Homework 6

Mark Schulist

1)

Show that $x^2 = -1 \mod p$ has a solution if and only if $p = 1 \mod 4$.

Proof. (\Longrightarrow) Assume $x^2 = -1 \mod p$. From the Euler criterion, $(-1)^{\frac{p-1}{2}} = 1 \mod p$. $p = 1, 3 \mod 4$ for $\frac{p-1}{2}$ to make sense.

- If $p = 3 \mod 4$, then $(-1)^{\frac{3+4k-1}{2}} = (-1)^{1+2k} = -1 \mod p$ so by Euler there is no solution.
- If $p = 1 \mod p$, then $(-1)^{\frac{1+4k-1}{2}} = (-1)^{2k} = 1$ so there is a solution.

Hence $p = 1 \mod 4$.

 (\Leftarrow) Assume $p = 1 \mod 4$. Then

$$(-1)^{\frac{p-1}{2}} = (-1)^{2k} = 1$$

$$\implies a = x^2 \mod p \text{ for } a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$$

$$\implies -1 = x^2 \mod p \text{ has solution}$$
(1)

2)

2.a)

$$m \in \mathbb{N}, a \in (\mathbb{Z}/m\mathbb{Z})^{\times} \tag{2}$$

Let h be the order of $a \pmod m$. Show that for all $i, j \in \mathbb{Z}$, $a_i = a^j \mod m \iff i = j \mod h$.

Proof. (\Longrightarrow) Assume $a^i=a^j \bmod m$. Then $a^{i-j}=1 \bmod m$. So $h \mid i-j \Longrightarrow i=j \bmod h$.

$$(\Longleftarrow) \text{ Assume } i = j \bmod h. \text{ Then } h \mid i - j \Longrightarrow a^{i - j} = 1 \bmod m. \text{ So } a^i = a^j \bmod m. \\ \square$$

2.b)

Show $2^n = 4 \mod 7 \iff n = 2 \mod 3$.

The order of $2 \mod 7$ is h = 3.

Proof. (\Longrightarrow) Suppose $2^n = 2^2 \mod 7$. Then $n = 2 \mod 3$ by (a).

$$(\Leftarrow)$$
 Suppose $n=2 \mod 3$. Then $2^n=2^2 \mod 7$.

2.c)

Which $n \in \mathbb{Z}$ is $2^n = 5 \mod 7$.

The order of $2 \mod 7$ is h = 3.

$$2^1 = 2, 2^4 = 2$$

$$2^2 = 4, 2^5 = 4$$

$$2^3 = 1, 2^6 = 1$$

This cycle repeats so there is no $n \in \mathbb{N}$ where $2^n = 5 \mod 7$.

2.d)

 $3^n = 2 \mod 7$

The order of $3 \mod 7$ is 6. So 3 is a primitive root.

$$3^1 = 3$$

$$3^2 = 2, 3^8 = 2, ..., 3^{6k+2} = 2$$

So n = 6k + 2 for any $k \in \mathbb{Z}$. Hence $n = 2 \mod 6$

 $5^n = 4 \mod 11$. The order of 5 mod 11 is 5.

So $5^{5k+3} = 4$ as $5^3 = 4 \mod 11$.

So n = 5k + 3 for any $k \in \mathbb{Z}$. Hence $n = 3 \mod 5$.

3)

p odd prime, g primitive root mod p.

3.a)

Show that $g^{\frac{p-1}{2}} = -1 \mod p$.

Proof.

$$g^{\frac{p-1}{2}} = a \operatorname{mod} p$$

$$g^{p-1} = a^2 \operatorname{mod} p$$

$$\Rightarrow a^2 = 1 \operatorname{mod} p$$

$$a = \pm 1 \operatorname{mod} p$$
(3)

So
$$a=-1$$
. Hence $g^{\frac{p-1}{2}}=-1 \bmod p$.

3.b)

Show -g is a primitive root if and only if $p = 1 \mod 4$.

Proof. Let r be the order of (-g).

So
$$(-g)^r = 1 \mod p$$
.

Then write g = -(-g).

$$g^2 = (-g)^2 \operatorname{mod} p$$

$$g^{2r} = (-g)^{2r} \operatorname{mod} p$$

$$q^{2r} = 1 \operatorname{mod} p$$
 (4)

So $p-1 \mid 2r$ as g is a primitive root.

