TOPOLOGICAL HOCHSCHILD HOMOLOGY OF tmf WITH COEFFICIENTS IN k(2)

GABE ANGELINI-KNOLL AND D. CULVER

1. Introduction

The purpose of this short document is to carry out a computation of THH(tmf; k(2)) at the prime p=2. We take advantage of the fact that Bhattacharya-Egger have recently constructed a finite spectrum Z with the property that it has a v_2^1 -self map and gives an equivalence

$$\operatorname{tmf} \wedge Z \simeq k(2)$$
,

where k(2) denotes the connective second Morava K-theory.

2. Calculations

Let's start the calculation. We begin by computing the K(2)-homology of tmf. After that we run the v_2 -Bockstein spectral sequence.

2.1. $K(2)_*$ tmf. There are two steps to this calculation. We start by computing the Adams spectral sequence for $k(2)_*$ tmf, and then invert v_2 . This gives an associated graded calculation of $K(2)_*$ tmf. Then, to resolve hidden extensions, we determine the map

$$K(2)_* \text{tmf} \to K(2)_* BP\langle 2 \rangle$$
,

and use the known calculation of $K(2)_*BP\langle 2 \rangle$.

The Adams spectral sequence for $k(2) \wedge tmf$ takes the form

$$\operatorname{Ext}_{A_*}(k(2) \wedge \operatorname{tmf}) \implies k(2)_* \operatorname{tmf}.$$

A change-of-rings isomorphism allows us to express the E_2 -page as

$$E_2 \cong \operatorname{Ext}_{E(Q_2)}(H_*\operatorname{tmf}) \cong (P(v_2) \otimes M_*(\operatorname{tmf}; Q_2)) \oplus (v_2\operatorname{-torsion}).$$

Recall that the mod 2 homology of tmf is

$$H_*(\mathsf{tmf}) \cong A /\!\!/ A(2)_* \cong P(\zeta_1^8, \zeta_2^4, \zeta_3^2, \zeta_4, \ldots).$$

The Q_2 -action on H_* tmf is

$$Q_2(\zeta_k) = \zeta_{k-3}^8.$$

Thus the Margolis homology is

$$M_*(\text{tmf}; Q_2) \cong P(\zeta_2^4, \zeta_3^2, \zeta_4^2, \zeta_5^2, \dots) / (\zeta_2^8, \zeta_3^8, \zeta_4^8, \dots).$$

It follows from this that the Adams spectral sequence collapses immediately.

Inverting v_2 kills the v_2 -torsion, and so we get that

$$v_2^{-1} \operatorname{Ext}_{A_*}(k(2) \wedge \operatorname{tmf}) \cong K(2)_* \otimes P(\zeta_2^4, \zeta_3^2, \zeta_4^2, \zeta_5^2, \dots) / (\zeta_2^8, \zeta_3^8, \zeta_4^8, \dots).$$

Now onto the hidden extensions. First, note that there is a map of E_{∞} -rings¹

$$tmf \rightarrow tmf_1(3)$$
.

A similar analysis with the ASS shows that the E_{∞} -page for $K(2) \wedge$ tmf is

$$K(2)_* \otimes P(\zeta_1^2, \zeta_2^2, \zeta_3^2, \ldots) / (\zeta_1^8, \zeta_2^8, \zeta_3^8, \ldots).$$

The morphism from tmf to $tmf_1(3)$ induces the obvious map on v_2 -inverted Ext groups. Thus we know the morphism

$$K(2)_*$$
tmf $\rightarrow K(2)_*$ tmf₁(3)

up to associated graded.

We also need to use the fact that $tmf_1(3)$ is a *form* of $BP\langle 2 \rangle$: that is there is (canonical?) equivalence

$$\mathit{BP}\langle 2\rangle \simeq tmf_1(3)$$

after completing at 2. Since localizing with respect to K(2) also p-completes, we have that

$$L_{K(2)}BP\langle 2\rangle \simeq L_{K(2)} \operatorname{tmf}_1(3),$$

and hence

$$K(2)_*(BP\langle 2\rangle) \cong K(2)_*(tmf_1(3)).$$

We need to recall the following computation.

Theorem 2.1. There is an isomorphism of graded rings

$$K(2)_*BP\langle 2\rangle \cong K(2)_*[t_1,t_2,\ldots]/(v_2t_k^4-v_2^{2^k}t_k\mid k\geq 1)$$

¹This map is induced by taking global sections associated to the map of moduli stacks $\mathcal{M}_1(3) \to \mathcal{M}_{ell}$ from the moduli of elliptic curves with level $\Gamma_1(3)$ to the moduli of all elliptic curves.

TOPOLOGICAL HOCHSCHILD HOMOLOGY OF tmf WITH COEFFICIENTS IN k(2)3

We relate this calculation to the one we obtained through the Adams spectral sequence. First, note there is a canonical map of commutative ring spectra

$$BP \rightarrow BP\langle 2 \rangle$$
,

which leads to a homomorphism

$$BP_*BP \rightarrow H_*tmf_1(3)$$

sending t_i to ζ_i^2 . Since ζ_i^2 is sent to ζ_i^2 under

$$v_2^{-1}\operatorname{Ext}_A(k(2)\wedge\operatorname{tmf}) \to v_2^{-1}\operatorname{Ext}_A(k(2)\wedge\operatorname{tmf}_1(3))$$
,

we obtain the following.

Proposition 2.2. The K(2)-homology of tmf is given by

$$K(2)_*$$
tmf $\cong K(2)_*[t_2^2, t_3, t_4, \ldots]/()$

References

Michigan State University, Lansing *E-mail address*: gabe@gabe@gmail.com

University of Illinois, Urbana-champaign *E-mail address*: dculver@illinois.edu

I am not sure what the relation on t_2^2 is supposed to be...