

Solve multiband Eliashberg equations

This software provides three programs:						
. ebmb itself solves the multiband Eliashberg equations (Eqs. 1 or 4) on a cut-off imagina axis and optionally continues the results to the real axis via Padé approximants. The normal-state equations (Eq. 7) can also be solved on the real axis.						
A material is defined by nothing but an ELIASHBERG spectral function or, as fallback, an EINSTEIN phonon frequency and intra- and interband electron-phonon couplings, Coulomb pseudo-potentials and, if desired, the band densities of Bloch states, otherwise assumed to be constant.						
2. critical finds the critical point via the bisection method varying a parameter of choice. Superconductivity is defined by the kernel of the linearized gap equation (Eq. 5 or 6) having an eigenvalue greater than or equal to unity.						
 tc finds the critical temperature for each band separately via the bisection method. Su- perconductivity is defined by the order parameter exceeding a certain threshold. Usually, it is preferable to use critical. 						
—— Installation ————————————————————————————————————						
The makefile is designed for the GNU or Intel Fortran compiler:						
<pre>\$ make FC=gfortran FFLAGS='-03 -fopenmp' \$ python3 -m pip install -e .</pre>						
—— Reference ————						
ebmb is stored on <i>Zenodo:</i> https://doi.org/10.5281/zenodo.13341224. The theory is described here: https://scipost.org/theses/132/.						
— Licence —						
This program is free software: you can redistribute it and/or modify it under the terms of the						

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https://www.gnu.org/licenses/.

Copyright © 2016–2025 Jan Berges

– Outline —

Let $\hbar=k_{\rm B}=1$. Fermionic and bosonic Matsubara frequencies are defined as $\omega_n=(2n+1)\pi T$ and $\nu_n=2n\pi T$, respectively. The quantity of interest is the Nambu self-energy matrix¹

$$\boldsymbol{\Sigma}_{i}(n) = i\omega_{n}[1 - Z_{i}(n)]\mathbf{1} + \underbrace{Z_{i}(n)\,\Delta_{i}(n)}_{\boldsymbol{\phi}_{i}(n)}\boldsymbol{\sigma}_{1} + \chi_{i}(n)\boldsymbol{\sigma}_{3},$$

where the Pauli matrices are defined as usual and i is a band index. Renormalization $Z_i(n)$, order parameter $\phi_i(n)$ and energy shift $\chi_i(n)$ are determined by the Eliashberg equations²

$$Z_{i}(n) = 1 + \frac{T}{\omega_{n}} \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\omega_{m} Z_{j}(m)}{\Theta_{j}(\varepsilon, m)} \Lambda_{ij}^{-}(n, m),$$

$$\phi_{i}(n) = T \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\phi_{j}(m)}{\Theta_{j}(\varepsilon, m)} [\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)],$$

$$\chi_{i}(n) = \chi_{C_{i}} - T \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\varepsilon - \mu + \chi_{j}(m)}{\Theta_{j}(\varepsilon, m)} \Lambda_{ij}^{+}(n, m),$$

$$\Theta_{i}(\varepsilon, n) = [\omega_{n} Z_{i}(n)]^{2} + \phi_{i}^{2}(n) + [\varepsilon - \mu + \chi_{i}(n)]^{2},$$

$$(1)$$

and may then be analytically continued to the real-axis by means of PADÉ approximants.³ The electron-phonon coupling matrices and the rescaled COULOMB pseudo-potential are connected to the corresponding input parameters via

$$\Lambda_{ij}^{\pm}(n,m) = \lambda_{ij}(n-m) \pm \lambda_{ij}(n+m+1), \qquad \lambda_{ij}(n) = \int_{0}^{\infty} d\omega \frac{2\omega \alpha^{2} F_{ij}(\omega)}{\omega^{2} + \nu_{n}^{2}} \stackrel{=}{\underset{\text{Einstein}}} \frac{\lambda_{ij}}{1 + \left[\frac{\nu_{n}}{\omega_{E}}\right]^{2}}, \\
U_{ij}^{*}(m) = \begin{cases} 2\mu_{ij}^{*}(\omega_{N_{C}}) & \text{for } m < N_{C}, \\ 0 & \text{otherwise,} \end{cases} \frac{1}{\mu_{ij}^{*}(\omega_{N_{C}})} = \frac{1}{\mu_{ij}^{*}} + \ln \frac{\omega_{E}}{\omega_{N_{C}}} \tag{2}$$

