,则称 Ω 为线单连通区域。

定理: 设 D 为区域,函数 P(x,y), $Q(x,y) \in C(D)$,则 \forall A,B \in D, $\int_{AB} Pdx + Qdy$ 与路径 无关 $\Leftrightarrow \oint_{C} Pdx + Qdy = 0$ 对任意闭曲线 \subset D 成立。

定理: 设 D 为区域,函数 P(x,y),Q(x,y) \in C(D),则 \forall A,B \in D, $\int_{AB} P dx + Q dy$ 与路径 无关 \Leftrightarrow 存在定义在 D 上的可微函数 u=u(x,y)使得 du=Pdx+Qdy。

定理: 设 D 为单连通区域, $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial x}$ \in C(D),则 \forall A,B \in D, $\int_{AB} P dx + Q dy$ 与路径无

定理: 设Ω是线单连通区域,P,Q,R \in C¹(Ω),**F**=(P,Q,R),则 $\oint_L Pdx + Qdy + Rdz = 0$,

∀ 闭曲线 L \subset Ω \Leftrightarrow $\oint_{AB} Pdx + Qdy + Rdz$ 与路径无关, \forall A,B \in Ω \Leftrightarrow ∃ u, du=Pdx+Qdy+Rdz,**F**=(P,Q,R)=u' \Leftrightarrow rot **F**=0 \Leftrightarrow **F** 是有势场 \Leftrightarrow **F** 是无旋场。

定理: 设 P,Q,R \in C¹(Ω), **F**=(P,Q,R),则积分 $\iint_{\Sigma} P dy dz + Q dz dx + R dx dy$ 只与 $\partial \Sigma$ 有关

 $\Leftrightarrow \oint_{S} P dy dz + Q dz dx + R dx dy = 0$,任意闭曲面 $S \Leftrightarrow \text{div } \textbf{F} = 0$,if Ω 单连通。这是因为 div (rot F) = 0。

16.8 场论简介

定义: 将
$$(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z})$$
 $\vec{i} + (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x})$ $\vec{j} + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})$ \vec{k} 定义为向量函数 **F**(x,y,z)=(P(x,y,z),

Q(x,y,z),R(x,y,z))的旋度,将 $\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$ 定义为向量函数 **F**(x,y,z)=(P(x,y,z),Q(x,y,z),

R(x,y,z))的散度,分别记作 rot $F=\nabla \times F$ 和 div $F=\nabla \cdot F$ 。

定理: (Green 公式)
$$\oint_{\partial D} \vec{v} \cdot \vec{ds} = \iint_{D} rot \vec{v} \cdot d\sigma$$
; (Gauss 公式) $\iiint_{D} \nabla \cdot \vec{v} \cdot dV = \oiint_{\partial D} \vec{v} \cdot \vec{n} \cdot dS$; (Stokes 公式) $\iint_{D} rot \vec{v} \cdot \vec{n} \cdot dS = \oint_{\partial D} \vec{v} \cdot d\vec{s}$ 。

定义:设 D 为区域, $u(x,y) \in C^2(D)$ 。若函数 u 在 D 上满足 $\Delta u = 0$,则称 u(x,y)是 D 上的调和函数,方程 – $\Delta u = 0$ 称为 Laplace 方程或调和方程。

定理: 设闭区域 D 是由有限条逐段光滑的曲线围成的, $u=u(x,y),v=v(x,y) \in C^2(D)$,

则有: 1°
$$\iint_{D} \Delta u d\sigma = \oint_{\partial D} \frac{\partial u}{\partial n} ds \; ; \; 2^{\circ} \quad \iint_{D} v \Delta u d\sigma = -\iint_{D} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial v} \frac{\partial u}{\partial v} d\sigma + \oint_{\partial D} v \frac{\partial u}{\partial n} ds \; ;$$

3°
$$\iint_{D} v\Delta u - u\Delta v d\sigma = \oint_{\partial D} v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n} ds \quad (Green 第二公式).$$

