เลขที่นั่งสอบ		•	•	•	•		•		•	•	•		
เลขที่นั่งสอบ	•	•	•	•	•		•	•	•	•	•	•	

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

สอบปลายภาค 1/2557

วิชา PHY 305 Vacuum Technology

นักศึกษาฟิสิกส์ชั้นปีที่ 3

สอบวัน อังคาร ที่ 2 ธันวาคม 2557

เวลา 9:00 - 12:00 น.

คำชื้แจง

- 1. ข้อสอบมีทั้งหมด 6 ข้อ คะแนนเต็ม 80 คะแนน 8 หน้า (รวมใบปะหน้า)
- 2. ห้ามนำตำราหรือเอกสารต่างๆ เข้าห้องสอบ
- 3. อนุญาตให้ใช้เครื่องคำนวณทางวิทยาศาสตร์และไม้โปรแทรกเตอร์เข้าห้องสอบได้
- 4. ข้อสอบไม่มีการแก้ไขใดๆ ทั้งสิ้น

ล่ ชื่อ – สกล	รหัสนักศึกษา	ห้องสอบ
DO - 911191	d	

อ. สมชาย ปัญญาอื่นแก้ว

ข้อสอบฉบับนี้ได้ผ่านการพิจารณาของกรรมการกลั่นกรองข้อสอบภาควิชาฟิสิกส์เป็นที่เรียบร้อยแล้ว

Acc.

ข้อมูลที่อาจจะนำไปใช้ในการทำข้อสอบ

$$S_{m} = \frac{Q}{K_{e}p - p_{lim}}$$

$$U = S_{m \frac{K_{e}}{1 - K_{e}}}$$

$$\lambda = \frac{kT}{\sqrt{2}\pi\xi^{2}p}$$

$$C = 1.15 \left(\frac{T}{M}\right)^{1/2} A$$

$$C = 1.204 \left(\frac{T}{M}\right)^{1/2} \frac{D^{3}}{L}$$

$$K_{n} = \frac{L}{pd_{n}}$$

Gas flow modes in vacuum symplic

Flow modes	•	Boundaries

1. จงแปลข้อความต่อไปนี้ให้เป็นภาษาไทย (10 คะแนน)

A standard cleaning solution for glass consists of 35 parts of a saturated solution of potassium dichromate mixed with 1000 parts of concentrated sulfuric acid (chromic acid solution). The acid should be poured slowly into the dichromate solution, while stirring. The solution is most effective when hot and should be used at around 110 °C. It should be red in color for best results. If the solution is muddy or greenish, it should be discarded. Often glass is first washed with a soap solution and rinsed in distilled water before using the chromic acid solution. Finally, the glass should be washed with warm distilled water and dried with hot, dust-free air. Additional precautions must be taken with glass which to be coated with a metal film in vacuum, e.g., glass for aluminized mirrors. The treatment with chromic acid should be continued until a water film spreads uniformly over the glass surface (this indicates freedom from grease). Next dry the glass with cotton wool. Finally, polish with cotton wool and alcohol until a uniform water vapor film forms on the surface when breathed upon.

- 2. สารละลายชนิดหนึ่งเป็นสารละลายที่ติดไฟได้และเป็นอันตรายต่อสุขภาพเมื่อสูดคม เข้าไป จงเขียนสัญญลักษณ์สากล เพื่อสื่อให้เห็นข้อควรระวังดังกล่าว (4 คะแนน)
- 3. Base plate ที่รองรับ vacuum chamber รูปทรงกระบอก โดย Base plate มีลักษณะเป็น วงกลม เส้นผ่านศูนย์กลาง 60 cm. หนา 3 cm. การประกอบ chamber เข้ากับ Base plate จำเป็นต้องใช้ Gasket ที่ทำด้วย "O" ring ที่มีความโตหรือความอ้วน 8 mm. 3.1 จงออกแบบ groove เพื่อใส่ "O" ring บน Base plate (6 คะแนน)

- 3.2 ก่อนใส่ " O " ring ลงไปใน groove จะต้องทำอย่างไรและทำไปเพื่อวัตถุประสงค์ อะไร (2 คะแนน)
- 3.3 ถ้าต้องการนำ " O " ring ออกจาก groove จะต้องทำอย่างไรเพื่อไม่ให้เกิดความ เสียหาย (2 คะแนน)
- 3.4 การใช้ " O " ring จัดเป็นการเชื่อมต่อ (joint) แบบไหน (2 คะแนน)
- 4. ตามที่นักศึกษาได้เห็นกล่องพลาสติกของจริงสำหรับใช้ใส่ขนมหรืออาหาร และได้ เห็นวิดิทัศน์การทำงานของกระบวนการผลิตกล่องพลาสติกผ่านทาง YOU TUBE เรียบร้อยแล้ว จงใช้ความรู้ทางด้านสุญญากาศและความรู้ด้านอื่นที่ผู้สอนได้บรรยาย ให้พึ่งในห้องเรียน มาประยุกต์ใช้เพื่อสร้างเครื่องจักรสำหรับผลิตกล่องพลาสติก (20 คะแนน)
- 5. จงบอกชื่อและอธิบายการทำงานพร้อมกับการนำไปใช้งานของ vacuum valve คัง แสคงในรูปมาให้กระชับและชัคเจน ห้ามอธิบายเยิ่นเย้อและตอบไม่ตรงคำถาม (12 คะแนน)

(©) Fig. 1. 6. ส่วนหนึ่งของระบบสุญญากาศแสคงคังรูป 2 หากความคันเฉลี่ยของอากาศที่ใหลผ่าน

- 5. ส่วนหนึ่งของระบบัสุญญากาศแสคงคั้งรูป 2 หากความคั้นเฉลียของอากาศที่ใหลผ่าน
 vacuum pump หมายเลข 2 มีค่า 80 Pa โคยมีค่า total gas load 8 x 10⁻² Pa.m /s และ
 working temperature 20 °C
 - 6.1 จงหาค่า effective pumping speed ของ rotary pump (2 คะแนน)
 - 6.2 จงหาค่า rated pumping speed (2 กะแนน)
 - 6.3 จงเลือกชนิดและขนาดของปั๊มให้สอดคล้องกับค่าที่ได้จากการคำนวณ (2 คะแนน)
 - 6.4 จงหาค่า Conductance ของแต่ละ Element (3 คะแนน)
 - 6.5 การใหลของอากาศที่ผ่านแต่ละ Element เป็นการใหลแบบใหน (3 คะแนน)
 - 6.6 ถ้าท่อที่ใช้ทั้งหมคทุกส่วนมีขนาดเท่ากัน จงคำนวณหาขนาดของท่อ (6 คะแนน)
 - 6.7 ขนาดของท่อที่ได้จากการคำนวณในข้อ 6.6 ยังไม่สามารถนำไปใช้งานได้จริง จงฺ แสดงวิธีทำเพื่อเลือกท่อให้มีความเหมาะสมและในการใช้จริงจะต้องเลือกใช้ท่อ ขนาดเท่าใด (4 คะแนน)

Figure 3 Recommended utilization coefficients K_e of rotary pumps in low-vacuum systems as a function of effective pumping speed S_e and the number n of elements n between the pump and the pumped object.

Table C.1 Formulas for calculating the conductances of apertures and pipelines for air at 293 K.

Element			Flov	v mode		
		visco	us		molec	ılar
Round orifice with diameter d , m	t	$U = 160d^2 \text{ f}$	$\operatorname{for} \frac{p_2}{p_1} \le 0.1$		<i>U</i> = 9	1 <i>d</i> ²
Arbitrary-shape orifice with area A , m^2		U = 200A for	or $\frac{p_2}{p_1} \le 0.1$		U = 1	16 <i>A</i>
Pipeline with diameter d and length l, m		$U = 1.36 \times$	$10^3 \frac{d^4}{l} p_m$		U = 12	$21\frac{d^3}{l}$
Rectangular section pipeline $a \ge b$ m		U = 865	$\int \frac{ab^3}{l} p_m$		$U = 308\varphi$	$\frac{a^2b^2}{l(a+b)}$
Pipeline with equal-side triangle section; a is the triangle side, m		U = 299	$f\frac{a^4}{l}p_m$		U = 48	$.1\frac{d^3}{l}$
Elliptical pipeline; a is the long axis and b is the small axis, m	U	$\approx 2.72 \times 10^3$	$\frac{a^3b^3}{(a^2+b^2)l}p_m$		$U = 171 - l_{\gamma}$	$\frac{a^2b^2}{\sqrt{a^2+b^2}}$
Pipeline with diameter d_1 and coaxial rod with diameter d_2 , m	U = 1.3	$6 \times 10^{8 \frac{p_m}{l}} \left[d_1^4 \right]$	$-d_2^4 - \frac{(d_1^2 - d_1^2)}{\ln(d_1^2)}$	$\left[\frac{(d_2^2)^2}{(d_2)}\right] U =$	$121\frac{(d_1-d_2)}{d_1-d_2}$	$\frac{l_2)^2(d_1+d_2)}{l}$
2						
a/b	1	2	5	10	100	. ∞
f φ	2.3 1.1	3.7 1.2	4.7 1.3	5.0 1.4	5.3	5.3

Note: U is in m³/s; p in Pa; $p_m = (p_1 + p_2)/2$.

Table A.1 Conductance of vacuum valves in molecular gas flow mode.

Fixture trademark	Conditional passage diameter, mm	Conductance, m ³ /s
ZVE-100	100	1.2
ZVE-160	160	3.34
ZVE-250	250	13.4
ZVE-400	400	46.25
VEP-25	25	0.014
VEP-63	63	0.148
VEP-100	. 100	0.470
VRP-25	25	0.011
VRP-63	63	0.102
VRP-100	100	0.332
CMU1-10	10	0.0014
CMU1-16	16	0.0040
CMU1-25	25	0.0140
CMU1-40	40	0.0400
CMU1-63	63.	0.1480

The following nominal sizes of conditional passages of yacuum system elements are recommended (mm): 0.1; 0.25; 0.63; 1.0; 1.6; 2.5; 4.0; 6.3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630; 1000; 1600; 2500; 4000; 6300.

For flange and union junctions and pipeline elements, the following nominal sizes of conditional passages can be used (mm): 8; 12; 20; 32; 50; 80; 125; 200; 320; 500; 800; 1250; 2000; 3150; 5000

Table A.2 Characteristics of mechanical vacuum pumps.

VNK-0.5M 3VNP-3 2DVNP-6 VN-01 3VNR-1D re 1×10⁴-1×10⁴ 2×10³-1×10⁴ 2×10²-1×10⁴ 3×10⁰-1×10⁴ 4×10¹-1×10⁴ 1 5×10⁴ 4×10² 4×10¹ 5×10³-1×10⁴ 1×10° 1×10° 1 5×10³ 4×10² 4×10¹ 5×10° 1×10¹ 1×10¹¹ 1×10¹² 1 5×10³ 4×10² 4×10¹ 5×10° 1×10¹ 1×10¹¹ 1×10¹¹ 1 5×10³ 4×10² 4×10¹ 5×10° 1×10¹ 1×10¹² 1×10²² 1 5×10³ 4×10² 4×10¹ 5×10° 1×10¹ 1×10¹² 1 5×10³ 4×10² 4×10¹ 5×10° 1×10¹ 1×10² 1 5×10³ 1×10³ 1×10° 1×10° 1×10° 1×10° 1 862 1430 1770 306 320 130 1770 100 8 110 100 100 100 8 1 1725 925 925 170 83 9.5 130 150 1500 1500 8.3 9.5	Main parameters		Piston-type	•		Vane-rotor			Multivane	
Working pressure 1×10 ⁴ - 1×10 ⁵ 2×10 ³ -1×10 ⁵ 2×10 ² -1×10 ⁵ 3×10 ⁶ -1×10 ⁵ 4×10 ⁻¹ -1×10 ⁵ 5×10 ⁻² -1×10 ⁵ ax 10 ⁶ - 1×10 ⁵ ax 10 ⁶ - 1×10 ⁵ ax 10 ⁶ ax 10		VNK-0.5M		l	VN-01	3VNR- 1D	2VNR-5DM	RVN-61	RVN-25	RVN-50
d, m³/s 0.0080 0.0630 0.1050 0.0001 0.0010 essure: ballast,	ı	1×104-1×10 ⁵	2×10³-1×10 ⁵	2×10²-1×10 ⁵	3×10°-1×10°	5 4×10 ⁻¹ –1×10 ⁵	5×10-2-1×10 ⁵	2×10 ⁴ –1×10 ⁵	2×104-1×10 5	2×104-1×10 ⁵
d, m ³ /s 0.0080 0.0630 0.1050 0.0001 0.0010 essure: ballast,	range, Pa									
essure: ballast,	Pumping speed, m3/s		0.0630	0.1050	0.0001	0.0010	0.0050	0.1000	0.4000	0.8000
pallast, – – – – 7×10° (10°) pas 5×10³ (4×10² (4×10¹) (5×10°) (1×10⁻¹) Pa 5×10³ (4×10² (4×10¹) (5×10⁻¹) (7×10⁻²) pm 1500 750 1500 1400 2800 1³	Limiting pressure:									
pa 5×10³ 4×10² 4×10¹ 5×10° 1×10⁻¹ pa 5×10³ 4×10² 4×10¹ 5×10° 1×10⁻² pa 1500 750 1500 1400 2800 150° 150° 10.5 dm³/s 2.75 0.04 0.05 dm³/s 3 5.5 11 0.12 0.25 wheret, 80 100 100 8 10 862 1430 1770 306 320 640 795 795 135 130 1725 925 925 170 200 8.3 9.5	total with gas ballast,	ı		ı	1	7×10 º	3×10°	ı	ı	1
Fig. 2.75 4×10 ² 4×10 ¹ 5×10 ⁰ 1×10 ⁻¹ Pa 5×10 ³ 4×10 ² 4×10 ¹ 5×10 ⁻¹ 7×10 ⁻² Ph 5×10 ³ 4×10 ² 4×10 ¹ 5×10 ⁻¹ 7×10 ⁻² Ph 5×10 ³ 4×10 ² 4×10 ¹ 5×10 ⁻¹ 7×10 ⁻² Fig. 1500 1500 1400 2800 Adm ³ /s 5.5 11 0.12 0.25 Adm ³ /s 3 5.5 11 0.12 0.25 Adm ³ /s 110 8 100 Adm ³ /s 110 0.15	Pa									
Pa 5×10 ³ 4×10 ² 4×10 ¹ 5×10 ⁻¹ 7×10 ⁻² pm 1500 750 1500 1400 2800 13 0.5 dm ³ /s kW 3 5.5 11 0.12 0.25 ameter, 80 100 100 8 10 862 1430 1770 306 320 640 795 795 135 130 1725 925 925 170 200	total without gas	5×10³	4×10^{2}	4×10^{1}	5×10^{0}	1×10-1	7×10-1	1×104	1×104	1×10 ⁴
Pa 5×10 ³ 4×10 ² 4×10 ¹ 5×10 ⁻¹ 7×10 ⁻² pm 1500 750 1500 1400 2800 1 ³ 0.5 dm ³ /s kW 3 5.5 11 0.12 0.25 ameter, 80 100 100 8 10 862 1430 1770 306 320 640 795 795 135 130 1725 925 925 170 200	ballast, Pa									
pm 1500 750 1500 1400 2800 13	Partial for air, Pa	5×10^{3}	4×10 ² .	4×101	5×10 ⁻¹	7×10^{-2}	1×10^{-2}	1×104	1×104	1×10 ⁴
h ³ 2.75 0.04 0.05 - 0.5 dm ³ /s kW 3 5.5 11 0.12 0.25 ameter, 80 100 100 8 10 862 1430 1770 306 320 640 795 795 135 130 1725 925 925 170 200 540 750 1500 8.3 9.5	Rotor speed, rpm	1500	750	1500	1400	2800	1430	1450	009	200
dm ³ /s	Oil charge, dm3	t	ı	ļ	i	0.5	1.2	1	ı	ı
mption, dm ³ /s power, kW 3 5.5 11 0.12 0.25 hole diameter, 80 100 100 8 10 ision: 862 1430 1770 306 320 imm 640 795 795 135 130 imm 1725 925 925 170 200 imm 1725 925 925 170 200 imm 174 59 750 1500 8.3 9.5	Cooling water	2.75	0.04	0.05	ı	1	ı	0.08	0.18	0.36
hole diameter, 80 100 100 8 10 hole diameter, 80 100 100 8 10 hole diameter, 80 100 100 8 10 hole diameter, 80 100 100 8 100 histon: 862 1430 1770 306 320 histor: 862 1430 1770 200 histor: 925 925 170 200 histor: 940 750 1500 8.3 9.5	consumption, dm3/s									
hole diameter, 80 100 100 8 10 hole diameter, 80 100 100 8 10 histor: 862 1430 1770 306 320 histor: 862 1430 1770 200 histor: 840 750 1500 8.3 9.5	Motor power, kW	3	5.5	=	0.12	0.25	0.55	15	55	75
rsion: 862 1430 1770 306 320 (320 mm 640 795 795 135 130 mm 1725 925 925 170 200 mm ht, kg 540 750 1500 8.3 9.5	Inlet hole diameter,	80	100	100	∞	10	16	110	150	250
862 1430 1770 306 320 640 795 795 135 130 1725 925 925 170 200 540 750 1500 8.3 9.5	mm '						ć		•	
640 795 795 135 130 1725 925 925 170 200 540 750 1500 8.3 9.5	Dimension:	862	1430	1770	306	320	540	1500	2250	3000
1725 925 925 170 200 S 540 750 1500 8.3 9.5	length, mm	640	795	795	135	130	160	700	1000	1200
540 750 1500 8.3 5 9.5	width, mm	1725	925	925	170	200	280	740	1100	1500
540 750 1500 8.3 9.5	height, mm									
	Weight, kg	540	750	1500	8.3	9.5	30	310	2250	4500