细胞遗传信息的表达及调控

笔记源文件: <u>Markdown</u>, <u>长</u>图, <u>PDF</u>, <u>HTML</u>

1. 转录及真核生物转录后加工

1.1. 转录的概述

1 定义:双链DNA中的一条 DNA聚合酶 合成RNA

2 物质基础: rNTP/NTP, DNA, RNA聚合酶, 蛋白因子 \rightarrow $\begin{cases} R/Q \rightarrow S \Box T \\ & = 1 \end{cases}$ 真核 \rightarrow 转录因子

1.2. 转录有关的核心概念

- 1 启动子: RNA聚合酶识别/结合/启动转录的DNA序列,特异性,序列保守,不转录
- 2 转录单元:
 - 1. 启动子到终止子的DNA序列
 - 2. 有多个(原核细胞)or单个(真核细胞)编码基因
- 3 终止子:给RNA聚合酶转录终止信号的DNA序列

1.3.*PS

- 1 结构基因: DNA分子上转录出DNA的区段
- 2 不对称转录:
 - 1. DNA双链上,一股链是模板,另一股不转录
 - 2. 模板链并非在同一单链上
- 3 模板链与编码链:
 - 1. 模板链(合成RNA的模板DNA链)
 - 2. 编码链(相对发另一条单链DNA)

1.4. 原核生物的转录

1.4.1. 核生物 $ext{RNA}$ 聚合酶: extstyle 5' o 3'聚合/校对/无需引物/能解旋

亚基	功能
σ	启动子特异性识别
eta'	解开DNA
β	催化RNA生成
α	促进RNA聚合酶与上游转录因子结合

1.4.2. 转录过程

阶段	详细描述		
启动(限速阶段)	1. RNA聚合酶与启动子区域结合 2. 转录起始点 3. 启动子区域		
延伸(RNA聚合酶)	$1.5' \rightarrow 3'$ 方向延伸 $2.RNA$ 聚合酶移动对应延伸		
终止(终止子)	1. 终止子: Rho因子依赖性终止子+Rho因子非依赖性终止子 2. 原核: 转录翻译偶联		

1.4.3. 转录终止的类型

1 不依赖于Rho因子的转录终止

2 依赖于Rho因子的转录终止:ho因子具有解旋酶性质,把RNA撸下来

1.4.4. 转录翻译耦联(原核细胞): 产物长的为转录/翻译方向

1.5. 真核生物转录后的加工(RNA加工)

1 概述: 几乎所有转录得RNA $\xrightarrow{\text{结构和化学方面的修饰}}$ 参数RNA $\xrightarrow{\text{细胞核}}$

2 RNA加工的内容: 3'加尾巴/5'加帽子/切去内含子

3 同源蛋白:同一转录产物不同加工

2. 翻译

氨基酸 mRNA模板核糖体,氨酰tRNA,蛋白因子 mRNA从5′→3′,多肽氨基端→羧基端

2.1. 密码子

1 含义: RNA上三个核苷酸代表一种氨基酸

2 特殊密码子: 终止密码子(UAA/UAG/UGA),起始密码子(大多是AUG)

3 密码子简并性: 多种同义密码子(只在第3位碱基上不同)编码同一个氨基酸

4 开放阅读框: 起始—终止密码子间的核苷酸序列

2.2. 翻译装置

2.2.1. mRNA(注意RBS的功能)

$2.2.2. \, \mathrm{tRNA}$

1 结构: 末端有特定氨基酸, 有特定反密码子

2 氨酰tRNA:将特定氨基酸连接到tRNA的3'末

3摆动性:第三位碱基不同的同义密码子可以被同一种tRNA识别

2.2.3. 核糖体

tRNA+蛋白质(大小亚基)→三个结合位点(注意EPA三个位点都穿过大小两个亚基)

退出位点:空载tRNA离开位点 肽酰位点:携带增长肽链的位点

2.4. 翻译过程: 起始/延申/终止

2.4.1. 原核生物翻译过程所需要的蛋白质因子

类型	因子	描述	
翻译起始因子	IF-1	阻止其他tRNA结合小亚基	
翻译起始因子	IF-2	结合特定起始tRNA进入核糖体	
翻译起始因子	IF-3	阻止大小亚基结合	
翻译延长因子	转位酶	使核糖体向3'端移动一个密码子	
翻译释放因子	RF1(I类释放因子)	识别终止子	
翻译释放因子	RF2(I类释放因子)	协助 I 类因子释放,无特异性	
翻译释放因子	RF3(核糖体循环因子)	N/A	

2.4.2. 翻译过程

$lacksymbol{1}$ 翻译的起始:大小亚基分离ightarrow小亚基结合 \mathbf{mRNA} &起始 \mathbf{tRNA} ightarrow大亚基回来

2 翻译的延申: 进位→成肽→转位, 注意肽酰转移酶作用

3 翻译的终止

 \mathbf{A} 位结合释放因子并识别终止子 ightarrow 多肽合成停止 $\xrightarrow{\mathrm{ább}\pm\mathrm{kilm}\,\mathrm{im}}$ \mathbf{tRNA} 释放肽链 + \mathbf{mRNA} 大小亚基分离

 4 Ps. 多聚核糖体: 许多核糖体 $\overset{\mathrm{结rd}}{\longleftrightarrow}$ 单个 mRNA

3. 基因表达调控&操纵子

3.1. 结构&调节基因

调节基因编码产物:阻遏/激活蛋白

3.2. 操纵子&操纵基因

1 操纵基因:可结合调节蛋白

2 操纵子:结构基因+控制元件(调节蛋白可识别),可被阻遏/激活蛋白关闭/打开

3.3. 阻遏&激活蛋白+诱导&辅阻遏物

3.4. 原核生物结构基因表达四种调控

调控系统	状态变化	描述	
可诱导的正调控系统	0到1	无活性激活蛋白变活 → 开启转录	
可诱导的负调控系统	—1到1	抑制转录 → 诱导物解除抑制	

调控系统	状态变化	描述	
可阻遏的负调控系统	0到-1	无活性阻遏蛋白变活 → 抑制转录	
可阻遏的正调控系统	1到-1	开启转录后 → 辅阻遏物出现抑制转录	

3.5. 操纵子示例

1 大肠杆菌乳糖操纵子:两个转录调节蛋白——阻遏蛋白&CAP(激活蛋白)

2 色氨酸操纵子的衰减机制

