Confinement of Unimodal Distributions in High Dimension and an FKG-Gaussian Correlation Inequality

Mark Sellke

MIT Stochastics and Statistics March 22, 2024

M. Sellke

1 / 41

Motivation: Unimodal Probability Distributions

Probability distributions take many shapes. Which are simple?

Motivation: Unimodal Probability Distributions

Probability distributions take many shapes. Which are simple?

In 1-dimension, a reasonable criterion is unimodality

A stringent notion of unimodality is **log-concavity**. $d\mu(x) = \rho(x)dx$ is:

- **Log-concave** if $\log \rho(x)$ is concave.
- *M*-log-concave if for positive-definite *M* and all $x \in \mathbb{R}^N$:

$$\nabla^2 \log \rho(x) \leq -M < 0.$$

M. Sellke 3 / 41

A stringent notion of unimodality is **log-concavity**. $d\mu(x) = \rho(x)dx$ is:

- **Log-concave** if $\log \rho(x)$ is concave.
- *M*-log-concave if for positive-definite *M* and all $x \in \mathbb{R}^N$:

$$\nabla^2 \log \rho(x) \leq -M < 0.$$

M-log-concave distributions are **dominated** by the corresponding Gaussian $\gamma_M = \mathcal{N}(0, M^{-1})$.

M. Sellke

3 / 41

A stringent notion of unimodality is **log-concavity**. $d\mu(x) = \rho(x)dx$ is:

- **Log-concave** if $\log \rho(x)$ is concave.
- *M*-log-concave if for positive-definite *M* and all $x \in \mathbb{R}^N$:

$$\nabla^2 \log \rho(x) \leq -M < 0.$$

M-log-concave distributions are **dominated** by the corresponding Gaussian $\gamma_M = \mathcal{N}(0, M^{-1})$.

Covariance bound:

$$\mathbb{E}^{\mathsf{x} \sim \boldsymbol{\mu}}[\mathsf{x} \mathsf{x}^\top] \preceq \mathbb{E}^{\mathsf{x} \sim \gamma_M}[\mathsf{x} \mathsf{x}^\top] = \mathit{M}^{-1}$$

M. Sellke

A stringent notion of unimodality is log-concavity. $d\mu(x) = \rho(x)dx$ is:

- **Log-concave** if $\log \rho(x)$ is concave.
- *M*-log-concave if for positive-definite *M* and all $x \in \mathbb{R}^N$:

$$\nabla^2 \log \rho(x) \leq -M < 0.$$

M-log-concave distributions are **dominated** by the corresponding Gaussian $\gamma_M = \mathcal{N}(0, M^{-1})$.

Covariance bound:

$$\mathbb{E}^{\mathsf{x} \sim \boldsymbol{\mu}}[\mathsf{x} \mathsf{x}^\top] \preceq \mathbb{E}^{\mathsf{x} \sim \gamma_M}[\mathsf{x} \mathsf{x}^\top] = \mathit{M}^{-1}$$

- μ inherits Poincare/LSI constants from γ_M [Bakry-Emery 85].
 - Spectral gap, isoperimetry, concentration.

M. Sellke

3 / 41

Unimodality without Concentration

Unfortunately, some unimodal distributions do not behave so nicely. Consider the two-component Gaussian mixture

$$\frac{1}{2}\mathcal{N}(0, I_{N}) + \frac{1}{2}\mathcal{N}(0, 4 I_{N}).$$

M. Sellke 4 / 41

Unimodality without Concentration

Unfortunately, some unimodal distributions do not behave so nicely. Consider the two-component Gaussian mixture

$$\frac{1}{2}\mathcal{N}(0, I_{N}) + \frac{1}{2}\mathcal{N}(0, 4I_{N}).$$

- Unimodal, but no concentration.
- Without log-concavity, we lack tools to reason about such distributions.

4 / 41

M. Sellke

Unimodality without Concentration

Unfortunately, some unimodal distributions do not behave so nicely. Consider the two-component Gaussian mixture

$$\frac{1}{2}\mathcal{N}(0, I_{N}) + \frac{1}{2}\mathcal{N}(0, 4 I_{N}).$$

- Unimodal, but no concentration.
- Without log-concavity, we lack tools to reason about such distributions.

This talk will provide one such tool.

• We prove **confinement** without needing concentration.

M. Sellke 4 / 41

Plan for Today

- Ginzburg-Landau Surfaces and Main Results
- Confinement from the Gaussian Correlation Inequality
- The FKG-Gaussian Correlation Inequality
- Putting it all together

M. Sellke

We will be interested in continuous-variable graphical models.

M. Sellke 6 / 41

We will be interested in continuous-variable graphical models.

Warmup: Gaussian free field (GFF) on locally finite graph G = (V, E):

• Fix finite $\Lambda \subseteq V$, e.g. $[-L, \ldots, L]^d \subseteq \mathbb{Z}^d$. Set $\varphi(v) = 0$ for all $v \notin \Lambda$.

M. Sellke 6 / 41

We will be interested in continuous-variable graphical models.

Warmup: Gaussian free field (GFF) on locally finite graph G = (V, E):

- Fix finite $\Lambda \subseteq V$, e.g. $[-L, \ldots, L]^d \subseteq \mathbb{Z}^d$. Set $\varphi(v) = 0$ for all $v \notin \Lambda$.
- GFF is the random function $\phi: V \to \mathbb{R}$ with density:

$$\mathrm{d}\mu_{G,\Lambda,\mathit{GFF}}(\phi) = \frac{1}{Z_{G,\Lambda,\mathit{GFF}}} \exp\left(-\sum_{e=\{v,v'\}\in E} \frac{1}{2} |\phi(v) - \phi(v')|^2\right) \prod_{v\in\Lambda} \mathrm{d}\phi(v)$$

M. Sellke

6/41

We will be interested in continuous-variable graphical models.

Warmup: Gaussian free field (GFF) on locally finite graph G = (V, E):

- Fix finite $\Lambda \subseteq V$, e.g. $[-L, \ldots, L]^d \subseteq \mathbb{Z}^d$. Set $\varphi(v) = 0$ for all $v \notin \Lambda$.
- \bullet GFF is the random function $\phi: V \to \mathbb{R}$ with density:

$$d\mu_{G,\Lambda,GFF}(\varphi) = \frac{1}{Z_{G,\Lambda,GFF}} \exp\left(-\sum_{e=\{v,v'\}\in E} \frac{1}{2} |\varphi(v) - \varphi(v')|^2\right) \prod_{v\in\Lambda} d\varphi(v)$$
$$= \frac{1}{Z_{G,\Lambda,GFF}} \exp\left(-\sum_{e\in E} \frac{1}{2} \cdot |\nabla \varphi(e)|^2\right) \prod_{v\in\Lambda} d\varphi(v).$$

M. Sellke

6 / 41

We will be interested in continuous-variable graphical models.

Warmup: Gaussian free field (GFF) on locally finite graph G = (V, E):

- Fix finite $\Lambda \subseteq V$, e.g. $[-L, \ldots, L]^d \subseteq \mathbb{Z}^d$. Set $\varphi(v) = 0$ for all $v \notin \Lambda$.
- \bullet GFF is the random function $\phi:V\to\mathbb{R}$ with density:

$$d\mu_{G,\Lambda,GFF}(\varphi) = \frac{1}{Z_{G,\Lambda,GFF}} \exp\left(-\sum_{e=\{v,v'\}\in E} \frac{1}{2} |\varphi(v) - \varphi(v')|^2\right) \prod_{v\in\Lambda} d\varphi(v)$$
$$= \frac{1}{Z_{G,\Lambda,GFF}} \exp\left(-\sum_{e\in E} \frac{1}{2} \cdot |\nabla \varphi(e)|^2\right) \prod_{v\in\Lambda} d\varphi(v).$$

- Models fluctuations of random interfaces.
- Lots of probabilistic interest, notably on \mathbb{Z}^2 (extreme values, LQG).

M. Sellke 6 / 41

Picture of GFF by Sam Watson. Here $\Lambda = [-L, \dots, L]^2 \subseteq \mathbb{Z}^2$.

M. Sellke

7 / 41

Fundamental properties on general graphs:

• Let $R_{eff}(\cdot)$ be effective resistance on G as an electrical network. Then

$$\mathbb{E}^{\mu_{G,\Lambda,GFF}}[\varphi(v)^2] = R_{eff}(v \leftrightarrow \partial \Lambda).$$

• More generally, $\mathbb{E}[(\varphi(v) - \varphi(w))^2] = R_{eff}(v \leftrightarrow w)$.

M. Sellke 8 / 41

Fundamental properties on general graphs:

• Let $R_{eff}(\cdot)$ be effective resistance on G as an electrical network. Then

$$\mathbb{E}^{\mu_{G,\Lambda,GFF}}[\varphi(v)^2] = R_{eff}(v \leftrightarrow \partial \Lambda).$$

- More generally, $\mathbb{E}[(\phi(v) \phi(w))^2] = R_{eff}(v \leftrightarrow w)$.
- Definition of effective resistance: if $f: E(G) \to \mathbb{R}$ is a unit flow from $v \to w$, its energy is

$$\mathcal{E}(f) = \sum_{e \in E} f(e)^2.$$

Effective resistance equals the minimum energy of any unit flow.

M. Sellke

8 / 41

Fundamental properties on general graphs:

• Let $R_{eff}(\cdot)$ be effective resistance on G as an electrical network. Then

$$\mathbb{E}^{\mu_{G,\Lambda,GFF}}[\varphi(v)^2] = R_{eff}(v \leftrightarrow \partial \Lambda).$$

- More generally, $\mathbb{E}[(\phi(v) \phi(w))^2] = R_{eff}(v \leftrightarrow w)$.
- Definition of effective resistance: if $f: E(G) \to \mathbb{R}$ is a unit flow from $v \to w$, its energy is

$$\mathcal{E}(f) = \sum_{e \in F} f(e)^2.$$

Effective resistance equals the minimum energy of any unit flow.

