Introduction to Audio Content Analysis

Module 4.0: Intensity

alexander lerch

introduction

overview

corresponding textbook section

Chapter 4 — Intensity: pp. 71–78

- lecture content
 - quick overview: human perception of loudness
 - intensity related features
- learning objectives
 - discuss level and loudness
 - list and describe typical intensity related low level features

introduction

Georgia Center for Music Tech College of Design

overview

corresponding textbook section

Chapter 4 — Intensity: pp. 71–78

lecture content

- quick overview: human perception of loudness
- intensity related features

learning objectives

- discuss level and loudness
- list and describe typical intensity related low level features

intensity, magnitude & loudness introduction

- intensity-related descriptors commonly used
 - waveform view
 - level monitoring (PPM, VU,...)

intensity, magnitude & loudness introduction

- intensity-related descriptors commonly used
 - waveform view
 - level monitoring (PPM, VU,...)

related terms: magnitude • intensity • envelope • level • volume • velocity • loudness

intensity, magnitude & loudness human perception 1/2

Georgia Center for Music Tech Technology

perception has non-linear relation to magnitude/RMS:

model: logarithmic relation

$$v_{\mathrm{dB}}(n) = 20 \cdot \log_{10} \left(\frac{v(n)}{v_0} \right)$$

- v_0 : reference constant (0 dB point)
 - digital: $v_0 = 1 \Rightarrow dBFS$
 - sound pressure $v_0 = 20 \cdot 10^{-6} \Rightarrow dBSPL$
- ullet scaling factor: $1\,dB pprox JNDL$ for sound pressure level

Georgia Center for Music Technology

- if v(n) = 0 \Rightarrow : computation of $\log_{10}(0)$
- work-arounds

side note: level computation

a add constant of

$$v_{\rm dB}(n) = 20 \cdot \log_{10}(v(n) + \epsilon)$$

b add if statement

$$u_{ ext{trunc}}(n) = \left\{ egin{array}{ll} v(n), & ext{if } v(n) \geq \ \epsilon, & ext{otherwise} \end{array}
ight.$$

Georgia |

Center for Music Tech | Technology College of Design

- intensity, magnitude & loudness
- side note: level computation
 - if v(n) = 0 \Rightarrow : computation of $\log_{10}(0)$
 - work-arounds
 - a add constant ϵ

$$v_{\mathrm{dB}}(n) = 20 \cdot \log_{10}(v(n) + \epsilon)$$

$$v(n)$$
, if $v(n) \ge \epsilon$

intensity, magnitude & loudness side note: level computation

Georgia Center for Music Technology

- if v(n) = 0 \Rightarrow : computation of $\log_{10}(0)$
- work-arounds
 - a add constant ϵ

$$v_{\mathrm{dB}}(n) = 20 \cdot \log_{10}(v(n) + \epsilon)$$

b add if statement

$$v_{\mathrm{trunc}}(n) = \left\{ egin{array}{ll} v(n), & \mathrm{if} \ v(n) \geq \epsilon \\ \epsilon, & \mathrm{otherwise} \end{array} \right.$$

intensity, magnitude & loudness human perception 2/2

- decibel scale is not loudness scale:
 - equal-sized steps on the decibel scale not perceived as equal-sized loudness steps
- perceptual phenomenon loudness depends or
 - frequency
 - cochlear resolution
 - masking effects

intensity, magnitude & loudness human perception 2/2

- decibel scale is not loudness scale:
 - equal-sized steps on the decibel scale not perceived as equal-sized loudness steps
- perceptual phenomenon loudness depends on
 - frequency
 - cochlear resolution
 - masking effects

intensity, magnitude & loudness human perception 2/2

intensity, magnitude & loudness dynamics in music

score:

- only several rough dynamic steps,e.g.:pp, p, mf, f, ff
- comparably vague instructions on volume modifications, e.g.: crescendo, decrescendo, sf
- dynamics influenced by
 - instrumentation
 - timbre
 - number of voices
 - context and musical tension

MIDI:

- 128 velocity steps
- no standardized relation to magnitude, power, . .

intensity, magnitude & loudness dynamics in music

score:

- only several rough dynamic steps,e.g.:pp, p, mf, f, ff
- comparably vague instructions on volume modifications, e.g.: crescendo, decrescendo, sf
- dynamics influenced by
 - instrumentation
 - timbre
 - number of voices
 - context and musical tension

MIDI:

- 128 velocity steps
- no standardized relation to magnitude, power, ...

features: root mean square 1/2

$$v_{\text{RMS}}(n) = \sqrt{\frac{1}{\mathcal{K}} \sum_{i=i_{\text{s}}(n)}^{i_{\text{e}}(n)} x(i)^2}$$

Georgia Center for Music Tech College of Design

features: root mean square 1/2

$$v_{\text{RMS}}(n) = \sqrt{\frac{1}{\mathcal{K}} \sum_{i=i_{\text{s}}(n)}^{i_{\text{e}}(n)} x(i)^2}$$

- value of this feature for the hypothetical prototype signals
 - silence
 - sinusoidal (Amplitude A)

features •0000000

intensity, magnitude & loudness features: root mean square 1/2

Georgia Center L. Technology **Center for Music**

$$v_{\text{RMS}}(n) = \sqrt{\frac{1}{\mathcal{K}} \sum_{i=i_{\text{s}}(n)}^{i_{\text{e}}(n)} x(i)^2}$$

