Effect of Check Meter Quantity on Theft Detection in Distribution Networks with Rooftop PV and Net Metering

Kaira Maxine V. Gonzales | Carlos Demetri S. Vicencio Adviser: Adonis Emmanuel D.C. Tio, Ph. D.

Table of contents

- 01 Introduction
- 02 Review of Related Work
- O3 Problem Statement and Objectives

- 04 Methodology
- 05 Project Schedule and Deliverables

01 Introduction

Introduction

Philippine Energy Plan

Aims to strengthen the use of clean energy sources

Rooftop Photovoltaic (PV) and Net Metering (NM)

Program that would allow consumers generate their own electricity and sell excess electricity

Introduction

Challenge

PV and NM introduce a new form of electricity theft which may affect the performance of current theft detection methods

02 Related Work

System Loss

Difference between energy delivered and energy consumed

Causes financial loss that are passed on consumers.

- Private utilities: 8.5% of consumption
- Electric Cooperatives: 13% of consumption

Administrative

Energy used by the distribution utility

Technical

Power dissipation during transmission and distribution

Non-technical

Energy losses not controlled by the distribution utility → Electricity Theft

Electricity Theft Attacks

Interruption of Measurement

Physically disconnects or reset the meters

Store demand tampering

Meter readings are manipulated

Network Modification

Hijacking of meters to deliver forged data

Electricity Theft Detection

Check Meters

- Devices that measure the supplied electricity to downstream consumers
- Readings do not change even with meter tampering
- Check meter readings can be compared to the total readings of the downstream households
- Difference must be significant

Electricity Theft Detection Approaches

Data-oriented

Use of consumer related information

Network-oriented

Uses data about the network including topology and measurements

Hybrid

Utilizes both data-oriented and network-oriented approach

Electricity Theft Detection Machine Learning

Support Vector Machine (SVM)

Determines optimal hyperplane that categorized samples

Decision Tree (DT)

Tree-like structure of several decisions and consequences

Artificial Neural Networks (ANN)

Computational network that maximizes the use of multiple layers of interconnected nodes

Random Forest (RF)

Combination of multiple DTs

Related Work

PV & NM on System Losses

 Reverse power flow increases transmission line losses and 3-phase equipment malfunction [1]

ETD on Network with PV & NM

- Different theft representations [2]
- NM affects ETD more than PV [3]
- Explored different features and algorithms [4]

Role of Check Meters

- Compared single CM and individual household readings
 [5]
- Used multiple CMs to lessen downstream households [3][4][6]

[1] R. A. Walling, R. Saint, R. C. Dugan, J. Burke and L. A. Kojovic, "Summary of Distributed Resources Impact on Power Delivery Systems," in IEEE Transactions on Power Delivery, vol. 23, no.3, pp. 1636–1644, July 2008

[2] . M. Badr, M. I. Ibrahem, M. Baza, M. Mahmoud and W. Alasmary, "Detecting Electricity Fraud in the Net-Metering System Using Deep Learning," 2021 International Symposium on Networks, Computers and Communications (ISNCC), Dubai, United Arab Emirates, 2021.

[3] C. Lavilla, M. Osorio, and Z. Restituto, "Effect of Net Metering and Rooftop Photovoltaics on Electricity Theft Detection," Capstone Project, EEEI, University of the Philippines, Diliman, 2021.

[4] R. M. P. Maala, A. M. B. Rebamba and A. E. D. Tio, "Classification-Based Electricity Theft Detection on Households with Photovoltaic Generation and Net Metering," TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON), Chiang Mai, Thailand, 2023, pp. 1094-1099

[5]. Huang, S. Liu and K. Davis, "Energy Theft Detection Via Artificial Neural Networks," 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Sarajevo, Bosnia and Herzegovina, 2018, pp. 1-6

[6] . Ismail, M. F. Shaaban, M. Naidu and E. Serpedin, "Deep Learning Detection of Electricity Theft Cyber-Attacks in Renewable Distributed Generation," in IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3428-3437, July 2020.

Summary

- Machine learning algorithms are effective in detecting electricity theft.
- Few studies considered networks with PV and NM
- Most research used historical time-series data of individual household readings
- No studies have explored the effect of the quantity of check meters on electricity theft detection.

