The Problem of Stationary Functions of Chen-Fliess Series

Ivan Perez Avellaneda

Department of Electrical and Biomedical Engineering

UVM

2023

Overview

System Theory

Formal Language Theory

The problem

Differential monoids

Possible solution paths

System Theory

Definition (Control system in state-space form)

Consider the continuous functions $f: \mathbb{R}^{n+m} \to \mathbb{R}^n$, $h: \mathbb{R}^n \to \mathbb{R}^\ell$, $u(t) = (u_1(t), \dots, u_m(t))$ with $u_i(t) \in L_p([0, T])$ for a T > 0 and the point $z_0 \in \mathbb{R}^n$. The following set of equations is called a **control system** in **state-space** representation.

$$\dot{z}(t) = f(z(t), u(t)) \tag{1}$$

$$y(t) = h(z(t)) \tag{2}$$

$$z(0) = z_0 \tag{3}$$

where (1) is called state dynamics, (2) is the output of the system and (3) is the initial condition of the system.

Example (Linear time-invariant system)

Consider the matrix $A \in \mathbb{R}^{n \times n}$, the vector $B \in \mathbb{R}^{n \times 1}$, the function $u(t) \in L_p([0, T])$ for a T > 0 and $z_0 \in \mathbb{R}^n$.

$$\dot{z}(t) = Az(t) + Bu(t)
y(t) = z(t)
z(0) = z_0.$$
(4)

Solving the state dynamics

$$y(t) = \exp(At)z_0 + \int_0^t \exp(A(t-\tau))Bu(\tau)d\tau.$$
 (5)

Given the initial condition z_0 and the matrix A, equation (5) provides an **input-output** representation of system (4). Expressing the exponential in its series form, we have

$$y(t) = \sum_{k=0}^{\infty} A^k \frac{t^k}{k!} z_0 + \sum_{k=0}^{\infty} A^k B \int_0^t \frac{(t-\tau)^k}{k!} u(\tau) d\tau$$

this is equivalently written in terms of iterated integrals as

$$y(t) = \sum_{k=0}^{\infty} A^k z_0 \int_0^t \int_0^{\tau} \cdots \int_0^{\tau_{k-1}} d\tau_k \cdots d\tau + \sum_{k=0}^{\infty} A^k B \int_0^t \int_0^t \int_0^{\tau} \cdots \int_0^{\tau_{k-1}} u(\tau_k) d\tau_k \cdots d\tau$$

$$(6)$$

which is the Peano-Baker series.

Definition (Nonlinear affine control system)

Consider the continuous functions $g_i: \mathbb{R}^n \to \mathbb{R}^n$, $h: \mathbb{R}^n \to \mathbb{R}^\ell$, $u(t) = (u_1(t), \cdots, u_m(t))$ with $u_i(t) \in L_p([0, T])$ for a T > 0 and the point $z_0 \in \mathbb{R}^n$. The following set of equations is called a **nonlinear affine control system** in **state-space** representation.

$$\dot{z}(t) = g_0(z(t)) + \sum_{i=1}^{m} g_i(z(t))u_i(t)
y(t) = h(z(t))
z(0) = z_0$$
(7)

Formal Language Theory

- ► Alphabet: $X = \{x_0, \dots, x_m\}$.
- Word over X: the noncommutative concatenation sequence of letters $\eta = x_{i_1} \cdots x_{i_n}$ for some $n \in \mathbb{N}$.
- ▶ The length of a word: $\eta = x_{i_1} \cdots x_{i_n}$ is denoted $|\eta| = n$.
- ▶ The set of all words in X of length k is denoted X^k .
- ▶ The set of words of any length is denoted X^* .

Definition (Free monoid)

A free monoid is referred to the tuple (X^*,\cdot,ϕ) where \cdot is the concatenation product $\cdot: X^* \times X^* \to X^*$, $\cdot (\eta,\xi) = \eta \xi$ and ϕ is the empty word that works as the identity $\phi \eta = \eta \phi = \eta$ for every $\eta \in X^*$.

Example

Consider the alphabet $X = \{x_0, x_1\}$. The words x_0x_1 and x_1x_0 are not the same. Also, we use the notation x_i^k to refer to the word $x_i \cdots x_i$.

