UT Austin CSE 386D

Homework 10

Jonathan Zhang EID: jdz357

Exercise (9.3). Let X = C([0,1]) be the space of bounded continuous functions on [0,1] and, for $u \in X$, define $F(u)(x) = \int_0^1 K(x,y)f(u(y))dy$ where $K : [0,1] \times [0,1] \to \mathbb{R}$ is continuous and f is a C^1 mapping of \mathbb{R} into \mathbb{R} . Find the Fréchet derivative DF(u) of F at $u \in X$. Is the map $u \mapsto DF(u)$ continuous?

 $f \in C^1$ implies that f has a Fréchet derivative, denoted f'. Moreover, for $u \in X$, $f \circ u \in X$ since composition with a continuous function remains continuous. Define another operator $G: X \to X$ as

$$(Gv)(x) = \int_{0}^{1} K(x,y)v(y)dy.$$

Since K is continuous, G is well defined, and $G \in B(X,X)$. We know then that the DG(v) = G. Furthermore, notice that (Fu)(x) is nothing more than $(G \circ f)(x)$. So, using the chain rule,

$$DF(u) = D(G \circ f)(u) = DG(f(u)) f'(u) = G(f(u)) f'(u).$$

The mapping is continuous since f' is continuous, multiplication is continuous, and G is continuous.

Exercise (9.5). Set up and apply contraction mapping principle to show that the problem

$$-u_{xx} + u - \varepsilon u^2 = f(x), \quad x \in \mathbb{R}$$

has a smooth bounded solution if $\varepsilon > 0$ is small enough, where $f(x) \in \mathcal{S}(\mathbb{R})$.

Take the Foruier transform:

$$-u_{xx} + u = f + \varepsilon u^2 =: g \longrightarrow (1 + \xi^2) \hat{u} = \hat{g}$$

yields the solution

$$\hat{u} = \frac{\hat{g}}{1+\xi^2} \longrightarrow u = g * \frac{1}{2}e^{-|x|} = \left(f + \varepsilon u^2\right) * \frac{1}{2}e^{-|x|} = \frac{1}{2}\int\limits_{\mathbb{D}} \left(f\left(y\right) + \varepsilon u^2\left(y\right)\right)e^{-|x-y|}dy.$$

It is natural then to regard the RHS as an operator acting on continuous function on some ball of radius r, say. Let $X = C(B_r(0)) \subset C(\mathbb{R})$ equipped with max norm, and let

$$\left(Gu\right)\left(x\right) = \frac{1}{2} \int\limits_{\mathbb{R}} \left(f\left(y\right) + \varepsilon u^{2}\left(y\right)\right) e^{-|x-y|} dy.$$

CSE 386D UT Austin

In order to apply contraction mapping, we need to show that G sends X back into itself, and that G is a contraction. For $u \in X$, we have the estimate

$$\begin{aligned} \|Gu\|_{\infty} &= \sup_{x} \left| \frac{1}{2} \int_{\mathbb{R}} \left(f\left(y\right) + \varepsilon u^{2}\left(y\right) \right) e^{-|x-y|} dy \right| \\ &\leq \left(\|f\|_{\infty} + \varepsilon \|u\|_{\infty}^{2} \right) \left(\frac{1}{2} \sup_{x} \int_{\mathbb{R}} e^{-|x-y|} dy \right) \\ &\leq \|f\|_{\infty} + \varepsilon r^{2}. \end{aligned}$$

The condition implies

$$||f||_{\infty} + \varepsilon r^2 \leqslant r \Rightarrow \varepsilon \leqslant \frac{-||f||_{\infty} + r}{r^2}.$$

Notably, we need $r > ||f||_{\infty}$. To show that G is a contraction,

$$\begin{aligned} \|Gu_1 - Gu_2\|_{\infty} &= \left\| \frac{\varepsilon}{2} \int_{\mathbb{R}} \left(u_1^2(y) - u_2^2(y) \right) e^{-|x-y|} dy \right\|_{\infty} \\ &\leq \left\| \frac{\varepsilon}{2} \int_{\mathbb{R}} \left(u_1(y) + u_2(y) \right) e^{-|x-y|} dy \right\|_{\infty} \|u_1 - u_2\|_{\infty} \\ &\leq \varepsilon r \sup_{x} \int_{\mathbb{R}} e^{-|x-y|} dy \|u_1 - u_2\|_{\infty} \\ &= 2\varepsilon r \|u_1 - u_2\|_{\infty} \end{aligned}$$

Now G is a contraction if

$$2\varepsilon r < 1 \Rightarrow \varepsilon < \frac{1}{2r}.$$

So, for $\varepsilon < \min \left\{ (2r)^{-1}, r^{-2}(-\|f\|_{\infty} + r) \right\}$, the problem admits a smooth and bounded solution.

