CS C341 / IS C361 Data Structures & Algorithms

DICTIONARY DATA STRUCTURES - HASHING

Hash Tables

- Bucketing and Hashing
- Separate Chaining
- Hash functions
 - Good hash functions
 - Universal hash functions

DICTIONARY DATA STRUCTURES

- Consider an un-ordered dictionary:
 - Typically, elements (and keys) are unique.
 - Need to optimize find, add, and delete operations (typically in that order).

Simplest case:

- The universe of keys, U, is a range of integers: [lo .. hi]
- Representation:
 - o In this case, a table T indexed from 0 to |U|-1 is a good representation.
 - o T[k-lo] contains element with key k.

HASH TABLES

- Suppose the set of keys stored in a Dictionary is small compared to the universe (range) of keys:
 - Need a good mapping from (a large set of) values to (a small set of) integers – i.e. indices
 - Typically referred to as a hash function

```
o h : U --> { 0, 1, ..., m-1 }
```

where m is the size of the table.

If h is 1-to-1, then each bucket is associated with a unique key

o Collision:

Two keys may hash to the same slot (if h is not 1-to-1)

o Goal:

- h must be uniformly random to minimize collisions why?
- o Collision Resolution?

HASH TABLES

- Collision Resolution by Chaining
 - Representation: Table of linked lists.
 - All elements that hash to a (given) slot are chained in an unordered linked list.

HASH TABLES

- Implementation:
 - Initialize a table (i.e. array) T of empty (linked) lists.
 - Element find(Key k, Hashtable T)
 - o return linearSearch(k, T[h(k)]);
 - void add(Element e, Hashtable T)

// e.k is key

- o insertInLinkedList(e, T[h(e.k)]);
 - o If *add* also acts as update (i.e. overwrite) then insertion may traverse the entire list (in the worst case).
 - Else insertion may be at the beginning (i.e. ignore duplicates)
- void delete(Key k, Hashtable T)
 - o deletefromLinkedList(k, T[h(k)]);

HASHING - CHAINING - ANALYSIS

- Load Factor
 - Given a table T with m slots, if n elements are stored define Load factor $\alpha = n/m$
- Assumption:
 - h(k) can be computed in O(1) time
- Worst case time for find (or add or delete):
 - O(n)o Why?
- Average case time:
 - ?

HASHING - CHAINING - ANALYSIS

- o Assumption:
 - Any given element is equally likely to hash into any of the m slots (independent of other elements)
 - Simple uniform hashing (SUH)
- Average case time for *unsuccessful find*: Θ(1+α)
 - Under SUH, average time for unsuccessful find for a key is
 - Average time to search to the end of one of the m lists
 - Average length of such a list is α
 - o Thus the total time is: Θ(1+α)

HASHING - CHAINING - ANALYSIS

- Average case time for successful find: Θ(1+α)
 - Assume add puts element at the end of list
 - Needed if add overwrites existing element if any.
 - Expected number of elements examined
 - 1 + Expected number of elements examined during add
 - o 1 + (i-1)/m for the ith element
 - Do the average over n elements
- Average case time for successful find: Θ(1)
 - if we allow multiple elements with same key
 - o Why?

What is a Good Hash Function?

- Example hash function 1 (for natural numbers):
 - h(k) = k mod m
 - When is this a good hash function?
 - o Counter-examples:
 - $om = 2^p$ for some p
 - $om = 10^p$ for some p when keys are decimal numbers
 - Good choice for m
 - o A prime number that is not close to a power of 2.
 - Why?
- Example hash function 2 (for natural numbers):
 - h(k) = floor(m*(k*A mod 1))
 - o where A is a constant and 0<A<1
 - Don Knuth's recommendation:
 - $\circ A = (\sqrt{5} 1)/2$

WHAT IS A GOOD HASH FUNCTION?

- [2]
- Symbol tables (in compilers/assemblers) often are implemented as hash tables:
 - Records of Symbols and their attributes (e.g. type, scope, address etc.)
- What is a good hash function for strings?
 - E.g. Sum of ASCII values of characters in a string modulo m, where m is the size of the table.
 - o Is this good? Why or Why not?
 - E.g. $(x_0 * a^{k-1} + x_1 * a^{k-2} + ... + x_{k-2} * a + x_{k-1})$ mod m given string $(x_0, x_1, ..., x_{k-1})$ and chosen constant a
 - o Can you implement this in O(k) time ?
 - What should be a good choice of a?

