In [4]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [6]: tracks.head()

	artists	explicit	duration_ms	popularity	name	id		Out[6]:
	['Uli']	0	126903	6	Carve	35iwgR4jXetl318WEWsa1Q	0	
['	['Fernando Pessoa']	0	98200	0	Capítulo 2.16 - Banquero Anarquista	021ht4sdgPcrDgSk7JTbKY	1	
['	['Ignacio Corsini']	0	181640	0	Vivo para Quererte - Remasterizado	07A5yehtSnoedViJAZkNnc	2	
['	['Ignacio Corsini']	0	176907	0	El Prisionero - Remasterizado	08FmqUhxtyLTn6pAh6bk45	3	
	['Dick Haymes']	0	163080	0	Lady of the Evening	08y9GfoqCWfOGsKdwojr5e	4	

In [7]: features.head()

Out[7]:		genre	artist_name	track_name	track_id	popularity	acousticness	da
	0	Movie	Henri Salvador	C'est beau de faire un Show	0BRjO6ga9RKCKjfDqeFgWV	0	0.611	
	1	Movie	Martin & les fées	Perdu d'avance (par Gad Elmaleh)	0BjC1NfoEOOusryehmNudP	1	0.246	
	2	Movie	Joseph Williams	Don't Let Me Be Lonely Tonight	0CoSDzoNIKCRs124s9uTVy	3	0.952	
	3	Movie	Henri Salvador	Dis-moi Monsieur Gordon Cooper	0Gc6TVm52BwZD07Ki6tlvf	0	0.703	
	4	Movie	Fabien Nataf	Ouverture	0luslXpMROHdEPvSl1fTQK	4	0.950	

```
In [60]: tracks.shape
Out[60]: (586672, 21)
In [61]: features.shape
Out[61]: (232725, 19)
 In [8]:
         #checking null
         pd.isnull(tracks).sum()
 Out[8]: id
                                0
                               71
          name
          popularity
                                0
          duration_ms
                                0
                                0
          explicit
                                0
          artists
                                0
          id_artists
                                0
          release_date
                                0
          danceability
          energy
                                0
                                0
          key
                                0
          loudness
          mode
                                0
                                0
          speechiness
                                0
          acousticness
          instrumentalness
                                0
                                0
          liveness
                                0
          valence
                                0
          tempo
          time_signature
                                0
          dtype: int64
         pd.isnull(features).sum()
 In [9]:
 Out[9]: genre
                               0
          artist_name
                               0
          track_name
                               1
                               0
          track_id
          popularity
                              0
          acousticness
                               0
          danceability
          duration_ms
          energy
          instrumentalness
                              0
                               0
          key
          liveness
                               0
          loudness
          mode
          speechiness
                               0
                               0
          tempo
          time_signature
                               0
          valence
          dtype: int64
```

```
In [10]: #checking info
         tracks.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 586672 entries, 0 to 586671
        Data columns (total 20 columns):
            Column
                              Non-Null Count
                                              Dtype
        ---
            ----
                              -----
        0
            id
                              586672 non-null object
        1
            name
                            586601 non-null object
         2
            popularity
                              586672 non-null int64
            duration_ms
                              586672 non-null int64
        4
            explicit
                              586672 non-null int64
        5
            artists
                              586672 non-null object
                              586672 non-null object
        6
            id_artists
            release_date
        7
                              586672 non-null object
                              586672 non-null float64
            danceability
        9
            energy
                              586672 non-null float64
        10 key
                              586672 non-null int64
                              586672 non-null float64
        11 loudness
        12 mode
                              586672 non-null int64
        13 speechiness 586672 non-null float64
14 acousticness 586672 non-null float64
        15 instrumentalness 586672 non-null float64
                         586672 non-null float64
        16 liveness
                            586672 non-null float64
        17 valence
                              586672 non-null float64
        18 tempo
        19 time_signature 586672 non-null int64
        dtypes: float64(9), int64(6), object(5)
```

