Zephyr[™]Project

Developer Summit
June 8-10, 2021 • @ZephyrloT

TensorFlow, Meet Zephyr

Machine Learning with TensorFlow Lite Micro on Zephyr

Outline

- Background
 - Machine Learning and Internet of Things
 - TensorFlow, TensorFlow Lite and TensorFlow Lite for Microcontrollers
 - TensorFlow Lite Micro as a Zephyr module
- Walkthrough and Demonstration
- Conclusion
 - Tips for Developers
 - Plea Tips for Contributors
 - Feedback

Lauren Murphy laurenmurphyx64 on GitHub and Zephyr Slack

Have you used TensorFlow? Better yet, have you used it with Zephyr?

Machine Learning

- Machine learning is (of course) different than programming
- Example: Rock-paper-scissors

???????????? >:-(

Machine Learning

Machine Learning with TensorFlow

TensorFlow

- OSS software stack maintained by Google and hosted on GitHub
- Written in Python and C++
- Also an E2E platform and ecosystem

TensorFlow Lite

- Software stack for mobile / embedded devices without significant resource constraints
- APIs in several languages
 - Python, C/C++, Java, JS, Go, etc.
- Many companies have adopted TensorFlow and TensorFlow Lite
 - Twitter and Spotify recommendations
 - Google products
 - Intel and ARM have invested in optimizing them on their CPUs and GPUs
- TensorFlow is also used in research

Machine Learning with... a Microcontroller?

- TensorFlow Lite Micro
 - OSS stack written in C/C++ with C++ API
 - For resource-constrained devices
- "But- but- machine learning is for the cloud!"
- Machine learning on the edge has some advantages
 - Less power and data flow due to less network use and more edge computation
 - Already proven in use in the adoption of TensorFlow Lite and TensorFlow for JS
 - As for TensorFlow Lite Micro...
- Example: Satellite

Machine Learning with... a Microcontroller?

- Limitations
 - Support for limited set of platforms
 - Arduino, Cortex M, etc.
 - Support for limited subset of TensorFlow operations
 - Low-level C++ API requiring manual memory management
 - No on-device training
- You could <u>port TensorFlow Lite Micro to new platforms yourself</u>
 - The library is arithmetic with very few dependencies or requirements
 - You don't need OS support
- Of course, you could also use...

TensorFlow Lite Micro... on Zephyr!

- Zephyr RTOS has several advantages over bare metal
 - Support for 170+ devices
 - Documentation and tooling
 - Community support and participation
 - Industry and vendor collaboration
- We can provide the support TensorFlow Lite Micro needs...
 - Debug logging
 - C Math library
 - C++ 11 compiler compatibility
 - Global variable initialization
- ...As well as other features you might need, like power management, logging, Bluetooth, and more.
- All you have to do is provide the application!

TensorFlow Lite Micro as a Zephyr Module

- Module support is in as of 2.6!
- People have been able to use TensorFlow Lite Micro on Zephyr before now
 - TensorFlow Lite Micro samples available on litex_vexriscv board
 - AntMicro demonstration with Renode emulation
- But the build is TensorFlow-centric
 - Difficult to take out of TensorFlow tree
 - Driven by Makefiles which in the end call Zephyr's build system
- By making it a Zephyr module, we can build it in as a library using Zephyr's simple CMake-based build system
- All you have to do is...
 - Set configuration option for the module in your project configuration file
 - Write a short CMake file

Tips for Application Developers

- Make sure your code doesn't use C++ features not supported by Zephyr
 - Exceptions*
 - Dynamic object management with new and delete
 - Real time type information
 - Static global object destruction
- Check to see if <u>the board you select is supported</u>
 - Check to see if <u>the sensor you pick has drivers</u>
 - (This may make your life easier!)
- Model your application off the Zephyr TensorFlow Hello World sample
- Ask for help on <u>Slack or the mailing lists</u>
- File bugs or enhancements in <u>GitHub</u> (and tag me)

^{*}Support for exceptions currently a work in progress

Plea for Contributors

Tips for Contributors

- We're looking for:
 - TensorFlow users
 - Windows and Mac users
 - (Experienced or not!)
- Feel free to contribute:
 - Bug fixes
 - Enhancements
 - Samples
 - Kconfig options
 - (And much more!)
- Check out the merged RFC PR that added initial module support
- Check out the <u>TensorFlow Zephyr module repository</u>
- Read <u>the documentation on Zephyr modules</u>

```
# Copyright (c) 2021 Intel Corporation (and your company!)
# SPDX-License-Identifier: Apache-2.0

config ZEPHYR_TENSORFLOW_LITE_MICRO_MODULE
bool

config TENSORFLOW_LITE_MICRO
bool "TensorFlow Lite Micro Support"
help
This option enables the TensorFlow Lite Micro library.

# Your Kconfig options here!
```


Questions?
Comments?
Suggestions?
Discuss!

Lauren Murphy laurenmurphyx64 on GitHub and Zephyr Slack

Zephyr Project

Developer Summit
June 8-10, 2021 • @ZephyrloT

Sources

- https://www.tensorflow.org/
- https://en.wikipedia.org/wiki/TensorFlow#TensorFlow Lite
- https://www.infoq.com/presentations/dl-microcontrollers/
- https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software
- https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/micro
- https://www.youtube.com/watch?v=VwVg9jCtqaU
- https://datalya.com/blog/machine-learning/machine-learning-vs-traditional-programming-paradigm
- Wikimedia Commons