- 2. Dada la relación R(A,B,C,D,E) y el conjunto de dependencias $F=\{E\to C,E\to A,C\to A,C\to D,DE\to B\}$ encontrad:
 - a) El recubrimiento canónico de ese conjunto de dependencias
 - b) Todas las claves candidatas, justificando por que no hay más que las que indicáis.
 - c) Una descomposición sin pérdidas que conduzca a esquemas en FNBC y que preserve todas las dependencias iniciales. Demostrad que dicha descomposición preserva todas las dependencias iniciales.

 $\left(Q_{\cdot} \right)$ (=) 2F'? FOD = F porque co hay portes derechas comprestos Fa) = {E-C, E-A, C-A, C-D, E-B] [D] = [D] DE => E no es extreño pore D $\{\xi\}^{+}=\{\bar{\epsilon},C,A,D,B\}\ni D\Longrightarrow D$ es extrano por $\bar{\epsilon}$ luero D na prede aparecen junto a E $F^{(3)} = \{E \rightarrow C, C \rightarrow A, C \rightarrow D\}$ [E] = [E-c] = [E, A, B] = C => E-> C no es redundante {E}(FR)-(E→C,E→A])UF(3) = (E,C,A,D,B]∋A⇒ E→A es redundante => no se made a Fr3= (E-C) $\{C\}^{+}_{(F^{02})-\{E\rightarrow C,E\rightarrow A\}}$, $C\rightarrow A\}$) $VF^{(3)}=\{C,D\}\not\ni A\Longrightarrow C\rightarrow A$ C-A vo es reduchante => fc3)= {E=C, C-A] {C]+ (Fa)-{E-C,E-A, C-A, C-D]) UF(3) = {C,A} ≠D => C-D no es redundante => Fra)= (E->C, C->A, (E)+ (F(2)-[E→C,E→A,C→A,C→A,C→B])UF(3)= (E,C,A,D)>B => E-B us es redundante => F(3) = (E->C, C-A, C-D, E-B] F'=F(3) = {E->C, C->A, C->D, E->B]

3

(b)
$$k = \{A, B, C, D, E\}$$
, $f' = \{E \rightarrow C, C \rightarrow A, C \rightarrow D, E \rightarrow B\}$
 $E \in \mathbb{R}^{2}$.
 $E \in \mathbb{R}^{2}$ $E \in \mathbb{R}^{2}$

(c)

?R en BCNF? Mr., parque C-A y C-D estein en F'

?R on BCNF? Mr., parque C-A y C-D estein en F'

Le con esté en Ct. Ambes de pendencies honen a

le dereche un atribute que solo esté a la

dereche brepo padmas selvir cralguère, par ejample,

dereche brepo padmas selvir cralguère, par ejample,

 $R_1 = \{A,CJ, F_1 = \{C\rightarrow AJ, CK_1 = \{C\}\}\}$ $R_2 = \{B,C,D,E\}, F_2 = \{E\rightarrow C,C\rightarrow D,E\rightarrow B\}, CK_2 = \{E\}$ $F' = F_1 \cup F_2 \implies F' \subseteq (F_1 \cup F_2)^{+} \implies preserve dysonder$ $F' = F_1 \cup F_2 \implies F' \subseteq (F_1 \cup F_2)^{+} \implies preserve dysonder$

R, esté a BCNF pero R, vo parque C+DEF, y CQ Che Normalizamos: $R_{2,1} = \{C,D\}, F_{2,1} = \{C\rightarrow D\}, Ck_{2,1} = \{C\}$ $R_{2,2} = \{B,C,E\}, F_{2,2} = \{E\rightarrow C, E\rightarrow B\}, Ck_{2,2} = \{E\}$ F₂ = F_{2,1} U F_{2,2} => F₂ ⊆ (F_{2,1} U F_{2,2}) => prevere

dependucies.

R_{2,1} y R_{2,2} & BCNF

Descomposición: {([A,C], r,), ({C,D], r_{2,1}), ({B,C,E}, r_{2,2})}

Alternative

Si a aplica de la contrata C→AD y & produción a

C→A y C→D se obtida C→AD y & produción a

malicar una única see pare alcanor un espena

tel coinal e BCNF can

{([A,C,D], r,), (B,C,E], r₂)}

F₁ = {C→A,C→D} F₂: {E→C,E→B}

F'= F₁ U F₂ ⇒ F'⊆ F₁ U F₂) +> preserve

depadacies.

- 2. Dada la relación R(A,B,C,D,E) y el conjunto de dependencias $F=\{E\to C,E\to A,C\to A,A\to C,C\to D,CDE\to B\}$ encontrad:
 - a) El recubrimiento canónico de ese conjunto de dependencias
 - b) Todas las claves candidatas, justificando por que no hay más que las que indicáis.
 - c) Una descomposición sin pérdidas que conduzca a esquemas en FNBC. Demostrad que dependencias iniciales preserva dicha descomposición.

