22. Virtual Memory: Basics

Assignment Project Exam Help

EECS 370 – Introduction to Computer Organization – Fall 2020

Add We Chat powcoder

EECS Department
University of Michigan in Ann Arbor, USA

© Narayanasamy 2020

The material in this presentation cannot be copied in any form without written permission

Announcement

Project 3 due date extended to Tuesday November 17 11:59PM EST

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Interactive Cache Simulator

Go check cache organization in your computer!

For Linux you can use following command:

```
$: sudo dmide Assignment Project Exam Help
```

https://powcoder.com

DMI—desktop management interface

(you may need to install an idecode on your machine)

3 Levels of Caches on a Modern Computer

Memory System: Learning objective

2¹⁸ bytes of memory LC2k program can access

Assignment acceiect Examy Help memory MIPS program

https://powcoder.com (18 billion billion bytes!) ARM64 or x86-64 program

Add WeChat powcoder

Problem: No one memory technology is both fast and big to store all of program's data

Goal: Design a fast, big, and cheap memory system to store a program's data.

Memory Pyramid

A modern computing system is composed of several memory devices

Processor w/ three levels of caches

Main memory (DRAM)

SSD Flash

Hard disk

Focus today: Virtual Memory

Assignment Project Exam Help

VirtualpMemorroder.com

Add WeChat powcoder

What is Virtual Memory?

An operating system (OS) functionality that enables multiple concurren ly signing ptrogramment Estate Help physical memory and swap disk space. https://powcoder.com

Hardware (TLB – a special dacker helps po wifficiently implement this functionality

Virtual Memory Roles

Capacity: Main memory is not enough

Problem:

Modern systems can afford ~128 GBs DRAM space = 2^37 bytes. Programs written in 64-bit ISA need 2^64 bytes!

Need to run many programs simultaneously on the same machine. Each program may require GBs of memory.

Solution:

Assignment Project Exam Help

Provide an illusion of storage large enough for 2^64 bytes of data for all concurrently running programs Manage main memory like an attimet full possible of the office of the contract of the

Security features

Add WeChat powcoder

Isolation

Unrelated programs must not have access to each other's data

Permissions

Programs may want to share data and code (e.g., library)

Programs may want to disable read/write permissions to some portions of memory e.g., mark instructions are read-only, no read/write permission for unallocated heap

How to be not limited by DRAM capacity?

Use disk as "extra" space in case main memory capacity is exhausted

This space in disk is called swap partition in Linux-based systems

For fun check swap space in a linux system by:

\$: top

Assignment Project Exam Help

https://powcoder.com

How to be not limited by DRAM capacity?

No memory is enough for a 64-bit ISA (ARM64) program

Hard disk cost for storing all addresses accessible to a ARM64 program \$760 million for 2^64 bytes

Don't provision 2⁶⁴ bytes of storage (even a hard disk is too expensive!)

https://powcoder.com Fake it. Use "virtual memory" to provide an illusion that ISA's entire address space is available.

Add WeChat powcoder

A few TB is enough for most desktop machines today, or a smartphone in a few years

Computer "crashes" if your program exceeds machine's available swap space on disk

Central to Virtual memory: Address translation

Address produced by executing a load or store is a "virtual address"

In 64-bit ISA, it is a 64-bit address, capable of addressing 2^64 bytes

Virtual memory is a hard was earliest the color of the co

virtual address eChat powcoder 0

(which the programmer (load/store) sees as an array of bytes)

to a

physical address

Disk ID 803C4

(which the hardware uses to either index DRAM or identify where the storage resides on disk)

What are Pages?

Divide memory in chunks of Pages (e.g., 4KB for x86)

Size of physical page = size of virtual page

A virtual address consists of

- A virtual page numbersignment Project Exam Help
- A page offset field (low order bits of the address)

Virtual Page accesses that are not found in physical memory (DRAM) are called Page Faults

Data structure used for address translation: Page Table

Each process has its own page table
maintained by the operating system
Assignment Project Exam Help

Page table contains address translation https://powcoder.com
i.e., virtual page number → physical page number

Add WeChat powcoder

Page tables are stored in memory.

OS knows the physical address of a program's page table. No address translation is required by the OS for accessing the page tables

Address translation using Page table

Address translation: Example

Page faults

21

How do we find it on disk?

That is not a hardware problem! Go take EECS 482! ©

This is the operating system's job. Most operating systems partition the disk into logical devices

Assignment Project Exam Help

(C: , D: , /home, etc.)

https://powcoder.com

They also have a hidden partition of virtual memory Swap partition on UNIX machines

You then index into the correct page in the swap partition.

Operating System handles Page faults

Who implements Virtual Memory (VM)?

When OS creates a process, it allocates a page table to it.

OS (page fault handler) makes changes to a page table
Includes page replace ignment Project Exam Help
Moves data from main memory to and fro swap space on disk

https://powcoder.com

Address translation is needed for every load/store:

Reading from the page table was stated where the page table of tab

VM is a good example for hardware-software co-design

^{*(}do not confuse VM for "Virtual Machine", which is another concept entirely)

Main memory Vs Cache: Similarities and Differences

Data granularity:

Cache: "cache block" Main memory: "page"

Who decides where to store and what to replace? Assignment Project Exam Help

Cache:

Main memory: Operating system

https://powcoder.com

On a "miss"

Addm M & Combrater possion Goderdata. Cache:

Main memory: Go to disk. OS page fault handler fetches data.