memory usage: 89.5+ MB

```
In [11]: #checking info
         features.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 232725 entries, 0 to 232724
Data columns (total 18 columns):
```

```
Column
                    Non-Null Count
                                    Dtype
---
   -----
                     -----
                                    ----
                    232725 non-null object
0
    genre
1
    artist_name
                    232725 non-null object
2
    track_name
                    232724 non-null object
3
    track id
                    232725 non-null object
4
    popularity
                    232725 non-null int64
5
    acousticness
                    232725 non-null float64
6
    danceability
                    232725 non-null float64
7
                    232725 non-null int64
    duration_ms
                    232725 non-null float64
    energy
9
    instrumentalness 232725 non-null float64
                    232725 non-null object
10 key
                    232725 non-null float64
11 liveness
12 loudness
                    232725 non-null float64
13 mode
                    232725 non-null object
14 speechiness
                    232725 non-null float64
15 tempo
                    232725 non-null float64
16 time_signature
                    232725 non-null object
17 valence
                    232725 non-null float64
```

dtypes: float64(9), int64(2), object(7)

memory usage: 32.0+ MB

73

```
In [12]: #finding 10 least popular songs in the spotify dataset
         least_songs=tracks.sort_values('popularity',ascending=True)[0:10]
         least_songs[['name','popularity']]
```

```
Out[12]:
                                           name popularity
                                                            0
           32
                          The Dear Little Shamrock
           78
                    Pobre Cotorro - Remasterizado
                                                            0
```

77 Entrerriana - Remasterizado 0

76 0 Capítulo 2.9 - Banquero Anarquista

75 0 Capítulo 1.9 - Banquero Anarquista

74 Capítulo 1.7 - Banquero Anarquista 0

The Girl That I Marry 72 Capítulo 2.14 - Banquero Anarquista 0

71 0 Capítulo 2.4 - Banquero Anarquista

70 Capítulo 1.21 - Banquero Anarquista 0

```
In [13]:
         #descriptive statistics of tracks
         tracks.describe().transpose()
```

0

Out[13]:	count	mean	std	min	25%	50
popularity	586672.0	27.570053	18.370642	0.0	13.0000	27.0000
duration_ms	586672.0	230051.167286	126526.087418	3344.0	175093.0000	214893.0000
explicit	586672.0	0.044086	0.205286	0.0	0.0000	0.0000
danceability	586672.0	0.563594	0.166103	0.0	0.4530	0.5770
energy	586672.0	0.542036	0.251923	0.0	0.3430	0.5490
key	586672.0	5.221603	3.519423	0.0	2.0000	5.0000
loudness	586672.0	-10.206067	5.089328	-60.0	-12.8910	-9.2430
mode	586672.0	0.658797	0.474114	0.0	0.0000	1.0000
speechiness	586672.0	0.104864	0.179893	0.0	0.0340	0.0443
acousticness	586672.0	0.449863	0.348837	0.0	0.0969	0.4220
instrumentalness	586672.0	0.113451	0.266868	0.0	0.0000	0.0000
liveness	586672.0	0.213935	0.184326	0.0	0.0983	0.1390
valence	586672.0	0.552292	0.257671	0.0	0.3460	0.5640
tempo	586672.0	118.464857	29.764108	0.0	95.6000	117.3840
time_signature	586672.0	3.873382	0.473162	0.0	4.0000	4.0000

In [14]: #descriptive of feature
features.describe().transpose()