Exercise (9.7). Suppose that F is defined on a Banach space X, that $x_0 = F(x_0)$ is a fixed point of F, $DF(x_0)$ exists, and that 1 is not in the spectrum of $DF(x_0)$. Prove that x_0 is an isolated fixed point.

Suppose to the contrary that x_0 is not an isolated fixed point. That is, there exists another fixed point, say x_1 , within an ε ball of x_0 . We consider the difference

$$x_1 - x_0 = F(x_1) - F(x_0) = DF(x_0)(x_1 - x_0) + R(x_0, x_1 - x_0)$$

whihe we can write as

$$(I - DF(x_0))(x_1 - x_0) = R(x_0, x_1 - x_0).$$

Since 1 is not in the spectrum of $DF(x_0)$, then the operator $I - DF(x_0)$ has a bounded inverse. Finally,

$$1 = \lim_{x_1 \to x_0} \frac{\|x_1 - x_0\|}{\|x_1 - x_0\|} = \lim_{x_1 \to x_0} \frac{\left\| [I - DF(x_0)]^{-1} R(x_0, x_1 - x_0) \right\|}{\|x_1 - x_0\|} \lesssim \lim_{x_1 \to x_0} \frac{\|R(x_0, x_1 - x_0)\|}{\|x_1 - x_0\|} \to 0$$

since $R(x_0, x_1 - x_0)$ is $o(\varepsilon)$. Contradiction.

UT Austin CSE 386D

Exercise (9.8). Consider the ODE

$$u'(t) + u(t) = \cos(u(t))$$

posed as an IVP for t > 0 with $u(0) = u_0$.

1. Use contraction mapping theorem to show that there is exactly one solution u corresponding to any given $u_0 \in \mathbb{R}$.

- 2. Prove that there is a number ξ such that $\lim_{t\to\infty} u(t) = \xi$ for any solution u, independent of the value of u_0 .
- 1. ODE to integral equation:

$$u'(t) = \cos(u(t)) - u(t) \longrightarrow u(t) = u_0 + \int_0^t {\{\cos(u(t)) - u(t)\} dt}$$

Natural to consider X = C([0,T]) for some T > 0 and the map G defined by

$$(Gu)(t) = u_0 + \int_{0}^{t} {\{\cos(u(t)) - u(t)\}} dt.$$

We see that u solves the ODE only if it is a solution to the fixed point problem Gu = u. We also see that $G: X \to X$. (If u continuous, then fed through the continuous operations of cosine, integration, and addition produce another continuous function). Check that G is a contraction:

$$\begin{aligned} \|Gu - Gv\|_{\infty} &= \left\| \int_{0}^{t} \left\{ \cos \left(u \left(t \right) \right) - u \left(t \right) \right\} dt - \left\{ \int_{0}^{t} \left\{ \cos \left(v \left(t \right) \right) - v \left(t \right) \right\} dt \right\} \right\|_{\infty} \\ &= \left\| \int_{0}^{t} \left(\cos u - \cos v \right) dt + \int_{0}^{t} \left(v - u \right) dt \right\|_{\infty} \\ &\leq \left\| \int_{0}^{t} \left(\cos u - \cos v \right) dt \right\|_{\infty} + \left\| \int_{0}^{t} \left(v - u \right) dt \right\|_{\infty} \\ &\leq \sup_{0 \leqslant t \leqslant T} \int_{0}^{t} \left| \cos u - \cos v \right| dt + T \|u - v\|_{\infty} \\ &\leq \sup_{0 \leqslant t \leqslant T} \int_{0}^{t} \left| -\sin \left(w \left(t \right) \right) \left(u \left(t \right) - v \left(t \right) \right) \right| dt + T \|u - v\|_{\infty} \\ &\leq 2T \|u - v\|_{\infty} \end{aligned}$$

For $2T < 1 \Rightarrow T < 1/2$, G is a contraction, and we have a unique solution. In fact, the solution exists for all t > 0. Solve the initial equation up to time T = 1/3, say. Then repeat the process with a new initial condition given by the value of u at t = 1/3.

CSE 386D UT Austin

2. Let $\xi \in \mathbb{R}$ be the fixed point of cosine, that is $\xi = \cos \xi$. Indeed, ξ is unique. One can just plot the two functions and observe this, or argue with another contraction map argument on the interval $[-\pi/2, \pi/2]$, say. We now have the following situation:

- (a) If $u_0 = \xi$, then $u'(0) = \cos(u(0)) u_0 = \xi \xi = 0$, so $u = \xi$ is a constant.
- (b) If $u_0 < \xi$, then $u'(0) = \cos(u_0) u_0 > 0$, so u is increasing. Moreover, u'(t) remains positive as long as $u(t) < \xi$. However, since $\sin x 1 \le 0$ for all x, u'(t) is increasing at a decreasing rate, and so $u'(t) \searrow 0$.
- (c) If $u_0 > \xi$, then $u'(0) = \cos(u_0) u_0 < 0$, so u is decreasing. Moreover, u'(t) remains negative as long as $u(t) > \xi$. However, since $\sin x 1 \le 0$ for all x, u'(t) is decreasing at a decreasing rate, and so $u'(t) \nearrow 0$.