Georgia Center for Music Tech Technology

features: root mean square 2/2

common variants (sample processing only):

reduce computational complexity

$$egin{array}{lcl} v_{
m RMS}^2(n) & = & rac{x(i_{
m e}(n))^2 - x(i_{
m s}(n-1))^2}{i_{
m e}(n) - i_{
m s}(n) + 1} + v_{
m RMS}^2(n-1) \ & v_{
m RMS}(n) & = & \sqrt{v_{
m RMS}^2(n)} \end{array}$$

single pole approximation

$$egin{array}{lll} egin{array}{lll} egin{arra$$

Georgia Center for Music Tech Technology

features: root mean square 2/2

common variants (sample processing only):

reduce computational complexity

$$egin{array}{lcl} v_{
m RMS}^2(n) & = & rac{x(i_{
m e}(n))^2 - x(i_{
m s}(n-1))^2}{i_{
m e}(n) - i_{
m s}(n) + 1} + v_{
m RMS}^2(n-1) \ & v_{
m RMS}(n) & = & \sqrt{v_{
m RMS}^2(n)} \end{array}$$

single pole approximation

$$\begin{array}{rcl} v_{\rm tmp}(i) & = & \alpha \cdot v_{\rm tmp}(i-1) + (1-\alpha) \cdot x(i)^2 \\ v_{\rm RMS}^*(i) & = & \sqrt{v_{\rm tmp}(i)} \end{array}$$

intensity, magnitude & loudness features: weighted root mean square

Georgia Center for Music Tech Technology

$$H(z)$$
:

- A, B, C weighting
- RLB (BS.1770)
-

features: weighted root mean square

Georgia Center for Music Tech College of Design

$$v_{\mathrm{Peak}}(n) = \max_{i_{\mathrm{s}}(n) \le i \le i_{\mathrm{e}}(n)} |x(i)|$$

features: peak envelope (max)

Georgia Center for Music Technology
College of Design

$$v_{\mathrm{Peak}}(n) = \max_{i_{\mathrm{s}}(n) \le i \le i_{\mathrm{e}}(n)} |x(i)|$$

Georgia Center for Music Technology
College of Design

features: peak envelope (PPM) 1/2

Georgia Center for Music Technology

features: peak envelope (PPM) 1/2

• release state $(|x(i)| < v_{PPM}(i-1) \Rightarrow \lambda = \alpha_{RT})$

intensity, magnitude & loudness features: peak envelope (PPM) 1/2

Georgia Center for Music Tech Techology

• release state
$$(|x(i)| < v_{\mathrm{PPM}}(i-1) \Rightarrow \lambda = \alpha_{\mathrm{RT}})$$

$$v_{\mathrm{PPM}}(i) = v_{\mathrm{PPM}}(i-1) - \alpha_{\mathrm{RT}} \cdot v_{\mathrm{PPM}}(i-1)$$

$$= (1 - \alpha_{\mathrm{RT}}) \cdot v_{\mathrm{PPM}}(i-1)$$

intensity, magnitude & loudness features: peak envelope (PPM) 1/2

Georgia Center for Music Technology

• attack state $(|x(i)| \ge v_{PPM}(i-1) \Rightarrow \lambda = 0)$

Georgia Center for Music Tech College of Design

features: peak envelope (PPM) 1/2

• attack state
$$(|x(i)| \ge v_{\mathrm{PPM}}(i-1) \Rightarrow \lambda = 0)$$

$$v_{\mathrm{PPM}}(i) = \alpha_{\mathrm{AT}} \cdot (|x(i)| - v_{\mathrm{PPM}}(i-1)) + v_{\mathrm{PPM}}(i-1)$$

$$= \alpha_{\mathrm{AT}} \cdot |x(i)| + (1 - \alpha_{\mathrm{AT}}) \cdot v_{\mathrm{PPM}}(i-1)$$

features: peak envelope (PPM) 2/2

Georgia Center L. Technology
College of Design **Center for Music**

- gold: max per block
- blue: PPM

Georgia Center for Music Tech Technology

features: zwicker loudness

features: zwicker loudness

Georgia Center for Music Tech Technology

outer ear transfer function¹

¹D. Hammershøi and H. Møller, "Methods for Binaural Recording and Reproduction," *Acta acustica united with acustica*, vol. 88, no. 3, pp. 303–311, May 2002.

features: zwicker loudness

excitation patterns¹

 $^{^{1}\,\}mathrm{M}.$ Schleske, Vibrato of the musician, [Online]. Available:

Georgia Center for Music Tech College of Pesign

features: zwicker loudness

specific loudness¹

¹U. of Salford, *Customised metrics*, [Online]. Available:

Georgia Center for Music Technology
College of Design

features: zwicker loudness

overall loudness

$$v_{\text{loud}} = \sum_{\forall i} z_i$$

intensity, magnitude & loudness derived features

- number or ratio of pauses
- dynamic range
- other statistical features from (RMS) histogram
- ...

summary

lecture content

loudness perception

- nonlinear relation to magnitude or power
- depends also on frequency, level, and signal (masking)

typical features

- derived from envelope (peak, RMS, weighted RMS)
- derived from histogram (range, mode)

