ACM/ICPC CheatSheet

Puzzles

Contents

1	1 STL Useful Tips 1.1 Common libraries 1.2 Useful constant 1.3 Space waster		 	 	 	 . 2
	1.4 Initialize array with predefined 1.5 Modifying sequence operations		 	 	 	 . 3
	1.6 Merge					
	1.7 String					
	1.8 Heap					
	1.10 Permutations					
	1.10 Fermitiations					
	1.12 Random algorithm					
	1.12 Italiqoin algorithm		 	 	 	
2	2 Number Theory					5
	2.1 Max or min		 	 	 	 . 5
	2.2 Greatest common divisor — Ge	CD	 	 	 	 . 5
	2.3 Least common multiple — LCN	Λ	 	 	 	 . 5
	2.4 If prime number					
	2.5 Prime factorization					
	2.6 Leap year					
	$2.7 a^b \mod p \dots \dots \dots$					
	2.8 Factorial mod		 	 	 	 . 6
	2.9 Generate combinations					
	2.10 10-ary to m -ary					
	2.11 <i>m</i> -ary to 10-ary					
	2.12 Binomial coefficient		 	 	 	 . 8
3	3 Catalan numbers 3.1 Eulerian numbers		 	 	 	 . 8
4	4 Karatsuba Algorithm in Java					8
	_					
	4 Karatsuba Algorithm in Java 5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm					9
5	5 Searching Algorithms 5.1 Find rank k in array					9
5	5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm		 	 	 	 9 . 9 . 10
5	 5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 		 	 	 	 9 . 9 . 10 . 11
5	 5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 		 	 	 	 9 . 9 . 10 . 11 . 11
5	 5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 		 	 	 	 9 . 9 . 10 . 11 . 11 . 11 . 12
5	 5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 6.3 Longest common subsequence (LCS)	 	 	 	 9 . 9 . 10 . 11 . 11 . 12 . 12
5	 5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 6.3 Longest common subsequence 6.4 Longest increasing common sec 6.5 Longest Increasing Subsequence 6.6 Maximum submatrix 	LCS)				 9 . 10 . 11 . 11 . 12 . 12 . 13 . 13
5	5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 6.3 Longest common subsequence (6.4 Longest increasing common sec 6.5 Longest Increasing Subsequence 6.6 Maximum submatrix 6.7 Partitions of integers 6.1 Find a property of the property of	LCS)				9 . 9 . 10 . 11 . 11 . 12 . 12 . 13 . 13 . 14
5	 5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 6.3 Longest common subsequence 6.4 Longest increasing common sec 6.5 Longest Increasing Subsequence 6.6 Maximum submatrix 	LCS)				9 . 9 . 10 . 11 . 11 . 12 . 12 . 13 . 13 . 14
5	5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 6.3 Longest common subsequence 6.4 Longest increasing common sec 6.5 Longest Increasing Subsequence 6.6 Maximum submatrix 6.7 Partitions of integers 6.8 Partitions of sets 6.9 Partitions of sets	LCS)				9 . 9 . 10 . 11 . 11 . 12 . 12 . 13 . 13 . 14 . 15
5	 5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 6.3 Longest common subsequence 6.4 Longest increasing common sec 6.5 Longest Increasing Subsequence 6.6 Maximum submatrix 6.7 Partitions of integers 6.8 Partitions of sets 7 Trees 	LCS)				9 . 9 . 10 . 11 . 11 . 12 . 12 . 13 . 13 . 14 . 15
5	5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 6.3 Longest common subsequence 6.4 Longest increasing common sec 6.5 Longest Increasing Subsequence 6.6 Maximum submatrix 6.7 Partitions of integers 6.8 Partitions of sets 7 Trees 7.1 Tree traversal	LCS)				9 . 9 . 10 . 11 . 11 . 12 . 12 . 13 . 13 . 14 . 15
5	 5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 6.3 Longest common subsequence 6.4 Longest increasing common sec 6.5 Longest Increasing Subsequence 6.6 Maximum submatrix 6.7 Partitions of integers 6.8 Partitions of sets 7 Trees 	LCS)				9 . 9 . 10 . 11 . 11 . 12 . 12 . 13 . 13 . 14 . 15
5	5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 6.3 Longest common subsequence 6.4 Longest increasing common seq 6.5 Longest Increasing Subsequence 6.6 Maximum submatrix 6.7 Partitions of integers 6.8 Partitions of sets 7 Trees 7.1 Tree traversal 7.2 Depth and width of tree 5.1 Tree traversal 5.2 Tree traversal 5.3 Tree traversal 5.4 Tree traversal 5.5 Tree traversal 5.6 Tree traversal 5.7 Tree traversal 5.8 Tree traversal 5.9 Tree traversal 5.9 Tree traversal 5.1 Tree traversal 5.1 Tree traversal 5.2 Tree traversal 5.3 Tree traversal 5.4 Tree traversal 5.5 Tree traversal 5.7 Tree traversal 5.7 Tree traversal 5.8 Tree traversal 5.9 Tree traversal	LCS)				9 . 9 . 10 . 11 . 11 . 12 . 12 . 13 . 13 . 14 . 15
5 6	5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 6.3 Longest common subsequence (6.4 Longest increasing common see 6.5 Longest Increasing Subsequence 6.6 Maximum submatrix 6.7 Partitions of integers 6.8 Partitions of sets 7 Trees 7.1 Tree traversal 7.2 Depth and width of tree	LCS)				9 . 9 . 10 . 11 . 11 . 12 . 12 . 13 . 13 . 14 . 15 . 15 . 15 . 16
5 6	5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 6.3 Longest common subsequence (6.4 Longest increasing common sec 6.5 Longest Increasing Subsequence 6.6 Maximum submatrix 6.7 Partitions of integers 6.8 Partitions of sets 7 Trees 7.1 Tree traversal 7.2 Depth and width of tree 8 Graph Theory	LCS)				9 . 9 . 10 . 11 . 11 . 12 . 12 . 13 . 13 . 14 . 15 . 15 . 15 . 16 . 17
5 6	5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 6.3 Longest common subsequence (6.4 Longest increasing common sec 6.5 Longest Increasing Subsequence 6.6 Maximum submatrix 6.7 Partitions of integers 6.8 Partitions of sets 7 Trees 7.1 Tree traversal 7.2 Depth and width of tree 8 Graph Theory 8.1 Graph representation 5.2 KMP Algorithms 6.3 Poppida Service 6.4 Longest Increasing Subsequence 6.5 Longest Increasing Subsequence 6.6 Maximum submatrix 6.7 Partitions of integers 7.1 Trees 7.1 Tree traversal 7.2 Depth and width of tree	LCS)				9 . 9 . 10 . 11 . 11 . 12 . 12 . 13 . 13 . 14 . 15 . 15 . 15 . 16 . 17 . 17
5 6	5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 6.3 Longest common subsequence (6.4 Longest increasing common sec 6.5 Longest Increasing Subsequence 6.6 Maximum submatrix 6.7 Partitions of integers 6.8 Partitions of sets 7 Trees 7.1 Tree traversal 7.2 Depth and width of tree 8 Graph Theory 8.1 Graph representation 8.2 Flood fill algorithm	LCS)				9 . 9 . 10 . 11 . 11 . 12 . 12 . 13 . 13 . 14 . 15 . 15 . 16 . 17 . 17 . 19 . 19
5 6	5 Searching Algorithms 5.1 Find rank k in array 5.2 KMP Algorithm 6 Dynamic Programming 6.1 0/1 Knapsack problems 6.2 Complete Knapsack problems 6.3 Longest common subsequence (6.4 Longest increasing common sec 6.5 Longest Increasing Subsequence 6.6 Maximum submatrix 6.7 Partitions of integers 6.8 Partitions of sets 7 Trees 7.1 Tree traversal 7.2 Depth and width of tree 8 Graph Theory 8.1 Graph representation 8.2 Flood fill algorithm 8.3 SPFA — shortest path	LCS)				9 . 9 . 10 . 11 . 11 . 12 . 12 . 13 . 13 . 14 . 15 . 15 . 16 . 17 . 17 . 19 . 19 . 20 . 21

1 STL Useful Tips

1.1 Common libraries

```
/*** Functions ***/
#include<algorithm>
#include<functional> // for hash
#include<climits> // all useful constants
#include<cmath>
#include<cstdio>
#include<cstdlib> // random
#include<ctime>
#include<iostream>
#include<sstream>
/*** Data Structure ***/
#include < deque > // double ended queue
#include<list>
#include<queue> // including priority_queue
#include<stack>
#include<string>
#include<vector>
```

