

Large-scale distributed computing systems

Week 3

January 2017

Distributed application models

- Embarrassingly parallel applications
 - Embarrassing size
 - Scalability is the challenge
 - Trivial parallelisation
- Parameters Sweep
 - Explore process parameters space
 - Many optimization problems
 - Combinatorial

Distributed application models

- Map-Reduce framework
 - Two steps simple parallelization framework
 - Map() function decomposes computation
 - Reduce() function combines results
 - Backed-up by fault-tolerant and scalable support tools

- SPMD (Single Processing, Multiple Data)
 - Exploit large data sets parallelism
 - Independent computations on different data items
 - Simple process: embarassingly parallel
 - Complex process: pipelines / workflows

Workflows

High-level (user) view

- Abstract representation for the computational process
- Close to user problem modeling view
- Compact, humanly tractable

Low-level (system) view

- Concrete (executable) representation
- Close to system description needs
- Detailed

Runtime

 Scheduling and mapping of workflow on computational resources

Workflow manager

 Different representations lead to different scheduling and mapping requirements

Workflow representations

Definitions of workflows

- Workflow Management Coalition:
 - "The automation of a business process, in whole or part, during which documents, information or tasks are passed from one participant to another for action, according to a set of procedural rules"
- A workflow is a graph representing dependencies:
 - Data and control links
 - Control structures
- A workflow links the components of an application:
 - Services (Web-Services, DIET services, ...)
 - Tasks (JDLs)
 - Local codes
 - Human activities
- Workflows for distributed infrastructures
 - Human scale activities, legacy codes coupling

Illustration

Workflow

algorithm description

```
A
then ((B then D) and (C then E))
then F
```

Data flow

Tasks computation

```
d = F(D(B(A(a))), E(C(A(a))))

e = F(D(B(A(b))), E(C(A(b))))

f = F(D(B(A(c))), E(C(A(c)))
```

- Contains
 - Sequential (dependent) and parallel (independent) components
 - Implicit list of tasks to be computed
 - Command invocation details

Workflow representation

- Any programming language could be adopted...
 - From C to Makefiles
- ...but all do not fit well a distributed computing environment
 - Distributed computing workflows target human-scale activities
 - Prototyping is the rule
 - Scientific applications with heavy user communities and large data sets require high performance and/or high throughput
- Workflow languages for distributed systems
 - Coarse-grained
 - Data intensive
 - Heavy legacy code
 - Interfaced to external Job / Workload manager(s)
- Language simplicity vs expressiveness tradeoff
 - Separate design and enactment phase

Expression of parallelism

Three levels of parallelism

- The expression of data and service parallelisms depend on the workflow language considered
- The workflow engine has to be multi-threaded (or to perform asynchronous calls)
- Data segments are puzzled

Workflow representation languages

- Directed task graphs
 - Simple dependency graphs
 - No complex structure
- Structured languages
 - Graphs with control structures
 - Scripts
- Data-driven workflows
 - Data exchanges are implicit dependencies
 - Data-driven computing model

Directed task graphs

- A task graph defines precedence constraints in a task set
- A task graph is a Directed Acyclic Graph (DAG)
- <u>Ex:</u> Condor DAGMan (http://www.cs.wisc.edu/condor/dagman)

Job A A.condor 1

Job B B.condor

Job C C.condor

Job D D.condor

Script PRE A top_pre.csh

Script PRE B mid_pre.perl \$JOB

Script POST B mid_post.perl \$JOB \$RETURN

Script PRE C mid_pre.perl \$JOB

Script POST C mid_post.perl \$JOB \$RETURN

Script PRE D bot_pre.csh

PARENT A CHILD B C 2

PARENT B C CHILD D 3

Retry C3

Structured workflow graphs

- Control-centric, aka Business Workflow
- Example: Business Process Execution Language (BPEL)
 - From IBM (WSFL) and Microsoft (XLANG)
 - Build on Web-Services standards
- Defining the behavior of a process with a formal description of the messages exchanged by the Web-Services
- Specifies the behavior of all "partners" independently from their implementation
- The resulting process is itself a Web-Service

