Dynamika klasyczna

Zasady dynamiki Newtona

(Isaac Newton, 1687; duże ciała, małe prędkości)

- I. Ciała odosobnione pozostają w spoczynku lub poruszają się ze stałą prędkością po linii prostej, (zasada bezwładności, za Galileuszem),
- II. Szybkość zmiany pędu ciała równa jest sile zewnętrznej działającej na to ciało,

 $d\mathbf{p} / dt = \mathbf{F}$ (równanie wektorowe!; $\mathbf{p} = \mathbf{m} \mathbf{v}$)

lub w postaci skalarnej $dp_x/dt = F_x$,

$$dp_{x}/dt = F_{x},$$

$$dp_{y}/dt = F_{y},$$

$$dp_{z}/dt = F_{z},$$

 $dp_v/dt = F_v/$ (zasada niezależności ruchów)

dla m=const \longrightarrow m $\mathbf{a} = \mathbf{F}$

III. Każde działanie wywołuje równe przeciwdziałanie;

Siły, którymi ciała działają na siebie, są równe co do wartości i kierunku, lecz przeciwne co do zwrotu

Czy prawa Newtona są zawsze spełnione?

III. Każde działanie wywołuje równe przeciwdziałanie;

Siły, którymi ciała działają na siebie, są równe co do wartości i kierunku,

jednak dla
$$v_{1,2} \ll c \implies F_2(B_1) \ll F_{21}$$

Jednak dla
$$v_{1,2} \ll c \Rightarrow F_{12}^* = F_{12} = F_{21}$$

I. Ciała odosobnione pozostają w spoczynku lub poruszają się ze stałą prędkością po linii prostej,

Dwa układy odniesienia poruszają się względem siebie z pewnym przyspieszeniem a,;

jeśli **zasada bezwładności** spełniona jest w jednym z nich, to nie może być spełniona w drugim.

analogicznie II zasada dynamiki;

Zbiór układów odniesienia (II.) o.k. Zbiór układów z przyspieszeniem bez przyspieszenia → ukł. inercjalne → ukł. nieinercjalne (1.)

II. Szybkość zmiany pędu ciała równa jest sile zewnętrznej działającej na to ciało

 $\mathbf{F} = \mathbf{m} \mathbf{a}$

?

Brak niezależnych sposobów określenia masy i siły

"...Jeśli odkryliśmy podstawowe prawo mówiące, że **siła** jest równa iloczynowi masy i przyspieszenia, a następnie **definiujemy siłę** jako iloczyn masy i przyspieszenia, to niczego właściwie nie odkryliśmy....Prawdziwą treścią praw Newtona jest to, że siła, poza tym, że spełnia równanie $\mathbf{F} = \mathbf{m} \ \mathbf{a}$, ma jeszcze inne niezależne cechy, których jednak nie opisał Newton, ani nikt inny, i dlatego prawo fizyczne $\mathbf{F} = \mathbf{m} \ \mathbf{a}$ nie jest pełne"

Richard P. Feynman

Nie-inercjalne układy odniesienia

Oznaczenia:

Oxyz – inercjalny układ odniesienia

Ox'y'z' – porusza się z przyspieszeniem $\mathbf{a}_{\mathbf{u}}$ względem Oxyz

- nieinercjalny

Opis ruchu ciała poruszającego się w przestrzeni:

prędkość v względem Oxyz; v' względem Ox'y'z' przyspieszenie a " a' "

Transformacja Galileusza wiąże oba układy:

$$\overrightarrow{\mathbf{v}(t)} = \overrightarrow{\mathbf{v}'(t)} + \overrightarrow{\mathbf{v}_{\mathbf{u}}(t)},$$

$$d \mathbf{v}/dt = d \mathbf{v}'/dt + d\mathbf{v}_{\mathbf{u}}/dt$$

$$\mathbf{a} = \mathbf{a}' + \mathbf{a}_{\mathbf{u}}$$

W układzie inercjalnym Oxyz słuszne jest:

$$m a = F$$
,

W układzie nieinercjalnym Ox'y'z':

$$m a' = ?$$

Na podstawie Tr. Galileusza:

