CM005 Álgebra Linear Lista 2

Alberto Ramos

- 1. Seja $M \in M_n(\mathbb{R})$ uma matriz. Mostre que se $\{v_1, \ldots, v_p\} \in \mathbb{R}^n$ é linearmente dependente, então $\{Mv_1, \ldots, Mv_p\}$ é também linearmente dependente
 - Agora suponha que M é invertível. Então, se $\{v_1, \ldots, v_p\} \in \mathbb{R}^n$ é linearmente independente, então $\{Mv_1, \ldots, Mv_p\}$ é linearmente independente.
- 2. Calcule o posto para cada uma das seguintes matrizes. Também, encontre bases para lin(A) (espaço-linha de A), col(A) (espaço-columa) e para Nuc(A) (núcleo de A).

$$A = \begin{pmatrix} 1 & 1 & -3 \\ 0 & 2 & 1 \\ 1 & -1 & -4 \end{pmatrix} \quad A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & -1 \end{pmatrix} \quad A = \begin{pmatrix} 2 & -4 & 0 & 2 & 1 \\ -1 & -2 & 1 & 2 & 3 \\ 1 & -2 & 1 & 4 & 4 \end{pmatrix}$$

3. Ache todos os valores possíveis para posto(A) em função dos valores de α .

$$A = \begin{pmatrix} 1 & 2 & \alpha \\ -2 & 4\alpha & 2 \\ \alpha & -2 & 1 \end{pmatrix} \quad A = \begin{pmatrix} 6 & 6 & -4 \\ -2 & -1 & \alpha \\ \alpha & 2 & -1 \end{pmatrix}$$

Conhecendo o posto(A), calcule a nulidade de cada matrix, i.e., dim(Nuc(A)).

- 4. Uma matriz $A \in M_{m \times n}(\mathbb{R})$ tem posto 1, se e somente se $A = uv^T$ para algum $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$.
- 5. Calcule a dimensão e ache uma base para os seguintes espaços vetoriais.
 - (a) $S := \{(3a+4b-4c, 4a-8b-12c, -2a-4b+2c) : a, b, c \in \mathbb{R}\} \subset \mathbb{R}^3$
 - (b) $S := \text{span}\{(1, -2, 1), (1, -2, 1), (0, 1, -1), (1, -1, 0), (0, -1, 1)\} \subset \mathbb{R}^3$
 - (c) $S := \text{span}\{f_1(x) = 3x, f_2(x) = |x|\}$ como subconjunto de C[-1, 0]
 - (d) $S := \operatorname{span}\{f_1(x) = 3x, f_2(x) = |x|\}$ como subconjunto de C[-1, 1]. Dica: As respostas são diferentes. Faça um esboço das funções

6. Em \mathbb{R}^2 , verifique que a matriz que transforma (1,0) em $(\cos(\theta),\sin(\theta))$ e (0,1) em $(-\sin(\theta),\cos(\theta))$ é dada por

$$Q_{\theta} := \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

Mostre que $Q_{\theta}Q_{\phi} = Q_{\theta+\phi}, Q_{\theta}^{-1} = Q_{-\theta}.$

- 7. Seja $\bar{a} \neq \bar{0} \in \mathbb{R}^n$. Considere a transformação $T : \mathbb{R}^n \to \mathbb{R}^n$, definido como $T(\bar{x}) = \bar{x} + \bar{a}$. Esse tipo de transformação é chamada de translação. Mostre que a translação não é uma transformação linear. Descreve geometricamente o efeito de uma translação. O que acontece se $\bar{a} = \bar{0}$.
- 8. Para as seguintes transformações (de \mathbb{R} a \mathbb{R}) responda quais delas são tranformações lineares e quais são invertíveis. Caso seja possível, calcule a inversa.
 - (a) $T(x) = x^3$, (b) T(x) = x + 1, (c) T(x) = exp(x), (d) T(x) = 3x.
- 9. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear para o qual sabemos que T(1,1)=(3,-2) e T(3,4)=(1,2).
 - (a) Determine T(2,4)
 - (b) Determine T(a,b) para $(a,b) \in \mathbb{R}^2$
 - (c) Calcule o ker(T).
- 10. Seja $\alpha \in \mathbb{R}$ e considere $T_{\alpha}: \mathbb{R}^4 \to \mathbb{R}^3$ uma transformação linear para o qual sabemos que $T_{\alpha}(1,1,0,0)=(\alpha+1,0,\alpha+1), \, T_{\alpha}(1,0,1,1)=(2\alpha+2,4\alpha+4,0), \, T_{\alpha}(1,0,0,2)=(3\alpha,6,3)$ e $T_{\alpha}(0,0,0,3)=(3\alpha,6,3)$.
 - (a) Determine $T_{\alpha}(4,2,1,6)$ e $T_{\alpha}(1,1,-1,3)$.
 - (b) Calcule o $ker(T_{\alpha})$ em função de α
 - (c) Ache uma base para $Im(T_{\alpha})$, em função de α .
- 11. Seja $A \in M_{m \times n}(\mathbb{R})$.
 - (a) Mostre que $Nuc(A^TA) = Nuc(A)$.
 - (b) Verifique que $posto(A^T A) = posto(A)$
 - (c) Mostre que se A^TA é invertível, então as colunas de A são linearmente independente.