- $R_{eff}(v \leftrightarrow \infty) < \infty$ iff random walk on G is transient.
- Similar for weighted edges (just think of multi-edges).

M. Sellke 8 / 41

Ginzburg-Landau Random Surfaces

Non-gaussian interactions are also physically and mathematically interesting. Put a general function $U : \mathbb{R} \to \mathbb{R}$ on each edge:

$$d\mu_{G,\Lambda,U}(\varphi) \equiv \frac{1}{Z_{G,\Lambda,U}} \exp\left(-\sum_{e \in E} \frac{U}{(\nabla \varphi(e))}\right) \prod_{v \in \Lambda} d\varphi(v).$$

We always assume U(x) = U(-x) is even.

M. Sellke 9 / 41

Ginzburg-Landau Random Surfaces

Non-gaussian interactions are also physically and mathematically interesting. Put a general function $U : \mathbb{R} \to \mathbb{R}$ on each edge:

$$\mathsf{d}\mu_{G,\Lambda,U}(\varphi) \equiv \frac{1}{Z_{G,\Lambda,U}} \exp\left(-\sum_{e \in E} \frac{\textit{U}}{(\nabla \varphi(e))}\right) \prod_{v \in \Lambda} \mathsf{d}\varphi(v).$$

We always assume U(x) = U(-x) is even.

- First rigorous study in [Brascamp-Lieb-Lebowitz 1975].
- Names: "Ginzburg–Landau", " $\nabla \phi$ ", "anharmonic crystal".
- Free energy, dynamics, large deviations, fluctuations...
 [Funaki-Spohn 97, Naddaf-Spencer 97, Deuschel-Giacomin-loffe 00, Sheffield 03, Miller 11, Armstrong-Dario 22,...].

M. Sellke 9 / 41

Localization

We will consider the question of **localization**.

Question

Are fluctuations of $\phi(v_0)$ stochastically bounded on large domains $\Lambda \uparrow V$? If so, we say the model is **localized**. Otherwise **delocalized**.

Localization

We will consider the question of localization.

Question

Are fluctuations of $\varphi(v_0)$ stochastically bounded on large domains $\Lambda \uparrow V$? If so, we say the model is **localized**. Otherwise **delocalized**.

- Localization implies existence of infinite volume Gibbs measures.
 - One can even take this as another definition of localization.
- GFF on \mathbb{Z}^d localizes iff $d \geq 3$. Equivalent to transience/recurrence of simple random walk.
 - $\mathbb{E}^{\mu_{G,\Lambda,GFF}}[\varphi(v)^2] = R_{eff}(v \leftrightarrow \partial \Lambda).$
 - On $[-L, ..., L]^2 \subseteq \mathbb{Z}^2$, one has $\mathbb{E}[\phi(\vec{0})^2] \approx \log L$.

M. Sellke

Localization

We will consider the question of **localization**.

Question

Are fluctuations of $\varphi(v_0)$ stochastically bounded on large domains $\Lambda \uparrow V$? If so, we say the model is **localized**. Otherwise **delocalized**.

- Localization implies existence of infinite volume Gibbs measures.
 - One can even take this as another definition of localization.
- GFF on \mathbb{Z}^d localizes iff $d \ge 3$. Equivalent to transience/recurrence of simple random walk.
 - $\mathbb{E}^{\mu_{G,\Lambda,GFF}}[\varphi(v)^2] = R_{eff}(v \leftrightarrow \partial \Lambda).$
 - On $[-L, \ldots, L]^2 \subseteq \mathbb{Z}^2$, one has $\mathbb{E}[\phi(\vec{0})^2] \approx \log L$.
- Conjecture of [Brascamp-Lieb-Lebowitz 1975]: localization is determined by the geometry of *G*, not the potential *U*.
 - Proved delocalization for general $U \in C_h^2(\mathbb{R})$ on \mathbb{Z}^2 .

Localization is proven for various U (often focused on lattices):

- Strongly convex potentials with $\inf_{x \in \mathbb{R}} U''(x) \ge c > 0$.
 - $\mu_{G,\Lambda,U}$ is dominated by GFF [Brascamp-Lieb-Lebowitz 75].

Localization is proven for various U (often focused on lattices):

- Strongly convex potentials with $\inf_{x \in \mathbb{R}} U''(x) \ge c > 0$.
 - $\mu_{G,\Lambda,U}$ is dominated by GFF [Brascamp-Lieb-Lebowitz 75].
- U(x) = |x| using infrared bounds [Bricmont-Fontaine-Lebowitz 82].
- Mildly non-convex U via renormalization
 [Cotar-Deuschel-Muller 09 & 12, ABKM 16 & 19, Hilger 16 & 20].

Localization is proven for various U (often focused on lattices):

- Strongly convex potentials with $\inf_{x \in \mathbb{R}} U''(x) \ge c > 0$.
 - $\mu_{G,\Lambda,U}$ is dominated by GFF [Brascamp-Lieb-Lebowitz 75].
- U(x) = |x| using infrared bounds [Bricmont-Fontaine-Lebowitz 82].
- Mildly non-convex U via renormalization
 [Cotar-Deuschel-Muller 09 & 12, ABKM 16 & 19, Hilger 16 & 20].
- $e^{-U(x)}$ is a mixture of centered Gaussians (will explain soon) [Biskup-Kotecky 07, Biskup-Spohn 11, Brydges-Spencer 12, Ye 19,...].
- [Magazinov-Peled 22]: convex U with U''(x) > 0 for a.e. x.

Localization is proven for various U (often focused on lattices):

- Strongly convex potentials with $\inf_{x \in \mathbb{R}} U''(x) \ge c > 0$.
 - $\mu_{G,\Lambda,U}$ is dominated by GFF [Brascamp-Lieb-Lebowitz 75].
- U(x) = |x| using infrared bounds [Bricmont-Fontaine-Lebowitz 82].
- Mildly non-convex U via renormalization
 [Cotar-Deuschel-Muller 09 & 12, ABKM 16 & 19, Hilger 16 & 20].
- $e^{-U(x)}$ is a mixture of centered Gaussians (will explain soon) [Biskup-Kotecky 07, Biskup-Spohn 11, Brydges-Spencer 12, Ye 19,...].
- [Magazinov-Peled 22]: convex U with U''(x) > 0 for a.e. x.
- Still open for **Hammock potential** $U(x) = \infty \cdot 1_{|x| > 1}$. This gives a uniformly random 1-Lipschitz $\varphi : V \to \mathbb{R}$.

We prove localization for **monotone** potentials.

Definition $((\alpha, \varepsilon)$ -monotonicity)

U is (α, ε) -monotone if it is increasing on \mathbb{R}^+ and $U'(x) \ge \min(\varepsilon x, \frac{\alpha}{x})$ for all points of differentiability $x \ge 0$.

We prove localization for monotone potentials.

Definition $((\alpha, \varepsilon)$ -monotonicity)

U is (α, ε) -monotone if it is increasing on \mathbb{R}^+ and $U'(x) \ge \min(\varepsilon x, \frac{\alpha}{x})$ for all points of differentiability $x \ge 0$.

Theorem (Localization for (α, ε) -monotone U)

Let G be transient, and U be (α, ε) -monotone for $\alpha > 2$. Then $\mathbb{P}^{\mu_{G,\Lambda,U}}[|\phi(v_0)| \geq t] \leq O(t^{-\alpha})$ uniformly in $\Lambda \subseteq V$, for any $v_0 \in V$.

We prove localization for monotone potentials.

Definition $((\alpha, \varepsilon)$ -monotonicity)

U is (α, ε) -monotone if it is increasing on \mathbb{R}^+ and $U'(x) \ge \min(\varepsilon x, \frac{\alpha}{x})$ for all points of differentiability $x \ge 0$.

Theorem (Localization for (α, ε) -monotone U)

Let G be transient, and U be (α, ϵ) -monotone for $\alpha > 2$. Then $\mathbb{P}^{\mu_{G,\Lambda,U}}[|\phi(v_0)| \geq t] \leq O(t^{-\alpha})$ uniformly in $\Lambda \subseteq V$, for any $v_0 \in V$.

• Proof will be based on unimodality of $\mu_{G,\Lambda,U}$.

We prove localization for monotone potentials.

Definition $((\alpha, \varepsilon)$ -monotonicity)

U is (α, ε) -monotone if it is increasing on \mathbb{R}^+ and $U'(x) \geq \min\left(\varepsilon x, \frac{\alpha}{x}\right)$ for all points of differentiability $x \geq 0$.

Theorem (Localization for (α, ε) -monotone U)

Let G be transient, and U be (α, ϵ) -monotone for $\alpha > 2$. Then $\mathbb{P}^{\mu_{G,\Lambda,U}}[|\phi(v_0)| \geq t] \leq O(t^{-\alpha})$ uniformly in $\Lambda \subseteq V$, for any $v_0 \in V$.

- Proof will be based on unimodality of $\mu_{G,\Lambda,U}$.
- U_e can depend on edge e, as long as (α, ε) is uniform.
- If G is transient and **transitive**, tightness even for $\alpha = 1 + \epsilon$.
 - \approx minimal condition for $\int_{\mathbb{R}} e^{-U(x)} dx < \infty$ so $Z_{G \wedge U} < \infty$.

Extreme Values of the Field

These bounds are often sharp enough to understand $\max_{v \in \Lambda} |\phi(v)|$.