Przyjmując

$$\mathbf{a'} = \mathbf{a} - \mathbf{a_u}$$

$$\mathbf{m} \mathbf{a'} = \mathbf{m} (\mathbf{a} - \mathbf{a_u}) = \mathbf{m} \mathbf{a} - \mathbf{m} \mathbf{a_u}$$

$$\mathbf{m} \mathbf{a'} = \mathbf{F} - \mathbf{m} \mathbf{a_u}$$

$$- \mathbf{m} \mathbf{a_u} = \mathbf{F_h}, \quad \text{,,siła bezwładności''}$$

II prawo dynamiki Newtona uzupełnione o siłę bezwładności $\mathbf{F_b}$ można stosować także w układach nieinercjalnych:

$$ma' = F + F_b$$
,
 $\{F_b = -(m a_u)\}$

Sily [jednostka: 1 niuton = 1 kg* 1 m/s²]

- rzeczywiste
- fikcyjne (pozorne, bezwładności)

Siły rzeczywiste =oddziaływania między ciałami (źródło materialne):

- -grawitacyjne
- -elektromagnetyczne (tarcia, sprężystości)
- jądrowe silne (krótkozasięgowe)
- -słabe (krótkozasięgowe)

Siły fikcyjne = brak rzeczywistego źródła (oddziaływującego ciała);

- 1. Siła bezwładności **nie jest siłą rzeczywistą** lecz tzw. fikcyjną, tj. umowną i **występuje wyłącznie w układach nieinercjalnych**
- 2. Podstawową cechą sił bezwładności (*jednak niespecyficzną*!) jest ich proporcjonalność do masy m ciał, na które działają
- 3. Siły fikcyjne są określone własnościami układu odniesienia, a nie oddziaływaniem wzajemnym ciał.
- 2-ga. cecha sił bezwładności jest wspólna także dla sił grawitacji

Siły bezwładności

1. Siła bezwładności w układzie Ox'y'z' poruszającym się ruchem prostoliniowym z przyspieszeniem a_u

Obserwator Oxyz ("nieruchomy"): kulka porusza się z **a**_u;

Siła wypadkowa:

$$\mathbf{F}_{\mathbf{wyp}} = \mathbf{N} + \mathbf{F}_{\mathbf{gr}} = \mathbf{m} \ \mathbf{a}_{\mathbf{u}} \ (\neq 0)$$

Obserwator Ox'y'z': kulka nieruchoma, a' = 0

Siła wypadkowa:

$$\mathbf{F}_{\mathbf{wyp}} = \mathbf{N} + \mathbf{F}_{\mathbf{gr}} + \mathbf{F}_{\mathbf{b}} = \mathbf{0}$$

W obu układach – po uwzględnieniu siły bezwładności - II prawo dynamiki jest spełnione!

2. Siły bezwładności w układzie Ox'y'z' poruszającym się ruchem obrotowym z prędkością kątową ϖ i przyspieszeniem dośrodkowym $\mathbf{a}_{\mathbf{u}} = -\omega^2 \, \mathbf{R}$

2.1. Odśrodkowa siła bezwładności

$$\mathbf{F_h} = - \mathbf{m} \ \mathbf{a_u} = \mathbf{m} \ \omega^2 \ \mathbf{R}$$

Dla obserwatora w układzie wirującym Ox'y'z' (nieinercjalnym)

kulka pozostaje w spoczynku, jeśli $F_{wyp} = N + F_b = 0$;

⇒ II prawo dynamiki (po uwzględnieniu siły bezwł.) jest spełnione.

Odśrodkowa siła bezwładności występuje także dla **kulki poruszającej się** w układzie wirującym

Gaspard-Gustave de Coriolis (1792 - 1843)francuski fizyk i matematyk.

poruszającym się ruchem obrotowym ciało porusza się z prędkością v'

Dla obserwatora Oxyz (,,nieruchomego"; przypadek kolinearny):

Prędkość ciała $v = v' + v_{ij} = v' + \omega R$

 $a_n = v^2/R = (v' + \omega R)^2/R$ Przyspieszenie normalne (dośrodkowe)

 $a_n = (v')^2/R + 2v'\omega + \omega^2 R$

 \mathbf{v}

Dla obserwatora Ox'y'z' (,,wirującego"):

Prędkość ciała

Przyspieszenie $a' = (v')^2/R$ Różnica: $a_n - a_n' = 2v' \omega + \omega^2 R$ stanowi dodatkowe przyspieszenie (fikcyjne) obserwowane w układzie nieinercjalnym (wirującym) Ox'y'z , przy czym:

- przyspieszenie ω^2 R związane jest z odśrodkową siłą bezwładności $F_{bo}=$ m ω^2 R dla ciała o masie m ,
- przyspieszenie 2v' ω związane jest z siłą Coriolisa

$$F_C = 2m \text{ v' } \omega$$

Ogólnie przyspieszenie i siła Coriolisa

$$\mathbf{F_c} = 2m (\mathbf{v'}x \boldsymbol{\omega})$$

 $\mathbf{a_c} = 2 (\mathbf{v'}x \boldsymbol{\omega})$

Siła Coriolisa działa w płaszczyźnie prostopadłej do osi obrotu wyłącznie na ciała poruszające się (v' ≠0) w układach wirujących.

