SYLLABUS- OPEN ELECTIVE-1 FOR 6TH SEMESTER STUDENTS OF AERO, AEROSPACE, AUTO, CIVIL, EEE, FT, MECH, MECHATRONICS

OCS351 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FUNDAMENTALS LTPC 2023

COURSE OBJECTIVES:

The main objectives of this course are to:
\sqsupset Understand the importance, principles, and search methods of A
□ Provide knowledge on predicate logic and Prolog.
☐ Introduce machine learning fundamentals
□ Study of supervised learning algorithms.
□ Study about unsupervised learning algorithms.

UNIT I INTELLIGENT AGENT AND UNINFORMED SEARCH

6

Introduction - Foundations of AI - History of AI - The state of the art - Risks and Benefits of AI - Intelligent Agents - Nature of Environment - Structure of Agent - Problem Solving Agents - Formulating Problems - Uninformed Search - Breadth First Search - Dijkstra's algorithm or uniform-cost search - Depth First Search - Depth Limited Search

UNIT II PROBLEM SOLVING WITH SEARCH TECHNIQUES

6

Informed Search - Greedy Best First - A* algorithm - Adversarial Game and Search - **Game theory** - Optimal decisions in game - Min Max Search algorithm - Alpha-beta pruning - **Constraint Satisfaction Problems (CSP)** - Examples - Map Coloring - Job Scheduling - Backtracking Search for CSP

UNIT III LEARNING 6

Machine Learning: Definitions – Classification - Regression - approaches of machine learning models - Types of learning - Probability - Basics - Linear Algebra – Hypothesis space and inductive bias, Evaluation. Training and test sets, cross validation, Concept of over fitting, under fitting, Bias and Variance - **Regression**: Linear Regression - Logistic Regression

UNIT IV SUPERVISED LEARNING

6

Neural Network: Introduction, Perceptron Networks – Adaline - Back propagation networks - **Decision Tree:** Entropy – Information gain - Gini Impurity - classification algorithm - Rule based Classification - **Naïve Bayesian classification - Support Vector Machines** (SVM)

UNIT V UNSUPERVISED LEARNING

6

Unsupervised Learning – Principle Component Analysis - **Neural Network**: Fixed Weight Competitive Nets - Kohonen Self-Organizing Feature Maps – **Clustering**: Definition - Types of Clustering – Hierarchical clustering algorithms – k-means algorithm

TOTAL: 30 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

Programs for Problem solving with Search

- 1. Implement breadth first search
- 2. Implement depth first search
- 3. Analysis of breadth first and depth first search in terms of time and space
- 4. Implement and compare Greedy and A* algorithms.

Supervised learning

- 5. Implement the non-parametric locally weighted regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs
- 6. Write a program to demonstrate the working of the decision tree based algorithm.
- 7. Build an artificial neural network by implementing the back propagation algorithm and test the same using appropriate data sets.
- 8. Write a program to implement the naïve Bayesian classifier.

Unsupervised learning

- 9. Implementing neural network using self-organizing maps
- 10. Implementing k-Means algorithm to cluster a set of data.
- 11. Implementing hierarchical clustering algorithm.

Note:

☐ Ir	nstallation	of gnu-pr	olog, St	udy of F	Prolog (gni	u-prolog).		
	he prograi	ms can b	e implen	nented	in using C	++/JAVA/	Python or ap	propriate tools
can	be used b	y design	ing good	l user ir	nterface			
	Data	sets	can	be	taken	from	standard	repositories
(htt	os://archiv	e.ics.uci.	edu/ml/d	latasets	s.html) or c	constructe	d by the stude	ents.

