Supporting Information

MassChemSite for in-depth forced degradation analysis of PARP inhibitors olaparib, rucaparib, and niraparib.

Stefano Bonciarelli, [±] Jenny Desantis, [±] Simone Cerquiglini [±] and Laura Goracci *±

[±] Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia

Table of contents

Manual MS/MS spectra characterization of rucaparib DPs	S3
Supporting Figures	S4
Figure S1 – Chromatogram of forced basic degradation of olaparib	S4
Figure S2 – MoKa prediction of pKa value of olaparib	S5
Figure S3 – Degradation products of rucaparib reported in literature	S6
Figure S4 – Trend of UV signals in rucaparib and niraparib stress tests	S7
Figure S5 – Chromatogram of forced oxidative degradation of rucaparib	S8
Figure S6 – Extracted ion chromatogram at <i>m/z</i> 356.1405	S9
Figure S7 – Trend of MS and UV signals of Imp-C	S10
Figure S8 – MS/MS spectrum of Imp-C and fragment ions interpretation	S11
Supporting Tables	S12
Table S1 – Collection of olaparib degradation studies reported in literature	S12
Table S2 – IUPAC names and mass error of identified DPs	S13
Table S3 – Static dielectric constants of ACN:H ₂ O mixtures at 60°C	S14
Table S4 – Collection of rucaparib degradation studies reported in literature	S15
Table S5 – Summary of substrates degradation and extend of DPs formation	S16
Table S6 – MCS setting.	S17
Table S7 – MCS setting reactions.	S18

MANUAL MS/MS SPECTRA CHARACTERIZATION OF RUCAPARIB DPs

DP-R3 and DP-R3'

The fragmentation pattern characterization of **DP-R3** and **DP-R3**' included the product ions at m/z 325.0978 (loss of CH₃NH₂ from [M + H]⁺), at m/z 308.0717 (loss of NH₃ from m/z 325.0978), at m/z 296.0706 (loss of CH₂NH from m/z 325.0978), at m/z 280.0742 (loss of CH₃NO from m/z 325.0978), at m/z 268.0755 (loss of CO from m/z 296.0706), at m/z 254.0608 (loss of CH₂ from m/z 268.0775), at m/z 236.0505 (loss of H₂O from m/z 254.0608), at m/z 226.0659 (loss of CO from m/z 254.0608), at 208.0554 (loss of H₂O from m/z 226.0659), at m/z 118.0414 (C₈H₆O *+) and at m/z 90.0465 (C₇H₆*+).

DP-R4

The fragmentation pattern characterization of **DP-R4** included the product ions at m/z 341.0925 (loss of CH₃NH₂ from [M + H]⁺), at 308.0954 (radical loss of OOH from m/z 341.0925), at m/z 279.0691 (loss of CH₂NH from m/z 308.0954), at m/z 253.0530 (loss of C₂H₂ from m/z 279.0691), at m/z 225.0582 (loss of CO from m/z 253.0530), at m/z 118.0414 (C₈H₆O *+) and at m/z 90.0467 (C₇H₆ *+).

DP-R2 and DP-R2'

The fragmentation pattern characterization of **DP-R2** and **DP-R2**' included the product ions at m/z 325.0982 (neutral loss of CH₃NH₂ from [M + H]⁺), at m/z 308.0952 (radical loss of OH from m/z 325.0982), at m/z 292.1005 (radical loss of OOH from m/z 325.0982), at 279.0690 (radical loss of OH plus loss of CH₂NH from m/z 325.0982), at m/z 263.0739 (loss of CH₃NO from m/z 308.0952), at m/z 249.0943 (loss of (O₂-2H) from m/z 279.0690), at m/z 235.0792 (loss of CO from m/z 263.0739) and at m/z 90.0465 (C₇H₆*+).

DP-R1

The fragmentation pattern characterization of **DP-R1** included the product ions at m/z 309.1035 (due to loss of CH₃NH₂ from [M + H]⁺) and at m/z 280.0774 (loss of CH₂NH from m/z 309.1035), at m/z 252.0791 (loss CO from m/z 280.0774), at m/z 224.0872 (loss CO from m/z 252.0791), at m/z 203.0596 (C₁₁H₈FN₂O⁺), at m/z 165.0585 (C₉H₈FNO⁺⁺) and at m/z 91.0541 (C₇H₇⁺).

Figure S1. Chromatogram of basic forced degradation (1 M NaOH, 60°C) of olaparib acquired after 270 min of the reaction. **DP-O1** detected at 6.23 min, **DP-O2** at 4.25 min, and olaparib (OLA) at 6.89 min. Image from MassChemSite.

Figure S2. Prediction of the pKa value of olaparib provided by MoKa 37 .

Figure S3. Structure of the degradation products (DPs) of rucaparib reported in Palakeeti et al.²⁴

Figure S4. Trend of rucaparib, rucaparib DPs and niraparib under the studied stress conditions. Plot of UV area % *vs* time for (1) basic hydrolysis (1M NaOH, 60 °C) of rucaparib (a) and niraparib (d); (2) acidic hydrolysis (1M HCl, 60 °C), of rucaparib (b) and niraparib (e); and (3) oxidative degradation (15% H₂O₂, 60 °C) of rucaparib (c) and niraparib (f). Rucaparib (purple), **DP-R1** (violet), **DP-R2** (light green), **DP-R2** (dark green), **DP-R3** (cyan), **DP-R3** (blue), **DP-R4** (orange) and niraparib (blue). All the compounds are detected as [M + H]⁺; UV signal is extracted at 254 nm. Data analysis was performed with MCS (version 3.1). Plots prepared with GraphPad Prism (version 8.4.3).

Figure S5. Chromatogram of oxidative forced degradation of rucaparib acquired after 60 min of the reaction (15% H₂O₂, 60 °C). **DP-R1** detected at 7.20 min, **DP-R2** at 7.40 min, **DP-R2**' at 7.33 min, **DP-R3** at 6.90 min, **DP-R3**' at 6.80 min, **DP-R4** at 8.48 min, **Imp-C** at 9.86 min and, rucaparib (RUC) at 9.16 min. Image from MassChemSite.

Figure S6. a) Extracted ion chromatogram (EIC) at m/z (356.1405 ± 5 ppm); chromatogram peaks of **DP-R2** (RT = 7.40 min) and **DP-R2'** (RT = 7.33 min) are highlighted in green while peaks related to **DP-R3** (RT = 6.90 min) and **DP-R3'** (RT = 6.80 min) are showed in blue. b) Peak detection of **DP-R2** (P25), **DP-R2'** (P23), **DP-R3** (P22) and **DP-R3'** (P20) performed by MCS software.

Figure S7. Trend of MS area % (a) and UV area % vs time (b) of rucaparib (purple) and **Imp-C** (orange) observed under the oxidative stress conditions (15% H_2O_2 , 60 °C). All the compounds are detected as $[M + H]^+$; UV signal is extracted at 254 nm. Data analysis was performed with MCS (version 3.1). Plots prepared with GraphPad Prism (version 8.4.3).

Figure S8. a) MS/MS spectrum of Imp-C (m/z 309.1039, RT = 9.86 min) analyzed by MCS. Representation of the main fragmentations identified by the software are reported (top-left). *Fragment ions identified by manual investigation. b) Structures of fragment ions of Imp-C identified.

Table S1. Degradation conditions used for olaparib degradation studies and detected DPs previously reported in literature.

Reference	Basic	Acidic	Neutral	Oxidative	Dry Heat	Photolytic
Thummar et al. ²⁰	1 mg/mL of drug stock solution - 0.2 M NaOH at 70°C for 10 h. (DP-O1 and DP- O2)	1 mg/mL of drug stock solution - 1M HCl at 70°C for 4 h. (DP-O1 and DP- O2)	1 mg/mL of drug stock solution - water at 70°C for 7 days. (NDP)	1 mg/mL of drug stock solution - 15% w/v H ₂ O ₂ for 120 h, rt. (DP-O3 and DP-O4)	solid drug (1 mm thickness layer) at 85 °C for 7 days. (NDP)	drug in solid state and solution state (1 mg/mL) - Up to 200 W h/m ² UV light and up to 1.2 million lux hr (vis). (NDP)
Kallepalli et al. ²¹	1 mg/mL of drug stock solution - 1M NaOH at 80°C for 1 h (NDP)	1 mg/mL of drug stock solution -1M HCl at 80°C for 1h (DP-O1 and DP-O2)	(NS)	1 mg/mL of drug stock solution - 30% H ₂ O ₂ at 80°C for 1 h (DP-OX m/z 367)	(NS)	(NS)
Khedr et al. ²²	0.666 mg/mL of drug solution - 0.33 M NaOH at 60°C for 30 min, capped. (DP-O1 and DP-O2)	0.666 mg/mL of drug solution - 0.33 M HCl at 60°C for 30 min, capped. (NDP)	0.500 mg/mL of drug solution ACN:H ₂ O (1:1, v:v %) at 95°C for 30 min, capped. (NDP)	0.500 mg/mL of drug solution - 15% H ₂ O ₂ w/w at 60°C for 30 min, capped. (NDP)	(NS)	0.1 mm thickness layer of powder drug subjected to UV irradiation from a distance of 5 cm for 24 h. (DP-O1 and DP-O2)
Kavitapu et al. ²³	20 mg/mL of drug solution - 1 M NaOH at 60°C for 20 h, capped. (DP-O1, DP-O2 and DP-O5)	20 mg/mL of drug solution - 1 M HCl at 60°C for 20 h, capped (DP-O1, DP-O2 and DP-O5)	(NS)	20 mg/mL of drug solution - 30% H ₂ O ₂ at rt for 25 h, capped under dark. (NDP)	drug in both solid and solution state form at 80°C for 48 h. (NDP)	Up to 200 W h/m ² UV light and up to 1.2 million lux hr (vis). On solid and solution of ola. (NDP)

^{*(}NDP): no degradants observed; (NS): no-studied condition; rt: room temperature; **DP-Os**: olaparib degradation products.

	IUPAC name	ppm mass error
DP-O1		**
	2-fluoro-5-((4-oxo-3,4-dihydrophthalazin-1-yl)methyl) benzoic acid	2.34 ppm
DP-O2	4-(4-fluoro-3-(piperazin-1-carbonyl)benzyl)phthalazin-1(2 <i>H</i>)-one	2.99 ppm
DP-O4	4-(3-(4-(cyclopropancarbonyl)-1,2,3,4-tetrahydropyrazine-1-carbonyl)-4-fluorobenzyl)phthalazine-	2.54 ppm
DD D4	1(2H)-one	1.10
DP-R1	Proposed by MCS:	-1.18 ppm
	8-fluoro-3-hydroxy-2-(4-((methylamino)methyl)phenyl)-4,5-dihydro-1 <i>H</i> -azepino[5,4,3- <i>cd</i>]indol-	
	6(3 <i>H</i>)-one	
	Proposed by manual inspection:	
	7-hydroxy- or 9-hydroxy- 8-fluoro-2-(4-((methylamino)methyl)phenyl)-4,5-dihydro-1 <i>H</i> -azepino[5,4,3-	
	cd]indol-6(3H)-one	
DP-R2 and	Proposed by MCS:	-0.28 ppm
DP-R2'	8-fluoro-2-(4-(dihydroxy(methylamino)methyl)phenyl)-4,5-dihydro-1 <i>H</i> -azepino[5,4,3- <i>cd</i>]indol-6(3 <i>H</i>)-	
	one	
	Proposed by manual inspection:	
	8-fluoro-9-hydroxy-2-(4-(hydroxy(methylamino)methyl)phenyl)-4,5-dihydro-1 <i>H</i> -azepino[5,4,3-	
	cd]indol-6(3H)-one and 8-fluoro-7-hydroxy-2-(4-(hydroxy(methylamino)methyl)phenyl)-4,5-dihydro-	
	1 <i>H</i> -azepino[5,4,3- <i>cd</i>]indol-6(3 <i>H</i>)-one	
DP-R3 and	Proposed by MCS:	0 ppm
DP-R3'	7-hydroxy-8-fluoro-2-(4-(hydroxy(methylamino)methyl)phenyl)-4,5-dihydro-1 <i>H</i> -azepino[5,4,3-	Оррш
D1 10	cd]indol-6(3H)-one	
	and	
	9-hydroxy-8-fluoro-2-(4-(hydroxy(methylamino)methyl)phenyl)-4,5-dihydro-1 <i>H</i> -azepino[5,4,3-	
	cd]indol-6(3H)-one	
	Proposed by manual inspection:	
	8-fluoro-3,9-dihydroxy-2-(4-((methylamino)methyl)phenyl)-4,5-dihydro-1 <i>H</i> -azepino[5,4,3- <i>cd</i>]indol-	
	6(3 <i>H</i>)-one and 8-fluoro-3,7-dihydroxy-2-(4-((methylamino)methyl)phenyl)-4,5-dihydro-1 <i>H</i> -	
	azepino[5,4,3-cd]indol-6(3H)-one	
DP-R4	Proposed by MCS:	0 ppm
	8-fluoro-7,9-dihydroxy-2-(4-(hydroxy(methylamino)methyl)phenyl)-4,5-dihydro-1 <i>H</i> -azepino[5,4,3-	
	cd]indol-6(3H)-one	
	Proposed by manual inspection:	
	8-fluoro-3,7,9-trihydroxy-2-(4-((methylamino)methyl)phenyl)-4,5-dihydro-1 <i>H</i> -azepino[5,4,3- <i>cd</i>]indol-	
	6(3 <i>H</i>)-one	
Rucaparib	4-(8-fluoro-6-oxo-3,4,5,6-tetrahydro-1 <i>H</i> -azepino[5,4,3- <i>cd</i>]indol-2-yl)benzaldehyde	1.62 ppm
Imp-C		