Siła Coriolisa w ziemskim układzie odniesienia

Rzeki, tory, pasaty/antypasaty

Wahadło Foucault'a

Jean Bernard Leon FOUCAULT (1819-1868) francuski fizyk, eksperymentator i wynalazca

1850 - dowiódł, że światło porusza się wolniej w wodzie niż w powietrzu,

1851- zademonstrował obrót Ziemi przy pomocy wahadła,

1852 - wynalazł żyroskop,

1855 - odkrył prądy wirowe, znane obecnie jako prądy Foucaulta,

1858 - ulepszył lustra dla teleskopów ulepszył metodę pomiaru prędkości światła, zbudował pryzmat polaryzacyjny, i fotometr.

Wahadło Foucault'a (1851r.)

Dla obserwatora na Ziemi płaszczyzna ruchu wahadła obraca się z prędkością kątową:

$$\omega_1 = \omega \sin \phi$$

W Warszawie ($\phi = 52^{\circ}$): $\omega_1 \approx 12^{\circ}/h$

Start z wychylenia maksymalnego (B)

Pokaz publiczny, głównie dla kolegów naukowców, odbył się w Obserwatorium Paryskim 3.02.1851 r. z wahadłem o długości 11 m

"Vous etes invités a' venir voir tourner la terre..."

Pokaz wywołał ogromne wrażenie i książę Louis Napoleon Bonaparte, przyszły Napoleon III, poprosił Foucaulta o zademonstrowanie eksperymentu szerokiej publiczności. Miało to miejsce 26.III.1851 r. pod kopułą Pantheonu przy pomocy wahadła o długości 67 m z podwieszoną kulą armatnią o ciężarze 28 kg.

Pokaz wywołał później ogromną liczbę podobnych eksperymentów na całym świecie.

Wahadła Foucaulta obecnie

Miejsce (nazwa oryginalna)	Miejsce (nazwa polska)	Kraj	L (<u>m</u>)	M (kg)
Oregon Convention Center in Portland	Centrum Kongresowe w Portland	<u>USA</u>	27	408
University of Colorado	<u>Uniwersytet Kolorado</u>	<u>USA</u>	40	300
Museum of Science and Industry, Chicago	Muzeum Techniki i Przemysłu, Chicago	<u>USA</u>	20	300
National Museum of American History, Washington, DC	Muzeum Narodowe Historii Amerykańskiej, Waszyngton	<u>USA</u>	21	105
Indiana State Museum	Muzeum Stanowe w Indianie	<u>USA</u>	26	96
United Nations, New York, N.Y.	Siedziba ONZ, Nowy Jork	<u>USA</u>	23	91
Zamek Książąt Pomorskich w Szczecinie, Szczecin	Zamek Książąt Pomorskich w Szczecinie, Szczecin	<u>Polska</u>	28,5	76
Wydział Fizyki <u>Uniwersytetu im. Adama</u> <u>Mickiewicza, Poznań</u>	Wydział Fizyki <u>Uniwersytetu im. Adama</u> <u>Mickiewicza</u> , <u>Poznań</u>	<u>Polska</u>	10	52
Wieża Radziejowskiego- dawna dzwonnica, Frombork	Wieża Radziejowskiego- dawna dzwonnica, Frombork	<u>Polska</u>	28,5	46
Instytut Fizyki <u>Uniwersytetu Mikołaja Kopernika</u> , <u>Toruń</u>	Instytut Fizyki <u>Uniwersytetu Mikołaja Kopernika</u> , <u>Toruń</u>	Polska	16	29
Pantheon, Paris	Panteon w Paryżu	Franc ja	67	28
Kościół św. Piotra i Pawła w Krakowie, Kraków	Kościół św. Piotra i Pawła w Krakowie, Kraków	<u>Polska</u>	46,5	25

Wnioski z analizy praw Newtona

I. Inercjalne układy odniesienia;

Układy, w których I prawo Newtona (zasada bezwładności, z uwzględnieniem tylko sił rzeczywistych) jest spełnione nazywamy inercjalnymi.

