Práctica 2: Búsquedas con trayectorias múltiples Selección de características Primero el mejor, enfriamiento simulado y búsqueda tabú básica

Alejandro García Montoro 76628233F, agarciamontoro@correo.ugr.es

Grupo de los viernes a las 17.30

Curso 2015 - 2016

Índice

1.	Des	cripción del problema	1
2.	Met	caheurísticas	2
	2.1.	Introducción	2
	2.2.	Búsqueda multiarranque básica	5
	2.3.	Greedy randomized adaptive search procedure	6
		Búsqueda local reiterada	7
	2.5.	Algoritmo de comparación	9
3.	Des	arrollo de la práctica	10
	3.1.	Framework de aprendizaje automático	10
	3.2.	Paralelización en GPU de la función objetivo	10
	3.3.	Manual de usuario	11
4.	Aná	ilisis de resultados	12
	4.1.	Clasificador k-NN	12
			13
			13
			14
			14
			15

1. Descripción del problema

La selección de características es una técnica muy usada en problemas de aprendizaje automático.

El aprendizaje automático, visto de una forma muy general, tiene como objetivo clasificar un conjunto de objetos —modelador por una serie de atributos— en clases.

Esta clasificación se aprende desde los datos, pero la selección de los atributos que definen la modelización del objeto puede no ser la más apropiada: en ocasiones hay atributos superfluos o demasiado ruidosos que sería conveniente eliminar. Además, cuantos menos atributos definan un objeto, más rápido y preciso será el aprendizaje. Es aquí entonces donde aparece la pregunta que guia todo este trabajo: ¿cómo identificar los atributos que mejor aprendizaje promueven?

La respuesta a esta pregunta pasa por la selección de características, cuyo objetivo es reducir la definición de un objeto a una serie de características que faciliten el aprendizaje.

La idea es entonces la siguiente: dado un conjunto de m objetos definidos por un conjunto C de n características, y considerado un modelo de aprendizaje f que intenta aprender la clasificación de estos objetos, encontrar el subconjunto $C' \subset C$ que maximiza el modelo f.

Así, vemos claramente que el tamaño de caso de nuestro problema es n—el número de características— y que el objetivo está bien definido: eliminar aquellas características que o bien empeoren la bondad de f o bien sean innecesarias.

Con todos estos elementos definidos, podemos pasar a analizar las metaheurísticas consideradas.

2. Metaheurísticas

2.1. Introducción

Los algoritmos considerados para resolver el problema son los siguientes:

- Búsqueda multiarranque básica.
- Greedy randomized adaptive search procedure (GRASP).
- Búsqueda local reiterada.

Además, compararemos estas metaheurísticas con el algoritmo voraz Sequential forward selection.

Estas tres metaheurísticas reúnen las condiciones necesarias para resolver el problema: el espacio de soluciones de nuestro problema puede ser analizado mediante las estructuras de generación de vecinos y los criterios de aceptación que utilizan estos algoritmos. Veamos con un poco más de detalle los aspectos comunes a las metaheurísticas implementadas:

Datos de entrada

Todos los algoritmos considerados reciben un conjunto de entrenamiento cuyos objetos tienen la siguiente estructura:

$$(s_1, s_2, \ldots, s_n, c)$$

donde (s_1, s_2, \ldots, s_n) es el conjunto de valores de los atributos que definen el objeto y c la clase a la que pertenece.

Esquema de representación

El espacio de soluciones S de nuestro problema es el conjunto de todos los vectores s de longitud n—el número de características— binarios; es decir:

$$S = \{s = (s_1, s_2, \dots, s_n) / s_i \in \{0, 1\} \ \forall i = 1, 2, \dots, n\}$$

La posición i-ésima de un vector $s \in S$ indicará la inclusión o no de la característica i-ésima en el conjunto final C'.

Función objetivo

La finalidad de las metaheurísticas será maximizar la función objetivo siguiente:

$$f \colon S \to [0, 100]$$

 $s \mapsto f(s) = \text{Acierto del 3-NN sobre s}$

f(s) es, por tanto, la tasa de acierto del clasificador 3-NN producido a partir de la solución s.