第十七章 含参变量积分

17.1 含参变量定积分

定理: 设函数 f(x,y)在区域 $D=[a,b]\times[c,d]$ 上连续,则对于任意 $x\in[a,b]$,含参变量积分 $I(x)=\int_{c}^{d}f(x,y)dy$ 存在,并且 I(x)在区间[a,b]上连续。【极限顺序可交换】

定理: $f(x,y) \in C(D)$, $h_1(x),h_2(x) \in C[a,b]$, $F(x,y) = \int_{h_1(x)}^{h_2(x)} f(x,y) dy$, 则 $F(x,y) \in C(D)$ 。

定理: $f(x,y),f_x'(x,y) \in C(D)$,则 $I(x)=C^1[a,b]$ 且 $I'(x)=\int_c^d f_x'(x,y)dy$ 。

定理: $f(x,y), f_x'(x,y) \in C(D)$, $h_1(x), h_2(x) \in D[a,b]$, 则 $J(x) = \int_{h_1(x)}^{h_2(x)} f(x,y) dy \in D[a,b]$, 且 $J'(x) = \int_{h_1(x)}^{h_2(x)} f_x'(x,y) dy - f(x,h_1(x))h_1'(x) + f(x,h_2(x))h_2'(x)$ 。

定理: $f(x,y) \in C(D)$, 则对任意 $z \in [a,b]$ 有 $\int_a^z \left[\int_c^d f(x,y) dy \right] dx = \int_c^d \left[\int_a^z f(x,y) dx \right] dy$ 。

17.2 含参变量广义积分

定义: 若 $\forall \varepsilon > 0$, $\exists A_0 > c$ 使得 $|\int_A^{+\infty} f(x,y)dy| < \varepsilon$, $\forall x \in [a,b]$, $\forall A > A_0$,则称 $\int_A^{+\infty} f(x,y)dy$ 关于 x 在[a,b]上一致收敛。

定理:【Dirichlet 判别法】设 1° \exists M>0,使得 $|\int_c^A f(x,y)dy| \le M$, \forall A>c, \forall x \in E,即是关于 x 及 A 一致有界; 2° 对任意固定的 x \in E,g(x,y)关于 y 单调,且 g(x,y) $\stackrel{\rightarrow}{\to}$ 0 (y \rightarrow + ∞ ,x \in E); 则 $|\int_c^{+\infty} f(x,y)g(x,y)dy|$ 对 x \in E 一致收敛。

定理:【Abel 判别法】设 $\mathbf{1}^{\circ}\int_{c}^{+\infty}f(x,y)dy$ 关于 $\mathbf{x}\in\mathsf{E}$ 一致收敛; $\mathbf{2}^{\circ}$ 对任意固定的 $\mathbf{x}\in\mathsf{E}$, $\mathbf{g}(\mathbf{x},\mathbf{y})$ 关于 \mathbf{y} 单调,且 $\mathbf{3}$ M>0,使得 $|\mathbf{g}(\mathbf{x},\mathbf{y})|$ \leq M, \forall $\mathbf{x}\in\mathsf{E}$, $\mathbf{y}\in[\mathbf{c},+\infty)$;则 $|\int_{-\infty}^{+\infty}f(x,y)g(x,y)dy|$ 关于 $\mathbf{x}\in\mathsf{E}$ 一致收敛。

定理: 设 f(x,y)在 $a \le x \le b$, $c \le y < +\infty$ 上连续,积分 $I(x) = \int_{c}^{+\infty} f(x,y) dy$ 关于 $x \in [a,b]$ 一致收敛,则 $I(x) \in C[a,b]$ 。

定理: 设 f(x,y)在 a \leq x \leq b, c \leq y < + ∞ 上连续,积分 I(x) = $\int_{c}^{+\infty} f(x,y) dy$ 关于 x \in [a,b] 一致收敛,则 $\int_{a}^{b} \left[\int_{c}^{+\infty} f(x,y) dy \right] dx = \int_{c}^{+\infty} \left[\int_{a}^{b} f(x,y) dx \right] dy$ 。