03

Problem Statement & Objectives

Problem Statement

Problem	Challenge	Existing Work
Widespread electricity theft harms the power industry	More consumers are availing PV and NM which affects performance of electricity theft	Limited studies on electricity theft detection on networks with PV and NM
	detection	Use of impractical and costly models with several check meters

Problem Statement

There are currently no studies that have explored the effect of check meter quantity on theft detection in networks with PV and NM.

____b

Objectives

Primary Objective

Study the effect of check meter quantity in electricity theft detection methods

Specific Objectives

- Create training datasets with varying check meter quantities
- Compare the performance of electricity theft detection algorithms under different PV and NM penetration and check meter quantity

Scope and Limitations

Machine Learning Algorithms	Network	Limitations
Support Vector Machine (SVM)	Varying PV and NM penetration	One pilferer tampers with meter readings
Artificial Neural Network(ANN)	Varying check meter quantity	Optimal placement of check meters will not be studied
Decision Tree(DT)	Check meters will be placed evenly	not be stadied
Random Forest (RF)	throughout the network.	

Methodology

Process Flowchart

Dataset Creation

Household Data Acquisition and Cleaning

Ausgrid Dataset

- 300 customers
- Households with Rooftop PV
- Half-hour interval readings
- Meter reading categories
 - Gross Generation (GG)
 - Gross Consumption (GC)
 - Controllable Load (CL)

Data Cleaning

- Narrow to 2010–2011 data
- Filter out households with CL
- Use data points from period with similar weather forecast as the Philippines

IEEE European LV Test Feeder

- Open source base test feeder with minimal alterations
- 55 PQ loads and 1 Distribution Transformer
- Simulate in OpenDSS

Test Network Cases - Check Meter (CM) Configuration

CM Configuration	CM Qty	Households per CM
C1	27	2-3
C2	10	5-6
C3	5	10-12
C4	1	55

Check Meter (CM) Placement

C1: C2:

Check Meter (CM) Placement

C3: C4:

Test Network Cases - PV and NM Penetration Levels

PV + NM Config.	PV Pen. (%)	PV Houses Qty	NM Pen. (%)	NM Houses Qty
PO	0	0	0	0
P1	50	27	33	9
P2	100	55	33	18
P3	50	27	66	18
P4	100	55	66	36
P5	50	27	100	27
P6	100	55	100	55

Dataset Creation

Benign Dataset

- 55 randomly selected household per simulation
- Half-hour meter readings will be summed to be converted into daily readings
- Each simulation will have 7 data points – one per day

Dataset	Sim #	СМ	PV + NM
DI	1-110	C1	РО
•••	•••		•••
D7	661-770	C1	P6
•••			
D28	2971- 3080	C4	P6

Dataset Creation

Malicious Dataset

- Theft multiplier
 - \circ Mean = 0.5
 - Standard deviation = 0.05
 - 3 Standard deviations from mean
 - 35% to 65%
- Pilferer's NM reading
 - +: Reduced consumption
 - -: Increase in sold energy

$$X = \begin{cases} X * k & \text{if } x > 0 \\ X - (|X| * k) & \text{if } x < 0 \end{cases}$$

Dataset Creation

Malicious Dataset

- Two theft frequencies
 - Full day: Steals for 24 hours
 - Half day: Steals from 6AM to 6PM
- Each dataset will be divided into two
 - 55 simulations for each theft frequency

Dataset	Sim #	Theft Frequency
D1_mal	1-55	Full Day
	56-110	Half Day
D28_mal	2971 - 3025	Full Day
	3026 - 3080	Half Day

Theft Detection Implementation

Feature Extraction and Labeling

Gamma Deviance, Log Cosh Loss, and % Loss Error

$$Gamma\ Deviance = 2(log(\frac{\sum_{n=1}^{k}M_{n}}{CM}) + \frac{CM}{\sum_{n=1}^{k}M_{n}} - 1)$$

$$Logcosh = log(cosh(\sum_{n=1}^{k}M_{n} - CM))$$

$$\%\ Loss\ Error = \frac{|\sum_{n=1}^{k}M_{n} - CM|}{CM}$$

- CM Daily Check Meter Reading
- ΣMn Sum of daily meter readings of households under a certain check meter

Theft Detection Algorithm Implementation

Classifiers

- Support Vector Machine (SVM)
- Artificial Neural Network (ANN)
- Decision Tree (DT)
- Random Forest (RF)
- 336 classifiers

