

```
In [31]:
            import numpy as np
            import pandas as pd
            import matplotlib.pyplot as plt
            import seaborn as sns
In [32]:
            df = pd.read csv('placement.csv')
In [33]:
            df.head()
Out[33]:
              cgpa
                    placement_exam_marks placed
              7.19
                                                1
           0
                                      26.0
              7.46
           1
                                      38.0
                                                1
           2
              7.54
                                      40.0
                                                1
           3
              6.42
                                       8.0
                                                1
              7.23
                                      17.0
                                                0
In [34]:
            plt.figure(figsize=(16,5))
            plt.subplot(1,2,1)
            sns.distplot(df['cgpa'])
            plt.subplot(1,2,2)
            sns.distplot(df['placement_exam_marks'])
            plt.show()
                                                         0.030
          0.6
                                                          0.025
          0.5
                                                         0.020
          0.4
                                                         0.015
          0.3
                                                         0.010
                                                         0.005
          0.1
                                                          0.000
                                                                                   60
                                                                                              100
                                                                           placement_exam_marks
In [35]:
            df['placement exam marks'].describe()
Out[35]: count
                     1000.000000
                       32.225000
          mean
           std
                       19.130822
          min
                        0.000000
                       17.000000
           25%
           50%
                       28.000000
          75%
                       44.000000
                      100.000000
```

```
Name: placement exam marks, dtype: float64
In [36]:
          sns.boxplot(df['placement_exam_marks'])
Out[36]:
                             40
                                               80
                                                       100
                    20
                                      60
                          placement exam marks
In [37]:
          # Finding the IQR
          percentile25 = df['placement_exam_marks'].quantile(0.25)
          percentile75 = df['placement_exam_marks'].quantile(0.75)
In [39]:
          percentile75
Out[39]: 44.0
In [40]:
          iqr = percentile75 - percentile25
In [41]:
          iqr
Out[41]: 27.0
In [42]:
          upper_limit = percentile75 + 1.5 * iqr
          lower limit = percentile25 - 1.5 * iqr
In [43]:
          print("Upper limit",upper_limit)
          print("Lower limit",lower_limit)
         Upper limit 84.5
         Lower limit -23.5
         Finding Outliers
In [44]:
          df[df['placement_exam_marks'] > upper_limit]
```

Out[44]:		cgpa	placement_exam_marks	placed	
	9	7.75	94.0	1	
	40	6.60	86.0	1	
	61	7.51	86.0	0	
	134	6.33	93.0	0	
	162	7.80	90.0	0	
	283	7.09	87.0	0	
	290	8.38	87.0	0	
	311	6.97	87.0	1	
	324	6.64	90.0	0	
	630	6.56	96.0	1	
	685	6.05	87.0	1	
	730	6.14	90.0	1	
	771	7.31	86.0	1	
	846	6.99	97.0	0	
	917	5.95	100.0	0	
In [45]:			lacement_exam_marks']		
Out[45]:		cgpa placement_exam_marks placed			

Trimming

```
plt.subplot(2,2,4)
 sns.boxplot(new_df['placement_exam_marks'])
 plt.show()
0.030
0.025
0.015
0.010
0.005
                                                     120
                                                                                                                 100
                      placement_exam_marks
                                                                                   placement exam marks
0.025
0.015
0.010
0.000
```

placement_exam_marks

Capping

placement_exam_marks

```
In [49]:
          new df cap = df.copy()
           new_df_cap['placement_exam_marks'] = np.where(
               new df cap['placement exam marks'] > upper limit,
               upper_limit,
               np.where(
                   new_df_cap['placement_exam_marks'] < lower_limit,</pre>
                   lower_limit,
                   new df cap['placement exam marks']
               )
           )
 In [ ]:
           np.where(condtion, true, false)
In [50]:
           new df cap.shape
Out[50]:
          (1000, 3)
In [51]:
           # Comparing
           plt.figure(figsize=(16,8))
           plt.subplot(2,2,1)
           sns.distplot(df['placement_exam_marks'])
           plt.subplot(2,2,2)
           sns.boxplot(df['placement_exam_marks'])
```

```
plt.subplot(2,2,3)
sns.distplot(new_df_cap['placement_exam_marks'])

plt.subplot(2,2,4)
sns.boxplot(new_df_cap['placement_exam_marks'])

plt.show()
```


In []: