執政優勢對選舉連任優勢的迴歸分析

財金學系三年級 B08303006 林姝延 經濟學系三年級 B08303024 張翔竣 經濟學系三年級 B08106043 翁紹洋 經濟學系三年級 B08303052 朱恆昀

緒論

在今年的1月14日,中央選舉委員會宣布了今年的九合一大選將訂在11月26日舉行投票。選舉是人們自由意志的展現,各個政黨憑著自己的能力、在不同議題的立場,說服選民把手上珍貴的選票、以及這個國家的未來,一同寄託給所認同的政黨。

然而,這個看起來公開公平的競爭,真的不會受到其他因素影響嗎?我們注意到在連選得連任的 職位,例如總統,基本上都是連任兩屆後,依規定無法再選才將執政權交給其他人,於是我們有 個猜想,執政黨相較在野黨更有優勢。

由於執政黨相較於在野黨,擁有更多資源,於在任期間也會宣導和自己立場比較相符的議題,如此一來是否會因為長期的推廣和教育,影響了中立選民對於某些議題的看法,進而讓執政黨在下次選舉時取得更多優勢,進而連任呢?

相關研究

現任中山大學企管系專任副教授的佘健源教授,曾經有針對台灣 2008 年以後,立委改為「單一選區兩票制」對於現任者競選優勢的影響進行討論,發表《<u>台灣立委選制改革對現任者競選優勢之</u>影響》,但是這篇論文相較而言比較像是單一事件分析(event study),且在文中的分析模型過於複雜,遠超我們目前的程度。

而這篇論文的結論是現任者的確有競選優勢、若要改制必須趁早開始。

方法論

• 資料蒐集及統整

為了解決以上的問題,我們決定針對兩黨制國家的資料來做討論,因為如此一來就會是 binary 的結果(A 黨選上或是 B 黨選上),在做迴歸分析時,可以有更直觀的解釋。

然而,由於台灣是自 1990 年民主自由化之後才開始公平選舉,而以**總統及副總統由公民直接 選舉**為例,也是直到 1996 年才第一次由人民親自選出,至今為止,也只舉行過 7 屆真正意義上的民主選舉,所以資料的樣本數遠遠不夠,不足以讓我們跑出一個有足夠解釋力的迴歸分析結果。

於是我們把目光放在另一個兩黨制且選舉歷史相對悠久的國家——美國,我們蒐集了**美國總統大選在各州的選舉結果(美國是選舉人制)各年間**的資料,分析某個候選人在當選之後,是否會因為執政的緣故,而更容易在下次的選舉中連任。

• 模型一 (OLS)

首先、我們決定以最簡單直觀的OLS迴歸分析討論:

$$win_dem_t1_i = \alpha + \beta win_dem_i + u_i$$

#如果在第 i 期當選, $win_dem = 1$;反之則 $win_dem = 0$ 。如果在第 i+1 期當選, $win_dem_t1 = 1$;反之則 $win_dem_t1 = 0$ 。

 α 是截距項。 u_i 是殘差項。而 β 即為我們想要觀察的效果,代表了執政黨在當選時,有 β 的機率,下一次也會當選。

然而、該模型的結果雖然清楚好懂、但卻隱含許多沒估計到的遺漏變數。

其中最主要的遺漏變數,就是假設某地區(州)的選民意識形態特別偏向某個政黨,換言之,就是某個政黨的「鐵票區」,則當選的政黨是否執政其實不會影響他們的選舉結果(never taker / always taker),則如果我們將這些地區的資料也納入考慮,會大大高估執政帶來的優勢。所以即便簡單的 OLS 看起來相當直觀,我們也不能直接把結果當成執政優勢的效果。

• 模型二 (RD - 線性)

為了解決在模型一遇到的遺漏變數,我們決定套用在做迴歸時一個比較特殊的技巧,叫做 RD (Regression Discontinuity design)。

RD 的概念是把某個點設為斷點(cut-off point),而在斷點前和斷點後的樣本是受到不同的對待的 (如圖一),因為在斷點前後的樣本原本並沒有太大差別,只差在有沒有受到 treated,所以如果在 treated 之後發現明顯斷點,我們就可以認為 treated 是有效果的。以我們的模型為例,我們將第i期的得票率,從 0 到 100% 列出,而由於是兩黨制,所以得票率超過50% 即可執政,所以我們可以相信得票率大於 50% 的樣本,和得票率小於 50% 的樣本是受到不同對待的(treated),因此我們把 cutoff 設在 50%,並在模型中加入一個 dummy variable D,當第i期的得票率小於 50% 時,D=0;當第i期的得票率大於50%時,D=1。

