线性方程组

Didnelpsun

目录

1	基本概念			
	1.1	线性方程组与矩阵	1	
	1.2	矩阵乘法与线性变换	2	
	1.3	线性方程组的解	2	
	1.4	线性方程组的矩阵解表示	3	
2	具体	线性方程	4	
	2.1	齐次方程组	4	
		2.1.1 有解条件	4	
		2.1.2 解的性质	4	
		2.1.3 解的结构	4	
		2.1.4 求解过程	4	
	2.2	非齐次方程组	6	
		2.2.1 有解条件	6	
		2.2.2 解的性质	6	
		2.2.3 求解过程	6	
	2.3	克拉默法则	7	
3	抽象	线性方程	7	
	3.1	解的判定	7	
	3.2	解的性质	8	
	3.3	基础解系	8	
	3.4	系数矩阵列向量与解	9	

4	公共解	10
5	同解方程组	10

1 基本概念

矩阵是根据线性方程组得到。线性方程组和向量组本质上是一致的。

1.1 线性方程组与矩阵

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_n \end{cases}$$

$$n 元齐次线性方程组。$$

$$n 元非齐次线性方程组。$$

m 是方程个数,即方程组行数,n 是方程未知数个数,即类似方程组的列数。 对于齐次方程, $x_1 = \cdots = x_n = 0$ 一定是其解,称为其**零解**,若有一组不全 为零的解,则称为其**非零解**。其一定有零解,但是不一定有非零解。

对于非齐次方程,只有 $b_1 \cdots b_n$ 不全为零才是。

令系数矩阵
$$A_{m \times n} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \cdots & & \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$
,未知数矩阵 $x_{n \times 1} = \begin{pmatrix} x_1 \\ \cdots \\ x_n \end{pmatrix}$,常 数项矩阵 $b_{m \times 1} = \begin{pmatrix} b_1 \\ \cdots \\ b_m \end{pmatrix}$,增产矩阵 $B_{m \times (n+1)} = \begin{pmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \cdots & & \\ a_{m1} & \cdots & a_{mn} & b_n \end{pmatrix}$ 。 所以 $AX = \begin{pmatrix} a_{11}x_1 + \cdots + a_{1n}x_n \\ \cdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n \end{pmatrix}$ 。
$$\begin{pmatrix} a_{11}x_1 + \cdots + a_{1n}x_n \\ \cdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n = b_1 \\ \cdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n = b_n \end{pmatrix}$$
,当 $b = 0$ 就是齐次线

性方程。

从而矩阵可以简单表示线性方程。

1.2 矩阵乘法与线性变换

矩阵乘法实际上就是线性方程组的线性变换,将一个变量关于另一个变量 的关系式代入原方程组,得到与另一个变量的关系。

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1s}x_s \\ \dots \\ y_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{ms}x_s \end{cases} \begin{cases} x_1 = b_{11}t_1 + b_{12}t_2 + \dots + b_{1n}t_n \\ \dots \\ x_s = b_{s1}t_1 + b_{s2}t_2 + \dots + b_{sn}t_n \end{cases}$$

原本是线性方程分别是 y 与 x 和 x 与 t 的关系式, 而如果将 t 关于 x 的关系式代入 x 关于 y 的关系式中, 就会得到 t 关于 y 的关系式:

$$\begin{cases} y_1 = a_{11}(b_{11}t_1 + \dots + b_{1n}t_n) + \dots + a_{1s}(b_{s1}t_1 + b_{s2}t_2 + \dots + b_{sn}t_n) \\ \dots \\ y_m = a_{m1}(b_{11}t_1 + \dots + b_{1n}t_n) + \dots + a_{ms}(b_{s1}t_1 + b_{s2}t_2 + \dots + b_{sn}t_n) \\ = \begin{cases} y_1 = (a_{11}b_{11} + \dots + a_{1s}b_{s1})t_1 + \dots + (a_{11}b_{1n} + \dots + a_{1s}b_{sn})t_n \\ \dots \\ y_m = (a_{m1}b_{11} + \dots + a_{ms}b_{s1})t_1 + \dots + (a_{m1}b_{1n} + \dots + a_{ms}b_{sn})t_m \end{cases}$$

