INTRODUCCIÓN AL ANÁLISIS DE DATOS

M.Sc. Henry López

"LOS DATOS SON EL NUEVO PETRÓLEO. ES VALIOSO, PERO SI NO ESTÁ REFINADO, REALMENTE NO SE PUEDE USAR. TIENE QUE CAMBIARSE A GAS, PLÁSTICO, PRODUCTOS QUÍMICOS, ETC. PARA CREAR UNA ENTIDAD VALIOSA QUE IMPULSE LA ACTIVIDAD RENTABLE; ENTONCES LOS DATOS DEBEN DESGLOSARSE, ANALIZARSE PARA QUE TENGAN VALOR ".

- Clave humby 2006 & Michael Palmer

"SEGÚN TUKEY, EL ANÁLISIS EXPLORATORIO DE DATOS (EDA) ES UN PROCESO DE EXAMINAR Y COMPRENDER LOS DATOS UTILIZANDO ESTADÍSTICA, GRÁFICOS Y OTRAS TÉCNICAS PARA EXPLORAR PATRONES, DESCUBRIR RELACIONES Y SACAR CONCLUSIONES ÚTILES PARA LA INCORPORACIÓN POSTERIOR EN LA MODELIZACIÓN Y LA TOMA DE DECISIONES. ".

– Tukey (1977)

Competencia

Aplica la estadística descriptiva para la toma decisión, utilizando de manera responsable las herramientas tecnológicas para el análisis de datos.

Estadística

PLANIFICACIÓN RECOLECCIÓN PROCESAMIENTO ANÁLISIS

- •Objetivos bien definidos
- Presupuesto (\$)
- •Recursos (humanos y materiales)
- Prueba Piloto
- •Variable de diseño
- •Tamaño de la muestra

- •Aplicación de los formularios a través de la técnica por encuesta
- •Extracción de datos (redes sociales, IoT)
- Registros vitales
- •CENSO

- Almacenamiento
- ·Limpieza de datos
- •Análisis Exploratorio (EDA)
- •Aplicación estadística paramétrica o no paramétrica
- Modelización

- •Análisis de los resultados
- •Gobernanza
- Line base
- Medición de impacto
- Mejora continua

División clásica ESTIMACIONES INFERENCIAL HIPÓTESIS ESTADÍSTICA DESCRIPTIVA

Tipos de variables VARIABLES **Cualitativas** Cuantitativas **Ordinales Nominales** Discreta **Continuas**

Tipos de variables

Población y muestra

Descripción de datos

Sesgo bajo (Precisa)

Varianza baja (Precisa)

Varianza alta (No precisa)

Sesgo alto (No Precisa)

Software más usados

Métodos estadísticos

Tabulación de datos categóricos

Tabla 1 Unidades agrícolas por niveles de bienestar

		Tamaño de la unid Agricola (manzanas)						
Pobreza	Año							
		<2	2 to 5	5 to 20	20 to 50	>50	Total	
Dalama	2001	16.7	22.1	36.4	24.7	0	100	
Pobre	2011	43.3	32.7	21.2	2.9	0	100	
Nonobro	2001	0	0	0	0	100	100	
No pobre	2011	0	0	30.1		39.5	100	
Total	2001	12.3	16.3	26.9	18.2	26.2	100	
	2011	25.4	19.2	24.9	14.3	16.3	100	

Source: Castro-Leal and Laguna (2015) using CENAGRO 2001 and 2011

Tabulación de datos categóricos

Tabla 2

Distribución de la población según nivel de alfabetismo por macro región

	EMNV 2009				EMNV 2014			
Macro			No sabe	Total			No sabe	Total
Región	Lee y	Solo sabe	ni leer ni	Total	Lee y	Solo sabe	ni leer ni	Total
	escribe	leer	escribir		escribe	leer	escribir	
- Managua	57.8	0.5	4.1	62.4	36.9	0.5	2.4	39.7
 Pacífico 	14.1	0.2	1.9	16.3	20.0	0.3	1.8	22.1
 Central 	8.9	0.1	2.3	11.4	20.0	0.3	2.6	22.9
 Atlántico 	7.2	0.3	2.5	10.0	12.7	0.4	2.2	15.3
Total	88.0	1.1	10.9	100.0	89.6	1.4	9.1	100.0

Nota: Se refleja el porcentaje de la población por nivel de alfabetismo según macro región.

Datos abiertos. (INIDE-EMNV's 2011,2016).

Descripción de datos

```
Muestra fragmento de código

dat <- read_excel("henry/PredictingToyota.xlsx")
  library(flextable)

descr<- summarizor(dat[,c(1:4)], by = "FuelType",
overall_label = NULL)
  descr

as_flextable( descr)</pre>
```

Tabla 3.

