Aula 05 – Exercícios Aprendizado Supervisionado parte 2

Submeter sua solução num arquivo nome_sobrenome_aula5.pdf

1) (0,5) Use o dataset Breast Cancer Winconsin:

https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic

Instances = 569 # Features = 30

- a) Aplique os algoritmos vistos em aula SVM, Perceptron e Multi-layer Perceptron (considere diferentes parâmetros e validação cruzada) com os dados brutos.
- b) Aplique os algoritmos vistos em aula SVM, Perceptron e Multi-layer Perceptron (considere diferentes parâmetros e validação cruzada) fazendo pré-processamento (remova outliers, seleção de features, PCA, etc)

1) (0,5) Seja o seguinte *dataset*:

Nome	Febre	Enjôo	Manchas	Dores	Diagnóstico
João	Sim	Sim	Pequenas	Sim	Doente
Pedro	Não	Não	Grandes	Não	Saudável
Maria	Sim	Sim	Pequenas	Não	Saudável
José	Sim	Não	Grandes	Sim	Doente
Ana	Sim	Não	Pequenas	Sim	Saudável
Leila	Não	Não	Grandes	Sim	Doente

Ensinar uma rede do tipo Perceptron a distinguir:

- Pacientes potencialmente saudáveis
- Pacientes potencialmente doentes

Testar a rede para novos casos:

- (Luis, não, não, pequenas, sim)
- (Laura, sim, sim, grandes, sim)

Pode considerar η =0.5, limiar = -0,5, o valor 1 para 'sim'/'grandes' e 0 para 'não'/'pequenas' no dataset .

Obs: Fazer os passos do algoritmo em código ou na mão. Não usar o sklearn