全国青少年信息学奥林匹克联赛模拟赛

NPIO Round 6

时间: 2024年11月13日07:30~11:50

题目名称	数的拆分	括号序列	数据结构	构造数组
题目类型	传统型	传统型	传统型	传统型
目录	number	bracket	struct	array
可执行文件名	number	bracket	struct	array
输入文件名	number.in	bracket.in	struct.in	array.in
输出文件名	number.out	bracket.out	struct.out	array.out
每个测试点时限	4.0 秒	2.0 秒	2.0 秒	4.0 秒
内存限制	1 GiB	1 GiB	1 GiB	1 GiB
是否打包	是	是	否	否
子任务或测试点	9	10	20	25
数目	ອ 	10		
测试点是否等分	否	否	是	是

提交源程序文件名

对于 C++ 语言	number.cpp	bracket.cpp	struct.cpp	array.cpp
-----------	------------	-------------	------------	-----------

编译选项

对于 C++ 语言	-02 -std=c++14 -static
-----------	------------------------

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. main 函数的返回值类型必须是 int, 程序正常结束时的返回值必须是 0。
- 3. 提交的程序的代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果比较方式为全文比较(忽略行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 统一评测时采用的机器配置为: Intel(R) Core(TM) i5-6500 CPU @3.20GHz, 内存8GB。上述时限以此配置为准。
- 9. 只提供 Linux 格式附加样例文件。
- 10. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

数的拆分 (number)

【题目描述】

给定 T 个正整数 a_i ,分别问每个 a_i 能否表示为 $x_1^{y_1} \cdot x_2^{y_2}$ 的形式,其中 x_1, x_2 为正整数, y_1, y_2 为大于等于 2 的正整数。

【输入格式】

从文件 number.in 中读入数据。

输入第一行包含一个整数 T 表示询问次数。

接下来 T 行,每行包含一个正整数 a_i 。

【输出格式】

输出到文件 number.out 中。

对于每次询问,如果 a_i 能够表示为题目描述的形式则输出 yes,否则输出 no。

【样例1输入】

7				
2				
6				
12				
4				
8				
24				
72				
1				

【样例1输出】

no		
no		
no		
yes		
yes yes		
no		
yes		

【样例1解释】

第 4,5,7 个数分别可以表示为:

$$a_4 = 2^2 \times 1^2;$$

 $a_5 = 2^3 \times 1^2;$
 $a_7 = 2^3 \times 3^2.$

【样例 2】

见选手目录下的 *number/number2.in* 与 *number/number2.ans*。 该样例满足子任务 2 的条件限制。

【样例 3】

见选手目录下的 *number/number3.in* 与 *number/number3.ans*。 该样例满足子任务 4 的条件限制。

【样例 4】

见选手目录下的 *number/number4.in* 与 *number/number4.ans*。 该样例满足子任务 6 的条件限制。

【样例 5】

见选手目录下的 *number/number5.in* 与 *number/number5.ans*。 该样例满足子任务 8 的条件限制。

【数据范围】

对于所有测试数据保证: $1 \le T \le 4 \times 10^5, 1 \le a_i \le 10^{18}$ 。

子任务编号	$T \leq$	$a_i \leq$	得分
1	5	5	10
2	10	1000	10
3	1000	10^{4}	15
4	10^{5}	10^{6}	10
5	10	10^{7}	10
6	1000	10^{9}	15
7	500	10^{16}	10
8	4×10^{5}	10^{13}	15
9	4 × 10	10^{18}	5

括号序列 (bracket)

【题目描述】

给定一个长度为 n 的括号序列和一个长度为 n 的排列 P。一个括号序列被称为**好**的,当且仅当:

- 这个括号序列是合法的;
- 构造一张 n 个点的图,当且仅当第 i 个位置是左括号时,在点 i 与点 P_i 间连一条无向边,最后形成的图满足每个点的度数(与这个点相连的边数)均为一。
- 一个括号序列合法的定义如下:
- 空序列是合法的;
- 如果 A 是合法的,那么 (A) 也是合法的;
- 如果 A 和 B 都是合法的,那么 AB 也是合法的。

例如()()((()())) 是合法的,而())(() 不是。 现在请你给出一种好的括号序列。保证在给定数据下存在至少一种好的括号序列。

【输入格式】

从文件 bracket.in 中读入数据。

第一行一个整数 n,表示括号序列的长度。

接下来一行 n 个正整数, 第 i 个数表示 P_i 。

【输出格式】

输出到文件 bracket.out 中。

输出一行一个长度为n的括号序列,如果有多种解,输出任意一种即可。

注意,样例输出只是一种参考解,解可能并不唯一。

【样例1输入】

6

2 3 6 1 4 5

【样例1输出】

()()()

【样例 2】

见选手目录下的 *bracket/bracket2.in* 与 *bracket/bracket2.ans*。 该样例满足子任务 2 的条件限制。

【样例 3】

见选手目录下的 *bracket/bracket3.in* 与 *bracket/bracket3.ans*。 该样例满足子任务 4 的条件限制。

【样例 4】

见选手目录下的 *bracket/bracket4.in* 与 *bracket/bracket4.ans*。 该样例满足子任务 8 的条件限制。

【样例 5】

见选手目录下的 *bracket/bracket5.in* 与 *bracket/bracket5.ans*。 该样例满足子任务 10 的条件限制。

【数据范围】

本题采用打包评测,并按照逻辑关系绑定依赖,各子任务的附加限制如下表所示:

子任务编号	$n \leq$	特殊性质	得分
1	4		5
2	20		10
3	24	无	15
4	28		10
5	32		15
6		A	5
7	40	В	10
8			10
9	70	无	10
10	100		10

特殊性质 A:
$$P_i = ((i+1) \operatorname{xor} 1) - 1$$
,其中 xor 表示按位异或运算。
特殊性质 B: $P_i = \begin{cases} i + \frac{n}{2} &, i \leq \frac{n}{2} \\ (i \operatorname{mod} \frac{n}{2}) + 1 &, i > \frac{n}{2} \end{cases}$ 。

【校验器】

为了方便选手测试,在附件中的 bracket 目录下我们下发了 checker.cpp 文件,选手可以编译该程序,并使用它校验自己的输出文件。但请注意它与最终评测时所使用的校验器并不完全一致。你也不需要关心其代码的具体内容。

编译命令为: g++ checker.cpp -o checker -std=c++14

checker 的使用方式为: checker <inputfile> <outputfile> <answerfile>, 参数依次表示输入文件、你的输出文件以及答案文件。

若你输出的括号序列不合法或者图的度数不符合条件,则校验器会给出相应提示。 若你的方案正确,校验器会给出 OK。

【温馨提示】

如果你认为你的做法是正解,请相信它的常数足以通过。

数据结构 (struct)

【题目描述】

给定一个长度为 n 的序列 a,序列的标号从 1 开始,每一个位置是一个 [1,n] 内的整数。

有 m 个操作,第 i 次操作给出一个区间 $[l_i, r_i]$: 这次操作会先将下标在 $[l_i, r_i]$ 中的所有元素加上 1,然后询问全局颜色数,并在最后撤销这次修改(也就是说操作之间互不影响)。

其中,一个序列的全局颜色数定义为这个序列中出现的不同数值的个数。

【输入格式】

从文件 struct.in 中读入数据。

第一行两个整数 n, m。

第二行 n 个用空格隔开的数表示序列 a。

之后 m 行,每行两个用空格隔开的数 l_i, r_i 表示一次询问。

【输出格式】

输出到文件 struct.out 中。

对每次操作,输出一行一个数表示答案。

【样例1输入】

```
10 9
3 10 5 9 1 10 6 4 6 8
3 4
4 5
1 6
5 6
2 7
5 8
1 9
2 9
8 9
```

【样例1输出】

【样例 2】

见选手目录下的 struct/struct2.in 与 struct/struct2.ans。 该样例满足测试点 $1 \sim 2$ 的条件限制。

【样例 3】

见选手目录下的 struct/struct3.in 与 struct/struct3.ans。 该样例满足测试点 $6 \sim 7$ 的条件限制。

【样例 4】

见选手目录下的 struct/struct4.in 与 struct/struct4.ans。 该样例满足测试点 $10 \sim 13$ 的条件限制。

【样例 5】

见选手目录下的 struct/struct5.in 与 struct/struct5.ans。 该样例满足测试点 $14 \sim 16$ 的条件限制。

【样例 6】

见选手目录下的 struct/struct6.in 与 struct/struct6.ans。 该样例满足测试点 $17 \sim 20$ 的条件限制。

【数据范围】

对于所有数据保证: $1 \le n, m \le 10^6, 1 \le a_i \le n, 1 \le l_i \le r_i \le n$ 。 $\forall 1 \le i < m, r_i \le r_{i+1}$ 。