圖一。C為斷點,小於C的是Control組,大於C的是Treatment組。

接著,我們會在斷點前後取一範圍(bandwidth)(如圖二),這是因為我們比較倚重斷點前後的資料,以我們的題目為例,原本第i期得票率在 50% 左右的話,代表兩黨之間原本是勢均力敵的,假設第i期得票率從小於 50% 到大於 50% 時,在第i+1 期當選機率有明顯的跳升,應該就是執政優勢的體現,且取 bandwidth 剔除掉得票率太高或太低的樣本,就可以規避掉在模型一遇到的「某地區(州)的選民意識形態特別偏向某個政黨,則其實當選的政黨是否執政其實不會影響他們的選舉結果」的問題了。

圖二。0 為斷點,h 為 bandwidth。 τ 就是 treatment 的效果。

實際模型:

$$D_i = egin{cases} 1 & ext{if } demvoteshare_i \geq 50\% \ 0 & ext{if } demvoteshare_i < 50\% \end{cases}$$

$$win_dem_t1_i = \alpha + \beta_{01}demvoteshare_i + \rho D_i + \beta_1^*(D_i \times demvoteshare_i) + u_i$$

如果在第 i+1 期當選, win_dem_t1 = 1;反之則 win_dem_t1 = 0; $demvoteshare_i$ 代表在第 i 期的得票率。

 α 是截距項。 u_i 是殘差項。 而 ρ 即為我們想要觀察的效果,反映了第 i 期得票率從小於 50% 到大於 50% 時,在第 i+1 期當選機率跳升的幅度。

• 模型三 (RD - 非線性)

然而,RD 分析其實不太能單純倚靠 ρ 的大小判斷是否有斷點、以及 treatment 效果的大小,可能會因為用錯誤的模型估計(nonlinearity mistaken),導致看起來似乎有斷點但實際上沒有的狀況(如圖三)。

圖三。X 是斷點。以線性估計非線性,但其實沒有斷點。

所以我們接下來會以更高次方的模型做迴歸,以免造成模型錯誤造成誤判了 treatment 的效果,並且以圖片輔助判斷。

實際模型:

$$D_i = egin{cases} 1 & ext{if } demvoteshare_i \geq 50\% \ 0 & ext{if } demvoteshare_i < 50\% \end{cases}$$

 $win_dem_t1_i = \alpha + eta_{01}demvoteshare_i + eta_{02}demvoteshare_i^2 \ +
ho D_i + eta_1^*(D_i imes demvoteshare_i) + eta_2^*(D_i imes demvoteshare_i^2) + u_i$

如果在第 i+1 期當選, win_dem_t1 = 1;反之則 win_dem_t1 = 0; $demvoteshare_i$ 代表在第 i 期的得票率。

 α 是截距項。 u_i 是殘差項。而 ρ 即為我們想要觀察的效果,反映了第 i 期得票率從小於 50% 到大於 50% 時,在第 i+1 期當選機率跳升的幅度。

研究結果

• 模型一 (OLS)

Dep. Variabl	e:	win_de					0.635
Model:			0LS	Adj. I	R-squared:		0.635
Method:		Least Squ	ares	F-sta	tistic:		1.628e+04
Date:		Thu, 20 Jan	2022	Prob	(F-statistic):		0.00
Time:		14:1	9:48	Log-L	ikelihood:		-1886.2
No. Observat	ions:		9345	AIC:			3776.
Df Residuals	:		9343	BIC:			3791.
Df Model:			1				
Covariance T	ype:	nonro	bust				
========					========		
					P> t	-	-
					0.000		
					0.000		
					======== n-Watson:		2.151
					e-Bera (JB):		10712.481
Skew:		- 0	.046	Prob(JB):		0.00
Kurtosis:		8	. 244	Cond.	No.		2.89

$$win_dem_t1_i = 0.1287 + 0.7948 \ win_dem_i + u_i \ {}_{(0.005)}$$

結果發現,這次選舉如果當選,則會有 79.48% 的機率下次也會當選,標準差為 0.006,在 5% 的顯著水準下具有顯著性。

• 模型二 (RD - 線性)

Dep. Variable:	У	R-squared:			0.621	
Model:	0LS	Adj. R-squared: F-statistic: Prob (F-statistic):		0.620		
Method:	Least Squares					
Date:	Thu, 20 Jan 2022					
Time:	16:36:46					
No. Observations:	1801	AIC:			435.4	
Df Residuals:	1797	BIC:			457.4	
Df Model:	3					
Covariance Type:	HC1					
	coef	std err	z	P> z	[0.025	0.975]
Intercept	-0.6439				-0.855	
C(Group)[T.Treatment]	0.3591	0.190	1.886	0.059	-0.014	0.732
X	1.8494	0.253	7.300	0.000	1.353	2.346
C(Group)[T.Treatment]				0.647	-0.560	0.903
Omnibus:		======================================		======	1.988	
Prob(Omnibus):	0.000	Jarque-Bera (JB):			394.387	
Skew:	-0.071	Prob(JB	Prob(JB):		2.29e-86	
Kurtosis:	5.288	Cond. No	Cond. No.		91.1	

