Évaluation 4 - Mouvement et interactions

Compétences évaluées

Comp.	Items	D	\mathbf{C}	В	A
APP	Représenter une situation par un schéma simple. Extraire des informations d'un document.				
REA	Réaliser un calcul en donnant le résultat en notation scientifique avec les bonnes unités.				
VAL	Comparer des valeurs calculées avec des valeurs de références pour valider un raisonnement.				
ANA/RAI	Mener un raisonnement à partir de grandeur données ou calculées.				

Δn	nréci	ation	ρt	remard	IIIES
\neg P	pi eci	ation	eι	Terriare	lucs

Exercice 1: Impesanteur

Document 1 – Station spatiale internationale (ISS)

On lit parfois que les spationautes flottent dans les stations spatiales, car la gravité terrestre n'agit plus sur les spationautes.

On s'intéresse à la station spatiale internationale, notée ISS, en orbite circulaire autour de la Terre à une hauteur h. L'ISS a une vitesse constante v.

Données:

- $G = 6.67 \times 10^{-11} \,\mathrm{N \cdot m^2 \cdot kg^{-2}}$
- $M_{\text{Terre}} = 5.97 \times 10^{24} \,\text{kg}$
- $R_{\text{Terre}} = 6.37 \times 10^6 \,\text{m}$
- $h = 4.14 \times 10^5 \,\mathrm{m}$
- $v = 7.66 \times 10^3 \,\mathrm{m \cdot s^{-1}}$
- Masse d'une spationaute $m = 65.0 \,\mathrm{kg}$

- 1 Quel est le mouvement de l'ISS dans le référentiel lié au centre de la Terre? (APP)
- **2** Faire un schéma propre et lisible faisant figurer l'ISS, la Terre et la trajectoire décrite par l'ISS. (*REA*)
- 3 Dans la station les spationautes ont un poids $P_{\rm ISS}=m\times g_{\rm ISS}$. Calculer la valeur de $g_{\rm ISS}$ sachant que

$$g_{\rm ISS} = G \times \frac{M_{\rm Terre}}{(R_{\rm Terre} + h)^2}$$

(APP, REA)

- 4 Comparer g_{ISS} avec l'accélération de pesanteur terrestre $g = 9.81 \,\text{N} \cdot \text{kg}^{-1}$. Peut-on vraiment dire que la gravité terrestre n'agit plus sur les spationautes au sein de l'ISS? (VAL, ANA/RAI)
 - 5 Calculer le poids d'une spationaute dans l'ISS, sachant que $g_{ISS} = 8,65 \,\mathrm{N}\cdot\mathrm{kg}^{-1}$. (REA)

Document 2 - Force d'inertie d'entraînement

Un système dans un référentiel en rotation est soumis à une force **relative** qui dépend du référentiel, qu'on appelle **force d'inertie d'entraînement** $\overrightarrow{F}_{\text{inertie}}$ ou encore « force centrifuge ». Cette force a pour direction la **droite reliant le centre du cercle et le centre du système**. Son sens est dirigé **vers l'extérieur du cercle**. C'est cette force qui explique pourquoi les passagers d'une voiture dans un rond-point sentent leur corps attiré vers l'extérieur du rond-point.

Rappel : le principe d'inertie dit que tout objet immobile est soumis à des forces dont la somme est nulle.

- **6** Expliquer avec vos mot le principe d'inertie. *(COM)*
- 7 Dans le référentiel lié à l'ISS, la spationaute est immobile. En utilisant le principe d'inertie et en justifiant clairement, donner la relation entre $\overrightarrow{F}_{\text{inertie}}$ et $\overrightarrow{P}_{\text{ISS}}$. (APP, ANA/RAI)
- 8 Compléter le schéma de la question 2 en représentant les forces s'exerçant sur la spationaute dans le référentiel lié à l'ISS. (APP, REA)
 - 9 La valeur de la force d'inertie d'entraînement exercée sur la spationaute est

$$F_{\text{inertie}} = m \times \frac{v^2}{R_{\text{Terre}} + h}$$

où v est la vitesse du référentiel tournant. Calculer la vitesse de l'ISS et comparer ce résultat avec les données de l'énoncé. $(APP,\,REA,\,VAL,\,ANA/RAI)$

Prendre des initiatives et les écrire, même si le raisonnement n'est pas complet. Tout début de réflexion sera valorisé.

Utiliser le principe d'inertie sur la spationaute pour en déduire une relation entre P et $F_{\rm inertie}$.

★ Coup de pouce 2 :

Isoler la vitesse v dans la relation obtenue. Rappel : si $v^2 = a$, alors $v = \sqrt{a}$.

Comparer la valeur de la vitesse trouvée avec celle de l'énoncé et conclure.

Exercice 2: Penalty au footbal

Document 1 - Forces de frottements

Un objet en mouvement dans un fluide comme l'air subit des forces de frottements. Les forces de frottements \overrightarrow{f} sont opposées au vecteur vitesse \overrightarrow{v} de l'objet.

