Representation Group

Alexandre Charland

April 1, 2025

Chapter 1

Module

Lemma 1 (MdirectSumIdemp). Soit A un anneau unitaire et $e \in A$ un idempotant de A.

$$A = eA \oplus (1 - e)A$$

Proof. Il suffit de montré que $\forall m \in eA$ et $\forall n \in (1-e)A$ tq $m+n=0 \Rightarrow m=n=0$. Soit m,n tq décris plus haut.

Comme $m \in eA$, $\exists a \in A \text{ tq } ea = m$.

Comme $n \in (1-e)A, \exists b \in A \text{ tq } (1-e)b = n.$

$$m+n=ea+(1-e)b=0$$

$$e\cdot(ea+(1-e)b)=e^2a+(e-e^2)b=ea=e0\Rightarrow m=0$$

$$0+n=0\Rightarrow n=0$$

Lemma 2 (HomAeM). Soit A un anneau unitaire, M un A-module et e un idempotant de A.

$$\forall \phi \in Hom_A(Ae, M), \exists m \in eM, \phi(e) = m$$

Proof. Soit $n \in M$ tq $\phi(e) = n$

$$\phi(e) = n \Rightarrow e\phi(e) = \phi(e) = en \Rightarrow n = en$$

Par le lemme MdirectSumIdemp, on a que $A = eA \oplus (1 - e)A$

 $\exists ! m, a \in A \text{ tq } n = em + (1 - e)b.$

$$em + (1-e)\hat{b} = n = en = e \cdot (em + (1-e)b) = e^2m + (e-e^2)b = em$$

Donc $b = 0 \Rightarrow n = em \Rightarrow n \in eM$.

Lemma 3 (HomAeMisoeM). Soit A un anneau unitaire, M un A-module et e un idempotant de A.

$$\operatorname{Hom}_A(Ae,M)\cong eM$$

 $\begin{array}{l} \textit{Proof. Soit } m \in eM, \, \psi_m : Ae \to M \, \operatorname{tq} \, \psi_m(a) = am \\ \text{Il faut montr\'e que } \psi_m \, \operatorname{est \, un \, homomorphisme.} \\ \text{Soit } a,b \in Ae. \end{array}$

$$\psi_m(a+b) = (a+b)m = am + bm = \psi_m(a) + \psi_m(b)$$

Soit $\phi: eM \to (Ae \to M)$ tq $\phi(m) = \psi_m$

On a que ϕ est un homomorphisme, car

 $\phi(m+n) = \psi_{m+n}.$

 $\forall a \in A, \ \psi_{m+n}(a) = a(m+n) = (am) + (an) = \psi_m(a) + \psi_n(a)$

Donc $\psi_{m+n} = \psi_m + \psi_n \Rightarrow \phi(m+n) = \phi(m) + \phi(n)$

Par le premier théorème d'isomorphisme de module, $\frac{eM}{\ker(\phi)} \cong \operatorname{Im}(\phi)$

Seul $\phi(0)$ envoit à l'identité de $\operatorname{Hom}_A(A, M)$, donc le noyau est trivial.

La dernière chose a montré est que l'image de ϕ est $\operatorname{Hom}_A(Ae, M)$.

Soit $\sigma \in \operatorname{Hom}_A(Ae, M)$.

Par le lemme HomAeM, $\exists m \in eM \text{ tq } \sigma(e) = m$.

Montrons que $\sigma = \phi(m) = \psi_m$

Soit $a \in Ae$ et $b \in A$ tq a = be

$$\sigma(a) = \sigma(be) = \sigma(be^2) = be \cdot \sigma(e) = bem = am = \psi_m(a)$$

Donc $\sigma \in \operatorname{Im}(\phi)$

Lemma 4 (HomAeMisoeM'). Soit A un anneau unitaire, M un A-module et e un idempotant de A.

$$\operatorname{Hom}_A(Ae,M)\cong eM$$

Proof. Soit $\phi : \operatorname{Hom}_A(Ae, M) \to M \text{ tq } \phi(\psi) = \psi(e)$

Il faut mq ϕ est un homomorphisme.