模型二:有加截距項,做出 sharp RD 的效果。線性。

$$win_dem_t1_i = -0.6439 + 1.8494 \ demvoteshare_i + 0.3591 \ D_i \ + 0.1711 (D_i imes demvoteshare_i) + u_i \ {}^{(0.190)}$$

結果發現,由圖中可以看到跳升的現象非常明顯,第i期得票率從小於 50% 到大於 50% 時,在第i+1 期會突然增加 35.91% 的機率能夠當選,標準差為 0.190,在 5% 的顯著水準下具有顯著性。

• 模型三 (RD - 非線性)

OLS Regression Results								
Dep. Variable:	у	F-statistic: Prob (F-statistic):						
Model:	0LS							
Method:	Least Squares			299.2 7.17e-220 -437.31 886.6 918.3				
Date:	Thu, 20 Jan 2022							
Time:	16:40:24							
No. Observations:	1449							
Df Residuals:	1443							
Df Model:	5							
Covariance Type:	HC1							
	coef	std err	z	P> z	[0.025	0.975]		
Intercept	-10.4791	6.095	-1.719	0.086	-22.426	1.467		
C(Group)[T.Treatment]	0.3060	10.174	0.030	0.976	-19.635	20.247		
X	44.5190	26.494	1.680	0.093	-7.408	96.446		
<pre>C(Group)[T.Treatment]</pre>	:x -6.8309	40.210	-0.170	0.865	-85.640	71.978		

```
-46.2070 28.733 -1.608 0.108 -102.524
x2
                                                                           10.110
C(Group)[T.Treatment]:x2 14.1764 40.151 0.353 0.724
                                                              -64.518
                                                                           92.871
Omnibus:
                          27.825 Durbin-Watson:
                                                               2.018
Prob(Omnibus):
                           0.000 Jarque-Bera (JB):
                                                              52.698
Skew:
                           0.072
                                  Prob(JB):
                                                             3.60e-12
                           3.923 Cond. No.
Kurtosis:
                                                             1.01e+04
Warnings:
[1] Standard Errors are heteroscedasticity robust (HC1)
```


模型三: 非線性

$$win_dem_t1_i = -10.4791 + 44.5190 \ demvoteshare_i - 46.2070 \ demvoteshare_i^2 \ + 0.3060 \ D_i - 6.8309 (D_i imes demvoteshare_i) \ + 14.1764 (D_i imes demvoteshare_i^2) + u_i$$

結果發現,由圖中可以看到跳升的現象非常明顯,第i期得票率從小於 50% 到大於 50% 時,在第i+1 期會突然增加 30.60% 的機率能夠當選。

研究討論/結論

1. 無法單純的以簡單的 OLS 迴歸的結果下定論,因為有無法去除的遺漏變數,而為了要去除這個問題,我們決定使用 RD 模型。且為了避免使用錯誤的模型估計,我們使用多組模型跑迴歸,結果發現非線性的模型 fit 數據的效果較好,所以我們討論以下結論時,會以模型三的結果討論。

- 2. 由RD模型,在 50%的 cutoff 可以看到明顯的斷點,且無論是線性或是高次方迴歸都存在,大約跳升了 30.60%,這顯示執政優勢的確存在。在原本勢均力敵的狀況下,有執政的政黨在下次選舉時多了 30.60%的機率選上連任。
- 3. 執政優勢的原因,我們認為是因為執政黨在任期間擁有影響力,會對於和自己政黨觀點或立場比較相同的議題多加著墨,例如若是執政黨傾向右派,則在任期間可能比較多和反墮胎、反安樂死、反外遇相關的講座、教育推廣、以及遊行;若執政黨傾向左派,則在任期間可能比較多和同性婚姻、女權、種族平等有關的講座、教育推廣、以及遊行,或者甚至進行相關議題的改革和法規重構。

在長期的教育環境下,中間選民的立場會慢慢的淺移默化,逐漸偏向執政黨,而這個改變可能連人民本身都沒有發現,此消彼長之下,在下一次的選舉時,執政黨會容易獲得更多中間 選民的選票,因此更容易連任。

4. 在一直以來政治學家對於兩黨制的國家,政黨對於議題的立場究竟是因為人民影響政黨,或是政黨影響人民,而眾說紛紜。前者認為政黨為了獲取更多選票,應該會把自己的立場更趨向大眾,導致兩黨的訴求漸趨相同;後者認為由於執政黨擁有影響力,會對於自己關注的議題更多加推廣、教育,或是對於不滿意的制度進行改革,當人民在有傾向的政治環境下,中間選民的思想有可能會容易傾向和執政黨相同,如此一來政黨會更堅守自己的立場。

而我們以RD為模型的實驗,恰巧能說明後者的解釋力更大一些,由於執政優勢的確存在,而產生執政優勢的原因恰巧為後者的解釋路徑,是因為中間選民的立場因為潛移默化產生改變,所以我們有理由相信,一個國家政黨的立場,是能夠影響那個國家中人民的思想的。