Out[14]:		count	mean	std	min	25%	
	popularity	232725.0	41.127502	18.189948	0.00000	29.0000	43
	acousticness	232725.0	0.368560	0.354768	0.00000	0.0376	(
	danceability	232725.0	0.554364	0.185608	0.05690	0.4350	(
	duration_ms	232725.0	235122.339306	118935.909299	15387.00000	182857.0000	220427
	energy	232725.0	0.570958	0.263456	0.00002	0.3850	(
	instrumentalness	232725.0	0.148301	0.302768	0.00000	0.0000	(
	liveness	232725.0	0.215009	0.198273	0.00967	0.0974	(
	loudness	232725.0	-9.569885	5.998204	-52.45700	-11.7710	-7
	speechiness	232725.0	0.120765	0.185518	0.02220	0.0367	(
	tempo	232725.0	117.666585	30.898907	30.37900	92.9590	115
	valence	232725.0	0.454917	0.260065	0.00000	0.2370	(

In [15]: #finding top 10 popular songs in the spotify dataset
 least_songs=tracks
 popular_songs=least_songs[least_songs['popularity']>90].sort_values('popularity',as
 popular_songs[['name','popularity','artists']]

Out[15]:		name	popularity	artists
	93802	Peaches (feat. Daniel Caesar & Giveon)	100	['Justin Bieber', 'Daniel Caesar', 'Giveon']
	93803	drivers license	99	['Olivia Rodrigo']
	93804	Astronaut In The Ocean	98	['Masked Wolf']
	92811	telepatía	97	['Kali Uchis']
	92810	Save Your Tears	97	['The Weeknd']
	92813	Blinding Lights	96	['The Weeknd']
	93805	Leave The Door Open	96	['Bruno Mars', 'Anderson .Paak', 'Silk Sonic']
	92814	The Business	95	['Tiësto']
	91866	Streets	94	['Doja Cat']
	93806	Fiel	94	['Los Legendarios', 'Wisin', 'Jhay Cortez']

```
In [16]: #Make the Release Date Column as the Index Column.
    tracks['release_date'] = pd.to_datetime(tracks['release_date'], dayfirst=True, erro
    tracks.set_index('release_date',inplace=True)
    tracks.index=pd.to_datetime(tracks.index)
    tracks.head()
```

Out[16]:		id	name	popularity	duration_ms	explicit	
	release_date						
	1922-02-22	35iwgR4jXetl318WEWsa1Q	Carve	6	126903	0	
	1922-06-01	021ht4sdgPcrDgSk7JTbKY	Capítulo 2.16 - Banquero Anarquista	0	98200	0	[ˈF
	1922-03-21	07A5yehtSnoedViJAZkNnc	Vivo para Quererte - Remasterizado	0	181640	0	
	1922-03-21	08FmqUhxtyLTn6pAh6bk45	El Prisionero - Remasterizado	0	176907	0	
	NaT	08y9GfoqCWfOGsKdwojr5e	Lady of the Evening	0	163080	0	ŀ

```
In [17]: #Find the Name of the Artist Present in the specific Row of the Dataset.
         tracks[['artists']].iloc[24]
                     ['Fernando Pessoa']
Out[17]: artists
          Name: 1922-06-01 00:00:00, dtype: object
In [18]:
         print("Unique Genre")
         print(features['genre'].unique())
         print("Unique Artists")
         print(tracks['artists'].unique())
        Unique Genre
        ['Movie' 'R&B' 'A Capella' 'Alternative' 'Country' 'Dance' 'Electronic'
         'Anime' 'Folk' 'Blues' 'Opera' 'Hip-Hop' "Children's Music"
         'Children's Music' 'Rap' 'Indie' 'Classical' 'Pop' 'Reggae' 'Reggaeton'
         'Jazz' 'Rock' 'Ska' 'Comedy' 'Soul' 'Soundtrack' 'World']
        Unique Artists
        ["['Uli']" "['Fernando Pessoa']" "['Ignacio Corsini']" ... "['阿YueYue']"
         "['ROLE MODEL']" "['Gentle Bones', 'Clara Benin']"]
In [19]: #Converting the Duration of the Songs From Milliseconds to Seconds.
         tracks['duration'] = tracks['duration_ms'].apply (lambda x : round(x/1000))
         tracks.drop('duration_ms', inplace = True, axis=1)
         tracks.duration.head()
Out[19]: release_date
         1922-02-22
                     127
          1922-06-01
                       98
          1922-03-21
                        182
          1922-03-21 177
          NaT
                        163
          Name: duration, dtype: int64
In [20]:
         #Most Common Artists in the Dataset
         top_artists = tracks['artists'].value_counts().head(10)
         print(top_artists)
        artists
        ['Die drei ???']
                                                       3856
        ['TKKG Retro-Archiv']
                                                       2006
        ['Benjamin Blümchen']
                                                       1503
        ['Bibi Blocksberg']
                                                       1472
        ['Lata Mangeshkar']
                                                       1373
        ['Bibi und Tina']
                                                       927
        ['Tintin', 'Tomas Bolme', 'Bert-Åke Varg']
                                                       905
        ['Francisco Canaro']
                                                        891
        ['Ella Fitzgerald']
                                                       870
        ['Tadeusz Dolega Mostowicz']
                                                       838
        Name: count, dtype: int64
In [58]: # Keep only numeric columns for correlation
         numeric_tracks = tracks.select_dtypes(include=['number'])
         # Calculate correlation
         correlation = numeric_tracks.corr(method='pearson')
         # Plot heatmap
```

```
plt.figure(figsize=(9,5))
hmap = sns.heatmap(correlation, annot=True, fmt='.1g', vmin=-1, vmax=1, center=0, c
hmap.set_title('Correlation HeatMap')
hmap.set_xticklabels(hmap.get_xticklabels(), rotation=90)
plt.tight_layout()
plt.show()
```



```
In [22]: #Sample Only 4 Percent of the Whole Dataset.
sample=tracks.sample(int(0.004*len(tracks)))
print(len(sample))
```