Soit $\psi, \sigma \in \text{Hom}_A(Ae, M)$.

$$\phi(\psi+\sigma)=(\psi+\sigma)(e)=\psi(e)+\sigma(e)=\phi(\psi)+\phi(\sigma)$$

Soit $a \in A$

$$a \cdot \phi(\psi) = a \cdot \psi(e) = \phi(a \cdot \psi)$$

Comme ${\rm Hom}_A(Ae,M)$ est un module, par le premier théorème d'isomorphisme, $\frac{{\rm Hom}_A(Ae,M)}{\ker(\phi)}\cong {\rm Im}(\phi)$

Le noyau de ϕ est trivial, car un unique homomorphisme peut être défini tq $\sigma(e)=0$, car tous éléments du domaine sont de la forme ae.

Il ne reste plus qu'a montré que l'image est eM.

Par le lemme HomAeM, on a que $\text{Im}(\phi) \subset eM$.

Soit $m \in eM$. Considérons $\psi(e) = m \operatorname{tq} \psi(ae) = am$.

Il s'agit d'un homomorphisme de $Ae \rightarrow M$.

Donc $Im(\phi) = eM$

Chapter 2

YoungTableau

Definition 5 (Young Tableau). Un Young Tableau est une fonction des cellules d'un Young Digram de taille n et retourne un naturel de 0 à n-1	ia-
Lemma 6 (injYu). Un YoungTableau est injectif sur les entrés qui sont dans le YoungDiagra	am
Proof. Par définition d'un YoungTableau	
Lemma 7 (bijYu). Un YoungTableau est une bijection entre les case de son YoungDiagram les naturels de 0 à n-1	et
<i>Proof.</i> Comme il est injectif et le domaine et codomaine sont fini et ont la même cardinalité. La fonction doit être bijective	
Lemma 8 (preImYu). Tous nombre de θ à n -1 possède une unique case associé dans μ par Y	Y_{μ}
<i>Proof.</i> Trivial sachant que Y_{μ} est bijectif	
Definition 9 (Pu). P_{μ} est un sous groupe de S_n , défini de la façon suivante: Un élément de P_{μ} permute les entré du YoungDiagram si ils sont sur la même rangé.	
Proof. Il y a trois choses à vérifier. Le sous-groupe est fermé sous la composition de fonction Preuve: Soit $\alpha, \beta \in P_{\mu}$, mq $\alpha \circ \beta(Y_{\mu}(\mathbf{i})) = Y_{\mu}(\mathbf{j}) \to \mathbf{i}.\mathbf{y} = \mathbf{j}.\mathbf{y}$ Comme Y_{μ} est une bijection, $\exists k \in \mu$ tq $Y_{\mu}(\mathbf{k}) = \beta(Y_{\mu}(\mathbf{j}))$ Comme $\beta \in P_{\mu}$ on a que $\mathbf{k}.\mathbf{y} = \mathbf{j}.\mathbf{y}$ De plus on a que $\alpha(Y_{\mu}(\mathbf{k})) = \alpha \circ \beta(Y_{\mu}(\mathbf{i})) = Y_{\mu}(\mathbf{j})$ On peut déduire que $\mathbf{i}.\mathbf{y} = \mathbf{k}.\mathbf{y} = \mathbf{j}.\mathbf{y}$	
L'élement neutre est élément de P_{μ} La preuve découle de l'injectivité de Y_{μ}	
L'inverse est élément de P_{μ} Soit $\alpha \in P_{\mu}$, mq $\alpha^{-1} \in P_{\mu}$ Comme alpha est une bijection, on a que $\alpha^{-1}(Y_{\mu}(i)) = Y_{\mu}(j) \Leftrightarrow Y_{\mu}(i) = \alpha(Y_{\mu}(j))$	
Definition 10 (PuCard). Le nombre d'élément de P_{μ} est fini.	
Proof. Comme P., est un sous-groupe d'un groupe fini, il a un nombre fini d'élément.	

 Definition 11 (Qu). Q_{μ} est un sous groupe de $S_n,$ défini de la façon suivante: Un élément de Q_{μ} permute les entré du Young Diagram si ils sont sur la même colonne.

Proof. La même preuve que Pu

Definition 12 (QuCard). Le nombre d'élément de Q_{μ} est fini.

Proof. Comme Q_{μ} est un sous-groupe d'un groupe fini, il a un nombre fini d'élément.