Definition (Formal power series)

Given an alphabet $X = \{x_0, \dots, x_m\}$ a formal power series c is any function of the form

$$c: X^* \to \mathbb{R}^{\ell}$$

the image of a word $\eta \in X^*$ under c is denoted by (c, η) and is called coefficient of η in c. We can write c as the formal summation

$$c = \sum_{\eta \in X^*} (c, \eta) \eta.$$

The set of all formal power series is denoted $\mathbb{R}^{\ell}\langle\langle X\rangle\rangle$.

Example

Given the alphabet $X = \{x_0, x_1\}$, we can form the formal power series

$$c_1 = \sum_{k=0}^{\infty} x_0^k + x_0^k x_1.$$

A similar more general formal power series $c \in \mathbb{R}^n \langle \langle X \rangle \rangle$ is given by considering the matrix $A \in \mathbb{R}^{n \times n}$ and the vector $B \in \mathbb{R}^n$ and $z_0 \in \mathbb{R}^n$

$$c_2 = \sum_{k=0}^{\infty} (A^k z_0) x_0^k + (A^k B) x_0^k x_1.$$
 (8)

Definition (Iterated integrals)

The map $E_{\eta}: L_1^m[0,T] \to C[0,t]$ for $u(t)=(u_1(t),\cdots,u_m(t))$ where $u_i(t)\in L_1[0,T]$ is defined iteratively as $E_{\phi}[u](t)=1$ and

$$E_{\mathsf{x}_{i}\xi}[u](t) = \int_{0}^{t} u_{i}(\tau) E_{\xi}[u](\tau) d\tau$$

Example

Consider the alphabet $X = \{x_0, x_1, x_2\}$ with each letter associated to $u_0(t) = 1, u_1(t) = \sin(t), u_2(t) = \cos(t)$ respectively, the iterated integral of the word $\eta = x_0x_1^2$ is the following:

$$E_{x_0x_1^2}[u](t) = \int_0^t u_0(\tau_1) \int_0^{\tau_1} u_1(\tau_2) \int_0^{\tau_2} u_1(\tau_3) d\tau_3 d\tau_2 d\tau_1$$
$$= \int_0^t \int_0^{\tau_1} \sin(\tau_2) \int_0^{\tau_2} \sin(\tau_3) d\tau_3 d\tau_2 d\tau_1$$

Definition (Chen-Fliess series)

Given any formal power series over X,

$$c = \sum_{\eta \in X^*} (c, \eta) \eta,$$

where each $(c, \eta) \in \mathbb{R}^{\ell}$, one can uniquely specify an input-output operator as

$$F_c[u](t) = \sum_{\eta \in X^*} (c, \eta) E_{\eta}[u](t)$$

this operator is known as Chen-Fliess series.

Example

Consider the alphabet $X = \{x_0, x_1\}$ associated to the function $u(t) = (u_0(t), u_1(t))$ with $u_0(t) = 1$. The Chen-Fliess series of the formal power series in equation (8) represents the linear time-invariant system (4)

$$y(t) = F_{c_2}[u](t) = \sum_{k=0}^{\infty} (A^k z_0) E_{x_0^k}[u](t) + (A^k B) E_{x_0^k x_1}[u](t)$$

Theorem (Fliess 1983)

Consider the nonlinear affine system in (7), its output is represented by the following Chen-Fliess series

$$F_c[u](t) = \sum_{\eta \in X^*} (c, \eta) E_{\eta}[u](t)$$

with coefficients

$$(c,x_{i_1}\cdots x_{i_k})=L_{g_{i_k}}\cdots L_{g_{i_1}}h(z_0)$$

where

$$L_{g_{i_k}} \cdots L_{g_{i_1}} h(z_0) = \frac{\partial}{\partial z} \left(\cdots \left(\frac{\partial}{\partial z} \left(\frac{\partial h(z)}{\partial z} \cdot g_{i_1}(z) \right) \cdot g_{i_2}(z) \right) \cdots \right) \cdot g_{i_k}(z) \bigg|_{z_0}$$

and the power series $c = \sum_{\eta \in X^*} (c, \eta) \eta$ has finite Lie rank.

