Mathematik I Vektorraum

Prof. Dr. Doris Bohnet Sommersemester 2020

Lernziele

Begriffe bzw. Aussagen kennen:

- √ Vektor, Länge eines Vektors
- ✓ (Unter-)Vektorraum
- ✓ Lineare Unabhängigkeit
- ✓ Basis
- ✓ Dimension
- Mit Vektoren rechnen können (addieren und Skalarmultiplikation)
- Nachweisen können, dass etwas ein Vektorraum (bzw. Untervektorraum) ist
- Lineare Unabhängigkeit von Vektoren nachrechnen können bzw. nachrechnen, ob eine Familie von Vektoren eine Basis bilden

Vektoren

Was ist ein Vektor?

Definition Vektor

Ein Vektor v ist durch seine $\operatorname{\bf Richtung}$ und seine $\operatorname{\bf Länge}$ eindeutig definiert.

Man kann einen Vektor deswegen als Pfeil zeichnen. Der Anfangspunkt des Pfeils spielt für einen Vektor keine Rolle!

Rechnen mit Vektoren

1.

x+v = v+w

- « Vektoren kann men <u>addieren</u> und erhält wieder einen Vektor.
 - · Addition ist termulativ.
 - · Nullvektor ist das neutrale Element.

2.

· Vektoren tann man mit Skalanen (= reelle Zahleu) multiplitieren

Vektorraum

Sei K ein Körper. (in der Regel $\in \mathbb{R}$)

Eine Menge V zusammen mit einer Addition $+: V \times V \to V$ und einer Skalarmultiplikation $:: K \times V \to V$ heißt **K-Vektorraum,** falls gilt: $(\lambda, v) \leftarrow \lambda \cdot v$

R-Vekhorrouen

(V1) (V, +) ist eine abelsche Gruppe. (Addition ist trommutativ)

(V2) Die Skalarmultiplikation ist mit der Addition verträglich:

- Sie ist assoziativ: $\lambda, \mu \in K, v \in V$: $\lambda(\mu v) = (\lambda \mu)v$
- Es ist: $v \in V$: $1 \cdot v = v$
- Es gelten die Distributivgesetze: $\lambda, \mu \in K, v, w \in V$: $\lambda \cdot (v + w) = \lambda v + \lambda w, (\lambda + \mu)v = \lambda v + \mu v$

Beispil: Vektoren in de Elsene: R2

Darstellung von Vektoren

Rechenregeln für Vektoren

Addition von Vektoren:

Vektoren werden komponentenweise addiert:

$$B = p : v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \omega = \begin{pmatrix} -3 \\ 5 \end{pmatrix} : v + \omega = \begin{pmatrix} 1 - 3 \\ 2 + 5 \end{pmatrix} - \begin{pmatrix} -2 \\ 7 \end{pmatrix}$$

Skalarmultiplikation (Skalar: hier=eine reelle Zahl):

Vektoren werden komponentenweise mit einer Zahl multipliziert, d.h. skaliert.

$$Bsp: N=\begin{pmatrix} 1\\2 \end{pmatrix}, \lambda=2: \lambda \cdot N=\begin{pmatrix} 2\cdot 1\\2\cdot 2 \end{pmatrix}=\begin{pmatrix} 2\\4 \end{pmatrix}$$

Länge eines Vektors

$$||v|| = \sqrt{v_1^2 + \dots + v_n^2}, v = (v_1, \dots, v_n)$$

Häufig normlert man einen Vektor, so dasser die Länge 1 bekommt, indem man ihn durch seine eigene Länge teilt?

$$v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Ein Vektor der Länge 1 heißt Einheitsvektor.

$$\frac{1}{\|v\|} \cdot v$$
 2

Linearkombination & Span

$$v = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
, twei Vektoneu $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 v all Lineankombination von e_1 and e_2 :
 $v = 3 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 $v = \lambda_1 e_1 + \lambda_2 e_2$

Definition: Seien v1,..., on Vektoren, 2,..., In Skalare, dann heißt

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n = \frac{n}{i=1} \lambda_i v_i.$$
Linearkombination von v_1, \dots, v_n .

• Span
$$(v_1, v_2, ..., v_n) = \{v \mid \exists \lambda_1, ..., \lambda_n : v = \underbrace{\sum_{i=1}^n \lambda_i} v_i \}$$

Bsp: Span $(e_1, e_2) = \mathbb{R}^2 = \{v \mid \exists \lambda_1, ..., \lambda_n : v = \underbrace{\sum_{i=1}^n \lambda_i} v_i \}$
Mathematik L. Prof. Dr. Doris Robnet - Vorlesung 10

Aufgabe: Linearkombination

Stellen Sie den Vektor w=(6,2,1) als Linearkombination von $v_1=(1,0,1), v_2=(7,3,1), v_3=(2,5,8)$

dar.

$$\frac{W = \lambda_{1} v_{1} + \lambda_{2} v_{2} + \lambda_{3} v_{3}}{\text{Rechnying}} : \text{Gesucht:} \quad x_{1}, x_{2}, x_{3} \in \mathbb{R}$$

$$\frac{G}{2} = x_{1} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + x_{2} \begin{pmatrix} 7 \\ 3 \\ 1 \end{pmatrix} + x_{3} \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix}$$

$$\frac{I}{2} = x_{1} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + x_{2} \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} + x_{3} \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix}$$

$$\frac{I}{2} = x_{1} + \frac{1}{2} x_{2} + 2 x_{3}$$

$$\frac{I}{2} = x_{1} + \frac{1}{2} x_{2} + 5 x_{3}$$

$$\frac{I}{2} = x_{1} + x_{2} + 8 x_{3}$$

$$\frac{3}{48} = \frac{35}{48}$$
18.05.2020

Mathematik I - Prof. Dr. Doris Bohnet - Vorlesung 10

$$x_{1} = \frac{35}{48}$$

Linear unabhängige Vektoren

Span
$$(e_1, e_2) = \mathbb{R}^2$$

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\sim \text{Span} \left(e_1, e_2, v\right) = \mathbb{R}^2$$
unnotig
$$\sim \text{es gib einen Velitor}$$

$$\sim \text{es gib einen Velitor}$$

$$\sim \text{o es gib einen Velitor}$$

=> Der Vektor v ist linear abhängig von en und ez, d.h.

$$\exists \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} \setminus \{0\}: \lambda_1 v + \lambda_2 e_1 + \lambda_3 e_2 = 0$$

$$= \begin{cases} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0 \end{cases}$$

$$= D \text{ Die dhei Vektoren } v, e_1, e_2 \text{ sind linear obhangig}.$$

Definition: Linear unabhängige Vektoren

Zwei Vektoren v, w heißen **linear unabhängig**, wenn sie nicht Vielfaches voneinander sind, d.h.

line au unabhangig

Entsprechend heißen zwei Vektoren v, w linear abhängig (oder kollinear), wenn eine Zahl λ existiert, so dass

$$v = \lambda \cdot w$$

100

Allgemein: \underline{n} Vektoren $v_1, v_2, \dots v_n$ heißen linear unabhängig, falls

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n = 0 \Rightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0$$

d.h. kein Vektor lässt sich als Linearkombination der übrigen Vektoren darstellen.

Beispiel: Linear unabhängige Vektoren

Ist der Vektor $u=\begin{pmatrix} 0\\1 \end{pmatrix} \in \mathbb{R}^2$ linear abhängig zu den beiden Vektoren $v=\begin{pmatrix} 1\\0 \end{pmatrix}$, $w=\begin{pmatrix} -1\\2 \end{pmatrix}$?

Lösung:

$$2 \cdot \begin{pmatrix} \mathbf{0} \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$u = \frac{1}{2} \left(v + \omega \right)$$

=> also linear abhängig

gesucht:
$$\Delta_1, \Delta_2, \lambda_3 \neq 0$$
, so dans

$$\gamma_{\Lambda} u + \lambda_{2} v + \lambda_{3} \omega = 0,$$

donn sind u,v,w linear obhärgig.

Aufgabe – linear unabhängige Vektoren

Sind die folgenden drei Vektoren linear unabhängig?

$$v_1 = (1,2,3), v_2 = (4,5,6), v_3 = (7,8,9)$$

$$\sum_{1} v_{1} + \sum_{2} v_{2} + \sum_{3} v_{3} = 0 \implies \sum_{1} = \sum_{2} \sum_{3} = 0$$

$$\sum_{1} v_{1} + \sum_{2} v_{2} + \sum_{3} v_{3} = 0 \implies \sum_{1} \sum_{2} \sum_{3} v_{3} = 0$$

$$\lambda_{1} \cdot 1 + \lambda_{2} + \lambda_{3} \cdot 7 = 0$$
 $\lambda_{1} \cdot 2 + \lambda_{2} \cdot 5 + \lambda_{3} \cdot 8 = 0$
 $\lambda_{1} \cdot 3 + \lambda_{2} \cdot 6 + \lambda_{3} \cdot 9 = 0$
 $\lambda_{1} \cdot 3 + \lambda_{2} \cdot 6 + \lambda_{3} \cdot 9 = 0$
 $\lambda_{1} \cdot 3 + \lambda_{2} \cdot 6 + \lambda_{3} \cdot 9 = 0$

wern
$$\lambda_1 = \lambda_2 = \lambda_3 = 0$$
,
where λ_1, ν_2, ν_3

Basis & Dimension eines Vektorraums

Sei V ein Vektorraum.

Eine Menge von Vektoren $v_1, v_2, ...$ heißt Basis, falls gilt:

- 1. $span(v_1, v_2, ...) = V$ d. L. Vektorraum wid von $v_1, v_2, ...$ and gropewat.
- 2. Die Vektoren sind linear unabhängig.

Die Anzahl an Vektoren in einer Basis heißt die Dimension des Vektorraums.

Beispiel \mathbb{R}^2 Standardbasis $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Dimension on \mathbb{R}^2 : dim $(\mathbb{R}^2) = 2$ 8 and and basis $e_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Mathematik I - Prof. Dr. Doris Bohnet - Vorlesung 10

dim $(\mathbb{R}^3) = 3$

Untervektorraum

Sei V ein K —Vektorraum.

Eine Teilmenge $U \subset V$ heißt Untervektorraum, falls gilt:

(UV1) U ist abgeschlossen bzgl. der Addition: $u, v \in U \Rightarrow u + v \in U$

(UV2) U ist abgeschlossen bzgl. der Skalarmultiplikation: $u \in U$, $\lambda \in K \Rightarrow \lambda u \in U$

Beispiel Ebene durch den Unsprung im R3.