Lecture 6

Quiz-4

Set-A

1. Apply the midpoint line drawing algorithm to draw a line from (-1, p) to (4, p - 6) and plot the points.

Here,
$$p = (-1)^n x n$$

[n = last 2 digits of your ID]

Necessary adjustments of the original algorithm for different octants are provided below:

(1) plot(x, y)	(2) swap(x, y);	(3) x=-x;	(4) x=-x;
	plot(y, x)	swap(x, y); plot(-y, x)	plot(-x, y)
(5) x=-x; y=-y;	(6) x=-x; y=-y;	(7) y=-y;	(8) y=-y;
plot(-x, -y)	swap(x, y); plot(-y, -x)	swap(x, y); plot(y, -x)	plot(x, -y)

- a) [15 marks] Show the values of the decision variables and the points for each step (in a tabular format).
- b) [5 marks] Plot the final points

1. Solution: 024

(a)

Here,
$$p = (-1)^2 4 \times 24 = 24$$

So, points are: $(x0, y0) = (-1, 24)$, $(xn, yn) = (4, 18)$

$$m = (yn-yo) / (xn-xo) = \Delta y/\Delta x = 18-24 / 4-(-1) = -6/5$$

As, Δx value is positive and Δy value is negative, so 4th quadrant.

For the 4th quadrant we have 7th and 8th octant.

As, $|\Delta x| < |\Delta y|$, so 7th octant.

// Explanation

Using given table (for 7th octant),

After negating (xo, yo) = (-1, -24) After swapping (xo, yo) = (-24, -1)

After negating (xn, yn) = (4, -18) After swapping (xn, yn) = (-18, 4)

So, we have to go from (xo, yo) = (-24, -1) to (xn, yn) = (-18, 4)

$$dy = yn - yo = 4-(-1) = 5$$

$$dx = xn - xo = -18 - (-24) = 6$$

$$d = 2dy - dx = 2 \times 5 - 6 = 4$$

$$\Delta E = 2dy = 2 \times 5 = 10$$

For move to E: x = x + 1, y = y

$$\Delta NE = 2(dy - dx) = 2 \times (5 - 6) = -2$$

For move to NE: x = x + 1, y = y + 1

As d=4 > 0: move to NE

$$x1 = xo + 1 = -24 + 1 = -23$$
 $y1 = yo + 1 = -1 + 1 = 0$

So, (x1, y1) = (-23, 0)

New d = d + Δ NE = 4 + (-2) = 2

As d=2 > 0: move to NE

$$x2 = x1 + 1 = -23 + 1 = -22$$
 $y2 = y1 + 1 = 0 + 1 = 1$

So, (x2, y2) = (-22, 1)

New $d = d + \Delta NE = 2 + (-2) = 0$

As d=0 <= 0: move to E

$$x3 = x2 + 1 = -22 + 1 = -21$$
 $y3 = y2 = 1$

So, (x3, y3) = (-21, 1)

New $d = d + \Delta E = 0 + (10) = 10$

As d=10 > 0: move to NE

$$x4 = x3 + 1 = -21 + 1 = -20$$
 $y4 = y3 + 1 = 1 + 1 = 2$

So, (x4, y4) = (-20, 2)

New $d = d + \Delta NE = 10 + (-2) = 8$

As d=8 > 0: move to NE

$$x5 = x4 + 1 = -20 + 1 = -19$$
 $y5 = y4 + 1 = 2 + 1 = 3$

So, (x5, y5) = (-19, 3)

New d = d + Δ NE = 8 + (-2) = 6

As d=6 > 0: move to NE

$$x6 = x5 + 1 = -19 + 1 = -18$$
 $y6 = y5 + 1 = 3 + 1 = 4$

So, (x6, y6) = (-18, 4)

New $d = d + \Delta NE = 6 + (-2) = 4$

We have found (xn, yn).

