IoT Devices

IoT
Raaspberry Pi
Arduino
BBC Micro:bit

IoT – The Internet of Things

- The Internet of Things (IoT) is made possible because small computers can now be made very cheaply
- Many every day devices and appliances can thus include a small computer that can control the device and communicate over the internet.

IoT at home

Some IoT hardware providers

Common IoT devices

- IoT chipsets typically provide internet connectivity via WIFI (802xx) and or bluetooth, as well as a processor and memory, and some I/O ports.
 - There also exist systems on a small board to allow for prototyping and enthusiasts to build their own IoT systems
 - A large number of small single board computers now exist. The two most common are <u>Rasperry Pi</u> and <u>Arduino</u>

Rasperry Pi

Arduino

Raspberry Pi

- Model 1 B released in Feb 2012
- Model 1 A released shortly after simpler
- Model B+ 2014

 Pi Zero released November 2015 smaller size for embedded applications

Pi 3 Model B, released Feb 2016.

Includes Wifi, Bluetooth. 1.2GHz quad core ARM Cortex-A53 CPU, GPU, 1GB SDRAM, HDMI, microSD, 4 USB ports, ~\$70 on ebay.

Full details: https://en.wikipedia.org/wiki/Raspberry_Pi

Arduino

Arduino

- Developed in Italy to use for teaching about micro controllers.
 - Available commercially since around 2007
 - Mainly based on the Atmega(8/1632) series of processors. Typically 16Mhz
 - Typically 32k SDRAM, but varies from 2 to 256k
 - Large number of variations, in size of unit and functionality
 - Current "standard" board is Uno R3 about \$5-\$15 in Australia for board alone
 - Arduino is cheaper and simpler than Raspberry Pi
 - Extra capability can be achieved by adding electrical components, sensors, or "Shields"

Loose sensors as part of a kit

Both Raspberry Pi and Arduino do not come with their own sensrs – you much buys them separately.

Arduino boards

Sensors on small boards

Sheilds

Arduino Main Features

- 13 Digital pins, These can be configured as input or output
 - You can use any of the pins to control devices or sensors, or to read digital input. Simply change the pin number constant in your code
- 5 Analog pins
 - These are used to read input from analog sensors. The Arduino has an inbuilt A/D converter that will convert the analog voltage to a number in the range 0-1023
- 5V, 3.3V and ground pins
 - To supply power as needed

Micro:bit – ARM architechure

- ARM stands for Advanced Risc Machine
- The ARM company has designed a range of processor cores and licenses them for use.
- ARM holdings was originally Acorn Computers and made a type of desktop computer in the 80s
- Arm Holdings develops the architecture and licenses it to other companies, who design their own products that implement one of those architectures including <u>systems-on-chips</u> (SoC) and <u>systems-on-modules</u> (SoM) that incorporate memory, interfaces, radios, etc. (Wikipedia)

