EECS 16A Midterm 1 Review Session

Presented by <NAMES >(HKN)

Disclaimer

Although some of the presenters may be course staff, the material covered in the review session may not be an accurate representation of the topics covered in and difficulty of the exam.

Slides are posted at — on Piazza.

HKN Drop-In Tutoring

• These details should be edited

Systems of Equations and Gaussian

Elimination

Vectors

Conceptually, a vector is a collection of numbers that each represent a variable. If there are n variables, then the vector is n-dimensional.

Example:

A point in 3D can be represented as (x, y, z) In vector form, this

would be represented as
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

4

Matrices

- Collection of vectors
- 2D table for storing data
 - \odot Systems of equations for imaging observations
- Notable/useful matrices
 - O Identity matrix
 - Augmented matrices
 - Rotation matrix
 - Many others!

Augmented:
$$\begin{bmatrix} 1 & -2 & 3 & 7 \\ 2 & 1 & 1 & 4 \\ -3 & 2 & 3-2 & 10 \end{bmatrix}$$

Rotation:
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Matrix Transformations

Matrices are often used to perform transformations, especially in $\ensuremath{\mathbb{R}}^2$

Two important transformations:

Figure 1: Rotation

Figure 2: Reflection

Rotation Matrix

The rotation matrix rotates points by a specified angle, theta:

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Use this matrix by plugging in desired rotation angle, then multiply with vector.

Note: Rotation matrices also preserve the length of a vector.

Example: Rotation Matrix that rotates vector by 90°

$$R(90^{\circ}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

7

Rotation Matrix

The rotation matrix rotates points by a specified angle, theta:

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Use this matrix by plugging in desired rotation angle, then multiply with vector.

Note: Rotation matrices also preserve the length of a vector.

Example: Rotation Matrix that rotates vector by 90°

$$R(90^{\circ}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

8

Reflection Matrix

The reflection matrix reflects vectors across a line (Notice that such matrix also preserves the length of a vector)

Notable reflection matrices:

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Reflection across x-axis

Reflection across y-axis

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right]$$

Reflection across y = x

Matrix Transformations

All linear transformations can be expressed as a matrix

Example 1

Question

What is the resulting vector after the following (non-subsequent) transformations are applied to the vector $\vec{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

1. Rotate by 45°

2. Reflect across y = x

Example 1

Solution

What is the resulting vector after the following (non-subsequent) transformations are applied to the vector $\vec{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

1. Rotate by 45°

$$\begin{bmatrix} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{5\sqrt{2}}{2} \end{bmatrix}$$

2. Reflect across y = x

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Determinants

Determinant of a $2x^2$ matrix:

$$det\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$$

Also, an upper triangular matrix's determinant is the product of the diagonal:

$$det \begin{pmatrix} \begin{bmatrix} a & * & * & \cdots \\ 0 & b & * & \cdots \\ 0 & 0 & c & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \end{pmatrix} = abc \cdots$$

Gaussian Elimination

Ultimate goal: Upper triangular form (i.e numbers below the diagonal are all 0)

Reminder of Motivation: Can work starting from the bottom row up in order to quickly calculate (from a computer's perspective) each variable's value.

For example, the last row has one variable and one value.

Gaussian Elimination

IDEA: Augmented matrix represents a system of equations where each row is an equation.

What are you allowed to do with equations to solve them?

- 1. Row exchange (same equations, different order)
- 2. **Scaling** (multiplying an equation by a scalar)
- Replace a row with the a linear combination of itself and another row (intuitively, must include itself because otherwise there is "loss of information", like a deletion of one of the original rows)

GOAL:

Original Matrix o Row Echelon Form o Reduced Row Echelon Form

Gaussian Elimination Example

Problem

Use Gaussian Elimination to reduce the following system of equations:

$$\begin{cases} x_1 + x_2 + x_3 = 8 \\ 2x_1 - 4x_2 + 3x_3 = 9 \\ -x_1 + 5x_2 - 2x_3 = 0 \end{cases}$$

Gaussian Elimination Example

Solution

Use Gaussian Elimination to reduce the following system of equations:

$$\begin{bmatrix} 1 & 1 & 1 & | & 8 \\ 2 & -4 & 3 & | & 9 \\ -1 & 5 & -2 & | & 0 \end{bmatrix} \xrightarrow{2R_1 - R_2 \to R_2} \begin{bmatrix} 1 & 1 & 1 & | & 8 \\ 0 & 6 & -1 & | & 7 \\ -1 & 5 & -2 & | & 0 \end{bmatrix} \xrightarrow{R_1 + R_3 \to R_3}$$

$$\begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 6 & -1 & 7 \\ 0 & 6 & -1 & 8 \end{bmatrix} \xrightarrow{R_2 - R_3 \to R_3} \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 6 & -1 & 7 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

The last row implies 0 of three variables add up to -1. Therefore, there exists no solution.

Possible Outcomes from Gaussian Elimination

Possible Results	Row Picture	Column Picture	Properties of Matrix A
Unique solution	Equations intersect at ex-	b can be uniquely repre-	A is invertible
	actly one point	sented by the linear com-	
		bination of the columns of	
		A	
Infinite solutions	Equations intersect along	There are multiple ways of	A has linearly dependent
	an infinite space (eg. the	representing b in terms of	columns
	intersection is a line or a	the linear combination of	
	plane)	the columns of A	
No solutions	Equations do not intersect	b is not in the span of the	Column space of A does
		columns of A; b is not in	not contain (span) the vec-
		the column space of A	tor b