Table S3. Literature data of static dielectric constant of ACN:H₂O mixtures at 60 °C.⁴⁰

Acetonitrile % v:v	$arepsilon_r$
25.0	59.78
12.5	63.81
0	66.82

40. Gagliardi, L. G.; Castells, C. B.; Ràfols, C.; Rosés, M.; Bosch, E., Static Dielectric Constants of Acetonitrile/Water Mixtures at Different Temperatures and Debye–Hückel A and a0B Parameters for Activity Coefficients. *Journal of Chemical & Engineering Data* **2007**, *52* (3), 1103-1107.

Table S4. Degradation conditions used for rucaparib degradation studies and detected DPs previously reported in literature.

Article	Basic	Acidic	Neutral	Oxidative	Dry Heat	Photolytic	Thermal
Palakeeti et al.	1 M NaOH at rt for 42 h. (Imp-B)	0.1M HCl at rt for 24 h. (Degr-Imp-A1) (Degr-Imp-A2)	(NS)	1% H ₂ O ₂ for 24 h, rt. (Degr-Imp-O) (Imp-C)	solid drug, 105 °C for 10 days. (NDP)	1.2 million lux hr (vis) on a thin layer of drug for 11 days. (NDP)	(NS)
Suchitra et al.	0.500 mg/mL rucaparib solution - 1M NaOH at 60°C for 30 min. (NSE)	0.500 mg/mL rucaparib solution - 1M HCl at 60°C for 30 min. (NSE)	(NS)	0.500 mg/mL rucaparib solution - 10% H ₂ O ₂ at 60°C for 30 min. (NSE)	(NS)	1 mg/mL RUC stock solution, UV-vis light for 1 day. (NSE)	1 mg/mL RUC stock solution, 60°C for 6 h (NSE)

^{*(}NS):no-studied condition; (NDP): no degradants observed; (NSE): no structure elucidation; Imp-B: rucaparib impurity found after basic forced degradation; Dergr-Imp-A1 and Degr-Imp-A2: rucaparib DPs formed in acidic forced degradation; Degr-Imp-O: rucaparib DPs formed in oxidative forced degradation; Imp-C: rucaparib impurity found after oxidative forced degradation.

Table S5. Collection of Area % values of olaparib, rucaparib, niraparib and corresponding DPs in the forced conditions studied.