with the Eliashberg spectral function $\alpha^2 F_{ij}(\omega)$ and $\mu_{ij}^* = \mu_{ij}^*(\omega_{\rm E})$ per definition. Alternatively, if the density of states $n_i(\varepsilon)$ per spin as a function of energy ε is given,

$$\frac{1}{\mu_{ij}^*(\omega_{N_{\mathbb{C}}})} = \frac{1}{\mu_{ij}} + \frac{1}{\pi} \int_{-\infty}^{\infty} d\varepsilon \frac{n_j(\varepsilon)}{n_j(\mu_0)} \begin{cases} \frac{1}{\varepsilon - \mu_0} & \text{arctan } \frac{\varepsilon - \mu_0}{\omega_{N_{\mathbb{C}}}} & \text{for } \varepsilon \neq \mu_0, \\ \frac{1}{\omega_{N_{\mathbb{C}}}} & \text{otherwise,} \end{cases}$$
(3)

where D is the electronic bandwidth. μ_0 and μ are the chemical potentials for free and interacting particles, whose number n_0 , n (including a factor of 2 for the spin) is usually conserved:

$$\sum_{i} \int_{-\infty}^{\infty} d\varepsilon \frac{2n_{i}(\varepsilon)}{e^{(\varepsilon-\mu_{0})/T}+1} = n_{0} \stackrel{!}{=} n = \sum_{i} \int_{-\infty}^{\infty} d\varepsilon \, n_{i}(\varepsilon) \left[1 - 4T \sum_{n=0}^{N-1} \frac{\varepsilon - \mu + \chi_{i}(n)}{\Theta_{i}(\varepsilon, n)} - \frac{2}{\pi} \arctan \frac{\varepsilon - \mu + \chi_{C_{i}}}{\omega_{N}} \right].$$

It is unusual but possible to also consider the COULOMB contribution to the energy shift:

$$\chi_{C_i} = \sum_{j} \int_{-\infty}^{\infty} d\varepsilon \frac{n_j(\varepsilon)}{n_j(\mu_0)} \left[2T \sum_{m=0}^{N-1} \frac{\varepsilon - \mu + \chi_j(m)}{\Theta_j(\varepsilon, m)} + \frac{1}{\pi} \arctan \frac{\varepsilon - \mu + \chi_{C_j}}{\omega_N} \right] \mu_{ij}.$$

¹Y. Nамви, Phys. Rev. **117**, 648 (1960)

²G. M. Eliashberg, Soviet Phys. JETP **11**, 696 (1960).

A comprehensive review is given by P. B. ALLEN and B. MITROVIĆ in Solid state physics 37 (1982)

³H. J. VIDBERG and J. W. SERENE, J. Low Temp. Phys. **29**, 179 (1977)

For a given scalar $\alpha^2 F(\omega)$, an effective phonon frequency can be calculated in different ways. We follow ALLEN and DYNES,⁴ who define the logarithmic and the second-moment average frequency and use the latter as $\omega_{\rm E}$ in Eqs. 2 and 3 for rescaling μ^* :

$$\omega_{\log} = \exp\left[\frac{2}{\lambda} \int_0^\infty \frac{\mathrm{d}\omega}{\omega} \alpha^2 F(\omega) \ln(\omega)\right], \qquad \overline{\omega}_2 = \sqrt{\frac{2}{\lambda} \int_0^\infty \mathrm{d}\omega \, \alpha^2 F(\omega) \, \omega}.$$