Either r=p-1 or $r=\frac{p-1}{2}$. From (a) we know that $g^{\frac{p-1}{2}}=-1 \bmod p$.

$$(-g)^{\frac{p-1}{2}} = (-1)^{\frac{p-1}{2}} g^{\frac{p-1}{2}} \bmod p$$

$$(-g)^{\frac{p-1}{2}} = (-1)^{\frac{p-1}{2}} (-1) = (-1)^{\frac{p+1}{2}} \bmod p$$
(5)

For -g to be primitive, $(-g)^{\frac{p-1}{2}} \neq 1 \mod p$. So $\frac{p+1}{2}$ must be odd if and only if -g is a primitive root (by Equation 5).

Hence

$$\frac{p+1}{2} = 2k+1 p+1 = 4k+2 p = 1 \mod 4$$
 (6)

If $p = 3 \mod 4$, then $(-g)^{\frac{p-1}{2}} = 1 \mod p$, and then -g would not be a primitive root.

4)

 $p \neq 3$ prime.

4.a)

Suppose $p=1 \mod 3, a \in (\mathbb{Z}/p\mathbb{Z}^{\times})$. Show $x^3=a \mod p$ has a solution if and only if $a^{\frac{p-1}{3}}=1 \mod p$.

Proof. (\Longrightarrow) Suppose $x^3 = a \mod p$ has a solution.

Let $a = x^3$. Then $a^{\frac{p-1}{3}} = x^{p-1} = 1 \mod p$.

 (\Leftarrow) Let g be a primitive root and $a^{\frac{p-1}{3}} = 1 \mod p$.

Write $a = g^k$ for some k = 0, 1, 2, ..., p - 2.

Then $\left(g^k\right)^{\frac{p-1}{3}}=1\Longrightarrow g^{\frac{k(p-1)}{3}}=1 \operatorname{mod} p.$

Since p-1 is the order of $g, p-1 \mid \frac{k(p-1)}{3} \Longrightarrow 3 \mid k \Longrightarrow k = 3l$ for some $l \in \mathbb{Z}$.

So $a=g^k=g^{3l}=\left(g^l\right)^3$. Hence a is a cube. \Box

4.b)

Show that $\frac{1}{3}$ of the elements in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ are cubes.

Proof. Let g be a primitive root mod p. Then $g^k = a$ is a cube if $3 \mid k$. So every third element of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is a cube, hence $\frac{1}{3}$ of the elements are cubes. We know that we can write all elements of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ as g^k for some k, so we have shown that a third of the elements are cubes.

4.c)

 $(\mathbb{Z}/13\mathbb{Z})^{\times}$. g=2 is a primitive root.

 2^{12} , 2^{9} , 2^{6} , 2^{3} are cubes mod 13. These are all of the exponents that divide 12 of a primitive root mod 13.

4.d)

 $p = 2 \mod 3$.

There are 4 cubes mod 5, 10 cubes mod 11, 16 cubes mod 17.

My conjecture is that there are p-1 cubes mod p if $p=2 \mod 3$. So every unit is a cube if $p=2 \mod 3$.

We want to show that if $p=2 \mod 3$, every unit $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ has a unique solution to $x^3=a \mod p$.

Proof. Let g be a primitive root mod p, and write $a = g^k$.

We can also see that (by FLT) $a = g^{k+(p-1)} \mod p$ and $a = g^{k+2(p-1)} \mod p$.

So by the definition of $p = 2 \mod 3$

$$k = k \mod 3$$

 $k + (p - 1) = k + 1 \mod 3$ (7)
 $k + 2(p - 1) = k + 2 \mod 3$

Hence for any k, we have found that there exists an a (with the corresponding exponent) such that a is a cube. So all units are cubes mod p if $p = 2 \mod 3$.

5)

5.a)

 $a \in (\mathbb{Z}/13\mathbb{Z})^{\times}$, h is order of a.

Suppose $a^4 \neq 1 \mod 13$ and $a^6 \neq 1 \mod 13$.

1, 2, 3, 4, 6 are divisors of p-1=12. Let the order of a be h. We know that $h \mid 12$.

 $h \nmid 4$ and $h \nmid 6$ but $h \mid 12$. So h = 12, which means that a is a primitive root mod 13.

5.b)

 $a \in (\mathbb{Z}/31\mathbb{Z})^{\times}$, h is order of a.

1, 2, 3, 6, 10, 15 divide 30 = p - 1.

Let x = 6, y = 10, z = 15.

If $a^x \neq 1 \mod 31$ and $a^y \neq 1 \mod 31$ and $a^z \neq 1 \mod 31$, then $h = 30 \Longrightarrow a$ is a primitive root.

This statement is correct because the prime factors of 30 are 2, 3, 5, and $\frac{30}{2} = 15$, $\frac{30}{3} = 10$, $\frac{30}{5} = 6$. Hence if we check if a to the power of these three values is not equal to one, then it can not be equal to one for any of the divisors of p-1.