1.2 Useful constant

1.3 Space waster

```
// consider to redefine data types to void data range problem

#define int long long // make everyone long long

#define double long double // make everyone long double

// function definitions

#undef int // main must return int

int main(void)

#define int long long // redefine int

// rest of program
```

1.4 Initialize array with predefined value

```
// for 1d array, use STL fill_n or fill to initialize array
fill(a, a+size_of_a, value)
fill_n(a, size_of_a, value)
// for 2d array, if want to fill in 0 or -1
memset(a, 0, sizeof(a));
// otherwise, use a loop of fill or fill_n through every a[i]
fill(a[i], a[i]+size_of_ai, value) // from 0 to number of row.
```

1.5 Modifying sequence operations

1.6 Merge

```
// merge sorted ranges
void merge(first1, last1, first2, last2, result, comp);
// union of two sorted ranges
void set_union(first1, last1, first2, last2, result, comp);
// intersection of two sorted ranges
void set_interaction(first1, last1, first2, last2, result, comp);
// difference of two sorted ranges
void set_difference((first1, last1, first2, last2, result, comp);
```

1.7 String

```
// Searching
unsigned int find(const string &s2, unsigned int pos1 = 0);
unsigned int rfind(const string &s2, unsigned int pos1 = end);
unsigned int find_first_of(const string &s2, unsigned int pos1 = 0);
unsigned int find_last_of(const string &s2, unsigned int pos1 = end);
unsigned int find_first_not_of(const string &s2, unsigned int pos1 = 0);
unsigned int find_last_not_of(const string &s2, unsigned int pos1 = end);
// Insert, Erase, Replace
string& insert(unsigned int pos1, const string &s2);
string& insert(unsigned int pos1, unsigned int repetitions, char c);
string& erase(unsigned int pos = 0, unsigned int len = npos);
string& replace(unsigned int pos1, unsigned int len1, const string &s2);
string& replace(unsigned int pos1, unsigned int len1, unsigned int repetitions, char c);
// String streams
stringstream s1;
int i = 22;
s1 << "Hello world! " << i;
cout << s1.str() << endl;</pre>
```

1.8 Heap

```
template <class RandomAccessIterator>
  void pop_heap (RandomAccessIterator first, RandomAccessIterator last);
template <class RandomAccessIterator, class Compare>
  void pop_heap (RandomAccessIterator first, RandomAccessIterator last,
          Compare comp);
template <class RandomAccessIterator>
  void make_heap (RandomAccessIterator first, RandomAccessIterator last);
template <class RandomAccessIterator, class Compare>
  void make_heap (RandomAccessIterator first, RandomAccessIterator last,
          Compare comp );
template <class RandomAccessIterator>
  void sort_heap (RandomAccessIterator first, RandomAccessIterator last);
template <class RandomAccessIterator, class Compare>
  void sort_heap (RandomAccessIterator first, RandomAccessIterator last,
          Compare comp);
template <class RandomAccessIterator>
 RandomAccessIterator is_heap_until (RandomAccessIterator first,
                    RandomAccessIterator last);
template <class RandomAccessIterator, class Compare>
  RandomAccessIterator is_heap_until (RandomAccessIterator first,
                    RandomAccessIterator last
                    Compare comp);
```

1.9 Sort

```
void sort(iterator first, iterator last);
void sort(iterator first, iterator last, LessThanFunction comp);
void stable_sort(iterator first, iterator last);
void stable_sort(iterator first, iterator last, LessThanFunction comp);
void partial_sort(iterator first, iterator middle, iterator last);
void partial_sort(iterator first, iterator middle, iterator last, LessThanFunction comp);
bool is_sorted(iterator first, iterator last);
bool is_sorted(iterator first, iterator last, LessThanOrEqualFunction comp);
// example for sort, if have array x, start_index, end_index;
sort(x+start_index, x+end_index);
```

1.10 Permutations

```
bool next_permutation(iterator first, iterator last);
bool next_permutation(iterator first, iterator last, LessThanOrEqualFunction comp);
bool prev_permutation(iterator first, iterator last);
bool prev_permutation(iterator first, iterator last, LessThanOrEqualFunction comp);
```

1.11 Searching

```
// will return address of iterator, call result as *iterator;
iterator find(iterator first, iterator last, const T &value);
iterator find_if(iterator first, iterator last, const T &value, TestFunction test);
bool binary_search(iterator first, iterator last, const T &value);
bool binary_search(iterator first, iterator last, const T &value, LessThanOrEqualFunction comp);
```

1.12 Random algorithm

```
srand(time(NULL));
// generate random numbers between [a,b)
rand() % (b - a) + a;
// generate random numbers between [0,b)
rand() % b;
// generate random permutations
random_permutation(anArray, anArray + 10);
random_permutation(aVector, aVector + 10);
```

2 Number Theory

2.1 Max or min

```
int max(int a, int b) { return a>b ? a:b; }
int min(int a, int b) { return a<b ? a:b; }</pre>
```

2.2 Greatest common divisor — GCD

```
int gcd(int a, int b)
{
  if (b==0) return a;
  else return gcd(b, a%b);
}
```

2.3 Least common multiple — LCM

```
int lcm(int a, int b)
{
  return a*b/gcd(a,b);
}
```

2.4 If prime number

```
bool prime(int n)
{
   if (n<2) return false;
   if (n<=3) return true;
   if (!(n%2) || !(n%3)) return false;
   for (int i=5;i*i<=n;i+=6)
      if (!(n%i) || !(n%(i+2))) return false;
   return true;
}</pre>
```

2.5 Prime factorization

```
// smallest prime factor of a number.
function factor(int n)
{
   int a;
   if (n%2==0)
      return 2;
   for (a=3;a<=sqrt(n);a++++)
   {</pre>
```

```
if (n%a==0)
    return a;
}
return n;
}

// complete factorization
int r;
while (n>1)
{
    r = factor(n);
    printf(|%d|, r);
    n /= r;
}
```

2.6 Leap year

```
bool isLeap(int n)
{
  if (n%100==0)
    if (n%400==0) return true;
    else return false;

  if (n%4==0) return true;
  else return false;
}
```

2.7 Binary exponiential

```
int binpow (int a, int n)
{
   int res = 1;
   while (n)
    if (n & 1)
   {
      res *= a;
      --n;
   }
   else
   {
      a *= a;
      n >>= 1;
   }
   return res;
}
```

$\mathbf{2.8} \quad a^b \bmod p$

```
long powmod(long base, long exp, long modulus) {
  base %= modulus;
  long result = 1;
  while (exp > 0) {
    if (exp & 1) result = (result * base) % modulus;
    base = (base * base) % modulus;
    exp >>= 1;
}
```

```
return result;
```

2.9 Factorial mod

```
//n! mod p
int factmod (int n, int p) {
  long long res = 1;
  while (n > 1) {
    res = (res * powmod (p-1, n/p, p)) % p;
    for (int i=2; i<=n%p; ++i)
        res=(res*i) %p;
    n /= p;
  }
  return int (res % p);
}</pre>
```

2.10 Generate combinations

```
// n>=m, choose M numbers from 1 to N.
void combination(int n, int m)
  if (n<m) return;
  int a[50]={0};
  int k=0;
  for (int i=1;i<=m;i++) a[i]=i;</pre>
  while (true)
    for (int i=1;i<=m;i++)
      cout << a[i] << " ";
    cout << endl;</pre>
    k=m;
    while ((k>0) \&\& (n-a[k]==m-k)) k--;
    if (k==0) break;
    a[k]++;
    for (int i=k+1;i<=m;i++)
      a[i]=a[i-1]+1;
  }
```

2.11 10-ary to *m*-ary

```
return result;
}
```

2.12 *m*-ary to 10-ary

```
string num="0123456789ABCDE";
int mToTen(string n, int m)
{
   int multi=1;
   int result=0;

   for (int i=n.size()-1;i>=0;i--)
   {
      result+=num.find(n[i])*multi;
      multi*=m;
   }
   return result;
}
```

2.13 Binomial coefficient

```
#define MAXN 100 // largest n or m
long binomial_coefficient(n,m) // compute n choose m
int n,m;
{
    int i,j;
    long bc[MAXN] [MAXN];
    for (i=0; i<=n; i++) bc[i][0] = 1;
    for (j=0; j<=n; j++) bc[j][j] = 1;
    for (i=1; i<=n; i++)
        for (j=1; j<i; j++)
        bc[i][j] = bc[i-1][j-1] + bc[i-1][j];
    return bc[n][m];
}</pre>
```

3 Catalan numbers

$$C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k} = \frac{1}{n+1} \binom{n}{k} \tag{1}$$

The first terms of this sequence are 2, 5, 14, 42, 132, 429, 1430 when $C_0 = 1$. This is the number of ways to build a balanced formula from n sets of left and right parentheses. It is also the number of triangulations of a convex polygon, the number of rooted binary tress on n + 1 leaves and the number of paths across a lattice which do not rise above the main diagonal.