Definition (Substitution homomorphism)

Consider the alphabets $X = \{x_0, \dots, x_m\}$ and $Y = \{y_0, \dots, y_m\}$. Define the function $\sigma_X : (XUY)^* \to X$ such that $\sigma_X(y_i) = x_i$

$$\sigma_X(z_{i_1}\eta) = \begin{cases} z_{i_1}\sigma_X(\eta), \ z_{i_1} \in X \\ \sigma_X(z_{i_1})\sigma_X(\eta), z_{i_1} \in Y \end{cases}$$

Example

Consider the word $\xi = x_1x_2y_1x_0$, then $\sigma_X(\xi) = x_1x_2x_1x_0$. Consider $\xi = y_1y_1x_3y_2$, then $\sigma_X(\xi) = x_1x_1x_3x_2$.

Definition (Shuffle set)

The following set is known as the shuffle set of two words $\eta, \xi \in X^*$:

$$\mathbb{S}_{\eta,\xi} = \{ \nu \in X^* : \nu = \eta_1 \xi_1 \eta_2 \xi_2 \cdots \eta_n \xi_n \in X^* \mid \\ \eta = \eta_{i_1}, \cdots, \eta_{i_n}, \xi = \xi_{i_1}, \cdots, \xi_{i_n}, \ n \ge 1 \}$$

Example

Consider $\eta = x_1x_2$ and $\xi = x_3$, then

$$\mathbb{S}_{\eta,\xi} = \{x_1x_2x_3, x_1x_3x_2, x_3x_1x_2\}.$$

Consider $\eta = x_1x_2$ and $\xi = x_3x_4$, then

$$\mathbb{S}_{\eta,\xi} = \{x_1x_2x_3x_4, x_1x_3x_2x_4, x_3x_1x_2x_4, x_1x_3x_4x_2, x_3x_1x_4x_2, x_3x_4x_1x_2\}$$

Definition (Characteristic series)

The characteristic series of a language $L\subset X^*$ is the element in $\mathbb{R}\langle\langle X\rangle\rangle$ defined by $\mathrm{char}(L)=\sum_{\nu\in L}\nu$. Suppose, for example, $X=\{x_0,x_1\}$, then

$$char(X) = x_0 + x_1$$

Derivatives in Banach spaces

Definition

Given $c \in \mathbb{R}^\ell\langle\langle X \rangle\rangle$ and the input functions $u \in L_1^m[0,t]$, the Chen-Fliess operator is Fréchet differentiable at u if and only if there exists $DF_c[u][.](t):L_1^m[0,t] \to \mathbb{R}^l$ such that the following limit is satisfied:

$$\lim_{h\to 0} \frac{1}{||h||_p} \Big| \Big| F_c[u+h](t) - F_c[u](t) - DF_c[u][h](t) \Big| \Big|_q = 0.$$

Definition

Given $c \in \mathbb{R}^\ell \langle \langle X \rangle \rangle$ and the input functions $u, v \in L^m_\mathfrak{p}[0,t]$, the Chen-Fliess operator is Gâteaux differentiable at u in the direction of v if and only if there exists $\frac{\partial}{\partial v} F_c[u](t) \in \mathbb{R}^I$ such that the following limit is satisfied:

$$\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}\Big(F_c[u+\varepsilon v](t)-F_c[u](t)-\frac{\partial}{\partial v}F_c[u](t)\varepsilon\Big)=0.$$

Consider

$$F_c[u](t) = E_{x_1x_2x_3}[u](t)$$

then

$$F_{c}[u+\varepsilon v](t) = \int_{0}^{t} (u_{1}+\varepsilon v_{1})(\tau) \int_{0}^{\tau} (u_{2}+\varepsilon v_{2})(\tau_{1}) \int_{0}^{\tau_{1}} (u_{3}+\varepsilon v_{3})(\tau_{2}) d\tau_{2} d\tau_{1} d\tau$$

$$= \int_{0}^{t} (\tau) \int_{0}^{\tau} u_{2}(\tau_{1}) \int_{0}^{\tau_{1}} u_{3}(\tau_{2}) d\tau_{2} d\tau_{1} d\tau + \varepsilon \int_{0}^{t} v_{1}(\tau) \int_{0}^{\tau} u_{2}(\tau_{1}) \int_{0}^{\tau_{1}} u_{3}(\tau_{2}) d\tau_{2} d\tau_{1} d\tau +$$

$$\varepsilon \int_{0}^{t} u_{1}(\tau) \int_{0}^{\tau} v_{2}(\tau_{1}) \int_{0}^{\tau_{1}} u_{3}(\tau_{2}) d\tau_{2} d\tau_{1} d\tau + \varepsilon \int_{0}^{t} u_{1}(\tau) \int_{0}^{\tau} u_{2}(\tau_{1}) \int_{0}^{\tau_{1}} v_{3}(\tau_{2}) d\tau_{2} d\tau_{1} d\tau +$$