R= [A, B, C, E], E= (E-A, C-A, A-C, E-B], Ck= (E)

R2 40 = BONP page (C-A, A-C) EF2 y

[C, A] E CK2. Apline so el H. du Heath sobre

A-C page C es atribute a isognierde y dure
Ch= como A poro pardicipa sólo en dos

depardencias:

 $R_{2,1}(A,B,E), F_{2,1} = \{E \rightarrow A, E \rightarrow B\}, P_{2,1} = \{E\}$ $R_{2,2}(A,C), F_{2,2} = \{A \rightarrow C, C \rightarrow A\}, Ck_{2,2} = \{C,A\}$ $R_{2,1}(A,C), F_{2,2}(A,C), F_{2,3}(A,C), F_{3,4}(A,C), F_{3,4}(A,C), F_{3,5}(A,C), F_{3,6}(A,C), F_{3,6}(A$

Mar-aliezoia: (((C,D], r,), ((A,B,E), r2,1), ((A,C], r2,2))

F₂=F_{2,1}UF_{2,2} y F₁UF₂=F => No how poérdidar de depardecies

(C)+ FM7-LE-G, F-A, C-A, A-DC, C-DJU[E-A, C-A, A-DC] = = {C,A} >D => C=D va redundante {E, F(e)-{E-C, P-A, C-A, A-C, C-D, E-B} U {E-A, C-A, A-C, C-D]= = (E,A,C,D) >B => F->B wo oldindate F'= LE-A, C-A, A-C, C-D, E-B) (b) R(A, B, C, D, E), F= (E->A, C-A, A->C, C->D, E->B], ?CK? Algoritura de cálcula 1- Rsz = R \mathcal{L}^{-} $R_{SLE} = R - \{A\} = \{B, C, D, E\}, F_{STE} = \{E \rightarrow C, C \rightarrow D, E \rightarrow B\}$ 3- $R_p = E$, $R_p' = \{E, C, D, B\} = R_{SRE} \implies E \in CK_{SRE}$ 1. No 61 receptuo 5" Ck'= E 6- CK = E (c) ? R on BONF?. Na, parque (E-A, A-DC, C-D) = P y (C,A) & CK Apliands el 7h. de Heath: sobre C-D (x coraje por que D es atributo sólo a la sebrecha): R, = (c, D), F, = (c-D), C+, = (c), R, L BONF

- 2. Dada la relación R(A,B,C,D) y el conjunto de dependencias $F=\{A\to C,A\to B,C\to B,BD\to A,BD\to C,A\to D,B\to C\}$ encontrad:
 - a) El recubrimiento canónico de ese conjunto de dependencias
 - b) Todas las claves candidatas, justificando por que no hay más que las que indicáis.
 - c) Una descomposición sin pérdidas que conduzca a esquemas en FNBC y que preserve todas las dependencias funcionales iniciales. Demostrad que esa descomposición preserva dichas dependencias.

```
R= {A,B,C,D}, F= {A>C,A>B,C>B,BD-A,BD-C,A-D,
F(1) = F porme no hay parks director comprestos
F(2) = (A - C, A - B, C - B, BD - A, BD - C, A - D, B - C]
   B+ = (B, C), DEB+ => D No extremo respecto a B
p_{pro}^{t} = [D], B \not\in D_{pro}^{t} \implies B no extrain respect to D
p^{(3)} = [A \rightarrow B, C \rightarrow B, BD \rightarrow A, A \rightarrow D, B \rightarrow C]
   A + (A+C) VF(0) = (A,B,D,C) > C => A -> C es redundante
  A + FR)-[A-C, A-B]VF(3) = [A, D] BB DA-BB va redundante
  C+ FRD - [A->C, C-B] V F(3) = [C] ZB => C->B No red und ante
  BD+
Frad - {A-OC, A-OB, C-OB, BO-OA] UF TOD = (B, D, C) $A =>>
      BD -> A no redundante
  BO+ FA) - (A-C, A-B, C-B, OD-A, BO-C) VF(3) = (B, D, C, A) = (D)
     BD > C & robudante
 A+ Fas - [A-0C, A-0B, C-0B, BD-A, BD-C, A-D] UF(3) = [A,B,C] >D=
    A-Di me redundante
 B+ (A-C, A-B, C-B, BD-A, BD-C, A-D, B-C) VF(B) = [B] #C=>
    Boc en reducada to
F'=(A-B, C-B, BD-A, A-D, B-C]
```

```
(b) R= [A, 8, C, D], F'= (A-B, C-B, BD-A, A-D, B-C], PCL?
   F RSI= R
  2= RSIF = RSI - {C] = [A,B,D], FSIE = [A=8, BD=A, A=D]
  3- kg = Ø = Ø = RSTE
   4 kp'= (A,B,D)
      [A] = [A, B, D] = RICE => A = CKSTE, Kp'= [B,D]
     [B]+=[B] + RSIE => BECKSIE, Kp=[D] (BA NO R
       evelve par ser extensió de A y 80 no x evelva
où par ser extensió de DD
   10] = [D] 7 RSZE = D & CKZE, Kp = [DB] (DA WOR
        evelie par un extensión de A)
    (BD) = 13, D, A] = RSEE => BDECKSEE, Gp =>
  5- CK - CKSRE
  & CK= [A, BD, CD]
 CE = {A, BD, CD}
(F) IR = BCNF? No, porque C-BEF' y CECK, y B-CEF'

y BEKK. By C forman partalah claves poro C

esta involvorada a da dependencias y B = 4. Elegina

B-C para aplicar el Th. de Heath
 R = [B, C], F = [B-C, C-B], CK = [B, C], R = BCNF
 R= {A,B,D}, E= {A->B,BD-A,A-D}, Ck= [A,BD], R=
 Perter la derre perdido la clave CD pero Al vo Cader deseprente des vivo vivo depondencia vo le la perdido esada
```