ARM Architecture

	Core			Refe-	
Architecture	bit-width	Cores	Profile	rences	
ARM Holdings	Third-part	y			
ARMv1	32 ^[a 1]	ARM1		Classic	
ARMv2	32[a 1]	ARM2, ARM250, ARM3	Amber, STORM Open Soft Core ^[39]	Classic	
ARMv3	32[a 2]	ARM6, ARM7		Classic	
			StrongARM, FA526, ZAP Open Source Processor		
ARMv4	32[a 2]	ARM8	Core ^[40]	Classic	
		ARM7TDMI, ARM9TDMI, SecurCore S			
ARMv4T	32[a 2]	C100		Classic	
ARMv5TE	32	2ARM7EJ, ARM9E, ARM10E	XScale, FA626TE, Feroceon, PJ1/Mohawk	Classic	
ARMv6		2 <u>ARM11</u>		Classic	
ARMv6-M		2ARM Cortex-M0, ARM Cortex-M0+, ARI	M Cortex-M1, SecurCore SC000	Microcontro	<u>oller</u>
ARMv7-M		2 ARM Cortex-M3, SecurCore SC300		Microconti	
ARMv7E-M	32	2 ARM Cortex-M4, ARM Cortex-M7		Microconti	roller
		ARM Cortex-M23,[41] ARM Cortex-		Microcont	
ARMv8-M		2 M33 ^[42]			[43]
ARMv7-R	32	2 ARM Cortex-R4, ARM Cortex-R5, ARM	Cortex-R7, ARM Cortex-R8	Real-time	
ARMv8-R	32	2ARM Cortex-R52		Real-time	[44][45][46]
ARMv7-A	33	ARM Cortex-A5, ARM Cortex-A7, ARM Cortex-A8, ARM Cortex-A9, ARM Cortex-A12, ARM Cortex-A15, ARM 2Cortex-A17	Qualcomm Krait, Scorpion, PJ4/Sheeva, Apple Swift	Application	
ARMv8-A		2 ARM Cortex-A32	Qualcomin rual, Coorpion, 1 & 1/Oncova, 7 (ppic Cwin	Application	
, w. w. w. c		- ANN CONTON / NO.	X-Gene, Nvidia Project Denver, Cavium Thunder X,[51][52][53]	, ipplication	
			AMD K12,		
		ARM Cortex-A35,[47] ARM Cortex-	Apple Cyclone/Typhoon/Twister/Hurricane/Zephyr,		
ARMv8-A	64/32	A53, ARM Cortex-A57, ^[48] ARM Cortex-A72, ^[49] ARM Cortex-A73, ^[50]	Qualcomm Kryo, Samsung M1 and M2 ("Mongoose") ^[54]	Applicatio n	[55][56]
ARMv8.1-A	64/32	TBA	ThunderX2 ^[57]	Application	1
				Applicatio	
ARMv8.2-A	64/32	ARM Cortex-A55,[58] ARM Cortex-A75,[5	^[9] ARM Cortex-A76 ^[60]		[61]
ARMv8.3-A	64/32	TBA	Apple A12 Bionic	Application	
ARMv8.4-A	64/32	TBA		A 1: 4:	

ARM Processors

 High end ARM processors are used extensively in mobile phones and tablets

- The Cortex range is intended for use in micro-controllers
- ARM based processors are used in at least 60% of mobile devices
- There are many different versions: M0-M35
- The Micro:bit is based on the ARM Cortex-M0 mircro controller

ARM Cortex processors

	Cortex	Cortex	Cortex	Cortex	Cortex	Cortex	Cortex	Cortex	Cortex
O									
Arm Core	<u>M0[2]</u>	M0+[3]	M1[4]	<u>M3[5]</u>	<u>M4[6]</u>	M7[7]	M23[8]	M33[12]	M35P
							ARMv8-M	ARMv8-M	ARMv8-M
ARM architecture	ARMv6-M[9]	ARMv6-M[9]	ARMv6-M[9]	ARMv7-M[10]	ARMv7E-M[10]	ARMv7E-M[10]	Baseline[15]	Mainline[15]	Mainline[15]
Computer architecture	Von Neuman	Von Neumann	Von Neumann	<u>Harvard</u>	Harvard	Harvard	Von Neumann	Harvard	Harvard
nstruction pipeline	3 stages	2 stages	3 stages	3 stages	3 stages	6 stages	2 stages	3 stages	3 stages
humb-1 instructions	Most	Most	Most	Entire	Entire	Entire	Most	Entire	Entire
humb-2 instructions	Some	Some	Some	Entire	Entire	Entire	Some	Entire	Entire
Multiply instructions									
32x32 = 32-bit result	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Multiply instructions									
32x32 = 64-bit result	No	No	No	Yes	Yes	Yes	No	Yes	Yes
Divide instructions									
32/32 = 32-bit quotient	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Saturated instructions	No	No	No	Some	Yes	Yes	No	Yes	Yes
OSP instructions	No	No	No	No	Yes	Yes	No	Optional	Optional
Single-Precision (SP)									
loating-point instructions	No	No	No	No	Optional	Optional	No	Optional	Optional
Double-Precision (DP)									
loating-point instructions	No	No	No	No	No	Optional	No	No	No
rustZone instructions	No	No	No	No	No	No	Optional	Optional	Optional
Co-processor instructions	No	No	No	No	No	No	No	Optional	Optional
nterrupt latency			23 for NMI				15 no security ext		
if zero-wait state RAM)	16 cycles	15 cycles	26 for IRQ	12 cycles	12 cycles	12 cycles	27 security ext	TBD	TBD

The Cortex-M0 core is optimized for small silicon die size and use in the lowest price chips.

