MATEMATIKA

1. letnik – splošna gimnazija

Jan Kastelic

Gimnazija Antona Aškerca, Šolski center Ljubljana

1. januar 2025

Vsebina

Racionalna števila

1. januar 2025

2/59

Jan Kastelic (GAA) MATEMATIKA

Section 1

Racionalna števila

- 📵 Racionalna števila
 - Ulomki in racionalna števila
 - Razširjanje in krajšanje ulomkov
 - Seštevanje in odštevanje ulomkov
 - Množenje ulomkov
 - Deljenje ulomkov
 - Urejenost racionalnih števil
 - Potence s celimi eksponenti
 - Decimalni zapis

4 / 59

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

Jan Kastelic (GAA)

Ulomek $\frac{x}{y}$ je zapis, ki predstavlja zapis deljenja

5/59

Ulomek $\frac{x}{y}$ je zapis, ki predstavlja zapis deljenja

$$x: y = \frac{x}{y}; \quad y \neq 0 \land x, y \in \mathbb{Z}.$$

5/59

Ulomek $\frac{x}{y}$ je zapis, ki predstavlja zapis deljenja

$$x: y = \frac{x}{y}; \quad y \neq 0 \land x, y \in \mathbb{Z}.$$

Število/izraz x imenujemo **števec**, y pa **imenovalec**, med njima je **ulomkova črta**.

5/59

Ulomek $\frac{x}{y}$ je zapis, ki predstavlja zapis deljenja

$$x: y = \frac{x}{y}; \quad y \neq 0 \land x, y \in \mathbb{Z}.$$

Število/izraz x imenujemo števec, y pa imenovalec, med njima je ulomkova črta.

Ulomek $\frac{x}{0}$ ni definiran (nima pomena), saj z 0 ne moremo deliti.

5 / 59

Ulomek $\frac{x}{y}$ je zapis, ki predstavlja zapis deljenja

$$x: y = \frac{x}{y}; \quad y \neq 0 \land x, y \in \mathbb{Z}.$$

Število/izraz x imenujemo **števec**, y pa **imenovalec**, med njima je **ulomkova črta**.

Ulomek $\frac{x}{0}$ ni definiran (nima pomena), saj z 0 ne moremo deliti.

Algebrski ulomek je ulomek, v katerem v števcu in/ali imenovalcu nastopajo algebrski izrazi.

5 / 59

Ulomki in racionalna števila

6/59

Ničelni ulomek je ulomek oblike $\frac{0}{v} = 0$; $y \neq 0$.

6/59

Ničelni ulomek je ulomek oblike $\frac{0}{y} = 0$; $y \neq 0$.

V ulomku, kjer v števcu ali imenovalcu nastopa negativno število, upoštevamo enakost

6 / 59

Ničelni ulomek je ulomek oblike $\frac{0}{y} = 0$; $y \neq 0$.

V ulomku, kjer v števcu ali imenovalcu nastopa negativno število, upoštevamo enakost

$$-\frac{x}{y} = \frac{-x}{y} = \frac{x}{-y}$$

1. ianuar 2025

Jan Kastelic (GAA)

Ničelni ulomek je ulomek oblike $\frac{0}{y} = 0$; $y \neq 0$.

V ulomku, kjer v števcu ali imenovalcu nastopa negativno število, upoštevamo enakost

$$-\frac{x}{y} = \frac{-x}{y} = \frac{x}{-y}.$$

Vsakemu neničelnemu ulomku $\frac{x}{y}$ lahko priredimo njegovo **obratno vrednost**:

Jan Kastelic (GAA) MATEMATIKA 1. januar 2025 6 / 59

Ničelni ulomek je ulomek oblike $\frac{0}{y} = 0$; $y \neq 0$.

V ulomku, kjer v števcu ali imenovalcu nastopa negativno število, upoštevamo enakost

$$-\frac{x}{y} = \frac{-x}{y} = \frac{x}{-y}.$$

Vsakemu neničelnemu ulomku $\frac{x}{y}$ lahko priredimo njegovo **obratno vrednost**:

$$\left(\frac{x}{y}\right)^{-1} = \frac{y}{x}; \quad x, y \in \mathbb{Z} \setminus \{0\}.$$

1. ianuar 2025

Jan Kastelic (GAA)

MATEMATIKA

Množica racionalnih števil \mathbb{Q} je sestavljena iz vseh ulomkov (kar pomeni, da vsebuje tudi vsa naravna in cela števila).

7/59

Množica racionalnih števil \mathbb{Q} je sestavljena iz vseh ulomkov (kar pomeni, da vsebuje tudi vsa naravna in cela števila).

7/59

Množica racionalnih števil \mathbb{Q} je sestavljena iz vseh ulomkov (kar pomeni, da vsebuje tudi vsa naravna in cela števila).

Glede na predznak razdelimo racionalna števila v tri množice:

$$\mathbb{Q} = \mathbb{Q}^-$$

7/59

Množica racionalnih števil \mathbb{Q} je sestavljena iz vseh ulomkov (kar pomeni, da vsebuje tudi vsa naravna in cela števila).

Glede na predznak razdelimo racionalna števila v tri množice:

množico negativnih racionalnih števil Q⁻,

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\}$$

Množica racionalnih števil \mathbb{Q} je sestavljena iz vseh ulomkov (kar pomeni, da vsebuje tudi vsa naravna in cela števila).

$$\mathbb{Q}$$
 $\mathbb{Q}^ \emptyset$

Glede na predznak razdelimo racionalna števila v tri množice:

- množico negativnih racionalnih števil Q⁻,
- množico z elementom nič: {0} in

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

Množica racionalnih števil \mathbb{Q} je sestavljena iz vseh ulomkov (kar pomeni, da vsebuje tudi vsa naravna in cela števila).

$$\mathbb{Q}$$
 $\mathbb{Q}^ \mathbb{Q}^+$

Glede na predznak razdelimo racionalna števila v tri množice:

- množico negativnih racionalnih števil Q⁻,
- množico z elementom nič: {0} in
- množico pozitivnih racionalnih števil: \mathbb{Q}^+ .

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

Ulomki in racionalna števila

1. januar 2025

Ulomka $\frac{x}{y}$ in $\frac{z}{w}$ sta enaka/enakovredna natanko takrat, ko je xz = wy; $y, z \neq 0$.

4□ > 4圖 > 4 = > 4 = > = 9 < 0</p>

8/59

Ulomka $\frac{x}{y}$ in $\frac{z}{w}$ sta enaka/enakovredna natanko takrat, ko je xz = wy; $y, z \neq 0$.

$$\frac{x}{y} = \frac{w}{z} \Leftrightarrow xz = wy; \quad y, z \neq 0$$

8/59

Ulomka $\frac{x}{y}$ in $\frac{z}{w}$ sta enaka/enakovredna natanko takrat, ko je xz=wy; $y,z\neq 0$.

$$\frac{x}{y} = \frac{w}{z} \Leftrightarrow xz = wy; \quad y, z \neq 0$$

Enaka/enakovredna ulomka sta različna zapisa za isto racionalno število.