Summary table:

Move	Х	У	d
Initial	-24	-1	4
NE	-23	0	2
NE	-22	1	0
E	-21	1	10
NE	-21	2	8
NE	-19	3	6
NE	-18	4	4

(b)

Using values from (a) we get,

(x, y)	plot(y, -x)
(xo, yo) = (-24, -1)	(-1, 24)
(x1, y1) = (-23, O)	(O, 23)
(x2, y2) = (-22, 1)	(1, 22)
(x3, y3) = (-21, 1)	(1, 21)
(x4, y4) = (-20, 2)	(2, 20)
(x5, y5) = (-19, 3)	(3, 19)
(x6, y6) = (-18, 4)	(4, 18)

Set-B

1. Apply the midpoint algorithm to draw a circle's portions of circumference centered at (-2, p) on with radius 7.

Here,
$$p = (-1)^n x n$$

[n = last 2 digits of your ID]

If p is even, find the points on the even octants. Otherwise, find the odd octants.

- a) [15 marks] For each step, show the values of the decision variables and the points (in a tabular format).
- b) [5 marks] Plot the final points.

1. Solution: 024

(a)

Here, $p = (-1)^24 \times 24 = 24$ So, center (-2, 24) and radius = 7 Initial x = 0 and y = radius = 7 Initial h = 1-R

For move to E:
$$h = h_old + 2(x_previous) + 3$$

 $x = xp + 1$, $y = yp$

For move to SE:
$$h = h_old + 2(x_previous) - 2(y_previous) + 5$$

 $x = xp + 1$, $y = yp - 1$

х	У	2x	2y	h	Move
0	7	0	14	1-7 = -6	h<0; E
1	7	2	14	-6 + O + 3 = -3	h<0; E
2	7	4	14	-3 + 2 + 3 = 2	h>=0; SE
3	6	6	12	2 + 4 - 14 + 5 = -3	h<0; E
4	6	8	12	-3 + 6 + 3 = 6	h>=0; SE
5	5	10	10	6 +8 - 12 + 5 = 7	h>=0; SE

As p=24 is even, I have to find points on the even octants.

Maya)VO V		h	2nd octant		
Move	Х	У	n	(x, y)	(x+xc, y+yc)	
Initial	0	7	-6	(O, 7)	(-2, 31)	
E	1	7	-3	(1, 7)	(-1, 31)	
Е	2	7	2	(2, 7)	(O, 31)	
SE	3	6	-3	(3, 6)	(1, 30)	
Е	4	6	6	(4, 6)	(2, 30)	
SE	5	5	7	(5, 5)	(3, 29)	

4th octant		6	th octant	8th octant	
(-y, x)	(-y+xc, x+yc)	(-x, -y)	(-x+xc, -y+yc)	(y, -x)	(у+хс, -х+ус)
(-7, 0)	(-9, 24)	(-0, -7)	(-2, 17)	(7, -0)	(5, 24)
(-7, 1)	(-9, 25)	(-1, -7)	(-3, 17)	(7, -1)	(5, 23)
(-7, 2)	(-9, 26)	(-2, -7)	(-4, 17)	(7, -2)	(5, 22)

(-6, 3)	(-8, 27)	(-3, -6)	(-5, 18)	(6, -3)	(4, 21)
(-6, 4)	(-8, 28)	(-4, -6)	(-6, 18)	(6, -4)	(4, 20)
(-5, 5)	(-7, 29)	(-5, -5)	(-7, 19)	(5, -5)	(3, 19)

(b)

Set-C

 Apply the midpoint line drawing algorithm to draw a line from (p, -3) to (p + 7, −6) and plot the points.

