Modeling libries in python

A brief introduction to modeling libraries in Python

Kunal Khurana

2024-03-01

Table of contents

Interfacing between pandas and model code	2
Creating model descriptions with patsy	2
Introduction to statsmodels	2
Introduction to scitkit-learn	3
Interface (data loading and cleaning beforing model building)	3
Creating model descriptions with Patsy	4
passing pasty objects directly into algorithms	5
Data Transformations in Pastry Formulas	6
Categorical Data and Patsy	7
Statsmodles	6
Estimating linear models	9
Estimating time series processes	13
Scikit-learn	13
Theory	16

Interfacing between pandas and model code

Creating model descriptions with patsy

- Data Transformations in Pasty Formulas
- Categorical data and patsy

Introduction to statsmodels

- Estimating linear models
- Estimating time series processes

Introduction to scitkit-learn

Interface (data loading and cleaning beforing model building)

```
import pandas as pd
import numpy as np
import patsy
import statsmodels
data = pd.DataFrame({
    "x" : [1, 2, 3, 4, 5],
    "y" : [0.1, .2, 0.4, .6, .7],
    z'' : [-1, -3, -.45, -5.6, 4]
})
data
data.to_numpy()
# working with DataFrames
df2 = pd.DataFrame(data.to_numpy(),
                  columns= ['one', 'two', 'three'])
df2
df3 = data.copy()
df3['strings'] = ['a', 'b', 'c', 'd', 'e']
df3
df3.to_numpy()
# to use subset of columns, loc indexing with to_numpy
model_cols = ["x", "y"]
```

Creating model descriptions with Patsy

```
data

data.drop('category', axis=1)

a, b = patsy.dmatrices('z ~ x + y', data)

a

DesignMatrix with shape (5, 1)

z
-1.00
-3.00
-0.45
-5.60
4.00
Terms:
   'z' (column 0)

b
```

DesignMatrix with shape (5, 3)

```
1 2 0.2
          1 3 0.4
          1 4 0.6
          1 5 0.7
  Terms:
    'Intercept' (column 0)
    'x' (column 1)
    'y' (column 2)
  np.asarray(a)
  np.asarray(b)
  # adding +o to suppress the intercept
  patsy.dmatrices('z ~ x + y + 0', data)[1]
  patsy.dmatrices('z \sim x + y + 0', data)
passing pasty objects directly into algorithms
-eg. numpy.linalg.lstsq
  rcond = -1
  coef, resid, _, _ = np.linalg.lstsq(a, b)
C:\Users\Khurana_Kunal\AppData\Local\Temp\ipykernel_23924\735709127.py:2: FutureWarning: `rc
To use the future default and silence this warning we advise to pass `rcond=None`, to keep us
  coef, resid, _, _ = np.linalg.lstsq(a, b)
```

Intercept x

coef

1 1 0.1

coef = pd.Series(coef.squeeze(), index=a.design_info.column_names)

array([[-0.10510315, -0.18675353, -0.02501629]])

Data Transformations in Pastry Formulas

```
a, b = patsy.dmatrices('x ~ y + np.log(np.abs(x) + 1)', data)
  b
DesignMatrix with shape (5, 3)
  Intercept y np.log(np.abs(x) + 1)
          1 0.1
                               0.69315
          1 0.2
                               1.09861
          1 0.4
                               1.38629
          1 0.6
                               1.60944
          1 0.7
                               1.79176
  Terms:
    'Intercept' (column 0)
    'y' (column 1)
    'np.log(np.abs(x) + 1)' (column 2)
  a,b = patsy.dmatrices("y ~ standardize(x) + center(z)", data)
  а
DesignMatrix with shape (5, 1)
   У
  0.1
 0.2
  0.4
  0.6
  0.7
  Terms:
    'y' (column 0)
  b
DesignMatrix with shape (5, 3)
  Intercept standardize(x) center(z)
                  -1.41421
          1
                                 0.21
          1
                  -0.70711
                                -1.79
```

```
0.00000
                                 0.76
          1
          1
                    0.70711
                                 -4.39
                    1.41421
                                  5.21
  Terms:
    'Intercept' (column 0)
    'standardize(x)' (column 1)
    'center(z)' (column 2)
Categorical Data and Patsy
  data2 = pd.DataFrame({
      'key1' : ['a', 'b', 'c', 'a', 'c', 'b'],
      'key2' : [0, 1, 0, 1, 0, 1],
      'v1' : [1, 2, 3, 4, 5, 6],
      'v2' : [-1, 0, -1.5, 4.0, 2.5, -1.7]
  })
  y, X = patsy.dmatrices('v2 ~ key1', data2)
  X
DesignMatrix with shape (6, 3)
  Intercept key1[T.b] key1[T.c]
          1
          1
                     1
          1
                     0
                                1
                     0
          1
                                0
                     0
          1
                                1
                     1
                                0
  Terms:
    'Intercept' (column 0)
    'key1' (columns 1:3)
  y, X = patsy.dmatrices('v2 ~ C(key2)', data2)
```