Theorem (Extreme Values from Polynomial Bounds)

Let U be (α, ϵ) -monotone with $\sup_{x \geq 0} |U(x) - \alpha \log(x+1)| < \infty$ and $\alpha > 2$. As $\Lambda \subseteq \mathbb{Z}^d$ varies for $d \geq 3$, the laws of

$$|\Lambda|^{-\frac{1}{2d\alpha}}\max_{v\in\Lambda}|\varphi(v)|$$

are tight in $(0, \infty)$ (i.e. stochastically bounded away from 0 and ∞).

Extreme Values of the Field

These bounds are often sharp enough to understand $\max_{v \in \Lambda} |\phi(v)|$.

Theorem (Extreme Values from Polynomial Bounds)

Let U be (α, ϵ) -monotone with $\sup_{x \geq 0} |U(x) - \alpha \log(x+1)| < \infty$ and $\alpha > 2$. As $\Lambda \subseteq \mathbb{Z}^d$ varies for $d \geq 3$, the laws of

$$|\Lambda|^{-\frac{1}{2d\alpha}} \max_{v \in \Lambda} |\varphi(v)|$$

are tight in $(0, \infty)$ (i.e. stochastically bounded away from 0 and ∞).

- Upper bound: Markov after extra tricks within the proof. Split \mathbb{Z}^d into 2d transient subgraphs containing the origin.
- Lower bound is easy: condition outside a constant-density independent set $\mathcal{I} \subseteq \Lambda$.
- Similar for stretched exponential tails.
 - Monotonicity condition: $U'(x) \ge \min\left(\varepsilon x, \varepsilon x^{\beta-1}\right)$, for $\beta \in (0, 2]$.

General Statement without Graphs

The graph structure is irrelevant in the main result!

Let U be (α, ε) -monotone, and $\ell_1, \dots, \ell_j : \mathbb{R}^d \to \mathbb{R}$ be linear.

Take ϕ as in Ginzburg-Landau, and $\widetilde{\phi}$ as in GFF:

$$egin{aligned} \phi \sim \exp\Big(\sum_{i=1}^{j} - U(\ell_i(\phi))\Big)/Z_{ec{\ell},U} \ \mathrm{d}\phi, \ & \widetilde{\phi} \sim \exp\Big(\sum_{i=1}^{j} - \ell_i(\widetilde{\phi})^2\Big)/Z_{ec{\ell},Gaus} \ \mathrm{d}\widetilde{\phi}, \end{aligned}$$

Fix any other linear function $\ell_* : \mathbb{R}^d \to \mathbb{R}$. Then $\ell_*(\varphi)$ is bounded on the same scale as the centered Gaussian $\ell_*(\widetilde{\varphi})$, with α -power tails.

• Recovering GFF/Ginzburg-Landau: set $\ell_e(\phi) = \phi(\nu) - \phi(\nu')$.

Preview of the Proof

The core proof idea has two components:

• Handle the case that U = V takes the form:

$$e^{-V(x)} = \int_0^\infty \frac{e^{-x^2/2\xi^2}}{\xi\sqrt{2\pi}} d\rho(\xi).$$

M. Sellke

Preview of the Proof

The core proof idea has two components:

• Handle the case that U = V takes the form:

$$e^{-V(x)} = \int_0^\infty \frac{e^{-x^2/2\xi^2}}{\xi\sqrt{2\pi}} d\rho(\xi).$$

- Each potential is a mixture of centered Gaussians.
- The overall model will be a mixture of Gaussian processes, e.g. GFFs with edge weights. [Biskup-Kotecky 07, Biskup-Spohn 11,...]

M. Sellke

Preview of the Proof

The core proof idea has two components:

• Handle the case that U = V takes the form:

$$e^{-V(x)} = \int_0^\infty \frac{e^{-x^2/2\xi^2}}{\xi\sqrt{2\pi}} d\rho(\xi).$$

- Each potential is a mixture of centered Gaussians.
- The overall model will be a mixture of Gaussian processes, e.g. GFFs with edge weights. [Biskup-Kotecky 07, Biskup-Spohn 11,...]
- Reduce to this case via the FKG-Gaussian correlation inequality. This gives a notion of domination by Gaussian mixtures.
 - Dominating Gaussian mixtures must have special structure.
 - Perfectly suited for products of 1-dimensional Gaussian mixtures.

Plan for The Remainder

- Results on Ginzburg-Landau Model
- Confinement from the Gaussian Correlation Inequality
- The FKG-Gaussian Correlation Inequality
- Putting it all together

Royen's Gaussian Correlation Inequality

Theorem (Royen 2014)

Let γ be a centered Gaussian measure on \mathbb{R}^d , and $K_1, K_2 \subseteq \mathbb{R}^d$ symmetric convex sets (i.e. $K_i = -K_i$). Then 1_{K_1} and 1_{K_2} have non-negative correlation under γ , i.e.

$$\gamma(K_1\cap K_2)\geq \gamma(K_1)\gamma(K_2).$$

M. Sellke

The Gaussian Correlation Inequality (GCI)

Theorem (Royen 2014)

For γ centered Gaussian on \mathbb{R}^d , and $K_1, K_2 \subseteq \mathbb{R}^d$ symmetric convex sets:

$$\gamma(K_1\cap K_2)\geq \gamma(K_1)\gamma(K_2).$$

History (see 2017 Quanta article):

- Conjectured by [Dunnet-Sobel 55], [Gupta-Eaton-Perlman-Savage-Sobel 72].
- [Khatri 67, Sidak 67, Pitts 77, Schechtman-Schlumprecht-Zinn 98, Hargé 99]: special cases such as \mathbb{R}^2 .
- [Royen 2014]: amazing solution. Initially escapes attention.
- [Latała-Matlak 2015]: exposition of Royen's proof

M. Sellke

The Gaussian Correlation Inequality (GCI)

Theorem (Royen 2014)

For γ centered Gaussian on \mathbb{R}^d , and $K_1, K_2 \subseteq \mathbb{R}^d$ symmetric convex sets:

$$\gamma(K_1\cap K_2)\geq \gamma(K_1)\gamma(K_2).$$

History (see 2017 Quanta article):

- Conjectured by [Dunnet-Sobel 55], [Gupta-Eaton-Perlman-Savage-Sobel 72].
- [Khatri 67, Sidak 67, Pitts 77, Schechtman-Schlumprecht-Zinn 98, Hargé 99]: special cases such as \mathbb{R}^2 .
- [Royen 2014]: amazing solution. Initially escapes attention.
- [Latała-Matlak 2015]: exposition of Royen's proof

Proof idea: for $x, y \stackrel{i.i.d.}{\sim} \gamma$, equivalent to

$$\mathbb{P}[x \in K_1 \land x \in K_2] \ge \mathbb{P}[x \in K_1, y \in K_2].$$

Royen showed $f(t) = \mathbb{P}[x \in K_1 \land \sqrt{1-t}x + \sqrt{t}y \in K_2]$ is decreasing.

M. Sellke 18 / 41

Symmetric Quasi-Concave Functions

Definition

 $f: \mathbb{R}^N \to \mathbb{R}$ is symmetric quasi-concave (SQC) if:

- f(x) = f(-x) for all $x \in \mathbb{R}^N$.
- All super-level sets $\{x \in \mathbb{R}^N : f(x) \ge \lambda\}$ are convex.

M. Sellke 19 / 41

GCI: if K_1 , $K_2 \subseteq \mathbb{R}^d$ are symmetric convex, then

$$\gamma(\textit{K}_1 \cap \textit{K}_2) \geq \gamma(\textit{K}_1)\gamma(\textit{K}_2).$$

GCI: if K_1 , $K_2 \subseteq \mathbb{R}^d$ are symmetric convex, then

$$\gamma(\textit{K}_1 \cap \textit{K}_2) \geq \gamma(\textit{K}_1)\gamma(\textit{K}_2).$$

If $K_1, \ldots, K_{m+1} \subseteq \mathbb{R}^d$ are symmetric convex:

$$\gamma(K_1 \cap \cdots \cap K_{m+1}) \geq \gamma(K_1 \cap \cdots \cap K_m) \cdot \gamma(K_{m+1}),$$

GCI: if K_1 , $K_2 \subseteq \mathbb{R}^d$ are symmetric convex, then

$$\gamma(\textit{K}_1 \cap \textit{K}_2) \geq \gamma(\textit{K}_1)\gamma(\textit{K}_2).$$

If $K_1, \ldots, K_{m+1} \subseteq \mathbb{R}^d$ are symmetric convex:

$$\gamma(K_1 \cap \cdots \cap K_{m+1}) \ge \gamma(K_1 \cap \cdots \cap K_m) \cdot \gamma(K_{m+1}),$$

By level sets, if $f_1, \ldots, f_{m+1} : \mathbb{R}^d \to \mathbb{R}^+$ are symmetric quasi-concave,

$$\mathbb{E}^{\gamma}[f_1f_2\ldots f_{m+1}] \geq \mathbb{E}^{\gamma}[f_1f_2\ldots f_m] \cdot \mathbb{E}^{\gamma}[f_{m+1}].$$

(Products of SQC functions need not be SQC, hence the middle step.)

If
$$f_1,\ldots,f_{m+1}:\mathbb{R}^d\to\mathbb{R}^+$$
 are symmetric quasi-concave,
$$\mathbb{E}^\gamma[f_1f_2\ldots f_{m+1}]\geq \mathbb{E}^\gamma[f_1f_2\ldots f_m]\cdot\mathbb{E}^\gamma[f_{m+1}].$$

If $f_1, \ldots, f_{m+1} : \mathbb{R}^d \to \mathbb{R}^+$ are symmetric quasi-concave,

$$\mathbb{E}^{\gamma}[f_1f_2\ldots f_{m+1}] \geq \mathbb{E}^{\gamma}[f_1f_2\ldots f_m] \cdot \mathbb{E}^{\gamma}[f_{m+1}].$$

Suppose γ is centered Gaussian and $\frac{dv}{d\gamma}=f_1f_2\dots f_m$ is a product of SQC functions. Then

$$\nu(K) = \mathbb{E}^{\gamma} \left[\frac{\mathsf{d} \nu}{\mathsf{d} \gamma} \cdot 1_K \right] \stackrel{\mathsf{GCI}}{\geq} \mathbb{E}^{\gamma} \left[\frac{\mathsf{d} \nu}{\mathsf{d} \gamma} \right] \cdot \gamma(K) = \gamma(K)$$

for symmetric convex K. A form of Gaussian domination: $v \leq_{con} \gamma$.

