Lecture 16: Model Predictive Control (MPC)

goals:

· into to MPC

· discuss advantages + challenges

· MPC + convex optimization

Recall Trajectory Optimization (discrete time)

minimize
$$\sum_{t=0}^{T-1} g_t(x_t, u_t) + g_t(x_t)$$
 (objective)

subject to $x_{t+1} = f_t(x_t, u_t)$ $t = 0, ..., \tau - 1$ (system model)

 $x_t \in X_t$ $y_t \in X_t$ $y_t \in X_t$ (state constraints)

 $y_t \in X_t$ $y_t \in X_t$ $y_t \in X_t$ (input constraints)

wl variables uo, ..., ut-1, X1, ..., XT
problem data Xo, gt, ft, Xt, Ut

1			
1 .	mita	1-	
1	mito	rtlo	ns
_			_

- open-loop input sequence, not feedback control law lacks robustness to unknown disturbances unmodeled dynamics
- Dhorizon T may be very long or even infinite,
 making optimization problem difficult/impossible to solve

- · implement only first control action (uo*)
- · re-solve problem based on measurement of new state (possibly estimated from output measurements)
- · Called Model Predective Control (MPL)
 or Receding Horizon Control (RHC)

Challenges:

- Implementation: requires real-time optimization often on limited embedded hardware; must be fast + reliable
- · Stability, Robustness, Feasibility
 - · requires careful design to encure olosed-loop stability, nobustness to unknown disturbances, uncertainties, recursive feacibility of optimization problem
 - e.g. even for deterministic linear quadratic problems, stubility not guaranteed it horizon. The is too short

MPC and Convex Optimization

- · natural synergy: can exploit speed + reliability of modern convex optimization solvers for MPC,
- · many variations, both convex & nonconvex (we convex subproblems): robuct, stochastic, hybrid, mixed-integer, time-verying, nonlinear, etc.
- · analysis + design methods often utilize convex optimization to study statility, robustness, facisitility, etc.

(Optimization - based Control) MPC/RHC

- O Measure Estimate state Xt at time t
- 12 Compute optimal open-loop plan by solving

minimize
$$\sum_{t=t}^{t+T_h-1} g_t(x_t, u_t) + g_{t+T_h}(x_{t+T_h})$$

subject to $x_{t+1} = f_t(x_t, u_t)$ $c = t_{1-}, t+T_h-1$
 $x_t \in X_t$ $\forall t$
 $u_t \in U_t(x_t)$ $\forall t$

- · need fast, reliable constrained optimization solver
- · possibility of infeasibility (more later)
- 3) Implement first control action ut on system (during period [t, t+1])
- 4 Wait until new state output measurements received at sampling time t+1, and go to stop D

Advantages? explicit, systematic incorporation of performance objectives and constraints

- · very general methodology: works (in principle) for any type of system model + objective
- · large + growing # of applications, enabled by rapid recent increases in computational power
 - · see ETH strdes

Convex Quadratec MPC

minimize Exact + UTRout + XtTh atth X toth

Subject to $X_{c+1} = A_c X_c + B_c u_c + C_c$ $t = t_1 ..., t + T_h - 1$ $X_c \in X_c = \left\{ x \in \mathbb{R}^n \mid F_c x \leq h_c \right\}$ $U_c \in \mathcal{U}_c = \left\{ u \in \mathbb{R}^m \mid G_c u \leq d_c \right\}$

-> a convex QP (Q, to, Roto)

I- and ∞ -norm MPC $\{P=1 \text{ or } \infty, \text{ or combo thereof}\}$ MENIMIZE $\sum_{r=t}^{t+T_{n-1}} \|M_r X_r\|_p + \|N_r u_r\|_p + \|M_{t+T_{n}} X_{t+T_{n}}\|_p$ Subject to $X_{rx_1} = A_r X_r + B_r u_r + C_r$ $X_r \in X_r = \{X \in \mathbb{R}^n \mid F_r X_r \leq h_r\}$ $X_r \in \mathcal{X}_r = \{x \in \mathbb{R}^n \mid F_r X_r \leq h_r\}$ $X_r \in \mathcal{X}_r = \{u \in \mathbb{R}^m \mid f_r x_r \leq d_r\}$

-> lequivalent to) a (convex) LP

Stath (Xtalk)

Key design parameters: horizon length [In], terminal cost (Ott7h)
terminal constraint set X+Th

- Let $u_t^*(x_t)$ denote the optimal first input from the MPC optimization problem in state x_t
- * Let $J_t^*(x_t)$ denote the optimal value of the MPC optimization problem in state X_t

Then we have the following:

O Convex Quadrater MPC:

· uz: R^ -> R^m is a continuous, precewise affine function on a polyhedral partition of the state space:

 $u_{t}^{*}(x) = K_{t}^{i} \times + K_{t}^{i} \quad i \in \times eP_{t}^{i}, \quad i=1,...,N_{e}^{i}$ where $P_{t}^{i} = \left\{ \times eR^{h} \mid Z_{t}^{i} \times \leq Z_{t}^{i} \right\}$

Justien on the same partition

Ex from ETH slides via MPT Todbox

- · duese functions can be computed explicitly for low dimensional problems (known a Explicit MPC)
- 2 1- and on-norm MPC
 - · Ut is continuous, precewise affine on polyhedral partition
 - · J* is convex, piecuise linear on same partition
- · it problem dala time invariant, optimal control law time envariant
- · Cf. optimal unconstrained LQR controller, which is affine