El clasificador 3-NN es una particularización del clasificador k-NN, que mide la distancia de la instancia considerada a todos los demás objetos en el conjunto de datos de entrenamiento y le asigna la clasificación mayoritaria de entre los k vecinos más cercanos; esto es:

Pseudocódigo 1 Clasificador k-NN

- 1: **function** k-NN(instance, trainingData)
- 2: distances \leftarrow euclideanDistance(instance, trainingData)
- 3: neighbours \leftarrow getClosestNeighbours(distances)
- 4: classification \leftarrow mostVotedClassification(neighbours)
- 5: **return** classification

Así, dada una solución $s \in S$, la función objetivo es como sigue:

Pseudocódigo 2 Función objetivo

- 1: **function** f(s, train, target)
- 2: samples \leftarrow removeZeroColumns(s, train)
- 3: $sum \leftarrow 0$
- 4: for instance \in samples do
- 5: $class \leftarrow k-NN(instance, samples)$
- 6: $sum \leftarrow sum + \begin{cases} 1 & \text{if } class = actualClass(instance, target)} \\ 0 & \text{if } class \neq actualClass(instance, target)} \end{cases}$
- 7: **return** sum / (number of samples in train)

donde removeZeroColumns(s, train) elimina la columna i-ésima de train si y sólo si $s_i = 0$ y actualClass(instance, target) devuelve la clase real —no la aprendida— del objeto instance.

Entorno de soluciones

Dada una solución $s \in S$, el entorno de soluciones vecinas a s es el conjunto

$$E(s) = \{s' \in S/|s' - s| = (0, \dots, 0, \underbrace{1}_{i}, 0, \dots, 0), i \in \{1, 2, \dots, n\}\}$$

es decir, E(s) son las soluciones que difieren de s en una única posición. Es evidente entonces que el conjunto E(S) tiene siempre exactamente cardinal igual a n.

El operador de generación de vecino de la solución s es entonces como sigue:

Pseudocódigo 3 Operador de generación de vecino

```
1: function FLIP(solution, feature)

2: s' \leftarrow solution

3: s'[feature] \leftarrow (s'[feature] + 1) \mod 2

4: return s'
```

Criterios de parada

Aunque los criterios de parada dependerán de la metaheurística considerada —en general se parará cuando no se encuentre mejora en el entorno—, en todos los algoritmos pararemos necesariamente tras llegar a las 15000 evaluaciones con el clasificador 3-NN sobre las soluciones generadas.

Generación de soluciones aleatorias

En los algoritmos de búsqueda multiarranque básica y búsqueda local reiterada se genera una serie de soluciones aleatorias sobre las que se aplica búsqueda local de una u otra forma. La generación de estas soluciones aleatorias sigue el siguiente esquema:

Pseudocódigo 4 Generación de soluciones aleatorias

```
1: function RANDOMSOLUTION(size)
2: for i \in 1, 2, ..., size do
3: random \leftarrow uniformRandomNumber([0,1])
4: s_i \leftarrow \begin{cases} 0 & \text{if } random \leq 0,5 \\ 1 & \text{if } random > 0,5 \end{cases}
5: solution \leftarrow (s_1, s_2, ..., s_{size})
6: return solution
```

Búsqueda local

El algoritmo de búsqueda local considerado es el implementado para la primera práctica: la búsqueda local primero el mejor.

El método de exploración del entorno es el siguiente: dada una solución s, escogemos una característica al azar, aplicamos el operador flip para obtener una solución vecina y medimos su bondad con f(s); si es mejor que s, nos quedamos con ella como mejor solución y volvemos a empezar; si no, tomamos otra característica al azar —sin repetir— y seguimos el proceso.

Pararemos el algoritmo si: o bien al haber explorado el entorno completo de la solución actual ninguna de las soluciones vecinas es mejor, o bien si se han alcanzado 15000 iteraciones. Estaremos entonces ante un máximo—probablemente local— y el algoritmo no podrá seguir mejorando la solución.

El pseudocódigo de todo el procedimiento es el siguiente, donde hemos puesto un tercer argumento optativo, *initSol*, que por defecto es vacío, y en cuyo caso se genera una solución aleatoria como solución inicial. Si no es vacío, tomamos como solución inicial la *initSol*, de manera que la búsqueda se centrará en el entorno de esta solución.

Pseudocódigo 5 Búsqueda local primero el mejor

```
function BESTFIRST(train, target, initSol = \emptyset)
    if initSol = \emptyset then
        s \leftarrow genInitSolution()
    else
        s \leftarrow initSol
    bestScore \leftarrow f(s, train, target)
    improvementFound \leftarrow True
    while improvementFound and iterations <15000 do
        improvementFound \leftarrow False
        for feature \leftarrow genRandomFeature(s) do \triangleright Without replacement
            s' \leftarrow genNeighbour(s, feature)
            score \leftarrow f(s', train, target)
            if score > bestScore then
                s, bestScore \leftarrow s', score
                improvementFound \leftarrow True
                break for
    return s, bestScore
```

2.2. Búsqueda multiarranque básica

La búsqueda multiarranque básica es el primer algoritmo considerado, cuyo comportamiento es muy sencillo: se trata de generar un número N de soluciones aleatorias y, para cada una de ellas, explotar su entorno de soluciones con el algoritmo de búsqueda local primero el mejor.