Software components and services

Software components

- Define and publish a standard interface
- Interact by message exchanges
- Ease (dynamic) composition
- Modularity (no compilation time dependency)
- High level message exchange protocols (format, types...)
- Services
 - Independent, self-sufficient software components
 - Can be invoked remotely
 - Can be dynamically created and destroyed

Service-Oriented-Architectures (SOA)

Basic principles

- A service is an exposed piece of functionality with 3 properties:
 - (1) The interface contract to the service is platform-independent
 - (2) The service can be dynamically located and invoked
 - (3) Services maintain a relationship that minimizes dependencies (**loosely coupling**)

Services in a SOA

Client/Server interaction

- Platform and language independent
 - Client and server programs can be written in different languages, and run in different environments
- Self-describing
 - Only location is needed to invoke a service
 - Loosely coupled
- Based on the adoption of common standards

Web-Services standard

- Standardized by the W3C:
 - Contract / Interface format

Web Services Description Language

- Messages formatSimple Object Access Protocol
- Discovery formatUniversal Description Discovery & Integration
- Based on XML
 - Text format
 - Platform/language independence

Web services

Typical use case

BPEL web services workflow example

BPEL: structured activities

Can contain other activities:

```
<sequence>
    sequential execution
<flow>
    parallel execution
<pick>
    blocks the execution until a message/timeout occurs
<switch>
    selects an activity according to a condition
<while>
    iteration
<scope>
    defines an activity with its own variables, handlers, ...
```

BPEL: communicating activities

Interact with the partners of the workflow:

```
<invoke>
    sends a message to a port of a partner
<receive>
    blocking wait of a message
<reply>
    sends a message replying to a received message (by <receive>)
```

BPEL: other activities

Other activities

```
<assign>
    assigns a value to a variable
<wait>
    waits for a given duration or until an instant
<terminate>
    terminates the process
<compensate>
    executes the compensate field (called by a fault handler)
<throw>
    throw>
    throws an exception
<empty>
    nop</thro
```

Data-driven workflows

- Data-centric, aka scientific workflows
- Example: Simple Concept Unified Flow Language (Scufl)

Taxonomy of workflow approaches

- Workflow descriptions
 - ▶ Business workflows languages (e.g. BPEL) → Control-centric
 - ▶ Scientific workflows languages (e.g. Scufl) → Data-centric
- Scientific workflows approaches
 - Service-based workflows (e.g. Scufl)
 - Independent expression of processings and input data
 - Dynamic description
 - Simple representations, complex optimization
 - Task-based workflows (e.g. DAGMan)
 - Tasks mixes data and processings
 - Static description
 - Complex representations, simple optimization

Scripting approach

- Any programming language may be use to describe a workflow
 - Workflow representation buried in code
- May use parallel control structures
 - Explicit description of parallel tasks
 - Dopar(Activity(D0), Activity(D1))
 - Parallel loops

```
D = { D0, D1, D2 }
ParallelForeach(d in D) {
   Activity(d)
}
```

- Parallel threads
 - Fork() / Join()
- "1D" (linear) code representation
 - Opposed to 2D graphs
 - Parallelism implicitly expressed in 2nd dimension

Future variables

Traditional languages have blocking assignment instructions

- Future variables are non-blocking assignment variables
 - Value read is blocking though
 - To preserve computations coherency

Future variables

- Equivalent representations
 - Dopar { a = f(0), b = g(0) };
 c = h(a, b);
 - f1 = Fork(a = f(0));
 f2 = Fork(b = g(0));
 join(main, f1, f2);
 c = h(a, b);
 - Graph-based

- Future variables introduce asynchronism in synchronous languages
 - Implicit representation of parallelism
 - e.g. SwiftScript workflow language