Des composició: [([B,C], r,), ([A,B,D], ra)]

- 2. Dada la relación R(A,B,C,D,E) y el conjunto de dependencias $F=\{CDE\to B,BC\to E,B\to A,ED\to C,DE\to A\}$ encontrad:
 - a) El recubrimiento canónico de ese conjunto de dependencias
 - Todas las claves candidatas, justificando por que no hay más que las que indicáis.
 - c) Una descomposición sin pérdidas que conduzca a esquemas en FNBC
 - d) Demostrad qué dependencias funcionales iniciales no se preservan en esa descomposición.

(2) $R = \{A, B, C, D, E\}$ F= {CDE -B, BC-E, B-A, ED-C, DE-A] (e) ?F'? F(1) = F porgre us hay dependencies can le parte surrectes compreste à le gre aplicar le reple du descour. Fa) = (DE -B, BC-E, B-A, ED-C, DE-A) PCDE time a fribules relts? => Si; C [CD] = [C,D], [DE] = [D,E,C,A,B] Camo CE [DE]+ ontonces Cerraro con rapecto a [D]+= [D], [E]+=[E] BC- E line afributes raiso? => No tree. (B)+= (B,A], [C]+= {C] ¿ED > CE fiere atributes reros? => No fiere. [E]+=[E], [D]+=[D] por les eniseas resous, tompora tiene DE-A. F(3) = (DE-B, BC-E, B-A, ED-C, DE-A) ¿DE-B es redundante our respecto a las demá? [DE] FRO- [DE-B] = {D,E,C,AJ. Como B no esté en este conjunto, DE-B no es redundante. CBC-E? ?BCJ+00-[BC-ES = [B,C,A] y EX [B,C,A] => NO M tedicidate.

2 B-PA? [B] FORD- [B-A] = [B] y AR [B] => No es redundants. SED -> CS (ED) # (ED-C) = (E,D,B,A) y CE(E,D,B,A) => NO es Hodridate. LDE-A? (FD] FRI-[ED-A] = [E, D, B, C, A] y A ∈ [A, B, C, D, E] => Sí es redundante par /s pre re elimina. F'= {DE-B, BC-E, B-A, ED-C] Atributes independictes = 0 Atribu los epiraletes = Ø Atributos 50/0 = 10 iEda. = D Adributos sólo a la obrecha i A Afributes a le régurerde y dérecha = B, C, E 1. R_{sr} = R 2= RSIE = RSE, FSIE = F 3- kp= [D] Experiorlere? Ret = (D) = Due es clave
por si sola => posar =/ poso 4. kp'= [DB, DC, DE] ¿DB es clave? [DB] = [D, B, A] => DB vo es clave por sí sola => podríanas anadin BBC y DBE

pero vo 10 hajo parque DBC es una extensión del condidato DC, y 10 mismo source con DBE que es extensión de DE. *p' = {DC, DE] ¿DC es clare? [DC]=[D,C] no es clare por sí sola pero quiec, combinada con By E DBC prede ser clave y se añade a \$\foralle \). DCE

prede ser clave pero uo 12 añadi nos parque
es extensia del candidato DE. Kp'= [DE, DBC] ¿DE +1 clove? [DE] = [D, E, B, C, A] = RSEE => DE es clare. CK STE = {DE}, = [BCD] ?BCD +5 Mare? [BCD] = (B, C, D, E, A]= RSZE => BCD es clarc. CKSFE = [DE, BCD], Kp = 10 F CK'= [DE, BCD] 6- |Ct = {DE, BCD]

