NU1 Statements A Collection of Unsubstantiated Claims

Nick Spinale Budapest Semesters in Mathematics Number Theory

December 1, 2016

Divisibility

Notation. $a|b \iff \exists x : ax = b$

Proposition.

- 1. $a|b \implies a|bc$
- 2. a|b and $b|c \implies a|c$
- 3. $a|b \text{ and } a|c \implies a|bx + cy$
- 4. $a|b \text{ and } b \neq 0 \implies |a| \leq |b|$
- 5. a|b and $b|a \implies a = \pm b$

Proposition. $a^{n} - b^{n} = (a - b) \sum_{i=0}^{n-1} a^{n-i} b^{i}$

Proposition. If n is odd, then $a^n + b^n = (a+b) \sum_{i=0}^{n-1} (-1)^i a^{n-i} b^i$

Proposition. If n is composite, then $2^n - 1$ is also composite.

Proposition. If $n \ge 2$ and $a^n - 1$ is prime, then a = 2 and n is prime.

Definition (Fermat numbers). $F_n = 2^{(2^n)} + 1$

Proposition. $(F_n, F_m) = 1$

Definition. d, denoted (a, b), is the distingiushed common divisor of a and b iff

- 1. d|a and d|b
- 2. $c|a \text{ and } c|b \implies c|d$

Proposition. (a, b) exists, and is unique up to sign.

Definition (Euclidean Algorithm). Todo

Proposition.

- 1. (a,b) = (a,ak+b)
- 2. (ma, mb) = m(a, b)

Definition (Euclidean Algorithm). (a,b) is the smallest n such that ax + by = n.

Definition. a and b are relatively prime iff (a, b) = 1.

Lemma (Euclid). a|bc and $(a,b)=1 \implies a|c$

Base 10 Divisibility

Proposition (Divisibility by 9). $\overline{a_k \dots a_1 a_0} \equiv a_k + \dots + a_1 + a_0 \mod 9$

Proposition (Divisibility by 11). $\overline{a_k \dots a_1 a_0} \equiv \sum_{i=0}^k (-1)^n a_i \mod 11$

Proposition (Last k digit rule). If $n|10^k$, then $\overline{\ldots a_k a_{k-1} \ldots a_1 a_0} \equiv \overline{a_{k-1} \ldots a_2 a_1} \mod n$

Primes

Definition. p is irreducable iff $a|p \implies a = 1 \lor a = p$

Definition. p is prime iff $p|ab \implies p|a \vee p|b$

Proposition. In \mathbb{Z} , irreducability and primality are equivalent.

Theorem (Fundimental Theorem of Arithmetic). Every positive integer n has a unique canonical representation

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k} = \prod_{i=1}^k p_i^{\alpha_i}$$

Where $p_1 < p_2 < \ldots < p_k$ are primes.

Theorem (Bertrand's Postulate). For all n, there exists a prime p such that n .

Theorem. Arbitrarily large prime gaps exist.

Theorem (Dirichet). If (a, b) = 1, then there are infinitely many primes of the form ak + b.

Theorem. $(\exists x : x^2 \equiv -1 \mod p) \iff p = 4k + 1$

Theorem. If p = 4k - 1 and $p|a^2 + b^2$, then p|a, p|b, and $p^2|a^2 + b^2$.

Congruences

Proposition. Assume $a \equiv b \mod m$ and $c \equiv d \mod m$.

- 1. $a+c \equiv b+d$
- 2. $ac \equiv bc$
- 3. $ac \equiv bd$
- $4. \ a^n \equiv b^n$

Definition.

- 1. A complete residue system modulo n is a set containing exactly one element from each residue class modulo n.
- 2. A reduced residue system modulo n is a set containing exactly one element from each residue class modulo n coprime to m.

Definition (Totient function). $\phi(n)$ is the number of integers a such that $1 \le a < n$ such that (a, n) = 1.

Proposition. Assume
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$$
. Then $\phi(n) = \prod (p_i^{\alpha_i} - p_i^{\alpha_i - 1}) = n \prod (1 - \frac{1}{p_i})$

Theorem (Euler's totient theorem). If (a, n) = 1, then $a^{\phi(n)} \equiv 1 \mod n$.

Theorem (Wilson). $(p-1)! \equiv -1 \mod p$

Theorem. The congruence $ax \equiv b \mod m$ has a solution iff (m,a)|b. Furthermore, all such solutions are equivalent modulo $\frac{m}{(m,a)}$.