Parallel languages vs data-driven flows

- Parallel languages
 - ▶ Bounded: foreach d in $\{D_0, D_1, D_2\}...$
 - Unbounded: foreach d in D...
 - Involves data synchronization at each data parallel service (no pipelining)
- Data-driven flows
 - Independent definition of data flows and data sets
 - Enable completely asynchronous enactment (data parallelism + pipelining): no data synchronization
 - May require explicit data synchronization barriers when this is needed
- Futures
 - Non-blocking assignment operations, blocking read
 - Data-centric approach, asynchronous execution

Control- vs data-driven language

- Different representations, similar semantics
 - Trade-off between workflow representation expressiveness and scheduling complexity

Representation of data parallelism

Most languages express data parallelism

- DAGs: implicit in the (large-scale) workflow graph
- Parallel languages: explicit control structures
- Data-driven: transparent

Data-driven fits data-intensive well

- Main source of parallelism comes from data sets
 - Embarrassingly parallel
 - Parameter sweep
 - Single Process, Multiple Data (SPMD)
 - e.g. Map-Reduce
- Clear separation of application logic and experiment
 - Experiment = raw data and parameter data
 - This is a clear difference with BPEL (orchestration of Web Services) or other imperative programming inspired approaches
- Implicit description of parallelism

Arrays, activities and ports

- Array programming principles
 - Lightweight syntax for handling arrays:

```
X+Y = foreach i in indices(X) do
Xi + Yi
done
```

- Convenient representation for vectorial processors
- Extendable to any operation on arrays of values
- Use nested arrays x={{1, 2},{-1,-2}} is a 2-nesting levels array
- Activities with array parameters

```
 A(X) \equiv \{ A(X0), ..., A(Xn) \} 
 A\{\{1, 2\}, \{-1, -2\}\} \equiv \{ \{A(1), A(2)\}, \{A(-1), A(-2)\} \}
```

- Ports depth
 - Activity ports have a defined depth that corresponds to the number of array nesting levels being synchronized:
 - Mean($\{1, 2, 3\}$) = 2 if Mean has input port depth 1

Nested arrays and ports depth

 Input arrays nesting levels are combined with activities ports depth

Data synchronization barriers (no explicit control structure) $\{1, 2, 3\}$ { "/etc", "/var" } $\{1, 2, 3\}$ depth: i=1depth: i=0depth: i=1listDir diffToMean mean depth: i=1depth: o=1depth: o=0{ { "/etc/group", "/etc/passwd" }, $\{1,0,-1\}$ { "/var/log", "/var/spool" } }

Iteration strategies

 $\{A_1, A_2, A_3\} \{B_1, B_2, B_3\}$

 $\{A_1, A_2, A_3\} \{B_1, B_2, B_3\}$

In Scufl

A⊗B

A⊙**B**

- Parallel language
- foreach a in A
 foreach b in B
 fire Activity(a,b)

foreach i in indices(A)
fire Activity(Ai, Bi)

Iteration strategies in a parallel WF

Dot products assume ordered data sets

Dot product

- No problem if:
 - Data parallelism is not present (order is preserved)
 - Service parallelism is not present (reordering is possible)
- Dot products in a data+service parallel execution:
 - Keep track of the data graph
 - Defines the dot product from the data graph

Iteration strategies and depths

- Iterations strategies define output indexing strategies
- They may change data nesting levels

Data handling inside workflows

Data provenance graph

- This data representation allows to:
 - Handle dot products iteration strategies if data segments are puzzled
 - Retrieve results provenance

Data-driven workflows VS task graphs

Task-graph

Data-driven workflows VS task graphs

Data-driven workflows offer a data independent representation

Control structures or not?