测试点编号	$n \leq$	$m \leq$	特殊性质
$1 \sim 2$	5000	5000	
$3 \sim 5$	3000	10^{6}	
$6 \sim 7$	5×10^4	5×10^4	
$8 \sim 9$	2×10^5	2×10^5	
$10 \sim 13$			A
$14 \sim 16$	10^{6}	10^{6}	В
$17 \sim 20$			无

特殊性质 A: $\forall 1 \leq i \leq n, 2 \nmid a_i$ 。

特殊性质 B: $\forall 1 \leq i < j \leq n \land a_i = a_j = c, \forall i \leq k \leq j, a_k = c$ 。

构造数组 (array)

【题目描述】

你现在有一个长度为 n 的数组 a。一开始,所有 a_i 均为 0。给出一个同样长度为 n 的目标数组 b。求有多少种方案,使得通过若干次以下操作,可以让 a 数组变成 b。

• 选出两个**不同的**下标 $1 \le i < j \le n$,并将 a_i 和 a_j 同时增加 1。

两种方案被称之为不同的,当且仅当存在一个 x 使得一种方案中第 x 次操作选择的两个下标 (i,j) 与另一种方案中的不同。

答案对 998244353 取模。

【输入格式】

从文件 array.in 中读入数据。

输入数据一共包含两行。

第一行包含一个正整数 n。

第二行包含 n 个正整数,表示 b_1, b_2, \ldots, b_n 。

【输出格式】

输出到文件 array.out 中。

输出一行一个正整数,表示将a数组通过若干次操作变成b数组的方案数对998244353取模后的结果。

【样例1输入】

4

2 2 2 2

【样例1输出】

90

【样例1解释】

种类编号	第一组	第二组	第三组	第四组	方案数
1	1,2	1,2	3,4	3,4	$\binom{4}{2} = 6$
2	1,3	1,3	2,4	2,4	$\binom{4}{2} = 6$
3	1,4	1,4	2,3	2,3	$\binom{4}{2} = 6$
4	1,2	1,4	2,3	3,4	4! = 24
5	1,2	1,3	2,4	3,4	4! = 24
6	1,3	1,4	2,3	2,4	4! = 24

总方案数是 $6 \times 3 + 24 \times 3 = 90$ 。

【样例 2】

见选手目录下的 array/array2.in 与 array/array2.ans。 该样例满足测试点 $6 \sim 8$ 的条件限制。

【样例 3】

见选手目录下的 array/array3.in 与 array/array3.ans。 该样例满足测试点 $12 \sim 14$ 的条件限制。

【样例 4】

见选手目录下的 array/array4.in 与 array/array4.ans。 该样例满足测试点 $15 \sim 18$ 的条件限制。

【样例 5】

见选手目录下的 array/array5.in 与 array/array5.ans。 该样例满足测试点 $19 \sim 20$ 的条件限制。

【样例 6】

见选手目录下的 array/array6.in 与 array/array6.ans。 该样例满足测试点 $21 \sim 22$ 的条件限制。

【样例7】

见选手目录下的 array/array7.in 与 array/array7.ans。 该样例满足测试点 $23 \sim 25$ 的条件限制。

【数据范围】

对于所有数据,保证 $1 \le n \le 5000$, $1 \le b_i \le 30000$, $\sum b_i \le 30000$ 。

n	$\sum b_i$	
≤ 5000	$\equiv 1 \pmod{2}$	
=1	< 30000	
=2	≥ 30000	
≤ 5	≤ 8	
≤ 20	— n	
≤ 5000	= n	
≤ 16	≤ 16	
≤ 700	≤ 700	
< 5000	≤ 5000	
<u> > 5000</u>	≤ 30000	
	≤ 5000 = 1 = 2 ≤ 5 ≤ 20 ≤ 5000 ≤ 16	