M. Sellke

If $f_1,\ldots,f_{m+1}:\mathbb{R}^d \to \mathbb{R}^+$ are symmetric quasi-concave,

$$\mathbb{E}^{\gamma}[f_1f_2\ldots f_{m+1}] \geq \mathbb{E}^{\gamma}[f_1f_2\ldots f_m] \cdot \mathbb{E}^{\gamma}[f_{m+1}].$$

Suppose γ is centered Gaussian and $\frac{dv}{d\gamma}=f_1f_2\dots f_m$ is a product of SQC functions. Then

$$\nu(K) = \mathbb{E}^{\gamma} \left[\frac{\mathsf{d} \nu}{\mathsf{d} \gamma} \cdot 1_K \right] \stackrel{\mathsf{GCI}}{\geq} \mathbb{E}^{\gamma} \left[\frac{\mathsf{d} \nu}{\mathsf{d} \gamma} \right] \cdot \gamma(K) = \gamma(K)$$

for symmetric convex K. A form of Gaussian domination: $v \leq_{con} \gamma$.

Definition

We say $v \leq_{con} \gamma$ if $\gamma(K) \leq v(K)$ for all symmetric convex sets K.

Application: an Easy Case of Localization

Consequence: localization on all transient G if $U'(x) \ge \varepsilon x$ for all $x \ge 0$.

Application: an Easy Case of Localization

Consequence: localization on all transient G if $U'(x) \ge \varepsilon x$ for all $x \ge 0$.

Compare with rescaled GFF γ_{ε} with potential $U_{\varepsilon}(x) = \varepsilon x^2/2$.

Since $U' \geq U'_{\varepsilon}$, the ratio

$$W(x) = e^{-U(x) + U_{\varepsilon}(x)}$$

is SQC. The Radon–Nikodym derivative is a product of these:

$$rac{\mathsf{d}\mu_{G,\Lambda,\mathit{U}}}{\mathsf{d}\gamma_{\epsilon}} \propto \prod_{e \in E(G)} \mathit{W}(
abla\phi(e)).$$

Application: an Easy Case of Localization

Consequence: localization on all transient G if $U'(x) \ge \varepsilon x$ for all $x \ge 0$.

Compare with rescaled GFF γ_{ε} with potential $U_{\varepsilon}(x) = \varepsilon x^2/2$.

Since $U' \geq U'_{\epsilon}$, the ratio

$$W(x) = e^{-U(x) + U_{\varepsilon}(x)}$$

is SQC. The Radon–Nikodym derivative is a product of these:

$$rac{\mathsf{d}\mu_{G,\Lambda,U}}{\mathsf{d}\gamma_{f \epsilon}} \propto \prod_{e\in E(G)} W(
abla \phi(e)).$$

Conclusion: $\mu_{G,\Lambda,U} \leq_{con} \gamma_{\epsilon}$. Localization on all transient G.

However this proof cannot work if U diverges subquadratically. μ must have subgaussian tails to be dominated by a single Gaussian.

For heavier tailed distributions, we cannot hope for Gaussian domination.

Does GCI extend to **mixtures** of centered Gaussians? If so, we could use them as the dominating measures and have more flexibility.

For heavier tailed distributions, we cannot hope for Gaussian domination.

Does GCI extend to **mixtures** of centered Gaussians? If so, we could use them as the dominating measures and have more flexibility.

- No, $\mu(K_1 \cap K_2) \ge \mu(K_1)\mu(K_2)$ is a non-linear condition in μ .
- Counterexample for two gaussians in \mathbb{R}^2 :

For heavier tailed distributions, we cannot hope for Gaussian domination.

Does GCI extend to **mixtures** of centered Gaussians? If so, we could use them as the dominating measures and have more flexibility.

- No, $\mu(K_1 \cap K_2) \ge \mu(K_1)\mu(K_2)$ is a non-linear condition in μ .
- Counterexample for two gaussians in \mathbb{R}^2 :

If the Gaussians have comparable covariance, GCI extends!!

Theorem

Let $\Sigma_1 \succeq_{PSD} \Sigma_2 \succeq_{PSD} 0$ be symmetric matrices. Let $\mathrm{d}\gamma_1(x) \propto \mathrm{e}^{-\langle x, \Sigma_1 x \rangle}$ and $\mathrm{d}\gamma_2(x) \propto \mathrm{e}^{-\langle x, \Sigma_2 x \rangle}$. Then GCI holds for $\mu = p\gamma_1 + (1-p)\gamma_2$:

$$\mu(K\cap K')\geq \mu(K)\mu(K')$$

for any symmetric convex sets K, K' and $0 \le p \le 1$.

Theorem

Let $\Sigma_1 \succeq_{PSD} \Sigma_2 \succeq_{PSD} 0$ and $\mathrm{d}\gamma_1(x) \propto e^{-\langle x, \Sigma_1 x \rangle}$ and $\mathrm{d}\gamma_2(x) \propto e^{-\langle x, \Sigma_2 x \rangle}$. Then $\mu(K \cap K') \geq \mu(K)\mu(K')$ for $\mu = p\gamma_1 + (1-p)\gamma_2$.

Theorem

Let $\Sigma_1 \succeq_{PSD} \Sigma_2 \succeq_{PSD} 0$ and $d\gamma_1(x) \propto e^{-\langle x, \Sigma_1 x \rangle}$ and $d\gamma_2(x) \propto e^{-\langle x, \Sigma_2 x \rangle}$. Then $\mu(K \cap K') \geq \mu(K)\mu(K')$ for $\mu = p\gamma_1 + (1-p)\gamma_2$.

Let $d\widetilde{\mu}(x) \propto 1_K d\mu(x)$. We will show $\widetilde{\mu}(K') \geq \mu(K')$.

Theorem

Let $\Sigma_1 \succeq_{PSD} \Sigma_2 \succeq_{PSD} 0$ and $\mathrm{d}\gamma_1(x) \propto e^{-\langle x, \Sigma_1 x \rangle}$ and $\mathrm{d}\gamma_2(x) \propto e^{-\langle x, \Sigma_2 x \rangle}$. Then $\mu(K \cap K') \geq \mu(K)\mu(K')$ for $\mu = p\gamma_1 + (1-p)\gamma_2$.

Let $d\widetilde{\mu}(x) \propto 1_K d\mu(x)$. We will show $\widetilde{\mu}(K') \geq \mu(K')$.

• $\widetilde{\mu} = q\widetilde{\gamma}_1 + (1-q)\widetilde{\gamma}_2$, where $d\widetilde{\gamma}_i(x) \propto 1_K d\gamma_i(x)$ for $i \in \{1, 2\}$.

Theorem

Let $\Sigma_1 \succeq_{PSD} \Sigma_2 \succeq_{PSD} 0$ and $d\gamma_1(x) \propto e^{-\langle x, \Sigma_1 x \rangle}$ and $d\gamma_2(x) \propto e^{-\langle x, \Sigma_2 x \rangle}$. Then $\mu(K \cap K') \geq \mu(K)\mu(K')$ for $\mu = p\gamma_1 + (1-p)\gamma_2$.

Let $d\widetilde{\mu}(x) \propto 1_K d\mu(x)$. We will show $\widetilde{\mu}(K') \geq \mu(K')$.

- $\widetilde{\mu} = q\widetilde{\gamma}_1 + (1-q)\widetilde{\gamma}_2$, where $d\widetilde{\gamma}_i(x) \propto 1_K d\gamma_i(x)$ for $i \in \{1, 2\}$.
- Can show $\gamma_1(K) \ge \gamma_2(K)$ (by GCI or otherwise). Thus $q \ge p$:

$$\frac{q(1-p)}{p(1-q)} = \frac{\gamma_1(K)}{\gamma_2(K)} \ge 1.$$

M. Sellke

Theorem

Let $\Sigma_1 \succeq_{PSD} \Sigma_2 \succeq_{PSD} 0$ and $d\gamma_1(x) \propto e^{-\langle x, \Sigma_1 x \rangle}$ and $d\gamma_2(x) \propto e^{-\langle x, \Sigma_2 x \rangle}$. Then $\mu(K \cap K') \ge \mu(K)\mu(K')$ for $\mu = p\gamma_1 + (1-p)\gamma_2$.

Let $d\widetilde{\mu}(x) \propto 1_K d\mu(x)$. We will show $\widetilde{\mu}(K') \geq \mu(K')$.

- $\widetilde{\mu} = q\widetilde{\gamma}_1 + (1-q)\widetilde{\gamma}_2$, where $d\widetilde{\gamma}_i(x) \propto 1_K d\gamma_i(x)$ for $i \in \{1, 2\}$.
- Can show $\gamma_1(K) \ge \gamma_2(K)$ (by GCI or otherwise). Thus $q \ge p$:

$$\frac{q(1-p)}{p(1-q)} = \frac{\gamma_1(K)}{\gamma_2(K)} \ge 1.$$

• Similarly $\gamma_1(K') \ge \gamma_2(K')$. Finish by combining.

M. Sellke

Theorem

Let $\Sigma_1 \succeq_{PSD} \Sigma_2 \succeq_{PSD} 0$ and $d\gamma_1(x) \propto e^{-\langle x, \Sigma_1 x \rangle}$ and $d\gamma_2(x) \propto e^{-\langle x, \Sigma_2 x \rangle}$. Then $\mu(K \cap K') \geq \mu(K)\mu(K')$ for $\mu = p\gamma_1 + (1-p)\gamma_2$.