这可以看作上面两个线性方程组相乘,也可以将线性方程组表示为矩阵,进行相乘就得到乘积,从而了解矩阵乘积与线性方程组的关系:

$$\begin{pmatrix} a_{11} & \cdots & a_{1s} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{ms} \end{pmatrix}_{m \times s} \begin{pmatrix} b_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ b_{s1} & \cdots & b_{sn} \end{pmatrix}_{s \times n}$$

$$= \begin{pmatrix} a_{11}b_{11} + \cdots + a_{1s}b_{s1} & \cdots & a_{11}b_{1n} + \cdots + a_{1s}b_{sn} \\ \vdots & \ddots & \vdots \\ a_{m1}b_{11} + \cdots + a_{ms}b_{s1} & \cdots & a_{m1}b_{1n} + \cdots + a_{ms}b_{sn} \end{pmatrix}_{m \times n}$$

$$\circ$$

1.3 线性方程组的解

对于一元一次线性方程: ax = b:

- 当 $a \neq 0$ 时,可以解得 $x = \frac{b}{a}$ 。
- 当 a=0 时, 若 $b\neq 0$ 时, 无解, 若 b=0 时, 无数解。

当推广到多元一次线性方程组: Ax = b, 如何求出 x 这一系列的 x 的解?

从数学逻辑上看,已知多元一次方程,有 m 个约束方程,有 n 个未知数,假定 $m \le n$ 。

当 m < n 时,就代表有更多的未知变量不能被方程约束,从而有 n - m 个自由变量,所以就是无数解,解组中其他解可以由自由变量来表示。无穷多解需要一个解来代表其他解,这个解就是**基础解系**。

当 m=n 时代表约束与变量数量相等,此时又要分三种情况。

当所有的约束条件其中存在线性相关,即一部分约束条件可以由其他约束表示,则代表这部分约束条件是没用的,实际上的约束条件变少,从而情况等于m < n,结果是无数解。

当所有的约束条件不存在线性相关,但是一部分约束条件互相矛盾,则约束条件下就无法解出解,从而结果是无实数解。

当所有的约束条件不存在线性相关,且相互之间不存在矛盾情况,这时候才 会解出一个实数解,从而结果是有唯一实解。

若使用矩阵来解决线性方程组的问题,其系数矩阵 $A_{m \times n}$ 。

对于 $A \neq O$,则 Ax = b,若存在一个矩阵 $B_{n \times n}$ 类似 $\frac{1}{a}$,使得 BAx = Bb,解得 Ex = x = Bb,这个 B 就是 A 的逆矩阵。

对于 A = O 即不可逆,需要判断 b 是否为 0,若不是则无实数解,若是则无穷解,这种判断需要用到增广矩阵,需要用到矩阵的秩判断。

1.4 线性方程组的矩阵解表示

已知对于线性方程组
$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \dots & a_{m1}x_1 + \dots + a_{mn}x_n = b_n \end{cases}$$

按乘积表示为 $A_{m \times n} x_{n \times 1} = b_{m \times 1}$, 然后将 A 按列分块, x 按行分块:

$$(a_1, a_2, \cdots, a_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = b, \quad \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} x_1 + \cdots + \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} x_n = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

这三种都是解的表示方法。

2 具体线性方程

2.1 齐次方程组

即 Ax = 0。其中 A 有 m 行 n 列。

2.1.1 有解条件

必有一个零解。

有解条件讨论是否列满秩问题,即方程组是否能约束全部变量。

对系数矩阵进行行变换,若 r(A) = m,即使行满秩若 m < n 则列不满秩,那么还是无法约束所有变量;若 r(A) = n,即使行不满秩但是列满秩,所以还是能约束所有变量。

当 r(A) = n 时, 即 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关,则方程组有唯一零解。

当 r(A) = r < n 时,即 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性相关,则方程具有无穷多个非零解,具有 n - r 个线性无关解(自由变量)。

2.1.2 解的性质

若 $A\xi_1 = 0$, $A\xi_2 = 0$, 则 $A(k_1\xi_1 + k_2\xi_2) = 0$ 。

2.1.3 解的结构

基础解系**定义**: 假如 $\xi_1, \xi_2, \dots, \xi_{n-r}$ 满足: ①是方程组 Ax = 0 的解; ②线性无关; ③方程组 Ax = 0 的任一解均可由 $\xi_1, \xi_2, \dots, \xi_{n-r}$ 线性表出,则称 $\xi_1, \xi_2, \dots, \xi_{n-r}$ 为 Ax = 0 的基础解系。

当 r(A) < n 时讨论基础解系。

通解定义: 设 $\xi_1, \xi_2, \dots, \xi_{n-r}$ 是 Ax = 0 的基础解系,则 $k_1\xi_1 + k_2\xi_2 + \dots + k_{n-r}\xi_{n-r}$ 是方程组 Ax = 0 的通解, k_1, k_2, \dots, k_{n-r} 为任意常数。

2.1.4 求解过程

1. 将系数矩阵 A 作为**初等行变换**后化为阶梯形矩阵或最简阶梯形矩阵 B,因为初等行变换将方程组化为同解方程组,所以 Ax = 0 与 Bx = 0 同解,只需解 Bx = 0,设 r(A) = r。其中 A 为 m 行 n 列,m 为约束方程组个数,n 为变量个数。

- 2. 在 *B* 中按列找到一个秩为 *r* 的子矩阵,即在每排阶梯都选出一列组合成 子矩阵,则剩余列位置的未知数就是自由变量。
- 3. 按基础解析定义求出 $\xi_1, \xi_2, \dots, \xi_{n-r}$, 并写出通解。

例题: 求齐次线性方程组
$$\begin{cases} x_1 + x_2 - 3x_4 - x_5 = 0 \\ x_1 - x_2 + 2x_3 - x_4 = 0 \\ 4x_1 - 2x_2 + 6x_3 + 3x_4 - 4x_5 = 0 \\ 2x_1 + 4x_2 - 2x_3 + 4x_4 - 7x_5 = 0 \end{cases}$$
的通解。

解: 系数矩阵 $A = \begin{pmatrix} 1 & 1 & 0 & -3 & -1 \\ 1 & -1 & 3 & -1 & 0 \\ 4 & -2 & 6 & 3 & -4 \\ 2 & 4 & -2 & 4 & -7 \end{pmatrix}$, 然后对其行变换,得到:

$$= \begin{pmatrix} 1 & 1 & 0 & -3 & -1 \\ 0 & -2 & 2 & 2 & 1 \\ 0 & 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 & -\frac{7}{6} \\ 0 & 1 & -1 & 0 & -\frac{5}{6} \\ 0 & 0 & 0 & 1 & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \ r(A) = 3.$$

然后找子矩阵,第一台阶选 C_1 ,第二台阶选 C_2 或 C_3 ,第三台阶选 C_4 或 C_5 ,随便找一个,如 (C_1,C_2,C_4) 为子矩阵,则 C_3 , C_5 所代表的未知数 x_3 , x_5 就是自由变量。

所以选择两个分量 $\xi_1 = (\xi_{11}, \xi_{12}, \xi_{13}, \xi_{14}, \xi_{15})^T$ 和 $\xi_2 = (\xi_{21}, \xi_{22}, \xi_{23}, \xi_{24}, \xi_{25})^T$ 作为基础解系。

因为此时选择 x_3 , x_5 为自由变量,所以 x_3 和 x_5 所对应的 ξ_{13} 、 ξ_{15} 、 ξ_{23} 、 ξ_{25} 可以任意取,但是为了保证秩为 2,所以让 $\xi_{13}=1$ 、 $\xi_{15}=0$ 、 $\xi_{23}=0$ 、 $\xi_{25}=1$ 。这四个分量组成的矩阵线性无关,原矩阵线性无关,延长矩阵线性无关,从而 ξ_1 和 ξ_2 必然线性无关。

所以此时已经给定两组解,一种是 ξ_1 的 $x_3 = 1$, $x_5 = 0$, 另一种是 ξ_2 的 $x_3 = 0$, $x_5 = 1$, 这样就只有三个未知数和三个方程,分别代入 A 矩阵所代表的方程组中(代入行阶梯矩阵就可以,不用代入最简行阶梯矩阵):

$$\begin{cases} 1 \cdot x_1 + 1 \cdot x_2 + 0 \cdot x_3 - 3 \cdot x_4 - 1 \cdot x_5 = 0 \\ 0 \cdot x_1 - 2 \cdot x_2 + 2 \cdot x_3 + 2 \cdot x_4 + 1 \cdot x_5 = 0 \\ 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + 3 \cdot x_4 - 1 \cdot x_5 = 0 \end{cases}$$

$$\xi_{1} \colon \begin{cases} 1 \cdot x_{1} + 1 \cdot x_{2} + 0 \cdot 1 - 3 \cdot x_{4} - 1 \cdot 0 = 0 \\ 0 \cdot x_{1} - 2 \cdot x_{2} + 2 \cdot 1 + 2 \cdot x_{4} + 1 \cdot 0 = 0 \\ 0 \cdot x_{1} + 0 \cdot x_{2} + 0 \cdot 1 + 3 \cdot x_{4} - 1 \cdot 0 = 0 \end{cases}, \quad \xi_{1} = (-1, 1, 1, 0, 0)^{T}.$$

$$\xi_{2} \colon \begin{cases} 1 \cdot x_{1} + 1 \cdot x_{2} + 0 \cdot 0 - 3 \cdot x_{4} - 1 \cdot 1 = 0 \\ 0 \cdot x_{1} + 1 \cdot x_{2} + 0 \cdot 0 - 3 \cdot x_{4} - 1 \cdot 1 = 0 \\ 0 \cdot x_{1} - 2 \cdot x_{2} + 2 \cdot 0 + 2 \cdot x_{4} + 1 \cdot 1 = 0 \end{cases}, \quad \xi_{2} = (7, 5, 0, 2, 6)^{T}.$$

所以通解为 $k_1\xi_1 + k_2\xi_2 = k_1(-1,1,1,0,0)^T + k_2(7,5,0,2,6)^T$ 。

2.2 非齐次方程组

即 Ax = b, b 为不全为 0 的列向量。

2.2.1 有解条件

$$A = [\alpha_1, \alpha_2, \cdots, \alpha_n], \quad \text{ if } \quad \alpha_j = [a_{1j}, a_{2j}, \cdots, a_{mj}]^T, \quad j = 1, 2, \cdots, n_{\circ}$$

当 $r(A) \neq r([A, b])$ 时 (r(A) + 1 = r([A, b])),即 b 不能被 A 线性表出,则 方程组无解。

当 r(A) = r([A, b]) = n 时,即 b 能被 A 线性表出,A 线性无关,[A, b] 线性相关,矩阵列满秩,则方程组有唯一解。

当 r(A) = r([A, b]) = r < n 时,即 b 能被 A 线性表出,A 线性相关,矩阵列降秩,则方程组有无穷多解。

2.2.2 解的性质

若 η_1, η_2, η 是非齐次线性方程组 Ax = b 的解, ξ 是对应齐次线性方程组 Ax = 0 的解, 则:

① $\eta_1 - \eta_2$ 是 Ax = 0 的通解。

② $k\xi + \eta$ 是 Ax = b 的解。

2.2.3 求解过程

将系数矩阵和常数项矩阵合并为一个增广矩阵,对增广矩阵进行行变换变 为阶梯形矩阵,求出对应齐次线性方程组的通解,最后假设一个非齐次线性方程 组的特解。

1. 写出 Ax = b 的导出方程组 Ax = 0 并求出其通解 $k_1\xi_1 + k_2\xi_2 + \cdots + k_{n-r}\xi_{n-r}$.

- 2. 求出 Ax = b 的一个特解 η 。
- 3. Ax = b 的通解为 $k_1\xi_1 + k_2\xi_2 + \cdots + k_{n-r}\xi_{n-r} + \eta$ 。

例题: 求非齐次线性方程组 $\begin{cases} x_1+5x_2-x_3-x_4=-1\\ x_1-2x_2+x_3+3x_4=3\\ 3x_1+8x_2-x_3+x_4=1\\ x_1-9x_2+3x_3+7x_4=7 \end{cases}$ 的通解。 解: 对方程组提取出增广矩阵并进行行动地。

然后求齐次方程的通解: 找两列作为子矩阵, 如 x_1 , x_2 , 则 x_3 , x_4 作为自 由变量,设两个 $\xi_1 = (\xi_{11}, \xi_{12}, 1, 0)^T$ 和 $\xi_2 = (\xi_{21}, \xi_{22}, 0, 1)^T$ 。