- Many data-driven / visual programming approaches do not define control structures
 - Hardly any, yet some (fail-if-false, fail-if-true)
- Directed Task Graphs do not include any loop
 - Because complex application logic is described inside the workflow activities
- Yet control on data flows is sometimes needed
 - Different execution conditions
 - Exceptions / Retry on errors at the application level
 - •

Empty data element

- Special void value Ø
- $A(\emptyset) \equiv \emptyset$
 - No evaluation of the activity (\emptyset is only known from the workflow engine)
- Iteration strategies semantics
 - $\mathbf{x} \odot \emptyset \equiv \emptyset \odot \mathbf{x} \equiv \emptyset$
 - $\mathbf{x} \otimes \emptyset \equiv \emptyset \otimes \mathbf{x} \equiv \emptyset$
- Ø has an index in the array it belongs to

Conditionals

- Test expression variables mapped to input ports
- Dual "then / else" output ports

 Use of the special "void" data element to preserve indexing scheme coherence

Special filter / merge operations

Loops

- Test expression variables mapped to input ports
- Dual "inner / outer" ports
 - Input ports: initialization / iterated values
 - Output ports: iterated values / end of loop

Example

Data-driven workflows VS task graphs

Dynamic data sets can be handled by service workflows:

Loops

Variable Init parameter number of iterations Service0 output

Conditional data set size

Directed task graphs only allow static descriptions

Runtime

The workflow manager

- ► The workflow manager is a centralized engine that performs the calls to the services to execute the workflow
- It is a generic client to the services

Handling references to data is critical

Workflow managers

- Business workflows
 - ActiveBPEL engine, Apache ODE, ... (30 more)
 - JOpera (http://www.jopera.ethz.ch)
- Scientific workflows
 - Service Based
 - Taverna (http://taverna.sourceforge.net)
 - Triana (http://www.trianacode.org/)
 - Kepler (http://kepler-project.org/)
 - MOTEUR (http://modalis.polytech.unice.fr/softwares/moteur)
 - P-Grade portal (http://portal.p-grade.hu)
 - Task graphs
 - DAGMan (Pegasus and Chimera on top of it)
 - DIET MA-DAG

Workflow manager

 Different representations lead to different scheduling and mapping requirements

Scheduling

The scheduling problem

- Scheduling aims a finding a task execution and resources allocation planning to optimize one criterion or more.
- Example:
 - ► 3 tasks: 1 min 2 min 3 min
 - 2 resources: R₁ and R₂
 - Criterion: makespan (total execution time)
- Gantt charts of two schedules

Additional constraints

- Precedence constraints between tasks
 - Workflows/DAGs
- Communication costs
 - Data transfers between tasks
- Heterogeneous resources
 - Machines performances (CPU/memory)
 - Network bandwidth
- Dynamicity
 - Resources creation/deletion
 - Tasks creation/deletion

Scheduling task graphs

[Legrand, Robert 2003]

- Without communication costs:
 - The problem without resources limitations is polynomial
 - Scheduling ASAP (As Soon As Possible)
 - The problem with bounded resources is NP-hard
- With communication costs:
 - Both problems are NP-hard
- Heuristics are required to:
 - Set priorities to tasks
 - Allocate tasks to the processors

List heuristics for task graphs

- Idea: at each instant, allocate as many tasks as possible to the available processors (greedy algorithms)
- Defining priorities is required if there are more tasks than available processors
- Generic list scheduling algorithm
 - ▶ 1) Initialization
 - Compute the priority level of all the tasks
 - Set the priority queue as the list of free tasks (tasks without predecessors) sorted by decreasing priorities
 - 2) While it remains tasks to be executed
 - Add the new free tasks to the priority queue
 - If there are q available processors and r tasks in the queue:
 - Remove the min(q,r) first tasks of the queue and execute them

Tasks prioritization

- Prioritization based on the critical path:
 - Critical path of a task t: weight of the heaviest path starting from t
 - Idea: prioritize tasks with the heaviest critical path
- Example DAG:

Tasks	T_{1}	T_{2}	T_3	$T_{_4}$	T_{5}	T_6
Weights	3	2	1	3	4	6
Crit. path	3	6	7	3	4	6

Initial priority queue: (T_3, T_2, T_1)