- Key features of the Cortex-M0 core are:
- ARMv6-M architecture
- 3-stage <u>pipeline</u>
- 16 32 bit registers (PC is reg 15)
- Instruction sets:
 - Thumb-1 (most), missing CBZ, CBNZ, IT
 - Thumb-2 (some), only BL, DMB, DSB, ISB, MRS, MSR
 - 32-bit hardware integer multiply with 32-bit result

1 to 32 interrupts, plus NMI

- Memory: the micro:bit has 256k of flash memory and 16Kb of static RAM
- Other features: https://microbit.org/guide/features/

BBC Microbit

- Much lower power than the Raspberry Pi or Arduino, , but look at all the sensors
- Biggest advantage:
 - Access to sensors, both standalone, and via PC

Sensor suchs as:

- Radio & Bluetooth antenna
- Processor & temperature sensor
- Compass
- Accelerometer and Gyroscope
- Input/Output pins
- Single and 25x LED for display and light sensing
- Reset button + 2 user Buttons
- Micro USB socket
- Battery socket
- USB interface chip

BBC Microbit

BBC Microbit – more detail

- When you connect the Micro:bit (MB) via USB, you will see an extra drive with some files on it.
 - If you hold down the reset button while connecting the USB, you will see a different set of files including device.txt which contains the version numbers of all the software installed.

DAPLink Firmware - see https://mbed.com/daplink

Unique ID: 000000051864e45000a10070000004a0000000097969972

HIC ID: 97969901

Auto Reset: 0

Automation allowed: 1
Overflow detection: 0

Daplink Mode: Bootloader Bootloader Version: 0243 Interface Version: 0249

Git SHA: b403a07e3696cee1e116d44cbdd64446e056ce38

Local Mods: 0

USB Interfaces: MSD

Bootloader CRC: 0x32eb3cfd Interface CRC: 0xcdb7b2a3

Remount count: 0

What is actually inside the ,e,pry pf the MB?

Runtime

MicroPython, TypeScript and other languages

Microbit Device Abstraction Layer (DAL)

Core – High-level components,

Types – Helper types such as ManagedString,

Image, Event and PacketBuffer

Drivers – For control of a specific hardware

component, such as Accelerometer, Button,

Compass, Display, Flash, IO, Serial and Pin

Bluetooth – All the code for the Bluetooth Low Energy

(BLE) stack that is shipped with the micro:bit

- "mbed" Operating System (https://mbed.com)
 - The software at the bottom of the stack is making use of the ARM mbed OS which is:
 - An open-source embedded operating system designed for the "things" in the Internet of Things (IoT).
 - mbed OS includes the features you need to develop a connected product using an ARM Cortex-M microcontroller.
 - mbed OS provides a platform that includes:
 - Security foundations.
 - Cloud management services.
 - Drivers for sensors, I/O devices and connectivity.
 - mbed OS is modular, configurable software that you can customize to your device and to reduce memory requirements by excluding unused software.

"mbed". Operating System

- Lower level Device Drivers
- Controlled Access
- Security

Hardware

- 3D Accelerometer, Gyro
- Compass
- 25 LED's
- Pins

More detail:

https://mattwarren.org/2017/11/28/Exploring-the-BBC-microbit-Software-Stack/

Serial Peripheral Interface (SPI) Bus

 An industry standard bus specification that allows communication with small devices and sensors

SPI bus cont

- Each device (slave) has 4 connections
 - SCLK: Serial Clock (output from master).
 - MOSI: Master Output Slave Input, or Master Out Slave In (data output from master).
 - MISO: Master Input Slave Output, or Master In Slave Out (data output from slave).
 - SS: Slave Select (often <u>active low</u>, output from master).
- The master must have a separate select line for each device (called slave select on the Master, and Chip select on the slave)
- A programmer does not need to be too concerned with this. There are library functions to manage the bus, and libraries for each type of device