DERIVATIVES AND INTEGRALS

Basic Differentiation Rules

1.
$$\frac{d}{dx}[cu] = cu'$$

4.
$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{vu' - uv'}{v^2}$$

7.
$$\frac{d}{dx}[x] = 1$$

10.
$$\frac{d}{dx}[e^u] = e^u u'$$

13.
$$\frac{d}{dx}[\sin u] = (\cos u)u'$$

$$\mathbf{16.} \ \frac{d}{dx}[\cot u] = -(\csc^2 u)u'$$

$$19. \ \frac{d}{dx}[\arcsin u] = \frac{u'}{\sqrt{1 - u^2}}$$

22.
$$\frac{d}{dx}[\operatorname{arccot} u] = \frac{-u'}{1 + u^2}$$

25.
$$\frac{d}{dx}[\sinh u] = (\cosh u)u'$$

28.
$$\frac{d}{dx}[\coth u] = -(\operatorname{csch}^2 u)u'$$

31.
$$\frac{d}{dx}[\sinh^{-1} u] = \frac{u'}{\sqrt{u^2 + 1}}$$

34.
$$\frac{d}{dx}[\coth^{-1} u] = \frac{u'}{1 - u^2}$$

$$2. \frac{d}{dx}[u \pm v] = u' \pm v'$$

5.
$$\frac{d}{dx}[c] = 0$$

8.
$$\frac{d}{dx}[|u|] = \frac{u}{|u|}(u'), \quad u \neq 0$$

$$\mathbf{11.} \ \frac{d}{dx}[\log_a u] = \frac{u'}{(\ln a)u}$$

$$14. \frac{d}{dx}[\cos u] = -(\sin u)u'$$

17.
$$\frac{d}{dx}[\sec u] = (\sec u \tan u)u'$$

$$20. \frac{d}{dx} [\arccos u] = \frac{-u'}{\sqrt{1 - u^2}}$$

23.
$$\frac{d}{dx}[\operatorname{arcsec} u] = \frac{u'}{|u|\sqrt{u^2 - 1}}$$

$$26. \frac{d}{dx} [\cosh u] = (\sinh u)u'$$

29.
$$\frac{d}{dx}[\operatorname{sech} u] = -(\operatorname{sech} u \tanh u)u$$

32.
$$\frac{d}{dx}[\cosh^{-1} u] = \frac{u'}{\sqrt{u^2 - 1}}$$

35.
$$\frac{d}{dx}[\operatorname{sech}^{-1} u] = \frac{-u'}{u\sqrt{1-u}}$$

$$3. \frac{d}{dx}[uv] = uv' + vu'$$

6.
$$\frac{d}{dx}[u^n] = nu^{n-1}u'$$

$$9. \frac{d}{dx}[\ln u] = \frac{u'}{u}$$

12.
$$\frac{d}{dx}[a^u] = (\ln a)a^u u'$$

$$\mathbf{18.} \ \frac{d}{dx}[\csc u] = -(\csc u \cot u)u'$$

21.
$$\frac{d}{dx}[\arctan u] = \frac{u'}{1+u^2}$$

23.
$$\frac{d}{dx}[\operatorname{arcsec} u] = \frac{u'}{|u|\sqrt{u^2 - 1}}$$
 24. $\frac{d}{dx}[\operatorname{arccsc} u] = \frac{-u'}{|u|\sqrt{u^2 - 1}}$

$$27. \frac{d}{dx} [\tanh u] = (\operatorname{sech}^2 u) u'$$

29.
$$\frac{d}{dx}[\operatorname{sech} u] = -(\operatorname{sech} u \tanh u)u'$$
 30. $\frac{d}{dx}[\operatorname{csch} u] = -(\operatorname{csch} u \coth u)u'$

33.
$$\frac{d}{dx}[\tanh^{-1} u] = \frac{u'}{1 - u^2}$$

35.
$$\frac{d}{dx}[\operatorname{sech}^{-1} u] = \frac{-u'}{u\sqrt{1-u^2}}$$
 36. $\frac{d}{dx}[\operatorname{csch}^{-1} u] = \frac{-u'}{|u|\sqrt{1+u^2}}$

Basic Integration Formulas

$$1. \int kf(u) \ du = k \int f(u) \ du$$

$$3. \int du = u + C$$

$$5. \int e^u du = e^u + C$$

$$7. \int \cos u \, du = \sin u + C$$

$$\mathbf{9.} \int \cot u \, du = \ln |\sin u| + C$$

11.
$$\int \csc u \, du = -\ln|\csc u + \cot u| + C$$

$$\mathbf{13.} \int \csc^2 u \, du = -\cot u + C$$

$$15. \int \csc u \cot u \, du = -\csc u + C$$

17.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C$$

2.
$$\int [f(u) \pm g(u)] du = \int f(u) du \pm \int g(u) du$$

$$4. \int a^u du = \left(\frac{1}{\ln a}\right) a^u + C$$

$$\mathbf{6.} \int \sin u \, du = -\cos u + C$$

$$8. \int \tan u \, du = -\ln|\cos u| + C$$

$$\mathbf{10.} \quad \bigg| \sec u \, du = \ln \big| \sec u + \tan u \big| + C$$

$$12. \int \sec^2 u \, du = \tan u + C$$

$$14. \int \sec u \tan u \, du = \sec u + C$$

16.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$$

18.
$$\int \frac{du}{u \sqrt{u^2 - a^2}} = \frac{1}{a} \operatorname{arcsec} \frac{|u|}{a} + C$$