La idea que intenta perseguir este algoritmo es clara: como la búsqueda local ya aporta la suficiente intensificación en zonas locales del espacio de búsqueda, se intenta aumentar la diversidad para explorar zonas diferentes. Esto último se consigue con la generación aleatoria de las N soluciones, que previsiblemente cubren una zona mayor del espacio.

Durante todo el proceso mantendremos la mejor solución encontrada hasta el momento, de manera que al terminar el algoritmo —tras buscar localmente desde 25 soluciones aleatorias y con un máximo de 15000 iteraciones— se devuelve la mejor encontrada.

Como el procedimiento bestFirst genera una solución aleatoria inicial si no se le pasa un tercer argumento, todo el cómputo de este algoritmo se encuentra recogido en esa llamada. Sólo tenemos que preocuparnos de repetir el procedimiento N veces, donde N es, en este caso, igual a 25. Al final se devuelve la mejor solución encontrada.

El procedimiento se puede ver en el Pseudocódigo 6.

Pseudocódigo 6 Búsqueda multiarranque básica

```
1: function BMB(train, target)
2: bestSolution, bestScore \leftarrow \emptyset, -1
3: for i \in \{1, 2, ..., 25\} do
4: currentSolution, currentScore \leftarrow bestFirst(train, target)
5: if currentScore >bestScore then
6: bestSolution, bestScore \leftarrow currentSolution, currentScore
7: return bestSolution, bestScore
=0
```

2.3. Greedy randomized adaptive search procedure

La estructura del algoritmo GRASP es similar a la de la búsqueda multiarranque básica: tras generar una solución inicial, se ejecuta búsqueda local sobre ella para mejorarla. La diferencia con el algoritmo anterior se encuentra, precisamente, en cómo se genera la solución inicial: si bien en BMB se hacía de forma aleatoria, aquí se añade un paso intermedio: tras generar una solución aleatoria, se ejecuta una variante del algoritmo SFS que en cada iteración elige, de entre las características que más ganancia aportan, una de forma aleatoria.

Antes de entrar en detalles, es conveniente ver el procedimiento general en el Pseudocódigo 7.

Pseudocódigo 7 GRASP

```
1: function BMB(train, target)
2:
       bestSolution, bestScore \leftarrow \emptyset, -1
       for i \in \{1, 2, \dots, 25\} do
3:
           currentSolution, currentScore \leftarrow randomSFS(train, target)
4:
5:
           currentSolution, currentScore \leftarrow bestFirst(train, target, curren-
   tSolution)
           if currentScore >bestScore then
6:
              bestSolution, bestScore \leftarrow currentSolution, currentScore
7:
       return bestSolution, bestScore
8:
```

Como vemos, sólo se ha añadido la generación de la solución inicial antes de la búsqueda local. En la llamada a *randomSFS* se encuentra el núcleo de este algoritmo, así que echémosle un vistazo más de cerca.

Algoritmo voraz probabilístico

La generación de la solución inicial en el algoritmo *GRASP* se hace con un algoritmo voraz probabilístico, cuya idea central es la siguiente: en cada iteración se evalúan todas las características aún no seleccionadas, almacenando para cada una de ellas la ganancia —que puede ser negativa—que produce con respecto a la solución actual; tras esta evaluación, se genera una lista restringida de candidatos definida a partir de la peor y mejor ganancia registradas; de entre esta lista, se toma una característica al azar y se añade a la solución, terminando así la iteración.

La generación de la lista restringida de candidatos, LRC, se hace en base al siguiente umbral:

$$\mu = \max_{i} \{g_i\} - \alpha(\max_{i} \{g_i\} - \min_{i} \{g_i\})$$

donde g_i es la ganancia que produce añadir la característica *i*-ésima a la solución actual y, en este caso, se ha tomado $\alpha = 0.3$.

Podemos ya ver el procedimiento del algoritmo voraz probabilístico en el Pseudocódigo 8.

Pseudocódigo 8 Algoritmo voraz probabilístico

```
1: function RANDOMSFS(train, target)
        s \leftarrow genZeroSolution()
        bestScore \leftarrow 0
 3:
         while there was improvement with some feature do
 4:
             q \leftarrow (0, 0, \dots, 0)
                                            ▷ Size = number of not selected features
 5:
             for every feature f in not selected features do
 6:
                 s \leftarrow addFeature(s,f)
 7:
                 currentScore \leftarrow f(s, train, target)
 8:
 9:
                 gain \leftarrow currentScore - bestScore
                 g_f \leftarrow \text{gain}
10:
                 s \leftarrow removeFeature(s,f)
11:
             \mu \leftarrow \max_i \{g_i\} - \alpha(\max_i \{g_i\} - \min_i \{g_i\})
12.
             LRC \leftarrow \{f \in \text{not selected features}/g_f > \mu\}
13:
             f \leftarrow random \ choice \ from \ LRC
14:
             if q_f > 0 then
15:
                 s \leftarrow addFeature(s,f)
16:
                 bestScore \leftarrow bestScore + bestGain
17:
        return s, bestScore
18:
```

2.4. Búsqueda local reiterada

El algoritmo de búsqueda local reiterada, o ILS por sus siglas en inglés, busca también introducir algo de diversidad en las soluciones exploradas.

Para ello, parte de una solución inicial aleatoria que mejora con búsqueda local. A partir de ahí se sigue un procedimiento iterativo repetido N veces —en nuestro caso, tomaremos N=24, ya que queremos llamar 25 veces a la búsqueda local—:

- Se muta la solución previa.
- Se realiza búsqueda local con esa mutación como solución inicial.
- Se actualiza la mejor solución.

Podemos ver este procedimiento con más detalle en el Pseudocódigo 9.

Pseudocódigo 9 Búsqueda local reiterada

```
1: function ILS(train, target)
2:
       bestSolution, bestScore \leftarrow bestFirst(trian, target)
       prevSolution, prevScore \leftarrow bestSolution, bestScore
3:
4:
       for i \in \{1, 2, \dots, 24\} do
           mutation \leftarrow mutateSolution(prevSolution)
5:
           currentSolution, currentScore \leftarrow bestFirst(train, target, curren-
6:
    tSolution)
           if currentScore >prevScore then
7:
               prevSolution, prevScore \leftarrow currentSolution, currentScore
8:
           if prevScore >bestScore then
9:
10:
               bestSolution, bestScore \leftarrow prevSolution, prevScore
       return bestSolution, bestScore
11:
```

Mutación

La mutación de las soluciones llevada a cabo en el algoritmo ILS es simple: basta tomar un 10 % de características de forma aleatoria y cambiar su estado: si están a 1 ponerlas a 0 y viceversa; esto es, aplicar el operador *flip* para cada una de ellas.

Este sencillo procedimiento puede verse en el Pseudocódigo 10.

Pseudocódigo 10 Mutación para la ILS

```
1: function MUTATESOLUTION(solution, p = 0.1)
2: n \leftarrow size of solution
3: indices \leftarrow Take \lceil pn \rceil random indices in \{1, \ldots, n\}
4: for i \in indices do
5: flip(solution, i)
6: return solution
```

2.5. Algoritmo de comparación

Para la comparación de los algoritmos implementados consideraremos el algoritmo voraz *Sequential forward selection*, que se puede ver en el Pseudocódigo 11.

Pseudocódigo 11 Algoritmo de comparación

```
1: function SEQUENTIALFORWARDSELECTION(train, target)
 2:
        s \leftarrow genZeroSolution()
        bestScore \leftarrow 0
 3:
 4:
        while there was improvement with some feature do
            for every feature f in not selected features do
 5:
               s \leftarrow addFeature(s,f)
 6:
               currentScore \leftarrow score(s, train, target)
 7:
               if currentScore > bestScore then
 8:
                   bestScore \leftarrow currentScore
9:
                   bestFeature \leftarrow f
10:
               s \leftarrow removeFeature(s,f)
11:
            if there was a best feature f then
12:
13:
               s \leftarrow addFeature(s,f)
14:
        return s, bestScore
```

La idea es sencilla: en cada iteración escogemos la característica, de entre las aún no seleccionadas, que mejor valor de la función objetivo produce, si y sólo si este valor es mejor que el actual.

3. Desarrollo de la práctica

La práctica se ha desarrollado por completo en Python, definiendo cada algoritmo en una función diferente con cabeceras iguales —mismo número y tipo de parámetros— para poder automatizar el proceso de recogida de datos.

3.1. Framework de aprendizaje automático

Se ha usado, además, el módulo *Scikit-learn*, del que se ha usado la siguiente funcionalidad:

■ Particionamiento de los datos. Scikit-learn aporta una función para hacer un particinado aleatorio de los datos en una parte de aprendizaje y otra de test. Esto se ha usado para implementar la técnica 5×2 cross-validation.

3.2. Paralelización en GPU de la función objetivo

Aunque en la práctica anterior se usó también *Scikit-learn* para medir la función objetivo, la lentitud de este proceso me llevó a buscar otras alternativas: después de intentar usar el mismo módulo con paralelización CPU y conseguir prácticamente los mismos resultados —para notar mejoría hacen falta bases de datos con varios miles de muestras—, decidí buscar una solución propia.

Como gracias a mi Trabajo fin de grado he aprendido a hacer computación general paralelizada en GPU, decidí usar la librería CUDA —y en concreto su interfaz para Python, PyCUDA— para implementar la función objetivo de una forma eficiente. La mejoría en tiempo conseguida es muy notable —es del orden de 30 a 60 veces más rápido, dependiendo del número de muestras de la base de datos y del número de características—, y tras muchas pruebas para comprobar que el cálculo de la función era correcto, sustituí el k-NN de Scikit-learn con el implementado en CUDA.