Communication costs

- DAG example:
 - Tasks weights in blue; communication costs in red

- Suppose as many processors as needed (4)
 - Sequential execution (no data transfer): 6 tops
 - Parallel execution: 10 tops (critical path: T1 \rightarrow T3 \rightarrow T4)
- A trade-off between, parallelization and communication costs has to be found

Heterogeneous resources

- Heterogeneous Earliest-Finish-Time (HEFT)
- List scheduling HEFT
 - Ordering
 - Set the weights of the tasks
 - Set the weights of the edges
 - Compute the rank (critical path) of each task.
 - Sort the tasks into a list L by non increasing order of their rank
 - Mapping
 - While the list L of tasks is not empty
 - Select the first task t of the list L
 - Select the resource r that has the earliest finish time for t
 - Allocate task t on resource r
 - Remove t from list L.

Scientific workflows scheduling

- Data intensive, scientific workflows
 - Each workflow activity (service) generates a large number of similar computation tasks: bags of tasks
 - Static workflow case: a critical path can be estimated
 - Dynamic workflow case:
 - Some non-deterministic activities (e.g. conditionals) break predictability
 - Sub-workflows without non-deterministic activities can be considered static
- On large batch distributed systems
 - Use statistics to estimate tasks execution and data transfer time
- On clouds
 - Estimate the number of resources to allocate
 - May vary during workflow execution time

Workflow-based resource planner for clouds or pilot jobs

- Executing application in several stages
- Hypothesis
 - Known duration of each task (low / predictable variability)
 - Resources are dedicated to the task (cloud computing)
 - No loop nor other unbounded control structures (deterministic)

 Optimizing number of computing resources and network bandwidth for each stage

Workflow cost computation model

- $ightharpoonup T_i$: estimated execution time of stage i
- Computing resources

$$C_r = c_r \times \sum_{i=1}^{\infty} m_i \times (Td_i + T_i)$$

Network bandwidth

$$C_b = c_b \times \sum_{i=1}^{s} (Td_i + T_i) \sum_{j=1}^{\kappa_i} b_{i,j}$$

Total execution cost

$$C = C_r + C_b$$

- S Number of execution stages
- m_i Number of nodes used in stage i ($m_i \le m_{\text{max}}$)
- Td_i Deployment time of stage i
- T_i Estimated execution time of stage i (in second)
- **C**_r Per-second cost of a computing node
- k_i Number of links used in stage i
- $b_{i,j}$ Bandwidth of link j used in stage i (in Mbps)
- *c*_b Per-Mbps cost of bandwidth

Grouping strategy

- To reduce the impact of jobs submission overhead
- Activities grouping
 - ► 6 services 2 grouped pairs
 - 4 job submissions/input data set

Recursive grouping

- 4 services 3 grouped pairs
- 1 job submission/input data set

Grouping strategy

- ► Let A be a service of the workflow and {B₀,...B_n} its children
- ► For grouping A and B_{i0}: no parallelism loss <=> (1) & (2)
 - (1) B_{io} is an ancestor of every B_j
 - (2) Every ancestor of B_{io} is an ancestor of A (or A itself)
- ► No parallelism loss => (1) & (2)
 - \neg (1) => parallelism between B_j and B_{io} is broken
 - \neg (2) => parallelism between A and C is broken
- ► (1) & (2) => no parallelism loss
- This rule is recursively applied on the workflow graph

Grouping vs parallelism loss

- Aggressive grouping leads to parallelism loss
- Estimate whether grouping gain compensates for parallelism

Resources mapping

Condor matchmaker example

- Workload management
 - Heterogeneous resources
- Deliver High Throughput Computing

- HTC is a 24-7-365 activity: fault tolerance is critical
- Batch-oriented system
 - Batch extended with Job Control Languages to face grid heterogeneity
- Distributed computing IS difficult
 - team of ~35 faculty, full time staff and students (U. Winsconsin)
 - established in 1985
 - Faces software/middleware engineering challenges in a UNIX/Linux/Windows/OS X environment