Twierdzenie

Układem inercjalnym jest każdy układ

poruszający się bez przyspieszenia (ruchem jednostajnym po prostej)

Dowód

Niech Oxyz będzie wybranym Układem Inercjalnym (U.I.); transformacja Galileusza dla dowolnego innego układu Ox'y'z':

$$\mathbf{v} = \mathbf{v}' + \mathbf{v}_{\mathbf{u}}$$
; jeśli $\mathbf{a}_{\mathbf{u}} = \mathbf{0}$, to $\mathbf{v}_{\mathbf{u}} = \text{const}$
d $\mathbf{v}/\text{dt} = \mathbf{d} \mathbf{v}'/\text{dt} + \mathbf{d} \mathbf{v}_{\mathbf{u}}/\text{dt}$
 $\mathbf{a} = \mathbf{a}'$

II. Prawa dynamiki klasycznej <u>w inercjalnych układach</u> <u>odniesienia</u> są niezmiennicze względem transformacji Galileusza

t.zn. pozostają niezmienione we wszystkich układach inercjalnych;

W układach inercjalnych:
$$\mathbf{a} = \mathbf{a}'$$
 $\mathbf{m} = \mathbf{m}'$
 $\mathbf{F} = \mathbf{F}' \ (rzeczywista)$
 $\Rightarrow \ (\mathbf{m} \ \mathbf{a} = \mathbf{m}' \mathbf{a}') = \mathbf{inv}$

co potwierdza zasadę względności Galileusza

(tj. nie można obiektywnie odróżnić układów U.I. ⇒ ruch jest względny)

III. Mechanika klasyczna (Newtona) jest słuszna dla dużych mas

i małych prędkości:

$$\begin{cases} m>>(masa\ atomu), \\ m=const, \quad (m_1)+(m_2)=(m_1+m_2), \\ v<$$

Ped:
$$\mathbf{p} = \mathbf{m} \mathbf{v}$$

(wektor pędu **p** ma kierunek wektora prędkości **v**)

Niech będzie zamknięty układ dwóch cząstek:

Na podstawie II+III prawa Newtona:

(F₁)
$$d\mathbf{p}_1/dt = -d\mathbf{p}_2/dt$$
 (-F₂),
 $d(\mathbf{p}_1 + \mathbf{p}_2)/dt = 0$,
($\mathbf{p}_1 + \mathbf{p}_2$) = \mathbf{p}_c = const
pęd układu zamkniętego jest stały

Zderzenia

Zderzenie centralne niesprężyste (bez zachowania energii kinetycznej) jednakowych mas poruszających się z jednakowymi prędkościami

(pęd układu w każdej chwili jest zerowy, energia kinetyczna jest tracona)

Zagadnienie odwrotne:

-v; -p(t)
$$p_{\mathbf{u}}(\mathbf{t}) = 0$$
. $\mathbf{p}_1 = -\mathbf{p}_2$

Dla dowolnych mas i prędkości :
$$m_1v_1 + m_2v_2 = (m_1 + m_2)v$$
przed po

Napęd rakietowy

Zderzenie centralne sprężyste (z zachowaniem energii kinetycznej)

(z reguły symetrii: *symetria zagadnienia* + *symetria warunków* = *symetria wyniku*

I. równe masy, równe prędkości

$$\mathbf{v} = 0$$
 lub $\mathbf{v}_{\underline{1}} = -\mathbf{v}_{\underline{2}}$;

II. równe masy, poruszająca się i spoczywająca

$$\mathbf{p_{u}}(t) = \mathbf{p_{1}}$$

$$\mathbf{E_{u}} = \mathbf{E_{1}} = \mathbf{const}$$

III. w ogólnym przypadku różnych mas i prędkości

Przekazywanie pędu

Eksperymentalny dowód na:

- 1. II prawo dynamiki (F \leftrightarrow dp/dt)
- 2. zachowanie pędu i energii układu

Prawa zachowania

Definicja 1.

Układem mechanicznym zamkniętym (izolowanym)

nazywamy zbiór ciał wydzielonych z otoczenia, na które <u>nie działają siły</u> <u>pochodzące od ciał nie należących do układu</u> (t.zw. siły zewnętrzne)

Definicja 2.

Całką ruchu układu mechanicznego jest taka <u>funkcja stanu układu</u> (*t.j. funkcja współrzędnych i prędkości ciał*),

która zachowuje stałą wartość podczas ruchów układu

Twierdzenie:

W układzie mechanicznym zamkniętym istnieją 3 addytywne całki ruchu

- 1. pęd
- 2. energia
- 3. moment pędu

Wniosek 1

Oznacza to, że istnieją 3 prawa zachowania: energii, pędu, i momentu pędu

Prawa zachowania są prawami ścisłymi - w odróżnieniu np. od praw Newtona są spełnione nawet wtedy, gdy prawa Newtona są niespełnione.

I. Prawo zachowania pędu

W układzie zamkniętym (t.zn. gdy na układ nie działają siły zewnętrzne) całkowity pęd układu jest stały

Dowód:

został podany wcześniej

Zasada zachowania energii

Niech układ składa się z 1 ciała, na które działa wypadkowa siła F:

Definicja 3.

Wielkość (½m v²)

nazywamy energią kinetyczną $\mathbf{E}_{\mathbf{k}}$ ciała o masie m i prędkości v

Definicja 4.

Wielkość F ds (J F ds)

nazywamy pracą dW (W) wykonywaną przez siłę F na drodze ds

$$\triangle$$
 $\Delta E_k = W$

Jeśli układ jest zamknięty, F = 0, i :
$$\Delta(\sqrt[1]{2}m\ v^2) = \int F\ ds = 0$$

$$\Delta E_k = 0 \qquad (W=0)$$

Wniosek (zasada zachowania energii kinetycznej)

W układzie zamkniętym energia kinetyczna E_k jest zachowana

Pole sił

Definicja 5.

Pole sił nazywamy zachowawczym lub potencjalnym, jeśli praca tych sił nad ciałem nie zależy od drogi, po której ciało się porusza, a tylko od punktu początkowego i końcowego ruchu; siły takiego pola nazywamy siłami zachowawczymi.

Definicja 6.

Pole sił, w którym kierunek siły działającej w każdym punkcie przechodzi przez wspólne nieruchome centrum, a wartość siły zależy tylko od odległości punktu od tego centrum, nazywamy polem centralnym: $\mathbf{F} = \mathbf{f}(\mathbf{r}) \mathbf{e}_{\mathbf{r}}$

Definicja 7.

Pole sił, w którym w każdym punkcie siły są takie same co do wartości, kierunku i zwrotu (F=const) nazywamy jednorodnym

Definicja 8.

Pole sił, które nie zmienia się w czasie, nazywamy polem stacjonarnym

Twierdzenie

Pole centralne jest polem zachowawczym

Dowód:

$$\mathbf{F} = \mathbf{f}(\mathbf{r}) \, \mathbf{e_r}$$
 $\mathrm{dW} = [\mathbf{F}] \, \mathrm{ds} = [\mathbf{f}(\mathbf{r}) \, \mathbf{e_r}] \, \mathrm{ds} = \mathbf{f}(\mathbf{r}) \, \mathbf{1} \, \mathrm{ds} \, \mathrm{cos} \phi = \mathbf{f}(\mathbf{r}) \, \mathrm{dr}$
 $dla \, dowolnej \, \mathrm{ds} \, \mathrm{W} \, zależy \, tylko \, od \, \mathrm{dr};$
 $dla \, ustalonych \, punktów \, 1 \, i \, 2 \, pola \, dr \, jest \, też \, ustalone.$

$$W_{12} = \int_{1}^{2} f(r) dr$$

Twierdzenie

Pole jednorodne jest polem zachowawczym

Energia potencjalna pola zachowawczego

Twierdzenie:

W polu zachowawczym dla każdego punktu tego pola istnieje jednoznaczna funkcja F(x,y,z).

Dowód:

wystarczy podać tylko jedną

Niech
$$U = U(x,y,z)$$
, taka, że:

$$\begin{cases} U_1 - U_2 = W_{12}, \\ U(r \rightarrow \infty) = U_0 = 0 \end{cases} \quad (t.zn. - \Delta U = \Delta W,$$
 oraz
$$U(r \rightarrow \infty) = U_0 = 0 \quad i \; podobnie: \; - \; dU = dW)$$
 Zatem
$$U(x,y,z) = U(x,y,z) - U_0 = W_{r,\infty}$$

Definicja:

Funkcję U(x,y,z) nazywamy energią potencjalną w polu zachowawczym

Przy tym dla pojedyńczego (każdego) ciała $\Delta E_k = W_{12} = U_1 - U_2 = -\Delta U$

$$\Delta E_{k} = W_{12} = U_{1} - U_{2}$$
 $E_{k2} - E_{k1} = U_{1} - U_{2}$
 $E_{k2} + U_{2} = E_{k1} + U_{1}$

Definicja 9.

Wielkość $E_c = E_k + U$ nazywamy energią mechaniczną całkowitą ciała

Ogólnie (dla dowolnego układu ciał - również otwartego):

II. Prawo zachowania mechanicznej energii całkowitej

Całkowita energia mechaniczna układu ciał w polu zachowawczym jest stała

Wniosek 2

W polu zachowawczym przyrost energii kinetycznej ciała jest równy ubytkowi jego energii potencjalnej

$$\Delta E_k = -\Delta U \qquad (\Delta U = U_2 - U_1)$$

Pole sił w zderzeniach

zderzenia sprężyste => niesprężyste

$$\Delta E_k = -\Delta U$$

potencjalne pole sił: U = 2E

niezachowawcze pole sił: 💥

Energia potencjalna w polu sił

Praca dW przesunięcia na drodze ds w polu sił na podst. definicji 4:

$$dW = F ds$$
 $(W = \int F ds)$

Podobnie, praca przemieszczenia ciała o dx (dy=0, dz=0), w potencjalnym polu sił F(x,y,z), w którym określona funkcja energii potencjalnej U = U(x,y,z):

$$\Rightarrow - dU = \mathbf{F}_{\mathbf{x}} d\mathbf{x} ,$$

$$\mathbf{F}_{\mathbf{y}} = - dU/d\mathbf{x}$$

analogicznie
$$F_y = - dU/dy$$
, $F_z = - dU/dz$,

ale $\mathbf{F} = \mathbf{F_x} \mathbf{e_x} + \mathbf{F_v} \mathbf{e_v} + \mathbf{F_z} \mathbf{e_z}$ \implies $\mathbf{F} = -(\delta U/\delta x \ \mathbf{e_x}, \delta U/\delta y \ \mathbf{e_v}, \delta U/\delta z \ \mathbf{e_z})$ $\mathbf{F} = - \operatorname{grad} \mathbf{U}$

Wniosek:

Każda z funkcji: siła F(x,y,z)

i energia potencjalna ciała U = U(x,y,z)

jednoznacznie określa pole sił

Prawo zachowania momentu pędu

Definicja 1.

Momentem pędu M ciała* względem ustalonego punktu O nazywamy pseudowektor

$$\mathbf{M} = \mathbf{r} x \mathbf{p},$$

 $\mathbf{M} = \mathbf{r} x \mathbf{p}$, \mathbf{r} - promień względem O

Moment pędu układu ciał:

$$\mathbf{M}_{\mathbf{u}} = \sum \mathbf{M}_{\mathbf{i}}$$

Definicja 2.

Momentem siły F względem ustalonego punktu O jest pseudowektor

$$N = r x F$$
,

Moment siły charakteryzuje zdolność siły do obracania ciała względem ustalonego punktu (osi)

Definicja 3.

Parą sił nazywamy dwie równoległe, niekolinearne siły, równe co do

Moment pary sił jest równy iloczynowi jednej z nich przez ramię działania pary ($\mathbf{F}_1 = -\mathbf{F}_2 = \mathbf{F}$)

$$\mathbf{N} = \mathbf{r_1} \times \mathbf{F_1} + \mathbf{r_2} \times \mathbf{F_2} = (\mathbf{r_1} - \mathbf{r_2}) \times \mathbf{F} = \mathbf{r_F} \times \mathbf{F} = \mathbf{F} \mathbf{r_F} \cos \varphi = \mathbf{F} \mathbf{r_{FF}}$$

Wniosek 2

Momenty sił wzajemnego oddziaływania ciał dla dowolnego układu równoważą się

$$r_{FF} = 0$$

Twierdzenie

Moment pędu układu ciał jest stały jeśli wypadkowy moment sił zewnętrznych jest równy zeru Dowód:

$$d \mathbf{p}/dt = \mathbf{F}$$

$$d (\mathbf{r} \times \mathbf{p})/dt = \mathbf{r} \times \mathbf{F}$$

$$d \mathbf{M}/dt = \mathbf{N} / \Sigma$$

$$d \mathbf{M}_{\mathbf{u}}/dt = \mathbf{N}_{\mathbf{wyp}}, (analog \text{ II zas. dynamiki w r. obr.})$$

$$\mathbf{N}_{\mathbf{wyp}} = 0 \implies \mathbf{M}_{\mathbf{u}} = \text{const}$$