(c) ZR on BCNF? No, porque BC->E y B->A pertenece a F', pero vi BC vi B son CK. Prostos a elegir, deboriamos cojer pare varualizar la déparde cia Bost parque A es un atribute as relevante. R. = (B, A), F. = (B-A), CK = (B) R2= (B, C, D, E), F= (DE-B, BC-E, ED-C), CKz= [DE, BCD] R, este en BCNF. Re un esté en BCNF pagne BC-sé EF2 y BCFC/2 $R_{2,1} = \{B,C,E\}, f_{2,1} = \{BC \rightarrow E\}, Ck_{2,1} = \{BC\}$

Ra,2 = { B, C, D], F2,2 = Ø, CK2,2 = [BCD] Rz, este a BCNF.

Raz rote on BONF.

La discomposicia es: {(r, (B,A]), ({B,C,E],T2,1), $([B,C,D], r_{2R})$

(d) Al discomposier R. on R. y R. CO se presde depondencia.

Al pasoir de Ra a Rail & Raza porta Cabarre perdido DE-By ED-DC

[ED] to [E,D] ≠B uni C /vejo Comos perdiolo

una olare. y par també estas dos olipande

cias y fortas /25 pre re derivam de orc obre.

- 2. Dada la relación R(A,B,C,D,E) y el conjunto de dependencias $F=\{AB\to D,BC\to A,AD\to C,C\to B,CB\to D\}$ encontrad:
 - a) El recubrimiento canónico de ese conjunto de dependencias
 - Todas las claves candidatas, justificando por que no hay más que las que indicáis.
 - c) Una descomposición sin pérdidas que conduzca a esquemas en FNBC
 - d) Demostrad que dependencias funcionales iniciales no se preservan en esa descomposición.

```
2.) R= [A, B, C, D, E], F= [AB-D, BC-A, AD-C, C-B]
  CB -D ]
(a) Aplica as el algoritmo:
F(2) = { AB -> D, C -> A, AD -> C, C -> D}
 (A)_{F^{(0)}}^{+} = \{A\} (C)_{F^{(0)}}^{+} = \{C, B, D\}_{A}^{+} A\}
  (B)_{F^{(0)}}^+=\{B\}
                    (D) + co = [D]
 B es extrono con respecto à C. Eso elimina a B
 de BC-A y CB-D.
F(3) = {AB-D, C-A, AD-C, C-B}
   (AB)+
FCO- [AB-D] = {A,B}, D no oste, here AB-D
   no es redundante.
   (C) + (C-PA] = {C,B,D}; A no esté, l'rejo C-PA no
  es redunda te
  (AD)+ [AD -c] = [A, D] no esté, hejo AD - C no es
  redundante.
  (C) +100- [C-B] = [C,D,A]; B no até, hyo C-B no es
 (C) +10) - (C-OD) = (C, A, B, D); D tete, ligo C-B es
redundante y no appareces on F(3)
  redundante.
F'= [AB-D, C-A, AD-C, C-B]
```

(6) Aplicanos el algoritmo: Peso 1.- Rsz = R- [=] = {A,B,C,D} POSO 2.- RSIE = RSI, FSIE = F = [AB-D, C-A, AD-C, C-B] Paso 3 - Kp = Ø Pasa 4.- Ep = {A, B, C, D} (A) FSTE = [A] => A & CESTE / F= [B, C,D] AB, ACY AD no x anodon à to parque son extensions de randidates BEFP, CERP y DERP! (B) = (B) => BECKSIE / kp = (C,D, AB)
BC y BD vo k anoth par ser extensioner oh (C)+ FSTE = (C, A, B, D) = RSTE => CECKSTE Y # = (D, AB) (D) == (D) == D& Cksre y & == (AB, AD, BD) CD ho k mete par ser ma extensión de CECKSIE (AB) = [A,B,D,C] = ABECKSTE / K/= (AD, BO) (Ab)+ = [A,D,C,B] => AD € Cksre / K'= (BD] (BD) PDEC = [B, D] => BD & CESSE 7 Kp = 8 No re nete ABD par ser extensión de ABECKSTE y ADECESTE, y na re nete BCD por ser extensión de Par 5. - CK = ¿ CE, ABE, ADE}