Pour un objet en mouvement dans l'air, on peut calculer la valeur des frottements de l'air sur l'objet, en Newton, à l'aide de la relation suivante :

$$f = \frac{1}{2} \times \rho \times C_x \times v^2 \times S$$

Avec:

- $\rho = 1.23 \,\mathrm{kg \cdot m^{-3}}$ la densité de l'air ;
- v la vitesse de l'objet en $m \cdot s^{-1}$;
- C_x le coefficient de traînée, sans unité;
- S la surface de l'objet en m^2 .

Document 2 - Ballon de footbal

Un ballon de football est une sphère de $70\,\mathrm{cm}$ de circonférence et pesant $450\,\mathrm{g}$, avec une pression interne de $1,5\,\mathrm{bar}$. On cherche à étudier les forces qui s'exercent sur un ballon de football pendant un penalty.

Données:

- Circonférence d'une sphère de rayon $r: c = 2\pi r$.
- Surface d'une sphère de rayon $r: S = 4\pi r^2$.
- $-C_x = 0.20$ pour un ballon de foot.
- $-v = 50 \,\mathrm{m \cdot s^{-1}}$ pendant un penalty.
- $q = 9.81 \,\mathrm{N} \cdot \mathrm{kg}^{-1}$
- 1 Indiquer quel est le système étudié et donner un référentiel approprié pour étudier son mouvement. (APP)
 - 2 Citer la ou les forces qui s'exercent sur le ballon puis calculer leurs valeurs. (APP, REA)
 - 3 Représenter cette ou ces forces sur un schéma propre et lisible. (REA)
 - 4 Les forces se compensent-elles? Justifier à l'aide du principe d'inertie. (ANA/RAI, VAL)
- **5** Pour tirer un penalty, un joueur frappe dans le ballon posé au sol. Décrire les forces s'exerçant sur le ballon lorsque celui-ci est en l'air. *(APP)*
 - 6 Représenter ces forces sur un autre schéma. (REA)
- 7 Peut-on utiliser le principe d'inertie pour décrire le mouvement du ballon de football lorsqu'il est en l'air? (VAL, ANA/RAI)
- 8 Calculer la valeur des forces de frottements s'exerçant sur le ballon. (APP, ANA/RAI) Prendre des initiatives et les écrire, même si le raisonnement n'est pas complet. Tout début de réflexion sera valorisé.

A - Ma correction (à faire après la correction du professeur)

Question	L'erreur	Analyse de l'erreur	La correction

B - Mon bilan après mon travail de correction

Ce que je n'avais pas compris	Ce que maintenant j'ai compris

C - Mes acquis après mon travail de correction (à remplir par le professeur)

Appréciation et remarques		

Évaluation 4 - Mouvement et interactions

Compétences évaluées

Comp.	Items	D	\mathbf{C}	В	A
APP	Représenter une situation par un schéma simple. Extraire des informations d'un document.				
REA	Réaliser un calcul en donnant le résultat en notation scientifique avec les bonnes unités.				
VAL	Comparer des valeurs calculées avec des valeurs de références pour valider un raisonnement.				
ANA/RAI	Mener un raisonnement à partir de grandeur données ou calculées.				

Appréciation	et	remard	mes
Appleciation	CL	Ciliaic	ucs

Exercice 1 : Impesanteur

Document 1 – Station spatiale internationale (ISS)

On lit parfois que les spationautes flottent dans les stations spatiales, car la gravité terrestre n'agit plus sur les spationautes.

On s'intéresse à la station spatiale internationale, notée ISS, en orbite circulaire autour de la Terre à une hauteur h. L'ISS a une vitesse constante v.

Données:

- $G = 6.67 \times 10^{-11} \,\mathrm{N \cdot m^2 \cdot kg^{-2}}$
- $M_{\text{Terre}} = 5.97 \times 10^{24} \,\text{kg}$
- $R_{\text{Terre}} = 6.37 \times 10^6 \,\text{m}$
- $h = 4.14 \times 10^5 \,\mathrm{m}$
- $v = 7.66 \times 10^3 \,\mathrm{m \cdot s^{-1}}$
- Masse d'une spationaute $m=65.0 \,\mathrm{kg}$

- 1 Quel est le mouvement de l'ISS dans le référentiel lié au centre de la Terre? (APP)
- 2 Faire un schéma propre et lisible faisant figurer l'ISS, la Terre et la trajectoire décrite par l'ISS. (REA)
- 3 Dans la station les spationautes ont un poids $P_{\rm ISS}=m\times g_{\rm ISS}$. Calculer la valeur de $g_{\rm ISS}$ sachant que

$$g_{\rm ISS} = G \times \frac{M_{\rm Terre}}{(R_{\rm Terre} + h)^2}$$

(APP, REA)

- 4 Comparer g_{ISS} avec l'accélération de pesanteur terrestre $g = 9.81 \,\text{N} \cdot \text{kg}^{-1}$. Peut-on vraiment dire que la gravité terrestre n'agit plus sur les spationautes au sein de l'ISS? (VAL, ANA/RAI)
 - 5 Calculer le poids d'une spationaute dans l'ISS, sachant que $g_{ISS} = 8,65 \,\mathrm{N}\cdot\mathrm{kg}^{-1}$. (REA)

Document 2 - Force d'inertie d'entraînement

Un système dans un référentiel en rotation est soumis à une force **relative** qui dépend du référentiel, qu'on appelle **force d'inertie d'entraînement** $\overrightarrow{F}_{\text{inertie}}$ ou encore « force centrifuge ». Cette force a pour direction la **droite reliant le centre du cercle et le centre du système**. Son sens est dirigé **vers l'extérieur du cercle**. C'est cette force qui explique pourquoi les passagers d'une voiture dans un rond-point sentent leur corps attiré vers l'extérieur du rond-point.

