МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

Лабораторная работа №3. Методы измерения емкости, индуктивности, тангенса угла потерь и добротности

Цель работы - изучение основных методов измерения емкости, индуктивности, тангенса угла потерь и добротности.

Краткие теоретические сведения

Измерение емкости C, индуктивности L, тангенса угла диэлектрических потерь $tg\delta$ и добротности Q осуществляется прямыми, косвенными и резонансными методами.

Косвенные методы (амперметра – вольтметра)

Среди косвенных методов наиболее просто измерение емкости и индуктивности возможно методом двух приборов (методом амперметра - вольтметра). Для этого емкость (индуктивность) включают в схему рис. 1а или рис. 1б.

Рис. 1. Метод амперметра – вольтметра

Сначала измеряют сопротивление конденсатора (катушки) постоянному току $R_x = \frac{U_V}{I_A}$. Затем схему включают в цепь питания переменного синусоидального тока частотой $f = 100 \, \mathrm{k} \Gamma \mathrm{u} - 1 \, \mathrm{m} \Gamma \mathrm{u}$ и

определяют полное сопротивление $Z=rac{U_{\sim}}{I_{\sim}}$ катушки $(m{Z_L})$ или конденсатора $(m{Z_C})$. Так как

$$Z_C = \sqrt{\frac{1}{\left(\frac{1}{R_x}\right)^2 + \left(\omega C_c\right)^2}}, \qquad Z_L = \sqrt{\left(R_x\right)^2 + \left(\omega L_x\right)^2}, \text{ TO}$$

$$C_{x} = \frac{\sqrt{\frac{1}{Z_{C}^{2}} - \frac{1}{R_{x}^{2}}}}{\omega} \tag{1}$$

$$L_x = \frac{\sqrt{Z_L^2 - R_x^2}}{\omega},\tag{2}$$

где $\omega = 2\pi f$.

Прямые методы (нулевой метод измерения емкости и индуктивности)

Для измерения емкости и индуктивности прямыми методами наибольшее распространение получили мосты переменного тока. Мостовые схемы измерения емкости с малыми ($tg\delta \leq 0,01$) и большими ($tg\delta \geq 0,01$) потерями представлены на рис. 2а и рис. 2б.

Рис. 2. Мостовая схема измерения емкости

Мосты относятся к наиболее точным приборам и их погрешности могут составлять тысячные доли процента. Сущность мостового метода

измерения заключается в том, что неизвестный конденсатор включают в одно из плеч моста и производят изменение параметров образцовых мер моста R_0 и C_0 до достижения равновесия схемы, характеризуемого равенством нулю показаний вольтметра. Для равновесного состояния моста переменного тока справедливо соотношение

$$\dot{Z}_x \cdot \dot{Z}_2 = \dot{Z}_1 \cdot \dot{Z}_0 \,,$$

где $\dot{Z_1}, \dot{Z_2}, \dot{Z_x}, \dot{Z_0}$ - полные сопротивления плеч моста.

Если сопротивления R_1 и R_2 равны, то при равновесии моста равны и полные сопротивления рабочего и образцового плеч моста.

Тогда для схемы на рис. 2а можно записать

$$R_x + \frac{1}{j\omega C_x} = R_0 + \frac{1}{j\omega C_0}.$$

Откуда $R_x = R_0$, $C_x = C_0$.

Для схемы на рис. 26 получим

$$\frac{1}{\frac{1}{R_x} + j\omega C_x} = \frac{1}{\frac{1}{R_0} + j\omega C_0}.$$

Откуда $R_x = R_0$, $C_x = C_0$.

Тангенсом угла потерь $tg\delta$ конденсатора называется отношение активного сопротивления R_x к реактивному $\int_{j\omega C_x}^{1}$ для последовательной схемы замещения конденсатора и отношение активной проводимости к реактивной в случае параллельной схемы замещения. Тогда для моста на рис. 2а $tg\delta = \omega R_x C_x$, а для моста на рис. 26 $tg\delta = \int_{\omega R_x C_x}^{1}$.

Измерение индуктивности мостовым методом аналогично измерению емкости (рис.3).

Рис. 3. Мостовая схема измерения индуктивности

Изменением параметров L_0 и R_0 образцовых мер добиваются равновесия моста (вольтметр, включенный в диагональ моста, показывает ноль), откуда при $R_1=R_2$ получим

$$j\omega L_x + R_x = j\omega L_0 + R_0.$$

Тогда
$$L_x = L_0$$
 и $R_x = R_0$.

