Creación de una red de regulación bacteriana de respuesta a antibióticos

Creation of a bacterial regulatory network of response to antibiotics

Autor/Author: Santiago Miguel Ortega Ferris

Tutorizado por/ Tutored by: Guido Santos Rosales

Universidad de La Laguna, 2020

Índice

Español	3
nglés	5
Referencias	9
Index	
Spanish	3
English	5
References	9

Español

Este documento tiene como función explicar las redes bioinformáticas que se adjuntan en distintos archivos. Los mismos representan redes bioinformáticas de interacciones proteína-proteína en *Escherichia coli*, que reflejan las diferentes rutas bioquímicas que se ven afectadas por niveles sub-MIC de diferentes antibióticos.

En microbiología, se define a la concentración inhibitoria mínima o MIC (*Minimum inhibitory concentration*) como la concentración más baja de antibiótico que, en condiciones *in vitro* establecidas, inhibe el crecimiento poblacional visible de una bacteria objetivo. La naturaleza de las condiciones sub-MIC provocan la adaptación de las bacterias a medios seleccionados mediante mutaciones de bajo coste energético, además de regular la expresión génica y favorece las tasas de transferencia horizontal de genes [1].

Las proteínas y sus interacciones funcionales forman la columna vertebral de la maquinaria celular. Su red de conectividad debe considerarse para la plena comprensión de los fenómenos biológicos [2]. Esta red de conectividad está formada por interacciones proteína-proteína, las cuales se entienden comúnmente como contactos físicos con acoplamiento molecular entre proteínas que ocurren en una célula o en un organismo *in vivo*. Cualquier proteína en el ribosoma o en el aparato transcripcional basal comparte un contacto funcional con las otras proteínas en el complejo, pero ciertamente, no todas las proteínas en el complejo particular interactúan [3].

En este trabajo se han empleado dos programas bioinformáticos, por un lado, CellDesigner (v. 4.4.2) y, por el otro, Cytoscape (v. 3.7.2) cada uno con aplicaciones y características distintas. Para la obtención de la información bibliográfica de las interacciones proteína-proteína se ha utilizado la base de datos STRING (https://string-db.org/).

CellDesigner es una herramienta de modelado de redes de regulación genética y bioquímica. Este programa ayuda a los usuarios a crear fácilmente dichas redes, utilizando una representación gráfica integral y sólidamente definida (SBGN, Systems Biology Graphical Notation). CellDesigner es compatible con SBML (Systems Biology Markup Language) y tiene un software habilitado para Systems Biology Workbench

(SBW) para que pueda importar/exportar documentos descritos por SBML e integrarse con otros paquetes de software de simulación/análisis habilitados para SBW. La ventaja que posee CellDesigner es un editor de diagramas de procesos con tecnología estandarizada (SBML en este caso) para cada plataforma informática, de modo que pueda beneficiar a la mayor cantidad de usuarios posible [4].

Por su parte, Cytoscape, es un software de código abierto útil para integrar redes de interacción biomolecular con datos de expresión de alto rendimiento y otros estados moleculares en un marco conceptual unificado. Proporciona un entorno de modelado de propósito general para integrar redes y estados de interacción biomolecular [5]. Cytoscape viene provisto de una herramienta de análisis de redes, lo que permite obtener información detallada del funcionamiento, cohesión y estado de una red bioinformática.

STRING es una base de datos de interacciones proteína-proteína conocidas y previstas. Las interacciones incluyen asociaciones directas (físicas) e indirectas (funcionales); provienen de la predicción computacional, de la transferencia de conocimiento entre organismos y de interacciones agregadas de otras bases de datos (primarias) [2].

Debido a que STRING proporciona dos clases de interacciones proteína-proteína, relaciones conocidas y previstas, se han realizado dos redes distintas, por lo que una red contiene exclusivamente interacciones conocidas y otra red contiene relaciones, tanto conocidas como previstas.