$$\varepsilon^{2} \int_{0}^{t} v_{1}(\tau) \int_{0}^{\tau} v_{2}(\tau_{1}) \int_{0}^{\tau_{1}} u_{3}(\tau_{2}) d\tau_{2} d\tau_{1} d\tau + \varepsilon^{2} \int_{0}^{t} v_{1}(\tau) \int_{0}^{\tau} v_{2}(\tau_{1}) \int_{0}^{\tau_{1}} v_{3}(\tau_{2}) d\tau_{2} d\tau_{1} d\tau +$$

$$\varepsilon^{2} \int_{0}^{t} u_{1}(\tau) \int_{0}^{\tau} v_{2}(\tau_{1}) \int_{0}^{\tau_{1}} v_{3}(\tau_{2}) d\tau_{2} d\tau_{1} d\tau + \varepsilon^{3} \int_{0}^{t} v_{1}(\tau) \int_{0}^{\tau} v_{2}(\tau_{1}) \int_{0}^{\tau_{1}} v_{3}(\tau_{2}) d\tau_{2} d\tau_{1} d\tau +$$

Note: one alphabet is not enough

Note 2: this is similar to $(x_1 + \varepsilon y_1)(x_2 + \varepsilon y_2)(x_3 + \varepsilon y_3)$

Definition

Consider the alphabets X and Y associated with $u, v \in L^m_\mathfrak{p}[0,T]$, respectively. The iterated integral of $\eta \in Z^*$ for the input $u \times v$ is given by the mapping $\mathcal{E}_\eta : L^m_\mathfrak{p}[0,T] \times L^m_\mathfrak{p}[0,T] \to \mathcal{C}[0,T]$, where $\mathcal{E}_\emptyset[u,v](t)=1$ and

$$\mathcal{E}_{\mathbf{z}_{i}\eta}[u,v](t) := \begin{cases} \int_{0}^{t} u_{i}(\tau)\mathcal{E}_{\eta}[u,v](\tau)d\tau, & z_{i} \in X, \\ \int_{0}^{t} v_{i}(\tau)\mathcal{E}_{\eta}[u,v](\tau)d\tau, & z_{i} \in Y. \end{cases}$$
(9)

The problem

Consider a series $c \in \mathbb{R}^{\ell}\langle\langle X \rangle\rangle$, the compact set $\mathcal{U} \subset L_p^m[0,T]$, we want to solve the following problem.

$$\min_{u \in \mathcal{U}} F_c[u](t) \tag{10}$$

Find $u^*(t) \in L_p^m[0,T]$ such that

$$DF_c[u^*][h](t) = 0, \forall h \in L_p^m[0, T]$$

Consider the alphabet $\delta X = \{\delta x_1, \cdots, \delta x_m\}$.

Definition (Differential monoid)

The tuple (Z, \odot, ϕ, δ) where $Z = X \cup \delta X$, $\mathcal C$ is concatenation operation, ϕ is the empty word and the derivation function $\delta: Z^* \to Z^*$ is defined for $\eta \in \mathbb S_{X^{n_1}, \delta X^{n_2}}$ for $n_1 \in \mathbb N^+$ and $n_2 \in \mathbb N$ as

$$\mathbb{D}_{\eta} := \{ \xi \in \mathbb{S}_{X^{n_1 - 1}, \delta X^{n_2 + 1}} \mid \sigma_X(\xi) = \eta \}$$
$$\delta(\eta) := \operatorname{char}(\mathbb{D}_{\eta})$$

and for $n_1=0$, $\delta(\eta)=\delta(\phi)=0$.

Example

Let $\eta=x_0x_{i_1}\in X^2$. Note that $\xi=x_0\delta x_{i_1}$ is the only element in $\mathbb{S}_{X,\delta X}$ such that $\sigma_X(\xi)=\sigma_X(\eta)$. Then $\delta(x_0x_{i_1})=x_0\delta x_{i_1}$. Hence, x_0 behaves as a constant with respect to δ .