Exercise (9.10). Consider the PDE

$$u_t - u_{xxt} - \varepsilon u^3 = f, \quad x \in \mathbb{R}, t > 0$$

with u(x,0) = g(x). Use the Fourier transform and a contraction mapping argument to show that there exists a solution for small enough ε , at least up to some time $T < \infty$. In what spaces should f and g lie?

Fourier transform in x since we are on the whole real line:

$$u_t - u_{xxt} = f + \varepsilon u^3 =: h \to \hat{u}_t + \xi^2 \hat{u}_t = \hat{h} \to \hat{u}_t = \frac{\hat{h}}{1 + \xi^2}$$

which, after taking inverse (similar to Ex 9.5), yields

$$u_{t}(x,t) = \frac{1}{2} \int_{\mathbb{R}} \left(f(y,t) + \varepsilon u^{3}(y,t) \right) e^{-|x-y|} dy.$$

Integrating in time,

$$u\left(x,t\right)=g\left(x\right)+\frac{1}{2}\int\limits_{0}^{t}\int\limits_{\mathbb{R}}\left(f\left(y,\tau\right)+\varepsilon u^{3}\left(y,\tau\right)\right)e^{-\left|x-y\right|}dyd\tau.$$

Let $X = C(B_r(0)) \subset C(\mathbb{R} \times (0,T))$ equipped with the max norm. Define the map G by

$$\left(Gu\right)\left(x,t\right)=g\left(x\right)+\frac{1}{2}\int\limits_{0}^{t}\int\limits_{\mathbb{R}}\left(f\left(y,\tau\right)+\varepsilon u^{3}\left(y,\tau\right)\right)e^{-\left|x-y\right|}dyd\tau.$$

We want to show that G takes X into X and that G is a contraction. For now, take $f,g\in L^\infty(\Omega)$. We have the estimate

$$\begin{aligned} \|Gu\|_{\infty} &= \left\| g\left(x\right) + \frac{1}{2} \int_{0}^{t} \int_{\mathbb{R}} \left(f\left(y,\tau\right) + \varepsilon u^{3}\left(y,\tau\right) \right) e^{-|x-y|} dy d\tau \right\|_{\infty} \\ &\leq \|g\|_{\infty} + \left(\|f\|_{\infty} + \varepsilon r^{3} \right) \left\| \frac{1}{2} \int_{0}^{t} \int_{\mathbb{R}} e^{-|x-y|} dy d\tau \right\|_{\infty} \\ &\leq \|g\|_{\infty} + \left(\|f\|_{\infty} + \varepsilon r^{3} \right) T \end{aligned}$$

UT Austin CSE 386D

For $||Gu|| \le r$, we have

$$\|g\|_{\infty} + (\|f\|_{\infty} + \varepsilon r^3) T \leqslant r \Rightarrow \varepsilon \leqslant r^{-3} \left\{ \frac{r - \|g\|_{\infty}}{T} - \|f\|_{\infty} \right\}$$

and implicitly,

$$r > ||g||_{\infty}, \qquad T < \frac{r - ||g||_{\infty}}{||f||_{\infty}}.$$

For G to be a contraction, we estimate

$$||Gu_{1} - Gu_{2}|| = \left\| \frac{\varepsilon}{2} \int_{0}^{t} \int_{\mathbb{R}} \left(u_{1}^{3}(y, \tau) - u_{2}^{3}(y, \tau) \right) e^{-|x-y|} dy d\tau \right\|$$

$$= \left\| \frac{\varepsilon}{2} \int_{0}^{t} \int_{\mathbb{R}} \left(u_{1} - u_{2} \right) \left(u_{1}^{2} + u_{1}u_{2} + u_{2}^{2} \right) (y, \tau) e^{-|x-y|} dy d\tau \right\|$$

$$\leq \varepsilon 3r^{2} T ||u_{1} - u_{2}||$$

So, G is a contraction as long as $3\varepsilon r^2T < 1$.

In summary, if $f,g\in L^\infty(\Omega)$, $r>\|g\|_\infty$, $T<\frac{r-\|g\|_\infty}{\|f\|_\infty}$, $\varepsilon<\min\left\{r^{-3}\left\{\frac{r-\|g\|_\infty}{T}-\|f\|_\infty\right\},\frac{1}{3r^2T}\right\}$, then the problem admits a unique solution $u\in B_r(0)$.