8 / 59

Ulomki in racionalna števila

1. januar 2025

Naloga

Za katere vrednosti x ulomek ni definiran?

Jan Kastelic (GAA)

Naloga

Za katere vrednosti x ulomek ni definiran?

$$\bullet \ \frac{x-2}{x+1}$$

$$\bullet$$
 $\frac{2}{x-5}$

•
$$\frac{x+2}{3}$$

•
$$\frac{13}{2x-5}$$

Ulomki in racionalna števila

1. januar 2025

Naloga

Za katere vrednosti x ima ulomek vrednost enako 0?

10 / 59

Naloga

Za katere vrednosti x ima ulomek vrednost enako 0?

$$\bullet \ \frac{x-2}{x+1}$$

$$\bullet \ \frac{2}{x-5}$$

•
$$\frac{x+2}{3}$$

•
$$\frac{13}{2x-5}$$

Ulomki in racionalna števila

1. januar 2025

Naloga

Ali imata ulomka isto vrednost?

11/59

Ali imata ulomka isto vrednost?

- $\frac{2}{3}$ in $\frac{10}{15}$
- $\frac{-1}{2}$ in $\frac{1}{-2}$
- $\frac{4}{5}$ in $\frac{-8}{-10}$
- $\frac{5}{8}$ in $\frac{8}{5}$

Ulomki in racionalna števila

12 / 59

Za kateri x imata ulomka isto vrednost?

12 / 59

Za kateri x imata ulomka isto vrednost?

$$\bullet \ \frac{x+1}{2} \ \text{in} \ \frac{3}{4}$$

•
$$\frac{4}{2x-1}$$
 in $\frac{1}{3}$

$$\bullet \ \frac{x+1}{2} \text{ in } \frac{x-1}{-3}$$

$$\bullet \ \frac{x+1}{x-2} \text{ in } \frac{2}{5}$$

Ulomki in racionalna števila

Ali ulomka predstavljata isto vrednost?

Ali ulomka predstavljata isto vrednost?

- $\bullet \left(\frac{1}{2}\right)^{-1} \text{ in } -\frac{1}{2}$
- $\bullet \left(\frac{2}{3}\right)^{-1} \text{ in } \frac{3}{2}$
- $1\frac{3}{7}$ in $\left(\frac{7}{10}\right)^{-1}$

Ulomki in racionalna števila

Ali ulomka predstavljata isto vrednost?

Ali ulomka predstavljata isto vrednost?

- $2 \cdot \frac{3}{4} \text{ in } \frac{3}{2}$
- $2\frac{3}{4}$ in $\frac{3}{2}$
- $\left(1\frac{2}{5}\right)^{-1}$ in $1\frac{5}{2}$
- $\bullet \left(1\frac{2}{5}\right)^{-1} \text{ in } \frac{5}{7}$

Ulomki in racionalna števila

Zapišite s celim delom oziroma z ulomkom.

15 / 59

Zapišite s celim delom oziroma z ulomkom.

•
$$\frac{14}{5}$$

•
$$\frac{110}{17}$$

•
$$-\frac{5}{2}$$

•
$$3\frac{5}{8}$$

•
$$\frac{4}{3}$$

$$\bullet$$
 $2\frac{9}{2}$

16 / 59

Razširjanje ulomka

16 / 59

1. januar 2025

Jan Kastelic (GAA) MATEMATIKA

Razširjanje ulomka

Ulomek ohrani svojo vrednost, če števec in imenovalec pomnožimo z istim neničelnim številom oziroma izrazom. Temu postopku pravimo **razširjanje ulomka**.

16 / 59

Razširjanje ulomka

Ulomek ohrani svojo vrednost, če števec in imenovalec pomnožimo z istim neničelnim številom oziroma izrazom. Temu postopku pravimo **razširjanje ulomka**.

$$\frac{x}{y} = \frac{x \cdot z}{y \cdot z}; \quad x \in \mathbb{Z} \land y, z \in \mathbb{Z} \setminus \{0\}$$

16 / 59

Razširjanje ulomka

Ulomek ohrani svojo vrednost, če števec in imenovalec pomnožimo z istim neničelnim številom oziroma izrazom. Temu postopku pravimo **razširjanje ulomka**.

$$\frac{x}{y} = \frac{x \cdot z}{y \cdot z}; \quad x \in \mathbb{Z} \land y, z \in \mathbb{Z} \setminus \{0\}$$

Ko ulomke seštevamo ali odštevamo, jih razširimo na **najmanjši skupni imenovalec**, ki je najmanjši skupni večkratnik vseh imenovalcev.

16 / 59

17 / 59

17 / 59

1. januar 2025

Jan Kastelic (GAA) MATEMATIKA

Vrednost ulomka se ne spremeni, če števec in imenovalec delimo z istim neničelnim številom oziroma izrazom. Temu postopku rečemo **krajšanje ulomka**.

<ロト < 個 ト < 直 ト < 直 ト へ 直 ト の へ ⊙

17 / 59

Vrednost ulomka se ne spremeni, če števec in imenovalec delimo z istim neničelnim številom oziroma izrazom. Temu postopku rečemo **krajšanje ulomka**.

$$\frac{x \cdot z}{y \cdot z} = \frac{x}{y}; \quad x \in \mathbb{Z} \land y, z \in \mathbb{Z} \setminus \{0\}$$

17 / 59

Vrednost ulomka se ne spremeni, če števec in imenovalec delimo z istim neničelnim številom oziroma izrazom. Temu postopku rečemo **krajšanje ulomka**.

$$\frac{x \cdot z}{y \cdot z} = \frac{x}{y}; \quad x \in \mathbb{Z} \land y, z \in \mathbb{Z} \setminus \{0\}$$

Okrajšan ulomek

17 / 59

Vrednost ulomka se ne spremeni, če števec in imenovalec delimo z istim neničelnim številom oziroma izrazom. Temu postopku rečemo **krajšanje ulomka**.

$$\frac{x \cdot z}{y \cdot z} = \frac{x}{y}; \quad x \in \mathbb{Z} \land y, z \in \mathbb{Z} \setminus \{0\}$$

Okrajšan ulomek

Ulomek $\frac{x}{y}$ je **okrajšan**, če je (x,y)=1, torej če sta števec in imenovalec tuji števili.

17 / 59

Razširite ulomke na najmanjši skupni imenovalec.

18 / 59

Razširite ulomke na najmanjši skupni imenovalec.

•
$$\frac{1}{3}$$
, $\frac{3}{5}$ in $\frac{5}{6}$

•
$$\frac{1}{5}$$
, $-\frac{1}{2}$ in $\frac{-1}{3}$

•
$$\frac{2}{7}$$
, 1 in $\frac{1}{2}$

•
$$\frac{2}{-1}$$
, $\frac{3}{2}$ in $\frac{1}{-3}$

•
$$\frac{5}{6}$$
, $\frac{1}{2}$ in $-\frac{2}{3}$

•
$$\frac{3}{-4}$$
, $\frac{-1}{2}$ in $-\frac{2}{5}$

19 / 59

Razširite ulomke na najmanjši skupni imenovalec.