Добротность же может быть определена как отношение реактивного сопротивления ωL_x катушки к активному R_x :

$$Q_x = \frac{\omega L_x}{R_x}.$$

На практике образцовые переменные индуктивности изготовить очень трудно, а активные сопротивления катушки довольно велики. Поэтому в основном распространены мостовые схемы измерения индуктивностей (имеющих малую добротность $Q_x < 30$) с использованием образцовых емкостей (рис. 3б). Если в схеме $R_1 = R_2$, то исходя из условия равновесия

моста $\dot{Z}_1 \cdot \dot{Z}_2 = \dot{Z}_x \cdot \dot{Z}_0$, можно записать

$$R_1 \cdot R_2 \cdot \frac{1}{\dot{Z}_0} = \dot{Z}_x.$$

Поскольку R_1 и R_2 чисто активные сопротивления, то последнее равенство перепишется как

$$R_1 \cdot R_2 \left(j\omega C_0 + \frac{1}{R_0} \right) = j\omega L_x + R_x$$

Откуда

$$L_x = R_1 \cdot R_2 \cdot C_0, \ R_x = \frac{R_1 \cdot R_2}{R_0}.$$

Резонансный метод

Резонансные методы измерения нашли широкое распространение за счет простоты. Они используются, как правило, на высоких частотах при последовательной R-L и параллельной R-C схемах замещения элементов. В этом случае активное сопротивление индуктивностей и емкостей будет приводить к пренебрежимо малой погрешности измерения. Суть метода заключается в том, что создается резонансный контур и измеряется частота, на которой наблюдается резонанс в исследуемой цепи. При этом резонансная частота связана с параметрами цепи известным соотношением

$$f=\frac{1}{2\pi\sqrt{LC}}.$$

В случае измерения индуктивности L_x в резонансный контур параллельно ей включают образцовую емкость C_0 . Если же измеряют емкость C_x , то ее включают параллельно образцовой катушке L_0 . В качестве индикатора резонанса можно использовать вольтметр. При этом показания вольтметра в момент резонанса максимальны. Схема измерения резонансным методом представлена на рис. 4.

Рис. 4. Резонансный метод измерения емкости или индуктивности

Порядок выполнения работы

Значения измеряемого сопротивления R_x , индуктивности L_x или емкости C_x во всех схемах данной лабораторной работы устанавливаются по вариантам, приведенным в таблице:

Вариант		1	2	3	4	5	6	7	8	9	0
Рис.1а	R _x , кОм	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0
	L_{x} , м Γ н	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0
Рис.16	R_{χ} , кОм	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0
	C_{x} , н Φ	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0
Рис.2а	R_{x} , Om	11	12	13	14	15	16	17	18	19	20
	C_{x} , H Φ	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0
Рис.2б	R_{χ} , кОм	1,01	1,02	1,03	1,04	1,05	1,06	1,07	1,08	1,09	1,10
	C_x ,	1,01	1,02	1,03	1,04	1,05	1,06	1,07	1,08	1,09	1,10

	мкФ										
Рис.3а	R_{χ} , кОм	1,01	1,02	1,03	1,04	1,05	1,06	1,07	1,08	1,09	1,10
	L_{x} , м Γ н	1,01	1,02	1,03	1,04	1,05	1,06	1,07	1,08	1,09	1,10
Рис.3б	R_{X} , кОм	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,0
	L_{x} , м Γ н	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,0
Рис.4	$oldsymbol{L}_{oldsymbol{\mathcal{X}}},$ м Γ н	10	20	30	40	50	60	70	80	90	100

- 1. Собрать схему рис. 1а: $E_{on}=12~B$, $R_A=10~Om$, $R_V=100~\kappa Om$. Подключить ко входу схемы источник опорного постоянного напряжения $E_{on}=12~B$. Записать показания вольтметра и амперметра и рассчитать значения $R_x=U/I$.
- 2. Вместо источника опорного напряжения подключить источник переменного синусоидального напряжения U=10B частотой $f=100~\kappa \Gamma u$. Записать показания приборов и рассчитать полное сопротивление $Z_L=\frac{U_\sim}{I}$.