Dica: Lembre que $v^Tv=v\cdot v=\|v\|^2$ e $(Av)^T=v^TA^T$ para todo $v\in\mathbb{R}^n$, onde $\|v\|$ é a norma do vetor v

- 12. Mostre que
 - (a) As funções $f_1(x) = \exp(\lambda_1 x)$, $f_2(x) = \exp(\lambda_2 x)$, ..., $f_k(x) = \exp(\lambda_k x)$, onde $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ são linearmente independente se, e somente se, $\lambda_i \neq \lambda_j$ para todo $i \neq j$.

(b) As funções $f_1(x) = x \exp(\lambda x)$, $f_2(x) = x^2 \exp(\lambda x)$, ..., $f_k(x) = x^k \exp(\lambda x)$, com $\lambda \in \mathbb{R}$ são linearmente independente.

Dica: Use o wronskiano.

13. Sejam $\bar{u}_1=(1\ 1\ 0)^T,\ \bar{u}_2=(1\ 0\ 1)^T$ e $\bar{u}_3=(0\ 1\ 1)^T.$ Considere a transformação $T:\mathbb{R}^2\to\mathbb{R}^3$ definida como

$$T(x_1, x_2) := x_2 \bar{u}_1 + x_1 \bar{u}_2 + (x_1 - x_2) \bar{u}_3.$$

- (a) Mostre que T é uma transformação linear.
- (b) Encontre a matriz associada a T em relação às bases ordenadas $\{e_1,e_2\}$ e $\{\bar{u}_1,\bar{u}_2,\bar{u}_3\}$.
- (c) Encontre a matriz associada a T em relação a base ordenada $\{e_1, e_2\}$ e a base canônica de \mathbb{R}^3 . Dica: Para simplificar as contas use mudanças de bases.
- 14. Considere as bases ordenadas de \mathbb{R}^3 e \mathbb{R}^2 , $\mathcal{B} = \{\bar{v}_1, \bar{v}_2, \bar{v}_3\}$ e $\mathcal{F} = \{\bar{w}_1, \bar{w}_2\}$, onde

$$\bar{v}_1 = (1 \ 0 \ -1)^T, \ \bar{v}_2 = (1 \ 2 \ 1)^T, \ \bar{v}_3 = (-1 \ 1 \ 1)^T$$

 ϵ

$$\bar{w}_1 = (1 - 1)^T, \quad \bar{w}_2 = (2 - 1)^T.$$

Para cada uma das transformações lineares $T: \mathbb{R}^3 \to \mathbb{R}^2$ a seguir, encontre a matriz associada em relação às bases ordenadas \mathcal{B} e \mathcal{F} .

- (a) $T(x_1, x_2, x_3) = (x_3 \ 2x_1)^T$,
- (b) $T(x_1, x_2, x_3) = (x_1 + x_2 \ x_1 2x_3)^T$,
- (c) $T(x_1, x_2, x_3) = (2x_2 2x_1)^T$.
- 15. Seja $S = \text{span}\{\exp(x), x \exp(x), x^2 \exp(x)\}$. Seja $D: S \to S$ o operador S, i.e., D(f) = f'. Encontre a matriz associada de D em relação à base ordenada $\{\exp(x), x \exp(x), x^2 \exp(x)\}$.
- 16. Seja \mathcal{P}_n o conjunto dos polinômios de degrau $\leq n$.

Considere a transformação linear $D: \mathcal{P}_1 \to \mathcal{P}_1$, definida como D(p) = p' (a derivada de p).

- (a) Verifique que $\mathcal{B} = \{1 + x, 1 x\}$ é uma base para \mathcal{P}_1 .
- (b) Calcule a matriz associada a T, $[T]_{\mathcal{B}}^{\mathcal{B}}$.
- 17. Seja \mathcal{P}_n o conjunto dos polinômios de degrau $\leq n$.

Considere a transformação $T: \mathcal{P}_2 \to \mathcal{P}_2$, definida como

$$T(p) = xp'(x) + p''(x)$$
, para todo $p \in \mathcal{P}_2$,

onde p' é a derivada de p e p'' é a derivada de p'.