19 / 59

Razširite ulomke na najmanjši skupni imenovalec.

$$\bullet \frac{1}{x-1}, \frac{1}{x+1} \text{ in } 1$$

$$\bullet$$
 $\frac{4}{x-4}$, $\frac{2}{x-2}$ in $\frac{1}{x^2-6x+8}$

•
$$\frac{2}{x}$$
, $\frac{1}{x-3}$ in $\frac{1}{(x-3)^2}$

$$\bullet \ \frac{2}{x-1} \text{ in } \frac{3}{1-x}$$

•
$$\frac{3}{x^2 - 4x}$$
, $\frac{1}{x}$ in $\frac{2}{x - 4}$

•
$$\frac{1}{2-x}$$
, $\frac{2}{x+2}$ in $\frac{3}{x^2-4}$

Okrajšajte ulomek.

Okrajšajte ulomek.

- $\frac{100}{225}$
- $\frac{34}{51}$
- $\frac{121}{3}$
 - $\frac{45}{75}$

Okrajšajte ulomek.

1. januar 2025

Jan Kastelic (GAA)

Okrajšajte ulomek.

•
$$\frac{x^2-4}{x^2+2x}$$

•
$$\frac{x^3+8}{2x+4}$$

•
$$\frac{x^3-1}{x^2-4x+3}$$

$$\bullet \ \frac{x^3 - 2x^2 - x + 2}{x^2 - 3x + 2}$$

•
$$\frac{x^2-9}{3-x}$$

•
$$\frac{x-4}{16-x^2}$$

22 / 59

1. januar 2025

Jan Kastelic (GAA) MATEMATIKA

Seštevanje ulomkov

22 / 59

1. januar 2025

Jan Kastelic (GAA) MATEMATIKA

Seštevanje ulomkov

Ulomke **seštevamo** tako, da jih razširimo na skupni imenovalec, nato seštejemo števce, imenovalce pa prepišemo.

22 / 59

Seštevanje ulomkov

Ulomke **seštevamo** tako, da jih razširimo na skupni imenovalec, nato seštejemo števce, imenovalce pa prepišemo.

$$\frac{x}{y} + \frac{z}{w} = \frac{xw}{yw} + \frac{yz}{yw} = \frac{xw + yz}{yw}; \quad x, z \in \mathbb{Z} \land y, w \in \mathbb{Z} \setminus \{0\}$$

22 / 59

Seštevanje ulomkov

Ulomke **seštevamo** tako, da jih razširimo na skupni imenovalec, nato seštejemo števce, imenovalce pa prepišemo.

$$\frac{x}{y} + \frac{z}{w} = \frac{xw}{yw} + \frac{yz}{yw} = \frac{xw + yz}{yw}; \quad x, z \in \mathbb{Z} \land y, w \in \mathbb{Z} \setminus \{0\}$$

Odštevanie ulomkov

Jan Kastelic (GAA) MATEMATIKA 1. januar 2025 22 / 59

Seštevanje ulomkov

Ulomke **seštevamo** tako, da jih razširimo na skupni imenovalec, nato seštejemo števce, imenovalce pa prepišemo.

$$\frac{x}{y} + \frac{z}{w} = \frac{xw}{yw} + \frac{yz}{yw} = \frac{xw + yz}{yw}; \quad x, z \in \mathbb{Z} \land y, w \in \mathbb{Z} \setminus \{0\}$$

Odštevanje ulomkov

Ulomke **odštevamo** tako, da prištejemo nasprotni ulomek.

22 / 59

Seštevanje ulomkov

Ulomke **seštevamo** tako, da jih razširimo na skupni imenovalec, nato seštejemo števce, imenovalce pa prepišemo.

$$\frac{x}{y} + \frac{z}{w} = \frac{xw}{yw} + \frac{yz}{yw} = \frac{xw + yz}{yw}; \quad x, z \in \mathbb{Z} \land y, w \in \mathbb{Z} \setminus \{0\}$$

Odštevanje ulomkov

Ulomke odštevamo tako, da prištejemo nasprotni ulomek.

$$\frac{x}{y} - \frac{z}{w} = \frac{x}{y} + \left(-\frac{z}{w}\right) = \frac{xw}{yw} + \frac{-yz}{yw} = \frac{xw - yz}{yw}; \quad x, z \in \mathbb{Z} \land y, w \in \mathbb{Z} \setminus \{0\}$$

4D > 4 P > 4 E > 4 E > E 900

22 / 59

Izračunajte.

Izračunajte.

•
$$\frac{5}{7} + \frac{1}{14}$$

•
$$\frac{2}{9} - \frac{1}{3}$$

•
$$\frac{3}{8} + 1\frac{1}{2}$$

•
$$1 - \frac{5}{6}$$

Jan Kastelic (GAA) MATEMATIKA 1. januar 2025 24 / 59

Izračunajte.

Izračunajte.

$$\bullet$$
 $\left(\frac{2}{3}-2\frac{1}{4}\right)+\frac{1}{12}$

$$\bullet \ \frac{2}{7} - \frac{3}{4} + \left(\frac{1}{2} - 2\right)$$

•
$$\left(\frac{2}{3} - \left(\frac{1}{3} - 3\right) + \frac{1}{4}\right) - \frac{1}{2}$$

•
$$1 - \left(2 - \left(3 - 4 - \left(5 - \frac{1}{2}\right)\right) + \frac{1}{3}\right)$$

Jan Kastelic (GAA) MATEMATIKA 1. januar 2025 25 / 59

Poenostavite.

Poenostavite.

$$\bullet \ \frac{x}{x-1} - \frac{x}{x+1}$$

$$\bullet$$
 $\frac{3}{x^2} + \frac{4}{x^3} - \frac{1}{x}$

$$\bullet$$
 $\frac{3}{x^2-4x}-\left(\frac{1}{x-4}+\frac{2}{x^2-5x+4}\right)$

$$\bullet \ \frac{2}{xy} + \frac{3}{x} - \frac{2}{y}$$

Jan Kastelic (GAA) MATEMATIKA 1. januar 2025 25 / 59

Jan Kastelic (GAA) MATEMATIKA 1. januar 2025 26 / 59

Poenostavite.

Poenostavite.

•
$$\frac{(a-3)^3-(a-1)^3+26}{6a}+\left(-\frac{1}{2}\right)^{-1}$$

•
$$\frac{x^3 - 2x^2 - x + 2}{-x(1-x) - 2} - \left(\frac{x-1}{x} - 1\right)^{-1}$$

$$\bullet \left(\frac{x}{2} - \left(\frac{x}{3} - \left(\frac{x}{4} - \frac{x}{5}\right)\right)\right) - \left(\frac{60}{x}\right)^{-1}$$

1. januar 2025

Jan Kastelic (GAA)

Množenje ulomkov

1. januar 2025

Jan Kastelic (GAA)

Množenje ulomkov

Ulomka **množimo** tako, da števce množimo s števci, imenovalce pa množimo z imenovalci.