La lista de antibióticos, sus concentraciones y genes es la siguiente:

Antibiótico	Concentración	Gen	Referencia
Ciprofloxacino	0.015-256 μg/ml	gyrA	[6]
		parC	
Norfloxacino	0.2-9.7 μg/ml	gyrB	[7]
		parE	
Omeprazol	100 μg/ml	acrA	[8]
		acrB	
		tolC	
		acrR	
Amikacina	0,016 mg/ml	aac(6')-Ib	[9]
		aac(3)-IIa	
		aph(3')-la	
		ant(2.)-la	
Ácido gálico	0.25 mg/ml	pgaA	[10]

		pgaB	
		pgaC	
Ciprofloxacino	0.39-25 μg/ml	pgaD parC	[11]
Levofloxacino		parc	[11]
Ácido Nalidíxico	0.78-25 μg/ml		
	50- >200 μg/ml		
Esparfloxacino	0.39-12.5 μg/ml	to "D	[42]
Telurito de potasio	0,001-0,8 mg/ml	terD	[12]
Ácido peptidonucleico	0.25-128 μg/ml	mcr-1	[13]
Azitromicina	0.256 -1.024 mg/ml	mph(A)	[14]
Ciprofloxacino	0.007 -128 μg/ml	gyrA	[15]
Ácido Nalidíxico	2-2000 μg/ml	gyrB	
Tetraciclina	0.0015-0.01 mg/ml	acrA	[16]
		acrB	
		tolC	
		soxS	
		rob	
		ompA	
		ompX	
		ompF	
		ompC	
		micF	
		marA	
Ciprofloxacino	2–64 μg/ml	qnrA	[17]
·	, 5	qnrB	
Ofloxacino	8–64 μg/ml	aac(6')-lb	
	10	qepA	
Ácido Nalidíxico	8–64 μg/ml	Oxpo	
	5 5 1 P-O/ ····	oqxB	
Doxiciclina	0.375-192 μg/ml	RS17215	[18]
Boxicionia	0.073 132 μβ/	RS17640	[10]
		RS08025	
Ceftazidima	0.0625-256 μg /mll	ibpA	[19]
Certazianna	0.0023 230 μβ / 11111	ibpB	[13]
		tnaA	
Quercetina	1-256 μg/ml	tetA	[20]
Quercetina	1-230 μg/1111	tetB	[20]
		-	
		tetM	
Diagrapilia /to-abastan	0.022.0.250	tetS	[24]
Piperacilina/tazobactam	0,032-0,256 mg/ml	TEM-1	[21]
		TEM-30	
		TEM-35	
		TEM-40	
	/ :	TEM-135	fa-21
Fosfomicina	50 μg/ml	uhpT	[22]
		uhpA	
Norfloxacino	0.094-256 μg/ml	gyrA	[23]
Ciprofloxacino	0.012-32 μg/ml	parC	
'	r-O/	parE	
		Pa	

Ácido Nalidíxico	1-256 μg/ml	marR	
		acrR	
Fluoxetina	0.0005-1 mg/ml	marR	[24]
		rob	
		sdiA	
		cytR	
		crp	
		acrB	
		acrD	
		ompF	
		ompW	
		yadG	
		yadH	
		acrA	
		acrB	
		tolC	
		tsx	
		mdlA	
		mdlB	
		mdfA	
		emrB	
		yciK	
		ampC	
		ampH	
		mrcA	
		mrdA	
		dacA	
		insB	
		insF	
		ymfD	
		yfjH	
		udp	
		cdd	
		tsx	
		mdtF	
		оррА	
		sodA	
		gor	
		ahpF	
		trxB	
		soxR	
		perR	

English

The purpose of this document is to explain the bioinformatics networks that are attached in different files. They represent bioinformatic networks of protein-protein interactions in *Escherichia coli*, which reflect the different biochemical pathways that are affected by sub-MIC levels of different antibiotics.

In microbiology, the Minimum Inhibitory Concentration (MIC) is defined as the lowest concentration of antibiotic that, under established *in vitro* conditions, inhibits the visible population growth of a target bacterium. The nature of sub-MIC conditions provoke the adaptation of bacteria to selected media through low energy cost mutations, in addition to regulating gene expression and favoring horizontal gene transfer rates [1].

