MATH 4280

Lecture Notes 7: More neural network concepts

Dense network

- There are two input neurons x_1 , x_2
- There are two dense hidden layers
- The first hidden layer has 3 ReLU neurons
- The second hidden layer has 2 ReLU neurons
- There is one output neuron *y*
- For binary classification, the output neuron should be sigmoid

ReLU

Forward propagation

- Take the neuron a_1 as an example
- It takes two inputs x_1 and x_2
- This neuron computes

$$z = w \cdot x + b$$

$$z = (w_1x_1 + w_2x_2) + b$$

- Here w_1, w_2, b are weights
- Then the activation is applied

$$\mathbf{a} = max(0, \mathbf{z})$$

 Similar computations are done for other neurons in hidden layers

Sigmoid output neuron

Again, this neuron y computes

$$z = w \cdot x + b$$

 $z = (w_1x_1 + w_2x_2) + b$

• Then, the sigmoid function is applied

$$\mathbf{a} = \sigma(\mathbf{z})$$
$$= \frac{1}{1 + e^{-\mathbf{z}}}$$

• The output is used for binary classifications

Softmax output neuron

- It is used for multi-class classification
- Compute $w \cdot x + b$ in each of the 3 output neurons
- Then we compute

$$y_i = e^{z_i}/(e^{z_1} + e^{z_2} + e^{z_3})$$

• These output values are used for classification

Trainable parameters

• Use summary() method

```
model = Sequential()
model.add(Dense(64, activation='sigmoid', input_shape=(784,)))
model.add(Dense(10, activation='softmax'))
```

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	64)	50240
dense_2 (Dense)	(None,	10)	650
Total params: 50,890 Trainable params: 50,890 Non-trainable params: 0			

• In the first Dense layer, number of parameters is

$$784 \times 64 + 64 = 50240$$

• In the second Dense layer, number of parameters is

$$64 \times 10 + 10 = 650$$

Loss functions

Quadratic cost (i.e. MSE)

$$\mathbf{C} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i - \hat{\mathbf{y}}_i)^2$$

- Here y_i is the true value and \hat{y}_i is the network approximated value
- Cross-Entropy cost (e.g. used in sigmoid output neuron)

Idea: Try to match the predicted value to either 0 or 1

$$C = -\frac{1}{n} \sum_{i=1}^{n} [y_i \ln \hat{y}_i + (1 - y_i) \ln(1 - \hat{y}_i)]$$

• The derivative is given below, giving faster convergence ????

$$\frac{dC}{d\hat{y}_i} = \frac{y_i - \hat{y}_i}{\hat{y}_i(1 - \hat{y}_i)}$$

Batch size and SGD

Round of Training:

- 1. Sample a mini-batch of x values
- 2. Forward propagate x through network to estimate y with \hat{y}
- 3. Calculate cost C by comparing y and \hat{y}
- 4. Descend gradient of *C* to adjust *w* and *b*, enabling *x* to better predict *y*

An example

We first define the following model

```
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(784,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
```

• We can use model.summary() to see the model details

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	64)	50240
dense_2 (Dense)	(None,	64)	4160
dense_3 (Dense)	(None,	10)	650
Total params: 55,050 Trainable params: 55,050 Non-trainable params: 0			

Next, we can compile the model

- The loss function is selected as cross-entropy
- Use the stochastic gradient descent, the learning rate is 0.1
- Also include the model accuracy in addition to loss

Next we perform the training

We can read the performance of the training

Weight initialization

- ullet In training, the parameters w and b are initialized with random values
- Import the packages

```
import numpy as np
import matplotlib.pyplot as plt
from keras import Sequential
from keras.layers import Dense, Activation
from keras.initializers import Zeros, RandomNormal
```

Then we can do the initialization as follows

```
b_init = Zeros()
w_init = RandomNormal(stddev=1.0)
```

Batch normalization

- Batch norm takes the activations output from the preceding layer, substracts the batch mean, and divides by the batch standard derivation
- Recenter the distribution with mean 0 and standard derivation 1
- Large values in one layer won't excessively influence the calculations in next layer
- This allows for selection of a higher learning rate
- The batch norm learns two more parameters γ and β , which play the role of standard derivation and mean

Model generalization

Avoiding overfitting

- Using L1 minimization
- Using Dropout: simply drop randomly selected neurons
- No need to apply dropout to all layers
- Usually, applied to later layers
- Usually, 20% 50% dropout

avoid overfitting

Some optimizers

- Momentum: using moving average of the gradients
- There is an additional hyperparameter β , between 0 and 1
- Smaller β permits older gradients to contribute to the average
- AdaGrad = adaptive gradient, every parameter has a unique learning rate
- AdaDelta and RMSProp combine AdaGrad and moving average
- Adam is similar to AdaDelta and RMSProp, with two exceptions:
- 1. An extra moving average for each parameter
- 2. A clever bias trick to prevent moving averages from skewing toward zero at the start of training

An example

```
from keras.layers import Dropout
from keras.layers.normalization import BatchNormalization
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(784,)))
model.add(BatchNormalization())
model.add(Dense(64, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(64, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
```

Convolutional neural networks

- CNN contains one or more convolutional layers
- It allows processing of spatial patterns
- Convolutional layers consist of sets of kernels (or filters)
- Each of these is a small window (or patch) that scans across the image
- Typically, there are multiple kernels in a given convolutional layer

A convolutional example

- Take a color image
- Apply a 3x3 filter to each color

Each layer can be considered as a transformation

			Red					-	Green	1				Blue					
	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	0.00	0.20	0.40	0.30	0.00		0.00	0.60	0.60	0.90	0.00	0.00	0.80	0.40	0.90	0.00			
ages:	0.00	0.30	0.90	0.60	0.00		0.00	0.40	0.70	0.40	0.00	0.00	0.30	0.10	0.60	0.00			
	0.00	0.90	0.10	0.20	0.00		0.00	0.70	0.50	0.30	0.00	0.00	0.80	0.60	0.40	0.00			
	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
		0.10	0.20	0.60				0.60	0.60	0.90			0.80	0.40	0.90				
eights:		0.60	0.80	0.70				0.40	0.70	0.40			0.30	0.10	0.60	3	Bias: 0.		
		0.50	0.40	0.30				0.70	0.50	0.30			0.80	0.60	0.40				
															care to the				
		0.00	0.00	0.00				0.00	0.00	0.00			0.00	0.00	0.00			2.64	4.67
alues:	Σ.(0.12	0.32	0.21		+		0.24	0.42	0.36			0.24	0.04	0.54).	0.2 =		
	-			0.18	1				0.35		1				0.24			1	1

			Red					Gree	en					Blue						
	0.00	0.00	0.00	0.00	0.00	0.	0.0	0.0	0.00	0.00	(0.00	0.00	0.00	0.00	0.00)			
	0.00	0.20	0.40	0.30	0.00	0.	0.6	0.6	0.90	0.00	(0.00	0.80	0.40	0.90	0.00)			
Images:	0.00	0.30	0.90	0.60	0.00	0.	00 0.4	0 0.7	0.40	0.00	(0.00	0.30	0.10	0.60	0.00				
	0.00	0.90	0.10	0.20	0.00	0.	00 0.7	0 0.5	0.30	0.00	0	0.00	0.80	0.60	0.40	0.00				
	0.00	0.00	0.00	0.00	0.00	0.	0.0	0.0	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00				
						-										21				
		0.10	0.20	0.60			0.6	0.6	0.90				0.80	0.40	0.90					
Weights:		0.60	0.80	0.70			0.4	0 0.7	0.40				0.30	0.10	0.60		Bias: 0.20			
	5	0.50	0.40	0.30			0.7	0.5	0.30				0.80	0.60	0.40					
							[1								I		T
	-	0.09	0.12	0.00			0.4	2 0.24	4 0.00				0.08	0.24	0.00			2.64	4.67	3.58
z values:	7(0.06	0.16	0.00		+	0.20	0 0.2	0.00		+		0.18	0.04 0.	0.00) +	+ 0.2 =	5.19	8.75	4.90
				0.00			0.0	0 0 0	0.00	1			0.00	0.00	0.00			2 00	4.66	224

• Assume 16 kernels are used

Convolutional filter hyperparameters

- Kernel size, usually 3x3 or 5x5
- Stride length: the size of the step that the kernel moves
- Padding
- For example, consider a 28x28 image, 5x5 kernel, stride of 1
- Then the output will be 24x24
- In order to obtain a 28x28 output, we need pad the image with zeros around the edges
- In this example, we use padding of 2

Pooling layer

- This layer is to reduce the overall count of parameters
- Pooling layer usually uses the max operation, called max-pooling
- Typically, a filter size is 2x2, and stride length is 2

Example

```
model = Sequential()
```

Deepfake

Generative adversarial network

- GAN involves two deep neural networks
- One network is a generator that produces forgeries of images
- The other network is a discriminator that distinguish real or fake images

Basic theory

- Discriminator training
- In this process, the generator produces fake images, while the discriminator learns to tell the fake images from real ones
- Generator training
- The discriminator judges fake images, the generator uses this information to learn how to better fool the discriminator into classifying fake images as real ones

Discriminator training

- Generator produces fake images
- Discriminator outputs a prediction
- Binary classification

Generator training

- Generator takes a random input z
- The fake images produced are fed into the discriminator
- We lie to the discriminator, and label all of these fake images as real (y = 1)

Autoencoder

• It can be used to construct a reduced representation (latent space)

Latent space

Each image is represented by a point in n-dimensional (latent) space