2346

```
In [50]: #Create a Regression Plot Between Loudness and Energy. Let's Plot It in the Form of
plt.figure(figsize=(8,4))
sns.regplot(data=sample, y='loudness', x='energy', color='green').set(title='Regres')
```

Out[50]: [Text(0.5, 1.0, 'Regression Plot - Loudness vs Energy Correlation')]

In [49]: #Create a Regression Plot Between Popularity and Acousticness in the Form of a Regr
plt.figure(figsize=(8,4))
sns.regplot(data=sample, y='popularity', x='acousticness', color='blue').set(title=

Out[49]: [Text(0.5, 1.0, 'Regression Plot - Popularity vs Acousticness Correlation')]

In [25]: #creating new column in tracks table
 tracks['dates']=tracks.index.get_level_values('release_date')
 tracks.dates=pd.to_datetime(tracks.dates)
 years=tracks.dates.dt.year
 tracks.head()

artists

name popularity explicit

Out[25]:

In []:

	Id	Haine	popularity	explicit	ai tists	
release_date						
1922-02-22	35iwgR4jXetI318WEWsa1Q	Carve	6	0	['Uli']	
1922-06-01	021ht4sdgPcrDgSk7JTbKY	Capítulo 2.16 - Banquero Anarquista	0	0	['Fernando Pessoa']	['14jt
1922-03-21	07A5yehtSnoedViJAZkNnc	Vivo para Quererte - Remasterizado	0	0	['Ignacio Corsini']	['5LiC
1922-03-21	08FmqUhxtyLTn6pAh6bk45	El Prisionero - Remasterizado	0	0	['Ignacio Corsini']	['5LiC
NaT	08y9GfoqCWfOGsKdwojr5e	Lady of the Evening	0	0	['Dick Haymes']	['3

id

In [28]: #Number of Songs per Year
sns.displot(years, discrete=True, aspect=2, height=4, kind='hist',color='blue').set