DesignMatrix with shape (6, 2)

X

	key1	key2	v1	v2
0	a	zero	1	-1.0
1	b	one	2	0.0
2	\mathbf{c}	zero	3	-1.5
3	a	one	4	4.0
4	\mathbf{c}	zero	5	2.5
5	b	one	6	-1.7

```
y, X = patsy.dmatrices('v2 ~ key1 + key2', data2)
X
```

DesignMatrix with shape (6, 4)

		1	0
key2[T.zero]	key1[T.c]	key1[T.b]	Intercept
1	0	0	1
0	0	1	1
1	1	0	1
0	0	0	1
1	1	0	1
0	0	1	1

Terms:

^{&#}x27;Intercept' (column 0)

^{&#}x27;key1' (columns 1:3)

^{&#}x27;key2' (column 3)

```
y, X = patsy.dmatrices('v2 ~ key1 + key2 + key1:key2', data2)
  X
DesignMatrix with shape (6, 6)
  Columns:
    ['Intercept',
     'key1[T.b]',
     'key1[T.c]',
     'key2[T.zero]',
     'key1[T.b]:key2[T.zero]',
     'key1[T.c]:key2[T.zero]']
  Terms:
    'Intercept' (column 0)
    'key1' (columns 1:3)
    'key2' (column 3)
    'key1:key2' (columns 4:6)
  (to view full data, use np.asarray(this_obj))
```

Statsmodles

- linear models, generalized linear models, and robust linear models
- linear mixed effects models
- ANOVA
- time series and state space models
- generalized methods of moments

Estimating linear models

```
import statsmodels.api as sm
import statsmodels.formula.api as smf

# generating a linear model from a random data
rng = np.random.default_rng(seed = 12345)

def dnorm(mean, variance, size=1):
   if isinstance (size, int):
        size = size,
```

```
return mean+ np.sqrt(variance) * rng.standard_normal(*size)
  N = 100
  X = np.c_[dnorm(0, 0.4, size=N),
           dnorm(0, 0.6, size=N),
           dnorm(0, 0.2, size= N)]
  eps = dnorm(0, 0.1, size=N)
  beta = [0.1, 0.3, 0.5]
  y = np.dot(X, beta) + eps
  X[:5]
array([[-0.90050602, -0.18942958, -1.0278702],
       [0.79925205, -1.54598388, -0.32739708],
       [-0.55065483, -0.12025429, 0.32935899],
       [-0.16391555, 0.82403985, 0.20827485],
       [-0.04765129, -0.21314698, -0.04824364]])
  y[:5]
array([-0.59952668, -0.58845445, 0.18563386, -0.00747657, -0.01537445])
  # fitting a linear model with intercept term
  X_model = sm.add_constant(X)
  X_model[:5]
                   , -0.90050602, -0.18942958, -1.0278702 ],
array([[ 1.
       [ 1.
                   , 0.79925205, -1.54598388, -0.32739708],
       [ 1.
                   , -0.55065483, -0.12025429, 0.32935899],
                   , -0.16391555, 0.82403985, 0.20827485],
       [ 1.
                   , -0.04765129, -0.21314698, -0.04824364]])
       [ 1.
  # filling least squre linear regression with sm.OLS
  model = sm.OLS(y, X)
```

```
results = model.fit()

results.params

array([0.06681503, 0.26803235, 0.45052319])

# printing summary
print(results.summary())
```

OLS Regression Results

______ Dep. Variable: R-squared (uncentered): 0.469 У Model: OLS Adj. R-squared (uncentered): 0.452 Least Squares F-statistic: Method: 28.51 Fri, 01 Mar 2024 Prob (F-statistic): Date: 2.66e-13 Time: 12:55:52 Log-Likelihood: -25.611 No. Observations: 100 AIC: 57.22 Df Residuals: 97 BIC: 65.04

Df Model: 3
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
x1 x2 x3	0.0668 0.2680 0.4505	0.054 0.042 0.068	1.243 6.313 6.605	0.217 0.000 0.000	-0.040 0.184 0.315	0.174 0.352 0.586
Omnibus: Prob(Omnibus): Skew: Kurtosis:	:	0.438 0.808 0.134 2.998	5 Jarqu 4 Prob(1.869 0.301 0.860 1.64