Todo este trabajo, necesario para el correcto funcionamiento de la práctica, se encuentra en los ficheros bajo el directorio src/knnGPU, que contienen la implementación en C del k-NN y la interfaz para poder usar el código desde Python.

Además, como vi que este código podía beneficiar a mis compañeros, decidí publicarlo de forma abierta en un repositorio de Github¹, bien documentado y con una guía de uso.

Gracias a esto, algunos amigos me ayudaron a mejorar el código: yo había implementado sólo la función objetivo sobre los datos de training, y Jacinto Carrasco Castillo la modificó para poder hacer la medición también con los

¹https://github.com/agarciamontoro/metaheuristics

datos de test. Además, Luís Suárez Lloréns me ayudó a probar cambios que creíamos que iban a mejorar aún más la eficiencia —aunque tras mucho trabajo vimos que la implementación inicial era la más rápida—. Por último, Antonio Álvarez Caballero, Anabel Gómez Ríos y Gustavo Rivas Gervilla me ayudaron a testear el código, probándolo con sus algoritmos y los datos que tenían de anteriores prácticas.

3.3. Manual de usuario

Para la ejecución de la práctica es necesario tener instalado Python 3, el módulo *Scikit-learn* y PyCUDA, así como disponer de una tarjeta gráfica compatible con CUDA.

Todo se encuentra automatizado en el fichero $src/02_multiPath.py$, así que sólo es necesario ejecutar la siguiente orden desde el directorio raíz de la práctica $python\ src/02_multiPath.py$

Así se ejecutarán todos los algoritmos con todas las bases de datos usando la ténica del 5×2 cross-validation. Las tablas generadas se guardarán en el directorio results/02.

La semilla utilizada se inicializa al principio de la ejecución del programa con las líneas np.random.seed(19921201) y random.seed(19921201).

4. Análisis de resultados

En esta sección vamos a presentar los datos recogidos de la ejecución de todos los algoritmos con las tres bases de datos consideradas: WDBC, Movement Libras y Arrhytmia. Las bases de datos se han considerado completas en todos los casos, tal y como se nos entregaron —arreglando alguna columna defectuosa y homogeneizando el nombre de la columna de clasificación para poder automatizar el proceso—.

Para el análisis de cada algoritmo con cada base de datos se han generado cinco particiones aleatorias de los datos y se ha ejecutado el algoritmo considerando cada partición como datos de entrenamiento y test, con la técnica 5×2 cross-validation.

En cada una de estas ejecuciones se han medido los siguientes datos:

- Tasa de clasificación en la partición de entrenamiento —en %—.
- Tasa de clasificación en la partición de test —en %—.
- Tasa de reducción de las características —en %—.
- Tiempo de ejecución —en segundos—.

Veamos ya los datos y analicemos los resultados obtenidos:

4.1. Clasificador k-NN

		WDB	J			Movement	Libras		Arrythmia			
Particiones	%Clas. in	%Clas. out	%Red.	T	%Clas. in	%Clas. out	%Red.	Т	%Clas. in	%Clas. out	%Red.	T
Partición 1-1	97,1831	96,4912	0	$4.5 \cdot 10^{-3}$	67,2222	77,2222	0	$4.7 \cdot 10^{-3}$	64,5833	63,4021	0	0,0199
Partición 1-2	96,4912	96,1268	0	$3.3 \cdot 10^{-3}$	70,5556	71,1111	0	$4.6 \cdot 10^{-3}$	65,4639	62,5	0	0,0179
Partición 2-1	94,3662	97,193	0	$3.3 \cdot 10^{-3}$	68,8889	75	0	$4.6 \cdot 10^{-3}$	62,5	63,4021	0	0,0196
Partición 2-2	97,193	95,7746	0	$3.2 \cdot 10^{-3}$	69,4444	80,5556	0	$4.6 \cdot 10^{-3}$	58,2474	63,0208	0	0,0182
Partición 3-1	95,7746	96,4912	0	$3.2 \cdot 10^{-3}$	67,2222	68,8889	0	$4.7 \cdot 10^{-3}$	66,6667	59,7938	0	0,0195
Partición 3-2	95,4386	96,1268	0	$3.4 \cdot 10^{-3}$	74,4444	71,1111	0	$4.7 \cdot 10^{-3}$	61,3402	63,0208	0	0,0184
Partición 4-1	96,831	95,4386	0	$3.3 \cdot 10^{-3}$	64,4444	72,2222	0	$4.7 \cdot 10^{-3}$	60,9375	62,8866	0	0,0195
Partición 4-2	96,4912	95,4225	0	$3.2 \cdot 10^{-3}$	67,7778	75,5556	0	$4.6 \cdot 10^{-3}$	65,4639	64,0625	0	0,0179
Partición 5-1	95,0704	96,8421	0	$3.2 \cdot 10^{-3}$	68,3333	71,1111	0	$4.6 \cdot 10^{-3}$	65,625	60,3093	0	0,0196
Partición 5-2	97,8947	95,7746	0	$3,2 \cdot 10^{-3}$	70	79,4444	0	$4.7 \cdot 10^{-3}$	63,4021	65,1042	0	0,0178
Medias	96,2734	96,1681	0	$3,4 \cdot 10^{-3}$	68,8333	74,2222	0	$4.7 \cdot 10^{-3}$	63,423	62,7502	0	0,0188