Let $d\widetilde{\mu}(x) \propto 1_K d\mu(x)$. We will show $\widetilde{\mu}(K') \geq \mu(K')$.

- $\widetilde{\mu} = q\widetilde{\gamma}_1 + (1-q)\widetilde{\gamma}_2$, where $d\widetilde{\gamma}_i(x) \propto 1_K d\gamma_i(x)$ for $i \in \{1, 2\}$.
- Can show $\gamma_1(K) \ge \gamma_2(K)$ (by GCI or otherwise). Thus $q \ge p$:

$$\frac{q(1-p)}{p(1-q)} = \frac{\gamma_1(K)}{\gamma_2(K)} \ge 1.$$

• Similarly $\gamma_1(K') \ge \gamma_2(K')$. Finish by combining.

$$\begin{split} \widetilde{\mu}(K') &= q \widetilde{\gamma}_1(K') + (1-q) \widetilde{\gamma}_2(K') \overset{GCI}{\geq} q \gamma_1(K') + (1-q) \gamma_2(K') \\ &\geq \rho \gamma_1(K') + (1-\rho) \gamma_2(K') = \mu(K'). \end{split}$$

GCI For Totally Ordered Gaussian Mixtures

We can generalize further! Suppose:

- $\mu = p_1 \gamma_1 + \cdots + p_j \gamma_j$, with totally ordered inverse covariances $\Sigma_1 \succeq_{PSD} \Sigma_2 \succeq_{PSD} \cdots \succeq_{PSD} \Sigma_j$.
- \bullet $d\widetilde{\mu}(x) \propto 1_K d\mu(x)$ for symmetric convex K.

GCI For Totally Ordered Gaussian Mixtures

We can generalize further! Suppose:

- $\mu = p_1 \gamma_1 + \cdots + p_j \gamma_j$, with totally ordered inverse covariances $\Sigma_1 \succeq_{PSD} \Sigma_2 \succeq_{PSD} \cdots \succeq_{PSD} \Sigma_j$.
- **a** $d\widetilde{\mu}(x) \propto 1_K d\mu(x)$ for symmetric convex K.

An analogous proof shows $\widetilde{\mu}(K') \ge \mu(K')$ for any symmetric convex K':

- $\bullet \ \widetilde{\mu} = q_1 \widetilde{\gamma}_1 + \cdots + q_j \widetilde{\gamma}_j.$
- We similarly get:

$$\frac{q_1}{p_1} \ge \frac{q_2}{p_2} \ge \dots \ge \frac{q_j}{p_j},$$
$$\gamma_1(K') \ge \gamma_2(K') \ge \dots \ge \gamma_j(K').$$

M. Sellke

GCI For Totally Ordered Gaussian Mixtures

We can generalize further! Suppose:

- $\mu = p_1 \gamma_1 + \cdots + p_j \gamma_j$, with totally ordered inverse covariances $\Sigma_1 \succeq_{PSD} \Sigma_2 \succeq_{PSD} \cdots \succeq_{PSD} \Sigma_j$.
- \bullet d $\widetilde{\mu}(x) \propto 1_K d\mu(x)$ for symmetric convex K.

An analogous proof shows $\widetilde{\mu}(K') \ge \mu(K')$ for any symmetric convex K':

- $\bullet \ \widetilde{\mu} = q_1 \widetilde{\gamma}_1 + \cdots + q_j \widetilde{\gamma}_j.$
- We similarly get:

$$\frac{q_1}{p_1} \ge \frac{q_2}{p_2} \ge \cdots \ge \frac{q_j}{p_j},$$
$$\gamma_1(K') \ge \gamma_2(K') \ge \cdots \ge \gamma_j(K').$$

We need these two functions on $\{1, 2, ..., j\}$ to be positively correlated with respect to the probability measure $\mathbb{P}[i] = p_i$.

This is the rearrangement inequality, a special case of FKG.

We say the probability measure $\mathrm{d} \mathrm{v} = f(x)\mathrm{d} x$ on \mathbb{R}^k is log-supermodular if

$$f(\xi)f(\xi') \leq f(\xi \wedge \xi')f(\xi \vee \xi'), \quad \forall \xi, \xi' \in \mathbb{R}^k.$$

Here \land , \lor denote coordinate-wise min, max.

We say the probability measure dv = f(x)dx on \mathbb{R}^k is log-supermodular if

$$f(\xi)f(\xi') \leq f(\xi \wedge \xi')f(\xi \vee \xi'), \quad \forall \xi, \xi' \in \mathbb{R}^k.$$

Here \land , \lor denote coordinate-wise min, max.

Definition

Let v be a log-supermodular probability measure on \mathbb{R}^k_+ , and $\Sigma: \mathbb{R}^k_+ \to \mathcal{S}^n_+$ be **order-reversing** from $\preceq_{\operatorname{coord}}$ to $\preceq_{\operatorname{PSD}}$. For each $\xi \in \mathbb{R}^k_+$ let $\mathrm{d}\gamma_\xi(x) \propto e^{-\langle x, \Sigma(\xi) x \rangle}$ on $x \in \mathbb{R}^n$. The associated **log-supermodular Gaussian mixture** (LSGM) is

$$\Gamma_{\mathbf{v},\Sigma} = \int \gamma_{\xi} \ d\mathbf{v}(\xi).$$

We say the probability measure dv = f(x)dx on \mathbb{R}^k is log-supermodular if

$$f(\xi)f(\xi') \leq f(\xi \wedge \xi')f(\xi \vee \xi'), \quad \forall \xi, \xi' \in \mathbb{R}^k.$$

Here \land , \lor denote coordinate-wise min, max.

Definition

Let v be a log-supermodular probability measure on \mathbb{R}^k_+ , and $\Sigma: \mathbb{R}^k_+ \to \mathcal{S}^n_+$ be **order-reversing** from \preceq_{coord} to \preceq_{PSD} . For each $\xi \in \mathbb{R}^k_+$ let $\mathrm{d}\gamma_\xi(x) \propto e^{-\langle x, \Sigma(\xi) x \rangle}$ on $x \in \mathbb{R}^n$. The associated **log-supermodular Gaussian mixture** (LSGM) is

$$\Gamma_{\mathbf{v},\Sigma} = \int \gamma_{\xi} \ d\mathbf{v}(\xi).$$

Theorem (FKG-GCI)

For any LSGM $\Gamma_{v,\Sigma}$ and symmetric convex K_1 , K_2 : $\Gamma_{v,\Sigma}(K_1 \cap K_2) \ge \Gamma_{v,\Sigma}(K_1)\Gamma_{v,\Sigma}(K_2).$

Theorem (FKG-GCI)

For any LSGM $\Gamma_{\nu,\Sigma}$ and symmetric convex K_1, K_2 : $\Gamma_{\nu,\Sigma}(K_1 \cap K_2) \geq \Gamma_{\nu,\Sigma}(K_1)\Gamma_{\nu,\Sigma}(K_2).$

Proof: As before, need increasing functions to be positively correlated w.r.t. the log-supermodular ν . This is the statement of FKG. \square

Theorem (FKG-GCI)

For any LSGM $\Gamma_{\nu,\Sigma}$ and symmetric convex K_1, K_2 : $\Gamma_{\nu,\Sigma}(K_1 \cap K_2) \geq \Gamma_{\nu,\Sigma}(K_1)\Gamma_{\nu,\Sigma}(K_2).$

Proof: As before, need increasing functions to be positively correlated w.r.t. the log-supermodular ν . This is the statement of FKG. \square

A 2 × 2 example: suppose $d\gamma_{i,j}(x) \propto e^{-\langle x, \Sigma_{i,j} x \rangle}$ with:

$$\Sigma_{1,1} \succeq_{PSD} \Sigma_{1,2}, \Sigma_{2,1} \succeq_{PSD} \Sigma_{2,2},$$
 $p_{1,1}p_{2,2} \geq p_{1,2}p_{2,1}.$

M. Sellke

Theorem (FKG-GCI)

For any LSGM $\Gamma_{V,\Sigma}$ and symmetric convex K_1, K_2 : $\Gamma_{V,\Sigma}(K_1 \cap K_2) > \Gamma_{V,\Sigma}(K_1)\Gamma_{V,\Sigma}(K_2).$

Proof: As before, need increasing functions to be positively correlated w.r.t. the log-supermodular ν . This is the statement of FKG. \square

A 2 × 2 example: suppose $d\gamma_{i,j}(x) \propto e^{-\langle x, \Sigma_{i,j} x \rangle}$ with:

$$\Sigma_{1,1} \succeq_{PSD} \Sigma_{1,2}, \Sigma_{2,1} \succeq_{PSD} \Sigma_{2,2},$$
 $p_{1,1}p_{2,2} \geq p_{1,2}p_{2,1}.$

Then $v((i,j)) = p_{i,j}$ is log-supermodular, so

$$\mu = p_{1,1}\gamma_{1,1} + p_{1,2}\gamma_{1,2} + p_{2,1}\gamma_{2,1} + p_{2,2}\gamma_{2,2}$$

satisfies GCI, i.e. $\mu(K_1 \cap K_2) \ge \mu(K_1)\mu(K_2)$.