Example

Let $\eta = x_1x_2 \in X^2$, then $\mathbb{D}_{\eta} = \{\delta x_1x_2, x_1\delta x_2\}$ and

$$\delta(x_1x_2) = \operatorname{char}(\mathbb{D}_{\eta}) = \delta x_1x_2 + x_1\delta x_2,$$

which matches Leibniz's derivative rule.

Lemma

The derivative of $\eta \in X^n$ satisfies the following properties:

1.
$$\delta(\eta) = \sum_{j=1}^{n} x_{i_1} \cdots x_{i_{j-1}} \delta x_{i_j} x_{i_{j+1}} \cdots x_{i_n}$$

2.
$$\delta^2(\eta) = 0$$
, for $|\eta|_X = 0$ or 1

Example

Let $\eta = x_{i_1} x_{i_2} x_{i_3}$, then

$$\delta(x_{i_1}x_{i_2}x_{i_3}) = \delta x_{i_1}x_{i_2}x_{i_3} + x_{i_1}\delta x_{i_2}x_{i_3} + x_{i_1}x_{i_2}\delta x_{i_3}$$

$$\delta^2(x_{i_1}x_{i_2}x_{i_3}) = 2!(\delta x_{i_1}\delta x_{i_2}x_{i_3} + x_{i_1}\delta x_{i_2}\delta x_{i_3} + \delta x_{i_1}x_{i_2}\delta x_{i_3})$$

$$\delta^3(x_{i_1}x_{i_2}x_{i_3}) = 3!\delta x_{i_1}\delta x_{i_2}\delta x_{i_3}.$$

$$\delta^k(\eta) = k! \operatorname{char}(\mathbb{D}_{\eta}^k), \tag{11}$$

The k-th derivative of char(X^*) satisfies

$$\delta^{k}(\operatorname{char}(X^{*})) = k!\operatorname{char}(\mathbb{S}_{X^{*},\delta X^{k}}). \tag{12}$$

Lemma

The k-th derivative of $c \in \mathbb{R}\langle\langle X \rangle\rangle$ satisfies

$$\delta^{k}(c) = k! \sum_{\xi \in \mathbb{S}_{X^{*}, \delta X^{k}}} (c, \sigma_{X}(\xi)) \xi$$
 (13)

Additionally, the linearity of δ and (12) allow to write

$$\delta^k(c) = \sum_{\eta \in X^*} (c, \eta) \delta^k(\eta).$$

Let $(Z, \odot, \emptyset, \delta)$ be a differential monoid. For $k, r \in \mathbb{N}$, it follows that

$$\frac{1}{k!} \delta^{k} \left(\operatorname{char} \mathbb{S}_{X^{*}, \delta X^{r}} \right) = \binom{r+k}{r} \operatorname{char} \left(\mathbb{S}_{X^{*}, \delta X^{r+k}} \right) \tag{14}$$

and, for $c \in \mathbb{R}\langle\langle X \rangle\rangle$, one has that

$$\sum_{\xi \in \mathbb{S}_{X^*, \delta X^r}} \frac{1}{k!} (c, \sigma_X(\xi)) \delta^k(\xi) = \binom{r+k}{r} \sum_{\xi \in \mathbb{S}_{X^*, \delta X^{r+k}}} (c, \sigma_X(\xi)) \xi.$$

Given $c \in \mathbb{R}\langle\langle X \rangle\rangle$, the CFS of the sum of u and v is written as

$$F_c[u+v](t) = \sum_{k=0}^{\infty} \sum_{\eta \in X^*} \frac{1}{k!} (c,\eta) E_{\delta^k(\eta)}[u,v](t)$$

Notice that if the exponential of the derivative of $c \in \mathbb{R}^{\ell}\langle\langle X \rangle\rangle$ is defined as

$$e^{\delta(c)} = \sum_{k=0}^{\infty} \frac{1}{k!} \delta^k(c)$$

then Chen-Fliess series of the sum of two inputs $u, v \in L_{\mathfrak{p}}^m[t_0, t_1]$ is expressed as

$$F_c[u+v](t)=e^{\delta(c)}.$$

Theorem

Given $c \in \mathbb{R}\langle\langle X \rangle\rangle$, the Gâteaux derivative of $F_c[u](t)$ in the direction of v is

$$\frac{\partial}{\partial v} F_c[u](t) = \sum_{\xi \in \mathbb{S}_{X^*, \delta X}} (c, \sigma_X(\xi)) \mathcal{E}_{\xi}[u, v](t).$$

Theorem

Consider the differential monoid $(Z, \odot, \emptyset, \delta)$, the derivation δ and the Gâteaux derivative $\frac{\partial}{\partial v}$ obey the following commutative diagram

This means

$$\frac{\partial}{\partial v} F_c[u](t) = F_{\delta(c)}[u](t) = \sum_{\eta \in X^*} (c, \eta) E_{\delta(\eta)}[u](t)$$

$$\vdots$$

$$\frac{\partial^k}{\partial v^k} F_c[u](t) = F_{\delta^k(c)}[u](t) = \sum_{\eta \in X^*} (c, \eta) E_{\delta^k(\eta)}[u](t)$$

or equivalently

$$\frac{\partial}{\partial v} F_c[u](t) = \sum_{\xi \in \mathbb{S}_{X^*, \delta X}} (c, \sigma_X(\xi)) \mathcal{E}_{\xi}[u, v](t)$$

$$\vdots$$

$$\frac{\partial^k}{\partial v^k} F_c[u](t) = k! \sum_{\xi \in \mathbb{S}_{X^*, \delta X}} (c, \sigma_X(\xi)) \mathcal{E}_{\xi}[u, v](t)$$

Partial derivative

Example

Consider $\eta=x_0x_1x_2x_1$ and compute $\delta_{x_1}(\eta)$, then $\delta_{x_1}(x_0x_1x_2x_1)=x_0\delta x_1x_2x_1+x_0x_1x_2\delta x_1$. Similarly, $\delta_{x_2}(\eta)=x_0x_1\delta x_2x_1$.

Lemma

Consider $c \in \mathbb{R}_{LC}\langle\langle X \rangle\rangle$, the Gâteaux derivative in the i-th canonical direction satisfies

$$\frac{\partial}{\partial u_i} F_c[u](t) = F_{\delta_{\mathsf{x}_i}(c)}[u](t).$$

Define the elementary functions $e_i:[0,T]\to\mathbb{R}^m$, such that $e_1(t)=(1,0,\cdots,0)^\top,\ldots,e_m(t)=(0,0,\cdots,1)^\top$. Thus, the Gâteaux derivative in the u_i direction is

$$\frac{\partial}{\partial u_i} F_c[u](t) = \sum_{\eta \in X^*} \sum_{\xi \in \mathbb{S}_{\eta, \delta x_i}} (c, \sigma_X(\xi)) \mathcal{E}_{\xi}[u, e_i](t).$$

 $abla F_c: L^m_\mathfrak{p}[t_0,t_1] o L^m_\mathfrak{p}[t_0,t_1]$ such that

$$\nabla F_c[u](t) = \left(\frac{\partial}{\partial u_1} F_c[u](t), \cdots, \frac{\partial}{\partial u_m} F_c[u](t)\right)^T.$$
 (15)

Lemma

Consider the constant vector $v \in \mathbb{R}^m$, $u \in L_{\mathfrak{p}}^m[0,t]$ and the Chen-Fliess series $F_c[u](t)$, the Gateaux derivative and the gradient are related by

$$\frac{\partial}{\partial v} F_c[u](t) = v^T \nabla F_c[u](t).$$

Using the formula of the sum, we get

$$F_{c}[u + \varepsilon v](t) = F_{c}[u](t) + v^{T} \nabla F_{c}[u](t)\varepsilon$$

$$+ \sum_{k=2}^{\infty} \sum_{\eta \in X^{*}} \sum_{\xi \in \mathbb{S}_{\eta, \delta X^{k}}} (c, \sigma_{X}(\xi)) \mathcal{E}_{\xi}[u, v](t)\varepsilon^{k}.$$
(16)

Second order derivation

Lemma

Let $c \in \mathbb{R}_{LC}\langle\langle X \rangle\rangle$ and $u \in L^m_\mathfrak{p}[t_0,t_1]$, then

$$\frac{\partial^2}{\partial u_j \partial u_i} F_c[u](t) = \sum_{\xi \in \mathbb{S}_{X^*, \{\delta x_i \delta x_j, \delta x_j \delta x_i\}}} (c, \sigma_X(\xi)) \mathcal{E}_{\xi}[u, e_{i,j}](t)$$

where
$$e_{i,j}(t) = (0, \dots, \underbrace{1}_{i-th}, 0, \dots, \underbrace{1}_{j-th}, \dots, 0).$$

