

CS 777: Big Data Analytics LAPD CRIME ANALYSIS Term Project Fall 2023

Aditya Maheshwari Sarthak Pattnaik Vaidehi Shah

The Dataset

The LAPD police report dataset provides a comprehensive overview of crime incidents in Los Angeles from 2020 onward.

Originating from original crime reports transcribed from paper documents, potential data inaccuracies may exist due to the manual transcription process.

++	+	+	+-	+	+-		+	+		+		+	+	+	+-	+
Date Rptd	DAT	E OCCITIME	OCCIA	REA		pt Dist No Part	meneral process	3323	Crm Cd Des	scl	Moc	odes Vict	Age Vict	Sex Vict	Descent P	remis Cd
+	+	+	+-	+						+		+	+	+	+-	
01/08/2020	01/08	72020	2230	03	Southwest	0377	2	624 BATTERY	- SIMPLE		0444	0913	36	FI	BI	501 SING
01/02/2020	01/01	/2020	0330	01	Central	0163	2	624 BATTERY	- SIMPLE .	. 0416	1822	1414	25	M	н	102
04/14/2020	02/13	/2020	1200	01	Central	0155	2	845 SEX OFFE	NDER REGI.			1501	0	ΧI	ΧI	726
01/01/2020	01/01	/2020	1730	15 N	Hollywood	1543	2	745 VANDALIS	SM - MISDE.	1	0329	1402	76	FI	W	502 MULT
01/01/2020	01/01	/2020	0415	19	Mission	1998	2	740 VANDALIS	SM - FELON.			0329	31	ΧI	ΧI	409 BEA
+	+	+	+-	+	+-	+	+	+		+		+	+	+	+-	+
only showing	g top	5 rows														

Data Cleaning and Processing

2.

3.

Column Handling:

- Dropped irrelevant columns.
- Renamed for clarity.
- Trimmed off extra white spaces.

Formatting:

- Date columns standardized.
- 'LOCATION' and 'Cross Street' merged.
- Mapped 'VictDescent' for interpretability.

Handling Nulls:

 'PremisCd' or 'PremisDesc' null rows dropped.

Geospatial Analysis

- 1. Extracted geographical coordinates (latitude and longitude).
- 2. Downloaded the geojson file for LA.
- 3. Plotted crime locations on the map, with each point representing an incident.
- 4. With the help of this geospatial map, we observed that Central LA has the highest concentration of crimes.
- 5. Generated heatmaps to visually represent the intensity of crime in different areas.

Geospatial Analysis

- 1. Extracted geographical coordinates (latitude and longitude).
- 2. Downloaded the geojson file for LA.
- 3. Plotted crime locations on the map, with each point representing an incident.
- 4. With the help of this geospatial map, we observed that Central LA has the highest concentration of crimes.
- 5. Generated heatmaps to visually represent the intensity of crime in different areas.

Integration with PostgreSQL and Tableau

- Leveraged the Python library psycopg2 to seamlessly transfer our data into PostgreSQL database.
- The primary motivation was to establish a connection between Tableau and our dataset where PostgreSQL was a required intermediate. This integration facilitates diverse visualizations in alignment with our three key business questions.

Business Questions & Tableau Dashboards

Investigated whether an individual's demographic profile, encompassing age, ethnicity, and gender, correlates with and potentially indicates a higher susceptibility to specific crime types.

Explored how crime data can be leveraged to understand the *most prevalent crimes and crime* rates based on *geographic areas*.

Examined the relationship between the time of occurrence and the time of reporting for different types of crimes, seeking to uncover any dependencies.

BUSINESS QUESTION 1: Does an individual's demographic profile, including age, ethnicity, and gender, correlate with and potentially indicate a higher susceptibility to specific crime type?

INFERENCE:

The data indicates that 30-40 year old Hispanic/Latin/Mexican males are most likely to be victims of Type 1 crimes.

BUSINESS QUESTION 2: How to levarage crime data to understand most prevelant crimes and crime rates based on the areas?

Top 5 Crimes Committed

Least 5 Crimes Committed

Area-Wise Incidence Rates

Crime Hotspots: Top 5 Offenses Across Key Areas

INFERENCE:

Stolen vehicles dominate crime in Los Angeles, notably in Central LA, where property crimes like burglary from vehicles are on the rise. Despite lower overall crime rates in Foothill, the challenge of stolen vehicles persists citywide. The rarity of inciting a riot suggests a generally stable societal environment.

BUSINESS PROBLEM 3: Is there a relation between the difference in the time of occurrence and report of a crime dependent on the crime?

Temporal Discrepancy Heatmap: Occurrence vs. Reporting Time

CRM AGNST CHLD (13 OR UNDER) (14-15 & SUSP 10 YRS OLDER) 2,977 hours	DISHONEST EMPLOYEE ATTEMPTED THEFT 2,088 hours	DOCUMENT FORGERY/STOLEN FELONY		CREDIT CARDS, FRAUD USE (\$950.01	GRAND THEFT/	нима	AN		HUMAN
		contributing 1,317 hours		& OVER)					
SEX OFFENDER REGISTRANT OUT OF COMPLIANCE	SEXUAL PENETRATION W/FOREIGN OBJECT 1.524 hours	2,027 110010			CREDIT CARDS,		CHILD		
2,704 hours	1,524 Hours	THEFT OF IDENTITY			FRAUD USE				
	EMBEZZLEMENT, PETTY THEFT (\$950 & UNDER)	1,301 hours			(\$950 & UNDER				
SEX,UNLAWFUL(INC MUTUAL CONSENT, PENETRATION W/	1,492 hours	SODOMY/SEXUAL	STALKING 711 hour						
FRGN OBJ	EMBEZZLEMENT, GRAND THEFT (\$950.01 & OVER)	CONTACT B/W PENIS OF ONE PERS	711 Hour	BRIBE	RY				
14.00	1,429 hours	CHILD ANNOYING							
LEWD/LASCIVIOUS ACTS WITH CHILD	1,399 hours	(17YRS & UNDER) 1,248 hours							
2,454 hours	RAPE, FORCIBLE 1,343 hours	UNAUTHORIZED COMPUTER ACCESS 1,244 hours							
BIGAMY 2,232 hours	DOCUMENT WORTHLESS (\$200.01 & OVER)	MANSLAUGHTER, NEGLIGENT 1,238 hours	PEEPING TO	М					

Average Time Difference in Hours

INFERENCE:

Crimes against children and sex offenses, requiring more time for reporting, underscore potential barriers in victim disclosure or societal reluctance. Conversely, swift reporting of school disruptions and purse snatching suggests heightened awareness and prompt community responsiveness to immediate threats

Analyzing Minimum Crime Reporting
Times

Analyzing Maximum Crime Reporting Times

2,977

LA Crime Statistics Tableau Dashboard

https://public.tableau.com/LACrimeAnalytics

Machine Learning for Demographic Predictions using GCP

Accuracy: 0.5118049380458901										
Oleratification Baselin										
Classification Report:	precision	recall	f1-score	support						
	precision	recarr	11-30016	support						
American Indian/Alaskan Native	1.00	0.01	0.01	157						
Asian Indian	0.00	0.00	0.00	80						
Black	0.48	0.33	0.39	22992						
Cambodian	0.00	0.00	0.00	7						
Chinese	0.35	0.01	0.02	640						
Filipino	0.00	0.00	0.00	696						
Guamanian	0.00	0.00	0.00	11						
Hawaiian	0.00	0.00	0.00	26						
Hispanic/Latin/Mexican	0.54	0.74	0.63	49217						
Japanese	0.25	0.00	0.01	227						
Korean	0.19	0.02	0.03	849						
Laotian	0.00	0.00	0.00	12						
Other	0.24	0.03	0.05	10766						
Other Asian	0.20	0.01	0.03	3528						
Pacific Islander	0.00	0.00	0.00	47						
Samoan	0.00	0.00	0.00	4						
Vietnamese	0.00	0.00	0.00	163						
White	0.48	0.56	0.52	30909						
accuracy			0.51	120331						
macro avg	0.21	0.09	0.09	120331						
weighted avg	0.47	0.51	0.47	120331						

Accuracy: 0.5711329582568083									
Classification Report: precision recall f1-score support									
	F M X	0.57 0.58 0.00	0.56 0.58 0.00	0.56 0.58 0.00	59256 60928 147				
accu	iracy	0.38	0.38	0.57 0.38	120331 120331				
weighted	9	0.57	0.57	0.57	120331				

Linear Regression with PCA MSE: 236.2902424485539

Decision Tree Regression with PCA MSE: 562.0412958005537

Decision Tree Regression with PCA MSE: 243.05583133485314

Random Forest Regression R-squared: 0.005272755796456696 Decision Tree Regression R-squared: -1.300203151801954

Linear Regression R-squared: 0.03296151994304031

Conclusion

- Successfully conducted comprehensive analysis of LAPD crime dataset to uncover insights into crime trends, demographics, and temporal patterns
- Developed interactive Tableau dashboard to enable data-driven decision making for law enforcement
- Achieved 50-60% accuracy in predicting victim demographics using machine learning models
- Identified opportunities to optimize resource allocation and enhance public safety strategies based on analysis

Future Scope

Refining Machine Learning Models

Exploration of Deep-Learning Integration

Continuous Data Collection for Trend Detection