Notes:

[1] R^2 is computed without centering (uncentered) since the model does not contain a constant [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
data = pd.DataFrame(X, columns=['col0', 'col1', 'col2'])
```

data['y']=y data[:5]

	col0	col1	col2	У
0	-0.900506	-0.189430	-1.027870	-0.599527
1	0.799252	-1.545984	-0.327397	-0.588454
2	-0.550655	-0.120254	0.329359	0.185634
3	-0.163916	0.824040	0.208275	-0.007477
4	-0.047651	-0.213147	-0.048244	-0.015374

```
# using statsmodles formula API and Pastry formuls
results = smf.ols('y ~ col0 + col1 + col2', data=data).fit()
results.params
```

Intercept -0.020799 col0 0.065813 col1 0.268970 col2 0.449419

dtype: float64

results.tvalues

Intercept -0.652501 col0 1.219768 col1 6.312369 col2 6.567428

dtype: float64

computing predicted values
results.predict(data[:5])

0 -0.592959

1 -0.531160

2 0.058636

3 0.283658

4 -0.102947

dtype: float64

Estimating time series processes

```
init_x = 4
         values = [init_x, init_x]
         N = 1000
         b0 = 0.8
         b1 = -0.4
         noise = dnorm(0, 0.1, N)
          for i in range(N):
                         new_x = values[-1] * b0 + values[-2] + b1 + noise[i]
                          values.append(new_x)
         from statsmodels.tsa.ar_model import AutoReg
         MAXLAGS = 5
         model = AutoReg(values, MAXLAGS)
         results = model.fit()
\verb|C:\Users\Khurana_Kunal\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfraction. Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.3.9_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction.Python.2.0_qbz5n2kfraction
        cov_p = self.normalized_cov_params * scale
         results.params
array([0.
                                                                     , 0.81652213, 0.5528124 , 0.37427221, 0.25339463,
                            0.17155651])
Scikit-learn
          ! pip install scikit-learn
         train = pd.read_csv(r"E:\pythonfordatanalysis\semainedu26fevrier\train (1).csv")
```

test= pd.read_csv(r"E:\pythonfordatanalysis\semainedu26fevrier\test (1).csv")

train.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	Sib
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1
4	5	0	3	Allen, Mr. William Henry	male	35.0	0

looking for missing data
train.isna().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int64	

test.isna().sum()

PassengerId	0
Pclass	0
Name	0
Sex	0
Age	86
SibSp	0
Parch	0
Ticket	0
Fare	1
Cabin	327

```
Embarked
dtype: int64
  # using 'Age' as a predictor
  # using median of training set to fill missing values
  impute_value = train['Age'].median()
  train['Age'] = train['Age'].fillna(impute_value)
  test['Age'] = test['Age'].fillna(impute_value)
  # specying the models
  train['isFemale'] = (train['Sex'] == 'female').astype(int)
  test['isFemale'] = (test['Sex'] == 'female').astype(int)
  # creating NumPy arrays and deciding on some model variables
  predictors = ['Pclass', 'isFemale', 'Age']
  X_train = train[predictors].to_numpy()
  X_test = test[predictors].to_numpy()
  y_train = train['Survived'].to_numpy()
  X_train[:5]
array([[ 3., 0., 22.],
      [1., 1., 38.],
       [3., 1., 26.],
       [1., 1., 35.],
       [3., 0., 35.]])
```

```
array([0, 1, 1, 1, 0], dtype=int64)
```

y_train[:5]

```
from sklearn.linear_model import LogisticRegression
  model = LogisticRegression()
  model.fit(X_train, y_train)
  LogisticRegression()
LogisticRegression()
  y_predict = model.predict(X_test)
  y_predict[:10]
array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0], dtype=int64)
  (y_true == y_predict).mean()
Theory
  • many models have parameters that can be tuned to avoid overfitting
         example- Cross-validataion (longer to train, but performs better)
  from sklearn.linear_model import LogisticRegressionCV
  model_cv = LogisticRegressionCV(Cs=10)
  model_cv.fit(X_train, y_train)
  LogisticRegressionCV()
LogisticRegressionCV()
```

from sklearn.model_selection import cross_val_score

```
model = LogisticRegression (C=10)
scores = cross_val_score(model, X_train, y_train, cv=4)
scores
array([0.77578475, 0.79820628, 0.77578475, 0.78828829])
```