3.1 Eulerian numbers

```
// This is the number of permutations of length n with exactly k ascending sequences or runs. 
// Basis: k=0 has value 1 #define MAXN 100 // largest n or k
```

```
long eularian(n,k)
int n,m;
{
    int i,j;
    long e[MAXN][MAXN];
    for (i=0; i<=n; i++) e[i][0] = 1;
    for (j=0; j<=n; j++) e[0][j] = 0;
    for (i=1; i<=n; i++)
        for (j=1; j<i; j++)
            e[i][j] = k*e[i-1][j] + (i-j+1)*e[i-1][j-1];
    return e[n][k];
}</pre>
```

3.2 Karatsuba algorithm in Java

```
// fast algorithm to find multiplication of two big numbers.
import java.math.BigInteger;
import java.util.Random;
class Karatsuba {
 private final static BigInteger ZERO = new BigInteger("0");
 public static BigInteger karatsuba(BigInteger x, BigInteger y)
    int N = Math.max(x.bitLength(), y.bitLength());
    if (N <= 2000) return x.multiply(y);</pre>
   N=(N/2)+(N \%2);
   BigInteger b = x.shiftRight(N);
   BigInteger a = x.subtract(b.shiftLeft(N));
   BigInteger d = y.shiftRight(N);
    BigInteger c = y.subtract(d.shiftLeft(N));
    BigInteger ac = karatsuba(a, c);
    BigInteger bd = karatsuba(b, d);
   BigInteger abcd = karatsuba(a.add(b), c.add(d));
    return ac.add(abcd.subtract(ac).subtract(bd).shiftLeft(N)).add(bd.shiftLeft(2*N));
 public static void main(String[] args)
    long start, stop, elapsed;
   Random random = new Random();
    int N = Integer.parseInt(args[0]);
   BigInteger a = new BigInteger(N, random);
   BigInteger b = new BigInteger(N, random);
    start = System.currentTimeMillis();
   BigInteger c = karatsuba(a, b);
    stop = System.currentTimeMillis();
    System.out.println(stop - start);
    start = System.currentTimeMillis();
    BigInteger d = a.multiply(b);
    stop = System.currentTimeMillis();
    System.out.println(stop - start);
    System.out.println((c.equals(d)));
 }
```

3.3 Euler's totient function

```
// the positive integers less than or equal to n that are relatively prime to n.
int phi (int n)
{
   int result = n;
   for (int i=2; i*i<=n; ++i)
      if(n %i==0)
      {
      while(n %i==0)
            n /= i;
      result -= result / i;
      }
   if (n > 1)
      result -= result / n;
   return result;
}
```

4 Searching Algorithms

4.1 Find rank k in array

```
int find(int 1, int r, int k)
  int i=0,j=0,x=0,t=0;
  if (l==r) return a[l];
  x=a[(1+r)/2];
  t=a[x]; a[x]=a[r]; a[r]=t;
  i=1-1;
  for (int j=1; j<=r-1;j++)</pre>
    if (a[j] \le a[r])
    {
      i++:
      t=a[i]; a[i]=a[j]; a[j]=t;
    }
  i++;
  t=a[i]; a[i]=a[r]; a[r]=t;
  if (i==k) return a[i];
  if (i<k) return find(i+1, r,k);</pre>
  return find(1, i-1, k);
}
```

4.2 KMP Algorithm

```
#include <iostream>
#include <string>
#include <vector>

using namespace std;

typedef vector<int> VI;

void buildTable(string& w, VI& t)
{
   t = VI(w.length());
   int i = 2, j = 0;
```

```
t[0] = -1; t[1] = 0;
  while(i < w.length())</pre>
    if(w[i-1] == w[j]) \{ t[i] = j+1; i++; j++; \}
    else if(j > 0) j = t[j];
    else { t[i] = 0; i++; }
}
int KMP(string& s, string& w)
  int m = 0, i = 0;
  VI t;
  buildTable(w, t);
  while(m+i < s.length())</pre>
    if(w[i] == s[m+i])
      i++;
      if(i == w.length()) return m;
    else
    {
      m += i-t[i];
      if(i > 0) i = t[i];
    }
  }
  return s.length();
}
int main(void)
{
  string a = (string) "The example above illustrates the general technique for assembling "+
    "the table with a minimum of fuss. The principle is that of the overall search: "+
    "most of the work was already done in getting to the current position, so very "+
    "little needs to be done in leaving it. The only minor complication is that the "+
    "logic which is correct late in the string erroneously gives non-proper "+
    "substrings at the beginning. This necessitates some initialization code.";
  string b = "table";
  int p = KMP(a, b);
  cout << p << ": " << a.substr(p, b.length()) << " " << b << endl;</pre>
  return 0;
```

5 Dynamic Programming

5.1 0/1 Knapsack problems

```
#include<iostream>
using namespace std;
int f[1000]={0};
```

```
int n=0, m=0;
int main(void)
{
    cin >> n >> m;
    for (int i=1;i<=n;i++)
    {
        int price=0, value=0;
        cin >> price >> value;

        for (int j=m;j>=price;j--)
             if (f[j-price]+value>f[j])
             f[j]=f[j-price]+value;
}
cout << f[m] << endl;
return 0;
}</pre>
```

5.2 Complete Knapsack problems

```
#include<iostream>
using namespace std;
int f[1000]={0};
int n=0, m=0;
int main(void)
{
  cin >> n >> m;
  for (int i=1;i<=n;i++)</pre>
    int price=0, value=0;
    cin >> price >> value;
    for (int j=price; j<=m; j++)</pre>
      if (f[j-price]+value>f[j])
        f[j]=f[j-price]+value;
  cout << f[m] << endl;</pre>
  return 0;
}
```

5.3 Longest common subsequence (LCS)

```
int dp[1001][1001];
int lcs(const string &s, const string &t)
{
  int m = s.size(), n = t.size();
  if (m == 0 || n == 0) return 0;
```

```
for (int i=0; i<=m; ++i)
    dp[i][0] = 0;
for (int j=1; j<=n; ++j)
    dp[0][j] = 0;
for (int i=0; i<m; ++i)
    for (int j=0; j<n; ++j)
    if (s[i] == t[j])
        dp[i+1][j+1] = dp[i][j]+1;
    else
        dp[i+1][j+1] = max(dp[i+1][j], dp[i][j+1]);
return dp[m][n];
}</pre>
```

5.4 Longest increasing common sequence (LICS)

```
#include<iostream>
using namespace std;
int a[100]={0};
int b[100]={0};
int f[100]={0};
int n=0, m=0;
int main(void)
  cin >> n;
  for (int i=1;i<=n;i++) cin >> a[i];
  cin >> m;
  for (int i=1;i<=m;i++) cin >> b[i];
  for (int i=1;i<=n;i++)</pre>
  {
    int k=0;
    for (int j=1; j<=m; j++)
      if (a[i]>b[j] && f[j]>k) k=f[j];
      else if (a[i]==b[j] \&\& k+1>f[j]) f[j]=k+1;
  }
  int ans=0;
  for (int i=1;i<=m;i++)
    if (f[i]>ans) ans=f[i];
  cout << ans << endl;</pre>
  return 0;
```

5.5 Longest Increasing Subsequence (LIS)

```
#include<iostream>
using namespace std;
int n=0;
```

```
int a[100]={0}, f[100]={0}, x[100]={0};
int main(void)
{
  cin >> n;
  for (int i=1;i<=n;i++)
    cin >> a[i];
    x[i]=INT_MAX;
  f[0]=0;
  int ans=0;
  for(int i=1;i<=n;i++)</pre>
    int l=0, r=i;
    while (1+1 < r)
      int m=(1+r)/2;
      if (x[m] < a[i]) l=m; else r=m;
      // change to x[m] \le a[i] for non-decreasing case
    f[i]=1+1;
    x[1+1]=a[i];
    if (f[i]>ans) ans=f[i];
  cout << ans << endl;</pre>
  return 0;
}
```