Corollary. $ab \equiv ac \mod m \iff b \equiv c \mod \frac{m}{(m,a)}$

Corollary. The equation ax + by = c has a solution iff (a, b)|c. Furthermore, if (x_0, y_0) is a solution, then so is $(x_0 - t \frac{b}{(a,b)}, y_0 + t \frac{a}{(a,b)})$.

Theorem (Chinese Remainder Theorem). If $n_1, \ldots n_k$ are pairwise coprime and $\Pi n_i = N$, then $x \mod N \mapsto (x \mod n_1, \ldots x \mod n_k)$ is a ring isomorphism.

Interesting Numbers

Theorem. If m and n are each the sum of two squares, then so is mn.

Theorem. n is the sum of two squares iff $n = 2^{\gamma} \prod p_i^{\alpha_i} \prod q_i^{2\beta_i}$, where $p_i = 4k + 1$ and $q_i = 4k - 1$.

Order

Definition (Order). Given modulus n and g such that (n, a) = 1, the order of g is the smallest positive k such that $g^k \equiv 1(n)$. We say $o_n(g) = k$.

Proposition. $o_n(g)|\phi(n)$

Proposition. $o_n(g^i) = \frac{o_n(g)}{(i,o_n(g))}$

Definition (Primitive Root). g is a primitive root modulo n if $o_n(g) = \phi(n)$.

Theorem. There exists a primitive root modulo n iff one of the following is true:

 $n = p^{\alpha}$ for some odd prime p $n = 2p^{\alpha}$ for some odd prime p n = 2n = 4

Theorem. $\sum_{d|n} \phi(n) = n$

Quadratic Residues

Definition. $a \mapsto \left(\frac{a}{p}\right)$ is the unique homomorphism from the multiplicative group modulo p to the multiplicative group modulo p.

Proposition. $a^{\frac{p-1}{2}} = \left(\frac{a}{p}\right)$

Proposition.

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } x \text{ is a quadratic residue} \\ -1 & \text{otherwise} \end{cases}$$

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } x \text{ is a quadratic residue} \\ -1 & \text{otherwise} \end{cases}$$

$$\begin{pmatrix} \frac{-1}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv 1(4) \\ -1 & \text{if } p \equiv -1(4) \end{cases}$$

$$\begin{pmatrix} \frac{2}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv \pm 1(8) \\ -1 & \text{if } p \equiv \pm 3(8) \end{cases}$$

$$\begin{pmatrix} \frac{q}{p} \end{pmatrix} = \begin{cases} \frac{p}{q} & \text{if } p \equiv 1(4) \text{ or } q \equiv 1(4) \\ -\begin{pmatrix} \frac{p}{q} \end{pmatrix} & \text{otherwise} \end{cases}$$

3

Proposition. $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$

Arithmetic Functions

Definition (Arithmetic Function). A function $f: \mathbb{N} \to \mathbb{C}$ is arithmetic.

Definition. $d(n) = \sum_{d|n} 1 = \prod (\alpha_i + 1)$

Definition. $\sigma(n) = \sum_{d|n} d = \prod (1 + p_i + \dots + p_i^{\alpha_i})$

Definition. $\phi(n) = \sum_{(a,n)=1} 1 = \prod_i (p_i^{\alpha_i} - p_i^{\alpha_i - 1}) = n \prod_i (1 - \frac{1}{p_i})$

Definition. f is a multiplicative function if (a,b)=1 implies $f(a,b)=f(a)\cdot f(b)$

Definition. f is a total multiplicative function if $f(a,b) = f(a) \cdot f(b)$

Definition. $(f \circ g)(n) = \sum_{d|n} f\left(\frac{n}{d}\right) \cdot g(d)$

Proposition. o preserves multiplicativity.

Observation. $1 \circ 1 = d$ and $1 \circ id = \sigma$

Proposition. d and σ are multiplicative functions.

Theorem (Peak and Valley Theorems for d). For all k, there is some n such that d(n-1) > n+k < d(n+1), and some m such that d(m-1) > m-k < d(m+1).

Definition (Perfect Number). n is perfect if $\sigma(n) = 2n$.

Theorem. n is perfect iff $n = 2^{\alpha}(2^{\alpha+1} - 1)$ where $2^{\alpha+1} - 1$ is prime.