LEMMA 0.1. Let (G, \circ) be a group and let e be a right identity element of G such that, for all $a \in G$, there exists a suitable x in G with $a \circ x = e$. The existence of e is assured by the group axioms 3 and 4.

AXIOM 1. If $g \in G$ is such that $g \circ g = g$, then g = e.

AXIOM 2. e is the unique right identity in G.

AXIOM 3. A right inverse of an element in G is also a left inverse of the same element. In other words, if $a \circ x = e$, then $x \circ a = e$.

Axiom 4. e is a left identity in G. That is, $e \circ a = a$ for all $a \in G$.

Axiom 5. e is the unique left identity in G.

Axiom 6. Each element has a unique right inverse in G.

Axiom 7. Each element has a unique left inverse in G.

AXIOM 8. The unique right inverse of any $a \in G$ is equal to the unique left inverse of a.

PROOF. (1) Let $g \in G$ be such that $g \circ g = g$. We choose a right inverse of g with respect to e. This is possible by the axiom 4. Let us call it h. Thus $g \circ h = e$. Then

$$(g \circ g) \circ h = g \circ h$$

 $g \circ (g \circ h) = g \circ h$ (by associativity),
 $g \circ e = e$ (since $g \circ h = e$),
 $g = e$ (since e is a right identity).

This proves part(1).

- (2) The claim is that e is the unique right identity in G. This means: if $f \in G$ is a right identity, that is, if $a \circ f = a$ for all $a \in G$, then f = e. Suppose f is a right identity. Then $a \circ f = a$ for all $a \in G$. Writing f for a in particular, we see $f \circ f = f$. Hence f = e by part (1).
- (3) A right inverse x of an arbitrary element $a \in G$ is also a left inverse of a. This is what we are to prove. So we assume $a \circ x = e$ and try to derive $x \circ a = e$. We use part(1). If $a \circ x = e$, then

$$(x \circ a) \circ (x \circ a) = [(x \circ a) \circ x] \circ a$$
 (by associativity)
= $[x \circ (a \circ x)] \circ a$ (by associativity)
= $[x \circ e] \circ a$
= $x \circ a$.

So $g := (x \circ a)$ is such that $g \circ g = g$. By part (1), g = e. So $x \circ a = e$.

(4) We are to prove that e is a left identity. So we must show $e \circ a = a$ for all $a \in G$. Let $a \in G$ and let x be a right inverse of a. Then

$$a \circ x = e$$
.