5.6 Maximum submatrix

```
// URAL 1146 Maximum Sum
#include<iostream>

using namespace std;

int a[150][150]={0};

int c[200]={0};

int b=0, sum=-100000000;
  for (int i=1;i<=n;i++)
    {
        if (b>0) b+=c[i];
        else b=c[i];
        if (b>sum) sum=b;
    }

    return sum;
}
```

```
int maxmatrix(int n)
{
   int sum=-100000000, max=0;
   for (int i=1;i<=n;i++)</pre>
       for (int j=1;j<=n;j++)</pre>
          c[j]=0;
       for (int j=i;j<=n;j++)</pre>
          for (int k=1;k<=n;k++)</pre>
              c[k] += a[j][k];
          max=maxarray(n);
          if (max>sum) sum=max;
       }
   }
   return sum;
}
int main(void)
{
   int n=0;
   cin >> n;
   for (int i=1;i<=n;i++)</pre>
       for (int j=1; j<=n; j++)</pre>
          cin >> a[i][j];
   cout << maxmatrix(n);</pre>
   return 0;
```

5.7 Partitions of integers

5.8 Partitions of sets

Number of ways to partition n+1 items into k sets.

$${n \brace k} = k {n-1 \brace k} + {n-1 \brace k-1}$$
 (3)

6 Trees

6.1 Tree traversal

```
int L[100]={0};
int R[100]={0};
void DLR(int m)
  cout << m << " ";
  if (L[m]!=0) DLR(L[m]);
  if (R[m]!=0) DLR(R[m]);
void LDR(int m)
  if (L[m]!=0) LDR(L[m]);
  cout << m << " ";
  if (R[m]!=0) LDR(R[m]);
}
void LRD(int m)
  if (L[m]!=0) LRD(L[m]);
  if (R[m]!=0) LRD(R[m]);
 cout << m << " ";
int main(void)
  cin >> n;
  for (int i=1;i<=n;i++)
    cin >> L[i] >> R[i];
 DLR(1); cout << endl;</pre>
  LDR(1); cout << endl;
 LRD(1); cout << endl;</pre>
  return 0;
```

6.2 Depth and width of tree

```
#include <iostream>
#include <queue>
#include <stack>

using namespace std;

int l[100]={0};
int r[100]={0};
stack<int> mystack;
int n=0;
int w=0;
```

```
int d=0;
int depth(int n)
  if (1[n]==0 && r[n]==0)
   return 1;
  int depthl=depth(l[n]);
  int depthr=depth(r[n]);
  int dep=depthl>depthr ? depthl:depthr;
  return dep+1;
}
void width(int n)
  if (n<=d)
  {
    int t=0,x;
    stack<int> tmpstack;
    while (!mystack.empty())
      x=mystack.top();
      mystack.pop();
      if (x!=0)
      {
        t++;
        tmpstack.push(1[x]);
        tmpstack.push(r[x]);
      }
    }
    w=w>t?w:t;
   mystack=tmpstack;
    width(n+1);
 }
}
int main(void)
{
  cin >> n;
 for (int i=1;i<=n;i++)
   cin >> 1[i] >> r[i];
  d=depth(1);
 mystack.push(1);
  width(1);
  cout << w << " " << d << endl;
  return 0;
```

7 Graph Theory

7.1 Graph representation

```
// The most common way to define graph is to use adjacency matrix
// example:
// (1) (2) (3) (4) (5)
// (1) 2 0 5 0 0
// (2) 4
          2 0 0 1
// (3) 3
                  1
           0 0
                       4
// (4) 6
          9 0 0
// (5) 1 1 1 1
// it's always a square matrix.
// suppose a graph has n nodes, if given exactly adjacency matrix
for (int i=1; i<=n; i++)
 for (int j=1;i<=n;j++)
    cin << a[i][j] << endl;</pre>
// Usually will go like this representation in data
// start_node end_node weight
// suppose m lines
for (int i=1;i<=m;i++)</pre>
 int x=0, y=0, t=0;
 cin >> x >> y >> t;
 a[x][y]=t;
  // if undirected graph
 a[y][x]=t;
// another variant: on the ith line, has data as
// end_node weight
// when you read data, you can assign matrix as
a[i][x]=t;
// if undirected graph
a[x][i]=t;
// Initialization of graph !!!IMPORTANT
// Depends on usage, normally initialize as 0 for all elements in matrix.
// so that 0 means no connection, non-0 means connection
// (for problem without weight, use weight as 1)
// If weights are important in this context (especially searching for path)
// Initialize graph as infinity for all elements in matrix.
// Another way to store graph is Adjacency list
// No space advantage if using array (unknown maximum number for in-degree).
// Big space advantage if using dynamic data structure (like list, vector).
// each row represent a node and its connectivity.
// we don't need it so much due to it's search efficiency.
// let's define a node as
struct Node{
 int id; // node id
 int w; // weight
};
// suppose n nodes and m lines of inputs as
// start_node end_node weight
// assume using <vector> in this example
\ensuremath{/\!/} g is a vector, and each element of g is also a vector of Node
for (int i=1;i<=m;i++)</pre>
  int x=0, y=0, t=0;
  cin >> x >> y >> t;
  Node temp; temp.id=y; temp.w=t;
```

```
g[x].push_back(temp);
  // if undirected
  temp.id=x;
  g[y].push_back(temp);
// Note that you don't need this node structure if graph has only connectivity information.
/**** Special Structure ****/
// Special structure here is usually not a typical graph, like city-blocks, triangles
// They are represented in 2-d array and shows weights on nodes instead of edges.
// Note that in this case travel through edge has no cost, but visit node has cost.
// Triangles: Read data like this
// 1
// 12
1/427
// 7315
// 62946
for (int i=1;i<=n;i++)</pre>
  for (int j=i;j<=n;j++)</pre>
    cin >> a[i][j];
// Simple city-blocks: it's just like first form of adjacency matrix, but this time
// represents weights on nodes, may not be square matrix.
// 12456
// 2 4 5 1 3
// 4 5 2 3 6
for (int i=1;i<=n;i++)
 for (int j=1;<=m;j++)
    cin >> a[i][j];
// More complex data structures: typical city-block structure may has some constraints on
// questions, but it has no boundaries. However, some questions requires to form a maze.
// In these cases, data structures can be very flexible, it totally depends on how the question
// presents the data. A usual way is to record it's adjacent blocks information:
  bool 1[4]; // if has 8 neighbors then use bool 1[8];
             // label them as your favor, e.x.
            // 1 123
            // 4 x 2 8 x 4
            // 3 765
             // true if there is path, false if there is boundary
  // other informations (optional)
  int weight;
  int component_id;
  // etc.
};
// Note that usually we use array from index 1 instead of 0 because sometimes
// you need index 0 as your boundary, and start from index 1 will give you
// advantage on locating nodes or positions
```

7.2 Flood fill algorithm

```
//component(i) denotes the
//component that node i is in
void flood_fill(new_component)
```

```
do
   num_visited = 0
   for all nodes i
      if component(i) = -2
      num_visited = num_visited + 1
      component(i) = new_component
   for all neighbors j of node i
      if component(j) = nil
        component(j) = -2
 until num_visited = 0
void find_components()
 num_components = 0
 for all nodes i
    component(node i) = nil
 for all nodes i
    if component(node i) is nil
      num_components = num_components + 1
      component(i) = -2
      flood_fill(component num_components)
```