Asa C.- CE = {CE, ABE, 4DE}

(c) R= {A,B,C,D,EJ, F'= {AB > D, C > A, AD > C, C > BJ CK = { CE, ABE, ADE} AB -> D E F' Y AB E CK C-> A E F' Y C E CK AD -> C E F' Y AD E CK C-> B E F' Y C ECK ER en BCNF? No, porque Apricanos el th. de Heath sobre C-B $R_{1} = \{B, CJ, F_{1} = \{C \rightarrow B\}, Ck_{1} = \{C\}\}$ K2 = [A, C, D, E], F2 = [C -A, AD - C), CK2 = [CE, ADE] R, esté on BONF R2 we est a BONF page C->AEF, y CECKE AD->CEF, y ADECKE Aplicamos el teorona de Heate sobre AD -> C: R2,1 = [A, C, D], F2,1 = [C->A, AD->C], CK2, = [AD, CD] R2,2 = [A, D, E], F2,2 = Ø, Cto,2 = [ADE] Raiz esté on BCNF P3,1 no este en BONF page C-A EF, y CECKS, Aplica-es el Th. de Heath sobre C-A: R2.1,1 = [A,C], F2,1,1 = [C->A], CE2,1,1 = [C] R2,1,2 = [C,D], Fa,1,2 = D, CF2,1,2 = [CD]

Al pever de R a R, y R2 porter habeter perdido AB = D. Si no R la perdido, prede volver a deteverse a portir de les restantes. Pere ello, ralculames: (AB) (F, UF) = (A, B). Como D no esté, eso significa que AB-00 no re romerre. Course la misus con AD=C en el pasa de R2,1 a R2,1,1 y R2,1,2 (AB) + (AB) + (AB) en el que va está C.

Sé ha perdido AB=D y AD=C.

((B,C), T2), ((A,D,E), T2,2), ((A,C), T2,1,1), ((C,D), T2,1,2)]

prierde AB=D y AD=C

- 2. Dada la relación R(A,B,C,D,E,F) y el conjunto de dependencias $F=\{D\to C,DE\to F,B\to D,AF\to C,CDF\to A,DC\to B\}$ encontrad:
 - a) El recubrimiento canónico de ese conjunto de dependencias
 - Todas las claves candidatas, justificando por que no hay más que las que indicáis.
 - c) Una descomposición sin pérdidas que conduzca a esquemas en FNBC
 - d) Demostrad que dependencias funcionales iniciales no se preservan en esa descomposición.

 $(2) R = \{A, B, C, D, E, F\}$ F= {D->c, De->F, B->D, AF->c, CDF->A, Dc->B] (c) 2F'? F(1) = F ye gre no hay partes derechas comprestos bue Lus IDJ= [D, C, B], [E] = (E] => DE->F mo Have atributes extravos {A]+= [A], {F]+= [F] => AF->C no tiene atributes ex trainers $\{COJ^{+} = \{C, D, B\}, \{CFJ^{+} = \{C, F\}, \{DFJ^{+} = \{D, F, C, B\} = \{C, F\}, \{D, F, C, B\} = \{C, F\}, \{C, B\}, \{C, B\}$ $C \in \{DF\}^{+}$ y C es extraño $\Longrightarrow DF \longrightarrow A$ $\{D\}^{+} = \{D, C, B\} = \supset C \in DJ^{+}$ y C es extraño \Longrightarrow DØ B F®=[D-C, DE-F, B-D, AF-C, DF-A, D-B] Pare F(3): Pere ver si D-DC es tedundante, hay gre comprober si C E {DJ+co-{D-c] $\{D\}_{f^{(2)}-\{D\rightarrow C]}^{+}=\{D,B\}$ Como no se comple, D=C na es redundante (DES + (DE > F) = (D, E, C, B) => DE -> F NO ES Hedern dante {B]+ (B-)D] = {B-)D] = {B-)D no es redindante {AF}+ FM - {AF->C] = {A, F}=> AF->C no es soulvadan-

{OF] + FRD-{DF-DAT = {D,F,C,B} => DF->A wo es radion. [D]+ [D=B] = [D, c] => D=B no es radundas F(3) = {D-OC, DE-OF, B-OD, AF-OC, DF-A, D-B] Pero 1- RSI = R Paso 2- RSFE = {A,C,D,E,F], FSFE = {D-C,DE-F, AF>C, DF->A] Paro 3 - $k_p = [D, E]$, $K_p' = [D, E, C, F, A] = R_{SIE}$ El randidato del paro 3 es clave lirejo no le signen buscando Paso 4.- No procede Paso 5. - Na hay independientes POO G. - CK = {DE, BES (c) R no està on FNBC porque D, B, AFy DF no son doves condidates. Aplicances el th. de Heath sobre D-C: R,= [D,C], F, = [D-C], Ck,= [D] R= [A,B,D,E,F], E= [DE-F,B-B, DF-A, D-B]

