设备型号	参考 FOV	参考畸 变系数 K1	参考畸 变系数 K2	默认瞳距	显示距离
通用设备	75	0.25	0.001	0.06	0.045
小阅悦 Plus	60	0.085	0.15	0.063	0.048
小阅悦 Pro	55	0.2	0.25	0.063	0.045
小阅悦 S	55	0.2	0.25	0.063	0.045
千幻魔镜6代	75	0.25	0.001	0.06	0.045
杰游 VR	75	0.25	0.001	0.06	0.045
暴风魔镜小M	30	0.162	0.162	0.062	0.06
暴风魔镜小D	30	0.162	0.162	0.062	0.06
暴风魔镜 S1	50	0.262	0.267	0.062	0.04
白日梦	50	0.262	0.267	0.06	0.04
搏击猫 VR 炫彩	40	0.162	0.167	0.062	0.04
COBRA VR	50	0.2	0.05	0.06	0.038
大朋看看	50	0.01	0	0.065	0.03
嘀拍乐镜 V2	50	0.262	0.267	0.062	0.048
Dlodlo H1	60	0.162	0.404	0.062	0.035
FiiT VR 2S	50	0.12	0.14	0.06	0.037
FiiT VR 2N	50	0.1	0.14	0.057	0.049
FiiT VR 3F	50	0.12	0.14	0.06	0.037
FiiT VR 5F	50	0.12	0.14	0.06	0.037
FiiT VR 6F	50	0.12	0.14	0.06	0.037
GEPRO VR	50	0.262	0.267	0.062	0.04
GoogleCardboard2	50	0.262	0.267	0.062	0.036
幻侣 VR	50	0.15	0.22	0.07	0.065
I71 VR3	50	0.15	0.22	0.07	0.065
折叠 VR light-1	50	0.2	0.05	0.06	0.038
VR601	55	0.2	0.25	0.063	0.045
卡尔蔡司 VR ONE	50	0.1	1	0.062	0.037
科镜 VR	50	0.15	0.22	0.07	0.065
乐技 VR	50	0.262	0.267	0.062	0.036
灵境小白	50	0.32	-0.02	0.055	0.035
灵镜小小白	50	0.262	0.267	0.062	0.04
米默 VR	75	0.25	0.001	0.06	0.045
魔甲人	50	0.25	0.001	0.059	0.06
MOKE VR 迷你	35	0.262	0.267	0.062	0.06
摩士奇	75	0.25	0.001	0.06	0.045

1. FOV (Field of View, 视场角): 这是一个测量用户在 VR 眼镜中可以看到的视场范围的术语,通常以度数表示。更高的 FOV 通常会提供更自然、更吸引人的体验,因为它更接近人眼的实际视场。然而,增加 FOV 可能会增加硬件要求和成本。

图 1 FOV 示意图

2. IPD(Interpupillary Distance, 瞳距):这是指一个人两眼瞳孔之间的距离。在 VR 眼镜中,IPD 是一个重要的参数,因为它可以帮助设备正确地对准用户的眼睛,以提供最佳的图像质量和避免视觉不适。许多 VR 眼镜允许用户调整 IPD 以适应他们的独特的眼距。人眼在观看近处物体时瞳距会小一些。

图 2 瞳距示意图

3. 畸变: 在 VR 眼镜中, 畸变通常是指图像的形状由于光学系统 (如镜头) 的不完美而发生的变化。例如, 镜头可能会使图像向边缘拉伸 (桶形畸变) 或向中心压缩 (枕形畸变)。为了解决这个问题, 手机 VR 系统通常会使用软件进行畸变校正, 以尽可能地抵消这些效应。

图 3 从左到右依次为,没有畸变,桶形畸变,枕形畸变

一般情况下手机 VR 眼镜中的透镜会产生枕形畸变,需要 VR Player 播放器软件产生桶形畸变,用来抵消透镜产生的枕形畸变。

图 4

如 (a) 为人眼通过透镜观察正常图片, 观察到图像产生枕形畸变

如 (b) 为人眼通过透镜观察 VR Player 播放器软件较正的桶形畸变图像, 观察到图像显示为无畸变的图像

畸变较正的数学模型参考 Brown - Conrady 模型。VR Player 播放器软件校正畸变时候人眼观察 VR 画面内 90 度的角没有明显弯曲,此时畸变校正良好。

4. 色差: 在光学中, 色差是指镜头不能使所有颜色的光线聚焦在同一点上, 导致图像的某些部分出现颜色边缘或"色彩晕环"。这在 VR 眼镜中可能会导致图像质量下降。解决色差的一种方法是使用更高质量的镜头, 或使用 VR Player 播放器软件进行色差校正。有两种类型的色差。第一种是横向色差(倍率色差、垂轴色差、侧向色差, 这里是同一个含义)。当不同的光波长被聚焦在传感器表面

上的不同位置时,就会发生这种色差。第二种类型的色差被称为纵向色差(位置色差、轴向色差)。当不同的色光波长被聚焦在距离传感器表面不同远近的地方时,就会发生这种色差。

图 5 倍率色差 图 6 位置色差 图 7 理想状态下无色差 手机 VR 眼镜会产生倍率色差,需要通过 VR Player 播放器软件来校正。

图 8 VR Player 未校正时的画面

图 9 此时人眼通过 VR 眼镜实际观察到的画面 (存在色差, 右侧白色方块左红右 蓝)

图 10 VR Player 软件校正时的画面 (右侧白色方块左蓝右红)

知乎 @luosuonan

图 11

VR Player 播放器软件校正的画面刚好和手机 VR 眼镜的镜片产生的倍率色差抵消,从而实现色差的较正。人眼通过 VR 眼镜观看白色方块未出现明显的彩色边缘,此时色差校正良好。

5. 刷新率: 这是指 VR 眼镜每秒可以更新图像的次数,单位为 Hz。刷新率越高,用户在动态场景中的视觉体验越流畅。如果刷新率过低,用户可能会感觉到卡顿,甚至会感到头晕、恶心等不适。

测试 demo:

链接:https://pan.baidu.com/s/1bUmjeL-ngtWmqr6_-n6WOQ 提取码:dpdi

链接:https://pan.baidu.com/s/1qJQPK3cqAtVJUByuRXucnw 提取码:gqu5