Lecture 38, Nov. 18

Cryptography

38.1 Example. Alice and Bob agrees on a permutation of alphabet, for example

- 1. $A \rightarrow Z$
- 2. $B \rightarrow Y$
- 38.2 Definition (Symmetric-Key Cryptosystem).

M = set of messages

C = set of cipher text

K = set of keys

 $E:K\times M\to C$

 $D: K \times C \rightarrow M$

D(K, E(K, M)) = M where E(K, M) = C

38.3 Definition (Advanced Encryption System). Public-key Cryptosystem

- In 1973, Ralph Markle
- In 1976, Diffie-Hellman
- In 1977, RSA public-key
- 38.4 Example (Merkle's puzzle).
- 38.5 Definition (Public-Key Cryptosystem).

 $K_1 = \mathsf{set} \ \mathsf{off} \ \mathsf{public} \ \mathsf{key}$

 $K_2 = \text{set of private key}$

 $E:K_1\times M\to C$

 $D:K_2\times C\to M$

 $D(K_{private}, E(K_{public}, M)) = M$ where $E(K_{public}, M) = C$

 $(K_{private}, K_{public})$ is a valid pair

38.6 Algorithm (RSA Key Generation). Bob

- 1. generates two large prime p, q
- 2. Compute n = pq.
- 3. compute $\phi(n) = (p-1)(q-1)$
- 4. Randomly choose $e \neq 1$, $gcd(e, \phi(n)) = 1$.

5. Solve $ed \equiv 1 \mod \phi(n)$.

Then Bob has Public Key (n, e), Private Key d.

Encryption: To send $m \in [0, n-1]$. Compute $c = m^e \mod n$. Send c to Bob.

Decryption: Compute $c^d \mod n = m'$

Claim. m = m'

Proof.

$$m' \equiv c^d \mod n$$

$$\equiv (m^e)^d \mod n$$

$$\equiv m^{ed} \mod n$$

$$\equiv m^{k\phi(n)+1} \mod n$$

$$\equiv m \mod n$$

Since $m \in [0, n-1]$, we have m' = m.

38.7 Definition. We call A can be polynomial-time reduced to B, if we can solve A using polynomial time algorithm and we call the solver of B polynomially many times $A \leq B$

If $A \leq B$, $B \leq A$, we call A and B are polynomial-time equivalent $A \equiv B$

The adversary

 P_1 : Factor n = pq

 P_2 : Find $\phi(n)$

 P_3 : Find d

 P_4 : Given n, e and $m^e \mod n$, Find m. (called RSA Problem)

We have $P4 \le P3 \le P2 \le P1$.

Claim. $P_2 \equiv P_1 \equiv P_3$

The security of RSA is based on the RSA Problem.