OS treats main memory like an exclusive fully-associative "cache"

Instead of searching by comparing tags, OS uses page table to find a page's storage location

Exclusive: Data is either in main memory or in disk, not both

Processor's last-level caches are inclusive set-associative

Class Problem

```
Assume the following:
         20-bit byte-addressable ISA (virtual address space)
         Physical memory size
                                              16 KB
         Page size
                                              4 KB
         LRU replacement policy Arssignement Project Exam Help
Assume the following initial page-table states://powcoder.com
                                     physical page 0. Can never be evicted (pinned)
         Page table
                           is in
         Virtual page 0
                           is in
                                    Add We Chat powcoder
         Virtual page 1
                                     physical page 2.
                           is in
         Other physical pages are invalid.
Answer the following:
         # physical pages =
         # virtual pages =
         Page offset size =
```

Fill in the table on the next slide for each reference

Class Problem

Assume the following:

```
20-bit byte-addressable ISA (virtual address space)
Physical memory size : 16 KB
Page size : 4 KB
```

LRU replacement policy Arssignement Project Exam Help

Assume the following initial page-table state: https://powcoder.com

```
Page table is in physical page 0. Can never be evicted (pinned)
```

Virtual page 0 is in Aphreca Weethat powcoder

Virtual page 1 is in physical page 2.

Other physical pages are invalid.

Answer the following:

```
# physical pages = 16 KB / 4 KB = 4 pages.

# virtual pages = 2^20 / 4 KB = 2^8 = 256 pages. → # entries in page table = 256

Page offset size = log(4 KB) = 12 bits

Fill in the table on the next slide for each reference
```

Page offset size = log(4KB)=12 bits

Class Problem: Illustration – Initial state

Page size = 4 KB

2^20 / 4 KB = 256 pages

Assignment Project Exam Helph

Page table

Pinned

Physical Memory: 16 KB
(16 KB / 4 KB = 4 pages)

Virt addr	Virt page	Page fault?	Phys addr
0x00F0C			
0x01F0C	Assignmen	nt Project E	xam Help
0x20F0C	https://	/powcoder	com
0x00100			
0x00200	Add V	VeChat pov	vcoder
0x30000			
0x01FFF			
0x00200			

Virt addr	Virt page	Page fault?	Phys addr
0x00F0C	0x0	N	0x1F0C
0x01F0C	Assignmen	nt Project E	xam Help
0x20F0C	https://	/powcoder	com
0x00100			
0x00200	Add V	VeChat pov	vcoder
0x30000			
0x01FFF			
0x00200			

Virt addr	Virt page	Page fault?	Phys addr
0x00F0C	0x0	N	0x1F0C
0x01F0C	Assignmen	nt Project E	xam²ffelp
0x20F0C	https://	/powcoder	com
0x00100			
0x00200	Add V	VeChat pov	vcoder
0x30000			
0x01FFF			
0x00200			

Virt addr	Virt page	Page fault?	Phys addr
0x00F0C	0x0	N	0x1F0C
0x01F0C	Assignmen	nt Project E	xam²ffelp
0x20F0C	0x20 https:/	Y (into 3) /powcoder	0x3F0C
0x00100	•		
0x00200	Add V	VeChat pov	vcoder
0x30000			
0x01FFF			
0x00200			

Virt addr	Virt page	Page fault?	Phys addr
0x00F0C	0x00	N	0x1F0C
0x01F0C	Assignmen	nt Project E	xam²ffelp
0x20F0C	0x20	Y (into 3) /powcoder	0x3F0C
0x00100	0x00	N	0x1100
0x00200	oxoo V	VeChat pov	vcoder 0x1200
0x30000	0x30	Y (into 2)	0x2000
0x01FFF	0x01	Y (into 3)	0x3FFF
0x00200	0x00	N	0x1200

Virtual Memory Roles

Capacity: Main memory is not enough

Problem:

Modern systems can afford ~128 GBs DRAM space = 2^37 bytes. Programs written in 64-bit ISA need 2^64 bytes!

Need to run many programs simultaneously on the same machine. Each program may require GBs of memory.

Solution:

Assignment Project Exam Help

Provide an illusion of storage large enough for 2^64 bytes of data for all concurrently running programs Manage main memory like an attorious full possible of the office of the contraction of storage large enough for 2^64 bytes of data for all concurrently running programs.

Security features

Add WeChat powcoder

Isolation

Unrelated programs must not have access to each other's data

Permissions

Programs may want to share data and code (e.g., library)

Programs may want to disable read/write permissions to some portions of memory e.g., mark instructions are read-only, no read/write permission for unallocated heap

Processes and threads on my computer

Revisit real system view—multitasking

How to achieve isolation?

How to achieve isolation?

How to achieve isolation?

Some pages may be swapped out to disk

Virtual Memory Roles

Capacity: Main memory is not enough

Problem:

Modern systems can afford ~128 GBs DRAM space = 2^37 bytes. Programs written in 64-bit ISA need 2^64 bytes!

Need to run many programs simultaneously on the same machine. Each program may require GBs of memory.

Solution:

Assignment Project Exam Help

Provide an illusion of storage large enough for 2^64 bytes of data for all concurrently running programs Manage main memory like an attimetidal concurrently running programs to disk.

Security features

Add WeChat powcoder

Isolation

Unrelated programs must not have access to each other's data

Permissions

Programs may want to share data and code (e.g., library)

Programs may want to disable read/write permissions to some portions of memory e.g., mark instructions are read-only, no read/write permission for unallocated heap

Some pages can be shared between programs; Permissions per page: invalid, read-only, not-execute, etc.

Not-execute

VM integration with processor caches (to be discussed later)

VM systems give us two different addresses: virtual and physical

Assignment Project Exam Help Which address should we use to access the data cache?

• Virtual address (before VM translation).

- Physical address (after VM translations).
 - Delayed access.

Check your computer