WORST CASE KEY SETS

- It is possible that given a hash function all or most keys hash to the same slot resulting in $\Theta(n)$ access time for each key.
 - E.g. all variables in a program have similar "characteristics"
- Any fixed hash function may exhibit worst case behavior for a set of keys
 - Consider an adversary who knowing the given hash function – chooses a set of keys such that they all hash into the same slot.
- One way to improve the latter situation:
 - Choose the hash function randomly at run time in a way that is independent of keys
 - This is referred to as universal hashing

UNIVERSAL HASHING

- A solution to this approach:
 - Choose a hash function randomly and independently from the set of keys
 - i.e. every hash table instance chooses its hash function say
 at the time of creation or initialization –
 - o And the choice is made uniformly randomly from a class of hash functions.
 - Consider the adversary again:
 - o Adversary doesn't know the hash function so cannot bias the input (of course, incidental bias can still happen!)

Universal hash Functions

- Let H be a finite collection of hash functions that map a given universe U of keys into the range { 0,1,...,m-1}.
 - This collection is said to be a universal family,
 - o if for each pair of distinct keys x and y in U, and a hash function h chosen uniformly randomly from H
 - o Probability $(h(x)=h(y)) \le 1/m$
- The family H (defined below) is universal.
 - $H = \{ h_{a,b} \mid 0 < a < p \text{ and } 0 \le b < p \}$
 - o where $h_{a,b}(k) = ((a*k+b) \mod p) \mod m$
 - o and p is a prime such that $|U| \le p \le 2^* |U|$
- (Proof omitted)

CS C341 / IS C361 Data Structures & Algorithms

DICTIONARY DATA STRUCTURES - HASHING

Open Addressing

- Analysis
 - Probing
 - Unsuccessful Find
 - Successful Find

Bloom Filters

- Motivation
- Implementation
- Analysis
- Applications.

TERMINOLOGY

- The technique of chaining elements that hash into the same slot is referred to by different names:
 - Separate Chaining
 - o for obvious reasons
 - Open Hashing
 - obecause number of elements is not limited by table size
 - Closed Address Hashing
 - o because the location of the bucket (i.e. the address) of an element is fixed
 - Consider an element e that is added, removed, and added again:
 - it will get added to the same bucket.

OPEN ADDRESSING (A.K.A. CLOSED HASHING)

- Fixed Space
 - Fixed Table size and
 - each table location can contain only one element
- Addressing by Hashing
 - Same as in Separate Chaining
- Probing (for a vacant location) in case of collision

OPEN ADDRESSING (A.K.A. CLOSED HASHING)

```
    add(Element e, Hashtable T)
    // Generic procedure

  // e.key is key; h is hash function
  a = h(e.k);
  if T[a] is empty then { T[a]=e; return; }
  j=0;
   repeat {
     j++;
    b = getNextAddr(a,k,j);
   } until (T[b] is empty) // Will this terminate?
  T[b] = e;
```

OPEN ADDRESSING - PROBING SCHEMES

```
// m denotes table size; typically m is chosen to be prime
• Linear Probing:
   getNextAddr(a,k, j) { return (a+j) mod m; }

    Quadratic Probing

   getNextAddr(a,k,j) { return (a+j<sup>2</sup>) mod m; }
Exponential Probing
   getNextAddr(a,k,j) { return (a+2<sup>J</sup>) mod m; }

    Double Hashing

   getNextAddr(a,k,j) { return a+j*h<sub>2</sub>(k) mod m; }
   // h_2(k) is the secondary hash function
   // h_2(k) must be non-zero
   // e.g. h_2(k) = q - (k \mod q) for some prime q < m
```

OPEN ADDRESSING

- Implementation Caveat:
 - add as defined may not terminate!
 - o Must check whether all *m* locations have been probed
 - Could be expensive!
 - o Alternatively, may use a count of non-empty locations.
 - Will work only if the probing sequence covers all locations

Exercise: Handle termination: use simple heuristics(s). **End of Exercise.**

OPEN ADDRESSING

- o Define find.
 - Similar to add:
 - o hash
 - o if element found return it;
 - if empty return INVALID;
 - o otherwise probe until element found or empty slot.
 - oreturn accordingly.
 - Termination?

OPEN ADDRESSING

- O How is deletion done?
 - Deleted slots must be marked deleted
 - o **deleted** flag different from **empty** flag for probing procedure to work
 - find will treat deleted slots as empty slots
 - This won't allow re-use of *deleted* slots
 - o How do you recover deleted slots?
 - add can be modified to fill in any deleted slot encountered in a probing sequence
 - This may not cover all deleted slots
 - **delete** can be implemented such that subsequent entries in a probing sequence are pulled in.
- O How does your deletion scheme affect further probes?

