Sketch the solid whose volume is given by the iterated integral.

- Indefinite Integrals Definite Integrals
- Specific-Method Improper Integrals Antiderivatives Double Integrals

Triple Integrals

Multiple Integrals

Integral Applications

Riemann Sum (new)

- Series
- ▶ ODE
- Multivariable Calculus (new)
- Laplace Transform
- ► Taylor/Maclaurin Series

Fourier Series

$$=\frac{20}{3}$$

47. Find the region *E* for which the triple integral

$$\iiint_E (1 - x^2 - 2y^2 - 3z^2) \, dV$$

is a maximum.

E:
$$1-\chi^{2}-2\eta^{2}-3z^{2} \ge 0$$

$$\chi^{2}+2\eta^{2}+3z^{2} \le 1$$

$$\chi^{2}+\chi^{2}+3z^{2} \le 1$$

$$(\sqrt{52})^{2}+\frac{z^{2}}{(\sqrt{52})^{2}} \le 1$$

TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

$$x = r \cos \theta$$
 $y = r \sin \theta$ $z = z$

EXAMPLE 2 Describe the surface whose equation in cylindrical coordinates

is
$$z = r$$
.

$$2 = \sqrt{x^2 + 4^2}$$

bottom cone as well??

$$\mathcal{X} = \sqrt{x^2 + 4^2}$$

EXAMPLE 2 Describe the surface whose equation in cylindrical coordinates is z = r.

 $\Upsilon = \sqrt{x^2 + y^2}$

surface??

collection of all points (r, 0, 2) which

Satisfy the equation

$$Z = \gamma$$

dady = (??) dudu Jacobian

dray
$$dz \longrightarrow ???$$
 draddz

Taculaian of switching

from (x,4, z) to cylindrical

 $Z = 2$
 $z = 3$
 $z =$

: dxdydz = Ydrdidz

$$rdrdudz = (rd0)(dr)(dz)$$

volume swiped for small change du, dr, dz **EXAMPLE 3** A solid E lies within the cylinder $x^2 + y^2 = 1$, below the plane z = 4, and above the paraboloid $z = 1 - x^2 - y^2$. (See Figure 8.) The density at any point is proportional to its distance from the axis of the cylinder. Find the mass K: Some coustant not of E.

$$-\rho(4,8,2)=K\delta$$

$$= \int \int \int (KY) Y dzdYdd = K \frac{24}{10} T$$

$$y^2 = 1$$
, below the plane
e Figure 8.) The density at
f the cylinder. Find the mass

$$Z = 1 - \chi^2 - \chi^2$$

EXAMPLE 4 Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{2} (x^2 + y^2) dz dy dx$.

Rewrite this integration in cylindrical coordinates

5-6 ■ Describe in words the surface whose equation is given.

5.
$$r = 3$$

6.
$$\theta = \pi/3$$

9-10 ■ Write the equations in cylindrical coordinates.

9. (a)
$$z = x^2 + y^2$$
 (b) $x^2 + y^2 = 2y$

(b)
$$x^2 + y^2 = 2y$$

Evaluate $\iiint_E (x^3 + xy^2) dV$, where E is the solid in the first octant that lies beneath the paraboloid $z = 1 - x^2 - y^2$.