<u>(Для измерений переменных токов и напряжений переключить амперметр и вольтметр в режим AC!)</u>

3. Рассчитать значение неизвестной индуктивности ${\pmb L}_{\pmb x}$ по формуле (2):

$$L_{x} = \frac{\sqrt{Z_{L}^{2} - R_{x}^{2}}}{\omega},$$

где $\omega = 2\pi f$.

4. Рассчитать относительную погрешность измерения:

$$\gamma = \frac{L_{xp} - L_{xu}}{L_{xu}},$$

где L_{xp} - рассчитанное в п.4 значение индуктивности; L_{xu} - установленное по своему варианту значение индуктивности.

- 5. Собрать схему рис. 16. $E_{on} = 12~B$, $R_A = 10~Om$, $R_V = 100~\kappa Om$.
- 6. Повторить п.п. 2 4 для емкости. Рассчитать емкость и погрешность измерения (по аналогии с индуктивностью):

$$C_x = \frac{\sqrt{\frac{1}{Z_C^2} - \frac{1}{R_x^2}}}{\omega}$$

- 7. Собрать схему рис. 2a: $U_{\sim}=10~B$, $f=100~\kappa \Gamma u$, $R_1=R_2=1~\kappa O m$. $C_0=3~\mu \Phi$, $R_0=30~O m$.
- 8. Уравновесить мостовую схему, изменяя C_0 и R_0 до достижения показаний вольтметра, равных либо существенно приближенных к нулю.
- 9. Определить C_x и R_x по показаниям C_0 и R_0 . Рассчитать погрешности измерения C_x , R_x и тангенс угла потерь.
- 10. Собрать схему рис. 26. $U_\sim = 10~B\,,$ $f = 100~\kappa \Gamma u,$ $R_1 = R_2 = 1~\kappa O m\,,$ $C_0 = 2~\kappa \kappa \Phi\,,$ $R_0 = 2~\kappa O m\,.$
- 11. Уравновесить схему, изменяя C_0 и R_0 , и определить C_x и R_x по показаниям C_0 и R_0 .
 - 12. Рассчитать погрешности измерения ${\it C}_{\it x}$ и ${\it R}_{\it x}$, тангенс угла потерь.
- 13. Собрать схему рис. 3a: $U_{\sim}=10~B$, $f=100~\kappa\Gamma u$, $R_1=R_2=1~\kappa O m$, $L_0=2~m{\rm H}$, $R_0=2~\kappa O m$.
- 14. Уравновесить мостовую схему, изменяя L_0 и R_0 . Записать значения R_x и L_x по показаниям L_0 и R_0 .
- 15. Рассчитать погрешность измерения ${\it R}_{\it x}$ и ${\it L}_{\it x}$, а также добротность катушки индуктивности.
- 16. Собрать схему рис. 36: $U_\sim=10~B\,,~f=100~\kappa\Gamma u,~R_0=1~\kappa O M\,,$ $C_0=10~\mu\Phi\,,~R_1=R_2=1~\kappa O M\,.$
- 17. Уравновесить мостовую схему. Рассчитать значения R_x , L_x и добротность катушки по формулам, приведенным в описании схемы, а также погрешность измерения R_x и L_x .
- 18. Собрать схему рис. 4 для измерения L_x резонансным методом. $U_\sim = 10~B$, $R_0 = 1~\kappa O\!M$, $C_0 = 1~\mu \Phi$.
- 19. Изменяя частоту генератора (начать можно с 50 кГц) найти резонансную частоту, соответствующую максимуму показаний вольтметра. Вычислить $\boldsymbol{L}_{\boldsymbol{x}}$ по формуле

$$L_x = \frac{1}{\left(2\pi f\right)^2 \cdot C_0}$$

20. Рассчитать относительную погрешность в определении $oldsymbol{L}_{x}$.

Требования к оформлению отчета

Отчет по работе должен включать:

- титульный лист с указанием названия и номера варианта работы.
- наименование работы;
- цель работы;
- задание на выполнение работы (вариант);
- экспериментальную часть, включающую результаты измерений, представленные в виде распечаток схем измерений с включенными приборами. Качество скриншотов должно обеспечивать читабельность основных параметров схемы.
- аналитическую часть (расчетные значения измеряемых величин и погрешностей);
- выводы (оценка результатов выполненной работы). Выводы должны отражать результаты сопоставления схем по сложности реализации, широте области применения (диапазон измеряемых значений), а так же по обеспечиваемой точности измерений.