

planetmath.org

Math for the people, by the people.

proof of Weierstrass M-test

Canonical name ProofOfWeierstrassMtest

Date of creation 2013-03-22 12:58:01 Last modified on 2013-03-22 12:58:01

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 5

Author CWoo (3771)

Entry type Proof

Classification msc 30A99

Related topic CauchySequence

Consider the sequence of partial sums $s_n = \sum_{m=1}^n f_m$. Take any $p, q \in \mathbb{N}$ such that $p \leq q$, then, for every $x \in X$, we have

$$|s_q(x) - s_p(x)| = \left| \sum_{m=p+1}^q f_m(x) \right|$$

$$\leq \sum_{m=p+1}^q |f_m(x)|$$

$$\leq \sum_{m=p+1}^q M_m$$

But since $\sum_{n=1}^{\infty} M_n$ converges, for any $\epsilon > 0$ we can find an $N \in \mathbb{N}$ such that, for any p, q > N and $x \in X$, we have $|s_q(x) - s_p(x)| \leq \sum_{m=p+1}^q M_m < \epsilon$. Hence the sequence s_n converges uniformly to $\sum_{n=1}^{\infty} f_n$.