Out[28]: <seaborn.axisgrid.FacetGrid at 0x17291e3dd10>


```
In [32]: #spotify feature analysis
#Horizontal Bar Plot: Song Duration Across Different Genres
plt.figure(figsize=(10,6))
plt.title('Duration of Songs in Different Genres')
sns.barplot(y='genre', x='duration_ms', data=features, hue='genre', palette='crest'
plt.xlabel('Duration (ms)')
plt.ylabel('Genres')
plt.tight_layout()
plt.show()
```



```
In [59]: # Get top 5 genres by popularity
Top = features.sort_values('popularity', ascending=False).head(5)
# Create pie chart
plt.figure(figsize=(6,6))
plt.pie(Top['popularity'], labels=Top['genre'], autopct='%1.1f%%', startangle=140)
plt.title('Top 5 Genres by Popularity')
plt.axis('equal') # Equal aspect ratio ensures the pie is a circle
```



```
In [143... sns.scatterplot(x='danceability', y='popularity', data=tracks)
    plt.title('Popularity vs. Danceability')
    plt.show()
```


In [144... sns.countplot(x='explicit', data=tracks)
 plt.title('Count of Explicit vs Non-Explicit Songs')
 plt.show()


```
In [151... #Tempo vs Energy Scatter Plot
    plt.figure(figsize=(8,6))
    sns.scatterplot(x='tempo', y='energy', data=tracks, hue='popularity', palette='cool
    plt.title('Tempo vs. Energy (Sized by Popularity)')
    plt.xlabel('Tempo (BPM)')
    plt.ylabel('Energy')
    plt.legend()
    plt.show()
```


In [153... sns.pairplot(tracks[['danceability', 'energy', 'valence', 'popularity']], kind='sca
plt.suptitle('Pairwise Plots of Key Audio Features', y=1.02)
plt.show()

Pairwise Plots of Key Audio Features


```
In [166... #Number of Songs Released Per Year
    tracks['year'] = pd.to_datetime(tracks['release_date']).dt.year
    print(tracks['year'])
```

```
release_date
1922-02-22
              1970.0
1922-06-01
              1970.0
1922-03-21
              1970.0
1922-03-21
              1970.0
NaT
                  NaN
                . . .
2020-09-26
              1970.0
2020-10-21
              1970.0
2020-09-02
              1970.0
2021-03-05
              1970.0
2015-07-01
              1970.0
Name: year, Length: 586672, dtype: float64
```

```
In [39]: plt.figure(figsize=(8,4))
    sns.countplot(x='key', data=tracks, hue='key', palette='muted', legend=False)
    plt.title('Most Common Music Keys')
    plt.xlabel('Key (0=C, 1=C#/Db, ..., 11=B)')
    plt.tight_layout()
    plt.show()
```



```
In [45]:
         # Convert duration from milliseconds to minutes
         features['duration_min'] = features['duration_ms'] / 60000
         # Get top 10 longest tracks
         longest_tracks = features.sort_values(by='duration_min', ascending=False).head(10)
         # Plot with hue to avoid warning
         plt.figure(figsize=(12,6))
         sns.barplot(
             x='duration_min',
             y='track_name',
             data=longest_tracks,
             hue='track_name',
                                      # add hue
             palette='coolwarm',
             dodge=False,
             legend=False
                                      # hide redundant Legend
         plt.title('Top 10 Longest Tracks')
         plt.xlabel('Duration (minutes)')
         plt.ylabel('Track Name')
         plt.tight_layout()
         plt.show()
```


In [41]: print(tracks.columns.tolist())

['id', 'name', 'popularity', 'explicit', 'artists', 'id_artists', 'danceability', 'e nergy', 'key', 'loudness', 'mode', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', 'time_signature', 'duration', 'dates', 'duration_m in']

In [42]: print(features.columns.tolist())

['genre', 'artist_name', 'track_name', 'track_id', 'popularity', 'acousticness', 'da nceability', 'duration_ms', 'energy', 'instrumentalness', 'key', 'liveness', 'loudne ss', 'mode', 'speechiness', 'tempo', 'time_signature', 'valence']

In []: