Problem 2.15 - Uncertainty Analysis

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

```
\sqrt{2 \frac{R}{M} \frac{T}{p} \frac{F}{A} + v_1^2} \mapsto \begin{pmatrix} v_1 & 100 \pm 0.5 & & \text{Uniform} \mathcal{D} \\ R & 8.3144621 \pm 0.0000075 & \text{Normal} \mathcal{D} \\ M & 28.97 \times 10^{-3} \pm 0.005 \times 10^{-3} & \text{Uniform} \mathcal{D} \\ T & \left(273.15 - 15\right) \pm 0.5 & \text{Uniform} \mathcal{D} \\ p & 60 \times 10^3 \pm 5 \times 10^3 & \text{Uniform} \mathcal{D} \\ F & 1000 \pm 100 & \text{Uniform} \mathcal{D} \\ A & 1 \end{pmatrix}
```

```
v = (111.667615788844 \pm 0.870427) \text{ m s}^{-1}

\simeq (1.117 \pm 0.009) \times 10^2 \text{ m s}^{-1} = 1.117(9) \times 10^2 \text{ m s}^{-1}
```

$\verb|PAnalysisEnvironment| \\$

$$y = \sqrt{x_1^2 + \frac{2 x_2 x_4 x_6}{x_3 x_5 x_7}}$$

Variable		Uncertainty Interval	Distribution	∂f/∂x _i
\mathbf{x}_1	v ₁	(1.000 ± 0.005) × 10 ²	Uniform	8.95515×10^{-1}
x ₂	R	$(8.3144621 \pm 0.0000075) \times 10^{\circ}$	Normal	1.32998
x ₃	M	$(2.8970 \pm 0.0005) \times 10^{-2}$	Uniform	3.81708×10^2
\mathbf{x}_4	T	$(2.582 \pm 0.005) \times 10^{2}$	Uniform	4.28358×10^{-2}
x ₅	p	$(6.0 \pm 0.5) \times 10^4$	Uniform	1.84301×10^{-4}
x 6	F	$(1.0 \pm 0.1) \times 10^3$	Uniform	1.10581×10^{-2}
x ₇	A	1× (exact) 10°		1.10581×10^{1}

У	111.667615788844	
Ymin Ymax	109.305223006439 114.324530864478	= y - 2.36239 = y + 2.65692
ε_{max} $y \pm \varepsilon_{\text{max}}$	$\begin{array}{c} 2.49842642729096 \\ \left(1.12 \pm 0.03\right) \times 10^{2} \end{array}$	= 2.24% = $1.12(3) \times 10^{2}$
u _c y ± u _c	0.87042725547714 (1.117 ± 0.009) × 102	= 0.779% = $1.117(9) \times 10^2$

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{i=1}^{n} |\partial_{\mathbf{x}_{i}} \mathbf{f}[\mathbf{x}] | \varepsilon_{i}; \quad \mathbf{f}[\mathbf{x}] \pm \varepsilon_{\text{max}} // \text{QUCE}$$

```
111.667615788844 ± 2.49843

\in [109.169; 114.166]

\simeq (1.12 \pm 0.03) \times 10^2 = 1.12(3) \times 10^2
```

Combined Standard Uncertainty

$$u_{c} = \left(\sum_{i=1}^{n} (\partial_{x_{i}} f[x])^{2} u_{i}^{2}\right)^{1/2}; f[x] \pm u_{c} // QUCA$$

```
111.667615788844 ± 0.870427
 ∈ [110.7972; 112.538]
\simeq (1.117 ± 0.009) \times 10<sup>2</sup> = 1.117(9) \times 10<sup>2</sup>
```

Monte Carlo Simulation

```
Block \left\{ data, trials = 10^6 \right\},
   data = f@@ Table[RandomReal[fDist[i], {trials}], {i, 1, n}];
  Mean[data] ± StandardDeviation[data] ] // QUCA
    111.690909522576 ± 0.873275
     ∈ [110.8176; 112.5642]
    \simeq (1.117 ± 0.009) \times 10<sup>2</sup> = 1.117(9) \times 10<sup>2</sup>
```