M. Sellke

Theorem (FKG-GCI)

For any LSGM $\Gamma_{v,\Sigma}$ and symmetric convex K_1 , K_2 : $\Gamma_{v,\Sigma}(K_1 \cap K_2) \geq \Gamma_{v,\Sigma}(K_1)\Gamma_{v,\Sigma}(K_2).$

M. Sellke 29 / 41

Theorem (FKG-GCI)

For any LSGM $\Gamma_{\nu,\Sigma}$ and symmetric convex K_1, K_2 : $\Gamma_{\nu,\Sigma}(K_1 \cap K_2) \ge \Gamma_{\nu,\Sigma}(K_1)\Gamma_{\nu,\Sigma}(K_2).$

Corollary (Domination by LSGM Gaussian Mixtures)

For any LSGM $\Gamma_{V,\Sigma}$, suppose for symmetric quasi-concave f_1, \ldots, f_m :

$$d\widetilde{\Gamma}(x) = f_1(x)f_2(x)\dots f_m(x) d\Gamma_{V,\Sigma}(x).$$

Then $\widetilde{\Gamma} \leq_{con} \Gamma_{v,\Sigma}$, i.e. $\widetilde{\Gamma}(K) \geq \Gamma_{v,\Sigma}(K)$ for all symmetric convex K.

M. Sellke

29 / 41

Theorem (FKG-GCI)

For any LSGM $\Gamma_{\nu,\Sigma}$ and symmetric convex K_1 , K_2 : $\Gamma_{\nu,\Sigma}(K_1 \cap K_2) \geq \Gamma_{\nu,\Sigma}(K_1)\Gamma_{\nu,\Sigma}(K_2).$

Corollary (Domination by LSGM Gaussian Mixtures)

For any LSGM $\Gamma_{V,\Sigma}$, suppose for symmetric quasi-concave f_1, \ldots, f_m :

$$d\widetilde{\Gamma}(x) = f_1(x)f_2(x)\dots f_m(x) d\Gamma_{V,\Sigma}(x).$$

Then $\widetilde{\Gamma} \preceq_{con} \Gamma_{v,\Sigma}$, i.e. $\widetilde{\Gamma}(K) \geq \Gamma_{v,\Sigma}(K)$ for all symmetric convex K.

Proof: Exactly the same level sets argument as from ordinary GCI. \Box

M. Sellke

29 / 41

Theorem (FKG-GCI)

For any LSGM $\Gamma_{\nu,\Sigma}$ and symmetric convex K_1, K_2 : $\Gamma_{\nu,\Sigma}(K_1 \cap K_2) \geq \Gamma_{\nu,\Sigma}(K_1)\Gamma_{\nu,\Sigma}(K_2).$

Corollary (Domination by LSGM Gaussian Mixtures)

For any LSGM $\Gamma_{V,\Sigma}$, suppose for symmetric quasi-concave f_1, \ldots, f_m :

$$d\widetilde{\Gamma}(x) = f_1(x)f_2(x)\dots f_m(x) d\Gamma_{V,\Sigma}(x).$$

Then $\widetilde{\Gamma} \preceq_{con} \Gamma_{v,\Sigma}$, i.e. $\widetilde{\Gamma}(K) \geq \Gamma_{v,\Sigma}(K)$ for all symmetric convex K.

 $\textbf{Proof}\colon$ Exactly the same level sets argument as from ordinary GCI. \Box

For Ginzburg-Landau, need to express $\mu_{G,\Lambda,U}$ as some $\widetilde{\Gamma}$ above.

M. Sellke 29 / 41

Plan for The Talk

- Ginzburg-Landau Surfaces and Main Results
- Confinement from the Gaussian Correlation Inequality
- The FKG-Gaussian Correlation Inequality
- Putting it all together

M. Sellke

30 / 41

Dominating LSGMs will be $\mu_{G,\Lambda,V}$ where V takes the form:

$$e^{-V(x)} = \int_0^\infty \frac{e^{-x^2/2\xi^2}}{\xi\sqrt{2\pi}} d\rho(\xi).$$

M. Sellke 31 / 41

Dominating LSGMs will be $\mu_{G,\Lambda,V}$ where V takes the form:

$$e^{-V(x)} = \int_0^\infty \frac{e^{-x^2/2\xi^2}}{\xi\sqrt{2\pi}} d\rho(\xi).$$

Then the Gibbs measure is a mixture of GFFs with edge weights.

$$\mathrm{d}\mu_{G,\vec{\xi},GFF}(\phi) = \frac{1}{Z_{G,GFF}} \exp\left(-\sum_{e \in E} \frac{1}{2\xi_e^2} \cdot |\nabla \phi(e)|^2\right) \prod_{v \in V} \mathrm{d}\phi(v).$$

M. Sellke 31 / 41

Dominating LSGMs will be $\mu_{G,\Lambda,V}$ where V takes the form:

$$e^{-V(x)} = \int_0^\infty \frac{e^{-x^2/2\xi^2}}{\xi\sqrt{2\pi}} d\rho(\xi).$$

Then the Gibbs measure is a mixture of GFFs with edge weights.

$$\mathrm{d}\mu_{\textit{G},\vec{\xi},\textit{GFF}}(\phi) = \frac{1}{\textit{Z}_{\textit{G},\textit{GFF}}} \exp\left(-\sum_{e \in \textit{E}} \frac{1}{2\xi_e^2} \cdot |\nabla \phi(e)|^2\right) \prod_{v \in \textit{V}} \mathrm{d}\phi(v).$$

Encoding: inverse covariance $\Sigma(\vec{\xi})$ given by

$$\left\langle \varphi, \Sigma(\vec{\xi}) \varphi \right\rangle = \sum_{e \in E(G)} (\varphi(v) - \varphi(v'))^2 / \xi_e^2.$$

• Clearly Σ is decreasing from \leq_{coord} to \leq_{PSD} .

M. Sellke 31 / 41

Potential $e^{-V(x)} = \int_0^\infty \frac{e^{-x^2/2\xi^2}}{\xi\sqrt{2\pi}} d\rho(\xi)$. Encoding: inverse covariance

$$\left\langle \phi, \Sigma(\vec{\xi})\phi \right\rangle = \sum_{e \in E(G)} (\phi(v) - \phi(v'))^2 / \xi_e^2.$$

Then the Ginzburg-Landau measure has mixture representation of the form:

$$\mu_{G,V} = \int \mu_{G,\vec{\xi},GFF} \, d\nu(\vec{\xi}).$$

M. Sellke 32 / 41

Potential $e^{-V(x)} = \int_0^\infty \frac{e^{-x^2/2\xi^2}}{\xi\sqrt{2\pi}} d\rho(\xi)$. Encoding: inverse covariance

$$\left\langle \varphi, \Sigma(\vec{\xi}) \varphi \right\rangle = \sum_{e \in E(G)} (\varphi(v) - \varphi(v'))^2 / \xi_e^2.$$

Then the Ginzburg-Landau measure has mixture representation of the form:

$$\mu_{G,V} = \int \mu_{G,\vec{\xi},GFF} \, d\nu(\vec{\xi}).$$

Mixing measure $dv(\vec{\xi})$ is **not** a product. It gains a factor $det(\Sigma(\xi))^{-1/2}$.

M. Sellke 32 / 41

Potential $e^{-V(x)} = \int_0^\infty \frac{e^{-x^2/2\xi^2}}{\xi\sqrt{2\pi}} d\rho(\xi)$. Encoding: inverse covariance

$$\left\langle \varphi, \Sigma(\vec{\xi}) \varphi \right\rangle = \sum_{e \in E(G)} (\varphi(v) - \varphi(v'))^2 / \xi_e^2.$$

Then the Ginzburg-Landau measure has mixture representation of the form:

$$\mu_{G,V} = \int \mu_{G,\vec{\xi},GFF} \, d\nu(\vec{\xi}).$$

Mixing measure $dv(\vec{\xi})$ is **not** a product. It gains a factor $det(\Sigma(\xi))^{-1/2}$.

• Elementary fact: if A, B, $C \succeq_{PSD} 0$, then

$$\det(A)\det(A+B+C) \leq \det(A+B)\det(A+C).$$

• This yields log-supermodularity, since $\Sigma(\vec{\xi}) = \sum_{e \in E} F(\xi_e)$ is additive.

M. Sellke 32 / 41

If $U'(x) \geq V'(x)$ on \mathbb{R}_+ , then Radon–Nikodym derivative

$$\frac{\text{d}\mu_{G,\Lambda,\textit{U}}}{\text{d}\mu_{G,\Lambda,\textit{V}}} \propto \prod_{e \in \textit{E}} e^{-\textit{U}(\nabla \phi(e)) + \textit{V}(\nabla \phi(e))}$$

is a product of symmetric quasi-concave functions.

M. Sellke 33 / 41

If $U'(x) \ge V'(x)$ on \mathbb{R}_+ , then Radon–Nikodym derivative

$$\frac{\text{d}\mu_{G,\Lambda,\textit{U}}}{\text{d}\mu_{G,\Lambda,\textit{V}}} \propto \prod_{e \in \textit{E}} e^{-\textit{U}(\nabla \phi(e)) + \textit{V}(\nabla \phi(e))}$$

is a product of symmetric quasi-concave functions. Thus

$$\mu_{G,\Lambda,U} \preceq_{\mathsf{con}} \mu_{G,\Lambda,V}$$

M. Sellke

33 / 41

If $U'(x) \geq V'(x)$ on \mathbb{R}_+ , then Radon–Nikodym derivative

$$\frac{\text{d}\mu_{G,\Lambda,\textit{U}}}{\text{d}\mu_{G,\Lambda,\textit{V}}} \propto \prod_{e \in \textit{E}} e^{-\textit{U}(\nabla \phi(e)) + \textit{V}(\nabla \phi(e))}$$

is a product of symmetric quasi-concave functions. Thus

$$\mu_{G,\Lambda,U} \leq_{\mathsf{con}} \mu_{G,\Lambda,V}$$

We can reduce further! By more FKG, $\mu_{G,\Lambda,V}$ is dominated by the "naive independent" LSGM with mixing measure

$$d\widehat{\mathbf{v}}(\xi) = \prod_{e \in E} d\mathbf{p}(\xi_e).$$

This reduces localization to GFFs with IID edge weights.