Lemma 13 (sect PuQu). Pour un même Young Tableau, l'intersection de P_μ et Q_μ est 1

Proof. Il faut mq $P_{\mu} \cap Q_{\mu} \subseteq 1$

Soit $\alpha \in P_{\mu} \cap Q_{\mu}$ et $\mathbf{i} \in \mu$ Comme Y_{μ} est bijectif, $\exists \ \mathbf{j} \in \mu$, $\alpha(Y_{\mu}(i)) = Y_{\mu}(j)$ $\alpha \in P_{\mu} \cap Q_{\mu}$ donc $\mathbf{i}.\mathbf{x} = \mathbf{j}.\mathbf{x}$ et $\mathbf{i}.\mathbf{y} = \mathbf{j}.\mathbf{y}$ Donc $\mathbf{i}=\mathbf{j} \rightarrow \alpha(Y_{\mu}(i)) = Y_{\mu}(i)$

Donc alpha est la fonction id

Definition 14 (PuQu). $P_{\mu}Q_{\mu} := \{g: [0, n-1] \to [0, n-1] | \exists p \in P_{\mu} \land \exists q \in Q_{\mu}, g = pq \}$

Definition 15 (Gu). G_{μ} est une permutation de [0, n-1] tq

$$\forall i,j,k,l \in \mu, ((i \neq j) \land (G_{\mu} \circ Y_{\mu}(i) = Y_{\mu}(k)) \land (G_{\mu} \circ Y_{\mu}(j) = Y_{\mu}(l))) \rightarrow ((i.x \neq j.x) \lor (k.y \neq l.y))$$

Definition 16 (YuInv). Y_{μ}^{-1} est une l'inverse de Y_{μ}

Lemma 17 (staysInY).

$$\forall m \in [0,n-1], (Y_{\mu}^{-1}(m).x,Y_{\mu}^{-1}(G_{\mu}(m)).y) \in \mu$$

Proof. No idea... TODO Figure it out

Definition 18 (qu). q_{μ} est une permutation de [0, n-1] défini comme

$$q_{\mu}(m) = Y_{\mu}((Y_{\mu}^{-1}(m)).x, (Y_{\mu}^{-1} \circ G_{\mu}(m)).y)$$

Proof. Par le lemme staysInY, on sait que la fonction q_{μ} est bien défini.

Il ne reste plus qu'a montré que q_{μ} est une bijection. TODO

Definition 19 (quInv). q_{μ}^{-1} est la fonction inverse de q_{μ}

Lemma 20 (staysInX).

$$\forall m \in [0,n-1], ((Y_{u}^{-1} \circ G_{u} \circ q_{u}^{-1}(m)).x, (Y_{u}^{-1}(m)).y) \in \mu$$

Proof. No idea... TODO Figure it out

Definition 21 (pu). p_{μ} est une permutation de [0,n-1] défini comme

$$q_{\mu}(m) = Y_{\mu}(Y_{\mu}^{-1}(m).x,Y_{\mu}^{-1}(G_{\mu}(m)).y)$$

Proof. TODO

Lemma 22 (No2FromSameColToSameRow). Soit $g:[0,n-1] \to [0,n-1]$ une fonction bijective et Y_{μ} un Young Tableau.

Si
$$\forall i, j, k, l \in \mu, i \neq j, g(Y_{\mu}(i)) = Y_{\mu}(k), g(Y_{\mu}(j)) = Y_{\mu}(l)$$
 alors $i.x \neq j.x \lor k.y \neq l.y.$ Alors $g \in P_{\mu}Q_{\mu}$

 $\begin{array}{l} \textit{Proof. Posons} \ q(Y_{\mu}(i)) := Y_{\mu}(i.x, (Y_{\mu}^{-1} \circ g \circ Y_{\mu}(i)).y). \\ \text{Par le lemme qWellDefined, nous avons que q est bien définit.} \end{array}$

Montrons que $q \in Q_{\mu}$

Si q n'est pas injectif alors $\exists k,l \in \mu$ tq $k \neq l, q(Y_{\mu}(k)) = q(Y_{\mu}(l)).$

 $\begin{array}{l} \text{Donc } Y_{\mu}((Y_{\mu}^{-1}\circ g\circ Y_{\mu}(k)).x,k.y) = Y_{\mu}((Y_{\mu}^{-1}\circ g\circ Y_{\mu}(l)).x,l.y).\\ \text{Comme } Y_{\mu}^{-1}\circ g\circ Y_{\mu} \text{ est bijectif, } \exists !i,j\in \mu \text{ tq } i\neq j,Y_{\mu}^{-1}\circ gY_{\mu}(k)=i,Y_{\mu}^{-1}\circ gY_{\mu}(l)=j.\\ \text{Donc } \exists i,j,k,l\in \mu,i\neq j,g(Y_{\mu}(i))=Y_{\mu}(k),g(Y_{\mu}(j))=Y_{\mu}(l) \text{ et } i.x=j.x\wedge k.y=l.y. \end{array}$

Contradiction d'hypothèse.