定理: 设 $f(x,y), f_x'(x,y)$ 在 $a \le x \le b$, $y \ge c$ 上连续,存在 $x_0 \in [a,b]$ 使得 $\int_c^{+\infty} f(x_0,y) dy$ 收敛,积分 $\int_c^{+\infty} f_x'(x,y) dy$ 关于 $x \in [a,b]$ 一致收敛到 g(x),则 $I(x) = \int_c^{+\infty} f(x,y) dy$ 关于 $x \in [a,b]$ 一致收敛,且 $I'(x) = \int_c^{+\infty} f_x'(x,y) dy$ 。

定理: 设 f(x,y)在 $a \le x \le b$, $y \ge c$ 上连续非负, $\forall x \in [a,b]$, $I(x) = \int_c^{+\infty} f(x,y) dy$ 收敛,且 $I(x) \in C[a,b]$,则 $\int_c^{+\infty} f(x,y) dy$ 关于 $x \in [a,b]$ 一致收敛。

定理: 设 f(x,y)在 $x \ge a$, $y \ge c$ 上连续,且 $\int_c^{+\infty} f(x,y) dy$ 关于 $x \in [a,+\infty)$ 内闭一致收敛, $\int_a^{+\infty} f(x,y) dx$ 关于 $y \in [c,+\infty)$ 内闭一致收敛, $\int_c^{+\infty} \left[\int_a^{+\infty} f(x,y) dx \right] dy$ 与 $\int_a^{+\infty} \left[\int_c^{+\infty} f(x,y) dy \right] dx$ 有一存在,则 $\int_c^{+\infty} \left[\int_a^{+\infty} f(x,y) dx \right] dy = \int_a^{+\infty} \left[\int_c^{+\infty} f(x,y) dy \right] dx$ 。

定理: 设 f(x,y)在 $x \ge a$, $y \ge c$ 上连续非负, $\int_{c}^{+\infty} f(x,y) dy$, $\int_{a}^{+\infty} f(x,y) dx$ 分别关于 x,y 连续, $\int_{c}^{+\infty} \left[\int_{a}^{+\infty} f(x,y) dx \right] dy$ 与 $\int_{a}^{+\infty} \left[\int_{c}^{+\infty} f(x,y) dy \right] dx$ 有一存在,则 $\int_{c}^{+\infty} \left[\int_{a}^{+\infty} f(x,y) dx \right] dy = \int_{a}^{+\infty} \left[\int_{c}^{+\infty} f(x,y) dy \right] dx$ 。

15.3 Γ函数与 B 函数

定义: 称 $\Gamma(s) = \int_0^{+\infty} x^{s-1} e^{-x} dx$ (s>0)为 Gamma 函数。

性质: 1. $\Gamma(s+1)=s\Gamma(s)$,从而 $\Gamma(s)=(s-1)!$; 2. $\Gamma(s)=2\int_0^{+\infty}x^{2s-1}e^{-x^2}dx$; 3. $\Gamma(s)\in C^\infty(0,+\infty)$;

4. Γ (s)是(0,+∞)内的严格凸函数。

定义: 称 B(p,q)= $\int_0^1 x^{p-1} (1-x)^{q-1} dx$ (p,q>0)为 Beta 函数。

性质: 1. B(p,q)=B(q,p); 2.
$$B(p,q) = \frac{p-1}{p+q-1}B(p-1,q)$$
;

3.
$$B(p,q) = 2\int_0^{\frac{\pi}{2}} \cos^{2p-1}\theta \sin^{2q-1}\theta d\theta$$
; 4. $B(p,q) = \int_0^{+\infty} \frac{x^{q-1}}{(1+x)^{p+q}} (x = \frac{t}{1+t})$

性质: 1.
$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$
; 2. $B(p,1-p) = \Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi}$ 。