Proteins and their functional interactions form the backbone of cellular machinery. Its network connectivity must be considered for the full understanding of biological phenomena [2]. This network of connectivity is formed by protein-protein interactions, which are commonly understood as physical contacts with molecular coupling between proteins that occur in a cell or in an organism in vivo. Any protein on the ribosome or basal transcriptional apparatus shares functional contact with the other proteins in the complex, but certainly not all proteins in the particular complex interact [3].

In this work, two bioinformatics programs have been used, on the one hand, CellDesigner (v. 4.4.2) and, on the other, Cytoscape (v. 3.7.2), each with different applications and characteristics. The STRING database (https://string-db.org/) has been used to obtain bibliographic information on protein-protein interactions.

CellDesigner is a biochemical and genetic regulatory network modeling tool. This program helps users to easily create such networks, using a robust and comprehensive graphical representation (SBGN, Systems Biology Graphical Notation). CellDesigner supports SBML (Systems Biology Markup Language) and has Systems Biology Workbench (SBW) enabled software so that it can import/export SBML-described documents and integrate with other SBW-enabled simulation/analysis software packages. The advantage of CellDesigner is a process diagram editor with standardized technology (SBML in this case) for each computing platform, so that it can benefit as many users as possible [4].

For its part, Cytoscape is open source software useful for integrating biomolecular interaction networks with high-throughput expression data and other molecular states in a unified conceptual framework. It provides a general-purpose modeling environment for integrating biomolecular interaction states and networks [5]. Cytoscape comes equipped with a network analysis tool, which allows obtaining detailed information on the functioning, cohesion and status of a bioinformatics network.

STRING is a database of known and predicted protein-protein interactions. Interactions include direct (physical) and indirect (functional) associations; they come from computational prediction, knowledge transfer between organisms, and aggregate interactions from other (primary) databases [2].

Because STRING provides two classes of protein-protein interactions, known and predicted relationships, two different networks have been realized, so one network contains exclusively known interactions and another network contains relationships, both known and predicted

The list of antibiotics, their concentrations and genes is as follows:

Antibiotic	Concentration	Gene	Reference
Ciprofloxacin	0.015-256 μg/ml	gyrA	[6]
		parC	
Norfloxacin	0.2-9.7 μg/ml	gyrB	[7]
		parE	
Omeprazole	100 μg/ml	acrA	[8]
		acrB	
		tolC	
		acrR	
Amikacin	0,016 mg/ml	aac(6')-lb	[9]
		aac(3)-IIa	
		aph(3')-la	
		ant(2.)-la	
Gallic acid	0.25 mg/ml	pgaA	[10]
		pgaB	
		pgaC	
		pgaD	
Ciprofloxacin	0.39-25 μg/ml	parC	[11]
Levofloxacin	0.78-25 μg/ml		
Nalidixic acid	50- >200 μg/ml		
Sparfloxacin	0.39-12.5 μg/ml		
Potassium tellurite	0,001-0,8 mg/ml	terD	[12]

Peptidonucleic acid	0.25-128 μg/ml	mcr-1	[13]
Azithromycin	0.256 -1.024 mg/ml	mph(A)	[14]
Ciprofloxacin	0.007 -128 μg/ml	gyrA	[15]
Nalidixic acid	2-2000 μg/ml	gyrB	, - J
Tetracycline	0.0015-0.01 mg/ml	acrA	[16]
		acrB	
		tolC	
		soxS	
		rob	
		ompA	
		ompX	
		ompF	
		ompC	
		micF	
		marA	
Ciprofloxacin	2–64 μg/ml	qnrA	[17]
		qnrB	
Ofloxacin	8–64 μg/ml	aac(6')-lb	
	, -	qepA	
Nalidixic acid	8–64 μg/ml	oqxA	
	, -	oqxB	
Doxycycline	0.375-192 μg/ml	RS17215	[18]
, ,	, 5	RS17640	
		RS08025	
Ceftazidime	0.0625-256 μg /mll	ibpA	[19]
	, -	ibpB	
		tnaA	
Quercetin	1-256 μg/ml	tetA	[20]
		tetB	
		tetM	
		tetS	
Piperacillin/tazobactam	0,032-0,256 mg/ml	TEM-1	[21]
		TEM-30	
		TEM-35	
		TEM-40	
		TEM-135	
Fosfomycin	50 μg/ml	uhpT	[22]
		uhpA	
Norfloxacin	0.094-256 μg/ml	gyrA	[23]
-			
Ciprofloxacin	0.012-32 μg/ml	parC	
		parE	
Nalidixic acid	1-256 μg/ml	marR	
		acrR	
Fluoxetine	0.0005-1 mg/ml	marR	[24]
		rob	
		sdiA	
		cytR	
		crp	
		acrB	