Cuadro 1: Datos del clasificador k-NN

En la tabla 1 se pueden ver los datos obtenidos del clasificador k-NN. La selección de características en este algoritmo es nula, ya que es la propia función objetivo considerando la totalidad de las características. Aún así, se ha añadido aquí para conocer la tasa de clasificación en los conjuntos de entrenamiento y de test considerando como solución la trivial: esto es, todas las características.

Como vemos, aunque en la primera base de datos las tasas de clasificación son buenas, en las otras dos son muy mejorables, lo que nos da una idea de la necesidad de la reducción de características.

4.2. Algoritmo de comparación

		WDBC				Movement L	ibras		Arrythmia			
Particiones	%Clas. in	%Clas. out	%Red.	T	%Clas. in	%Clas. out	%Red.	Т	%Clas. in	%Clas. out	%Red.	T
Partición 1-1	97,8873	95,4386	83,3333	0,2263	68,8889	71,1111	92,2222	0,7245	76,5625	66,4948	97,482	2,3187
Partición 1-2	97,5439	93,3099	80	0,2509	78,3333	68,8889	90	0,9308	84,0206	71,875	97,1223	2,6565
Partición 2-1	97,8873	95,7895	80	0,2507	80,5556	71,1111	88,8889	1,0406	78,125	61,3402	96,0432	3,8052
Partición 2-2	97,8947	93,3099	80	0,2512	76,6667	73,8889	88,8889	1,0396	82,9897	70,8333	96,7626	3,0223
Partición 3-1	97,5352	95,7895	80	0,2501	75	71,6667	90	0,933	76,5625	61,8557	96,7626	2,9898
Partición 3-2	97,193	90,8451	86,6667	0,1782	81,1111	72,7778	90	0,9332	71,6495	71,3542	98,9209	1,025
Partición 4-1	97,5352	95,7895	86,6667	0,1738	76,1111	71,6667	93,3333	0,623	73,4375	72,1649	98,5612	1,3149
Partición 4-2	95,4386	92,6056	93,3333	0,0972	72,2222	65,5556	92,2222	0,7197	74,7423	70,8333	98,9209	1,0303
Partición 5-1	95,7746	96,8421	86,6667	0,173	80	72,7778	87,7778	1,1448	84,8958	71,134	96,4029	3,4033
Partición 5-2	97,8947	93,3099	86,6667	0,1735	73,8889	67,7778	87,7778	1,148	82,9897	75	96,4029	3,4156
Medias	97,2585	94,3029	84,3333	0,2025	76,2778	70,7222	90,1111	0,9237	78,5975	69,2886	97,3381	2,4982

Cuadro 2: Datos del algoritmo Sequential forward selection

En la tabla 2 vemos los resultados del algoritmo de comparación, el Sequential forward selection. Este algoritmo voraz tiene una alta tasa de reducción de características, pero la tasa de clasificación no mejora la del clasificador con la solución trivial.

Esto se debe a que consideramos cada característica de una forma secuencial, y una vez seleccionamos una, es imposible descartarla. Aún así, este algoritmo podría ser interesante si lo que buscamos es una reducción drástica del número de características —como vemos, sobre le 80 %— sin perder mucha información —las tasas de clasificación son más o menos iguales a las del clasificador con la solución trivial—.