27 / 59

Množenje ulomkov

Ulomka **množimo** tako, da števce množimo s števci, imenovalce pa množimo z imenovalci.

$$\frac{x}{y} \cdot \frac{z}{w} = \frac{xz}{yw}; \quad x, z \in \mathbb{Z} \land y, w \in \mathbb{Z} \setminus \{0\}$$

27 / 59

Množenje ulomkov

Ulomka **množimo** tako, da števce množimo s števci, imenovalce pa množimo z imenovalci.

$$\frac{x}{y} \cdot \frac{z}{w} = \frac{xz}{yw}; \quad x, z \in \mathbb{Z} \land y, w \in \mathbb{Z} \setminus \{0\}$$

Produkt danega in njemu obratnega ulomka je enak 1.

27 / 59

Množenje ulomkov

Ulomka **množimo** tako, da števce množimo s števci, imenovalce pa množimo z imenovalci.

$$\frac{x}{y} \cdot \frac{z}{w} = \frac{xz}{yw}; \quad x, z \in \mathbb{Z} \land y, w \in \mathbb{Z} \setminus \{0\}$$

Produkt danega in njemu obratnega ulomka je enak 1.

$$\frac{x}{y} \cdot \left(\frac{x}{y}\right)^{-1} = \frac{x}{y} \cdot \frac{y}{x} = 1$$

27 / 59

Izračunajte.

Izračunajte.

$$\bullet \ \frac{1}{3} \cdot \frac{3}{7}$$

$$\bullet \ \frac{-2}{13} \cdot \left(-\frac{39}{4}\right)$$

•
$$\frac{2}{5} \cdot \frac{4}{9}$$

•
$$2\frac{1}{3} \cdot 3\frac{3}{4}$$

•
$$\frac{-2}{5} \cdot 4\frac{2}{7}$$

•
$$3 \cdot \frac{2}{3}$$

Poenostavite.

Poenostavite.

$$\bullet \ \frac{x^2 - 9}{x^2 + 3x + 9} \cdot \frac{x^3 - 27}{x^2 - 6k + 9}$$

$$\bullet \ \frac{x^2 + 5x}{-x + 2} \cdot \frac{2x^2 - 8}{x^2 + 7x + 10}$$

$$\bullet \ \frac{x^3 - 4x^2 - 4x + 16}{2x + 4} \cdot \frac{6x}{3x - 6}$$

$$\bullet \ 2 \cdot \frac{x}{x-1} \cdot \frac{x^2-1}{x^2+x}$$

Poenostavite.

Poenostavite.

$$\bullet \ \frac{x^2 - 4}{x^2 - 1} \cdot \frac{x^3 - 1}{x^3 + x^2 + x} \cdot \frac{x^2 + x}{2 - x}$$

$$\bullet \left(\left(x - y + \left(\frac{x+y}{2xy} \right)^{-1} \right) \cdot \left(\frac{1}{x+y} \right)^{-1} - 2xy \right) \cdot (x-y)^{-1}$$

Deljenje ulomkov

1. januar 2025

Jan Kastelic (GAA)

Deljenje ulomkov

Deljenje ulomkov

Deljenje ulomkov

Ulomek **delimo** z neničelnim ulomkom tako, da prvi ulomek množimo z obratno vrednostjo drugega ulomka.

31/59

Deljenje ulomkov

Ulomek **delimo** z neničelnim ulomkom tako, da prvi ulomek množimo z obratno vrednostjo drugega ulomka.

$$\frac{x}{y}:\frac{z}{w}=\frac{x}{y}\cdot\left(\frac{z}{w}\right)^{-1}=\frac{x}{y}\cdot\frac{w}{z}=\frac{xw}{yz};\quad x\in\mathbb{Z}\wedge y,z,w\in\mathbb{Z}\setminus\{0\}$$

31/59

Deljenje ulomkov

Ulomek **delimo** z neničelnim ulomkom tako, da prvi ulomek množimo z obratno vrednostjo drugega ulomka.

$$\frac{x}{y}: \frac{z}{w} = \frac{x}{y} \cdot \left(\frac{z}{w}\right)^{-1} = \frac{x}{y} \cdot \frac{w}{z} = \frac{xw}{yz}; \quad x \in \mathbb{Z} \land y, z, w \in \mathbb{Z} \setminus \{0\}$$

Deljenju ulomkov lahko zapišemo kot dvojni ulomek.

31/59

Deljenje ulomkov

Ulomek **delimo** z neničelnim ulomkom tako, da prvi ulomek množimo z obratno vrednostjo drugega ulomka.

$$\frac{x}{y}: \frac{z}{w} = \frac{x}{y} \cdot \left(\frac{z}{w}\right)^{-1} = \frac{x}{y} \cdot \frac{w}{z} = \frac{xw}{yz}; \quad x \in \mathbb{Z} \land y, z, w \in \mathbb{Z} \setminus \{0\}$$

Deljenju ulomkov lahko zapišemo kot dvojni ulomek.

$$\frac{x}{y}: \frac{z}{w} = \frac{\frac{x}{y}}{\frac{z}{w}}; \quad x \in \mathbb{Z} \land y, z, w \in \mathbb{Z} \setminus \{0\}$$

31/59

Izračunajte.

1. januar 2025

Izračunajte.

- 2: $\frac{4}{5}$
- $1\frac{2}{3}:2\frac{5}{6}$
- $\frac{7}{12}$: 14
- $\frac{3}{8}$: $\frac{9}{32}$

Izračunajte.

1. januar 2025

Izračunajte.

•
$$\frac{\frac{3}{4}}{\frac{6}{1}}$$

$$\frac{1}{2}$$

$$\bullet$$
 $\frac{3}{5}$

$$\bullet \quad \frac{\frac{3}{5}}{-2}$$

$$-\frac{1}{2}$$
• $\frac{-\frac{1}{2}}{2^{-1}}$

1. januar 2025

Poenostavite.

1. januar 2025

Poenostavite.

•
$$\frac{x^2+x-6}{x+2}$$
: $(x-2)$

$$\bullet \frac{x-1}{2x^2-4x}: \frac{x^2}{x-2}$$

•
$$x : \frac{x^2 + x}{x^3 + 1}$$

Poenostavite.