Compound	RT (min)	B_MS area	B_UV area	A_MS area %	A_UV area %	N_MS area %	N_UV area %	O_MS area %	O_UV area %
Olaparib	6.89	100.0 - 47.2 (*) 100.0 - 24.4 (**) 100.0 - 0.7 (***)	100.0 - 56.2 (*) 100.0 - 18.3 (**) 100.0 - 1.0 (***)	100.0 - 99.7	100.0 - 101.2	100.0 - 102.0	100.0 - 103.3	100.0 - 101.1	100.0 - 99.9
DP-O1	6.23	0.0 - 10.4 (*) 0.0 - 13.1 (**) 0.0 - 25.9 (***)	0.0 - 32.4 (*) 0.0 - 34.3 (**) 0.0 - 75.0 (***)	(ND)	(ND)	(ND)	(ND)	(ND)	(ND)
DP-O2	4.25	0.0 - 94.7 (*) 0.8 - 78.5 (**) 1.2 - 65.7 (***)	0.0 - 51.2 (*) 0.5 - 40.7 (**) 0.8 - 37.9 (***)	0.0 - 19.6	0.0 - 6.8	(ND)	(ND)	(ND)	(ND)
DP-O4	6.62	(ND)	(ND)	(ND)	(ND)	(ND)	(ND)	0.4 - 1.1	0.5 - 1.4
Rucaparib	9.16	100.0 - 100.9	100.0 - 85.5	100.0 - 84.0	100.0 - 83.7	(NS)	(NS)	100.0 - 0.0	100.0 - 0.0
DP-R1	7.21	(ND)	(ND)	(ND)	(ND)	(NS)	(NS)	29.0 - 0.0	5.1 - 0.0
DP-R2	7.40	(ND)	(ND)	(ND)	(ND)	(NS)	(NS)	2.2 - 26.6	0.6 - 4.9
DP-R2'	7.33	(ND)	(ND)	(ND)	(ND)	(NS)	(NS)	0.0 - 0.0	0.0 - 0.0
DP-R3	6.90	(ND)	(ND)	(ND)	(ND)	(NS)	(NS)	7.0 - 106.8	0.6 - 0.8
DP-R3'	6.80	(ND)	(ND)	(ND)	(ND)	(NS)	(NS)	0.0 - 60.4	0.0 - 0.5
DP-R4	8.48	(ND)	(ND)	(ND)	(ND)	(NS)	(NS)	0.0 - 88.5	0.0 - 5.6
Niraparib	5.49	100.0 - 115.6	100.0 - 120.6	100.0 - 87.8	100.0 - 92.8	(NS)	(NS)	100.0 - 90.6	100.0 - 85.4

Values of MS area % and UV area % of the reported compounds at the beginning and at the final time of reactions. B: basic degradation; A: acidic degradation; N: neutral degradation; O: oxidative degradation; (*): values referred to the reaction performed in ACN: H_2O (25:75, v:v %); (***): values referred to the reaction performed in ACN: H_2O (12.5:87.5, v:v %); (***): values referred to the reaction performed in H_2O . (ND): compound not detected in the specified condition; (NS): condition not studied. The reported values are the merge of three independent replicates.

	Site settings used in the present work.	T		
Setting type	Setting name	Value		
General	Mass Spectrometer	Agilent Q-TOF (all)		
	Acquisition mode	Auto MS/MS DDS (all)		
	Use retention time range (min)	None (all)		
	Internal Standard	None (all)		
	AutoSelect structures	True (all)		
	Discard Structures with score below	0 (all)		
	Exclude products without formula	False (all)		
	Exclude products having an absolute m/z diff (ppm) above	False (all)		
Analog Signals	Use UV peak area. Threshold (%)	0.20 (all)		
	Use preset UV wavelength (nm)	254 (all)		
	Wavelength selection method	None (all)		
	Retention time delay (min)	Automatic (all)		
	Radiolabeled	False (all)		
	Fluorescence	False (all)		
Products Generation	Minimum mass	50 (all)		
	Ignore products stereochemistry	True (all)		
	Ignore redundant products	True (all)		
	MIM (%)	30 (all)		
	Reactions	See Table S7		
	Number of product generations	2 (O, N); 3 (R)		
	Use constrained depiction	False (all)		
Peak detection	Use maximum product count. Limit:	False (all)		
	Area threshold	0.50 (%) 0 (absolute) (all)		
	Peak detection smoothing	MEDIUM (O, N); NONE (R)		
	Split computed peaks	False (all)		
	Rescue computed peaks	False (all)		
	Isotopes	MonoIsotopic Mass (MiM) (all)		
	Filtering	Skip		
	Adducts	None (all)		
	Neutral Losses	False (all)		
	Multiple-Charge Ions	True, max $z = 2$ (all)		
	Dimeric Ions	False (all)		
	Unexpected Products	True (all)		
	Sum Areas	False (all)		
Product Id		-		
Product Id	Reactant bond breaking limit	3 (O, N); 4 (R)		
	Break products limit	2 (O, N); 3 (R)		
	Exclude fragments having an absolute m/z diff (ppm) above:	10 ppm (all)		
	Break 6-membered heteroaromatic rings	False (all) False (all)		
	Oxidation during MS/MS			
	Bond breaking organizations	Even Electron, Odd Electron, N-Oxide (only MS) (all)		
	Bond breaking experimental reorganizations	False (all)		
MS Options	Same peak tolerance (amu)	0.010 (all)		
· - r · - · ·	Chromatogram automatic filtering threshold	0.010 (all)		
	MS automatic filtering threshold	0.97 (all)		
	MS/MS automatic filtering threshold	0.95 (all)		
	Ionization Mode	` '		
	Spectra comparisons	Positive (all) 2 (all)		
	Signal Filtering	Automatic (all)		
	Scan Filtering Scan Filtering	Automatic (all)		
	Saturation	False (all)		
	Saturation	1 4150 (411)		

The differences between olaparib, rucaparib and niraparib are annotated with O, R and N, respectively. "all" is used when the specified setting is the same for the three drugs.