R, on BCNF porto Re no on BCNF parme Ck= [DE, BF] y B, DF y D no son claves

Aplicanos el th. de Heath sobre DF-A:
R2.1 = {D, F, AJ, F2,1 = {DF-AJ, Ck2.1 = [DF]
R2,2 = {B, D, E, F], F2,2 = {DE > F, B > D, D > B],
Ck2,2 = {DE, BE}
Rell on BONF pero Rele no on BONF parque
By D no son claves
Aplicanos el the de Heath sobre D-1:
Rage = [D,B], Far, = {B = D, D=B], Ck2,2,1 = {B,1
$R_{2,2,2} = \{D, E, FJ, F_{2,2,2} = \{DE > FJ, Ck_{2,2,2} = \{DE\}\}$
R2,2,1 Y R2,2,2 on BCNF
{ ((D, C], r,), ((D, F, A], r,1), ((D, B], r,2,1),
IST FF Gazz
Este discompazione es une alternative. Predi haber
otres.
(d) Perece haberse pardido la depondencia HFroC en el paso de Ra Ry Rz. Pare ver si no pe he perdido, basta con comprobar si SOFIT
en el pasa de Ra Ry Rz. Pare vor si ma
Le perdido preste con combiopor es
SAFJF, UF2, UF2,2,1 UF2,2,2 Contiene a C
[AF] + UF2, UF2, UF2,2, = {A,F} / vego AF > C or he
perdido.

- 2. Dada la relación R(A,B,C,D,E) y el conjunto de dependencias $\{B\to D,AD\to C,CD\to A,D\to E\}$ encontrad:
 - a) Todas las claves candidatas, justificando por que no hay más que las que indicáis.
 - b) Una descomposición sin pérdidas que conduzca a esquemas en FNBC
 - c) Demostrad que dependencias funcionales iniciales no se preservan en esa descomposición.

EJ 2
R= EA, B, C, D, EJ, SP= {B -D, AD -C, CD-A, D-E)
(a) fire obtever les CR es vecesario aplicar el alporiture de dessure de adributor a el de depende
alporitue de deusure de atributor a él de deparde
cycl trusianales.
Si aplicama el célculo por el de chesera de atributes
Paso 1 No Cay atributes independientes, lugo:
$R_{ST} = R$
Si aplicamos el cálcilo por el de chesera de atributos. Reo 1 No Cay atributos independientes, lugo: Res R. R. R. Pero 2 No Cay parijes de atributos equiralentes, lugo:

Rose = Rose = R DP DP

Poso 3.- cos atributos determinentos y no determine des Crólo aparecen a la iede.) forman parte de todas la claves, lueja el primer condidate

CK= {B]

Se priebe si es l'une condidate: [B] = [B, D, E] = RSEE => B no es //ove on didate. como predon atributos determinantes y determina da pe us esten en IBJ+, es necesario explorar extensiones de B con orde uns de estes attibutes a el peso 4.

Pero 4.- Los condidates a explorer son:

CK= { AB, BC]

EABJE EA, B, D, C, EJ = RSEE => AB es // we randide

CK=[AB], CK'=[BC] [BC] = [B,C,D,A, E]=> BC es //we condidate CF=[AB, BC], CK'= & le vo pedan condidates que explorar.

Pero 5.- No hay atributes independientes que incorpoper a toda la claves: CA= [AB, BC] Poso 6.- No hay eprivebries pare deplicar daves: CK= {AB, BC} (b) ? R este a BCNF? No. page vingure dependencie es de clare condidate (tire una clère randidate a la requerda) ? Se prede esager valprier deparde cie pare le primere descomposición, por escojo D=E parte E no aparèce or vivoure obré objendancie (de belo, cuando se encientre o depondencias del tipo B-D y D-SE, le descomposición se casa primer por D-SE-primer por o després por B-D-servado paro J: R. = [D, E], DF, = (D - F), CK, = [D] Re = [A, B, C, D], DE= (B-D, AD-C, CD-A), CZ= [AB,

R, yo est & BONF. ERe este on BCNP? No porpre no hay minjure dipade de funcional de deve condidade. Coio e le rencione do ontes, escojo es B-DD (sepu-da para): R,, = (B,D), DE,, = (B-D), CK,, = (B] Ra, e = {A, B, C], DF2, = \(\mathreal{B} \), CK2, e = \(\mathreal{B} \), BCJ Esté en BONF anbas. desco-posicie: (ED, EJ, (B,DJ, [A,B,C])

(c) Perc de sotror gé dysonderies se preservour bay que de sotror si e pierche deponderies de se el pare de DF a DF, y DF, o ar el paso de DP a DP 11 7 DP 12. en el poso de DP a DP, y DF, wa se pierole
depondencia, ya gre DF DF, v DF, (fodos
for de DF preder verse en DP, o DF). en el poso lon DF, a DF, y DF, :