_	
acrD	
ompF	
ompW	
yadG	
yadH	
acrA	
acrB	
tolC	
tsx	
mdlA	
mdlB	
mdfA	
emrB	
yciK	
ampC	
ampH	
mrcA	
mrdA	
dacA	
insB	
insF	
ymfD	
yfjH	
udp	
cdd	
tsx	
mdtF	
оррА	
sodA	
gor	
ahpF	
trxB	
soxR	
perR	

Referencias - References:

- 1. Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. *Nat Rev Microbiol*. 2014;12(7):465-478. doi:10.1038/nrmicro3270
- Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genomewide experimental datasets. *Nucleic Acids Res.* 2019;47(D1):D607-D613. doi:10.1093/nar/gky1131
- 3. De Las Rivas J, Fontanillo C. Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. *PLoS Comput Biol*. 2010;6(6):e1000807. Published 2010 Jun 24. doi:10.1371/journal.pcbi.1000807
- Funahashi A., Morohashi M., Matsuoka Y., Jouraku A., Kitano H. (2007)
 CellDesigner: A Graphical Biological Network Editor and Workbench
 Interfacing Simulator. In: Choi S. (eds) Introduction to Systems Biology.
 Humana Press. https://doi.org/10.1007/978-1-59745-531-2_21
- Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res*. 2003;13(11):2498-2504. doi:10.1101/gr.1239303
- 6. Heisig P. Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli. Antimicrobial Agents and Chemotherapy. 1996;40(4):879–885. doi: 10.1128/AAC.40.4.879.
- 7. Breines DM, Ouabdesselam S, NG EY, Tankovic J, Shah S, Soussy CJ, Hooper DC. Quinolone resistance locus nfxD of Escherichia coli is a mutant allele of the parE gene encoding a subunit of topoisomerase IV. Antimicrob Agents Chemother. 1997;41:175–179.
- Chowdhury N, Suhani S, Purkaystha A, et al. Identification of *AcrAB-TolC* Efflux Pump Genes and Detection of Mutation in Efflux Repressor *AcrR* from Omeprazole Responsive Multidrug-Resistant *Escherichia coli* Isolates Causing Urinary Tract Infections. *Microbiol Insights*. 2019;12:1178636119889629.
 Published 2019 Dec 4. doi:10.1177/1178636119889629
- 9. Cirit OS, Fernández-Martínez M, Yayla B, Martínez-Martínez L. Aminoglycoside resistance determinants in multiresistant *Escherichia coli* and *Klebsiella*