III. Zasada zachowania momentu pędu:
Moment pędu <u>zamkniętego</u> układu cząstek jest stały

Elementy mechaniki bryły sztywnej

Definicja 1

Środek masy układu ciał r_c

$$\Sigma m_i \mathbf{r_i} = m \mathbf{r_c}$$

Środek masy bryły sztywnej

$$\int \overline{r}dm = m\overline{r}_c$$

$$\bar{r}_c = \frac{1}{m} \int \bar{r} dm$$

Twierdzenie:

Środek masy r_c sztywnego układu ciał (bryły) porusza się pod wpływem sił zewnętrznych tak, jakby poruszał się punkt materialny o takiej samej masie pod wpływem tych samych sił

Dowód

z definicji
$$(\Sigma \mathbf{m_i} \mathbf{r_i} = \mathbf{m} \mathbf{r_c}) / d^2/dt^2$$

 $(\Sigma \mathbf{F_{zew}} =) (\Sigma \mathbf{m_i} \mathbf{a_i} = \mathbf{m} \mathbf{a_c})$

Ruch obrotowy bryły wokół nieruchomej osi

Moment bezwładności

Moment pedu elementu i wzgl .p. O:

$$\mathbf{M_i} = \mathbf{m_i} \ \mathbf{r_i} \ x \ \mathbf{v_i} ; \qquad \mathbf{r_i} \ \bot \mathbf{v_i}$$
$$|\mathbf{M_i}| = \mathbf{M_i} = \mathbf{m_i} \ \mathbf{r_i} \ (\mathbf{v_i}) = \mathbf{m_i} \ \mathbf{r_i} \ (\omega \ \mathbf{R_i})$$

rzut M_i na oś obrotú z:

$$(M_i)_z = M_i \cos \alpha = m_i r_i \cos \alpha \omega R_i = m_i R_i \omega R_i = \omega m_i R_i^2$$

rzut M_z momentu pędu całej bryły (tj. moment pędu bryły wzgl.osi z):

$$M_z = \Sigma_i (M_i)_z = \Sigma_i \omega m_i R_i^2 = \omega \Sigma_i m_i R_i^2$$

Definicja 2.

Wielkość $\sum m_i R_i^2$ ($\int R_i^2 dm$) jest momentem bezwładności I_z układu (bryły) względem ustalonej osi (z)

$$M_z = I_z \omega$$
 (analog $p = m v$)

II prawo dynamiki w ruchu obrotowym bryły

$$d \mathbf{M}/dt = \Sigma \mathbf{N}_{zew},$$
 Równania dynamiki bryły sztywnej łącznie
$$d\mathbf{p}_c/dt = \mathbf{F}_{zew \ wyp} \ (r. \ postępowy)$$

$$d \mathbf{M}/dt = \mathbf{N}_{zew \ wyp} \ (r. \ obrotowy)$$

Dla rzutu "z" (odpowiednik zasady niezależności ruchów)

$$M_z = I_z \omega$$

$$d(I_z \omega)/dt = \Sigma N_{z zew}$$

$$I_z \varepsilon_z = \Sigma N_{z zew},$$

$$(\varepsilon_z = d \omega/dt - przyspieszenie kątowe)$$

Odpowiedniki energii i pracy w r. obrotowym:

energia kinetyczna
$$E_k = \sum E_{ki} = \sum \frac{1}{2} m_i (v_i^2) = \sum \frac{1}{2} m_i (\omega_i^2 R_i^2)$$

 $E_k = \frac{1}{2} I \omega^2$

praca

$$dW = \sum dW_i = \sum F_i ds = \sum F_i (v_i) dt = \sum F_i (\omega x r_i) dt = \sum \omega (r_i x F_i) dt$$
$$dW = \omega N dt$$

Energia kinetyczna bryły w ruchu płaskim łącznie

$$E_{k} = \frac{1}{2} I_{c} \omega^{2} + \frac{1}{2} m v_{c}^{2}$$

Moment bezwładności

Z definicji:

 $I = \sum m_i R_i^2$

układu ciał

 $I = \int (R_i^2) dm$

bryły

 R_i - odległość elementu m_i od osi obrotu,

Wniosek 1

Moment bezwładności jest wielkością addytywną (z definicji)