- B-DE DEN

- AD-C porce pro esté en Di, vi Diz. Interteres reproducte a partir de B-D jou de oualprière de DFz, e appliade Charece fi est vacio pero contrez tes de parallecien de les clares candidates). Pero un podreus recriperarla parque un hey

dependencies can D a le deveche para aplicar transitivided ni can D a le régistrade pare aplicar pseudo transitivided. Se pièrde AB -> C - Comprobens co-A a ver si si pierole
B-D) pro pode às haces made Se prevol CD = A Percha AD=C y CD-A

- 2. Dada la relación R(A,B,C,D,E) y el conjunto de dependencias $\{A\to B,AC\to D,DE\to C,D\to A\}$ encontrad:
 - (a) Todas las claves candidatas, justificando por que no hay más que las que indicáis.
 - (b) Una descomposición sin pérdidas que conduzca a esquemas en FNBC
 - (c) Demostrad que dependencias funcionales iniciales no se preservan en esa descomposición.

(2) R = {A,B,C,D, E], DF= { A-B, AC-D, DE-C, D-A) Atributos judepondientes = \$ Atributos determinantes no determados = [E] Atributes determinadas no determinantes= {B} Extracción de llaves Li Rsz = R 2= RSIE = R, DFSIE = DF 3: kp = E, E+= (E) = RSIE => E # CKSIE 4- kp'- (EA, EC, ED), CKSIE = D {EA]+= {E, A, B} & RSIE => EA & CKSIE kp'= (EC, ED), CKSIE = 8 EAC y EAD no son candidates air page EC y ED & son. y ED b son. {EC]+= (E,C) ≠ ROF => EC € CKSFE. kg' = 1 €D, EAC], CKom ≠ Ø

ECD un es condidate ain porque €D es andide (ED) = (E, D, C, A, B) = RSIE = 5 Kp = { EAC], CKSIE = { ED} [EAC] = {E,A,C,B,D} = RSEE => EAC & CKSEE Kp = \$, CKSIE = {ED, EAC} CK= ED, EAC (5) CKSE = CK = {FD, EAC} 6- CK = CKSE = [ED, FAC]

(2) R= (A, B, C, D, E), D

b) iR on FNBC? No, pargre A→BEDF y A&CK Aplican os el Th. de the othy solore A > B: R = {A,B], DF= {A>B}, CK = {A] R= {A, C, D, E], DF= {AC-D, DE-C, D-A], CK= {ED, EAC} ern en BONF? Si. PR on BCNF? No, parme AC-DEDF2 y ACECK2
Aplianus el Th. de He-de sobre AC-D: R3,1 = {A, C, D], DF2,1 = [AC -D, D-A], Ck31 = [AC, CD] R2,2 = {A, C, E}, DF2,2 = Ø, CL2,2 = {ACE} ? PR. 1 on BONF?. No, parque D-SA EDF2,1 y D& CK2,1 Aplicanos el Th. di Heath en Ry, sobre D-A: R3,1,1 = [A,D], DF3,1,1 = [D-DA], CA2,11 = [D] Ra,1,2 = [C, D], DF,1,2 = [CD] 2 R2111 & BCNF? . 5%. ? Raple & BONF? . St.

? R2,2 C BCNF? . Sí.

Des composició sin pérdidas: $\{(\{A,B\}, \Gamma_1), (\{A,D\}, \Gamma_{2,1,1}), (\{C,D\}, \Gamma_{2,1,2}), (\{A,C,E\}, R)\}$

c) En el pasa de R en R, y Re us se pierde depardecies. De R2 a R2,1 y R2,2 parere que se pierde DE>C De R2,1 a R2,1,1 y R2,1,2 se pierde AC>D

- 2. Dada la relación R(A,B,C,D,E) y el conjunto de dependencias $\{C\to B,D\to E,BE\to D,AE\to C\}$ encontrar:
 - a) Todas las claves candidatas, justificando por que no hay más que las que indicáis.
 - Todas las descomposiciones sin pérdidas que conduzcan a esquemas en FNBC
 - c) Demostrad si cada una de ellas preserva o no las dependencias funcionales iniciples

(E) R= {A,B,C,D,E}, DF= {C→B, D→E, BE→D, AE→C} (a) ¿Ck? 1- R3= R 2- RSIE = RSI, DFSIE = DF 3: Kp = A A+= [A] & RSIE => A & CKSIE, RSIE-A+= [B,C,D,E] 4- Kg'= {AB, AC, AD, AEJ, CKSIE=\$ AB+= [A, B] = RSIE => AB & CKSIE, RSIE-AB+= [C, D, E] kp'= {AC, AD, AE], CksE=) AC+= {A, C, B} & RSTE => ACECKSTE, RSTE-AC+={D, E} kp'= [AD, AE], Cksze = \$ AD+= {A,D,E,C,B]=RSIE => AD ECKSEE Kp'- [AE], CKSIE = [AD] AE+= [A, E, C, B, D]= RSIE => AE @ CKSIE kp' = \$, CK SIE = [AD, AE] 5- CK'= [AD, AE] G= CK = {AD, AE] (6) FR en BCNF?. No, page C→B ∈ DF y C ∉ CK + (0) R,= {C,B}, DF,= {C→B}, CK,= {C} R= {A, C, D, E}, DF= {D->E, AE->C], CK= {AD] Parece per se pierde BE > D. No bay dyponducia con D a la derenha, liego un podrá l'ecuperarse.