- pneumoniae clinical isolates from Turkish and Syrian patients. *Acta Microbiol Immunol Hung*. 2019;66(3):327-335. doi:10.1556/030.66.2019.005
- 10. Kang J, Li Q, Liu L, Jin W, Wang J, Sun Y. The specific effect of gallic acid on Escherichia coli biofilm formation by regulating pgaABCD genes expression. *Appl Microbiol Biotechnol*. 2018;102(4):1837-1846. doi:10.1007/s00253-017-8709-3
- 11. Kumagai Y, Kato JI, Hoshino K, Akasaka T, Sato K, Ikeda H. Quinolone-resistant mutants of escherichia coli DNA topoisomerase IV parC gene. *Antimicrob Agents Chemother*. 1996;40(3):710-714. doi:10.1128/AAC.40.3.710
- 12. Lewis GL, Jorgensen QR, Loy JD, Moxley RA. Tellurite Resistance in Shiga Toxin-Producing Escherichia coli. *Curr Microbiol*. 2018;75(6):752-759. doi:10.1007/s00284-018-1444-x
- Nezhadi J, Narenji H, Soroush Barhaghi MH, et al. Peptide nucleic acid-mediated re-sensitization of colistin resistance Escherichia coli KP81 harboring mcr-1 plasmid. *Microb Pathog*. 2019;135:103646. doi:10.1016/j.micpath.2019.103646
- 14. Phuc Nguyen MC, Woerther PL, Bouvet M, Andremont A, Leclercq R, Canu A. Escherichia coli as reservoir for macrolide resistance genes. *Emerg Infect Dis*. 2009;15(10):1648-1650. doi:10.3201/eid1510.090696
- 15. Vila J, Ruiz J, Marco F, et al. Association between double mutation in gyrA gene of ciprofloxacin-resistant clinical isolates of Escherichia coli and MICs. *Antimicrob Agents Chemother*. 1994;38(10):2477-2479. doi:10.1128/aac.38.10.2477
- 16. Viveiros M, Dupont M, Rodrigues L, et al. Antibiotic stress, genetic response and altered permeability of E. coli. *PLoS One*. 2007;2(4):e365. Published 2007 Apr 11. doi:10.1371/journal.pone.0000365
- 17. Wu B, Qi Q, Zhang X, et al. Dissemination of Escherichia coli carrying plasmid-mediated quinolone resistance (PMQR) genes from swine farms to surroundings. *Sci Total Environ*. 2019;665:33-40. doi:10.1016/j.scitotenv.2019.01.272
- 18. Yang Y, Mi J, Liang J, et al. Changes in the Carbon Metabolism of *Escherichia coli* During the Evolution of Doxycycline Resistance. *Front Microbiol*. 2019;10:2506. Published 2019 Nov 1. doi:10.3389/fmicb.2019.02506
- 19. Sun F, Yuan Q, Wang Y, et al. Sub-minimum inhibitory concentration ceftazidime inhibits *Escherichia coli* biofilm formation by influencing the levels of

- the *ibpA* gene and extracellular indole. *J Chemother*. 2020;32(1):7-14. doi:10.1080/1120009X.2019.1678913
- 20. Qu S, Dai C, Shen Z, et al. Mechanism of Synergy Between Tetracycline and Quercetin Against Antibiotic Resistant *Escherichia coli. Front Microbiol*. 2019;10:2536. Published 2019 Nov 22. doi:10.3389/fmicb.2019.02536
- 21. Rodríguez-Villodres Á, Gil-Marqués ML, Álvarez-Marín R, et al. Extended-spectrum resistance to β-lactams/β-lactamase inhibitors (ESRI) evolved from low-level resistant Escherichia coli. *J Antimicrob Chemother*. 2020;75(1):77-85. doi:10.1093/jac/dkz393
- 22. Lucas AE, Ito R, Mustapha MM, et al. Frequency and Mechanisms of Spontaneous Fosfomycin Nonsusceptibility Observed upon Disk Diffusion Testing of Escherichia coli. *J Clin Microbiol*. 2017;56(1):e01368-17. Published 2017 Dec 26. doi:10.1128/JCM.01368-17
- 23. Komp Lindgren P, Karlsson A, Hughes D. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. *Antimicrob Agents Chemother*. 2003;47(10):3222-3232. doi:10.1128/aac.47.10.3222-3232.2003
- 24. Jin M, Lu J, Chen Z, et al. Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis. *Environ Int*. 2018;120:421-430. doi:10.1016/j.envint.2018.07.046

Referencia de la imagen de título - Title Image Reference:

Regan, H. (2016, March 26). Here's Why Drug-Resistant Bacteria Could Spread Globally. Retrieved from: https://time.com/3759400/drug-resistant-bacteria-hospital-infections-antibiotics-study/