- (a) Verifique que T é uma transformação linear.
- (b) Encontre a matriz que representa T com relação a $\mathcal{B} := \{1, x, x^2\}$
- (c) Encontre a matriz que representa T com relação a $\mathcal{C} := \{1, x, 1 + x^2\}$
- (d) Encontre a matriz S, tal que $[T]_{\mathcal{C}}^{\mathcal{C}} = S^{-1}[T]_{\mathcal{B}}^{\mathcal{B}}S$.
- (e) Se $p(x) = 3x^2 + 2x + 1$, calcule $T^{30}(p)$.
- 18. Considere a transformação linear $T: V \to W$.

Verifique que $ker(T) := \{v \in V : T(v) = 0\} \subset V \text{ e } ImT := T(V) \subset W$ são subespaços vetoriais de V e W respectivamente.

- 19. Seja $T: \mathbb{R}^m \to \mathbb{R}^6$ uma transformação linear.
 - (a) Se dim(Ker(T)) = 3 e T é sobrejetiva, qual é o valor de m?
 - (b) Se T é injetiva e sobrejetiva, qual é o valor de m?
 - (c) Suponha que m=5, e que a dimKer(T)=3, qual é a dimensão da Im(T)?
- 20. Forneça exemplos de transformações lineares $T:\mathbb{R}^4 \to \mathbb{R}^2$ tais que
 - (a) $Ker(T) = {\bar{x} = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = -x_3}.$
 - (b) $Im(T) = \{\bar{y} = (y_1, y_2) \in \mathbb{R}^2 : y_1 = -y_2\}.$

Para ambos casos, calcule dim(Ker(T)) e dim(Im(T)).

Mostre que nenhuma transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^2$ pode ser injetiva. Dê exemplo de transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^2$ sobrejetiva.

- 21. Seja $T:V\to W$ uma transformação linear entre dois espaços vetoriais de dimensão finita.
 - (a) Mostre que T é injetiva se e somente se T leva conjuntos l.i em conjuntos l.i.

(i.e. se
$$\{v_1,\ldots,v_p\}$$
 é l.i. então $\{T(v_1),\ldots,T(v_p)\}$ é l.i.)

(b) Mostre que T é sobrejetora se e somente se T leva conjunto geradores de V em conjuntos geradores de W.

(i.e. se
$$\{v_1,\ldots,v_p\}$$
 gera V então $\{T(v_1),\ldots,T(v_p)\}$ gera W)

Use os itens anteriores para:

- I Seja o plano $\mathcal{P}: ax + by + cz = 0$. Verifique a projeção ortogonal π de \mathbb{R}^3 sobre o plano é sobrejetora.
- II Verificar que $T: \mathcal{P}_n \to \mathcal{P}_n$, definida como T(p) = p + p' é injetora. Ainda mais, T é também sobrejetora.

22. Seja Tuma transformação linear, cuja matriz associada às bases \mathcal{B}_V e \mathcal{B}_W é

$$A = \begin{pmatrix} 1 & 3 & 4 \\ 2 & 4 & 6 \\ 4 & 3 & 7 \\ 3 & 5 & 8 \end{pmatrix}.$$

- (a) Verifique que T não é injetora nem sobrejetora.
- (b) Determine o Ker(T) usando as coordenadas associadas a \mathcal{B}_V .
- (c) Calcule dim(Im(T)).

23. Temos que

- (a) Uma matriz quadrada $A \in M_{n \times n}(\mathbb{K})$ é diagonalizável se existe uma matriz S invertível e uma matriz diagonal D tal que $A = S^{-1}DS$.
- (b) Uma transformação linear $T: V \to V$, onde V tem dimensão finita, é diagonalizável se existe uma base \mathcal{B} de V, tal que a matriz $[T]^{\mathcal{B}}_{\mathcal{B}}$ é diagonalizável.
- (c) Seja $T:V\to V$ uma transformação linear. Se $Tv=\lambda v$ que λ é um autovalor se λ é raíz do polinômio $p(\lambda):=det(A-\lambda I)$. Se v satisfaz que $Av=\lambda v$, dizemos que v é um autovetor de A associado a λ .
- (d) Teorema: Uma transformação linear $T:V\to V$, com dim(V)=n é diagonalizável se, e somente se, ele possui n autovetores linearmente independentes.
 - Isto é, T é diagonalizável se, e somente se, o espaço V tem uma base formada de autovetores de T.
- (e) Uma condição suficiente para ser diagonalizável é que todos os autovalores de T sejam diferentes.

Com essa informação:

(a) Verifique quais das matrizes são diagonalizáveis

$$\begin{pmatrix} 2 & 2 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & -2 \\ 4 & 0 & 4 \\ 1 & -1 & 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & 3 \\ 0 & 0 & \alpha \end{pmatrix} (\alpha \in \mathbb{R})$$