RI en BONF?. No, pargre DOFEDF2 y DECK2

R2, = [D, E], DF2, 1= [D-DE], CK2, 1= [D]. R2, en BONF Pierole AE->C.

Desc. 1: [([c,B], r,), ([D,E], r,,), ([A,C,D], r2,e)] Pierre BE-D y AE-SC * Ver pag. 4 OR on BONF? No, porque D-SEEDF y D&CK $R_{i} = \{D, \in J, DF_{i} = \{D \rightarrow \in J, Ck_{i} = \{D\}\}$ R= {A,B,C,D], DE= {C-B}, CK2= [MACD] Perfect perderse BE-D y AE-C PR = BCNF?. No, porque C→B € DF2 y C € CKe R2,1 = {C, 3}, Df2,1 = {C→B}, CK2,1 = {C}. R2,1 on BCNF R2,2 = {A,C,D}, DF2,2 = Ø, CK2,2 = {ACD}. R22 = BCNP Desc. <: [({D,E}, r,), ({C,B}, r2,), ({A,C,D}, r2,2)]

Pierde BE-D y AE-C

ZR on BCNF? No, porge BE-D y BE & CK

R,= [B,E,D], DF,= [BE-D, D-E], CK,= [BE,BD] R= [A, B, C, E], DF= [C-B, AE-C], Ck= [AE] No prierde par abore ZR, en BCNF?. No, porque DESEY D& CK, R.,, = {OTE], OF,, = {D -> E}, Ck,, = {D] $R_{i,2} = \{B,D\}, DF_{i,2} = \emptyset, CE_{i,2} = \{BD\}$ $R_{i,2} = \{B,D\}, DF_{i,2} = \emptyset, CE_{i,2} = \{BD\}$ $R_{i,2} = \{B,D,E\}, VR_{i,2} = \{B,D,E\}, VR_{i,3} = \{B,D,E\}, VR_{i,4} = \{B,D,E\}, VR_{i,4$ Print $BE \rightarrow D$, y no predi recuperarse. $R_{1,1}$ y R_{12} estan on BCNP ER_{2} on BCNP? No, payor $C \rightarrow B$ y $C \not\in Ck_{2}$ $R_{2,1} = \{C, B\}$, $DF_{2,1} = \{C \rightarrow B\}$, $TCk_{2,1} = \{C\}$ $R_{2,2} = \{A, C, E\}$, $DF_{2,2} = \{AE \rightarrow C\}$, $Ck_{2,2} = \{AE\}$ No pirola depondencies $R_{2,1}$ y $R_{2,2}$ on BCNP

Desc. 3: $\{(ED, E), r_{14}\}, (EB, D), r_{12}\}, (EC, B), r_{2,1}\},$ $\{(A, C, E), r_{2,2}\}\}$ Pierol $BE \rightarrow D$

Note and I $R = \{C, 8\}, DF_1 = \{C \rightarrow B\}, CK_1 = \{C\}, R_1, on BONP$ $R_2 = \{A, C, 0, F\}, DF_2 = \{D \rightarrow E, AE \rightarrow C\}, CK_2 = \{AD\},$ $R_2 = \{A, E, C\}, DF_{2,1} = \{AE \rightarrow C\}, CK_{2,1} = \{AE\}$ $R_{2,1} = \{A, E, C\}, DF_{2,2} = \{D \rightarrow E\}, CK_{2,2} = \{AD\}$ $R_{2,2} = \{A, E, D\}, DF_{2,2} = \{D \rightarrow E\}, CK_{2,2} = \{AD\}$ $R_{2,1} = \{BCNF\}, NO, porpre D \rightarrow E \in DF_{2,2} \neq D \notin CK_{2,2}$ $R_{2,2} = \{D, E\}, DF_{2,2,1} = \{D \rightarrow E\}, CK_{2,2,1} = \{D\}$ $R_{2,2,1} = \{D, E\}, DF_{2,2,1} = \{D \rightarrow E\}, CK_{2,2,2} = \{AD\}$ $R_{2,2,1} = \{D, DF_{2,2,2} = \{D, CK_{2,2,2} = \{AD\}\}, CK_{2,2,2} = \{AD\}, CK_{2,2,2,2} = \{AD\}, CK_{2,2,2} = \{A$