OPEN ADDRESSING - ANALYSIS OF PROBING

- Probing sequence:
 - Sequence of slots generated: S[k,0], S[k,1],..S[k,m]
- Probing requirements:
 - Utilization:
 - oThe probing sequence must be a permutation of 0,1,...m-1
 - Uniform hashing assumption:
 - o Requires that each key may result in any of the m! probing sequences

OPEN ADDRESSING — ANALYSIS OF PROBING [2]

- Linear Probing
 - Slot for the jth probe in a table of size m
 S[k,j] = (h(k) + j) mod m
 - Long runs of occupied slots build up
 - o If an empty slot is preceded by j full slots,
 - then the probability this slot is the next one filled is (j+1)/m
 - oinstead of 1/m (in a table of size m)
 - Effect known as (Primary) clustering
- This is not a good approximation of uniform hashing

OPEN ADDRESSING — ANALYSIS OF PROBING [3]

- Quadratic Probing
 - Slot for the jth probe in a table of size m
 S[k,j] = (h(k) + j²) mod m
 - Clustering effect milder than Linear probing
 - Effect known as secondary clustering
 - But the sequence of slots probed is still dependent on the initial slot (decided by the key)
 - o i.e only m distinct sequences are explored

o Generalize:

 $oS[k,j] = (h(k) + a*j + b*j^2) \mod m$

Exercise: Can you choose a, b, and m such that all slots are utilized?

Exercise: Repeat (very similar) analysis for Exponential Probing.

[4]

OPEN ADDRESSING — ANALYSIS OF PROBING

- Double Hashing
 - Slot for the jth probe in a table of size m $S[k,j] = (h_1(k) + j*h_2(k)) \mod m$
 - Probing sequence depends on k in two ways
 - So, probing sequence depends not only on initial slot
 i.e. m*m probing sequences can be used.

This results in behavior closer to uniform hashing

- If $gcd(h_2(k),m) = d$ for some key k,
 - o then the sequence will explore only (1/d)*m slots
 - Why?
 - o So, choose (for instance):
 - \circ m as a prime, and ensure $h_2(k)$ is always < m
- Can you extend this to a sequence of hashes h₁(k), h₂(k),
 h₃(k), ... ?

OPEN ADDRESSING - ANALYSIS - UNSUCCESSFUL FIND

- Given: open-address table with load factor $\alpha = n/m < 1$
- Assumption: Uniform Hashing
- Expected number of probes in an unsuccessful find is at most $1/(1-\alpha)$
- Proof:
 - Last probed slot is empty; all previous probed slots are non-empty but do not contain the given key
 - Define p_j as the probability that exactly j probes access non-empty slots
 - o Then the expected number of probes is $1 + \sum_{i=0}^{\infty} j^*p_i$
 - If q is defined as the probability that at least j probes access non-empty slots then $\sum_{0}^{\infty} j^* p_i = \sum_{1}^{\infty} q_i$

OPEN ADDRESSING - UNSUCCESSFUL FIND

- Proof: (contd.)
 - The expected number of probes is

$$1 + \sum_{i=0}^{\infty} j^* p_i = 1 + \sum_{i=0}^{\infty} q_i$$

With uniform hashing

$$q_j = (n/m) * ((n-1)/(m-1)) * ... ((n-j+1)/(m-j+1))$$
 $<= (n/m)^j$

Then the expected number of probes is

$$1 + \sum_{1}^{\infty} q_{j} <= 1 + \alpha + \alpha^{2} + \alpha^{3} + ...$$
$$= 1 / (1 - \alpha)$$

OPEN ADDRESSING — ANALYSIS - SUCCESSFUL FIND

- o Given: open-address table with load factor $\alpha = n/m < 1$
- Assumptions: Uniform Hashing; All keys are equally likely to be searched
- Expected number of probes in a successful find is at most $1/\alpha + (1/\alpha)*ln(1/(1-\alpha))$
- Proof:
 - Simplifying assumption :
 - o A successful find follows the same probe sequence as when the element was inserted
 - o When is the assumption reasonable?
 - If k was the (j+1)st key to be inserted
 - then the expected number of probes in finding k is given by the previous theorem (on unsuccessful find)

$$1/(1 - (j/m)) = m/(m-j)$$

OPEN ADDRESSING — ANALYSIS - SUCCESSFUL FIND

- Proof: (contd.)
 - Expected number of probes in finding the key that was inserted as the $(j+1)^{st}$ is m/(m-j)
 - Average over all n keys in the table

```
(1/n) \sum_{j=0}^{n-1} (m/(m-j)) = (m/n)^* (\sum_{j=0}^{n-1} (1/(m-j)))
= (1/\alpha)^* (H_m - H_{m-n})
```

where H_m is the mth Harmonic number.