Compd	Reaction name	MCS representation
olaparib	Amide (II) hydrolysis	O O H
		$\begin{array}{c} O \\ R_1 \\ N \end{array} H \longrightarrow \begin{array}{c} O \\ R_1 \\ OH \end{array} + \begin{array}{c} H \\ R_2 \\ N \\ H \end{array}$
		R ₂
		R ₁ =Carbon R ₂ =Carbon
	Amide (III) hydrolysis	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	1 ()	$\downarrow R_2 \longrightarrow \downarrow + N$
		R_1 N R_2 R_3 R_4 R_2 R_4
		R_2
	N 11 C (1)	R ₁ =Carbon, R ₂ =Carbon, R ₃ =Carbon
	<i>N</i> -oxide formation (1)	N N+
		$R_1 \stackrel{N_{\stackrel{\circ}{\sim}}}{\longrightarrow} R_1 \stackrel{N_{\stackrel{\circ}{\sim}}}{\longrightarrow} R_2$
		R ₁ =Nitrogen, R ₂ =Carbon
	<i>N</i> -oxide formation (2)	$ \begin{array}{cccc} O & OH \\ R_1 & N_1^-H & \longrightarrow & R_1 & N_1^+O^- \\ R_2 & R_2 & R_2 \end{array} $
		$ R_1 \wedge H \longrightarrow R_1 \wedge N^+O$
		R_2 R_2
		R ₁ =Carbon, R ₂ =Nitrogen/sp2
	Dehydrogenation	$R_1 = Carbon, R_2 = Nitrogen/sp2$ $R_1 \longrightarrow R_2 \longrightarrow R_2$
		R ₁ =Nitrogen, R ₂ =Nitrogen
	Hydroxylation	R_1 =Nitrogen, R_2 =Nitrogen R_1 H R_1 OH
		R ₁ =Carbon
rucaparib	Amine (II) demethylation	H
		R_1 $\stackrel{N}{\longrightarrow}$ R_1 NH_2
	Amide (II) hydrolysis	R ₁ =Carbon/sp3 O O H
	1 () ()	$\begin{array}{c} O \\ R_1 \\ N \end{array} H \longrightarrow \begin{array}{c} O \\ R_1 \\ OH \end{array} + \begin{array}{c} H \\ R_2 \\ N \\ H \end{array}$
		R ₂
	<i>N</i> -oxide formation	R ₁ =Carbon, R ₂ =Carbon
	iv-oxide formation	$R_1 \stackrel{N_1}{\longrightarrow} R_2 \xrightarrow{\qquad \qquad } R_1 \stackrel{O^-}{\stackrel{N_2}{\longrightarrow}} R_2$
		$R_1 \stackrel{\sim}{\sim} R_2 \qquad R_1 \stackrel{\sim}{\sim} R_2$
		$\begin{array}{ccc} R_1 = Nitrogen, & R_2 = Carbon \\ R_1 & & & R_1 & OH \end{array}$
	Hydroxylation	
		R ₁ =Carbon
	Degradation Imp-A2 formation	
		$\left \begin{array}{c} \overrightarrow{R_1} \end{array}\right\rangle \longrightarrow \left \begin{array}{c} \overrightarrow{R_1} \end{array}\right\rangle$
		R_2 R_2
		R ₁ =Carbon/sp2, R ₁ =Carbon/sp2
	Imp-C formation	O
		$R_1 \stackrel{\wedge}{\longrightarrow} R_1 \stackrel{\downarrow}{\longrightarrow} H$
		R ₁ =Carbon/sp2
niraparib	Amide (I) hydrolysis	O O R ₃
		R_1 N R_3 R_1 OH R_2 H
		RCarbon RHydrogen PHydrogen
	Hydroxylation	$\begin{array}{ccc} R_1 = Carbon, R_2 = Hydrogen, R_3 = Hydrogen \\ & & & & & \\ R_1 & & & & & \\ \end{array}$
	Trydroxymuon	
		R ₁ =Carbon