解得 $\xi_1 = (-3, 2, 7, 0)^T$, $\xi_2 = (-13, 4, 0, 7)^T$ (为了得到整数通解都乘了 7)。 通解为 $k_1\xi_1 + k_2\xi_2 = k_1(-3, 2, 7, 0)^T + k_2(-13, 4, 0, 7)^T$ 。

然后求其非齐次的特解, 让两个自由变量为 0 减少计算, 即 $\eta = (\eta_1, \eta_2, 0, 0)^T$ 代入方程得到 $\eta = \left(\frac{13}{7}, -\frac{4}{7}, 0, 0\right)^T$ 。

所以通解为 $k_1(-3,2,7,0)^T + k_2(-13,4,0,7)^T + \left(\frac{13}{7}, -\frac{4}{7}, 0, 0\right)^T$ 。

数、但是特解不能同乘一个数、因为其表示的是一个具体的数。

2.3克拉默法则

克拉默法则本来是矩阵中的运算法则, 但是与方程组有更密切的关系, 所以 放到线性方程组中。

定理: 若 Ax = b 的系数矩阵 A 的行列式 $|A| \neq 0$,则方程有唯一解,且 $x_i = \frac{|A_i|}{|A|}$, 其中 A_i 为把系数矩阵 A 的第 i 列的元素用方程组右侧的常数项代替 后所得到的 n 阶矩阵。

3 抽象线性方程

3.1 解的判定

Ax = 0, 总有解, 至少有零解。

 $A_{m \times n} x = 0$, 当 r(A) = n 时, 只有零解; 当 r(A) < n 时, 无穷多解。

 $A_{m \times n} x = b$ 时,当 $r(A) = r([A, b]) + 1 \neq r([A, b])$ 时,无解;当 r(A) = r([A, b]) = n 时,有唯一解;当 r(A) = r([A, b]) = r < n 时,无穷多解。

当 Ax = 0 只有零解时, r(A) = n, 当 Ax = 0 有无穷多解时, r(A) = r < n, 都不能判定 r(A) 与 r([A,b]) 的关系, 若以 Ax = b 可能有解也可能无解。

当 Ax = b 有唯一解时,r(A) = r([A, b]) = n,所以 Ax = 0 列满秩,只有零解。

当 Ax = b 有无穷多解时,r(A) = r([A,b]) = r < n,则 Ax = 0 有无穷多解。 当 A 行满秩,则 r(A) = r([A,b]),则 $Ax = \beta$ 必有解,因为原来无关,延长 无关。

所以已知非齐次解情况能推出齐次解情况, 但是反之不能。

3.2 解的性质

非齐次通解 = 齐次的通解 + 非齐次一个特解。

例题: $r(A_{4\times4}) = 2$, η_1, η_2, η_3 为 Ax = b 的三个解向量,其中具有如下关系: $\begin{cases} \eta_1 - \eta_2 = (-1, 0, 3, -4)^T \\ \eta_1 + \eta_2 = (3, 2, 1, -2)^T \end{cases}$, 求 Ax = b 的通解。 $\eta_3 + 2\eta_2 = (5, 1, 0, 3)^T$

解: s = n - r(A) = 4 - 2 = 2,所以通解的基础解系中有两个分量 ξ_1 和 ξ_2 。 所以需要解 Ax = 0,又存在三个解向量,所以 $A\eta_1 = A\eta_2 = A\eta_3 = b$, 所以 $A(\eta_1 - \eta_2) = 0$,所以 $\eta_1 - \eta_2 = (-1, 0, 3, -4)^T$ 就是其中一个解,所以令 $\xi_1 = \eta_1 - \eta_2 = (-1, 0, 3, -4)^T$ 。

然后根据所给出的 η 进行凑, $A(\eta_1+\eta_2)=2b=A(3,2,1,-2)^T$, $A(\eta_3+2\eta_2)=3b=A(5,1,0,3)^T$ 。 所以 $3A(\eta_1+\eta_2)-2A(\eta_3+2\eta_2)=0$, 所以 $A(3(\eta_1+\eta_2)-2(\eta_3+2\eta_2))=0$, 所以令 $\xi_2=3(\eta_1+\eta_2)-2(\eta_3+2\eta_2)=(-1,4,3,-12)^T$ 。 最后找一个特解, $A(\eta_1+\eta_2)=2b$, $A(\eta_1+\eta_2)=b$ $A(\eta_1+\eta_2)$