Descripción precio, edad y km recorridos vehículos Toyota

		CNG (N=17)	Diesel (N=155)	Petrol (N=1,264)	overall (N=1,436)
Price	Mean (SD)	9421.2 (2492.1)	11294.6 (5535.9)	10679.3 (3326.6)	10730.8 (3627.0)
	Median (IQR)	8950.0 (3550.0)	8950.0 (5750.0)	9940.0 (3400.0)	9900.0 (3500.0)
	Range	5250.0 - 14950.0	4350.0 - 32500.0	5250.0 - 24500.0	4350.0 - 32500.0
	Missing	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)
Age	Mean (SD)	56.4 (13.3)	50.7 (20.6)	56.6 (18.3)	55.9 (18.6)
	Median (IQR)	58.0 (20.0)	55.0 (33.0)	61.0 (26.2)	61.0 (26.0)
	Range	37.0 - 80.0	4.0 - 80.0	1.0 - 80.0	1.0 - 80.0
	Missing	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)
KM	Mean (SD)	117865.6 (45070.2)	111977.6 (54473.0)	62542.3 (30173.8)	68533.3 (37506.4)
	Median (IQR)	115191.0 (61257.0)	117000.0 (77522.5)	60716.0 (40290.2)	63389.5 (44020.8)
	Range	41499.0 - 207114.0	1.0 - 243000.0	1.0 - 194545.0	1.0 - 243000.0
	Missing	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)

Figura 1. Distribución de la población por sexo y edades simples


```
Muestra fragmento de código

dat <- read_excel("henry/PredictingToyota.xlsx")

ggplot(dat, aes(x = Price))+
geom_histogram(alpha = 0.5, fill="#69b3a2")+
theme_classic</pre>
```

Figura 2. Precio de los vehículos Toyota


```
Muestra fragmento de código
pi<- ((rowSums(selec22[,c(117:140)]))/96)*100
selec22$pi<- pi
hist(selec22$pi)
library(ggplot2)
sub <- as.factor(selec22$Subsistema)</pre>
selec22$sub <- sub
ggplot(selec22, aes(x = pi, fill = Sexo)) +
  geom_histogram()+
  scale_fill_manual(values=c("#69b3a2",
"#404080"))
```

Figura 3. Puntuaciones sobre percepción

Figura 4. Precio de los vehículos Toyota

```
Muestra fragmento de código

dat <- read_excel("henry/PredictingToyota.xlsx")

ggplot(dat, aes(x = Price))+
    geom_boxplot(alpha = 0.5,

fill="#404080",orientation="y")+
    theme_classic()</pre>
```


Muestra fragmento de código

```
ggplot(dat, aes(x = FuelType, y=Price,
fill=FuelType))+
        geom_boxplot(alpha =
0.5,fill="#404080",orientation="x")+
        theme_classic()
```

Figura 5. Precio de los vehículos Toyota


```
Muestra fragmento de código

dat <- read_excel("henry/PredictingToyota.xlsx")

ggplot(dat, aes(x=Price, y=KM))+
   geom_point(color="#404080", alpha=0.8)+
   theme_classic()</pre>
```

Figura 6. Comportamiento del precio según km recorrido

Muestra fragmento de código

```
cor1 <- cor(abalone[,c(2:9)], method = "spearman")</pre>
   cor1
   ggcorrplot(cor1,
              method = "square",
              type = "lower",
               ggtheme = ggplot2::theme minimal,
               title = "Matriz de correlacion",
               show.legend = TRUE,
               legend.title = "Corr",
               show.diag = NULL,
              colors = c("#69b3a2", "white",
"#404080"),
               outline.color = "gray",
              hc.order = FALSE,
              hc.method = "complete",
              lab = FALSE,
              lab col = "black",
              lab size = 4,
              p.mat = NULL,
               sig.level = 0.05,
               insig = c("pch", "blank"),
              pch = 4,
              pch.col = "black",
              pch.cex = 5,
              tl.cex = 12,
              tl.col = "black",
              tl.srt = 45,
              digits = 2,
               as.is = FALSE)
```

Figura 8. Matriz de correlación

Referencias

- Binek, R. (2015). Kosaciec szczecinkowaty Iris setosa [Image]. Retrieved from https://commons.wikimedia.org/wiki/File:Kosaciec_szczecinkowaty_Iris_setosa.jp g#/media/File:Kosaciec szczecinkowaty Iris setosa.jpg
- 2. Chihara, L. M., & Hesterberg, T. C. (2018). *Mathematical Statistics with Resampling and R* (2nd ed.). Wiley.
- 3. Kloke, J., & McKean, J. W. (2014). Nonparametric Statistical Methods Using R (Chapman & Hall/CRC The R Series Book 25) (English Edition) (1.ª ed.). Chapman and Hall/CRC.
- 4. González, G. C., Liste, V. A., & Felpeto, B. A. (2011). *Tratamiento de datos con R, Statistica y SPSS* (1.^a ed.). Ediciones Diaz de Santos.
- 5. Rasch, D., Pilz, J., Verdooren, L. R., & Gebhardt, A. (2011). *Optimal Experimental Design with R (English Edition)* (1.^a ed.). Chapman and Hall/CRC.
- 6. Husson, F., Le, S., & Pagès, J. (2017). Exploratory Multivariate Analysis by Example Using R (2nd ed.). CRC Press.