Rappel : le principe d'inertie dit que tout objet immobile est soumis à des forces dont la somme est nulle.

- **6** Expliquer avec vos mot le principe d'inertie. *(COM)*
- 7 Dans le référentiel lié à l'ISS, la spationaute est immobile. En utilisant le principe d'inertie et en justifiant clairement, donner la relation entre $\overrightarrow{F}_{\text{inertie}}$ et $\overrightarrow{P}_{\text{ISS}}$. (APP, ANA/RAI)
- 8 Compléter le schéma de la question 2 en représentant les forces s'exerçant sur la spationaute dans le référentiel lié à l'ISS. (APP, REA)
 - 9 La valeur de la force d'inertie d'entraînement exercée sur la spationaute est

$$F_{\text{inertie}} = m \times \frac{v^2}{R_{\text{Terre}} + h}$$

où v est la vitesse du référentiel tournant. Calculer la vitesse de l'ISS et comparer ce résultat avec les données de l'énoncé. $(APP,\,REA,\,VAL,\,ANA/RAI)$

Prendre des initiatives et les écrire, même si le raisonnement n'est pas complet. Tout début de réflexion sera valorisé.

Utiliser le principe d'inertie sur la spationaute pour en déduire une relation entre P et $F_{\rm inertie}$.

★ Coup de pouce 2 :

Isoler la vitesse v dans la relation obtenue. Rappel : si $v^2 = a$, alors $v = \sqrt{a}$.

Comparer la valeur de la vitesse trouvée avec celle de l'énoncé et conclure.

Exercice 2: Penalty au footbal

Document 1 - Forces de frottements

Un objet en mouvement dans un fluide comme l'air subit des forces de frottements. Les forces de frottements \overrightarrow{f} sont opposées au vecteur vitesse \overrightarrow{v} de l'objet.

Pour un objet en mouvement dans l'air, on peut calculer la valeur des frottements de l'air sur l'objet, en Newton, à l'aide de la relation suivante :

$$f = \frac{1}{2} \times \rho \times C_x \times v^2 \times S$$

Avec:

- $\rho = 1.23 \,\mathrm{kg \cdot m^{-3}}$ la densité de l'air ;
- v la vitesse de l'objet en $m \cdot s^{-1}$;
- C_x le coefficient de traînée, sans unité;
- S la surface de l'objet en m^2 .

Document 2 - Ballon de footbal

Un ballon de football est une sphère de $70\,\mathrm{cm}$ de circonférence et pesant $450\,\mathrm{g}$, avec une pression interne de $1,5\,\mathrm{bar}$. On cherche à étudier les forces qui s'exercent sur un ballon de football pendant un penalty.

Données:

- Circonférence d'une sphère de rayon $r: c = 2\pi r$.
- Surface d'une sphère de rayon $r: S = 4\pi r^2$.
- $-C_x = 0.15$ pour un ballon de foot.
- $v = 45 \,\mathrm{m \cdot s^{-1}}$ pendant un penalty.
- $q = 9.81 \,\mathrm{N} \cdot \mathrm{kg}^{-1}$
- 1 Indiquer quel est le système étudié et donner un référentiel approprié pour étudier son mouvement. (APP)
 - 2 Citer la ou les forces qui s'exercent sur le ballon puis calculer leurs valeurs. (APP, REA)
 - 3 Représenter cette ou ces forces sur un schéma propre et lisible. (REA)
 - 4 Les forces se compensent-elles? Justifier à l'aide du principe d'inertie. (ANA/RAI, VAL)
- **5** Pour tirer un penalty, un joueur frappe dans le ballon posé au sol. Décrire les forces s'exerçant sur le ballon lorsque celui-ci est en l'air. *(APP)*
 - 6 Représenter ces forces sur un autre schéma. (REA)
- 7 Peut-on utiliser le principe d'inertie pour décrire le mouvement du ballon de football lorsqu'il est en l'air? (VAL, ANA/RAI)
- 8 Calculer la valeur des forces de frottements s'exerçant sur le ballon. (APP, ANA/RAI) Prendre des initiatives et les écrire, même si le raisonnement n'est pas complet. Tout début de réflexion sera valorisé.

A - Ma correction (à faire après la correction du professeur)

Question	L'erreur	Analyse de l'erreur	La correction

B - Mon bilan après mon travail de correction

Ce que je n'avais pas compris	Ce que maintenant j'ai compris

C - Mes acquis après mon travail de correction (à remplir par le professeur)

Appréciation et remarques		