所以通解为
$$k_1(-1,0,3,-4)^T + k_2(-1,4,3,-12)^T + \left(\frac{3}{2},1,\frac{1}{2},-1\right)^T$$

3.3 基础解系

对于 $A_{m\times n}x=0$, r(A)=r, 若向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 满足: ① $A\alpha_i=0$, $i=1,2,\cdots,s$; ② $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关; ③s=n-r, 则称 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 为 Ax=0 的基础解系。

例题: 设 ξ_1, ξ_2, ξ_3 是方程组 Ax = 0 的基础解系,则下列向量组也是方程组 Ax = 0 的基础解系的是 ()。

$$A.\xi_1 - \xi_2, \ \xi_2 - \xi_3, \ \xi_3 - \xi_1$$
 $B.\xi_1 + \xi_2, \ \xi_2 - \xi_3, \ \xi_3 + \xi_1$ $C.\xi_1 + \xi_2 - \xi_3, \ \xi_1 + 2\xi_2 + \xi_3, \ 2\xi_1 + 3\xi_2$ $D.\xi_1 + \xi_2, \ \xi_2 + \xi_3, \ \xi_3 + \xi_1$

解:需要判断基础解系是否线性无关,需要对应的行列式值非0。

对于
$$D$$
: $(\xi_1 + \xi_2, \ \xi_2 + \xi_3, \ \xi_3 + \xi_1) = (\xi_1, \xi_2, \xi_3) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \neq 0$, 所以 D

线性无关,从而为基础解系。

例题: 设 $\xi_1 = [1, -2, 3, 1]^T$, $\xi_2 = [2, 0, 5, -2]^T$ 是齐次线性方程组 $A_{3\times 4}x = 0$ 的解,且 r(A) = 2,则下列向量中是其解向量的是()。

$$A.\alpha_1 = [1, -2, 3, 2]^T$$
 $B.\alpha_2 = [0, 0.5, -2]^T$ $C.\alpha_3 = [-1, -6, -1, 7]^T$ $D.\alpha_4 = [1, 6, 1, 6]^T$

解: 若 ξ_1 和 ξ_2 为 Ax = 0 的基, 所以 ξ_1 和 ξ_2 应该能表示其解向量。

所以将 ξ_1 和 ξ_2 与 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 分别联立为矩阵,进行初等行变换,查看是 否有解,即新增广矩阵必须秩为 2。

ABD 选项增广矩阵的秩都为 3,所以不能表示,而只有 C 的为 2,所以 C 可以表示。

3.4 系数矩阵列向量与解

对于齐次方程而言, 其解是让 A 的线性组合为零向量时线性组合的系数, 对于非齐次而言解是 b 由 A 线性表出的表出系数。

所以方程的解就是描述列向量组之间数量关心的系数。

例题: 已知 $A = [\alpha_1, \alpha_2, \alpha_3, \alpha_4]$, 其中 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是四维列向量,且 $\alpha_1 = 2\alpha_2 + \alpha_3$,r(A) = 3,若 $\beta = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4$,求线性方程组 $Ax = \beta$ 的通

解。

解: $\alpha_1 = 2\alpha_2 + \alpha_3$, $1\alpha_1 - 2\alpha_2 - 1\alpha_3 + 0\alpha_4 = 0$, 即 $A(1, -2, -1, 0)^T = 0$ 。 又 $r(A_{4\times 4}) = 4$, s = n - r(A) = 4 - 3 = 1, $\xi = (1, -2, -1, 0)^T$ 。 所以特解为 β 的系数: $(1, 2, 3, 4)^T$,通解为 $k(1, -2, -1, 0)^T + (1, 2, 3, 4)^T$ 。

4 公共解

- 1. 求两个方程组解的交集部分。可以联立两个方程求解。
- 2. 求出 $A_{m \times n} x = 0$ 的通解 $k_1 \xi_1 + k_2 \xi_2 + \dots + k_s \xi_s$, 这些 k 本来是独立的,然后代入 $B_{m \times n} x = 0$,求出 $k_i (i = 1, 2, \dots, s)$ 之间的关系,再代回 $A_{m \times n} x = 0$ 的通解中就得到公共解。
- 3. 给出 $A_{m \times n} x = 0$ 的通解与 $B_{m \times n} x = 0$ 的通解联立: $k_1 \xi_1 + k_2 \xi_2 + \dots + k_s \xi_s = l_1 \eta_1 + l_2 \eta_2 + \dots + l_s \eta_s = 0$,能解出 k_i 和 l_i 。

例题: 已知线性方程组 $A=\left\{\begin{array}{ll} x_1+x_2=0\\ x_2-x_4=0 \end{array}\right.,\; B=\left\{\begin{array}{ll} x_1-x_2+x_3=0\\ x_2-x_3+x_4=0 \end{array}\right.,\;$ 求 方程组的公共解。

解:
$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{pmatrix}$.