Train-Test Split

- 80% of data for training
- 20% of data for testing

Resources

- Google Colab
- Scikit-learn

Theft Detection Algorithm Implementation

SVM

- Radial-Basis Function (RBF) kernel to handle non-linear features
- 10-fold cross validation to split training set
- Support Vector Classifier (SVC)
 library from Scikit-learn

ANN

- Optimizers
 - Stochastic Gradient Descent (SGD)
 - Adaptive Moment Estimation (ADAM)
- Activation Functions
 - Sigmoid, Hyperbolic Tan, Rectified Linear Unit
- 5-fold hyperparameter optimization
- Keras and MinMaxScaler libraries in Colab

Theft Detection Algorithm Implementation

DT

- No overlaps between training and testing data
- DecisionTreeRegressor library from Scikit-learn

RF

- Hyperparameters
 - Number of DTs
 - Max Depth
- Hyperparameter optimization
- RandomForestClassifier library from Scikit-learn

Performance Assessment

Performance Metrics

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

- True Positive (TP) –
 correctly identified theft
- True Negative (TF) correctly identified non-theft
- False Positive (FP) –
 wrongly accused theft
- False Negative (FN) undetected theft

Preliminary Work

Preliminary Work

O1 O2 O3

Ausgrid European IEEE LV File Repository of Dataset Test Feeder Previous Work

05

Project Schedule & Deliverables

Gantt Chart

THE I MERCHAN	Week															
Task Name		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Pre-Work																
Familiarization with Machine Learning Algorithms											.5					
Familiarization with Power Flow Simulations				,					,							
Household Data Acquisition and Cleaning																
Network Modelling											80					9
Benign and Malcious Dataset Creation	20															
Network C1																
Network C2																
Network C3																
Network C4																
Theft Detection Machine Learning Implementation																
Feature Extraction and Labeling																
Network C1 (SVM, ANN, DT and RF)	X1			×S					25							
Network C2 (SVM, ANN, DT and RF)	30															
Network C3 (SVM, ANN, DT and RF)																
Network C4 (SVM, ANN, DT and RF)																
Performance Assessment																
Documentation																
Legend: Gray - All , Green - Gonzales , Blue - Vicencio	•															

Halfway Deliverables

01

Libraries for ML implementation

SVM, ANN, DT, RF

02

File Repository

Python scripts for data cleaning

OpenDSS file of test network

Raw and processed power flow datasets

03

Documentation

Output of each task

Final Deliverables

Effect of Check Meter Quantity on Theft Detection in Distribution Networks with Rooftop PV and Net Metering

Kaira Maxine V. Gonzales | Carlos Demetri S. Vicencio Adviser: Adonis Emmanuel D.C. Tio, Ph. D.

References

- [1] R. A. Walling, R. Saint, R. C. Dugan, J. Burke and L. A. Kojovic, "Summary of Distributed Resources Impact on Power Delivery Systems," in IEEE Transactions on Power Delivery, vol. 23, no.3, pp. 1636–1644, July 2008
- [2] . M. Badr, M. I. Ibrahem, M. Baza, M. Mahmoud and W. Alasmary, "Detecting Electricity Fraud in the Net-Metering System Using Deep Learning," 2021 International Symposium on Networks, Computers and Communications (ISNCC), Dubai, United Arab Emirates, 2021.
- [3] C. Lavilla, M. Osorio, and Z. Restituto, "Effect of Net Metering and Rooftop Photovoltaics on Electricity Theft Detection," Capstone Project, EEEI, University of the Philippines, Diliman, 2021.
- [4] R. M. P. Maala, A. M. B. Rebamba and A. E. D. Tio, "Classification-Based Electricity Theft Detection on Households with Photovoltaic Generation and Net Metering," TENCON 2023 2023 IEEE Region 10 Conference (TENCON), Chiang Mai, Thailand, 2023, pp. 1094-1099
- [5]. Huang, S. Liu and K. Davis, "Energy Theft Detection Via Artificial Neural Networks," 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Sarajevo, Bosnia and Herzegovina, 2018, pp. 1-6
- [6] . Ismail, M. F. Shaaban, M. Naidu and E. Serpedin, "Deep Learning Detection of Electricity Theft Cyber-Attacks in Renewable Distributed Generation," in IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3428-3437, July 2020.