Fenchel-Rockafellar Duality

Refs: Bauschke + Combettes, 2nded 17 Wednesday, March 3, 2021 10:19 AM (P) p*=min f(x) + g(A·x)

not our dual fen f, g & Po, allow + 10 values (encode constraints) A a mxn matrix (R)= { all Isc, proper, crx freshor on R) (D) d= min f*(A*v) + g*(-v) f(x) e (-p,+p] dom(f) = 3x: f(x) < p } Connections to Lagrangian Duality take (P), (coastas min f(x) + g(z) } I(x, z, v) = f(x) + (z - Ax, v)A, -I $dvalFen(v) = \inf_{x_1 \neq z} \mathcal{I}(x, z, v) = \inf_{x_2 \neq z} \mathcal{I}(x, z, v) = \inf_{x_3 \neq z} \mathcal{I}(x, z, v) = \inf_{x_4 \neq z} \mathcal{I$ (Recall: f*(y) = sup <x,y7-f(x)) $\underline{mh} f(x) = -max - f(x)$ so... dual Fun(v) = $-f^{\dagger}(A^{\dagger}r) - g^{\dagger}(-v)$ (\tilde{D}) is \tilde{J}^* ernex $-f^*(A^*v)-g^*(-v)$ via Lagragia Duelity d #= d * via Saddle-point interpretation: if $g \in \Gamma_0$ then $g = g^{**}$, $g(x) = \sup_{Y} \langle x, y \rangle - g^*(y)$ (P) $\min_{x} f(x) + g(Ax) = \sup_{x} \langle Ax, v \rangle - g^{*}(v)$ (P) $\min_{x} \sup_{x} f(x) + \langle Ax, v \rangle - g^{*}(r)$ if I a saddle-pt, then strong min-max principle and we can interchange $\Rightarrow \sup_{v} \min_{v} f(x) + \langle x, A^*v \rangle - g^*(v)$ $syp - f^*(-A^*v) - g^*(v)$

$$\sup_{V} -f^{*}(A^{*}V) -g^{*}(-V) \qquad (D)$$

Why?
Differentiability Facts

Prop 18.9 fe (H), ft is strictly envex => f is (Gateaux) differentiable on int (dom (f)

Prop 18:15 If f is continuous and convex,

then

(f (Frechet) differentiable

and Pf is 1-lipschitz) (=> (f* is L-1 Strongly)

convex

and fep, f=f**

Use: (i) gradients (or Hessians...)

z) projections

2') proximity operators 3) lug-barriers

i) gradients if I know Pg, can I find P(g.A) ? = A+ (Pg o A) (chash rule) V(f+g) = Vf+Vg

2) projections/proximity operators

C= 3 x: 11x11, =1 } COA = {x: ||Ax||2 < 1 }

prox (y) = argmin = = 11x-y112+g(x)

Projend = Proje ? proj D No! no nike rule $f=I_{c}$, $g=I_{D}$, $f+g=I_{con}$

Thm Thm 15.23 B+C "Generalized Slater"

If $0 \in relint(domg - A(domf))$ then Strong dvality holds

Constraint Qualification (like Slater) CQ

In general, if I know

prox

proxq , I don't know

There is no chair rule.

inf f(x) + g(Ax) = - min $f^{+}(A^{+}v) + g^{+}(-v)$ and the dual sol'n is obtained.

(Brop. 15.24 (x))

(Q: in finite dimensione, show relint (dom(g)) \(\cap A \) (relint (domf)) \(\neq \phi \)

or, if fig are polyhedral, dom g \(\cap A \) (dom f) \(\neq \phi \) (Fact 15.25

(ii)

1.c., "Strictly feasible point"

Recovering a primal solution from a dual solution

Thm 19.1 Bauschke + Combettes 2nd ed Let fello(18"), gello(18"), dom(g) n A(domf) + p

The following are equivalent: (1) there is no duality get and x, v are primal-dual optimal (i.e., $\frac{1}{2}$ saddle pts to $\frac{1}{2}(x,v) = \frac{1}{2}(x) + \frac{1}{2}(x)$

(2) L*vedf(x) and -vedg(Ax)

 $\textcircled{3} \times \in df^{+}(A^{+}v)$ and $A \times \in dg^{+}(-v)$

(2) \Leftrightarrow (8) Since $df^* = df^{-1}$ when $f \in \mathbb{N}_0$

In particular (Fact 19.4 B+C) under above conditions, if f^+ is differentiable at (A^+v) [i.e., if f is strictly convex]

then either (a) there is no primal optimal solution or (b) $X = \nabla f^{+}(A^{+}v)$ is primal optimal

Simple example of using duality

(P)
$$\min_{z \in \mathbb{Z}} \frac{1}{|x - x_0|^2} = \int_{\mathbb{Z}} |x - x_0|^2$$

 $\sup_{z \in \mathbb{Z}} \frac{1}{|x - b|} \le \sum_{z \in \mathbb{Z}} |x - x_0|^2$
 $\sup_{z \in \mathbb{Z}} \frac{1}{|x - b|} \le \sum_{z \in \mathbb{Z}} |x - x_0|^2$

how to solve?

Projected-gradient method

projected-gradient method isn't easy (projection is as hard as only inal problem ... need SUD(A)

 $f^{+}(x) = \sum_{i=1}^{x} \langle x^{i} \times x^{i} - |x^{i}||_{x} = \langle x^{i} \times x^{i} + |x^{i}||_{x}$ $= \langle x^{i} \times x^{i} + |x^{i}||_{x} = \langle x^{i$

 $g^{+}(v) = \sup_{\widetilde{y} \in \mathbb{Z}} \langle v, y \rangle = \langle v, b \rangle + \sup_{\widetilde{y} \in \mathbb{Z}} \langle v, \widetilde{y} \rangle = \langle v, b \rangle + \varepsilon \cdot ||v||_{2}$