两个秩都为 2, 选择前两个分量为基子矩阵, 后两个为通解分量。

$$\xi_1 = (0,0,1,0)^T, \quad \xi_2 = (-1,1,0,1)^T, \quad \eta_1 = (0,1,1,0)^T, \quad \eta_2 = (-1,-1,0,1)^T,$$

$$k_1 \xi_1 + k_2 \xi_2 = k_1 (0,0,1,0)^T + k_2 (-1,1,0,1)^T = (-k_2,k_2,k_1,k_2)^T,$$

$$l_1 \eta_1 + l_2 \eta_2 = l_1 (0,1,1,0)^T + l_2 (-1,-1,0,1)^T = (-l_2,l_1-l_2,l_1,l_2)^T,$$
令 $(-k_2,k_2,k_1,k_2)^T = (-l_2,l_1-l_2,l_1,l_2)^T,$ 所以解得 $2k_2 = k_1$ 。
公共解为 $(-k_2,k_2,2k_2,k_2)^T = k_2 (-1,1,2,1)^T$ 。

5 同解方程组

若 $A_{m \times n} x = 0$ 和 $B_{s \times n} x = 0$ 有完全相同的解,就是同解方程组。 ∴ $r(A) = r(B) = r([A, B]^T)$ 。

例题: 线性方程组
$$A = \begin{cases} x_1 + 3x_3 + 5x_4 = 0 \\ x_1 - x_2 - 2x_3 + 2x_4 = 0 \end{cases}$$
,在其基础上加一个方 $2x_1 - x_2 + x_3 + 3x_4 = 0$

程
$$B =$$

$$\begin{cases} x_1 + 3x_3 + 5x_4 = 0 \\ x_1 - x_2 - 2x_3 + 2x_4 = 0 \\ 2x_1 - x_2 + x_3 + 3x_4 = 0 \\ 4x_4 + ax_2 + bx_3 + 13x_4 = 0 \end{cases}$$
, ab 满足什么条件, AB 是同解方程组。

解: B 在 A 的基础上增加一个方程,即多增加了约束,从而 B 的解一定为 A 的解的子集。所以只要 A 的解也满足 B 的解就是同解方程组。

$$A = \begin{pmatrix} 1 & 0 & 3 & 5 \\ 0 & -1 & -5 & -3 \\ 0 & 0 & 0 & -4 \end{pmatrix}, \quad s = n - r = 4 - 3 = 1, \quad \xi = (-3, -5, 1, 0)^T,$$
$$= k(-3, -5, 1, 0)^T = (-3k, -5k, k, 0)^T,$$

所以这个对于 B 而言必然满足前三行,若要整体满足,就也要满足 B 的第四行,所以直接代入第四行: 4(-3k)+a(-5k)+bk+0=k(-12-5a+b)=0。

又 k 为任意数, 所以 -12-5a+b=0, 即 b=5a+12。

例题: 设 A 为 n 阶实矩阵, A^T 是 A 的转置矩阵,证明方程组 $\Lambda: Ax = 0$ 和 $\Upsilon: A^T Ax = 0$ 是同解方程组。

证明: 若 γ 为 Λ 的唯一解,则 $A\gamma=0$,则 $A^TA\gamma=A^T0=0$, \therefore γ 也为 Υ 的解。

若 η 为 Υ 的唯一解,则 $A^TA\eta=0$, $\eta^TA^TA\eta=(A\eta)^TA\eta=\|A\eta\|^2=0$,所 以 $A\eta=0$,从而 η 也为 Λ 的解。

所以同解, 所以其两个矩阵的基解等价。

定理:
$$r(A) = r(A^T) = r(A^T A) = r(AA^T)$$
。