Approximating $n_i(\varepsilon) \approx n_i(\mu_0)$ yields $\chi_i(n) = 0$ and the constant-DOS ELIASHBERG equations

$$Z_{i}(n) = 1 + \frac{\pi T}{\omega_{n}} \sum_{j} \sum_{m=0}^{N-1} \frac{\omega_{m}}{\sqrt{\omega_{m}^{2} + \Delta_{j}^{2}(m)}} \Lambda_{ij}^{-}(n, m),$$

$$\Delta_{i}(n) = \frac{\pi T}{Z(n)} \sum_{j} \sum_{m=0}^{N-1} \frac{\Delta_{j}(m)}{\sqrt{\omega_{m}^{2} + \Delta_{j}^{2}(m)}} [\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)].$$
(4)

At the critical temperature, $\phi_i(m)$ is infinitesimal and negligible relative to ω_m . This yields

$$\phi_{i}(n) = \sum_{j} \sum_{m=0}^{N-1} K_{ij}(n, m) \,\phi_{j}(m),$$

$$K_{ij}(n, m) = T \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)}{\Theta_{j}(\varepsilon, m)},$$
(5)

where $\Theta_i(\varepsilon, m)$ is obtained from Eqs. 1 for $\phi_i(m) = 0$. Similarly, in the constant-DOS case,

$$\Delta_{i}(n) = \sum_{j} \sum_{m=0}^{N-1} K_{ij}(n, m) \Delta_{j}(m),$$

$$K_{ij}(n, m) = \frac{1}{2m+1} [\Lambda_{ij}^{+}(n, m) - \delta_{ij} \delta_{nm} D_{i}^{N}(n) - U_{ij}^{*}(m)],$$

$$D_{i}^{N}(n) = \sum_{j} \sum_{m=0}^{N-1} \Lambda_{ij}^{-}(n, m) \stackrel{N=\infty}{=} \sum_{j} [\lambda_{ij} + 2 \sum_{m=1}^{n} \lambda_{ij}(m)].$$
(6)

 $Z_i(n)$ is not biased by the cutoff if $D_i^{\infty}(n)$ is used in place of $D_i^{N}(n)$ in the kernel $K_{ij}(n,m)$.

The Eliashberg equations can also be solved on the real axis,⁵ which allows for exact analytic continuation without Padé approximants. They are implemented for the normal state:

$$\Sigma_{11i}(\omega) = \underbrace{\sum_{j} \int_{-\infty}^{\infty} d\varepsilon \frac{A_{j}(\varepsilon)}{n_{j}(\mu_{0})} \left[\mu_{ij} \left(\frac{1}{2} - f(\varepsilon) \right) + \int_{0}^{\infty} d\omega' \alpha^{2} F_{ij}(\omega') \sum_{\pm} \pm \frac{f(\varepsilon) + n(\pm \omega')}{\omega - \varepsilon \pm \omega'} \right]}_{\chi_{C_{i}}}$$
(7)

with the Fermi function $f(\varepsilon) = 1/(\mathrm{e}^{\varepsilon/T} + 1)$ and the Bose function $n(\omega) = 1/(\mathrm{e}^{\omega/T} - 1)$. The quasiparticle density of states $A_i(\omega) = -\frac{1}{\pi} \operatorname{Im} G_i(\omega + \mathrm{i}\eta)$ follows from the Green function

$$G_i(\omega) = -\int_{-\infty}^{\infty} d\varepsilon \, n_i(\varepsilon) \frac{\omega Z_i(\omega) + \varepsilon - \mu + \chi_i(\omega)}{\Theta_i(\varepsilon, \omega)} \stackrel{\phi=0}{=} \int_{-\infty}^{\infty} d\varepsilon \frac{n_i(\varepsilon)}{\omega - \varepsilon + \mu - \Sigma_{11i}(\omega)}.$$

Note that in the code $\Sigma_{11i}(\omega + i\eta)$ is replaced by $\text{Re}\,\Sigma_{11i}(\omega + i\eta) + i\,\text{Im}\,\Sigma_{11i}(\omega + i0^+)$.

