

INF728 - Bases de données non relationnelles

GDELT - Les événements marquants de l'année 2021

Introduction

Objectif

Concevoir un système de stockage distribué résilient et performant pour réaliser 4 requêtes sur les données « The Global Database of Events, Language and Tone (GDELT) ».

Ressources

- 5 machines openstack
- 5 cerveaux
- Support du cours INF728

Contraintes

- Utiliser une des technologies suivantes : MongoDB, Spark, Cassandra, SQL ou Neo4j
- Concevoir un système distribué tolérant à une panne
- Charger une année de donnée GDELT
- Utiliser les ressources openstack

Sommaire

Présentation

- Choisir une technologie
- Implémenter la solution
- Intégrer la solution dans une architecture en streaming

Démonstration

Questions

Présentation Choisir une technologie

Choisir une technologie Etudier les données et spécifier le besoin

Données

- Types variés
- Volumes importants ~ 34k .csv
- Structurées en table
- Nombre important de « null »

Spécifications

- Faible latence (quelques dizaines de secondes par requêtes)
- Disponibilité malgré une panne (no SPOF*)
- Pas d'écriture (hors insertion des données dans la base)

Choisir une technologie

Solution retenue

Présentation Implémenter la solution

Implémenter la solution Créer une architecture distribuée

Extrait du fichier de configuration cassandra.yaml

```
ubuntu@tp-hadoop-32:~/NoSQLProject/apache-cassandra-4.0.1/bin$ ./nodetool status
Datacenter: datacenter1
Status=Up/Down
I/ State=Normal/Leaving/Joining/Moving
   Address
                             Tokens Owns Host ID
                                                                               Rack
                                          1ed4a723-736f-4508-82cf-001a89690eee rack1
   192.168.3.235 14.15 GiB 256
                                          4bfa2de5-99dc-42bd-8cec-df76165bcbf6 rack1
   192.168.3.74
                 13.1 GiB
   192.168.3.108 11.79 GiB 256
                                          125b60bf-eaa5-4503-b55d-ce1019dda178 rack1
   192.168.3.207 12.55 GiB 256
                                          b3347412-b9ce-45bb-af40-4b09e2c6cced rack1
  192.168.3.139 13.02 GiB 256
                                          c7b0cd78-cd0e-4d59-a72e-4445c260f0bd rack1
```

Statut du cluster

Modélisation des données

« Request first » = Dénormalisation

Définir des requêtes

1 requête = 1 table

Définir une modélisation des données Sélectionner les attributs pour chaque requête

Requête 1 : afficher le nombre d'articles/évènements qu'il y a eu pour chaque triplet (jour, pays de l'évènement, langue de l'article).

events.csv

- GlobalEventID
- Day
- NumArticles
- ActionGeoCountryCode

mentions.csv

- GlobalEventID
- MentionDocTranslational-Info

Modélisation des données

« Request first » = Dénormalisation

Définir des requêtes

1 requête = 1 table

Définir une modélisation des données

Définir les primary keys, partition keys, clustering keys et types

nb_articles_events

globaleventid day mentionid action_geocountrycode mentiondoctranslationalinfo

Type

Minimiser le volume (arrondi)

Partition

- Minimiser le nombre de partition
- Lignes / partition < 100k
- Volumes de données / partition < 100 Mo

Modélisation des données

Définir une modélisation physique

Gdelt

Evaluer et affiner le modèle

Evaluation	nb_articles_events	countries_events	data_source	relationship
75 %	0,15	6	0,8	0,4
95 %	0,5	31	7	1,7
98 %	4	475	132	26
99 %	10	1183	475	111
Nb partitions	47361	174	14268	12126

Taille des partitions par table en méga-octets

Evaluer et affiner le modèle

Affinage		Requête 1	Requête 2		Requête 3	Requête 4	
		nb_articles_events	countries_events		data_source	relationship	
Implémentation 1	Paramètre		NA	FR et US	lefigaro.com, bbc.com		+ CN
	Temps (s)		90	15 et 127	0.7, X		X

Améliorations

- Spark
- Bucketing
- Bloom filter
- Read-repair

Présentation Intégrer la solution dans une architecture streaming

Intégrer la solution dans une architecture en streaming

Démonstration

Questions

Annexes

Annexe

Entités et relations

Partition Keys, Clustering Keys

- 1. afficher le nombre d'articles/évènements qu'il y a eu pour chaque triplet (jour, pays de l'évènement, langue de l'article).
- > day = 365
- ➤ action_geocountrycode = 300
- > mentiondoctranslationalinfo = 50
- > globaleventid = 1500 x 4 x 24h x 365 = 35 000 000
- > mentionid = 35 000 000

PRIMARY KEY ((day, action_geocountrycode, mentiondoctranslationalinfo) globaleventid, mentionid) WARNING on NULL values in PK

Partition Keys, Clustering Keys

2. pour un pays donné en paramètre, affichez les évènements qui y ont eu places triées par le nombre de mentions (tri décroissant); permettez une agrégation par jour/mois/année

```
> globaleventid = 35 000 000
```

- > day = 365
- > month = 12
- > year = 1
- > nummentions = 0 infini
- > action_geocountrycode = 300
- > mentiondoctranslationalinfo = 300

PRIMARY KEY ((action_geocountrycode) month, days, globaleventid) WARNING on NULL values in PK

Partition Keys, Clustering Keys

3. pour une source de donnés passée en paramètre (gkg.SourceCommonName) affichez les thèmes, personnes, lieux dont les articles de cette source parlent ainsi que le nombre d'articles et le ton moyen des articles (pour chaque thème/personne/lieu); permettez une agrégation par jour/mois/année.

- \rightarrow day = 365
- > month = 12
- > sourcecommonname = infini
- > themes = liste infinie
- > persons = liste infinie
- > locations = plusieurs milliers
- > tone = -10 à 10 (presque infini à la vue de la précision du tone)
- > documentidentifier = >35 000 000

PRIMARY KEY ((Sourcecommonname) month, day, documentidentifier) WARNING on NULL values in PK WARNING SETS CANNOT BE PRIMARY KEYS

Partition Keys, Clustering Keys

4. étudiez l'évolution des relations entre deux pays (specifies en paramètre) au cours de l'année. Vous pouvez vous baser sur la langue de l'article, le ton moyen des articles, les thèmes plus souvent citées, les personalités ou tout élément qui vous semble pertinent.

```
> sourceurl = 1000 * 35 000
```

- > day = 365
- > month = 12
- ➤ averagetone = -10 à 10 (infini)
- > actor1_geocountrycode = 300
- > actor2_geocountrycode = 300
- > themes = infini

PRIMARY KEY ((actor1_geocountrycode, actor2_geocountrycode), month, day, sourceurl) WARNING on NULL values in PK WARNING SETS cannot be PRIMARY KEYS