1. januar 2025

Poenostavite.

$$\bullet \ \frac{x-1}{x^2+4} : \frac{1-x^2}{x-2}$$

•
$$\frac{x-2}{(x+2)^{-1}}:\left(\frac{1}{x^2-1}\right)^{-1}$$

$$\bullet$$
 $\frac{3-x}{2-x}$: $\frac{x-3}{x-2}$

36 / 59

1. januar 2025

Jan Kastelic (GAA) MATEMATIKA

Za ulomka $\frac{x}{v}$ in $\frac{z}{w}$ $(y, w \notin \{0\})$ velja natanko ena izmed treh možnosti:

36 / 59

Za ulomka $\frac{x}{v}$ in $\frac{z}{w}$ $(y, w \notin \{0\})$ velja natanko ena izmed treh možnosti:

• prvi ulomek je večji od drugega $\frac{x}{v} \ge \frac{z}{w}$ natanko tedaj, ko je $xw \ge yz$;

36 / 59

Za ulomka $\frac{x}{v}$ in $\frac{z}{w}$ $(y, w \notin \{0\})$ velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{x}{v} \geq \frac{z}{w}$ natanko tedaj, ko je $xw \geq yz$;
- ② drugi ulomek je večji od prvega $\frac{x}{v} \leq \frac{z}{w}$ natanko tedaj, ko je $xw \leq yz$;

36 / 59

Za ulomka $\frac{x}{v}$ in $\frac{z}{w}$ $(y, w \notin \{0\})$ velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{x}{v} \ge \frac{z}{w}$ natanko tedaj, ko je $xw \ge yz$;
- ② drugi ulomek je večji od prvega $\frac{x}{v} \leq \frac{z}{w}$ natanko tedaj, ko je $xw \leq yz$;
- 1 ulomka sta enaka $\frac{x}{y} = \frac{z}{w}$ natanko tedaj, ko je xw = yz oziroma $\frac{x}{y} \le \frac{z}{w} \wedge \frac{x}{y} \ge \frac{z}{w}$.

36 / 59

Za ulomka $\frac{x}{v}$ in $\frac{z}{w}$ $(y, w \notin \{0\})$ velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{x}{v} \ge \frac{z}{w}$ natanko tedaj, ko je $xw \ge yz$;
- ② drugi ulomek je večji od prvega $\frac{x}{v} \leq \frac{z}{w}$ natanko tedaj, ko je $xw \leq yz$;
- 1 ulomka sta enaka $\frac{x}{y} = \frac{z}{w}$ natanko tedaj, ko je xw = yz oziroma $\frac{x}{y} \le \frac{z}{w} \land \frac{x}{y} \ge \frac{z}{w}$.

Enaka ulomka predstavljata isto racionalno število.

36 / 59

Slika večjega racionalnega števila $\frac{x}{y}$ je na številski premici desno od slike manjšega racionalnega števila $\frac{z}{y}$.

37 / 59

Slika večjega racionalnega števila $\frac{x}{y}$ je na številski premici desno od slike manjšega racionalnega števila $\frac{z}{y}$.

1. januar 2025

Jan Kastelic (GAA)

Slika večjega racionalnega števila $\frac{x}{y}$ je na številski premici desno od slike manjšega racionalnega števila $\frac{z}{w}$.

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

37 / 59

Slika večjega racionalnega števila $\frac{x}{y}$ je na številski premici desno od slike manjšega racionalnega števila $\frac{z}{y}$.

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

$$\mathbb{Q}^ \mathbb{Q}^+$$
negativna števila pozitivna števila

37 / 59

Slika večjega racionalnega števila $\frac{x}{y}$ je na številski premici desno od slike manjšega racionalnega števila $\frac{z}{w}$.

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

V množici ulomkov velja, da je vsak negativen ulomek manjši od vsakega pozitivnega ulomka.

38 / 59

Za to relacijo linearne urejenosti veljajo naslednje lastnosti:

38 / 59

1. ianuar 2025

Jan Kastelic (GAA) MATEMATIKA

Za to relacijo linearne urejenosti veljajo naslednje lastnosti:

• refleksivnost:
$$\forall \frac{x}{y} \in \mathbb{Q} : \frac{x}{y} \leq \frac{x}{y}$$
;

38 / 59

Za to relacijo linearne urejenosti veljajo naslednje lastnosti:

- refleksivnost: $\forall \frac{x}{y} \in \mathbb{Q} : \frac{x}{y} \leq \frac{x}{y}$;
- $\bullet \ \ \text{antisimetričnost} \colon \, \forall \frac{x}{y}, \frac{z}{w} \in \mathbb{Q} : \frac{x}{y} \leq \frac{z}{w} \land \frac{z}{w} \leq \frac{x}{y} \Rightarrow \frac{x}{y} = \frac{z}{w};$

38 / 59

Za to relacijo linearne urejenosti veljajo naslednje lastnosti:

- refleksivnost: $\forall \frac{x}{y} \in \mathbb{Q} : \frac{x}{y} \leq \frac{x}{y}$;
- $\bullet \ \ \text{antisimetričnost} : \ \forall \frac{x}{y}, \frac{z}{w} \in \mathbb{Q} : \frac{x}{y} \leq \frac{z}{w} \land \frac{z}{w} \leq \frac{x}{y} \Rightarrow \frac{x}{y} = \frac{z}{w};$
- tranzitivnost: $\forall \frac{x}{y}, \frac{z}{w}, \frac{r}{q} \in \mathbb{Q} : \frac{x}{y} \leq \frac{z}{w} \land \frac{z}{w} \leq \frac{r}{q} \Rightarrow \frac{x}{y} \leq \frac{r}{q}$ in

38 / 59

Jan Kastelic (GAA) MATEMATIKA

Za to relacijo linearne urejenosti veljajo naslednje lastnosti:

- refleksivnost: $\forall \frac{x}{y} \in \mathbb{Q} : \frac{x}{y} \leq \frac{x}{y}$;
- $\bullet \ \ \text{antisimetričnost} : \ \forall \frac{x}{y}, \frac{z}{w} \in \mathbb{Q} : \frac{x}{y} \leq \frac{z}{w} \land \frac{z}{w} \leq \frac{x}{y} \Rightarrow \frac{x}{y} = \frac{z}{w};$
- $\bullet \ \ \textbf{tranzitivnost} \colon \, \forall \frac{x}{y}, \frac{z}{w}, \frac{r}{q} \in \mathbb{Q} : \frac{x}{y} \leq \frac{z}{w} \land \frac{z}{w} \leq \frac{r}{q} \Rightarrow \frac{x}{y} \leq \frac{r}{q} \ \text{in}$
- stroga sovisnost: $\forall \frac{x}{y}, \frac{z}{w} \in \mathbb{Q} : \frac{x}{y} \le \frac{z}{w} \lor \frac{z}{w} \le \frac{x}{y}$.

Jan Kastelic (GAA)

Za to relacijo linearne urejenosti veljajo naslednje lastnosti:

- refleksivnost: $\forall \frac{x}{y} \in \mathbb{Q} : \frac{x}{y} \leq \frac{x}{y}$;
- $\bullet \ \ \text{antisimetričnost} : \ \forall \frac{x}{y}, \frac{z}{w} \in \mathbb{Q} : \frac{x}{y} \leq \frac{z}{w} \land \frac{z}{w} \leq \frac{x}{y} \Rightarrow \frac{x}{y} = \frac{z}{w};$
- $\bullet \ \ \textbf{tranzitivnost} \colon \, \forall \frac{x}{y}, \frac{z}{w}, \frac{r}{q} \in \mathbb{Q} : \frac{x}{y} \leq \frac{z}{w} \land \frac{z}{w} \leq \frac{r}{q} \Rightarrow \frac{x}{y} \leq \frac{r}{q} \ \text{in}$
- stroga sovisnost: $\forall \frac{x}{y}, \frac{z}{w} \in \mathbb{Q} : \frac{x}{y} \le \frac{z}{w} \lor \frac{z}{w} \le \frac{x}{y}$.