Wniosek 2

Moment bezwładności zależy od masy bryły i jej rozkładu (R_i²); przy zmianie rozkładu masy i momentu bezwładności od I₁ do I₂ w układzie izolowanym ulega zmianie prędkość kątowa:

$$I_1 \omega_1 = I_2 \omega_2$$

(z prawa zachowania **M**

$$M_z = I_z \omega$$
)

Twierdzenie Steinera

Moment bezwładności bryły I względem dowolnej osi jest równy sumie momentu bezwładności I_c względem osi równoległej i przechodzącej przez środek masy bryły oraz iloczynu masy bryły m i kwadratu odległości obu osi 1:

Przykłady: momenty brył względem osi symetrii

tarcza o promieniu R i masie m $I = 1/2 \text{ mR}^2$, cienki pręt o długości I i masie m (oś \perp) $I = 1/12 \text{ mI}^2$, walec o promieniu R i masie m (oś \mid) $I = 1/2 \text{ mR}^2$, kula o promieniu R i masie m $I = 1/2 \text{ mR}^2$

Żyroskopy

Uwaga 1

W ogólności wektor \mathbf{M} nie pokrywa się z osią obrotu bryły (tj. z $\boldsymbol{\omega}$) Jeśli oś obrotu jest osią symetrii to $\mathbf{M} = \mathbf{I} \boldsymbol{\omega}$ (reg. symetrii)

Uwaga 2

Przy obrotach bryły wokół osi symetrii oś obrotu nie doznaje działania sił i jest stabilna $(d \mathbf{M_u}/dt = \mathbf{N_{wyp}})$

Definicja 3

Oś obrotu, która w układzie izolowanym zachowuje stałe położenie nazywa się osią swobodną bryły

Definicja 4

Trzy wzajemnie prostopadłe osie swobodne bryły przechodzące przez jej środek masy są osiami głównymi bryły *Definicja 5*

Głównymi momentami bezwładności bryły nazywamy momenty bezwładności $I_{\alpha,\beta,\gamma}$ względem jej osi głównych *Definicja 6*

Bryły, dla których wszystkie trzy główne momenty bezwładności są równe, nazywają się bąkami (żyroskopami) kulistymi, a dla których dwa z trzech są równe nazywają się bąkami symetrycznymi *Uwaga 3*

Przy obrotach bryły w układzie izolowanym ustalone są tylko te obroty, które odpowiadają ekstremalnym wartościom momentów głównych bryły;

w obecności sił zewnętrznych ustalone są obroty wokół osi głównej o maksymalnym momencie bezwładności

Moment sił żyroskopowych

1. klęska "zdrowego rozsądku"

$$\overrightarrow{\mathbf{N}} = \overrightarrow{\mathbf{d}} \overrightarrow{\mathbf{M}} / \mathbf{dt} \implies \overrightarrow{\mathbf{d}} \overrightarrow{\mathbf{M}} = \overrightarrow{\mathbf{N}} \mathbf{dt} \quad (\mathbf{N} = \mathbf{r} \times \mathbf{F})$$

Prędkość kątowa obrotu osi żyroskopu:

$$d\phi = dM / M = N'dt/M,$$

$$\omega' = d\phi/dt = N / M;$$

$$lub N = \omega' M$$

ale

$$(\omega' \perp N \perp M)$$

$$N = \omega' x M$$
 (moment działający na oś żyroskopu)

$$(z III zas. dynamiki N_{\dot{z}} = -N)$$

Precesja

moment sił **N** działający na oś ("pochylonego") żyroskopu w polu grawitacyjnym **g**:

$$\mathbf{N} = \boldsymbol{\omega}_{\mathbf{p}} x \mathbf{M},$$
$$\mathbf{N} = \boldsymbol{\omega}_{\mathbf{p}} \mathbf{M} \sin \alpha$$

$$N = N_g (= 1 e_l x mg)$$

 $N_g = mg 1 sin \alpha$

 $mg \ 1 \sin \alpha = \omega_p \ M \sin \alpha$

częstość precesji $\omega_p = \text{mg 1/M} = \text{mg 1/I}\omega$

Nutacje

Precesja osi Ziemi została odkryta przez Hipparcha w 130 roku p.n.e.

Stożek o kącie 47° zakreślany przez oś w ciągu 25 700 lat (t.zw. rok platoński)

Żyrokompas

Oś wirującego żyroskopu na Ziemi obraca się wraz z nią z prędkością kątową $\omega' = \omega_z = 2\pi/24h$

$$N_{\dot{z}} = M x \omega^{\epsilon}$$