• Since $\ln(j) \le H_j \le 1 + \ln(j)$ $(1/\alpha) * (H_m - H_{m-n}) \le (1/\alpha) * (1 + \ln m - \ln(m-n))$ $= (1/\alpha) + (1/\alpha) * \ln (m/m-n)$ $= 1/\alpha + (1/\alpha) * \ln(1/(1-\alpha))$

RE-HASHING

- Hash tables support efficient find operations:
 - Average case time complexity is O(1) if load factor is low
 Load factor must be < 1 for separate chaining
- In practice,
 - Load factor must be < 0.75 to expect good performance.
- What if the hash table is nearly "full"?
 - Extend the hash table (i.e. increase its size)
 - o Can the new hash function assign the old values to the same buckets as before?
 - bucket addresses must change for a good distribution?
 - Re-insert all the elements in the table
 - o Referred to as re-hashing.

RE-HASHING

- Cost of Rehashing
 - O(max(m,n)) time typically O(n) as table is nearly full.
 - o Amortized Cost: O(1) time per element
 - But response time at the point of rehashing is bad:
 - o allocation and copying of all the values takes O(n) time between two operations.
 - o Or between the request for an operation and the response.
 - This is bad for applications requiring
 - o bounded (worst case) response time
- What should be the size of the extended table?
 - Typical choice: 2*|T|
 - Trade-offs: ???

BLOOM FILTERS - MOTIVATION

- Tradeoff: Space vs. (In)Correctness
 - i.e. storage space for the table vs. false positives (membership)
- Example Problem: Stemming of words in search engine indexing:
 - e..g. plurals stemmed to singular; all parts of speech stemmed to one form
 - o 90% of cases can be handled by simple rules
 - Rest the exceptions need a dictionary lookup
 - Suppose dictionary is large and must be stored in disk

BLOOM FILTERS - MOTIVATION

• Consider this outline for stemming : for each word w if (w is an exception word) Need dictionary lookup on disk then getStem(w,D) else apply-simple-rule(w)

- Cost for checking exceptions:
 - N * Td where
 N is # words and
 Td is lookup time (on disk)

BLOOM FILTERS - MOTIVATION

 Suppose we can trade-off space for false positives (in lookup): for each word w if (w is in Dm) // in-memory lookup (probabilistic) then { s = getStem(w, Dd); // disk lookup (deterministic) if invalid(s) then apply-simple-rule(w); } else { apply-simple-rule(w); } Ocost for checking exceptions: • N * Tm + (r + f)*N*Tdor is the proportion of exception words of is false positive rate o Tm is lookup time in memory o Td is lookup time on disk

Time Saved: (1 – r –f) * (Td – Tm) / Td

BLOOM FILTERS — AN IMPLEMENTATION

- Hash table is an array of bits indexed from 0 to m-1.
 - Initialize all bits to 0.
 - insert(k):
 - o Compute $h_1(k)$, $h_2(k)$, ..., $h_d(k)$ where each h_i is a hash function resulting in one of the m addresses.
 - o Set all those addressed locations to 1.
 - find(k):
 - o Compute $h_1(k)$, $h_2(k)$, ..., $h_d(k)$
 - o If all addressed locations are 1 then k is found

Else k is **not found**

Always correct.

Not necessarily correct!

BLOOM FILTERS - ANALYSIS

- o Consider a table H of size m.
- Assume we use d "good" hash functions.
- After n elements have been inserted, the probability that a specific location is 0 is given by
 - $p = (1 1/m)^{dn} \approx e^{-dn/m}$ // Why?
- Let q be the proportion of 0 bits after insertion of n elements
 - Then the expected value E(q) = p
- Claim (w/o proof):
 - With high probability q is close to its mean.
- So, the false positive rate is:
 - $f = (1-q)^d = (1-p)^d = (1 e^{-dn/m})^d$

BLOOM FILTERS

- The data structure is probabilistic:
 - If a value is not found then it is definitely not a member
 - If a value is found then it may or may not be a member.
- The error probability can be traded for space.
 - In practice, one can get low error probability with a (small) constant number of bits per element: (1 in our example implementation).

O Applications:

- Dictionaries (for spell-checkers, passwords, etc.)
- Distributed Databases exchange Bloom Filters instead of full lists.
- Network Processing Caches exchange Bloom Filters instead of cache contents
- Distributed Systems P2P hash tables: instead of keeping track of all objects in other nodes, keep a Bloom filter for each node.

LAS VEGAS VS. MONTE CARLO

• Quicksort:

- Randomization for improved performance correctness not altered
- Hashtables (for unordered dictionaries) :
 - o Any 1-to-1 mapping will yield a table but a good hash function should yield a "uniformly random" distribution
 - o Universal hashing chooses hash function "randomly"
- O Both of the above are optimizations:
 - Such techniques are referred to as Las Vegas techniques.
- Monte Carlo Technique
 - Bloom Filter Randomization yields a probabilistic algorithm that does not always produce correct results.