4.3. BMB

		WDBC				Movement 1	Libras		Arrythmia			
Particiones	%Clas. in	%Clas. out	%Red.	Т	%Clas. in	%Clas. out	%Red.	Т	%Clas. in	%Clas. out	%Red.	Т
Partición 1-1	99,2958	95,4386	40	3,8469	74,4444	76,6667	53,3333	12,1231	74,4792	65,9794	53,9568	135,7617
Partición 1-2	98,2456	95,0704	36,6667	2,9145	79,4444	72,2222	52,2222	12,2909	72,1649	64,0625	53,9568	125,2854
Partición 2-1	97,8873	96,8421	56,6667	3,3589	77,7778	76,1111	47,7778	11,0281	73,9583	67,0103	45,6835	144,3457
Partición 2-2	98,5965	95,0704	50	3,146	78,3333	76,1111	50	12,5063	72,6804	60,4167	56,1151	160,5128
Partición 3-1	97,8873	95,7895	50	3,0534	76,6667	70	46,6667	13,6035	76,0417	64,433	46,7626	165,9594
Partición 3-2	97,8947	95,4225	56,6667	3,247	80	73,8889	54,4444	11,6199	70,6186	60,9375	52,518	133,2013
Partición 4-1	98,9437	95,7895	46,6667	3,2698	76,6667	75	52,2222	11,5749	71,875	62,8866	53,9568	147,9913
Partición 4-2	97,8947	97,5352	46,6667	3,6253	76,6667	76,6667	54,4444	12,7118	73,7113	64,5833	50,3597	118,9206
Partición 5-1	97,8873	97,8947	36,6667	3,2422	75,5556	72,2222	58,8889	12,1402	75	61,3402	43,1655	133,1677
Partición 5-2	98,9474	94,7183	53,3333	2,9331	75,5556	76,6667	51,1111	12,656	72,6804	65,625	51,0791	131,2743
Medias	98,348	95,9571	47,3333	3,2637	77,1111	74,5556	52,1111	12,2255	73,321	63,7274	50,7554	139,642

Cuadro 3: Datos de la búsqueda multiarranque básica

En la tabla 3 vemos los datos de la primera metaheurística real considerada: la búsqueda local primero el mejor.

Esta metaheurística consigue unas tasas de clasificación algo mejores que en los casos anteriores y, sobre todo, es muchísimo más rápida que el algoritmo SFS.

Esto se debe a que es un algoritmo que aglutina la naturaleza casi voraz del SFS pero atendiendo a criterios mucho más sensatos. Vemos así cómo la búsqueda en el entorno de soluciones, generando vecinos y usando algún criterio para seleccionarlos —en este caso, el que sea mejor de entre

los vecinos— es una buena estrategia —sobre todo en tiempo— para este problema.

4.4. Greedy randomized adaptive search procedure

		WDBC				Movement 1	Libras		Arrythmia			
Particiones	%Clas. in	%Clas. out	%Red.	T	%Clas. in	%Clas. out	%Red.	T	%Clas. in	%Clas. out	%Red.	T
Partición 1-1	99,2958	95,4386	73,3333	7,2362	76,1111	75	83,3333	28,6418	82,2917	74,2268	94,6043	39,8907
Partición 1-2	98,9474	95,0704	76,6667	6,9366	81,1111	75	82,2222	28,5362	84,0206	64,5833	93,1655	63,9278
Partición 2-1	97,8873	97,8947	70	7,443	80	74,4444	84,4444	29,4763	81,7708	68,0412	94,964	44,4348
Partición 2-2	99,2982	92,6056	76,6667	6,8915	82,7778	75	83,3333	30,4101	84,5361	75,5208	92,8058	61,7964
Partición 3-1	98,2394	95,7895	76,6667	7,359	78,8889	68,8889	85,5556	28,7428	82,2917	69,0722	93,8849	66,9273
Partición 3-2	98,2456	92,2535	80	5,8619	83,3333	71,6667	85,5556	29,8539	83,5052	70,3125	93,1655	44,2746
Partición 4-1	98,9437	95,0877	76,6667	7,0288	81,6667	73,3333	83,3333	27,3356	82,8125	72,6804	94,6043	41,1329
Partición 4-2	97,8947	94,3662	76,6667	6,3766	80	73,3333	84,4444	28,5824	84,5361	72,3958	94,6043	61,252
Partición 5-1	98,2394	97,193	76,6667	8,1308	78,3333	70,5556	86,6667	29,9363	85,4167	69,5876	93,8849	60,0255
Partición 5-2	98,9474	96,1268	70	6,562	78,8889	69,4444	78,8889	31,8106	81,9588	77,6042	93,5252	45,342
Medias	98,5939	95,1826	75,3333	6,9826	80,1111	72,6667	83,7778	29,3326	83,314	71,4025	93,9209	52,9004

Cuadro 4: Datos de la optimización local de soluciones greedy

En la tabla 4 se encuentran los datos referentes a la ejecución del enfriamiento simulado sobre todas las bases de datos.

Vemos cómo conseguimos una tasa de clasificación fuera de la muestra algo mejor que en el algoritmo anterior, aunque los tiempos ahora se disparan.

La tasa de reducción, sin embargo, es también mayor, así que si buscamos una reducción que permita acelerar futuros procesos de aprendizaje —no olvidemos que el objetivo de nuestro problema es facilitar el trabajo ed algoritmos de aprendizaje posteriores— y un aumento en la tasa de clasificación, aunque pequeño, es altamente valorado, este algoritmo es el mejor de los que hemos visto hasta ahora.