Množica racionalnih števil pa je tudi **delno urejena**, in sicer z relacijo *biti manjši* (<) oziroma *biti večji* (>).

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši ali enak* (\leq) oziroma *biti večji ali enak* (\geq).

Za to relacijo linearne urejenosti veljajo naslednje lastnosti:

- refleksivnost: $\forall \frac{x}{y} \in \mathbb{Q} : \frac{x}{y} \leq \frac{x}{y}$;
- antisimetričnost: $\forall \frac{x}{y}, \frac{z}{w} \in \mathbb{Q} : \frac{x}{y} \leq \frac{z}{w} \land \frac{z}{w} \leq \frac{x}{y} \Rightarrow \frac{x}{y} = \frac{z}{w};$
- tranzitivnost: $\forall \frac{x}{y}, \frac{z}{w}, \frac{r}{q} \in \mathbb{Q} : \frac{x}{y} \leq \frac{z}{w} \land \frac{z}{w} \leq \frac{r}{q} \Rightarrow \frac{x}{y} \leq \frac{r}{q}$ in
- stroga sovisnost: $\forall \frac{x}{y}, \frac{z}{w} \in \mathbb{Q} : \frac{x}{y} \le \frac{z}{w} \lor \frac{z}{w} \le \frac{x}{y}$.

Množica racionalnih števil pa je tudi **delno urejena**, in sicer z relacijo *biti manjši* (<) oziroma *biti večji* (>).

Tedaj veljajo le lastnosti: **refleksivnost**, **antisimetričnost** in **tranzitivnost**.

Urejenost racionalnih števil

Jan Kastelic (GAA)

1. januar 2025

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

39 / 59

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{x}{y} < \frac{z}{w} \quad \Rightarrow \quad \frac{x}{y} + \frac{r}{q} < \frac{z}{w} + \frac{r}{q}$$

39 / 59

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{x}{y} < \frac{z}{w} \quad \Rightarrow \quad \frac{x}{y} + \frac{r}{q} < \frac{z}{w} + \frac{r}{q}$$

Pri množenju neenakosti s pozitivnim številom se znak neenakosti ohrani.

Jan Kastelic (GAA) MATEMATIKA

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{x}{y} < \frac{z}{w} \quad \Rightarrow \quad \frac{x}{y} + \frac{r}{q} < \frac{z}{w} + \frac{r}{q}$$

Pri množenju neenakosti s pozitivnim številom se znak neenakosti ohrani.

$$\frac{x}{y} < \frac{z}{w} \quad \land \quad \frac{r}{q} > 0 \quad \Rightarrow \quad \frac{x}{y} \cdot \frac{r}{q} < \frac{z}{w} \cdot \frac{r}{q}$$

1. ianuar 2025

Jan Kastelic (GAA)

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{x}{y} < \frac{z}{w} \quad \Rightarrow \quad \frac{x}{y} + \frac{r}{q} < \frac{z}{w} + \frac{r}{q}$$

Pri množenju neenakosti s pozitivnim številom se znak neenakosti ohrani.

$$\frac{x}{y} < \frac{z}{w} \quad \land \quad \frac{r}{q} > 0 \quad \Rightarrow \quad \frac{x}{y} \cdot \frac{r}{q} < \frac{z}{w} \cdot \frac{r}{q}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

39 / 59

Jan Kastelic (GAA)

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{x}{y} < \frac{z}{w} \quad \Rightarrow \quad \frac{x}{y} + \frac{r}{q} < \frac{z}{w} + \frac{r}{q}$$

Pri množenju neenakosti s pozitivnim številom se znak neenakosti ohrani.

$$\frac{x}{y} < \frac{z}{w} \quad \land \quad \frac{r}{q} > 0 \quad \Rightarrow \quad \frac{x}{y} \cdot \frac{r}{q} < \frac{z}{w} \cdot \frac{r}{q}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{x}{y} < \frac{z}{w} \quad \land \quad \frac{r}{q} < 0 \quad \Rightarrow \quad \frac{x}{y} \cdot \frac{r}{q} > \frac{z}{w} \cdot \frac{r}{q}$$

Urejenost racionalnih števil

Kateri od ulomkov je večji?

1. januar 2025

Jan Kastelic (GAA)

Kateri od ulomkov je večji?

- $\frac{3}{7}$, $\frac{3}{8}$
- $\frac{7}{3}$, $\frac{8}{3}$
- $\frac{2}{5}$, $\frac{3}{10}$
- \bullet $\frac{1}{100}$, $\frac{1}{200}$

Urejenost racionalnih števil

Jan Kastelic (GAA) MATEMATIKA 1. januar 2025 41 / 59

Katero število je za
$$\frac{3}{5}$$
 večje od $\frac{2}{3}$?

41 / 59

Katero število je za $\frac{3}{5}$ večje od $\frac{2}{3}$?

Naloga

Katero število je za $\frac{1}{3}$ manjše od $\frac{7}{9}$?

1. januar 2025

Urejenost racionalnih števil

1. januar 2025

Ulomke uredite po velikosti od večjega k manjšemu.

42 / 59

Ulomke uredite po velikosti od večjega k manjšemu.

•
$$\frac{2}{5}$$
, $\frac{3}{10}$, $\frac{8}{9}$ in $\frac{7}{8}$

$$\bullet$$
 $-\frac{1}{2}$, $\frac{-1}{3}$, $\frac{-3}{4}$ in $\frac{2}{-5}$

42 / 59

Jan Kastelic (GAA) MATEMATIKA

Urejenost racionalnih števil

Jan Kastelic (GAA) MATEMATIKA 1. januar 2025 43 / 59

Ali obstajajo ulomki z imenovalcem 25, ki so med $\frac{4}{9}$ in $\frac{5}{9}$? Če obstajajo, jih zapišite.

1. januar 2025

Jan Kastelic (GAA) MATEMAT

Ali obstajajo ulomki z imenovalcem 25, ki so med $\frac{4}{9}$ in $\frac{5}{9}$? Če obstajajo, jih zapišite.

Naloga

Ali obstajajo ulomki z imenovalcem 100, ki so med $\frac{13}{53}$ in $\frac{14}{53}$? Če obstajajo, jih zapišite.

43 / 59

1. januar 2025

Jan Kastelic (GAA) MATEMATIKA

Naravna števila so enaka pozitivnim celim številom, torej so potence s pozitivnimi celimi eksponenti enake potencam z naravnimi eksponenti.

44 / 59

Naravna števila so enaka pozitivnim celim številom, torej so potence s pozitivnimi celimi eksponenti enake potencam z naravnimi eksponenti.

Potenca z eksponentom enakim 0 je definirana kot:

44 / 59

Naravna števila so enaka pozitivnim celim številom, torej so potence s pozitivnimi celimi eksponenti enake potencam z naravnimi eksponenti.

Potenca z eksponentom enakim 0 je definirana kot:

$$x^0 = \begin{cases} 1; & x \neq 0; \end{cases}$$

44 / 59

Naravna števila so enaka pozitivnim celim številom, torej so potence s pozitivnimi celimi eksponenti enake potencam z naravnimi eksponenti.

