Some linear algebra
By Bart Snapp License CC BY-NC-SA 4.0
(We'll prove that a basis is a minimal spanning set)
Definition A set of vectors B is a basis for a K-vector space V if
1) The elements of B are linearly independent
meaning
$\sum_{i \in \mathcal{B}} a_i b_i = 0 \Rightarrow a_1 = a_2 = \dots = a_N$
where B =n and a; EK
2 V is spanned by B, meaning for all JEV
Sor some aick.
Sot some aiek.
Theorem (Basis and minimal saunning set)
Theorem (Basis and minimal spanning set) Given a vector space V if a spanning set S is minimal with respect to the number of elements, then S is a basis for Vo
Froof We must show theet the
Froof We must show theet the
Froof We must show theet the
for Vo
Front We must show theat the vectors in a minimal spanning set are linearly independent. Seeking a contradiction, suppose they are not linearly independent. In this case a, \$\frac{1}{5}, + \cdots + a_n \frac{1}{5}, = 0 S = n WLOG, say an \$\pi_0\$. Now we may
Number of elements, then S is a basis for Vo Proof We must show theat the vectors in a minimal spanning set are linearly independent. Seeking a contradiction, suppose they are not linearly independent. In this case a, \$\frac{1}{5} + \cdots + a_n \frac{1}{5} = 0 Whos, say an \$\pm 0\$. Now we may
Number of elements, then S is a basis for Vo Proof We must show theat the vectors in a minimal spanning set are linearly independent. Seeking a contradiction, suppose they are not linearly independent. In this case a, \$\frac{1}{5} + \cdots + a_n \frac{1}{5} = 0 Whos, say an \$\pm 0\$. Now we may write a, \$\frac{1}{5} + \cdots + a_n \frac{1}{5} = -a_n \frac{1}{5} n write
Number of elements, then S is a basis for Vo Proof We must show theat the vectors in a minimal spanning set are linearly independent. Seeking a contradiction, suppose they are not linearly independent. In this case a, \$\frac{1}{5} + \cdots + a_n \frac{1}{5} = 0 Whos, say an \$\pm 0\$. Now we may write a, \$\frac{1}{5} + \cdots + a_n \frac{1}{5} = -a_n \frac{1}{5} n write
Number of elements, then S is a basis for Vo Proof We must show theat the vectors in a minimal spanning set are linearly independent. Seeking a contradiction, suppose they are not linearly independent. In this case a, \$\frac{1}{5} + \cdots + a_n \frac{1}{5} = 0 Whos, say an \$\pm 0\$. Now we may