Notice that when the second derivatives exist, they satisfy Schwarz Theorem of the symmetry of second order differentiation

$$\frac{\partial^2}{\partial u_i \partial u_i} F_c[u](t) = \frac{\partial^2}{\partial u_i \partial u_j} F_c[u](t)$$

Definition

Let $c \in \mathbb{R}_{LC}\langle\langle X \rangle\rangle$ and $u \in L^m_\mathfrak{p}[t_0, t_1]$. The Hessian of $F_c[u](t)$ is given by

$$\nabla^2 F_c[u](t) = \begin{bmatrix} 2\frac{\partial^2}{\partial u_1^2} F_c[u](t) & \cdots & \frac{\partial^2}{\partial u_1 \partial u_m} F_c[u](t) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2}{\partial u_m \partial u_1} F_c[u](t) & \cdots & 2\frac{\partial^2}{\partial u_m^2} F_c[u](t) \end{bmatrix}.$$

Lemma

For $c \in \mathbb{R}_{LC}\langle\langle X \rangle\rangle$, the Gâteaux derivative and the Hessian are related as

$$\frac{\partial^2}{\partial v^2} F_c[u](t) = v^T \nabla^2 F_c[u](t) v.$$

For $c \in \mathbb{R}_{LC}\langle\langle X \rangle\rangle$ and $\varepsilon > 0$, one has that

$$F_{c}[u + \varepsilon v](t) = F_{c}[u](t) + v^{T} \nabla F_{c}[u](t) \varepsilon \frac{1}{2} v^{T} \nabla^{2} F_{c}[u](t) v \varepsilon^{2}$$
$$+ \sum_{k=3}^{\infty} \sum_{\xi \in \mathbb{S}_{X^{*}, \delta(X)^{k}}} (c, \sigma_{X}(\xi)) \mathcal{E}_{\xi}[u, v](t) \varepsilon^{k}$$

Lemma

Let $r \in \mathbb{R}$, $c \in \mathbb{R}^{\ell}\langle\langle X \rangle\rangle$, and X and Y be alphabets associated to $u \in L_{\mathfrak{p}}^{m}[t_{0}, t_{1}]$, $v \in \mathbb{R}^{m}$ respectively. It follows that

$$\frac{1}{2}v^{T}\nabla^{2}F_{c}[u+rv](t)v=\sum_{k=2}^{\infty}\sum_{\xi\in\mathbb{S}_{X^{*}\delta X^{k}}}\binom{k}{2}r^{k-2}(c,\sigma_{X}(\xi))\mathcal{E}_{\xi}[u,v](t).$$

Sketch of the proof: Calculating the CFS of the expression in Lemma 28 for r = 2.

Theorem

Let $c \in \mathbb{R}_{LC}\langle\langle X \rangle\rangle$ and $\varepsilon > 0$. Then there exists $\varepsilon_0 \in (0, \varepsilon)$ such that

$$F_c[u + \varepsilon v] = F_c[u] + v^T \nabla F_c[u + \varepsilon_0 v](t)$$
 (17)

Theorem

Let $c \in \mathbb{R}_{LC}\langle\langle X \rangle\rangle$ and $\varepsilon > 0$. Then there exists $\varepsilon_0 \in (0, \varepsilon)$ such that

$$F_{c}[u + \varepsilon v] = F_{c}[u] + v^{T} \nabla F_{c}[u](t) \varepsilon$$

$$+ \frac{1}{\varepsilon_{0}} \int_{0}^{\varepsilon_{0}} \frac{1}{2} v^{T} \nabla^{2} F_{c}[u + rv](t) v \varepsilon^{2} dr.$$
(18)

Proof: Define the function $\phi : \mathbb{R} \to \mathbb{R}$ such that

$$\phi(\gamma) = \int_0^{\gamma} \int_0^{\theta} \frac{1}{2} v^T \nabla^2 F_c[u + rv](t) v \varepsilon^2 dr$$

$$- (F_c[u + \varepsilon v](t) - F_c[u](t) - v^T \nabla F_c[u](t) \varepsilon) \frac{1}{2} \gamma^2.$$
(19)