Potenca z eksponentom enakim 0 je definirana kot:

$$x^0 = \begin{cases} 1; & x \neq 0; \\ 0; & x = 0. \end{cases}$$

44 / 59

Naravna števila so enaka pozitivnim celim številom, torej so potence s pozitivnimi celimi eksponenti enake potencam z naravnimi eksponenti.

Potenca z eksponentom enakim 0 je definirana kot:

$$x^0 = \begin{cases} 1; & x \neq 0; \\ 0; & x = 0. \end{cases}$$

Potenca z negativnim celim eksponentom pa je definirana kot:

44 / 59

Naravna števila so enaka pozitivnim celim številom, torej so potence s pozitivnimi celimi eksponenti enake potencam z naravnimi eksponenti.

Potenca z eksponentom enakim 0 je definirana kot:

$$x^0 = \begin{cases} 1; & x \neq 0; \\ 0; & x = 0. \end{cases}$$

Potenca z negativnim celim eksponentom pa je definirana kot:

$$x^{-n} = \frac{1}{x^n}; \quad x \notin \{0\}, n \in \mathbb{N}.$$

Jan Kastelic (GAA)MATEMATIKA1. januar 202544/59

45 / 59

45 / 59

V spodaj zapisanih pravilih upoštevamo realni osnovi $x,y\in\mathbb{R}$ in cele eksponente $m,n\in\mathbb{Z}$.

45 / 59

V spodaj zapisanih pravilih upoštevamo realni osnovi $x,y\in\mathbb{R}$ in cele eksponente $m,n\in\mathbb{Z}$.

$$x^n \cdot x^m = x^{n+m}$$

45 / 59

V spodaj zapisanih pravilih upoštevamo realni osnovi $x, y \in \mathbb{R}$ in cele eksponente $m, n \in \mathbb{Z}$.

- $x^n \cdot x^m = x^{n+m}$
- $x^n \cdot y^n = (xy)^n$

45 / 59

V spodaj zapisanih pravilih upoštevamo realni osnovi $x,y\in\mathbb{R}$ in cele eksponente $m,n\in\mathbb{Z}.$

- $x^n \cdot x^m = x^{n+m}$
- $x^n \cdot y^n = (xy)^n$
- $(x^n)^m = x^{nm}$

45 / 59

V spodaj zapisanih pravilih upoštevamo realni osnovi $x,y\in\mathbb{R}$ in cele eksponente $m,n\in\mathbb{Z}.$

- $x^n \cdot x^m = x^{n+m}$
- $x^n \cdot y^n = (xy)^n$
- $(x^n)^m = x^{nm}$
- $x^n : x^m = \frac{x^n}{x^m} = x^{n-m}$

45 / 59

V spodaj zapisanih pravilih upoštevamo realni osnovi $x, y \in \mathbb{R}$ in cele eksponente $m, n \in \mathbb{Z}$.

- $x^n \cdot x^m = x^{n+m}$
- $x^n \cdot y^n = (xy)^n$
- $(x^n)^m = x^{nm}$
- $x^n : x^m = \frac{x^n}{x^m} = x^{n-m}$
- $x^n: y^n = \frac{x^n}{y^n} = \left(\frac{x}{y}\right)^n; \quad y \neq 0$

45 / 59

Potence s celimi eksponenti

Jan Kastelic (GAA)

Poenostavite.

Poenostavite.

•
$$x^{10}: x^5$$

•
$$b^4 : b^{-11}$$

•
$$y^{-3}: y^2$$

Potence s celimi eksponenti

Poenostavite.

Poenostavite.

$$\bullet \ \frac{2^{10}a^4b^{-4}}{2^{-2}a^{-2}b}$$

$$\bullet \ \frac{3^{10}x^{-12}y^{-20}}{6^{10}x^2y^{-3}}$$

Potence s celimi eksponenti

Poenostavite.

Poenostavite.

$$\bullet \left(\frac{-2^5 a^{-4} b^3}{2^{-2} a b^{-2}}\right)^2 : \left(-\frac{a^2 b^4}{2^3 a^{-2}}\right)^3$$

$$\bullet \left(\frac{-3^4 x^{-2} y^3}{x^3 z^2}\right)^{-4} \cdot \left(\frac{3^5 x^2 z^{-2}}{y^{-3}}\right)^3$$

$$\bullet \ -\frac{5^5 a^4 b^{-3}}{a^{-3} b^2} : \left(-\frac{5^2 a^{-2} b}{a^2}\right)^2$$

1. ianuar 2025

Jan Kastelic (GAA)

Potence s celimi eksponenti

Poenostavite.

Poenostavite.

$$\bullet \ \frac{x^{-2} + x^{-1}}{x^{-3} + x^{-2}}$$

$$\bullet \ \frac{x^{-1} + x^{-2} + x^{-3}}{x^{-4} - x^{-1}}$$

$$\frac{1+x^{-2}}{x^{-4}-1}$$

$$\bullet \ \frac{x^{-2} + x^{-3}}{x^{-3} - x^{-2}}$$

Potence s celimi eksponenti

Poenostavite.

Poenostavite.

$$\bullet \ \frac{3^{n+2}-2\cdot 3^{n-1}}{3^{n-2}+3^n}$$

$$\frac{5^{2n} + 5^{2n-1} - 2 \cdot 5^{2n+1}}{25^n}$$

$$\bullet \frac{7^{3n-3} + 3 \cdot 7^{3n-2} - 7^{3n-4}}{7^{3n-2} - 7^{3n-1}}$$

$$\bullet \ \frac{2^{n-1}+3\cdot 2^n}{4^n+5\cdot 2^{2n-1}}$$

Potence s celimi eksponenti

Napišite brez negativnih eksponentov.

1. januar 2025

Jan Kastelic (GAA)

Napišite brez negativnih eksponentov.

•
$$x^{-1} + 2x^{-2}$$

•
$$1 - x^{-1} - x^{-2}$$

•
$$\frac{1}{x^{-1}} + x^{-1}$$

$$\bullet \left(\frac{\frac{2}{x^{-2}}}{(x^{-2})^{-1}}\right)^{-1}$$

51/59

Potence s celimi eksponenti

Poenostavite.

Poenostavite.

•
$$(x-x^{-1})\cdot(x^2-1)^{-1}$$

$$\bullet \ \frac{x^{-2} + x^{-1}}{x^{-2} - x^{-1}} - (1 - x)^{-1}$$

$$\bullet \left(\frac{x^{-3}-x^{-1}}{1-x^{-2}}\right)^{-1} + \left(\frac{1}{x}\right)^{-1}$$

$$(x^{-2}-2x^{-1}+1)^{-1}-(x-1)^{-2}$$

1. januar 2025

Jan Kastelic (GAA)

Vsako racionalno število lahko zapišemo na dva načina:

53 / 59

Vsako racionalno število lahko zapišemo na dva načina:

• z ulomkom in

53 / 59

Vsako racionalno število lahko zapišemo na dva načina:

- z ulomkom in
- z decimalnim zapisom.