M. Sellke 33 / 41

Lemma

There exist potentials $V(\rho)$ in centered Gaussian mixture form such that:

- $V'(x) \le \min\left(\varepsilon x, \frac{1+\varepsilon}{x}\right), \quad \forall x \ge 0.$

In each case, $U' \geq V'$ if U is correspondingly monotone.

M. Sellke 34 / 41

Lemma

There exist potentials $V(\rho)$ in centered Gaussian mixture form such that:

In each case, $U' \ge V'$ if U is correspondingly monotone.

Proof Idea: Explicit construction. Match tail of ρ to the decay rate.

M. Sellke

Proof of Main Localization Result

Main result from before:

Theorem

Fix $\alpha > 2$ and transient G. Let U be (α, ϵ) -monotone. Then

$$\mathbb{P}^{\mu_{G,\Lambda,U}}[|\varphi(v)| \geq t] \leq O(t^{-\alpha})$$

holds uniformly in Λ for any transient G.

M. Sellke 35 / 41

Proof of Main Localization Result

Main result from before:

Theorem

Fix $\alpha > 2$ and transient G. Let U be (α, ϵ) -monotone. Then

$$\mathbb{P}^{\mu_{G,\Lambda,U}}[|\varphi(v)| \geq t] \leq O(t^{-\alpha})$$

holds uniformly in Λ for any transient G.

Compare to GFF with IID $\xi_e \sim \rho$, where $\rho([t, \infty)) \leq O(t^{-\alpha})$.

M. Sellke

Proof of Main Localization Result

Main result from before:

Theorem

Fix $\alpha > 2$ and transient G. Let U be (α, ϵ) -monotone. Then

$$\mathbb{P}^{\mu_{G,\Lambda,U}}[|\varphi(v)| \geq t] \leq O(t^{-\alpha})$$

holds uniformly in Λ for any transient G.

Compare to GFF with IID $\xi_e \sim \rho$, where $\rho([t, \infty)) \leq O(t^{-\alpha})$.

Proof: we need to bound the tail of the weighted effective resistance $R_{eff}^{(\xi)}(v\leftrightarrow\infty)$. This is the variance of $\phi(v)$ in a weighted GFF.

Consider the energy-minimizing unit flow $v \to \infty$ in the **unweighted** graph G. $R_{eff}^{(\xi)}(v \leftrightarrow \infty)$ is at most its (random) **weighted** energy. This is $\sum_e a_e \xi_e^2$, where $\sum_e a_e = R_{eff}(v \leftrightarrow \infty) < \infty$. Bound tails by Jensen. \square

M. Sellke 35 / 41

Tightness from ε -Monotonicity

Theorem.

Suppose U is ε -monotone, and p-bond percolation on G has transient infinite cluster for $p \in [1 - \delta, 1]$. Then Law $(\varphi(v))$ is tight as $\Lambda \uparrow \infty$.

(The condition holds for all transient transitive G [Hutchcroft 23].)

M. Sellke 36 / 41

Tightness from ε -Monotonicity

Theorem

Suppose U is ε -monotone, and p-bond percolation on G has transient infinite cluster for $p \in [1 - \delta, 1]$. Then Law $(\varphi(v))$ is tight as $\Lambda \uparrow \infty$.

(The condition holds for all transient transitive G [Hutchcroft 23].) Compare to GFF with IID edge resistances ξ_e , now with no tail bounds.

M. Sellke 36 / 41

Tightness from ϵ -Monotonicity

Theorem

Suppose U is ϵ -monotone, and p-bond percolation on G has transient infinite cluster for $p \in [1 - \delta, 1]$. Then Law $(\varphi(v))$ is tight as $\Lambda \uparrow \infty$.

(The condition holds for all transient transitive G [Hutchcroft 23].) Compare to GFF with IID edge resistances ξ_e , now with no tail bounds.

Proof: take $\xi_e \sim \rho$ independent. Consider edges with $\xi_e \leq \textit{M}$, where

$$\rho([0,M]) \geq 1 - \delta.$$

By definition, these edges form a transient infinite cluster \mathcal{C} . Let $w \in \mathcal{C}$ be the closest point to v. Then both $R_{eff}^{(\xi)}(v \leftrightarrow w)$ and $R_{eff}^{(\xi)}(w \leftrightarrow \partial \Lambda)$ are tight. Hence $R_{eff}^{(\xi)}(v \leftrightarrow \partial \Lambda)$ is also tight. \square

M. Sellke

36 / 41

Tightness from ε -Monotonicity

Theorem

Suppose U is ϵ -monotone, and p-bond percolation on G has transient infinite cluster for $p \in [1 - \delta, 1]$. Then Law $(\varphi(v))$ is tight as $\Lambda \uparrow \infty$.

(The condition holds for all transient transitive G [Hutchcroft 23].) Compare to GFF with IID edge resistances ξ_e , now with no tail bounds.

Proof: take $\xi_e \sim \rho$ independent. Consider edges with $\xi_e \leq M$, where

$$\rho([0,M]) \geq 1 - \delta.$$

By definition, these edges form a transient infinite cluster \mathcal{C} . Let $w \in \mathcal{C}$ be the closest point to v. Then both $R_{eff}^{(\xi)}(v \leftrightarrow w)$ and $R_{eff}^{(\xi)}(w \leftrightarrow \partial \Lambda)$ are tight. Hence $R_{eff}^{(\xi)}(v \leftrightarrow \partial \Lambda)$ is also tight. \square

ullet E-monotonicity can't imply good tail bounds. U may diverge slowly.

M. Sellke 36 / 41

Another Application: the Fröhlich Polaron

Let $d\mathbb{Q}(B)$ be the law of 3-dimensional Brownian motion.

M. Sellke 37 / 41

Another Application: the Fröhlich Polaron

Let $d\mathbb{Q}(B)$ be the law of 3-dimensional Brownian motion.

Given coupling strength $\alpha \gg 1$ and time-horizon $T \gg \alpha$, the **Polaron** path measure $\widehat{\mathbb{Q}}_{\alpha, T}$ is the reweighted law on paths $B : [0, T] \to \mathbb{R}^3$:

$$d\widehat{\mathbb{Q}}_{\alpha,T}(\mathsf{B}) \equiv \frac{1}{Z_{\alpha,T}} \exp\left(\alpha \int_{0}^{T} \int_{0}^{T} \frac{e^{-|t-s|}}{\|\mathsf{B}_{t}-\mathsf{B}_{s}\|} \, dt \, ds\right) d\mathbb{Q}(\mathsf{B}),.$$

M. Sellke 37 / 41

Another Application: the Fröhlich Polaron

Let $d\mathbb{Q}(B)$ be the law of 3-dimensional Brownian motion.

Given coupling strength $\alpha \gg 1$ and time-horizon $T \gg \alpha$, the **Polaron** path measure $\widehat{\mathbb{Q}}_{\alpha,T}$ is the reweighted law on paths $B:[0,T] \to \mathbb{R}^3$:

$$d\widehat{\mathbb{Q}}_{\alpha,T}(\mathsf{B}) \equiv \frac{1}{Z_{\alpha,T}} \exp\left(\alpha \int\limits_0^T \int\limits_0^T \frac{e^{-|t-s|}}{\|\mathsf{B}_t - \mathsf{B}_s\|} \; \mathsf{d}t \; \mathsf{d}s\right) d\mathbb{Q}(\mathsf{B}),.$$

Obtained by Feynman's path integral applied to a quantum operator (models an electron in crystal). The inverse "effective mass" is

$$m_{eff}(\alpha)^{-1} = \lim_{T \to \infty} \frac{\mathbb{E}^{\widehat{\mathbb{Q}}_{\alpha,T}} \|\mathsf{B}_T\|^2}{3T} \stackrel{?}{\approx} C_* \alpha^{-4}.$$

[Fröhlich 37, Landau-Pekar 48, Feynman 55, Lieb 77, Donsker-Varadhan 83, Spohn 87, Lieb-Thomas 97,

Lieb-Seiringer 17, Mukherjee-Varadhan 18 & 20, Dybalski-Spohn 20, Betz-Polzer 22 & 23, Brooks-Seiringer 22...]

M. Sellke 37 / 41

$$d\widehat{\mathbb{Q}}_{\alpha,T}(\mathsf{B}) \equiv \frac{1}{Z_{\alpha,T}} \exp\left(\alpha \int_{0}^{T} \int_{0}^{T} \frac{e^{-|t-s|}}{\|\mathsf{B}_{t}-\mathsf{B}_{s}\|} dt ds\right) d\mathbb{Q}(\mathsf{B}).$$

Wiener measure \mathbb{Q} is Gaussian. The integrand is SQC in $B_{[0,T]}$.

M. Sellke 38 / 41

$$d\widehat{\mathbb{Q}}_{\alpha,T}(\mathsf{B}) \equiv \frac{1}{Z_{\alpha,T}} \exp\left(\alpha \int_{0}^{T} \int_{0}^{T} \frac{e^{-|t-s|}}{\|\mathsf{B}_{t}-\mathsf{B}_{s}\|} \, dt \, ds\right) d\mathbb{Q}(\mathsf{B}).$$

Wiener measure \mathbb{Q} is Gaussian. The integrand is SQC in $B_{[0,T]}$.

In fact, the Coulomb interaction is a mixture of centered Gaussians:

$$\frac{1}{x} = \sqrt{2/\pi} \int_0^\infty e^{-u^2 x^2/2} du.$$

Hence $\widehat{\mathbb{Q}}_{\alpha,T}$ is an (infinite dimensional) LSGM and obeys GCI.