⁴P. B. Allen and R. C. Dynes, Phys. Rev. B **12**, 905 (1975)

⁵D. J. Scalapino, J. R. Schrieffer and J. W. Wilkins, Phys. Rev. **148**, 263 (1966). See also L. X. Benedict, C. D. Spataru and S. G. Louie, Phys. Rev. B **66**, 085116 (2002)

• Parameters are defined on the command line:

```
\ \langle program \rangle \langle key 1 \rangle = \langle value 1 \rangle \langle key 2 \rangle = \langle value 2 \rangle \dots
```

The available keys and default values are listed in Table 1.

- The columns ebmb, tc and critical show which keys are used by these programs.
- The rightmost column indicates which parameters may be chosen as variable for critical. The variable is marked with a negative sign; its absolute value is used as initial guess. If no parameter is negative, the critical temperature is searched for.
- lambda, muStar, and muC expect flattened square matrices of equal size the elements
 of which are separated by commas. It is impossible to vary more than one element
 at once.
- dos has lines ε/eV n_1/eV^{-1} n_2/eV^{-1} ... with ε increasing.
- a2F has lines ω/eV $\alpha^2 F_{1,1}$ $\alpha^2 F_{2,1}$... with ω increasing.
- The relative change in the sample spacing of the real-axis frequencies between $\omega=0$ and $\omega=x$ is logscale $\cdot |x|$. Thus, logscale =0 corresponds to equidistant sampling.
- Unless tell=false, the results are printed to standard output.
- Unless file=none, a binary output file is created. For critical and tc it simply contains one or more double precision floating point numbers, for ebmb the format defined in Tables 2 and 3 is used.
- The provided *Python* wrapper functions load the results into *NumPy* arrays:

⟨replace⟩ decides whether an existing ⟨file⟩ is used or overwritten.

—— Acknowledgment ———

Parts of the program are inspired by the EPW code⁶ and work of Malte Rösner.

— Contact

Any feedback may be directed to jan.berges@uni-bremen.de.

⁶See F. Giustino, M. L. Cohen and S. G. Louie, Phys. Rev. B **76**, 165108 (2007) for a methodology review. Results related to Eliashberg theory are given by E. R. Margine and F. Giustino, Phys. Rev. B **87**, 024505 (2013)

key default vi ^{rit} sy ^{ribol} description					~	801110 xc crixizar + + + -		
key	default	unit	SUMIL	description	ebnik	, پرد	رنې	Varie
file	none	_	_	output file	+	+	+	_
form	F16.12	_	_	number edit descriptor	+	+	+	_
tell	true	_	_	use standard output?	+	+	+	_
Т	10	K	T	temperature	+	+	+	+
omegaE	0.02	eV	ω_{E}	EINSTEIN frequency	+	+	+	+
cutoff	15	ω_{E}	ω_N	overall cutoff frequency	+	+	+	_
cutoffC	ω_N	ω_{E}	$\omega_{N_{\mathbb{C}}}$	Coulomb cutoff frequency	+	+	+	-
lambda, lamda	1	1	λ_{ij}	electron-phonon coupling	+	+	+	+
muStar, mu*	0	1	μ_{ij}^*	rescaled Соигомв potential	+	+	+	+
muC	0	1	μ_{ij}	unscaled Соигомв parameter	+	+	+	+
bands	1	1	_	number of bands	+	+	+	_
dos, DOS	none	_	_	file with density of states	+	+	+	_
a2f, a2F	none	_	_	file with Eliashberg function	+	+	+	_
n	_	1	n_0	initial occupancy number	+	+	+	_
mu	0	eV	μ_0	initial chemical potential	+	+	+	_
conserve	true	_	_	conserve particle number?	+	+	+	_
chi	true	-	_	consider energy shift $\chi_i(n)$?	+	+	+	_
chiC	false	_	-	consider Соигомв part χ_{C_i} ?	+	+	+	_
steps	250000	1	_	maximum number of iterations	+	+	+	_
epsilon	10^{-13}	a.u.	_	negligible float difference	+	+	+	_
toln	10^{-10}	1	_	tolerance for occupancy number	+	+	+	_
error	10^{-5}	a.u.	_	bisection error	_	+	+	_
zero	10^{-10}	eV	_	negligible gap at $T_{ m c}$ (threshold)	_	+	_	_
rate	10^{-1}	1	-	growth rate for bound search	_	+	+	_
lower	0	eV	_	minimum real-axis frequency	+	_	_	_
upper	ω_N	eV	_	maximum real-axis frequency	+	_	_	_
points	0	1	_	number of real-axis frequencies	+	_	_	_
logscale	1	1/eV	_	scaling of logarithmic sampling	+	_	_	_
eta, 0+	10^{-3}	eV	_	infinitesimal energy 0+	+	_	_	_
measurable	false	_	_	find measurable gap?	+	_	_	_
unscale	true	_	-	estimate missing muC from mu*?	+	+	+	_
rescale	true	-	_	use μ_{ij}^* rescaled for cutoff?	+	+	+	_
imitate	false	_	_	use $Z_i(n)$ biased by cutoff?	-	-	+	_
divdos	true	_	_	divide by $n_j(\mu_0)$ in Eqs. 1, 3?	+	+	+	_
stable	false	-	-	calculate $A_i(\omega)$ differently?	+	_	_	_
normal	false	_	-	enforce normal state?	+	_	_	_
realgw	false	_	-	do real-axis GW ₀ calculation?	+	_	-	_
power	true	-	-	power method for single band?	-	-	+	_

