目录

1	实数	数轴上的连续函数															1								
	1.1	实直线																							1
	1.2	附着点	与极限,	点.																					1
		1.2.1	附着点																						1
		1.2.2	极限点																						9

1 实数轴上的连续函数

1.1 实直线

区间的定义省略. 下面是关于区间的一些术语及概念:

- 半无限区间: 一个端点是 $-\infty$ 或 $+\infty$ 的区间
- 双无限区间: 两个端点都是 $-\infty$ 或 $+\infty$ 的区间
- 有界区间: 不是无限区间. 意味着存在正实数 M 使得该区间是 [-M, M] 的子集.

退化区间:

- 若 *a* > *b*: (*a*, *b*), (*a*, *b*], [*a*, *b*) 和 [*a*, *b*] 都是空集
- 若 a = b: (a,b), (a,b], [a,b) 是空集, 而 [a,b] 为单点集 {a}

1.2 附着点与极限点

1.2.1 附着点

Definition 1.1 (附着点 (Accumulation point)). 对于 $X \subseteq \mathbb{R}$, 称 x 为 X 的附着点, 当且仅当对任意实数 $\epsilon > 0$, 存在 $y \in X$, 使得 $|x - y| \le \epsilon$.

绝对值 |x-y| 的集合意义为 x 与 y 的距离, 既 d(x,y), 而 d(x,y) 小于任意给定正实数. 直观地说, 若 x 是 X 的附着点, 那么 x 无限靠近集合 X. 此外, 若 x 本就是 X 中的元素, 那么 x 显然也是附着点.

- 例 对于集合 $(1,2] \cup \{3\}$, 1, 2, 3 都是其附着点, 1.5 也是.
- **例** 对于集合 (1,2], 0.5 不是附着点. 因为对于 $\epsilon = 0.1$, 所有 (1,2] 中的元素 y = 0.5

的距离 |y - 0.5| 都大于 0.1.

集合的所有附着点,构成了这个集合的闭包. 直观地说: 就是扩大集合,使其包含所有无限靠近原集合的点.

Proposition 1.1 (附着点的性质). 设 $X \subseteq \mathbb{R}$:

- 1. 若 x 为 X 的附着点, Y 为任意集合, 则 x 为 $X \cup Y$ 的附着点
- 2. 若 x 为 $X \cap Y$ 的附着点, x 同时为 X 和 Y 的附着点

Definition 1.2 (闭包 (Closure)). X 的所有附着点的集合称为 X 的闭包,记作 $\operatorname{cl}(X)$ 或 \overline{X} .

Proposition 1.2 (闭包算子的性质). 设 $X,Y \subseteq \mathbb{R}$:

- 1. $X \subseteq \operatorname{cl}(X)$
- 2. $\operatorname{cl}(X \cup Y) = \operatorname{cl}(X) \cup \operatorname{cl}(Y)$
- 3. $\operatorname{cl}(X \cap Y) \subseteq \operatorname{cl}(X) \cap \operatorname{cl}(Y)$
- 4. $\operatorname{cl}(\operatorname{cl}(X)) = \operatorname{cl}(X)$
- 5. $X \subseteq Y$, $\mathfrak{Q} \operatorname{cl}(X) \subseteq \operatorname{cl}(Y)$

 $Remark.\ \operatorname{cl}(X\cap Y)\subseteq\operatorname{cl}(X)\cap\operatorname{cl}(Y),$ 这个式子不能像并 \cup 情形的式子一样取等于. 因为可以找到反例: $\operatorname{cl}\left((0,1)\cap(1,2)\right)=\varnothing\neq\{1\}=\operatorname{cl}(0,1)\cap\operatorname{cl}(1,2).$

Proposition 1.3 (区间的闭包). 若 I 为 (a,b), (a,b], [a,b), [a,b] 中的一个, 那么 cl(I) = [a,b].

Definition 1.3 (闭区间). $X \subseteq \mathbb{R}$, 若 $X = \operatorname{cl}(X)$ 则称 X 为闭区间.

Proposition 1.4. \emptyset , \mathbb{N} , \mathbb{Z} , \mathbb{R} 的闭包为自身, \mathbb{Q} 的闭包为 \mathbb{R} .

下面引理表明, 附着点可以由集合内的序列来逼近, 其证明用到选择公理,

Lemma 1.1. $X \subseteq \mathbb{R}$, 则 x 为 X 的附着点, 当且仅当存在一个收敛到 x 的序列 $(x_n)_{n=1}^{\infty}$, 且序列的每一项都是 X 中的值 $(\forall n \geq 1, x_n \in X)$.

证明. 考虑集合 $X_n := \{e \in X : x - 1/n \le e \le x + 1/n\}$. 由于 $x \in X$ 的附着点, $\forall \epsilon > 0$, $\exists y \in X$, $|x - y| \le \epsilon$. 于是 $x - \epsilon \le y \le x + \epsilon$ 对于任意正实数 ϵ 均成立. 那么对任意 $n \ge 1$,只需取 $\epsilon = 1/n$,此时能够找到 $e \in X$,满足 $x - 1/n \le e \le x + 1/n$,这说明所有 X_n , $n \ge 1$ 都是非空的. 根据选择公理,我们可以依次从中选出一个元素,构成 (x_1, x_2, \ldots) . 所以序列 $(x_i)_{i=1}^{\infty}$ 的每一项 $x - 1/n \le x_i \le x + 1/n$,根据夹逼定理,序列 $(x_i)_{i=1}^{\infty}$ 收敛于 x.

通过此条引理,可以将闭包用序列的语言来定义.

Corollary 1.1. $X \subseteq \mathbb{R}$ 且 X 是闭的 $(\operatorname{cl}(X) = X)$. 序列 $(x_n)_{n=1}^{\infty}$ 的每一项 x_n 都是 X 中的元素,则 $(x_n)_{n=1}^{\infty}$ 收敛到 X 中的一点. 反过来,若 X 中的任意序列都收敛到 X 中的元素,则 X 是闭的.

1.2.2 极限点

下面是一个和附着点 (accumulation point) 非常相似但又有着细微差别的概念—极限点 (limit point).

Definition 1.4 (极限点(limit point)). $X \subseteq \mathbb{R}$, $x \in X$ 的极限点, 当且仅当 $x \in X \setminus \{x\}$ 的附着点. 若 x 不是 $X \setminus \{x\}$ 的附着点, 即存在 $\epsilon > 0$, 对任意 $y \in X \setminus \{x\}$ 都有 $|x-y| > \epsilon$. 此时称 $x \in X$ 的孤立点, 简称孤点.

也就是说, x 是 X 的附着点, 则 x 能被 X 中元素的序列 (包括 x 本身) 逼近. 而 x 是 极限点, 则 x 能被 X 中不同于 x 的元素组成的序列 (即 $X \setminus \{x\}$ 中的序列) 逼近.

Lemma 1.2. $X \subseteq \mathbb{R}$, 则 x 为 X 的极限点, 当且仅当存在一个收敛到 x 的序列 $(x_n)_{n=1}^{\infty}$, 且序列的每一项都是 $X \setminus \{x\}$ 中的值 $(\forall n \geq 1, x_n \in X \setminus \{x\})$.