7.3 SPFA — shortest path

```
int q[3001]={0}; // queue for node
int d[1001]={0}; // record shortest path from start to ith node
bool f[1001]={0};
int a[1001][1001]={0}; // adjacency list
int w[1001][1001]={0}; // adjacency matrix
int main(void)
  int n=0, m=0;
  cin >> n >> m;
  for (int i=1;i<=m;i++)
    int x=0, y=0, z=0;
    cin >> x >> y >> z; // node x to node y has weight z
    a[x][0]++;
    a[x][a[x][0]]=y;
    w[x][y]=z;
    /*
    // for undirected graph
    a[x][0]++;
    a[y][a[y][0]]=x;
    w[y][x]=z;
  int s=0, e=0;
  cin >> s >> e; // s: start, e: end
  SPFA(s);
  cout << d[e] << endl;</pre>
  return 0;
}
```

```
void SPFA(int v0)
  int t,h,u,v;
  for (int i=0;i<1001;i++) d[i]=INT_MAX;</pre>
  for (int i=0;i<1001;i++) f[i]=false;</pre>
  d[v0] = 0;
 h=0; t=1; q[1]=v0; f[v0]=true;
  while (h!=t)
  {
    h++;
    if (h>3000) h=1;
    u=q[h];
    for (int j=1; j<=a[u][0];j++)
      v=a[u][j];
      if (d[u]+w[u][v]<d[v]) // change to > if calculating longest path
        d[v]=d[u]+w[u][v];
        if (!f[v])
          t++;
          if (t>3000) t=1;
          q[t]=v;
          f[v]=true;
      }
    }
    f[u]=false;
}
```

7.4 Floyd-Warshall algorithm – shortest path of all pairs

7.5 Prim — minimum spanning tree

```
int d[1001]={0};
bool v[1001]={0};
int a[1001][1001]={0};

int main(void)
{
    int n=0;
    cin >> n;
    for (int i=1;i<=n;i++)
    {</pre>
```

```
int x=0, y=0, z=0;
    cin >> x >> y >> z;
    a[x][y]=z;
  }
  for (int i=1;i<=n;i++)</pre>
    for (int j=1;j<=n;j++)</pre>
      if (a[i][j]==0) a[i][j]=INT_MAX;
  cout << prim(1,n) << endl;</pre>
}
int prim(int u, int n)
{
  int mst=0,k;
  for (int i=0;i<d.length;i++) d[i]=INT_MAX;</pre>
  for (int i=0;i<v.length;i++) v[i]=false;</pre>
  d[u]=0;
  int i=u;
  while (i!=0)
    v[i]=true;k=0;
    mst+=d[i];
    for (int j=1;j<=n;j++)</pre>
      if (!v[j])
      {
         if (a[i][j]<d[j]) d[j]=a[i][j];</pre>
         if (d[j]<d[k]) k=j;
      }
    i=k;
  }
  return mst;
```

7.6 Eulerian circuit

```
// USACO Fence
#include<iostream>
using namespace std;
int f[100]={0}, ans[100]={0};
bool g[100][100]={0}, v[100]={0};
int n=0, m=0, c=0;
void dfs(int k)
{
  for (int i=1;i<=n;i++)</pre>
    if (g[k][i])
      g[k][i]=false;
      g[i][k]=false;
      dfs(i);
    }
 m++;
  ans [m]=k;
```

```
int main(void)
{
  cin >> n >> m;
  for (int i=1;i<=m;i++)</pre>
    int x=0, y=0;
    g[x][y]=true;
    g[y][x]=true;
    f[x]++;
    f[y]++;
  m=0;
  int k1=0;
  for (int i=1;i<=n;i++)
    if (f[i]\%2==1) k1++;
    if (k1>2)
      cout << "error" << endl;</pre>
      return 0;
    }
    if (f[i]\%2 && c==0) c=i;
  if (c==0) c=1;
  dfs(x);
  for (int i=m;i>=1;i--) cout << ans[i] << endl;</pre>
  return 0;
```

7.7 Topological sort

```
// Find any solution of topological sort.
#include<iostream>

using namespace std;

int f[100]={0}, ans[100]={0};
bool g[100][100]={0}, v[100]={0};
int n=0, m=0;

void dfs(int k)
{
   int i=0;
   v[k]=true;
   for (int i=1;i<=n;i++)
      if (g[k][i] && !v[i]) dfs(i);

   m++;
   ans[m]=k;
}

int main(void)</pre>
```

```
for (int i=1;i<=m;i++)</pre>
    int x=0, y=0;
    cin >> x >> y;
    g[y][x]=true;
  m=0;
  for (int i=1;i<=n;i++)
    if (!v[i]) dfs(i);
  for (int i=1;i<=n;i++) cout << ans[i] << endl;</pre>
  return 0;
// Find the order of topological sort is dictionary minimum
#include<iostream>
using namespace std;
int f[100]={0}, ans[100]={0};
bool g[100][100]={0}, v[100]={0};
int n=0, m=0;
int main(void)
  cin >> n >> m;
  for (int i=1;i<=m;i++)</pre>
    int x=0, y=0;
    cin >> x >> y;
    g[x][y]=true;
    f[y]++;
  for (int i=1;i<=n;i++)</pre>
    for (int j=1; j<=n; j++)
      if (f[j]==0 && !v[j]) break;
      if (f[j]!=0)
        cout << "error" << endl;</pre>
        return 0;
      ans[i]=j;
      v[j]=true;
      for (int k=1;k<=n;k++)</pre>
        if (g[j][k]) f[k]--;
  }
  for (int i=1;i<=n;i++) cout << ans[i] << endl;</pre>
```

cin >> n >> m;

return 0;

	1 Heoretical	Computer science Cheat sheet				
	Definitions	Series				
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{n=1}^{n} i = \frac{n(n+1)}{2}, \sum_{n=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}, \sum_{n=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}.$				
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	i=1 $i=1$ $i=1$ $i=1$ In general:				
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$				
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$				
$ \lim_{n \to \infty} a_n = a $	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:				
$\sup S$	least $b \in \mathbb{R}$ such that $b \geq s$, $\forall s \in S$.	$ \sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1, $				
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$				
$ \liminf_{n \to \infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series: $n = \sum_{n=1}^{n} 1 \qquad \sum_{n=1}^{n} n(n+1) \qquad n(n-1)$				
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$				
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$				
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	$1. \binom{n}{k} = \frac{n!}{(n-k)!k!}, \qquad 2. \sum_{k=0}^{n} \binom{n}{k} = 2^n, \qquad 3. \binom{n}{k} = \binom{n}{n-k},$				
${n \brace k}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}, $				
$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1, 2,, n\}$ with k ascents.	$8. \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad 9. \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$				
$\left\langle\!\left\langle {n\atop k}\right\rangle\!\right\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ 11. $\binom{n}{1} = \binom{n}{n} = 1,$				
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1,$ 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1},$				
	14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)!,$ 15. $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)!H_{n-1},$ 16. $\begin{bmatrix} n \\ n \end{bmatrix} = 1,$ 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$					
$18. \begin{bmatrix} n \\ k \end{bmatrix} = (n-1)$	$\binom{n-1}{k} + \binom{n-1}{k-1}, 19. \ \binom{n-1}{n-1}$	$\left\{ egin{aligned} n \ n-1 \end{aligned} ight\} = \left[egin{aligned} n \ n-1 \end{aligned} ight] = \left(egin{aligned} n \ 2 \end{aligned} ight), 20. \ \sum_{k=0}^n \left[egin{aligned} n \ k \end{aligned} \right] = n!, 21. \ C_n = rac{1}{n+1} {2n \choose n}, \end{aligned}$				
22. $\binom{n}{0} = \binom{n}{n}$	$\begin{pmatrix} n \\ -1 \end{pmatrix} = 1,$ 23. $\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ k \end{pmatrix}$	$\binom{n}{n-1-k}$, $24. \ \binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,				
	$25. \ \left\langle \begin{matrix} 0 \\ k \end{matrix} \right\rangle = \left\{ \begin{matrix} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{matrix} \right. $ $26. \ \left\langle \begin{matrix} n \\ 1 \end{matrix} \right\rangle = 2^n - n - 1, $ $27. \ \left\langle \begin{matrix} n \\ 2 \end{matrix} \right\rangle = 3^n - (n+1)2^n + \binom{n+1}{2}, $					
$28. \ \ x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n}, \qquad 29. \ \left\langle {n \atop m} \right\rangle = \sum_{k=0}^m {n+1 \choose k} (m+1-k)^n (-1)^k, \qquad 30. \ \ m! \left\{ {n \atop m} \right\} = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {k \choose n-m},$						
$\begin{array}{ c c } \hline & 31. & \left\langle {n\atop m} \right\rangle = \sum_{k=0}^n \cdot \\ \end{array}$	$ \binom{n}{k} \binom{n-k}{m} (-1)^{n-k-m} k!, $	32. $\left\langle \left\langle {n\atop 0}\right\rangle \right\rangle = 1,$ 33. $\left\langle \left\langle {n\atop n}\right\rangle \right\rangle = 0$ for $n \neq 0,$				
$34. \left\langle \!\! \left\langle \!\! \begin{array}{c} n \\ k \end{array} \!\! \right\rangle = (k + 1)^n$	$+1$ $\left\langle \left\langle \left$					
$\begin{array}{ c c c } \hline & 36. & \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{2}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left(x + n - 1 - k \right), $ $2n$	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n-1} \binom{k}{m} (m+1)^{n-k},$				
<u>"</u>	· · ·					

Identities Cont.

$$38. \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\frac{n-k}{m}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad 39. \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{2n},$$

$$40. \begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{k=0}^{n} \binom{n}{k} \binom{n+1}{m+1} \binom{n+1}{m} \binom{$$

41.
$$\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{i=1}^{n} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} {k \choose m} (-1)^{m-k},$$

42.
$${m+n+1 \choose m} = \sum_{k=0}^{m} k {n+k \choose k},$$

43.
$$\begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

44.
$$\binom{n}{m} = \sum_{k} \begin{Bmatrix} n+1 \\ k+1 \end{Bmatrix} \begin{bmatrix} k \\ m \end{bmatrix} (-1)^{m-k},$$

44.
$$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k},$$
 45. $(n-m)! \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k},$ for $n \ge m$,

46.
$${n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose n+k}, \qquad \textbf{47.} \quad {n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose k},$$

48.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k},$$

49.
$$\binom{n}{\ell+m} \binom{\ell+m}{\ell} = \sum_{k} \binom{k}{\ell} \binom{n-k}{m} \binom{n}{k}.$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are

$$d_1, \dots, d_n$$
:
$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ then

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then
$$T(n) = \Theta(n^{\log_b a} \log_2 n).$$

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$
$$\vdots \quad \vdots \qquad \vdots$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

 $3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c = \frac{3}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$
$$= 2n(c^{\log_2 n} - 1)$$
$$= 2n(c^{(k-1)\log_c n} - 1)$$
$$= 2n^k - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$q_{i+1} = 2q_i + 1, \quad q_0 = 0.$$

Multiply and sum

$$\sum_{i\geq 0}^{1} g_{i+1} x^i = \sum_{i\geq 0} 2g_i x^i + \sum_{i\geq 0} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:

$$G(x) = x \left(\frac{2}{1 - 2x} - \frac{1}{1 - x} \right)$$

$$= x \left(2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i \right)$$

$$= \sum_{i \ge 0} (2^{i+1} - 1) x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

Theoretical Computer Science Cheat Sheet					
	$\pi \approx 3.14159,$	$e \approx 2.7$	1828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx$	1.61803, $\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx61803$	
i	2^i	p_i	General	Probability	
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$):	Continuous distributions: If	
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$\Pr[a < X < b] = \int_{-b}^{b} p(x) dx,$	
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	J_a then p is the probability density function of	
4	16	7	Change of base, quadratic formula:	X. If	
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\Pr[X < a] = P(a),$	
6	64	13	ou	then P is the distribution function of X . If	
7	128	17	Euler's number e :	P and p both exist then	
8	256	19	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	$P(a) = \int_{-a}^{a} p(x) dx.$	
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$	$J-\infty$	
10	1,024	29	$(1+\frac{1}{n})^n < e < (1+\frac{1}{n})^{n+1}$.	Expectation: If X is discrete	
11	2,048	31	(11)	$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$	
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	If X continuous then	
13	8,192	41	Harmonic numbers:	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$	
14	16,384	43	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	$J-\infty$ $J-\infty$	
15	32,768	47		Variance, standard deviation:	
16	65,536	53 50	$ \ln n < H_n < \ln n + 1, $	$VAR[X] = E[X^2] - E[X]^2,$	
17 18	131,072	59 61	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	$\sigma = \sqrt{\text{VAR}[X]}.$	
19	262,144 524,288	61 67	Factorial, Stirling's approximation:	For events A and B: $\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]$	
$\frac{19}{20}$	1,048,576	71	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	$\Pr[A \land B] = \Pr[A] \cdot \Pr[B],$ $\Pr[A \land B] = \Pr[A] \cdot \Pr[B],$	
$\begin{vmatrix} 20 \\ 21 \end{vmatrix}$	2,097,152	73	1, 2, 3, 22, 120, 3010, 13020, 302300,	iff A and B are independent.	
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	_	
23	8,388,608	83		$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$	
24	16,777,216	89	Ackermann's function and inverse: $(2i) \qquad i = 1$	For random variables X and Y :	
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$	
26	67,108,864	101	$\left(\begin{array}{cc} a(i-1,a(i,j-1)) & i,j \geq 2 \end{array}\right)$	if X and Y are independent.	
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	E[X+Y] = E[X] + E[Y],	
28	268,435,456	107	Binomial distribution:	E[cX] = c E[X].	
29	536,870,912	109	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$	Bayes' theorem:	
30	1,073,741,824	113	$\prod_{k} [X - k] = \binom{k}{k} p q \qquad , \qquad q = 1 - p,$	$\Pr[A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{j=1}^n \Pr[A_j]\Pr[B A_j]}.$	
31	2,147,483,648	127	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = np.$		
32	4,294,967,296	131	$\sum_{k=1}^{\infty} \left(k\right)^{r}$	n n	
	Pascal's Triangle	e	Poisson distribution:	$\Pr\left[\bigvee_{i=1} X_i\right] = \sum_{i=1} \Pr[X_i] +$	
	1		$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, \operatorname{E}[X] = \lambda.$	n k	
	1 1		Normal (Gaussian) distribution:	$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{\kappa} X_{i_j}\right].$	
	1 2 1		$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	$k=2 \qquad \qquad i_i < \dots < i_k \qquad j=1$ Moment inequalities:	
1 3 3 1			V 2110	1	
	1 4 6 4 1		The "coupon collector": We are given a random coupon each day, and there are n	$\Pr\left[X \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$	
	1 5 10 10 5 1		different types of coupons. The distribu-	$\Pr\left[\left X - \mathrm{E}[X]\right \ge \lambda \cdot \sigma\right] \le \frac{1}{\sqrt{2}}.$	
	1 6 15 20 15 6 1		tion of coupons is uniform. The expected	Geometric distribution:	
	1 7 21 35 35 21 7		number of days to pass before we to collect all n types is	$\Pr[X = k] = pq^{k-1}, \qquad q = 1 - p,$	
1 1	1 8 28 56 70 56 28 9 36 84 126 126 84		nH_n .	∞ .	
			min.	$E[X] = \sum_{k=1}^{n} kpq^{k-1} = \frac{1}{p}.$	
1 10 45 120 210 252 210 120 45 10 1				$\kappa=1$	

Trigonometry

Pythagorean theorem:

$$C^2 = A^2 + B^2$$

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$

$$\csc a = C/A, \quad \sec a = C/B,$$

$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$.

Identities:

$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos(\frac{\pi}{x} - x), \qquad \sin x = \sin(\pi - x)$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right),$$
 $\sin x = \sin(\pi - x),$

$$\cos x = -\cos(\pi - x),$$
 $\tan x = \cot(\frac{\pi}{2} - x),$

$$\cot x = -\cot(\pi - x),$$
 $\csc x = \cot \frac{x}{2} - \cot x,$

 $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\sin 2x = 2\sin x \cos x, \qquad \sin 2x = \frac{2\tan x}{1 + \tan^2 x},$$

$$\cos 2x = \cos^2 x - \sin^2 x$$
, $\cos 2x = 2\cos^2 x - 1$

$$\cos 2x = 1 - 2\sin^2 x,$$
 $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$$
 $\cot 2x = \frac{\cot^2 x - 1}{2\cot x},$

$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$$

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i \sin x, \qquad e^{i\pi} = -1.$$

v2.02 ©1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden Matrices

Multiplication:

$$C = A \cdot B, \quad c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}.$$

Determinants: det $A \neq 0$ iff A is non-singular. $\det A \cdot B = \det A \cdot \det B,$

$$\det A = \sum \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$

$$aei + hfa + cdh$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

Definitions:

$$\begin{aligned} \sinh x &= \frac{e^x - e^{-x}}{2}, & \cosh x &= \frac{e^x + e^{-x}}{2}, \\ \tanh x &= \frac{e^x - e^{-x}}{e^x + e^{-x}}, & \operatorname{csch} x &= \frac{1}{\sinh x}, \\ \operatorname{sech} x &= \frac{1}{\cosh x}, & \coth x &= \frac{1}{\tanh x}. \end{aligned}$$

Identities:

$$\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \operatorname{sech}^2 x = 1,$$

$$\coth^2 x - \operatorname{csch}^2 x = 1, \qquad \sinh(-x) = -\sinh x,$$

$$\cosh(-x) = \cosh x, \qquad \tanh(-x) = -\tanh x,$$

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$

$$cosit(x+y) = cosit x cosit y + simit x si$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

 $\sinh 2x = 2\sinh x \cosh x$,

1

$$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$$

$$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$$
$$2\sinh^2 \frac{x}{2} = \cosh x - 1, \qquad 2\cosh^2 \frac{x}{2} = \cosh x + 1.$$

)	$\sin \theta$	$\cos \theta$	$\tan \theta$	in mathematics
)	0	1	0	you don't under-
-	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	stand things, you just get used to
	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	them.
-	$\sqrt{3}$	1	$\sqrt{3}$	– J. von Neumann

More Trig.