Donc q est injectif. De plus comme le domaine et codomaine sont finis et de même taille, on a que q est une bijection. Ainsi $q \in Q_{\mu}$.

Posons
$$p(Y_{\mu}(i)) := Y_{\mu}((Y_{\mu}^{-1} \circ g \circ q^{-1} \circ Y_{\mu}(i)).x, i.y).$$
 On remarque $p \circ q = g$. Soit $i \in \mu$. $\exists j \in \mu$ tq $g(Y_{\mu}(i)) = Y_{\mu}(j)$. Donc $Y_{\mu}^{-1} \circ g \circ Y_{\mu}(i) = j$

$$\begin{split} p \circ q(Y_{\mu}(i)) &= p(Y_{\mu}(i.x, (Y_{\mu}^{-1} \circ g \circ Y_{\mu}(i)).y)) = p(Y_{\mu}(i.x, j.y)) \\ Y_{\mu}((Y_{\mu}^{-1} \circ g \circ q^{-1} \circ Y_{\mu}(i.x, j.y)).x, j.y) &= Y_{\mu}((Y_{\mu}^{-1} \circ g \circ Y_{\mu}(i)).x, j.y) \\ Y_{\mu}(j.x, j.y) &= Y_{\mu}(j) \end{split}$$

Donc p est bien définit, et $g \in P_{\mu}Q_{\mu}$

Definition 23 (IneqYoungDiagram). Soit μ et λ deux YoungDiagram de même cardinalité. On dit que $\mu > \lambda$ si $\exists i \in \mathbb{N}$ tq $\mu_i > \lambda_i$ et $\forall j \in \mathbb{N}_{< i}, \, \mu_i = \lambda_i$.

Chapter 3

SpechtModules

Definition 24 (YoungProjectors). Un Young projector est défini par un YoungDiagram μ

$$a_{\mu} := \frac{1}{|P_{\mu}|} \sum_{g \in P_{\mu}} g$$

$$b_{\mu} := \frac{1}{|Q_{\mu}|} \sum_{g \in Q_{\mu}} (-1)^g g$$

Où $(-1)^g$ est le signe de g

Definition 25 (Young Symmetriser). Un Young symmetriser est défini par un Young Diagram μ $c_{\mu} := a_{\mu}b_{\mu}$

Definition 26 (SpechtModules). Soit μ un YoungDiagram.

$$V_{\mu} := \mathbb{C}[S_n]c_{\mu}$$

 V_{μ} est appelé un Specht modules. Il est un sous-espace de $\mathbb{C}[S_n].$

Lemma 27 (Linear Transformation). $\exists l_{\mu}\ une\ fonction\ linéaire\ tq$ $\forall x \in \mathbb{C}[S_n], \ a_{\mu}xb_{\mu} = l_{\mu}(x)c_{\mu}$

Proof. Soit $\mathbf{x} \in \mathbb{C}[S_n]$.

x est de la forme $\sum_{g \in S_n} a_g g$. Examinons se qu'il se passe pour différent g. Si $g \in P_\mu Q_\mu$, alors $\exists p \in P_\mu$ et $q \in Q_\mu$ tq g=pq

$$a_{\mu}gb_{\mu} = \frac{1}{|P_{\mu}|} \sum_{g \in P_{\mu}} g \ pq \frac{1}{|Q_{\mu}|} \sum_{h \in Q_{\mu}} (-1)^{h}$$

$$\frac{1}{|P_{\mu}|} \sum_{g \in P_{\mu}} gp = \frac{1}{|P_{\mu}|} \sum_{g' \in P_{\mu}} g'$$

On peut faire le changement de variable en posant g' = gp et en utilisant le fait que $\phi(g) = gp$ est un isomorphisme de groupe. Ainsi les deux sommes sont équivalantes à un réordenement près.

$$\frac{1}{|Q_{\mu}|} \sum_{h \in Q_{\mu}} (-1)^h q h = \frac{1}{|Q_{\mu}|} \sum_{h \in Q_{\mu}} (-1)^h q h = (-1)^{q^{-1}} \frac{1}{|Q_{\mu}|} \sum_{h' \in Q_{\mu}} (-1)^{h'} h'$$

$$a_{\mu}gb_{\mu} = (-1)^q c_{\mu}$$

Il ne reste plus à montrer que si g $\notin P_\mu Q_\mu$ alors $l_\mu(g)$ =0, car g ne peut pas être exprimer par c_μ Donc il faut mq $a_\mu g b_\mu$ =0 ou de façon équivalente $a_\mu g b_\mu = -a_\mu g b_\mu$