Applying Lemmas 37 and 39 and by direct integration with respect to r, it follows that

$$\int_{0}^{\gamma} \int_{0}^{\theta} \frac{1}{2} v^{T} \nabla^{2} F_{c}[u + rv](t) v \varepsilon^{2} dr =$$

$$\frac{1}{4} v^{T} \nabla^{2} F_{c}[u](t) v \varepsilon^{2} \gamma^{2} +$$

$$+ \sum_{k=3}^{\infty} \sum_{\xi \in \mathbb{S}_{X^{*}, \delta X^{k}}} \frac{1}{2} (c, \sigma_{X}(\xi)) \mathcal{E}_{\xi}[u, v](t) \varepsilon^{2} \gamma^{k}$$
(20)

Using Lemma (38), the second term in the right hand side of (19) can also be written as

$$(F_{c}[u+\varepsilon v](t) - F_{c}[u](t) - v^{T} \nabla F_{c}[u](t)\varepsilon) \frac{1}{2} \gamma^{2} = \frac{1}{4} v^{T} \nabla^{2} F_{c}[u](t) v \varepsilon^{2} \gamma^{2} + \sum_{k=3}^{\infty} \sum_{\xi \in \mathbb{S}_{X^{*}, \delta X^{k}}} \frac{1}{2} (c, \sigma_{X}(\xi)) \mathcal{E}_{\xi}[u, v](t) \varepsilon^{k} \gamma^{2}.$$

$$(21)$$

The fact that $\phi(\varepsilon)=0$ follows from using (20), (21) and making $\gamma=\varepsilon$ in (19). Also, it is easy to see that $\phi(0)=0$. Thus, by the continuity of $F_c[u]$, Rolle's Theorem guarantees the existence of $\varepsilon_0\in(0,\varepsilon)$ such that the derivative of ϕ at ε_0 is zero. That is,

$$\phi'(\varepsilon_0) = \int_0^{\varepsilon_0} \frac{1}{2} v^T \nabla^2 F_c[u + rv](t) v \varepsilon^2 dr - (F_c[u + \varepsilon v](t) - F_c[u](t) - v^T \nabla F_c[u](t) \varepsilon) \varepsilon_0 = 0.$$

Back to the problem

Find $u^*(t) \in L_p^m[0,T]$ such that

$$DF_c[u^*][h](t) = 0, \forall h \in L_p^m[0, T]$$

Gradient descent algorithm:

$$u_{i+1} = u_i - \varepsilon \nabla F_c[u_i](t)$$
 (22)

For example

$$u_2 = u_1 - \varepsilon \nabla F_c[u_0 - \varepsilon \nabla F_c[u_0](t)](t)$$
 (23)

If $u(t) = u \in \mathbb{R}$ is a constant function, then $F_c^N[u](t)$ is a polynomial. For example,

$$F_{c}[u](t) = E_{x_{1}}[u](t) + E_{x_{1}^{2}}[u](t)$$

$$= \int_{0}^{t} u(\tau)d\tau + \int_{0}^{t} u(\tau) \int_{0}^{\tau_{1}} u(\tau_{1})d\tau d\tau_{1}$$

$$= u \int_{0}^{t} d\tau + u^{2} \int_{0}^{t} \int_{0}^{\tau_{1}} d\tau d\tau_{1}$$

$$= ut + u^{2} \frac{t^{2}}{2}$$

We can always provide a solution as in Galois theory by field extension.

An example of the more general case is the following:

$$F_c[u](t) = E_{x^2}[u](t) = \int_0^t u(\tau) \int_0^\tau u(\tau_1) d\tau_1 d\tau$$

the Fréchet derivative is

$$DF_{c}[u][h](t) = \int_{0}^{t} u(\tau) \int_{0}^{\tau} h(\tau_{1}) d\tau_{1} d\tau + \int_{0}^{t} h(\tau) \int_{0}^{\tau} u(\tau_{1}) d\tau_{1} d\tau$$
$$= \mathcal{E}_{x \sqcup \iota} \int_{\delta x} [u, h](t)$$
$$= \mathcal{E}_{x}[u](t) \mathcal{E}_{\delta x}[h](t)$$

then $DF_c[u][h](t) = 0$, implies $E_x[u](t)E_{\delta x}[h](t) = 0$ and $E_x[u](t) = 0$. Solutions to this are $u^* = 0$ and symmetric functions on the interval [0,t].

Remark: there is a factorization concept implicit in some sum of iterated integrals in two alphabets.

Thank you! https://iperezav.github.io