Sin embargo, si el tiempo es una restricción muy grande, la búsqueda local es una solución mucho mejor

4.5. Búsqueda local reiterada

		WDBC				Movement 1	Libras		Arrythmia			
Particiones	%Clas. in	%Clas. out	%Red.	T	%Clas. in	%Clas. out	%Red.	Т	%Clas. in	%Clas. out	%Red.	T
Partición 1-1	98,9437	96,1404	50	2,838	75,5556	75	51,1111	10,4671	78,125	62,3711	54,6763	129,2199
Partición 1-2	97,8947	95,4225	36,6667	2,7113	76,6667	70	45,5556	11,286	73,7113	64,0625	51,7986	94,9439
Partición 2-1	98,2394	96,1404	53,3333	2,7502	75,5556	74,4444	50	10,3318	73,4375	62,8866	53,2374	101,603
Partición 2-2	98,5965	96,4789	50	2,6926	79,4444	79,4444	45,5556	13,7189	73,7113	65,625	51,0791	103,5521
Partición 3-1	98,5915	96,1404	53,3333	3,0391	79,4444	71,1111	52,2222	10,674	77,0833	60,3093	45,6835	141,4517
Partición 3-2	97,8947	94,0141	56,6667	2,6675	81,1111	73,8889	42,2222	10,8492	73,7113	61,9792	52,1583	124,5439
Partición 4-1	98,9437	96,1404	46,6667	2,8255	73,8889	69,4444	56,6667	10,9919	76,0417	66,4948	51,0791	124,0866
Partición 4-2	98,2456	97,1831	33,3333	2,7711	76,6667	76,6667	50	10,7522	78,3505	62,5	51,4388	130,6586
Partición 5-1	97,8873	95,7895	56,6667	3,214	75	73,3333	42,2222	12,3136	77,0833	63,9175	52,8777	114,192
Partición 5-2	98,9474	94,0141	66,6667	2,4026	76,1111	76,6667	67,7778	11,5635	76,2887	66,6667	52,8777	124,4177
Medias	98,4185	95,7464	50,3333	2,7912	76,9444	74	50,3333	11,2948	75,7544	63,6813	51,6906	118,8669

Cuadro 5: Datos de la búsqueda local reiterada

En la tabla 5 vemos los datos de la última metaheurística considerada: la búsqueda tabú básica.

Lo primero que llama la atención es el tiempo usado en la ejecución. A este algoritmo no se le han añadido más condiciones de parada que llegar

al número máximo de evaluaciones, así que se tienen que recorrer 15000 soluciones, además de mantener la lista tabú y hacer todas las comprobaciones necesarias. Es un algoritmo computacionalmente costoso.

Los resultados, además, no son mucho mejores a los anteriores. Si consideramos, por ejemplo, la base de datos WDBC vemos que el coste de pasar de algo más de un minuto a más de una hora proporciona una tasa de clasificación sólo 0.17 puntos mejor.

La tasa de reducción sí mejora algo más en este caso, así que si esta reducción va a tener un impacto muy grande en el algoritmo de aprendizaje posterior —probablemente incluso más costoso que este—, esta metaheurística puede ser considerada.

4.6. Datos generales

		WDBC		N	Iovement Libr	as	Arrythmia					
Particiones	%Clas. in	%Clas. out	%Red.	Т	%Clas. in	%Clas. out	%Red.	Т	%Clas. in	%Clas. out	%Red.	Т
3-NN												
SFS												
BMB												
GRASP												
ILS												

Cuadro 6: Datos generales

En la tabla 6 vemos un resumen de todos los datos obtenidos tras las ejecuciones de las metaheurísticas con las bases de datos.

Vemos ahora más claro el coste computacional de la búsqueda tabú, varias veces más grande que cualquier de los otros algoritmos. La reducción de características en el SFS es otro dato que llama la atención: no debe sorprendernos, sin mebargo, ya que al ir escogiendo las características secuencialmente, es difícil que alguna no añada algo de mejora —salvo al final, cuando ya se han descartado las características malas o posiblemente ruidosas—.

Un último aspecto a edstacar es la poca diferencia en la tasa de clasificación fuera de la muestra, que es la que realmente nos interesa. Es normal, sin embargo, ya que el espacio de búsqueda es extremeadamente grande y, aunque la búsqueda sea mucho más exhaustiva, nada nos garantiza conseguir soluciones mucho mejores.

Sin embargo, hay que tener siempre en cuenta que este es un paso previo para algoritmos de aprendizaje, así que cualquier mejora, por pequeña que sea, puede derivar en una gran reducción del tiempo en y aumento del éxito en los algoritmos posteriores.