53 / 59

Vsako racionalno število lahko zapišemo na dva načina:

- z ulomkom in
- z decimalnim zapisom.

Decimalni zapis sestavljajo tri komponente:

53 / 59

Vsako racionalno število lahko zapišemo na dva načina:

- z ulomkom in
- z decimalnim zapisom.

Decimalni zapis sestavljajo tri komponente:

• celi del,

53 / 59

Vsako racionalno število lahko zapišemo na dva načina:

- z ulomkom in
- z decimalnim zapisom.

Decimalni zapis sestavljajo tri komponente:

- celi del,
- decimalna pika oziroma decimalna vejica in

53 / 59

Vsako racionalno število lahko zapišemo na dva načina:

- z ulomkom in
- z decimalnim zapisom.

Decimalni zapis sestavljajo tri komponente:

- celi del,
- decimalna pika oziroma decimalna vejica in
- ulomljeni del.

53 / 59

Vsako racionalno število lahko zapišemo na dva načina:

- z ulomkom in
- z decimalnim zapisom.

Decimalni zapis sestavljajo tri komponente:

- celi del.
- decimalna pika oziroma decimalna vejica in
- ulomljeni del.

Decimalni zapis racionalnega števila (zapisanega z ulomkom) dobimo tako, da števec ulomka delimo z njegovim imenovalcem.

Jan Kastelic (GAA) MATEMATIKA

1. januar 2025

Jan Kastelic (GAA)

Končen decimalni zapis dobimo pri desetiških/decimalnih ulomkih.

54 / 59

Končen decimalni zapis dobimo pri desetiških/decimalnih ulomkih.

To so ulomki, katerih imenovalec se lahko razširi na potenco števila 10, takšni imenovalci so oblike $2^n \cdot 5^m$.

54 / 59

Končen decimalni zapis dobimo pri desetiških/decimalnih ulomkih.

To so ulomki, katerih imenovalec se lahko razširi na potenco števila 10, takšni imenovalci so oblike $2^n \cdot 5^m$.

Neskončen periodičen decimalni zapis

54 / 59

Končen decimalni zapis dobimo pri desetiških/decimalnih ulomkih.

To so ulomki, katerih imenovalec se lahko razširi na potenco števila 10, takšni imenovalci so oblike $2^n \cdot 5^m$.

Neskončen periodičen decimalni zapis

Neskončen periodičen decimalni zapis dobimo pri nedesetiških/nedecimalnih ulomkih.

54 / 59

Končen decimalni zapis dobimo pri desetiških/decimalnih ulomkih.

To so ulomki, katerih imenovalec se lahko razširi na potenco števila 10, takšni imenovalci so oblike $2^n \cdot 5^m$.

Neskončen periodičen decimalni zapis

Neskončen periodičen decimalni zapis dobimo pri nedesetiških/nedecimalnih ulomkih.

To so ulomki, katerih imenovalca ne moremo razširiti na potenco števila 10.

54 / 59

Jan Kastelic (GAA)MATEMATIKA1. januar 2025

Končen decimalni zapis dobimo pri desetiških/decimalnih ulomkih.

To so ulomki, katerih imenovalec se lahko razširi na potenco števila 10, takšni imenovalci so oblike $2^n \cdot 5^m$.

Neskončen periodičen decimalni zapis

Neskončen periodičen decimalni zapis dobimo pri nedesetiških/nedecimalnih ulomkih.

To so ulomki, katerih imenovalca ne moremo razširiti na potenco števila 10.

Najmanjšo skupino števk, ki se pri neskončnem periodičnem decimalnem zapisu ponavlja, imenujemo **perioda**.

54 / 59

Jan Kastelic (GAA) MATEMATIKA 1. januar 2025

Končen decimalni zapis dobimo pri desetiških/decimalnih ulomkih.

To so ulomki, katerih imenovalec se lahko razširi na potenco števila 10, takšni imenovalci so oblike $2^n \cdot 5^m$.

Neskončen periodičen decimalni zapis

Neskončen periodičen decimalni zapis dobimo pri nedesetiških/nedecimalnih ulomkih.

To so ulomki, katerih imenovalca ne moremo razširiti na potenco števila 10.

Najmanjšo skupino števk, ki se pri neskončnem periodičnem decimalnem zapisu ponavlja, imenujemo **perioda**.

Označujemo jo s črtico nad to skupino števk.

54 / 59

Jan Kastelic (GAA) MATEMATIKA 1. januar 2025

Končen decimalni zapis dobimo pri desetiških/decimalnih ulomkih.

To so ulomki, katerih imenovalec se lahko razširi na potenco števila 10, takšni imenovalci so oblike $2^n \cdot 5^m$.

Neskončen periodičen decimalni zapis

Neskončen periodičen decimalni zapis dobimo pri nedesetiških/nedecimalnih ulomkih.

To so ulomki, katerih imenovalca ne moremo razširiti na potenco števila 10.

Najmanjšo skupino števk, ki se pri neskončnem periodičnem decimalnem zapisu ponavlja, imenujemo **perioda**.

Označujemo jo s črtico nad to skupino števk.

Glede na število števk, ki v njej nastopajo, določimo njen red.

55 / 59

Zapišite z decimalnim zapisom.

Zapišite z decimalnim zapisom.

- $\frac{3}{8}$
- $\frac{2}{125}$
- $\frac{6}{25}$
- $\frac{5}{6}$

• $\frac{4}{9}$

- \bullet $\frac{4}{15}$
- \bullet $\frac{1}{7}$
- $\frac{11}{13}$

Jan Kastelic (GAA) MATEMATIKA 1. januar 2025 56 / 59

Periodično decimalno število zapišite z okrajšanim ulomkom.

Periodično decimalno število zapišite z okrajšanim ulomkom.

- 0.24
- 0.9
- 1.√2
- 1.03̄
- 1.00√12

57 / 59

Jan Kastelic (GAA) MATEMATIKA 1. januar 2025

Izračunajte.

Izračunajte.

•
$$11.3 + 2.35$$

$$\bullet$$
 0.94 + 0.24

•
$$5.6 - 2.9$$

$$0.2 - 1.25$$

•
$$12.5 - 20.61$$

Izračunajte.

Izračunajte.

 $0.1 \cdot 2.44$

1.2 ⋅ 0.4

• 11 · 0.002

 \bullet 0.5 · 0.04

• 0.3:5

• 12.5 : 0.05

• 2:0.02

• 0.15:0.3

Izračunajte.

Izračunajte.

$$\bullet$$
 (0.24 + 0.06): 5 - 1.2

•
$$12:(1.2-0.2\cdot3)+1.2$$

$$(2-0.3:(0.025+0.035)) \cdot 0.11$$

$$\bullet$$
 $(1-0.2:(0.03+0.02)) \cdot 1.5$

$$\bullet$$
 0.3 · (1.2 - 0.6 · (0.04 + 0.06))

59 / 59

Jan Kastelic (GAA) MATEMATIKA 1. januar 2025