SVM

SUPPORT VECTOR MACHINE

SVM: Support Vector Machine

- In Machine Learning, Support Vector Machines are supervised learning models with associated learning algorithms that analyze data and recognize patterns, used for classification and regression analysis.
- Properties of SVM:
 - Duality
 - Sparseness
 - Kernels
 - Margin
 - Convexity

SVM Applications

Regression

Basic Concept of SVM

Find a linear decision surface ("hyperplane") that can separate classes and has the largest distance (i.e., largest "gap" or "margin") between border-line patients (i.e., "support vectors")

Hyperplane as a Decision Boundary

- A hyperplane is a linear decision surface that splits the space into two parts;
- A hyperplane is a binary classifier.

A hyperplane in Rⁿ is an n-1 dimensional subspace

Equation of a Hyperplane

Consider the case of R3:

An equation of a hyperplane is defined by a point (P_0) and a perpendicular vector to the plane (\vec{w}) at that point.

Define vectors: $\vec{x}_0 = \overrightarrow{OP}_0$ and $\vec{x} = \overrightarrow{OP}$, where P is an arbitrary point on a hyperplane.

A condition for P to be on the plane is that the vector $\vec{x} - \vec{x_0}$ is perpendicular to \vec{w} :

$$\vec{w} \cdot (\vec{x} - \vec{x}_0) = 0$$
 or
$$\vec{w} \cdot \vec{x} - \vec{w} \cdot \vec{x}_0 = 0$$
 define $b = -\vec{w} \cdot \vec{x}_0$
$$\vec{w} \cdot \vec{x} + b = 0$$

The above equations also hold for Rⁿ when n>3.

• g(x) is a linear functio

$$g(x) = WX + b$$

- A hyperplane in the feature space.
- (Unit-length) normal of the hyperplane:

$$\mathbf{n} = \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

How to classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

Which one is the best?

- The linear discriminant function (classifier) with the maximum margin is the best
- Margin is defined as the width that the boundary could be increased by before hitting a data point
- Why it is the best?
 Robust to outliners and thus strong generalization ability

Given a set of data points:

$$\{(\mathbf{x}_i, y_i)\}, i = 1, 2, \dots, n, \text{ where }$$

For
$$y_i = +1, W X_i + b > 0$$

For $y_i = -1, W X_i + b < 0$

 With a scale transformation on both w and b, the above is equivalent to

For
$$y_i = +1, W X_i + b > +1$$

For $y_i = -1, W X_i + b < -1$

· We know that

$$WX^+ + b = +1$$
$$WX^- + b = -1$$

The margin width is:

$$M = (\mathbf{x}^+ - \mathbf{x}^-) \cdot \mathbf{n}$$
$$= (\mathbf{x}^+ - \mathbf{x}^-) \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}$$

· Formulation:

maximize
$$\frac{2}{\|\mathbf{w}\|}$$

such that

For
$$y_i = +1, W X_i + b > +1$$

For $y_i = -1, W X_i + b < -1$

Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

such that

For
$$y_i = +1$$
, $W X_i + b > +1$
For $y_i = -1$, $W X_i + b < -1$

· Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

such that

$$y_i(WX+b) \geq 1$$

Basics of optimization: Convex functions

- A function is called convex if the function lies below the straight line segment connecting two points, for any two points in the interval.
- Property: Any local minimum is a global minimum!

Basics of optimization: Quadratic Programming

- Quadratic programming (QP) is a special optimization problem: the function to optimize ("objective") is quadratic, subject to linear constraints.
- Convex QP problems have convex objective functions.
- These problems can be solved easily and efficiently by greedy algorithms (because every local minimum is a global minimum).

This is QP problem, and it is a convex QP as we will see

We can rewrite it as:

Minimize
$$\frac{1}{2}(x_1^2 + x_2^2)$$
 subject to $x_1 + x_2 - 1 \ge 0$

quadratic objective linear constraints

SVM optimization problem: Primal formulation

- This is called "primal formulation of linear SVMs"
- It is a convex quadratic programming (QP) optimization problem with n
 variables (w_i, i= 1,...,n), where n is the number of features in the dataset.

SVM optimization problem: Dual formulation

 The previous problem can be recast in the so-called "dual form" giving rise to "dual formulation of linear SVMs".

Minimize
$$\underbrace{\frac{1}{2}\sum_{i=1}^n w_i^2}$$
 subject to $\underbrace{y_i(\vec{w}\cdot\vec{x}_i+b)-1\geq 0}$ for $i=1,\ldots,N$

Objective function Constraints

Apply the method of Lagrange multipliers.

Define Lagrangian
$$\Lambda_P(\vec{w}, b, \vec{\alpha}) = \frac{1}{2} \sum_{i=1}^n w_i^2 - \sum_{i=1}^N \alpha_i (y_i (\vec{w} \cdot \vec{x}_i + b) - 1)$$

a vector with n elements a vector with N elements

 We need to minimize this Lagrangian with respect to and simultaneously require that the derivative with respect to vanishes, all subject to the constraints that α_i > 0

SVM optimization problem: Dual formulation

If we set the derivatives with respect to \vec{w}, b to 0, we obtain:

$$\frac{\partial \Lambda_{p}(\vec{w}, b, \vec{\alpha})}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \Lambda_{p}(\vec{w}, b, \vec{\alpha})}{\partial \vec{w}} = 0 \Rightarrow \vec{w} = \sum_{i=1}^{N} \alpha_{i} y_{i} \vec{x}_{i}$$

We substitute the above into the equation for $\Lambda_{\mu}(\vec{w}, b, \vec{\alpha})$ and obtain "<u>dual</u> formulation of linear SVMs":

$$\Lambda_D(\vec{\alpha}) = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i,j=1}^N \alpha_j \alpha_j y_i y_j \vec{x}_i \cdot \vec{x}_j$$

We seek to maximize the above Lagrangian with respect to $\vec{\alpha}$, subject to the constraints that $\alpha_i \geq 0$ and $\sum_i \alpha_i y_i = 0$.

It is also a convex quadratic programming problem but with N variables (α_i , i=1,...,N), where N is the number of samples.

$$\mathsf{Maximize} \left[\sum_{i=1}^N \alpha_i - \tfrac{1}{2} \sum_{i,j=1}^N \alpha_i \alpha_j y_i y_j \vec{x}_i \cdot \vec{x}_j \right] \mathsf{subject to} \left[\alpha_i \geq 0 \text{ and } \sum_{i=1}^N \alpha_i y_i = 0 \right].$$

Objective function

Then the w-vector is defined in terms of α_i : $\vec{w} = \sum_{i=1}^{N} \alpha_i y_i \vec{x}_i$

And the solution becomes:
$$f(\vec{x}) = sign(\sum_{i=1}^{N} \alpha_i y_i \vec{x}_i \cdot \vec{x} + b)$$

SVM optimization problem: Benefits of Using Dual formulation

No need to access original data, need to access only dot products.

Objective function:
$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j \vec{x}_i \cdot \vec{x}_j$$
Solution:
$$f(\vec{x}) = sign(\sum_{i=1}^{N} \alpha_i y_i \vec{x}_i \cdot \vec{x} + b)$$

 Number of free parameters is bounded by the number of support vectors and not by the number of variables (beneficial for high-dimensional problems).

Thank You