> Here, $p = (-1)^n \times n$ [n = last 2 digits of your ID]

Necessary adjustments of the original algorithm for different octants are provided below:

(1) plot(x, y)	(2) swap(x, y);	(3) x=-x;	(4) x=-x;
	plot(y, x)	swap(x, y); plot(-y, x)	plot(-x, y)
(5) x=-x; y=-y;	(6) x=-x; y=-y;	(7) y=-y;	(8) y=-y;
plot(-x, -y)	swap(x, y); plot(-y, -x)	swap(x, y); plot(y, -x)	plot(x, -y)

- a) [15 marks] Show the values of the decision variables and the points for each step (in a tabular format).
- b) [5 marks] Plot the final points
- 1. Solution: 035

Quiz#1 Setfle

$$P = (-1)^n * n = (-1)^{35} * 35 = -35$$

$$(20, 90) = (9, -3) = (-35, -3)$$

$$(x_0, y_0) = (p, -3) = (-35, -3)$$

 $(x_0, y_0) = (p, -3) = (-35+7, -6) = (-28, -6)$

$$m = \frac{dy}{dx} = \frac{-6+3}{-28+35} = \frac{-3}{7} = -0.428$$
 $Ax = +ve$

.: #th octant

Modification for 8th octant

$$(x_{g}, y_{g}) = (-35, 3)$$

30, the line should be dreawn from (-35,3) to (-28,6)

Now,
$$dJ = 6-3 = 3$$

$$2dy = 2*3 = 6$$

$$\Delta E = 2dy = 2*6$$

$$dR = -28 + 36 = 7$$

$$26y - 4NE = 2(dy - dR)$$

$$= 2(3-7)$$

$$= -8$$

$$dinit = 2dy - dR$$

$$= (2*3) - 7$$

$$= 6-7 = -1$$

$$d = 6-$$

(2, y)
$$(-35, 3)$$
 $(-34, 3)$ $(-33, 4)$ $(-32, 4)$ $(-31, 5)$ $(-30, 5)$ $(-29, 6)$ $(-28, 6)$ $(-28, -6)$ $(-28,$

Set-D

2. Apply the midpoint algorithm to draw a circle's portions of circumference centered at (p, -2) on with radius 8.

Here,
$$p = (-1)^n x n$$

[n = last 2 digits of your ID]

If p is even, find the points on the even octants. Otherwise, find the odd octants.

- c) [15 marks] For each step, show the values of the decision variables and the points (in a tabular format).
- d) [5 marks] Plot the final points.

2. Solution: 035

P = Cent Radi P = Initi	tions for	$1 = (-1)^{35} *$ $2) = (-35, -3)$ $35 *$	are to find the points on the odd octants. -y, ac 3 2 y, ac 20, y -y, ac 3 2 y, ac 20, y -y, ac 4 7 -y, ac 7
₩, 9	æ, y'	h	hnext Calculation
0,8	- 35,6	-7∠0 ∴ E*	hneset = hprese + AE = hprese + (200+3) = -7+(2+0)+3/=-4
1,8	-34,6	-4<0 :EX	hnexet = $-4+(2*1)+3/=1$
2,8	-33,63	1>0 se ~	hnext = hprov + 45E = hprov + (22-24+5) = 1+(2*2)-(2*8)+5} =-6
3,7	-32,5.	-640 EW	hneaet = -6+(2*3)+3/=3
4,7	-31,5	3>0 se w	hnext = 3+(2*4)-(2*7)+5/=2
5,6	-30,4	270 sew	hnext = $2+(2*5)-(2*6)+5=5$
6,5	-29,3/	5>0° ∴ S€ ₩	hnext = 0 5+2(2*6)- (2*5)+5 = 12 no need of contentation
7,1		12>0 se w	hneart=12+(2*7)-(2*4)+5/=23/93 4/2e

2nd	octant	1st o		3rd 6		540	tant	7th 00	tant
(i,i)	(e), y)	(9,2)	(اهرايا)	(-20,4)	(-a/, y/)	(4,-4)	(-y',-w)	% -y,	·(2)-y
1, 8	-35,6	8,0	-27,0	0,8	38,6	-8,0	-43,-2	0,-8	-35,-
, 8	-34;6	8,1	-27,-1		-36,6	-8,-1	-43,-3	1,-8	-34,-
48	-33,6	8,2	-27,0	-2,8	-37,6	-8,-2	-43,-	1 2,-8	
3,7	-32,5	7,3	-28, 1	-3,7	-38,5	3-7,-3	-42,-	53,-7	13
1,7	-31,5	7,9	-28,2	-4,7	-39,	5 -7,-	1 . 1	14	1
6,6	-30,4	6,5	-29, 3	-			1 3	7 5 -6	1
						1	1	12	-30,

Origin42

3. Lecture - 06

b) Write down the algorithm to create a half circle given the radius and the center using [6] Bresenham's Circle drawing algorithm.

3. b. Solution:

```
Algorithm
```

```
void MidpointCircle(intradius)
    int x = 0;
    int y = radius;
    int d = 1 - radius:
                                                              CirclePoints (x,y)
    CirclePoints(x, y);
                                                                   Plotpoint(x,y);
    while (y > x)
                                                                   Plotpoint (x,-y);
    {
                                                                   Plotpoint(-x,y);
         if (d < 0) /* Select E*/
                                                                   Plotpoint(-x, -y);
                   d = d + 2 * x + 3;
                                                                   Plotpoint(y,x);
         else
                                                                   Plotpoint(y, -x);
               /* SelectSE*/
                                                                   Plotpoint(-y, x);
             d = d + 2 * (x - y) + 5;
                                                                   Plotpoint(-y,-x);
             y = y - 1;
                                                              end
         }
     x = x + 1;
     CirclePoints(x,y);
}
```

4. Lecture -06

(a) Consider a line with a start and end point of (0, 0) and (-1, -2) respectively. Apply the necessary transformation to increase the size of the line by 100% and find the final vertices after the transformation. Also, determine the coordinates of each pixel along the transformed line segment using the midpoint line drawing algorithm.

Necessary adjustments of the original algorithm for different octants are provided below:

(1) plot(x, y)	(2) swap(x, y); plot(y, x)	(3) x=-x; swap(x, y); plot(-y, x)	(4) x=-x; plot(-x, y)
(5) x=-x; y=-y; plot(-x, -y)	(6) x=-x; y=-y; swap(x, y); plot(-y, -x)	(7) y=-y; swap(x, y); plot(y, -x)	(8) y=-y; plot(x, -y)

4. a. Solution: Rabab 039

Origin 42 4(a)
$$\Delta x = (\sqrt[3]{-1}) = -1, \ \Delta y = (-2-0) = -2$$

$$m = \frac{\Delta y}{\Delta x} = \frac{-2}{-1} = 2$$

$$1 < m < \infty_{\Lambda}, \ 2 + 3 = 2$$

$$(x_0, y_0) = (0, 0) \text{ and } (x_5, y_5) = (2, 1)$$

$$Now, \ dy = (1-0) = 1, \ dx = (2-0) = 2$$

$$d_{\text{init}} = 2dy - dx = (2x1) - 2 = 0$$

$$\Delta E = 2dy = 2x1 = 2$$

$$\Delta NE = 2(dy - dx) = 2(21-2) = -2$$

2,3	0,0	1,0	2,1
9	OFO	2.70 NE	040. E
dnext	0+3	2-2=0	1-0
-4,-x	0,0	10,0	-1,-2

5. Lecture -06

- (a) Consider a triangle with vertices A(1, 1), B(5, 1), and C(3, 3) and color values of red(1, 0, 0), green(0, 0.9, 0), and blue(0, 0, 0.8) at each vertex of the triangle. Find the color of the point P(3, 2) inside the triangle using the concept of barycentric interpolation.
- M

5. a. Solution: 024

Barycenthic Greterpolation.

Given, A(1,1), B(5,1), C(3,3); P(3,2)

$$= \frac{(y_A - y_c)x + (x_c - x_a)y + x_ay_c - x_ey_a}{(y_A - y_c)x + (x_c - x_a)y + x_ay_c - x_ey_a}$$

$$= (1-3)3 + (3-1)2 + 1\times3 - 3\times1$$

$$(1-3)$$
 5 + $(3-1)$ 1 + $1 \times 3 - 3 \times 1$

FAB (xc, Yc)

$$= \frac{(1-1)3 + (5-1)2 + 1\times 1 - 5\times 1}{(1-1)53 + (5-1)3 + 1\times 1 - 5\times 1}$$

So, for
$$P(0.3, 2) \Rightarrow P(0.25, 0.25, 0.50)$$

$$P(x, y) \Rightarrow P(d, \beta, y)$$
For color,

Griven, red (1,0,0), green (0,0.9,0),
blue (0,0,0.8)

we know,
$$C = Q Co + B C_1 + Q C_2$$

$$C = 0.25 \left[\frac{1}{0} + 0.25 \left[\frac{0.9}{0} \right] + 0.50 \left[\frac{0}{0.8} \right] \right]$$

$$C = \left[\frac{0.25}{0} \right] + \left[\frac{0.225}{0.9} \right] + \left[\frac{0}{0.4} \right]$$

$$Ped = \left[\frac{0.25}{0.9} \right] + \left[\frac{0.25}{0.9} \right] + \left[\frac{0.25}{0.9} \right]$$

$$Ped = \left[\frac{0.25}{0.9} \right] + \left[\frac{0.25}{0.9} \right] + \left[\frac{0.25}{0.9} \right]$$

$$Ped = \left[\frac{0.25}{0.9} \right] + \left[\frac{0.25}{0.9} \right] + \left[\frac{0.25}{0.9} \right]$$

$$Ped = \left[\frac{0.25}{0.9} \right] + \left[\frac{0.25}{0.9} \right] + \left[\frac{0.25}{0.9} \right]$$

$$Ped = \left[\frac{0.25}{0.9} \right] + \left[\frac{0.25}{0.9} \right] + \left[\frac{0.25}{0.9} \right]$$

$$Ped = \left[\frac{0.25}{0.9} \right] + \left[\frac{0.25}{0.9} \right] + \left[\frac{0.9}{0.9} \right]$$

Enigma41

4. Lecture -06

(a) Apply the midpoint algorithm to draw a circle's portions of circumference centered at (-5,-1) on the 5th, 6th, 7th and 8th octant with radius 6. Plot the obtained points. For each step, show the values of the decision variables and the points (in a tabular format).

[9]

4. a. Solution: Rabab 039

Enigma 41 4(a)

h = 1-R = 1-6 = -5

For 2nd octant

# 1		ζ,	\x-y			
=	x, y	h -	hnext			
9	0,6	-5 < 0	-5+ 2x+3			
		€	= -5 + (20) + 3 = -2			
1-	1,6	-220 : E	-2+(2×1)+3=3			
2	2,6	3 > 0 SE	3+(2+2)+5 = 40			
3	3,5	\$070 : SE	10 + (2+3) +(2×5) +5 = 1			
4	4, 4					

Now, for other octants, and shifting by (-5,-1),

5th		The second secon		1 7 th			
-y, -×	-y',-x	-x, -y	-×', - プ	¥, -Y	x',-y'	Y, -×	y', -x'
-6,0	-11,-1	0,-6	-5,-7	0,-6	-5,-7	6,0	1, -1
-6,-1	-11,-2	-1,-6	-6,-7	1,-6	-4 ,-7	6,-1	1, -2
-6,-2	-11,-3	-2,-6	-7,-7	2,-6	-3, -7	6,-2	1, -3
-53	-10,-4	-3, -5	-8,-6	.3 -5	-2 -6	F 2	22
-4,-4	-9,-5	-4,-4	-9,-5	4,-4	-1,-5	4, -4	0, -4

5. Lecture -06

Question 5. [Marks: 14]

(a) Consider a clipping rectangle defined by the vertices (3,3), (13,3),(13,13) and (3,13). Also, consider a line which has starting and ending points of (10,1) and (2,9) respectively. Find the line-edge intersecting points with respect to all four edges of the clipping rectangle using the Cyrus-Beck clipping algorithm and determine the true clipping points. Show the steps and calculations for your solution. [8]

5. a. Solution: 024, Correction: 018

Start point = PO(10, 1) and end point = P1(2, 9)

Again we know,

$$P(t) = R + t(R - P_0)$$

$$= [2] + [1]$$

$$= [3]$$

$$= [3] + [1]$$

$$= [3]$$
So, for left we get, $P(t)_1 = [3]$

For bottom:

 $N_0 = [-1]$
 $P_0 = [7]$ (let) and $R_0 = [2]$, $P_1 = [10]$
 $P_0 = [7]$ (let) and $P_0 = [2]$ $P_1 = [10]$
 $P_0 = [7]$ $P_0 = [7]$

$$= [7] \cdot [7]$$

$$P(1) = P_0 + t (P_1 - P_0)$$

$$\Rightarrow \begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} 2 \\ 9 \end{bmatrix} + \frac{3}{4} \begin{bmatrix} 10 - 2 \\ 1 - 9 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ 9 \end{bmatrix} + \begin{bmatrix} 6 \\ -6 \end{bmatrix}$$

$$= \begin{bmatrix} 8 \\ 3 \end{bmatrix}$$

: Line-edge intersecting points are $P(1)_1 = (3,8)$ and $P(1)_2 = (8,3)$.

For true clipping mosk: points: $N_1 \cdot D = \begin{bmatrix} -i \end{bmatrix} \cdot \begin{bmatrix} 8 \\ -8 \end{bmatrix} = -8 < 0 \rightarrow Potentially entering$

No.D = [-1]. [8] = 8>0 -> Potentially leaving

As max (Pe) < min (Pa); So we can , say that t=0.125 and t=0.75 are true intersecting points.

6. Lecture -06

(a) Consider a pentagon ABCDE with vertices A(1,3), B(5,3), C(8,5.5), D(4,7) and E(1,7). Using the concept of barycentric coordinate, determine if a point P(6, 3.5) is inside the pentagon or not. Describe your approach and show your calculations.

[7]

6. a. Solution: 109

021 - Need to check all triangles (or until a triangle is found with P inside it)

$$\beta = \frac{f_{cd}(\pi_1 x_1)}{f_{cd}(\pi_b, \pi_b)}$$

$$= \frac{(\pi_c - \pi_d) x + (\pi_d - \pi_c) x_1 + \pi_c \pi_d - \pi_d \pi_c}{(\pi_c - \pi_d) x_b + (\pi_d - \pi_c) x_b + \pi_c \pi_d - \pi_d \pi_c}$$

$$= \frac{(5.5 - 7) x_0 + (4 - 8) x_3.5 + (8 \times 7) - (4 \times 5.5)}{(5.5 - 7) x_5 + (4 - 8) x_3 + 656 - 22}$$

$$= \frac{-9 - 14 + 56 - 22}{-7.5 - 12 + 56 - 22} = 6.759$$

$$Y = \frac{f_{bc}(x, y)}{f_{bc}(x_{d}, y_{d})}$$

$$= \frac{(y_{b} - y_{c})x + (x_{c} - x_{b})y_{d} + x_{b}y_{c} - x_{c}y_{b}}{(y_{b} - y_{c})xx_{d} + (x_{c} - x_{b})y_{d} + x_{b}y_{c} - x_{c}y_{b}}$$

$$= \frac{(3 - 5.5)x + (8 - 5)3.5 + (5x 5.5) - (8x3)}{(3 - 5.5)x + (8 - 5)x + (5x 5.5) - (8x3)}$$

$$= \frac{-15 + 10.5 + 27.5 - 24}{-10 + 21 + 27.5 - 24} = 0.276$$

$$= (1 - 0.759 - 276 0.276) - 0.035$$

Not inside.

Recursive40

1.

Apply the midpoint algorithm to draw a line from (2, 1) to (-8, -6) and plot the obtained points. Show step-wise values of the decision variables and the points (in a tabular format).

[11]

1. a. Solution: ch6

3. lecture-6

Suppose we have a 2D quad OABC with the vertices O(0,0), A(1,0.5), B(2,1.5) and C(0.75,3). Using the concept of barycentric coordinate, determine if a point P(1.5, 2.5) is inside the quad. Describe your approach and show your calculations.

[F.J.

3. a. Solution: Rabab 039

021 - Need to check all triangles (or until a triangle is found with P inside it)

Shurutei khela shesh. There's a negative value so, outside

4. . lecture-6

a) Apply the midpoint algorithm to draw a circle's portions of circumference centered at (2, 0) on the 3rd, 4th, 5th and 6th octant with radius 7. Plot the obtained points. For each step, show values of the decision variables and the points (in a tabular format).

4. a. Solution:

7. lecture-6

Consider a clipping rectangle which has width and height of 10 units. Its lower left corner is located at (3,3). Also consider a line which has a starting point at (1,1), length = 20 units, and slope = 2. Perform the line-edge intersecting points with respect to all four edges of the clipping rectangle using Cyrus-Beck algorithm and determine the true clipping points. Show your steps and calculations for your solution (assume any data if necessary).

[8]

7. a. Solution: Younus-131

Given,
$$m = 2$$

$$\Rightarrow \frac{y_1 - y_0}{x_1 - x_0} = 2$$

$$\Rightarrow \frac{y_1 - y_0}{x_1 - 1} = 2$$

$$\Rightarrow 2x_1 - 2 - y_1 + 1 = 0$$

$$\Rightarrow y_1 = 2x_1 - 1$$

Length of PQ = 20

$$\Rightarrow (x_0 - x_1)^2 + (y_0 - y_1)^2 = 20$$

$$\Rightarrow (1 - x_1)^2 + (1 - y_1)^2 = 400$$

$$\Rightarrow 1^2 - 2x_1 + x_1^2 + 1^2 - 2y_1 + y_1^2 = 400$$

$$\Rightarrow 1 - 2x_1 + x_1^2 + 1 - 2(2x_1 - 1) + (2x_1 - 1)^2 = 400$$

$$\Rightarrow 5x_1^2 - 10x_1 - 395 = 0 \quad \text{[firm 0]}$$
 $x_1 = 9.94$

$$x_1 = -7.94$$

$$x_2 = 0$$

From 0 => $y_1 = 2x_1 - 1$

$$y_1 = 19 \quad 2 - 17$$

(-8,17) is invalid because PQ line intersects

the rectangle. So Q = (10,19).

The PQ line intersects the AD line at P_{E1} Point.

Eqⁿ of AD line is $x = 3$ [parallel line of y axis]

From 0 => $y_1 = 2x_1 - 1 = 5$

$$x_1 = (3,5)$$

PQ line intersects the CD line at PE2 point.

Eq. of CD line is y=13 [parallel line of x axis]

From $0 \Rightarrow 13=2x-1$ $\Rightarrow x = 7$ $\therefore P_{E2} = (7,13)$

For left half Plane: $t_{1} = \frac{N_{1} \left[P_{0} - P_{E_{1}} \right]}{N_{1} \left[P_{1} - P_{0} \right]} = \frac{\begin{bmatrix} -1 \\ 0 \end{bmatrix} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 5 \end{bmatrix} \right\}}{\begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} -2 \\ -4 \end{bmatrix}} = \frac{2}{9} = 0.222$

For top half Plane:

$$t_{2} = \frac{N_{2} \left[P_{0} - P_{E2}\right]}{-N_{2} \left[P_{1} - P_{0}\right]} = \frac{\left[0\right] \left\{ \left[\frac{1}{2} - \left[\frac{7}{13}\right]\right\} - \left[\frac{7}{2}\right] \right\}}{-\left[0\right] \left\{ \left[\frac{10}{2}\right] - \left[\frac{1}{2}\right]\right\}}$$

$$= 0.666$$

Intersection points are:

$$P(t_{1}) = P_{0} + t_{1} (P_{1} - P_{0})$$

$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0.222 \cdot \begin{bmatrix} 10 \\ 19 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2.98 \\ 4.99 \end{bmatrix} \approx \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

$$P(t_{2}) = P_{0} + t_{2} (P_{1} - P_{0})$$

$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0.66 \cdot \begin{bmatrix} 10 \\ 19 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 6.94 \\ 12.88 \end{bmatrix} \approx \begin{bmatrix} 7 \\ 13 \end{bmatrix} - Amerer$$