Law of cosines: $c^2 = a^2 + b^2 - 2ab\cos C$

$$A = \frac{1}{2}hc,$$

$$= \frac{1}{2}ab\sin C,$$

$$= \frac{c^2\sin A\sin B}{2\sin C}.$$

Heron's formula

Area:

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}},$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}},$$

$$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}},$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$\sin x = \frac{\sin x}{2},$$

$$\cos x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2i},$$

$$\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$$

$$= -i\frac{e^{2ix} - 1}{e^{2ix} + 1},$$

$$\sin x - \sinh ix$$

$$\sin x = \frac{\sinh ix}{i},$$

$$\cos x = \cosh ix,$$

$$\tan x = \frac{\tanh ix}{i}.$$

Theore Number Theory The Chinese remainder theorem: There exists a number C such that: $C \equiv r_1 \mod m_1$: : : $C \equiv r_n \mod m_n$ if m_i and m_j are relatively prime for $i \neq j$. Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then $\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$ Euler's theorem: If a and b are relatively prime then $1 \equiv a^{\phi(b)} \bmod b.$ Fermat's theorem: $1 \equiv a^{p-1} \bmod p.$ The Euclidean algorithm: if a > b are integers then $gcd(a, b) = gcd(a \mod b, b).$ If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x $S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$ Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n-1)$ and 2^n-1 is prime. Wilson's theorem: n is a prime iff $(n-1)! \equiv -1 \mod n$. Möbius inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$ $G(a) = \sum_{d|a} F(d),$ then $F(a) = \sum \mu(d)G\left(\frac{a}{a}\right).$

$\frac{\lambda}{d a}$
Prime numbers:
$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$
$+O\left(\frac{n}{\ln n}\right),$
$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$
$+ O\left(\frac{n}{(\ln n)^4}\right).$

retical Computer Science Cheat Sheet					
Graph Theory					
Definitions:		N			
\overline{Loop}	An edge connecting a ver-	\overline{E}			
1	tex to itself.	V			
Directed	Each edge has a direction.	c(
Simple	Graph with no loops or	G			
	multi-edges.	d€			
Walk	A sequence $v_0e_1v_1\ldots e_\ell v_\ell$.	Δ			
Trail	A walk with distinct edges.	δ (
Path	A trail with distinct	χ			
	vertices.	χ_{I}			
Connected	A graph where there exists	G' K			
	a path between any two	K			
~	vertices.	r(
Component	A maximal connected				
T.	subgraph.				
Tree	A connected acyclic graph.	Pı			
$Free\ tree \ DAG$	A tree with no root. Directed acyclic graph.	(x)			
Eulerian	Graph with a trail visiting	(
Datertan	each edge exactly once.	C			
Hamiltonian	Graph with a cycle visiting	_			
114111111111111111111111111111111111111	each vertex exactly once.	$\begin{pmatrix} x \\ y \end{pmatrix}$			
Cut	A set of edges whose re-	$\begin{bmatrix} & y \\ x \end{bmatrix}$			
0 40	moval increases the num-	$\int_{-\infty}^{\infty}$			
	ber of components.	m			
Cut-set	A minimal cut.				
$Cut\ edge$	A size 1 cut.				
$k ext{-}Connected$	A graph connected with				
	the removal of any $k-1$	l			
	vertices.	p-			
$k ext{-} Tough$	$\forall S \subseteq V, S \neq \emptyset$ we have	A A			
	$k \cdot c(G - S) \le S .$	an			
k- $Regular$	A graph where all vertices				
	have degree k .				
k- $Factor$	A k -regular spanning	A			
36 . 1 .	subgraph.				
Matching	A set of edges, no two of				
CI.	which are adjacent.				
Clique	A set of vertices, all of which are adjacent.				
$Ind. \ set$	· ·				
Ina. set	A set of vertices, none of				
Verter come	which are adjacent. A set of vertices which				
vertex cover	cover all edges.	$ _{\mathrm{Li}}$			
Planar aranh	A graph which can be em-	ar			
1 vanai grapii	beded in the plane.				

n n-regular spanning				
subgraph.				
A set of edges, no two of				
which are adjacent.				
A set of vertices, all of				
which are adjacent.				
A set of vertices, none of				
which are adjacent.				
A set of vertices which				
cover all edges.				
A graph which can be em-				
beded in the plane.				
An embedding of a planar				
graph.				
$\sum \deg(v) = 2m.$				
$\equiv V$				
then $n - m + f = 2$, so				
$f \le 2n - 4, m \le 3n - 6.$				
raph has a vertex with de-				

gree ≤ 5 .

-			
Notation:			
$\overline{E(G)}$	Edge set		
V(G)	Vertex set		
c(G)	Number of components		
G[S]	Induced subgraph		
deg(v)	Degree of v		
$\Delta(G)$	Maximum degree		
$\delta(G)$	Minimum degree		
$\chi(G)$	Chromatic number		
$\chi_E(G)$	Edge chromatic number		
G^c	Complement graph		
K_n	Complete graph		
K_{n_1, n_2}	Complete bipartite graph		
$\mathrm{r}(k,\ell)$	Ramsey number		

Geometry Projective coordinates: triples (x, y, z), not all x, y and z zero. $(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$ Cartesian Projective (x,y)(x, y, 1)y = mx + b (m, -1, b)x = c(1,0,-c)Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$

$$\left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p},$$

$$\lim_{p \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

Wallis' identity:

$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregory's series:
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

Newton's series:

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \cdots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$

where

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor:

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. George Bernard Shaw

$$d(cu) = c^{d}$$

Derivatives:

$$2. \ \frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

$$\mathbf{1.} \ \frac{d(cu)}{dx} = c\frac{du}{dx}, \qquad \mathbf{2.} \ \frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}, \qquad \mathbf{3.} \ \frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx},$$

$$\mathbf{4.} \ \frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx},$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$$
, **5.** $\frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}$, **6.** $\frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$

Calculus

$$6. \ \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx},$$

$$8. \ \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$$

$$\mathbf{10.} \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx},$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx}$$

12.
$$\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx}$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$
,

14.
$$\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}.$$

15.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$

16.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

20.
$$\frac{d(\operatorname{arccsc} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

$$21. \ \frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx},$$

22.
$$\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

24.
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx}$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

$$29. \frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

$$30. \ \frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}.$$

Integrals:

$$1. \int cu \, dx = c \int u \, dx,$$

3.
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1,$$
 4. $\int \frac{1}{x} dx = \ln x,$ **5.** $\int e^x dx = e^x,$

2.
$$\int (u+v) dx = \int u dx + \int v dx,$$

6.
$$\int \frac{dx}{1+x^2} = \arctan x,$$

$$\mathbf{4.} \int \frac{1}{x} dx = \ln x,$$

$$\mathbf{5.} \int e^x \, dx = e^x,$$

8.
$$\int \sin x \, dx = -\cos x$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

$$8. \int \sin x \, dx = -\cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

$$10. \int \tan x \, dx = -\ln|\cos x|,$$

$$\mathbf{11.} \int \cot x \, dx = \ln|\cos x|,$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|,$$

$$\mathbf{13.} \int \csc x \, dx = \ln|\csc x + \cot x|,$$

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17.
$$\int \sin^2(ax) dx = \frac{1}{2a} (ax - \sin(ax)\cos(ax)),$$

18.
$$\int \cos^2(ax)dx = \frac{1}{2a} (ax + \sin(ax)\cos(ax)),$$

$$19. \int \sec^2 x \, dx = \tan x,$$

$$20. \int \csc^2 x \, dx = -\cot x,$$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

22.
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

26.
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1, \quad$$
27. $\int \sinh x \, dx = \cosh x, \quad$ **28.** $\int \cosh x \, dx = \sinh x,$

29.
$$\int \tanh x \, dx = \ln|\cosh x|, \ \mathbf{30.} \ \int \coth x \, dx = \ln|\sinh x|, \ \mathbf{31.} \ \int \operatorname{sech} x \, dx = \arctan \sinh x, \ \mathbf{32.} \ \int \operatorname{csch} x \, dx = \ln\left|\tanh \frac{x}{2}\right|,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x$$
,

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$
 34. $\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$

35.
$$\int \operatorname{sech}^2 x \, dx = \tanh x,$$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

$$\mathbf{38.} \ \int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

43.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$$
 45.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$$

44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$$

45.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0,$$

48.
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

49.
$$\int x\sqrt{a+bx} \, dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

$$\mathbf{50.} \int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

51.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

52.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

53.
$$\int x\sqrt{a^2 - x^2} \, dx = -\frac{1}{3}(a^2 - x^2)^{3/2},$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|$$

$$56. \int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont.