Matchmaking heterogeneous resources

- Run jobs in a variety of environments
 - Local dedicated clusters (machine rooms)
 - Local opportunistic (desktop) computers
 - Grid environments; Interface to other systems
- Matchmaking process

I need a mac for this code to run

I need a linux box with 2Gb RAM

Desktop Computers

Dedicated Clusters

Matchmaking

- Condor conceptually divides people into three groups
 - Job submitters
 - I need Linux, and I prefer faster machines
 - Machine owners
 - I prefer jobs from the physics group
 - I will only run jobs between 8pm and 4am
 - I will only run certain types of jobs
 - Jobs can be preempted if something better comes along
 - Cluster administrator
 - When can jobs preempt other jobs?
 - Which users have higher priority?
 - Do some groups of users have allocations of computers?

Matchmaking

- Matchmaking is two-way
 - Job describes what it requires:
 - I need Linux && 8 GB of RAM
 - Machine describes what it provides:
 - I will only run jobs from the Physics department
- Matchmaking allows preferences
 - I need Linux, and I prefer machines with more memory but will run on any machine you provide me
- ClassAds Job Description Language (JDL)
 - Stating facts
 - Job's executable is analysis.exe
 - Machine's load average is 5.6
 - Stating preferences
 - I require a computer with Linux

Matchmaking diagram

Including dynamic information (load...)

ClassAds JDL

- ClassAds are:
 - Semi-structured
 - Attribute = Expression
 - Schema-free, user-extensible
- Extensible declaration
 - ▶ HasJava 1 4 = TRUE
 - ► ShoeLength = 7
- Extensible matchmaking
 - Proprogrammer Requirements =
 OpSys == "LINUX" &&
 HasJava_1_4 == TRUE

Example

```
= "Job"
МуТуре
TargetType
             = "Machine"
ClusterId
             = 1377
             = "roy"
Owner
             = "analysis.exe"
Cmd
Requirements =
   (Arch == "INTEL")
&& (OpSys == "LINUX")
&& (Disk >= DiskUsage)
&& ((Memory * 1024)>=ImageSize)
```

Job submission

Job submission

- Users submit jobs to scheduler
 - Jobs described as ClassAds
 - Each scheduler has a queue
 - Scheduler / queues are not centralized
- Negotiator
 - collects list of computers
 - contacts each schedd (What jobs do you have to run?)
 - compares each job to each computer to find a match
 - Evaluate requirements of job & machine in context of both ClassAds
 - If both evaluate to true, there is a match
- Fault tolerance scheduler
 - Resubmission
 - Fail-over scheduler

Large-scale computing techniques

- Flocking
 - Metascheduling: connect scheduler to several condor pools
- Grid interface
- Pilot jobs
 - Job-based reservation of resources and application level scheduling

Flocking

- Submit a scheduler to several pools
 - Share condor pools between institutions
 - Try to run on local pool first, then try to run on remote pool

- Networking issues with private networks
 - A communication broker may be needed if the scheduler is not able to communicate directly with every execute node

Condor-G

- Submit jobs to other grid systems
 - Minimal changes to job description

- Globus 2
- Globus 4
- Amazon EC2
- Nordugrid
- Unicore
- PBS
- LSF
- Condor (!)
- •

Pilot jobs

- Pilot jobs are application-level scheduler jobs that once executing on a grid resource schedule other jobs on it
 - Resources allocation through a custom batch system (bypasses grid workload manager)
 - Enables application-level scheduling
- Example: overlaying Condor on another system
 - Submit startd as a grid job to start a new pilot
 - Grow the condor pool with the new startd daemon
- Limitations
 - The scheduler has to be able to open communication with the pilot jobs
 - Security is tricky (whose job is ran by the pilot?)
 - System administrators do not like pilots so much

Condor pilot jobs

Startd can be rub as a grid pilot job (Condor Glide-in)

From Pilots to Clouds

- Clouds: resources allocation
- Pilots: resource dedication through job submission

