Введение

Власенко Даниил

Научные руководители: Гудкин Борис, Заикин Алесей

15 февраля 2023 г.

## Содержание

- Введение
- 2 Сенолитические сети
- Векторизация
- Понижение размерности
- Б Результаты

Введение

#### Определение

Функциональная магнитно-резонансная томография или фМРТ — разновидность магнитно-резонансной томографии (получения изображения), которая проводится с целью измерения нейронной активности головного или спинного мозга.



Рис.: фМРТ сканер.

## фМРТ



Рис.: МРТ скан.

## Цель работы

Пусть мозг может находиться в двух режимах когнитивной деятельности.

#### Цель работы

Реализация и тестирование нового метода классификации режимов когнитивной деятельности на основе фМРТ данных.

## Классификация

#### Вероятностная постановка задачи классификации

Пусть есть с.в.  $\xi:\Omega\to X$  и с.в.  $\eta:\Omega\to Y$ . Рассмотрим с.в.  $(\xi,\eta):\Omega\to (X,Y)$  с распределением p(x,y).

Задача классификации сводится оценке p(y|x) по выборке  $(\widetilde{X},\widetilde{Y})=\{(x_k,y_k),k=1,\ldots,N\}$ 

#### Алгоритмическая постановка задачи классификации

Пусть X — множество описаний объектов, Y — множество номеров классов. Существует функция  $f: X \to Y$ , значения которой известны только на объектах выборки  $(\widetilde{X},\widetilde{Y}) = \{(x_k,y_k), k=1,\ldots,N\}.$ 

Требуется построить алгоритм-оценку  $\widehat{f}: X \to Y$ .

# Machine learning

Рис.: Классификация на основе построения графов отражающих входные данные.

#### Обозначения

Сенолитические сети

Введение

Пусть  $X = \{x_k\}_k$  — множество фМРТ, а  $Y = \{y_k\}_k$  — режимы когнитивной активности  $\{x_k\}_k$  со значениями I или II.

На основе  $x_k \in X$  строиться граф  $G_k = (V_k, E_k, R_k, W_k)$ , где

- $V_k = \{v_i^k\}_i$  множество вершин,
- $\bullet$   $E_k = \{e_{ii}^k\}_{ii}$  множество неориентированных ребер,
- $R_k = \{r_i^k\}_i$  множество значений вершин,
- $W_k = \{w_{ii}^k\}_{ii}$  множество весов ребер,
- $v_i^k$  вершина отражающая область мозга i,
- $e_{ii}^{k}$  ребро отражающее связь между областями i и j,
- $r_i^k$  значение вершины  $v_i^k$ ,
- $w_{ii}^k$  вес ребра  $e_{ii}^k$ .

# Подсчет весов ребер $w_{ii}^k$

## Вероятностное определение $w_{ij}^k$

$$w_{ij}^{k} = P(y_{k} = II | r_{i}^{k}, r_{j}^{k}) - P(y_{k} = I | r_{i}^{k}, r_{j}^{k})$$

Пусть  $CI: \{y_k | (r_i^k, r_j^k), \{(r_i^n, r_j^n)\}_n, \{y_n\}_n\}_k \to [0, 1]$  — вероятностный классификатор.

## Алгоритмическое определение $w_{ij}^{k}$

$$w_{ij}^{k} = CI(y_{k} = II | (r_{i}^{k}, r_{j}^{k}), \{(r_{i}^{n}, r_{j}^{n})\}_{n}, \{y_{n}\}_{n}) - CI(y_{k} = I | (r_{i}^{k}, r_{j}^{k}), \{(r_{i}^{n}, r_{j}^{n})\}_{n}, \{y_{n}\}_{n})$$



Рис.: Эмпирическая плотность распределения  $(r_i, r_i)$  для двух режимов, вычисленная по  $\{(r_i^n,r_i^n)\}_n$ 



Рис.: Векторизация фМРТ данных.

## Увеличение размеров вокселя

 $\forall$ величение размера вокселя в n раз уменьшает число вокселей в *п*<sup>3</sup> раза.







Рис.: Воксель 2 мм<sup>3</sup> Рис.: Воксель 4 мм<sup>3</sup> Рис.: Воксель 10 мм<sup>3</sup>

## Переход от полного графа к графу-решетке

Переход от полного графа к графу-решетке снижает время вычисления и требуемую память с  $O(n^2)$  до O(n), где n — число областей мозга.



Рис.: Смена структуры графа.

### Кластеризация вокселей

Введение

## A Joint Graph and Image Convolution Network for Automatic Brain Tumor Segmentation

Camillo Saueressig<sup>1,2</sup>, Adam Berkley<sup>1</sup>, Reshma Munbodh<sup>3(⊠)</sup>, and Ritambhara Singh<sup>1,2(⊠)</sup>

□

Рис.: Объединение вокселей в кластеры.

Department of Computer Science, Brown University, Providence, USA ritambhara@brown.edu

<sup>&</sup>lt;sup>2</sup> Center for Computational Molecular Biology, Brown University, Providence, USA

<sup>&</sup>lt;sup>3</sup> Department of Radiation Oncology, Brown Alpert Medical School, Providence, USA



Рис.: Значения вокселя.



Рис.: .