62.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0, \qquad \textbf{63.} \quad \int \frac{dx}{x^2\sqrt{x^2 + a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}.$$

63.
$$\int \frac{dx}{x^2 \sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 \pm a^2},$$

65.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

66.
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

67.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

68.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

70.
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71.
$$\int x^3 \sqrt{x^2 + a^2} \, dx = (\frac{1}{3}x^2 - \frac{2}{15}a^2)(x^2 + a^2)^{3/2},$$

72.
$$\int x^n \sin(ax) \, dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) \, dx,$$

73.
$$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$$

74.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

75.
$$\int x^n \ln(ax) \, dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

76.
$$\int x^n (\ln ax)^m \, dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx.$$

$$\begin{vmatrix} x^1 = & x^{\frac{1}{2}} & = & x^{\frac{1}{4}} \\ x^2 = & x^{\frac{1}{2}} + x^{\frac{1}{2}} & = & x^{\frac{1}{2}} - x^{\frac{1}{4}} \\ x^3 = & x^{\frac{3}{4}} + 3x^{\frac{1}{2}} + x^{\frac{1}{4}} & = & x^{\frac{3}{4}} - 6x^{\frac{3}{4}} + 7x^{\frac{1}{2}} - x^{\frac{1}{4}} \\ x^4 = & x^{\frac{4}{4}} + 6x^{\frac{3}{4}} + 7x^{\frac{1}{2}} + x^{\frac{1}{4}} & = & x^{\frac{1}{4}} - 6x^{\frac{3}{4}} + 7x^{\frac{1}{2}} - x^{\frac{1}{4}} \\ x^5 = & x^{\frac{5}{4}} + 15x^{\frac{4}{4}} + 25x^{\frac{3}{4}} + 10x^{\frac{1}{2}} + x^{\frac{1}{4}} & = & x^{\frac{1}{4}} - 6x^{\frac{1}{4}} + 25x^{\frac{1}{3}} - 10x^{\frac{1}{2}} + x^{\frac{1}{4}} \\ x^{\frac{1}{4}} = & x^1 & x^{\frac{1}{4}} = & x^1 & x^{\frac{1}{4}} = & x^1 \\ x^{\frac{3}{4}} = & x^2 + x^1 & x^{\frac{1}{4}} = & x^2 - x^1 \\ x^{\frac{3}{4}} = & x^3 + 3x^2 + 2x^1 & x^{\frac{3}{4}} = & x^3 - 3x^2 + 2x^1 \\ x^{\frac{3}{4}} = & x^4 + 6x^3 + 11x^2 + 6x^1 & x^{\frac{4}{4}} = & x^4 - 6x^3 + 11x^2 - 6x^1 \\ x^{\frac{1}{5}} = & x^5 + 10x^4 + 35x^3 + 50x^2 + 24x^1 & x^{\frac{5}{2}} = & x^5 - 10x^4 + 35x^3 - 50x^2 + 24x^1 \\ \end{vmatrix}$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$

$$E f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum_{i} f(x)\delta x = F(x) + C.$$
$$\sum_{i} f(x)\delta x = \sum_{i} f(i).$$

Differences:

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \mathbf{E}\,v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$$

$$\Delta(H_x) = x^{-1}, \qquad \qquad \Delta(2^x) = 2^x,$$

$$\Delta(c^x) = (c-1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

$$\sum cu \, \delta x = c \sum u \, \delta x,$$

$$\sum (u+v)\,\delta x = \sum u\,\delta x + \sum v\,\delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum \mathbf{E} \, v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{\underline{m+1}}, \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

$$x^{\underline{0}} = 1,$$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

$$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}.$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^{\overline{0}} = 1,$$

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}$$

Conversion:

$$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$

$$=1/(x+1)^{\overline{-n}},$$

$$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x+n-1)^{\underline{n}}$$

$$=1/(x-1)^{-n}.$$

$$x^{n} = \sum_{k=1}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}} = \sum_{k=1}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} {n \brack k} (-1)^{n-k} x^k,$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + cx + c^2x^2 + c^3x^3 + \cdots = \sum_{i=0}^{\infty} c^ix^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} x^{ni},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{i^i}{i},$$

$$\ln\frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{i^i}{i},$$

$$\sin x = x - \frac{1}{3}x^3 + \frac{1}{3}x^5 - \frac{1}{7!}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{4}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (n)^i x^i,$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + \binom{n+2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{2x}(1 - \sqrt{1-4x}) = 1 + x + 2x^2 + 5x^3 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + 2x + 6x^2 + 20x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x}\ln\frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{10}x^3 + \frac{25}{22}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{1}{2i-1}x^i,$$

$$\frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Difference of like powers:

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series:

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i-1} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

 $\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$ Summation: If $b_i = \sum_{j=0}^{i} a_i$ then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) x^i.$$

God made the natural numbers; all the rest is the work of man.

- Leopold Kronecker

Escher's Knot

Expansions:

$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \left\{\frac{i}{n}\right\} x^i, \\ x^{\overline{n}} = \sum_{i=0}^{\infty} \left[\frac{n}{i}\right] x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \left\{\frac{i}{n}\right\} \frac{n! x^i}{i!} \\ \left(\ln \frac{1}{1-x}\right)^n = \sum_{i=0}^{\infty} \left[\frac{i}{n}\right] \frac{n! x^i}{i!}, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_{2ix}}{(2i)!} \\ \tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i} - 1) B_{2i} x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{ix}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{ix}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{ix}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{1-p^{-x}}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{ix}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{1-p^{-x}}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{1-p^{-x}}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{1-p^{-x}}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \qquad \zeta(x$$

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_{a}^{b} G(x) \, dF(x)$$

exists. If $a \leq b \leq c$ then

 $x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_{2i} x^{2i}}{(2i)!},$

 $\zeta(x) = \sum \frac{1}{i^x},$

 $\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x},$

$$\int_{a}^{c} G(x) \, dF(x) = \int_{a}^{b} G(x) \, dF(x) + \int_{b}^{c} G(x) \, dF(x).$$

If the integrals involved exist

$$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d(c \cdot F(x)) = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x)F'(x) dx.$$

Cramer's Rule

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be Awith column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}.$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

- William Blake (The Marriage of Heaven and Hell)

 $00 \ \ 47 \ \ 18 \ \ 76 \ \ 29 \ \ 93 \ \ 85 \ \ 34 \ \ 61 \ \ 52$ 86 11 57 28 70 39 94 45 02 63 95 80 22 67 38 71 49 56 13 04 59 96 81 33 07 48 72 60 24 15 $73\ 69\ 90\ 82\ 44\ 17\ 58\ 01\ 35\ 26$ 68 74 09 91 83 55 27 12 46 30 37 08 75 19 92 84 66 23 50 41 14 25 36 40 51 62 03 77 88 99 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$$

where $k_i \ge k_{i+1} + 2$ for all i , $1 \le i < m$ and $k_m \ge 2$.

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$\begin{split} F_i &= F_{i-1} + F_{i-2}, \quad F_0 = F_1 = 1, \\ F_{-i} &= (-1)^{i-1} F_i, \\ F_i &= \frac{1}{\sqrt{5}} \left(\phi^i - \hat{\phi}^i \right), \end{split}$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i.$$

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$

Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$