Il suffit de trouver $t \in P_{\mu}$ tq $g^{-1}tg \in Q_{\mu}$ et $(-1)^t = -1$, car

$$a_{\mu}gb_{\mu}=a_{\mu}tgb_{\mu}=a_{\mu}(gg^{-1})tgb_{\mu}=a_{\mu}g(g^{-1}tg)b_{\mu}=(-1)^{g^{-1}tg}a_{\mu}gb_{\mu}=-a_{\mu}gb_{\mu}$$

Plusieurs changements de variables ont été effectuer pour "faire apparaître et disparaître" des éléments. $(-1)^{g^{-1}tg}=(-1)^{g^{-1}}\cdot(-1)^t\cdot(-1)^g=(-1)^g\cdot(-1)^t\cdot(-1)^g=-1$

Par la contraposé du lemme No2FromSameColToSameRow, on a que

 $\exists i,j,k,l \in \mu \text{ tq } i \neq j, g(Y_{\mu}(i)) = Y_{\mu}(k), g(Y_{\mu}(j)) = Y_{\mu}(l), i.x = j.x \text{ et } k.y = l.y.$

Posons t : $[0,n-1] \to [0,n-1]$

$$t(n) = \begin{cases} Y_{\mu}(k) & \text{si } n = Y_{\mu}(l) \\ Y_{\mu}(l) & \text{si } n = Y_{\mu}(k) \\ n & \text{sinon} \end{cases}$$

Par construction, $t \in P_{\mu}$ et $(-1)^t = -1$. Il suffit de montré que $g^{-1}tg \in Q_{\mu}$

$$g^{-1}\circ t\circ g(Y_{\mu}(i))=g^{-1}\circ t(Y_{\mu}(k))=g^{-1}(Y_{\mu}(l))=Y_{\mu}(j)$$

$$g^{-1}\circ t\circ g(Y_u(j))=g^{-1}\circ t(Y_u(l))=g^{-1}(Y_u(k))=Y_u(i)$$

On remarque que si $m \in \mu \backslash \{i,j\}, g(Y_{\mu}(m)) \notin \{Y_{\mu}(k), Y_{\mu}(l)\}.$ Donc $t(g(Y_{\mu}(m)))$ se comporte de la comporte de l comme la fonction identité. Ainsi $g^{-1}tg \in Q_{\mu}$.

Lemma 28 (SmallerImpZero). $Si \mu > \lambda$, alors

$$a_{\mu}\mathbb{C}[S_n]b_{\lambda}=0$$

Proof. Comme $\mu > \lambda$

TODO montré que

Donc, il existe deux éléments de la même colomne que g envoit sur la même rangé

Ainsi un peut construire un t tq t $\in P_{\mu}$ et $g^{-1}tg \in Q_{\lambda}$. Par le même argument que le dernier lemme, $a_{\mu}\mathbb{C}[S_n]b_{\lambda}=0$

Lemma 29 (CuPropIdempotent). c_{μ} est proportionel à un idempotent. De façon mathématique

$$\exists a \in \mathbb{C}, c_{\mu}^2 = a \cdot c_{\mu}$$

Proof. On applique le lemme LinearTransformation avec $x = b_{\mu}a_{\mu} \in \mathbb{C}[S_n]$.

Theorem 30 (IrreductibleRepresentationSn). $\forall \mu$ partition de n, V_{μ} est toute les représentations $irréductibles de <math>S_n$

Proof. Soit μ, λ deux partitions de n et sans perte de généralité, $\mu \geq \lambda$

$$\operatorname{Hom}_{\mathbb{C}[S_n]}(V_\mu,V_\lambda)=\operatorname{Hom}_{\mathbb{C}[S_n]}(\mathbb{C}[S_n]c_\mu,\mathbb{C}[S_n]c_\lambda)\cong c_\mu\mathbb{C}[S_n]c_\lambda$$

Si $\mu > \lambda$ alors $c_{\mu} \mathbb{C}[S_n] c_{\lambda} = 0$

Sinon $\mu = \lambda$ et on a une représentation de dimension 1.

Comme le nombre de partition de n est égale au nombre de classe de conjugaison de S_n on a que tous les représentations de S_n sont atteintes par V_{μ} .