Trig Final (SLTN v618)

- You can use a calculator (like Desmos)
- You should have a unit-circle with special angles and coordinates marked.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 46 meters. The angle measure is 3.8 radians. How long is the arc in meters?

$$\theta = \frac{L}{r} \qquad r = \frac{L}{\theta} \qquad L = r\theta$$

L = 174.8 meters.

Question 2

Consider angles $\frac{-9\pi}{4}$ and $\frac{8\pi}{3}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{-9\pi}{4}\right)$ and $\cos\left(\frac{8\pi}{3}\right)$ by using a unit circle (provided separately).

Find $sin(-9\pi/4)$

$$\sin(-9\pi/4) = \frac{-\sqrt{2}}{2}$$

Find $cos(8\pi/3)$

$$\cos(8\pi/3) = \frac{-1}{2}$$

Question 3

If $\cos(\theta) = \frac{39}{89}$, and θ is in quadrant IV, determine an exact value for $\tan(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$39^{2} + B^{2} = 89^{2}$$

$$B = \sqrt{89^{2} - 39^{2}}$$

$$B = 80$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\tan(\theta) = \frac{\frac{-80}{89}}{\frac{39}{89}} = \frac{-80}{39}$$

Question 4

A mass-spring system oscillates vertically with a frequency of 8.98 Hz, a midline at y = -3.16 meters, and an amplitude of 5.14 meters. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -5.14\sin(2\pi 8.98t) - 3.16$$

or

$$y = -5.14\sin(17.96\pi t) - 3.16$$

or

$$y = -5.14\sin(56.42t) - 3.16$$