COURSE OUTCOMES:

CO1: Understand the foundations of AI and the structure of Intelligent Agents

CO2: Use appropriate search algorithms for any Al problem

CO3: Study of learning methods

CO4: Solving problem using Supervised learning

CO5: Solving problem using Unsupervised learning

TOTAL: 60 PERIODS

TEXT BOOK

- 1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", Prentice Hall, Fourth Edition, 2021
- 2. S.N.Sivanandam and S.N.Deepa, Principles of soft computing-Wiley India.3 rd ed,

REFERENCES

- 1. Machine Learning. Tom Mitchell. First Edition, McGraw-Hill, 1997.
- 2. I. Bratko, "Prolog: Programming for Artificial Intelligencell, Fourth edition, Addison-Wesley Educational Publishers Inc., 2011.
- 3. C. Muller & Sarah Alpaydin, Ethem. Introduction to machine learning. MIT press, 2020.

OCS352 IOT CONCEPTS AND APPLICATIONS L T P C 2 0 2 3

COURSE OBJECTIVES:

oxdot I o apprise students with basic knowledge of Io I that paves a platform to understand
physical and logical design of IOT
□ To teach a student how to analyse requirements of various communication models
and protocols for cost-effective design of IoT applications on different IoT platforms.
☐ To introduce the technologies behind Internet of Things(IoT).
□ To explain the students how to code for an IoT application using Arduino/Raspberry
Pi open platform.
☐ To apply the concept of Internet of Things in real world scenario.

UNIT I INTRODUCTION TO INTERNET OF THINGS

5

Evolution of Internet of Things – Enabling Technologies – IoT Architectures: oneM2M, IoT World Forum (IoTWF) and Alternative IoT Models – Simplified IoT Architecture and Core IoT Functional Stack – Fog, Edge and Cloud in IoT

UNIT II COMPONENTS IN INTERNET OF THINGS 5

Functional Blocks of an IoT Ecosystem – Sensors, Actuators, and Smart Objects – Control Units - Communication modules (Bluetooth, Zigbee, Wifi, GPS, GSM Modules)

UNIT III PROTOCOLS AND TECHNOLOGIES BEHIND IOT 6

IOT Protocols - IPv6, 6LoWPAN, MQTT, CoAP - RFID, Wireless Sensor Networks, BigData Analytics, Cloud Computing, Embedded Systems.

UNIT IV OPEN PLATFORMS AND PROGRAMMING 7

IOT deployment for Raspberry Pi /Arduino platform-Architecture —Programming — Interfacing — Accessing GPIO Pins — Sending and Receiving Signals Using GPIO Pins — Connecting to the Cloud.

UNIT V IOT APPLICATIONS 7

Business models for the internet of things, Smart city, Smart mobility and transport, Industrial IoT, Smart health, Environment monitoring and surveillance – Home Automation – Smart Agriculture

30 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

- 1. Introduction to Arduino platform and programming
- 2. Interfacing Arduino to Zigbee module
- 3. Interfacing Arduino to GSM module
- 4. Interfacing Arduino to Bluetooth Module
- 5 Introduction to Raspberry PI platform and python programming
- 6. Interfacing sensors to Raspberry PI
- 7. Communicate between Arduino and Raspberry PI using any wireless medium
- 8. Setup a cloud platform to log the data

9. Log Data using Raspberry PI and upload to the cloud platform 10.Design an IOT based system

TOTAL PERIODS:60

COURSE OUTCOMES:

CO1:Explain the concept of IoT.

CO2:Understand the communication models and various protocols for IoT.

CO3:Design portable IoT using Arduino/Raspberry Pi /open platform

CO4: Apply data analytics and use cloud offerings related to IoT.

CO5:Analyze applications of IoT in real time scenario.

TEXTBOOKS

- 1. Robert Barton, Patrick Grossetete, David Hanes, Jerome Henry, Gonzalo Salgueiro, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", CISCO Press, 2017
- 2. Samuel Greengard, The Internet of Things, The MIT Press, 2015

REFERENCES

- 1. Perry Lea, "Internet of things for architects", Packt, 2018
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Key applications and Protocols", Wiley, 2012
- 3. IOT (Internet of Things) Programming: A Simple and Fast Way of Learning, IOT Kindle Edition.
- 4. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the Internet of Things", Springer, 2011.
- 5. ArshdeepBahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015
- 6. https://www.arduino.cc/

https://www.ibm.com/smarterplanet/us/en/?ca=v smarterplanet

CCS333 AUGMENTED REALITY/VIRTUAL REALITY L T P C 2 0 2 3

COURSE OBJECTIVES:

□ To impart the fundamental aspects and principles of AR/VR technologies.
□ To know the internals of the hardware and software components involved in the
development of AR/VR enabled applications.
☐ To learn about the graphical processing units and their architectures.
□ To gain knowledge about AR/VR application development.
☐ To know the technologies involved in the development of AR/VR based applications.

UNIT I INTRODUCTION

7

Introduction to Virtual Reality and Augmented Reality – Definition – Introduction to Trajectories and Hybrid Space-Three I's of Virtual Reality – Virtual Reality Vs 3D Computer Graphics – Benefits of Virtual Reality – Components of VR System – Introduction to AR-AR Technologies-Input Devices – 3D Position Trackers – Types of Trackers – Navigation and Manipulation Interfaces – Gesture Interfaces – Types of Gesture Input Devices – Output Devices – Graphics Display – Human Visual System – Personal Graphics Displays – Large Volume Displays – Sound Displays – Human Auditory System.

UNIT II VR MODELING

6

Modeling – Geometric Modeling – Virtual Object Shape – Object Visual Appearance – Kinematics Modeling – Transformation Matrices – Object Position – Transformation Invariants – Object Hierarchies – Viewing the 3D World – Physical Modeling – Collision Detection – Surface Deformation – Force Computation – Force Smoothing and Mapping – Behavior Modeling – Model Management.

UNIT III VR PROGRAMMING

6

VR Programming – Toolkits and Scene Graphs – World ToolKit – Java 3D – Comparison of World ToolKit and Java 3D

UNIT IV APPLICATIONS

6

Human Factors in VR – Methodology and Terminology – VR Health and Safety Issues – VR and Society-Medical Applications of VR – Education, Arts and Entertainment – Military VR Applications – Emerging Applications of VR – VR Applications in Manufacturing – Applications of VR in Robotics – Information Visualization – VR in Business – VR in Entertainment – VR in Education.

UNIT V AUGMENTED REALITY 5

Introduction to Augmented Reality-Computer vision for AR-Interaction-Modelling and Annotation- Navigation-Wearable devices

30 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

- 1. Study of tools like Unity, Maya, 3DS MAX, AR toolkit, Vuforia and Blender.
- 2. Use the primitive objects and apply various projection types by handling camera.
- 3. Download objects from asset store and apply various lighting and shading effects.
- 4. Model three dimensional objects using various modelling techniques and apply textures over them.
- 5. Create three dimensional realistic scenes and develop simple virtual reality enabled mobile applications which have limited interactivity.
- 6. Add audio and text special effects to the developed application.
- 7. Develop VR enabled applications using motion trackers and sensors incorporating full haptic interactivity.
- 8. Develop AR enabled applications with interactivity like E learning environment, Virtual walkthroughs and visualization of historic places.
- 9. Develop AR enabled simple applications like human anatomy visualization, DNA/RNA structure visualization and surgery simulation.
- 10. Develop simple MR enabled gaming applications.

TOTAL:60 PERIODS

COURSE OUTCOMES:

On completion of the course, the students will be able to:

CO1: Understand the basic concepts of AR and VR

CO2: Understand the tools and technologies related to AR/VR

CO3: Know the working principle of AR/VR related Sensor devices

CO4: Design of various models using modeling techniques

CO5: Develop AR/VR applications in different domains

TEXTBOOKS:

- 1. Charles Palmer, John Williamson, "Virtual Reality Blueprints: Create compelling VR experiences for mobile", Packt Publisher, 2018
- 2. Dieter Schmalstieg, Tobias Hollerer, "Augmented Reality: Principles & Practice", Addison Wesley, 2016
- 3. John Vince, "Introduction to Virtual Reality", Springer-Verlag, 2004.
- 4. William R. Sherman, Alan B. Craig: Understanding Virtual Reality Interface, Application, Design", Morgan Kaufmann, 2003'