Table 1: Input parameters.

 $\langle \text{CHARACTERS key} \rangle : \langle n_1 \times \ldots \times n_r \text{ NUMBERS value} \rangle$ associate key with value

DIM: $\langle \text{INTEGER } r \rangle \langle r \text{ INTEGERS } n_1 \dots n_r \rangle$ define shape (column-major)

INT: take NUMBERS as INTEGERS
REAL: take NUMBERS as DOUBLES

Table 2: Statements allowed in binary output. The data types CHARACTER, INTEGER and DOUBLE take 1, 4 and 8 bytes of storage, respectively.

imaginary-axis results						
iomega	3 3					
Delta	qap	$egin{array}{c} \omega_n \ \Delta_i(n) \end{array}$				
Z	renormalization	$Z_i(n)$				
chi	energy shift (*)	$\chi_i(n)$				
chiC	COULOMB part of energy shift (*)	ΧCi				
phiC	COULOMB part of order parameter	ϕ_{C_i}				
status	status (steps till convergence or —					
occupancy i	occupancy results					
states	integral of density of states	$\sum_{i} \int d\varepsilon n_{i}(\varepsilon)$				
inspect	integral of spectral function (**)	$\sum_{i} \int d\omega A_{i}(\omega)$				
n0	initial 1	n_0				
n	final } occupancy number	n				
mu0	initial)	μ_0				
mu	final } chemical potential	μ				
effective par	a2F given					
lambda	electron-phonon coupling	λ_{ij}				
omegaE	EINSTEIN frequency	ω_{E}				
omegaLog	logarithmic average frequency	ω_{log}				
omega2nd	second-moment average frequency	$\overline{\omega}_2$				
real-axis re	(**) points > 0					
omega	frequency	ω				
Re[Delta]	real } gap	$arDelta_i(\omega)$				
<pre>Im[Delta]</pre>	imaginary $\int g^{ap}$	$\Delta_l(\omega)$				
Re[Z]	real } renormalization	$Z_i(\omega)$				
Im[Z]	imaginary J Tenormatization	$Z_l(\omega)$				
Re[chi]	real } energy shift (*)	$\chi_i(\omega)$				
<pre>Im[chi]</pre>	illaginary)					
DOS	quasiparticle density of states (*)	$A_i(\omega)$ measurable=true				
	measurable results					
Delta0	measurable gap	$\Delta_{0i} = \text{Re}[\Delta_i(\Delta_{0i})]$				
status0	status0 status of measurable gap					

Table 3: Keys used in binary output.