M. Sellke

38 / 41

$$d\widehat{\mathbb{Q}}_{\alpha,\,T}(\mathsf{B}) \equiv \frac{1}{Z_{\alpha,\,T}} \exp\left(\alpha \int\limits_0^T \int\limits_0^T \frac{e^{-|t-s|}}{\|\mathsf{B}_t - \mathsf{B}_s\|} \; \mathsf{d}t \; \mathsf{d}s\right) d\mathbb{Q}(\mathsf{B}).$$

Wiener measure \mathbb{Q} is Gaussian. The integrand is SQC in $B_{[0,T]}$.

In fact, the Coulomb interaction is a mixture of centered Gaussians:

$$\frac{1}{x} = \sqrt{2/\pi} \int_0^\infty e^{-u^2 x^2/2} du.$$

Hence $\widehat{\mathbb{Q}}_{\alpha,T}$ is an (infinite dimensional) LSGM and obeys GCI.

Now the mixture comes **inside** the exponent. Resulting Gaussian mixture representation of $\widehat{\mathbb{Q}}_{\alpha,T}$ is indexed by a deformed Poisson process on weighted time-intervals ([s,t];u) [Mukherjee-Varadhan 20].

M. Sellke 38 / 41

Theorem (Mukherjee-Varadhan 20)

The Polaron path measure $\widehat{\mathbb{Q}}_{\alpha,T}$ has a mixture-of-Gaussian representation

$$d\widehat{\mathbb{Q}}_{\alpha,\,T}(B_{[0,\,T]}) = \int Q_{\xi}(B_{[0,\,T]}) \; \widehat{\Theta}_{\alpha,\,T} \; d\xi.$$

Here
$$\xi = \{([s_i, t_i], u_i)\}_{i=1}^n$$
 is a point process of weighted intervals, and
$$dQ_{\xi}(B_{[0,T]}) \propto e^{\sum_{i=1}^n u_i^2 \|B(t_i) - B(s_i)\|^2} d\mathbb{Q}(B_{[0,T]}).$$

M. Sellke 39 / 41

Theorem (Mukherjee-Varadhan 20)

The Polaron path measure $\widehat{\mathbb{Q}}_{\alpha,\,T}$ has a mixture-of-Gaussian representation

$$d\widehat{\mathbb{Q}}_{\alpha,\,T}(B_{[0,\,T]}) = \int Q_{\xi}(B_{[0,\,T]}) \; \widehat{\Theta}_{\alpha,\,T} \; d\xi.$$

Here $\xi = \{([s_i, t_i], u_i)\}_{i=1}^n$ is a point process of weighted intervals, and $dQ_{\xi}(B_{[0,T]}) \propto e^{\sum_{i=1}^n u_i^2 \|B(t_i) - B(s_i)\|^2} d\mathbb{Q}(B_{[0,T]}).$

- $\bullet \ \, \mathsf{Can} \,\, \mathsf{show} \,\, (\widehat{\Theta}_{\alpha,\,\mathcal{T}},\widehat{\mathbb{Q}}_{\alpha,\,\mathcal{T}}) \to (\widehat{\Theta}_{\alpha,\,\infty},\widehat{\mathbb{Q}}_{\alpha,\,\infty}) \,\, \mathsf{as} \,\, \mathcal{T} \to \infty.$
- \bullet Functional CLT for $\widehat{\mathbb{Q}}_{\alpha,\infty}$ [Mukherjee-Varadhan 20, Betz-Polzer 22].
 - Ergodicity and LLN for $\widehat{\Theta}_{\alpha,\infty}$.
 - Rigorizes Feynman path integral [Spohn 87, Dybalski-Spohn 20].
- Mass lower bound $m_{eff}(\alpha) \gtrsim \alpha^{2/5}$ [Betz-Polzer 23].
 - [Lieb-Seiringer 17]: $\lim_{\alpha \to \infty} m_{\it eff}(\alpha) = \infty$ without explicit rate.

M. Sellke 39 / 41

$$d\widehat{\mathbb{Q}}_{\alpha,T}(\mathsf{B}) \equiv \frac{1}{Z_{\alpha,T}} \exp\left(\alpha \int_{0}^{T} \int_{0}^{T} \frac{e^{-|t-s|}}{\|\mathsf{B}_{t}-\mathsf{B}_{s}\|} dt ds\right) d\mathbb{Q}(\mathsf{B}).$$

Theorem (Bazaes-Mukherjee-S-Varadhan 24; predicted in Landau-Pekar 1948)

If
$$T^{0.1} \geq \alpha \gg 1$$
, then $\mathbb{E}^{\widehat{\mathbb{Q}}_{\alpha,T}} \|\mathsf{B}_T\|^2 \leq \mathcal{O}(T\alpha^{-4})$. I.e. $m_{eff}(\alpha) \geq \Omega(\alpha^4)$.

M. Sellke 40 / 41

$$d\widehat{\mathbb{Q}}_{\alpha,T}(\mathsf{B}) \equiv \frac{1}{Z_{\alpha,T}} \exp\left(\alpha \int\limits_{0}^{T} \int\limits_{0}^{T} \frac{e^{-|t-s|}}{\|\mathsf{B}_{t}-\mathsf{B}_{s}\|} \, dt \, ds\right) d\mathbb{Q}(\mathsf{B}).$$

Theorem (Bazaes-Mukherjee-S-Varadhan 24; predicted in Landau-Pekar 1948)

If
$$T^{0.1} \geq \alpha \gg 1$$
, then $\mathbb{E}^{\widehat{\mathbb{Q}}_{\alpha,\mathcal{T}}} \|\mathsf{B}_{\mathcal{T}}\|^2 \leq \mathit{O}(\mathsf{T}\alpha^{-4})$. I.e. $m_{eff}(\alpha) \geq \Omega(\alpha^4)$.

Matching upper bound in [Brooks-Seiringer 22] (with sharp constant). They study an equivalent analytic problem, without any probability.

M. Sellke 40 / 41

$$d\widehat{\mathbb{Q}}_{\alpha,\,T}(\mathsf{B}) \equiv \frac{1}{Z_{\alpha,\,T}} \exp\left(\alpha \int\limits_0^T \int\limits_0^T \frac{e^{-|t-s|}}{\|\mathsf{B}_t - \mathsf{B}_s\|} \; \mathsf{d}t \; \mathsf{d}s\right) d\mathbb{Q}(\mathsf{B}).$$

Theorem (Bazaes-Mukherjee-S-Varadhan 24; predicted in Landau-Pekar 1948)

If
$$T^{0.1} \geq \alpha \gg 1$$
, then $\mathbb{E}^{\widehat{\mathbb{Q}}_{\alpha,T}} \|\mathsf{B}_T\|^2 \leq \mathcal{O}(T\alpha^{-4})$. I.e. $m_{eff}(\alpha) \geq \Omega(\alpha^4)$.

Matching upper bound in [Brooks-Seiringer 22] (with sharp constant). They study an equivalent analytic problem, without any probability.

FKG-GCI was one of several ingredients. It also has direct consequences:

- $m_{eff}(\alpha)$ is strictly increasing.
- Increments negatively correlated, e.g. $\mathbb{E}^{\widehat{\mathbb{Q}}_{\alpha,T}}[\langle B_2 B_1, B_1 B_0 \rangle] < 0$.
- Universality: can replace 1/x with "more monotone" interaction.

M. Sellke 40 / 41

The FKG-Gaussian correlation inequality is a general tool to prove confinement of high-dimensional **unimodal** probability distributions.

M. Sellke 41 / 41

The FKG-Gaussian correlation inequality is a general tool to prove confinement of high-dimensional **unimodal** probability distributions.

- Yields domination by certain mixtures of centered Gaussians.
- Well suited for products of symmetric unimodal densities.

M. Sellke 41 / 41

The FKG-Gaussian correlation inequality is a general tool to prove confinement of high-dimensional unimodal probability distributions.

- Yields domination by certain mixtures of centered Gaussians.
- Well suited for products of symmetric unimodal densities.
- Sharp bounds for Ginzburg-Landau and Polaron models:

$$d\mu_{G,\Lambda,U}(\varphi) \equiv \frac{1}{Z_{G,\Lambda,U}} \exp\left(-\sum_{e \in E(G)} U(|\nabla \varphi(e)|)\right) \prod_{v \in \Lambda} d\varphi(v),$$

$$d\widehat{\mathbb{Q}}_{\alpha,T}(B) \equiv \frac{1}{Z_{\alpha,T}} \exp\left(\alpha \int_{0}^{T} \int_{0}^{T} \frac{e^{-|t-s|}}{\|B_{t} - B_{s}\|} dt ds\right) d\mathbb{Q}(B).$$

M. Sellke 41 / 41

The FKG-Gaussian correlation inequality is a general tool to prove confinement of high-dimensional **unimodal** probability distributions.

- Yields domination by certain mixtures of centered Gaussians.
- Well suited for products of symmetric unimodal densities.
- Sharp bounds for Ginzburg-Landau and Polaron models:

$$d\mu_{G,\Lambda,U}(\varphi) \equiv \frac{1}{Z_{G,\Lambda,U}} \exp\left(-\sum_{e \in E(G)} U(|\nabla \varphi(e)|)\right) \prod_{v \in \Lambda} d\varphi(v),$$

$$d\widehat{\mathbb{Q}}_{\alpha,T}(\mathsf{B}) \equiv \frac{1}{Z_{\alpha,T}} \exp\left(\alpha \int_{0}^{T} \int_{0}^{T} \frac{e^{-|t-s|}}{\|\mathsf{B}_{t} - \mathsf{B}_{s}\|} dt ds\right) d\mathbb{Q}(\mathsf{B}).$$

- Can origin-symmetry be relaxed? E.g. non-zero tilts.
- Faster than Gaussian tail decay? Happens in Ginzburg–Landau when $U(x) = |x|^p$ for p > 2 [Magazinov-Peled 22].

Let me know if you have ideas for another application!

M. Sellke 41 / 41